

Quantum Computing Vs Cryptography

Presenter – Sanchay Singh @OWASP Meetup (Online, 11 February, 2024) and THM Delhi (Offline, 21 Jan, 2024)

>_whoami

- -> Co-founder of HackersVilla CyberSecurity
- -> Security Consultant/Trainer at MakeIntern
- -> Worked as SME at UpgradCampus
- -> Trained Employees of KPMG, Cognizant, etc
- -> Security Mentor/Speaker at OWASP Delhi
- -> Security Mentor at BSides Noida
- -> Active part of NULL and THM Delhi Chapter

Sanchay Singh

CYBERSECURITY EXPERT | CORPORATE

TRAINER | PUBLIC SPEAKER

MyJourney

Quantum Computing Fundamentals

Basics of Quantum Mechanics

Subatomic World

Superposition

Quantum Entanglement

What are QUBITS?

Let's combine them Both

Source: https://www.eurekalert.org/news-releases/974345

Quantum Speedup

Source: https://www.researchgate.net

Power of Quantum Computing

Shor's Algorithm

Shor's Algorithm

Quantum Key Distribution (QKD)

HOW QKD Works?

Back to Cryptography

RSA Key Pair

ECDSA

Impact on Encryption

Post-Quantum Cryptography

Lattice-Based Cryptography

Hash-Based Cryptography

Diverse Quantum-Resistant Algorithms

THE COMMERCIAL NATIONAL SECURITY ALGORITHM (CNSA) SUITE 2.0

The Cybersecurity Advisory notifies National Security System owners, operators, and vendors of the future requirements for quantum-resistant algorithms. The following are the steps for implementing CNSA 2.0 into these systems.

NIAP releases protection profiles

New equipment complies; older equipment complies at next update

Prefer CNSA 2.0 option

Mandate legacy algorithm removal

Require waiver and compliance plan for legacy implementations

For more information, review the advisory on NSA.gov/cybersecurity-guidance.

Implementation Challenges

Transitioning to quantum-resistant algorithms may come with increased computational requirements

Ongoing efforts to optimize and streamline the implementation of quantum-resistant algorithms to minimize computational overhead.

The need for a transitional period where both classical and quantum-resistant algorithms may coexist

Establishing global standards and protocols to ensure smooth interoperability during the transition.

Public awareness and education regarding the shift to quantum-resistant algorithms

Collaboration between industry, academia, and policymakers to facilitate widespread adoption.

What if we overcome the Challenges

Detection of Leak:

It allows the detection of data leak or hacking because it can detect any such attempt

Predetermined Error Levels:

It also allows the process of setting the error level between the intercepted data.

Unbreakable Encryption:

The encryption is unbreakable and that's mainly because of the way data is carried via the photon.

A photon cannot be perfectly copied and any attempt to measure it will disturb it. This means that a person trying to intercept the data will leave a trace.

Thank you for your active engagement in the talk.

Now, I invite **any questions** or discussions you may have.