Kryterium Eisensteina

Twierdzenie 0.1 (Kryterium Eisensteina) Niech $f \in \mathbb{Z}[x]$ będzie wielomianem o współczynnikach całkowitych $f(x) = \sum_{k=0}^{n} a_k x^k$ o takiej własności że istnieje liczba pierwsza $p \in \mathbb{N}$ taka że

$$\neg p|a_n \wedge p|a_{n-1} \wedge \ldots \wedge p|a_0 \wedge \neg p^2|a_0$$
,

to f nie jest rozkładalny nad \mathbb{Z} .

Dowòd. Przypuścmy że teza nie zachodzi dla pewnego $f \in \mathbb{Z}[x]$ przy prawdziwych założeniach. Niech więc $f = f_1 f_2$ dla pewnych $f_1, f_2 \in \mathbb{Z}[x]$ takich że $m := st \ f_1 < st \ f \ i \ st \ f_2 < st \ f$. Niech ponadto $f_1(x) = \sum_{k=0}^m b_k x^k$ i

 $f_2(x) = \sum_{k=0}^{n-m} c_k x^k$. To wtedy $a_0 = b_0 c_0$, niech $p|b_0$ to $\neg p|c_0$, bo w przeciwnym przypadku $p^2|a_0$ wbrew założeniu. Niech $k \in \{1, \ldots, m\}$ będzie liczbą że dla każdego i < k $p|b_i$, to wtedy mamy że $k \le m = st$ $f_1 < st$ f = n a stąd $p|a_k$ oraz:

$$a_k = \sum_{i=0}^k b_i c_{k-i} = \sum_{i=0}^{k-1} b_i c_{k-i} + b_k c_0,$$

stąd $p|b_kc_0$ (bo $p|b_i$ dla i < k) a stąd $p|b_k$, więc dla każdego $i \in \{0, ..., m\}$ $p|b_i$. Z drugiej strony mamy z założenia $\neg p|a_n$ oraz:

$$a_n = \sum_{k=0}^{n} b_k c_{n-k} = \sum_{k=0}^{m} b_k c_{n-k}$$

a stąd wynikałoby że $p|a_n$, sprzeczność z założeniem.

Jako zastostosowanie kryterium Eisensteina, mamy następujące twierdzenie:

Twierdzenie 0.2 Niech $p \in \mathbb{N}$ będzie liczbą pierwszą, to wielomian $f(x) = \sum_{k=0}^{p-1} x^k \in \mathbb{Z}[x]$ jest nierozkładalny nad \mathbb{Z} .

Dowòd. Oczywiście nie możemy zastosować wprost wspomnianego wyżej kryterium, więc zastosujmy podstawienie x = y + 1, to wtedy:

$$f(x) = \sum_{k=0}^{p-1} x^k = \frac{x^p - 1}{x - 1} = \frac{(y+1)^p - 1}{y} = \frac{1}{y} \left(\sum_{k=0}^p \binom{p}{k} y^k - 1 \right) =$$
$$= \frac{1}{y} \left(1 + \sum_{k=1}^p -1 \binom{p}{k} y^k \right) = \sum_{k=1}^p \binom{p}{k} y^{k-1} = \sum_{k=0}^{p-1} \binom{p}{k+1} y^k.$$

Zauważmy, że dla $k \in \{0, \ldots, p-1\}$ mamy $a_k = \binom{p}{k+1}$, co daje fakt że dla k < p-1 współczynnik $a_k = \frac{p!}{(k+1)!(p-(k+1))!}$ jest liczbą całkowitą podzielną przez liczbę pierwszą p, natomiast dla k = p-1 $a_k = \binom{p}{p} = 1$. Mamy ponadto, że $a_0 = \binom{p}{1} = p$, tak więc liczba pierwsza p dzieli a_0 ale p^2 nie dzieli a_0 . Więc założenia kryterium Eisensteina są spełnione dla wielomianu h(y) = f(y+1). Kryterium te daje nierozkładalność wielomianu h nad $\mathbb Z$ a więc w resultacie sam wielomian f jest nierozkładalny nad pierścieniem $\mathbb Z$.

Robert Rałowski