

AUG 08 2000

EEM CENTER 1609/2900

<110> Anderson, John P.

Basi, Guriqbal

Doane, Minh Tam

Frigon, Normand

John, Varghese

Power, Michael

Sinha, Sukanto

Tatsuno, Gwen

Tung, Jay

Wang, Shuwen

McConlogue, Lisa

<120> Beta-Secretase Enzyme Compositions and Methods

<130> 228-US-NEW

<140> US 09/471,669

<141> 1999-12-24

<150> 60/114,408

<151> 1998-12-31

<150> 60/119,5/71

<151> 1999-02-10

<150> 60/139,172

<151> 1/999-06-15

<160> 102

√170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1503

<212> DNA

<213> Homo sapiens

<400> 1

60 atggcccaag ccctgccctg gctcctgctg tggatgggcg cgggagtgct gcctgcccac ggcacccagc acggcatccg gctgcccctg cgcagcggcc tgggggggcgc ccccctgggg 120 180 gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240 300 gtgggcagcc ccccgcagac gctcaacatc ctggtggata caggcagcag taactttgca 360 gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca. taccgggacc tccggaaggg tgtgtatgtg)ccctacaccc agggcaagtg ggaaggggag 420 480 ctgggcaccg acctggtaag catcccccat ggccccaacg tcactgtgcg tgccaacatt 540 gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg 600 gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct ctqqtaaaqc agacccacgt tcccaacctc ttctccctgc agctttgtgg tgctggcttc 660 720 cccctcaacc agtctgaagt gctggcctct gtcggaggga gcatgatcat tggaggtatc gaccactege tgtacacagg cagtetetgg tatacaceca teeggeggga gtggtattat 780 840 gaggtgatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa 900 gtgtttgaag ctgcagtcaa atccatcaag gcagcctcct ccacggagaa gttccctgat 960 ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt 1020 1080 ttcccagtca tctcactcta cctaatgggt gaggttacca accagtcctt ccgcatcacc 1140 atcettccqc agcaatacct geggecagtg gaagatgtgg ccaegtccca agacgactgt 1200 tacaagtttg ccatctcaca gtcatccacg ggcactgtta tgggagctgt tatcatggag 1260 qqcttctacq ttqtctttqa tcgggcccga aaacgaattg gctttgctgt cagcgcttgc 1320 catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg 1380 gaagactgtg gctacaacat tccacagaca gatgagtcaa ccctcatgac catagcctat 1440 gtcatggctg ccatctgcgc cctcttcatg ctgccactct gcctcatggt gtgtcagtgg 1500 egetgeetee getgeetgeg ceageageat gatgaetttg etgatgaeat etceetgetg

<210> 2 <211> 501 <212> PRT <213> Homo sapiens

aaq

<400> 2
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val v
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser uGly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp uGlu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val 1/ Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr V Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr $^{\vee}$ Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr (Val)Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr 330 335 325 Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val 350 345 Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg 360 Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 370 375 380 Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 390 395 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 410 405 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 420 425 Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 435 440 Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala 460 455 Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp 470 475 Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp 490 495 Ile Ser Leu Leu Lys 500

<210> 3

<211> 24

<212> DNA

<213> Homo sapiens

<400> 3

gagagacgar garccwgagg agcc

<210> 4

<211> 24

<212> DNA

<213> Artificial Sequence

<220>	
<223> Degenerate oligonucleotide primer derived from	SEQ
ID NO: 2	
<400> 4	
gagagacgar garccwgaag agcc	24
<210> 5	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	GRO.
<223> Degenerate oligonucleotide primer derived from	SEQ
ID NO: 2	
<400> 5	·
gagagacgar garccwgaag aacc	24
gagagacgar garcongaag aaco	
<210> 6	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer derived from	SEQ
ID NO: 2	
<400> 6	
gagagacgar garccwgagg aacc	24
<210> 7	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	CEO
<223> Degenerate oligonucleotide primer derived from	SEV

ID NO: 2

<400>	7	
agagad	egarg arccsgagga gcc	23
<210>	8	
<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Degenerate oligonucleotide primer derived from SEQ	
	ID NO: 2	
<400>		
agagad	cgarg arccsgaaga gcc	23
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
.000-		
<220>	Degenerate oligonucleotide primer derived from SEQ	
<223>	ID NO: 2	
	ID NO: 2	
<400>	9	
	cgarg arccsgaaga acc	23
-9-9-		
<210>	10	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Degenerate oligonucleotide primer derived from SEQ	
	ID NO: 2	

	<400> 10	
	agagacgarg arccsgagga acc	23
	<210> 11	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Degenerate oligonucleotide primer derived from SEQ	
	ID NO: 2	
	<400> 11	
	cgtcacagrt trtcaaccat ctc	23
	<210> 12	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Degenerate oligonucleotide primer derived from SEQ	
	ID NO: 2	
	<400> 12	
	cgtcacagrt trtctaccat ctc	23
	cycacagic circuaccat ccc	23
	<210> 13	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	•	
	<220>	
•	<223> Degenerate oligonucleotide primer derived from SEQ	
	ID NO: 2	
	<400> 13	
	cgtcacagrt trtccaccat ctc	23

·	
<210> 14	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer derived from SEQ	
ID NO: 2	
<400> 14	
cgtcacagrt trtcgaccat ctc	23
<210> 15	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Degenerate oligonucleotide primer derived from SEQ</pre>	
ID NO: 2	
<400> 15	
cgtcacagrt trtcaaccat ttc	23
<210> 16	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer derived from SEQ	
ID NO: 2	
<400> 16	
cgtcacagrt trtctaccat ttc	23
2105 17	
ZZIUN 17	

<211>	23	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Degenerate oligonucleotide primer derived from SEQ	
	ID NO: 2	
<400>	17	
		23
cgccac	agic creeducat tes	
<210>	18	
<211>		
<212>		
	Artificial Sequence	
<213>	Artificial Sequence	
<220>		
	Description of improved from CEO	
<223>	Degenerate oligonucleotide primer derived from SEQ	
	ID NO: 2	
.400-	10	
<400>		23
cgtcac	cagrt trtcgaccat ttc	23
.010.	10	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Degenerate oligonucleotide primer derived from SEQ	
	ID NO: 2	
<400>		20
gaggg	gcagc tttgtggaga	20
•		
<210>		
<211>		
<212>	DNA	

<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer derived from SEQ	
ID NO: 2	
<400> 20	-
cagcataggc cagccccagg atgcct	26
<210> 21	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
· · · · · · · · · · · · · · · · · · ·	
<220>	
<223> Degenerate oligonucleotide primer derived from SEQ	
ID NO: 2	
<400> 21	
gtgatggcag caatgttggc acgc	24
<210> 22	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<221> misc_feature	
<222> (1) (17)	
<223> n = A, T, C or G	
<400> 22	
gaygargagc cngagga	17
<210> 23	
<211> 17	

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide primer
<221> misc_feature
<222> (1) ... (17)
<223> n = A,T,C or G
<400> 23
                                                                            17
gaygargagc cngaaga
<210> 24
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide primer
<221> misc feature
<222> (1) ... (17)
\langle 223 \rangle n = A,T,C or G
<400> 24
                                                                            17
gaygargaac cngagga
<210> 25
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide primer
<221> misc_feature
```

<222> (1) ... (17)

```
\langle 223 \rangle n = A,T,C or G
<400> 25
                                                                                17
gaygargaac cngaaga
<210> 26
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide primer
<221> misc_feature
<222> (1)...(15)
\langle 223 \rangle n = A,T,C or G
<400> 26
                                                                                15
rttrtcnacc atttc
<210> 27
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide primer
<221> misc_feature
<222> (1)...(15)
\langle 223 \rangle n = A,T,C or G
<400> 27
                                                                                15
rttrtcnacc atctc
<210> 28
<211> 17
```

<212> DNA

<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<221> misc_feature	
<222> (1)(17)	
<223> n = A,T,C or G	
<400> 28	
tcnaccatyt cnacaaa	17
<210> 29	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<221> misc_feature	
<222> (1)(17)	
<223> n = A,T,C or G	
<400> 29	
tcnaccatyt cnacgaa	17
<210> 30	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<400> 30	_
atattctaga gaygargagc cagaaga	27

(210) 31	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<400> 31	0.1
atattctaga gaygargagc cggaaga	27
<210> 32	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
2137 Michile Bequence	
<220>	
<223> Degenerate oligonucleotide primer	
<400> 32	
atattctaga gaygargagc ccgaaga	2
<210> 33	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<400> 33	
atattctaga gaygargagc ctgaaga	2
<210> 34	
<211> 30	
<212> DNA	
<213> Artificial Sequence	

```
<220>
<223> Degenerate oligonucleotide primer
<221> misc_feature
<222> (1) ... (30)
\langle 223 \rangle n = A,T,C or G
<400> 34
                                                                              30
acacgaattc ttrtcnacca tytcaacaaa
<210> 35
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide primer
<221> misc_feature
<222> (1) ... (30)
<223> n = A,T,C or G
<400> 35
                                                                              30
acacgaattc ttrtcnacca tytcgacaaa
<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Degenerate oligonucleotide primer
<221> misc_feature
<222> (1)...(30)
\langle 223 \rangle n = A,T,C or G
<400> 36
```

acacgaattc ttrtcnacca tytccacaaa	30
<210> 37	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<221> misc_feature	
<222> (1)(30)	
<223> n = A,T,C or G	
<400> 37	
acacgaattc ttrtcnacca tytctacaaa	30
<210> 38	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
.220	
<220> <223> Degenerate oligonucleotide primer	
223) Degenerate Origonacieotrae primer	
<400> 38	
aagagcccgg ccggaggggc a	21
<210> 39	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
2237 Degenerate originalisation primer	
<400> 39	
aaagetgeee eteeggeegg g	21

<210> 40	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<400> 40	
agctcgttta gtgaaccgtc agatcg	26
<210> 41	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<400> 41	2.0
acctacaggt ggggtctttc attccc	26
<210> 42	
<211> 42 <211> 2348	
<212> DNA	
<213> Homo sapiens	
(213) Hollo Suprens	
<400> 42	
ccatgccggc ccctcacagc cccgccggga gcccgagccc gctgcccagg ctggccgccg	60
csgtgccgat gtagcgggct ccggatccca gcctctcccc tgctcccgtg ctctgcggat	120
ctcccctgac cgctctccac agcccggacc cgggggctgg cccagggccc tgcaggccct	180
ggcgtcctga tgcccccaag ctccctctcc tgagaagcca ccagcaccac ccagacttgg	240
gggcaggcgc cagggacgga cgtgggccag tgcgagccca gagggcccga aggccggggc	300
ccaccatggc ccaagccctg ccctggctcc tgctgtggat gggcgcggga gtgctgcctg	360
cccacggcac ccagcacggc atccggctgc ccctgcgcag cggcctgggg ggcgccccc	420
tggggctgcg gctgccccgg gagaccgacg aagagcccga ggagcccggc cggaggggca	480
gctttgtgga gatggtggac aacctgaggg gcaagtcggg gcagggctac tacgtggaga	540

tgaccgtggg cagccccccg	cagacgctca	acatcctggt	ggatacaggc	agcagtaact	600
ttgcagtggg tgctgccccc	caccccttcc	tgcatcgcta	ctaccagagg	cagctgtcca	660
gcacataccg ggacctccgg	aagggtgtgt	atgtgcccta	cacccagggc	aagtgggaag	720
gggagctggg caccgacctg	gtaagcatcc	cccatggccc	caacgtcact	gtgcgtgcca	780
acattgctgc catcactgaa	tcagacaagt	tcttcatcaa	cggctccaac	tgggaaggca	840
tcctggggct ggcctatgct	gagattgcca	ggcctgacga	ctccctggag	cctttctttg	900
actctctggt aaagcagacc	cacgttccca	acctcttctc	cctgcagctt	tgtggtgctg	960
gcttccccct caaccagtct	gaagtgctgg	cctctgtcgg	agggagcatg	atcattggag	1020
gtatcgacca ctcgctgtac	acaggcagtc	tctggtatac	acccatccgg	cgggagtggt	1080
attatgaggt gatcattgtg	cgggtggaga	tcaatggaca	ggatctgaaa	atggactġca	1140
aggagtacaa ctatgacaag	agcattgtgg	acagtggcac	caccaacctt	cgtttgccca	1200
agaaagtgtt tgaagctgca	gtcaaatcca	tcaaggcagc	ctcctccacg	gagaagttcc	1260
ctgatggttt ctggctagga	gagcagctgg	tgtgctggca	agcaggcacc	accccttgga	1320
acattttccc agtcatctca	ctctacctaa	tgggtgaggt	taccaaccag	tccttccgca	1380
tcaccatcct tccgcagcaa	tacctgcggc	cagtggaaga	tgtggccacg	tcccaagacg	1440
actgttacaa gtttgccatc	tcacagtcat	ccacgggcac	tgttatggga	gctgttatca	1500
tggagggctt ctacgttgtc	tttgatcggg	cccgaaaacg	aattggcttt	gctgtcagcg	1560
cttgccatgt gcacgatgag	ttcaggacgg	cagcggtgga	aggccctttt	gtcaccttgg	1620
acatggaaga ctgtggctac	aacattccac	agacagatga	gtcaaccctc	atgaccatag	1680
cctatgtcat ggctgccatc	tgcgccctct	tcatgctgcc	actctgcctc	atggtgtgtc	1740
agtggcgctg cctccgctgc	ctgcgccagc	agcatgatga	ctttgctgat	gacatctccc	1800
tgctgaagtg aggaggccca	tgggcagaag	atagagattc	ccctggacca	cacctccgtg	1860
gttcactttg gtcacaagta	ggagacacag	atggcacctg	tggccagagc	acctcaggac	1920
cctccccacc caccaaatgc	ctctgccttg	atggagaagg	aaaaggctgg	caaggtgggt	1980
tccagggact gtacctgtag	gaaacagaaa	agagaagaaa	gaagcactct	gctggcggga	2040
atactcttgg tcacctcaaa	tttaagtcgg	gaaattctgc	tgcttgaaac	ttcagccctg	2100
aacctttgtc caccattcct	ttaaattctc	caacccaaag	tattcttctt	ttcttagttt	2160
cagaagtact ggcatcacac	gcaggttacc	ttggcgtgtg	tccctgtggt	accctggcag	2220
agaagagacc aagcttgttt	ccctgctggc	caaagtcagt	aggagaggat	gcacagtttg	2280
ctatttgctt tagagacagg	gactgtataa	acaagcctaa	cattggtgca	aagattgcct	2340
cttgaatt					2348

<210> 43

<211> 456

<212> PRT

<213> Homo sapiens

<400> 43

Glu	Thr	Asp	Glu	Glu	Pro	Glu	Glu	Pro	Gly	Arg	Arg	Gly	Ser	Phe	Val
1				5					10					15	
Glu	Met	Val	Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly	Tyr	Tyr	Val
			20					25					30		
Glu	Met	Thr	Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn	Ile	Leu	Val	Asp
		35					40					45			
Thr	Gly	Ser	Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu
	50					55					60				
His	Arg	Tyr	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg
65					70					75					80
Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu
				85					90					95	
Gly	Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg
			100					105					110		
Ala	Asn	Ile	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly
		115					120					125			
Ser	Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg
	130					135					140				
Pro	Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr
145					150					155					160
His	Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro
				165					170					175	
Leu	Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile
			180					185					190		
Gly	Gly	Ile	Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro
		195					200					205			
Ile	Arg	Arg	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile
	210					215					220				
Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys		Tyr	Asn	Tyr	Asp	
225					230					235					240
Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys		Val
				245					250					255	
Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile		Ala	Ala	Ser	Ser		Glu	Lys
			260					265			_		270		
Phe	Pro	_	Gly	Phe	Trp	Leu		Glu	Gln	Leu	Val		Trp	Gln	Ala
		275				_	280				_	285	_	_	
Gly		Thr	Pro	Trp	Asn		Phe	Pro	Val	Ile		Leu	Tyr	Leu	Met
	290					295					300				

C	3ly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln
3	305					310					315					320
כ	ſyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr
					325					330					335	
I	Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val
				340					345					350		
]	Ile	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile
			355					360					365			
C	Зlу	Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala
		370					375					380				
1	Ala	Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr
3	385					390					395					400
1	Asn	Ile	Pro	Gln	Thr	Asp	Glu	Ser	Thr	Leu	Met	Thr	Ile	Ala	Tyr	Val
					405					410					415	
ľ	Met	Ala	Ala	Ile	Cys	Ala	Leu	Phe	Met	Leu	Pro	Leu	Cys	Leu	Met	Val
				420					425					430		
(Cys	Gln	Trp	Arg	Cys	Leu	Arg	Cys	Leu	Arg	Gln	Gln	His	Asp	Asp	Phe
			435					440					445			
7	Ala	Asp	Asp	Ile	Ser	Leu	Leu	Lys								
		450					455									
	-21)	1													

<210> 44

<211> 2348

<212> DNA

<213> Homo sapiens

<400> 44

ccatgccggc ccctcacagc cccgccggga gcccgagccc gctgcccagg ctggccgccg 60 csgtgccgat gtagcgggct ccggatccca gcctctcccc tgctcccgtg ctctgcggat 120 ctcccctgac cgctctccac agcccggacc cgggggctgg cccagggccc tgcaggccct 180 240 ggcgtcctga tgcccccaag ctccctctcc tgagaagcca ccagcaccac ccagacttgg gggcaggcgc cagggacgga cgtgggccag tgcgagccca gagggcccga aggccggggc 300 ccaccatggc ccaagccctg ccctggctcc tgctgtggat gggcgcggga gtgctgcctg 360 cccacggcac ccagcacggc atccggctgc ccctgcgcag cggcctgggg ggcgcccccc 420 480 tggggctgcg gctgccccgg gagaccgacg aagagcccga ggagcccggc cggaggggca gctttgtgga gatggtggac aacctgaggg gcaagtcggg gcagggctac tacgtggaga 540 tgaccgtggg cagcccccg cagacgctca acatcctggt ggatacaggc agcagtaact 600 ttgcagtggg tgctgcccc cacccttcc tgcatcgcta ctaccagagg cagctgtcca 660

```
gcacataccg ggacctccgg aagggtgtgt atgtgcccta cacccagggc aagtgggaag
                                                                       720
                                                                       780
qqqaqctqqq caccqacctq gtaagcatcc cccatggccc caacgtcact gtgcgtgcca
                                                                       840
acattgctgc catcactgaa tcagacaagt tcttcatcaa cggctccaac tgggaaggca
                                                                       900
tcctggggct ggcctatgct gagattgcca ggcctgacga ctccctggag cctttctttg
actetetggt aaagcagace cacgtteeca acetettete cetgeagett tgtggtgetg
                                                                       960
                                                                      1020
gcttccccct caaccagtct gaagtgctgg cctctgtcgg agggagcatg atcattggag
                                                                      1080
gtatogacca ctogotgtac acaggoagto totggtatac accoatcogg cgggagtggt
                                                                      1140
attatgaggt gatcattgtg cgggtggaga tcaatggaca ggatctgaaa atggactgca
aggagtacaa ctatgacaag agcattgtgg acagtggcac caccaacctt cgtttgccca
                                                                      1200
                                                                      1260
agaaagtgtt tgaagctgca gtcaaatcca tcaaggcagc ctcctccacg gagaagttcc
                                                                      1320
ctgatggttt ctggctagga gagcagctgg tgtgctggca agcaggcacc accccttgga
                                                                      1380
acattttccc agtcatctca ctctacctaa tgggtgaggt taccaaccag tccttccgca
tcaccatcct tccgcagcaa tacctgcggc cagtggaaga tgtggccacg tcccaagacg
                                                                      1440
                                                                      1500
actyttacaa gtttgccatc tcacagtcat ccacgggcac tgttatggga gctgttatca
                                                                      1560
tqqaqqqctt ctacqttqtc tttqatcqqq cccqaaaacq aattqqcttt gctqtcaqcq
                                                                      1620
cttgccatgt gcacgatgag ttcaggacgg cagcggtgga aggccctttt gtcaccttgg
                                                                      1680
acatggaaga ctgtggctac aacattccac agacagatga gtcaaccctc atgaccatag
                                                                      1740
cctatgtcat ggctgccatc tgcgccctct tcatgctgcc actctgcctc atggtgtc
                                                                      1800
agtggcgctg cctccgctgc ctgcgccagc agcatgatga ctttgctgat gacatctccc
tgctgaagtg aggaggccca tgggcagaag atagagattc ccctggacca cacctccgtg
                                                                      1860
gttcactttg gtcacaagta ggagacacag atggcacctg tggccagagc acctcaggac
                                                                      1920
cctccccacc caccaaatgc ctctgccttg atggagaagg aaaaggctgg caaggtgggt
                                                                      1980
                                                                      2040
tccagggact gtacctgtag gaaacagaaa agagaagaaa gaagcactct gctggcggga
                                                                      2100
atactettqq teaceteaaa tttaagtegg gaaattetge tgettgaaae tteageeetg
                                                                      2160
aacctttgtc caccattcct ttaaattctc caacccaaag tattcttctt ttcttagttt
cagaagtact ggcatcacac gcaggttacc ttggcgtgtg tccctgtggt accctggcag
                                                                      2220
                                                                      2280
agaagagacc aagcttgttt ccctgctggc caaagtcagt aggagaggat gcacagtttg
ctatttgctt tagagacagg gactgtataa acaagcctaa cattggtgca aagattgcct
                                                                      2340
                                                                      2348
cttgaatt
```

```
<210> 45
```

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Flag sequence

```
Tyr Lys Asp Asp Asp Lys
<210> 46
<211> 22
<212> PRT
<213> Homo sapiens
<400> 46
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
                                                         15
                                    10
Leu Pro Ala His Gly Thr
            20
<210> 47
<211> 23
<212> PRT
<213> Homo sapiens
<400> 47
Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro
                 5
                                    10
                                                         15
Leu Gly Leu Arg Leu Pro Arg
            20
<210> 48
<211> 16080
<212> DNA
<213> Artificial Sequence
<220>
<223> Expression Vector pCEK
<221> misc_feature
<222> (1)...(16080)
```

<400> 45

<223> n = A,T,C or G

(100) 10						
ttctcatgtt	tgacagctta	tcatcgcaga	tccgggcaac	gttgttgcat	tgctgcaggc	60
gcagaactgg	taggtatgga	agatccgatg	tacgggccag	atatacgcgt	tgacattgat	120
tattgactag	ttattaatag	taatcaatta	cggggtcatt	agttcatagc	ccatatatgg	180
agttccgcgt	tacataactt	acggtaaatg	gcccgcctgg	ctgaccgccc	aacgaccccc	240
gcccattgac	gtcaataatg	acgtatgttc	ccatagtaac	gccaataggg	actttccatt	300
gacgtcaatg	ggtggactat	ttacggtaaa	ctgcccactt	ggcagtacat	caagtgtatc	360
atatgccaag	tacgccccct	attgacgtca	atgacggtaa	atggcccgcc	tggcattatg	420
cccagtacat	gaccttatgg	gactttccta	cttggcagta	catctacgta	ttagtcatcg	480
ctattaccat	ggtgatgcgg	ttttggcagt	acatcaatgg	gcgtggatag	cggtttgact	540
cacggggatt	tccaagtctc	caccccattg	acgtcaatgg	gagtttgttt	tggcaccaaa	600
atcaacggga	ctttccaaaa	tgtcgtaaca	actccgcccc	attgacgcaa	atgggcggta	660
ggcgtgtacg	gtgggaggtc	tatataagca	gagctctctg	gctaactaga	gaacccactg	720
cttactggct	tatcgaaatt	aatacgactc	actataggga	gacccaagct	ctgttgggct	780
cgcggttgag	gacaaactct	tcgcggtctt	tccagtactc	ttggatcgga	aacccgtcgg	840
cctccgaacg	gtactccgcc	accgagggac	ctgagcgagt	ccgcatcgac	cggatcggaa	900
aacctctcga	ctgttggggt	gagtactccc	tctcaaaagc	gggcatgact	tctgcgctaa	960
gattgtcagt	ttccaaaaac	gaggaggatt	tgatattcac	ctggcccgcg	gtgatgcctt	1020
tgagggtggc	cgcgtccatc	tggtcagaaa	agacaatctt	tttgttgtca	agcttgaggt	1080
gtggcaggct	tgagatctgg	ccatacactt	gagtgacaat	gacatccact	ttgcctttct	1140
ctccacaggt	gtccactccc	aggtccaact	gcaggtcgac	tctagacccg	gggaattctg	1200
cagatatcca	tcacactggc	cgcactcgtc	cccagcccgc	ccgggagctg	cgagccgcga	1260
gctggattat	ggtggcctga	gcagccaacg	cagccgcagg	agcccggagc	ccttgcccct	1320
gcccgcgccg	ccgcccgccg	gggggaccag	ggaagccgcc	accggcccgc	catgcccgcc	1380
cctcccagcc	ccgccgggag	cccgcgcccg	ctgcccaggc	tggccgccgc	cgtgccgatg	1440
tagcgggctc	cggatcccag	cctctcccct	gctcccgtgc	tctgcggatc	tcccctgacc	1500
gctctccaca	gcccggaccc	gggggctggc	ccagggccct	gcaggccctg	gcgtcctgat	1560
gcccccaagc	tccctctcct	gagaagccac	cagcaccacc	cagacttggg	ggcaggcgcc	1620
agggacggac	gtgggccagt	gcgagcccag	agggcccgaa	ggccggggcc	caccatggcc	1680
caagccctgc	cctggctcct	gctgtggatg	ggcgcgggag	tgctgcctgc	ccacggcacc	1740
cagcacggca	tccggctgcc	cctgcgcagc	ggcctggggg	gcgcccccct	ggggctgcgg	1800
ctgccccggg	agaccgacga	agagcccgag	gagcccggcc	ggaggggcag	ctttgtggag	1860
atggtggaca	acctgagggg	caagtcgggg	cagggctact	acgtggagat	gaccgtgggc	1920
agccccccgc	agacgctcaa	catcctggtg	gatacaggca	gcagtaactt	tgcagtgggt	1980

<400> 48

gctgccccc acccttcct gcatcgctac taccagaggc agctgtccag cacataccgg gacctccgga agggtgtgta tgtgccctac acccagggca agtgggaagg ggagctgggc

accgaectgg taagcatece ecatggeece aacgteactg tgegtgeeaa cattgetgee atcactgaat cagacaagtt etteateaac ggeteeaact gggaaggeat eetggggetg

gcctatgctg	agattgccag	gcctgacgac	tccctggagc	ctttctttga	ctctctggta	2280
aagcagaccc	acgttcccaa	cctcttctcc	ctgcagcttt	gtggtgctgg	cttccccctc	2340
aaccagtctg	aagtgctggc	ctctgtcgga	gggagcatga	tcattggagg	tatcgaccac	2400
tcgctgtaca	caggcagtct	ctggtataca	cccatccggc	gggagtggta	ttatgaggtc	2460
atcattgtgc	gggtggagat	caatggacag	gatctgaaaa	tggactgcaa	ggagtacaac	2520
tatgacaaga (gcattgtgga	cagtggcacc	accaaccttc	gtttgcccaa	gaaagtgttt	2580
gaagctgcag	tcaaatccat	caaggcagcc	tcctccacgg	agaagttccc	tgatggtttc	2640
tggctaggag	agcagctggt	gtgctggcaa	gcaggcacca	ccccttggaa	cattttccca	2700
gtcatctcac	tctacctaat	gggtgaggtt	accaaccagt	ccttccgcat	caccatcctt	2760
ccgcagcaat	acctgcggcc	agtggaagat	gtggccacgt	cccaagacga	ctgttacaag	2820
tttgccatct	cacagtcatc	cacgggcact	gttatgggag	ctgttatcat	ggagggcttc	2880
tacgttgtct	ttgatcgggc	ccgaaaacga	attggctttg	ctgtcagcgc	ttgccatgtg	2940
cacgatgagt	tcaggacggc	agcggtggaa	ggcccttttg	tcaccttgga	catggaagac	3000
tgtggctaca	acattccaca	gacagatgag	tcaaccctca	tgaccatagc	ctatgtcatg	3060
gctgccatct	gcgccctctt	catgctgcca	ctctgcctca	tggtgtgtca	gtggcgctgc	3120
ctccgctgcc	tgcgccagca	gcatgatgac	tttgctgatg	acatctccct	gctgaagtga	3180
ggaggcccat	gggcagaaga	tagagattcc	cctggaccac	acctccgtgg	ttcactttgg	3240
tcacaagtag	gagacacaga	tggcacctgt	ggccagagca	cctcaggacc	ctccccaccc	3300
accaaatgcc	tctgccttga	tggagaagga	aaaggctggc	aaggtgggtt	ccagggactg	3360
tacctgtagg	aaacagaaaa	gagaagaaag	aagcactctg	ctggcgggaa	tactcttggt	3420
cacctcaaat	ttaagtcggg	aaattctgct	gcttgaaact	tcagccctga	acctttgtcc	3480
accattcctt	taaattctcc	aacccaaagt	attcttcttt	tcttagtttc	agaagtactg	3540
gcatcacacg	caggttacct	tggcgtgtgt	ccctgtggta	ccctggcaga	gaagagacca	3600
agcttgtttc	cctgctggcc	aaagtcagta	ggagaggatg	cacagtttgc	tatttgcttt	3660
agagacaggg	actgtataaa	caagcctaac	attggtgcaa	agattgcctc	ttgaattaaa	3720
aaaaaaaact	agattgacta	tttatacaaa	tgggggcggc	tggaaagagg	agaaggagag	3780
ggagtacaaa	gacagggaat	agtgggatca	aagctaggaa	aggcagaaac	acaaccactc	3840
accagtccta	gttttagacc	tcatctccaa	gatagcatcc	catctcagaa	gatgggtgtt	3900
gttttcaatg	ttttctttc	tgtggttgca	gcctgaccaa	aagtgagatg	ggaagggctt	3960
atctagccaa	agagctcttt	tttagctctc	ttaaatgaag	tgcccactaa	gaagttccac	4020
ttaacacatg	aatttctgcc	atattaattt	cattgtctct	atctgaacca	ccctttattc	4080
tacatatgat	aggcagcact	gaaatatcct	aaccccctaa	gctccaggtg	ccctgtggga	4140
gagcaactgg	actatagcag	ggctgggctc	tgtcttcctg	gtcataggct	cactctttcc	4200
cccaaatctt	cctctggagc	tttgcagcca	aggtgctaaa	aggaataggt	aggagacctc	4260
ttctatctaa	tccttaaaag	cataatgttg	aacattcatt	caacagctga	tgccctataa	4320
cccctgcctg	gatttcttcc	tattaggcta	taagaagtag	caagatcttt	acataattca	4380
gagtggtttc	attgccttcc	taccctctct	aatggcccct	ccatttattt	gactaaagca	4440
tcacacagtg	gcactagcat	tataccaaga	gtatgagaaa	tacagtgctt	tatggctcta	4500

acattactgc	cttcagtatc	aaggctgcct	ggagaaagga	tggcagcctc	agggcttcct	4560
tatgtcctcc	accacaagag	ctccttgatg	aaggtcatct	ttttccccta	tcctgttctt	4620
cccctccccg	ctcctaatgg	tacgtgggta	cccaggctgg	ttcttgggct	aggtagtggg	4680
gaccaagttc	attacctccc	tatcagttct	agcatagtaa	actacggtac	cagtgttagt	4740
gggaagagct	gggttttcct	agtataccca	ctgcatccta	ctcctacctg	gtcaacccgc	4800
tgcttccagg	tatgggacct	gctaagtgtg	gaattacctg	ataagggaga	gggaaataca	4860
aggagggcct	ctggtgttcc	tggcctcagc	cagctgccca	caagccataa	accaataaaa	4920
caagaatact	gagtcagttt	tttatctggg	ttctcttcat	tcccactgca	cttggtgctg	4980
ctttggctga	ctgggaacac	cccataacta	cagagtctga	caggaagact	ggagactgtc	5040
cacttctagc	tcggaactta	ctgtgtaaat	aaactttcag	aactgctacc	atgaagtgaa	5100
aatgccacat	tttgctttat	aatttctacc	catgttggga	aaaactggct	ttttcccagc	5160
cctttccagg	gcataaaact	caaccccttc	gatagcaagt	cccatcagcc	tattatttt	5220
ttaaagaaaa	cttgcacttg	tttttctttt	tacagttact	tccttcctgc	cccaaaatta	5280
taaactctaa	gtgtaaaaaa	aagtcttaac	aacagcttct	tgcttgtaaa	aatatgtatt	5340
atacatctgt	atttttaaat	tctgctcctg	aaaaatgact	gtcccattct	ccactcactg	5400
catttggggc	ctttcccatt	ggtctgcatg	tcttttatca	ttgcaggcca	gtggacagag	5460
ggagaaggga	gaacaggggt	cgccaacact	tgtgttgctt	tctgactgat	cctgaacaag	5520
aaagagtaac	actgaggcgc	tcgctcccat	gcacaactct	ccaaaacact	tatcctcctg	5580
caagagtggg	ctttccgggt	ctttactggg	aagcagttaa	gcccctcct	caccccttcc	5640
ttttttcttt	ctttactcct	ttggcttcaa	aggattttgg	aaaagaaaca	atatgcttta	5700
cactcatttt	caatttctaa	atttgcaggg	gatactgaaa	aatacggcag	gtggcctaag	5760
gctgctgtaa	agttgagggg	agaggaaatc	ttaagattac	aagataaaaa	acgaatcccc	5820
taaacaaaaa	gaacaataga	actggtcttc	cattttgcca	cctttcctgt	tcatgacagc	5880
tactaacctg	gagacagtaa	catttcatta	accaaagaaa	gtgggtcacc	tgacctctga	5940
agagctgagt	actcaggcca	ctccaatcac	cctacaagat	gccaaggagg	tcccaggaag	6000
tccagctcct	taaactgacg	ctagtcaata	aacctgggca	agtgaggcaa	gagaaatgag	6060
gaagaatcca	tctgtgaggt	gacaggcacg	gatgaaagac	aaagacggaa	aagagtatca	6120
aaggcagaaa	ggagatcatt	tagttgggtc	tgaaaggaaa	agtntttgct	atccgacatg	6180
tactgctagt	wcctgtaagc	attttaggtc	ccagaatgga	aaaaaaaatc	aagctatngg	6240
ttatataata	atgnnnnnnn	nnnnnnnnn	nntcgagcat	gcatctagag	ggccctattc	6300
tatagtgtca	cctaaatgct	agagctcgct	gatcagcctc	gactgtgcct	tctagttgcc	6360
agccatctgt	tgtttgcccc	tcccccgtgc	cttccttgac	cctggaaggt	gccactccca	6420
ctgtcctttc	ctaataaaat	gaggaaattg	catcgcattg	tctgagtagg	tgtcattcta	6480
ttctgggggg	tggggtgggg	caggacagca	agggggagga	ttgggaagac	aatagcaggc	6540
atgctgggga	tgcggtgggc	tctatggctt	ctgaggcgga	aagaaccagc	tggggctcta	6600
gggggtatcc	ccacgcgccc	tgtagcggcg	cattaagcgc	ggcgggtgtg	gtggttacgc	6660
gcagcgtgac	cgctacactt	gccagcgccc	tagcgcccgc	tcctttcgct	ttcttccctt	6720
cctttctcgc	cacgttcgcc	ggctttcccc	gtcaagctct	aaatcggggc	atccctttag	6780

ggttccgatt	tagtgcttta	cggcacctcg	accccaaaaa	acttgattag	ggtgatggtt	6840
cacgtagtgg	gccatcgccc	tgatagacgg	tttttcgccc	tttgacgttg	gagtccacgt	6900
tctttaatag	tggactcttg	ttccaaactg	gaacaacact	caaccctatc	tcggtctatt	6960
cttttgattt	ataagggatt	ttggggattt	cggcctattg	gttaaaaaat	gagctgattt	7020
aacaaaaatt	taacgcgaat	tctagagccc	cgccgccgga	cgaactaaac	ctgactacgg	7080
catctctgcc	ccttcttcgc	ggggcagtgc	atgtaatccc	ttcagttggt	tggtacaact	7140
tgccaactgg	gccctgttcc	acatgtgaca	cggggggga	ccaaacacaa	aggggttctc	7200
tgactgtagt	tgacatcctt	ataaatggat	gtgcacattt	gccaacactg	agtggctttc	7260
atcctggagc	agactttgca	gtctgtggac	tgcaacacaa	cattgccttt	atgtgtaact	7320
cttggctgaa	gctcttacac	caatgctggg	ggacatgtac	ctcccagggg	cccaggaaga	7380
ctacgggagg	ctacaccaac	gtcaatcaga	ggggcctgtg	tagctaccga	taagcggacc	7440
ctcaagaggg	cattagcaat	agtgtttata	aggccccctt	gttaacccta	aacgggtagc	7500
atatgcttcc	cgggtagtag	tatatactat	ccagactaac	cctaattcaa	tagcatatgt	7560
tacccaacgg	gaagcatatg	ctatcgaatt	agggttagta	aaagggtcct	aaggaacagc	7620
gatatctccc	accccatgag	ctgtcacggt	tttatttaca	tggggtcagg	attccacgag	7680
ggtagtgaac	cattttagtc	acaagggcag	tggctgaaga	tcaaggagcg	ggcagtgaac	7740
tctcctgaat	cttcgcctgc	ttcttcattc	tccttcgttt	agctaataga	ataactgctg	7800
agttgtgaac	agtaaggtgt	atgtgaggtg	ctcgaaaaca	aggtttcagg	tgacgccccc	7860
agaataaaat	ttggacgggg	ggttcagtgg	tggcattgtg	ctatgacacc	aatataaccc	7920
tcacaaaccc	cttgggcaat	aaatactagt	gtaggaatga	aacattctga	atatctttaa	7980
caatagaaat	ccatggggtg	gggacaagcc	gtaaagactg	gatgtccatc	tcacacgaat	8040
ttatggctat	gggcaacaca	taatcctagt	gcaatatgat	actggggtta	ttaagatgtg	8100
tcccaggcag	ggaccaagac	aggtgaacca	tgttgttaca	ctctatttgt	aacaagggga	8160
aagagagtgg	acgccgacag	cagcggactc	cactggttgt	ctctaacacc	cccgaaaatt	8220
aaacggggct	ccacgccaat	ggggcccata	aacaaagaca	agtggccact	ctttttttg	8280
aaattgtgga	gtgggggcac	gcgtcagccc	ccacacgccg	ccctgcggtt	ttggactgta	8340
aaataagggt	gtaataactt	ggctgattgt	aaccccgcta	accactgcgg	tcaaaccact	8400
tgcccacaaa	accactaatg	gcaccccggg	gaatacctgc	ataagtaggt	gggcgggcca	8460
agataggggc	gcgattgctg	cgatctggag	gacaaattac	acacacttgc	gcctgagcgc	8520
caagcacagg	gttgttggtc	ctcatattca	cgaggtcgct	gagagcacgg	tgggctaatg	8580
ttgccatggg	tagcatatac	tacccaaata	tctggatagc	atatgctatc	ctaatctata	8640
tctgggtagc	ataggctatc	ctaatctata	tctgggtagc	atatgctatc	ctaatctata	8700
tctgggtagt	atatgctatc	ctaatttata	tctgggtagc	ataggctatc	ctaatctata	8760
tctgggtagc	atatgctatc	ctaatctata	tctgggtagt	atatgctatc	ctaatctgta	8820
tccgggtagc	atatgctatc	ctaatagaga	ttagggtagt	atatgctatc	ctaatttata	8880
tctgggtagc	atatactacc	caaatatctg	gatagcatat	gctatcctaa	tctatatctg	8940
ggtagcatat	gctatcctaa	tctatatctg	ggtagcatag	gctatcctaa	tctatatctg	9000
ggtagcatat	gctatcctaa	tctatatctg	ggtagtatat	gctatcctaa	tttatatctg	9060

ggtagcatag	gctatcctaa	tctatatctg	ggtagcatat	gctatcctaa	tctatatctg	9120
ggtagtatat	gctatcctaa	tctgtatccg	ggtagcatat	gctatcctca	tgcatataca	9180
gtcagcatat	gatacccagt	agtagagtgg	gagtgctatc	ctttgcatat	gccgccacct	9240
cccaaggggg	cgtgaatttt	cgctgcttgt	ccttttcctg	catgctggtt	gctcccattc	9300
ttaggtgaat	ttaaggaggc	caggctaaag	ccgtcgcatg	tctgattgct	caccaggtaa	9360
atgtcgctaa	tgttttccaa	cgcgagaagg	tgttgagcgc	ggagctgagt	gacgtgacaa	9420
catgggtatg	cccaattgcc	ccatgttggg	aggacgaaaa	tggtgacaag	acagatggcc	9480
agaaatacac	caacagcacg	catgatgtct	actggggatt	tattctttag	tgcgggggaa	9540
tacacggctt	ttaatacgat	tgagggcgtc	tcctaacaag	ttacatcact	cctgcccttc	9600
ctcaccctca	tctccatcac	ctccttcatc	tccgtcatct	ccgtcatcac	cctccgcggc	9660
agccccttcc	accataggtg	gaaaccaggg	aggcaaatct	actccatcgt	caaagctgca	9720
cacagtcacc	ctgatattgc	aggtaggagc	gggctttgtc	ataacaaggt	ccttaatcgc	9780
atccttcaaa	acctcagcaa	atatatgagt	ttgtaaaaag	accatgaaat	aacagacaat	9840
ggactccctt	agcgggccag	gttgtgggcc	gggtccaggg	gccattccaa	aggggagacg	9900
actcaatggt	gtaagacgac	attgtggaat	agcaagggca	gttcctcgcc	ttaggttgta	9960
aagggaggtc	ttactacctc	catatacgaa	cacaccggcg	acccaagttc	cttcgtcggt	10020
agtcctttct	acgtgactcc	tagccaggag	agctcttaaa	ccttctgcaa	tgttctcaaa	10080
tttcgggttg	gaacctcctt	gaccacgatg	ctttccaaac	caccctcctt	ttttgcgcct	10140
gcctccatca	ccctgacccc	ggggtccagt	gcttgggcct	tctcctgggt	catctgcggg	10200
gccctgctct	atcgctcccg	ggggcacgtc	aggctcacca	tctgggccac	cttcttggtg	10260
gtattcaaaa	taatcggctt	cccctacagg	gtggaaaaat	ggccttctac	ctggaggggg	10320
cctgcgcggt	ggagacccgg	atgatgatga	ctgactactg	ggactcctgg	gcctcttttc	10380
tccacgtcca	cgacctctcc	ccctggctct	ttcacgactt	cccccctgg	ctctttcacg	10440
tcctctaccc	cggcggcctc	cactacctcc	tcgaccccgg	cctccactac	ctcctcgacc	10500
ccggcctcca	ctgcctcctc	gaccccggcc	tccacctcct	gctcctgccc	ctcctgctcc	10560
tgcccctcct	cctgctcctg	cccctcctgc	ccctcctgct	cctgcccctc	ctgcccctcc	10620
tgctcctgcc	cctcctgccc	ctcctgctcc	tgcccctcct	gcccctcctc	ctgctcctgc	10680
ccctcctgcc	cctcctcctg	ctcctgcccc	tcctgcccct	cctgctcctg	cccctcctgc	10740
ccctcctgct	cctgcccctc	ctgcccctcc	tgctcctgcc	cctcctgctc	ctgcccctcc	10800
tgctcctgcc	cctcctgctc	ctgcccctcc	tgcccctcct	gcccctcctc	ctgctcctgc	10860
ccctcctgct	cctgcccctc	ctgcccctcc	tgcccctcct	gctcctgccc	ctcctcctgc	10920
tcctgcccct	cctgcccctc	ctgcccctcc	tcctgctcct	gcccctcctg	cccctcctcc	10980
tgctcctgcc	cctcctcctg	ctcctgcccc	tcctgcccct	cctgcccctc	ctcctgctcc	11040
tgcccctcct	gcccctcctc	ctgctcctgc	ccctcctcct	gctcctgccc	ctcctgcccc	11100
tectgecect	cctcctgctc	ctgcccctcc	tcctgctcct	gcccctcctg	cccctcctgc	11160
ccctcctgcc	cctcctcctg	ctcctgcccc	tectectget	cctgcccctc	ctgctcctgc	11220
ccctcccgct	cctgctcctg	ctcctgttcc	accgtgggtc	cctttgcagc	caatgcaact	11280
tggacgtttt	tggggtctcc	ggacaccatc	tctatgtctt	ggccctgatc	ctgagccgcc	11340

cggggctcct	ggtcttccgc	ctcctcgtcc	tcgtcctctt	ccccgtcctc	gtccatggtt	11400
atcaccccct	cttctttgag	gtccactgcc	gccggagcct	tctggtccag	atgtgtctcc	11460
cttctctcct	aggccatttc	caggtcctgt	acctggcccc	tcgtcagaca	tgattcacac	11520
taaaagagat	caatagacat	ctttattaga	cgacgctcag	tgaatacagg	gagtgcagac	11580
tcctgcccc	tccaacagcc	ccccaccct	catccccttc	atggtcgctg	tcagacagat	11640
ccaggtctga	aaattcccca	tcctccgaac	catcctcgtc	ctcatcacca	attactcgca	11700
gcccggaaaa	ctcccgctga	acatcctcaa	gatttgcgtc	ctgagcctca	agccaggcct	11760
caaattcctc	gtcccccttt	ttgctggacg	gtagggatgg	ggattctcgg	gacccctcct	11820
cttcctcttc	aaggtcacca	gacagagatg	ctactggggc	aacggaagaa	aagctgggtg	11880
cggcctgtga	ggatcagctt	atcgatgata	agctgtcaaa	catgagaatt	cttgaagacg	11940
aaagggcctc	gtgatacgcc	tatttttata	ggttaatgtc	atgataataa	tggtttctta	12000
gacgtcaggt	ggcacttttc	ggggaaatgt	gcgcggaacc	cctatttgtt	tatttttcta	12060
aatacattca	aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	12120
ttgaaaaagg	aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	12180
ggcattttgc	cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	12240
agatcagttg	ggtgcacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	12300
tgagagtttt	cgccccgaag	aacgttttcc	aatgatgagc	acttttaaag	ttctgctatg	12360
tggcgcggta	ttatcccgtg	ttgacgccgg	gcaagagcaa	ctcggtcgcc	gcatacacta	12420
ttctcagaat	gacttggttg	agtactcacc	agtcacagaa	aagcatctta	cggatggcat	12480
gacagtaaga	gaattatgca	gtgctgccat	aaccatgagt	gataacactg	cggccaactt	12540
acttctgaca	acgatcggag	gaccgaagga	gctaaccgct	tttttgcaca	acatggggga	12600
tcatgtaact	cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	12660
gcgtgacacc	acgatgcctg	cagcaatggc	aacaacgttg	cgcaaactat	taactggcga	12720
actacttact	ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	12780
aggaccactt	ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	aatctggagc	12840
cggtgagcgt	gggtctcgcg	gtatcattgc	agcactgggg	ccagatggta	agccctcccg	12900
tatcgtagtt	atctacacga	cggggagtca	ggcaactatg	gatgaacgaa	atagacagat	12960
cgctgagata	ggtgcctcac	tgattaagca	ttggtaactg	tcagaccaag	tttactcata	13020
tatactttag	attgatttaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	13080
ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	tcgttccact	gagcgtcaga	13140
ccccgtagaa	aagatcaaag	gatcttcttg	agatcctttt	tttctgcgcg	taatctgctg	13200
cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	ttgccggatc	aagagctacc	13260
aactctttt	ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	13320
agtgtagccg	tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcgc	13380
tctgctaatc	ctgttaccag	tggctgctgc	cagtggcgat	aagtcgtgtc	ttaccgggtt	13440
ggactcaaga	cgatagttac	cggataaggc	gcagcggtcg	ggctgaacgg	ggggttcgtg	13500
cacacagccc	agcttggagc	gaacgaccta	caccgaactg	agatacctac	agcgtgagct	13560
atgagaaago	gccacgcttc	ccgaagggag	aaaggcggac	aggtatccgg	taagcggcag	13620

ggtcggaaca	ggagagcgca	cgagggagct	tccaggggga	aacgcctggt	atctttatag	13680
tcctgtcggg	tttcgccacc	tctgacttga	gcgtcgattt	ttgtgatgct	cgtcaggggg	13740
gcggagccta	tggaaaaacg	ccagcaacgc	ggccttttta	cggttcctgg	ccttttgctg	13800
cgccgcgtgc	ggctgctgga	gatggcggac	gcgatggata	tgttctgcca	agggttggtt	13860
tgcgcattca	cagttctccg	caagaattga	ttggctccaa	ttcttggagt	ggtgaatccg	13920
ttagcgaggt	gccgccggct	tccattcagg	tcgaggtggc	ccggctccat	gcaccgcgac	13980
gcaacgcggg	gaggcagaca	aggtataggg	cggcgcctac	aatccatgcc	aacccgttcc	14040
atgtgctcgc	cgaggcggca	taaatcgccg	tgacgatcag	cggtccagtg	atcgaagtta	14100
ggctggtaag	agccgcgagc	gatccttgaa	gctgtccctg	atggtcgtca	tctacctgcc	14160
tggacagcat	ggcctgcaac	gcgggcatcc	cgatgccgcc	ggaagcgaga	agaatcataa	14220
tggggaaggc	catccagcct	cgcgtcgcga	acgccagcaa	gacgtagccc	agcgcgtcgg	14280
ccgccatgcc	ctgcttcatc	cccgtggccc	gttgctcgcg	tttgctggcg	gtgtccccgg	14340
aagaaatata	tttgcatgtc	tttagttcta	tgatgacaca	aaccccgccc	agcgtcttgt	14400
cattggcgaa	ttcgaacacg	cagatgcagt	cggggcggcg	cggtcccagg	tccacttcgc	14460
atattaaggt	gacgcgtgtg	gcctcgaaca	ccgagcgacc	ctgcagcgac	ccgcttaaca	14520
gcgtcaacag	cgtgccgcag	atcccgggca	atgagatatg	aaaaagcctg	aactcaccgc	14580
gacgtctgtc	gagaagtttc	tgatcgaaaa	gttcgacagc	gtctccgacc	tgatgcagct	14640
ctcggagggc	gaagaatctc	gtgctttcag	cttcgatgta	ggagggcgtg	gatatgtcct	14700
gcgggtaaat	agctgcgccg	atggtttcta	caaagatcgt	tagtgggatc	ggcactttgc	14760
atcggccgcg	ctccccgatt	ccggaagtgc	ttgacattgg	ggaattcagc	gagagcctga	14820
cctattgcat	ctcccgccgt	gcacagggtg	tcacgttgca	agacctgcct	gaaaccgaac	14880
tgcccgctgt	tctgcagccg	gtcgcggagg	ccatggatgc	gatcgctgcg	gccgatctta	14940
gccagacgag	cgggttcggc	ccattcggac	cgcaaggaat	cggtcaatac	actacatggc	15000
gtgatttcat	atgcgcgatt	gctgatcccc	atgtgtatca	ctggcaaact	gtgatggacg	15060
acaccgtcag	tgcgtccgtc	gcgcaggctc	tcgatgagct	gatgctttgg	gccgaggact	15120
gccccgaagt	ccggcacctc	gtgcacgcgg	atttcggctc	caacaatgtc	ctgacggaca	15180
atggccgcat	aacagcggtc	attgactgga	gcgaggcgat	gttcggggat	tcccaatacg	15240
aggtcgccaa	catcttcttc	tggaggccgt	ggttggcggg	tatggagcag	cagacgcgct	15300
acttcgagcg	gaggcatccg	gagcttgcag	gatcgccgcg	gctccgggcg	tatatgctcc	15360
gcattggtct	tgaccaactc	tatcagagct	tggttgacgg	caatttcgat	gatgcagctt	15420
gggcgcaggg	tcgatgcgac	gcaatcgtcc	gatccggagc	cgggactgtc	gggcgtacac	15480
aaatcgcccg	cagaagcgcg	gccgtctgga	ccgatggctg	tgtagaagta	ctcgccgata	15540
gtggaaacgg	gagatggggg	aggctaactg	aaacacggaa	ggagacaata	ccggaaggaa	15600
cccgcgctat	gacggcaata	aaaagacaga	ataaaacgca	cgggtgttgg	gtcgtttgtt	15660
cataaacgcg	gggttcggtc	ccagggctgg	cactctgtcg	ataccccacc	gagaccccat	15720
tggggccaat	acgcccgcgt	ttcttccttt	tccccacccc	accccccaag	ttcgggtgaa	15780
ggcccagggc	tcgcagccaa	cgtcggggcg	gcaggccctg	ccatagccac	tggccccgtg	15840
ggttagggac	ggggtccccc	atggggaatg	gtttatggtt	cgtgggggtt	attattttgg	15900

gegttgegtg gggtetggte caegaetgga etgageagae agaeceatgg tttttggatg 15960 geetgggeat ggaeegeatg taetggegeg acaegaaeae egggegtetg tggetgeeaa 16020 acaececega eccecaaaaa ecaeegegeg gatttetgge gtgeeaaget agtegaeeaa 16080

<210> 49

<211> 32

<212> DNA

<213> Homo sapiens

<400> 49

cccggccgga ggggcagctt tgtggagatg gt

32

<210> 50

<211> 11

<212> PRT

<213> Homo sapiens

<400> 50

Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val

1 5 10

<210> 51

<211> 5

<212> PRT

<213> Homo sapiens

<400> 51

Val Asn Leu Asp Ala

1 5

<210> 52

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic oligopeptide substrate

```
<400> 52
Ser Glu Val Asn Leu Asp Ala Glu Phe
                 5
<210> 53
<211> 30
<212> PRT
<213> Artificial Sequence
<220>
<223> Synthetic oligopeptide substrate
<400> 53
Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile
                                     10
Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu Phe
                                                     30
                                 25
            20
<210> 54
<211> 5
<212> PRT
<213> Homo sapiens
<220>
<223> Wild type Amyloid Precursor Protein cleavage site
      (fragment)
<400> 54
Val Lys Met Asp Ala
 1
<210> 55
<211> 24
<212> PRT
<213> Homo sapiens
<400> 55
```

Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val

1 5 10 15

Glu Met Val Asp Asn Leu Arg Gly

20

<210> 56

<211> 15

<212> PRT

<213> Homo sapiens

<400> 56

Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg

1 5 10 15

<210> 57

<211> 419

<212> PRT

<213> Homo sapiens

<400> 57

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val 1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 130 135 140 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala

Val Ser Ala

<211> 407

<212> PRT

<213> Homo sapiens

<400> 58

Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arq Tyr Tyr Gln Arq Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys

			260					265					270		
Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala
		275					280					285			
Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met
	290					295					300				
Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln
305					310					315					320
Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr
				325					330					335	
Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val
			340					345					350		
Ile	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile
		355					360					365			
Gly	Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala
	370					375					380				
Ala	Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr
385					390					395					400
Asn	Ile	Pro	Gln	Thr	Asp	Glu									
				405											

<210> 59

<211> 452

<212> PRT

<213> Homo sapiens

<400> 59

Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser

Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu	His	Arg	Tyr
			100					105					110		
Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg	Lys	Gly	Val
		115					120					125			
Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu	Gly	Thr	Asp
	130					135					140				
Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg	Ala	Asn	Ile
145					150					155					160
Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly	Ser	Asn	Trp
				165					170					175	
Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg	Pro	Asp	Asp
			180					185					190		
Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr	His	Val	Pro
		195					200					205			
Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro	Leu	Asn	Gln
	210					215					220				
Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile	Gly	Gly	Ile
225					230					235					240
Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro	Ile	Arg	Arg
				245					250					255	
Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile	Asn	Gly	Gln
			260					265					270		
Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	Ser	Ile	Val
		275					280					285			
Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	Phe	Glu	Ala
	290					295					300				
Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe	Pro	Asp
305					310					315					320
Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly	Thr	Thr
				325					330					335	
Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	_	Glu	Val
			340					345					350		
Thr	Asn	Gln	Ser	Phe	Arg	Ile		Ile	Leu	Pro	Gln		Tyr	Leu	Arg
		355					360					365			
														_	_
Pro			Asp	Val	Ala		Ser	Gln	Asp	Asp		Tyr	Lys	Phe	Ala
	370	Glu				375					380				
	370	Glu				375					380			Phe Met	

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 405 Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu 430 425 420 Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro 445 440 Gln Thr Asp Glu 450

<210> 60 <211> 420 <212> PRT <213> Homo sapiens

<400> 60 Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val 10 Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser 25 30 20 Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val 60 55 Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 75 70 Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 90 85 Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 105 110 100 Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp 140 135 Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile 155 150 145 Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp 170 165 Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp

185 190 180 Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro 195 Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln 215 Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile 235 Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg 245 250 Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln 260 265 Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val 275 280 285 Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala 295 Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp 315 310 Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr 335 325 .330 Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val 345 Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg 355 360 365 Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala 375 Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu 395 390 Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala 410 415 405

Val Ser Ala Cys

420

<210> 61

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic peptide inhibitor <221> MOD_RES <222> 4 <223> Xaa = hydroxyethlene <400> 61 Glu Val Met Xaa Val Ala Glu Phe <210> 62 <211> 26 <212> PRT <213> Homo sapiens <400> 62 Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met 15 5 10 Leu Pro Leu Cys Leu Met Val Cys Gln Trp 20 25 <210> 63 <211> 33 <212> PRT <213> Homo sapiens <220> <223> P26-P4'sw peptide substrate <400> 63 Cys Gly Gly Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu 10 Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu 20 25 30 Phe

<210> 64

<211> 29 <212> PRT <213> Homo sapiens <220> <223> P26-P1' peptide substrate with CGG linker <400> 64 Cys Gly Gly Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu 15 Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Asn Leu 20 25 <210> 65 <211> 501 <212> PRT <213> Mus musculus <400> 65 Met Ala Pro Ala Leu His Trp Leu Leu Leu Trp Val Gly Ser Gly Met 10 Leu Pro Ala Gln Gly Thr His Leu Gly Ile Arg Leu Pro Leu Arg Ser 20 25 30 Gly Leu Ala Gly Pro Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp 40 35 Glu Glu Ser Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val 55 60 Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr 75 80 70 65 Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser 90 Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr 110 105 Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val 125 120 115

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile

					150					155					160
Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly	Ser	Asn	Trp
				165					170					175	
Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg	Pro	Asp	Asp
			180					185					190		
Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr	His	Ile	Pro
		195					200					205			
Asn	Ile	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro	Leu	Asn	Gln
	210					215					220				
Thr	Glu	Ala	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile	Gly	Gly	Ile
225					230					235					240
Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro	Ile	Arg	Arg
				245					250					255	
Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile	Asn	Gly	Gln
			260					265					270		
Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	Ser	Ile	Val
		275					280					285			
Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	Phe	Glu	Ala
	290					295					300				
	Val	Lys	Ser	Ile		Ala	Ala	Ser	Ser		Glu	Lys	Phe	Pro	
305					310					315					320
~1										T-2-2-2					
GTĀ	Phe	Trp	Leu	_	Glu	Gln	Leu	Val		пр	GIn	Ala	Gly	Thr	Thr
				325					330					335	
			Ile	325				Ser	330				Gly		
Pro	Trp	Asn	Ile 340	325 Phe	Pro	Val	Ile	Ser 345	330 Leu	Tyr	Leu	Met	Gly 350	335 Glu	Val
Pro	Trp	Asn	Ile 340	325 Phe	Pro	Val	Ile Thr	Ser 345	330 Leu	Tyr	Leu	Met Gln	Gly 350	335	Val
Pro Thr	Trp Asn	Asn Gln 355	Ile 340 Ser	325 Phe Phe	Pro Arg	Val Ile	Ile Thr 360	Ser 345 Ile	330 Leu Leu	Tyr Pro	Leu Gln	Met Gln 365	Gly 350 Tyr	335 Glu Leu	Val Arg
Pro Thr	Trp Asn Val	Asn Gln 355	Ile 340 Ser	325 Phe Phe	Pro Arg	Val Ile Thr	Ile Thr 360	Ser 345 Ile	330 Leu Leu	Tyr Pro	Leu Gln Cys	Met Gln 365	Gly 350 Tyr	335 Glu	Val Arg
Pro Thr	Trp Asn Val	Asn Gln 355 Glu	Ile 340 Ser Asp	325 Phe Phe Val	Pro Arg Ala	Val Ile Thr 375	Ile Thr 360 Ser	Ser 345 Ile Gln	330 Leu Leu Asp	Tyr Pro Asp	Leu Gln Cys 380	Met Gln 365 Tyr	Gly 350 Tyr Lys	335 Glu Leu Phe	Val Arg Ala
Pro Thr Pro Val	Trp Asn Val	Asn Gln 355 Glu	Ile 340 Ser Asp	325 Phe Phe Val	Pro Arg Ala Thr	Val Ile Thr 375	Ile Thr 360 Ser	Ser 345 Ile Gln	330 Leu Leu Asp	Tyr Pro Asp	Leu Gln Cys 380	Met Gln 365 Tyr	Gly 350 Tyr Lys	335 Glu Leu	Val Arg Ala Glu
Pro Thr Pro Val	Trp Asn Val 370 Ser	Asn Gln 355 Glu Gln	Ile 340 Ser Asp	325 Phe Phe Val	Pro Arg Ala Thr 390	Val Ile Thr 375 Gly	Ile Thr 360 Ser	Ser 345 Ile Gln Val	330 Leu Leu Asp Met	Tyr Pro Asp Gly 395	Leu Gln Cys 380 Ala	Met Gln 365 Tyr Val	Gly 350 Tyr Lys	335 Glu Leu Phe Met	Val Arg Ala Glu 400
Pro Thr Pro Val	Trp Asn Val 370 Ser	Asn Gln 355 Glu Gln	Ile 340 Ser Asp	325 Phe Phe Val Ser	Pro Arg Ala Thr 390	Val Ile Thr 375 Gly	Ile Thr 360 Ser	Ser 345 Ile Gln Val	330 Leu Leu Asp Met	Tyr Pro Asp Gly 395	Leu Gln Cys 380 Ala	Met Gln 365 Tyr Val	Gly 350 Tyr Lys	335 Glu Leu Phe Met	Val Arg Ala Glu 400
Pro Thr Pro Val 385 Gly	Trp Asn Val 370 Ser	Asn Gln 355 Glu Gln Tyr	Ile 340 Ser Asp Ser	325 Phe Phe Val Ser Val 405	Pro Arg Ala Thr 390 Phe	Val Ile Thr 375 Gly	Ile Thr 360 Ser Thr	Ser 345 Ile Gln Val	330 Leu Leu Asp Met	Tyr Pro Asp Gly 395 Lys	Leu Gln Cys 380 Ala Arg	Met Gln 365 Tyr Val	Gly 350 Tyr Lys Ile	335 Glu Leu Phe Met	Val Arg Ala Glu 400 Ala
Pro Thr Pro Val 385 Gly	Trp Asn Val 370 Ser	Asn Gln 355 Glu Gln Tyr	Ile 340 Ser Asp Ser	325 Phe Phe Val Ser Val 405	Pro Arg Ala Thr 390 Phe	Val Ile Thr 375 Gly	Ile Thr 360 Ser Thr	Ser 345 Ile Gln Val	330 Leu Leu Asp Met	Tyr Pro Asp Gly 395 Lys	Leu Gln Cys 380 Ala	Met Gln 365 Tyr Val	Gly 350 Tyr Lys Ile	335 Glu Leu Phe Met	Val Arg Ala Glu 400 Ala
Pro Thr Pro Val 385 Gly Val	Trp Asn Val 370 Ser Phe	Asn Gln 355 Glu Gln Tyr	Ile 340 Ser Asp Ser Val Cys 420	325 Phe Phe Val Ser Val 405 His	Pro Arg Ala Thr 390 Phe	Val Ile Thr 375 Gly Asp	Thr 360 Ser Thr Arg	Ser 345 Ile Gln Val Ala Glu 425	330 Leu Leu Asp Met Arg 410 Phe	Tyr Pro Asp Gly 395 Lys Arg	Leu Gln Cys 380 Ala Arg	Met Gln 365 Tyr Val Ile	Gly 350 Tyr Lys Ile Gly Ala 430	335 Glu Leu Phe Met	Val Arg Ala Glu 400 Ala Glu
Pro Thr Pro Val 385 Gly Val	Trp Asn Val 370 Ser Phe	Asn Gln 355 Glu Gln Tyr	Ile 340 Ser Asp Ser Val Cys 420	325 Phe Phe Val Ser Val 405 His	Pro Arg Ala Thr 390 Phe	Val Ile Thr 375 Gly Asp	Thr 360 Ser Thr Arg	Ser 345 Ile Gln Val Ala Glu 425	330 Leu Leu Asp Met Arg 410 Phe	Tyr Pro Asp Gly 395 Lys Arg	Leu Gln Cys 380 Ala Arg	Met Gln 365 Tyr Val Ile	Gly 350 Tyr Lys Ile Gly Ala 430	335 Glu Leu Phe Met Phe 415 Val	Val Arg Ala Glu 400 Ala Glu
Pro Thr Pro Val 385 Gly Val	Trp Asn Val 370 Ser Phe Ser	Asn Gln 355 Glu Gln Tyr Ala Phe 435	Ile 340 Ser Asp Ser Val Cys 420 Val	325 Phe Phe Val Ser Val 405 His	Pro Arg Ala Thr 390 Phe Val	Val Ile Thr 375 Gly Asp His	Thr 360 Ser Thr Arg Asp Met 440	Ser 345 Ile Gln Val Ala Glu 425 Glu	Asp Arg 410 Phe Asp	Tyr Pro Asp Gly 395 Lys Arg Cys	Leu Gln Cys 380 Ala Arg Thr	Met Gln 365 Tyr Val Ile Ala Tyr 445	Gly 350 Tyr Lys Ile Gly Ala 430 Asn	335 Glu Leu Phe Met Phe 415 Val	Val Arg Ala Glu 400 Ala Glu

450	455	460											
Ile Cys Ala Leu Phe Met	Leu Pro Leu Cys Leu	Met Val Cys Gln Trp											
465 470	475	480											
Arg Cys Leu Arg Cys Leu	Arg His Gln His Asp	Asp Phe Gly Asp Asp											
485	490	495											
Ile Ser Leu Leu Lys													
500													
<210> 66													
<211> 480													
<212> PRT													
<213> Homo sapiens													
<400> 66													
Thr Gln His Gly Ile Arg	Leu Pro Leu Arg Ser	Gly Leu Gly Gly Ala											
1 5	10	15											
Pro Leu Gly Leu Arg Leu	Pro Arg Glu Thr Asp	Glu Glu Pro Glu Glu											
20	25	30											
Pro Gly Arg Arg Gly Ser	Phe Val Glu Met Val	Asp Asn Leu Arg Gly											
35	40	45											
Lys Ser Gly Gln Gly Tyr	Tyr Val Glu Met Thr	Val Gly Ser Pro Pro											
50	55	60											
Gln Thr Leu Asn Ile Leu	Val Asp Thr Gly Ser	Ser Asn Phe Ala Val											
65 70	75	80											
Gly Ala Ala Pro His Pro	Phe Leu His Arg Tyr	Tyr Gln Arg Gln Leu											
85	90	95											
Ser Ser Thr Tyr Arg Asp	Leu Arg Lys Gly Val	Tyr Val Pro Tyr Thr											
100	105	110											
Gln Gly Lys Trp Glu Gly	Glu Leu Gly Thr Asp	Leu Val Ser Ile Pro											
115	120	125											
His Gly Pro Asn Val Thr	Val Arg Ala Asn Ile	Ala Ala Ile Thr Glu											
130	135	140											
Ser Asp Lys Phe Phe Ile	Asn Gly Ser Asn Trp	Glu Gly Ile Leu Gly											
145 150	155	160											
Leu Ala Tyr Ala Glu Ile	Ala Arg Pro Asp Asp	Ser Leu Glu Pro Phe											

Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu

Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys

<210> 67

<211> 444 <212> PRT

<213> Homo sapiens

<400> 67

Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln

1 5 5 10 10 15

Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn
20 25 25 30

Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro

35 40 45

His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr 50 55 60

Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp 65 70 75 80

Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn 85 90 95

Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe 100 105 110

Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala 115 120 125

Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu 130 135 140

Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly
145 150 155 160

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
165 170 175

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu 180 185 190

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr 210 215 220

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu 225 230 235 240

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser 245 250 255

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val

	260		265		270
Cys Trp Gl	n Ala Gly	Thr Thr P	ro Trp Asn	Ile Phe Pro	Val Ile Ser
27.	5	28	80	285	
Leu Tyr Le	ı Met Gly	Glu Val T	hr Asn Gln	Ser Phe Arg	Ile Thr Ile
290		295		300	
Leu Pro Gl	n Gln Tyr	Leu Arg P	ro Val Glu	Asp Val Ala	Thr Ser Gln
305		310		315	320
Asp Asp Cy	s Tyr Lys	Phe Ala I	le Ser Gln	Ser Ser Thr	Gly Thr Val
	325		330		335
Met Gly Al	a Val Ile	Met Glu G	Sly Phe Tyr	Val Val Phe	Asp Arg Ala
	340		345		350
Arg Lys Ar	g Ile Gly	Phe Ala V	al Ser Ala	Cys His Val	His Asp Glu
35	5	3	60	365	
Phe Arg Th	r Ala Ala	Val Glu G	Sly Pro Phe	Val Thr Leu	Asp Met Glu
370		375		380	
Asp Cys Gl	y Tyr Asn	Ile Pro G	In Thr Asp	Glu Ser Thr	Leu Met Thr
385		390		395	400
Ile Ala Ty	r Val Met	Ala Ala I	lle Cys Ala	Leu Phe Met	Leu Pro Leu
	405		410		415
Cys Leu Me	C Val Cys	Gln Trp A	Arg Cys Leu	Arg Cys Leu	Arg Gln Gln
	420		425		430
His Asp As	Phe Ala	Asp Asp I	lle Ser Leu	Leu Lys	
43	5	4	140		

<210> 68

<211> 395

<212> PRT

<213> Homo sapiens

<400> 68

Arg Asp	Leu	Arg	Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp
65				70					75					80
Glu Gly	Glu	Leu	Gly	Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn
			85					90					95	
Val Thr	Val	Arg	Ala	Asn	Ile	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe
		100					105					110		
Phe Ile	Asn	Gly	Ser	Asn	${\tt Trp}$	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala
	115					120					125			
Glu Ile	Ala	Arg	Pro	Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu
130	•				135					140				
Val Lys	Gln	Thr	His	Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly
145				150					155					160
Ala Gly	Phe	Pro	Leu	Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly
			165					170					175	
Ser Met	Ile	Ile	Gly	Gly	Ile	Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu
		180					185					190		
Trp Ty	Thr	Pro	Ile	Arg	Arg	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val
	195					200					205			
Arg Val	Glu	Ile	Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr
210					215					220				
210 Asn Ty		Lys	Ser	Ile		Asp	Ser	Gly	Thr		Asn	Leu	Arg	Leu
		Lys	Ser	Ile 230		Asp	Ser	Gly	Thr 235		Asn	Leu	Arg	Leu 240
Asn Ty	: Asp			230	Val				235	Thr				240
Asn Tyı 225	: Asp			230	Val				235	Thr				240
Asn Tyı 225	Asp Lys	Val	Phe	230 Glu	Val Ala	Ala	Val	Lys 250	235 Ser	Thr	Lys	Ala	Ala 255	240 Ser
Asn Tyr 225 Pro Lys	Asp Lys	Val	Phe	230 Glu	Val Ala	Ala	Val	Lys 250	235 Ser	Thr	Lys	Ala	Ala 255	240 Ser
Asn Tyr 225 Pro Lys	: Asp : Lys : Glu	Val Lys 260	Phe 245 Phe	230 Glu Pro	Val Ala Asp	Ala Gly	Val Phe 265	Lys 250 Trp	235 Ser Leu	Thr Ile Gly	Lys Glu	Ala Gln 270	Ala 255 Leu	240 Ser Val
Asn Tyr 225 Pro Lys Ser Thr	Asp Lys Glu Gln 275	Val Lys 260 Ala	Phe 245 Phe Gly	230 Glu Pro Thr	Val Ala Asp Thr	Ala Gly Pro 280	Val Phe 265 Trp	Lys 250 Trp Asn	235 Ser Leu Ile	Thr Ile Gly Phe	Lys Glu Pro 285	Ala Gln 270 Val	Ala 255 Leu Ile	240 Ser Val Ser
Asn Tyr 225 Pro Lys Ser Thr	Asp Lys Glu Gln 275	Val Lys 260 Ala	Phe 245 Phe Gly	230 Glu Pro Thr	Val Ala Asp Thr	Ala Gly Pro 280	Val Phe 265 Trp	Lys 250 Trp Asn	235 Ser Leu Ile	Thr Ile Gly Phe	Lys Glu Pro 285	Ala Gln 270 Val	Ala 255 Leu Ile	240 Ser Val Ser
Asn Tyr 225 Pro Lys Ser Thr	Asp Lys Glu Gln 275	Val Lys 260 Ala	Phe 245 Phe Gly	230 Glu Pro Thr	Val Ala Asp Thr	Ala Gly Pro 280	Val Phe 265 Trp	Lys 250 Trp Asn	235 Ser Leu Ile	Thr Ile Gly Phe	Lys Glu Pro 285	Ala Gln 270 Val	Ala 255 Leu Ile	240 Ser Val Ser
Asn Tyr 225 Pro Lys Ser Thr Cys Trr	Asp Lys Glu Gln 275 Leu	Val Lys 260 Ala Met	Phe 245 Phe Gly	230 Glu Pro Thr	Val Ala Asp Thr Val 295	Ala Gly Pro 280 Thr	Val Phe 265 Trp Asn	Lys 250 Trp Asn Gln	235 Ser Leu Ile Ser	Thr Ile Gly Phe Phe 300	Lys Glu Pro 285 Arg	Ala Gln 270 Val	Ala 255 Leu Ile Thr	240 Ser Val Ser Ile
Asn Tyre 225 Pro Lys Ser The Cys Try Leu Tyre 290 Leu Pro 305	Asp Lys Glu 275 Leu	Val Lys 260 Ala Met	Phe 245 Phe Gly Gly	230 Glu Pro Thr Glu Leu 310	Val Ala Asp Thr Val 295 Arg	Ala Gly Pro 280 Thr	Val Phe 265 Trp Asn Val	Lys 250 Trp Asn Gln	235 Ser Leu Ile Ser Asp 315	Thr Ile Gly Phe Phe 300 Val	Lys Glu Pro 285 Arg	Ala Gln 270 Val Ile	Ala 255 Leu Ile Thr	240 Ser Val Ser Ile Gln 320
Asn Tyr 225 Pro Lys Ser Thr Cys Trr Leu Tyr 290 Leu Pro	Asp Lys Glu 275 Leu	Val Lys 260 Ala Met	Phe 245 Phe Gly Gly	230 Glu Pro Thr Glu Leu 310	Val Ala Asp Thr Val 295 Arg	Ala Gly Pro 280 Thr	Val Phe 265 Trp Asn Val	Lys 250 Trp Asn Gln	235 Ser Leu Ile Ser Asp 315	Thr Ile Gly Phe Phe 300 Val	Lys Glu Pro 285 Arg	Ala Gln 270 Val Ile	Ala 255 Leu Ile Thr	240 Ser Val Ser Ile Gln 320
Asn Tyre 225 Pro Lys Ser The Cys Tre Leu Tyre 290 Leu Pro 305 Asp Ase	Asp Lys Glu Gln 275 Leu Gln Cys	Val Lys 260 Ala Met Gln Tyr	Phe 245 Phe Gly Gly Tyr Lys 325	230 Glu Pro Thr Glu Leu 310 Phe	Val Ala Asp Thr Val 295 Arg	Ala Gly Pro 280 Thr	Val Phe 265 Trp Asn Val	Lys 250 Trp Asn Gln Glu Gln 330	235 Ser Leu Ile Ser Asp 315 Ser	Thr Ile Gly Phe Phe 300 Val	Lys Glu Pro 285 Arg Ala	Ala Gln 270 Val Ile Thr	Ala 255 Leu Ile Thr Ser Thr 335	240 Ser Val Ser Ile Gln 320 Val
Asn Tyre 225 Pro Lys Ser The Cys Try Leu Tyre 290 Leu Pro 305	Asp Lys Glu Gln 275 Leu Gln Cys	Val Lys 260 Ala Met Gln Tyr	Phe 245 Phe Gly Gly Tyr Lys 325	230 Glu Pro Thr Glu Leu 310 Phe	Val Ala Asp Thr Val 295 Arg	Ala Gly Pro 280 Thr	Val Phe 265 Trp Asn Val Ser	Lys 250 Trp Asn Gln Glu Gln 330	235 Ser Leu Ile Ser Asp 315 Ser	Thr Ile Gly Phe Phe 300 Val	Lys Glu Pro 285 Arg Ala	Ala Gln 270 Val Ile Thr Gly Asp	Ala 255 Leu Ile Thr Ser Thr 335	240 Ser Val Ser Ile Gln 320 Val
Asn Tyring 225 Pro Lys Ser Thri Cys Tri Leu Tyri 290 Leu Pro 305 Asp Asi	Asp Lys Glu Gln 275 Leu Gln Cys	Val Lys 260 Ala Met Gln Tyr Val 340	Phe 245 Phe Gly Tyr Lys 325 Ile	230 Glu Pro Thr Glu Leu 310 Phe	Val Ala Asp Thr Val 295 Arg Ala Glu	Ala Gly Pro 280 Thr Pro Ile	Val Phe 265 Trp Asn Val Ser Phe 345	Lys 250 Trp Asn Gln Glu Gln 330 Tyr	235 Ser Leu Ile Ser Asp 315 Ser Val	Thr Ile Gly Phe Phe 300 Val Ser	Lys Glu Pro 285 Arg Ala Thr	Ala Gln 270 Val Ile Thr Gly Asp 350	Ala 255 Leu Ile Thr Ser Thr 335 Arg	240 Ser Val Ser Ile Gln 320 Val Ala
Asn Tyre 225 Pro Lys Ser The Cys Tre Leu Tyre 290 Leu Pro 305 Asp Ase	Asp Lys Glu Gln 275 Leu Gln Cys	Val Lys 260 Ala Met Gln Tyr Val 340	Phe 245 Phe Gly Tyr Lys 325 Ile	230 Glu Pro Thr Glu Leu 310 Phe	Val Ala Asp Thr Val 295 Arg Ala Glu	Ala Gly Pro 280 Thr Pro Ile	Val Phe 265 Trp Asn Val Ser Phe 345	Lys 250 Trp Asn Gln Glu Gln 330 Tyr	235 Ser Leu Ile Ser Asp 315 Ser Val	Thr Ile Gly Phe Phe 300 Val Ser	Lys Glu Pro 285 Arg Ala Thr	Ala Gln 270 Val Ile Thr Gly Asp 350	Ala 255 Leu Ile Thr Ser Thr 335 Arg	240 Ser Val Ser Ile Gln 320 Val Ala

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu 370 375 380

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu 385 390 395

<210> 69

<211> 439

<212> PRT

<213> Homo sapiens

<400> 69

Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu

1 5 10 15

Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr
20 25 30

Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His
35 40 45

Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys
50 55 60

Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly
65 70 75 80

Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala 85 90 95

Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser
100 105 110

Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro 115 120 125

Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His 130 135 140

Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly 165 170 175

Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile 180 185 190

Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn 195 200 205

Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser

Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys

<210> 70

<211> 390

<212> PRT

<213> Homo sapiens

<400> 70

Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu

1 5 10 15

Met Thr	Val	-	Ser	Pro	Pro	Gln	Thr 25	Leu	Asn	Ile	Leu	Val	Asp	Thr
01 0	0	20	Dh -	77-	37a]	a 1		ת ות	Dwo	uia	Dro		T ON	uia
Gly Ser		ASII	Pne	Ата	vai		Ата	AIA	PIO	птъ	45	FIIE	пеп	птр
3 m	35	a 1	- '	a 1	T	40	0	mb se	m	7 ~~		T 033	7 ~~	Tira
Arg Tyr	Tyr	GIN	Arg	GIN		ser	ser	THE	ıyı		Asp	цец	Arg	пув
50		** - 7			55	~ 1	a 1	T		60	a 1	a 1	T	a1
Gly Val	Tyr	vaı	Pro		Thr	Gin	GIY	гуѕ		GIU	GIY	GIU	Leu	
65	_	-	_	70				_	75	**- 7	ml		.	80
Thr Asp	Leu	Val		iie	Pro	HIS	GIY		Asn	vaı	inr	vai		Ala
			85	_,	~ 3	_	_	90	73 1	Dl	T1 -	3	95	0
Asn Ile	Ala		He	Thr	GIu	ser		гÀг	Pne	Pne	тте		GIY	ser
		100		_	~1	_	105		27-	a1	T1 -	110	3	D
Asn Trp		GIY	TTE	Leu	GIY		Ala	Tyr	Ата	GIU		Ala	Arg	Pro
	115	_		_	_,	120	_	_	_		125	~ 1.	m1	**!
Asp Asp	Ser	Leu	GIu	Pro		Phe	Asp	ser	Leu		гуѕ	Gin	Thr	HIS
130			_		135			_		140		_,	_	_
Val Pro	Asn	Leu	Phe		Leu	Gln	Leu	Cys		Ala	GIY	Phe	Pro	
145		_		150	_				155	_				160
Asn Gln	Ser	Glu		Leu	Ala	Ser	Val		Gly	Ser	Met	Ile		GIY
			165					170			_		175	
Gly Ile	Asp		Ser	Leu	Tyr	Thr		Ser	Leu	Trp	Tyr		Pro	Ile
		180			_		185				_	190		_
Arg Arg		Trp	Tyr	Tyr	Glu		Ile	Ile	Val	Arg		GIu	Ile	Asn
	195					200					205		_	
Gly Gln	Asp	Leu	Lys	Met		Cys	Lys	Glu	Tyr		Tyr	Asp	Lys	Ser
210					215					220			_	
Ile Val	Asp	Ser	Gly		Thr	Asn	Leu	Arg		Pro	Lys	Lys	Val	
225				230					235					240
Glu Ala	Ala	Val		Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu		Phe
			245					250				_	255	
Pro Asp	Gly		Trp	Leu	Gly	Glu		Leu	Val	Cys	Trp		Ala	Gly
		260					265					270		
Thr Thr	Pro	Trp	Asn	Ile	Phe		Val	Ile	Ser	Leu	_	Leu	Met	Gly
	275					280					285			_
Glu Val		Asn	Gln	Ser		Arg	Ile	Thr	Ile		Pro	Gln	Gln	Tyr
290					295					300				
Leu Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr	
305				310					315					320

Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile
325 330 335

Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly

340 345 350

Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala 355 360 365

Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn 370 375 380

Ile Pro Gln Thr Asp Glu 385 390

<210> 71

<211> 374

<212> PRT

<213> Homo sapiens

<400> 71

Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val

1 5 10 15

Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val 20 25 30

Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp 35 40 45

Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu 50 55 60

His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg 65 70 75 80

Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu 85 90 95

Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg 100 105 110

Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly
115 120 125

Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg 130 135 140

Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr
145 150 155 160

His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro

165 170 175 Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile 180 185 Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro 200 205 Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile 215 220 Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys 230 235 Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val 245 250 Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys 270 260 265 Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala 280 Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met 295 Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln 310 315 320 305 Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr 330 Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val 345 350 340 Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile 365 360 355 Gly Phe Ala Val Ser Ala 370

<210> 72

<211> 14

<212> PRT

<213> Artificial Sequence

<220>

<223> P10-P4'staD-V peptide inhibitor

<221> MOD_RES

<222> 10

<223> Xaa is statine moiety <400> 72 Lys Thr Glu Glu Ile Ser Glu Val Asn Xaa Val Ala Glu Phe 5 10 <210> 73 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> P4-P4'staD-V peptide inhibitor <221> MOD RES <222> 5 <223> Xaa is statine moiety <400> 73 Ser Glu Val Asn Xaa Val Ala Glu Phe 5 <210> 74 <211> 431 <212> PRT <213> Homo sapiens <400> 74 Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala 5 10 Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu 20 25 30 Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly 35 40 45 Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro

75

80

Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val

55

Gly	Ala	Ala	Pro	His	Pro	Phe	Leu	His	Arg	Tyr	Tyr	Gln	Arg	Gln	Leu
				85					90					95	
Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg	Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr
			100					105					110		
Gln	Gly	_	Trp	Glu	Gly	Glu		Gly	Thr	Asp	Leu		Ser	Ile	Pro
		115				_	120	_		_		125			
His	Gly	Pro	Asn	Val	Thr		Arg	Ala	Asn	Ile		Ala	Ile	Thr	GIu
	130					135		_	_	_	140			_	~-3
	Asp	Lys	Phe	Phe		Asn	GIY	Ser	Asn	_	Glu	GIY	шe	Leu	
145		_	_ ¬		150		_	_	_	155	a		a1	D	160
Leu	Ala	Tyr	Ala		Пе	Ala	Arg	Pro		Asp	ser	Leu	GIU		Pne
5 1	•	0	*	165	T	01	mla sa	TT	170	D	7	т он	Dho	175	Ton
Pne	Asp	ser		vaı	гÀв	GIN	Thr		vaı	Pro	ASI	ьeu		ser	ьeu
01 -	T	7	180	212	~1	Dho	Dro	185	7 an	Cln.	Cor	Clu	190	Leu	λla
GIN	Leu	_	СТА	Ala	GTÀ	Pile	200	ьеи	ASII	GIII	261	205	Vai	пец	Ala
Cor	Val	195	Clv	Car	Mo+	Tla		Glv	Gl v	Tle	Δen		Ser	T.eu	ጥvr
Ser	210	СТУ	Gry	SEL	Mec	215	110	Gly	ΟLΥ	110	220	1113	DCI	пси	- 7 -
Thr	Gly	Ser	Len	Trn	Tyr		Pro	Tle	Ara	Ara		Trp	Tvr	Tvr	Glu
225	O ₁	001	Dou		230				5	235			-1-	-1-	240
	Ile	Ile	Val	Ara		Glu	Ile	Asn	Glv		Asp	Leu	Lys	Met	
			. •	245					250		•		•	255	-
Cvs	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr
•	•		260		•	-	-	265			_		270		
Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile
		275					280					285			
Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly
	290					295					300				
Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe
305					310					315					320
Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe
				325					330					335	
Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val
			340					345					350		
Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr	Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser
		355					360					365			
Thr	Gly	Thr	Val	Met	Gly	Ala	Val	Ile	Met	Glu	Gly	Phe	Tyr	Val	Val
	370					375					380				

Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu

<210> 75

<211> 361

<212> PRT

<213> Homo sapiens

<400> 75 Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu 155.

Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly

Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile

Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn

			195					200					205				
(Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	Ser	
		210					215					220					
	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	Phe	
:	225					230					235					240	
(Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe	
					245					250					255		
]	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly	
				260					265					270			
,	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	Gly	
			275					280					285				
(Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	Tyr	
		290					295					300					
	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr	Lys	
	305					310					315					320	
	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val	Ile	
					325					330					335		
1	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile	Gly	
				340					345					350			
	Phe	Ala	Val	Ser	Ala	Cys	His	Val	His								
			355					360									
	<210)> 76	5														
	<211	L> 63	3						`								
	<212	2 > DI	AV														
	<213	3> Ho	omo :	sapi	ens												
	<220			_													
			_	feati													
				. (63)		_											
	<223	3> n	= A	,T,C	or (÷											
	.40	.	_														
		0> 70		n w	~~~	~~ ~	42 2 2 2 3 3 3 3 3 3 3 3 3 3	ance:	n m~	nmæs	aan.	an+		nas .	rato	atngay	60
	_	acnga	ауу (arga	recu	ya r	garc	cngg.	ıı ıııy.	ruiiAtti	aam	SIIC	c y G C I	ya	Lucy	gtngay	63
	aay																• • •
	<210	0 > 7'	7														
		•	-														

<211> 21

```
<212> PRT
<213> Homo sapiens
<400> 77
Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val
                                     10
                                                          15
Glu Met Val Asp Asn
            20
<210> 78
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptide inhibitor P3-P4' XD-V
<221> MOD_RES
<222> 3
<223> Xaa is hydroxyethylene or statine
<400> 78
Val Met Xaa Val Ala Glu Phe
                 5
<210> 79
<211> 11
<212> PRT
<213> Homo sapiens
<400> 79
Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val
                 5
                                     10
<210> 80
<211> 419
<212> DNA
<213> Artificial Sequence
```

<220> <223> nucleotide insert in vector pCF <400> 80 ctgttgggct cgcggttgag gacaaactct tcgcggtctt tccagtactc ttggatcgga 60 aacccgtcgg cctccgaacg gtactccgcc accgagggac ctgagcgagt ccgcatcgac 120 cggatcggaa aacctctcga ctgttggggt gagtactccc tctcaaaagc gggcatgact 180 tctgcgctaa gattgtcagt ttccaaaaac gaggaggatt tgatattcac ctggcccgcg 240 gtgatgcctt tgagggtggc cgcgtccatc tggtcagaaa agacaatctt tttgttgtca 300 agettqaqqt qtggcagget tgagatetgg ccatacactt gagtgacaat gacatecact 360 419 ttgcctttct ctccacaggt gtccactccc aggtccaact gcaggtcgac tctagaccc <210> 81 <211> 8 <212> PRT <213> Artificial Sequence <220> <223> Peptide inhibitor P4-P4' XD-V <221> MOD RES <222> 4 <223> Xaa is hydroxyethylene or statine <400> 81 Glu Val Met Xaa Val Ala Glu Phe 1 <210> 82 <211> 9 <212> PRT <213> Homo sapiens <220> <223> APP fragment P5-P4' wt <400> 82

Ser Glu Val Lys Met Asp Ala Glu Phe 1 <210> 83 <211> 9 <212> PRT <213> Homo sapiens <220> <223> APP fragment P5-P4'wt <400> 83 Ser Glu Val Asn Leu Asp Ala Glu Phe 5 <210> 84 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> APP fragment <400> 84 Ser Glu Val Lys Leu Asp Ala Glu Phe <210> 85 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> APP fragment <400> 85 Ser Glu Val Lys Phe Asp Ala Glu Phe

<210> 86 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> APP fragment <400> 86 Ser Glu Val Asn Phe Asp Ala Glu Phe <210> 87 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> APP fragment <400> 87 Ser Glu Val Lys Met Ala Ala Glu Phe 1 <210> 88 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> APP fragment <400> 88 Ser Glu Val Asn Leu Ala Ala Glu Phe

<210> 89

```
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> APP fragment
<400> 89
Ser Glu Val Lys Leu Ala Ala Glu Phe
1
                 5
<210> 90
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> APP fragment
<400> 90
Ser Glu Val Lys Met Leu Ala Glu Phe
 1
<210> 91
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> APP fragment
<400> 91
Ser Glu Val Asn Leu Leu Ala Glu Phe
 1
<210> 92
<211> 9
```

<212> PRT

```
<213> Artificial Sequence
<220>
<223> APP fragment
<400> 92
Ser Glu Val Lys Leu Leu Ala Glu Phe
                 5
 1
<210> 93
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> APP fragment
<400> 93
Ser Glu Val Lys Phe Ala Ala Glu Phe
                 5
 1
<210> 94
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> APP fragment
<400> 94
Ser Glu Val Asn Phe Ala Ala Glu Phe
<210> 95
<211> 9
<212> PRT
```

<213> Artificial Sequence

```
<220>
<223> APP fragment
<400> 95
Ser Glu Val Lys Phe Leu Ala Glu Phe
                 5
<210> 96
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> APP fragment
<400> 96
Ser Glu Val Asn Phe Leu Ala Glu Phe
                 5
<210> 97
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> APP-derived fragment P10-P4'(D-V)
<400> 97
Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Val Ala Glu Phe
 1
                 5
                                     10
<210> 98
<211> 35
<212> DNA
<213> Homo sapiens
```

<400> 98

cccgaggagc ccggccggag gggcagcttt gtcga

```
<210> 99
<211> 11
<212> PRT
<213> Homo sapiens
<400> 99
Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg
                 5
                                     10
<210> 100
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Recombinant 293T cells
<400> 100
Thr Gln His Gly Ile Arg Leu Pro Leu Arg
                 5
                                     10
<210> 101
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Recombinant 293T cells
<400> 101
Met Val Asp Asn Leu Arg Gly Lys Ser
<210> 102
<211> 10
<212> PRT
```

<213> Artificial Sequence

<220>

<223> Recombinant CosA2 cells

<400> 102
Gly Ser Phe Val CYu Met Val Asp Asn Leu

1
5
10