Contrôle : Modélisation et commande des robots de manipulation

Durée : 2H00

Exercice 1: Soit le robot PRRR suivant représenté dans sa position de référence où le vecteur des variables articulaire est nul $[q_1 \ q_2 \ q_3 \ q_4]^T = [0 \ 0 \ 0 \ 0]^T$.

- 1. Rajouter les repères manquants sur la figure en respectant la convention de DH.
- 2. Remplir la table de DH.
- 3. Donner l'expression des matrices de transformation T_0^1 , T_1^2 , T_2^3 , T_3^4 , et en déduire le modèle géométrique direct du robot
- 4. Vérifier la validité du modèle géométrique sur ces deux cas particuliers :
 - a. $[q_1 \ q_2 \ q_3 \ q_4]^T = [0 \ 0 \ 0 \ 0]^T$
 - b. $[q_1 \ q_2 \ q_3 \ q_4]^T = [0 \ \pi/2 \ 0 \ 0]^T$
- 5. Soit V_4^0 le vecteur des vitesses linéaires de l'extrémité de l'effecteur par rapport au repère de référence R_0 et ω la vitesse de rotation de l'effecteur autour de l'axe Z_0 .
 - Calculer le Jacobien J sachant que :

$$\begin{bmatrix} V_{4,x}^{0} \\ V_{4,y}^{0} \\ V_{4,z}^{0} \\ \omega \end{bmatrix} = J. \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{3} \\ \dot{q}_{4} \end{bmatrix}$$

- Vérifier la validité du Jacobien (modèle cinématique) pour le cas $[q_1 \ q_2 \ q_3 \ q_4]^T = [0 \ 0 \ 0 \ 0]^T$.

Exercice 2: Soit le robot RP suivant. m_1 et m_2 sont les masses des segments l_1 et l_2 respectivement.

- 1. Calculer l'énergie cinétique du robot.
- 2. Calculer l'énergie potentielle du robot.

3. Calculer le modèle dynamique du robot et exprimer-le sous la forme matricielle suivante

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \tau$$

Avec $q = [q_1 \ q_2]^T$ le vecteur des variables articulaires, $\tau = [\tau_1 \ \tau_2]^T$ les couples des moteurs montés sur les articulations, M(q) la matrice des masses, $C(q, \dot{q})$ la matrice de Coriolis déterminée par les symboles de Christoffel, G(q) le vecteur de gravité.

4. Concevoir un controleur basé sur le modèle dynamique qui assure la poursuite des trajectoires de référence ; de position q_d , de vitesse \dot{q}_d et d'accélération \ddot{q}_d ; dans l'espace articulaire. Donner la représentation complète du système en boucle fermée.

