select O CLERK, count(*) from TPCD.PART, TPCD.LINEITEM, TPCD.ORDERS where P PARTKEY = L PARTKEY and L ORDERKEY = O ORDERKEY and P TYPE='ECONOMY ANODIZED STEEL' group by O CLERK;

OPERATION	OBJECT_NAME	CARDINALITY	COST
■ SELECT STATEMENT		1000	122850
SORT (GROUP BY)		1000	122850
□ NESTED LOOPS		39608	122450
□ NESTED LOOPS		39608	43234
TABLE ACCESS (FULL)	PART	1333	578
P_TYPE='ECONOMY ANODIZED STEEL'			
TABLE ACCESS (BY INDEX ROWID)	LINEITEM	30	32
in od index (RANGE SCAN)	IX_PART_LI	30	2
⊟ O Access Predicates			
P_PARTKEY=L_PARTKEY			
TABLE ACCESS (BY INDEX ROWID)	ORDERS	1	. 2
☐ □ ☐ INDEX (UNIQUE SCAN)	SYS_C0036431	1	. 1
☐ On Access Predicates			
L_ORDERKEY=O_ORDERKEY			
⊕ Other XML			
info)			

Si facciano le seguenti assunzioni e si estraggano dal DB eventuali dati mancanti:

D = 4096 byte len(P) = len(K) = 4 byte

NB = 101

u = 0.69

Si assuma inoltre che ORACLE non applichi proiezioni sui risultati intermedi e che non esegua operazioni in pipeline.

Costo:

Nested Loop cost with a predicate on the external table (Part) = NPr + (sel(pred) NRr) costo (S)

ETr = (sel(pred) NRr) = numero di tuple di R(Part) che soddisfano il predicato locale P TYPE = 'Economy ...'

sel(x=...) = 1/(num. of different x's) assumendo distribuzione uniforme = 1/150

NRr = numero di tuple di Part)= 200.000

ETr = 1333

NPr = numero di pagine che R(Part) occupa = 200.000 * avg_row_len / (page length * fattore) = 9271

costo(S), costo per accedere ad 1 tupla di S => uso di indice IX_PART_LI

Unclustered index: cost: h-1 + sel(pred)* NL + EK * cardenas(NT/NK, NP)

h-1 = 2

sel(pred) = selettività del predicato = quante chiavi cerchiamo? 1/200.000

NL = numero foglie dell'indice IX_PART_LI = fondamentalmente una foglia deve possedere 1) la chiave su cui l'indice è costruito 2) Puntatore ai blocchi dati Numero chiavi = 200.000(tutte le PARTKEY), Numero blocchi da indicizzare = 6M. Dimensione di chiavi = len(K) = 4 byte, Dimensione puntatore = len(P) = 4byte.

NL = 200.000*4 + 6M*4 / 4096 * 0.69 = 8775

EK = Quante chiavi estrae il mio predicato di selezione? Siccome il predicato è P_PartKey = L_PartKey ne estraggo 1, il valore di P_PartKey.

cardenas(NT/NK, NP) quante pagine devo estrarre, nella ricerca delle tuple interessate, su un totale di NP? Sicuramente è una proporzione di quante tuple mi aspetto di estrarre NT / NK = 6M / 200.000 = 30 tuple di LineItem per PartKey quindi NP * $(1-(1-1/NP)^(ER))$.

NP è il numero di pagine della tabella LineItem = 6M * Avg rec len / 4096 * 0.69 = 6M * 113 / (4096 * 0.69) = 240 K

ER è il numero di record che ci aspettiamo di estrarre nella nostra ricerca, i.e. 6M / 200K = 30

cardenas(ER=30, NP=240K) = 30

= Uncl. cost = 2 + 8775/200.000 + 30 = 33

Cost. NL = 200.000 + 1333 * 33 = 243.989

Costo del group by ---> costo ordinamento

2 * NP * ((log_(NB-1) NP) +1)

Quante tuple ha la tabella joinata? 39990(1333 * 30(distribuzione uniforme)) NP = 39990 * (113 + 131) / 4096 * 0.69 = 3453

Cost totale = 13.812

Totale = 243.989 + 13.812 = 257.801

