Ahsanullah University of Science and Technology

Department of Computer Science and Engineering

CSE-4264 Internet of Things Lab

RFID-Enabled Smart Water Dispensing System with Card Control and Live Billing Usage Tracking Group: 04

Submitted by

Sadman Salman Saad
 Abdullah Al Maruf
 Sharun Tawsif

4. Nafisa Tabassum Shouty

20210104114 20210104116 20210104124 20210104127

Submitted To:

Mr. Mustofa Ahmed & Ms.Nusrat Jahan

Submission Date: 06/08/2025

Hardware Implementation Details

Power Supply:

- o **7.7V Li-ion battery** powers the system.
- Voltage is regulated using MP1584 step-down converter to supply ESP32 and peripherals.

Microcontroller:

- o **ESP32** controls pumps, reads RFID tags, and handles logic.
- Uses two hardware serial ports for two RDM6300 readers.

RFID Readers:

- Two RDM6300 modules connected to RX pins (GPIO 27 and GPIO 26).
- Each RFID reader corresponds to one pump line.

• Pumps:

- Two DC water pumps (one for each line) controlled through NPN transistors (acting as electronic switches).
- \circ **220 Ω resistors** limit current to transistor base from ESP pins (GPIO 18 for Pump1, GPIO 19 for Pump2).

Buzzer:

 Buzzer on GPIO 4 for audio feedback (card detection, low balance, or stop events).

• Switch (Planned but Not Active):

 Switch is connected but functionality not yet implemented in software (planned for manual enable/disable of dispensing).

Software Implementation Details

• Initialization:

- ESP32 starts serial communication for debugging and initializes both RFID readers via HardwareSerial.
- Pumps and buzzer set to OFF at startup.

Task Separation:

 Two FreeRTOS tasks (taskReader1 and taskReader2) handle each RFID reader independently on separate cores.

• Card Detection & Balance:

- Each card is mapped to a specific pump (CARD1_ID → Pump1, CARD2_ID → Pump2).
- o Initial balance is set (INITIAL_BALANCE = 1000 TK).

• Billing & Water Control:

- o Pumps run while the valid card is present.
- Billing rate: **3 TK/sec** (3 TK per second = 10 ml/sec water).
- o Balance deduction occurs every second.
- Pump stops if balance drops below required rate.

Buzzer Alerts:

- Short beep each second during operation.
- o Buzzer also alerts when balance is exhausted or water stops.

Data Collection

```
[Reader 1]7s passed, charged 21 TK. Remaining: 637
[Reader 2]7s passed, charged 21 TK. Remaining: 979
[Reader 1]8s passed, charged 24 TK. Remaining: 634
[Reader 2]8s passed, charged 24 TK. Remaining: 976
[Reader 1]9s passed, charged 27 TK. Remaining: 631
[Reader 2]9s passed, charged 27 TK. Remaining: 973
[Reader 1]10s passed, charged 30 TK. Remaining: 628
[Reader 2]10s passed, charged 30 TK. Remaining: 970
[Reader 1]11s passed, charged 33 TK. Remaining: 625
[Reader 2]11s passed, charged 33 TK. Remaining: 967
[Reader 1]12s passed, charged 36 TK. Remaining: 622
[Reader 2]12s passed, charged 36 TK. Remaining: 964
[Reader 1]13s passed, charged 39 TK. Remaining: 619
[Reader 1] Water stopped.
[Reader 1] Total Time: 13s | Total Bill: 39 TK | Water Used: 130 ml | Remaining Balance: 580 TK
[Reader 2]13s passed, charged 39 TK. Remaining: 961
[Reader 2]14s passed, charged 42 TK. Remaining: 958
[Reader 2]15s passed, charged 45 TK. Remaining: 955
[Reader 2]16s passed, charged 48 TK. Remaining: 952
[Reader 2]17s passed, charged 51 TK. Remaining: 949
[Reader 2]18s passed, charged 54 TK. Remaining: 946
[Reader 2]19s passed, charged 57 TK. Remaining: 943
[Reader 2]20s passed, charged 60 TK. Remaining: 940
[Reader 2]21s passed, charged 63 TK. Remaining: 937
[Reader 2]22s passed, charged 66 TK. Remaining: 934
[Reader 2] Water stopped.
[Reader 2] Total Time: 23s | Total Bill: 69 TK | Water Used: 230 ml | Remaining Balance: 865 TK
```

Challenges Faced

1. Dual RFID Reading in Parallel

Needed separate UART instances and FreeRTOS tasks to avoid data collision.

2. Pump Activation Delay

Initial testing showed slight delay in pump activation due to serial tag parsing.
 Optimized by checking card state efficiently.

3. Card-to-Pump Mapping

• Ensuring correct pump activates with correct card required unique ID checks and separate state tracking for each pump.

4. Power Stability

 Running pumps caused voltage drop and ESP resets. Solved with MP1584 regulator and proper grounding.

5. Switch Integration Pending

 Physical switch hardware is connected but not yet coded to override dispensing logic.

Future Work

Switch Integration

Add logic to allow manual start/stop of pumps with Switch 1.

• Card-to-Tap Mapping Expansion

Extend system to support multiple cards per pump or assign individual quotas.

Cloud Integration

Log water usage and balances in Google Sheets for monitoring.

Flow Sensor Addition

 Use flow meters to measure actual water volume rather than calculating by time for higher accuracy.

• Recharge System

Add balance recharge feature via master card or mobile app.

Additional Information

- Flow Rate Assumption: Currently assumes 10 ml/sec fixed rate. Actual flow may vary with pump voltage or pipe resistance.
- Security Considerations: Present code checks only specific card IDs.
- **Scalability**: Current hardware supports **two pumps**, but design can be scaled to more lines by adding RFID readers and relays/transistors.

Connection Diagram

Workload Distribution Among Team Members

Week	Sadman	Abdullah Al	Sharun Tawsif	Nafisa Tabas-
	Salman Saad	Maruf (116)	(124)	sum (127)
	(114)			
1. Topic Selec-	Literature Re-	Architecture	Documentation,	Use Case Sce-
tion & Project	view, Initial	Sketch, Feature	Problem Defini-	nario, Contribu-
Proposal	Idea Draft	Planning	tion	tion Planning
2. Compo-	Purchase Com-	Schematic De-	MP1584 Sol-	Veroboard Lay-
nent Collection	ponents, Battery	sign, Female	dering, Jumper	out, RFID
& Veroboard	Holder	Header Mount-	Wiring	Reader Pins
Setup		ing		Setup
3. ESP32 Setup,	ESP32	RFID Reader	Voltage Reg-	Power Routing,
RFID & Power	Firmware Burn,	Communication	ulator Setup	Breadboard-to-
Management	Serial Test	(RDM6300)	(MP1584)	Veroboard Shift
4. Pump Con-	TIP122 Transis-	Water Pump	Parallel vs Se-	Tank Mounting,
trol, Tank	tor Control Cod-	Activation, Line	quential Testing,	Pipe Layout and
Setup, Dual	ing	Switching Logic	Flow Stability	Water Flow Test
Line Flow				
5. Google	Apps	Data Fields:	Billing Al-	Live Monitor-
Sheets, Usage	Script/HTTP	Card ID, Time,	gorithm &	ing Dashboard,
Time & Billing	API to Google	Line Usage	Timer-based	Billing Format
Logic	Sheets		Costing	
6. Full Sys-	RFID + Pump	Final Hardware	Poster and Pre-	Oral Presen-
tem Integration	+ Billing End-	Testing and De-	sentation Slide	tation, Report
& Final Presen-	to-End Demo	bugging	Design	Compilation
tation				

Pie Chart Distribution

Equal Contribution of Group Members

