

Fakultät für Mathematik Institut für Algebra und Geometrie

Wintersemester 2022/23 Prof. Dr. Alexander Lytchak

Lineare Algebra 1

Übungsblatt 2

Die Abgabe ist bis zum 14.11.2022 um 12 Uhr möglich.

Bitte beachten Sie die Vorgaben zur Abgabe auf Merkblatt 1 im Ilias.

Aufgabe 1 (3+3 Punkte)

a) Sei M eine Menge und seien $A, B \subset M$. Zeigen Sie die folgende Regel von de Morgan:

$$(A \cap B)^c = A^c \cup B^c$$
.

b) Sei $f: X \to Y$ eine Abbildung. Wir definieren das Urbild einer Teilmenge $A \subset Y$ unter f durch:

$$f^{-1}(A) := \left\{ x \in X \mid f(x) \in A \right\}.$$

Zeigen Sie die folgende Identität:

$$f^{-1}(A^c) = f^{-1}(A)^c$$
.

Aufgabe 2 (2+2+4 Punkte)

Sei $f: X \to Y$ eine Abbildung. Zeigen Sie:

- a) Die Abbildung f ist genau dann injektiv, wenn eine Abbildung $g: Y \to X$ existiert, sodass $g \circ f = id_X$.
- b) Die Abbildung f ist genau dann surjektiv, wenn eine Abbildung $g: Y \to X$ existiert, sodass $f \circ g = id_Y$.
- c) Überprüfen Sie die folgende Abbildung auf Injektivität, Surjektivität und Bijektivität:

$$f \colon \mathbb{R}^2 \to \mathbb{R}^2,$$

$$f \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} x + 2y \\ 2x - y \end{array} \right).$$

Aufgabe 3 (3+3 Punkte)

Entscheiden Sie für die nachfolgenden Relationen, ob es sich um Ordnungs- oder Äquivalenzrelationen handelt, und beweisen Sie Ihre Antwort:

- a) Die Anzahl der Elemente einer Menge X notieren wir durch |X|. Sei M eine endliche Menge. Wir definieren eine Relation R auf der Potenzmenge $\mathscr{P}(M)$ wie folgt: Für alle $A,B\in\mathscr{P}(M)$ gilt $(A,B)\in R$ genau dann, wenn $|A|\geq |B|$.
- b) Sei $f: X \to Y$ eine Abbildung. Wir definieren eine Relation R auf X wie folgt: Für alle $x_1, x_2 \in X$ gilt x_1Rx_2 genau dann, wenn $f(x_1) = f(x_2)$.