Political districting to minimize cut edges

Hamidreza Validi¹ Austin Buchanan²

 $^{1}\mathrm{Computational}$ and Applied Mathematics Rice University

 2 Industrial Engineering & Management Oklahoma State University

INFORMS Annual Meeting, Anaheim, CA, October 2021

What is political districting?

Figure: Oklahoma's congressional districts, 2013-now.

Traditional principles:

- Given # districts
- Population balance
 - $\pm 0.5\%$ congressional
 - $\pm 5.0\%$ legislative
- Contiguity
- Compactness
- Political subdivisions

Figure: Maryland's 3rd

Figure: Maryland's 3rd

Figure: Pennsylvania's 7th

Figure: Maryland's 3rd

Figure: Pennsylvania's 7th

Figure: Oklahoma, minimizing moment-of-inertia

Figure: Maryland's 3rd

Figure: Pennsylvania's 7th

Figure: Oklahoma, minimizing moment-of-inertia

Figure: Oklahoma, minimizing cut edges

What are cut edges?

Figure: This plan cuts 40 edges in county-level graph G=(V,E). Each of the k=5 districts is contiguous and within population bounds L=746,519 and U=754,021.

How to minimize cut edges in a MIP?

Variables:

$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{if vertex } i \in V \text{ is assigned to district } j \in [k] \\ 0 & \text{otherwise} \end{array} \right.$$

$$y_e = \left\{ \begin{array}{ll} 1 & \text{if edge } e \in E \text{ is cut} \\ 0 & \text{otherwise} \end{array} \right.$$

Labeling base model:

$$\min \sum_{e \in F} y_e \tag{1a}$$

$$x_{uj} - x_{vj} \le y_e \qquad \qquad \forall e = \{u, v\} \in E, \ \forall j \in [k]$$
 (1b)

$$\sum_{i \in [k]} x_{ij} = 1 \qquad \forall i \in V$$
 (1c)

$$L \leq \sum_{i \in V} p_i x_{ij} \leq U \qquad \qquad \forall j \in [k] \qquad \qquad (1d)$$

$$x \in \{0,1\}^{|V| \times k}, \ y \in \{0,1\}^{|E|}.$$
 (1e)

(Lacks contiguity constraints...)

Results for naïve Labeling model

state	n	k	B&B nodes	LP obj	MIP obj	time	contiguous?
ME	16	2	1	0	8	0.07	no
NM	33	3	92	0	17	0.19	yes
ID	44	2	52	0	10	0.14	yes
WV	55	3	6,524	0	20	2.24	no
LA	64	6	2,540,158	0	[36,45]	Time Limit	*
AL	67	7	1,586,159	0	[38,54]	Time Limit	*
AR	75	4	266,038	0	32	203.85	no
OK	77	5	76,338	0	39	132.88	no
MS	82	4	836,663	0	32	457.61	no
NE	93	3	2,104	0	19	2.86	yes
IA	99	4	529,067	0	33	716.04	yes
KS	105	4	320,451	0	31	425.73	no

^{*} If given more time, these approaches would return "no".

An alternative MIP

Variables of Hess et al. (1965):

$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{if vertex } i \in V \text{ is assigned to the district rooted at vertex } j \in V \\ 0 & \text{otherwise} \end{array} \right.$$

Hess base model:

$$\min \sum_{e \in E} y_e \tag{2a}$$

$$x_{uj} - x_{vj} \le y_e$$
 $\forall e = \{u, v\} \in E, \ \forall j \in V$ (2b)

$$\sum_{j \in V} x_{ij} = 1 \qquad \forall i \in V \qquad (2c)$$

$$Lx_{jj} \le \sum_{i \in V} p_i x_{ij} \le Ux_{jj}$$
 $\forall j \in V$ (2d)

$$\sum_{j \in V} x_{jj} = k \tag{2e}$$

$$x_{ij} \le x_{jj}$$
 $\forall i, j \in V$ (2f)

$$x \in \{0,1\}^{|V| \times |V|}, y \in \{0,1\}^{|E|}.$$
 (2g)

(Lacks contiguity constraints...)

Results for *naïve* Hess model

state	n	k	B&B nodes	LP obj	MIP obj	time
ME	16	2	1,480	0.27	8	2.32
NM	33	3	49,106	0.48	17	526.52
ID	44	2	12,326	0.09	10	652.21
WV	55	3	9,301	0.14	[1,20]	Time Limit
LA	64	6	3,708	0.77	[5,48]	Time Limit
AL	67	7	2,018	0.94	[14,55]	Time Limit
AR	75	4	25	0.27	[3,45]	Time Limit
OK	77	5	25	0.36	[4,49]	Time Limit
MS	82	4	1	0.25	[2,62]	Time Limit
NE	93	3	1	0.11	[1,30]	Time Limit
IA	99	4	7	0.18	[1,51]	Time Limit
KS	105	4	1	0.18	[1,53]	Time Limit

Tricks from the MIP arsenal

- 1. Heuristic warm start, via GerryChain
- 2. Symmetry handling
 - Labeling: partitioning orbitope, see Faenza and Kaibel (2009)
 - Hess: asymmetric representatives ("diagonal fixing")
- 3. Variable fixing
 - L-fixing
 - U-fixing
- 4. Contiguity constraints
 - CUT: a, b-separator constraints, see Oehrlein and Haunert (2017)
 - LCUT: length-U a, b-separator constraints, see Validi et al. (2021)
 - SHIR: flow-based model of Shirabe (2005, 2009)
 - SCF: flow-based model of Hojny et al. (2021)
- 5. Extended formulation for objective, see Ferreira et al. (1996)

Symmetry handling for Hess

Asymmetric representatives: pick (v_1, v_2, \dots, v_n) and fix $x_{ij} = 0$ if i comes before j.

County	Population	#	19	20	27	23	15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	18	21	22	24	25	26	28	29	30	31		33
Bernalillo	662,564	19		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Doña Ana	209,233	20	1		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Santa Fe	144,170	27				D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Rio Arriba	40,246	23					D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Cibola	27,213	15						D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Harding	695	1							D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Sierra	11,988	2								D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Lea	64,727	3	İ								D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Guadalupe	4,687	4										D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Torrance	16,383	5											D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Grant	29,514	6												D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Otero	63,797	7													D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
San Juan	130,044	8	İ													D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Roosevelt	19,846	9															D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Curry	48,376	10																D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Taos	32,937	11																	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Hidalgo	4.894	12	i																	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Eddy	53,829	13																			D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
De Baca	2,022	14																				D	D	D	D	D	D	D	D	D	D	D	D	D	D
Quay	9,041	16																					D	D	D	D	D	D	D	D	D	D	D	D	D
Colfax	13,750	17																						D	D	D	D	D	D	D	D	D	D	D	D
Los Alamos	17.950	18	i																						D	D	D	D	D	D	D	D	D	D	D
Chaves	65,645	21																								D	D	D	D	D	D	D	D	D	D
Valencia	76,569	22																									D	D	D	D	D	D	D	D	D
San Miguel	29,393	24																										D	D	D	D	D	D	D	D
Catron	3,725	25																											D	D	D	D	D	D	D
Sandoval	131.561	26	i																											D	D	D	D	D	D
Socorro	17.866	28																													D	D	D	D	D
Lincoln	20,497	29	i																													D	D	D	D
McKinley	71,492	30																															D	D	D
Luna	25,095	31																																D	D
Mora	4,881	32																																	D
Union	4,549	33	l																																

For NM, "diagonal fixing" removes $528 = (n^2 - n)/2$ of the $1{,}089 = n^2$ Hess variables.

L-fixing (light) for Hess

After diagonal fixing, only some vertices can be assigned to vertex $j \in V$:

$$V_j = \{ i \in V \mid pos(i) \ge pos(j) \}.$$

Vertex j cannot root a population-feasible district if $\sum_{i \in V_j} p_i < L$, so $x_{jj} = 0$.

County	Population	#	19	20	27	23	15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	18	21	22	24	25	26	28	29	30	31	32	33
Bernalillo	662,564	19		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Doña Ana	209,233	20	İ		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Santa Fe	144,170	27	İ			D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Rio Arriba	40,246	23	İ				D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Cibola	27,213	15						D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Harding	695	1							D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Sierra	11,988	2	İ							D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Lea	64,727	3	İ								D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Guadalupe	4,687	4	İ									D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Torrance	16,383	5											D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Grant	29,514	6												D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Otero	63,797	7	İ												D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
San Juan	130,044	8	İ													D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Roosevelt	19,846	9	İ													L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Curry	48,376	10														L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Taos	32,937	11														L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Hidalgo	4,894	12	İ													L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Eddy	53,829	13	İ													L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
De Baca	2,022	14	İ													L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Quay	9,041	16	İ													L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D
Colfax	13,750	17														L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D
Los Alamos		18	İ													L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D
Chaves	65,645	21	İ													L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D
Valencia	76,569	22	İ													L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D
San Miguel	29,393	24	İ													L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D
Catron	3,725	25														L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D
Sandoval	131,561	26														L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D
Socorro	17,866	28														L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D
Lincoln	20,497	29	1													L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D
McKinley	71,492	30	l													L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D
Luna	25,095	31														L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D
Mora	4,881	32														L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D
Union	4,549	33														L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

After diagonal fixing, only vertices V_8 can still be assigned to vertex j=8:

For contiguity-constrained problems, we can refine V_8 to reachable vertices S_8 :

L-fixing for Hess

When enforcing contiguity, we can refine V_j to reachable vertices in $G[V_j]$:

$$S_j = \{i \in V_j \mid \text{there is an } i, j\text{-path in } G[V_j]\}$$

Vertex j cannot root a contiguous, pop.-feasible district if $\sum_{i \in S_j} p_i < L$, so $x_{jj} = 0$.

County	Population	#	19	20	27	23	15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	18	21	22	24	25	26	28	29	30	31	32	33
Bernalillo	662,564	19		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Doña Ana	209,233	20			D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Santa Fe	144,170	27				D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Rio Arriba	40,246	23					D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Cibola	27,213	15						D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Harding	695	1						L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Sierra	11,988	2						Ļ	Ŀ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Lea	64,727	3							Ŀ	Ŀ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Guadalupe	4,687	4							Ŀ	Ŀ	Ŀ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Torrance	16,383	5							Ŀ	Ŀ	Ŀ	Ŀ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Grant	29,514	6							Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Otero San Juan	63,797 130.044	7								ŀ	ŀ			Ŀ	Þ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D D
									Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	D													D	D					
Roosevelt	19,846	9							Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	D	D	D	D	D	D	D	D	D	D	D	D			D	D	D	D	D
Curry	48,376	10							Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Taos	32,937	11							Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	D				D	D	D	D	D	D	D		D	D	D	D	D
Hidalgo Eddy	4,894 53.829	12 13								ŀ	ŀ			Ŀ	Ŀ		Ŀ	Ŀ		Þ	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D D
De Baca	2.022	14								-	-											D	D	D	D	D	D	D	D	D	D	Ď	D	D	D
Quay	9.041	16								-	-											P	D	D	D	D	D	D	D	D	D	Ď	D	D	D
Colfax	13.750	17								-	-													D	D	D	D	D	D	D	D	Ď	D	D	D
Los Alamos	17,950	18								-	-												-		D	D	D	D	D	D	D	Ď	D	D	D
Chaves	65.645	21									- 1	- 1				- 1			- 1			- 1			P	D	Ď	D	D	Ď	D	Ď	D	D	D
Valencia	76,569	22						- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	-	D	D	D	D	D	Ď	D	D	D
San Miguel	29.393	24						- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	1	D	D	D	D	Ď	D	D	D
Catron	3.725	25						- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	1	D	D	D	D	D	D	D
Sandoval	131.561	26						- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	-	D	D	Ď	D	D	D
Socorro	17.866	28						- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- i	- 1	- i	- 1	- 1	- i	- i	- 1	- i	- 1	- 1	- i	ĭ	Ď	Ď	D	D	Ď
Lincoln	20,497	29						- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- 7	- î	- î	- î	- î	- î	- î	- î	ĭ	Ď	D	D	D
McKinley	71,492	30						- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- 7	- î	- î	- î	- î	- î	- î	- î	- î	ĭ	D	D	D
Luna	25.095	31						- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- î	- 7	- î	- î	- î	- î	- î	- î	- î	- î	- î	ĭ	D	D
Mora	4.881	32						- 1	- 1	- î	î	ř	- 1	- î	- 1	- 1	- 1	- 1	- 1	- î	- 1	- 1	- 1	- i	- 1	- î	- î	- 1	- î	- 1	- î	- 1	- î	ĭ	D
Union	4,549	33						- 1	- 1	- î	î	ř	- 1	- î	- 1	- 1	- 1	- 1	- 1	- î	- i	- 1	- 1	- i	- 1	- î	- î	- 1	- î	- 1	- î	- 1	- î	ĩ	ĭ
Omoli	4,349	23	1					_	-	-	-	-	-	-	L	-	L	_	-		_	_	-	_	-	-	-	-	-	_	-	-		-	-

Getting the most out of L-fixing

Lemma

Suppose $B \subseteq V$ is such that every component of G[B] has population less than L. If B is placed at the back of the ordering, then every vertex $j \in B$ will be L-fixed.

Theorem

If a solution to the following problem is placed at the back of the ordering, this maximizes the number of L-fixings.

 $\max_{B \subseteq V} \{|B| : \text{every component of } G[B] \text{ has population less than } L\}.$

Solving the max B problem

Variables:

$$x_{ij} = \left\{ \begin{array}{ll} 1 & \text{if vertex } i \in V \text{ is assigned to bin } j \in [q] \\ 0 & \text{otherwise} \end{array} \right.$$

$$b_i = \left\{ \begin{array}{ll} 1 & \text{if vertex } i \in V \text{ is chosen in } B \\ 0 & \text{otherwise} \end{array} \right.$$

Model:

$$\begin{split} \max \sum_{i \in V} b_i \\ \sum_{j \in [q]} x_{ij} &= b_i & \forall i \in V \\ \sum_{i \in V} p_i x_{ij} &\leq L - 1 & \forall j \in [q] \\ x_{uj} + b_v &\leq 1 + x_{vj} & \forall \{u,v\} \in E, \ \forall j \in [q] \\ x &\in \{0,1\}^{|V| \times q}, \ b \in \{0,1\}^{|V|}. \end{split}$$

Proposition

For our instances, q=2k bins suffice. Generally, this holds if $k \leq 99$ and ideal district population $\bar{p}=p(V)/k$ satisfies $L \geq 0.995\bar{p}$ and $\bar{p} \geq 39,800$.

U-fixing for Hess

If the population-weighted distance from i to j in $G[S_j]$ exceeds U, then i and j cannot belong to the same contiguous, population-feasible district, so $x_{ij}=0$.

County	Population	#	19	20	27	23	15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	17	18	21	22	24	25	26	28	29	30	31	32	33
Bernalillo	662.564	19		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Doña Ana	209,233	20	U		D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Santa Fe	144,170	27	U			D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Rio Arriba	40,246	23	U				D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Cibola	27,213	15						D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Harding	695	1	U					L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Sierra	11,988	2	U					L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Lea	64,727	3	U					L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Guadalupe	4,687	4						L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Torrance	16,383	5						L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Grant	29,514	6	U					L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Otero	63,797	7	U					L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
San Juan	130,044	8	U					L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Roosevelt	19,846	9	U					L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Curry	48,376	10	U					L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Taos	32,937	11	U					L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Hidalgo	4,894	12	U					L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Eddy	53,829	13	U					L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
De Baca	2,022	14	İ					L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D	D
Quay	9,041	16	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D	D
Colfax	13,750	17	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D	D
Los Alamos	17,950	18	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D	D
Chaves	65,645	21	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D	D
Valencia	76,569	22	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D	D
San Miguel	29,393	24	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D	D
Catron	3,725	25	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D	D
Sandoval	131,561	26	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D	D
Socorro	17,866	28	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D	D
Lincoln	20,497	29	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D	D
McKinley	71,492	30	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D	D
Luna	25,095	31	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D	D
Mora	4,881	32	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	D
Union	4,549	33	U					L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L

Diagonal-fixing, L-fixing, and U-fixing can be extended to the Labeling model.

Variable fixing for Hess

			max	B model	How m	any variable	es are fixe	ed?
state	n	k	B	time	DFix	LFix	UFix	%X
ME	16	2	13	0.03	120	91	0	82
NM	33	3	28	0.17	528	406	28	88
ID	44	2	41	0.05	946	861	0	93
WV	55	3	48	3.62	1,485	1,176	20	89
LA	64	6	53	30.68	2,016	1,431	58	86
AL	67	7	52	>60.00	2,211	1,378	110	82
AR	75	4	64	24.01	2,775	2,080	28	87
OK	77	5	64	20.83	2,926	2,080	101	86
MS	82	4	69	>60.00	3,321	2,415	20	86
NE	93	3	86	2.56	4,278	3,741	5	93
IA	99	4	85	>60.00	4,851	3,655	52	87
KS	105	4	95	12.55	5,460	4,560	11	91
NH	295	2	283	7.61	43,365	40,186	0	96
ID	298	2	291	2.48	44,253	42,486	138	98
ME	358	2	349	3.19	63,903	61,075	0	98
WV	484	3	467	>60.00	116,886	109,278	1,195	97
NM	499	3	485	>60.00	124,251	117,855	184	97
NE	532	3	513	>60.00	141,246	131,841	375	97
UT	588	4	556	>60.00	172,578	154,846	918	95
MS	664	4	634	>60.00	220,116	201,295	1,456	96
AR	686	4	653	>60.00	234,955	213,531	1,982	96
NV	687	4	655	>60.00	235,641	214,840	707	96

Extended formulation for objective

state	n	k	original LP	extended LP
ME	16	2	2.74	3.62
NM	33	3	6.43	10.97
ID	44	2	2.53	4.27
WV	55	3	4.22	9.41
LA	64	6	5.73	22.30
AL	67	7	13.38	29.05
AR	75	4	6.40	15.92
OK	77	5	12.62	21.36
MS	82	4	4.16	12.88
NE	93	3	3.19	9.71
IA	99	4	3.58	14.66
KS	105	4	4.76	13.45

Variables:

$$z_e^j = \left\{ \begin{array}{ll} 1 & \text{if edge } e = \{u,v\}, \ u < v, \ \text{is cut because} \ u \to j \ \text{but} \ v \not\to j \\ 0 & \text{otherwise} \end{array} \right.$$

Constraints (essentially) due to Ferreira et al. (1996):

$$\begin{aligned} x_{uj} - x_{vj} &\leq z_e^j \\ y_e &= \sum_{j \in V} z_e^j \\ z_e^j &\geq 0 \end{aligned} \qquad \forall e = \{u, v\} \in E, \ u < v, \forall j \in V$$

Results when using MIP arsenal

			He	ess base mod	del	Labe	ling base mo	odel
state	n	k	LCUT	SCF	SHIR	LCUT	SCF	SHIR
ME	16	2	0.19	0.11	0.11	0.17	0.12	0.09
NM	33	3	0.28	0.12	0.12	0.09	0.06	0.06
ID	44	2	0.31	0.16	0.25	0.12	0.05	0.08
WV	55	3	3.04	1.69	2.14	1.11	1.03	1.23
LA	64	6	209.87	433.77	91.50	394.16	512.65	320.69
AL	67	7	1,125.44	1,200.22	1,252.13	1,019.40	1,269.54	956.12
AR	75	4	45.86	54.05	65.19	23.54	31.79	40.38
OK	77	5	9.43	10.06	12.89	8.50	4.11	6.78
MS	82	4	107.80	128.20	160.19	54.80	32.06	70.84
NE	93	3	2.47	4.86	4.87	1.44	0.62	0.91
IA	99	4	72.61	96.34	192.49	29.79	35.59	79.24
KS	105	4	62.00	20.61	29.30	27.21	13.03	27.09
NH	295	2	110.69	102.73	143.98	3.53	2.83	12.58
ID	298	2	22.43	33.25	23.84	1.77	1.02	1.70
ME	358	2	80.54	70.52	49.70	2.72	1.29	1.66
WV	484	3	1,142.36	656.71	2,239.97	158.64	151.84	334.49
NM	499	3	695.74	385.64	TL	24.38	96.35	62.80
NE	532	3	TL	TL	TL	163.78	207.06	392.56
UT	588	4	TL	TL	TL	TL	TL	TL
MS	664	4	TL	TL	TL	TL	TL	TL
AR	686	4	TL	TL	TL	TL	TL	TL
NV	687	4	TL	TL	TL	TL	TL	TL

LCUT (Validi et al., 2021), SCF (Hojny et al., 2021), SHIR (Shirabe, 2005; 2009)

Conclusion

- Cut edges is a nice way to measure district compactness
- Cut edge minimization is slow using out-of-the-box MIPs
- Optimal solutions for $n \le 532$ using tricks from the MIP arsenal
 - Heuristic warm start, via GerryChain
 - Symmetry handling (partitioning orbitope, diagonal fixing)
 - Variable fixing (L-fixing, U-fixing)
 - Contiguity constraints (LCUT, SHIR, SCF)
 - Extended formulation for objective
- Work generalizes to minimize district perimeters (extend to Polsby-Popper?)
- We make no claims that our maps are "good" or legal

OR Redistricting Resources

References

- 0 Daryl DeFord. Dual Graphs for 2010 Census Units. http://people.csail.mit.edu/ddeford/dual_graphs
- 1 Yuri Faenza and Volker Kaibel. Extended formulations for packing and partitioning orbitopes. Mathematics of Operations Research, 34(3):686-697, 2009.
- 2 Carlos E Ferreira, Alexander Martin, C Carvalho de Souza, Robert Weismantel, and Laurence A Wolsey. Formulations and valid inequalities for the node capacitated graph partitioning problem. Mathematical Programming, 74(3):247–266, 1996.
- 3 SW Hess, JB Weaver, HJ Siegfeldt, JN Whelan, and PA Zitlau. Nonpartisan political redistricting by computer. Operations Research, 13(6):998–1006, 1965.
- 4 Christopher Hojny, Imke Joormann, Hendrik Lüthen, and Martin Schmidt. Mixed-integer programming techniques for the connected max-k-cut problem. Mathematical Programming Computation, 13(1):75–132, 2021.
- 5 MGGG. GerryChain 0.2.12., 2021. https://gerrychain.readthedocs.io/en/latest.
- 6 Johannes Oehrlein and Jan-Henrik Haunert. A cutting-plane method for contiguity-constrained spatial aggregation. Journal of Spatial Information Science, 2017(15):89–120, 2017.
- 7 Federica Ricca, Andrea Scozzari, and Bruno Simeone. Political districting: from classical models to recent approaches. Annals of Operations Research, 204(1):271–299, 2013.
- 8 Takeshi Shirabe. A model of contiguity for spatial unit allocation. Geographical Analysis, 37(1):2–16, 2005.
- 9 Takeshi Shirabe. Districting modeling with exact contiguity constraints. Environment and Planning B: Planning and Design, 36(6):1053-1066, 2009.
- 10 Hamidreza Validi, Austin Buchanan, and Eugene Lykhovyd. Imposing contiguity constraints in political districting models. To appear at Operations Research, 2021.