Содержание

1	Рав	номерная непрерывность функции	4		
2	Неопределенный интеграл				
	2.1	Понятие первообразной, неопределённого интеграла	6		
	2.2	Таблица неопределённых интегралов	9		
	2.3	Свойства неопределенного интеграла	10		
	2.4	Интегрирование рациональных дробей	13		
	2.5		13		
	2.6	Разложение рациональной дроби на простейшие	14		
	2.7	Интегрирование простейших дробей	19		
	2.8	Метод Остроградского	21		
	2.9	Интегрирование иррациональностей	21		
	2.10	Интегралы от тригонометрических функций	23		
	2.11	"Неберущиеся" интегралы	23		
3	Понятие интеграла Римана				
	3.1	Интегральные суммы и интеграл	24		
	3.2	Суммы Дарбу и их свойства. Необходимое условие интегриру-			
		емости	26		
	3.3	Критерии Дарбу и Римана интегрируемости функции	30		
	3.4	Свойства интегрируемых функций	32		
	3.5	Классы интегрируемых функций	35		
	3.6	Свойства интеграла Римана. Первая теорема о среднем	37		
	3.7	Интеграл с переменным верхним пределом и его свойства	41		
	3.8	Формула Ньютона-Лейбница	42		
	3.9	Формулы замены переменной и интегрирования по частям	45		
	3.10	Интегралы от четной, нечетной и периодической функций	47		
	3.11	Формула Валлиса	49		
4	Приложения определенного интеграла 50				
	4.1^{-}		50		
	4.2	Площадь в полярных координатах	51		
	4.3	Понятие длины кривой и ее вычисление	52		
		4.3.1 Вычисление длины пути	53		
5	Несобственный интеграл 57				
	5.1	Понятие несобственного интеграла	57		
	5.2	Свойства несобственного интеграла	58		
	5.3	-	62		

	5.4	Абсолютная и условная сходимости интеграла	. 65				
	5.5	Признак Абеля-Дирихле	. 68				
	5.6	Интегралы с несколькими особенностями	. 72				
	5.7	Интеграл в смысле главного значения	. 73				
6	Комплексные числа и сходимость в С						
	6.1	Основные определения	. 74				
	6.2	Сходимость в \mathbb{C}					
7	Числовые ряды						
	7.1	Понятие ряда и его суммы	. 77				
	7.2	Основные свойства рядов					
	7.3	Положительные ряды					
		7.3.1 Признаки сравнения					
		7.3.2 Радикальный признак Коши					
		7.3.3 Признак Даламбера					
		7.3.4 Признаки Куммера, Раабе, Бертрана					
		7.3.5 Признак Гаусса					
		7.3.6 Интегральный признак Коши и асимптотика сумм	. 87				
	7.4	Ряды с произвольными членами	. 90				
	7.5	Группировки и перестановки ряда. Теорема Римана	. 95				
	7.6	Произведение рядов	. 101				
	7.7	Функции $\exp z$, $\sin z$, $\cos z$ для $z \in \mathbb{C}$. 105				
	7.8	Формула Стирлинга	. 106				
8	Пространство \mathbb{R}^n						
	8.1	Полезные неравенства (Юнга, Гёльдера, Минковского)	. 107				
	8.2	Метрическое пространство	. 111				
	8.3	Типы точек и множеств в метрическом пространстве	. 112				
	8.4	Нормированные линейные пространства	. 117				
	8.5	Сходимость последовательности в метрическом пространстве и					
		в \mathbb{R}^n	. 119				
	8.6	Компактные множества	. 121				
9	Предел и непрерывность в метрическом пространстве						
	9.1	Предел в метрическом пространстве					
	9.2	Непрерывность отображения	. 129				
	9.3	Глобальные свойства непрерывных отображений					
10	Диф	$oldsymbol{\phi}$ еренцируемость в \mathbb{R}^m	134				
	10.1	Производная и дифференциал	. 134				
		Правила дифференцирования					

Конспект лекций по мат. анализу (2 семестр)

	10.3	Градиент и касательная плоскость	. 141
	10.4	Комплексная дифференцируемость	. 142
11	Про	оизводные и дифференциалы высших порядков	144
	11.1	Частные производные высших порядков	. 144
	11.2	Дифференциалы высших порядков	. 147
	11.3	Формула Тейлора для функции многих переменных	. 149
12	Экс	тремумы функции многих переменных	151
	12.1	Необходимое условие экстремума	. 151
	12.2	Достаточное условие экстремума функции n переменных	. 152

1 Равномерная непрерывность функции

Определение 1.0.1 Функция $f: E \to \mathbb{R}$ называется равномерно непрерывной на множестве $D \subset E$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x_1, x_2 \in D: \ |x_1 - x_2| < \delta \ \Rightarrow \ |f(x_1) - f(x_2)| < \varepsilon.$$

Полезно сравнить определения равномерной непрерывности и непрерывности функции на множестве. Функция $f: E \to \mathbb{R}$ непрерывна на множестве $D \subset E$, если она непрерывна в каждой точке $x_0 \in D$, то есть

$$\forall x_0 \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in D : \ |x - x_0| < \delta \ \Rightarrow \ |f(x) - f(x_0)| < \varepsilon.$$

Отличие определения равномерной непрерывности от непрерывности на множестве состоит в том, что в определении равномерной непрерывности число δ зависит только от ε , тогда как в определении непрерывности функции δ зависит от ε и от точки x_0 .

Пример 1.0.1 Рассмотрим функцию $f(x) = \frac{1}{1+x^2}$ на множестве $[0, +\infty)$. Докажем, что на этом множестве данная функция будет равномерно непрерывна.

Возьмем произвольное число $\varepsilon > 0$ и два значения аргумента из промежутка $[0, +\infty)$ и составим разность

$$f\left(x'\right) - f\left(x''\right) = \frac{1}{1 + x'^2} - \frac{1}{1 + x''^2} = \frac{x''^2 - x'^2}{\left(1 + x'^2\right)\left(1 + x''^2\right)} = \frac{\left(x'' - x'\right)\left(x' + x''\right)}{\left(1 + x'^2\right)\left(1 + x''^2\right)}.$$

Оценим модуль этой разности, используя неравенство между средним арифметическим и средним геометрическим $\left(x\leqslant \frac{1+x^2}{2}\right)$:

$$|f(x') - f(x'')| \le \left(\frac{x'}{1 + x'^2} + \frac{x''}{1 + x''^2}\right) \cdot |x' - x''| \le \left(\frac{1}{2} + \frac{1}{2}\right) |x' - x''| = |x' - x''|.$$

Отсюда следует, что, если взять $\delta = \varepsilon$, то из неравенства $|x' - x''| < \delta$ будет следовать неравенство $|f(x') - f(x'')| < \varepsilon$, что и требовалось доказать.

Лемма 1.0.1 Если функция равномерно непрерывна на множестве D, то она непрерывна на этом множестве.

Доказательство. Пусть $x_0 \in D$. Так как функция f равномерно непрерывна на D, то по $\varepsilon > 0$ найдется $\delta > 0$, что для любых $x_1, x_2 \in D$: $|x_1 - x_2| < \delta$ будет выполнено $|f(x_1) - f(x_2)| < \varepsilon$. В частности, для $x_1 = x_0$ это утверждение верно, что и означает непрерывность f в точке x_0 .

Обратное, вообще говоря, неверно.

Пример 1.0.2 Пусть $f(x) = x^2$ и $G = [0, +\infty)$. Отметим, что данная функция будет непрерывной в каждой точке данного промежутка. Докажем, что эта непрерывность не будет равномерной на G.

Возьмем два значения аргумента $x' = n + \frac{1}{n}$ и x'' = n $n \in \mathbb{N}$, которые будут принадлежать заданному промежутку. Тогда будет справедливо неравенство

$$|f(x') - f(x'')| = |x'^2 - x''^2| = \frac{1}{n} \left(2n + \frac{1}{n}\right) > 2.$$

Следовательно, если взять $\varepsilon_0 = 2$, то, какое бы число $\delta > 0$ мы ни взяли, мы сможем найти число $n \in \mathbb{N}$ такое, что $|x' - x''| = \frac{1}{n} < \delta$, но при этом $|f(x') - f(x'')| > \varepsilon_0$. Это означает, что равномерной непрерывности функции на данном промежутке нет.

Теорема 1.0.1 (Кантора) Функция, непрерывная на отрезке [a,b], равномерно непрерывна на нем.

Доказательство. Возьмем $\varepsilon > 0$ и, пользуясь непрерывностью функции на [a,b], для каждой точки $x_0 \in [a,b]$ найдем окрестность $U_{\delta_{x_0}}(x_0)$ так, что

$$\forall x \in [a, b]: |x - x_0| < \delta_{x_0} \Rightarrow |f(x) - f(x_0)| < \frac{\varepsilon}{2}.$$

Множество окрестностей $U_{\delta_x/2}, x \in [a,b]$ образует покрытие отрезка [a,b] из которого, по теореме Бореля–Лебега, можно выделить конечное покрытие

$$U_{\delta_{x_1}/2}, \ U_{\delta_{x_2}/2}, ..., U_{\delta_{x_n}/2}.$$

Пусть $\delta = \min\left(\frac{\delta_{x_1}}{2},...,\frac{\delta_{x_n}}{2}\right)$. Возьмем $x',x'' \in [a,b]$ и $|x'-x''| < \delta$. Найдется окрестность $U_{\delta_{x_i}/2}$, содержащая x'. Тогда

$$|x'' - x_i| \le |x'' - x'| + |x' - x_i| < \delta + \frac{\delta_{x_i}}{2} < \delta_{x_i},$$

то есть $x', x'' \in U_{\delta_{x_i}}$. Но тогда

$$|f(x') - f(x'')| \leqslant |f(x') - f(x_0)| + |f(x_0) - f(x'')| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

что и означает равномерную непрерывность f на [a,b].

Заметим, что в условии Теоремы отрезок нельзя заменить на интервал или полуинтервал.

Функция f не является равномерно непрерывной на множестве D, если

$$\exists \varepsilon > 0: \ \forall \delta > 0 \ \exists x_1, x_2 \in D: \ |x_1 - x_2| < \delta, \ |f(x_1) - f(x_2)| \geqslant \varepsilon.$$

Пример 1.0.3 Функция f(x) = 1/x непрерывна на (0,1), но не является равномерно непрерывной на нем.

Возьмем $x_1 = \frac{1}{n}$, $x_2 = \frac{1}{2n}$. Так как $|x_1 - x_2| = \frac{1}{2n} \to 0$, то эту разность можно сделать сколь угодно малой, выбрав достаточно большое n. B то же время, $|f(x_1) - f(x_2)| = 2n - n = n$ становится сколь угодно большим u не может быть $< \varepsilon$.

2 Неопределенный интеграл

2.1 Понятие первообразной, неопределённого интеграла

Ранее была изучена операция дифференцирования, сопоставляющая функции ее производную. В этом разделе будет изучаться обратная задача, в которой производная известна, а функцию нужно найти.

Замечание 2.1.1 Ниже под обозначением $\langle a,b \rangle$ будет пониматься произвольный промежуток: отрезок, интервал или полуинтервал.

Определение 2.1.1 Первообразной функции f(x) на промежутке $\langle a, b \rangle$ называется функция F(x) такая, что для всех $x \in \langle a, b \rangle$ выполняется равенство F'(x) = f(x).

Пример 2.1.1 Функция $F_1(x) = \frac{x^3}{3}$ будет первообразной для функции $f(x) = x^2$ при $x \in (-\infty, +\infty)$, но эта первообразная не единственна. Так, функции $F_2(x) = \frac{x^3}{3} + 5$ или $F_3(x) = \frac{x^3}{3} - \pi^e$ также будут ее первообразными.

Пример 2.1.2 Функция $F(x) = \arctan x$ является первообразной для функции $\frac{1}{1+x^2}$ при всех $x \in \mathbb{R}$, так как $(\arctan x)' = \frac{1}{1+x^2}$.

Пример 2.1.3 Функция $F(x) = \arctan \frac{1}{x}$ является первообразной для функции $\frac{1}{1+x^2}$ как при x > 0, так и при x < 0.

Вопрос об описании всех первообразных данной функции решается с помощью следующей теоремы.

Теорема 2.1.1 Пусть F(x) – первообразная для f(x) на $\langle a,b \rangle$. Для того, чтобы $\Phi(x)$ также была первообразной для f(x) на $\langle a,b \rangle$, необходимо и достаточно, чтобы

$$F(x) - \Phi(x) \equiv C, \quad x \in \langle a, b \rangle.$$

Доказательство. Необходимость. Пусть $\Psi(x) = F(x) - \Phi(x)$, где F(x) и $\Phi(x)$ – первообразные для f(x) на $\langle a,b \rangle$. Тогда $\forall x \in \langle a,b \rangle$

$$\Psi'(x) = (F(x) - \Phi(x))' = F'(x) - \Phi'(x) = f(x) - f(x) = 0.$$

Согласно теореме Лагранжа, для любых $x_1, x_2 \in \langle a, b \rangle$ таких, что $x_1 < x_2$,

$$\Psi(x_2) - \Psi(x_1) = \Psi'(\xi)(x_2 - x_1) = 0, \ \xi \in (x_1, x_2).$$

Значит, $\Psi(x) \equiv C$.

Достаточность. Пусть на $\langle a,b \rangle$ выполнено условие $F(x) - \Phi(x) = C$. Тогда на этом промежутке $\Phi(x) = F(x) + C$, а следовательно

$$\Phi'(x) = F'(x) + C' = F'(x) + 0 = F'(x) = f(x).$$

То есть $\Phi(x)$ является первообразной для функции f(x) на $\langle a,b\rangle$.

Определение 2.1.2 Неопределённым интегралом функции f(x) на промежутке $\langle a,b \rangle$ называется множество всех её первообразных на этом промежутке. Неопределенный интеграл обозначается следующим образом:

$$\int f(x)dx \quad unu \quad \int fdx,$$

 $e \partial e$

- \int знак неопределенного интеграла;
- f(x) подынтегральная функция;
- f(x)dx noдынтегральное выражение;
- х переменная интегрирования.

Следствие 2.1.2 Если F(x) – какая-либо первообразная функции f(x) на $\langle a,b \rangle$, то неопределенный интеграл функции f(x) на промежутке $\langle a,b \rangle$ равен

$$\int f(x)dx = F(x) + C, \ C \in \mathbb{R}.$$

Заметим, что для краткости информацию о том, что рассматривается промежуток $\langle a,b \rangle$, часто опускают. Например, вместо

$$\int \frac{dx}{x} = \ln|x| + \begin{cases} c_1, & x < 0 \\ c_2, & x > 0 \end{cases}$$

пишут

$$\int \frac{dx}{x} = \ln|x| + C,$$

подразумевая, что C – кусочно-постоянная.

Замечание 2.1.2 Если dx трактовать, как дифференциал, то ниже приведенные формулы интегрирования по частям и замены переменной становятся совершенно «механическими».

Замечание 2.1.3 Полезно отметить, что не каждая функция имеет первообразную. Так как производная дифференцируемой функции не может иметь разрывов первого рода, то любая функция, имеющая на $\langle a,b \rangle$ разрыв первого рода, не имеет на $\langle a,b \rangle$ первообразной.

Позже, при изучении определенного интеграла Римана будет показано, что каждая непрерывная на $\langle a,b \rangle$ функция имеет на этом множестве первообразную.

Замечание 2.1.4 Первообразные существуют не только у непрерывных функций. Производная дифференцируемой функции может иметь разрывы второго рода. Например,

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

$$f'(x) = \begin{cases} 2x \cos \frac{1}{x} + \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

Детали остаются читателю.

Для практических целей часто полезно следующее определение.

Определение 2.1.3 Функция F(x) называется обобщенной первообразной функции f(x) на $\langle a,b \rangle$, если $F(x) \in C\langle a,b \rangle$ и F'(x) = f(x) всюду на $\langle a,b \rangle$, кроме не более чем конечного числа точек.

Пример 2.1.4 Легко проверить, что обобщенной первообразной функции $y = \operatorname{sign} x$ на \mathbb{R} является функция y = |x|.

2.2 Таблица неопределённых интегралов

Ниже приведена таблица интегралов, часто используемых на практике.

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$

$$\int e^{x} dx = e^{x} + C$$

$$\int \frac{dx}{\sin^{2} x} = \operatorname{tg} x + C$$

$$\int \frac{dx}{\sin^{2} x} = -\operatorname{ctg} x + C$$

$$\int \frac{dx}{\sin^{2} x} = -\operatorname{ctg} x + C$$

$$\int \frac{dx}{a^{2} - x^{2}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + C$$

$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C, \quad a \neq 0 \; (\text{«длинный логарифм»})$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C \; (\text{«высокий логарифм»})$$

Доказательство. В качестве примера приведено доказательство для формулы

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C, \quad a \neq 0.$$

Для доказательства достаточно показать, что производная правой части равна подынтегральной функции.

$$\left(\ln|x+\sqrt{x^2\pm a^2}|+C\right)' = \frac{1}{x+\sqrt{x^2\pm a^2}} \cdot \left(1+\frac{2x}{2\sqrt{x^2\pm a^2}}\right) = \frac{1}{x+\sqrt{x^2\pm a^2}} \cdot \left(\frac{x+\sqrt{x^2\pm a^2}}{\sqrt{x^2\pm a^2}}\right) = \frac{1}{\sqrt{x^2\pm a^2}}.$$

Важно отметить, что каждая из формул, написанных выше, рассматривается на тех промежутках вещественной оси, на которых определена соответствующая подынтегральная функция. Если таких промежутков несколько, то произвольные постоянные в правой части, вообще говоря, различны.

2.3 Свойства неопределенного интеграла

Теорема 2.3.1 (Интеграл и производная) Пусть существует $\int f(x)dx$ на $\langle a,b \rangle$, тогда на $\langle a,b \rangle$:

1.
$$\left(\int f(x)dx\right)' = f(x)$$
.

2.
$$d\left(\int f(x)dx\right) = f(x)dx$$
.

Доказательство. 1. Так как $\int f(x)dx = F(x) + C$, то

$$\left(\int f(x)dx\right)' = (F(x) + C)' = f(x).$$

2. Доказывается аналогично и предлагается в качестве упражнения. Прямо из определения легко получается и следующая важная лемма:

Лемма 2.3.1 Если F(x) дифференцируема на $\langle a,b \rangle$, то $\int dF(x) = F(x) + C$.

Следующая теорема широко применяется на практике.

Теорема 2.3.2 (Линейность неопределенного интеграла) Пусть на $\langle a,b \rangle$ существуют неопределенные интегралы $\int f(x)dx$ и $\int g(x)dx$, $\alpha^2 + \beta^2 \neq 0$. Тогда

$$\int (\alpha f + \beta g) dx = \alpha \int f dx + \beta \int g dx.$$

Доказательство. По предыдущему свойству,

$$\left(\alpha \int f dx + \beta \int g dx\right)' = \alpha f(x) + \beta g(x),$$

то есть $\alpha \int f dx + \beta \int g dx$ — первообразная для $\alpha f + \beta g$ на $\langle a,b \rangle$, а значит равенство установлено.

Пример 2.3.1 Вычислить интеграл

$$\int \frac{x^2 + \sqrt[3]{x^2} + 5}{x} dx.$$

По свойству линейности,

$$\int \frac{x^2 + \sqrt[3]{x^2 + 5}}{x} dx = \int x dx + \int x^{-1/3} dx + 5 \int \frac{dx}{x} = \frac{x^2}{2} + \frac{3}{2} x^{2/3} + 5 \ln|x| + C.$$

Пример 2.3.2 Вычислить интеграл

$$\int \frac{dx}{\sin^2 x \cos^2 x}.$$

 $Ta\kappa \ \kappa a\kappa \ 1 = \sin^2 x + \cos^2 x, \ mo$

$$\int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx = \int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x} = \operatorname{tg} x - \operatorname{ctg} x + C.$$

Теорема 2.3.3 (Формула замены переменной) Пусть на $\langle a,b \rangle$ существует неопределенный интеграл $\int f(x)dx$, $\varphi(t):\langle \alpha,\beta \rangle \to \langle a,b \rangle$, дифференцируема на $\langle \alpha,\beta \rangle$, тогда

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Доказательство. Пусть F(x) – первообразная для функции f(x) на $\langle a,b \rangle$, тогда, согласно теореме о производной сложной функции, $F(\varphi(t))$ – первообразная для функции $f(\varphi(t))\varphi'(t)$ на $\langle \alpha,\beta \rangle$, откуда и следует равенство.

Пример 2.3.3 Вычислить интеграл

$$\int xe^{x^2}dx.$$

Пусть $x^2 = t$, тогда $d(x^2) = dt$ или 2xdx = dt, а значит

$$\int xe^{x^2}dx = \frac{1}{2}\int e^t dt = \frac{1}{2}e^t + C = \frac{1}{2}e^{x^2} + C$$

Пример 2.3.4 Вычисление предыдущего интеграла можно оформить и иначе, если dx трактовать, как дифференциал.

$$\int xe^{x^2}dx = \int e^{x^2}d\left(\frac{x^2}{2}\right) = \frac{1}{2}\int e^{x^2}dx^2 = \frac{1}{2}e^{x^2} + C.$$

Данный способ оформления называется занесением под знак дифференциала.

Теорема 2.3.4 (Формула интегрирования по частям) Пусть $u, v \partial u \phi$ -ференцируемы на $\langle a, b \rangle$ и на $\langle a, b \rangle$ существует неопределенный интеграл $\int v du$, тогда на $\langle a, b \rangle$

$$\int udv = uv - \int vdu.$$

Доказательство. Действительно, если рассмотреть дифференциал от правой части равенства, то получим

$$d\left(uv - \int vdu\right) = d(uv) - d\left(\int vdu\right) = d(uv) - vdu = udv,$$

так как d(uv) = udv + vdu. Отсюда следует требуемое.

Пример 2.3.5 Вычислить интеграл

$$\int x \sin x dx.$$

Пусть u = x, тогда du = dx, $dv = \sin x dx$ u $v = -\cos x$. Значит,

$$\int x \sin x dx = \begin{vmatrix} u = x \\ du = dx \\ dv = \sin x dx \\ v = -\cos x \end{vmatrix} = -x \cos x + \int \cos x dx = -x \cos x + \sin x + C.$$

Пример 2.3.6 Вычислить интеграл

$$\int (x^2 + 2x)e^x dx.$$

Проинтегрируем по частям, получим

$$\int (x^2 + 2x)e^x dx = \begin{vmatrix} u = x^2 + 2x \\ du = (2x + 2)dx \\ dv = e^x dx \\ v = e^x \end{vmatrix} = (x^2 + 2x)e^x - \int (2x + 2)e^x dx.$$

B результате степень многочлена перед экспонентой уменьшилась. Проинтегрируем по частям снова,

$$\int (2x+2)e^x = \begin{vmatrix} u = 2x + 2 \\ du = 2dx \\ dv = e^x dx \\ v = e^x \end{vmatrix} = (2x+2)e^x - 2\int e^x dx = (2x+2)e^x - e^x + C.$$

Окончательно,

$$\int (x^2 + 2x)e^x dx = (x^2 + 2x)e^x - (2x + 2)e^x + e^x + C.$$

Замечание 2.3.1 Формулу интегрирования по частям удобно применять для интегралов вида

$$\int P_n(x)a^{\alpha x}dx$$
, $\int P_n(x)\sin(\alpha x)dx$, $\int P_n(x)\cos(\alpha x)dx$,

 $r\partial e\ P_n(x)$ – многочлен степени n.

Пример 2.3.7 Вычислить интеграл

$$\int e^x \sin x dx.$$

Проинтегрируем по частям, получим

$$\int e^x \sin x dx = \begin{vmatrix} u = e^x \\ du = e^x dx \\ dv = \sin x dx \\ v = -\cos x \end{vmatrix} = -e^x \cos x + \int e^x \cos x dx.$$

еще раз проинтегрируем по частям, получим

$$\int e^x \cos x dx = \begin{vmatrix} u = e^x \\ du = e^x dx \\ dv = \cos x dx \\ v = \sin x \end{vmatrix} = e^x \sin x - \int e^x \sin x dx.$$

B umore,

$$\int e^x \sin x dx = -e^x \cos x + e^x \sin x - \int e^x \sin x dx,$$

 $om\kappa y\partial a$

$$\int e^x \sin x dx = \frac{-e^x \cos x + e^x \sin x}{2} + C.$$

Интегралы такого типа, как рассмотрен выше, называются самосводящимися.

2.4 Интегрирование рациональных дробей

2.5 Некоторые сведения из теории многочленов

В дальнейшем, под многочленом (полиномом) $P_n(x)$ степени $n\geqslant 1$ будет подразумеваться функция

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

где $a_i \in \mathbb{R}, a_n \neq 0$. Под многочленом нулевой степени будет подразумеваться константа.

Определение 2.5.1 Рациональной дробью называется дробь $\frac{P_n(x)}{Q_m(x)}$, где $P_n(x)$ – многочлен степени $n, Q_m(x)$ – многочлен степени m.

Определение 2.5.2 Рациональная дробь называется правильной, если n < m, иначе она называется неправильной.

Лемма 2.5.1 Пусть $\frac{P_n(x)}{Q_m(x)}$ — неправильная дробь. Тогда существует единственное представление

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \frac{T_k(x)}{Q_m(x)},$$

где $R_{n-m}(x)$ – многочлен степени $(n-m), T_k(x)$ – многочлен степени k, причем k < m.

В теории многочленов доказывается следующая теорема.

Теорема 2.5.1 Пусть $P_n(x)$ – многочлен n-й степени, у которого коэффициент при старшей степени равен единице. Тогда он может быть разложен на множители следующим образом

$$P_n(x) = (x - a_1)^{k_1} \cdot (x - a_2)^{k_2} \cdot \dots \cdot (x - a_p)^{k_p} \cdot (x^2 + b_1 x + c_1)^{l_1} \cdot \dots \cdot (x^2 + b_m x + c_m)^{l_m},$$

$$e \partial e$$

$$k_p, l_m \in \mathbb{N}, D = b_m^2 - 4c_m < 0, k_1 + k_2 + \ldots + k_p + 2 \cdot (l_1 + \ldots + l_m) = n.$$

Замечание 2.5.1 Условия $b_i^2 - 4c_i < 0$ означают, что квадратные трехчлены $x^2 + b_i x + c_i$ не имеют вещественных корней. В этом случае они имеют два комплексно-сопряженных корня $\alpha \pm \beta i$.

2.6 Разложение рациональной дроби на простейшие

Определение 2.6.1 Простейшими дробями называют дроби вида

$$\frac{A}{(x-a)^k}, \frac{Ax+B}{(x^2+px+q)^k},$$

 $i\partial e \ k \in \mathbb{N}$.

Оказывается, любая правильная рациональная дробь может быть разложена в сумму простейших. Этой теореме предпошлем две леммы.

Лемма 2.6.1 Пусть $\frac{P_n(x)}{Q_m(x)}$ – правильная рациональная дробь и $Q_m(x)=(x-a)^k\cdot \widetilde{Q}(x)$, где $\widetilde{Q}(a)\neq 0$. Существует число $A\in\mathbb{R}$ и многочлен $\widetilde{P}(x)$, такие что

$$\frac{P_n(x)}{Q_m(x)} = \frac{A}{(x-a)^k} + \frac{\widetilde{P}(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)},$$

причем это представление единственно.

Доказательство. Рассмотрим разность

$$\frac{P_n(x)}{Q_m(x)} - \frac{A}{(x-a)^k} = \frac{P_n(x)}{(x-a)^k \cdot \widetilde{Q}(x)} - \frac{A}{(x-a)^k} = \frac{P_n(x) - A \cdot \widetilde{Q}(x)}{(x-a)^k \cdot \widetilde{Q}(x)}$$

и выберем число A так, чтобы число a было корнем числителя.

$$P_n(a) - A \cdot \widetilde{Q}(a) = 0 \Rightarrow A = \frac{P_n(a)}{\widetilde{Q}(a)},$$

где последнее равенство корректно, так как по условию $\widetilde{Q}(a) \neq 0$. При данном A в числителе стоит многочлен $P_n(x) - A \cdot \widetilde{Q}(x)$ с корнем a, значит его можно разложить на множители $(x-a) \cdot \widetilde{P}(x)$, а тогда

$$\frac{P_n(x) - A \cdot \widetilde{Q}(x)}{(x-a)^k \cdot \widetilde{Q}(x)} = \frac{(x-a) \cdot \widetilde{P}(x)}{(x-a)^k \cdot \widetilde{Q}(x)} = \frac{\widetilde{P}(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)}.$$

Существование разложения доказано.

Докажем единственность такого разложения. От противного, пусть существует два разложения

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_1}{(x-a)^k} + \frac{\widetilde{P}_1(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)} = \frac{A_2}{(x-a)^k} + \frac{\widetilde{P}_2(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)}.$$

Домножив на $(x-a)^k \cdot \widetilde{Q}(x)$, имеем

$$A_1 \cdot \widetilde{Q}(x) + \widetilde{P}_1(x) \cdot (x - a) = A_2 \cdot \widetilde{Q}(x) + \widetilde{P}_2(x) \cdot (x - a),$$

причем это равенство верно при всех $x \in \mathbb{R}$. Пусть x = a, тогда равенство превращается в

$$A_1 \cdot \widetilde{Q}(a) = A_2 \cdot \widetilde{Q}(a),$$

и так как $\widetilde{Q}(a) \neq 0$ то $A_1 = A_2$. Но тогда коэффициенты многочлена $\widetilde{P} = P_n(x) - A \cdot \widetilde{Q}(x)$ тоже вычисляются однозначно. Противоречие.

Лемма 2.6.2 Пусть $\frac{P_n(x)}{Q_m(x)}$ – правильная рациональная дробь и $Q_m(x) = (x^2 + px + q)^k \cdot \widetilde{Q}(x), \ p^2 - 4q < 0, \ \alpha \pm \beta i$ – комплексно-сопряженные корни квадратного трехчлена $x^2 + px + q$, причем $\widetilde{Q}(\alpha \pm \beta i) \neq 0$. Существуют единственные числа $A, B \in \mathbb{R}$ и многочлен $\widetilde{P}(x)$ такие, что

$$\frac{P_n(x)}{Q_m(x)} = \frac{Ax + B}{(x^2 + px + q)^k} + \frac{\widetilde{P}(x)}{(x^2 + px + q)^{k-1} \cdot \widetilde{Q}(x)},$$

причем это представление единственно.

Доказательство. Рассмотрим разность

$$\frac{P_n(x)}{Q_m(x)} - \frac{Ax + B}{(x^2 + px + q)^k} = \frac{P_n(x) - (Ax + B) \cdot \widetilde{Q}(x)}{(x^2 + px + q)^k \cdot \widetilde{Q}(x)}$$

Выберем числа A,B так, чтобы число $\alpha+\beta i$ было корнем числителя, то есть чтобы

$$P_n(\alpha + \beta i) - (A(\alpha + \beta i) + B) \cdot \widetilde{Q}(\alpha + \beta i) = 0.$$

Так как значение многочлена в комплексной точке дает комплексное число, то

$$P_n(\alpha + \beta i) = P_1 + iP_2,$$

$$\widetilde{Q}(\alpha + \beta i) = \widetilde{Q}_1 + i\widetilde{Q}_2,$$

где $P_1, P_2, \widetilde{Q}_1, \widetilde{Q}_2 \in \mathbb{R}$ и $\widetilde{Q}_1^2 + \widetilde{Q}_2^2 \neq 0$, так как по условию $\widetilde{Q}(\alpha + \beta i) \neq 0$. Тогда последнее уравнение примет вид

$$P_1 + iP_2 - (A\alpha + iA\beta + B) \cdot (\widetilde{Q}_1 + i\widetilde{Q}_2) = 0.$$

Отделив вещественную и мнимую части, получим

$$(P_1 - A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) - B\widetilde{Q}_1) + i(P_2 - A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) - B\widetilde{Q}_2) = 0 + 0 \cdot i$$

Таким образом,

$$\begin{cases} P_1 - A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) - B\widetilde{Q}_1 = 0 \\ P_2 - A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) - B\widetilde{Q}_2 = 0 \end{cases} \Leftrightarrow \begin{cases} A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) + B\widetilde{Q}_1 = P_1 \\ A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) + B\widetilde{Q}_2 = P_2 \end{cases}$$

Вычислим определитель данной системы:

$$\Delta = (\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2)\widetilde{Q}_2 - \widetilde{Q}_1(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) = -\beta(\widetilde{Q}_1^2 + \widetilde{Q}_2^2) \neq 0.$$

Значит из системы единственным образом могут быть найдены числа A и B такие, что $\alpha+\beta i$ - корень числителя. Если $\alpha+\beta i$ корень многочлена с

вещественными коэффициентами, то $\alpha - \beta i$ – тоже его корень, значит при найденных A и B числитель $P_n(x) - (Ax + B) \cdot \widetilde{Q}(x)$ может быть разложен на множители

$$P_n(x) - (Ax + B) \cdot \widetilde{Q}(x) = (x^2 + px + q) \cdot \widetilde{P}(x),$$

причем

$$\frac{P_n(x)}{Q_m(x)} - \frac{Ax + B}{(x^2 + px + q)^k} = \frac{(x^2 + px + q) \cdot \widetilde{P}(x)}{(x^2 + px + q)^k \cdot \widetilde{Q}(x)} = \frac{\widetilde{P}(x)}{(x^2 + px + q)^{k-1} \cdot \widetilde{Q}(x)}.$$

Тем самым, существование разложения доказано.

Единственность доказывается аналогично доказательству предыдущей леммы и остается в качестве упражнения.

Две данные леммы позволяют доказать теорему, которая и является основной целью данного параграфа.

Теорема 2.6.1 Любая рациональная дробь может быть представлена единственным образом в виде

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} +
+ \frac{A_{s1}}{(x-a_s)^{k_s}} + \dots + \frac{A_{sk_s}}{(x-a_s)} + \frac{B_{11}x + C_{11}}{(x^2 + p_1x + q_1)^{l_1}} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{x^2 + p_1x + q_1} +
+ \frac{B_{t1}X + C_{t1}}{(x^2 + p_tx + q_t)^{l_t}} + \dots + \frac{B_{tl_t}X + C_{tl_t}}{x^2 + p_tx + q_t},$$

где $A_{ij}, B_{ij}, C_{ij} \in \mathbb{R}, R_{n-m}(x)$ – многочлен степени (n-m) и знаменатель исходной дроби имеет разложение

$$Q_m(x) = (x - a_1)^{k_1} \cdot \ldots \cdot (x - a_s)^{k_s} \cdot (x^2 + p_1 x + q_1)^{l_1} \cdot \ldots \cdot (x^2 + p_t x + q_t)^{l_t}.$$

Доказательство. Пусть в рациональной дроби $\frac{P_n(x)}{Q_m(x)}$ степень n>m, тогда по лемме 2.5.1 ее можно представить в виде суммы многочлена $R_{n-m}(x)$ и правильной дроби $\frac{T_k(x)}{Q_m(x)}$, где k< m. Таким образом достаточно рассмотреть случай правильной и несократимой дроби $\frac{T_k(x)}{Q_m(x)}$. По лемме 2.6.1 дробь можно представить в виде

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \frac{\widetilde{P}^{(11)}(x)}{(x-a_1)^{k_1-1} \cdot \widetilde{Q}^{(1)}(x)},$$

где $\widetilde{Q}^{(1)}(x)=(x-a_2)^{k_2}\cdot\ldots\cdot(x-a_s)^{k_s}\cdot(x^2+p_1x+q_1)^{l_1}\cdot\ldots\cdot(x^2+p_tx+q_t)^{l_t}$. Далее по лемме 2.6.1 также можно найти число A_{12} и многочлен $\widetilde{P}^{(12)}(x)$ такие, что

$$\frac{\widetilde{P}^{(11)}(x)}{(x-a_1)^{k_1-1}\cdot\widetilde{Q}^{(1)}(x)} = \frac{A_{12}}{(x-a_1)^{k_1-1}} + \frac{\widetilde{P}^{(12)}(x)}{(x-a_1)^{k_1-2}\cdot\widetilde{Q}^{(1)}(x)}.$$

Продолжая аналогичные рассуждения получим

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \frac{A_{12}}{(x-a_1)^{k_1-1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \frac{\widetilde{P}^{(1k_1)}(x)}{\widetilde{Q}^{(1)}(x)}.$$

Аналогично, для всех вещественных корней знаменателя a_i кратности k_i , i=1...s, получим

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \frac{A_{21}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots$$

где $\widetilde{Q}^{(s)}(x)=(x^2+p_1x+q_1)^{l_1}\cdot\ldots\cdot(x^2+p_tx+q_t)^{l_t}$, при этом дробь $\frac{\widetilde{P}^{(sks)}(x)}{\widetilde{Q}^{(s)}(x)}$ – правильная. Далее используем лемму 2.6.2, получим

$$\frac{\widetilde{P}^{(sk_s)}(x)}{\widetilde{Q}^{(s)}(x)} = \frac{B_{11}x + C_{11}}{(x^2 + p_1x + q_1)^{l_1}} + \frac{\widehat{P}^{(11)}(x)}{(x^2 + p_1x + q_1)^{l_1 - 1} \cdot \widehat{Q}^{(1)}(x)},$$

где $\hat{Q}^{(1)}(x) = (x^2 + p_2 x + q_2)^{l_2} \cdot \ldots \cdot (x^2 + p_t x + q_t)^{l_t}$. Продолжая рассуждения таким же образом получим, что каждой t паре комплексно-сопряженных корней знаменателя кратности l_t , будут соответствовать l_t простейших дробей третьего и четвертого типа, и окончательно:

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \frac{A_{21}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{(x^2 + p_1x + q_1)^{l_1}} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{(x^2 + p_1x + q_1)} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_2}} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_1}} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_2}} + \dots +$$

2.7 Интегрирование простейших дробей

В данном пункте в общем виде показывается, как можно вычислить интеграл от простейших рациональных дробей. Для начала рассмотрим интеграл

$$\int \frac{A}{(x-a)^k} dx, \ k \geqslant 1.$$

1. При k = 1 имеем

$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = A \ln|x-a| + C.$$

 $2. \ \Pi$ ри k > 1

$$\int \frac{A}{(x-a)^k} dx = A \int \frac{d(x-a)}{(x-a)^k} = A \int (x-a)^{-k} d(x-a) = A \frac{(x-a)^{1-k}}{1-k} + C.$$

Теперь покажем, как вычисляются интегралы

$$\int \frac{Ax+B}{(x^2+px+q)^k} dx, \ k \geqslant 1, \ p^2-4q < 0.$$

3. Пусть k=1. Дополним знаменатель до полного квадрата,

$$x^{2} + px + q = x^{2} + 2x\frac{p}{2} + \frac{p^{2}}{4} + q - \frac{p^{2}}{4} = \left(x + \frac{p}{2}\right)^{2} + \frac{4q - p^{2}}{4}.$$

Так как выражение

$$\frac{4q-p^2}{4} > 0,$$

то его можно обозначить, как a^2 . Кроме того, положим $t=x+\frac{p}{2}$, тогда dt=dx и

$$\int \frac{Ax+B}{x^2+px+q} dx = \int \frac{A(t-\frac{p}{2})+B}{t^2+a^2} dt = \int \frac{At+(B-\frac{Ap}{2})}{t^2+a^2} dt =$$

$$A\int \frac{tdt}{t^2+a^2} + \left(B-\frac{Ap}{2}\right) \int \frac{dt}{t^2+a^2} = \frac{A}{2} \int \frac{d(t^2+a^2)}{t^2+a^2} + \left(B-\frac{Ap}{2}\right) \frac{1}{a} \arctan \frac{t}{a} =$$

$$= \frac{A}{2} \ln|t^2+a^2| + \left(B-\frac{Ap}{2}\right) \frac{1}{a} \arctan \frac{t}{a} + C =$$

$$= \frac{A}{2} \ln|x^2+px+q| + \frac{B-\frac{Ap}{2}}{\sqrt{\frac{4q-p^2}{4}}} \arctan \frac{x+\frac{p}{2}}{\sqrt{\frac{4q-p^2}{4}}} + C.$$

4. Пусть k > 1. Используя обозначения, введенные в пункте 3, получим

$$\int \frac{Ax+B}{(x^2+px+q)^k} dx = A \int \frac{tdt}{(t^2+a^2)^k} + \left(B - \frac{Ap}{2}\right) \int \frac{dt}{(t^2+a^2)^k}.$$

Сначала рассмотрим первый интеграл:

$$\int \frac{tdt}{(t^2 + a^2)^k} = \frac{1}{2} \int \frac{d(t^2 + a^2)}{(t^2 + a^2)^k} = \frac{1}{2} \frac{(t^2 + a^2)^{1-k}}{1 - k} + C.$$

Теперь рассмотрим второй интеграл, обозначив его I_k :

$$I_k = \int \frac{dt}{(t^2 + a^2)^k} = \frac{1}{a^2} \int \frac{a^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} \int \frac{t^2 + a^2 - t^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} \int \frac{dt}{(t^2 + a^2)^{k-1}} - \frac{1}{a^2} \int \frac{t^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} I_{k-1} - \frac{1}{a^2} \int \frac{t^2}{(t^2 + a^2)^k} dt.$$

Последний интеграл вычислим по частям

$$\int \frac{t^2}{(t^2 + a^2)^k} dt = \begin{vmatrix} u = t \\ du = dt \\ dv = \frac{tdt}{(t^2 + a^2)^k} = \frac{1}{2} \frac{d(t^2 + a^2)}{(t^2 + a^2)^k} \\ v = \frac{1}{2(1 - k)(t^2 + a^2)^{k-1}} \end{vmatrix} = \frac{t}{2(1 - k)(t^2 + a^2)^{k-1}} - \frac{1}{2(1 - k)} \int \frac{dt}{(t^2 + a^2)^{k-1}}.$$

Тем самым,

$$I_k = \frac{1}{a^2} \left(I_{k-1} \left(1 + \frac{1}{2(1-k)} \right) - \frac{t}{2(1-k)(t^2 + a^2)^{k-1}} \right).$$

Таким образом, получена рекуррентная формула, выражающая I_k через I_{k-1} . Так как

$$I_1 = \int \frac{dt}{t^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{t}{a} + C,$$

то схема вычисления интеграла полностью изложена.

Следствие 2.7.1 Интеграл от рациональной дроби может быть выражен через элементарные функции.

2.8 Метод Остроградского

Вычисление интеграла от последнего типа дроби – задача трудоемкая. Полезно пользоваться следующей формулой (в случае, когда дробь под интегралом – правильная):

$$\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx.$$

В этой формуле $Q_2(x)$ – многочлен, имеющий те же корни, что и Q(x), но первой кратности. Многочлен $Q_1(x)$ – это частое от деления Q(x) на $Q_2(x)$. Все написанные дроби являются правильными.

Доказательство. Остается в качестве упражнения

2.9 Интегрирование иррациональностей

Пусть $R(x_1, x_2, ..., x_n)$ – рациональная функция относительно каждой из переменных $x_1, x_2, ..., x_n$.

1. Интегралы вида

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p_1}, \left(\frac{ax+b}{cx+d}\right)^{p_2}, ..., \left(\frac{ax+b}{cx+d}\right)^{p_n}\right) dx,$$

 $a,b,c,d\in\mathbb{R},\ ad-bc\neq0,\ n\in\mathbb{N},\ p_i\in\mathbb{Q}.$ Подстановка

$$\frac{ax+b}{cx+d} = t^m,$$

m – общий знаменатель $p_1, p_2, ..., p_n$.

2. Интегралы вида

$$\int R\left(x, \sqrt{ax^2 + bx + c}\right) dx, \ a \neq 0.$$

Функция под интегралом с помощью алгебраических преобразований приводится к виду:

$$R\left(x,\sqrt{ax^2+bx+c}\right) = \frac{R_1(x)}{\sqrt{ax^2+bx+c}} + R_2(x),$$

где $R_1(x)$, $R_2(x)$ – рациональные дроби. С интегралом от рациональной дроби все ясно. Как вычислить интеграл от первой дроби?

Разложив дробь на простейшие, придем к дробям (и интегралам) трех типов. Первый тип:

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx.$$

Этот интеграл может быть вычислен, как

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx = Q_{n-1}(x)\sqrt{ax^2 + bx + c} + \lambda \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

где коэффициенты ищутся после дифференцирования методом неопределенных коэффициентов.

Второй тип:

$$\int \frac{dx}{(x-p)^k \sqrt{ax^2 + bx + c}}.$$

Этот интеграл сводится к интегралу предыдущего типа подстановкой $t=(x-p)^{-1}.$

Третий тип:

$$\int \frac{Ax+B}{(x^2+px+q)^k \sqrt{ax^2+bx+c}} dx.$$

Если $ax^2 + bx + c = \alpha(x^2 + px + q)$, то приходим к интегралу

$$\int \frac{Ax+B}{(x^2+px+q)^{k+1/2}} dx = E \int \frac{2x+p}{(x^2+px+q)^{k+1/2}} dx + F \int \frac{dx}{(x^2+px+q)^{k+1/2}}.$$

Второй интеграл вычисляется, используя подстановку Абеля:

$$t = \left(\sqrt{x^2 + px + q}\right)'.$$

Иначе

$$x = \frac{\alpha t + \beta}{t + 1}$$

и коэффициенты подбираются так, чтобы в квадратных трехчленах исчезли члены, содержащие t. Приходим к интегралу

$$\int \frac{P_{k-1}(x)}{(x^2+a)^k \sqrt{sx^2+r}} dx.$$

Раскладывая дробь на простейшие, имеем либо

$$\int \frac{x}{(x^2+a)^k \sqrt{sx^2+r}} dx,$$

либо

$$\int \frac{dx}{(x^2+a)^k \sqrt{sx^2+r}}.$$

Последний интеграл снова вычисляется подстановкой Абеля

$$t = \left(\sqrt{sx^2 + r}\right)'.$$

3. Дифференциальный бином

$$\int x^m (ax^n + b)^p dx,$$

 $a, b \in \mathbb{R}, m, n, p \in \mathbb{Q}.$

Если $p \in \mathbb{Z}$, то $x = t^N$, N – общий знаменатель m, n.

Если $(m+1)/n \in \mathbb{Z}$, то $ax^n + b = t^s$, s – знаменатель p.

Если $(m+1)/n + p \in \mathbb{Z}$, то $a + bx^{-n} = t^s$, s – знаменатель p.

В других случаях интеграл в элементарных функциях не выражается (см. ниже про "Неберущиеся интегралы".)

2.10 Интегралы от тригонометрических функций

В этом разделе будут рассмотрены интегралы от некоторых классов тригонометрических функций.

Покажем, что интегралы вида

$$\int R(\sin x, \cos x) dx$$

всегда сводятся к интегралам от рациональных функций подстановкой $tg\frac{x}{2} = t$. Для этого обратимся к формулам выражение синуса и косинуса через тангенс половинного угла, а тем самым представим их через t:

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1 + t^2},$$

$$\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$$

А также

$$\operatorname{tg} \frac{x}{2} = t \Rightarrow x = 2 \operatorname{arctg} t, dx = \frac{2dt}{1 + t^2}.$$

Таким образом исходный интеграл будет выражен через рациональные функции:

$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2}.$$

2.11 "Неберущиеся" интегралы

Позже мы докажем, что непрерывная функция всегда имеет первообразную. Но эта первообразная не всегда выражается через элементарные функции.

Ниже приведены некоторые интегралы, не выражающиеся элементарными функциями:

1.
$$\int \frac{\sin x}{x} dx;$$

4.
$$\int e^{\pm x^2} dx$$
;

7.
$$\int \frac{dx}{\ln x}$$
;

$$2. \int \frac{\cos x}{x} dx;$$

5.
$$\int \sin x^2 dx;$$

8.
$$\int \sqrt{1 - \alpha^2 \sin^2 x} dx;$$

3.
$$\int \frac{e^x}{x} dx$$
;

6.
$$\int \cos x^2 dx;$$

9.
$$\int \frac{dx}{\sqrt{1-\alpha^2 \sin^2 x}}.$$

3 Понятие интеграла Римана

3.1 Интегральные суммы и интеграл

Определение 3.1.1 Говорят, что на отрезке [a,b] введено разбиение τ , если введена система точек $x_i, i \in \{0,1,...,n\}$, удовлетворяющая условию

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

Замечание 3.1.1 Обычно вводят следующие обозначения:

$$\Delta x_i = x_i - x_{i-1}, \quad \Delta_i = [x_{i-1}, x_i], \quad i \in \{1, 2, ..., n\}.$$

Определение 3.1.2 Величина $\lambda(\tau) = \max_{i \in \{1,2,...,n\}} \Delta x_i$ называется мелкостью (рангом) разбиения (дробления).

Определение 3.1.3 Говорят, что на отрезке [a,b] введено разбиение (или оснащенное разбиение) (τ,ξ) , если на нем введено разбиение τ и выбрана система точек ξ_i , $i \in \{1,2,...,n\}$ таким образом, что $\xi_i \in \Delta_i$.

Определение 3.1.4 Пусть на отрезке [a,b] задана функция f(x) и введено разбиение (τ,ξ) . Величина

$$\sigma_{\tau}(f,\xi) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

называется интегральной суммой для функции f(x) на отрезке [a,b], отвечающей разбиению (au,ξ) .

Определение 3.1.5 Пусть функция f(x) задана на отрезке [a,b]. Говорят, что число I является интегралом Римана от функции f(x) по отрезку [a,b], если

$$\forall \varepsilon > 0 \ \exists \delta : \ \forall \tau : \ \lambda(\tau) < \delta, \ \forall \xi \Rightarrow |\sigma_{\tau}(f,\xi) - I| < \varepsilon.$$

При этом пишут

$$I = \int_{a}^{b} f(x)dx.$$

Замечание 3.1.2 Проще, но с некоторыми оговорками, последнее определение можно переписать в виде

$$I = \lim_{\lambda(\tau) \to 0} \sigma_{\tau}(f, \xi).$$

Замечание 3.1.3 Понятие предела интегральных сумм, вообще говоря, не является частным случаем понятия предела функции, так как интегральная сумма является функцией разбиения, а не его мелкости. В дальнейшем мы часто будем писать $\lambda(\tau) \to 0$, оставляя детальную расшифровку читателю.

Замечание 3.1.4 Аналогично определению предела функции по Гейне, сформулируем равносильное определение интеграла с помощью последовательностей:

Число I называется интегралом Римана функции f(x) по отрезку [a,b], если для любой последовательности оснащенных разбиений (τ_n, ξ_n) отрезка [a,b] такой, что мелкость разбиений $\lambda(\tau_n) \to 0$ при $n \to +\infty$ выполнено $\sigma_{\tau_n}(f,\xi_n) \to I$ при $n \to +\infty$.

Определение 3.1.6 Функция f(x), для которой существует интеграл Pимана по отрезку [a,b] называется интегрируемой по Pиману на этом отрезке (или просто интегрируемой) и обозначается $f \in R[a,b]$.

Пример 3.1.1 Легко показать, что постоянная функция y = C интегрируема по любому отрезку [a,b], причем

$$\int_{a}^{b} Cdx = C(b-a).$$

Действительно, вводя произвольное разбиение (au, ξ) отрезка [a, b],

$$\sigma_{\tau}(y,\xi) = \sum_{i=1}^{n} C\Delta x_i = C\sum_{i=1}^{n} \Delta x_i = C(b-a),$$

откуда и следует требуемое.

Пример 3.1.2 Не всякая функция интегрируема. Оказывается, что функция Дирихле

$$d(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

не интегрируема ни на каком отрезке. Для примера будем рассматривать отрезок [0,1] и пусть τ – разбиение этого отрезка. Выберем в каждом отрезке Δ_i точку $\xi_i \in \mathbb{Q}$. Тогда

$$\sigma_{\tau}(d,\xi) = \sum_{i=1}^{n} d(\xi_i) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = 1.$$

Теперь выберем в каждом отрезке Δ_i точку $\xi_i \in \mathbb{I}$. Тогда

$$\sigma_{\tau}(d,\xi) = \sum_{i=1}^{n} d(\xi_i) \Delta x_i = \sum_{i=1}^{n} 0 \Delta x_i = 0.$$

Тем самым, при стремлении $\lambda(\tau) \to 0$, предел зависит от выбора средних точек ξ , что противоречит определению интеграла.

Для дальнейшего изложения удобно немного расширить определение интеграла Римана.

Определение 3.1.7 По определению полагают

$$\int_{a}^{a} f(x)dx = 0,$$

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx, \ a < b.$$

3.2 Суммы Дарбу и их свойства. Необходимое условие интегрируемости

Для изучения вопросов существования интеграла Римана, полезно рассмотреть две «крайние интегральные суммы», которые, на самом деле, интегральными являются не всегда. **Определение 3.2.1** Пусть функция f(x) задана на отрезке [a,b] и τ - некоторое разбиение этого отрезка. Величины

$$S_{\tau}(f) = \sum_{i=1}^{n} M_i \Delta x_i, \quad M_i = \sup_{x \in \Delta_i} f(x),$$

$$s_{\tau}(f) = \sum_{i=1}^{n} m_i \Delta x_i, \quad m_i = \inf_{x \in \Delta_i} f(x)$$

называют верхней и нижней суммами Дарбу для функции f(x), отвечающими разбиению τ , соответственно.

Замечание 3.2.1 Из определения верхней и нижней сумм Дарбу очевидно неравенство

$$s_{\tau}(f) \leqslant \sigma_{\tau}(f,\xi) \leqslant S_{\tau}(f)$$

для любых оснащенных разбиений (τ, ξ) отрезка [a, b].

Лемма 3.2.1 Ограниченность f сверху (снизу) равносильна конечности верхней суммы $S_{\tau}(f)$ (нижней суммы $s_{\tau}(f)$).

Доказательство. Очевидно.

Замечание 3.2.2 Если $f \in C[a,b]$, то, согласно теореме Вейерштрасса, $m_i = \min_{x \in \Delta_i} f(x)$, $M_i = \max_{x \in \Delta_i} f(x)$, а потому нижняя и верхняя суммы Дарбу для непрерывной функции являются ее наименьшей и наибольшими интегральными суммами, соответственно.

В общем случае последне замечание, конечно, не выполняется, но справедливо следующее утверждение.

Лемма 3.2.2 Справедливы равенства

$$S_{\tau}(f) = \sup_{\xi} \sigma_{\tau}(f, \xi), \quad s_{\tau}(f) = \inf_{\xi} \sigma_{\tau}(f, \xi).$$

Доказательство. Докажем первое равенство. То, что $S_{\tau}(f) \geqslant \sigma_{\tau}(f, \xi)$ уже отмечено в замечании 3.2.1. Пусть f ограничена сверху на [a, b]. Пусть $\varepsilon > 0$, тогда, по определению супремума,

$$\exists \xi_i \in \Delta_i : M_i - \frac{\varepsilon}{b-a} < f(\xi_i), \quad i = 1...n.$$

Домножим каждое неравенство на Δx_i и сложим по i, получим

$$\sum_{i=1}^{n} \left(M_i - \frac{\varepsilon}{b-a} \right) \Delta x_i < \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

или

$$\sum_{i=1}^{n} M_i \Delta x_i - \varepsilon < \sigma_{\tau}(f, \xi),$$

что и означает, что для любого $\varepsilon > 0$ найдется набор точек ξ такой, что

$$S_{\tau}(f) - \varepsilon < \sigma_{\tau}(f, \xi),$$

и $S_{\tau}(f) \geqslant \sigma_{\tau}(f,\xi)$. Тем самым проверено, что

$$S_{\tau}(f) = \sup_{\xi} \sigma_{\tau}(f, \xi).$$

Если же f не ограничена сверху на [a,b], то f не ограничена хотя бы на одном Δ_i . Пусть, для определенности, на Δ_1 . Тогда существует последовательность ξ_1^n , что $f(\xi_1^n) \xrightarrow[n \to +\infty]{} +\infty$. Пусть $\xi_i \in \Delta_i$, $i \geqslant 2$. Тогда

$$\sup_{\xi} \sigma_{\tau}(f, \xi) \geqslant \lim_{n \to +\infty} \left(f(\xi^n) \Delta x_1 + \sum_{i=2}^n f(\xi_i) \Delta x_i \right) = +\infty = S_{\tau}(f)$$

Определение 3.2.2 Пусть на отрезке [a,b] введены разбиения τ_1 и τ_2 . Говорят, что разбиение τ_1 является измельчением разбиения τ_2 , если $\tau_2 \subset \tau_1$.

Лемма 3.2.3 Пусть $\tau_2 \subset \tau_1$, тогда

$$S_{\tau_2}(f) \geqslant S_{\tau_1}(f), \quad s_{\tau_1}(f) \geqslant s_{\tau_2}(f),$$

то есть при измельчении разбиения верхние суммы Дарбу не увеличиваются, а нижние – не уменьшаются.

Доказательство. Достаточно доказать лемму для случая, когда измельчение τ_1 получается из τ_2 добавлением одной точки $\hat{x} \in (x_{k-1}, x_k)$. Тогда

$$S_{\tau_2}(f) = \sum_{i=1}^n M_i \Delta x_i = \sum_{i=1, i \neq k}^n M_i \Delta x_i + M_k \Delta x_k.$$

Пусть

$$M'_{k} = \sup_{x \in [x_{k-1}, \hat{x}]} f(x), \quad M''_{k} = \sup_{x \in [\hat{x}, x_{k}]} f(x),$$

тогда

$$M_k \geqslant M_k', \quad M_k \geqslant M_k''$$

И

$$M_k \Delta x_k = M_k(\hat{x} - x_{k-1}) + M_k(x_k - \hat{x}) \geqslant M'_k(\hat{x} - x_{k-1}) + M''_k(x_k - \hat{x}),$$

откуда

$$S_{\tau_2}(f) \geqslant \sum_{i=1, i \neq k}^n M_i \Delta x_i + M_k'(\hat{x} - x_{k-1}) + M_k''(x_k - \hat{x}) = S_{\tau_1}(f).$$

Второе неравенство доказывается аналогично.

Лемма 3.2.4 Пусть τ_1 и τ_2 – разбиения отрезка [a,b], тогда

$$s_{\tau_1}(f) \leqslant S_{\tau_2}(f),$$

то есть любая нижняя сумма Дарбу не превосходит любой верхней суммы Дарбу.

Доказательство. Разбиение $\tau = \tau_1 \cup \tau_2$ является разбиением отрезка [a,b], причем $\tau_1 \subset \tau$, $\tau_2 \subset \tau$. По лемме 3.2.3 и замечанию 3.2.1,

$$s_{\tau_1}(f) \leqslant s_{\tau}(f) \leqslant S_{\tau}(f) \leqslant S_{\tau_2}(f),$$

что и доказывается утверждение.

Определение 3.2.3 Пусть функция задана и ограничена на [a,b]. Величины

$$I^*(f) = \inf_{\tau} S_{\tau}(f), \quad I_*(f) = \sup_{\tau} s_{\tau}(f)$$

называются верхним и нижним интегралами Дарбу соответственно.

Замечание 3.2.3 Для любых разбиений τ_1 и τ_2 отрезка [a,b] выполнено неравенство

$$s_{\tau_1}(f) \leqslant I_*(f) \leqslant I^*(f) \leqslant S_{\tau_2}(f).$$

Теорема 3.2.1 (Неообходимое условие интегрируемости) $\Pi ycmb\ f \in R[a,b],\ mor\partial a\ f\ or pahuчена\ нa\ [a,b].$

Доказательство. Пусть f, например, не ограничена сверху. Тогда $S_{\tau}(f) = +\infty$ для любого разбиения τ . Поэтому для любого числа I и разбиения τ , найдется такое оснащенное разбиение (τ, ξ) , что

$$\sigma_{\tau}(f,\xi) > I + 1.$$

Значит, никакое число I пределом интегральных сумм не является. \square

3.3 Критерии Дарбу и Римана интегрируемости функции

Теорема 3.3.1 (Критерии интегрируемости) Пусть f задана на [a,b]. Тогда следующие утверждения равносильны:

- 1. $f \in R[a, b];$
- 2. Критерий Дарбу:

$$\forall \ \varepsilon > 0 \ \exists \delta > 0 : \ \forall \tau : \ \lambda(\tau) < \delta \Rightarrow S_{\tau}(f) - s_{\tau}(f) < \varepsilon;$$

3. Критерий Римана:

$$\forall \ \varepsilon > 0 \ \exists \tau : \ S_{\tau}(f) - s_{\tau}(f) < \varepsilon;$$

4.

$$I_* = I^* \quad (=I).$$

Доказательство.

• Докажем $1 \Rightarrow 2$. Пусть функция f(x) интегрируема на отрезке [a,b] и $\varepsilon > 0$. Тогда

$$\exists \ \delta > 0 : \ \forall \tau : \ \lambda(\tau) < \delta \ \forall \xi \quad \Rightarrow \quad |\sigma_{\tau}(f,\xi) - I| < \frac{\varepsilon}{3},$$

откуда

$$I - \frac{\varepsilon}{3} < \sigma_{\tau}(f, \xi) < I + \frac{\varepsilon}{3}.$$

Переходя в правой части неравенства к супремуму по ξ , а в левой части к инфимуму, получается

$$I - \frac{\varepsilon}{3} \leqslant s_{\tau}(f) \leqslant S_{\tau}(f) \leqslant I + \frac{\varepsilon}{3},$$

откуда

$$S_{\tau}(f) - s_{\tau}(f) \leqslant \frac{2\varepsilon}{3} < \varepsilon.$$

- Переход $2 \Rightarrow 3$ очевиден.
- Докажем $3 \Rightarrow 4$. Пусть $\varepsilon > 0$ и разбиение τ такое, что $S_{\tau}(f) s_{\tau}(f) < \varepsilon$. Заметим, что тогда f ограничена. Так как (из определения и свойств интегралов Дарбу)

$$s_{\tau} \leqslant I_* \leqslant I^* \leqslant S_{\tau},$$

то $0 \leqslant I^* - I_* < \varepsilon$ для любого $\varepsilon > 0$. Следовательно, $I_* = I^*$.

• И, наконец, докажем $4\Rightarrow 1$. Пусть $I^*=I_*=I$. Тогда для $\varepsilon>0$

$$I_* = \sup_{\tau} s_{\tau} \quad \Rightarrow \quad \exists \tau_1 : \ s_{\tau_1} > I_* - \varepsilon/4,$$

$$I^* = \inf_{\tau} S_{\tau} \quad \Rightarrow \quad \exists \tau_2 : \ S_{\tau_2} < I^* + \varepsilon/4.$$

Пусть теперь τ – произвольное разбиение мелкости $\lambda(\tau) < \delta$ (значение δ выберем позже). Дополним его точками разбиений τ_1 и τ_2 и рассмотрим разбиение $\widetilde{\tau} = \tau \cup \tau_1 \cup \tau_2$.

Пусть k – число точек в разбиении $\tau_1 \cup \tau_2$, $M = \sup_{[a,b]} f$, $m = \inf_{[a,b]} f$. Будем считать, что m < M (иначе $f = \operatorname{const} \in R[a,b]$).

Оценим наибольшее отклонение нижней суммы Дарбу разбиения τ по сравнению с его измельчением $\tilde{\tau}$. Так как к τ добавились k точек, то значение слагаемых суммы s_{τ} могло измениться на k отрезках разбиения. На каждом таком отрезке слагаемое $m_i \Delta x_i$ увеличилось не более, чем на $\delta(M_i - m_i) \leq \delta(M - m)$. Значит, вся сумма s_{τ} могла вырасти не больше, чем на $\delta k(M - m)$:

$$s_{\widetilde{\tau}} - s_{\tau} \leqslant k\delta(M - m).$$

Аналогично, верхняя сумма S_{τ} при добавлении точек $\tau_1 \cup \tau_2$ может уменьшиться не более, чем на такую же величину:

$$S_{\tau} - S_{\widetilde{\tau}} \leqslant k\delta(M - m).$$

Рис. 1: Изменение нижней суммы s_{τ} на отрезке $[x_{i-1}, x_i]$ при добавлении одной точки. Зеленая штриховка – реальное изменение, серая штриховка – максимально возможное изменение (с запасом)

Таким образом, имеем

$$s_{\tau} \geqslant s_{\widetilde{\tau}} - k\delta(M - m) \geqslant s_{\tau_1} - k\delta(M - m) > I - k\delta(M - m) - \varepsilon/4,$$

$$S_{ au} \leqslant S_{\widetilde{ au}} + k\delta(M-m) \leqslant S_{ au_2} + k\delta(M-m) < I + k\delta(M-m) + arepsilon/4,$$
откуда

$$S_{\tau} - s_{\tau} < 2k\delta(M - m) + \varepsilon/2.$$

Теперь понятно, как надо выбирать δ . Возьмем

$$\delta = \min \left\{ \lambda(\tau_1), \lambda(\tau_2), \frac{\varepsilon}{4k(M-m)} \right\}.$$

Тогда для любого τ мелкостью меньше δ имеем $S_{\tau}-s_{\tau}<\varepsilon$.

Осталось заметить, что из неравенств

$$s_{\tau} \leqslant \sigma_{\tau}(\xi) \leqslant S_{\tau}, \quad s_{\tau} \leqslant I_* = I = I^* \leqslant S_{\tau}$$

следует для любого оснащения ξ : $|\sigma_{\tau}(\xi) - I| < S_{\tau} - s_{\tau} < \varepsilon$, что и означает $f \in R[a,b]$.

Определение 3.3.1 Пусть функция f(x) задана на множестве E. Колебанием функции на этом множестве называется величина

$$\omega(f, E) = \sup_{x,y \in E} |f(x) - f(y)|.$$

Из определений верхней и нижней граней легко получить, что

$$\omega(f, E) = \sup_{x \in E} f(x) - \inf_{x \in E} f(x).$$

Замечание 3.3.1 В критериях Дарбу и Римана разность $S_{\tau}-s_{\tau}$ можно заменять на

$$S_{\tau} - s_{\tau} = \sum_{i=1}^{n} \omega_i(f) \Delta x_i,$$

 $\epsilon \partial e \ \omega_i(f) = M_i - m_i - \kappa$ олебание функции f на отрезке $[x_{i-1}, x_i]$.

3.4 Свойства интегрируемых функций

Ниже приведены основные свойства интегрируемых функций, используемые в дальнейшем.

Теорема 3.4.1 (Свойства интегрируемых функций) $\Pi ycmb$ $f(x), g(x) \in R[a,b], \ mor\partial a$

© Бойцев А.А., Трифанова Е.С., 2025

- 1. $\alpha f(x) + \beta g(x) \in R[a, b], \ \alpha, \beta \in \mathbb{R}$.
- 2. $f(x)g(x) \in R[a,b]$.
- 3. $|f(x)| \in R[a,b]$.
- 4. Ecnu $|f(x)| \ge C > 0$ на [a, b], то $\frac{1}{f(x)} \in R[a, b]$.
- 5. $\Pi ycmb [c,d] \subset [a,b], mor \partial a f(x) \in R[c,d].$

Доказательство. 1. Так как

$$\begin{split} |\alpha f(x) + \beta g(x) - \alpha f(y) - \beta g(y)| &\leqslant |\alpha| |f(x) - f(y)| + |\beta| |g(x) - g(y)| \leqslant \\ &\leqslant |\alpha| \omega(f, E) + |\beta| \omega(g, E), \end{split}$$

то, переходя к супремуму в левой части получается, что

$$\omega(\alpha f + \beta g, E) \leq |\alpha|\omega(f, E) + |\beta|\omega(g, E).$$

Пусть $\varepsilon > 0$. Так как $f \in R[a,b]$, то по следствию 3.3.1

$$\exists \delta_1: \ \forall \tau: \ \lambda(\tau) < \delta_1 \Rightarrow \sum_{i=1}^n \omega(f, \Delta_i) \Delta x_i < \frac{\varepsilon}{2(|\alpha|+1)}.$$

Аналогично, так как $g \in R[a,b]$, то по следствию 3.3.1

$$\exists \delta_2: \ \forall \tau: \ \lambda(\tau) < \delta_2 \Rightarrow \sum_{i=1}^n \omega(g, \Delta_i) \Delta x_i < \frac{\varepsilon}{2(|\beta| + 1)}$$

Пусть $\delta = \min(\delta_1, \delta_2)$, тогда для любого τ такого, что $\lambda(\tau) < \delta$ выполняется

$$\sum_{i=1}^{n} \omega_{i}(\alpha f + \beta g) \Delta x_{i} \leq |\alpha| \sum_{i=1}^{n} \omega_{i}(f) \Delta x_{i} + |\beta| \sum_{i=1}^{n} \omega_{i}(g) \Delta x_{i} \leq \frac{|\alpha| \varepsilon}{2(|\alpha| + 1)} + \frac{|\beta| \varepsilon}{2(|\beta| + 1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Значит, по критерию Дарбу, $\alpha f + \beta g \in R[a, b]$.

2. Так как $f, g \in R[a, b]$, то по необходимому условию они ограничены на [a, b], то есть

$$\exists C: |f(x)| < C, |g(x)| < C, \forall x \in [a, b].$$

Кроме того, так как

$$|f(x)g(x)-f(y)g(y)|=|f(x)g(x)-f(x)g(y)+f(x)g(y)-f(y)g(y)|\leqslant$$

$$\leq |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)| \leq C(\omega_i(f) + \omega_i(g)),$$

то, переходя к супремуму в левой части неравенства, получим, что

$$\omega_i(fg) \leqslant C(\omega_i(f) + \omega_i(g)).$$

Дальнейшие обоснования проводятся так же, как в пункте 1, и остаются в качестве упражнения.

3. Так как

$$||f(x)| - |f(y)|| \leq |f(x) - f(y)| \leq \omega_i(f),$$

то, переходя к супремуму в левой части неравенства, получается, что

$$\omega_i(|f|) \leqslant \omega_i(f)$$
.

Дальнейшие обоснования проводятся так же, как в пункте 1, и остаются в качестве упражнения.

4. Tak kak

$$\left| \frac{1}{f(x)} - \frac{1}{f(y)} \right| = \left| \frac{f(x) - f(y)}{f(x)f(y)} \right| \leqslant \frac{|f(x) - f(y)|}{C^2} \leqslant \frac{\omega_i(f)}{C^2},$$

то, переходя к супремуму в левой части неравенства, получается, что

$$\omega_i\left(\frac{1}{f}\right) \leqslant \frac{\omega_i(f)}{C^2}.$$

Дальнейшие обоснования проводятся так же, как в пункте 1, и остаются в качестве упражнения.

5. Пусть $\varepsilon > 0$. Так как $f \in R[a,b]$, то, согласно теореме Дарбу,

$$\exists \delta: \ \forall \tau: \ \lambda(\tau) < \delta \Rightarrow \sum_{i=1}^{n} \omega_i(f) \Delta x_i < \varepsilon.$$

Пусть τ' – произвольное разбиение отрезка [c,d] такое, что $\lambda(\tau') < \delta$. Дополним его до разбиения τ отрезка [a,b] так, чтобы $\lambda(\tau) < \delta$, введя разбиения отрезков [a,c] и [d,b], но не добавляя новых точек в отрезок [c,d]. Тогда

$$\sum_{[c,d]} \omega_i(f) \Delta x_i \leqslant \sum_{[a,b]} \omega_i(f) \Delta x_i < \varepsilon,$$

так как все слагаемые, входящие в левую сумму, входят и в правую, и $\omega_i(f) \geqslant 0$. Тем самым показано, что $f \in R[c,d]$.

Для дальнейшего изложения потребуется еще одно важное свойство интегрируемых функций, которое сформулировано ниже.

Теорема 3.4.2 Пусть $f(x) \in R[a, c], f(x) \in R[c, b], morda f(x) \in R[a, b].$

Доказательство. Пусть $\varepsilon > 0$. Так как функция $f \in R[a,c]$, то по критерию Римана

 $\exists \tau_1: \sum_{[a,c]} \omega_i(f) \Delta x_i < \frac{\varepsilon}{2}.$

Так как $f \in R[c,b]$, то по критерию Римана

$$\exists \tau_2: \sum_{[c,b]} \omega_i(f) \Delta x_i < \frac{\varepsilon}{2}.$$

Разбиение $au= au_1\cup au_2$ является разбиением отрезка [a,b], причем

$$\sum_{[a,b]} \omega_i(f) \Delta x_i = \sum_{[a,c]} \omega_i(f) \Delta x_i + \sum_{[c,b]} \omega_i(f) \Delta x_i < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Значит, по критерию Римана, $f \in R[a, b]$.

3.5 Классы интегрируемых функций

Теорема 3.5.1 (Интегрируемость непрерывной функции)

Hепрерывная на отрезке [a,b] функция интегрируема на нем, т.е.

$$(f \in C[a,b]) \Rightarrow (f \in R[a,b]).$$

Доказательство. Пусть $\varepsilon > 0$. Непрерывная на отрезке функция равномерно непрерывна на нем по теореме Кантора, а значит

$$\exists \ \delta > 0 : \ \forall x_1, x_2 \in [a, b] : \ |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \frac{\varepsilon}{b - a}.$$

Пусть au – разбиение отрезка [a,b], причем $\lambda(au)<\delta$, тогда

$$\omega_i(f) < \frac{\varepsilon}{b-a}$$

И

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \varepsilon.$$

Значит, по критерию Римана, $f \in R[a,b]$.

Теорема 3.5.2 (Конечное число точек разрыва) Пусть f задана и ограничена на [a,b]. Пусть, кроме того, множество точек разрыва функции f конечно. Тогда $f \in R[a,b]$.

Доказательство. Так как функция ограничена, то $|f| \leq C$. Тогда $\omega(f, [a, b]) \leq 2C$. Пусть $\varepsilon > 0$. Построим вокруг каждой точки разрыва интервал радиуса $\delta_1 = \varepsilon/(16Ck)$, где k – количество точек разрыва.

Дополнение к этому набору интервалов — это набор отрезков, на каждом из которых функция f непрерывна, а значит и равномерно непрерывна. Значит, так как число отрезков конечно, то существует δ_2 , что если x', x'' из какого-то отрезка, причем $|x'-x''|<\delta_2$, то

$$|f(x') - f(x'')| < \frac{\varepsilon}{2(b-a)}.$$

Пусть $\delta = \min(\delta_1, \delta_2)$ и τ – разбиение отрезка [a, b] такое, что $\lambda(\tau) < \delta$.

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i = \sum_{i=1}^{n} \omega_i(f) \Delta x_i + \sum_{i=1}^{n} \omega_i(f) \Delta x_i,$$

где первая сумма идет по отрезкам, не имеющим общих точек с построенными интервалами, а вторая – по всем остальным. Поэтому

$$\sum '\omega_i(f)\Delta x_i \leqslant \frac{\varepsilon}{2(b-a)}(b-a) = \frac{\varepsilon}{2}.$$

Сумма длин оставшихся частей меньше, чем

$$(\delta + 2\delta_1 + \delta)k \leqslant \frac{\varepsilon}{4C},$$

а значит

$$\sum ''\omega_i(f)\Delta x_i \leqslant \frac{\varepsilon}{4C}2C = \frac{\varepsilon}{2}.$$

В итоге получаем требуемое.

Теорема 3.5.3 (Об интегрируемости монотонной функции)

3 a d a н h a я и монотон h a я на отрезке [a,b] функция <math>f(x) интегрируема на этом отрезке.

Доказательство. Интегрируемость постоянной функции уже известна. Пусть функция f(x) не постоянна, не убывает и $\varepsilon > 0$. Тогда положив $\delta = \frac{\varepsilon}{f(b) - f(a)}$ и взяв разбиение τ отрезка [a,b] такое, что $\lambda(\tau) < \delta$, выполняется

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i < \frac{\varepsilon}{f(b) - f(a)} \sum_{i=1}^{n} \omega_i(f) = \frac{\varepsilon}{f(b) - f(a)} \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \varepsilon.$$

Значит, согласно критерию Римана, $f \in R[a, b]$.

Замечание 3.5.1 Монотонная функция может иметь счетное число точек разрыва. Например,

$$f(x) = \begin{cases} 1, & x = 0\\ 1 - \frac{1}{2^n}, & \frac{1}{2^n} \leqslant x < \frac{1}{2^{n-1}} \end{cases}.$$

3.6 Свойства интеграла Римана. Первая теорема о среднем.

Справедливо свойство линейности интеграла.

Теорема 3.6.1 (Линейность определенного интеграла) $\Pi ycmv \ f,g \in R[a,b], \ mor\partial a$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Доказательство. То, что $\alpha f + \beta g \in R[a,b]$ известно из теоремы 3.4.1. Пусть $I_f = \int_a^b f(x) dx, \ I_g = \int_a^b g(x) dx.$ Тогда для разбиения (τ,ξ) имеем

$$\left| \sigma_{\tau}(\alpha f + \beta g, \xi) - \alpha I_f - \beta I_g \right| \leq |\alpha| \left| \sigma_{\tau}(f, \xi) - I_f \right| + |\beta| \left| \sigma_{\tau}(g, \xi) - I_g \right|.$$

Пользуясь определением интеграла Римана для I_f и I_g и интегрируемостью функции $\alpha f + \beta g$, получаем требуемое.

Теорема 3.6.2 (Аддитивность по промежутку интегрирования) $\Pi ycmb$ $f \in R[a,b], c \in [a,b], mor \partial a$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Доказательство. Интегрируемость функции f на промежутках [a,c] и [c,b] известна из теоремы 3.4.1. Пусть τ – разбиение отрезка [a,b], содержащее точку c. Тогда оно порождает разбиения τ_1 отрезка [a,c] и τ_2 отрезка [c,b], причем $\lambda(\tau_1) \leqslant \lambda(\tau)$ и $\lambda(\tau_2) \leqslant \lambda(\tau)$. Так как

$$\sum_{[a,b]} f(\xi_i) \Delta x_i = \sum_{[a,c]} f(\xi_i) \Delta x_i + \sum_{[c,b]} f(\xi_i) \Delta x_i,$$

и при $\lambda(\tau) \to 0$ одновременно $\lambda(\tau_1) \to 0$ и $\lambda(\tau_2) \to 0$, то получаем требуемое.

Следствие 3.6.3 Пусть $f \in R(\min(a, b, c), \max(a, b, c))$. Тогда

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Доказательство. Доказательство моментально следует из предыдущей теоремы и соглашений о том, что

$$\int_{a}^{a} f(x)dx = 0, \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

Следующее свойство интеграла часто называют его монотонностью.

Теорема 3.6.4 (Монотонность интеграла) Пусть $a \leq b$, $f, g \in R[a, b]$, причем $f(x) \leq g(x)$, $x \in [a, b]$, тогда

$$\int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} g(x)dx.$$

Доказательство. Для интегральных сумм справедливо неравенство

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i \leqslant \sum_{i=1}^{n} g(\xi_i) \Delta x_i.$$

Переходя к пределу при $\lambda(\tau) \to 0$, получается требуемое.

Следствие 3.6.5 Пусть $a\leqslant b,\ f\in R[a,b],\ m=\inf_{x\in [a,b]}f(x),\ M=\sup_{x\in [a,b]}f(x),$ тогда

$$m(b-a) \leqslant \int_{a}^{b} f(x)dx \leqslant M(b-a).$$

Замечание 3.6.1 В теореме о монотонности интеграла из строгого неравенства f(x) < g(x) на [a,b] следует строгое неравенство между интегралами: $\int_a^b f(x)dx < \int_a^b g(x)dx$. Доказательство этого факта значительно сложнее (попытайтесь!)

Теорема 3.6.6 (Об отделимости от нуля) Пусть $a < b, f \in R[a,b],$ $f \geqslant 0$ и существует точка $x_0 \in [a,b]$ такая, что $f(x_0) > 0$, причем f непрерывна в x_0 . Тогда

$$\int_{a}^{b} f(x)dx > 0$$

Доказательство. Так как $f(x_0) > 0$ и f непрерывна в точке x_0 , то существует окрестность $U(x_0)$, что при $x \in U(x_0)$ выполняется $f(x) > f(x_0)/2$. Тогда, в силу монотонности интеграла,

$$\int_{a}^{b} f(x)dx \geqslant \int_{[a,b]\cap U(x_0)} f(x)dx > \frac{f(x_0)}{2} \int_{[a,b]\cap U(x_0)} dx > 0.$$

Теорема 3.6.7 Пусть $f \in R[a,b]$, тогда

$$\left| \int_{a}^{b} f(x) dx \right| \leq \left| \int_{a}^{b} |f(x)| dx \right|.$$

Доказательство. Интегрируемость функции |f| известна из теоремы 3.4.1. Так как

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i \right| \leqslant \left| \sum_{i=1}^{n} |f(\xi_i)| \Delta x_i \right|,$$

то переходя к пределам получается требуемое.

Теорема 3.6.8 (Первая теорема о среднем) Пусть $f,g \in R[a,b], g(x)$ не меняет знак на $[a,b], m = \inf_{x \in [a,b]} f(x), M = \sup_{x \in [a,b]} f(x),$ тогда

$$\exists \mu \in [m, M] : \int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx.$$

Кроме того, если $f(x) \in C[a,b]$, то

$$\exists \xi \in [a, b] : \int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

© Бойцев А.А., Трифанова Е.С., 2025

Доказательство. Пусть $g(x) \geqslant 0$ на отрезке [a, b], тогда

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x), \ x \in [a, b]$$

и по теореме 3.6.4

$$m\int_{a}^{b}g(x)dx \leqslant \int_{a}^{b}f(x)g(x)dx \leqslant M\int_{a}^{b}g(x)dx.$$

Если $\int_a^b g(x)dx=0$, то в качестве μ можно взять любое число из отрезка [m,M], так как из неравенства выше следует, что

$$\int_{a}^{b} f(x)g(x)dx = 0.$$

Если же $\int\limits_a^b g(x)dx \neq 0$, то $\int\limits_a^b g(x)dx > 0$ и, поделив на этот интеграл, получается неравенство

$$m \leqslant \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx} \leqslant M.$$

Положив

$$\mu = \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx},$$

получается требуемое.

Если предположить, что $f(x) \in C[a,b]$, то по теореме Больцано-Коши для каждого $\mu \in [m,M]$ существует $\xi \in [a,b]$, что $f(\xi) = \mu$, что доказывает вторую часть утверждения.

Замечание 3.6.2 Можно доказать, что в в условиях теоремы в предположении, что $f \in C[a,b], \exists \xi \in (a,b)$:

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

Обязательно проделайте это!

3.7 Интеграл с переменным верхним пределом и его свойства

Определение 3.7.1 Пусть $f \in R[a,b]$ и $x \in [a,b]$. Функция

$$\Phi(x) = \int_{a}^{x} f(t)dt$$

называется интегралом с переменным верхним пределом.

Ниже будут рассмотрены стандартные свойства функции $\Phi(x)$: ее непрерывность и дифференцируемость.

Теорема 3.7.1 (О непрерывности $\Phi(x)$)

$$\Phi(x) \in C[a,b].$$

Доказательство. Пусть $x_0 \in [a,b], x_0 + \Delta x \in [a,b]$. Так как функция $f \in R[a,b]$, то она ограничена на этом отрезке, то есть

$$|f(x)| \leqslant C, \ x \in [a, b].$$

Тогда

$$|\Phi(x_0 + \Delta x) - \Phi(x_0)| = \left| \int_{x_0}^{x_0 + \Delta x} f(x) dx \right| \leqslant \left| \int_{x_0}^{x_0 + \Delta x} |f(x)| dx \right| \leqslant$$

$$\leqslant C \left| \int_{x_0}^{x_0 + \Delta x} dx \right| = C|\Delta x|.$$

Значит, при $\Delta x \to 0$ выполняется $\Phi(x_0 + \Delta x) \to \Phi(x_0)$, что и означает непрерывность функции $\Phi(x)$ в точке x_0 . Так как x_0 – произвольная точка отрезка [a,b], то утверждение доказано.

Теорема 3.7.2 (О производной $\Phi(x)$) $\Phi(x)$ дифференцируема в точках непрерывности функции f(x), причем

$$(\Phi(x))'(x_0) = f(x_0).$$

Доказательство. Пусть f(x) непрерывна в точке x_0 и $x_0 + \Delta x \in [a, b]$.

$$\left| \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} - f(x_0) \right| = \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(x) dx - f(x_0) \right| =$$

$$= \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} (f(x) - f(x_0)) dx \right|.$$

Пусть $\varepsilon > 0$, тогда (в силу непрерывности функции f(x))

$$\exists \delta > 0 : \forall x \in [a, b] : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Пусть $\Delta x < \delta$, тогда

$$\left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} (f(x) - f(x_0)) dx \right| \leqslant \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} |f(x) - f(x_0)| dx \right| < \varepsilon \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} dx \right| = \varepsilon,$$

что и означает, что

$$\lim_{\Delta x \to 0} \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} = \Phi'(x_0) = f(x_0).$$

Следствие 3.7.3 Всякая непрерывная на отрезке [a,b] функция f(x) имеет на этом отрезке первообразную, причем любая ее первообразная имеет вид

$$F(x) = \int_{a}^{x} f(x)dx + C = \Phi(x) + C.$$

3.8 Формула Ньютона-Лейбница

Ниже приведена основная формула интегрального исчисления.

Теорема 3.8.1 (Формула Ньютона-Лейбница) $\mathit{Пусть}\ f \in C[a,b]\ u$ F(x) – ee $nepsooбразная. <math>Tor\partial a$

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$

П

Доказательство. Согласно следствию 3.7.3, любая первообразная непрерывной функции имеет вид

$$F(x) = \int_{a}^{x} f(x)dx + C.$$

Так как

$$F(a) = \int_{a}^{a} f(x)dx + C = C,$$

то C = F(a). Положив в равенстве

$$F(x) = \int_{a}^{x} f(x)dx + F(a)$$

x = b, получается

$$F(b) = \int_{a}^{b} f(x)dx + F(a) \Rightarrow \int_{a}^{b} f(x)dx = F(b) - F(a).$$

Формула Ньютона-Лейбница справедлива и при предположении наличия первообразной у интегрируемой функции, а именно справедлива следующая теорема.

Теорема 3.8.2 (Усиленная формула Ньютона-Лейбница) Пусть $f \in R[a,b]$ и существует F(x) – некоторая первообразная данной функции на [a,b], тогда

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$

Доказательство. Положим $x_k=a+\frac{k(b-a)}{n},\ k\in\{0,1,2,...,n\}$ – разбиение отрезка [a,b]. Тогда

$$F(b) - F(a) = F(x_n) - F(x_0) = \sum_{k=1}^{n} (F(x_k) - F(x_{k-1})).$$

Согласно теореме Лагранжа, существует $\xi_k^n \in (x_{k-1}, x_k)$, что

$$F(x_k) - F(x_{k-1}) = f(\xi_k^n)(x_k - x_{k-1}),$$

© Бойцев А.А., Трифанова Е.С., 2025

а тогда

$$F(b) - F(a) = \sum_{k=1}^{n} f(\xi_k^n) \Delta x_k$$

и мы получаем интегральную сумму для функции f по отрезку [a,b] с оснащенным разбиением (τ,ξ) . Так как $f\in R[a,b]$ и так как при $n\to +\infty$ выполняется $\lambda(\tau)\to 0$, то

$$\lim_{n \to +\infty} \sum_{k=1}^{n} f(\xi_k^n) \Delta x_k = \int_a^b f(x) dx.$$

С другой стороны,

$$F(b) - F(a) = \lim_{n \to +\infty} \sum_{k=1}^{n} f(\xi_k^n) \Delta x_k,$$

а значит

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Замечание 3.8.1 Доказанная формула Ньютона-Лейбница справедлива для любой первообразной интегрируемой функции. Ясно, что значение интеграла не зависит от выбора этой первообразной, ведь если выбрана первообразная F(x) + C, то

$$F(b) - F(a) = F(b) + C - F(a) - C.$$

Оказывается, формула Ньютона-Лейбница справедлива и для обобщенных первообразных.

Теорема 3.8.3 (Обобщение формулы Ньютона-Лейбница) Пусть $f(x) \in R[a,b]$ и F(x) – обобщенная первообразная функции f(x) на [a,b]. Тогда

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Доказательство. Пусть $\alpha_1,\alpha_2,...,\alpha_{k-1}$ – точки внутри (a,b), в которых нарушено условие F'(x)=f(x). Добавим к ним $\alpha_0=a,\ \alpha_k=b$. Так как

интеграл – непрерывная функция по обоим пределам, то

$$\int_{\alpha_{p-1}}^{\alpha_p} f(x)dx = \lim_{\varepsilon \to 0} \int_{\alpha_{p-1} + \varepsilon}^{\alpha_p - \varepsilon} f(x)dx = \lim_{\varepsilon \to 0} \left(F(\alpha_p - \varepsilon) - F(\alpha_{p-1} + \varepsilon) \right) =$$

$$= F(\alpha_p) - F(\alpha_{p-1}),$$

где последнее равенство справедливо ввиду того, что F – непрерывная функция. Тогда

$$\int_{a}^{b} f(x)dx = \sum_{p=1}^{k} \int_{\alpha_{p-1}}^{\alpha_{p}} f(x)dx = \sum_{p=1}^{k} (F(\alpha_{p}) - F(\alpha_{p-1})) =$$

$$= F(\alpha_{k}) - F(\alpha_{0}) = F(b) - F(a)$$

Замечание 3.8.2 Не каждая интегрируемая функция имеет первообразную, и не каждая функция, имеющая первообразную, интегрируема.

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

дифференцируема, а значит имеет первообразную, но $f' \notin R[-1,1]$ (в силу неограниченности).

C другой стороны, функция $f(x) = \operatorname{sign} x \in R[-1,1]$, но не имеет первообразной на этом промежутке. Она имеет обобщенную первообразную.

Обязательно придумайте пример интегрируемой функции, не имеющей даже обобщенной первообразной.

Вывод: интегрируемость и наличие первообразной - вещи разные.

3.9 Формулы замены переменной и интегрирования по частям

Теорема 3.9.1 (Формула интегрирования по частям) Пусть $u, v \partial u \phi$ -ференцируемы на [a, b], причем $u', v' \in R[a, b]$, тогда

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du.$$

Доказательство. Согласно теоремам о действиях с интегрируемыми функциями, $uv' \in R[a,b]$ и $u'v \in R[a,b]$. Кроме того, $(uv)' = u'v + uv' \in R[a,b]$, а значит, по усиленной формуле Ньютона-Лейбница,

$$\int_{a}^{b} u'v dx + \int_{a}^{b} uv' dx = \int_{a}^{b} (u'v + uv') dx = \int_{a}^{b} (uv)' dx = uv \Big|_{a}^{b}.$$

Пример 3.9.1 Вычислить интеграл

$$\int_{0}^{\pi/2} \sin^n x dx.$$

 $\Pi ycmb$

$$I_n = \int_{0}^{\pi/2} \sin^n x dx.$$

Ясно, что $I_0=\frac{\pi}{2},\ I_1=1.\ \Pi ycmv\ n>1,\ mor\partial a$

$$\int_{0}^{\pi/2} \sin^{n} x dx = \int_{0}^{\pi/2} \sin^{n-1}(x) d(-\cos(x)) = (n-1) \int_{0}^{\pi/2} \sin^{n-2} x \cos^{2} x dx =$$

$$= (n-1)(I_{n-2} - I_n),$$

 $om\kappa y\partial a$

$$I_n = \frac{n-1}{n} I_{n-2}.$$

Ясно, что тогда

$$I_n = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2}, & n = 2k\\ \frac{(n-1)!!}{n!!}, & n = 2k-1 \end{cases}$$

Теорема 3.9.2 (Первый вариант формулы замены переменной)

Пусть $f(x) \in C[a,b], \ x = \varphi(t) : [\alpha,\beta] \to [a,b], \ \varphi(t)$ дифференцируема и $\varphi'(t) \in R[\alpha,\beta], \ mor\partial a$

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Доказательство. Ясно, что интеграл от правой функции определен, так как $f(\varphi(t)) \in C[\alpha, \beta] \Rightarrow f(\varphi(t)) \in R[\alpha, \beta]$. По свойствам интегрируемых функций, $f(\varphi(t))\varphi'(t) \in R[\alpha, \beta]$, причем $F(\varphi(t))$ – первообразная этой функции, если F(x) – первообразная f(x). Тогда

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx.$$

Пример 3.9.2 Вычислить интеграл (a > 0)

$$\int_{0}^{a} \sqrt{a^2 - x^2} dx.$$

Из геометрических соображений ответ $\frac{\pi}{4}a^2$. Проверим это. Сделаем замену $x=a\sin t$. Тогда

$$\int_{0}^{a} \sqrt{a^{2} - x^{2}} dx = \int_{0}^{\pi/2} a^{2} \cos^{2} t dt = a^{2} \int_{0}^{\pi/2} \left(\frac{1 + \cos 2t}{2} \right) dt = \frac{\pi}{4} a^{2}.$$

Часто теорему о замене переменной дают и в более общей форме.

Теорема 3.9.3 (Второй вариант формулы замены переменной) $\Pi y cmb \ \varphi(t) \ \partial u \phi \phi e p e н ц u p y e ма \ u \ cm p o г о монот о н н а \ [\alpha, \beta], \ d f \in R[\varphi(\alpha), \varphi(\beta)].$ То г д а

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Ясно, что здесь от функции φ больше требований, а от f – меньше. Примем эту теорему без доказательства.

3.10 Интегралы от четной, нечетной и периодической функций

Теорема 3.10.1 Пусть $f \in R[0,a]$ и является четной. Тогда

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$

Доказательство. Ясно, что $f \in R[-a, a]$, так как f(-x) = f(x).

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx.$$

В первом интеграле можно сделать замену t = -x, dt = -dx, откуда

$$\int_{-a}^{0} f(x)dx = -\int_{a}^{0} f(-t)dt = \int_{0}^{a} f(t)dt,$$

значит

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} f(t)dt + \int_{0}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$

Теорема 3.10.2 Пусть $f \in R[0,a]$ и является нечетной. Тогда

$$\int_{-a}^{a} f(x)dx = 0.$$

Доказательство. Доказательство аналогично доказательству теоремы 3.10.1 и предлагается в качестве упражнения.

Теорема 3.10.3 Пусть $f \in R[0,T]$ и является периодической с периодом T, тогда

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx, \ a \in \mathbb{R}.$$

Доказательство. Воспользуемся аддитивностью интеграла:

$$\int_{a}^{a+T} f(x)dx = \int_{a}^{0} + \int_{0}^{T} + \int_{T}^{a+T} =$$

и в последнем интеграле сделаем замену x=t+T

$$= \int_{a}^{0} f(x)dx + \int_{0}^{T} f(x)dx + \int_{0}^{a} f(t+T)dt =$$

(периодичность f: f(t+T) = f(t))

$$= \int_{a}^{0} f(x)dx + \int_{0}^{T} f(x)dx + \int_{0}^{a} f(t)dt = \int_{0}^{T} f(x)dx.$$

3.11 Формула Валлиса

Теорема 3.11.1 (Формула Валлиса)

$$\pi = \lim_{n \to +\infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$$

Доказательство. Ясно, что при $x \in (0, \frac{\pi}{2}), n \in \mathbb{N}$, выполняется цепочка неравенств

$$\sin^{2n+1}(x) < \sin^{2n}(x) < \sin^{2n-1}(x).$$

Обозначив

$$I_n = \int_{0}^{\pi/2} \sin^n x dx,$$

получим

$$I_{2n+1} < I_{2n} < I_{2n-1} \Leftrightarrow \frac{(2n)!!}{(2n+1)!!} < \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!} < \frac{(2n-2)!!}{(2n-1)!!}$$

или

$$\frac{1}{2n+1} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 < \frac{\pi}{2} < \frac{1}{2n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2.$$

Пусть

$$x_n = \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2,$$

тогда

$$\pi < x_n < \frac{2n+1}{2n}\pi,$$

откуда и получается требуемое.

4 Приложения определенного интеграла

Рассмотрим применение интеграла Римана для вычисления площади фигуры и длины кривой.

Понятие площади некоторых геометрических фигур известно из школьного курса геометрии. Определение площади для более широкого класса множеств и критерии квадрируемости (то есть существование площади) мы дадим позже (с помощью теории меры).

4.1 Площадь в декартовых координатах

Определение 4.1.1 Пусть $f:[a,b] \to \mathbb{R}, f \geqslant 0$. Множество

$$G_f = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], \ 0 \le y \le f(x)\}$$

называется подграфиком функции f. Если функция f непрерывна, то подграфик называют криволинейной трапецией.

Для функции $f \in R[a,b]$ и $f \geqslant 0$ на [a,b] из геометрического смысла определения интеграла Римана имеем выражение для площади подграфика:

$$S(G_f) = \int_a^b f(x)dx.$$

Для функции $f \in R[a,b]$ и $f \leqslant 0$ на [a,b] площадь надграфика будет равна

$$S(G_f) = -\int_a^b f(x)dx,$$

где $G_f = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], f(x) \leq y \leq 0\}.$

Теорема 4.1.1 Пусть $f,g \in R[a,b], f \leqslant g$, тогда площадь фигуры $S(G_{f,g})$

$$G_{f,g} = \{(x,y) \in \mathbb{R}^2 : x \in [a,b], \ f(x) \le y \le g(x)\}$$

вычисляется по формуле

$$S(G_{f,g}) = \int_{a}^{b} (g - f) dx.$$

Доказательство. Для доказательства достаточно перенести фигуру выше оси абсцисс, добавив к f и g такую постоянную c, чтобы $f+c\geqslant 0$. Тогда

$$S(G_{f,g}) = S(G_{f+c,g+c}) = S(G_{g+c}) - S(G_{f+c}) =$$

$$= \int_{a}^{b} (g+c)dx - \int_{a}^{b} (f+c)dx = \int_{a}^{b} (g-f)dx.$$

4.2 Площадь в полярных координатах

Полярные координаты (r, φ) , согласованные с декартовыми координатами (x, y) задаются равенствами

$$\begin{cases} x = r\cos\varphi; \\ y = r\sin\varphi. \end{cases}$$

Пусть точка M имеет декартовы координаты (x,y). Тогда её полярные координаты (r,φ) имеют следующий смысл: r – расстояние от точки M до полюса O, φ – угол, образованный радиус вектором OM и полярной осью OX. При этом

$$r = \sqrt{x^2 + y^2}$$
, $\operatorname{tg} \varphi = \frac{y}{x}$.

Аналогом криволинейной трапеции будет криволинейный сектор.

Определение 4.2.1 Пусть $0 < \beta - \alpha \leqslant 2\pi, \ f: [\alpha, \beta] \to \mathbb{R}, \ f \geqslant 0$. Множество

$$\widetilde{G_f} = \{ (r\cos\varphi, r\sin\varphi) \in \mathbb{R}^2 : \varphi \in [\alpha, \beta], \ 0 \leqslant r \leqslant f(\varphi) \}$$

называется подграфиком функции f в полярных координатах. Если функция f непрерывна, то подграфик называется криволинейным сектором.

Предположим, что $f \in R[\alpha, \beta]$ и подграфик данной функции в полярных координатах имеет площадь. Пусть $\tau = \{\varphi_k\}_{k=0}^n$ – разбиение $[\alpha, \beta]$, $\Delta \varphi_i = \varphi_i - \varphi_{i-1}$,

$$m_i = \inf_{\varphi \in [\varphi_{i-1}, \varphi_i]} f(\varphi), \ M_i = \sup_{\varphi \in [\varphi_{i-1}, \varphi_i]} f(\varphi).$$

Воспользовавшись тем, что площадь сектора радиусом r и углом φ равна $\frac{1}{2}r^2\varphi$, составим суммы

$$s_{\tau} = \frac{1}{2} \sum_{i=1}^{n} m_i^2 \Delta \varphi_i, \ S_{\tau} = \frac{1}{2} \sum_{i=1}^{n} M_i^2 \Delta \varphi_i.$$

Геометрически очевидно, что $s_{\tau} \leqslant S(\widetilde{G}_f) \leqslant S_{\tau}$.

Кроме того, s_{τ} и S_{τ} – суммы Дарбу функции $\frac{1}{2}f^2(\varphi)$. Так как эта функция интегрируема, то при $\lambda(\tau)\to 0$ выполняется $S_{\tau}-s_{\tau}\to 0$, а значит

$$S(\widetilde{G_f}) = \frac{1}{2} \int_{\alpha}^{\beta} f^2 d\varphi.$$

4.3 Понятие длины кривой и ее вычисление

Определение 4.3.1 Путем в пространстве \mathbb{R}^n называется отображение $\gamma:[a,b]\to\mathbb{R}^n$, все координатные функции которого непрерывны на [a,b].

Замечание 4.3.1 Путь γ задается n непрерывными функциями $x_i(t)$: $[a,b] \to \mathbb{R}, \ i=1...n,$

$$\gamma(t) = (x_1(t), ..., x_n(t)).$$

Определение 4.3.2 Точка $\gamma(a)$ называется началом пути, а точка $\gamma(b)$ концом пути.

Определение 4.3.3 *Если* $\gamma(a) = \gamma(b)$, то путь называется замкнутым.

Определение 4.3.4 Если равенство $\gamma(t_1) = \gamma(t_2)$ возможно лишь при $t_1 = t_2$ или $t_1, t_2 \in \{a, b\}$, то путь называется простым (или несамопересекающимся).

Определение 4.3.5 Множество $\gamma([a,b]),$ то есть образ отрезка [a,b], называется носителем пути.

Замечание 4.3.2 Разные пути могут иметь один носитель. Например, верхняя полуокружность $x^2 + y^2 = 1$, $y \ge 0$ является носителем как пути $\gamma_1(t) = (t, \sqrt{1-t^2}), \ t \in [-1, 1], \ mak \ u \ nymu \ \gamma_2(t) = (\cos t, \sin t), \ t \in [0, \pi].$

Определение 4.3.6 Говорят, что $\gamma(t) = (x_1(t), ..., x_n(t)) : [a, b] \to \mathbb{R}^n$ - путь гладкости m, если $x_i(t) \in C^m[a, b]$, i = 1...n. Если m = 1, то путь часто называют просто гладким.

Определение 4.3.7 Если отрезок [a,b] можно разбить точками $a=t_0 < t_1 < ... < t_k = b$ так, что сужение пути $\gamma(t)$ на каждый отрезок $[t_{i-1},t_i]$ -гладкий путь, то путь называется кусочно-гладким.

Определение 4.3.8 Два пути $\gamma:[a,b] \to \mathbb{R}^n$ и $\widetilde{\gamma}:[\alpha,\beta] \to \mathbb{R}^n$ называются эквивалентными, если существует непрерывная строго возрастающая биекция $u:[a,b] \to [\alpha,\beta]$, что

$$\gamma(t) = \widetilde{\gamma}(u(t)).$$

Заметим, что введенное отношение – отношение эквивалентности.

Определение 4.3.9 Класс эквивалентных путей называют кривой и обозначают $\{\gamma\}$, а каждый представитель класса γ – параметризация кривой.

Определение 4.3.10 $\{\gamma^-\}$ – кривая с противоположной ориентацией, если

$$\gamma^-(t) = \gamma(a+b-t), \ t \in [a,b]$$

Носители эквивалентных путей совпадают и носители противоположных путей совпадают.

Определение 4.3.11 Кривая называется гладкой (т-гладкой, кусочно-гладкой), если у нее существует гладкая (т-гладкая, кусочно-гладкая) параметризация.

4.3.1 Вычисление длины пути

Дадим определение длины пути. Определение должно удовлетворять нескольким естественным требованиям. Во-первых, длина пути должна быть аддитивной. Во-вторых, длина пути, соединяющего точки A и B, должна быть не меньше длины отрезка AB.

Для простоты и геометрической наглядности, пусть $\gamma(t)=(x(t),y(t)):[a,b]\to\mathbb{R}^2$ – путь, τ – разбиение отрезка [a,b] точками $t_0,t_1,...,t_n.$

Определение 4.3.12 Множество отрезков, соединяющих точки $\gamma(t_k)$ и $\gamma(t_{k-1})$, называется ломаной, вписанной в путь γ , отвечающей разбиению τ . Эту ломаную будем обозначать P_{τ} .

Длина отрезка, соединяющего точки $\gamma(t_k)$ и $\gamma(t_{k-1})$, вычисляется по теореме Пифагора и равна, очевидно,

$$\sqrt{(x(t_k)-x(t_{k-1}))^2+(y(t_k)-y(t_{k-1}))^2}$$
.

Тогда длина $|P_{ au}|$ ломаной $P_{ au}$ вычисляется по формуле

$$|P_{\tau}| = \sum_{k=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2}.$$

Определение 4.3.13 Длиной пути γ называется величина

$$l_{\gamma} = \sup_{\tau} |P_{\tau}|.$$

 $Ecnu\ l_{\gamma}<+\infty,\ mo\ nymb\ \gamma\ называется\ спрямляемым.$

Лемма 4.3.1 (О равенстве длин эквивалентных путей) Длины эквивалентных путей равны.

Доказательство. Пусть $\gamma(t) = \widetilde{\gamma}(u(t)), \ u(t) : [a,b] \to [\alpha,\beta]$ – возрастающая биекция. Пусть $\tau = \{t_i\}_{i=0}^k$ – дробление [a,b], тогда $\widetilde{t}_k = u(t_k)$ – дробление $[\alpha,\beta]$.

$$P_{\gamma} = \sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k-1})| = \sum_{k=1}^{n} |\widetilde{\gamma}(\widetilde{t}_k) - \widetilde{\gamma}(\widetilde{t}_{k-1})| = P_{\widetilde{\gamma}} < l_{\widetilde{\gamma}}.$$

Значит, $l_{\gamma} \leqslant l_{\widetilde{\gamma}}$. Меняя их местами, придем к требуемому. \square Аналогично можно показать, что длины противоположных путей равны. Теперь является корректным определение длины кривой.

Определение 4.3.14 Длиной кривой называют длину любой ее параметризации.

Покажем, что путь аддитивен, а именно справедлива следующая лемма.

Лемма 4.3.2 (Аддитивность длины пути) Пусть $\gamma(t):[a,b] \to \mathbb{R}^2, \ c \in (a,b), \ \gamma^1(t):[a,c] \to \mathbb{R}^2, \ \gamma^2(t):[c,b] \to \mathbb{R}^2.$ Путь $\gamma(t)$ спрямляем тогда и только тогда, когда спрямляемы пути $\gamma^1(t)$ и $\gamma^2(t)$, причем

$$l_{\gamma} = l_{\gamma^1} + l_{\gamma^2}.$$

Доказательство. Докажем необходимость. Пусть τ – разбиение [a,b], содержащее точку c. Ясно, что $\tau = \tau_1 \cup \tau_2$, где τ_1 – разбиение [a,c] и τ_2 – разбиение [c,b]. Тогда ломаная P_{τ} – объединение ломаных P_{τ_1} и P_{τ_2} , причем

$$|P_{\tau_1}| + |P_{\tau_2}| = |P_{\tau}| \leqslant l_{\gamma}.$$

Отсюда сразу следует, что каждый из путей γ^1 и γ^2 спрямляемы. Переходя в предыдущем неравенстве сначала к супремуму по τ_1 , а потом по τ_2 , получим

$$l_{\gamma^1} + l_{\gamma^2} \leqslant l_{\gamma}.$$

Докажем достаточность и обратное неравенство. Пусть τ – разбиение отрезка [a,b]. Если оно не содержит точку c, то добавим ее, получив разбиение $\tau'=$

 $au_1 \cup au_2$, где au_1 – разбиение [a,c] и au_2 – разбиение [c,b]. Пусть $c \in (t_{i-1},t_i)$. Длина ломаной, отвечающей разбиению au', могла только увеличиться, так как согласно неравенству треугольника,

$$\sqrt{(x(t_i)-x(t_{i-1}))^2+(y(t_i)-y(t_{i-1}))^2} \leqslant$$

$$\sqrt{(x(c)-x(t_{i-1}))^2+(y(c)-y(t_{i-1}))^2}+\sqrt{(x(t_i)-x(c))^2+(y(t_i)-y(c))^2}.$$

Значит,

$$|P_{\tau}| \leqslant |P_{\tau'}| = |P_{\tau_1}| + |P_{\tau_2}| \leqslant l_{\gamma^1} + l_{\gamma^2}$$

и, тем самым, кривая γ спрямляема. Переходя к супремуму в левой части неравенства по τ , получим

$$l_{\gamma} \leqslant l_{\gamma^1} + l_{\gamma^2}.$$

Объединяя это неравенство и последнее в пункте необходимости, заключаем

$$l_{\gamma} = l_{\gamma^1} + l_{\gamma^2},$$

и теорема полностью доказана.

Теорема 4.3.1 (Длина гладкого пути) Пусть путь $\gamma \in C^1[a,b]$, тогда он спрямляем и его длина

$$l_{\gamma} = \int_{a}^{b} |\gamma'| dt.$$

Доказательство. 1. докажем спрямляемость. Пусть $\tau = \{t_i\}$ – разбиение отрезка [a,b],

$$|P_{\tau}| = \sum_{i=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2}.$$

По теореме Лагранжа, найдутся точки $\xi_i, \eta_i \in [t_{i-1}, t_i]$ такие, что

$$x(t_i) - x(t_{i-1}) = x'(\xi_i)\Delta t_i, \ y(t_i) - y(t_{i-1}) = y'(\eta_i)\Delta t_i, \ \Delta t_i = t_i - t_{i-1},$$

откуда

$$|P_{\tau}| = \sum_{k=1}^{n} \sqrt{x'^{2}(\xi_{i}) + y'^{2}(\eta_{i})} \cdot \Delta t_{i}.$$

Пусть

$$M_x = \max_{t \in [a,b]} |x'(t)|, \ M_y = \max_{t \in [a,b]} |y'(t)|, m_x = \min_{t \in [a,b]} |x'(t)|, \ m_y = \min_{t \in [a,b]} |y'(t)|,$$

тогда

$$\sum_{k=1}^{n} \sqrt{m_x^2 + m_y^2} \cdot \Delta t_i \leqslant |P_{\tau}| \leqslant \sum_{k=1}^{n} \sqrt{M_x^2 + M_y^2} \cdot \Delta t_i,$$

откуда

$$\sqrt{m_x^2 + m_y^2} \cdot (b - a) \leqslant |P\tau| \leqslant \sqrt{M_x^2 + M_y^2} \cdot (b - a).$$

Переходя к супремуму по τ , имеем

$$\sqrt{m_x^2 + m_y^2} \cdot (b - a) \leqslant l_\gamma \leqslant \sqrt{M_x^2 + M_y^2} \cdot (b - a).$$

и правое неравенство дает возможность заключить, что путь спрямляем.

2. Рассмотрим функцию $l_{\gamma}(t)$ для $t \in [a, b]$, показывающую длину участка пути γ от точки $\gamma(a)$ до точки $\gamma(t)$.

Пусть $\Delta t > 0$ и t_0 , $t_0 + \Delta t \in [a,b]$. Согласно последнему неравенству предыдущей теоремы, сохраняя те же обозначения для отрезка $[t_0, t_0 + \Delta t]$ выполнено

$$\sqrt{m_x^2 + m_y^2} \cdot \Delta t \leqslant l_\gamma(t_0 + \Delta t) - l_\gamma(t_0) \leqslant \sqrt{M_x^2 + M_y^2} \cdot \Delta t.$$

Деля на $\Delta t > 0$, получим

$$\sqrt{m_x^2 + m_y^2} \leqslant \frac{l_\gamma(t_0 + \Delta t) - l_\gamma(t_0)}{\Delta t} \leqslant \sqrt{M_x^2 + M_y^2}.$$

Так как $M_x = \max_{t \in [t_0, t_0 + \Delta t]} |x'(t)|$, и функция x'(t) непрерывна, то

$$\lim_{\Delta t \to 0+0} M_x = x'(t_0).$$

Аналогично,

$$\lim_{\Delta t \to 0+0} m_x = x'(t_0), \lim_{\Delta t \to 0+0} M_y = y'(t_0), \lim_{\Delta t \to 0+0} m_y = y'(t_0).$$

Значит,

$$\sqrt{x'^2(t_0) + y'^2(t_0)} \leqslant \lim_{\Delta t \to 0+0} \frac{l_{\gamma}(t_0 + \Delta t) - l_{\gamma}(t_0)}{\Delta t} \leqslant \sqrt{x'^2(t_0) + y'^2(t_0)}.$$

и $l'_{\gamma+}(t_0) = \sqrt{x'^2(t_0) + y'^2(t_0)}$. Аналогично рассматривается случай $\Delta t < 0$, а значит, в силу произвольности t_0 ,

$$l'_{\gamma}(t) = \sqrt{x'^2(t) + y'^2(t)}.$$

3. Из полученного выражения для $l_{\gamma}'(t)$ и $l_{\gamma}(a)=0$ получаем по формуле Ньютона–Лейбница требуемое.

Замечание 4.3.3 Все вышеизложенное относится не только к путям в \mathbb{R}^2 , но и к путям в \mathbb{R}^n для произвольных $n \in \mathbb{N}$, доказательства сохраняются.

Замечание 4.3.4 Формула длины пути верна и для кусочно-гладких кривых.

Следствие 4.3.2 Для длины кривой $\{\gamma\}$, заданной в полярных координатах функцией $\rho = \rho(\varphi), \ \varphi \in [\alpha, \beta]$ верно равенство

$$l_{\gamma} = \int_{\alpha}^{\beta} \sqrt{\rho^2 + (\rho')^2} d\varphi.$$

5 Несобственный интеграл

5.1 Понятие несобственного интеграла

Определение 5.1.1 Говорят, что функция f локально интегрируема на промежутке E, и пишут $f \in R_{loc}(E)$, если $f \in R[a,b]$ для любого $[a,b] \subset E$.

Иными словами, локально интегрируемая функция интегрируема на любом отрезке, содержащемся в E.

Определение 5.1.2 Пусть $f \in R_{loc}[a,b)$. Тогда символ

$$\int_{a}^{b} f(x)dx$$

называется несобственным интегралом от функции f по множеству [a,b). Предел

$$\lim_{\omega \to b-} \int_{a}^{\omega} f(x) dx,$$

если он существует в \mathbb{R} , называется значением несобственного интеграла. Если этот предел существует в \mathbb{R} , то несобственный интеграл называется сходящимся. Иначе – расходящимся. **Пример 5.1.1** Интеграл $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} \cos \theta du m c$ я, когда $\alpha > 1$, и расходится иначе. Более точно,

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{\alpha - 1}, & \alpha > 1\\ +\infty, & \alpha \leqslant 1. \end{cases}$$

Аналогично, $\int\limits_0^1 \frac{dx}{x^{\alpha}}$ сходится, когда $\alpha < 1$, и расходится иначе. Более точно,

$$\int_{0}^{1} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha}, & \alpha < 1 \\ +\infty, & \alpha \geqslant 1. \end{cases}$$

5.2 Свойства несобственного интеграла

Свойства несобственного интеграла во многом аналогичны свойствам классического интеграла Римана.

Теорема 5.2.1 (О линейности несобственного интеграла) Пусть

 $f,g\in R_{loc}[a,b)$. Если существуют в $\mathbb{\bar{R}}\int\limits_a^b f(x)dx$ и $\int\limits_a^b g(x)dx$, то

$$\int_{a}^{b} (f+g)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx,$$

если соответствующая операция определена в $\bar{\mathbb{R}}$.

Доказательство. Для доказательства достаточно перейти к пределу при $\omega \to b-$ в равенстве

$$\int_{a}^{\omega} (f+g)dx = \int_{a}^{\omega} f(x)dx + \int_{a}^{\omega} g(x)dx.$$

Замечание 5.2.1 Из теоремы следует, что сумма двух сходящихся интегралов сходится. Верно и такое утверждение. Если $\int\limits_a^b f(x) dx$ сходится,

 $a\int_{a}^{b}g(x)dx$ расходится, то $\int_{a}^{b}(f(x)+g(x))dx$ тоже расходится. При этом если оба интеграла расходятся, то сумма может как сходиться, так и расходиться (Приведите соответствующие примеры).

© Бойцев А.А., Трифанова Е.С., 2025

Теорема 5.2.2 (Монотонность несобственного интеграла) Пусть $f,g \in R_{loc}[a,b), f(x) \leqslant g(x)$ на [a,b) и существуют в \mathbb{R} оба интеграла $\int\limits_a^b f(x)dx$ и $\int\limits_a^b g(x)dx$. Тогда

$$\int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} g(x)dx.$$

Доказательство. Для доказательства достаточно перейти к пределу при $\omega \to b-$ в неравенстве

$$\int_{a}^{\omega} f(x)dx \leqslant \int_{a}^{\omega} g(x)dx.$$

Теорема 5.2.3 (Об аддитивности по промежутку) Пусть $f \in R_{loc}[a,b)$. Тогда для любого $c \in (a,b)$ справедливо равенство

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

причем интегралы

$$\int_{a}^{b} f(x)dx \quad u \quad \int_{c}^{b} f(x)dx$$

существуют в $\bar{\mathbb{R}}$ или нет одновременно.

Доказательство. Для доказательства достаточно перейти к пределу при $\omega \to b-$ в равенстве

$$\int_{a}^{\omega} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{\omega} f(x)dx.$$

Замечание 5.2.2 Из теоремы следует, что при любом $c \in (a,b)$ сходимость интеграла $\int\limits_a^b f(x)dx$ равносильна сходимости интеграла $\int\limits_c^b f(x)dx$. Последний интеграл часто называют **хвостом** или **остатком** первого интеграла.

Теорема 5.2.4 (Формула интегрирования по частям) Пусть $u, v \partial u \phi$ -ференцируемы на [a,b) и $u',v' \in R_{loc}[a,b)$. Тогда

$$\int_{a}^{b} uv'dx = uv\Big|_{a}^{b} - \int_{a}^{b} vu'dx,$$

причем последнее равенство справедливо тогда и только тогда, когда существует хотя бы два предела из трех.

Здесь используется короткая запись:

$$uv\Big|_a^b = \lim_{\omega \to b-0} uv\Big|_a^\omega = \lim_{\omega \to b-0} u(\omega)v(\omega) - u(a)v(a).$$

Доказательство. Для доказательства достаточно перейти к пределу при $\omega \to b-$ в равенстве

$$\int_{a}^{w} uv'dx = uv\Big|_{a}^{w} - \int_{a}^{w} vu'dx.$$

Теорема 5.2.5 (Формула замены переменной) Пусть $x = \varphi(t)$: $[\alpha, \beta) \to [a, b)$ дифференцируема на $[\alpha, \beta)$, причем $\varphi'(t) \in R_{loc}[\alpha, \beta)$, $f \in C[a, b)$ и существует $\varphi(\beta-) \in \overline{\mathbb{R}}$. Тогда

$$I_{1} = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(x)dx = I_{2},$$

причем если существует один интеграл (в \mathbb{R}), то существует и другой.

Доказательство. 1) Пусть существует $I_2 \in \overline{\mathbb{R}}$. Для $\omega \in (\alpha, \beta)$, пользуясь формулой замены переменной для определенного (собственного) интеграла, имеем

$$I_{1} = \lim_{\omega \to \beta^{-}} \int_{\alpha}^{\omega} f(\varphi(t))\varphi'(t)dt = \lim_{\omega \to \beta^{-}} \int_{\varphi(a)}^{\varphi(\omega)} f(x)dx = I_{2}.$$

2) Пусть теперь существует $I_1 \in \overline{\mathbb{R}}$. Докажем существование интеграла I_2 пользуясь определением предела по Гейне.

Если $\varphi(\beta-) \in [a,b)$, то интеграл существует, как собственный. Равенство же справедливо из доказанного первого пункта.

Пусть теперь $\varphi(\beta-)=b$. Возьмем произвольную последовательность $x_n\in[a,b)$, причем $x_n\xrightarrow[n\to+\infty]{}b$. Будем считать, что $x_n\in[\varphi(\alpha),b)$. Тогда, по теореме Больцано–Коши, найдутся точки $\gamma_n\in[\alpha,\beta)$ такие, что $\varphi(\gamma_n)=x_n$.

Покажем, что $\gamma_n \to \beta-$. От противного, пусть выполнено отрицание определения предела:

$$\exists \varepsilon > 0 : \forall n_0 \exists n \geqslant n_0 : \gamma_n \in [\alpha, \beta - \varepsilon].$$

Тогда для указанных ε и n имеем $\varphi(\gamma_n) \leqslant \max_{[\alpha,\gamma]} \varphi = b' < b$, что противоречит тому, что $\varphi(\gamma_n) = x_n \to b - 0$.

Значит $\gamma_n \to \beta-$ и

$$I_2 = \lim_{n \to +\infty} \int_{\varphi(\alpha)}^{x_n} f(x)dx = \lim_{n \to +\infty} \int_{\alpha}^{\gamma_n} f(\varphi(t))\varphi'(t)dt = I_1.$$

Так как несобственный интеграл – это предел, то, как обычно, справедлив критерий Коши.

Теорема 5.2.6 (Критерий Коши сходимости интеграла) Пусть $f \in R_{loc}[a,b)$. Для сходимости интеграла $\int\limits_a^b f(x)dx$ необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \; \exists \Delta \in (a,b) : \; \forall \delta_1, \delta_2 \in (\Delta,b) \Rightarrow \left| \int_{\delta_1}^{\delta_2} f(x) dx \right| < \varepsilon.$$

Доказательство. Обозначим

$$F(\omega) = \int_{a}^{\omega} f(x)dx.$$

Согласно определению, сходимость интеграла равносильна существованию предела функции $F(\omega)$ при $\omega \to b-0$. Согласно критерию Коши существования предела функции это выполнено тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \Delta \in (a,b) : \ \forall \delta_1, \delta_2 \in (\Delta,b) \Rightarrow |F(\delta_2) - F(\delta_1)| < \varepsilon.$$

Последнее же неравенство, в силу свойств интеграла, переписывается, как

$$|F(\delta_2) - F(\delta_1)| < \varepsilon \Leftrightarrow \left| \int_{\delta_1}^{\delta_2} f(x) dx \right| < \varepsilon,$$

откуда и следует требуемое.

5.3 Признаки сходимости интегралов от функций, сохраняющих знак

В этом пункте будем считать, что рассматриваемые функции не меняют знак. Всюду мы будем пользоваться следующей леммой.

Лемма 5.3.1 (О возрастании интеграла неотрицательной функции) Пусть $f \in R_{loc}[a,b), \ f \geqslant 0$. Тогда функция $F(\omega) = \int\limits_a^\omega f(x) dx$, возрастает на $[a,b), \ u$ сходимость интеграла $\int\limits_a^b f(x) dx$ равносильна ограниченности функции $F(\omega)$.

Доказательство. Ясно, что если $a\leqslant \omega_1\leqslant \omega_2 < b$, то, так как

$$\int_{\omega_1}^{\omega_2} f(x) dx \geqslant 0,$$

ТО

$$\int_{a}^{\omega_{2}} f(x)dx = \int_{a}^{\omega_{1}} f(x)dx + \int_{\omega_{1}}^{\omega_{2}} f(x)dx \geqslant \int_{a}^{\omega_{1}} f(x)dx,$$

откуда $F(\omega_2) \geqslant F(\omega_1)$, а значит $F(\omega)$ не убывает. Тогда сходимость несобственного интеграла, то есть существование конечного предела, по теореме Вейерштрасса равносильна ограниченности $F(\omega)$.

Теорема 5.3.1 (Признаки сравнения) Пусть $f,g \in R_{loc}[a,b)$ и $0 \leqslant f(x) \leqslant g(x)$ при $x \in [a,b)$. Тогда

- 1. Если сходится $\int\limits_a^b g(x)dx$, то сходится $u\int\limits_a^b f(x)dx$.
- 2. Если расходится $\int\limits_a^b f(x)dx$, то расходится $u\int\limits_a^b g(x)dx$.
- 3. Если $f(x) \sim g(x)$ при $x \to b-$, то интегралы

$$\int_{a}^{b} f(x)dx \ u \int_{a}^{b} g(x)dx$$

сходятся или расходятся одновременно.

Доказательство. 1. Докажем первый пункт. Согласно предыдущей лемме, функция $F(\omega) = \int\limits_a^\omega f(x) dx$ возрастает. По свойствам интеграла Римана, а также используя теорему Вейерштрасса, при каждом $\omega \in [a,b),$

$$F(\omega) = \int_{a}^{\omega} f(x)dx \leqslant \int_{a}^{\omega} g(x)dx \leqslant \sup_{\omega \in [a,b)} \int_{a}^{\omega} g(x)dx = \int_{a}^{b} g(x)dx < +\infty,$$

где последнее неравенство справедливо, исходя из условия (несобственный интеграл сходится). Но тогда $F(\omega)$ ограничена, а значит, по предыдущей лемме, интеграл сходится.

- 2. Второй пункт докажем от противного. Если предположить, что интеграл $\int\limits_a^b g(x)dx$ сходится, то, по только что доказанному первому пункту, сходится и $\int\limits_a^b f(x)dx$, что противоречит условию.
- 3. Согласно определению, $f(x) \sim g(x)$ при $x \to b-$ означает, что существует $\alpha(x)$, что

$$f(x) = \alpha(x)g(x), \quad \lim_{x \to b^{-}} \alpha(x) = 1.$$

Тогда существует $\Delta > a$, что при $x \in [\Delta, b)$ выполняется неравенство

$$\frac{1}{2} \leqslant \alpha(x) \leqslant \frac{3}{2},$$

откуда, при $x \in [\Delta, b)$

$$\frac{1}{2}g(x) \leqslant f(x) \leqslant \frac{3}{2}g(x).$$

Кроме того, сходимость интегралов

$$\int_{a}^{b} f(x)dx, \int_{a}^{b} g(x)dx$$

равносильна сходимости интегралов

$$\int_{\Delta}^{b} f(x)dx, \int_{\Delta}^{b} g(x)dx.$$

Для последних же рассуждения проводятся с использованием пунктов 1 и 2 данной теоремы, опираясь на неравенство

$$\frac{1}{2}g(x) \leqslant f(x) \leqslant \frac{3}{2}g(x).$$

Скажем, если сходится интеграл от g(x), то, используя правое неравенство, сходится и интеграл от f(x). Если же расходится интеграл от f, то, опять же, по правому неравенству, расходится и интеграл от g. Аналогичные рассуждения относительно левого неравенства завершают доказательство.

Пример 5.3.1 Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{x}{\sqrt[3]{1+x^7}} dx.$$

Ясно, что у этого интеграла особенность на верхнем пределе – это $+\infty$. Для исследования интеграла на сходимость вовсе не обязательно его вычислять. Заметим, что функция под интегралом положительна и упростим подынтегральную функцию при $x \to +\infty$:

$$\frac{x}{\sqrt[3]{1+x^7}} = \frac{x}{x^{7/3}\sqrt[3]{1/x^7+1}} \sim \frac{x}{x^{7/3}} = \frac{1}{x^{4/3}}, \ x \to +\infty.$$

Так как интеграл

$$\int_{-\infty}^{+\infty} \frac{dx}{x^{4/3}}$$

сходится, то, по 3 пункту теоремы сравнения, сходится и исходный интеграл.

Пример 5.3.2 Исследовать на сходимость интеграл

$$\int_{0}^{+\infty} \frac{\sin^2 x}{x^2} dx$$

На первый взгляд может показаться, что у данного интеграла две особенности: в точках 0 и $+\infty$, но это не так. В окрестности нуля функция ограничена и интеграл может рассматриваться, как собственный. Значит, осталось выяснить поведение интеграла на $+\infty$. Перепишем интеграл в виде

$$\int_{0}^{+\infty} \frac{\sin^{2} x}{x^{2}} dx = \int_{0}^{1} \frac{\sin^{2} x}{x^{2}} dx + \int_{1}^{+\infty} \frac{\sin^{2} x}{x^{2}} dx$$

и исследуем на сходимость второй. Функция под интегралом неотрицательна, можно пользоваться сформулированными теоремами. Так как

$$\frac{\sin^2 x}{r^2} \leqslant \frac{1}{r^2},$$

а интеграл от последней функции по $[1, +\infty)$ сходится, то сходится и исходный интеграл.

Замечание 5.3.1 Отметим важный момент: из сходимости интеграла $\int\limits_a^{+\infty} f(x)dx$ не следует, что $f(x) \xrightarrow[x \to +\infty]{} 0$ даже в случае, когда $f \geqslant 0$ и $f \in C[0,+\infty)$. Пусть

$$E = \bigcup_{k=1}^{+\infty} \left(k - \frac{1}{k^2(k+1)}, k + \frac{1}{k^2(k+1)} \right).$$

положим f(x)=0 при $x\in [0,+\infty), x\notin E$. Кроме того, пусть

$$f(k) = k, \ f\left(k \pm \frac{1}{k^2(k+1)}\right) = 0$$

и f линейна на

$$\left(k - \frac{1}{k^2(k+1)}, k\right) u \left(k, k + \frac{1}{k^2(k+1)}\right).$$

Ясно, что такая функция непрерывна и неотрицательна на $x \in [0, +\infty)$. Кроме того, если $N \in \mathbb{N}$, то

$$\int_{0}^{N+1/2} f(x)dx = \sum_{k=1}^{N} \int_{k-\frac{1}{k^{2}(k+1)}}^{k-\frac{1}{k^{2}(k+1)}} f(x)dx = \sum_{k=1}^{N} k \cdot \frac{1}{k^{2}(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k$$

$$= \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{N+1} \xrightarrow[N \to +\infty]{} 1.$$

Из последнего следует (ввиду монотонности интеграла от неотрицательной функции), что сходится и $\int\limits_0^{+\infty} f(x)dx$. В то же время, очевидно, $f(x) \xrightarrow[x \to +\infty]{} 0$ не выполнено. Кроме того, f(x) оказывается не ограниченной.

5.4 Абсолютная и условная сходимости интеграла

Если функция не сохраняет знак вблизи особой точки, то выделяют дополнительный тип сходимости. **Определение 5.4.1** Пусть $f \in R_{loc}[a,b)$. Говорят, что несобственный интеграл $\int_{a}^{b} f(x)dx$ сходится абсолютно, если сходится интеграл $\int_{a}^{b} |f(x)|dx$.

Как связаны абсолютная сходимость и сходимость интеграла?

Теорема 5.4.1 (Абсолютная сходимость – **сходимость**) Пусть $f \in R_{loc}[a,b)$. Если интеграл $\int\limits_a^b f(x)dx$ сходится абсолютно, то он сходится. При этом

$$\left| \int_{a}^{b} f(x)dx \right| \leqslant \int_{a}^{b} |f(x)|dx.$$

Доказательство. Пусть $\varepsilon > 0$. Так как интеграл сходится асбсолютно, то, согласно критерию Коши,

$$\exists \Delta : \ \forall \delta_1, \delta_2 \in (\Delta, b) \Rightarrow \left| \int_{\delta_1}^{\delta_2} |f(x)| dx \right| < \varepsilon.$$

Но согласно свойствам интеграла,

$$\left| \int_{\delta_1}^{\delta_2} f(x) dx \right| \leqslant \left| \int_{\delta_1}^{\delta_2} |f(x)| dx \right| < \varepsilon,$$

а значит, по критерию Коши, интеграл $\int_a^b f(x)dx$ сходится. Неравенство следует из соответствующего неравенства для собственных интегралов и предельного перехода.

Замечание 5.4.1 При исследовании интеграла на абсолютную сходимость можно пользоваться доказанными ранее признаками сходимости интегралов от знакопостоянных функций.

Определение 5.4.2 Пусть $f \in R_{loc}[a,b)$. Если интеграл $\int_a^b f(x)dx$ сходится, но абсолютной сходимости нет (то есть он не сходится абсолютно), то говорят, что интеграл $\int_a^b f(x)dx$ сходится условно (или неабсолютно).

Пример 5.4.1 Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{\cos x}{x^2} dx.$$

Τακ κακ

$$\left|\frac{\cos x}{x^2}\right| \leqslant \frac{1}{x^2},$$

а последний интеграл сходится, то исходный интеграл сходится абсолютно, а значит и просто сходится.

Пример 5.4.2 Часто оказывается, что интеграл сходится лишь условно. Исследуем на сходимость интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx.$$

Во-первых, он cxodumcs. Интегрируя по частям $(dv = \sin x dx)$, получим

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx = \cos 1 - \int_{1}^{+\infty} \frac{\cos x}{x^2} dx.$$

Последний интеграл, как мы только что показали, сходится.

Покажем, что абсолютной сходимости нет. Воспользуемся критерием Коши (его отрицанием):

$$\exists \ \varepsilon > 0 : \ \forall \Delta \in (a,b) \ \exists \delta_1, \delta_2 \in (\Delta,b) : \left| \int_{\delta_1}^{\delta_2} f(x) dx \right| \geqslant \varepsilon_0.$$

Пусть $\delta_1 = \pi n$, $\delta_2 = 2\pi n$, $\delta_i \to +\infty$, тогда

$$\int_{\pi n}^{2\pi n} \left| \frac{\sin x}{x} \right| dx \geqslant \frac{1}{2\pi n} \int_{\pi n}^{2\pi n} |\sin x| dx = \frac{1}{2\pi} \int_{0}^{\pi} \sin x dx = \frac{1}{\pi}.$$

Последнее равенство показывает, что абсолютной сходимости у интеграла нет. Значит, исходный интеграл сходится, но лишь условно.

Замечание 5.4.2 Расходимость последнего интеграла можно установить и следующим образом. Ясно, что

$$\frac{|\sin x|}{x} \geqslant \frac{\sin^2 x}{x},$$

причем

$$\int_{1}^{+\infty} \frac{\sin^2 x}{x} dx = \int_{1}^{+\infty} \frac{1 - \cos 2x}{x} dx = \int_{1}^{+\infty} \frac{dx}{x} - \int_{1}^{+\infty} \frac{\cos 2x}{x} dx,$$

где последний интеграл сходится (доказывается интегрированием по частям), а первый, очевидно, расходится. Значит и исходный интеграл расходится.

На практике часто бывает полезна ещё такая теорема.

Теорема 5.4.2 (О сумме с абсолютно сходящимся интегралом) $\Pi ycmb\ f,g,h\in R_{loc}[a,b),\ npuчем$

$$f(x) = g(x) + h(x).$$

Если интеграл $\int_a^b h(x)dx$ сходится абсолютно, то интегралы $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ ведут себя одинаково (одновременно либо расходятся, либо сходятся абсолютно, либо условно).

Доказательство. Пусть интеграл от g сходится абсолютно. Тогда, так как $|f| \leq |g| + |h|$, абсолютно сходится и интеграл от f. Наоборот, если сходится абсолютно интеграл от f, то, так как g = f - h и $|g| \leq |f| + |h|$, абсолютно сходится и интеграл от g.

Пусть интеграл от g сходится условно. Тогда интеграл от f сходится. Если бы он сходился абсолютно, то по пред. пункту, абсолютно бы сходился и интеграл от g. Значит, он сходится условно. Аналогично разбираются и остальные случаи.

5.5 Признак Абеля-Дирихле

Рассмотрим признак, позволяющий устанавливать сходимость интеграла от произведения двух функций.

Теорема 5.5.1 (Признак Абеля-Дирихле) $\Pi ycmb \ f \in C[a,b),$

 $g \in C^1[a,b)$. Тогда для сходимости интеграла $\int\limits_a^b f(x)g(x)dx$ достаточно, чтобы выполнялась любая из двух пар условий:

- 1. Функция $F(\omega) = \int_a^\omega f(x) dx$ ограничена на [a,b).
- 2. $g(x) \to 0$ $npu \ x \to b 0$ $u \ g$ монотонна,

 $u \Lambda u$

- 1. Интеграл $\int_a^b f(x)dx$ сходится.
- $2. \ g(x)$ ограничена на [a,b) и монотонна.

Формулировка теоремы с первой парой условий иногда называют признаком Дирихле, а со второй – признаком Абеля.

Доказательство. 1) Пусть $F(\omega) = \int_a^{\infty} f(x) dx$ и выполнена первая пара условий. Воспользуемся критерием Коши. Рассмотрим

$$\left| \int_{\delta_1}^{\delta_2} f(x)g(x)dx \right| = \left| \int_{\delta_1}^{\delta_2} g(x)dF(x) \right| = \left| F(\delta_2)g(\delta_2) - F(\delta_1)g(\delta_1) - \int_{\delta_1}^{\delta_2} F(x)g'(x)dx \right| \leqslant$$

применим неравенство треугольника для модуля и воспользуемся ограниченностью $F(\omega)$: $|F(\omega)| \leq C$:

$$\leq \left| F(\delta_2)g(\delta_2) \right| + \left| F(\delta_1)g(\delta_1) \right| + \left| \int_{\delta_1}^{\delta_2} F(x)g'(x)dx \right| \leq$$

оценим модуль интеграла интегралом от модуля

$$\leq C\Big(|g(\delta_1)| + |g(\delta_2)|\Big) + C\bigg|\int_{\delta_1}^{\delta_2} |g'(x)|dx\bigg|$$

заметим, что в силу монотонности g(x) g'(x) одного знака, а значит $\int\limits_{\delta_1}^{\delta_2}|g'(x)|dx=\pm(g(\delta_2)-g(\delta_1)).$ Воспользуемся неравенством треугольника еще раз и получим

$$\left| \int_{\delta_1}^{\delta_2} f(x)g(x)dx \right| \leq 2C(|g(\delta_1)| + |g(\delta_2)|).$$

Так как $g(x)\to 0$ при $x\to b-$, то по любому $\varepsilon>0$ найдется $\delta>0$, что $\forall x\in \dot{U}^-_\delta(b)\ |g(x)|<\varepsilon/4C,$ и

$$\left| \int_{\delta_1}^{\delta_2} f(x)g(x)dx \right| < \varepsilon,$$

что и означает сходимость интеграла.

2) Так как g монотонна и ограничена, то $\exists \lim_{x \to b-} g(x) = A$. Введем функцию $h(x) = g(x) - A, \ h(x) \to 0$ при $x \to b-$ и h(x) монотонна. Тогда

$$\int_{a}^{b} f(x)g(x)dx = \int_{a}^{b} f(x)h(x)dx + A \int_{a}^{b} f(x)dx.$$

Первый интеграл сходится по п.1), а второй по условию. Следовательно, исходный интеграл сходится. \Box

Замечание 5.5.1 Можно ослабить условия на функции f и g в первой строке Теоремы, оставив только $f \in R_{loc}[a,b)$. Доказательство будет сложнее (требуется преобразование Абеля и вторая теорема о среднем).

Пример 5.5.1 Исследовать на абсолютную и условную сходимости

$$\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} dx, \quad \alpha \in \mathbb{R}.$$

Ясно, что если $\alpha > 1$, то интеграл сходится абсолютно, ведь

$$\frac{|\sin x|}{x^{\alpha}} \leqslant \frac{1}{x^{\alpha}},$$

а интеграл от последней функции по промежутку $[1, +\infty)$ при $\alpha > 1$ сходится.

Eсли $\alpha\leqslant 0$, то интеграл расходится, так как

$$\left| \int_{2\pi n}^{\pi/4 + 2\pi n} \frac{\sin x}{x^{\alpha}} dx \right| \geqslant (2\pi n)^{-\alpha} \int_{2\pi n}^{\pi/4 + 2\pi n} \sin x dx = (1 - \sqrt{2}/2)(2\pi n)^{-\alpha},$$

 $\it rde$ последняя величина не стремится к нулю с ростом $\it n.$

Eсли $\alpha \in (0,1]$, то интеграл сходится по признаку Абеля-Дирихле, так как

$$|F(\omega)| = \left| \int_{1}^{\omega} \sin x dx \right| = |\cos \omega - \cos 1| \leqslant 2$$

 $u 1/x^{\alpha}$ монотонно стремится к нулю при $x \to +\infty$. С другой стороны,

$$\left| \int_{\pi n}^{2\pi n} \frac{|\sin x|}{x^{\alpha}} dx \right| \geqslant \frac{1}{(2\pi n)^{\alpha}} \int_{\pi n}^{2\pi n} |\sin x| dx = \frac{n}{(2\pi n)^{\alpha}} 2 = C \cdot n^{1-\alpha},$$

где последнее выражение к нулю не стремится. Значит, абсолютной сходимости нет и интеграл при $\alpha \in (0,1]$ сходится условно.

Пример 5.5.2 Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \sin\left(\frac{\sin x}{\sqrt{x}}\right) \frac{dx}{\sqrt{x}}.$$

Найдем асимптотику подынтегральной функции вблизи особой точки.

$$\sin\left(\frac{\sin x}{\sqrt{x}}\right) = \frac{\sin x}{\sqrt{x}} - \frac{\left(\frac{\sin x}{\sqrt{x}}\right)^3}{3!} + o\left(\frac{\sin x}{\sqrt{x}}\right)^3.$$

Tог ∂a

$$\sin\left(\frac{\sin x}{\sqrt{x}}\right)\frac{1}{\sqrt{x}} = \frac{\sin x}{x} - \frac{\frac{\sin^3 x}{x^2}}{3!} + o\left(\frac{\sin^3 x}{x^2}\right).$$

Ясно, что интеграл от функции $\frac{\sin^3 x}{x^2} + o\left(\frac{\sin^3 x}{x^2}\right) = O\left(\frac{1}{x^2}\right)$ сходится абсолютно. Значит, достаточно исследовать интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx.$$

Как известно, он сходится условно. Значит, исходный интеграл сходится условно.

Пример 5.5.3 Отказаться от условия монотонности в признаке Абеля-Дирихле нельзя.

$$\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x} - \sin x} dx.$$

Если (неверно) использовать признак, то

$$|F(\omega)| = \left| \int_{1}^{\omega} \sin x dx \right| \leqslant 2,$$

 $a\ (\sqrt{x} - \sin x)^{-1} \xrightarrow[x \to +\infty]{} 0$, но не монотонно. Откуда можно сделать неверный вывод, что интеграл сходится (условно).

В то же время,

$$\frac{\sin x}{\sqrt{x} - \sin x} = \frac{1}{\sqrt{x}} \frac{\sin x}{1 - \frac{\sin x}{\sqrt{x}}} = \frac{1}{\sqrt{x}} \sin x \left(1 - \frac{\sin x}{\sqrt{x}} + O\left(\frac{1}{x}\right) \right) =$$
$$= \frac{\sin x}{\sqrt{x}} - \frac{\sin^2 x}{x} + O\left(\frac{1}{x^{3/2}}\right).$$

Интеграл же от $\frac{\sin x}{\sqrt{x}} - \frac{\sin^2 x}{x}$ расходится, так как интеграл от первой функции сходится, а от второй расходится (по доказанному ранее).

5.6 Интегралы с несколькими особенностями

До сих пор особенность у нас была лишь на одном конце промежутка интегрирования. Обобщим.

Определение 5.6.1 $\Pi ycmv -\infty \leqslant a < b \leqslant +\infty \ u \ f \in R_{loc}(a,b)$. Тогда полагают

$$\int_{a}^{b} f(x)dx = \lim_{\omega_1 \to a+0} \int_{\omega_1}^{c} f(x)dx + \lim_{\omega_2 \to b-0} \int_{c}^{\omega_2} f(x)dx,$$

если оба предела существуют в \mathbb{R} и не равны бесконечностям разных знаков. При этом интеграл называется сходящимся, если, как и ранее, его значение принадлежит \mathbb{R} (то есть оба интеграла справа сходятся).

Замечание 5.6.1 Ясно, что определение не зависит от выбора точки с.

Пусть теперь $-\infty \leqslant a < b \leqslant +\infty$ и f задана на (a,b) за исключением не более чем конечного числа точек.

Определение 5.6.2 Точка $c \in (a,b)$ называется особой точкой функции f , ecnu

$$\forall A, B: \ a < A < c < B < b \Rightarrow f \notin R[A, B].$$

Точка а называется особой, если либо $a=-\infty$, либо $f\notin R[a,B]$ для любых a< B< b. Аналогично определяется особая точка b.

Пусть число особых точек конечно и $c_1 < ... < c_{n-1}$ – особые точки внутри (a,b). Добавим $c_0 = a$ и $c_n = b$. Можно показать, что $f \in R_{loc}(c_{i-1},c_i)$, $i \in \{1,2,...,n\}$. Тогда

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{c_{i-1}}^{c_i} f(x)dx,$$

и интеграл слева называется сходящимся, если все интегралы справа сходятся.

5.7 Интеграл в смысле главного значения

Определение 5.7.1 (Особенность в конечной точке) $\Pi ycmb - \infty < a < b < +\infty, c \in (a,b)$ – единственная особая точка. Предел

$$\lim_{\varepsilon \to 0+} \left(\int_{a}^{c-\varepsilon} f(x)dx + \int_{c+\varepsilon}^{b} f(x)dx \right),\,$$

если он существует в $\overline{\mathbb{R}}$, называется главным значением интеграла $\int\limits_a^b f(x)dx$. Если значение предела принадлежит \mathbb{R} , то говорят, что интеграл сходится в смысле главного значения. Обозначают

$$v.p. \int_{a}^{b} f(x)dx.$$

Замечание 5.7.1 Если интеграл сходится, то он сходится и в смысле главного значения, но не наоборот.

Пример 5.7.1 Рассмотрим $\int_{-1}^{1} \frac{dx}{x}$. Ясно, что в классическом смысле он рас-ходится, но

$$v.p. \int_{-1}^{1} \frac{dx}{x} = \lim_{\varepsilon \to 0+} \left(\int_{-1}^{0-\varepsilon} \frac{dx}{x} + \int_{0+\varepsilon}^{1} \frac{dx}{x} \right) = \lim_{\varepsilon \to 0+} \left(\ln \varepsilon - \ln 1 + \ln 1 - \ln \varepsilon \right) = 0.$$

Определение 5.7.2 (Особенность в бесконечной точке) $\Pi ycmb \ f \in R_{loc}(\mathbb{R})$. Интегралом в смысле главного значения по \mathbb{R} называется предел

$$\lim_{A \to +\infty} \int_{-A}^{A} f(x) dx,$$

если он существует в $\overline{\mathbb{R}}$. Если значение предела принадлежит \mathbb{R} , то говорят, что интеграл сходится в смысле главного значения. Обозначают

$$v.p. \int_{-\infty}^{+\infty} f(x)dx.$$

Замечание 5.7.2 Если интеграл сходится, то он сходится и в смысле главного значения, но не наоборот.

Пример 5.7.2 Рассмотрим $\int\limits_{-\infty}^{+\infty} x dx$. Ясно, что в классическом смысле он расходится, но

$$v.p.$$

$$\int_{-\infty}^{\infty} x dx = \lim_{A \to +\infty} \int_{-A}^{A} x dx = 0.$$

В случае нескольких особенностей можно поступать по-разному. Останавливаться на этом не будем.

6 Комплексные числа и сходимость в $\mathbb C$

6.1 Основные определения

Напомним здесь кратко, как определяется множество комплексных чисел $\mathbb{C}.$

Множество комплексных чисел $\mathbb C$ определим как множество упорядоченных пар вещественных чисел:

$$\mathbb{C} := \{ z = (x, y), \ x, y \in \mathbb{R} \}.$$

На C определены:

1. Равенство элементов:

$$z_1 = z_2 \Leftrightarrow x_1 = x_2, \ y_1 = y_2.$$

2. Сложение:

$$z_1 + z_2 := (x_1 + x_2, y_1 + y_2).$$

3. Умножение:

$$z_1 \cdot z_2 := (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1).$$

4. Норма (модуль) и расстояние:

$$||z|| = |z| := \sqrt{x^2 + y^2}, \quad \rho(z_1, z_2) = ||z_1 - z_2|| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

5. Комплексное сопряжение:

$$\bar{z} := (x, -y).$$

Заметим, что таким образом определенные операции сложения и умножения соответствуют аксиомам сложения и умножения (коммутативность, ассоциативность, существование нейтральных элементов, обратимость, дистрибутивность).

Обозначим базисные векторы следующим образом:

$$1 := (1,0), \quad i := (0,1).$$

Тогда любое комплексное число (или вектор в \mathbb{R}^2) можно записать в виде

$$z = (x, y) = x \cdot 1 + y \cdot i$$
 или короче $x + iy$.

Заметим, что знак суммы в записи z = x + iy корректен и соответствует сложению, определенному выше.

Числа вида (x,0) = x + 0i = x будем называть вещественными, а числа (0,y) = iy – чисто мнимыми.

Для числа z = x + iy:

 $x = \operatorname{Re} z$ – вещественная часть,

$$y = \operatorname{Im} z$$
 – мнимая часть.

Заметим, что для вещественных чисел новое определение сложения и умножения соответствует этим операциям в \mathbb{R} .

Множество комплексных чисел \mathbb{C} можно изобразить точками на плоскости \mathbb{R}^2 с базисными ортами 1 и i, при этом (x,y) – декартовы координаты числа z=x+iy. Эту плоскость называют комплексной плоскостью.

Лемма 6.1.1 (Неравенство треугольника) Для $\forall z_1, z_2 \in C$ выполнено

$$|z_1 + z_2| \leqslant |z_1| + |z_2|.$$

Доказательство. Аккуратно расписать в координатах.

Переходя в комплексной плоскости к полярным координатам: $x=r\cos\varphi$, $y=r\sin\varphi$ определим модуль |z|=r и аргумент $\arg z=\varphi$. Если z=0, то $\arg z$ не определен, при $z\neq 0$ аргумент определяется неоднозначно с точностью до

 $2\pi k,\ k\in\mathbb{Z}$. Главное значение аргумента выбирают в $(-\pi,\pi]$ или $[0,2\pi)$ (в зависимости от удобства).

Тригонометрическая форма комплексного числа:

$$z = |z|(\cos\varphi + i\sin\varphi).$$

Легко получить правило умножения комплексных чисел в тригонометрической форме:

$$z_1 z_2 = |z_1|(\cos \varphi_1 + i \sin \varphi_1)|z_2|(\cos \varphi_2 + i \sin \varphi_2) =$$

$$= |z_1||z_2||z_1|(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2).$$

Формула Муавра:

$$z^n = |z|^n (\cos n\varphi + i\sin n\varphi).$$

Определение 6.1.1 *Множеество* $E \subset \mathbb{C}$ *будем* называть ограниченным, если $\exists C > 0 \colon |z| \leqslant C$ для $\forall z \in E$.

Геометрически, ограниченность множества означает, что на комплексной плоскости его можно поместить в некоторый круг с центром в начале координат.

6.2 Сходимость в $\mathbb C$

Пусть $z_n \in \mathbb{C}$ – последовательность комплексных чисел $(n \in \mathbb{N})$, то есть отображение $\mathbb{N} \to \mathbb{C}$.

Определение 6.2.1 Определим предел $A \in \mathbb{C}$ последовательности z_n :

$$\lim_{n \to \infty} z_n = A \in \mathbb{C} \quad \Leftrightarrow \quad \lim_{n \to \infty} |z_n - A| = 0.$$

Заметим, что если $z_n = x_n + iy_n$, то

$$\lim_{n \to \infty} z_n = A \quad \Leftrightarrow \quad \lim_{n \to \infty} x_n = \operatorname{Re} A \quad \wedge \quad \lim_{n \to \infty} y_n = \operatorname{Im} A.$$

Дадим также определение бесконечного предела:

$$\lim_{n \to \infty} z_n = \infty \quad \Leftrightarrow \quad \lim_{n \to \infty} |z_n| = +\infty.$$

Заметим, что

$$\lim_{n \to \infty} z_n = \infty \quad \Leftrightarrow \quad \lim_{n \to \infty} x_n = \infty \quad \lor \quad \lim_{n \to \infty} y_n = \infty.$$

Пример 6.2.1 Последовательность $z_n = z^n$, где $z \in \mathbb{C}$ – фиксированное число, сходится к 0, если |z| < 1 и расходится при |z| > 1.

7 Числовые ряды

Будем сразу рассматривать числовые ряды с комплексными членами.

7.1 Понятие ряда и его суммы

Важным примером применения теории пределов числовой последовательности является понятие числового ряда.

Определение 7.1.1 Пусть дана последовательность a_n ($a_n \in \mathbb{R}$ или \mathbb{C}). Символ

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

называется числовым рядом, последовательность a_n – общим членом ряда.

Определение 7.1.2 Последовательность S_k : сумма первых k членов ряда

$$S_k = a_1 + a_2 + a_3 + \dots + a_k = \sum_{n=1}^k a_n$$

называется частичной суммой ряда, а её предел, если он существует в $\bar{\mathbb{C}}$, называется суммой ряда:

$$S = \sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} S_k.$$

Eсли последовательность S_k сходится, то ряд называется сходящимся, иначе — расходящимся. Разность $R_k = S - S_k$ называется остатком ряда.

Пример 7.1.1 1. $\sum_{n=1}^{\infty} 0$ сходится и его сумма равна θ .

- 2. $\sum_{n=1}^{\infty} q^n \ (q \in \mathbb{C})$ геометрическая прогрессия. Сходится, если |q| < 1, и его сумма равна $\frac{1}{1-q}$.
- 3. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Рассмотрим частичную сумму

$$S_k = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{k(k+1)} = 1 - \frac{1}{n+1} \to 1,$$

следовательно, ряд сходится, и его сумма равна 1.

- 4. $\sum_{n=1}^{\infty} (-1)^n$ расходится, т.к. последовательность частичных сумм состоит из чередующихся $0 \ u 1$.
- 5. При $x \in \mathbb{R}$ из соответствующих формул Тейлора следуют равенства

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x, \qquad \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = \sin x, \qquad \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \cos x.$$

 $Hanucahhue ряды называются рядами Тейлора (Маклорена) функций <math>e^x$, $\sin x$, $\cos x$.

Замечание 7.1.1 Изменение, отбрасывание или добавление конечного числа членов ряда не влияет на его сходимость.

Лемма 7.1.1 (Критерий сходимости через остаток) *Ряд сходится тогда и только тогда, когда его остаток стремится к нулю.*

▶ Запишем для ряда

$$\sum_{n=1}^{\infty} a_n = S_k + R_k.$$

Тогда $\lim_{k\to\infty} S_k = S$ равносильно тому, что $\lim_{k\to\infty} R_k = 0$.

7.2 Основные свойства рядов

Теорема 7.2.1 (Критерий Коши сходимости ряда) Для того, чтобы ряд $\sum_{n=1}^{\infty} a_n$ сходился, необходимо и достаточно, чтобы для любого ε можно было найти номер k_0 такой, что для всех $k \geqslant k_0$ и для всех $p \in \mathbb{N}$ выполнялось неравенство $\left|\sum_{n=k+1}^{k+p} a_n\right| < \varepsilon$.

Доказательство. Доказательство следует из критерия Коши для частичных сумм.

Пример 7.2.1 Гармонический ряд:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

Запишем

$$S_{2k} - S_{k-1} = \frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{2k} > \frac{1}{2k} \cdot k = \frac{1}{2}.$$

Это означает, что критерий Коши не выполняется и ряд расходится.

Теорема 7.2.2 (Необходимое условие сходимости ряда) Ecnu ряд $\sum_{n=1}^{\infty} a_n \ cxo\partial umcs, \ mo \ a_n \to 0.$

lacktriangle Запишем $a_n=S_n-S_{n-1}.$ Так как $S_n o S$ и $S_{n-1} o S$, то $a_n o S-S=0.$

Замечание 7.2.1 Условие $a_n \to 0$ не является достаточным для сходимости ряда $\sum_{n=1}^{\infty} a_n$. Но если $a_n \not\to 0$, то $\sum_{n=1}^{\infty} a_n$ расходится.

Лемма 7.2.1 (Линейность суммирования) Пусть сходятся ряды с общими членами a_k и b_k . Тогда при любых $\alpha, \beta \in \mathbb{C}$ сходится ряд с общим членом $\alpha a_k + \beta b_k$, причем

$$\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{k=1}^{\infty} a_k + \beta \sum_{k=1}^{\infty} b_k.$$

Доказательство. Обозначим $S^A = \sum_{k=1}^{\infty} a_k$, $S_n^A = \sum_{k=1}^n a_k$, $S^B = \sum_{k=1}^{\infty} b_k$, $S_n^B = \sum_{k=1}^n b_k$. Тогда

$$S_n = \sum_{k=1}^n (\alpha a_k + \beta b_k) = \alpha S_n^A + \beta S_n^B \xrightarrow[n \to +\infty]{} \alpha S_n^A + \beta S_n^B,$$

что и доказывает утверждение.

Лемма 7.2.2 (Монотонность суммирования) Пусть $a_k, b_k \in \mathbb{R}$ и $a_k \leq b_k$ и ряды с общими членами a_k и b_k сходятся в $\overline{\mathbb{R}}$. Тогда

$$\sum_{k=1}^{\infty} a_k \leqslant \sum_{k=1}^{\infty} b_k.$$

Доказательство. Обозначим $S^A = \sum_{k=1}^{\infty} a_k$, $S_n^A = \sum_{k=1}^n a_k$, $S^B = \sum_{k=1}^{\infty} b_k$, $S_n^B = \sum_{k=1}^n b_k$. Тогда, согласно условию,

$$S_n^A \leqslant S_n^B \Rightarrow \lim_{n \to +\infty} S_n^A \leqslant \lim_{n \to +\infty} S_n^B \Rightarrow S^A \leqslant S^B.$$

7.3 Положительные ряды

В этом разделе будем рассматривать ряды $\sum a_k$, где $a_k \in \mathbb{R}$ и $a_k \geqslant 0$ при $k \in \mathbb{N}$. Такие ряды принято называть положительными. Основной вопрос – как установить сходимость или расходимость такого ряда?

7.3.1 Признаки сравнения

Доказательство признаков сравнения опирается на следующую лемму.

Лемма 7.3.1 (О возрастании частичной суммы) Пусть $a_k \geqslant 0$. Тогда последовательность $S_n = \sum_{k=1}^n a_k$ возрастает (нестрого) и

$$\sum_{k=1}^{+\infty} a_k = \sup_{n \in \mathbb{N}} S_n.$$

Тем самым, сходимость ряда равносильна ограниченности последовательности его частичных сумм

Доказательство. Так как $a_k \geqslant 0$, то

$$S_{n+1} = S_n + a_n \geqslant S_n.$$

Тем самым, вопрос о наличии предела S_n сводится к вопросу ограниченности S_n (теорема Вейерштрасса).

Теорема 7.3.1 (Признаки сравнения) Пусть $a_k, b_k \geqslant 0$. Тогда:

- 1. Если $0 \le a_k \le b_k$ и ряд с общим членом b_k сходится, то сходится и ряд с общим членом a_k .
- 2. Если $0 \le a_k \le b_k$ и ряд с общим членом a_k расходится, то расходится и ряд с общим членом b_k .
- 3. Если $a_k \sim b_k$ при $k \to +\infty$, то ряды с общими членами a_k и b_k сходятся или расходятся одновременно.

Доказательство. Обозначим $S_n^A = \sum_{k=1}^n a_k$, $S^B = \sum_{k=1}^\infty b_k$, $S_n^B = \sum_{k=1}^n b_k$.

1. Ясно, что в условиях теоремы

$$S_n^A \leqslant S_n^B \leqslant S^B < +\infty.$$

В силу ограниченности последовательности S_n^A , согласно доказанной лемме заключаем, что S_n^A имеет конечный предел.

- 2. От противного, если сходится ряд с общим членом b_k , то, по только что доказанному, сходится и ряд с общим членом a_k . Это противоречит условию.
 - 3. Так как $a_k \sim b_k$, то $a_k = \alpha_k b_k$, где $\alpha_k \xrightarrow[k \to +\infty]{} 1$. Тогда

$$\exists k_0: \ \forall k > k_0 \ \Rightarrow \ \frac{1}{2}b_k \leqslant a_k \leqslant \frac{3}{2}b_k.$$

Дальнейшие рассуждения стандартны и остаются в качестве упражнения. 🗆

Пример 7.3.1 Исследовать на сходимость ряд Дирихле при $\alpha < 1$

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}.$$

Как мы уже знаем, при $\alpha=1$ ряд Дирихле – гармоническимй ряд, а значит он расходится. Так как при $\alpha<1$ выполняется неравенство

$$\frac{1}{n^{\alpha}} > \frac{1}{n},$$

то, согласно признакам сравнения, при $\alpha < 1$ ряд Дирихле расходится.

Интересно задаться вопросом: нет ли какого-то "пограничного" ряда, с которым можно сравнить любой другой? Например, сходящегося (или расходящегося) медленнее любого другого сходящегося (расходящегося) ряда. Оказывается, что такого ряда нет. А именно, можно доказать следующие утверждения.

Лемма 7.3.2 Рассмотрим ряд
$$\sum_{k=1}^{\infty} a_k$$
, где $a_k > 0$ и $a_k \xrightarrow[k \to +\infty]{} 0$. Тогда

- 1. Если ряд $\sum_{k=1}^{\infty} a_k$ расходится, то существует последовательность b_k : $b_k > 0$, $b_k \xrightarrow[k \to +\infty]{} 0$, такая, что ряд $\sum_{k=1}^{\infty} a_k b_k$ расходится.
- 2. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится, то существует последовательность $b_k \xrightarrow[k \to +\infty]{} +\infty$, что ряд $\sum_{k=1}^{\infty} a_k b_k$ сходится.

Доказательство. 1) Положим $b_k = \frac{1}{\sqrt{S_k} + \sqrt{S_{k-1}}}$, где $S_k = \sum_{n=1}^k a_n$. Тогда (при $k \geqslant 2$)

$$a_k b_k = \frac{a_k}{\sqrt{S_k} + \sqrt{S_{k-1}}} = \frac{S_k - S_{k-1}}{\sqrt{S_k} + \sqrt{S_{k-1}}} = \sqrt{S_k} - \sqrt{S_{k-1}}.$$

Ясно, что ряд с таким общим членом расходится.

2) Возьмем
$$b_k = \frac{1}{\sqrt{R_{k-1}}} = 1/\sqrt{\sum_{n=k}^{\infty} a_n}$$
, тогда

$$a_k b_k = \frac{a_k}{\sqrt{R_{k-1}}} = \frac{R_{k-1} - R_k}{\sqrt{R_{k-1}}} = \frac{(\sqrt{R_{k-1}} - \sqrt{R_k})(\sqrt{R_{k-1}} + \sqrt{R_k})}{\sqrt{R_{k-1}}} \leqslant$$

$$\leqslant 2(\sqrt{R_{k-1}} - \sqrt{R_k}).$$

Ряд с общим членом $\sqrt{R_{k-1}} - \sqrt{R_k}$ сходится, а значит, согласно признаку сравнения, сходится и ряд $\sum_{k=0}^{\infty} a_k b_k$.

7.3.2 Радикальный признак Коши

Теорема 7.3.2 (Радикальный признак Коши) $\Pi ycmv \ a_n \geqslant 0 \ u$

$$\overline{\lim}_{n\to+\infty}\sqrt[n]{a_n}=\ell\in[0,+\infty].$$

Tог ∂a

- 1. Если $\ell > 1$, то ряд с общим членом a_n расходится.
- 2. Если $\ell < 1$, то ряд с общим членом a_n сходится.

Доказательство. 1. Так как $\ell > 1$, то, начиная с некоторого n_0 , выполняется

$$\sqrt[n]{a_n} > 1 \Rightarrow a_n > 1.$$

Отсюда следует, что a_n не стремится к нулю, а значит не выполнено необходимое условие сходимости, и ряд расходится.

2. Если $\ell < 1$, то выберем $\varepsilon = (1-\ell)/2$. По свойству верхнего предела,

$$\exists n_0: \ \forall n > n_0 \ \Rightarrow \sqrt[n]{a_n} < \ell + \frac{1-\ell}{2} = \frac{\ell+1}{2} < 1.$$

Из этого неравенства получаем, что при $n>n_0$ выполняется

$$a_n < \left(\frac{\ell+1}{2}\right)^n.$$

Так как ряд $\sum_{n=n_0+1}^{\infty}\left(\frac{\ell+1}{2}\right)^k$ сходится, то, по признаку сравнения, сходится и ряд

$$R_{n_0} = \sum_{n=n_0+1}^{\infty} a_n,$$

а значит сходится и исходный ряд.

Замечание 7.3.1 В случае, когда $\ell = 1$ признак Коши не дает ответа на вопрос о сходимости ряда. Для рядов

$$\sum_{n=1}^{\infty} \frac{1}{n} \ u \ \sum_{n=1}^{\infty} \frac{1}{n^2}$$

признак Коши дает $\ell = 1$, но первый ряд расходится, а второй – сходится.

Замечание 7.3.2 Как было показано в теореме, если признак Коши дает $\ell > 1$, это означает, что общий член не стремится к нулю. Если известно, что $\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell > 1$, то $a_n \to +\infty$.

7.3.3 Признак Даламбера

Теорема 7.3.3 (Признак Даламбера) Пусть $a_n > 0$ и существует

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \ell \in [0, +\infty]$$

Tог ∂a

- 1. Если $\ell > 1$, то ряд с общим членом a_n расходится.
- 2. Если $\ell < 1$, то ряд с общим членом a_n сходится.

Доказательство. 1. Так как $\ell > 1$, то, начиная с некоторого номера n_0 , $a_{n+1} > a_n$, а значит $a_n \geqslant a_{n_0+1} > 0$, то есть a_n не стремится к нулю. Это противоречит необходимому условию.

2. Если $\ell < 1$, то выберем $\varepsilon = (1 - \ell)/2$. Согласно свойству предела, найдется n_0 , что при $n > n_0$

$$\frac{a_{n+1}}{a_n} < \ell + \frac{1-\ell}{2} = \frac{\ell+1}{2} = q,$$

откуда $a_{n+1} < qa_n$. По индукции, при $n > n_0$ имеем $a_n \leqslant q^{n-n_0-1}a_{n_0+1}$. Отсюда, согласно признаку сравнения,

$$R_{n_0} = \sum_{n=n_0+1}^{\infty} a_n$$

сходится (больший ряд – геометрическая прогрессия, причем |q|<1). Значит, сходится и исходный ряд.

Замечание 7.3.3 В случае, когда $\ell = 1$, признак Даламбера не дает ответа на вопрос о сходимости ряда. Для рядов

$$\sum_{n=1}^{\infty} \frac{1}{n} u \sum_{n=1}^{\infty} \frac{1}{n^2}$$

признак Даламбера дает $\ell=1$, но первый ряд расходится, а второй – сходится.

Замечание 7.3.4 Как было показано в теореме, если признак Даламбера $\partial aem \ \ell > 1$, это означает, что общий член ряда стремится к бесконечности.

Замечание 7.3.5 Признаки Коши и Даламбера – завуалированные признаки сравнения с геометрической прогрессией.

7.3.4 Признаки Куммера, Раабе, Бертрана

Для создания произвольного числа признаков разной тонкости полезна следующая теорема.

Теорема 7.3.4 (Признак Куммера) Пусть $a_n > 0, b_n > 0$ и ряд

$$\sum_{n=1}^{\infty} \frac{1}{b_n} \quad pacxodumcs.$$

 $\Pi ycmb$

$$\ell = \lim_{n \to +\infty} \left(b_n \frac{a_n}{a_{n+1}} - b_{n+1} \right),\,$$

тогда

- 1. Если $\ell > 0$, то ряд с общим членом a_n сходится.
- 2. Если $\ell < 0$, то ряд с общим членом a_n расходится.

Доказательство. 1. Так как $\ell>0$, то существует n_0 , что при $n>n_0$

$$b_n \frac{a_n}{a_{n+1}} - b_{n+1} > \frac{\ell}{2} > 0 \Rightarrow a_n b_n - a_{n+1} b_{n+1} > \frac{\ell}{2} a_{n+1} > 0.$$

В частности, $a_n b_n > a_{n+1} b_{n+1}$, а значит последовательность $a_n b_n$ убывает при $n > n_0$ и ограничена снизу, значит имеет предел. Но тогда

$$\sum_{n=n_0+1}^{\infty} (a_n b_n - a_{n+1} b_{n+1}) = \lim_{k \to +\infty} \sum_{n=n_0+1}^{k} (a_n b_n - a_{n+1} b_{n+1}) =$$

$$= \lim_{k \to +\infty} (a_{n_0+1} b_{n_0+1} - a_{k+1} b_{k+1}) < +\infty.$$

Значит, сходится и $\sum_{n=n_0+1}^{\infty} a_{n+1}$, но тогда сходится и ряд с общим членом a_n .

2. Пусть $\ell < 0$. Тогда существует n_0 , что при $n > n_0$

$$b_n \frac{a_n}{a_{n+1}} - b_{n+1} < 0 \Rightarrow b_n a_n - b_{n+1} a_{n+1} < 0.$$

Отсюда получаем, что $b_{n+1}a_{n+1}>b_na_n$ и последовательность b_na_n монотонно возрастает при $n>n_0$. Значит,

$$a_n b_n \geqslant a_{n_0+1} b_{n_0+1} \implies a_n \geqslant \frac{a_{n_0+1} b_{n_0+1}}{b_n}$$

и ряд
$$\sum_{n=n_0+1}^{\infty} a_n$$
 расходится.

Замечание 7.3.6 Можно заметить, что расходимость ряда $\sum_{n=1}^{\infty} \frac{1}{b_n}$ использовалась только при доказательстве расходимости.

Замечание 7.3.7 Если положить $b_n = 1$, то получится признак Даламбера.

Теорема 7.3.5 (Признак Раабе) $\Pi ycmv \ a_n > 0 \ u$

$$\lim_{n \to +\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \ell.$$

Tог ∂a

- 1. Если $\ell > 1$, то ряд с общим членом a_n сходится.
- 2. Если $\ell < 1$, то ряд с общим членом a_n расходится.

Доказательство. Для доказательства в признаке Куммера достаточно положить $b_n = n$. Детали остаются в качестве упражнения.

Теорема 7.3.6 (Признак Бертрана) Пусть $a_n > 0$ и

$$\lim_{n \to +\infty} \ln n \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) = \ell.$$

Tог ∂a

- 1. Если $\ell > 1$, то ряд с общим членом a_n сходится.
- 2. Если $\ell < 1$, то ряд с общим членом a_n расходится.

Доказательство. Сначала покажем, что ряд с общим членом $\frac{1}{n \ln n}$ расходится. Это следует из того, что, согласно теореме Лагранжа,

$$\ln \ln(n+2) - \ln \ln(n+1) = \frac{1}{\xi \ln \xi} \leqslant \frac{1}{(n+1)\ln(n+1)}, \quad \xi \in (n+1, n+2)$$

и того, что ряд с общим членом $\ln \ln (n+2) - \ln \ln (n+1)$ расходится, так как

$$\sum_{n=1}^{k} (\ln \ln(n+2) - \ln \ln(n+1)) = \ln \ln(k+2) - \ln \ln 2 \xrightarrow[k \to +\infty]{} +\infty.$$

Положим в признаке Куммера $b_n = n \ln n$. Получим

$$n \ln n \frac{a_n}{a_{n+1}} - (n+1) \ln(n+1) =$$

$$= \ln n \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) + (n+1) \ln n - (n+1) \ln(n+1) =$$

$$= \ln n \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right) - (n+1) \ln \left(1 + \frac{1}{n} \right).$$

Теперь признак Бертрана следует из того, что

$$\lim_{n \to +\infty} (n+1) \ln \left(1 + \frac{1}{n} \right) = \lim_{n \to +\infty} \frac{n+1}{n} = 1.$$

7.3.5 Признак Гаусса

Теорема 7.3.7 (Признак Гаусса) Пусть $a_n > 0$ и верно разложение

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + O\left(\frac{1}{n^{1+\gamma}}\right), \quad \gamma > 0.$$

Тогда:

© Бойцев А.А., Трифанова Е.С., 2025

Страница 86 из 156

- 1. Если $\lambda > 1$, то ряд с общим членом a_n сходится.
- 2. Если $\lambda < 1$, то ряд с общим членом a_n расходится.
- 3. Если $\lambda = 1$ и $\mu > 1$, то ряд с общим членом a_n сходится.
- 4. Если $\lambda = 1$ и $\mu \leqslant 1$, то ряд с общим членом a_n расходится.

Доказательство. Доказательство опирается на ранее доказанные признаки. Первые два пункта – это признак Даламбера. Третий и четвертый пункты в случае, когда $\mu \neq 1$ – это признак Раабе. Случай $\lambda = 1$, $\mu = 1$ доказывается по признаку Бертрана.

Замечание 7.3.8 В формулировке признака Гаусса нельзя $O\left(\frac{1}{n^{1+\gamma}}\right)$ заменить на $o\left(\frac{1}{n}\right)$.

7.3.6 Интегральный признак Коши и асимптотика сумм

Теорема 7.3.8 (Интегральный признак Коши) Пусть f(x) монотонна на $[1, +\infty)$. Тогда ряд $\sum_{k=1}^{\infty} f(k)$ сходится тогда и только тогда, когда сходится интеграл $\int\limits_{1}^{+\infty} f(x) dx$.

Доказательство. Пусть f убывает (нестрого). Тогда если $f(x_0) < 0$, то, в силу монотонности, $f(x) \leqslant f(x_0) < 0$ при $x > x_0$, а значит f(k) не стремится к 0 при $k \to +\infty$, то есть ряд с общим членом f(k) расходится.

Кроме того,

$$\int_{x_0}^{A} f(x)dx \leqslant f(x_0)(A - x_0) \xrightarrow[A \to +\infty]{} -\infty,$$

а значит расходится и интеграл. В итоге, $f(x) \geqslant 0$. В этом случае (вспоминая, что f убывает) очевидно следующее неравенство

$$f(k+1) \leqslant \int_{k}^{k+1} f(x)dx \leqslant f(k),$$

которое влечет неравенство

$$\sum_{k=1}^{n} f(k+1) \leqslant \int_{1}^{n+1} f(x) dx \leqslant \sum_{k=1}^{n} f(k).$$

Учитывая, что функция $F(\omega) = \int_{1}^{\omega} f(x) dx$ возрастает, для существования предела $\lim_{\omega \to +\infty} F(\omega)$ достаточно (и, конечно же, необходимо) существование предела $\lim_{n \to +\infty} F(n+1)$ (докажите это!). Тогда утверждение теоремы легко получить предельным переходом при $n \to +\infty$.

Пример 7.3.2 Pяд $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ расходится, так как расходится интеграл $\int\limits_{2}^{\infty} \frac{dx}{x \ln x}$.

Идея, использованная при доказательстве интегрального признака Коши, часто помогает в исследовании асимптотики различных сумм. Докажем следующую лемму.

Лемма 7.3.3 Пусть $f(x) \geqslant 0$ убывает на $[1, +\infty)$. Тогда последовательность

$$A_n = \sum_{k=1}^{n} f(k) - \int_{1}^{n+1} f(x) dx$$

имеет предел.

Доказательство. Докажем, что A_n возрастает. Действительно,

$$A_{n+1} - A_n = f(n+1) - \int_{n+1}^{n+2} f(x)dx \ge 0.$$

Покажем, что A_n ограничена сверху. Для этого сделаем следующее преобразование:

$$A_n = f(1) - f(n+1) + \sum_{k=2}^{n+1} f(k) - \int_{1}^{n+1} f(x)dx.$$

Так как

$$\sum_{k=2}^{n+1} f(k) = \sum_{k=1}^{n} f(k+1),$$

то, по доказанному в доказательстве интегрального признака Коши,

$$\sum_{k=2}^{n+1} f(k) - \int_{1}^{n+1} f(x)dx \le 0,$$

откуда

$$A_n \leqslant f(1) - f(n+1) \leqslant f(1).$$

Согласно теореме Вейерштрасса, A_n имеет предел.

Замечание 7.3.9 Применительно к поиску асимптотик, последняя лемма может быть использована следующим образом. Пусть $\lim_{n\to +\infty} A_n = A$, тогда

$$\sum_{k=1}^{n} f(k) - \int_{1}^{n+1} f(x)dx = A + \alpha_n \iff \sum_{k=1}^{n} f(k) = \int_{1}^{n+1} f(x)dx + A + \alpha_n,$$

 $r\partial e \ \alpha_n \xrightarrow[n \to +\infty]{} 0.$ Особо интересны случаи, когда ряд, стоящий слева, расходится. Тогда (при $n \to +\infty$)

$$\sum_{k=1}^{n} f(k) \sim \int_{1}^{n+1} f(x) dx.$$

Пример 7.3.3 Рассмотрим гармонический ряд и найдем его асимптотику. Ясно, что

$$\sum_{k=1}^{n} \frac{1}{k} = \int_{1}^{n+1} \frac{dx}{x} + A + \alpha_n = \ln(n+1) + A + \alpha_n.$$

Тем самым,

$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln(n+1) \sim \ln n.$$

Определение 7.3.1 Постоянная А в равенстве

$$\sum_{k=1}^{n} \frac{1}{k} = \int_{1}^{n+1} \frac{dx}{x} + A + \alpha_n = \ln(n+1) + A + \alpha_n.$$

называется постоянной Эйлера и часто обозначается γ .

Замечание 7.3.10 Полезно отметить, что написанное равенство дает способ вычисления постоянной Эйлера с любой точностью. Так как

$$\ln(n+1) = \sum_{k=1}^{n} (\ln(k+1) - \ln k) = \sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right),$$

mo

$$\gamma = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \ln \left(1 + \frac{1}{k} \right) \right).$$

Замечание 7.3.11 Для сходящихся рядов похожие рассуждения позволяют оценить скорость стремления остатка ряда к нулю. Пусть $f \geqslant 0$ и убывает на $[1, +\infty)$. Тогда

$$\int_{n+1}^{\infty} f(x)dx \leqslant \sum_{k=n+1}^{\infty} f(k) \leqslant \int_{n}^{\infty} f(x)dx.$$

Например,

$$\sum_{k=n+1}^{\infty} \frac{1}{k^a} \sim \frac{1}{(a-1)k^{a-1}}, \quad a > 1.$$

7.4 Ряды с произвольными членами

Будем рассматривать ряды $\sum_{k=1}^{\infty} a_k$ с комплексными членами $a_k \in \mathbb{C}$.

Определение 7.4.1 Говорят, что ряд с общим членом a_k сходится абсолютно, если сходится ряд с общим членом $|a_k|$.

Заметим, что ряд $\sum_{k=1}^{\infty} |a_k|$ положительный. А значит для исследования на абсолютную сходимость можно использовать признаки сходимости положительных рядов.

Теорема 7.4.1 (Абсолютная сходимость – это сходимость) *Если ряд* с общим членом a_k сходится абсолютно, то он сходится.

Доказательство. Воспользуемся критерием Коши. Пусть $\varepsilon > 0$. Найдем n_0 такой, что

$$\forall n > n_0, \ \forall p \in \mathbb{N} \ \Rightarrow \ \sum_{k=n+1}^{n+p} |a_k| < \varepsilon.$$

Но тогда и

$$\left| \sum_{k=n+1}^{n+p} a_k \right| \leqslant \sum_{k=n+1}^{n+p} |a_k| < \varepsilon,$$

откуда, согласно критерию Коши делаем вывод, что ряд с общим членом a_k сходится.

Определение 7.4.2 Если ряд с общим членом a_k сходится, но абсолютной сходимости нет, то говорят, что ряд с общим членом a_k сходится условно (или неабсолютно).

- Лемма 7.4.1 (Простые свойства абсолютно сходящихся рядов) 1. Пусть $\operatorname{Re} a_k = x_k$, $\operatorname{Im} a_k = y_k$. Тогда ряд $\sum_{k=1}^{\infty} a_k$ сходится абсолютно тогда и только тогда, когда оба ряды $\sum_{k=1}^{\infty} x_k$ и $\sum_{k=1}^{\infty} y_k$ сходятся абсолютно.
 - 2. Если ряд $\sum_{k=1}^{\infty} a_k$ имеет сумму, то

$$\Big|\sum_{k=1}^{\infty} a_k\Big| \leqslant \sum_{k=1}^{\infty} |a_k|.$$

3. Пусть $a_k = b_k + c_k$ и ряд $\sum_{k=1}^{\infty} c_k$ сходится абсолютно. Тогда ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ ведут себя одинаково (либо одновременно сходятся условно, либо абсолютно, либо расходятся).

Доказательство. Доказательства несложные и остаются в качестве лёгкого упражнения. \Box

Для исследования неположительных рядов на сходимость используют признаки Абеля–Дирихле, аналогичные соответствующим интегральным признакам. Для доказательства нам потребуется аналог формулы интегрирования по частям.

Лемма 7.4.2 (Преобразование Абеля) Пусть $A_k = \sum_{i=1}^k a_i$. Тогда

$$\sum_{i=1}^{n} a_i b_i = A_n b_n + \sum_{i=1}^{n-1} A_i (b_i - b_{i+1}).$$

Доказательство. Пусть $A_0 = 0$, тогда

$$\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} (A_i - A_{i-1}) b_i = \sum_{i=1}^{n} A_i b_i - \sum_{i=1}^{n} A_{i-1} b_i =$$

$$= A_n b_n + \sum_{i=1}^{n-1} A_i b_i - \sum_{i=0}^{n-1} A_i b_{i+1} = A_n b_n + \sum_{i=1}^{n-1} A_i (b_i - b_{i+1}).$$

Теорема 7.4.2 (Признак Абеля-Дирихле) Пусть даны последовательности $a_k \in \mathbb{C}$, $b_k \in \mathbb{R}$, причем b_k монотонна. Тогда для сходимости ряда

$$\sum_{k=1}^{\infty} a_k b_k$$

достаточно выполнения любой из двух пар условий: либо

© Бойцев А.А., Трифанова Е.С., 2025

- 1. Частичные суммы $A_n = \sum_{k=1}^n a_k$ ограничены, то есть $|A_n| \leqslant C$, $\forall n \in \mathbb{N}$.
- 2. Последовательность b_k стремится к нулю, то есть $b_k \xrightarrow[k \to +\infty]{} 0$,

либо

- 1. Psd $\sum_{k=1}^{\infty} a_k \ cxodumcs$.
- 2. Последовательность b_k ограничена, то есть $|b_k| \leqslant C$.

Доказательство. 1. Воспользуемся преобразованием Абеля. В обозначениях теоремы,

$$\sum_{k=1}^{n} a_k b_k = A_n b_n + \sum_{k=1}^{n-1} A_k (b_k - b_{k+1}).$$

Так как $|A_n| \leqslant C$, в силу второго условия $A_n b_n \xrightarrow[n \to +\infty]{} 0$. Тогда сходимость рассматриваемого ряда равносильна сходимости ряда с общим членом $A_k(b_k-b_{k+1})$. Покажем, что такой ряд сходится абсолютно. Это следует из теоремы сравнения и следующих выкладок:

$$\sum_{k=1}^{\infty} |A_k(b_k - b_{k+1})| \le C \sum_{k=1}^{\infty} |b_k - b_{k+1}| = C \lim_{n \to +\infty} \sum_{k=1}^{n} |b_k - b_{k+1}| = C \lim_{n \to +\infty} |b_1 - b_{n+1}| = C |b_1|.$$

Итого, рассматриваемый ряд сходится.

2. Так как b_k монотонна и ограничена, то она имеет предел b. Рассмотрим последовательность $c_k = b_k - b$. Тогда для пары последовательностей a_k и c_k справедливы условия первого пункта, а значит сходится ряд с общим членом $a_k c_k$. Между тем,

$$\sum_{k=1}^{\infty} a_k c_k = \sum_{k=1}^{\infty} a_k b_k - b \sum_{k=1}^{\infty} a_k.$$

Итого, средний ряд сходится, так как сходятся два других ряда.

Пример 7.4.1 Неабсолютно сходящиеся ряды существуют. Рассмотрим

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}.$$

Легко проверить, что абсолютной сходимости нет (ряд получается гармоническим). В то же время,

$$|A_n| = \left|\sum_{k=1}^n (-1)^{k-1}\right| \leqslant 1, \quad \frac{1}{k} \xrightarrow[k \to +\infty]{} 0, \text{ причем монотонно},$$

а значит выполнена первая пара условий признака Абеля-Дирихле, и ряд сходится (условно).

Давайте найдем сумму этого ряда.

Лемма 7.4.3

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \ln 2.$$

Доказательство.

$$S_{2n} = \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \dots + \frac{1}{2n-1} - \frac{1}{2n} =$$

$$= 1 + \frac{1}{2} + \dots + \frac{1}{2n} - 2\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right) = H_{2n} - H_n =$$

$$= \ln(2n) + \gamma + \alpha_{2n} - \ln n - \gamma - \alpha_n \xrightarrow[n \to +\infty]{} \ln 2.$$

Пример 7.4.2 Исследовать на абсолютную и условную сходимости ряд

$$\sum_{k=1}^{\infty} \frac{\sin k}{k^a}.$$

При $a\leqslant 0$ ряд расходится так как его общий член не стремится к нулю. Если $a>1,\ mo$

$$\left|\frac{\sin k}{k^a}\right| \leqslant \frac{1}{k^a}$$

и, согласно признакам сравнения, исследуемый ряд сходится абсолютно.

Пусть теперь $a \in (0,1]$. Сначала установим, что ряд сходится. Действительно,

$$A_n = \sum_{k=1}^n \sin k = \frac{\cos \frac{1}{2} - \cos \left(n + \frac{1}{2}\right)}{2\sin \frac{1}{2}},$$

а значит $|A_n| \leqslant \frac{1}{|\sin \frac{1}{2}|} u$, так как $\frac{1}{k^a}$ монотонно стремится к нулю, то ряд сходится. Абсолютной сходимости нет, так как

$$\left| \frac{\sin k}{k^a} \right| \geqslant \frac{\sin^2 k}{k^a} = \frac{1 - \cos 2k}{2k^a} = \frac{1}{2k^a} - \frac{\cos 2k}{2k^a},$$

u ряд c общим членом $\frac{1}{2k^a}$ расходится, a c общим членом $\frac{\cos 2k}{2k^a}$ c ходится (что доказывается аналогично только что проделанному).

Пример 7.4.3 Условия монотонности в признаке Абеля-Дирихле важно. Рассмотрим ряд

$$\sum_{k=1}^{\infty} \frac{\sin k}{\sin k + \sqrt{k}}.$$

Рассмотрим цепочку преобразований

$$\frac{\sin k}{\sin k + \sqrt{k}} = \frac{1}{\sqrt{k}} \sin k \left(1 + \frac{\sin k}{\sqrt{k}} \right)^{-1} = \frac{\sin k}{\sqrt{k}} \left(1 - \frac{\sin k}{\sqrt{k}} + O\left(\frac{1}{k}\right) \right) =$$
$$= \frac{\sin k}{\sqrt{k}} - \frac{\sin^2 k}{k} + O\left(\frac{1}{k^{3/2}}\right).$$

Pяд с общим членом $k^{-3/2}$ сходится, а значит ряд с общим членом $O(k^{-3/2})$ сходится абсолютно. Pяд с общим членом $\frac{\sin k}{\sqrt{k}}$ сходится (по доказанному ранее), а ряд с общим членом $\frac{\sin^2 k}{k}$ расходится. Значит, исходный ряд расходится.

Теорема 7.4.3 (Признак Лейбница) Пусть рассматривается ряд

$$\sum_{k=1}^{\infty} (-1)^{k-1} a_k,$$

 $ede\ a_k \in \mathbb{R},\ a_k \geqslant 0\ u\ a_k$ монотонно стремится к нулю. Тогда ряд сходится.

Доказательство.

$$S_{2n} = a_1 - a_2 + a_3 - a_4 + \dots + a_{2n-1} - a_{2n} =$$

$$= (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-1} - a_{2n}) \geqslant S_{2n-2},$$

так как все слагаемые положительны (в силу невозрастания a_n) и, тем самым, S_{2n} не убывает. Кроме того,

$$S_{2n} = a_1 - (a_2 - a_3) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n} \le a_1,$$

откуда S_{2n} ограничена сверху. Значит, $S_{2n} \xrightarrow[n \to +\infty]{} S$. Но тогда

$$S_{2n+1} = S_{2n} + a_{2n+1} \xrightarrow[n \to +\infty]{} S,$$

так как общий член стремится к нулю. Тогда можно утверждать, что ряд сходится.

Определение 7.4.3 *Ряд, фигурирующий в условии теоремы, часто называют рядом лейбницевского типа или рядом Лейбница.*

Замечание 7.4.1 Как показано в доказательстве теоремы,

$$0 \leqslant S_{2n} \leqslant a_1$$
.

Это значит, что $0 \leqslant S \leqslant a_1$.

Лемма 7.4.4 (Об остатке ряда лейбницевского типа) Пусть рас-

$$\sum_{k=1}^{\infty} (-1)^{k-1} a_k,$$

 $r\partial e \ a_k \geqslant 0 \ u \ a_k$ монотонно стремится к нулю. Тог ∂a

$$|R_n| \leqslant a_{n+1}, \quad R_n(-1)^n a_{n+1} \geqslant 0.$$

Иными словами, модуль остатка ряда лейбницевского типа не превосходит модуля первого отброшенного члена. Кроме того, остаток совпадает по знаку со знаком первого отброшенного члена.

Доказательство. Для доказательства достаточно применить к остатку ряда сформулированное выше замечание.

7.5 Группировки и перестановки ряда. Теорема Римана

Определение 7.5.1 Пусть дан ряд с общим членом a_k и $n_1 < n_2 < ... < n_k < ...$ — возрастающая последовательность номеров. Положим $n_0 = 0$ и

$$A_j = \sum_{k=n_j+1}^{n_{j+1}} a_k.$$

Тогда ряд

$$\sum_{j=0}^{\infty} A_j$$

называется группировкой исходного ряда.

Отметим, что группировка ряда сохраняет исходный порядок членов ряда, но меняет общий член ряда.

Замечание 7.5.1 Мы знаем на примере ряда с общим членом $a_k = (-1)^k$, что группировка ряда может сходиться даже в том случае, когда ряд расходится:

$$(-1+1) + (-1+1) + \dots + (-1+1) + \dots = 0.$$

Ответим на вопрос, как связаны сходимость ряда и сходимость его группировок.

Теорема 7.5.1 (О группировках ряда) 1. Пусть ряд с общим членом a_k имеет сумму $S \in \mathbb{R}$ или \mathbb{C} . Тогда и любая его группировка имеет сумму S, то есть

$$\sum_{j=0}^{\infty} A_j = S.$$

2. Пусть группировка $\sum_{j=0}^{\infty} A_j$ ряда с общим членом a_k имеет сумму $S \in \overline{\mathbb{R}}$ или $\overline{\mathbb{C}}$, причем $a_k \xrightarrow[k \to +\infty]{} 0$ и каждая группа содержит не более $L \in \mathbb{N}$ членов. Тогда

$$\sum_{k=1}^{\infty} a_k = S.$$

3. Пусть группировка $\sum\limits_{j=0}^{\infty}A_{j}$ ряда с общим членом $a_{k}\in\mathbb{R}$ имеет сумму $S\in\overline{\mathbb{R}},$ а все члены внутри кажедой группы имеют один и тот же знак. Тогда

$$\sum_{k=1}^{\infty} a_k = S.$$

Доказательство. 1. Пусть \widetilde{S}_p – частичная сумма группировки:

$$\widetilde{S}_p = \sum_{j=0}^p A_j = \sum_{k=1}^{n_p} a_k = S_{n_p},$$

то есть является подпоследовательностью последовательности $S_n = \sum_{k=1}^n a_k$. Следовательно,

$$\lim_{p \to +\infty} \widetilde{S}_p = \lim_{p \to +\infty} S_{n_p} = \lim_{n \to +\infty} S_n = S.$$

2. Рассмотрим случай $S \in \mathbb{C}$. Пусть $\varepsilon > 0$. Так как $a_k \xrightarrow[k \to +\infty]{} 0$, то существует k_0 , что при $k > k_0$ выполняется

$$|a_k| < \frac{\varepsilon}{2L}$$

Так как перестановка имеет сумму S, то существует j_0 такой, что при $j>j_0$ выполняется

 $|\widetilde{S}_j - S| < \frac{\varepsilon}{2}.$

Пусть $n>\max(k_0,n_{j_0+1})$. Тогда существует t, что $n_t< n\leqslant n_{t+1}$, причем $n_t\geqslant n_{j_0+1}$. Но тогда

$$|S_n - S| \le |S_n - \widetilde{S}_t| + |\widetilde{S}_t - S| = \left| \sum_{k=n_t+1}^n a_k \right| + |\widetilde{S}_t - S| < \frac{\varepsilon}{2L} L + \frac{\varepsilon}{2} = \varepsilon.$$

Случаи $S=\pm\infty$ ответственный студент разберет самостоятельно.

3. Рассмотрим случай $S \in \mathbb{R}$. Пусть $\varepsilon > 0$. Так как перестановка имеет сумму S, то найдется j_0 такой, что при $j > j_0$ выполняется

$$|\widetilde{S}_j - S| < \varepsilon.$$

Пусть $n > n_{j_0+1}$. Тогда найдется t, что $n_t < n \leqslant n_{t+1}$, причем $n_t \geqslant n_{j_0+1}$. Если все члены группы A_t неотрицательны, то

$$\widetilde{S}_t \leqslant S_n \leqslant \widetilde{S}_{t+1},$$

а если неположительны, то

$$\widetilde{S}_{t+1} \leqslant S_n \leqslant \widetilde{S}_t.$$

В любом из двух описанных случаев,

$$|S_n - S| \le \max(|\widetilde{S}_t - S|, |\widetilde{S}_{t+1} - S|) < \varepsilon.$$

Не забудьте рассмотреть случаи $S=\pm\infty$ и $S=\infty.$

Оказывается, над сходящимися рядами далеко не всегда можно проводить привычные нам операции.

Пример 7.5.1 Рассмотрим ряд

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n} + \dots,$$

сумма которого вычислена выше и равна $\ln 2$. Переставим его члены местами и рассмотрим следующий ряд

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots$$

Рассмотрим частичную сумму нового ряда с номером 3n:

$$\widetilde{S}_{3n} = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} =$$

$$= \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{4k-2} - \frac{1}{4k} \right) = \frac{1}{2} \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k} \right) = \frac{1}{2} S_{2n},$$

где

$$S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}.$$

 $Ta\kappa \ \kappa a\kappa \lim_{n\to +\infty} S_n = \ln 2, \ mo \ \widetilde{S}_{3n} \xrightarrow[n\to +\infty]{} \frac{\ln 2}{2}.$ Легко понять, что $\widetilde{S}_{3n+1} \ u \ \widetilde{S}_{3n+2}$ тоже сходятся $\kappa \frac{\ln 2}{2}$, а значит можно утверждать, что

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots = \frac{\ln 2}{2}.$$

Итого, перестановка членов исходного ряда поменяла сумму.

Теорема 7.5.2 (Характерное свойство абсолютной сходимости) Pяд c общим членом $a_k \in \mathbb{R}$ сходится абсолютно тогда и только тогда, когда cходятся ряды c общими членами

$$a_k^+ = \begin{cases} a_k, & a_k \geqslant 0 \\ 0, & a_k < 0 \end{cases}, \quad u \quad a_k^- = \begin{cases} 0, & a_k \geqslant 0 \\ -a_k, & a_k < 0 \end{cases},$$

причем

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-.$$

Доказательство. Докажем необходимость. Пусть $S_n = \sum_{k=1}^n a_k, \ S_n^{\pm} = \sum_{k=1}^n a_k^{\pm}$ и

$$S_n^{|\cdot|} = \sum_{k=1}^n |a_k| \xrightarrow[n \to +\infty]{} S^{|\cdot|}.$$

Тогда $S_n^{\pm} \leqslant S_n^{|\cdot|} \leqslant S^{|\cdot|}$, откуда (в силу возрастания S_n^{\pm}) $S_n^{\pm} \xrightarrow[n \to +\infty]{} S^{\pm}$. Кроме того, $S_n = S_n^+ - S_n^-$, откуда, переходя к пределу при $n \to +\infty$, $S = S^+ - S^-$ Докажем достаточность. Пусть $S_n^{\pm} = \sum_{k=1}^n a_k^{\pm} \xrightarrow[n \to +\infty]{} S^{\pm}$. Тогда

$$S_n^{|\cdot|} = S_n^+ + S_n^- \xrightarrow[n \to +\infty]{} S^+ + S^- < \infty,$$

а значит ряд с общим членом a_k сходится абсолютно. Тогда он сходится, причем

$$S_n = S_n^+ - S_n^-$$

и, переходя к пределу, получаем требуемое равенство для сумм.

Следствие 7.5.3 *Если ряд с общим членом* $a_k \in \mathbb{R}$ *сходится условно, то* $S^{\pm} = +\infty$.

Теперь решим вопрос о перестановке абсолютно сходящегося ряда.

Определение 7.5.2 Биекция $\varphi: \mathbb{N} \to \mathbb{N}$ называется перестановкой множества натуральных чисел.

Определение 7.5.3 Пусть дан ряд с общим членом a_k и перестановка натуральных чисел φ . Тогда ряд

$$\sum_{k=1}^{\infty} a_{\varphi(k)}$$

называется перестановкой исходного ряда.

Теорема 7.5.4 (О перестановке абсолютно сходящегося ряда)

Пусть ряд с общим членом $a_k \in \mathbb{C}$ сходится абсолютно. Тогда любая его перестановка сходится абсолютно, причем к той же сумме.

Доказательство. Рассмотрим несколько случаев.

1. Пусть все $a_k \geqslant 0$. Тогда

$$\widetilde{S}_n = \sum_{k=1}^n a_{\varphi(k)} \leqslant \sum_{k=1}^p a_k = S_p \leqslant S, \quad p = \max_{k \in \{1, 2, \dots, n\}} \varphi(k).$$

Значит, перестановка сходится, причем $\widetilde{S}\leqslant S$. Наоборот, так как $\widetilde{S}=\sum_{k=1}^\infty a_{\varphi(k)}$, то ряд с общим членом a_k – его перестановка $(a_k=a_{\varphi^{-1}(\varphi(k))})$, а

значит, по доказанному, $S\leqslant \widetilde{S}$, откуда $S=\widetilde{S}.$

2. Пусть теперь $a_k \in \mathbb{R}$. Пусть a_k^+ и a_k^- – подпоследовательности a_k , состоящие только из неотрицательных и отрицательных членов, соответственно. Ряды, с общими членами a_k^+ и a_k^- сходятся абсолютно, причем

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^- = \sum_{k=1}^{\infty} (a_{\varphi(k)})^+ - \sum_{k=1}^{\infty} (a_{\varphi(k)})^- = \sum_{k=1}^{\infty} a_{\varphi(k)}.$$

3. Если $a_k \in \mathbb{C}$, то ряды с общими членами $x_k = \operatorname{Re} a_k$ и $y_k = \operatorname{Im} a_k$ сходятся абсолютно, а значит ряд

$$\sum_{k=1}^{\infty} a_{\varphi(k)} = \sum_{k=1}^{\infty} x_{\varphi(k)} + i \sum_{k=1}^{\infty} y_{\varphi(k)} = \sum_{k=1}^{\infty} x_k + i \sum_{k=1}^{\infty} y_k = \sum_{k=1}^{\infty} a_k.$$

Оказывается, для условно сходящихся рядов такая теорема уже не имеет места. Мы рассмотрим для вещественных рядов теорему Римана, а аналогичная ей теорема для комплексных рядов (теорема Сохоцкого) будет изучена нами позже.

Теорема 7.5.5 (Теорема Римана) Пусть ряд с общим членом $a_k \in \mathbb{R}$ сходится условно. Тогда какое бы не взять $S \in \overline{\mathbb{R}}$, существует перестановка натуральных чисел φ , что

$$\sum_{k=1}^{\infty} a_{\varphi(k)} = S.$$

Кроме того, существует такая перестановка исходного ряда, которая не имеет суммы в $\overline{\mathbb{R}}$.

Доказательство. Пусть a_k^+ и a_k^- – подпоследовательности a_k , состоящие только из неотрицательных и отрицательных членов, соответсвенно, причем оба ряда расходятся (к $+\infty$ и $-\infty$, соотвественно). Пусть $S \in \mathbb{R}, S \geqslant 0$, $a_0^+ = a_0^- = 0$. Пусть p_1 – наименьшее натуральное число, что

$$\sum_{k=0}^{p_1-1} a_k^+ \leqslant S < \sum_{k=0}^{p_1} a_k^+.$$

Пусть теперь q_1 – наименьшее натуральное число, что

$$\sum_{k=0}^{p_1} a_k^+ + \sum_{k=0}^{q_1} a_k^- < S \leqslant \sum_{k=0}^{p_1} a_k^+ + \sum_{k=0}^{q_1-1} a_k^-.$$

© Бойцев А.А., Трифанова Е.С., 2025

П

Пусть построены числа $p_1,...,p_{l-1}$ и $q_1,...,q_{l-1}$. Найдем наименьшее число p_l , что

$$\sum_{k=0}^{p_l-1} a_k^+ + \sum_{k=0}^{q_{l-1}} a_k^- \leqslant S < \sum_{k=0}^{p_l} a_k^+ + \sum_{k=0}^{q_{l-1}} a_k^-.$$

Теперь найдем наименьшее число q_l , что

$$\sum_{k=0}^{p_l} a_k^+ + \sum_{k=0}^{q_l} a_k^- < S \leqslant \sum_{k=0}^{p_l} a_k^+ + \sum_{k=0}^{q_l-1} a_k^-.$$

Все построения возможны в виду расходимости обоих рядов (из их членов можно набрать сколь угодно большую положительную и сколь угодно маленькую отрицательную суммы).

Рассмотрим ряд

$$A_1^+ + A_1^- + A_2^+ + A_2^- + \dots + A_l^+ + A_l^- + \dots$$

где $(p_0 = q_0 = 0)$

$$A_i^+ = \sum_{k=p_{i-1}+1}^{p_i} a_k^+, \quad A_i^- = \sum_{k=q_{i-1}+1}^{q_i} a_k^-,$$

причем если \widetilde{S}_n – его частичная сумма, то

$$a_{q_l}^- < \widetilde{S}_{2n} - S < 0,$$

a

$$0 < \widetilde{S}_{2n+1} - S < a_{p_{l+1}}^+.$$

Так как общий член ряда, в силу сходимости, стремится к нулю, то доказано, что

$$\lim_{n \to +\infty} \widetilde{S}_n = S.$$

Так как все члены в каждой группе одного знака, то перестановка рассматриваемого ряда сходится к S. Остальные случаи остаются в качестве упражнения.

7.6 Произведение рядов

Для конечных сумм имеем

$$\left(\sum_{k=1}^{n} a_{k}\right) \left(\sum_{j=1}^{m} b_{j}\right) = \sum_{k=1}^{n} \sum_{j=1}^{m} a_{k} b_{j},$$

и для конечных m, n последнее выражение не зависит ни от порядка суммирования, ни от способа перемножения. У рядов сразу возникают вопросы: будет ли сходиться полученный ряд? В каком порядке можно складывать?

Определение 7.6.1 Пусть даны ряды с общими членами a_k и b_k , (φ, ψ) – биекция \mathbb{N} на \mathbb{N}^2 . Тогда ряд

$$\sum_{k=1}^{\infty} a_{\varphi(k)} b_{\psi(k)}$$

называется произведением рядов с общими членами a_k и b_k .

Итак, произведение рядов – это ряд с произвольным порядком слагаемых вида a_ib_i .

 $\sum\limits_{k=1}^{\infty}b_k=B$ сходятся абсолютно. Тогда их произведение абсолютно сходится к AB .

Доказательство. Пусть (φ, ψ) – биекция \mathbb{N} на \mathbb{N}^2 . Тогда

$$\widetilde{S}_{n}^{|\cdot|} = \sum_{k=1}^{n} \left| a_{\varphi(k)} b_{\psi(k)} \right| \leqslant \sum_{k=1}^{p} \left| a_{k} \right| \sum_{k=1}^{t} \left| b_{k} \right| \leqslant A^{|\cdot|} B^{|\cdot|},$$

$$p = \max_{k \in \{1, 2, \dots, n\}} \varphi(k), \ t = \max_{k \in \{1, 2, \dots, n\}} \psi(k),$$

$$A^{|\cdot|} = \sum_{k=1}^{\infty} |a_{k}|, \quad B^{|\cdot|} = \sum_{k=1}^{\infty} |b_{k}|.$$

В итоге, ряд с общим членом $a_{\varphi(k)}b_{\psi(k)}$ сходится абсолютно. Значит, его сумма не зависит от перестановки. Тогда просуммируем «по квадратам».

$$\sum_{i,j=1}^{n} a_i b_j = \sum_{i=1}^{n} a_i \sum_{j=1}^{n} b_j \xrightarrow[n \to +\infty]{} AB.$$

Часто используется так называемое произведение по Коши (особенно – в степенных рядах).

Определение 7.6.2 *Ряд с общим членом* c_k , ϵde

$$c_k = \sum_{j=1}^k a_j b_{k+1-j},$$

называется произведением по Коши рядов с общими членами a_k и b_j .

Замечание 7.6.1 Часто произведение нумеруют с нуля. Тогда

$$\sum_{k=0}^{\infty} c_k = \sum_{k=0}^{\infty} \sum_{j=0}^{k} a_j b_{k-j}.$$

Пример 7.6.1 *Ряд*

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k}}$$

сходится по признаку Лейбница. А что с его квадратом по Коши?

$$c_k = \sum_{j=1}^k \frac{(-1)^{j-1}}{\sqrt{j}} \frac{(-1)^{k-j}}{\sqrt{k+1-j}} = (-1)^{k-1} \sum_{j=1}^k \frac{1}{\sqrt{j(k+1-j)}}.$$

Tог ∂a

$$|c_k| = \sum_{j=1}^k \frac{1}{\sqrt{j(k+1-j)}} \geqslant \sum_{j=1}^k \frac{1}{\sqrt{k}\sqrt{k}} = 1.$$

Итого, нарушено необходимое условие сходимости ряда.

Теорема 7.6.2 (Теорема Мертенса) Если два ряда сходятся, причем хотя бы один из них – абсолютно, то их произведение по Коши тоже сходится, причем к произведению сумм.

Доказательство. Пусть ряд $\sum_{k=1}^{\infty} a_k$ сходится абсолютно, а ряд $\sum_{k=1}^{\infty} b_k$ сходится. Введем привычные обозначения

$$S_n^A = \sum_{k=1}^n a_k, \quad S^A = \sum_{k=1}^\infty a_k, \quad S_n^{|A|} = \sum_{k=1}^n |a_k|, \quad S^{|A|} = \sum_{k=1}^\infty |a_k|,$$
 $S_n^B = \sum_{k=1}^n b_k, \quad S^B = \sum_{k=1}^\infty b_k.$

Рассмотрим произведение по Коши – ряд с общим членом

$$c_k = \sum_{j=1}^k a_j b_{k-j+1}.$$

Имеем для частичной суммы произведения

$$S_n = \sum_{k=1}^n c_k = \sum_{k=1}^n \sum_{j=1}^k a_j b_{k-j+1} = a_1 S_n^B + a_2 S_{n-1}^B + \dots + a_n S_1^B.$$

Так как $S^B = S_n^B + R_n^B$, то, подставляя $S_n^B = S^B - R_n^B$, получим

$$S_n^C = S_n^A S^B - \alpha_n,$$

где

$$\alpha_n = a_1 R_n^B + a_2 R_{n-1}^B + \dots + a_n R_1^B.$$

Для доказательства утверждения достаточно показать, что $\alpha_n \xrightarrow[n \to +\infty]{} 0$.

Пусть $\varepsilon > 0$. Так как ряд с общим членом b_k сходится, то

$$\exists n_0: \ \forall n > n_0 \ \Rightarrow \ |R_n^B| < \varepsilon.$$

Пусть $n > n_0$, тогда

$$|\alpha_n| = \left| \sum_{j=1}^n R_j^B a_{n-j+1} \right| \le \left| \sum_{j=1}^{n_0} R_j^B a_{n-j+1} \right| + \left| \sum_{j=n_0+1}^n R_j^B a_{n-j+1} \right|.$$

Для второй суммы справедлива оценка:

$$\left| \sum_{j=n_0+1}^{n} R_j^B a_{n-j+1} \right| < \varepsilon \sum_{j=n_0+1}^{n} |a_{n-j+1}| \leqslant \varepsilon S^{|A|}.$$

Рассмотрим первую сумму. Так как $R_n^B \xrightarrow[n \to +\infty]{} 0$, то $|R_n^B| \leqslant M$. Тогда

$$\left| \sum_{j=1}^{n_0} R_j^B a_{n-j+1} \right| \leqslant M \sum_{j=1}^{n_0} |a_{n-j+1}| = M \sum_{j=n-n_0+1}^n |a_j| =$$

$$= M(R_{n-n_0}^{|A|} - R_n^{|A|}) \xrightarrow[n \to +\infty]{} 0$$

в силу абсолютной сходимости ряда с общим членом a_k . Итого,

$$\lim_{n \to +\infty} S_n^C = \lim_{n \to +\infty} \left(S_n^A S^B - \alpha_n \right) = S^A S^B.$$

В заключение данного пункта, приведем следующий интересный пример.

Пример 7.6.2 Произведение по Коши двух расходящихся рядов может быть даже абсолютно сходящимся. Рассмотрим ряды с общими членами

$$a_k = \begin{cases} 1, & k = 1 \\ 2^{k-2}, & k > 1 \end{cases}, \quad b_k = \begin{cases} 1, & k = 1 \\ -1, & k > 1 \end{cases}$$

Рассмотрим произведение по Коши. $c_1 = 1$, а при k > 1

$$c_k = \sum_{j=1}^k a_j b^{k-j+1} = -1 - \sum_{j=2}^{k-1} 2^{j-2} + 2^{k-2} = -1 - \frac{1 - 2^{k-2}}{1 - 2} + 2^{k-2} = 0.$$

Итого, построенный ряд сходится абсолютно к сумме 1.

7.7 Функции $\exp z$, $\sin z$, $\cos z$ для $z \in \mathbb{C}$

Рассмотрим ряд $\sum_{n=0}^{\infty} \frac{z^n}{n!}$. Он сходится абсолютно при любом $z \in \mathbb{C}$.

Определение 7.7.1

$$\exp z \equiv e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C}.$$

Замечание 7.7.1 При $z = x \in \mathbb{R}$ согласно ряду Тейлора для вещественной экспоненты новое определение совпадает со старым.

Лемма 7.7.1 (Характеристическое свойство экспоненты) Для $z_1,z_2\in\mathbb{C}$ верно

$$\exp(z_1 + z_2) = \exp(z_1) \exp(z_2).$$

Доказательство. Так как ряды $e^{z_1} = \sum_{n=0}^{\infty} \frac{z_1^n}{n!}$ и $e^{z_2} = \sum_{n=0}^{\infty} \frac{z_2^n}{n!}$ сходятся абсолютно, то их произведение тоже сходится абсолютно и не зависит от способа суммирования. Рассмотрим общий член произведения, вычисленный по Коши:

$$c_k = \sum_{m+n=k} \frac{z_1^m}{m!} \cdot \frac{z_2^n}{n!} = \sum_{m=0}^k \frac{z_1^m z_2^{k-m}}{m!(k-m)!} = \frac{(z_1 + z_2)^k}{k!},$$

то есть совпадает с общим членом ряда для $e^{z_1+z_2}$.

Определение 7.7.2

$$\sin z := \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \quad z \in \mathbb{C},$$

$$\cos z := \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}, \quad z \in \mathbb{C}.$$

Указанные ряды сходятся абсолютно для всех $z \in \mathbb{C}$.

Лемма 7.7.2 (Формула Эйлера)

$$e^{iz} = \cos z + i \sin z$$
.

Доказательство. Запишем ряд для e^{iz} (сходящийся абсолютно) и переставим местами члены ряда так, чтобы выделить вещественную и мнимую часть.

Замечание 7.7.2 Для функций $\sin z\ u\cos z\ cnpased$ ливы все формулы тригонометрии.

Замечание 7.7.3 *Так как для* z = x + iy

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y),$$

то e^z – периодическая функция с периодом $2\pi i$.

Кроме того, функции $\sin z$ и $\cos z$ теперь неограниченны. Например,

$$\sin(ix) = \sinh x = \frac{e^x + e^{-x}}{2} \xrightarrow[x \to +\infty]{} \infty.$$

7.8 Формула Стирлинга

Теорема 7.8.1 (Простейшая формула Стирлинга)

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}, \quad n \to +\infty.$$

Доказательство. Рассмотрим последовательность

$$a_n = \ln \frac{\sqrt{n(n/e)^n}}{n!}$$

и докажем, что она сходится.

Рассмотрим

$$a_{n+1} - a_n = \ln\left(\frac{1}{e}\sqrt{\frac{n+1}{n}}(1+\frac{1}{n})^n\right) = \frac{1}{2}\ln(1+\frac{1}{n}) - 1 + n\ln(1+\frac{1}{n}) =$$
$$= \frac{1}{2}\left(\frac{1}{n} + O(\frac{1}{n^2})\right) - 1 + n\left(\frac{1}{n} - \frac{1}{2n^2} + O(\frac{1}{n^3})\right) = O(\frac{1}{n^2}).$$

Отсюда следует, что ряд $\sum_{k=1}^{\infty} (a_{k+1} - a_k)$ сходится, а значит его частичные суммы, равные a_{n+1} имеют предел. Следовательно, существует и предел последовательности $x_n = \frac{\sqrt{n(n/e)^n}}{n!}$. Пусть он равен A.

Согласно формуле Валлиса,

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{1}{\sqrt{n}} \frac{(2n)!!}{(2n-1)!!} = \lim_{n \to +\infty} \frac{1}{\sqrt{n}} \frac{((2n)!!)^2}{(2n)!} = \lim_{n \to +\infty} \frac{2^{2n}(n!)^2}{\sqrt{n}(2n)!}.$$

С другой стороны,

$$\frac{x_{2n}}{x_n^2} = \sqrt{2} \frac{(n!)^2 2^{2n}}{(2n)! \sqrt{n}} \xrightarrow[n \to +\infty]{} \sqrt{2\pi}.$$

Левая же часть стремится к A. Тем самым, $x_n \to \sqrt{2\pi}$, что и доказывает формулу.

Замечание 7.8.1 Можно доказать, что

$$n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \ e^{\theta/12n}, \ 0 < \theta < 1.$$

Пространство \mathbb{R}^n

Пространство, в котором будем работать – \mathbb{R}^n – линейное пространство, состоящее из n-мерных векторов $x=(x_1,x_2,\ldots,x_n)$, где $x_i\in\mathbb{R}$.

Но многие понятия данного раздела используют для произвольных пространств. И читателю полезно представлять себе максимально абстрактные пространства.

8.1 Полезные неравенства (Юнга, Гёльдера, Минковского)

Теорема 8.1.1 (Неравенство Юнга) Пусть $a,b\geqslant 0,\ p,q>1$ и $\frac{1}{p}+\frac{1}{q}=1.$ Tог ∂a

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}.$$

Доказательство. Способ 1. Так как функция $f(x) = \ln x$ – выпукла вверх, то при любых $x_1, x_2 > 0$ и $\alpha \in [0, 1]$ выполняется

$$\ln(\alpha x_1 + (1 - \alpha)x_2)) \geqslant \alpha \ln x_1 + (1 - \alpha) \ln x_2.$$

Положим $\alpha = \frac{1}{p}, \ 1 - \alpha = \frac{1}{q}, \ a^p = x_1, \ b^q = x_2.$ Тогда

$$\ln\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \geqslant \frac{1}{p}\ln a^p + \frac{1}{q}\ln b^q = \ln\left(ab\right),$$

откуда и следует требуемое.

Способ 2. Пусть a, b > 0 и функция f(x) возрастает и f(0) = 0. Тогда верно неравенство, которое легко доказать геометрически:

$$ab \leqslant \int_{0}^{a} f(x)dx + \int_{0}^{b} f^{-1}(y)dy.$$

Подставим $f(x) = x^{p-1}$ и, проведя вычисления, получим требуемое.

Теорема 8.1.2 (Классическое неравенство Гёльдера) Пусть $a_k, b_k > 0$ (k = 1, ..., n), p, q > 1 и $\frac{1}{p} + \frac{1}{q} = 1$. Тогда

$$\sum_{k=1}^{n} a_k b_k \leqslant \left(\sum_{k=1}^{n} a_k^p\right)^{1/p} \left(\sum_{k=1}^{n} b_k^q\right)^{1/q}.$$

Доказательство. Обозначим $A = \left(\sum\limits_{k=1}^n a_k{}^p\right)^{1/p}, B = \left(\sum\limits_{k=1}^n b_k{}^q\right)^{1/q}$. Применим неравенством Юнга для $a = a_k/A, \ b = b_k/B$:

$$\frac{a_k}{A} \cdot \frac{b_k}{B} \leqslant \frac{1}{p} \left(\frac{a_k}{A}\right)^p + \frac{1}{q} \left(\frac{b_k}{B}\right)^q.$$

Суммируем эти неравенства для k = 1, ..., n:

$$\sum_{k=1}^{n} \frac{a_k b_k}{AB} \leqslant \frac{1}{p} + \frac{1}{q} = 1,$$

откуда
$$\sum_{k=1}^{n} a_k b_k \leqslant AB$$
.

Замечание 8.1.1 Для чисел a_k, b_k произвольного знака верно неравенство

$$\left| \sum_{k=1}^{n} a_k b_k \right| \leqslant \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p} \left(\sum_{k=1}^{n} |b_k|^q \right)^{1/q}.$$

Замечание 8.1.2 При p=2 получаем неравенство Коши-Буняковского:

$$\left| \sum_{k=1}^{n} a_k b_k \right| \leqslant \sum_{k=1}^{n} a_k b_k \leqslant \sqrt{\sum_{k=1}^{n} a_k^2} \cdot \sqrt{\sum_{k=1}^{n} b_k^2}.$$

Этому неравенству можно придать геометрический смысл. Для двух векторов $\vec{a} = (a_1, ..., a_n)$ и $\vec{b} = (b_1, ..., b_n)$ модуль их скалярного произведения не превосходит произведения длин:

$$|\vec{a} \cdot \vec{b}| \leqslant |\vec{a}| \cdot |\vec{b}|.$$

Замечание 8.1.3 *Неравенство Гёльдера верно и для рядов. При* $a_k, b_k \geqslant 0$:

$$\sum_{k=1}^{\infty} a_k b_k \leqslant \left(\sum_{k=1}^{\infty} a_k^p\right)^{1/p} \left(\sum_{k=1}^{\infty} b_k^q\right)^{1/q}.$$

Причем в случае расходимости одного или нескольких рядов неравенство остается верным. Так как ряды положительные, то в случае расходимости ряда его сумма равна $+\infty$. Из расходимости ряда в левой части следует расходимость хотя бы одного ряда в правой части.

Теперь сформулируем неравенство Гёльдера в интегральной форме.

Теорема 8.1.3 (Интегральное неравенство Гёльдера) $\Pi ycmb = f,g \in R[a,b], \ \frac{1}{p} + \frac{1}{q} = 1, \ p>1, \ mor\partial a$

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leqslant \left(\int_{a}^{b} |f|^{p}dx \right)^{1/p} \left(\int_{a}^{b} |g|^{q}dx \right)^{1/q}.$$

Доказательство. Пусть (τ,ξ) – оснащенное разбиение [a,b] и $a_k=f(\xi_k)(\Delta x_k)^{1/p},\ b_k=g(\xi_k)(\Delta x_k)^{1/q}.$ Тогда

$$\left| \sum_{k=1}^{n} a_k b_k \right| = \left| \sum_{k=1}^{n} f(\xi_k) g(\xi_k) \Delta x_k \right| \leqslant \left(\sum_{k=1}^{n} |f(\xi_k)|^p \Delta x_k \right)^{1/p} \left(\sum_{k=1}^{n} |g(\xi_k)|^q \Delta x_k \right)^{1/q}.$$

Переходя к пределу, получим требуемое.

Замечание 8.1.4 Неравенство Гёльдера будет верно и для несобственных интегралов при условии $f, g \in R_{loc}(a, b)$.

Теорема 8.1.4 (Классическое неравенство Минковского) $\Pi ycmb$ $a_k, b_k > 0$ $(k = 1, ..., n), p \geqslant 1$. Тогда

$$\left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{1/p} \leqslant \left(\sum_{k=1}^{n} a_k^p\right)^{1/p} + \left(\sum_{k=1}^{n} b_k^p\right)^{1/p}.$$

Доказательство. При p=1 неравенство очевидно. При p>1 имеем:

$$\sum_{k=1}^{n} (a_k + b_k)^p = \sum_{k=1}^{n} a_k (a_k + b_k)^{p-1} + \sum_{k=1}^{n} b_k (a_k + b_k)^{p-1} \leqslant$$
(применим неравенство Гёльдера и $q(p-1) = p$)
$$\leqslant \left(\sum_{k=1}^{n} a_k^p\right)^{1/p} \left(\sum_{k=1}^{n} (a_k + b_k)^{q(p-1)}\right)^{1/q} + \left(\sum_{k=1}^{n} b_k^p\right)^{1/p} \left(\sum_{k=1}^{n} (a_k + b_k)^{q(p-1)}\right)^{1/q} =$$

$$= \left(\left(\sum_{k=1}^{n} a_k^p\right)^{1/p} + \left(\sum_{k=1}^{n} b_k^p\right)^{1/p}\right) \left(\sum_{k=1}^{n} (a_k + b_k)^p\right)^{1/q}.$$

Поделив все неравенство на второй сомножитель, получим требуемое.

Замечание 8.1.5 Для чисел a_k, b_k произвольного знака верно неравенство

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{1/p} \leqslant \left(\sum_{k=1}^{n} |a_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{1/p}$$

Теорема 8.1.5 (Интегральное неравенство Минковского) *Пусть* $f, g \in R[a, b], p \geqslant 1$. *Тогда*

$$\left(\int_a^b |f+g|^p dx\right)^{1/p} \leqslant \left(\int_a^b |f|^p dx\right)^{1/p} + \left(\int_a^b |g|^p dx\right)^{1/p}.$$

Доказательство. Предлагается в качестве упражнения.

Замечание 8.1.6 Неравенств Минковского будет верно и для несобственных интегралов при условии $f, g \in R_{loc}(a, b)$.

8.2 Метрическое пространство

Определение 8.2.1 Пусть X – некоторое множество. Функция ρ : $X \times X \to \mathbb{R}$ называется метрикой (или расстоянием) на X, если $\forall x, y, z \in X$ выполнено: 1) $\rho(x,y) = 0 \Leftrightarrow x = y$;

- 2) $\rho(x,y) = \rho(y,x)$ (аксиома симметрии);
- 3) $\rho(x,y) + \rho(y,z) \geqslant \rho(x,z)$ (аксиома треугольника).

При этом пара (X, ρ) называется метрическим пространством.

Заметим, что из аксиомы треугольника при x=z следует неотрицательность расстояния: $\forall x,y\in X\ \rho(x,y)\geqslant 0$.

На одном и том же множестве X можно задать разные метрики, получив тем самым разные метрические пространства.

Если понятно, какая метрика задана, то часто метрическое пространство (X, ρ) обозначают также, как и множество, на котором оно задано – X.

Пример 8.2.1 $X = \mathbb{R}$, $\rho(x, y) = |x - y|$.

Пример 8.2.2 $X = \mathbb{R}^n$, $x = (x_1, ..., x_n) \in \mathbb{R}^n$,

$$ho_2(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}$$
 Евклидова метрика, стандартна для \mathbb{R}^n

Пример 8.2.3 $X = \mathbb{R}^n, p \geqslant 1$,

$$\rho_p(x,y) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p}$$

 $\Pi pu \ p = 1 - M$ анхеттеновское расстояние (расстояние городских кварталов).

$$\Pi pu \ p = +\infty$$
: $\rho(x,y) = \max_{i=1..n} |x_i - y_i| - paccmoshue$ Чебышёва.

Для доказательства того, что в последнем примере функция ρ действительно задает метрику, воспользуемся неравенством Минковского:

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \leqslant \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p}$$

и проверим выполнение неравенства треугольника:

$$\rho(x,z) = \sqrt[p]{\sum_{i=1}^{n} |x_i - z_i|^p} = \sqrt[p]{\sum_{i=1}^{n} |(x_i - y_i) + (y_i - z_i)|^p} \leqslant$$

при $a_i = x_i - y_i$, $b_i = y_i - z_i$

$$\leq \sqrt[p]{\sum_{i=1}^{n} |x_i - y_i|^p} + \sqrt[p]{\sum_{i=1}^{n} |y_i - z_i|^p} = \rho(x, y) + \rho(y, z).$$

Пример 8.2.4 Дискретная метрика (для любого X) $\rho(x,y) = \begin{cases} 1, & x \neq y; \\ 0, & x = y. \end{cases}$

Пример 8.2.5 Для
$$f, g \in C[a, b] = X : \rho(f, g) = \sup_{x \in [a, b]} |f - g|.$$

Пример 8.2.6 Для
$$f,g \in C[a,b] = X \colon \rho(f,g) = \sqrt[p]{\int\limits_a^b |f-g|^p dx}.$$

Заметим, что в последнем примере нельзя взять X=R[a,b], так как расстояние между функциями, отличающимися в одной точке (а значит, различными), будет равно нулю, то есть не выполняется первая аксиома метрики.

8.3 Типы точек и множеств в метрическом пространстве

В этом пункте будем предполагать, что (X, ρ) – произвольное метрическое пространство.

Определение 8.3.1 *Открытым (замкнутым) шаром* c центром $a \in X$ и радиусом r (r > 0) называется множество

$$B_r(a) = \{x \in X : \rho(x, a) < r\} (\bar{B}_r(a) = \{x \in X : \rho(x, a) \le r\}),$$

сфера с центром $a \in X$ и радиусом r (r > 0):

$$S_r(a) = \{x \in X : \rho(x, a) = r\}.$$

Пример 8.3.1 Нарисуйте сферу $S_1(0,0)$ в пространстве \mathbb{R}^2 с метриками $\rho_2, \ \rho_1, \ \rho_{+\infty}$ (см. Пример 8.2.3).

Пусть $M \subset X$ – некоторое множество. По отношению к множеству M точку $x_0 \in X$ можно охарактеризовать следующим образом:

Определение 8.3.2 1. Точка x_0 называется внутренней точкой множества M, если существует шар $B_r(x_0) \subset M$, то есть точка x_0 лежит в M вместе с некоторым открытым шаром.

- 2. Точка x_0 называется внешней точкой множества M, если она является внутренней для дополнения M^C .
- 3. Иначе точка x_0 называется **граничной** точкой множества M.

Таким образом, внутренняя точка обязательно принадлежит множеству, внешняя— не принадлежит, а граничная точка— это такая точка, что в любом шаре с центром в этой точке есть точки как из данного множества, так и не принадлежащие ему.

Будем использовать следующие обозначения:

Int M — множество внутренних точек (внутренность) M ∂M — множество граничных точек (граница) M.

Лемма 8.3.1 В метрическом пространстве (\mathbb{R}^n , ρ) выполнено:

- 1. $\partial \bar{B}_r(x_0) = \partial B_r(x_0) = \partial S_r(x_0) = S_r(x_0);$
- 2. Int $B_r(x_0) = \text{Int } \bar{B}_r(x_0) = B_r(x_0)$;
- 3. Int $S_r(x_0) = \emptyset$.

Доказательство. Доказательство основано на определениях. Проделайте самостоятельно (например, для \mathbb{R}^2).

Теперь определим понятие открытого и замкнутого множества.

Определение 8.3.3 Множество $G \subset X$ называется **открытым** (в X), если все его точки – внутренние. Пустое множество \emptyset считается открытым по определению.

To есть, G – открыто, если

$$\forall x \in G \ \exists B_r(x) \subset G,$$

другими словами, вместе с каждой своей точкой оно содержит и некоторый открытый шар с центром в этой точке.

Пример 8.3.2 \emptyset и X – открыты в X; интервал (a,b) – открыт, а отрезок [a,b] не открыт в (R,ρ_1) .

Лемма 8.3.2 Открытый шар есть открытое множество.

Доказательство. Пусть $\xi \in B_r(x_0)$. Возьмём $r_{\xi} = \frac{1}{2}(r - \rho(\xi, x_0))$ и покажем, что $B_{r_{\xi}}(\xi) \subset B_r(x_0)$.

Пусть $y \in B_{r_{\varepsilon}}(\xi)$. Тогда

$$\rho(y,x_0) \leqslant \rho(y,\xi) + \rho(\xi,x_0) < \frac{r - \rho(\xi,x_0)}{2} + \rho(\xi,x_0) = \frac{r + \rho(\xi,r_0)}{2} < \frac{2r}{2} = r$$
 то есть, $y \in B_r(x_0)$.

Определение 8.3.4 *Окрестностью* $U(x_0)$ *точки* $x_0 \in X$ *называется любое открытое множество, содержащее эту точку.*

Проколотой окрестностью $\overset{\circ}{U}(x_0)$ называется разность окрестности и данной точки: $\overset{\circ}{U}(x_0) = U(x_0) \setminus \{x_0\}.$

Эпсилон-окрестностью точки x_0 называется открытый шар радиуса ε : $U_{\varepsilon}(x_0) := B_{\varepsilon}(x_0)$.

Определение 8.3.5 Множеество $F \subset X$ называется **замкнутым** в X, если его дополнение $F^C = X \setminus F$ открыто в X.

Пример 8.3.3 \emptyset и X – замкнуты в X; интервал (a,b) – не замкнут, а отрезок [a,b] замкнут в (R,ρ_1) .

Заметим, что в \mathbb{R}^n (с евклидовой метрикой) только два множества \emptyset и X являются открытыми и замкнутыми одновременно.

Пример 8.3.4 Пусть $X = (-\infty, 0) \cup (1, +\infty)$. Тогда $M = (-\infty, 0)$ – открыто и замкнуто в X. В англоязычной литературе такие множества называются clopen set.

Лемма 8.3.3 Замкнутый шар есть замкнутое множество.

Доказательство. Докажите самостоятельно.

В следующей Лемме все множества – подмножества X.

Лемма 8.3.4 (Свойства открытых и замкнутых множеств) 1. $Ecnu\ G_{\alpha},\ \alpha\in A\ -\ omкрыты,\ mor\partial a\ \bigcup_{\alpha\in A} G_{\alpha}\ -\ omкрыто.$

- 2. Если $G_1,...,G_n$ открыты, тогда $\bigcap_{i=1}^n G_i$ открыто.
- 3. Если F_{α} , $\alpha \in A$ замкнуты, тогда $\bigcap_{\alpha \in A} F_{\alpha}$ замкнуто.

- 4. Если $F_1,...,F_n$ замкнуты, тогда $\bigcup_{i=1}^n G_i$ замкнуто.
- 5. Если G открыто, а F замкнуто, то $G\setminus F$ открыто, а $F\setminus G$ замкнуто в X.

Доказательство. 1. Пусть $x \in G = \bigcup_{\alpha \in A} G_{\alpha}$. Тогда $x \in G_{\alpha}$ для некоторого $\alpha \in A$, а значит $\exists B(x) \subset G_{\alpha} \subset G$, откуда следует, что G – открыто.

- 2. Пусть $x \in F = \bigcap_{i=1}^n G_i$. Тогда $x \in G_i \ \forall i=1..n$ и $\exists r_1,...,r_n$: $B_{r_i}(x) \in G_i$. Тогда $B_r(x) \in G$, где $r = \min_{i=1..n} r_i$.
 - 3,4. Доказательство следует из доказанного и законов де Моргана.
 - 5. Доказательство основано на равенствах:

$$G \setminus F = G \cap F^C, \qquad F \setminus G = F \cap G^C.$$

Пример 8.3.5 Пересечение открытых множеств может не быть открытым, а объединение замкнутых – замкнутым:

$$\bigcap_{n \in \mathbb{N}} \left(0, \ 1 + \frac{1}{n} \right) = (0, 1], \qquad \bigcup_{n \in \mathbb{N}} \left[\frac{1}{n}, 2 - \frac{1}{n} \right] = (0, 2).$$

Очевидно, что сфера – замкнутое множество, так как представима в виде разности замкнутого и открытого шаров: $S_r(a) = \bar{B}_r(a) \setminus B_r(a)$.

Определение 8.3.6 Точка x_0 называется предельной точкой множества M, если в любой её проколотой окрестности точки есть точки из множества M. Множество предельных точек обозначают M'.

Предельная точка не обязательно принадлежит множеству. Понятно, что в любой окрестности предельной точки имеется бесконечно много точек данного множества.

Определение 8.3.7 Если к множеству M добавить все его предельные точки, то полученное множество называется замыканием множества M. Замыкание обозначают $\operatorname{cl} M$ или \bar{M} .

$$\operatorname{cl} M = M \cup M', \quad M'$$
- мн-во предельных точек.

Следующую теорему часто используют как другое определение замкнутого множества.

Теорема 8.3.1 (Критерий замкнутости множества) Множество замкнуто тогда и только тогда, когда оно содержит все свои предельные точки.

Другими словами, F – замкнуто $\Leftrightarrow F = \operatorname{cl} F$.

Доказательство. 1. Пусть F – замкнуто, $x \in F' \setminus F$. Тогда $x \in F^C$ и F^C – открыто, а значит некоторая окрестность $U(x_0)$ целиком лежит в F^C и не может содержать точек из F, что противоречит тому, что x_0 – предельная для F.

2. Пусть теперь $F = \operatorname{cl} F$. Докажем, что F^C – открыто. Пусть $x \in F^C$. Тогда $x \notin F = \operatorname{cl} F$, то есть точка x не предельная для F. Тогда существует шар $B_r(x) \subset F^C$, не содержащий точек F, откуда следует, что точка x – внутренняя для F^C . То есть F^C – открыто.

Замечание 8.3.1 Замыкание множества есть пересечение всех замкнутых множеств, его содержащих, то есть "наименьшее" замкнутое множество, содержащее данное.

Определение 8.3.8 Точка $x \in M$ и не являющаяся предельной точкой множества M называется **изолированной точкой** множества M.

Для изолированной точки существует окрестность, не содержащая других точек из M. Каждая точка множества M является либо его предельной точкой, либо изолированной.

Еще несколько простых свойств произвольного множества $M \subset X$:

- 1. $\operatorname{cl} M$ замкнуто;
- 2. Int M открыто;
- 3. ∂M замкнуто.

Теорема 8.3.2 (Структура открытого множества в \mathbb{R}^n) Любое открытое множество в \mathbb{R}^n представимо как объединение не более чем счетного набора открытых шаров.

Доказательство. Пусть $G \subset \mathbb{R}^n$ – открыто. Тогда $\forall x \in G \ \exists B_{r_x}(x) \subset G$ и $G = \bigcup_{x \in G} B_{r_x}(x)$. Покажем, что среди этих шаров можно выбрать не более чем счетный набор.

Для каждого $x\in G$ найдем $q_x\in \mathbb{Q}^n$: $\rho(x,q_x)<\frac{r_x}{3}$ и найдем $d_x\in Q$: $\frac{r_x}{3}< d_x<\frac{r_x}{2}$.

Тогда $x \in B_{d_x}(q_x) \subset B_{r_x}(x) \subset G$ и так как множество различных пар (q_x, d_x) не более чем счетно, то теорема доказана.

8.4 Нормированные линейные пространства

Здесь мы вспомним понятие нормированного пространства и свойства нормы.

Пространство является **линейным** (или **векторным**), если в нем определены операции сложения элементов и умножение элемента на число (для нас вещественное). Эти операции должны удовлетворять аксиомам сложения и умножения, и их результаты должны лежать в этом же пространстве.

Нормой $\|\cdot\|$ называется отображение $X \to \mathbb{R}$, удовлетворяющее аксиомам нормы:

- 1. $||x|| = 0 \Leftrightarrow x = 0$;
- 2. $\forall \lambda \in \mathbb{R} \quad ||\lambda x|| = |\lambda| \cdot ||x||$;
- 3. $\forall x, y \in X \quad ||x + y|| \le ||x|| + ||y||$ неравенство треугольника.

Линейное пространство, на котором задана норма называется **нормированным пространством**.

Заметим, что условие $\|x\|\geqslant 0$ следует из неравенства треугольника при y=-x.

Всякое нормированное пространство можно сделать метрическим, если ввести метрику:

$$\rho(x,y) = \|x - y\|.$$

Таким образом на нормированные пространства переносятся все понятия, имеющиеся для метрических пространств.

Отметим ещё одно свойство нормы:

$$||x - y|| \ge ||x|| - ||y|||.$$

Приведем примеры стандартных норм (сравните с Примером 8.2.3):

Пример 8.4.1 1. На множестве \mathbb{R} естественная норма ||x|| = |x|.

2. В пространстве \mathbb{R}^n с элементами $x = (x_1, x_2, \dots, x_n)$ можно ввести следующие нормы:

$$\|x\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}, \qquad (npu \ p = 2 \ eeknudoba \ hopma);$$

$$||x||_{\infty} = \max |x_i|.$$

3.
$$X = C[a, b]$$
:

$$||f|| = \max |f(x)|$$
 – равномерная норма;

 $u \Lambda u$

$$\|f\|_p = \sqrt[p]{\int_a^b |f(x)|^p dx}$$
 – интегральная норма.

Ещё один пример рассмотрим более подробно.

О норме линейного оператора

Множество линейных операторов, действующих из \mathbb{R}^m в \mathbb{R}^n будем обозначать $L(\mathbb{R}^m, \mathbb{R}^n)$. Это множество является линейным пространством. Норма определяется следующим образом:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||},$$

то есть, $\|A\|$ – это инфимум таких чисел C, для которых при всех $x \in \mathbb{R}^m$ верно неравенство

$$||Ax|| \leqslant C||x||.$$

Почему указанный супремум существует, будет ясно из п.4 следующей леммы, описывающей свойства нормы линейного оператора.

Лемма 8.4.1 (Свойства нормы линейного оператора) Для линейного оператора $A \in L(\mathbb{R}^m, \mathbb{R}^n)$ верны свойства:

1.
$$||A|| = \sup_{\|x\| \le 1} ||Ax|| = \sup_{\|x\|=1} ||Ax||;$$

- 2. $||Ax|| \leq ||A|| \cdot ||x||$;
- 3. $||AB|| \le ||A|| \cdot ||B||$;
- 4. $||A|| \leqslant C_A$, $\epsilon \partial e C_A = \left(\sum_{i,j} a_{ij}^2\right)^{1/2}$, $\epsilon \partial e \{a_{ij}\}$ mampuya onepamopa A.

Доказательство. 1. Так как для любого $x \neq 0$ верно $\left\| \frac{x}{\|x\|} \right\| = 1$, то

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||} = \sup_{||x||=1} ||Ax||.$$

Тогда требуемое равенство следует из неравенства

$$\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} \geqslant \sup_{\|x\| \leqslant 1} \frac{\|Ax\|}{\|x\|} \geqslant \sup_{\|x\| \leqslant 1} \|Ax\| \geqslant \sup_{\|x\| = 1} \|Ax\| = \|A\|.$$

- 2. Сразу следует из определения нормы линейного оператора.
- 3. Следует из цепочки неравенств: $||ABx|| \le ||A|| \cdot ||Bx|| \le ||A|| \cdot ||B|| \cdot ||x||$.
- 4. Воспользуемся неравенством Коши-Буняковского:

$$||Ax||^2 = \sum_{i=1}^n \left(\sum_{j=1}^m a_{ij} x_j\right)^2 \leqslant \sum_{i=1}^n \left(\sum_{j=1}^m a_{ij}^2 \sum_{j=1}^m x_j^2\right) = \left(\sum_{i,j} a_{ij}^2\right) \sum_{j=1}^m x_j^2 = C_A ||x||^2.$$

8.5 Сходимость последовательности в метрическом пространстве и в \mathbb{R}^n

Пусть (X, ρ) – метрическое пространство (МП). В некоторых случаях будем предполагать и наличие нормы $\|\cdot\|$.

Последовательностью x_k будем называть (как и раньше) отображение $\mathbb{N} \to X$.

Определение 8.5.1 (Предел в МП) Будем говорить, что последовательность x_k имеет предел $A \in X$, если $\lim_{k \to \infty} \rho(x_k, A) = 0$. При этом последовательность x_k называется сходящейся в (X, ρ) .

Для нормированного пространства $(X,\|\cdot\|)$ сходимость $x_k\to A$ определяется как $\lim_{k\to\infty}\|x_k-A\|=0.$

Это определение можно переписать на языке окрестностей:

$$\lim_{k \to \infty} x_k = A \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} : \ \forall k \geqslant k_0 \ x_k \in U_{\varepsilon}(A).$$

Говоря о пространстве \mathbb{R}^n будем по умолчанию считать введенную стандартную евклидову метрику ρ_2 и норму $\|\cdot\|_2$.

Введем понятие расширенного пространства \mathbb{R}^n , дополнив его бесконечно удаленной точкой.

Определение 8.5.2 (Расширенное \mathbb{R}^n) $\bar{\mathbb{R}}^n = \mathbb{R}^n \cup \{\infty\}$. При этом эпсилон-окрестностью бесконечности называется

$$U_{\varepsilon}(\infty) = \{x \in \mathbb{R}^n : \rho(x,0) > 1/\varepsilon\}.$$

Заметим, что $\bar{\mathbb{R}}^1 \neq \bar{\mathbb{R}}$, так как в $\bar{\mathbb{R}}$ содержатся точки $+\infty$ и $-\infty$.

Учитывая, что в \mathbb{R}^n определена окрестность бесконечности, можно определить предел, равный ∞ :

$$\lim_{k \to \infty} x_k = \infty \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} : \ \forall k \geqslant k_0 \ \|x_k\| > \frac{1}{\varepsilon}.$$

© Бойцев А.А., Трифанова Е.С., 2025

Страница 119 из 156

Определение 8.5.3 (Ограниченная последовательность)

Последовательность называется ограниченной в (X, ρ) , если существует шар $B_r(0)$, содержащий все члены последовательности.

Теорема 8.5.1 (Свойства сходящихся последовательностей в МП) Пусть $x_k \to A$ в $(X, \rho), A \in X$. Тогда

- 1. Предел единственен. (Верно и для $A \in \mathbb{R}^n$)
- $2. x_k$ ограничена в X.
- 3. Если пространство линейно, то предел удовлетворяет свойству линейности: если $x_k \to A$, $y_k \to B$, то $(\alpha x_k + \beta y_k) \to \alpha A + \beta B$.
- 4. Если задана норма $\|\cdot\|$, то $\|x_k\| \to \|A\|$ (непрерывность нормы).
- 5. Если A предельная точка $E\subset X$, то найдется последовательность $x_k\in E\colon x_k\to A.$
- 6. Е замкнуто в $X \Leftrightarrow \forall x_k \in E \ x_k \to A \Rightarrow A \in E$.

Доказательство свойств 1–3 проводятся также как и для \mathbb{R} . Остальные свойства остаются в качестве упражнения.

В пространстве \mathbb{R}^n будем индекс последовательности писать сверху, а нижний индекс оставим для координат:

$$x^k \in \mathbb{R}^n : \quad x^k = (x_1^k, x_2^k, ..., x_n^k).$$

Теорема 8.5.2 (Свойства сходящихся последовательностей в \mathbb{R}^n) $\Pi ycmv \ x^k \in \mathbb{R}^n$. $Tor \partial a$

- 1. $x^k \to A = (A_1, ..., A_n) \in \mathbb{R}^n \quad \Leftrightarrow \quad x_i^k \to A_i, i = 1, ..., n.$ (Сходимость покоординатная)
- 2. Если x^k ограничена, то можно выделить сходящуюся подпоследовательность. Если x^k неограничена, то можно выделить $x^{k_m} \to \infty$. (Теорема Больцано-Вейерштрасса)
- 3. Сходимость последовательность равносильна её фундаментальности, m.e.

$$\exists \lim_{k \to \infty} x^k \in \mathbb{R}^n \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N} : \ \forall k \geqslant k_0 \ \forall p \in \mathbb{N} \ \Rightarrow \|x^{k+p} - x^k\| < \varepsilon.$$

(Kpumepuŭ Komu)

Доказательство. 1. Пусть $x^k \to A = (A_1, ..., A_n)$. Тогда

$$0 \leqslant |x_i^k - A_i| \leqslant \sqrt{(x_i^k - A_i)^2 + \dots + (x_n^k - A_n)^2} \longrightarrow 0,$$

откуда следует $x_i^k \to A_i$.

Обратно. Пусть теперь $x_i^k \to A_i$, тогда

$$0 \leqslant ||x^{k} - A|| \sqrt{(x_{i}^{k} - A_{i})^{2} + \dots + (x_{n}^{k} - A_{n})^{2}} \leqslant \sqrt{n \cdot \max(x_{i}^{k} - A_{i})^{2}} =$$

$$= \sqrt{n} \cdot \max|x_{i}^{k} - A_{i}| \longrightarrow 0.$$

- 2. Докажем для \mathbb{R}^2 . Пусть $x^k = (x_1^k, x_2^k)$ ограничена. Следовательно, x_1^k – ограничена (в $\mathbb R$) и по теореме Больцано–Вейерштрасса (для $\mathbb R$) в ней можно выделить сходящуюся подпоследовательность $x_1^{k_p}$. Рассмотрим теперь последовательность $x_2^{k_p}$ (она ограничена, т.к. x_2^k ограничена) и выделим в ней сходящуюся подпоследовательность $x_2^{k_{p_t}}$. Получаем сходящуюся в \mathbb{R}^2 подпоследовательность исходной последовательности $(x_1^{k_{p_t}}, x_2^{k_{p_t}})$. 3. Пусть $x^k \to A$. Тогда фундаментальность следует из неравенства:

$$||x^k - x^m|| \le ||x^k - A|| + ||x^m - A||.$$

Пусть x^k – фундаментальна. Тогда каждая её координатная последовательность фундаментальна, т.к. $\|x_{i.}^{k+p}-x_{i}^k\| \leqslant \|x^{k+p}-x^k\|$. И по критерию Коши в $\mathbb R$ все последовательности $x_i^k \ (i=1,..,n)$ сходятся, следовательно, x^k сходится.

Заметим, что покоординатная сходимость не выполнена для $A=\infty$. Например, $(n,0) \to \infty \in \mathbb{R}^2$.

Определение 8.5.4 Метрическое пространство, в котором любая фундаментальная последовательность сходится, называется полным.

Таким образом, пространство \mathbb{R}^n – полное.

Пример 8.5.1 Пространство (\mathbb{Q}, ρ) , $\rho(x,y) = |x-y|$ – не полное, так как существует фундаментальная последовательность рациональных чисел $x_n \in \mathbb{Q}$, сходящаяся к иррациональному числу (в \mathbb{R}) и, значит, не схо- ∂ ящаяся в \mathbb{Q} .

8.6 Компактные множества

Пусть (X, ρ) – метрическое пространство.

Определение 8.6.1 Говорят, что система множеств E_{α} , $\alpha \in A$, образует **покрытие** множества X, если $X \subset \bigcup_{\alpha \in A} E_{\alpha}$.

Определение 8.6.2 Множесство $K \subset X$ называется компактным (или компактом) в X, если из любого его покрытия множесствами, открытыми в X, можно выделить конечное подпокрытие.

Пример 8.6.1 Отрезок [a,b] – компакт в \mathbb{R} (по лемме Бореля–Лебега: из любого покрытия отрезка интервалами можно выделить конечное покрытие), [a,b) – не компакт в \mathbb{R} .

Множество

$$\Pi = \{ x \in \mathbb{R}^n : \ a_i \leqslant x_i \leqslant b_i \}$$

будем называть n-мерным параллелепипедом (или брусом).

Лемма 8.6.1 *Брус* $\Pi - \kappa омпакт$.

Доказательство. Пусть существует покрытие бруса $\Pi_0 = \Pi$ открытыми множествами E_{α} , $\alpha \in A$ такое, что из них нельзя выделить конечное покрытие.

Поделим каждую сторону Π_0 пополам. Получим 2^n новых параллелепипедов. Хотя бы один из них не допускает конечного покрытия, пусть это параллелепипед Π_1 . Продолжаем и т.д.

$$\Pi = \Pi_0 \supset \Pi_1 \supset \Pi_2 \supset ...\Pi_p \supset ...$$

$$\Pi_p = \{x \in \mathbb{R}^n : a_i^p \leqslant x_i \leqslant b_i^p\}, \quad b_i^p - a_i^p \to 0$$
 при $p \to \infty$.

Получаем систему вложенных отрезков по p: $I_p^i = [a_i^p, \ b_i^p]$. По теореме Кантора найдется

$$\exists \eta_i \in \bigcap_{p=0}^{\infty} I_p^i$$

$$\eta = (\eta_1, \eta_2, ..., \eta_n) \in \Pi_i \quad \forall i \in \mathbb{N} \cup \{0\} \quad \Rightarrow$$

$$\exists E_{\alpha_0}: \eta \in E_{\alpha_0}, E_{\alpha_0}$$
 – открыто \Rightarrow $B(\eta, r) \subset E_{\alpha_0} \Rightarrow$

 $\exists p_0: \ \forall p>p_0 \ \Pi_p\subset B(\eta,r)\subset E_{\alpha_0} \ \Rightarrow \ \Pi$ ротиворечие с построением \Rightarrow Π – компакт.

Теорема 8.6.1 (Свойства компактов в МП) *Пусть* K – *компакт* в (X, ρ) . *Тогда*

- 1. К ограничено.
- $2. \ K$ замкнуто.
- 3. Если $F \subset K$ и F замкнуто в X, то F компакт.

Доказательство. 1. Для доказательства ограниченности достаточно из покрытия шарами $B_k(x_0)$ ($x_0 \in X$) выбрать конечное подпокрытие и шар наибольшего радиуса.

2. Докажем замкнутость. Пусть $x \notin K$ – предельная точка K. Тогда $\forall y \in K$ найдем пару окрестностей $U_y(y), \ O_y(x)$: $U_y(y) \cap O_y(x) = \emptyset$. Множество окрестностей $U_y(y), \ y \in \mathbb{R}$ образует открытое покрытие K. Выделим из него конечное покрытие

$$U(y_1),...,U(y_m); \quad K \subset \bigcup_{i=1}^m U(y_i),$$

которому соответствует конечный набор окрестностей $\{O_i(x)\}$. Рассмотрим

$$O(x) = \bigcap_{i=1}^{m} O_i(x) - \text{окрестность } x,$$

причем O(x) не пересекается с $\bigcup_{i=1}^m U(y_i) \supset K$, значит $O(x) \cap K = \emptyset \Rightarrow x$ – не предельная. Противоречие. И значит K замкнуто.

3. Пусть $\{G_{\alpha}\}$ – открытое покрытие F. Тогда множества G_{α} и F^C образуют открытое покрытие K. Выделим конечное подпокрытие $G_1,...,G_k,F^C$ и тогда $G_1,...,G_k$ – конечное подпокрытие F.

Теорема 8.6.2 (Критерий компактности в \mathbb{R}^n) B пространстве \mathbb{R}^n следующие утверждения равносильны:

- 1. $K \kappa o M n a \kappa m$.
- 2. К замкнуто и ограничено.
- 3. Из любой последовательности $x^k \in K$ можно выделить сходящуюся в K подпоследовательность. (Секвенциальная компактность)

Доказательство. $1\Rightarrow 2$ следует из свойств сходящихся последовательностей в $\Pi\Pi$.

 $2 \Rightarrow 3$ следует из т. Больцано-Вейерштрасса.

Докажем $3 \Rightarrow 1$. Пусть G_{α} образуют открытое покрытие K, из которого нельзя выбрать конечное. Можно считать, что $\{G_{\alpha}\}$ счётное. Построим последовательность точек x^k :

$$\forall k \in \mathbb{N} \ \exists x^k \notin \bigcup_{i=1}^k G_i.$$

Пусть подпоследовательность $x^{k_m} \to x_0 \in K$. Тогда $\exists G_0 \ni x_0$ и G_0 открытое. Значит $\exists B_r(x_0) \subset G_0$ такой что начиная с некоторого номера все $x^{k_m} \in B_r(x_0) \subset G_0$, что противоречит построению x^k .

9 Предел и непрерывность в метрическом пространстве

9.1 Предел в метрическом пространстве

Пусть (X, ρ_X) , (Y, ρ_Y) – произвольные метрические пространства. Будем рассматривать отображение $f: X \supset E \to Y$ и точку x_0 – предельную для E.

Определение 9.1.1 (Предела по Коши) Говорят, что $A \in Y$ – предел отображения f при $x \to x_0$, если

$$\forall V(A) \; \exists \overset{\circ}{U}(x_0) : \; \forall x \in \overset{\circ}{U} \cap E \; \Rightarrow \; f(x) \in V(A)$$

 $u \Lambda u$

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in E : \ 0 < \rho_X(x, x_0) < \delta \ \Rightarrow \ \rho_Y(f(x), A) < \varepsilon.$$

Замечание 9.1.1 В нормированных пространствах $(X, \|\cdot\|_X)$ и $(Y, \|\cdot\|_Y)$ определение предела выглядит так:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0: \ \forall x \in E: \ 0 < \|x - x_0\|_X < \delta \ \Rightarrow \ \|f(x) - A\|_Y < \varepsilon.$$

Определение 9.1.2 (Предела по Гейне) Говорят, что $A \in Y$ – предел отображения f при $x \to x_0$, если

$$\forall x^k \in E, \ x^k \neq x_0, \ x^k \xrightarrow[k \to \infty]{} x_0 \Rightarrow f(x^k) \xrightarrow[k \to \infty]{} A.$$

Теорема 9.1.1 Определения предела по Коши и по Гейне эквивалентны.

Доказательство. Доказывается аналогично случаю функции одной переменной. Полезно это проделать самостоятельно.

Рассмотрим отображение $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$ (действующее из множества $E \subset \mathbb{R}^m$ в \mathbb{R}^n). Оно каждой точке $x = (x_1, ..., x_m) \in E \subset \mathbb{R}^m$ ставит в соответствие точку $y = (y_1, ..., y_n) \in \mathbb{R}^n$:

$$f: \begin{cases} y_1 = f_1(x_1, ..., x_m) \\ y_2 = f_2(x_1, ..., x_m) \\ ... \\ y_n = f_n(x_1, ..., x_m) \end{cases}$$

В пространстве \mathbb{R}^n определены окрестности бесконечности, а значит, можно определить соответствующие пределы как по Коши (с помощью окрестностей), так и по Гейне.

Замечание 9.1.2 Для случая $\lim_{x \to \infty} f(x) = \infty$ можно записать

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in E : \ \rho(x,0) > \frac{1}{\delta} \ \Rightarrow \ \rho(f(x),0) > \frac{1}{\varepsilon}$$

 $u \Lambda u$

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0: \ \forall x \in E: \ \|x\| > \frac{1}{\delta} \ \Rightarrow \ \|f(x)\| > \frac{1}{\varepsilon}.$$

Лемма 9.1.1 (Общие свойства предела) Пусть (X, ρ_X) , (Y, ρ_Y) – метрические пространства, $f: X \supset E \to Y$, x_0 – предельная для E, $\lim_{x\to x_0} f(x) = A \in Y$. Тогда

- 1. Единственность предела. Если предел существует, то он единственен. (Верно и в \bar{R}^n).
- 2. Локальная ограниченность. f ограничено в некоторой окрестности точки x_0 .

Доказательство. Предоставляется читателю.

Лемма 9.1.2 (Арифметические свойства предела) Пусть (X, ρ_X) - метрическое, (Y, ρ_Y) - нормированное пространства, $f, g: X \supset E \to Y$, $\lambda: E \to \mathbb{R}$ (или \mathbb{C}), x_0 - предельная для E, $\lim_{x \to x_0} f(x) = A \in Y$, $\lim_{x \to x_0} g(x) = B \in Y$, $\lim_{x \to x_0} \lambda(x) = \lambda_0$. Тогда

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = A + B;$$

2.
$$\lim_{x \to x_0} (\lambda(x)f(x)) = \lambda_0 A;$$

3.
$$\lim_{x \to x_0} \frac{f(x)}{\lambda(x)} = \frac{A}{\lambda_0} npu \ \lambda_0 \neq 0;$$

4.
$$\lim_{x \to x_0} ||f(x)|| = ||A||.$$

Доказательство. Удобно использовать определение по Гейне. Предоставляется читателю.

Лемма 9.1.3 (Свойства предела, связанные с неравенствами)

Пусть (X, ρ_X) – метрическое пространство, $f, g, h: X \supset E \to \mathbb{R}$, x_0 – предельная для E. Тогда

- 1. Предельный переход в неравенстве: $\lim_{x\to x_0} f(x) = A \in \bar{\mathbb{R}}, \lim_{x\to x_0} g(x) = B \in \bar{\mathbb{R}}, f(x) \leqslant g(x) \Rightarrow A \leqslant B.$
- 2. Теорема о сжатой переменной: $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = A \in \mathbb{R} \ u \ f(x) \leqslant g(x) \leqslant h(x) \Rightarrow \lim_{x\to x_0} h(x) = A.$

Доказательство. Предоставляется читателю (Гейне в помощь).

Лемма 9.1.4 (Дополнительные свойства предела в \mathbb{R}^n) Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$, x_0 – предельная точка для E. Тогда

- 1. $f \xrightarrow[x \to x_0]{} A \in \mathbb{R}^n \Leftrightarrow f_i \xrightarrow[x \to x_0]{} A_i, i \in \{1, ..., n\}$ (сходимость покоординатная);
- 2. Арифметические свойства верны и для $A \in \mathbb{R}^n$, если соответствующая операция с символом ∞ определена. (Не определены $\infty \pm \infty$, $0 \cdot \infty$, 0/0, ∞/∞).

Доказательство. Из определения по Гейне.

Пример 9.1.1

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$$

Докажем, что $\lim_{(x,y)\to(0,0)} f(x,y)$ не существует.

$$x_1^n = \left(0, \frac{1}{n}\right) \longrightarrow (0, 0), \quad \lim_{n \to \infty} f\left(0, \frac{1}{n}\right) = 0,$$

$$x_2^n = \left(\frac{1}{n}, \frac{1}{n}\right) \longrightarrow (0, 0), \quad \lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n}\right) = \frac{1}{2},$$

следуя определений по Гейне, двойной предел $\lim_{(x,y)\to(0,0)} f(x,y)$ не существует.

Рассмотрим повторные пределы:

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = 0, \quad \lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0.$$

Пример 9.1.2

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$$

Рассмотрим повторные пределы:

$$\lim_{x\to 0}\lim_{y\to 0}f(x,y)=1,\quad \lim_{y\to 0}\lim_{x\to 0}f(x,y)=-1.$$

Двойной предел не существует, так как

$$f\left(0,\frac{1}{n}\right) \longrightarrow -1, \quad f\left(\frac{1}{n},0\right) \longrightarrow 1.$$

Пример 9.1.3

$$f(x,y) = \begin{cases} x + y \cdot \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Рассмотрим повторные пределы:

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = 0,$$

$$\lim_{y\to 0}\lim_{x\to 0}f(x,y)$$
 – не существует (кроме $y=0$).

Двойной предел:

 $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ (произведение беск. малой на ограниченную).

Пример 9.1.4

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$$
$$f\left(\frac{1}{n}, 0\right) \longrightarrow 0, \quad f\left(\frac{1}{n}, \frac{1}{n^2}\right) \longrightarrow \frac{1}{2}.$$

Рассмотрим предел по направлению $x=\alpha t,\,y=\beta t,\,t\to 0+$:

$$f(\alpha t, \beta t) = \frac{\alpha^2 \beta t^3}{\alpha^4 t^4 + \beta^2 t^2} \longrightarrow 0,$$

 $m.e.\ no\$ любому направлению предел равен нулю, но двойной предел не существует, $m.\kappa.$

$$f\left(\frac{1}{n}, \frac{1}{n^2}\right) \longrightarrow \frac{1}{2}.$$

Теорема 9.1.2 (О повторном пределе) Пусть $f: \mathbb{R}^2 \supset \overset{o}{U}(x_0,y_0) \to \mathbb{R}, \lim_{(x,y)\to(x_0,y_0)} f(x,y) = A \ u$

$$\exists \delta > 0 : \ \forall y : \ 0 < |y - y_0| < \delta \ \exists \lim_{x \to x_0} f(x, y) = \varphi(y).$$

Tог ∂a

$$\lim_{y \to y_0} \varphi(y) = A.$$

Доказательство. Пусть $\varepsilon > 0$. Тогда

$$\exists \delta_1 : \forall (x,y) \in \overset{\circ}{U}_{\delta_1}(x_0,y_0) \cap \overset{\circ}{U}(x_0,y_0) \implies |f(x,y) - A| < \varepsilon.$$

Возьмем $\delta_2 = \min\{\delta_1, \delta\}$. Тогда перейдем к пределу при $0 < |y - y_0| < \delta_2$:

$$\lim_{x \to x_0} |f(x, y) - A| = |\varphi(y) - A| \leqslant \varepsilon \iff \lim_{y \to y_0} \varphi(y) = A.$$

Теорема 9.1.3 (О двойном пределе в полярных координатах)

Пусть
$$f(x,y)$$
: $U(x_0,y_0) \to \mathbb{R}$. Если $\exists \rho_0 > 0$: $\forall \varphi \in [0,2\pi), \ \forall \rho \in (0,\rho_0) \Rightarrow |f(x_0 + \rho \cos \varphi, y_0 + \rho \sin \varphi) - A| \leqslant F(\rho),$

 $r\partial e \ F(\rho) \to 0 \ npu \ \rho \to 0+, \ mo$

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A.$$

Доказательство. Пусть $\varepsilon > 0$. Тогда

$$\exists \delta > 0 : \forall \rho \in (0, \delta) \implies \left| f(x_0 + \rho \cos \varphi, y_0 + \rho \sin \varphi) - A \right| \leqslant F(\rho) < \varepsilon,$$
$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} = \rho < \delta.$$

Пример 9.1.5

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2}, & x^2 + y^2 \neq 0; \\ 0, & x^2 + y^2 = 0. \end{cases}$$
$$\left| \frac{x^2 y}{x^2 + y^2} \right| = \rho \cos^2 \varphi |\sin \varphi| \leqslant \rho \to 0.$$

Теорема 9.1.4 (Критерий Коши) Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$, $x_0 \in \mathbb{R}^m - npedeльная для <math>E$. Тогда

$$\exists \lim_{x \to x_0} f(x) \in \mathbb{R}^n \quad \Leftrightarrow \quad$$

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x, y \in E \cap \overset{\circ}{U}_{\delta}(x_0) : \Rightarrow \|f(x) - f(y)\| < \varepsilon.$$

Доказательство. Докажите самостоятельно.

9.2 Непрерывность отображения

Пусть опять (X, ρ_X) и (Y, ρ_Y) – некоторые метрические пространства, $f: X \supset E \to Y, \ x_0 \in E.$

Определение 9.2.1 Отображение f непрерывно в точке x_0 , если

$$\forall V(f(x_0)) \; \exists U(x_0): \; f(U(x_0)) \subset V(f(x_0)).$$

Для $x_0 \in E$ возможно два случая:

- 1. x_0 предельная точка для E. Тогда непрерывность f в x_0 равносильна тому, что $\lim_{x\to x_0}=f(x_0)$.
- 2. x_0 изолированная точка E. Тогда f непрерывно в x_0 всегда, так как в достаточно маленькой окрестности x_0 нет других точек из E.

Теорема 9.2.1 (Локальные свойства непрерывных отображений) $\Pi y cmb \ (X, \rho_X)$ — метрическое, (Y, ρ_Y) — нормированное пространства, $f, g: X \supset E \to Y, \ \lambda: E \to \mathbb{R} \ (u \wedge u \ \mathbb{C})$ — непрерывны в точке x_0 . Тогда

- 1. f локально ограничено (m.e. ограничено в некоторой окрестности $x_0)$;
- 2. f+g, λf , ||f|| непрерывны в x_0 ;
- 3. f/λ непрерывно в x_0 , если $\lambda(x_0) \neq 0$.

Доказательство. Для предельной точки доказательство непосредственно следует из локальных свойств предела. Для изолированной – предоставляется читателю в качестве упражнения.

Теорема 9.2.2 (О непрерывности композиции) Пусть (X, ρ_X) , (Y, ρ_Y) , (Z, ρ_Z) – метрические пространства, $f: X \supset E_1 \to E_2 \subset Y$, $g: E_2 \to Z$, $x_0 \in E_1$, f непрерывно в x_0 , g непрерывно в $f(x_0)$. Тогда $g \circ f$ непрерывно в x_0 .

Доказательство. Так как g непрерывно в $f(x_0)$, то

$$\forall U(g(f(x_0))) \ \exists U(f(x_0)): \ \forall x \in U(f(x_0)) \cap E_2 \ \Rightarrow g(f(x)) \in U(g(f(x_0))).$$

Так как f непрерывно в x_0 , то по окрестности $U(f(x_0))$

$$\exists U(x_0): \ \forall x \in U(x_0) \cap E_1 \ \Rightarrow \ f(x) \in U(f(x_0)),$$

это и означает непрерывность g(f) в x_0 .

- Лемма 9.2.1 (О непрерывности в \mathbb{R}^n) 1. В \mathbb{R}^n непрерывность покоординатная, т.е. $f: R^m \supset E \to \mathbb{R}^n$ непрерывно в точке $x_0 \in E \Leftrightarrow \kappa a \varkappa c \partial a f_i$ непрерывна в x_0 .
 - 2. Если $f(x): \mathbb{R} \supset E \to \mathbb{R}$ непрерывна в $x_0 \in E \Rightarrow f(x,y)$ непрерывна в точке (x_0,y) (при $\forall y \in \mathbb{R}$).

Пример 9.2.1 Функция

$$f(x,y) = 1 + e^{-xy} \cdot \log_2 (1 + |x| + 4|y|)$$

непрерывна на \mathbb{R}^2 , так как получается из непрерывных функций конечным числом арифметических операций и суперпозиций.

9.3 Глобальные свойства непрерывных отображений

Будем рассматривать отображения из \mathbb{R}^m в \mathbb{R}^n со стандартной метрикой и нормой.

Определение 9.3.1 Пусть $F \subset E \subset \mathbb{R}^n$.

1. Говорят, что $x_0 \in F$ является внутренней точкой для F в E, если

$$\exists B(x_0,r) \subset \mathbb{R}^n : B(x_0,r) \cap E \subset F;$$

- 2. F называется открытым в E, если все точки F внутренние в E;
- 3. F называется замкнутым в E, если $E \setminus F$ открыто в E.

Пример 9.3.1 $E = [0,1] \subset \mathbb{R}$, $F = \left(\frac{1}{2},1\right]$. Точка 1 является внутренней точкой для F в E, а множество F открыто в E.

Определение 9.3.2 Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$ и f непрерывно в каждой точке $F \subset E$. Тогда говорят, что f непрерывно на F и пишут $f \in C(F)$.

Теорема 9.3.1 (Топологический критерий непрерывности) Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$. f непрерывно на E тогда и только тогда, когда прообраз любого открытого в \mathbb{R}^n множества открыт в E.

Доказательство. 1. Пусть $f \in C(E)$ и G – открыто в \mathbb{R}^n . Рассмотрим $F = f^{-1}(G)$ – не пусто. Пусть $x_0 \in F$ и $V(f(x_0))$ – окрестность точки $f(x_0)$ из G. Тогда

$$\exists U_V(x_0): \ \forall x \in U_V(x_0) \cap E \ \Rightarrow \ f(x) \in V(f(x_0)) \ \Rightarrow \ U_V(x_0) \cap E \subset f^{-1}(G).$$

2. Пусть прообраз любого открытого множества открыт в E и $x_0 \in E$:

$$\forall U(f(x_0)) \Rightarrow f^{-1}\Big(U(f(x_0))\Big)$$
 – открыт в E

и является окрестностью точки x_0 .

Замечание 9.3.1 Аналогичное утверждение верно и для замкнутого множества.

Лемма 9.3.1 (Непрерывный образ компакта) $\Pi ycmv \ f : \mathbb{R}^m \supset K \to \mathbb{R}^n, \ f \in C(K) \ u \ K - компакт. \ Tor да \ f(K) - компакт.$

Другими словами, образ компакта при непрерывном отображении – компакт. Доказательство. Пусть G_{α} , $\alpha \in A$ – открытое покрытие f(K). Так как f непрерывно, то множества $f^{-1}(G_{\alpha})$ открыты в K и образуют покрытие K. Выделим конечное покрытие: $K \subset \bigcup_{i=1}^n f^{-1}(G_{\alpha_i})$. Следовательно, $f(K) \subset \bigcup_{i=1}^n G_{\alpha_i}$, а значит, f(K) – компакт.

Замечание 9.3.2 Прообраз компакта при непрерывном отображении не обязательно компакт. Например, непрерывное биективное отображение полуинтервала на окружность $[0,2\pi) \to S_1(0)$. При этом обратное отображение не является непрерывным.

Следствие 9.3.2 *Отрезок в* \mathbb{R}^n – компакт.

Доказательство. Пусть $a, b \in \mathbb{R}^n$. Тогда

$$[a,b] = \{x : x = a + t(b-a), t \in [0,1]\}$$

и функция x(t) – непрерывна на компакте [0,1].

Определение 9.3.3 Областью в \mathbb{R}^n называется открытое связное множество.

Определение 9.3.4 Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$. Говорят, что f равномерно непрерывно на $D \subset E$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0: \ \forall x_1, x_2 \in D: \ \|x_1 - x_2\| < \delta \ \Rightarrow \ \|f(x_1) - f(x_2)\| < \varepsilon.$$

Теорема 9.3.3 (Теорема Вейерштрасса) Пусть $f \in C(K)$, $K \subset \mathbb{R}^m$ - компакт. Тогда

- 1. f ограничена на K;
- 2. $npu \ n = 1 \ f \ docmuraem$ наибольшего и наименьшего значений.

Доказательство. Следует из теоремы о непрерывном образе компакта.

Теорема 9.3.4 (Теорема Кантора) Пусть $f \in C(K)$, $K \subset \mathbb{R}^m$ – компакт. Тогда f равномерно непрерывна на K.

Доказательство. Аналогично доказательству в \mathbb{R} .

Теорема 9.3.5 (Непрерывность обратного отображения) Пусть $f \in C(K)$, $K \subset \mathbb{R}^m$ – компакт и f обратимо. Тогда обратное отображение непрерывно: $f^{-1} \in C(f(K))$.

Доказательство. Пусть $F \subset K$ – замкнуто, тогда F – компакт и f(F) – компакт, следовательно, замкнуто. Но f(F) есть прообраз замкнутого множества F при отображении f^{-1} . По топологическому критерию непрерывности, f^{-1} непрерывно.

Определение 9.3.5 (Гомеоморфизм) Непрерывное отображение $f \in C(E)$ называется гомеоморфизмом, если оно обратимо и f^{-1} непрерывно. При этом множества E и f(E) называются гомеоморфными.

Заметим, что гомеоморфность – отношение эквивалентности. Простой путь есть гомеоморфизм, при этом отрезок гомеоморфен носителю пути.

Определение 9.3.6 (Связность и линейная связность) Множество $E \subset X$ называется связным, если его нельзя представить в виде объединения двух непересекающихся, непустых, открытых в E множеств.

Mножество $E \subset X$ называется линейно связным, если любые две его точки можно соединить путём, носитель которого лежит в E:

$$\forall x, y \in E \ \exists \gamma : \ [0,1] \to E : \ \gamma(0) = x, \ \gamma(1) = y.$$

Пример 9.3.2 $B \mathbb{R}$ только промежутки – связные множества.

Пример 9.3.3 Если множество E несвязно, то найдется множество G:

$$E = G \cup (E \setminus G),$$

при этом G и $E \setminus G$ – открыты в E, а значит, замкнуты в E. Таким образом, для несвязного множества в нём существуют одновременно открытые и замкнутые множества кроме \emptyset и самого E (компоненты связности).

Теорема 9.3.6 (Непрерывный образ связного множества) Пусть $f \in C(E)$ и E – связно (линейно связно). Тогда f(E) – связно (линейно связно).

Доказательство. 1. Пусть E связно. Предположим, что f(E) несвязно, то есть, $f(E) = G \cup (f(E) \setminus G)$, где G и $f(E) \setminus G$. Но тогда $f^{-1}(G)$ и $f^{-1}(f(E) \setminus G)$ тоже открыты, $E = f^{-1}(G) \cup f^{-1}(f(E) \setminus G)$, что противоречит связности E.

2. Пусть E линейно связно. Возьмем $y_1,y_2\in f(E),\,x_1,x_2\in E$ – прообразы точек y_1,y_2 . Тогда найдется путь $\varphi: [0,1]\to E,\, \varphi(0)=x_1,\, \varphi(1)=x_2$. А значит путь $f(\varphi): [0,1]\to f(E)$ соединяет точки y_1 и y_2 : $f(\varphi(0))=y_1,\, f(\varphi(1))=y_2$.

Эта теорема – обобщение теоремы в \mathbb{R} о том, что при непрерывном отображении образ промежутка – промежуток. А также теоремы Больцано–Коши о промежуточных значениях непрерывной на отрезке функции.

Лемма 9.3.2 (О связи связности и линейной связности) *Линейно связное множество* – *связно.*

Доказательство. Предположим обратное: E линейно связно, но не связно. Тогда $E = G \cup (E \setminus G)$, где G и $E \setminus G$ – открыты в E. Возьмем $x \in G$, $y \in E \setminus G$. Так как E линейно связно, то найдется путь $f: [0,1] \to E$: f(0) = x, f(1) = y. Тогда образ отрезка можно представить как объединение непересекающихся открытых множеств:

$$A = f([0,1]) = (A \cap G) \cup (A \cap (E \setminus G)),$$

но по предыдущей теореме A связно. Противоречие.

Пример 9.3.4 Пример связного, но не линейно связного множества в \mathbb{R}^2 :

$$\Big\{(x,\sin(1/x)), x \in \mathbb{R} \setminus \{0\}\Big\} \cup \Big\{0, [-1,1]\Big\}.$$

$oldsymbol{10}$ Дифференцируемость в \mathbb{R}^m

10.1 Производная и дифференциал

Определение 10.1.1 Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$, x_0 – внутренняя точка E. Если существует такой линейный оператор $A_f \in L(\mathbb{R}^m, \mathbb{R}^n)$, что

$$f(x_0 + h) = f(x_0) + A_f h + o(||h||), \quad h \to 0,$$

то говорят, что f дифференцируемо в точке x_0 .

Замечание 10.1.1 В определении выше запись $o(\|h\|)$ означает функцию, представимую в виде $\alpha(h)\|h\|$, где $\alpha(h)\to 0$ при $h\to 0$. При этом значение $\alpha(0)$ может быть не определено. Будем полагать $\alpha(0)=0$, тогда α непрерывна в нуле.

Определение 10.1.2 Линейный оператор A_f в определении выше называется производной отображения f в точке x_0 , а величина $A_f h - \partial u \phi \phi$ ерениалом f в точке x_0 :

$$f'(x_0) = A_f, \quad df(x_0, h) = A_f h.$$

Также будем использовать обозначения $A_f(x_0)$, $A(x_0)$, $A_f(x_0)h$ и т.п. При n=1 производную ещё называют градиентом функции f и обозначают grad $f(x_0)$ или $\nabla f(x_0)$ (∇ – "набла").

Пример 10.1.1 Функция двух переменных $f: \mathbb{R}^2 \to \mathbb{R}$ $f(x,y) = x^2 + xy$ в точке (x_0, y_0) . Зададим приращение $h = (h_x, h_y)$ и рассмотрим

$$f(x_0 + h_x, y_0 + h_y) = (x_0 + h_x)^2 + (x_0 + h_x)(y_0 + h_y) =$$

$$= f(x_0, y_0) + (2x_0 + y_0)h_x + x_0h_y + h_x^2 + h_xh_y.$$
(1)

 $\exists \partial ecb \ A_f = (2x_0 + y_0, \ x_0) \ u$

$$|h_x^2 + h_x h_y| \le |h_x| \cdot (|h_x| + |h_y|) \le 2(h_x^2 + h_y^2) = o(||h||).$$

Лемма 10.1.1 (Необходимое условие дифференцируемости) $\Pi y cmb$ $f - \partial u \phi \phi e p e н ц u p y e м о в точке <math>x_0$. Тогда f непрерывно в точке x_0 .

Доказательство. По определению имеем

$$f(x_0 + h) - f(x_0) = A_f h + \alpha(h) ||h||,$$

и при $h \to 0$ оба слагаемых стремятся к 0, следовательно, $f(x_0+h)-f(x_0) \to 0$, что и означает непрерывность f в точке x_0 .

Лемма 10.1.2 (Покоординатная дифференцируемость)

Отображение $f = (f_1, ..., f_n)$ дифференцируемо в точке x_0 тогда и только тогда, когда каждая функция f_i дифференцируема в точке x_0 .

Определение 10.1.3 Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$, x_0 – внутренняя точка множества E. И пусть $e \in \mathbb{R}^m \setminus \{0\}$. Производной f по направлению e называется

$$\frac{\partial f}{\partial e} = \lim_{t \to 0+} \frac{f(x_0 + t \cdot e_0) - f(x_0)}{t},$$

 $e \partial e e_0 - opm \ e \epsilon \kappa mopa \ e : e_0 = e/\|e\|.$

Определение 10.1.4 Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$, x_0 – внутренняя точка множества E. Частной производной отображения f по переменной x_i в точке x_0 будем называть

$$\frac{\partial f}{\partial x_i} = \lim_{t \to 0} \frac{f(x_0 + t \cdot e_i) - f(x_0)}{t},$$

 $ede\ e_i$ — i-ый базисный орт пространства \mathbb{R}^m .

Замечание 10.1.2 Частные производные не равны производным по направлениям соответствующих базисных ортов. Если (иногда такие определения удобны) в определении производной по направлению рассматривать двусторонни предел при $t \to 0$, то частные производные будут совпадать с производными по направлениям соответствующих ортов.

Если $f = (f_1, ..., f_n)$, то частная производная по x_i – это вектор в \mathbb{R}^n .

$$\frac{\partial f}{\partial x_i} = \left(\frac{\partial f_1}{\partial x_i}, \frac{\partial f_2}{\partial x_i}, \dots, \frac{\partial f_n}{\partial x_i}\right).$$

Пример 10.1.2 Пусть $f(x,y) = x^y : \{(x,y) \in \mathbb{R}^2, x > 0\} \to \mathbb{R}$. Тогда

$$\frac{\partial f}{\partial x} = y \cdot x^{y-1}, \quad \frac{\partial f}{\partial y} = x^y \cdot \ln x.$$

Теорема 10.1.1 (Необходимое условие дифференцируемости)

Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$, x_0 – внутренняя точка множества E. Если f дифференцируемо в точке x_0 , то для любого вектора $e \neq 0$ существует $\frac{\partial f}{\partial e}(x_0)$, а также существуют все частные производные в точке x_0 .

Доказательство. Рассмотрим $h = t \cdot e$, где ||e|| = 1:

$$f(x_0 + h) - f(x_0) = Ah + \alpha(h) \cdot ||h||, \quad h \to 0,$$

воспользуемся линейностью A,

$$f(x_0 + te) - f(x_0) = Ate + \alpha(te) \cdot ||te|| = t \cdot Ae + \alpha(te) \cdot |t| \cdot ||e||,$$

разделим на t:

$$\frac{f(x_0 + te) - f(x_0)}{t} = Ae + \alpha(te) \cdot ||e|| \cdot \frac{|t|}{t} \to Ae, \quad t \to 0,$$

так как второе слагаемое стремится к нулю как произведение бесконечно малой $\alpha(te)$ на ограниченную $||e|| \operatorname{sign} t$.

Величина Ah выражается матрицей

$$T = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix},$$

которую принято называть матрицей Якоби.

Другими словами, вектор приращения функции должен иметь вид

$$\Delta f = \begin{pmatrix} \Delta f_1 \\ \vdots \\ \Delta f_n \end{pmatrix} = \begin{pmatrix} A_{11} & \dots & A_{1m} \\ \dots & \dots & \dots \\ A_{n1} & \dots & A_{nm} \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_m \end{pmatrix} + o(\|h\|).$$

Для отображения f(x) = x имеем

$$x_i + h_i - x_i = 1 \cdot h_i \iff h_i = dx_i(x_0, h), \quad i = 1, ..., m.$$

И тогда для произвольного дифференцируемого f пишут

$$df(x_0, h) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \dots & \frac{\partial f_1}{\partial x_m}(x_0) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(x_0) & \dots & \frac{\partial f_n}{\partial x_m}(x_0) \end{pmatrix} \begin{pmatrix} dx_1(x_0, h) \\ \vdots \\ dx_m(x_0, h) \end{pmatrix},$$

или короче:

$$df = f'dx = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} \begin{pmatrix} dx_1 \\ \vdots \\ dx_m \end{pmatrix}.$$

10.2 Правила дифференцирования

Теорема 10.2.1 (Арифметические свойства) Пусть $f, g: \mathbb{R}^m \supset E \to \mathbb{R}^n$, f, g дифференцируемы в точке $x_0 \in E$. Тогда

1. $\forall \lambda, \mu \in \mathbb{R}$: $\lambda f + \mu g$ дифференцируема в x_0 , причем

$$A_{\lambda f + \mu g} = \lambda \cdot A_f + \mu \cdot A_g.$$

2. Пусть $\lambda \colon E \to \mathbb{R}$, дифференцируема в x_0 . Тогда

$$A_{\lambda f} = f \cdot A_{\lambda} + \lambda \cdot A_f.$$

3. Пусть $\lambda: E \to \mathbb{R}$, дифференцируема в x_0 и $\lambda(x_0) \neq 0$. Тогда

$$A_{f/\lambda} = \frac{\lambda \cdot A_f - f \cdot A_\lambda}{\lambda^2}.$$

4. Скалярное произведение (f,g) – дифференцируемо в точке x_0 , причем

$$A_{(f,g)} = (A_f, g) + (f, A_g).$$

Доказательство. 1. Имеем

$$f(x_0+h)-f(x_0)=A_fh+o(\|h\|),\quad g(x_0+h)-g(x_0)=A_gh+o(\|h\|),$$
тогда

$$(\lambda f + \mu g)(x_0 + h) - (\lambda f + \mu g)(x_0) = \lambda (f(x_0 + h) - f(x_0)) + \mu (g(x_0 + h) - g(x_0)) =$$

$$= (\lambda A_f + \mu A_g)h + (\lambda + \mu)o(||h||) = (\lambda A_f + \mu A_g)h + o(||h||).$$

2. Аналогично:

$$(\lambda f)(x_0 + h) - (\lambda f)(x_0) = \lambda(x_0 + h)f(x_0 + h) - \lambda(x_0)f(x_0) =$$

$$= \left(\lambda(x_0) + A_{\lambda}h + o(\|h\|)\right) \left(f(x_0) + A_f h + o(\|h\|)\right) - \lambda(x_0)f(x_0) =$$

$$= \lambda(x_0)A_f h + A_{\lambda}hf(x_0) + o(\|h\|) = (\lambda(x_0)A_f + f(x_0)A_{\lambda})h + o(\|h\|),$$

где для получения $o(\|h\|)$ мы воспользовались непрерывностью линейных операторов A_{λ} и A_f .

- 3. Докажите самостоятельно.
- 4. Расписать покоординатно и воспользоваться п. 2.

Теорема 10.2.2 (Дифференцирование композиции) $\mathit{Пусть}\ g\colon\mathbb{R}^m\ \supset$ $E \to F \subset \mathbb{R}^n$, $f \colon F \to \mathbb{R}^k$, $g - \partial u \phi \phi e p e h u u p y e ма в точке <math>x_0$, $f - \partial u \phi$ ференцируема в точке $q(x_0)$. Тогда $f \circ q$ дифференцируема в точке x_0 и $A_{f \circ q} = A_f \circ A_q$, mo ecmb

$$(f(g))'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

Доказательство. Запишем определения дифференцируемости

$$f(x_0 + h) - f(x_0) = A_f h + \alpha(h) \cdot ||h||, \quad \alpha(h) \xrightarrow[h \to 0]{} 0, \ \alpha(0) = 0,$$

$$g(f(x_0) + t) - g(f(x_0)) = A_g t + \beta(t) \cdot ||t||, \quad \beta(t) \xrightarrow[t \to 0]{} 0, \ \beta(0) = 0.$$

Пусть $t = f(x_0 + h) - f(x_0)$. Заметим, что при $h \to 0$ выполнено $t \to 0$. Тогда

$$g(f(x_0 + h)) - g(f(x_0)) = A_g(A_f h + \alpha(h)||h||) + \beta(t) \cdot ||t|| =$$

подставим $||t|| = ||A_f h + \alpha(h)||h|||$

$$= A_g \cdot A_f h + A_g(\alpha(h)) \cdot ||h|| + \beta(t) \cdot ||A_f h + \alpha(h) \cdot ||h|||.$$

Рассмотрим второе слагаемое и применим свойство ограниченности линейного оператора

$$||A_q(\alpha(h)) \cdot ||h||| \le C_q ||\alpha(h)|| \cdot ||h|| = o(||h||),$$

где $C_g = \left(\sum_{i,j} a_{ij}^2\right)^{1/2}$ и $\{a_{ij}\}$ – матрица оператора A_g . Для третьего слагаемого имеем аналогично

$$\left\|\beta(t)\cdot\left\|A_fh+\alpha(h)\cdot\|h\|\right\| = o(\|h\|),$$

и тогда $g(f(x_0+h)) - g(f(x_0)) = A_g \cdot A_f h + o(\|h\|).$

Следствие 10.2.3 (Формула производной композиции) Для частной производной числовой функции верна формула

$$\frac{\partial (f(g))}{\partial x_i} = \sum_{j=1}^m \frac{\partial f}{\partial x_j} \frac{\partial g_j}{\partial x_i}.$$

Следствие 10.2.4 (Инвариантность формы первого дифференциала) Выражение для дифференциала отображения $df = A_f dx = f' dx$ не зависит от того, является ли х зависимой или независимой переменной, а также от того, независимы ли компоненты $x_1, ..., x_m$ вектора x.

Теорема 10.2.5 (Достаточное условие дифференцируемости)

Пусть $f: \mathbb{R}^m \supset E \to \mathbb{R}^n$, $x_0 \in E$ – внутренняя точка множества E. Если все частные производные $\frac{\partial f}{\partial x_i}(x)$, $i=1,\ldots,m$ определены в окрестности точки x_0 и непрерывны в точке x_0 , то функция f(x) дифференцируема в точке x_0 .

Доказательство. Так как дифференцируемость отображения f равносильна дифференцируемости всех f_i , то докажем для случая n = 1. И пусть m = 2 (при m > 2 доказательство аналогично).

Пусть $\frac{\partial f}{\partial x}(x,y)$ и $\frac{\partial f}{\partial y}(x,y)$ определены в шаре $B_{\delta}(x_0,y_0)$ и непрерывны в точке (x_0,y_0) .

Пусть $x = x_0 + \Delta x$, $y = y_0 + \Delta y$. Запишем полное приращение функции:

$$\Delta f(x_0, y_0) = f(x, y) - f(x_0, y_0) = (f(x, y) - f(x_0, y)) + (f(x_0, y) - f(x_0, y_0)).$$

Рассмотрим функцию f(x,y) как функцию одной переменной x. Тогда по теореме Лагранжа (для функции одной переменной) найдется точка ξ , лежащая между x и x_0 такая, что

$$f(x,y) - f(x_0,y) = \frac{\partial f}{\partial x}(\xi,y)(x - x_0).$$

Так как $\frac{\partial f}{\partial x}$ непрерывна в точке (x_0, y_0) , то

$$\frac{\partial f}{\partial x}(\xi,y) = \frac{\partial f}{\partial x}(x_0,y_0) + \alpha(\xi,y), \quad \alpha(\xi,y) \to 0 \quad \text{при } (x,y) \to (x_0,y_0).$$

Аналогично по переменной y получим

$$f(x_0, y) - f(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, \psi) (y - y_0),$$

$$\frac{\partial f}{\partial y}(x_0,\psi) = \frac{\partial f}{\partial y}(x_0,y_0) + \beta(\psi), \quad \beta(\psi) \to 0 \quad \text{при } (x,y) \to (x_0,y_0).$$

Тогда приращение функции имеет вид

$$\Delta f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) \, \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \, \Delta y + \alpha(\xi, y) \Delta x + \beta(\psi) \Delta y.$$

Докажем, что $\alpha(\xi,y)\Delta x+\beta(\psi)\Delta y=o\left(\sqrt{\Delta x^2+\Delta y^2}\right)$ при $\Delta x\to 0,\,\Delta y\to 0.$ Имеем

$$\left| \frac{\alpha(\xi, y)\Delta x + \beta(\psi)\Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \leqslant \left| \frac{\alpha(\xi, y)\Delta x}{\sqrt{\Delta x^2 + \Delta y^2}} \right| + \left| \frac{\beta(\psi)\Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \leqslant |\alpha(\xi, y)| + |\beta(\psi)| \to 0.$$

Определение 10.2.1 Будем говорить, что f дифференцируемо на E, если f дифференцируемо в каждой точке $x_0 \in E$.

Замечание 10.2.1 Функции, имеющие непрерывные частные производные в E (а значит и дифференцируемые в E) называют непрерывно-дифференцируемыми на E и обозначают $C^1(E)$.

Замечание 10.2.2 *Непрерывность частных производных не является необходимым условием дифференцируемости функции.*

Например, функция

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & x^2 + y^2 > 0; \\ 0, & x^2 + y^2 = 0, \end{cases}$$

Дифференцируема в точке (0,0), так как

$$\Delta f(0,0) = 0 \cdot x + 0 \cdot y + o(x^2 + y^2)$$
 при $(x,y) \to (0,0)$,

но частная производная

$$\frac{\partial f}{\partial x} = 2x \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{x}{\sqrt{x^2 + y^2}} \cos \frac{1}{\sqrt{x^2 + y^2}}$$

не имеет предела при $(x,y) \to (0,0)$ (доказать это можно, рассмотрев предел по множеству y=0 - он не существует), а значит, и не является непрерывной в точке (0,0) функцией.

Пример 10.2.1 Для функции f(x,y) получить выражения для производных в полярных координатах, т.е. найти $\frac{\partial f}{\partial r}, \frac{\partial f}{\partial \varphi}$.

Напомним формулы перехода в полярные координаты: $x=r\cos\varphi,\,r\sin\varphi.$ Получаем

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial f}{\partial x} \cos \varphi + \frac{\partial f}{\partial y} \sin \varphi = \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial f}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \frac{\partial f}{\partial y}.$$

$$\frac{\partial f}{\partial \varphi} = \frac{\partial f}{\partial x} (-r \sin \varphi) + \frac{\partial f}{\partial y} r \cos \varphi = -y \frac{\partial f}{\partial x} + x \frac{\partial f}{\partial y}.$$

10.3 Градиент и касательная плоскость

Рассмотрим вещественнозначную функцию $f: \mathbb{R}^m \subset E \to \mathbb{R}$, дифференцируемую во внутренней точке x_0 множества E. Напомним:

grad
$$f(x_0) = \left(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_m}\right)\Big|_{x_0}$$
.

Лемма 10.3.1 (Свойства градиента) Пусть f дифференцируема в x_0 и grad $f(x_0) \neq 0$. Тогда в точке x_0 :

1. Производная по направлению:

$$\frac{\partial f}{\partial l} = (\operatorname{grad} f, l_0) = \operatorname{Pr}_l \operatorname{grad} f = df(l_0),$$

т.е. производная по направлению равна скалярному произведению градиента на орт направления или проекции градиента на вектор направления, что тоже самое, что и значение дифференциала на орте направления.

- 2. $\max_{l} \frac{\partial f}{\partial l} = \frac{\partial f}{\partial (\operatorname{grad} f)} = |\operatorname{grad} f|$.

 Т.е. в направлении градиента производная по направлению максимальна и равна норме градиента.
- 3. $\operatorname{grad} f(x_0)$ ортогонален любой гладкой кривой, лежащей на поверхности уровня f(x) = C и проходящей через точку x_0 .

Доказательство. 1. Так как f дифференцируема в точке x_0 , то $f(x_0 + h) - f(x_0) = f'(x_0)h + o(\|h\|)$. Применим для $h = tl_0$:

$$\frac{\partial f}{\partial l}(x_0) = \lim_{t \to 0+} \frac{f(x_0 + tl_0) - f(x_0)}{t} = \lim_{t \to 0+} \frac{f'(x_0)(tl_0) + o(|t|)}{t} = \lim_{t \to 0+$$

3. Пусть кривая $\gamma:[a,b]\to\mathbb{R}^m$ лежит на поверхности уровня f(x)=C и задается дифференцируемой функцией $\gamma(t)=(\gamma_1(t),...\gamma_m(t))$. Точке x_0 соответствует $t_0:\gamma(t_0)=x_0,\ f(x_0)=C$.

Тогда при всех $t \in [a, b]$ верно равенство $f(\gamma(t)) = C$. Дифференцируя его по t как суперпозицию отображений, получим в точке $t = t_0$:

$$\left(\frac{\partial f}{\partial x_1},...,\frac{\partial f}{\partial x_m}\right)\cdot\left(\gamma_1',...,\gamma_m'\right)=0,$$

что и означает ортогональность векторов grad f и направляющего вектора γ' в точке t_0 .

Рассмотрим поверхность уровня в \mathbb{R}^3 , заданную равенством F(x,y,z) = C. Пусть точка $M_0 = (x_0, y_0, z_0, C)$ лежит на поверхности, т.е. $F(x_0, y_0, z_0) = C$.

Из свойства 3 следует, что если $\operatorname{grad} F(M_0) \neq 0$, то касательные ко всем гладким кривым, лежащим на поверхности уровня F(x,y,z) = C и проходящим через точку M_0 имеют общую нормаль $\operatorname{grad} F(M_0)$, а значит, лежат в одной плоскости. Эта плоскость называется **касательной плоскостью** (гиперплоскостью в \mathbb{R}^m) к поверхности F(x,y,z) = C в точке M_0 .

Прямая, проходящая через точку M_0 перпендикулярно касательной плоскости, называется **нормалью** к поверхности.

Тогда касательная плоскость в точке M_0 имеет нормаль grad $F(x_0)$ и уравнение касательной плоскости в точке M_0 имеет вид:

$$\frac{\partial F}{\partial x}(M_0)(x-x_0) + \frac{\partial F}{\partial y}(M_0)(y-y_0) + \frac{\partial F}{\partial z}(M_0)(z-z_0) = 0.$$

Уравнение нормали:

$$\frac{x - x_0}{\frac{\partial F}{\partial x}(M_0)} = \frac{y - y_0}{\frac{\partial F}{\partial y}(M_0)} = \frac{z - z_0}{\frac{\partial F}{\partial z}(M_0)}.$$

Замечание 10.3.1 Дифференциал $df(x_0,h) = f'(x_0)h$ является линейной функцией вектора приращения h, а значит найдется такой вектор $\xi \in \mathbb{R}^m$, что дифференциал выражается скалярным произведением вектора : $df(x_0,h) = \xi \cdot h$. Вектор ξ и есть grad $f(x_0)$.

10.4 Комплексная дифференцируемость

Будем рассматривать комплекснозначную функцию комплексного аргумента $f: \mathbb{C} \supset E \to \mathbb{C}$. Пусть z = x + iy, $x = \operatorname{Re} z$, $y = \operatorname{Im} z$. Тогда задание функции f равносильно заданию двух функций $u, v: \mathbb{R}^2 \subset E \to \mathbb{R}^2$:

$$f(z) = u(x, y) + iv(x, y).$$

Определение 10.4.1 (Комплексная дифференцируемость) Функция $f: \mathbb{C} \supset E \to \mathbb{C}$ называется комплексно дифференцируемой в точке $z_0 \in \text{Int}(E)$, если существует в \mathbb{C} её производная

$$f'(z_0) := \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$

Теорема 10.4.1 (Условия Коши–Римана) Для комплексной дифференцируемости функции f в точке $z_0 = x_0 + iy_0$ необходимо и достаточно выполнения следующих условий:

- 1. функции u(x,y) и v(x,y) дифференцируемы в точке (x_0,y_0) как отображения $\mathbb{R}^2 \subset E \to \mathbb{R}^2$;
- 2. выполнены условия Коши-Римана в точке z_0 :

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Доказательство. Необходимость. Пусть существует $f'(z_0) = a + ib$ и $\Delta f = \Delta u + i\Delta v, \ \Delta z = \Delta x + i\Delta y.$ Тогда

$$\Delta f = f'(z_0)\Delta z + o(\Delta z),$$

$$\Delta u + i\Delta v = a\Delta x - b\Delta y + i(a\Delta x + b\Delta y) + o(\Delta z).$$

Отделяя вещественную и мнимую части, получим дифференцируемость u и v, а также $u_x' = a = v_y'$ и $u_y' = -b = -v_x'$.

Достаточность. Пусть $\ddot{a} = u'_x v'_y$ и $\ddot{b} = -u'_y = v'_x$. Тогда в силу дифференцируемости функций u и v имеем

$$\Delta u = a\Delta x - b\Delta y + o(\Delta z),$$

$$\Delta v = b\Delta x + a\Delta y + o(\Delta z).$$

Умножая второе равенство на i и складывая, получим требуемое. \square

Следствие 10.4.2 Производная комплексно дифференцируемой функции f выражается так:

$$f' = u'_x + iv'_x.$$

Следствие 10.4.3 Пусть f дифференцируема в открытом множестве G. Постоянство f равносильно любому из следующих условий:

- 1. Re $f \equiv \text{const}$;
- 2. Im $f \equiv \text{const}$;
- 3. $|f| \equiv \text{const};$

Позже мы увидим, что комплексная дифференцируемость даёт далеко идущие следствия.

11 Производные и дифференциалы высших порядков

11.1 Частные производные высших порядков

Рассмотрим функцию двух переменных $u = f(x,y): \mathbb{R}^2 \supset E \to \mathbb{R}$. Пусть в окрестности точки (x,y) существуют частные производные $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$. Эти частные производные также являются функциями двух переменных от x и y. Если существуют частные производные от этих функций, то они называются частными производными второго порядка от функции f и обозначаются:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right),$$
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right).$$

Другое обозначение:

$$f''_{xx} = \frac{\partial^2 f}{\partial x^2}, \quad f''_{yy} = \frac{\partial^2 f}{\partial y^2}, \quad f''_{xy} = (f'_x)'_y = \frac{\partial^2 f}{\partial y \partial x}, \quad f''_{yx} = (f'_y)'_x = \frac{\partial^2 f}{\partial x \partial y}.$$

Производные, взятые по разным переменным, называются **смешанными производными**.

Пример 11.1.1 $f(x,y) = x^3y^2 + xy^4$.

$$\frac{\partial f}{\partial x} = 3x^2y^2 + y^4, \quad \frac{\partial f}{\partial y} = 2x^3y + 4xy^3.$$

$$\frac{\partial^2 f}{\partial x^2} = (3x^2y^2 + y^4)'_x = 6xy^2, \quad \frac{\partial^2 f}{\partial y^2} = (2x^3y + 4xy^3)'_y = 2x^3 + 12xy^2,$$

$$\frac{\partial^2 f}{\partial y \partial x} = (3x^2y^2 + y^4)'_y = 6x^2y + 4y^3, \quad \frac{\partial^2 f}{\partial x \partial y} = (2x^3y + 4xy^3)'_x = 6x^2y + 4y^3.$$

Следует заметить, что в данном случае смешанные производные оказались равными: $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$. Этот результат не случайный (см. теорему чуть ниже).

Для функций большего числа переменных и для производных более высоких порядков определения аналогичны. Например, для функции u=f(x,y,z)

$$\frac{\partial^4 f}{\partial x \partial y^2 \partial z} = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial z} f \right) \right) \right)$$

или, что то же самое,

$$f_{zyyx}^{(4)} = \left(\left(\left(f_z' \right)_y' \right)_y' \right)_x'.$$

Теорема 11.1.1 (О равенстве смешанных производных) Пусть

функция $f: \mathbb{R}^m \supset G \to \mathbb{R}$ имеет в окрестности точки x_0 смешанные производные $\frac{\partial^2 f}{\partial x_i \partial x_j}$ и $\frac{\partial^2 f}{\partial x_j \partial x_i}$. Если эти производные непрерывны в точке x_0 , то

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x_0).$$

Доказательство. Так как при вычислении смешанных производных по переменным x_i и x_j остальные переменные фиксируются, то можно сразу рассматривать функцию двух переменных f(x,y) и точку $(x,y) \in G \subset \mathbb{R}^2$.

Зададим приращение: $h = (\Delta x, \Delta y)$. Рассмотрим величину

$$\omega = \Big(f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y) \Big) - \Big(f(x, y + \Delta y) - f(x, y) \Big).$$

Введем функцию $\varphi(x) = f(x, y + \Delta y) - f(x, y)$. Тогда

$$\omega = \varphi(x + \Delta x) - \varphi(x)$$

Функция $\varphi(x)$ дифференцируема и $\varphi'(x) = \frac{\partial f}{\partial x}(x,y+\Delta y) - \frac{\partial f}{\partial x}(x,y)$. По теореме Лагранжа для функции $\varphi(x)$ имеем

$$\exists x_1 \in (x, x + \Delta x) : \quad \omega = \varphi'(x_1) \Delta x,$$

$$\omega = \left(\frac{\partial f}{\partial x}(x_1, y + \Delta y) - \frac{\partial f}{\partial x}(x_1, y)\right) \Delta x =$$

опять по теореме Лагранжа $\exists y_1 \in (y, y + \Delta y)$:

$$= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}(x_1, y_1) \right) \Delta x \Delta y = \frac{\partial^2 f}{\partial y \partial x}(x_1, y_1) \Delta x \Delta y.$$

Теперь перепишем ω в виде

$$\omega = \left(f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) \right) - \left(f(x + \Delta x, y) - f(x, y) \right)$$

и введем функцию $\psi(y) = f(x + \Delta x, y) - f(x, y)$. Тогда $\omega = \psi(y + \Delta y) - \psi(y)$. Используя дважды теорему Лагранжа, получим

$$\exists x_2 \in (x, x + \Delta x), y_2 \in (y, y + \Delta y) : \quad \omega = \frac{\partial^2 f}{\partial x \partial y}(x_2, y_2) \Delta x \Delta y,$$

т.е.

$$\frac{\partial^2 f}{\partial y \partial x}(x_1, y_1) = \frac{\partial^2 f}{\partial x \partial y}(x_2, y_2).$$

Устремляя $\Delta x \to 0, \ \Delta y \to 0$ и учитывая непрерывность f''_{xy} и f''_{yx} получим

$$\frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{\partial^2 f}{\partial x \partial y}(x, y).$$

Замечание 11.1.1 Случай, рассмотренный в теореме легко обобщить на случай смешанных производных любого порядка. А именно, результат вычисления смешанной производной не зависит от порядка дифференцирования (в случае их непрерывности).

Замечание 11.1.2 Условие непрерывности для равенства смешанных производных обязательно.

Пример 11.1.2 Рассмотрим функцию

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0. \end{cases}$$

Докажем, что $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$.

Для первых производных имеем:

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0, (no oпределению)$$

 $npu \ x^2 + y^2 \neq 0$:

$$\frac{\partial f}{\partial x} = y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{2x(x^2 + y^2) - 2x(x^2 - y^2)}{(x^2 + y^2)^2} = y \frac{x^2 - y^2}{x^2 + y^2} + \frac{4x^2y^3}{(x^2 + y^2)^2},$$

$$\frac{\partial f}{\partial y} = x \frac{x^2 - y^2}{x^2 + y^2} - \frac{4x^3y^2}{(x^2 + y^2)^2}.$$

Тогда для смешанных производных:

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{f_y'(x,0) - f_y'(0,0)}{x} = \lim_{x \to 0} \frac{x}{x} = 1,$$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{f_x'(0,y) - f_x'(0,0)}{y} = \lim_{y \to 0} \frac{-y}{y} = -1,$$

$$m.e. \frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

Определение 11.1.1 Множество функций $f: E \to \mathbb{R}$, имеющих все частные производные вплоть до k-го порядка непрерывные на E, будем обозначать $C^k(E)$. При этом, $C^1(E)$ – множество непрерывно дифференцируемых функций.

11.2 Дифференциалы высших порядков

Пусть $f: \mathbb{R}^m \subset E \to \mathbb{R}$ – дифференцируемая функция.

Для удобства записи, введем формальный дифференциальный оператор d:

$$d = \sum_{k=1}^{m} \frac{\partial}{\partial x_k} dx_k.$$

Тогда дифференциал функции f на векторе $h = (dx_1, ..., dx_m)$ можно записать так:

$$df = \left(\frac{\partial}{\partial x_1}dx_1 + \frac{\partial}{\partial x_2}dx_2 + \ldots + \frac{\partial}{\partial x_m}dx_m\right)f = \frac{\partial f}{\partial x_1}dx_1 + \frac{\partial f}{\partial x_2}dx_2 + \ldots + \frac{\partial f}{\partial x_m}dx_m.$$

Этот дифференциал является функцией точки и вектора приращений h.

Определение 11.2.1 Дифференциалом второго порядка d^2f функции f называется $d^2f := d(df)$. Более того, дифференциал n-го порядка определяется индуктивно: $d^nf = d(d^{n-1}f)$.

В операторном виде имеет место запись

$$d^{n}f = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \dots + \frac{\partial}{\partial x_{m}}dx_{m}\right)^{n}f.$$

При этом возведение в степень n происходит формально. Произведение операторов определяется как композиция: $\frac{\partial}{\partial x} \frac{\partial}{\partial y} = \frac{\partial^2}{\partial x \partial y}$.

Пример 11.2.1 Для функции $f: \mathbb{R}^2 \to \mathbb{R}$ вида $u = f(x,y) \in C^2(\mathbb{R}^2)$ имеем

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy.$$

Далее будем считать приращение (dx,dy) постоянным. Тогда

$$\begin{split} d^2f &= d\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right)dx + \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right)dy = \\ &= \frac{\partial^2 f}{\partial x^2}(dx)^2 + \frac{\partial^2 f}{\partial x \partial y}dxdy + \frac{\partial^2 f}{\partial y \partial x}dydx + \frac{\partial^2 f}{\partial y^2}(dy)^2. \end{split}$$

Пользуясь равенством смешанных производных и обозначением $(dx)^2 = dx^2$, $(dy)^2 = dy^2$, получим

$$d^{2}f = \frac{\partial^{2}f}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}f}{\partial x\partial y}dxdy + \frac{\partial^{2}f}{\partial y^{2}}dy^{2}.$$

Для дифференциала порядка п будет верна формула, аналогичная биному Ньютона:

$$d^{n}f = \sum_{k=0}^{n} C_{n}^{k} \frac{\partial^{n} f}{\partial x^{n-k} \partial y^{k}} dx^{n-k} dy^{k}.$$

Заметим, что дифференциал второго порядка функции $f(x_1,...,x_m)$ является квадратичной формой относительно $dx_1,...dx_m$.

Пример 11.2.2 *Найти* d^3f , *если* $f(x,y) = x^3y + x^2y^3 + y^4$. *Распишем*, *вначале*, *выражение* для d^3f :

$$d^{3}f = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{3}f =$$

$$= \frac{\partial^{3}f}{\partial x^{3}}dx^{3} + 3\frac{\partial^{3}f}{\partial x^{2}\partial y}dx^{2}dy + 3\frac{\partial^{3}f}{\partial x\partial y^{2}}dxdy^{2} + \frac{\partial^{3}f}{\partial y^{3}}dy^{3}.$$

Найдем частные производные до третьего порядка:

$$\frac{\partial f}{\partial x} = 3x^2y + 2xy^3, \quad \frac{\partial f}{\partial y} = x^3 + 3x^2y^2 + 4y^3;$$

$$\frac{\partial^2 f}{\partial x^2} = 6xy + 2y^3, \quad \frac{\partial^2 f}{\partial y^2} = 6x^2y + 12y^2;$$

$$\frac{\partial^3 f}{\partial x^3} = 6y, \quad \frac{\partial^3 f}{\partial x^2 \partial y} = 6x + 6y^2, \quad \frac{\partial^3 f}{\partial x \partial y^2} = 12xy, \quad \frac{\partial^3 f}{\partial y^3} = 6x^2 + 24y.$$

Окончательно,

$$d^3f = 6ydx^3 + 18(x+y^2)dx^2dy + 36xydxdy^2 + (x^2+4y)dy^3.$$

11.3 Формула Тейлора для функции многих переменных

Вспомним и запишем в удобном виде формулу Тейлора для функции f(x) одной переменной, имеющей производные вплоть до (n+1)-го порядка. В точке $x_0 + \Delta x$ имеем

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + \frac{1}{2!}f''(x_0)(\Delta x)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(\Delta x)^n + R_n,$$

где остаток запишем в форме Лагранжа:

$$R_n = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (\Delta x)^{n+1}, \quad \xi \in (x_0, x_0 + \Delta x).$$

Или можно записать через дифференциалы:

$$f(x_0 + \Delta x) = f(x_0) + df(x_0) + \frac{1}{2!}d^2f(x_0) + \dots + \frac{1}{n!}d^nf(x_0) + R_n.$$

Получим обобщение для случая функции $f: \mathbb{R}^m \subset E \to \mathbb{R}$.

Теорема 11.3.1 Пусть $f: \mathbb{R}^m \subset E \to \mathbb{R}, \ f \in C^{n+1}(E), \ x_0$ – внутренняя точка E. Тогда для h такого, что $x_0 + h \in E \ \exists \theta \in (0,1)$ такая, что

$$f(x_0 + h) = f(x_0) + \sum_{k=1}^{n} \frac{d^k f(x_0, h)}{k!} + \frac{1}{(n+1)!} d^{n+1} (x_0 + \theta h, h).$$

Доказательство. Рассмотрим функцию $\varphi(t) = f(x_0 + th)$ одной переменной. Она дифференцируема на $t \in [0,1]$ и

$$\varphi'(t) = f'(x_0 + th)h = df(x_0 + th, h).$$

Вычисляя вторую производную, получим

$$\varphi''(t) = d^2 f(x_0 + th, h).$$

Продолжая далее по индукции, получим

$$\varphi^{(n)}(t) = d^n f(x_0 + th, h).$$

Запишем формулу Тейлора для функции $\varphi(t)$ в точке 0:

$$\varphi(t) = \varphi(0) + \varphi'(0)t + \frac{\varphi''(0)}{2!}t^2 + \dots + \frac{\varphi^{(n)}(0)}{n!}t^n + \frac{\varphi^{(n+1)}(\theta t)}{(n+1)!}t^{n+1},$$

где $\theta \in (0,1)$.

Имеем $\varphi(0) = f(x_0)$, $\varphi(1) = f(x_0 + h)$. Подставляя в формулу Тейлора для $\varphi(t)$ значение t = 1, получаем

$$f(x) = f(x_0 + h) = f(x_0) + \sum_{k=1}^{n} \frac{d^k f(x_0)}{k!} + \frac{1}{(n+1)!} d^{n+1} (x_0 + \theta h).$$

Замечание 11.3.1 Для остатка можно записать форму Пеано:

$$R_n = o(||h||^n), \quad h \to 0.$$

Пример 11.3.1 Написать формулу Маклорена для функции $f(x,y) = \frac{\sin x}{\cos y}$ в точке (0,0) с $o(\|h\|^3)$.

1-ый способ. Найдем все частные производные в точке (0,0) до третьего порядка включительно:

$$f'_x(0,0) = 1, \quad f'_y(0,0) = 0;$$

$$f''_{xx}(0,0) = 0, \quad f''_{xy}(0,0) = 0, \quad f''_{yy}(0,0) = 0;$$

$$f'''_{xxx}(0,0) = -1, \quad f'''_{xxy}(0,0) = 0, \quad f'''_{xyy}(0,0) = 1, \quad f'''_{yyy}(0,0) = 0.$$

Tог ∂a

$$\frac{\sin x}{\cos y} = x - \frac{x^3}{6} + \frac{xy^2}{2} + o(\|h\|^3).$$

2-ой способ. Воспользуемся известными формулами Маклорена для функций одной переменной:

$$\frac{\sin x}{\cos y} = \frac{x - \frac{x^3}{6} + o(x^3)}{1 - \frac{y^2}{2} + o(y^3)} = \left(x - \frac{x^3}{6} + o(x^3)\right) \left(1 + \frac{y^2}{2} + o(y^3)\right) =$$

$$= x - \frac{x^3}{6} + \frac{xy^2}{2} + o(x^3) + xo(y^3) = x - \frac{x^3}{6} + \frac{xy^2}{2} + o(\|h\|^3).$$

В последнем действии мы воспользовались тем, что

$$o(x^3) = o(\|h\|^3), \quad o(y^3) = o(\|h\|^3).$$

12 Экстремумы функции многих переменных

12.1 Необходимое условие экстремума

Рассмотрим функцию $u = f(x) = f(x_1, \dots, x_n)$ в окрестности точки $x^0 = (x_1^0, \dots, x_n^0)$.

Напомним определение локального экстремума.

Определение 12.1.1 Функция f(x) имеет локальный максимум (минимум) в точке x^0 , если существует окрестность $U(x^0)$ этой точки, что для $\forall x \in U(x^0)$ выполнено $f(x) \leq f(x^0)$ ($f(x) \geq f(x^0)$).

Точки локального максимума и локального минимума называются **точ**ками экстремума.

Если в определении взять проколотую окрестность точки x^0 и взять строгие неравенства: $f(x) < f(x^0) \left(f(x) > f(x^0) \right)$, то получится ${\it cmpozu\"u}$ экстремум.

Теорема 12.1.1 (Необходимое условие экстремума) Если функция f(x), $x \in \mathbb{R}^n$ имеет экстремум в точке x^0 , то любая ее частная производная первого порядка обращается в точке x^0 в ноль или не существует.

 \square Зафиксируем в точке x^0 все переменные функции f кроме x_1 . Функция $g(t)=f(t,x_2^0,\ldots,x_n^0)$ имеет экстремум в точке x_1^0 и, следовательно, $g'(x_1^0)=0$ или не существует. Но $g'(x_1^0)=\frac{\partial f}{\partial x_1}(x^0)$. Аналогично для производных по другим переменным.

Замечание 12.1.1 Это необходимое условие не является достаточным.

Точка, в которой функция дифференцируема, и все частные производные первого порядка обращаются в ноль (т.е. df = 0), называется cmaquohaphoйmoчкой.

Точка, в которой частные производные первого порядка обращаются в ноль или не существуют (т.е. df не существует), называется $\pmb{критической}$ $\pmb{moчкой}$.

Пример. Функция $u = x^2 - y^2$ в точке (0,0):

$$u(0,0) = 0$$
, $\frac{\partial z}{\partial x}(0,0) = 0$, $\frac{\partial x}{\partial y}(0,0) = 0$,

но в окрестности точки (0,0) при x=0 : $u(0,y)=-y^2<0$, а при y=0 : $u(x,0)=x^2>0$. Значит, в точке (0,0) экстремума нет.

12.2 Достаточное условие экстремума функции n переменных

Здесь нам потребуются понятия алгебры, касающиеся квадратичных форм.

Квадратичная форма

$$\Phi(\xi) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \xi_{i} \xi_{j},$$

где $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, $a_{ij} = a_{ji} \in R$, называется

- а) положительно определенной, если $\forall \xi \neq 0 \quad \Phi(\xi) > 0$;
- б) отрицательно определенной, если $\forall \xi \neq 0 \quad \Phi(\xi) < 0$;
- в) неопределенной (знакопеременной) , если $\exists \xi_1, \xi_2: \Phi(\xi_1) > 0, \Phi(\xi_2) < 0.$

Существуют также квадратичные формы, не являющиеся ни одной из перечисленных. Например, если она принимает нулевое и положительные (отрицательные) значения. Такие формы называют полуопределенными.

Примеры.

1.
$$\Phi_1(\xi) = \xi_1^2 + 2\xi_1\xi_2 + 3\xi_2^2 = (\xi_1 + \xi_2)^2 + 2\xi_2^2$$
 – положительно определенная;

2.
$$\Phi_2(\xi) = -\xi_1^2 - 3\xi_2^2$$
 – отрицательно определенная;

3.
$$\Phi_3(\xi) = \xi_1^2 - \xi_2^2$$
 – неопределенная;

4.
$$\Phi_4(\xi) = \xi_1^2 + 2\xi_1\xi_2 + \xi_2^2 = (\xi_1 + \xi_2)^2$$
 – полуопределенная.

Квадратичная форма определяется симметричной матрицей $A=\{a_{ij}\}_{i=1,\dots,n}^{j=1,\dots,n}.$

Критерий Сильвестра положительной определенности квадратичной формы: Квадратичная форма положительно определена тогда и только тогда, когда все главные миноры ее матрицы положительны, т.е.

$$\begin{vmatrix} a_{11} > 0, & \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, & \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} > 0, \dots$$

Для отрицательной определенности квадратичной формы A необходимо и достаточно положительная определенность формы -A. Это означает, что знаки главных миноров будут чередоваться, начиная с первого $a_{11} < 0$.

Невырожденная квадратичная форма является неопределенной, если выполнено хотя бы одно из условий:

- 1. один из главных миноров равен нулю;
- 2. главный минор чётного порядка отрицателен;
- 3. два главных минора нечётного порядка имеют разные знаки.

Теорема 12.2.1 (Отделимость от нуля положительно опр. кв. формы) $\Pi ycmb \ \Phi(\xi) - nonoжительно определенная квадратичная форма. Тогда$

$$\exists C > 0: \quad \forall \xi \quad \Phi(\xi) \geqslant C \|\xi\|^2,$$

$$\varepsilon \partial e \|\xi\| = \sqrt{\xi_1^2 + \dots + \xi_n^2}.$$

Доказательство. Рассмотрим значения квадратичной формы $\Phi(\xi)$ на сфере $S = \{x: x_1^2 + \dots + x_n^2 = 1\}$. При $\xi \in S$ $\Phi(\xi) > 0$.

Так как S есть компакт в \mathbb{R}^n (оно замкнуто и ограничено), то функция $\Phi(\xi)$ достигает на S свое наименьшее значение (т. Вейерштрасса), обозначим это значение C.

Следовательно, для $\forall \xi \in S \quad \Phi(\xi) \geqslant C$.

Если $\xi \notin S$ и $\xi \neq 0$, то точка $\frac{\xi}{\|\xi\|} \in S$ и тогда

$$\Phi\left(\frac{\xi}{\|\xi\|}\right) \geqslant C.$$

Теперь воспользуемся однородностью квадратичной формы (однородность означает, что $\forall t \colon \Phi(tx) = t^k \Phi(x)$, здесь k=2):

$$\Phi\left(\frac{\xi}{\|\xi\|}\right) = \frac{1}{\|\xi\|^2} \Phi(\xi) \quad \Rightarrow \quad \Phi(\xi) \geqslant C \|\xi\|^2.$$

Дифференциал второго порядка $d^2f(x^0)$ является квадратичной формой переменных dx_1,\ldots,dx_n .

Теорема 12.2.2 (Достаточное условие экстремума) Пусть функция f(x) имеет в окрестности точки $x^0 \in \mathbb{R}^n$ непрерывные частные производные второго порядка и $df(x^0) = 0$. Тогда

- 1. если $d^2f(x^0)$ положительно определенная квадратичная форма, то в точке (x_0, y_0) строгий минимум f(x);
- 2. если $d^2f(x^0)$ отрицательно определенная квадратичная форма, то в точке (x_0, y_0) строгий максимум f(x);

3. если $d^2f(x^0)$ – неопределенная квадратичная форма, то в точке (x_0, y_0) экстремума нет.

Доказательство. Запишем формулу Тейлора в точке x^0 :

$$\Delta f(x^0) = \frac{1}{2}d^2 f(x^0) + o(\|h\|^2).$$

1. Пусть $d^2f(x^0)$ – положительно определенная квадратичная форма. Тогда в силу предыдущей теоремы, $\exists C>0$, что

$$d^2 f(x^0) \geqslant C ||h||^2.$$

Тогда

$$\Delta f(x^0) \geqslant \frac{1}{2} C \|h\|^2 + o\left(\|h\|^2\right) = \frac{1}{2} C \|h\|^2 \left(1 + \alpha(h)\right),$$

где $\alpha(h) \to 0$ при $h \to 0$.

Следовательно, в некоторой окрестности точки x^0 $(1+\alpha(h)>0$ и тогда $\Delta f(x^0)>0$, что означает, что в точке (x_0,y_0) минимум.

- 2. Если $d^2f(x^0)$ отрицательно определенная квадратичная форма, применим рассуждения предыдущего пункта к форме $-d^2f(x^0)$.
 - 3. Пусть $\Phi(h) = d^2 f(x^0)$ неопределенная квадратичная форма. Тогда

$$\exists h', h'' : \Phi(h') > 0, \Phi(h'') < 0.$$

Тогда для любой окрестности $U(x^0)$ найдётся такое t>0, что точки x^0+th' и $x^0+th''\in U(x^0)$ и

$$\Delta_1 f = f(x^0 + th') - f(x^0) > 0, \quad \Delta_2 f = f(x^0 + th'') - f(x^0) < 0,$$

что и означает, что в точке x^0 экстремума нет.

Замечание 12.2.1 Если квадратичная форма полуопределена, то возможно как наличие экстремума, так и его отсутствие. Например, функции $f(x,y) = x^2 + y^4$ и $g(x,y) = x^2 - y^4$ имеют в точке (0,0) второй дифференциал, равный $2dx^2$ (полуопределенная положительно квадратичная форма), но f имеет минимум в точке (0,0), а g не имеет экстремума в точке (0,0).

Пример 12.2.1 $f(x,y,z) = x^3 + y^2 + z^2 + 6xy - 4z$. Исследовать на экстремум.

Найдем стационарные точки:

$$\begin{cases} \frac{\partial u}{\partial x} = 3x^2 + 6y = 0, \\ \frac{\partial u}{\partial y} = 2y + 6x = 0, \\ \frac{\partial u}{\partial z} = 2z - 4 = 0. \end{cases}$$

Этой системе удовлетворяют две точки: A(6,-18,2) и B(0,0,2). Найдем вторые производные:

$$\frac{\partial^2 u}{\partial x^2} = 6x, \quad \frac{\partial^2 u}{\partial x \partial y} = 6, \quad \frac{\partial^2 u}{\partial x \partial z} = 0,$$
$$\frac{\partial^2 u}{\partial y^2} = 2, \quad \frac{\partial^2 u}{\partial y \partial z} = 0, \quad \frac{\partial^2 u}{\partial z^2} = 2,$$

и составим матрицу квадратичной формы второго дифференциала:

$$\begin{pmatrix} 6x & 6 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Для точки A(6, -18, 2) получаем:

$$\begin{pmatrix} 36 & 6 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

$$\Delta_1 = 36 > 0, \quad \Delta_2 = \begin{vmatrix} 36 & 6 \\ 6 & 2 \end{vmatrix} > 0, \quad \Delta_3 = \begin{vmatrix} 36 & 6 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} > 0,$$

следовательно, в точке A(6,-18,2) - локальный минимум функции u(x,y,z).

 $Tenepь\ paccмompим\ moчку\ B(0,0,2).\ B$ ней квадратичная форма имеет матрицу

$$\begin{pmatrix}
0 & 6 & 0 \\
6 & 2 & 0 \\
0 & 0 & 2
\end{pmatrix}$$

Pассмотрим значения функции вблизи точки B(0,0,2):

$$u(0,0,2) = -4,$$

$$npu\ x = \Delta x,\ y = \Delta y,\ z = 2 + \Delta z$$
 имеем

$$\Delta u = u(x,y,z) - u(0,0,2) = \Delta x^3 + \Delta y^2 + 6\Delta x \Delta y + \Delta z^2 = \Delta x (\Delta x^2 + 6\Delta y) + \Delta y^2 + \Delta z^2.$$

Возъмем $\Delta y = \Delta z = 0$. Тогда знак Δu будет совпадать со знаком Δx , то есть принимать в окрестности точки B(0,0,2) и положительные и отрицательные значения. Следовательно, в точке B(0,0,2) экстремума нет.

Замечание 12.2.2 Матрица квадратичной формы, соответствующей дифференциалу второго порядка, называется матрицей Гессе, а ее определитель – гессианом.