Empirical and theoretical moments

Point Estimates

$$m_{1} = \frac{1}{n} \sum_{i=1}^{n} x_{i}, \qquad \mu'_{1} = E(x)$$

$$m_{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}, \qquad \mu'_{2} = E(x^{2})$$

$$\vdots$$

$$m_{k} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}, \qquad \mu'_{k} = E(x^{k})$$

Copyright Dick Startz

Copyright Dick Startz

Method of moments

$$\begin{aligned} m_1 &= \mu_1'(x;\theta_1,\ldots,\theta_k)\\ m_2 &= \mu_2'(x;\theta_1,\ldots,\theta_k)\\ \vdots\\ m_k &= \mu_k'(x;\theta_1,\ldots,\theta_k) \end{aligned}$$
 Solve for $\hat{\theta}$
$$\hat{\theta}_1 &= \hat{\theta}_1(m_1,\ldots,m_k)\\ \hat{\theta}_2 &= \hat{\theta}_2(m_1,\ldots,m_k)\\ \vdots\\ \hat{\theta}_k &= \hat{\theta}_k(m_1,\ldots,m_k) \end{aligned}$$

Copyright Dick Startz

Method of moments

Example:

If $x_1, ..., x_n$ are iid exponential(λ), then $\mathrm{E}(x_i) = {}^1/_{\lambda}$. The method of moments estimator sets

$$\bar{x} = 1/\lambda$$

$$\tilde{\lambda} = 1/\bar{x}$$

$$\bar{x}^2 = (1/\lambda)^2 + 1/\lambda^2$$

$$\tilde{\lambda} = \sqrt{2/x^2}$$

Copyright Dick Startz

Method of moments - normal

Suppose x_1,\dots,x_n are iid $N(\mu,\sigma^2)$, then $m_1=\mu$ $m_2=\mu^2+\sigma^2$

Set

$$\bar{x} = \mu$$

$$\frac{1}{n} \sum_{i} x_{i}^{2} = \mu^{2} + \sigma^{2}$$

$$\tilde{\mu} = \bar{x}$$

 $\tilde{\sigma}^2 = \frac{\tilde{\mu}}{n} \sum_i x_i^2 - \bar{x}^2$

Copyright Dick Startz

Method of moments – simple regression

Model:

$$y = \alpha + \beta x + \varepsilon$$
$$E(\varepsilon) = 0$$
$$E\left(\sum x\varepsilon\right) = 0$$

$$\varepsilon = y - \alpha - \beta x$$

Copyright Dick Startz

Method of moments – simple regression

$$\frac{1}{n} \sum (y - \alpha - \beta x) = 0$$

$$\frac{1}{n} \sum x(y - \alpha - \beta x) = 0$$

$$\tilde{\beta} = \frac{\sum (y - \bar{y})(x - \bar{x})}{\sum (x - \bar{x})^2}$$

$$\tilde{\alpha} = \bar{y} - \tilde{\beta}\bar{x}$$

Copyright Dick Startz

Method of moments – multiple regression

$$y = X\beta + \varepsilon, X \text{ is } n \times k$$

$$E(X'\varepsilon) = 0_k$$

$$\varepsilon = y - X\beta$$

$$\frac{1}{n}X'(y - X\beta) = 0_k$$

$$X'y = X'X\tilde{\beta}$$

$$\tilde{\beta} = (X'X)^{-1}X'y$$

Copyright Dick Startz

More moments than parameters

Suppose we have k parameters but $q \geq k$ moment conditions. Let $\overline{m}(\theta)$ be the $q \times 1$ vector of sample moments, where we want $\overline{m}(\theta) = 0$. Then consider the objective function $J = \overline{m}(\theta)' W \overline{m}(\theta)$

 $\ensuremath{\mathcal{W}}$ can be any positive definite function of the data

Generalized method of moments (GMM)

 $J = \overline{m}(\theta)' W \overline{m}(\theta)$ Pick θ_{GMM} to minimize J.

With some regularity conditions $\theta_{GMM} \overset{p}{\to} \theta$

ght Dick Startz 9 Copyright Dick Startz

Convergence in distribution

$$\begin{split} \overline{m}(\theta) &= \frac{1}{n} \sum_{i=1}^{n} g(y_i, \theta) \\ G_{ij} &= \mathrm{E} \left[\frac{\partial g(y_i, \theta)}{\partial \theta_j} \right] \\ \Omega &= \mathrm{E}[g(y_i, \theta)g(y_i, \theta)'] \\ \sqrt{n}(\theta_{GMM} - \theta) &\stackrel{d}{\rightarrow} \\ N[0, (G'WG)^{-1}G'W\Omega W'G(G'WG)^{-1}] \end{split}$$

 Copyright Dick Startz
 11
 Copyright Dick Startz

Optimal weighting matrix

$$\begin{split} W^* &\propto \Omega^{-1} \\ asym. \, \text{var}(\theta_{GMM}) \\ &= (G'WG)^{-1}G'W\Omega W'G(G'WG)^{-1} \\ &= (G'\Omega^{-1}G)^{-1}G'\Omega^{-1}\Omega\Omega^{-1'}G(G'\Omega^{-1}G)^{-1} \\ &= (G'\Omega^{-1}G)^{-1}G'\frac{\Omega^{-1}\Omega\Omega^{-1'}G(G'\Omega^{-1}G)^{-1}} \\ &= (G'\Omega^{-1}G)^{-1}G'\frac{\Omega^{-1}G\Omega^{-1'}G(G'\Omega^{-1}G)^{-1}} \\ &= (G'\Omega^{-1}G)^{-1} \end{split}$$

Simple linear example

$$y = X\beta + \varepsilon$$

Where β is $k \times 1$ and

$$\mathrm{E}[\varepsilon\varepsilon'] = \sigma^2 I_n$$

And suppose we have the $n\times q$ matrix of instruments $Z,q\geq k$, with moment restrictions $Z'\varepsilon=0$

$$\begin{split} g(\cdot) &= Z_i(y_i - X_i\beta) = Z_i\varepsilon_i \\ \overline{m}(\beta) &= \frac{1}{n} \sum_{i=1}^n Z_i(y_i - X_i\beta) \\ G &= -ZX \\ \Omega &= \mathbb{E}[g(y_i,\theta)g(y_i,\theta)'] \\ &= \mathbb{E}[Z'\varepsilon\varepsilon'Z] = Z'\,\mathbb{E}[\varepsilon\varepsilon']Z = \sigma^2Z'Z \\ W^* &= (Z'Z)^{-1} \end{split}$$

Copyright Dick Startz

Copyright Dick Startz

$$J = \varepsilon' Z (Z'Z)^{-1} Z' \varepsilon$$

$$J = [y - X\beta]' Z (Z'Z)^{-1} Z' [y - X\beta]$$

Notation:

$$P_Z = Z(Z'Z)^{-1}Z'$$

Note that P_Z is symmetric, idempotent

$$P_{Z}P_{Z} = P_{Z}$$

$$J = [P_{Z}y - P_{Z}X\beta]'[P_{Z}y - P_{Z}X\beta]$$

$$\beta_{GMM} = (X'P'_{Z}P_{Z}X)^{-1}X'P'_{Z}P_{Z}y$$

$$= (X'P_{Z}X)^{-1}X'P_{Z}y$$

Two-stage least squares

$$\begin{split} \beta_{2SLS} &= (X'P_ZX)^{-1}X'P_Zy\\ asy \, \text{var}(\beta_{2SLS}) &= (X'Z(\sigma^2Z'Z)^{-1}Z'X)^{-1}\\ &= \sigma^2(X'P_ZX)^{-1} \end{split}$$

Copyright Dick Startz 15 Copyright Dick Startz

Likelihood function

If $x_1, \dots x_n$ is a random sample depending on parameters $\theta_1, \dots \theta_k$ then the likelihood function is

$$L(\theta_1, \dots \theta_k | x_1, \dots x_n) = P(x_1, \dots x_n | \theta_1, \dots \theta_k)$$

For small ε

$$\frac{P(x - \varepsilon < X < x + \varepsilon | \theta_A)}{P(x - \varepsilon < X < X + \varepsilon | \theta_B)} \approx \frac{L(\theta_A | x)}{L(\theta_B | x)}$$

Copyright Dick Startz

Maximum likelihood estimate

Definition 7.2.4 For each sample point x, let $\hat{\theta}(x)$ be a parameter value at which $L(\theta|x)$ attains its maximum as a function of θ with x held fixed. A *maximum likelihood estimator* (MLE) of the parameter θ based on a sample X is $\hat{\theta}(X)$.

Copyright Dick Startz 18

Invariance property of MLEs

Theorem 7.2.10 Invariance property of MLEs. If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Suppose $x_i \sim iidU[0,b]$. Write the joint pdf for x, being careful about edge conditions. Find the value of b that maximizes the joint probability. (Hint: this is a logic question rather than a calculation question.)

Copyright Dick Startz 19 Copyright Dick Startz 20

If our sample values are iid, then we can write

$$L(\theta|x) = L(\theta_1, \dots \theta_k|x_1, \dots x_n) = \prod_{i=1}^n f(x_i|\theta_1, \dots \theta_k)$$

If $L(\cdot)$ is differentiable, then maybe $\hat{\theta}$ solves $\frac{\partial L(\theta|x)}{\partial \theta} = 0$

Log-likelihood

$$\mathcal{L}(\theta|x) = \log L(\theta|x) = \sum_{i=1}^{n} \log f(x_i|\theta_1, \dots \theta_k)$$

Setting

$$\frac{\partial \mathcal{L}(\theta|x)}{\partial \theta} = 0$$

$$\frac{\partial \mathcal{L}(\theta|x)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(x_i|\theta_1, \dots \theta_k)}{\partial \theta} = 0$$

Copyright Dick Startz

Normal mle

$$\begin{aligned} x_i \sim & \text{iid } N(\mu, \sigma^2) \\ f(x_i) &= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2} \\ \log(f(x_i)) &= -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(x_i - \mu)^2 \\ \frac{\partial \log(f(x_i))}{\partial \mu} &= \frac{1}{\sigma^2}(x_i - \mu) \\ \frac{\partial \log(f(x_i))}{\partial \sigma^2} &= -\frac{1}{2}\frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2}(x_i - \mu)^2 \end{aligned}$$

F.O.C.

$$\frac{\partial \mathcal{L}}{\partial \mu} = 0 = \frac{1}{\sigma^2} \left(\sum_i x_i - n\mu \right)$$
$$\frac{\partial \mathcal{L}}{\partial \sigma^2} = 0 = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_i (x_i - \mu)^2$$
$$\hat{\mu} = \bar{x}$$
$$\hat{\sigma}^2 = \frac{1}{n} \sum_i (x_i - \bar{x})^2$$

Simple normal regression

$$y = \beta x + \varepsilon, \varepsilon \sim iidN(0, \sigma^2)$$
$$y | x \sim N(\beta x, \sigma^2)$$
$$\log f(y_i) = -\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (y_i - \beta x_i)^2$$

Simple normal regression

$$\log f(y_i) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(y_i - \beta x_i)^2$$

$$\frac{\partial \mathcal{L}}{\partial \beta} = \frac{1}{\sigma^2} \sum_i (y_i - \beta x_i) x_i$$

$$\hat{\beta} = \frac{\sum_i y_i x_i}{\sum_i x_i^2}$$

$$\hat{\sigma}^2 = \frac{\sum_i (y_i - \hat{\beta} x_i)^2}{n}$$

Note: $\sum \! \left(y_i - \hat{eta} x_i
ight)^2$ is called the sum of squared residuals

Copyright Dick Startz

Suppose the errors are not iid

$$y = X\beta + \varepsilon, \varepsilon \sim N(0, \Sigma)$$

$$y \text{ is } n \times 1, X \text{ is } n \times k$$

$$f(y)$$

$$= (2\pi)^{-\frac{n}{2}} |\Sigma|^{-\frac{1}{2}} \exp \left[-\frac{1}{2} (y - X\beta)' \Sigma^{-1} (Y - X\beta) \right]$$

$$\log L \propto (y - X\beta)' \Sigma^{-1} (Y - X\beta)$$

$$\beta_{mle} = (X' \Sigma^{-1} X)^{-1} X' \Sigma^{-1} y$$

opyright Dick Startz

IID exponential mle

$$\begin{split} f(y_i|\lambda) &= \frac{1}{\lambda} e^{-\frac{y_i}{\lambda}} \\ L(\lambda|y) &= \prod_{l=1}^n \frac{1}{\lambda} e^{-\frac{y_l}{\lambda}} \\ \mathcal{L}(\lambda|y) &= \log L = -n \log \lambda - \frac{1}{\lambda} \sum_{l=1}^n y_i \\ \frac{\partial \mathcal{L}}{\partial \lambda} &= 0 = -\frac{n}{\lambda} + \frac{1}{\lambda^2} \sum_{l=1}^n y_i \\ \lambda_{mle} &= \frac{1}{n} \sum_{l=1}^n y_i \end{split}$$

Copyright Dick Startz

Nonlinear regression

$$y_i = f(x_i, \theta) + \varepsilon_i$$
$$\varepsilon \sim iidN(0, \sigma^2)$$

$$L(\theta, x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y_i - f(x_i, \theta))^2\right)$$

$$\mathcal{L}(\theta, x_i) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \big(y_i - f(x_i, \theta)\big)^2$$

Tobit

We observe wage and desired work hours.

$$H^* = \beta w + \varepsilon$$

Copyright Dick Startz 32 Copyright Dick Startz

Tobit likelihood

$$\begin{aligned} y|y &> 0 \sim N(\beta w, \sigma_{\varepsilon}^2) \\ p(y &= 0) &= p(\beta w + \varepsilon < 0) = p(\varepsilon < -\beta w) \\ &= \Phi\left(-\frac{\beta w}{\sigma_{\varepsilon}}\right) \\ L(\beta) &= \prod_{y>0} \frac{1}{\sigma} \phi\left(\frac{y - \beta w}{\sigma_{\varepsilon}}\right) \times \prod_{y=0} \Phi\left(-\frac{\beta w}{\sigma_{\varepsilon}}\right) \end{aligned}$$

ppyright Dick Startz 36 Copyright Dick Startz

EM (Expectations-Maximization) algorithm

E: Make up missing data as expected value of data given current parameter estimates.

M: Get new parameter estimates treating made up data as real.

Then you iterate between the two until convergence.

EM Tobit

$$\hat{\beta} = \frac{\sum \tilde{h}w}{\sum w^2}$$

$$h > 0, \tilde{h} = h$$

$$h = 0, \tilde{h} = E\left(TN(\hat{\beta}w, \sigma^2)\right)$$

ppyright Dick Startz 38 Copyright Dick Startz

Expectation of truncated normal

$$\begin{split} & x {\sim} N(\mu, \sigma^2) \\ & \mathrm{E}(x|l < x < u) = \mu + \frac{\phi\left(\frac{l-\mu}{\sigma}\right) - \phi\left(\frac{u-\mu}{\sigma}\right)}{\Phi\left(\frac{u-\mu}{\sigma}\right) - \Phi\left(\frac{l-\mu}{\sigma}\right)} \sigma \end{split}$$

In our case

$$l = -\infty, u = 0$$

$$E(x|x < 0) = \mu - \frac{\phi\left(\frac{-\mu}{\sigma}\right)}{\Phi\left(\frac{-\mu}{\sigma}\right)}\sigma$$

Copyright Dick Startz 40 Copyright Dick Startz

Minimum Distance Estimators

Parameters θ , K long Functions $g(\theta)$, $L \geq K$ long Sample statistics \overline{m}_n , L long defined over n obs.

Assume

$$\operatorname{plim} \overline{m}_n = g(\theta)$$

$$\sqrt{n} (\overline{m}_n - g(\theta)) \xrightarrow{d} N(0, \Phi)$$

Copyright Dick Startz

Minimum Distance Estimators

 $\hat{ heta}_{MDE}$ solves

$$\min q = \left(\overline{m}_n - g(\theta)\right)' W \left(\overline{m}_n - g(\theta)\right)$$
 for positive definite W .

Copyright Dick Startz

MDE Asymptotics

$$\begin{aligned} & \text{plim}(\hat{\theta}_{MDE}) = \theta \\ & asym \, \text{var}(\hat{\theta}_{MDE}) \\ &= \frac{1}{n} [\Gamma(\theta)'W\Gamma(\theta)]^{-1} [\Gamma(\theta)'W\Phi W\Gamma(\theta)] [\Gamma(\theta)'W\Gamma(\theta)]^{-1} \\ &= \frac{1}{n} V \end{aligned}$$

where

$$\Gamma(\theta) = \operatorname{plim} \frac{\partial g(\hat{\theta}_{MDE})}{\partial \hat{\theta}'_{MDE}}$$
$$\hat{\theta}_{MDE} \stackrel{a}{\sim} N\left(\theta, \frac{1}{n}V\right)$$

Copyright Dick Startz

Bayesian Estimates

If we have data x and parameters θ ,

$$f(\theta|x) = \frac{f(x|\theta) \times f(\theta)}{f(x)}$$

where

 $f(\theta|x)$ posterior

 $f(x|\theta)$ likelihood function

 $f(\theta)$ prior

$$f(x) = \int_{-\infty}^{\infty} f(x|\theta) \cdot f(\theta) d\theta$$
 marginal likelihood

right Dick Startz

Short-hand

Posterior is proportional to likelihood times prior.

$$f(\theta|x) = \frac{f(x|\theta) \times f(\theta)}{f(x)}$$
$$f(\theta|x) \propto f(x|\theta) \times f(\theta)$$

Copyright Dick Start:

prior

Copyright Dick Startz

likelihood

$$f(H = 2|fair) = .5^2 = .25$$

 $f(H = 2|2 headed) = 1^2 = 1$

Copyright Dick Startz

posterior

$$\begin{split} f(fair|H=2) \\ &= \frac{f(H=2|fair) \times f(fair)}{f(H=2|fair) \times f(fair) + f(H=2|2\ headed) \times f(2\ headed)} \\ &= \frac{.25 \times .9}{.25 \times .9 + 1 \times .1} = 0.69 \end{split}$$

Copyright Dick Startz

Copyright Dick Startz

Suppose $\bar{x}|\theta \sim N\left(\theta,\frac{\sigma^2}{n}\right)$ —assume σ^2 and n are known constants and $\theta \sim U(-c,c)$. Find an expression for

$$f(\bar{x}) = \int_{-\infty}^{\infty} f(\bar{x}|\theta) f(\theta) d\theta$$

Copyright Dick Startz

Normal data with normal prior

Let $x\sim N(\theta,\sigma^2)$ and suppose the prior is $N(\mu,\tau^2)$, then $\theta|x\sim N()$ with

$$E(\theta|x) = \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\tau^2 + \sigma^2} \mu$$
$$var(\theta|x) = \frac{\sigma^2 \tau^2}{\tau^2 + \sigma^2}$$

it Dick Startz

Normal prior, likelihood, and posterior

$$x_i \sim iidN(\mu, \sigma^2)$$

Likelihood:

$$f(x|\mu) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(\frac{1}{2\sigma^2} \sum (x_i - \mu)^2\right)$$

Prior

$$f(\mu) = \frac{\mu \sim N\left(\underline{\mu}, \tau^2\right)}{\sqrt{2\pi\tau^2}} \exp\left(\frac{1}{2\tau^2} \left(\mu - \underline{\mu}\right)^2\right)$$

Copyright Dick Startz

Normal prior, likelihood, and posterior

Posterior:

$$\mu | \bar{x} \sim N \left(\frac{\tau^2}{\tau^2 + \frac{\sigma^2}{n}} \bar{x} + \frac{\frac{\sigma^2}{n}}{\tau^2 + \frac{\sigma^2}{n}} \underline{\mu}, \frac{\frac{\sigma^2}{n} \tau^2}{\tau^2 + \frac{\sigma^2}{n}} \right)$$

Copyright Dick Startz

Copyright Dick Startz 58

$$\begin{split} & \eta \to \infty \\ & \mu | \bar{x} \sim N \left(\frac{\tau^2}{\tau^2 + \frac{\sigma^2}{n}} \bar{x} + \frac{\frac{\sigma^2}{n}}{\tau^2 + \frac{\sigma^2}{n}} \underline{\mu}, \frac{\frac{\sigma^2}{n} \tau^2}{\tau^2 + \frac{\sigma^2}{n}} \right) \\ & \text{As } n \to \infty \\ & \mu | \bar{x} \sim N \left(\frac{\tau^2}{\tau^2 + 0} \bar{x} + \frac{0}{\tau^2 + 0} \underline{\mu}, \frac{0\tau^2}{\tau^2 + 0} \right) \\ & \mu | x \sim N(\bar{x}, 0) \end{split}$$

$$n \to 0$$

$$\mu | \bar{x} \sim N \left(\frac{\tau^2}{\tau^2 + \frac{\sigma^2}{n}} \bar{x} + \frac{\frac{\sigma^2}{n}}{\tau^2 + \frac{\sigma^2}{n}} \underline{\mu}, \frac{\frac{\sigma^2}{n} \tau^2}{\tau^2 + \frac{\sigma^2}{n}} \right)$$
As $n \to 0$

$$\mu | \bar{x} \sim N \left(\frac{\tau^2}{\tau^2 + \infty} \bar{x} + \frac{\infty}{\tau^2 + \infty} \underline{\mu}, \frac{\infty \tau^2}{\tau^2 + \infty} \right)$$

$$\mu | \bar{x} \sim N \left(\underline{\mu}, \tau^2 \right)$$

Copyright Dick Startz

$$\tau \to 0$$

$$\mu|\bar{x} \sim N\left(\frac{\tau^2}{\tau^2 + \frac{\sigma^2}{n}}\bar{x} + \frac{\frac{\sigma^2}{n}}{\tau^2 + \frac{\sigma^2}{n}}\mu, \frac{\frac{\sigma^2}{n}\tau^2}{\tau^2 + \frac{\sigma^2}{n}}\right)$$

$$\tau \to 0$$

$$\mu|\bar{x} \sim N\left(\frac{0}{n}\bar{x} + \frac{\sigma^2}{n}\mu, \frac{\sigma^2}{n}0\right)$$

Copyright Dick Startz

$$\tau \to \infty$$

$$\begin{split} \mu | \bar{x} \sim N \left(\frac{\tau^2}{\tau^2 + \frac{\sigma^2}{n}} \bar{x} + \frac{\frac{\sigma^2}{n}}{\tau^2 + \frac{\sigma^2}{n}} \underline{\mu}, \frac{\frac{\sigma^2}{n} \tau^2}{\tau^2 + \frac{\sigma^2}{n}} \right) \\ \text{As } \tau \to \infty \\ \mu | \bar{x} \sim N \left(\frac{\infty}{\infty + \frac{\sigma^2}{n}} \bar{x} + \frac{\frac{\sigma^2}{n}}{\infty + \frac{\sigma^2}{n}} \underline{\mu}, \frac{\frac{\sigma^2}{n} \infty}{\infty + \frac{\sigma^2}{n}} \right) \end{split}$$

Convright Dick Starts

 $\mu | \bar{x} \sim N\left(\bar{x}, \frac{\sigma^2}{n}\right)$

Highest posterior density (HPD)

Given that the posterior is $\mu|x{\sim}N(\bar{\mu},\bar{\sigma}^2)$

we can compute the most compact part of the posterior that contains 95 percent of the probability mass.

Copyright Dick Startz

Copyright Dick Startz

Bayesian model comparison

Suppose we have two models, M_0 and M_1 . $f(\theta|x,M_i) = \frac{f(x|\theta,M_i)f(\theta|M_i)}{f(x|M_i)}$

where

$$f(x|M_i) = \int f(x|\theta, M_i) f(\theta|M_i) d\theta$$

Posterior odds ratio

 $p(M_i|x) = \frac{f(x|M_i) \times p(M_i)}{f(x)}$ We can write the *posterior odds ratio* as

write the posterior odds ratio as
$$PO_{01} = \frac{p(M_0|x)}{p(M_1|x)} = \frac{\frac{f(x|M_0) \times p(M_0)}{f(x)}}{\frac{f(x|M_1) \times p(M_1)}{f(x)}}$$

$$PO_{01} = \frac{f(x|M_0)}{f(x|M_1)} \times \frac{p(M_0)}{p(M_1)}$$

Copyright Dick Sta

Posterior odds ratio

$$\underbrace{PO_{01}}_{\text{posterior odds}} = \underbrace{\frac{f(x|M_0)}{f(x|M_1)}}_{\text{Bayes factor}} \times \underbrace{\frac{p(M_0)}{p(M_1)}}_{\text{prior odds}}$$

"Empirical Bayes" example

$$\begin{aligned} x_i &= \theta_i + \varepsilon_i \\ \theta_i \sim & iidN(\bar{\theta}, \sigma^2) \\ \varepsilon_i \sim & iidN(0, \tau^2) \end{aligned}$$

$$var(x) = \sigma^2 + \tau^2$$

$$\sigma^2 = var(x) - \tau^2$$

$$E(\theta_i|x_i) = \frac{\sigma^2}{\sigma^2 + \tau^2} x_i + \frac{\tau^2}{\sigma^2 + \tau^2} \bar{x}$$

Copyright Dick Startz 70 Copyright Dick Startz

Properties of a good estimator

- Unbiased (finite sample)
 - It's nice to get it right on average.
- Consistent (asymptotic)
 - It's nice to know that in a large sample you're going to get it right.

Mean square error

$$mse = E(\hat{\theta} - \theta)^2$$

$$mse = var(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Example: s^2 versus $\hat{\sigma}_{mle}^2$

$$s^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2$$

$$\sigma_{mle}^2 = \frac{1}{n} \sum (x_i - \bar{x})^2 = \frac{n-1}{n} s^2$$

Copyright Dick Startz 74 Copyright Dick Startz

$$E(s^{2}) = \sigma^{2}$$

$$var(s^{2}) = \frac{2}{n-1}\sigma^{4}$$

$$mse(s^{2}) = \frac{2}{n-1}\sigma^{4}$$

$$mse(\sigma_{mle}^{2})$$

$$= \left(\frac{n-1}{n}\right)^{2} \left(\frac{2}{n-1}\sigma^{4}\right) + \left(\frac{n-1}{n}\sigma^{2} - \sigma^{2}\right)^{2}$$

$$= \sigma^{4} \left(\frac{2}{n^{2}}(n-1)\right) + \left(-\frac{1}{n}\right)^{2} = \frac{\sigma^{4}}{n^{2}}(2n-1)$$

$$mse(s^{2}) = \frac{2}{n-1}\sigma^{4} > \frac{\sigma^{4}}{n^{2}}(2n-1) = mse(\sigma_{mle}^{2})$$

Question

Generate $n=\{10,100\}$ iidU(0,b=1) random variables and find the maximum likelihood estimator of b. Do this many times for each sample size and report on the distribution of b_{mle} . In particular, is it unbiased? Is the distribution approximately normal?

Convright Dick Startz

Best unbiased estimator

Definition 7.3.7

An estimator W^* is a best unbiased estimator of $\tau(\theta)$ if it satisfies

- 1. $E(W^*) = \tau(\theta)$ for all θ
- 2. For any other estimator, W, with $\mathrm{E}(W) = \tau(\theta)$, we have

 $var(W^*) \le var(W)$ for all θ .

 W^* is also called a *uniform minimum variance* unbiased estimator (UMVUE) of $\tau(\theta)$.

Incredible Cramér-Rao Lower Bound (CRLB)

Copyright Dick Startz 80 Copyright Dick Startz

Cramér-Rao Inequality

Let x_1,\dots,x_n be a sample with pdf $f(x|\theta)$, and let $W(x_1,\dots,x_n)$ be any estimator satisfying

$$\frac{d}{d\theta} E(W(x)) = \int_{x} \frac{\partial}{\partial \theta} [W(x)f(x|\theta)] dx$$

And

$$\operatorname{var}(W(x)) < \infty$$

Then

$$\operatorname{var}(W(x)) \ge \frac{\left(\frac{d}{d\theta}\operatorname{E}(W(x))\right)^{2}}{\operatorname{E}\left(\left(\frac{\partial}{d\theta}\log f(x|\theta)\right)^{2}\right)}$$

Copyright Dick Startz

Cramér-Rao Inequality (iid case)

If in addition to the previous regularity conditions x_1,\dots,x_n is iid with pdf $f(x_i|\theta)$

$$\operatorname{var}(W(x)) \ge \frac{\left(\frac{d}{d\theta} \operatorname{E}(W(x))\right)^{2}}{n \cdot \operatorname{E}\left(\left(\frac{\partial}{d\theta} \log f(x_{i}|\theta)\right)^{2}\right)}$$

Copyright Dick Start

Sample mean and CRLB

$$x_i \sim iidN(\theta, \sigma^2)$$

$$W = \frac{x_1 + \dots + x_n}{n}$$
$$E(W(x)) = \theta$$
$$\frac{d}{d\theta} E(W(x)) = 1$$

Copyright Dick Startz

$$\operatorname{var}(W(x)) \ge \frac{\left(\frac{d}{d\theta} \operatorname{E}(W(x))\right)^{2}}{n \cdot \operatorname{E}\left(\left(\frac{\partial}{d\theta} \log f(x_{i}|\theta)\right)^{2}\right)}$$

$$\operatorname{var}(W(x)) \ge \frac{1}{n \cdot \operatorname{E}\left(\left(\frac{\partial}{\partial \theta} \log f(x_i|\theta)\right)^2\right)}$$

Copyright Dick Startz

$$\log f(x_i|\theta) = -\frac{1}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}(x_i - \theta)^2$$
$$\frac{\partial}{\partial \theta}\log f(x_i|\theta) = \frac{1}{\sigma^2}(x_i - \theta)$$

$$E\left(\left(\frac{1}{\sigma^2}(x_i - \theta)\right)^2\right) = \left(\frac{1}{\sigma^2}\right)^2 \sigma^2 = \frac{1}{\sigma^2}$$
$$\operatorname{var}(W(x)) \ge \frac{1}{n \cdot \left(\frac{1}{\sigma^2}\right)^2 \sigma^2} = \frac{\sigma^2}{n}$$

Copyright Dick Startz

Information matrix

$$I \equiv E\left(\left(\frac{\partial}{d\theta}\log f\left(x|\theta\right)\right)^{2}\right)$$

is called the *information matrix* or the *Fisher information*.

$$\frac{\partial}{d\theta}\log f\left(x|\theta\right)$$

is called the score. Note that

$$E\left(\frac{\partial}{d\theta}\log f\left(x|\theta\right)\right) = 0$$

Copyright Dick Start

$$E\left(\frac{\partial}{\partial \theta}\log f(x|\theta)\right)$$

$$= \int \left[\frac{\partial}{\partial \theta}\log f(x|\theta)\right] f(x|\theta) dx$$

$$= \int \frac{1}{f(x|\theta)} \left[\frac{\partial}{\partial \theta}f(x|\theta)\right] f(x|\theta) dx$$

$$= \int \left[\frac{\partial}{\partial \theta}f(x|\theta)\right] dx$$

$$\frac{\partial}{\partial \theta} \int [f(x|\theta)] dx$$

$$= \frac{\partial}{\partial \theta} 1 = 0$$

Lemma 7.3.11 If $f(x|\theta)$ satisfies

$$\frac{d}{d\theta} E\left(\frac{\partial}{\partial \theta} log(f(x|\theta))\right)$$

$$= \int \frac{\partial}{\partial \theta} \left[\left(\frac{\partial}{\partial \theta} log(f(x|\theta))\right) f(x|\theta) \right] dx$$

Then

$$I \equiv E\left(\left(\frac{\partial}{\partial \theta}\log f(x|\theta)\right)^{2}\right)$$
$$= -E\left(\frac{\partial^{2}}{\partial \theta^{2}}\log f(x|\theta)\right)$$

Copyright Dick Startz

$$\frac{\partial}{\partial \theta} \log f(x_i | \theta) = \frac{1}{\sigma^2} (x_i - \theta)$$
$$E\left(\left(\frac{1}{\sigma^2} (x_i - \theta)\right)^2\right) = \left(\frac{1}{\sigma^2}\right)^2 \sigma^2 = \frac{1}{\sigma^2}$$

$$\frac{\partial^2}{d\theta^2}\log f\left(x_i|\theta\right) = -\frac{1}{\sigma^2} = -I$$

CRLB for unbiased estimators

If W(x) is an unbiased estimator, then (subject to suitable regularity conditions) the CRLB is

$$\operatorname{var}(W(x)) \ge I^{-1}(\theta)$$

Proof

$$E(W(x)) = \theta \Rightarrow \frac{d}{d\theta} E(W(x)) = 1$$

Matrix form

$$I(\theta)_{i,j} = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta_i} \log f(x|\theta)\right) \left(\frac{\partial}{\partial \theta_i} \log f(x|\theta)\right)\right]$$

Which with appropriate regularity conditions is also

$$I(\theta)_{i,j} = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(x|\theta)\right]$$

And we can write for any unbiased estimator $\operatorname{var}(W(\theta)) - I(\theta)^{-1}$ is p.s.d.

Asymptotic efficiency

A sequence of estimators W_n is asymptotically *efficient* for $\tau(\theta)$ if

$$\sqrt{n}[W_n - \tau(\theta)] \stackrel{d}{\to} N(0, V(\theta))$$

And

$$V(\theta) = \frac{\tau'(\theta)^2}{I(\theta)}$$

That is, if the asymptotic variance attains the CRLB.

MLE achieves the CRLB

Theorem

Under suitable regularity conditions if $x_i \sim iid(\theta, \sigma^2)$, then

$$\hat{\theta}_{mle} \stackrel{d}{\to} N(\theta, I(\theta)^{-1})$$

Maximum-likelihood is asymptotically efficient. (Proof: Hansen Appendix B, theorem B.11.2)

Consider

 $E \log f(x_i|\theta)$ We just showed this is maximized at θ_0 because the first partial equals zero.

 $\hat{\theta}_{mle}$ is consistent

By the law of large numbers, we know that

$$\frac{1}{n} \sum_{i} \log f(x_i|\theta) \xrightarrow{p} \operatorname{E} \log f(x_i|\theta)$$

Since θ_{mle} maxes the LHS and θ_0 maxes the RHS, since max is a function, and since plims go through functions, we have

$$\theta_{mle} \rightarrow \theta_0$$

$$l(\theta|x) = \sum_{i} \log f(x_i|\theta)$$

Then a first-order Taylor series expansion of the first partial around the true value θ_0 is

$$l'(\theta|x) \approx l'(\theta_0|x) + (\theta - \theta_0)l''(\theta_0|x)$$

Since we have $l'(\hat{\theta}|x) = 0$ we can write

$$0 = l'(\theta_0|x) + (\hat{\theta} - \theta_0)l''(\theta_0|x)$$

$$\sqrt{n}(\hat{\theta} - \theta_0) = \sqrt{n} \frac{-l'(\theta_0|x)}{l''(\theta_0|x)} = \frac{-\frac{1}{\sqrt{n}}l'(\theta_0|x)}{\frac{1}{n}l''(\theta_0|x)}$$

Copyright Dick Startz

$$\sqrt{n}(\hat{\theta} - \theta_0) = \sqrt{n} \frac{-l'(\theta_0|x)}{l''(\theta_0|x)} = \frac{-\frac{1}{\sqrt{n}}l'(\theta_0|x)}{\frac{1}{n}l''(\theta_0|x)}$$

It can be shown that

$$-\frac{1}{\sqrt{n}}l'(\theta_0|x) \xrightarrow{d} N(0, I(\theta_0))$$

$$\frac{1}{n}l''(\theta_0|x) \xrightarrow{p} I(\theta_0)$$

Using the delta method we have

$$\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{d}{\rightarrow} N(0, I^{-1}(\theta_0)I(\theta_0)I^{-1}(\theta_0))$$

$$= N(0, I^{-1}(\theta_0))$$

And that's why people like to use maximumlikelihood. It has a known asymptotic distribution and asymptotically achieves the CRLB.

Loss functions

$$L(\theta,a)$$

And we'd like to minimize the expected loss min $E(L(\theta, a))$

$$\min_{a} E(L(\theta, a))$$

$$L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^{2}$$

This leads to using the mean in our standard model.

$$L(\theta, \hat{\theta}) = |\hat{\theta} - \theta|$$

Which leads to use of the median.

Bayesian version

In a Bayesian framework, we can set this up using any action as a function of the data, a(x), and take expectations with respect to the Bayesian posterior, $f(\theta|x)$.

$$\min_{a(x)} \int L(a(x), \theta) f(\theta|x) d\theta$$

Investing in a risky asset

W is amount in risky asset

$$\max_{W} \int U(W|\mu,\sigma^2) f(\mu,\sigma^2|x) d\theta$$

Copyright Dick Startz 100 Copyright Dick Startz