ECE619 Final Presentation

Jiahui Guo

University of Tennessee, Knoxville

May 7, 2013

Problem Outline

Unit Commitment Model

Minimize

$$\sum_{t=1}^{N_h} \sum_{k=1}^{N_g} [a_k(t) + b_k P_k(t) + c_k P_k^2(t) + Fs_k (1 - Z_k(t-1))] Z_k(t)$$

s.t.

$$\sum_{k=1}^{N_{\mathcal{G}}} P_k(t) = D(t)$$
 $P_{min,k}(t)Z_k(t) \leq P_k(t) \leq P_{max,k}(t)Z_k(t)$
 $P_k(t) + R_k(t) - \sum_{k=1}^{N_{\mathcal{G}}} P_{max,k}Z_k(t) \leq 0$
 $Z_k(t) \in \{0,1\}$
 $orall k = 1, 2, ..., N_{\mathcal{G}}$
 $orall t = 1, 2, ..., N_{\mathcal{G}}$

Algorithms

- 1. Priority List
- 2. Dynamic Programming
- 3. Dynamic Programming + Priority List
- 4. Particle Swarm Optimization

Results and Comparison

- Test System
 - 4 Generations
 - Scheduling for 8 hours

Results

Alg.	Cost(\$)	Time(s)	Comments
PL	73180.39	0.0193	Omit start up cost when scheduling
DP	73180.39	0.6517	Traverse all the possible states
DP+PL	73180.39	0.1860	Traverse the priority list states
PSO	77172.67 ¹	343.15	Consider reserve

¹Best Case in 10 times

Results and Comparison

Runtime Comparison (4 Generation)

Pros and Cons

- ► Pros
 - Algorithm
 - DP+PL speed up dynamic program to obtain an optilmal solution
 - ▶ PSO is easy to be implemented
 - Programming
 - Well utilizing the matrix manipulation advantage of Matlab
 - Detailed comments in code
 - Proper interface for functions
- Cons
 - Algorithm
 - Optimal solution maybe missed by priority list
 - Detailed UC problem is hard to be modeled by dynamic programming
 - Problem scale is limited for PSO (Much iteration time needed and converge issues)
 - Parameter adjustment in PSO
 - Programming

Thanks

Any Questions?