CS & IT ENGINEERING

Database Management
System Query Language
Relational Algebra

DPP - 01 Discussion Notes

TOPICS TO BE COVERED

01 Question

02 Discussion

Consider the following statements:

$$S_1: \pi_{\underline{\text{List N}}} \left(\pi_{\underline{\text{List N-1}}.....} \left(\pi_{\underline{\text{List 1}}} (R) \right) \right)$$

$$\equiv \pi_{\underline{\text{List 1}}} \left(\pi_{\underline{\text{List 2}}.....} \left(\pi_{\underline{\text{List N}}} (R) \right) \right)$$

$$\equiv \pi_{\underline{\text{List 1}}} \left(\pi_{\underline{\text{List 2.....}}} (\pi_{\underline{\text{List N}}}(R)) \right)$$

$$S_2: \ \sigma_{\underline{c_n}}\left(\sigma_{\underline{c_{n-1}}}....\left(\sigma_{\underline{c_1}}(R)\right)\right) \equiv \sigma_{\underline{c_1}}\left(\sigma_{\underline{c_2}}....\left(\sigma_{\underline{c_N}}(C)\right)\right)$$

Which of the following statement(s) is/are correct?

S₁ only

S2 only

- Both S₁ and S₂ only

Neither S₁ nor S₂

ABCD123389

Consider the following relations-

Enroll (CandidateID, Papercode) with 5000 tuples and

Count(Papercode, Number_of_appearing_candidates) with 29 tuples.

Assume, one candidate can enroll for multiple Papercode. Let p and q be the maximum and minimum number of records in Count ▶ Enroll then the value of p + q is 10.000.

referenció Enrael M Count > maximum = 5000 Tuble = P.

· Paper code is Poincony key of count Table so Not Contain NVIII & Paper Code Used as freign key in the Enrall table & Condidate ID & Paper Code is a key for enralled Relation

Minimum: 5000.

the same set of attributes.

Sid Shame

$$-\mathbf{S}_2$$
: $\mathbf{R}_1 \cup \mathbf{R}_2 = \mathbf{T}_1 \bowtie \mathbf{T}_2$

T. Sid - To Sid 1 TI Sname - To Some (TIX To)

Which of the above statement(s) are INCORRECT?

Both S₁ and S₂ only

Neither S₁ nor S₂

Not possible.

Sid	c na nae	1		
			Bronch	CGP

Consider the following relations:

Enroll (Sid, Papercode), Paper(Papercode, Desc) Which of the following relational algebra displays the sid's who only enrolled for Papercode having descriptions (Desc) as "CS"?

 $\pi_{\text{sid}} \text{ (Enroll)} - \pi_{\text{sid}} \text{ ((Enroll > \sigma \text{ (Paper))})} > \text{Sid of Student}$ Desc = CS Desc = CS

 π_{sid} (Enroll) $-\pi_{sid}$ (Enroll $\bowtie \sigma$ (Paper))

None

Desc < > CS

Sid at student who cs.
en rolled in Non cs.
Not enrolled in

Consider two relations R and S with x and y number of distinct record. Let p and q be the minimum and maximum number of records in the resultant R/S, thenmaximum = Q

$$p = 0$$
, $q = x + 1$

$$p = 0, q = \left| \frac{x}{y} \right|$$

Minimum = P

Let R_1 and R_2 be two relations with n and m tuples.

 S_1 : The maximum number of records in R_1 - R_2 is n.

82: The minimum number of records in $R_1 \cup R_2$ is max (n, m)

S2 only

Neither S₁ nor S₂

mtn

Maximum.

Ri: n Tuble Rz: m Tuble	Minimum	maximum	
1 RIURe	max (m.n)	mtn	
2 R1-R2	ф	n	

RINR2

ф

min (m.n).

Consider the following RA expression-

 $P:\pi_{sid}$ (student) $-\pi_{sid}$ (student

PIGM (Student))

On a relation student (sid, Gender, Marks) and $\rho_{I = sid}$, $\rho_{G = Gender}$

 $\rho_{\rm M}$ = Marks.

The above R.A displays?

The sid of the student who obtained the maximum marks.

The sids of the male and female students who obtained the maximum marks in their respective gender.

The sids of male student who scored higher than all the female students

None

Consider the relation-

Works (Eid Pid) project (Pid, Name)

Division obseration

The relational algebra expression that displays the Eids who work in every project Name = 'M _____.

 $\pi_{Eid, Pid}$ (works)/ π_{Pid} ($\sigma_{Name = M}$ (Project))

$$\pi_{\text{Eid}}(\text{Work}) - \pi_{\text{Eid}} \left[\pi_{\text{Eid}}(\text{Work}) \times \pi_{\text{pid}} \left(\sigma_{\text{Name} = m}(\text{Project}) \right) - \pi_{\text{Eid Pid}}(\text{works}) \right]$$

$$\pi_{Eid}(Work) - \pi_{Eid}(Work) \times \pi_{pid} \times \pi_$$

None Any (A) &(B).

TIAB(R)/ TIB(S)

Expansion

 $TT_A(R) - TT_A(TT_A(R) \times TT_B(S) - R$

Consider the two relations R₁ and R₂ such that they have no attributes in common then-

$$S_1$$
: $R_1 \bowtie R_2 = R_1 \times R_2$

RILAB) R2(CD)

Incomed S_2 : $R_1 \bowtie R_2 \neq \phi$ \times

Which of the given statement(s) is/are correct?

Sonly RMS - Sept To Stinet (Fequality Condition on (RXS)

Attaibute (All Common Attaibute)

- Both S_1 and S_2 only

RIMR2 = RIXR2

Neither S₁ nor S₂

Condition 166 RIMRz = & is Agy One of the Relation Entry
But in Quantum RIKRz Non empty.

