

Matemática Discreta

Leandro Colombi Resendo

Algoritmos para Grafos

- Grafos Direcionados e Relações Binárias; o Algoritmo de Warshall
- Caminho de Euler e Circuito Hamiltoniano
- Caminho Mínimo e Árvore Geradora Mínima
- Algoritmos de Percurso

Definição: Em um grafo direcionado, o nó n_j é **acessível** no nó n_i se existe um caminho de n_i para n_j .

Teorema sobre Matrizes Booleanas de Adjacência e Acessibilidade: Se A é a matriz booleana de adjacência de um grafo direcionado G com n nós e sem arcos paralelos, então $A^{(m)}[i,j] = 1$ se, e somente se, existe um caminho de comprimento m do nó n_i para o nó n_j .

Algoritmo de Warshall: Calcula uma sequência de n + 1 matrizes M_0 , M_1 , ..., M_n . Para cada k em $\{0, ..., n\}$, $M_k[i,j] = 1$ se, e somente se, existe um caminho em G de n_i para n_j cujos nós interiores do caminho pertencem apenas ao conjunto de nós $\{n_1, n_2, ..., n_k\}$.


```
Algoritmo de Warshall:
Warshall(matriz booleana M_{nxn})
//M = matriz de adjacência de um grafo sem arcos paralelos
para k = 0 até n - 1 faça
   para i = 1 até n faça
       para j = 1 até n faça
              M[i,j] = M[i,j] \vee (M[i,k+1] \wedge M[k+1,j])
       fim do para
   fim do para
fim do para
// M = matriz de acessibilidade de G
fim de Marshall
```


Algoritmo de Warshall:

Outra opção apresentação

- 1. Considere a coluna k + 1 na matriz M_k .
- 2. Para cada linha com um elemento 0 nessa coluna, copie essa linha em M_{k+1}
- 3. Para cada linha com um elemento 1 nessa coluna, execute a operação booleana **ou** dessa linha com a linha k+1 e escreva a linha resultante em M_{k+1}

Lista Mínima de Exercícios

Seção 6.1: 1, 3, 4, 5, 7, 8, 9, 13, 15, 19, 23, 29