Optimization

Lusine Poghosyan

AUA

January 21, 2019

Example

Solve the problem

minimize
$$f(x)$$

subject to
$$x \in \Omega$$
,

i.e., find the global minimum points of f(x) on Ω , if

d.
$$f(x) = \frac{x+1}{x^2+3}$$
, $\Omega = [0, +\infty)$.

Finite-Dimensional Optimization

We are going to consider the following problem

minimize
$$f(x)$$
 subject to $x \in \Omega$, (1)

where $f: \mathbb{R}^n \to \mathbb{R}$ and $\Omega \subset \mathbb{R}^n$, with $n \ge 1$.

A point $x^* \in \Omega$ is a **local minimizer** of f over Ω if there exists $\varepsilon > 0$ such that $f(x) \ge f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$ and $||x - x^*|| < \varepsilon$. A point $x^* \in \Omega$ is a **global minimizer** of f over Ω if $f(x) \ge f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$.

If in the definitions above we replace ">" with ">" then we have a strict local minimizer and a strict global minimizer, respectively.

If x^* is a global minimizer of f over Ω , we write $f(x^*) = \min_{x \in \Omega} f(x)$ and $x^* = \arg\min_{x \in \Omega} f(x)$. If the minimization is unconstrained, we simply write $x^* = \arg\min_x f(x)$ or $x^* = \arg\min_t f(x)$.

Existence of solution

Weierstrass Extreme Value Theorem

If $f \in \mathbb{C}(\Omega)$ and $\Omega \subset \mathbb{R}^n$ is compact, then the problem (1) has a solution.

A point $x \in \mathbb{R}^n$ is said to be a **limit point** of $\Omega \subset \mathbb{R}^n$, if each neighborhood of x contains a point of Ω other than x.

Example

Let $\Omega = [0,3) \cup \{4\}$. Is x a limit point of Ω ?

- **a.** x = 0
- **b.** x = 3
- **c.** x = 2
- **d.** x = 4

Example

Let $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1$ and $x_1 > 0\}$. Is x a limit point of Ω , if

- **a.** $x = [0, 0]^T$;
- **b.** $x = [1, 0]^T$.

A set $\Omega \subset \mathbb{R}^n$ is said to be **closed set** if it contains all its limit points.

Example

Check if the set Ω is a closed set, if

- **a.** $\Omega = [0,3);$
- **b.** $\Omega = [0, 3];$
- **c.** $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\};$
- **d.** $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1 \text{ and } x_1 > 0\}.$

A set $\Omega \subset \mathbb{R}^n$ is said to be **bounded** if there exists $M \in \mathbb{R}$ such that $||x|| \leq M$, for all $x \in \Omega$.

Example

Check if the set Ω is bounded, if

a.
$$\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \le 1\};$$

b.
$$\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \ge 1 \text{ and } x_1 > 0\}.$$

A set $\Omega \subset \mathbb{R}^n$ is said to be **compact** if Ω is closed and bounded.

Example

Check if the set Ω is compact, if

- **a.** $\Omega = [0,3);$
- **b.** $\Omega = [0, 3];$
- **c.** $\Omega = \{x = [x_1, x_2, x_3]^T : x_1^2 + x_2^2 + x_3^2 \le 1\};$
- **d.** $\Omega = \{x = [x_1, x_2]^T : x_1^2 + x_2^2 \ge 1 \text{ and } x_1 > 0\}.$