Contents

1	Functions			2
	1.1	equation	on – solving equations, congruences	2
		1.1.1	e1 – solve equation with degree 1	2
		1.1.2	e1 ZnZ – solve congruent equation modulo n with degree 1	2
		1.1.3	e2 – solve equation with degree 2	3
		1.1.4	e2 Fp – solve congruent equation modulo p with degree 2	3
		1.1.5	e3 – solve equation with degree 3	3
		1.1.6	e3 Fp – solve congruent equation modulo p with degree 3	3
		1.1.7	Newton – solve equation using Newton's method	4
		1.1.8	SimMethod – find all roots simultaneously	4
		1.1.9	root Fp – solve congruent equation modulo p	4
		1 1 10	allroots Fn = solve congruent equation modulo n	5

Chapter 1

Functions

1.1 equation – solving equations, congruences

In the following descriptions, some type aliases are used.

poly list:

poly_list is a list [a0, a1, ..., an] representing a polynomial coefficients in ascending order, i.e., meaning $a_0 + a_1X + \cdots + a_nX^n$. The type of each ai depends on each function (explained in their descriptions).

integer:

integer is one of int, long or Integer.

complex

complex includes all number types in the complex field: **integer**, *float*, complex of Python , **Rational** of NZMATH , etc.

1.1.1 e1 – solve equation with degree 1

```
e1(f \colon poly\_list) \to complex
```

Return the solution of linear equation ax + b = 0.

f ought to be a **poly_list** [b, a] of **complex**.


```
e1 ZnZ(f: poly list, n: integer) \rightarrow integer
```

Return the solution of $ax + b \equiv 0 \pmod{n}$.

f ought to be a poly list [b, a] of integer.

1.1.3 e2 – solve equation with degree 2

$$e2(f: poly list) \rightarrow tuple$$

Return the solution of quadratic equation $ax^2 + bx + c = 0$.

f ought to be a poly list [c, b, a] of complex.

The result tuple will contain exactly 2 roots, even in the case of double root.

1.1.4 e2_Fp - solve congruent equation modulo p with degree 2

e2 Fp(f: poly list, p:
$$integer$$
) $\rightarrow list$

Return the solution of $ax^2 + bx + c \equiv 0 \pmod{p}$.

If the same values are returned, then the values are multiple roots.

f ought to be a poly_list of integers [c, b, a]. In addition, p must be a prime integer.

1.1.5 e3 – solve equation with degree 3

$$e3(f: poly list) \rightarrow list$$

Return the solution of cubic equation $ax^3 + bx^2 + cx + d = 0$.

f ought to be a poly list [d, c, b, a] of complex.

The result tuple will contain exactly 3 roots, even in the case of including double roots.

1.1.6 e3_Fp - solve congruent equation modulo p with degree 3

e3
$$\operatorname{Fp}(f:\operatorname{\textbf{poly}}\ \operatorname{\textbf{list}},\ \operatorname{p:}\ integer) \to list$$

Return the solutions of $ax^3 + bx^2 + cx + d \equiv 0 \pmod{p}$.

If the same values are returned, then the values are multiple roots.

f ought be a poly_list [d, c, b, a] of integer. In addition, p must be a prime integer.

1.1.7 Newton – solve equation using Newton's method

Return one of the approximated roots of $a_n x^n + \cdots + a_1 x + a_0 = 0$.

If you want to obtain all roots, then use **SimMethod** instead. †If initial is a real number but there is no real roots, then this function returns meaningless values.

f ought to be a **poly_list** of **complex**. **initial** is an initial approximation **complex** number. **repeat** is the number of steps to approximate a root.

1.1.8 SimMethod – find all roots simultaneously

```
\begin{array}{ll} {\bf SimMethod(f:~poly\_list},~{\tt NewtonInitial:~complex}{=}1,~{\tt repeat:}~integer{=}250) \\ & \rightarrow list \end{array}
```

Return the approximated roots of $a_n x^n + \cdots + a_1 x + a_0$.

†If the equation has multiple root, maybe raise some error.

f ought to be a **poly_list** of **complex**.

NewtonInitial and repeat will be passed to **Newton** to obtain the first approximations.

1.1.9 root Fp – solve congruent equation modulo p

```
\mathtt{root\_Fp}(\mathtt{f:}\ \mathtt{poly\_list},\ \mathtt{p:}\ integer) \rightarrow integer
```

Return one of the roots of $a_n x^n + \cdots + a_1 x + a_0 \equiv 0 \pmod{p}$.

If you want to obtain all roots, then use allroots Fp.

f ought to be a **poly_list** of **integer**. In addition, p must be a prime **integer**. If there is no root at all, then nothing will be returned.

1.1.10 allroots Fp – solve congruent equation modulo p

```
allroots \operatorname{Fp}(f: \operatorname{\textbf{poly}} \ \operatorname{\textbf{list}}, \ \operatorname{p:} integer) \rightarrow integer
```

Return all roots of $a_n x^n + \cdots + a_1 x + a_0 \equiv 0 \pmod{p}$.

f ought to be a **poly_list** of **integer**. In addition, **p** must be a prime **integer**. If there is no root at all, then an empty list will be returned.

Examples

```
>>> equation.e1([1, 2])
-0.5
>>> equation.e1([1j, 2])
>>> equation.e1_ZnZ([3, 2], 5)
>>> equation.e2([-3, 1, 1])
(1.3027756377319946, -2.3027756377319948)
>>> equation.e2_Fp([-3, 1, 1], 13)
[6, 6]
>>> equation.e3([1, 1, 2, 1])
[(-0.12256116687665397-0.74486176661974479j),
(-1.7548776662466921+1.8041124150158794e-16i),
(-0.12256116687665375+0.74486176661974468j)]
>>> equation.e3_Fp([1, 1, 2, 1], 7)
>>> equation.Newton([-3, 2, 1, 1])
0.84373427789806899
>>> equation.Newton([-3, 2, 1, 1], 2)
0.84373427789806899
>>> equation.Newton([-3, 2, 1, 1], 2, 1000)
0.84373427789806899
>>> equation.SimMethod([-3, 2, 1, 1])
[(0.84373427789806887+0j),
(-0.92186713894903438+1.6449263775999723j),
(-0.92186713894903438-1.6449263775999723j)]
>>> equation.root_Fp([-3, 2, 1, 1], 7)
>>> equation.root_Fp([-3, 2, 1, 1], 11)
9L
>>> equation.allroots_Fp([-3, 2, 1, 1], 7)
```

```
[]
>>> equation.allroots_Fp([-3, 2, 1, 1], 11)
[9L]
>>> equation.allroots_Fp([-3, 2, 1, 1], 13)
[3L, 7L, 2L]
```

Bibliography