Práctica 1: Ficheros

Semanas		Temas
29/09/2008	SESIÓN 1	Diseño físico y lógico inicial, y optimizados
06/10/2008	SESIÓN 2	Organización serial no consecutiva
13/10/2008	SESIÓN 3	Consultas sobre organización serial no consecutiva
20/10/2008	SESIÓN 4	Direccionamiento
27/10/2008	SESIÓN 5	Desbordamiento
03/11/2008	SESIÓN 6	Consulta sobre organización direccionada
10/11/2008	SESIÓN 7	Índices
17/11/2008	SESIÓN 8	Consulta sobre organización indizada + direccionada

Práctica 1: Optimización en Tiempo de Acceso

- De sesiones anteriores ya se tiene:
 - Optimización físico-lógica del fichero inicial
 - · Organización serial no consecutiva
 - Búsquedas seriales sobre el fichero solución
- Ahora, se organizará el fichero de forma direccionada para optimizar el número necesario de accesos de un proceso de consulta.

Práctica 1: Soportes Direccionados

Soporte Direccionado: proporciona registros físicos localizables, es decir, que cuentan con una dirección física en el soporte.

Ejemplo de soporte direccionado: el disco (duro)

Instrucciones: acceso aleatorio a bloques leer(n) / escribir(n)

- procesos selectivos: localización inmediata → **óptimos**
 - la localización se hará mediante la clave de direccionamiento
 - es necesario hacer corresponder la CD con la dirección física
- procesos a la totalidad: la localización no es una ventaja (al contrario)

Práctica 1: Organización Direccionada

- La manera más eficiente de encontrar un registro a través de una clave es que la posición física de este registro (con respecto al total de registros) pueda deducirse a partir de esa clave
- Se trata de aplicar una función que asigne a cada CD una dirección relativa (función de transformación)
- Esta función debe 'repartir' lo mejor posible los registros en todo el espacio de direccionamiento.
 - no debe formar cúmulos
 - no debe dejar cubos vacíos
 - debe repartir 'uniformemente'...

Práctica 1: Organización Direccionada Dispersa

 Cuando cada elemento tiene su dirección 'reservada', se trata de un direccionamiento directo.

Problemas

- es difícil encontrar funciones de transformación adecuadas
- si algún valor de CD no ocurre, deja huecos → baja densidad (ejemplo: CD = DNI, fichero de alumnos, ¿cuántos huecos?...)
- pésima eficiencia en acceso por claves alternativas (¡¡serial...!!)
- Cuando distribuimos sobre un área registros, permitiendo colisiones (varios registros en la misma dirección) se trata de un direccionamiento disperso.
 (ejemplo: tomar los dos últimos dígitos del DNI)

Ventaias:

- espacio direccionamiento reducido → densidad mayor
- Reducción drástica de los cubos vacíos

Práctica 1: Colisiones • Para saber rápidamente si un elemento colisiona: • se almacena en cada cubo una marca de primera posición libre (2 bytes) • si la ppl = 0 → el cubo está vacío • almacenar registro desde el principio del cubo • actualizar ppl := <tamaño_registro> • else, si ppl + <tamaño_registro> menor o igual que 1022 • almacenar registro desde el byte de posición ppl • actualizar ppl := ppl + <tamaño_registro> • else, el registro desborda (de momento, no hacemos nada)