Foundations of Social and Cultural Data Analysis

Dr. Nanne van Noord & Dr. Melvin Wevers

Assignment

- Make sure that the code runs!
 - Restart the kernel and re-run all cells
 - Include git cloning, pip imports, and untar the data!
- Read the assignments carefully!

Each record, then, should be a list with four elements: (i) the year of publication, (ii) the title, (iii) the name of the author, and (iv) the name of the publisher

```
('year', 'title', 'author', 'publisher')
('1642', 'Hiervsalem verwoest. Trevrspel.', 'Joost van den Vondel 1587-1679', 'Matthijsz, Paulus Amsterdam')
('1641', "Gysbrecht van Aemstel, d'ondergangh van zijn stad en zijn ballingschap. Treurspel.", 'Joost van den Vondel 1587-1679', 'Houthaeck, Dirck Cornelisz Amsterdam')
('1720', 'Joseph in Egypten. Trevrspel.', 'Joost van den Vondel 1587-1679', 'Oosterwyk, Johannes van Amsterdam')
('17XX', 'Lucifer. Treurspel.', 'Joost van den Vondel 1587-1679', 'Wees, Abraham de I Amsterdam')
```

- Are there additional questions to be answered?
- Try to avoid redundant or needless code.
 - Functions can be very useful to reduce redundancy and increase readability!

Recap

- Data search/retrieval
- Variable types / measurement scales

Sharing/Search Relation

Representation/Encoding

Machine/Human readable is a representation choice

• Possible to have parallel representations

as scoring ...

Features / Attributes

Attr 1 Attr 2

Indexing

To aid search we may want to construct a representation of the data that is specifically tailored to enable search.

Index

Entry titles are printed in small capitals. Bold page-numbers indicate a sustained discussion of a topic, whether or not it features as an entry.

ETHICS 28, 31-2, 107 ability see disposition abstractionism 314 acquaintance 43, 102, 160, 208, 212. 254, 269-70, 277, 299, 310, 348-9, agreement 128-9, 135-6, 328, 368

ambiguity/synonymy 40, 122, 240 analytic/synthetic 18, 20, 131, 199-200, 202, 353, 356-7 analytic definition 26, 33, 35, 113-14, 120-4 152 ancestral relation 266

'and so on' 149, 265, 328 Anscombe, G.E.M. 29, 74, 75 anti-realism 95, 382, 384 ANTHROPOLOGY 35-6, 126, 128, 236; see also HUMAN BEING a priori see analytic/synthetic; philosophy;

synthetic a priori Aquinas, T. 323 argument see function Aristotle 29, 43, 124, 199, 212, 220, 226, 241, 292, 294, 300, 318, 340, 354, 362

arithmetic 20, 24, 234 aspect-blindness 39 aspect-dawning 36-9 ASPECT-PERCEPTION 27, 34, 36-40, 57. 120, 170; continuous 40

assertion 60-3, 301-2 assumption 61-3 Augustine 25, 41, 242, 277, 285, 295 AUGUSTINIAN PICTURE OF LANGUAGE 25, 41-5, 144, 175, 195, 211, 238, 255-6, 274, 277, 310, 376

AESTHETICS 18, 31-5, 123, 251-3; and Austin, J.L. 77, 80, 128, 366, 377, 380 AUTONOMY OF LANGUAGE/ARBITRARINESS OF GRAMMAR 22, 45-50, 74, 81, 84, 174, 202, 239-41, 275-7, 295-6, 336, 352, 368 AVOWAL (Äußerung/Ausdruck) 23, 27, 45.

50-4, 56, 88, 144, 162, 175-6, 181-4, 309, 374

Ballard-case 361-2 beetle in the box 313 BEHAVIOUR AND BEHAVIOURISM 27-8. 40, 55-8, 81, 129, 135, 156-8, 175-7, 185, 288, 313-14, 351 BELIEF 52, 58-63, 77, 81, 288-91, 359-61; see also INTENDING AND MEANING, THOUGHT/THINKING Bentham, J. 86, 318 Berkeley, G. 360 'Big Typescript' 23 BIPOLARITY 17, 21, 63-6, 202, 259, 262,

331-2, 365 bivalence 98-100, 273; see also BIPOLARITY Blue and Brown Books 23-4, 41, 195, 285 brain 157, 177-9, 181, 242-3, 374

Boltzmann, L. 11, 12-13, 77, 220, 341, Bolzano, B. 43, 171 Boole, G. 198, 368 bounds of sense see limits of thought/

Bradley, F.H. 59, 116, 189, 316 Brentano, F. 184, 188 Broad, C.D. 363 broom 115-16, 122, 269

I did enact Julius Caesar: I was killed i' the Capitol; Brutus Tokenisation killed me.

Doc 2: So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious.

-

Tokenisation

was killed capitol brutus killed me so 2 2 let 2 it be with caesar 2 the noble brutus hath told vou 2 caesar

was

ambitious

docID

Term

did

enact

julius

caesar

brutus brutus capitol caesar caesar caesar did enact hath Sorting julius killed killed 2 noble 2 2 SO the told you

1

30/35

was

with

Term (sorted)

397

A Wittgenstein Dictionary, First Edition. Hans-Johann Glock. © 1996 by Hans-Johann Glock. Published 1996 by Blackwell Publishing Ltd.

Querying

How to enable querying depends on needs and expertise of users.

Various types of queries:

- Keyword queries
 - Most common
 - Keywords implicitly connected by AND
- Boolean queries
 - Allow range of logical operators (AND, OR, NOT)
- Phrase queries
 - Search for exact multi-word match

Keyword= "moving services NYC to Boston" or +moving +services +NYC +to +Boston

Ranking

Give a score to each indexed document based on query and return in order

Ranking - Relevance Score

Vector Space Model

Measurement Scales

- . Another aspect of a variable we can use to describe it is the measurement scale
- The measurement scale tells us:
 - How to interpret the values on the scale in relation to the other values
 - How to compare the values

Relations between variables

Association

Temperature versus Ice Cream Sales

Covariance

- Measure of joint variability of two variables
 - If X_i and Y_i are both high, or both low, then covariance is positive
 - If X_i is high and Y_i is low, or other way around, then covariance is negative
 - Magnitude depends on values of variables
- Covariance:

$$cov(X,Y) = \frac{\sum_{i=1}^{N} (X_i - \mu_X)(Y_i - \mu_Y)}{N}$$

Correlation

Temperature versus Ice Cream Sales

Correlation

- Statistical relationship between two variables
- Normalized covariance: magnitude shows strength of relationship
- Popular measure is (sample) Pearson's r correlation coefficient:

$$r_{xy} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^{N} (X_i - \mu_X)(Y_i - \mu_Y)}{\sqrt{\sum_{i=1}^{N} (X_i - \mu_X)^2} \sqrt{\sum_{i=1}^{N} (Y_i - \mu_Y)^2}}$$

Visualising correlations

Visualising correlations

Spurious correlations

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

http://www.tylervigen.com/spurious-correlations

Spurious correlations

Per capita consumption of mozzarella cheese

correlates with

Civil engineering doctorates awarded

http://www.tylervigen.com/spurious-correlations

Spurious correlations

Correlation: 0.994751

Linear relation

- . Correlations describes a linear relationship between variables
- . But can be high even if relation isn't linear
- Can be low even if there is an obvious relationship

Causation

Relations between instances

How to compare rows?

Univariate Multivariate

Index	Variable 1	Target Variable		

Index	Variable 1	Variable 2	Variable n	Target Variable
••				

Distance Metrics

- Basic properties
 - Positive separation

•
$$D(x, y) > 0, \forall x \neq y$$

•
$$D(x, y) = 0$$
, i.f.f., $x = y$

- Symmetry
 - D(x,y) = D(y,x)
- Triangle inequality

•
$$D(x,y) \le D(x,z) + D(z,y)$$

Dot product

$$\mathbf{a} = [a_1, a_2, \cdots, a_n]$$

$$\mathbf{b} = [b_1, b_2, \cdots, b_n]$$

$$\mathbf{a}\cdot\mathbf{b}=\sum_{i=1}^n a_ib_i=a_1b_1+a_2b_2+\cdots+a_nb_n$$

```
a = [1, 2, 3, 4]
       b = [4, 5, 6, 7]
       result = 0
       for i in range(len(a)):
      result += a[i] * b[i]
       display(result)
[2] \ \ 0.0s
   60
       result = 0
       for ai, bi in zip(a, b):
           result += ai * bi
       display(result)

√ 0.0s

   60
       result = sum([ai * bi for ai, bi in zip(a,b)])
       display(result)
[5] V 0.0s
   60
       import numpy as np
       np.dot(a,b)

√ 0.0s

   60
```

Cosine

$$\text{cosine similarity} = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \cdot \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

```
np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
0.9759000729485332
  a norm = a / np.linalg.norm(a)
  b norm = b / np.linalg.norm(b)
   np.dot(a norm,b norm)
✓ 0.0s
0.9759000729485331
   dist.cosine(a,b)

√ 0.0s

0.024099927051466796
   1 - np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
0.024099927051466796
```

Angle and magnitude


```
import numpy as np
    np.dot(a,b)

/ 0.0s

import scipy.spatial.distance as dist
    dist.cosine(a,b)

/ 0.0s

0.024099927051466907
```

Manhattan

$$d_{\mathrm{T}}(\mathbf{p},\mathbf{q}) = \left\lVert \mathbf{p} - \mathbf{q}
ight
Vert_{\mathrm{T}} = \sum_{i=1}^{n} \left\lvert p_i - q_i
ight
vert$$

Euclidean

$$d_2(ec{a},ec{b}) = \sqrt{\sum_{i=1}^n (a_i-b_i)^2}$$

Representation Learning

Unstructured data

- Cannot simply measure the distance
- Need to build a model for how to represent

Modelling

S = System

M = Model

E = Experiment

 $E(S) \approx E(M)$

shutterstock.com · 2134374559

What gets counted?

- Which data we count/store already depends on a model
 - What we count reflects how we see the world
- A data model is less nuanced than reality
 - Requires assumptions and abstractions

if

S = Gender M = Binary

Then $E(S) \approx E(M)$?

Data Model

Bag of Words

Document D1	The child makes the dog happy		
	the: 2, dog: 1, makes: 1, child: 1, happy: 1		
Document D2	The dog makes the child happy the: 2, child: 1, makes: 1, dog: 1, happy: 1		

	child	dog	happy	makes	the	BoW Vector representations
D1	1	1	1	1	2	[1,1,1,1,2]
D2	1	1	1	1	2	[1,1,1,1,2]

What is the model?

```
from collections import Counter
corpus = [
    "the child makes the dog happy",
    "the dog makes the child happy",
    "my child is happy when playing with another child"
tokenized corpus = [d.split() for d in corpus]
vocabulary = Counter()
for document in tokenized corpus:
   vocabulary.update(document)
vocabulary = sorted(vocabulary)
def BoW(doc, vocabulary):
    bow = [0] * len(vocabulary)
   for word, cnt in Counter(doc).items():
       bow[vocabulary.index(word)] = cnt
    return bow
bows = [BoW(d, vocabulary) for d in tokenized corpus]
```

```
dot distances = dist.squareform(dist.pdist(bows, metric=np.dot))
   np.fill diagonal(dot distances, np.inf)
   display(dot distances)
       [8., inf, 3.],
       [ 3., 3., inf]])
   cos distances = dist.squareform(dist.pdist(bows, metric='cosine'))
   np.fill diagonal(cos distances, np.inf)
   display(cos distances)
array([[
                   inf, 2.22044605e-16, 6.80198925e-01],
       [2.22044605e-16,
                                  inf, 6.80198925e-01],
       [6.80198925e-01, 6.80198925e-01,
                                                  inf]])
   dot distances.argmin(1), cos distances.argmin(1)
```

Working with data is modelling

- How we see the worlds influences how we model it
- How we model the world influences how we see it