Datastrukturer – tidskomplexitet

Tree

Læs et element¹	første	sidste	midterste	i'te	næste²
	O(1)	n/a	n/a	O(n)	O(1)
Find element ³	eksisterer		eksisterer ikke		
	O(n)		O(n)		
Indsæt nyt element	i starten	i slutningen	i midten	efter node	før node
	O(1)	O(n)	n/a	O(1)	n/a
Fjern element	første	sidste	i'te	efter node	før node
	O(n)	O(1)	O(n)	O(1)	O(1)
Byt om på to elementer	første og sidste	første og i'te	sidste og i'te	i'te og j'te	nodes
	O(n)	O(n)	O(n)	O(n)	O(n)

¹ At læse et element er som regel det samme som at skrive nyt indhold i et eksisterende element

² Hvis vi allerede har fat i ét element i en datastruktur, kan vi måske læse det "næste" hurtigere end i+1'te

³ Find et element med en bestemt værdi – alt efter om vi ved at listen er sorteret eller ej, og om elementet findes eller ej.