Supporting Information

SI Simulated Examples

SI.1 Trefoil Plots

For the trefoil example, the signal Y consisted of a trefoil knot embedded in three dimensions containing 500 points. $Z+\epsilon$ was constructed by adding seven superfluous dimensions and isotropic Gaussian noise. Various degrees of noise were tested (sd=5,10,15,20,25,30). The first two plots depict Trustworthiness vs. Perplexity and the trustworthiness-maximizing embeddings for the sd=10 case. The third plot shows the trustworthiness-maximizing perplexity for the different degrees of noise.

Fig S1: Trefoil Plots

SI.2 Mammoth Plots

For the mammoth example, the signal Y consisted of 500 points in three dimensions. The data was randomly sampled from the mammoth dataset used in [18]. $Z + \epsilon$ was constructed by adding seven superfluous dimensions and isotropic Gaussian noise. Various degrees of noise were tested (sd = 0.5, 1, 1.5, 2, 2.5, 3). The first two plots depict Trustworthiness vs. Perplexity and the trustworthiness-maximizing embeddings for the sd = 1 case. The third

plot shows the trustworthiness-maximizing perplexity for the different degrees of noise.

Fig S2: Mammoth Plots

SII Practical Examples

SII.1 scRNA Dataset

This is a dataset of induced pluripotent stem cells generated from three different individuals [21]. The original data includes 864 units and 19,027 readings per unit. To process this zero-inflated count data, columns containing a large proportion of 0's (20% or more) were removed before a log transformation was applied. This reduced the dimension to 5,431. A PCA pre-processing stop further reduced the dimension to 500, which still retained 88% of the variance of the log-transformed data. The signal was first taken to be the first five principal components, then the first 10 principal components. Notice the optimal perplexity when compared against the original data differed between these two experiments, even though it should theoretically be independent of the chosen signal dimension. This is due to the inherent randomness of the t-SNE algorithm.

Fig S3: scRNA Plots (r = 5)

Fig S4: scRNA Plots (r = 10)

SII.2 Microbiome Dataset

[22] compares the faecal microbial communities from 22 subjects using complete shotgun DNA sequencing. The original data contained 280 samples and 553 genera. To deal with a large number of near-zero readings, columns containing a large proportion of values less

than 10^{-6} (60% or more) were removed. This reduced the dimension to 66. A PCA preprocessing was used to center and re-scale the data. The signal was first taken to be the first five principal components, then the first eight principal components. Notice the optimal perplexity when compared against the original data differed between these two experiments, even though it should theoretically be independent of the chosen signal dimension. This is due to the inherent randomness of the t-SNE algorithm.

Fig S5: Microbiome Plots (r = 5)

Fig S6: Microbiome Plots (r = 8)

SIII PBMC Data Set

Fig S7: Average Silhouette Width for Dendritic Cells

Fig S8: Gap Statistic for Dendritic Cells

References

- [1] Amir et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. *Nature Biotechnology 31* 545-552, 2013.
- [2] Orly Alter, Patrick O. Brown, and David Botstein. Singular value decomposition for genome-wide expression data processing and modeling. PNAS 97(18) 10101-10106, 2000.
- [3] Moon et al. Visualizing structure and transitions in high-dimensional biological data. Nat Biotechnology 37(12):1482-1492, 2019.
- [4] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. *Journal of Machine Learning Research* 9:2579 2605, 2008.
- [5] Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. arXiv preprint arXiv:1802.03426v3, 2020.
- [6] Becht et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology 37 38-44, 2019.
- [7] Dmitry Kobak and George C. Linderman. Initialization is critical for preserving global data structure in both t-SNE and UMAP. *Nature Biotechnology* 39 156-157, 2021.
- [8] Francesco Crecchi, Cyril de Bodt, Michel Verleysen, John A. Lee, and Davide Bacciu. Perplexity-free parametric t-SNE. arXiv preprint arXiv:2010.01359v1, 2020.
- [9] Haiyang Huang, Yingfan Wang, Cynthia Rudin, and Edward P. Browne. Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization. *Communications Biology*, 5:716, 2022.
- [10] Dmitry Kobak and Philipp Berens. The art of using t-SNE for single-cell transcriptomics. Nature Communications, 10:5416, 2019.
- [11] Yanshuai Cao and Luyu Wang. Automatic selection of t-SNE perplexity. arXiv preprint arXiv:1708.03229.v1, 2017.
- [12] Ronald R. Coifman and Stéphane Lagon. Diffusion maps. Applied and Computational Harmonic Analysis 21:1 5-30, 2006.
- [13] Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to Use t-SNE Effectively. Distill, 2016.
- [14] Andy Coenen and Adam Pearce for Google PAIR. Understanding UMAP. https://pair-code.github.io/understanding-umap/.
- [15] Tara Chari and Lior Pachter. The specious art of single-cell genomics. *PLoS Computational Biology* 19(8):e1011288, 2023.
- [16] Mateus Espadoto, Rafael M. Martins, Andreas Kerren, Nina S. T. Hirata, and Alexandru C. Telea. Towards a quantitative survey of dimension reduction techniques. *IEEE Transactions on Visualization and Computer Graphics* 27:3, 2021.

- [17] Jarkko Venna and Samuel Kaski. Visualizing gene interaction graphs with local multidimensional scaling. European Symposium on Artificial Neural Networks, 2006.
- [18] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding how dimension reduction tools work: An empirical approach to deciphering t-SNE, UMAP, TriMap, and PaCMAP for data visualization. *Journal of Machine Learning Research* 22, 2021.
- [19] Jesse H. Krijthe. Rtsne: T-Distributed Stochastic Neighbor Embedding using a Barnes-Hut Implementation. https://github.com/jkrijthe/Rtsne, 2015.
- [20] Dara M. Strauss-Albee, Julia Fukuyama, Emily C. Liang, Yi Yao, Justin A. Jarrell, Alison L. Drake, et al. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. *Science Translational Medicine* 7:297, 2015.
- [21] Po-Yuan Tung, John D. Blischak, Chiaowen Joyce Hsiao, David A. Knowles, Jonathan E. Burnett, Jonathan K. Pritchard, et al. Batch effects and the effective design of single-cell gene expression studies. *Scientific Reports* 7:39921, 2017.
- [22] Manimozhiyan Arumugam, Jeroen Raes, Eric Pelletier, Denis Le Paslier, Takuji Yamada, Daniel R. Mende, et al. Enterotypes of the human gut microbiome. *Nature* 473 174-180, 2011.
- [23] Horn, John L. A rationale and test for the number of factors in factor analysis. *Psychometrika* 30:2 179-185, 1965.
- [24] Martin Skrodzki, Nicolas Chaves-de-Plaza, Klaus Hildebrandt, Thomas Höllt, and Elmar Eisemann. Tuning the perplexity for and computing sampling-based t-SNE embeddings. arXiv preprint arXiv:2308.15513v1, 2023.
- [25] Cell Ranger ARC 2.0.0. Single Cell Multiome ATAC + Gene Expression Dataset. https://www.10xgenomics.com/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-3-k-1-standard-2-0-0, 2021.
- [26] Benjamin Parks. BPCells: Single Cell Counts Matrices to PCA. https://bnprks.github.io/BPCells/articles/pbmc3k.html, 2023.
- [27] Shih-Kai Chu, Shilin Zhao, Yu Shyr, and Qi liu. Comprehensive evaluation of noise reduction methods for single-cell RNA sequencing data. *Briefings in Bioinformatics* 23:2, 2022.
- [28] Ehsan Amid and Manfred K. Warmuth. TriMap: Large-scale dimensionality reduction using triplets. arXiv preprint arXiv:1910.00204v2, 2022.
- [29] John A. Lee and Michel Verleysen. Quality assessment of dimensionality reduction: Rank-based criteria. *Neurocomputing* 72:1431 1443, 2009.
- [30] Tobias Schreck, Tatiana von Landesberger, and Sebastian Bremm. Techniques for precision-based visual analysis of projected data. Sage 9:3, 2012.