Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, <u>Adam Foster</u>, Emile Mathieu, Yee Whye Teh Department of Statistics, University of Oxford

Random graphs

- \blacktriangleright Ends of edges $\mathbf{Z}_n = Z_1, ..., Z_n$
- ightharpoonup Number of vertices K_n
- ▶ Arrival time of *j*th vertex $T_i := \inf\{n : Z_n = j\}$
- ▶ Degree of jth vertex $d_{i,n}$
- ▶ Degree counts $m_n(d) := |\{j : d_{j,n} = d\}|$

Sparsity means $K_n = O(n^{1/(1+\sigma)})$ for $0 \le \sigma < 1$.

The asymptotic degree distribution has power law tail with exponent $\eta>1$ if

$$\frac{m_n(d)}{K_n} \xrightarrow[n \to \infty]{p} L(d)d^{-\eta} , \qquad (1)$$

for slowly varying function L(d).

For sparse graphs, $\sigma=0 \leftrightarrow \eta>2$ and $\sigma>0 \leftrightarrow \eta\in(1,2)$.

Empirical properties of temporal networks

SNAP [1] includes real-world temporal networks. Ask Ubuntu dataset has 159,316 and 964,437 edges. Empirically $K_n = O(n)$ and $\hat{\eta} \approx 2.14$ (estimated using [2]).

Figure 1: Ask Ubuntu arrival process (left) and node degree distribution (right)

Models

Edge exchangeable models [3] [4] include Exchangeable Gibbs partitions and Pitman-Yor process (PYP).

Preferential attachment (PA) models include Yule-Simon (YS) model.

A Beta Neutral-to-the-left model (BNTL) [5] is parameterized by $\alpha \in (-\infty, 1)$ and arrival distribution Λ_{ϕ} on \mathbb{N}^{∞} . Distribution on \mathbb{Z} is

$$(T_{1}, T_{2}, ...) \sim \Lambda_{\phi}$$

$$Z_{n+1} | \mathbf{Z}_{n}, \mathbf{T} = \begin{cases} K_{n+1} \text{ w.p. } 1 & \text{if } n+1 = T_{K_{n+1}} \\ j \text{ w.p. } \propto (d_{j,n} - \alpha) \text{ otherwise} \end{cases}$$
(2)

Network properties

	Growth rate	Degree exponent, η
Ask Ubuntu	Linear.	$\hat{\eta} = 2.14$
All SNAP datasets	Linear and sublinear.	$\hat{\eta} \in (1.5, 3)$
Edge exchangeable models	Sublinear. $K_n = o(n)$	$\eta \in (1,2)$
Yule-Simon model	Linear. $\Delta_j \stackrel{\text{i.i.d.}}{\sim} \text{Geom}(\beta)$	$\eta \in (2, \infty)$
BNTL models	$f T$ has law Λ_ϕ	$\eta \in (1, \infty)$

Inference [6]

BNTL models have tractable inference due to the factorisations

$$\mathbb{P}_{\alpha,\phi}(\mathbf{Z}_n) = \mathbb{P}_{\alpha}(\mathbf{Z}_n|\mathbf{T}_{K_n})\Lambda_{\phi}(\mathbf{T}_{K_n}), \qquad (4)$$

$$\mathbb{P}_{\alpha}[G(\mathbf{Z}_n)|\mathbf{T}_{K_n}] = \frac{\Gamma(d_{1,n} - \alpha)}{\Gamma(n - K_n \alpha)} \prod_{j=2}^{K_n} \frac{\Gamma(T_j - j\alpha)\Gamma(d_{j,n} - \alpha)}{\Gamma(T_j - 1 - (j-1)\alpha)\Gamma(1 - \alpha)}, \quad (5)$$

in particular the degree sequence $\mathbf{n}_n:=(d_{1,n},\ldots,d_{K_n})$ is a sufficient statistic for α conditional on \mathbf{T}_{K_n} .

Unobserved variables
α, ϕ, Ψ_{K_n}
$lpha,\phi,\mathbf{\Psi}_{K_n},\mathbf{T}_{K_n}$
$lpha,\phi,\mathbf{\Psi}_{K_n},\mathbf{T}_{K_n}$, $\sigma[K_n]$

Variable Gibbs sampling scheme

α	Slice sampling
ϕ	Depends on family Λ_ϕ
	Conjugate updates possible e.g. $\Delta_j \sim Geom(\beta)$
$oldsymbol{\Psi}_{K_n}$	$\Psi_j \mathbf{Z}_n, \mathbf{\Psi}_{\setminus j} \sim Beta(d_{n,j} - \alpha, \bar{d}_{n,j-1} - (j-1)\alpha)$
	where $ar{d}_{n,j} = \sum_{i=1}^j d_{j,n}$, marginalise if \mathbf{Z}_n not observed
\mathbf{T}_{K_n}	Assume Markov structure
	Simple update for T_j – can't move past neighbours
$\sigma[K_n]$	Swap proposal probability is cheap

For massive graphs with \mathbb{Z}_n observed, maximum a posterior (or maximum likelihood) estimates for α, ϕ computable from (4).

Experiments

Gibbs sampler accuracy on synthetic data (500 edges)

Gen. arrival distn. Inference model $|\hat{\alpha} - \alpha^*|$ $|\hat{\mathbf{S}} - \mathbf{S}^*|$ Pred. log-lik. $\mathcal{PYP}(1.0, 0.75)$ $(\tau, \mathcal{PYP}(\theta, \tau))$ **0.046** \pm **0.002 28.5** \pm **0.7 -2637.0** \pm **0.1** $\mathcal{PYP}(1.0, 0.75)$ $(\alpha, \mathsf{Geom}(\beta))$ **0.049** \pm **0.004 66.8** \pm **1.2 -2660.5** \pm **0.7** Geom(0.25) $(\tau, \mathcal{PYP}(\theta, \tau))$ **0.086** \pm **0.002 56.6** \pm **1.3 -2386.8** \pm **0.1** Geom(0.25) $(\alpha, \mathsf{Geom}(\beta))$ **0.043** \pm **0.003 24.8** \pm **0.8 -2382.6** \pm **0.2**

where $\mathbf{S} := \frac{1}{K_n - 1} \sum_{j > 1} (\bar{d}_{j-1} - T_j)$

Scalability of Gibbs sampler (Geom(0.25) arrivals)

	n = 200	n = 20000
$ \hat{\alpha} - \alpha^* $	0.12 ± 0.01	0.01 ± 0.00
$ \hat{\beta} - \beta^* $	0.02 ± 0.00	0.00 ± 0.00
ESS	0.90 ± 0.04	0.75 ± 0.08
Runtime (s)	21 ± 0	2267 ± 2

Maximum likelihood parameter estimation for Ask Ubuntu

Coupled $\mathcal{PYP}(\theta, \alpha)$		Uncoupled $\mathcal{PYP}(\theta, \tau)$		Geom(eta)				
$(\hat{ heta},\hat{lpha})$	$\hat{\eta}$	Pred. I-I.	\hat{lpha}	$\hat{(heta,\hat{ au})}$	Pred. I-I.	\hat{eta}	$\hat{\eta}$	Pred. I-I.
$(18080 \ 0)$	25) 1 25	5 -3 707e6	-2 54	(-0.99)	0 99) -3 678e6	30.0	33 2 32	-3.678e6

Future work

- ► Scale MCMC inference to larger networks
- Variational inference

Acknowledgements

YWT, BBR, EM's research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 617071. EM and YWT gratefully acknowledge Microsoft Research and EPSRC for partially funding EM's studentship. AF gratefully acknowledges funding from EPSRC grant no. EP/N509711/1.

References

- [1] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [2] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. *SIAM Review*, 51(4):661–703, 2009.
- [3] Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. *Journal of the American Statistical Association*, (just-accepted), 2017.
- [4] Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In *Advances in Neural Information Processing Systems*, pages 4249–4257, 2016.
- [5] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.
- [6] Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, and Yee Whye Teh. Sampling and inference for beta neutral-to-the-left models of sparse networks. In *UAI* (to appear), 2018.