

Contents

Conte	ents	2
Part :	1 (prelab)	3
PART	⁻ 2	5
1	In circuit1 (overdamping):	6
2	In circuit2 (critical):	8
3	In circuit3 (underdamping):	10
PART	⁻ 3	12
BOUI	NS	14

Part 1 (prelab)

CODE IN PART1 FOLDER

I(R3):

I (Vb):

1.69565

-0.26087

```
% cleaning the workspace, and cmd window
 2 -
       clear all;
 3 -
       clc;
       % running the first SPICE netlist
       fprintf('the first netlist:\n');
 6 -
 7 -
       [sum, num] = Solve Circuit('circuit 1.cir');
       clear all; % used to bypass an error only with Octave (not MATLAB)
10
11
12 -
       fprintf('the second netlist:\n');
       [sum, num] = Solve Circuit('circuit 2.cir');
14
15
the first netlist:
V 1 = 30.000000
 V 2 = 16.956522
I Vb = -0.260870
the second netlist:
   V 1 = 40.000000
   V 2 = 14.634146
   V 3 = 32.195122
   V 4 = 112.195122
   I Vb = -1.268293
Linear Circuit
       --- Operating Point ---
V(1):
                30
                               voltage
                16.9565
V(2):
                               voltage
I(Is):
                               device current
               0.26087
I(R1):
                               device_current
                               device_current
I(R2):
               0.565217
```

device current

device current

Operating Point					
V(1):	40	voltage			
V(2):	14.6341	voltage			
V(3):	32.1951	voltage			
V(4):	112.195	voltage			
I(Is):	1	device current			
I(R1):	1.26829	device current			
I(R2):	-0.195122	device current			
I(R3):	-1	device_current			
I(R4):	1.46341	device current			
I(R6):	0.804878	device current			
I(Vb):	-1.26829	device current			

		LT SPICE	OUR CODE
	V(1)	30	30
CIRCUIT1	V(2)	16. 956522	16.9565
	I(VB)	-0.260870	-0.260870
	V(1)	40	40
	V(2)	14.6341	14.634146
CIRCUIT2	V(3)	32.1951	32.195122
	V(4)	112.195	112.195122
	I(VB)	-1.26829	-1.268293

Same results, but LT SPICE counts every current in the circuit, our code only calculate the current in the voltage sources.

PART2

CODE IN PART2 FOLDER

I added support for inductors, capacitors, and AC analysis, and changed the parsing of the netlist to read the user .ac command and also voltage source type.

1 IN CIRCUIT1 (OVERDAMPING):

R=3000, C=10n, L=10m

$$\omega_0=0.1 MHZ$$
, Q=0.333

2 IN CIRCUIT2 (CRITICAL):

R=2000, C=10n, L=10m

 $\omega_0=0.1 \textit{MHZ},\, \text{Q=0.5}$

3 IN CIRCUIT3 (UNDERDAMPING):

R=500, C=10n, L=10m

$$\omega_0=0.1 MHZ$$
, Q=2

The results are pretty much the same.

the code shows all bode plots for all unknown node's voltages, and currents in voltage sources, like we had in the lecture.

PART3

CODE IN PART3 FOLDER

The results are pretty much the same.

BOUNS

```
if instances key == '.'
        if strcmp(splitted line(1),'.AC') || strcmp(splitted line(1),'.ac')
      Node 1 = [splitted line(2)];
         Node 2 = [splitted line(3)]; %n
         Node 2=prefixes(Node 2);
         Values = [splitted line(4)]; %fmin
         Values=prefixes(Values);
         Names = [splitted line(5)]; %fmax
         Names=prefixes(Names);
    continue;
        end
        continue;
     end
  [DEC n fmin fmax] = ParseNetlist(netlist, '.');
 fmax=str2double(fmax) ;
 fmin=str2double (fmin);
 n=str2double (n);
 f=logspace(log10(fmin),log10(fmax),log10(fmax)*n);
for k=1:length(f)
             S=1i*2*pi*f(k);
       numeric ans=subs(symbolic ans);
       for ii = 1:1:numel(symbolic ans)
  solv(ii,k)=double(numeric ans(ii));
       end
-end
```

The frequency isn't manually inserted but it changes with the netlist, also I made Prefixes a function in part3, as we use it a lot in this case (with fmax, fmin)