DLBCL Sample Dataset

R	equired (data set										
	A28102	AB000114_at	AB000115_at	AB000220_at	AB000409_at	AB000449_at	AB000450_at	AB000460_at	AB000462_at	AB000464_at	 U58516_at	U73
-	2 -1	-45	176	97	-57	233	265	945	56	819	 1036	
;	3 25	-17	531	353	122	155	209	1688	42	639	 4254	
4	4 73	91	257	80	614	507	760	2252	196	863	 1934	
	5 267	41	202	138	198	355	245	1469	170	384	 2469	
(6 16	24	187	39	145	254	571	930	-11	439	 608	

Training and Spilting of Data

```
In [10]: X_train, X_test, y_train, y_test = train_test_split(scaled_feature_set, target_feature, test_size = 0.2, random_state = 0)
X_train.shape, X_test.shape
Out[10]: ((61, 7070), (16, 7070))
```

- 1. Total number of features present in the dataset = 7071 (including target feature) and 7070(excluding target feature)
- 2. Number of features extracted by each filter method = 1343 (approx. 19%)
- Average accuracy of KNN Classifier is obtained by calculating the accuracy of 19 neighbors from 1to 19
- 4. Filter Methods Used:
 - 4.1 Mutual Information
 - 4.2 F Classification
 - 4.3 T Test
- 5. Wrapper Methods Used:
 - 5.1 Sequential Forward Search
 - 5.2 Sequential Backward Search

Assumptions:

- 1. F1 = Mutual Information
- 2. F2 = F Classification
- 3. F3 = T Test
- 4. SFS = Sequential Forward Search
- 5. SBS = Sequential Backward Search
- 6. KNN = K Nearest Neighbors
- 7. SVM = Support Vector Machine
- 8. S1 = F1(N features) → F2(2N/3 features out of selected features from F1) → F3(N/3 features out of selected features from F2)
- 9. S2 = F2(N features) \rightarrow F3(2N/3 features out of selected features from F2) \rightarrow F1(N/3 features out of selected features from F3)
- 10. S3 = F3(N features) \rightarrow F1(2N/3 features out of selected features from F3) \rightarrow F2(N/3 features out of selected features from F1)
- 11. Union = F1 U F2 U F3
- 12. TP = True Positive
- 13. FP = False Positive
- 14. FN = False Negative
- 15. TN = True Negative Here,

$$N = 7070$$

$$2N/3 = 4713$$

$$N/3 = 2356$$

U = Union of set

Filter method used by each wrapper method = F Classification(because Wrapper methods takes a lot of time to extract features in comparison to filter methods)

Classification method used by wrapper methods to extract features=Support Vector Machine

Number of features extracted by F Classification filter method to give the wrapper method for further feature extraction = 500

Number of features used by each wrapper method = 500

Number of features extracted by Wrapper Methods:

- 1. Sequential Forward Search = 100
- 2. Sequential Backward Search = 400(because it is takes a lot of time to remove 1 feature from set)

Here, confusion matrix displayed in case of KNN neighbors will correspond to the maximum accuracy achieved by the KNN neighbors.

Results:

Comparison Table of KNN Classifier

Parame	Time		Average Best/Maximu							um			
ters	Taken For	Accura Confusion Matrix F-							Confusion Matrix				F-
	Executio	cy	TP	FP	FN	TN	Score	racy	TP	FP	FN	TN	Scor
	(seconds)												
Method													
F1	229.0674	83.2237	11	0.11	2.6	2.4	0.8322	93.75	11	0	1	4	0.9375
F2	927.9947	76.6447	11	0.42	3.3	1.7	0.7664	100.0	11	0	0	5	1.0
F3	14.1915	79.2763	11	0.37	2.9	2.1	0.7927	100.0	11	0	0	5	1.0
Union	1171.2536	78.6184	11	0.32	3.1	1.9	0.7861	100.0	11	0	0	5	1.0
S1	349.5713	77.3026	11	0.47	3.2	1.8	0.773	93.75	10	1	0	5	0.9375
S2	543.8623	76.6447	11	0.37	3.4	1.6	0.7664	93.75	10	1	0	5	0.9375
S3	144.0018	77.6316	11	0.42	3.2	1.8	0.7763	93.75	11	0	1	4	0.9375
SFS	576	77.6316	11	0.32	3.3	1.7	0.7763	93.75	11	0	1	4	0.9375
SBS	3047	76.3158	11	0.47	3.3	1.7	0.7631	93.75	11	0	1	4	0.9375

Comparison Table of SVM Classifier

Parameters -	Time	Accuracy	Confu	sion Matı	rix		F-Score
	Taken For Execution		TP	FP	FN	TN	
Method	(seconds)						
F1	229.0674	75.0	11	0	4	1	0.75
F2	927.9947	68.75	11	0	5	0	0.6875
F3	14.1915	68.75	11	0	5	0	0.6875
Union	1171.2536	68.75	11	0	5	0	0.6875
S1	349.5713	68.75	11	0	5	0	0.6875
S2	543.8623	68.75	11	0	5	0	0.6875
S3	144.0018	68.75	11	0	5	0	0.6875
SFS	576	68.75	11	0	5	0	0.6875
SBS	3047	68.75	11	0	5	0	0.6875

Observations and Conclusions:

- 1. F1 (Mutual Information) filter method is providing the best average accuracy, average confusion matrix and average f-score among all methods for KNN Classifier.
- 2. F1 (Mutual Information) filter method is providing the best accuracy, confusion matrix and f-score among all methods for SVM Classifier.
- 3. KNN Classifier is performing better than SVM Classifier for this dataset.
- 4. T-test is taking least time among all feature extraction methods.
- 5. In SVM Classifier, except F1(Mutual Information) filter method, all other methods are providing the same accuracy, confusion matrix and f-score.
- 6. Cascading of filter methods or using combination wrapper and filter methods is providing better solution in comparison of using single method for feature extraction (T test and F Classification) because their combination is overcoming the disadvantages of one another.

- 7. Highest average accuracy achieved by KNN is in case of F1 (Mutual Information) which is 83.2237%.
- 8. Highest accuracy achieved by SVM is in case of F1 (Mutual Information) which is 75%.
- 9. Maximum accuracy and maximum f-score achieved in case of SVM (Support Vector Machine) is achieved in case of F1 (Mutual Information).
- 10. Here, wrapper methods are not providing any better solution than already presented filter method.
- 11. Here, no cascading and union of filter methods are not providing any better solution than F1 (Mutual Information) in both KNN and SVM Classifier.
- 12. In KNN Classifier, F1 (Mutual Information) is providing best average accuracy but it is not providing maximum accuracy. Here, maximum accuracy is achieved by F2(F Classification), F3(T test) and Union (F1 U F2 U F3).