Approximation Algorithms

• Main issues

- Finding a good lower or upper bound for the optimal solution value
- Relating your algorithm's solution value to this bound
- Examples: Scheduling and Vertex Cover

• Basic Setting

- Working with an optimization problem, not a decision problem, where you are trying to minimize or maximize some value
- Examples:
 - * Vertex cover
 - · Input: Graph G = (V, E)
 - · Task: Find a vertex cover of minimum size
 - · Value to be minimized: vertex cover size
 - * Independent Set
 - · Input: Graph G = (V, E)
 - · Task: Find an independent set of maximum size
 - · Value to be maximized: independent set size
- The problems are **NP**-hard
 - * The decision version of all these problems is NP-complete
 - * Thus, we probably cannot find a polynomial time algorithm that solves the problem optimally for all input instances.

- Notation

- * Let Π be the problem under consideration
- * Let I be an input instance of Π
- * let OPT denote the optimal algorithm
- * Let A denote the algorithm under consideration
- * For any algorithm A and any input instance I, let A(I) denote the value of A's solution for input instance I
- Absolute approximation of c (c-absolute-approximation algorithm)
 - * $\exists c \text{ such that } \forall I A(I) \leq OPT(I) + c \text{ for minimization problem } \Pi$
 - · A is a 2-absolute-approximation algorithm for vertex cover if A can always find a vertex cover at most 2 nodes larger than the optimal size.
 - * $\exists c \text{ such that } \forall I A(I) \geq OPT(I) c \text{ for maximization problem } \Pi$
 - · A is a 2-absolute-approximation algorithm for independent set if A can always find an independent set at most 2 nodes smaller than the optimal size.
 - * Very few **NP**-hard problems have polynomial-time absolute approximation algorithms

- Relative approximation (c-approximation algorithm)
 - * $\exists c$ such that $\forall IA(I) \leq c \times OPT(I)$ for minimization problem Π
 - · For example, A is a 2-approximation algorithm for vertex cover if A can always find a vertex cover of at most twice the optimal size.
 - * $\exists c \text{ such that } \forall IA(I) \geq (1/c) \times OPT(I) \text{ for maximization problem } \Pi$
 - · For example, A is a 2-approximation algorithm for independent set if A can always find an independent set of at least half the optimal size.
 - * Most of our focus is finding good relative approximation algorithms; unless explicitly stated otherwise, when I talk about approximation algorithms, I mean relative approximation algorithms
- Example: Multiprocessor scheduling to minimize makespan
 - Input
 - * Set of n jobs with processing times x_n
 - * Number of machines m
 - Task
 - * Schedule the jobs on the m machines with the goal of minimizing the makespan (maximum completion time of any job) of the schedule.
 - Initial thoughts about this problem
 - * Suppose m = 1: is this problem hard?
 - * We know this problem is hard for $m \geq 2$ because of a reduction from the partition problem.
- Graham's list scheduling algorithm (Greedy)
 - Take the items in an arbitrary order
 - Place each item on the currently least loaded machine
 - This is a greedy algorithm
- Proof of (2-1/m)-approximation factor
 - Greedy's cost
 - * Let job j be the last job to complete by Greedy
 - * Let h be the load of the machine j is placed onto before job j is placed
 - * Greedy's cost is $h + x_i$
 - Bounds on OPT(I)
 - $* OPT(I) \ge \max_i x_i$
 - * $OPT(I) \ge \frac{1}{m} \sum_{i=1}^{n} x_i$
 - Relating the two costs
 - $* h \le \frac{1}{m} ((\sum_{i=1}^n x_i) x_j)$
 - \cdot This follows because greedy places j onto the least loaded machine available

- · In the worst case, the least loaded machine has height the average cost of the remaining n-1 jobs (if job j is the last job and the other jobs can be evenly partitioned)
- * This gives us $GREEDY(I) = h + x_j$ $\leq \frac{1}{m}((\sum_{i=1}^{n} x_i) - x_j) + x_j$ $= \frac{1}{m}(\sum_{i=1}^{n} x_i) + \frac{m-1}{m}x_j$ $\leq OPT(I) + \frac{m-1}{m}OPT(I)$ $= (2 - \frac{1}{m})OPT(I)$
- Longest job first
 - Same as Graham's list scheduling but first sort the jobs into non-decreasing order by size
- Proof of $(4/3 \frac{1}{3m})$ -approximation ratio
 - Let job j be the last job to complete by LJF
 - Without loss of generality, remove all jobs smaller than job j
 - * LJF's cost cannot decrease because all jobs removed are scheduled after job j and thus do not affect the completion time of job j by LJF.
 - * OPT's cost cannot increase by removing jobs
 - LJF's cost
 - * Let h be the load of the machine j is placed onto before job j is placed
 - * LJF's cost is $h + x_i$
 - Bound on OPT(I)
 - * $OPT(I) \ge \frac{1}{m} \sum_{i=1}^{n} x_i$
 - -2 cases based on size of x_i
 - Case 1: $x_i \leq OPT(I)/3$
 - $* h \le \frac{1}{m} ((\sum_{i=1}^n x_i) x_j)$
 - \cdot This follows because LJF places j onto the least loaded machine available
 - · In the worst case, the least loaded machine has height the average cost of the remaining n-1 jobs (if job j is the last job and the other jobs can be evenly partitioned)
 - * This gives us $LJF(I) = h + x_j$ $\leq \frac{1}{m}((\sum_{i=1}^{n} x_i) - x_j) + x_j$ $= \frac{1}{m}(\sum_{i=1}^{n} x_i) + \frac{m-1}{m}x_j$ $\leq OPT(I) + \frac{m-1}{m}\frac{OPT(I)}{3}$ $= (4/3 - \frac{1}{3m})OPT(I)$
 - Case 2: $x_i > OPT(I)/3$
 - * Since the smallest job in the instance has size strictly larger than 1/3OPT(I), in the optimal schedule, no machine has more than 2 jobs scheduled on it.
 - * In this case, the optimal way to schedule jobs is to do exactly what LJF will do: pair up job m-i with job m+1+i

- * Thus, in this case LJF(I) = OPT(I)
- Since in both cases we have shown that $LJF(I) \leq (4/3 \frac{1}{3m})OPT(I)$, the result follows.
- Example: Vertex Cover
 - Input
 - * Graph G = (V, E)
 - Task
 - * Find a vertex cover of minimum possible size
 - NP-hardness result
 - * We know this problem is **NP**-hard because of a reduction from the independent set problem.
- Greedy is NOT good for vertex cover
 - Choose a node with highest updated degree breaking ties arbitrarily
 - Update degrees of remaining nodes
 - Can produce solution $\log n$ times as large as optimal
- Maximal matching algorithm
 - Find a maximal matching in the graph
 - * A matching is a set of edges such that no two edges in the matching share a node
 - * A maximal matching is a matching that cannot be increased by the addition of an edge without violating the condition of no two edges sharing a node
 - · A maximum matching is a largest possible maximal matching.
 - · Maximum matchings can be found in polynomial time, but the algorithm is fairly sophisticated
 - * Maximal matchings can be found efficiently by processing the edges one at a time retaining an edge if and only if it does not share a node with any of the already chosen edges
 - Choose both nodes from all edges in the matching to be in the vertex cover
 - * This set of nodes must be a vertex cover
 - * Suppose it is not.
 - * Then there is some edge (u, v) that does not include a node in the candidate vertex cover
 - * In this case, edge (u, v) can be added to the maximal matching contradicting the claim that we had a maximal matching.
- Proof of 2-approximation ratio
 - Let the matching size be M
 - Our algorithm's cost is 2M

- $-OPT(I) \ge M$
 - * This follows because each edge in the matching must be covered by at least one node
 - * Since no two edges in the matching share a node, at least one of the two nodes from each edge must be chosen.
- Example: Bin Packing
 - Input
 - * Set of n objects of sizes s_i
 - * Infinite number of bins of size B
 - Task
 - * Find a packing of the n objects into the minimum possible number of bins
 - Bin packing is **NP**-complete
 - * Can reuse the reduction from Partition to Makespan Scheduling
- Algorithms
 - First Fit Algorithm
 - * Arbitrarily order the items
 - * Number the bins by the order they are opened (initially no bins are open)
 - * When working with item i, place it into the first open bin it fits into. If it does not fit into any open bin, open a new bin and place it into that bin.
 - Best Fit Algorithm
 - * Arbitrarily order the items
 - * When working with item i, place it into the open bin it fits most tightly into. If it does not fit into any open bin, open a new bin and place it into that bin.
 - First Fit Decreasing Algorithm
 - * Sort the items into non-decreasing order by size
 - * Number the bins by the order they are opened (initially no bins are open)
 - * When working with item i, place it into the first open bin it fits into. If it does not fit into any open bin, open a new bin and place it into that bin.
 - Best Fit Decreasing Algorithm
 - * Sort the items into non-decreasing order by size
 - * When working with item i, place it into the open bin it fits most tightly into. If it does not fit into any open bin, open a new bin and place it into that bin.
 - Proof that all algorithms are at least 2-approximations
 - * There is at most 1 open bin that is more than half empty
 - · If not, any of the algorithms would have combined the items in the two at least half-empty bins into 1 bin
 - * Thus, an upper bound on the number of bins (ignoring the one possibly half-empty bin) used by any of these algorithms is $2\frac{1}{B}\sum_{i=1}^{n} s_i$

- * Clearly, $OPT(I) \geq \frac{1}{B} \sum_{i=1}^{n} s_i$
- * The result of 2 follows.
- FF and BF have approximation ratios of 17/10 ignoring a constant additive factor
- FFD and BFD have approximation ratios of 11/9 ignoring a constant additive factor
- The proofs of these results are very long and involved.
- Example: Traveling Salesperson
 - Input
 - * List of n cities
 - * Distances d(i,j) between each pair of cities
 - Task
 - * Find a tour of the cities of minimum possible total length
 - No polynomial-time c-approximation algorithm exists for this problem unless $\mathbf{P} = \mathbf{NP}$
 - * If there is a polynomial-time c-approximation algorithm for this problem, then Hamiltonian Cycle can be solved in polynomial time.
 - * Take an arbitrary input instance (graph G = (V, E)) of Hamiltonian Cycle and turn it into a TSP problem as follows:
 - \cdot For each node in V, create a city
 - · For each edge $(i, j) \in E$, set d(i, j) = 1
 - · For each pair of vertices $(i,j) \notin E$, set d(i,j) = nc
 - · If G has a Hamiltonian cycle, then the optimal tour in the TSP instance is n
 - · If G does not have a Hamiltonian cycle, then the optimal tour in the TSP instance has length at least n-1+nc
 - * Apply our c-approximation algorithm to the TSP instance
 - · If our approximation algorithm for TSP returns an answer of at most nc, then we know our original graph had a Hamiltonian cycle.
 - · If our approximation algorithm for TSP returns an answer greater than nc, then we know our original graph did not have a Hamiltonian cycle.
 - Thus, we can solve the Hamiltonian cycle problem in polynomial time using our c-approximation algorithm for TSP.
- Example: Metric Traveling Salesperson
 - Input
 - * List of *n* cities
 - * Distances d(i, j) between each pair of cities
 - · Distances satisfy triangle inequality: $d(i, j) + d(j, k) \le d(i, k)$
 - · Note that the distances in our proof above that unrestricted TSP is hard to approximate do not satisfy this constraint

- Task
 - * Find a tour of the cities of minimum possible total length
- Greedy algorithm
 - Best guarantee is $O(\log n)OPT(I)$
- MST algorithm
 - Find a minimum spanning tree T.
 - Double all the edges in T to create an Eulerian graph.
 - Take an Euler tour of the graph using shortcuts to avoid visiting cities more than once.
 - * Shortcuts cannot increase cost because of triangle inequality
- Proof of 2-approximation ratio
 - Let C(T) be the total weight of the minimum spanning tree T
 - $OPT(I) \ge C(T)$
 - * Remove an edge from the optimal tour.
 - * We now have a path which is one possible spanning tree.
 - * The minimum spanning tree must have cost no more than this path.
 - $-MST(I) \le 2C(T)$
 - * The Eulerian tour has cost exactly 2C(T)
 - * When taking shortcuts, this cost may decrease but cannot increase because of triangle inequality
- Christofides' matching improvement
 - Find a minimum spanning tree T.
 - Find all the nodes in T with odd degree
 - Find a minimum weight matching M of these nodes
 - Create an Eulerian graph by adding the edges in M to those in T
 - Take an Euler tour of the graph using shortcuts to avoid visiting cities more than once.
- Proof of 3/2-approximation ratio
 - Let C(T) be the total weight of the minimum spanning tree T and let C(M) be the total weight of M
 - $-OPT(I) \ge C(T)$
 - * Remove an edge from the optimal tour.
 - * We now have a path which is one possible spanning tree.
 - * The minimum spanning tree must have cost no more than this path.
 - $-1/2OPT(I) \ge C(M)$

- * Consider the optimal tour
- * Take shortcuts to produce a tour that only includes the nodes with odd degree in T
- * This reduced tour has total weight at most OPT(I) because shortcuts cannot increase the weight by the triangle inequality
- * This reduced tour an be used to create two possible matchings of these nodes by selecting every other edge
- * The minimum weight matching M must choose a matching that is less than the minimum of these two matchings, and the result follows.

$-Chr(I) \le 3/2C(T)$

- * The Eulerian tour has cost exactly $C(T) + C(M) \leq 3/2OPT(I)$
- * When taking shortcuts, this cost may decrease but cannot increase because of triangle inequality