BCC202 - Estruturas de Dados I

Aula 06: Análise de Algoritmos (Parte II)

Pedro Silva

Universidade Federal de Ouro Preto, UFOP Departamento de Computação, DECOM Email: silvap@edu.ufop.br

2021

Conteúdo

Comportamento Assintótico de Funções

Dominação Assintótica

Notação O

Notação Ω (Ômega)

Notação Θ (Theta)

Propriedades

Resumo

Considerações Finais

Exercícios

Conteúdo

0000

Comportamento Assintótico de Funções

Dominação Assintótica

Notação O

Comportamento Assintótico de Funções

Notação Ω (Ômega)

Notação Θ (Theta)

Função de Complexidade

- \triangleright Na aula passada aprendemos a calcular a função de complexidade f(n).
- Observações importantes:
 - Para valores pequenos de **n**, praticamente qualquer algoritmo custa pouco para ser executado.
 - ▶ **Logo**: a escolha do algoritmo tem pouquíssima influência em problemas de tamanho pequeno.

Comportamento Assintótico

- \triangleright A análise de algoritmos deve ser realizada para valores grandes de n.
- Para isso, estuda-se o comportamento assintótico das funções de custo.
 - Comportamento das funções para valores grandes de n.
- ightharpoonup O comportamento assintótico de f(n) representa o limite do comportamento do custo quando n cresce.
- ▶ É importante lembrar que as definições de notações são independentes da análise de algoritmos, podendo ser utilizados para outros fins.

Crescimento e Domínio Assintótico

- ► A análise de um algoritmo geralmente conta com apenas algumas operações elementares.
- A medida de custo, ou medida de complexidade, relata o crescimento assintótico da operação considerada.
- **Definição**: Uma função f(n) domina assintoticamente outra função g(n) se:
 - Existem duas constantes positivas $c \in m$ tais que, para n >= m, temos |g(n)| <= c|f(n)|.
- A próxima seção detalha esta definição...

Conteúdo

Comportamento Assintótico de Funções

Dominação Assintótica

Notação O

Notação Ω (Ômega)

Notação ⊖ (Theta)

Propriedades

Resumo

Considerações Finais

Exercícios

Dominação Assintótica

- ightharpoonup f(n) domina assintoticamente g(n) se:
 - Existem duas constantes positivas $c \in m$ tais que, para n >= m, temos |g(n)| <= c|f(n)|.

Dominação Assintótica: Exemplo

- Sejam $g(n) = (n+1)^2 e f(n) = n^2$.
- As funções g(n) e f(n) dominam assintoticamente uma à outra, desde que:

$$|g(n)| <= c|f(n)|$$
 para $n >= 1$. $|g(n)| <= c|f(n)|$ para $n >= m$; $c = 4 \text{ e } m = 1$

$$|n^2| <= |(n+1)^2|$$
, para $n>=0$. $|f(n)| <= c|g(n)|$ para $n>=m$; $c=1$ e $m=1$

Intuitivamente

Notação O

O(f(n))

De maneira informal, quando o tamanho da entrada é "arbitrariamente" grande:

- funções que não crescem mais rápido que f(n).
- funções menores ou iguais a um múltipo de f(n).

Exemplo: n^2 , $3/2n^2$, $100000n^2$, $n^2/400000$ crescem todas com a mesma velocidade, são todas $O(n^2)$.

- A ordem de crescimento é definida pelo termo de maior ordem, "desconsiderando"as constantes.
 - $ightharpoonup 0,00000001n^3 + 40000000000n^2$ não é $O(n^2)$.

- Escrevemos g(n) = O(f(n)) para expressar que f(n) domina assintoticamente g(n).
 - Lê-se g(n) é da ordem de no máximo f(n).
- Exemplo:
 - Quando dizemos que o tempo de execução T(n) de um programa é $O(n^2)$, significa que existem constantes c e m tais que, para valores de n>=m, $T(n)<=cn^2$.

- Exemplo gráfico de dominação assintótica que ilustra a notação O.
 - ightharpoonup Abaixo, a função f(n) domina assintoticamente a função g(n).

- O valor da constante m mostrado é o menor valor possível, mas qualquer valor maior também é válido.
- ▶ **Definição**: uma função g(n) é O(f(n)) se existem duas constantes positivas c e m tais que g(n) <= cf(n), para todo n >= m.

Operações

$$f(n)=O(f(n))$$
 $c*O(f(n))=O(f(n))$, $c=$ constante
 $O(f(n))+O(f(n))=O(f(n))$
 $O(O(f(n)))=O(f(n))$
 $O(f(n))+O(g(n))=O(max(f(n),g(n)))$
 $O(f(n))*O(g(n))=O(f(n)*g(n))$

Exemplo 01:
$$g(n) = (n+1)^2$$
 e $f(n) = n^2$

- $ightharpoonup g(n)
 otin O(n^2)$ quando m=1 e c=4.
- ► Isto porque sabe-se que $(n+1)^2 <= 4n^2$.

Ou seja, existem as constantes positivas $c \in m$ tal que $g(n) \le cf(n)$, para n > = m.

Notação C

Exemplo 01:
$$g(n) = (n+1)^2$$
 e $f(n) = n^2$

- $ightharpoonup g(n) \notin O(n^2)$ quando m=1 e c=4.
- Isto porque sabe-se que $(n+1)^2 <= 4n^2$.

Ou seja, existem as constantes positivas $c \in m$ tal que g(n) <= cf(n), para n >= m.

Exemplo 02:
$$g(n) = n e f(n) = n^2$$

- ▶ Sabemos que g(n) é $O(n^2)$, pois para n >= 1, $n <= n^2$.
- ▶ Entretanto f(n) não é O(n).
- Suponha que existam constantes c e m tais que para todo n>=m, $n^2<=cn$.
- Se c >= n para qualquer n >= m, então deveria existir um valor para c que pudesse ser maior ou igual a n para todo n.

Portanto, não existe a constante positiva c tal que g(n) <= cf(n), para n >= m.

Exemplo 02:
$$g(n) = n$$
 e $f(n) = n^2$

- ▶ Sabemos que g(n) é $O(n^2)$, pois para n >= 1, $n <= n^2$.
- ▶ Entretanto f(n) não é O(n).
- Suponha que existam constantes c e m tais que para todo n>=m, $n^2<=cn$.
- Se c >= n para qualquer n >= m, então deveria existir um valor para c que pudesse ser maior ou igual a n para todo n.

Portanto, não existe a constante positiva c tal que g(n) <= cf(n), para n >= m.

Exemplo 03:
$$g(n) = 3n^3 + 2n^2 + n$$

- ► Sabemos que g(n) é $O(n^3)$.
- ▶ g(n) também é $O(n^4)$. Entretanto, esta afirmação é mais fraca do que dizer que g(n) é $O(n^3)$.
- g(n) também é $O(n^{40})$?

Exemplo 03:
$$g(n) = 3n^3 + 2n^2 + n$$

- ► Sabemos que g(n) é $O(n^3)$.
- ▶ g(n) também é $O(n^4)$. Entretanto, esta afirmação é mais fraca do que dizer que g(n) é $O(n^3)$.
- ▶ g(n) também é $O(n^{40})$?

Sim! É fácil mostrar que existem as constantes positivas $c \in m$ tal que $g(n) \le cf(n)$, para $n \ge m$.

Exemplo 04:
$$g(n) = log_5 n \in O(log n)$$

- Recorrendo às propriedades logaritmicas, a mudança de base é definida por: $log_a x = \frac{log_b x}{log_b a}$.
- Assim, observa-se que $log_5 n = log_5 2 * log n$. Logo, $log_5 2$ é a constante c, e será fácil encontrar um m que comprove que g(n) é O(log n).

Exemplo 04:
$$g(n) = log_5 n$$
 é $O(log n)$

- Recorrendo às propriedades logaritmicas, a mudança de base é definida por: $log_a x = \frac{log_b x}{log_b a}$.
- Assim, observa-se que $log_5 n = log_5 2 * log n$. Logo, $log_5 2$ é a constante c, e será fácil encontrar um m que comprove que g(n) é O(log n).

Generalizando

 $log_b n = log_b c * log_c n$. Logo, a constante c será $log_b c$ e deverá ser definida a constante m que comprove que $log_b n$ é $O(log_c n)$.

Exemplo 05: Ordem de complexidade do MaxMin1

```
int MaxMin1(int* A, int n, int* pMax, int* pMin) {
int i;

*pMax = A[0];

*pMin = A[0];

for(i = 1; i < n; i++){
    if(*pMax < A[i]) // Comparação envolvendo os elementos
    *pMax = A[i];

if(*pMin > A[i]) // Comparação envolvendo os elementos

*pMin = A[i];
}

*pMin = A[i];
}
```

- ▶ Como vimos anteriormente, f(n) = 2(n-1) para n > 0, para o melhor caso, pior caso e caso médio.
- ► Então, MaxMin1 é O(n).

Exemplo 05: Ordem de complexidade do MaxMin1

```
int MaxMin1(int* A, int n, int* pMax, int* pMin) {
int i;

*pMax = A[0];

*pMin = A[0];

for(i = 1; i < n; i++) {
    if(*pMax < A[i]) // Comparação envolvendo os elementos
    *pMax = A[i];

if(*pMin > A[i]) // Comparação envolvendo os elementos

*pMin = A[i];
}

*pMin = A[i];
}
```

- ▶ Como vimos anteriormente, f(n) = 2(n-1) para n > 0, para o melhor caso, pior caso e caso médio.
- ▶ Então, $MaxMin1 \in O(n)$.

Exemplo 06: Operações com a notação O

- ▶ Regra da soma O(f(n)) + O(g(n)).
- Suponha três trechos cujos tempos de execução são O(n), $O(n^2)$ e $O(n \log n)$.
- ▶ O tempo de execução dos dois primeiros trechos é $O(max(n, n^2))$, que é $O(n^2)$.
- ▶ O tempo de execução de todos os três trechos é então $O(max(n, n^2, n \log n))$, que é $O(n^2)$.

Notação Ω (Ômega)

- Especifica um limite inferior para g(n).
- **Definição**: Uma função g(n) é $\Omega(f(n))$ se:
 - Existem duas constantes positivas $c \in m$ tais que, para n >= m, temos |g(n)| >= c |f(n)|.
- Exemplo:
 - Quando dizemos que o tempo de execução T(n) de um programa é $\Omega(n^2)$, significa que existem constantes $c \in m$ tais que, para valores de n >= m, $T(n) >= c n^2$.

Exemplo gráfico

Na figura abaixo, a função f(n) é dominada assintoticamente pela função g(n).

Dominação Assintótica

Exemplos

- Para mostrar que $g(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 > = n^3$ para n > = 0.
- Seja g(n) = n, para n impar (n >= 1) e $g(n) = n^2$ para n par (n >= 0). Neste caso g(n) é $\Omega(n^2)$, bastando considerar c = 1 e m = 2, 4, 6,

Notação ⊕ (Theta)

- ightharpoonup Especifica um limite assintótico firme para g(n).
- **Definição**: Uma função g(n) é $\Theta(f(n))$ se:
 - Existem três constantes positivas c_1 , c_2 e m, tais que, para n>=m, temos: $0 <= c_1 f(n) <= g(n) <= c_2 f(n)$.
- lsto é, para todo n >= m, a função g(n) é igual a f(n) a menos de uma constante.

Exemplo gráfico

Na figura abaixo, a função f(n) é um limite assintótico firme para a função g(n).

Relação com O e Ω

Para uma função ser $\Theta(f(n))$ ela deverá ser, ao mesmo tempo, O(f(n)) e $\Omega(f(n))$.

Exemplo: Algoritmos MinMax

► Relembre as funções de complexidade:

Algoritmo	Melhor caso	Pior caso	Caso médio
MaxMin1	2 (n-1)	2 (n-1)	2 (n-1)
MaxMin2	n - 1	2 (n-1)	3 n/2 - 3/2
MaxMin3	3 n/2 - 2	3 n/2 - 1	3 n/2 - 2

- Observe que todos os algoritmos tem a mesma complexidade assintótica.
- ▶ Todos são O(n) e $\Omega(n)$. Portanto, são $\Theta(n)$.

Transitiva

$$f(n) = O(g(n)) e g(n) = O(h(n)) \implies f(n) = O(h(n))$$

$$f(n) = \Omega(g(n)) \in g(n) = \Omega(h(n)) \implies f(n) = \Omega(h(n))$$

$$f(n) = \Theta(g(n)) \in g(n) = \Theta(h(n)) \implies f(n) = \Theta(h(n))$$

Reflexiva

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

$$ightharpoonup f(n) = \Theta(f(n))$$

Propriedades

Simetria

- $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

Notações O, Ω (Ômega) e Θ (Theta)

Uma função g(n) é $\Omega(f(n))$ se: Existem duas constantes positivas c e m tais que, para n>=m, temos |g(n)|>=c |f(n)|.

Uma função g(n) é $\Omega(f(n))$ se: Existem duas constantes positivas c e m tais que, para n >= m, temos |g(n)| >= c |f(n)|.

Uma função g(n) é $\Theta(f(n))$ se: Existem três constantes positivas c_1 , c_2 e m, tais que, para n>=m, temos:

$$0 <= c_1 f(n) <= g(n) <= c_2 f(n).$$

Considerações Finais

Conteúdo

Comportamento Assintótico de Funções

Dominação Assintótica

Notação O

Notação Ω (Ômega)

Notação Θ (Theta)

Considerações Finais

Conclusão

- Nesta aula aprendemos a estudar o comportamento assintótico das funções de custo através da dominação assintótica.
- Foco principal para as notações O, Ω e Θ.

Considerações Finais

000

► Análise de Algoritmos (Parte III) — Classes de Problemas.

Conteúdo

Comportamento Assintótico de Funções

Dominação Assintótica

Notação O

Notação Ω (Ômega)

Notação Θ (Theta)

Exercícios

Exercício 01

- ightharpoonup Obtenha a função de complexidade f(n) dos algoritmos abaixo.
- \triangleright Considere apenas as operações envolvendo as variáveis x e y.
- Para cada algoritmo, responda:
 - ▶ O algoritmo é $O(n^2)$? É $\Omega(n^3)$? É $\Theta(n^3)$.