Lec5_Scheduling and Binary Search Trees

Scheduling Problem

- Runway Reservation System
 - Airport with single runway
 - o "Reservations" for future landing
 - When plane lands, it is removed from set of pending events
 - o Reserve req specify "requested landing time" t
 - Add t to the set if no other landings are scheduled within k mins either way
 Assume that k can vary
 - ⇒ Goal : Run this System efficiently in O(lg n) time
- How to solve
 - Sorted List

Appending and sorting : $\Theta(n \lg n)$

Insertion : Θ(n)

Check: O(1)

Sorted array

Find position to insert : $\Theta(\lg n)$

Insertion : $\Theta(n)$

Unsorted list/array

Check: O(n)

o Min-Heap

Insertion : O(lg n)

Check: O(n)

Dictionary

Insertion : O(1)Check : $\Omega(n)$

Binary Search Trees (BST)

Properties

Each node x in the binary tree has a key key(x). Nodes other than the root have a parent p(x). Nodes may have a left child left(x) and/or a right child right(x). These are pointers unlike in a heap

The invariant is : for any node x, for all nodes y in the left subtree of x, $key(y) \le key(x)$. For all nodes y in the right subtree of x $key(y) \ge key(x)$

- Functions
 - Insertion : insert(val)

- Finding a value in the BST if it exists : find(val)
- Finding the minimum element in a BST : findmin()
- Complexity
 - \circ All operations are O(h) \rightarrow h: height of the BST
 - Function
 - Next-larger

```
if right child not NIL, return minimum(right)
else y = parent(x)

while y not NIL && x = right(y)
    x = y; y = parent(y)

return (y)
```

- Height h of the tree should be O(lg n)
 - \rightarrow Balancing is needed!!