▽ ¡Felicitaciones! ¡Aprobaste!

Calificación recibida $100\,\%$ Para Aprobar $100\,\%$ o más

Ir al siguiente elemento

1. The determinant of

1/1punto

$$\begin{pmatrix} -3 & 0 & -2 & 0 & 0 \\ 2 & -2 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 \\ 3 & 0 & -3 & 2 & -3 \\ -3 & 3 & 3 & 0 & -2 \end{pmatrix}$$

is equal to

- 48
- O 42
- \bigcirc -42
- \bigcirc -48

2. The determinant of

1/1punto

$$\begin{pmatrix} a & e & 0 & 0 \\ b & f & g & 0 \\ c & 0 & h & i \\ d & 0 & 0 & j \end{pmatrix}$$

is equal to

- \bigcirc afhj + behj cegj degi
- $\textcircled{\scriptsize \textbf{0}} \ afhj-behj+cegj-degi$
- $\bigcirc \ agij-beij+cefj-defh$
- $\bigcirc \ agij + beij cefj defh$
- **⊘** Correcto

 $\textbf{3.} \quad \text{Assume } A \text{ and } B \text{ are invertible } n\text{-by-}n \text{ matrices. Which of the following identities is false?}$

1/1punto

- $\bigcirc \det A^{-1} = 1/\det A$
- $\bigcirc \ \det A^T = \det A$
- $\bigcirc \det (A+B) = \det A + \det B$
- \bigcirc det (AB) = det A det B

⊘ Correcto

▽ ¡Felicitaciones! ¡Aprobaste!

Calificación recibida 100 % Para Aprobar 100 % o más

Ir al siguiente elemento

1. Which of the following are the eigenvalues of $\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$?

1/1punto

$$\bigcirc \ \frac{3}{2} \pm \frac{\sqrt{3}}{2}$$

$$\frac{3}{2} \pm \frac{\sqrt{5}}{2}$$

$$\begin{array}{c} \bigcirc \ \frac{3}{2} \pm \frac{\sqrt{3}}{2} \\ \hline \bullet \ \frac{3}{2} \pm \frac{\sqrt{5}}{2} \\ \bigcirc \ \frac{1}{2} \pm \frac{\sqrt{3}}{2} \\ \bigcirc \ \frac{1}{2} \pm \frac{\sqrt{5}}{2} \\ \end{array}$$

$$\bigcirc \frac{1}{2} \pm \frac{\sqrt{5}}{2}$$

⊘ Correcto

2.	Which of the following are the eigenvalues of	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	$\binom{-1}{3}$
----	---	--	-----------------

1/1punto

- \bigcirc 1 \pm 3i
- \bigcirc 1 $\pm \sqrt{3}$
- \bigcirc $3\sqrt{3}\pm1$
- 3 ± i

⊘ Correcto

3. Which of the following is an eigenvector of $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$?

1/1punto

- $\bigcirc \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- $\left(\begin{array}{c}1\\\sqrt{2}\\1\end{array}\right)$
- $\begin{pmatrix}
 0 \\
 1 \\
 0
 \end{pmatrix}$
- $\begin{pmatrix} \sqrt{2} \\ 1 \\ \sqrt{2} \end{pmatrix}$
- **⊘** Correcto

▽ ¡Felicitaciones! ¡Aprobaste!

Calificación recibida 100 % Para Aprobar 100 % o más

Ir al siguiente elemento

 $\textbf{1.} \quad \text{Let λ_1 and λ_2 be distinct eigenvalues of a two-by-two matrix A. Which of the following cannot be the associated eigenvectors?}$

1/1punto

$$\bigcirc x_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\bigcirc x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\bullet$$
 $x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

$$\bigcirc x_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, x_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

⊘ Correcto

2. Which matrix is equal to $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{100}$?

1/1punto

- $\bigcirc \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

3. Which matrix is equal to $e^{\mathbf{I}}$, where \mathbf{I} is the two-by-two identity matrix?	
$ \bigcirc \begin{pmatrix} 0 & e \\ e & 0 \end{pmatrix} $	
$\bigcirc \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	
Felicitaciones! ¡Aprobaste! Calificación recibida 100 % Calificación del último envío 100 % Para Aprobar 60 % o más	Ir al siguiente elemento
The determinant of $\begin{pmatrix} 0 & 0 & 0 & 3 & 0 \\ 0 & 5 & 0 & 0 & 3 \\ 0 & 0 & -1 & 5 & 1 \\ 1 & 0 & 5 & -4 & 0 \\ 0 & 0 & 3 & -2 & -1 \end{pmatrix} \text{is equal to}$	1 / 1 punto
○ -30	
○ -25○ 25	
30 Correcto	
The determinant of $ \begin{pmatrix} a & b & 0 & 0 \\ 0 & c & 0 & 0 \\ 0 & e & f & g \\ 0 & 0 & h & 0 \end{pmatrix} $ is equal to	1/1punto
\bigcirc acgh	
lacktriangledown -acgh	
O acfh	
	1/1punto
\bigcirc det ${ m A}^{ m T}=$ det ${ m A}$	1, Ipunco
$\bigcirc \det A^{-1} = 1/\det A$ $\bigcirc \det 2A = 2 \det A$	
$\bigcirc \det(AB) = \det(BA)$	
⊙ Correcto	
Which of the following are the eigenvalues of $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$?	1/1punto
○ ·1,·3 ○ ·1,3	
O 1,·3	
● 1,3✓ correcto	

5. Which of the following are the eigenvalues of $\begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$?

1/1punto

- \bigcirc 1 ± 2i
- \bigcirc 1 $\pm \sqrt{2}i$
- 2 ± i
- $\bigcirc \sqrt{2} \pm i$
- **⊘** Correcto
- 6. Which of the following is NOT an eigenvector of $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}?$

1/1punto

- \bigcirc $\begin{pmatrix}
 1 \\
 0 \\
 1
 \end{pmatrix}$
- $\begin{pmatrix}
 1 \\
 0 \\
 -1
 \end{pmatrix}$
- $O\begin{pmatrix} 1\\ \sqrt{2}\\ 1 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix}$
- Correcto
- 7. Let λ_1, λ_2 and λ_3 be distinct real eigenvalues of a three-by-three matrix A. Which of the following cannot be the associated eigenvectors?
- 1/1punto

$$\bigcirc x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, x_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, x_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\bigcirc x_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, x_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\bigcirc x_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, x_2 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}, x_3 = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$$

- **⊘** Correcto
- 8. Let A be an n-by-n matrix with distinct real eigenvalues, let S be the matrix whose columns are the eigenvectors of A, and let A be the diagonal matrix with eigenvalues down the diagonal. Which of the following identities is false?
- 1/1punto

- \bullet A = S⁻¹AS
- \bigcirc A = SAS⁻¹
- $\bigcirc \ \Lambda = S^{-1}AS$
- \bigcirc AS = S Λ
- **⊘** Correcto

9. Identify the diagonalization of $\begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}$.

1/1punto

- $\bigcirc \ \begin{pmatrix} -3 & 0 \\ 0 & 4 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} -3 & 1 \\ 1 & 3 \end{pmatrix}$
- $\begin{pmatrix}
 0 & 4 & 4 & 4 & 1 & 3 & 4 & 3 & 4 & 3 \\
 0 & -3 & 0 & 0 & 0 & 0 & 0 \\
 0 & 4 & 0 & 0 & 0 & 0
 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 1 & -3 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\
 0 & 5 & 0 & 0 & 0 & 0
 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -2 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\
 0 & 5 & 0 & 0 & 0 & 0
 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 1 \\ 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -3 & 4 \\ 4 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

- The matrix $\begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}^{10}$ is equal to

1/1punto

- - **⊘** Correcto