Nonparametric Covariance Estimation for Longitudinal Data via Penalized Tensor Product Splines

Tayler A. Blake*

Yoonkyung Lee[†]

February 6, 2018

1 Performance

In this section, we evaluate the performance of the spline estimator under different simulation settings when the tuning parameters are chosen by the unbiased risk estimate and leave-one-subject-out cross validation. We compare the performance of the maximum penalised likelihood estimator using the classical smoothness penalty under the smoothing spline representation to the performance of the tensor product P-spline estimator for varying orders of the penalty. We also compare performance under complete data to the performance under irregularly sampled data:

- All subjects share a common set of observation times t_1, \ldots, t_M .
- Observation times vary across subjects, with subject-specific deviation defined as follows:

For the case of common observation times across all subjects, we also consider three other methods of estimating a covariance matrix for comparison: the sample covariance matrix Σ^* , the soft thresholding estimator of ?, and the tapering estimator of ?. The soft-thresholding estimator proposed in ? is given by

$$\hat{\Sigma}^{sthresh}\left(\lambda\right) = \left[\operatorname{sign}\left(\sigma_{\scriptscriptstyle ij}^*\right)\left(\sigma_{\scriptscriptstyle ij}^* - \lambda\right)_+\right],$$

where σ_{ij}^* denotes the i-jth entry of the sample covariance matrix, and λ is a penalty parameter controlling the amount of shrinkage applied to the empirical estimator. The tapering estimator presented in ? is defined

$$\hat{\Sigma}^{taper}\left(\lambda\right) = \left[\omega_{ij}^{\lambda} \sigma_{ij}^{*}\right].$$

The weights ω_{ij}^{λ} are given by

$$\omega_{ij} = k_h^{-1} \left[(k - |i - j|)_+ - (k_h - |i - j|)_+ \right],$$

^{*}The Ohio State University, 1958 Neil Avenue, Columbus, OH 43201

[†]The Ohio State University, 1958 Neil Avenue, Columbus, OH 43201

where $k_h = k/2$ is assumed to be even without loss of generality. These may be rewritten as

$$\omega_{ij} = \begin{cases} 1, & ||i - j|| \le k_h \\ 2 - \frac{i - j}{k_h} & k_h < ||i - j|| \le k, \\ 0 & \text{otherwise} \end{cases}$$

The subscript on the weights ω_{ij} serves to indicate that these are controlled by a tuning parameter which controls the amount of shrinkage applied to the elements of the sample covariance matrix.

[discuss the MCRE and CVTuningCov package]

[discuss the implementation and R package here]

To assess performance of estimator G, we consider two commonly used loss functions:

$$\Delta_1(\Sigma, G) = tr\left(\Sigma^{-1}G\right) - log|\Sigma^{-1}G| - M,\tag{1}$$

$$\Delta_2(\Sigma, G) = tr\left(\left(\Sigma^{-1}G - I\right)^2\right) \tag{2}$$

where Σ is the true covariance matrix and G is an $M \times M$ positive definite matrix. Each of these loss functions are 0 when $G = \Sigma$ and is positive when $G! = \Sigma$. Both are invariant with respect to transformations

$$G^* = CGC', \quad \Sigma^* = C\Sigma C'.$$

for a nonsingular matrix C. The first loss Δ_1 is commonly referred to as the entropy loss; it gives the Kullback-Leibler divergence of two multivariate Normal densities corresponding to the two covariance matrices. The second loss Δ_2 , or the quadratic loss, measures the Euclidean or Frobenius norm of its matrix argument, and consequently penalizes overestimates more than underestimates, so "smaller" estimates are favored more under Δ_2 than Δ_1 . We obtain the corresponding risk functions by taking expectations,

$$R_i(\Sigma, G) = E_{\Sigma}[\Delta_i(\Sigma, G)], \quad i = 1, 2.$$

We prefer estimator $\hat{\Sigma}_1$ over another estimator $\hat{\Sigma}_2$ if $R_i\left(\Sigma,\hat{\Sigma}_2\right) < R_i\left(\Sigma,\hat{\Sigma}_2\right)$. We estimate the risk functions by Monte Carlo approximation, using $N_{sim}=100$ simulation runs for each scenario outlined above. Estimation is performed on data generated according to an M-dimensional multivariate Normal distribution with mean zero; we consider four Cholesky covariance structures for the underlying generating distribution:

I. Mutual independence: $\Sigma_1 = T^{-T}D^2T^{-1} = I$ where

$$\phi(t, s) = 0, \quad 1 \le t < s \le M;$$

 $\sigma^{2}(t) = 1, \quad t = 1, ..., M.$

II. Linear varying coefficient model with constant innovation variance: $\Sigma_2 = T^{-T}D^2T^{-1}$ where

$$\phi(t,s) = t - \frac{1}{2M}, \quad 1 \le s < t \le M$$
 $\sigma^{2}(t) = 0.1, \quad t = 1, \dots, M.$

III. AR (k) model with linear varying coefficient: $\Sigma_3 = T^{-T}D^2T^{-1}$ where k = |M/2| + 1 and

$$\phi(t,s) = \begin{cases} t - \frac{1}{2M}, & t - s \le \lfloor M/2 \rfloor + 1 \\ 0, & t - s > 1 \end{cases},$$

$$\sigma^{2}(t) = 0.1, \quad t = 1, \dots, M.$$

IV. AR (1) model with linear varying coefficient: $\Sigma_3 = T^{-T}D^2T^{-1}$ where

$$\phi(t,s) = \begin{cases} t - \frac{1}{2M}, & t - s = 1 \\ 0, & t - s > 1 \end{cases},$$

$$\sigma^{2}(t) = 0.1, \quad t = 1, \dots, M.$$

V. The compound symmetry model: $\Sigma_4 = \sigma^2 \left(\rho J + (1-\rho) I \right), \; \rho = 0.7, \; \sigma^2 = 1.$

$$\phi_{ts} = -\frac{\rho}{1 + (t - 1)\rho}, \quad t = 2, \dots, M, \quad s = 1, \dots, t - 1$$
$$\sigma_t^2 = 1 - \frac{(t - 1)\rho^2}{1 + (t - 1)\rho}, \quad t = 2, \dots, M.$$

In some cases, tapering or applying soft thresholding to the sample covariance matrix yielded an estimator that was not positive definite. Evaluation of the entropy loss 2 is undefined at an estimator with at least one non-positive eigenvalue, so to coerce the estimate to a positive definite one that is, in some sense, close to the original estimate, the algorithm of

Cheng, Sheung Hun and Higham, Nick (1998) A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization; SIAM J. Matrix Anal. Appl., 19, 1097?1110. was applied to the tapered or soft thresholding estimator before evaluating the loss. For a symmet-

ric matrix A, which is not positive definite, a modified Cholesky algorithm produces a symmetric perturbation matrix E such that A + E is positive definite.

2 Discussion

See ? section 3.1 for further discussion of loss functions

Table 1: Simulation results for $\Sigma_1=I$ under quadratic loss, Δ_1 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K=10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.0010	0.0013	0.4702	0.3926	0.3871
N = 50	20	0.0007	0.0006	0.8495	0.8301	0.8287
	30	0.0003	0.0004	1.1449	1.1926	1.1924
	10	0.0004	0.0004	0.2072	0.1802	0.1777
N = 100	20	0.0002	0.0002	0.3920	0.3858	0.3817
	30	0.0001	0.0001	0.5712	0.6191	0.6109

Table 2: Simulation results for Σ_2 , the linear varying coefficient AR model, under quadratic loss, Δ_1 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K=10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.0314	0.0411	0.5726	0.5810	0.7758
N = 50	20	0.3266	0.7265	2.3130	5.5964	2.7545
	30	5.0696	4.9073	15.1096	765.7206	28.6820
	10	0.0156	0.0147	0.2479	0.2501	0.3544
N = 100	20	0.1894	0.2017	1.3177	5.1945	4.7634
	30	2.3876	1.6465	9.8175	488.6801	85.9508

Table 3: Simulation results for Σ_3 , the k-banded linear varying coefficient AR model with $k = \lfloor M/2 \rfloor + 1$, under quadratic loss, Δ_1 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K = 10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.0562	0.0547	0.5237	0.5810	0.5313
N = 50	20	0.7832	0.8934	2.1419	9.5721	9.1421
	30	8.2650	10.6855	15.2842	407.3659	129.7459
	10	0.0376	0.0449	0.2546	0.2556	0.2661
N = 100	20	0.6260	0.5967	1.3751	3.3281	1.2759
	30	5.7635	6.2824	7.4750	203.6710	10.0634

Table 4: Simulation results for Σ_4 , the 2-banded linear varying coefficient AR model, under quadratic loss, Δ_1 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K=10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssan}$	nova	S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.0134	0.0145	0.4169	0.3987	0.3985
N = 50	20	0.0590	0.0574	0.8810	0.9078	0.9073
	30	0.1351	0.1362	1.2571	1.2570	1.2575
	10	0.0077	0.0078	0.2263	0.2111	0.2104
N = 100	20	0.0549	0.0534	0.4309	0.4127	0.4120
	30	0.1331	0.1320	0.6819	0.6579	0.6565

Table 5: Simulation results for Σ_5 , the compound symmetry model, under quadratic loss, Δ_1 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K=10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.3688	0.3599	0.7872	0.8058	1.4774
N = 50	20	0.9770	0.9954	1.6167	1.7840	3.4516
	30	1.6067	1.6151	2.5548	2.4837	4.9027
	10	0.3210	0.3168	0.3913	0.3819	0.8958
N = 100	20	0.9793	0.9774	0.8714	0.8479	2.2110
	30	1.6177	1.6032	1.2967	1.2293	3.4968

Table 6: Simulation results for $\Sigma_1 = I$ under entropy loss, Δ_2 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K=10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.0684	0.0678	1.2339	0.4451	1.1760
N = 50	20	0.0799	0.0720	5.0827	1.6504	4.7847
	30	0.0668	0.0740	12.5162	1.9975	11.0434
	10	0.0405	0.0379	0.5854	0.1783	0.5201
N = 100	20	0.0356	0.0378	2.3038	0.4394	1.9637
	30	0.0396	0.0322	5.2641	0.6717	4.5410

Table 7: Simulation results for Σ_2 , the linear varying coefficient AR model, under entropy loss, Δ_2 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K=10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.0647	0.0696	1.2431	1.4242	1.1195
N = 50	20	0.0884	0.0969	5.0437	17.0220	13.5290
	30	0.0702	0.0894	12.4559	39.9769	159.0521
	10	0.0307	0.0302	0.5403	0.7659	0.5609
N = 100	20	0.0357	0.0350	2.3195	10.0140	12.1431
	30	0.0372	0.0334	5.2817	35.0353	108.1015

Table 8: Simulation results for Σ_3 , the k-banded linear varying coefficient AR model with $k = \lfloor M/2 \rfloor + 1$, under entropy loss, Δ_2 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K = 10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.3354	0.3174	1.1947	1.1073	1.1649
N = 50	20	1.1144	1.1143	5.0966	17.0220	12.6171
	30	2.3247	2.3168	12.4905	50.3684	101.8245
	10	0.2826	0.2955	0.5446	0.5410	0.5531
N = 100	20	1.0690	1.0627	2.3514	12.8490	11.4934
	30	2.2737	2.2767	5.4204	27.2736	30.5818

Table 9: Simulation results for Σ_4 , the 2-banded linear varying coefficient AR model, under entropy loss, Δ_2 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K=10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.2605	.2743	1.1692	0.5899	1.1126
N = 50	20	0.8836	.8764	5.0899	1.8834	4.6363
	30	1.6087	1.6195	12.5844	3.1902	11.4818
	10	0.2193	0.2183	0.5642	0.2902	0.5456
N = 100	20	0.8468	0.8491	2.2607	0.7869	2.2028
	30	1.5743	1.5802	5.2437	1.1974	4.8555

Table 10: Simulation results for Σ_5 , the compound symmetry model, under entropy loss, Δ_2 . The risk functions for the sample covariance matrix, the tapered estimator, the soft thresholding estimator, the SSANOVA Cholesky estimator, and the tensor product P-spline Cholesky estimator. The tuning parameters for the tapering estimator and the soft thresholding estimator were chosen using K=10-fold cross validation. The performance of the spline estimators is evaluated when both the unbiased risk estimate and leave-one-subject-out cross validation are used to select the smoothing parameters.

		$\hat{\Sigma}_{ssanova}$		S	S_{st}	S_{taper}
	M	LosoCV	URE			
	10	0.2837	0.2766	1.1943	17.3871	1.2122
N = 50	20	0.7551	0.7657	5.0283	35.4067	5.1671
	30	1.1936	1.1927	12.5871	46.5337	12.4110
	10	0.2449	0.2390	0.5734	16.2705	0.5796
N = 100	20	0.7231	0.7299	2.2678	31.3226	2.2988
	30	1.1780	1.1813	5.2562	39.2108	5.2592