Лабораторная работа №**1**

Дисциплина: Архитектура операционных систем

Люкшина Влада Алексеевна НПИбд-02-24

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Домашнее задание	13
5	Контрольные вопросы	15
6	Выводы	17

Список иллюстраций

3.1	Запуск виртуальной машины
3.2	Завершаем установку
3.3	Установка средств разработки
3.4	Обновление 9
3.5	Автоматическое обноление и таймер
3.6	Отключаем систему безопасности
3.7	Настройка раскладки
3.8	Редактирование конфигурационного файла
3.9	Редактирование второго конфигурационного файла
3.10	Установка имени хоста
3.11	Установка pandoc
3.12	Установка доп пакета
3.13	Установка дистрибутива
4.1	Вывод команды
4.2	Получаем информацию

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

Установить виртуальную машину, образ виртуальной машины и настроить операционную систему.

3 Выполнение лабораторной работы

Первым ключевым пунктом лабораторной работы №1 является установка виртуальной машины и ее образа. Виртуальная машина была установлена в 1 семестре, поэтому сразу приступаем к установке образа.

Выбираем нужный файл образа, необходимые настройки и запускаем.

Рис. 3.1: Запуск виртуальной машины

После загрузки следуя подсказкам доустанавливаем операционную систему, устанавливаем имя пользователя и пароль.

Рис. 3.2: Завершаем установку

Теперь непосредственно следуем плану, прописанному в лабораторной работе №1. Переключаемся на роль супер-пользователя и устанавливаем средства разработки.

```
[valyukshina@fedora ~]$ sudo -1

Мы полагаем, что ваш системный администратор изложил вам основы

безопасности. Как правило, всё сводится к трём следующим правилам:

№1) Уважайте частную жизнь других.

№2) Думайте, прежде чем что-то вводить.

№3) С большой властью приходит большая ответственность.

По соображениям безопасности пароль, который вы введёте, не будет виден.

[sudo] пароль для valyukshina:

[root@fedora ~]#

[root@fedora ~]# sudo dnf -y group install development-tools

Updating and loading repositories:

Fedora 41 openh264 (From Cisco) - x86_64

100% [========] 0.0 B/s | 4.5 KiB | -00m20s
```

Рис. 3.3: Установка средств разработки

Обновляем все пакеты и для удобства устанавливаем tmux.

```
[root@fedora ~]# sudo dnf -y install tmux mc
Обновление и загрузка репозиториев:
Репозитории загружены.
```

Рис. 3.4: Обновление

Устанавливаем автоматическое обновление и запускаем таймер.

Рис. 3.5: Автоматическое обноление и таймер

Далее нам необходимо отключить систему безопасности SELinux. Редактируем файл и перезагружаем виртуальную машину.

```
GNU nano 8.1 /etc/selinux/config | Maxemäh | # See also:
# https://docs.fedoraproject.org/en-US/quick-docs/getting-started-with-selinux/#getting-started-with-selinux-selinux-states-and-modes
# NOTE: In earlier Fedora kernel builds, SELINUX-disabled would also
# fully disable SELinux during boot. If you need a system with SELInux | # fully disabled instead of SELinux running with no policy loaded, you | # need to pass selinux=0 to the kernel command line. You can use grubby
# to persistently set the bootloader to boot with selinux=0:
# grubby --update-kernel ALL --args selinux=0
# To revert back to SELinux enabled:
# grubby --update-kernel ALL --remove-args selinux | # Grown | #
```

Рис. 3.6: Отключаем систему безопасности

Настраиваем раскладку клавиатуры. Создаем конфигурационный файл и редактируем его, после чего редактируем второй конфигурационный файл. Перезагружаем виртуальную машину.

```
valyukshina@fedora:~$ mkdir -p ~/.config/sway/config.d
valyukshina@fedora:~$ touch ~/.config/sway/config.d/95-system-keyboard-config.conf
valyukshina@fedora:~$ ~/.config/sway/config.d/95-system-keyboard-config.conf
```

Рис. 3.7: Настройка раскладки

```
/home/valyukshina/.config/sway/config.d/95-system-keyboard-config.conf
exec_always /usr/libexec/sway-system/locale1-xkb-config --oneshot
```

Рис. 3.8: Редактирование конфигурационного файла

Рис. 3.9: Редактирование второго конфигурационного файла

Следующим пунктом нам нужно поменять логин и пароль, если они не удовлетворяют требованиям. Я пропускаю этот пункт, так как изначально установила верные имя и пароль. Устанавливаем имя хоста и проверяем корректность установки.

```
root@fedora:~# hostnamectl set-hostname valyukshina
root@fedora:~# hostnamectl
    Static hostname: valyukshina
          Icon name: computer-vm
            Chassis: vm 🚍
         Machine ID: 53936d8ae80e42c6a58c6bd7cf6aaeea
             Boot ID: ed5c6152ad054ad38cb7b168f71e5500
       Product UUID: 4194f799-593b-6b41-8718-8c3ae02c7126
     Virtualization: oracle
    Operating System: Fedora Linux 41 (Sway)
         CPE OS Name: cpe:/o:fedoraproject:fedora:41
     OS Support End: Mon 2025-12-15
OS Support Remaining: 9month 1w 4d
             Kernel: Linux 6.13.5-200.fc41.x86_64
       Architecture: x86-64
    Hardware Vendor: innotek GmbH
     Hardware Model: VirtualBox
    Hardware Serial: 0
    Firmware Version: VirtualBox
       Firmware Date: Fri 2006-12-01
       Firmware Age: 18y 3month 2d
  ot@fedora:~#
```

Рис. 3.10: Установка имени хоста

Для работы с языком разметки Markdown будем использовать pandoc. Устанавливаем его через терминал.

```
root@fedora:~# sudo dnf -y install pandoc
Обновление и загрузка репозиториев:
Репозитории загружены.
         Арх. Версия
Пакет
                                        Репозитори
                                                     Размер
Установка:
pandoc x86_64 3.1.11.1-32.fc41 fedora
                                                  185.0 MiB
Установка зависимостей:
pandoc-common noarch 3.1.11.1-31.fc41 fedora
                                                    1.9 MiB
Сводка транзакции:
Установка: 2 пакетов
 🛍 ший размер входящих пакетов составляет 27 MiB. Необходимо заг
  зить 27 MiB.
  сле этой операции будут использоваться дополнительные 187 MiB
  установка 187 MiB, удаление 0 В).
  [B^[[B^[[B^[[B^[[B^[[B^[[B^[[B[1/2] pandoc-0:3.1.11.1-32.
  /2] pandoc-0:3.1.11.1-32.fc41.x86_ 0% | 0.0 B | 00m00s
  /2] pandoc-common-0:3.1.11.1-31.fc
                                    0% |
                                                B | 01d01h
  /2] Total
                                   0% | 0.0 B | 53d15h
```

Рис. 3.11: Установка pandoc

В стандартном пакете нет доп пакета pandoc crossref, поэтому скачиваем его вручную. Смотрим версию утсановленного pandoc и скачиваем с сайта подходящий пакет. Распаковываем архив и перемещаем файлы в каталог.

```
valyukshina@valyukshina:~$ ls
Видео Загрузки Музыка 'Рабочий стол'
Документы Изображения Общедоступные valyukshina@valyukshina:~$ cd Загрузки* ls
'valyukshina@valyukshina:~$агрузки$ ls
'vs-intro_09.83.03_Лабораторная работа h 1_files' pandoc-crossref-Linux.tar.xz
'vs-intro_09.83.03_Лабораторная работа h 1.html'
valyukshina@valyukshina:~/Загрузки$ tar -xvf pandoc-crossref-Linux.tar.xz
pandoc-crossref
pandoc-crossref.1
valyukshina@valyukshina:~/Загрузки$ ls
'vs-intro_09.83.03_Лабораторная работа h 1_files' pandoc-crossref.1
'vs-intro_09.83.03_Лабораторная работа h 1.html' pandoc-crossref-Linux.tar.xz
pandoc-crossref
valyukshina@valyukshina:~/Загрузки$

valyukshina@valyukshina:~/Загрузки$
```

Рис. 3.12: Установка доп пакета

Устанавливаем дистрибутив texlive.

```
root@valyukshinaf~# sudo dnf -y install texlive-scheme-full
Обновление и загружка репозиториев:
Репозитории загружены.
```

Рис. 3.13: Установка дистрибутива

4 Домашнее задание

В домашнем задании нам нужно поработать с командой dmesg. С помощью вывода этой команды анализируем последовательность загрузки системы.

```
0.000000] Linux version 6.13.5-200.fc41.x86_64 (mockbuild@be03da54f8364b379359
fe70f52a8f23) (gcc (GCC) 14.2.1 20250110 (Red Hat 14.2.1-7), GNU 1d version 2.43.1-
5.fc41) #1 SMP PREEMPT_DYNAMIC Thu Feb 27 15:07:31 UTC 2025
    0.000000] Command line: BOOT_IMAGE=(hd0,qpt2)/vmlinuz-6.13.5-200.fc41.x86_64 r
oot=UUID=99eb0ee6-12ed-422e-991a-541eed542b0b ro rootflags=subvol=root nomodeset vg
    0.000000] [Firmware Bug]: TSC doesn't count with P0 frequency!
    0.000000] BIOS-provided physical RAM map:
    0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
    0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x00000000dfffffff] ACPI data
    0.000000] BIOS-e820: [mem 0x000000000fec00000-0x000000000fec00fff] reserved
    0.000000] BIOS-e820: [mem 0x000000000fee00000-0x00000000fee00fff] reserved
    0.000000] BIOS-e820: [mem 0x000000000fffc0000-0x00000000ffffffff] reserved
    0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000020b1fffff] usable
    0.000000] NX (Execute Disable) protection: active
    0.000000] APIC: Static calls initialized
    0.000000] SMBIOS 2.5 present.
    0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
    0.000000] DMI: Memory slots populated: 0/0
    0.000000] Hypervisor detected: KVM
    0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
    0.000002] kvm-clock: using sched offset of 5090566120 cycles
    0.000004] clocksource: kvm-clock: mask: 0xfffffffffffffff max_cycles: 0x1cd42
e4dffb, max_idle_ns: 881590591483 ns
   0.000008] tsc: Detected 3293.814 MHz processor
    0.000878] e820: update [mem 0x00000000-0x000000fff] usable ==> reserved
    0.000881] e820: remove [mem 0x0000a0000-0x000fffff] usable
    0.000886] last_pfn = 0x20b200 max_arch_pfn = 0x400000000
    0.000894] MTRRs disabled by BIOS
    0.000896] x86/PAT: Configuration [0-7]: WB WC UC- UC WB WP UC- WT
    0.000901] last_pfn = 0xe0000 max_arch_pfn = 0x400000000
    0.000924] found SMP MP-table at [mem 0x00009fff0-0x00009ffff]
    0.001526] RAMDISK: [mem 0x34c8d000-0x3663efff]
    0.001531] ACPI: Early table checksum verification disabled
    0.001537] ACPI: XSDT 0x00000000DFFF0030 00003C (v01 VBOX VBOXXSDT 00000001 A
   . 0.001541] ACPI: FACP 0×000000000FFF00F0 0000F4 (v04 VBOX - VBOXFACP 00000001 A
   00000061)
```

Рис. 4.1: Вывод команды

Используя grep мы можем получить отдельную интересующую нас информацию. Используем команду и получаем требуемую информацию.

```
root@valyukshina:~# dmesg | grep -i "Linux version"
[ 0.000000] Linux version 6.13.5-200.fc41.x86_64 (mockbuild@be03da54f8364b379359fe70f52a8f23) (gcc (GCC) 14.2.1 20250110 (Red Hat 14.2.1-7), GNU 1d version 2.43.1-5.
fc41) #1 SMP PREEMPT DYNAMIC Thu Feb 27 15:07:31 UTC 2025
root@valyukshina:~# dmesg | grep -i "Mhz processor"
[ 0.000008] tsc: Detected 3293.814 |
root@valyukshina:~# dmesg | grep -i "CPU0"
[ 0.197340] smpboot: CPU0: AMD Ryzen 5 6600H with Radeon Graphics (family: 0x19, model: 0x44, stepping: 0x1)
root@valyukshina:~# dmesg | grep -i "Memory available"
root@valyukshina:~# dmesg | grep -i "memory available"
root@valyukshina:~# dmesg | grep -i "available"
     0.002137] On node 0, zone DWA: 1 pages in unavailable ranges 0.002149] On node 0, zone DWA: 97 pages in unavailable ranges 0.0026294] On node 0, zone Normal: 16 pages in unavailable ranges
     0.026294] On node 0, zone Normal: 16 pages in unavailable ranges
0.026390] On node 0, zone Normal: 19968 pages in unavailable ranges
      0.026745] [mem 0xe00000000-0xfebfffff] available for PCI devices
      0.032273] Booted with the nomodeset parameter. Only the system framebuffer will
be
      0.197984] Performance Events: PMU not available due to virtualization, using so
ftware events only.
[ 0.209284] Memory: 7737044K/8046136K available (22528K kernel code, 4456K rwdata
, 16892K rodata, 4924K init, 4632K bss, 298724K reserved, 0K cma-reserved)
root@valyukshina:∼# dmesg | grep -i "Hypervisor"
    0.000000] Hyp
                        pervisor detected: KVM
root@valyukshina:~# dmesg | grep -i "file"
```

Рис. 4.2: Получаем информацию

5 Контрольные вопросы

- Какую информацию содержит учётная запись пользователя?
 Учетная запись содержит идентификатор пользователя (логин) и его пароль.
 Пароль хранится в зашифрованном или хэшированном виде для обеспечения его безопасности.
- 2) Укажите команды терминала и приведите примеры: для получения справки по команде: dsmeg (dsmeg | grep -i "что ищем") для перемещения по файловой системе: cd (cd ~/home/work перемещение в каталог /home/work)

для просмотра содержимого каталога: ls (ls -l отображение подробного списка)

для определения объёма каталога: du (du -ah /file/path/work показать объем каждого файла и каталога)

для создания / удаления каталогов / файлов: создание каталога (mkdir); создание пустого файла (touch); удаление каталога или файла (rm)

для задания определённых прав на файл / каталог: chmod (изменение прав доступа)

для просмотра истории команд: history

3) Что такое файловая система? Приведите примеры с краткой характеристикой

Файловая система— это способ организации, хранения и управления данными на носителях информации. Она определяет, как данные хранятся,

как к ним обращаться, а также как обеспечивается их целостность и безопасность.

Пример: NTFS (New Technology File System). Поддерживает большие файлы и разделы, журналирование, шифрование и сжатие. Совместима только с windows.

- 4) Как посмотреть, какие файловые системы подмонтированы в ОС? Команда mount отображает список всех подмонтированных файловых систем.
- 5) Как удалить зависший процесс?Нужно запустить диспетчер задач и снять задачу и зависшего процесса.

6 Выводы

В ходе лабораторной работы N^01 мы создали новый образ виртуальной машины с новой ОС, научились настраивать через терминал и установили утилиты для удобства.