Georgios Is. Detorakis (GID), PhD

C	ont	ac	t	
In	for	ma	ati	on

Postdoc Researcher

Neuromorphic Machine Intelligence Lab

University of California Irvine

2308 Social & Behavioral Sciences Gateway Building

UC Irvine 92697-5100, CA, USA

□ +1 (949) 241 0844

• https://github.com/gdetor

★ cogsci.uci.edu/~gdetorak

Research Interests

Theoretical and computational neurosciences: Machine learning algorithms with applications on neuromorphic brain-inspired devices and brain-machine interfaces with applications in neurodegenerative disorders (Parkinson's disease). Cortical plasticity, memory and learning. Evolutionary computing with applications in machine learning and neuroscience.

Academic Appointments

Postdoctoral Researcher

January 2016 - Now

Neuromorphic Machine Intelligence Lab, University of California Irvine

- Developed a neuromorphic framework and its simulator (https://github.com/nmi-lab/NSAT).
- Developed machine learning algorithms.
- Co-developed algorithms for Brain-Machine Interface using machine learning and neuromorphic devices.
- Developed applications using neuromorphic sensors (DVS camera).

Postdoctoral Researcher

December 2013 - December 2015

Laboratoire des signaux et systèmes, Supélec, University Paris Sud

- Developed a neural model (nonlinear, delayed, neural field) and a closed-loop simulation for Parkinson's disease treatment.
- Conducted theoretical work on non-linear retarded dynamical systems in a closed-loop setup.
- Co-developed software for spike-sorting (https://github.com/gdetor/SPySort).
- Developed Matlab software for on-line data processing using a Plexon recording device.

Education

The University of Lorraine, Lorraine, France

Ph.D., INRIA Nancy Grand-Est, October 2010 - October 2013

- Thesis Topic: Cortical plasticity, dynamic neural fields and self-organization.
- · Adviser: Dr. Nicolas P. Rougier
- Area of Study: Computational Neuroscience.

The University of Crete, Heraklion, Hellas

M.Sc., Faculty of Medicine, January 2007 – January 2009

- Interdisciplinary two-years graduate program in "Brain and Mind Sciences".
- Area of Study: Neuroscience.

B.Sc., Department of Applied Mathematics, September 2002 – September 2006

- · Four years undergraduate program.
- Specialization in mathematical methods and software development.

Travel Grants

- Federation of European Neuroscience Societies (FENS), Regional Meeting 2015, Thessaloniki, Greece (€500).
- Organization for Computational Neurosciences, CNS 2013 Annual Meeting, Paris, France (\$200).

Student Advising

- Undergraduate students in Engineering, CentraleSupélec, Gif-sur-Yvette, France. Primary adviser: Prof. Antoine Chaillet.
- Graduate (master) internship student in INRIA Nancy Grand-Est, Lorraine, France. Primary adviser: Dr. Nicolas P. Rougier.

Teaching Experience

Supélec, Gif-sur-Yvette, France

Guest Instructor for a crash course in Python.

March 2014 - April 2014

Introduction to the Python Programming Language, Numpy, Scipy, and Matplotlib packages.

The University of Crete, Heraklion, Hellas

Teaching Assistant

Spring Semester 2006

- TEM 202: Undergraduate Algorithms' Theory.
- Instructor: Prof. M. Karavelas.
- · Course tutoring.

Professional Service

Workshop Service

 Co-organizer (with Prof. Antoine Chaillet) for a workshop on: "Neural Population Dynamics", Supélec. Gig-sur-Yvette. February 2015.

Referee Service

· The ReScience journal

Research Experience

Supélec, Gif-sur-Yvette, France and **Université Paris Sud**, Orsay, France Laboratoire des signaux et systèmes

Postdoc Researcher in Neuroscience & Control Theory December 2013 – December 2015

- Developed a neural model (nonlinear, delayed, neural field) and a closed-loop simulation for Parkinson's disease treatment.
- Conducted theoretical work on non-linear retarded dynamical systems in a closed-loop setup.
- Co-developed software for spike-sorting (https://github.com/gdetor/SPySort).
- Developed Matlab software for on-line data processing using a Plexon recording device.

INRIA - Nancy Grand Est, Nancy, France

CORTEX Team

Research Assistant in Computational Neuroscience

October 2010 - October 2013

- Developed a computational model for self-organizing maps.
- Developed a mathematical model for the development of the somatosensory cortex.
- · Developed an attention mechanism for the self-organizing map.
- Reproduced an in vivo experiment in silico to study self-organization in the brain.

FORTH, Heraklion, Hellas

Computational Vision and Robotics Laboratory

Research Intern in Robotics

May 2008 - October 2008

- Configured and calibrated a humanoid robot (HOAP3).
- Applied biped locomotion algorithms on the robotic platform HOAP3.
- Developed demo simulations for the aforementioned robotic platform.

The University of Crete - Faculty of Medicine, Heraklion, Hellas

Laboratory of Systems Physiology and Computational Neuroscience

Research Intern in Systems Neuroscience

October 2007 - April 2008

- Conducting EMG and EEG experiments for studying human tremor.
- · Developed software on Matlab for EMG signal processing and analysis.
- · Analyzing EMG and EEG data.
- · Developed simulations of motor units.

Professional Experience

The University of Crete, Heraklion, Hellas

Member of Helpdesk Team

Autumn semester 2006

Providing assistance and technical support to the users. Supervising the computer laboratories
of the Departments of Mathematics and Applied Mathematics.

Other Meeting Attendance

General Participant

- Workshop on Neuromorphic Cognition Engineering, Telluride, Colorado (USA), 2017.
- Summer school on *Neural Dynamics Approach to Cognitive Robotics III A Hands—on*, Bochum (Germany), September 2012.

Software

Software with applications in Neuromorphic Systems:

- NSATsim A neuromorphic framework simulator written in C. The user interface is written in Python.
- NSATcarl A C++ interface of CARLsim (http://www.socsci.uci.edu/~jkrichma/CARLsim/) for a neuromorphic framework.

Software with applications in Neuroscience:

- Crebral A simple simulator for conductance-based neural networks written mainly in C. All the
 accompanied tools are written in Python. The source code is available at github: https://github.
 com/gdetor/Crebral.
- **SPySort** A Python package for spike sorting. The source code can be found at github: https://github.com/gdetor/spysort.
- SI-RF-Structure A collection of Python scripts that implements algorithms and experimental protocols relative to somatotory of area 3b of primary somatosensory cortex. The source code is hosted at github: https://github.com/gdetor/SI-RF-Structure.
- **SITopMaps** A Python/C implementation of self-organizing maps with application on the somatotopy of area 3b of primary somatosensory cortex. The source code can be found at github: https://github.com/gdetor/SITopMaps.

Communication Skills

Languages:

- Greek native language,
- English full professional proficiency,
- French intermediate working proficiency,
- German elementary proficiency (dead).

Software Skills

Programming:

- C, C++, Python, Fortran, Java, Pascal, UNIX shell scripting, GNU make, SQL, Matlab/Octave, Maple, HTML, CSS, Bootstrap.
- Scikit-learn, LAPACK/BLAS, Sundials, OpenMP, Nvidia CUDA, MPI.

Deep Learning Frameworks:

• PyTorch, TensorFlow.

Simulators:

Brian, Neuron (Python).

Version Control and Software Configuration Management:

· Git and SVN.

Desktop Editing and Productivity Software:

• Vim, T_EX (LAT_EX, BibT_EX, Tikz), Microsoft Office, Graphviz, GIMP, Inkscape, Scribus.

Operating Systems:

Linux and BSD, Microsoft Windows family, Apple OS X.

Recording Techniques

Noninvasive:

• Electroencephalography (EEG) – Operation of portable EEG device consisting of 18 electrodes.

Invasive:

- Extracellular recordings Set up, calibration and software development for extracellular recordings using a Plexon Recording Device.
- Electromyography (EMG) Conducting muscle force and motor units (MUs) activity recordings.

Expertise

Mathematics:

 Linear and Nonlinear Dynamical Systems, Control Theory, Numerical Analysis, Linear Algebra, Probabilities Theory, Theory of Systems and Signals, Information Theory, Optimization, and Empirical Dynamic Modeling.

Computer Science:

Deep Learning, Machine Learning, Neural Networks, Neuromorphic Computing, Software Development, Evolutionary Computing, Theory of Algorithms.

Computational Neuroscience:

Spiking Neural Networks, Neural Population Models, Mathematical Modeling of Neural Systems.

Natural and Social Sciences:

Neuroanatomy, Neurophysiology, Cognitive Neuroscience, Philosophy of Mind.

Talks

- [1] "Biologically plausible contrastive divergence: Towards an abstract complementary learning system", Hughes Research Laboratory (HRL), Malibu CA (USA), 2017.
- [2] "Closed-loop deep brain stimulation for Parkinson's disease: A computational study", University of California Irvine, Irvine CA (USA), 2016.
- [3] "Neural Fields 101", CenraleSupélec, Gif-sur-Yvette (France), 2015.
- [4] "The perception of touch: A computational approach", Aix Marseille University, Marseille (France), 2014.
- [5] "Coherent 6–10 Hz rhythms in muscle activities-Humanoid Robot & Biped Locomotion-EEG & Time Series Analysis" in Bernstein Center for Computational Neuroscience, Freiburg (Germany), 2008.

Refereed Journal Publications

- [6] B. U. Pedroni, S. Joshi, S. Deiss, S. Sheik, **G. Detorakis**, S. Paul, C. Augustine, E. Neftci, and G. Cauwenberghs, *Memory-efficient Synaptic Connectivity for Spike-Timing-Dependent Plasticity* accepted for publication in Frontiers in Neuroscience (Neuromorphic Section).
- [7] **G. Detorakis**, T. Bartley and E. Neftci, *Contrastive Hebbian Learning with Feedback Random Weights*, Neural Networks, 114, 2019.
- [8] G. Detorakis, S. Sheik, C. Augustine, S. Paul, B.U. Pedroni, N. Dutt, J. Krichmar, G. Cauwenberghs, and E. Neftci, Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning, Frontiers in Neuroscience (Neuromorphic section), 2018.
- [9] N.P. Rougier, K. Hinsen, [et al., including **Georgios Detorakis**], *Sustainable computational science: the ReScience initiative*, PeerJ Computer Science 3, 2017.
- [10] E. Neftci, S. Paul, C. Augustine, **G. Detorakis**, *Event-Driven Random Back-Propagation:* Enabling Neuromorphic Deep Learning Machines, Frontiers in Neuroscience 11, 2017.
- [11] A. Chaillet, **G. Is. Detorakis**, S. Palfi and S. Senova, *Robust stabilization of delayed neural fields with partial measurement and actuation*, Automatica 83, 2017.
- [12] **G.Is. Detorakis**, A. Chaillet, S. Palfi, and S. Senova, *Closed-loop stimulation of a delayed neural fields model of parkinsonian STN-GPe network: a theoretical and computational study*, Frontiers in Neuroscience, 9:237, 2015.
- [13] **G.Is. Detorakis** and N.P. Rougier, *Structure of Receptive Fields in a Computational Model of Area 3b of Primary Sensory Cortex*, Frontiers in Computational Neuroscience, 8(76), 2014.
- [14] G. Is. Detorakis Cortical plasticity, dynamic neural fields, and self-organization, University of Lorraine (Thesis), 2013.
- [15] G.Is. Detorakis and N.P. Rougier, A Neural Field Model of the Somatosensory Cortex: Formation, Maintenance and Reorganization of Ordered Topographic Maps, PLoS ONE 7(7): e40257, 2012.

Reproducible Science (peer-reviewed)

- [16] **G. Detorakis**, [Re] A generalized linear Integrate-and-Fire neural model produces diverse spiking behaviors, The ReScience Journal, 3:1, 2017.
- [17] **G.Is. Detorakis**, [Re] Multiple dynamical modes of thalamic relay neurons: rhythmic bursting and intermittent phase-locking, The ReScience Journal, 2:1, 2016.

Conference Publications (peer-reviewed)

- [18] H. Kashyap, **G. Detorakis**, N. Dutt, J. Krichmar, and E. Neftci, *A Recurrent Neural Network Based Model of Predictive Smooth Pursuit Eye Movement in Primates*, IJCNN, Rio de Janeiro (Brazil), 2018.
- [19] **G. Detorakis** and A. Chaillet, *Incremental stability of spatiotemporal delayed dynamics and application to neural fields*, CDC, Melbourne, Australia, 2017.
- [20] E. Neftci, C. Augustine, S. Paul, **G. Detorakis**, *Event-Driven Random Backpropagation: Enabling Neuromorphic Deep Learning Machines*, IEEE ISCAS, Baltimore (MD, USA), 2017.
- [21] B. U. Pedroni, S. Sheik, S. Joshi, G. Detorakis, S. Paul, C. Augustine, E. Neftci, G. Cauwen-berghs, Forward Table-Based Presynaptic Event-Triggered Spike-Timing-Dependent Plasticity, IEEE BioCAS 2016, Shanghai, China, 2016.
- [22] C. Pouzat and **G.Is. Detorakis**, *SPySort: Neural spike sorting with Python*, Proc. of the 7th Eur. Conf. on Python in Science (Euroscipy 2014), Cambridge (UK), 2014.
- [23] N.P. Rougier and **G.Is. Detorakis**, Self-Organizing Dynamic Neural Fields, Advances in Cognitive Neurodynamics III, 2012.

Book Chapters

[24] A. Chaillet, **G. Is. Detorakis**, S. Palfi, and S. Senova, *ISS-stabilization of delayed neural fields by small-gain arguments*, to be published in Advances on Delays and Dynamics at Springer.

International Conferences

- [25] H.J. Kashyap, **G. Detorakis**, N. Dutt, J.L. Krichmar, E. Neftci *A neural network model of predictive smooth pursuit eye movement in primates*, SfN, San Diego (CA, USA), 2018.
- [26] **G. Detorakis**, T. Bartley, E. Neftci, *Random Contrastive Hebbian Learning as a Biologically Plausible Learning Scheme*, OCNS, Seattle (WA, USA), 2018.
- [27] **G. Detorakis**, T. Bartley, R. Parise, S. Sheik, C. Augustine, S. Paul, B. U. Pedroni, N. Dutt, J. Krichmar, G. Cauwenberghs, and E. Neftci, *Three-factor embedded learning on neuromorphic systems*, COSYNE, Denver (CO, USA), 2018.
- [28] G. Detorakis, T. Bartley, R. Parise, S. Sheik, C. Augustine, S. Paul, B. Pedroni, N. Dutt, J. Krichmar, G. Cauwenberghs and E. Neftci, *Embedded Learning on Neuromorphic Systems: Towards a Unified Computing Framework*, NICE, Portland (OR, USA), 2018.
- [29] G. Detorakis, T. Bartley, R. Parise, C. Augustine, S. Paul, E. Neftci, Embedded learning on neuromorphic systems: Towards a unified computing framework, IEED ICCAD HALO Workshop, 2017.
- [30] G. Detorakis, D. Barsever, E. Neftci NeuroLachesis: A Neuromorphic Framework, Scipy 2017, Austin (TX, USA).
- [31] A. Chaillet, G. Is. Detorakis, Stephan Palfi and Suhan Senova, Robust stabilization of delayed neural fields by proportional feedback using input-to-state stability and small gain theorem, ICMNS 2016, Juan-les-Pins, France.
- [32] **G. Is. Detorakis** and A. Chaillet, *Closed-loop disruption of oscillations in a targeted frequency band for a delayed neural field STN-GPe model*, FENS Regional Meeting 2015, Thessaloniki (Greece).
- [33] **G. Is. Detorakis** and A. Chaillet, *Incremental stability of delayed neural fields: a unifying framework for endogenous and exogenous sources of pathological oscillations*, CNS 2015, Prague (Czech Republic).

- [34] **G. Is. Detorakis** and A. Chaillet, *Closed-loop regulation of the activity of delayed neural fields with only partial measurement and stimulation*, ICMNS 2015, Antibes Juan les Pins (France).
- [35] **G. Is. Detorakis** and A. Chaillet and I. Haidar, *A global stability analysis for delayed neural fields*, BCCN 2014, Göttingen (Germany).
- [36] **G. Is. Detorakis** and N. P. Rougier, *A computational view of the primary somatosensory cortex*, CNS 2013, Paris (France).
- [37] G. Is. Detorakis, N. P. Rougier, Neural Fields and Cortical Plasticity, Front. Comput. Neurosci. BCCN 2011: Computational Neuroscience and Neurotechnology Bernstein Conference & Neurex Annual Meeting, 2011.

Minor Conferences

- [38] G. Detorakis, C. Augustine, S. Paul, E. Neftci, Embedded learning on neuromorphic systems: Towards a unified computing framework, 24th Joint Symposium on Neural Computation, San Diego (CA, USA), 2017.
- [39] C. Pouzat and **G. Is. Detorakis**, On the relation between neuronal size and extracellular spike amplitude and its consequence on extracellular recordings interpretation, MathStat-Neuro Workshop, Nice (France), 2015.
- [40] C. Pouzat and **G. Is. Detorakis**, *SPySort*, GDR Multielectrode systems and signal processing for Neuroscience, Gif-sur-Yvette (France), 2014.
- [41] **G. Is. Detorakis** and N. P. Rougier, *Skin Topographic Maps in SI*, Progress in Neural Field Theory, Reading (UK), 2012.
- [42] **G. Is. Detorakis**, N. P. Rougier, *Skin Topographic Maps in SI*, Workshop on Cognitive and Dynamics in Neural Systems: Mathematical and Computational Modeling (CONAS), Lyon (France), 2012.

Popular Science

[43] A. Chaillet, D. Da Silva, G. Detorakis, C. Pouzat, S. Senova., "Optogenetics to unravel the mechanisms of Parkinsonian symptoms and to optimize deep brain stimulation", ERCIM News, Special issue on cyber-physical systems, Number 97, April 2014.