Homework

1.Determine whether the vectors are linearly independent.

(a)
$$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 7 \end{bmatrix}$ (b) $\begin{bmatrix} -1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -2 \\ -8 \end{bmatrix}$

(b)
$$\begin{bmatrix} -1 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ -8 \end{bmatrix}$

$$(c)\begin{bmatrix}1\\-3\end{bmatrix},\begin{bmatrix}-3\\9\end{bmatrix}$$

(e)
$$\begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 5 \\ -8 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$

$$(f) \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}, \begin{bmatrix} 9 \\ 4 \\ -8 \end{bmatrix}$$

$$(g) \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \\ 5 \\ 0 \end{bmatrix}$$
 (h) $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 7 \\ 10 \end{bmatrix}$

$$(i) \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 7 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Homework

- 2. Find a redundant column vector of $A = \begin{pmatrix} 1 & 3 & 6 \\ 1 & 2 & 5 \end{pmatrix}$, and write it as a linear combination of preceding columns. Use this representation to write a nontrivial relation among the columns, and thus find a nonzero vector in N(A).
- 3. True or False: Let A be $m \times n$ matrices.
 - (a) If rank(A) = n, $C(A) = R^n$
 - (b) If rank(A) = m, $N(A) = \{\vec{0}\}$.
 - (c) If rank(A) = n, columns of A are linearly independent.
- 4. Consider three linearly independent vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 in \mathbb{R}^4 . Find

$$\operatorname{rref} \begin{bmatrix} | & | & | \\ \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \\ | & | & | \end{bmatrix}. \quad \operatorname{rref} = \operatorname{reduced row \ echelon \ form}$$