

PARAMETRIZACIÓN POR LONGITUD DE ARCO

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 03) 12.ENERO.2023

Reparametrizaciones

Reparametrizar una curva γ consiste en componer su parametrización $\gamma(t)$ con otra función $t=\phi(s)$, para obtener una nueva representación $\alpha(s)=(\gamma\circ\phi)(s)$ de la curva.

Longitud de arco

• Parametrizar una curva como función de su longitud de arco es equivalente a que

$$\int_{t_0}^t |lpha'(au)| \, d au = t - t_0, \;\; orall t \in I.$$

También es equivalente a hacer $|\alpha'(t)| = 1$, $\forall t \in I$.

(El vector velocidad tiene magnitud constante 1). Esta propiedad será imporante para el desarrollo de la geometría de curvas.

Consideremos un círculo de radio r, parametrizado por

$$\alpha(t) = (r \cos t, r \sin t), \quad t \in \mathbb{R}.$$

Consideremos un círculo de radio r, parametrizado por

$$\alpha(t) = (r \cos t, r \sin t), \quad t \in \mathbb{R}.$$

La derivada es $\alpha'(t) = (-r \sin t, r \cos t)$, y $|\alpha'(t)| = \sqrt{r^2 \cos^2 t + r^2 \sin^2 t} = r$. La longitud de arco a partir de punto $\mathbf{p} = \alpha(0) = (1, 0)$ es

$$s(t) = \int_0^t |\alpha'(\tau)| d\tau = \int_0^t r d\tau = rt.$$

Consideremos un círculo de radio r, parametrizado por

$$\alpha(t) = (r \cos t, r \sin t), \quad t \in \mathbb{R}.$$

La derivada es $\alpha'(t) = (-r \sin t, r \cos t)$, y $|\alpha'(t)| = \sqrt{r^2 \cos^2 t + r^2 \sin^2 t} = r$. La longitud de arco a partir de punto $\mathbf{p} = \alpha(0) = (1, 0)$ es

$$s(t) = \int_0^t |\alpha'(\tau)| d\tau = \int_0^t r d\tau = rt.$$

Despejando t (como función de s), resulta $t=\frac{s}{r}$. Podemos entonces representar la curva como

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Con la representación anterior

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Se cumple

Con la representación anterior

$$\alpha(s) = (r \cos \frac{s}{r}, r \sin \frac{s}{r}), \quad s \in \mathbb{R}.$$

Se cumple

•
$$|\alpha'(s)| = |(-\sin\frac{s}{r},\cos\frac{s}{r})| = \sqrt{\cos^2\frac{s}{r} + \sin^2\frac{s}{r}} = 1$$
, $\forall s$.

Con la representación anterior

$$\alpha(\mathbf{s}) = (r \cos \frac{\mathbf{s}}{r}, r \sin \frac{\mathbf{s}}{r}), \quad \mathbf{s} \in \mathbb{R}.$$

Se cumple

•
$$|\alpha'(s)| = |(-\sin\frac{s}{r},\cos\frac{s}{r})| = \sqrt{\cos^2\frac{s}{r} + \sin^2\frac{s}{r}} = 1$$
, $\forall s$.

•

$$\int_0^s |\alpha'(\sigma)| \, d\sigma = \int_0^s 1 \, d\sigma = s, \quad \forall s.$$

La cicloide

La cicloide

Obtenemos la siguiente parametrización de la cicloide:

$$\gamma(t) = a(t - \sin t, 1 - \cos t), \quad t \in \mathbb{R}.$$

La derivada es $\gamma'(t) = a(1 - \cos t, \sin t)$. Observe que para los puntos $t = 2an\pi$, $n \in \mathbb{Z}$, son puntos singulares para γ .

Obtenemos la siguiente parametrización de la cicloide:

$$\gamma(t) = a(t - \sin t, 1 - \cos t), \quad t \in \mathbb{R}.$$

La derivada es $\gamma'(t) = a(1 - \cos t, \sin t)$. Observe que para los puntos $t = 2an\pi$, $n \in \mathbb{Z}$, son puntos singulares para γ .

Entonces, $\gamma(t)$ es una curva regular en el intervalo $(0, 2a\pi)$.

Obtenemos la siguiente parametrización de la cicloide:

$$\gamma(t) = a(t - \sin t, 1 - \cos t), \quad t \in \mathbb{R}.$$

La derivada es $\gamma'(t) = a(1 - \cos t, \sin t)$. Observe que para los puntos $t = 2an\pi$, $n \in \mathbb{Z}$, son puntos singulares para γ .

Entonces, $\gamma(t)$ es una curva regular en el intervalo $(0, 2a\pi)$. En este caso $|\gamma'(t)| = a\sqrt{(1-\cos t)^2+\sin^2 t} = a\sqrt{2-2\cos t} = 2a\sin\frac{t}{2}$.

Obtenemos la siguiente parametrización de la cicloide:

$$\gamma(t) = a(t - \sin t, 1 - \cos t), \quad t \in \mathbb{R}.$$

La derivada es $\gamma'(t) = a(1 - \cos t, \sin t)$. Observe que para los puntos $t = 2an\pi$, $n \in \mathbb{Z}$, son puntos singulares para γ .

Entonces, $\gamma(t)$ es una curva regular en el intervalo $(0, 2a\pi)$. En este caso $|\gamma'(t)| = a\sqrt{(1-\cos t)^2 + \sin^2 t} = a\sqrt{2-2\cos t} = 2a\sin\frac{t}{2}$. Luego, la longitud de arco desde t=0 es

$$S = \int_0^t |\gamma'(\tau)| d\tau = \int_0^t 2a \sin \frac{\tau}{2} d\tau = 4a - 4a \cos \frac{t}{2}.$$

Despejando t en función de s, obtenemos $t=2\arccos\left(1-\frac{s}{4a}\right)$, para $s\in(0,4a)$

Despejando t en función de s, obtenemos $t=2\arccos\left(1-\frac{s}{4a}\right)$, para $s\in(0,4a)$

Así, obtenemos la reparametrización

$$\gamma(s) = \left(2\arccos\left(1-\frac{s}{4a}\right) - \sin\left[2\arccos\left(1-\frac{s}{4a}\right)\right], 1 - \cos\left[2\arccos\left(1-\frac{s}{4a}\right)\right]\right)$$
$$= \left(2\arccos\left(1-\frac{s}{4a}\right) - 2\left(1-\frac{s}{4a}\right)\sqrt{1-\left(1-\frac{s}{4a}\right)^2}, 2 - 2\left(1-\frac{s}{4a}\right)^2\right).$$

Otra reparametrización

Dada una curva $\alpha:I\to\mathbb{R}^n$, parametrizada por $s\in I=(a,b)$, podemos considerar una nueva curva $\beta=\alpha\circ\varphi:I\to\mathbb{R}$, haciendo la reparametrización $\varphi:t(s)=a+b-s$.

Otra reparametrización

Dada una curva $\alpha:I\to\mathbb{R}^n$, parametrizada por $s\in I=(a,b)$, podemos considerar una nueva curva $\beta=\alpha\circ\varphi:I\to\mathbb{R}$, haciendo la reparametrización $\varphi:t(s)=a+b-s$.

Ambas α y β tienen el mismo trazo, pero recorrido en sentido contrario:

$$\beta'(\mathsf{t}) = \frac{\mathsf{d}\beta}{\mathsf{d}\mathsf{t}} = \frac{\mathsf{d}(\alpha \circ \varphi)}{\mathsf{d}\mathsf{t}} = \frac{\mathsf{d}\alpha}{\mathsf{d}\mathsf{s}} \cdot \frac{\mathsf{d}\mathsf{s}}{\mathsf{d}\mathsf{t}} = \alpha'(\mathsf{s}) \cdot (-\mathsf{1}) = -\alpha'(\mathsf{s}).$$

Otra reparametrización

Dada una curva $\alpha:I\to\mathbb{R}^n$, parametrizada por $s\in I=(a,b)$, podemos considerar una nueva curva $\beta=\alpha\circ\varphi:I\to\mathbb{R}$, haciendo la reparametrización $\varphi:t(s)=a+b-s$.

Ambas α y β tienen el mismo trazo, pero recorrido en sentido contrario:

$$\beta'(\mathsf{t}) = \frac{\mathsf{d}\beta}{\mathsf{d}\mathsf{t}} = \frac{\mathsf{d}(\alpha \circ \varphi)}{\mathsf{d}\mathsf{t}} = \frac{\mathsf{d}\alpha}{\mathsf{d}\mathsf{s}} \cdot \frac{\mathsf{d}\mathsf{s}}{\mathsf{d}\mathsf{t}} = \alpha'(\mathsf{s}) \cdot (-\mathsf{1}) = -\alpha'(\mathsf{s}).$$

Esta reparametrización se llama un cambio de orientación de α .

Comentarios sobre curvas regulares

Kühnel define una curva regular como una cierta clase de equivalencia.

Comentarios sobre curvas regulares

Kühnel define una curva regular como una cierta clase de equivalencia.

Definición

Una **curva regular** es una clase de equivalencia de curvas parametrizadas regulares, donde la relación de equivalencia se obtiene a partir de cualquier transformación (que preserva la orientación) del tipo

$$\varphi: (\mathbf{a}, \mathbf{b}) \to (\mathbf{a}, \mathbf{b}),$$

 φ biyectiva, continuamente diferenciable, con $\varphi'>$ 0. Así, α y $\alpha\circ\varphi$ se consideran equivalentes.

Comentarios sobre curvas regulares

Kühnel define una curva regular como una cierta clase de equivalencia.

Definición

Una **curva regular** es una clase de equivalencia de curvas parametrizadas regulares, donde la relación de equivalencia se obtiene a partir de cualquier transformación (que preserva la orientación) del tipo

$$\varphi: (a,b) \rightarrow (a,b),$$

 φ biyectiva, continuamente diferenciable, con $\varphi'>$ 0. Así, α y $\alpha\circ\varphi$ se consideran equivalentes.

Obs! Una transformación φ biyectiva, diferenciable (clase C^1), y con inversa φ^{-1} diferenciable, se llama un *difeomorfismo*. Si $\varphi'>$ 0, este es un difeomorfismo que preserva la orientación.

Ejercicio

Ejercicio

1. Calcular la parametrización por longitud de arco de una hélice

$$\alpha(t) = (r \cos at, r \sin at, bt), t \in \mathbb{R}, r, a, b > 0$$

a partir del punto $\mathbf{p} = \alpha(\mathbf{0}) = (r, \mathbf{0}, \mathbf{0})$.