

FACULTAD DE INGENIERÍA

Curso Agosto - Diciembre 2021

FÍSICA COMPUTACIONAL

Actividad de Aprendizaje 1

Br. Alejandro Santoscoy Rivero

Dr. Francisco Ramón Peñuñuri Anguiano

27 de Septiembre de 2021

1. Problema

Considere el mecanismo planar 4R de la Figura 1. Haga una propagación de errores por Monte Carlo, en los parámetros $r_k(k=1,2,3,4,c_x,c_y)$ para la trayectoria generada por el punto $r_{\rm gen}$. Tome como ángulos de entrada 10 puntos aleatorios en $[0,2\pi)$. Como parámetros del mecanismo use los valores que se muestran en el Cuadro 1. Suponga que las cantidades están en el sistema internacional de unidades y considere $\Delta r_k = 10^{-5}$ m.

Para la simulación use 100 realizaciones probabilísticas.

$\overline{x_0}$	y_0	r_1	r_2	r_3	r_4	r_{cx}	r_{cy}	θ_0
0.00000	0.00000	1.08913	0.42259	0.964444	0.58781	0.39137	0.42950	0.00000

Cuadro 1: Parámetros del mecanismo

Figura 1: Mecanismo 4R planar

Definiendo

$$l_1 = r_1/r_2,$$

$$l_2 = r_1/r_3,$$

$$l_3 = (r_4^2 - r_1^2 - r_2^2 - r_3^2)/(2r_2r_3),$$

$$k_a = \cos\theta_2 - l_1 + l_2\cos\theta_2 + l_3,$$

$$k_b = -2\sin\theta_2,$$

$$k_c = l_1 + (l_2 - 1)\cos\theta_2 + l_3$$

las coordenadas del punto

$$r_{\text{gen}}(\theta_2; x_0, y_0, r_1, r_2, r_3, r_4, r_{cx}, r_{cy}, \theta_0) = (P_x, P_y),$$

están dadas por

$$P_x = x_0 + r_2 \cos(\theta_2 + \theta_0) + r_{cx} \cos(\theta_3 + \theta_0) - r_{cy} \sin(\theta_3 + \theta_0)$$

$$P_y = y_0 + r_2 \sin(\theta_2 + \theta_0) + r_{cx} \sin(\theta_3 + \theta_0) - r_{cy} \cos(\theta_3 + \theta_0),$$

con θ_3 dado por

$$\theta_3 = 2\operatorname{atan2}\left(-k_b - \sqrt{k_b^2 - 4k_a k_c}, 2k_a\right).$$

2. Resolución

Se utiliza el software de Octave como apoyo en la simulación del proceso, esto debido a su capacidad de manipulación matricial.

La resolución será explicada junto con el código para tener una comprensión más directa y exacta de lo que sucede.

Se comienza con el formato en consola, limpiando todas las variables y limpiando la salida.

```
clc;
clear all;
format long;
```

Se define una función que genera cierta cantidad de números aleatorios dentro de una rango específico.

Se inicializan los parámetros del mecanismo.

```
x0
        = 0.00000;
γ0
        = 0.00000;
        = 1.08913;
r1
        = 0.42255;
r2
        = 0.96444;
r3
        = 0.58781;
r4
        = 0.39137;
rcx
        = 0.42950;
rcy
theta0
       = 0.00000;
```

Se generan 10 ángulos aleatorios entre 0 y 2π tanto para las variables theta2 y theta4.

```
theta2 = XO(10,0,2*pi);
theta4 = XO(10,0,2*pi);
```

Se define la discrepancia Δr_k como

```
delta = 0.00001;
```

Se generan 100 mediciones aleatorias de cada barra dentro del rango de discrepancia definido.

```
r1_rand = X0(100, r1-delta, r1+delta);
r2_rand = X0(100, r2-delta, r2+delta);
r3_rand = X0(100, r3-delta, r3+delta);
r4_rand = X0(100, r4-delta, r4+delta);
rcx_rand = X0(100, rcx-delta, rcx+delta);
rcy_rand = X0(100, rcy-delta, rcy+delta);
```

De estas medidas se obtienen los siguientes parámetros.

```
11 = r1_rand./r2_rand;
12 = r1_rand./r3_rand;
13 = (r4_rand.^2-r1_rand.^2-r2_rand.^2-r3_rand.^2)/(2*r2.*r3);
```

Ahora la lógica implementada es realizar 10 mediciones, una por cada valor del ángulo, el resultado de esto es obtener 10 puntos de los cuales se conocerán su promedio y desviación estándar en x y y. (Se agregan saltos de línea en las expresiones rgenx y rgeny para facilitar la lectura, pero la sintaxis debe escribirse en una sola línea).

```
for ii = 1:size(theta2)(1)
    ka(:,ii) = cos(theta2)(ii) - 11 + 12 .* cos(theta2)(ii) + 13;
    kb(:,ii) = -2*sin(theta2)(ii);
   kc(:,ii) = 11 + (12-1) .* cos(theta2)(ii) + 13;
    theta3 = 2*atan2(-kb-sqrt(kb.^2-4*ka.*kc),2*ka);
    rgenx(:,ii) = x0 +
                  r2_rand*cos(theta2(ii)+theta0) +
                  rcx_rand.*cos(theta3(:,ii)-theta0) -
                  rcy_rand.*sin(theta3(:,ii)-theta0);
    rgeny(:,ii) = y0 +
                  r2_rand*sin(theta2(ii)+theta0) +
                  rcx_rand.*sin(theta3(:,ii)-theta0) +
                  rcy_rand.*cos(theta3(:,ii)-theta0);
    rgenx_avg(ii) = mean(rgenx(:,ii));
    rgeny_avg(ii) = mean(rgeny(:,ii));
    rgenx_std(ii) = std(rgenx(:,ii));
    rgeny_std(ii) = std(rgeny(:,ii));
endfor
```

Y por último mostrar los datos obtenidos en una misma gráfica representando la localización del promedio y de la desviación estándar.

```
clf;
hold on;
scatter(rgenx_avg, rgeny_avg, 15, 'r');
scatter(rgenx_avg+rgenx_std, rgeny_avg, 5, 'b');
scatter(rgenx_avg-rgenx_std, rgeny_avg, 5, 'b');
scatter(rgenx_avg, rgeny_avg+rgeny_std, 5, 'b');
scatter(rgenx_avg, rgeny_avg-rgeny_std, 5, 'b');
hold off;
```

Los resultados se resumen en la descripción de las variables: θ_2 , $\langle x \rangle$, $\langle y \rangle$, σ_x y σ_y . Al tener 10 ángulos aleatorios, los 10 resultados obtenidos se pueden apreciar en la Tabla 2.

θ_2	$\langle x \rangle$	$\langle y \rangle$	σ_x	σ_y
1.173308006	0.45847392	0.890280486	1.96E-05	7.12E-06
4.187756579	-0.168292212	0.21372828	1.59E-05	7.68E-06
6.223366105	0.455343172	0.55483861	3.01E-05	5.60E-06
4.995621966	-2.12E-02	0.158423949	1.50E-05	6.53E-06
4.55679268	-0.121014098	0.160963874	1.45E-05	6.79E-06
4.452553013	-0.138038859	0.171954797	1.47E-05	6.95E-06
5.833120384	0.282741983	0.388972114	2.39E-05	6.32E-06
5.604391827	0.184880522	0.297642549	2.01E-05	6.56E-06
4.803157512	-7.03E-02	0.15002794	1.45E-05	6.59E-06
1.574956807	0.318644318	0.907298553	1.66E-05	7.06E-06

Cuadro 2: Parámetros del mecanismo

La distribución de cada uno de los 10 puntos se puede ver en la Figura 2.

Figura 2: Gráfica de los 10 puntos medidos con distinto ángulo

Y la visualización de cada punto promedio junto con sus respectivas desviaciones estándar en x y y se ven entre la Figura 3 y la Figura 12.

El código se puede encontrar en el siguiente repositorio de GitHub: https://github.com/Santocoyo/ComputationalPhysics_Task1

Figura 3: Gráfica del promedio y desviación estándar con un ángulo de 1.17 rad

Figura 4: Gráfica del promedio y desviación estándar con un ángulo de 4.18 rad

Figura 5: Gráfica del promedio y desviación estándar con un ángulo de 6.22 rad

Figura 6: Gráfica del promedio y desviación estándar con un ángulo de $4.99~\mathrm{rad}$

Figura 7: Gráfica del promedio y desviación estándar con un ángulo de 4.55 rad

Figura 8: Gráfica del promedio y desviación estándar con un ángulo de 4.45 rad

Figura 9: Gráfica del promedio y desviación estándar con un ángulo de 5.83 rad

Figura 10: Gráfica del promedio y desviación estándar con un ángulo de 5.60 rad

Figura 11: Gráfica del promedio y desviación estándar con un ángulo de $4.80~\mathrm{rad}$

Figura 12: Gráfica del promedio y desviación estándar con un ángulo de $1.57~\mathrm{rad}$