

Programming with C and C++ CSC-101 (Lecture 6)

Dr. R. Balasubramanian

Professor
Department of Computer Science and Engineering
Mehta Family School of Data Science and Artificial Intelligence
Indian Institute of Technology Roorkee
Roorkee 247 667

bala@cs.iitr.ac.in
https://faculty.iitr.ac.in/cs/bala/

Conditional Logic

Introduction to Conditional Logic

- At the core of programming, we often need to make decisions based on certain conditions.
- "If it's raining, then I'll take an umbrella."
- "If it's an exam day, then I'll study the night before."
- "If my experiment fails, then I have successfully found one way it doesn't work."
- ► In C, we can use the "if" statement to write conditional code.
- This allows us to execute specific code only if a certain condition is met.
- Up next: How does an "if" statement look in C? Let's find out!

The "if" Statement in C

Syntax:

```
if (condition) {
// Code to execute if condition is true
}
```

- The condition must evaluate to true or false.
- If true, the code inside the braces is executed.
- If false, the code inside the braces is skipped.
- Example:

```
if (age >= 18) {
printf("You are eligible to vote.\n");
}
```

A Simple Program Using "if" Statement

```
#include <stdio.h>
int main() {
int age;
printf("Enter your age: ");
scanf("%d", &age);
if (age >= 18) {
    printf("You are eligible to vote.\n");
}
printf("Thank you for using our program.\n");
return 0;
```

- This program checks if the user is eligible to vote based on their age.
- Let's dissect the program to understand how it works.

Taking User Input

```
int age;
printf("Enter your age: ");
scanf("%d", &age);
```

- Here, we declare an integer variable 'age'.
- We then prompt the user to enter their age and store the input in 'age'.

The Conditional Check

```
if (age >= 18) {
printf("You are eligible to vote.\n");
}
```

- We use the "if" statement to check if the age is 18 or greater.
- ▶ If the condition is true, the message is printed.
- If false, this part of the code is skipped.

Closing the Program

```
printf("Thank you for using our program.\n");
return 0;
```

- We thank the user for using the program.
- 'return 0;' signifies successful execution and closes the program.

Introduction to "if-else" Syntax

- Sometimes we want to make a decision between two possibilities.
- "if-else" structure allows us to define what to do when a condition is true, and what to do if it's false.

```
if (condition) {
    // Code to run if condition is true
} else {
    // Code to run if condition is false
}
```

Introduction to "else if" Syntax

- ▶ What if we have more than two possibilities?
- The "else if" clause allows us to test multiple conditions in a specific order.
- If one condition is met, the associated code block is executed, and the rest are skipped.

Introduction to "else if" Syntax

```
if (condition1) {
// Code to run if condition1 is true
} else if (condition2) {
// Code to run if condition2 is true
} else {
// Code to run if no conditions are true
}
```

- Here, "condition1" is tested first. If true, its code block is executed.
- ► If "condition1" is false, "condition2" is tested. If true, its code block is executed.
- ► If neither "condition1" nor "condition2" are true, the code in the "else" block is executed.
- You can have as many "else if" clauses as needed, and they are checked in order.

Solving a Quadratic Equation: Introduction

Task: Solve a quadratic equation $ax^2 + bx + c = 0$ by calculating its roots.

```
#include <stdio.h>
#include <math.h>

int main() {
  float a, b, c, discriminant, root1, root2;
  printf("Enter coefficients a, b, and c: ");
  scanf("%f %f %f", &a, &b, &c);
  discriminant = b * b - 4 * a * c;
```

- We start by declaring the coefficients and roots as floating-point variables.
- ▶ The user is prompted to enter the values for *a*, *b*, and *c*.
- We calculate the discriminant to determine the nature of the roots.

Solving a Quadratic Equation: Roots Calculation

```
if (discriminant > 0) {
  root1 = (-b + sqrt(discriminant)) / (2 * a)
  root2 = (-b - sqrt(discriminant)) / (2 * a)
  printf("Two real roots: %f and %f\n", root1
     . root2):
} else if (discriminant == 0) {
  root1 = -b / (2 * a);
  printf("One real root: %f\n", root1);
} else {
  printf("No real roots.\n");
return 0;
}
```

➤ We use the "if-else" structure to determine the correct scenario and calculate the roots accordingly.

Input and Discriminant

```
float a, b, c, discriminant;
printf("Enter coefficients a, b, and c: ");
scanf("%f %f %f", &a, &b, &c);
discriminant = b * b - 4 * a * c;
```

- This part captures the coefficients of the quadratic equation.
- The discriminant determines the nature of the roots.

Using if-else to Find Roots

```
if (discriminant > 0) {
// Find two real roots
} else if (discriminant == 0) {
// Find one real root
} else {
// No real roots
}
```

➤ The program uses 'if-else' statements to decide how to calculate the roots based on the discriminant.

Identifying the Nature of a Triangle

Task: Identify whether a triangle is equilateral, isosceles, scalene, or not valid based on its side lengths.

```
#include <stdio.h>
int main() {
   float side1, side2, side3;
   printf("Enter the lengths of the three
       sides of the triangle: ");
   scanf("%f %f %f", &side1, &side2, &side3)
   ;
}
```

- ▶ User inputs the lengths of the three sides of the triangle.
- We will use "if-else" statements to determine the type of triangle.

Classification

```
if (side1 + side2 <= side3 || side1 + side3
   <= side2 || side2 + side3 <= side1) {
printf("Not a valid triangle.\n");
} else if (side1 == side2 && side2 == side3)
printf("Equilateral triangle.\n");
} else if (side1 == side2 || side2 == side3
   || side1 == side3) {
printf("Isosceles triangle.\n");
} else {
printf("Scalene triangle.\n");
}
return 0;
```

The program first checks if the sides form a valid triangle using the triangle inequality theorem. Then, it classifies the triangle based on the equality of its sides.

Input and Basic Check

```
float side1, side2, side3;
printf("Enter the lengths of the three sides
  of the triangle: ");
scanf("%f %f %f", &side1, &side2, &side3);
```

- This part captures the sides of the triangle.
- It lays the groundwork for identifying the type of triangle.

Using if-else to Determine Triangle Type

```
if (side1 + side2 <= side3 || side1 + side3
   <= side2 || side2 + side3 <= side1) {
// Not a valid triangle
} else if (side1 == side2 && side2 == side3)
// Equilateral triangle
} else if (side1 == side2 || side2 == side3
   || side1 == side3) {
// Isosceles triangle
} else {
// Scalene triangle
}
```

- ► The program first checks if the sides form a valid triangle.
- Then, it classifies the triangle based on the equality of its sides.

Grading System: Taking User Input

```
#include <stdio.h>
int main() {
    int marks;
    printf("Enter the total marks (out of
       100): ");
    scanf("%d", &marks);
    // The grading logic will go here
    return 0;
}
```

- The user is asked to enter their total marks, which must be an integer.
- This value will be used to determine the grade.

Grading System: Implementing the Grading Logic

```
if (marks >= 90) {
    printf("Grade: A\n");
 else if (marks >= 80) {
    printf("Grade: B\n");
} else if (marks >= 70) {
    printf("Grade: C\n");
 else if (marks >= 60) {
    printf("Grade: D\n");
 else {
    printf("Grade: F\n");
```

- Uses a series of "if-else" statements to determine the grade.
- Each condition checks for a specific range of marks, and the corresponding grade is printed.

Input and Basic Validation

```
int marks;
printf("Enter the total marks (out of 100):
    ");
scanf("%d", &marks);
```

- Asks the user to enter their total marks.
- You might add a validation check to ensure the marks are between 0 and 100.

Using if-else to Determine the Grade

```
(marks >= 90) {
// Grade A
} else if (marks >= 80) {
// Grade B
} else if (marks >= 70) {
// Grade C
} else if (marks >= 60) {
// Grade D
} else {
// Grade F
```

- ➤ The series of "if-else" statements assigns a grade based on the marks.
- This demonstrates how multiple conditions can be checked in sequence.

If-Then-Else Exercises

Problem 1: Leap Year Determination

- Write a program to determine if a given year is a leap year.
- ➤ A leap year is divisible by 4, but years divisible by 100 are not leap years, unless they are also divisible by 400.
- Prompt the user to input the year.

Problem 2: Sorting Three Numbers

- Write a program that accepts three numbers and sorts them in ascending order without using array or loop constructs.
- Consider how you would handle cases where some or all of the numbers are equal.
- Prompt the user to input the three numbers.

Questions to Ponder

- 1. How does the structure of an "if-else" statement differ from using multiple "if" statements? When would you prefer one over the other?
- 2. In a series of "if-else if" clauses, what would happen if two or more conditions are true? How does the order of conditions affect the outcome?

Thank You and Keep Coding!

"The simplicity of an 'if' belies the complexity of choices." - Anonymous

Keep practicing, stay curious, and never hesitate to ask questions!