

SEQUENCE LISTING

<110> Ganymed Pharmaceuticals AG
TÜRECI, Özlem
SAHIN, Ugur
HELPFENBEIN, Gerd
SCHLÜTER, Volker

<120> Identification of Tumour-Associated Cell Surface Antigens for Diagnosis and Therapy

<130> VOS-203

<140> US10/573,229
<141> 2006-03-24

<150> PCT/EP2004/010697
<151> 2004-09-23

<150> DE 103 44 799.7
<151> 2003-09-26

<160> 312

<170> PatentIn Version 3.1

<210> 1

<211> 920

<212> DNA

<213> Homo sapiens

<400> 1

tctgttagagg ggaatggctg ctgtgtcatg ggggtgcata agcagcccaag tggaaqaggtq 60

cacttggtqa qaaaccqatq cctctgcca ccacacctqcac taacacctqctq qgtctqagac 120

tgagccacctt tggaagctga tcttgagca ccagtcaagc ccttagctgg ctgcacccac 180

aqccaaacaac aaqactqcaa cctcctqqqq qatcctqaqc caqaatcccc tqqctaaatt 240

qctccttqat tcttaaccca caqaaattqt qtaaqacctc catcaqgtqt cqacaqqaa 300

qatccccqaqta qqqcaqqqaqa caqqqaqcacc tctqctatqq ccaatqcaqq aatqctqqcc 360

atcattqctt ctqctqqqcq actqaqaqac atcacccact tccccqaqaac cttttttacq 420

tggaaqtqaaa actttaaqqq qctgtccaaqc taaacaccttcca accttccaaat cccatgtccaa 480

tttctctact tctgaaaaaq qacttcaaat qaaaqacatc tgcaqctatq aacqqqqata 540

aaaaccctcccc taaaaaaaaggc cccaaqcaaq qattttcccta qcqqqqqaggq aqgtagaatc 600

qaaqacacctc taaccctggg aqaaqqaaqqa aqqaaatctc cqaqqaccaq qqtatqcaa 660

caacacaagaq qaagtacctq ctgggttctq qggatattgggg aaaaqaaaatc cctactgtccc 720

caaaqaqccaaq cccccqaaccc aaqqqcacaaqc ttatactqqc cccqqqqqct qqqqqqqqcac 780

qaaaaaccttq aaaaaaqqqqqc qccttcccaq cttccccqqq qataaqqqct ttacccccc 840

qaaaaaaaaaaaaatccg agtggggatct ttcccaaccg ccqaaqacta aaacctttaa 900

acccccaag aaaccttcta 920

<210> 2
<211> 88
<212> PRT
<213> Homo sapiens

<400> 2

Arg Arg Phe Leu Trp Gly Phe Lys Gly Phe Ser Leu Arg Arg Leu Gly
1 5 10 15

Lys Ile Pro Leu Gly Phe Phe Pro Pro Leu Gly Gly Lys Ala Leu
20 25 30

Thr Pro Gly Glu Ala Gly Lys Ala Pro Leu Phe Gln Gly Phe Arg Ala
35 40 45

Pro Pro Gly Pro Gly Ala Ser Ile Ser Cys Ala Leu Gly Ser Gly Leu
50 55 60

Ala Leu Gly Ala Val Gly Ile Phe Leu Pro Gln Pro Pro Glu Pro Ser
65 70 75 80

Arg Tyr Phe Pro Cys Val Val Ala
85

<210> 3
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 3
gcagccacag ccaacaacaa ga 22

<210> 4
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 4
acagcagagg tgtcctgtc tcctg 25

<210> 5
<211> 2856
<212> DNA
<213> Homo sapiens

<400> 5
atggccaaaa gaaatctcag cactgtgaca gagttcatc ttgtagtctt cacagatcac 60
cctgaactgg cagttccact cttccatgtg tttctcagtt tctatcttgt cactttctg 120
ggaatgggg ggatgatcat tctaattcaa gtggatgcc aactccacac ccccgtgtac 180
ttcttcctga gccacccgc tttccatggat gcctgctgtg cctcagtaat caccctcag 240
attctggcca cactggccac agacaagaca gttatctcct atggctgccg tgctgtgcag 300
ttctctttct tcaccatatg tgcaggcaca gagtgttacc tgctgtcagt gatggccat 360
gaccgccttg ttgccattag caatccactg cactgtaaaca tgaccatgac tccaggtacc 420
tgcagggctt tttggccag tgccttcatac tgtgggtgt caggggccat tctgcataacc 480
acgtgcacct tcaccctctc cttctgttgt gacaatcaga tcaacttctt cttctgtgac 540
ctcccacccc tgctgaagct cgccctgcagc agcatgacac aaactgagat tgtcattctc 600
cttttgccaa aatgcatgtt cctagccaat gtcatggta tcctgatctg ctacatgctc 660
attatcagag ccattttgag ggtgaagtcg gcaggaggcc tcctgatagc atctgctcat 720
ttcgatgcat atgtatatga gacaggcatc aactacaaca cagtttatgg ctcagggaaag 780
gcagtaggggt ggtcctggag ggcctgcgg gaaaccaacc acatgagacc agggaaatact 840
tcaaaaacact cagcagccca gctgcatcaa tgcctcatcc agcaagttgg caggtggccc 900
ttgcagagca tgcccttcccc cgtttctgca gggccaccc ataagtcagt gcagcctctc 960
cctggagacc cccggcctct cctgtgcatac accggattat ttctgacttt gaagatgatg 1020
gggtgtggc ccaggaggcc cagggacagg aagtctgact tcttcataaa cacagaccct 1080
ggtgcagggt caccagaaga acagaggtgt ggatggaaag ggcacatcc tcactcctat 1140
accctggggc tgtctctgcc agtcaacttc ggcctgaaat gtccatggc gacactatct 1200
ggaccccccag ctacctgcca acgtccagac ctgcagacac cttctccacc aaaggagata 1260
tgttcatccg ggctgcgacc cttacacac acgcgtggac cagacagaag tcaagttcca 1320
gcagcctccg gagcagccac tatgctgaca aaggggctgc ccgacatcac tgtggactg 1380
cagatttatg actcctgcat ctcagggatc caggctctgg ggagcaccct ggccctgctg 1440
tccaatcagc ttccacccac aaccaactat gcttggct cccagcaaca tctcctggc 1500
gtggttggag ggatgacccctt cctggagtca gagccatgt ctgagctgct ctccatctac 1560
agagtcctc agggccaaag actcacaaa aactttgaag taaaagaact tgtctgcaca 1620
tatctggtag gacagcttcc ttatggcctg gtcagttatg acaacagcaa ctttgagtg 1680
ctggatcagc agctgcagaa gcagatcggg ggcgaggac ttcctgttg cgctgcgcc 1740
agccgtgtag ccaggcaaca gtctgatgag gaagctgtgg gaggagtgca gggatacagg 1800
tggctggat tagggcttc catccaaagt gccagagaag gggctggca tcgcacaggg 1860

ctggagaaca tgaccactgc ccacccgtct gccttcaaacc ttcctgatct aactgccact	1920
taccaaggcct acctggcagc caaagccctg tgggttgccct atcagaacct gatgtcctgc	1980
tctgagagag agggaccatt cctgggaggc acgtatgcca atgcatggga agccagggct	2040
tctcaggta acttcaccac caaagcccaa gaagaggttt tcttcgccaa agatgggaa	2100
gtgctgacaa cgtttgacat taaaaacatc tatgttctcc cagacctgtc aggacagaca	2160
gccattgttg gacactttga cttagagca ccttctggaa aagagcttct gttggatgac	2220
agcgcaattg tctggcaga aggacccta aagatttagag ctgagagaac cctaagaacc	2280
aagaccacac agcacctctc acatcccaag ctccaggagt cccttcctct gtctgcaacg	2340
aaaaacgtcc tgtggaaacc aggaagtcaa ccctatttga gaagtcaaaa tgctgctaca	2400
aaagccttcc ctgacccaga agagaaatcg caatgtcacc agtttcttct tctcccttca	2460
gatagtgttg catgtcagaa gtgctctgac aaccagtggc ccaatgtgca gaaggcgag	2520
tgcatccccaa acccttga cttcttgttc tattcacaagc cccttgacac agcggtggct	2580
gtctgcacag ccctgcttct tctccttgcc ctggccatct taggcattttt ccatgttg	2640
tgctcctgtgtc tctgggtgtc cttcataacct gcccacatgc atgcccacag caaagacacc	2700
atggccatgg aggtctttgtt catcttggca tcagcaggag gcctcatgtc ctcccttcc	2760
ttttccaaat gctacatcat cttctccat cctgaaaaga acacaaaaga ccaaattttt	2820
ggccggcattc atcgcaagtggaaaaactg aagtga	2856

<210> 6
<211> 951
<212> PRT
<213> Homo sapiens

<400> 6

Met Ala Lys Arg Asn Leu Ser Thr Val Thr Glu Phe Ile Leu Val Val
1 5 10 15

Phe Thr Asp His Pro Glu Leu Ala Val Pro Leu Phe Leu Val Phe Leu
20 25 30

Ser Phe Tyr Leu Val Thr Phe Leu Gly Asn Gly Gly Met Ile Ile Leu
35 40 45

Ile Gln Val Asp Ala Gln Leu His Thr Pro Val Tyr Phe Phe Leu Ser
50 55 60

His Leu Ala Phe Leu Asp Ala Cys Cys Ala Ser Val Ile Thr Pro Gln
65 70 75 80

Ile Leu Ala Thr Leu Ala Thr Asp Lys Thr Val Ile Ser Tyr Gly Cys
85 90 95

Arg Ala Val Gln Phe Ser Phe Phe Thr Ile Cys Ala Gly Thr Glu Cys
100 105 110

Tyr Leu Leu Ser Val Met Ala Tyr Asp Arg Phe Val Ala Ile Ser Asn
115 120 125

Pro Leu His Cys Asn Met Thr Met Thr Pro Gly Thr Cys Arg Val Phe
130 135 140

Leu Ala Ser Ala Phe Ile Cys Gly Val Ser Gly Ala Ile Leu His Thr
145 150 155 160

Thr Cys Thr Phe Thr Leu Ser Phe Cys Cys Asp Asn Gln Ile Asn Phe
165 170 175

Phe Phe Cys Asp Leu Pro Pro Leu Lys Leu Ala Cys Ser Ser Met
180 185 190

Thr Gln Thr Glu Ile Val Ile Leu Leu Cys Ala Lys Cys Met Phe Leu
195 200 205

Ala Asn Val Met Val Ile Leu Ile Cys Tyr Met Leu Ile Ile Arg Ala
210 215 220

Ile Leu Arg Val Lys Ser Ala Gly Gly Leu Leu Ile Ala Ser Ala His
225 230 235 240

Phe Asp Ala Tyr Val Tyr Glu Thr Gly Ile Asn Tyr Asn Thr Val Tyr
245 250 255

Gly Ser Gly Lys Ala Val Gly Trp Ser Trp Arg Ser Leu Arg Glu Thr
260 265 270

Asn His Met Arg Pro Gly Asn Thr Ser Lys His Ser Ala Ala Gln Leu
275 280 285

His Gln Cys Leu Ile Gln Gln Val Gly Arg Trp Pro Leu Gln Ser Met
290 295 300

Pro Phe Pro Val Ser Ala Gly Pro Pro Tyr Lys Ser Val Gln Pro Leu
305 310 315 320

Pro Gly Asp Pro Arg Pro Leu Leu Cys Ile Thr Gly Leu Phe Leu Thr
325 330 335

Leu Lys Met Met Gly Cys Gly Pro Arg Arg Pro Arg Asp Arg Lys Ser
340 345 350

Asp Phe Phe Ile Asn Thr Asp Pro Gly Ala Gly Ser Pro Glu Glu Gln
355 360 365

Arg Cys Gly Trp Glu Gly His Pro Ser His Ser Tyr Thr Leu Gly Leu
370 375 380

Ser Leu Pro Val Asn Phe Gly Leu Lys Cys Pro Trp Trp Thr Leu Ser
385 390 395 400

Gly Pro Pro Ala Thr Cys Gln Arg Pro Asp Leu Gln Thr Pro Ser Pro
405 410 415

Pro Lys Glu Ile Cys Ser Ser Gly Leu Arg Pro Leu Thr His Ser Ala
420 425 430

Gly Pro Asp Arg Ser Gln Val Pro Ala Ala Ser Gly Ala Ala Thr Met
435 440 445

Leu Thr Lys Gly Leu Pro Asp Ile Thr Val Gly Leu Gln Ile Tyr Asp
450 455 460

Ser Cys Ile Ser Gly Ile Gln Ala Leu Gly Ser Thr Leu Ala Leu Leu
465 470 475 480

Ser Asn Gln Leu Pro Pro Thr Thr Asn Tyr Ala Cys Gly Ser Gln Gln
485 490 495

His Leu Leu Gly Val Val Gly Gly Met Thr Phe Leu Glu Ser Glu Pro
500 505 510

Met Ser Glu Leu Leu Ser Ile Tyr Arg Val Pro Gln Gly Gln Arg Leu
515 520 525

Thr Lys Asn Phe Glu Val Lys Glu Leu Val Cys Thr Tyr Leu Val Gly
530 535 540

Gln Leu Pro Tyr Gly Leu Val Ser Tyr Asp Asn Ser Asn Phe Glu Trp
545 550 555 560

Leu Asp Gln Gln Leu Gln Lys Gln Ile Gly Gly Glu Gly Leu Pro Val
565 570 575

Gly Ala Ala Pro Ser Arg Val Ala Arg Gln Gln Ser Asp Glu Glu Ala

580

585

590

Val Gly Gly Val Gln Gly Tyr Arg Trp Ser Gly Leu Gly Ala Ser Ile
595 600 605

Gln Ser Ala Arg Glu Gly Ala Trp His Arg Thr Gly Leu Glu Asn Met
610 615 620

Thr Thr Ala His Leu Ser Ala Phe Lys Leu Pro Asp Leu Thr Ala Thr
625 630 635 640

Tyr Gln Ala Tyr Leu Ala Ala Lys Ala Leu Trp Val Ala Tyr Gln Asn
645 650 655

Leu Met Ser Cys Ser Glu Arg Glu Gly Pro Phe Leu Gly Gly Thr Tyr
660 665 670

Ala Asn Ala Trp Glu Ala Arg Leu Ser Gln Val Asn Phe Thr Thr Lys
675 680 685

Ala Gln Glu Glu Val Phe Phe Ala Lys Asp Gly Glu Val Leu Thr Thr
690 695 700

Phe Asp Ile Lys Asn Ile Tyr Val Leu Pro Asp Leu Ser Gly Gln Thr
705 710 715 720

Ala Ile Val Gly His Phe Asp Phe Arg Ala Pro Ser Gly Lys Glu Leu
725 730 735

Leu Leu Asp Asp Ser Ala Ile Val Trp Ala Glu Gly Pro Leu Lys Ile
740 745 750

Arg Ala Glu Arg Thr Leu Arg Thr Lys Thr Gln His Leu Ser His
755 760 765

Pro Lys Leu Gln Glu Ser Leu Pro Leu Ser Ala Thr Lys Asn Val Leu
770 775 780

Trp Lys Pro Gly Ser Gln Pro Tyr Leu Arg Ser Gln Asn Ala Ala Thr
785 790 795 800

Lys Ala Phe Pro Asp Pro Glu Glu Lys Ser Gln Cys His Gln Phe Leu
805 810 815

Phe Leu Pro Ser Asp Ser Val Ala Cys Gln Lys Cys Ser Asp Asn Gln
820 825 830

Trp Pro Asn Val Gln Lys Gly Glu Cys Ile Pro Lys Thr Leu Asp Phe
835 840 845

Leu Phe Tyr His Lys Pro Leu Asp Thr Ala Leu Ala Val Cys Thr Ala
850 855 860

Leu Leu Phe Leu Leu Ala Leu Ala Ile Leu Gly Ile Phe His Val Val
865 870 875 880

Cys Ser Cys Val Trp Val Ser Phe Ile Pro Ala His Met His Ala His
885 890 895

Ser Lys Asp Thr Met Ala Met Glu Val Phe Val Ile Leu Ala Ser Ala
900 905 910

Gly Gly Leu Met Ser Ser Leu Phe Phe Ser Lys Cys Tyr Ile Ile Leu
915 920 925

Leu His Pro Glu Lys Asn Thr Lys Asp Gln Met Phe Gly Arg His His
930 935 940

Arg Lys Trp Glu Lys Leu Lys
945 950

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 7
agggtggtgtg acgctgctgc ta 22

<210> 8
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 8
tcttccttggg ctttggtggt ga 22

<210> 9
<211> 543
<212> DNA
<213> Homo sapiens

<400> 9

ataaaagcggg acaacacaga acttcccagt tacaccaggc atcctggccc aaagtttccc	60
aaatccaggc ggcttagagggc ccactgcttc ccaactacca gctgaggggg tccgtcccgaa	120
gaagggagaa gaggccgaag aggaaacatg aacttctatt tactcctagc gagcagcatt	180
ctgtgtgcct tgattgtctt ctggaaatat cgccgcttc agagaaacac tggcgaaatg	240
tcatcaaatt caactgctct tgcaacttagtg agaccctott cttctgggtt aattaacagc	300
aatacagaca acaatcttgc agtctacgac ctctctcggg atatttaaa taatttccca	360
cactcaatag ccagggcagaa gcgaatattg gttaaacctca gtatggtgaa aaacaagctg	420
gttgaactgg aacatactct acttagcaag ggtttcagag gtgcattcacc tcaccggaaa	480
tccacctaaa agcgtacagg atgtaatgcc agtggtgaa atcattaaag acactttgag	540
tag	543

<210> 10
<211> 113
<212> PRT
<213> Homo sapiens

<400> 10

Met Asn Phe Tyr Leu Leu Leu Ala Ser Ser Ile Leu Cys Ala Leu Ile
1 5 10 15

Val Phe Trp Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser
20 25 30

Ser Asn Ser Thr Ala Leu Ala Leu Val Arg Pro Ser Ser Gly Leu
35 40 45

Ile Asn Ser Asn Thr Asp Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg
50 55 60

Asp Ile Leu Asn Asn Phe Pro His Ser Ile Ala Arg Gln Lys Arg Ile
65 70 75 80

Leu Val Asn Leu Ser Met Val Glu Asn Lys Leu Val Glu Leu Glu His
85 90 95

Thr Leu Leu Ser Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser
100 105 110

Thr

<210> 11
<211> 22

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 11
 gtgtgccttg attgtcttct gg

22

<210> 12
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 12
 cctggctatt gagtgtggg

19

<210> 13
 <211> 2761
 <212> DNA
 <213> Homo sapiens

<400> 13		
ctaggcctca gtctgtctgc atccaggtgc ttattaaaaac agtgtgttgc tccacaccgc		60
ctcggttgt ctgttggcgc gctctccggg ttccaaccaa tgcaagagcc ttggggctgg		120
ccctgaaacc tgcgaggggc ttccgtccac gtccccagtg gacctaccac ccctccatct		180
gggaaagcag gccacagcag ccggacaaaag gaagctcctc agcctctagt cgccctcttg		240
tgcatgcaca tcggtcactg atctcgctca ctggcacaga cgtgtttatc ggccaaactg		300
accctcacaa aaagctacca ccgaagtggc caggccccta cactgtgata ctcagcacac		360
caactgcagt gagagtccga ggactccca actggatcca tcgcaccagg gtcaagctca		420
cccccaaggc agcttcttcc tccaaaacat taacagctaa gtgtttgtct gggccaattt		480
ctcctaccaa gtttaaattt accaacattt ttttcttaaa accaaaacac aaggaagact		540
aaccacgtgc ttccaggaat ggcctgtatc tacccaaacca ctttctatac ctctcttcca		600
accaaaaagtc ttaatatggg aatatccctc accacgatcc taatactgtc agtagctgtc		660
ctgctgtcca cagcagcccc tccgagctgc cgtgagtggtt atcagtcttt gcactacaga		720
ggggagatgc aacaatactt tacttaccat actcatatag aaagatcctg ttatggaaac		780
ttaatcgagg aatgtgttga atcaggaaag agttattata aagtaaagaa tctaggagta		840
tgtggcagtc gtaatggggc tatttgcggcc agagggaaagc agtggctttg ctccaccaaa		900
attggacaat ggggagtaaa cactcaggtg cttgaggaca taaagagaga acagattata		960
gccaaagcca aagcctcaaa accaacaact cccccctgaaa atcgccccgcg gcatttccat		1020

tcctttatac	aaaaactata	agcagatgca	tcccttccta	agccaggaaa	aaatctgttt	1080
gtagatctag	gagaaccatt	gtgcttacca	tgaatgtgtc	caattgttgg	gtatgcgggg	1140
gagctttatg	agtgaacagt	ggctgtggg	cgggatagac	attccccctt	acttacaggc	1200
atccccaaac	cccagactca	ctttcactcc	ttaggaatgc	ccgcagtcct	ggacacttac	1260
caacccagta	tgagggacgg	tgtcatatc	ccgcaagtgg	actgataaaa	cccatcgcbc	1320
cgttagtgaa	aaccgtcac	caaaccctaa	cagtcaatgc	ctccatagct	gagtgggtggc	1380
caaggttacc	ccctggagcc	tggtctcctt	ctaaacttaag	ctacctcaat	tgtgtcttgt	1440
caaaaaaggc	ctggtactgt	acgaacacca	ctaaccctta	tgccgcatac	ctccgcctaa	1500
gtgtactatg	cgacaatcct	aggaacacca	gctgacaatg	gactgccact	gacggattcc	1560
tgtggatatg	ggaaacccag	gcttactcac	agctacctta	tcactggcaa	ggtaacttgct	1620
tccttaggcac	aattcaacct	ggattcttt	tacttccgaa	gcaggcgggc	aacaccctca	1680
gagtcctgt	gtatgataac	cagagaaaaa	tgatccttgg	aggtaggagg	gagccaaaga	1740
ttgtgagagg	acgagtggcc	tctgcaacgg	atcattgaat	actatggtcc	tgccacttgg	1800
gcagaggatg	gttcatgggg	ttatcgact	cccatatata	tgccaaatag	agcgattaga	1860
ctacaagctg	ttcttagagat	aatcactaac	caaactgcct	cagccctaga	aatgctcgcg	1920
caacaacaaa	accaaatgcg	cgcggcaatt	tatcaaaca	ggctggccct	agactactta	1980
ttagcagaag	agggtgcggg	ctgtggtaag	ttaacatct	ccaattgctg	tcttaacata	2040
ggcaataatg	gagaagaggt	tctggaaatc	gcttcaaaca	tcagaaaagt	agcccgtgta	2100
ccagtccaaa	cctgggaggg	atggaccca	gcaaaccctc	taggagggtg	gttctctaat	2160
ttaggaggat	ttaaatgct	ggtggggaca	gtcattttca	tcactgggtt	cctcctgttt	2220
ctccccctgt	gtatcccatt	aaaactcttg	ttgaaactac	agttAACCTC	ctgacaatcc	2280
agatgatgct	cctgctacag	cggcacgatg	gataccaacc	cgtctctcaa	gaataccccca	2340
aaaattaagt	tttttttttt	ccaaggtgcc	cacgccaccc	ctatgtcacg	cctgaagtag	2400
ttattttagaa	agtcgtccct	ttcccccttt	ctataaccaa	atagacagga	atggaagatt	2460
ctcctcgggg	cctgaaagact	tgcgggatga	ataactcctc	ctcctcaggc	ccagtcctaa	2520
ggtacaaaact	tgcaccagca	gcaagatagc	agaggcagga	agagagctgg	ctggaagaca	2580
cgtacccct	gaagatcaag	agggaggtcg	ccctggact	acatagcagt	cacgttaggc	2640
tgggacaatt	cctgtttaca	gaggactata	aaaccctgc	cccatcctca	cttggggctg	2700
atgccatttt	aggcctcagc	ctgtctgcat	gcaggcgctc	attaaaacag	catgttgctc	2760
c						2761

<211> 160

<212> PRT

<213> Homo sapiens

<400> 14

Met Ala Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr Lys
1 5 10 15

Ser Leu Asn Met Gly Ile Ser Leu Thr Thr Ile Leu Ile Leu Ser Val
20 25 30

Ala Val Leu Leu Ser Thr Ala Ala Pro Pro Ser Cys Arg Glu Cys Tyr
35 40 45

Gln Ser Leu His Tyr Arg Gly Glu Met Gln Gln Tyr Phe Thr Tyr His
50 55 60

Thr His Ile Glu Arg Ser Cys Tyr Gly Asn Leu Ile Glu Glu Cys Val
65 70 75 80

Glu Ser Gly Lys Ser Tyr Tyr Lys Val Lys Asn Leu Gly Val Cys Gly
85 90 95

Ser Arg Asn Gly Ala Ile Cys Pro Arg Gly Lys Gln Trp Leu Cys Phe
100 105 110

Thr Lys Ile Gly Gln Trp Gly Val Asn Thr Gln Val Leu Glu Asp Ile
115 120 125

Lys Arg Glu Gln Ile Ile Ala Lys Ala Lys Ala Ser Lys Pro Thr Thr
130 135 140

Pro Pro Glu Asn Arg Pro Arg His Phe His Ser Phe Ile Gln Lys Leu
145 150 155 160

<210> 15

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 15

cctctagtcg cctctctgtg c

21

<210> 16

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 16

accctgggtgc gatggat

17

<210> 17

<211> 1635

<212> DNA

<213> Homo sapiens

<400> 17

gcctgtccct gccttaagtgcctactggat cccggggagcc tgggctgggg cctggggact 60

gcttcctcct tggcccctca ggcccttggaa agcagagaga gaaccttttgcagatcccag 120

gctcgcccc accacagcag acaccaggaa ggtggccaga gcctcaactga gccgaaccga 180

cggccgcccc cccacccagg ctggagccat ggataaaatttgcatgctct tccagcactt 240

ccagtcAACG tcggagtcgg tgatgaatgg catctgccttgcgtggctgcgttcaccgt 300

caagctgtac tcctccttttgcattcaacttgc tccctgccttgcgttgcactacaatgcactcta 360

cggcctgggc ctgctgtga cgcccccgct cgccctgttt ctctgcggcc tcctcgccaa 420

ccggcagtct gtgggtatgg tcgaggagtg ggcggggccc gcagggcacc ggaggaagga 480

cccaggcatc atcaggtaca tgtgtccctc tgtgtgcag agggcgctgg ccgccccct 540

ggtctggatc ctgctggccc tccttgacgg gaagtgccttgcgtgtgccttcagcagctc 600

tgtggaccct gagaagtttc tggactttgc caacatgacc cccagccagg tacagcttt 660

cctggccaag gttccctgca aggaggatga gctggtcagg gatagcccttgc tccggaaggc 720

agtgtctcgac tacctgcggcgcctgtcaca ggccatcggtc tggagcgtca ccctgctgct 780

gatcatcgcg gccttcctgg cccgctgccttgc gaggccctgc ttgcaccaga cagtcttcct 840

gcagcgcaga tactggagca actacgtggaa cctggagcag aagctttcg acgagacctg 900

ctgtgagcat ggcggggact tcgacgttgccttgcgttgc cacttcttttgcagcatgcg 960

gagtgagctg caggcgcggg ggctgcgcgg gggcaatgca ggcaggagac tcgagctccc 1020

cgcagtgcct gagcccccaag aaggcctggaa tagtggaaatggaaaggccc acctgcgcgc 1080

aatctccagc cgggagcagg tggaccgccttgccttgcataagcacgtggacttccat gcaagccgc 1140

gctggacctg gctgcattccc ccgggctctgcgggggtggccttagccacc ggcggccat 1200

cttggactg ggcacgaggc tgcataacaaccatcggactgttgcgttgc tggacttgc 1260

aagcggcagt gttcgaggt gaaatgccgc gctgacaaatggatggacttgc tttccaggcc 1320

gtggggaccc cacggcaggc accctaagtc ttgttagcttgcctttttaaa gtagccaat 1380

ctctgccttag tttctgggttgc tggcctccat cgcgttccac aaactttaat gtggacttgc 1440

ttcaccgagg gccttgttaa atacaggttc agacagtgtaa gccaggaccc agtctgagat 1500

tctgcatttt aaacaagctc ctggaggctg atgtgcttt ggtcagtgaa ccaaacttg	1560
agtagcaaga atctaagtaa atctgccatg gttctgggt tctagatgtc aattctaaat	1620
aataataatg acctt	1635

<210> 18
<211> 344
<212> PRT
<213> Homo sapiens

<400> 18

Met Asp Lys Phe Arg Met Leu Phe Gln His Phe Gln Ser Ser Ser Glu			
1	5	10	15

Ser Val Met Asn Gly Ile Cys Leu Leu Leu Ala Ala Val Thr Val Lys		
20	25	30

Leu Tyr Ser Ser Phe Asp Phe Asn Cys Pro Cys Leu Val His Tyr Asn		
35	40	45

Ala Leu Tyr Gly Leu Gly Leu Leu Leu Thr Pro Pro Leu Ala Leu Phe		
50	55	60

Leu Cys Gly Leu Leu Ala Asn Arg Gln Ser Val Val Met Val Glu Glu			
65	70	75	80

Trp Arg Arg Pro Ala Gly His Arg Arg Lys Asp Pro Gly Ile Ile Arg		
85	90	95

Tyr Met Cys Ser Ser Val Leu Gln Arg Ala Leu Ala Ala Pro Leu Val		
100	105	110

Trp Ile Leu Leu Ala Leu Leu Asp Gly Lys Cys Phe Val Cys Ala Phe		
115	120	125

Ser Ser Ser Val Asp Pro Glu Lys Phe Leu Asp Phe Ala Asn Met Thr		
130	135	140

Pro Ser Gln Val Gln Leu Phe Leu Ala Lys Val Pro Cys Lys Glu Asp			
145	150	155	160

Glu Leu Val Arg Asp Ser Pro Ala Arg Lys Ala Val Ser Arg Tyr Leu		
165	170	175

Arg Cys Leu Ser Gln Ala Ile Gly Trp Ser Val Thr Leu Leu Leu Ile		
180	185	190

Ile Ala Ala Phe Leu Ala Arg Cys Leu Arg Pro Cys Phe Asp Gln Thr
195 200 205

Val Phe Leu Gln Arg Arg Tyr Trp Ser Asn Tyr Val Asp Leu Glu Gln
210 215 220

Lys Leu Phe Asp Glu Thr Cys Cys Glu His Ala Arg Asp Phe Ala His
225 230 235 240

Arg Cys Val Leu His Phe Phe Ala Ser Met Arg Ser Glu Leu Gln Ala
245 250 255

Arg Gly Leu Arg Arg Gly Asn Ala Gly Arg Arg Leu Glu Leu Pro Ala
260 265 270

Val Pro Glu Pro Pro Glu Gly Leu Asp Ser Gly Ser Gly Lys Ala His
275 280 285

Leu Arg Ala Ile Ser Ser Arg Glu Gln Val Asp Arg Leu Leu Ser Thr
290 295 300

Trp Tyr Ser Ser Lys Pro Pro Leu Asp Leu Ala Ala Ser Pro Gly Leu
305 310 315 320

Cys Gly Gly Gly Leu Ser His Arg Ala Pro Thr Leu Ala Leu Gly Thr
325 330 335

Arg Leu Ser Gln His Thr Asp Val
340

<210> 19

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 19

gaggaaggac ccaggcatca 20

<210> 20

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 20

gaaggcacac acgaagcact 20

<210> 21
<211> 4556
<212> DNA
<213> Homo sapiens

<400> 21	
gcggccgccc cattcccaga ccggccgcca gccccatctgg ttagctcccg ccgtccgcg	60
ccgccccggga gtcgggagcc gcggggaaacc gggcacctgc accccgcctct gggagtgagt	120
ggttccagct ggtgcctggc ctgtgtctct tggatgcctt gtggcttcag tccgtctcct	180
gttgcccacc acctcgtccc tggggccct gataccccag cccaacagct aagggtgtgga	240
tggacagtag ggggctggct tctctcaactg gtcaggggtc ttctcccctg tctgcctccc	300
ggagcttagga ctgcagaggg gcctatcatg gtgcttgcag gccccctggc tgtctcgctg	360
ttgctgcccgc gcctcacact gctgggtgtcc cacctctcca gctcccagga tgtctccagt	420
gagcczagca gtgagcagca gctgtgcgcc cttagcaagc acccccacgt ggcctttgaa	480
gacctgcagc cgtgggtctc taacttcacc taccctggag cccgggattt ctcccagctg	540
gctttggacc cctccgggaa ccagctcatc gtgggagcca ggaactacct cttcagactc	600
agccttgcca atgtctctct tcttcaggcc acagagtggg cctccagtga ggacacgcgc	660
cgctcctgccc aaagcaaagg gaagactgag gaggagtgtc agaactacgt gcgagtcctg	720
atcgtcgccc gccggaaggt gttcatgtgt ggaaccaatg cctttcccc catgtgcacc	780
agcagacagg tggggAACCT cagccggact attgagaaga tcaatgggtgt ggcccgcgtc	840
cccttatgacc cacGCCACAA ctccacagct gtcatctcct cccaggggaa gctctatgca	900
gccacggta tcgacttctc aggtcgggac cctgccatct accgcagcct gggcagtggg	960
ccaccgcttc gcactgcccataataactcc aagtggctta atgagccaaa cttcgtggca	1020
gccttatgata ttgggctgtt tgcataacttc ttcctgcggg agaacgcagt ggagcacgac	1080
tgtggacgca ccgtgtactc tcgcgtggcc cgcgtgtgca agaatgacgt gggggggcga	1140
ttcctgctgg aggacacatg gaccacattc atgaaggccc ggctcaactg ctcccggcc	1200
ggcgaggtcc cttctacta taacgagctg cagagtgcct tccacttgcc ggagcaggac	1260
ctcatctatg gagtttac aaccaacgta aacagcatcg cggcttctgc tgtctgcgc	1320
ttcaacctca gtgctatctc ccaggcttc aatggcccat ttgcgtacca ggagaacccc	1380
agggctgcct ggctcccat agccaacccc atccccatt tccagtgtgg caccctgcct	1440
gagaccggtc ccaacgagaa cctgacggag cgcagcgtc aggacgcgca ggcgccttc	1500
ctgatgagcg aggccgtgca gccggtgaca cccgagccct gtgtcaccctt ggacagcgtg	1560
cgcttctcac acctcgtggt ggacctggtg caggctaaag acacgctcta ccatgtactc	1620
tacattggca ccgagtcggg caccatcctg aaggcgctgt ccacggcgag ccgcagcctc	1680

cacggctgct acctggagga gctgcacgtg ctgcccccg ggcgccgcga gcccctgcgc	1740
agcctgcgca tcctgcacag cgcccgcgcg ctcttcgtgg ggctgagaga cggcgtcctg	1800
cgggtcccac tggagagggtg cgccgcctac cgccagccagg gggcatgcct gggggcccg	1860
gaccctact gtggctggga cgggaagcag caacgttgca gcacactcga ggacagctcc	1920
aacatgagcc tctggaccga gaacatcacc gcctgtcctg tgccgaatgt gacacggat	1980
gggggcttcg gccatggtc accatggcaa ccatgtgagc acttggatgg ggacaactca	2040
ggctcttgcc tgtgtcgagc tcgatcctgt gattccctc gaccccgctg tggggccctt	2100
gactgcctgg ggccagccat ccacatcgcc aactgctcca ggaatggggc gtggaccccg	2160
tggtcatcgt gggcgctgtg cagcacgtcc tgtggatcg gcttccaggt cgcgcagcga	2220
agttcagca accctgctcc cgcacacggg ggccgcacatct gcgtggcaaa gagccgggag	2280
gaacggttct gtaatgagaa cacgccttgc ccggtgccca tcttctgggc ttccctgggc	2340
tcctggagca agtgcagcag caactgtgga gggggcatgc agtcgcggcg tcgggcctgc	2400
gagaacggca actcctgcct gggctgcggc gtggagtca agacgtgcaa ccccgagggc	2460
tgccccgaag tgcggcgcaa cacccctgg acgcccgtggc tgcccgtaa cgtgacgcag	2520
ggcgaaaaac ggcaggagca gcgggtccgc ttcacctgcc gcgcgcaccc tgcagaccccg	2580
cacggcctgc agttcggcag gagaaggacc gagacgagga cctgtccgcg ggacggctcc	2640
ggctcctgcg acaccgacgc cctgggtggag gtcctcctgc gcagcggag caccccccgg	2700
cacacggta gcgggggctg ggccgcctgg ggcccgtggt cgtcctgctc ccggactgc	2760
gagctgggtct tccgcgtccg caagagaacg tgcactaacc cggagccccc caacgggggc	2820
ctgcctgcg tggcgatgc tgccgagtac caggactgca acccccaggc ttgcccagtt	2880
cggggtgctt gtcctgcgt gacctcatgg tctccatgct cagttcctg tgggggggt	2940
cactatcaac gcacccgttc ctgcaccaggc cccgcacccct ccccaaggta ggacatctgt	3000
ctcggcgtgc acacggagga ggcactatgt gccacacagg cctgcccaga aggctggcgt	3060
ccctggctcg agtggagtaa gtgcactgac gacggagccc agagccgaag ccggcactgt	3120
gaggagctcc tcccagggtc cagccctgt gctggaaaca gcagccagag ccgcctgc	3180
ccctacagcg agattcccgat catcctgcca gcctccagca tggaggaggc caccgactgt	3240
gcagggttca atctcatcca cttgggtggcc acggcatct cctgcttctt gggctctggg	3300
ctcctgaccc tagcagtgtt cctgtcttgc cagcactgcc agcgtcagtc ccaggagtc	3360
acactggtcc atcctgcccac ccccaaccat ttgcactaca agggcggagg caccggaaag	3420
aatgaaaagt acacacccat ggaattcaag accctgaaca agaataactt gatccctgat	3480
gacagagcca acttctaccc attgcagcag accaatgtgt acacgactac ttactaccca	3540

agccccctga acaaacacag cttccggccc gaggcctcac ctggacaacg gtgcttcccc	3600
aacagctgat accgccgtcc tggggacttg ggcttcttgc cttcataagg cacagagcag	3660
atggagatgg gacagtggag ccagtttgtt tttctccctc tgcaactaggc caagaacttg	3720
ctgccttgcc tgtgggggtt cccatccggc ttcagagagc tctggctggc attgaccatg	3780
ggggaaaaggg ctggtttcag gctgacatat ggccgcaggt ccagttcagc ccaggtctct	3840
catggttatc ttccaaccca ctgtcacgct gacactatgc tgccatgcct gggctgtgga	3900
cctactgggc atttgaggaa ttggagaatg gagatggcaa gagggcagggc ttttaagttt	3960
gggttggaga caacttcctg tggcccccac aagctgagtc tggccttctc cagctggccc	4020
caaaaaaggc ctttgctaca tcctgattat ctctgaaagt aatcaatcaa gtggctccag	4080
tagctctgga ttttctgcca gggctggcc attgtggtgc tgccccagta tgacatggga	4140
ccaaggccag cgccaggatcc acaccctctgc ctggaaagtct atactctacc cagggcatcc	4200
ctctggtcag aggcagttag tactgggaac tggaggctga cctgtgctta gaagtccttt	4260
aatctgggct ggtacaggcc tcagccttgc cctcaatgca cgaaagggtgg cccaggagag	4320
aggatcaatg ccataggagg cagaagtctg gcctctgtgc ctctatggag actatctcc	4380
agttgctgct caacagagtt gttggctgag acctgcttgg gagtctctgc tggcccttca	4440
tctgttcagg aacacacaca cacacacact cacacacgca cacacaatca caatttgcta	4500
cagcaacaaa aaagacatgg ggctgtggca ttattaatta aagatgatata ccagtc	4556

<210> 22
<211> 1151
<212> PRT
<213> Homo sapiens

<400> 22

Met Pro Cys Gly Phe Ser Pro Ser Pro Val Ala His His Leu Val Pro			
1	5	10	15

Gly Pro Pro Asp Thr Pro Ala Gln Gln Leu Arg Cys Gly Trp Thr Val			
20	25	30	

Gly Gly Trp Leu Leu Ser Leu Val Arg Gly Leu Leu Pro Cys Leu Pro			
35	40	45	

Pro Gly Ala Arg Thr Ala Glu Gly Pro Ile Met Val Leu Ala Gly Pro			
50	55	60	

Leu Ala Val Ser Leu Leu Pro Ser Leu Thr Leu Leu Val Ser His			
65	70	75	80

Leu Ser Ser Ser Gln Asp Val Ser Ser Glu Pro Ser Ser Glu Gln Gln
85 90 95

Leu Cys Ala Leu Ser Lys His Pro Thr Val Ala Phe Glu Asp Leu Gln
100 105 110

Pro Trp Val Ser Asn Phe Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln
115 120 125

Leu Ala Leu Asp Pro Ser Gly Asn Gln Leu Ile Val Gly Ala Arg Asn
130 135 140

Tyr Leu Phe Arg Leu Ser Leu Ala Asn Val Ser Leu Leu Gln Ala Thr
145 150 155 160

Glu Trp Ala Ser Ser Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gly
165 170 175

Lys Thr Glu Glu Glu Cys Gln Asn Tyr Val Arg Val Leu Ile Val Ala
180 185 190

Gly Arg Lys Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pro Met Cys
195 200 205

Thr Ser Arg Gln Val Gly Asn Leu Ser Arg Thr Ile Glu Lys Ile Asn
210 215 220

Gly Val Ala Arg Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala Val
225 230 235 240

Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Thr Val Ile Asp Phe Ser
245 250 255

Gly Arg Asp Pro Ala Ile Tyr Arg Ser Leu Gly Ser Gly Pro Pro Leu
260 265 270

Arg Thr Ala Gln Tyr Asn Ser Lys Trp Leu Asn Glu Pro Asn Phe Val
275 280 285

Ala Ala Tyr Asp Ile Gly Leu Phe Ala Tyr Phe Phe Leu Arg Glu Asn
290 295 300

Ala Val Glu His Asp Cys Gly Arg Thr Val Tyr Ser Arg Val Ala Arg
305 310 315 320

Val Cys Lys Asn Asp Val Gly Gly Arg Phe Leu Leu Glu Asp Thr Trp
325 330 335

Thr Thr Phe Met Lys Ala Arg Leu Asn Cys Ser Arg Pro Gly Glu Val
340 345 350

Pro Phe Tyr Tyr Asn Glu Leu Gln Ser Ala Phe His Leu Pro Glu Gln
355 360 365

Asp Leu Ile Tyr Gly Val Phe Thr Thr Asn Val Asn Ser Ile Ala Ala
370 375 380

Ser Ala Val Cys Ala Phe Asn Leu Ser Ala Ile Ser Gln Ala Phe Asn
385 390 395 400

Gly Pro Phe Arg Tyr Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro Ile
405 410 415

Ala Asn Pro Ile Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Thr Gly
420 425 430

Pro Asn Glu Asn Leu Thr Glu Arg Ser Leu Gln Asp Ala Gln Arg Leu
435 440 445

Phe Leu Met Ser Glu Ala Val Gln Pro Val Thr Pro Glu Pro Cys Val
450 455 460

Thr Gln Asp Ser Val Arg Phe Ser His Leu Val Val Asp Leu Val Gln
465 470 475 480

Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Ile Gly Thr Glu Ser Gly
485 490 495

Thr Ile Leu Lys Ala Leu Ser Thr Ala Ser Arg Ser Leu His Gly Cys
500 505 510

Tyr Leu Glu Glu Leu His Val Leu Pro Pro Gly Arg Arg Glu Pro Leu
515 520 525

Arg Ser Leu Arg Ile Leu His Ser Ala Arg Ala Leu Phe Val Gly Leu
530 535 540

Arg Asp Gly Val Leu Arg Val Pro Leu Glu Arg Cys Ala Ala Tyr Arg
545 550 555 560

Ser Gln Gly Ala Cys Leu Gly Ala Arg Asp Pro Tyr Cys Gly Trp Asp
565 570 575

Gly Lys Gln Gln Arg Cys Ser Thr Leu Glu Asp Ser Ser Asn Met Ser

580

585

590

Leu Trp Thr Gln Asn Ile Thr Ala Cys Pro Val Arg Asn Val Thr Arg
595 600 605

Asp Gly Gly Phe Gly Pro Trp Ser Pro Trp Gln Pro Cys Glu His Leu
610 615 620

Asp Gly Asp Asn Ser Gly Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp
625 630 635 640

Ser Pro Arg Pro Arg Cys Gly Gly Leu Asp Cys Leu Gly Pro Ala Ile
645 650 655

His Ile Ala Asn Cys Ser Arg Asn Gly Ala Trp Thr Pro Trp Ser Ser
660 665 670

Trp Ala Leu Cys Ser Thr Ser Cys Gly Ile Gly Phe Gln Val Arg Gln
675 680 685

Arg Ser Cys Ser Asn Pro Ala Pro Arg His Gly Gly Arg Ile Cys Val
690 695 700

Gly Lys Ser Arg Glu Glu Arg Phe Cys Asn Glu Asn Thr Pro Cys Pro
705 710 715 720

Val Pro Ile Phe Trp Ala Ser Trp Gly Ser Trp Ser Lys Cys Ser Ser
725 730 735

Asn Cys Gly Gly Met Gln Ser Arg Arg Arg Ala Cys Glu Asn Gly
740 745 750

Asn Ser Cys Leu Gly Cys Gly Val Glu Phe Lys Thr Cys Asn Pro Glu
755 760 765

Gly Cys Pro Glu Val Arg Arg Asn Thr Pro Trp Thr Pro Trp Leu Pro
770 775 780

Val Asn Val Thr Gln Gly Ala Arg Gln Glu Gln Arg Phe Arg Phe
785 790 795 800

Thr Cys Arg Ala Pro Leu Ala Asp Pro His Gly Leu Gln Phe Gly Arg
805 810 815

Arg Arg Thr Glu Thr Arg Thr Cys Pro Ala Asp Gly Ser Gly Ser Cys
820 825 830

Asp Thr Asp Ala Leu Val Glu Val Leu Leu Arg Ser Gly Ser Thr Ser
835 840 845

Pro His Thr Val Ser Gly Gly Trp Ala Ala Trp Gly Pro Trp Ser Ser
850 855 860

Cys Ser Arg Asp Cys Glu Leu Gly Phe Arg Val Arg Lys Arg Thr Cys
865 870 875 880

Thr Asn Pro Glu Pro Arg Asn Gly Gly Leu Pro Cys Val Gly Asp Ala
885 890 895

Ala Glu Tyr Gln Asp Cys Asn Pro Gln Ala Cys Pro Val Arg Gly Ala
900 905 910

Trp Ser Cys Trp Thr Ser Trp Ser Pro Cys Ser Ala Ser Cys Gly Gly
915 920 925

Gly His Tyr Gln Arg Thr Arg Ser Cys Thr Ser Pro Ala Pro Ser Pro
930 935 940

Gly Glu Asp Ile Cys Leu Gly Leu His Thr Glu Glu Ala Leu Cys Ala
945 950 955 960

Thr Gln Ala Cys Pro Glu Gly Trp Ser Pro Trp Ser Glu Trp Ser Lys
965 970 975

Cys Thr Asp Asp Gly Ala Gln Ser Arg Ser Arg His Cys Glu Glu Leu
980 985 990

Leu Pro Gly Ser Ser Ala Cys Ala Gly Asn Ser Ser Gln Ser Arg Pro
995 1000 1005

Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu Pro Ala Ser Ser Met
1010 1015 1020

Glu Glu Ala Thr Asp Cys Ala Gly Phe Asn Leu Ile His Leu Val
1025 1030 1035

Ala Thr Gly Ile Ser Cys Phe Leu Gly Ser Gly Leu Leu Thr Leu
1040 1045 1050

Ala Val Tyr Leu Ser Cys Gln His Cys Gln Arg Gln Ser Gln Glu
1055 1060 1065

Ser Thr Leu Val His Pro Ala Thr Pro Asn His Leu His Tyr Lys
1070 1075 1080

Gly Gly Gly Thr Pro Lys Asn Glu Lys Tyr Thr Pro Met Glu Phe
 1085 1090 1095

Lys Thr Leu Asn Lys Asn Asn Leu Ile Pro Asp Asp Arg Ala Asn
 1100 1105 1110

Phe Tyr Pro Leu Gln Gln Thr Asn Val Tyr Thr Thr Tyr Tyr
 1115 1120 1125

Pro Ser Pro Leu Asn Lys His Ser Phe Arg Pro Glu Ala Ser Pro
 1130 1135 1140

Gly Gln Arg Cys Phe Pro Asn Ser
 1145 1150

<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 23
tgcagcacgt cctgtggcat c 21

<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 24
gttgcacgtc ttgaactcca c 21

<210> 25
<211> 1299
<212> DNA
<213> Homo sapiens

<400> 25
atgaaattca agctgcttgc tgagtccatat tgccggctgc tgggagccag gagagccctg 60

aggagtagtc actcagtagc agctgacgctcg tgggtccacc atgaactggc gtatctttga 120

gggactcctg agtgggggtca acaagtaactc cacagccttt gggcgcatct ggctgtctct 180

ggctttcatc ttccgcgtgc tgggtacatc ggtgacggcc gagcgtgtgt ggagtatga 240

ccacaaggac ttgcactgca atactcgcca gcccggctgc tccaaacgtct gctttatgtga 300

gttctccct gtgtccccatg tgccgcctctg gcccctgcag cttatcctgg tgacatgccc 360

ctcaactgctc gtggtcatgc acgtggccta ccggggaggtt caggagaaga ggcaccgaga	420
agcccatggg gagaacagtgcgcgcctcta cctgaacccc ggcaagaagc ggggtggct	480
ctgggtggaca tatgtctgca gcctagtgtt caaggcgagc gtggacatcg ctttctcta	540
tgtgttccac tcattctacc ccaaataatat cctccctcct gtggtaagt gccacgcaga	600
tccatgtccc aatatagtg actgcttcat ctccaagccc tcagagaaga acatttcac	660
cctcttcatg gtggccacag ctgccccatctg catcctgctc aacctcggtt agctcatcta	720
cctggtgagc aagagatgcc acgagtgcc ggcagcaagg aaagctcaag ccatgtgcac	780
aggcatcac ccccacggta ccaccccttc ctgcaaacaa gacgacccctcc ttccgggtga	840
cctcatctt ctgggctcag acagtcattcc tcctcttta ccagaccgccc cccgagacca	900
tgtgaagaaa accatcttgtt gaggggctgc ctggactggc ctggcagggtt gggcctggat	960
ggggaggcgtc tagcatcttcataggtgca acctgagagt gggggagcta agccatgagg	1020
tagggcagg caagagagag gattcagacg ctctggagc cagttcttag tcctcaactc	1080
cagccacccctg ccccacgtcg acggcactgg gccagttccc cctctgctct gcagctcggt	1140
ttccctttctt agaatggaaa tagtgaggc caatgcccag ggttggaggg aggagggcgt	1200
tcatagaaga acacacatgc gggcacccatc atcgtgtgt gcccactgta agaacttaat	1260
aaaagtcaac tcatttgctg gaaaaaaaaaaaaaaa	1299

<210> 26
<211> 273
<212> PRT
<213> Homo sapiens

<400> 26

Met Asn Trp Ser Ile Phe Glu Gly Leu Leu Ser Gly Val Asn Lys Tyr			
1	5	10	15

Ser Thr Ala Phe Gly Arg Ile Trp Leu Ser Leu Val Phe Ile Phe Arg		
20	25	30

Val Leu Val Tyr Leu Val Thr Ala Glu Arg Val Trp Ser Asp Asp His		
35	40	45

Lys Asp Phe Asp Cys Asn Thr Arg Gln Pro Gly Cys Ser Asn Val Cys		
50	55	60

Phe Asp Glu Phe Phe Pro Val Ser His Val Arg Leu Trp Ala Leu Gln			
65	70	75	80

Leu Ile Leu Val Thr Cys Pro Ser Leu Leu Val Val Met His Val Ala		
85	90	95

Tyr Arg Glu Val Gln Glu Lys Arg His Arg Glu Ala His Gly Glu Asn
100 105 110

Ser Gly Arg Leu Tyr Leu Asn Pro Gly Lys Lys Arg Gly Gly Leu Trp
115 120 125

Trp Thr Tyr Val Cys Ser Leu Val Phe Lys Ala Ser Val Asp Ile Ala
130 135 140

Phe Leu Tyr Val Phe His Ser Phe Tyr Pro Lys Tyr Ile Leu Pro Pro
145 150 155 160

Val Val Lys Cys His Ala Asp Pro Cys Pro Asn Ile Val Asp Cys Phe
165 170 175

Ile Ser Lys Pro Ser Glu Lys Asn Ile Phe Thr Leu Phe Met Val Ala
180 185 190

Thr Ala Ala Ile Cys Ile Leu Leu Asn Leu Val Glu Leu Ile Tyr Leu
195 200 205

Val Ser Lys Arg Cys His Glu Cys Leu Ala Ala Arg Lys Ala Gln Ala
210 215 220

Met Cys Thr Gly His His Pro His Gly Thr Thr Ser Ser Cys Lys Gln
225 230 235 240

Asp Asp Leu Leu Ser Gly Asp Leu Ile Phe Leu Gly Ser Asp Ser His
245 250 255

Pro Pro Leu Leu Pro Asp Arg Pro Arg Asp His Val Lys Lys Thr Ile
260 265 270

Leu

<210> 27
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 27
ggagtagtca ctcagtagca gc

22

<210> 28

<211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 28
 gaactcatca aagcagacg 19

<210> 29
 <211> 1528
 <212> DNA
 <213> Homo sapiens

<400> 29		
ggaaggcaca ggcctgagaa gtctcggtct gagctggtag caaatcccc accccctacc	60	
tgggggacag ggcaagttag acctgggttag ggtggcttag caggaaggta aggagaggtg	120	
tctgtgcgtc ctgcacccac atcttctct gtcccctcct tgccctgtct ggaggctgct	180	
agactcctat cttctgaatt ctatagtgcc tgggtcttag cgcaagtgcgc atggtgccc	240	
gtccttgtgg ttccctctcta cctggggaaa taaggtgcag cggccatggc tacagcaaga	300	
ccccctggta tgggggtgtct ctgtgctctg atcacagcct tgccctgtgg ggtcacagag	360	
catgttctcg ccaacaatga tgtttcctgt gaccacccct ctaacaccgt gcccctgtgg	420	
agcaaccagg acctgggagc tggggccggg gaagacgccc ggtcgatga cagcagcagc	480	
cgcacatcatca atggatccga ctgcgatatg cacacccagc cgtggcaggc cgccgtgttg	540	
ctaaggccca accagctcta ctgcggggcg gtgttgtgtc atccacagtg gctgctcacg	600	
gccgcccact gcaggaagaa agtttcaga gtccgtctcg gccactactc cctgtcacca	660	
gtttatgaat ctgggcagca gatgttccag ggggtcaaat ccattccccca ccctggctac	720	
tcccacccctg gccactctaa cgacctcatg ctcataaac tgaacagaag aattcgccc	780	
actaaagatg tcagacccat caacgtctcc tctcattgtc cctctgtgtt gacaaagtgc	840	
ttggtgtctg gctgggggac aaccaagagc ccccaagtgc acttccctaa ggtcctccag	900	
tgcttgaata tcagcgtgtc aagttagaaa aggtgcgagg atgcttaccc gagacagata	960	
gatgacacca tgttctgcgc cggtgacaaa gcaggttagag actccctgcca gggtgattct	1020	
ggggggcctg tggctgcaa tggctccctg cagggactcg tggctgtggg agattaccct	1080	
tgtgcccggc ccaacagacc ggggtgtctac acgaacctct gcaagttcac caagtggatc	1140	
caggaaacca tccaggccaa ctcctgagtc atcccaggac tcagcacacc ggcattcccc	1200	
cctgctgcag ggacagccct gacactcctt tcagaccctc attccttccc agagatgtt	1260	
agaatgttca tctctccagc ccctgacccc atgtctcctg gactcagggt ctgcttcccc	1320	
cacattgggc tgaccgtgtc tctctagttg aaccctggta acaatttccca aaactgtcca	1380	

gggcgggggt tgcgtctcaa tctccctggg gcactttcat cctcaagctc agggcccatc	1440
ccttctctgc agctctgacc caaatttagt cccagaaata aactgagaag tggaaaaaaa	1500
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa	1528

<210> 30
<211> 293
<212> PRT
<213> Homo sapiens

<400> 30

Met Ala Thr Ala Arg Pro Pro Trp Met Trp Val Leu Cys Ala Leu Ile			
1	5	10	15

Thr Ala Leu Leu Leu Gly Val Thr Glu His Val Leu Ala Asn Asn Asp		
20	25	30

Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln		
35	40	45

Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp Asp Ser Ser		
50	55	60

Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met His Thr Gln Pro Trp			
65	70	75	80

Gln Ala Ala Leu Leu Leu Arg Pro Asn Gln Leu Tyr Cys Gly Ala Val		
85	90	95

Leu Val His Pro Gln Trp Leu Leu Thr Ala Ala His Cys Arg Lys Lys		
100	105	110

Val Phe Arg Val Arg Leu Gly His Tyr Ser Leu Ser Pro Val Tyr Glu		
115	120	125

Ser Gly Gln Gln Met Phe Gln Gly Val Lys Ser Ile Pro His Pro Gly		
130	135	140

Tyr Ser His Pro Gly His Ser Asn Asp Leu Met Leu Ile Lys Leu Asn			
145	150	155	160

Arg Arg Ile Arg Pro Thr Lys Asp Val Arg Pro Ile Asn Val Ser Ser		
165	170	175

His Cys Pro Ser Ala Gly Thr Lys Cys Leu Val Ser Gly Trp Gly Thr		
180	185	190

Thr Lys Ser Pro Gln Val His Phe Pro Lys Val Leu Gln Cys Leu Asn
195 200 205

Ile Ser Val Leu Ser Gln Lys Arg Cys Glu Asp Ala Tyr Pro Arg Gln
210 215 220

Ile	Asp	Asp	Thr	Met	Phe	Cys	Ala	Gly	Asp	Lys	Ala	Gly	Arg	Asp	Ser
225					230					235					240

Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Ser Leu Gln
245 250 255

Gly Leu Val Ser Trp Gly Asp Tyr Pro Cys Ala Arg Pro Asn Arg Pro
260 265 270

Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Lys Trp Ile Gln Glu Thr
275 280 285

Ile Gln Ala Asn Ser
290

```
<210> 31
<211> 19
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 31
cagaaaaagg t gcgaggatg

```
<210> 32
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 32 ctggatgac tcaggagttg g 21

<210> 33
<211> 636
<212> DNA
<213> *Homo sapiens*

```
<400> 33 atgacagaag cagcatcgct tgtccctaag aggccaagga ggctcagagg cagccacaag 60  
ctgcgagttc tggcatggcc agtggtcgtg gtggtaact ttgtttggca gtgcaacggc 120
```

agcattgctc acaccccttgc	ggagctaagc ttcgcctgcc	ctggaggaag gtacgcaggc	180
agtgcggccag ccccggttgc	agggatggac cgcgaccagc	agagggcaga aagtgcctgt	240
gtccccccatt ctgcgtcccc	gggcccccaac ctcccatcg	ctcagtcccc cgcccaatct	300
ctgccaggcc cggagcttgc	ccagacccct cacccacact	ccaggctcac tccccgttcc	360
tgggcctggg ccccccattgc	acgagtcag ggccagccgt	cctgcgttcc tgcccgcggc	420
cgtccttcgt tcctgggagc	cggccctctc cgccggacaa	gcggcccccga gcaggcgccg	480
ccgccccgggg gactccgact	cagccccgc gacctacctc	ggccgacagt cgggggttcc	540
caagcggcca ctcccgccg	gcccgtccc ctggcggagc	cgccgcgtc cctgcgtcc	600
gcgcagtcg gcctcgctcg	ggccactcc tcgtag		636

<210> 34
<211> 211
<212> PRT
<213> Homo sapiens

<400> 34

Met Thr Glu Ala Ala Ser Leu Val Pro Lys Arg Pro Arg Arg	Leu Arg		
1	5	10	15

Gly Ser His Lys Leu Arg Val Leu Ala Trp Pro Val Val Val		
20	25	30

Asn Phe Val Trp Gln Cys Asn Gly Ser Ile Ala His Thr Phe Leu Glu		
35	40	45

Leu Ser Phe Ala Cys Pro Gly Gly Arg Tyr Ala Gly Ser Arg Pro Ala		
50	55	60

Pro Val Ala Gly Met Asp Arg Asp Gln Gln Arg Ala Glu Ser Ala Cys			
65	70	75	80

Val Pro His Ser Arg Ser Arg Gly Pro Asn Leu Pro Ser Ala Gln Ser		
85	90	95

Pro Ala Gln Ser Leu Pro Gly Pro Glu Leu Ser Gln Thr Pro His Pro		
100	105	110

His Ser Arg Leu Thr Pro Arg Ser Trp Ala Trp Ala Pro Leu Ala Arg		
115	120	125

Val Gln Gly Gln Pro Ser Ser Pro Ser Ala Arg Pro Arg Pro Ser Phe		
130	135	140

Leu Gly Ala Gly Pro Leu Arg Gly Pro Ser Gly Pro Glu Gln Ala Pro
 145 150 155 160

Pro Pro Gly Gly Leu Arg Leu Ser Pro Arg Asp Leu Pro Arg Pro Thr
 165 170 175

Val Gly Gly Ser Gln Ala Ala Thr Pro Gly Arg Arg Arg Pro Leu Ala
 180 185 190

Glu Pro Pro Arg Ser Leu Pro Ser Ala Gln Ser Gly Leu Ala Arg Gly
 195 200 205

His Ser Ser
 210

<210> 35
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 35
 tgctctcaact gtgggtcctca g 21

<210> 36
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 36
 tttgtaaagc tccagcgcta c 21

<210> 37
 <211> 969
 <212> DNA
 <213> Homo sapiens

<400> 37
 atgaaggact gtaggaacaa tggcaaggat tgtcaaagtg cccctgcaac acgtaggcac 60

ctcttctctg aagctgcctt gcccccttat cgtctttccc aagggcactt cctcacagcc 120

ctggggggcc tcatggcggt gccattcatc ctggccaagg acctgtgcct gcagcaggac 180

cccctgacac agagctacct catcagcacc attttctttg ctccagcatac tgcatgctcc 240

tgcaagctgc ccattccccca gggaggtacg tttgcttttg tggttaatttc tctggccatg 300

ctctcccttc cctcctggaa ttgcctgag tggacactca gtgccagcca ggtgaacacc 360

aactttccag aattcactca gaaatggcag aagaggatcc aagagggtgc tatcatggtc	420
acttcctgtg tccggatgct ggtgggcttc tcaggcctga ctggcttct catgggttc	480
atctgctcct tggccgttgc tccaaactaac tgcctagtgg ccctgcccct cttggattct	540
gcaggcaata atgccgggat ccagtgggg atttctgcc a tgtattgctt cgtgttgcgt	600
cttcgcaagg atgagctctg gccatttggt tctccacggc tgcgttgcc accatcccc	660
ccccgtgatc ggaggcatgt ccccaccccc gtgatcgag gcatgaccct gtttgggtc	720
atcaactgccc tggggatctc caatctgcag tacgtggaca tgaacttgc caggagcc	780
ttcgccttg gcttctccat ctactgtggg ctcaccatc ccaaccgggt gagcaaaaac	840
cccgagatgc tccagacagg gattctccag ccggaccagg ttgttcagat gctgctgacc	900
atggcgtatgt tcatacgtgg atttctgggt tttcttctag acaacaccat ccccgagctc	960
cttcaataa	969

<210> 38

<211> 322

<212> PRT

<213> Homo sapiens

<400> 38

Met Lys Asp Cys Arg Asn Asn Gly Lys Asp Cys Gln Ser Ala Pro Ala			
1	5	10	15

Thr Arg Arg His Leu Phe Ser Glu Ala Ala Leu Pro Pro Tyr Arg Leu			
20	25	30	

Ser Gln Gly His Phe Leu Thr Ala Leu Gly Gly Leu Met Ala Val Pro			
35	40	45	

Phe Ile Leu Ala Lys Asp Leu Cys Leu Gln Gln Asp Pro Leu Thr Gln			
50	55	60	

Ser Tyr Leu Ile Ser Thr Ile Phe Phe Ala Pro Ala Ser Ala Cys Ser			
65	70	75	80

Cys Lys Leu Pro Ile Pro Gln Gly Gly Thr Phe Ala Phe Val Val Ile			
85	90	95	

Ser Leu Ala Met Leu Ser Leu Pro Ser Trp Asn Cys Pro Glu Trp Thr			
100	105	110	

Leu Ser Ala Ser Gln Val Asn Thr Asn Phe Pro Glu Phe Thr Gln Lys			
115	120	125	

Trp Gln Lys Arg Ile Gln Glu Gly Ala Ile Met Val Thr Ser Cys Val
130 135 140

Arg Met Leu Val Gly Phe Ser Gly Leu Thr Gly Phe Leu Met Gly Phe
145 150 155 160

Ile Cys Ser Leu Ala Val Ala Pro Thr Asn Cys Leu Val Ala Leu Pro
165 170 175

Leu Leu Asp Ser Ala Gly Asn Asn Ala Gly Ile Gln Trp Gly Ile Ser
180 185 190

Ala Met Tyr Cys Phe Val Leu Arg Leu Arg Lys Asp Glu Leu Trp Pro
195 200 205

Phe Gly Ser Pro Arg Leu Arg Leu Pro Pro Ser Pro Pro Arg Asp Arg
210 215 220

Arg His Val Pro Thr Pro Val Ile Gly Gly Met Thr Leu Phe Gly Val
225 230 235 240

Ile Thr Ala Val Gly Ile Ser Asn Leu Gln Tyr Val Asp Met Asn Leu
245 250 255

Ser Arg Ser Leu Phe Ala Phe Gly Phe Ser Ile Tyr Cys Gly Leu Thr
260 265 270

Ile Pro Asn Arg Val Ser Lys Asn Pro Glu Met Leu Gln Thr Gly Ile
275 280 285

Leu Gln Pro Asp Gln Val Val Gln Met Leu Leu Thr Met Gly Met Phe
290 295 300

Ile Ser Gly Phe Leu Gly Phe Leu Leu Asp Asn Thr Ile Pro Glu Leu
305 310 315 320

Leu Gln

<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 39
atggcggtgc cattcatcct 20

<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 40
caggagggaa gggagagcat

20

<210> 41
<211> 1679
<212> DNA
<213> Homo sapiens

<400> 41						
gaggagggcg	gcgtcgccgc	cccgcgtccc	gcctgcggcc	cgcgcggcc	gcgtcaccgc	60
ctcctgcccc	cctgccccgc	tgcccgcctg	ccgccttacc	cgccttcccg	ccttcccgcc	120
tacccccc	ccggcctgcc	gtccttccac	gcggagagcc	atggagggag	tgagcgcgct	180
gctggcccg	tgcccccacgg	ccggcctggc	cggcggcctg	gggtcacgg	cgtgcgcgc	240
ggccggcgt	ttgctctacc	ggatcgcgcg	gaggatgaag	ccaacgcaca	cgatggtaa	300
ctgctggttc	tgcaaccagg	atacgcttgt	gccctatggg	aaccgcaact	gctgggactg	360
tccccactgc	gagcagtaca	acggcttcca	ggagaacggc	gactacaaca	agccgatccc	420
cgcggcgtac	ttggagcacc	tgaaccacgt	ggtgagcagc	gcgcggcagcc	tgcgcgaccc	480
ttcgccgg	cagcagtggg	tgagcagcca	agtcctgctg	tgcaagaggt	gcaaccacca	540
ccagaccacc	aagatcaagg	agctggccgc	cttcgcgtccc	cgcggagg	gcaggtatga	600
cgaggaggc	gaggtgtacc	ggcatcacct	ggagcagatg	tacaagctgt	gccggccgt	660
ccaagcggct	gtggagttact	acatcaagca	ccagaaccgc	cagctgcgcg	ccctgttgct	720
cagccaccag	ttcaagcgcc	gggaggccga	ccagaccac	gcacagaact	tctcctccgc	780
cgtgaagtcc	ccggccagg	tcatcctgct	ccgtgcctc	gccttcctgg	cctgcgcctt	840
cctactgacc	accgcgtgt	atggggccag	cggacacttc	gccccaggca	ccactgtgcc	900
cctggccctg	ccacctggtg	gcaatggctc	agccacacct	gacaatggca	ccacccctgg	960
ggccgagggc	tggccgcagt	tgctgggcct	actccccag	cacatggcg	agaagctgt	1020
tgaggcctgg	gcctttgggc	agagccacca	gacgggcgtc	gtggcactgg	gcctactcac	1080
ctgcctgctg	gcaatgctgc	tggctggccg	catcaggctc	cggaggatcg	atgccttctg	1140
cacctgcctg	tggccctgc	tgctgggcct	gcacctggct	gagcagcacc	tgcaggccgc	1200
ctcgccctagc	tggcttagaca	cgctcaagtt	cagcaccaca	tctttgtgct	gcctgggtgg	1260
cttcacggcg	gctgtggcca	caaggaaggc	aacggggccca	cggaggttcc	ggccccgaag	1320

gtcagagaag cagccatgac tgcgggggga ggacacacgg atgctcaggc ccaggcttg	1380
ccaggtccga agcgcccccc tctctgtcct gccttttc acctgctcac gcccctccac	1440
ccccacccta cagccccagg tcctggcca gtcctccac tgccctcgaag agtcagtctg	1500
ccctgcctt tccttcggg caccaccagg catcccccag tgccctgttag ccactcacca	1560
ctgctgccac ctctctggcc aatggccctt tcactggcct ggtgactgga atgtggcag	1620
cgcacaca ggctctggcc catggcttcc tactggcagc tccaggcacc cccctctca	1679

<210> 42
<211> 392
<212> PRT
<213> Homo sapiens

<400> 42

Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr Ala Gly Leu			
1	5	10	15

Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Gly Val Leu Leu		
20	25	30

Tyr Arg Ile Ala Arg Arg Met Lys Pro Thr His Thr Met Val Asn Cys		
35	40	45

Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr Gly Asn Arg Asn Cys		
50	55	60

Trp Asp Cys Pro His Cys Glu Gln Tyr Asn Gly Phe Gln Glu Asn Gly			
65	70	75	80

Asp Tyr Asn Lys Pro Ile Pro Ala Gln Tyr Leu Glu His Leu Asn His		
85	90	95

Val Val Ser Ser Ala Pro Ser Leu Arg Asp Pro Ser Gln Pro Gln Gln		
100	105	110

Trp Val Ser Ser Gln Val Leu Leu Cys Lys Arg Cys Asn His His Gln		
115	120	125

Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe Ala Pro Arg Glu Glu Gly		
130	135	140

Arg Tyr Asp Glu Glu Val Glu Val Tyr Arg His His Leu Glu Gln Met			
145	150	155	160

Tyr Lys Leu Cys Arg Pro Cys Gln Ala Ala Val Glu Tyr Tyr Ile Lys		
165	170	175

His Gln Asn Arg Gln Leu Arg Ala Leu Leu Leu Ser His Gln Phe Lys
180 185 190

Arg Arg Glu Ala Asp Gln Thr His Ala Gln Asn Phe Ser Ser Ala Val
195 200 205

Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu Ala Phe Leu Ala
210 215 220

Cys Ala Phe Leu Leu Thr Thr Ala Leu Tyr Gly Ala Ser Gly His Phe
225 230 235 240

Ala Pro Gly Thr Thr Val Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly
245 250 255

Ser Ala Thr Pro Asp Asn Gly Thr Thr Pro Gly Ala Glu Gly Trp Arg
260 265 270

Gln Leu Leu Gly Leu Leu Pro Glu His Met Ala Glu Lys Leu Cys Glu
275 280 285

Ala Trp Ala Phe Gly Gln Ser His Gln Thr Gly Val Val Ala Leu Gly
290 295 300

Leu Leu Thr Cys Leu Leu Ala Met Leu Leu Ala Gly Arg Ile Arg Leu
305 310 315 320

Arg Arg Ile Asp Ala Phe Cys Thr Cys Leu Trp Ala Leu Leu Leu Gly
325 330 335

Leu His Leu Ala Glu Gln His Leu Gln Ala Ala Ser Pro Ser Trp Leu
340 345 350

Asp Thr Leu Lys Phe Ser Thr Thr Ser Leu Cys Cys Leu Val Gly Phe
355 360 365

Thr Ala Ala Val Ala Thr Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg
370 375 380

Pro Arg Arg Ser Glu Lys Gln Pro
385 390

<210> 43
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 43
ctacatcaag caccagaacc gcc

23

<210> 44
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 44
ggacttcacg gcggaggag

19

<210> 45
<211> 727
<212> DNA
<213> Homo sapiens

<400> 45
aggcagttgc gggttgcagg agttcaggaa aggaggtggg actagagtca acctggaata 60
gctctacagt aacaatggca gccttttgt tgctggaca tccatacagg caacttagct 120
ggtgaaaagga ctctggattt gttggcagtc tgctttttt tttccaaggt gatcactta 180
ctgtagaaga aatgaggtta acagaaaaga gtgagggaga acaacaactc aagcccaaca 240
actctaattgc acccaatgaa gatcaagaag aagaaatcca acagtcagaa cagcataactc 300
cagcaaggca gcgaacaccaa agagcagaca cacagccatc cagatgtcga ttgccttcac 360
gttaggacacc tacaacatcc agcgacagaa cgatcaacct tcttgaagtc cttccgtggc 420
ctactgagtg gatttcaac ccctatcgat tgcctgctct tttttagctt tatcctgaat 480
ttcttctgggt gtttaaagaa gccttccatg acatatccc ttgtctgaaa gcccagatgg 540
aaaagatcg actgcccattc atactccacc tcttcgact ctccaccctc tacttctaca 600
agttttccct tcctacaatt ctccccctt ctcccttat tcttcttgta cttctgcttc 660
tgcttttat tattgtcttc attctgatct tcttctgatt ctttgttcc aataaacagc 720
aatgagc 727

<210> 46
<211> 168
<212> PRT
<213> Homo sapiens

<400> 46

Met Arg Leu Thr Glu Lys Ser Glu Gly Glu Gln Gln Leu Lys Pro Asn
1 5 10 15

Asn Ser Asn Ala Pro Asn Glu Asp Gln Glu Glu Glu Ile Gln Gln Ser
 20 25 30

Glu Gln His Thr Pro Ala Arg Gln Arg Thr Gln Arg Ala Asp Thr Gln
 35 40 45

Pro Ser Arg Cys Arg Leu Pro Ser Arg Arg Thr Pro Thr Thr Ser Ser
 50 55 60

Asp Arg Thr Ile Asn Leu Leu Glu Val Leu Pro Trp Pro Thr Glu Trp
 65 70 75 80

Ile Phe Asn Pro Tyr Arg Leu Pro Ala Leu Phe Glu Leu Tyr Pro Glu
 85 90 95

Phe Leu Leu Val Phe Lys Glu Ala Phe His Asp Ile Ser His Cys Leu
 100 105 110

Lys Ala Gln Met Glu Lys Ile Gly Leu Pro Ile Ile Leu His Leu Phe
 115 120 125

Ala Leu Ser Thr Leu Tyr Phe Tyr Lys Phe Leu Pro Thr Ile Leu
 130 135 140

Ser Leu Ser Phe Phe Ile Leu Leu Val Leu Leu Leu Leu Phe Ile
 145 150 155 160

Ile Val Phe Ile Leu Ile Phe Phe
 165

<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 47
gctggtgaaa ggactctgga 20

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 48
tcgctggatg ttgttaggtgt 20

<210> 49
<211> 950
<212> DNA
<213> *Homo sapiens*

<400> 49
gcgagcccga gcaggcagac gcgcggccgg cggctctgggg gcgcgccgccc tccccgtcccc
caaaatgtga agcggggagg gcgagacgc agagacggcc cggccggcgcc ccctcgccgc 60
cctccggcag ccgcgcgcct ccctccgctg cacgcccagg cctgagcgc gaggccaccg
ggccgcgcgc tcccagcttc gctcgacgc ggcttcggcc cgcaaggggt tcgtggcccg 120
gacgcggcga gagctgggcc caggacggtg cgtccggcct cgccgcgc tgctcgacc
aacaagtgg aacaatgatc accgtcaacc cgcgtggaa gataatggtc agaagatgcc 180
tggtcaccct gagacccttt cggcttttg tcctggcat cggcttcttc actctctgct
tcctgatgac gtctctggga ggccagttct cggccgcgcg cctgggggac tcgcccattca 240
ccatccgcac agaagtgtat gggggccccc agtcccgcgg cgtcctgcgc aagatgagcg
acctgctgga gctgtatggtg aagcgcattgg acgcactggc caggctggag aacagcagtg 300
agctgcaccg gcccggcggc gacctgcact ttcccgaga caggatgccc cctggggccg
gcctcatgga gggatccag gctattgccc agaacgtctc cgacatcgct gtgaagggtgg 360
accagatcct gcccacagt ctgctcctgc acagcaagggt gtcagaaggc cggcgggacc
agtgtgaggc acccagtgtac cccaagttcc ctgactgctc agggaaagggt gcagtggatg 420
cgtccccct ggacctctga cccctgctac gccttcttg gggtaacggg caccgagtg
tctttcctca tctacctca gaaatgtcaag taaaatctacc cccccactacc 480
900
950

<210> 50
<211> 181
<212> PRT
<213> Homo sapiens

<400> 50

Met Ile Thr Val Asn Pro Asp Gly Lys Ile Met Val Arg Arg Cys Leu
1 5 10 15

Val Thr Leu Arg Pro Phe Arg Leu Phe Val Leu Gly Ile Gly Phe Phe
 20 25 30

Thr Leu Cys Phe Leu Met Thr Ser Leu Gly Gly Gln Phe Ser Ala Arg
35 40 45

Arg Leu Gly Asp Ser Pro Phe Thr Ile Arg Thr Glu Val Met Gly Gly
50 55 60

Pro Glu Ser Arg Gly Val Leu Arg Lys Met Ser Asp Leu Leu Glu Leu
65 70 75 80

Met Val Lys Arg Met Asp Ala Leu Ala Arg Leu Glu Asn Ser Ser Glu
85 90 95

Leu His Arg Ala Gly Gly Asp Leu His Phe Pro Ala Asp Arg Met Pro
100 105 110

Pro Gly Ala Gly Leu Met Glu Arg Ile Gln Ala Ile Ala Gln Asn Val
115 120 125

Ser Asp Ile Ala Val Lys Val Asp Gln Ile Leu Arg His Ser Leu Leu
130 135 140

Leu His Ser Lys Val Ser Glu Gly Arg Arg Asp Gln Cys Glu Ala Pro
145 150 155 160

Ser Asp Pro Lys Phe Pro Asp Cys Ser Gly Lys Val Ala Val Asp Ala
165 170 175

Cys Pro Leu Asp Leu
180

<210> 51

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 51

agatgcctgg tcaccctgag a

21

<210> 52

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 52

ggccccccat cacttctgtg

20

<210> 53

<211> 396

<212> DNA

<213> Homo sapiens

<400> 53

ctgcaagacc	gcatcgccac	gttcttcttc	ccaaaaggca	tgatgctcac	cacggctgcg	60
ctgatgctct	tcttcttaca	cctgggcata	ttcatcagag	acgtgcacaa	cttctgcata	120
acctaccact	atgaccacat	gagtttcac	tacacggtcg	tcctgatgtt	ctcccaggtg	180
atcagcatct	gctgggctgc	catgggtca	ctctatgctg	agatgacaga	aaacaatgct	240
caacggagcc	atgttctca	accgcctgtc	cttggagttt	ctggccatcg	agtaccggga	300
ggagcaccac	tgaggcctgg	ggagtcggaa	cagggctaag	gaggggaaag	caaaaggctg	360
cctcgggtgt	tttaataaaag	ttgttgttta	tttcca			396

<210> 54
<211> 99
<212> PRT
<213> Homo sapiens

<400> 54

Met	Met	Leu	Thr	Thr	Ala	Ala	Leu	Met	Leu	Phe	Phe	Leu	His	Leu	Gly
1							5			10			15		

Ile	Phe	Ile	Arg	Asp	Val	His	Asn	Phe	Cys	Ile	Thr	Tyr	His	Tyr	Asp
20								25				30			

His	Met	Ser	Phe	His	Tyr	Thr	Val	Val	Leu	Met	Phe	Ser	Gln	Val	Ile
35								40				45			

Ser	Ile	Cys	Trp	Ala	Ala	Met	Gly	Ser	Leu	Tyr	Ala	Glu	Met	Thr	Glu
50						55				60					

Asn	Asn	Ala	Gln	Arg	Ser	His	Val	Leu	Gln	Pro	Pro	Val	Leu	Gly	Val
65							70		75			80			

Ser	Gly	His	Arg	Val	Pro	Gly	Gly	Ala	Pro	Leu	Arg	Pro	Gly	Glu	Ser
85								90			95				

Glu Gln Gly

<210> 55
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 55
ccgtttagca ttgtttctg tc

<210> 56
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 56
tgctttctt cttacacacctg gg 22

<210> 57
<211> 539
<212> DNA
<213> Homo sapiens

<400> 57
gggccttaa tgtttgtggc atggatgact actgttagca taggtgtact ggttgccgg 60
ttcttcaggc cagttggtc aaaagcttgc ttgcttggtg aagcagcttg gtttcaggtg 120
catcgatgc tcatgttac cacaactgtc ctcacactgca ttgctttgt tatgccgtt 180
ataatacaggg gaggctggag taggcatgca ggttaccacc catacctcggt ctgtatagtg 240
atgactttgg cagttcttca gcctcttctg gcagtcttca ggccacctt acatgaccca 300
agaaggcaaa tggtaactg gactcattgg agtatggaa cagctgttag aataatagca 360
gacttaaaac aatctggaaa atgtgggtgc atctcttta aggattggta gattacgcag 420
ccataaaaaaa gaatgaagtc atgtctttt tagcaacatg gatgctgtg qaagtgatta 480
tcctacatga attaatgcag aaacagaaaa tcacatacca catgttctca cttataaaat 539

<210> 58
<211> 133
<212> PRT
<213> Homo sapiens

<400> 58

Met Phe Val Ala Trp Met Thr Thr Val Ser Ile Gly Val Leu Val Ala
1 5 10 15

Arg Phe Phe Lys Pro Val Trp Ser Lys Ala Phe Leu Leu Gly Glu Ala
20 25 30

Ala Trp Phe Gln Val His Arg Met Leu Met Phe Thr Thr Val Leu
35 40 45

Thr Cys Ile Ala Phe Val Met Pro Phe Ile Tyr Arg Gly Gly Trp Ser
50 55 60

Arg His Ala Gly Tyr His Pro Tyr Leu Gly Cys Ile Val Met Thr Leu
65 70 75 80

Ala Val Leu Gln Pro Leu Leu Ala Val Phe Arg Pro Pro Leu His Asp
 85 90 95

Pro Arg Arg Gln Met Phe Asn Trp Thr His Trp Ser Met Gly Thr Ala
 100 105 110

Ala Arg Ile Ile Ala Asp Leu Lys Gln Ser Gly Lys Cys Gly Cys Ile
 115 120 125

Ser Phe Lys Asp Trp
 130

<210> 59
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 59
 ttgtggcatg gatgactact 20

<210> 60
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 60
 catcactata cagccgaggt 20

<210> 61
 <211> 3317
 <212> DNA
 <213> Homo sapiens

<400> 61		
acactgcgtc cccatcagct caaagaatac gcatggggac aaggctgggg ggccgtctga	60	
gagtccccca accctggatc cccacggcag ccccccactgt tgggttttgc agtggctgg	120	
gtgccctggg ctggtcacct ctgcattttg ctctgctggg agtttgctcc tggccctcca	180	
acagcgccctc ctctgtgagg aggaaactcct gttcccgtag ctctgctggc tctggaggct	240	
ggagttccccg tgctgggccc tcctggcgg gttctcttt gctgccgcca gtaccctgcc	300	
cctctcgtag tcctgggtag cctgggagga atggcagaag aaagcagtga agccaggttag	360	
cagtagccccg gccacccac caggctctgc tgtaggctgg gctctcaagg cagctgctcc	420	
aggagggggcc cccttaggaag ggactgccac actcctggga gcgttcctgg cccccctccag	480	

tgcaaatgac cctggggccc aagggtccga acacccgccc ctctgctcca ggctagcttg	540
gctgagcccc atgcttctca aggtgaggag ggcgtccttg aagcctccgg ccacccca	600
ccaaggagct ttcagggcag gaaatgtat cgggcagctg atttatctcc ttacctggtc	660
tttgttcaca gcctggctcc ggccccccac cctgctgcag ggcccggagga cgtctccca	720
gggggtccccca ctcgggtctc cttggggggta ctgtgctgag cccagctgcc tctgtgagat	780
gaagataaga aggcaagac atgaagggcc tgcctggggc cagtctggct ttcttgcagg	840
ggggctgcac ctggttccct ctccttc gctggcagcc tgccccgtgg tgaggatgaa	900
ggggctgtgg ggccgggggtg caggattag agggaggtga ctgcatctc ttccctcata	960
tctgtttttt caccttttaa gtcaacttta gattctcgga ctcagatctc tctctgacg	1020
gtggcagggt ctcagatca ccgggtgcaga cagggccaga cagggccaaat gtggggaccc	1080
actcagcctg tggcctctgc aggagggagg tcggaggcct cagcagccac cccggccacc	1140
tcctgaaaca gtgaatgtcc ttcatttca gctggcaagc tctgatctta caacgaggtt	1200
tggaaactgtt cagaaaactt tcagcagacg ttcgaggggaa aacagcttag cttccatgc	1260
cccccacctc tgccaggagc gacccatat ccccaaaca gaattctggt agcccgccac	1320
cacagggctt tcctgtgcct cccctgccag ctctgcata ctttgcacg tacttgagt	1380
ctggctgaga ttagtgcattt gctacccaaac aggtggggagg ccagccccag cccagcccc	1440
agccccaccg gggccggagc tcccggtgaa gaagcgtctg cctgggtcgc aggtgtccag	1500
gacacaccag tcgcctgact cccggtcagg caaacgcaca catcaagttc ttgcaagcca	1560
gggctctgtt ggcattttca agaggaggga gggcctggc cctgaccaca gggctccctt	1620
aacaggagga gttacaaact cggcttcctg gggggcatcg tgggggtgtgc tgcctgccag	1680
gagacccac tcctggtcac ggggttccgt cccacacagt ggcaggagcc atgcattt	1740
cttggctgaa gaagaacccg cacagctatg tggctgtccg cccagcagg aagccccac	1800
atcagcccta agggaaacttc ccaaagctca gcaggtgcct cttcctgcca tccgcttaggt	1860
cttctcttgg cccctctccc aagccttgac ccatacgatc cacttctaga aaagtcttta	1920
ccgagaaacg gaccggctgc atgggtggtg aggagggcag ttgcccaggg cctggcatca	1980
gaggggcctg tggctaaggc tgtcctgaaa ttcttaatca ttttacctct gaacttgcgg	2040
gtttttgttg ttgttttttg aggcagatgc ttgctgttc acccaggctg gagtgcagtg	2100
gtgcgatctt ggcttactgc aacttccgac tcccaggttc aagcgattct cctgcctcag	2160
cctcccgagt agctggact acagaagtgc accaccacac ccggtaatt tttgtat	2220
tagtagagac ggggtttcac catgttggcc aggctgatct caaactcctg atacacccgc	2280
ctcggcctct caaagcactg ggattacagg tgtgagccac cgccggccgc cctttcctg	2340

cctccctaaac aagtggccag gaatttcct cctgcaccgg gtccccagat tttgtggcaa	2400
gccctgcaga tggcacaggg gactggttct tcctcgtgga aagccaggcc cgacacacctc	2460
tcgggcatcg cctgttgggg tgaccctccc acaccagcc tgaaacccta gccagctcag	2520
cctccgtccg ctgagaaatc aaggtgacct tgtggctcag ccctcagggg gcactcacca	2580
cacaagagtt cccttcaag accccctgtt cggggctggg gccccagga acggttgggg	2640
cacccctcctg gggccctgtt tttccccagg agcggggcct gggagctgag ggctctcat	2700
ctccccacag gcatctgctg ctgctcctgg ctgccactca cccctgtgag atgctgaggg	2760
caggataacct gtctgtgcgg ggcgtggaa aaaggagaa agcctggcag agggttgggg	2820
gctaagaagc aaagggcgtg gaagggccac cgtgcactt tgaagtctct acttgccagt	2880
ggccacccca cctctccctg ccctcatcca aggacggaca ggcctggcag gtggaccgga	2940
gctgtggggc agaagcatcc caggcctggc ctcagaggag ggaggccatg gtgaaagtgg	3000
aggctgtctg catccaccc cccagcctt gtcaccggga cctcagcctg accccaggcc	3060
cacccaggc tgctcaccga ggtgggtacc ctgcccacccg ccagctcaga tgcggtgtgt	3120
ggactccctt ctctctgggg gtgagcggga gttccctccc ctccacatca ggagctgggg	3180
gagagctgga gggccctggg atcccttga ccctggcat cagccccagc cctgacaggc	3240
cctgcgtgtg ccatgtgtgg cctgggtttg gagctcagca ccctgcggga attctattaa	3300
atctccgatt ttatctg	3317

<210> 62
<211> 129
<212> PRT
<213> Homo sapiens

<400> 62

Met Leu Leu Lys Val Arg Arg Ala Ser Leu Lys Pro Pro Ala Thr Pro			
1	5	10	15

His Gln Gly Ala Phe Arg Ala Gly Asn Val Ile Gly Gln Leu Ile Tyr		
20	25	30

Leu Leu Thr Trp Ser Leu Phe Thr Ala Trp Leu Arg Pro Pro Thr Leu		
35	40	45

Leu Gln Gly Pro Arg Thr Ser Pro Gln Gly Ser Pro Pro Arg Ser Pro		
50	55	60

Trp Gly Asp Cys Ala Glu Pro Ser Cys Leu Cys Glu Met Lys Ile Arg			
65	70	75	80

Arg Arg Arg His Glu Gly Pro Ala Trp Gly Gln Ser Gly Phe Leu Ala
 85 90 95

Gly Gly Leu His Leu Val Pro Ser Ser Leu Ser Leu Ala Ala Cys Gly
 100 105 110

Val Val Arg Met Lys Gly Leu Trp Gly Arg Gly Ala Gly Ile Arg Gly
 115 120 125

Arg

<210> 63
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 63
 ccccaaggct ccgaacacccc 20

<210> 64
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 64
 cccgatcaca ttcctgcc 20

<210> 65
 <211> 3338
 <212> DNA
 <213> Homo sapiens

<400> 65
 gtaggaagta tatggtagg gtcagataat atttctgaaa ggaaacacccc aggagtatcc 60
 caagttaatg acatttaga ccctccaaca accacacaag tcagtcctt ggaaagactc 120
 tggttacttt tacaaagcaa accaggagaa ttttcataat acctgataac tatgtaaagac 180
 ttggaatatt tgaatttcta ggacatggga ttgtgcaacc attcatttta tcccataata 240
 ttgaaatctc cctcagataa gcctctcgac acctaataaga gttttcttag tgaagggtca 300
 cctttctgtg gtaacacagg aaggcAAAAA taaacaacca aataatatca taatcacgag 360
 tgtcaatgat tgctgaaaca ggtgggggtt ggtcattaaa ttctagttgt ttccactatt 420
 ccagtaggag ttgtgtgaat gtagcAAAAA gaccagggtg ttacgatctg actgtttc 480

atcaattgcc ttgacttttgc gatgaaatgc gatttgagga catatcatta ttagatggc	540
cacagattcc aatttttttc tctaataatga ggctaaccat gatgtccttt cccaggaagg	600
acaatctctc ctttatcagg gaaaaatcag taggggcattc ctaattttc tccttcatcc	660
ccaccacaga gtcatalogg tcaagtcattt ttcttgtgaa acctaaaaaa tgcaaattcc	720
aagggtgctg ctatggtgta ctaattttgt cacagtgaca tgccctgtca cagggcgat	780
gtgttctgtt atacagttga aatattggtt atactattga aatgttttg tactattgaa	840
atcccaaata aacttaattc taaaagaagc atgacctcaa cagcctcaca cctacttata	900
tctttagtt ctttctgtct aatgctggca atctaagcat gttccaggca agcaacattc	960
aatagcgttt tactgctcca ataagttggt tcaatttagca atgtcaaagg cagtcactaa	1020
atagatagtg tataacacctc atacaatctc gtattatttt ccactaatta ctatagaaaa	1080
atcgatgaag tttcattaca atgaaataac ttcaatcaca cttcaaaaac tacatacgg	1140
agatagccac aacttgctgc tctcaaaaaa cacagagatg gcattttac tttgttcaa	1200
atccccaaacc ctggtggcg tccaaagtta tggcagttat aacccttat gtcattataa	1260
ggaggaaggg taaatattaa gtcaacatcc tttaaagcta agagtatgac tacagtgggg	1320
tggaaatttgg gacttcatgc ccactccctg tttctgttct attttacctt tcctgacctc	1380
taagccaaca ggagaggggg aaggccaca ctgggtgac ccttggtaaa gaattgtgag	1440
tttaggaaac aaagatggac ttctgagggg gtagttgagg atgggctgaa ggcacagaag	1500
aaaccagctg gtgtgcccct ctccccacta gcagaccctt ctccctcatt gggtcaggc	1560
aaacaatccc ccaaaaattc aagaaaacta acttagagtt attttctgtt atttctctt	1620
tccttgatct ggagccaatg cagaaagaaa tctaaaggtg aaggaaaggc agcggtcagc	1680
actgagcaag tccatgttgg agaaagttca cagggaaattt gaaatccttgc tcttcgttgt	1740
tcctggctca gcaggaccct tgggggcct ctccctctt tggaaagag attgctctag	1800
aaggttact acaccagtga ggagaagatg agcgcaaggg ggattggccg gctgagggcg	1860
aaatcaagac tggagccaag tgcgctgagc tctcacatga ggtcctttgc tcctgttccc	1920
tggaggcata agtggctggg gtagagagaa gcaggggtat ttcttcgtc ctttcttgct	1980
tagggattgg ggggtggaaat ctccccgcattt ctaagggaaat ttggaaagac aaactatggc	2040
tgcttcttca agcaaaccac ctcaccacac tatccagggg ataaaacccg cttgctgctg	2100
ctaaattatg ccaagagaga acattctgtat atttctctc aattcttaggc atgacagcgt	2160
gacttggtgc ttaaaggcat ggagtttga gttgcagacc taggtttgag tgctgaatct	2220
actagttca ggggtttaaa aaagttctt aatctctcta aaccttattt ttctcaaaga	2280
taaaaaactg ggtgttagttg tgagtatagt gaatgcacat agtatgtgcc tttggcatgt	2340

taattcacta ttattctgga cataatttct cctaagaaaa aggatgaact aattgcaggg	2400
cctaggctaa gctctgagaa gtcattcggt atagcatttc agtccatagt aaacaagaag	2460
aaatgaggtt aagagttaa accagggaaag gcatacgctgt ggtcaccaaa caaccgttta	2520
aaggcgagct gtaggcacca aaaaacctat tatggactga attgtgttcc tcaaattcat	2580
atgttgaagt gctaaccctt agtacccaaat gtgactgtat ttggggatag ggtccctgaa	2640
gaagtcactc agctggaagg agtcatattt gattaggtgt tggaaattgg ctggccaagg	2700
gagaaatcaa ggctggaacc aagtgcgtaa ctctcacatc aggtcctttt ctcctgttcc	2760
ctggacccta atccaatatg actggcatct ttatatgaag aggaagaggc accagagggt	2820
acacacgcag agaaaaaggcc atgtgtggac acagtaagat gacggacatc tgtaagccaa	2880
ggagggaaac ctcagaagaa accagcctt cctgcaccc tgcgttcc gatcttggag gtccagtctc	2940
cagaactgtg aaaaaaaaaatga actgggttt tttaaatccc ccagtcgtgg tattttgtca	3000
tggtggccct agaagacaat atacaaccctt aaggaatatt cttccactt tctcccttctt	3060
ccactttata gtttttctc cttcggttct ttctttttctt ctttactttt ctttttcttc	3120
tcttcctttt cctctggttt ttaattttaa tttaattttt tggccttcctt atacccat	3180
ttgcctctcc aggaagctga attccagaca attaatcatt catctcatca gttcagccaa	3240
gcaaatgccc tcaatggttt ctttgttat tcgattatta tggatcaga atgtatctta	3300
ttcctctggg aaaaatgaaa cataaaaatt tcagaaat	3338

<210> 66
<211> 122
<212> PRT
<213> Homo sapiens

<400> 66

Met Asn Trp Cys Cys Leu Asn Pro Pro Val Val Val Phe Cys His Gly			
1	5	10	15

Gly Pro Arg Arg Gln Tyr Thr Thr Gln Arg Asn Ile Leu Ser Thr Phe		
20	25	30

Ser Leu Phe His Phe Ile Val Phe Ser Pro Ser Phe Leu Ser Phe Ser		
35	40	45

Leu Leu Leu Ser Phe Ser Ser Leu Leu Phe Pro Leu Val Phe Asn Phe		
50	55	60

Asn Phe Asn Phe Trp Pro Ser Tyr Thr Ser Ile Cys Leu Ser Arg Lys			
65	70	75	80

Leu Asn Ser Arg Gln Leu Ile Ile His Leu Ile Ser Ser Ala Lys Gln
85 90 95

Met	Pro	Ser	Met	Val	Ser	Phe	Val	Ile	Arg	Leu	Leu	Trp	Asp	Gln	Asn
100								105					110		

Val Ser Tyr Ser Ser Gly Lys Asn Glu Thr
115 120

```
<210> 67
<211> 19
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 67
ctaaaggta

```
<210> 68
<211> 17
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 68
cgctcatctt ctcctca

```
<210> 69
<211> 1119
<212> DNA
<213> Homo sapiens
```

<400> 69
tcaccctcct ggccaattgt gttgcacctt gggcaactgaa tcacatgagc cgtcgactaa 60
gccagatgct tctcatgttc ctactggcaa cctgccttct gccatcata tttgtgcctc 120
aagaaatgca gaccctgcgt gtggtttgg caaccctggg tgtggagct gcttctcttg 180
gcattacctg ttctactgcc caagaaaatg aactaattcc ttccataatc aggtacaaaa 240
gtttatgtgt gctctgtcat tctcaaaatg gacctgtctc aaccaattga cacttaacaa 300
gggaaaaaaaaa tccaagacaa gtttagttaaa aaacaatcaa atgtaatagt cataaaaaca 360
acaaattaca gcccaagttt atatcaagct gactttgttc cagacgctgc attaagtctt 420
ttaatgcagt atccccatgtta ccttctgaac cacctgaaag gttgatgtta aggaaaaatag 480
cattttgtaa atgataaaaaa tgtgtctaatt cacttgcata atctaaaata aattgctagc 540
aaataagaga aaatttcaaa agcaagagta tggttatcacc tccatgtgtt taagtgcata 600

tccataatca cagcaaaaatg ataaaatcaca aattatatgt atgattttta acaactttc	660
ctctgttgct gttttactc caaggggaag agctactgga atcactggaa actttgctaa	720
tattggggga gccctggctt ccctcatgat gatcctaagc atatattctc gaccctgcc	780
ctggatcatc tatggagtct ttgcacatcct ctctggcctt gttgtcctcc tccttcctga	840
aaccaggaac cagcctcttc ttgacagcat ccaggatgtg gaaaatgagg gagtaaatag	900
cctagctgcc cctcagagga gctctgtgct ataggtctgt gctgaggaaa gcaaaacacc	960
attagggct accatcccc aaaaaggctt agatctggc tattccatg tagtcagtgc	1020
cttgccttt ggtgtatcct catcccttcc acagtgacct catacatccc ctgagcctca	1080
ctagatcaca cagaccatct ctgcccagcc tgtccagga	1119

<210> 70

<211> 97

<212> PRT

<213> Homo sapiens

<400> 70

Met Ile Phe Asn Asn Phe Ser Ser Val Ala Val Phe Thr Pro Arg Gly			
1	5	10	15

Arg Ala Thr Gly Ile Thr Gly Asn Phe Ala Asn Ile Gly Gly Ala Leu			
20	25	30	

Ala Ser Leu Met Met Ile Leu Ser Ile Tyr Ser Arg Pro Leu Pro Trp			
35	40	45	

Ile Ile Tyr Gly Val Phe Ala Ile Leu Ser Gly Leu Val Val Leu Leu			
50	55	60	

Leu Pro Glu Thr Arg Asn Gln Pro Leu Leu Asp Ser Ile Gln Asp Val			
65	70	75	80

Glu Asn Glu Gly Val Asn Ser Leu Ala Ala Pro Gln Arg Ser Ser Val			
85	90	95	

Leu

<210> 71
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 71		
ttctggccat catatttgtg c		21
<210> 72		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 72		
agtgattccc agtagcttt c		21
<210> 73		
<211> 2837		
<212> DNA		
<213> Homo sapiens		
<400> 73		
atatacacctc ctaggaaata tgcagtaaga tggatttgt gtctaaaggt taaaactctt 60		
ttccaaacaga tggatctagg ccgtatggag gattcaactgc ttctcataacc tccagtgaaag 120		
atgcagataa agtgggatgt tgtaatgtt cttcattttt atcaggaaga agctgctatg 180		
gtgaatttaa aacttgtaat gccatttagat gagcttctag cacagttca gtcatgttac 240		
catgaggatt ggtgtgacct gttccatatt ccgtggtcca ttatgggt ctgaaagaga 300		
ccatctacctt cctagaagtgt tgggtgggt ctcttccaaa tactcctgaa ggaaacttta 360		
cttctcctgg ctatgtatggaa gtcaggaatt actcgagaaa cctaaactgt gaatggactc 420		
ttagcaatcc aaatcagggaa aattcatcta tttatattca ttttgaagat ttttacctag 480		
aaagtccacca agactgtcaa tttgatgtcc ttgagttcg agtgggtttt ttaagagcct 540		
ggtaagaagt gcaagattga caaaggtaag gtttagtagcg gaggttaagt aaagcttga 600		
tataggaaac cttggaccac ttgccattgc agtggataaa attttcaaga ttgcgttga 660		
tttggaaagtc aaagattcca ttttaaagcc attgactacc attgtccagt cgctattggg 720		
gccaggccat gttacaaagg atattgaacg tttgggctta atgtgagggc ttgtgaccta 780		
gagtcgtggag gttgcaaggg agacagccaa gtatgtgtc atggggaaac cttcttcagg 840		
tggatttga ggcttcactg caatacttagc ttccctgttgc tgctgcaaca aattattatt 900		
attattattta ttattatttt tattattttt ttccagatggaa gtctcgctct gtcactcagg 960		
ctggagtgca gtggtgcgat ctcagctcggt tgcaagctcc gccttgggg ttcatggccat 1020		
tctcgtgcct cagcctccca agtagctggg actacaggaa cccgcccacca cacctggcta 1080		
atgtttcgta ttttttagtag aggtggggtt tcatcggtt agccaggatg gtctcggtct 1140		
cctgacacctag tgattcacct gtcttggccccc cccaaagttc tgggattaca ggcgtgagcc 1200		

acacacttag tgcctttaaa caacatataat gtattcttc acagttctgg aggccagaat	1260
tctaaattcc ctcccactga gtcaagggtgg gagcagggca agtgcctcg gaggctctgt	1320
gggagaatcc attccttgc tctggaggca gcctgcactc ctgcacttt gatgccctcc	1380
ttgaatgact ccaatttctc gcttccatca ctacacctcc caccactctc ccatcacctg	1440
ctctgctctt acaaggatca gtgagtgatca caacttgcca cctaaagaag ccgggataat	1500
cttccctgcc aaaggccctt aacttcatta catctgcaaa gcttctttta ccatataagg	1560
tgcaccgggt acttcttgag cattggatg atctgcttc cctccagtca cacagcttcc	1620
aggcaactggg agtggtcctc ctgcaggatg tttagctcg acttggccag agaaatggaa	1680
tggttgcac tacatctac gtaaaacaatt gaagaattgt ctgaaagaaa agcagaagga	1740
acatctgaag gaacacctga tgaggctgca cccttggcg aaagaacacc tgacatggct	1800
gaaagcttgg tggaaaaacc acctgtatgag gctgcaccc tggggaggg aacagctgac	1860
aaaattcaat gtttggggaa agcaacatct ggaaagttt aacagtcagc agaagaaaaca	1920
cctaagaaaa ttatgaggac tgcaaaagaa acatctaaga aatttgcattt gccagcaaaa	1980
gaaagaccta ggaagatcac atggaggaa aaataaacat ctgtaaagac tgaatgcgtg	2040
gcaggagtaa tacctaataa aactgaagtt ttggaaaaag gaacatctaa gatgctcactg	2100
tgcctacaa aagaaacatc tacaaaagca agtacaaaatg tggatgttag ttctgttagag	2160
tctatattca gaggcttcacc ctgtcaccctt ggctggaaatg caatggcactg atctcggttc	2220
actgcaacctt ccaccccttca gaaggaagca acaaagacag caactgaaca acaagaaaaat	2280
gatattggaa ttattgaatg agcggccataa gatctaacaataa ataaatgtcc cacatcagag	2340
tcaggacaaa aagaagatac gaaatcacct tcagttctg aggtcacagc tatggatgtg	2400
gaagagatag gaaaggccctc accacttaag atagaagcag cagctgcata gtggtaacag	2460
caatgagtgg atgtcaaaaag acagattcaa ctgcctatc aatattcttgg ggtgcagttc	2520
cttctcatga aagagcaagg gaactaaaaa aatatcactg tgaacaactt acagaaaaaa	2580
taaaaacaaat gaaaaataag tttgggtac tacaaaagga actatcagaa gcaaaaataaa	2640
aattgcagta agtgaatcaa aaggttaaat gggaaacaaga gctctgcagt gtgagcttgg	2700
aatgaagttt ataatagtga gacccgttg gtacaagact atgtacacaca acctgcactt	2760
ctcaacaaaa aattgcattt ctgacttctg cactcagtag gtatcttgg aaaataatct	2820
cctattggta ctgaggc	2837

<210> 74
 <211> 102
 <212> PRT
 <213> Homo sapiens

<400> 74

Met	Cys	His	Gly	Glu	Thr	Phe	Phe	Arg	Trp	Ile	Leu	Arg	Leu	His	Cys
1				5					10					15	

Asn	Thr	Ser	Phe	Leu	Leu	Leu	Gln	Gln	Ile	Ile	Ile	Ile	Ile	Ile	
				20			25							30	

Ile	Ile	Ile	Ile	Ile	Ile	Phe	Arg	Trp	Ser	Leu	Ala	Leu	Ser	Leu	
						35			40				45		

Arg	Leu	Glu	Cys	Ser	Gly	Ala	Ile	Ser	Ala	Arg	Cys	Lys	Leu	Arg	Leu
					50			55			60				

Val	Gly	Ser	Cys	His	Ser	Arg	Ala	Ser	Ala	Ser	Gln	Val	Ala	Gly	Thr
65					70					75			80		

Thr	Gly	Thr	Arg	His	His	Thr	Trp	Leu	Met	Phe	Arg	Ile	Phe	Ser	Arg
						85				90			95		

Gly	Gly	Val	Ser	Ser	Cys										
					100										

<210> 75

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 75

catctacctc ctagaagtgt g 21

<210> 76

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 76

cactcgaaac tcaaggacat c 21

<210> 77

<211> 5868

<212> DNA

<213> Homo sapiens

<400> 77

gatctctccc atgaagtgac caggatagag aagcaccaga accgcaaaaa gtatggctg 60

tgcgtcatct tccttcctg taccatgatg cccaaactta aagagctgat ccatttcgag	120
gtcagcatcg gtcactatgg gaacaagatg gacctgaatt acaaggctct agtctcaagc	180
acaccgtaca gcccgagtat atatgatggg aacatctacc attatgtgcc ctggtacaac	240
accaaggctg tcgtggccgt gacctccaac tgggaggacg tcagcttccg catgaactgc	300
ctcaacctcc tccacttcac tcgggaccgc ctgaaagcca acctggacac cctgaaaatcc	360
acgcggaatc cgaaggatcc agctctcctc taccagtggg agaaaactgct gagggagctg	420
gcagaggact gcaagcgccc tctgccctgc atgacctatc agcccaaagc caccagcctg	480
gacaggaaga ggtggcagct ccgcagcctc ctcctgcagg aactggccca aaaggccaag	540
caagccaagc ccaaggacat ggtggccaca gcggaggact ggctgttaccg cctcaacacc	600
gtgctccctg agccccagat gggcctccct gacgtgatga tttggctggt ggccaaggag	660
cagcgagtgg cctatgcaca gtacccagag ggtgaaggac agaaggatgt gctcccagct	720
cacctccggg tctgcatgtg gcttggcaat gtcacagaca gcaaggacct gcagctgctc	780
cgccagggtg acacagcgtt gtacgcccgg atggtgagtg tatgagaatc aggccaagta	840
taaagaccag tgggggcagc aggggctgta tcactgcccc aacttctcgg atgtcatggg	900
gaacaagacc ctccccatga cggatttcca accacccctg ggatggcact ggcaggacag	960
ctggacagtg gaacctcaga gaaggctcct cctggacata gacatcaaca agagccaggt	1020
gctggaggag gtatatgaga accagggccg tgacaccaga ggggcctggg ggcctgccgc	1080
catcccaaac acagacgtga atggacagcc catggaggcc cgggagaacg tgaagtgccc	1140
ccaaggctgg cactttaaga aggactgggt ggtggagctg aaccacgcag tggacagtaa	1200
gggctggag tatggagtgg ggatcccacc gtcgggcctg cccaggtct ggagcccggt	1260
ggagaagacc taccactcgt gccggccggc gcgctggcg cgtgtgcgt tcaggaacca	1320
tggggagctg agccacgagc aggagaccct ctccttcctg cagctggcc tggccaaggg	1380
cgaggaggag ggctggaggt atgacacccctt cggctccaag ttccacctca accctcagcc	1440
ccagagccgg ttccggccgc gctgctggcg ccgcaggctg gcccccaaca aggacaaggg	1500
catcgccccc atattcctcc tggaggggtc cttggctatg gatctgaaat accacgctgg	1560
gaaggaagag gacagcaaga catggccatg gggctggac agacagttca gggaccccca	1620
gaggcaggac accccggccccc ccaacttgcc cttcatctac tgcacctca ataagcccc	1680
ctactaccag ctcttctgct acatctacca ggcggaaac ctgggtgtcca atcagatcct	1740
gacattccaa gggcccttca ttgggtggc cttcctgaac cacagccagt gcacccaaac	1800
cctgaggagc tctgcaggcc ccacatgggc ccagacactc atttccagc acctccttct	1860
gtacgagaac ccacaggaca ccaaagagag cccaccgctt gtgggtgtgg agctgtggca	1920

gcgtgacttc tggggcaagg agagcttgtg gggacggagc gtgtggcccc caatggtctg	1980
gctggatctc caggaccgga tcctgcccc catgaggtgg catcccttg taaaggagtt	2040
ggggaaggaa gagggcgaga tcttggcatc ctgtgagctg atcctccaga ctgagaagct	2100
tggagagaag cagctgccta tcttaagcgt tccctggaag aatggggcat acacactccc	2160
caagagcatc cagcccacga taaagaggat ggccatttag gtgctggcga tgtggatgg	2220
ggacgggtggg caggacagggc ggggggtggtc tggagtgcgc tgca gcccttc tgctggcct	2280
ccctgactac tggatccaaa gtcacacccc cgaaaaagac tacctggag gtggagggag	2340
acaggagaga aacgaagagg ttctggtgta acactggaaa tcattttacc acaaacctct	2400
gcagtgagga gtaggcaaag ggctgttagca tgcatgatca cttgtggac tcacgctgcc	2460
cctgcgcagt agcaactact ttgcagagaa ggaaatagag gctccaagag ataacacatt	2520
ccacgcacag ttagtgcagg actaactgac agggccattt agggccagcc ctgtctgact	2580
gcagatgcca gtagtggct cacctcttt ctgagatgg tagcatggc ctcattcaga	2640
agctgtgtgc cctgcccaca atgtggcaaa gagcacaaga cggcaggcc tctggactg	2700
aaggcttccc caagatcagg caacttggct ggttcccgct ttaggccccg aggaggccca	2760
aagtcaagggt gcagctattt cctggcagga tgccaggta ctgaatggcc atggggcct	2820
caatgagcta gacggcacag gggccctgag aaatccaggc acttcctgct tttcaggcc	2880
tcagaggcag tcggcttcag gaactcctac ctgagaactg atgaggccag acaaggcagc	2940
gggtgaggag gggcaatgcc tgccggctat ggaggtcagt ggaggatgca gccagtggcc	3000
agaggtcacc tccctcatgg gttggggac agcgtcccaag ccccgagggc aagcactgat	3060
ccctcacagg acggggaaagc ctgtccttgt ggcgccttcag acactggctc ctctgcagcc	3120
ccattccctg gcccgcagg ctccctgtgc accgctattt ccctcagcc cccttctctg	3180
gccaggaccc cattacagag ggcgcctgtcc cccttgcctt tgccctcctt ctttgtctg	3240
gtagatcctg gcctggggcc ttccgaacat gaagaaggcg agctccccc agctcctggt	3300
ggaattcggg gaagagtccc tgaggacaga acccatcagg gactttcaga ccaaccccaa	3360
cttccccgag tctgagtctg tcctagtctt cacagtgtc atggcgcagg aggaggccta	3420
tgcactgccc ctcgtggta aggtggtaga caactggcc ttccggccagc agaccgtgac	3480
gggcccaggcc aacatcgact tcctccagcc ctacttctgt gacccctggg ctcaagacta	3540
tatgcaccca aagcttccaa cgctgtctga gaagaaggcac caagacttcc taggctaccc	3600
ctacagaaag ttctggttca agtccagtaa agcagaggat gagttatgagc atgaggtgga	3660
ctgggtggagc aagctgttct gggccacaga tgagcacaag tccctgaagt acaagtacaa	3720
agactaccac accctcaagg tgtatgagtg tgagctggag gccgtgccag cttccagg	3780

cctgcaggac ttctgccaga ccttcaaact ctaccaggag cagcccaagt tggacagccc	3840
cgtggtaggg gagttcaagg gcctttccg catctacccc tttcctgaga atccagaagc	3900
cccaaagccc ccgctgcagt tcttggtttg gccagagaga gaggacttcc cccagccgtg	3960
cttgggtcgaa gtgtacatgg tacgagccat caacctgcag ccccaggact acaatggcct	4020
gtgtgaccct tatgtgatcc tgaaaactggg caagacagag cttggcaacc gggacatgta	4080
ccagcccaac actctggatc ccacatttgg catgatgtt gaactcacct gcaacatacc	4140
cctggagaag gacctagaga tccagctcta tgacttcgac ctatttcac ctgatgataa	4200
gataggaacc acagtcatcg accttgaaaa ccgactccta tctggcttg gagctcattg	4260
tgggcctctcc aaatcctact gccagtcagg gccctttaga tggcgggatc agatcccccc	4320
aagctacctc ctagaacgct atgccaagcg gaaaggcata cctccgcctc tgttcagtc	4380
tgaggaagat gctgtttct ataatggaa aaagttcaag ctgaaagct ttgagccaa	4440
aaccctact gttcatgggt tgggacccaa gaaggaacgc cttgcactgt acctcctgca	4500
cacccagggg ctggcacctg agcacgtgga gacccgcaca ctgtacagcc acagccagcc	4560
aggcatcgac cagggaaagg tgcaaattgtg ggtggacatc ttccccaaaga agctggggcc	4620
tcctggccccc caagtcaaca tcaaccccaag aaagctaaa cggtatgagc tgcatgcata	4680
catctggaag actgccaatg tggacctggt ggatgacaat ttaagtagag agaagacgag	4740
cgacatctac atcaaagggt ggttatacgg gctggagaag gacatgcaga agacagacat	4800
ccactaccac tcgctgactg gggaggccga cttcaactgg cggttcatct ttaccatgga	4860
ctacctggcg gcggagcgca cgtgtgtcca gagccagaag gattacatat ggagcctgga	4920
tgccacgtcc atgaagttcc cagccgact tatcatccag gtctggaca atgacatctt	4980
ctcccccgac gacttcctag gggtcctgga gctggatttg tctgacatgc ccctcccgcc	5040
tcggcacgccc aagcagtgtc ccatcaggat gatggacgcc gaccccaagt ggccctatTT	5100
catccaatac aagcacttct ccctctttaa gaagaagact gtgactggct ggtggccttg	5160
ccaggtcctc gatggtggca aatggcgctt gtcggcaag gtgaagatga gcctggagat	5220
tctgtcagag aaggaagcct taatcaagcc agccggccga ggccagtcgg aacccaacca	5280
gtacccaca cttcatcctc ccctacgcac caacacctct ttcacgtggc tgccgtcacc	5340
agttcaaaac ttctgctata ttttctggaa acgctatcgc ttcaaactca tagcctttat	5400
ggtcataatcg attatagcac ttatgtgtt taacttcattc tattcagctc cgcaactatTT	5460
ggccatgagc tggatcaaac ctcaacttca gctgtatcct cccattaaaa tattcaatat	5520
catcaattca ctaaacacca gcaacgccag ctcttccatc cttccacccc aggatccaaa	5580
cctaaaggct acaatagacc atgagtgaa actccaccca ggacccacaa atcacctgag	5640

tgatattttc ccagaacttc cagccccagg agactaatta gtcacatgctg cctggcttcc	5700
ctcctgctac caacagccct ccccttgggc tggctaccag ttctttgttt ctatcttcta	5760
gaatatatgc aagatgctag gaatattctg gctattgtgt tcagaaaatca ctttcaacaa	5820
gacgagcaga gctgtaattt tccactgaaa taaacaagtt ctataaca	5868

<210> 78
<211> 802
<212> PRT
<213> Homo sapiens

<400> 78

Met Lys Lys Ala Ser Ser Pro Gln Leu Leu Val Glu Phe Gly Glu Glu			
1	5	10	15

Ser Leu Arg Thr Glu Pro Ile Arg Asp Phe Gln Thr Asn Pro Asn Phe		
20	25	30

Pro Glu Ser Glu Ser Val Leu Val Leu Thr Val Leu Met Pro Thr Glu		
35	40	45

Glu Ala Tyr Ala Leu Pro Leu Val Val Lys Val Val Asp Asn Trp Ala		
50	55	60

Phe Gly Gln Gln Thr Val Thr Gly Gln Ala Asn Ile Asp Phe Leu Gln			
65	70	75	80

Pro Tyr Phe Cys Asp Pro Trp Ala Gln Asp Tyr Met His Pro Lys Leu		
85	90	95

Pro Thr Leu Ser Glu Lys Lys His Gln Asp Phe Leu Gly Tyr Leu Tyr		
100	105	110

Arg Lys Phe Trp Phe Lys Ser Ser Lys Ala Glu Asp Glu Tyr Glu His		
115	120	125

Glu Val Asp Trp Trp Ser Lys Leu Phe Trp Ala Thr Asp Glu His Lys		
130	135	140

Ser Leu Lys Tyr Lys Tyr Lys Asp Tyr His Thr Leu Lys Val Tyr Glu			
145	150	155	160

Cys Glu Leu Glu Ala Val Pro Ala Phe Gln Gly Leu Gln Asp Phe Cys		
165	170	175

Gln Thr Phe Lys Leu Tyr Gln Glu Gln Pro Lys Leu Asp Ser Pro Val		
180	185	190

Val Gly Glu Phe Lys Gly Leu Phe Arg Ile Tyr Pro Phe Pro Glu Asn
195 200 205

Pro Glu Ala Pro Lys Pro Pro Leu Gln Phe Leu Val Trp Pro Glu Arg
210 215 220

Glu Asp Phe Pro Gln Pro Cys Leu Val Arg Val Tyr Met Val Arg Ala
225 230 235 240

Ile Asn Leu Gln Pro Gln Asp Tyr Asn Gly Leu Cys Asp Pro Tyr Val
245 250 255

Ile Leu Lys Leu Gly Lys Thr Glu Leu Gly Asn Arg Asp Met Tyr Gln
260 265 270

Pro Asn Thr Leu Asp Pro Ile Phe Gly Met Met Phe Glu Leu Thr Cys
275 280 285

Asn Ile Pro Leu Glu Lys Asp Leu Glu Ile Gln Leu Tyr Asp Phe Asp
290 295 300

Leu Phe Ser Pro Asp Asp Lys Ile Gly Thr Thr Val Ile Asp Leu Glu
305 310 315 320

Asn Arg Leu Leu Ser Gly Phe Gly Ala His Cys Gly Leu Ser Lys Ser
325 330 335

Tyr Cys Gln Ser Gly Pro Phe Arg Trp Arg Asp Gln Met Pro Pro Ser
340 345 350

Tyr Leu Leu Glu Arg Tyr Ala Lys Arg Lys Gly Leu Pro Pro Pro Leu
355 360 365

Phe Ser Pro Glu Glu Asp Ala Val Phe Tyr Asn Gly Lys Lys Phe Lys
370 375 380

Leu Gln Ser Phe Glu Pro Lys Thr Pro Thr Val His Gly Leu Gly Pro
385 390 395 400

Lys Lys Glu Arg Leu Ala Leu Tyr Leu Leu His Thr Gln Gly Leu Val
405 410 415

Pro Glu His Val Glu Thr Arg Thr Leu Tyr Ser His Ser Gln Pro Gly
420 425 430

Ile Asp Gln Gly Lys Val Gln Met Trp Val Asp Ile Phe Pro Lys Lys

435

440

445

Leu Gly Pro Pro Gly Pro Gln Val Asn Ile Asn Pro Arg Lys Pro Lys
 450 455 460

Arg Tyr Glu Leu Arg Cys Ile Ile Trp Lys Thr Ala Asn Val Asp Leu
 465 470 475 480

Val Asp Asp Asn Leu Ser Arg Glu Lys Thr Ser Asp Ile Tyr Ile Lys
 485 490 495

Gly Trp Leu Tyr Gly Leu Glu Lys Asp Met Gln Lys Thr Asp Ile His
 500 505 510

Tyr His Ser Leu Thr Gly Glu Ala Asp Phe Asn Trp Arg Phe Ile Phe
 515 520 525

Thr Met Asp Tyr Leu Ala Ala Glu Arg Thr Cys Val Gln Ser Gln Lys
 530 535 540

Asp Tyr Ile Trp Ser Leu Asp Ala Thr Ser Met Lys Phe Pro Ala Arg
 545 550 555 560

Leu Ile Ile Gln Val Trp Asp Asn Asp Ile Phe Ser Pro Asp Asp Phe
 565 570 575

Leu Gly Val Leu Glu Leu Asp Leu Ser Asp Met Pro Leu Pro Ala Arg
 580 585 590

His Ala Lys Gln Cys Ser Ile Arg Met Met Asp Ala Asp Pro Lys Trp
 595 600 605

Pro Tyr Phe Ile Gln Tyr Lys His Phe Ser Leu Phe Lys Lys Lys Thr
 610 615 620

Val Thr Gly Trp Trp Pro Cys Gln Val Leu Asp Gly Gly Lys Trp Arg
 625 630 635 640

Leu Ser Gly Lys Val Lys Met Ser Leu Glu Ile Leu Ser Glu Lys Glu
 645 650 655

Ala Leu Ile Lys Pro Ala Gly Arg Gly Gln Ser Glu Pro Asn Gln Tyr
 660 665 670

Pro Thr Leu His Pro Pro Leu Arg Thr Asn Thr Ser Phe Thr Trp Leu
 675 680 685

Arg Ser Pro Val Gln Asn Phe Cys Tyr Ile Phe Trp Lys Arg Tyr Arg
690 695 700

Phe Lys Leu Ile Ala Phe Met Val Ile Ser Ile Ile Ala Leu Met Leu
705 710 715 720

Phe Asn Phe Ile Tyr Ser Ala Pro His Tyr Leu Ala Met Ser Trp Ile
725 730 735

Lys Pro Gln Leu Gln Leu Tyr Pro Pro Ile Lys Ile Phe Asn Ile Ile
740 745 750

Asn Ser Leu Asn Thr Ser Asn Ala Ser Ser Ser Ile Leu Pro Thr Gln
755 760 765

Asp Pro Asn Leu Lys Pro Thr Ile Asp His Glu Trp Lys Leu His Pro
770 775 780

Gly Pro Thr Asn His Leu Ser Asp Ile Phe Pro Glu Leu Pro Ala Pro
785 790 795 800

Gly Asp

<210> 79
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 79
tgttcagtcc tgaggaagat g 21

<210> 80
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 80
atgatgcata c 21

<210> 81
<211> 3170
<212> DNA
<213> Homo sapiens

<400> 81

ggctcaccga caacttcatc gcccgtgc gccgcccaga cttcgccaaac atgaccagcc	60
tggcacct cactctctcc cgaaacacca tcggccaggt ggcagctggc gccttcggcg	120
acctgcgtgc cctccgggcc ctgcacctgg acagcaaccg cctggcggag gtgcgcggcg	180
accagctccg cggcctgggc aacctccgaa acctgatcct tggaaacaac cagatccgaa	240
gggtggagtc ggccgccttt gacgccttcc tgtccaccgt ggaggacctg gatctgtcct	300
acaacaaccc ggaggccctg ccgtgggagg cggtgggcca gatggtaac ctaaacaccc	360
tcacgctgga ccacaaccc atcgaccaca tcgcggaggg gacccctgtc cagttcaca	420
agctggtccg tctggacatg acctccaacc gcctgcataa actcccgccc gacgggctct	480
tcctgaggcgc ccaaggcacc gggcccaagg cggccacccc gctgaccgtc agcttcggcg	540
gcaacccctt gcaactgcaac tgcgagctgc tctggctgca gcggctgacc cgcgaggacg	600
acttagagac ctgcgccacg cccgaacacc tcaccgaccc ctacttctgg tccatccccg	660
aggaggagtt cctgtgtgag ccccgctga tcacacggca ggccggggggc cggccctgg	720
tggtggaaagg ccaggcggtg agcctgcgtc gccgagcggt gggtagcccc gagccgggtgg	780
tgcactgggt ggcacctgat gggccgctgc tggggaaactc cagccggacc cgggtccggg	840
gggacgggac gctggatgtg accatcacca ccttgaggaa cagtggcacc ttcaattgtt	900
tcgcctccaa tgctgctgg gaaggcgtgg cgccctgtga ggtgtgcgtc gtacctctgc	960
ctctgatggc acccccgccg gctggccgcg cgcctctcac cgagccggc tcctctgaca	1020
tcgcccacgaa gggcagacca ggtgccaacg attctgcggc tgagcgtcgg ctcgtggcag	1080
ccgagctcac ctgcgtactcc gtgcgtcatcc gctggccagc ccagaggcct gtggccggaa	1140
tacgcgtgtt ccagggttccatgtataacagtt ccgttgatgtt ctcctcgatc tacaggatgtt	1200
tcccgccac cagtcagacc ttccctggta atgacctggc ggccggccgt gcctacgact	1260
tgtgcgtgtc ggcggcttac gacgacgggg ccacagcgct gcccggcaacg cgagtgggtgg	1320
gtgtgttaca gttcaccacc gctggggatc cggccgcctg ccggccgtcg agggccatt	1380
tcttggccgg caccatgatc atcgccatcg gggcgatcat cgtcgccctcg gtccctcgatc	1440
tcatcgatgtt cgtcatgtatc cgctataagg tttatggcgtt cggggacagc cgccgcgtca	1500
agggtccatgtt gtcgtcccg cgggtcagcc acgtgtgttc gcagaccaac ggccgcaggca	1560
caggcgcggc acaggccccg gcccgtccgg cccaggacca ctacgaggcg ctgcgcggagg	1620
tggagttccca ggctggccccc gcccgtccgg tcgaggccaa ggccatggag gcccggacgg	1680
catccgcggc gcccggagggtt gtccttggac gttctctggg cggctcgcc acctcgatgt	1740
gcctgcgtcc atccgaggaa acttccgggg aggagtctcg ggccgcgggtt ggccctcgaa	1800
ggagccgttccatgtt gagccaccaa ctcggccgcg ccctactcta gtcgttagttc	1860

ctgggggagc	cgcggcccg	ccgaggccgc	agcagcgcta	ttcgttcgac	ggggactacg	1920
ggcactatt	ccagagccac	agttaccgc	gccgcgccc	gcggacaaag	cgcaccgg	1980
ccacggcga	cctggacggg	gctggagggg	gcfgggccgg	ggaggatgga	gacctggggc	2040
tgggctccgc	cagggcgtgc	ctggcttca	ccagcacca	gtggatgctg	gagagtaccg	2100
tgtgagcggc	gggcgggcgc	cgggacgcct	gggtgcccga	gaccaaacgc	ccagccgcac	2160
ggacgctggg	gccccggactgg	gagaaagcgc	agcgcacaaga	cattggacca	gagtggagac	2220
gccccttgt	ccccgggagg	ggggggggca	gcctcggt	gcggctcgag	gccacgcccc	2280
cgtccccagg	gcggggttcg	gggaccggct	gccggcctcc	cttcccttat	ggactcctcg	2340
accccccctcc	tacccctccc	ctcgccgc	cgcggacactc	gctggagccg	gtgccttaca	2400
cagcgaagcg	cggggagggg	cagggccccc	tgacactgca	gcactgagac	acgagcccc	2460
tcccccagcc	cgtcacccgg	ggccggggcg	agggggccat	ttcttgtatc	tggctggact	2520
agatcctatt	ctgtccccgc	gcggcctcca	aagcctccca	ccccacccca	cgcacattcc	2580
tggtccggtc	gggtctggct	tgggtcccc	ctttctctgt	ttccctcg	tgtctctatc	2640
ccgcctctt	gtcgtctctc	tgttagtgc	gtcttcct	atttgcctct	cctttctctc	2700
tgtccctgtcg	tctttgtcc	ctcgccctc	cctgggtttt	tctagtctcc	ctgtctctcc	2760
tgatttcttc	tctttactca	ttctccggg	caggtcccac	tggaaggacc	agactctccc	2820
aaataaaatcc	ccacacgaac	aaaatccaaa	accaaatacc	cctccctacc	ggagccggga	2880
ccctccgccc	cagcagaatt	aaacttttt	ctgtgtctga	ggccctgctg	acctgtgtgt	2940
gtgtctgtat	gtgtgtccgc	gtgttagtgt	tgtgtgtgt	tgtgtgtgt	tgtgtgtgt	3000
tgtgtgttgg	gggagggtga	cctagattgc	agcataagga	ctctaagtga	gactgaagga	3060
agatggaaag	atgactaact	ggggccggag	gagactggca	gacaggctt	tatcctctga	3120
gagacttaga	gttggggat	aatcacaaaa	ataaaatgt	cataatagct		3170

<210> 82
<211> 684
<212> PRT
<213> Homo sapiens

<400> 82

Met Thr Ser Leu Val His Leu Thr Leu Ser Arg Asn Thr Ile Gly Gln
1 5 10 15

Val Ala Ala Gly Ala Phe Ala Asp Leu Arg Ala Leu Arg Ala Leu His
20 25 30

Leu Asp Ser Asn Arg Leu Ala Glu Val Arg Gly Asp Gln Leu Arg Gly
35 40 45

Leu Gly Asn Leu Arg His Leu Ile Leu Gly Asn Asn Gln Ile Arg Arg
50 55 60

Val Glu Ser Ala Ala Phe Asp Ala Phe Leu Ser Thr Val Glu Asp Leu
65 70 75 80

Asp Leu Ser Tyr Asn Asn Leu Glu Ala Leu Pro Trp Glu Ala Val Gly
85 90 95

Gln Met Val Asn Leu Asn Thr Leu Thr Leu Asp His Asn Leu Ile Asp
100 105 110

His Ile Ala Glu Gly Thr Phe Val Gln Leu His Lys Leu Val Arg Leu
115 120 125

Asp Met Thr Ser Asn Arg Leu His Lys Leu Pro Pro Asp Gly Leu Phe
130 135 140

Leu Arg Ser Gln Gly Thr Gly Pro Lys Pro Pro Thr Pro Leu Thr Val
145 150 155 160

Ser Phe Gly Gly Asn Pro Leu His Cys Asn Cys Glu Leu Leu Trp Leu
165 170 175

Arg Arg Leu Thr Arg Glu Asp Asp Leu Glu Thr Cys Ala Thr Pro Glu
180 185 190

His Leu Thr Asp Arg Tyr Phe Trp Ser Ile Pro Glu Glu Phe Leu
195 200 205

Cys Glu Pro Pro Leu Ile Thr Arg Gln Ala Gly Gly Arg Ala Leu Val
210 215 220

Val Glu Gly Gln Ala Val Ser Leu Arg Cys Arg Ala Val Gly Asp Pro
225 230 235 240

Glu Pro Val Val His Trp Val Ala Pro Asp Gly Arg Leu Leu Gly Asn
245 250 255

Ser Ser Arg Thr Arg Val Arg Gly Asp Gly Thr Leu Asp Val Thr Ile
260 265 270

Thr Thr Leu Arg Asp Ser Gly Thr Phe Thr Cys Ile Ala Ser Asn Ala
275 280 285

Ala Gly Glu Ala Thr Ala Pro Val Glu Val Cys Val Val Pro Leu Pro

290

295

300

Leu Met Ala Pro Pro Pro Ala Ala Pro Pro Pro Leu Thr Glu Pro Gly
305 310 315 320

Ser Ser Asp Ile Ala Thr Pro Gly Arg Pro Gly Ala Asn Asp Ser Ala
325 330 335

Ala Glu Arg Arg Leu Val Ala Ala Glu Leu Thr Ser Asn Ser Val Leu
340 345 350

Ile Arg Trp Pro Ala Gln Arg Pro Val Pro Gly Ile Arg Met Tyr Gln
355 360 365

Val Gln Tyr Asn Ser Ser Val Asp Asp Ser Leu Val Tyr Arg Met Ile
370 375 380

Pro	Ser	Thr	Ser	Gln	Thr	Phe	Leu	Val	Asn	Asp	Leu	Ala	Ala	Gly	Arg
385					390					395					400

Ala Tyr Asp Leu Cys Val Leu Ala Val Tyr Asp Asp Gly Ala Thr Ala
405 410 415

Leu Pro Ala Thr Arg Val Val Gly Cys Val Gln Phe Thr Thr Ala Gly
420 425 430

Asp Pro Ala Pro Cys Arg Pro Leu Arg Ala His Phe Leu Gly Gly Thr
435 440 445

Met Ile Ile Ala Ile Gly Gly Val Ile Val Ala Ser Val Leu Val Phe
450 455 460

Ile Val Leu Leu Met Ile Arg Tyr Lys Val Tyr Gly Asp Gly Asp Ser
465 470 475 480

Arg Arg Val Lys Gly Ser Arg Ser Leu Pro Arg Val Ser His Val Cys
485 490 495

Ser Gln Thr Asn Gly Ala Gly Thr Gly Ala Ala Gln Ala Pro Ala Leu
500 505 510

Pro Ala Gln Asp His Tyr Glu Ala Leu Arg Glu Val Glu Ser Gln Ala
515 520 525

Ala Pro Ala Val Ala Val Glu Ala Lys Ala Met Glu Ala Glu Thr Ala
530 535 540

Ser Ala Glu Pro Glu Val Val Leu Gly Arg Ser Leu Gly Gly Ser Ala
545 550 555 560

Thr Ser Leu Cys Leu Leu Pro Ser Glu Glu Thr Ser Gly Glu Glu Ser
565 570 575

Arg Ala Ala Val Gly Pro Arg Arg Ser Arg Ser Gly Ala Leu Glu Pro
580 585 590

Pro Thr Ser Ala Pro Pro Thr Leu Ala Leu Val Pro Gly Gly Ala Ala
595 600 605

Ala Arg Pro Arg Pro Gln Gln Arg Tyr Ser Phe Asp Gly Asp Tyr Gly
610 615 620

Ala Leu Phe Gln Ser His Ser Tyr Pro Arg Arg Ala Arg Arg Thr Lys
625 630 635 640

Arg His Arg Ser Thr Pro His Leu Asp Gly Ala Gly Gly Ala Ala
645 650 655

Gly Glu Asp Gly Asp Leu Gly Leu Gly Ser Ala Arg Ala Cys Leu Ala
660 665 670

Phe Thr Ser Thr Glu Trp Met Leu Glu Ser Thr Val
675 680

<210> 83
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 83
cgaactccgt gctcatc

17

<210> 84
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 84
cgcacaagtc gtaggca

17

<210> 85
<211> 2206

<212> DNA

<213> Homo sapiens

<400> 85

cgacaacgtc acccgcagac	cggccaatcc cgccaggccg	cggcccagtgcgccc	60
acaccgaaga cgacaccagc	catccggcca atcccgcccc	gccgcgcccc gcaggcccgc	120
ccactcctcg cttctccact	tcccttctcg aagtgtccgg	tcgcttctcg caggcggcgc	180
gcttgctggg tcacagttag	gcggctccgc gcaggcgcag	ccgggcgggc gaggagcggg	240
gaagctgact cagggctgag	gccgggggtcc tgcggggtag	gagcgcgagg ccggcctgag	300
ggaggaggcc tagcgacc	tccggcgcct cccgccccgg	gcacccgccc gcggccgcgc	360
atcctgcggg ccccaggagg	cctccatctc aaaacaacgt	gttttttagga tctcatccac	420
tatcacagtt tcagcttcc	ccaaactgga atgtgtctt	gcagacgcgc atcattatta	480
aaggcaaaag acttctata	cacctaggat ggatctata	ttcttggcgg gactgcagag	540
aaggtgccgt gtcctgagtc	ctcatgtcag ggcacaggct	tccagccagt tctacctggg	600
ttatgttat ctcaattccc	tgggtgtatt ggtgtctgct	gggttttgcc agaatgaaga	660
caccgtgtt tcatttgtca	gttgcattcgat ttttccagg	aagacattct gagattacag	720
cattgtctta gtcaagggtc	tgcagaagga cagaactaat	aggatataatg tacatatgaa	780
agaaagttta tgaagaactg	gctcacacca tcacaaggca	aagtcccatg acaggccatc	840
tgcaagctga ggagcgagga	agccagcagt ggctcagccg	gagtccaaca gcctcaaacg	900
gaatccaaca gttcaggctt	cagtctgtgg ccaaatgccc	agagaccccg gaaagctact	960
ggtgttagtc ccagagccgg	aaggccaaag aacctggagt	gtgatgtcca agggcaggag	1020
gaatggacag aagcatccag	catggggtaa agacgaaagc	cagaagactc agcaagctag	1080
cttacctact ttcttctgcc	tgccttgcgt tagccgcgt	ggcagccggt tggagggtgc	1140
ccaccccccac tgagggtgga	tcttcctctc ctgtccact	gactcaaatt tcagtctctc	1200
tgggagcacc atcacaccag	aaacaataacc agccatctag	ccacccttca gttcaccatc	1260
acaaccattt tcttattcat	gaaacttctg cagacccacc	ttaacctcca tcggtgactt	1320
ctacactgaag ccctctgatt	gttgcggcgt ggtgtttttt	aaaataattt ccatagtttc	1380
ttctacaccc ttagttggca	ttctactgtt aaggagagat	tttattttct tactcattt	1440
tttggtagtt tatagtcacc	accatatgga tgcagagttc	tgtctcattt actggaaagt	1500
attctattgc agtcatgatt	tatTTGATG ttcacatccc	agagttggtg agtgaggcgc	1560
ccttcacgtt ggctcccgag	tgctgacgtg tccccgtcc	tctctgcact tttccttacc	1620
tcctggcctc agatattcca	gggtcatttg ttctctccct	gctccaaccc tgcagtcagc	1680
catctcccta gggacgttgg	ttccctttatg gaaggtggca	tttagaaagcc aggatttggg	1740

ctgaggactg tggctcatgc ttgtatccc agcacttggg gaggccgaag tggcgatc	1800
gctggaggcc aagagtctga gaccagcctg gctaacatgg tgaaaccctt ccccgatct	1860
actacaata aaaaattagc tgggtgtgtt ggcacgtgcc tgtaatccca gttactcagg	1920
aggctgaagc accagaatct cttgaaccca ggaggccgag gttgcagtga gccaagattg	1980
caccactgca ctacagcttg ggtgacagcg cgagacacccg tctaaaaaag gataataatt	2040
taaaaaaacag caggattgg gtgagcagtgc cgctcattgc ttctgggctc tctcggtgga	2100
cataggctag gaatgtaaaga tgtatgtgcc tgtgtatata cacacgtctg tagctatgtc	2160
tatgttgcac acatgtgttt ttccaaaaac caaatccata accatg	2206

<210> 86
<211> 93
<212> PRT
<213> Homo sapiens

<400> 86

Met Asp Arg Ser Ile Gln His Gly Val Lys Thr Lys Ala Arg Arg Leu			
1	5	10	15

Ser Lys Leu Ala Tyr Leu Leu Ser Ser Ala Cys Leu Val Leu Ala Ala			
20	25	30	

Leu Ala Ala Gly Trp Arg Val Pro Thr Pro Thr Glu Gly Gly Ser Ser			
35	40	45	

Ser Pro Ser Pro Leu Thr Gln Ile Ser Val Ser Leu Gly Ala Pro Ser			
50	55	60	

His Gln Lys Gln Tyr Gln Pro Ser Ser His Pro Ser Val His His His			
65	70	75	80

Asn His Cys Leu Ile His Glu Thr Ser Ala Asp Pro Pro		
85	90	

<210> 87
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 87 aaactacgtg tggccaggat c	21
-------------------------------------	----

<210> 88
<211> 21

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 88
 cgacatgagg actcaggaca c

21

<210> 89
 <211> 455
 <212> DNA
 <213> Homo sapiens

<400> 89
 gtgaagacag ggagctcaag tgacctcctc cagggtatat agctgtggtg tggaaagcat 60
 catgagaaca cggctttga tgggataat tactctgaat ctaccaggct gattaagcca 120
 cagcagatca gcaggtgaga attcaactgt ccagatagaa agtggacat gaaaaattg 180
 ggcttgcaa atggtcaccc aattcttgcc ttcctggtct ccagatcacc cttcctatac 240
 cgcactctg gagaaagaag tacagaacgc taacaaggat ggcttggagt tgcagtggc 300
 acctcagatc ttaaggtcac tttggagatg gaaccctgt gacttagaat ggcagaagag 360
 aaaggtagaa agagattgag tcctggggat gtggcagagc accatcctag ccccgtag 420
 cgtacttctg gacttcctt aaattgagag aaaca 455

<210> 90
 <211> 61
 <212> PRT
 <213> Homo sapiens

<400> 90

Cys	Phe	Ser	Gln	Phe	Lys	Gly	Ser	Pro	Glu	Val	Arg	Ser	Thr	Gly	Leu
1				5				10				15			

Gly	Trp	Cys	Ser	Ala	Thr	Ser	Pro	Gly	Leu	Asn	Leu	Phe	Leu	Pro	Phe
				20				25				30			

Ser	Ser	Ala	Ile	Pro	Ser	His	Arg	Gly	Ser	Ile	Ser	Lys	Val	Thr	Leu
				35			40				45				

Arg	Ser	Glu	Val	Thr	Thr	Ala	Thr	Pro	Ser	His	Pro	Cys			
				50			55			60					

<210> 91
 <211> 20
 <212> DNA
 <213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 91
gaacacggtc tttgatgggg

20

<210> 92
<211> 21
<212> DNA
<213> Artificial Sequence<220>
<223> Oligonucleotide<400> 92
gccatccttg ttagcggtct g

21

<210> 93
<211> 1230
<212> DNA
<213> Homo sapiens

<400> 93	
aggggcagag gggcttccc aaccctaccc ctatttcgg tgattttgt gtgagaatat	60
taatattaaa aataaacgga gaaaaaaaaat cctgtttcgc taacggctgg tggtagcagg	120
ttgagtacctg ggagggctgc aagaccgtga ttgatgggaa ggactgcgca gaccctggcg	180
agggtgagcc cctccccgga ggcgcctgtg gaatgtccag ggctctggtc cgctcctcgg	240
gatggggggt gcctaattcct agagccgcata tccaggataa ggggggtggg gagaggctgg	300
gccgggggag gggcaggaaa gagggtata agggcagcgg cccaggcggg cgggatccag	360
gcgggcccattt gcggatgtcc ccggggcaca gcgagcgggtt cctggtgacg gcccagagcc	420
ccgggacccc ctggactgtt gggcctgcgc tggcttgta acagcccaga atctgctgg	480
ggctgccttc aatcttctcc tggctgtgtt ggtgcttaggg accatcttc taccgcgtgt	540
caccatgctg ggcttcggct tcctctgcca ctctcagttc ctgcgtccc aggacccccc	600
ttgcaccgcg cacctgcggg accccggttt cacggcccta ctggtcaccg gattcctgt	660
cctcgtgcgc ctgctcgtgc ttgctctggc cagctaccgc cgccctgtcc tgcgcctccg	720
cctagccgat tgcctcgtgc cctacagccg agccctttat cggcgccggc ggcggccgca	780
gccgcggcaa atccgggcct caccagggtc ccaggccgtt cccacatcag gaaaggcttg	840
ggtctaattga ccctcgagtc aagaacaacc ctgacggctg ccctccctct tattcggccc	900
aaggacttga agcccggtcat cttccgacct gcccctgccc caccctgtcc tgagcggagt	960
cctagcatcc cttggggagc agcagcgtca gtggacccag tgctgagaaa agccccacaca	1020
tcccgaaaaa cccactttcc tttcacgacc cacatctcaa tcctgaacat ctaggctgga	1080
acctgcacac ctccccctca gctccgtcgt gaatgggaca acaatctcgt gcccctgttt	1140

tatggtcag cttctctagt atttctgggg ctggggggcg gggctggagg ggaaggagtg 1200
 tccacgcata aataaagatt taacgaactg 1230

<210> 94
 <211> 159
 <212> PRT
 <213> Homo sapiens
 <400> 94

Met Ala Asp Val Pro Gly Ala Gln Arg Ala Val Pro Gly Asp Gly Pro
 1 5 10 15

Glu Pro Arg Asp Pro Leu Asp Cys Trp Ala Cys Ala Val Leu Val Thr
 20 25 30

Ala Gln Asn Leu Leu Val Ala Ala Phe Asn Leu Leu Leu Val Leu
 35 40 45

Val Leu Gly Thr Ile Leu Leu Pro Ala Val Thr Met Leu Gly Phe Gly
 50 55 60

Phe Leu Cys His Ser Gln Phe Leu Arg Ser Gln Ala Pro Pro Cys Thr
 65 70 75 80

Ala His Leu Arg Asp Pro Gly Phe Thr Ala Leu Leu Val Thr Gly Phe
 85 90 95

Leu Leu Leu Val Pro Leu Leu Val Leu Ala Leu Ala Ser Tyr Arg Arg
 100 105 110

Leu Cys Leu Arg Leu Arg Leu Ala Asp Cys Leu Val Pro Tyr Ser Arg
 115 120 125

Ala Leu Tyr Arg Arg Arg Ala Pro Gln Pro Arg Gln Ile Arg Ala
 130 135 140

Ser Pro Gly Ser Gln Ala Val Pro Thr Ser Gly Lys Val Trp Val
 145 150 155

<210> 95
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 95
 ttcctctgcc actctcagtt c

<210> 96
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 96
cgataaaaggg ctcggctgta g

21

<210> 97
<211> 1020
<212> DNA
<213> Homo sapiens

<400> 97
atggaggagg aggaggagga ttagtactat gagaactcaa cacccctcta caaggaccc 60
cctcccaagc cagggaccat ggaggaggag gaggaggatg atgactatga gaactcaaca 120
cctccctaca aggacccccc tcccaagcca gggaccatgg aggaggagga ggaggatgt 180
gactatgaga actcaacacc tccctacaag gacccctc ccaagccagg ttcaagtgt 240
ccaccaagac ctccaaaggc agcaaaggaa acagagaaac ccccaacttcc ttgcaagccc 300
cggaacatga caggcctgga cctcgccgct gtcacctgtc cacccctcta actggctgt 360
aatcttgagc cttctccatt gcagccatcc ctggccgcaa ctccagtccc ctggctcaat 420
cagaggtctg gaggtcctgg ctgctgccag aagaggtgga tggtgtacct gtgtctgctg 480
gtggtgactt ccctgttctt gggctgcctt ggtctcactg tgaccctgat taagttgact 540
ggcatggcag ggctagctgg cctgaagcat gacattgccc gtgttaagagc tgacaccaac 600
cagtccttgg tggaaactttg gggcttatta gactgccccc gaattacctg tcctgaaggc 660
tggctgccct ttgagggcaa gtgttactac ttctccccaa gcaccaagtc atgggatgag 720
gcccggatgt tctgccagga gaattactct cacttggtca tcatcaatag ctttgctgag 780
cacaattttg tggccaaggc ccatggctct ccacgggtgt actggctgg gctgaatgac 840
agggcccagg aaggggactg gaggtggctg gatgggtctc ctgtgacatt aaggcaacca 900
gaggaaccca ataacatcca cgatgaggac tgtgctacca tgaacaaagg tggcacctgg 960
aatgatctct cttgctacaa aactacgtat tggatttgg agcggaaaatg ttccctgttga 1020

<210> 98
<211> 339
<212> PRT
<213> Homo sapiens

<400> 98

Met Glu Glu Glu Glu Asp Asp Asp Tyr Glu Asn Ser Thr Pro Pro

1	5	10	15
Tyr Lys Asp Leu Pro Pro Lys Pro Gly Thr Met Glu Glu Glu Glu Glu			
20	25	30	
Asp Asp Asp Tyr Glu Asn Ser Thr Pro Pro Tyr Lys Asp Leu Pro Pro			
35	40	45	
Lys Pro Gly Thr Met Glu Glu Glu Glu Asp Asp Asp Tyr Glu Asn			
50	55	60	
Ser Thr Pro Pro Tyr Lys Asp Leu Pro Pro Lys Pro Gly Ser Ser Ala			
65	70	75	80
Pro Pro Arg Pro Pro Arg Ala Ala Lys Glu Thr Glu Lys Pro Pro Leu			
85	90	95	
Pro Cys Lys Pro Arg Asn Met Thr Gly Leu Asp Leu Ala Ala Val Thr			
100	105	110	
Cys Pro Pro Pro Gln Leu Ala Val Asn Leu Glu Pro Ser Pro Leu Gln			
115	120	125	
Pro Ser Leu Ala Ala Thr Pro Val Pro Trp Leu Asn Gln Arg Ser Gly			
130	135	140	
Gly Pro Gly Cys Cys Gln Lys Arg Trp Met Val Tyr Leu Cys Leu Leu			
145	150	155	160
Val Val Thr Ser Leu Phe Leu Gly Cys Leu Gly Leu Thr Val Thr Leu			
165	170	175	
Ile Lys Leu Thr Gly Met Ala Gly Leu Ala Gly Leu Lys His Asp Ile			
180	185	190	
Ala Arg Val Arg Ala Asp Thr Asn Gln Ser Leu Val Glu Leu Trp Gly			
195	200	205	
Leu Leu Asp Cys Arg Arg Ile Thr Cys Pro Glu Gly Trp Leu Pro Phe			
210	215	220	
Glu Gly Lys Cys Tyr Tyr Phe Ser Pro Ser Thr Lys Ser Trp Asp Glu			
225	230	235	240
Ala Arg Met Phe Cys Gln Glu Asn Tyr Ser His Leu Val Ile Ile Asn			
245	250	255	

Ser Phe Ala Glu His Asn Phe Val Ala Lys Ala His Gly Ser Pro Arg
 260 265 270

Val Tyr Trp Leu Gly Leu Asn Asp Arg Ala Gln Glu Gly Asp Trp Arg
 275 280 285

Trp Leu Asp Gly Ser Pro Val Thr Leu Arg Gln Pro Glu Glu Pro Asn
 290 295 300

Asn Ile His Asp Glu Asp Cys Ala Thr Met Asn Lys Gly Gly Thr Trp
 305 310 315 320

Asn Asp Leu Ser Cys Tyr Lys Thr Thr Tyr Trp Ile Cys Glu Arg Lys
 325 330 335

Cys Ser Cys

<210> 99
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 99
atagcttgc tgagcacctt c 21

<210> 100
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 100
aagagacact cagatatgga c 21

<210> 101
<211> 1680
<212> DNA
<213> Homo sapiens

<400> 101
atggccaatg tcaccttggt gacaggattt cttcttatgg ggttttctaa tatccagaag 60

ctgcggattt tatatgttgt gctcttccta ctgatttacc tggcagccct aatgagtaac 120

cttctcatca ttactctcat tacccctggac gtaaagctcc aaacacccat gtacttcttc 180

ctgaagaact tatacctttt ggtatgtcttc ctgggtgtctg ttccaatccc aaaattcatt 240

gtcaacaacc taacccacaa caattccatt tccattctag gatgtgcctt ccagctactt 300
ttaatgactt ctttcgcaggc aggagagata ttatcctca ctgccatgtc ctatgaccgc 360
tatgttagcca tctgctgtcc cctgaactac gaggtaatca tgaatactgg agtctgtgtg 420
ttaatggcaa gtgtttcctg ggccatttggaa gggctcttg gtactgcgtt cacagctggc 480
acattttcca tgccttcctg tggctccagt gtgattccac agtccccctg tgatgttcct 540
tcattactaa ggatttcctg ttctgaaaca ctaatggtaa tttatgcagg tattggagtt 600
ggtgtcatgtt taagcatttc ttgtttcatc tgtattgtga tctcttacat ttatatcttc 660
tccactgtac tgaagatccc taccactaaa ggactgtgtg attgggttaa agggctcagt 720
gcggggactc tggggctgg tttcagttacc acaatggaca caggcaacaa aactctgccc 780
caggacttcc tcttactggg ctttcctgggt tctcaaactc ttcaagctctc tctctttatg 840
cttttctgg tgatgtacat cctcacagtt agtggtaatg tggctatctt gatgttgggt 900
agcacctccc atcagttgca taccccatg tacttcttc tgagcaacct ctcccttcctg 960
gagatttgggt ataccacagc agcagtgccc aaagcactgg ccacccctact ggggagaagt 1020
cagaccatat catttacaag ctgttttttgc cagatgtact ttgtttctc attaggctgc 1080
acagagtact tccttcctggc agccatggct tatgaccgct gtcttgcctt ctgtatccct 1140
ttacactacg gagccatcat gagtagcctg ctctcagcgac agctggccct gggctcctgg 1200
gtgtgtgggt tcgtggccat tgcagtgccc acagccctca tcagtgccct gtccttctgt 1260
ggcccccgtt ccatcaacca cttcttctgtt gacattgcac cctggattgc cctggcctgc 1320
accaacacac aggcagtaga gcttgtggcc tttgtgatttgc ctgttgggt tattcctgagt 1380
tcatgcctca tcacctttgtt ctcctatgtt tacatcatca gcaccatcctt caggatcccc 1440
tctgccagtg gccggagcaa agccttctcc acgtgctcctt cgcatctcac cgtgggtgctc 1500
atttggatgtt ggtccacagt ttcccttcac gtccgcaccc ctatcaaaga tgccttggat 1560
ctgatcaaag ctgtccacgtt cctgaacact gtgggtgactc cagttttaaa ccccttcattt 1620
tatacgtttc gtaataagga agtaagagag actctgttgc agaaaatggaa gggaaaataa 1680

<210> 102
<211> 559
<212> PRT
<213> Homo sapiens

<400> 102

Met Ala Asn Val Thr Leu Val Thr Gly Phe Leu Leu Met Gly Phe Ser
1 5 10 15

Asn Ile Gln Lys Leu Arg Ile Leu Tyr Gly Val Leu Phe Leu Leu Ile
20 25 30

Tyr Leu Ala Ala Leu Met Ser Asn Leu Leu Ile Ile Thr Leu Ile Thr
35 40 45

Leu Asp Val Lys Leu Gln Thr Pro Met Tyr Phe Phe Leu Lys Asn Leu
50 55 60

Ser Phe Leu Asp Val Phe Leu Val Ser Val Pro Ile Pro Lys Phe Ile
65 70 75 80

Val Asn Asn Leu Thr His Asn Asn Ser Ile Ser Ile Leu Gly Cys Ala
85 90 95

Phe Gln Leu Leu Leu Met Thr Ser Phe Ser Ala Gly Glu Ile Phe Ile
100 105 110

Leu Thr Ala Met Ser Tyr Asp Arg Tyr Val Ala Ile Cys Cys Pro Leu
115 120 125

Asn Tyr Glu Val Ile Met Asn Thr Gly Val Cys Val Leu Met Ala Ser
130 135 140

Val Ser Trp Ala Ile Gly Gly Leu Phe Gly Thr Ala Tyr Thr Ala Gly
145 150 155 160

Thr Phe Ser Met Pro Phe Cys Gly Ser Ser Val Ile Pro Gln Phe Phe
165 170 175

Cys Asp Val Pro Ser Leu Leu Arg Ile Ser Cys Ser Glu Thr Leu Met
180 185 190

Val Ile Tyr Ala Gly Ile Gly Val Gly Ala Cys Leu Ser Ile Ser Cys
195 200 205

Phe Ile Cys Ile Val Ile Ser Tyr Ile Tyr Ile Phe Ser Thr Val Leu
210 215 220

Lys Ile Pro Thr Thr Lys Gly Leu Cys Asp Trp Val Lys Gly Leu Ser
225 230 235 240

Ala Gly Thr Leu Phe Ser Gly Phe Ser Thr Thr Met Asp Thr Gly Asn
245 250 255

Lys Thr Leu Pro Gln Asp Phe Leu Leu Leu Gly Phe Pro Gly Ser Gln
260 265 270

Thr Leu Gln Leu Ser Leu Phe Met Leu Phe Leu Val Met Tyr Ile Leu

275

280

285

Thr Val Ser Gly Asn Val Ala Ile Leu Met Leu Val Ser Thr Ser His
 290 295 300

Gln Leu His Thr Pro Met Tyr Phe Phe Leu Ser Asn Leu Ser Phe Leu
 305 310 315 320

Glu Ile Trp Tyr Thr Thr Ala Ala Val Pro Lys Ala Leu Ala Ile Leu
 325 330 335

Leu Gly Arg Ser Gln Thr Ile Ser Phe Thr Ser Cys Leu Leu Gln Met
 340 345 350

Tyr Phe Val Phe Ser Leu Gly Cys Thr Glu Tyr Phe Leu Leu Ala Ala
 355 360 365

Met Ala Tyr Asp Arg Cys Leu Ala Ile Cys Tyr Pro Leu His Tyr Gly
 370 375 380

Ala Ile Met Ser Ser Leu Leu Ser Ala Gln Leu Ala Leu Gly Ser Trp
 385 390 395 400

Val Cys Gly Phe Val Ala Ile Ala Val Pro Thr Ala Leu Ile Ser Gly
 405 410 415

Leu Ser Phe Cys Gly Pro Arg Ala Ile Asn His Phe Phe Cys Asp Ile
 420 425 430

Ala Pro Trp Ile Ala Leu Ala Cys Thr Asn Thr Gln Ala Val Glu Leu
 435 440 445

Val Ala Phe Val Ile Ala Val Val Val Ile Leu Ser Ser Cys Leu Ile
 450 455 460

Thr Phe Val Ser Tyr Val Tyr Ile Ile Ser Thr Ile Leu Arg Ile Pro
 465 470 475 480

Ser Ala Ser Gly Arg Ser Lys Ala Phe Ser Thr Cys Ser Ser His Leu
 485 490 495

Thr Val Val Leu Ile Trp Tyr Gly Ser Thr Val Phe Leu His Val Arg
 500 505 510

Thr Ser Ile Lys Asp Ala Leu Asp Leu Ile Lys Ala Val His Val Leu
 515 520 525

Asn Thr Val Val Thr Pro Val Leu Asn Pro Phe Ile Tyr Thr Leu Arg
 530 535 540

Asn Lys Glu Val Arg Glu Thr Leu Leu Lys Lys Trp Lys Gly Lys
 545 550 555

<210> 103
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 103
catttcttgt ttcatctgtta ttgttg

25

<210> 104
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 104
tgttgcctgt gtccatttg

20

<210> 105
<211> 499
<212> DNA
<213> Homo sapiens

<400> 105
acaccacat ggtcgccgtg caggatattt cgctggaccc tagaaaagcc accacgaccc 60
gtgggccatg atgctacccc aatggctgtct gctgctgttc cttctcttct tctttcttctt 120
cctcctcacc aggggctcac tttctccaac aaaatacaac cttttggagc tcaaggagtc 180
ttgcattccgg aaccaggact gcgagactgg ctgctgccaa cgtgctccag acaattgcga 240
gtcgcaactgc gcggagaagg ggtccgaggg cagtctgtgt caaacgcagg tgttcttgg 300
ccaatataga gcgtgtccct gcctgcggaa cctgacttgt atatattcaa agaatgagaa 360
atggcttagc atcgccatag gccgttgtca gaaaatttggaa aggagaagt tggctaagaa 420
aatgttcttc tagtgctccc tccttcttgc tgcctccatc tcctccaccc gctctcctcc 480
ctaccaggag ctctgtgttt 499

<210> 106
<211> 121
<212> PRT
<213> Homo sapiens

<400> 106

Met Met Leu Pro Gln Trp Leu Leu Leu	Phe Leu Leu Phe Phe Phe
1 5	10 15

Leu Phe Leu Leu Thr Arg Gly Ser Leu Ser Pro Thr Lys Tyr Asn Leu
20 25 30

Leu Glu Leu Lys Glu Ser Cys Ile Arg Asn Gln Asp Cys Glu Thr Gly
35 40 45

Cys Cys Gln Arg Ala Pro Asp Asn Cys Glu Ser His Cys Ala Glu Lys
50 55 60

Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln Val Phe Phe Gly Gln Tyr
65 70 75 80

Arg Ala Cys Pro Cys Leu Arg Asn Leu Thr Cys Ile Tyr Ser Lys Asn
85 90 95

Glu Lys Trp Leu Ser Ile Ala Tyr Gly Arg Cys Gln Lys Ile Gly Arg
100 105 110

Gln Lys Leu Ala Lys Lys Met Phe Phe
115 120

<210> 107

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 107

tgtgtcaaac gcaggtg

17

<210> 108

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 108

ggaggaggca ctagaagaac

20

<210> 109

<211> 659

<212> DNA

<213> Homo sapiens

<400> 109
 agcaaattac accattaatg tcacccctggc gaatgaaaca agagaatagt atttatcaga 60
 gaaagtctgg tgagttgaag tccaaagaccc caggaaacaa ctagccctgc tgggctgccc 120
 ctccttcgga gtgggactat atgatcctca tcaggccaat ccacgtcaca gaatggtcta 180
 ggcattggat gagtgccctca atctgagcca atgaaggta ttgctgagac attttactgg 240
 ttgccaggct gcaggcatcc caggcttcct gctgccctca tgtctacaac ctgtcgctg 300
 gaacattcca ggagccactt ttatcacttg cagcaatctt cttcagttag ttccccagga 360
 cttgatttca tcttacaatc tgattccatg tgtctccat attttaagga ttctttatta 420
 tttctggctt acagagaaca aacattattt tttgcttcc tggctgttc tagatttca 480
 aaaataactc tgtcacttct gttatatggt atcattgctt gtaattatct atttacttat 540
 ctgtctctgg actggactct ttacagacag gcaataacta attatctgtc tgtctggcat 600
 ttggtagtca ctcataaaatc gtttattgca ttactaacta aataaaaaag ttgacccctg 659

<210> 110

<211> 144

<212> PRT

<213> Homo sapiens

<400> 110

Met	Lys	Val	Ile	Ala	Glu	Thr	Phe	Tyr	Trp	Leu	Pro	Gly	Cys	Arg	His
1					5				10					15	

Pro	Arg	Leu	Pro	Ala	Ala	Leu	Met	Ser	Thr	Thr	Cys	Arg	Leu	Glu	His
						20			25				30		

Ser	Arg	Ser	His	Phe	Tyr	His	Leu	Gln	Gln	Ser	Ser	Val	Ser	Ser
						35		40				45		

Pro	Gly	Leu	Asp	Phe	Ile	Leu	Gln	Ser	Asp	Ser	Met	Cys	Leu	Pro	Tyr
					50			55			60				

Phe	Lys	Asp	Ser	Leu	Leu	Phe	Leu	Ala	Tyr	Arg	Glu	Gln	Thr	Leu	Phe
					65				70		75		80		

Phe	Ala	Phe	Leu	Val	Cys	Ser	Arg	Phe	Ser	Lys	Ile	Thr	Leu	Ser	Leu
							85		90				95		

Leu	Leu	Tyr	Gly	Ile	Ile	Ala	Cys	Asn	Tyr	Leu	Phe	Thr	Tyr	Leu	Ser
					100				105				110		

Leu	Asp	Trp	Thr	Leu	Tyr	Arg	Gln	Ala	Ile	Thr	Asn	Tyr	Leu	Ser	Val
						115			120			125			

Trp His Leu Val Val Thr His Lys Ser Phe Ile Ala Leu Leu Thr Lys
 130 135 140

<210> 111
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 111
atcctggcga atgaaaacaag agaat

25

```
<210> 112
<211> 26
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 112
gcaaccagta aaatgtctca gcaatg

26

```
<210> 113  
<211> 831  
<212> DNA  
<213> Homo sapiens
```

<400> 113
atgcgaagaa agaacctcac agaggttaaca gagtttggatt tcctgggatt ctccagattc 60
cacaaacatc acatcactct ctttgggtt tttctcatcc tgtacacatt aactgtggct 120
ggcaatgcca tcatcatgac catcatctgc attgaccgtc acctccacac tccccatgtac 180
ttcttcctga gcatgctggc tagctcaaag acagtgtaca cactgttcat cattccacag 240
atgctctcca gttcgtaac ccagacccag ccaatctccc tagcagggtt taccacccaa 300
acgttcttct ttgttacctt ggccatcaac aattgcttct tgctcacagt gatgggctat 360
gaccactata tggccatctg caatcccttg agatacaggg tcattacgag caagaagggtg 420
tgtgtccagc tgggtgtgg agccttagc attggcctgg ccatggcagc tgtccaggtt 480
acatccatat ttaccttacc tttttgtcac acgggtggttt gtcatttctt ctgtgacatc 540
ctccctgtca taaaactctc ctgtattaat accactatca atgagataat caatttgtt 600
gtcaggttat ttgtcatcct ggtccccatg ggtctggtct tcacatccata tgtcctcatc 660
atctccactg tcctcaagat tgcctcagct gaggggttggaa agaagacctt tgccacctgt 720
gccttccacc tcactgtggt cattgtccat tatggctgtt cttccattgc ctacatcatc 780
cccaagtcag aaaactctat agaacaagac ctccctctc cagtgaccta a 831

<210> 114
<211> 276
<212> PRT
<213> Homo sapiens

<400> 114

Met Arg Arg Lys Asn Leu Thr Glu Val Thr Glu Phe Val Phe Leu Gly
1 5 10 15

Phe Ser Arg Phe His Lys His His Ile Thr Leu Phe Val Val Phe Leu
20 25 30

Ile Leu Tyr Thr Leu Thr Val Ala Gly Asn Ala Ile Ile Met Thr Ile
35 40 45

Ile Cys Ile Asp Arg His Leu His Thr Pro Met Tyr Phe Phe Leu Ser
50 55 60

Met Leu Ala Ser Ser Lys Thr Val Tyr Thr Leu Phe Ile Ile Pro Gln
65 70 75 80

Met Leu Ser Ser Phe Val Thr Gln Thr Gln Pro Ile Ser Leu Ala Gly
85 90 95

Cys Thr Thr Gln Thr Phe Phe Val Thr Leu Ala Ile Asn Asn Cys
100 105 110

Phe Leu Leu Thr Val Met Gly Tyr Asp His Tyr Met Ala Ile Cys Asn
115 120 125

Pro Leu Arg Tyr Arg Val Ile Thr Ser Lys Lys Val Cys Val Gln Leu
130 135 140

Val Cys Gly Ala Phe Ser Ile Gly Leu Ala Met Ala Ala Val Gln Val
145 150 155 160

Thr Ser Ile Phe Thr Leu Pro Phe Cys His Thr Val Val Gly His Phe
165 170 175

Phe Cys Asp Ile Leu Pro Val Met Lys Leu Ser Cys Ile Asn Thr Thr
180 185 190

Ile Asn Glu Ile Ile Asn Phe Val Val Arg Leu Phe Val Ile Leu Val
195 200 205

Pro Met Gly Leu Val Phe Ile Ser Tyr Val Leu Ile Ile Ser Thr Val
210 215 220

Leu Lys Ile Ala Ser Ala Glu Gly Trp Lys Lys Thr Phe Ala Thr Cys
225 230 235 240

Ala Phe His Leu Thr Val Val Ile Val His Tyr Gly Cys Ala Ser Ile
245 250 255

Ala Tyr Leu Met Pro Lys Ser Glu Asn Ser Ile Glu Gln Asp Leu Leu
260 265 270

Leu Ser Val Thr
275

```
<210> 115
<211> 18
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 115
cttcgttaacc cagacccca 18

```
<210> 116
<211> 18
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 116
cttgctcgta atgaccct 18

```
<210> 117  
<211> 1233  
<212> DNA  
<213> Homo sapiens
```

```
<400> 117
gaagcagcca ccaccatctt gggagctctg ggagcaagga cccctgtAAC acattcatcc 60
ttGAATGACA aaATGTCTGG tccAGCATGG tattATAACA tAAACATGAA gagGAAGAGA 120
catgAGAGAT acgcACAGTG aAGAGACCAA gctGGGACAC agtACGAAGG tggcatCTGC 180
acGCCAAGCA gagGGACCTC agaAGAAACT gagCCAGCCA gcACCCCCACC ttCGTCTTTG 240
acCTCCAGCC tccAGAACTA aggATAGAGC tctTCATCTC tgTTAGAAAC gaccATCAA 300
aAGATAACATC aATTcATTAG aATCAAAAGG acATGAGTta tcAGAATTCT ttCTCCTGAA 360
agAAAGTGGa gatCAAAGGT aaaACTTCTA gagaATGAGA tgaAGGCAGA tgAAAGAAGT 420
taACAAGACA ttACATGACT tgATAATATT gcatgtatGC aaaaACCTTA tgAAATCAAC 480
```

tgtgttctag cgaccactg tttttctttt tgtcataata ctttttattc tcttgcaatg	540
atattgattc atctgcacct gacatcaact ctgcatttgt agaagggtat aagaatacag	600
ggaaatggaa taagtggctt tgccgtcaat cccgcagcag cagaaatgtc catttcctct	660
ctcctgaata atactacatt ctccactggg ttccacaagt ttcgaggtaa aagcatgaac	720
atacacgaag tcaccatcac taccctcacc accaccacca ttatttccac catattcacc	780
cttttaatac gcaaacttcc tccaaggctt cctgaagtca cccagaaatg catttcccc	840
agagttagtt gtgctaacat tgtatcctat ggaactctgg gaagctaccc agatcctcaa	900
ctcttggagt cttgctgact gcatgttcca ggctccacat ttaagctcca gtgactgctg	960
atgactgcac gacctaacac atgcctcaa tccttcttg gcctcagtt ctccaccagg	1020
gaattctgaa tgctggaatt ggcaatattt caggttcttt ccaactggaa atacccatgc	1080
taataatttt agtaagtcaa tagccataga aacctactga caaaatgagt attttaacag	1140
agacagttgt actttcttaa tttttagcag aaggaaatgc atatgtataa tatctatgtt	1200
gccttctatg tgtaaaaata aatacacaga cac	1233

<210> 118

<211> 90

<212> PRT

<213> Homo sapiens

<400> 118

Met Ser Ile Ser Ser Leu Leu Asn Asn Thr Thr Phe Ser Thr Gly Phe			
1	5	10	15

His Lys Phe Arg Gly Lys Ser Met Asn Ile His Glu Val Thr Ile Thr			
20	25	30	

Thr Leu Thr Thr Thr Ile Ile Ser Thr Ile Phe Thr Leu Leu Ile			
35	40	45	

Arg Lys Leu Pro Pro Arg Leu Pro Glu Val Thr Gln Lys Cys Ile Ser			
50	55	60	

Pro Arg Val Ser Cys Ala Asn Ile Val Ser Tyr Gly Thr Leu Gly Ser			
65	70	75	80

Tyr Pro Asp Pro Gln Leu Leu Glu Ser Cys		
85	90	

<210> 119

<211> 19

<212> DNA

<213> Artificial Sequence

<220>		
<223> Oligonucleotide		
<400> 119		
caccccacct tcgtctttg		19
<210> 120		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 120		
gttttacctt tgatctccac tttc		24
<210> 121		
<211> 4209		
<212> DNA		
<213> Homo sapiens		
<400> 121		
agttgcttga aagcaacgtg cctattcaca tggagaatct tcccttcct ttaaaattac		60
tttagtgccctc atcgctaaac gccccagct ccacaccatg ggtgttggat atttcctca		120
ccttgggttt tgccctgggg ttcttcttcc tattactccc ctacttatct tacttccatt		180
gtgatgaccc accctcacca tcgcctggga agagaaagtg tccagtaggg cggaggcgga		240
ggcccagagg caggatgaaa aaccacagtc tgagagctgg tagagagtgc ccgagaggcc		300
tggaggagac ttcggacctt ctttcacaac tgcagagcct cctggggcca caccttgaca		360
aaggtgactt tggtcagctc tccggtccag acccccccagg tgaggtgggc gaaagagcac		420
ctgatggagc ctcccagtcc tctcatgagc ctatggaaga tgctgctccc attctctccc		480
cgttagcttc cccggatcct caagccaagc atcctcagga tctggcctcc accccatcac		540
caggccaaat gaccacctca gtctccccc taagtgcctc ccagccacca gaaccttccc		600
ttcccctaga acacccctca cccgagccac ctgcactttt ccctcaccctt ccacacaccc		660
ctgatcctct ggctgctct ccgcctccct caaaaggctt cactgctcct cccctgcggg		720
actccacact gataactcca tctcactgtg actcagtgcc acttccactg ggcaccgtcc		780
ctcaaagctt gtctccacat gaggatttg tggcttctgt cccagccatc tcaggccttg		840
gtggctcaaa cagtcatgtt tctgcctcct cccggtgcca ggagactgcc agaacctcg		900
gcgcctttaa ctcatcagtc cagcaagatc ctcttccccg ccacccacca gagacctgtc		960
agatggaagc tggtagcctg ttttgctca gctctgatgg ccagaatgtc gtggggatac		1020
aagtcacaga aacagccaag gtcaacattt gggaaagaaaa agaaaatgtt ggatcattta		1080
caaatcaaat gacccagaa aagcacttaa attcttggg gaatttggct aaatcattgg		1140

atgctgagca ggacaccaca aaccaaaaac cttctgaa catggagag aactcgaaac	1200
agctgccgg acctcagaag tgctcagatc ctggcttt gcaggaaagt ttttggaaaga	1260
attatagcca gctttctgg ggcctccct ctctgcacag cgagtcctg gtggctaacg	1320
cctggtaac tgacaggtct tatactttac agtctcctcc ttcttggttc aatgaaatgt	1380
ccaatgtctg cccaattcaa agggagacta caatgtcccc actgctttc caggcccagc	1440
ccctgtccca cgcacaaacc tttatccat ccacacccca attcctgccc acacctatgg	1500
ctcaggccga ggctcaggcc catttcagt ctctttccc agtcttatct cctgctttc	1560
catccctgat taagaacact ggagtagctt gccctgcattc gcagaataaa gtgcaagctc	1620
tctccctacc tgaaaacttag caccctgaat ggcctttgtt gagaaaccaa ctagaaggta	1680
ggttggcttt accctctagg gtccaaaaat ctcaggacgt cttagtgatc tccactccta	1740
accttccca gaaaaatttg acatccattc tgcctgagaa cttagtgcgtc agtctgaac	1800
tccggagaca actggagcaa cacataaaaa agtggatcat ccaacactgg ggcaacctgg	1860
gaaggatcca agagtctctg gatctgatgc agttcggga cgaatcacca gggacaagtc	1920
aggccaaggg caaacccagt ccctggcagt cctccacgatc cacaggtgaa agcagcaagg	1980
aggcacagaa ggtgaagttc cagctagaga gggacctgtg cccacatctg gggcaaattc	2040
tgggtgagac cccacaaaaat ctatccaggg acatgaaaag ctcccacgg aaggttctgg	2100
gggtgacttc tgaggagtcg gaaaggaact tgaggaagcc ttgaggaggt gactcggaa	2160
gtgattttt aagatgcaca gagaggactc atatagaaaa catcctgaaa gcccacatgg	2220
gcaggaactt gggccagacc aacgagggt tgatccccgt gcgtgtgcgt cgatcctggc	2280
ttgctgtcaa ccaggctttt cccgtgtcca acacccatgt gaaaaccagc aatctagcag	2340
ccccggaaag tggaaagcc tgtgtgaaca cagcccaggt gcttccttc ctcgagccgt	2400
gtactcagca ggggttggga gcccattttg tgaggtttg ggccaaacac aggtgggtc	2460
taccctcag gtcctcaag cccattcagt gctttaaact ggaaaagggt tcattttgt	2520
cccttacgca gttgttgtt cccttcctcag ccacctgtga atctgggtt ggctcagaag	2580
ttgaggtgga catgttccctt agaaagccac caatggcaag tctgagaaag caggtgtga	2640
ccaaagcatc tgatcacatg ccagagatc ttctggcctc ctcacctgca tggaaaggcgt	2700
tccagagggc accgctgagga atcccatttt ggaatgatca tggcccttg aagccttcctc	2760
cagctggaca ggagggcagg tggccatcta agcccctcac gtacagcctc acaggcagca	2820
cccagcagag caggagctta ggagccaat cttcaaaggc tggagagaca agggaggcag	2880
tgccacaatg cagagtcccc ttggaaacct gtatgctggc aaacctccaa gccacaagtg	2940
aggatgtgca tggtttcgag gtcctcaggaa ccagcaaaag ctctctacac cctagagtgt	3000

ctgtctccca agatccaaga aagctgtgtc ttatggagga ggttggtagt gaatttgagc	3060
ctggaatggc cacaaagtca gagaccgcagc ctcaagtttgc tgccgctgtt gtgctccttc	3120
cagatggca agcatctgtt gtgccccacg cttcagagaa tttggttct caagtcccc	3180
agggccatct ccagagcatg cctactggga acatgcgggc ttcccaggag ctacatgacc	3240
tcatggcagc cagaaggagc aaactgggc aagaggagcc cagaaaacca aactgtcaag	3300
gctcatgcaa gagccaaagg ccaatgttcc cccctattca caagagttag aagtcttagga	3360
agcccaacctt agaaaaacat gaagaaaggc ttgaaggatt gaggactcct caacttaccc	3420
cagtcaggaa aacagaagac acccatcagg atgaaggcgt ccagctactg ccatcaaaga	3480
aacagcctcc ttcaagtcacttggag aaaacatcaa gcaattttt cagttggattt	3540
tttcaagaa aaaaagcaag ccagcaccag tcactgctga gagccaaaaa acagtaaaaa	3600
acagatcatg tgtgtacagc agcagtgctg aagctcaggg tctcatgacg gcagttggac	3660
aaatgctgga caagaaaatg tcactttgcc atgcgcacca tgcctcgaag gttaatcagc	3720
acaaacagaa gtttcaagcc ccagtctgtg ggttccctg caaccacagg cacctttct	3780
actcagaaca tggcagaata ctgagctatg cagccagcag tcaacaagcc actctcaaga	3840
gccagggttg tcccaacaga gacaggcaaa tcagaaatca acagcccttg aaaagtgtgc	3900
ggtgcaacaa tgagcaatgg ggcctgcgac atccccaaat cttgcacccc aagaaagctg	3960
tatccccagt cagttccctt cagcactggc cgaagacatc cggtgcctct agccaccatc	4020
accactgtcc aaggcactgt cttctttggg aaggtatctg atttggtcag tcacaaattc	4080
tttttttagcc ttccctggag aaaaacaagt ccccaagaaa aaatttcaactc tatgttagaga	4140
aaaaatatatt tctctcatgt tagtaaatgc agaacattna atattccaca atatatatgg	4200
ttttttattt	4209

<210> 122
 <211> 1343
 <212> PRT
 <213> Homo sapiens

<400> 122

Met	Glu	Asn	Leu	Pro	Phe	Pro	Leu	Lys	Leu	Leu	Ser	Ala	Ser	Ser	Leu
1															

1	5	10	15
---	---	----	----

Asn	Ala	Pro	Ser	Ser	Thr	Pro	Trp	Val	Leu	Asp	Ile	Phe	Leu	Thr	Leu
20															

25	30
----	----

Val	Phe	Ala	Leu	Gly	Phe	Phe	Leu	Leu	Leu	Pro	Tyr	Leu	Ser	Tyr
35														

40	45
----	----

Phe His Cys Asp Asp Pro Pro Ser Pro Ser Pro Gly Lys Arg Lys Cys
50 55 60

Pro Val Gly Arg Arg Arg Pro Arg Gly Arg Met Lys Asn His Ser
65 70 75 80

Leu Arg Ala Gly Arg Glu Cys Pro Arg Gly Leu Glu Glu Thr Ser Asp
85 90 95

Leu Leu Ser Gln Leu Gln Ser Leu Leu Gly Pro His Leu Asp Lys Gly
100 105 110

Asp Phe Gly Gln Leu Ser Gly Pro Asp Pro Pro Gly Glu Val Gly Glu
115 120 125

Arg Ala Pro Asp Gly Ala Ser Gln Ser Ser His Glu Pro Met Glu Asp
130 135 140

Ala Ala Pro Ile Leu Ser Pro Leu Ala Ser Pro Asp Pro Gln Ala Lys
145 150 155 160

His Pro Gln Asp Leu Ala Ser Thr Pro Ser Pro Gly Pro Met Thr Thr
165 170 175

Ser Val Ser Ser Leu Ser Ala Ser Gln Pro Pro Glu Pro Ser Leu Pro
180 185 190

Leu Glu His Pro Ser Pro Glu Pro Pro Ala Leu Phe Pro His Pro Pro
195 200 205

His Thr Pro Asp Pro Leu Ala Cys Ser Pro Pro Pro Pro Lys Gly Phe
210 215 220

Thr Ala Pro Pro Leu Arg Asp Ser Thr Leu Ile Thr Pro Ser His Cys
225 230 235 240

Asp Ser Val Ala Leu Pro Leu Gly Thr Val Pro Gln Ser Leu Ser Pro
245 250 255

His Glu Asp Leu Val Ala Ser Val Pro Ala Ile Ser Gly Leu Gly Gly
260 265 270

Ser Asn Ser His Val Ser Ala Ser Ser Arg Trp Gln Glu Thr Ala Arg
275 280 285

Thr Ser Cys Ala Phe Asn Ser Ser Val Gln Gln Asp Pro Leu Ser Arg
290 295 300

His Pro Pro Glu Thr Cys Gln Met Glu Ala Gly Ser Leu Phe Leu Leu
305 310 315 320

Ser Ser Asp Gly Gln Asn Val Val Gly Ile Gln Val Thr Glu Thr Ala
325 330 335

Lys Val Asn Ile Trp Glu Glu Lys Glu Asn Val Gly Ser Phe Thr Asn
340 345 350

Gln Met Thr Pro Glu Lys His Leu Asn Ser Leu Gly Asn Leu Ala Lys
355 360 365

Ser Leu Asp Ala Glu Gln Asp Thr Thr Asn Pro Lys Pro Phe Trp Asn
370 375 380

Met Gly Glu Asn Ser Lys Gln Leu Pro Gly Pro Gln Lys Cys Ser Asp
385 390 395 400

Pro Arg Leu Leu Gln Glu Ser Phe Trp Lys Asn Tyr Ser Gln Leu Phe
405 410 415

Trp Gly Leu Pro Ser Leu His Ser Glu Ser Leu Val Ala Asn Ala Trp
420 425 430

Val Thr Asp Arg Ser Tyr Thr Leu Gln Ser Pro Pro Phe Leu Phe Asn
435 440 445

Glu Met Ser Asn Val Cys Pro Ile Gln Arg Glu Thr Thr Met Ser Pro
450 455 460

Leu Leu Phe Gln Ala Gln Pro Leu Ser His Arg Gln Pro Phe Ile Ser
465 470 475 480

Ser Thr Pro Gln Phe Leu Pro Thr Pro Met Ala Gln Ala Glu Ala Gln
485 490 495

Ala His Leu Gln Ser Ser Phe Pro Val Leu Ser Pro Ala Phe Pro Ser
500 505 510

Leu Ile Lys Asn Thr Gly Val Ala Cys Pro Ala Ser Gln Asn Lys Val
515 520 525

Gln Ala Leu Ser Leu Pro Glu Thr Gln His Pro Glu Trp Pro Leu Leu
530 535 540

Arg Lys Gln Leu Glu Gly Arg Leu Ala Leu Pro Ser Arg Val Gln Lys

545	550	555	560
Ser Gln Asp Val Phe Ser Val Ser Thr Pro Asn Leu Pro Gln Glu Ser			
565		570	575
Leu Thr Ser Ile Leu Pro Glu Asn Phe Pro Val Ser Pro Glu Leu Arg			
580	585		590
Arg Gln Leu Glu Gln His Ile Lys Lys Trp Ile Ile Gln His Trp Gly			
595	600		605
Asn Leu Gly Arg Ile Gln Glu Ser Leu Asp Leu Met Gln Leu Arg Asp			
610	615		620
Glu Ser Pro Gly Thr Ser Gln Ala Lys Gly Lys Pro Ser Pro Trp Gln			
625	630	635	640
Ser Ser Thr Ser Thr Gly Glu Ser Ser Lys Glu Ala Gln Lys Val Lys			
645		650	655
Phe Gln Leu Glu Arg Asp Leu Cys Pro His Leu Gly Gln Ile Leu Gly			
660	665		670
Glu Thr Pro Gln Asn Leu Ser Arg Asp Met Lys Ser Phe Pro Arg Lys			
675	680		685
Val Leu Gly Val Thr Ser Glu Glu Ser Glu Arg Asn Leu Arg Lys Pro			
690	695		700
Leu Arg Ser Asp Ser Gly Ser Asp Leu Leu Arg Cys Thr Glu Arg Thr			
705	710	715	720
His Ile Glu Asn Ile Leu Lys Ala His Met Gly Arg Asn Leu Gly Gln			
725		730	735
Thr Asn Glu Gly Leu Ile Pro Val Arg Val Arg Arg Ser Trp Leu Ala			
740	745		750
Val Asn Gln Ala Leu Pro Val Ser Asn Thr His Val Lys Thr Ser Asn			
755	760		765
Leu Ala Ala Pro Lys Ser Gly Lys Ala Cys Val Asn Thr Ala Gln Val			
770	775		780
Leu Ser Phe Leu Glu Pro Cys Thr Gln Gln Gly Leu Gly Ala His Ile			
785	790	795	800

Val Arg Phe Trp Ala Lys His Arg Trp Gly Leu Pro Leu Arg Val Leu
805 810 815

Lys Pro Ile Gln Cys Phe Lys Leu Glu Lys Val Ser Ser Leu Ser Leu
820 825 830

Thr Gln Leu Ala Gly Pro Ser Ser Ala Thr Cys Glu Ser Gly Ala Gly
835 840 845

Ser Glu Val Glu Val Asp Met Phe Leu Arg Lys Pro Pro Met Ala Ser
850 855 860

Leu Arg Lys Gln Val Leu Thr Lys Ala Ser Asp His Met Pro Glu Ser
865 870 875 880

Leu Leu Ala Ser Ser Pro Ala Trp Lys Gln Phe Gln Arg Ala Pro Arg
885 890 895

Gly Ile Pro Ser Trp Asn Asp His Gly Pro Leu Lys Pro Pro Pro Ala
900 905 910

Gly Gln Glu Gly Arg Trp Pro Ser Lys Pro Leu Thr Tyr Ser Leu Thr
915 920 925

Gly Ser Thr Gln Gln Ser Arg Ser Leu Gly Ala Gln Ser Ser Lys Ala
930 935 940

Gly Glu Thr Arg Glu Ala Val Pro Gln Cys Arg Val Pro Leu Glu Thr
945 950 955 960

Cys Met Leu Ala Asn Leu Gln Ala Thr Ser Glu Asp Val His Gly Phe
965 970 975

Glu Ala Pro Gly Thr Ser Lys Ser Leu His Pro Arg Val Ser Val
980 985 990

Ser Gln Asp Pro Arg Lys Leu Cys Leu Met Glu Glu Val Val Ser Glu
995 1000 1005

Phe Glu Pro Gly Met Ala Thr Lys Ser Glu Thr Gln Pro Gln Val
1010 1015 1020

Cys Ala Ala Val Val Leu Leu Pro Asp Gly Gln Ala Ser Val Val
1025 1030 1035

Pro His Ala Ser Glu Asn Leu Val Ser Gln Val Pro Gln Gly His
1040 1045 1050

Leu Gln Ser Met Pro Thr Gly Asn Met Arg Ala Ser Gln Glu Leu
1055 1060 1065

His Asp Leu Met Ala Ala Arg Arg Ser Lys Leu Val Gln Glu Glu
1070 1075 1080

Pro Arg Asn Pro Asn Cys Gln Gly Ser Cys Lys Ser Gln Arg Pro
1085 1090 1095

Met Phe Pro Pro Ile His Lys Ser Glu Lys Ser Arg Lys Pro Asn
1100 1105 1110

Leu Glu Lys His Glu Glu Arg Leu Glu Gly Leu Arg Thr Pro Gln
1115 1120 1125

Leu Thr Pro Val Arg Lys Thr Glu Asp Thr His Gln Asp Glu Gly
1130 1135 1140

Val Gln Leu Leu Pro Ser Lys Lys Gln Pro Pro Ser Val Ser His
1145 1150 1155

Phe Gly Glu Asn Ile Lys Gln Phe Phe Gln Trp Ile Phe Ser Lys
1160 1165 1170

Lys Lys Ser Lys Pro Ala Pro Val Thr Ala Glu Ser Gln Lys Thr
1175 1180 1185

Val Lys Asn Arg Ser Cys Val Tyr Ser Ser Ser Ala Glu Ala Gln
1190 1195 1200

Gly Leu Met Thr Ala Val Gly Gln Met Leu Asp Lys Lys Met Ser
1205 1210 1215

Leu Cys His Ala His His Ala Ser Lys Val Asn Gln His Lys Gln
1220 1225 1230

Lys Phe Gln Ala Pro Val Cys Gly Phe Pro Cys Asn His Arg His
1235 1240 1245

Leu Phe Tyr Ser Glu His Gly Arg Ile Leu Ser Tyr Ala Ala Ser
1250 1255 1260

Ser Gln Gln Ala Thr Leu Lys Ser Gln Gly Cys Pro Asn Arg Asp
1265 1270 1275

Arg Gln Ile Arg Asn Gln Gln Pro Leu Lys Ser Val Arg Cys Asn

1280

1285

1290

Asn Glu Gln Trp Gly Leu Arg His Pro Gln Ile Leu His Pro Lys
 1295 1300 1305

Lys Ala Val Ser Pro Val Ser Pro Pro Gln His Trp Pro Lys Thr
 1310 1315 1320

Ser Gly Ala Ser Ser His His His His Cys Pro Arg His Cys Leu
 1325 1330 1335

Leu Trp Glu Gly Ile
 1340

<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 123
cttattactcc cctacttatac ttac 24

<210> 124
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 124
tttcggccac ctcacctg 18

<210> 125
<211> 3136
<212> DNA
<213> Homo sapiens

<400> 125						
gtcgccgccc	ctaccgccc	cgccgccc	gggcccggc	ctggatgcc	gagcgcccgc	60
gccgcccc	cctctgtc	ccgcgc	ctcgaa	ggcgcacagg	attcaattac	120
tggacttgc	aactctgcca	gtgtacgtc	catttctt	ccactatgag	aggaccgatt	180
gtattgcaca	tttgtctggc	tttctgttagc	cttctgttt	tcagcggtc	cacacaatgt	240
ctggccttcc	ccaaaataga	aaggaggagg	gagatagcac	atgttcatgc	ggaaaaaggg	300
cagtccgata	agatgaacac	cgtgaccta	gaaaatagct	ctgttacctc	aaagcagact	360
cccccaactgg	ttgtctctga	agatccaatg	atgtatgtcag	cagtaccatc	ggcaacatca	420

ttaaataaaag cattctcgat taacaaagaa acccagcctg gacaagctgg gctcatgcaa	480
acagaacgcc ctggtgttcc cacacctact gagtcaggtg tcccctcagc tgaagaagta	540
tttggttcca gccagccaga gagaatatct cctgaaagtg gacttgccaa ggccatgtta	600
accattgcta tcactgcgac tccttctctg actgttcatg aaaaggagga actccttaca	660
agcactaact ttcagccccat tgtagaagag atcacagaaa ccacaaaagg ttttctgaag	720
tatatggata atcaatcatt tgcaactgaa agtcaggaag gagttggttt gggacattca	780
ccttcatcct atgtgaatac taaggaaatg ctaaccacca atccaaagac tgagaaattt	840
gaagcagaca cagaccacag gacaacttct tttcctggtg ctgagtccac agcaggcagt	900
gagcctggaa gcctcaccac tgataaggag aagccttcgc agatgacagc tgataacacc	960
caggctgctg ccaccaagca accactcgaa acttccgagt acaccctgag tggtaggcca	1020
gaaactgata gtctgctggg agccccagaa gtcacagtga gtgtcagcac agctgttcca	1080
gctgcctctg ccttaagtga tgagtggat gacaccaaatt tagagagtgt aagccggata	1140
aggaccccca agcttggaga caatgaagag actcaggtga gaacggagat gtctcagaca	1200
gcacaagtaa gccatgaggg tatggaagga ggccagcctt ggacagaggc tgcacaggtg	1260
gctctggggc tgcctgaagg gaaacacac acgggcacag ccctgctaat agcgcatggg	1320
aatgagagat cacctgctt cactgatcaa agttcctta ccccccacaag tctgatggaa	1380
gacatgaaag tttccattgt gaacctgctc caaagtacgg gagacttcac ggaatccacc	1440
aaggaaaaacg atgcctgtt tttcttagaa accactgttt ctgtctctgt atatgagtct	1500
gaggcagacc aactgttggg aaatacaatg aaagacatca tcactcaaga gatgacaaca	1560
gctgttcaag agccagatgc cacttttatcc atggtgacac aagagcaggt tgctaccctc	1620
gagcttatca gagacagtgg caagactgag gaagaaaagg aggacccctc tcctgtgtct	1680
gacgttcctg gtgttactca gctgtcaaga agatgggagc ctctggccac tacaatttca	1740
actacagtgc tccctttgtc ttttgaagtt actcccactg tggagaaca aatggacaca	1800
gtcacagggc caaatgagga gttcacacca gttctggat ctccagtgac acctcctgga	1860
ataatggtgg gggAACCCAG cattttccct gcacttcctg ctttggagggc atcctctgag	1920
agaagaactg ttgttccatc tattactcggt gttaatacag ctgcctcata tggcctggac	1980
caacttgaat ctgaagaggg acaagaagat gaggatgaag agatgaaga agatgaagat	2040
gaagaagagg aagatgagga agaagatgag gaagataaaat atgcagactc gctggatgag	2100
ggcttggatg gtgacactga gctgccaggt tttaccctcc ctgttacac atcccaggaa	2160
ccaggcttag aggagggaaa catggacctg ttggagggag ctacctacca ggtgccagat	2220
gccctcgagt gggAACACGCA gaatcaaggc ctggatgagaa gctggatgga aaaattaaaa	2280

gacaaggctg gttacatgtc tggatgctg gtgcctgtag gggggat agctggagcc	2340
ttgttcatct tggagccct ctacagcatt aaggatgtga atcgccgaag gagaaatggc	2400
ttcaaaaaggc ataaaaagaaa gcagagagaa ttcaacagca tgcaagatcg agtaatgctc	2460
tttagccgaca gctctgaaga tgaatttga attggactgg gtttaattt ggatattcaa	2520
cgatgctact attctaattt ttatTTGGA gcagaaaaaaa aaaaagaaca acctgccaca	2580
ttgctgctat caggccgtta gtcctagtgt ctgctgggtg ctgggtagta gatTTTCTT	2640
gtactgagca gaaatggcat gttgtatact aaacgtatca tgcaagtattt ggTTTATTc	2700
tgttagtgaat ttccacaac cgtggctac aactcataaa tatgcaacat atatgtttt	2760
cagtaggagt tgctacatta ggcagagtaa atatTTGTA gtttccaca gtgtCTTTc	2820
cttggTTGA attacctgca ttgagaataa tgattgtgc caccaaggca tgcttgactc	2880
ttagatataa atcttaacaa agaataactt ctcaagatata actctaccta cttgaaacca	2940
cagggttgtg gccatggta catactgcat ttgcatcaaa ctagcagtaa ctcagaatga	3000
aatcatTTTC attaagaAGC tcttcagca tattaggatt atatgttagat ttgtatgtat	3060
tttgcattat gtacttcagt ctcctagtt tattattCTC accttccgtt ttattCTTGG	3120
cgagaaaaaa aatgca	3136

<210> 126

<211> 774

<212> PRT

<213> Homo sapiens

<400> 126

Met Arg Gly Pro Ile Val Leu His Ile Cys Leu Ala Phe Cys Ser Leu			
1	5	10	15

Leu Leu Phe Ser Val Ala Thr Gln Cys Leu Ala Phe Pro Lys Ile Glu			
20	25	30	

Arg Arg Arg Glu Ile Ala His Val His Ala Glu Lys Gly Gln Ser Asp			
35	40	45	

Lys Met Asn Thr Asp Asp Leu Glu Asn Ser Ser Val Thr Ser Lys Gln			
50	55	60	

Thr Pro Gln Leu Val Val Ser Glu Asp Pro Met Met Met Ser Ala Val			
65	70	75	80

Pro Ser Ala Thr Ser Leu Asn Lys Ala Phe Ser Ile Asn Lys Glu Thr			
85	90	95	

Gln Pro Gly Gln Ala Gly Leu Met Gln Thr Glu Arg Pro Gly Val Ser
100 105 110

Thr Pro Thr Glu Ser Gly Val Pro Ser Ala Glu Glu Val Phe Gly Ser
115 120 125

Ser Gln Pro Glu Arg Ile Ser Pro Glu Ser Gly Leu Ala Lys Ala Met
130 135 140

Leu Thr Ile Ala Ile Thr Ala Thr Pro Ser Leu Thr Val Asp Glu Lys
145 150 155 160

Glu Glu Leu Leu Thr Ser Thr Asn Phe Gln Pro Ile Val Glu Glu Ile
165 170 175

Thr Glu Thr Thr Lys Gly Phe Leu Lys Tyr Met Asp Asn Gln Ser Phe
180 185 190

Ala Thr Glu Ser Gln Glu Gly Val Gly Leu Gly His Ser Pro Ser Ser
195 200 205

Tyr Val Asn Thr Lys Glu Met Leu Thr Thr Asn Pro Lys Thr Glu Lys
210 215 220

Phe Glu Ala Asp Thr Asp His Arg Thr Thr Ser Phe Pro Gly Ala Glu
225 230 235 240

Ser Thr Ala Gly Ser Glu Pro Gly Ser Leu Thr Pro Asp Lys Glu Lys
245 250 255

Pro Ser Gln Met Thr Ala Asp Asn Thr Gln Ala Ala Ala Thr Lys Gln
260 265 270

Pro Leu Glu Thr Ser Glu Tyr Thr Leu Ser Val Glu Pro Glu Thr Asp
275 280 285

Ser Leu Leu Gly Ala Pro Glu Val Thr Val Ser Val Ser Thr Ala Val
290 295 300

Pro Ala Ala Ser Ala Leu Ser Asp Glu Trp Asp Asp Thr Lys Leu Glu
305 310 315 320

Ser Val Ser Arg Ile Arg Thr Pro Lys Leu Gly Asp Asn Glu Glu Thr
325 330 335

Gln Val Arg Thr Glu Met Ser Gln Thr Ala Gln Val Ser His Glu Gly
340 345 350

Met Glu Gly Gly Gln Pro Trp Thr Glu Ala Ala Gln Val Ala Leu Gly
355 360 365

Leu Pro Glu Gly Glu Thr His Thr Gly Thr Ala Leu Leu Ile Ala His
370 375 380

Gly Asn Glu Arg Ser Pro Ala Phe Thr Asp Gln Ser Ser Phe Thr Pro
385 390 395 400

Thr Ser Leu Met Glu Asp Met Lys Val Ser Ile Val Asn Leu Leu Gln
405 410 415

Ser Thr Gly Asp Phe Thr Glu Ser Thr Lys Glu Asn Asp Ala Leu Phe
420 425 430

Phe Leu Glu Thr Thr Val Ser Val Ser Val Tyr Glu Ser Glu Ala Asp
435 440 445

Gln Leu Leu Gly Asn Thr Met Lys Asp Ile Ile Thr Gln Glu Met Thr
450 455 460

Thr Ala Val Gln Glu Pro Asp Ala Thr Leu Ser Met Val Thr Gln Glu
465 470 475 480

Gln Val Ala Thr Leu Glu Leu Ile Arg Asp Ser Gly Lys Thr Glu Glu
485 490 495

Glu Lys Glu Asp Pro Ser Pro Val Ser Asp Val Pro Gly Val Thr Gln
500 505 510

Leu Ser Arg Arg Trp Glu Pro Leu Ala Thr Thr Ile Ser Thr Thr Val
515 520 525

Val Pro Leu Ser Phe Glu Val Thr Pro Thr Val Glu Glu Gln Met Asp
530 535 540

Thr Val Thr Gly Pro Asn Glu Glu Phe Thr Pro Val Leu Gly Ser Pro
545 550 555 560

Val Thr Pro Pro Gly Ile Met Val Gly Glu Pro Ser Ile Ser Pro Ala
565 570 575

Leu Pro Ala Leu Glu Ala Ser Ser Glu Arg Arg Thr Val Val Pro Ser
580 585 590

Ile Thr Arg Val Asn Thr Ala Ala Ser Tyr Gly Leu Asp Gln Leu Glu

595

600

605

Ser Glu Glu Gly Gln Glu Asp Glu Asp Glu Glu Asp Glu Glu Asp Glu
 610 615 620

Asp Glu Glu Glu Glu Asp Glu Glu Glu Asp Glu Glu Asp Lys Asp Ala
 625 630 635 640

Asp Ser Leu Asp Glu Gly Leu Asp Gly Asp Thr Glu Leu Pro Gly Phe
 645 650 655

Thr Leu Pro Gly Ile Thr Ser Gln Glu Pro Gly Leu Glu Glu Gly Asn
 660 665 670

Met Asp Leu Leu Glu Gly Ala Thr Tyr Gln Val Pro Asp Ala Leu Glu
 675 680 685

Trp Glu Gln Gln Asn Gln Gly Leu Val Arg Ser Trp Met Glu Lys Leu
 690 695 700

Lys Asp Lys Ala Gly Tyr Met Ser Gly Met Leu Val Pro Val Gly Val
 705 710 715 720

Gly Ile Ala Gly Ala Leu Phe Ile Leu Gly Ala Leu Tyr Ser Ile Lys
 725 730 735

Val Met Asn Arg Arg Arg Asn Gly Phe Lys Arg His Lys Arg Lys
 740 745 750

Gln Arg Glu Phe Asn Ser Met Gln Asp Arg Val Met Leu Leu Ala Asp
 755 760 765

Ser Ser Glu Asp Glu Phe
 770

<210> 127
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 127
 ccctccctgg tatcacat

18

<210> 128
 <211> 18
 <212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 128

caccagcatc ccagacat

18

<210> 129

<211> 3627

<212> DNA

<213> Homo sapiens

<400> 129

gggactgggg ggttcccaga tccttgaagc tcactccgcc tcctcactct cactgcattt 60

cccacccccc tggggccctt gcggcatctt catcaactgag gcacccgggtt acgcttcacc 120

tctttttcc tgcctcact gcattccctc acctctaccc ttatccctt ccaccctagg 180

cttctctccct ccctttccc tcactcctga ctctccctt tcccgccga cggctggagg 240

accgctcagt ctctcctctc tcacttccct tcctctctt caccctcacc acccaacacc 300

tccctccctg ccttttctt tctgtccctt cattctctcc ccaccactctt cttctcggtt 360

cccccttgcc cgcgccctt cttcccttcc cttgcctca ctctctcagg ttcttccca 420

cagttgagct cggcagctc tttctgggg tagctatggg gctttgggg aagaaaggaa 480

cagtggctcc ccatgaccag agtccaagac gaagaccaa aaaaggctt atcaagaaaa 540

aaatggtaa gagggaaaaa cagaagcgca atatggagga actgaagaag gaagtggta 600

tggatgatca caaattaacc ttggaagagc tgagcaccaa gtactccgtt gacctgacaa 660

agggccatag ccaccaaagg gcaaaggaaa tcctgactcg aggtggaccc aatactgtta 720

cccccccccc caccactcca gaatgggtca aattctgtaa gcaactgttc ggaggcttct 780

ccctcctact atggactggg gccattctct gctttgtggc ctacagcatc cagatatatt 840

tcaatgagga gcctaccaaacaacccctt acctgagcat cgtactgtcc gtcgtggta 900

tcgtcactgg ctgcttctcc tattatcagg agggcaagag ctccaagatc atggagtctt 960

ttaagaacat ggtgcctcag caagctctgg taattcgagg aggagagaag atgcaaattt 1020

atgtacaaga ggtgggttg ggagacctgg tggaaatcaa gggtgagac cgagtccctg 1080

ctgacctccg gcttatctct gcacaaggat gtaaggtgga caactcatcc ttgactgggg 1140

agtcagaacc ccagagccgc tccccctgact tcacccatga gaaccctctg gagacccgaa 1200

acatctgctt cttttccacc aactgtgtgg aaggaaccgc ccggggattt gtgattgcta 1260

cgggagactc cacagtatg ggcagaattt cctccctgac gtcaggcctg gcggttggcc 1320

agacacccat cgtcgctgag atcgaacact tcatccatct gatcactgtt gtcggccgtct 1380

tccttgggtt cactttttt gcgctctcac ttcttggg ctatgggtt gtcggaggctt 1440

tcattttct cattggcatc attgtggcca atgtgcctga ggggctgttg gccacagtca	1500
ctgtgtgcct gaccctcaca gccaagcgca tggcgccgaa gaactgcctg gtgaagaacc	1560
tggaggcggt ggagacgctg ggctccacgt ccaccatctg ctcagacaag acgggcaccc	1620
tcaccaggaa ccgcattgacc gtcgcccaca tgtggtttga tatgaccgtg tatgaggccg	1680
acaccactga agaacagact gaaaaaacat ttaccaagag ctctgatacc tggtttatgc	1740
tggccgaat cgctggcctc tgcaaccggg ctgactttaa ggctaattcag gagatcctgc	1800
ccatttgtaa gagggccaca acaggtgatg cttccgagtc agccctcctc aagttcatcg	1860
agcagtctta cagctctgtg gcggagatga gagagaaaaa ccccaaggtg gcagagattc	1920
ccttaattc taccaacaag taccagatgt ccatccacct tcgggaggac agctcccaga	1980
cccacgtact gatgatgaag ggtgctccgg agaggatctt ggagtttgc tctaccttc	2040
ttctgaatgg gcaggaggta tcaatgaacg atgaaatgaa ggaagccttc caaaatgcct	2100
acttagaact gggaggtctg gggAACGTG tgctaggctt ctgcttcttgc aatctgccta	2160
gcagcttctc caagggattc ccatttaata cagatgaaat aaattcccc atggacaacc	2220
tttgggggtt gggcctcata tccatgattt accctccccg agctgcagtg cctgatgctg	2280
tgagcaagtgc tcgcgtgc ggaattaagg tgatcatggt aacaggagat catccattt	2340
cagctaaggc cattgccaag ggtgtggca tcatctcaga aggactgag acggcagagg	2400
aagtgcgtgc ccggcttaag atccctatca gcaagggtcg tgccagtgc gccaaagcca	2460
ttgtggtgca tgggtgcagaa ctgaaggaca tacagtccaa gcagcttgat cagatcctcc	2520
agaaccaccc ttagatcg tttgctcgga cctccctca gcagaagctc atcattgtcg	2580
aggatgtca gaggctgggca gccgttggc ccgtgacagg tgacggggtg aacgactccc	2640
ctgcgtgaa gaaggctgac attggcattt ccatggcat ctctggctct gacgtctcta	2700
agcaggcagc cgacatgatc ctgctggatg acaactttgc ctccatcgac acgggggtgg	2760
aggaggcccg cctgatctt gacaacctga agaaatccat catgtacacc ctgaccagca	2820
acatccccga gatcacgccc ttcctgatgt tcatcatcct cggataccct ctgcctctgg	2880
gaaccataac catcctctgc attgatctcg gcactgacat ggtccctgcc atctccttgg	2940
cttatgagtc agctgaaagc gacatcatga agaggcttcc aaggaaccca aagacggata	3000
atctggtgaa ccaccgtctc attggcatgg cctatggaca gattggggatg atccaggctc	3060
tggctggatt ctttacctac tttgtaatcc tggctgagaa tggttttagg cctgttgatc	3120
tgcgtggcat ccgcctccac tggaaagata aatacttggaa tgacctggag gacagctacg	3180
gacagcagtg gacctatgag caacgaaaag ttgtggagtt cacatgccaac acggcccttt	3240
ttgtcaccat cgtggttgtg cagtgccgg atctcatcat ctccaagact cgccgcaact	3300

cactttcca gcagggcatg agaaaacaaag tcttaatatt tgggatcctg gaggagacac	3360
tcttggctgc atttctgtcc tacactccag gcatggacgt ggccctgcga atgtacccac	3420
tcaagataac ctggtggctc tgtgccattc cctacagtat tctcatcttc gtctatgatg	3480
aaatcagaaa actcctcattc cgtagcacc cggatggctg ggtggaaagg gagacgtact	3540
actaaactca gcagatgaag agcttcatgt gacacagggg ttttgagaa gctggatgg	3600
ggccagagat tataagttt acacaac	3627

<210> 130
<211> 1029
<212> PRT
<213> Homo sapiens

<400> 130

Met Gly Leu Trp Gly Lys Lys Gly Thr Val Ala Pro His Asp Gln Ser			
1	5	10	15

Pro Arg Arg Arg Pro Lys Lys Gly Leu Ile Lys Lys Lys Met Val Lys		
20	25	30

Arg Glu Lys Gln Lys Arg Asn Met Glu Glu Leu Lys Lys Glu Val Val		
35	40	45

Met Asp Asp His Lys Leu Thr Leu Glu Glu Leu Ser Thr Lys Tyr Ser		
50	55	60

Val Asp Leu Thr Lys Gly His Ser His Gln Arg Ala Lys Glu Ile Leu			
65	70	75	80

Thr Arg Gly Gly Pro Asn Thr Val Thr Pro Pro Pro Thr Thr Pro Glu		
85	90	95

Trp Val Lys Phe Cys Lys Gln Leu Phe Gly Gly Phe Ser Leu Leu Leu		
100	105	110

Trp Thr Gly Ala Ile Leu Cys Phe Val Ala Tyr Ser Ile Gln Ile Tyr		
115	120	125

Phe Asn Glu Glu Pro Thr Lys Asp Asn Leu Tyr Leu Ser Ile Val Leu		
130	135	140

Ser Val Val Val Ile Val Thr Gly Cys Phe Ser Tyr Tyr Gln Glu Ala			
145	150	155	160

Lys Ser Ser Lys Ile Met Glu Ser Phe Lys Asn Met Val Pro Gln Gln		
165	170	175

Ala Leu Val Ile Arg Gly Gly Glu Lys Met Gln Ile Asn Val Gln Glu
180 185 190

Val Val Leu Gly Asp Leu Val Glu Ile Lys Gly Gly Asp Arg Val Pro
195 200 205

Ala Asp Leu Arg Leu Ile Ser Ala Gln Gly Cys Lys Val Asp Asn Ser
210 215 220

Ser Leu Thr Gly Glu Ser Glu Pro Gln Ser Arg Ser Pro Asp Phe Thr
225 230 235 240

His Glu Asn Pro Leu Glu Thr Arg Asn Ile Cys Phe Phe Ser Thr Asn
245 250 255

Cys Val Glu Gly Thr Ala Arg Gly Ile Val Ile Ala Thr Gly Asp Ser
260 265 270

Thr Val Met Gly Arg Ile Ala Ser Leu Thr Ser Gly Leu Ala Val Gly
275 280 285

Gln Thr Pro Ile Ala Ala Glu Ile Glu His Phe Ile His Leu Ile Thr
290 295 300

Val Val Ala Val Phe Leu Gly Val Thr Phe Phe Ala Leu Ser Leu Leu
305 310 315 320

Leu Gly Tyr Gly Trp Leu Glu Ala Ile Ile Phe Leu Ile Gly Ile Ile
325 330 335

Val Ala Asn Val Pro Glu Gly Leu Leu Ala Thr Val Thr Val Cys Leu
340 345 350

Thr Leu Thr Ala Lys Arg Met Ala Arg Lys Asn Cys Leu Val Lys Asn
355 360 365

Leu Glu Ala Val Glu Thr Leu Gly Ser Thr Ser Thr Ile Cys Ser Asp
370 375 380

Lys Thr Gly Thr Leu Thr Gln Asn Arg Met Thr Val Ala His Met Trp
385 390 395 400

Phe Asp Met Thr Val Tyr Glu Ala Asp Thr Thr Glu Glu Gln Thr Gly
405 410 415

Lys Thr Phe Thr Lys Ser Ser Asp Thr Trp Phe Met Leu Ala Arg Ile

420

425

430

Ala Gly Leu Cys Asn Arg Ala Asp Phe Lys Ala Asn Gln Glu Ile Leu
435 440 445

Pro Ile Ala Lys Arg Ala Thr Thr Gly Asp Ala Ser Glu Ser Ala Leu
450 455 460

Leu Lys Phe Ile Glu Gln Ser Tyr Ser Ser Val Ala Glu Met Arg Glu
465 470 475 480

Lys Asn Pro Lys Val Ala Glu Ile Pro Phe Asn Ser Thr Asn Lys Tyr
485 490 495

Gln Met Ser Ile His Leu Arg Glu Asp Ser Ser Gln Thr His Val Leu
500 505 510

Met Met Lys Gly Ala Pro Glu Arg Ile Leu Glu Phe Cys Ser Thr Phe
515 520 525

Leu Leu Asn Gly Gln Glu Tyr Ser Met Asn Asp Glu Met Lys Glu Ala
530 535 540

Phe Gln Asn Ala Tyr Leu Glu Leu Gly Gly Leu Gly Glu Arg Val Leu
545 550 555 560

Gly Phe Cys Phe Leu Asn Leu Pro Ser Ser Phe Ser Lys Gly Phe Pro
565 570 575

Phe Asn Thr Asp Glu Ile Asn Phe Pro Met Asp Asn Leu Cys Phe Val
580 585 590

Gly Leu Ile Ser Met Ile Asp Pro Pro Arg Ala Ala Val Pro Asp Ala
595 600 605

Val Ser Lys Cys Arg Ser Ala Gly Ile Lys Val Ile Met Val Thr Gly
610 615 620

Asp His Pro Ile Thr Ala Lys Ala Ile Ala Lys Gly Val Gly Ile Ile
625 630 635 640

Ser Glu Gly Thr Glu Thr Ala Glu Glu Val Ala Ala Arg Leu Lys Ile
645 650 655

Pro Ile Ser Lys Val Asp Ala Ser Ala Ala Lys Ala Ile Val Val His
660 665 670

Gly Ala Glu Leu Lys Asp Ile Gln Ser Lys Gln Leu Asp Gln Ile Leu
675 680 685

Gln Asn His Pro Glu Ile Val Phe Ala Arg Thr Ser Pro Gln Gln Lys
690 695 700

Leu Ile Ile Val Glu Gly Cys Gln Arg Leu Gly Ala Val Val Ala Val
705 710 715 720

Thr Gly Asp Gly Val Asn Asp Ser Pro Ala Leu Lys Lys Ala Asp Ile
725 730 735

Gly Ile Ala Met Gly Ile Ser Gly Ser Asp Val Ser Lys Gln Ala Ala
740 745 750

Asp Met Ile Leu Leu Asp Asp Asn Phe Ala Ser Ile Val Thr Gly Val
755 760 765

Glu Glu Gly Arg Leu Ile Phe Asp Asn Leu Lys Lys Ser Ile Met Tyr
770 775 780

Thr Leu Thr Ser Asn Ile Pro Glu Ile Thr Pro Phe Leu Met Phe Ile
785 790 795 800

Ile Leu Gly Ile Pro Leu Pro Leu Gly Thr Ile Thr Ile Leu Cys Ile
805 810 815

Asp Leu Gly Thr Asp Met Val Pro Ala Ile Ser Leu Ala Tyr Glu Ser
820 825 830

Ala Glu Ser Asp Ile Met Lys Arg Leu Pro Arg Asn Pro Lys Thr Asp
835 840 845

Asn Leu Val Asn His Arg Leu Ile Gly Met Ala Tyr Gly Gln Ile Gly
850 855 860

Met Ile Gln Ala Leu Ala Gly Phe Phe Thr Tyr Phe Val Ile Leu Ala
865 870 875 880

Glu Asn Gly Phe Arg Pro Val Asp Leu Leu Gly Ile Arg Leu His Trp
885 890 895

Glu Asp Lys Tyr Leu Asn Asp Leu Glu Asp Ser Tyr Gly Gln Gln Trp
900 905 910

Thr Tyr Glu Gln Arg Lys Val Val Glu Phe Thr Cys Gln Thr Ala Phe
915 920 925

Phe Val Thr Ile Val Val Val Gln Trp Ala Asp Leu Ile Ile Ser Lys
 930 935 940

Thr Arg Arg Asn Ser Leu Phe Gln Gln Gly Met Arg Asn Lys Val Leu
 945 950 955 960

Ile Phe Gly Ile Leu Glu Glu Thr Leu Leu Ala Ala Phe Leu Ser Tyr
 965 970 975

Thr Pro Gly Met Asp Val Ala Leu Arg Met Tyr Pro Leu Lys Ile Thr
 980 985 990

Trp Trp Leu Cys Ala Ile Pro Tyr Ser Ile Leu Ile Phe Val Tyr Asp
 995 1000 1005

Glu Ile Arg Lys Leu Leu Ile Arg Gln His Pro Asp Gly Trp Val
 1010 1015 1020

Glu Arg Glu Thr Tyr Tyr
 1025

<210> 131
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 131
tgtaatcctg gctgagaatg g 21

<210> 132
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 132
aagttagttg cggcgagt 18

<210> 133
<211> 279
<212> DNA
<213> Homo sapiens

<400> 133
atgtatgtaa aaattgcaaa acatctcaat gatgtttatg ccccccagaa ggtactgtgt 60
cacgggatct catatattct ggctgtcatt gtcataataa gccactcttg gtcatatgga 120

aaagcattca gctgctccct gcctttgctc acagcggttg gtactctctt agaagctatt	180
cctgtcctat ttaggcagtt attcctgctt cttgtgttgg acctgaagtc aacagggcca	240
gcaatagaga agaaaagatga tgtgaaggag agcaactga	279

<210> 134
<211> 92
<212> PRT
<213> Homo sapiens

<400> 134

Met Tyr Val Lys Ile Ala Lys His Leu Asn Asp Val Tyr Ala Pro Gln					
1	5		10		15
	10				
	15				

Lys Val Leu Cys His Gly Ile Ser Tyr Ile Leu Ala Val Ile Val Ile			
20	25		30
	30		

Ile Ser His Ser Trp Ser Tyr Gly Lys Ala Phe Ser Cys Ser Leu Pro			
35	40		45
	45		

Leu Leu Thr Ala Cys Gly Thr Leu Leu Glu Ala Ile Pro Val Leu Phe			
50	55		60
	60		

Arg Gln Leu Phe Leu Leu Val Leu Asp Leu Lys Ser Thr Gly Pro					
65	70		75		80
	75		80		
	80				

Ala Ile Glu Lys Lys Asp Asp Val Lys Glu Ser Asn	
85	90

<210> 135
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 135	
tgctccctgc ctttgctcac	20

<210> 136
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 136	
ggtacttggt ctcgaacgat gatc	24

<210> 137
<211> 1569
<212> DNA
<213> Homo sapiens

<400> 137	
atgcctgtag ggggtggccc tgagagtgtg ggcaggtgca atggctgtca atgccacata	60
aaggccaagg gatatctacat cctaaacagt gaaagaccag tgcccgaga ctacatctac	120
atcaggaaga agaagcagca aaattctgac ccacagccca agaggggtcg gggcagcaga	180
acctcagcca cagccaatca cagccccgtc ctccgggag gggcgtggcc tgacaacttc	240
ggcgacgcgg ctggaccaat ccggacggag gagagcgaag ctcccttgca ctgggcccag	300
gtgcgctcct cagcgtctcc gggtggcggg ggcgcgcggg tggaggagtc ttgggaggct	360
gcgcgcggag gccaagccgg ggcagagctc ccaatggagc ccgtggaaag cctggtcccc	420
acgctggagc agccgcaggt gccccgcaag gtgcgacaac ctgaagggtcc cgaaagcagc	480
ccaagtccgg ccggggccgt ggagaaggcg gcgggcgcag gcctggagcc ctcgagcaag	540
aaaaagccgc cttcgcctcg cccgggtcc cgcgcgtgc cgccgctcag cctgggctac	600
gggtctgcc ccgagccgcc gtcaccgggc cctgccttgg tcaagctgcc ccggaatggc	660
gaggcgcccg gggctgagcc tgcccccagc gcctggcgcc ccatggagct gcaggtagat	720
gtgcgcgtga agcccggtgg cgccgcgggt ggcagcagca cgccatcgcc caggccctcc	780
acgcgcgttcc tcaagggtgcc ggtggccgag tccccctgcct tctcccgcca cgccggaccccg	840
gcgcaccagc tcctgctgca cgcaccatcc cagggcggca cgtggggcccg ccgctcgccg	900
ctggctgcag cccggacgga gagccgcgtgc gacgcagagg gccggggccag ccccgccgaa	960
ggaagcgcccg gctccccggg ctcccccacg tgctgccgt gcaaggagct ggggctggag	1020
aaggaggatg cggcgctgtt gccccgcgcg gggttggacg ggcagcagaa gctgccccgg	1080
gccgtaacgc ttacggggct acccatgtac gtgaagtccc tgtactggc cctggcggttc	1140
atggctgtgc tcctggcagt ctctgggtt gtcattgtgg tcctggcctc aagagcagga	1200
gccagatgcc agcagtgccccc cccaggctgg gtgttgtccg aggagcactg ttactacttc	1260
tctgcagaag cgcaggccctg ggaagccagc caggcttct gctcagccta ccacgctacc	1320
ctccccctgc taagccacac ccaggacttc ctggcagat acccagtctc caggcactcc	1380
tgggtggggg ctcggcgagg cccccagggc tggcactggta tcgacgaggc cccactcccg	1440
ccccagctac tccctgagga cggcgaggac aatctggata tcaactgtgg ggccctggag	1500
gaaggcacgc tggtggtcgtc aaactgcagc actccaagac cctgggtctg tgccaagggg	1560
acccagtga	1569

<210> 138

<211> 522

<212> PRT

<213> Homo sapiens

<400> 138

Met Pro Val Gly Gly Gly Pro Glu Ser Val Gly Arg Cys Asn Gly Cys
1 5 10 15

Gln Cys His Ile Lys Gly Lys Gly Ile Tyr Ile Leu Asn Ser Glu Arg
20 25 30

Pro Val Pro Gly Asp Tyr Ile Tyr Ile Arg Lys Lys Gln Gln Asn
35 40 45

Ser Asp Pro Gln Pro Lys Arg Gly Arg Ser Arg Thr Ser Ala Thr
50 55 60

Ala Asn His Ser Gly Val Leu Arg Gly Ala Trp Pro Asp Asn Phe
65 70 75 80

Gly Asp Ala Ala Gly Pro Ile Arg Thr Glu Glu Ser Glu Ala Pro Leu
85 90 95

His Trp Ala Gln Val Arg Ser Ser Ala Ser Pro Gly Gly Ala Arg
100 105 110

Gly Met Glu Glu Ser Trp Glu Ala Ala Pro Gly Gly Gln Ala Gly Ala
115 120 125

Glu Leu Pro Met Glu Pro Val Gly Ser Leu Val Pro Thr Leu Glu Gln
130 135 140

Pro Gln Val Pro Ala Lys Val Arg Gln Pro Glu Gly Pro Glu Ser Ser
145 150 155 160

Pro Ser Pro Ala Gly Ala Val Glu Lys Ala Ala Gly Ala Gly Leu Glu
165 170 175

Pro Ser Ser Lys Lys Pro Pro Ser Pro Arg Pro Gly Ser Pro Arg
180 185 190

Val Pro Pro Leu Ser Leu Gly Tyr Gly Val Cys Pro Glu Pro Pro Ser
195 200 205

Pro Gly Pro Ala Leu Val Lys Leu Pro Arg Asn Gly Glu Ala Pro Gly
210 215 220

Ala Glu Pro Ala Pro Ser Ala Trp Ala Pro Met Glu Leu Gln Val Asp
225 230 235 240

Val Arg Val Lys Pro Val Gly Ala Ala Gly Gly Ser Ser Thr Pro Ser
245 250 255

Pro Arg Pro Ser Thr Arg Phe Leu Lys Val Pro Val Pro Glu Ser Pro
260 265 270

Ala Phe Ser Arg His Ala Asp Pro Ala His Gln Leu Leu Leu Arg Ala
275 280 285

Pro Ser Gln Gly Gly Thr Trp Gly Arg Arg Ser Pro Leu Ala Ala Ala
290 295 300

Arg Thr Glu Ser Gly Cys Asp Ala Glu Gly Arg Ala Ser Pro Ala Glu
305 310 315 320

Gly Ser Ala Gly Ser Pro Gly Ser Pro Thr Cys Cys Arg Cys Lys Glu
325 330 335

Leu Gly Leu Glu Lys Glu Asp Ala Ala Leu Leu Pro Arg Ala Gly Leu
340 345 350

Asp Gly Asp Glu Lys Leu Pro Arg Ala Val Thr Leu Thr Gly Leu Pro
355 360 365

Met Tyr Val Lys Ser Leu Tyr Trp Ala Leu Ala Phe Met Ala Val Leu
370 375 380

Leu Ala Val Ser Gly Val Val Ile Val Val Leu Ala Ser Arg Ala Gly
385 390 395 400

Ala Arg Cys Gln Gln Cys Pro Pro Gly Trp Val Leu Ser Glu Glu His
405 410 415

Cys Tyr Tyr Phe Ser Ala Glu Ala Gln Ala Trp Glu Ala Ser Gln Ala
420 425 430

Phe Cys Ser Ala Tyr His Ala Thr Leu Pro Leu Leu Ser His Thr Gln
435 440 445

Asp Phe Leu Gly Arg Tyr Pro Val Ser Arg His Ser Trp Val Gly Ala
450 455 460

Trp Arg Gly Pro Gln Gly Trp His Trp Ile Asp Glu Ala Pro Leu Pro
465 470 475 480

Pro Gln Leu Leu Pro Glu Asp Gly Glu Asp Asn Leu Asp Ile Asn Cys
 485 490 495

Gly Ala Leu Glu Glu Gly Thr Leu Val Ala Ala Asn Cys Ser Thr Pro
 500 505 510

Arg Pro Trp Val Cys Ala Lys Gly Thr Gln
 515 520

<210> 139
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 139
gagaaggagg atgcggcg 18

<210> 140
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 140
ggaccacaat gacaacccca g 21

<210> 141
<211> 2217
<212> DNA
<213> Homo sapiens

<400> 141
atggtttgca cgttcgattc tgagcttctg aattgtcaaa ggaaagatga atataatcg 60

ttccagactt atcggggcca taaaataaaa gccaaaagaa gcatagccac tcctgaaaac 120

ctgaagaaaat tattgccacg tgccccaaa aacagtgccc tgagtgtatga aatgacaaag 180

cttcacaaag gagctaagcc atgcaaatac aatacatgg gatgtttcc tattcatcag 240

gctgtacttt caggttccaa agaatgcattg gaaataatat tgaagtttgg tgaagagcac 300

gggtacagca gacagtgtca catcaacttt gtggataacg ggaaagccag ccctctccat 360

ctggctgtgc aaaatggtga cttggaaatgt atgaaaatgt gcctggacaa tggtgtacaa 420

atagaccttag tggagatgca acagatcaaa gagctggtaa tggatgaaga caacgatggg 480

tgtactcctc tacattatgc atgttagacag gggggccctg gttctgtaaa taacctactt 540

ggctttaatg tgtccattca ttccaaaagc aaagataaga aatcacctct gcattttgca 600

gccaggatcg ggcgttatcaa tacctgtcag aggccctac aagacataag tgatacggagg
cttctgaatg aaggggacct tcatgaaatg actcctctcc atctggcagc aaagaatgga
catgataaag tagttcagct tcttcgaaa aaagggtgcat tgtttctcag atgggatgaa
tgtcttaagg ttttagtca ttattctcca aacaataaat gtccaaattt ggaaatgatc
gaataacctcc ctgaatgcat gaagaaagtt ctacccttct tttctaattgt tcacgtaaga
cctgctccaa accagaatca aataaaccat ggagaacaca ggtggctta cggtttata
gcccataatga taaatctagg attttactgt cttggctcata taccatgac ctttcttgaa
gtcagaataa aaccaggaat ggcttcaac tctgctggaa tcatcaataa aactagtgtat
cattcagaaa tactagataa catgaattca agtctaataa caatttgtat gatttttagt
ttttgctcaa gtatattagg gtatgtcaaa gaagtggtc aaattttcca acagaaaagg
aattacttta tggatattag cagtagtact gaatggatta tcaacacgat gggccccatt
ttagtgtgc cttgttcac tgaaatagca gcccattctgc aatttgagaa ttgtggatt
ttcattgtta tattggaggt aattttaaa actttgttga ggtctgcagt tgtattttc
ttccttctt tggctttgg actcagctt tacgtcctcc tgaatttaca gtccttcata
gaaccatttc tgaagaataa attggcacat ccagttctgt ctttgcaca gcttatttcc
ttcacagttat ttgccccat tgcattcatg aatttactta ttggggcgc agttgggtac
attgtgagg tccagaaaca tgcattcatg aagaggatag ctatgcagaa gctgccatgc
tgttgatac gcaaagtgg tggaaatcc accggccgtat gtcacaacaa acccagatgt
gatgggacat tatttcaagt cctactcgct ctagggcccc taccctaga agaaaataga
aacataaaaaa gtttcttcc tactgagatc actgttaaga ggactcacga acaccttcct
tctgcagggtt ttggcatca tggaaacat accttgcct tgctttggt agaagagtgg
cttcctctga atgttgtaca ctccttgc tctgccttca gagtggttgg ccagatctt
cccatttagac atttcagtg gattcatgtg aatgagccgc acactggcaa tttaaaagag
aaattggctg ctccatacat cactcaccag atcaagccat tcttgcgagc agctggttt
tgcacagtg aggtggtcca gagagatgac atctctgtgt ggagtgtgga tttcaggtgg
ctcaatgcat gggaaagcagc gattcgaaag cagtctctca gacaatctga gatggaggaa
ctgagctgct cgctgctgct gcgtgtcaact gatgtgcaca caagaagctt gtattag
2217

<210> 142
<211> 738
<212> PRT
<213> Homo sapiens

<400> 142

Met Val Cys Thr Phe Asp Ser Glu Leu Leu Asn Cys Gln Arg Lys Asp
1 5 10 15

Glu Tyr Asn Gln Phe Gln Thr Tyr Arg Ala His Lys Ile Lys Ala Lys
20 25 30

Arg Ser Ile Ala Thr Pro Glu Asn Leu Lys Lys Leu Leu Pro Arg Val
35 40 45

Pro Lys Asn Ser Ala Leu Ser Asp Glu Met Thr Lys Leu His Lys Gly
50 55 60

Ala Lys Pro Cys Lys Ser Asn Thr Phe Gly Cys Phe Pro Ile His Gln
65 70 75 80

Ala Val Leu Ser Gly Ser Lys Glu Cys Met Glu Ile Ile Leu Lys Phe
85 90 95

Gly Glu Glu His Gly Tyr Ser Arg Gln Cys His Ile Asn Phe Val Asp
100 105 110

Asn Gly Lys Ala Ser Pro Leu His Leu Ala Val Gln Asn Gly Asp Leu
115 120 125

Glu Met Met Lys Met Cys Leu Asp Asn Gly Val Gln Ile Asp Leu Val
130 135 140

Glu Met Gln Gln Ile Lys Glu Leu Val Met Asp Glu Asp Asn Asp Gly
145 150 155 160

Cys Thr Pro Leu His Tyr Ala Cys Arg Gln Gly Gly Pro Gly Ser Val
165 170 175

Asn Asn Leu Leu Gly Phe Asn Val Ser Ile His Ser Lys Ser Lys Asp
180 185 190

Lys Lys Ser Pro Leu His Phe Ala Ala Ser Tyr Gly Arg Ile Asn Thr
195 200 205

Cys Gln Arg Leu Leu Gln Asp Ile Ser Asp Thr Arg Leu Leu Asn Glu
210 215 220

Gly Asp Leu His Gly Met Thr Pro Leu His Leu Ala Ala Lys Asn Gly
225 230 235 240

His Asp Lys Val Val Gln Leu Leu Lys Lys Gly Ala Leu Phe Leu
245 250 255

Arg Trp Asp Glu Cys Leu Lys Val Phe Ser His Tyr Ser Pro Asn Asn
260 265 270

Lys Cys Pro Ile Leu Glu Met Ile Glu Tyr Leu Pro Glu Cys Met Lys
275 280 285

Lys Val Leu Pro Phe Phe Ser Asn Val His Val Arg Pro Ala Pro Asn
290 295 300

Gln Asn Gln Ile Asn His Gly Glu His Arg Leu Ala Tyr Gly Phe Ile
305 310 315 320

Ala His Met Ile Asn Leu Gly Phe Tyr Cys Leu Gly Leu Ile Pro Met
325 330 335

Thr Phe Leu Val Val Arg Ile Lys Pro Gly Met Ala Phe Asn Ser Ala
340 345 350

Gly Ile Ile Asn Lys Thr Ser Asp His Ser Glu Ile Leu Asp Asn Met
355 360 365

Asn Ser Ser Leu Ile Thr Ile Cys Met Ile Leu Val Phe Cys Ser Ser
370 375 380

Ile Leu Gly Tyr Val Lys Glu Val Val Gln Ile Phe Gln Gln Lys Arg
385 390 395 400

Asn Tyr Phe Met Asp Ile Ser Ser Ser Thr Glu Trp Ile Ile Asn Thr
405 410 415

Met Gly Pro Ile Leu Val Leu Pro Leu Phe Thr Glu Ile Ala Ala His
420 425 430

Leu Gln Phe Glu Asn Cys Gly Ile Phe Ile Val Ile Leu Glu Val Ile
435 440 445

Phe Lys Thr Leu Leu Arg Ser Ala Val Val Phe Phe Phe Leu Leu Leu
450 455 460

Ala Phe Gly Leu Ser Phe Tyr Val Leu Leu Asn Leu Gln Ser Phe Leu
465 470 475 480

Glu Pro Phe Leu Lys Asn Lys Leu Ala His Pro Val Leu Ser Phe Ala
485 490 495

Gln Leu Ile Ser Phe Thr Val Phe Ala Pro Ile Val Leu Met Asn Leu

500

505

510

Leu Ile Gly Leu Ala Val Gly Asp Ile Ala Glu Val Gln Lys His Ala
 515 520 525

Ser Leu Lys Arg Ile Ala Met Gln Lys Leu Pro Cys Cys Cys Ile Arg
 530 535 540

Lys Val Asp Arg Lys Ser Thr Ala Val Cys Pro Asn Lys Pro Arg Cys
 545 550 555 560

Asp Gly Thr Leu Phe Gln Val Leu Leu Ala Leu Gly Pro Leu Pro Leu
 565 570 575

Glu Glu Asn Arg Asn Ile Lys Ser Phe Leu Pro Thr Glu Ile Thr Val
 580 585 590

Lys Arg Thr His Glu His Leu Pro Ser Ala Gly Phe Gly His His Gly
 595 600 605

Lys His Thr Leu Ser Leu Leu Val Glu Glu Trp Leu Pro Leu Asn
 610 615 620

Val Val His Ser Ser Cys Ser Ala Phe Arg Val Val Gly Gln Ile Phe
 625 630 635 640

Pro Ile Arg His Phe Gln Trp Ile His Val Asn Glu Pro His Thr Gly
 645 650 655

Asn Leu Lys Glu Lys Leu Ala Ala Pro Tyr Ile Thr His Gln Ile Lys
 660 665 670

Pro Phe Leu Arg Ala Ala Gly Phe Cys Thr Val Lys Val Val Gln Arg
 675 680 685

Asp Asp Ile Ser Val Trp Ser Val Asp Phe Arg Trp Leu Asn Ala Trp
 690 695 700

Glu Ala Ala Ile Arg Lys Gln Ser Leu Arg Gln Ser Glu Met Glu Glu
 705 710 715 720

Leu Ser Cys Ser Leu Leu Leu Arg Val Thr Asp Val His Thr Arg Ser
 725 730 735

Leu Tyr

<210> 143		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 143		
ttccttactc tccgcttcc		20
<210> 144		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 144		
aactttgtgg ataacgggaa		20
<210> 145		
<211> 1155		
<212> DNA		
<213> Homo sapiens		
<400> 145		
atgcagtctc tcatctcgcc ggtgaccaag gcgatcctgg tggccctctt catcttcgccc	60	
atcctcctca tcctctacgt gatcctctgg gacgcaccgg ggagagcgggg tgagtgcgct	120	
cgtgcggcgcttgggggg ccacgggtgg ggagccccaa cttcggggag gacgcggaat	180	
ccggacgcgg gactgaaccc gaggattcac ggagccccgg gctccctat gggcacggg	240	
aagcggcaga tgcgcgtgca gagaggtccg tcccaccac cccctggcg cttgggtcc	300	
aaggcgcata ggctcccg cctgtggccg ccaccgggtgc agcagaacgc gggctctcg	360	
gtgggtccaa tgcgcgtatgg cacaccaggc gctatcggtt ccctagccct ctgctccgg	420	
gggtgggacc cgcactcaa gttccctata acctccatgg acaaacaacgg aaaaatcatg	480	
tcttggaaaga acagcatcgc cctacagata cagacttaggc acttgcaca tgaaacaaga	540	
gtcccagaaa ttctagaag caaatctcgc attcgtgacc gccagaccta cggatgtac	600	
cactttggaa atttggaga agaaagaata aaggcagaaa tgaggataca gaaagcatgt	660	
cacttgaaga tcaagaagtc aagcttggat gccaatggta aagtggatga tggtgaggat	720	
gatgatggtg aggtatgtga tggtgaggat gatgatggtg atgatgtgg tgaggatgt	780	
gatggtgagg atgatgtgg tgaggatgt gatggtgagg atgatgtga ggtatgtat	840	
ggtatgtatg atggtgagga tgatgtatgt gatgtatgt gtatgtatg tggtgaggat	900	
gatgtatgtg aggtatgtga tggtgacagt gaggatgtatg gtgaggatgg tgatgtatgt	960	

ggtgaggatg atgatggtga cagtgaggat gatggcgatg atggtgatga tcatggtag	1020
gatgatgatc atggtgatga tgtgaggatg atgatgatga tggtgatgac agtgcacatg	1080
atgaagaatg ttgttggtaa ttacagactt cctgagctac caacttggac atctgtacaa	1140
cgatacaaat tttga	1155

<210> 146
<211> 384
<212> PRT
<213> Homo sapiens

<400> 146

Met Gln Ser Leu Ile Ser Pro Val Thr Lys Ala Ile Leu Val Ala Leu			
1	5	10	15

Phe Ile Phe Ala Ile Leu Leu Ile Leu Tyr Val Ile Leu Trp Asp Ala		
20	25	30

Pro Gly Arg Ala Gly Glu Cys Ala Arg Ala Gly Ala Leu Gly Gly His		
35	40	45

Gly Trp Gly Ala Pro Thr Ser Gly Arg Thr Arg Asn Pro Asp Ala Gly		
50	55	60

Leu Asn Pro Arg Ile His Gly Ala Arg Gly Ser Pro Met Gly His Gly			
65	70	75	80

Lys Arg Gln Met Arg Val Gln Arg Gly Pro Ser His Pro Pro Pro Gly		
85	90	95

Arg Leu Gly Ser Lys Ala His Arg Arg Ser Arg Leu Trp Pro Pro Pro		
100	105	110

Val Gln Gln Asn Ala Gly Ser Arg Val Gly Pro Met Arg Tyr Gly Thr		
115	120	125

Pro Gly Ala Ile Gly Ser Leu Ala Leu Cys Ser Gly Gly Asp Pro		
130	135	140

Ala Leu Lys Phe Pro Ile Thr Ser Met Asp Lys His Gly Lys Ile Met			
145	150	155	160

Ser Trp Lys Asn Ser Ile Ala Leu Gln Ile Gln Thr Arg His Phe Ala		
165	170	175

His Glu Thr Arg Val Pro Glu Ile Ser Arg Ser Lys Ser Arg Ile Arg		
180	185	190

Asp Arg Gln Thr Tyr Gly Met Tyr His Phe Gly Asn Phe Gly Glu Glu
195 200 205

Arg Ile Lys Ala Glu Met Arg Ile Gln Lys Ala Cys His Leu Lys Ile
210 215 220

Lys Lys Ser Ser Leu Asp Ala Asn Gly Lys Val Asp Asp Gly Glu Asp
225 230 235 240

Asp Asp Gly Glu Asp Asp Gly Glu Asp Asp Asp Gly Asp Asp Asp
245 250 255

Gly Glu Asp Asp Asp Gly Glu Asp Asp Asp Gly Glu Asp Asp Asp Gly
260 265 270

Glu Asp Asp Gly Glu Asp Asp Gly Asp Asp Asp Gly Glu Asp Asp
275 280 285

Asp Gly Asp Asp Asp Gly Asp Asp Asp Gly Glu Asp Asp Asp Gly Glu
290 295 300

Asp Asp Asp Gly Asp Ser Glu Asp Asp Gly Glu Asp Gly Asp Asp Asp
305 310 315 320

Gly Glu Asp Asp Asp Gly Asp Ser Glu Asp Asp Asp Gly Asp Asp Gly Asp
325 330 335

Asp Asp Gly Glu Asp Asp His Gly Asp Asp Val Arg Met Met Met
340 345 350

Met Met Val Met Thr Val Thr Met Met Lys Asn Val Val Gly Asn Tyr
355 360 365

Arg Leu Pro Glu Leu Pro Thr Trp Thr Ser Val Gln Arg Tyr Lys Phe
370 375 380

<210> 147
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 147
tccatgctgc cagttcata c

<210> 148

<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 148
ctcacaagtg atgagattga g 21

<210> 149
<211> 4384
<212> DNA
<213> Homo sapiens

<400> 149	
aaacagacgc ataactgtgc attgttcttt gggatttga gaggcattcat ctcattca	60
actttaaaggc agcttaatct ttaaggaaca tatctctgat ctggtaatt tgtagaactt	120
aattttaggg tcattacatg tgaggatagc aggagttgaa gatgccaagg acctgaaggg	180
ctactggagg gacaggtgaa gtgatttgaa gatgttagcat tttgaatctc tttctggccc	240
atcctctgct tcacaccaga atcattgtga cctgttagacc tgcaaaaacaa aggaccaaag	300
gttagcatgc agaagtgaaa gtgtcaataa taaccaaacc actccatcaa gttaggtctg	360
gggaaaagca gcagcaaaaa tgagttctta cttctggca caaatgaaa gtaacagacc	420
tgatttactc tgcgggcagc cagctgacta cttgttggaa gagaacatt tcacaacgct	480
tgtatgcttc attgttgttt tgggaggcgt tttgaagatg tgttaaaga attgtgaagt	540
cattgttttgc acgattctt ctctatcagg attcgtagata ggacacatgg cctacaattc	600
tgtttaggtg caccaaatttgc tctaccctct tctaagaaca tcaagttttt cactttattc	660
ttactttca ctttaatatttattatggt tgctttggat gtagaattttt atacactcaa	720
gaaaatgttt tggcaggctct tggtaactgg attaatttagc tttctacag caagcatcat	780
aattggatat gtcgttataa aattcaataa agattcatgg gatttgcattt cttgcctact	840
cttttagcatc acccttggca ttatagatcc tcttcgttct gtgaattcac taaaaactat	900
tggcatttctt aaaatataca ttgatctcat tagaggagaa tcattgatca tttgttagcat	960
cgcatcaatt tttttggaa attttcgggg caacagaatc cactttcttca ttttttagaga	1020
tttacatgta ggcattgaac tcagctatga cattttggaa agcataatattt ttggatattt	1080
gtgtgcaaaa atcattcagt gtatattggc tgacgtttt agcaatatgc tgactaatat	1140
cattctctgc tttcaatgg tgcatacatgac tttctatattt gtggatattt taggaatgtc	1200
aggcactctt gccttagccg ctgttagact gaatttagat tcttaactt ttaaaccgaa	1260
gatcgaactt gtaattacta agttcttaag aatttttca tctgtatatg aacatttaat	1320
atatgctttc tttggcatttgc tgattggatg tggagaactc agccactatg aatttcacac	1380

tatacccttc atattcattt tatttacaac agtgaatttg gtaagggtgc ttactat	1440
gttagtgagc cctattttga tgcattcaaa ttatgaatat aattggcgat ggggagttgt	1500
aatcacgtgg tctggaatta aaggagttt taatttactc tgggctcctg atgtttataa	1560
tctcgctgaa cgaaaagtgg aagtaccaca aatgtttata ctctatgtac aagtaatatc	1620
attattgaca atgggaataa attcatacgt gatgactcag tcagccagga agttagattt	1680
gtgtgttctt tccctcccaa gacaaatgat cttgcaaaaat gccactcagc acatacagga	1740
gatagtagac aacacaataa ctttat	1800
gaccttagta gaagataaaa cgaggatcga atacattcct ttttcccacg tttcacataa	1860
tgatatgaag acagaatcca caacagatga agcttaatg gaggaa	1920
gatgtcaata caaatgagta gctttgaaaa acagcgtaac aatggaattc ttgaaataga	1980
ggcagccccgg atattaatg gtgcagcaaa atgcttattac tccatccaag gaaaattcat	2040
gagtttat gatgtttcaa cttatatgag aactagaagt tggcttataa agttaaaaaa	2100
tgttttaact ttcttggaaat attgtataga aaagataacat tttattccac ctgagagtaa	2160
tacatttctg acttttatat ttcacatagt atttctgaa gaatttgaat atacaggaca	2220
gattataat ttgatataata tttatcctat gataatacat ctgtggccaa tggcaagagg	2280
tttaaatgta tcagcactga tatcaataaa ctactat	2340
atcaacattg aagataataa ttttggaaag gaaatatttt caacaatgtt ggaataactt	2400
ggaattttt atcctggta ttggaatcat tgatatctt tgtgtatact ttgtgaaatt	2460
gagaccagac aacttggctc ttatacagct tacagtaata atggatatt taagaataat	2520
taggtttctt cctctttca agataatagt accaatactg ataagaattt cagatgtca	2580
gatcaaaaag cgccctcagct tgatgtatag tattacaaaa ggcttatca aaagtcaaga	2640
agatgccaaa cttctaataa aacaaatagc tgtctgtgaa tcaatatac agaaactatg	2700
tgaaatttt gaaaccaaca aacaggatgc tgtcaaagaa ttagtactca tggagcatga	2760
gggtcgtgat gttgtcattt ctttgaagac taaacaggca atccggatg tgattgctaa	2820
agctctaaaa aatctcacct tccttggatc aagaggcatt attgataagc atgaagtcat	2880
tgagataat aaggtacttc ttaaaaattt aaaagcacta aataacttca caaaggcaat	2940
cccaccccca actcctgaca tataccttca caacatcatt tggctggaaag gttaaagatgt	3000
tctcattgac ttcttcaagg aaagagccaa acttgcctgt tttgactctg gagataaccat	3060
ttgtaaagga ggtgaaatgc cacaaggaat ctacttaattt atttcaggaa tggcaat	3120
gcatagttt tctcctaccc ttggaataga gagtaatcaa aggtgtgata gagggtccag	3180
agacatgtttt acagagttct gtactactgg ggacataattt ggagagctaa gctgtctgct	3240

taagcgtgaa attgaatata ccgtcatctg tgaaaactagt ttacaggcct gctttatctc	3300
cctggaggat ttatatgaag gctttgatgc cttctggcca tctctggaat ataaaatatg	3360
gctaaagctt gctctcagta ctgcctatca gtatttgaa tcaagtctta ttgatgagga	3420
cttaaggttt cagaactgtg ttagtgcattca tcaagcatat gtggaaactt tatcaagcta	3480
tagtgacatg attattgata atatgaccat gaaatttgtt atcattgtgt atggcagtgt	3540
aattgatact aagacagagg aaccatattt tgcacccgtc attataccta caacctgtga	3600
gcagggttcag ggaacttctg atttaagcaa gctgctgata atccaagcat ctgagcattac	3660
ccaaagaaaat agtaaacacca atgtcatggc ctcagtcaac acggctttg aacaaccagg	3720
aaagaatata aatgaaagac aaaagatgag ttgaaaactg gataccattt tagaaaaaggg	3780
tattaatgat acaaataatga tgtgtggagt caggttaaag accaaactac tttcctcgct	3840
caaatactaa aggattatct gcaaggagtt tacttagaag ctactgaaac aggttactgc	3900
tgcatttagt ttataagcaa tggatggact tctgtaaaac ttcttaattt taagtagttg	3960
cattatattt gggatgttaa aaaagtcttc aggataatat aaaatacact gaaacatatg	4020
tcctacccaaa tgaaaccctg tttccagcta agagcaaatt ttaacatagt gcattataaa	4080
aagtgtttaa taactgatat gttactctct aaagcataga acctgtaatt ttcatttgc	4140
aaattgttat aattagtgcc tccctaatat tttcccaggt atagctattc tcccctcccc	4200
agtttggtaa atattgaaaa acagaattat attccacaat cttagtaact ttcagtaagt	4260
aagtaacttt tgcttcagt gaaatttagg agaaattaat attctcatat tgcatagtagc	4320
tgtttgatgt caccttcat tttatttta aaaatcaaat aaagttgagt tttatggttg	4380
tcta	4384

<210> 150
 <211> 1124
 <212> PRT
 <213> Homo sapiens

 <400> 150

Met Ser Ser Tyr Phe Trp Ala Gln Asn Glu Ser Asn Arg Pro Asp Leu
 1 5 10 15

Leu Cys Gly Gln Pro Ala Asp Tyr Leu Val Glu Glu Lys His Phe Thr
 20 25 30

Thr Leu Val Cys Phe Ile Val Val Leu Gly Gly Leu Leu Lys Met Cys
 35 40 45

Leu Lys Asn Cys Glu Val Ile Val Leu Thr Ile Leu Ser Leu Ser Gly
 50 55 60

Phe Val Ile Gly His Met Ala Tyr Asn Ser Val Glu Val His Gln Ile
65 70 75 80

Val Tyr Pro Leu Leu Arg Thr Ser Ser Phe Ser Leu Tyr Ser Tyr Phe
85 90 95

Ser Pro Leu Ile Ile Phe Met Val Ala Leu Asp Val Glu Phe Tyr Thr
100 105 110

Leu Lys Lys Met Phe Trp Gln Val Leu Leu Thr Gly Leu Ile Ser Phe
115 120 125

Ser Thr Ala Ser Ile Ile Gly Tyr Val Val Ile Lys Phe Asn Lys
130 135 140

Asp Ser Trp Asp Leu Gln Ser Cys Leu Leu Phe Ser Ile Thr Leu Gly
145 150 155 160

Ile Ile Asp Pro Leu Arg Ser Val Asn Ser Leu Lys Thr Ile Gly Ile
165 170 175

Ser Lys Ile Tyr Ile Asp Leu Ile Arg Gly Glu Ser Leu Ile Ile Cys
180 185 190

Ser Ile Ala Ser Ile Phe Phe Gly Asn Phe Arg Gly Asn Arg Ile His
195 200 205

Phe Ser Ile Phe Arg Asp Leu His Val Gly Ile Glu Leu Ser Tyr Asp
210 215 220

Ile Leu Gly Ser Ile Ile Phe Gly Tyr Trp Cys Ala Lys Ile Ile Gln
225 230 235 240

Cys Ile Leu Ala Asp Val Phe Ser Asn Met Leu Thr Asn Ile Ile Leu
245 250 255

Cys Phe Ser Met Val Tyr Met Thr Phe Tyr Ile Val Glu Phe Leu Gly
260 265 270

Met Ser Gly Thr Leu Ala Leu Ala Val Gly Leu Asn Leu Asp Ser
275 280 285

Leu Thr Phe Lys Pro Lys Ile Glu Leu Val Ile Thr Lys Phe Leu Arg
290 295 300

Ile Phe Ser Ser Val Tyr Glu His Leu Ile Tyr Ala Phe Phe Gly Ile

305	310	315	320
Val Ile Gly Cys Gly Glu Leu Ser His Tyr Glu Phe His Thr Ile Pro			
325		330	335
Phe Ile Phe Ile Leu Phe Thr Thr Val Asn Leu Val Arg Leu Leu Thr			
340		345	350
Ile Leu Leu Val Ser Pro Ile Leu Met His Ser Asn Tyr Glu Tyr Asn			
355		360	365
Trp Arg Trp Gly Val Val Ile Thr Trp Ser Gly Ile Lys Gly Val Phe			
370		375	380
Asn Leu Leu Trp Ala Pro Asp Val Tyr Asn Leu Ala Glu Arg Lys Val			
385		390	395
Glu Val Pro Gln Met Phe Ile Leu Tyr Val Gln Val Ile Ser Leu Leu			
405		410	415
Thr Met Gly Ile Asn Ser Tyr Val Met Thr Gln Ser Ala Arg Lys Leu			
420		425	430
Asp Leu Cys Val Leu Ser Leu Pro Arg Gln Met Ile Leu Gln Asn Ala			
435		440	445
Thr Gln His Ile Gln Glu Ile Val Gln Asn Thr Ile Thr Leu Phe Lys			
450		455	460
Thr Glu Lys Ile Leu Thr Asn Val Asn Trp Thr Leu Val Glu Asp Lys			
465		470	475
480			
Thr Arg Ile Glu Tyr Ile Pro Phe Ser His Val Ser His Asn Asp Met			
485		490	495
Lys Thr Glu Ser Thr Thr Asp Glu Ala Leu Met Glu Glu Ala Arg Leu			
500		505	510
His Val Ala Ala Ile Gln Met Ser Ser Phe Glu Lys Gln Arg Asn Asn			
515		520	525
Gly Ile Leu Glu Ile Glu Ala Ala Arg Ile Leu Ile Gly Ala Ala Lys			
530		535	540
Cys Tyr Tyr Ser Ile Gln Gly Lys Phe Met Ser Ile Tyr Asp Val Ser			
545		550	555
560			

Thr Tyr Met Arg Thr Arg Ser Trp Leu Ile Lys Phe Lys Asn Val Leu
565 570 575

Thr Phe Leu Glu Tyr Cys Ile Glu Lys Ile His Phe Ile Pro Pro Glu
580 585 590

Ser Asn Thr Phe Leu Thr Phe Ile Phe His Ile Val Phe Ser Glu Glu
595 600 605

Phe Glu Tyr Thr Gly Gln Ile Ile Asn Leu Ile Tyr Ile Tyr Pro Met
610 615 620

Ile Ile His Leu Trp Pro Met Ala Arg Gly Leu Asn Val Ser Ala Leu
625 630 635 640

Ile Ser Ile Asn Tyr Tyr Phe Met Phe Leu Tyr Val Leu Glu Ser Thr
645 650 655

Leu Lys Ile Ile Leu Lys Arg Lys Tyr Phe Gln Gln Cys Trp Asn
660 665 670

Thr Leu Glu Phe Phe Ile Leu Val Ile Gly Ile Ile Asp Ile Phe Cys
675 680 685

Val Tyr Phe Val Lys Leu Arg Pro Asp Asn Leu Ala Leu Ile Gln Leu
690 695 700

Thr Val Ile Met Gly Tyr Leu Arg Ile Ile Arg Phe Leu Pro Leu Phe
705 710 715 720

Lys Ile Ile Val Pro Ile Leu Ile Arg Ile Ala Asp Val Gln Ile Lys
725 730 735

Lys Arg Leu Ser Leu Met Tyr Ser Ile Thr Lys Gly Tyr Ile Lys Ser
740 745 750

Gln Glu Asp Ala Lys Leu Leu Ile Lys Gln Ile Ala Val Cys Glu Ser
755 760 765

Ile Tyr Gln Lys Leu Cys Glu Ile Leu Glu Thr Asn Lys Gln Asp Ala
770 775 780

Val Lys Glu Leu Val Leu Met Glu His Glu Gly Arg Asp Val Val Ile
785 790 795 800

Ala Leu Lys Thr Lys Gln Ala Ile Arg Asn Val Ile Ala Lys Ala Leu
805 810 815

Lys Asn Leu Thr Phe Leu Cys Ser Arg Gly Ile Ile Asp Lys His Glu
820 825 830

Val Ile Glu Ile Asn Lys Val Leu Leu Lys Lys Leu Lys Ala Leu Asn
835 840 845

Asn Phe Pro Lys Ala Ile Pro Pro Pro Thr Pro Asp Ile Tyr Leu His
850 855 860

Asn Ile Ile Trp Leu Glu Gly Lys Asp Val Leu Ile Asp Phe Phe Lys
865 870 875 880

Glu Arg Ala Lys Leu Ala Cys Phe Asp Ser Gly Asp Thr Ile Cys Lys
885 890 895

Gly Gly Glu Met Pro Gln Gly Ile Tyr Leu Ile Ile Ser Gly Met Ala
900 905 910

Ile Leu His Ser Leu Ser Pro Thr Phe Gly Ile Glu Ser Asn Gln Arg
915 920 925

Cys Asp Arg Gly Ser Arg Asp Met Phe Thr Glu Phe Cys Thr Thr Gly
930 935 940

Asp Ile Ile Gly Glu Leu Ser Cys Leu Leu Lys Arg Glu Ile Glu Tyr
945 950 955 960

Thr Val Ile Cys Glu Thr Ser Leu Gln Ala Cys Phe Ile Ser Leu Glu
965 970 975

Asp Leu Tyr Glu Gly Phe Asp Ala Phe Trp Pro Ser Leu Glu Tyr Lys
980 985 990

Ile Trp Leu Lys Leu Ala Leu Ser Thr Ala Tyr Gln Tyr Phe Glu Ser
995 1000 1005

Ser Leu Ile Asp Glu Asp Leu Arg Phe Gln Asn Cys Val Met Phe
1010 1015 1020

Asn Gln Ala Tyr Val Glu Thr Leu Ser Ser Tyr Ser Asp Met Ile
1025 1030 1035

Ile Asp Asn Met Thr Met Lys Phe Val Ile Ile Val Tyr Gly Ser
1040 1045 1050

Val Ile Asp Thr Lys Thr Glu Glu Pro Tyr Phe Ala Pro Cys Ile

1055

1060

1065

Ile Pro Thr Thr Cys Glu Gln Val Gln Gly Thr Ser Asp Leu Ser
 1070 1075 1080

Lys Leu Leu Ile Ile Gln Ala Ser Glu Leu Thr Gln Arg Asn Ser
 1085 1090 1095

Asn Thr Asn Val Met Ala Ser Val Asn Thr Val Phe Glu Gln Pro
 1100 1105 1110

Gly Lys Asn Ile Asn Gly Arg Gln Lys Met Ser
 1115 1120

<210> 151
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 151
 ctacaacctg tgagcagggtt c

21

<210> 152
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 152
 cctgtttcag tggcttctaa g

21

<210> 153
 <211> 1189
 <212> DNA
 <213> Homo sapiens

<400> 153		
ctatgccttc tgaccccgta ttggacttca actgggagaa tgtggagcca tttgaacagg		60
ctcctcttct ggagcatatt ttcttctgtc acttgttagaa aagctgtatt ggattgttag		120
gcaataaaa caaatgaatt cccttctcca tggggacttcaa aatcactgca gatcacctat		180
aagggtcaaa atgttatctat gttttgttcc cataagaaca aatcactgca gatcacctat		240
tcattgttcc gacgttacat acacctggta acccaggatg gaaaagggtga acctgcgtt		300
ttaacctaa gcatcacaga agcccatgaa tcaggcccata acaaattgtca agcccaagtt		360
accagctgtt caaaatacag tcgtgacttc agcttcacgtt ttgtcgaccc ggtgacttcc		420

ccagtgcgtga acattatggc cattcaaaca gaaacagacc gacatataac attacattgc	480
ctctcagtca atggctcgct gcccatcaat tacacttct ttgaaaacca tgttgccata	540
tcaccagcta tttccaagta tgacagggag cctgctgaat ttaacttaac caagaagaat	600
cctggagaag aggaagagta taggtgtgaa gctaaaaaca gattgcctaa ctatgcaaca	660
tacagtcacc ctgtcaccat gccctcaaca ggcggagaca gctgtcctt ctgtctgaag	720
ctactacttc cagggttatt actgttgctg gtggtgataa tcctaattct ggcttttgg	780
gtactgccc aatacaaaaac aagaaaagct atgagaaaata atgtgcccag ggaccgtgga	840
gacacagcca tggaaagttgg aatctatgca aatatcctt aaaaacaagc aaaggaggaa	900
tctgtgccag aagtgggatc caggccgtgt gtttccacag cccaaagatga ggccaaacac	960
tcccaggagc tacagtatgc caccgggtg ttccaggagg tggcaccaag agagcaagaa	1020
gcctgtgatt cttataaaatc tggatatgtc tattctgaat cctgacactca gatgatctgc	1080
ctgcctcggc ctccccaaagt gctggaacta caagcctgag ccaccgtgcc cgccctgaa	1140
tcgcttagt aaataaaaggg tctccaagaa taaattcatc cgaacatgc	1189

<210> 154

<211> 341

<212> PRT

<213> Homo sapiens

<400> 154

Met Trp Ser His Leu Asn Arg Leu Leu Phe Trp Ser Ile Phe Ser Ser			
1	5	10	15

Val Thr Cys Arg Lys Ala Val Leu Asp Cys Glu Ala Met Lys Thr Asn			
20	25	30	

Glu Phe Pro Ser Pro Cys Leu Asp Ser Lys Thr Lys Val Val Met Lys			
35	40	45	

Gly Gln Asn Val Ser Met Phe Cys Ser His Lys Asn Lys Ser Leu Gln			
50	55	60	

Ile Thr Tyr Ser Leu Phe Arg Arg Lys Thr His Leu Gly Thr Gln Asp			
65	70	75	80

Gly Lys Gly Glu Pro Ala Ile Phe Asn Leu Ser Ile Thr Glu Ala His			
85	90	95	

Glu Ser Gly Pro Tyr Lys Cys Lys Ala Gln Val Thr Ser Cys Ser Lys			
100	105	110	

Tyr Ser Arg Asp Phe Ser Phe Thr Ile Val Asp Pro Val Thr Ser Pro
115 120 125

Val Leu Asn Ile Met Val Ile Gln Thr Glu Thr Asp Arg His Ile Thr
130 135 140

Leu His Cys Leu Ser Val Asn Gly Ser Leu Pro Ile Asn Tyr Thr Phe
145 150 155 160

Phe Glu Asn His Val Ala Ile Ser Pro Ala Ile Ser Lys Tyr Asp Arg
165 170 175

Glu Pro Ala Glu Phe Asn Leu Thr Lys Lys Asn Pro Gly Glu Glu Glu
180 185 190

Glu Tyr Arg Cys Glu Ala Lys Asn Arg Leu Pro Asn Tyr Ala Thr Tyr
195 200 205

Ser His Pro Val Thr Met Pro Ser Thr Gly Gly Asp Ser Cys Pro Phe
210 215 220

Cys Leu Lys Leu Leu Leu Pro Gly Leu Leu Leu Leu Val Val Ile
225 230 235 240

Ile Leu Ile Leu Ala Phe Trp Val Leu Pro Lys Tyr Lys Thr Arg Lys
245 250 255

Ala Met Arg Asn Asn Val Pro Arg Asp Arg Gly Asp Thr Ala Met Glu
260 265 270

Val Gly Ile Tyr Ala Asn Ile Leu Glu Lys Gln Ala Lys Glu Glu Ser
275 280 285

Val Pro Glu Val Gly Ser Arg Pro Cys Val Ser Thr Ala Gln Asp Glu
290 295 300

Ala Lys His Ser Gln Glu Leu Gln Tyr Ala Thr Pro Val Phe Gln Glu
305 310 315 320

Val Ala Pro Arg Glu Gln Glu Ala Cys Asp Ser Tyr Lys Ser Gly Tyr
325 330 335

Val Tyr Ser Glu Ser
340

<210> 155
<211> 21

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 155
 gaggaatctg tgccagaagt g

21

<210> 156
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide

<400> 156
 acagagttag actccatcct g

21

<210> 157
 <211> 2713
 <212> DNA
 <213> Homo sapiens

<400> 157						
gggctggct	ggggtgctca	gcccaatttt	ccgtgttaggg	agcgccccggc	ggcgaaaaaa	60
gcagagggcgg	aggcgaggatc	aagagcgac	cggcgcccc	gccgtggcg	gcctgagatc	120
gagccggcg	ttagtcgcag	caggagccgc	agccggagtc	acagccgcag	ccagagccgc	180
agccaaagcc	ttagatgcac	ggatggatgg	cgcaggccct	gctggatccg	cgcctagatc	240
ggccgcaggc	accggccgga	ggacggggccg	tgggtgcagc	tcactgcggc	ggcgctgtgg	300
gaggcagcga	cccccgcgacc	ccccggggccg	ggcacccgcca	ggcgccggagc	ccagatcgcc	360
cccctgcccag	gcctggtcac	ggccagagca	cgcaggatct	ggatctgcgc		420
gcaccctaata	gacctggggta	cttgcggatgg	aaaaggaaacg	aggatccat	ctaaaagcat	480
aacgtgggca	ctaggcgagg	aggaaagtgg	agaccacctg	gcacggggca	gaggtgcctg	540
gagccacacgc	tttgcgtatcg	gagaccctgg	catcctagca	gccgcgaccc	tggctctgcc	600
ctgtctgagc	tggaaacaca	gcttagcttc	tagacatcg	tggcacaggc	ctggcacacaag	660
taagcagtgt	cctcacctgt	cttgcggatgg	acacggggtc	ggaggaacca	ggatctgcgc	720
tggccccaag	cgaaactctc	tggggccca	gagggtcgta	ctggggggcc	cgccctcctgc	780
cctagcctca	ctgggtgcgga	tgtggcgctg	cccgccggag	caccatgtat	gcaggatgac	840
ctcagccgaa	gtaggagcag	cagctggtgg	tgctcaggcg	gctggggcccc	ccgagttggcc	900
ccctggcagc	cctcaggccc	tccggcagcc	tggccgggccc	cgagtggcca	tggcagcact	960
ggtgtggctg	ctggcgaggag	ccagcatgtc	aaggctcaac	aagtggatct	tcacagtgca	1020

cggctttggg cggccccgtgc tgctgtcgcc cctgcacatg ctggtggcag ccctggcatg	1080
ccaccggggg gcacggcgcc ccatgccagg cggcaactcgcc tgccgagtcc tactgctcag	1140
tctcacctt ggcacgtcca tggcctgcgg caacgtgggc ctaagggctg tgcccctgga	1200
cctggcacaa ctggttacta ccaccacacc tctgttcacc ctggccctgt cggcgctgct	1260
gctggccgcg cgccaccacc cacttcagtt ggccgcctat ggtccgctct gcctgggggc	1320
cgcctgcagc ctggctggag agttccggac accccctacc ggctgtggct tcctgctcgc	1380
agccacctgc ctccgcggac tcaagtcggt tcagcaaagt gccctgctgc aggaggagag	1440
gctggacgcg gtgaccctgc tttacgcccac ctcgctgccc agttctgcc tgctggcggg	1500
tgcagccctg gtgctggagg ctggcgttgc cccaccgcgg actgctggcg actctcgct	1560
ctgggcctgc atcctgctca gctgcctcct gtctgttctc tataacctgg ccagcttctc	1620
cctgctggcc ctcacctctg ccctcaccgt ccacgtcctg ggcaacctca ccgtggtggg	1680
caacctcatc ctgtcccggc tgggtttgg cagccgcctc agtgcctca gctacgtggg	1740
catcgactc actctttcag gaatgttcct ttaccacaac tgcgagttcg tggcctcctg	1800
ggctgcccgt cgggggctgt ggcggaggga ccagcccagc aagggtctt gagacctggg	1860
ggatctcagg agccacctgg gatggccctg gcctgaatcc agcctccgct gtggccatag	1920
aaggaatgga gaacagggtc gggcatggtg gtcacgcct ataatccag cacttccaga	1980
gtccgaggtg ggtggatcac ctgaggccag gagttcgaga ccagcctggc taacatggca	2040
aaacctcatc tctactaaaa atagaaaaat tagctggca tggtgccgcg tgcctatagt	2100
cccagctaca tgggaggcta aggtgggagg atcacttgag ccctggagat cgaggctgca	2160
gtaagccaag atcgcatgct actgcactcc agcctgggag acagagcgag acgctgtctc	2220
aattaaaaaaaa aaaaaaaaaagt ggagaactgg cagtgaccctc tactgggggc catggcaggg	2280
aggggagcct tctggaaggg ctgccttggc gattggaatg gggactccca gggagacctg	2340
cgttccatcc ctgcctgcct cacccctgcc acagactctg cacaccactg gatgggggt	2400
ccaaggctgg cacagtcctc gtgcttgtca gagtcattat tatgattaat atcaattacg	2460
atgccaaaaaa ttgctggca aacttgaag acctcaactt gttacaatga cgatgtatgt	2520
gattcttggc gtttacacaa tccttcctcc tggggggggag gcagcttagga ggcccagcag	2580
gggggcttct atgctgtgg gtccttcgtgg ggagttgggg tagtctgtgc caactccagg	2640
cagctgctgt ggcctcaccc ctggggccccc caatttggg tcatccatcc tcaaatacac	2700
tatTTTGTCT	2713

<210> 158
<211> 350
<212> PRT

<213> Homo sapiens

<400> 158

Met Cys Arg Cys Pro Pro Glu His His Asp Gly Arg Met Thr Ser Ala
1 5 10 15

Glu Val Gly Ala Ala Ala Gly Gly Ala Gln Ala Ala Gly Pro Pro Glu
20 25 30

Trp Pro Pro Gly Ser Pro Gln Ala Leu Arg Gln Pro Gly Arg Ala Arg
35 40 45

Val Ala Met Ala Ala Leu Val Trp Leu Leu Ala Gly Ala Ser Met Ser
50 55 60

Ser Leu Asn Lys Trp Ile Phe Thr Val His Gly Phe Gly Arg Pro Leu
65 70 75 80

Leu Leu Ser Ala Leu His Met Leu Val Ala Ala Leu Ala Cys His Arg
85 90 95

Gly Ala Arg Arg Pro Met Pro Gly Gly Thr Arg Cys Arg Val Leu Leu
100 105 110

Leu Ser Leu Thr Phe Gly Thr Ser Met Ala Cys Gly Asn Val Gly Leu
115 120 125

Arg Ala Val Pro Leu Asp Leu Ala Gln Leu Val Thr Thr Thr Thr Pro
130 135 140

Leu Phe Thr Leu Ala Leu Ser Ala Leu Leu Leu Gly Arg Arg His His
145 150 155 160

Pro Leu Gln Leu Ala Ala Met Gly Pro Leu Cys Leu Gly Ala Ala Cys
165 170 175

Ser Leu Ala Gly Glu Phe Arg Thr Pro Pro Thr Gly Cys Gly Phe Leu
180 185 190

Leu Ala Ala Thr Cys Leu Arg Gly Leu Lys Ser Val Gln Gln Ser Ala
195 200 205

Leu Leu Gln Glu Glu Arg Leu Asp Ala Val Thr Leu Leu Tyr Ala Thr
210 215 220

Ser Leu Pro Ser Phe Cys Leu Leu Ala Gly Ala Ala Leu Val Leu Glu
225 230 235 240

Ala Gly Val Ala Pro Pro Pro Thr Ala Gly Asp Ser Arg Leu Trp Ala
 245 250 255

Cys Ile Leu Leu Ser Cys Leu Leu Ser Val Leu Tyr Asn Leu Ala Ser
 260 265 270

Phe Ser Leu Leu Ala Leu Thr Ser Ala Leu Thr Val His Val Leu Gly
 275 280 285

Asn Leu Thr Val Val Gly Asn Leu Ile Leu Ser Arg Leu Leu Phe Gly
 290 295 300

Ser Arg Leu Ser Ala Leu Ser Tyr Val Gly Ile Ala Leu Thr Leu Ser
 305 310 315 320

Gly Met Phe Leu Tyr His Asn Cys Glu Phe Val Ala Ser Trp Ala Ala
 325 330 335

Arg Arg Gly Leu Trp Arg Arg Asp Gln Pro Ser Lys Gly Leu
 340 345 350

<210> 159
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 159
caagtcgggtt cagcaaagtgc 21

<210> 160
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 160
cctgaaaagag tgagtgcgtat g 21

<210> 161
<211> 963
<212> DNA
<213> Homo sapiens

<400> 161
gactacacaa ggactgaacc agaaggaaga ggacagagca aagccatgaa catcatccta 60
gaaatccttc tgcttctgat caccatcatc tactcctact tggagtcgtt ggtgaagttt 120

ttcattcctc agaggagaaa atctgtggct ggggagattt ttctcattac tggagctggg	180
catggaatag gcaggcagac tacttatgaa tttgc当地aaac gacagagcat attggttctg	240
tggatatta ataagcgccg tgtggaggaa actgcagctg agtgc当地aaa actaggcgtc	300
actgc当地atg cgtatgtggt agactgc当地 aacagagaag agatctatcg ctctctaaat	360
caggtgaaga aagaagtgg tgatgtaca atcgtggta ataatgctgg gacagtataat	420
ccagccgatc ttctcagcac caaggatgaa gagattacca agacatttga ggtcaacatc	480
cttaggacatt ttggatcac aaaagcactt cttccatcga tgatggagag aaatcatggc	540
cacatcgtca cagtggctc agtgtgc当地 cacgaaggaa ttc当地tacat catccc当地at	600
tgtccagca aatttgc当地 tggtggctt cacagagtc tgacatcaga acttcaggcc	660
ttggaaaaaa ctggtatcaa aacctcatgt ctctgccc当地 ttttgtgaa tactggg当地tc	720
accaaaaatc caagcacaag attatggct gtattggaga cagatgaagt cgtaagaagt	780
ctgatagatg gaataacttac caataagaaa atgattttg ttccatcgtatcaatatc	840
tttctgagac tacagaatcc tgataatatt aaaaacattt gtttggact agcagcagtc	900
aaacgaacaa gattaattac ctgtcttc当地 gtttctcaag aatatttacg tagttttca	960
tag	963

<210> 162

<211> 305

<212> PRT

<213> Homo sapiens

<400> 162

Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Ile Thr Ile Ile Tyr			
1	5	10	15

Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg Arg Lys			
20	25	30	

Ser Val Ala Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile			
35	40	45	

Gly Arg Gln Thr Thr Tyr Glu Phe Ala Lys Arg Gln Ser Ile Leu Val			
50	55	60	

Leu Trp Asp Ile Asn Lys Arg Gly Val Glu Glu Thr Ala Ala Glu Cys			
65	70	75	80

Arg Lys Leu Gly Val Thr Ala His Ala Tyr Val Val Asp Cys Ser Asn			
85	90	95	

Arg Glu Glu Ile Tyr Arg Ser Leu Asn Gln Val Lys Lys Glu Val Gly
100 105 110

Asp Val Thr Ile Val Val Asn Asn Ala Gly Thr Val Tyr Pro Ala Asp
115 120 125

Leu Leu Ser Thr Lys Asp Glu Glu Ile Thr Lys Thr Phe Glu Val Asn
130 135 140

Ile Leu Gly His Phe Trp Ile Thr Lys Ala Leu Leu Pro Ser Met Met
145 150 155 160

Glu Arg Asn His Gly His Ile Val Thr Val Ala Ser Val Cys Gly His
165 170 175

Glu Gly Ile Pro Tyr Leu Ile Pro Tyr Cys Ser Ser Lys Phe Ala Ala
180 185 190

Val Gly Phe His Arg Gly Leu Thr Ser Glu Leu Gln Ala Leu Gly Lys
195 200 205

Thr Gly Ile Lys Thr Ser Cys Leu Cys Pro Val Phe Val Asn Thr Gly
210 215 220

Phe Thr Lys Asn Pro Ser Thr Arg Leu Trp Pro Val Leu Glu Thr Asp
225 230 235 240

Glu Val Val Arg Ser Leu Ile Asp Gly Ile Leu Thr Asn Lys Lys Met
245 250 255

Ile Phe Val Pro Ser Tyr Ile Asn Ile Phe Leu Arg Leu Gln Asn Pro
260 265 270

Asp Asn Ile Lys Asn Ile Gly Leu Ala Leu Ala Ala Val Lys Arg Thr
275 280 285

Arg Leu Ile Thr Cys Leu Pro Val Ser Gln Glu Tyr Leu Arg Ser Phe
290 295 300

Ser
305

<210> 163
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 163

ggtctgacat cagaacttca g

21

<210> 164

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 164

tgcatcacatc tctggctgga g

21

<210> 165

<211> 6014

<212> DNA

<213> Homo sapiens

<400> 165

cacccggaag gagcgggtgtg agcggtccaa ggagccccgc aggtttgcct cgagatgaa 60

gcagtgtgtc cggctgacgg tccatcccaa caatatctcc gtctctcagt acaacgtgct 120

gctggtcctg gagacgtaca atgtcccgga gctgtcagct gggtcaact gcaccttga 180

ggacctgtca gagatggatg ggctggcgt gggcaatcag atccagtgct actccctgc 240

agccaaggag gtgccccgga tcatcacaga gaatggggac caccatgtcg tacagttca 300

gctcaaatac aaggagaccc gcatgacctt cgccagcacc agctttgtct tctacaattg 360

cagcgtccac aattcgtgcc tgcctgcgt ggagagtcca taccgctgcc actgggttaa 420

ataccggcat gtctgcaccc atgaccccaa gacctgctcc ttccaggaag gccgagtgaa 480

gctgcccggag gactgcccccc agctgctgctg agtggacaag atcctgggtgc ccgtggaggt 540

gatcaaggcct atcacgctga aggccaagaa cctccccccag ccccagtctg ggcagcgtgg 600

ctacgaatgc atcctcaaca ttccagggcag cgagcagcga gtgccccggcc tgcgttcaa 660

cagctccagc gtacagtgcc agaacacccct ttattccat gaaggatgg agatcaacaa 720

cctgcccgtg gagttgacag tcgtgtggaa tgggcacttc aacattgaca acccagctca 780

gaataaaagtt cacctctaca agtgtggagc catgcgtgag agctgcgggc tgtgcctcaa 840

ggctgaccca gacttcgcat gtggctggtg ccagggccca ggccagtgcac ccctgcggca 900

gcactgcccct gcccaggaga gccagtggct ggagctgtct ggtccaaaa gcaagtgcac 960

aaaccccccgc atcacagaga taatcccggt gacaggcccc cgggaagggg gcacccaagg 1020

caactatccga ggggagaacc tgggcctgga atttcgcgac atgcctccc atgtcaaggt 1080

tgctggcgtg gagtgacacc cttagtgga tggttacatc cctgcagaac agatcgtgtg 1140

tgagatgggg gaggccaagc ccagccagca tgcaggcttc gtggagatct gcgtggctgt	1200
gtgtcgccct gaattcatgg cccggcctc acagctctat tacttcatga cactgactct	1260
ctcagatctg aagcccagcc gggggcccat gtccggaggg acccaagtga ccatcacagg	1320
caccaacctg aatgccggaa gcaacgtggt ggtgatgtt ggaaagcagc cctgtctctt	1380
ccacaggcga tctccatcct acattgtctg caacaccaca tcctcagatg aggtgctaga	1440
gatgaaggtg tcggtgcagg tggacagggc caagatccac caggacctgg tcttcagta	1500
tgtgaaagac cccaccatcg tgcgattga gccagaatgg agcattgtca gtggaaacac	1560
acccatcgcc gtagggggga cccacctgga cctcatacag aacccccaga tccgtgcaa	1620
gcatggaggg aaggagcaca tcaatatctg tgaggttctg aacgctactg agatgacctg	1680
tcagggcgccc gccctcgctc tgggtcctga ccaccagtca gacctgaccg agaggcccga	1740
ggagtttggc ttcatcctgg acaacgtcca gtcacgtc acatcaaca agaccaactt	1800
cacctactat cccaaacccgg tgtttgaggc ctgggtccc tcaggaatcc tggagctcaa	1860
gcctggcacf cccatcatcc taaaggcaa gaacctgatc ccgcctgtgg ctggggcaa	1920
cgtgaagctg aactacactg tgctggttgg ggagaagccg tgcaccgtga ccgtgtcaga	1980
tgtccagctg ctctgcgagt cccccaacct catcgccagg cacaaagtga tggccgtgt	2040
cggtgtgcatg gagtaactccc cggggatggt gtacattgcc ccggacagcc cgctcagcct	2100
gccccccatc gtcagcatcg cagtggtcgg cggcctcctc atcattttca tcgtggccgt	2160
gctcattgcc tataaacgca agtcccgcga aagtgacctc acgctgaagc ggctgcagat	2220
gcagatggac aacctggagt cccgtgtgg cctggagtgc aaggaaggta ctgagtggcc	2280
ccatgctgga gccatgtgt gtgtcggtgt gtgcataatgt gtgtgcattgc acatctgtgt	2340
atgtgtatgc atatgtttca tatacaaaca agcaggctgg gcagcagtgg gcagtgtgg	2400
aggctggcgg tgtgtgtgtc tgtgcgaatg tgtgtgtgt catgtgtgtg tgtgcacatc	2460
tgtatgtata tatgtttcat atacaagcaa gcaggccggg cagcagttag cagtgtgg	2520
ggctgtatat gtgtctgtgt gcgtgcgcatt ctgtgtatgt gtatatgttt catgtacaag	2580
caagcaggcc gggcagcagt gggcagtgc ggaggctctg tgtgtgcgtg tgcattgtgt	2640
tgtatgtatg tgtatgtgtt ccatttacaa gcaagcaggc caggcaactg tgagcagtgc	2700
tggaggctgt gtgcgcgtgt gtgtgtgtat gtgtatgtgt ttcatttaca agcaagcagg	2760
ccaggcagct gtgagcagtgc ctggaggctg tgtgtgtgtg tgtgtgagca cgcacgtgt	2820
tgagcagcga cgtgtatgtg tatgtgtgtc atttacaagc aagcaggcca ggcagcgtgt	2880
agcagtgcgtg gaggccgtgt gtgtgtgtgt gtgtgtgtgt ggcgcgcgc ctgtatatgt	2940
gtatgtgttt catttacaag caagcaggcc aggcagcgtgt gggcagcgtgc ggaggctgt	3000

tgtgtgtgca cgtgtgtgta tgcgtatgtg tttcatttac aagcaaggcag gccaggcagc	3060
tgtggcagt gctggaggct gtgtgtgtgt gtgtgtgtat atatgttat	3120
gtgtatgtgt ttcatttaca agcaaggcagc ccaggcagct gtggcagtg ctggaggctg	3180
tgtgtgtgtg tgtgtgtgtg tgtgtatgtg tttcatttac aagtgtgtgt gtgtgtgt	3240
atgtgtatgt gtatgtgttt catttacaag caaggcagcc aggagctgt gggcaatgt	3300
ggaggctgtg catcctacct gcatacctgc aaagcctctc actctatagt ccctatgcct	3360
gtgtcccaga ccacacccat acccaaggcag gccccaccc ggcaacaccca gagaggccaa	3420
ggtctccctg ccctctcctt gaagggtgt tagttagaat ctctttatg tgtggcaggc	3480
acacagcttt gaatgttggaa ggccgttgggt gacttaaagg aaagctgcag actgataaaa	3540
agccaaactcc ctccctctgc tccctgtggg ccgagcaccc caactgggag gggcagccg	3600
aggggagctc ccacccagga ttgtcacctt caccccacta gagcaccttc accccactag	3660
agcagcctcc atacctggaa tcctgggtga gtgggtttt cactctactc gaggggaggt	3720
ctgggggtgt cttaacatga cgcatttcag caatctccag ctttcttcct ctagcaggaa	3780
ggtaaggctg tagggctgat ctgtgatttta gaaggaaggg tgtttcaaag cttgtattaa	3840
aaaaattaca aacaccacca taaagtggaa tcagctgcac taaatccaag aaggaaattt	3900
aggagtcaga ctcttgtaac ccccaggata tcattttgtg actcatcctg ggaggatctg	3960
agctggttct ttgctgtaga tttgtacatg gagtaaatcc ggccccatac ctggggctct	4020
cacttcacac cgattcccac cagggcagcc acggctctt ttgatgggaa agtggatcca	4080
ttccatcccc tctctacatc cttcagctgt caacacagca tccgccttgt gggactgtta	4140
attactgcct ttattatata ttacgctgct taattttttt ctccgcaatg tactcttcc	4200
tctaaattagg tgtgtgttattt agaatctctt ttatgtgtgg caggcagcga gctttgaatg	4260
ttggaggcgc ttggtgactt aaaggaaagc tgcagactga taaaaagcca acaccctcct	4320
tctgctccct gtggggccgag caccccaact gggagggagc agccgatggg agctcccacc	4380
caggattgtc agctgaggcc ccaggaggaa accttggctt cagactttag gggcgagcta	4440
tgctgtgcac gtaggaagaa ggggtcttac agcaaaggac ttgtcagact agccacagag	4500
gcactttgca gcttgcccag agccagccac tgaacgttta cagggctgca ctggcccaag	4560
ccaaggggtc tccttgaaga cttcacagca agccaggacg tcctctacac aaactcagaa	4620
gacacccagc tggggcccttc atgggcctaa gcttctgata tataaacata cccgtgtatt	4680
tacaacact cccacacagg cccacacacc ctcactgaca tacactcatg gactcacaca	4740
tacactcaca tgcacacatg catgcacact cacatacact cactcgtgca ctcacacata	4800
catgcccaca catagtgaca tgctcacaca ctcatgctt cacatacata cactcactga	4860

catacaactca	tgtgctcaca	cgctcatgta	ctcacattcg	tacacacaca	ctgacatata	4920
cttacacact	cacacttgca	catgcataca	catgcactca	catgcacaca	tgcatgcaca	4980
ctcatacact	cacgcactca	acttgcaggc	gtgcacacac	atgcccacat	actcatgcac	5040
tcacattcac	acatgcgtgc	acacatagac	gcatgcactc	acacatgcat	acacacagac	5100
atacacatgc	actcacatcc	gtacttgcac	acacacccaac	acacatatgc	acactcacac	5160
tgacaagcat	acacacacac	tcatgcactc	acacccacgc	aggcactcac	attcacacac	5220
atacacactc	attgacatac	attcattcac	atccatgcac	tcacattcac	acatgcatac	5280
acactgacat	tcacacttgc	acatgcctac	acactcactg	acatacacac	acacatgcag	5340
tcatacacac	tccctgacat	gctcacacac	tgtcatactc	acacactccc	tgacatgctc	5400
acacactgtc	acactcacac	actcacatac	actccctgac	atacacactc	agacaagtgc	5460
ccatgcaccc	acacctatgc	tcatgcacat	gttcccacac	tctttataaa	gcatacacac	5520
ccatgttcct	cactcaggac	acacatgaat	gttccccagg	gcatcatgtg	acatgcgaga	5580
ggacagatgg	tggaaaagac	atgagcaacc	taatgggaag	aggaaaatgg	gaaacaatgc	5640
attggaagag	gaagaaaaaa	aataaataac	caaaggaaaa	ggcaagtgc	gtaccaggtg	5700
gagaagctt	acttttctat	ccttgatcat	tttattccct	cccaagaagt	cagtcacagg	5760
acctggaagg	ccagaaaagg	tacatgtggg	agacggtctg	aggaagtacc	tcggtcacta	5820
caatattttt	gcacatataa	agggttgggg	aggaaagaga	cacaaacgta	tttaacacag	5880
atttgctgga	tggaaagctgc	gtgtgtgaac	gtgtgtatga	gtgagtgcac	tttgattttt	5940
ttttttttt	tttgcacagt	taagagaaaa	aatcaaacaa	gcagaaaaaa	aaaagaaaaaa	6000
agacttatca	cggt					6014

<210> 166
 <211> 817
 <212> PRT
 <213> Homo sapiens

<400> 166

Met	Lys	Gln	Cys	Val	Arg	Leu	Thr	Val	His	Pro	Asn	Asn	Ile	Ser	Val	
1								5						10		15

Ser	Gln	Tyr	Asn	Val	Leu	Leu	Val	Leu	Glu	Thr	Tyr	Asn	Val	Pro	Glu
				20				25					30		

Leu	Ser	Ala	Gly	Val	Asn	Cys	Thr	Phe	Glu	Asp	Leu	Ser	Glu	Met	Asp
					35			40				45			

Gly	Leu	Val	Val	Gly	Asn	Gln	Ile	Gln	Cys	Tyr	Ser	Pro	Ala	Ala	Lys
					50			55				60			

Glu Val Pro Arg Ile Ile Thr Glu Asn Gly Asp His His Val Val Gln
65 70 75 80

Leu Gln Leu Lys Ser Lys Glu Thr Gly Met Thr Phe Ala Ser Thr Ser
85 90 95

Phe Val Phe Tyr Asn Cys Ser Val His Asn Ser Cys Leu Ser Cys Val
100 105 110

Glu Ser Pro Tyr Arg Cys His Trp Cys Lys Tyr Arg His Val Cys Thr
115 120 125

His Asp Pro Lys Thr Cys Ser Phe Gln Glu Gly Arg Val Lys Leu Pro
130 135 140

Glu Asp Cys Pro Gln Leu Leu Arg Val Asp Lys Ile Leu Val Pro Val
145 150 155 160

Glu Val Ile Lys Pro Ile Thr Leu Lys Ala Lys Asn Leu Pro Gln Pro
165 170 175

Gln Ser Gly Gln Arg Gly Tyr Glu Cys Ile Leu Asn Ile Gln Gly Ser
180 185 190

Glu Gln Arg Val Pro Ala Leu Arg Phe Asn Ser Ser Ser Val Gln Cys
195 200 205

Gln Asn Thr Ser Tyr Ser Tyr Glu Gly Met Glu Ile Asn Asn Leu Pro
210 215 220

Val Glu Leu Thr Val Val Trp Asn Gly His Phe Asn Ile Asp Asn Pro
225 230 235 240

Ala Gln Asn Lys Val His Leu Tyr Lys Cys Gly Ala Met Arg Glu Ser
245 250 255

Cys Gly Leu Cys Leu Lys Ala Asp Pro Asp Phe Ala Cys Gly Trp Cys
260 265 270

Gln Gly Pro Gly Gln Cys Thr Leu Arg Gln His Cys Pro Ala Gln Glu
275 280 285

Ser Gln Trp Leu Glu Leu Ser Gly Ala Lys Ser Lys Cys Thr Asn Pro
290 295 300

Arg Ile Thr Glu Ile Ile Pro Val Thr Gly Pro Arg Glu Gly Gly Thr

305	310	315	320
Lys Val Thr Ile Arg Gly Glu Asn Leu Gly Leu Glu Phe Arg Asp Ile			
325		330	335
Ala Ser His Val Lys Val Ala Gly Val Glu Cys Ser Pro Leu Val Asp			
340		345	350
Gly Tyr Ile Pro Ala Glu Gln Ile Val Cys Glu Met Gly Glu Ala Lys			
355		360	365
Pro Ser Gln His Ala Gly Phe Val Glu Ile Cys Val Ala Val Cys Arg			
370		375	380
Pro Glu Phe Met Ala Arg Ser Ser Gln Leu Tyr Tyr Phe Met Thr Leu			
385		390	395
Thr Leu Ser Asp Leu Lys Pro Ser Arg Gly Pro Met Ser Gly Gly Thr			
405		410	415
Gln Val Thr Ile Thr Gly Thr Asn Leu Asn Ala Gly Ser Asn Val Val			
420		425	430
Val Met Phe Gly Lys Gln Pro Cys Leu Phe His Arg Arg Ser Pro Ser			
435		440	445
Tyr Ile Val Cys Asn Thr Thr Ser Ser Asp Glu Val Leu Glu Met Lys			
450		455	460
Val Ser Val Gln Val Asp Arg Ala Lys Ile His Gln Asp Leu Val Phe			
465		470	475
480			
Gln Tyr Val Glu Asp Pro Thr Ile Val Arg Ile Glu Pro Glu Trp Ser			
485		490	495
Ile Val Ser Gly Asn Thr Pro Ile Ala Val Trp Gly Thr His Leu Asp			
500		505	510
Leu Ile Gln Asn Pro Gln Ile Arg Ala Lys His Gly Gly Lys Glu His			
515		520	525
Ile Asn Ile Cys Glu Val Leu Asn Ala Thr Glu Met Thr Cys Gln Ala			
530		535	540
Pro Ala Leu Ala Leu Gly Pro Asp His Gln Ser Asp Leu Thr Glu Arg			
545		550	555
560			

Pro Glu Glu Phe Gly Phe Ile Leu Asp Asn Val Gln Ser Leu Leu Ile
565 570 575

Leu Asn Lys Thr Asn Phe Thr Tyr Tyr Pro Asn Pro Val Phe Glu Ala
580 585 590

Phe Gly Pro Ser Gly Ile Leu Glu Leu Lys Pro Gly Thr Pro Ile Ile
595 600 605

Leu Lys Gly Lys Asn Leu Ile Pro Pro Val Ala Gly Gly Asn Val Lys
610 615 620

Leu Asn Tyr Thr Val Leu Val Gly Glu Lys Pro Cys Thr Val Thr Val
625 630 635 640

Ser Asp Val Gln Leu Leu Cys Glu Ser Pro Asn Leu Ile Gly Arg His
645 650 655

Lys Val Met Ala Arg Val Gly Gly Met Glu Tyr Ser Pro Gly Met Val
660 665 670

Tyr Ile Ala Pro Asp Ser Pro Leu Ser Leu Pro Ala Ile Val Ser Ile
675 680 685

Ala Val Ala Gly Gly Leu Leu Ile Ile Phe Ile Val Ala Val Leu Ile
690 695 700

Ala Tyr Lys Arg Lys Ser Arg Glu Ser Asp Leu Thr Leu Lys Arg Leu
705 710 715 720

Gln Met Gln Met Asp Asn Leu Glu Ser Arg Val Ala Leu Glu Cys Lys
725 730 735

Glu Gly Thr Glu Trp Pro His Ala Gly Gly His Val Cys Val Arg Val
740 745 750

Cys Ile Cys Val Cys Met His Ile Cys Val Cys Val Cys Ile Cys Phe
755 760 765

Ile Tyr Lys Gln Ala Gly Trp Ala Ala Val Gly Ser Ala Gly Gly Trp
770 775 780

Arg Cys Val Cys Leu Cys Glu Cys Val Cys Val His Val Cys Val Cys
785 790 795 800

Thr Ser Val Cys Ile Tyr Val Ser Tyr Thr Ser Lys Gln Ala Gly Gln
805 810 815

Gln

<210> 167		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 167		
gcaccaaggt cactatccga g		21
<210> 168		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 168		
tctgagagag tcagtgtcat g		21
<210> 169		
<211> 2565		
<212> DNA		
<213> Homo sapiens		
<400> 169		
actgcgacgg taccggggcg gcgggaaagg accgagaggc gggaggagca gcggctcagg	60	
cgcctgcaaa ctggtggcct gaacgaggta gaccatgact gtggtttcag tggcgtcact	120	
cgctgggctg ctcttcctga ggtttccta agccatcccc tggcggAACc gccccagta	180	
tggactccaa ttgccttgac agtgtttta gtggctgttgc caacattatg taaagaacaa	240	
ggaataacag ttgttaggaat ttgctgtgt tatgaagtgt ttattgccca ggggtatact	300	
ttgccattac tatgtactac tgctggacag tttctccgtg gaaaggtag cattccattt	360	
tctatgctgc agacactagt aaaactcatt gtcttgatgt tcagtagattt attacttgg	420	
gtgatttagag tccaggttat tcaatccaa cttccagttat tcaccaggtt tgataaccca	480	
gctgctgtaa gcccaactcc tacaaggcaa ctaacttttta actacccct tcctgtgaat	540	
gcttggttgt tattaaatcc ttcagagctc tgctgtgatt ggaccatggg aacaatacca	600	
cttatacgat cattactaga tattcgaaat ctggccacat ttactttctt ttgtttctg	660	
gggatgttgg gagtattcag tatcagatac tctggtgatt cctccaagac tgtttaatg	720	
ttgcctgcta aaactgacat gggtaaaaaa tttgagaaaaa gtatgtaa gttcaaaagcag	780	
tcaagaagag tggaaaggaac tttccagaga aacctagaaa tcccaaacag tcttaaggat	840	

<210> 170
<211> 733
<212> PRT

<213> Homo sapiens

<400> 170

Met Leu Gln Thr Leu Val Lys Leu Ile Val Leu Met Phe Ser Thr Leu
1 5 10 15

Leu Leu Val Val Ile Arg Val Gln Val Ile Gln Ser Gln Leu Pro Val
20 25 30

Phe Thr Arg Phe Asp Asn Pro Ala Ala Val Ser Pro Thr Pro Thr Arg
35 40 45

Gln Leu Thr Phe Asn Tyr Leu Leu Pro Val Asn Ala Trp Leu Leu Leu
50 55 60

Asn Pro Ser Glu Leu Cys Cys Asp Trp Thr Met Gly Thr Ile Pro Leu
65 70 75 80

Ile Glu Ser Leu Leu Asp Ile Arg Asn Leu Ala Thr Phe Thr Phe Phe
85 90 95

Cys Phe Leu Gly Met Leu Gly Val Phe Ser Ile Arg Tyr Ser Gly Asp
100 105 110

Ser Ser Lys Thr Val Leu Met Leu Pro Ala Lys Thr Asp Met Gly Gln
115 120 125

Lys Phe Glu Lys Ser Ser Glu Asp Ser Lys Gln Ser Arg Arg Val Glu
130 135 140

Gly Thr Phe Gln Arg Asn Leu Glu Ile Pro Asn Ser Leu Lys Asp Lys
145 150 155 160

Phe Glu Leu Gly Ala His Ala Phe Met Thr Val Leu Ile Cys Ser Ala
165 170 175

Leu Gly Leu Ser Leu Ala Val Arg Cys His Ser Val Gly Phe Val Val
180 185 190

Ala Glu Arg Val Leu Tyr Val Pro Ser Met Gly Phe Cys Ile Leu Val
195 200 205

Ala His Gly Trp Gln Lys Ile Ser Thr Lys Ser Val Phe Lys Lys Leu
210 215 220

Ser Trp Ile Cys Leu Ser Met Val Ile Leu Thr His Ser Leu Lys Thr
225 230 235 240

Phe His Arg Asn Trp Asp Trp Glu Ser Glu Tyr Thr Leu Phe Met Ser
245 250 255

Ala Leu Lys Val Asn Lys Asn Asn Ala Lys Leu Trp Asn Asn Val Gly
260 265 270

His Ala Leu Glu Asn Glu Lys Asn Phe Glu Arg Ala Leu Lys Tyr Phe
275 280 285

Leu Gln Ala Thr His Val Gln Pro Asp Asp Ile Gly Ala His Met Asn
290 295 300

Val Gly Arg Thr Tyr Lys Asn Leu Asn Arg Thr Lys Glu Ala Glu Glu
305 310 315 320

Ser Tyr Met Met Ala Lys Ser Leu Met Pro Gln Ile Ile Pro Gly Lys
325 330 335

Lys Tyr Ala Ala Arg Ile Ala Pro Asn His Leu Asn Val Tyr Ile Asn
340 345 350

Leu Ala Asn Leu Ile Arg Ala Asn Glu Ser Arg Leu Glu Glu Ala Asp
355 360 365

Gln Leu Tyr Arg Gln Ala Ile Ser Met Arg Pro Asp Phe Lys Gln Ala
370 375 380

Tyr Ile Ser Arg Gly Glu Leu Leu Leu Lys Met Asn Lys Pro Leu Lys
385 390 395 400

Ala Lys Glu Ala Tyr Leu Lys Ala Leu Glu Leu Asp Arg Asn Asn Ala
405 410 415

Asp Leu Trp Tyr Asn Leu Ala Ile Val His Ile Glu Leu Lys Glu Pro
420 425 430

Asn Glu Ala Leu Lys Asn Phe Asn Arg Ala Leu Glu Leu Asn Pro Lys
435 440 445

His Lys Leu Ala Leu Phe Asn Ser Ala Ile Val Met Gln Glu Ser Gly
450 455 460

Glu Val Lys Leu Arg Pro Glu Ala Arg Lys Arg Leu Leu Ser Tyr Ile
465 470 475 480

Asn Glu Glu Pro Leu Asp Ala Asn Gly Tyr Phe Asn Leu Gly Met Leu

485

490

495

Ala Met Asp Asp Lys Lys Asp Asn Glu Ala Glu Ile Trp Met Lys Lys
500 505 510

Ala Ile Lys Leu Gln Ala Asp Phe Arg Ser Ala Leu Phe Asn Leu Ala
515 520 525

Leu Leu Tyr Ser Gln Thr Ala Lys Glu Leu Lys Ala Leu Pro Ile Leu
530 535 540

Glu Glu Leu Leu Arg Tyr Tyr Pro Asp His Ile Lys Gly Leu Ile Leu
545 550 555 560

Lys Gly Asp Ile Leu Met Asn Gln Lys Lys Asp Ile Leu Gly Ala Lys
565 570 575

Lys Cys Phe Glu Arg Ile Leu Glu Met Asp Pro Ser Asn Val Gln Gly
580 585 590

Lys His Asn Leu Cys Val Val Tyr Phe Glu Glu Lys Asp Leu Leu Lys
595 600 605

Ala Glu Arg Cys Leu Leu Glu Thr Leu Ala Leu Ala Pro His Glu Glu
610 615 620

Tyr Ile Gln Arg His Leu Asn Ile Val Arg Asp Lys Ile Ser Ser Ser
625 630 635 640

Ser Phe Ile Glu Pro Ile Phe Pro Thr Ser Lys Ile Ser Ser Val Glu
645 650 655

Gly Lys Lys Ile Pro Thr Glu Ser Val Lys Glu Ile Arg Gly Glu Ser
660 665 670

Arg Gln Thr Gln Ile Val Lys Thr Ser Asp Asn Lys Ser Gln Ser Lys
675 680 685

Ser Asn Lys Gln Leu Gly Lys Asn Gly Asp Glu Glu Thr Pro His Lys
690 695 700

Thr Thr Lys Asp Ile Lys Glu Ile Glu Lys Lys Arg Val Ala Ala Leu
705 710 715 720

Lys Arg Leu Glu Glu Ile Glu Arg Ile Leu Asn Gly Glu
725 730

<210> 171		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 171		
aggcttacat tagcagagga g		21
<210> 172		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 172		
cgttttctag cttcaggtct g		21
<210> 173		
<211> 3296		
<212> DNA		
<213> Homo sapiens		
<400> 173		
tgaattcaaa acagttactc tgaatggtct ttgctaagaa caatttaatg attaagtaag	60	
gtcagtgtcc ttgaaagtcc aaactcttagc cagatttccc tggctcacac ccctagggat	120	
aaggtaaatg tttaagcaca cagtgaactt cctgaggccc ccaaatactaa tggaacttagc	180	
tattgagggc taaaagagaga tggttttttt agaaaactcg aagcaaatct ctcaggctgg	240	
ggatatttca aagactacta ctattattat taataacaat tgcaatattt gttgagtc	300	
taaatgaagc taaaactttt ttcttaataaa tttaatctt acagcaacct atgaggtaga	360	
taatattgtc attcccatga gggagctaag gatcagagaa ggtaagtcac ttgtctaagg	420	
tcacatagct agcatgttat gcaatcagga gtcaaacctg gtttgtctga atctgaagtc	480	
catctgctc gtgcactttt ataccgtctg cttttccctt tattcctaac cttcttccat	540	
tctgattccc actgagtagt ggacaggaac cactgaagtt tgctctgacac catcaaccag	600	
gccctagtca cctggctttg ccttgccct gctgtgtat cttagctccc tgcccaggcc	660	
cacagccatg gccatggccc agaaaactcg ccacccctg ccgagtctgc ggcaggcat	720	
ccaggagcct cagctatctc tgcagccaga gcctgtcttc acgggtggatc gagctgaggt	780	
gccgccccctc ttctggaagc cgtacatcta tgcgggctac cggccgctgc atcagacctg	840	
gcgcttctat ttccgcacgc tgttccagca gcacaacgag gccgtgaatg tctggaccca	900	
cctgctggcg gccctggtac tgctgctgctg gctggccctc tttgtggaga ccgtggactt	960	

ctggggagac ccacacgccc tgcccttctt catcattgtc cttgcctctt tcacacct	1020
ctccttcagt gccttggtc acctcctgca gccaaagtct gagttctggc attacagctt	1080
cttcttcctg gactatgtgg gggtgccgt gtaccagtt ggcagtgcc tggcacactt	1140
ctactatgct atcgagcccg cctggcatgc ccaggtgcag gctgttttc tgccatggc	1200
tgccttctc gcctggctt cctgcattgg ctccctgctat aacaagtaca tccagaaacc	1260
aggcctgctg ggccgcacat gccaggaggt gccctccgtc ctggcctacg cactggacat	1320
tagtcctgtg gtgcatacgta tcttcgtgtc ctccgacccc accacggatg atccagctct	1380
tctctaccac aagtgccagg tggtcttctt tctgctggct gctgccttct tctctacctt	1440
catgcccag cgctggttcc ctggcagctg ccatgtcttc gggcagggcc accaactttt	1500
ccacatcttc ttggtgctgt gcacgctggc ttagctggag gctgtggcac tggactatga	1560
ggcccacgg cccatctatg agcctctgca cacgcactgg cctcacaact tttctggcct	1620
cttcctgctc acggtgtggca gcagcatcct cactgcattc ctccctgagcc agctggtaca	1680
gchgcaaaactt gatcagaaga ccaagtgaag ggggatggca tctggtaggg agggaggtat	1740
agttggggga caggggtctg gtttggctc caggtggaa caaggcctgg taaaagtttt	1800
tgtgtctggc ccacagtgac tctctgtgca cgactcaact gccaaggggca tcactggcca	1860
attcttgat ttagggattt gctaggagtt gctggggtcc actcctggc ctgccccagc	1920
tccttggcca gggagagggaa aagagttaac ggtgtggcc actccagctt gcccctccac	1980
tgccactcac tgggtgagg ctgggggtca gcttggtag gattggggct tctagattgt	2040
ctaggcagga ggtgaaactt aggccagagt cagattttag ctgagccagg ggaggccttg	2100
gcaacctact tctactcaga tttcattgtc ggatgcggaa gggtaggccc caaaatatat	2160
acaggatctt actgtccctt gaagcccagc cacaagtgtt ggagctgcag agagacccca	2220
aaggttagtag attgtgccag atacaaatgg gtcccatcca gtgcctcata ctccttcagt	2280
cactatccca gacagtggc cccagatctc ctagctctgg cttctgtgtc ccacacggcc	2340
tgttcccagc ttctctcctg gttcccttgt tacggattca tttatccatt cagtgtttcc	2400
tgggcctctg ctcagaggca ggtcaccact gggccctgtg gatcaatgca agatgacaaa	2460
ggcttttttt tttttttttt tttttttttt tttttaggag tttcgcttctt gttggcttagg	2520
ctggagtaaa atggtgcgat ctcggctcac tgcacctccg cctccaggt tcaagcgatt	2580
ttcctgcctc agcctcccgaa gtagctgggg ttacaggcat gcaccaccaat gcctggctaa	2640
ttttctgtat ttttagtaga gacggggttt ctccatgttg gtcaggctgg tcttgaactc	2700
ctgacctcag gtgatctgcc cgtctcgcc tcccaaagtg ctgggattac cggcatgagc	2760
cactgcccct gggcgcacaaa qgctttqata tcaqaatqaa ctgtcaaggg aqgtgctqqa	2820

gagggattaa cctgtgctgc ctgggaccct cagggtctta ggttggggag tgtgaatagg	2880
agtttcaga tggagaatag gaagggcatt ccagggcagag gaaaaacctgt gcagagacca	2940
agaggtgtgg aaggaaaagt ggggttgggg ctgggtggc tggattatgg cctggatgca	3000
ataaaagtact gtgacagtag ccaccccttt gtttttgtc tcctgtttcc gggaggggcc	3060
cctgctcaca ttactggagg tttccggag gaagctgggg cccctggag tggacacagg	3120
gtgcagggag cagttcttgt tttatcttg ctggggatg ggggttgggc cttatataacc	3180
atatctatat atacaaaatt tgtttggcaa gggagtggc ggcagttta ttactaaagt	3240
tttataagta gttaaaataa tgtgtttaaa atatgataat cccactttat gatctg	3296

<210> 174
<211> 346
<212> PRT
<213> Homo sapiens

<400> 174

Met Ala Met Ala Gln Lys Leu Ser His Leu Leu Pro Ser Leu Arg Gln
1 5 10 15

Val Ile Gln Glu Pro Gln Leu Ser Leu Gln Pro Glu Pro Val Phe Thr
20 25 30

Val Asp Arg Ala Glu Val Pro Pro Leu Phe Trp Lys Pro Tyr Ile Tyr
35 40 45

Ala Gly Tyr Arg Pro Leu His Gln Thr Trp Arg Phe Tyr Phe Arg Thr
50 55 60

Leu Phe Gln Gln His Asn Glu Ala Val Asn Val Trp Thr His Leu Leu
65 70 75 80

Ala Ala Leu Val Leu Leu Leu Arg Leu Ala Leu Phe Val Glu Thr Val
85 90 95

Asp Phe Trp Gly Asp Pro His Ala Leu Pro Leu Phe Ile Ile Val Leu
100 105 110

Ala Ser Phe Thr Tyr Leu Ser Phe Ser Ala Leu Ala His Leu Leu Gln
115 120 125

Ala Lys Ser Glu Phe Trp His Tyr Ser Phe Phe Phe Leu Asp Tyr Val
130 135 140

Gly Val Ala Val Tyr Gln Phe Gly Ser Ala Leu Ala His Phe Tyr Tyr
145 150 155 160

Ala Ile Glu Pro Ala Trp His Ala Gln Val Gln Ala Val Phe Leu Pro
 165 170 175

Met Ala Ala Phe Leu Ala Trp Leu Ser Cys Ile Gly Ser Cys Tyr Asn
 180 185 190

Lys Tyr Ile Gln Lys Pro Gly Leu Leu Gly Arg Thr Cys Gln Glu Val
 195 200 205

Pro Ser Val Leu Ala Tyr Ala Leu Asp Ile Ser Pro Val Val His Arg
 210 215 220

Ile Phe Val Ser Ser Asp Pro Thr Thr Asp Asp Pro Ala Leu Leu Tyr
 225 230 235 240

His Lys Cys Gln Val Val Phe Phe Leu Leu Ala Ala Ala Phe Phe Ser
 245 250 255

Thr Phe Met Pro Glu Arg Trp Phe Pro Gly Ser Cys His Val Phe Gly
 260 265 270

Gln Gly His Gln Leu Phe His Ile Phe Leu Val Leu Cys Thr Leu Ala
 275 280 285

Gln Leu Glu Ala Val Ala Leu Asp Tyr Glu Ala Arg Arg Pro Ile Tyr
 290 295 300

Glu Pro Leu His Thr His Trp Pro His Asn Phe Ser Gly Leu Phe Leu
 305 310 315 320

Leu Thr Val Gly Ser Ser Ile Leu Thr Ala Phe Leu Leu Ser Gln Leu
 325 330 335

Val Gln Arg Lys Leu Asp Gln Lys Thr Lys
 340 345

<210> 175
 <211> 2858
 <212> DNA
 <213> Homo sapiens

<400> 175
 agtggcgggg aagcaaagca caggagcgct gtgggtgccag cggccgggct agggacgact 60
 ggccgggtttg cgctggaccc gaccccgggg gcggggcgcaa gggggcgggc gctgccgtac 120
 tcaggccgcg gggccagggc gggccggccg gcggggcatt taaacccgc tgacagccag 180
 tccagccccgg gacacgcgcc cagctctgta gcctcctccg tcgactcagc ctttaggtacc 240

ggtcaggcaa aatgcgggcc	300
gggacagctg gttccgaggc	360
acatgtccag gaagcctatc	420
agatcaaacc catcaatgat	480
catttgacaa ggacaactat	540
cctatgccat cggcatgttc	600
acctctcagc tggaaatgctg	660
tctggAACAT ccacgagctc	720
agaccacagg ctggccctct	780
gggggttcat catgggcatc	840
tgatcgccgg catctgggtg	900
ttactgccgt catggcgctc	960
actgcgcccc tcctcagcac	1020
ctgggaacag tccctgctct	1080
agggggccatg cgaagagcct	1140
tggTCAGTT ctctctgtgt	1200
ggctgcccct ctacatcgcc	1260
ctacactctt cgatgttgg	1320
acaccaatgg cagggccacc	1380
tcctgtacaa ctacattggc	1440
gtggggccct ggtcaatggc	1500
ggactcacaa gagcctgaag	1560
acggcaccgg ctccataggt	1620
cgggctggaa caatgtcttc	1680
tttgcgggtt agtatacaa	1740
ggtataaaga aatatgaggc	1800
ccaacgtgct cccatgggc	1860
ctttattgaa cattagccag	1920
ctccatggga aggggactgc	1980
gaagctgcaa gaaaaggga	2040
aggatatgct cagactcttg	2100

gcctggaaaa tggcatctc tcctccat gtaagctt aacctctgta atctgcctgt	2160
atctataagg gggcatctca ctccacaaa ggagcccagc ctctcttgc ccctctatcc	2220
atgcaacagt cttctctgtg catttcccc agctggccc tcttctactc tccatttagg	2280
cctgttgata actccattac ccgcccata ctgctgttcc tccagggcca gcactcgccc	2340
gaggcagggg agctgccttc ggtacataat ttgaagggc actccctttt gggcacatgc	2400
cggccctgag tgccctccctt gcctcactct gatcctggcc ccataatgtc ctcagtggaa	2460
ggtgatgggg gccggtgctg tggagaggt agaaagaggg gttggcatga ctaaaaatac	2520
cagtatgtgt attaagtatt ttgagaatga aatgccaagg agtgcctact atatgccagc	2580
tctaggaatg gagtagacag tggacacaag aaggacttac gccctgagca caggtgccaa	2640
tggtgacaag actggcaaga cgtgagggca tgaatggtc attcaggcag ctgctgcaga	2700
tgtggtcacc tggtgccatc tgctgctccc tttccactt ttctatgtcc tccttccacc	2760
ccaagtcgg gatcactcgc tgtttctgg cttagctttg gcatctccat ctgagcctaa	2820
agttggccac tggcaccaat agattctgtt tgacctgc	2858

<210> 176

<211> 501

<212> PRT

<213> Homo sapiens

<400> 176

Met Arg Ser Ser Leu Ala Pro Gly Val Trp Phe Phe Arg Ala Phe Ser			
1	5	10	15

Arg Asp Ser Trp Phe Arg Gly Leu Ile Leu Leu Leu Thr Phe Leu Ile		
20	25	30

Tyr Ala Cys Tyr His Met Ser Arg Lys Pro Ile Ser Ile Val Lys Ser		
35	40	45

Arg Leu His Gln Asn Cys Ser Glu Gln Ile Lys Pro Ile Asn Asp Thr		
50	55	60

His Ser Leu Asn Asp Thr Met Trp Cys Ser Trp Ala Pro Phe Asp Lys			
65	70	75	80

Asp Asn Tyr Lys Glu Leu Leu Gly Val Asp Asn Ala Phe Leu Ile		
85	90	95

Ala Tyr Ala Ile Gly Met Phe Ile Ser Gly Val Phe Gly Glu Arg Leu		
100	105	110

Pro Leu Arg Tyr Tyr Leu Ser Ala Gly Met Leu Leu Ser Gly Leu Phe
115 120 125

Thr Ser Leu Phe Gly Leu Gly Tyr Phe Trp Asn Ile His Glu Leu Trp
130 135 140

Tyr Phe Val Val Ile Gln Val Cys Asn Gly Leu Val Gln Thr Thr Gly
145 150 155 160

Trp Pro Ser Val Val Thr Cys Val Gly Asn Trp Phe Gly Lys Gly Lys
165 170 175

Arg Gly Phe Ile Met Gly Ile Trp Asn Ser His Thr Ser Val Gly Asn
180 185 190

Ile Leu Gly Ser Leu Ile Ala Gly Ile Trp Val Asn Gly Gln Trp Gly
195 200 205

Leu Ser Phe Ile Val Pro Gly Ile Ile Thr Ala Val Met Gly Val Ile
210 215 220

Thr Phe Leu Phe Leu Ile Glu His Pro Glu Asp Val Asp Cys Ala Pro
225 230 235 240

Pro Gln His His Gly Glu Pro Ala Glu Asn Gln Asp Asn Pro Glu Asp
245 250 255

Pro Gly Asn Ser Pro Cys Ser Ile Arg Glu Ser Gly Leu Glu Thr Val
260 265 270

Ala Lys Cys Ser Lys Gly Pro Cys Glu Glu Pro Ala Ala Ile Ser Phe
275 280 285

Phe Gly Ala Leu Arg Ile Pro Gly Val Val Glu Phe Ser Leu Cys Leu
290 295 300

Leu Phe Ala Lys Leu Val Ser Tyr Thr Phe Leu Tyr Trp Leu Pro Leu
305 310 315 320

Tyr Ile Ala Asn Val Ala His Phe Ser Ala Lys Glu Ala Gly Asp Leu
325 330 335

Ser Thr Leu Phe Asp Val Gly Gly Ile Ile Gly Gly Ile Val Ala Gly
340 345 350

Leu Val Ser Asp Tyr Thr Asn Gly Arg Ala Thr Thr Cys Cys Val Met
355 360 365

Leu Ile Leu Ala Ala Pro Met Met Phe Leu Tyr Asn Tyr Ile Gly Gln
370 375 380

Asp Gly Ile Ala Ser Ser Ile Val Met Leu Ile Ile Cys Gly Gly Leu
385 390 395 400

Val Asn Gly Pro Tyr Ala Leu Ile Thr Thr Ala Val Ser Ala Asp Leu
405 410 415

Gly Thr His Lys Ser Leu Lys Gly Asn Ala Lys Ala Leu Ser Thr Val
420 425 430

Thr Ala Ile Ile Asp Gly Thr Gly Ser Ile Gly Ala Ala Leu Gly Pro
435 440 445

Leu Leu Ala Gly Leu Ile Ser Pro Thr Gly Trp Asn Asn Val Phe Tyr
450 455 460

Met Leu Ile Ser Ala Asp Val Leu Ala Cys Leu Leu Leu Cys Arg Leu
465 470 475 480

Val Tyr Lys Glu Ile Leu Ala Trp Lys Val Ser Leu Ser Arg Gly Ser
485 490 495

Gly Tyr Lys Glu Ile
500

<210> 177
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 177
tctacatcgcaaatgtggct c

21

<210> 178
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 178
cagatgatca gcatcactat g

21

<210> 179

<211> 4892
 <212> DNA
 <213> Homo sapiens

<400> 179	
atagaaacct taaaaggca acacaaagtt ttgaatagaa gaggccaagc agcctcgccc	60
agaagctgat gtttgtaat gtactggcc ttctaaagcg gcgcgttcaca cacctttca	120
cttctggca cagtaggaa aggtgatatac acaagggtc aaaatggggg taaacagaag	180
aggctgctcc tgcagaaggc ttcctgcaga agcccttgca cttggagggc tggaaagacc	240
catgctgtat ctgcattccct gtcattcggt tcacggcatc cagttggaa gctctgctta	300
aagcttgc tggcacgtt tcttagctac attttccac tccagctgag actgcctcac	360
ttagttgtca acacttggc ttcttcagca gtgaggaacc aacaagacag gaggctgggt	420
caatactcaa ctggcaaacc tccagggaaat ggtgctaaa acgtttggct tcttgaatgg	480
aattcatggt actgctccca gcctgcaccc gggttctcca acttgagaca atttctcccc	540
gcatcccccc acccttcct ggcttcact cactagcaag tgggctgctt ctactttctt	600
tctcacattc atttcttagg tccattctca gagcggtagt gattactgtt taattagcct	660
cataatcata tctatgatgg caaaatcaag aaacaattt aacatgattc taaaaagtaa	720
ggagataaat accagagaca tagaaggtga aagaatttgc ctctaggaag caggaatttta	780
aatttggggaa agacaggggtg gagcaaggaa tataaatcta gtccattttt cttttctttt	840
cttttctttt ttttttattt ttaagataga gtctcactct gtgcggcagg ctggagtgc	900
gtggcatgat ctggctcac tgcaacctct gcctccttcg ttcaagcgat tctcccaccc	960
cagcctccct agtaactggg attacaagtg actgccacta tgcccagctt atttgtatt	1020
tttagtagag acgagggttc accatgttgg ccaggctggt ctgcactcc tgacctcagg	1080
ggatccgccc agctcagcct cccaaagtgc taggattcca ggcgtgagcc actgcacctg	1140
gcggaatcta gtccattttc cacttgcttta ccacacatct gcagggttcc ttgcttgc	1200
aaaagcttcc attggctccc aatctctgat aatatcaaga gcaagttccct gaacaactca	1260
ttcaagaccc atcacccttc gcatctgtca actctgcccc ttgaatattt cacctcattt	1320
tactacacca catctagttc cctgaatatg caaacagatt tcatacattt gcacctttat	1380
acatgttatt gctttgcct gggagagtat tctcttgctg ctataataat agctaattgac	1440
actgtgctaa gtactttctg tgatttataa ctgttaattt ttacatcaac cctatggtaa	1500
atgttactgt tatctccatt ttataaaca gaaaactaag acttaaagag tttaagtgtat	1560
ttgcagaaat atgttagtatt tggtgaggct aaatttgaac ccagcaatct gactccagga	1620
ctaacataat attacctatt catccttcta aaatgtttcc cagacactaa atttgaacag	1680
gattaaaaga tttaaatgtt tttaagtctt aaaagggcaa ggagaaaata caagtgaatt	1740

gcttttaatc tcaaactaag catgaaaacaa cggctgaaat tacaaaggaa aagtgacaga	1800
tctgactgtt gaacttttaa cttctttat caaaaaaaa accccataga ataaaattta	1860
aaaacaagta aaaattacaa aaaatttgca atatacatga cagataagca taacattaaa	1920
gagaacttag aaagaaaaaa tagcctacta aaaatgagca aaatgcaa at tcgtcatcat	1980
gagagaaaaa tgtaaatggc caaacatttt taagagaagt aaaaacttaa aacgataatg	2040
caccatcaa ttgagaataa aataactc agagctgat atttggcca gtgacccttg	2100
gagtaggatg tatagcaact aaagaaaactc atacattact gagaagggtg taaattggct	2160
caacgattct ggagagcaat ttgacagaat gtagtgaaag cgtcaaaaat gttcacacac	2220
tttacttaa aaattacatt cctgaaatt tataatacaa acatttcta taaaaggta	2280
gatggcaaat actttggct ttgaaggcca catatgtctc tgtggcttt ctttggct	2340
tgtgttaaa aaaaaaaaaa actgcccccc ctccccccac ccttgttagg ccattttgc	2400
attactataa agaaataacct gaggctggtt aatttatatg aaaagaggta taactggctc	2460
atggttctgc aggctgtaca ggaagcataa tgccatctgc ttctgggggg gcctcaggaa	2520
gcttccaatc atgctggaag gtgatgggaa gcagatgtct cacatggta gaacgggagc	2580
aagaaggagt tgggggggag gagccacata aacaatgaga tccctgtgag ctcagagtga	2640
gagcacactt atcaccaagg agatggccca agctattcat gaggatccg cccctatgtat	2700
ccaaacaccc cccaccaggc tccacctcca acactggaga ttatatctca acatgaaatt	2760
tgaatggac atccaaactg tatcacccccc aaaatgtaaa gtctcatcac agtacatttg	2820
gtaatggcca aaagagaaac caaactaaat gtccgagaat aaaaatttagt tacaactaga	2880
tacacggagg caagtttta aaaagtgtta aaattttaaa atgttcaga atggtatcta	2940
ttggataaaa tagtatttat gatttattaa gtggaaaata cagtttacaa aataatatgg	3000
tgtgatcccg aaaacaacat aatcatgtgt gtataaatgc atagaaaaaa atctggaaag	3060
atataaacag atatttataat tggcttaggg cagggatgg aattgttagat atttgcttt	3120
tgtttatgt atatgtttcc cataatgaaa tgtattgtt atataattaa aaaatatacg	3180
aaactttgct tgggggacaa caaagcacct cattttttaa tttggaaaaa tcttttatta	3240
caatctctgt aaggagttgg ttgctctctc ttctgtactc cctgattaca taatgctctt	3300
ctgagcaccc ttatttaata gcagaatggt tgatatcatt atttagttaa ggtttctct	3360
attatcgAAC atctgagttc ccagtagact agtctccct tatctgtggt tttgcttcca	3420
aggtttcagt tatgatcaac caagatctga aaatattaaa tgaaaaattc cagaaataaa	3480
acaattcata agtttacat tgtgcaccat cctgctgtat cctgtccagg ccatgggtca	3540
tccctctgt tcagtgtgtc cacactgttag atgctccct gtctgttagt cactttgttag	3600

ttggcttggt tgcagaccc actgtcaagg tattgcagta cttatgtcca agtaaacactt	3660
attnaactta ataatggccc ctaaacacaa gagtagtaat gttggcaatt tgggtatgcc	3720
aaagaaaaagt cataaaagtgc ttcttttaag tgaaaaccca aaagttttg aattagtaag	3780
gaaagaaaaa aatccatatg ctgaggtcgc taagatctat gataagaatg aatcttctac	3840
ctgtgaaatt gtgaaggaaa aagaaattca cgtagtttt gctgttgac ctcaaactgc	3900
aaaagttatg gccacagtgt ataacttta taaaatata tttgtataac tgttcttatt	3960
ttactttct gtttatttt tagagacagg gcttcattct gtcacccagg ctggagtgca	4020
aaggtgcaat catagctcac tgcagcctca aactcttgg ctcaagtgtat cttcctgcct	4080
cagccccca agtagctggg actgcagggtg tgcatacta cgcccagcta atttttat	4140
tttttgtgca gatggagtct gactctgtt cccaggaact cctggcctca agtaatcctc	4200
ccgcctcggt tttccaaaga gctgggatta caggcatgag ccactgtgcc tggctattct	4260
attttattag cagtaattgt tgttaatctc ttattgtgcc ttatttatata taataactta	4320
atcatagata gatatgtata ggaaaaaaca ttgtatataa agggttcagt actatctgca	4380
gtttcagata tccatgaggg gtcttggaaac gtatccccca caggtaaggg gggacttgta	4440
tttctctgtt ataaatatgc tggattttct ccacttgg tggtagtgc ccattttctg	4500
ctcttctctg ctagactctg tgcctcagaa ggtggaaattt ttcataaaact attccagctg	4560
gggtctcatg ccagttgggtt ttgaccaatg ggtacacca tcagtagatt ggaggatgga	4620
aaagaaaaaa aggttaggat atgtttcacc acctctttc ctgctctgg ctgggttctg	4680
atggtggctt tgccttga aggctcctcc tgcaaggcag ccctgctcca ctgtgccagc	4740
cttcactggg ctctactaac gtgattccct ccccttattt cttcaggcct agctgtgcta	4800
actccttaggt acctccatgt ttcttgcattt ctatcatcca accctaacc taacttctat	4860
aaatagttcc cgcaataaaag tctcttcagc tg	4892

<210> 180
 <211> 95
 <212> PRT
 <213> Homo sapiens

<400> 180

Met Arg Gly Leu Glu Thr Tyr Pro Pro Gln Val Arg Gly Asp Leu Tyr			
1	5	10	15

Phe Ser Val Ile Asn Met Leu Val Ile Leu His Leu Leu Cys Phe Ser		
20	25	30

Ala Ile Phe Cys Ser Ser Leu Leu Asp Ser Val Pro Gln Lys Val Glu		
35	40	45

Phe Phe Ile Asn Tyr Ser Ser Trp Gly Leu Met Pro Val Gly Phe Asp
 50 55 60

Gln Trp Val Thr Pro Ser Val Asp Trp Arg Met Glu Lys Glu Lys Arg
 65 70 75 80

Leu Gly Tyr Val Ser Pro Pro Leu Phe Leu Leu Leu Ala Gly Phe
 85 90 95

<210> 181
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 181
gctcaacgat tctgg 15

<210> 182
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 182
atgtggcctt caaag 15

<210> 183
<211> 501
<212> DNA
<213> Homo sapiens

<400> 183
atgaacagaa gcatctatga ccgacagttg ctctgtgtcc ttcttagcctc gcaggagttt 60

ccagctcatg agggcagagg agatgaagag aggccgatcg acgtgagggt tgtgcaggcg 120

gcccccctga ggtgtgactc cactcctcct gagggtgctg taggagacat ctgaaaaaaaa 180

gaagatgctg gcaatatgcc atcaaccta gaggggagta tttaccctga aatggctcac 240

ttcctgagga acaaacttgc tggatctagt gtacggaaac ctgattctgg gttcctttgg 300

gaaggagcat tacgggcctg gttatttctc atcctaatacg ttctcaccctt catcatgtgg 360

gtccccattag tacaggtatc tccgaatgct ccactttcc attacattga gtcaattgct 420

catgacacctg ggcctccaat tggggctatt ttccctgctat ccatctcctg gtctatagta 480

aaagagccaa tgagcagata a 501

<210> 184
<211> 166
<212> PRT
<213> Homo sapiens

<400> 184

Met Asn Arg Ser Ile Tyr Asp Arg Gln Leu Leu Cys Val Leu Leu Ala
1 5 10 15

Ser Gln Glu Phe Pro Ala His Glu Gly Arg Gly Asp Glu Glu Arg Pro
20 25 30

Ile Asp Val Arg Val Val Gln Ala Ala Pro Leu Arg Cys Asp Ser Thr
35 40 45

Pro Pro Glu Gly Ala Val Gly Asp Ile Cys Lys Lys Glu Asp Ala Gly
50 55 60

Asn Met Pro Ser Thr Ser Glu Gly Ser Ile Tyr Pro Glu Met Ala His
65 70 75 80

Phe Leu Arg Asn Lys Leu Ala Gly Ser Ser Val Arg Lys Pro Asp Ser
85 90 95

Gly Phe Leu Trp Glu Gly Ala Leu Arg Ala Trp Leu Phe Leu Ile Leu
100 105 110

Ile Val Leu Thr His Ile Met Trp Val Pro Leu Val Gln Val Ser Pro
115 120 125

Asn Ala Pro Leu Phe His Tyr Ile Glu Ser Ile Ala His Asp Leu Gly
130 135 140

Pro Pro Ile Gly Ala Ile Phe Leu Leu Ser Ile Ser Trp Ser Ile Val
145 150 155 160

Lys Glu Pro Met Ser Arg
165

<210> 185
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 185
ctgagggtgc tgtaggagac

<210> 186
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 186
ggcccgtaat gctcc

15

<210> 187
<211> 3978
<212> DNA
<213> Homo sapiens

<400> 187	
agactagggg cgagtttgg a gcaagtaact gtcagtgagg ttgcagttgg tctgggctgt	60
ttggctgtga gcgaaatagc tgccccccac ttctcaactt cacaccacgg gatactcctc	120
ctgaggctcc ggatgattca gatggactgt gaaaaacaac aagatggatg atcatatgga	180
gattgcttct aacataaaatc tgcataaaaaa ttttctgaa acatggctgg aatatttaag	240
gagtttttt tcagtaactga ggacctccct gaagtcattc taacattgtc tttgatcagc	300
tccattggag cattttgaa ccggcacttg gaagacttgc caattcctgt ccctgtgata	360
ttatttttac ttggatgcag ttttgaagta ttaagcttta catcttcaca ggtccaaaga	420
tacgcaaacg ccatacaatg gatgagtcca gacttattt ttcgtatatt tacaccagta	480
gttttcttta ctactgcatt tgacatggat acgtacatgc ttcaaaaagtt atttggcag	540
atacttttaa tttcaattcc cggcttttg gtttaattata tcttagttct ttggcatctg	600
gcatctgtaa atcaattact tttgaagcct acccaatggt tattatttc agctatcctt	660
gtgagttcag atcccatgct aaccgcagct gctataagag accttggcgt ttctagaagc	720
ctcatcagtt taattaatgg agaaagtctg atgacctctg ttatatcatt aattacattt	780
actagtatta tggattttga ccaaagacta caaagtaaaa gaaaccatac cttagctgaa	840
gagatcgtgg gtggaatttg ttcatatatt atagcaagtt tcttggatgg aattctaagt	900
tcaaaaactga ttcaattttg gatgtcaact gttttgggt atgatgtcaa tcatataagt	960
ctcatctttt caattctgtta tctcatcttt tatatttgatg agtttagttgg aatgtcagga	1020
atatttactc tggccattgt gggacttctt ttaaattcta caagttttaa agcagcaatt	1080
gaagaaaacac ttcttcttga atttctgacc cttctttaa taagccctgt tttgtctcga	1140
gttggcatg agttcagttg gcgctggata ttcataatgg tctgttgtga aatgaagggg	1200
atgcctaata taaacatggc cttctgtctt gcctactctg atctttatgg tggatctgac	1260
aaagaaaaat ctcaaataatt atttcatgga gtgttagtat gcctaataac cttgttgac	1320

aatagattta ttttgcagt ggcagttact atactaggc ttcgtgatgc cacatcaaca	1380
aaatataaat cggttggc cacattcaa cacttcaag agctaacca gtctgcagcc	1440
tctgccctta aatttgacaa agatcttgct aatgctgatt ggaacatgat tgagaaagca	1500
attacacttg aaaacccata catgttgaac gaagaagaaa caacagaaca tcagaaggcg	1560
aaatgtccac actgtaccaa ggaaatagat gagatctta acactgaagc aatggagctg	1620
gccaacaggc gtctttgtc agcacaaata gcaagctacc agagacaata caggaatgag	1680
attctgtccc agagtgtgt ccaggtgtt gttggcag cagaaagttt tgggagaag	1740
aaggaaaaat gtatgagtct tgatacaata aagaattatt ctgaaagcca aaaaacagtt	1800
accttgcta gaaaactact acttaattgg gtgtataata ccagaaagga aaaagaggc	1860
ccatcaaaat acttctttt tcgtatgc catacaatag tatttactga ggaatttgc	1920
catgttggat accttgcgt attaatgaat atatttcct ttataatctc ttggatatcc	1980
cagttaaatg taatctacca cagcgaatta aaacacacta actactgtt tcttacactt	2040
tatattctag aggactact taagatagca gcaatgagga aggactttt ttcacatgcc	2100
tggaacatat tcgagttgc aattacatta attggcatct tacatgtat acttattgaa	2160
atagacacca ttaagtatat tttaatgag actgaagtaa tagtctttt aaaagttgtt	2220
caatttttc gtatactacg catttcaag ctcatagcac caaagttgc gcaaataata	2280
gataaaagaa tgagtcatca gaagacctt tggatggaa tactaaaagg ctatgtccaa	2340
ggcgaaggc acataatgac cataattgtat cagattacaa gttctaaaca gattaaacag	2400
atgttattaa agcaagtgtat aaggaatatg gaacatgcta taaaagagct aggctactt	2460
gagttatgtc acccagaaat tgctgtcact gtgaaaacaa aggaagaaat taatgttatg	2520
ctcaatatgg ctacagaaat tcttaaggct tttggcttaa aaggaattat tagtaaaact	2580
gaaggtgctg gaattaataa gttaatcatg gccaaaaaga aagaggtgc tgattctcaa	2640
tctattatca ggcctttac tggtgaagaa gttctatgc atattccgtg gctagataaa	2700
aacaaagatt atataaactt cattcaggaa aaagccaaag ttgtacatt tgattgtgga	2760
aatgatatat ttgaagaagg tgatgagccc aaaggaatct atatcattt ttcaggcatg	2820
gtaaagcttgc aaaaatcaa gccagggttta gggattgtatc aaatggtgaa gtcaaaggag	2880
aaagattttc cgataattga cacagactat atgctcagt gagaataat aggagagata	2940
aactgcttaa ctaatgaacc tatgaaatat tctgccaccc gcaaaactgt agtggagaca	3000
tgttttattc ccaaaactca cttgtatgtat gcttttgagc aatgctctcc tctcattaa	3060
caaaaaatgt ggctaaaact tggactcgct attacagccaa gaaaaatcag agaacactta	3120
tcttatgagg attggaacta caatatgcaaa ctaaagctct ctaatatttata tgttagat	3180

ataccaaatga	gtacccaaaac	tgatattttat	gatgaaaatc	taatctatgt	tatcctcata	3240
catggagctg	tagaagattt	tctgttacga	aaaacttata	gagcacctt	cttaattcct	3300
ataaacatgcc	atcagataca	aagtattgaa	gatttcacaa	aagttagtcat	tattcaaact	3360
ccgattaaca	tgaaaacatt	cagaaggaat	attagaaagt	ttgttcctaa	acataaaaagt	3420
tatcttacac	caggattaat	aggttcagtt	ggaacattgg	aagaaggcat	tcaagaagaa	3480
agaaaatgtta	aggaggatgg	agcacacagt	gccgccactg	ccaggagtcc	ccagccttgc	3540
tccctgctgg	ggacaaagtt	caactgttaag	gagtccccct	gaataaacct	aaggaaagtc	3600
aggaaagagt	aagactgtta	agaagaccga	agcatgtatt	aatgctgtgg	ctatgagagg	3660
cctcctgctg	cagaaacaca	cttccttaca	tcaagaagga	gtaacttcag	gttggatcct	3720
gtgtggatga	tcttggtgct	aagcagaaaa	gaaatttgg	ccttggaaacc	agcagttcaa	3780
catatatact	ttttgcaaaa	tttccttgat	ttaaaatatt	tgttatTTTA	aatatacaaa	3840
acattttaga	aaatcttaga	gtaaatTTTA	gtcttaaagc	cagaaaataa	gtttatAGCC	3900
atctagatAT	tttgcattt	gtcttacag	caataatgg	ttgggttca	ttatgaaaaa	3960
taaaatgtat	taaaatat					3978

<210> 188
 <211> 1129
 <212> PRT
 <213> Homo sapiens

<400> 188

Met Ala Gly Ile Phe Lys Glu Phe Phe Ser Thr Glu Asp Leu Pro
 1 5 10 15

Glu Val Ile Leu Thr Leu Ser Leu Ile Ser Ser Ile Gly Ala Phe Leu
 20 25 30

Asn Arg His Leu Glu Asp Phe Pro Ile Pro Val Pro Val Ile Leu Phe
 35 40 45

Leu Leu Gly Cys Ser Phe Glu Val Leu Ser Phe Thr Ser Ser Gln Val
 50 55 60

Gln Arg Tyr Ala Asn Ala Ile Gln Trp Met Ser Pro Asp Leu Phe Phe
 65 70 75 80

Arg Ile Phe Thr Pro Val Val Phe Phe Thr Thr Ala Phe Asp Met Asp
 85 90 95

Thr Tyr Met Leu Gln Lys Leu Phe Trp Gln Ile Leu Leu Ile Ser Ile
 100 105 110

Pro Gly Phe Leu Val Asn Tyr Ile Leu Val Leu Trp His Leu Ala Ser
115 120 125

Val Asn Gln Leu Leu Leu Lys Pro Thr Gln Trp Leu Leu Phe Ser Ala
130 135 140

Ile Leu Val Ser Ser Asp Pro Met Leu Thr Ala Ala Ala Ile Arg Asp
145 150 155 160

Leu Gly Leu Ser Arg Ser Leu Ile Ser Leu Ile Asn Gly Glu Ser Leu
165 170 175

Met Thr Ser Val Ile Ser Leu Ile Thr Phe Thr Ser Ile Met Asp Phe
180 185 190

Asp Gln Arg Leu Gln Ser Lys Arg Asn His Thr Leu Ala Glu Glu Ile
195 200 205

Val Gly Gly Ile Cys Ser Tyr Ile Ile Ala Ser Phe Leu Phe Gly Ile
210 215 220

Leu Ser Ser Lys Leu Ile Gln Phe Trp Met Ser Thr Val Phe Gly Asp
225 230 235 240

Asp Val Asn His Ile Ser Leu Ile Phe Ser Ile Leu Tyr Leu Ile Phe
245 250 255

Tyr Ile Cys Glu Leu Val Gly Met Ser Gly Ile Phe Thr Leu Ala Ile
260 265 270

Val Gly Leu Leu Leu Asn Ser Thr Ser Phe Lys Ala Ala Ile Glu Glu
275 280 285

Thr Leu Leu Leu Glu Phe Leu Thr Leu Leu Leu Ile Ser Pro Val Leu
290 295 300

Ser Arg Val Gly His Glu Phe Ser Trp Arg Trp Ile Phe Ile Met Val
305 310 315 320

Cys Ser Glu Met Lys Gly Met Pro Asn Ile Asn Met Ala Leu Leu Leu
325 330 335

Ala Tyr Ser Asp Leu Tyr Phe Gly Ser Asp Lys Glu Lys Ser Gln Ile
340 345 350

Leu Phe His Gly Val Leu Val Cys Leu Ile Thr Leu Val Val Asn Arg

355

360

365

Phe Ile Leu Pro Val Ala Val Thr Ile Leu Gly Leu Arg Asp Ala Thr
 370 375 380

Ser Thr Lys Tyr Lys Ser Val Cys Cys Thr Phe Gln His Phe Gln Glu
 385 390 395 400

Leu Thr Lys Ser Ala Ala Ser Ala Leu Lys Phe Asp Lys Asp Leu Ala
 405 410 415

Asn Ala Asp Trp Asn Met Ile Glu Lys Ala Ile Thr Leu Glu Asn Pro
 420 425 430

Tyr Met Leu Asn Glu Glu Glu Thr Thr Glu His Gln Lys Val Lys Cys
 435 440 445

Pro His Cys Asn Lys Glu Ile Asp Glu Ile Phe Asn Thr Glu Ala Met
 450 455 460

Glu Leu Ala Asn Arg Arg Leu Leu Ser Ala Gln Ile Ala Ser Tyr Gln
 465 470 475 480

Arg Gln Tyr Arg Asn Glu Ile Leu Ser Gln Ser Ala Val Gln Val Leu
 485 490 495

Val Gly Ala Ala Glu Ser Phe Gly Glu Lys Lys Gly Lys Cys Met Ser
 500 505 510

Leu Asp Thr Ile Lys Asn Tyr Ser Glu Ser Gln Lys Thr Val Thr Phe
 515 520 525

Ala Arg Lys Leu Leu Asn Trp Val Tyr Asn Thr Arg Lys Glu Lys
 530 535 540

Glu Gly Pro Ser Lys Tyr Phe Phe Phe Arg Ile Cys His Thr Ile Val
 545 550 555 560

Phe Thr Glu Glu Phe Glu His Val Gly Tyr Leu Val Ile Leu Met Asn
 565 570 575

Ile Phe Pro Phe Ile Ile Ser Trp Ile Ser Gln Leu Asn Val Ile Tyr
 580 585 590

His Ser Glu Leu Lys His Thr Asn Tyr Cys Phe Leu Thr Leu Tyr Ile
 595 600 605

Leu Glu Ala Leu Leu Lys Ile Ala Ala Met Arg Lys Asp Phe Phe Ser
610 615 620

His Ala Trp Asn Ile Phe Glu Leu Ala Ile Thr Leu Ile Gly Ile Leu
625 630 635 640

His Val Ile Leu Ile Glu Ile Asp Thr Ile Lys Tyr Ile Phe Asn Glu
645 650 655

Thr Glu Val Ile Val Phe Ile Lys Val Val Gln Phe Phe Arg Ile Leu
660 665 670

Arg Ile Phe Lys Leu Ile Ala Pro Lys Leu Leu Gln Ile Ile Asp Lys
675 680 685

Arg Met Ser His Gln Lys Thr Phe Trp Tyr Gly Ile Leu Lys Gly Tyr
690 695 700

Val Gln Gly Glu Ala Asp Ile Met Thr Ile Ile Asp Gln Ile Thr Ser
705 710 715 720

Ser Lys Gln Ile Lys Gln Met Leu Leu Lys Gln Val Ile Arg Asn Met
725 730 735

Glu His Ala Ile Lys Glu Leu Gly Tyr Leu Glu Tyr Asp His Pro Glu
740 745 750

Ile Ala Val Thr Val Lys Thr Lys Glu Glu Ile Asn Val Met Leu Asn
755 760 765

Met Ala Thr Glu Ile Leu Lys Ala Phe Gly Leu Lys Gly Ile Ile Ser
770 775 780

Lys Thr Glu Gly Ala Gly Ile Asn Lys Leu Ile Met Ala Lys Lys Lys
785 790 795 800

Glu Val Leu Asp Ser Gln Ser Ile Ile Arg Pro Leu Thr Val Glu Glu
805 810 815

Val Leu Tyr His Ile Pro Trp Leu Asp Lys Asn Lys Asp Tyr Ile Asn
820 825 830

Phe Ile Gln Glu Lys Ala Lys Val Val Thr Phe Asp Cys Gly Asn Asp
835 840 845

Ile Phe Glu Glu Gly Asp Glu Pro Lys Gly Ile Tyr Ile Ile Ser
850 855 860

Gly Met Val Lys Leu Glu Lys Ser Lys Pro Gly Leu Gly Ile Asp Gln
 865 870 875 880

Met Val Glu Ser Lys Glu Lys Asp Phe Pro Ile Ile Asp Thr Asp Tyr
 885 890 895

Met Leu Ser Gly Glu Ile Ile Gly Glu Ile Asn Cys Leu Thr Asn Glu
 900 905 910

Pro Met Lys Tyr Ser Ala Thr Cys Lys Thr Val Val Glu Thr Cys Phe
 915 920 925

Ile Pro Lys Thr His Leu Tyr Asp Ala Phe Glu Gln Cys Ser Pro Leu
 930 935 940

Ile Lys Gln Lys Met Trp Leu Lys Leu Gly Leu Ala Ile Thr Ala Arg
 945 950 955 960

Lys Ile Arg Glu His Leu Ser Tyr Glu Asp Trp Asn Tyr Asn Met Gln
 965 970 975

Leu Lys Leu Ser Asn Ile Tyr Val Val Asp Ile Pro Met Ser Thr Lys
 980 985 990

Thr Asp Ile Tyr Asp Glu Asn Leu Ile Tyr Val Ile Leu Ile His Gly
 995 1000 1005

Ala Val Glu Asp Cys Leu Leu Arg Lys Thr Tyr Arg Ala Pro Phe
 1010 1015 1020

Leu Ile Pro Ile Thr Cys His Gln Ile Gln Ser Ile Glu Asp Phe
 1025 1030 1035

Thr Lys Val Val Ile Ile Gln Thr Pro Ile Asn Met Lys Thr Phe
 1040 1045 1050

Arg Arg Asn Ile Arg Lys Phe Val Pro Lys His Lys Ser Tyr Leu
 1055 1060 1065

Thr Pro Gly Leu Ile Gly Ser Val Gly Thr Leu Glu Glu Gly Ile
 1070 1075 1080

Gln Glu Glu Arg Asn Val Lys Glu Asp Gly Ala His Ser Ala Ala
 1085 1090 1095

Thr Ala Arg Ser Pro Gln Pro Cys Ser Leu Leu Gly Thr Lys Phe

1100

1105

1110

Asn	Cys	Lys	Glu	Ser	Pro	Arg	Ile	Asn	Leu	Arg	Lys	Val	Arg	Lys
1115							1120				1125			

Glu

<210> 189
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 189
tttgaaccgg cacttgg 17

<210> 190
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 190
tcaaatgcag tagtaaagaa aac 23

<210> 191
<211> 2898
<212> DNA
<213> Homo sapiens

<400> 191 atgtgggtgc ggtgtgcact cctgggtgca cgcgactgtg gctgtgctga gcgcgtgtgc	60
cggcgtctgtgg tgcgtgaccg cgtgtgtgtt gtggggccgg ggaaaattca tacaaaagaa	120
aaaaatatacg cacatctctt ggaaatgaaa tacttcaagt ttaatatctc tcttgctaatt	180
gcagaattta tcagccaaga cagctggctg gcctgggtgg ggtttggtaa agttgtcaag	240
tataaggcct actgtaaagag ataccaagtg acttttagaa gacagtgtga gggtaaaact	300
gattactatg cttggaaaca ctttagtggta caggataaaa ataagtctaa cacacacaaa	360
tcacagaatga ttatgtgtt gataaataca gataccattt gtgagatggc ttatgccat	420
atagaatggg acatgatagt ctgtgcagct tatgcacacg aacttccaaa atacgggtgt	480
aagggtggcc tgacaaatga tgctgcagca tggtgtactg gcctgctgct ggcgtgcagg	540
cttctcagta ggtttggcat ggacaagatc tataaaggcc aagtggaggt aaccagagat	600
gaataacaacg tgggaagcac tcatggtcag ccaggtgcct ttacctgctg tttggatgca	660

ggccttgcca gaaccaccac tgacaataaa gttttgggg ctctgagagt gctgtggatg 720
gaggttctc tatccctcac agtgcctaac gattccctga gtaaaaggaa gcctggcccc 780
aggaaggagc agctgcctgc aagagggagc ctgagccgtg gagtcctggg agccttttag 840
gtgggcagcc agggcgtgga ggcagcagca agcccaaacg gtcaatacgg gcccagctgg 900
ggcctggcg 960
cgagggcac ggagggagct aggccacagg caccaaagcg ggatttgc
tatagcagga ctgactctca cagagactgt tctcctgtct gtcacaacat gtccctgagg 1020
ggtcaccc 1080
ttcccaagaa gccctcaaag gagaagcagg gacagcagaa actggacagc
aagtttatg agagctggc cacagcctg ctcacagcta tattcccggt gcttggcatc 1140
ttggtgctt 1200
ttgaatctt gctgatgaat gacccaatgc gtgaatgcat cctcagcacc
tctggcttct 1260
cagggcctcg cgccaggctc ctgggggtcc tggccctggg cgggcttcct
ctccatctt 1320
gtgcacctgt tatttaatg gcgtggattg tcctgctt gctattcaca
cgagcagga ccagggctga tcctgcagac gtgctgcccc ctggtgcat tgagaagact 1380
cgcatgcatt 1440
caactgcccc gcctcttggg ttgacttttag atgacggtga agtgcatt
acaagattgc tcactgatgc ttcttgcaaa aagtcgtgg tccggatatac tgaatcc 1500
tcctgcctcc 1560
acaatggcgt aacatccggg aacggctgtg aggtccatta ccgcaggcg
aggctttcc 1620
aggacgctca gatgcctgct cagagccccag cttatcgaaaa ggatctgcga
gctcctgtca acggccctgag aattcagaac cggagtcagc tcagccagg tggaaagatc 1680
aagtggccgc 1740
agcacaggca gctggaaggt acccacagaa agaaatcgag cactatgttc
agaaagatcc 1800
actccatctt taactccagc ccacagagaa agacggccgc cgagagcccc
ttctacgaag 1860
gagccagccc cgcaatgtca ctgattcgaa gcagttccat gtatgtggc
ggggaccacg 1920
gggagaaatt cagcgagtcc taaaagaagt acaaaagcac cagtagcatg
gacaccagcc 1980
tgtactacct gcggcaggag gaggaccggg cgtggatgtt ttcgcgcacc
caggactgcc 2040
tgcaatgttgc gcaggagctg ctggcccttc gcaaaaaata ttcagcagc
ttcagtgtatc 2100
tgaagccccca ccgcacccag gggatttcct caaccccttc caaatcc 2160
aaggagggaa 2220
aaaagactcc tgtccggct actccaaag aaataaagaa agcaacccca
aagaaatact 2280
cgcaatgtca tgctgatgtt ggcggccca ttgccttct tgactccatc
attgcagagc 2340
tggatacaga gagacgaccc cgggctgtc aggcggccct gccaatgaa
gatgtggact 2400
ttgacgtggc caccagctcc agggagcaca gcttgcattc taactggatc
ctgcggcacc 2460
cgccggcacc cgcgcagaca ctccgaggat atgcgtcccc acactgtgca tactgttagac
ggccagttt 2520
gaaggagcac cgagcacagg accgtggca ctcagaggag actcgagagg
ccccatattt atttgcccaa ggctgtggaa qggggcttca acacccatggaa atttaqccc

aaagcctgca	aaaaagacct	ggggagctcc	agacagatcc	tttcaactt	ctcaggagaa	2580
gatatggagt	gggatgcaga	gctcttgcg	ttggagcccc	agttgtctcc	tggggaggac	2640
tactatgaga	cagagaaccc	caaaggacag	tggctgcttc	gagaaaagact	ttgggagcgg	2700
acgactgggt	ccctgagaag	ctgtccgctt	tcagcgcagc	atgaggtatt	tggtagagtt	2760
gaaaatgcc	attgtAACAC	agtcaaccca	ctcagcacac	tgcctgctgg	tgccgtgcca	2820
gtgccaaaca	gacctgtggc	ttcccagggg	acaggtctca	ggacactctc	agagcttgag	2880
tttctctg	cg	ttggctga				2898

<210> 192
<211> 965
<212> PRT
<213> Homo sapiens

<400> 192

Met	Trp	Val	Arg	Cys	Ala	Leu	Leu	Val	Ala	Arg	Asp	Cys	Gly	Cys	Ala
1					5			10						15	

Glu	Arg	Val	Cys	Pro	Ser	Val	Val	Arg	Asp	Arg	Val	Cys	Val	Val	Gly
						20		25					30		

Ala	Gly	Lys	Ile	His	Thr	Lys	Glu	Lys	Asn	Ile	Ala	His	Leu	Leu	Glu
						35		40				45			

Met	Lys	Tyr	Phe	Lys	Phe	Asn	Ile	Ser	Leu	Ala	Asn	Ala	Glu	Phe	Ile
						50		55			60				

Ser	Gln	Asp	Ser	Trp	Leu	Ala	Trp	Val	Gly	Phe	Val	Lys	Val	Val	Lys
					65		70		75			80			

Tyr	Lys	Ala	Tyr	Cys	Lys	Arg	Tyr	Gln	Val	Thr	Phe	Arg	Arg	Gln	Cys
					85		90					95			

Glu	Gly	Lys	Thr	Asp	Tyr	Tyr	Ala	Trp	Lys	His	Leu	Val	Val	Gln	Asp
							100		105			110			

Lys	Asn	Lys	Ser	Asn	Thr	His	Lys	Tyr	Arg	Met	Ile	Ile	Cys	Val	Ile
						115		120			125				

Asn	Thr	Asp	Thr	Ile	Cys	Glu	Met	Ala	Tyr	Ala	His	Ile	Glu	Trp	Asp
						130		135			140				

Met	Ile	Val	Cys	Ala	Ala	Tyr	Ala	His	Glu	Leu	Pro	Lys	Tyr	Gly	Val
						145		150			155			160	

Lys Val Gly Leu Thr Asn Asp Ala Ala Ala Cys Cys Thr Gly Leu Leu
165 170 175

Leu Ala Cys Arg Leu Leu Ser Arg Phe Gly Met Asp Lys Ile Tyr Lys
180 185 190

Gly Gln Val Glu Val Thr Arg Asp Glu Tyr Asn Val Gly Ser Thr Asp
195 200 205

Gly Gln Pro Gly Ala Phe Thr Cys Cys Leu Asp Ala Gly Leu Ala Arg
210 215 220

Thr Thr Thr Asp Asn Lys Val Phe Gly Ala Leu Arg Val Leu Trp Met
225 230 235 240

Glu Val Ser Leu Ser Leu Thr Val Pro Asn Asp Ser Leu Ser Lys Gly
245 250 255

Lys Pro Gly Pro Arg Lys Glu Gln Leu Pro Ala Arg Gly Ser Leu Ser
260 265 270

Arg Gly Val Leu Gly Ala Phe Glu Val Gly Ser Gln Gly Val Glu Ala
275 280 285

Ala Ala Ser Pro Asn Gly Gln Tyr Gly Pro Ser Trp Gly Leu Ala Ala
290 295 300

Glu Gly Thr Glu Gly Ala Arg Pro Gln Ala Pro Lys Arg Asp Leu Ser
305 310 315 320

Tyr Ser Arg Thr Asp Ser His Arg Asp Cys Ser Pro Val Cys His Asn
325 330 335

Met Ser Leu Arg Gly His Leu Val Pro Lys Lys Pro Ser Lys Glu Lys
340 345 350

Gln Gly Gln Gln Lys Leu Asp Ser Lys Phe Tyr Glu Ser Trp Ala Thr
355 360 365

Ala Leu Leu Thr Ala Ile Phe Pro Val Leu Gly Ile Leu Val Leu Val
370 375 380

Glu Ser Leu Leu Met Asn Asp Pro Met Arg Glu Cys Ile Leu Ser Thr
385 390 395 400

Ser Gly Phe Ser Gly Pro Arg Ala Arg Leu Leu Gly Val Leu Ala Leu
405 410 415

Gly Gly Leu Pro Leu His Leu Gly Ala Pro Val Ile Val Met Ala Trp
420 425 430

Ile Val Leu Ala Leu Leu Phe Thr Arg Ser Arg Thr Arg Ala Asp Pro
435 440 445

Ala Asp Val Leu Pro Pro Gly Ala Phe Glu Lys Thr Arg Met His Ala
450 455 460

Leu Pro Pro Pro Leu Gly Leu Thr Leu Asp Asp Gly Glu Val Ile Thr
465 470 475 480

Thr Arg Leu Leu Thr Asp Ala Ser Val Gln Lys Val Val Val Arg Ile
485 490 495

Ser Glu Ser Ser Ser Cys Leu His Asn Gly Leu Leu Ser Gly Asn Gly
500 505 510

Cys Glu Val His Tyr Arg Arg Ala Arg Leu Phe Gln Asp Ala Gln Met
515 520 525

Pro Ala Gln Ser Pro Ala Tyr Arg Gly Asp Leu Arg Ala Pro Val Asn
530 535 540

Ala Leu Arg Ile Gln Asn Arg Ser Gln Leu Ser Pro Gly Gly Lys Ile
545 550 555 560

Lys Trp Arg Gln His Arg Gln Leu Glu Gly Thr His Arg Lys Lys Ser
565 570 575

Ser Thr Met Phe Arg Lys Ile His Ser Ile Phe Asn Ser Ser Pro Gln
580 585 590

Arg Lys Thr Ala Ala Glu Ser Pro Phe Tyr Glu Gly Ala Ser Pro Ala
595 600 605

Val Lys Leu Ile Arg Ser Ser Ser Met Tyr Val Val Gly Asp His Gly
610 615 620

Glu Lys Phe Ser Glu Ser Leu Lys Lys Tyr Lys Ser Thr Ser Ser Met
625 630 635 640

Asp Thr Ser Leu Tyr Tyr Leu Arg Gln Glu Glu Asp Arg Ala Trp Met
645 650 655

Tyr Ser Arg Thr Gln Asp Cys Leu Gln Tyr Leu Gln Glu Leu Ala

660

665

670

Leu Arg Lys Lys Tyr Leu Ser Ser Phe Ser Asp Leu Lys Pro His Arg
675 680 685

Thr Gln Gly Ile Ser Ser Thr Ser Ser Lys Ser Ser Lys Gly Gly Lys
690 695 700

Lys Thr Pro Val Arg Ser Thr Pro Lys Glu Ile Lys Lys Ala Thr Pro
705 710 715 720

Lys Lys Tyr Ser Gln Phe Ser Ala Asp Val Ala Glu Ala Ile Ala Phe
725 730 735

Phe Asp Ser Ile Ile Ala Glu Leu Asp Thr Glu Arg Arg Pro Arg Ala
740 745 750

Ala Glu Ala Ser Leu Pro Asn Glu Asp Val Asp Phe Asp Val Ala Thr
755 760 765

Ser Ser Arg Glu His Ser Leu His Ser Asn Trp Ile Leu Arg Ala Pro
770 775 780

Arg Arg His Ser Glu Asp Ile Ala Ala His Thr Val His Thr Val Asp
785 790 795 800

Gly Gln Phe Arg Arg Ser Thr Glu His Arg Thr Val Gly Thr Gln Arg
805 810 815

Phe Asn Thr Trp Lys Phe Lys Pro Lys Ala Cys Lys Lys Asp Leu Gly
 835 840 845

Ser Ser Arg Gln Ile Leu Phe Asn Phe Ser Gly Glu Asp Met Glu Trp
850 855 860

Asp Ala Glu Leu Phe Ala Leu Glu Pro Gln Leu Ser Pro Gly Glu Asp
865 870 875 880

Tyr Tyr Glu Thr Glu Asn Pro Lys Gly Gln Trp Leu Leu Arg Glu Arg
885 890 895

Leu Trp Glu Arg Thr Thr Gly Ser Leu Arg Ser Cys Pro Leu Ser Ala
900 905 910

Gln His Glu Val Phe Gly Arg Val Glu Asn Ala Asn Cys Asn Thr Val
915 920 925

Asn Pro Leu Ser Thr Leu Pro Ala Gly Ala Val Pro Val Pro Asn Arg
930 935 940

Pro Val Ala Ser Gln Gly Thr Gly Leu Arg Thr Leu Ser Glu Leu Glu
945 950 955 960

Phe Leu Cys Val Gly
965

```
<210> 193
<211> 22
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 193
cgagaggcac cccatTTATT tg

```
<210> 194
<211> 26
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 194
ttctctgtct catagtagtc ctcccc

<210> 195
<211> 1363
<212> DNA
<213> *Homo sapiens*

```
<400> 195  
aacaggcccc atgctgctct ggacggctgt gctgctctt ggtaagtcaa cgagcatggg 60  
catccctct tggagcacta aggacccctt ccgtgttggg aaaactgtct ggctgtacct 120  
ccaaggcctgg ccaaaccctg tgtttgaagg agatgccctg actctgcgat gtcagggatg 180  
gaagaataca ccactgtctc aggtgaagtt ctacagagat gaaaaattcc ttcatttctc 240  
taaggaaaac cagactctgt ccatgggagc agcaacagtg cagagccgtg gccagtacag 300  
ctgctctggg caggtgatgt atattccaca gacattcaca caaacttcag agactgccat 360  
ggttcaagtc caagagctgt ttcccacctcc tgtgctgagt gccatcccc ctcctgagcc 420  
ccgagaggggt agcctggtga ccctgagatg tcagacaaag ctgcacccccc tgaggtcagc 480
```

cttgaggctc	cttttctcct	tccacaagga	cggcccacacc	ttgcaggaca	ggggccctca	540
cccagaactc	tgcataccgg	gagccaagga	gggagactct	gggtttact	ggtgtgaggt	600
ggccccctgag	ggtggccagg	tccagaagca	gagccccca	ctggaggta	gagtgcaggc	660
tcctgtatcc	cgtcctgtgc	tcactctgca	ccacgggcct	gctgaccctg	ctgtggggga	720
catggtgcag	ctcctctgtg	aggcacagag	gggctccct	ccgatcctgt	attccttcta	780
ccttgatgag	aagattgtgg	ggaaccactc	agctccctgt	ggtgaaacca	cctccctcct	840
cttcccagtg	aagtcagaac	aggatgctgg	gaactactcc	tgcgaggctg	agaacagtgt	900
ctccagagag	aggagtgagc	ccaagaagct	gtctctgaag	ggttctcaag	tcttgttcac	960
tcccggcagc	aactggctgg	ttccctggct	tcctgcgagc	ctgcttggcc	tgatggttat	1020
tgctgctgca	cttctggtt	atgtgagatc	ctggagaaaa	gctggggccc	ttccatccca	1080
gataccaccc	acagctccag	gtggagagca	gtgcccacta	tatgccaacg	tgcacacca	1140
gaaaggaaaa	gatgaaggtg	ttgtctactc	tgtggtgcat	agaacctcaa	agaggagtga	1200
agccaggtct	gctgagttca	ccgtggggag	aaagcacaaa	gcttcaccca	aattccaccc	1260
caccctggat	ctccacacca	agcggctcag	ggttaatggt	cgagttcagg	aagcttatgt	1320
ggccttggtc	aacacctgct	ccctcacccc	cagcctgaag	tga		1363

<210> 196

<211> 450

<212> PRT

<213> Homo sapiens

<400> 196

Met	Leu	Leu	Trp	Thr	Ala	Val	Leu	Leu	Phe	Gly	Lys	Ser	Thr	Ser	Met
1						5			10				15		

Gly	Ile	Pro	Ser	Trp	Ser	Thr	Lys	Asp	Leu	Pro	Cys	Val	Gly	Lys	Thr
							20		25			30			

Val	Trp	Leu	Tyr	Leu	Gln	Ala	Trp	Pro	Asn	Pro	Val	Phe	Glu	Gly	Asp
								35	40		45				

Ala	Leu	Thr	Leu	Arg	Cys	Gln	Gly	Trp	Lys	Asn	Thr	Pro	Leu	Ser	Gln
						50		55		60					

Val	Lys	Phe	Tyr	Arg	Asp	Gly	Lys	Phe	Leu	His	Phe	Ser	Lys	Glu	Asn
	65						70		75		80				

Gln	Thr	Leu	Ser	Met	Gly	Ala	Ala	Thr	Val	Gln	Ser	Arg	Gly	Gln	Tyr
								85	90		95				

Ser Cys Ser Gly Gln Val Met Tyr Ile Pro Gln Thr Phe Thr Gln Thr
100 105 110

Ser Glu Thr Ala Met Val Gln Val Gln Glu Leu Phe Pro Pro Pro Val
115 120 125

Leu Ser Ala Ile Pro Ser Pro Glu Pro Arg Glu Gly Ser Leu Val Thr
130 135 140

Leu Arg Cys Gln Thr Lys Leu His Pro Leu Arg Ser Ala Leu Arg Leu
145 150 155 160

Leu Phe Ser Phe His Lys Asp Gly His Thr Leu Gln Asp Arg Gly Pro
165 170 175

His Pro Glu Leu Cys Ile Pro Gly Ala Lys Glu Gly Asp Ser Gly Leu
180 185 190

Tyr Trp Cys Glu Val Ala Pro Glu Gly Gln Val Gln Lys Gln Ser
195 200 205

Pro Gln Leu Glu Val Arg Val Gln Ala Pro Val Ser Arg Pro Val Leu
210 215 220

Thr Leu His His Gly Pro Ala Asp Pro Ala Val Gly Asp Met Val Gln
225 230 235 240

Leu Leu Cys Glu Ala Gln Arg Gly Ser Pro Pro Ile Leu Tyr Ser Phe
245 250 255

Tyr Leu Asp Glu Lys Ile Val Gly Asn His Ser Ala Pro Cys Gly Gly
260 265 270

Thr Thr Ser Leu Leu Phe Pro Val Lys Ser Glu Gln Asp Ala Gly Asn
275 280 285

Tyr Ser Cys Glu Ala Glu Asn Ser Val Ser Arg Glu Arg Ser Glu Pro
290 295 300

Lys Lys Leu Ser Leu Lys Gly Ser Gln Val Leu Phe Thr Pro Ala Ser
305 310 315 320

Asn Trp Leu Val Pro Trp Leu Pro Ala Ser Leu Leu Gly Leu Met Val
325 330 335

Ile Ala Ala Ala Leu Leu Val Tyr Val Arg Ser Trp Arg Lys Ala Gly
340 345 350

Pro Leu Pro Ser Gln Ile Pro Pro Thr Ala Pro Gly Gly Glu Gln Cys
 355 360 365

Pro Leu Tyr Ala Asn Val His His Gln Lys Gly Lys Asp Glu Gly Val
 370 375 380

Val Tyr Ser Val Val His Arg Thr Ser Lys Arg Ser Glu Ala Arg Ser
 385 390 395 400

Ala Glu Phe Thr Val Gly Arg Lys His Lys Ala Ser Pro Lys Phe His
 405 410 415

Pro Thr Leu Asp Leu His Thr Lys Arg Leu Arg Val Asn Gly Arg Val
 420 425 430

Gln Glu Ala Tyr Val Ala Leu Val Asn Thr Cys Ser Leu Thr Pro Ser
 435 440 445

Leu Lys
 450

<210> 197
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 197
gtcaggatg gaagaatac 19

<210> 198
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 198
acaggaggtg gaaacagc 18

<210> 199
<211> 534
<212> DNA
<213> Homo sapiens

<400> 199
acaattgtgt cttcttccag atgtcatcgc tataaggagt ggggctttca tcacctcctt 60
gacgttagat gtgtacatgg ctctccaggt cagagttgct ccaagcaagg ttgtttgca 120

gaagtttctt ctatgtgtca ttctttctta cactgtgtac tatgtgtccc tgagcatggg	180
ctgcgtgatg tttgagggtgc atgagttgaa tgtcctggct ccatttgatt tcaaaaacaaa	240
tccctcatgg ctcaacataa actataaaagt tcttttagtt tcaacagagg tcacctactt	300
tgttgtgga ttgtttttg ttccagttgt ggaagaatgg gtttgggatt atgctatttc	360
agtcactatt cttcatgttg ccacacttc aactgttatg ttgaaattcc ctttgacatc	420
acattgggtgg gctgctttag gtatatcaaa attgcttgtt tagattctct aatgcacaga	480
aataatgtta aatagaataa ctgtggaaat atatttatt ttctcataga tttt	534

<210> 200

<211> 128

<212> PRT

<213> Homo sapiens

<400> 200

Met Ala Leu Gln Val Arg Val Ala Pro Ser Lys Val Val Leu Gln Lys	
1	5
	10
	15

Phe Leu Leu Cys Val Ile Leu Phe Tyr Thr Val Tyr Tyr Val Ser Leu	
20	25
	30

Ser Met Gly Cys Val Met Phe Glu Val His Glu Leu Asn Val Leu Ala	
35	40
	45

Pro Phe Asp Phe Lys Thr Asn Pro Ser Trp Leu Asn Ile Asn Tyr Lys	
50	55
	60

Val Leu Leu Val Ser Thr Glu Val Thr Tyr Phe Val Cys Gly Leu Phe	
65	70
	75
	80

Phe Val Pro Val Val Glu Glu Trp Val Trp Asp Tyr Ala Ile Ser Val	
85	90
	95

Thr Ile Leu His Val Ala Ile Thr Ser Thr Val Met Leu Glu Phe Pro	
100	105
	110

Leu Thr Ser His Trp Trp Ala Ala Leu Gly Ile Ser Lys Leu Leu Val	
115	120
	125

<210> 201

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 201	tcaaaacatca cgcagcccat	20
<210> 202		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 202	tggggcttc atcacctcct tg	22
<210> 203		
<211> 615		
<212> DNA		
<213> Homo sapiens		
<400> 203	ggggatgtga tgcaggctt gattgtggc atattattgg tgccccagtc cattgcttat	60
	tccctgctgg ctggccaaga acctgtctat ggtctgtaca catcttttt tgccagcatc	120
	atttattttc tcttgggtac ctcccgtaac atctctgtgg gcattttgg agtactgtgc	180
	cttagatgg tgagacagt tgaccgagaa ctacagaaag ctggctatga caatgccat	240
	agtgcctt ccttaggaat ggttcaaata gggagcacat tattaaatca tacatcagac	300
	aggatatgtg acaaaaagtgtg ctatgcaatt atgggtggca gcactgtaaac ctttataagct	360
	ggagtttatac agtgattgtt ttgttaatgt ggaagcaaca ttttctatga ttaatctgct	420
	gttacactgtt ttgactgagc tactacaaaa agaaaaatca ctgaatttgct atgggtttct	480
	gaaatatcca aaaaattaac ctgaagcagg gggaaaaatg acatcacacc attagcaggt	540
	attgtgtgaa acttctaaaa atgaaactga catttatctg acttattagg aataaatact	600
	ctctaataatgaa ctctc	615
<210> 204		
<211> 121		
<212> PRT		
<213> Homo sapiens		
<400> 204		
Met Ser Gly Leu Ile Val Gly Ile Leu Leu Val Pro Gln Ser Ile Ala		
1	5	10
15		
Tyr Ser Leu Leu Ala Gly Gln Glu Pro Val Tyr Gly Leu Tyr Thr Ser		
20	25	30
Phe Phe Ala Ser Ile Ile Tyr Phe Leu Leu Gly Thr Ser Arg His Ile		
35	40	45

Ser Val Gly Ile Phe Gly Val Leu Cys Leu Met Ile Gly Glu Thr Val
50 55 60

Asp Arg Glu Leu Gln Lys Ala Gly Tyr Asp Asn Ala His Ser Ala Pro
65 70 75 80

Ser Leu Gly Met Val Ser Asn Gly Ser Thr Leu Leu Asn His Thr Ser
85 90 95

Asp Arg Ile Cys Asp Lys Ser Cys Tyr Ala Ile Met Val Gly Ser Thr
100 105 110 .

Val Thr Phe Ile Ala Gly Val Tyr Gln
115 120

```
<210> 205
<211> 20
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 205
taaatcatac atcagacagg 20

```
<210> 206
<211> 20
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 206
aaaacaggtt acaggcaggatt 20

```
<210> 207  
<211> 513  
<212> DNA  
<213> Homo sapiens
```

<400> 207 atggcggcgg ccgctctcg gagaattcgg cccgtcgggc tccaagcccc gcgcctggcg 60

tcggagggaa agactcgagc cgaaaagcccc atctctgacc ctagcaactc atacccttct 120

ggcttcctt tagcaaagcg cctggacgtc atccccctt cagatacccc aggccctcg 180

ctggccactg gcttgactat tgcaggagag cctgataaga tgggacacgg ctccacacctg 240

cattcagcaa gtcgttatcc tgcaactacg atgcaccagg aagaggatgt ggtgaggcca 300

gtttttccat atgcggatcg gcatcggagg gaagatctgc tggacctaag tgggggtgggc 360

atttcatttt tagggaccgt ctttgttaaa ataatttggg acctcataaaa gcctccagcc	420
atccctgatc aggacatagc ttacaacagc agcctggtc ccataacctg gacagcctgg	480
agtgaagtca cactcccaga cttgatgttc taa	513

<210> 208
<211> 170
<212> PRT
<213> Homo sapiens

<400> 208

Met Ala Ala Ala Ala Leu Ala Arg Ile Arg Pro Val Gly Leu Gln Ala			
1	5	10	15

Arg Arg Leu Ala Ser Glu Gly Lys Thr Arg Ala Glu Ser Pro Ile Ser		
20	25	30

Asp Pro Ser Asn Ser Tyr Pro Ser Gly Phe Pro Leu Ala Lys Arg Leu		
35	40	45

Asp Val Ile Pro Ser Ser Asp Thr Pro Gly Leu Val Leu Ala Thr Gly		
50	55	60

Leu Thr Ile Ala Gly Glu Pro Asp Lys Met Gly His Gly Ser Thr Leu			
65	70	75	80

His Ser Ala Ser Arg Tyr Pro Ala Thr Thr Met His Gln Glu Glu Asp		
85	90	95

Val Val Arg Pro Ala Phe Pro Tyr Ala Val Arg His Arg Arg Glu Asp		
100	105	110

Leu Leu Tyr Leu Ser Gly Val Gly Ile Ser Phe Leu Gly Thr Val Phe		
115	120	125

Val Lys Ile Ile Trp Asp Leu Ile Lys Pro Pro Ala Ile Pro Asp Gln		
130	135	140

Asp Ile Ala Tyr Asn Ser Ser Leu Val Pro Ile Thr Trp Thr Ala Trp			
145	150	155	160

Ser Glu Val Thr Leu Pro Asp Leu Met Phe	
165	170

<210> 209
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 209

tgagccctag atataacttgg

20

<210> 210

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 210

cagtcagcct ccatttct

18

<210> 211

<211> 508

<212> DNA

<213> Homo sapiens

<400> 211

tgagccctag atataacttgg cttgcattta ggggccatga tggtagaga tgaataatgc

60

cttacatgct ggagtcaccc tcagttgtc aaagtgttca cactgtgaga ggctcacaga

120

aatggaggct gactgaaggaa agagcagatt cacatcttc atcccttctt tatgctcatg

180

cttctaattt ttgttccat gtttcttgc ccctcctctt cttagcattt attttgtctg

240

tttctcttc ccctcttctg gtcctcttc catctctcct gagcacagaa atgcggctac

300

tgtatttaat ccacagtggc cccctctggc cccctcttg tgtctcctga gcacaggccc

360

tggccccctc tccatctctc ctgacctcct gatccgcccc cctcgccag ttattgtgt

420

tttataagga aaatgtttc tagtaccaca cttgtctccc tggaaaggat agaagaagga

480

ggaaaggaag tagggaggca ggaaagag

508

<210> 212

<211> 97

<212> PRT

<213> Homo sapiens

<400> 212

Met Pro Tyr Met Leu Glu Ser Pro Ser Val Cys Gln Ser Val His Thr

1 5 10

15

Val Arg Gly Ser Gln Lys Trp Arg Leu Thr Glu Gly Arg Ala Asp Ser

20

25

30

His Leu Ser Ser Leu Leu Tyr Ala His Ala Ser Asn Phe Cys Ser His

35

40

45

Val Phe Leu Pro Leu Leu Phe Leu Ala Phe Ile Leu Ser Val Ser Leu
 50 55 60

Ser Pro Leu Leu Ala Pro Ser Pro Ser Leu Leu Ser Thr Glu Met Arg
 65 70 75 80

Leu Leu Tyr Leu Ile His Ser Gly Pro Leu Trp Pro Pro Leu Cys Val
 85 90 95

Ser

<210> 213
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 213
ctgtatTTaa tccacagtgg ccccc 25

<210> 214
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 214
tccctacttc ctTcccTcct tcttcta 27

<210> 215
<211> 1321
<212> DNA
<213> Homo sapiens

<400> 215
cagtggccag gcaaggccag gagttgacat ttctctggcc agccatgggc ctcaccctgc 60
tcttgctgct gctcctggga ctagaaggc agggcatagt tggcagcctc cctgagggtgc 120
tgcaggcacc cgtgggaagc tccattctgg tgcagtGCCA ctacaggctc caggatgtca 180
aagctcagaa ggtgtggtgc cggTCTTgc cggagggggtg ccagcccctg gtgtccctcag 240
ctgtggatcg cagagctcca gcgggcaggc gtacgtttct cacagacctg ggtgggggccc 300
tgctgcaggc ggaaatggtt accctgcagg aagaggatgc tggcgagttat ggctgcattgg 360
tggatggggc cagggggccc cagatttgc acagagtctc tctgaacata ctgcccccag 420
aggaagaaga agagacccat aagattggca gtctggctga gaacgcattc tcagaccctg 480

caggcagtgc caacccttg	gaacccagcc	aggatgagaa	gagcatcccc	ttgatctggg	540	
gtgctgtgct	cctggtaggt	ctgctggtgg	cagcggtggt	gctgttgct	gtgatggcca	600
agagggaaaaca	agggAACAGG	CTTGGTGTCT	GTGGCCGATT	CCTGAGCAGC	AGAGTTTCAG	660
gcatgaatcc	ctcctcagtg	gtccaccacg	tcagtgactc	tggaccggct	gctgaattgc	720
ctttggatgt	accacacatt	aggcttgact	caccacccctc	atttgacaat	accacccata	780
ccagcctacc	tcttgattcc	ccatcaggaa	aacccactact	cccagctcca	tcctcattgc	840
cccctctacc	tcctaaggc	ctggctcgct	ccaagcctgt	gacatatgcc	acagtaatct	900
tcccgggagg	gaacaagggt	ggagggacct	cgtgtggcc	agcccagaat	ccacctaaca	960
atcagactcc	atccagctaa	gctgctcatc	acactttaaa	ctcatgagga	ccatccctag	1020
gggttctgtg	catccatcca	gccagctcat	gccctaggat	ccttaggata	tctgagcaac	1080
cagggacttt	aagatcta	ccaatgtcct	aactttacta	ggaaaagtga	cgctcagaca	1140
tgactgagat	gtcttgggaa	agacccct	gcacccaaact	cccccaactgg	ttcttctacc	1200
attacacact	gggctaaata	aaccctaata	atgatgtgca	aactcttaat	ggctgaatgg	1260
gaaaggaaac	tgcccaagtt	tgactaattg	cttggcctgt	aatggaaaaa	gactctggc	1320
t						1321

<210> 216
<211> 311
<212> PRT
<213> Homo sapiens

<400> 216

Met Gly Leu Thr Leu Leu Leu Leu Leu Leu Gly Leu Glu Gly Gln
1 5 10 15

Gly Ile Val Gly Ser Leu Pro Glu Val Leu Gln Ala Pro Val Gly Ser
20 25 30

Ser Ile Leu Val Gln Cys His Tyr Arg Leu Gln Asp Val Lys Ala Gln
35 40 45

Lys Val Trp Cys Arg Phe Leu Pro Glu Gly Cys Gln Pro Leu Val Ser
50 55 60

Ser Ala Val Asp Arg Arg Ala Pro Ala Gly Arg Arg Thr Phe Leu Thr
65 70 75 80

Asp Leu Gly Gly Leu Leu Gln Val Glu Met Val Thr Leu Gln Glu
85 90 95

Glu Asp Ala Gly Glu Tyr Gly Cys Met Val Asp Gly Ala Arg Gly Pro
100 105 110

Gln Ile Leu His Arg Val Ser Leu Asn Ile Leu Pro Pro Glu Glu Glu
115 120 125

Glu Glu Thr His Lys Ile Gly Ser Leu Ala Glu Asn Ala Phe Ser Asp
130 135 140

Pro Ala Gly Ser Ala Asn Pro Leu Glu Pro Ser Gln Asp Glu Lys Ser
145 150 155 160

Ile Pro Leu Ile Trp Gly Ala Val Leu Leu Val Gly Leu Leu Val Ala
165 170 175

Ala Val Val Leu Phe Ala Val Met Ala Lys Arg Lys Gln Gly Asn Arg
180 185 190

Leu Gly Val Cys Gly Arg Phe Leu Ser Ser Arg Val Ser Gly Met Asn
195 200 205

Pro Ser Ser Val Val His His Val Ser Asp Ser Gly Pro Ala Ala Glu
210 215 220

Leu Pro Leu Asp Val Pro His Ile Arg Leu Asp Ser Pro Pro Ser Phe
225 230 235 240

Asp Asn Thr Thr Tyr Thr Ser Leu Pro Leu Asp Ser Pro Ser Gly Lys
245 250 255

Pro Ser Leu Pro Ala Pro Ser Ser Leu Pro Pro Leu Pro Pro Lys Val
260 265 270

Leu Val Cys Ser Lys Pro Val Thr Tyr Ala Thr Val Ile Phe Pro Gly
275 280 285

Gly Asn Lys Gly Gly Thr Ser Cys Gly Pro Ala Gln Asn Pro Pro
290 295 300

Asn Asn Gln Thr Pro Ser Ser
305 310

<210> 217
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 217

aggaagaaga agagaccc

18

<210> 218

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 218

catcacagca aacagcac

18

<210> 219

<211> 3874

<212> DNA

<213> Homo sapiens

<400> 219

gagaactggg gcggcgcgcc gcccgcggc gcatttccag gcgcgtgtct ccgtcgac 60

gaacccttag ctcggcgccg cggaggatccc agcaggccaa gggggcgccgg cgtcctggc 120

ctcgagcttg ggagacatggat ggcgcattggc gtggggggcat gcggaccta gctcggtga 180

agctctcgaa aaggcaaga ctgcggcgac gagatgcgag cagaggagcc ctgcgcgggg 240

ggggccccca gcgcctggg agcccgccgc acgcggggcc ccggactgcg cctgtccagc 300

cagctgctgc ccgagctctg taccttcgtg gtgcgcgtgc ttttctaccc ggggcctgtc 360

tacctagctg gctacctggg gtcagcata acctgggtgc tgctcgccgc cctgtgtgg 420

atgtggtggc gcaggaaccg ccgcgggaag cttggcgcc tggccgcgc cttcgaaattc 480

cttgacaatg aacgcgagtt catcagccgc gagctgcggg gccagcaccc gccagccctgg 540

atccacttcc cggacgtgga gcgggtcgag tggggccaaca agatcatctc tcagacccgg 600

ccctaccaa gcatgatcat ggaaagcaag ttccgggaga aacctgagcc caagatccga 660

gagaagagca tccacctgag gacctttacc tttaccaagc tctactttgg acagaagtgt 720

cccagggtca acgggtgtcaa ggcacacact aatacgtgca accgaagacg tgtgactgtg 780

gacctgcaga tctgctacat cggggactgt gagatcgtg tggagctgca gaagattcag 840

gctgggtgtga acgggatcca gttgcagggc accctgcggg tcatcctgga gcccctccct 900

gtggacaagc ctttgtgg agccgtgact gtgttcttcc ttcagaagca gcacccatcag 960

atcaactgga ctggcctgac caacctgctg gatgcgcgg gaatcaatga tgtgtcagac 1020

agcttactgg aggacctcat tgccacccac ctgggtgtgc ccaaccgtgt gactgtgcct 1080

gtgaagaagg ggctggatct gaccaacccctg cgcttccctc tgccctgtgg ggtgatcaga 1140

gtgcacttgc tggaggcaga gcagctggcc cagaaggaca actttctggg gctccgaggc	1200
aagtcaagatc cctacgccaa ggtgagcatc ggcctacagc atttccggag taggaccatc	1260
tacaggaacc tgaaccccac ctggaacgaa gtgttgagt tcatagggtga cgaagtcct	1320
ggacaggacc tggaggtaga cctgtatgtat gaggataccg acagggatga cttcctggc	1380
agcctgcaga tctgccttgg agatgtcatg accaacagag tgggtggatga gtggttgtc	1440
ctgaatgaca caaccagcg cgccgtgcac ctgcggctgg agtggcttc attgcttact	1500
gaccaagaag ttctgactga ggaccatggt ggccttcca ctgccattct cgtggcttc	1560
ttggagagtg cctgcaacctt gccgagaaac cctttgact acctgaatgg tgaatatcga	1620
gccaaaaaac tctccaggtt tgccagagtg aaacaaggc agcaaagacc cttcttccta	1680
tgtcaaacta tctgttaggca agaagacaca tacaagtaag acctgtcccc acaacaagga	1740
ccctgtgtgg agccaggtgt tctccttctt tgtgcacaat gtggccactg agcggctcca	1800
tctgaagggt tgatggaaga agggctcttgg aaacagagtt aagaggtttt taagccaggc	1860
gggctggaa gcttgaagtg cacccgtgagc aggttctccctt ggcagcggtt aaagtcaagcc	1920
ccttgtatgt aagagaggac actgaggccc cacaaggcct catctcccttta aggctagtgc	1980
ctgaggtcac tttatagggg gatgtggag gataaatcctt caagtccctt gactttccctt	2040
gcaaaaagggt ctatattttt gctacacagt acccagagca gcctatctac acaggacatt	2100
aataatggtg tactttaaaa aatatatgtt tcatttaatc ttccaaaaag atctgttagag	2160
taagcaaaga gaggcaaaaaa caatgtcttgg tccaaagatct catgaccaac aagtggtgga	2220
gctggatct tttagggccc tgagccctgc ctggagagca gcacagctca tcagtccccca	2280
aagccccctg gctctggca tttgacagac tagctcatac agatcataat tgcctctact	2340
ctgagtcact atcttccctg acagaagaca aggaccaggtagt ctggcctgtat cccattcttag	2400
ttttcagaat aggaccagat gcccataaaaaa gcacagtaca gactgaagta aacccaaact	2460
tggctggggc tcagatacta gtatggagt ggtggggctt ggttatcctc ttgtttgtg	2520
actggaccac tgcccaggtg cttgtatgtt accaggagtg tgctctggga atgctggagg	2580
tccccctgtg ccagatccctc ccctatgtt acctcactct tgagcagcgc tttcagctgg	2640
accactcagg cctggacagc ctcatctcca tgaggctggt gcttgcagtt cctgcaagtg	2700
gaggaacgag agctggggag cccatacaca ggacctgaag ccctaaagaa agggccctcg	2760
ctcatcaaga aagtggctac caaccagggt cccaaaggccc aacctcagga agaaggccct	2820
acagatttgc catgtccccca agaccctgtt tctgtatacta aggacgtatc caggagtacc	2880
acaaccacca ccagtgcatac caccgttgcc actgagccca catcccaaga gacaggccca	2940
gagcctaaag gcaaggacag tgccaaaagg ttctgtgagc ccacatggggaa gaagaagagt	3000

ccagccacca	tcttcctgac	tgtcccaggt	ccccactctc	cagggcccat	caagtcaccc	3060
agaccatga	aatgccctgc	ctccccattc	gcatggccgc	ccaagaggct	ggctcccagc	3120
atgtcctcgc	tcaactcctt	ggcctttct	tgcttgacc	tggcagatat	cagcctaacs	3180
attgagtagat	cacctctctg	cttaatcttt	tctaaaatcg	cctgtatgaa	aaatacctcg	3240
ctggatggaa	aagtagat	gaacttacat	ttctgtgcaa	gttgttttt	cacaaaatat	3300
cttcctaaga	ggcagcatgg	tgtggtagaa	agaacacagg	acaaggaga	gagagccaaa	3360
caggctgttt	atggctctag	ctgcgtactg	actataaaat	agatgctgga	ctctgggtga	3420
ggtgtggacc	tcaggcgacg	gcagctgggt	gagattcagc	tcacagtgcg	ctatgtgt	3480
ctgcggcgct	gcctcagcgt	gctaatcaat	ggctgcagaa	acctaacacc	atgtaccagc	3540
agtggagctg	atccctacgt	ccgtgtctac	ttgttgccag	aaaggaagtg	ggcatgtcgt	3600
aagaagactt	cagtgaagcg	gaagaccttg	gaacccctgt	ttgatgagac	atttgaattt	3660
tttgttccca	tggaagaagt	aaagaagagg	tcactagatg	ttgcagtgaa	aaatagtagg	3720
ccacttggct	cacacagaag	aaaggagtt	ggaaaagtac	tgattgactt	atcaaaagaa	3780
gatctgatta	agggctttc	acaatggtaa	gtgtgccctt	tcattttatc	actgttatcc	3840
tgcttattcaa	gacagtttc	cctttcagt	actg			3874

<210> 220

<211> 501

<212> PRT

<213> Homo sapiens

<400> 220

Met	Arg	Ala	Glu	Glu	Pro	Cys	Ala	Pro	Gly	Ala	Pro	Ser	Ala	Leu	Gly
1				5				10				15			

Ala	Gln	Arg	Thr	Pro	Gly	Pro	Glu	Leu	Arg	Leu	Ser	Ser	Gln	Leu	Leu
				20			25				30				

Pro	Glu	Leu	Cys	Thr	Phe	Val	Val	Arg	Val	Leu	Phe	Tyr	Leu	Gly	Pro
						35		40			45				

Val	Tyr	Leu	Ala	Gly	Tyr	Leu	Gly	Leu	Ser	Ile	Thr	Trp	Leu	Leu	Leu
						50		55		60					

Gly	Ala	Leu	Leu	Trp	Met	Trp	Trp	Arg	Arg	Asn	Arg	Arg	Gly	Lys	Leu
					65		70		75			80			

Gly	Arg	Leu	Ala	Ala	Ala	Phe	Glu	Phe	Leu	Asp	Asn	Glu	Arg	Glu	Phe
						85		90			95				

Ile Ser Arg Glu Leu Arg Gly Gln His Leu Pro Ala Trp Ile His Phe
100 105 110

Pro Asp Val Glu Arg Val Glu Trp Ala Asn Lys Ile Ile Ser Gln Thr
115 120 125

Trp Pro Tyr Leu Ser Met Ile Met Glu Ser Lys Phe Arg Glu Lys Leu
130 135 140

Glu Pro Lys Ile Arg Glu Lys Ser Ile His Leu Arg Thr Phe Thr Phe
145 150 155 160

Thr Lys Leu Tyr Phe Gly Gln Lys Cys Pro Arg Val Asn Gly Val Lys
165 170 175

Ala His Thr Asn Thr Cys Asn Arg Arg Arg Val Thr Val Asp Leu Gln
180 185 190

Ile Cys Tyr Ile Gly Asp Cys Glu Ile Ser Val Glu Leu Gln Lys Ile
195 200 205

Gln Ala Gly Val Asn Gly Ile Gln Leu Gln Gly Thr Leu Arg Val Ile
210 215 220

Leu Glu Pro Leu Leu Val Asp Lys Pro Phe Val Gly Ala Val Thr Val
225 230 235 240

Phe Phe Leu Gln Lys Gln His Leu Gln Ile Asn Trp Thr Gly Leu Thr
245 250 255

Asn Leu Leu Asp Ala Pro Gly Ile Asn Asp Val Ser Asp Ser Leu Leu
260 265 270

Glu Asp Leu Ile Ala Thr His Leu Val Leu Pro Asn Arg Val Thr Val
275 280 285

Pro Val Lys Lys Gly Leu Asp Leu Thr Asn Leu Arg Phe Pro Leu Pro
290 295 300

Cys Gly Val Ile Arg Val His Leu Leu Glu Ala Glu Gln Leu Ala Gln
305 310 315 320

Lys Asp Asn Phe Leu Gly Leu Arg Gly Lys Ser Asp Pro Tyr Ala Lys
325 330 335

Val Ser Ile Gly Leu Gln His Phe Arg Ser Arg Thr Ile Tyr Arg Asn
340 345 350

Leu Asn Pro Thr Trp Asn Glu Val Phe Glu Phe Met Val Tyr Glu Val
355 360 365

Pro Gly Gln Asp Leu Glu Val Asp Leu Tyr Asp Glu Asp Thr Asp Arg
370 375 380

Asp Asp Phe Leu Gly Ser Leu Gln Ile Cys Leu Gly Asp Val Met Thr
385 390 395 400

Asn Arg Val Val Asp Glu Trp Phe Val Leu Asn Asp Thr Thr Ser Gly
405 410 415

Arg Leu His Leu Arg Leu Glu Trp Leu Ser Leu Leu Thr Asp Gln Glu
420 425 430

Val Leu Thr Glu Asp His Gly Gly Leu Ser Thr Ala Ile Leu Val Val
435 440 445

Phe Leu Glu Ser Ala Cys Asn Leu Pro Arg Asn Pro Phe Asp Tyr Leu
450 455 460

Asn Gly Glu Tyr Arg Ala Lys Lys Leu Ser Arg Phe Ala Arg Val Lys
465 470 475 480

Gln Gly Gln Gln Arg Pro Phe Phe Leu Cys Gln Thr Ile Cys Arg Gln
485 490 495

Glu Asp Thr Tyr Lys
500

<210> 221
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 221
tggggcctgt ctacctagct 20

<210> 222
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 222

tcttgttggc ccactcgac

19

<210> 223
<211> 1020
<212> DNA
<213> *Homo sapiens*

<400> 223 agacacagga cctgctggc cacagaaagg aggctctgg tagacgcact agattactgg 60
ataaatcact tcaatttccc aatgaatttt atattgttta ttttatacc tggagtttt 120
tccttaaaaa gtagcacttt gaagcctact attgaagcat tgcctaattgt gctaccttta 180
aatgaagatg ttaataagca ggaagaaaag aatgaagatc atactcccaa ttatgctcct 240
gctaattgaga aaaatggcaa ttattataaa gatataaaac aatatgtgtt cacaacacaa 300
aatccaaatg gcactgagtc taaaaatct gtgagagcca caactgacct gaatttgct 360
ctaaaaaaacg ataaaaactgt caatgcaact acatatgaaa aatccaccat tgaagaagaa 420
acaactacta gcgaacccttc tcataaaaaat attcaaagat caaccccaa cgtgcctgca 480
ttttggacaa tggtagctaa agctataaaat ggaacagcag tggtagctt tgataaaagat 540
caattatttc accaattcc agagtctgat gtgaatgcta cacagggaga aaatcagcca 600
gatctagagg atctgaagat caaaataatg ctggaaatct cgtagtgcac cctcctcctc 660
tttggtagtcc tctggcatt ctgttagtgct acactgtaca aactgaggca tctgagttat 720
aaaagttgtg agagtcagta ctctgtcaac ccagagctgg ccacgatgtc ttactttcat 780
ccatcagaag gtgttcaga tacatccctt tccaagatgt cagagagcag cacattttg 840
ggtaccactt cttcagatata gagaagatca ggcacaagaa catcagaatc taagataatg 900
acggatatac ttccatagg ctcagataat gagatgcacaaaacgatga gtcggattacc 960
cqqtqaqaaa atcaaqqaac ccqgtqaaga aatcttattq atqaataat aactttaatt 1020

<210> 224
<211> 294
<212> PRT
<213> Homo sapiens

<400> 224

Ser Ser Thr Leu Lys Pro Thr Ile Glu Ala Leu Pro Asn Val Leu Pro
20 25 30

Leu Asn Glu Asp Val Asn Lys Gln Glu Glu Lys Asn Glu Asp His Thr
35 40 45

Pro Asn Tyr Ala Pro Ala Asn Glu Lys Asn Gly Asn Tyr Tyr Lys Asp
50 55 60

Ile Lys Gln Tyr Val Phe Thr Thr Gln Asn Pro Asn Gly Thr Glu Ser
65 70 75 80

Glu Ile Ser Val Arg Ala Thr Thr Asp Leu Asn Phe Ala Leu Lys Asn
85 90 95

Asp Lys Thr Val Asn Ala Thr Thr Tyr Glu Lys Ser Thr Ile Glu Glu
100 105 110

Glu Thr Thr Ser Glu Pro Ser His Lys Asn Ile Gln Arg Ser Thr
115 120 125

Pro Asn Val Pro Ala Phe Trp Thr Met Leu Ala Lys Ala Ile Asn Gly
130 135 140

Thr Ala Val Val Met Asp Asp Lys Asp Gln Leu Phe His Pro Ile Pro
145 150 155 160

Glu Ser Asp Val Asn Ala Thr Gln Gly Glu Asn Gln Pro Asp Leu Glu
165 170 175

Asp Leu Lys Ile Lys Ile Met Leu Gly Ile Ser Leu Met Thr Leu Leu
180 185 190

Leu Phe Val Val Leu Leu Ala Phe Cys Ser Ala Thr Leu Tyr Lys Leu
195 200 205

Arg His Leu Ser Tyr Lys Ser Cys Glu Ser Gln Tyr Ser Val Asn Pro
210 215 220

Glu Leu Ala Thr Met Ser Tyr Phe His Pro Ser Glu Gly Val Ser Asp
225 230 235 240

Thr Ser Phe Ser Lys Ser Ala Glu Ser Ser Thr Phe Leu Gly Thr Thr
245 250 255

Ser Ser Asp Met Arg Arg Ser Gly Thr Arg Thr Ser Glu Ser Lys Ile
260 265 270

Met Thr Asp Ile Ile Ser Ile Gly Ser Asp Asn Glu Met His Glu Asn
275 280 285

Asp Glu Ser Val Thr Arg
290

<210> 225
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 225
tgaatgctac acagggagaa aatc

24

<210> 226
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 226
tgaaagtaag acatcgtggc c

21

<210> 227
<211> 309
<212> DNA
<213> Homo sapiens

<400> 227
atgaccacag ccaccctct ggggataacc acttcttct cactgaacat gaccaccagg 60
ggagaagact tcctgtataa gagttctgga gccattttg ctggcggtgt ggtgggtgtc 120
atcatcatct tcaccgttgt tctgatcctg ctgaagatgt acaacaggaa aatgaggacg 180
aggcggaac tagagcccaa gggcccaag ccaaccggcc cttctgccgt gggcccaaac 240
agcaacggca gccaacaccc agcaactgtg acttcagtc ctgttgacgt ccaggtggag 300
acgcgatga 309

<210> 228
<211> 102
<212> PRT
<213> Homo sapiens

<400> 228

Met Thr Thr Ala Thr Pro Leu Gly Asp Thr Thr Phe Phe Ser Leu Asn
1 5 10 15

Met Thr Thr Arg Gly Glu Asp Phe Leu Tyr Lys Ser Ser Gly Ala Ile
20 25 30

Val Ala Ala Val Val Val Val Ile Ile Ile Phe Thr Val Val Leu
35 40 45

Ile Leu Leu Lys Met Tyr Asn Arg Lys Met Arg Thr Arg Arg Glu Leu
 50 55 60

Glu Pro Lys Gly Pro Lys Pro Thr Ala Pro Ser Ala Val Gly Pro Asn
 65 70 75 80

Ser Asn Gly Ser Gln His Pro Ala Thr Val Thr Phe Ser Pro Val Asp
 85 90 95

Val Gln Val Glu Thr Arg
 100

<210> 229
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 229
ggggatacca ctttcttct 19

<210> 230
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 230
agttgctggg tgttggct 18

<210> 231
<211> 2510
<212> DNA
<213> Homo sapiens

<400> 231
gacttttaa taatagtcgt tctgactgat gtgaaatgga gtctttgt gtttctgatt 60

tgcatctctg atgatgcatg atgttgacca gttttaata tgggttgta ctgtttgtat 120

gtcttctttt aagaagtgtc tgttcatatc ctttgcctt tcgcttctat gcaccaataa 180

caccaggct gagagtcaaa ccaagaacac aatcctgact acagtagcca taaagaaaat 240

gaaatacctg ggaatacacc taatcaaaaa catgaaagca ctctcttagag ggagaactac 300

aaaacattgc taaaagaaaat cagagatgat tctctgaaaa agaagtgcaga tttagaaaatga 360

ttctctgaaa aagaaatcat ctctgatttc tttcagcagt gtgtttttg tttgtttgtt 420

tgttttgaga cagagtcttg ctctgtcgcc aaggctggag ggcaatggca tgatcccagc 480

tcaactacaac	ctcctgctcc	tgggttcgag	cgattctcct	acctcagcct	cccgagtagc	540
tgggattaca	ggaggctgag	aaaatgttag	aaattggggg	agacaagttt	cccttagaga	600
gcaggaagtt	actaagttagt	cctggaaaga	acatcagttg	cagatgtgac	ccctctgaga	660
ttaatatatac	tcatgaaatg	cctaaaacta	cagtttgaa	agctctcagt	atgaattctg	720
gaaaatgcaaa	gaaaaagagt	ctcttcaact	aagagtctt	gctgggatgg	aagatttggg	780
ccgtgtggtg	cctcagggaa	gttctggta	cagagaaaat	ggcgagtctc	tcagagaaga	840
agcaagacca	agtctggccc	tgtccttggt	catctcaaag	ccatgccgaa	gcattcagtt	900
attcttggtg	tgcattggaa	ggcatccagc	tatccccata	ccagcagcca	gtcaccagat	960
gtgaatgtgg	aagcagaaga	ccacccctg	ttggttctc	tcctcttc	tcttttctc	1020
tttagaacgg	ccaccattga	agacctagct	tcccatttc	cagacgtttt	ctctgaaatt	1080
ctctgctggc	ctgccaagcc	atatggattc	attctgccac	tgaggagtcc	ttcagtgagg	1140
tccctttcc	taaaggacag	agtggggagt	aggaggggaa	cagagaggac	atcctctctg	1200
gctctccagt	gctcttagtg	tctacaggct	cctaggcagc	cctgggcctt	ggtttgatta	1260
cctccctgg	gggatgctgg	tcagacccag	aggttgtcag	gaggtcagct	accaggaaga	1320
tccatgatct	ggcattggc	agtgcctgcc	accacagcca	ggaagatgcc	tctgacctgg	1380
gtgcacatc	atcactcctt	agcagcagcc	tgcataactg	gcaagaatct	tggatgatac	1440
aagagccaag	aaggacatt	tgagttgtgt	cgcttagata	ggaaagggat	ccagggaaaa	1500
tcaacagtaa	gtgaggatga	gcagtgtctc	ttggtttca	ttgaggatag	agtaagagat	1560
tgagtttaga	ttgcaacaga	aggaatttagt	ttagatacca	ggaagaactt	cctagcctga	1620
agatttgtca	tagtgtctgc	tttcttagata	tctggaaag	atttgataat	agttgtttgt	1680
gaatagaaaag	gaggatatga	tgttttatt	ggccattttg	cggactctt	cgacttcttg	1740
ctgctgtctc	ttgaggatac	attccaattc	catcctggcg	agatccaagt	gcttacgtac	1800
tgtctcccta	gctgccttag	agtaaacgt	catcagttca	atggacccaa	atcaccttca	1860
gccatgtgg	ttcttcatca	tcatggattt	ctttgggtt	acaacattc	tggctctcag	1920
atgcaaaaag	tcacactgg	aatgaactg	taagtggta	aattagtttt	ggtatttaat	1980
ttaaaaactac	atttatagtt	tttctttct	cttctatgtt	gcaatgaatg	taaagtattt	2040
gggatccagt	gcttataaaac	ctttccttcc	tttgcaca	gaatgtact	agcaagccca	2100
ttagcaccca	gataattcta	tcatgttagt	ttcccatcct	ggaaaatctt	tgtacagtgg	2160
gaagttcccc	gatgtgtttt	tctttcttag	gtgaagggtt	ggctatatca	ctttattgaa	2220
ttttgcattc	cttagacttt	taaaatatac	taatgtattc	tagtctact	ctaaagacct	2280
ttgatgttaa	aggaatcctt	catttatttc	atattcccta	tctcataggg	ccacaattat	2340

tttaatacag agatgattt caaaatattt taacaactgg tacaggacag atgccagcca	2400
ctcagaaggg atgcctgctg taaacaagca gtatgtatgg ttgtaccaat gcctattggc	2460
tgaacattat gctactttca gatattaaaa tggtgttcct ttgaatcgtg	2510

<210> 232
<211> 164
<212> PRT
<213> Homo sapiens

<400> 232

Met Gln Arg Lys Arg Val Ser Ser Thr Lys Ser Leu Cys Trp Asp Gly					
1	5		10		15
	10				
	15				

Arg Phe Gly Pro Cys Gly Ala Ser Gly Lys Phe Trp Leu Gln Arg Lys			
20	25		30
	30		

Trp Arg Val Ser Gln Arg Arg Ser Lys Thr Lys Ser Gly Pro Val Leu			
35	40		45
	45		

Gly His Leu Lys Ala Met Pro Lys His Ser Val Ile Leu Gly Val His			
50	55		60
	60		

Trp Lys Ala Ser Ser Tyr Pro His Thr Ser Ser Gln Ser Pro Asp Val					
65	70		75		80
	75		80		
	80				

Asn Val Glu Ala Glu Asp His Leu Leu Leu Val Leu Leu Phe Leu			
85	90		95
	95		

Leu Phe Leu Phe Arg Thr Ala Thr Ile Glu Asp Leu Ala Ser His Phe			
100	105		110
	110		

Pro Asp Val Phe Ser Glu Ile Leu Cys Trp Pro Ala Lys Pro Tyr Gly			
115	120		125
	125		

Phe Ile Leu Pro Leu Arg Ser Pro Ser Val Arg Ser Leu Phe Leu Lys			
130	135		140
	140		

Asp Arg Val Gly Ser Arg Arg Gly Thr Glu Arg Thr Ser Ser Leu Ala					
145	150		155		160
	155		160		
	160				

Leu Gln Cys Ser

<210> 233
<211> 20
<212> DNA
<213> Artificial Sequence

<220>		
<223> Oligonucleotide		
<400> 233		
gaggctgaga aaatgtttaga		20
<210> 234		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 234		
tccatccca g caaagact		18
<210> 235		
<211> 1977		
<212> DNA		
<213> Homo sapiens		
<400> 235		
cgtgggcttg aggacctgga gagagttagat cctgaagaac ttttcagtc tgctgaagag	60	
cttggaaagac tggagacaga aggcagagtc tcaggctctg aaggtaaag gagggtgagt	120	
tccttgaga aacactcatt tgatttgaa aagacttcaa ttctatgcta agcagggttc	180	
caagtagcta aatgaatgtat ctcagcaagt ctctttgtct gctgctgcta ctcgtttaca	240	
tttatttgatt acttacgatg attcaggtac tgttgtaaat gctttacatg ctgttatacg	300	
agactcttgg gagaatcac tttaatgaag cttgagacac atggcattgc catgcaatga	360	
ttttcccccc ctcttcacgg gatcagaggg aactaataga atgtgacaat gattcttag	420	
caggactgc tgaggcttct gttcccttt taagatctgc agtggaaagaa gatgagaaac	480	
atggatatgc ctttttttgc gtcccccctct tcctttatgt gatctctact tccttctata	540	
aatatattatggctacatttgc tccctttgtat tttcaaacaa ggaaaaaaa ggttgtaatt	600	
acactttact gcaatcctca gtttctccag ggaacaggaa tgcaaaaggct ttgaaggcct	660	
ctctatattgc tgacatggtc agctgggtgc catggccaa gtccttctgt tgccctccctc	720	
tgtcaccaag taagcttagt cttttctgag gtcaggttt gctgtatgtatgc tgcacttt	780	
taggcagaag gtttagaggcc tcatgagtgc tatatggact ttattaggct ttagatttga	840	
tggggaaataa gggatgtgat ttgtctttt ggaactcatc tttgattcat cattgtctct	900	
tggtatcttgc gaatttccat gtcattacag tctacagaat gaaagagtaa cctgtcccag	960	
aggagaggca ggtgaaagac tccacagcat gtcattctc attctgtctt ctcagtgaca	1020	
ccgaggttta ctgagtgcc actatgtgcc aagcactgtg ctcaggcctt tctttgtatg	1080	
catgatctca gtgaatctca ccaagcctca tctggaaaac gggacaaat taacaacagg	1140	

atggcaaatt	gaaaaacacg	taaccatgtt	ctacagatgg	aaaggggtgc	ttggttatta	1200
tgaaggcccc	ctcgcaagcg	tgtggacat	gggtgtgttc	tctgggtgt	actgatcaga	1260
tcaaggacct	cccccacct	tctcacactc	tgcccaccc	cgccttgc	ttatcagacc	1320
cttagccagt	gactcattcc	agaaccagaa	ccttggtgaa	atctcaaccg	acaccagaga	1380
tcggtgtctt	cagtcctaga	ctgatggaga	aaatccagaa	tatatactag	aagctccaaa	1440
tgctctgggt	ttcagctcct	ctgtgctgtg	gacactgact	ttggctcaga	actccgattt	1500
agtacaaaag	gctcattttt	atttcagggg	cactcttcc	aaagcaaacc	taataaatga	1560
aatatggaat	tcacagatac	acacacacat	taaaaaatta	acctagtgt	tctgtgagga	1620
gtagggcagaa	attcactgta	taaaaagaatg	cttcatttca	tagagaattt	gtgttaagat	1680
tccatttagat	agtacatttc	tcaaagattt	ttgaggttgt	atttgcttta	ccaaaacttg	1740
gtttatgtaa	gtggaaaaaag	catgttgc	aataacttgg	tgtctatgt	tcaagtttatg	1800
taaaataata	aatgtatgta	ggaatacgtg	tgttgaaga	tgtacatcaa	tttgctaaca	1860
atggttatct	ctgacgttgt	gggatttgag	atgtgtttt	cttttgggt	gtattttct	1920
ctattgtttg	acttaacaca	gaacatgttt	ggttacaaca	ataaaagttat	tgaagac	1977

<210> 236

<211> 130

<212> PRT

<213> Homo sapiens

<400> 236

Met	Ile	Phe	Pro	Pro	Ser	Ser	Arg	Asp	Gln	Arg	Glu	Leu	Ile	Glu	Cys
1					5				10				15		

Asp	Asn	Asp	Ser	Leu	Ala	Gly	Thr	Ala	Glu	Ala	Ser	Gly	Ser	Phe	Leu
				20				25				30			

Arg	Ser	Ala	Val	Lys	Glu	Asp	Glu	Lys	His	Gly	Tyr	Ala	Leu	Leu	Leu
				35				40			45				

Val	Pro	Leu	Phe	Leu	Tyr	Leu	Ile	Ser	Thr	Ser	Phe	Tyr	Lys	Tyr	Ile
					50			55			60				

Arg	Ala	Thr	Leu	Ser	Leu	Cys	Ile	Ser	Asn	Lys	Ala	Lys	Arg	Gly	Cys
					65			70			75		80		

Asn	Tyr	Thr	Leu	Leu	Gln	Ser	Ser	Val	Ser	Pro	Gly	Asn	Arg	Asn	Ala
					85			90			95				

Lys	Ala	Leu	Lys	Ala	Ser	Leu	Phe	Ala	Asp	Met	Val	Ser	Trp	Val	Pro
					100			105			110				

Trp Ala Lys Ser Phe Cys Cys Pro Pro Leu Ser Pro Ser Lys Leu Gly
 115 120 125

Pro Phe
130

<210> 237
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 237

atgattctt agcaggga

18

<210> 238
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 238

ctcttttgc cttgtttg

18

<210> 239
<211> 1293
<212> DNA
<213> *Homo sapiens*

<400> 239
aggccgaggg gttcggcgac gcggagggag ggagagtctg ggccgcgcgg gagccgcagg 60
gccccttagc cttcgcgaaa acgatggcg aggaagaagg accacctgt a gactgcgc 120
aaagaaaaaa gccaaagtct tcagaaaata aggaatctgc caaagaagag aaaatcagt 180
acattccaat tcctgaaaga gctccaaaac atgttattt tcaacgctt gcaaagattt 240
tcattggctg tcttgcagcg gttacttagtg gtatgatgt tgctctctac ttatcagcat 300
accatgaacg gaaattctgg ttttccaaca ggcaggagct tgaacggaa atcacgtttc 360
agggtgacag tgccatttat tactcctatt ataaagatat gttaaaggca ctttcatttg 420
aaagagggtgt ttacgaactg acacacaata acaaaaactgt atctctgaag actataaaatg 480
cagtcagca aatgtctctg tatccgaaac ttattgctag cattttatat caagccactg 540
gtagcaatga gattattgag ccagtgtatt tctatattgg cattgtttt ggattgcaag 600
gaatataatgt tactgcttta tttgttacaa gttggctt gatgttggaaaca tggctagcag 660
gaatgcttac ttttgcgtgg ttcgttatta acagttgcac agacccctgg tacagtgtgg 720

gaggtgacaa cacaggatat taataccagg aggcaggaat cattggacc gtcttgagg	780
ctggctacca cattcaatta actttgctat taatttcatg taatccctat atctgtctc	840
atatttgaag aggaaaagat actttctcat gtaaacataa tggtttaaa gaataagact	900
ctcttatgct acttaaaca aagaataaga ctctcttag agatcttagt gagaattgta	960
agaaaataaaa taaacagaag tctgactgcc ttatggatg tcactgatgt atgttgatt	1020
gctggagtag aagttaaata gaaaaattga cctggatat tctactcaa tgtatcttt	1080
gacaattgaa atgttcttaa tagctaagtt ttaaaaaatg cgtttgggg cttttgttt	1140
atatttatt ggtatgtatc ttgtactgca aaatacattt taatgccatg aaagaatatg	1200
ctgtctctt attcatcagc tttatagctt ttatggat atgacttctt agaaaagtt	1260
aaaaagatat taaagtcatt ccattatatt atg	1293

<210> 240

<211> 219

<212> PRT

<213> Homo sapiens

<400> 240

Met Ala Glu Glu Glu Gly Pro Pro Val Glu Leu Arg Gln Arg Lys Lys			
1	5	10	15

Pro Lys Ser Ser Glu Asn Lys Glu Ser Ala Lys Glu Glu Lys Ile Ser			
20	25	30	

Asp Ile Pro Ile Pro Glu Arg Ala Pro Lys His Val Leu Phe Gln Arg			
35	40	45	

Phe Ala Lys Ile Phe Ile Gly Cys Leu Ala Ala Val Thr Ser Gly Met			
50	55	60	

Met Tyr Ala Leu Tyr Leu Ser Ala Tyr His Glu Arg Lys Phe Trp Phe			
65	70	75	80

Ser Asn Arg Gln Glu Leu Glu Arg Glu Ile Thr Phe Gln Gly Asp Ser			
85	90	95	

Ala Ile Tyr Tyr Ser Tyr Tyr Lys Asp Met Leu Lys Ala Pro Ser Phe			
100	105	110	

Glu Arg Gly Val Tyr Glu Leu Thr His Asn Asn Lys Thr Val Ser Leu			
115	120	125	

Lys Thr Ile Asn Ala Val Gln Gln Met Ser Leu Tyr Pro Glu Leu Ile			
130	135	140	

Ala Ser Ile Leu Tyr Gln Ala Thr Gly Ser Asn Glu Ile Ile Glu Pro
145 150 155 160

Val Tyr Phe Tyr Ile Gly Ile Val Phe Gly Leu Gln Gly Ile Tyr Val
165 170 175

Thr Ala Leu Phe Val Thr Ser Trp Leu Met Ser Gly Thr Trp Leu Ala
180 185 190

Gly Met Leu Thr Val Ala Trp Phe Val Ile Asn Ser Cys Thr Asp Pro
195 200 205

Trp Tyr Ser Val Gly Gly Asp Asn Thr Gly Tyr
210 215

```
<210> 241
<211> 19
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 241
accgctgcaa

19

```
<210> 242
<211> 20
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

20

```
<210> 243  
<211> 1291  
<212> DNA  
<213> Homo sapiens
```

```
<400> 243  
atcatgtatt ccattgccac tggaggcttg gtttgcgtt cagtgttta tacacagaaa 60  
gacagctgca tgaaaaacaa aattctgctg ggagtaatg gaggcctgtg cctgcttata 120  
tcattggtag ccatctcacc ctgggtccaa aatcgacagc cacactcggt gctcttacaa 180  
tcaggggtca taagctgcta tgtcacctac ctcaccttct cagctctgtc cagcaaacct 240  
gcagaagtag ttcttagatga acatggaaa aatgttacaa tctgtgtgcc tgacttttgt 300  
caagacacctgt acagagatga aaacttggtg actatactgg ggaccagcct cttaatcgga 360
```

tgtatcttgtt	attcatgttt	gacatcaaca	acaagatcga	gttctgacgc	tctgcaggggg	420
cgatacgcag	ctcctgaatt	ggagatagct	cgctgttgtt	tttgcttcag	tcctggtgga	480
gaggacactg	aagagcagca	gccgggaaag	gagggaccac	gggtcattta	tgacgagaag	540
aaaggcaccg	tctacatcta	ctcctacttc	cactcgtgt	tcttcctagc	ttccctgtat	600
gtgatgatga	ccgtcaccaa	ctgggtcaac	tacgaaagtg	ccaacatcga	gagcttc	660
agcgggagct	ggtccatctt	ctgggtcaag	atggcctcct	gctggatatg	cgtgctgttg	720
tacctgtgt	cgctggtcgc	tcccctctgc	tgccccaccc	gggagttctc	tgtgtatga	780
tatcggcggt	cccctgggct	ttgtgggcct	acagcctgga	aagtccatc	tttgaacag	840
tgtccccggg	gcagggactg	gcccctgtg	cctgagtggg	tctgaaaaag	ctttgagaga	900
aaaaaaaaaa	aatctcctga	ttagctttt	actttgaaa	ttcaaaaaga	aactaccagt	960
ttgtccaaaa	gaaattgaaa	tttcaacca	aactgatcat	ggttgaaata	tcttacccct	1020
aggaactgga	taccagttat	gttacttcc	ttctgcatgt	tttgccaaa	acagaatttg	1080
gggcacagca	tctttcaca	gggataaaaa	tatcttgtgg	ggccagtc	tctcatcctc	1140
ggaatagaaa	aacatgccaa	aatcttgagt	ccccagcgcc	taacagaatc	cagaccctc	1200
tcactcactt	ccgcctctta	gagcctgtc	cccagggggc	ttttaggaca	ggactcagcc	1260
tgcagggccc	ctggatttta	taggtccaa	g			1291

<210> 244
 <211> 257
 <212> PRT
 <213> Homo sapiens

<400> 244

Met	Tyr	Ser	Ile	Ala	Thr	Gly	Gly	Leu	Val	Leu	Met	Ala	Val	Phe	Tyr	
1						5			10				15			

Thr	Gln	Lys	Asp	Ser	Cys	Met	Glu	Asn	Lys	Ile	Leu	Leu	Gly	Val	Asn	
						20			25				30			

Gly	Gly	Leu	Cys	Leu	Leu	Ile	Ser	Leu	Val	Ala	Ile	Ser	Pro	Trp	Val	
						35			40				45			

Gln	Asn	Arg	Gln	Pro	His	Ser	Gly	Leu	Leu	Gln	Ser	Gly	Val	Ile	Ser	
						50			55				60			

Cys	Tyr	Val	Thr	Tyr	Leu	Thr	Phe	Ser	Ala	Leu	Ser	Ser	Lys	Pro	Ala	
65					70				75				80			

Glu	Val	Val	Leu	Asp	Glu	His	Gly	Lys	Asn	Val	Thr	Ile	Cys	Val	Pro	
							85			90			95			

Asp Phe Gly Gln Asp Leu Tyr Arg Asp Glu Asn Leu Val Thr Ile Leu
100 105 110

Gly Thr Ser Leu Leu Ile Gly Cys Ile Leu Tyr Ser Cys Leu Thr Ser
115 120 125

Thr Thr Arg Ser Ser Ser Asp Ala Leu Gln Gly Arg Tyr Ala Ala Pro
130 135 140

Glu Leu Glu Ile Ala Arg Cys Cys Phe Cys Phe Ser Pro Gly Gly Glu
145 150 155 160

Asp Thr Glu Glu Gln Gln Pro Gly Lys Glu Gly Pro Arg Val Ile Tyr
165 170 175

Asp Glu Lys Lys Gly Thr Val Tyr Ile Tyr Ser Tyr Phe His Phe Val
180 185 190

Phe Phe Leu Ala Ser Leu Tyr Val Met Met Thr Val Thr Asn Trp Phe
195 200 205

Asn Tyr Glu Ser Ala Asn Ile Glu Ser Phe Phe Ser Gly Ser Trp Ser
210 215 220

Ile Phe Trp Val Lys Met Ala Ser Cys Trp Ile Cys Val Leu Leu Tyr
225 230 235 240

Leu Cys Thr Leu Val Ala Pro Leu Cys Cys Pro Thr Arg Glu Phe Ser
245 250 255

Val

<210> 245
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 245
agtcaaggcac acagattg

18

<210> 246
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 246

ttctgctggg agtaaatg

18

<210> 247

<211> 2412

<212> DNA

<213> Homo sapiens

<400> 247

gaaccaggc atcctgggct ccagctgaaa ccattgcatttggctttccc catccctggc 60

ccccgtgactc agtccctctg aaggaggcag ccctctttt tggcaatcac cagggaggtg 120

gggggaggag gaggggagct aggtggtgac atcacagtcg aaggttataa aagcttccag 180

ccaaacggca ttgaagttga agataacaacc tgacagcaca gcctgagatc ttggggatcc 240

ctcagcctaa cacccacaga cgtcagctgg tggattcccg ctgcatcaag gcctaccac 300

tgtctccatg ctgggctctc cctgccttct gtggctcctg gccgtgaccc tcttgggtcc 360

cagagctcag cccttggccc ctcaagactt tgaagaagag gaggcagatg agactgagac 420

ggcgtggccg ccttgcggg ctgtccctg cgactacgac cactgccgac acctgcaggt 480

gccctgcaag gagctacaga gggtcgggccc ggccgcctgc ctgtgcccag gactctccag 540

ccccgcccag cgcggccgacc cgccgcgcattt gggagaagtgcgcatttgcgg ccgaagaggg 600

ccgcgcagtg gtccactggt gtgcgggctt ctccgggtc ctccactact ggctgctgct 660

ttgggacggc agcgaggctg cgcagaaggg gcccccgctg aacgctacgg tccgcagagc 720

cgaactgaag gggctgaagc cagggggcat ttatgtcgtt tgcgtatgtt ccgctaacga 780

ggccggggca agccgcgtgc cccaggctgg aggagagggc ctcgaggggg ccgacatccc 840

tgcctcggg ctttgcagcc gccttgcgggt gcccgcggccac ccccgactc tggccacgc 900

ggccgtcggt gtgggcacgg ccctggccct gctaagctgt gcccggctgg tgtggactt 960

ctgcctgcgc gatcgctggg gctggccgcg ccgagccgccc gcccggccg cagggggcgct 1020

ctgaaagggg cctggggca tctcgggcac agacagcccc acctggggcg ctcagcctgg 1080

ccccgggaa agaggaaaac ccgctgcctc cagggagggc tggacggcga gctgggagcc 1140

agccccaggc tccagggcca cggcggagtc atggttctca ggactgagcg cttgttttagg 1200

tccggtaactt ggctttgtt ttcctggctg aggtctggga aggaatagaa agggggcccc 1260

aattttttt taagcggcca gataataat aatgtaacct ttgcgggttta agaggataaa 1320

atggaggata ttattatgtg ggtattata tgaccttgc aaccatttaa aaatgtaaaa 1380

acgacctgac ttagtaatgc gaacctatag tagcagctac tccagaggct gaaatggag 1440

gatctcttga gcccaggagt tggagtcag tccagccagg gcaacacagc cagacgcct 1500

tgtttttat tttgttttgtt ttgggttttt tggtttttga ggagtttccc tctgtcacac	1560
aagctggagg gcaatggcgc catctcagct cactgcaacg tccacccctt gggttcaagc	1620
gattccctcg cctcagcatc ctaatttagtt gggattacag gcggccacca ccatgccccgg	1680
ctaatttttg tggtttttta gtagagacgg ggtttcacca tgggttcagg ctggtctcaa	1740
actccctgacc tcaggtactc caccgcctt ggtctctcaa agtgctggga ttacaggcat	1800
aagccactgt gcccaggcag acccccttct taaaagatgt aaaacccggc cgggcgcggt	1860
ggctcacgcc tgtaatccca gcactttggg aggctgagggc gggcagatca cgaagtcagg	1920
agatcgagac catcctggct aacacggtga aaccccgctt ctactaaaaaa tacaaaaaatt	1980
agccgggcat ggtggtgggt acctgttagtc ccagctactc cgaggactga ggcaggagaa	2040
tggcgtgaac ccgggaggcg gatcttgcag tgagcggaga ttgcaccact gcactccagc	2100
ctgggtgaca gagcaagact ccctctcaaa agaaaaagaa aaaagatgta aaaaccattc	2160
ttagttgtg ggccttacaa atcaggccac tggccattt cttgttagtta gttgatccat	2220
gtcatgcacc ctaaaaatgg ctctgtcact gtgagtggct tcagtaggat tttgagaata	2280
agtttatatt cttgctaggt aaaacaaaac aaaaacgaca gtaataccaa ggaatctccc	2340
ccccctttta ccctccattt gtgttattt catatccact ataacaacat taaaggacct	2400
ttaaaaaggaa gt	2412

<210> 248

<211> 238

<212> PRT

<213> Homo sapiens

<400> 248

Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe Leu			
1	5	10	15

Val Pro Arg Ala Gln Pro Leu Ala Pro Gln Asp Phe Glu Glu Glu			
20	25	30	

Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala Val Pro Cys			
35	40	45	

Asp Tyr Asp His Cys Arg His Leu Gln Val Pro Cys Lys Glu Leu Gln			
50	55	60	

Arg Val Gly Pro Ala Ala Cys Leu Cys Pro Gly Leu Ser Ser Pro Ala			
65	70	75	80

Gln Pro Pro Asp Pro Pro Arg Met Gly Glu Val Arg Ile Ala Ala Glu			
85	90	95	

Glu Gly Arg Ala Val Val His Trp Cys Ala Pro Phe Ser Pro Val Leu
100 105 110

His Tyr Trp Leu Leu Leu Trp Asp Gly Ser Glu Ala Ala Gln Lys Gly
115 120 125

Pro Pro Leu Asn Ala Thr Val Arg Arg Ala Glu Leu Lys Gly Leu Lys
130 135 140

Pro Gly Gly Ile Tyr Val Val Cys Val Val Ala Ala Asn Glu Ala Gly
145 150 155 160

Ala Ser Arg Val Pro Gln Ala Gly Gly Glu Gly Leu Glu Gly Ala Asp
165 170 175

Ile Pro Ala Phe Gly Pro Cys Ser Arg Leu Ala Val Pro Pro Asn Pro
180 185 190

Arg Thr Leu Val His Ala Ala Val Gly Val Gly Thr Ala Leu Ala Leu
195 200 205

Leu Ser Cys Ala Ala Leu Val Trp His Phe Cys Leu Arg Asp Arg Trp
210 215 220

Gly Cys Pro Arg Arg Ala Ala Ala Arg Ala Ala Gly Ala Leu
225 230 235

<210> 249
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 249
atccctcagc ctaacacc 18

<210> 250
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 250
gccgtctcag tctcatct 18

<210> 251

<211> 1024
 <212> DNA
 <213> Homo sapiens

<400> 251
 gagcggcagg ggttccagct gcacgtccca ggctctccag cgcgccggcag gccggggcgg 60
 gacgaggaga gctgcgggga caacgcctgt ggctgggtcc ggaggtgcgg gtgcggcgcg 120
 ggacaagcgg gcagcatgct cagggcggtc gggagcctac tgccgccttgg ccgcgggcta 180
 acagtccgct gcggccccgg ggccgcctctc gaggccacgc gacggcccgc accggctctt 240
 ccgccccggg gtctcccctg ctactccagc ggccgggccc ccagcaattc tgggccccaa 300
 ggtcacgggg agattcacccg agtccccacg cagcgcaggc cttcgcagtt cgacaagaaa 360
 atcctgctgt ggacagggcg tttcaaatacg atggaggaga tccgcctcg gatccgcaca 420
 gaaatgatag acaccgcaag aaacaaagct cgagtgaaag cttgttacat aatgattgga 480
 ctcacaatta tcgcctgctt tgctgtgata gtgtcagcca aaagggtgtt agaacgcacat 540
 gaatccttaa caagttggaa cttggcaaag aaagctaagt ggcgtgaaga agctgcattt 600
 gctgcacagg ctaaagctaa atgatattct aagtgcacaaa gtgttcacctt gaataccatc 660
 cctgtcatca gcaacagtag aagatggaa aaatagaata tttacaaaa tatctgccat 720
 ggttttattt tggtaacaag aagcacaatg tctttttat ttttatttt tagtaaactt 780
 ttactgaagt ataccatgca ttcaaaaagt ggacaaaact gtatacagtc tgatagatat 840
 ttatgtcgtg aacacctgtg taaccactgc caaagtgaag atgtagaata ttggcaacac 900
 ttcacagcct cattcctgcc ttttctcagc cattacctcc caaacatagc agttttctg 960
 agtttcatca ctttgattc atttgcctg ttttgaact ttatataaat ggatttatac 1020
 atta 1024

<210> 252
 <211> 162
 <212> PRT
 <213> Homo sapiens

<400> 252

Met	Leu	Arg	Ala	Val	Gly	Ser	Leu	Leu	Arg	Leu	Gly	Arg	Gly	Leu	Thr
1	.			5				10				15			

Val	Arg	Cys	Gly	Pro	Gly	Ala	Pro	Leu	Glu	Ala	Thr	Arg	Arg	Pro	Ala
20							25				30				

Pro	Ala	Leu	Pro	Pro	Arg	Gly	Leu	Pro	Cys	Tyr	Ser	Ser	Gly	Gly	Ala
35							40				45				

Pro Ser Asn Ser Gly Pro Gln Gly His Gly Glu Ile His Arg Val Pro

50

55

60

Thr Gln Arg Arg Pro Ser Gln Phe Asp Lys Lys Ile Leu Leu Trp Thr
 65 70 75 80

Gly Arg Phe Lys Ser Met Glu Glu Ile Pro Pro Arg Ile Pro Pro Glu
 85 90 95

Met Ile Asp Thr Ala Arg Asn Lys Ala Arg Val Lys Ala Cys Tyr Ile
 100 105 110

Met Ile Gly Leu Thr Ile Ile Ala Cys Phe Ala Val Ile Val Ser Ala
 115 120 125

Lys Arg Ala Val Glu Arg His Glu Ser Leu Thr Ser Trp Asn Leu Ala
 130 135 140

Lys Lys Ala Lys Trp Arg Glu Glu Ala Ala Leu Ala Ala Gln Ala Lys
 145 150 155 160

Ala Lys

<210> 253
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 253
attatcgctt gctttgctg 19

<210> 254
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 254
ttcccatctt ctactgttgc tg 22

<210> 255
<211> 852
<212> DNA
<213> Homo sapiens

<400> 255
tttagggcag tttaggcac tgtggcagct gtgagataaa gtctggttcc tccccagctg 60

gctcaggaaa	tgttcgcgga	tacaacggcg	gccccctctg	ggcatacctg	cctgtggagc	120
ggagagtgga	cggtgtgagg	gggaccggga	gaggcaccaa	atctggcctg	ggggcccgag	180
aagcttcctc	tcagtgacca	caatatgaat	ggaaacagca	agatggcaaa	agcttgcgtga	240
gtggcacgc	gccagcctgg	gtagtgccct	ccccagcaag	ttgcacgtca	ctagcttcct	300
gtggctgtca	ctcctggcc	caggcacctc	cgaagatcag	cacccctcta	tgggctcaag	360
cgaggacagg	agcccgtcac	ccatgagctc	tcaagggcag	agccactgtc	ctgtctcgat	420
ggctccaccg	tgactccagt	ggactttgga	cagtggggag	caggccaaac	agggccactc	480
ggatgtggtc	actctggatt	tgggtggatc	agcaccaagc	tagactcatc	cccagcccc	540
aggtgctgtt	gctgctcctg	cgtgaggccc	catccacagc	tgcagctgtg	gcagggtggc	600
tagtggtggc	cagcatggcc	ctgctgcagc	tccacgctgt	ggggggcgtg	gccctgacca	660
gcagccaccc	ctccatgtgg	gccacagggg	aggagcttag	gaagccgcct	tggcaagggt	720
ccgcaggctc	tgcgtctgg	gtgaaagagc	tcacggggaa	gcactcctgc	ccaggacccg	780
aggagccggc	caccgttcag	aaggccccag	cttgaaggcc	tggagagccg	cccagcagca	840
caacacaggg	aa					852

<210> 256
<211> 110
<212> PRT
<213> Homo sapiens

<400> 256

Met Trp Ser Leu Trp Ile Trp Val Asp Gln His Gln Ala Arg Leu Ile
1 5 10 15

Pro Ser Pro Gln Val Leu Leu Leu Leu Arg Glu Ala Pro Ser Thr
20 25 30

Ala Ala Ala Val Ala Gly Trp Leu Val Val Ala Ser Met Ala Leu Leu
35 40 45

Gln Leu His Ala Val Gly Gly Val Ala Leu Thr Ser Ser His Pro Ser
50 55 60

Met Trp Ala Thr Gly Glu Glu Leu Arg Lys Pro Pro Trp Gln Gly Ser
65 70 75 80

Ala Gly Ser Ala Ser Gly Val Glu Glu Leu Thr Gly Lys His Ser Cys
85 90 95

Pro Gly Pro Glu Glu Pro Ala Thr Val Gln Lys Ala Pro Ala
100 105 110

<210> 257		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 257		
ttgctgttcc cattcata		18
<210> 258		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide		
<400> 258		
gataaaagtct gtttcctcc		19
<210> 259		
<211> 4231		
<212> DNA		
<213> Homo sapiens		
<400> 259		
gcggccgcct ttgcaagggtt gctggacaga tggaaactgga agggcagccg tctgccccc		60
acgaacacacct tctcaagcac tttgagtgac cacggcttgc aagctggtgg ctggcccccc		120
gagtcccgaaa ctctgaggca cggccgtcga cttaagcggtt gcattctgtt acctggagac		180
cctctgagct ctcacactgt acttctgccc ctgcttctgc acagagcccg ggcgaggacc		240
cctccaggat gcaggtcccg aacagcaccg gcccggacaa cgacgtcgat cagatgtgc		300
ggaacccggc gatcgccgtt gcccgtcccg tgggtactc gctgggtggcg gcggtcagca		360
tcccgggcaa cctttctct ctgtgggtgc tgtgccggcg catggggccc agatccccgt		420
cggtcatctt catgtcaac ctgagcgtca cggacactgat gctggccagc gtgttgcctt		480
tccaaatcta ctaccattgc aaccgccacc actgggtatt cggggtgctg ctttgcacg		540
tggtgaccgt ggcctttac gcaaacatgt attccagcat cctcaccatg acctgtatca		600
gcgtggagcg cttcctgggg gtcctgtacc cgctcagctc caagcgctgg cgccgcccgtc		660
gttacgcgtt ggccgcgtgt gcagggacct ggctgtgtct cctgaccgccc ctgtccccgc		720
tggcgccac cgatctcacc tacccgggtgc acggccctggg catcatcacc tgcttcgacg		780
tcctcaagtgc gacgatgctc cccagcgtgg ccatgtgggc cgtgttgcctc ttcaccatct		840
tcatcctgtct gttcctcatc ccgttcgtga tcaccgtggc ttgttacacg gccaccatcc		900
tcaagctgtt gcgacggag gagggcgacg gcccggagca gcggaggcgc gcgggtggcc		960

tggccgcggt ggtcttgcgt gcctttgtca cctgcttcgc ccccaacaac ttctgtgtcc	1020
tggcgacat cgtgagccgc ctgttctacg gcaagagcta ctaccacgtg tacaagctca	1080
cgtctgtct cagctgcctc aacaactgtc tggacccgtt tgtttattac tttgcgtccc	1140
gggaattcca gctgcgcctg cgaaaatatt tgggctgccg ccgggtgcc agagacaccc	1200
tggacacgcg cgcgcagagc ctcttctccg ccaggaccac gtccgtgcgc tccgaggccg	1260
gtgcgcaccc tgaaggatg gaggagcca ccaggccgg cctccagagg caggagatg	1320
tgttctgagt cccggggcg cagttggag agccgggggc gcagcttggaa gatccagggg	1380
cgcattggaga ggccacgggt ccagaggttc agggagaaca gctgcgttgc tcccaggcac	1440
tgcagaggcc cggtgtggaa gggctccag gctttattcc tcccaggcac tgcagaggca	1500
ccggtgagga agggctcca ggcttcactc agggtagaga aacaagcaaa gcccagcagc	1560
gcacagggtg cttgttatcc tgcagagggt gcctctgcct ctctgtgtca gggacagct	1620
tgtgtcacca cgcccggtta atttttgtat ttttttagt agagctggc tgtcaccccc	1680
gagctcccta gacactccctc acacctgtcc atacccgagg gtggatattc aaccagcccc	1740
accgcctacc cgactcggtt tctggatatac ctccgtggc gaactgcgag ccccatcccc	1800
agctcttcctc cctgctgaca tcgtccctta gttgtggttc tggccttc cattctccctc	1860
caggggttct ggtctccgta gcccggtgca cgccgaaatt tctgtttatt tcactcaggg	1920
gcactgtggt tgctgtggtt ggaattcttc tttcagagga gcccctgggg ctccctgcaag	1980
tcagctactc tccgtgccc cttccccca cacacacacc ccacccgtt gctgaccaag	2040
gtgattttg gcacatttg tctggcctgg cttgggtggaa ccccacccct attctgcttc	2100
tgtgagtccc tgatagagaa ggaggcccac tcaggcccct ggaacacact caggctccc	2160
tgactcagga caaggaccac gggaggcccac ggtgcggaaa ggaggctccg tgagatgggg	2220
tccagcccat ccaacacaaa gggcgcagct tgattcggga gttccccacc tcctgcccatt	2280
tctccgcgtc ctttacccc atggagagcc tcagccatgg caagtccatc tggagtcag	2340
gaagcaggca actggcctga cccatgagac cgtttggaga ccaagcagca gatgcaggtg	2400
tggacccacag gaacctacag ggggtgtcgc cgctgagccc cttccctgt gtgtgggtgg	2460
tgagcaggct gggctttgt ctgtcttctt ctacacggca tgtgcctgca ccagcccaa	2520
cacctgagct ggtttagcgc aaagaagacgc tctgactctc caggggtgt gggacatcac	2580
gtggaattgg atcccaggct ctcttggcg agaaagacca ttctggaggt gggagtgggaa	2640
gagctgcctg tctgcccacg ggctctgcgt ctccgcagtg ggtggccttg gatgcccggc	2700
ccctcccttt ctgtgcactg gggacgctga tggaggctga agctgctgtt cggaggccct	2760
ctattggtgc ctcttcctg ccgtcatcac tatggcagga aaacagagat ggttttagtaa	2820

<210> 260
<211> 359
<212> PRT
<213> Homo sapiens

<400> 260

Met Gln Val Pro Asn Ser Thr Gly Pro Asp Asn Ala Thr Leu Gln Met
1 5 10 15

Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu
20 25 30

Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu
35 40 45

Cys Arg Arg Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn
50 55 60

Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu Pro Phe Gln Ile
65 70 75 80

Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys
85 90 95

Asn Val Val Thr Val Ala Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu
100 105 110

Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly Val Leu Tyr Pro
115 120 125

Leu Ser Ser Lys Arg Trp Arg Arg Arg Tyr Ala Val Ala Ala Cys
130 135 140

Ala Gly Thr Trp Leu Leu Leu Thr Ala Leu Ser Pro Leu Ala Arg
145 150 155 160

Thr Asp Leu Thr Tyr Pro Val His Ala Leu Gly Ile Ile Thr Cys Phe
165 170 175

Asp Val Leu Lys Trp Thr Met Leu Pro Ser Val Ala Met Trp Ala Val
180 185 190

Phe Leu Phe Thr Ile Phe Ile Leu Leu Phe Leu Ile Pro Phe Val Ile
195 200 205

Thr Val Ala Cys Tyr Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu
210 215 220

Glu Ala His Gly Arg Glu Gln Arg Arg Arg Ala Val Gly Leu Ala Ala
225 230 235 240

Val Val Leu Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe Val
245 250 255

Leu Leu Ala His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr
260 265 270

His Val Tyr Lys Leu Thr Leu Cys Leu Ser Cys Leu Asn Asn Cys Leu

275

280

285

Asp Pro Phe Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu
 290 295 300

Arg Glu Tyr Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr
 305 310 315 320

Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu
 325 330 335

Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu
 340 345 350

Gln Arg Gln Glu Ser Val Phe
 355

<210> 261
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 261
cctgttacct ggagaccct

19

<210> 262
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 262
accagcgagt acaccacg

18

<210> 263
<211> 717
<212> DNA
<213> Homo sapiens

<400> 263
ggccgggctg gggcttcagc gggaggcagc agaggggaag tggtcagcgt ggcgaatgac 60
ggaagaaaact cgcattgtct actggatcaa ggacagacag ctcaccaacc gtgacagcac 120
catactggaa cttcaaaaag ttctgaaaac atgttgtgct cagagcatga aaatttctg 180
ctgtcttg aactttgtct acaaacagtt agaagatgca gcccaaggc tcaccatgg 240
tggcgatgtt gaagaacatg aagaccttac tgctgatgc accatcttca aatttgg 300

agcttataca gagtgggagg tgaagagggtg gtcagacaaac aatctgataa tgaaaacaaac	360
aatgtgaag agaagacgt tagatgatgt tggccctgaa ttggaaaagg ctgtctggaa	420
gctcggtgc ccacccagca ttcatgtct gctacccct gtctgttatg ctttgtctg	480
gtttttcaa gtttaattt ttttttaat tcttagtttt tgtggtaca tagtaggtgt	540
atatatttat gggttacatg agatgtttt atacaggcat gcaaatatgta ataatcacct	600
catggagaat ggggtaccca tcacatcaag catttacct ttgtgttaca aacggtccag	660
ttagactctt ttagttatta taaaaatgtt caattaaatt attttgact atagtca	717

<210> 264
<211> 171
<212> PRT
<213> Homo sapiens

<400> 264

Met Thr Glu Glu Thr Arg Ile Val Tyr Trp Ile Lys Asp Arg Gln Leu			
1	5	10	15

Thr Asn Arg Asp Ser Thr Ile Leu Glu Leu Gln Lys Val Leu Lys Thr		
20	25	30

Cys Cys Ala Gln Ser Met Lys Ile Phe Cys Cys Leu Trp Asn Phe Val		
35	40	45

Tyr Lys Gln Leu Glu Asp Ala Ala Gln Gly Leu Thr Met Gly Gly Asp		
50	55	60

Val Glu Glu His Glu Asp Leu Thr Ala Asp Ser Thr Ile Phe Lys Phe			
65	70	75	80

Val Glu Ala Tyr Thr Glu Trp Glu Val Lys Arg Trp Ser Asp Asn Asn		
85	90	95

Leu Ile Met Lys Gln Thr Asn Val Lys Arg Arg Arg Leu Asp Asp Val		
100	105	110

Gly Pro Glu Leu Glu Lys Ala Val Trp Glu Leu Gly Cys Pro Pro Ser		
115	120	125

Ile Gln Cys Leu Leu Pro Pro Val Cys Tyr Ala Cys Val Trp Phe Phe		
130	135	140

Gln Val Leu Ile Phe Phe Leu Ile Leu Ser Phe Cys Gly Tyr Ile Val			
145	150	155	160

Gly Val Tyr Ile Tyr Gly Leu His Glu Met Phe
165 170

<210> 265
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 265
ttcaaacatcg ccacccat 18

```
<210> 266
<211> 20
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Oligonucleotide

<400> 266
caqcaqaqqq qaaqtqqtca 20

<210> 267
<211> 390
<212> DNA
<213> Homo sapiens

<400> 267
atggaagtga tattaccaga caaacctcag gtagatgcac tggccttct agctgctgtc 60
accatgctgt ggataacgct gcccatgagt cctttgcag aagcagagaa attggcatgg 120
gatctggagg ttggagggtt agctggacag ccccttaaag ttttcaactcc acgtaaaaaa 180
ggttctgggg aagtgggtga tgcttctcag tcgccccagca gaagcaatga tggccagcat 240
tcctgcattg gccacagcag agatctctgc tgctacactg ctcagaccct cataatctcc 300
tacacatcaa atggtctttc tccttagca actccaccct tccaccctat tcctggaaac 360
tgctacqaca qtgttqatta taaaatata 390

<210> 268
<211> 129
<212> PRT
<213> *Homo sapiens*

<400> 268
Met Glu Val Ile Leu Pro Asp Lys Pro Gln Val Asp Ala Leu Ala Phe
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Leu Ala Ala Val Thr Met Leu Trp Ile Thr Leu Pro Met Ser Pro Phe
20 25 30

Ala Glu Ala Glu Lys Leu Ala Trp Asp Leu Glu Val Gly Gly Leu Ala
 35 40 45

Gly Gln Pro Leu Lys Val Phe Thr Pro Arg Lys Lys Gly Ser Gly Glu
 50 55 60

Val Gly Asp Ala Ser Gln Ser Pro Ser Arg Ser Asn Asp Gly Gln His
 65 70 75 80

Ser Cys Ile Gly His Ser Arg Asp Leu Cys Cys Tyr Thr Ala Gln Thr
 85 90 95

Leu Ile Ile Ser Tyr Thr Ser Asn Gly Leu Ser Pro Leu Ala Thr Pro
 100 105 110

Pro Phe His Pro Ile Pro Gly Asn Cys Tyr Asp Ser Val Asp Tyr Lys
 115 120 125

Ile

<210> 269
<211> 2856
<212> DNA
<213> Homo sapiens

<400> 269		
atggccaaaa gaaatctcag cactgtgaca gagttcattt ttgttagtctt cacagatcac	60	
cctgaactgg cagttccact cttccctagt tttctcagtt tctatcttgt cactttctg	120	
ggaaatgggg ggatgatcat tctaattccaa gtggatgccc aactccacac ccccggtac	180	
ttcttcctga gccacccttgc tttcctggat gcctgctgtg cctcagtaat cacccttcag	240	
attctggcca cactggccac agacaagaca gttatctcct atggctgccg tgctgtcag	300	
ttctctttct tcaccatatg tgcaggcaca gagtgttacc tgctgtcagt gatggcctat	360	
gaccgctttg ttgccattag caatccactg cactgtaaca tgaccatgac tccaggtacc	420	
tgcagggct ttttgccag tgccttcatac tgtgggtgt cagggccat tctgcatacc	480	
acgtgcacct tcaccctctc cttctgttgt gacaatcaga tcaacttctt cttctgtgac	540	
ctccccacccc tgctgaagct cgcctgcagc agcatgacac aaactgagat tgtcattctc	600	
ctttgtgcaa aatgcatttt cctagccaat gtcattgttca tcctgatctg ctacatgctc	660	
attatcagag ccatttttag ggtgaagtcg gcaggaggcc tcctgatagc atctgctcat	720	
ttcgatgcattt atgttatatga gacaggcatc aactacaaca cagtttatgg ctcaggaaag	780	
gcagtaggggt ggtcctggag gaggcctgcgg gaaaccaacc acatgagacc aggaaataact	840	

tcaaaaacact cagcagccca gctgcatcaa tgcctcatcc agcaagttgg caggtggccc	900
ttgcagagca tgcccttccc cgtttctgca gggccacccat ataagtcagt gcagcctctc	960
cctggagacc cccggcctct cctgtgcata accggattat ttctgacttt gaagatgatg	1020
gggtgtgggc ccaggaggcc cagggacagg aagtctgact tcttcataaa cacagaccct	1080
ggtgcaagggt caccagaaga acagagggtgt ggatgggaag ggcacatccttc ccactcctat	1140
accctggggc tgtctctgcc agtcaacttc ggcctgaaat gtccatggtg gacactatct	1200
ggaccccccag ctacctgcca acgtccagac ctgcagacac cttctccacc aaaggagata	1260
tgttcatccg ggctgcgacc ctttacacac agcgctggac cagacagaag tcaagttcca	1320
gcagcctccg gagcagccac tatgtgaca aaggggctgc ccgacatcac tgtggactg	1380
cagatttatg actcctgcat ctcagggatc caggctctgg ggagcaccct ggccctgctg	1440
tccaaatcagc ttccacccac aaccaactat gcttgtggct cccagcaaca tctcctggc	1500
gtggttggag ggatgacctt cctggagtca gagcccatgt ctgagctgct ctccatctac	1560
agagtccctc agggccaaag actcacaaa aactttgaag taaaagaact tgtctgcaca	1620
tatctggtag gacagcttcc ttatggctg gtcagttatg acaacagcaa ctttgagtgg	1680
ctggatcagc agctgcagaa gcagatcggg ggcgaggac ttctgttgg cgctgcgccc	1740
agccgtgttag ccaggcaaca gtctgatgag gaagctgtgg gaggagtgca gggatacagg	1800
tggctggat taggggcttc catccaaagt gccagagaag gggcttggca tcgcacaggg	1860
ctggagaaca tgaccactgc ccacctgtct gccttcaaac ttctgatct aactgccact	1920
taccaaggct acctggcagc caaagccctg tgggttgcct atcagaactt gatgtcctgc	1980
tctgagagag agggaccatt cctgggaggc acgtatgccca atgcatggga agccaggctt	2040
tctcaggatc acttcaccac caaagccaa gaagaggttt tcttcgc当地 agatggggaa	2100
gtgctgacaa cgtttgacat taaaacatc tatgttctcc cagacctgtc aggacagaca	2160
gccattgttg gacacttta cttcagagca cttctgtgaa aagagcttct gttggatgac	2220
agcgcaattt tctgggcaga aggaccctta aagatttagag ctgagagaac cctaagaacc	2280
aagaccacac agcacccctc acatcccaag ctccaggagt cccttcctct gtctgc当地	2340
aaaaacgtcc tgtggaaacc aggaagtcaa ccctatttga gaagtcaaaa tgctgctaca	2400
aaagccttcc ctgacccaga agagaaatcg caatgtcacc agtttctctt tctcccttca	2460
gatagtgttgc catgtcagaa gtgctctgac aaccagtggc ccaatgtgca gaagggcgag	2520
tgcatccccca aaacccttga cttcttgc当地 tatcacaagc cccttgacac agcgatggct	2580
gtctgcacag ccctgctctt tctccttgcc ctggccatct taggcatctt ccatgttgc	2640
tgctcctgtg tctgggtgtc cttcataacct gcccacatgc atgcccacag caaagacacc	2700

atggccatgg aggtctttgt catcttggca tcagcaggag gcctcatgtc ctccctttc	2760
ttttccaaat gctacatcat ccttctccat cctgaaaaga acacaaaaga ccaaatgtt	2820
ggccggcattc atcgcaagtg ggaaaaactg aagtga	2856

<210> 270
<211> 951
<212> PRT
<213> Homo sapiens

<400> 270

Met Ala Lys Arg Asn Leu Ser Thr Val Thr Glu Phe Ile Leu Val Val			
1	5	10	15

Phe Thr Asp His Pro Glu Leu Ala Val Pro Leu Phe Leu Val Phe Leu		
20	25	30

Ser Phe Tyr Leu Val Thr Phe Leu Gly Asn Gly Gly Met Ile Ile Leu		
35	40	45

Ile Gln Val Asp Ala Gln Leu His Thr Pro Val Tyr Phe Phe Leu Ser		
50	55	60

His Leu Ala Phe Leu Asp Ala Cys Cys Ala Ser Val Ile Thr Pro Gln			
65	70	75	80

Ile Leu Ala Thr Leu Ala Thr Asp Lys Thr Val Ile Ser Tyr Gly Cys		
85	90	95

Arg Ala Val Gln Phe Ser Phe Phe Thr Ile Cys Ala Gly Thr Glu Cys		
100	105	110

Tyr Leu Leu Ser Val Met Ala Tyr Asp Arg Phe Val Ala Ile Ser Asn		
115	120	125

Pro Leu His Cys Asn Met Thr Met Thr Pro Gly Thr Cys Arg Val Phe		
130	135	140

Leu Ala Ser Ala Phe Ile Cys Gly Val Ser Gly Ala Ile Leu His Thr			
145	150	155	160

Thr Cys Thr Phe Thr Leu Ser Phe Cys Cys Asp Asn Gln Ile Asn Phe		
165	170	175

Phe Phe Cys Asp Leu Pro Pro Leu Leu Lys Leu Ala Cys Ser Ser Met		
180	185	190

Thr Gln Thr Glu Ile Val Ile Leu Leu Cys Ala Lys Cys Met Phe Leu
195 200 205

Ala Asn Val Met Val Ile Leu Ile Cys Tyr Met Leu Ile Ile Arg Ala
210 215 220

Ile Leu Arg Val Lys Ser Ala Gly Gly Leu Leu Ile Ala Ser Ala His
225 230 235 240

Phe Asp Ala Tyr Val Tyr Glu Thr Gly Ile Asn Tyr Asn Thr Val Tyr
245 250 255

Gly Ser Gly Lys Ala Val Gly Trp Ser Trp Arg Ser Leu Arg Glu Thr
260 265 270

Asn His Met Arg Pro Gly Asn Thr Ser Lys His Ser Ala Ala Gln Leu
275 280 285

His Gln Cys Leu Ile Gln Gln Val Gly Arg Trp Pro Leu Gln Ser Met
290 295 300

Pro Phe Pro Val Ser Ala Gly Pro Pro Tyr Lys Ser Val Gln Pro Leu
305 310 315 320

Pro Gly Asp Pro Arg Pro Leu Leu Cys Ile Thr Gly Leu Phe Leu Thr
325 330 335

Leu Lys Met Met Gly Cys Gly Pro Arg Arg Pro Arg Asp Arg Lys Ser
340 345 350

Asp Phe Phe Ile Asn Thr Asp Pro Gly Ala Gly Ser Pro Glu Glu Gln
355 360 365

Arg Cys Gly Trp Glu Gly His Pro Ser His Ser Tyr Thr Leu Gly Leu
370 375 380

Ser Leu Pro Val Asn Phe Gly Leu Lys Cys Pro Trp Trp Thr Leu Ser
385 390 395 400

Gly Pro Pro Ala Thr Cys Gln Arg Pro Asp Leu Gln Thr Pro Ser Pro
405 410 415

Pro Lys Glu Ile Cys Ser Ser Gly Leu Arg Pro Leu Thr His Ser Ala
420 425 430

Gly Pro Asp Arg Ser Gln Val Pro Ala Ala Ser Gly Ala Ala Thr Met
435 440 445

Leu Thr Lys Gly Leu Pro Asp Ile Thr Val Gly Leu Gln Ile Tyr Asp
450 455 460

Ser Cys Ile Ser Gly Ile Gln Ala Leu Gly Ser Thr Leu Ala Leu Leu
465 470 475 480

Ser Asn Gln Leu Pro Pro Thr Thr Asn Tyr Ala Cys Gly Ser Gln Gln
485 490 495

His Leu Leu Gly Val Val Gly Gly Met Thr Phe Leu Glu Ser Glu Pro
500 505 510

Met Ser Glu Leu Leu Ser Ile Tyr Arg Val Pro Gln Gly Gln Arg Leu
515 520 525

Thr Lys Asn Phe Glu Val Lys Glu Leu Val Cys Thr Tyr Leu Val Gly
530 535 540

Gln Leu Pro Tyr Gly Leu Val Ser Tyr Asp Asn Ser Asn Phe Glu Trp
545 550 555 560

Leu Asp Gln Gln Leu Gln Lys Gln Ile Gly Gly Glu Gly Leu Pro Val
565 570 575

Gly Ala Ala Pro Ser Arg Val Ala Arg Gln Gln Ser Asp Glu Glu Ala
580 585 590

Val Gly Gly Val Gln Gly Tyr Arg Trp Ser Gly Leu Gly Ala Ser Ile
595 600 605

Gln Ser Ala Arg Glu Gly Ala Trp His Arg Thr Gly Leu Glu Asn Met
610 615 620

Thr Thr Ala His Leu Ser Ala Phe Lys Leu Pro Asp Leu Thr Ala Thr
625 630 635 640

Tyr Gln Ala Tyr Leu Ala Ala Lys Ala Leu Trp Val Ala Tyr Gln Asn
645 650 655

Leu Met Ser Cys Ser Glu Arg Glu Gly Pro Phe Leu Gly Gly Thr Tyr
660 665 670

Ala Asn Ala Trp Glu Ala Arg Leu Ser Gln Val Asn Phe Thr Thr Lys
675 680 685

Ala Gln Glu Glu Val Phe Phe Ala Lys Asp Gly Glu Val Leu Thr Thr

690

695

700

Phe Asp Ile Lys Asn Ile Tyr Val Leu Pro Asp Leu Ser Gly Gln Thr
 705 710 715 720

Ala Ile Val Gly His Phe Asp Phe Arg Ala Pro Ser Gly Lys Glu Leu
 725 730 735

Leu Leu Asp Asp Ser Ala Ile Val Trp Ala Glu Gly Pro Leu Lys Ile
 740 745 750

Arg Ala Glu Arg Thr Leu Arg Thr Lys Thr Thr Gln His Leu Ser His
 755 760 765

Pro Lys Leu Gln Glu Ser Leu Pro Leu Ser Ala Thr Lys Asn Val Leu
 770 775 780

Trp Lys Pro Gly Ser Gln Pro Tyr Leu Arg Ser Gln Asn Ala Ala Thr
 785 790 795 800

Lys Ala Phe Pro Asp Pro Glu Glu Lys Ser Gln Cys His Gln Phe Leu
 805 810 815

Phe Leu Pro Ser Asp Ser Val Ala Cys Gln Lys Cys Ser Asp Asn Gln
 820 825 830

Trp Pro Asn Val Gln Lys Gly Glu Cys Ile Pro Lys Thr Leu Asp Phe
 835 840 845

Leu Phe Tyr His Lys Pro Leu Asp Thr Ala Leu Ala Val Cys Thr Ala
 850 855 860

Leu Leu Phe Leu Leu Ala Leu Ala Ile Leu Gly Ile Phe His Val Val
 865 870 875 880

Cys Ser Cys Val Trp Val Ser Phe Ile Pro Ala His Met His Ala His
 885 890 895

Ser Lys Asp Thr Met Ala Met Glu Val Phe Val Ile Leu Ala Ser Ala
 900 905 910

Gly Gly Leu Met Ser Ser Leu Phe Phe Ser Lys Cys Tyr Ile Ile Leu
 915 920 925

Leu His Pro Glu Lys Asn Thr Lys Asp Gln Met Phe Gly Arg His His
 930 935 940

Arg Lys Trp Glu Lys Leu Lys
945 950

<210> 271
<211> 956
<212> DNA
<213> Homo sapiens

<400> 271
gcccgcgtgt atggggccag cggacacttc gccccaggca ccactgtgcc cctggccctg 60
ccacctgggtg gcaatggctc agccacacct gacaatggca ccacccctgg ggccgagggc 120
tggcggcagt tgctgggcct actccccgag cacatggcg agaagctgtg tgaggcctgg 180
gcctttgggc agagccacca gacgggcgtc gtggcactgg gcctactcac ctgcctgctg 240
gcaatgctgc tggctggccg catcaggctc cgaggatcg atgccttctg cacctgcctg 300
tggccctgc tgctgggct gcacactggct gagcagcacc tgcaggccgc ctcgccttagc 360
tggctagaca cgctcaagtt cagcaccaca tctttgtgct gcctgggtgg cttcacggcg 420
gctgtggcca caaggaaggc aacggggcca cggaggttcc ggccccgaag gttcttcca 480
ggagactctg cgggccttt cccaccaggc cccagcttg ccattccctca cccgagtgtc 540
ggaggctctc cagcgtctct gttcatcccc agcccgccca gcttcctgcc cctcgccaaac 600
caagcagctc ttccggtctc ctcgacggac ctcaccctcc tcatttgctt ggccgcctca 660
gccggggccct ctctctggaa accataccct ctctgactcg agcagactcc ggctatctgt 720
tcagcggtag cggcccacca tctcaggtgt ctcgatctgg gggagttcc tgttttcaga 780
ttacttctct cttcttgtcg gggaaagctgc ccctccgtcc catccttcc cagggccttc 840
cgggggcggc tcggtgggcc tccagtcgg ctctctggcc acgggaggcc ctcatcagcc 900
tgccggtaa cctgaggac gaagtgtgtt gtccggcacc cctggagagg cccaaa 956

<210> 272
<211> 231
<212> PRT
<213> Homo sapiens

<400> 272

Ala Ala Leu Tyr Gly Ala Ser Gly His Phe Ala Pro Gly Thr Thr Val
1 5 10 15

Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly Ser Ala Thr Pro Asp Asn
20 25 30

Gly Thr Thr Pro Gly Ala Glu Gly Trp Arg Gln Leu Leu Gly Leu Leu
35 40 45

Pro Glu His Met Ala Glu Lys Leu Cys Glu Ala Trp Ala Phe Gly Gln
 50 55 60

Ser His Gln Thr Gly Val Val Ala Leu Gly Leu Leu Thr Cys Leu Leu
 65 70 75 80

Ala Met Leu Leu Ala Gly Arg Ile Arg Arg Ile Asp Ala Phe
 85 90 95

Cys Thr Cys Leu Trp Ala Leu Leu Gly Leu His Leu Ala Glu Gln
 100 105 110

His Leu Gln Ala Ala Ser Pro Ser Trp Leu Asp Thr Leu Lys Phe Ser
 115 120 125

Thr Thr Ser Leu Cys Cys Leu Val Gly Phe Thr Ala Ala Val Ala Thr
 130 135 140

Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg Pro Arg Arg Phe Phe Pro
 145 150 155 160

Gly Asp Ser Ala Gly Leu Phe Pro Thr Ser Pro Ser Leu Ala Ile Pro
 165 170 175

His Pro Ser Val Gly Gly Ser Pro Ala Ser Leu Phe Ile Pro Ser Pro
 180 185 190

Pro Ser Phe Leu Pro Leu Ala Asn Gln Ala Ala Leu Pro Val Ser Ser
 195 200 205

Thr Asp Leu Thr Leu Leu Ile Cys Leu Ala Ala Ser Ala Gly Pro Ser
 210 215 220

Leu Trp Glu Pro Tyr Pro Leu
 225 230

<210> 273
<211> 1806
<212> DNA
<213> Homo sapiens

<400> 273		
gaggaggcgc gcgtcgccgc cccgcgtccc gcctgcggcc cgcgcccccgc gcgtcaccgc	60	
ctcctgccccgc cctgccccgcc tgcccgccctg cccgcctacc cgcctacccgc cctaccgc	120	
taccccccctg ccggcctgcc gtccttccac gcggagagcc atggagggag tgagcgcgc	180	
gctggcccgcc tgccccacgg ccggcctggc cggcggcctg ggggtcacgg cgtgcggcgc	240	

ggccggcgtg ttgctctacc ggatcgcgcg gaggatgaag ccaacgcaca cgatggtaa	300
ctgctggttc tgcaaccagg atacgctggt gccctatggg aaccgcaact gctggactg	360
tccccactgc gaggcgtaca acggcttcca ggagaacggc gactacaaca agccgatccc	420
cgcggcgtac ttggagcacc tgaaccacgt ggtgagcagc gcgcggcagcc tgcgcgaccc	480
ttcgcagccg cagcgtggg tgagcagcca agtcctgctg tgcaagaggt gcaaccacca	540
ccagaccacc aagatcaagc agctggccgc ctgcgtccc cgcgaggagg gcaggtatga	600
cgaggaggc gaggtgtacc ggcattcacct ggagcagatg tacaagctgt gccggccgtg	660
ccaagcggct gtggagtact acatcaagca ccagaaccgc cagctgcgcg ccctgttgct	720
cagccaccag ttcaagcgcc gggaggccga ccagaccac gcacagaact tctcctccgc	780
cgtgaagtcc cccgtccagg tcattctgct ccgtgccctc gccttcctgg cctgcgcctt	840
cctactgacc accgcgttgt atggggccag cggacacttc gccccaggca ccactgtgcc	900
cctggccctg ccacctggtg gcaatggctc agccacacct gacaatggca ccacccctgg	960
ggccgagggc tggccgcagt tgctggcct actccccag cacatggcg agaagctgtg	1020
tgagggctgg gcctttgggc agagccacca gacgggcgtc gtggactgg gcctactcac	1080
ctgcctgctg gcaatgctgc tggctggccg catcaggctc cggaggatcg atgccttctg	1140
cacctgcctg tggccctgc tgctgggct gcacctggct gagcagcacc tgcaggccgc	1200
ctcgccctagc tggctagaca cgctcaagtt cagcaccaca tctttgtgct gcctgggtgg	1260
cttcacggcg gctgtggcca caaggaaggc aacgggccc a cggagggttcc ggcccccgaag	1320
gttctccca ggagactctg cccgcctttt cccaccacgc cccagcttgg ccatccctca	1380
cccgagtgctc ggaggctctc cagcgtctct gttcatcccc agccgc cca gcttcctgcc	1440
cctcgccaaac caagcagctc ttccggcttc ctcgacggac ctcaccctcc tcatttgct	1500
ggccgcctca gcccggccct ctctctgggaccataacct ctctgactcg agcagactcc	1560
ggctatctgt tcagcggtag cccgcacca tctcagggtgt ctgcgttgg gggagttcc	1620
tgttttcaga ttacttctct cttcttgcg gggaaactgc ccctccgtcc catccttcc	1680
caggcccttc cggggccggc tcgggtggcc tccagtcgg ctctctggcc acgggaggcc	1740
ctcatcagcc tgccggtaa cctgaggac gaagtgtgtt gtccggcacc cctggagagg	1800
cccaaa	1806

<210> 274
 <211> 461
 <212> PRT
 <213> Homo sapiens

<400> 274

Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr Ala Gly Leu
 1 5 10 15

Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Gly Val Leu Leu
 20 25 30

Tyr Arg Ile Ala Arg Arg Met Lys Pro Thr His Thr Met Val Asn Cys
 35 40 45

Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr Gly Asn Arg Asn Cys
 50 55 60

Trp Asp Cys Pro His Cys Glu Gln Tyr Asn Gly Phe Gln Glu Asn Gly
 65 70 75 80

Asp Tyr Asn Lys Pro Ile Pro Ala Gln Tyr Leu Glu His Leu Asn His
 85 90 95

Val Val Ser Ser Ala Pro Ser Leu Arg Asp Pro Ser Gln Pro Gln Gln
 100 105 110

Trp Val Ser Ser Gln Val Leu Leu Cys Lys Arg Cys Asn His His Gln
 115 120 125

Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe Ala Pro Arg Glu Glu Gly
 130 135 140

Arg Tyr Asp Glu Glu Val Glu Val Tyr Arg His His Leu Glu Gln Met
 145 150 155 160

Tyr Lys Leu Cys Arg Pro Cys Gln Ala Ala Val Glu Tyr Tyr Ile Lys
 165 170 175

His Gln Asn Arg Gln Leu Arg Ala Leu Leu Ser His Gln Phe Lys
 180 185 190

Arg Arg Glu Ala Asp Gln Thr His Ala Gln Asn Phe Ser Ser Ala Val
 195 200 205

Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu Ala Phe Leu Ala
 210 215 220

Cys Ala Phe Leu Leu Thr Thr Ala Leu Tyr Gly Ala Ser Gly His Phe
 225 230 235 240

Ala Pro Gly Thr Thr Val Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly
 245 250 255

Ser Ala Thr Pro Asp Asn Gly Thr Thr Pro Gly Ala Glu Gly Trp Arg
260 265 270

Gln Leu Leu Gly Leu Leu Pro Glu His Met Ala Glu Lys Leu Cys Glu
275 280 285

Ala Trp Ala Phe Gly Gln Ser His Gln Thr Gly Val Val Ala Leu Gly
290 295 300

Leu Leu Thr Cys Leu Leu Ala Met Leu Leu Ala Gly Arg Ile Arg Leu
305 310 315 320

Arg Arg Ile Asp Ala Phe Cys Thr Cys Leu Trp Ala Leu Leu Gly
325 330 335

Leu His Leu Ala Glu Gln His Leu Gln Ala Ala Ser Pro Ser Trp Leu
340 345 350

Asp Thr Leu Lys Phe Ser Thr Thr Ser Leu Cys Cys Leu Val Gly Phe
355 360 365

Thr Ala Ala Val Ala Thr Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg
370 375 380

Pro Arg Arg Phe Phe Pro Gly Asp Ser Ala Gly Leu Phe Pro Thr Ser
385 390 395 400

Pro Ser Leu Ala Ile Pro His Pro Ser Val Gly Gly Ser Pro Ala Ser
405 410 415

Leu Phe Ile Pro Ser Pro Pro Ser Phe Leu Pro Leu Ala Asn Gln Ala
420 425 430

Ala Leu Pro Val Ser Ser Thr Asp Leu Thr Leu Leu Ile Cys Leu Ala
435 440 445

Ala Ser Ala Gly Pro Ser Leu Trp Glu Pro Tyr Pro Leu
450 455 460

<210> 275
<211> 600
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (460)..(460)
<223> n is a, c, g, t or u

```

<220>
<221> misc_feature
<222> (530)..(530)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (574)..(574)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (577)..(577)
<223> n is a, c, g, t or u

<400> 275
tcaagtctga cttgcata cactgcggc aagatgcggc tgcaagaccg catgccacg      60
ttcttcttcc caaaaggcat gatgctcacc acggctgcgc ttagtgcctt cttcttacac    120
ctgggcattct tcattcaga cgtgcacaac ttctgcata cctaccacta tgaccacatg    180
agctttcact acacggtcgt cctgatgttc tcccaggtga tcagcatctg ctgggctgcc    240
atggggtcac tctatgctga gatgacagaa aacaagtacg tctgcttctc cgccctgacc    300
atcctgagtg agtggcagga gggggagggt gcaagaggaa gcggggagct ttggAACCT    360
gagatgtggc aaggagtagc cagggaaagg tactgggct catggggggc tctgtcccc    420
gcccagtgc caacggagcc atgctttca accgcctgtn cttggagttt ctggccatcg    480
agtaccggga ggagcaccac tgaggcctgg ggagtcggaa cagggctaann gagggggaaag    540
caaaaggctg cctcggtgt tttaataaaag ctgntgnnta tttccaaaaaaa aaaaaaaaaa    600

<210> 276
<211> 174
<212> PRT
<213> Homo sapiens

<220>
<221> UNSURE
<222> (128)..(128)
<223> Xaa is S, P, T or A

<220>
<221> UNSURE
<222> (151)..(151)
<223> Xaa is M, T, K or R

<220>
<221> UNSURE
<222> (166)..(166)
<223> Xaa is L, M or V

<220>
<221> UNSURE
<222> (167)..(167)
<223> Xaa is F, L, I or V

```

<400> 276

Met Met Leu Thr Thr Ala Ala Leu Met	Leu Phe Phe Leu His	Leu Gly
1 5	10	15

Ile Phe Ile Arg Asp Val His Asn Phe Cys	Ile Thr Tyr His Tyr Asp
20	25 30

His Met Ser Phe His Tyr Thr Val Val Leu Met Phe	Ser Gln Val Ile
35 40	45

Ser Ile Cys Trp Ala Ala Met Gly Ser Leu Tyr	Ala Glu Met Thr Glu
50 55	60

Asn Lys Tyr Val Cys Phe Ser Ala Leu Thr	Ile Leu Ser Glu Trp Gln
65 70	75 80

Glu Gly Glu Gly Ala Arg Gly Ser Gly Glu Leu Trp Asn Pro	Glu Met
85 90	95

Trp Gln Gly Val Ala Arg Glu Gly Tyr Trp Gly Ser Trp Gly	Ala Leu
100 105	110

Ser Pro Ala Gln Cys Ser Thr Glu Pro Cys Ser Ser	Thr Ala Cys Xaa
115 120	125

Trp Ser Phe Trp Pro Ser Ser Thr Gly Arg Ser	Thr Thr Glu Ala Trp
130 135	140

Gly Val Gly Thr Gly Leu Xaa Arg Gly Lys Gln Lys Ala Ala Ser	Gly
145 150	155 160

Val Leu Ile Lys Leu Xaa Xaa Ile Ser Lys Lys Lys Lys	
165	170

<210> 277

<211> 457

<212> DNA

<213> Homo sapiens

<400> 277

aaacactgca ggctacgaat cggtcattgc ataggttttc catgaatcag gaagattcag	60
tcctggtaaa ttcattccca ggaacatcgc tgccactgct attattctag cagctgttcc	120
catactccaa tgagtccagt taaacatttg ctttcttggg tcatgtaaag gtggcctgaa	180
gactgccaga agaggctgaa gaactgccaa agtcatcaat acagccga ggtatgggtg	240
gtAACCTGCA TGCCTACTCC AGCCTCCCCT GTATATAAAC GGCATAACAA AAGCAATGCA	300

ggtgaggaca	gttgtggta	acatgagcat	ccgatgcacc	tgaaaccaag	ctgcttcacc	360
aagcaagaaa	gctttgacc	aaactggctt	gaagaaccgg	gcaaccagta	cacctatgct	420
aacagtagtc	atccatgcca	caaacattaa	ggcacca			457

<210> 278
<211> 144
<212> PRT
<213> Homo sapiens

<400> 278

Met	Phe	Val	Ala	Trp	Met	Thr	Thr	Val	Ser	Ile	Gly	Val	Leu	Val	Ala
1					5			10					15		

Arg	Phe	Phe	Lys	Pro	Val	Trp	Ser	Lys	Ala	Phe	Leu	Leu	Gly	Glu	Ala
					20			25				30			

Ala	Trp	Phe	Gln	Val	His	Arg	Met	Leu	Met	Phe	Thr	Thr	Thr	Val	Leu
					35			40				45			

Thr	Cys	Ile	Ala	Phe	Val	Met	Pro	Phe	Ile	Tyr	Arg	Gly	Gly	Trp	Ser
						50		55			60				

Arg	His	Ala	Gly	Tyr	His	Pro	Tyr	Leu	Gly	Cys	Ile	Val	Met	Thr	Leu
					65		70		75			80			

Ala	Val	Leu	Gln	Pro	Leu	Leu	Ala	Val	Phe	Arg	Pro	Pro	Leu	His	Asp
						85		90			95				

Pro	Arg	Arg	Gln	Met	Phe	Asn	Trp	Thr	His	Trp	Ser	Met	Gly	Thr	Ala
					100			105			110				

Ala	Arg	Ile	Ile	Ala	Val	Ala	Ala	Met	Phe	Leu	Gly	Met	Asn	Leu	Pro
						115		120			125				

Gly	Leu	Asn	Leu	Pro	Asp	Ser	Trp	Lys	Thr	Tyr	Ala	Met	Thr	Asp	Ser
					130			135			140				

<210> 279
<211> 293
<212> DNA
<213> Homo sapiens

<400> 279

tttttttttt	tttttttaag	gctgaagcaa	ataggaacgt	atatttctca	tgaatccaaa	60
------------	------------	------------	------------	------------	------------	----

gcaaagacac	aggaagtgct	ggcattcttt	tggtggctgg	tagctttga	ccttctttc	120
------------	------------	------------	------------	-----------	-----------	-----

aaggttgccca	catgccttag	cagcagctca	tgacttcacg	ttctcaccgt	attcgaaaggc	180
-------------	------------	------------	------------	------------	-------------	-----

aggaagcatg gagtagctgg cagctgcgtt tgacacagac tgcctcgga cccttctcc 240
gcccaggatgcg actcgcaatt gtctggagca cgttggcagc agccctcggt ccg 293

<210> 280
<211> 45
<212> PRT
<213> Homo sapiens

<400> 280

Arg His Glu Gly Cys Cys Gln Arg Ala Pro Asp Asn Cys Glu Ser His
1 5 10 15

Cys Ala Glu Lys Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln Leu Pro
20 25 30

Ala Thr Pro Cys Phe Leu Pro Ser Asn Thr Val Arg Thr
35 40 45

<210> 281
<211> 15
<212> PRT
<213> Homo sapiens

<400> 281

Cys Gln Lys Gln Arg Asn Trp His Gly Ile Trp Arg Leu Glu Val
1 5 10 15

<210> 282
<211> 13
<212> PRT
<213> Homo sapiens

<400> 282

Met Ala Lys Gln Gly Glu Met Asn Thr Ser Thr Ser Cys
1 5 10

<210> 283
<211> 13
<212> PRT
<213> Homo sapiens

<400> 283

Pro Lys Arg Gly Gly Arg Ala Gly Arg Glu His Ser Cys
1 5 10

<210> 284
<211> 91
<212> PRT
<213> Homo sapiens

<400> 284

Arg Phe Gln Arg Asn Thr Gly Glu Met Ser Ser Asn Ser Thr Ala Leu
1 5 10 15

Ala Leu Val Arg Pro Ser Ser Gly Leu Ile Asn Ser Asn Thr Asp
20 25 30

Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg Asp Ile Leu Asn Asn Phe
35 40 45

Pro His Ser Ile Ala Arg Gln Lys Arg Ile Leu Val Asn Leu Ser Met
50 55 60

Val Glu Asn Lys Leu Val Glu Leu Glu His Thr Leu Leu Ser Lys Gly
65 70 75 80

Phe Arg Gly Ala Ser Pro His Arg Lys Ser Thr
85 90

<210> 285

<211> 15

<212> PRT

<213> Homo sapiens

<400> 285

Cys Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser Ser
1 5 10 15

<210> 286

<211> 14

<212> PRT

<213> Homo sapiens

<400> 286

Cys Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser Thr
1 5 10

<210> 287

<211> 19

<212> PRT

<213> Homo sapiens

<400> 287

Met Ala Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr Lys
1 5 10 15

Ser Leu Asn

<210> 288
<211> 121
<212> PRT
<213> Homo sapiens

<400> 288

Ala Pro Pro Ser Cys Arg Glu Cys Tyr Gln Ser Leu His Tyr Arg Gly
1 5 10 15

Glu Met Gln Gln Tyr Phe Thr Tyr His Thr His Ile Glu Arg Ser Cys
20 25 30

Tyr Gly Asn Leu Ile Glu Glu Cys Val Glu Ser Gly Lys Ser Tyr Tyr
35 40 45

Lys Val Lys Asn Leu Gly Val Cys Gly Ser Arg Asn Gly Ala Ile Cys
50 55 60

Pro Arg Gly Lys Gln Trp Leu Cys Phe Thr Lys Ile Gly Gln Trp Gly
65 70 75 80

Val Asn Thr Gln Val Leu Glu Asp Ile Lys Arg Glu Gln Ile Ile Ala
85 90 95

Lys Ala Lys Ala Ser Lys Pro Thr Thr Pro Pro Glu Asn Arg Pro Arg
100 105 110

His Phe His Ser Phe Ile Gln Lys Leu
115 120

<210> 289
<211> 15
<212> PRT
<213> Homo sapiens

<400> 289

Cys Glu Asn Arg Pro Arg His Phe His Ser Phe Ile Gln Lys Leu
1 5 10 15

<210> 290
<211> 13
<212> PRT
<213> Homo sapiens

<400> 290

Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr
1 5 10

<210> 291

<211> 14
<212> PRT
<213> Homo sapiens

<400> 291

Cys Lys Glu Asp Glu Leu Val Arg Asp Ser Pro Ala Arg Lys
1 5 10

<210> 292
<211> 12
<212> PRT
<213> Homo sapiens

<400> 292

Ala Leu Gly Thr Arg Leu Ser Gln His Thr Asp Val
1 5 10

<210> 293
<211> 11
<212> PRT
<213> Homo sapiens

<400> 293

Asp Phe Asn Cys Pro Cys Leu Val His Tyr Asn
1 5 10

<210> 294
<211> 53
<212> PRT
<213> Homo sapiens

<400> 294

Ser Ser Ser Val Asp Pro Glu Lys Phe Leu Asp Phe Ala Asn Met Thr
1 5 10 15

Pro Ser Gln Val Gln Leu Phe Leu Ala Lys Val Pro Cys Lys Glu Asp
20 25 30

Glu Leu Val Arg Asp Ser Pro Ala Arg Lys Ala Val Ser Arg Tyr Leu
35 40 45

Arg Cys Leu Ser Gln
50

<210> 295
<211> 146
<212> PRT
<213> Homo sapiens

<400> 295

Arg Cys Leu Arg Pro Cys Phe Asp Gln Thr Val Phe Leu Gln Arg Arg
1 5 10 15

Tyr Trp Ser Asn Tyr Val Asp Leu Glu Gln Lys Leu Phe Asp Glu Thr
20 25 30

Cys Cys Glu His Ala Arg Asp Phe Ala His Arg Cys Val Leu His Phe
35 40 45

Phe Ala Ser Met Arg Ser Glu Leu Gln Ala Arg Gly Leu Arg Arg Gly
50 55 60

Asn Ala Gly Arg Arg Leu Glu Leu Pro Ala Val Pro Glu Pro Pro Glu
65 70 75 80

Gly Leu Asp Ser Gly Ser Gly Lys Ala His Leu Arg Ala Ile Ser Ser
85 90 95

Arg Glu Gln Val Asp Arg Leu Leu Ser Thr Trp Tyr Ser Ser Lys Pro
100 105 110

Pro Leu Asp Leu Ala Ala Ser Pro Gly Leu Cys Gly Gly Leu Ser
115 120 125

His Arg Ala Pro Thr Leu Ala Leu Gly Thr Arg Leu Ser Gln His Thr
130 135 140

Asp Val
145

<210> 296
<211> 1035
<212> PRT
<213> Homo sapiens

<400> 296

Met Pro Cys Gly Phe Ser Pro Ser Pro Val Ala His His Leu Val Pro
1 5 10 15

Gly Pro Pro Asp Thr Pro Ala Gln Gln Leu Arg Cys Gly Trp Thr Val
20 25 30

Gly Gly Trp Leu Leu Ser Leu Val Arg Gly Leu Leu Pro Cys Leu Pro
35 40 45

Pro Gly Ala Arg Thr Ala Glu Gly Pro Ile Met Val Leu Ala Gly Pro
50 55 60

Leu Ala Val Ser Leu Leu Leu Pro Ser Leu Thr Leu Leu Val Ser His
65 70 75 80

Leu Ser Ser Ser Gln Asp Val Ser Ser Glu Pro Ser Ser Glu Gln Gln
85 90 95

Leu Cys Ala Leu Ser Lys His Pro Thr Val Ala Phe Glu Asp Leu Gln
100 105 110

Pro Trp Val Ser Asn Phe Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln
115 120 125

Leu Ala Leu Asp Pro Ser Gly Asn Gln Leu Ile Val Gly Ala Arg Asn
130 135 140

Tyr Leu Phe Arg Leu Ser Leu Ala Asn Val Ser Leu Leu Gln Ala Thr
145 150 155 160

Glu Trp Ala Ser Ser Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gly
165 170 175

Lys Thr Glu Glu Glu Cys Gln Asn Tyr Val Arg Val Leu Ile Val Ala
180 185 190

Gly Arg Lys Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pro Met Cys
195 200 205

Thr Ser Arg Gln Val Gly Asn Leu Ser Arg Thr Ile Glu Lys Ile Asn
210 215 220

Gly Val Ala Arg Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala Val
225 230 235 240

Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Thr Val Ile Asp Phe Ser
245 250 255

Gly Arg Asp Pro Ala Ile Tyr Arg Ser Leu Gly Ser Gly Pro Pro Leu
260 265 270

Arg Thr Ala Gln Tyr Asn Ser Lys Trp Leu Asn Glu Pro Asn Phe Val
275 280 285

Ala Ala Tyr Asp Ile Gly Leu Phe Ala Tyr Phe Phe Leu Arg Glu Asn
290 295 300

Ala Val Glu His Asp Cys Gly Arg Thr Val Tyr Ser Arg Val Ala Arg
305 310 315 320

Val Cys Lys Asn Asp Val Gly Gly Arg Phe Leu Leu Glu Asp Thr Trp
325 330 335

Thr Thr Phe Met Lys Ala Arg Leu Asn Cys Ser Arg Pro Gly Glu Val
340 345 350

Pro Phe Tyr Tyr Asn Glu Leu Gln Ser Ala Phe His Leu Pro Glu Gln
355 360 365

Asp Leu Ile Tyr Gly Val Phe Thr Thr Asn Val Asn Ser Ile Ala Ala
370 375 380

Ser Ala Val Cys Ala Phe Asn Leu Ser Ala Ile Ser Gln Ala Phe Asn
385 390 395 400

Gly Pro Phe Arg Tyr Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro Ile
405 410 415

Ala Asn Pro Ile Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Thr Gly
420 425 430

Pro Asn Glu Asn Leu Thr Glu Arg Ser Leu Gln Asp Ala Gln Arg Leu
435 440 445

Phe Leu Met Ser Glu Ala Val Gln Pro Val Thr Pro Glu Pro Cys Val
450 455 460

Thr Gln Asp Ser Val Arg Phe Ser His Leu Val Val Asp Leu Val Gln
465 470 475 480

Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Ile Gly Thr Glu Ser Gly
485 490 495

Thr Ile Leu Lys Ala Leu Ser Thr Ala Ser Arg Ser Leu His Gly Cys
500 505 510

Tyr Leu Glu Glu Leu His Val Leu Pro Pro Gly Arg Arg Glu Pro Leu
515 520 525

Arg Ser Leu Arg Ile Leu His Ser Ala Arg Ala Leu Phe Val Gly Leu
530 535 540

Arg Asp Gly Val Leu Arg Val Pro Leu Glu Arg Cys Ala Ala Tyr Arg
545 550 555 560

Ser Gln Gly Ala Cys Leu Gly Ala Arg Asp Pro Tyr Cys Gly Trp Asp

565

570

575

Gly Lys Gln Gln Arg Cys Ser Thr Leu Glu Asp Ser Ser Asn Met Ser
 580 585 590

Leu Trp Thr Gln Asn Ile Thr Ala Cys Pro Val Arg Asn Val Thr Arg
 595 600 605

Asp Gly Gly Phe Gly Pro Trp Ser Pro Trp Gln Pro Cys Glu His Leu
 610 615 620

Asp Gly Asp Asn Ser Gly Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp
 625 630 635 640

Ser Pro Arg Pro Arg Cys Gly Gly Leu Asp Cys Leu Gly Pro Ala Ile
 645 650 655

His Ile Ala Asn Cys Ser Arg Asn Gly Ala Trp Thr Pro Trp Ser Ser
 660 665 670

Trp Ala Leu Cys Ser Thr Ser Cys Gly Ile Gly Phe Gln Val Arg Gln
 675 680 685

Arg Ser Cys Ser Asn Pro Ala Pro Arg His Gly Gly Arg Ile Cys Val
 690 695 700

Gly Lys Ser Arg Glu Glu Arg Phe Cys Asn Glu Asn Thr Pro Cys Pro
 705 710 715 720

Val Pro Ile Phe Trp Ala Ser Trp Gly Ser Trp Ser Lys Cys Ser Ser
 725 730 735

Asn Cys Gly Gly Met Gln Ser Arg Arg Arg Ala Cys Glu Asn Gly
 740 745 750

Asn Ser Cys Leu Gly Cys Gly Val Glu Phe Lys Thr Cys Asn Pro Glu
 755 760 765

Gly Cys Pro Glu Val Arg Arg Asn Thr Pro Trp Thr Pro Trp Leu Pro
 770 775 780

Val Asn Val Thr Gln Gly Ala Arg Gln Glu Gln Arg Phe Arg Phe
 785 790 795 800

Thr Cys Arg Ala Pro Leu Ala Asp Pro His Gly Leu Gln Phe Gly Arg
 805 810 815

Arg Arg Thr Glu Thr Arg Thr Cys Pro Ala Asp Gly Ser Gly Ser Cys
 820 825 830

Asp Thr Asp Ala Leu Val Glu Val Leu Leu Arg Ser Gly Ser Thr Ser
 835 840 845

Pro His Thr Val Ser Gly Gly Trp Ala Ala Trp Gly Pro Trp Ser Ser
 850 855 860

Cys Ser Arg Asp Cys Glu Leu Gly Phe Arg Val Arg Lys Arg Thr Cys
 865 870 875 880

Thr Asn Pro Glu Pro Arg Asn Gly Gly Leu Pro Cys Val Gly Asp Ala
 885 890 895

Ala Glu Tyr Gln Asp Cys Asn Pro Gln Ala Cys Pro Val Arg Gly Ala
 900 905 910

Trp Ser Cys Trp Thr Ser Trp Ser Pro Cys Ser Ala Ser Cys Gly Gly
 915 920 925

Gly His Tyr Gln Arg Thr Arg Ser Cys Thr Ser Pro Ala Pro Ser Pro
 930 935 940

Gly Glu Asp Ile Cys Leu Gly Leu His Thr Glu Glu Ala Leu Cys Ala
 945 950 955 960

Thr Gln Ala Cys Pro Glu Gly Trp Ser Pro Trp Ser Glu Trp Ser Lys
 965 970 975

Cys Thr Asp Asp Gly Ala Gln Ser Arg Ser Arg His Cys Glu Glu Leu
 980 985 990

Leu Pro Gly Ser Ser Ala Cys Ala Gly Asn Ser Ser Gln Ser Arg Pro
 995 1000 1005

Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu Pro Ala Ser Ser Met
 1010 1015 1020

Glu Glu Ala Thr Asp Cys Ala Gly Phe Asn Leu Ile
 1025 1030 1035

<210> 297

<211> 16

<212> PRT

<213> Homo sapiens

<400> 297

Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala Val Ile Ser Ser Gln
1 5 10 15

<210> 298
<211> 11
<212> PRT
<213> Homo sapiens

<400> 298

Cys Pro Glu Val Arg Arg Asn Thr Pro Trp Thr
1 5 10

<210> 299
<211> 35
<212> PRT
<213> Homo sapiens

<400> 299

Glu Arg Val Trp Ser Asp Asp His Lys Asp Phe Asp Cys Asn Thr Arg
1 5 10 15

Gln Pro Gly Cys Ser Asn Val Cys Phe Asp Glu Phe Phe Pro Val Ser
20 25 30

His Val Arg
35

<210> 300
<211> 38
<212> PRT
<213> Homo sapiens

<400> 300

His Ser Phe Tyr Pro Lys Tyr Ile Leu Pro Pro Val Val Lys Cys His
1 5 10 15

Ala Asp Pro Cys Pro Asn Ile Val Asp Cys Phe Ile Ser Lys Pro Ser
20 25 30

Glu Lys Asn Ile Phe Thr
35

<210> 301
<211> 15
<212> PRT
<213> Homo sapiens

<400> 301

Cys Leu Pro Asp Arg Pro Arg Asp His Val Lys Lys Thr Ile Leu
1 5 10 15

<210> 302
<211> 13
<212> PRT
<213> Homo sapiens

<400> 302

Glu Arg Val Trp Ser Asp Asp His Lys Asp Phe Asp Cys
1 5 10

<210> 303
<211> 38
<212> PRT
<213> Homo sapiens

<400> 303

Asn Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly
1 5 10 15

Ser Asn Gln Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp
20 25 30

Asp Ser Ser Ser Arg Ile
35

<210> 304
<211> 15
<212> PRT
<213> Homo sapiens

<400> 304

Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln Asp
1 5 10 15

<210> 305
<211> 12
<212> PRT
<213> Homo sapiens

<400> 305

Cys Val Pro His Ser Arg Ser Arg Gly Pro Asn Leu
1 5 10

<210> 306
<211> 12
<212> PRT
<213> Homo sapiens

<400> 306

Cys Glu Leu Ser Gln Thr Pro His Pro His Ser Arg
1 5 10

<210> 307
<211> 14
<212> PRT
<213> Homo sapiens

<400> 307

Cys Leu Asp Ser Ala Gly Asn Asn Ala Gly Ile Gln Trp Gly
1 5 10

<210> 308
<211> 14
<212> PRT
<213> Homo sapiens

<400> 308

Cys Asn Arg Val Ser Lys Asn Pro Glu Met Leu Gln Thr Gly
1 5 10

<210> 309
<211> 2115
<212> DNA
<213> Homo sapiens

<400> 309

atgcgtatat gttatgaatg ccaaaatgaa agaacattgt ggcgatgtgt ttcccaggat	60
ggggctgact acagtgtggg cgtgtgtgtc cctgattctt gtgctgaaga ggatgtgact	120
ctgatgtctc ggctggatac tttaagattc agaaataactt cattttggc cccttcctc	180
tttctttta caataaaattc ttcctccctt tctggtgaaa gtgtgaccag atgtgctgct	240
ggaaagatcc ccctggacac atttgctgcc gtatgtctgt tcacacaccc gctgggtctc	300
atcctccctc cggctggAAC agtctgcgtg gcagcttaggg aatgggggtc agcctgcagg	360
acatcgccgg aacacggggg acctctggcc acttacggg gtctgccact gagcgaggcg	420
gagagcaatg aacaaagaag cagaatccca cgacacact gcccggcaca tctcctccctg	480
ttagcagcct ccagcagagg aaaaaggTTT ctaggagccg tggctcatgc tctggagtgc	540
ttttcttggc agaagaatgt gccagccatc tggactacaa aggaccagg tggcacctgc	600
tctgcactga atggcattcg tgtcttgagt cttcttggaa tcacatcgaaa acacaccagt	660
cagatgactg catggctgtc tttggatgg aaagatggag ggcacgaaag gccactggtc	720
atgtctggc catcagtggg aatcgagac accagagaag ccacgagtgg ttggtaagt	780
gcaagttcgt tttaaagat gcatcagaat tcagacaaag gaataacccc caaaggcata	840
ctcagatact ttctcagtc cctggtaagg ttgcagcctc ttcacctgta ttcaatgtgc	900
ttgttggttg gactgttctc tcttggccc tggggacctg tctggaaat gcccaaattc	960
cactggata actgccggca agcatggtg acgaatctgc tgttgctaaa taactttgtg	1020

tcggtaaga atgcgtgcaa tggctggacc tggtaccttg ccaatgactt ccagttccac	1080
ctcaccacac cagtgattat ctcatccat gtaaagagta cacagatcct catcctcctt	1140
ggggccatgc tgttcttggc atcttcaca gccactgctc tgatcacctt ggcatataaa	1200
cttcctgtcg tggctccatc agaaaccagg acttcccggg gagggctgct gaatgccagg	1260
ctgttcaccc tgtgcccttt gttcatgga aaaagtgggt atgaaaacttt tggtctggat	1320
gggaaagctg attgccttct tgcttccaaa cttctgaacc tttcaacctg cactggaaat	1380
gaacaagtgt gccctaaatg taccttggg cttgctgatttccatgg acatctcagg	1440
gatttggatt cccttgcca tgtccagatc aaacataaca ttttggctta ttcccttgta	1500
ttttcagtg aagaggcgat tgtattgtat ttctgtggagt actacacaaa gccctactgc	1560
cgtttggc cagttcttgtt gggcctcttt ctgagcattt acatgcacca aaaccaccag	1620
aaaaacattc tcagaaccaa gctcagctc tctaccaagc cctccaccgg accctgtggg	1680
cggcggctgt gggctgagtc ctcttgcgt gccacggagg atatggaggt atgaaagcgg	1740
ctccaggcct tgctgtcggg ttccacaccct gttcctttaa aggtgacaaa tcgaacacac	1800
aggagagcca agcagataaa aggcttcaat ggaaaagaat cttctccagg tctggtaac	1860
cgtgtgtttt cttggacat ctggagttc ctgtccagca tcagttatgc tcgctacttg	1920
gtgcattccga ttctgatcat ccttacaat ggccttcagg aaacacttat tcaccacact	1980
gacaccaaca tgttctatct tttctctgga caccgtgtgc tgaccttcgt cactggctg	2040
gccctgacgc tgttcattga gaaaccatgt caggaactga agcagcacct gctggccat	2100
gaatgttctg gttaa	2115

<210> 310
<211> 704
<212> PRT
<213> Homo sapiens

<400> 310

Met Arg Ile Cys Tyr Glu Cys Gln Asn Glu Arg Thr Leu Trp Arg Cys			
1	5	10	15

Val Ser Gln Asp Gly Ala Asp Tyr Ser Val Gly Val Cys Val Pro Asp			
20	25	30	

Ser Cys Ala Glu Glu Asp Val Thr Leu Met Ser Arg Leu Asp Thr Leu			
35	40	45	

Arg Phe Arg Asn Thr Ser Phe Leu Ala Pro Ser Leu Phe Leu Phe Thr			
50	55	60	

Ile Asn Ser Ser Ser Leu Ser Gly Gly Ser Val Thr Arg Cys Ala Ala
65 70 75 80

Gly Lys Ile Pro Leu Asp Thr Phe Ala Ala Val Cys Leu Phe Ile Thr
85 90 95

Leu Leu Gly Leu Ile Leu Pro Pro Ala Gly Thr Val Cys Val Ala Ala
100 105 110

Arg Glu Trp Gly Ser Ala Cys Arg Thr Ser Arg Glu His Gly Glu Pro
115 120 125

Leu Ala Thr Tyr Gly Ser Leu Pro Leu Ser Glu Ala Glu Ser Asn Glu
130 135 140

Gln Arg Ser Arg Ile Pro Arg Thr His Cys Arg Ala His Leu Leu
145 150 155 160

Ser Ala Ala Ser Ser Arg Gly Lys Arg Phe Leu Gly Ala Val Ala His
165 170 175

Ala Leu Glu Cys Phe Ser Trp Gln Lys Asn Val Pro Ala Ile Trp Thr
180 185 190

Thr Lys Ala Pro Gly Gly Thr Cys Ser Ala Leu Asn Gly Ile Arg Val
195 200 205

Leu Ser Leu Leu Trp Ile Ile Ser Gly His Thr Ser Gln Met Thr Ala
210 215 220

Trp Leu Ser Leu Gly Trp Lys Asp Gly Gly His Glu Arg Pro Leu Val
225 230 235 240

Met Ser Gly Pro Ser Val Gly Ile Gly Asp Thr Arg Glu Ala Thr Ser
245 250 255

Gly Trp Leu Ser Ala Ser Ser Phe Leu Lys Met His Gln Asn Ser Asp
260 265 270

Lys Gly Ile Thr Pro Lys Gly Ile Leu Arg Tyr Phe Leu Ser His Leu
275 280 285

Val Arg Leu Gln Pro Leu His Leu Tyr Ser Met Cys Leu Leu Val Gly
290 295 300

Leu Phe Ser Leu Val Pro Trp Gly Pro Val Trp Glu Met Pro Lys Phe
305 310 315 320

His Trp Asp Asn Cys Arg Gln Ala Trp Trp Thr Asn Leu Leu Leu
325 330 335

Asn Asn Phe Val Ser Val Lys Asn Ala Cys Asn Gly Trp Thr Trp Tyr
340 345 350

Leu Ala Asn Asp Phe Gln Phe His Leu Thr Thr Pro Val Ile Ile Phe
355 360 365

Ile His Val Lys Ser Thr Gln Ile Leu Ile Leu Gly Ala Met Leu
370 375 380

Phe Leu Ala Ser Phe Thr Ala Thr Ala Leu Ile Thr Leu Ala Tyr Lys
385 390 395 400

Leu Pro Val Val Ala Pro Ser Glu Thr Arg Thr Ser Arg Gly Gly Leu
405 410 415

Leu Asn Ala Arg Leu Phe Thr Leu Cys Pro Leu Val His Gly Lys Ser
420 425 430

Gly Tyr Glu Thr Phe Gly Leu Asp Gly Lys Ala Asp Cys Leu Leu Ala
435 440 445

Ser Lys Leu Leu Asn Leu Ser Thr Cys Thr Gly Asn Glu Gln Val Cys
450 455 460

Pro Lys Cys Thr Phe Gly Leu Ala Asp Tyr Ser Asn Gly His Leu Arg
465 470 475 480

Asp Leu Asp Ser Leu Cys His Val Gln Ile Lys His Asn Ile Leu Ala
485 490 495

Tyr Phe Leu Val Phe Phe Ser Glu Glu Ala Ile Val Leu Tyr Phe Val
500 505 510

Glu Tyr Tyr Thr Lys Pro Tyr Cys Arg Phe Gly Pro Val Leu Val Gly
515 520 525

Leu Phe Leu Ser Ile Tyr Met His Gln Asn His Gln Glu Asn Ile Leu
530 535 540

Arg Thr Lys Leu Gln Leu Ser Thr Lys Pro Ser Thr Gly Pro Cys Gly
545 550 555 560

Arg Arg Leu Trp Ala Glu Ser Ser Leu Arg Ala Thr Glu Asp Met Glu

565

570

575

Val Trp Lys Arg Leu Gln Ala Leu Leu Ser Gly Ser His Pro Val Pro
 580 585 590

Leu Lys Val Thr Asn Arg Thr His Arg Arg Ala Lys Gln Ile Lys Gly
 595 600 605

Phe Asn Gly Lys Glu Ser Ser Pro Gly Leu Val Asn Arg Val Leu Ser
 610 615 620

Trp Asp Ile Trp Ser Phe Leu Ser Ser Ile Ser Tyr Ala Arg Tyr Leu
 625 630 635 640

Val His Pro Ile Leu Ile Leu Tyr Asn Gly Leu Gln Glu Thr Leu
 645 650 655

Ile His His Thr Asp Thr Asn Met Phe Tyr Leu Phe Ser Gly His Arg
 660 665 670

Val Leu Thr Phe Val Thr Gly Leu Ala Leu Thr Leu Phe Ile Glu Lys
 675 680 685

Pro Cys Gln Glu Leu Lys Gln His Leu Leu Gly His Glu Cys Ser Gly
 690 695 700

<210> 311
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 311
aacccgtgtgc tttcttggga c 21

<210> 312
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 312
acatttcatgg cccagcagg 19