

IKEv2: IPSec Key Management Protocol

IP Security Architecture

SAD: Security Association Database

SPD: Security Policy Database

Wireshark capture

Outline

- Motivations of Automated Key Management
- Key Concepts
 - Diffie-Hellman Key Exchange Protocol
 - Perfect Forward Secrecy
 - Pseudo-Random Function (PRF)
- IKEv2
 - Authentication and Key Generation
 - Cryptographic Algorithm Negotiation
 - Re-keying
- Some Comments on IKEv2

Why Automated Key Management?

- AH & ESP need keys.
- Manual Techniques
 - They are the simplest.
 - They are practical only in a small and static environment.
 - They need the human intervention and can easily lead to mis-configurations.
 - They do not scale well.
 - Static key is not good for security.

Revision: Any problem about DH?

Diffie-Hellman Key Exchange Protocol

 Y_A

 Y_B

User A

Generate random

$$X_A < p$$

calculate

$$Y_A = \alpha^{X_A} \bmod p$$

Calculate

$$k = (Y_B)^{X_A} \bmod p$$

User B

Generate random

$$X_B < p$$

Calculate

$$Y_B = \alpha^{X_B} \mod p$$

Calculate

$$k = (Y_A)^{X_B} \bmod p$$

Diffie-Hellman in Practice

- Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE)
 - 768-bit modulus and primitive root 2.
 - 1024-bit modulus and primitive root 2.
 - Two "elliptic curve" DH parameters (details omitted here)
 - 1536-bit MODP Group
 - 2048-bit MODP Group
 - 3072-bit MODP Group
 - 4096-bit MODP Group
 - 6144-bit MODP Group
 - 8192-bit MODP Group

Perfect Forward Secrecy (PFS)

- By perfect forward secrecy we mean that the compromise of a single session key will not compromise other session keys.
- To this end, any key should not be derived from any predecessor key.

Pseudo-Random Function (PRF)

- A PRF function takes a <u>variable</u> length key, <u>variable</u>
 length data and produces a <u>fixed</u> length output.
 - e.g., a keyed hash function h_k obtained from a hash function h with the HMAC method.
- A PRF is used in IKE for generating keying materials and authentication (details will be given later).
- In RFC4307: Recommended PRF
 - PRF_HMAC_SHA1 MUST RFC2104
 - PRF HMAC MD5 MAY RFC2104
 - PRF_AES128_CBC SHOULD+ AES-PRF
- Technical details of these PRFs are omitted here.

PRF+

prf+(K,S) = T1, T2, T3, T4, ...

where the blocks of strings:

 $T1 = prf(K, S \mid 0x01)$

T2 = prf(K, T1 | S | 0x02)

T3 = prf(K, T2 | S | 0x03)

T4 = prf(K, T3 | S | 0x04)

. . .

where

means concatenation

0x01 etc. are constants

A number of Ti's are computed iteratively as needed

Outline

- Motivations of Key Management
- Key Concepts
 - Diffie-Hellman Key Exchange Protocol
 - Perfect Forward Secrecy
- IKEv2
 - Authentication and Key Generation
 - Cryptographic Algorithm Negotiation
 - Re-keying
- Some Comments on IKEv2

IKEv2 Outline

IKEv2 Protocol

Phase 1, Step 1: IKE_SA_INIT

- Negotiate IKE algorithms (Ciphers, Hash algorithms, DH group)
- Compute four secret keys for IKE
- Compute master secret k_d for computing IPSec keys in Phase 2.
- Compute two mutual authentication keys for Step 2 of Phase 1 below.

Phase 1, Step 2: IKE_AUTH

- Mutual authentications (two choices)
- Negotiation of IPsec algorithms (piggybacked here)

Phase 2: CREATE_CHILD_SA

Setup IPSec security associations

Phase 1.1: IKE SA INIT (1)

Initiator

Responder

HDR, SAi1, KEI, NI

- HDR (IKE header)
 - Version number
 - SPIi: A value chosen by the initiator to identify this IKE security association.
- · SAi1
 - Supported crypto algorithms of initiator for the IKE_SA (DH) group, encrpt, authen algor for protecting the messages in Phase 1.2 and Phase 2, prf)
- KEx

· Diffie-Hellman values

HDR, SAr1, KEr, Nr, [CERTREQ]

- Nx
 - Nonce of Init./Responder
 - Used for authentication & computing secret keys
- SAr1
 - Expressed choice based on SAi1
- [CERTREQ]
 - Optional request that decides a mutual authentication method

Phase 1.1: IKE_SA_INIT (2)

- After exchanging two messages, each party can generate SKEYSEED based on the values in KEi and KEr by DH
 - SKEYSEED=prf(Ni | Nr, g^(s_is_r)) [Remark: s_i the secret of I]

 Nonces add the freshness to the key materials.
 - {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr} =
 prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)
 The prefix of output of the function prf+ is cut into pieces as different keys
- SK_d is the master secret that will be used to compute IPSec SA keys later in Phase 2.
- Messages in Phase 1.2 and Phase 2 will be integrity protected and encrypted by SK_ai, SK_ei, SK_ar, SK_er, respect.
- SK_pi and SK_pr are pre-shared secret keys for authentication in Phase 1.2 (technical details of this authentication method are given later).

Phase 1.2: IKE_AUTH (1)

Initiator Responder

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]

AUTHi, SAi2, TSi, TSr}

- {...}
 - indicated payloads are encrypted and integrity protected using that direction's SK_e & SK_a and the IKE encryption and auth algorithms
- IDi, IDr
 - For authentication by preshared secrets (SK_pi, SK_pr) (details given later)
- AUTHX
 - Preshared secrets (SK_pi, SK_pr) (details given later)
 - Digital signature (details given later)

- SAi2/SAr2 piggybacked here
 - For CREATE_CHILD_SA
 - They contain only algorithms
- TSx
 - Traffic Selector Info (IP Add + Port)
 - It defines which traffic to be protected by SAi2, SAr2
 - It contains protocol, port range, address range
 - TSi = (0, 0-65535,192.0.2.202-192.0.2.202)
 - TSr = (0, 0-65535,192.0.2.0-192.0.2.255)

The Whole Picture of Phase 1

Remark 1: [CERTREQ] means authentication with digital certificate.

Remark 2: "SK{}" means encryption using the keys sk_{ei} and sk_{er}.

Remark 2: SAi2 and SAr2 are negotiations of IPSec SA algorithms, piggybacked in this authentication step.

Mutual Authent. by AUTH (2)

- Digital Signature Based
 - Requires individual [CERT] exist in both messages
 - [CERTREQ] indicates to use certificate authentication
 - <u>Initiator signs</u> the 1st message appended by Nr and prf(SK_pi, IDi)
 - responder signs the 2nd message appended by Ni and prf(SK_pr, IDr)
- Pre-shared Key (SK_pi, SK_pr)
 - Authenticators AUTHx use the negotiated prf function
 - AUTHx = prf(prf(Shared Secret, "Key Pad for IKEv2"),
 <InitiatorSignedOctets> or <ResponderSignedOctets>)
 - "InitiatorSignedOctets" involves: 1st message in Phase
 1.1, Nr, IDi, prf(SK_pi, IDi)
 - "ResponderSignedOctets" is similar.

CHILD_SA Negotiations in IKE_AUTH

- Establishment of CHILD_SA is piggybacked in IKE_AUTH
- Initiator proposes SAi2 in message 3
- Responder answers SAr2 in message 4
- Traffic protected by the SA is also negotiated through traffic selectors (TSi, TSr)

Phase 2: CREATE_CHILD_SA

Initiator

Responder

HDR, SK {[N], [SAi], Ni, [KEi], [TSi, TSr]}

- [N]: Indication negotiation of new IPSec SA
- [KEx]
 - Diffie-Hellman value, different from those in Phase 1.1
 - Used only when PFS is required. In this case, they will be used in computing new IPSec keys
- [TSx]
 - Traffic Selector Negotiations for new IPSec SA
 - · Used only when [N] is used
- If [N] is not used, this is the 1st IPSec SA creation under this IKE SA
- The protection SK{} here is by the IKE SA negotiated before.
- Ni and Nr should be different from those in Phase 1.1. They and SK_d are used to compute IPSec secretr keys.

HDR, SK {[SAr], Nr, [KEr], [TSi, TSr]}

- An established IKE SA may be used to create many IPSec SAs and may be used for a long time.
- A set of IPSec algorithms was already negotiated in Phase 1.2.
 - However, if a new IPSec SA should be created, then [N] is used to indicate this. At the same time, new [KEi] and [TSi, TSr] (different from those in Phase 1.2) may be negotiated.
- The Ni and Nr here are different from those in Phase 1.1, and will be used to compute IPSec secret keys.

Finally, Keys for AH or ESP

- After CREATE_CHILD_SA, the key(s) for AH or ESP will be generated!
- KEYMAT = prf+(SK_d, Ni | Nr)
 - Ni and Nr are the new nonces in Phase 2
 - They are independent of the two nonces in Phase 1
 - · KEYMAT is cut into pieces as AH and/or ESP keys
- For stronger PFS
 - KEYMAT = prf+(SK_d, g^(s_i s_r) (new) | Ni | Nr),
 - Where g^s_i and g^s_r are the new DH values in Phase 2, SK_d is the old one Phase 1, Ni and Nr are new ones in Phase 2.
 - KEYMAT is cut into pieces as AH and/or ESP keys

Outline

- inkor Inkorformacion.com

- Motivations of Key Management
- Key Concepts
 - Diffie-Hellman Key Exchange Protocol
 - Perfect Forward Secrecy
 - Pseudo-Random Function (PRF)
- IKEv2
 - Authentication and Key Generation
 - Cryptographic Algorithm Negotiation
 - Re-keying
- Improvements over IKE (v1)
- Some Comments on IKEv2

Cryptographic Algorithm Negotiation

- "SA" payload consists of one or more proposals:
 - IPSec protocols: IKE, ESP, AH
 - Cryptographic algorithms associated with each protocol
 - A prf function may be included
- The responder answers this choice based on the proposals proposed by the Initiator

Re-keying

- Secret keys of IKE, ESP and AH should be only used in a limited amount of time.
- After SA lifetime expires, re-keying must be done.
- Either side thinks that an SA has been used for enough time, it negotiates a new SA.
- After the new SA is setup, delete the old one.

Outline

- Motivations of Key Management
- Key Concepts
 - Diffie-Hellman Key Exchange Protocol
 - Perfect Forward Secrecy
- IKEv2
 - Authentication and Key Generation
 - Cryptographic Algorithm Negotiation
 - Re-keying
- Comments about IKEv2

Some Comments on IKEv2

- It's debatable to keep the Phase I & II architecture
- Still over-flexible in terms of
 - Optional choice of PFS in CREATE_CHILD_SA
- A revised version of IKEv2 was leased in 2014 and is available in: https://tools.ietf.org/html/rfc7296
 - It is now a <u>standard</u>.
- · A "minimal" version of March 2016 can be found in:

https://datatracker.ietf.org/doc/rfc7815/

References

- Bellovin, S., "COMS W4180 Session 11 IP Sec",
 http://www.cs.columbia.edu/~smb/classes/f06/l10.pdf
- Lee, Kyesang., "Internet Key Exchange version 2 (IKEv2) protocol", http://seclab.cs.ucdavis.edu/seminars/IKEv2.ppt
- Paterson, K., "A Cryptographic Tour of the IPsec Standards", http://eprint.iacr.org/2006/097.pdf
- Perlman, R., Kaufman, C., "Key exchange in IPSec: analysis of IKE", IEEE Internet Computing, Vol. 4 Issue: 6, Nov.-Dec. 2000, pp. 50 -56.
- Harkins, Kaufman, Kivinen, Kent, Perlman, "Design Rationale for IKEv2", www3.ietf.org/proceedings/02jul/I-D/draft-ietfipsec-ikev2-rationale-00.txt

