VARIABLE ALÉATOIRE - LOI DE PROBABILITÉ

I - RAPPELS DE PROBABILITÉS

DÉFINITIONS

Une expérience aléatoire est une expérience dont le résultat dépend du hasard.

Chacun des résultats possibles s'appelle une **éventualité** (ou une **issue** ou un **évènement élémentaire**)

L'ensemble de tous les résultats possibles d'une expérience aléatoire s'appelle l'**univers** de l'expérience.

EXEMPLE

Par exemple, le lancer d'un dé à six faces est une expérience aléatoire. *"Obtenir un 6 avec le dé"* est une éventualité. L'univers possède 6 éventualités; on peut le représenter par l'ensemble :

 $\Omega = \{1; 2; 3; 4; 5; 6\}$

DÉFINITION

Soit une expérience aléatoire ayant comme univers :

$$\Omega = \{x_1; x_2; ...; x_n\}$$

On définit une **probabilité** sur Ω en associant, à chaque éventualité x_i , un réel p_i compris entre 0 et 1 tel que la somme de tous les p_i soit égale à 1.

REMARQUES

- En pratique, pour définir les probabilités p_i on peut effectuer un très grand nombre de fois l'expérience aléatoire. La fréquence des résultats obtenus permet d'obtenir une estimation de la loi de probabilité. Par exemple, si en lançant 1 000 000 de fois un dé, on obtient 166 724 fois la face "6" on considérera que la probabilité d'obtenir un "6" est d'environ $\frac{166\,724}{1\,000\,000} \approx \frac{1}{6}$
- A condition de faire certaines hypothèses (par exemple : "le dé n'est pas truqué") les théorèmes qui suivent permettent de calculer les lois de probabilité de certaines expériences sans avoir recours aux statistiques. Les statistiques peuvent alors servir à valider les hypothèses que l'on a faites au départ.

DÉFINITION ET PROPRIÉTÉ

On dit que l'on est en situation d'**équiprobabilité** si toutes les éventualités on la même probabilité.

Cette probabilité est alors $p = \frac{1}{n}$ où n est le nombre total d'éventualités.

REMARQUE

Dans les exercices, on considérera qu'il y a équiprobabilité si l'énoncé indique que l'on jette une pièce "équilibrée", qu'on lance un dé "non truqué", qu'on tire une carte "au hasard", etc.

EXEMPLES

- Si l'on jette une pièce non truquée, la probabilité d'obtenir *pile* est $p = \frac{1}{2}$
- Pour un dé à six faces non truqué, la probabilité d'obtenir une face donnée est $p = \frac{1}{6}$

II - VARIABLES ALÉATOIRES

DÉFINITION

On définit une **variable aléatoire** en associant un nombre réel à chaque éventualité d'une expérience aléatoire.

EXEMPLES

- On mise 1€ sur le numéro 1 à la roulette. On gagne 35€ (36€ la mise) si le numéro sort. On perd sa mise (soit 1€) dans les autres cas. On peut définir une variable aléatoire représentant le gain algébrique du joueur. Cette variable aléatoire peut prendre la valeur 35 (en cas de gain) ou -1 (en cas de perte).
- On lance 4 fois une pièce de monnaie. On peut définir une variable aléatoire égale au nombre de "faces" obtenues.

Les valeurs possibles pour cette variable sont : 0; 1; 2; 3 ou 4.

NOTATIONS

- On note généralement une variable aléatoire à l'aide d'une lettre majuscule (le plus souvent X)
- Si la variable aléatoire X peut prendre les valeurs $a_1, a_2, ... a_n$, on note $(X = a_i)$ l'évènement : "X prend la valeur a_i "

DÉFINITION

La loi de probabilité d'une variable aléatoire X associe à chaque valeur a_i prise par X la probabilité de l'événement ($X = a_i$).

On la représente généralement sous forme de tableau.

EXEMPLES

• Si l'on reprend l'exemple de la roulette (ci-dessus) et si on suppose que la probabilité de sortie de chacun des 37 numéros (0 à 36) est égale, la probabilité de gain est de $\frac{1}{37}$ et la probabilité de perte $\frac{36}{37}$.

La loi de probabilité est donnée par le tableau suivant :

a_i	-1	
$p\left(X=a_i\right)$	36 37	

• Si on lance 4 fois une pièce de monnaie équilibrée, on montre à l'aide d'un arbre que la variable aléatoire *X* donnant le nombre de "*faces*" obtenues suit la loi de probabilité donnée par le tableau ci-dessous :

a_i	0	1	2	3	4
$p(X = a_i)$	$\frac{1}{10}$	$\frac{1}{\cdot}$	3 -	$\frac{1}{\cdot}$	$\frac{1}{10}$
r ()	16	4	8	4	16

DÉFINITION (ESPÉRANCE MATHÉMATIQUE)

Soit X une variable aléatoire qui prend les valeurs x_i avec les probabilités $p_i = p(X = x_i)$.

On appelle **espérance mathématique** de X le nombre :

$$E(X) = x_1 \times p_1 + x_2 \times p_2 + ... + x_n \times p_n = \sum_{i=1}^{n} p_i x_i$$

REMARQUE

Ce nombre peut s'interpréter comme une valeur moyenne de X si l'on répète un grand nombre de fois l'expérience.

EXEMPLE

Pour l'exemple de la roulette on a :

$$E(X) = -1 \times \frac{36}{37} + 35 \times \frac{1}{37} = -\frac{1}{37}$$

L'espérance est négative, ce qui signifie qu'en moyenne, le jeu n'est pas favorable au joueur.

DÉFINITION (VARIANCE - ECART-TYPE)

Soit *X* une variable aléatoire d'espérance mathématique \overline{X} .

La **variance** de la variable aléatoire *X* est le nombre réel positif :

$$V(X) = E\left(\left(X - \overline{X}\right)^2\right)$$

L'écart-type est égal à la racine carrée de la variance :

$$\sigma\left(X\right) = \sqrt{V\left(X\right)}$$

REMARQUE

D'après la définition de la variance, si X les valeurs x_i avec les probabilités p_i :

$$V(X) = \sum_{i=1}^{n} p_i \left(x_i - \overline{X} \right)^2$$

En développant les carrés, on montre que la variance peut également s'écrire :

$$V(X) = E(X^2) - \overline{X}^2 = \left(\sum_{i=1}^n p_i x_i^2\right) - \overline{X}^2$$

PROPRIÉTÉS

Soit X une variable aléatoire qui prend les valeurs x_i avec les probabilités p_i . On note aX + b la variable aléatoire qui prend les valeurs $ax_i + b$ avec les mêmes probabilités p_i .

On a alors:

- E(aX + b) = aE(X) + b
- $V(aX + b) = a^2 \times V(X)$
- $\sigma(aX + b) = |a| \times \sigma(X)$

EXEMPLE

Soit X un variable aléatoire qui représente le gain algébrique en euro à un jeu d'argent.

- Si on augmente les gains de 1 euro, l'espérance mathématique augmentera de 1, la variance et l'écart-type ne seront pas modifiés (a = 1; b = 1).
- Si on double les gains, l'espérance mathématique et l'écart-type seront doublés, la variance sera quadruplée (a = 2; b = 0).