Theory of Statistical Practice

Derek Li

Contents

1	Pro	Probability Review		
	1.1	Basic Definition	2	
	1.2	Probability Function/Measure	2	
	1.3	Conditional Probability	3	
	1.4	Independence	3	
	1.5	Interpretation of Probability	3	
	1.6	Random Variable	3	
		Expected Value		
	1.8	Independent Random Variable	5	

1 Probability Review

1.1 Basic Definition

Definition 1.1. Random experiment is a mechanism producing an outcome (result) perceived as random or uncertain.

Definition 1.2. Sample space is a set of all possible outcomes of the experiment:

$$\mathcal{S} = \{\omega_1, \omega_2, \cdots\}.$$

Example 1.1. Waiting time until the next bus arrives: $S = \{t : t \ge 0\}$.

1.2 Probability Function/Measure

Definition 1.3. Given a sample space S, define A to be a collection of subsets (events) of S satisfying the following conditions:

- 1. $\mathcal{S} \in \mathcal{A}$;
- 2. $A \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}$;
- 3. $A_1, A_2, \dots \in \mathcal{A} \Rightarrow A_1 \cup A_2 \cup \dots \in \mathcal{A}$.

If \mathcal{S} is finite or countably infinite, then \mathcal{A} could consist of all subsets of \mathcal{S} including \emptyset .

Definition 1.4. The *probability function* (*measure*) P on A satisfies the following conditions:

- 1. $P(A) \ge 0, \forall A \in \mathcal{A};$
- 2. $P(\emptyset) = 0 \text{ and } P(S) = 1;$
- 3. If A_1, A_2, \cdots are disjoint (mutually exclusive) events, i.e., $A_i \cap A_j = \emptyset$ for $i \neq j$, then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

Property 1.1. $P(A^C) = 1 - P(A)$.

Proof.
$$1 = P(S) = P(A \cup A^C) = P(A) + P(A^C)$$
.

Property 1.2. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

Proof.
$$P(A) = P(A \cap B) + P(A \cap B^C)$$
 and $P(A \cup B) = P(B) + P(A \cap B^C)$.

Corollary 1.1. $P(A \cup B) \le P(A) + P(B)$.

Property 1.3. In general,

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k}) - \dots - (-1)^{n} P(A_{1} \cap \dots \cap A_{n}).$$

Property 1.4 (Bonferroni's Inequality). In general,

$$P\left(\bigcup_{i=1}^{n} A_i\right) \leqslant \sum_{i=1}^{n} P(A_i).$$

1.3 Conditional Probability

Definition 1.5. The probability of A conditional on B is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

if P(B) > 0. Note that if P(B) = 0, we can still define P(A|B) but we need to be more careful mathematically.

Theorem 1.1 (Bayes Theorem). If B_1, \dots, B_k are disjoint events with $B_1 \cup \dots \cup B_k = \mathcal{S}$, then

$$P(B_{j}|A) = \frac{P(A|B_{j})P(B_{j})}{\sum_{i=1}^{k} P(A|B_{i})P(B_{i})}.$$

1.4 Independence

Definition 1.6. Two events A and B are *independent* if

$$P(A \cap B) = P(A)P(B).$$

When P(A), P(B) > 0, we can also say

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$.

Events A_1, \dots, A_k are independent if

$$P\left(\bigcap_{i=1}^{k} A_i\right) = \prod_{i=1}^{k} P(A_i).$$

1.5 Interpretation of Probability

- Long-Run frequencies: If we repeat the experiment many times, then P(A) is the proportion of times the event A occurs.
- Degrees of belief (subjective probability): If P(A) > P(B), then we believe that A is more likely to occur than B.
- Frequentist versus Bayesian statistical methods:
 - * Frequentists: Pretend that an experiment is at least conceptually repeatable.
 - * Bayesians: Use subjective probability to describe uncertainty in parameters and data.

1.6 Random Variable

Definition 1.7. Random variable is a real-valued function defined on a sample space $S, X : S \to \mathbb{R}$. In other words, for each outcome $\omega \in S, X(\omega)$ is a real number.

Definition 1.8. The *probability distribution* of X depends on the probabilities assigned to the outcomes in S.

Definition 1.9. The *cumulative distribution function* (CDF) of X is

$$F(x) = P(X \leqslant x) = P(\omega \in \mathcal{S} : X(\omega) \leqslant x).$$

We denote it $X \sim F$.

Property 1.5. CDF satisfies:

- 1. If $x_1 \le x_2$, then $F(x_1) \le F(x_2)$;
- 2. $F(x) \to 0$ as $x \to -\infty$ and $F(x) \to 1$ as $x \to \infty$;
- 3. F is right-continuous with left-hand limits:

$$\lim_{y \to x^{+}} F(y) = F(x), \lim_{y \to x^{-}} F(y) = F(x-) = P(X < x);$$

4.
$$P(X = x) = F(x) - F(x-)$$
.

Definition 1.10. If $X \sim F$ where F is a continuous function, then X is a **continuous r.v.**, and we can typically find a **probability density function** (PDF) f s.t.

$$F(x) = \int_{-\infty}^{x} f(t) dt.$$

Definition 1.11. If X takes only a finite or countably infinite number of possible values, then X is a **discrete r.v.**, and F is a step function. We can define its **probability mass function** (PMF) by

$$f(x) = F(x) - F(x-) = P(X = x).$$

1.7 Expected Value

Definition 1.12. Suppose X with PDF f(x) and Y with PMF f(y). We can define the **expected** value of h(X) and h(Y) by

$$\mathbb{E}[h(X)] = \int_{-\infty}^{\infty} h(x)f(x)\mathrm{d}x \text{ and } \mathbb{E}[h(Y)] = \sum_{y} h(y)f(y).$$

We can also write $h(x) = h^+(x) - h^-(x)$ where $h^+(x) = \max\{h(x), 0\}$ and $h^-(x) = \max\{-h(x), 0\}$, then $\mathbb{E}[h(X)] = \mathbb{E}[h^+(X)] - \mathbb{E}[h^-(X)]$:

- 1. If $\mathbb{E}[h^+(X)]$ and $\mathbb{E}[h^-(X)]$ are finite, then $\mathbb{E}[h(X)]$ is well defined.
- 2. If $\mathbb{E}[h^+(X)] = \infty$ and $\mathbb{E}[h^-(X)]$ is finite, then $\mathbb{E}[h(X)] = \infty$.
- 3. If $\mathbb{E}[h^+(X)]$ is finite and $\mathbb{E}[h^-(X)] = \infty$, then $\mathbb{E}[h(X)] = -\infty$.
- 4. If $\mathbb{E}[h^+(X)]$ and $\mathbb{E}[h^-(X)]$ are infinite, then $\mathbb{E}[h(X)]$ does not exist.

Example 1.2 (Expected Values of Cauchy Distribution). X is a continuous r.v. with

$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty.$$

We have

$$\mathbb{E}[X^+] = \mathbb{E}[X^-] = \int_0^\infty \frac{x}{\pi(1+x^2)} dx = \lim_{x \to \infty} \frac{1}{2\pi} \ln(1+x^2) = +\infty.$$

Thus, $\mathbb{E}[X] = \mathbb{E}[X^+] - \mathbb{E}[X^-]$ does not exist.

1.8 Independent Random Variable

Definition 1.13. R.v.s. X_1, X_2, \cdots are independent if the events $[X_1 \in A_1], [X_2 \in A_2], \cdots$ are independent events for any A_1, A_2, \cdots .

If X_1, \dots, X_n are independent r.v.s. with PDF or PMF f_1, \dots, f_n , then the joint PDF or PMF of (X_1, \dots, X_n) is

$$f(x_1, \cdots, x_n) = \prod_{i=1}^n f_i(x_i).$$

Suppose X_1, \dots, X_n are independent r.v.s. with mean μ_1, \dots, μ_n and variance $\sigma_1^2, \dots, \sigma_n^2$. Define $S = X_1 + \dots + X_n$, then $\mathbb{E}[S] = \mu_1 + \dots + \mu_n$ (which is true even if X_1, \dots, X_n are not independent) and $\text{Var}[S] = \sigma_1^2 + \dots + \sigma_n^2$.