Dezvoltarea sistemelor care învață singure - probleme de clasificare

Objective

Dezvoltarea sistemelor care învaţă singure. Algoritmi de învăţare supervizată. Modele liniare. Specificarea, proiectarea şi implementarea sistemelor care învaţă singure cum să rezolve probleme de clasificare.

Aspecte teoretice

Proiectarea și dezvoltarea sistemelor care învață singure.

Algoritmi de învățare bazați pe:

- metoda gradientului descendent
- algoritmi evolutivi

Termen de predare

Laborator 5

Cerințe

Specificaţi, proiectaţi şi implementaţi o aplicaţie pentru rezolvarea uneia dintre problemele următoare cu ajutorul unui sistem care învaţă singur să rezolve problema. Sistemul trebuie să permită alegerea unuia dintre cei 3 algoritmi de învăţare:

Tehnica	Cod logic	Interfață	Aplicația overall
Metoda gradientului	130	30	130
descendent			
Algoritmi evolutivi	240	30	240
Total	370	60	370

Total 800p

Punctaj minim de realizat pentru validarea laboratorului 250p

Bonus

Implementarea unui arbore de decizie pentru probleme de clasificare

Date propuse de student	100
Selectarea atributelor in constructia arborelui conform unor calcule (de ex pe baza entropiei)	100
Date cu atribute categoriale (similare	100
exemplului cu vampirii din curs)	
Date cu atribute numerice (similare	200
problemelor de mai jos)	

Aplicația trebuie să permită:

- Încărcarea datelor problemei (probleme cu date deja definite de către programator, probleme cu date definite de utilizator)
- Alegerea și parametrizarea metodei de rezolvare a problemei
- Prezentarea rezultatelor procesului de învăţare (antrenare şi testare)

Aplicația poate fi realizată în 2 variante:

varianta 1. Tehnica de învățare se bazează pe un tool deja existent (50% din punctaj)

varianta 2. Tehnica de învățare se bazează pe cod dezvoltat de student (100% din punctaj) Studenții pot alege care variantă de aplicație doresc să o realizeze.

Sisteme disponibile care implementează algoritmi de învățare:

- Weka http://www.cs.waikato.ac.nz/ml/weka/
- 2. Matlab http://www.mathworks.com/products/neural-network/
- 3. OpenCV http://docs.opencv.org/modules/ml/doc/neural networks.html
- 4. Scikit-learn http://scikit-learn.org/stable/
- 5. GPLAB http://gplab.sourceforge.net/
- 6. ECJ http://cs.gmu.edu/~eclab/projects/ecj/
- 1. Să se clasifice o **cardiotocogramă fetală** ca fiind normală, suspectă sau patologică pe baza diferitelor măsurători înregistrate în decursul sarcinii. Datele de test se vor lua de aici http://archive.ics.uci.edu/ml/datasets/Cardiotocography.
- 2. Să se stabilească dacă **un pacient suferă de hernie de disk, de spondiloză sau dacă este sănătos** pe baza informațiile preluate anterior de la mai mulți pacienți (privind forma și orientarea pelvisului și a părții lombare din coloana vertebrală). Datele de test se vor lua de aici http://archive.ics.uci.edu/ml/datasets/Vertebral+Column.
- 3. Să se stabilească direcţia de deplasare a unui robot (în faţă, viraj uşor la dreapta, viraj puternic la dreapta, viraj uşor la stânga) dotat cu senzori pe baza informaţiilor colectate anterior (sub forma unor citiri a 24 de senzori de ultrasunete plasaţi în diferite poziţii pe robot poziţia unui senzor fiind dată de unghiul de deviaţie 180° (faţă), -165°, -150°,....,15°, 0° (spate), 15°, 30°, ..., 150°, 165°). Datele de test se vor lua de aici http://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data.