

Roteamento

Temas

Qual é a função de um roteador?

2

Como um roteador envia e recebe informações?

Tipos de roteamento

11 Qual é a função de um roteador?

Qual é a função de um roteador?

O roteador executa as seguintes ações:

Busca qual é o endereço de destino.

Prossegue com o envio da encomenda ao seu destino pela melhor rota possível.

1 3 4

Recebe o pacote de dados.

Verifica a tabela de roteamento que você configurou.

21 Como um roteador envia e recebe informações?

Um roteador, para receber ou enviar informações, usa **tabelas de roteamento**, que são um **conjunto de regras** usadas para determinar qual caminho os pacotes de dados devem seguir.

As **tabelas de roteamento** contém todas as informações necessárias para fazer um ou mais pacotes de dados **viajarem pela rede usando o melhor caminho**.

Como um roteador envia e recebe informações? Componentes de uma tabela de roteamento

Alguns componentes importantes de uma tabela de roteamento:

- Rede de destino: Corresponde à rede de destino para onde o pacote de dados deve ir.
- Próximo salto: É o endereço IP da interface de rede através da qual o pacote de dados viajará para continuar em seu caminho até o fim.
- Interface de saída: É a interface de rede pela qual os pacotes devem sair para posteriormente chegar ao seu destino.

Qual caminho seguem os pacotes de dados?

Como os pacotes de dados são transmitidos?

Roteamento estático

As tabelas são criadas manualmente. O administrador da rede configura-as com informações sobre como acessar as diferentes redes remotas.

Este é o responsável por fazer com que as redes sejam acessíveis e livres de bugs e inconsistências.

- Consome menos largura de banda.
- Consome menos memória.
- É usado para pequenas redes.
- Não é escalável.

Vantagens e Desvantagens do roteamento estático

Vantagens: Embora a manutenção seja complicada, nenhuma largura de banda da rede é consumida para enviar mensagens entre roteadores.

Desvantagens: Quaisquer alterações na rede exigem que o administrador adicione ou remova as rotas afetadas por essas alterações.

Roteamento dinâmico

As informações necessárias para criar e manter as tabelas atualizadas são obtidas nos outros roteadores da rede. Eles usam protocolos de roteamento para trocar informações com seus roteadores vizinhos.

- Alto consumo de largura de banda.
- Alto consumo de memória.
- É usado para grandes redes.
- É automático.

Vantagens e Desvantagens do roteamento dinâmico

Vantagens: O administrador apenas inicia o roteamento dinâmico, então as tabelas de roteamento se ajustam automaticamente às mudanças na rede.

Desvantagens: Consome muita largura de banda, devido às mensagens que os roteadores trocam para se configurarem automaticamente.

DigitalHouse>