Corso di Laurea: Ingegneria Informatica

Testo n.xx - Esame di Fisica Generale sessione del 1/02/2023

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

(Figura qualitativa e non in scala a scopo illustrativo)

Con riferimento alla figura, un punto materiale P di massa m viene lanciato, mediante una molla di costante elastica k, su un piano orizzontale di lunghezza L=2 m, posto alla quota a=1 m rispetto al suolo (vedi figura). Calcolare:

1.1 il modulo della velocità $|\overrightarrow{v}_A|$ che P deve possedere alla fine del piano a quota a, nel punto A, per colpire un bersaglio puntiforme, posto al suolo in B a una distanza d=1 m dall'origine degli assi cartesiani

$$\mid \overrightarrow{v}_A \mid =$$

1.2 l'angolo di impatto al suolo ϕ_B in radianti (l'angolo che forma la direzione del punto materiale P in B con l'asse delle x)

$$\phi_B =$$

Se $\frac{m}{K} = 2 \times 10^{-3} s^2$ determinare:

1.3 le compressioni δ e δ' della molla necessarie affichè il punto materiale P colpisca il bersaglio posto in B rispettivamente nel caso in cui il piano a quota a è liscio e nel caso in cui esso è scabro e con coefficiente di attrito dinamico $\mu_d = 0.5$

$$\delta$$
= δ' =

Nota Bene: assumere per i calcoli $g = 9,81 \text{ m/s}^2$

ESERCIZIO.2 - Elettromagnetismo

Con riferimento alla figura, si consideri un cavo conduttore di materiale omogeneo costituito da un cilindro rettilineo di lunghezza infinita e raggio $R_1 = 1 \ cm$. In esso scorre una corrente $i_1 = 3 \ mA$ avente densità di corrente uniforme sulla sezione del cavo. Il cavo è circondato da una buccia cilindrica coassiale al cavo, anch'essa infinitamente lunga, di raggio $R_2 = 3 \ cm$ e spessore trascurabile. In essa scorre una corrente $i_2 = 2 \ mA$, di verso opposto a i_1 , distribuita uniformemente lungo la sezione della buccia. Tutto il sistema è nel vuoto.

2.1 Determinare il vettore campo magnetico \overrightarrow{B} in coordinate cilindriche in tutto lo spazio, e fare un grafico del modulo del campo magnetico, $|\overrightarrow{B}|$, in funzione della distanza dall'asse comune ai due cilindri

$$\overrightarrow{B}$$
=

2.2 Determinare in coordinate cartesiane la forza \overrightarrow{F} agente su una particella di carica q=1 nC all'istante t_0 , quando essa si trova nel punto P a una distanza d=4 cm dall'asse comune ai due cilindri ed è in moto con una velocità $v_0=100$ $\frac{m}{s}$, diretta come in figura

$$\overrightarrow{F}$$
 =

Sia ora data una linea chiusa orientata C, di forma quadrata con lato L maggiore di R_2 , disposta su un piano perpendicolare all'asse di simmetria del sistema e con un vertice su di esso, come in figura.

2.3 Si determini la circuitazione del campo \overrightarrow{B} lungo la linea orientata C.

$$\oint_C \overrightarrow{B} \cdot \overrightarrow{dl} = \dots$$

Costanti Utili: $\mu_0 = 1.257 \ 10^{-6} \ \mathrm{TmA^{-1}}$

(Figura qualitativa a solo scopo illustrativo)

(Figura qualitativa e non in scala a scopo illustrativo)

Domanda 1.1

Dopo la fine del piano orizzontale, il punto segue una traiettoria parabolica sul piano xy con accelerazione (0,g), velocità iniziale $(v_A,0)$, e posizione iniziale (0,a), avendo scelto il sistema di riferimento con asse orizzontale sul suolo e asse verticale passante per il punto A. Il moto è quindi uniformemente accelerato lungo y e rettilineo uniforme lungo x. Affinchè il punto materiale A colpisca il bersaglio la sua traiettoria parabolica deve passare per il punto B di coordinate (d,0). Scrivendo le leggi orarie lungo x e lungo y otteniamo:

$$\begin{cases} x = v_A t \\ y = a - \frac{1}{2}gt^2 \\ v_x = v_A \\ v_y = -gt \end{cases} \Rightarrow \text{per x=d e y=0} \begin{cases} v_A = \frac{d}{t^*} \\ t^* = \sqrt{\frac{2a}{g}} \Rightarrow v_A = d\sqrt{\frac{g}{2a}} \\ v_x(d,0) = v_A = v_{Bx} \\ v_y(d,0) = -gt^* \Rightarrow v_y(d,0) = -g\sqrt{\frac{2a}{g}} = v_{By} \end{cases}$$

per cui:

$$v_A = d\sqrt{\frac{g}{2a}} = 2.21 \ \frac{m}{s}$$

Domanda 1.2

La tangente dell'angolo formato dalla traiettoria del punto materiale con l'asse delle x nel punto B è data dal rapporto tra le componenti della velocità $\overrightarrow{v}_B = (v_{Bx}, v_{By})$ nel punto B di coordinate (d, 0):

$$tg(\phi_B) = \frac{v_{By}}{v_{Bx}} = -\frac{g}{d}\frac{2a}{g} = -\frac{2a}{d} = -2 \quad \Rightarrow \quad \phi_B = -\arctan(2) = -1.11rad$$

Domanda 1.3

Il punto materiale per colpire il bersaglio in B, deve avere nel punto A la velocità in modulo calcolata nella domanda 1.1, v_A . Nel caso in cui il piano a quota a è liscio, vale la conservazione dell'energia essendo nullo il lavoro compiuto dalle forze esterne non conservative (l'unica forza esterna potenzialmente non conservativa è la reazione del piano, che però è ortogonale allo spostamento) pertanto:

$$\frac{1}{2}k\delta^2 = \frac{1}{2}mv_A^2 \quad \Rightarrow \quad \delta = \sqrt{\frac{m}{k}}v_A = \sqrt{\frac{mg}{2ak}}d = 9.9 \times 10^{-2} \ m$$

Nel caso in cui il piano è scabro con coefficiente di attrito dinamico μ_d , vale:

$$T_{f} - T_{i} = \frac{1}{2}mv_{A}^{2} = U_{i} - U_{f} + \mathcal{L}_{NC} = \frac{1}{2}k\delta^{'2} - \mu_{d}mgL \quad \Rightarrow \quad \delta^{'} = \sqrt{\frac{m}{k}\left(v_{A}^{2} + 2\mu_{d}gL\right)} = \sqrt{\frac{mg}{k}\left(\frac{d^{2}}{2a} + 2\mu_{d}L\right)} = 0.221 \ m^{2}$$

dove abbiamo indicato con T_f e T_i , e U_f e U_i rispettivamente le energie cinetiche e potenziali finali e iniziali, e infine con \mathcal{L}_{NC} il lavoro fatto dalle forze non conservative, in questo caso la forza di attrito.

Soluzione Esercizio 2

Domanda 2.1

Data la simmetria cilindrica del sistema, le linee del campo magnetico \overrightarrow{B} sono delle circonferenze centrate sull'asse del sistema e giacenti su piani perpendicolari ad esso. Pertanto \overrightarrow{B} in coordinate cilindriche ha solo componente tangenziale in coordinate cilindriche. Fissando come verso convenzionalmente positivo quello antiorario per la circuitazione di \overrightarrow{B} , la componente tangenziale di \overrightarrow{B} si determina applicando il teorema di Ampere lungo il percorso chiuso orientato scelto per la circuitazione. Esprimendo il campo magnetico in coordinate cilindriche come $\overrightarrow{B} = (0, B_T, 0)$, dal teorema di Ampere:

$$\oint \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0 I_{conc} \quad \Rightarrow \quad B_T 2\pi r = \mu_0 I_{conc}$$

dove I_{conc} è la corrente concatenata con la linea circolare.

Per $r \leq R_1$ la corrente concatenata è data da:

$$I_{conc} = \int \overrightarrow{J_1} \cdot \hat{z} dS = \int_0^r \frac{i_1}{\pi R_1^2} dS = \frac{i_1}{\pi R_1^2} \pi r^2$$

Per $R_1 \le r < R_2$ la corrente concatenata è data da i_1 . Infine per $r > R_2$ la corrente concatenata vale $i_1 - i_2$. Per cui il campo magnetico ha la seguente espressione in funzione di r in coordinate cilindriche:

$$\overrightarrow{B} = B_T \hat{u}_T \equiv (0, B_T, 0) \quad con \quad B_T \left(r \right) = \begin{cases} \frac{\mu_0 i_1 r}{2\pi R_1^2} & 0 \le r < R_1 \\ \frac{\mu_0 i_1}{2\pi r} & R_1 \le r < R_2 \\ \frac{\mu_0 (i_1 - i_2)}{2\pi r} & r > R_2 \end{cases}$$

Si osservi che $i_1 > i_2$, per cui le linee di campo magnetico sono sempre antiorarie qualunque sia r.

Il grafico del modulo del campo magnetico, $|\vec{B}|$, in funzione della distanza r dall'asse dei cilindri è riportato in figura a.

Domanda 2.2

Una particella di carica q posta nel punto P con velocità $\overrightarrow{v}_0 = v_0 \hat{x}$ al tempo t_0 è sottoposta alla forza di Lorentz \overrightarrow{F}_L data da:

$$\overrightarrow{F}_L = qv_0\hat{x} \wedge \overrightarrow{B}(P)$$

Il punto P è esterno ai due cilindri, di conseguenza in P:

$$\vec{B}(P) = B_T(d)\hat{u}_T = \frac{\mu_0 (i_1 - i_2)}{2\pi d}\hat{u}_T$$

Guardando la figura b, in coordinate cartesiane:

$$\vec{B}(P) = \frac{\mu_0 (i_1 - i_2)}{2\pi d} \hat{y} \quad \Rightarrow \quad \vec{F}_L = q v_0 \hat{x} \wedge \frac{\mu_0 (i_1 - i_2)}{2\pi d} \hat{y} = \frac{q v_0 \mu_0 (i_1 - i_2)}{2\pi d} \hat{z} = \left(5 \times 10^{-16} \ N\right) \hat{z}$$

Domanda 2.3

Dal teorema di Ampere e per il percorso orientato scelto:

$$\oint_C \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0 I_{conc} = \mu_0 \frac{(i_1 - i_2)}{4} = 3.15 \times 10^{-10} \ Tm$$

poichè per il percorso scelto la corrente uscente è $\frac{i_1}{4}$ e quella entrante è $\frac{i_2}{4}$.

(Figure qualitative e non in scala a scopo illustrativo)