Math 21C

Kouba

Discussion Sheet 10

- 1.) Consider the function given by $f(x,y) = xy^2 x^2y$ and the point P = (1,-1). Compute
 - a.) the exact change of f and
 - b.) use a differential to estimate the exact change of f

if point P moves in a straight line to point Q = (1.5, -0.7).

- 2.) Consider the function given by $f(x,y) = \ln(3x + 4y^2)$ and the point P = (5,2). Compute
 - a.) the exact change of f and
 - b.) use a differential to estimate the exact change of f

if point P moves a distance of ds=1.4 in the direction of vector $\overrightarrow{A}=5\overrightarrow{i}+12\overrightarrow{j}$.

- 3.) Find the point on the plane x + 2y + 3z = 6 nearest the origin.
- 4.) Determine the dimensions and minimum surface area of a closed rectangular box with volume 8 ft.³
- 5.) Determine the dimensions and minimum surface area of the closed right circular cylinder with volume 16 π ft.³
- 6.) Material for the top and bottom of a rectangular box costs $4/\text{ft.}^2$ and that for the sides costs $2/\text{ft.}^2$ Determine the dimensions of the least expensive box of volume $4/\text{ft.}^2$
- 7.) Among all open (no top) rectangular boxes with surface area 300 in.², determine the dimensions of the box of maximum volume.
- 8.) Determine the absolute extrema for each function on the indicated region.
 - a.) f(x,y) = 2x + 4y + 12 on
 - i.) the triangle with vertices (0,0), (0,3), and (3,0) and its interior.
 - ii.) the circle $x^2 + y^2 = 4$ and its interior.
- b.) f(x,y) = xy x 3y on the triangle with vertices (0,0),(0,4), and (5,0) and its interior.
- c.) $f(x,y) = x^2 3y^2 2x + 6y$ on the square with vertices (0,0), (0,2), (2,0) and (2,2) and its interior.
- 9.) Use Lagrange multipliers to determine the extreme values for each of the following.
 - a.) Minimize $f(x, y) = x^2 + y^2$ subject to 2x + 4y = 5.

- b.) Maximize $f(x,y) = x^2 y^2$ subject to $y = x^2$.
- c.) Maximize and minimize f(x,y) = 3x + 4y + 2 subject to $x^2 + y^2 = 9$.
- d.) Minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to x + 2z = 4 and x + y = 8.

"Do just once what others say you can't do, and you will never pay attention to their limitations again." – James R. Cook