Modèle relationnel et algèbre relationnelle

Exemple de BD

Élève(num, nom, adresse, age) UV(code, nbh, coord) Inscrit(numElève, codeUV, note) Livre(côte, titre, num Elève, date Prêt) Chambre(no, prix, numElève)

Modèle relationnel

Exemple de relations

Elève	Num	Nom	Adresse	Age
	1	Bélaïd	Maisel	20
	2	Millot	CROUS	20
	3	Meunier	Maisel	21

Inscrit	NumElève	CodeUV	Note
	2	BD	10
	1	BD	20
	2	Ю	17
	3	Ю	18

- Définition : ensemble d'opérateurs qui à partir d'une ou deux relations produisent une nouvelle table temporaire.
- La combinaison de ces opérateurs permet de formuler des requêtes de consultation (interrogation) de la base de données.
- Tout résultat d'une opération est une relation; peut donc être réutilisée en entrée d'un nouvel opérateur.
- Les opérateurs peuvent être classifiés en :
 - Unaires : sélection (restriction), projection
 - Binaires : union, intersection, différence, produit cartésien, jointure, division

Sélection/Restriction

But

- Permet de "sélectionner" des tuples
- La restriction réduit la taille de la relation horizontalement
- Contraintes d'utilisation
 - Unaire (donc une seule table)
 - Spécifier une condition de sélection
- Notation
 - Notation textuelle:

T= selection(R, condition)

Condition: (Cond_simple) et|ou (Cond_simple) et|ou (Cond_simple)

Cond_simple: Ai operateur_comparaison Bi

Ai est un attribut de lal table

Bi est un attribut de la table ou une valeur

Operateur_comparaison : > < = != >= <=

Inscrits en BD :

T = selection (Inscrit, codeUV='BD')

Т	NumElève	CodeUV	Note
	2	BD	10
	1	BD	20

T est une table temporaire

 Majors (note > 15) de BD : T1=selection (Inscrit, coudeUV='BD' et note>15)

T1	NumElève	CodeUV	Note
	1	BD	20

Projection

- But
 - Permet de "sélectionner" des attributs (colonnes)
 - La projection réduit la taille de la relation verticalement
- Contraintes
 - Unaire
 - Spécifier une liste d'attributs
- Notation
 - Notation textuelle

T = Projection (R, A1, A2, ...)

T est une table temporaire contenant les attributs A1, A2, ...

Adresses des élèves :

T = Projection(Elève, Adresse)

Code et nb heures des UV :

V = Projection(UV, Code, nbh)

V	Code	nbh
	Ю	45
	BD	15

Projection

- Il est possible de combiner plusieurs opérateurs les uns à la suite des autres
- Exemple
 - Code des UV dont le nombre d'heures est > 20

T1 = Selection(UV, nbh>20)

T2 = Projection(T1, Code, nbh)

T2	Code	nbh
	О	45

Union

- But
 - Permet de fusionner 2 relations
- Contraintes
 - Binaire
 - Même schéma
- Notation
 - Notation textuelle:

T = Union (R,S)

T est une table de même schéma que R et S.

T contient toutes les lignes de R et celles de S sans redondances

 Soit Nom des profs, des élèves

Prof	Nom	Elève2	Nom
	Lalevée		Belaid
	Carpentier		Millot
	Millot		Meunier

Nom des personnes :

S = Union (Prof, Eleve2)

Intersection

- But
 - Permet d'obtenir l'ensemble des tuples appartenant à deux relations
- Contraintes
 - Binaire
 - Même schéma
- Notation
 - Notation textuelle:

T = Intersection(R,S)

T est une table de même schéma que R et S

T a pour contenu les tuples commun à R et S

Nom des profs, des élèves

Prof	Nom	Elève2	Nom
	Lalevée		Belaid
	Carpentier		Millot
	Millot		Meunier

Noms communs élèves-profs
 V = Intersection(Prof, Eleve2)

V	Nom
	Millot

Différence

- But
 - Obtenir l'ensemble des tuples d'une relation qui ne figurent pas dans une autre
- Contraintes
 - Binaire
 - Même schéma
 - Non commutatif
- Notation
 - Notation textuelle:

T = Difference (R, S)

T est une table de même schéma que R et S

T contient les tuples de R qui n'apparaissent pas dans la table S.

Nom des profs et des élèves

Prof	Nom	Elève2	Nom
	Lalevée		Belaid
	Carpentier		Millot
	Millot		Meunier

Noms des élèves qui ne portent pas le nom d'un prof :

V = Difference (Eleve2, Prof)

V	Nom
	Bélaïd
	Meunier

Produit cartésien

- But
 - Ensemble de tous les tuples obtenus par concaténation de chaque tuple de R avec chaque tuple de S
- Contraintes
 - □ Binaire: R(a1, a2,, an), S(b1, b2, ..., bp)
- Notation
 - \Box T = Produit(R, S)
 - Schéma du résultat:
 - T(a1, a2,, an, b1, b2, ..., bp)
 - Card (T) = Card (R) * Card (S)

Produit cartésien (2)

Elève	Num	Nom	Adresse	Age
	1	Belaid	Maisel	20
	2	Millot	CROUS	20
	3	Meunier	Maisel	21

UV		Code	Nbh	Coord
_		Ю	45	Lalevée
		BD	15	Carpentier

EleveUV = Produit (Eleve, UV)

EleveUV	Num	Nom	Adresse	Age	Code	Nbh	Coord
	1	Belaid	Maisel	20	Ю	45	Lalevée
	2	Millot	CROUS	20	Ю	45	Lalevée
	3	Meunier	Maisel	21	Ю	45	Lalevée
	1	Belaid	Maisel	20	BD	15	Carpentier
2		Millot	CROUS	20	BD	15	Carpentier
	3	Meunier	Maisel	21	BD	15	Carpentier

Jointure

- But
 - Permet d'établir le lien sémantique entre les relations lors d'un produit cartésien
- Contraintes
 - Binaire
 - R(a1, a2,, an), S(b1, b2, ..., bp)
- Notation
 - □ T = Jointure (R, S, condition)
 - T a pour schéma le schéma du produit cartésien de R et S
 - T contient les tuples du produit cartésien qui vérifient la condition de jointure

1er exemple de jointure

Elève	<u>Num</u>	Nom	Adresse	Age
	1	Belaid	Maisel	20
	2	Millot	CROUS	20
	3	Meunier	Maisel	21

Elève.Num=Chambre.numElève

Chambre	<u>No</u>	Prix	numElève
	10	200	3
	21	150	2

T1 = Jointure (Elève, Chambre, Elève.Num=Chambre.NumElève)

T1	Num	Nom	Adresse	Age	No	Prix	numElève
	2	Millot	CROUS	20	21	150	2
	3	Meunier	Maisel	21	10	200	3

- 1 tuple de Chambre → 1 tuple de résultat
- 1 tuple de Elève → 0 ou 1 tuple de résultat
 - On a perdu Belaid!

1er exemple de jointure

Si on voulait récupérer les num des élèves qui ont une chambre

T1 = Jointure (Elève, Chambre, Elève.Num=Chambre.NumElève)

T2 = Projection (T1, Num)

T1	Num	Nom	Adresse	Age	No	Prix	numElève
	2	Millot	CROUS	20	21	150	2
	3	Meunier	Maisel	21	10	200	3

T2	Num
	2
	3

2ème exemple de jointure

	<u>c ac</u>	OIII
<u>NumElève</u>	<u>CodeUV</u>	Note
2	BD	10
1	BD	20
2	Ю	17
3	Ю	18
	NumElève 2 1 2	NumElèveCodeUV2BD1BD2IO

Inscrit.NumElève=Elève.Num

Elève <u>Num</u>		Nom	Adresse	Age	
•		1	Belaid	Maisel	20
		2	Millot	CROUS	20
		3	Meunier	Maisel	21

S = Jointure (Eleve, Inscrit, Eleve.Num = Inscrit.NumEleve)

S	Num	Nom	Adresse	Age	NumElève	CodeUV	Note
	1	Belaid	Maisel	20	1	BD	20
	2	Millot	CROUS	20	2	0	17
	2	Millot	CROUS	20	2	BD	10
3		Meunier	Maisel	21	3	Ю	18

On a dupliqué Millot!

2ème exemple de jointure

10 0110111			<u> </u>	OIII
	Inscrit Num		CodeUV	Note
		2	BD	10
		1	BD	20
		2	Ю	17
		3	Ю	18
				I .

Inscrit.NumElève=Elève.Num

Elève <u>Num</u>		Nom	Adresse	Age	
•		1	Belaid	Maisel	20
		2	Millot	CROUS	20
		3	Meunier	Maisel	21

S = Jointure (Eleve, Inscrit, CodeUV='BD' et Eleve.Num=Inscrit.Num)

S	Num	Nom	Adresse	Age	CodeUV	Note
	1	Belaid	Maisel	20	BD	20
	2	Millot	CROUS	20	BD	10

Division

- But
 - Répondre aux requêtes de type « tous les »
 - Exemple : les élèves inscrits à toutes les UV

Contraintes

- Binaire
 - R(a1, a2,, an, b1, b2, ..., bp), S(b1, b2, ..., bp)
 - Le schéma de S est inclus dans le schéma de R

Notation

- \Box T = DIVISION (R, S)
- T a pour schéma les attributs (a1, a2, ..., an) donc les attributs de R qui ne sont pas dans S
- Les lignes de T sont des lignes qui combinées à n'importe quelle ligne de S produira toujours une ligne dans R

Division (2)

- Exemple
 - Quels sont les élèves inscrits à toutes les UVs ?

Inscrit	NumElève	CodeUV	Note
	2	BD	10
	1	BD	20
	2	Ю	17
	3	Ю	18

Division (3)

Exemple

- Construire R : ensemble de toutes les informations dont on a besoin = attributs NumElève et CodeUV de Inscrit
- Construire S : ensemble correspondant à "tous les" (UV)
- On applique la division

R=Projection(Inscrit, NumEleve, CodeUV)

R	NumElève	CodeUV		
	2	BD		
	1	BD		
	2	Ю		
	3	Ю		

S = Projection(UV, CodeUV)

S	CodeUV
	BD
	Ю

Arr Res = Division(R, S)

1	, , ,		-
	Res	NumElève	
,		2	

Renommage

- But
 - Rnommer des noms d'attributs pour les besoins de certaines requêtes

Contraintes

- Unaire
 - S(b1, b2, ..., bn)

Notation

- T = RENOMMER(S, b1, a1, b5, a2)
- Les attributs b1 et b5 sont renommés en a1 et a2 respectivement dans la nouvelle table temporaire T

Exempel

- S (Num, Nom, prenom, courriel)
- T1 = Renommer (S, Num, Numéro, courriel, email)
- La table T1(Numéro, Nom, prenom, email)
- Le contenu de T1 est le même que celui de S

Bilan : sémantique et notations de de de de la compete de

Opérateur	Sémantique	Notation textuelle
Selection/ Restriction	« Sélectionner » des tuples	T=Selection(R, conditions)
Projection	« Sélectionner » des attributs	T=Projection(R, A1;)
Union	Fusionner les extensions de 2 relations	T = Union(R, S)
Intersection	Obtenir l'ensemble des tuples communs à deux relations	T = Intersection (R, S)
Différence	Tuples d'une relation qui ne figurent pas dans une autre	T = Difference (R, S)
Produit cartésien	Concaténer chaque tuple de R avec chaque tuple de S	T = Produit(R, S)
Jointure	Etablir le lien sémantique entre les relations	T = Jointure (R, S)
Division	Répondre aux requêtes de type « tous les »	T = Division(R, S)