Study of the avocado market in the US between 2015-2018

Mid-bootcamp project
DA - Ironhack
Clara Balcells

1st step: Brainstorming and finding an appropiate Data Set

Download Data Set

Import file into Python in order to make data cleaning

2nd step: Data Exploration and Cleaning

First look at the dataset and exploration

: df															
		Unnamed: 0	Date	AveragePrice	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags	XLarge Bags	type	year	region
	0	0	2015- 12-27	1.33	64236.62	1036.74	54454.85	48.16	8696.87	8603.62	93.25	0.0	conventional	2015	Alban
	1	1	2015- 12-20	1.35	54876.98	674.28	44638.81	58.33	9505.56	9408.07	97.49	0.0	conventional	2015	Alban
	2	2	2015- 12-13	0.93	118220.22	794.70	109149.67	130.50	8145.35	8042.21	103.14	0.0	conventional	2015	Alban
	3	3	2015- 12-06	1.08	78992.15	1132.00	71976.41	72.58	5811.16	5677.40	133.76	0.0	conventional	2015	Alban
	4	4	2015- 11-29	1.28	51039.60	941.48	43838.39	75.78	6183.95	5986.26	197.69	0.0	conventional	2015	Alban
	18244	7	2018- 02-04	1.63	17074.83	2046.96	1529.20	0.00	13498.67	13066.82	431.85	0.0	organic	2018	WestTexNewMexic
	18245	8	2018- 01-28	1.71	13888.04	1191.70	3431.50	0.00	9264.84	8940.04	324.80	0.0	organic	2018	WestTexNewMexico
	18246	9	2018- 01-21	1.87	13766.76	1191.92	2452.79	727.94	9394.11	9351.80	42.31	0.0	organic	2018	WestTexNewMexico
	18247	10	2018- 01-14	1.93	16205.22	1527.63	2981.04	727.01	10969.54	10919.54	50.00	0.0	organic	2018	WestTexNewMexic
	18248	11	2018- 01-07	1.62	17489.58	2894.77	2356.13	224.53	12014.15	11988.14	26.01	0.0	organic	2018	WestTexNewMexic

Dropping irrelevant information and renaming columns + More data exploration

```
In [212]: #We rename some columns in order to standarize them
            dict = {'AveragePrice':'Average Price',
                      'type': 'Type',
                      'year': 'Year',
                                                              In [214]: #We get the name of all the regions in the df
                      'region': 'Region',
                                                                        Regions = df['Region'].unique()
                      '4046': 'Small Avocados',
                                                                        print (Regions)
                      '4225': 'Large Avocados',
                                                                        ['Albany' 'Atlanta' 'BaltimoreWashington' 'Boise' 'Boston'
                      '4770': 'XL Avocados'}
                                                                         'BuffaloRochester' 'California' 'Charlotte' 'Chicago' 'CincinnatiDayton'
                                                                         'Columbus' 'DallasFtWorth' 'Denver' 'Detroit' 'GrandRapids' 'GreatLakes'
            df.rename(columns=dict,
                                                                         'HarrisburgScranton' 'HartfordSpringfield' 'Houston' 'Indianapolis'
                                                                         'Jacksonville' 'LasVegas' 'LosAngeles' 'Louisville' 'MiamiFtLauderdale'
                        inplace=True)
                                                                         'Midsouth' 'Nashville' 'NewOrleansMobile' 'NewYork' 'Northeast'
                                                                         'NorthernNewEngland' 'Orlando' 'Philadelphia' 'PhoenixTucson'
                                                                         'Pittsburgh' 'Plains' 'Portland' 'RaleighGreensboro' 'RichmondNorfolk'
                                                                         'Roanoke' 'Sacramento' 'SanDiego' 'SanFrancisco' 'Seattle'
                                                                         'SouthCarolina' 'SouthCentral' 'Southeast' 'Spokane' 'StLouis' 'Syracuse'
                                                                         'Tampa' 'TotalUS' 'West' 'WestTexNewMexico']
                                                              In [215]: #We need to remove the TotalUs values since they can be misleading when it comes to analyse the dataframe, also we don
                                                                        df = df[df['Region']!="TotalUS"]
                                                              In [216]: #We now see that the value 'Total Us' has been removed from the dataset.
                                                                        Regions = df['Region'].unique()
                                                                        print (Regions)
                                                                        ['Albany' 'Atlanta' 'BaltimoreWashington' 'Boise' 'Boston'
                                                                          'BuffaloRochester' 'California' 'Charlotte' 'Chicago' 'CincinnatiDayton'
                                                                         'Columbus' 'DallasFtWorth' 'Denver' 'Detroit' 'GrandRapids' 'GreatLakes'
                                                                         'HarrisburgScranton' 'HartfordSpringfield' 'Houston' 'Indianapolis'
                                                                         'Jacksonville' 'LasVegas' 'LosAngeles' 'Louisville' 'MiamiFtLauderdale'
                                                                         'Midsouth' 'Nashville' 'NewOrleansMobile' 'NewYork' 'Northeast'
                                                                         'NorthernNewEngland' 'Orlando' 'Philadelphia' 'PhoenixTucson'
                                                                         'Pittsburgh' 'Plains' 'Portland' 'RaleighGreensboro' 'RichmondNorfolk'
                                                                         'Roanoke' 'Sacramento' 'SanDiego' 'SanFrancisco' 'Seattle'
                                                                          'SouthCarolina' 'SouthCentral' 'Southeast' 'Spokane' 'StLouis' 'Syracuse'
                                                                         'Tampa' 'West' 'WestTexNewMexico']
                                                              In [217]: #We can also delete de "Unnamed: 0" column
                                                                        del(df['Unnamed: 0'])
```

Before vs After

avocado

	Date	AveragePrice	Total Volume	4046	4225	4770	Total Bags	Small Bags	Large Bags	XLarge Bags	type	year	region
0	2015-12-27	1.33	64236.62	1036.74	54454.85	48.16	8696.87	8603.62	93.25	0.0	conventional	2015	Albany
1	2015-12-20	1.35	54876.98	674.28	44638.81	58.33	9505.56	9408.07	97.49	0.0	conventional	2015	Albany
2	2015-12-13	0.93	118220.22	794.7	109149.67	130.5	8145.35	8042.21	103.14	0.0	conventional	2015	Albany
3	2015-12-06	1.08	78992.15	1132.0	71976.41	72.58	5811.16	5677.4	133.76	0.0	conventional	2015	Albany

avocadoclean

Date	Average Price	Total Volume	Small Avocados	Large Avocados	XL Avocados	Total Bags	Small Bags	Large Bags	XLarge Bags	Туре	Year	Region
2015-12-27	1.33	64236.62	1036.74	54454.85	48.16	8696.87	8603.62	93.25	0.0	conventional	2015	Albany
2015-12-20	1.35	54876.98	674.28	44638.81	58.33	9505.56	9408.07	97.49	0.0	conventional	2015	Albany
2015-12-13	0.93	118220.22	794.7	109149.67	130.5	8145.35	8042.21	103.14	0.0	conventional	2015	Albany
2015-12-06	1.08	78992.15	1132.0	71976.41	72.58	5811.16	5677.4	133.76	0.0	conventional	2015	Albany
2015-11-29	1.28	51039.6	941.48	43838.39	75.78	6183.95	5986.26	197.69	0.0	conventional	2015	Albany
										2	2172	24.2

3rd step: import into SQL in order to make data analysis

```
df.to_csv ('avocadoclean.csv', index=False)
```

```
8
        where 'Average Price' = (SELECT min('Average Price') from avocadoclean)
 9
        order by 'Average Price' asc;
10
11
        #The lowest average price ever has been in 2017, in Cincinnati Dayton, with an average price of 0.44 dollars
12
13
14
        #Highest average price ever for an avocado
15
        SELECT concat('average price', " ", Year, " ", Region) AS 'Highest Price ever All Regions'
16 •
17
        FROM avocadoclean
18
        where `Average Price` = (SELECT max(`Average Price`) from avocadoclean)
        order by 'Average Price' desc;
19
20
        #The highest average price ever has been in 2017, in San Francisco, with an average price of 3.25 dollars
21
22
23
        #From all the regions, where can we find the one with the highest average and the lowest prices in 2015'
24
        SELECT concat('average price', " ", Year, " ", Region) AS 'Region with Highest Average Price 2015'
25 •
26
        FROM avocadoclean
27
        where 'vear' = 2015
28
        order by 'Average Price' desc;
29
        SELECT concat('average price', " ", Year, " ", Region) AS 'Region with Highest Average Price 2015'
30 •
31
        FROM avocadoclean
32
        where 'year' = 2015
33
        order by 'Average Price' asc;
34
        #The highest average price was in San Francisco and the lowest in Phoenix Tuscon
```

SELECT concat('average price', " ", Year, " ", Region) AS 'Lowest Price ever All Regions'

#Import and check that the table works properly

#The lowest average price ever ever for an avocado

SELECT * FROM AVOCADOCLEAN;

FROM avocadoclean

1

5

6 • 7

```
#Which is the general preferred size of avocado ever amongst the 3 types
   SELECT sum('Small Avocados'), sum('Large Avocados'), sum('XL Avocados')AS 'Preferred size of avocados'
   FROM avocadoclean:
   #The preferred size of avocados are the Large ones
   #Which is the preferred size of avocado ever amongst the 3 types in each region
   SELECT round(sum(`Small Avocados`),2) as Small_total, round(sum(`Large Avocados`),2) as Large total, round(sum(`XL Avocados`),2) as XL_total, Region AS 'Preferred size of avocados per region
   CASE
    WHEN ( sum(`Small Avocados`) > sum(`Large Avocados`) ) AND ( sum(`Small Avocados`) > sum(`XL Avocados`) ) THEN "Small"
    WHEN ( sum(`Large Avocados`) > sum(`Small Avocados`) ) AND ( sum(`Large Avocados`) > sum(`XL Avocados`) ) THEN "Large"
    ELSE "XL"
   END as "Best Seller"
   FROM avocadoclean
   GROUP BY Region;
   #Which is the most sold kind of bag
   SELECT sum('Small Bags'), sum('Large Bags'), sum('XLarge Bags') AS 'Preferred type of bags'
   FROM avocadoclean;
   #The most sold kind of bag are the Small Bags
   #Which is the most sold kind of bag per region
  SELECT round(sum(`Small Bags`),2) as Small total, round(sum(`Large Bags`),2) as Large total, round(sum(`XLarge Bags`),2) as XL total, Region AS 'Preferred type of bags per region',
CASE
    WHEN ( sum('Small Bags') > sum('Large Bags') ) AND ( sum('Small Bags') > sum('XLarge Bags') ) THEN "Small Bags"
    WHEN ( sum('Large Bags') > sum('Small Bags') ) AND ( sum('Large Bags') > sum('XLarge Bags') ) THEN "Large Bags"
    ELSE "XLarge Bags"
   END as "Best Seller Kind of Bag"
   FROM avocadoclean
   GROUP BY Region:
```

91

92 93

94

99 •

100

105

107

108

109

111

112

113

4th Step: Tableau

4th Step: Tableau

4th Step: Tableau

Problems encountered

- Tableau not recognizing certain regions
- Having to run everything and download again the Jupyter Notebook, just because I found another irrelevant column/value
- Time management

¡Thank you all for your attention!

