# Database Management Systems (DBMS)

Lec 13: Relational database design

Ramesh K. Jallu

**IIIT Raichur** 

Date: 16/03/21

#### Recap

- Enhanced Entity-Relationship (EER) Model
- The concepts of EER model
  - Subclass and Superclass, Inheritance
  - Specialization and Generalization
  - Union or Category
  - Aggregation

#### Overview

- Mapping between ER and Relational schema
- A quick recap of keys and constraints in relational schema
- Introduction to normalization

## Converting an ER diagram to a relational schema

- Both the ER model and the relational database model are abstract, logical representations of real-world enterprises
- As the two models employ similar design principles, we can convert an ER design into a relational design
- For each entity set and for each relationship set in the database design, there is a unique relation schema
- The constraints in ER design can be mapped to constraints on relational schemas

### 1. Representation of strong entity types

- If E be a strong entity type with attributes  $a_1, a_2, ..., a_n$ , we represent this entity with a schema called E with n distinct attributes
- Each tuple in the relational schema corresponds an entity in **E**
- The primary key of the entity type serves as the primary key of the resulting schema



## 2. Representation of Strong Entity Sets with non-simple Attributes

- Derived attributes are not explicitly represented in the relational data model
- For a multivalued attribute M, we create a relation schema R with an attribute A that corresponds to M and attributes corresponding to the primary key of the entity set or relationship set of which M is an attribute



### 3. Representation of Weak Entity Sets

- Let A be a weak entity set with attributes  $a_1, a_2, ..., a_m$ . Let B be the strong entity set on which A depends. Let the primary key of B consist of attributes  $b_1, b_2, ..., b_n$
- We represent the entity set A by a relation schema called A with one attribute for each member of the set  $\{a_1, a_2, ..., a_m\} \cup \{b_1, b_2, ..., b_n\}$



#### 4. Representation of relationships

- Let R be a relationship with descriptive attributes  $b_1, b_2, \dots, b_n$
- Let  $a_1, a_2, ..., a_m$  be the set of attributes formed by the union of the primary keys of each of the entity sets participating in R
- We represent this relationship set by a relation schema called R with one attribute for each member of the set  $\{a_1, a_2, ..., a_m\} \cup \{b_1, b_2, ..., b_n\}$
- We also create foreign-key constraints on the relation schema *R*

### 4. Representation of relationships



#### 5. Representing cardinality constraints

- For many-to-many relationships, the union of the primary keys is a minimal superkey and is chosen as the primary key
- For one-to-many and many-to-one relationships, the primary key of the "many" side is a minimal superkey and is used as the primary key
- For one-to-one relationships, the primary key of either one of the participating entity sets forms a minimal superkey, and either one can be chosen as the primary key of the relationship set

## 6. Relationship between weak entity type and strong entity type

#### Recall

- The identifying relationship is many-to-one from the weak entity set to the identifying entity set
- The participation of the weak entity set in the relationship is total
- The identifying relationship set should not have any descriptive attributes
- The of a weak entity set includes the primary key of the strong entity set
- The schema for the relationship set linking a weak entity type to its corresponding strong entity type is *redundant* and does not need to be present in a relational database design



#### Summary

ER MODEL RELATIONAL MODEL

Entity type *Entity* relation

1:1 or 1:N relationship type Foreign key (or *relationship* relation)

M:N relationship type Relationship relation and two foreign keys

*n*-ary relationship type *Relationship* relation and *n* foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

#### Relational database design

- The goal of relational database design is to generate a set of relation schemas that allows us to
  - store information without unnecessary redundancy
  - retrieve information easily
  - achieve accuracy and consistency of data
- This is accomplished by designing schemas that are in an appropriate normal form
- The *normalization* procedure consists of applying a series of tests to relations and decompose the relations when necessary

#### Normalization

- Decide if a given relation schema is in "good form" with the aid of normal forms
- If a given relation schema is not in "good form," then we decompose it into a number of smaller relation schemas, each of which is in an appropriate normal form
  - The decomposition must be a lossless decomposition

### Keys (recap)

- Keys are used to distinguish tuples in a given relation
  - Superkey: A subset K of attributes that uniquely identifies a tuple in the relation
  - If  $t_i$  and  $t_j$  are any two distinct tuples in a relation, then  $t_i[K] \neq t_j[K]$
  - Any relation contains a trivial superkey

#### Instructor

| ID    | name       | dept_name  | salary |
|-------|------------|------------|--------|
| 10101 | Srinivasan | Comp. Sci. | 65000  |
| 12121 | Wu         | Finance    | 90000  |
| 15151 | Mozart     | Music      | 40000  |
| 22222 | Einstein   | Physics    | 95000  |
| 32343 | El Said    | History    | 60000  |
| 33456 | Gold       | Physics    | 87000  |
| 45565 | Katz       | Comp. Sci. | 75000  |
| 58583 | Califieri  | History    | 62000  |
| 76543 | Singh      | Finance    | 80000  |
| 76766 | Crick      | Biology    | 72000  |
| 83821 | Brandt     | Comp. Sci. | 92000  |
| 98345 | Kim        | Elec. Eng. | 80000  |

### Keys (recap)

- If K is a superkey, then so is any superset of K
- We are interested in *minimal* superkey (a.k.a. Key)
- A relation schema may have more than one key. Such minimal superkeys are called candidate keys
- One of the candidate keys is designated as primary key and other candidate keys are designated as unique keys

#### Constraints in relation schema (recap)

- 1. Key constraints
  - Two distinct tuples cannot have identical values for (all) the attributes
- 2. Entity integrity constraints
  - Primary key value cannot be NULL
- 3. Referential integrity constraints
  - Used to maintain consistency among tuples in two relations

### Foreign key (recap)

- Let  $R_1$  and  $R_2$  be two relations. A set of attributes K in  $R_1$  is a *foreign key* of  $R_1$  that references to relation  $R_2$ 
  - The attributes in K have the same domain(s) as the primary key attributes of  $R_2$
  - A value of K in a tuple  $t_i$  of  $R_1$  either occurs as a value of primary key in some tuple of  $t_j$  of  $R_2$  or is **NULL**
  - $t_i[K] = t_i[primary key]$
- $R_1$  is called the referencing relation and  $R_2$  is called the referenced relation

#### **EMPLOYEE**

| Fname    | Minit | Lname   | Ssn       | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|-----------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777 | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### **DEPARTMENT**

| Dname          | <u>Dnumber</u> | Mgr_ssn   | Mgr_start_date |
|----------------|----------------|-----------|----------------|
| Research       | 5              | 333445555 | 1988-05-22     |
| Administration | 4              | 987654321 | 1995-01-01     |
| Headquarters   | 1              | 888665555 | 1981-06-19     |

#### DEPT\_LOCATIONS

| <u>Dnumber</u> | Dlocation |  |
|----------------|-----------|--|
| 1              | Houston   |  |
| 4              | Stafford  |  |
| 5              | Bellaire  |  |
| 5              | Sugarland |  |
| 5              | Houston   |  |

#### WORKS\_ON

| Essn      | <u>Pno</u> | Hours |
|-----------|------------|-------|
| 123456789 | 1          | 32.5  |
| 123456789 | 2          | 7.5   |
| 666884444 | 3          | 40.0  |
| 453453453 | 1          | 20.0  |
| 453453453 | 2          | 20.0  |
| 333445555 | 2          | 10.0  |
| 333445555 | 3          | 10.0  |
| 333445555 | 10         | 10.0  |
| 333445555 | 20         | 10.0  |
| 999887777 | 30         | 30.0  |
| 999887777 | 10         | 10.0  |
| 987987987 | 10         | 35.0  |
| 987987987 | 30         | 5.0   |
| 987654321 | 30         | 20.0  |
| 987654321 | 20         | 15.0  |
| 888665555 | 20         | NULL  |

#### **PROJECT**

| Pname           | Pnumber | Plocation | Dnum |
|-----------------|---------|-----------|------|
| ProductX        | 1       | Bellaire  | 5    |
| ProductY        | 2       | Sugarland | 5    |
| ProductZ        | 3       | Houston   | 5    |
| Computerization | 10      | Stafford  | 4    |
| Reorganization  | 20      | Houston   | 1    |
| Newbenefits     | 30      | Stafford  | 4    |

#### DEPENDENT

| Essn      |           | Sex | Bdate      | Relationship |
|-----------|-----------|-----|------------|--------------|
| 333445555 | Alice     | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore  | М   | 1983-10-25 | Son          |
| 333445555 | Joy       | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner     | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael   | М   | 1988-01-04 | Son          |
| 123456789 | Alice     | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth | F   | 1967-05-05 | Spouse       |

#### Other constraints in relation schema (recap)

- Semantic integrity constraints
- Functional dependency constraint
  - Establishes a functional relationship among two sets of attributes X and Y, and is denoted by  $X \rightarrow Y$
  - The value of X determines the value of Y in all states of a relation
    - I.e., for any two tuples  $t_1$  and  $t_2$  in R that have  $t_1[X] = t_2[X]$ , implies that  $t_1[Y] = t_2[Y]$
    - In other words, the values of the X component of a tuple uniquely (or functionally) determine the values of the Y component

### Example: functional dependency (recap)

#### **EXAMPLE**

| A     | В     | C     | D     |
|-------|-------|-------|-------|
| $a_1$ | $b_1$ | $c_1$ | $d_1$ |
| $a_1$ | $b_2$ | $c_1$ | $d_2$ |
| $a_2$ | $b_2$ | $c_2$ | $d_2$ |
| $a_2$ | $b_3$ | $c_2$ | $d_3$ |
| $a_3$ | $b_3$ | $c_2$ | $d_4$ |

 $A \rightarrow C$  is satisfied

**C** → **A** is **not** satisfied

 $D \rightarrow \{C,A\}$ ?

 $\{A,B\} \rightarrow \{C,D\}$ ?

### Example: functional dependency



- 1. Ssn → Ename
- 2. Pnumber → {Pname, Plocation}
- 3.  $\{Ssn, Pnumber\} \rightarrow Hours$
- FDs are the basis to develop a formal methodology for testing and improving relation schemas

#### Normalization of relations

- The concept of normalization was proposed by Codd in 1972
- Normalization of data we mean analyzing the given relation schemas based on their FDs and primary keys
- The objective of normalization is to (i) minimizing redundancy, and
  (ii) minimizing the insertion, deletion, and update anomalies
- An unsatisfactory relation schema that does not meet the condition for a normal form is decomposed into smaller relation schemas that meet the tests and possess the desirable properites

#### In summary

- A formal framework for analyzing relation schemas based on their keys and on the functional dependencies among their attributes
- A series of normal form tests that can be carried out on individual relation schemas so that the relational database can be normalized to any desired degree

### Thank you!