

WSTĘP DO MATEMATYKI FINANSOWEJ

BARTOSZ KOŁODZIEJEK WYDZIAŁ MATEMATYKI I NAUK INFORMACYJNYCH

Laboratoria 4

Projekt "NERW 2 PW. Nauka - Edukacja - Rozwój - Współpraca" współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

Zadanie 10 pn. "Modyfikacja programów studiów na kierunkach prowadzonych przez Wydział Matematyki i Nauk Informacyjnych", realizowane w ramach projektu "NERW 2 PW. Nauka - Edukacja - Rozwój - Współpraca", współfinansowanego jest ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego.

4 maja 2022

Legenda: 🗐 – Definicja, TW. – Twierdzenie, 🕰 – Przykład, 🛕 – Uwaga, LEM. – Lemat, 👁 – Oznaczenie

1. L4 - Redukcja Wariancji w metodach MC - Teoria

(1) Metody Monte Carlo. Podstawą teoretyczną metod MC są prawa wielkich liczb, np. MPWL (Kołmogorowa): Jeśli $(X_n)_n$ są i.i.d. oraz $\mathbb{E}[|X_1|] < \infty$, to

$$\frac{X_1 + \ldots + X_n}{n} \xrightarrow{1} \mathbb{E}[X_1].$$

Powyżej X'y mogą być wielowymiarowe. Oznaczmy $\mu=\mathbb{E}[X_1]$. Błędem przybliżenia (nieznanej wartości) μ nazywamy różnicę

$$\varepsilon_n := \frac{X_1 + \ldots + X_n}{n} - \mu.$$

Wiemy już, że ε_n zbiega z prawdopodobienstwem 1 do 0. Dla skończonego n, ε_n jest zmienną losową. Zauważmy, że na mocy CTG (o ile $\mathbb{E}[X_1^2] < \infty$) mamy

$$\frac{\sqrt{n}}{\sigma_X} \varepsilon_n = \frac{X_1 + \ldots + X_n - n\mu}{\sqrt{n\sigma_X^2}} \xrightarrow{d} Z \sim N(0, 1),$$

gdzie $\sigma_X^2 = \text{Var}(X_1)$. Oznaczając $Z_n = \sqrt{n} \, \varepsilon_n / \sigma_X$ mamy

$$\frac{X_1 + \ldots + X_n}{n} = \mu + \frac{\sigma_X}{\sqrt{n}} Z_n,$$

gdzie $Z_n \xrightarrow{d} Z \sim N(0,1)$.

- (2) Widzimy, że błąd przybliżenia jest tym mniejszy im
 - \bullet liczba n jest większa,
 - wariancja $Var[X_1]$ jest mniejsza.

Wykonywanie dużej liczby symulacji może być bardzo kosztowne. Żeby zmniejszyć 2-krotnie błąd przybliżenia, powinniśmy zwiększyć n 4-krotnie.

(3) Metody redukcji wariancji opierają się na następującym pomyśle: wymyślamy schemat, który przybliża to samo, ale szybciej. Innymi słowy, proponujemy nowe X'y, które będą miały mniejszą wariancję. Dobór metod zależy od rozważanego problemu. Można stosować mix metod.

Jeśli $\mathbb{E}[|f(X)|] < \infty$, to dla ciągu i.i.d. mamy

$$\frac{f(X_1) + \ldots + f(X_n)}{n} \stackrel{1}{\longrightarrow} \mathbb{E}[f(X_1)] := \mu_f,$$

gdzie $\mu_f = \int_{\mathbb{R}} f(x) \mathbb{P}_X(dx)$. Ogólnie, metody MC służą do znajdowania całek względem miar na podstawie symulacji komputerowych.

(4) **Importance sampling.** Załóżmy chwilowo, że X ma gęstość, przy czym metoda w oczywisty sposób przepisuje się na rozkłady dyskretne. Szukamy

$$\mathbb{E}[g(X)] = \int_{\mathbb{R}} g(x) f_X(x) dx = \int_{\mathbb{R}} \frac{g(x) f_X(x)}{f_Y(x)} f_Y(x) dx = \mathbb{E}\left[\frac{g(Y) f_X(Y)}{f_Y(Y)}\right].$$

By druga z powyższych równości zachodziła konieczne jest, by $\operatorname{supp}(X) \subset \operatorname{supp}(Y)$. Schemat wygląda następująco: niech $(Y_i)_i$ będzie ciągiem i.i.d. o gęstości f_Y . Wtedy

$$\frac{\sum_{k=1}^{n} \frac{g(Y_k)f_X(Y_k)}{f_Y(Y_k)}}{n} \stackrel{1}{\longrightarrow} \mathbb{E}[g(X)].$$

Działa to dla dowolnej gęstości Y takiej, że $f_X(x)>0$ implikuje $f_Y(x)>0$. W jaki sposób wybrać tę gęstość? Tak, by wariancja zmiennej losowej $\frac{g(Y)f_X(Y)}{f_Y(Y)}$ była możliwie mała, w ekstremalnym (i nierealnym) przypadku, gdy $f_Y(y)\propto g(y)f_X(y)$ widzimy, że $\mathrm{Var}[\frac{g(Y)f_X(Y)}{f_Y(Y)}]=0$. Widzimy, że $\mathrm{Var}[g(X)]>\mathrm{Var}[\frac{g(Y)f_X(Y)}{f_Y(Y)}]$ wtedy i tylko wtedy, gdy

$$\mathbb{E}[g(X)^2] > E\left[\frac{g(Y)^2 f_X(Y)^2}{f_Y(Y)^2}\right],$$

czyli

$$\int_{\mathbb{R}} g(x)^2 f_X(x) dx > \int_{\mathbb{R}} \frac{g(x)^2 f_X(x)^2}{f_Y(x)} dx,$$

czyli

$$\int_{\mathbb{R}} g(x)^2 \left(1 - \frac{f_X(x)}{f_Y(x)} \right) f_X(x) dx > 0.$$

Słownomuzycznie: chcemy by dla "ważnych" argumentów x (czyli tam, gdzie $g(x)^2 f_X(x)$ jest duże) zachodziła nierówność $f_Y(x) > f_X(x)$. Czyli, regiony "ważne" dla naszego problemu, muszą być bardziej prawdopodobne dla Y.

Powiedzmy, że chcemy przybliżyć wartość $\mu = 1 - \Phi(3)$. Skądinąd wiemy, że $\mu \approx 10^{-3}$. Spróbujmy najpierw naiwnie, $f(x) = \mathbbm{1}_{(3,\infty)}(x)$, $(X_i)_i$ są i.i.d. z rozkładu N(0,1). Wtedy

$$\frac{\sum_{k=1}^{n} f(X_k)}{n} = \frac{\sum_{k=1}^{n} \mathbb{1}_{(3,\infty)}(X_k)}{n} \xrightarrow{1} \mu.$$

Zauważmy jedn
k, że dokładność będzie słaba, średnio raz na 10³ kroków, otrzymamy jedną obserwację X_i przekraczającą 3. Mamy $\text{Var}[f(X_1)] = \mu(1-\mu) \approx 10^{-3}$.

Dużo lepszym pomysłem jest tutaj zastosowanie importance sampling dla $Y \sim N(\alpha, 1)$. Wtedy

$$\frac{f_X(y)}{f_Y(y)} = e^{-\frac{y^2}{2} + \frac{(y - \alpha)^2}{2}} = e^{\alpha^2/2 - \alpha y}$$

Zatem, dla każdej $\alpha \in \mathbb{R}$ mamy

$$\frac{\sum_{i=1}^{n} \mathbb{1}_{(3,\infty)}(Y_i) e^{\alpha^2/2 - \alpha Y_i}}{n} \xrightarrow{1} 1 - \Phi(3)$$

lub równoważnie,

$$\frac{\sum_{i=1}^{n} \mathbb{1}_{(3,\infty)}(X_i + \alpha)e^{\alpha^2/2 - \alpha(X_i + \alpha)}}{n} = e^{-\alpha^2/2} \frac{\sum_{i=1}^{n} \mathbb{1}_{(3-\alpha,\infty)}(X_i)e^{-\alpha X_i}}{n} \xrightarrow{1} 1 - \Phi(3)$$

Jak wybrać α ? Oczywiście patrzymy na wariancję,

$$\operatorname{Var}\left[\frac{f(Y)f_X(Y)}{f_Y(Y)}\right] = \operatorname{Var}[\mathbbm{1}_{(3,\infty)}(Y)e^{\alpha^2/2-\alpha Y}] = \operatorname{Var}[\mathbbm{1}_{(3,\infty)}(\alpha+X)e^{\alpha^2/2-\alpha(\alpha+X)}] = \operatorname{Var}[\mathbbm{1}_{(3-\alpha,\infty)}(X)e^{-\alpha^2/2-\alpha X}]$$

Wykres funkcji $\alpha \mapsto \text{Var}[\mathbb{1}_{(3-\alpha,\infty)}(X)e^{-\alpha^2/2-\alpha X}]$ wygląda następująco:

Dla $\alpha = 3$, wariancja jest rzędu 10^{-6} .

- (5) Metoda zmiennych antytetycznych. Załóżmy, że mamy dane dwa ciągi $(X_n)_n$ oraz $(X'_n)_n$, gdzie
 - $(X_n)_n$ jest ciągiem i.i.d.,
 - $(X'_n)_n$ jest ciągiem i.i.d.,
 - $X_1 \stackrel{a}{=} X'_1$,
 - X_n oraz X'_m są niezależne dla $n \neq m$, ale X_n oraz X'_n mogą być zależne.

Szukamy nieznanej wartości $\mathbb{E}[f(X)] = \mathbb{E}[f(X')]$. Rozważmy następujący schemat, który odpowiada wygenerowaniu ciagu długości 2n:

$$\frac{\sum_{k=1}^{n} \frac{f(X_k) + f(X'_k)}{2}}{2} \xrightarrow{1} \mu_f.$$

Poprzez odpowiednie sparowanie (coupling) zmiennych X_n i X_n' możemy zmniejszyć wariancję. Zauważmy, że

$$\operatorname{Var}[\frac{f(X_1) + f(X_1')}{2}] = \frac{1}{4} \left(\operatorname{Var}[f(X_1)] + \operatorname{Var}[f(X_1')] + 2\operatorname{Cov}[f(X_1), f(X_1')] \right) = \frac{1}{2} \left(\operatorname{Var}[f(X_1)] + \operatorname{Cov}[f(X_1), f(X_1')] \right)$$

Zatem, jeśli $Cov[f(X_1), f(X'_1)] < 0$, to wariancja zaproponowanego estymatora jest mniejsza niż wariancja estymatora dla 2n obserwacji.

Powstaje pytanie, w jaki sposób (możliwie tanio) generować pary (X, X'). Okazuje się, że (zwykle) optymalny X' wyznacza się na podstawie X w bardzo prosty sposób. Jeden z pomysłów opiera się na prostej obserwacji, że jeśli U ma rozkład jednostajny U([0,1]), to $U \stackrel{d}{=} 1 - U$ oraz poniższym lemacie:

LEM. Niech $h: [0,1] \to \mathbb{R}$ będzie funkcją monotoniczną, $\int_0^1 h(u)^2 du < \infty$ oraz $U \sim \mathrm{U}([0,1])$. Wtedy

$$Cov[h(U), h(1-U)] < 0.$$

Korzystając z powyższego lematu, widzimy, że możemy wziąć np. $(X,X')=(F_X^{-1}(U),F_X^{-1}(1-U))$. Można pokazać, że to jest najlepszy możliwy wybór, tzn. ten wybór minimalizuje odpowiednią kowariancję (a przynajmniej w sytuacji, gdy $f=\mathrm{id}$). W szczególności, jeśli X ma rozkład symetryczny (np. $X\sim\mathrm{N}(0,1)$), to X'=-X.

Powiedzmy, że chcemy obliczyć wartość całki

$$I = \int_0^1 \frac{1}{1+x} dx.$$

Jasne jest, że jeśli $(U_i)_i$ są i.i.d. z rozkładu U([0,1]), to

$$\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + U_k} \xrightarrow{1} I$$

oraz wariancja $\text{Var}[\frac{1}{1+U_k}]=1/2-\log(2)^2\approx 0.02$, czyli $\sigma=\sqrt{\text{Var}}\approx 0.14$. Jeśli z kolei rozważymy

$$\frac{1}{n}\sum_{k=1}^{n}\frac{\frac{1}{1+U_{k}}+\frac{1}{2-U_{k}}}{2} \xrightarrow{1} I,$$

to mamy $\operatorname{Var}\left[\frac{\frac{1}{1+U_k} + \frac{1}{2-U_k}}{2}\right] \approx 0.0006$, czyli $\sigma \approx 0.0244$.

(6) **Metoda warstwowania.** (Stratified sampling) Niech $(A_i)_{i=1}^k$ będzie skończonym (znanym) rozbiciem \mathbb{R} . Wtedy,

$$\mathbb{E}[f(X)] = \sum_{i=1}^{k} \mathbb{E}[f(X) \mid X \in A_i] \mathbb{P}(X \in A_i) =: \sum_{i=1}^{n} \mu_i p_i.$$

Zakładamy, że $(p_i)_i$ znamy. Zamiast generować n obserwacji z rozkładu X, możemy wygenerować n_i obserwacji z rokładu $X \mid X \in A_i$ tak, by $n_1 + \ldots + n_k = n$, a następnie wykorzystać je odpowiednio do estymowania wartości μ_i . Takie rozwiązanie może mieć szczególny sens, jeśli funkcja f dla niektórych argumentów jest prawie stała; dla ustalenia uwagi, rozważmy sytuacji, gdy $f(x) \approx c$ dla $x \in A_1$. Żeby dokładnie wyestymować μ_1 nie potrzebujemy wielu symulacji, ponieważ wariancja $f(X) \mid X \in A_1$ będzie mała. "Zaoszczędzone" w ten sposób symulacje, możemy spożytkować na dokładniejszą estymację średniej f po innych obszarach.

Niech $q_i = n_i/n$ oraz

$$\frac{f(X_1^{(i)}) + \dots f(X_{n_i}^{(i)})}{n_i}$$

będzie estymatorem, μ_i ($X^{(i)} \stackrel{d}{=} X \mid X \in A_i$). Wtedy estymatorem $\mathbb{E}[f(X)]$ jest

$$\hat{\mu} = \sum_{i=1}^{k} \left(\frac{f(X_1^{(i)}) + \dots + f(X_{n_i}^{(i)})}{n_i} \right) p_i = \frac{1}{n} \sum_{i=1}^{k} \frac{p_i}{q_i} \left(f(X_1^{(i)}) + \dots + f(X_{n_i}^{(i)}) \right)$$

Wariancja tego estymatora wynosi

$$\operatorname{Var}[\hat{\mu}] = \frac{1}{n^2} \sum_{i=1}^k \frac{p_i^2}{q_i^2} n_i \operatorname{Var}[f(X^{(i)})] = \frac{1}{n} \sum_{i=1}^k \frac{p_i^2}{q_i} \sigma^{(i)^2}.$$

Możemy minimalizować tę wariancję poprzez odpowiedni dobór liczności próbek, czyli ciągu $(q_i)_i$, $q_i \geq 0$, $q_1 + \ldots + q_k = 1$. Można pokazać, że wybór $q_i = p_i$ (alokacja proporcjonalna) zawsze redukuje wariancję, jednak można lepiej. Za pomocą mnożników Lagrange'a pokazujemy, że optymalna alokacja zadana jest przez

$$q_i = \frac{p_i \sigma^{(i)}}{\sum_{j=1}^k p_j \sigma^{(j)}}.$$

Niestety, żeby z niej skorzystać, musielibyśmy znać ogólnie nieznane wartości $\sigma^{(i)}$, $i=1,\ldots,k$. Czasami w pierwszym kroku eksperymentu estymuje się te wartości, również metodami MC.

Pozostaje jeszcze problem jak generować zmienne losowe $X^{(i)}$ z rozkładu $X \mid X \in A_i$. Załóżmy, że zbiory A_i są postaci $(a_i, a_{i+1}]$. Ogólnie, wiemy, że $X \stackrel{d}{=} F_X^{-1}(U)$, gdzie $U \sim \mathrm{U}([0,1])$. W taki sam sposób można pokazać, że

$$X^{(i)} \stackrel{d}{=} F_X^{-1}(s_{i-1} + Up_i),$$

gdzie $p_i = \mathbb{P}(X \in A_i)$ oraz $s_i = p_1 + \ldots + p_i$, $s_0 = 0$.

(7) Metoda zmiennych kontrolnych. Zakładamy, że $\mathbb{E}[|k(X)|] < \infty$ oraz, że znamy wartość $\mathbb{E}[k(X)]$. Wtedy

$$\mu_f = \mu_k + (\mu_f - \mu_k) = \mu_k + \mu_{f-k}.$$

Żeby przybliżyć μ_f wystarczy przybliżyć μ_{f-k} . Jeśli funkcja f-k jest bliska stałej (ma małą wariancję), to mamy szansę na duży uzysk. Istotnie,

$$\mu_k + \frac{\sum_{i=1}^n (f(X_i) - k(X_i))}{n} \xrightarrow{1} \mu_f$$

oraz szybkość zbieżności zależy od

$$Var[f(X) - k(X)] = Var[f(X) + Var[k(X)]] - 2Cov[f(X), k(X)].$$

Warunek $\operatorname{Var}[f(X) - k(X)] < \operatorname{Var}[f(X)]$ jest równoważny warunkowi $\operatorname{Var}[k(X)] < 2\operatorname{Cov}[f(X), k(X)]$, który w ogólnym przypadku może być sprawdzony symulacyjnie.

Często rozważa się wiele zmiennych kontrolnych $(k_i)_{i=1}^m$, tzn. gdy

$$k = \sum_{i=1}^{m} \alpha_i k_i,$$

gdzie $\alpha_i \in \mathbb{R}$, i = 1, ..., m. Współczynniki α_i (również, gdy m = 1) można dobrać optymalnie z kryterium minimalizacji Var[f(X) - k(X)].

Zastosowanie dla opcji azjatyckich. Opcją azjatycką nazywamy (europejską) opcję o wypłacie $X = \left(\frac{1}{T}\sum_{k=1}^{T}S_{t_k}-K\right)^+$. "Azjatyckość" tej opcji polega na fakcie, że wypłata zależy od średniej cen aktywa w wybranych momentach. Wiemy, że jej wartość w chwili 0 wynosi

$$\Pi_0(X) = \mathbb{E}_{\mathbb{P}^*} \left[\frac{X}{B_T} \right],$$

Jako zmienną kontrolną dobrze jest wybrać

$$Y = \frac{1}{B_T} \left(\sqrt[T]{\prod_{k=1}^T S_{t_k}} - K \right)^+,$$

którego cenę w chwili 0 możemy jawnie znaleźć w modelu ciągłym Blacka-Scholesa (w swoim czasie...).

(8) Redukcja wariancji poprzez zamianę zmiennych. Powiedzmy, że chcemy oszacować wartość całki

$$\int_3^\infty \frac{1}{\pi(1+x^2)} dx.$$

Żeby to zrobić moglibyśmy wygenerować ciąg $(X_n)_n$ i.i.d. z rozkładu Cauchy'ego C(1) oraz rozważyć estymator

$$\frac{\sum_{i=1}^{n} \mathbb{1}_{(3,\infty)}(X_i)}{n}.$$

Mamy $Var[\mathbb{1}_{(3,\infty)}(X_i)] \approx 0.1 \cdot 0.9 = 0.09.$

Możemy również postąpić inaczej. W naszej całce zamieńmy zmienną x = 3/y. Wtedy

$$\int_{3}^{\infty} \frac{1}{\pi(1+x^2)} dx = \int_{0}^{1} \frac{3}{\pi(9+y^2)} dy.$$

Zatem tę samą wartość możemy przybliżać za pomocą ciągu $(Y_n)_n$ i.i.d. z rozkładu $\mathrm{U}([0,1])$ i estymatora

$$\frac{\sum_{i=1}^{n} \frac{3}{\pi(9+Y_i^2)}}{n}.$$

Można sprawdzić, że $Var\left[\frac{3}{\pi(9+Y_c^2)}\right] \approx 10^{-5}$.

(9) Quasi-Monte Carlo. Powiedzmy, że mamy do przybliżenia wartość całki

$$I := \int_{(0,1)^d} f(u_1, \dots, u_d) du_1 \dots du_d$$

gdzie d jest bardzo duże. Standardowe MC mówi nam, że

$$\frac{\sum_{i=1}^{n} f(\underline{U}_i)}{n} \stackrel{1}{\longrightarrow} I,$$

gdzie $(\underline{U}_n)_n$ jest ciągiem wektorów i.i.d. rozkładu $\mathrm{U}([0,1]^d)=\mathrm{U}([0,1])^{\otimes d}$. Wiemy, że błąd przybliżenia maleje jak $\frac{c}{\sqrt{n}}$.

Okazuje się, że jeśli zamienimy (pseudo)-losowy ciąg $(\underline{U}_n)_n$ na ciąg, który wypełnia przestrzeń "lepiej" (pełniej?) niż ciąg losowy, to możemy otrzymać zbieżność rzędu $c\frac{\log(n)^{d-1}}{n}$. Metoda QMC jest metodą w pełni deterministyczną (podobnie jak całkowanie numeryczne).

Przykładem takiego ciągu jest tzw. ciąg Haltona, który opiera się na podziale odcinka [0,1] na coraz większa liczbę części. W \mathbb{R}^1 wygląda następująco:

$$(baza = 2): 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16, ...$$

 $(baza = 3): 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27, ...$

Żeby otrzymać ciąg w \mathbb{R}^2 można skleić oba powyższe ciągi.