Собеседование на специализацию «Интеллектуальный анализ данных»

Киселев Никита Б05-002

Московский физико-технический институт (национальный исследовательский университет)

20 апреля 2022 г.

Тестовая задача

Задача 21

Предсказание площади лесных пожаров. На основе погодных измерений необходимо предсказать объем выгоревших лесных массивов на севере Португалии. Выборка состоит из 13 признаков и 517 объектов. Для решения задачи предлагается использовать метод наименьших квадратов с регуляризацией. Нарисовать график весов признаков и общей ошибки на кросс-валидации при изменении параметра регуляризации. Какие признаки наиболее важны для нашей задачи? Что изменится, если предварительно все признаки стандартизовать?

Распределение ответов

Распределение номинальных признаков

Корреляция количественных признаков

Линейная регрессия

- ullet Множество объектов $\mathbb{X} = \mathbb{R}^n$
- ullet Объекту $x\in \mathbb{X}$ соответствует признаковое описание $x=(f_1(x),\ldots,f_n(x))$, где $f_j:\mathbb{X} o D_j$
- ullet Множество ответов $\mathbb{Y}=\mathbb{R}$
- ullet Выборка $\mathbb{D}=\{(x_i,y_i)\mid x_i\in\mathbb{X},y_i\in\mathbb{Y},i=1,\ldots,m\}$
- Матрица объекты-признаки $X=(x_1,\ldots,x_m)^T$, вектор ответов $y\in\mathbb{Y}^m$
- ullet Вектор параметров модели $w=(w_1,\ldots,w_n)^T$
- ullet Ставится задача минимизации ошибки алгоритма $Q(w,X) = \|Xw-y\|_2^2 o \min_w$

Метод наименьших квадратов

$$Q(w,X) = ||Xw - y||_2^2 = (Xw - y)^T (Xw - y) \to \min_{w}$$

Приравняем к нулю производную по вектору w:

$$\nabla_{w} Q(w, X) = \nabla_{w} (-y^{T} X w + w^{T} X^{T} X w + y^{T} y - w^{T} X^{T} y) =$$

$$= -X^{T} y + (X^{T} X + X^{T} X) w + 0 - X^{T} y = 0$$

$$X^{T} X w = X^{T} y$$

$$w^{*} = (X^{T} X)^{-1} X^{T} y$$

L_2 регуляризация

Могут возникнуть проблемы мультиколлинеарности в случае, если матрица X^TX плохо обусловлена. Один из способов решения — добавление к этой матрице диагональной:

$$w^* = (X^T X + \alpha E_n)^{-1} X^T y$$

При этом значении вектора w достигается минимум функционала ошибки

$$Q(w, X, \alpha) = \|Xw - y\|_2^2 + \alpha \|w\|_2^2$$

Изменение параметра α

Стандартизация

При стандартизации происходит преобразование признаков:

$$\hat{f}_j(x_i) = \frac{f_j(x_i) - \bar{f}_j}{S_j},$$

где

$$ar{f_j} = rac{1}{m} \sum_{i=1}^m f_j(x_i)$$
 — выборочное среднее,

$$S_j = \sqrt{rac{1}{m}\sum_{i=1}^m (f_j(x_i) - ar{f_j})^2}$$
 — среднеквадратичное отклонение.

Изменение параметра lpha при стандартизации

Отбор признаков

Преобразования признаков и ответов

- rain номинальный
- **②** FFMC ≥ 75
- lacktriangledark area ightarrow ln(1 + area)

Взаимосвязь новых признаков и ответов

Изменение параметра α

Изменение параметра lpha при стандартизации

Сравнение результатов

Таблица: Лучшее значение MSE на кросс-валидации

Преобразование Стандартизация	До	После
_	616,50	1,82
+	624,78	1,89

Стоит отметить, что после преобразования ответами являются $\ln(1+area)$.

Наиболее значимые признаки

Значимость признаков при решении задачи лучше всего оценивается на данных после преобразования. Таковыми являются:

- month месяц года
- wind скорость ветра
- rain количество осадков
- DC и DMC индексы засухи и влажности почвы