Metoda celor mai mici pătrate Aproximări în medie pătratică

Radu T. Trîmbiţaş

UBB

27 aprilie 2023

Introducere

- Termenul metoda celor mai mici pătrate (MCMMP) (least squares method) sau aproximare în medie pătratică descrie o o abordare utilizată frecvent la rezolvarea unor sisteme supradeterminate sau specificate inexact (în sens aproximativ). În loc să rezolvăm sistemul exact, vom încerca să minimizăm suma pătratelor reziduurilor.
- Interpretare statistică: dacă se fac ipoteze adecvate probabilistice asupra distribuţiei erorilor, MCMMP produce estimaţii de verosimilitate maximă ale parametrilor. Chiar dacă aceste ipoteze nu sunt satisfăcute, experienţa a arătat că metoda produce rezultate utile.
- Algoritmii de rezolvare se bazează pe factorizări ortogonale ale matricelor.

Aproximare MCMMP discretă

Aproximare MCMMP continuă

Modele și potrivirea curbelor I

- O sursă comună de probleme în sensul celor mai mici pătrate este potrivirea curbelor (curve fitting). Fie t variabila independentă și y(t) o funcție necunoscută de t pe care dorim să o aproximăm.
- Să presupunem că avem m observații (y_i) măsurate în valorile specificate (t_i) :

$$y_i = y(t_i), \qquad i = \overline{1, m}.$$

ullet *Modelul* nostru este o combinație de *n* funcții de bază (π_i) , $m\gg n$

$$y(t) \approx c_1 \pi_1(t, \alpha) + \cdots + c_n \pi_n(t, \alpha).$$

• Matricea de proiectare (design matrix) $X(\alpha)$ va fi matricea cu elementele

$$x_{i,j} = \pi_j(t_i, \alpha),$$

ale cărei elemente pot depinde de α .

Modele și potrivirea curbelor II

• În notație matricială, modelul se poate exprima ca:

$$y \approx X(\alpha)c$$
.

 Reziduurile sunt diferențele dintre valorile observate și cele date de model

$$r_i = y_i - \sum_{j=1}^n c_j \pi_j(t_i, \alpha)$$
 (1)

sau în notație matricială

$$r = y - X(\alpha)c. \tag{2}$$

Modele și potrivirea curbelor III

 Ne propunem să minimizăm o anumită normă a reziduurilor. Cele mai frecvente alegeri sunt

$$||r||_2^2 = \sum_{i=1}^m r_i^2$$

sau

$$||r||_{2,w}^2 = \sum_{i=1}^m w_i r_i^2.$$

• O explicație intuitivă, fizică, a celei de-a doua alegeri ar fi aceea că anumite observații sunt mai importante decât altele și le vom asocia ponderi, w_i . De exemplu, dacă la observația i eroarea este aproximativ e_i , atunci putem alege $w_i = 1/e_i$. Deci, avem de a face cu o problemă discretă de aproximare în sensul celor mai mici pătrate. Problema este *liniară* dacă nu depinde de α și *neliniară* în caz contrar.

Modele și potrivirea curbelor IV

- Orice algoritm de rezolvare a unei probleme de aproximare în sensul celor mai mici pătrate fără ponderi poate fi utilizat la rezolvarea unei probleme cu ponderi prin scalarea observaţiilor şi a matricei de proiectare. În MATLAB aceasta se poate realiza prin X=diag(w)*X; y=diag(w)*y
- Dacă problema este liniară şi avem mai multe observaţii decât funcţii de bază, suntem conduşi la rezolvarea sistemului supradeterminat

$$Xc \approx y$$
,

pe care îl vom rezolva în sensul celor mai mici pătrate

$$c = X \setminus y$$
.

Ecuațiile normale I

Dorim să rezolvăm

$$Xc \approx y$$
 (3)

 Sistemul este supradeterminat (și în general incompatibil) — nu ne putem aștepta să îl rezolvăm exact. Îl vom rezolva în sensul celor mai mici pătrate:

$$\min_{c} \|y - Xc\|.$$

• Abordare teoretică: înmulțim ambii membri cu X^T . Aceasta reduce sistemul (3) la un sistem $n \times n$, pătratic, cunoscut sub numele de (sistem de) *ecuații normale*:

$$X^T X c = X^T y. (4)$$

Ecuațiile normale II

• Matricea $B = X^T X$ are elementele de forma

$$b_{ij} = (\pi_i(t), \pi_j(t)), \qquad (5)$$

unde (\cdot, \cdot) este produsul scalar din \mathbb{R}^m .

• Sistemul (4) se scrie

$$\sum_{j=1}^{n} (\pi_i, \pi_j) c_j = (\pi_i, y), \quad i = 1, 2, \dots, n.$$
 (6)

 Dacă există mii de observații și numai câțiva parametri, matricea de proiectare X este mare, dar X^TX este mică. Am proiectat y pe subspațiul generat de coloanele lui X. Dacă funcțiile de bază sunt linear independente, atunci X^TX este nesingulară și

$$c = \left(X^T X\right)^{-1} X^T y.$$

Ecuațiile normale III

- Această formulă apare în majoritatea textelor de statistică și metode numerice.
- Caracteristici nedorite: ineficiența și mai ales proasta condiționare: ecuațiile normale sunt întotdeauna mai prost condiționate decât sistemul inițial

$$\operatorname{cond}(X^TX) = \operatorname{cond}(X)^2.$$

- în aritmetica cu precizie finită, ecuațiile normale pot deveni singulare și $\left(X^TX\right)^{-1}$ ar putea să nu existe, chiar dacă coloanele lui X sunt liniar independente.
- Exemplu

$$X = \left[\begin{array}{cc} 1 & 1 \\ \delta & 0 \\ 0 & \delta \end{array} \right]$$

Ecuațiile normale IV

• Dacă δ este mic, dar nenul, coloanele lui X sunt aproape paralele, dar liniar independente. Ecuațiile normale fac situația și mai proastă:

$$X^{T}X = \begin{bmatrix} 1 & 1 \\ \delta & 0 \\ 0 & \delta \end{bmatrix}^{T} \begin{bmatrix} 1 & 1 \\ \delta & 0 \\ 0 & \delta \end{bmatrix} = \begin{bmatrix} \delta^{2} + 1 & 1 \\ 1 & \delta^{2} + 1 \end{bmatrix}$$

• Dacă $|\delta|<10^{-8}$, matricea X^TX calculată în dublă precizie este chiar singulară și inversa nu există.

Factorizare QR I

• O metodă de a evita proasta condiționare este factorizarea QR: X = QR, unde Q este ortogonală, iar R este triunghiulară superior.

$$c = R^{-1}Q^Ty.$$

- Abordarea numerică este să aplicăm ortogonalizarea atât matricei X, cât și membrului drept y. Vom obține astfel un sistem triunghiular superior, care se rezolvă prin substituție inversă.
- Operatorul \ din MATLAB ştie să rezolve sisteme în sensul celor mai mici pătrate prin factorizare QR. Factorizarea QR se poate obține prin funcția MATLAB qr.
- Există două versiuni de factorizare QR.
 - În versiunea completă, R are aceeași dimensiune ca X iar Q este pătratică cu același număr de linii ca X.
 - În versiunea redusă, Q are aceeași mărime ca X, iar R este pătratică cu același număr de coloane ca X.

27 aprilie 2023

Factorizare QR II

• Procesul Gram-Schmidt din algebra liniară generează aceeași factorizare, dar este mai puțin stabil numeric.

Factorizare QR III

Figura: Factorizarea QR completă și redusă

Derivate parțiale I

• Scriem aproximanta sub forma

$$\varphi = \sum_{j=1}^n c_j \pi_j(t).$$

• Eroarea (reziduul) va fi $y - \varphi$, iar

$$E(\varphi)^2 = ||r||^2 = \sum_{k=1}^m \left(y_k - \sum_{j=1}^n c_j \pi_j(t_k) \right)^2$$

• Pătratul erorii este o funcție cuadratică de coeficienții c_1, \ldots, c_n ai lui φ . Problema revine la a minimiza această funcție pătratică; ea se rezolvă anulând derivatele parțiale.

Derivate parțiale II

Se obţine

$$\frac{\partial}{\partial c_i} E(\varphi)^2 = 2 \sum_{k=1}^m \left(y_k - \sum_{j=1}^n c_j \pi_j(t_k) \right) \pi_i(t_k) = 0,$$

adică

$$\sum_{j=1}^n c_j \left(\sum_{k=1}^m \pi_i(t_k) \pi_j(t_k) \right) = \sum_{k=1}^m \pi_i(t_k) y_k.$$

Cu ajutorul produsului scalar

$$\sum_{j=1}^{n} (\pi_i, \pi_j) c_j = (\pi_i, y), \quad i = 1, 2, \dots, n,$$
 (7)

adică chiar ecuațiile normale (6).

Ortogonalitate I

• Fie $\widehat{\varphi}_n$ aproximanta cu coeficienții (\widehat{c}_k) soluții ale ecuațiilor normale. Observăm întâi că eroarea $y - \widehat{\varphi}_n$ este ortogonală pe $\Phi_n = \langle \pi_1, \dots, \pi_n \rangle$, adică

$$(y - \widehat{\varphi}_n, \varphi) = 0, \ \forall \ \varphi \in \Phi_n$$
 (8)

- Deoarece φ este o combinație liniară de π_i , este suficient ca (8) să aibă loc pentru fiecare $\varphi = \pi_i$, i = 1, 2, ..., n.
- Se obține

$$(y-\widehat{\varphi}_n,\pi_i)=\left(y-\sum_{j=1}^n\widehat{c}_j\pi_j,\pi_i\right)=(y,\pi_i)-\sum_{j=1}^n\widehat{c}_j(\pi_j,\pi_i)=0,$$

sau

$$\sum_{i=1}^{n} (\pi_i, \pi_j) c_j = (\pi_i, y), \quad i = 1, 2, \dots, n,$$
(9)

adică chiar ecuațiile normale (6).

Ortogonalitate II

• Rezultatul din (8) are o interpretare geometrică simplă. Aproximanta în sensul celor mai mici pătrate $\widehat{\varphi}_n$ este proiecția ortogonală a lui y pe Φ_n , vezi figura 2.

Ortogonalitate III

Figura: Interpretarea geometrică a aproximării prin MCMMP

Exemplul 1 I

Exemplu

Dându-se punctele

$$(0, -4), (1, 0), (2, 4), (3, -2),$$

determinați polinomul de gradul I corespunzător acestor date prin metoda celor mai mici pătrate.

Soluție. Aproximanta căutată are forma

$$\varphi(x)=c_0+c_1x.$$

Sistemul de ecuații normale se determină din condițiile $f-\varphi \perp 1$ și $f-\varphi \perp x$. Se obține

$$\begin{cases} c_0(1,1) + c_1(x,1) = (f,1) \\ c_0(1,x) + c_1(x,x) = (f,x) \end{cases}$$

Exemplul 1 II

Dar,
$$(1,1) = \sum_{i=1}^4 1 \cdot 1 = 4$$
, $(1,x) = (x,1) = \sum_{i=1}^4 1 \cdot x_i = 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 2 + 1 \cdot 3 = 6$, $(x,x) = \sum_{i=1}^4 x_i^2 = 14$. Pentru membrul drept avem $(f,1) = (y,1) = -2$ și $(f,x) = (y,x) = 2$. Am obținut sistemul

$$\begin{bmatrix} 4 & 6 \\ 6 & 14 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

cu soluția $c_0=-2$, $c_1=1$. Deci $\varphi(x)=x-2$.

Exemplul 2 I

Exemplu

Datele următoare dau populația SUA (în milioane) determinată la recensăminte de US Census, între anii 1900 și 2010. Dorim să modelăm populația și să o estimăm pentru anii 1975 și 2010.

An	Populația	An	Populația
1900	75.995	1960	179.320
1910	91.972	1970	203.210
1920	105.710	1980	226.510
1930	123.200	1990	249.630
1940	131.670	2000	281.420
1950	150.700	2010	308.790

Soluție. Vom modela populația printr-un model polinomial de gradul 3

$$y = c_0 + c_1 t + c_2 t^2 + c_3 t^3,$$

Exemplul 2 II

și printr-un model exponențial

$$y = Ke^{\lambda t}$$
.

Exemplul 3 I

Exemplu (Măsurarea unui segment de drum - Stiefel)

La măsurarea unui segment de drum, presupunem că am efectuat 5 măsurători

AD=89m, AC=67m, BD=53m, AB=35m și CD=20m, și că dorim să determinăm lungimile segmentelor $x_1=AB$, $x_2=BC$ și $x_3=CD$.

Exemplul 3 II

Soluție. Conform observațiilor obținem un sistem cu mai multe ecuații decât necunoscute (sistem supradeterminat):

Din ultimele trei ecuații se obține soluția $x_1=35,\ x_2=33$ și $x_3=20.$ Totuși, dacă înlocuim în primele două ecuații se obține

$$x_1 + x_2 + x_3 - 89 = -1,$$

 $x_1 + x_2 - 67 = 1.$

Exemplul 3 III

Ecuațiile sunt contradictorii și se ajunge la un sistem incompatibil. Un remediu este să găsim o soluție aproximativă care satisface sistemul cât mai bine posibil. Considerăm vectorul reziduu

$$r = b - Ax$$
.

Căutăm un vector x care să minimizeze într-un anumit sens vectorul reziduu.

$$x = [35.1250 \quad 32.5000 \quad 20.6250]^T$$

Aproximări continue I

 Dorim să aproximăm o funcție pe un interval [a, b], mărginit sau nemărginit

$$f \approx \varphi = c_1 \pi_1 + \cdots + c_n \pi_n$$

Produsul scalar va fi

$$(u, v) = \int_a^b w(t)u(t)v(t)dt,$$

iar norma

$$||u|| = \sqrt{\int_a^b w(t)u^2(t)dt}.$$

• Funcția w este o funcție nenegativă pe [a, b], adică $w(t) \ge 0$, $\forall t \in [a, b]$ și neidentic nulă pe orice subinterval al lui [a, b].

Aproximări continue II

ullet Reziduul r=f-arphi va avea norma minimă

$$||r||^2 = \int_a^b w(t) [f(t) - \varphi(t)]^2 dt$$
 (10)

$$= \int_{a}^{b} w(t) \left[f(t) - \sum_{j=0}^{n} c_{j} \pi_{j}(t) \right]^{2} dt =: E^{2}[\varphi]$$
 (11)

 Ecuațiile normale se pot obține minimizând pătratul normei cu ajutorul derivatelor parțiale, sau din condiția de ortogonalitate

$$\sum_{j=1}^{n} (\pi_i, \pi_j) c_j = (\pi_i, f), \quad i = 1, 2, \dots, n.$$
 (12)

Aproximări continue III

• Ele formează un sistem de forma

$$Ac = b \tag{13}$$

unde matricea A și vectorul b au elementele

$$A = [a_{ij}], \quad a_{ij} = (\pi_i, \pi_j), \quad b = [b_i], \quad b_i = (\pi_i, f).$$
 (14)

Existența și unicitatea I

 Datorită simetriei produsului scalar, A este o matrice simetrică. Mai mult, A este pozitiv definită, adică

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j} > 0$$
, dacă $x \neq [0, 0, ..., 0]^{T}$. (15)

- Funcția (15) se numește formă pătratică (deoarece este omogenă de grad 2). Pozitiv definirea lui A ne spune că forma pătratică ai cărei coeficienți sunt elementele lui A este întotdeauna nenegativă și zero numai dacă variabilele xi se anulează.
- Pentru a demonstra (15) să inserăm definiția lui a_{ij} și să utilizăm proprietățile produsului scalar

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}x_{j}(\pi_{i}, \pi_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i}\pi_{i}, x_{j}\pi_{j}) = \left\| \sum_{i=1}^{n} x_{i}\pi_{i} \right\|^{2}.$$

Existența și unicitatea II

- Aceasta este evident nenegativă. Ea este zero numai dacă $\sum_{i=1}^{n} x_i \pi_i \equiv 0$ pe supp $d\lambda$, care pe baza liniar independenței lui π_i implică $x_1 = x_2 = \cdots = x_n = 0$.
- Este un rezultat cunoscut din algebra liniară că o matrice A simetrică pozitiv definită este nesingulară. Într-adevăr, determinantul său, precum și minorii principali sunt strict pozitivi. Rezultă că sistemul de ecuații normale (7) are soluție unică.
- Corespunde această soluție minimului lui $E^2[\varphi]$ în (10)? Matricea hessiană $H=[\partial^2 E^2/\partial c_i\partial c_j]$ trebuie să fie *pozitiv definită*. Dar H=2A, deoarece E^2 este o funcție cuadratică. De aceea, H, ca și A, este într-adevăr pozitiv definită și soluția ecuațiilor normale ne dă minimul dorit.

Existența și unicitatea III

 Problema de aproximare în sensul celor mai mici pătrate are o soluție unică, dată de

$$\widehat{\varphi}(t) = \sum_{j=1}^{n} \widehat{c}_j \pi_j(t)$$
 (16)

unde $\hat{c} = [\hat{c}_1, \hat{c}_2, \dots, \hat{c}_n]^T$ este vectorul soluție al ecuațiilor normale (7).

Neajunsurile MCMMP I

- Ecuațiile normale rezolvă problema de aproximare în sensul celor mai mici pătrate complet în teorie. Dar în practică?
- Referitor la o multime generală de funcții de bază liniar independente, pot apărea următoarele dificultăți:
 - Sistemul de ecuații normale (7) poate fi prost condiționat. Un exemplu simplu este următorul: $\operatorname{supp} d\lambda = [0,1], \ d\lambda(t) = dt$ pe [0,1] și $\pi_i(t) = t^{j-1}$. $i = 1, 2, \dots, n$. Atunci

$$(\pi_i, \pi_j) = \int_0^1 t^{i+j-2} dt = \frac{1}{i+j-1}, \quad i, j = 1, 2, \dots, n,$$

adică matricea A este matricea Hilbert. Proasta conditionare a ecuațiilor normale se datorează alegerii neinspirate a funcțiilor de bază. Acestea devin aproape liniar dependente când exponentul crește. O altă sursă de degradare provine din elementele membrului drept

$$b_j = \int_0^1 \pi_j(t) f(t) dt$$
. Când j este mare $\pi_j(t) = t^{j-1}$ se comportă pe

Neajunsurile MCMMP II

- [0,1] ca o funcție discontinuă. Un polinom care oscilează mai rapid pe [0,1] ar fi de preferat, căci ar angaja mai viguros funcția f.
- ② Al doilea dezavantaj este faptul că toți coeficienții \widehat{c}_j din (16) depind de n, adică $\widehat{c}_j = \widehat{c}_j^{(n)}$, $j = 1, 2, \ldots, n$. Mărirea lui n ne dă un nou sistem de ecuații mai mare și cu o soluție complet diferită. Acest fenomen se numește nepermanența coeficienților \widehat{c}_j .
- Amândouă neajunsurile (1) și (2) pot fi eliminate (sau măcar atenuate) alegând ca funcții de bază un sistem ortogonal,

$$(\pi_i, \pi_j) = 0 \text{ dacă } i \neq j \quad (\pi_j, \pi_j) = \|\pi_j\|^2 > 0$$
 (17)

Neajunsurile MCMMP III

 Atunci sistemul de ecuații normale devine diagonal și poate fi rezolvat imediat cu formula

$$\hat{c}_j = \frac{(\pi_j, f)}{(\pi_j, \pi_j)}, \quad j = 1, 2, \dots, n.$$
 (18)

Evident, acești coeficienți $\widehat{c_j}$ sunt independenți de n și odată calculați rămân la fel pentru orice n mai mare. Avem acum proprietatea de permanență a coeficienților. De asemenea nu trebuie să rezolvăm sistemul de ecuații normale, ci putem aplica direct (18).

Neajunsurile MCMMP IV

• Orice sistem $\{\hat{\pi}_j\}$ care este liniar independent pe $\mathrm{supp} d\lambda$ poate fi ortogonalizat (în raport cu măsura $d\lambda$) prin procedeul Gram-Schmidt. Se ia

$$\pi_1 = \widehat{\pi}_1$$

și apoi, pentru $j=2,3,\ldots$ se calculează recursiv

$$\pi_j = \widehat{\pi}_j - \sum_{k=1}^{j-1} c_k \pi_k, \quad c_k = \frac{(\widehat{\pi}_j, \pi_k)}{(\pi_k, \pi_k)}, \quad k = \overline{1, j-1}.$$

Atunci fiecare π_j astfel determinat este ortogonal pe toate funcțiile precedente.

Exemple de sisteme ortogonale

- Sistemul trigonometric cunoscut din analiza Fourier.
- Polinoame ortogonale

Sistemul trigonometric I

• Sistemul trigonometric este format din funcțiile:

$$1, \cos t, \cos 2t, \cos 3t, \ldots, \sin t, \sin 2t, \sin 3t, \ldots$$

• El este ortogonal pe $[0, 2\pi]$ în raport ponderea w(t) = 1.

$$\int_{0}^{2\pi} \sin kt \sin \ell t dt = \left\{ \begin{array}{l} 0, & \text{pentru} \quad k \neq \ell \\ \pi, & \text{pentru} \quad k = \ell \end{array} \right. \quad k, \ell = 1, 2, 3, \dots$$

$$\int_{0}^{2\pi} \cos kt \cos \ell t dt = \left\{ \begin{array}{l} 0, & k \neq \ell \\ 2\pi, & k = \ell = 0 \\ \pi, & k = \ell > 0 \end{array} \right. \quad k, \ell = 0, 1, 2$$

$$\int_{0}^{2\pi} \sin kt \cos \ell t dt = 0, \quad k = 1, 2, 3, \dots, \quad \ell = 0, 1, 2, \dots$$

Sistemul trigonometric II

Aproximarea are forma

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kt + b_k \sin kt).$$
 (19)

Utilizând (18) obţinem

$$a_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cos kt dt, \quad k = 1, 2, ...$$

$$b_{k} = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \sin kt dt, \quad k = 1, 2, ...$$
(20)

numiți coeficienții Fourier ai lui f. Ei sunt coeficienții (18) pentru sistemul trigonometric.

• Prin extensie coeficienții (18) pentru orice sistem ortogonal (π_j) se vor numi coeficienții Fourier ai lui f relativ la acest sistem.

Sistemul trigonometric III

• În particular, recunoaștem în seria Fourier trunchiată pentru k=n aproximarea lui f în clasa polinoamelor trigonometrice de grad $\leq n$ relativ la norma

$$||u||_2 = \left(\int_0^{2\pi} |u(t)|^2 dt\right)^{1/2}$$

Polinoame ortogonale I

- Dându-se o măsură $d\lambda$, știm că orice număr finit de puteri $1, t, t^2, \ldots$ sunt liniar independente pe [a, b], dacă supp $d\lambda = [a, b]$, iar $1, t, \ldots, t^{N-1}$ liniar independente pe supp $d\lambda = \{t_1, t_2, \ldots, t_N\}$.
- Deoarece o mulțime de vectori liniar independenți a unui spațiu liniar poate fi ortogonalizată prin procedeul Gram-Schmidt, orice măsură $d\lambda$ de tipul considerat generează o mulțime unică de polinoame ortogonale monice $\pi_j(t,d\lambda), j=0,1,2,\ldots$ ce satisfac

$$\operatorname{grad} \pi_j = j, \quad j = 0, 1, 2, \dots$$

$$\int_{\mathbb{R}} \pi_k(t) \pi_\ell(t) d\lambda(t) = 0, \text{ dacă } k \neq \ell$$
 (21)

• Aceste polinoame se numesc polinoame ortogonale relativ la măsura $d\lambda$.

Polinoame ortogonale II

- Vom permite indicilor să meargă de la 0. Mulțimea π_j este infinită dacă supp $d\lambda = [a,b]$ și constă din exact N polinoame $\pi_0, \pi_1, \ldots, \pi_{N-1}$ dacă supp $d\lambda = \{t_1, \ldots, t_N\}$. În ultimul caz polinoamele se numesc polinoame ortogonale discrete.
- Între trei polinoame ortogonale monice (un polinom se numește monic dacă coeficientul său dominant este 1) consecutive există o relație liniară. Mai exact, există constantele reale $\alpha_k = \alpha_k(d\lambda)$ și $\beta_k = \beta_k(d\lambda) > 0$ (depinzând de măsura $d\lambda$) astfel încât

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k\pi_{k-1}(t), \quad k = 0, 1, 2, \dots$$
 (22)

$$\pi_{-1}(t) = 0$$
, $\pi_0(t) = 1$.

(Se subînțelege că (22) are loc pentru orice $k \in \mathbb{N}$ dacă supp $d\lambda = [a, b]$ și numai pentru $k = \overline{0, N-2}$ dacă supp $d\lambda = \{t_1, t_2, \dots, t_N\}$).

Polinoame ortogonale III

• Pentru a demonstra (22) și a obține expresiile coeficienților să observăm că $\pi_{k+1}(t) - t\pi_k(t)$ este un polinom de grad $\leq k$, și deci poate fi exprimat ca o combinație liniară a lui $\pi_0, \pi_1, \ldots, \pi_k$. Scriem această combinație sub forma

$$\pi_{k+1} - t\pi_k(t) = -\alpha_k \pi_k(t) - \beta_k \pi_{k-1}(t) + \sum_{j=0}^{k-2} \gamma_{k,j} \pi_j(t)$$
 (23)

(sumele vide se consideră nule).

ullet Înmulțim scalar ambii membri ai relației anterioare cu π_k și obținem

$$(-t\pi_k,\pi_k)=-\alpha_k(\pi_k,\pi_k)$$

adică

$$\alpha_k = \frac{(t\pi_k, \pi_k)}{(\pi_k, \pi_k)}, \quad k = 0, 1, 2, \dots$$
 (24)

Polinoame ortogonale IV

• La fel, înmulțind scalar cu π_{k-1} obținem

$$(-t\pi_k, \pi_{k-1}) = -\beta_k(\pi_{k-1}, \pi_{k-1}).$$

Deoarece $(t\pi_k, \pi_{k-1}) = (\pi_k, t\pi_{k-1})$ și $t\pi_{k-1}$ diferă de π_k printr-un polinom de grad < k se obține prin ortogonalitate $(t\pi_k, \pi_{k-1}) = (\pi_k, \pi_k)$, deci

$$\beta_k = \frac{(\pi_k, \pi_k)}{(\pi_{k-1}, \pi_{k-1})}, \quad k = 1, 2, \dots$$
 (25)

• Înmulțind (23) cu π_ℓ , $\ell < k-1$, se obține

$$\gamma_{k,\ell} = 0, \quad \ell = 0, 1, \dots, k-1$$
 (26)

Polinoame ortogonale V

- Formula de recurență (22) ne dă o modalitate practică de determinare a polinoamelor ortogonale. Deoarece $\pi_0=1$, putem calcula α_0 cu (24) pentru k=0 și apoi π_1 , etc. Procedeul numit procedura lui Stieltjes este foarte potrivit pentru polinoame ortogonale discrete, căci în acest caz produsul scalar se exprimă prin sume finite.
- În cazul continuu, calculul produsului scalar necesită calcul de integrale, ceea ce complică lucrurile. Din fericire, pentru anumite măsuri speciale importante, coeficienții se cunosc explicit.
- Cazul special când măsura este simetrică (adică $d\lambda(t)=w(t)$ cu w(-t)=w(t) și $\operatorname{supp} d\lambda$ simetrică față de origine) merită o atenție specială, deoarece în acest caz $\alpha_k=0, \ \forall \ k\in \mathbb{N}$, conform lui (19) căci

$$(t\pi_k,\pi_k)=\int_{\mathbb{R}}w(t)t\pi_k^2(t)dt=\int_a^bw(t)t\pi_k^2(t)dt=0,$$

Polinoame ortogonale VI

deoarece avem o integrală dintr-o funcție impară pe un domeniu simetric.

• Rădăcinile polinoamelor ortogonale sunt reale, distincte și situate în interiorul intervalului [a, b].

Deoarece $\int_{\mathbb{R}} \pi_n(t) \, \mathrm{d}\lambda(t) = 0$, trebuie să existe cel puțin un punct interior lui [a,b] pe care $\pi_n(t)$ își schimbă semnul. Fie $t_1,\,t_2,\,\ldots,\,t_k,\,k \leq n$ toate aceste puncte. Dacă k < n, din ortogonalitate

$$\int_{\mathbb{R}} \pi_n(t) \prod_{j=1}^k (t - t_j) \, \mathrm{d}\lambda(t) = 0,$$

imposibil, deoarece integrandul are semn constant. Deci, k = n.

Figura: Thomas Ioannes Stieltjes (1856-1894)

Polinoamele lui Legendre I

Se definesc prin așa-numita formulă a lui Rodrigues

$$\pi_k(t) = \frac{k!}{(2k)!} \frac{d^k}{dt^k} (t^2 - 1)^k.$$
 (27)

• Exemple:

$$\pi_0(t) = 1,$$
 $\pi_1(t) = t,$
 $\pi_2(t) = t^2 - \frac{1}{3},$
 $\pi_3(t) = t^3 - \frac{3}{5}t.$

• Verificăm întâi ortogonalitatea pe [-1,1] în raport cu ponderea w(t)=1.

Polinoamele lui Legendre II

• Pentru orice $0 \le \ell < k$, prin integrare repetată prin părți se obține:

$$\begin{split} & \int_{-1}^{1} \frac{d^{k}}{dt^{k}} (t^{2} - 1)^{k} t^{\ell} dt \\ & = \sum_{m=0}^{\ell} \ell(\ell - 1) \dots (\ell - m + 1) t^{\ell - m} \frac{d^{k - m - 1}}{dt^{k - m - 1}} (t^{2} - 1)^{k} \bigg|_{-1}^{1} = 0, \end{split}$$

ultima relație având loc deoarece $0 \le k - m - 1 < k$.

Deci,

$$(\pi_k, p) = 0, \qquad \forall p \in \mathbb{P}_{k-1},$$

demonstrându-se astfel ortogonalitatea.

Polinoamele lui Legendre III

- Relaţia de recurenţă
- Datorită simetriei, putem scrie

$$\pi_k(t) = t^k + \mu_k t^{k-2} + \dots, \quad k \ge 2$$

și observând (din nou datorită simetriei) că relația de recurență are forma

$$\pi_{k+1}(t) = t\pi_k(t) - \beta_k \pi_{k-1}(t),$$

obținem

$$\beta_k = \frac{t\pi_k(t) - \pi_{k+1}(t)}{\pi_{k-1}(t)},$$

care este valabilă pentru orice t.

Polinoamele lui Legendre IV

• Făcând $t \to \infty$,

$$\beta_k = \lim_{t \to \infty} \frac{t \pi_k(t) - \pi_{k+1}(t)}{\pi_{k-1}(t)} = \lim_{t \to \infty} \frac{(\mu_k - \mu_{k+1})t^{k-1} + \dots}{t^{k-1} + \dots} = \mu_k - \mu_{k+1}.$$

(Dacă k=1, punem $\mu_1=0$.)

Din formula lui Rodrigues rezultă

$$\pi_{k}(t) = \frac{k!}{(2k)!} \frac{d^{k}}{dt^{k}} \left(t^{2k} - kt^{2k-2} + \dots \right)$$

$$= \frac{k!}{(2k)!} \left(2k(2k-1) \dots (k+1)t^{k} - k(2k-2)(2k-3) \dots (k-1)t^{k-1} + \dots \right)$$

$$= t^{k} - \frac{k(k-1)}{2(2k-1)} t^{k-2} + \dots,$$

Polinoamele lui Legendre V

așa că

$$\mu_k = \frac{k(k-1)}{2(2k-1)}, \quad k \ge 2.$$

Deci,

$$\beta_k = \mu_k - \mu_{k+1} = \frac{k^2}{(2k-1)(2k+1)}$$

și deoarece $\mu_1=0$,

$$\beta_k = \frac{1}{4 - k^{-2}}, \quad k \ge 1. \tag{28}$$

Polinoamele Cebîşev de speţa II

• Ele se pot defini prin relația

$$T_n(x) = \cos(n \arccos x), \quad n \in \mathbb{N}.$$
 (29)

Din identitatea trigonometrică

$$\cos(k+1)\theta + \cos(k-1)\theta = 2\cos\theta\cos k\theta$$

și din (29), punând $\theta = \arccos x$ se obține

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$
 $k = 1, 2, 3, ...$
 $T_0(x) = 1, T_1(x) = x.$ (30)

Polinoamele Cebîşev de speţa I II

• De exemplu,

$$T_2(x) = 2x^2 - 1,$$

 $T_3(x) = 4x^3 - 3x,$
 $T_4(x) = 8x^4 - 8x^2 + 1$

ş.a.m.d.

• Din relația (30) se obține pentru coeficientul dominant al lui T_n valoarea 2^{n-1} (dacă $n \ge 1$), deci polinomul Cebîșev de speța I monic este

$$\overset{\circ}{T}_{n}(x) = \frac{1}{2^{n-1}} T_{n}(x), \quad n \ge 0, \quad \overset{\circ}{T}_{0} = T_{0}.$$
 (31)

• Din (29) se pot obține rădăcinile lui T_n

$$x_k^{(n)} = \cos \theta_k^{(n)}, \quad \theta_k^{(n)} = \frac{2k-1}{2n}\pi, \quad k = \overline{1, n}.$$
 (32)

Polinoamele Cebîşev de speţa I III

- Ele sunt proiecțiile pe axa reală ale punctelor de pe cercul unitate de argument $\theta_k^{(n)}$.
- Pe intervalul [-1,1] T_n oscilează de la +1 la -1, atingând aceste valori extreme în punctele

$$y_k^{(n)} = \cos \eta_k^{(n)}, \quad \eta_k^{(n)} = \frac{k\pi}{n}, \quad k = \overline{0, n}.$$

 T_4 și rădăcinile sale

 T_3 , T_4 , T_7 , T_8 pe [-1,1]

Polinoamele Cebîşev de speţa I IV

• Polinoamele Cebîşev de speţa I sunt ortogonale pe [-1,1] în raport cu ponderea

$$w(x) = \frac{1}{\sqrt{1 - x^2}}.$$

• Se verifică ușor din (29) că

$$\int_{-1}^{1} T_{k}(x) T_{\ell}(x) \frac{dx}{\sqrt{1 - x^{2}}} = \int_{0}^{\pi} T_{k}(\cos \theta) T_{\ell}(\cos \theta) d\theta$$

$$= \int_{0}^{\pi} \cos k\theta \cos \ell\theta d\theta = \begin{cases} 0 & \text{dacă} & k \neq \ell \\ \pi & \text{dacă} & k = \ell = 0 \\ \pi/2 & \text{dacă} & k = \ell \neq 0 \end{cases}$$
(33)

Polinoamele Cebîşev de speţa I V

Dezvoltarea în serie Fourier de polinoame Cebîşev este dată de

$$f(x) = \sum_{j=0}^{\infty} c_j T_j(x) = \frac{1}{2} c_0 + \sum_{j=1}^{\infty} c_j T_j(x),$$
 (34)

unde

$$c_j = \frac{2}{\pi} \int_{-1}^1 f(x) T_j(x) \frac{dx}{\sqrt{1-x^2}}, \quad j \in \mathbb{N}.$$

 Păstrând în (34) numai termenii de grad cel mult n se obține o aproximare polinomială utilă de grad n

$$\tau_n(x) = \sum_{j=0}^{n} c_j T_j(x),$$
 (35)

având eroarea

$$f(x) - \tau_n(x) = \sum_{j=n+1}^{\infty} c_j T_j(x) \approx c_{n+1} T_{n+1}(x). \tag{36}$$

Polinoamele Cebîşev de speţa I VI

• Aproximanta din (35) este cu atât mai bună cu cât coeficienții din extremitatea dreaptă tind mai repede către zero. Eroarea (36) oscilează în esență între $+c_{n+1}$ și $-c_{n+1}$ și este deci de mărime "uniformă". Acest lucru contrastează puternic cu dezvoltarea Taylor în jurul lui x=0, unde polinomul de grad n are eroarea proporțională cu x^{n+1} pe [-1,1].

Minimalitatea normei I

Teoremă

Pentru orice polinom monic $\stackrel{\circ}{p_n}$ de grad n are loc

$$\max_{-1 \le x \le 1} \left| \stackrel{\circ}{p_n}(x) \right| \ge \max_{-1 \le x \le 1} \left| \stackrel{\circ}{T_n}(x) \right| = \frac{1}{2^{n-1}}, \quad n \ge 1, \tag{37}$$

unde $T_n(x)$ este dat de (31).

Demonstrație. Se face prin reducere la absurd. Presupunem că

$$\max_{-1 \le x \le 1} \left| \stackrel{\circ}{p_n}(x) \right| < \frac{1}{2^{n-1}}. \tag{38}$$

Minimalitatea normei II

Atunci polinomul $d_n(x) = \overset{\circ}{T}_n(x) - \overset{\circ}{p_n}(x)$ (de grad $\leq n-1$) satisface

$$d_n\left(y_0^{(n)}\right) > 0, \ d_n\left(y_1^{(n)}\right) < 0, \ d_n\left(y_2^{(n)}\right) > 0, \dots, (-1)^n d_n\left(y_n^{(n)}\right) > 0.$$
 (39)

Deoarece d_n are n schimbări de semn, el este identic nul; aceasta contrazice (39) și astfel (38) nu poate fi adevărată. \blacksquare Rezultatul (37) se poate interpreta în modul următor: cea mai bună aproximare uniformă din \mathbb{P}_{n-1} pe [-1,1] a lui $f(x)=x^n$ este dată de $x^n-\overset{\circ}{T_n}(x)$, adică, de agregarea termenilor până la gradul n-1 din $\overset{\circ}{T_n}$ luați cu semnul minus. Din teoria aproximațiilor uniforme se știe că cea mai bună aproximare polinomială uniformă este unică. Deci, egalitatea în (37) poate avea loc numai dacă $\overset{\circ}{p_n}(x)=\overset{\circ}{T_n}(x)$.

Polinoamele Cebîşev de speţa a Il-a

Se definesc prin

$$Q_n(t) = rac{\sin[(n+1) \arccos t]}{\sqrt{1-t^2}}, \quad t \in [-1,1]$$

- Ele sunt ortogonale pe [-1,1] în raport cu măsura $d\lambda(t)=w(t)dt$, $w(t)=\sqrt{1-t^2}$.
- Relația de recurență este

$$Q_{n+1}(t) = 2tQ_n(t) - Q_{n-1}(t), \quad Q_0(t) = 1, \quad Q_1(t) = 2t.$$

Figura: Pafnuti Lvovici Cebîşev (1821-1894)

Polinoamele lui Laguerre I

- Sunt ortogonale pe $[0, \infty)$ în raport cu ponderea $w(t) = t^{\alpha} e^{-t}$.
- Se definesc prin

$$\ell_n^{lpha}(t)=rac{e^t t^{-lpha}}{n!}rac{d^n}{dt^n}(t^{n+lpha}e^{-t})$$
 pentru $lpha>1$

Relația de recurență pentru polinoamele monice este

$$\ell_{k+1}^{\alpha}(t) = (t - 2k - \alpha - 1)\ell_k^{\alpha}(t) - \beta_k \ell_{k-1}^{\alpha}(t),$$

unde

$$\beta_k = \begin{cases}
\Gamma(1+\alpha), & \text{pentru } k = 0; \\
k(k+\alpha), & \text{pentru } k > 0.
\end{cases}$$

Polinoamele lui Laguerre II

• Exemple pentru $\alpha = 0$:

$$\begin{split} &\ell_0^{(0)}(t) = 1, \\ &\ell_1^{(0)}(t) = t - 1, \\ &\ell_2^{(0)}(t) = t^2 - 4t + 2, \\ &\ell_3^{(0)}(t) = t^3 - 9t^2 + 18t - 6 \end{split}$$

Figura: Edmond Laguerre (1834-1886)

Polinoamele lui Hermite I

Se definesc prin

$$H_n(t) = (-1)^n e^{t^2} \frac{d^n}{dt^n} (e^{-t^2}).$$

• Ele sunt ortogonale pe $(-\infty,\infty)$ în raport cu ponderea $w(t)=e^{-t^2}$ și verifică relația de recurență

$$H_{k+1}(t) = tH_k(t) - \beta_k H_{n-1}(t)$$

unde

$$\beta_k = \left\{ \begin{array}{ll} \sqrt{\pi}, & \text{pentru } k = 0; \\ \frac{k}{2}, & \text{pentru } k > 0. \end{array} \right.$$

Polinoamele lui Hermite II

• Exemple:

$$H_0(t) = 1,$$

 $H_1(t) = t,$
 $H_2(t) = t^2 - \frac{1}{2},$
 $H_3(t) = t^3 - \frac{3}{2}t.$

Figura: Charles Hermite (1822-1901)

Polinoamele lui Jacobi I

• Sunt ortogonale pe [-1,1] în raport cu ponderea

$$w(t) = (1-t)^{\alpha}(1+t)^{\beta}.$$

• Formula lui Rodrigues:

$$P_n^{(\alpha,\beta)}(t) = \frac{(-1)^n}{2^n n!} (1-t)^{-\alpha} (1+t)^{-\beta} \cdot \frac{d^n}{dt^n} \left\{ (1-t)^{\alpha} (1+t)^{\beta} (1-t^2)^n \right\}.$$

Polinoamele lui Jacobi II

Coeficienții din relația de recurență sunt

$$\alpha_k = \frac{\beta^2 - \alpha^2}{(2k + \alpha + \beta)(2k + \alpha + \beta + 2)}$$

şi

$$\begin{split} \beta_0 = & 2^{\alpha + \beta + 1} \frac{\Gamma(\alpha + 1)\Gamma(\beta + 1)}{\Gamma(\alpha + \beta + 1)}, \\ \beta_1 = & \frac{4(1 + \alpha)(1 + \beta)}{(2 + \alpha + \beta)^2(3 + \alpha + \beta)}, \\ \beta_k = & \frac{4k(k + \alpha)(k + \alpha + \beta)(k + \beta)}{(2k + \alpha + \beta - 1)(2k + \alpha + \beta)^2(2k + \alpha + \beta + 1)}, \quad k > 1. \end{split}$$

Polinoamele lui Jacobi III

• Exemple pentru $\alpha = 1/2$ și $\beta = -1/2$

$$\begin{split} &\pi_0^{(\alpha,\beta)}(t)=1,\\ &\pi_1^{(\alpha,\beta)}(t)=t,\\ &\pi_2^{(\alpha,\beta)}(t)=t^2+\frac{1}{2}t-\frac{1}{4},\\ &\pi_2^{(\alpha,\beta)}(t)=t^3+\frac{1}{2}t^2-\frac{1}{2}t-\frac{1}{8}. \end{split}$$

Figura: Carl Gustav Jacob Jacobi (1804-1851)

Exemplu

Pentru funcția $f(t)=\arccos t,\ t\in[-1,1]$, obțineți aproximanta în sensul celor mai mici pătrate, $\widehat{\varphi}\in P_n$ a lui f relativ la funcția pondere $w(t)=(1-t^2)^{-\frac{1}{2}}=\frac{1}{\sqrt{1-t^2}}$ adică, găsiți soluția $\varphi=\widehat{\varphi}$ a problemei

$$\min\left\{\int_{-1}^{1}[f(t)-\varphi(t)]^2\frac{dt}{\sqrt{1-t^2}}:\ \varphi\in P_n\right\}.$$

Exprimați φ cu ajutorul polinoamelor Cebîșev $\pi_j(t) = T_j(t)$.

Soluție.
$$\widehat{\varphi}(t) = \frac{c_0}{2} + c_1 T_1(x) + \dots + c_n T_n(x)$$

$$c_k = \frac{(f, T_k)}{(T_k, T_k)} = \frac{2}{\pi} (f, T_k) = \frac{2}{\pi} \int_{-1}^1 \frac{\operatorname{arccos} t}{\sqrt{1 - t^2}} \cos(k \operatorname{arccos} t) dt$$

$$= \frac{2}{\pi} \int_0^{\pi} u \cos k u du = \frac{2}{\pi} \left[\frac{u \sin k u}{k} \Big|_0^{\pi} - \frac{1}{k} \int_0^{\pi} \sin k u du \right]$$

$$= \frac{2}{\pi} \left[\frac{1}{k} \frac{\cos ku}{k} \Big|_{0}^{\pi} \right] = -\frac{2}{\pi k^{2}} [(-1)^{k} - 1]$$

$$k \text{ par } c_k = 0$$
 $k \text{ impar } c_k = -\frac{2}{\pi k^2}(-2) = \frac{4}{\pi k^2} \blacksquare$

Bibliografie I

- A. Björk, *Numerical Methods for Least Squares Problem*, SIAM, Philadelphia, 1996.
- E. Blum, *Numerical Computing: Theory and Practice*, Addison-Wesley, 1972.
- P. G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, Masson, Paris, Milan, Barcelone, Mexico, 1990.
- Gheorghe Coman, Analiză numerică, Editura Libris, Cluj-Napoca, 1995.
- W. Gander, M. Gander, F. Kwok, Scientific Computing. An Introduction using Maple and MATLAB, Springer, 2014
- W. Gautschi, Numerical Analysis. An Introduction, Birkhäuser, Basel, 1997.

Bibliografie II

- W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sidney, 1996, disponibila prin www, http://www.nr.com/.
- D. D. Stancu, Analiză numerică Curs şi culegere de probleme, Lito UBB, Cluj-Napoca, 1977.
- J. Stoer, R. Burlisch, Introduction to Numerical Analysis, 2nd ed., Springer Verlag, 1992.