CS4801: Principle of Machine Learning Assignment 3

deadline: 3rd Ocotber 2018 morning 8am

This homework consists of problems covering Classification. A few instructions to make life easier for all of us:

- Assignment need not to be submitted.
- Quiz on this Assignment will be held on 3rd Ocotber, during class hours.

age	income	software_engineer	credit_rating	buys_computer
<=20	high	no	fair	no
<=20	high	no	excellent	no
21-30	high	no	fair	yes
>30	medium	no	fair	yes
>30	low	yes	fair	yes
>30	low	yes	excellent	no
21-30	low	yes	excellent	yes
<=20	medium	no	fair	no
<=20	low	yes	fair	yes
>30	medium	yes	fair	yes
<=20	medium	yes	excellent	yes
21-30	medium	no	excellent	yes
21-30	high	yes	fair	yes
>30	medium	no	excellent	no

Figure 1: Decision Tree

Exercise 1: Classification

- (a) (2 points each)Please go through at-least 10 data set for classification from UC Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets.html?format=&task=cla&att=&area=&numAtt=&numIns=&type=mvar&sort=nameUp&view=table) and Study what is feature and what is output for classifier.
- (b) (2 points)Design K class classifier with help of 2 class SVM.
- (c) (5 points)Consider the following data set in Figure 1 and build a DT with your choice impurity measure and find the prediction for

X = (age=20, income = medium, software engineer = yes, credit rating = fair).

Please state why you have considered that choice of impurity measure?

(d) (1 points) Consider two non-negative numbers a and b and show that, if $a \le b$, then $a \le (ab)^{\frac{1}{2}}$. Use this result to show that, if the decision region of a two-class classification problem are chosen to minimize the probability of mis-classification, this probability will satisfy

$$p(mistake) \leq \int \{p(\mathbf{x}, C_1)p(\mathbf{x}, C_2)\}^{\frac{1}{2}} d\mathbf{x}$$

(e) (2 point) Derive the update equation for gradient descent approach to solve following problems

- i. Logistic regression: $E(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} log(1 + e^{-y_i(\mathbf{x}_i^T \mathbf{w})}) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$
- (f) (2 points) The error of a binary classifier which guesses completely randomly is 0.5. What is the error of a random k-class classifier for k > 2 labels.
 - i. Random guesser G knows that there are k labels, and for each example, selects a label out of $\{1,...,k\}$ uniformly at random. What is the error of G?
 - ii. Now suppose we have a more sophisticated random guesser Z who knows that w_1 fraction of the data distribution has label 1, w_2 fraction has label 2, and so on. For each example, Z also selects a label out of $\{1, ..., k\}$ at random, but he selects label 1 with probability w_1 , label 2 with probability w_2 and so on. What is the error of Z?
- (g) (2 points) Consider the following two data distributions \mathcal{D}_1 and \mathcal{D}_2 over labeled examples. There is a single feature, denoted by X which takes values in the set $\{1, 2, 3, 4\}$ and a binary label $Y \in \{0, 1\}$. \mathcal{D}_1 is described as follows:

$$Pr(X = i) = \frac{1}{4}, i \in \{1, 2, 3, 4\}$$

$$Pr(Y = 1 | X = i) = 1, i \in \{1, 4\}$$

$$Pr(Y = 0 | X = i) = 1, i \in \{2, 3\}$$
(1)

 D_2 is described as follows.

$$Pr(X = i) = \frac{1}{4}, i \in \{1, 2, 3, 4\}$$

$$Pr(Y = 1 | X = i) = \frac{i}{10}, i \in \{1, 2, 34\}$$
(2)

i. Consider the following classifier

$$h: h(x) = 1$$
 if $x > 1.5$ and 0 otherwise.

What is the true error of h when the true data distribution is D_1 ?

ii. Suppose our classifier is

$$h_t: h(x) = 1$$
 if $x > t$ and 0 otherwise

- . Find t which minimizes the true error of h_t when the true data distribution is D_1 . What is the true error of this classifier?
- iii. Repeat parts i. and ii. for the data distribution D2.