On canonical isomorphisms $TT^*M = T^*TM = T^*T^*M$

I wrote this file two-three years ago. Now I just added the pencil of isomorphisms.

Let M be manifold. Establish and study canonical isomorphisms $TT^*M = T^*TM = T^*T^*M$

Calculations in coordinates

It may sounds surprising but calculations in coordinates are transparent and illuminating.

First consider local coordinates on TM and T^*M corresponding to local coordinates (x^i) on M.

Local coordinates for TM are (x^i, t^j) : every vector $\mathbf{r} \in TM$ is a vector $t^i \frac{\partial}{\partial x^i}$, $t^i(\mathbf{r}) = dx^i(\mathbf{r})$. If $\tilde{x}^{\mu} = \tilde{x}^{\mu}(x^i)$ are new local coordinates on M then

$$d\tilde{x}^{\mu}\left(t^{i}\frac{\partial}{\partial x^{i}}\right) = \frac{\partial \tilde{x}^{\mu}(x^{i})}{\partial x^{i}}dx^{i}\left(t^{i}\frac{\partial}{\partial x^{i}}\right) = \frac{\partial \tilde{x}^{\mu}(x^{i})}{\partial x^{i}}t^{i}.$$

Hence changing of local coordinates in TM is

$$(x^i, t^j) \mapsto (\tilde{x}^\mu, \tilde{t}^\nu), \quad \tilde{x}^\mu = \tilde{x}^\mu(x^i), \quad \tilde{t}^\mu = \begin{pmatrix} \mu \\ i \end{pmatrix} t^i,$$
 (1)

where we denote $\frac{\partial \tilde{x}^{\mu}(x^{i})}{\partial x^{i}}$ by $\begin{pmatrix} \mu \\ i \end{pmatrix}$.

Respectively local coordinates for T^*M are (x^i, p_j) . For every 1-form $w \in T^*M$ $p_i = w\left(\frac{\partial}{\partial x^i}\right)$. Under changing of local coordinates on M $\tilde{x}^{\mu} = \tilde{x}^{\mu}(x^i)$, coordinates (p_i) change to new coordinates (p_{μ}) :

$$p_{\mu} = w \left(\frac{\partial}{\partial \tilde{x}^{\mu}} \right) = w \left(\frac{\partial x^{i}(\tilde{x}^{\mu})}{\partial \tilde{x}^{\mu}} \frac{\partial}{\partial x^{i}} \right) = \frac{\partial x^{i}(\tilde{x}^{\mu})}{\partial \tilde{x}^{\mu}} p_{i}$$

Hence changing of local coordinates in T^*M is

$$(x^i, p_k) \mapsto (\tilde{x}^\mu, \tilde{p}_\nu), \quad \tilde{x}^\mu = \tilde{x}^\mu(x^i), \ p_\mu = \begin{pmatrix} i \\ \mu \end{pmatrix} p_i,$$
 (2)

where we denote $\frac{\partial x^i(\tilde{x}^{\mu})}{\partial \tilde{x}^{\mu}}$ by $\begin{pmatrix} i \\ \mu \end{pmatrix}$

Now using (1),(2) we define coordinates on the spaces TT^*M , T^*TM and T^*T^*M .

The space TT^*M is tangent space to the space T^*M . The local coordinates on TT^*M corresponding to local coordinates (x^i, p_j) on T^*M are coordinates $(x^i, p_j; \xi^k, \rho_m)$; $\xi^k =$

 $dx^{i}(\mathbf{r}), \rho_{m} = dp_{m}(\mathbf{r})$. Under changing of local coordinates (x^{i}) to coordinates $\tilde{x}^{\mu} = \tilde{x}^{\mu}(x^{i})$ coordinates (ξ^{i}) and (ρ_{m}) transform to new coordinates $(\tilde{\xi}^{\mu})$ and $(\tilde{\rho}_{\nu})$ respectively. It follows from (1) that

$$\tilde{\xi}^{\mu} = \frac{\partial \tilde{x}^{\mu}}{\partial x^{i}} \xi^{i} + \frac{\partial \tilde{x}^{\mu}}{\partial p_{i}} \rho_{i} = \begin{pmatrix} \mu \\ i \end{pmatrix} \xi^{i}$$
(3)

because $\frac{\partial \tilde{x}^{\mu}}{\partial p_i} = 0$. For transformation of coordinates (ρ_m) calculations are longer:

$$\tilde{\rho}_{\mu} = \frac{\partial \tilde{p}_{\mu}}{\partial x^{i}} \xi^{i} + \frac{\partial \tilde{p}_{\mu}}{\partial p_{i}} \rho_{i}$$

We see that $\frac{\partial \tilde{p}_{\mu}}{\partial p_{i}} = \frac{\partial}{\partial p_{i}} \left(\tilde{p}_{\mu} = \begin{pmatrix} k \\ \mu \end{pmatrix} p_{k} \right) = \begin{pmatrix} i \\ \mu \end{pmatrix}$ and

$$\frac{\partial \tilde{p}_{\mu}}{\partial x^{i}} = \frac{\partial}{\partial x^{i}} \left(\tilde{p}_{\mu} = \begin{pmatrix} k \\ \mu \end{pmatrix} p_{k} \right) = \begin{pmatrix} \nu \\ i \end{pmatrix} \begin{pmatrix} k \\ \nu \mu \end{pmatrix} p_{k},$$

where we denote as always by $\binom{\nu}{i}$ the partial derivative $\frac{\partial \tilde{x}^{\mu}}{\partial x^{i}}$ and by $\binom{k}{\nu\mu}$ the partial derivative $\frac{\partial^{2}x^{k}}{\partial \tilde{x}^{\nu}\partial \tilde{x}^{\mu}}$. The summation over repeated indices is assumed. Finally we come to

$$\tilde{\rho}_{\mu} = \frac{\partial \tilde{p}_{\mu}}{\partial x^{i}} \xi^{i} + \frac{\partial \tilde{p}_{\mu}}{\partial p_{i}} \rho_{i} = \xi^{i} \begin{pmatrix} \nu \\ i \end{pmatrix} \begin{pmatrix} k \\ \nu \mu \end{pmatrix} p_{k} + \begin{pmatrix} i \\ \mu \end{pmatrix} \rho_{i}$$
(4)

Summarising:

Proposition 1 To local coordinates (x^i) on M one can naturally assign local coordinates on TT^*M $(x^i, p_j; \xi^k, \rho_m)$ such that under changing of coordinates $(x^i) \mapsto (\tilde{x}^{\mu})$ on M these coordinates transform in the following way

$$\tilde{p}_{\mu} = \begin{pmatrix} j \\ \mu \end{pmatrix} p_{j}, \quad \tilde{\xi}^{\mu} = \begin{pmatrix} \mu \\ i \end{pmatrix} \xi^{i}, \quad \tilde{\rho}_{\mu} = \xi^{i} \begin{pmatrix} \nu \\ i \end{pmatrix} \begin{pmatrix} k \\ \nu \mu \end{pmatrix} p_{k} + \begin{pmatrix} i \\ \mu \end{pmatrix} \rho_{i}$$
 (*)

Now consider coordinates on T^*TM and their transformation rules. If (x,t) coordinates on TM (see (1)) and (x,t,π,τ) corresponding coordinates on T^*TM ($\pi_k = w\left(\frac{\partial}{\partial x^k}\right)$, $\tau_m = w\left(\frac{\partial}{\partial t^m}\right)$) then according to (2) under changing of coordinates $(x^i) \mapsto (\tilde{x}^{\mu})$, the coordinates (π_m) transform to coordinates $(\tilde{\pi}_{\mu})$, the coordinates (τ_k) transform to coordinates $(\tilde{\tau}_{\nu})$ such that

$$\tilde{\pi}_{\mu} = \frac{\partial x^{i}}{\partial \tilde{x}^{\mu}} \pi_{i} + \frac{\partial t^{k}}{\partial \tilde{x}^{\mu}} \tau_{k}, \quad \tilde{\tau}_{\nu} = \frac{\partial x^{i}}{\partial \tilde{t}^{\nu}} \pi_{i} + \frac{\partial t^{k}}{\partial \tilde{t}^{\nu}} \tau_{k}$$

Since $\frac{\partial x^i}{\partial \tilde{t}^{\nu}} = 0$ and $\frac{\partial t^k}{\partial \tilde{t}^{\nu}} = \frac{\partial x^k}{\partial \tilde{x}^{\mu}}$ then

$$\tilde{\tau}_{\nu} = \begin{pmatrix} k \\ \nu \end{pmatrix} \tau_k$$

. For $\tilde{\pi}_{\mu}$ we have

$$\tilde{\pi}_{\mu} = \begin{pmatrix} i \\ \mu \end{pmatrix} \pi_i + \frac{\partial}{\partial \tilde{x}^{\mu}} \begin{pmatrix} \frac{\partial x^k}{\partial \tilde{x}^{\nu}} t^{\nu} \end{pmatrix} \tau_k = \begin{pmatrix} i \\ \mu \end{pmatrix} \pi_i + \begin{pmatrix} k \\ \mu \nu \end{pmatrix} \begin{pmatrix} \nu \\ i \end{pmatrix} t^i \tau_k.$$

Summarising:

Proposition 2 To local coordinates (x^i) on M one can naturally assign local coordinates on T^*TM $(x^i, t^j; \pi_k, \tau_j)$ such that under changing of coordinates $(x^i) \mapsto (\tilde{x}^{\mu})$ on M these coordinates transform in the following way

$$\tilde{\tau}_{\mu} = \begin{pmatrix} j \\ \mu \end{pmatrix} \tau_{j}, \quad \tilde{t}^{\mu} = \begin{pmatrix} \mu \\ i \end{pmatrix} t^{i}, \quad \tilde{\pi}_{\mu} = t^{i} \begin{pmatrix} \nu \\ i \end{pmatrix} \begin{pmatrix} k \\ \nu \mu \end{pmatrix} \tau_{k} + \begin{pmatrix} i \\ \mu \end{pmatrix} \pi_{i}$$
 (**)

Comparing Propositions 1 and 2 we see that the map

$$t^i = \xi^i, \ \tau_j = p_j, \ \pi_k = \rho_k$$

establishes isomorphism between the spaces T^*TM and TT^*M which does not depend on the choice of local coordinates. In fact one can consider the pencil of maps

$$t^i = \mathbf{a}\xi^i, \ \tau_j = \mathbf{b}p_j, \ \pi_k = \mathbf{a}\mathbf{b}\rho_k$$

where $\mathbf{a}, \mathbf{b} \neq 0$.