Homework 3: due 17:00, Friday, 4 November 2016

- (1) Consider the following grammar $\mathcal{G} = \langle \Sigma, V, R, S \rangle$:
 - $\Sigma = \{a, b\}.$
 - $V = \{S\}$, and S is the start variable.
 - \bullet R consists of the following rules:

Determine which of the following words are in $L(\mathcal{G})$.

- (i) a^3b^3 , i.e., aaabbb.
- (ii) a^2b^3 , i.e., aabbb.
- (iii) abba.
- (iv) $a^2b^2a^3b^3$, i.e., aabbaaabbb.
- (v) baababba.

Please substantiate your claim, i.e., if you claim a word is in $L(\mathcal{G})$, you should provide its derivation tree. If you claim it is not, then state your reason why.

- (2) Construct the CFG for each of the following languages.
 - (i) $L_1 = \{a^m b^n \mid m > n\}.$
 - (ii) $L_2 = \{a^m b^n \mid n > m\}.$
 - (iii) $L_3 = \{a^{2n}b^n \mid n \geqslant 0\}.$
 - (iv) $L_4 = \{ w \$ w^{\mathcal{R}} \mid w \in \{a, b\}^* \}.$

Here L_4 is a language over the alphabet $\{a, b, \$\}$, and $w^{\mathcal{R}}$ denotes the reverse of w. For example, if w = aabbb, then $w^{\mathcal{R}} = bbbaa$. If w = abababa, then $w^{\mathcal{R}} = abababa$, which is the same as w itself. Likewise, if $w = \epsilon$, then $w^{\mathcal{R}} = \epsilon$.

- (v) L_5 is the complement of the language $\{a^nb^n \mid n \geq 0\}$ over the alphabet $\{a,b\}$. More formally, $L_5 = \Sigma^* \{a^nb^n \mid n \geq 0\}$, where $\Sigma = \{a,b\}$.
- (3) Construct the PDA for each of the languages in (2).
- (4) Show that the following languages are not CFL.
 - (i) $L_1 = \{a^k b^m c^n \mid k \le m \le n\}.$
 - (ii) $L_2 = \{a^m b^{2m} c^{3m} \mid m \geqslant 0\}.$
 - (iii) $L_3 = \{a^n \mid n \text{ is a prime number}\}.$
- (5) **(bonus point)** Consider the grammar defined in (1). Prove that $w \in L(\mathcal{G})$ if and only if w contains the same number of a's and b's.