Applications and Midterm Exam Review

November 9, 2022

Today

- Brief review of statistical inference and hypothesis testing
- Preparation for second midterm
- Discussion of an application article (a quasi-experimental study using difference-of-means tests)

Statistical Inference

- Interested in population, but have data on a sample
- But, if a random sample, we know what a distribution of samples would look like
- Can determine spread of sampling distribution based on sample
 - Standard error—affected by variance of sample and square root of sample size
- Two approaches:
 - Assume test statistic is center of distribution
 - Then can examine confidence interval around test statistic
 - Assume null hypothesis is true
 - Can examine confidence interval around null value & identify the p-value

Hypothesis Testing

- Review of approach:
 - Our hypothesis (H_a)—generally a prediction about relationship between variables in population
 - Null hypothesis (H₀)—generally a prediction of "no effect," i.e., that IV does not have an effect on DV
 - Assume null hypothesis is true
 - Examine sampling distribution around test statistic
 - How likely would we be to get test statistic if null hypothesis were true?
 - Allows us to say how confidently we can reject null hypothesis, and thus the level of statistical significance we find

- One sample t-test
 - Test specific prediction about value of mean
- Ex.—Hypothesis: The average Norwegian adult male is taller than 1.7 meters
 - What's the null hypothesis?
 - If null is correct, what's the center of the sampling distribution?
 - I take a SRS of 225 Norwegian adult males and find that the average height in the sample is 1.73 meters with a standard deviation of 20 centimeters. Can I reject the null hypothesis with 95% confidence?

- Two-sample t-test
 - Test whether there is a difference between two means
- Ex—Hypothesis: Norwegian men have a higher average height than Swedish men
 - What's the null hypothesis?
 - Random sample of 100 Norwegians and 100 Swedes
 - $\bar{x}_{Norwegians}$: 1.81 meters, $s_{Norwegians}$: 0.1 meters
 - \bar{x}_{Swedes} : 1.79 meters, $s_{Norwegians}$: 0.08 meters
 - Can I reject the null hypothesis with 95% confidence?

- One-sample proportion test
 - Test specific prediction about proportion in population
- Ex—Hypothesis: proportion of Maryland drivers who are bad drivers is greater than 0.3
 - What's the null hypothesis?
 - I take a sample of 100 Maryland drivers, find that 0.38 of them are bad drivers.
 - What's the p-value?

- Two-sample proportion test
 - Test whether there is a difference in proportions
- Ex.—Hypothesis: Proportion of Maryland drivers who are bad drivers is lower than the proportion of Massachusetts drivers who are bad drivers
 - What's the null hypothesis?
 - I take a random sample of 100 Maryland drivers and find that 0.35 of them are bad drivers and take a random sample of 100 Massachusetts drivers and find that 0.4 of them are bad drivers
 - What is the p-value?

Cross-Tab and Chi-Square

- Ha: In comparing individuals, republicans are more likely to be morning people than independents, who are more likely than democrats
- IV: Party-id (self-identified)
- DV: Morning people, afternoon people, evening people
- In a SRS, of morning people, 78 are Republicans, 53 Independent, and 95 Democrats
- Of afternoon people: 27 are Republicans, 25 Independent, and 34 Democrats
- Of night people: 55 Republican, 62 Independent, 111 Democrats
- Make a cross-tab, find chi-square, and give me a range of the p-value

What We Have Not Discussed

- What to do with a very small sample
 - T-statistic is not robust to (very) small sample sizes
 - If your sample size is very small, use binomial (not normal) distribution to make inferences about p
 - If expected cell counts are very small for any cells, chi-square test not appropriate
- Punchline—if you have a very small sample (say, less than 30-40), either
 - Go get more data
 - Learn how to analyze it (you won't learn it in this class)

Control Variables

- We have examined three principal approaches: difference of means, difference of proportions, & chi-square
- Each examines the effect of some IV on a DV
- But, remember the danger of confounding variables
- Can incorporate control variables into these analyses, but is often unwieldy
 - Essentially split the sample

Control Variables

- In experimental design, with random assignment to control/treatment groups, these methods can be very powerful
 - Example—proportion of cancer patients surviving 5 years receiving treatment compared to placebo
- If observational research, can tell us something about differences, but want to think about control variables for hypothesis testing
- Regression allows for easy incorporation of control variables
 - Will discuss multiple linear regression after second exam

Exam 2

- Same format as last exam:
 - Two sections—conceptual & applied questions
- Same process:
 - Exam becomes available after lab session on Friday
 - Due by Monday at 11:59 p.m.
 - Open note, but you may not consult anyone else

What you should know

- Basic logic of probability theory and sampling distributions
 - E.g., Expect probability questions/problems to solve
- How to compute a standard error for a mean and a proportion
- How to find confidence intervals, p-values, t-statistics, and z-scores
- The logic of hypothesis testing and statistical significance
- How to interpret a difference of means and difference of proportions test
- Cross-tabs & chi-square statistics

Application—Election Monitoring and Fraud

- Election monitoring has become a "norm"
 - But, does election monitoring matter?
- Is there less fraud in elections that are monitored than those that are not?
- Study argues yes—election monitoring can deter fraud at observed polling places
 - Hyde, Susan D. (2007), "The Observer Effect in International Politics: Evidence from a Natural Experiment." *World Politics* 60(1): 37-63.
- Hypothesis: In comparing polling stations, those that are monitored by international observers will have less fraud than those that are not monitored by international observers

International Election Monitoring

Figure 1: Rate of Internationally Observed Elections, 1960-2006

Note: Includes 1754 election events in 157 independent states, excluding those with population < 250,000 Source: Author

Alternative Explanations

- One difficulty in assessing effect of election monitoring is controlling for alternative explanations
 - Election monitors may go to easier to reach polling stations
 - Fraud may be committed at harder to reach stations
- May mean we observe no relationship between monitoring and fraud
- Hyde (2007)'s approach:
 - Quasi-experimental design
 - Natural Experiment—Election monitors assigned essentially randomly in Armenian election of 2003
 - No advance warning given
 - Since assignment essentially random, no worry of alternative explanations

Research Design

- Unit of Analysis:
 - Polling Station
- Variables:
 - I.V.—Presence (or absence) of international election monitors
 - D.V.—Level of electoral fraud
- Predicted effect—lower levels of electoral fraud in polling stations with presence of election monitors
- How to measure fraud?
 - Hyde's measure—percentage of the vote won by the incumbent
 - Logic—incumbents more able to steal election, if fraud is lessened, incumbent should get less of the vote share

The 2003 Elections

- Two rounds of elections:
 - First round, several candidates for President on February 19
 - Second round, top two candidates on March 5
- Descriptive statistics:
 - 755 polling stations never monitored
 - 385 polling stations only monitored in 1st round
 - 260 polling stations only monitored in 2nd round
 - 363 polling stations monitored in both rounds
- Two rounds allows for examining if there was a lingering effect of monitoring
- Compare mean vote share for incumbent in polling stations based on presence of monitors

Results

Table 1

Difference of Means Tests Comparing "Treatment" and
"Control" Groups"

Average Incumbent Vote Share among Polling Stations That Were		Average Incumbent Vote Share among Polling Stations vs. That Were		Difference
1.	Not observed in R1 54.2% (R1 vote share)	49	Observed in R1 48.3% (R1 vote share)	5.9% t(1762)=5.92 P> t =0.00
2.	Not observed in R2 69.3% (R2 vote share)	vs.	Observed in R2 67.3% (R2 vote share)	2.0% t(1761)=2.47 P> t =0.014
3.	Never observed 70.7% (R2 vote share)	vs.	Observed in both R1 and R2 66.2% (R2 vote share)	4.5% t(1116)=4.48 P> t =0.00
4.	Never observed 62.8% (Average of R1 and R2 vote share)	vs.	Observed in both R1 and R2 57% (Average of R1 and R2 vote share)	5.8% t(1116)=5.36 P> t =0.00
5.	Never observed 62.7% (Average of R1 and R2 vote share)	vs.	Observed in one or both rounds 58.1% (Average of R1 and R2 vote share)	4.6% t(1761)=5.65 P> t =0.00
6.	Never observed 70.7% (R2 vote share)	vs.	Observed only in R1 66.3% (R2 vote share)	4.4% t(1138)=4.40 P> t =0.00
7.	Never observed 70.7% (R2 vote share)	vs.	Observed only in R2 68.7% (R2 vote share)	2.0% t(1013)=1.73 P> t =0.084
8.	Observed only in R2 68.7% (R2 vote share)	vs.	Observed in both R1 and R2 66.2% (R2 vote share)	2.5% t(621)=1.93 P> t =0.054
9.	Observed in both R1 and R2 66.3% (R2 vote share)	vs.	Observed only in R1 66.2% (R2 vote share)	.11% t(746)=0.094 P> t =0.93
10.	Observed only in R1 68.7% (R2 vote share)	vs.	Observed only in R2 66.3% (R2 vote share)	2.4% t(643)=1.83 P> t =0.067

^{*} Reported results reflect two-sample t-tests with equal variances.

Rejecting the Null Hypothesis

- Ha: In comparing polling stations, those with international election monitors will have higher levels of fraud (measured as a higher percentage of votes for the incumbent) than those without monitors
- H0: In comparing polling stations, those with international election monitors will have the same level of fraud (measured as a higher percentage of votes for the incumbent) than those without monitors
- We have a sample that shows a difference between the vote share of incumbent between polling stations:
 - Not Observed (Round 1): 54.2%
 - Observed (Round 1): 48.3%
- Could this difference be due to random sampling error?

Differences between Polling Stations

- Not Observed (Round 1): 54.2%
- Observed (Round 1): 48.3%
- Difference: 5.9%
- Standard Error of the Difference: 1
- This means that the Difference is almost 6 times the S.E. of the Difference
- If there were no actual difference between monitored and unmonitored polling stations, it is extremely unlikely (less than 0.001% chance) we would get a difference like we find in our sample
- So, can reject the null hypothesis with more than 95% confidence

Results

Table 1

Difference of Means Tests Comparing "Treatment" and
"Control" Groups"

Average Incumbent Vote Share among Polling Stations That Were		Average Incumbent Vote Share among Polling Stations vs. That Were		Difference
1.	Not observed in R1 54.2% (R1 vote share)	49	Observed in R1 48.3% (R1 vote share)	5.9% t(1762)=5.92 P> t =0.00
2.	Not observed in R2 69.3% (R2 vote share)	vs.	Observed in R2 67.3% (R2 vote share)	2.0% t(1761)=2.47 P> t =0.014
3.	Never observed 70.7% (R2 vote share)	vs.	Observed in both R1 and R2 66.2% (R2 vote share)	4.5% t(1116)=4.48 P> t =0.00
4.	Never observed 62.8% (Average of R1 and R2 vote share)	vs.	Observed in both R1 and R2 57% (Average of R1 and R2 vote share)	5.8% t(1116)=5.36 P> t =0.00
5.	Never observed 62.7% (Average of R1 and R2 vote share)	vs.	Observed in one or both rounds 58.1% (Average of R1 and R2 vote share)	4.6% t(1761)=5.65 P> t =0.00
6.	Never observed 70.7% (R2 vote share)	vs.	Observed only in R1 66.3% (R2 vote share)	4.4% t(1138)=4.40 P> t =0.00
7.	Never observed 70.7% (R2 vote share)	vs.	Observed only in R2 68.7% (R2 vote share)	2.0% t(1013)=1.73 P> t =0.084
8.	Observed only in R2 68.7% (R2 vote share)	vs.	Observed in both R1 and R2 66.2% (R2 vote share)	2.5% t(621)=1.93 P> t =0.054
9.	Observed in both R1 and R2 66.3% (R2 vote share)	vs.	Observed only in R1 66.2% (R2 vote share)	.11% t(746)=0.094 P> t =0.93
10.	Observed only in R1 68.7% (R2 vote share)	vs.	Observed only in R2 66.3% (R2 vote share)	2.4% t(643)=1.83 P> t =0.067

^{*} Reported results reflect two-sample t-tests with equal variances.

From Measure to Concept

- Hyde demonstrates that the incumbent president received a lower vote share in polling stations that were monitored than in those not monitored
 - And finds a "lingering effect" on polling stations in R2 that were monitored in R1
- Is this evidence that election monitors deter fraud?
- Concept—fraud
- Measure—vote share of the incumbent

Control Variables

- This difference of means test looks at difference between monitored and unmonitored polling stations
 - No control variables
 - Hyde does do a regression controlling for difficulty of access to polling places, rural/urban distinction, and whether the polling station is in Nagorno-Karabakh
- Random assignment of polling stations to monitoring means there should be no problem of lurking variables
- So, any difference between polling stations should only be due to random sampling error and effect of election monitoring