ЛЕКЦИЯ 5. СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ (СЛАУ) (продолжение)

- 1. Основные понятия теории СЛАУ.
- 2. Эквивалентные линейные системы.
- 3. Метод Гаусса решения линейных систем, свободные и базисные неизвестные.
 - 4. Однородные линейные системы.
 - 5. Структура общего решения неоднородной системы.

5.1. Основные понятия теории СЛАУ

Рассмотрим систему m линейных алгебраических уравнений с n неизвестными величинами $x_1, x_2, ..., x_n$.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(1)

Структурируем полученные ранее понятия

ИМЕЕТ РЕШЕНИЯ НЕ ИМЕЕТ РЕШЕНИЯ **НЕсовместная** *решений*

Система линейных алгебраических уравнений (СЛАУ)

Матрица
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
 — *основная матрица* системы (1).

$$B=egin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$
 — столбец свободных членов, $X=egin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$ - столбец неизвестных.

$$A|B=egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \ a_{21} & a_{22} & \dots & a_{2n} & b_2 \ \dots & \dots & \dots & \dots & \dots \ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}-$$
 расширенная матрица системы (1).

Теорема 1. (**Кронекера**¹-**Капелли**²) Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг основной матрицы системы равен рангу расширенной матрицы.

5.2. Эквивалентные линейные системы

Определение 1. Совокупность всех решений СЛАУ называется *множеством решений* данной *системы*.

Определение 2. Две линейные системы с одинаковым числом неизвестных называются эквивалентными (равносильными), если множества их решений совпадают.

Пусть заданы две системы линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(1)
$$\begin{cases} c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n = d_1 \\ c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n = d_2 \\ \dots \\ c_{m1}x_1 + c_{m2}x_2 + \dots + c_{mn}x_n = d_m \end{cases}$$
(2)

Расширенные матрицы этих систем есть матрицы

$$A|B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix} \quad \text{if} \quad C|D = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} & d_1 \\ c_{21} & c_{22} & \dots & c_{2n} & d_2 \\ \dots & \dots & \dots & \dots & \dots \\ c_{m1} & c_{m2} & \dots & c_{mn} & d_m \end{pmatrix}$$

Говорят, что система (2) получена из системы (1) с помощью элементарных преобразований, если расширенная матрица C|D системы (2) получается из расширенной матрицы A|B системы (1) с помощью элементарных преобразований строк.

¹ Леопольд Кронекер – нем.математик

² Альфредо Капелли – ит. математик

Элементарные преобразования системы линейных уравнений напрямую связаны с элементарными преобразованиями строк матрицы. Умножение строки матрицы на число соответствует умножению уравнения системы на некоторое число, прибавление к одной строке матрицы другой ее строки, соответствует прибавлению к одному уравнению системы другого уравнения. Очевидно, что при этих операциях множество решение системы уравнений остается прежним. Таким образом, обоснована следующая теорема.

Теорема 2. Если система линейных уравнений (1) получена из линейной системы (2) элементарными преобразованиями, то системы эквивалентны (то есть множества их решений совпадают).

Как видим, элементарные преобразования системы непосредственно связаны с элементарными преобразованиями расширенной матрицы системы.

5.3. Метод Гаусса решения линейных систем, свободные и базисные неизвестные

Метод Гаусса решения СЛАУ основывается на возможности выполнения преобразований линейных уравнений, которые не меняют при этом решение рассматриваемой системы.

Метод Гаусса включает в себя два последовательных этапа:

- I. *Прямой* ход последовательное (прямое) исключение неизвестных.
- II. *Обратный* ход нахождение неизвестных, начиная с последнего.

Прямой ход состоит в приведении элементарными преобразованиями строк исходной СЛАУ к ступенчатому виду путем последовательного исключения неизвестных в решаемых уравнениях.

Обратным ходом называется процесс последовательного нахождения неизвестных значений переменных при движении от последнего уравнения к первому. Выражая неизвестную из последнего уравнения, подставляем ее значение в вышестоящее уравнение. Из него выражаем предыдущую (ход обратный!) неизвестную и доходим, таким образом, до первого уравнения.

Пусть задана неоднородная система линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(1)

Прямой ход.

Пусть A|B> - расширенная матрица этой системы, которая элементарными преобразованиями строк приведена к ступенчатому виду. Процесс исключения неизвестных был подробно описан при доказательстве Теоремы 5 в Лекции 4.

При этом все элементы $a'_{11} \neq 0$, $a'_{22} \neq 0$, ..., $a'_{kr} \neq 0$, $1 \leq k \leq m$

Соответствующим ей образом преобразовалась и система (1), скажем, в систему (1').

Если $b'_{k+1} \neq 0$, то система несовместна.

Действительно, последняя строка в нашей ступенчатой матрице соответствует равенству вида $0 \cdot x_1 + 0 \cdot x_2 + ... + 0 \cdot x_n = b'_{k+1}$ и не существует набора значений переменных $\alpha_1, \alpha_2, ..., \alpha_n$, обращающего это условие в верное тождество.

Таким образом, если $\operatorname{rang}(A|B') = k+1 > \operatorname{rang}(A') = k$, т.е. $\operatorname{rang}(A'|B) \neq \operatorname{rang}(A')$, то система несовместна.

Если $\underline{b'_{k+1}=0}$, то это означает, что только первые k строк матрицы A'|B' отличны от нуля.

$$\begin{cases} a'_{11} x_1 + a'_{12} x_2 + \dots + a'_{1r-1} x_{r-1} + a'_{1r} x_r + \dots + a'_{1n} x_n = b'_1 \\ a'_{22} x_2 + \dots + a'_{2r-1} x_{r-1} + a'_{2r} x_r + \dots + a'_{2n} x_n = b'_2 \\ \dots \\ + a'_{k-1,r-1} x_{r-1} + a'_{k-1,r} x_r + \dots + a'_{k-1,n} x_n = b'_{k-1} \\ a'_{k,r} x_r + \dots + a'_{k,n} x_n = b'_k \end{cases}$$

Будем считать далее для удобства, что k = r.

1. Если k = n, тогда система перепишется в виде

$$\begin{cases} a'_{11} x_1 + a'_{12} x_2 + \dots + a'_{1,n-1} x_{n-1} + a'_{1,n} x_n = b'_1 \\ a'_{22} x_2 + \dots + a'_{2,n-1} x_{n-1} + a'_{2,n} x_n = b'_2 \end{cases}$$
...
$$a'_{n-1,n-1} x_{n-1} + a'_{n-1,n} x_n = b'_{n-1}$$

$$a'_{nn} x_n = b'_n$$

Обратный ход для случая, когда количество уравнений СОВПАДАЕТ с количеством переменных.

Из последнего уравнения находим $x_n = \frac{b'_n}{a'_{nn}}$, которое определяется однозначно.

Результаты, получаемые на шагах обратного хода, будем показывать справа от расширенной матрицы системы.

$$\begin{cases} a'_{11} x_1 + a'_{12} x_2 + \dots + a'_{1,n-1} x_{n-1} + a'_{1,n} x_n = b'_1 \\ a'_{22} x_2 + \dots + a'_{2,n-1} x_{n-1} + a'_{2,n} x_n = b'_2 \\ \dots \\ a'_{n-1,n-1} x_{n-1} + a'_{n-1,n} x_n = b'_{n-1} \\ a'_{nn} x_n = b'_n \end{cases} x_n = \frac{b'_n}{a'_{nn}}$$

Подставим полученное
$$x_n$$
 в предпоследнее уравнение и выразим из него x_{n-1}
$$\begin{cases} a'_{11}x_1 + a'_{12}x_2 + & \dots + a'_{1,n-1}x_{n-1} + a'_{1,n}x_n = b'_1 \\ a'_{22}x_2 + & \dots + a'_{2,n-1}x_{n-1} + a'_{2,n}x_n = b'_2 \\ \dots \end{cases}$$

$$\begin{cases} a'_{n-1,n-1}x_{n-1} + a'_{n-1,n} \frac{b'_n}{a_{nn}} = b'_{n-1} \\ a'_{nn}x_n = b'_n \end{cases}$$

$$\begin{cases} x_{n-1} = \frac{b'_{n-1} - a'_{n-1,n} \frac{b'_n}{a'_{nn}}}{a'_{n-1,n-1}} \\ x_n = \frac{b'_n}{a'_{nn}} \end{cases}$$
 Последовательно переходя, таким образом, к вышестоящим строкам, однознач-

но находим значения остальных неизвестных $x_{n-2},...,x_1$.

Таким образом, <u>если k = n</u>, то <u>система имеет единственное решение</u>.

2. Если k < n.

Обратный ход для случая, когда количество уравнений МЕНЬШЕ количества переменных.

В матрице A' выделяем базисный минор. Например, как показано на схеме.

Те переменные, коэффициенты при которых попали в состав базисного минора, объявляем *базисными* переменными, остальные – *свободными* переменными.

 $x_1, x_2, ..., x_r$ – базисные переменные, $x_{r+1}, x_{r+2}, ..., x_n$ – свободные переменные.

Базисные Свободные переменные переменные
$$x_1 x_2 x_{r-1} x_r x_r x_{r+1} x_n x_n$$
 $x_{r+1} x_r x_{r+1} x_n x_n$ $x_{r+1} x_r x_r x_{r+1} x_n x_n$ $x_{r+1} x_r x_n x_n$ $x_{r+1} x_n x_n$ $x_{r+1} x_n x_n x_n$ $x_{r+1} x_n x_n x_n$ $x_{r+1} x_n x_n x_n$ $x_n x_n x_n x_n$ $x_n x_n x_n x_n x_n$ $x_n x_n x_n x_$

$$\begin{cases} a'_{11} x_1 + a'_{12} x_2 + & \dots + a'_{1r-1} x_{r-1} + a'_{1r} x_r + a'_{1,r+1} x_{r+1} + \dots + a'_{1n} x_n = b'_1 \\ a'_{22} x_2 + & \dots + a'_{2r-1} x_{r-1} + a'_{2r} x_r + a'_{2,r+1} x_{r+1} + \dots + a'_{2n} x_n = b'_2 \\ \dots \\ + a'_{r-1,r-1} x_{r-1} + a'_{r-1,r} x_r + a'_{r-1,r+1} x_{r+1} + \dots + a'_{r-1,n} x_n = b'_{r-1} \\ a'_{r,r} x_r + a'_{r,r+1} x_{r+1} + \dots + a'_{r,n} x_n = b'_r \end{cases}$$

Перепишем систему, оставив слева слагаемые, содержащие базисные переменные, а в правую часть перенесем слагаемые, содержащие свободные переменные

$$\begin{cases} a'_{11} x_1 + a'_{12} x_2 + \dots + a'_{1r-1} x_{r-1} + a'_{1r} x_r = b'_{1} - a'_{1,r+1} x_{r+1} - \dots - a'_{1n} x_n \\ a'_{22} x_2 + \dots + a'_{2r-1} x_{r-1} + a'_{2r} x_r = b'_{2} - a'_{2,r+1} x_{r+1} - \dots - a'_{2n} x_n \end{cases}$$

$$\vdots$$

$$+ a'_{r-1,r-1} x_{r-1} + a'_{r-1,r} x_r = b'_{r-1} - a'_{r-1,r+1} x_{r+1} - \dots - a'_{r-1,n} x_n$$

$$a'_{r,r} x_r = b'_{r} - a'_{r,r+1} x_{r+1} - \dots - a'_{r,n} x_n$$

Свободным переменным придаем произвольные значения:

$$\begin{aligned} x_{r+1} &= C_1, \\ x_{r+2} &= C_2, \\ \dots \\ x_n &= C_{n-r} \\ C_i &\in \mathbf{R}, \ 1 \leq i \leq n-r \end{aligned}$$

Тогда система перепишется в виде

$$\begin{cases} a'_{11} x_1 + a'_{12} x_2 + \dots + a'_{1r-1} x_{r-1} + a'_{1r} x_r = b'_{1} - a'_{1,r+1} C_1 - \dots - a'_{1n} C_{n-r} \\ a'_{22} x_2 + \dots + a'_{2r-1} x_{r-1} + a'_{2r} x_r = b'_{2} - a'_{2,r+1} C_1 - \dots - a'_{2n} C_{n-r} \\ \dots + a'_{r-1,r-1} x_{r-1} + a'_{r-1,r} x_r = b'_{r-1} - a'_{r-1,r+1} C_1 - \dots - a'_{r-1,n} C_{n-r} \\ a'_{r,r} x_r = b'_{r} - a'_{r,r+1} C_1 - \dots - a'_{r,n} C_{n-r} \end{cases}$$

Из последнего уравнения системы можем теперь выразить x_r :

$$a_{r,r}x_r = b'_r - a'_{r,r+1}C_1 - \dots - a'_{r,n}C_{n-r}$$

$$x_r = \frac{b'_r - a'_{r,r+1}C_1 - \dots - a'_{r,n}C_{n-r}}{a'_{r,r}}$$

Подставляем его в предпоследнее уравнение и выражаем x_{r-1} .

Переходя выше, доходим до первого уравнения системы, из которого выражаем переменную x_1 .

Поскольку неизвестные $x_{r+1}, x_{r+2}, ..., x_n$ могут принимать произвольные значения, то при k < n, то система имеет бесконечно много решений.

Задача 1. Решить систему линейных уравнений методом Гаусса

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5\\ 3x_1 + 9x_2 - x_3 + 5x_4 = 20\\ -2x_1 - x_2 - x_4 = -9\\ x_1 + 11x_2 + 14x_3 + 10x_4 = 32 \end{cases}$$

Решение.

Прямой ход. Составим расширенную матрицу системы и элементарными преобразованиями строк приведем ее к ступенчатому виду.

$$A|B = \begin{pmatrix} 1 & 2 & -2 & 1 & 5 \\ 3 & 9 & -1 & 5 & 20 \\ -2 & -1 & 0 & -1 & -9 \\ 1 & 11 & 14 & 10 & 32 \end{pmatrix} - 3R1 \sim \begin{pmatrix} 1 & 2 & -2 & 1 & 5 \\ 0 & 3 & 5 & 2 & 5 \\ 0 & 3 & -4 & 1 & 1 \\ 0 & 9 & 16 & 9 & 27 \end{pmatrix} - 3R2 \sim \begin{pmatrix} 1 & 2 & -2 & 1 & 5 \\ 0 & 3 & 5 & 2 & 5 \\ 0 & 0 & -9 & -1 & -4 \\ 0 & 0 & 1 & 3 & 12 \end{pmatrix} + 9R4 \sim \begin{pmatrix} 1 & 2 & -2 & 1 & 5 \\ 0 & 3 & 5 & 2 & 5 \\ 0 & 0 & 0 & 26 & 104 \\ 0 & 0 & 1 & 3 & 12 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 & 1 & 5 \\ 0 & 3 & 5 & 2 & 5 \\ 0 & 0 & 0 & 26 & 104 \\ 0 & 0 & 1 & 3 & 12 \end{pmatrix}$$

rang(A|B) = 4 = rang(A) = 4, ранги равны, следовательно, система совместна. Так как rang(A|B) = 4 = n, где n – число переменных, то система имеет единственное решение.

Обратный ход.

$$\begin{pmatrix} 1 & 2 & -2 & 1 & 5 \\ 0 & 3 & 5 & 2 & 5 \\ 0 & 0 & 1 & 3 & 12 \\ 0 & 0 & 0 & 26 & 104 \end{pmatrix} \quad \begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 & \text{Сначала находим } x_4 \text{ из последне-} \\ 3x_2 + 5x_3 + 2x_4 = 5 & \text{го уравнения системы:} \\ x_3 + 3x_4 = 12 & x_4 = 4 \end{cases}$$

Поднимаемся на строку выше ↑

Поднимаемся на строку выше
$$\uparrow$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 + x_4 = 5 \\ 3x_2 + 5x_3 + 2x_4 = 5 \\ x_3 + 3x_4 = 12 \\ 26x_4 = 104 \end{cases}$$

Таким образом, решением системы является вектор столбец значений неизвестных

$$X = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 4 \end{pmatrix}$$
 или в виде (3;–1;0;4)

Ответ: (3;-1;0;4)

Задача 2. Решить систему линейных уравнений методом Гаусса

$$\begin{cases} x_1 + x_2 - x_3 + 2x_4 + 3x_5 = 1 \\ x_1 + x_3 - x_4 + x_5 = 2 \\ 3x_1 + x_2 + x_3 + 5x_5 = 4 \\ 2x_1 + x_2 + x_4 + 4x_5 = 3 \end{cases}$$

Решение.

Прямой ход. Составим расширенную матрицу системы и элементарными преобразованиями строк приведем ее к ступенчатому виду.

$$A|B = \begin{pmatrix} 1 & 1 & -1 & 2 & 3 & 1 \\ 1 & 0 & 1 & -1 & 1 & 2 \\ 3 & 1 & 1 & 0 & 5 & 4 \\ 2 & 1 & 0 & 1 & 4 & 3 \end{pmatrix} - R1 \sim \begin{pmatrix} 1 & 1 & -1 & 2 & 3 & 1 \\ 0 & -1 & 2 & -3 & -2 & 1 \\ 0 & -2 & 4 & -6 & -4 & 1 \\ 0 & -1 & 2 & -3 & -2 & 1 \end{pmatrix} - 2R2 \sim$$

$$\sim \begin{pmatrix}
1 & 1 & -1 & 2 & 3 & | & 1 \\
0 & -1 & 2 & -3 & -2 & | & 1 \\
0 & 0 & 0 & 0 & 0 & | & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

 $rang(A|B) = 3 \neq rang(A) = 2$, так как ранг расширенной матрицы больше ранга основной, то система несовместна.

Ответ: нет решений.

Задача 3. Решить систему линейных уравнений методом Гаусса

$$\begin{cases} 5x_1 - x_2 - x_3 - 3x_4 = 1 \\ 5x_1 - x_2 + 5x_3 + 3x_4 = 7 \\ 5x_1 - x_2 - 7x_3 - 9x_4 = -5 \end{cases}$$

Решение.

Прямой ход. Составим расширенную матрицу системы и элементарными преобразованиями строк приведем ее к ступенчатому виду.

$$A|B = \begin{pmatrix} 5 & -1 & -1 & -3 & 1 \\ 5 & -1 & 5 & 3 & 7 \\ 5 & -1 & -7 & -9 & -5 \end{pmatrix} - R1 \sim \begin{pmatrix} 5 & -1 & -1 & -3 & 1 \\ 0 & 0 & 6 & 6 & 6 \\ 0 & 0 & -6 & -6 & -6 \end{pmatrix} - R2 \sim$$

$$\sim \begin{pmatrix}
5 & -1 & -1 & -3 & | & 1 \\
0 & 0 & 1 & 1 & | & 1 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$

 $\operatorname{rang}(A|B) = 2 = \operatorname{rang}(A) = 2$, так как ранги равны, то система совместна. Так как $\operatorname{rang}(A|B) = 2 < n \text{ , где } n = 4 - \operatorname{число}$ переменных, то система имеет бесконечно много решений.

В этой задаче подробно остановимся на выборе базисного минора.

Столбцы 1 и 2	$\begin{bmatrix} 5 & -1 \\ 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & -3 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{vmatrix} 5 & -1 \\ 0 & 0 \end{vmatrix} = 0$ переменные x_1, x_2 НЕ могут быть выбраны на роль базисных перемен-
		ных.
Столбцы 1 и 3	$ \begin{bmatrix} 5 & -1 & -1 & -3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} $	$\begin{vmatrix} 5 & -1 \\ 0 & 1 \end{vmatrix} = 5 \neq 0$, переменные x_1, x_3 могут быть выбраны на роль базисных перемен-
		ных.
Столбцы 1 и 4	$ \begin{bmatrix} 5 & -1 & -1 & -3 & & 1 \\ 0 & 0 & 1 & & 1 & & 1 \\ 0 & 0 & 0 & 0 & & 0 \end{bmatrix} $	$\begin{vmatrix} 5 & -3 \\ 0 & 1 \end{vmatrix} = 5 \neq 0$, переменные x_1, x_4 могут быть выбраны на роль базисных перемен-
		ных.
Столбцы 2 и 3	$ \begin{bmatrix} 5 & -1 & -1 & -3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} $	$\begin{vmatrix} -1 & -1 \\ 0 & 1 \end{vmatrix} = -1 \neq 0$, переменные x_2, x_3 могут быть выбраны на роль базисных перемен-
		ных.
Столбцы 2 и 4	$ \begin{pmatrix} 5 & -1 & -1 & -3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} $	$\begin{vmatrix} -1 & -3 \\ 0 & 1 \end{vmatrix} = -1 \neq 0$, переменные x_2, x_4 мо-
		менных.
Столбцы 3 и 4	$ \begin{pmatrix} 5 & -1 & -1 & -3 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} $	$\begin{vmatrix} -1 & -3 \\ 1 & 1 \end{vmatrix} = 2 \neq 0$, переменные x_3, x_4 могут быть выбраны на роль базисных переменных.

Выберем первый и третий столбцы. Переменные x_1, x_3- базисные переменные, x_2, x_4 —свободные переменные.

Пусть
$$x_2 = C_1, x_4 = C_2, C_1, C_2 \in \mathbf{R}$$

Матрица соответствует системе

$$\begin{cases}
5x_1 - x_2 - x_3 - 3x_4 = 1 \\
x_3 + x_4 = 1
\end{cases}$$

Обратный ход: из последнего уравнения выразим $x_3 = 1 - x_4 = 1 - C_2$

Поднимаемся выше к первому уравнению. Подставляем $x_2 = C_1, x_4 = C_2$ и, найденное ранее, $x_3 = 1 - C_2$:

$$5x_{1} = 1 + x_{2} + x_{3} + 3x_{4} = 1 + C_{1} + (1 - C_{2}) + 3C_{2} = 2 + C_{1} + 2C_{2}$$

$$x_{1} = \frac{2}{5} + \frac{1}{5}C_{1} + \frac{2}{5}C_{2}$$

$$X = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} \frac{2}{5} + \frac{1}{5}C_{1} + \frac{2}{5}C_{2} \\ C_{1} \\ 1 - C_{2} \\ C_{2} \end{pmatrix} = \begin{pmatrix} \frac{2}{5} \\ 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{1}{5}C_{1} \\ C_{1} \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{2}{5}C_{2} \\ 0 \\ -C_{2} \\ C_{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ 0 \\ 1 \\ 0 \end{pmatrix} + C_{1}\begin{pmatrix} \frac{1}{5} \\ 1 \\ 0 \\ 0 \end{pmatrix} + C_{2}\begin{pmatrix} \frac{2}{5} \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

$$\mathbf{Otrbet:} \ X = \begin{pmatrix} \frac{2}{5} \\ 0 \\ 0 \\ + C_{1}\begin{pmatrix} \frac{1}{5} \\ 1 \\ 0 \\ 0 \end{pmatrix} + C_{1}\begin{pmatrix} \frac{1}{5} \\ 0 \\ 0 \\ 0 \end{pmatrix} + C_{2}\begin{pmatrix} \frac{2}{5} \\ 0 \\ 0 \\ 0 \end{pmatrix} = \mathbf{R}$$

Ответ:
$$X = \begin{pmatrix} \frac{2}{5} \\ 0 \\ 1 \\ 0 \end{pmatrix} + C_1 \begin{pmatrix} \frac{1}{5} \\ 1 \\ 0 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} \frac{2}{5} \\ 0 \\ -1 \\ 1 \end{pmatrix}, C_1, C_2 \in \mathbf{R}$$

5.4. Однородные линейные системы

Определение 3. Система линейных уравнений называется *однородной*, если все свободные члены системы равны нулю.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$
(3)

Свойства однородной системы

1°. Однородная система всегда совместна.

Действительно, значения переменных $x_1 = 0, x_2 = 0, ..., x_n = 0$ являются решением однородной системы.

- 2° . Если число уравнений m однородной системы меньше числа неизвестных n, то эта система имеет ненулевые решения.
- 3°. Сумма решений однородной системы также является решением этой системы.
- 4°. Произведение решения однородной системы на число также является решением этой системы.

Пусть однородная система (3) элементарными преобразованиями строк приведена к ступенчатому виду

$$\begin{cases} a'_{11} x_1 + a'_{12} x_2 + \dots + a'_{1,r-1} x_{r-1} + a'_{1,r} x_r + a'_{1,r+1} x_{r+1} + \dots + a'_{1n} x_n = 0 \\ a'_{22} x_2 + \dots + a'_{2,r-1} x_{r-1} + a'_{2,r} x_r + a'_{2,r+1} x_{r+1} + \dots + a'_{2n} x_n = 0 \end{cases}$$

$$\dots$$

$$+ a'_{r-1,r-1} x_{r-1} + a'_{r-1,r} x_r + a'_{r-1,r+1} x_{r+1} + \dots + a'_{r-1,n} x_n = 0$$

$$a'_{r,r} x_r + a'_{r,r+1} x_{r+1} + \dots + a'_{r,n} x_n = 0$$

Свободным переменным придаем произвольные значения:

$$x_{r+1} = C_1, x_{r+2} = C_2, ..., x_n = C_{n-r}, \ C_i \in \mathbf{R}, \ 1 \le i \le n-r$$

Последовательно подставляем значения свободных переменных $C_1, C_2, ..., C_{n-r}$ в уравнения, начиная с последнего, выражаем $x_1, x_2, ..., x_r$. Каждая из переменных $x_1, x_2, ..., x_r$ линейно зависит от $C_1, C_2, ..., C_{n-r}$:

$$\begin{split} x_1 &= \lambda_{11}C_1 + \lambda_{12}C_2 + \ldots + \lambda_{1,n-r}C_{n-r}, \\ x_2 &= \lambda_{21}C_1 + \lambda_{22}C_2 + \ldots + \lambda_{2,n-r}C_{n-r} \\ \ldots \\ x_r &= \lambda_{r1}C_1 + \lambda_{r2}C_2 + \ldots + \lambda_{r,n-r}C_{n-r} \end{split}.$$

Тогда решение однородной системы линейных уравнений (3) может быть записано в виде:

сано в виде:
$$X = \begin{pmatrix} \lambda_{11}C_1 + \lambda_{12}C_2 + \ldots + \lambda_{1,n-r}C_{n-r} \\ \lambda_{21}C_1 + \lambda_{22}C_2 + \ldots + \lambda_{2,n-r}C_{n-r} \\ \ldots \\ \lambda_{r1}C_1 + \lambda_{r2}C_2 + \ldots + \lambda_{r,n-r}C_{n-r} \\ C_1 \\ C_2 \\ \ldots \\ C_{n-r} \end{pmatrix} = \begin{pmatrix} \lambda_{11}C_1 \\ \lambda_{21}C_1 \\ \ldots \\ \lambda_{r1}C_1 \\ C_2 \\ \ldots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} \lambda_{12}C_2 \\ \lambda_{22}C_2 \\ \ldots \\ \lambda_{r1}C_1 \\ C_1 \\ 0 \\ \ldots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} \lambda_{1n-r}C_{n-r} \\ \lambda_{2,n-r}C_{n-r} \\ \ldots \\ \lambda_{r,n-r}C_{n-r} \\ 0 \\ 0 \\ \ldots \\ C_{n-r} \end{pmatrix} = C_1 \cdot \begin{pmatrix} \lambda_{11} \\ \lambda_{21} \\ \ldots \\ \lambda_{r1} \\ 1 \\ 0 \\ \ldots \\ 0 \end{pmatrix} + C_2 \cdot \begin{pmatrix} \lambda_{12} \\ \lambda_{22} \\ \ldots \\ \lambda_{r2} \\ 0 \\ 1 \\ \ldots \\ 0 \end{pmatrix} + \ldots + C_{n-r} \cdot \begin{pmatrix} \lambda_{1,n-r} \\ \lambda_{2,n-r} \\ \ldots \\ \lambda_{r,n-r} \\ 0 \\ 0 \\ \ldots \\ 1 \end{pmatrix}$$

Если набору переменных
$$C_1, C_2, ..., C_{n-r}$$
 придать значения $C_1 = 1, C_2 = 0, ..., C_{n-r} = 0$, то решением системы будет вектор-столбец $X_1 = 1 \cdot \begin{pmatrix} \lambda_{11} \\ \lambda_{21} \\ ... \\ \lambda_{r1} \\ 1 \\ 0 \\ \\ 0 \end{pmatrix}$

Если набору переменных
$$C_1, C_2, ..., C_{n-r} \quad \text{придать} \quad \text{значения} \\ C_1 = 0, C_2 = 1, ..., C_{n-r} = 0, \quad \text{то} \quad \text{решением} \\ \text{системы будет вектор-столбец} \qquad \qquad X_2 = 1 \cdot \begin{pmatrix} \lambda_{12} \\ \lambda_{22} \\ ... \\ \lambda_{r2} \\ 0 \\ 1 \\ ... \\ 0 \end{pmatrix}$$

...

Если набору переменных
$$C_1, C_2, ..., C_{n-r} \quad \text{придать} \quad \text{значения} \qquad \begin{pmatrix} \lambda_{1,n-r} \\ \lambda_{2,n-r} \\ \end{pmatrix}$$

$$C_1 = 0, C_2 = 0, ..., C_{n-r} = 1, \quad \text{то} \quad \text{решением}$$
 системы будет вектор-столбец
$$X_{n-r} = 1 \cdot \begin{pmatrix} \lambda_{1,n-r} \\ \lambda_{2,n-r} \\ \\ 0 \\ 0 \\ \\ 1 \end{pmatrix}$$

Утверждение 1. Если ранг r матрицы однородной системы меньше числа неизвестных n, то система имеет n-r линейно-независимых решений.

Доказательство. Составим матрицу из решений $X_1, X_2, ..., X_{n-r}$. Видно, что ее ранг равен n-r, следовательно, решения $X_1, X_2, ..., X_{n-r}$ - линейно-независимы. Что и требовалось доказать.

Определение 4. Любая система из n-r линейно-независимых решений называется фундаментальной системой решений (ФСР) однородной системы.

Теорема 3. Любое решение системы (3) может быть представлено в виде линейной комбинации решений ФСР $X = \alpha_1 X_1 + \alpha_2 X_2 + ... + \alpha_n X_{n-r}$.

Т.е. для любых $\alpha_1,\alpha_2,...\alpha_n$ X является решением однородной системы. И наоборот, для каждого решения этой системы найдутся такие $\alpha_1,\alpha_2,...\alpha_n$, при которых решение имеет вид $X=\alpha_1X_1+\alpha_2X_2+...+\alpha_nX_{n-r}$.

Выражение $X = \alpha_1 X_1 + \alpha_2 X_2 + ... + \alpha_n X_{n-r}$ называется общим решением однородной системы.

Задача 4. Найти общее решение однородной системы линейных уравнений, выписать ФСР.

$$\begin{cases} x_1 - x_2 + x_3 = 0 \\ 2x_1 + x_2 - x_3 = 0 \end{cases}$$

Решение. Прямой ход. Выпишем основную матрицу и элементарными преобразованиями строк приведем ее к ступенчатому виду

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \end{pmatrix} - 2R1 \sim \begin{pmatrix} 1 & -1 & 1 \\ 0 & 3 & -3 \end{pmatrix} : 3 \sim \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Так как $\operatorname{rang}(A) = 2 < n$, где n = 3 - число переменных, то система имеет бесконечно много решений.

Выберем базисный минор.

$$\begin{pmatrix}
1 & -1 & 1 \\
0 & 1 & -1
\end{pmatrix}$$

Пусть x_1, x_2 – базисные переменные, x_3 - свободная переменная.

Пусть
$$x_3 = C$$
, $C \in \mathbf{R}$

Матрица соответствует системе

$$\begin{cases} x_1 - x_2 + x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

Обратный ход. Из последнего уравнения выразим $x_2 = x_3 = C$.

Поднимаемся выше к первому уравнению. Подставляем $x_2 = C, x_3 = C$, получаем $x_1 = x_2 - x_3$:

Общее решение

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ C \\ C \end{pmatrix} = C \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
, вектор-столбец $X_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ образует ФСР

Выполним проверку, подставив найденные значения переменных в исходную систему:

$$\left\{ egin{aligned} 0 - 1 + 1 &= 0 \\ 1 - 1 &= 0 \end{aligned}
ight. - ext{верные тождества}$$

Ответ: Общее решение:
$$X = C \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \ C \in \mathbf{R}$$
 , Φ CP= $\left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$

Задача 5. Найти общее решение однородной системы линейных уравнений, выписать ФСР.

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 5x_4 = 0 \\ 2x_1 + 6x_2 + 9x_3 - 7x_4 = 0 \\ x_1 - 2x_2 + 2x_3 - 11x_4 = 0 \\ -x_1 + 4x_2 - x_3 + 14x_4 = 0 \end{cases}$$

Решение. Выпишем основную матрицу и элементарными преобразованиями строк приведем ее к ступенчатому виду

$$A = \begin{pmatrix} 1 & 2 & 4 & -5 \\ 2 & 6 & 9 & -7 \\ 1 & -2 & 2 & -11 \\ -1 & 4 & -1 & 14 \end{pmatrix} - R1 \sim \begin{pmatrix} 1 & 2 & 4 & -5 \\ 0 & 2 & 1 & 3 \\ 0 & -4 & -2 & -6 \\ 0 & 6 & 3 & 9 \end{pmatrix} - 3R2 \sim \begin{pmatrix} 1 & 2 & 4 & -5 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Так как $\operatorname{rang}(A) = 2 < n$, где n = 4 — число переменных, то система имеет бесконечно много решений.

Выберем базисный минор

$$\begin{bmatrix}
1 & 2 & 4 & -5 \\
0 & 2 & 1 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Пусть x_1, x_2 – базисные переменные, а x_3, x_4 – свободные переменные.

Пусть
$$x_3 = C_1, x_4 = C_2, C_1, C_2 \in \mathbf{R}$$

Полученная матрица соответствует системе двух уравнений

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 5x_4 = 0 \\ 2x_2 + x_3 + 3x_4 = 0 \end{cases}$$

Обратный ход.

Из последнего уравнения выразим $2x_2=-x_3-3x_4=-C_1-3C_2$, тогда $x_2=-\frac{1}{2}\,C_1-\frac{3}{2}\,C_2$

Поднимаемся выше к первому уравнению. Подставляем полученные значения переменных x_2, x_3, x_4 и выражаем x_1 :

$$x_1 = -2x_2 - 4x_3 + 5x_4 = -2\left(-\frac{1}{2}C_1 - \frac{3}{2}C_2\right) - 4C_1 + 5C_2 = -3C_1 + 8C_2$$

Общее решение

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -3C_1 + 8C_2 \\ -\frac{1}{2}C_1 - \frac{3}{2}C_2 \\ C_1 \\ C_2 \end{pmatrix} = C_1 \begin{pmatrix} -3 \\ -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 8 \\ -\frac{3}{2} \\ 0 \\ 1 \end{pmatrix}, \ C_1, C_2 \in \mathbf{R} \ .$$

$$\Phi CP = \left\{ \begin{pmatrix} -3 \\ -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 8 \\ -\frac{3}{2} \\ 0 \\ 1 \end{pmatrix} \right\}$$

Выполним проверку, подставив найденные значения переменных в исходную систему:

$$\begin{cases} -3+2\cdot(-0,5)+4-0=0\\ 2\cdot(-3)+6\cdot(-0,5)+9-0=0\\ -3-2\cdot(-0,5)+2-0=0\\ -(-3)+4\cdot(-0,5)-1+0=0 \end{cases}$$
 — верные тождества
$$\begin{cases} 8+2\cdot(-1,5)+0-5=0\\ 2\cdot8+6\cdot(-1,5)+0-7=0\\ 8-2\cdot(-1,5)+0-11=0\\ -8+4\cdot(-1,5)-0+14=0 \end{cases}$$
 — верные тождества

Ответ: Общее решение:
$$X = C_1 \begin{pmatrix} -3 \\ -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 8 \\ -\frac{3}{2} \\ 0 \\ 1 \end{pmatrix}, \ C_1, C_2 \in \mathbf{R} \ .$$

$$\Phi CP = \left\{ \begin{pmatrix} -3 \\ -\frac{1}{2} \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 8 \\ -\frac{3}{2} \\ 0 \\ 1 \end{pmatrix} \right\}$$

5.5. Структура общего решения неоднородной системы

Пусть дана некоторая неоднородная система линейных уравнений

$$\begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2\\ ...\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n=b_m \end{cases} \tag{4} \ . \ \ B \ \text{матричной записи: } AX=B$$

Пусть системе (4) соответствует однородная система

$$\begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=0\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=0\\ ...\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n=0 \end{cases}$$
 (5) . В матричной записи: $AX=0$

Если мы возьмем какое-нибудь частное решение неоднородной системы и прибавим к нему общее решение соответствующей однородной системы, то это вновь будет решением неоднородной системы.

Покажем это. Обозначим $X_{\text{ч.н.}}$ – частное решение неоднородной системы (4) $X_{\text{O.O.}}$ - общее решение соответствующей ей однородной системы (5).

Рассмотрим сумму решений $X_{\text{O.O.}} + X_{\text{Ч.H.}}$.

$$A(X_{O.O.} + X_{VI.H.}) = AX_{O.O.} + AX_{VI.H.} = 0 + B = B.$$

Теорема 4. Общее решение неоднородной системы (4) может быть представлено в виде суммы общего решения соответствующей однородной системы (5) и какого-либо одного (частного) решения системы (4).

$$X_{OH} = X_{OO} + X_{UH}$$

Задача 6. Найти общее решение неоднородной системы линейных уравнений, выписать частное решение, указать ФСР соответствующей однородной системы.

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 3 \\ 5x_1 + 11x_2 - 8x_3 = 11 \\ -x_1 - 5x_2 - 4x_3 = 9 \end{cases}$$

Решение. Прямой ход. Выпишем расширенную матрицу системы и элементарными преобразованиями строк приведем ее к ступенчатому виду

$$A|B = \begin{pmatrix} 1 & 2 & -2 & 3 \\ 5 & 11 & -8 & 11 \\ -1 & -5 & -4 & 9 \end{pmatrix} - 5R1 \sim \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & 2 & -4 \\ 0 & -3 & -6 & 12 \end{pmatrix} + 3R2 \sim \begin{pmatrix} 1 & 2 & -2 & 3 \\ 0 & 1 & 2 & -4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Так как rang(A|B) = rang(A) = 2 , то система совместна, так как rang(A|B) = 2 < n где n=3 - число переменных, то система имеет бесконечно много решений.

Выберем базисный минор

$$\begin{bmatrix}
1 & 2 & -2 & 3 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

Пусть x_1, x_2 – базисные переменные, а x_3 – свободная переменная.

Пусть
$$x_3 = C$$
, $C \in \mathbf{R}$.

Обратный ход.

Матрица соответствует системе двух уравнений

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 3 \\ x_2 + 2x_3 = -4 \end{cases}$$

Из последнего уравнения выразим $x_2 = -4 - 2x_3 = -4 - 2C$.

Переходим к первому уравнению. Подставляем полученные значения переменных x_2, x_3 и выражаем x_1 : $x_1 = 3 - 2x_2 + 2x_3 = 3 - 2(-4 - 2C) + 2C = 11 + 6C$

Общее решение

$$X_{\text{O.H.}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 11 + 6C \\ -4 - 2C \\ C \end{pmatrix} = \begin{pmatrix} 11 \\ -4 \\ 0 \end{pmatrix} + C \begin{pmatrix} 6 \\ -2 \\ 1 \end{pmatrix}, C \in \mathbf{R}$$

Частное решение
$$X_{\text{ч.н.}} = \begin{pmatrix} 11 \\ -4 \\ 0 \end{pmatrix}$$

Выполним проверку, подставив найденные значения переменных в исходную систему:

$$\begin{cases} 11+2\cdot(-4)-0=3\\ 5\cdot(11)+11\cdot(-4)-0=11 - \text{верные тождества}\\ -11-5\cdot(-4)-0=9 \end{cases}$$

Однородная система, соответствующая исходной неоднородной системе имеет

вид:
$$\begin{cases} x_1 + 2x_2 - 2x_3 = 0 \\ 5x_1 + 11x_2 - 8x_3 = 0 \\ -x_1 - 5x_2 - 4x_3 = 0 \end{cases}$$

Вектор $X_{\text{O.O.}} = \begin{pmatrix} 6 \\ -2 \\ 1 \end{pmatrix}$ будет являться ее решением. Проверим:

$$\begin{cases} 6+2\cdot(-2)-2=0\\ 5\cdot 6+11\cdot(-2)-8=0 - \text{верные тождества}\\ -6-5\cdot(-2)-4=0 \end{cases}$$

Ответ: Общее решение: $X_{\text{O.H.}} = \begin{pmatrix} 11 \\ -4 \\ 0 \end{pmatrix} + C \begin{pmatrix} 6 \\ -2 \\ 1 \end{pmatrix}, \ C \in \mathbf{R}$,

частное решение
$$X_{\text{ч.н.}} = \begin{pmatrix} 11 \\ -4 \\ 0 \end{pmatrix}$$
.

Задача 7. Найти общее решение неоднородной системы линейных уравнений, выписать частное решение, указать ФСР соответствующей однородной системы.

$$\begin{cases} x_1 - 3x_2 + 2x_3 + x_4 = 4 \\ x_1 - 2x_3 + 3x_4 = 7 \\ 2x_1 - 4x_3 + 6x_4 = 14 \\ x_1 - 6x_2 + 6x_3 - x_4 = 1 \end{cases}$$

Решение. Прямой ход. Выпишем расширенную матрицу и элементарными преобразованиями строк приведем ее к ступенчатому виду

$$A|B = \begin{pmatrix} 1 & -3 & 2 & 1 & | & 4 \\ 1 & 0 & -2 & 3 & | & 7 \\ 2 & 0 & -4 & 6 & | & 14 \\ 1 & -6 & 6 & -1 & | & 1 \end{pmatrix} - R1 \sim \begin{pmatrix} 1 & -3 & 2 & 1 & | & 4 \\ 0 & 3 & -4 & 2 & | & 3 \\ 0 & 6 & -8 & 4 & | & 6 \\ 0 & -3 & 4 & -2 & | & -3 \end{pmatrix} + R2 \sim \begin{pmatrix} 1 & -3 & 2 & 1 & | & 4 \\ 0 & 3 & -4 & 2 & | & 3 \\ 0 & 6 & -8 & 4 & | & 6 \\ 0 & -3 & 4 & -2 & | & -3 \end{pmatrix} + R2$$

$$\begin{bmatrix}
1 & -3 & 2 & 1 & | & 4 \\
0 & 3 & -4 & 2 & | & 3 \\
0 & 0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & 0 & 0 & | & 0
\end{bmatrix}$$

Так как rang(A|B) = rang(A) = 2 , то система совместна, так как rang(A|B) = 2 < n где n = 4 — число переменных, то система имеет бесконечно много решений.

Выберем базисный минор

$$\begin{bmatrix}
1 & -3 & 2 & 1 & | & 4 \\
0 & 3 & -4 & 2 & | & 3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Пусть x_1, x_2 – базисные переменные, а x_3, x_4 – свободные переменные.

Пусть
$$x_3 = C_1, x_4 = C_2, C_1, C_2 \in \mathbf{R}$$

Матрица соответствует системе двух уравнений

$$\begin{cases} x_1 - 3x_2 + 2x_3 + x_4 = 4 \\ 3x_2 - 4x_3 + 2x_4 = 3 \end{cases}$$

Обратный ход.

Из последнего уравнения выразим $3x_2=3+4x_3-2x_4=3+4C_1-2C_2$, тогда $x_2=1+\frac{4}{3}\,C_1-\frac{2}{3}\,C_2$

Поднимаемся к первому уравнению. Подставляем полученные значения переменных x_2, x_3, x_4 и выражаем x_1 .

$$x_1 = 4 + 3x_2 - 2x_3 - x_4 = 4 + 3\left(1 + \frac{4}{3}C_1 - \frac{2}{3}C_2\right) - 2C_1 - C_2 = 7 + 2C_1 - 3C_2$$

Общее решение

$$X_{\text{O.H.}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 7 + 2C_1 - 3C_2 \\ 1 + \frac{4}{3}C_1 - \frac{2}{3}C_2 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \\ X \neq 1. \text{H.} \end{pmatrix} + C_1 \begin{pmatrix} \frac{2}{4} \\ \frac{4}{3} \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -3 \\ -\frac{2}{3} \\ 0 \\ 1 \end{pmatrix}, C_1, C_2 \in \mathbf{R}$$

Частное решение
$$X_{\text{ч.н.}} = \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Выполнив проверку, получаем верные тождества

Проверяя каждый из векторов
$$\begin{pmatrix} 2\\ \frac{4}{3}\\ 1\\ 0 \end{pmatrix}$$
 и $\begin{pmatrix} -3\\ -\frac{2}{3}\\ 0\\ 1 \end{pmatrix}$, убеждаемся, что они являются ре-

шением соответствующей однородной системы

Ответ:
$$X_{\text{O.H.}} = \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \end{pmatrix} + C_1 \begin{pmatrix} \frac{2}{4} \\ \frac{3}{3} \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -3 \\ -\frac{2}{3} \\ 0 \\ 1 \end{pmatrix}, C_1, C_2 \in \mathbf{R}, X_{\text{ч.н.}} = \begin{pmatrix} 7 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$