La lumière se propage de proche en proche.

La lumière se propage de proche en proche.

Chaque élément de surface d²S atteint par elle se comporte comme une source secondaire qui émet une ondelette sphérique d'amplitude proportionnelle à l'amplitude incidente.

La lumière se propage de proche en proche.

Chaque élément de surface d²S atteint par elle se comporte comme une source secondaire qui émet une ondelette sphérique d'amplitude proportionnelle à l'amplitude incidente.

L'amplitude en un point M est la somme de toutes les amplitudes des ondelettes issues des différentes sources secondaires.

Diffraction de Fraunhofer par une ouverture rectangulaire

Diffraction de Fraunhofer par une ouverture circulaire de rayon R

$$r_1 = 1.22 \frac{\lambda f}{2R}$$