考试课程	线性代数	考试日期 2	015年1月16日	成 绩	二、选择题(请将正确答案填写在括号中,在字母前勾选所得结果视为无效。
课程号	A0714030	教师号	任课教师姓名	ž.	本题共六小题, 每题 3 分, 共 18 分)
考生姓名		学号 (8 位)	年级	牵 亚	$\begin{vmatrix} 1 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 &$
题 号	-	= =		五六	(A) 0, 1 (B) 0, 2 (C) 1, -1 (D) 2, -1
得分					2 、设 A 是 $m \times n$ 矩阵, C 是 n 阶可逆阵, 矩阵 A 的秩为 r , 矩阵 $B = AC$ 的秩为 r , 则(C)
侍 分					(A) r>r, (B) r <r, (c)="" (d)="" r="r," r与r,的关系以c而定<="" td=""></r,>
另附两张纸作为草稿纸使用,不得使用具余形式的草稿纸,不得使用计算器等计算工具,否则视					3 、 λ_1 , λ_2 是 n 阶矩阵 A 的 互异特征值, x_1 和 x_2 分别是对应于 λ_1 和 λ_2 的特征向量,当(\overline{V} 时, $x=k_1x_1+k_2x_2$ 必是矩阵 A 的特征向量;
日本					(A) $k_1 = 0 \perp k_2 = 0$ (B) $k_1 \neq 0$, $k_2 \neq 0$
					(C) $k_1 k_2 = 0$ (D) $k_1 \neq 0 \ \overline{m} \ k_2 = 0$
					4 、如果 A , B 都是正定的 n 阶实对称矩阵,则 AB 一定是 (\bigcirc);
					(A)实对称矩阵 (B)正交矩阵 (C)正定矩阵 (D)可逆矩阵
2、设3阶方阵 A 的特征值为1.—1.3.则行列式 3A = <u>-8 </u> :					5、 若向量组α, β线性相关, 则 (🛕);
3、设 A , B 为 3 阶 方阵,且 $ A = 3$, $ B = 2$, $ A^{-1} + B = 2$, 则 $ A + B^{-1} = 3$. 4、二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 + 2x_1x_3$ 的矩阵为 $\frac{1}{1} + \frac{1}{1} + \frac{1}$					(A) α, β对应分量成比例 (B) 其中必有一零向量
					(C) α , β 一定时非零向量 (D) $\alpha = k\beta$, k 是不为零的数
4、二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 + 2x_1x_3$ 的矩阵为;					6 、若方程组 $AX = b$ 中,方程的个数小于未知量的个数,则有(P_2);
5、己知 $\alpha_1 = (0,1,2)^T$, $\alpha_2 = (1,0,3)^T$, $\alpha_3 = (0,-1,k)^T$ 在 k キース 財, α_1 , α_2 ,					(A) AX = b 必有无穷多解 (B) AX = 0 必有非零解
α.线性无关。					(O) (V A Printer)

(D) AX = 0 一定无解

(C) AX = 0 仅有零解

杭州电子科技大学学生考试卷(A)卷

6、已知四元非齐次线性方程组 AX=b , R(A)=3 , α_1 , α_2 是它的两个解向量,其中 $\alpha_1 = (1,1,0,2)^T$, $\alpha_2 = (1,0,1,3)^T$, 则该非齐次线性方程组的通解为 $(1,1,0,2)^T + k (0,1,-1,-1)^T$

 α_3 线性无关;

得分

三、试求解下列各题(本题共四小题, 每题 5 分, 共 20 分)

1、设向量组 $\alpha_1 = (1,1,2,3)^T$, $\alpha_2 = (1,-1,1,1)^T$, $\alpha_3 = (1,3,3,5)^T$, $\alpha_4 = (4,-2,5,6)^T$, $\alpha_4 = (3,1,5,7)^T$, 求 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5$ 的一个极大线性无关组;

$$(d_1 d_2 d_3 d_4 d_5) = \begin{pmatrix} 1 & 1 & 1 & 4 & 3 \\ 1 & -1 & 3 & -2 & 1 \\ 2 & 1 & 3 & 5 & 5 \\ 3 & 1 & 5 & 6 & 7 \end{pmatrix}$$

$$f(A) = 3A^2 - 2A + 5E$$

$$A^{2} = \begin{pmatrix} 6 & -9 & 7 \\ -3 & 7 & 4 \\ -1 & 4 & 8 \end{pmatrix} \qquad 2'$$

$$f(A) = \begin{pmatrix} 21 & -23 & 15 \\ -13 & 34 & 10 \\ -9 & 22 & 25 \end{pmatrix}$$

3、已知
$$AX + 4E = A^2 - 2X$$
,其中 $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 5 & -3 & 2 \end{pmatrix}$,求 X :

$$(A+2E)X = (A+2E)(A-2E)$$

$$=\begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 5 & -3 & 0 \end{pmatrix}$$

4、设三阶实对称矩阵 A 的特征值为 $\lambda_1=1$, $\lambda_2=\lambda_3=-1$,对应于 λ_1 的特征向量为 $\xi_1=(0,1,1)^T$, 求对应于 λ_2 的特征向量.

设对各于加纳特征向量为多二(X1, X2, X3)^T

124 3 1 3,

RP 72+73=0

得董弘(辦字为 32=(1,0,0) 33=(0,1,-1) 7

··对在于加加特征向量为 L·克+ k3 53 (其中 k2,63 不到 0)

2

得分

四、试求解下列各题(本题共四小题, 每题 6 分, 共 24 分)

1、已知矩阵
$$A = \begin{pmatrix} 1 & -2 & -4 \\ -2 & x & -2 \\ -4 & -2 & 1 \end{pmatrix}$$
 与 $B = \begin{pmatrix} 5 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -4 \end{pmatrix}$ 相似,求 x 与 y 的值;

· A, B 极似

$$\therefore |trA = trB|$$

$$|A| = |B|$$

2、在向量空间 R^4 中,设有两组基(I): $lpha_1$, $lpha_2$, $lpha_3$, $lpha_4$ 和(II): $2lpha_1+lpha_2$, $lpha_2+lpha_3$,

 $\alpha_3+\alpha_4$, α_4 . α 在基(I)下的坐标为 $X=(1,1,1,1)^T$, 求 α 在基(II)下的坐标 $Y=(1,1,1,1)^T$

3. $\[\[\[\alpha_1 = (1,1,1,3)^T \] , \] \[\alpha_2 = (-1,-3,5,1)^T \] , \] \[\alpha_3 = (3,2,-1,t+2)^T , \[\alpha_4 = (-2,-6,10,t)^T \] . \]$

2 1

4、已知 $\xi = (2,2,-2)^T$ 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的一个特征向量,确定参数a,b 及特征向

量ξ 所对应的特征值.

$$\lambda = -1$$

$$\alpha = -3$$

五、(10分)问a, b为何值时,线性方程组 x₁+bx₂+

$$\begin{cases} ax_1 + x_2 + x_3 = 4 \\ x_1 + bx_2 + x_3 = 3 \text{ are-} & \text{pre-} \\ x_1 + 3bx_2 + x_3 = 9 \end{cases}$$

$$D = \begin{bmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 3b & 1 \end{bmatrix} = -2b(a-1)$$
 2'

a+11140时唯一解

$$A = | R \neq B = \begin{pmatrix} 1 & 1 & 1 & 4 \\ 1 & b & 1 & 3 \\ 1 & 3b & 1 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 3 - 4b \end{pmatrix}$$

a=1, b=辛时 天家多辦

$$B \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

基础解系》(1,4,-1)*

其它恰好, 方程祖无辩

得分

六、(10分)

 $f(x_1, x_2, x_3) = x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$ 化为标准形.

$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}$$

|A-λE|= - (λ+7) (λ-2)

A1=-7 份入(A-λ(E)X=0 得基硅解音 3=(1,2,-2)^T

33 = (2,0,1)T

正的
$$g_2' = g_2 = (2, -1, 0)^{T}$$

$$g_3' = g_3 - \frac{[g_3, g_3']}{[g_3', g_3']} g_3' = \frac{1}{5} (2, 4, 5)^{T}$$

华伦化 1,= 号(1,2,-2)*

f 经 改 考 换 X=Q Y 化 为 标 们 形 -74,2+242+253