Modelado y simulación numérica

Daniel Pérez Palau

Resolución Actividad 1: Modelado de un sistema físico

Enunciado

- La esclusa que se encuentra aguas arriba se modeliza como una fuente de flujo que genera un flujo $\gamma m^3/s$ que se puede regular.
- El canal por el que desciende el agua no es perfecto. Las deformidades del borde provocan unas perdidas por fricción con constante de rozamiento de $0.1 \, kgm^{(-4)} \, s^{(-1)}$.
- Las aspas del molino transforman la energía del sistema de fluidos a un sistema mecánico de rotación. Se pueden considerar como un girador con constante $5 kg s^{(-1)} m^{(-1)}$.

Enunciado 2ª parte

- Las aspas del molino transforman la energía del sistema de fluidos a un sistema mecánico de rotación. Se pueden considerar como un girador con constante $5 kg s^{(-1)} m^{(-1)}$.
- La rotación de las aspas se considera como una inercia de $20 kg m^2$.
- Para representar las pérdidas producidas en el molino se emplea un conjunto de resistencia y resorte con parámetros $2 kg m^2 s^{(-1)}$ y $4 kg m^2 s^{(-2)}$ respectivamente.
- Después de considerar las pérdidas se transmite la energía al eje de transmisión (una masa en rotación con una inercia de $10\ kg\ m^2$).

Enunciado 2ª parte

- Después de considerar las pérdidas se transmite la energía al eje de transmisión (una masa en rotación con una inercia de $10\ kg\ m^2$).
- Finalmente, se cambia el eje de rotación mediante una rueda dentada cónica (transformador) con una relación de 0.8. La muela tiene una inercia de $20 kg m^2$.

Determinar los dominios físicos que existen en el sistema y todos los elementos básicos. Asignar a cada elemento un nombre único para distinguirlos de los demás.

Dominio de fluidos (hidrodinámico)

- Fuente de flujo S_f : γ
- Resistencia (rugosidades): R: 0,1
- Girador: *GY*: 5

Dominio mecánico de rotación:

- Girador: *GY*: 5
- Inercia (aspas): *I*: 20
- Resistencia: R: 2
- Capacitador (muelles): C:4
- Inercia (tronco de transmisión): *I*: 10
- Transformador: TR: 0.8
- Inercia (muela): *I*:20

Paso 2 y 3

Paso 2: indicar una variable de esfuerzo/flujo de referencia en el dominio de fluidos/mecánico

- En fluidos, la presión de referencia después de la fuente.
- En rotación, velocidad angular de referencia después de las aspas

Paso 3: Identificar el resto de las presiones/velocidades y asignarles un nombre único

Fluidos

Paso 4: Dibujar las presiones mediante uniones 0

Paso 5: Identificar las diferencias de presión para conectar los puertos de todos los elementos.

Paso 6: construir las diferencias de presión usando un nodo tipo 1.

Paso 7: Conectar los puertos de todos los elementos con las uniones 0.

 P_1

Mecánico de rotación 1

Paso 4: Dibujar los flujos mediante uniones 1

Paso 5: Identificar las diferencias de flujo para conectar los puertos de todos los elementos.

Paso 6: construir las diferencias de flujo usando un nodo tipo 0.

Paso 7: Conectar los puertos de todos los elementos con las uniones 1.

1

Mecánico de rotación 2

Paso 4: Dibujar los flujos mediante uniones 1

Paso 5: Identificar las diferencias de flujo para conectar los puertos de todos los elementos.

Paso 6: construir las diferencias de flujo usando un nodo tipo 0.

Paso 7: Conectar los puertos de todos los elementos con las uniones 1.

Juntando todo lo anterior

Simplificación del grafo

Simplificación del grafo

Asignar causalidades (obligatorias)

Caso 1.a

Caso 1.b

Caso 2

Extraer ecuaciones

$$f_7 = f_8 = f_9$$

 $e_7 = e_8 + e_9$

$$f_1 = \gamma$$

 $f_1 = f_2 = f_3$
 $e_1 = e_2 + e_3$

$$f_4 = f_5 = f_6$$

 $e_4 = e_5 + e_6$

$$e_6 = e_7 = e_{10}$$

 $f_6 = f_7 + f_{10}$

$$f_1 = f_2 = f_3 = \dots$$

 $\sum e_{ent.} = \sum e_{sat.}$

$$f_4 = f_5 = f_6$$
 $f_{10} = f_{11} = f_{12}$ $e_4 = e_5 + e_6$ $e_{10} = e_{11} + e_{12}$

Extraer ecuaciones

Causalidad preferencial

(Causalidad esfuerzo) $flujo = 1/m \cdot \int esfuerzo \cdot dt$

Causalidad no preferencial

 $esfuerzo = m \cdot d(flujo)/dt$

Extraer ecuaciones

$$e_4 = 5f_3$$

$$e_3 = 5f_4$$

$$\begin{array}{c|c} e_{1} & e_{2} \\ \hline f_{1} & GY & f_{2} \\ \hline \end{array} \qquad \begin{array}{c|c} e_{2} = rf_{1} \\ e_{1} = rf_{2} \\ \hline \end{array}$$

$$f_{12} = f_{13}/0.8$$

 $e_{13} = e_{12}/0.8$

$$f_{1} = f_{2}/n$$

$$e_{2} = e_{1}/n$$

$$f_{1} = f_{2}/n$$

$$f_{2} = f_{3}/n$$

Extraer ecuaciones

$$f_{8} = \frac{e_{8}}{8}$$

$$0.1f_{2} = e_{2}$$

$$\mathbf{R} \quad 0.1$$

$$\mathbf{R} \quad \mathbf{R} \quad \mathbf{S} \quad \mathbf{F} \quad \mathbf{$$

Extraer ecuaciones:

$$f_{1} = \gamma$$

$$f_{1} = f_{2} = f_{3}$$

$$e_{1} = e_{2} + e_{3}$$

$$f_{4} = f_{5} = f_{6}$$

$$e_{4} = e_{5} + e_{6}$$

$$e_{6} = e_{7} = e_{10}$$

$$f_{6} = f_{7} + f_{10}$$

$$f_{7} = f_{8} = f_{9}$$

$$e_{7} = e_{8} + e_{9}$$

$$f_{10} = f_{11} = f_{12}$$

$$e_{10} = e_{11} + e_{12}$$

$$f_5 = \frac{1}{20} \int e_5 dt$$

$$e_{11} = 10 df_{11}$$

$$f_{13} = \frac{1}{20} \int e_{13} dt$$

$$e_9 = 4 \int f_9 dt$$

$$f_8 = \frac{e_8}{8}$$

$$f_2/10 = e_2$$

$$e_4 = 5f_3$$

 $e_3 = 5f_4$
 $f_{12} = 5f_{13}/4$
 $e_{13} = 5e_{12}/4$

Finalmente simplificamos:

$$f_{1} = \gamma$$

$$f_{1} = f_{2} = f_{3}$$

$$e_{1} = e_{2} + e_{3}$$

$$f_{4} = f_{5} = f_{6}$$

$$e_{4} = e_{5} + e_{6}$$

$$e_{6} = e_{7} = e_{10}$$

$$f_{6} = f_{7} + f_{10}$$

$$f_{7} = f_{8} = f_{9}$$

$$e_{7} = e_{8} + e_{9}$$

$$f_{10} = f_{11} = f_{12}$$

$$e_{10} = e_{11} + e_{12}$$

$$f_5 = \frac{1}{20} \int e_5 dt$$

$$e_{11} = 10 d f_{11}$$

$$f_{13} = \frac{1}{20} \int e_{13} dt$$

$$e_9 = 4 \int f_9 dt$$

$$f_8 = \frac{e_8}{8}$$

$$f_2/10 = e_2$$

$$e_4 = 5f_3$$
 $e_3 = 5f_4$
 $f_{12} = 5f_{13}/4$
 $e_{13} = 5e_{12}/4$

En el primer paso de la simplificación de ecuaciones tomaremos las igualdades de nodos 0 y 1 y nos quedaremos con el subíndice menor

Finalmente simplificamos:

$$e_{1} = e_{2} + e_{3}$$

$$e_{4} = e_{5} + e_{6}$$

$$f_{4} = f_{7} + f_{10}$$

$$e_{6} = e_{8} + e_{9}$$

$$e_{6} = e_{11} + e_{12}$$

$$f_{4} = \frac{1}{20} \int e_{5} dt$$

$$e_{11} = 10 d f_{10}$$

$$f_{13} = \frac{1}{20} \int e_{13} dt$$

$$e_{9} = 4 \int f_{7} dt$$

$$f_{7} = \frac{e_{8}}{8}$$

$$\frac{\gamma}{10} = e_{2}$$

$$e_4 = 5\gamma$$
 $e_3 = 5f_4$
 $f_{10} = 5f_{13}/4$
 $e_{13} = 5e_{12}/4$

Variables restantes: 15

$$f_4, f_7, f_{10}, f_{13}$$

 $e_1, e_2, e_3, e_4, e_5, e_6, e_8, e_9, e_{11}, e_{12}, e_{13}$

$$f_1, f_2, f_3, f_5, f_6, f_8, f_9, f_{11}, f_{12}$$

 e_7, e_{10}

Finalmente simplificamos:

$$e_{1} = e_{2} + e_{3}$$

$$e_{4} = e_{5} + e_{6}$$

$$f_{4} = f_{7} + f_{10}$$

$$e_{6} = e_{8} + e_{9}$$

$$e_{6} = e_{11} + e_{12}$$

$$f_{4} = \frac{1}{20} \int e_{5} dt$$

$$e_{11} = 10 df_{10}$$

$$f_{13} = \frac{1}{20} \int e_{13} dt$$

$$e_{9} = 4 \int f_{7} dt$$

$$f_{7} = \frac{e_{8}}{8}$$

$$\gamma/10 = e_{2}$$

$$e_4 = 5\gamma$$
 $e_3 = 5f_4$
 $f_{10} = 5f_{13}/4$
 $e_{13} = 5e_{12}/4$

Realizamos la substitución de f_4 , e_{11} , f_{13} , f_7 y e_2

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + e_{3}$$

$$e_{4} = e_{5} + e_{6}$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + f_{10}$$

$$e_{6} = e_{8} + e_{9}$$

$$e_{6} = 10df_{10} + e_{12}$$

$$e_9 = 4 \int \frac{e_8}{8} dt$$

$$e_{4} = 5\gamma$$

$$e_{3} = 5\frac{1}{20} \int e_{5} dt$$

$$f_{10} = \frac{5}{4} \frac{1}{20} \int e_{13} dt$$

$$e_{13} = 5e_{12}/4$$

Variables restantes: 10

$$f_{10}$$
 $e_1, e_3, e_4, e_5, e_6, e_8, e_9, e_{12}, e_{13}$

$$f_1, f_2, f_3, f_5, f_6, f_8, f_9, f_{11}, f_{12}, f_4, f_{13}, f_7$$

 e_7, e_{10}, e_2, e_{11}

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + e_{3}$$

$$e_{4} = e_{5} + e_{6}$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + f_{10}$$

$$e_{6} = e_{8} + e_{9}$$

$$e_{6} = 10df_{10} + e_{12}$$

$$e_9 = 4 \int \frac{e_8}{8} dt$$

$$e_{4} = 5\gamma$$

$$e_{3} = \frac{1}{4} \int e_{5} dt$$

$$f_{10} = \frac{1}{16} \int e_{13} dt$$

$$e_{13} = 5e_{12}/4$$

Operamos

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + e_{3}$$

$$e_{4} = e_{5} + e_{6}$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + f_{10}$$

$$e_{6} = e_{8} + e_{9}$$

$$e_{6} = 10df_{10} + e_{12}$$

$$e_9 = 4 \int \frac{e_8}{8} dt$$

$$e_{4} = 5\gamma$$

$$e_{3} = \frac{1}{4} \int e_{5} dt$$

$$f_{10} = \frac{1}{16} \int e_{13} dt$$

$$e_{13} = 5e_{12}/4$$

Eliminamos e_9 , e_4 , f_{10} y e_3

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{1}{4} \int e_{5} dt$$

$$5\gamma = e_{5} + e_{6}$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + \frac{1}{16} \int e_{13} dt$$

$$e_{6} = e_{8} + 4 \int \frac{e_{8}}{8} dt$$

$$e_{6} = 10d \frac{1}{16} \int e_{13} dt + e_{12}$$

$$e_{13} = 5e_{12}/4$$

Variables restantes: 6

$$e_1, e_5, e_6, e_8, e_{12}, e_{13}$$

$$f_1, f_2, f_3, f_5, f_6, f_8, f_9, f_{11}, f_{12}, f_4, f_{13}, f_7, f_{10}$$

 $e_7, e_{10}, e_2, e_{11}, e_9, e_3, e_4$

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{1}{4} \int e_{5} dt$$

$$5\gamma = e_{5} + e_{6}$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + \frac{1}{16} \int e_{13} dt$$

$$e_{6} = e_{8} + \int \frac{e_{8}}{2} dt$$

$$e_{6} = \frac{5}{8} e_{13} + e_{12}$$

$$e_{13} = 5e_{12}/4$$

Operamos:

$$10d\frac{1}{16} \int e_{13} \, dt = \frac{5}{8} e_{13}$$

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{1}{4} \int e_{5} dt$$

$$5\gamma = e_{5} + e_{6}$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + \frac{1}{16} \int e_{13} dt$$

$$e_{6} = e_{8} + \int \frac{e_{8}}{2} dt$$

$$e_{6} = \frac{5}{8} e_{13} + e_{12}$$

Eliminamos e_6 y e_{13}

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{1}{4} \int e_{5} dt$$

$$5\gamma = e_{5} + e_{8} + \int \frac{e_{8}}{2} dt$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + \frac{1}{16} \int \frac{5e_{12}}{4} dt$$

$$e_{8} + \int \frac{e_{8}}{2} dt = \frac{5}{8} \frac{5e_{12}}{4} + e_{12}$$

Variables restantes: 4

$$e_1, e_5, e_8, e_{12}$$

$$f_1, f_2, f_3, f_5, f_6, f_8, f_9, f_{11}, f_{12}, f_4, f_{13}, f_7, f_{10}$$

 $e_7, e_{10}, e_2, e_{11}, e_9, e_3, e_4, e_6, e_{13}$

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{1}{4} \int e_{5} dt$$

$$5\gamma = e_{5} + e_{8} + \int \frac{e_{8}}{2} dt$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + \frac{5}{64} \int e_{12} dt$$

$$e_{8} + \int \frac{e_{8}}{2} dt = \left(\frac{25}{32} + 1\right) e_{12} = \frac{57}{32} e_{12}$$

Variables restantes: 4

$$e_1, e_5, e_8, e_{12}$$

$$f_1, f_2, f_3, f_5, f_6, f_8, f_9, f_{11}, f_{12}, f_4, f_{13}, f_7, f_{10}$$

 $e_7, e_{10}, e_2, e_{11}, e_9, e_3, e_4, e_6, e_{13}$

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{1}{4} \int e_{5} dt$$

$$e_{5} = 5\gamma - \left(e_{8} + \int \frac{e_{8}}{2} dt\right)$$

$$\frac{1}{20} \int e_{5} dt = \frac{e_{8}}{8} + \frac{5}{64} \int e_{12} dt$$

$$e_{8} + \int \frac{e_{8}}{2} dt = \frac{57}{32} e_{12}$$

Variables restantes: 4

$$e_1, e_5, e_8, e_{12}$$

$$f_1, f_2, f_3, f_5, f_6, f_8, f_9, f_{11}, f_{12}, f_4, f_{13}, f_7, f_{10}$$

 $e_7, e_{10}, e_2, e_{11}, e_9, e_3, e_4, e_6, e_{13}$

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{1}{4} \int 5\gamma - \left(e_{8} + \int \frac{e_{8}}{2} dt\right) dt$$

$$\frac{1}{20} \int 5\gamma - \left(e_{8} + \int \frac{e_{8}}{2} dt\right) dt = \frac{e_{8}}{8} + \frac{5}{64} \int \frac{32}{57} \left(e_{8} + \int \frac{e_{8}}{2} dt\right) dt$$

Variables restantes: 2

$$e_1, e_8$$

$$f_1, f_2, f_3, f_5, f_6, f_8, f_9, f_{11}, f_{12}, f_4, f_{13}, f_7, f_{10}$$

 $e_7, e_{10}, e_2, e_{11}, e_9, e_3, e_4, e_6, e_{13}, e_5, e_{12}$

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{5}{4} \int \gamma dt - \frac{1}{4} \int e_{8} dt - \frac{1}{8} \iint e_{8} dt dt$$

$$\frac{1}{4} \int \gamma dt - \frac{1}{20} \int e_{8} dt - \frac{1}{40} \iint e_{8} dt dt = \frac{e_{8}}{8} + \frac{5}{114} \int e_{8} dt + \frac{5}{228} \iint e_{8} dt dt$$

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{5}{4} \int \gamma dt - \frac{1}{4} \int e_{8} dt - \frac{1}{8} \iint e_{8} dt dt$$

$$\frac{1}{4} \int \gamma dt = \frac{e_{8}}{8} + \underbrace{\left(\frac{5}{114} + \frac{1}{20}\right)}_{\frac{107}{1140}} \int e_{8} dt + \underbrace{\left(\frac{5}{228} + \frac{1}{40}\right)}_{\frac{107}{2280}} \iint e_{8} dt dt$$

Finalmente simplificamos:

$$e_{1} = \frac{\gamma}{10} + \frac{5}{4} \int \gamma dt - \frac{1}{4} \int e_{8} dt - \frac{1}{8} \iint e_{8} dt dt$$

$$\frac{1}{4} \int \gamma dt = \frac{e_{8}}{8} + \frac{107}{1140} \int e_{8} dt + \frac{107}{2280} \iint e_{8} dt dt$$

► ¿Dudas?

UNIVERSIDAD INTERNACIONAL LITTER DE LA RIOJA

www.unir.net