Paralelna implementacija Merge sort algoritma

Milin Ivan E1-79/2023

Sekvencijalna implementacija algoritma u C programskom jeziku preuzeta je sa interneta, kod se originalno sastojao samo od funkcija *merge*, *mergeSort* kao i glavnog, *int main* dela programa.

U taj kod je dodata funkcija *printArray, isSorted, saveArrayToFile*, a u *main* delu samog programa ubačeno je i merenje vremena koliko je sekundi potrebno da se izvrši funkcija *mergeSort*.

- Funkcija *printArray* generisani niz ispisuje u terminal ukoliko se promenljiva *print* postavi na 1.
- Funkcija *isSorted* proverava da li je niz sortiran nakon što se pozove funkcija *mergeSort*
- Funkcija saveArrayToFile generiše fajl i u njega upisuje nizove pre i nakon sortiranja.

Paralelna implementacija koda ne odstupa puno u odnosu na sekvencijalnu, kod je takođe implementiran u C programskom jeziku uz korišćenje biblioteke **OpenMP** za paralelno programiranje.

Unutar funkcije *mergeSort* dodate su dve *pragma omp task* direktive za oba poziva rekurzije. Na ovaj način se omogućava kreiranje zadataka/tast-ova koji će biti izvršavani na nitima procesora.

Dodavanjem $if (n > TASK_SIZE)$ sprečava se kreiranje malih taskova koji mogu usporiti čitav program, u ovom slučaju $TASK_SIZE$ je postavljen na 100000, taj broj se eksperimentalnim testiranjem ispostavio kao najefikasniji.

Direktiva #pragma omp taskwait služi za sinhronizaciju, čeka da se prethodna dva taska završe kako bi mogla funkcija merge da se pozove.

U glavnom *main* delu programa na početku se prvo podešava koliko niti će biti uposleno što je postignuto pomoću *omp_set_num_threads(numThreads)*, a zatim se unutar *#pragma omp parallel* poziva funkcija *mergeSort* i pomoću *#pragma omp single* vodi se računa da samo jedna nit može da pozove tu funkciju a zatim unutar funkcije *mergeSort* ostale niti preuzimaju deo posla na sebe.

Vreme paralelnog izvršavanja *mergeSort* funkcije meri se iznad i ispod direktive *#pragma omp parallel*.

U tabeli prikazano je vreme izvršavanja kao i ubrzanje koje je postignuto paralelizovanjem merge sort algoritma pomoću određenog broja niti, niz nad kojim je testiran program sastoji se od **10 miliona** nasumičnih brojeva.

IMPLEMENTACIJA PROGRAMA	TRAJANJE PROGRAMA [S]	UBRZANJE PROGRAMA
Sekvencijalni program	1.536594	1
Paralelni program (1 nit)	1.964474	0.782491
Paralelni program (2 niti)	0.984528	1.560741
Paralelni program (3 niti)	0.972822	1.579522
Paralelni program (4 niti)	0.750643	2.047037
Paralelni program (5 niti)	0.654915	2.346249
Paralelni program (6 niti)	0.616985	2.490488
Paralelni program (7 niti)	0.587905	2.613677
Paralelni program (8niti)	0.545633	2.816167

 $\it 1$ Vreme izvršavanja i ubrzanje