HAITIAN JIANG

J +1 (332)-323-2919 ■ haitian.jiang@nyu.edu ♠ github.com/haitian-jiang ♣ haitian-jiang.github.io

New York University

Sep. 2023 – Present

Ph.D. in Computer Science

New York, NY

Advisor: Prof. Jinyang Li & Prof. Aurojit Panda

Research Interest: Machine Learning Systems, Machine Learning, Compilers

Fudan University

Sep. 2019 - Jun. 2023

B.S. in Data Science (Summa Cum Laude)

Shanghai, China

Advisor: Prof. Zengfeng Huang

University of California, San Diego (UCSD)

Sep. 2021 - Dec. 2021

Exchange Student, Computer Science and Engineering

La Jolla, CA

PUBLICATION

 DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training. Liu R., Wang Y., Yan X., Cai Z., Wang M., Jiang H., Tang B. and Li J. SIGMOD 2025.

• MuseGNN: Forming Scalable, Convergent GNN Layers that Minimize a Sampling-Based Energy.

Jiang H., Liu R., Huang Z., Wang Y., Yan X., Cai Z., Wang M. and Wipf D.

ICLR 2025.

• FreshGNN: Reducing Memory Access via Stable Historical Embeddings for Graph Neural Network Training.

Huang K.*, Jiang H.* (Equal Contribution), Wang M., Xiao G., Wipf D., Song X., Gan Q., Huang Z., VLDB 2024. Zhai J. and Zhang Z.

• Simplifying and Empowering Transformers for Large-Graph Representations. Wu Q., Zhao W., Yang C., Zhang H., Nie F., Jiang H., Bian Y. and Yan J.

NeurIPS 2023.

🖵 Research & Intern Experiences

Systems Group, New York University

Sep. 2023 - Present

Research Assistant | Machine Learning Systems

New York

Advisor: Prof. Jinyang Li & Prof. Aurojit Panda

• Automatic Searching for Kernel Fusion and Scheduling in Machine Learning Compilers

Applied Scientist Intern | Machine Learning Systems

May. 2024 - Dec. 2024 Santa Clara

Advisor: Yida Wang & Zhen Jia

Amazon Web Services

• Correctness Checking for Distributed Deep Learning Training Frameworks

DGL Group, Amazon Web Services (AWS) AI Lab

Jun. 2022 - Aug. 2023

Applied Scientist Intern | Machine Learning Theory and System

Shanghai

Advisor: David Wipf & Minjie Wang

- FreshGNN: Graph Neural Network (GNN) training system with historical cache
 - Accelerated and scaled up GNN training on large graphs with a selective historical cache to reduce computation and data movement.
 - Designed managing policies based on gradients and staleness for cached nodes.
- MuseGNN: Forming Scalable, Convergent GNN Layers that Minimize a Sampling-Based Energy
 - Expanded a widely-used unfolded GNN framework to incorporate offline sampling into the architecture-inducing energy function design.
 - Demonstrated the model possess convergence properties of the bi-level optimization process.
 - Empirically extended the unfolded GNN framework to large graphs and achieved SOTA performance for homogeneous graph models applied to the largest open graph dataset.

Lab of Intelligent Information Processing, Fudan University

Jan. 2022 – Oct. 2022

Research Assistant | Graph Neural Network

Shanghai

Advisor: Prof. Zengfeng Huang

• Scalable Graph Neural Networks using Subgraph Summarization

- Proposed a sub-graph sampling method that can cooperate with graph coarsening algorithms to reduce the size of sub-graphs by 30%.
- Scaled up GNN training: implemented both pre-processing and training on multi-GPU; reduced the training time on papers100M from over 10 minutes to 27s for one epoch.

McAuley Lab, University of California, San Diego

Oct. 2021 – Aug. 2022

Research Assistant | Recommender System, Natural Language Processing Advisor: Prof. Julian McAulev

La Jolla

• Recommendation System with Faithful Textual Explanation

- Evaluated current text-based recommenders through aspect-based sentiment analysis and found the text cannot faithfully explain ratings as popular and positive aspects dominate the text.
- Designed a metric of faithfulness for recommendation explanation by learning and comparing the mapping from explanations to predicted ratings in order to measure the issue.
- Designed and implemented a new pipeline that first generate text explanations of recommendations and then use the text to predict faithful ratings.

Keen Lab, Tencent Technology

Feb. 2021 - Jul. 2021

Software Engineer | Reverse Engineering

Shanghai, China

- Collected, reproduced and exploited vulnerabilities (CVE) of IoT devices; conducted reverse-engineering on the firmware of devices.
- Implemented a crawler system using Scrapy, PostgreSQL, and message queue (RMQ) to automatically gather information of the products and download firmware.

♣ TEACHING EXPERIENCE

TA: Natural Language Processing, CSCI-GA.2590, Spring 2025, New York University

TA: Honors Analysis of Algorithms, CSCI-GA.3110, Fall 2024, New York University

TA: Advanced Computer Graphics, CSCI-GA.2274, Spring 2024, New York University

TA: Big Data and Machine Learning Systems, CSCI-GA.3033(077), Spring 2024, New York University

TA: Advanced Big Data Analytics, DATA130014, Spring 2023, Fudan University

TA: Algorithm and Data Structures (Honor), DATA130023H, Fall 2022, Fudan University

⚠ ACADEMIC SERVICES

Reviewer: NeurIPS 2024, 2025; ICLR 2025; MLSys 2025; ICML 2025

Artifact Evaluation: ATC 2025 Organizer: NYU MLSys Seminar

Y Honors & Awards

Henry M. MacCracken Fellowship	2023
China National Scholarship (top 1%)	$\boldsymbol{2021}$
National Second Prize (top 3%), CUMCM	2020
(Contemporary Undergraduate Mathematical Contest in Modeling)	
Second Prize Scholarship of Fudan University (top 10 %)	2020

> SKILLS

Languages: Mandarin (Native speaker), English (Proficient)

Programming: Python, C/C++, CUDA, Triton, Go, MATLAB, R, SQL, PHP, Bash

Frameworks: Linux, Git, PyTorch, GPU programming, OpenMP, Spark, Docker, Web Crawler