

Machine Learning: Generative Adversarial Networks

Seminararbeit

Ausgewählte Themen der Informatik

des Studienganges Angewandte Informatik an der Dualen Hochschule Baden-Württemberg Mosbach

von

Mirco Heck & Johannes Brandau

16. November 2023

Bearbeitungszeitraum Studienjahr 2023/24

Matrikelnummern , Kurs 7306389 & 6160077, MOS-TINF21A

Inhaltsverzeichnis

1	Einl	eitung	1	
2	Grundlagen			
	2.1	Künstliche Neuronale Netze	2	
		2.1.1 Prinzip	2	
		2.1.2 Merkmale	3	
	2.2	Deep Learning	4	
	2.3	Generative Modelle	5	
3	Gen	erative Adversarial Networks	6	
	3.1	Konzept	6	
	3.2	Architektur	7	
	3.3	Training	8	
4	Anv	vendungen von GANs	9	
	4.1	Bildsynthese	9	
	4.2	Super-Resolution	10	
	4.3	Style Transfer	11	
5	Herausforderungen und Lösungsansätze			
	5.1	Mode Collapse	12	
	5.2	Training Instability	13	
6	Sch	lussfolgerungen und Ausblick	14	

Abkürzungsverzeichnis

KNN Künstliches Neuronales Netz

Abbildungsverzeichnis

1.1	Beispiel für ein Bild, das von einem GAN generiert wurde. Ausgangssatz: "Ein	
	roter Panda, der ein Einrad fährt"	1
2.1	Schematische Darstellung eines Neuronalen Netzes	3
2.2	Beispiel für neuronales Netz mit einer "hidden layer"	4

Tabellenverzeichnis

Quellcodeverzeichnis

Formelverzeichnis

1 Einleitung

Generative Adversarial Networks (GANs) haben in den letzten Jahren erhebliche Aufmerksamkeit in der Forschungsgemeinschaft auf sich gezogen. Sie stellen eine neue Methode dar, um generative Modelle zu trainieren und haben eine Vielzahl von Anwendungen in Bereichen wie Bildsynthese, Super-Resolution und Style Transfer.

Das Ziel dieser Arbeit ist es, einen umfassenden Überblick über GANs zu geben, ihre Funktionsweise zu erklären und einige der Herausforderungen zu diskutieren, die bei ihrer Implementierung und ihrem Training auftreten.

Abbildung 1.1: Beispiel für ein Bild, das von einem GAN generiert wurde. Ausgangssatz: "Ein roter Panda, der ein Einrad fährt"

Das Paper ist wie folgt strukturiert: Nach dieser Einleitung werden in Kapitel 2 die Grundlagen von neuronalen Netzen, Deep Learning und generativen Modellen erläutert. Kapitel 3 ist den GANs gewidmet, wobei ihr Konzept, ihre Architektur und ihr Training im Detail besprochen werden. Kapitel 4 behandelt verschiedene Anwendungen von GANs, während Kapitel 5 einige der Herausforderungen und Lösungsansätze bei der Arbeit mit GANs diskutiert. Schließlich werden in Kapitel 6 Schlussfolgerungen gezogen und ein Ausblick auf zukünftige Forschungsrichtungen gegeben.

2 Grundlagen

2.1 Künstliche Neuronale Netze

Bevor wir uns GANs genauer anschauen können, ist es wichtig, die Grundlagen von künstlichen neuronalen Netzen zu verstehen, auf welchen die Technologie fußt.

2.1.1 Prinzip

Künstliche Neuronale Netze (KNNs) sind ein wichtiger Zweig der Künstlichen Intelligenz und bilden die Basis für Deep Learning-Technologien, welche unter anderem auch GANs umfassen. Sie werden bereits heutzutage erfolgreich in verschiedenen Prozessen, wie Mustererkennung, Kategorisierung- und Prognose von Daten oder Optimierung von Abläufen eingesetzt. Ihre Arbeitsweise liegt darin, eine Menge von Eingaben in sogenannte Eingabevektoren zu kodieren und durch das neuronale Netz daraus eine Menge an Ausgabevektoren zu generieren. Diese Ausgabevektoren können wiederum in ein Ergebnis beliebigen Formats (z.B. Binärdaten, Text, Audio oder Grafiken) kodiert werden. Die Struktur von KNNs sind von der Funktionsweise des menschlichen Gehirns inspiriert und bestehen aus einer Reihe von miteinander verbundenen Knoten, die als Neuronen bezeichnet werden und als simple Prozessoren fungieren. Diese Prozessoren können nur einfache Operationen ausführen, sind aber in der Lage, komplexe Aufgaben zu erledigen, wenn sie in großer Anzahl miteinander verbunden sind. Die Verbindungen zwischen den Neuronen werden als Kanten bezeichnet und haben ein Gewicht, das die Stärke der Verbindung zwischen den Neuronen angibt. Die Menge der Kanten und deren Gewichtungen definieren dabei die Transformation, welche die Eingangsvektoren beim Durchlauf des KNNs erfahren. Die Neuronen sind in Schichten angeordnet, wobei jede Schicht eine Reihe von Neuronen enthält, die eine bestimmte Funktion ausführen. Die erste Schicht wird als Eingabeschicht bezeichnet, die letzte als Ausgabeschicht und alle dazwischen liegenden Schichten werden als versteckte Schichten bezeichnet.[1]

Abbildung 2.1: Schematische Darstellung eines Neuronalen Netzes

2.1.2 Merkmale

KNNs zeichnen sich durch folgende Merkmale aus:

- KNNs sind in der Lage, aus Beispielen zu lernen, ohne explizit programmiert zu werden. Dieser Vorgang wird als Lernen oder Training bezeichnet und ist der wichtigste Aspekt von KNNs. Das Lernen erfolgt durch Anpassung der Gewichtungen der Kanten zwischen den Neuronen, um die gewünschte Ausgabe zu erzeugen und wird wiederholt, bis die KI bei bestimmten Eingaben die erwünschte Resultat erzeugt, oder zumindest annähert. Näheres dazu in Kapitel 2.
- KNNs sind sehr robust und fehlertolerant, da sie in der Lage sind, auch bei fehlerhaften oder unvollständigen Daten zu arbeiten. Dies ist ein großer Vorteil gegenüber herkömmlichen Algorithmen, die bei verrauschten Daten, wie sie beispielsweise in Sensormesswerten vorkommen, häufig nicht mehr zuverlässig funktionieren.
- KNNs können mit einer großen Menge an Daten umgehen und sind in der Lage, Muster in diesen Daten zu erkennen. Dadurch können Lernstrategien oder Entscheidungen auf Basis von Erfahrungen getroffen werden, was ideal für die Inter- und Extrapolation von Daten ist.
- KNNs bieten in ihrer Anwendungsphase eine durchaus gute Performanz, die sich mit der Größe des Netzes und der Anzahl der Trainingszyklen verbessert. Die Trainingsphase hingegen ist sehr rechenintensiv und kann je nach Größe des Netzes und der Anzahl der Trainingszyklen mehrere Stunden oder sogar Tage dauern. Zudem benötigt eine erfolgreiche Trainingsphase eine große Menge an qualitativen Trainingsdaten, die in der Regel manuell ausgewählt werden und vorsichtig administriert werden müssen.

2.2 Deep Learning

Wie bereits im vorherigen Kapitel erwähnt, bieten künstliche neuronale Netze die Möglichkeit, komplexe Zusammenhänge in Daten zu erkennen. Um diese Fähigkeit zu erlangen, müssen die Netze jedoch erst gebaut werden. Dies geschieht durch die Bildung neuer Schichten und die Anpassung der Gewichte der einzelnen Neuronen. Zu den frühen Zeiten der künstlichen Intelligenz, wurden neuronale Netze von Menschen wie Algorithmen aufgebaut, was nicht nur die Komplexität der Netze begrenzte, sondern voraussetzte, dass die Entwickler den Lösungsweg mathematisch beschreiben konnten. Besonders bei Themen, wie der Erkennung von Sprache und Gesichtern, die vom Gehirn intuitiv erledigt werden, erwies sich dies als sehr schwer. Deshalb wurde der Prozess des Deep Learnings entwickelt. Hier soll das neuronale Netz nicht manuell gebaut werden müssen, sondern baut sich selbst, ähnlich wie es das menschliche Gehirn tut. Um dies zu erreichen, muss das Netz trainiert werden. Hierfür wird eine Sammlung von Ein- und Ausgangswertpaaren an die KI gefüttert, welche anschließend die Gewichte so anpasst, dass die Ausgabe des Netzes möglichst nahe an der gewünschten Ausgabe liegt. Dieser Vorgang wird als Backpropagation bezeichnet. Die Differenz zwischen der gewünschten und der tatsächlichen Ausgabe wird berechnet und auf die Gewichte der einzelnen Neuronen zurückgeführt. Die Gewichte werden dann so angepasst, dass die Differenz zwischen gewünschter und tatsächlicher Ausgabe minimiert wird. Dieser Vorgang wird so lange wiederholt, bis die Differenz zwischen gewünschter und tatsächlicher Ausgabe minimal ist. Durch diesen Prozess entstehen eine oder mehrere sogenannte hidden layers, abstrakte Schichten, welche die Ein- und Ausgangsschichten miteinander verbinden und die Daten in immer abstraktere Formen umwandeln. Die Anzahl der hidden layers und die Anzahl der Neuronen in diesen Schichten sind frei wählbar. Je mehr hidden layers und Neuronen vorhanden sind, desto komplexere Zusammenhänge können erkannt werden. Dieser Prozess wird in Abbildung 2.2 dargestellt.

Abbildung 2.2: Beispiel für neuronales Netz mit einer "hidden layer"
Quelle: http://commons.wikimedia.org

Durch die Fähigkeit aus großen Datensätzen komplexe Zusammenhänge zu erkennen, ist Deep Learning gut für die Replikation abstrakter Prozesse geeignet, für welche sich das Entwickeln eines klassischen Algorithmus als schwierig herrausstellt. Besonders wenn die Daten sehr komplex sind und große Datensätze für das Training verfügbar sind. Exzellente Beispiele für den Einsatz von Deep Learning wären zum Beispiel die Erkennung von Sprache und Gesichtern. Solche Technologien sind dabei schon weitläufig in Anwenderendgeräten im Einsatz, wie beispielsweise in Form von virtuellen Assistenten, die die Sprache des Anwenders verstehen können oder Kamera-Apps, die die Motive und Gesichter auf Fotos erkennen und anhand dessen klassifizieren. Aber auch in der Medizin und der Biologie wird Deep Learning eingesetzt, um zum Beispiel Krebszellen zu erkennen oder die Struktur von Proteinen zu analysieren. Auch in der Robotik wird Deep Learning eingesetzt, um Roboter zu entwickeln, die sich selbstständig bewegen können.

2.3 Generative Modelle

3 Generative Adversarial Networks

3.1 Konzept

3.2 Architektur

3.3 Training

4 Anwendungen von GANs

4.1 Bildsynthese

4.2 Super-Resolution

4.3 Style Transfer

5 Herausforderungen und Lösungsansätze

5.1 Mode Collapse

5.2 Training Instability

6 Schlussfolgerungen und Ausblick

Literatur

[1] Andreas Scherer. Neuronale Netze: Grundlagen und Anwendungen. Vieweg, Wiesbaden, 1997. ISBN: 978-3-528-05465-6.