

รายงาน Mini Project

เรื่อง ถังขยะอัจฉริยะ

เสนอ

ดร.สมภพ ลิ้มสุนทรากูล

จัดทำโดย

นางสาว	มันนา มงอาหลี	6410210255
นาย	พงศกร แซ่ซึ่ง	6410210552

นักศึกษาชั้นปีที่ 2

คณะวิทยาศาสตร์ สาขาวิทยาการคอมพิวเตอร์ รายงานเล่มนี้เป็นส่วนหนึ่งของ 344-322 Embedded System

กิตติกรรมประกาศ

โครงงานนี้สำเร็จลุล่วงได้ด้วยความกรุณาจากอาจารย์ที่ช่วยปรึกษาโครงงานที่ได้ให้คำ เสนอแนะ แนวคิด ตลอดจนแก้ไขข้อบกพร่องต่าง ๆ มาโดยตลอด จนโครงงานเล่มนี้เสร็จสมบูรณ์ ผู้ศึกษาจึงขอกราบขอบพระคุณเป็นอย่างสูง

ขอบคุณเจ้าหน้าที่ประจำตึกสาขาวิทยาการคอมพิวเตอร์ที่อนุญาตและอำนวยความสะดวก ให้ผู้ศึกษาได้ใช้งานห้อง CS207 ภายในตึกสาขาวิทยาการคอมพิวเตอร์ในการทำ Mini Project

ขอบคุณเพื่อนในทีมที่ช่วยให้คำแนะนำและทำโครงงานชิ้นนี้ในสำเร็จลุล่วงเกี่ยวกับการ ทำงานของตัว Arduino และการเลือกใช้คำในการเขียนเล่มโครงงานชิ้นนี้

บทคัดย่อ

โครงานชิ้นนี้เป็นโครงงานที่ทำขึ้นเพื่อสอดคล้องกับรายวิชา344-322 Embedded Systems ที่ เกี่ยวกับอุปกรณ์ที่เป็นบอร์ด Arduino โดยโครงงานชิ้นนี้มีที่มาจากการจุดประกายความคิดอยากให้คนมา สนใจการทิ้งขยะ จึงได้เกิดโครงงานชิ้นนี้ขึ้นมามีชื่อว่า "ถังขยะอัจฉริยะ" โดยผลงานชิ้นนี้ได้มีการนำเนื้อ รายวิชา 344-322 Embedded Systems มาประยุกต์ใช้ ดังนั้นจึงทำอุปกรณ์ที่เลียนแบบอุปกรณ์ที่มีอยู่แล้ว ในปัจจุบัน และจากผลการทำงานได้ผลลัพธ์คือตัวถังจะเปิดฝาต่อเมื่อมีอะไรผ่านหน้า Sensor IR และจะแสดง สถานะขยะในถังด้วยตัว Ultrasonic Sensor HC-SR04

สารบัญ

กิตติกรรมประกาศ	ก
บทคัดย่อ	ๆ
Introduction	1
ที่มาและความสำคัญของโครงงาน	1
วัตถุประสงค์	1
ประโยชน์ที่คาดว่าจะได้รับ	1
Methodology	2
ทฤษฎีและ algorithms (ถ้ามี)	2
การออกแบบด้าน hardware	3
อุปกรณ์ที่เลือกใช้ sensors/actuators	4
การออกแบบกระบวนการทำงานของอุปกรณ์ (Flowchart)	4
Experimental Result and Discussion - ผลการทำงาน และวิเคราะห์ผล (ความสมบูรณ์ของอุปกรณ์ ประสิทธิภาพ และ	
ข้อจำกัด)	5
Conclusion and future work - สรุปผล และการต่อยอดในอนาคต	5
บรรณานุกรม	6
ภาคผนวก	7

Introduction

ที่มาและความสำคัญของโครงงาน

จากปัจจุบันการใช้งานเทคโนโลยีในการ ทำให้การใช้ชีวิตของเราง่ายและสะดวกมากขึ้นนั้น ทำให้เรา เล็งเห็นว่าในหลายๆครั้ง ในการทิ้งขยะถึงแม้หลายคนรู้ว่าขยะส่งผลกระทบต่อสิ่งแวดล้อมและธรรมชาติ แต่ก็ ยังทิ้งขยะไม่เป็นที่ ทิ้งขยะไปทั่วทั้ง ๆที่บริเวณนั้นก็มีถังขยะวางอยู่ เราจึงเล็งเห็นความสำคัญของเรื่องนี้

เราได้เลือกทำสิ่งโครงงานดังกล่าว จากบอร์ด Arduino เนื่องจากตัวผู้ศึกษาได้ศึกษาเกี่ยวกับ การ ทำงานของระบบฝังตัว (embedded system) ผ่านการทำงานของบอร์ด Arduino และอุปกรณ์เสริมต่างๆ ภายในบอร์ดและที่ใช้งานกับบอร์ด

วัตถุประสงค์

- เพื่อศึกษาค้นคว้าเกี่ยวกับการทำงานของบอร์ด Arduino
- เพื่อศึกษาค้นคว้าเกี่ยวกับการทำงานของอุปกรณ์อื่นๆที่นำมาใช้กับตัวบอร์ด
- เพื่อให้ผู้ศึกษาสามารถพัฒนาการทำงานของระบบฝังตัวในอนาคตภายภาคหน้า
- เพื่อทิ้งขยะลงในถังขยะได้สะดวกมากขึ้น
- เพื่อให้รู้สถานะของถังว่ายังทิ้งได้หรือถังเต็มแล้วโดยไม่ต้องเปิดถังเพื่อดู

ประโยชน์ที่คาดว่าจะได้รับ

- ได้รับความรู้เกี่ยวกับการใช้งานตัวบอร์ด Arduino
- ได้รับความรู้เกี่ยวกับการทำงานต่างๆของบอร์ด Arduino กับ อุปกรณ์อื่นๆ
- ได้รับความรู้เกี่ยวกับการเขียนโค้ดเพื่อทำให้บอร์ด Arduino ใช้งานได้
- ผู้เรียนสามารถนำความรู้ดังกล่าวไปพัฒนาต่อได้ในหลายๆด้าน เกี่ยวดับระบบฝังตัว
- สามารถติดต่อสื่อสารกันได้ระหว่างอาจารย์ เพื่อนและผู้สนใจทั่วไปเพื่อสร้างเครือข่ายการเรียนรู้
- ได้นำเอาเทคโนโลยียุคใหม่มาใช้อย่างมีคุณค่า และสร้างสรรค์
- สามารถดึงดูดคนให้มาทิ้งขยะ
- สามารถรู้สถานะของถังขยะจากเซนเซอร์ที่ตั้งไว้

Methodology

ทฤษฎีและ algorithms (ถ้ามี)

ในการจัดทำโครงงาน "ถังขยะอัจฉริยะ" ผู้จัดทำโครงการได้ศึกษาและลงมือทำ โดย องค์ประกอบททำมีในส่วนของ

- 1.Hardware ส่วนที่ทำให้อุปกรณ์เชื่อมต่อกับบอร์ดและเกิดการทำงาน
- 2.Software ที่ใช้เพื่อให้โปรแกรม เกิดกระบวนการทำงาน

โดยบอร์ดที่ใช้งาน คือ Arduino Uno R3 โดย Arduino คือ โครงการโปรเจกต์หนึ่งที่นำตัว IC Microcontroller ในตระกูลต่าง ๆ มาประยุกต์ใช้ร่วมกันกับภาษา C ซึ่งภาษา C ในที่นี้เป็นลักษณะเฉพาะเลย (Library ของ Arduino) ทำให้สามารถใช้ตัวคำสั่งโค้ดตัวเดียวกันกับตัว IC Microcontroller ที่แตกต่างกันได้ เลย Arduino นั้นถูกออกแบบมาให้สามารถนำไปใช้งานได้ง่าย จึงเหมาะสำหรับใครที่เป็นมือใหม่ ไม่มีความรู้ ด้านสถาปัตยกรรมก็สามารถทำได้เช่นกัน อีกทั้งยังสามารถปรับแต่ง ดัดแปลงอะไรต่าง ๆ ได้อีกมากมาย ที่ สามารถนำตัว Arduino ไปต่อยอดเป็นสิ่งต่าง ๆ ดั่งใจนึกได้ จุดเด่นของ Arduino Board ก็คือ ความง่ายใน การต่อกับอุปกรณ์เสริมต่าง ๆ ที่ผู้ใช้สามารถต่อวงจร Electronic ได้อย่างง่ายดาย เพราะเขาทำตัว I/O ของ บอร์ดมาให้เรียบร้อยแล้ว Arduino Board ประกอบด้วย

ที่มา: https://www.ai-corporation.net/wp-content/uploads/2021/11/maxresdefault-1000x563.jpg

- 1. USB Port (ในบางตัวอาจจะเป็น Micro USB เหมือนกัน) : เป็น Port ที่เอาไว้สำหรับเชื่อมต่อกับ Computer เพื่อ Upload ตัวโปรแกรมที่เราเขียนเข้า MCU และรวมถึงการจ่ายไฟให้กับ Board
- 2. Reset Button : เป็นปุ่มที่กดเพื่อให้ MCU เริ่มทำงานใหม่
- 3. ICSP Port (Atmega16U2) : เป็น Port ที่ใช้โปรแกรมตัว Visual Com Port บน Atmega16U2
- 4. I/O Digital Port : เป็น I/O Port สำหรับการส่งรับข้อมูลแบบ Digital ตั้งแต่ขา D0 D13 และบาง Pin จะสามารถทำหน้าที่อื่น ๆ ได้ด้วย เช่น Pin0 กับ Pin1 เป็นขา Tx, Rx Serial
- 5. ICSP Port (Atmega328) : เป็น Port ที่ไว้ใช้โปรแกรมเจ้าตัว Bootloader
- 6. MCU (Atmega328) : เป็น MCU ที่ใช้บน Arduino Board
- 7. I/O Analog Port : เป็น I/O Port ที่พิเศษ เพราะสามารถส่งและรับค่า Analog ได้ด้วย
- 8. Power Port : เป็น Port ที่สามารถจ่ายไฟเลี้ยงให้กับ อุปกรณ์อื่น ๆ ที่เชื่อมกับ Arduino Board ได้ด้วย
- 9. Power Jack : เป็น Port ที่เอาไว้รับไฟจากภายนอก โดยใช้แรงดันอยู่ระหว่าง 7 12 V
- 10. MCU (Atmega16U2) : เป็น MCU ที่ทำหน้าที่เป็น USB to Serial โดย Atmega328 จะติดต่อกับ Computer ผ่าน Atmega16U2

การออกแบบด้าน hardware

อุปกรณ์ที่เลือกใช้ sensors/actuators

-	Arduino Uno R3 board		1 pcs
-	Breadboard		2 pcs
-	Servo MG996		1 pcs
-	Sensor IR		1 pcs
-	Ultrasonic Sensor HC-SR0	4	1 pcs
-	Led red		1 pcs
-	Led green	1 pcs	
-	Led yellow		2 pcs
-	Resister 220R 1/4W		1 pcs
-	Pins Male	20 pcs	
_	Pins Female		10 pcs

การออกแบบกระบวนการทำงานของอุปกรณ์ (Flowchart)

Experimental Result and Discussion - ผลการทำงาน และวิเคราะห์ผล (ความสมบูรณ์ ของอุปกรณ์ ประสิทธิภาพ และข้อจำกัด)

ฝาถังขยะจะเปิดเมื่อมีอะไรผ่านหน้า Sensor IR แล้วจะส่งสัญญานไปที่ Servo โดยจะทำให้ฝาถังปิด เองอัตโนมัติโดยสามารถควบคุมได้โยตั้ง Delay ในส่วนของโปรแกรม และจะมีไฟ Led บอกสถานะของฝาถัง โดยใช้ Ultrasonic Sensor เพื่อวัดค่าปริมาณขยะภายในถัง และจะส่งสถานะของขยะในถัง ผ่านไฟ Led 3 สี สีเขียว คือ ทิ้งได้พื้นที่ในถังว่าง สีเหลือง คือ ยังทิ้งได้แต่พื้นที่ในถังเหลือน้อยหรือถังขยะใกล้เต็มแล้ว สีแดง คือ ถังขยะเต็มแล้ว เป็นต้น

Conclusion and future work - สรุปผล และการต่อยอดในอนาคต

จากศึกการทำโปรเจคพบว่า ผู้จัดทำได้รู้เกี่ยวกับการทำงานของบอร์ด Arduino การทำงานของ อุปกรณ์อื่นๆที่นำมาใช้กับตัวบอร์ดเช่น led servo sensor IR เป็นต้น ผู้จัดทำได้เรียนรู้และพัฒนาการทำงาน ของระบบฝังตัวในอนาคตภายภาคหน้า เพื่อสามารถทิ้งขยะได้สะดวกมากขึ้น สร้างความน่าสนใจเพื่อเป็นจุด ให้คนหันมาทิ้งขยะลงในถังขยะมากขึ้น การต่อยอดในอนาคตคือสามารถนำเซนเซอร์ที่ได้เรียนรู้ในครั้งนี้ไปใช้ ในการตรวจวัดสิ่งต่างๆได้มากขึ้นเช่น การนำไปทำประตูอัตโนมัติจากเซนเซอร์ IR

บรรณานุกรม

ขั้นตอนการ สร้างถังขยะ เปิด / ปิด แบบอัตโนมัติ ง่ายๆด้วย Arduino

แหล่งที่มา https://www.ec-bot.com/

การใช้ เซ็นเซอร์วัดระยะทาง HY-SRF05 Ultrasonic Sensor Module

แหล่งที่มา https://www.cybertice.com/

การใช้ Servo Motor MG996R HIGH Speed

แหล่งที่มา https://www.ec-bot.com/

การใช้ PIR เซ็นเซอร์ตรวจจับความเคลื่อนไหว Motion Sensor Detector Module HC-SR501

แหล่งที่มา https://www.cybertice.com/

ภาคผนวก

