

HOIEHHIOI A

조인 연산자와 확장된 관계 연산자

학습목표

- 조인 연산자를 이용하여 두 개 이상의 테이블에 대한 데이터를 조합할 수 있다.
- 확장된 관계 연산자들의 특징을 설명할 수 있다.

📥 학습내용

- ♦ 조인 연산자
- 확장된 관계 연산자

🥦 조인 연산자

⋯ 조인이란?

01 조인(Join)의 개념

▋ 두 개 이상의 릴레이션이 가지는 관계를 처리할 수 있는 주요 연산

02 일항 연산자

피연산자로 하나의 릴레이션을 지님

🥶 조인 연산자

⋯ 조인이란?

- 03 이항 연산자
 - ▮ 피연산자로 두 개의 릴레이션을 지님
 - ▮ 일반 집합연산자는 두 릴레이션 단순히 합치거나 뺌

표기법

RM_{∡인조건}S

- 조인조건은 R에 속한 속성과 S에 속한 속성에 대한 비교 연산이여야 함
- ▮ 카티션 곱
 - 두 릴레이션을 결합시키는 연산
 - 모든 가능한 튜플 쌍을 생성

지속(Concatenation) 의미
$$R \times S = \{ r \cdot s \mid r \in R \land s \in S \}$$

단독으로 사용하는 경우 별 의미가 없지만, 이 결과에 대하여 다른 연산을 적용하면 유용해짐

💇 조인 연산자

⋯ 조인이란?

03 이항 연산자

▋ 학생(학번, 이름, 지도교수 번호), 교수(교번, 교수 이름)

히	낸
	$\overline{}$

학번	이름	지도교수 번호
100	개똥이	3
200	소똥이	1
300	말똥이	2

교수

	교수 이름
	민교수
×	박교수
	이교수

학번	이름	지도교수 번호	교번	교수 이름
100	개똥이	3	1	민교수
200	소똥이	1	1	민교수
300	말똥이	2	1	민교수
100	개똥이	3	2	박교수
300	말똥이	2	3	이교수

>> 예 │ 두 릴레이션으로부터 관련 있는 튜플들만 뽑고 싶다면?

σ_{선택조건} (R×S)

교수

학생		
학번	이름	지도교수 번호
100	개똥이	3
200	소똥이	1
300	말똥이	2

	•
<	교수 이름
	민교수
	박교수
	이교수

	학번	이름	지도교수 번호	교번	교수 이름
_	100	개똥이	3	1	민교수
_	200	소똥이	1	1	민교수
	300	말똥이	2	1	민교수
	100	개똥이	3	2	박교수
	300	말똥이	2	3	이교수

· 빈번하게 사용되는 연산(조인 연산 사용)

🥦 조인 연산자

☞ 조인이란?

04 쎄타 조인(Theta Join)

I RM _{조인조건}S

- 조인조건 : R,A θ S,B
- θ:>,<,=,>=,<=,!= 등</p>
- 조인 속성(Join Attribute): R.A와 S.B

R(X), S(Y), A∈X, B∈Y에 대하여 $RM_{A\theta B}S = \{r \cdot s \mid r \in R \land s \in S \land (r.A\theta s.B)\}$ A, B: 조인 속성(Join Attribute) 결과 차수 = R의 차수 + S의 차수

🥶 조인 연산자

01 동등 조인(Equi Join)의 개념

- ▎ 가장 일반적인 조인 연산은 동등 비교(=)만을 조건으로 하는 조인
- ●가 "="인 경우
- ▍ 동등 비교 연산자만을 사용하는 조인

$$R(X)$$
, $S(Y)$, $A \in X$, $B \in Y$ 에 대하여 $R \bowtie_{A=B} S = \{ r \cdot s \mid r \in R \land s \in S \land (r.A = s.B) \}$

02 연산 (예1)

- 학생(학번, 이름, 지도교수 번호), 교수(교번, 교수 이름)
- ▮ 예시: 각 학생과 지도교수의 쌍을 출력하시오.

학생								교수	
학번	이를	}	지도교수 번호					교번	교수 이름
100	개똥	0	3					1	민교수
200	소똥	0	1		Ⅺ도교수 번호 = 교번		번	2	박교수
300	말똥	0	2					3	이교수
		힉	l 번	이름	지도교수 번호	교번	Ī	1수 이름	
	_	2	00	소똥이	1	1		민교수	
	=	10	00	개똥이	3	3		이교수	
		3	00	말똥이	2	2		박교수	

🥦 조인 연산자

--- 동등 조인

02 연산 (예2)

┃ 예시: 학번이 100번인 학생의 지도교수명을 출력하시오.

∏ _{교수 이름} (σ _{학번} =100(학생ᢂ _{지도교수 번호= 교번} 교수))								
학생 교수								
학번	이름	지도교	수 번호			교번	교수	이름
100	개똥이		3	M		1	민기	교수
200	소똥이		1	N _{지도교수} 번호	2 = 교번	2	박고	교수
300	말똥이	2	2			3	0 3	교수
		학번	이름	지도교수 번호	교번	교수 (이름	
		200	소똥이	1	1	민교	수	
	=	100	개똥이	3	3	이교	수	
		300	말똥이	2	2	박교	수	

🧕 조인 연산자

- 02 연산 (예3)
 - ▌ 부서(관리자번호, 부서명) 사원(사번, 사원명)
 - ┃ 예시: 각 부서와 담당 관리자의 쌍을 출력하시오.

부서⋈_{관리자번호 = 사번}사원

▋ 예시: 각 부서의 부서명과 관리자명을 출력하시오.

∏_{부서명, 사원명}(부서⋉_{관리자번호 = 사번} 사원)

🥶 조인 연산자

🚾 자연 조인

01 자연 조인(Natural Join)의 개념

- ▮ 조인 결과에서 조인 속성 하나를 제거하여 중복된 값이 나타나지 않도록 한 조인
- ▍ 동등 조인 결과에서는 동일한 조인 속성 값을 가지는 쌍이 항상 나타남

학번	이름	지도교수 번호	교번	교수 이름
200	소똥이	1	1	민교수
100	개똥이	3	3	이교수
300	말똥이	2	2	박교수

02 자연 조인의 특징 및 표기법

- ▮ 자연 조인에서는 조인조건을 기술하지 않음
- ▮ 조건 없이 두 테이블을 조인하라고 하면 자연 조인을 의미함
- 표기법

RM_NS

🥶 조인 연산자

🚾 자연 조인

- 03 자연 조인의 의미
 - ▮ 조인 결과에서 조인 속성 하나를 제거하여 중복된 값이 나타나지 않도록 한 조인
 - ▍ 동등 조인 결과에서는 동일한 조인 속성 값을 가지는 쌍이 항상 나타남
 - 예 두 릴레이션에 공통으로 나타나는 속성에 대한 동등 조인을 하시오. (공통으로 나타나는 속성은 한번만 표현하기)
 - R(X), S(Y)의 조인 애트리뷰트를 Z(= X ∩ Y)라 하면

RM_NS

- $= \{ \langle r \cdot s \rangle [X \cup Y] \mid r \in R \land s \in S \land r[Z] = s[Z] \}$
- $=\Pi_{X \cup Y}(\sigma_{Z=Z}(R \times S))$
- $=\Pi_{X \cup Y}(RM_{Z=Z}S)$

🥦 조인 연산자

🚾 자연 조인

04 동등 조인과 자연 조인의 차이점

- ▋ 동등 조인과 자연 조인의 결과가 가지는 정보는 동일하나, 결과 구조(스키마)가 다름
 - 동일 조인 속성이 한번만 나타남

학번	이름	교번
100	개똥이	3
200	소똥이	1
300	말똥이	2

교번	교수 이름
1	민교수
2	박교수
3	이교수

공통인 속성은 교번!

🥦 조인 연산자

🚾 자연 조인

04 동등 조인과 자연 조인의 차이점

- ▍ 동등 조인과 자연 조인의 결과가 가지는 정보는 동일하나, 결과 구조(스키마)가 다름
- ▮ 학생ᢂ_{교번=교번}교수
 - 결과 스키마(학번, 이름, 교번, 교번, 교수 이름)

학번	이름	교번	교번	교수 이름
100	개똥이	3	3	이교수
200	소똥이	1	1	민교수
300	말 똥 이	2	2	박교수

- 학생 N 교수
 - 결과 스키마(학번, 이름, 교번, 교수 이름)

학번	이름	교번	교수 이름
100	개똥이	3	이교수
200	소똥이	1	민교수
300	말똥이	2	박교수

🧕 조인 연산자

🚾 자연 조인

05 자연 조인 시 유의점

▋ 공통으로 나타나는 속성에 대한 동등 조인

예시: 학생(학번, 이름, 교번), 교수(교번, 교수 이름)

학생Ͷ₀ 교수: 결과 스키마(학번, 이름, 교번, 교수 이름)

학번	이름	교번
100	개똥이	3
200	소똥이	1
300	말똥이	2

교번	교수 이름
1	민교수
2	박교수
3	이교수

학번	이름	교번	교수 이름
100	개똥이	3	이교수
200	소똥이	1	민교수
300	말똥이	2	박교수

🧕 조인 연산자

🚾 자연 조인

05 자연 조인 시 유의점

▋ <mark>공통으로 나타나는 속성</mark>에 대한 동등 조인

예시: 학생(학번, 이름, 교번), 교수1(교번, 이름)

학생Ͷ₀ 교수: 결과 스키마(학번, 이름, 교번)

학번	이름	교번
100	개똥이	3
200	소똥이	1
300	말똥이	2

교번	이름
1	민교수
2	박교수
3	이교수

학번	이름	교번

🖭 확장된 관계 연산자

- 🚾 근원 연산과 복합 연산
 - 01 근원 연산(Primitive Operation)의 개념

- ▌ 근원 연산자 5개만 있으면, 관계대수 연산을 대부분 처리 가능
- 02 복합 연산(Composite Operation)의 개념
 - ▮ 근원 연산으로부터 합성이 가능한 연산

 $R \cap S = R - (R - S) = S - (S - R) = (R \cup S) - ((R - S) \cup (S - R))$ $RM_{ABB}S = \sigma_{ABB}(R \times S)$ $R(Z,Y) \div S(Y) = R[Z] - ((R[Z] \times S) - R)[Z]$

▌ 관계 대수의 계산 능력을 향상 시키지는 않지만, 표현 능력을 향상시킴

🥶 확장된 관계 연산자

- 🎹 세미 조인(Semi Join)
 - 01 세미 조인(Semi Join)의 개념
 - ▮ 세미 조인(Semi join:
 - ▌ 관계 대수가 처음 만들어 질 때는 없었으나, 필요에 의해서 추가 된 연산자
 - R S: R의 튜플 중 S와 자연 조인이 가능한 튜플들

R(X), S(Y)의 조인 애트리뷰트를 Z(=X ∩ Y)라 하면

 $RKS = RM_N(\Pi_Z(S)) = \Pi_X(RM_NS)$

- ▮ 분산 데이터베이스에서 필요
 - 각 릴레이션이 서로 다른 컴퓨터에 저장
 - 조인 시 하나의 릴레이션을 다른 컴퓨터로 전송
 - 네트워크 부담 최소화
 - 릴레이션 R에서 조인에 참여하는 튜플들만 찾아서 릴레이션 S로 전송

R(X), S(Y)의 조인 애트리뷰트를 Z(=X∩Y)라 하면

 $RKS = RM_N(\Pi_7(S)) = \Pi_X(RM_NS)$

🕦 확장된 관계 연산자

🎹 세미 조인(Semi Join)

02 세미 조인(Semi Join)의 출력 예시

학번	이름	교번
100	개똥이	3
200	소똥이	1
300	말똥이	2

교번	교수 이름
1	민교수
2	박교수
3	이교수

학생⊠_N교수 = (학생 K 교수)⋈_N교수 (학생 K(∏교번(교수))) ⋈N교수

🤐 확장된 관계 연산자

🚾 외부 조인(Outer Join)

01 외부 조인(Outer Join)

- ▋ 동등 조인이나 자연 조인의 결과에는 조인조건을 만족하지 않는 튜플들은 나타나지 않음
- ▮ 조인에 참여하는 릴레이션의 모든 튜플들이 조인의 여부와 관계없이 결과 릴레이션에 나타내고 싶은 경우 외부 조인을 사용
- ▮ 외부 조인에서는 상대방 릴레이션에 대응되는 튜플이 없으면 빈 애트리뷰트들에 NULL 값을 채워서 결과에 포함시킴
- ▮ 예시: 학생 테이블과 예비군 테이블
 - 정보: 학생이면서 예비군인

학번	이름	예번
100	개똥이	2
200	소똥이	-
300	말 똥 이	-

	예번	연차
MΝ	1	3
	2	1
	3	4

_	학번	이름	예번	연차
=	100	개똥이	2	1

모든 학생은 다 나오면서 예비군일 경우 추가 정보 출력

외부 조인

🥶 확장된 관계 연산자

- 🚾 외부 조인(Outer Join)
 - 02 외부 조인(Outer Join)의 종류

왼쪽 외부 조인

(Left Outer Join)

 $R_1 \rightarrow R_2$ 는 R_1 의 모든 튜플들이 결과 릴레이션이 나타나도록 함

오른쪽 외부 조인

(Right Outer Join)

R₁ ◯ R₂는 R₂의 모든 튜플들이 <u>결</u>과 릴레이션이 나타나도록 함

완전 외부 조인

(Full Outer Join)

R₁ → R₂는 R₁과 R₂의 모든 튜플들이 결과 릴레이션이 나타나도록 함

- ▮ 모든 학생은 다 나오면서 예비군일 경우의 추가 정보
 - 왼쪽 외부 조인

학번	이름	예번		예번	연차		학번	이름	예번	연차
100	개똥이	2	T M	1	3		100	개똥이	2	1
200	소똥이	-	\supset	2	1	=	200	소똥이	-	-
300	말똥이	-		3	4		300	말똥이	-	-

- ▮ 모든 학생과 예비군 모두 출력
 - 완전 외부 조인

학번	이름	예번		예번	연차
100	개똥이	2		1	3
200	소똥이	-	\mathbb{M}	2	1
300	말 똥 이	-		3	4

학번	이름	예번	연차
100	개똥이	2	1
200	소똥이	-	-
300	말똥이	-	-
-	-	1	3
-	-	3	4

🖭 확장된 관계 연산자

哑 외부 합집합(Outer Union)

- 01 외부 합집합(Outer Union)
 - 합집합
 - ▍두 피연산자가 합병 호환성을 만족해야 함
 - 차수(Degree: 속성의 수)가 같아야 함
 - 대응되는 애트리뷰트 쌍 별로 타입(또는 도메인)이 같아야 함
 - 대응되는 애트리뷰트 쌍 별로 의미(Semantic)가 같아야 함
 - ▮ 합병 호환성을 만족하지 않는 두 릴레이션을 합병해야 할 경우

외부 합집합 사용

- ▮ U⁺로 표시
- ▎릴레이션의 모든 애트리뷰트를 포함하는 확장된 릴레이션으로 만듦
- ▮ 확장된 릴레이션에 해당하는 애트리뷰트 값이 없을 때는 NULL값으로 채움

학번	이름	교번
100	개똥이	3
200	소똥이	1
300	말 똥 이	2

U⁺

교번	교수 이름
1	민교수
2	박교수
3	이교수

교수 이름 학번 이름 교번 100 개똥이 3 1 200 소똥이 말똥이 2 300 1 민교수 2 박교수 이교수 3

1 조인 연산자

- ✓ 쎄타 조인: 조인조건으로 다양한 조인조건 사용
- ✓ 동등 조인: 동등 비교 연산자만을 사용하는 조인
- ✓ 자연 조인: 조건 없이 두 테이블을 조인하라고 하면 "자연 조인"을 말함 두 릴레이션에 공통으로 나타나는 속성에 대한 동등 조인을 수행

확장된 관계 연산자

- ✓ 근원 연산: 합집합, 차집합, 카티션 곱, 프로젝트, 셀렉트 근원 연산자 5개만 있으면 관계대수 연산을 대부분 처리
- ✓ 세미 조인: R의 튜플 중 S와 자연 조인이 가능한 튜플들
- ✓ 외부 조인: 조인에 참여하는 릴레이션의 모든 튜플들이 조인의 여부와 관계없이 결과 릴레이션에 나타내고 싶은 경우
- ✓ 외부 합집합: 합병 호환성을 만족하지 않는 두 릴레이션을 합병해야 할 경우