Numerische Bestimmung/Approximation von Nullstellen (nichtlinearen) Gleichungen wie z.B.

$$f(x) = 0$$
$$a(x) = b(x) \iff a(x) - b(x) = 0$$

Untersuchung von Minima einer konvexen Funktion g,

$$f:I\subset\mathbb{R}\to\mathbb{R}$$
 skalar

oder auch

$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$$
$$f: \Omega \subset \mathbb{C} \to \mathbb{C}$$

Erinerung. Bei linearen Gleichunge ist die Lösung x^* der Gleichung $Ax^* = b$ bis auf Rundungsfehler "exakt" berechenbar (wenn A invertierbar)

Bei nichtlinearen Gleichung gibt es nur in Ausnahmefällen eine Formel zur Berechnung der Lösung, dementsprechend kommen typicherweise iterative Verfahren zur (immer besser werdenden) Approximation der Lösung zum Einsatz. Lösung x^* ist dann typicherweise der <u>Grenzwert</u> einer iterativ erzeugten Folge $x_{i_i \in \mathbb{N}}$ (Konvergenz zeigen!!!)

Abbruch der Folge nach endlich vielen Versuchen liefert Näherungslösung \overline{x} , möglichst mit Abschätzung von $||x^* - \overline{x}||$

Im einfachsten Fall: $f:I\subset\mathbb{R}\to\mathbb{R}$ skalare Funktion, I Definitions
intervall von f.

Gesucht: ein
$$x^* \in I$$
 mit $f(x^*) = 0$

Analysis: ist $f:[a,b] \to \mathbb{R}$ stetig und $f(a) \cdot f(b) \leq 0$, dann gibt es mindestens eine Nullstelle $x^* \in [a,b]$ von f (Zwischenwertsatz)

Daraus kann man leicht ein Intervallschachtelungsverfahren konstruieren.

Bisektionsverfahren:

$$[a,b],\ f\colon [a,b]\to \mathbb{R} \ \mathrm{stetig},\ f(a)\cdot f(b)\le 0$$

$$f(a) \cdot f(b) = 0 \Rightarrow x* = a \text{ oder } x* = b. \text{ stop.}$$

 $a_0 \coloneqq a, \ b_0 \coloneqq b, \ i \coloneqq 1$

Setze

$$x_i \coloneqq \frac{(a_{i-1} + b_{i-1})}{2}$$

ist

$$f(x_i) = 0$$
: $x = x_i$, stop.

ist

 $b_{i-1}-a_{i-1} \leq \text{TOL}$, dann stop, $\overline{x} \coloneqq x_i$ Damit ist $\overline{x}-x* < \frac{b_{i-1}+a_{i-1}}{2} = \frac{b-a}{2^i}$.

ist

$$f(a_i) \cdot f(x_i) < 0$$

dann

$$a_i \coloneqq a_{i-1}, \ b_i \coloneqq x_i$$

sonst

$$a_i \coloneqq x_i, \ b_i \coloneqq b_{i-1}$$

 $\implies i \coloneqq i+1$

Setze

$$x_i \coloneqq \frac{(a_{i-1} + b_{i-1})}{2}$$

:

Länge des Intervalls in der *i*-ten Iteration:

$$\frac{(b-a)}{2^i}$$
,

Intervallschachtelung (für $i \to \infty$) konvergiert gegen genau eine reelle Zahl $x*\in I$.

Damit kann, bei vorgegebener Toleranz TOL, auch die Anzahl der maximal (benötigten???????) Iterationen berechnet werden.

Verfahren sehr einfach, nutzt nur stetigkeit von f aus, Konvergiert relativ langsam. Wird (auch innerhalb anderer Algorithmen) eingesetzt. (Nur 1D!!!!!!)

Frage. Gibt es allgemeiner anwendbare und oder schneller konvergierende Verfahren?

Um solche Algorithmen einfacher untersuchen zu können, stellen wir die Nullpunktsuche als Fixpunktiteration dar

$$f(x^*) = 0 \iff F(x^*) = x^*$$

z.B. mit F(x) = x - f(x), dann gilt nämlich $F(x^*) = x^* - f(x^*) = x^*$ Ausgehend von einem Startwert x_0 definiert dies eine Folge $(x_k)_{k \in \mathbb{N}}$, die im günstigsten Fall gegen x^* konvergiert, zur Untersuchung solcher Folgen benutzen wir den Banachschen Fixpunktsatz.

Definition 0.0.1. Sei (M,d) ein metrischer Raum, $F:M\to M$ eine Abbildung. Dann heißt F kontraktion oder kontrahierende Abbildung, wenn es ein $q \text{ mit } 0 \le q < 1 \text{ gibt so, dass}$

$$d(F(x), F(y)) \le q \cdot d(x, y) \forall x, y \in M$$

Satz 0.0.2 (Fixpunktsatz von Banach). (M, d) ein vollständiger metrischer Raum,

 $F: M \to M$ eine Kontraktion mit q < 1

Dann besitzt F genau einen Fixpunkt x^* in M, d.h. $\exists ! x^* \in M : F(x^*) = x^*$. $x_0 \in M$ beliebiger Startpunkt und $x_i := F(x_{i-1}, i \in N, dann konvergiert)$ $(x_i)_{i\in N}$ gegen x^* und es gelten die Abschätzungen:

$$d(x^*, x_i) \le \frac{q^i}{1 - q} d(x_0, x_1)$$
("a-priori")

Abschätzung der max. notwendigen Anzahl von Iterationen bis auf Toleranz und

$$d(x^*, x_i) \le \frac{q}{1 - q} d(x_i, x_{i-1})$$
("a-posteriori")

In jeder Iteration Fehler abschätzen

(Beweis: Analysis, geom. Reihe)

Raum \mathbb{R}^n , metrischer Raum (Ω, d) mit $\Omega \subset \mathbb{R}^n$, d(x, y) = ||x - y||

Definition 0.0.3.

Die Folge $(x_i)_{i\in\mathbb{N}}$ mit Grenzwert x* hat mindestens die Konvergenzordnung $p\geq 1$, mit C < 1 für p = 1, $C < \infty$ für p > 1. C heißt auch "Fehlerkonstante". p = 1: "lineare Konvergenz", p=2 "quadratische Konvergenz".

Definition 0.0.4. Alternative:

$$||x_{i+1} - x_i|| \le C \cdot ||x_i - x_{i-1}||^P$$
,

Äquivalent für Iterationen aus B.F.S

$$||F(x_i) - F(x_{i-1})||$$

Folge aus B.F.S.: Konvergenzordnung 1 mit C = q < 1

Zunächst weiter skalare Funktionen $f:I\to\mathbb{R}$, Fixpunktfunktion $F:J\to$ $J, J \subset I, J$ abgeschlossen. Ist F kontrahierend, so ist F auch stetig. Ist F stetig differenzierbar, dann lässt sich die Kontraktionszahl über die Ableitung abschätzen

Lemma 0.0.5. Sei $F \in C^1([a,b],[a,b])$, dann ist F genau dann kontrahierend auf [a,b], wenn |F'(x)| < 1 für alle $x \in [a,b]$.

Frage. Ideen für kontrahierende Abbildung F?

Sei f stetig differenzierbar auf [a,b], $f(x^*)=0$, $x^*\in [a,b]$. Setze $F(x):=x-c\cdot f(x)$ mit $c\in\mathbb{R}\setminus\{0\}$ Ist F kontrahierend? Es gilt

$$F'(x) = 1 - cf'(x)$$

also

$$|F'(x)| < 1 \iff |1 - cf'(x)| < 1 \iff 0 < cf'(x) < 2$$

dementsprechend muss c klein genug sein und das richtige Vorzeichen haben und $f'(x) \neq 0$. Man muss das Intervall $J \subset I$ also evtl klein genug um x^* wählen.

Frage. Was bedeutet dieses F für unsere Fixpunktiteration?

Es gilt

$$x_{i+1} = F(x_i) = x_i - cf(x_i) \iff f(x_i) + \frac{1}{c}(x_{i+1} - x_i)$$

Das heißt x_{i+1} ist Nullstelle der Geraden

$$g(x) = f(x_i) + \frac{1}{c}(x - x_i)$$

