Part II - Logic and Set Theory Definitions

Lectured by I. B. Leader

Lent 2015

Ordinals and cardinals

Well-orderings and order-types. Examples of countable ordinals. Uncountable ordinals and Hartogs' lemma. Induction and recursion for ordinals. Ordinal arithmetic.

[5]

Posets and Zorn's lemma

Partially ordered sets; Hasse diagrams, chains, maximal elements. Lattices and Boolean algebras. Complete and chain-complete posets; fixed-point theorems. The axiom of choice and Zorn's lemma. Applications of Zorn's lemma in mathematics. The well-ordering principle.

Propositional logic

The propositional calculus. Semantic and syntactic entailment. The deduction and completeness theorems. Applications: compactness and decidability. [3]

Predicate logic

The predicate calculus with equality. Examples of first-order languages and theories. Statement of the completeness theorem; *sketch of proof*. The compactness theorem and the Lowenheim-Skolem theorems. Limitations of first-order logic. Model theory. [5]

Set theory

Set theory as a first-order theory; the axioms of ZF set theory. Transitive closures, epsilon-induction and epsilon-recursion. Well-founded relations. Mostowski's collapsing theorem. The rank function and the von Neumann hierarchy.

Consistency

Problems of consistency and independence

[1]

Contents

1 Pro		opositional calculus		
	1.1	Semantic implication	3	
	1.2	Syntactic implication	3	

1 Propositional calculus

Definition (Propositions). Let P be a set of primitive propositions. These are a bunch of (meaningless) symbols, that are usually interpreted to take a truth value. Usually, any symbol (composed of alphabets and subscripts) is in the set of primitive propositions.

The set of propositions, written as L or L(P), is defined inductively by

- (i) If $p \in P$, then $p \in L$.
- (ii) $\perp \in L$, where \perp is "false" (also a meaningless symbol).
- (iii) If $p, q \in L$, then $p \Rightarrow q \in L$.

Definition (Logical symbols).

$$\neg p$$
 ("not p ") is an abbreviation for $(p \Rightarrow \bot)$
 $p \land q$ (" p and q ") is an abbreviation for $\neg (p \Rightarrow (\neg q))$
 $p \lor q$ (" p or q ") is an abbreviation for $(\neg p) \Rightarrow q$

1.1 Semantic implication

Definition (Valuation). A valuation on L is a function $v: L \to \{0,1\}$ such that:

$$-v(\bot) = 0,$$

$$-v(p \Rightarrow q) = \begin{cases} 0 & \text{if } v(p) = 1, v(q) = 0, \\ 1 & \text{otherwise} \end{cases}$$

We interpret v(p) to be the truth value of p, with 0 denoting "false" and 1 denoting "true".

Note that we do not impose any restriction of v(p) when p is a primitive proposition (that is not \perp).

Definition (Tautology). t is a tautology, written as $\models t$, if v(t) = 1.

Definition (Semantic entailment). For $S \subseteq L$, $t \in L$, we say S entails t, S semantically implies t or $S \models t$ if, for any v such that v(s) = 1 for all $s \in S$, v(t) = 1.

"Whenever all of S is true, t is true as well."

Definition (Truth and model). If v(t) = 1, then we say that t is true in v, or v is a model of t. For $S \subseteq L$, a valuation v is a model of S if v(s) = 1. Then $\models t$ means $\emptyset \models t$.

1.2 Syntactic implication

Definition (Proof and syntactic entailment). For any $S \subseteq L$, a *proof* of t from S is a finite sequence $t_1, t_2, \dots t_n$ of propositions, with $t_n = t$, such that each t_i is one of the following:

- (i) An axiom
- (ii) A member of S

(iii) A proposition t_i such that there exist j, k < i with $t_j = (t_k \Rightarrow t_i)$.

If there is a proof of t from S, we say that S proves or syntactically entails t, written $S \vdash t$.

If $\emptyset \vdash t$, say t is a theorem and write $\vdash t$.

In a proof of t from S, t is the conclusion and S is the set of hypothesis or premises.

Definition (Consistent). S is *inconsistent* if $S \vdash \bot$. S is *consistent* if it is not inconsistent.