Universidad de la República Facultad de Ingeniería - IMERL

Probabilidad y Estadística Curso 2do semestre 2017

Número de Parcial	Cédula	Nombre y Apellido		

Segundo Parcial – 25 de Noviembre 2017

El parcial dura 3 horas y se puede utilizar material (no digital).

Ejercicio 1 (20 puntos) Sea a > 0 y $X \sim U[-a, a]$. Definimos la variable aleatoria $Y = X^2 - a^2$.

- a) Halle la densidad de Y.
- b) Halle la esperanza de Y.
- c) Sea Y_1, \ldots, Y_n una muestra aleatoria simple con la misma distibución que la v.a. Y.
 - 1) Halle un estimador de a por el método de los momentos.
 - 2) Halle un estimador de a por el método de máxima verosimilitud.

Ejercicio 2 (10 puntos)

Pruebe que si $X_1 \sim \mathbf{N}(\mu_1, \sigma_1^2), X_2 \sim \mathbf{N}(\mu_2, \sigma_2^2), \dots, X_n \sim \mathbf{N}(\mu_n, \sigma_n^2)$ y son independientes entonces

$$X_1 + X_2 + \dots + X_n \sim \mathbf{N}\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$$

Se sugiere utilizar la función generatriz de momentos.

Ejercicio 3 (20 puntos) Se considera una muestra proveniente de una variable aleatoria:

i	1	2	3	4	5	6	7	8	9	10
$\overline{x_i^*}$	2.0	2.2	2.7	3.0	3.1	3.8	4.7	4.9	5.2	5.3

- a) Suponiendo que esta muestra proviene de una variable aleatoria con distribución normal, halle un intervalo de confianza al 95 % para μ .
- b) Realice un test de hipótesis para decidir si se puede afirmar que estos datos provienen de una v.a. $\mathbf{N}(\mu=4, \sigma^2=1)$. Decidir a nivel $\alpha=0.05$.

Sugerencia: complete la siguiente tabla para determinar cuál es el estadístico.

i	x_i^*	$F_0(x_i^*)$	$\left \frac{i}{n} - F_0(x_i^*) \right $	$ \frac{i-1}{n} - F_0(x_i^*) $
1	2.0			
2	2.2			
3	2.7			
4	3.0			
5	3.1			
6	3.8			
7	4.7			
8	4.9			
9	5.2			
10	5.3			

c) Se considera otra muestra iid de otra variable aleatoria Y:

Realice un Test de Kolmogorov Smirnov para dos muestras para decidir si es posible afirmar que estas dos muestras provienen de la misma distribución. Decidir a nivel $\alpha = 0.05$.

Sugerencia: Complete las siguientes tablas para determinar cuál es el estadístico en este caso.

i	x_i^*	$F_m^Y(x_i^*)$	$\left \frac{i}{n} - F_m^Y(x_i^*) \right $
1	2.0		
2	2.2		
3	2.7		
4	3.0		
5	3.1		
6	3.8		
7	4.7		
8	4.9		
9	5.2		
10	5.3		

j	y_j^*	$F_n^X(y_j^*)$	$\left \begin{array}{c} \left \frac{j}{m} - F_n^X(y_j^*) \right \end{array} \right $
1	4.5		
2	7.9		
3	8.5		
4	9.4		
5	11.3		

Ejercicio 4 (10 puntos) Cinco niños de 2, 3, 5, 7 y 8 años de edad pesan, respectivamente, 14, 20, 32, 42 y 44 kilos.

- a) Halle la ecuación de la recta de regresión de la edad sobre el peso.
- b) ¿Cuál sería el peso aproximado de un niño de seis años?

SOLUCIÓN

Ejercicio 1 Sean a > 0, $X \sim U[-a, a]$. y $Y = X^2 - a^2$.

a)
$$F_Y(y) = \begin{cases} F_X(\sqrt{y+a^2}) - F_X(-\sqrt{y+a^2}) & \text{si } y \ge -a^2 \\ 0 & \text{si } y < a^2 \end{cases}$$

$$\text{Como } F_X(x) = \begin{cases} 0 & \text{si } x < -a \\ \frac{x+a}{2a} & \text{si } -a \le x \le a \\ 1 & \text{si } x > a \end{cases}, \text{ observar que: }$$

$$\quad \blacksquare \ \sqrt{y+a^2} < a \iff y < 0$$

$$-\sqrt{y+a^2} > -a \iff y < 0$$

Entonces:

■ Si
$$-a^2 < y < 0$$
, $F_X(\sqrt{y+a^2}) = \frac{\sqrt{y+a^2}+a}{2a}$ y $F_X(-\sqrt{y+a^2}) = \frac{-\sqrt{y+a^2}+a}{2a}$

■ Si
$$-a^2 < y < 0$$
, $F_X(\sqrt{y+a^2}) = \frac{\sqrt{y+a^2}+a}{2a}$ y $F_X(-\sqrt{y+a^2}) = \frac{-\sqrt{y+a^2}+a}{2a}$
■ Si $y > 0$, entonces $\sqrt{y+a^2} > a$ y $-\sqrt{y+a^2} < -a$, por lo que $F_X(\sqrt{y+a^2}) = 1$ y $F_X(-\sqrt{y+a^2}) = 0$

Finalmente,
$$F_Y(y) = \begin{cases} 0 \text{ si } y < -a^2 \\ \frac{\sqrt{y+a^2}}{a} \text{ si } -a^2 < y < 0 \end{cases}$$
 y $f_Y(y) = \begin{cases} 0 \text{ si } y < -a^2 \\ \frac{1}{2a\sqrt{y+a^2}} \text{ si } -a^2 < y < 0 \\ 0 \text{ si } y \ge 0 \end{cases}$

b)
$$\mathbb{E}(Y) = \mathbb{E}(X^2 - a^2) = \frac{a^2}{3} - a^2 = -\frac{2}{3}a^2$$

c) Sea Y_1, \ldots, Y_n una muestra aleatoria simple con la misma distibución que la v.a. Y.

1) Puesto que $\mathbb{E}(Y) = -\frac{2}{3}a^2$, planteamos:

$$\bar{Y}_n = -\frac{2}{3}a^2 \iff \hat{a} = \sqrt{\frac{-3}{2}\bar{Y}_n}.$$

2)
$$L(a|Y_1,...,Y_n) = \begin{cases} \prod_{i=1}^n \frac{1}{2a\sqrt{Y_i + a^2}} & \text{si } -a^2 \le Y_i < 0 \,\forall i \\ 0 & \text{en otro caso} \end{cases}$$

Luego, para que $\grave{L}(a)$ sea positiva es necesario que $-a^2 \leq Y_i < 0 \, \forall i$, es decir que $-a^2 \leq \min\{Y_1,...,Y_n\} = Y_1^*$ y $a \geq \sqrt{-Y_1^*}$. Además, si $a \geq \sqrt{-Y_1^*}$,

$$L(a) = \frac{1}{(2a)^n} \sqrt{\prod_{i=1}^n \frac{1}{Y_i + a^2}}$$

y esta última expresión se maximiza cuando a sea lo más chico posible, es decir que $\hat{a}_{MV} = \sqrt{-Y_1^*}.$

Ejercicio 2 Si $X \sim N(\mu, \sigma^2)$, entonces $\varphi_X(t) = \mathbb{E}(e^{tX}) = e^{\mu t + \frac{\sigma^2 t^2}{2}}$. Además, sabemos que si $X_1, X_2, ..., X_n$ son independientes, entonces:

$$\begin{split} \varphi_{X_1 + X_2 + \ldots + X_n}(t) &= \varphi_{X_1}(t) \varphi_{X_2}(t) \ldots \varphi_{X_n}(t) \\ &= e^{\mu_1 t + \frac{\sigma_1^2 t^2}{2}} \times e^{\mu_2 t + \frac{\sigma_2^2 t^2}{2}} \times \ldots \times e^{\mu_n t + \frac{\sigma_n^2 t^2}{2}} \\ &= e^{(\mu_1 + \mu_2 + \ldots + \mu_n)t + \frac{(\sigma_1^2 + \sigma_2^2 + \ldots + \sigma_n^2)t^2}{2}} \end{split}$$

y esta última secorresponde a la función generatriz de una v.a. :

$$N(\mu_1 + \mu_2 + \dots + \mu_n, \sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2)$$

Por unicidad de la función generatriz, se deduce que $X_1 + X_2 + ... + X_n \sim N(\mu_1 + \mu_2 + ... + \mu_n, \sigma_1^2 + \sigma_2^2 + ... + \sigma_n^2)$.

Ejercicio 3 Se considera una muestra proveniente de una variable aleatoria:

a) Puesto que asumimos que estos datos provienen de normales (con σ desconocido), un intervalo de confianza a nivel $1-\alpha$ para μ es:

$$I_{1-\alpha} = [\bar{x}_n - k_\alpha, \bar{x}_n + k_\alpha] \qquad \text{con } k_\alpha = \frac{s_n}{\sqrt{n}} t_{1-\frac{\alpha}{2}} (n-1)$$

Como $\bar{x}_n = 3,69$, $s_n = 1,26$ y $t_{0,975}(9) = 2,262$, se tiene que k = 0,9 y $I_{0,95} = [2,79,4,59]$.

b) El valor más grande de $|\frac{i}{n} - F_0(x_i^*)|$ es aproximadamente 0,32 y el valor más grande de $|\frac{i-1}{n} - F_0(x_i^*)|$ es aproximadamente 0,22, luego $d_n = 0,32$. Mirando la tabla KS para una muestra, resulta que:

$$p - valor = \mathbb{P}(D_n > 0.32|H_0) > 0.32$$

Entonces NO se rechaza H_0 a nivel $\alpha = 0.05$.

c) El valor más grande de la primera tabla para $|\frac{i}{n} - F_m^Y(x_i^*)|$ es $d_1 = 0.8$ y el más grande para la segunda tabla es $d_2 = 0.6$. Luego, $d_{n,m} = 0.8$ y $nmd_{n,m} = 40$. Entonces:

$$p - valor = \mathbb{P}(nmD_{n,m} > 40) = 0.019 < 0.05$$

por lo que se rechaza H_0 .

Ejercicio 4 a) Sean:

i	1	2	3	4	5
x_i	2	3	5	7	8
y_i	14	20	32	42	44

La ecuación de la recta de regresión (la que minimiza mínimos cuadrados) es:

$$y = \hat{\beta}_1 x + \hat{\beta}_0$$
 con $\hat{\beta}_1 = \frac{\sum (x_i - \bar{x}_n)(y_i - \bar{y}_n)}{\sum (x_i - \bar{x}_n)^2}$ $\hat{\beta}_0 = \bar{y}_n - \hat{\beta}_1 \bar{x}_n$

En este caso:

- $\bar{x}_n = 5$
- $\bar{y}_n = 30.4$

- $\hat{\beta}_1 = 5.2$
- $\hat{\beta}_0 = 4.4$

Finalmente, la ecuación de la recta de regresión es: y = 5.2x + 4.4

Observación: Lo razonable sería considerar y = peso en función de x = edad. De todas maneras, se considerará como correcto aquellos que los consideren al revs.

b) Según la recta de regresión, el peso de un niño de 6 años sería:

$$y = 5.2 \times 6 + 4.4 = 35.6$$
 Kg