6.852: Distributed Algorithms Fall, 2015

Lecture 11

Today's plan

- Basic asynchronous network algorithms, general networks:
 - Leader election
 - (Arbitrary) spanning trees
 - Breadth-first spanning trees
 - Shortest-paths spanning trees
 - Minimum Spanning Trees (MSTs)
- Readings:
 - Chapter 15
 - [Gallager, Humblet, Spira]
- Next time:
 - Synchronizers
 - Reading: Chapter 16.

Leader Election in General Networks

Leader election in general networks

- Consider undirected graphs.
- We can get an asynchronous version of the synchronous FloodMax algorithm:
 - Simulate rounds with local counters.
 - Need to know the diameter for termination.
- We'll see several better asynchronous algorithms later:
 - Don't need to know diameter.
 - In some cases, better message complexity.
- Depend on techniques such as:
 - Breadth-first search
 - Convergecast using a spanning tree
 - Synchronizers to simulate synchronous algorithms
 - Consistent global snapshots

Spanning Trees and Searching

Spanning trees and searching

• Start with the simple task of setting up some (arbitrary) spanning tree with a (given) root i_0 .

Assume:

- Undirected, connected graph (i.e., bidirectional communication).
- Root i_0
- Size and diameter unknown.
- UIDs, with comparisons for equality.
- Can recognize when in-edges and out-edges connect to the same neighbor.
- Require: Each process should output its parent in tree, with a parent output action.
- Starting point: SynchBFS algorithm:
 - i_0 floods a *search* message; parent of a node is the first neighbor from which it receives a *search* message.
- If we try to run the same algorithm in an asynchronous network, then
 we still get a spanning tree, but not necessarily a breadth-first tree.

AsynchSpanningTree, Process i

- Signature
 - in receive(search)_{i,i}, j ∈ nbrs
 - out send(search)_{i,i}, j ∈ nbrs
 - out parent(j)_i, j ∈ nbrs
- State
 - parent: nbrs U $\{\perp\}$, init \perp
 - reported: Boolean, init false
 - for each j ∈ nbrs:
 - send(j) \in {search, \perp }, init search if i = i₀, else \perp

```
    send(search)<sub>i,j</sub>
    pre: send(j) = search
    eff: send(j) := ⊥
```

receive(search)_{j,i}
 eff: if i ≠ i₀ and parent = ⊥ then
 parent := j
 for k ∈ nbrs - { j } do
 send(k) := search

```
    parent(j)<sub>i</sub>
    pre: parent = j
    reported = false
    eff: reported := true
```


- Complexity
 - Messages: O(|E|)
 - Time: diam(l+d) + l
- Anomaly: Paths may be longer than the diameter!
 - Messages may travel faster along longer paths, in asynchronous networks.

Applications of AsynchSpanningTree

- Similar to those for synchronous BFS
- Message broadcast: Piggyback on search message.
- Child pointers: Add responses to search messages, easy because of bidirectional communication.
- Use precomputed tree for broadcast/convergecast
 - Convergecast works as in the synchronous setting.
 - Now the timing anomaly becomes significant.
 - O(h(l+d)) time complexity.
 - O(n) message complexity.
 - See book for details.

h = height of tree; may be as large as n

More applications

- Asynchronous broadcast/convergecast:
 - Can also construct spanning tree while using it to broadcast a message and also to collect responses.
 - E.g., to tell the root when the bcast is done, or to collect aggregated data.
 - See book, p. 499-500, AsynchBcastAck.
 - Complexity:
 - O(|E|) message complexity.
 - O(n(l+d)) time complexity, timing anomaly.
 - See book for details.
- Elect leader when nodes have no info about the network (no knowledge of n, diam, etc.; no root, no spanning tree):
 - All independently initiate AsynchBcastAck, use it to determine max, max elects itself.

Breadth-First Spanning Trees

Breadth-first spanning trees

- Assume (same as above):
 - Undirected, connected graph (i.e., bidirectional communication).
 - Root i_0 .
 - Size and diameter unknown.
 - UIDs, with comparisons.
- Require: Each process should output its parent in a breadthfirst spanning tree.
- AsynchSpanningTree does not guarantee that the spanning tree constructed is breadth-first.
 - Long paths may be traversed faster than short ones.
- Now modify each process to keep track of distance, change parent when it hears of a shorter path.
 - Relaxation algorithm (like Bellman-Ford).
 - Must inform neighbors of changes.
 - Eventually, tree stabilizes to a breadth-first spanning tree.

Signature

- in receive(m)_{j,i}, $m \in \mathbb{N}$, $j \in nbrs$
- **out** send(m)_{i,i}, $m \in \mathbb{N}$, $j \in nbrs$

State

- dist: N U { ∞ }, initially 0 if i = i_0 , else ∞
- parent: nbrs U $\{\bot\}$, init \bot
- for each j ∈ nbrs:
 - send(j): FIFO queue of N, initially (0) if
 i = i₀, else empty

```
    send(m)<sub>i,j</sub>
    pre: m = head(send(j))
    eff: remove head of send(j)
```

```
    receive(m)<sub>j,i</sub>
    eff: if m+1 < dist then
        dist := m +1
        parent := j
        for k ∈ nbrs - { j } do
        add dist to send(k)</li>
```

Note: No parent output actions---no one knows when the algorithm is done

AsynchBFS

AsynchBFS

Complexity:

- Messages: O(n |E|)
 - May send O(n) messages on each link (one for each distance estimate).
- Time: $O(diam \ n \ (l+d))$ (taking pileups into account).
- We can reduce complexity if we know an upper bound D on diameter:
 - Allow only distance estimates $\leq D$.
 - Messages: O(D|E|); Time: O(diam D(l+d))

Termination:

- No one knows when this is done, so they can't produce parent outputs.
- Can augment with acks for search messages, convergecast back to i_0 .
- $-i_0$ learns when the tree has stabilized, tells everyone else.
- A bit tricky:
 - Tree grows and shrinks.
 - Some processes may participate many times, as they learn improvements.
 - Bookkeeping needed.
 - Complexity?

Layered BFS

- Asynchrony leads to many corrections, which lead to lots of communication.
- Idea: Slow down communication, grow the tree in synchronized phases.
 - In phase k, incorporate all nodes at distance k from i_0 .
 - i_0 synchronizes between incorporating nodes at distance k and k+1.

• Phase 1:

- $-i_0$ sends *search* messages to neighbors.
- Neighbors set dist := 1, send acks to i_0 .

• Phase k+1:

- Assume phases 1, ..., k are completed: each node at distance $\leq k$ knows its parent, and each node at distance $\leq k-1$ also knows its children.
- $-i_0$ broadcasts newphase message along tree edges, to distance-k processes.
- Each of these sends search message to all neighbors except its parent.
- When any non- i_0 process receives its first search message, it sets parent := sender and sends ack; sends nacks for subsequent search messages.
- When distance-k process receives acks/nacks for all its search messages, it designates nodes that sent acks as its children.
- Distance-k processes convergecast back to i_0 along the depth k tree to say that they're done; include a bit saying whether any new nodes were found.

Layered BFS

- Terminates: When i_0 learns, in some phase, that no new nodes were found.
- Obviously produces BFS tree, in diam phases.
- Complexity:
 - Messages: $O(|E| + n \, diam)$

Each edge is explored at most once in each direction by search/ack.

Each tree edge is traversed at most once in each phase by newphase/convergecast.

- Time:

- Simplified analysis:
 - Neglect local computation time l
 - Assume every message in a channel is delivered in time d (ignore congestion delays).
- $O(diam^2 d)$

LayeredBFS vs AsynchBFS

Message complexity:

- AsynchBFS: O(diam |E|), assuming diameter is known, O(n |E|) if not
- LayeredBFS: O(|E| + n diam)

• Time complexity:

- AsynchBFS: O(diam d)
- LayeredBFS: $O(diam^2 d)$
- Can also define "hybrid" algorithm (in book)
 - Add m layers in each phase instead of just one.
 - Within each phase, layers get constructed asynchronously.
 - Intermediate performance.

Shortest-Paths Spanning Trees

Shortest paths

Assumptions:

- Same as for BFS, plus edge weights.
- -weight(i, j), nonnegative real, same in both directions.

Require:

- Output shortest distance and parent in shortest-paths tree.
- Use Bellman-Ford asynchronously
 - Used to establish routes in ARPANET 1969-1980.
 - Can augment with convergecast as for BFS, for termination.
 - But worst-case complexity is very, very bad...

AsynchBellmanFord

Signature

- -in receive(w)_{i,i}, w ∈ $\mathbb{R}^{\geq 0}$, j ∈ nbrs
- $-out \operatorname{send}(w)_{i,j}$, w ∈ $\mathbb{R}^{\geq 0}$, j ∈ nbrs

State

- dist: $R^{\geq 0}$ U { ∞ }, initially 0 if i = i_0 , else ∞
- parent: nbrs U $\{\bot\}$, init \bot
- for each j ∈ nbrs:
 - send(j): FIFO queue of $R^{\geq 0}$; init (0) if $i = i_0$, else empty

Transitions

```
    send(w)<sub>i,j</sub>
    pre: w = head(send(j))
    eff: remove head of send(j)
```

receive(w)_{j,i}
 eff: if w + weight(j,i) < dist
 then
 dist := w + weight(j,i)
 parent := j
 for k ∈ nbrs - { j } do
 add dist to send(k)

AsynchBellmanFord

Termination:

Use convergecast (as for AsynchBFS).

Complexity:

- O(n!) simple paths from i_0 to any other node, which is $O(n^n)$.
- So the number of messages sent on any channel is $O(n^n)$.
- So message complexity = $O(n^n |E|)$, time complexity = $O(n^n n (l + d))$.
- Q: Are the message and time complexity really exponential in n?
- A: Yes: In some execution of the network below, i_k sends 2^k messages to i_{k+1} , so message complexity is $\Omega(2^{n/2})$ and time complexity is $\Omega(2^{n/2} d)$.

Exponential time/message complexity

- In some execution, i_k sends 2^k messages to i_{k+1} , so message complexity is $\Omega(2^{n/2})$ and time complexity is $\Omega(2^{n/2} d)$.
- Possible distance estimates for i_k are $2^k 1$, $2^k 2$, ..., 0.
- Moreover, i_k can take on all these estimates in sequence:
 - First, messages traverse upper links, $2^k 1$.
 - Then last lower message arrives at i_k , $2^k 2$.
 - Then lower message $i_{k-2} \to i_{k-1}$ arrives, reduces i_{k-1} 's estimate by 2, message $i_{k-1} \to i_k$ arrives on upper links, $2^k 3$.
 - Etc. Count down in binary.
 - If this happens quickly, get pileup of 2^k search messages in $C_{k,k+1}$.

Shortest Paths

- Moral: Unrestrained asynchrony can cause problems.
- Return to this problem after we have better synchronization methods.

 Now, another good illustration of the problems introduced by asynchrony:

Minimum Spanning Tree

Minimum spanning tree

Assumptions:

- -G = (V, E) connected, undirected.
- Weighted edges, weights known to endpoint processes, weights distinct.
- UIDs
- Processes don't know n, diam.
- Can identify in-edge and out-edge connecting to the same neighbor.
- Input: wakeup actions, occurring at any time at one or more nodes.
- Process wakes up when it first receives either a wakeup input or a protocol message.

• Requires:

- Produce MST, where each process knows which of its incident edges belong to the tree.
- Guaranteed to be unique, because of unique weights.
- [Gallager-Humblet-Spira]: Recommended reading!

Recall synchronous algorithm

- Proceeds in phases (levels).
- After each phase, we have a spanning forest, in which each component tree has a leader.
- In each phase, each component finds min weight outgoing edge (MWOE), then components merge using all MWOEs to get components for next phase.
- In more detail:
 - Each node is initially in component by itself (level 0 components).
 - Phase 1 (produces level 1 components):
 - Each node uses its min weight edge as the component MWOE.
 - Send *connect* message across *MWOE*.
 - There is a unique edge that is the MWOE of two components.
 - Leader of new component is higher-id endpoint of this unique edge.
 - Phase k + 1 (produces level k + 1 components):

Synchronous algorithm

- Phase k + 1 (produces level k + 1 components):
 - Leader of each component initiates search for MWOE (broadcast initiate on tree edges).
 - Each node finds its *mwoe*:
 - Send test on potential edges, wait for accept (different component) or reject (same component).
 - Test edges one at a time in order of weight.
 - Report to leader (convergecast report); remember direction of best edge.
 - Leader picks MWOE for component.
 - Send changeroot message to MWOE's endpoint, using remembered best edges.
 - Send connect message across MWOE.
 - There is a unique edge that is the MWOE of two components.
 - Leader of new component is higher-id endpoint of this unique edge.
 - Wait sufficient time for phase to end.

Synchronous algorithm

- Complexity is good:
 - Messages: $O(n \log n + |E|)$
 - Time (rounds): $O(n \log n)$
- Low message complexity depends on the way nodes test their incident edges, in order of weight, not retesting the same edge once it's rejected.
- Q: How to run this algorithm asynchronously?

Running the algorithm asynchronously

Problems arise:

- Inaccurate information about outgoing edges:
 - In the synchronous algorithm, when a node tests its edges, it knows that its neighbors are already up to the same level, and have up-to-date information about their component.
 - In asynchronous version, neighbors could lag behind; they might be in same component but not yet know this.
- Less "balanced" combination of components:
 - In synchronous algorithm, level k components have $\geq 2^k$ nodes, and level k+1 components are constructed from at least two level k components.
 - In asynchronous version, components at different levels could be combined.
 - Can lead to more messages overall.
 - Example: One component might keep merging with level 0 single-node components. After each merge, the number of messages sent in the tree is proportional to the component's size. Leads to $\Omega(n^2)$ messages overall.

Running the algorithm asynchronously

- Problems arise:
 - Inaccurate information about outgoing edges.
 - Less "balanced" combination of components:

- Concurrent overlapping searches/convergecasts:
 - When nodes are out of synch, concurrent searches for MWOEs could interfere with each other (we'll see this).
- These problems result from nodes being out-of-synch, at different levels.
- We could try to synchronize levels, but carefully, so as not to hurt the time and message complexity too much.

GHS algorithm (asynchronous)

- Same basic ideas as before:
 - Form components, combine along *MWOE*s.
 - Within any component, processes cooperate to find component MWOE.
 - Broadcast from leader, convergecast, etc.
- Introduce synchronization to prevent nodes from getting too far ahead of their neighbors.
 - Associate a level with each component, as before.
 - Number of nodes in a level k component $\geq 2^k$, as before.
 - Now, each level k+1 component will be (initially) formed from exactly two level k components.
 - Level numbers are used for synchronization, and for determining who is in the same component.

Complexity:

- Messages: $O(|E| + n \log n)$
- Time: $O(n \log n (d + l))$

GHS algorithm

- Combine pairs of components in two ways, merging and absorbing.
- Merging:

- C and C' have same level k, and have a common MWOE.
- Result is a new merged component C'', with level k+1.

GHS algorithm

Absorbing:

- level(C) < level(C'), and C's MWOE leads to C'.
- Result is to absorb C into C'.
- Not creating a new component---just adding C to existing C'.
- C "catches up" with the more advanced C'.
- Absorbing is cheap, local.
- Merging and absorbing ensure that the number of nodes in any level k component $\geq 2^k$.
- Merging and absorbing are both allowable operations in computing the MST, because they are allowed by the general theory for MSTs.

Liveness

- Q: Why are merging and absorbing sufficient to ensure that the construction is eventually completed?
- Lemma: After any allowable finite sequence of merges and absorbs, either the forest consists of one tree (so we're done), or some merge or absorb is enabled.
- Proof:
 - Consider the current "component digraph":
 - Nodes = components
 - Directed edges correspond to MWOEs
 - Then there must be some C, C' whose MWOEs point to each other. (Why?)
 - These MWOEs must be the same edge. (Why?)
 - Can combine, using either merge or absorb: If same level, merge, else absorb.
- So, merging and absorbing are enough.
- Now, how to implement them with a distributed algorithm?

Component names and leaders

- For every component with level > 1, define the core edge of the component's tree.
- Defined in terms of the merge and absorb operations used to construct the component:
 - After merge: Use the common MWOE.
 - After absorb: Keep the old core edge of the higher-level component.
- "The edge along which the most recent merge occurred."

- Component name: (core, level)
- Leader: Endpoint of core edge with higher id.

Determining whether an edge is outgoing

- Suppose i wants to know whether the edge (i,j) is outgoing from i's current component.
- At that point, i's component name info is up-to-date:
 - Component is in "search mode".
 - i has received an *initiate* message from the leader, which included the component name.
- So i sends j a test message.
- Three cases:
 - If j's current (core, level) is the same as i's, then j knows that it is in the same component as i.
 - If j's (core, level) is different from i's and j's level is $\geq i$'s, then j knows that j is in a different component from i.
 - Each component has only one core per level.
 - No one in the same component currently has a higher level than i does, since the component is still searching for its MWOE.
 - If j's level is < i's, then j doesn't know if it is in the same or a different component. So it doesn't yet respond---it waits to catch up to i's level.

Liveness, again

 Q: Can the extra delays imposed here affect the progress argument?

No:

- We can redo the progress argument, this time considering only those components with the lowest current level k.
- All processes in these components must succeed in determining their mwoes, so these components succeed in determining the component MWOE.
- If any of these level k components' MWOEs leads to a higher level, then we can absorb.
- If not then all lead to other level k components, so as before, we must have two components that point to each other; so we can merge.

Interference between MWOE searches

• Suppose C gets absorbed into C' via an edge from i to j, while C' is working on determining its MWOE.

Two cases:

- When the absorb occurs, j has not yet reported its local mwoe.
 - Then it's not too late for C' to include C in its MWOE search. So j passes the *initiate* message into C.

MWOE(C

- j has already reported its local mwoe.
 - Then it's too late to include C in the search.
 - But it doesn't matter: the MWOE for the combined component can't be outgoing from a node in C anyhow!
 - Why not?

Interference between MWOE searches

- If *j* has already reported its local *mwoe*, then the *MWOE* for the combined component is not outgoing from a node in *C*.
- Claim 1: j 's reported mwoe is not the edge (i, j).
- Proof:
- j 's mwoe must lead to a node with $level \ge level(C')$.
- But *i* 's level < level(C') when the *absorb* occurs.
- So j 's mwoe must be a different edge, with weight < weight(i, j).

- Claim 2: MWOE for combined component is not outgoing from a node in C.
- Proof:
- The weight of the MWOE of the combined component is \leq the weight of j 's mwoe, so is < weight(i, j).
- Since (i, j) is the MWOE of C, there are no edges outgoing from C with weight < weight(i, j).
- So *MWOE* of combined component isn't outgoing from *C*.

A few details

- Specific messages:
 - initiate: Broadcast from leader to find MWOE; piggyback the component name on the message.
 - report: Convergecast the responses back to the leader.
 - test: Asks whether an edge is outgoing from the component.
 - accept/reject: Answers.
 - changeroot: Sent from leader to endpoint of MWOE.
 - connect: Sent across the MWOE, to connect components.
 - We say *merge* occurs when a *connect* message has been sent both ways on the edge (2 nodes must have same level).
 - We say *absorb* occurs when a *connect* message has been sent on the edge from a lower-level to a higher-level node.

Test-Accept-Reject Protocol

- Bookkeeping: Each process i keeps a list of incident edges in order of weight, classified as:
 - branch (in the MST),
 - rejected (leads to same component, not in the MST), or
 - unknown (not yet classified).
- Process i tests only unknown edges, in order of weight:
 - Sends test message, with (core, level); recipient j compares.
 - If same (core, level), j sends reject (same component), and i reclassifies edge as rejected.
 - If (core, level) pairs are unequal and $level(j) \ge level(i)$ then j sends accept (different component). i does not reclassify the edge.
 - If level(j) < level(i) then j delays responding, until $level(j) \ge level(i)$.
- Retesting is possible, for accepted edges.
- Reclassify edge as branch as a result of changeroot message.

Complexity

- As for synchronous version.
- Messages: $O(|E| + n \log n)$
 - 4|E| for test + reject messages (one pair for each direction of every edge)
 - n initiate messages per level (broadcast: only sent on tree edges)
 - n report messages per level (convergecast)
 - 2n test + accept message pairs per level (one pair per node)
 - n changeroot + connect messages per level (leader to MWOE path)
 - $\log n$ levels
 - Total: $4|E| + 5n \log n$
- Time: O(n log n (l + d))

Proving Correctness

- GHS MST is hard to prove, because it's complicated.
- GHS paper includes informal arguments.
 - Pretty convincing, but not formal.
 - Also simulated the algorithm extensively.
- Many successful attempts to formalize, all complicated
 - Many invariants because many variables and actions.
 - Some use simulation relations.
 - Recent proof by Moses and Shimony.

Minimum spanning tree

- Application to leader election:
 - Convergecast from leaves until messages meet at node or edge.
 - Works with any spanning tree, not just MST.
 - E.g., in asynchronous ring, this yields $O(n \log n)$ messages for leader election.
- Lower bounds on message complexity for MST:
 - $-\Omega(n \log n)$, from leader election lower bound and the reduction above.

Next time

- Synchronizers
- Reading: Chapter 16