Dr. Jan-Willem Liebezeit Raphael Wagner SoSe 2021

108 Punkte

1. Klausur: Analysis 1 für Informatik

1. Überprüfen Sie die Folge $(a_n)_{n\in\mathbb{N}}$ für die folgenden Beispiele auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

i)
$$a_n = \sqrt[n]{3n^2 + n}$$
 für alle $n \in \mathbb{N}$

ii)
$$a_n = \frac{n^2 + e^n - 1}{2n^2 - 5n + 100}$$
 für alle $n \in \mathbb{N}$ (5)

2. i) Seien $f, g: (a, b) \to \mathbb{R}$, $-\infty \le a < b \le \infty$, differenzierbar und weiter sei (4) $g'(x) \ne 0$ für alle $x \in (a, b)$. Sei außerdem $(a_n)_{n \in \mathbb{N}} \subset (a, b)$ eine Folge mit $\lim_{n \to \infty} a_n = a$.

Angenommen $\lim_{x\to a^+} f(x) = g(x) = 0$. Zeigen Sie, dass dann

$$\lim_{n \to \infty} \frac{f(a_n)}{g(a_n)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)},$$

sofern der Limes auf der rechten Seite existiert.

- ii) Überprüfen Sie die Folge $(y_n)_{n\in\mathbb{N}}$, mit $y_n = \frac{\cos\left(\frac{1}{n^2}\right) 1}{\ln\left(\cos\left(\frac{1}{n}\right)\right)}$ für alle $n \in \mathbb{N}$, auf (7) Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.
- 3. i) Untersuchen Sie die folgenden Reihen auf Konvergenz.

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k 4^k}{(2k-1)!}$$
 (4)

$$b) \sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$$
 (5)

c)
$$\sum_{n=1}^{\infty} \left(\sqrt{n^2 + 1} - \frac{n}{2} \right)$$
 (4)

- ii) Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine beliebige Folge. Angenommen $(s_n)_{n\in\mathbb{N}}$ mit $s_n=\sum_{k=1}^n a_k$, (2) für alle $n\in\mathbb{N}$, ist eine Cauchy-Folge. Begründen Sie, dass dann die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert.
- **4.** Führen Sie eine Kurvendiskussion der Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto \frac{e^{-x}}{x^2+1} e^{-x}$ durch:
 - i) Zeigen Sie, dass f auf genau solchen Intervallen $I \subset \mathbb{R}$ streng monoton wachsend ist, auf welchen

$$|x+1| < x^2 + 1$$

für alle $x \in I$ gilt und streng monoton fällt auf denjenigen Intervallen $I \subset \mathbb{R},$ auf welchen

$$|x+1| > x^2 + 1$$

für alle $x \in I$ gilt.

- ii) Bestimmen Sie mit i) nun explizit die Monotonieintervalle von f. (5)
- iii) Bestimmen Sie die Nullstellen, Extremstellen (lok. Maxima/Minima) und das (8) Verhalten für $(x \to \infty)$ und $(x \to -\infty)$ von f.
- **5.** Sei $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x \cdot \sin(\pi x)$. Bestimmen Sie ein Polynom zweiten Grades (7) $P: \mathbb{R} \to \mathbb{R}$, sodass P(1) = f(1), P'(1) = f'(1) und P''(1) = f''(1).
- 6. i) Sei $f: \mathbb{R} \to \mathbb{R}$ stetig mit $\lim_{x\to\infty} f(x) = \lim_{x\to-\infty} f(x) = \infty$. Zeigen Sie, (7) dass die Funktion f ihr Minimum annimmt, d.h. es gibt ein $x_0 \in \mathbb{R}$ mit $f(x_0) \leq f(x)$ für alle $x \in \mathbb{R}$.
 - ii) Bleibt die Aussage aus Teil i) im Allgemeinen wahr, wenn auf die Vorausset- (3) zung, dass f stetig ist, verzichtet wird? Begründen Sie Ihre Antwort.
- 7. i) Berechnen Sie das unbestimmte Integral $\int \frac{t+1}{t^3-1} dt$. (8)
 - ii) Berechnen Sie mit Hilfe von Teil i) die Lösung des Anfangswertproblem (5)

$$y' = \frac{3x^2}{x^3 - 1}y + x + 1, y(2) = 1$$

für $x \geq 2$.

8. Betrachten Sie die Potenzreihe

$$Q(x) := \sum_{k=1}^{\infty} \frac{5}{k^2} (x-1)^k.$$

- i) Zeigen Sie, dass R=1 der Konvergenzradius von Q ist und bestimmen Sie (7) das größtmögliche Intervall, in welchem Q(x) konvergiert.
- ii) Zeigen Sie, dass für alle $x \in \left[1, \frac{3}{2}\right]$ (5)

$$Q(x) \le 10(x-1).$$

- 9. i) Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine beschränkte Folge. Definieren Sie Häufungswerte und (2) Limes superior der Folge $(a_n)_{n\in\mathbb{N}}$ oder geben Sie eine äquivalente Charakterisierung dieser Begriffe an.
 - ii) Begründen Sie, warum jede beschränkte Folge einen Häufungswert besitzt. (2)
 - iii) Bestimmen Sie alle Häufungswerte, Limes inferior und Limes superior der (8) Folge $(a_n)_{n\in\mathbb{N}}$, welche nun gegeben ist durch

$$a_n = \arctan\left(\cos(\pi n)\frac{n!}{n+1}\right)$$

für alle $n \in \mathbb{N}$.