

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

Jawaban:

1. Selesaikanlah soal-soal berikut dengan lengkap dan cermat!

a) Pada turnamen tersebut, dua tim yang bertanding adalah team wanita & tim pria, table dibawah ini menyatakan kemungkinan yang dapat terjadi agar tim wanita menang (M – Menang, K – Kalah)

Banyak Pertandingan	Tim Wanita	Tim Pria
2	(MM)	(KK)
3	(KMM)	(MKK)
4	(MKMM)	(KMKK)
5	(KMKMM)	(MKMKK)
6	(MKMKMM)	(KMKMKK)
7	(KMKMKMM)	(MKMKMKK)

Maksimal pertandingan yang dapat terjadi hanya 7kali. Masing-masing menghasilkan 2 kemungkinan, yaitu untuk tim wanita dan tim pria (table di atas menunjukan kemenangan tim wanita). Jadi, ada $6 \times 2 = 12$ cara agar turnamen demikian dapat terjadi.

- b) Ada 4 ukuran baju berbeda. Ambil 6 helai masing-masing ukuran bajunya, yaitu:
 - 5 helai baju ukuran S (max),
 - 4 helai baju ukuran M (max),
 - 6 helai baju ukuran L,
 - 6 helai baju ukuran XL.

Jumlah: 5 + 4 + 6 + 6 = 21 helai baju. Ambil 1 helai baju lagi (antara baju ukuran L atau XL) sehingga dipastikan kita sudah memegang 7 helai baju dengan ukuran yang sama. Jadi, kita perlu mengambil paling sedikit 22 helai baju agar selalu diperoleh 7 helai baju dengan ukuran yang sama.

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

c) Banyak cara menata pose foto 6 orang berdiri dalam satu baris adalah

 $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \text{ cara.}$

Banyak cara menata pose foto 6 orang sehingga pengantin berdisi saling berdekatan/bersampingan dapat didibarkan dengan skema:

OOABCD → XABCD

dengan OO = X yang penyusunannya ada 2! cara, sedangkan XABCD penyusunannya ada 5! cara sehingga totalnya adalah 2! $X 5! = 2 \times 120 = 240$ cara.

Jadi, banyak cara menata pose sehingga pengantin berdiri tidak saling berdekatan/bersampingan adalah 720 - 240 = 480 cara.

- d) Bilangan 100.000 jelas tidak memenuhi untuk kasus ini sehingga kita hanya perlu meninjau bilangan dengan 5 digit (untuk kasus bilangan ratusan, anggap posisi pulihan ribuan dan ribuannya 0, begitu juga untuk kasus bilangan ribuan). Berarti, ada 5 cara mengisi anga 5,4 cara mengisi angka 4, dan 3 angka mengisi angka 3. Dua tempat kosong lainnya bisa diisi angka lain yaitu 0,1,2,6,7,8,dan 9 (ada 7 angka dan boleh berulang). Jadi, banyak bilangan yang demikian adalah 5 x 4 x 3 x 7 x 7 = 2940 cara.
- e) Jumlah cara mengambil 5 kartu sembarang dari 52 kartu yang ada adalah *C* (52,5) (jumlah titik contoh).
 - Jumlah cara mengambil satu jenis kartu dari 13 jenis yang ada adalah C (13,1).
 - Jumlah cara mengambil 4 kartu dari 4 kartu sejenis adalah C(4,4).
 - Jumlah cara mengambil satu kartu lagi dari sisa 48 kartu lainnya adalah *C* (48,1). Jadi, peluang dari 5 kartu tersebut mengandung 4 kartu sejenis adalah

 $\frac{C(13,1) \times C(4,4) \times C(48,1)}{C(52,5)} = 0,00024$

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

2. Selesaikanlah soal-soal berikut dengan lengkap dan cermat!

a)

b) Jelaskan matriks keterhubungan dan keterkaitan ketiga graf berikut!

• Matriks Keterhubungan

G	2	b	c	d	e	£	8	h
IN .	0	1	1	0	0	0	1	0
b	1	0	0	1	0	0	0	1
e	- 1	0	0	1	1	0	0	0
d	0	1	1	0	0	1	0	0
e	0	0	1	0	0	1	0	0
f	0	0	0	.1	1	0	0	0
g	1	0	0	0	0	0	0	1
h	0	1.	0	0	0	0	1	.0

• Matriks Keterkaitan

G	1	2	3	4	5	6	7	8	9	10
a	I	0	0	1	1	0	0	0	0	0
b	1	1	0	0	0	0	1	0	0	0
c	0	0	0	0	1	1	0	0	0	1
d	0	0	0	0	0	1	1	1	0	0
c	0	0	0	0	0	0	0	0	1	1
f	0	0	0	0	0	0	0	1	1	0
g	0	0	1	1	0	0	0	0	0	0
h	0	1	1	0	0	0	0	0.	0	0

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

*Matriks keterhubungan

Η	a	b	c	d
a	0	2	1	1
Ъ	2	0	1	1
С	1	1	0	1
d	1	1	1	0

*Matriks Keterkaitan

Н	1	2	3	4	5	6	7	8	9
a	1	1	0	1	1	0	0	0	0
b	1	1	1	0	0	1	0	0	0
c	0	0	1	1	0	0	1	1	1
d	0	0	0	0	1	1	1	0	0

Matriks Keterhubungan

G	1	2	3	4
1	0	1	0	1
2	1	0	1	2
3	0	1	0	1
4	1	2	1	0

Matriks Keterkaitan

G	1	2	3	4	5	6
1	1	0	0	1	0	0
2	1	1	0	0	1	1
3	0	1	1	0	0	0
4	0	0	1	1	1	1

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

c) Menurut *Handshaking Lemma*, jumlah derajat titik pada suatu graf sama dengan 2 kali banyak sisi. Diketahui bahwa jumlah derajat titik-titik graf itu adalah 4 + 3 + 2 + 1 = 10. Dengan demikian, banyak sisi *B* adalah $1 \times 10 = 5$. Gambar graf *B* sebagai berikut.

2

Terlihat pada gambar disamping bahwa derajat titik *A,B,C dan D* berturut-turut adalah 1,4,3,2. Terlihat juga ada 5 sisi pada graf tersebut.

d) Tidak ada, contoh titik graf ada **a,b,c dan d**. katakanalah *d* merupakan titik berderajat 4. Graf yang terbentuk bukan graf sederhana karena hanya ada 3 sisi yang ditarik dari *d* ke titik lain (**a,b,c**) sehingga 1 sisi lainnya pastilah akan menjadi bagian dari sisi rangkap atau *loop* di titik itu.

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

3. Perhatikan Graf dibawah ini:

- a) Tentukan himpunan titik dan himpunan sisi gambar diatas
- Himpunan titik graf G kita notasikan dengan V(G), huruf V diambil dari kata "vertek". Dari gambar diatas telah di beli nama G_1 , G_2 , dan G_3 . Jadi, dapat kita tuliskan:

$$V(G_I) = \{a, b, c, d\}$$

$$V(G_2) = \{u, v, w, x, y\}$$

$$V(G_3) = \{1, 2, 3, 4, 5, 6\}$$

- Himpunan Sisi

$$E(G_1) = \{ab, ac, bc, ad, bd, cd\}$$

$$\textbf{\textit{E}(G}_{2}) = \{xy, xw, xu, vy, uw, uy, vu, vu\}$$

$$E(G_3) = \{12, 22, 23, 24, 25, 26, 45, 46\}$$

- b) Tentukan mana yang Graf Sederhana, memuat loop, memuat sisi rangkap.
- Graf Sedehana adalah G_I karena tidak memuat sisi rangkap maupun loop.

- Graf yang memuat *loop adalah* G_3 , yaitu pada titik 2.

- Graf yang memuat sisi rangkap adalah G_2 , yaitu pada sisi penghubung titik $u \, dan \, v$.

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

c) Graf disamping merepresentasikan jabat tangan yang terjadi. Titik mewakili orang, sedangkan sisi mewakili jabat tangan. Jumlah jabat tangan diwakili oleh jumlah sisi pada graf tersebut, yaitu 4 + 3 + 2 + 1 = 10

d) - Graf G dibawah mengandung siku Hamilton dengan baris *A B D C A*. Jadi graf dibawah ini disebut graf Hamilton dan bukan graf Euler karena ada sisi yang tidak dilaluinya yaitu sisi *BC*.

- Graf H dibawah ini tergolong graf Euler karena mengandung siklus Euler *A B C D E F*, tetapi bukan graf Hamilton sebuah titik F tidak di laluinya.

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

4. Selesaikan soal-soal berikut dengan lengkap dan cermat!

a) Gambarlah graf sederhana dengan barisan derajat (5,5,4,3,3,3,3,3,3)

- Tabel Penjelasan

Nama Titik	Derajat/Jumlah Sisi	Nama Sisi
1	5	12, 16, 17, 18, 19
2	5	12, 23, 24, 25, 26
3	4	23, 34, 35, 36
4	3	24, 34, 45
5	3	25, 35, 45
6	3	16, 26, 36
7	3	17, 78, 79
8	3	18, 78, 89
9	3	19, 79, 89

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

b) Gambarlah graf sederhana dengan barisan derajat (6,4,4,3,3,2,1,1)

- Tabel penjelasan

Nama Titik	Derajat/Jumlah Sisi	Nama Sisi
1	6	1-3,1-4,1-5,1-6,1-7,1-8
2	4	2-3,2-4,2-5,2-6
3	4	2-3,3-4,3-5,3-6
4	3	1-4,2-4,3-4
5	3	1-5,2-5,3-5
6	2	1-6,2-6
7	1	7-Jan
8	1	8-Jan

c) Periksalah apakah barisan (4 4 3 3 2) merupakan grafik atau bukan.

Perhatikan bahwa banyaknya bilangan pada S = 4 4 3 3 2 adalah 5. Jelas bahwa $n = 5 \le 1$.

Terlihat bahwa S tidak memuat bilangan yang lebih dari 4 dan tidak semua bilangan 0, serta tidak ada bilangan negative. S sudah terurut berupa bilangan monoton turun sehingga langkah selanjutnya adalah sebagai berikut:

S = 4 4 3 3 2 (Eksekusi 4 dan kurangi 4 bilangan disampingnya dengan 1)

 $S_1 = 3 \ 2 \ 2 \ 1$ (Eksekusi 3 dan kurangi 3 bilangan disampingnya dengan 1)

 $S_2 = 110$ (Eksekusi 1 dan kurangi 1 bilagan disampingnya dengan 1)

 $S_3 = 0.0$ (Tampak bahwa S_3 hanya memuat bilangan 0 sehingga S_3 grafik. Jadi, S juga grafik.

UJIAN AKHIR SEMESTER GASAL TA 2021/2022

Nama/NIM : MOCH. NAUVAL FARIS MUZAKI

NIM : 312010122

Kelas : TI.20.B.1

Dosen Pengampu : Ari Yuneldi, S.Pd., M.Si.

Mata Kuliah : Matematika Diskrit

d) Periksalah apakah barisan (5 4 3 2 1 0) merupakan grafik atau bukan.

Jawab: S = 5 4 3 2 1 0 $n = 6 \le 1$.

Terlihat S tidak memuat bilangan lebih dari 5 dan tidak semua bilangannya 0. Serta tidak ada bilangan negatif.

S = 5 4 3 2 1 0 (Eksekusi 5 dan kurangi 5 bilangan disampingnya dengan 1)

 $S_I = 3 \ 2 \ 1 \ 0 - 1$ (Terlihat bahwa S_I memuat bilangan negative sehingga S_I bukan grafik. Jadi S juga bukan grafik.

e) Periksalah apakah barisan (6 4 4 3 3 2 1 1) merupakan grafik atau bukan.

Jawab: $S = (6 \ 4 \ 4 \ 3 \ 3 \ 2 \ 1 \ 1 \ adalah \ 8.$ $n = 8 \le I.$

Terlihat bahwa S tidak memuat bilangan yang lebih dari 7 dan tidak semua bilangannya 0, serta tidak ada bilangan negative.

S = 6 4 4 3 3 2 1 1 (Eksekusi 6 dan kurangi 6 bilangan disampingnya dengan 1)

 $S_1' = 3322101$

 \Rightarrow S₁ = 3 3 2 2 1 1 0 (Eksekusi 3 dan kurangi 3 bilangan disampingnya dengan 1)

 $S_2 = 2 \ 1 \ 1 \ 1 \ 1 \ 0$ (Eksekusi 2 dan kurangi 2 bilangan disampingnya dengan 1)

 $S_3' = 0 \ 0 \ 1 \ 1 \ 0$

 \Rightarrow S₃ = 1 1 0 0 0 (Eksekusi 1 dan kurangi bilangan disampingnya dengan 1)

 $S_4 = 0 \ 0 \ 0 \ 0$

Terlihat bahwa S₄ hanya memuat bilangan 0 sehingga S₄ grafik. **Jadi, S juga grafik.**

- 5. 1. http://repositori.uin-alauddin.ac.id/426/1/Wahyuni%20Abidin%2C%20S.Pd.%2CM.Pd.
 - 2. Perkalian Dua Fungsi Pembangkit
 - Fungsi Pembangkit untuk Kombinasi
 - Fungsi Pembangkit untuk Permutasi
 - Relasi Rekursif
 - Relasi Rekursif Linear dengan Koefisien Konstanta
 - Relasi Rekursif Linear Homogen dengan Koefisien Konstanta
 - Menyelesaikan Relasi Rekursif Linear, Homogen, Derajat k dengan Koefisien Konstanta
 - Menyelesaikan Relasi Rekursif dengan Fungsi Pembangkit
 - Bentuk umum Prinsip Inklusi-Eksklusi
 - Banyak Obyek yang Memiliki Tepat M Sifat
 - 3. Jadi manfaat yang saya dapatkan dari jurnal diatas saya dapat memahami tentang fungsi pembangkit untuk permutasi