Aditya Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

- 9. The set of real values of 'x' satisfying the equality \$\left[\frac{3}{x}\right] + \left[\frac{4}{x}\right] = 5\$ (where [] denotes the greatest integer function) belongs to the interval (a, b/c] where a, b, c ∈ N and b/c is in its lowest form. Find the value of a +b + c + abc.
- 26. For a suitably chosen real constant a, let a function, $f: R-\{-a\} \to R$ be defined by $f(x) = \frac{a-x}{a+x}$. Further suppose that for any real number $x \ne -a$ and $f(x) \ne -a$, $(f \circ f)(x) = x$. Then $f\left(-\frac{1}{2}\right)$ is equal to:

 [JEE Main 2020]
 - (A) -3 (B) 3 (C) $\frac{1}{3}$ (D) $-\frac{1}{3}$
- 7. If range of $f(x) = \frac{2\sin^2 x + 2\sin x + 3}{\sin^2 x + \sin x + 1}$ is [p, q] then 6p 3q equals
- 9. Let $f(x) = \left\lfloor \frac{1}{\cos{\{x\}}} \right\rfloor$ where [y] and $\{y\}$ denote greatest integer and fractional part functions respectively and $g(x) = 2x^2 3x(k+1) + k(3k+1)$. If $g(f(x)) < 0 \forall x \in R$ then find the number of integral values of k.

_ (1+x)

10. Consider,
$$f(x) = \{x + [\log_2 (2 + x)]\} +$$

$$\{x + [\log_2 (2 + x^2)]\} + \cdots + \{x + [\log_2 (2 + x^{10})]\}$$

Identify the correct statement(s)

- (A) [f(e)] = 7.
- (B) $f(\pi) = 20\pi 60$.
- (C) the number of solutions of the equation f(x) = x is 9.
- (D) the number of solutions of the equation f(x) = x is 10.

[Note : {y} and [y] denotes the fractional part function and greatest integer function respectively.]

INTEGERTYPE

Coordination Chemistry:

76. Among (a) – (b), the complexes that can display geometrical isomerism are :

(a) [Pt(NH₃)₃Cl]⁺

- (b) [Pt(NH3)Cl5]
- [JEE MAIN 2020]

(c) [Pt(NH₃)₂Cl(NO₂)]

(d) [Pt(NH₃)₄ClBr]²⁺

- (1) (c) and (d)
- (2) (b) and (c)
- (3) (d) and (a)
- (4) (a) and (b)

21. Each of the following obey Sidgwick effective atomic number rule except

(A) [Cr(CO)₆]

(B) [Co(NH₃)₆]³⁺

(C) [Ni(NH₃)₆]²⁺

(D) [PtCl₆]²⁻

8. How many EDTA⁻⁴ molecules are required to make an octahedral complex with a Ca²⁺ ion ?

- (A) Six
- (B) Three
- (C) One
- (D) Two

- Ammonia forms the complex ion [Cu(NH₃)₄]²⁺ with copper ions in alkaline solutions but not in 6. acidic solution. What is the reason for it :-[AIEEE-2003]
 - In acidic solutions hydration protects copper ions
 - (2) In acidic solutions protons coordinate with ammonia molecules forming NH₄⁺ ions and NH₃ molecules are not available
 - (3) In alkaline solutions insoluble Cu(OH)2 is precipitated which is soluble in excess of any alkali
 - (4) Copper hydroxide is an amphoteric substance
- 59. Wilkinson catalyst is:

[JEE MAIN 2019]

- (1) $[(Et_3P)_3RhCl]$ (Et = C₂ H₅)
- (2) [(Ph₃P)₃RhCl]

(3) [(Ph₃P)₃IrCl]

(4) [(Et₃P)₃IrCl]

Compound Angle:

If $m \tan(\theta - 30^\circ) = n \tan(\theta + 120^\circ)$, show that $\cos 2\theta = \frac{m+n}{2(m-n)}$. 1.

- (a) Find the maximum and minimum values of 27^{cos2x} · 81^{sin2x}. 3.
 - (b) Find the smallest positive values of x & y satisfying, $x y = \frac{\pi}{4}$, cot $x + \cot y = 2$.

[REE 2000,3]

- Let $f(\theta) = 2\cos \theta \cos^2 \theta$, $\forall \theta \in R$ then which one of the following relation is true ? 7.
 - $(A) -2 \le f(\theta) \le 1$

 $(B)^{\frac{1}{4}} \le f(\theta) \le 1$ $(D) -3 \le f(\theta) \le 0$

(C) −3 ≤ f(θ) ≤ 1

9x2sin2x+4

The maximum value of the expression $\frac{1}{\sin^2\theta + 3\sin\theta\cos\theta + 5\cos^2\theta}$ is [JEE 2010] 9.

Prove that $\frac{\sin 5A - \sin 3A}{\cos 5A + \cos 3A} = \tan A$ 2.