

A data-based approach to competition in word-formation: diminutives and gender marking across seven languages

Morphological meeting at Laboratoire de linguistique formelle Paris 2022

Lukáš Kyjánek KYJANEK@UFAL.MFF.CUNI.CZ https://lukyjanek.github.io/

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

START Grant

- 03/2021 03/2022
- Morphological research into competition in Germanic, Romance, and Slavic langs.
 - **G**: Dutch English German | **R**: French Spanish | **S**: Czech Russian
- Mgr. Magda Ševčíková, PhD. (mentor)
- Mgr. Lukáš Kyjánek (PI): semantics in derivational morphology, language resources
- Mgr. Jan Bodnár: morphological segmentation
- Mgr. Emil Svoboda: compounding
- Mgr. Jonáš Vidra: linguistic transfer methods, language resources

Outline

- 1. Basic notions
- 2. Data Resources
 - DeriNet
 - Universal Derivations
 - DeriNet.RU
 - Universal Segmentations
- 3. Methodology
 - Searching for spelling variants (in Czech)
 - Labelling derivational meanings (in Czech)
 - Analysing agent noun formation (in Czech)
 - Transfering word-formation networks (from Czech)
- 4. Ongoing work
 - Analysis of gender marking formation (in Czech)
 - Comparison of diminutiveness and gender marking across languages

Basic notions

Approaches to derivational morphology

Körtvélyessy et al. (2020:10-11)

1. Direct derivatives (paradigm)

```
dom 
ightarrow dom	ext{-}ov \ 
ightarrow dom-ček} \ 
ightarrow dom-ík \ 
ightarrow dom-isko
```

2. Subsequent derivatives (series)

```
dom 	o dom\text{-}ov 	o dom\text{-}ov\text{-}ina 	o dom\text{-}ov\text{-}in\text{-}ov\acute{y}

dom 	o dom\text{-}\check{c}ek 	o dom\text{-}\check{c}ek\text{-}ov\acute{y}

dom 	o dom\text{-}ik 	o dom\text{-}ik\text{-}ov\acute{y}

dom 	o dom\text{-}isko 	o dom\text{-}isk\text{-}ov\acute{y}
```

- 3. Semantic categories of each derivational step agent, female, location, quality, agmentative, etc.
- Derivational network
 derivatives derived from a simple underived word
 (combination of (1) and (2) and (3))

Bonami and Strnadová (2019:172)

Derivational meaning

- odesílat $\xrightarrow[agent]{}$ odesíla-tel (to send > sender)
 - odesílat = activity
 - odesílatel = someone who does the activity
- One affix can convey many meanings
 - úředník úředn-ice (officer > female officer)
 - věznit vězn-ice (to imprison > jail)
 - kytka _____ kyt-ice (flower > bouquet)
- One meaning can be conveyed by many affixes
 - úředník úředn-ice (officer > female officer)
 - šéf šéf-ová (boss > female boss)
 - učitel ____ učitel-ka (teacher > female teacher)
 - ministr ministr-yně (minister > female minister)

Data Resources

DeriNet

Lexical network which models word-formation relations in the lexicon of Czech

Over 1 milion lexemes

782 thousand derivational relations

• 50 thousand links for orthographic variants

• 1,952 links for compounding

144 relations of conversion

295 relations of univerbisation

http://www.ufal.cz/derinet

Universal Derivations

 Collection of harmonized lexical networks capturing word-formation, especially derivation, in a cross-linguistically consistent annotation scheme for many languages (UDer 1.1 contains 31 harmonized resources covering 21 languages)

- http://www.ufal.cz/universal-derivations
- Harmonisation process:
 - Assembling the existing resources
 - Scoring derivational relations
 - Finding maximum spanning tree

Figure 3.6: Illustration of identifying rooted trees by maximising a sum of scores. While just one tree is obtainable from family A (The Morpho-Semantic Database), family B (Démonette) has to be divided. The virtual root prevents failing Maximum Spanning Tree algorithm, and provides smoothing based on the value of ε .

DeriSearch v2: http://www.ufal.cz/derisearch

DeriNet.RU

- Lexical network which models word-formation relations in the lexicon of Russian
- Over 337 thousand lexemes connected by more than 164 thousand derivational relations into 172 thousand derivational families
- Created on the basis of:
 - Grammar-based model of derivational rules from Russian grammar books, e.g., rule343(noun + ucm > noun) анархия [anarchy] > анархист [anarchist]
 - Harmonisation procedure (improved)

11

Universal Segmentations

- Collection of lexical resources capturing morphological segmentations harmonised into a cross-linguistically consistent annotation scheme for many languages (17 harmonized resources providing 48 data sets covering 37 languages)
- http://www.ufal. cz/universal-segmentations

	Resource	Original format	\rightarrow	UniSegments format
Еж. 1	Démonette	"abaissement", "tlfnome", "abaisser", "tlfnome", "Ncms", "tlfnome", "Vmn", "tlfnome", "simple", "derif", "suf", "ment", "derif",,,, "\@RES", "demonette", "'demonette", "résultat de abaisser", "derif", "résultat de \@", "demonette", "descendant", "demonette", "abaiss", "derif",,, "derif"	→	abaiss + e + ment (lowering)
Ex. 2	DerIvaTario	3951;ABBATTIMENTO;BATTERE:vrb_th; ACons:ad:mt2:ms2b;MENTO:mento:mt4:ms1;;;	→	ab + batt + i + mento (breakdown)
Ex. 3	DerivBase.Ru	вымор noun повыморить verb rule887(по + noun + и1(ть) -> verb) PFX,SFX	→	по + вымори + ть (become extinct)
Ex. 4	MorphoLex	rafraîchissant [VB]>>sant>	\rightarrow	r + a + fraîchis + sant (refreshing)
Ex. 5	Word Formation	(23891, 'malaxo', 'V1','', 'VmF', 'm0158', 'malaxo', 'VERB', NULL, 'B') (23890, 'malaxatio', 'N3B', 'f', 'NcC', 'm0157', 'malaxatio', 'NOUN', NULL, 'B') (23891,1,23890, '86', 'a', '2016-03-29 12:45:48') ('V-To-N', 'Derivation_Suffix', '86', '', 'n6p1; n2np; Regular PP: v1*; v2*; v3*; v4*; v5*; v6*', '', '(t)io(n)', 'n31', 'abiurat-io, -ion-is; abstrus-io, -ion-is')	→	<pre>malax + a + tio (comminution)</pre>

Methodology

Searching for spelling variants

Examples:

- úřad, ouřad
- předhřát, předehřát
- ohražování, ohrazování
- jakkoliv, jakkoli
- dopin**g**ový, dopin**k**ový
- býk, bejk
- Tchaivan, Tchajwan
- odbydlet, odbydlit
- trojnožka, třínožka
- žebřina, řebřina
- berla, berle
- (?) bezkolejný, bezkolejový
- (?) bezhlesý, bezhlesný
- (?) bleďoučký, bleďounký
- (?) bočný, boční
- (?) drobínek, drobítek
- (?) rozechvěný, rozechvělý

Labelling derivational meanings

- Pilot experiment: to add 5 labels limited to suffixation into DeriNet for Czech
 - pes _____ psík (dog > small dog)
 - učitel učitelka (teacher > female teacher)
 - učitel učitelův (teacher > teacher's)
 - chodit ____ chodivat (to walk (IPFV) > to walk repeatedly (IPFV))
 - obalit ____ obalovat (to wrap (PFV) > to wrap (IPFV))
- Input data: 14,752 semantically labelled base-derivative pairs from SSJČ (Havránek 1960-1971), MorfFlexCZ (Hajič and Hlaváčová 2013), VALLEX 3.0 (Lopatková et al. 2016), and PMČ (Nekula et al. 2012); each label around 2.5 thousand pairs
- Features: part-of-speech categories, genders, aspects, possessivity tags, final character n-grams (2-6)

- Task: to classify the most probable semantic label
- Method: Multinomial Logistic Regression with newton-cg solver
- F1-score = 98.4%

Label	Derivations
Diminutive	5,383
Female	28,623
Possessive	87,087
Iterative	11,778
Aspect	15,186

Already available since DeriNet 2.0

Analysing agent noun formation

- 8 top-frequent suffixes forming agent nouns (SYN2015); manually created data
- Data set divided into training, evaluation, and hold-out subsets
- Settings of hyper-parameters of Logistic regression were obtained from the first experiment on dataset containing all features
- Other experiments used 5 different subsets of features, but the same settings

target_noun	viník	target_noun_suffix	-ník/-ík
base_number_syllables	1	paradigm_type	NNA-V-
base_number_prefixes	0	freq_target_noun	1188
base_shared_theme	X	freq_parent_noun	6758
base_ending	n	freq_parent_adj	2274
base_ending_cvs	consonant	freq_parent_oth	_
base_ending_vertical	nasal	freq_parent_v1	689
base_ending_horizontal	alveolar	freq_parent_v2	_
parent_noun	vina	freq_slots	VxAN
parent_adj	vinný	v1_theme	i
parent_oth	_	v1_aspect	imp
parent_v1	vinit	v1_conjug	4
parent_v2	_	v2_theme	_
inanim_noun	no	v2_aspect	_
v1_suf_asp_counterpart	no	v2_conjug	-

Table: Absolute numbers of individual agent suffixes in our data set.

Suffix	-tel	-č	-ník -ík	-ář -ař	-ce	-ák	-ec	-čí	TOTAL
Count	426	388	106	96	66	50	32	14	1,178

Subsets

- Subset A: formal characteristics
- Subset B: phonological characteristics
- Subset C: morphological characteristics
- Subset D: morphological family characteristics
- Subset E: quantitative characteristics

Examples of results

- There must be more relevant features not included
- The combination of features from different linguistic areas is necessary to model competition
- Results of -ář/-ař and -ce seems relatively balanced: instances are likely complex regarding competition

Transferring word-formation networks

- proof-of-concept method for creating word-formation networks by transferring information from another language
- creates a low-precision and moderate-recall network in a language, for which no manual annotations need to be available

Ongoing work

Analysis of gender marking formation

What are the base lexemes of the female representatives, and what is their distribution in terms of morphosyntactic categories, word-formation properties, and frequencies over time?

simplex: $matka_{N.fem}$ (mother) - $otec_{M.masc}$ (father)

 $vdova_{N.fem}$ (widow) > $vdovec_{M.masc}$ (widower)

 $u\check{c}itelka_{N.fem}$ (female teacher) < $u\check{c}itel_{N.masc}$ (teacher) derivatives:

 $kr\acute{a}ska_{N.fem}$ (beautiful woman) $< kr\acute{a}sa_{N.fem}$ (beauty) $b\check{e}hna_{N.fem}$ (floozy) $< b\check{e}hat_{V}$ (to run) $sv\check{e}tlovl\acute{a}ska_{N.fem}$ (fair-haired woman) $< sv\check{e}tlovl\acute{a}s\acute{v}_{A}$ (fair-haired)

průvodčí_{N.fem} (conductress) <> průvodčí_{N.masc} (conductor) conversion:

hajná_{N.fem} (female ranger) <> hajný_{M.masc} (ranger)

extracted all words with feminine gender from **Initial Data** representative corpus SYN2020 (female nouns have only feminine gender in Czech)

Comparison of diminutiveness and gender marking across languages

- to quantify which strategies are used across the 7 languages to convey diminutiveness and gender marking => we need the same data across languages
- data: starts with a derivatives labelled as Diminutive/Female from DeriNet (cs) and translating them into other languages
 - several techniques of machine translation: neural systems, bilingual dictionaries, custom dictionaries from parallel corpora, other resources
- analyses: ... soon ©

¿ Distributional semantics ?

Thank you.

References

- Bonami, O., Strnadová, J. 2019. Paradigm Structure and Predictability in Derivational Morphology. Morphology, 29, 167-197. Springer. ISSN: 1871-5656.
- Körtvélyessy, L., Bagasheva, A., Štekauer, P. 2020. Derivational Networks Across Languages. De Gruyter Mouton. ISBN: 9783110686494.
- Kyjánek, L.; Žabokrtský, Z.; Vidra, J.; Ševčíková, M. 2021. Universal Derivations 1.1, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, https://hdl.handle.net/11234/1-3247.
- Kyjánek, L.; Lyashevskaya, O.; Nedoluzhko, A.; Vodolazsky, D.; Žabokrtský, Z. 2021. DeriNet.RU 0.5, Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, DeriNetRU-0.5.zip. Released also in the Universal Derivation collection v1.1.
- Ševčíková, M.; Kyjánek, L.; Vidová Hladká, B. 2021. Agent noun formation in Czech: An empirical study on suffix rivalry. *Second Workshop on Paradigmatic Word Formation Modelling*, 65-68. URL: Paradigmo-2-Booklet-of-abstracts.pdf.
- Ševčíková, M.; Kyjánek, L. 2019. Introducing Semantic Labels into the DeriNet Network. In *Journal of Linguistics*. Bratislava: Jazykovedný ústav Ľudovíta Štúra Slovenskej akadémie vied, pp. 412-423. ISSN: 0021-5597. URL: http://www.juls.savba.sk/ediela/jc/2019/2/jc19-02.pdf.
- Vidra, J.; Žabokrtský, Z. 2021. Transferring Word-Formation Networks Between Languages. In Proceeding of DeriMo 2021. ISBN: 978-2-9580006-0-8.
- Vidra, J.; Žabokrtský, Z.; Kyjánek, L.; Ševčíková, M.; Dohnalová, Š.; Svoboda, E.; Bodnár, J. 2021. DeriNet 2.1, LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University, https://hdl.handle.net/11234/1-3765.