Learning Objectives

In this tutorial, you will practice using the definition of a vector space and practice identifying when a set is a subspace of a given vector space.

In MAT 223, you studied the vector space \mathbb{R}^n . In MAT 224, you will see further examples of vector spaces.

Before beginning the tutorial, you should be able to define the following terms using precise mathematical language: a field, a vector space over a field, a subspace of a vector space. For more information, you may read the textbook Damiano and Little Sections 1.1 and 1.2.

Problems

1. Let n be a non-negative integer. Let

$$P_n = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n | a_0, \dots, a_n \in \mathbb{R}\}\$$

be the set of polynomials of degree less than or equal to n with real coefficients.

- (a) Describe how there is an addition and scalar multiplication on P_n .
- (b) Show that addition defined in part (a) on P_n satisfies the axioms of a vector space.
- (c) Show that the scalar multiplication defined in part (a) on P_n satisfies the axioms of a vector space.
- 2. In each part decide whether or not the given subset of P_n is a vector space together with the addition and scalar multiplication of P_n . If yes, provide a proof. If not, show which axiom of a vector space is violated.
 - (a) The subset $S \subset P_n$ of polynomials with non-negative coefficients.
 - (b) The subset $R \subset P_n$ of polynomials with rational coefficients.
 - (c) Let $P := \bigcup_{n=1}^{\infty} P_n$. Explain what P is in words. Is P a vector space over \mathbb{R} ?
- 3. Let \mathcal{C} be the set of all continuous functions from \mathbb{R} to \mathbb{R} . We may give \mathcal{C} the structure of a vector space, by defining by (f+g)(x)=f(x)+g(x) and (kf)(x)=kf(x) for all $f,g\in\mathcal{C},k\in\mathbb{R}$ and $x\in\mathbb{R}$.

Consider each of the following subsets of \mathcal{C} . In each part decide whether or not the given subset of \mathcal{C} is a vector space together with the addition and scalar multiplication of \mathcal{C} . In other words, decide whether the given subset is a subspace of \mathcal{C} . If yes, provide a proof. If not, show which axiom of a vector space is violated.

- (a) The subset $C^1 \subset C$ of continuous functions from \mathbb{R} to \mathbb{R} that have a first derivative.
- (b) The set $C^r \subset C$ of continuous functions from \mathbb{R} to \mathbb{R} that have an r^{th} derivative, for any integer $r \geq 2$.
- (c) The set $V \subset \mathcal{C}^2$ of functions satisfying the equation f'' = f.
- (d) The set $V \subset \mathcal{C}^2$ of functions satisfying the equation f'' = f + 1.

¹You do not need to solve the differential equation to make a conclusion.

Q1. (a) To define the addition and scalar multiplication, we Up, q6 Pn, where p=ao+a, x+a2x2+...+anxn, Uken. q = bo + b, x + b2x2 + ... + bnxn. Gives (ao+a,x+a,x2+...+ anxn) + (bo+b,x+b,x2+...+ bnxn). = (a0+b0) + (a1+b1) x + (a2+b2) x2+1+ (an+bn) xn (Addition). $k(a_0+a_1x+a_2x^2+\cdots+a_nx^n)$ = kao + ka, x + ka, x² + ... + kan xn. (scalar multiplication). (b) Axiome for addition: D Up.q & Pn. P+q=(ao+a, x+a,x2+...+anxn)+(bo+b,x+b=x2+...+bnxn) = (bo + b1 x + b2x2+ ++ bnx) + (ao +a1x +a2x2++++ anxn) = q + p. (Commutative) O Pp.q.r&Pn. (p+q)+r=(a0+b0)+(a,+b,)x+(a2+b2)x2+...+(an+bn)xn+ CCO+GX+C2x2+ ··· + Cnxn). = [(a o + a, x + a, x 2 + ... + a, x n) + (b o + b, x + b, x 2 + ... + b, x n)] + (Co+C1x+C2x2+1++Cnxn). = $(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) + (b_0 + c_0) + (b_1 + c_1)x + cb_2 + c_2)$ χ^2 + ... + (bn + cn) χ^n . = p + (q +r) (Associativity). 3 & p & Pn. Take = = bo + b1 x + b2 x2 + 1 + bn xn \vec{o} + \vec{p} = \vec{p} . => (ao+bo) +(a, +b,) x+(a+b) x2 + ++++ +(an+bn)xn = ao+ax +6x2+++++ Thus, bo = b1 = b2 = - = bn =0. $\vec{o} = 0 + 0x + 0x^2 + \dots + 0x^n \quad (Additive Scientity)$

_	spoee	U	æ	Pro	ved	ts	Q	?/.											
Q3	(a).																	nopei	ties.
	Siree V			fu c								re	Can	06	toù	r E	kat.		
	V	f.	e. C	,1	A K	€ 11	Ž.	CK	f),	= }	k f	, , ,	wher	e j	He t	odel F	litisa	. <i>Q1</i>	d
	nulti vector				J	egon.	, <u> </u>	<i>(</i> 03		wex		S U		CSUU	0 6	7	MACH	_′3	G
	U). 7												Y				(0)	ı, si	nee.
	those \	,									1		60th			t.			
	b	, f	ë (, †	w	lere	13	۷,	YK	e W		ckt	^	= k·	<i>f</i> ,		e t		•
	addi spoe		Cun	OL Y	nui	orjaci	com		ave		SECC 1	W	uch	U	7	S 0	x ve	2801	
	(c) 7	fes.	fo		VC	: C	2,	V -	ts	non	-en	yty	sin	ee	wh	en '	f(x)	=0,	
	(c) ?; f" = !	f.	Sin	ee	tha	se .	fun	etiva	8	are	Cı	m bi .	nuoi	ا ,ی	ve	Can	ob	bai)	n
		17 T	f, e) e	V, V k	C7	f+6	g)" Ckf	= 7)'=	f" + k·	g" f'	= f whe	19. 19.	the	O(C)	ldöf	, 7871	and	,
	nulti	plic 1	ativ	אני אני	are Spor	. c.	lose	d	pro	riclei	l -	by .	the	qe	vezt	ier.	W	isch	V
								י אנד	1s	ne	ob	in	ν	רעו יי	`ola	tina	y QQ	Jels.	tive
	(d). Iden	fifu	4 .			7										U	r OG		