

fakultät für mathematik

Sommersemester 2016 Präsenzübung 25./26. April Seite 1/1

Prof. Dr. Dmitri Kuzmin Dipl.-Technomath. Christopher Basting Numerische Mathematik für Physiker und Ingenieure

Präsenzaufgabe 1

Die Kreiszahl π kann bestimmt werden durch

$$\pi = \lim_{n \to \infty} 3 \cdot 2^{n-1} s_n$$

$$\operatorname{mit}\, s_1:=1\,\operatorname{und}\, s_{n+1}:=\sqrt{2-\sqrt{4-s_n^2}},\,n\in\mathbb{N}.$$

- a) s_n ist gerade die Länge eines regelmäßigen $3 \cdot 2^n$ -Ecks, das dem Einheitskreis einbeschrieben ist. Verifizieren Sie die Gültigkeit obiger Formel.
- **b)** Betrachten Sie die Funktion $x\mapsto x(x):=\sqrt{2-\sqrt{4-x^2}}$. Geben Sie die relative Kondition des Problems (f,x) an, f(x) für kleine $x\neq 0$ zu berechnen. Verwenden Sie $\|\cdot\|=|\cdot|$ (den Betrag als Norm).

Präsenzaufgabe 2

a) Gegeben sei eine Funktion $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ durch

$$\varphi(x,y) = \begin{bmatrix} x+y \\ e^{x/y} \end{bmatrix}.$$

Bestimmen Sie deren Konditionszahlen k_{ij} , $1 \le i, j \le 2$. Wann ist das Problem gut konditioniert?

b) Untersuchen Sie die Konditionierung der folgenden Rechenoperationen:

1. Division: $f(x) = \frac{x}{y}$, $y \neq 0$, speziell $f(y) = \frac{1}{y}$,

2. Potenzbildung: $f(x,y) = x^y$, x > 0, speziell $f(x) = \sqrt{x}$.

Wie groß ist der maximale relative Fehler im Ergebnis, ausgedrück in der Form $\alpha\varepsilon + \mathbf{O}\left(\varepsilon^{2}\right)$, wenn die relativen Fehler in den Argumenten durch ε beschränkt sind?

