МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского

Кафедра теоретической физики

Г.М. Максимова, А.И. Малышев, И.Л. Максимов

СБОРНИК КОНТРОЛЬНЫХ ЗАДАНИЙ ПО КУРСУ ВЕКТОРНОГО И ТЕНЗОРНОГО АНАЛИЗА

Учебное пособие

Нижний Новгород 2002

Авторы:

- И.Л. Максимов, к.ф.-м.н., доцент кафедры теоретической физики ННГУ;
- А.И. Малышев, ассистент кафедры теоретической физики ННГУ;
- Г.М. Максимова, к.ф.-м.н., доцент кафедры теоретической физики ННГУ.

Репензент:

А.П. Протогенов, д.ф.-м.н., ведущий научный сотрудник ИПФРАН.

Сборник контрольных заданий по курсу векторного и тензорного анализа: Учебное пособие. / Г.М. Максимова, А.И. Малышев, И.Л. Максимов. — Н. Новгород: издательство ННГУ им. Н.И. Лобачевского, 2002г. — 33с.

Предлагаемое пособие предназначено для проведения практических занятий по курсу векторного и тензорного анализа на физикоматематических факультетах ННГУ. Кроме задач по различным разделам курса, в начале каждой главы приведена краткая выдержка из теории.

© Максимова Г.М., Малышев А.И., Максимов И.Л., 2002.

Предисловие

В настоящий момент было бы просто трудно представить себе многие разделы современной физики — электродинамику, гидродинамику, теорию относительности, теорию упругости и т.д. — без тензорного исчисления. Причиной такой математизации является, безусловно, стремление сделать эти курсы более емкими информационно и более стройными идейно. Для удовлетворения этой потребности в учебном плане в 1971 году тензорное исчисление было выделено в отдельный курс. В данное время, как было и ранее, целью курса остается вовсе не стремление к строгости формулировок, определений и доказательств, а овладение приемами практической работы с тензорными величинами до степени, достаточной для того, чтобы относиться к ним как к обычному рабочему инструменту современного исследователя.

При разработке настоящего пособия нами был взят за основу "Сборник задач по основам векторного и тензорного анализа", написанный в 1976 году сотрудниками кафедры теоретической физики В.М Соколовым, Н.Г. Голубевой и Г.М. Максимовой [1].

Каждая глава пособия начинается краткой справкой из теории. Первая глава служит в основном для повторения операций над векторами. Глава вторая полностью посвящена тензорной алгебре, тензорным полям и доказательству тождеств. В последнюю часть пособия – третью главу – помещены задачи, решение которых направлено на освоение работы в криволинейных координатах, а также упражнения, связанные с интегральными теоремами теории поля. Список литературы, приведенный в конце, содержит основные книги, в которых в той или иной форме содержится изложение основ тензорного исчисления с соответствующими иллюстрациями. Следует отметить, что, несмотря на то, что издана эта литература около 20-40 лет назад, она не потеряла своей актуальности и на настоящий момент.

І. Векторная алгебра

1. Базисные системы векторов

Пусть дано множество элементов V. На этом множестве определим операции сложения и умножения на число следующим образом:

• для каждой пары элементов $a, b \in V$ множество V содержит их векторную сумму a + b, причем

$$a+b=b+a$$
, $a+(b+c)=(a+b)+c$, $a+(-a)=0$,

где 0 – нулевой элемент, а – a – элемент множества V, обратный элементу a;

• если a – любой элемент множества V и α – любое число, то V содержит элемент αa , причем

$$(\alpha\beta) \mathbf{a} = \alpha (\beta \mathbf{a}),$$
 $(\alpha + \beta) \mathbf{a} = \alpha \mathbf{a} + \beta \mathbf{a},$ $\alpha (\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b},$ $1 \square \mathbf{a} = \mathbf{a}.$

Укажем в этой связи ряд определений:

- 1. Любое множество элементов, на котором введены операции сложения и умножения на число, обладающие восемью перечисленными свойствами, образуют линейное (векторное) пространство. При этом элементы множества называют векторами.
- **2.** Размерностью N векторного пространства называется максимальное число линейно независимых векторов.
- **3.** Базисом векторного пространства размерности N называется любая совокупность N линейно независимых векторов.

Из всех возможных базисных систем наиболее употребительной является так называемая ортонормированная базисная система — та, в которой вектора базиса e_i (i=1,...,N) обладают следующими свойствами — их скалярное произведение равно нулю в случае, когда сомножители разные, и единице в случае, когда в качестве обоих сомножителей выступает один и тот же вектор. Коротко это записывается так:

$$\left(\mathbf{\textit{e}}_{i}\cdot\mathbf{\textit{e}}_{j}\right)=\delta_{ij}$$
, где $\delta_{ij}=\begin{cases}0,\ \text{если }i\neq j\\1,\ \text{если }i=j\end{cases}$. (1)

Величина δ_{ij} в уравнении (1) называется символом Кронекера в честь немецкого математика Леопольда Кро́некера (1823-1891).

Произвольный вектор a может быть единственным образом разложен по базисным векторам:

$$\boldsymbol{a} = \sum_{i=1}^{N} a_i \boldsymbol{e}_i , \qquad (2)$$

тогда величины a_i называются *компонентами* (координатами) вектора a в данном базисе. В случае ортонормированной базисной системы

$$a_i = (\boldsymbol{e}_i \cdot \boldsymbol{a}). \tag{3}$$

Тогда нетрудно получить выражение для скалярного произведения двух векторов, выраженное через их компоненты. Итак, если a_i и b_i — координаты векторов a и b соответственно, то

$$\left(\boldsymbol{a} \cdot \boldsymbol{b}\right) = \sum_{i=1}^{N} a_i b_i \ . \tag{4}$$

Сформулируем полезное правило:

Правило Эйнштейна. По всякому индексу, повторяющемуся в выражении два раза, подразумевается суммирование, а знак суммы опускается.

С помощью этого правила удается сократить запись многих формул и соотношений. Так, например, скалярное произведение двух векторов приобретает вид:

$$(\mathbf{a} \cdot \mathbf{b}) = \sum_{i=1}^{N} a_i b_i \equiv a_i b_i.$$
 (5)

2. Вектор как направленный отрезок. Скалярное, векторное и смешанное произведения векторов.

Для случая N=3 понятие вектора имеет наглядную геометрическую интерпретацию, а именно под вектором удобно понимать направ-

ленный отрезок. Базисом тогда могут служить любые три некомпланарных вектора, однако, по-прежнему, удобно выбрать ортонормированный базис, т.е. $(\vec{e}_i \cdot \vec{e}_k) = \delta_{ik}$.

Скалярное произведение двух векторов

определяется так:

$$(\vec{a} \cdot \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \cos \vec{a}, \vec{b}, \qquad (6)$$

где $|\vec{a}|$ и $|\vec{b}|$ – длины векторов \vec{a} и \vec{b} соответственно.

Векторным произведением векторов \vec{a} и \vec{c} называется вектор $[\vec{a} \times \vec{c}]$, длина которого определяется соотноше-

$$\left| \left[\vec{a} \times \vec{c} \right] \right| = \left| \vec{a} \right| \cdot \left| \vec{c} \right| \cdot \sin \vec{a}, \hat{\vec{c}}, \tag{7}$$

а направление определяется по правилу правого винта. Векторное произведение удобно представлять в виде определителя:

нием

$$[\vec{a} \times \vec{c}] = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$
 (8)

Смешанным произведением трех векторов \vec{a} , \vec{b} и \vec{c} называется скалярная величина, определяемая с помощью равенства:

$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \cdot | \vec{b} \times \vec{c} |). \tag{9}$$

Численно смешанное произведение с точностью до знака равно объему параллелепипеда, построенного на некомпланарных векторахсомножителях.

Задачи

- I-1. Определить, образует ли векторное пространство
 - а). множество действительных матриц 2 × 2;
 - б). множество полиномов степени n, заданных на промежутке $x \in [a, b]$;
 - в). множество непрерывных на промежутке $x \in [0, 1]$ функций;
 - Γ). множество упорядоченных пар действительных чисел (x, y);
 - д). множество комплексных чисел?

Если ответ положительный, то определить размерность пространства, дать возможное определение скалярного произведения его элементов, предложить (ортонормированный) базис.

I-2. Даны векторы $\vec{a}=2\vec{i}+2\vec{j}-\vec{k}$ и $\vec{b}=2\vec{i}-\vec{j}+3\vec{k}$. Найти длины проекций этих векторов друг на друга.

- **I-3.** Дан вектор $\vec{p}=2\vec{a}+3\vec{b}-5\vec{c}$, где \vec{a} , \vec{b} и \vec{c} взаимно перпендикулярные векторы, причем $|\vec{a}|=1$, $|\vec{b}|=2$ и $|\vec{c}|=3$. Найти углы между вектором \vec{p} и
 - а). векторами \vec{a} , \vec{b} , \vec{c} ; б). векторами \vec{a} + \vec{b} , $-(\vec{a}$ + \vec{b} + \vec{c}) .
- **І-4.** При каком значении t данные векторы компланарны?
 - a). $\vec{a} = \{3, 6, 9\}, \ \vec{b} = \{2, 5, 8\}, \ \vec{c} = \{4, 7, t\};$
 - 6). $\vec{a} = \{5, 8, 11\}, \ \vec{b} = \{3, 5, 7\}, \ \vec{c} = \{1, t, 3\};$
 - B). $\vec{a} = \{1, 3, 5\}, \ \vec{b} = \{5, 3, 1\}, \ \vec{c} = \{4, 6t + 1, t \frac{1}{6}\};$
- **I-5.** $\vec{a}=\{1,1,1\}$, $\vec{b}=\{5,-3,-3\}$, $\vec{c}=\{3,-1,1\}$. Найти координаты векторов, коллинеарных вектору \vec{c} , длины которых равны длине вектора $\vec{a}+\vec{b}$.
- **I-6.** При каких значениях a вектор $\vec{m} = \{-11, 6, -5\}$ можно разложить по векторам $\vec{p} = \{a, 2, -1\}$ и $\vec{q} = \{8, 9, -4\}$?
- **I-7.** При каком значении a вектор $\vec{m} = \{9,1\}$ нельзя разложить по векторам $\vec{u} = \{2,1\}$ и $\vec{v} = \{1,a\}$? Выполнить разложение при a = 1.
- **I-8.** Параллелепипед построен на некомпланарных векторах \vec{a} , \vec{b} , \vec{c} . Найти площади его диагональных сечений и объем.
- **I-9.** В кубической элементарной ячейке за базисные вектора выбираются $\vec{a}_x = \{1, 0, 0\}$, $\vec{a}_y = \{0, 1, 0\}$, $\vec{a}_z = \{0, 0, 1\}$. Найти:
 - а). площади диагональных сечений куба;
 - б). угол между базисными векторами и нормалями к диагональным поверхностям.
- **I-10.** Показать, что $((\vec{r} \vec{a}) \cdot (\vec{r} + \vec{a})) = 0$ уравнение сферы. Здесь \vec{r} радиус-вектор, а \vec{a} постоянный вектор.
- І-11. Доказать тождество Лагранжа:

$$([\vec{a} \times \vec{n}] \cdot [\vec{c} \times \vec{m}]) = \begin{vmatrix} (\vec{a} \cdot \vec{c}) & (\vec{a} \cdot \vec{m}) \\ (\vec{n} \cdot \vec{c}) & (\vec{n} \cdot \vec{m}) \end{vmatrix}.$$

- **I-12.** Доказать, что из равенства $[\vec{a} \times [\vec{p} \times \vec{r}]] = [[\vec{a} \times \vec{p}] \times \vec{r}]$ при $(\vec{a} \cdot \vec{p}) \neq 0$ и $(\vec{p} \cdot \vec{r}) \neq 0$ следует коллинеарность векторов \vec{a} и \vec{r} .
- І-13. Доказать тождество Якоби:

$$\left[\vec{a} \times [\vec{b} \times \vec{c}]\right] + \left[\vec{c} \times [\vec{a} \times \vec{b}]\right] + \left[\vec{b} \times [\vec{c} \times \vec{a}]\right] = \vec{0}.$$

II. Тензорная алгебра

1. Преобразование компонент векторов при повороте системы координат

Пусть в исходном ортонормированном базисе — $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ — заданы компоненты вектора $\vec{a} = \{a_1, a_2, a_3\}$, т.е. верно равенство $\vec{a} = a_n \vec{e}_n$. В новой системе координат с базисом $\{\vec{e}_1', \vec{e}_2', \vec{e}_3'\}$ будем иметь аналогичное разложение $\vec{a} = a_k' \vec{e}_k'$. Связь между компонентами векто-

ра \vec{a} в старом и новом базисе задается с помощью соотношения:

$$a_i' = \alpha_{ik} a_k \,, \tag{10}$$

где $\alpha_{ik} = \cos \vec{e_i}', \vec{e_k}$ — так называемая *матрица поворота*, полностью определяющая своими компонентами совершенный поворот системы координат.

Ортонормированность старого и нового базисов накладывает на матрицу поворота дополнительное условие, а именно

$$\alpha_{in}\alpha_{in} = \delta_{ii} . \tag{11}$$

Отсюда получаем, что матрицей, обратной α , т.е. α^{-1} , является транспонированная матрица α^T . Пользуясь этим фактом, можем записать обратное преобразование (от нового базиса к старому) в виде:

$$a_i = \alpha_{ik}^T a_k' \equiv \alpha_{ki} a_k'. \tag{12}$$

2. Определение тензора. Действия над тензорами.

К понятию тензора можно относиться как к некоторому обобщению понятий скаляра, вектора, матрицы на более общий случай.

Определение. Любая совокупность N^R величин, заданная в каждом базисе и нумеруемая R индексами, изменяющимися от 1 до N, образует *тензор* R-того ранга в N-мерном пространстве, если при повороте декартовой системы координат эти величины в начальном и конечном базисах связаны линейным законом, т.е.

$$T'_{i_1,i_2,...,i_R} = \alpha_{i_1k_1}\alpha_{i_2k_2}...\alpha_{i_Rk_R}T_{k_1,k_2,...,k_R}.$$
 (13)

Согласно данному определению, тензором нулевого ранга является скаляр — величина, не изменяющаяся при поворотах системы координат, а тензором I-го ранга является N-мерный вектор. В дальнейшем по умолчанию будем подразумевать N=3.

Определим действия над тензорными величинами.

Сложение тензоров. Складывать можно лишь тензоры одинакового ранга – результатом будет тензор того же ранга. Например,

$$A_{kn} + B_{kn} = C_{kn} \,, \tag{14}$$

т.е. тензор II-го ранга C_{kn} является суммой двух тензоров II-го ранга — A_{kn} и B_{kn} .

Умножение тензоров. Результатом умножения двух тензоров рангов R_1 и R_2 является тензор ранга $R_1 + R_2$. Например,

$$A_i \cdot B_{jk} = C_{ijk} . {15}$$

Свертка тензора. Сверткой тензора называется операция умножения его на символ Кронекера с последующим суммированием по одному из его индексов. При свертке ранг тензора уменьшается на 2. Например,

$$A_{iknm}\delta_{nm} \equiv A_{iknn} = B_{ik} . \tag{16}$$

Иногда выделяют еще одну операцию, частным случаем которой является скалярное произведение векторов (см. (5)).

Скалярное умножение мензоров. Скалярное умножение тензоров – это умножение тензоров с последующей сверткой по какой-либо паре индексов. Например,

$$A_{ijk}B_{km} = C_{ijm}. (17)$$

Теорема деления. Если в каждой системе координат существуют N^R величин T_{i_1,i_2,\dots,i_R} и для любого тензора ранга r ($r \le R$) A_{i_1,i_2,\dots,i_r} выражение $T_{i_1,i_2,\dots,i_R} A_{i_1,i_2,\dots,i_r}$ является тензором ранга R-r, то компоненты T_{i_1,i_2,\dots,i_r} составляют тензор R-того ранга.

Докажем эту теорему в частном случае. Пусть дано, что в каждой системе координат выполняется соотношение $A_{ijk}\cdot B_j=C_{ik}$, причем A_{ijk} и C_{ik} — тензоры III-го и II-го рангов соответственно. Докажем, что B_j является тензором I-го ранга.

Доказательство. Поскольку C_{ik} является тензором, для него верен закон преобразования $C'_{ik} = \alpha_{ij} \alpha_{kn} C_{jn}$. Продолжаем эту запись с учетом условий теоремы:

$$C'_{ik} = \alpha_{ij}\alpha_{kn}C_{jn} = \alpha_{ij}\alpha_{kn}A_{jmn}B_m = \dots$$

Теперь используем то, что A_{ijk} – тензор, получим

$$\ldots = \alpha_{ij}\alpha_{kn}\alpha_{pj}\alpha_{qm}\alpha_{rn}A'_{pqr}B_m = \ldots$$

Используя (11), получим

$$\ldots = \delta_{ip} \delta_{kr} \alpha_{qm} A'_{pqr} B_m = \alpha_{qm} B_m A'_{iqk} .$$

С другой стороны в силу условий теоремы должно быть $C'_{ik} = A'_{iqk} B'_q$. Следовательно,

$$A'_{iqk}ig(B'_q-lpha_{qm}B_mig)=0\;,$$
 откуда $B'_q=lpha_{qm}B_m\;,$

что и является доказательством того, что B_i есть тензор I-го ранга.

3. Свойство симметрии тензоров. Изотропные тензоры.

Понятие симметрии относится к тензорам, ранг которых больше или равен 2.

Определение. Тензор A_{ijk} называется симметричным (антисимметричным) по паре индексов i и j, если при перестановке этих индексов компонента тензора не меняется (меняет знак на противоположный).

Легко обобщить данное определение на любую пару индексов и любой ранг тензора.

Важную роль в физическом приложении тензорного исчисления играет следующая теорема. Приведем ее без доказательства.

Теорема. Свойство симметрии (антисимметрии) – инвариантно.

Определение. Тензор называется *изотропным*, если при повороте системы координат его компоненты не меняются.

- 1. Изотропным тензором II-го ранга является упомянутый выше символ Кронекера.
- 2. Изотропным тензором III-го ранга является абсолютно антисим-метричный единичный тензор ε_{ijk} , который чаще называют тензором Леви-Чивита в честь итальянского математика Туллио Леви-Чивита (1873-1941). Данный тензор антисимметричен по любой паре индексов, поэтому из 27 его компонент только 6 не равны нулю:

$$\begin{cases} \varepsilon_{123} = \varepsilon_{312} = \varepsilon_{231} = 1, \\ \varepsilon_{213} = \varepsilon_{321} = \varepsilon_{132} = -1. \end{cases}$$
 (18)

С помощью тензора Леви-Чивита упрощается запись многих тензорных соотношений. Так, например, і-тая компонента векторного произведения векторов \vec{a} и \vec{b} найдется так:

$$\left| \vec{a} \times \vec{b} \right|_{i} = \varepsilon_{iik} a_{i} b_{k} \,. \tag{19}$$

Соответственно смешанное произведение, выраженное через компоненты векторов-сомножителей, имеет вид:

$$(\vec{a}, \vec{b}, \vec{c}) = \varepsilon_{iik} a_i b_i c_k . \tag{20}$$

Произведение $\varepsilon_{iik}\varepsilon_{lmn}$ образует тензор VI-го ранга, сверткой которого можно получить тензоры IV-го и II-го рангов. Эти тензоры по определению инвариантны, поэтому должны выражаться через различные комбинации символов Кронекера:

$$\varepsilon_{ijk}\varepsilon_{lmn} = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}. \tag{21}$$

Отсюда нетрудно получить:

$$\varepsilon_{ijn}\varepsilon_{lmn}=\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}, \quad \varepsilon_{imn}\varepsilon_{lmn}=2\delta_{il}, \quad \varepsilon_{lmn}\varepsilon_{lmn}=6. \quad (22)$$

4. Приведение симметричного тензора ІІ-го ранга к диагональному виду

Как известно, результатом свертки тензора второго ранга с вектором является вектор. При этом, однако, может оказаться, что оба вектора коллинеарны друг другу, т.е. верно соотношение

$$T_{ii}A_i = \lambda A_i. (23)$$

Тогда \vec{A} называется co6cm6ehhым (главным) 6ekmopom, соответствующим собственному (главному) значению λ . Уравнение на собственные значения тензора нетрудно получить из (23): $\det \left(T_{ii} - \lambda \delta_{ii} \right) = 0 \ .$

$$\det(T_{ii} - \lambda \delta_{ii}) = 0. (24)$$

Уравнение (24) называется характеристическим уравнением. В трехмерном пространстве характеристическое уравнение имеет 3 корня - $\lambda^{(1)}$, $\lambda^{(2)}$, $\lambda^{(3)}$ — каждому из которых соответствует свой собственный вектор — $\vec{A}^{(1)}$, $\vec{A}^{(2)}$, $\vec{A}^{(3)}$.

Теорема. Собственные значения симметричного тензора II-го ранга — вещественны, а его собственные векторы $\vec{A}^{(i)}$ и $\vec{A}^{(j)}$, соответствующие различным собственным значениям $\lambda^{(i)} \neq \lambda^{(j)}$, ортогональны.

Задачи

- **II-1.** Записать матрицу преобразования α_{ik} при повороте на угол ϕ
 - а). вокруг оси Ох;
 - б). вокруг оси Оу;
 - в). вокруг оси Оz.

Записать матрицу обратного преобразования.

- **II-2.** Доказать, что при поворотах декартовой системы координат определитель матрицы поворота равен +1.
- **II-3.** Показать, что единственным "изотропным" вектором (компоненты которого одинаковы во всех системах координат) является нулевой вектор.
- **II-4.** В исходной декартовой системе координат известны компоненты вектора \vec{a} . Найти его компоненты в системе координат, повернутой относительно исходной на некоторый угол вокруг одной из осей:
 - а). $\vec{a} = \{1, 1, \sqrt{3}\}$, вокруг оси Ox на 30° ;
 - б). $\vec{a} = \{0, 3, \sqrt{3}\}$, вокруг оси Ox на 120°;
 - в). $\vec{a} = \{2\sqrt{2}, 2\sqrt{2}, 2\sqrt{2}\}$, вокруг оси *Oy* на 15°;
 - г). $\vec{a} = \{0, 4, -4\sqrt{2}\}$, вокруг оси *Oy* на 135°;
 - д). $\vec{a} = \{0, 1, 4\}$, вокруг оси Oz на 45°;
 - е). $\vec{a} = \{1, -\sqrt{3}, 0\}$, вокруг оси Oz на 120°.
- **II-5.** В системе координат, полученной из исходной декартовой системы путем ее поворота на некоторый угол вокруг одной из осей, известны компоненты вектора \vec{a}' . Найти его компоненты в исходной системе координат (до поворота):
 - а). $\vec{a}' = \{2, 0, -2\}$, вокруг оси Ox на 45°;

б).
$$\vec{a}' = \{\sqrt{2}, -1, 0\}$$
, вокруг оси Ox на 150°;

в).
$$\vec{a}' = \{0, 1, 2\}$$
, вокруг оси Oy на 60° ;

г).
$$\vec{a}' = \{6, -\sqrt{3}, -2\sqrt{3}\}$$
, вокруг оси Oy на 150°;

д).
$$\vec{a}' = \{\sqrt{3}/2, -1/2, 1\}$$
, вокруг оси Oz на 75°;

е).
$$\vec{a}' = \{-1 - \sqrt{2}, -1 + \sqrt{2}, 3\}$$
, вокруг оси Oz на 135°.

II-6. В исходной декартовой системе координат известны компоненты тензора A_{ij} . Найти его компоненты в системе координат, повернутой относительно исходной на некоторый угол вокруг одной из осей:

а).
$$A_{ij} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
, вокруг оси Ox на 30° ;

б).
$$A_{ij} = \begin{pmatrix} -\sqrt{2} & 1 & -\sqrt{2} \\ 1 & 1 & 1 \\ \sqrt{2} & -1 & \sqrt{2} \end{pmatrix}$$
, вокруг оси Oy на 45°;

в).
$$A_{ij} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -2\sqrt{2} \\ 0 & 2\sqrt{2} & 0 \end{pmatrix}$$
, вокруг оси Oz на 135°.

II-7. В системе координат, полученной из исходной декартовой системы путем ее поворота на некоторый угол вокруг одной из осей, известны компоненты тензора A'_{ij} . Найти его компоненты в исходной системе координат (до поворота):

а).
$$A'_{ij} = \begin{pmatrix} 1 & \sqrt{3} & 1 \\ -3 & 1 & 0 \\ -\sqrt{3} & 0 & 1 \end{pmatrix}$$
, вокруг оси Ox на 60° ;

б).
$$A'_{ij} = \begin{pmatrix} \sqrt{3} & 0 & 3 \\ -4 & 0 & 0 \\ 3 & 0 & -\sqrt{3} \end{pmatrix}$$
, вокруг оси Oy на $120^\circ;$

в).
$$A'_{ij} = \begin{pmatrix} 2 & 2\sqrt{3} & 0 \\ 0 & 0 & 4 \\ 0 & -4 & 0 \end{pmatrix}$$
, вокруг оси Oz на 30° .

II-8. В некоторой декартовой системе координат даны компоненты тензора

$$T_{ik} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

На какой угол φ вокруг оси Oz нужно повернуть систему координат, чтобы в новой системе координат компонента T'_{ik} стала равной нулю? Чему равны остальные компоненты T'_{ik} в новой системе координат?

- **II-9.** В некоторой системе координат K известны компоненты вектора $\vec{a}=\{1,-1,1\}$. В системе K', получающейся из K поворотом на угол 30° вокруг оси Ox, известны компоненты вектора $\vec{c}'=\{-1,2,2\}$. Найти скалярное произведение этих векторов.
- **II-10.** Компоненты двух векторов заданы в различных системах координат следующим образом: при повороте системы координат K вокруг оси Oy на 30° $\vec{a}' = \left\{1,1,\sqrt{3}\right\}$, а при повороте K вокруг оси Oz на 45° $\vec{b}'' = \left\{\sqrt{2},\sqrt{2},3\right\}$. Найти скалярное произведение этих векторов.
- **II-11.** Найти площадь параллелограмма, построенного на векторах \vec{m} и \vec{n} , если в системе K $\vec{m} = \{2,0,2\}$, а второй вектор задан своими компонентами в системе координат, повернутой относительно K на 60° вокруг оси Ox: $\vec{n}' = \Big\{1,-1,\sqrt{3}\Big\}$.
- **II-12.** Компоненты двух векторов заданы в различных системах координат следующим образом: при повороте системы координат K вокруг оси Oy на 60° (система K') $\vec{a}' = \left\{1,0,\sqrt{3}\right\}$, а при повороте K вокруг оси Oz на 45° (система K'') $\vec{b}'' = \left\{0,-\sqrt{2},1\right\}$. Найти векторное произведение этих векторов. Будет ли его величина и направление зависеть от выбранной системы отсчета?

- **II-13.** Доказать, что сумма $\alpha \cdot A_{ij} + \beta \cdot B_{ij}$ представляет собой компоненты тензора второго ранга, если известно, что A_{ij} и B_{ij} тензоры второго ранга, а α и β скаляры.
- **II-14.** Доказать, что произведение $\delta_{ij}A_jB_nC_n$ является вектором, если \vec{A} , \vec{B} и \vec{C} векторы.
- **II-15.** В некоторой декартовой системе координат известно соотношение $M_{ijk} = A_i B_{jk}$. Известно, что A_i и B_{jk} составляют компоненты тензоров І-го и ІІ-го рангов соответственно. Доказать, что M_{ijk} тензор ІІІ-го ранга.
- **II-16.** R_{nkml} тензор IV-го ранга. Доказать, что $D_{nl} = R_{nkkl}$ тензор II-го ранга.
- **II-17.** В некоторой декартовой системе координат известно соотношение $F_k H_n = T_{kn}$, где T_{kn} тензор II-го ранга, \vec{F} вектор. Доказать, что H_n образует вектор.
- **II-18.** В некоторой декартовой системе координат известно соотношение $A_i B_{ik} = C_k$. Доказать, что
 - а). B_{ik} тензор II-го ранга, если \vec{A} и \vec{C} векторы;
 - б). A_i вектор, если B_{ik} тензор II-го ранга, \vec{C} вектор.
- **II-19.** В некоторой декартовой системе координат известно соотношение $F = A_{ii} B_{ik} C_{ki}$. Доказать, что
 - а). F скаляр, если A_{ii} , B_{ik} , C_{ki} тензоры второго ранга;
 - б). B_{jk} тензор второго ранга, если F скаляр, а A_{ij} , C_{ki} тензоры второго ранга.
- **II-20.** В некоторой декартовой системе координат имеет место соотношение $T_{nkm} = A_{mi}R_{ink}$. Доказать, что
 - а). A_{mi} тензор II-го ранга, если T_{nkm} и R_{ink} тензоры III-го ранга;
 - б). R_{ink} тензор III-го ранга, если T_{nkm} и A_{mi} тензоры III-го и II-го рангов соответственно.
- **II-21.** В некоторой декартовой системе координат имеет место соотношение $S_k = A_m T_{mknl} R_{nl}$. Доказать, что

- а). A_m вектор, если S_k вектор, а T_{mknl} и R_{nl} тензоры IV-го и II-го рангов соответственно;
- б). T_{mknl} тензор IV-го ранга, если S_k и A_m векторы, а R_{nl} тензор II-го ранга;
- в). R_{nl} тензор II-го ранга, если S_k и A_m векторы, а T_{mknl} тензор IV-го ранга.
- **II-22.** Даны два тензора II-го и III-го рангов соответственно P_{ik} и R_{nml} . Получить из них путем перемножения и свертывания тензоры I-го, III-го и V-го рангов.
- **II-23.** Записать в развернутой форме и по возможности упростить выражение $D_{ii}x_ix_j$, если
- ІІ-24. Доказать, что
 - a). $Sp(T_{ij}) = inv$; B). $Sp(A_{ij}B_{jk}C_{kn}) = inv$;
- **II-25.** Даны три вектора A_i , B_j , C_k . Построить зависящие от них
 - а). инварианты;
 - б). тензор II-го ранга;
 - в). симметричный тензор III-го ранга.
- **II-26.** Доказать, что если тензор A_{ijk} симметричен по первой паре индексов и для любого вектора \vec{x} имеет место соотношение

$$A_{iik}x_ix_ix_k=0,$$

то $A_{ijk} + A_{jki} + A_{kij} = 0$.

II-27. Из двух векторов \vec{A} и \vec{B} построены следующие тензоры:

$$T_{ik}^{(1)} = \frac{1}{2} \delta_{ik} + A_i B_k + A_k B_i; T_{ik}^{(2)} = \frac{1}{2} (A_i B_k - A_k B_i);$$

$$T_{ik}^{(3)} = \varepsilon_{ikl} (A_l + B_l).$$

Найти: а). $T_{ik}^{(1)}T_{ki}^{(2)}$; б). $T_{ik}^{(2)}T_{ki}^{(3)}$; в). $T_{ik}^{(3)}T_{ki}^{(1)}$.

II-28. В некотором базисе задан тензор II-го ранга:

$$T_{ij} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 3 & 4 & 2 \end{pmatrix}.$$

Известны также два вектора: $\vec{A}=\{\,2,1,3\}\,$ и $\vec{B}=\{\,1,-1,3\}\,$. Найти:

a).
$$T_{ij}A_iB_j$$
; 6). $\left(T_{ij}-\frac{2}{5}\delta_{ij}\right)T_{nn}$; B). $\left(T_{ij}-\frac{2}{5}\delta_{ij}\right)A_iB_j$.

- **II-29.** Доказать, что произведение компонент двух векторов \vec{A} и \vec{B} образует тензор второго ранга. Найти матрицу этого тензора в системе K, если известны компоненты $\vec{A} = \{1, -1, 2\}$ в системе K и $\vec{B}' = \{0, 2, 1\}$ в системе K', получаемой из K поворотом вокругоси Oz на 90° .
- **II-30.** Доказать, что произведение компонент векторов A_i и B_j образуют тензор второго ранга. Найти компоненты этого тензора в системе координат K', если известны компоненты $\vec{A} = \{1,0,2\}$ и $\vec{B} = \{-1,2,3\}$ в системе K и матрица, связывающая систему K с системой K':

$$\alpha_{ik} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- **II-31.** В некоторой системе координат известны компоненты двух векторов $-\vec{A}=\{1,2,-1\}$ и $\vec{B}=\{2,3,-4\}$. Найти матрицу тензора $T_{ii}=A_iB_i-\varepsilon_{iik}A_k$ и вычислить его след.
- II-32. Из тензора второго ранга

$$T_{ij} = \begin{pmatrix} 1 & 0 & 2 \\ -1 & -1 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

и векторов $\vec{A} = \{1, 1, 1\}$ и $\vec{B} = \{0, 2, 1\}$ построить величины:

a).
$$\left(T_{ij} - \frac{1}{4}\delta_{ij}T_{ll}\right)A_iB_j$$
; 6). $T_{ij}\delta_{ij}A_n$.

II-33. В некотором базисе известны два вектора – $\vec{A} = \{1, 2, -1\}$ и $\vec{B} = \{3, 2, 4\}$. Из компонент этих векторов построить симметричный и антисимметричный тензоры второго ранга.

II-34. В некоторой системе координат известны компоненты тензора II-го ранга:

$$P_{ij} = \begin{pmatrix} 1 & 3 & 2 \\ 3 & -1 & 1 \\ 4 & -1 & 6 \end{pmatrix}.$$

Разложить его на симметричную S_{ij} и A_{ij} антисимметричную составляющие. Найти $Sp(S_{in}A_{ni})$.

II-35. Разложить тензор F_{ii} , матрица которого имеет следующий вид

$$F_{ij} = \begin{pmatrix} -4 & -3 & 2 \\ 3 & 1 & 0 \\ 4 & -2 & 6 \end{pmatrix},$$

на симметричную S_{ii} и A_{ii} антисимметричную составляющие.

Найти матрицу тензора $G_{ij} = S_{ij} - \frac{1}{3} \delta_{ij} F_{nn}$. Чему равен его след?

II-36. Разложить тензор H_{ii} , матрица которого имеет следующий вид

$$H_{ij} = \begin{pmatrix} 1 & 0 & 2 \\ 6 & -1 & 1 \\ 2 & 3 & 4 \end{pmatrix},$$

на симметричную S_{ij} и A_{ij} антисимметричную составляющие. Найти свертку $S_{ii}\,A_{ij}$.

- **II-37.** Показать в общем виде, что свертка симметричного и антисимметричного тензоров равна нулю.
- ІІ-38. В некоторой системе координат задан тензор второго ранга:

$$C_{ij} = \begin{pmatrix} 0 & 1 & 3 \\ 1 & 2 & 0 \\ 3 & 0 & -1 \end{pmatrix}.$$

Чему равны следующие свертки:

II-39. Векторы \vec{B} и \vec{C} заданы своими компонентами: $\vec{B} = \{1, -1, 2\}$ и $\vec{C} = \{0, 2, 1\}$. Чему равны следующие свертки:

- **II-40.** Пусть вектор \vec{A} имеет компоненты $\{1, 2, 3\}$. Найти следующую свертку: $\varepsilon_{ikl}\varepsilon_{klm}A_m$.
- **II-41.** Дуальным антисимметричному тензору II-го ранга A_{nm} называется вектор D_k , компоненты которого определяются соотношением:

 $D_{k} = \frac{1}{2} \varepsilon_{knm} A_{nm}$. Построить вектор, дуальный тензору A_{nm} , если

$$A_{nm} = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}.$$

II-42. Определить компоненты антисимметричного тензора T'_{ik} в системе координат K, если компоненты вектора, дуального T_{ik} , в системе K' есть $\{1, 2, 1\}$, а матрица преобразования к системе K' имеет вид:

$$\alpha_{ik} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

II-43. Найти собственные значения и собственные вектора приведенных ниже тензоров. Проверить свойство ортогональности собственных векторов.

a).
$$A_{ij} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 10 & 3 \\ 0 & 3 & 1 \end{pmatrix};$$
 r). $D_{ij} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix};$ 6). $B_{ij} = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 0 & 0 \\ -2 & 0 & 0 \end{pmatrix};$ $D_{ij} = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix};$

B).
$$C_{ij} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & -3 \\ 4 & -3 & 1 \end{pmatrix}$$
; e). $F_{ij} = \begin{pmatrix} 8 & 6 & 0 \\ 6 & 11 & 6 \\ 0 & 6 & 14 \end{pmatrix}$.

Следующие несколько задач посвящены применению элементов теории тензорного исчисления в анализе некоторых физических проблем.

II-44. Материал, характеризуемый тензором диэлектрической проницаемости

$$\varepsilon_{ij} = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 5 \end{pmatrix},$$

помещен в однородное электрической поле с напряженностью \vec{E} . Найти тензор диэлектрической восприимчивости α_{ij} диэлектрика $(4\pi\alpha_{ik}=\varepsilon_{ik}-\delta_{ik})$. Найти вектор поляризации диэлектрика \vec{P} и вектор электрической индукции \vec{D} ($P_i=\alpha_{ik}E_k$, $D_i=\varepsilon_{ik}E_k$). Найти углы, которые векторы \vec{P} , \vec{D} и \vec{E} образуют друг с другом.

a). $\vec{E} = E_0 \{ 2, 1, -2 \}$; 6). $\vec{E} = E_0 \{ -2, 2, 1 \}$.

Указать направления, для которых векторы \vec{D} и \vec{E} коллинеарны. II-45. Материал, характеризуемый тензором магнитной проницаемости

$$\mu_{kn} = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 2 & -3 \\ 4 & -3 & 2 \end{pmatrix},$$

помещен в однородное магнитное поле напряженностью \vec{H} . Найти тензор магнитной восприимчивости χ_{ik} магнетика ($4\pi\chi_{ik}==\mu_{ik}-\delta_{ik}$). Найти вектор намагниченности \vec{M} и вектор магнитной индукции \vec{B} ($M_i=\chi_{ik}H_k$, $B_i=\mu_{ik}H_k$). Найти углы, которые векторы \vec{M} , \vec{B} и \vec{H} образуют друг с другом.

Указать направления, для которых векторы \vec{B} и \vec{H} коллинеарны. **II-46.** Монокристалл, характеризуемый тензором проводимости

$$\sigma_{jk} = \sigma_0 \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix},$$

помещен в однородное электрическое поле \vec{E} . Найти направление вектора плотности электрического тока \vec{j} и угол, образуемый им с направлением поля.

II-47. Монокристалл, находящийся в магнитном поле и характеризующийся в нем тензором проводимости

$$\sigma_{jk} = \sigma_0 \begin{pmatrix} 3 & 0 & 2 \\ 2 & 1 & -3 \\ -2 & 3 & 4 \end{pmatrix},$$

помещают в однородное электрическое поле $\vec{E}=E_0\{\,2,1,-1\}$. Найти направление вектора плотности электрического тока \vec{j} и количество джоулева тепла $q=\left(\,\vec{j}\cdot\vec{E}\,\right)$, выделяющегося при его прохождении.

II-48. Найти главные оси инерции и главные моменты инерции систем материальных точек, изображенных на рисунках:

Найти значения кинетической энергии, соответствующие вращательному движению с частотой Ω вокруг главных осей инерции. (*Указание*: начало координат выбрать в центре масс системы.)

III. Тензорный анализ

1. Тензорные поля

Ранее рассматривались случаи, когда компоненты тензоров зависели лишь от системы координат. Отметим теперь, что компоненты тензоров физических величин являются как правило функциями времени, температуры, координат и т.п.

Определение. Если каждой точке пространства однозначно соответствует значение компонент тензора, то говорят, что задано *тензорное поле.*

Например, в каждой точке \vec{r} атмосферы свое атмосферное давление p, которое меняется со временем t, поэтому можно говорить, что $p(\vec{r},t)$ — тензорное поле нулевого ранга. Примером тензорного поля первого ранга может служить стационарный поток жидкости, в каждой точке которого вектор скорости имеет свои модуль и направление.

В трехмерном пространстве часто используется векторный дифференциальный оператор $-\vec{\nabla}$ (читается - "набла"). В декартовых координатах он выражается наиболее просто:

$$\vec{\nabla} = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} . \tag{25}$$

С помощью данного оператора легко определяются три важные операции – градиент скалярной функции, дивергенция и ротор векторной функции.

Определения:

1. *Градиентом* скалярной функции φ называется векторная величина grad φ , *i*-тая компонента которой в декартовой системе координат определяется так:

$$\operatorname{grad}_{i} \varphi = \nabla_{i} \varphi = \frac{\partial \varphi}{\partial x_{i}}.$$
 (26)

2. Дивергенцией векторной функции \vec{A} называется скалярная величина div \vec{A} , определяемая в декартовой системе координат так:

$$\operatorname{div} \vec{A} = (\vec{\nabla} \cdot \vec{A}) \equiv \frac{\partial A_i}{\partial x_i}.$$
 (27)

3. *Ротором* векторной функции \vec{A} называется векторная величина гот \vec{A} , i-тая компонента которой в декартовой системе координат определяется так:

$$\operatorname{rot}_{i} \vec{A} = \left[\vec{\nabla} \times \vec{A} \right]_{i} \equiv \varepsilon_{ijk} \frac{\partial}{\partial x_{i}} A_{k}. \tag{28}$$

Заметим в этой связи, что если rot $\vec{A} \equiv \vec{0}$, то векторное поле $\vec{A}(\vec{r})$ называется *потенциальным*, если div $\vec{A} \equiv 0$, то – вихревым или соленои-дальным.

2. Интегральное представление дифференциальных операторов

Векторный дифференциальный оператор $\vec{\nabla}$, определенный в (25), имеет следующее интегральное представление:

$$\vec{\nabla} = \lim_{V \to 0} \frac{s}{V}, \tag{29}$$

где S — поверхность, ограничивающая бесконечно малый объем V, \vec{n} — вектор нормали к поверхности. Используя (29), дивергенцию и ротор векторного поля \vec{A} можно также записать в интегральной форме:

$$\oint_{V \to 0} \left(\vec{n} \cdot \vec{A} \right) dS \qquad \text{for } \vec{A} = \lim_{V \to 0} \frac{S}{V} , \qquad \text{rot } \vec{A} = \lim_{V \to 0} \frac{S}{V} .$$
(30)

Важную роль в математике и ее физических приложениях играют следующие две теоремы.

Теорема Остроградского-Гаусса. Поток векторного поля \vec{A} через замкнутую поверхность S равен интегралу от его дивергенции по объему, ограниченному этой поверхностью:

$$\oint_{S} (\vec{A} \cdot d\vec{S}) = \int_{V} \operatorname{div} \vec{A} \, dV \,. \tag{31}$$

Теорема Стокса. Криволинейный интеграл от поля \overline{A} по замкнутому контуру C равен потоку ротора этого поля через поверхность S, натянутую на контур C:

$$\oint_{C} \left(\vec{A} \cdot d\vec{l} \right) = \int_{S} \left(\operatorname{rot} \vec{A} \cdot d\vec{S} \right). \tag{32}$$

3. Криволинейные системы координат

В некоторых задачах оказывается удобным определение положения точки в трехмерном пространстве не декартовыми координатами x_i (i=1,2,3), а тремя *криволинейными координатами* q_i (i=1,2,3). Система криволинейных координат ставит в соответствие каждой точке пространства с декартовыми координатами x_1, x_2, x_3 упорядоченную тройку действительных чисел q_1, q_2, q_3 . Криволинейные координаты точки связаны с ее декартовыми координатами посредством следующего соотношения:

$$q_i = q_i(x_1, x_2, x_3), (33)$$

где i = 1, 2, 3. Функции q_i однозначны и непрерывно дифференцируемы, а производимое преобразование координат является *невырожденным*, т.е.

$$\frac{\partial(q_1, q_2, q_3)}{\partial(x_1, x_2, x_3)} \equiv \begin{vmatrix}
\partial q_1 / & \partial q_1 / & \partial q_1 / \\
\partial \alpha_1 & / \partial \alpha_2 & / \partial \alpha_3 \\
\partial q_2 / & \partial q_2 / & \partial q_2 / \\
\partial \alpha_1 & / \partial \alpha_2 & / \partial \alpha_3 \\
\partial q_3 / & \partial q_3 / & \partial q_2 / \\
\partial \alpha_1 & / \partial \alpha_2 & / \partial \alpha_3
\end{vmatrix} \neq 0.$$
(34)

Поверхности q_i = const (i = 1, 2, 3) называются координатными поверхностями, а линии их пересечения — координатными линиями. Касательные к координатным линиям векторы

$$\vec{e}_i = \frac{\partial \vec{r}}{\partial q_i} \qquad (i = 1, 2, 3) \tag{35}$$

$$H_{i} \equiv |\vec{e}_{i}| = \sqrt{\left(\frac{\partial x_{1}}{\partial q_{i}}\right)^{2} + \left(\frac{\partial x_{2}}{\partial q_{i}}\right)^{2} + \left(\frac{\partial x_{3}}{\partial q_{i}}\right)^{2}},$$
(36)

введенные в обращение французским математиком и инженером Габриэля Ламе (1795–1870). С помощью коэффициентов Ламе можно естественным образом ввести нормированный на единицу базис векторов \vec{n}_i :

$$\vec{n}_i = \frac{\vec{e}_i}{H_i} \quad \Rightarrow \quad |\vec{n}_i| = 1. \tag{37}$$

Если векторы \vec{e}_i образуют ортогональную тройку векторов, т.е.

$$\left(\vec{e}_i \cdot \vec{e}_j\right) = H_i^2 \delta_{ij} \,, \tag{38}$$

то криволинейная система координат называется ортогональной.

Квадрат расстояния dS^2 между двумя бесконечно близкими точками, разделенными радиус-вектором $d\vec{r}$, равен

$$dS^{2} = d\vec{r}^{2} = (\vec{e}_{i}dq_{i} \cdot \vec{e}_{j}dq_{j}) = (\vec{e}_{i} \cdot \vec{e}_{j})dq_{i}dq_{j} \equiv g_{ij}dq_{i}dq_{j},$$
(39)

где величина g_{ij} называется *метрическим тензором*. Очевидно, в ортогональных системах координат метрический тензор диагонален:

$$g_{ij} = \begin{pmatrix} H_1^2 & 0 & 0 \\ 0 & H_2^2 & 0 \\ 0 & 0 & H_3^2 \end{pmatrix}. \tag{40}$$

Метрический тензор полностью определяет всю геометрию криволинейного пространства. Так элементы площади координатных поверхностей выражаются через его компоненты следующим образом:

$$d\sigma_{1} = \sqrt{g_{22}g_{33}} dq_{2}dq_{3},$$

$$d\sigma_{2} = \sqrt{g_{11}g_{33}} dq_{1}dq_{3},$$

$$d\sigma_{3} = \sqrt{g_{11}g_{22}} dq_{1}dq_{2}.$$
(41)

Элемент объема определяется соотношением

$$dV = J \cdot dq_1 dq_2 dq_3, \qquad (42)$$

где величина $J \equiv \sqrt{\det g_{ij}}$ называется *якобианом* (в честь немецкого математика Карла Густава Якоба Якоби (1804–1851)).

Определим дифференциальные операции над скалярными и векторными полями в ортогональных криволинейных системах координат. Оператор $\vec{\nabla}$ имеет следующий вид (сравните с (25)):

$$\vec{\nabla} = \frac{\vec{n}_1}{H_1} \cdot \frac{\partial}{\partial q_1} + \frac{\vec{n}_2}{H_2} \cdot \frac{\partial}{\partial q_2} + \frac{\vec{n}_3}{H_3} \cdot \frac{\partial}{\partial q_3}.$$
 (43)

Соответственно, і-тая компонента градиента скалярной функции ф определяется так:

$$\operatorname{grad}_{i} \varphi = \frac{1}{H_{i}} \cdot \frac{\partial \varphi}{\partial q_{i}}.$$
 (44)

Используя интегральное представление для дивергенции векторного поля \vec{A} , можно получить

$$\operatorname{div} \vec{A} = \frac{1}{H_1 H_2 H_3} \left(\frac{\partial (A_1 H_2 H_3)}{\partial q_1} + \frac{\partial (A_2 H_1 H_3)}{\partial q_2} + \frac{\partial (A_3 H_1 H_2)}{\partial q_3} \right). \tag{45}$$

Ротор векторного поля \bar{A} удобно изображать в виде следующего определителя:

$$\operatorname{rot} \vec{A} = \begin{vmatrix} \vec{n}_{1} & \vec{n}_{2} & \vec{n}_{3} \\ H_{2}H_{3} & H_{1}H_{3} & H_{1}H_{2} \\ \frac{\partial}{\partial q_{1}} & \frac{\partial}{\partial q_{2}} & \frac{\partial}{\partial q_{3}} \\ H_{1}A_{1} & H_{2}A_{2} & H_{3}A_{3} \end{vmatrix}. \tag{46}$$

В заключение данного раздела приведем формулу для лапласиана скалярного поля φ :

$$\Delta \varphi \equiv \operatorname{div} \operatorname{grad} \varphi = \frac{1}{H_1 H_2 H_3} \left(\frac{\partial}{\partial q_1} \left(\frac{H_2 H_3}{H_1} \frac{\partial \varphi}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{H_1 H_3}{H_2} \frac{\partial \varphi}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{H_1 H_2}{H_3} \frac{\partial \varphi}{\partial q_3} \right) \right) (47)$$

Задачи

III-1. Вычислить ¹:

a). grad *r*;

в). rot \vec{r} ;

д). div (\vec{r}/r) ;

б). div \vec{r} :

в). $\operatorname{rot} \vec{r}$; д). $\operatorname{div}(\vec{r}/r)$ г). $\operatorname{grad}(1/r)$; е). $\operatorname{rot}(\vec{r}/r)$.

III-2. Найти напряженность электрического поля \vec{E} , если распределение потенциала φ в пространстве имеет вид:

¹ Здесь и далее $r \equiv |\vec{r}|$.

а).
$$\varphi = -\frac{q}{x}$$
; в). $\varphi = Ae^{-\alpha x}$; д). $\varphi = q\frac{e^{-r/a}}{r}$ (потенциал Юкавы);

б).
$$\varphi = -Az^2$$
; г). $\varphi = k \ln r$; е). $\varphi = \frac{\vec{d} \cdot \vec{r}}{r^3}$ (потенциал диполя).

III-4. Найти градиент скалярной функции φ .

a).
$$\varphi = \frac{e^{(\vec{a} \cdot \vec{r})}}{r};$$
 B). $\varphi = \frac{(\vec{a} \cdot \vec{r})^3}{r^2};$ π .

6).
$$\varphi = r^3 (\vec{c} \cdot \vec{r});$$
 r). $\varphi = ((\vec{a} \cdot \vec{r}) \cdot \sin(\vec{b} \cdot \vec{r}));$ e). $\varphi = (\vec{r} \cdot [\vec{a}r \times \vec{b}]).$

III-5. Найти дивергенцию и ротор векторного поля \vec{A} .

a).
$$\vec{A} = [\vec{a} \times \vec{r}];$$
 $\vec{A} = \frac{[\vec{\mu} \times \vec{r}]}{r^3};$ 3). $\vec{A} = \left[\frac{\vec{a}}{r} \times \vec{r}\right];$

6).
$$\vec{A} = \vec{c} \exp(\vec{k} \cdot \vec{r});$$
 e). $\vec{A} = [\vec{a} \times \vec{r}] \cdot \sin r;$ и). $\vec{A} = \frac{\vec{r}}{r} e^{(\vec{c} \cdot \vec{r})};$

B).
$$\vec{A} = \vec{c} \sin(\vec{k} \cdot \vec{r});$$
 ë). $\vec{A} = [\vec{a} \times \vec{r}] \cdot \cos\frac{1}{r};$ κ). $\vec{A} = \frac{[\vec{a} \times \vec{r}]}{(\vec{a} \cdot \vec{r})};$

г).
$$\vec{A} = \vec{r} \left(\vec{a} \cdot \vec{r} \right)^n$$
; ж). $\vec{A} = \left[\vec{a} \times \vec{r} \right] \cdot \operatorname{tg} r^2$; л). $\vec{A} = \left[\frac{\vec{a}}{r} \times \left(\vec{r} \cdot \vec{b} \right) \vec{c} \right]$.

ІІІ-6. Доказать тождества:

1). grad
$$(\varphi \cdot \psi) = \varphi$$
 grad $\psi + \psi$ grad φ ;

2).
$$\operatorname{div}\left(\varphi \cdot \vec{A}\right) = \varphi \operatorname{div} \vec{A} + \left(\vec{A} \cdot \operatorname{grad} \varphi\right);$$

3). div
$$[\vec{A} \times \vec{B}] = (\vec{B} \cdot \text{rot } \vec{A}) - (\vec{A} \cdot \text{rot } \vec{B});$$

4). rot
$$[\vec{A} \times \vec{B}] = (\vec{B} \cdot \vec{\nabla}) \vec{A} - (\vec{A} \cdot \vec{\nabla}) \vec{B} + \vec{A} \operatorname{div} \vec{B} - \vec{B} \operatorname{div} \vec{A};$$

5). grad
$$(\vec{A} \cdot \vec{B}) = (\vec{B} \cdot \vec{\nabla}) \vec{A} + (\vec{A} \cdot \vec{\nabla}) \vec{B} + [\vec{B} \times \text{rot } \vec{A}] + [\vec{A} \times \text{rot } \vec{B}];$$

6).
$$(\vec{\nabla} \cdot \vec{A})\vec{B} = \vec{B} \operatorname{div} \vec{A} + (\vec{A} \cdot \vec{\nabla})\vec{B}$$
;

7).
$$(\vec{C} \cdot \operatorname{grad} (\vec{A} \cdot \vec{B})) = \vec{A} (\vec{C} \cdot \vec{\nabla}) \vec{B} + \vec{B} (\vec{C} \cdot \vec{\nabla}) \vec{A}$$
;

8).
$$[\vec{A} \times \vec{\nabla}] \times \vec{B} = (\vec{A} \cdot \vec{\nabla}) \vec{B} + [\vec{A} \times \text{rot } \vec{B}] - \vec{A} \text{ div } \vec{B}$$
;

9).
$$[\![\vec{\nabla} \times \vec{A}]\!] \times \vec{B} = \vec{A} \operatorname{div} \vec{B} - (\vec{A} \cdot \vec{\nabla}) \vec{B} - [\vec{A} \times \operatorname{rot} \vec{B}] - [\vec{B} \times \operatorname{rot} \vec{A}];$$

10).
$$\Delta(\varphi \cdot \psi) = \varphi \cdot \Delta \psi + 2(\operatorname{grad} \varphi \cdot \operatorname{grad} \psi) + \psi \cdot \Delta \varphi$$
;

11). rot rot
$$\vec{A} = \text{grad div } \vec{A} - \Delta \vec{A}$$
.

III-7. Доказать, что величина $B_k = \frac{\partial T_{ik}}{\partial r}$ есть тензор I-го ранга и найти

его компоненты, если

a).
$$T_{ik} = x_i C_k$$
; 6). $T_{ik} = r^2 x_i C_k$.

III-8. Доказать, что величина $C = \frac{\partial B_k}{\partial x}$ есть тензор нулевого ранга и

найти его компоненты, если $\vec{B} = \vec{r} (\vec{a} \cdot \vec{r})$, а $\vec{a} = \{a_0, 0, 0\}$.

III-9. Доказать, что $(\vec{A} \cdot \vec{\nabla})\vec{A} = -\vec{A}$ rot \vec{A} , если $\vec{A}^2 = \text{const}$.

III-10. Вычислить:

a). grad $(\vec{a} \cdot \operatorname{grad} \varphi)$;

B). grad $(\vec{r} \cdot \operatorname{grad} \varphi)$;

δ). rot $(\vec{a} \cdot \operatorname{grad} \varphi)$;

 Γ). rot $(\vec{r} \cdot \operatorname{grad} \varphi)$.

III-11. Вычислить при $\varphi = \frac{\left(\vec{d} \cdot \vec{r}\right)}{3}$:

- a). grad div $(\varphi \cdot \vec{r})$; 6). rot rot $(\varphi \cdot \vec{r})$; b). div grad φ .

III-12. Найти функцию ρ , удовлетворяющую уравнению $\Delta \varphi = 4\pi \rho$, если

a).
$$\varphi = -Bz^2$$
;

6).
$$\varphi = -Be^{-\alpha z}$$
:

B).
$$\varphi = 4\pi \frac{\rho_0}{\alpha^2 + \beta^2 + \gamma^2} \cos \alpha x \cos \beta y \cos \gamma z$$
.

III-13. Вычислить:

a).
$$\left(\vec{a} \cdot \operatorname{rot} \frac{\vec{a}}{r}\right)$$
;

r). div
$$([\vec{a} \times \vec{r}] + [\vec{b} \times \vec{r}]) + (\vec{r} \cdot \vec{\nabla}) \frac{1}{r}$$
;

6). rot
$$\frac{\left[\vec{a} \times \vec{b}\right]}{r}$$
;

д). div
$$([\vec{r} \times \vec{a}] \cdot r) + \Delta (\vec{k} \cdot \vec{r})^2$$
;

B).
$$r^3 \left(\vec{a} \cdot \vec{\nabla} \right)^2 r$$
;

e).
$$(\vec{r} \cdot \vec{\nabla})r^2 + \operatorname{div} \frac{\vec{r}}{r^2} - (\vec{r} \cdot \operatorname{grad} r^2)$$
.

III-14. Найти значения коэффициентов Ламе для цилиндрической системы координат.

III-15. Найти значения коэффициентов Ламе для сферической системы координат.

III-16. Найти вектор напряженности электрического поля при заданном распределении скалярного потенциала ϕ :

a).
$$\phi = a \ln \rho$$
;

B).
$$\phi = c\rho(\sin\varphi - \cos\varphi)$$
;

6).
$$\phi = kr^2$$
:

$$\Gamma$$
). $\phi = br^2 \sin \theta$.

III-17. Найти плотность распределения заряда ho при известном распределении электрического поля $\vec{E} = \{E_o, E_o, E_z\}$.

a).
$$\vec{E} = \left\{ \frac{a}{\rho}, 0, 0 \right\};$$
 6). $\vec{E} = \left\{ b\rho, 0, 0 \right\};$ B). $\vec{E} = \left\{ \cos \varphi, -\sin \varphi, 0 \right\}.$

III-18. Найти плотность распределения заряда ho при известном распределении электрического поля:

$$\vec{E} = \begin{cases} a\vec{r}, \text{ при } 0 \leq r \leq R, \\ \frac{aR^3}{r^3}\vec{r}, \text{ при } r \geq R. \end{cases}$$

III-19. Найти вектор напряженности магнитного поля при заданном векторном потенциале $\vec{A} = \{A_o, A_\omega, A_z\}$. Найти div \vec{A} .

a).
$$\vec{A} = \left\{ 0, \frac{1}{2} H_0 \rho, 0 \right\};$$

r).
$$\vec{A} = A_0 \{ z \rho^2, 0, -\rho z^2 \}$$
;

6).
$$\vec{A} = \{0, 0, B \ln \rho\};$$

д).
$$\vec{A} = A_0 \left\{ z \rho^2, z^3 \varphi, -\frac{z^4}{4\rho} \right\};$$

B).
$$\vec{A} = \left\{ \frac{C}{\rho}, 0, 0 \right\};$$

e).
$$\vec{A} = A_0 \left\{ -\frac{\sin \varphi}{\rho^2}, \frac{\cos \varphi}{\rho^2}, -\frac{1}{z\rho} \right\}.$$

III-20. Найти вектор напряженности магнитного поля при заданном векторном потенциале $\vec{A} = \left\{A_r, A_\theta, A_\phi\right\}$. Найти div \vec{A} .

a).
$$\vec{A} = A_0 \left\{ \frac{2\cos\theta}{r^2}, \frac{\sin\theta}{2r^2}, 0 \right\};$$

r).
$$\vec{A} = A_0 \{ r, 0, a + r \sin \theta \};$$

6).
$$\vec{A} = A_0 \left\{ \frac{\cos \varphi}{r}, -\frac{2}{r}, \varphi \right\};$$

д).
$$\vec{A} = A_0 \{ 2r + a\cos\theta, -a\sin\theta, r\cos\theta \};$$

B).
$$\vec{A} = A_0 \left\{ \frac{2\cos\theta}{r^3}, \frac{\sin\theta}{r^3}, 0 \right\};$$

B).
$$\vec{A} = A_0 \left\{ \frac{2\cos\theta}{r^3}, \frac{\sin\theta}{r^3}, 0 \right\};$$
 e). $\vec{A} = A_0 \left\{ r\sin\theta, r\cos\theta, -r\phi\cos^2\theta \right\}.$

III-21. Вычислить:

a). div
$$\varphi(r)\vec{r}$$
;

$$\Gamma$$
). rot $(r\vec{A}(r))$;

δ). rot
$$\varphi(r)\vec{r}$$
;

д).
$$\operatorname{div}\left(\vec{A}(r)/r^n\right)$$

B).
$$\operatorname{div}\left(r\,\vec{A}(r)\right)$$
;

e). rot
$$(\vec{A}(r)/r^n)$$
.

III-22. Найти функцию $\varphi(r)$, удовлетворяющую следующему соотношению:

$$\operatorname{div} \varphi(r) \, \vec{r} = 0 \, .$$

III-23. Найти $\Delta \phi (\rho, \varphi, z)$, если

a).
$$\phi = \frac{a}{\rho}$$
;

$$\Gamma$$
). $\phi = -k \ln \rho$;

6).
$$\phi = c\rho^2$$
:

д).
$$\phi = a\rho\cos\varphi$$
;

B).
$$\phi = k(\rho^2 + z^2)^{-1/2}$$
;

e).
$$\phi = \frac{a}{\rho \sin \varphi}$$
.

III-24. Найти $\Delta \phi (r, \theta, \varphi)$, если

a).
$$\phi = \frac{a}{r}$$
;

$$\Gamma). \ \phi = cr\cos\varphi \ ;$$

6).
$$\phi = cr^2$$
;

д).
$$\phi = ar^2 \cos \theta \sin \varphi$$
;

B).
$$\phi = kr \sin \theta$$
;

e).
$$\phi = \frac{k}{r} (\sin \theta + \cos \varphi)$$
.

- **III-25.** Записать проекции вектора ΔA на оси цилиндрической и сферической систем координат. (Указание: воспользоваться тождеством № 11 из задачи III-6).
- III-26. Найти поток радиус-вектора через замкнутую поверхность цилиндра радиуса a и высотой h.
- **III-27.** Найти поток радиус-вектора через замкнутую конуса радиуса a и высотой h.
- **III-28.** Интеграл по объему $\int \Big(\operatorname{grad} \varphi \cdot \operatorname{rot} \bar{A}\Big) dV$ преобразовать в интеграл по поверхности.

III-29. Вычислить интегралы

a).
$$\oint_{S} \vec{r} (\vec{a} \cdot \vec{n}) dS$$
,

б).
$$\oint_S (\vec{a} \cdot \vec{r}) \vec{n} dS$$
,

если \vec{a} – постоянный вектор, а \vec{n} – орт нормали к поверхности.

III-30. Интегралы по замкнутой поверхности

a).
$$\oint \vec{n} \varphi \, dS$$
,

б).
$$\oint_{S} (\vec{n} \cdot \vec{a}) dS$$
,

6).
$$\oint_S (\vec{n} \cdot \vec{a}) dS$$
, B). $\oint_S (\vec{n} \cdot \vec{a}) \vec{b} dS$,

где \vec{a} , \vec{b} — постоянные векторы, \vec{n} — орт нормали к поверхности,

преобразовать в интеграл по объему, заключенному внутри поверхности.

III-31. Интеграл по замкнутому контуру $\oint_C \varphi \, d\vec{l}$ преобразовать в интеграл по поверхности, натянутой на данный контур.

III-32. Доказать тождество:

$$\int \left(\left(\vec{A} \cdot \text{rot rot } \vec{B} \right) - \left(\vec{B} \cdot \text{rot rot } \vec{A} \right) \right) dV = \oint_{S} \left(\left[\vec{B} \times \text{rot } \vec{A} \right] - \left[\vec{A} \times \text{rot } \vec{B} \right] \right) dS.$$

III-33. Внутри объема V вектор \vec{A} удовлетворяет условию $\operatorname{div} \vec{A} = 0$ и на границе объема — поверхности S — условию $A_n = 0$. Доказать, что

$$\int_{V} \vec{A} \, dV = 0 \; .$$

III-34. Для тензора II-го ранга в трехмерном пространстве доказать теорему Остроградского-Гаусса:

$$\int \frac{\partial T_{ik}}{\partial x_i} dV = \oint T_{ik} dS_i .$$

(*Указание*: исходить из теоремы Остроградского-Гаусса для вектора $A_i = T_{ik} d_k$, где \vec{d} — постоянный вектор.)

III-35. Пользуясь интегральным представлением оператора $\vec{\nabla}$, доказать равенство:

 $\int\limits_V \left[\vec{b} \times \left[\vec{\nabla} \times \vec{a} \right] \right] dV + \int\limits_V \left[\left[\vec{a} \times \vec{\nabla} \right] \times \vec{b} \right] dV = - \oint\limits_S \left[\left[\vec{n} \times \vec{a} \right] \times \vec{b} \right] dS \; ,$

где \vec{a} , \vec{b} – постоянные векторы, \vec{n} – орт нормали к поверхности.

- III-36. Вычисляя для поля $\vec{B} = -\vec{\nabla} \begin{pmatrix} q/r \end{pmatrix}$
 - а). поток вектора \vec{B} через поверхность сферы единичного радиуса;
 - б). интеграл по объему сферы от ${
 m div}\, \vec{B}$ произвести прямое доказательство теоремы Остроградского-Гаусса.

III-37. Вычисляя для поля
$$\vec{A} = \frac{\vec{J} \times \vec{r}}{r}$$
 ($\vec{J} = \text{const}$)

- а). циркуляцию вектора \vec{A} по окружности единичного радиуса;
- б). поток \vec{A} через площадь круга единичного радиуса

произвести прямое доказательство теоремы Стокса.

IV. Литература

- 1. В.М. Соколов, Н.Г. Голубева, Г.М. Максимова, *Сборник задач по основам векторного и тензорного анализа*, изд-во ГГУ, 1976 г.
- М.А. Акивис, В.В. Гольдберг, Тензорное исчисление, М., "Наука", 1972 г.
- 3. Н.Е. Кочин, *Векторное исчисление и начала тензорного исчисления*, М., "Наука", 1965 г.
- 4. А.И. Борисенко, И.Е. Тарапов, *Векторный анализ и начало тензорного исчисления*, М., "Высшая школа", 1966 г.
- А.Дж. Мак-Конелл, Введение в тензорный анализ, М., "Физматгиз", 1963 г.
- 6. В.В. Батыгин, И.Н. Топтыгин, *Сборник задач по электродинамике*, М., "Наука", 1970 г.
- 7. Л.Г. Гречко и др., *Сборник задач по теоретической физике*, М., "Высшая школа", 1972 г.
- 8. Дж. Мейз, *Теория и задачи механики сплошных сред*, М., "Мир", 1974 г.
- 9. Ю.А. Амензаде, Теория упругости, М., "Высшая школа", 1976 г.

Содержание

	Стр
Предисловие	3
І. Векторная алгебра	4
1. Базисные системы векторов	4
2. Вектор как направленный отрезок. Скалярное, векторное и	
смешанное произведения векторов.	5
Задачи	6
II. Тензорная алгебра	8
1. Преобразование компонент векторов при повороте сис-	
темы координат.	8
2. Определение тензора. Действия над тензорами.	8
3. Свойство симметрии тензоров. Изотропные тензоры.	10
4. Приведение симметричного тензора II ранга к диагональ-	
ному виду.	11
Задачи	12
III. Тензорный анализ	22
1. Тензорные поля.	22
2. Интегральное представление дифференциальных операто-	
ров.	23
3. Криволинейные системы координат.	24
Задачи	26
IV. Литература	32
Содержание	33