CSE 3318 Notes 2: Growth of Functions

(Last updated 8/1/22 2:58 PM)

CLRS Chapter 3

Why constants are annoying . . .

Problem Instance of Size n (n = size of data structure or input)

Resources Consumed? (time, memory, processors, bandwidth)
(Asides: https://dl-acm-org.ezproxy.uta.edu/doi/10.1145/2976758,
Compiler Explorer: https://godbolt.org)

Need to compare time and space usage of various algorithms for a problem.

2.A. ASYMPTOTIC NOTATION

O(g(n)) is a *set* of functions:

$$f(n) \in O(g(n))$$
 iff $\exists c$ and n_0 such that $0 \le f(n) \le cg(n)$ when $n \ge n_0$

Theorem: If $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ is a constant, then $f(n) \in O(g(n))$.

$$f(n) = n^{2}, g(n) = n^{3} \quad \lim_{n \to \infty} \frac{n^{2}}{n^{3}} = \lim_{n \to \infty} \frac{2n}{3n^{2}} = \lim_{n \to \infty} \frac{2}{6n} = 0 \Rightarrow n^{2} \in O(n^{3})$$

$$f(n) = n^{3}, g(n) = n^{2} \quad \lim_{n \to \infty} \frac{n^{3}}{n^{2}} = \lim_{n \to \infty} \frac{3n^{2}}{2n} = \lim_{n \to \infty} \frac{6n}{2} = unbounded \Rightarrow n^{3} \notin O(n^{2})$$

$$f(n) = 3n^2 + 2n - 3, g(n) = 5n^2 - n + 2$$

$$\lim_{n \to \infty} \frac{3n^2 + 2n - 3}{5n^2 - n + 2} = \lim_{n \to \infty} \frac{6n + 2}{10n - 1} = \lim_{n \to \infty} \frac{6}{10} = \frac{3}{5} \Rightarrow 3n^2 + 2n - 3 \in O(5n^2 - n + 2)$$

Conclusion: Toss out low-order terms $n^k \in O(n^l)$ if $l \ge k$.

Is $\sin(x) \in O(\cos(x))$?

Is $\ln(x) \in O(\log_{10}(x))$? [But in some situations, like Notes 04, log details are important]

Is $2^n \in O(n^k)$ for some fixed k?

$$n^k \in O(2^n)$$
 for any k . General case, $n^k \in O(c^n)$ for any $c > 1$

Aside: There are problems in the gap between polynomial and exponential: https://en.wikipedia.org/wiki/Graph_isomorphism_problem

 $\Omega(g(n))$ is a *set* of functions:

$$f(n) \in \Omega(g(n))$$
 iff $\exists c$ and n_0 such that $0 \le cg(n) \le f(n)$ $(c > 0)$ when $n \ge n_0$

Theorem: If $\lim_{n\to\infty} \frac{g(n)}{f(n)}$ is a constant, then $f(n) \in \Omega(g(n))$.

$$g(n) = n^2$$
, $f(n) = 3n^3 \lim_{n \to \infty} \frac{n^2}{3n^3} = \lim_{n \to \infty} \frac{2n}{9n^2} = \lim_{n \to \infty} \frac{2}{18n} = 0 \Rightarrow n^3 \in \Omega(n^2)$

Upper bounds (O()) are for particular *algorithms*.

Lower bounds $(\Omega())$ are for indicating the inherent difficulty of *problems*.

The hunt for an optimal algorithm . . .

Aside: https://rjlipton.wpcomstaging.com/2012/02/01/a-brief-history-of-matrix-product/

Best upper bound: $O(n^{2.373})$ Best lower bound: $O(n^2)$

Θ-notation (asymptotically tight bound) – Used to express time for worst-case instances for algorithm

$$f(n) \in \Theta(g(n))$$
 iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Theorem: If $\lim_{n\to\infty} \frac{g(n)}{f(n)}$ is a constant > 0, then $f(n) \in \Theta(g(n))$.

$$f(n) = 3n^2 + 2n - 3$$
, $g(n) = 5n^2 + n - 1$

$$\lim_{n \to \infty} \frac{3n^2 + 2n - 3}{5n^2 + n - 1} = \lim_{n \to \infty} \frac{6n + 2}{10n + 1} = \lim_{n \to \infty} \frac{6}{10} = \frac{3}{5} \Rightarrow 3n^2 + 2n - 3 \in \Theta(5n^2 + n - 1)$$

 $\Theta(f(n))$ is an equivalence relation . . .

 $g(n) \in \Theta(f(n)) \Leftrightarrow f(n) \in \Theta(g(n))$ [Doesn't work for O or Ω] Symmetric:

 $f(n) \in \Theta(f(n))$ [Works for O and Ω] Reflexive:

 $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(h(n)) \Rightarrow f(n) \in \Theta(h(n))$ [Works for O and Ω] Transitive:

Accepted abuses of asymptotic notation. (CLRS, p. 58)

1.
$$n^2 + n = \Theta(n^2)$$
 means $n^2 + n \in \Theta(n^2)$.

2.
$$3n^2 + 2n + 1 = 3n^2 + \Theta(n)$$
 means . . .

3.
$$2 + 3\Theta(n) = n + \Theta(n)$$
 means . . .

Aside: Indicating that a bound could/might be improved:

o(f) = O(f) -
$$\Theta(f)$$
 $\omega(f) = \Omega(f) - \Theta(f)$
 $n^2 \in o(n^3)$ $\frac{1}{n^2} \in \omega\left(\frac{1}{n^3}\right)$

Example: p. 46 of Demaine & O'Rourke, Geometric Folding Algorithms: Linkages, Origami, & Polyhedra, Cambridge Univ. Press, 2007. (https://www.amazon.com/dp/0521857570/)

"Open Problem 4.1: Faster Generic Rigidity in 2D. Is there a $o(n^2)$ -time algorithm to test generic rigidity of a given graph with n vertices?" (https://minerva.cs.mtholyoke.edu/scholarship/rigidity-theory/getting-started-with-combinatorial-rigidity-theory)

2.B. APPLYING ASYMPTOTIC ANALYSIS TO CODE SEGMENTS

```
for (i=0; i<n; i++)
  for (j=0; j< n; j++)
  {
    c[i][j] = 0;
    for (k=0; k< n; k++)
      c[i][j] += a[i][k]*b[k][j];
  }
min=max=a[0];
for (i=1; i<n; i++)
  if (a[i]<min)</pre>
    min=a[i];
  else if (a[i]>max)
    max=a[i];
equalCount=unequalCount=0;
for (i=0; i<n; i++)
  if (a[i]==val)
    equalCount++;
    unequalCount++;
```

```
equalCount=0;
for (i=0; i<n; i++)
  if (a[i]==val)
      equalCount++;
unequalCount=0;
for (i=0; i<n; i++)
  if (a[i]!=val)
    unequalCount++;</pre>
```

Linear time or exponential time?

```
for (i=0; i<k; i++);
```

Test Problem: Perform an asymptotic analysis for the following code segment to determine an appropriate Θ set for the time used.

```
sum=0;
for (i=0; i<n; i=i+2)
  for (j=1; j<n; j=j+j)
   sum=sum + a[i]/a[j];</pre>
```

LU Decomposition (Gaussian Elimination, CSE 3380) - aside, useful as practice

```
#include <stdio.h>
                                             for (i=1;i<=n;i++)
#include <stdlib.h>
                                               piv[i]=i;
#include <math.h>
#define MAX SLOTS 10
                                             for (k=1; k \le n-1; k++)
typedef char boolean;
int num_slots,i,j;
                                               printf("iteration %d\n",k);
double slot[MAX_SLOTS+1];
                                               amax=0.0;
                                               for (ell1=k;ell1<=n;ell1++)</pre>
typedef double row[MAX_SLOTS+2];
row ab[MAX_SLOTS+2],ab1[MAX_SLOTS+2];
                                                 if (amax<fabs(ab[ell1][k]))</pre>
                                                   amax=fabs(ab[ell1][k]);
void LU()
//SOLVES SYSTEM OF LINEAR EQUATIONS.
                                                   ell=ell1;
//TAKEN FROM M.J. Quinn, P. 147
//CODE HAS BEEN MODIFIED TO PRELOAD AB
                                               if (amax==0.0)
//TO SAVE SPACE BY NOT STORING A AND B
                                                 printf("singular matrix\n");
//SOLUTION IS PLACED IN SLOT[*]
                                                 abort();
                                               printf("pivoting row %d\n",ell);
double amax, temp, c, sum;
int n,i,j,k,k1,ell,ell1,itemp;
                                               itemp=piv[ell];
                                               piv[ell]=piv[k];
row y;
int piv[MAX SLOTS+1];
                                               piv[k]=itemp;
n=num_slots;
```

```
for (k1=1;k1 \le k;k1++)
                                              printf("enter n: ");
    temp=ab[ell][k1];
                                              scanf("%d",&num_slots);
    ab[ell][k1]=ab[k][k1];
    ab[k][k1]=temp;
                                              printf("enter matrix and column\n");
                                              for (i=1;i<=num_slots;i++)</pre>
                                                for (j=1;j<=num_slots+1;j++)</pre>
                                                  scanf("%lf",&ab[i][j]);
  c=1.0/ab[k][k];
  for (i=k+1;i<=n;i++)
                                              for (i=1;i<=num slots;i++)</pre>
                                                for (j=1;j<=num_slots+1;j++)</pre>
    ab[i][k] *= c;
                                                  ab1[i][j]=ab[i][j];
  for (j=k+1; j<=n; j++)
                                              printf("input:\n");
    temp=ab[ell][j];
                                              for (i=1;i<=num slots;i++)</pre>
    ab[ell][j]=ab[k][j];
                                                for (j=1;j<=num_slots+1;j++)</pre>
    ab[k][j]=temp;
                                                  printf("%f ",ab[i][j]);
    for (i=k+1;i<=n;i++)
                                                printf("\n");
      ab[i][j] = ab[i][k]*ab[k][j];
                                              LU();
printf("LU matrix\n");
  for (i=1;i<=n;i++)
                                              printf("solution\n");
                                              for (i=1;i<=num_slots;i++)</pre>
                                                printf("%f\n",slot[i]);
    for (j=1;j<=n+1;j++)
      printf("%f ",ab[i][j]);
    printf("\n");
                                              printf("result of multiplying L & U\n");
                                              for (i=1;i<=num_slots;i++)</pre>
}
printf("pivots\n");
                                                for (j=1;j<=num slots;j++)</pre>
for (i=1;i<=n;i++)
  printf("%d %d\n",i,piv[i]);
                                                  sum=0.0;
                                                  for (k=1;k<=num_slots;k++)</pre>
printf("forward substitution\n");
                                                     if (i==k)
y[1]=ab[piv[1]][n+1];
for (i=2;i<=n;i++)
                                                      L=1.0;
                                                     if (i < k)
  sum=0.0;
                                                      L=0.0;
  for (j=1;j<i;j++)
                                                     if (i>k)
    sum+=ab[i][j]*y[j];
                                                      L=ab[i][k];
  y[i]=ab[piv[i]][n+1]-sum;
                                                     if (k==j)
}
                                                       U=ab[k][j];
                                                     if (k<i)
printf("intermediate vector y:\n");
                                                       U=ab[k][j];
for (i=1;i<=n;i++)
                                                     if (k>j)
  printf("%f\n",y[i]);
                                                       U=0.0;
                                                     sum+=L*U;
printf("back substitution\n");
                                                  printf("%f ",sum);
slot[n]=y[n]/ab[n][n];
for (i=n-1;i>=1;i--)
                                                printf("\n");
  sum=0.0;
                                              printf("sub. sol. into orig. system:\n");
  for (j=i+1;j<=n;j++)
                                              for (i=1;i<=num_slots;i++)</pre>
    sum+=ab[i][j]*slot[j];
  slot[i]=(y[i]-sum)/ab[i][i];
}
                                                sum=0.0;
}
                                                for (j=1;j<=num_slots;j++)</pre>
                                                  sum+=ab1[i][j]*slot[j];
int main()
                                                printf("%f\n",sum);
int i,j,k;
double sum, L, U;
```

2.C. DEMONSTRATING FUNDAMENTAL RESULTS FOR ASYMPTOTIC NOTATION

Exercise 3.2-1: f(n) and g(n) are positive functions. Show $\max(f(n),g(n)) = \Theta(f(n)+g(n))$

O: Since $f(n) \le f(n) + g(n)$ and $g(n) \le f(n) + g(n)$

 $\max(f(n),g(n)) \le f(n) + g(n)$ for all n, so $n_0 = 0$ and c = 1

Ω: Must have $c(f(n) + g(n)) \le \max(f(n), g(n))$, so choose $n_0 = 0$ and $c \le 1/2$ [Consider f(n) = g(n)]

Test Problem: Prove that if $g(n) \in \Omega(f(n))$ then $f(n) \in O(g(n))$.

 $cf(n) \le g(n)$ when $n \ge n_0$

So, $f(n) \le \frac{1}{c} g(n)$ when $n \ge n_0$

Need $f(n) \le dg(n)$ when $n \ge n_1$

Choose $d = \frac{1}{c}$ and $n_1 = n_0$

2.D. MISCELLANEOUS

$$floor(x) = |x|$$
 Largest integer $\leq x$

$$[2.5] = ?$$
 $[-2.5] = ?$

$$ceiling(x) = [x]$$

Smallest integer
$$\geq x$$

$$[2.5] = ?$$
 $[-2.5] = ?$

Worst-case number of probes for binary search: $|\lg n| + 1$

Consider worst-case searches on tables with 15 elements (4) and 16 elements (5).

Review:

$$2^{n} ? O(3^{n}) \qquad 2^{n} ? \Omega(3^{n}) \qquad \lg(2^{n}) = n \qquad \lg(3^{n}) = n \lg 3 \qquad \lg(2^{n}) = \Theta(\lg(3^{n}))$$

Factorials:

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$

$$\lg(n!) = \sum_{i=1}^{n} \lg i \in \Theta(n \lg n)$$
[Using Notes 03.C and https://www.wolframalpha.com]

<u>n</u>	n!	$\lg(n!)$	<i>n</i> lg <i>n</i>
1	1	0	Ō
2	2	1	2
3	6	2.58	4.75
4	24	4.58	8
5	120	6.91	11.61
6	720	9.49	15.51
7	5040	12.3	19.65
8	40320	15.3	24
9	362880	18.47	28.53
10	3628800	21.79	33.22
11	39916800	25.25	38.05
12	479001600	28.84	43.02
13	6227020800	32.54	48.11
14	87178291200	36.34	53.30
15	1307674368000	40.25	58.60
20	2.43E18	61.08	86.44
200		1245	1528
2000		19053	21932
20000		256909	285754
200000		3233399	3521928
2000000		38977759	41863137

O:
$$n! \le n^n$$

 $\lg(n!) \le n \lg n$
 $\lg(n!) \in O(n \lg n)$

$$\Omega: \qquad n! = 1 \bullet \dots \bullet \frac{n}{2} \bullet \left(\frac{n}{2} + 1\right) \bullet \left(\frac{n}{2} + 2\right) \bullet \dots \bullet n$$

$$\geq 1 \bullet \dots \bullet \frac{n}{2} \bullet (\sqrt{n})^{\frac{n}{2}} \qquad \qquad \frac{n}{2} + k \geq \sqrt{n} \text{ for } n > 3 \text{ and } k \geq 0$$

$$\geq (\sqrt{n})^{\frac{n}{2}} \qquad \qquad 1 \bullet \dots \bullet \frac{n}{2} \geq 1$$

$$\lg(n!) \geq \lg(\sqrt{n})^{\frac{n}{2}} = \frac{n}{2} \frac{\lg n}{2} = \frac{1}{4} n \lg n$$

(https://en.wikipedia.org/wiki/Stirling's approximation)

2.E. ASYMPTOTIC NOTATION FOR TWO PARAMETERS (aside, CLRS exercise 3.2-7)

$$O(g(n,m)) = \begin{cases} f(n,m) : \exists \text{positive constants } c, n_0, \text{ and } m_0 \text{ s.t.} \\ \text{for every } (n,m) \text{ pair with either } n \ge n_0 \text{ or } m \ge m_0 \\ 0 \le f(n,m) \le cg(n,m) \end{cases}$$