Diabetic Retinopathy Prediction using Convolutional Neural Networks

Rajib Das Bhagat

Guide: Prof. Balaraman Ravindran Indian Institute of Technology Madras

07-05-2019

Introduction

Any damage caused to the retina of an eye due to abnormal blood flow or even presence of exudates and lesions is termed as Diabetic Retinopathy.

Figure 1: Eye and related abnormalities.

Data: Normal

▶ Normal eye do not have any of the abnormality symptoms.

Figure 2: 7_Left_Eye

Figure 3: 7_Right_Eye

Data: Mild DR

Symptom: Tiny dot-like aneurysm.

Figure 4: 5187_Left_Eye

Figure 5: 5187_Right_Eye

Data: Moderate DR

Symptom: White cotton-wool like (soft exudates).

Figure 6: 1320_Left_Eye

Figure 7: 1320_Right_Eye

Data: Severe DR

Symptom: Irregular exudates (Hard exudates).

Figure 8: 10840_Left_Eye

Figure 9: 10840_Right_Eye

Data: Proliferative DR

Symptom: Hemorrhage and neovascularization with hard exudates too.

Figure 10: 36847_Left_Eye

Figure 11: 36847_Right_Eye

Problem Statement

"The aim of this study is to explore how we can automate the process of correctly classifying the eye images into different stages of Diabetic Retinopathy".

Data Distribution

Dataset (unbalanced):

Category	Train	Test
0	25810	39533
1	2443	3762
2	5292	7861
3	873	1214
4	708	1206
Total	35126	53576

Table 1: Dataset as provided by Kaggle.

Binary Classification

- Dataset (unbalanced) [Table 1].
- ▶ 800 images per class for testing, with 90:10 percent split.

Figure 12: Binary classification result (previously obtained).

Related Issues ...

Imbalanced dataset.

Related Issues ...

Noisy dataset.

Figure 13: Miscategorized

Figure 15: Dim light

Figure 14: Corrupted

Figure 16: Blurred

Related Issues ...

Figure 17: Noisy images [manually removed]

Augmented Dataset

- Re-scaled to 512 X 512.
- ▶ Randomly re-scaled by ± 10 %.
- Randomly rotated 0-90 degree.
- Random horizontal and vertical flip.
- Zoom range 0.2 %.
- ▶ Width/height shift range 0.2 %.

Pre-processing

Figure 18: Before and after applying gaussian function & augmentation.

CNN Model

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 32, 512, 512)	320
leaky_re_lu_2 (LeakyReLU)	(None, 32, 512, 512)	0
batch_normalization_1 (BN)	(None, 32, 512, 512)	2048
max_pooling2d_1 (MaxPooling2)	(None, 32, 256, 256)	0
conv2d_2 (Conv2D)	(None, 32, 256, 256)	9248
leaky_re_lu_3 (LeakyReLU)	(None, 32, 256, 256)	0
batch_normalization_2 (BN)	(None, 32, 256, 256)	1024
max_pooling2d_2 (MaxPooling2)	(None, 32, 128, 128)	0
conv2d_3 (Conv2D)	(None, 64, 128, 128)	18496
leaky_re_lu_4 (LeakyReLU)	(None, 64, 128, 128)	0
batch_normalization_3 (BN)	(None, 64, 128, 128)	512
max_pooling2d_3 (MaxPooling2)	(None, 64, 64, 64)	0

CNN Model continued ...

Layer (type)	Output Shape	Param #
conv2d_4 (Conv2D)	(None, 64, 64, 64)	36928
leaky_re_lu_5 (LeakyReLU)	(None, 64, 64, 64)	0
batch_normalization_4 (BN)	(None, 64, 64, 64)	256
max_pooling2d_4 (MaxPooling2)	(None, 64, 32, 32)	0
conv2d_5 (Conv2D)	(None, 128, 32, 32)	73856
leaky_re_lu_6 (LeakyReLU)	(None, 128, 32, 32)	0
batch_normalization_5 (BN)	(None, 128, 32, 32)	128
max_pooling2d_5 (MaxPooling2)	(None, 128, 16, 16)	0
conv2d_6 (Conv2D)	(None, 128, 16, 16)	147584
leaky_re_lu_7 (LeakyReLU)	(None, 128, 16, 16)	0
batch_normalization_6 (BN)	(None, 128, 16, 16)	64
max_pooling2d_6 (MaxPooling2)	(None, 128, 8, 8)	0

CNN Model continued ...

Layer (type)	Output Shape	Param #
conv2d_7 (Conv2D)	(None, 256, 8, 8)	295168
leaky_re_lu_8 (LeakyReLU)	(None, 256, 8, 8)	0
conv2d_8 (Conv2D)	(None, 256, 8, 8)	590080
leaky_re_lu_9 (LeakyReLU)	(None, 256, 8, 8)	0
batch_normalization_7 (BN)	(None, 256, 8, 8)	32
max_pooling2d_7 (MaxPooling2)	(None, 256, 4, 4)	0
conv2d_9 (Conv2D)	(None, 512, 4, 4)	1180160
leaky_re_lu_10 (LeakyReLU)	(None, 512, 4, 4)	0
conv2d_10 (Conv2D)	(None, 512, 4, 4)	2359808
leaky_re_lu_11 (LeakyReLU)	(None, 512, 4, 4)	0
batch_normalization_8 (BN)	(None, 512, 2, 4)	16
max_pooling2d_8 (MaxPooling2)	(None, 512, 2, 2)	0
dropout_1 (Dropout)	(None, 512, 2, 2)	0
flatten_1 (Flatten)	(None, 2048)	0

CNN Model continued ...

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 1024)	2098176
leaky_re_lu_12 (LeakyReLU)	(None, 1024)	0
dropout_2 (Dropout)	(None, 1024)	0
dense_2 (Dense)	(None, 1024)	1049600
leaky_re_lu_13 (LeakyReLU)	(None, 1024)	0
dense_3 (Dense)	(None, 2)	2050
Total params: 7,869,205		

Table 2: Convolutional Neural Network Architecture

Trainable params: 7,867,165 Non-trainable params: 2,040

Tuning up

Attributes	exp1	exp2	exp3	exp4
preprocessing	gaussian	gaussian	gaussian	gaussian
batch_size	32	32	32	32
learning_rate	0.001	0.000003	0.0003	0.0003
epochs	16	48	98	56
drop_out	0.5	0.5	0.5	0.5
class_mode	categorical	categorical	categorical	categorical
input_size	256 X 256	512 X 512	512 X 512	512 X 512
kernel_size	3 X 3	3 X 3	3 X 3	3 X 3
pool_size	3 X 3	3 X 3	3 X 3	3 X 3
strides	2 X 2	2 X 2	2 X 2	2 X 2
padding	same	same	same	same
color_mode	rgb	rgb	rgb	rgb

Table 3: Hyper-parameters & other settings.

Result (Experiment 1)

► Augmented dataset used for experiment (90:10 % split).

	0	1	2	3	4	Total
Original (Train)	25610	2403	5262	863	688	34826
Augmented	25610	25610	25610	25610	25610	128450

Result (Experiment 1) ...

Figure 19: Training Accuracy

Figure 20: Loss Accuracy

	0	1	2	3	4
0	29219	8867	1173	29	245
1	2325	1287	140	4	6
2	3245	2478	1883	123	131
3	179	251	594	160	30
4	247	116	489	81	273

Result (Experiment1) ...

	Precision	Recall	F1-score	Support
0	0.83	0.74	0.78	39533
1	0.10	0.34	0.15	3762
2	0.44	0.24	0.31	7860
3	0.40	0.13	0.20	1214
4	0.40	0.23	0.29	1206
Total/Avg	0.70	0.61	0.64	53575

Table 4: Classification Report

► Accuracy: 69.36%

Result (Experiment 2)

► Augmented dataset used for experiment (90:10 % split).

	0	1	2	3	4	Total
Original (Train)	25610	2403	5262	863	688	34826
Augmented	10000	10000	10000	10000	10000	50000

Result (Experiment 2) ...

Figure 22: Training Accuracy

Figure 23: Loss Accuracy

	0	1	2	3	4
0	35244	78	3997	14	17
1	3369	4	381	2	0
2	5564	8	2232	10	5
3	553	2	631	16	3
4	469	2	709	7	5

Figure 24: Confusion Matrix

Result (Experiment 2) ...

	Precision	Recall	F1-score	Support
0	0.78	0.90	0.83	39340
1	0.04	0.00	0.00	3756
2	0.28	0.29	0.28	7819
3	0.33	0.01	0.03	1205
4	0.25	0.00	0.01	1192
Total/Avg	0.63	0.70	0.66	53312

Table 5: Classification Report

Accuracy: 70.34%

Result (Experiment 3)

► Augmented dataset used for experiment (80:20 % split).

	0	1	2	3	4	Total
Original (Train)	25610	2403	5262	863	688	34826
Augmented	10000	10000	10000	10000	100000	50000

Result (Experiment 3) ...

Figure 25: Training Accuracy

Figure 26: Loss Accuracy

	0	1	2	3	4
0	38385	303	533	1	118
1	2912	434	400	0	10
2	3108	376	3855	227	253
3	112	10	611	307	165
4	192	3	355	75	567

Figure 27: Confusion Matrix

Result (Experiment 3) ...

	Precision	Recall	F1-score	Support
0	0.86	0.98	0.91	39340
1	0.39	0.12	0.18	3756
2	0.67	0.49	0.57	7819
3	0.50	0.25	0.34	1205
4	0.51	0.48	0.49	1192
Total/Avg	0.78	0.82	0.79	53312

Table 6: Classification Report

► Accuracy: 81.00%

Result (Experiment 4)

▶ Augmented dataset used for experiment (90:10 % split).

	0	1	2	3	4	Total
Original (Train)	25610	2403	5262	863	688	34826
Augmented	12000	12000	12000	12000	12000	60000

Result (Experiment 4) ...

Figure 28: Training Accuracy

Figure 29: Loss Accuracy

	0	1	2	3	4
0	36041	1178	1729	10	382
1	1318	1867	528	4	39
2	1141	313	5472	465	428
3	552	2	268	663	220
4	105	2	167	31	887

Figure 30: Confusion Matrix

Result (Experiment 4) ...

	Precision	Recall	F1-score	Support
0	0.93	0.91	0.92	39340
1	0.55	0.49	0.52	3756
2	0.67	0.70	0.69	7819
3	0.56	0.55	0.56	1205
4	0.45	0.74	0.55	1192
Total/Avg	0.84	0.83	0.84	53312

Table 7: Classification Report

► Accuracy: 84.23%

Conclusion

- ▶ DR classification screening with respect to binary and multi-class can be performed with much higher accuracy than the actual result found.
- ► For certain cases, where the images were out of focus, the algorithm fails to identify some of the DR highlights, cause of the camera artifacts.
- Consequently, in the near future, the algorithm will be improved to handle the impact of an unfocused images.

References

- G. G. Gardner, D. Keating, T. H. Williamson, A. T. Elliott.. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. *British Journal* Ophthalmology 1996;80(11):940-944.
- Markku Kuivalainen. Retinal Image Analysis Using Machine Vision. Thesis report Lappeenranta Univ of Tech, Dept of IT 2005.
- Nayak J, Bhat PS, Acharya R, Lim CM, Kagathi M..
 Automated identification of diabetic retinopathy stages using digital fundus images. *J Med Sys* 2008;32(2):107-115.
- Acharya UR, Chua CK, Ng EY, Yu W, Chee C..
 Application of higher order spectra for the identification of diabetes retinopathy stages. J Med Sys 2008;32(6):481-488.
- Acharya UR, Lim CM, Ng EY, Chee C, Tamura T..
 Computer-based detection of diabetes retinopathy stages using digital fundus images. P I Mech Eng H 2009;223(5):545-553.

References ...

- P.Adarsh, D.Jeyakumari.. Multiclass SVM-based automated diagnosis of diabetic retinopathy. In: Communications and Signal Processing (ICCSP),2013 International Conference on. IEEE; 2013,p. 206-210.
- Harry Pratt, Frans Coenen, Deborah M Broadbent, Simon P Harding, Yalin Zheng.. Convolutional Neural Network for Diabetic Retinopathy. *Procedia Computer* Science 90 2016:200-205.
- 8. **Linda Roach**. Artificial Intelligence, The Next Step in Diagnostics. In: *EyeNet* November 2017.
- 9. **Pascanu**, **Razvan et al**. Understanding the exploding gradient problem. In: *CoRR* 2012.
- 10. **Ben Graham** (2015). Kaggle Diabetic Retinopathy Detection competition report.

Thanks

