Wstęp do uczenia maszynowego

Regularyzacja, redukcja wymiaru

Ewa Szczurek + BW (modyfikacje)

bartek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski

22 kwietnia 2024

Metody regularyzacji estymacji współczynników

Przypomnienie

• Metoda najmniejszych kwadratów: minimalizacja RSS

$$RSS = \sum_{i=1}^{n} \left(y_i - \hat{y}_i \right)^2.$$

• Dla modelu liniowego

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2.$$

Regresja grzbietowa (ridge regression)

 Podobnie, plus kara ściągająca (shrinkage penalty). Minimalizacja wyrażenia

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

gdzie $\lambda \geq 0$ jest **parametrem sterującym** metody (*tuning parameter*), dobieranym osobno.

- ullet Parametr λ kontroluje jak silnie parametry są ściągane do 0.
 - Dla $\lambda = 0$ zwykła metoda najmniejszych kwadratów.
 - Dla $\lambda \to \infty$ współczynniki β_i kurczą się do zera.
- ullet Nie ściągamy wyrazu wolnego eta_0 jest to predykcja średniej wartości zmiennej objaśnianej gdy wszystkie predyktory są równe 0.
- Gdy wszystkie kolumny X scentrowane wokół 0

$$\hat{\beta}_0 = \bar{y} = \sum_{i=1}^n y_i / n.$$

Regresja grzbietowa dla danych 'Credit'

- ullet \hat{eta}^R_λ wektor wyestymowany dla regresji grzbietowej i parametru λ
- ullet \hat{eta} wektor wyestymowany dla metody najmniejszych kwadratów
- $ullet \ ||eta||_2 = \sqrt{\sum_{j=1}^p eta_j^2}$ (norma ℓ_2). Mierzy odległość eta od 0.
- ullet Przy rosnącym λ , $||\hat{eta}_{\lambda}^R||_2$ zawsze maleje.

Uwaga: skalowanie predyktorów ma znaczenie

- W przypadku regresji liniowej: pomnożenie predyktora X_j przez stałą c zmniejsza estymowany parametr o 1/c ($X_j\hat{\beta}_j$ się nie zmienia)
- W przypadku regresji grzbietowej, z powodu kary ściągającej skalowanie predyktora X_j może znacząco zmienić zarówno estmowany parametr $\hat{\beta}_i$ jak i inne predyktory
 - Przykład: zmiana jednostek zarobków rocznych z PLN na 1000PLN
- Przed zastosowaniem regresji liniowej standaryzuje się predyktory tak aby były w tej samej skali.

Przewaga regresji grzbietowej nad metodą najmniejszych kwadratów (dane symulowane)

- Czarny obciążenie; zielony wariancja; purpurowy MSE.
- ullet Zwiększanie λ powoduje zmniejszenie elastyczności, a zatem zmniejszenie wariancji oraz zwiększenie obciążenia.
- MSE dla metody najmniejszych kwadratów ($\lambda=0$) jest większe niż dla odpowiednio dobranego parametru $\lambda>10$.
- ullet Właściwy dobór λ jest krytycznie ważny.

Regresja grzbietowa a metoda najmniejszych kwadratów

- W powyższym przykładzie mieliśmy n=50 obserwacji i p=45 predyktorów.
- Kiedy liczba predyktorów p jest bliska liczbie obserwacji n to metoda najmniejszych kwadratów ma dużą wariancję – nieduża zmiana w danych treningowych może powodować dużą zmianę wyestymowanych parametrów.
- Gdy p>n to metoda najmniejszych kwadratów przestaje działać (brak jednoznaczności estymacji), a regresja grzbietowa pozwala wybrać najlepszy model spośród wielu dających RSS=0.
- Grzbietowa regresja może być użyta do wyboru modelu (zamiast metod typu wyszukiwanie w przód) pomijamy te predyktory, dla których współczynnik β_j jest mały. Tu konieczny jest jakiś dobór odcięcia.

Metoda *lasso*

- Regresja grzbietowa tworzy modele zawierające wszystkie p predyktorów. Współczynniki β_j kurczą się ze wzrostem λ , ale nie muszą osiągać zera.
- Metoda lasso polega na minimalizacji wyrażenia

$$\sum_{i+1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|,$$

gdzie $\lambda \geq 0$ jest specjalnie dobranym parametrem sterującym.

- Tutaj $||\beta||_1 = \sum |\beta_j|$ jest normą ℓ_1 .
- Podstawowa różnica między lasso a regresją grzbietową polega na tym, że dla dostatecznie dużych wartości λ estymacje niektórych parametrów β_j przyjmują wartości **równe 0**, jednocześnie zadając selekcję predyktorów.

Lasso zastosowane do danych 'Credit'

W zależności od wielkości λ , lasso prowadzi do modeli opartych na 1, 2, 3, 4,... predyktorach.

Zjawisko selekcji predyktorów w metodzie lasso

Można pokazać, że dla każdego $\lambda \geq 0$ istnieje $s \geq 0$ takie, że

ullet metoda lasso jest równoważna problemowi minimalizacji po wektorach eta wyrażenia

$$\sum_{i=1}^n \biggl(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \biggr)^2 \quad \text{przy warunku} \quad \sum_{j=1}^p |\beta_j| \leq s.$$

ullet metoda grzbietowej regresji jest równoważna problemowi minimalizacji po wektorach eta wyrażenia

$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2 \quad \text{przy warunku} \quad \sum_{j=1}^p \beta_j^2 \leq s.$$

Zjawisko selekcji predyktorów w metodzie lasso dla p=2

 $\hat{\beta}$ – otrzymane z metody najmniejszych kwadratów. **Elipsy** opisują obszar o równym RSS.

Lasso z warunkiem $|\beta_1| + |\beta_2| \le s$ (tutaj $\beta_1 = 0$ – wybieramy tylko drugi predyktor).

Regresja grzbietowa z waunkiem $\beta_1^2 + \beta_2^2 \le s$. Oba współczynniki niezerowe.

Porównanie regresji grzbietowej z lasso

- Żadna z metod nie jest lepsza od drugiej we wszystkich sytuacjach.
- Lasso działa lepiej w sytuacjach, gdy zmienna objaśniana Y istotnie zależy tylko od małej liczby predyktorów.
- Regresja grzbietowa działa lepiej gdy Y zależy od dużej liczby predyktorów o współczynnikach w przybliżeniu podobnego rozmiaru.
- Liczba istotnych predyktorów nigdy nie jest znana z góry trzeba stosować walidację krzyżową do wyboru modelu.
- W sytuacji gdy estymacje z metody najmniejszych kwadratów mają dużą wariancję, to zarówno lasso, jaki regresja grzbietowa zmniejszają wariancję predykcji kosztem zwiększenia obciążenia.
- Metoda lasso, w odróżnieniu od regresji grzbietowej, pozwala dokonywać selekcji istotnych predyktorów.

Uproszczony przykład działania lasso i regresji grzbietowej

- Przyjmujemy n=p, a dane treningowe to $(e_1,y_1),\ldots,(e_n,y_n)$, gdzie e_i to i-ty wektor jednostkowy. Dla uproszczenia przyjmujemy, że wyraz wolny $\beta_0=0$.
- Wówczas metoda najmniejszych kwadratów sprowadza się do minimalizacji

$$\sum_{j=1}^{p} (y_j - \beta_j)^2,$$

co daje $\hat{\beta}_j = y_j$.

• Regresja grzbietowa polega tu na minimalizacji

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2,$$

co daje

$$\hat{\beta}_i^R = y_i/(1+\lambda).$$

Uproszczony przykład działania lasso i regresji grzbietowej

Metoda lasso polega tu na minimalizacji

$$\sum_{j=1}^{p} (y_{j} - \beta_{j})^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|,$$

• co prowadzi do estymacji

$$\hat{eta}_j^L = egin{cases} y_j - \lambda/2, & ext{jeśli } y_j > \lambda/2; \ y_j + \lambda/2, & ext{jeśli } y_j < -\lambda/2; \ 0, & ext{jeśli } |y_j| \leq \lambda/2 \end{cases}$$

Bardzo różne metody kurczenia parametrów w regresji grzbietowej i w lasso $(\lambda=1)$

Jak wybrać parametr λ ?

Stosując metodę walidacji krzyżowej:

- ullet dla siatki różnych wartości λ obliczamy błąd walidacji krzyżowej dla tego wyboru λ .
- ullet wybieramy tę wartość λ , dla której ten błąd jest najmniejszy
- ullet trenujemy model już na całych danych, z wybranym λ .

Przykład: wybór λ dla danych 'Credit' oraz regresji grzbietowej

- Pionowa linia przerywana odpowiada minimum błędu CV.
- Minimum nie jest wyraźne, końcowy model zbliżony do otrzymanego metodą najmniejszych kwadratów

Wybór λ dla metody lasso

- Dla tej wartości λ model wybrany metodą lasso oparty jest na dwóch predyktorach (współczynniki pozostałych tu się zerują).
- Istotne predyktory (kolorowe wykresy) to **sygnał** a nieistotne (szare) to **szum**.
- Estymacja metodą najmniejszych kwadratów (prawy koniec wykresu) nadaje dużą wartość tylko jednemu z dwu predyktorów stanowiących sygnał.

Metody redukcji wymiaru

Ogólna metodologia redukcji wymiaru $\left(1 ight)$

Dotąd opisane metody kontrolowania wariancji polegały na:

- wyborze podzbioru istotnych predyktorów (zmiennych), lub
- zastosowaniu ściągania parametrów do zera.
- ullet wszystkie te metody operowały na (pod)-zbiorze oryginalnych predyktorów X_1, X_2, \ldots, X_p .
- Redukcja wymiaru polega na zastąpieniu oryginalnych predyktorów X_1, X_2, \ldots, X_p liniowymi kombinacjami Z_1, Z_2, \ldots, Z_M , gdzie $M \leq p$ oraz dla $1 \leq m \leq M$

$$Z_m = \sum_{j=1}^p \phi_{jm} X_j,$$

gdzie $\phi_{1m}, \phi_{2m}, \dots, \phi_{pm}$ są pewnymi stałymi (parametrami) metody.

Ogólna metodologia redukcji wymiaru (2)

• Stosując metodę najmniejszych kwadratów znajdujemy parametry $\theta_0, \theta_1, \dots, \theta_M$ modelu regresji liniowej

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \epsilon_i, \qquad i = 1, \dots, n$$

gdzie z_{i1}, \ldots, z_{iM} jest otrzymane z wartości x_{i1}, \ldots, x_{ip} przez zastosowanie powyższego przekształcenia liniowego.

• W oryginalnym zadaniu regresji liniowej stosujemy metodę najmniejszych kwadratów (estymując parametry $\beta_0,\beta_1,\ldots,\beta_p$) do wyrażenia

$$y_i = \beta_0 + \sum_{i=1}^p \beta_i x_{ij} + \epsilon_i, \qquad i = 1, \dots, n$$

Ogólna metodologia redukcji wymiaru (3)

- Pojęcie **redukcji wymiaru** polega na zastąpieniu estymowania p+1 parametrów β_0, \ldots, β_p estymacją M+1 parametrów $\theta_0, \ldots, \theta_M$. Czyli wymiar problemu został zredukowany z p+1 do M+1.
- Przy odpowiednim doborze stałych ϕ_{jm} taka redukcja wymiaru często prowadzi do poprawienia jakości predykcji.
- Podejście to można traktować jako zadanie regresji liniowej z nałożonymi więzami:

$$\sum_{m=1}^{M} \theta_{m} z_{im} = \sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} \phi_{jm} x_{ij} = \sum_{j=1}^{p} \sum_{m=1}^{M} \theta_{m} \phi_{jm} x_{ij} = \sum_{j=1}^{p} \beta_{j} x_{ij}.$$

Zatem więzy nałożone na β_i wyglądają następująco:

$$\beta_j = \sum_{m=1}^M \theta_m \phi_{jm}.$$

Dwa kroki metody redukcji wymiaru

- Przekształcamy predyktory X_1, \ldots, X_p w nowy zestaw predyktorów Z_1, \ldots, Z_M $(M \leq p)$.
- $oldsymbol{\circ}$ Stosujemy regresję liniową do nowych predyktorów Z_1,\ldots,Z_M .
 - Wybór predyktorów $Z_1 \dots, Z_M$ może byc dokonywany na różne sposoby.
 - Przykłady:
 - Regresja składowych głównych (Prinicpal Components Regression) omówimy poniżej
 - Metoda częściowych najmniejszych kwadratów (Partial Least Squares)

Analiza składowych głównych

Principal component analysis (PCA)

- Określa kierunki o największej zmienności w danych
- Kolejne kierunki są do siebie ortogonalne

Przykład: 100 miast

- Dla każdego miasta para wartości: ad (nakłady na reklamę) i pop (liczba mieszkańców)
- Zielona linia: 1sza składowa główna, niebieska: 2ga składowa główna

Pierwsza składowa główna

- $Z_1 = 0.839 (pop \overline{pop} 1) + 0.544 (ad \overline{ad} 1)$, gdzie 1 jest wektorem złożonym z samych jedynek (wymiaru 100)
- ullet Tutaj $\phi_{11}=0.839$ in $\phi_{21}=0.544$ nazywane są $\emph{ladunkami}$
- *i*-te wejście wektora Z_1 :

$$z_{i1} = 0.839(pop_i - \overline{pop}) + 0.544(ad_i - \overline{ad})$$

Pierwsza składowa główna

- Z_1 to taka kombinacja liniowa pop i ad, dla której wariancja ${\sf Var}(\phi_{11}({\sf pop}-\overline{{\sf pop}})+\phi_{21}({\sf ad}-\overline{{\sf ad}}))$ jest największa, przy warunku $\phi_{11}^2+\phi_{21}^2=1.$
- Warunek jest potrzebny, bo wariancję możnaby dowolnie zwiększyć zwiększając ϕ_{11} lub ϕ_{21}

Inna interpretacja pierwszej składowej głównej

Wyznacza prostą położoną najbliżej danych (suma kwadratów odległości poszczególnych punktów od prostej jest najmniejsza).

Punkt reprezentujący średnie zaznaczony na niebiesko. Po prawej: Oś x to teraz kierunek Z_1 . Kolejne obserwacje mają tu wartości z_{i1} (i-te wejścia wektora Z_1).

Dla miast pierwsza składowa główna zawiera większość istotnej informacji o danych

PCA ogólniej

- Niech X będzie macierzą o kolumnach x_1, \ldots, x_p stanowiących standaryzowane wartości predyktorów.
- Jeśli mamy wyznaczone składowe główne przez wektory Z_1, \ldots, Z_{m-1} , to m-ty kierunek jest wyznaczony przez

 $\max_{\phi} \text{Var}(X\phi)$, pod warunkiem

$$||\phi||_2 = 1, \ (X\phi)^T Z_i = 0, \ \text{dla} \ i = 1, \dots, k-1$$

czyli jest to wektor $Z_m = X\phi$ będący

- ullet liniową kombinacją predyktorów spełniającą warunek $||\phi||_2=1$
- wektorem ortogonalnym do wszystkich pozostałych kierunków Z_i (czyli nieskorelowanym z pozostałymi składowymi głównymi)

Druga składowa główna Z_2

Kierunek o największej wariancji w danych, niezależny od Z_1 (prostopadły do Z_1 ; przerywana niebieska linia na rysunku).

$$Z_2 = 0.544 \times (pop - \overline{pop} \, \mathbb{1}) - 0.839 \times (ad - \overline{ad} \, \mathbb{1})$$

Ponieważ mamy tu tylko dwie zmienne objaśniające, to obie składowe główne zawierają dokładnie tyle informacji co całe dane.

Przykład: słaba zależność pomiędzy drugą składową główną a obydwoma predyktorami

Regresja składowych głównych

Regresja składowych głównych

- Główne założenie: stosunkowo mała liczba składowych głównych, wyjaśniająca zmienność w danych X, dobrze przewiduje wartości Y
- Potencjalnie pomaga uniknąć przeuczenia (korzystamy z M < p predyktorów)

Liczba składowych głównych a jakość predykcji

- Dwa syntetycznie generowane zbiory danych (p = 45, n = 50)
- ullet Pozioma linia przerywana: błąd nieredukowalny $Var(\epsilon)$
- Przy wzroście liczby składowych, obciążenie maleje, a wariancja rośnie
- Potrzebujemy sporo składowych aby osiągnąć mały błąd testowy

Porównanie

Dane syntetyczne ($p=45,\ n=50$) wygenerowane tak, aby zmienna objaśniana zależała od tylko 5 pierwszych składowych głównych

Ridge Regression and Lasso Wear Sdrawed Error Ridge Regression and Lasso Output Ou

ciągła linia: lasso, przerywana linia: regresja grzbietowa .

Shrinkage Factor

Shrinkage factor: $||\hat{\beta}_{\lambda}^{R}||_{2}/||\hat{\beta}||_{2}$.

Ważne uwagi dotyczące regresji składowych głównych

- Dobór liczby M składowych głównych opiera się na walidacji krzyżowej.
- Przed rozpoczęciem budowy składowych głównych należy dokonać standaryzacji predyktorów
- Bez standardyzacji, zmienne objaśniające o większej wariancji miałyby największe wagi w składowych głównych
- Standardyzacji nie trzeba robić jedynie wtedy, gdy zmienne są wyrażone w tych samych jednostkach, np. kilogramach czy centymetrach.
- PCR nie jest metodą wyboru modelu. Składowe główne są liniową kombinacją wszystkich p zmiennych objaśniających.
- ullet Ponieważ Z_m są ortogonalne, PCR to suma regresji prostych
- ullet Dla M=p, PCR odpowiada regresji dla wszystkich p predyktorów

Podsumowanie

- Regularyzacja modeli liniowych
- Redukcja wymiaru, regresja składowych głównych