Лабораторная работа 5

Екатерина Козлова

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	8
4	Выполнение лабораторной работы	9
5	Выводы	24
6	Контрольные вопросы	25

Список иллюстраций

4.1	Рисунок 2.																	10
4.2	Рисунок 3.																	11
4.3	Рисунок 4.																	12
4.4	Рисунок 5.																	13
4.5	Рисунок 6.																	14
4.6	Рисунок 7.																	15
4.7	Рисунок 8.																	16
4.8	Рисунок 9.						•	•										17
4.9	Рисунок 10						•	•										18
4.10	Рисунок 11			•	•			•										19
4.11	Рисунок 12														•			20
4.12	Рисунок 13			•	•			•										21
4.13	Рисунок 14			•	•			•										22
4 14	Рисунок 16																	2.3

Список таблиц

3.1 Описание некоторых каталогов файловой системы GNU Linux . . . 8

1 Цель работы

Ознакомление с файловой системой Linux, её структурой, именами и содержанием каталогов. Приобретение практических навыков по применению команд для работы с файлами и каталогами, по управлению процессами (и работами), по проверке исполь- зования диска и обслуживанию файловой системы

2 Задание

- 1. Выполните все примеры, приведённые в первой части описания лабораторной работы.
- 2. Выполните следующие действия, зафиксировав в отчёте по лабораторной работе используемые при этом команды и результаты их выполнения: 2.1. Скопируйте файл /usr/include/sys/io.h в домашний каталог и назовите его equipment. Если файла io.h нет, то используйте любой другой файл в каталоге /usr/include/sys/ вместо него. 2.2. В домашнем каталоге создайте директорию ~/ski.plases. 2.3. Переместите файл equipment в каталог ~/ski.plases. 2.4. Переименуйте файл ~/ski.plases/equipment в ~/ski.plases/equiplist. 2.5. Создайте в домашнем каталоге файл abc1 и скопируйте его в каталог ~/ski.plases, назовите его equiplist2. 2.6. Создайте каталог с именем equipment в каталоге ~/ski.plases. 2.7. Переместите файлы ~/ski.plases/equiplist и equiplist2 в каталог ~/ski.plases/equipment. 2.8. Создайте и переместите каталог ~/newdir в каталог ~/ski.plases и назовите его plans.
- 3. Определите опции команды chmod, необходимые для того, чтобы присвоить перечис- ленным ниже файлам выделенные права доступа, считая, что в начале таких прав нет: 3.1. drwxr-r- ... australia 3.2. drwx-x-x ... play 3.3. -r- xr-r- ... my_os 3.4. -rw-rw-r- ... feathers При необходимости создайте нужные файлы.
- 4. Проделайте приведённые ниже упражнения, записывая в отчёт по лабораторной работе используемые при этом команды: 4.1. Просмотрите содержи-

мое файла /etc/password. 4.2. Скопируйте файл ~/feathers в файл ~/file.old. 4.3. Переместите файл ~/file.old в каталог ~/play. 4.4. Скопируйте каталог ~/play в каталог ~/fun. 4.5. Переместите каталог ~/fun в каталог ~/play и назовите его games. 4.6. Лишите владельца файла ~/feathers права на чтение. 4.7. Что произойдёт, если вы попытаетесь просмотреть файл ~/feathers командой cat? 4.8. Что произойдёт, если вы попытаетесь скопировать файл ~/feathers? 4.9. Дайте владельцу файла ~/feathers право на чтение. 4.10. Лишите владельца каталога ~/play права на выполнение. 4.11. Перейдите в каталог ~/play. Что произошло? 4.12. Дайте владельцу каталога ~/play право на выполнение.

5. Прочитайте man по командам mount, fsck, mkfs, kill и кратко их охарактеризуйте, приведя примеры.

3 Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы. Например, в табл. 3.1 приведено краткое описание стандартных каталогов Unix.

Таблица 3.1: Описание некоторых каталогов файловой системы GNU Linux

Имя ка-							
талога	ога Описание каталога						
/	Корневая директория, содержащая всю файловую						
/bin	Основные системные утилиты, необходимые как в						
	однопользовательском режиме, так и при обычной работе всем						
	пользователям						
/etc	Общесистемные конфигурационные файлы и файлы конфигурации						
	установленных программ						
/home	Содержит домашние директории пользователей, которые, в свою						
	очередь, содержат персональные настройки и данные пользователя						
/media	Точки монтирования для сменных носителей						
/root	Домашняя директория пользователя root						
/tmp	Временные файлы						
/usr	Вторичная иерархия для данных пользователя						

Более подробно об Unix см. в [1–6].

4 Выполнение лабораторной работы

1. Выполним все примеры, приведённые в первой части описания лабораторной работы.

```
eakozlova@eakozlova -: seakozlova@ea... × eakozlova@ea... × eakozlova... † s monthly [eakozlova@eakozlova -:] $ monthly for eakozlova@eakozlova monthly! $ cd eakozlova@eakozlova -:] $ monthly... * eakozlova@eakozlova -:] $ cp -r monthly... * eako
```

(рис. [??]) (рис. [4.1]) (рис. [4.2]) (рис. [4.3])

Рис. 4.1: Рисунок 2

Рис. 4.2: Рисунок 3

```
eakozlova@ea... × eakozlova... * eakozlova@ea... × eakozlova... * eakozlova@ea... × eakozlova... * eakozlova@ea... × eakozlova... * eakozlova
```

Рис. 4.3: Рисунок 4

- 2. Выполним следующие действия, зафиксировав в отчёте по лабораторной работе используемые при этом команды и результаты их выполнения: 2.1. Скопируйте файл /usr/include/sys/io.h в домашний каталог и назовите его equipment. Если файла io.h нет,то используйте любой другой файл в каталоге /usr/include/sys/ вместо него.
- 2.2. В домашнем каталоге создадим директорию ~/ski.plases.
- 2.3. Переместим файл equipment в каталог ~/ski.plases.

(рис. [4.4])

2.4. Переименуем файл ~/ski.plases/equipment в ~/ski.plases/equiplist.

(рис. [4.5])

2.5. Создадим в домашнем каталоге файл abc1 и скопируйте его в каталог ~/ski.plases, назовите его equiplist2.

- 2.6. Создадим каталог с именем equipment в каталоге ~/ski.plases. (рис. [4.6])
- 2.7. Переместим файлы ~/ski.plases/equiplist и equiplist2 в каталог ~/ski.plases/equipment.
- 2.8. Создадим и переместим каталог ~/newdir в каталог ~/ski.plases и назовите ero plans.

(рис. [4.7])

```
eakozlova@ea... × eakozlova@ea
```

Рис. 4.4: Рисунок 5

```
eakozlova@ea... × eakozlova@ea
```

Рис. 4.5: Рисунок 6

```
eakozlova@ea... × eakozlova@ea... * eakozlova@ea
```

Рис. 4.6: Рисунок 7

```
eakozlova@ea... × eakozlova#is cakozlova#is cakoz
```

Рис. 4.7: Рисунок 8

- 3. Определим опции команды chmod, необходимые для того, чтобы присвоить перечисленным ниже файлам выделенные права доступа, считая, что в начале таких прав нет:
- 3.1. drwxr-r-... australia
- 3.2. drwx-x-x ... play
- 3.3. -r-xr-r-... my os
- 3.4. -rw-rw-r- ... feathers При необходимости создадим нужные файлы. (рис. [4.8])

Рис. 4.8: Рисунок 9

(рис. [4.9])

```
eakozlova@e... × eakozlova... * eakoz
```

Рис. 4.9: Рисунок 10

- 4. Проделаем приведённые ниже упражнения, записывая в отчёт по лабораторной работе используемые при этом команды:
- 4.1. Просмотрим содержимое файла /etc/password.
- 4.2. Скопируем файл ~/feathers в файл ~/file.old.
- 4.3. Переместим файл ~/file.old в каталог ~/play.
- 4.4. Скопируем каталог ~/play в каталог ~/fun.
- 4.5. Переместим каталог ~/fun в каталог ~/play и назовем его games.
- 4.6. Лишим владельца файла ~/feathers права на чтение.
- 4.7. Что произойдёт, если вы попытаетесь просмотреть файл ~/feathers командой cat?
 - 4.8. Что произойдёт, если вы попытаетесь скопировать файл ~/feathers?
 - 4.9. Дадим владельцу файла ~/feathers право на чтение.

- 4.10. Лишим владельца каталога ~/play права на выполнение.
- 4.11. Перейдем в каталог ~/play. Что произошло?
- 4.12. Дадим владельцу каталога ~/play право на выполнение.
- (рис. [4.10]) (рис. [4.11]) (рис. [4.12]) (рис. [4.13]) (рис. [??])

Рис. 4.10: Рисунок 11

```
eakozlova@e... × eakozlova@eakozlova -]s cp feathers file.old [eakozlova@eakozlova -]s ls ... my.os abcl a mandor-2.18 linux-amd6d.tar.gz pricures pandor-2.18-linux-amd6d.tar.gz pandor-2.18-linux-amd6d.t
```

Рис. 4.11: Рисунок 12

```
eskozlova@e... × eskozlova. * eskozlova.* * eskozlova.* * eskozlova.* * eskozlova.* * * eskozlova.* * * eskozlova.* *
```

Рис. 4.12: Рисунок 13

Рис. 4.13: Рисунок 14

Рисунок 15

5. Прочитаем man по командам mount, fsck, mkfs, kill.

(рис. [4.14])

Рис. 4.14: Рисунок 16

5 Выводы

Я ознакомилась с файловой системой Linux, её структурой, именами и содержанием каталогов; приобрела практических навыков по применению команд для работы с файлами и каталогами, по управлению процессами (и работами), по проверке исполь- зования диска и обслуживанию файловой системы

6 Контрольные вопросы

1. Дайте характеристику каждой файловой системе, существующей на жёстком диске ко

Ext2, Ext3, Ext4 или Extended Filesystem - это стандартная файловая система для Linux. Она была разработана еще для Minix. Она самая стабильная из всех существующих, кодовая база изменяется очень редко и эта файловая система содержит больше всего функций. Версия ext2 была разработана уже именно для Linux и получила много улучшений. В 2001 году вышла ext3, которая добавила еще больше стабильности благодаря использованию журналирования. В 2006 была выпущена версия ext4, которая используется во всех дистрибутивах Linux до сегодняшнего дня. В ней было внесено много улучшений, в том числе увеличен максимальный размер раздела до одного экзабайта.

Btrfs или B-Tree File System - это совершенно новая файловая система, которая сосредоточена на отказоустойчивости, легкости администрирования и восстановления данных. Файловая система объединяет в себе очень много новых интересных возможностей, таких как размещение на нескольких разделах, поддержка подтомов, изменение размера не лету, создание мгновенных снимков, а также высокая производительность. Но многими пользователями файловая система Btrfs считается нестабильной. Тем не менее, она уже используется как файловая система по умолчанию в OpenSUSE и SUSE Linux.

- 2. Приведите общую структуру файловой системы и дайте характеристику каждой дирек
 - / root каталог. Содержит в себе всю иерархию системы;

/bin — здесь находятся двоичные исполняемые файлы. Основные общие команды, хранящиеся отдельно от других программ в системе (прим.: pwd, ls, cat, ps);

/boot — тут расположены файлы, используемые для загрузки системы (образ initrd, ядро vmlinuz);

/dev — в данной директории располагаются файлы устройств (драйверов). С помощью этих файлов можно взаимодействовать с устройствами. К примеру, если это жесткий диск, можно подключить его к файловой системе. В файл принтера же можно написать напрямую и отправить задание на печать;

/etc — в этой директории находятся файлы конфигураций программ. Эти файлы позволяют настраивать системы, сервисы, скрипты системных демонов;

/home — каталог, аналогичный каталогу Users в Windows. Содержит домашние каталоги учетных записей пользователей (кроме root). При создании нового пользователя здесь создается одноименный каталог с аналогичным именем и хранит личные файлы этого пользователя;

/lib — содержит системные библиотеки, с которыми работают программы и модули ядра;

/lost+found — содержит файлы, восстановленные после сбоя работы системы. Система проведет проверку после сбоя и найденные файлы можно будет посмотреть в данном каталоге;

/media — точка монтирования внешних носителей. Например, когда вы вставляете диск в дисковод, он будет автоматически смонтирован в директорию /media/cdrom;

/mnt — точка временного монтирования. Файловые системы подключаемых устройств обычно монтируются в этот каталог для временного использования;

/opt — тут расположены дополнительные (необязательные) приложения. Такие программы обычно не подчиняются принятой иерархии и хранят свои файлы в одном подкаталоге (бинарные, библиотеки, конфигурации);

/proc — содержит файлы, хранящие информацию о запущенных процессах и о

состоянии ядра ОС;

/root — директория, которая содержит файлы и личные настройки суперпользователя;

/run — содержит файлы состояния приложений. Например, PID-файлы или UNIX-сокеты;

/sbin — аналогично /bin содержит бинарные файлы. Утилиты нужны для настройки и администрирования системы суперпользователем;

/srv — содержит файлы сервисов, предоставляемых сервером (прим. FTP или Apache HTTP);

/sys — содержит данные непосредственно о системе. Тут можно узнать информацию о ядре, драйверах и устройствах;

/tmp — содержит временные файлы. Данные файлы доступны всем пользователям на чтение и запись. Стоит отметить, что данный каталог очищается при перезагрузке;

/usr — содержит пользовательские приложения и утилиты второго уровня, используемые пользователями, а не системой. Содержимое доступно только для чтения (кроме root). Каталог имеет вторичную иерархию и похож на корневой;

/var — содержит переменные файлы. Имеет подкаталоги, отвечающие за отдельные переменные. Например, логи будут храниться в /var/log, кэш в /var/cache, очереди заданий в /var/spool/ и так далее.

- 3. Какая операция должна быть выполнена, чтобы содержимое некоторой файловой сист Монтирование тома.
- 4. Назовите основные причины нарушения целостности файловой системы. Как устранит

Отсутствие синхронизации между образом файловой системы в памяти и ее данными на диске в случае аварийного останова может привести к появлению следующих ошибок:

Один блок адресуется несколькими mode (принадлежит нескольким файлам).

Блок помечен как свободный, но в то же время занят (на него ссылается onode).

Блок помечен как занятый, но в то же время свободен (ни один inode на него не ссы

Неправильное число ссылок в inode (недостаток или избыток ссылающихся записей в к

Несовпадение между размером файла и суммарным размером адресуемых inode блоков.

Недопустимые адресуемые блоки (например, расположенные за пределами файловой сист

"Потерянные" файлы (правильные inode, на которые не ссылаются записи каталогов).

Недопустимые или неразмещенные номера inode в записях каталогов.

Как создаётся файловая система?

mkfs - позволяет создать файловую систему Linux.

Дайте характеристику командам для просмотра текстовых файлов.

Cat - выводит содержимое файла на стандартное устройство вывода

Приведите основные возможности команды ср в Linux.

Ср – копирует или перемещает директорию, файлы.

Приведите основные возможности команды mv в Linux.

Mv - переименовать или переместить файл или директорию

Что такое права доступа? Как они могут быть изменены?

Права доступа к файлу или каталогу можно изменить, воспользовавшись командой chmod. Сделать это может владелец файла (или каталога) или пользователь с правами администратора.

- 1. GNU Bash Manual [Электронный ресурс]. Free Software Foundation, 2016. URL: https://www.gnu.org/software/bash/manual/.
- 2. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 5. Таненбаум Э. Архитектура компьютера. 6-е изд. СПб.: Питер, 2013. 874 с.
- 6. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.