admissao universidade

October 27, 2025

1 Previsão para admissão na faculdade

1.1 Introdução

Baseado no dataset do Kaggle, vou criar um modelo utilizando regressão linear que prevê a chance de admissão de novos alunos em universidades mediante seu histórico escolar e notas.

1.2 Modelo

1.2.1 Carregando o DataFrame

Vamos começar importando as bibliotecas necessárias e carregar o dataset para começarmos.

```
[1]: # Importando bibliotecas
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Carregando o dataframe
admission_df = pd.read_csv('graduate_admission.csv')

# Mostrando as 5 primeiras linhas
admission_df.head()
```

```
[1]:
                                 University Rating
        GRE Score
                   TOEFL Score
                                                      SOP
                                                           LOR
                                                                   GPA
                                                                        Research
     0
              295
                             96
                                                      4.9
                                                            1.7
                                                                 2.93
                                                                               0
                                                   2
              340
                                                     4.1
                                                            1.7 3.76
                                                                               0
     1
                            119
                                                   3
     2
              336
                                                      3.2
                                                            1.8 3.12
                                                                               1
                             96
     3
              337
                            108
                                                      3.4
                                                            1.3 2.11
                                                                               0
              323
     4
                             98
                                                      1.1
                                                            1.3 3.40
                                                                               0
```

```
Chance of Admit
0 0.612
1 0.708
2 0.728
3 0.643
4 0.524
```

[2]: # Informações do dataframe print(f'Há {admission_df.shape[0]} linhas e {admission_df.shape[1]} colunas.') print('\n') print('INFORMAÇÕES TÉCNICAS') print(admission_df.info()) print('\n') print('INFORMAÇÕES ESTATÍSTICAS') print(admission_df.describe())

Há 1000 linhas e 8 colunas.

INFORMAÇÕES TÉCNICAS

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	GRE Score	1000 non-null	int64
1	TOEFL Score	1000 non-null	int64
2	University Rating	1000 non-null	int64
3	SOP	1000 non-null	float64
4	LOR	1000 non-null	float64
5	GPA	1000 non-null	float64
6	Research	1000 non-null	int64
7	Chance of Admit	1000 non-null	float64

dtypes: float64(4), int64(4)

memory usage: 62.6 KB

None

INFORMAÇÕES ESTATÍSTICAS

	30-0 -0					
	GRE Score	TOEFL Score	University Rating	SOP	LOR	\
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	
mean	315.840000	106.459000	3.053000	2.997000	3.014400	
std	15.083432	8.449954	1.421341	1.163239	1.163136	
min	290.000000	92.000000	1.000000	1.000000	1.000000	
25%	303.000000	99.000000	2.000000	2.000000	2.000000	
50%	316.000000	107.000000	3.000000	3.000000	3.000000	
75%	329.000000	114.000000	4.000000	4.000000	4.000000	
max	340.000000	120.000000	5.000000	5.000000	5.000000	

	GPA	Research	Chance of Admit
count	1000.000000	1000.000000	1000.000000
mean	3.027160	0.517000	0.729223
std	0.582774	0.499961	0.095161
min	2.000000	0.000000	0.491000

25%	2.530000	0.00000	0.655000
50%	3.025000	1.000000	0.728500
75%	3.550000	1.000000	0.801000
max	4.000000	1.000000	0.970000

1.2.2 Análise exploratória dos dados (EDA)

Podemos observar que a maioria das universidades são nota 3 com uma variância de aproximadamente 1.4, logo os alunos admitidos estarão entrando em faculdades com boa reputação. Para isso, a maioria dos alunos conta com notas no TOEFL e GRE (Graduate Record Examination) de 315.8 e 106.4, respectivamente. Para ser aprovado nestes exames é necessário uma nota igual ou superior a 320 no GRE (nesta prova não há um número certo, sendo essa pontuação considerada boa para o exame) e 90 no TOEFL (também não é preciso, apenas uma média considerada aceitável).

1.2.3 Modelo de regressão

```
Há 800 dados de features para treino.Há 200 dados de features para teste.Há 800 dados de target para treino.Há 200 dados de target para teste.
```

Como pode-se perceber nas colunas, há dados que não estão normalizados entre si, com valores discrepantes. Para isso iremos normalizá-los com a função *StandardScaler* da ScikitLearn.

```
[4]: # Importando alforitmo e função importantes para performance do modelo
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler

# Padronizando as colunas
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
```

```
X_test_scaled = scaler.transform(X_test)

# Instanciando uma variável para a função da regressão linear
model = LinearRegression()

# Modelando a variável com nossos dados de treino
model.fit(X_train_scaled, y_train)
```

[4]: LinearRegression()

```
[5]: # Criando nossas predições
y_pred = model.predict(X_test_scaled)
```

Agora que treinamos e testamos nosso modelo, vamos avaliá-lo!

1.2.4 Avaliando o modelo

Vamos começar plotando um gráfico de dispersão, mostrando o valor real X valor predito, e uma linha que representa quando o modelo acerta.

Visualmente, podemos ver que o modelo parece ter performado bem. Para sabermos melhor, vamosm utilizar de ferramentas estatísticas para avaliar!

Usando medidas estatísticas Vamos utilizar a validação cruzada para avaliar o modelo e depois mostrar as correlações das colunas com o target selecionado.

```
[27]: # Validação cruzada
      from sklearn.model_selection import cross_val_score
      # Invocando a função
      cross_val = cross_val_score(model, X_train_scaled, y_train, cv=5, scoring='r2')
      # Printando os resultados no output
      print(f'R2 ajustado: {cross_val.mean():.3f} (+/- {cross_val.std():.3f})')
     R2 ajustado: 0.897 (+/- 0.009)
[28]: # Correlações com a coluna 'Chance of Admit' (target)
      correlation = admission_df.corr()['Chance of Admit']
      print(correlation)
     GRE Score
                          0.103643
     TOEFL Score
                          0.095582
     University Rating
                          0.295981
```

 SOP
 0.206102

 LOR
 0.246334

 GPA
 0.256385

 Research
 0.760349

 Chance of Admit
 1.000000

Name: Chance of Admit, dtype: float64

1.3 Conclusão

Pode-se concluir que o nosso modelo, dentro dos dados treinados, performou muito bem. Estou satisfeito com o resultado mas mesmo assim precisamos de dados externos para validar o modelo, ver se realmente ele está treinado.

[]: