

מבוא למערכות לומדות (236756)

סמסטר אביב תשפ"ג – 29 בדצמבר 2023

מרצה: ד"ר ניר רוזנפלד

<u>מבחן מסכם מועד ב'</u>

הנחיות הבחינה:

- **משך הבחינה:** שלוש שעות. •
- **חומר עזר:** המבחן בחומר סגור (ללא ספרים, מחברות, דפי נוסחאות).
 - מחשבון: מותר.
 - כלי כתיבה: עט <u>בלבד</u>.
 - יש לכתוב את התשובות **על גבי שאלון זה**.
 - מותר לענות בעברית או באנגלית.
 - הוכחות והפרכות צריכות להיות פורמליות.
 - :קריאוּת
 - o תשובה בכתב יד לא קריא **לא תיבדק**.
- ס בשאלות רב-ברירה הקיפו את התשובות בבירור. סימונים לא ברורים יביאו לפסילת התשובה.
 - לא יתקבלו ערעורים בנושא. 🏻 o
- במבחן 15 עמודים ממוספרים סה"כ, כולל עמוד שער זה שמספרו 1 ושלושה עמודי טיוטה בסוף הגיליון.
 - נא לכתוב רק את המבוקש ולצרף הסברים קצרים עפ"י ההנחיות.
 - בתום המבחן יש להגיש את שאלון זה בלבד.

בהצלחה!

<u>['שאלה 1: Nearest neighbors (1 נק'</u>

היו יותר מדי תשובות אפשריות לשאלה,

ולכן לדעתנו היא אינה דוגמה טובה ללמוד ממנה ולא צירפנו אותה לכאן.

שאלה 2: AdaBoost ,VC-dimension, פונקציות מיפוי [30 נק']

חד-ממדיים. (intervals) של מקטעים ${\mathcal H}$ של ההיפותזות

 $h_{a,b}(x)=egin{array}{c} \mathbb{I}[a\leq x\leq b] \end{array}$ מעל אוגדרת בתור בודדת מוגדרת בעל מעל $\mathcal{H}=\left\{h_{a,b}\,\middle|\,a,b\in\mathbb{R}\,\text{ s. t. }b>a
ight\}$ משמע, פונקציית האינדיקטור

 $.\mathsf{VCdim}(\mathcal{H}) =$

 \mathcal{H} של VC-dimension-א. [7 נק'] מהו הוכיחו את תשובתכם.

הוכחה:

	הוכחה: 25 (א) אין: אין אין אין אין אין אין אי
	ως 'νο ε γινο 1 μινο γινο του του του του του του του του του το
	0 0 11
סיים (כון מאנ מי) (כון מאנ	δ μης κως ρο μοθε (11) ρ'ρ /23 & 180 656 : Vcd im (4) κ3 2=-1, y = y = 1 (2) 200 × (4) × 3 12=-1, y = y = 1 (2) 200 × (4) × 3 101
V	2=-1, y, = y== 1 (3) x, < x, < X, < X, < X, < X, < X, \ 1) X, X, X, X, In'
	Vx: λ _{α,δ} (x) = y; ερο λ _{α,δ} (ρ αλλυ (ρ'η νν') ') (α)
	XCX2CX3 ple D>X5: (=3 NM) QCX, (=1 NDX NM)
	וא תקה כי ב- + 1 = (א מתורה לנתון ולין ב
	12) 15/10 /21) 1/26 22 pole (1/2) 2/2 20 80
	(H) -3 p81

מריצים אלגוריתם AdaBoost על הדאטה הנתון, עם המחלקה $\mathcal H$ שהגדרנו בתור מחלקת בסיס (מסווגים חלשים). בכל איטרציה לומדים מסווג חלש עם ERM על ההתפלגות הנוכחית. המסווג החזק הוא ה-ensemble הממושקל שמתקבל.

בשני הסעיפים הבאים מופיעים תרשימים של כללי החלטה על הישר \mathbb{R} . הכללים חוזים $\hat{y}=1$ רק במקטעים המקווקווים. בכל סעיף, הקיפו בבירור את האות <u>היחידה</u> שמתאימה לתשובה הנכונה.

ב. [7 נק'] מבין הבאים – מה המסווג <u>החזק</u> (הממושקל) שמחזיר AdaBoost אחרי האיטרציה הראשונה? אין צורך בהסבר.

. בקצרה. איטרציות? שתי איטרציות? אחרי שתי AdaBoost הממושקל) שמחזיר החזק (הממושקל) מבין הבאים – מה המסווג החזק (הממושקל)

:(מוצג שוב לנוחיותכם) אלא רק לדאטה הנתון (מוצג שוב לנוחיותכם) AdaBoost הסעיף הבא לא קשור ל-

ד. [9 נק'] אילו מבין פונקציות המיפוי הבאות הופכות את הדאטה הנתון לפריד <u>ליניארית</u> (לאו דווקא הומוגנית)? סמנו את <u>כֹּל</u> התשובות המתאימות <u>בבירור</u>. סימון לא ברור יוביל לפסילת התשובה.

לרשותכם דפי טיוטה בסוף הגיליון.

$$\mathbb{R}^{2} \ni \phi(x) = \begin{bmatrix} x \\ 1.5 \end{bmatrix} \quad \text{iv}$$

$$\mathbb{R}^{2} \ni \phi(x) = \begin{bmatrix} x^{2} \\ 1.5 \end{bmatrix} \quad \text{iv}$$

$$\mathbb{R}^{2} \ni \phi(x) = \begin{bmatrix} x^{2} \\ 1.5 \end{bmatrix} \quad \text{iv}$$

$$\mathbb{R}^{2} \ni \phi(x) = \begin{bmatrix} x^{2} \\ 1.5 \end{bmatrix} \quad \text{vi}$$

$$\mathbb{R}^{2} \ni \phi(x) = \begin{bmatrix} x \\ x^{2} \end{bmatrix} \quad \text{vi}$$

$$\mathbb{R} \ni \phi(x) = (x - 1.5)^{2} \quad \text{iii}$$

שאלה 3: רגרסיה ורגולריזציה [20 נק']

. בעיות רגרסיה לינארית הומוגנית עם רגולריזציה: $R:\mathbb{R}^d \to \mathbb{R}_{\geq 0}$ פונקציה $X\in\mathbb{R}^{m imes d}$, עבור $y\in\mathbb{R}^m$ עבור

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left(\frac{1}{2m} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + R(\mathbf{w}; \lambda) \right)$$

. רגילה Least squares מקבלים בעיית מקבלים רגילה $R_{\mathrm{LS}}(\mathbf{w};\lambda) \triangleq 0$ רגילה בפונקציה

$$f(w;\lambda) \triangleq \begin{cases} \frac{1}{\lambda}|w| - \frac{w^2}{4}, & |w| \leq 2\lambda \\ \lambda^2, & |w| > 2\lambda \end{cases}$$
עבור פונק' חדשה $R_{\mathrm{CP}}(\mathbf{w};\lambda) \triangleq \sum_{j=1}^d f(w_j;\lambda)$ עבור

 $f(w;\lambda)$ א. $\lambda=1$ נק'] עבור $\lambda=1$, הקיפו בבירור את האות המתאימה לתרשים שמתאר את $\lambda=1$

- ב. [8 נק'] מה ניתן לומר על הקמירות של הפונק' $f(w;\lambda)$ כאשר $0>\lambda$? הקיפו את התשובה בבירוב.
- iv. לא קמורה ולא קעורה
- λ תלוי בערך של .iii.
- ג קעורה ii.
- i. קמורה

תחת פיתרון ה-Least squares וב- $\widehat{\mathbf{w}}_{\mathrm{CP}}$ את פיתרון ה-רגרסיה תחת ב-ב-גרסיה תחת את פיתרון ה-גרסיה תחת רגולריזציה של הפונק' R_{CP} שהגדרנו.

 $\mathbf{X}^\mathsf{T}\mathbf{X} = m\mathbf{I}_{d imes d}$ מעתה נניח שהעמודות של \mathbf{X} אורתוגונליות כך שמתקיים

$$.(\widehat{\mathbf{w}}_{\ell 1})_i = \begin{cases} \operatorname{sign}((\widehat{\mathbf{w}}_{\mathrm{LS}})_i) \cdot (|(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| - \lambda), & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| > \lambda \\ 0, & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| \leq \lambda \end{cases}$$

<u>נתונה טענה 1:</u> תחת ההנחה, מתקיים

$$.(\widehat{\mathbf{w}}_{\mathrm{CP}})_i = \begin{cases} (\widehat{\mathbf{w}}_{\mathrm{LS}})_i, & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| \geq 2\lambda \\ 2 \cdot \mathrm{sign}((\widehat{\mathbf{w}}_{\mathrm{LS}})_i) \cdot (|(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| - \lambda), & \lambda < |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| < 2\lambda \\ 0, & |(\widehat{\mathbf{w}}_{\mathrm{LS}})_i| \leq \lambda \end{cases}$$

<u>נתונה טענה 2:</u> תחת ההנחה, מתקיים

ג. $[4 ext{ tg'}]$ עבור כניסה i שרירותית וערך i השתמשו בטענות וציירו באופן ברור על גבי התרשימים הבאים את העקומות [-3,3] של $\widehat{\mathbf{w}}_{LS}$), כפונקציה של $\widehat{\mathbf{w}}_{LS}$) בכל התחום $\widehat{\mathbf{w}}_{CP}$.

:ריב לצייר עליכם עליכם ($\widehat{\mathbf{w}}_{\ell 1})_i = (\widehat{\mathbf{w}}_{\mathrm{LS}})_i$, היה עליכם לצייר

([-3,3] ביירו על גבי התרשימים בכל התחום

 $X^{\mathsf{T}}X = m\mathbf{I}_{4 imes 4}$ מעת, פותרים בעיית רגרסיה בארבעה ממדים ($X \in \mathbb{R}^{m imes 4}$) המקיימת את הנחת האורתוגונליות, משמע בארבעה ממדים (ציר אנכי) שמתקבלים עבור ערכי λ שונים (אופקי) תחת פונק' רגולריזציה שונות.

(b)

(b)

(a)

(a)

- ד. [10 נק'] הקיפו את התשובות הנכונות והסבירו את בחירתכם.
- (c) (d) התרשים שמתאים למקדמים של $\widehat{\mathbf{w}}_{\ell 1}$ הוא:
 - :התרשים שמתאים למקדמים של $\widehat{oldsymbol{w}}_{ exttt{CP}}$ הוא

(d)J

(c)

(נק'<u>] 30</u>] Support Vector Regression שאלה 30

.Least squares- מאשר לינארית מ- \mathbb{R}^d ל- \mathbb{R}^d , אותה נפתור בשלבים, בדרך שדומה יותר ל-SVM מאשר ל- \mathbb{R}^d , אותה היטב. $(\mathbf{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R})$ בבור m דוגמאות שבור m דוגמאות (גדיר בעיית

. בקצרה (בקצרה אילו סוגי דאטה אילו סוגי דאטה קיים פיתרון לבעיית ה-Hard-SVR? בקצרה (בקצרה אילו סוגי דאטה קיים פיתרון לבעיית ה-

avymin	$//w//_2$ S	5.4 WTX. + b	ר קצר: קצר: - יץ: אַנּי אַנּיּל:	תשובה והסבו
המינו"ק נוגים			J	_
	/	(37) 12W	_	
		'		

 $\epsilon>0$ והיפר-פרמטר ($\mathbf{x}_i\in\mathbb{R}^d,y_i\in\mathbb{R}$) עבור דוגמאות Soft-SVR כדי להבטיח שלכל איים יהיה פיתרון, נגדיר בעיית

$$\underset{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}}{\operatorname{argmin}} \|\mathbf{w}\|_{2}^{2} + \sum_{i=1}^{m} (\xi_{i} + \xi_{i}^{*})$$

$$\forall i \in [m]: \xi_{i}, \xi_{i}^{*} \ge 0$$
s.t.
$$\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \le y_{i} + \epsilon + \xi_{i}, \ \forall i \in [m]$$

$$\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b \ge y_{i} - \epsilon - \xi_{i}^{*}, \ \forall i \in [m]$$

בסעיפים הבאים נתונים תרשימים של דאטה חד-ממדי ($x_i, y_i \in \mathbb{R}$) וקווי רגרסיה שונים. בכל סעיף כתוב ערך של ההיפר-פרמטר ϵ . הקיפו <u>בבירור</u> את האות שמתאימה לקו הרגרסיה שנלמד על ידי Soft-SVR.

$\epsilon ightarrow\infty$ ב. [6 נק'] מהו קו הרגרסיה שנלמד כאשר

. ד. Soft-SVM, עברנו מבעיית אילוצים לבעיה ללא אילוצים. ד. פשפתרנו בכיתה את בעיית ה-Soft-SVM, בעיית ה-פשרנו בכיתה ללא אילוצים לעייה הבאה: $\ell_{\mathrm{hinge}}(\mathbf{w},b;\mathbf{x}_i,y_i) = \max\{0,1-y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i+b)\}$ ופיתרון הבעיה הבאה:

$$\underset{\mathbf{w} \in \mathbb{R}^d, \ b \in \mathbb{R}}{\operatorname{argmin}} \left(\|\mathbf{w}\|_2^2 + \sum\nolimits_{i=1}^m \ell_{\operatorname{hinge}}(\mathbf{w}, b; \mathbf{x}_i, y_i) \right)$$

. לא אילוצים Soft-SVR רציפה וקמורה שמתאימה לפיתרון בעיות $\ell(\pmb{w},b;\pmb{x}_i,y_i)$ loss בדומה, הציעו פונקציית האילוצים. הסבירו בקצרה.

ידוע שהבעיה הדואלית לבעיית ה-Soft-SVR שהגדרנו היא הבעיה הקעורה הבאה:

$$\underset{\substack{\sum_{i=1}^{m}(\alpha_i-\alpha_i^*)=0\\\forall i\in[m]:\;\alpha_i,\alpha_i^*\in[0,C]}}{\operatorname{argmax}} \left(\sum_{i=1}^{m} y_i(\alpha_i-\alpha_i^*) - \epsilon \sum_{i=1}^{m} (\alpha_i+\alpha_i^*) - \frac{1}{2} \sum_{i,j=1}^{m} (\alpha_i-\alpha_i^*) (\alpha_j-\alpha_j^*) \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j \right)$$

ה. [6 נק'] האם הבעיה הדואלית לעיל מתאימה להפעלת טריק הקרנל, בדומה למה שעשינו ב-SVM? אם כן – הסבירו בקצרה באיזה אופן. אם לא – הסבירו בקצרה מדוע. <u>הבהרה</u>: השאלה אינה עוסקת בקמירות/קעירות.

	12	תשובה והסבר קצר:

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):

ספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):			נוספת (

מסגרת נוספת (יש לציין אם מדובר בטיוטה או בהמשך לתשובה אחרת):
