4 OSNOVNI PRINCIPI DELOVANJA RAČUNALNIKOV

BRANKO ŠTER

PO KNJIGI - DUŠAN KODEK: ARHITEKTURA IN ORGANIZACIJA RAČUNALNIŠKIH SISTEMOV

Von Neumannov računalniški model

Von Neumann-ov računalnik:

- Sestavljajo ga
 - centralna procesna enota (CPE)
 - glavni pomnilnik (GP)
 - vhodno/izhodni (V/I) sistem
 - 2. Ima program shranjen v GP
 - 3. <u>CPE jemlje ukaze programa iz GP in jih</u> <u>zaporedoma izvršuje</u>

Zgradba von Neumannovega računalnika

Glavni deli von Neumannovega računalnika

1. CPE oz. procesor

- zakaj centralna
- mikroprocesor
- vodi dogajanje v računalniku
- osnovna naloga CPE je jemanje ukazov iz pomnilnika in njihovo izvrševanje
- CPE delimo na tri dele:
 - kontrolna enota nadzoruje aktivnosti
 - prevzem ukazov in operandov
 - aktiviranje operacij
 - 2. aritmetično-logična enota (ALE) izvršuje večino ukazov
 - 3. registri začasno shranjujejo podatke

2. Glavni pomnilnik

- zakaj glavni
- v njem so shranjeni ukazi in operandi
- GP sestavljajo pomnilniške besede (vsaka ima svoj naslov)
- tehnologija DRAM

3. Vhodno/izhodni (V/I, ang. I/O) sistem

- namenjen prenosu informacije iz in v zunanji svet
- vhodno/izhodne oz. periferne naprave so fizično najvidnejši del računalnika
 - tipkovnica, miška, monitor, modem, disk, tiskalnik, ...
 - pretvarjajo informacijo iz CPE v obliko, primerno za človeka ali druge naprave
 - nekatere služijo kot pomožni pomnilnik

Ukaz

- Ukaz je shranjen v eni ali več (sosednih) pomnilniških besedah
- Vsak ukaz vsebuje
 - operacijsko kodo (katera operacija naj se izvrši)
 - informacijo o operandih, nad katerimi naj se izvrši operacija
- Format ukaza pove, kako so biti ukaza razdeljeni na operacijsko kodo in operande

- Naslov prvega ukaza (po vklopu računalnika) je vnaprej določen
- Pri vsakem ukazu sta 2 koraka:

1. Prevzem ukaza iz pomnilnika (fetch)

- to so ukazi strojnega jezika ali strojni ukazi (zaporedje ukazov je program)
- strojni ukaz se bere iz tiste besede v pomnilniku, na katero kaže programski števec (PC, Program Counter)

2. Izvrševanje ukaza (execute)

- ukaz vsebuje operacijo in operande
- CPE (običajno ALE) ukaz izvrši
- PC nato vsebuje naslov naslednjega ukaza
 - običajno PC \leftarrow PC + 1 (razen pri **skočnih ukazih**)

Prekinitve

- Zaporedje teh 2 korakov se ponavlja ves čas delovanja računalnika
 - izjema so prekinitve (interrupt) in pasti (trap)

- takrat se izvrši skok na prvi ukaz prekinitvenega servisnega programa (PSP)
 - pred tem se shrani vrednost PC

Glavni pomnilnik

- V glavni pomnilnik (GP) se shranjujejo ukazi in operandi
- GP je pasiven
- Za zmogljivost računalnika je pomembno, da se med CPE in GP lahko prenese dovolj informacije
 - "promet": prenosi med CPE in GP
 - ozko grlo von Neumann-ovega računalnika
 - ena od rešitev je Harvardska arhitektura (po Harvard Mark I-IV)
 - ima pomnilnik za ukaze in pomnilnik za operande
 - običajna arhitektura se imenuje Princetonska (zaradi IAS)

Princetonska arhitektura

Harvardska arhitektura

Danes prevladuje Princetonska arhitektura, vendar z ločenima predpomnilnikoma za ukaze in operande:

Pomnilniške besede

- GP je zaporedje pomnilniških besed oz. pomnilniških lokacij
 - dolžina pomnilniške besede je število pomnilnih celic v njej (vsaka hrani 1 bit informacije)
 - dolžina pomnilniške besede je najpogosteje 8 bitov (1 byte oz. bajt,
 1B)
 - vsaka lokacija ima svoj naslov
 - pomnilniška beseda je definirana kot <u>najmanjše število bitov s</u> <u>svojim naslovom</u>
 - iz pomnilnika ni možno prebrati (ali vanj vpisati) manj kot eno besedo

GP z dolžino besede 8 bitov:

Naslovni prostor

- velikost naslovnega prostora = 2 dolžina naslova (v bitih)
 - npr. pri 12-bitnem naslovu je naslovni prostor velikosti 2¹² = 4096 pomnilniških besed oz. 4K
 - $2^{10} = 1024 = 1K$ (kilo),
 - $2^{20} = 1048576 = 1M \text{ (mega)},$
 - 2³⁰ = 1 073 741 824 = 1G (giga)
 - $2^{40} = 1T \text{ (tera)}$
- Vsebina pom. besede se lahko spreminja
 - v 8-bitno besedo lahko shranimo 2⁸ različnih vsebin
- Če so registri večji kot pomnilniška beseda, je možen dostop tudi do več besed naenkrat (vsaj pri večini računalnikov)
 - npr. 32-bitni registri in 8-bitna beseda: dostop do 4 zaporednih besed hkrati (GP v obliki 4 pom.)

- CPE uporablja GP tako, da poda naslov besede in smer prenosa (lahko pa tudi št. besed)
- Dostop do pomnilnika (glede na smer prenosa):
 - branje iz pomnilnika (5x bolj pogosto)
 - pisanje v pomnilnik
- Informacije potujejo po vodilih
- CPE da naslov na naslovno vodilo in s krmilnimi (kontrolnimi) signali pove pomnilniku, da želi dostopiti do pomnilniške besede s tem naslovom
 - Pri branju pričakuje, da bo pomnilnik dal podatek na podatkovno vodilo
 - Pri pisanju da CPE na podatkovno vodilo podatek, ki se zapiše v pomnilnik

MAR in MDR

- CPE običajno vsebuje tudi
 - naslovni register oz. MAR (memory address register)
 - vsebuje naslov pomnilniške besede, do katere želimo dostopiti
 - podatkovni register oz. MDR (memory data register)
 - sem se pri branju zapiše iz pomnilnika prebrana vrednost
 - pri pisanju je v njem vrednost, ki naj se zapiše v pomnilnik
- MAR in MDR sta povezana s pomnilnikom preko naslovnih oz. podatkovnih signalov (vodil)
 - poleg teh obstajajo tudi kontrolni signali (smer prenosa (branje/pisanje), število besed, časovni parametri, ...)

- Dolžina MAR je enaka dolžini naslova
 - isto dolžina PC
 - če naslovni prostor postane premajhen, je to lahko velik problem
 - naslovi nastopajo tudi kot operandi
 - povečanje naslova pomeni drugačno zgradbo ukazov in s tem nekompatibilnost za nazaj (kar kažejo tudi ☺ izkušnje proizvajalcev)

- Dolžina MDR določa število bitov, ki se lahko naenkrat prenesejo med CPE in GP
 - enaka večkratniku dolžine pom. besede
 - njeno povečanje ni tako težavno
 - dolžina MDR vpliva na število dostopov za operand določene velikosti (npr. 64=2*32)
 - programer tega ne vidi

Povzetek

- CPE da naslov na naslovno vodilo in s kontrolnimi signali pove pomnilniku, da želi dostopiti do pom. besede s tem naslovom
 - Pri branju pričakuje, da bo pomnilnik dal podatek na podatkovno vodilo
 - Pri pisanju da CPE na podatkovno vodilo podatek, ki se zapiše v pomnilnik

Vhod in izhod

- Osnovna naloga V/I sistema je pretvorba informacije iz ene oblike v drugo
 - izjema so naprave za shranjevanje informacije, ki tudi spadajo v to skupino
 - rečemo jim pomožni pomnilniki (npr. magnetni disk, optični disk, magnetni trak)
 - cena, obstojnost informacije
- Osnovni način delovanja V/I sistema je prenos podatkov
 - med GP in V/I napravami ali
 - med CPE in napravami
- Razlike med rač. glede izvedbe V/I so velike
 - pri znanstvenem računanju malo V/I prenosov
 - pri poslovnem veliko

2 skupini izvedb V/I sistema:

1. Programski vhod/izhod (programmed I/O)

- z V/I napravo komunicira CPE
- vsak podatek se prenese iz GP v CPE in nato v napravo ali obratno
- prenos je realiziran z zaporedjem ukazov
- hiba je počasnost in zasedenost CPE

2. Neposredni dostop do pomnilnika (direct memory access - DMA)

- naprava komunicira neposredno z GP
- zato rabimo DMA krmilnik, ki nadomesti CPE
- posebna izvedba DMA krmilnikov so vhodno/izhodni procesorji

Pri mnogih računalnikih srečamo oba načina dostopa

- za počasne naprave je primeren programski vhod/izhod
- za hitre oz. podatkovno zahtevne je nujen DMA, ker bi bil programski prepočasen

Vsaka V/I naprava je priključena preko **krmilnika naprave** (device controller)

- vezje, ki omogoča prenos podatkov v napravo in iz nje
 - lahko preprost (register), lahko kompliciran (specializiran računalnik)
- na nekatere krmilnike je mogoče priključiti več naprav
- s krmilnikom komuniciramo preko njegovih registrov
 - pisanje in branje pri njih sproži neko operacijo v napravi ali odraža stanje po prejšnji operaciji
 - npr., s pisanjem v ukazni register krmilnika magnetnega diska dosežemo premik bralnopisalne glave na določeno sled, z branjem statusnega registra pa lahko ugotovimo, kdaj je premik končan

Registri krmilnikov so lahko v <u>istem</u> naslovnem prostoru kot GP, lahko pa v <u>posebnem</u>

Ločimo 3 izvedbe:

1. Pomnilniško preslikan vhod/izhod (memory mapped I/O)

- registri krmilnikov so v pomnilniškem naslovnem prostoru
- iz CPE so videti kot pomnilniške lokacije
- iz njih bere in vanje piše z ukazi za dostop do pom.
- ni posebnih V/I ukazov

2. Ločen vhodno/izhodni prostor

- registri krmilnikov so v posebnem naslovnem prostoru
- za dostop do registrov so potrebni posebni V/I ukazi
- pri tem CPE aktivira tudi določen(e) signal(e), ki pove(jo), da se naslavlja V/I naslovni prostor

3. Posredno preko vhodno/izhodnih procesorjev

- tudi tu so registri krmilnikov v posebnem naslovnem prostoru, ki pa iz CPE ni neposredno dostopen
- vmes so še vhodno/izhodni procesorji (razbremenijo CPE)
- pri velikih računalnikih

Računalnik kot zaporedje navideznih računalnikov

- Večine uporabnikov arhitektura računalnika (pravzaprav) posebno ne zanima
 - programske jezike lahko implementiramo na različnih računalnikih
- Tanenbaum, 1984:
 - Računalnik kot zaporedje navideznih računalnikov
 - Vsak nivo si lahko predstavljamo kot navidezni računalnik, ki ima za "strojni" jezik kar jezik tega nivoja (večina uporabnikov se spodnjih nivojev niti ne zaveda)

6 nivojev:

Nivo 5: Višji prog. jezik

prevajanje ali interpretiranje

Nivo 4: Zbirni jezik

prevajanje

Nivo 3: Operacijski sistem

interpretiranje

Nivo 2: Strojni jezik

interpretiranje

Nivo 1: Mikroprogramski jezik

interpretiranje

Nivo 0: Digitalna logika

2 mehanizma za prehod med nivojema:

- Prevajanje (prevajalnik)
 - izvorni program v enem jeziku
 - ciljni program (object program) v drugem (nižjem) jeziku
 - izvornega načelno ne rabimo več
- Interpretacija (interpreter)
 - izvorni program se prevaja sproti
 - ukaz se prevede in izvrši
 - rabimo ga ves čas
 - bolj fleksibilno
 - večja prenosljivost
 - manjša hitrost
- delno prevajanje
 - prevajanje v vmesno kodo, ki se jo interpretira
 - npr. Java

Strojna in programska oprema računalnika

- Delitev
 - hardware
 - software
 - firmware
 - program, ki je vgrajen v HW napravo (kot ROM ali bliskovni pomnilnik) in skrbi za njeno osnovno funkcionalnost
- Strojna in programska oprema sta funcionalno ekvivalentni
 - poljuben računalnik bi se načeloma dalo realizirati samo z elektroniko (dovolj kompleksno)