Class 2c: Review of concepts in Probability and Statistics

Business Forecasting

Summarizing Data

Summary Statistics

Measures of Dispersion

How much variation there is in the data?

Range

Range the difference between minimum and maximum value in the data

$$R = x_{max} - x_{min}$$

- What is the difference between the oldest and the youngest person with diabetes?
- R=77=97-20

• Very sensitive to outliers

В

Interquartile Range

• **Interquartile range** is the difference between the first and the third quartile of the data:

$$IQR = q_3 - q_1$$

- What is the IQR of age in people with diabetes?
- **IQR**=19=68-49
- 50% of the sample is between q_3 and q_1

• Is it more or less sensitive to outliers than range?

В

Interquartile Range

Example with data

• What is the IQR?

Example with data

Here is a (smaller) data on distribution of how many views have various tik-tok videos.

Suppose that all views triples and 1000 additional people viewed them as well

$$y_i = 3x_i + 1000$$

• What is new IQR?

Show 4 entries						
VideoTitle	OldViews 👇			1	NewV	iews 🌲
TikTok Video 1	30					1090
TikTok Video 2	17					1051
TikTok Video 3	22					1066
TikTok Video 4	24					1072
Showing 1 to 4 of 20 entries	Previous	5 1 2	3	4	5	Next

IQR

 Order of observations was not affected, so same observations correspond to the first and the third quartile

$$q_1^{New} = 3q_1^{Old} + 1000$$

$$q_3^{New} = 3q_3^{Old} + 1000$$

• And more generally, for

$$y_i = bx_i + a$$

and b>0

$$v_p^y = bv_p^x + a$$

- if b < 0 then the order reverses.
- So what does it mean for IQR?

$$IQR^{New} = q_3^{New} - q_1^{New} = 3q_3^{Old} - 3q_1^{Old} = 3*IQR^{Old}$$

Variance & Standard Deviation

Variance measures how much observations deviate from the mean:

Population variance:

$$\sigma^2 = E[(X-\mu)^2] = rac{1}{N} \sum_{i=1}^N (x_i - \mu)^2$$

- But this does not have the right units...
- **Population standard deviation** deviation:

$$\sigma = \sqrt{rac{1}{N}\sum_{i=1}^{N}(x_i-\mu)^2}$$

- Why do we first take squares and then take square root?
 - Can't we just do $\frac{1}{N}\sum_{i=1}^N (x_i-\mu)$?
 NO! Because $\sum_{i=1}^N (x_i-\mu)=0$

Sample equivalents

• Sample variance:

$$s^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2$$

- Sample standard deviation deviation:

$$s = \sqrt{rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2}$$

- Why we divide by n-1 rather than n?

• **Intuition** - observed values usually fall closer to the sample mean than to the population mean

Sample equivalents

- So the deviations from the sample mean underestimate the population standard deviation
- So we divide by a smaller number to correct for it
- In big sample $\frac{1}{n}$ and $\frac{1}{n-1}$ are similar, so correction doesn't matter as much

• **Intuition** - in big samples, our estimate of the population mean is already good, no need to correct

Sample equivalents

Are they robust to outliers?

• Very sensitive because squaring deviation amplifies large deviation more than small deviations.

<!--

--> <!--->

<!--

-->

<!--

-->

Coefficient of Variation

Coefficient of Variation divides the standard deviation by the mean.

$$C. V. = \frac{\sigma}{|\mu|}$$

And sample eqiuvalent

$$c.\,v.=rac{s}{|ar{x}|}$$

- Why?
 - It expresses standard deviation as proportion of the mean
 - Small value means variation is low compared to the mean
 - o It is unit free
 - You can compare it across variables with different units/magnitudes

Coefficient of Variation

Example - variation of stocks in different currencies

Show 6	∨ entr	ries								
Date		MXN	_Stock		USD_Stock 🔷					
2023-07-01			91	.59			1.01			
2023-07-02			96	.55			1.16			
2023-07-03			123	.38			1.02			
2023-07-04			101	.06			1.07			
2023-07-05			101	.94			1.09			
2023-07-06			125	.73			0.9			
Showing 1 to 6 of 20 entries										
	1	Previous	1	2	3	4	Next			

• Standard deviation:

USD: 0.149MXN: 14.59

• Coefficient of variation:

USD: 0.12MXN: 0.14

Coefficient of Variation

So more generally, if $y_i = bx_i$, then

$$C.\,V._y = rac{\sigma_y}{|\mu_y|} = rac{|b|\sigma_x}{|b\mu_x|} = C.\,V._x$$

What if $y_i = bx_i + a$? Then

$$C.\,V._y = rac{\sigma_y}{|\mu_y|} = rac{|b|\sigma_x}{|b\mu_x + a|}
eq C.\,V._x$$

Box and Whiskers plot

- Helps to see the distribution of the data
- Helps to see to see the outliers
 - o Outliers are useful to see anomalies and potential errors in data colection

Box and Whiskers plot

Dataset comparisons

• They summarize data very well

Box and Whiskers plot

Dataset comparisons

• They summarize data very well

Exercises:

- Review Exercises:
 - PDF 2: 1,2,6,8 (skip f),9,10,13,
- Homeworks
 - o Lista 00.1: 1,2,4,5