Analogue Integrated Circuits Report

Fergal Lonergan 13456938

Lab 6

a.

We were asked to find a value for our V_b voltage that gave an output current I_{out} of 0.5mA. to do this we ran a DC simulation and swept our voltage V_b (in simulation we called it V_{in}) from 0 – 5V, and located the point where our output current was exactly 0.5mA. For us this point was when V_b was equal to 1.918V

b.

We then checked how our current was affected by a voltage change of \mp 100mV of V_b . To do this we ran a DC sweep of 1.818V – 2.018V.

As we can see that close to our operating point of $V_b=1.918V$ our current increases linearly with a small change in voltage from 0.492mA-0.507mA.

C.

We then were asked to calculate our R_{out} . To do this we ran an AC sweep setting our V_{out} to have an AC magnitude of 1V. We then once again measured our current and using this were able to find our R_{out} .

$$R_{out} = \frac{V_{out}}{I_{out}} = \frac{1}{4.6271 \mu} \cong 216 k\Omega$$

