Fig.1

Fig.2

$\langle 16 \text{ LAYERS}(\lambda = 750 \text{nm}) \rangle$

LAYER	MATERIAL	OPTICAL THICKNESS	
1	TiO ₂	0.2707	$\geq (4/\lambda)$
2	SiO ₂	0.2577	
3	TiO ₂	0.2115	l)
4	SiO ₂	0.2287	$\} \leq (4/\lambda)$
5	TiO ₂	0.2323	
6	SiO ₂	0.2476	J
7	TiO ₂	0.2729	Ŋ
8	SiO ₂	0.2885	
9	TiO ₂	0.3011	
10	SiO ₂	0.3196] _ , , , , ,
11	TiO ₂	0.3238	}≧(4/λ)
12	SiO ₂	0.3304] [
13	TiO ₂	0.3372] [
14	SiO ₂	0.3265	<u> </u>
15	TiO ₂	0.3064])
16	SiO ₂	0.1402	$\leq (4/\lambda)$

(FIRST EMBODIMENT)

Fig.3

 $\langle 18 \text{ LAYERS}(\lambda = 750 \text{nm}) \rangle$

LAYER	MATERIAL	OPTICAL THICKNESS	
1	TiO ₂	0.2643	$\} \ge (4/\lambda)$
2	SiO ₂	0.2574	
3	TiO ₂	0.2181)
4	SiO ₂	0.2268	$\} \leq (4/\lambda)$
5	TiO ₂	0.2298	
6	SiO ₂	0.2401]]
7	TiO ₂	0.2654]]
8	SiO ₂	0.2724] }
9	TiO ₂	0.2799] [
10	SiO ₂	0.2942] [
11	TiO ₂	0.3172]] _ , , , , ,
12	SiO ₂	0.3240	$\} \geq (4/\lambda)$
13	TiO ₂	0.3341	<u> </u>
14	SiO ₂	0.3340	<u>]</u> [
15	TiO ₂	0.3331	<u>]</u>
16	SiO ₂	0.3193	
17	TiO ₂	0.3004])
18	SiO ₂	0.1455	$\leq (4/\lambda)$

(SECOND EMBODIMENT)

Fig.4

$\langle 20 \text{ LAYERS}(\lambda = 750 \text{nm}) \rangle$

\			
LAYER	MATERIAL	OPTICAL THICKNESS	
1	TiO ₂	0.2726	$\} \ge (4/\lambda)$
2	SiO ₂	0.2567	
3	TiO ₂	0.2203	IJ
4	SiO ₂	0.2370	
5	TiO ₂	0.2197	$]$ \leq $(4/\lambda)$
6	SiO ₂	0.2404]
7	TiO ₂	0.2462	וַן
8	SiO ₂	0,2786	1)
9	TiO ₂	0.2838]
10	SiO ₂	0.2773	11
11	TiO ₂	0.2998] .
12	SiO ₂	0.3232	11
13	TiO ₂	0.3159	$\rbrace \geq (4/\lambda)$
14	SiO ₂	0.3300	
15	TiO ₂	0.3352	<u>]</u>
16	SiO ₂	0.3349]
17	TiO ₂	0.3397	<u> </u>
18	SiO ₂	0.3162	11
19	TiO ₂	0.3105]]
20	SiO ₂	0.1527	$] \leq (4/\lambda)$

(THIRD EMBODIMENT)

Fig.5

$\langle 22 \text{ LAYERS}(\lambda = 750 \text{nm}) \rangle$

			Į.
LAYER	MATERIAL	OPTICAL THICKNESS	
1	TiO ₂	0.2695	$\} \ge (4/\lambda)$
2 3	SiO ₂	0.2561	\frac{=(4/\lambda)}{}
3	TiO ₂	0.2167]
4	SiO ₂	0.2351	$\left \right \leq (4/\lambda)$
5	TiO ₂	0.2204	
· 6	SiO ₂	0.2435	J
7	TiO ₂	0.2525]
8	SiO ₂	0.2749	
9	TiO ₂	0.2767	
10	SiO ₂	0.2727	
11	TiO ₂	0.2985	
12	SiO ₂	0.3100	<u> </u>
13	TiO ₂	0.3108	
14	SiO ₂	0.3245] } ≧(4/λ)
15	TiO ₂	0.3221	
16	SiO ₂	0.3241]]
17	TiO ₂	0.3424] [
18_	SiO ₂	0.3321	
19	TiO ₂	0.3393]
20	SiO ₂	0.3227]
21	TiO ₂	0.3095	J
22	SiO ₂	0.1551	$\leq (4/\lambda)$

(FOURTH EMBODIMENT)

Fig.6

\ - .			
LAYER	MATERIAL	OPTICAL THICKNESS	
1	TiO ₂	0.2711	$\} \ge (4/\lambda)$
3	SiO ₂	0.2559]
3	TiO ₂	0.2103]]
4	SiO ₂	0.2362	$\left\{ \left \right. \right. \right\} \leq (4/\lambda)$
<u>4</u> 5	TiO ₂	0.2230	
6	SiO ₂	0.2417])
7	TiO ₂	0.2560]]
8	SiO ₂	0.2686] [
9	TiO ₂	0.2732] [
10	SiO ₂	0.2685]
11_	TiO ₂	0.2894]
12	SiO ₂	0.3020]
13	TiO ₂	0.3027]
14	SiO ₂	0.3210]]
15	TiO ₂	0.3258]}≧(4/λ)
16	SiO ₂	0.3229	<u> </u>
17_	TiO ₂	0.3337	11
18	SiO ₂	0.3264	<u> </u>
19	TiO ₂	0.3449	<u> </u>
20	SiO ₂	0.3411	11
21	TiO ₂	0.3417	<u> </u>
22	SiO ₂	0.3203	41
23	TiO ₂	0.3067	IJ _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
24	SiO ₂	0.1517	$\rfloor \leq (4/\lambda)$

(FIFTH EMBODIMENT)

Fig.7

(SIXTH EMBODIMENT)

Fig.9

$\langle 18 \text{ LAYERS}(\lambda = 750 \text{nm}) \rangle$

LAYER	MATERIAL	OPTICAL THICKNESS	
1	TiO ₂	0.256	$\} \ge (4/\lambda)$
2	MgF ₂	0.260	S = (4/ // /
3	TiO ₂	0.228	j
4	MgF ₂	0.227	$\leq (4/\lambda)$
5	TiO ₂	0.238	
6	MgF ₂	0.233	J
7	TiO ₂	0.263]
8	MgF ₂	0.269	
9	TiO ₂	0.279	
10	MgF ₂	0.281	
11	TiO ₂	0.314	
12	MgF ₂	0.321	$\} \ge (4/\lambda)$
13	TiO ₂	0.337	
14	MgF ₂	0.324	
15	TiO ₂	0.318	
16_	MgF ₂	0.317	
17	TiO ₂	0.314	J
18	MgF ₂	0.157	$\leq (4/\lambda)$

(SEVENTH EMBODIMENT)

Fig.10

$\langle 20 \text{ LAYERS}(\lambda = 750 \text{nm}) \rangle$

,	·	· ·	
LAYER	MATERIAL	OPTICAL THICKNESS	
1	TiO ₂	0.277	$\} \geq (4/\lambda)$
2	MgF2	0.257	47717
3	TiO ₂	0.218]
4	MgF ₂	0.239	$\left \right \leq (4/\lambda)$
5	TiO ₂	0.228	
6	MgF ₂	0.238	J
7	TiO ₂	0.265]]
8	MgF ₂	0.277]
9	TiO ₂	0.273]
10	MgF ₂	0.275	
11	TiO ₂	0.293	
12	MgF ₂	0.302]
13	TiO ₂	0.302] } ≧(4/λ)
14	MgF2	0.322]
15	TiO ₂	0.330]
16	MgF ₂	0.331	<u>]</u> .
17	TiO ₂	0.327] [
18	MgF2	0.317	<u>]</u>
19	TiO ₂	0.317]]
20	MgF2	0.156	$\leq (4/\lambda)$

(EIGHTH EMBODIMENT)

Fig.12

Fig.13

$\langle 21 \text{ LAYERS}(\lambda = 750 \text{nm}) \rangle$

• — ·			
LAYER	MATERIAL	OPTICAL THICKNESS	
	Al ₂ O ₃	0.1323	
1	TiO ₂	0.2570	$\} \ge (4/\lambda)$
2	SiO ₂	0.2501) = (4) /l /
3	TiO ₂	0.2235	ı)
4	SiO ₂	0.2258	$\left \right \leq (4/\lambda)$
5	TiO ₂	0.2344	
6	SiO ₂	0.2370	J
7	TiO ₂	0.2588)
8	SiO ₂	0.2639	
9	TiO ₂	0.2788	
10	SiO ₂	0.2819	
11	TiO ₂	0.3026	
12	SiO ₂	0.3109	$\geq (4/\lambda)$
13	TiO ₂	0.3209	
14	SiO ₂	0.3240	
15	TiO ₂	0.3320	
16	SiO ₂	0.3304]]
17	TiO ₂	0.3399]
18	SiO ₂	0.3214	
19	TiO ₂	0.3115	ĮJ
20	SiO ₂	0.1515	$\leq (4/\lambda)$

(NINTH EMBODIMENT)

Fig.15

