Analysis

Robin Rausch, Florian Maslowski, Ozan Akzebe

11. Juli 2022

Inhaltsverzeichnis

1	Eigenwerttheorie	3
2	Quadrik	
3	Satz von Bolzano-Weierstrass	
4	Grenzwert	3
5	Cauchykriterium	3
6	Konvergenzkriterium 6.1 Satz der monotonen Konvergenz 6.2 Leibniz-Kriterium 6.3 Regel von L'Hospital 6.4 Sandwich-Prinzip 6.5 Wurzel-/Quotientenkriterium 6.6 Majoranten-/Minorantenkriterium 6.7 Stetigkeit 6.8 Konvergenzradius 6.9 Wichtigste Potenzreihen	3 4 4 4 4 4 5 5 5
7	Kurvendiskussion 7.1 Newtonverfahren 7.2 Ableitungen 7.2.1 Grundfunktionen 7.2.2 Regeln 7.3 Tangentengleichung 7.4 Stammfunktionen 7.5 Definitionsbereich und Wertemenge bestimmen 7.6 Nullstellen berechenn 7.7 Y-Achsenabschnitt 7.8 Symmetrieverhalten bestimmen 7.8.1 Achsensymmetrie zur y-Achse 7.8.2 Punktsymmetrie 7.9 Extremstellen/werte und Hoch/Tiefpunkte berechnen 7.10 Wendepunkt	66 66 67 77 77 77 78 88 88
8	Taylor Entwicklung	8

Analysis LaTeX Version

9	Inte	grale
	9.1	Berechnung
	9.2	Integralregeln
	9.3	Patrielle Integration

Eigenwerttheorie

Der Eigenvektor \overrightarrow{x} ist der Vektor einer Matrix A, der sich bei der Multiplikation mit der Matrix nur um die Länge mit dem ändert:

$$A \cdot \overrightarrow{x} = \lambda \cdot \overrightarrow{x}$$

sdfs

2 Quadrik

Die Quadrik ist die Lösungsmenge von quadratischen Gleichungen mit mehreren Variablen.

3 Satz von Bolzano-Weierstrass

- 1. Jede beschränkte Folge in $\mathbb R$ oder $\mathbb C$ hat wenigstens einen Häufungspunkt
- 2. Jede beschränkte Folge in \mathbb{R} oder \mathbb{C} hat wenigstens eine konvergente Teilfolge

4 Grenzwert

A ist Grenzwert
$$\iff \lim_{n \to \infty} a_n = A \iff \forall_{\epsilon > 0} \ \exists_{n_0 \in \mathbb{N}} \ \forall_{n \le n_0} : |a_n - A| < \epsilon$$

Für alle Epsilon die Größer als 0 sind, gibt es ein n_0 ab dem alle Folgenden $n > n_0$ Glieder innerhalb des Epsilon-Gürtels liegen. (Das heißt a_n - Grenzwert ist kleiner als Epsilon)

Jede Geometrische Folge: $a_n = q^n$ ist eine Nullfolge, wenn -1 < q < 1

Geometrische Folgen haben ihre Variablen immer nur als Potenz bsp.: $a_n: \frac{1}{2^n}$

Cauchykriterium 5

$$\forall_{\epsilon>0} \ \exists_{n_{\epsilon} \in \mathbb{N}} \ \forall_{n \geq n_{\epsilon}, m \geq n_{\epsilon}} : |a_n - a_m| < \epsilon$$

Für jedes $\epsilon > 0$ gibt es einen Index $n_{\epsilon} \in \mathbb{N}$, so dass für all $n \geq n_{\epsilon}$ und $m \geq n_{\epsilon}$, die Abschätzung $|a_n - a_m| < \epsilon$ erfüllt ist.

Ist das Cauchy kriterium erfüllt ist die Folge konvergent, und hat einen Grenzwert

Konvergenzkriterium 6

 $\lim_{n\to\infty} a_n = a \Leftrightarrow \forall_{\varepsilon>0} \exists_{n_{\varepsilon}\in\mathbb{N}}$

 $\forall_{\epsilon}>0, n\in\mathbb{N}\;\exists\;n_{\epsilon}:n>n_{\epsilon}\Rightarrow|g-a_{n}|<\epsilon\;\text{Für alle positiven Epsilon und natürliche n, gibt es}$ eine Grenze n_{ϵ} , nach der alle Folgenglieder um weniger als epsilon vom Grenzwert entfernt sind.

Satz der monotonen Konvergenz

Jede noch monoton wachsende/fallende nach oben/unten beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ ist konvergent.

6.2 Leibniz-Kriterium

Wird oft bei alternierenden Folgen angewendet!

$$\sum_{n=0}^{\infty} (-1)^k * a_n$$

Sei a_n eine monotone, reelle Nullfolge, dann konvergiert die alternierende Reihe

6.3 Regel von L'Hospital

Für Grenzwerte bei Brüchen, wenn:

- 1. Zähler und Nenner gegen 0 oder $\pm \infty$ gehen
- 2. Grenzwert des Bruchs $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ existiert

Regel:
$$\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$

Sandwich-Prinzip 6.4

Wenn eine Folge zwischen 2 konvergierenden Folgen mit dem selben Grenzwert liegt, konvergiert diese auch gegen den selben Grenzwert.

Wurzel-/Quotientenkriterium 6.5

Bei Reihen mit Potenzen wird meist das Wurzelkriterium verwendet! Quotientenkriterium wird gerne bei Brüchen und Fakultäten verwendet.

Eine Reihe $\sum a_k$ ist absolut konvergent wenn:

1.
$$\lim_{k \to \infty} \sqrt[k]{|a_k|} = q < 1$$
2.
$$\lim_{k \to \infty} \frac{|a_{k+1}|}{q} = q < 1$$

 $2.\lim_{k\to\infty}\frac{\mathbf{v}+\mathbf{n}}{a_{k+1}|}=q<1$ Wenn q>1 gilt, ist die Reihe divergent.

Wenn q = 1 gilt, kann man keine Aussage über die Konvergenz treffen.

6.6 Majoranten-/Minorantenkriterium

Das Majotanten- und Minorantenkriterium wird oft bei Reihen folgender Form verwendet: $\sum_{k=1}^{\infty} \frac{P(k)}{Q(k)}$ mit P und Q als Polynomfunktionen!

Majorantenkriterium: Die Reihe wird durch eine größere ersetzt, deren Konvergenz bekannt

Minorantenkriterium: Die Reihe wird durch eine kleinere ersetzt, deren Divergenz bekannt ist.

6.7 Stetigkeit

Eine Funktion ist stetig, falls die Funktion keine Sprünge hat. Linke Seite der Funktion ist gleich rechte Seite der Funktion.

$$f(x_0) = \lim_{x \to x_{0^-}} f(x) = \lim_{x \to x_{0^+}} f(x)$$

6.8 Konvergenzradius

Potenzreihen			
$\sum_{k=0}^{n} a_k z^k, \qquad f(z) \coloneqq \lim_{n \to \infty} \sum_{k=0}^{n} a_k z^k = \sum_{k=0}^{\infty} a_k z^k$			
Potenzreihen konvergieren absolut im inneren einer Kreisscheibe. Deren Radius heißt Konvergenzradius.			
Wurzelkriterium	Quotientenkriterium	Für	
$ z < \frac{1}{\lim_{n \to \infty} \sqrt[k]{ a_k }} \coloneqq R$	$ z < \frac{1}{\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n }} \coloneqq R$	$\sum_{k=0}^{\infty} a_k z^k$	
$ z < \frac{1}{\sqrt{\lim_{n \to \infty} \sqrt[k]{ a_k }}} \coloneqq R$	$ z < \frac{1}{\sqrt{\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n }}} := R$	$\sum_{k=0}^{\infty} a_k z^{pk+r}$	

6.9 Wichtigste Potenzreihen

90.0 1 0.011210111011			
Funktion	Potenzreihe	Bereich	
$f(x) = \frac{1}{1-x}$	$=\sum_{n=0}^{\infty}x^n$	-1 < x < 1	
$f(x) = \ln\left(1 + x\right)$	$= \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} * x^n$	-1 < x < 1	
$f(x) = e^x$	$=\sum_{n=0}^{\infty}\frac{1}{n!}*x^n$		
$g(x) = x * e^{x^2}$	$= x * \sum_{n=0}^{\infty} \frac{(x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$		
$f(x) = \cos(x)$	$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} * x^{2n}$		

$$f(x) = sin(x)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} * x^{2n+1}$$

7 Kurvendiskussion

7.1 Newtonverfahren

Annähern an Nullstellen durch Rekursion:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

7.2 Ableitungen

7.2.1 Grundfunktionen

$\frac{f(x)}{x^n}$	$\frac{f'(x)}{n * x^{n-1}}$
x^n	$n * x^{n-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{\frac{1}{2\sqrt{x}}}{e^x}$
e^x	e^x
$\frac{1}{\ln(x)}$	$\frac{1}{x}$
$\frac{1}{\sin(x)}$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos^2(x)}$
$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\sinh(x)$	$\frac{-\frac{1}{\sin^2(x)}}{\cosh(x)}$
$\frac{1}{\cosh(x)}$	$\sinh(x)$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1-x^2}$
$\operatorname{arccot}(x)$	$-\frac{1}{1-x^2}$

$$\sinh(x) = \frac{1}{2}(e^x - e^- x)$$

$$\cosh(x) = \frac{1}{2}(e^x + e^-x)$$

7.2.2 Regeln

Name	Vorher	Nachher
Summenregel	$(f \pm g)$	$f'\pm g'$
Produktregel	(f*g)	f' * g + f * g'
Quotientenregel	$\left(\frac{f}{g}\right)$	$\frac{f'*g-f*g'}{g^2}$
Kettenregel	f(g(x))	f'(g(x)) * g'(x)

7.3 Tangentengleichung

$$t(x) = f(x_0) + f'(x_0) * (x - x_0)$$

7.4 Stammfunktionen

f(x)	F(x)
x^n	$\frac{1}{n+1}x^{n-1} + c$
$\frac{1}{x}$	$\ln\left(x \right) + c$
$n * x^{n-1}$	$x^n + c$
\overline{x}	$\frac{1}{2}x^2 + c$
2x	$x^2 + c$
\sqrt{x}	$\frac{2}{3}x^{\frac{3}{2}} + c$
$\sqrt[n]{x}$	$\frac{n}{n+1}(\sqrt[n]{x})^{n+1} + c$
$\frac{1}{\ln x}$	$x * \ln(x) - x + c$
e^x	$e^x + c$
e^{z*x}	$\frac{1}{z}e^{z*x} + c$
$\sin(x)$	$-\cos\left(x\right) + c$
$\cos(x)$	sin(x) + c

7.5 Definitionsbereich und Wertemenge bestimmen

Definitionsberich: Was darf man alles für x einsetzen darf.

Wertemenge: Die Menge die rauskommt, wenn man alles aus der Definitionsmegne einsetzt

7.6 Nullstellen berechenn

Gleichung gleich 0 setzen (f(x) = 0) und ausrechnen

7.7 Y-Achsenabschnitt

In die Funktion x=0 einsetzen und das Ergebnis berechnen

7.8 Symmetrieverhalten bestimmen

7.8.1 Achsensymmetrie zur y-Achse

Prüft, ob bei f(-x) = f(x) dasselbe rauskommt

7.8.2 Punktsymmetrie

Punktsymmetrie liegt vor, wenn -f(x) = f(-x)

7.9 Extremstellen/werte und Hoch/Tiefpunkte berechnen

Extremstellen: f'(x) = 0

Hoch- oder Tiefpunkt: f''(x) an der Nullstelle von f'(x) Ist f''(x) > 0 Tiefpunkt Ist f''(x) < 0

Hochpunkt

Wendepunkt 7.10

2. Ableitung bestimmen und Nullstellen berechnen → hier sind Wendepunkte 3. Ableitung bestimmen um zu bestimmen, ob Rechts-Links-Wendepunkt oder Links-Rechts Wendepunkt f'''(x) > 0 rechts-links gekrümmt f'''(x) < 0 links-rechts gekrümmt f'''(x) = 0 kein Wendepunkt

Taylor Entwicklung 8

Taylor Reihen sind Annäherungen an Funktionen um einen Punkt x an der Funktion. Hierzu wird die Funktion solange abgeleitet, bis ein Muster zu erkennen ist und dieses dann zu einer Reihe(mit Summenzeichen) umgeformt werden kann.

Formel:
$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_0)}{i!} \cdot (x - x_0)^i$$

Integrale 9

9.1 Berechnung

$$\int_{b}^{a} f(x) = F(a) - F(a)$$

9.2 Integralregeln

1. Faktorregel

$$\int c * f(x)dx = c * \int f(x)dx$$

2. Potenzregel
$$\int x^n dx = \frac{x^{n+1}}{n+1} \ , x \neq -1$$

3. Summenregel

$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$

4. Partielle Integration

$$\int f(x) * g'(x) dx = f(x) * g(x) - \int f'(x) * g(x) dx$$

5. Substitutionsregel

$$\int f(g(x)) * g'(x) dx = \int f(g(x)) dx$$

6. Logarithmische Integration

$$\int \frac{f'(x)}{f(x)} dx = \ln\left(|f(x)|\right)$$

7. Vertauschungsregel
$$\int_{b}^{a} f(x) dx = - \int_{a}^{b} f(x) dx$$

8. Gleichheit von oberer und unterer Grenze

$$\int_{a}^{a} f(x)dx = 0$$

9.3 **Patrielle Integration**

$$\int u \cdot v' \, dx = u \cdot v - \int u' \cdot v \, dx$$

bzw.

$$\int u(x) \cdot v'(x) \, dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) \, dx$$

Hierbei ist es leichter wenn u (bzw. u(x)) der durch Ableiten leichter werdende Term ist. Also z.B. $2x^2$ oder x.

Das v' (bzw. v'(x)) ist dann der sich weniger verändernde Teil. Also z.B. e^x