

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr. IPLCO
 JEE ADVANCED
 DATE : 03-01-16

 TIME : 09:00 AM TO 12: 00 Noon
 2013_P1 MODEL
 MAX MARKS : 180

KEY & SOLUTIONS

PHYSICS

1	C	2	A	3	A	4	C	5	В	6	A
7	В	8	C	9	В	10	A	11	C	12	ACD
13	BD	14	AC	15	AB	16	5	17	7	18	3
19	2	20	2					100			

CHEMISTRY

21	В	22	D	23	В	24	C	25	A	26	A
27	В	28	D	29	D	30	A	31	ACD	32	ACD
33	В	34	ABC	35	AB	36	2	37	2	38	1
39	5	40	2	À							

MATHEMATICS

41	D	42	C	43	В	44	C	45	A	46	D
47	В	48	D	49	C	50	A	51	CD	52	ABCD
53	BD	54	ABD	55	ABC	56	4	57	2	58	3
59	4	60	6								

Sec: Sr.IPLCO Page 1

MATHS

- 41. $a_p = t + s p$; $b_{t+s} = -(t+s)$ is true for any natural number p but only the given t and s.
- 42. $s_k + a_k = \sum_{r=1}^{n} a_r$ is fixed

Given a_1, a_2, a_n are in H.P

$$\Rightarrow \frac{a_1 + s_1}{a_1}, \frac{a_2 + s_2}{a_2}, \dots, \frac{a_n + s_n}{a_n}$$
 are in A.P

$$\begin{split} 43. \qquad & \sum_{m=l}^{20} {}^{20}C_m \left(\sum_{k=l}^m \left(\sum_{p=k}^m \frac{m!}{p!(m-p)!} \cdot \frac{p!}{k!(p-k)!} \right) \right) \\ & = \sum_{m=l}^{20} {}^{20}C_m \left(\sum_{k=l}^m \left(\sum_{p=k}^m {}^{m-k}C_{p-k} \right) \frac{m!}{k!(m-k)!} \right) \\ & = \sum_{m=l}^{20} {}^{20}C_m \left(\sum_{k=l}^m 2^{m-k} \cdot {}^m C_k \right) \\ & = \sum_{m=l}^{20} {}^{20}C_m \left((1+2)^m - 2^m \right) = \sum_{m=l}^{20} \left({}^{20}C_m 3^m - {}^{20}C_m 2^m \right) = 4^{20} - 3^{20} \ ends \ with \ 75. \end{split}$$

44. let x be the sum of the sequence without number 35 and n be the total number of distinct values in the sequence. So, $\frac{35+x}{n} = 53$. We know that $\frac{x}{n-1} = 54 \Rightarrow x = 54n - 54$ Hence $35+(54n-54)=53 \Rightarrow n=19$. The sum of the numbers is $53\times19=1007$. For highest possible number in the sequence, the other numbers in the sequence have to be lowest possible values. So 1+2+3+...+17+35+ H(Highest possible number) = 1007

This gives 153 + 35 + H = 1007.

45.
$$3+4+5+5+7+8+9+9=50$$

$$46. \qquad R_n f_n = \left(5\sqrt{5} + 11\right)^{2n+1} \left(5\sqrt{5} - 11\right)^{2n+1} = 4^{2n+1} \Longrightarrow R_3 f_3 = 2^{14}$$

47. use
$$55^5 = 23m + 8$$
; $17^4 = 23k + 8$

48.
$$I(m,n) = \lim_{x \to \infty} \int_{-x}^{x} \frac{dt}{(t^2 + m^2)(t^2 + n^2)} = \frac{\pi}{mn(m+n)}$$

49.
$$a_n b_n = \left((x)^{\frac{1}{2^n}} - (y)^{\frac{1}{2^n}} \right) \left((x)^{\frac{1}{2^n}} + (y)^{\frac{1}{2^n}} \right) = (x)^{\frac{1}{2^{n-1}}} - (y)^{\frac{1}{2^{n-1}}} = b_{n-1}$$

So,
$$a_n b_n a_{n-1} b_{n-1} a_{n-2} b_{n-2} \dots a_2 b_2 = b_{n-1} b_{n-2} b_{n-3} \dots b_1$$

$$\Rightarrow a_{n}b_{n}a_{n-1}a_{n-2}...a_{2} = b_{1} \Rightarrow a_{n}a_{n-1}a_{n-2}....a_{2}a_{1} = \frac{a_{1}b_{1}}{b_{n}} = \frac{x-y}{b_{n}}$$

Sec: Sr.IPLCO Page 5

Sri Chaitanya IIT Academy

03-01-16 Sr.IPLCO_Jee-Adv_2013-P1_Key Solutions

50.
$$a(a^2+10ab+5b^2)^2-b(5a^2+10ab+b^2)^2=(a-b)^5$$
.

51. we have 1072 < 10(2a + 19d) < 1162 and a + 5d = 32 gives d=5, a=7

52.
$$a_1 + a_4 + a_7 + \dots + a_{16} = 147 \Rightarrow a_1 + a_{16} = 49$$

Again
$$a_1 + a_4 + a_7 + a_{10} + ... + a_{16} = a_1 + a_1 + 3d + a_1 + 6d + ... + a_1 + 15d$$

$$= 6a_1 + 45d = 147 \Rightarrow 2a_1 + 15d = 49$$

$$a_1 + a_6 + a_{11} + a_{16} = a_1 + a_1 + 5d + a_1 + 10d + a_1 + 15d$$

$$=4a_1+30d=2(2a_1+15d)=2(49)=98$$

Now using AM≥GM

$$\frac{a_1 + a_2 + ... + a_{16}}{16} \ge \left(a_1 a_2 a_3 ... a_{16}\right)^{\frac{1}{16}} \Rightarrow \frac{8\left(a_1 + a_{16}\right)}{16} \ge \left(a_1 a_2 a_3 ... a_{16}\right)^{\frac{1}{16}} \Rightarrow \left(\frac{49}{2}\right)^{16} \ge a_1 a_2 a_3 ... a_{16}$$

53.

Let $g_i = ar^{i-1}$ we have a $a(1+r^3) = -49$, ar(1+r) = 14

$$a(1+r)(1-r+r^2) = -49$$
. $\therefore \frac{1-r+r^2}{r} = -\frac{7}{2} \Rightarrow 2r^2 + 5r + 2 = 0$

$$\therefore r = -2, -\frac{1}{2} \text{ If } r = -2, \text{ then } ar(1+r) = 14 \Rightarrow a = 7.$$

 \therefore The GP is 7,-14, 28,-56.

54.

Given
$$(3\sqrt{3}+5)^{2n+1} = \alpha + \beta$$
 (1)

Let
$$\beta' = (3\sqrt{3} - 5)^{2n+1}$$
 (2)

$$\alpha + \beta - \beta' = (3\sqrt{3} + 5)^{2n+1} - (3\sqrt{3} - 5)^{2n+1}$$

$$=2 \left\lceil {\frac{{2^{n + 1}}{{C_1}{{\left({3\sqrt 3 } \right)}^{2n}}}} \right.5 + \frac{{2^{n + 1}}{{C_3}}{{\left({3\sqrt 3 } \right)}^{2n - 2}}{{\left(5 \right)}^3} + \ldots + \frac{{2^{n + 1}}{{C_{2n + 1}}}}{5^{2n + 1}} \right\rceil$$

$$\alpha + \beta - \beta' = 10k$$
, But $-1 < \beta - \beta' < 1$

∴ β - β ' is an integer

$$\therefore$$
 β − β' = 0 \therefore α divisible by 10.

$$\Rightarrow (\alpha + \beta)^2 = \left[\left(3\sqrt{3} + 5 \right)^2 \right]^{2n+1} = \left(52 + 30\sqrt{3} \right)^{2n+1} = 2^{2n+1} \left(26 + 15\sqrt{3} \right)^{2n+1}$$

 $(\alpha + \beta)^2$ divisible by 2^{2n+1}

55.

$$T_p \text{ of } AP = \frac{1}{q(p+q)} = A + (p-1)D$$
 ... (i)

$$T_q \text{ of } AP = \frac{1}{p(p+q)} = A + (q-1)D$$
 ... (ii)

$$\frac{1}{T_{p+q}} = A + (p+q-1)D \qquad and \frac{1}{T_{pq}} = A + (pq-1)D.$$

solving Eqs. (i) and (ii), we get $A = D = \frac{1}{pq(p+q)}$

$$\therefore \frac{1}{T_{p+q}} = A + (p+q-1)D = (p+q)D = \frac{1}{pq}$$

and
$$\frac{1}{T_{pq}} = A + f(p+q-1)D = pqD = \frac{1}{p+q}$$

$$\Rightarrow$$
 $T_{p+q} = pq$ and $T_{pq} = p + q$

Also,
$$: pq > p+q$$
 i.e, $T_{p+q} > T_{pq}$

56.
$$\frac{(a_{10})^2}{(11\times13\times2\times17\times19)^2} = 4$$

57.
$$A = \frac{25 + n^2}{2}$$
, $G = 5n$, $H = \frac{50n^2}{25 + n^2}$ should be natural numbers, n=15

58.
$$\frac{C_1}{C_0} + 2^2 \cdot \frac{C_2}{C_1} + 3^2 \cdot \frac{C_3}{C_2} + \dots 17^2 \cdot \frac{C_{17}}{C_{16}} = \sum_{r=1}^{17} r(18 - r) = 969$$

59. Let A = a + b, B = c + d

$$\therefore A, B > 0, A + B = 4$$

$$\therefore (a+b)(c+d) \leq 4.$$

Hence $0 \le K \le 4$.

60.
$$1, \frac{{}^{n}C_{1}}{2}, \frac{{}^{n}C_{2}}{2^{2}}$$
 are in A.P \Rightarrow n = 8. The power, on x, in any term is $\frac{16-3r}{4}$

For integer power of x, $r \in \{0,4,8\}$. So, there are 6 terms with non-integer powers