

Contents

Chapter 1

Sats 1.0.1 Matrisen som projekterar på \vec{v}

För att slippa hålla på med beräkningar med bråktal för att hitta matrisen som beskriver projektionen på vektorn \vec{v} , så kan man använda formeln nedan:

$$A = \frac{1}{\vec{v} \cdot \vec{v}} \vec{v} \vec{v}^T$$

Därmed projektionen av vektorn \vec{x} på vektorn \vec{v} beskrivs av matrismultiplikationen $proj_{\vec{v}}\vec{x} = A\vec{x}$

Sats 1.0.2 Matrisen som projekterar på vektorrummet V

Om vektorummet definieras som V := col(A), då beskrivs matrisen som projekterar på vektorrummet V på följande sättet:

$$P = A(A^T A)^{-1} A^T$$

Alltså för att projektera givna vektorn \vec{x} på vektorummet V, så använder man följande matrismultiplikation $P\vec{x}$. **Notera** att det är exakt samma metod som används för minstakvadratmetoden. Projektionen av en vektor på en vektorummet ger den bästa approximationen av givna vektorn på vektorrummet.

Sats 1.0.3 Ortogonala komplementet till delrummet $V \in \mathbb{R}^n$

Om man vill hitta ortogonala komplementet (också delrum) till delrummet V med villkorn att V inte spannar hela \mathbb{R}^n , så använder man formeln nedan. **Observera** att V := col(A)

$$V^\perp = ker(A^T) = null(A^T)$$

Varför: En ortogonal komplement V^{\perp} till delrummet V innebär att $\forall \vec{v} \in V^{\perp}$, $\forall \vec{u} \in V \implies v \cdot u = 0$. Om A beskrivs som $\begin{bmatrix} w_1 & \dots & w_k \end{bmatrix}$ så kommer A^T beskrivas på sättet nedan.

$$A^T = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix}$$

Om man multiplicerar A^T med en vektor \vec{x} och försöker bestämma noll-rummet så bestämmer vi per definition ortogonala komponentet. D.v.s rummet där varje vektor $\vec{x} \in \mathbb{R}^n$ ger 0 med skalärprodukten av varje vektor som spannar V $(w_1, \dots w_k)$, som det kan ses nedan.

$$null(A^{T}) = ker(A^{T}) := \begin{bmatrix} w_{1} \cdot \vec{x} \\ \vdots \\ w_{k} \cdot \vec{x} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Sats 1.0.4 En vektor \vec{x} kan skrivas som projektionen på en vektorrum + projektionens ortogonala komplement

För att kunna bevisa 1.0.2 så brukar man använda denna sats som beskrivs nedan.

$$\vec{x} = proj_W \vec{x} + proj_{W^\perp} \vec{x}$$

$$proj_{W^{\perp}}\vec{x} = \vec{x} - proj_{W}\vec{x}$$

Sats 1.0.5 Hitta resterande basvektorer i \mathbb{R}^n utifrån en mängd linjärt oberoende vektorer S

För det, måste storleken av S vara mindre än n, annars är S redan en bas för \mathbb{R}^n . Om $S = \{w_1, \dots, w_k\}$, så sätter vi upp dessa vektorer som kolumnelement och sedan löser noll-rummet, som det kan ses nedan.

$$A = \begin{bmatrix} w_1 \\ \vdots \\ w_k \end{bmatrix}; B := null(A) = ker(A)$$

Varför: Som i 1.0.3 så försöker vi hitta en mängd vektorer (B) som är ortogonala och därmed linjärt oberoende mot varje vektor i S. Detta är ekvivalent med att varje vektor i mängden vektorer vi försöker lösa, B, har skalärprodukten 0 med varje vektor i S. Enligt kraven för linjärt oberoendet av basvektorerna så blir mängden $S \cup B$ en bas för \mathbb{R}^n .

Sats 1.0.6 Sambandet mellan matrisen A och A^TA , samt AA^T

Theoreum 7.5.8 & 7.5.9 i boken Contemporary Linear Algebra (s. 365)

- A och AA^T har samma kolumnrum
- $A \text{ och } A^T A \text{ har samma radrum}$

Vad kan man använda detta till? Om man vill kolla för en större matris om det finns en eller flera fria variablar på deras radrum eller kolumnrum så kan man bestämma determinanten av A^TA respektive AA^T . Om determinanten $\neq 0$ då medför det att det **inte** existerar fria variablar på rad- och kolumnrummet. **OBS**: AA^T och A^TA är kvadratiska matriser.