Optimisation sous contraintes

Joon Kwon

Master 2 — MathSV

jeudi 29 septembre 2022

Dans ce chapitre,

- $f: \mathbb{R}^d \to \mathbb{R}$
- ullet $C\subset\mathbb{R}^d$ ensemble de points admissibles

on considère le problème :

$$\min_{x \in C} f(x),$$

qu'on écrit aussi :

minimiser
$$f(x)$$
 soumis à $x \in C$

Methode du gradient projeté

Méthodes de pénalisation

Conditions KKT

Dualité lagrangienne

Methode du gradient projeté

Définition

On suppose que C est convexe et fermé.

Proposition

Soit $y \in \mathbb{R}^d$. $x \mapsto \|y - x\|^2$ admet un unique minimiseur sur C.

Definition

Cet unique minimiseur est appelé projection orthogonale de y sur C et est noté $\text{proj}_C(y)$.

Definition (Gradient projeté)

Soit $x^{(1)} \in \mathbb{R}^d$ et $(\gamma^{(t)})_{t\geqslant 1}$ une suite strictement positive. On appelle descente de gradient projeté associée à la fonction objectif f, à l'ensemble convexe fermé C, au point initial $x^{(1)}$ et aux pas $(\gamma^{(t)})_{t\geqslant 1}$ la suite $(x^{(t)})_{t\geqslant 1}$ définie par :

$$\boldsymbol{x}^{(t+1)} = \operatorname{proj}_{\mathcal{C}} \left\{ \boldsymbol{x}^{(t)} - \boldsymbol{\gamma}^{(t)} \nabla f(\boldsymbol{x}^{(t)}) \right\}, \qquad t \geqslant 1.$$

Pertinent quand la projection sur *C* est moins difficile à résoudre que le problème initial.

Garanties pour f convexe

Théorème

On suppose que f admet un minimiseur x^* sur C.

• Si f est convexe et L-régulière, le choix $\gamma^{(t)} = 1/L$ garantit

$$f(x^{(T+1)}) - f(x^*) \leqslant \frac{L \|x^{(1)} - x^*\|^2}{2T}.$$

• Si f est L-régulière et K-fortement convexe, le choix $\gamma^{(t)}=1/L$ garantit

$$f(x^{(T+1)}) - f(x^*) \leqslant \frac{L}{2} \|x^{(1)} - x^*\|^2 \cdot \left(1 - \frac{K}{L}\right)^{T}.$$

Mêmes garanties que pour la descente de gradient pour la minimisation sans contraintes.

Garanties pour f non-convexe

On définit une application de «gradient alternatif» associée à f et C par :

$$G_{\gamma}(x) = \frac{x - \operatorname{Proj}_{\mathcal{C}}(x - \gamma \nabla f(x))}{\gamma}, \quad x \in \mathbb{R}^d, \ \gamma > 0.$$

Ce qui assure $x^{(t+1)} = x^{(t)} - \gamma^{(t)} G_{\gamma^{(t)}}(x^{(t)}).$

Théorème

Si f est seulement L-régulière, le choix $\gamma^{(t)}=1/L$ garantit

$$\min_{1 \leqslant t \leqslant T} \left\| G_{1/L}(x^{(t)}) \right\|^2 \leqslant \frac{4L(f(x^{(1)}) - f(x^*))}{T}.$$

Méthodes de pénalisation

Pénalisation extérieure

- On remplace la contrainte par un terme supplémentaire dans la fonction à minimiser.
- On se donne $\phi \colon \mathbb{R}^d \to \mathbb{R}$ une fonction telle que :

$$\phi(x) = 0 \text{ si } x \in C$$
, et $\phi(x) > 0 \text{ si } x \notin C$.

• Soit $\varepsilon > 0$ et on considère le problème approché :

minimiser
$$f(x) + \frac{1}{\varepsilon}\phi(x)$$

soumis à $x \in \mathbb{R}^d$.

- Plus ε est petit, plus le problème est proche du problème initial.
- La solution x_{ε}^* peut ne pas appartenir à C.

Exemple de résolution par pénalisation

- Principe : on résout successivement des approximations de plus en plus proches du problème initial.
- On choisit $\varepsilon^{(1)} > 0$, et on résout approximativement :

minimiser
$$f(x) + \frac{1}{\varepsilon^{(1)}}\phi(x)$$
 soumis à $x \in \mathbb{R}^d$.

par une méthode de notre choix.

- À l'étape $t \ge 2$,
 - on choisit $\varepsilon^{(t)}$ tel que $0 < \varepsilon^{(t)} < \varepsilon^{(t-1)}$
 - on résout approximativement :

minimiser
$$f(x) + \frac{1}{\varepsilon^{(t)}}\phi(x)$$
 soumis à $x \in \mathbb{R}^d$.

en prenant $x^{(t-1)}$ pour point initial.

Pénalisation intérieure

Si on souhaite des solutions approchées appartenant strictement à C

• On se donne $\phi \colon \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ telle que :

$$\forall x \notin C$$
, $\phi(x) = +\infty$.

• Soit $\varepsilon > 0$ et on considère :

minimiser
$$f(x) + \varepsilon \phi(x)$$

soumis à $x \in \mathbb{R}^d$

• Exemple : $C = \mathbb{R}^d_+$. $\phi(x) = -\sum_{i=1}^d \log x_i$.

Conditions KKT

Problèmes de minimisation sous forme standard

minimiser
$$f(x)$$

soumis à $h_i(x) = 0$ $(1 \leqslant i \leqslant p)$
 $g_j(x) \leqslant 0$ $(1 \leqslant j \leqslant q)$

où les g_i et h_i sont des applications $\mathbb{R}^d \to \mathbb{R}$.

Autrement dit, il s'agit du problème

$$\min_{x \in C} f(x) \quad \text{où} \quad C = \left\{ x \in \mathbb{R}^d, \quad \forall i = 1, \dots, p, \quad h_i(x) \leqslant 0 \\ \forall j = 1, \dots, q, \quad g_j(x) = 0 \right\}.$$

Definition (Contraintes actives et inactives)

Soit $x \in \mathbb{R}^d$. Une contrainte d'inégalité " $g_j(x) \leq 0$ " est dite active (ou saturée) (resp. inactive) en x si :

$$g_j(x) = 0$$
 (resp. $g_j(x) < 0$).

Théorème de Fritz John

Théorème (Fritz John)

Soit $x^* \in C$ une solution de (P). Si les fonctions f, g_j, h_i sont C^1 en x^* , il existe $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ et $(\mu_0, \mu_1, \ldots, \mu_q) \in \mathbb{R}_+^q \setminus \{0\}$ tels que :

$$\begin{cases} \mu_0 \nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla h_i(x^*) + \sum_{j=1}^q \mu_j \nabla g_j(x^*) = 0 \\ \forall j = 1, \dots, q, \quad , \quad \mu_j g_j(x^*) = 0. \end{cases}$$

- Si μ₀ = 0, la propriété ci-dessus ne donne aucune information sur f, seulement sur C.
- Les coefficients $(\lambda_i)_{1\leqslant i\leqslant p}$ et $(\mu_j)_{1\leqslant j\leqslant q}$ sont appelés multiplicateurs de Lagrange

Conditions KKT

Definition

Un point $x^* \in \mathcal{C}$ vérifie les conditions KKT (Karush-Kuhn-Tucker) si les f,h_i,g_j sont \mathcal{C}^1 en x^* et s'il existe $\lambda_1,\ldots,\lambda_p\in\mathbb{R}$ et $\mu_1,\ldots,\mu_q\in\mathbb{R}_+$ tels que :

$$\begin{cases} \nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla h_i(x^*) + \sum_{j=1}^q \mu_j \nabla g_j(x^*) = 0 \\ \forall j = 1, \dots, q, \quad \mu_j g_j(x^*) = 0. \end{cases}$$

- On appelle qualification des contraintes une condition nécessaire pour qu'une solution de (P) satisfasse les conditions KKT. Il en existe un grand nombre.
- On dit que les contraintes sont qualifiées en un point x ∈ C si une telle condition nécessaire est satisfaite.

Qualification des contraintes

Proposition

Soit $x^* \in C$ une solution de (P). On suppose que les f, g_j, h_i sont C^1 en x^* . Si de plus une des conditions suivantes est vérifiée, alors x^* satisfait les conditions KKT.

- (i) Les fonctions h_i et g_i sont affines
- (ii) la famille composée des vecteurs $\nabla h_i(x^*)$ (pour $i=1,\ldots,p$) et des vecteurs $\nabla g_j(x^*)$ (pour j tel que $g_j(x^*)=0$) est linéairement indépendante.
- (iii) Les fonctions f, g_j sont convexes, les h_j affines, et il existe $x \in C$ tel que $g_j(x) < 0$ pour tout $j = 1, \ldots, q$. (condition de Slater)

Il existe de nombreuses autres conditions de qualification.

Réciproque dans le cas convexe

Proposition

On suppose que les f, g_j, h_i sont C^1 , que les f, g_j sont convexes, et les h_j affines. Soit $x^* \in C$ vérifiant les conditions KKT. Alors, x^* est une solution de (P).

Dualité lagrangienne

Lagrangien

Definition

Le lagrangien de (P) est la fonction $L: \mathbb{R}^d \times \mathbb{R}^p \times \mathbb{R}^q_+ \to \mathbb{R}$ définie par :

$$L(x,\lambda,\mu)=f(x)+\sum_{i=1}^p\lambda_ih_i(x)+\sum_{j=1}^q\mu_jg_j(x).$$

- On voit que : $\sup_{\substack{\lambda \in \mathbb{R}^p \\ \mu \in \mathbb{R}^q^+}} L(x,\lambda,\mu) = \begin{cases} f(x) & \text{si } x \in C \\ +\infty & \text{sinon.} \end{cases}$
- Donc (P) se réécrit : $\min_{x \in C} f(x) = \min_{x \in \mathbb{R}^d} \sup_{\substack{\lambda \in \mathbb{R}^p \\ \mu \in \mathbb{R}^q}} L(x, \lambda, \mu)$

Dualité faible

On définit le problème dual de (P) par

$$\begin{array}{ll} \text{maximiser} & \inf_{x \in \mathbb{R}^d} L(x,\lambda,\mu) \\ \text{soumis à} & \lambda \in \mathbb{R}^p \\ & \mu \in \mathbb{R}^q_+. \end{array} \tag{P^*}$$

Proposition

$$\sup_{\substack{\lambda \in \mathbb{R}^{p} \\ \mu \in \mathbb{R}^{q}_{+}}} \inf_{x \in \mathbb{R}^{d}} L(x,\lambda,\mu) \leqslant \inf_{\substack{x \in \mathbb{R}^{d} \\ \mu \in \mathbb{R}^{q}_{+}}} \sup_{\substack{\lambda \in \mathbb{R}^{p} \\ \mu \in \mathbb{R}^{q}_{+}}} L(x,\lambda,\mu).$$

Dualité forte

Definition

 $(x^*,\lambda^*,\mu^*)\in\mathbb{R}^d imes\mathbb{R}^p imes\mathbb{R}^q_+$ est un point-selle du lagrangien si :

$$\forall (x,\lambda,\mu) \in \mathbb{R}^d \times \mathbb{R}^p \times \mathbb{R}^q_+, \quad L(x^*,\lambda,\mu) \leqslant L(x^*,\lambda^*,\mu^*) \leqslant L(x,\lambda^*,\mu^*).$$

Proposition

S'il existe un point-selle (x^*, λ^*, μ^*) de L, alors,

$$\sup_{\substack{\lambda \in \mathbb{R}^p \\ \mu \in \mathbb{R}^q_+}} \inf_{x \in \mathbb{R}^d} L(x,\lambda,\mu) = \inf_{x \in \mathbb{R}^d} \sup_{\substack{\lambda \in \mathbb{R}^p \\ \mu \in \mathbb{R}^q_+}} L(x,\lambda,\mu) = L(x^*,\lambda^*,\mu^*).$$

Si de plus, les fonctions f, h_i , g_j sont \mathcal{C}^1 , x^* vérifie les conditions KKT avec (λ^*, μ^*) pour multiplicateurs de Lagrange.

- Alors,
 - On dit qu'il y a dualité forte.
 - x^* est solution du problème primal.
 - (λ^*, μ^*) est solution du problème dual.

Réciproque dans le cas convexe

Proposition

On suppose que :

- les fonctions f, h_i , g_i sont C^1
- les fonctions f, g_i sont convexes
- les fonctions h_i affines.
- $x^* \in C$ une solution de (P) vérifiant les conditions KKT (on note (λ^*, μ^*) les multiplicateurs de Lagrange).

Alors (x^*, λ^*, μ^*) est un point-selle de L.

Et il y a donc dualité forte.

Algorithme d'Uzawa

L'algorithme d'Uzawa, consiste à appliquer la méthode du gradient projeté au problème dual (P^*) .

- Initialisation : $\lambda^{(1)} \in \mathbb{R}^p, \mu^{(1)} \in \mathbb{R}^q_+$ quelconques.
- Pour $t \geqslant 1$,

$$\begin{split} \boldsymbol{x}^{(t)} &= \operatorname*{arg\,min}_{\boldsymbol{x} \in \mathbb{R}^d} L(\boldsymbol{x}, \boldsymbol{\lambda}^{(t)}, \boldsymbol{\mu}^{(t)}) \\ \boldsymbol{\lambda}^{(t+1)} &= \boldsymbol{\lambda}^{(t)} + \boldsymbol{\gamma}^{(t)} h_i(\boldsymbol{x}^{(t)}), \qquad \forall i = 1, \dots, p, \\ \boldsymbol{\mu}^{(t+1)} &= \max \left(0, \ \boldsymbol{\mu}^{(t)} + \boldsymbol{\gamma}^{(t)} g_j(\boldsymbol{x}^{(t)})\right), \qquad \forall j = 1, \dots, q, \end{split}$$