拉普拉斯变换的性质—卷积定理

知识点K1.09

拉普拉斯变换的性质—卷积定理

1

主要内容:

- 1.拉普拉斯变换的时域卷积定理
- 2.拉普拉斯变换的复频域卷积定理

基本要求:

- 1.掌握拉普拉斯变换的时域卷积定理公式
- 2.掌握拉普拉斯变换的复频域卷积定理公式

拉普拉斯变换的性质—卷积定理

K1.09 拉普拉斯变换的性质—卷积定理

时域卷积定理

若因果函数
$$f_1(t) \longleftrightarrow F_1(s)$$
 , $\operatorname{Re}[s] > \sigma_1$
$$f_2(t) \longleftrightarrow F_2(s)$$
 , $\operatorname{Re}[s] > \sigma_2$ 则 $f_1(t) * f_2(t) \longleftrightarrow F_1(s) F_2(s)$

复频域卷积定理

$$f_{1}(t)f_{2}(t) \longleftrightarrow \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F_{1}(\eta)F_{2}(s-\eta) \,\mathrm{d}\eta$$
例1 $t\varepsilon(t) \longleftrightarrow ? \varepsilon(t) * \varepsilon(t) \longleftrightarrow \frac{1}{s^{2}}$

例1
$$t\varepsilon(t) \longleftrightarrow$$
 ? $\varepsilon(t) * \varepsilon(t) \longleftrightarrow \frac{1}{s^2}$

例2 已知
$$F(s) = \frac{1}{s(1-e^{-2s})} \longleftrightarrow ? \varepsilon(t) * \sum_{n=0}^{\infty} \delta(t-2n) = \sum_{n=0}^{\infty} \varepsilon(t-2n)$$