Data Analytics

Interactive Visualization, Probabilistic Modeling, and Machine Learning with Mathematica

Poomjai Nacaskul, Ph.D. | ดร.พูมใจ นาคสกุล

Applied Digital Intelligence – Chulalongkorn School of Integrated Innovation Chulalongkorn University

Bachelor of Arts and Science in Integrated Innovation

Data Analytics: Interactive Visualization, Probabilistic Modeling, and Machine Learning with Mathematica

Poomjai Nacaskul, Ph.D. | ดร.พูมใจ นาคสกุล

Faculty, Applied Digital Intelligence Chulalongkorn School of Integrated Innovation Chulalongkorn University

© 2024 Poomjai Nacaskul

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

ISBN: 978-616-616-147-2 Published by Chulalongkorn University Press Chulalongkorn University Chamchuri 6 Building 254 Phyathai Road, Pathumwan Bangkok 10330, Thailand

Printed in Thailand First Edition

Chapter 1 - Intro to Data Analytics	5
1. What, Why, When, Where, How	5
1.1. What Data Analytics?	
1.1.1. But what is Data?	
1.1.2. And what <i>about</i> Analytics?	6
1.2. Why Data Analytics?	
1.2.1. Why Now?	
1.2.2. Why this Book?	
1.3. When/Where/How Data Analytics?	
1.3.1. When to use <i>any</i> Data Analytics?	
1.3.2. When to use <i>which</i> Data Analytics?	9
1.3.3. How to use <i>whichever</i> Data Analytics?	9
2. Data Analytics in Context	9
2.1. Data, Datasets vs. Data Points	9
2.1.1. Data Set	
2.1.2. Data Points	
2.2. Data vs. Numbers	11
2.2.1. What are Numbers?	11
2.2.2. Numbers in Context of Data Analytics?	
2.2.3. Dimensionality of Numbers	
2.2.4. Generalising the Notion of Data	
2.3. Tabular vs. Graph Data	17
2.3.1. Tabular Data	17
2.3.2. Graph Data	17
2.4. Data Analytics vs. Machine Learning vs. Artificial Intelligence	
2.4.1. Data Analytics vs. Machine Learning	
2.4.2. Machine Learning vs. Artificial Intelligence	
2.4.3. Artificial vs. Business vs. Computational vs. Digital Intelligence	
2.4.4. <i>Engineered</i> Intelligence, Intelligence <i>Engine</i> , and Intelligence <i>Engineering</i>	
3. Intro to Machine Learning	21
3.1. What is Machine Learning?	21
3.1.1. What do we mean by <i>Machine</i> ?	21
3.1.2. What do we mean by <i>Learning</i> ?	
3.1.3. What constitutes a <i>Learning Machine</i> ?	
3.1.4. What thus defines Machine Learning?	
3.2. What are Machine Learning Paradigms?	
3.2.1. Unsupervised Learning	
3.2.2. Supervised Learning	
3.2.3. Reinforcement Learning 3.2.4. Representation Learning	23 23
o.z. r. nop. cooncation Bearing	

Claratary 2 Instruments	
Chapter 2 - Intro to	
Wolfram Mathematica	24
1. Intro to Mathematica	
(the Scientific Computation <i>Platform</i>)	24
1.1. Evolution of Mathematica	
1.1.1. Mathematica 1.0	
1.1.2. Mathematica Notebook	
1.1.3. Mathematica 14	
1.2. Mathematica in Context	
1.2.1. Programming Paradigm	
1.2.2. Wolfram's "Computational Intelligence" Platform	
1.2.3. Science, Engineering & Industry	
1.2.4. Software Ecosystem	
2. Intro to Wolfram	
(the Mathematica Programming Language)	36
2.1. Language Syntax/Programming Primitives	36
2.1.1. Assignment	
2.1.2. List	
2.1.3. Function	38
2.1.4. Univariate Function	39
2.1.5. Multivariate Function	44
2.1.6. List/Array Construction	50
2.1.7. Association	
2.1.8. Useful Operations on/using List/Association	
2.1.9. Pure Functions	
2.1.10. User-defined Functions	
2.1.11. Defining Scope of Variable Definitions with Module[]	
2.1.12. Function Shorthand	64

2.1.13. Handling Tabular Data with Dataset[]662.1.14. Files & Storage682.2. Analytical/Computational/Algorithmic Functionalities682.2.1. Symbolic Computation Engine682.2.2. Analytical Computation Engine702.2.3. Numerical Computation Engine732.2.4. Semi-Analytical Computation Engine74

Chapter 3 - Interactive Visualisation	76
1. Static Visualisation	76
1.1. Visualising Parametric Objects	
1.1.1. Visualising Mathematical Functions	
1.1.2. Visualising Geometric Objects	76
1.2. Visualising Data Points	77
1.2.1. Visualising 1D Data	77
1.2.2. Visualising 2D Data	
1.2.3. Visualising 3D Data	
1.3. Visualising Histogram	
1.3.1. Visualising 1D Data on 2D Histogram	
1.3.2. Visualising 2D Data on 3D Histogram	
2. Interactive Visualisation	83
2.1. Interactive User Interface	83
2.1.1. Single Control	83
2.1.2. Multiple Controls	84
2.2. Encapsulating Interactive Design	89
2.2.1. Static Visualisation of Prototype with Initial Design Parameters	
2.2.2. Encapsulate Parametric Design as a Parameterised Function	90
2.2.3. Enable Interactive Control over the Design Parameters	
Chapter 4 - Probabilistic Modelling	95
1. Descriptive Statistics	95
1.1. Statistical Moment	
1.1.1. Moments vs. Central Moments	
1.1.2. Measure of Central Tendency	
1.1.3. Measure of Dispersion	98
1.1.4. Measure of Asymmetry	
1.1.5. Measure of Heavy-Tailedness	
1.2. Scaling/Normalisation	101
1.2.1. Standardise by Subtraction and Division	
1.2.2. Dividing by Vector Norm	
1.2.3. Distributional Rescaling	103

2. Probability Theory	104
2.1. Foundation of Probability Theory	104
2.1.1. Probability Axioms	
2.1.2. Random Variable	
2.1.3. Support of Probability Distribution	106
2.2. Probability Distribution Function	
2.2.1. Probability Mass/Density Function & Statistical Moments	
2.2.2. Probability & Quantiles	
2.2.3. Cumulative Distribution Function (CDF) & Inverse CDF	
2.2.4. Generating Random Variates	111
2.3. Univariate Probability Distribution	112
2.3.1. Finite (Discrete) Families	112
2.3.2. Countable (Discrete) Families	113
2.3.3. Bounded (Continuous) Families	114
2.3.4. Semi-Bounded (Continuous) Families	115
2.3.5. Unbounded (Continuous) Families	
2.4. Multivariate Probability Distributions	121
2.4.1. Families of Multivariate Probability Distributions	
2.4.2. Copula	127
3. Inferential Statistics	133
3.1. Parametric Estimation	133
3.1.1. Point Estimation	133
3.1.2. Confidence Interval	
3.2. Hypothesis Testing	135
3.2.1. Null Hypothesis & Test Statistics	
3.2.2. Normality & Distribution Fit Tests	
4. Nonparametric Statistics	138
4.1. Definition	
4.1.1. What makes Parametric Statistics Parametric?	138
4.1.2. What makes Nonparametric Statistics Nonparametric?	
4.1.3. What makes Semiparametric Statistics Semiparametric?	138
4.2. Nonparametric/Semiparametric Distribution Fit	139
4.2.1. (Nonparametric) Empirical Distribution	
4.2.2. (Semiparametric) Kernel Method	
4.3. Data Mining	
4.3.1. Frequent Itemset Mining	141
4.3.2. Association Rule Mining	
4.3.4. Sequential Rule Mining	146
4.3.3. Frequent Sequence Mining 4.3.4. Sequential Rule Mining	146

Chapter 5 - Unsupervised Machine Learning

	147
1. Unsupervised Machine Learning - Cluster Analysis	147
1.1. Modes of Cluster Analysis	
1.1.1. "Once-and-Done"	
1.1.2. "Learn-the-Partition"	147
1.2. Cluster Analysis Methods	
1.2.1. Hierarchical Branching	
1.2.2. Distance-based Cluster Analysis	
1.2.3. Density-based Cluster Analysis	
1.2.4. Hybrid/Nearest-Neighbour Clustering	150
1.3. Demonstration on Example Data	151
1.3.1. on Randomly Generated Hues	
1.3.2. on "Old Faithful" 2D Data	
1.3.3. on Generated "Quad-Mode" 2D Data	155
1.4. Cluster Analysis - Data Analytics Pipeline	157
1.4.1. Components of Cluster Analysis Pipeline	
1.4.2. Encapsulate the Cluster Analysis Pipeline	163
2. Unsupervised Machine Learning -	
Dimensionality Reduction	168
2.1. Modes of Analysis	
2.1.1. "Once-and-Done"	
2.1.2. "Learn-the-Mapping"	
2.2. Dimensionality Reduction Methods	
2.2.1. Linear Dimensionality Reduction Method	
2.2.2. Nonlinear Dimensionality Reduction Method	
2.2.3. Dimensionality Reduction on Generated 3D Data w/ Hidden Labels	168
2.3. Cluster Analysis together with Dimensionality Reduction	170
2.3.1. (<i>Don't</i> Do This!) Dimensionality Reduction on Cluster-Partitioned Datasets	170
2.3.2. (OK, But Still Not Recommended)	
Cluster Analysis on Dimensionality-Reduced Dataset	170
2.3.3. (Generally Recommended Practice)	
Dimensionality-Reduced Visualisation of Cluster-Partitioned Datasets	
2.4. Cluster Analysis together with Mixture Distribution Fit	
2.4.1. Mixture Distribution Fit on 1D Data Partitioned into Clusters	172
2.4.2. Encapsulate/Visualise Mixture Distribution Fit	
on 1D Data Partitioned into Clusters	173

Chapter 6 - Supervised Machine Learning

	175
1. Supervised Machine Learning - Problems	175
1.1. Prediction (Regression/Forecasting) Problem	
1.1.1. What is a Prediction Problem	
(in the Context of Supervised Machine Learning)?	175
1.1.2. Regression as Numerical Prediction Problem	175
1.2. Classification (Identification/Discriminant) Problem	178
1.2.1. What is a Classification Problem	
(in the Context of Supervised Machine Learning)?	178
1.2.2. Logistic Regression as Binary Classification Problem	178
2. Supervised Machine Learning – Algorithms	186
2.1. Unitary Supervised Learning Machines	186
2.1.1. Supervised Learning Trees	
2.1.2. Artificial Neural Network (ANN)	
2.2. Composite Supervised Machine Learning	
2.2.1. Ensemble Supervised Learning Trees - Boosting and Bagging	
2.2.2. Ensemble Neural Machine Learning Architectures	
3. Supervised Machine Learning - Procedure	
3.1. Training Machine Learners	191
3.1.1. Partition Dataset	
3.1.2. Input-Output Format	192
3.1.3. Running the Machine Learning Algorithm on Training Data	
3.2. Assessing Machine Learning Performance	
3.2.1. Predictor Performance Measurements	
3.2.2. Classifier Performance Measurements	
3.3. Attempting to Understand Learned Machines	
3.3.1. Model-Specific	
3.3.2. Model-Agnostic	200

Chapter 7 - Analytics on Graph Data	203
1. Graph as Mathematical Representation of Network.	203
1.1. Definition	
1.1.1. Graph, Vertex (Node), Edge (Arc)	203
1.1.2. Graph vs. Network	
1.1.3. Graph Data	204
1.1.4. Graph Plot, Graph Layout, Graph Embedding	205
1.1.5. Unweighted (Boolean) vs.	
Weighted (Ordinal/Interval/Ratio-Scale) Edges/Graphs	
1.1.6. Undirected vs. Directed Edges/Graphs	
1.1.7. Monoplex vs. Multiplex Graphs	
1.1.8. Adjacency Matrix, Adjacency Tensor	
1.2. Graph Properties	212
1.2.1. Connected vs. Unconnected Graph	
1.2.2. Acyclic vs. Cyclic Graph	
1.2.3. Directedness	
1.2.4. Sparsity 1.3. Graph Visualisation	
1.3.1. Graph Plot with Arbitrary Graph Layout	
1.3.2. Graph Plot with Specified Vertex Coordinates	
1.3.3. Graph Communities & Community Graph Plot	
2. Graph-Theoretic (Network-Centric)	220
Centrality Analysis	224
2.1. Definition	
2.1.1. Centrality Analysis = Vector-Valued Function	
2.1.2. Centrality Analysis = Matrix Computation	
2.2. Methods	
2.2.1. "Local" Method	224
2.2.2. "Recursive" Method	
2.2.3. "Global" Method	
2.2.4. Demonstration	
3. Algebraic Computation on Adjacency Matrices	
3.1. Matrix Power	
3.1.1. Operation and Limits	
3.1.2. Application	
3.2. Inner Operation	
3.2.1. Dot Product (and by extension Matrix Multiplication)	
as Special Case of Inner Operation	232
3.2.2. Application	
Glossary	
Biography	240
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 10



Data Analytics: Interactive Visualization, Probabilistic Modeling, and Machine Learning with Mathematica © 2024 Poomjai Nacaskul ISBN: 978-616-616-147-2 Chulalongkorn Univ. Press Bangkok, Thailand

