Methods 3: Multilevel Statistical Modeling and Machine Learning

Week 7: Logistic regression (machine learning)
November 16, 2021

by: Lau Møller Andersen

These slides are distributed according to the CC BY 4.0 licence:

https://creativecommons.org/licenses/by/4.0/

Attribution 4.0 International (CC BY 4.0)

Remember to vote today!

Regularization - recap

Solution space

$$J(w) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Solution space is infinite; w can be any set of values

(p. 113: Raschka, 2015)

L2 regularization

Why is the *solution space* round?

Compare with a circle centred at (0,0)

$$w_1^2 + w_2^2 = r^2$$

 L_2 norm: $||w||_2 = \sqrt{(w_1^2 + w_2^2)}$

(p. 114: Raschka, 2015)

$$J(w)_{Ridge} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2} + \lambda \| w \|_{2}^{2}$$

L1 regularization

Why is the solution space square?

L₁norm:
$$||w||_1 = |w_1| + |w_2|$$

if $w_1 = max(w_1)$ then $w_2 = 0$
if $w_2 = max(w_2)$ then $w_1 = 0$

(p. 115: Raschka, 2015)

$$J(w)_{LASSO} = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^{2} + \lambda \| w \|_{1}$$

Learning goals

Logistic regression (machine learning)

- 1) Understanding of how logistic regression can be adapted to a classification framework
- 2) Understanding the idea of a Support Vector Machine
- 3) Getting acquainted with how Support Vector Machines can solve non-linear problems

The problem (Perceptron)

(p. 55: Raschka, 2015)

Not linearly separable \rightarrow never converges

WANTED: an algorithm that converges with linearly separable regions that minimise the number of errors made

Text

Something like this

LOGISTIC REGRESSION

(p. 63: Raschka, 2015)

Separates flowers, while keeping errors at a minimum

Odds ratio

odds ratio =
$$\frac{p}{1-p}$$

log odds = $\log(\frac{p}{1-p})$ = $\log it(p)$

$$logit(p(y=1|x))=w_0x_0+w_1x_1+...+w_mx_m=\sum_{i=0}^{m}w_ix_i=w^Tx_i$$

probability of observing 1 given the features (in this case, different features of the flower)

Example: an odds ratio of 7 to 1 (7:1) means that it is 7 times more likely that something is going to happen than that it is not going to happen

Text

$$logit(p(y=1|x))=w_0x_0+w_1x_1+...+w_mx_m=\sum_{i=0}^m w_ix_i=w^Tx_i$$

$$p(y=1|x): \text{ is the probability that } y=1, \text{ given } x$$

log odds

inverse function

$$logit^{-1}(z) = \phi(z) = \frac{1}{1 + e^{-z}}$$
(sigmoid-shaped) Text

net input: take all weights that we've estimated, and multiply with features = net input. net input:
$$z = w^T x = w_0 x_0 + w_1 x_1 + ... + w_m x_m$$

(p. 58: Raschka, 2015)

Quantizer

$$\hat{y} = \begin{cases} 1 & \text{if } \phi(z) \ge 0.5 \\ 0 & \text{otherwise} \end{cases}$$

Text

$$\hat{y} = \begin{cases} 1 & \text{if } z \ge 0.0 \\ 0 & \text{otherwise} \end{cases}$$

Text

Logistic regression

we apply the sigmoid to the input funciton in this case.

(p. 58: Raschka, 2015)

Comparison with ADALINE

(p. 58: Raschka, 2015)

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

(p. 33: Raschka, 2015) gradient descent: when you update function, based on input.

$$\phi(z)=z$$

we run the log(odds) through the quantizer (not on the probability scale).

Still updating with Gradient Descent

Gradient descent $\phi(z)=z$

difference between adaline and linReg, is that in the adaline we apply quantizer in the end.

when gradient is high = go fast, when low, go smaller steps (to avoid overshooting).

(p. 40: Raschka, 2015)

Text

Gradient descent $\phi(z)$

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

cost function:
$$J(\mathbf{w}) = -\sum_{i}^{n} y^{(i)} \log(\phi(z^{i})) + (1 - y^{(i)}) \log(1 - \phi(z^{(i)}))$$

weight change: $\Delta w = -\eta \nabla J(w)$

Text

What's this part equal to?

(p. 40: Raschka, 2015)

A closer look at the cost function

A closer look at the updating of weights

$$\Delta w = -\eta \nabla J(w)$$
 This is common between ADALINE and Linear and Logistic Regression

but J(w) is not the same across these different methods?!

A general formulation:
$$\Delta w_j = \eta \sum_{i=1}^{n} (y^{(i)} - \phi(z^{(i)})) x_j^{(i)}$$

It can be shown that:
$$\frac{\delta}{\delta w_j} l(\mathbf{w}) = (y - \phi(z)) x_j$$

$$\frac{\delta}{\delta w_i} l(\mathbf{w})$$
: (partial) derivative of log-likelihood function (proof on p. 64)

A clarification on ADALINE

$$\Delta w_j = \eta \sum_{i}^{n} (y^{(i)} - \phi(z^{(i)})) x_j^{(i)}$$
$$\phi(z) = z = \hat{y}$$

```
def fit(self, X, y):
    """ Fit training data.
    Parameters
   X : {array-like}, shape = [n samples, n features]
        Traing vectors, where n samples
       is the number of samples and
       n features is the number of features.
   y : array-like, shape = [n samples]
        Target values.
   Returns
   self : object
    self.w = np.zeros(1 + X.shape[1])
    self.cost = []
    for i in range(self.n iter):
        output = self.net input(X)
       errors = (v - output)
        self.w [1:] += self.eta * X.T.dot(errors)
        self.w [0] += self.eta * errors.sum()
        cost = (errors**2).sum() / 2.0
        self.cost .append(cost)
    return self
```

With regularisation

$$J(\mathbf{w}) = -\sum_{i}^{n} y^{(i)} \log(\phi(z^{(i)})) + (1 - y^{(i)}) \log(1 - \phi(z^{(i)})) + \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

NB! Regularisation in sklearn.linear_model.LogisticRegression is controlled by C

high c, indicates low lambda. low c, indicates a high lambda

$$C = \frac{1}{\lambda}$$

C = inverse

Text

Effect of C parameter

Now for the classification

score(X, y, sample_weight=None)

[source]

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters:	X : array-like of shape (n_samples, n_features) Test samples.
	y: array-like of shape (n_samples,) or (n_samples, n_outputs) True labels for X.
	sample_weight : array-like of shape (n_samples,), default=None Sample weights.
Returns:	score: float Mean accuracy of self.predict(X) wrt. y.

```
#%% LOGISTIC REGRESSION

from sklearn.linear_model import LogisticRegression
logR = LogisticRegression(penalty='none') # no regularisation
logR.fit(X_train_std, y_train)
print(logR.score(X_test_std, y_test))
```

Live coding

EXAMPLE_00

type(df) = df command??

df.feature_names = get names of variables in df

import train_test_split = library to split data into x partitions.

df.shape = returns number of values in variable

import StandardScaler data_std = standradizes data

ctrl + i = brings up help menu

stratfied kfold: tries to get an equal number of targets in each folds.

SUPPORT VECTOR MACHINES

find a hyperplane, that maximizes margin but still doesn't misclassify any of the data

$$w_0 + \mathbf{w}^T \mathbf{x}_{pos} = 1$$
 (1)
 $w_0 + \mathbf{w}^T \mathbf{x}_{neg} = -1$ (2)

QUESTION: What is the subtraction of equation (2) from equation (1) equal to on the figure?

Subtraction

$$\boldsymbol{w}^{T}(\boldsymbol{x}_{pos} - \boldsymbol{x}_{neg}) = 2$$

normalizing by w's length: $\|\mathbf{w}\| = \sqrt{(\sum_{j=1}^{m} w_j^2)}$

... we get:
$$w^T \frac{(x_{pos} - x_{neg})}{\|w\|} = \frac{2}{\|w\|}$$

This will optimise the width of the margin

So we want to maximize: $\frac{2}{\|\mathbf{w}\|}$ under the constraints:

$$w_0 + w^T x^{(i)} \ge 1 \text{ if } y^{(i)} = 1$$

 $w_0 + w^T x^{(i)} < -1 \text{ if } y^{(i)} = -1$

(p. 69: Raschka, 2015)

In practice, the following is minimized: $\frac{1}{2} \| \boldsymbol{w} \|^2$

This faces a problem that the **Perceptron** also faces

Which?

there might be no hyperplane, that perfectly seperates the points, and thus the model won't converge (similar to perceptrons (see ealier slides)).

SOLUTION: introducing a *slack* variable ξ (xi)

slack variable:

Introducing ξ

We add slack to the constraints so we are not as strict i fitting the hyperplane and thus not risking our model to not converge.

$$w_0 + w^T x_{pos} = 1 - \xi^{(i)}$$

 $w_0 + w^T x_{neg} = -1 + \xi^{(i)}$

the large C = narrow margin (penalize errors harshly), or small c = large margin. So C and hyperplane are connected, and slack (xi) defines the slackyness of these constraints. (p. 72: Raschka, 2015)

to maximise the margin

Large C: narrow margin – penalises errors harshly Small C: wide margin – penalises errors mildly

Comparison to logistic regression

Text

The standardized of the st

Support Vector Machine (p.763, Raschka 2015)

Logistic regression (p. 63, Raschka 2015)

Logistic regression versus SVM

In practical classification tasks, linear logistic regression and linear SVMs often yield very similar results. Logistic regression tries to maximize the conditional likelihoods of the training data, which makes it more prone to outliers than SVMs. The SVMs mostly care about the points that are closest to the decision boundary (support vectors). On the other hand, logistic regression has the advantage that it is a simpler model that can be implemented more easily. Furthermore, logistic regression models can be easily updated, which is attractive when working with streaming data.

(p. 74: Raschka, 2015)

Live coding EXAMPLE_00

A brief look at a non-linear problem

non-linear problems:

(p. 75: Raschka, 2015)

Map onto higher-dimensional space

$$\phi(x_1, x_2) = (z_1, z_2, z_3) = (x_1, x_2, x_1^2 + x_2^2)$$

Creating the higher dimensions can be computationally expensive

calculates the simularity between two features

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)})^{T} \phi(\mathbf{x}^{(j)})$$

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = e^{(-y \|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|^{2})}$$

$$(y = \frac{1}{2\sigma^{2}}, \text{ also called the precision})$$

the o

gamma = hyperparameter

Non-linear decision boundaries

(p. 78: Raschka, 2015)

Low γ - soft boundary

(p. 79: Raschka, 2015)

High γ - tight boundary

(p. 80: Raschka, 2015)

Live coding EXAMPLE 00

Did you learn?

Logistic regression (machine learning)

- 1) Understanding of how logistic regression can be adapted to a classification framework
- 2) Understanding the idea of a Support Vector Machine
- 3) Getting acquainted with how Support Vector Machines can solve non-linear problems

References

Raschka, S., 2015. Python Machine Learning.
 Packt Publishing Ltd.