

Market demand and crude oil supply

ESSO Rotterdam Refinery

Vacuum Residue Conversion Processes

Considerations:

- Market demands for light products
- Environmental legislation for cleaner products
- Stricter regulations on refinery emissions
- Vacuum residue contains a lot of carbon and little hydrogen but also 3-5% sulphur, nitrogen and metals like vanadium and nickel

Vacuum Residue Conversion Processes

Two routes for vacuum residue conversion :

- Hydrogen addition processes : Residfining, Hycon
 - ◊ high temperature, high hydrogen pressure
 - ◊ rapid catalyst deactivation requires large reactors or moving catalyst
 - ◊ sensitive for metal contaminants
 - ◊ products do not need any further treating
- Carbon rejection by thermal cracking : Delayed Coking, FLUID and FLEXICOOKING
 - ◊ high temperature, low pressure, no hydrogen
 - ◊ no catalyst, abundant coke
 - ◊ insensitive to contaminants
 - ◊ low refinery SO₂ emissions
 - ◊ products need after treatment in conventional hydrotreaters

Flexicokers

All build 1980 - 1990, investment > 1 billion \$\$

Rotterdam	NL	ExxonMobil
Baytown	USA-TX	ExxonMobil
Martinez	USA-Ca	Shell
TOA	Japan	State-owned
Amuay	Venezuela	State-owned

Why only 5 Flexicokers in the world ?

- ◊ Initial investment
- ◊ Mechanical cost (mainly in Turnaround)
- ◊ Runlength

SIMPLIFIED FLEXICOKER PROCESS

