Stat 5014 HW2

Bob Settlage 2017-09-10

Problem 4

Version control can assist in:

- first thought
- second thought
- third thought

The last way to make lists was more explicit and offers more control, but sometimes you just want a simple list or are targeting html so do it this way (note blank line and two spaces are important):

- · another way
- list item
- list item

Problem 5

Here we will read in, clean and filter datasets with the final goal of creating tidy datasets. I am going to create a figure for each one to play with plotting functions.

CMM data

First, we will read in and create a tidy dataset. After tidying, a summary is in Table 1 with a boxplot in Figure 1. I will put this code in an Appendix.

Table 1: CMM data summary

part	operator	replicate	value
Min.: 1.0	Length:40	Min. :1.0	Min. :0.250
1st Qu.: 3.0	Class:character	1st Qu.:1.0	1st Qu.:0.289
Median: 5.5	Mode :character	Median $:1.5$	Median $:0.301$
Mean: 5.5	NA	Mean $:1.5$	Mean $:0.302$
3rd Qu.: 8.0	NA	3rd Qu.:2.0	3rd Qu.:0.317
Max. :10.0	NA	Max. :2.0	Max. :0.341

Finally, lets create a quick linear model to play with tables. Note, this analysi is not technically correct, you will learn more about why in the Design of Experiments class. We will use this model:

$$y_i = intercept + part_i + operator_i + \epsilon_i \tag{1}$$

Figure 1: CMM data, boxplot by operator, color by replicate, label is part number.

Table 2: Playing with tables

	Dependent variable:
	value
as.factor(part)2	0.029*** (0.010)
as.factor(part)3	0.020*(0.010)
as.factor(part)4	$0.012\ (0.010)$
as.factor(part)5	-0.019*(0.010)
as.factor(part)6	0.003 (0.010)
as.factor(part)7	-0.023**(0.010)
as.factor(part)8	-0.009(0.010)
as.factor(part)9	0.026** (0.010)
as.factor(part)10	$-0.006 \ (0.010)$
as.factor(operator)2	0.008* (0.004)
Constant	$0.295^{***} (0.007)$
Observations	40
\mathbb{R}^2	0.681
Adjusted \mathbb{R}^2	0.571
Residual Std. Error	0.014 (df = 29)
F Statistic	$6.191^{***} (df = 10; 29)$
Note:	*p<0.1; **p<0.05; ***p<

Now for the actual homework:

Problem 5

Part A: Sensory data

Table 3: Sensory data summary

${\rm Item}$	Person	value
Length:150	Length:150	Min. :0.70
Class:character	Class:character	1st Qu.:3.02
Mode :character	Mode :character	Median $:4.70$
NA	NA	Mean: 4.66
NA	NA	3rd Qu.:6.00
NA	NA	Max. $:9.40$

Part B: Long Jump data

Table 4: Long Jump data summary

YearCode	Year	dist
Min. :-4.0	Min. :1896	Min. :250
1st Qu.:21.0	1st Qu.:1921	1st Qu.:295
Median $:50.0$	Median $:1950$	Median :308
Mean $:45.5$	Mean:1945	Mean:310
3rd Qu.:71.0	3rd Qu.:1971	3rd Qu.:328
Max. :92.0	Max. :1992	Max. :350

Part C: Brain vs Body data

Table 5: Brain/Body weight data summary

Brain	Body
Min.: 0.00	Min.: 0.10
1st Qu.: 0.60	1st Qu.: 4.25
Median: 3.34	Median: 17.25
Mean: 198.79	Mean: 283.13
3rd Qu.: 48.20	3rd Qu.: 166.00
Max. :6654.00	Max. :5712.00

Part C: Tomato data

Table 6: Tomato data summary

Clone	Replicate	value	Variety
Length:18	Length:18	Length:18	Length:18

Clone	Replicate	value	Variety
Class :character	Class :character	0	Class :character
Mode :character	Mode :character		Mode :character

Appendix 1: R code

```
########################## Problem5_CMM_analysis get data
url <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/CMM.dat"</pre>
CMM_raw <- read.table(url, header = F, skip = 1, fill = T,</pre>
   stringsAsFactors = F)
CMM_tidy <- CMM_raw[-1, ]</pre>
colnames(CMM_tidy) <- c("part", "Op1_1", "Op1_2", "Op2_1",</pre>
    "Op2 2")
CMM_tidy <- CMM_tidy %>% gather(op_rep, value, Op1_1:Op2_2) %>%
    separate(op_rep, into = c("operator", "replicate"),
        sep = "_") %>% mutate(operator = gsub("Op", "",
   operator)) %>% mutate(replicate = as.numeric(replicate)) %>%
   mutate(part = as.numeric(part))
##################### Problem5_CMM_analysis plot
boxplot(value ~ operator, data = CMM_tidy, xlab = "Operator")
beeswarm(value ~ operator, data = CMM_tidy, pwcol = CMM_tidy$replicate,
   pwpch = as.character(CMM_tidy$part), add = T)
legend("topleft", legend = levels(as.factor(CMM_tidy$replicate)),
   pch = 20, col = levels(as.factor(CMM_tidy$replicate)))
```