C. Constructing Tests

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

Let's denote a m-free matrix as a binary (that is, consisting of only 1's and 0's) matrix such that every square submatrix of size $m \times m$ of this matrix contains at least one zero.

Consider the following problem:

You are given two integers n and m. You have to construct an m-free square matrix of size $n \times n$ such that **the number of 1's in this matrix is maximum possible**. Print the maximum possible number of l's in such matrix.

You don't have to solve this problem. Instead, you have to construct a few tests for it.

You will be given t numbers $x_1, x_2, ..., x_t$. For every , find two integers n_i and m_i ($n_i \ge m_i$) such that the answer for the aforementioned problem is exactly x_i if we set $n = n_i$ and $m = m_i$.

Input

The first line contains one integer t ($1 \le t \le 100$) — the number of tests you have to construct.

Then *t* lines follow, *i*-th line containing one integer x_i ($0 \le x_i \le 10^9$).

Note that in hacks you have to set t = 1.

Output

For each test you have to construct, output two positive numbers n_i and m_i ($1 \le m_i \le n_i \le 10^9$) such that the maximum number of 1's in a m_i -free $n_i \times n_i$ matrix is exactly x_i . If there are multiple solutions, you may output any of them; and if this is impossible to construct a test, output a single integer - 1.

Example

input	
3	
21	
$lackbox{0}$	
1	
output	
5 2	
1 1	
-1	