

Speech Synthesis

Instructor: Tom Ko

Objectives

Learn the basic mechanism of speech synthesis / text-to-speech (TTS)

Speech Production System

Schematic View of Vocal Tract

- The vocal folds generate periodic impulses.
- The vocal tract acts like a filter of which the impulse response convolutes with the impulses to form the sound.
- The impulse response changes with the shape of the tract.
- Production-based features encode the shape of vocal tract from the signal.

Formant synthesis (~'90s)

- Rule-based
- Hand-crafting each phonetic units by rules
- Based on source-filter model

Concatenation approach ('90s~)

- Data-based
- Concatenate speech units (waveform) from a database

Parametric approach (mid-'90s)

- Data-based
- Need training
- Statistical acoustic model

- Training

$$\hat{\boldsymbol{\lambda}} = \arg \max_{\boldsymbol{\lambda}} \ p(\boldsymbol{O} \mid \mathcal{W}, \boldsymbol{\lambda})$$

- Synthesis

$$\hat{\boldsymbol{o}} = \arg\max_{\boldsymbol{o}} \ p(\boldsymbol{o} \mid w, \hat{\boldsymbol{\lambda}})$$

 λ : model parameters

O: training data

 ${\mathcal W}$: transcriptions

o: synthesized speech

 \boldsymbol{w} : input text

HMM-based speech synthesis

DNN-HMM approach

- IDLAK toolkit (a reverse of KALDI)
- Frame-based
- It extracts several kinds of feature from the waveform
 - Mel–Cepstrum (MCEP)
 - F0 pitch
 - Band Aperiodicity feature (BNDAP)

DNN-HMM approach (training)

ay m t aa m ay m hh ah ng g r iy Tom, I'm hungry. Feature Extraction Features: **Alignment Estimation** ay ay m m t t t aa aa m ay m m m hh ah ah ng ng g g r r iy

Train a regression network

DNN-HMM approach (testing)

Hello, How are you?

hh ah I ow hh aw aa r y uw

hh hh hh ah ah I I I ow ow hh hh aw aw aa r r y y uw uw

Features:

Major components

- Two major components in TTS
- The acoustic model
 - Convert phoneme sequence into features
- Vocoder
 - Convert features into speech waveform
- In modern TTS systems, spectrogram is used as the features.

Frequency spectrum

A signal in time domain:

Its form in frequency domain:

Short-time Fourier Analysis

- We have dealt with periodic signals in our formulation, however, the signal is no longer periodic when longer segments are analyzed.
- Short-time analysis: a speech signal is decomposed into a series of short segments.
- In each segment, the signal is assumed to be stationary.
 - The region has to be short enough

Short-time Fourier Analysis

Tacotron 2

Vocoder

- Algorithm-based
 - No need to learn
 - Griffin-Lim
- Neural-based
 - It treats the conversion from spectrogram to audio signal as a sequence to sequence problem
 - WaveNet

Algorithm-based vocoder

Introducing strong artifacts

Wavenet

$$p\left(\mathbf{x}
ight) = \prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \dots, x_{t-1}
ight)$$

Research directions

- Single speaker TTS
 - Require 20–30 hours labeled data from a single speaker
- Multiple speaker TTS
 - Require data from ~100 speakers, 20 mins labeled data from each speaker
- Unseen speaker TTS
 - Require data from multiple speakers

Speaker embedding approach

Reading list

- Tacotron2 paper
 - "Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions", https://arxiv.org/abs/1712.05884
- Wavenet paper
 - "WaveNet: A Generative Model for Raw Audio", https://arxiv.org/abs/1609.03499