Conceptual Questions:

- 1. What is the second law of thermodynamics?
- 2. For any process, what are the four possible combinations of ΔS_{sys} and ΔS_{surr} ? Which of these correspond to always spontaneous or always non-spontaneous reactions? Under what conditions would the last two combinations be spontaneous?
- 3. What is the third law of thermodynamics?
- 4. For a gas phase reaction, how do you determine the sign of ΔS° ? How about for a phase change?
- 5. For a liquid, would you expect ΔS_{fusion} or $\Delta S_{\text{evaporation}}$ to be larger? Why?
- 6. True or False: High temperatures are favorable to a reaction both kinetically and thermodynamically? Explain.
- 1. Calculate the standard entropy change for the following reaction at 25 °C:

$$2AI(s) + 3ZnO(s) \rightarrow AI_2O_3(s) + 3Zn(s)$$

- 2. A certain reaction has $\Delta H^{\circ} = -19.5$ kJ and $\Delta S^{\circ} = 42.7$ J K⁻¹.
 - a. Calculate ΔG° for the reaction.
 - b. Is the reaction spontaneous under standard conditions?
- 3a. Using the data given below, calculate ΔG° for the reaction: $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
 - 3b. Is this reaction spontaneous as written under standard conditions?
 - 3c. What is the equilibrium constant *K* for this reaction?
- 4. Calculate ΔG° for the process: C (diamond) $\leftarrow \rightarrow$ C (graphite)

Is the formation of graphite from diamond favored at 25°C? If so, why is it that diamonds do not become graphite on standing?

	<u>ΔH</u> _f °	<u>S°</u>	<u>ΔG</u> _f °
Al (s)		28.3 J/K•mol	
Al ₂ O ₃ (s)		50.99 J/K•mol	
ZnO (s)		43.9 J/K•mol	
Zn (s)		41.6 J/K•mol	
SO ₂ (g)			-300.4 kJ mol ⁻¹
O ₂ (g)			0 kJ mol ⁻¹
SO ₃ (g)			–370.4 kJ mol ⁻¹
C (diamond)	1.90 kJ mol ⁻¹	2.4 J/K•mol	
C (graphite)		5.69 J/K•mol	