(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 11. Juli 2002 (11.07.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/053170 A2

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): INSTITUT FÜR MEDIZINTECHNOLOGIE

Strasse 44, 39120 Magdeburg (DE).

MAGDEBURG GMBH (IMTM) [DE/DE]; Leipziger

(51) Internationale Patentklassifikation7: A61K 38/00

.....

PCT/EP01/15199

(21) Internationales Aktenzeichen:(22) Internationales Anmeldedatum:

21. Dezember 2001 (21.12.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

101 00 052.9 2. Januar 2001 (02.01.2001) DE 101 02 392.8 19. Januar 2001 (19.01.2001) DE 101 55 093.6 9. November 2001 (09.11.2001) DE (72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): ANSORGE, Siegfried [DE/DE]; Am Sportplatz 17, 39291 Hohenwarte (DE). LENDECKEL, Uwe [DE/DE]; Institut für Experimentelle Innere Medizin der Uni, versitätsklinik Magdeburg, Leipziger Strasse 44, 39120 Magdeburg (DE). NEUBERT, Klaus [DE/DE]; Martin-Luther-Universität Biochemie/Biotechnologie, Kurt-Mothes-Strasse 3, 06120

[Fortsetzung auf der nächsten Seite]

(54) Title: COMBINED USE OF ENZYME INHIBITORS AND PHARMACEUTICAL PREPARATIONS THEREOF FOR THE TREATMENT AND PROPHYLAXIS OF ARTERIOSCLEROSIS, FOR THE TREATMENT AND PREVENTION OF ALLERGIC REACTIONS OF TYPE I ACCORDING TO THE GELL AND COOMBS CLASSIFICATION, AND FOR THE TREATMENT AND PREVENTION OF DERMATOLOGICAL DISEASES ASSOCIATED WITH FO

(54) Bezeichnung: KOMBINIERTE VERWENDUNG VON ENZYMINHIBITOREN UND PHARMAZEUTISCHEN ZUBEREI-TUNGEN DARAUS ZUR THERAPIE UND PROPHYLAXE DER ARTERIOSKLEROSE, ZUR THERAPIE UND PRÄVENTION ALLERGISCHER REAKTIONEN VON TYP I NACH GELL UND COOMBS UND ZUR THERAPIE UND PRÄVENTION DER-MATOLOGISCHER ERKRANKUNGEN MIT FOLLIKULÄREN UND EPIDERMALEN HYPERKERATOS

(57) Abstract: The invention relates to the use of inhibitors of dipeptidyl peptidase IV (DP IV) and enzymes having the same specific nature of substrate (DP IV enzyme activity), combined with inhibitors of alanyl aminopeptidase (aminopeptidase N, APN), or enzymes having the same specific nature of substrate (APN enzyme activity), for the additive to superadditive inhibition of the activation and proliferation (DNS synthesis) of human T lymphocytes or mononuclear cells and of the production of TH2 cytokines for the treatment and prevention of allergic reactions of type I according to the Gell and Coombs classification, for the additive to superadditive inhibition of the activation and proliferation (DNS synthesis) of human epidermal and follicular keratinocytes and those of the transitional region between the skin and the mucosa, and for the treatment and prevention of dermatological diseases associated with follicular and epidermal hyperkeratosis and reinforced keratinocyte proliferation. The invention also relates to the use of inhibitors of dipeptidyl peptidase IV (DP IV) and enzymes having the same specific nature of substrate (DP IV enzyme activity), combined with inhibitors of alanyl aminopeptidase (aminopeptidase N, APN), or enzymes having the same specific nature of substrate (APN enzyme activity), inhibitors of X-pro-aminopeptidase (aminopeptidase P, APP), inhibitors of the angiotensin-converting enzyme (ACE) and/or of prolyoligopeptidase (POP, prolylendopeptidase, PEP) for the additive to superadditive inhibition of the activation, DNS synthesis and proliferation of human T lymphocytes or mononuclear cells for the treatment and prophylaxis of arteriosclerosis. The invention further relates to pharmaceutical preparations comprising a plurality of inhibitors of enzymes of the above-mentioned groups.

(57) Zusammenfassung: Die Erfindung betrifft die Verwendung von Inhibitoren der Dipeptidylpeptidase IV (DP IV) sowie von Enzymen mit gleicher Substratspezifität (DP IV-analoge Enzymaktivität) in Kombination mit Inhibitoren der Alanyl-Aminopeptidase (Aminopeptidase N, APN) bzw. Enzymen gleicher Substratspezifität (APN-analoge Enzymaktivität) zur additiven bis superadditiven Hemmung von Aktivierung und Proliferation (DNS-Synthese) humaner T-Lymphozyten bzw. mononukleärer Zellen und Produktion von T_{H2}- Zytokinen zur Therapie und Prävention allergischer Reaktionen von Typ I nach Gell und Coombs und zur additiven bis superadditiven Hemmung von Aktivierung, Proliferation (DNS-Synthese) humaner epidermaler und follikulärer Keratinozyten sowie solcher der Übergangszone von Haut zu Schleimhaut sowie zur Therapie und Prävention dermatologischer Erkrankungen mit follikulären und epidermalen Hyperkeratosen und einer verstärkten Keratinozytenproliferation. Die Erfindung betrifft auch die Verwendung von Inhibitoren der Dipeptidylpeptidase IV (DP IV) sowie von Enzymen mit gleicher Substratspezifität (DP IV-analoge Enzymaktivität) in Kombination mit Inhibitoren der Alanyl-Aminopeptidase (Aminopeptidase N, APN) bzw. Enzymen gleicher Substratspezifität (DP

7O 02/053170 A2

Halle (DE). **REINHOLD, Dirk** [DE/DE]; Institut für Immunologie der Universitätsklinik Ma, gdeburg, Leipziger Strasse 44, 39120 Magdeburg (DE). **VETTER, Robert** [DE/DE]; Universitätsklinik Magdeburg, Leipziger Strasse 44, 39120 Magdeburg (DE). **GOLLNICK, Harald** [DE/DE]; Leipziger Strasse 44, 39120 Magdeburg (DE).

- (74) Anwalt: KOEPE, Gerd, L.; Koepe & Partner, Postfach 22 12 64, 80502 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

IV-analoge Enzymaktivität), der X-Pro-Aminopeptidase (Aminopeptidase P, APP), des "angiotensin-converting Enzym " (ACE) und/oder der Prolyoligopeptidase (POP, Prolylendopeptidase, PEP) zur additiven bis superadditiven Hemmung von Aktivierung, DNS-Synthese und Proliferation humaner T-Lymphozaten bzw. mononukleärer Zellen zur Therapie und Prophylaxe der Arteriosklerose. Die Erfindung betrifft auch pharmazeutische Zubereitungen, die mehrere Inhibitoren von Enzymen der vorgenannten Gruppen umfassen.

Kombinierte Verwendung von Enzyminhibitoren und pharmazeutischen Zubereitungen daraus zur Therapie und Prophylaxe der Arteriosklerose, zur Therapie und Prävention allergischer Reaktionen vom Typ I nach Gell und Coombs und zur Therapie und Prävention dermatologischer Erkrankungen mit follikulären und epidermalen Hyperkeratosen und einer verstärkten Keratinozytenproliferation

Die Erfindung betrifft die Hemmung der DNS-Synthese und damit der Proliferation von Immunzellen durch die kombinierte Wirkung von Inhibitoren der Aminopeptidase N (APN, EC3.4.11.2, CD13), der Dipeptidylpeptidase IV (DP IV, EC 3.4.14.5, CD26), der Prolyloligopeptidase (POP, Prolylendopeptidase, PEP, EC3.4.21.26), der membranständigen Aminopeptidase P (X-Pro-Aminopeptidase, APP, XPNPEP2, EC 3.4.11.9) und des Angiotensinkonvertierenden Enzyms, (angiotensin-converting enzyme, ACE, EC 3.4.15.1, CD143) bzw. durch die kombinierte Hemmung der Aktivität der genannten Enzyme im Ergebnis der simultanen Applikation von jeweils spezifischen Inhibitoren dieser Enzyme auf der Basis von Aminosäurederivaten, Peptiden oder Peptidderivaten, durch welche die Aktivierung, die DNS-Synthese und damit die Proliferation von Immunzellen supprimiert wird.

Die Erfindung betrifft auch die Hemmung der für die Proliferation notwendigen DNS-Synthese und der Zytokinproduktion (Interleukin-4, IL-4) von T_{H2}-Zellen durch die kombinierte Wirkung von Inhibitoren der Aminopeptidase N (APN, EC3.4.11.2, CD13), der Dipeptidylpeptidase IV (DP IV, EC 3.4.14.5, CD26) im Ergebnis der simultanen Applikation von jeweils spezifischen Inhibitoren dieser Enzyme auf der Basis von Aminosäurederivaten, Peptiden oder Peptidderivaten, durch welche die Aktivierung, die Proliferation (DNS-Synthese) und Zytokinproduktion (IL-4) von T_{H2}-Zellen supprimiert wird.

Die Erfindung betrifft auch die Hemmung der für die Proliferation notwendigen DNS-Synthese von Keratinozyten durch die kombinierte Wirkung von Inhibitoren der Aminopeptidase N (APN, EC3.4.11.2, CD13) und der Dipeptidylpeptidase IV (DP IV, EC 3.4.14.5, CD26) im Ergebnis der simultanen und zeitlich unmittelbar aufeinanderfolgenden Applikation von jeweils spezifischen Inhibitoren dieser Enzyme oder ähnlich wirkender Enzyme auf der

Basis von Aminosäurederivaten, Peptiden oder Peptidderivaten, durch welche die Proliferation (DNS-Synthese) von Keratinozyten supprimiert wird.

Für alle Erkrankungen mit Autoimmunpathogenese gilt, dass eine Aktivierung und Proliferation von Immunzellen, insbesondere von autoreaktiven T-Zellen, dem Krankheitsprozess zugrunde liegen bzw. diesen ausmachen. Ähnliche Mechanismen kommen bei einer Reihe von entzündlichen Erkrankungen wie der Atheriosklerose zur Wirkung, wo T-Lymphozyten eine zentrale Rolle bei Enstehung und Chronifizierung des Krankheitsprozesses spielen.

Es ist gezeigt worden, dass im Prozess der Aktivierung und klonalen Expansion von Immunzellen, insbesondere von T-Lymphozyten, membranständige Peptidasen wie DP IV oder APN eine Schlüsselrolle spielen [Fleischer B: CD26 a surface protease involved in T-cell activation, Immunology Today 1994; 15:180-184; Lendeckel U et al.: Role of alanyl aminopeptidase in growth and function of human T cells. International Journal of Molecular Medicine 1999; 4:17-27; Riemann D et al.: CD13 - not just a marker in leukemia typing. Immunology Today 1999; 20:83-88]. Verschiedene Funktionen mitogen-stimulierter mononukleärer Zellen (MNZ) oder angereicherter T-Lymphozyten wie DNS-Synthese, Produktion und Sekretion von immunstimulierenden Zytokinen (IL-2, IL-6, IL-12, IFN-γ) und Helferfunktionen für B-Zellen (IgG- und IgM-Synthese) können in Gegenwart von spezifischen Inhibitoren der DP IV und der APN gehemmt werden [Schön E et al.: The dipeptidyl peptidase IV, a membrane enzyme involved in the proliferation of T lymphocytes. Biomed. Biochim. Acta 1985; 2: K9-K15; Schön E et al.: The role of dipeptidyl peptidase IV in human T lymphocyte activation. Inhibitors and antibodies against dipeptidyl peptidase IV suppress lymphocyte proliferation and immunoglobulin synthesis in vitro. Eur. J. Immunol. 1987; 17: 1821-1826; Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor \$1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360; Lendeckel U et al.: Induction of the membrane alanyl aminopeptidase gene and surface expression in human Tcells by mitogenic activation. Biochem. J. 1996; 319: 817-823; Kähne T et al.: Dipeptidyl peptidase IV: A cell surface peptidase involved in regulating T cell growth (Review). Int. J. Mol. Med. 1999; 4: 3-15; Lendeckel U et al.: Role of alanyl aminopeptidase in growth and function of human T cells (Review). Int. J. Mol. Med. 1999; 4: 17-27].

.

WO 02/053170

PCT/EP01/15199

3

Auf der anderen Seite haben wissenschaftliche Erkenntnisse der letzten Jahre die Atheriosklerose als eine entzündliche Erkrankung charakterisiert, wobei den T-Lymphozyten eine entscheidende Rolle für die Enstehung und Entwicklung der Erkrankung zukommt [Ross R: Atherosclerosis- an inflammatory disease. New Engl. J. Med. 1999; 340 (2):115-126]. Demnach werden atheriosklerotische Läsionen als eine Serie spezifischer zellulärer und molekularer Reaktionen verstanden, die zusammengenommen eindeutig als Entzündung zu charakterisieren sind. Solche Läsionen, die hauptsächlich in großen und mittleren elastischen und muskullösen Arterien vorkommen, führen zu Ischämie (Durchblutungsstörungen) von Herz, Hirn und Extremitäten bis hin zu Infarkten in den genannten Organen. Atheriosklerotische Läsionen bilden sich an definierten arteriellen Orten, wo Abzweigungen und Kurven charakteristische Veränderungen des Blutflusses und der Scherkräfte sowie die Ausbildung von Turbulenzen bewirken [Gotlieb AI et al.: The role of rheology in atherosclerotic coronary artery disease. In: Fuster V, Ross R, Topol EJ, eds. Atherosclerosis and coronary athery disease. Vol. 1 Philadelphia: Lippincott-Raven, 1996: 595-606]. Gefäßendothel-Zellen bilden dann an diesen Orten spezifische Moleküle, die für die Attraktion, Bindung, Akkumulation sowie Aktivierung von T-Lymphozyten und Monozyten verantwortlich sind. T-Lymphozyten sind wesentliche inflammatorische Zellen in allen Phasen der Atheriogenese. T-Zellen infiltrieren aus dem peripheren Blut in die atheriosklerotischen Plaques und vermehren sich am Ort der Läsion [Jonasson L et al.: Regional accumulation of T cells, macrophages and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis. 1986; 6: 131-138; van der Wal AC et al.: Atherosclerotic lesions in humans: in situ immunophenotypic analysis suggesting an immune mediated response. Lab. Invest. 1989; 61: 166-170]. Im Ergebnis dieser Anhäufung aktivierter T-Lymphozyten, die sich durch eine starke Expression der Alanylaminopeptidase und der Dipeptidyl-Peptidase IV auszeichnen, am Ort der atheriosklerotischen Läsion werden Chemokine, Zytokine, Wachstumsfaktoren und Proteasen freigesetzt, die zur weiteren Verstärkung des Krankheitsgeschehens führen, indem andere Immunzellen rekrutiert und aktiviert werden [Libby P and Ross R. Cytokines and growth regulatory molecules. In: Fuster V, Ross R, Topol EJ, eds. Atherosclerosis and coronary athery disease. Vol. 1 Philadelphia: Lippincott-Raven, 1996: 585-594].

Auch Monozyten, die in atherosklerotischen Plaques lokalisiert sind, zeichnen sich durch die konstitutive Expression von z. B. Alanylaminopeptidase (APN) aus und sind, wie unsere Arbeiten zeigen, nachhaltig durch Hemmstoffe der oben beschriebenen Enzyme in ihrem

Wachstum und ihrer Funktion zu supprimieren. Gleiches gilt für Endothelzellen, die ebenfalls diese Ektopeptidasen exprimieren.

Dem Angiotensin-konvertierenden Enzym kommt eine besondere Rolle in der Pathogenese der Atheriosklerose zu: Dieses Enzym bewirkt die Bildung des stark blutdrucksteigernden Angiotensin II (Ang II) aus dem Ang I. Hypertonie ist ein wichtiger Risikofaktor für Atheriosklerose und betroffene Patienten haben oft erhöhte Ang II-Spiegel. Daneben ist Ang II proatherogen, indem es das Wachstum von glatten Muskeln (Gefäße) stimuliert [Chobanian AV et al. Renin angiotensin system and atherosclerotic vascular disease. In: Fuster V, Ross R, Topol EJ, eds. Atherosclerosis and coronary athery disease. Vol. 1 Philadelphia: Lippincott-Raven, 1996: 237-242; Gibbons GH et al. Vascular smooth muscle cell hypertrophy vs. hyperplasia: autocrine TGF-ß1 expression determines growth response to angiotensin II. J Clin. Invest. 1992; 90: 456-461]. Ang II verstärkt die Entzündungsreaktion darüberhinaus auch über die Erhöhung der Lipoxygenase-Aktivität, wodurch entzündungsfördernde Mediatoren verstärkt freigesetzt werden.

Der Erfindung liegt der überraschende Befund zugrunde, dass die gleichzeitige Wirkung von Inhibitoren der enzymatischen Aktivitäten bzw. die gleichzeitige Beeinflusssung der biologischen Aktivitäten von (I) Dipeptidylpeptidase IV und Aminopeptidase N, (II) der Dipeptidylpeptidase IV und des "angiotensin-converting enzyme", (III) der Dipeptidylpeptidase IV und der Prolyloligopeptidase sowie (IV) der Dipeptidylpeptidase IV und der X-Pro-Aminopeptidase die DNS-Synthese und damit die Proliferation von mononukleären Zellen (MNZ) als auch von T-Zellen in einem Ausmaß hemmt, das durch die einzelne Applikation dieser Enzyminhibitoren - auch bei höherer Dosierung - nicht erreicht werden kann. Obgleich die genannten Inhibitoren letztendlich den gleichen Prozess, nämlich die DNS-Synthese und damit die Proliferation von Immunzellen, beeinflussen, ist dieser Effekt bei einzelner Applikation der Inhibitoren wesentlich schwächer ausgeprägt und nicht dauerhaft. Wegen der funktionellen Überschneidung der enzymatischen Aktivitäten der genannten Enzyme resultiert, wie unsere Daten zeigen, eine additive bis superadditive Hemmwirkung auf DNS-Synthese und Proliferation aus der gleichzeitigen Hemmung von zwei oder mehreren dieser Enzyme.

Unsere Erfindung zeigt, dass zur Therapie von entzündlichen Erkrankungen wie der Atheriosklerose, für deren Enstehung die Proliferation und die Aktivierung von T-Lymphozyten eine

zentrale Rolle Bedeutung hat, die gleichzeitige Applikation von Hemmstoffen der oben genannten Enzyme bzw. entsprechender Zubereitungen und Darreichungsformen daraus geeignet sind.

Im einzelnen liegen der Erfindung die Befunde zugrunde, dass die DNS-Synthese von MNZ und T-Zellen durch die simultane Administration von Inhibitoren der enzymatischen Aktivität von

- I. Dipeptidylpeptidase IV und Aminopeptidase N,
- II. Dipeptidylpeptidase IV und Angiotensin-konvertierendem Enzym,
- III. Dipeptidylpeptidase IV und Prolyloligopeptidase
- IV. Dipeptidylpeptidase IV und X-Pro-Aminopeptidase

in additiver bis superadditiver Weise inhibiert wird.

Die Applikation von Enzyminhibitoren stellt bei den genannten Erkrankungen eine neuartige Methode und ergänzende Therapieform dar.

Die erfindungsgemäß applizierten Inhibitoren der Dipeptidylpeptidase IV, der Aminopeptidase N, der Prolyloligopeptidase, des "angiotensin-converting enzyme" und der X-Pro-Aminopeptidase können in pharmazeutisch anwendbaren Formulierungskomplexen als Inhibitoren, Substrate, Pseudosubstrate, inhibitorisch wirkende Peptide und Peptidderivate sowie als Antikörper dieses Enzyms zur Anwendung kommen. Bevorzugte Effektoren sind beispielsweise für die DP IV Xaa-Pro-Dipeptide, entsprechende Derivate, vorzugsweise Dipeptidphosphonsäurediarylester, Dipeptidboronsäuren (z.B. Pro-boro-Pro) und deren Salze, Xaa-Xaa-(Trp)-Pro-(Xaa)n-Peptide (n=0-10), entsprechende Derivate und deren Salze bzw. Aminosäure (Xaa)-amide, entsprechende Derivate und deren Salze, wobei Xaa eine α-Aminosäure/Iminosäure bzw. ein α-Aminosäurederivat/Iminosäurederivat, vorzugsweise N^e-4-Nitrobenzyloxycarbonyl-L-Lysin, L-Prolin, L-Tryptophan, L-Isoleucin, L-Valin ist und als Amidstruktur cyclische Amine, z.B. Pyrrolidin, Piperidin, Thiazolidin und deren Derivate fungieren. Derartige Verbindungen und deren Herstellung wurden in einem früheren Patent beschrieben (K. Neubert et al. DD296075A5).

WO 02/053170

PCT/EP01/15199

6

Die Inhibitoren werden simultan mit bekannten Trägerstoffen verabreicht. Die Verabreichung erfolgt einerseits als topische Applikation in Form von z.B. Cremes, Salben, Pasten, Gelen, Lösungen, Sprays, Liposomen, Schüttelmixturen, Hydrokolloidverbänden bzw. anderen dermatologischen Grundlagen/Vehikeln einschließlich instilativer Applikation und andererseits als systemische Applikation zur oralen, transdermalen, intravenösen, subcutanen, intracutanen, intramuskulären Anwendung in geeigneten Rezepturen bzw. in geeigneter Galenik.

Für alle allergischen Reaktionen vom Typ I wie Asthma bronchiale oder Heuschnupfen gilt, dass eine Aktivierung, Proliferation und Zytokinproduktion (besonders IL-4) von Immunzellen, insbesondere von T_{H2}-Zellen, dem Krankheitsprozess zugrunde liegen [D.D. Corry et al.: Induction and regulation of the IgE response. Nature 1999; 402: B18-B23].

Es ist gezeigt worden, dass im Prozess der Aktivierung und klonalen Expansion von Immunzellen, insbesondere von T-Lymphozyten, membranständige Peptidasen wie DP IV oder APN eine Schlüsselrolle spielen [Fleischer B: CD26 a surface protease involved in T-cell activation. Immunology Today 1994; 15:180-184; Lendeckel U et al.: Role of alanyl aminopeptidase in growth and function of human T cells. International Journal of Molecular Medicine 1999; 4:17-27; Riemann D et al.: CD13 - not just a marker in leukemia typing. Immunology Today 1999; 20:83-88]. Verschiedene Funktionen Mitogen-stimulierter mononukleärer Zellen (MNZ) oder angereicherter T-Lymphozyten wie DNS-Synthese, Produktion und Sekretion von immunstimulierenden Zytokinen (IL-2, IL-6, IL-12, IFN-y) und Helferfunktionen für B-Zellen (IgG- und IgM-Synthese) können in Gegenwart von spezifischen Inhibitoren der DP IV oder der APN gehemmt werden [Schön E et al.: The dipeptidyl peptidase IV, a membrane enzyme involved in the proliferation of T lymphocytes. Biomed. Biochim. Acta 1985; 2: K9-K15; Schön E et al.: The role of dipeptidyl peptidase IV in human T lymphocyte activation. Inhibitors and antibodies against dipeptidyl peptidase IV suppress lymphocyte proliferation and immunoglobulin synthesis in vitro. Eur. J. Immunol. 1987; 17: 1821-1826; Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360; Lendeckel U et al.: Induction of the membrane alanyl aminopeptidase gene and surface expression in human Tcells by mitogenic activation. Biochem. J. 1996; 319: 817-823; Kähne T et al.: Dipeptidyl peptidase IV: A cell surface peptidase involved in regulating T cell growth (Review). Int. J.

WO 02/053170

Mol. Med. 1999; 4: 3-15; Lendeckel U et al.: Role of alanyl aminopeptidase in growth and function of human T cells (Review). Int. J. Mol. Med. 1999; 4: 17-27].

7

PCT/EP01/15199

Auf der anderen Seite haben wissenschaftliche Erkenntnisse der letzten Jahre die allergische Reaktion vom Typ I als eine Erkrankung charakterisiert, bei der den T_{H2}-Lymphozyten eine entscheidende Rolle für die Enstehung und Chronifizierung der Erkrankung zukommt [D.D. Corry et al.: Induction and regulation of the IgE response. Nature 1999; 402: B18-B23. P.J. Barnes: Therapeutic strategies for allergic diseases. Nature 1999; 402: B31-B38].

IL-4 stellt ein Helferzytokin der B-Zell-Proliferation dar, stimuliert die Bildung von IgE und die Expression niedrigaffiner Fc-IgE-Rezeptoren. Darüber hinaus verstärkt IL-4 die Induktion von T_{H2}-Zellen selbst und kontrolliert die Proliferation und Aktivität von Eosinophilen und Mastzellen. Damit spielt es eine zentrale Rolle bei allergischen Reaktionen vom Typ I [D.P. Stites, A.I. Terr, T.G. Parslow: Medical Immunology. Appelton & Lange, Stamfort, CT, 1997].

Der Erfindung liegt ebenfalls der überraschende Befund zugrunde, dass die gleichzeitige Wirkung von Inhibitoren der Dipeptidylpeptidase IV und der Aminopeptidase N, die Proliferation (DNS-Synthese) und IL-4-Produktion mitogenstimulierter mononukleärer Zellen (MNZ) in einem Ausmaß hemmt, das durch die einzelne Applikation dieser Enzyminhibitoren - auch bei höherer Dosierung - nicht erreicht werden kann. Obgleich die genannten Inhibitoren letztendlich die gleichen Prozesse, nämlich die DNS-Synthese und damit die Proliferation sowie die IL-4-Produktion der TH2-Zellen, beeinflussen, ist dieser Effekt bei einzelner Applikation der Inhibitoren wesentlich schwächer ausgeprägt und nicht dauerhaft. Wegen der funktionellen Überschneidung der enzymatischen Aktivitäten der genannten Enzyme resultiert, wie unsere Daten zeigen, eine additive bis superadditive Hemmwirkung auf DNS-Synthese und Proliferation aus der gleichzeitigen Hemmung beider Enzyme.

Unsere Erfindung zeigt, dass zur Therapie allergischer Reaktionen vom Typ I für deren Entstehung die Proliferation und die Aktivierung von T-Lymphozyten eine zentrale Bedeutung hat, die gleichzeitige Applikation von Hemmstoffen der DP IV und der APN bzw. entsprechender Zubereitungen und Darreichungsformen daraus geeignet sind.

8

Im einzelnen liegen der Erfindung die Befunde zugrunde, dass die DNS-Synthese und die IL-4-Produktion von MNZ durch die simultane Administration von Inhibitoren der Dipeptidylpeptidase IV und Aminopeptidase N in additiver bis superadditiver Weise inhibiert wird.

Die Applikation von Enzyminhibitoren stellt bei den genannten Erkrankungen eine neuartige Methode und ergänzende Therapieform dar.

Die erfindungsgemäß applizierten Inhibitoren der Dipeptidylpeptidase IV und der Aminopeptidase N können in pharmazeutisch anwendbaren Formulierungskomplexen als Inhibitoren, Substrate, Pseudosubstrate, inhibitorisch wirkende Peptide und Peptidderivate sowie als Antikörper dieses Enzyms zur Anwendung kommen. Bevorzugte Effektoren sind beispielsweise für die DP IV Xaa-Pro-Dipeptide, entsprechende Derivate, vorzugsweise Dipeptidphosphonsäurediarylester, Dipeptidboronsäuren (z.B. Pro-boro-Pro) und deren Salze, Xaa-Xaa-(Trp)-Pro-(Xaa)n-Peptide (n=0-10), entsprechende Derivate und deren Salze bzw. Aminosäure (Xaa)-amide, entsprechende Derivate und deren Salze, wobei Xaa eine α-Aminosäure/Iminosäure bzw. ein α-Aminosäurederivat/Iminosäurederivat, vorzugsweise N^ε-4-Nitrobenzyloxycarbonyl-L-Lysin, L-Prolin, L-Tryptophan, L-Isoleucin, L-Valin ist und als Amidstruktur cyclische Amine, z.B. Pyrrolidin, Piperidin, Thiazolidin und deren Derivate fungieren. Derartige Verbindungen und deren Herstellung wurden in einem früheren Patent beschrieben (K. Neubert et al. DD296075A5).

Bevorzugte Inhibitoren für die Alanyl-Aminopeptidase sind Bestatin (Ubenimex), Actinonin, Probestin, Phebestin, RB3014 oder Leuhistin.

Die Inhibitoren werden simultan mit bekannten Trägerstoffen verabreicht. Die Verabreichung erfolgt einerseits als topische Applikation in Form von z.B. Cremes, Salben, Pasten, Gelen, Lösungen, Sprays, Liposomen, Schüttelmixturen, Hydrokolloidverbänden bzw. anderen dermatologischen Grundlagen/Vehikeln einschließlich instilativer Applikation und andererseits als systemische Applikation zur oralen, transdermalen, intravenösen, subcutanen, intracutanen, intramuskulären Anwendung in geeigneten Rezepturen bzw. in geeigneter Galenik.

Eine Reihe dermatologischer Erkrankungen gehen mit follikulären und epidermalen Hyperkeratosen und einer verstärkten Keratinozytenproliferation einher. Zu ihnen gehören sowohl

entzündliche und nicht entzündliche epidermale Hyperproliferations-Zustände (z. B. congenitale Ichthyosen und Psoriasis), benigne und maligne umschriebene epidermale clonale Expansionen (z. B. Warzen, Condylome, aktinische Keratosen/Präcancerosen), benigne und maligne follikuläre Hyperproliferations-Zustände (z. B. Keratosis follikularis) als auch benigne und maligne epitheliale Adnextumoren und primäre und reaktive Nagelzellhyperproliferationen. Eine Detailinformation dazu ist in Tabelle 1 beigefügt.

Peptidasen wie die Dipeptidylpetidase IV und die Aminopeptidase N oder ähnlich wirkende Enzyme sind für die Regulation bzw. Modulation von Wechselwirkungen zwischen Zellen besonders interessant, da sie u. a. als Ektoenzyme in der Plasmamembran der Zellen lokalisiert sind, Interaktionen mit anderen extrazellulären Strukturen eingehen, peptiderge Botenstoffe durch enzymkatalysierte Hydrolyse aktivieren bzw. inaktivieren und dadurch wichtig für die Zell-Zell-Kommunikation sind [Yaron A, et al.: Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 1993;28:31-81; Vanhoof G, et al.: Proline motifs in peptides and their biological processing. FASEB J 1995;9:736-744].

Es ist gezeigt worden, dass im Prozess der Aktivierung und klonalen Expansion von Immunzellen, insbesondere von T-Lymphozyten, membranständige Peptidasen wie DP IV oder APN eine Schlüsselrolle spielen [Fleischer B: CD26 a surface protease involved in T-cell activation. Immunology Today 1994; 15:180-184; Lendeckel U et al.: Role of alanyl aminopeptidase in growth and function of human T cells. International Journal of Molecular Medicine 1999; 4:17-27; Riemann D et al.: CD13 - not just a marker in leukemia typing. Immunology Today 1999; 20:83-88]. Verschiedene Funktionen Mitogen-stimulierter mononukleärer Zellen (MNZ) oder angereicherter T-Lymphozyten wie DNS-Synthese, Produktion und Sekretion von immunstimulierenden Zytokinen (IL-2, IL-6, IL-12, IFN-γ) und Helferfunktionen für B-Zellen (IgG- und IgM-Synthese) können in Gegenwart von spezifischen Inhibitoren der DP IV oder der APN gehemmt werden [Schön E et al.: The dipeptidyl peptidase IV, a membrane enzyme involved in the proliferation of T lymphocytes. Biomed. Biochim. Acta 1985; 2: K9-K15; Schön E et al.: The role of dipeptidyl peptidase IV in human T lymphocyte activation. Inhibitors and antibodies against dipeptidyl peptidase IV suppress lymphocyte proliferation and immunoglobulin synthesis in vitro. Eur. J. Immunol. 1987; 17: 1821-1826; Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor \$1 in

WO 02/053170

PCT/EP01/15199

10

PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360; Lendeckel U et al.: Induction of the membrane alanyl aminopeptidase gene and surface expression in human T-cells by mitogenic activation. Biochem. J. 1996; 319: 817-823; Kähne T et al.: Dipeptidyl peptidase IV: A cell surface peptidase involved in regulating T cell growth (Review). Int. J. Mol. Med. 1999; 4: 3-15; Lendeckel U et al.: Role of alanyl aminopeptidase in growth and function of human T cells (Review). Int. J. Mol. Med. 1999; 4: 17-27]. Es ist bereits bekannt, daß die Behandlung von Autoimmunerkrankungen und Transplantatabstoßung durch Hemmung der auf Immunzellen lokalisierten Dipeptidylpetidase IV mit Hilfe von synthetischen Inhibitoren möglich ist (z. B. EP764151 A1, WO09529691, EP731789 A1, EP528858).

Der Erfindung liegt der überraschende Befund zugrunde, dass die gleichzeitige Wirkung von Inhibitoren der auf bzw. in Keratinozyten exprimierten Dipeptidyl-peptidase IV/CD26 und Aminopeptidase N/CD13 oder ähnlicher Enzyme, die Proliferation (DNS-Synthese) dieser Zellen in einem Ausmaß hemmt, das durch die einzelne Applikation dieser Enzyminhibitoren bei der gegebenen Dosierung nicht erreicht werden kann. Obgleich die genannten Inhibitoren letztendlich die gleichen Prozesse, nämlich die DNS-Synthese und damit die Proliferation der Keratinozyten, beeinflussen, ist dieser Effekt bei einzelner Applikation der Inhibitoren schwächer ausgeprägt und nicht dauerhaft. Wegen der funktionellen Überschneidung der enzymatischen Aktivitäten der genannten Enzyme resultiert, wie unsere Daten zeigen, eine additive und bei niedrigeren Konzentrationen eine additive bis superadditive Hemmwirkung auf DNS-Synthese und Proliferation aus der gleichzeitigen Hemmung beider Enzyme.

Unsere Erfindung zeigt, dass zur Therapie und zur Prävention von sowohl entzündlichen und nicht entzündlichen epidermalen Hyperproliferationszuständen (z. B. congenitale Ichthyosen und Psoriasis), benignen und malignen umschriebenen epidermalen clonalen Expansionen (z. B. Warzen, Condylome, aktinische Keratosen/ Präcancerosen), benignen und malignen follikulären Hyperproliferationszuständen (z. B. Keratosis follikularis) als auch benignen und malignen epithelialen Adnextumoren und primären und reaktiven Nagelzellhyperproliferationen für deren Enstehung die Proliferation und die Aktivierung von epidermalen und follikulären Keratinozyten sowie von Keratinozyten der Übergangsschleimhautzone eine zentrale Bedeutung hat, die gleichzeitige Applikation von Hemmstoffen der DP IV und der APN oder ähnlicher Enzyme bzw. entsprechender Zubereitungen und Darreichungsformen daraus geeignet sind.

11

PCT/EP01/15199

WO 02/053170

Neben Keratinozyten spielen auch T-Lymphozyten bei entzündlichen Erkrankungen der Haut, insbesondere bei Autoimmunerkrankungen wie der Psoriasis, eine zentrale Rolle. T-Zellen exprimieren wie Keratinozyten die hier behandelten Peptidasen DP IV und APN. Daraus folgt, dass der therapeutische Effekt, der hier für den Zelltyp Keratinozyten beansprucht bzw. geschützt wird, durch die Beeinflussung der T-Zellen weiter verstärkt wird (siehe Patentanmeldung AZ 10025464.0; Kombinierte Verwendung von Enzyminhibitoren und pharmazeutischen Zubereitungen daraus zur Therapie von Autoimmunerkrankungen wie Rheumatoide Arthritis, Lupus erythematodes, Multiple Sklerose, Insulin-abhängiger Diabetes mellitus

(IDDM), Morbus Crohn, Colitis Ulcerosa, Psoriasis, Neurodermitis, Glomerulonephritis, interstitielle Nephritis, Vaskulitis, autoimmune Schilddrüsenerkrankungen oder autoimmun-

hämolytische Anämie, sowie bei Transplantation und Tumorerkrankungen).

Im einzelnen liegen der Erfindung die Befunde zugrunde, dass die DNS-Synthese von HaCaT-Keratinozyten durch die simultane Administration von Inhibitoren der Dipeptidylpeptidase IV und der Aminopeptidase N in additiver und bei kleineren Konzentrationen in superadditiver Weise inhibiert wird.

Die oben genannten Erkrankungen werden bisher topisch mit antiproliferativen und differenzierenden Substanzen (Salizylsäure, Harnstoff, endogene und synthetische Retinoide, Vitamin D3-Derivate, Kortikosteroide) sowie systemisch mit z. T. immunsuppressiven und antiproliferativen Präparaten (z. B. Cyclosporin A, Kortikosteroide, Retinoide) behandelt. Insbesondere bei der systemischen Anwendung treten häufig unerwünschte Nebenwirkungen auf. Der kombinierte Einsatz von DP IV- und APN-Inhibitoren würde bei den genannten Erkrankungen eine neuartige, vorraussichtlich sehr effektive, möglicherweise kostengünstige Therapieform und einen wertvollen alternativen Bestandteil der bestehenden Therapiekonzepte darstellen.

Die erfindungsgemäß applizierten Inhibitoren der Dipeptidylpeptidase IV und der Aminopeptidase N oder ähnlicher Enzyme können in pharmazeutisch anwendbaren Formulierungskomplexen als Inhibitoren, Substrate, Pseudosubstrate, inhibitorisch wirkende Peptide und Peptidderivate sowie als Antikörper dieser Enzyme zur Anwendung kommen. Bevorzugte Inhibitoren sind beispielsweise für die DP IV Xaa-Pro-Dipeptide, entsprechende Derivate, vorzugsweise Dipeptidphosphonsäurediarylester, Dipeptidboronsäuren (z. B. Pro-boro-Pro) und deren

Salze, Xaa-Xaa-(Trp)-Pro-(Xaa)n-Peptide (n=0 bis 10), entsprechende Derivate und deren Salze bzw. Aminosäure (Xaa)-amide, entsprechende Derivate und deren Salze, wobei Xaa eine α-Aminosäure/Iminosäure bzw. ein α-Aminosäurederivat/Iminosäurederivat, vorzugsweise N^ε-4-Nitrobenzyloxycarbonyl-L-Lysin, L-Isoleucin, L-Valin, L-Tryptophan, L-Prolin ist und als Amidstruktur cyclische Amine, z.B. Pyrrolidin, Piperidin, Thiazolidin und deren Derivate fungieren. Derartige Verbindungen und deren Herstellung wurden in einem früheren Patent beschrieben (K. Neubert et al. DD296075A5).

Bevorzugte Inhibitoren für die Alanyl-Aminopeptidase sind Bestatin (Ubenimex), Actinonin, Probestin, Phebestin, RB3014 oder Leuhistin.

Die Inhibitoren werden simultan mit bekannten Trägerstoffen verabreicht. Die Verabreichung erfolgt einerseits als topische Applikation in Form von z.B. Cremes, Salben, Pasten, Gelen, Lösungen, Sprays, Liposomen, Schüttelmixturen, Hydrokolloidverbänden, Pflaster und ähnliche neue Trägersubstrate, Jet-Injektion bzw. anderen dermatologischen Grundlagen/Vehikeln einschließlich instilativer Applikation und andererseits als systemische Applikation zur oralen, transdermalen, intravenösen, subcutanen, intracutanen, intramuskulären Anwendung in geeigneten Rezepturen bzw. in geeigneter Galenik.

Tabelle 1:

epidermale Hyperproliferationszustände

z. B. nicht entzündlich

- congenitale Ichthyosen

- acquirierte Ichthyosen (paraneoplast.)

- Palmoplantarkeratosen
- congenital

noide

- erworben/paraneoplast.

titis)

- M. Darier
- Epidermale Naevi
- Cutis rhomboidalis nuchae
- Acanthosis nigricans
- Pachydermie

z. B. entzündlich

- Psoriasis und Subtypen einschließlich Nägel und Haare
- Lichen ruber und Subtypen
- Parapsoriasis-Gruppe
- Keratosis lichenoides
- Lichen simplex chronicus + reaktive liche-

Hyperproliferationen (z. B. atopische Derma-

.

- Lichenoide Reaktionen bei GvHD

- ILVEN-Naevus
- Lupus erythematodes chron. disc./SCLE/SLE
- Pityriasis rubra pilaris
- M. Grover
- Vitiligo
- mit Hyperproliferation von Keratinozyten einhergehende Erythrodermien

umschriebene epidermale clonale Expansion

benigne

- HPV-assoziiert (Warzen/Condylome)
- seborrhoische Keratosen
- Hidroakanthome/Porome
- Epidermalcysten
- Milien
- M. Gottron

maligne

- HPV-assoziierte Tumoren
- aktinische Keratosen/Präcancerosen
- M. Bowen + Bowen-CA
- M. Paget + Paget-CA
- Plattenepithel-CA
- Merkelcell-CA

follikuläre Hyperproliferationszustände

benigne

- Keratosis follikularis
- follikuläre Hyperkeratosen
- Ulerythema ophryogenes
- Hypertrichosen
- Trichilemmalcysten

maligne

- Haarfollikelzelltumoren
- Proliferierende
- Trichilemmalcysten
 - Mischtumoren

14

epitheliale Adnextumoren

benigne

maligne

- Porom

- ekkrine/apokrine CA's und Subtypen
- syringoductale Tumoren
- Hidraadenome
- Spiradenome
- Cylindrome

primäre und reaktive Nagelzellhyperproliferation

- congenital

z. B. Pachyonychien

nicht infektiös erworben infektiös bei Mykosen

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele näher erläutert, ohne auf diese beschränkt zu sein.

Beispiel 1

Inhibierung der DNS-Synthese von humanen T-Lymphozyten durch Inkubation mit synthetischen Inhibitoren der DP IV und der APN

Unsere Untersuchungen zeigten, dass die DNS-Synthese humaner peripherer T-Lymphozyten durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und APN (Actinonin) in additiver bis superadditiver Weise gehemmt wird. Die T-Zellen wurden 72 h in Gegenwart der genannten Inhibitoren inkubiert und anschließend über die Messung der ³[H]-Thymidin-Inkorporation die DNS-Synthese bestimmt, wie bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 1 (Seite 1/14) zeigt die dosisabhängige, additive bis superadditive Hemmung der DNS-Synthese.

Beispiel 2

Inhibierung der DNS-Synthese von humanen peripheren mononukleären Zellen durch Inkubation mit synthetischen Inhibitoren der DP IV und der APN

15

WO 02/053170 PCT/EP01/15199

Unsere Untersuchungen zeigten, dass die DNS-Synthese humaner peripherer mononukleärer Zellen (MNZ) durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und APN (Actinonin) in additiver bis superadditiver Weise gehemmt wird. Die MNZ wurden 72 h in Gegenwart der genannten Inhibitoren inkubiert und anschließend über die Messung der ³[H]-Thymidin-Inkorporation die DNS-Synthese bestimmt, wie bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 2 (Seite 2/14) zeigt die dosisabhängige, additive bis superadditive Hemmung der DNS-Synthese.

Beispiel 3

Inhibierung der DNS-Synthese von humanen T-Lymphozyten durch Inkubation mit synthetischen Inhibitoren der DP IV und der POP

Unsere Untersuchungen zeigten, dass die DNS-Synthese humaner T-Lymphozyten durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und der Prolyloligopeptidase (Boc-Ala-Thiazolidid) in additiver bis superadditiver Weise gehemmt wird. Die T-Zellen wurden 72 h in Gegenwart der genannten Inhibitoren inkubiert und anschließend über die Messung der ³[H]-Thymidin-Inkorporation die DNS-Synthese bestimmt, wie bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 3 (Seite 3/14) zeigt die dosisabhängige, additive bis superadditive Hemmung der DNS-Synthese.

Beispiel 4

Inhibierung der DNS-Synthese von humanen peripheren mononukleären Zellen durch Inkubation mit synthetischen Inhibitoren der DP IV und der POP

Unsere Untersuchungen zeigten, dass die DNS-Synthese humaner peripherer mononukleärer Zellen (MNZ) durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und der Prolyloligopeptidase (Boc-Ala-Thiazolidid) verstärkt gehemmt wird. Die MNZ wurden 72 h in Gegenwart der genannten Inhibitoren inkubiert und anschließend über die Messung der ³[H]-Thymidin-Inkorporation die DNS-Synthese bestimmt, wie

bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 4 (Seite 4/14) zeigt die dosisabhängige, verstärkte Hemmung der DNS-Synthese.

Beispiel 5

Inhibierung der DNS-Synthese von humanen T-Lymphozyten durch Inkubation mit synthetischen Inhibitoren der DP IV und des ACE

Unsere Untersuchungen zeigten, dass die DNS-Synthese humaner T-Lymphozyten durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und des Angiotensin-konvertierenden Enzyms (Captopril) in additiver bis superadditiver Weise gehemmt wird. Die T-Zellen wurden 72 h in Gegenwart der genannten Inhibitoren inkubiert und anschließend über die Messung der ³[H]-Thymidin-Inkorporation die DNS-Synthese bestimmt, wie bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 5 (Seite 5/14) zeigt die dosisabhängige, additive bis superadditive Hemmung der DNS-Synthese.

Beispiel 6

Inhibierung der DNS-Synthese von humanen peripheren mononukleären Zellen durch Inkubation mit synthetischen Inhibitoren der DP IV und des ACE

Unsere Untersuchungen zeigten, dass die DNS-Synthese humaner peripherer mononukleärer Zellen (MNZ) durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und des Angiotensin-konvertierenden Enzyms (Captopril) in additiver bis superadditiver Weise gehemmt wird. Die MNZ wurden 72 h in Gegenwart der genannten Inhibitoren inkubiert und anschließend über die Messung der 3 [H]-Thymidin-Inkorporation die DNS-Synthese bestimmt, wie bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β 1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 6 (Seite 6/14) zeigt die dosisabhängige, additive bis superadditive Hemmung der DNS-Synthese.

Beispiel 7

WO 02/053170

Hemmung der Proliferation von humanen peripheren mononukleären Zellen (MNZ) durch die einzelne und gleichzeitige Gabe von Hemmstoffen der DP IV (I49 = Lys[Z(NO₂)]-thiazolidid) und APN (Actinonin). (Abbildung 7: Seite 7/14)

Beispiel 8

Hemmung der Proliferation der humanen T-Zelllinie KARPAS-299 durch die einzelne und gleichzeitige Gabe von Hemmstoffen der DP IV (I49 = Lys[Z(NO₂)]-thiazolidid) und APN (Actinonin und Probestin). (Abbildung 8: Seite 8/14)

Beispiel 9

Hemmung der Proliferation aktivierter, humaner peripherer T-Zellen durch die einzelne bzw. gleichzeitige Gabe von Hemmstoffen der DP IV (149 = Lys[Z(NO₂)]-thiazolidid) und APN (Actinonin und Probestin). (Abbildung 9: Seite 9/14)

Beispiel 10

Hemmung der Proliferation PHA-aktivierter, humaner mononukleärer Zellen (MNZ) durch die einzelne bzw. gleichzeitige Gabe von Hemmstoffen der DP IV (I49 = Lys[Z(NO₂)]-thiazolidid) und der X-Pro-Aminopeptidase (APP) (Apstatin). (Abbildung 10: Seite 10/14)

Beispiel 11

Inhibierung der DNS-Synthese Pokeweed-Mitogen (PWM)-stimulierter humaner mononukleärer Zellen (MNZ) des peripheren Blutes durch Inkubation mit synthetischen Inhibitoren der DP IV und der APN

Unsere Untersuchungen zeigen, dass die DNS-Synthese Pokeweed-Mitogen-stimulierter humaner MNZ des peripheren Blutes durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und APN (Bestatin) in additiver Weise gehemmt wird. Die MNZ wurden 72 h in Gegenwart von Pokeweed-Mitogen und der genannten Inhibitoren inkubiert und anschließend über die Messung der ³[H]-Thymidin-Inkorporation die DNS-Synthese bestimmt, wie bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β1 in PWM-stimulated

18

WO 02/053170 PCT/EP01/15199

PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 11 (Seite 11/14) zeigt die dosisabhängige, additive Hemmung der DNS-Synthese.

Beispiel 12

Inhibierung der IL-4-Produktion Pokeweed-Mitogen-stimulierter humaner mononukleärer Zellen des peripheren Blutes durch Inkubation mit synthetischen Inhibitoren der DP IV und der APN

Unsere Untersuchungen zeigen den interssanten Befund, dass die Produktion des für T_{H2}-Zellen charakteristischen Zytokins IL-4 von Pokeweed-Mitogen-stimulierten humanen mononukleären Zellen (MNZ) des peripheren Blutes durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und der APN (Bestatin) in superadditiver Weise gehemmt wird. Die MNZ wurden 48 h in Gegenwart von Pokeweed-Mitogen und der genannten Inhibitoren inkubiert und anschließend mittels kommerzieller IL-4-Bestimmungs-Kits (ELISA) die Konzentrationen des IL-4 in den entsprechenden Kulturüberständen bestimmt, wie bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor β1 in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 12 (Seite 12/14) zeigt die dosisabhängige, superadditive Hemmung der IL-4-Produktion.

Beispiel 13

Inhibierung der DNS-Synthese humaner Keratinozyten (HaCaT-Zelllinie) durch Inkubation mit synthetischen Inhibitoren der DP IV und der APN

Unsere Untersuchungen zeigen, dass die DNS-Synthese humaner HaCaT-Keratinozyten durch die simultane Administration von Inhibitoren der DP IV (Lys[Z(NO₂)]-thiazolidid = I49) und APN (Actinonin) in additiver und bei kleineren Konzentrationen auch in superadditiver Weise gehemmt wird.

Die humane Keratinozytenzellinie HaCat, welche als Zellmodell für die Psoriasis akzeptiert ist, exprimiert DP IV und APN. Die Enzymaktivität der DP IV von vitalen Zellen beträgt 30,2 ± 5 pkat/10⁶ Zellen, die der APN beträgt 90 ± 4 pkat/10⁶ Zellen. Entsprechen ist die mRNA von APN und DP IV auf diesen Zellen nachweisbar (Abb. 13, Seite 13/14)).

HaCaT-Zellen wurden 48 h mit den oben genannten Inhibitoren inkubiert und anschließend über die Messung der 3 [H]-Thymidin-Inkorporation die DNS-Synthese bestimmt, wie bei Reinhold et al. beschrieben (Reinhold D et al.: Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor $\beta1$ in PWM-stimulated PBMNC and T cells. Immunology 1997; 91: 354-360). Abbildung 14 (Seite 14/14) zeigt die dosisabhängige Hemmung der DNS-Synthese.

Patentansprüche

- 1. Verwendung von Inhibitoren der Dipeptidylpeptidase IV (DP IV) sowie von Enzymen mit gleicher Substratspezifität (DP IV-analoge Enzymaktivität) in Kombination mit Inhibitoren der Alanyl-Aminopeptidase (Aminopeptidase N, APN) bzw. Enzymen gleicher Substratspezifität (APN-analoge Enzymaktivität) zur additiven bis superadditiven Hemmung von Aktivierung und Proliferation (DNS-Synthese) humaner T-Lymphozyten bzw. mononukleärer Zellen und Produktion von T_{H2}-Zytokinen.
- 2. Verwendung von Inhibitoren der Dipeptidylpeptidase IV (DP IV) sowie von Enzymen mit gleicher Substratspezifität (DP IV-analoge Enzymaktivität) in Kombination mit Inhibitoren der Alanyl-Aminopeptidase (Aminopeptidase N, APN) bzw. Enzymen gleicher Substratspezifität (APN-analoge Enzymaktivität) zur additiven bis superadditiven Hemmung von Aktivierung, Proliferation (DNS-Synthese) humaner epidermaler und follikulärer Keratinozyten sowie solcher der Übergangszone von Haut zu Schleimhaut.
- 3. Verwendung von Inhibitoren der Dipeptidylpeptidase IV (DP IV) sowie von Enzymen mit gleicher Substratspezifität (DP IV-analoge Enzymaktivität) in Kombination mit Inhibitoren der Alanyl-Aminopeptidase (Aminopeptidase N, APN) bzw. Enzymen gleicher Substratspezifität (APN-analoge Enzymaktivität), der X-Pro-Aminopeptidase (Aminopeptidase P, APP), des "angiotensin-converting enzyme" (ACE) und/oder der Prolyloligopeptidase (POP, Prolylendopeptidase, PEP) zur additiven bis superadditiven Hemmung von Aktivierung, DNS-Synthese und Proliferation humaner T-Lymphozyten bzw. mononukleärer Zellen.
- 4. Verwendung nach einem der Ansprüche 1 bis 3, worin die Inhibitoren der DP IV bevorzugt Xaa-Pro-Dipeptide (Xaa = α-Aminosäure bzw. seitenkettengeschütztes Derivat), entsprechende Derivate, vorzugsweise Dipeptidphosphonsäurediarylester, Dipeptidboronsäuren (z.B. Pro-boro-Pro) und deren Salze, Xaa-Xaa-(Trp)-Pro-(Xaa)n-Peptide (Xaa = α-Aminosäure, n=0-10), entsprechende Derivate und deren Salze bzw. Aminosäure (Xaa)-amide, entsprechende Derivate und deren Salze sind, wobei Xaa eine α-Aminosäure bzw.

ein seitenkettengeschütztes Derivat, vorzugsweise N^e-4-Nitrobenzyloxycarbonyl-L-Lysin, L-Prolin, L-Tryptophan, L-Isoleucin, L-Valin ist und als Amidstruktur cyclische Amine, z.B. Pyrrolidin, Piperidin, Thiazolidin und deren Derivate fungieren.

- 5. Verwendung nach einem der Ansprüche 1 bis 4, worin Aminosäureamide, z.B. N^e-4-Nitrobenzyloxycarbonyl-L-Lysin-thiazolidid, -pyrrolidid und -piperidid sowie das entsprechende 2-Cyanothiazolidid-, 2-Cyanopyrrolidid- und 2-Cyanopiperidid-Derivat bevorzugt als DP IV-Inhibitoren eingesetzt werden.
- 6. Verwendung nach Anspruch 1, wobei als Inhibitoren der APN bevorzugt Actinoin, Leuhistin, Phebestin, Amastatin, Bestatin, Probestin, β-Aminothiole, α-Aminophosphinsäuren, α-Aminophosphinsäurederivate, vorzugsweise D-Phe-Ψ[PO(OH)-CH₂]-Phe-Phe und deren Salze fungieren.
- 7. Verwendung nach Anspruch 3, wobei als Inhibitoren der APP bevorzugt Apstatin, (2S,3R)-HAMH-L-Prolin, (2S,3R)-HAPB-L-Prolin, die entsprechenden L-Prolinmethylester, (2S,3R)-HAMH-/(2S,3R)-HAPB-pyrrolidide, -thiazolidide (HAMH = 3-Amino-2-hydroxy-5-methyl-hexanoyl, HAPB = 3-Amino-2-hydroxy-4-phenyl-butanoyl) und deren Salze fungieren.
- 8. Verwendung nach Anspruch 3 oder Anspruch 7, worin als Inhibitoren des ACE bevorzugt Captopril, Enalapril, Lisinopril, Cilazopril und deren Salze fungieren.
- 9. Verwendung nach einem der Ansprüche 3, 7 oder 8, worin als Inhibitoren der POP (PEP) bevorzugt Postatin, Eurystatin A oder B, Na-geschützte Peptidaldehyde, vorzugsweise Benzyloxycarbonyl-L-Prolyl-L-Prolinal bzw. Benzyloxycarbonyl-L-Thioprolyl-L-Thioprolinal, N^a-geschützte Aminosäure(Xaa)-pyrrolidide bzw. -thiazolidide (Xaa = α-Aminosäure, bevorzugt L-Alanin, L-Valin, L-Isoleucin) sowie die entsprechenden 2-Cyanopyrrolidid- bzw. 2-Cyanothiazolididderivate, substratanaloge Na-geschützte Peptidphosphonsäurediarylester bzw. Peptiddiazomethylketone bzw. Peptidammoniummethylketone und deren Salze fungieren.

- 10. Verwendung von Inhibitorkombinationen nach einem der Ansprüche 1 und 4 bis 9 zur Vorbeugung und Therapie von chronischen Erkrankungen mit entzündlicher Genese wie Autoimmunerkrankungen und Arteriosklerose.
- 11. Verwendung von Inhibitorkombinationen nach einem der Ansprüche 1 und 4 bis 6 zur Vorbeugung und Therapie von allergischen Reaktionen vom Typ I.
- 12. Verwendung von Inhibitorkombinationen nach einem der Ansprüche 1, 2 und 4 bis 6 zur Vorbeugung und Therapie von entzündlichen und nicht entzündlichen epidermalen Hyperproliferationszuständen (z. B. congenitale Ichthyosen und Psoriasis), benignen und malignen umschriebenen epidermalen clonalen Expansionen (z. B. Warzen, Condylome, aktinische Keratosen/-Präcancerosen), benignen und malignen Hyperproliferationszuständen (z. B. Keratosis follikularis) als auch benignen und malignen epithelialen Adnextumoren und primären und reaktiven Nagelzellhyperproliferationen.
- 13. Pharmazeutische Zubereitungen, umfassend Inhibitoren der Dipeptidylpeptidase IV (DP IV) oder DP IV-analoger Enzymaktivität in Kombination mit Inhibitoren eines der Enzyme Alanyl-Aminopeptidase (Aminopeptidase N, APN) bzw. Enzymen gleicher Substratspezifität (APN-analoge Enzymaktivität) und in Kombination mit an sich bekannten Träger-, Zusatz- und/oder Hilfsstoffen.
- 14. Pharmazeutische Zubereitungen, umfassend Inhibitoren der Dipeptidylpeptidase IV (DP IV) oder DP IV-analoger Enzymaktivität in Kombination mit Inhibitoren eines der Enzyme Alanyl-Aminopeptidase (Aminopeptidase N, APN) bzw. Enzymen gleicher Substratspezifität (APN-analoge Enzymaktivität), X-Pro-Aminopeptidase (Aminopeptidase P, APP), "angiotensin-converting enzyme" (ACE) und Prolyloligopeptidase (POP, Prolylendopeptidase, PEP) und in Kombination mit an sich bekannten Träger-, Zusatz- und/oder Hilfsstoffen.
- 15. Pharmazeutische Zubereitungen nach Anspruch 13 oder Anspruch 14, umfassend als Inhibitoren der DP IV bevorzugt Xaa-Pro-Dipeptide (Xaa = α-Aminosäure bzw. seitenkettengeschützte Derivate), entsprechende Derivate, vorzugsweise Dipeptidphosphonsäurediarylester, Dipeptidboronsäuren (z.B. Pro-boro-Pro) und deren Salze, Xaa-Xaa-(Trp)-Pro-

(Xaa)n-Peptide (Xaa = α -Aminosäuren, n=0 bis 10), entsprechende Derivate und deren Salze bzw. Aminosäure (Xaa)-amide, entsprechende Derivate und deren Salze, wobei Xaa eine α -Aminosäure bzw. seitenkettengeschütztes Derivat, vorzugsweise N^e-4-Nitrobenzyloxycarbonyl-L-Lysin, L-Prolin, L-Tryptophan, L-Isoleucin, L-Valin ist und als Amidstruktur cyclische Amine, z.B. Pyrrolidin, Piperidin, Thiazolidin und deren Derivate fungieren.

- 16. Pharmazeutische Zubereitung nach Anspruch 13, 14 oder 15, umfassend als Inhibitoren der DP IV vorzugsweise Aminosäureamide, z.B. N^e-4-Nitrobenzyloxy-carbonyl-L-Lysin-thiazolidid, -pyrrolidid und -piperidid sowie das entsprechende 2-Cyanothiazolidid-, 2-Cyanopyrrolidid- und 2-Cyanopiperidid-Derivat.
- 17. Pharmazeutische Zubereitungen nach einem der Ansprüche 13 bis 16, umfassend als Inhibitoren der APN vorzugsweise Actinoin, Leuhistin, Phebestin, Amastatin, Bestatin, Probestin, β-Aminothiole, α-Aminophosphinsäuren, α-Aminophosphinsäurederivate, bevorzugt D-Phe-Ψ[PO(OH)-CH₂]-Phe-Phe und deren Salze.
- 18. Pharmazeutische Zubereitungen nach einem der Ansprüche 14 bis 17, umfassend als Inhibitoren der APP vorzugsweise Apstatin, (2S,3R)-HAMH-L-Prolin, (2S,3R)-HAPB-L-Prolin, die entsprechenden L-Prolinmethylester, (2S,3R)-HAMH- / (2S,3R)-HAPB-pyrrolidide, -thiazolidide (HAMH = 3-Amino-2-hydroxy-5-methyl-hexanoyl, HAPB=3-Amino-2-hydroxy-4-phenyl-butanoyl) und deren Salze.
- 19. Pharmazeutische Zubereitungen nach einem der Ansprüche 14 bis 18, umfassend als Inhibitoren der ACE Captopril, Enalapril, Lisinopril, Cilazopril und deren Salze.
- 20. Pharmazeutische Zubereitungen nach einem der Ansprüche 14 bis 19, umfassend als Inhibitoren der POP (PEP) Postatin, Eurystatin A oder B, N^a-geschützte Peptidaldehyde, vorzugsweise Benzyloxycarbonyl-L-Prolyl-L-Prolinal bzw. Benzyloxycarbonyl-L-Thioprolyl-L-Thioprolinal, N^a-geschützte Aminosäure(Xaa)-pyrrolidide bzw. -thiazolidide (Xaa = a-Aminosäure, bevorzugt L-Alanin, L-Valin, L-Isoleucin) sowie die entsprechenden 2-Cyanopyrrolidid- bzw. 2-Cyanothiazolididderivate, substratanaloge N^a-geschützte Pep-

tidphosphonsäurediarylester bzw. Peptiddiazomethylketone bzw. Peptidammonium-methylketone und deren Salze.

- 21. Pharmazeutische Zubereitungen nach einem der Ansprüche 14 bis 20, umfassend zwei oder mehr Inhibitoren der DP IV bzw. DP IV-analoger Enzymaktivität, der APN bzw. APN-analoger Enzymaktivität, des ACE, der POP (PEP) und der XPNPEP2 in räumlich getrennter Formulierung in Kombination mit an sich bekannten Träger-, Hilfs- und/oder Zusatzstoffen zur gleichzeitigen oder zeitlich unmittelbar aufeinanderfolgenden Verabreichung mit dem Ziel einer gemeinsamen Wirkung.
- 22. Pharmazeutische Zubereitungen nach einem der Ansprüche 13 bis 21 für die systemische Anwendung zur oralen, transdermalen, intravenösen, subcutanen, intracutanen, intramuskulären, rektalen, vaginalen, sublingualen Applikation zusammen mit an sich bekannten Träger-, Hilfs- und/oder Zusatzstoffen.
- 23. Pharmazeutische Zubereitungen nach einem der Ansprüche 13 bis 21 für die topische Anwendung in Form von z.B. Cremes, Salben, Pasten, Gelen, Lösungen, Sprays, Liposomen, Schüttelmixturen, Hydrokolloidverbänden bzw. anderen dermatologischen Grundlagen/Vehikeln, einschließlich instilativer Applikation.

Abb. 1: Synergistischer und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und der Aminopeptidase N (Actinonin) auf die DNS-Synthese humaner T-Lymphozyten. Humane periphere T-Zellen wurden über drei Tage mit den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurde dem Kulturmedium ³[H]-Methyl-Thymidin zugesetzt und nach weiteren 6 Stunden die in die DNS eingebaute Menge an ³[H]-Thymidin gemessen.

Abb. 2: Synergistischer und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und der APN (Actinonin) auf die DNS-Synthese humaner mononukleärer Zellen (MNZ). Humane MNZ wurden über drei Tage mit den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurde dem Kulturmedium ³[H]-Methyl-Thymidin zugesetzt und nach weiteren 6 Stunden die in die DNS eingebaute Menge an ³[H]-Thymidin gemessen.

Abb. 3: Synergistischer und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und der Prolyloligopeptidase (Boc-Ala-Thia) auf die DNS-Synthese humaner peripherer T-Lymphozyten. Humane T-Zellen wurden über drei Tage mit den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurde dem Kulturmedium ³[H]-Methyl-Thymidin zugesetzt und nach weiteren 6 Stunden die in die DNS eingebaute Menge an ³[H]-Thymidin gemessen.

Abb. 4: Verstärkter und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und der Prolyloligopeptidase (Boc-Ala-Thia) auf die DNS-Synthese humaner mononukleärer Zellen (MNZ). Humane MNZ wurden über drei Tage mit den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurde dem Kulturmedium ³[H]-Methyl-Thymidin zugesetzt und nach weiteren 6 Stunden die in die DNS eingebaute Menge an ³[H]-Thymidin gemessen.

Abb. 5: Synergistischer und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und des Angiotensin-konvertierenden Enzyms (Captopril) auf die DNS-Synthese humaner peripherer T-Lymphozyten. Humane T-Zellen wurden über drei Tage mit den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurde dem Kulturmedium ³[H]-Methyl-Thymidin zugesetzt und nach weiteren 6 Stunden die in die DNS eingebaute Menge an ³[H]-Thymidin gemessen.

Abb. 6: Synergistischer und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und des Aangiotensin-konvertierenden Enzyms (Captopril) auf die DNS-Synthese humaner mononukleärer Zellen (MNZ). Humane MNZ wurden über drei Tage mit den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurde dem Kulturmedium ³[H]-Methyl-Thymidin zugesetzt und nach weiteren 6 Stunden die in die DNS eingebaute Menge an ³[H]-Thymidin gemessen.

Abb. 7: Die MNZ wurden über einen Zeitraum von 72 h ohne Zusatz (Kontrolle), mit dem mitogenen Lektin Phytohämagglutinin (PHA) bzw. mit PHA und den angegebenen Inhibitoren inkubiert. Anschließend erfolgte die Bestimmung der Zahl metabolisch aktiver Zellen unter Verwendung des kommerziell verfügbaren WST-1 Zell-Proliferations-Assays (Takara Inc.) nach Angaben des Herstellers.

Abb. 8: Die KARPAS-299-Zellen wurden über einen Zeitraum von 72 h ohne Zusatz (Kontrolle) bzw. in Gegenwart der angegebenen Inhibitoren einzeln sowie in Kombination inkubiert. Anschließend erfolgte die Bestimmung der Zahl metabolisch aktiver Zellen unter Verwendung des kommerziell verfügbaren WST-1 Zell-Proliferations-Assays (Takara Inc.) nach Angaben des Herstellers.

Abb. 9: Die T-Zellen wurden mit Ausnahme der unbehandelten Kontrolle durch Zugabe zum Kulturmedium von Phytohämagglutinin und Phorbol-12-myristat-13-acetat aktiviert und über einen Zeitraum von 72 h in Gegenwart der angegebenen Inhibitoren einzeln sowie in Kombination inkubiert. Anschließend erfolgte die Bestimmung der Zahl metabolisch aktiver Zellen unter Verwendung des kommerziell verfügbaren WST-1 Zell-Proliferations-Assays (Takara Inc.) nach Angaben des Herstellers.

Abb. 10: Die mononukleären Zellen (MNZ) wurden über einen Zeitraum von 72 h in Gegenwart der angegebenen Inhibitoren einzeln sowie in Kombination inkubiert. Anschließend erfolgte die Bestimmung der Zahl metabolisch aktiver Zellen unter Verwendung des kommerziell verfügbaren WST-1 Zell-Proliferations-Assays (Takara Inc.) nach Angaben des Herstellers.

Abb. 11: Synergistischer und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und der Aminopeptidase N (Bestatin) auf die DNS-Synthese humaner PWM-stimulierter MNZ. Humane periphere MNZ wurden über drei Tage mit PWM (2 μ g/ml) und den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurde dem Kulturmedium 3 [H]-Methyl-Thymidin zugesetzt und nach weiteren 6 Stunden die in die DNS eingebaute Menge an 3 [H]-Thymidin gemessen.

Abb. 12: Synergistischer und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und der Aminopeptidase N (Bestatin) auf die IL-4-Produktion humaner, PWM-stimulierter MNZ. Humane periphere MNZ wurden über 48 h mit PWM (2 μg/ml) und den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurden mittels IL-4-ELISA die Konzentrationen von IL-4 in den entsprechenden Kulturüberständen gemessen.

Abb. 13: Nachweis der mRNA-Expression von DP IV und APN auf HaCaT-Keratinozyten mittels RT-PCR

Abb. 14: Synergistischer und dosisabhängiger Effekt von Inhibitoren der DP IV (I49) und der Aminopeptidase N (Actinonin) auf die DNS-Synthese humaner HaCaT-Keratinozyten. Die Zellen wurden über 48 Stunden mit den angegebenen Konzentrationen der Inhibitoren inkubiert. Anschließend wurde dem Kulturmedium 3[H]-Methyl-Thymidin zugesetzt und nach weiteren 6 Stunden die in die DNS eingebaute Menge an 3[H]-Thymidin gemessen.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.