NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER 2 EXAMINATION 2013-2014

PAP723 – Advanced Numerical Methods for Physicists

MAY 2014 TIME ALLOWED: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains **FOUR (4)** questions and comprises **SIX (6)** pages.
- 2. Answer **ALL** questions.
- 3. Answer each question beginning on a **FRESH** page of the answer book.
- 4. Candidates may use calculators. However, they should write down systematically the steps in the workings.
- 5. This is a **CLOSED BOOK** exam.

1. Finite-Difference Schemes in 1D (20 marks total)

Consider the Schrödinger wave equation with a constant potential V_0 , in a onedimensional space of length L (with $\hbar = m = 1$):

$$\left[-\frac{1}{2} \frac{d^2}{dx^2} + V(x) \right] \psi(x) = E\psi(x), \qquad 0 \le x \le L.$$

Following the finite-difference method, we discretize space into N points $\{x_0, x_1, \dots, x_{N-1}\}$, which are equally-spaced with $\Delta x \equiv x_{j+1} - x_j$.

(a) Consider Dirichlet boundary conditions: $\psi(0) = \psi(L) = 0$. Define a set of finite-difference points $\{x_j\}$, in terms of N and L. Hence, find the finite-difference matrix equation.

(3 marks)

(b) Consider "Robin boundary conditions": for independent constants α and β ,

$$\psi'(x=0) + \alpha \, \psi(x=0) = 0,$$

$$\psi'(x=L) + \beta \, \psi(x=L) = 0.$$

Define $\{x_j\}$ in terms of N and L, and find the finite-difference matrix equation. Under what circumstances is the finite-difference matrix Hermitian? (5 marks)

(c) Consider "twisted boundary conditions": for some constant K,

$$\psi(L) = \psi(0) e^{iKL}.$$

Define $\{x_j\}$ in terms of N and L, and find the finite-difference matrix equation. Under what circumstances is the finite-difference matrix Hermitian?

(5 marks)

(d) Consider "outgoing boundary conditions",

$$\psi'(0) = -ik\psi(0)$$

$$\psi'(L) = +ik\psi(L),$$

where k is a constant. Define $\{x_j\}$ in terms of N and L, and find the finite-difference matrix equation. Under what circumstances is the finite-difference matrix Hermitian?

(7 marks)

2. Finite-Difference Schemes in 2D (30 marks total)

In two dimensions, a finite-difference grid is labeled by two indices (m, n) where $0 \le m < M$ and $0 \le n < N$. The field at grid index (m, n) is denoted $\psi_{m,n}$. Consider Schrödinger's wave equation

$$\left[-\frac{1}{2}\nabla^2 + V(x,y) \right] \psi(x,y) = E\psi(x,y).$$

This can be written as a finite-difference equation of the form

$$\sum_{m'n'} H_{mn,m'n'} \, \psi_{m'n'} = E \psi_{mn}.$$

(a) For 2D Cartesian coordinates, let m be the x index, with grid spacing Δx ; let n be the y index, with grid spacing Δy . Derive $H_{mn,m'n'}$, expressing it in terms of Kronecker deltas (δ_{pq}) . Ignore boundary conditions.

(6 marks)

(b) Consider a grid with M=4 and N=3, defined in a rectangular domain $x \in [0, L_x], y \in [0, L_y]$ with Dirichlet conditions at the boundaries. Define an appropriate set of grid points, stating clearly the (x, y) coordinates of grid point (m, n). Hence, write down the 12×12 finite-difference matrix H.

(7 marks)

(c) In polar coordinates (r, ϕ) , the Laplacian can be written as

$$\nabla^2 \psi = \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\partial^2 \psi}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \phi^2}.$$

Consider Dirichlet boundary conditions at radius R, i.e. $\psi(R,\phi) = 0$. Define an appropriate set of polar grid points indexed by (m,n), where m is the radial index and n is the azimuthal index. State the (r,ϕ) coordinates of grid index (m,n). Hence, derive $H_{mn,m'n'}$, expressing it in terms of Kronecker deltas.

(12 marks)

(d) For M=4 and N=3, write down the finite-difference matrix. (5 marks)

3. Fourier Analysis (30 marks total)

Consider the truncated Fourier integral

$$F(\omega;T) = \int_0^T dt \ e^{-i\omega t} f(t).$$

(a) Let $f(t) = A e^{i\omega_0 t}$, where $\omega_0 \in \mathbb{R}$. Calculate $F(\omega; T)$.

(4 marks)

- (b) Sketch $|F(\omega;T)|$ versus ω . On this sketch, indicate and state: (i) the height of the main Fourier peak, and (ii) the frequencies of the sidelobe peaks.

 (4 marks)
- (c) Is it possible to resolve the peaks and troughs of these sidelobes with a single discrete Fourier transform? If so, find the required Δt . If not, explain why not.

 (4 marks)
- (d) Consider a Fourier integral with an exponential window function:

$$F(\omega; T, \gamma) = \int_0^T dt \ e^{-i\omega t} e^{-\gamma |t - \frac{T}{2}|} f(t).$$

Sketch the window function as a function of t.

(2 marks)

(e) Find $F(\omega; T, \gamma)$ for $f(t) = A e^{i\omega_0 t}$. Hence, sketch $|F(\omega; T, \gamma)|$ versus ω for $\gamma \gg T$. State the Fourier peak's width and height, and the area under the curve. Express your answers in terms of A, γ , T, and/or ω_0 .

(8 marks)

(f) The discrete Fourier transform's standard definition is

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i k n/N}.$$

Let $[f(t_0), f(t_1), \dots f(t_{N-1})]$ be N sampled values of f(t), taken at equal time intervals $\Delta t = t_{n+1} - t_n$. We wish to find the Fourier transform $F(\omega; T)$, for a frequency range centered at zero: $\omega \in [-\Omega, \Omega]$ for some Ω .

Derive an appropriate set of discretized frequencies ω_k , which includes both positive and negative values centered at zero. Hence, derive $F(\omega_k; T)$ in terms of $[f(t_0), f(t_1), \dots f(t_{N-1})]$. For the case where f(t) is real, derive the symmetry of the resulting discrete Fourier spectrum.

(8 marks)

4. Markov chains (20 marks total)

Consider a Markov chain of N states, with the following state diagram:

- (a) For N = 5, write down the transition matrix $P_{mn} \equiv P(m|n)$. (3 marks)
- (b) Find the steady-state probability distribution $\{p_n\}$, in terms of the transition probabilities a_m and b_m .

 (3 marks)
- (c) Suppose the Markov chain represents a thermodynamic system with state energies $E_0, E_1, \ldots, E_{N-1}$, at temperature T. What conditions should the transition probabilities a_m , and b_m satisfy?

 (4 marks)
- (d) Suppose we wish to perform a Monte Carlo simulation of this thermodynamic system, following this rule:
 - If the system is in state 0, then during the next Monte Carlo step, it transitions to one of the states $\{1, 2, ..., N-1\}$, with equal probability.

If the system is in state n > 0, what is the rule for choosing the next step? (4 marks)

Note: Question no. 4 continues on Page 6.

(e) Fill in the Scipy code to perform a simulation based on the above Monte Carlo scheme, starting with the lines below. The simulation should calculate the thermodynamic average of a quantity X. The variable $\mathbb N$ is the number of states, nsteps is the number of Monte Carlo steps, $\mathbb E$ is an array containing the state energies, and $\mathbb X$ is an array containing the X values for the various states. You can use the function random.randrange(a,b), which returns a random integer $a \leq m < b$.

(6 marks)

```
N, nsteps = 100, 1000
```

E = linspace(0, 20, N) # State energies

X = random.random(N) # Value of X for each state