IV. Notion de variable aléatoire :

1. Définition, Vocabulaire, Notation

a. Activité

On lance une pièce de monnaie trois fois de suite. Un résultat est modélisé par (A, B, C) où A, B, C représente respectivement le résultat du premier, du deuxième et troisième lancé. On note face par F et pile par P. Soit X le nombre de piles obtenues à la fin de l'expérience.

Construire l'arbre représentant les résultats possibles.

Préciser les valeurs possibles de X.

Soit x une valeur prise par X. On note (X=x_i) l'évènement « obtenir x_i Piles ».

Reproduire et compléter le tableau ci-dessous en rangeant les xi dans un ordre croissant :

х	 	
P(X= x)	 	

b. Définition

Soit $\Omega = \{\omega_1, \ \omega_2, \dots, \omega_n\}$; l'univers associé à une expérience aléatoire. Si à chaque éventualité $\{\omega_i\}$, on associe un nombre réel, on dit qu'on définit une variable X aléatoire de Ω dans IR.

$$X: \Omega \to IR$$

 $\{w\} \mapsto x$

Remarque

Une variable aléatoire est une application de Ω dans IR.

Notation

Soit X une variable aléatoire prenant les valeurs x₁, x₂, ..., x_n rangées dans l'ordre croissant.

On note $X(\Omega) = \{x_1, x_2, ..., x_n\}.$

L'ensemble des éventualités pour lesquelles X prend la valeur x_i est l'évènement noté $(X = x_i)$.

 $(X = x_i)$ est l'ensemble des antécédents de x_i par X.

2. Loi de probabilité

Définition

Soit X une variable aléatoire prenant les valeurs x_1 , x_2 , ..., x_n rangées dans l'ordre croissant. Si à chaque valeur x_i , on associe la probabilité $p_i = P(X = x_i)$, on définit la loi de probabilité de X.

Généralement la loi de probabilité de X est présentée sous forme de tableau :

х	X ₁	X ₂	 Xi	X _{i+1}		Xn
P(X= x)	p ₁	p_2	 pi	p _{i+1}	•••	p _n

Remarque:

 $(X = x_1)U (X = x_2)U...U(X = x_n)$ est l'évènement certain.

Donc: $p_1 + p_2 + p_3 + ... + p_n = 1$

Exemple

Une urne contient 4 boules rouges et 6 boules noires indiscernables au toucher.

On tire simultanément 3 boules de l'urne. Soit X la variable aléatoire égale au nombre de boules noires tirées.

Déterminer la loi de probabilité de X.

Résolution

Soit
$$\Omega$$
 l'univers ; card Ω = $C_{10}^3 = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = 120$

La variable aléatoire X prend les valeurs : 0, 1, 2 et 3.

P(X= 0) est la probabilité de tirer 3 boules rouges.

$$P(X=0) = \frac{C_4^3}{120} = \frac{C_4^1}{120} = \frac{1}{30}$$

P(X= 1) est la probabilité de tirer 1 boule noire et 2 boules rouges.

$$P(X=1) = \frac{C_6^1 \times C_4^2}{120} = \frac{6 \times 4 \times 3}{2 \times 1} \times \frac{1}{120} = \frac{3}{10}$$

P(X= 2) est la probabilité de tirer 2 boules noires et 1 boule rouge.

$$P(X=2) = \frac{C_6^2 \times C_4^1}{120} = \frac{6 \times 5 \times 4}{2 \times 1} \times \frac{1}{120} = \frac{5}{10} = \frac{1}{2}$$

$$P(X=3) \text{ est la probabilité de tirer 3 boules noires.}$$

$$P(X=3) = \frac{C_6^3}{120} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} \times \frac{1}{120} = \frac{5}{30} = \frac{1}{6}$$

Xi	0	1	2	3
D(V- v.)	1	3	1	1
$P(X=x_i)$	30	10	2	6

3. Espérance, variance, Ecart-type d'une variable aléatoire

a. Définitions

Soit X une variable aléatoire prenant les valeurs x₁, x₂,..., x_n avec les probabilités respectives p₁, p₂,..., p_n.

• L'espérance mathématique de X, le nombre noté E(X) défini par :

$$E(X) = p_1 x_1 + p_2 x_2 + ... + p_n x_n = \sum_{i=1}^{n} p_i x_i.$$

La variance de X est le nombre noté V(X) défini par :

$$V(X) = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + \dots + p_n(x_n - E(X))^2 = \sum_{i=1}^n p_i (x_i - E(X))^2.$$

L'écart-type de X est la racine de la variance de X noté $\sigma(X)$.

$$\sigma(X) = \sqrt{V(X)}$$

Exemple

Soit X une variable aléatoire dont la loi de probabilité est définie par le tableau ci-dessous :

Xi	0	1	2	3
D/V= v \	1	3	1	1
$P(X=x_i)$	30	$\overline{10}$	2	6

L'espérance mathématique de X :

$$E(X) = 0 \times \frac{1}{30} + 1 \times \frac{3}{10} + 2 \times \frac{1}{2} + 3 \times \frac{1}{6} = 1.8$$

$$V(X) = \frac{1}{30} \times (0 - 1.8)^2 + \frac{3}{10} \times (1 - 1.8)^2 + \frac{1}{2} \times (2 - 1.8)^2 + \frac{1}{6} \times (3 - 1.8)^2 \approx 0.56$$

L'écart-type de X :

$$\sigma(X) = \sqrt{V(X)} \approx \sqrt{0.56} = 0.75$$

b. Propriété

Soit X une variable aléatoire prenant les valeurs x₁, x₂,..., x_n avec les probabilités respectives p₁, p₂,..., pn et d'espérance mathématique E(X) alors

$$V(X) = \sum_{i=1}^{n} p_i x_i^2 - (E(X))^2$$

$$V(X) = \sum_{i=1}^{n} p_i (x_i - E(X))^2 = \sum_{i=1}^{n} p_i (x_i^2 - 2x_i E(X) + (E(X))^2$$

$$V(X) = \sum_{i=1}^{n} (p_i x_i^2 - 2p_i x_i E(X) + p_i (E(X))^2 = \sum_{i=1}^{n} p_i x_i^2 - 2E(X) \sum_{i=1}^{n} p_i x_i + (E(X))^2 \sum_{i=1}^{n} p_i$$

$$V(X) = \sum_{i=1}^{n} p_i x_i^2 - 2E(X) \times E(X) + (E(X))^2 \times 1$$

$$V(X) = \sum_{i=1}^{n} p_i x_i^2 - (E(X))^2$$

Exemple

Soit X une variable aléatoire dont la loi de probabilité est définie par le tableau ci-dessous :

Xi	-1	2	3
$P(X=x_i)$	1 5	$\frac{7}{10}$	$\frac{1}{10}$

L'espérance mathématique de X :

E(X) =
$$-1 \times \frac{1}{5} + 2 \times \frac{7}{10} + 3 \times \frac{1}{10} = 1,5$$

La variance de X :

$$V(X) = \sum_{i=1}^{3} p_i x_i^2 - (E(X))^2 = (-1)^2 \times \frac{1}{5} + 2^2 \times \frac{7}{10} + 3^2 \times \frac{1}{10} - 1,5^2$$

$$V(x) = 1,65$$

4. Loi binomiale

a. Définition

Soit X la variable aléatoire égale au nombre de succès. dans un schéma de Bernoulli de paramètres n et p. La loi de probabilité de X est appelée loi binomiale de paramètres n et p. On dit que X suit une loi binomiale de paramètres n et p.

b. Propriétés

Propriété 1

Si X est une variable aléatoire qui suit une loi binomiale de paramètres n et p alors :

- pour tout entier naturel k tel que $\ k \leq n$, P(X= k) = $C_n^k p^k (1-p)^{n-k}$
- E(X) = np
- V(X) = np(1-p).

Exemple

Soit X une variable aléatoire qui suit une loi binomiale de paramètres 5 et 0,15.

On a: n = 5 et p = 0, 15

L'espérance mathématique de X est :

 $E(X) = 5 \times 0.15 = 0.75$

La variance de X est :

$$V(X) = 5 \times 0.15 \times (1 - 0.15) = 0.6375$$

Fonction de répartition

a. Activité

Soit X une variable aléatoire dont la loi de probabilité est définie par le tableau ci-dessous :

Xi	0	1	2
D()/	1	3	3
$P(X=x_i)$	$\frac{\overline{4}}{4}$	8	8

Soit x un nombre réel. On pose $F(x) = P(X \le x)$.

Si x < 0, préciser exactement l'évènement (X \leq x) (X prend des valeurs inférieures ou égales à x.) et en déduire F(x).

Si $0 \le x < 1$, écrire l'évènement ($X \le x$) en fonction d'évènements élémentaires de X et en déduire F(x).

Si $1 \le x < 2$ alors exprimer l'évènement ($X \le x$) en fonction d'évènements élémentaires de X et en déduire F(x).

Si $x \ge 2$ alors exprimer l'évènement ($X \le x$) en fonction d'évènements élémentaires de X et en déduire F(x).

b. Définition

Soit X une variable aléatoire définie sur un univers. On appelle fonction de répartition de X l'application

$$F: IR \rightarrow [0; 1]$$
$$x \mapsto P(X \le x)$$

c. Détermination et représentation graphique de F :

Soit X une variable aléatoire dont la loi de probabilité est définie par le tableau ci-dessous :

Х	X ₁	X 2	 Xi	X _{i+1}	 Xn
P(X=x)	p_1	p ₂	 pi	p _{i+1}	 p _n

DF = IR, pout réel x, $F(x) = P(X \le x)$.

Si $x < x_1$ alors F(x) = 0

si $x_1 \le x < x_2$ alors $F(x) = p_1$

si $x_2 \le x < x_3$ alors $F(x) = p_1 + p_2$

si
$$x_i \le x < x_{i+1}$$
 alors $F(x) = p_1 + p_2 + ... + p_i$

.....

 $si \ge x_n \text{ alors } F(x) = p_1 + p_2 + ... + p_n = 1.$

Soit (C_F) la courbe représentative de F dans un repère orthogonal.

F est une fonction constante par intervalle et (C_F) est en forme « d'escalier ».

Exemple

Soit X la variable aléatoire dont la loi de probabilité est définie par le tableau ci-dessous.

Xi	0	1	2	3
D/V- v.)	1	2	3	1
$P(X=x_i)$	7	7	7	7

La fonction de répartition F de X est définie sur \mathbb{R} par $F(x) = P(X \le x)$.

Si x < 0 alors F(x) = 0

si $0 \le x < 1$ alors $F(x) = \frac{1}{7}$

si $1 \le x < 2$ alors $F(x) = \frac{1}{7} + \frac{2}{7} = \frac{3}{7}$

si $2 \le x < 3$ alors $F(x) = \frac{1}{7} + \frac{2}{7} + \frac{3}{7} = \frac{6}{7}$

si ≥ 3 alors $F(x) = \frac{1}{7} + \frac{2}{7} + \frac{3}{7} + \frac{1}{7} = 1$.

