TRACKABUS

BACHELORPROJEKT

Processapport for TrackABus

Author:

 $Gruppe\ 13038$

Supervisor:

Michael Alrøe

Versionshistorie:

Ver.	Dato	Initialer	Beskrivelse
1.0	12-12-2013	13038	Start på rapportskrivning

Godkendelsesformular:

Forfatter(e):	Christoffer Lousdahl Werge (CW)		
	Lasse Sørensen (LS)		
Godkendes af:	Michael Alrøe.		
Projektnr.:	bachelorprojekt 13038.		
Filnavn:	Processapport.pdf		
Antal sider:	30		
Kunde:	Michael Alrøe (MA).		

Sted	og dato:		
		10832	Christoffer Lousdahl Werge
MA	Michael Alrøe	09421	 Lasse Lindsted Sørensen

1 Resumé

I forbindelse med bachhelor projektet, er der blevet udarbejdet et system til at indlæse positionen for en bus, vise denne på et kort, samt underette brugeren om, hvor lang tid der er til, at en bus er ved et givent stoppested. Desuden er der også mulighed for, at ruter kan favoriseres, og hermed gemmes lokalt. Ud over bruger funktionaliterne, understøter systemet også muligheden for, at en adminstrator kan oprette, vedligeholde og slette busser, busruter og stoppesteder.

Persisteringen af data sker i form af to relationelle databaser; En lokal og en distribueret. Den lokale giver brugeren mulighed for at gemme ruter der bruges ofte, og den distribuerede indeholder alt information om ruterne, samt bussernes nuværende og tidligere position. Den distribuerede database indeholder også funktionalitet til at udregne tiden for en bus til et givet stoppested.

Den distruberede database er opbygget ved hjælp af MySQL, og den lokale er opbygget ved hjælp af SQLite. Brugeren tilgår systemet igennem en Android platform, hvorigennem samtlige bruger-funktionaliteter kan tilgås. Koodesproget brugt til dette er Java. Administrator hjemmesiden er opbygget ved hjælp af HTML, CSS og JavaScript, men da den er bygget på baggrund af ASP.NET er C# det primære kodesprog i denne sammenhæng. Til systemet er der blevet designet en simulator, som står for at simulere en bus, i alle henseende. Den er blevet udarbejdet i WPF ved brug af .NET framworket, med C# som kodesprog.

Til projektstyring er der blevet brugt dele af Scrum, og herunder er V-modellen fundet yderst brugbar.

Det færdige produkt er et system, hvori en bruger kan holdes opdateret omkring busser placering, og hvori en administrator nemt kan udføre vedligeholdelse. In relation to the bachelor project, a system has been designed, to retrieve the position of a bus, draw it on a map, and notify the user of how much time there is, until the closest bus, is at the chosen stop. The user system also implements the functionality, that a route can be favoured, and saved locally. Besides this, the system also supports the possibility, that a administrator can create, maintain and delete buses, routes and stops.

The persistence of data, is done by two relational databases; One locally and one distributed. The local database makes it possible for the user to save a route that is used

often, and the distributed contains all the information regard the routes, as well as the previous and current positions of the buses. The distributed database also contains the functionality to calculate the time until a bus reaches a specified stop.

The distributed database is created with MySQL and the local is created with SQLite. The user accesses the system through an Android platform, where all user-functionalities can be access through. The language used for this is Java. The administrator homepage, is created with HTML, CSS and JavaScript, but since it is created as an ASP.NET application, C# is the primary language used. A simulator has been designed for the system, with the purpose of simulating the complete functionality of a bus. This has been created as a WPF application, with the .NET framework, and with C# as a language.

For the purpose of project management, has parts of scrum been used, and through this the V-model was found to be very useful.

The final product is a system, where the user can be kept updates in regard the the position of a bus, and where an administrator easily can perform management.

Indhold

1	Resumé	3						
2	Indledning							
3								
4								
5	Projektgennemførsel	12						
	5.1 Sprint 1	12						
	5.2 Sprint 2	13						
	5.3 Sprint 3	13						
	5.4 Sprint 4	13						
	5.5 Sprint 5	13						
	5.6 Sprint 6	14						
	5.7 Sprint 7	14						
	5.8 Sprint 8	15						
	5.9 Sprint 9	15						
6	Metoder							
7	Specifikations- og analysearbejdet	17						
8	Designprocessen							
9	Udviklingsværktøjer							
10	0 Resultater							
11	1 Diskussion af opnåede resultater							
12	2 Projektets fortræffeligheder							
13	3 Forslag til forbedringer af projektet eller produktet							
14	Konklusion	29						

15 Referencer 30

2 Forord

Dette projekt er udarbejdet af to studerende på Ingeniørhøjskolen i Aarhus. Projetet udgør, i sammenhæng med dette dokument og dokumenterne TrackABus Kravspecifikation, TrackABus Accepttest specifikation og TrackABus Systemarkitektur, bachelorprojektet på syvende semester for IKT-Linjen. Dokumentopsætningen er udgjort på baggrund af den projektform, der er blevet arbejdet med i første til fjerde semester.

Bachelorprojektet er lavet uafhængtigt af et firma, og er derfor udarbejdet på egen hånd, af projektgruppens medlemmer.

3 Indledning

En bus følger en ruteplan, men det er ikke altid at bussen er ved et givent stoppested, præcis på det tidspunkt det forekommer i ruteplanen. Det vil derfor være gavnligt at kunne vide, præcis hvor en bus er, og hvor lang tid der er, til den nærmeste er ved et givet stoppested. Denne viden vil, for det første, give brugeren en større chance for at nå sin bus og, for det andet, med sikkerhed vide, om en bus er kørt fra et givet stoppested. Dette dokument beskriver udviklingen af en mobilapplikation der kan vise rute, stoppesteder og busser på en rute, samt vise tiden til et stoppested for en bus. Desuden beskriver dokumentet også oprettelsen af et administrator værktøj, hvori busser, ruter og stoppesteder kan vedligeholdes. Mobilapplikationen er designet til android, men kan nemt genskabes på en anden platform, da samtlige funktionaliteter ligger på en server. Serveren er dog ikke klargjort til et distribueret system, men kan nemt skiftes ud med et der er, hvis det skulle være nødvendigt.

Kravene er blevet udarbejdet iterativt, da projeketet ikke har ekstern kunde, og således ikke repræsenterer kundens krav til systemet, men derimod udviklernes. En kunde er blevet simuleret, i form af en vejleder, således at alle krav-ændringer og accepttest udførsel, blev gemmemgået med hjælp fra en ekstern kilde.

TrackABus mobilapplikation og administrator hjemmeside, er blevet udhviklet til at håndtere system kravene. Systemet fungerer således, at en bruger kan vælge en rute, sådan samtligt persisteret information omkring ruten kan blive vist. Dette inkluderer busser, stoppesteder og, selvfølgelig ruten. Brugeren kan herefter tilgå tids-funktionalitet ved at trykke på et stoppested, hvorefter tiden til ankomst for den nærmeste bus i begge retninger, vil blive vist. De komponenter brugeren kan tilgå, skal først oprettes igennem administrations hjemmesiden. Denne del af systemet er defor den eneste, der kan ændre distribuerede rute komponenter. I sammenhæng med persitering bruges der to relationelle databaser; En distribueret, og en lokal til hver mobilapplikation. Den distribuerede håndtere samtlige information om de forskellige komponenter, hvor den lokale bruges i sammenhæng med favorisering af ruter. Mobilapplikationen er baseret på et eksamensprojekt i ITSMAP, lavet af gruppens to medlemmer, og betegnes derfor som legacy code. Hele

systemet kan derfor ses som en videreudvikling af dette eksamensprojekt. Der eksisterer ingen yderligere krav, en dem projektgruppen selv har fastsat.

Det har ikke været muligt at tilgå reelle data for busser og ruter. Derfor har det været nødvendigt at bruge en del af arbejdsresourcerne på, at designe og implementere et system til at kunne at kunne håndtere disse data. Dette blev i sidste ende, til administrator hjemmesiden og simulatoren.

I arbejdsprocess øjemed, er der blevet holdt daglige møder i gruppen, hvor dagens arbejde blev diskuteret, samt det ugentlige mål revuderet. Desuden blev der holdt ugentlige møder med ad-hoc kunden, hvori projektes fremskriden blev forklaret og diskuteret.

Begreber og forkortelser

• BESKRIV VED RETNING!

Læsevejledning

Nedenfor er listet en kort beskrivelse af hvert afsnit i dette dokument:

- Abstract og Resumé
 - Disse afsnit giver en kort beskrivelse af projektet på både dansk og engelsk.
- Indledning
 - Dette afsnit fortæller baggrunden for projektet, kravene til projektet, samt hvilke arbejdsmetoder og processer, der er anvendt. Herefter følger begreber og forkortelser samt en læsevejledning.
- Projektafgrænsning
 - Afsnittet fortæller kort om de begrænsninger, der er blev lavet, da projektet blev fastlagt.
- Projektgennemførelsen
 - Her præsenteres de forskellige iterationer, hvorigennem projektet er udviklet, samt erfaringerne med disse.

• Metoder

 Dette afsnit beskriver de forskellige arbejdsmetoder, der er anvendt i udarbejdelsen af det endelige produkt.

• Specifikation- og analysearbejdet

Analysearbejdet, der ligger til grund for opbygningen af projektet, præsenteres
i dette afsnit. Til dette hører kravspecifikation, domænemodel osv.

• Designprocessen

 Her beskrives selve designprocessen og erfaringerne med denne. Hertil hører lagdeling, klassediagrammer osv.

• Udviklingsværktøjer

 Dette afsnit giver en beskrivelse af de mest væsentlige udviklingsværktøjer, der er blevet brugt til udviklingen af projektet.

• Resultater

- De mest væsentlige resultater præsenteres objektivt i dette afsnit.

• Diskussion af opnåede resultater

- I dette afsnit diskuteres der på baggrund af de opnåede resultater.

• Projektets fortræffeligheder

 Her præsenteres de dele af projektet, som er blevet fundet særdeles velfungerende.

• Forslag til forbedringer af projektet eller produktet

 Afsnittet giver en beskrivelse af, hvad der kunne have været forbedret i selve produktet eller produktudviklingen.

• Konklusion

Der laves her en konklusion på baggrund af de opnåede resultater og diskussionen af disse, samt på baggrund af de opnåede erfaringer.

• Referencer

- Afsnittet lister de forskellige materialer og værker, der refereres til.

4 Projektafgrænsning

Da projektet har været udviklet selvstændigt, uden et projektoplæg eller noget fastsatte krav fra en kunde, har der ikke været mange afgrænsninger. En afgrænsning der hurtig opstod, var muligheden for at få GPS-koordinator for busserne, fra midttrafik. Dette gjorde det endnu vigtigere, at hurtigt få lavet en bus simulator der kunne bruges som alternativ.

5 Projektgennemførsel

Projektet er blevet gennemført gennem en 9 iterationer med en varighed på 1-2 uger, der har hjulpet med til at dele projektet om i mindre, overskuelige, bider.

Der har, i hver sprint, været fokus på at få implementeret en lille del af systemet eller få skrevet en del af dokumentationen. Ved at holde det til små sprint, har haft den fordel at det har det været muligt at basere de næste sprint på baggrund af opnåede erfaring, og feedback fra alle de foregående sprints samtidigt med, det har hjulpet til at sikre projektet vil bliver færdig til tiden.

På figur 1 kan se en graf der viser, antal commits til Git. Dette kan bruges som en grov skitse til at vise hvornår i projektet forløb det meste af arbejdet har ligget.

Figur 1: Antal commits over projektets forløb

5.1 Sprint 1

Sprint 1 fungerede som en typisk inception fase, som kendt fra udviklingsmetoden unified process. Sprintet fokuserede på at få udformet et forprojekt, dette indebar at finde ud af hvad hele projektet skulle bestå af, og hvad der skulle laves. Til dette blev der opstillet og beskrevet de forskellige krav til systemet i form af en simple kravspecifikation, der kort beskrev de forskellige Use Cases og aktører i systemet samt et simple Use Case diagram blev lavet.

5.2 Sprint 2

Sprint 2, elaboration fasen for projektet, og løb fra uge 36 til og med uge 38. Sprintet kørte fra uge 36 til og med uge 39, hvor tiden hovedsagelig blev brugt på at udforme detaljeret Use Cases.

Undervejs blev det opdaget, at der manglede en Use Case der tog højde fra et scenario der blev overset i det første sprint. For at havde et værktøj til at bruge som repository og versions styring blev GitHub sat op, og de første LaTeX filer blev oploaded. Til at hoste hjemmesiden og databasen, blev domænet www.TrackABus.dk købt, og en server blev lejet hos www.unoeuro.com.

Efter første udkast til kravspecifikationen var blevet lavet, blev den revurderet og omskrevet.

5.3 Sprint 3

Sprint 3, som også fungerede som elaboration fase, og foregik i uge 39. Fokuset i dette sprint lå på at få lavet første udkast til databasen, med de forskellige tabeller og relationer, og første udkast til hjemmesiden blev lavet, hvor der blev undersøgt hvordan Google Maps skal implementeres. mobil applikationen, fra tidligere projekt, blev fundes frem, samlet for at være sikker på den stadigvæk kunne compile, og oploaded til Git.

5.4 Sprint 4

Sprint 4, der gik fra uge 40 til og med uge 43, er ikke en rigtig del af projektet, da det blev brugt på eksamens projekter og til at læse op. Der blev ikke fortaget meget projekt arbejde i dette sprint.

5.5 Sprint 5

Sprint 5, som forløb i ugerne 44 og 45, var den første del af construction fasen i projektet. I dette sprint blev alt fokus lagt på at få udviklet det første fuldt fungerende system. Første udkast til hjemmesiden blev lavet færdig, med mulighed for at oprette simple busruter, stoppesteder, og busser, samt gemme det på databasen. Det var også muligt at tilføje busser til de forskellige busruter. Simulatoren blev også lavet i dette sprint, med

mulighed for at simulere busser der køre på deres busrute. Web servicen blev også udviklet i dette sprint, da det var nødvendigt at opsætte mobil applikationen til at kunne tilgå den nye databasen. Første udkast til den stored procedure til at udregne tiden for en bus ankommer til et stoppestedet blev også udviklet.

I slutningen af sprintet var der et fuldt fungerende system, hvor mobil applikationen kunne indtegne simple busruter med stoppesteder, se busser køre på ruten, samt få vist tiden til den næste bus ankommer til et valgt stoppested.

5.6 Sprint 6

Sprint 5, som forløb i ugerne 46 og 47, var den anden del af construction fasen i projektet. Med et fungerene systemet lavet i sprint 5, blev fokus lagt på at kunne oprette komplekse ruter på administrations hjemmesiden, samt vise dem på mobil applikationen. En del ting skulle laves om, for at gøre komplekse ruter mulige, dette indebar at ændre i den stored procedure der udregner tiden.

Store dele af hjemmesiden blev lavet om, en ny brugergrænseflade blev udviklet, samt en stor del af funktionerne blev lavet om for at gøre det muligt at indtegne komplekse busruter.

5.7 Sprint 7

Sprint 7 var starten på transition fasen for projektet, og forgik i uge 48.

I dette sprint blev store dele af koden refaktureret, og acceptesten blev udformet og lavet færdig.

En del bugs blev fundet efter første gennemkørelse af accepttesten, disse blev dog hurtigt udrettet og acceptesten blev gennemførst uden problem.

Som slut blev acceptesten kørt for projekt vejleder, et par småfejl blev fudnet og udretter, og acceptesten blev til sidst godkendt.

5.8 Sprint 8

sprint 8, anden del af transition fasen tog 2 uger, uge 49 og 50.

Hele dette sprint blev brugt på at skrive designdokumentet og rapporten. Der blev dog fundet et par små fejl i systemet, disse tog dog ikke lang tid at udrede.

5.9 Sprint 9

Sprint 9, som var det sidste sprint, og sidste til af transition fasen forgik i uge 50, frem til onsdag.

Da projektet skulle afleveres i slutningen af sprintet blev det brugt til at læse alt dokumentation igennem, rette de fejl der måtte være, og binde det hele flot ind. Onsdag blev projektet afleveres, og de sidste par dage i sprintet blev brugt på at sove og drikke

6 Metoder

Som nævnt i indledningen, er der blevet arbejdet under det agile processframework *Scrum*. Metoden er dog modificeret en smule, da den er designet til en større projektgruppe. De daglige scrum møder, bruges i denne sammenhæng, som en mulighed for at diskutere dagens opgaver. Da gruppemedlemerne konstant har arbejdet sammen, har præsentations fasen af scrum mødet, ikke været essentiel

Produktet er opbygget via iterationer, hvori der først og fremmest blev fokuseret på funktionalitet, dog ikke uden at sørge for, at de designmæssige krav blev opfyldt. Hver iteration har haft et mål, som var nødvendigt at nå før næste iteration kunne begyndes. Grunden til dette er, at arbejdsformen har været meget lagdelt, i det en iteration byggede funktionalitet ovenpå den forrige iterations mål. Ved hver fuldendt iteration blev et kort møde afhviklet i gruppen, hvor der blev diskuteret, hvad det næste mål skulle være, og hvorvidt nyt information fundet under denne iteration, skulle implementeres i denne iteration eller, om det krævede en reimplementering af tidligere kode. Dette har medført en yderst agil arbejdsmetode, hvor resultater konstant blev revideret, bygget ovenpå eller fjernet fuldstændigt. Dette resulterede i et produkt, som kun indeholder implementering, der er blevet grundigt undersøgt.

Hver uge er der blevet holdt et møde med ad-hoc kunden, hvor en enten en produkt inkrementering blev præsenteret eller, hvis ingen nævneværdige produktændringer var blevet foretaget, en beskrivelse af, hvad ugens arbejde har gået med, og hvad næste uge stod på.

Under projektudførslen er der blevet gjort brug af Unified Process (UP), hvori specielt inception og elaboration faserne har været essentiel. Inception fasen fandt sted før projektet egentligt gik i gang. Dette er blevet udformet som et forberedelses projekt, hvori ideen blev grundlagt, og en udkast til kravene og målene blev givet. Elaboration fasen foregik som udformningen af den først kravspecifikation, hvori projektes grænser blev optegnet. De første construction faser har udelukkende været implementering, samt beskrivelser af det implementerede, hvorefter systemarkitekturen, accepttesten og processrapporten er blevet udformet i Transition fasen. UP har været en ganske brugbar udviklingsprocess, da den supplerer Scrum med et iterativt overblik.

Implementeringen er gjort ved hjælp af elementer fra Extreme Programming (XP). Planlægning og kommunikation og har været arbjedsprocessens grundelementer, hvori arbejdsprocessen ofte blev planlagt mange uger frem, mens fokuset kun var på den givne opgave. Den ubrudte kommunikation i projektgruppen bidrog til denne arbejdsform, da det ene gruppemedlem til hver en tid vidste, hvad det andet gruppemedlem lavede. Hertil blev der ofte arbejdet med komponenter der interagerer direkte, så der konstant blev holdt integrationstests.

Resultatet af denne arbejdsform gør, at ansvarsområder hurtigt bliver dannet, og vedligeholdt. Dette betyder også, at der var klare linjer for, hvem der skulle refaktorere hvilke komponenter, ved overgangen til en ny iteration. Selvom det gruppemedlem der havde ansvar for en given komponent, selvfølgelig også havde det største overblik, betød det ikke, at det andet gruppemedlem ikke vidste hvordan komponenten var udviklet. Den konstante kommunikation i gruppen sikrede, at det andet gruppemedlem altid havde en forståelse for, hvad der blev implementeret, omend ikke lige så detaljeret som udvikleren.

7 Specifikations- og analysearbejdet

Ved påbegyndelse af projektet blev der undersøgt, hvilke domæner projektet skulle bestå af. Dette var i særdeleshed vigtigt, da sytemet består af undersystemer, som udelukkende interagerer over en distribueret database. På figur 2, kan det første udkast til modellen ses.

Figur 2: Første udkast af domænemodellen

Under udviklingen af systemet, udviklede domæne modellen sig til en ny version. De fleste komponenter forblev de samme, men applikationens tilgang til den distribueret database, blev ændret til at være indirekte. Det vil sige den tilgår en online service, som igen tilgår

databasen. Dette sikrer en lav kobling mellem databasen og applikationen, samt en høj samhørighed, da database tilgangen bliver samlet i en komponent ikke direkte knyttet til applikationen. På figur 3 kan den færdige domænemodel ses.

Figur 3: Færdig domænemodellen

Efter udviklingen af domænemodellen, blev der udtænkt de brugssituationer systemet kunne blive udsat for. Simulatoren blev ikke set som en komponent i denne sammenhæng, da dette blot var et værktøj til udviklingen. Det var udelukkende hjemmesiden og mobilapplikationen, der blev set som komponenter i en brugssituations sammenhæng. På figur 4, kan det Use Case diagram, systemet er bygget op omkring, følges.

Figur 4: Færdig domænemodellen

Da Use Case diagrammet udelukkende afspejler mobilapplikationen og hjemmesiden, blev det valgt, at to primære aktører ville være repræsentanter for hele systemet; Brugeren, som tilgår mobilapplikationen, og administratoren, som tilgår hjemmesiden. Databasen og simulatoren kunne ses som sekundære system aktører, men dette er dog blevet fravalgt, da i en brugssituation vil det være brugeren fuldstændigt irrelevant hvorfra dataen kommer. Ud fra dette diagram blev der udviklet en kravspecifikation, som beskriver de funktionelle krav, systemet skal opfylde. Dette dokument er blevet set som agilt, da der ikke var nogen ekstern kunde, som kunne fastsætte nogen krav, og derved var det op til gruppen, hvordan systemet skulle udhvikles. Dette har haft den betydning for systemet, at det under processen har været nødvendigt, at foretage visse ændringer i dokumentet, dog ikke uden, at det er blevet grundigt diskuteret i gruppen. Disse udviklinger blev samtidigt afspejlet i Use Case diagrammet, som blev ændret i sammenhæng med kravændringer. Dette har medført, at Use Case diagrammet og kravspecifikationen er blevet samlet til et dokument, der følger systemets udvikling meget godt.

Til kravene sat i kravspecifikations dokumenter, er der blevet udviklet en acceptestsspecifikation, som beskriver, hvordan en eventuel kunde kan teste, at de stillede krav er opfyldt. Dette dokument har også været agilt, i og med det har ændret sig sammen med kravspecifikationen. Ved fuldent implementering af systemet, blev testene specificeret i dette dokument fulgt af gruppens ad-hoc kunde.

Under implementeringen blev det fundet meget brugbart at bruge simple sekvensdiagrammer, til at analysere kodens forløb. Disse har dog kun været midlertidige, da de er blevet tegnet på en tavle. Dette har givet det gruppemedlem, som ikke implementerede denne del af systemet, mulighed for at følge det andet gruppemedlems tankeforløb. Til de mere komplekse dele af systemet er der dog blevet udhviklet mere detaljerede sekvensdiagrammer. ¹

Analyse- og specifikations arbejdet har fungeret rigtigt godt, da den konstante kommunikation mellem gruppens medlemmer har sikret, at der var et bibeholdt overblik over processen. Dette sikrede desuden også, at funktionaliteter aldrig blev overset.

Opdelingen af systemet i domænemodellen, samt underopdelingen i Use Cases, gjorde det nemt for gruppens medlemmer at vælge en opgave og fuldføre den. I denne sammenhæng

¹Sekvensdiagrammer kan ses i kontekst i systemarkitektur dokumentet under 5: Logisk view, 6: Process/Task view og 8: Implementerings view

er der aldrig blevet gjort redudant arbejde, da grænsefladen mellem domænerne var klare.

8 Designprocessen

Figur 5: Første udkast af domænemodellen

Da først udkast til kravspecifikationen var skrevet, blev der fastslået vise designregler der skulle opretholdes igennem systemet. Den første var vedrørende systemopbygningen af de forskellige komponenter. Det blev hurtigt vedtaget, at for at skabe en god kodestandard og en overskuelige implementering, var tre-lags modellen en den bedste metode. (se figur 5)

Tre-lags modellen er simpel og solid, og kan nemt implementeres, hvis der arbejdes efter det, hvilket er tre punkter, der vægtede tungt i designfasen. Grundidéen i tre-lags modellen er, at opdele systemet i ufhængige moduler, som ikke har behov for, at kommunikere kompleks mellem sig. Dette vil skabe høj samhørighed, samt lav afhængihed, hvilket er bestræbelser der forekommer i et hvert IT-system.²

Også i sammenhæng med høj samhørighed og lav afhængihed, blev det vedtaget, at mobilapplikationen aldrig måtte kommunikere direkte med databasen, samt at alle udregninger skulle ske server-side. Det resulterede i en applikation som ikke udfører noget datamanipulations arbejde, men kun henter, sætter og gemmer data. Desuden kan applikationen nemt skiftes ud, hvis den, for eksempel, skal supporteres på en anden platform, hvilket betyder lav afhængighed mellem system komponenterne.

²En detaljeret model af systemerne kan følges i systemarkitekturen, under 5: Logisk View og 8: Implementerings View

For sikkerhedsmæssige årsager, blev det også vedtaget, at forbindelsenbeskrivelsen til databasen skulle gemmes væk.

I datamæssigt sammenhæng, blev det først undersøgt, hvorvidt det var muligt at tilgå reelle informationer om busser, det blev dog hurtigt etableret, at dette ikke var en mulighed. Dette var grundstenen til, at simulatoren blev udviklet. Simulatoren gav gruppen mulighed for at teste de dele af systemet, hvor informationer om en bus var en nødvendighed, uden en reel bus skulle tilgås. Dette gjorde altså projektet uafhængig af hvilken kilde, informationen kommer fra, og derfor også med til at skabe lav kobling.

Rutemæssigt blev der gjort en del overvejelser. Projektet blev i først omgang specificeret til, at samtlige stoppesteder på en ruten (dvs. stoppesteder i begge retninger), skulle kunne vælges, således at brugeren kunne tilgå den enkelte retnings stoppested. Dette blev hurtigt genovervejet, da det ville resultere i en uoverskuelig rute, med to gange så mange stoppesteder som der, reelt set, var behov for. Derfor blev det vedtaget, at der kun skulle vælges et stoppested, og tiden for den nærmeste bus, i begge retninger, ville blive vist. I samme sammenhæng blev det også overvejet, at en rute sagtens kunne have mere end en endestation, og det var derfor nødvendigt også at tage højde for disse typer ruter.³

Under hele processen er designløsninger og -beslutninger blevet diskuteret imellem medlemmerne af gruppen, hvilket har resulteret i et yderst fleksibelt produkt.

9 Udviklingsværktøjer

Under udførslen af projektet er der blevet gjort brug af dele af Scrum, men da gruppens medlemsantal kun er to, blev det ikke set som nødvendigt at tage et scrum værktøj i brug. Der har været konstant kommunikation mellem gruppemedlemmerne, da der udelukkende er blevet arbejdet sammen. Under skriveprocessen af kravspecifikationen, accepttesten, system arkitekturen og dette dokument, er samtlige underafsnit blevet skrevet på et scrum-board, hvorpå samtlige gruppemedlemmer kan melde sig på en opgave.

³Se afsnit 9: Data View i systemarkitekturen, for mere information om dette.

Under udviklingen af systemet, blev der gjort brug af ansvarsområder, hvori der var klare linjer for, hvem der skulle udvikle hvilke dele.

Til versionsstyring er GitHub taget i brug, som er en versioncontroller, der implementerer Git. Dette er et standard versionsstyrings system, hvori medlemmer kan tilføje, fjerne eller ændre filer, hvorefter andre medlemmer kan tilgå ændringerne. Når et system af denne størrelse imlementeres, genereres der ofte en del unødvendige filer. Git implementerer muligheden for, at kunne ignorere disse filer igennem en ignore protocol. Dette har specielt været nyttigt under udviklingen af mobilapplikationen, samt ved skrivningen af projektes dokumenter, da begge dele auto-genererer en del unødvendige filer, ved bygning. GitHub, og dermed versionstyrings redskaberne, tilgås igennem et commandline værktøj, kaldet Git Shell, som bygger ovenpå Windows Powershell. Heri kan der navigeres til den mappe, hvor repositoriet er oprettet og herfra addes, commites, deletes og merges, præcis som et normalt versionsstyrings værktøj. Repositoriet kan også tilgås online, hvori versionstyrings historikken kan tilgås. Dette har været nyttigt i den sammenhæng, at et tidligere commit nemt kunne hentes ned, hvis to versioner skulle holdes op mod hinanden. Commit og merge træet kan også følges. På figur ??, kan en del af dette træ ses. Den sorte linje repræsenterer masteren, eller trunken. De blå og grønne linjer repræsenterer en lokal branch, hvori mere end et commit er blevet tilføjet. Når den sorte linje peger ned på en af de blå eller grønne, betyder det at et merge er blevet udført. Prikkeren på de forskellige linjer repræsenterer et commit.

Figur 6: Git commit historik

Alt tekstredigering er foregået i LaTeX, hvilket har været meget brugbart, da større dokumenter kunne opdeles i forskellige filer, som kunne arbejdes på individuelt. Dette har tilladt, at begge gruppemedlemmer kunne redigere samme dokument uden der opstod konflikter. Desuden sikres, at de nyeste billeder og lignende altid er opdateret, da LaTeX linker til disse i stedet for at indsætte dem direkte.

Alle diagrammer er blevet udviklet i Microsoft Visio 2013, da dette havde indbygget værktøjer til alle de diagrammer, der blev set som nødvendige. Den eneste undtagelse er Use Case diagrammet, som blev udhviklet på hjemmesiden www.creately.com. Visio understøtter "stencils", hvori forskellige komponenter relevant for det givne diagram, kan tilføjes. Dette gjorde det yderst nemt at arbejde med.

10 Resultater

Nedenfor er de mest væsentlige resultater listet, hvorefter de kort beskrives. Der refereres til accepttestspecifikationen, hvis det ønskes at få et større overblik over de udførte tests.

Overordnede resultater

- Få en præcis tid til bus ankommer til stoppested.
- En måde at administrere busruter.
- relationel database, til persistering af data.
- Web service, til database adgang for mobil applikationen.
- Simulator af bus.

Mobil applikation

Mobil applikationen kan vise busruter, med sens stoppesteder og busser der er på ruten. samt det er muligt at få vist tiden til den næste bus ankommer ved et valgt stoppested.

Administrations værktøj

Det kan lade sig gøre, at administrer busruter, dette indebærer at lave, slette og ændre i ruter, stoppesteder og busser, samt ændre hvilken rute de forskellige busser køre op.

Database

Databasen er skabt med MySQL og består af 8 tabeller til at holde alt data for systemet. Systemet gemmer en del data, herunder busruter, stoppesteder, busser og GPS-koordinater for de forskellige busser.

Web service

Web servicen bruges som mellemled mellem mobil applikationen og MySQL databasen, samt fjerner meget af det tunge arbejde fra mobil applikationen og flytter det over på en server.

Simulator

Det er muligt at simulere en eller flere busser der køre på sin busrute.

11 Diskussion af opnåede resultater

Som det kan ses i overstående afsnit, lykkes det at udvikle et software system, der kan vise en præcis tid til næsten bus ankommer til et valgt stoppested, hvilket er hoved funktionaliteten i hele systemet. Ydermere er det muligt at nemt oprette nye busruter, stoppesteder og busser og persistere dem på en database, så det nemt kan blive vist på mobil applikationen.

Selve mobil applikationen køre stabilt, der er også implementeret fejlhåndtering således, at skulle der tabes forbindelse til internettet vil dette blive håndteret samt brugeren vil få besked om dette. Bussens placering og tiden til den ankommer til stoppested er begge meget præcise og ligger vel indefor et acceptable niveau. Brugergrænsefladen der er blevet udviklet til mobil applikationen, er blevet gjort brugervenlig og overskuelig, knapperne er tydlige og med beskrivende tekst. Information bliver vist, så der ikke er tvivl om hvad der bliver vist.

Før det var muligt at få indtegnet ruter, stoppesteder og busser på mobil telefonen, skulle der være en nem måde at oprette disse, og tilføje dem til databasen. Til dette formål blev administrations hjemmesiden udviklet. Det er muligt herfra, nemt og simple, at oprette nye busruter, stoppesteder og busser, enda tilføje busser til busruter. Brugergrænsefladen kunne dog godt forbedres, og gjort mere simple, dette kan dog nemt gøres da der er blevet brugt 3 lags model i form af MVC. En funktionalitet der mangler på hjemmesiden, er at det kræver rettigerheder at bruge hjemmsiden, for at undgå at hvem som helst kan tilgå de forskellige adminsitrations værktøjer.

Den relationelle database indeholde alt det persisterede data systemet skal bruge, samt med den bliver brugt til at udregne tiden til en bus ankommer til et stoppested ved brug af en stored procedure, dette er blevet gjort for at fjerne udregnigner og arbejde fra tele-

fonen. Telefonen gemmer dog også information lokalt, dog kun busruter og stoppesteder, dette bliver gjort af to grunde, først for at gøre det nemmere for brugeren at tilgå favorit ruter, og for at mindske telefonens dataforbrug.

Web servicen er blevet lavet for at fjerne alt det tunge arbejde fra telefonen, og overføre det til en hurtigere server, desuden er den blevet udviklet for at telefonen ikke tilgår databasen direkte, da dette ville skabe et stort sikkerhedsproblem. Siden alt arbejdet sker på en server, og mobil applikationen blot formidler data, og indtegner det på et kort, skal der ikke meget arbejde til at udvikle nye applikationer på et hvilket som helst platform, uafhængig af operativsystem.

Da det ikke var muligt at få adgang til GPS-position for rigtige busser, blev der udviklet en bus-simulator. En nem og simple løsning blev udviklet, så det hurtigt var muligt at simulere busser der køre på busruter. Simulatoren gør det også nemmere at teste forskellige dele af systemet, uden at skulle være afhængig af virkelige busser og deres position.

12 Projektets fortræffeligheder

Nedenfor er en række funktionaliteter og arkitekturer i projektet, som gruppen er specielt stolt af, listet og beskrevet.

Mobil applikation

Da mobil applikationen var den vigtigste del af projektet, blev der sat stort fokus på at få bygget den op med godt design. Der blev også sat fokus på at få gjort applikationen brugervenlig og intuitiv for brugeren. Det blev opnåede ved at brugeren skal fortage så få klik som muligt for at få vist det information han ønsker, samt ved at gøre det tydligt hvad de forskellige knapper bruges til.

WebService

Der blev hurtigt fastslået at der ikke skulle ske meget arbejde på mobil telefonen, dette blev løst ved at der blev udviklet en webserive. Dette har gjort det muligt at udføre tunge udregnigner på en server i stedet for på telefonen. Desuden gør den det muligt at nemmere at kunne udvikle lignende applikationer til andre mobil styresystemet så som IOS og Windows Phone.

13 Forslag til forbedringer af projektet eller produktet

Under udarbejdelsen af et softwareprojekt er det næsten altid plads til forbedringer, både mht. til arbejdsprocessen og selve produktet. Det gælder også for dette projekt. Nedenfor er en række elementer i projektet, som kunne have været optimeret, listet og beskrevet.

GUI - Administrations hjemmeside

Brugergrænsefladen på administrations hjemmesiden kunne være bedre, vis mindsker vinduet på hjemmesiden vil de forskellige elementer ikke længere passe i deres respektive felter. Det kan nemt blive løst ved at lave et nyt .css stylesheet, der vil gøre hjemmesiden til en mere behagelig brugeroplevelse.

Server

Serveren der hoster både administrations hjemmeside, webservicen og MySQL databasen, er en billige, ikke særlig kraftig server og kan derfor, sandsynligvis, ikke håndtere en særlig stort antal samtidige brugere af mobil aooliaktionen. Dog er det nemt at flytte det hele over på en ny server, når det bliver nødvendigt

Administrator login

Det skal være nødvendigt at logge ind på administratorens hjemmesiden før den kan bruges, eller vil det være muligt for hvemsomhelst at tilgå administrations værktøjerne.

14 Konklusion

TrackABus systemet er produktet af en idé, der blev realiseret, igennem en velfungerende arbejdsprocess og godt brug af udviklingsmetoder, dette bliver tydeligt afspejlet i det endelige produkt. De arbejdsprocesser der er blevet brugt, har været stor hjælp til at gøre, et ellers kompleks systemet, overskueligt. I starten blev der brug meget tid, på at udforme krav, funktionaliteter og muligheder for hvordan opgaverne bedst kunne blive løst. Dette skabte et solidt fundament til at opbygge hele systemet fra. Alle delene af systemet er fra starten blevet opbygget efter en lagdeling, for at gøre koden overskuelig og nem at udskifte dele, da dette har været en iterativ udviklingsprocess, har det ofte været nødvendig at udskifte store dele af systemet, efter ny viden blev opnåede.

Det kan konkluderes at, det endelige systemet lever op til alle forventninger, og opfylder alle de krav og ønsker der i starten blev omstillet, som systemet skulle kunne udføre. Systemet er brugervendligt, og det er yderst simple at få vist sin ønskede busrute, og finde tiden til den næste bus ankommer til et stoppested på mobil applikationen. Desuden er det simplet for administratoren at tilføje nye busruter, stoppesteder og busser til systemet, og flytter busser mellem de forskellige busruter.

Simulatoren der blev udviklet, da data fra virkelige busser ikke var tilgængelige, har været til yderst stor hjælp når forskellige dele af systemet skulle testes og fremvises. Gjorde det simple og nemt at teste forskellige dele af systemet, så som algoritmen der udregner tid, og om information blev opdateret korrekt på skærmen når bussen passerede det valgte stoppested. Uden at skulle være afhængig af, hvordan og hvor en virkelig bus befandt sig.

Hvorom alting er, kan det konkluderes at en god ide, sat sammen med en velfungerende arbejdsprocess, gode udviklingsmetoder og fantastisk arbejdsmorale har medført, at der er endt op med et særdeles velfungerende system.

15 Referencer

Der er ikke nogen nævneværdige referencer i dette dokument, da de hjemmesider der henvises til, er vedhæftet som fodnoter. Tilgengæld refereres der til en række dokumenter, som er udviklet af projektgruppen. Disse er listet nedenfor:

- $\bullet \ \, {\it TrackABus_KravSpecifikation.pdf}$
- $\bullet \ \, {\it TrackABus_Accept test specifikation.pdf}$
- $\bullet \ TrackABus_Systemarkitektur.pdf \\$