House Price Analysis and Prediction

Table of Contents

- 1. Introduction
- 2. Dataset Description
- 3. Data Cleaning and Exploration
- 4. Feature Engineering
- 5. Outliers Analysis
- 6. Predictive Modeling
- 7. Future price Prediction
- 8. Conclusion

1. Introduction

Objectives

- Analyze housing market data to identify key factors influencing house prices.
- Manage data inconsistencies and outliers to ensure data reliability.
- Build a predictive model to accurately forecast house prices.
- Provide insights to help stakeholders make informed decisions about market trends and property valuations.

2. Dataset Description

This dataset contains information about properties, including their attributes and location details.

Dataset Attributes

- property_id: Unique identifier for each property.
- **location_id:** Identifier for property location.
- page_url: URL link to property details.
- **property_type**: Type of property (e.g., house, apartment).
- **price**: Price of the property.
- **location**: Specific location of the property.
- city: City where the property is located.
- **province_name**: Name of the province where the property is located.
- latitude: Geographic latitude coordinate of the property.
- **longitude**: Geographic longitude coordinate of the property.
- baths: Number of bathrooms in the property.
- area: Total area size of the property.
- **purpose**: Purpose of the property (e.g., sale, rent).
- **bedrooms**: Number of bedrooms in the property.
- date added: Date when the property listing was added.
- agency: Agency handling the property.
- agent: Agent responsible for the property.
- **Area Type:** Type of area where the property is located.
- **Area Size:** Size of the area where the property is located.
- **Area Category:** Category of the area where the property is located.

3. Data Cleaning and Exploration

```
import matplotlib as plt
import seaborn as sns
import matplotlib.pyplot as plt
```

Basic Info about Dataset

```
In [ ]: # Set the display option
         pd.options.display.max_columns = None
         # check the 5 rows of dataset
         df = pd.read_csv('zameen-updated.csv')
         df.head()
Out[]:
            property_id location_id
                                                                           page_url property_type
         0
                 237062
                               3325
                                     https://www.zameen.com/Property/g_10_g_10_2_gr...
                                                                                               Flat
         1
                 346905
                               3236
                                      https://www.zameen.com/Property/e_11_2_service...
                                                                                               Flat
         2
                 386513
                                764 https://www.zameen.com/Property/islamabad_g_15...
                                                                                            House
         3
                                340
                 656161
                                    https://www.zameen.com/Property/islamabad_bani...
                                                                                            House
         4
                841645
                               3226 https://www.zameen.com/Property/dha_valley_dha...
                                                                                            House
In [ ]: # Check no of columns and rows
         df.shape
Out[]: (168446, 20)
In [ ]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 168446 entries, 0 to 168445
Data columns (total 20 columns):
```

Data	COTUMNIS (COCAT	Ze Columns).			
#	Column	Non-Null Count	Dtype		
0	property_id	168446 non-null	int64		
1	location_id	168446 non-null	int64		
2	page_url	168446 non-null	object		
3	property_type	168446 non-null	object		
4	price	168446 non-null	int64		
5	location	168446 non-null	object		
6	city	168446 non-null	object		
7	province_name	168446 non-null	object		
8	latitude	168446 non-null	float64		
9	longitude	168446 non-null	float64		
10	baths	168446 non-null	int64		
11	area	168446 non-null	object		
12	purpose	168446 non-null	object		
13	bedrooms	168446 non-null	int64		
14	date_added	168446 non-null	object		
15	agency	124375 non-null	object		
16	agent	124374 non-null	object		
17	Area Type	168446 non-null	object		
18	Area Size	168446 non-null	float64		
19	Area Category	168446 non-null	object		
<pre>dtypes: float64(3),</pre>		int64(5), object(12)			

dtypes: float64(3), int memory usage: 25.7+ MB

```
In [ ]: df.describe()
```

Out[]:

	property_id	location_id	price	latitude	longitude	
count	1.684460e+05	168446.000000	1.684460e+05	168446.000000	168446.000000	168446.00
mean	1.559626e+07	4375.936395	1.776576e+07	29.859519	71.239804	2.87
std	2.251207e+06	3776.561581	3.531003e+07	3.807870	3.133042	2.46
min	8.657500e+04	1.000000	0.000000e+00	11.052446	25.906027	0.00
25%	1.488320e+07	1058.000000	1.750000e+05	24.948536	67.130363	0.00
50%	1.665851e+07	3286.000000	8.500000e+06	31.459784	73.056182	3.00
75%	1.708662e+07	7220.000000	1.950000e+07	33.560887	73.259870	4.00
max	1.735772e+07	14220.000000	2.000000e+09	73.184088	80.161430	403.00
4						•

Identify Missing values

```
In [ ]: # Check for missing values
missing_values = df.isnull().sum()
print(missing_values)
```

```
location_id
      page_url
      property_type
      price
      location
                       0
      city
      province_name
      latitude
                      0
      longitude
      baths
                       0
      area
      purpose
      bedrooms
      date_added
                   44071
      agency
                   44072
      agent
      Area Type
      Area Size
      Area Category
      dtype: int64
In [ ]: # Check percentage of missing values
       missing_values = df.isnull().sum()/ len(df) *100
       print(missing_values)
      property_id 0.000000
     date_added
                   0.000000
                  26.163281
      agency
      agent
                  26.163874
                  0.000000
      Area Type
Area Size
                   0.000000
      Area Category
                     0.000000
      dtype: float64
```

Handle the missing values

```
In [ ]: # Fill missing values in 'agent' and 'agency' columns with 'Unknown'
df['agent'].fillna('Unknown', inplace=True)
df['agency'].fillna('Unknown', inplace=True)
```

Checking Duplicates

property_id

```
In [ ]: # Checking for duplicate values
       duplicates = df.duplicated().sum()
       print("Number of Duplicates:" , duplicates)
      Number of Duplicates: 0
In [ ]: # Check data types
       print(df.dtypes)
      property_id
                     int64
      location id
                      int64
                  object
      page_url
      property_type object
                     int64
      price
                   object
      location
                    object
      city
      province_name object
                   float64
      latitude
                   float64
      longitude
      baths
                     int64
      area
                    object
                   object
      purpose
      bedrooms
                     int64
                   object
      date_added
      agency
                    object
                    object
      agent
      Area Type
                    object
      Area Size
                   float64
      Area Category
                    object
      dtype: object
```

Handling Inconsistencies

```
In []: # Strip leading/trailing spaces and convert to lowercase for consistency
    categorical_columns = ['page_url', 'property_type', 'location', 'city', 'province_n
    for col in categorical_columns:
        df[col] = df[col].str.strip().str.lower()

In []: # Validate 'price' - it should be positive
    df = df[df['price'] > 0]

# Validate 'latitude' and 'longitude' - ensure they are within valid ranges
    df = df[(df['latitude'].between(-90, 90)) & (df['longitude'].between(-180, 180))]

In []: # Validate 'baths' and 'bedrooms' - they should be non-negative integers
    df = df[df['baths'] >= 0]
    df = df[df['bedrooms'] >= 0]
```

Detecting outliers Visually

```
In [ ]: # Numerical columns for outlier detection
numerical_columns = ['price', 'latitude', 'longitude', 'baths', 'bedrooms', 'Area S
```

```
# Box plot visualization to identify outliers
plt.figure(figsize=(10, 5))
sns.boxplot(data=df[numerical_columns])
plt.title('Box plot of Numerical Features')
plt.xticks(rotation=45)
plt.show()
```


Detecting Outliers using IQR Method

```
In []: # Outlier detection using IQR (Interquartile Range)
Q1 = df[numerical_columns].quantile(0.25)
Q3 = df[numerical_columns].quantile(0.75)
IQR = Q3 - Q1

# Define upper and Lower bounds for outlier detection
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Identify outliers
outliers = (df[numerical_columns] < lower_bound) | (df[numerical_columns] > upper_b

# Count outliers for each numerical column
outliers_count = outliers.sum()
print("Number of Outliers:")
print(outliers_count)
```

```
Number of Outliers:
price 13547
latitude 9
longitude 6
baths 22
bedrooms 3319
Area Size 3326
dtype: int64
```

Handling Outliers

```
In []: from scipy.stats.mstats import winsorize

# Winsorize numerical columns

df['price'] = winsorize(df['price'], limits=[0.01, 0.01])

df['latitude'] = winsorize(df['latitude'], limits=[0.05, 0.05])

df['longitude'] = winsorize(df['longitude'], limits=[0.05, 0.05])

df['baths'] = winsorize(df['baths'], limits=[0.05, 0.05])

df['bedrooms'] = winsorize(df['bedrooms'], limits=[0.05, 0.05])

df['Area Size'] = winsorize(df['Area Size'], limits=[0.05, 0.05])

In []: # Box plot of numerical columns

plt.figure(figsize=(10, 5))

sns.boxplot(data=df[numerical_columns])

plt.title('Box plot of Numerical Features (After Winsorization)')

plt.show()
```



```
In []: from scipy.stats.mstats import winsorize

# Visualize the 'price' column after winsorization
plt.figure(figsize=(10, 5))
sns.boxplot(df['price'])
plt.title('Box plot of Price (After Winsorization)')
plt.show()
```



```
In []: # Calculate Q1 (25th percentile) and Q3 (75th percentile) for 'price'
    Q1_price = df['price'].quantile(0.25)
    Q3_price = df['price'].quantile(0.75)
    IQR_price = Q3_price - Q1_price

# Define the upper and lower bounds for outlier detection
    lower_bound_price = Q1_price - 1.5 * IQR_price
    upper_bound_price = Q3_price + 1.5 * IQR_price

# Calculate the mean of 'price'
mean_price = df['price'].mean()

# Replace outliers with the mean
    df.loc[df['price'] > upper_bound_price, 'price'] = mean_price
    df.loc[df['price'] < lower_bound_price, 'price'] = mean_price</pre>
```

```
In []: # Visualize the 'price' column after replacing outliers
    plt.figure(figsize=(10, 5))
    sns.boxplot(df['price'])
    plt.title('Box plot of Price (After Replacing Outliers with Mean)')
    plt.show()
```


Inspecting Outliers

```
In [ ]: # Create a mask for outliers using NumPy operations
        outliers_post = (df[numerical_columns] < lower_bound_price) | (df[numerical_columns</pre>
        # Count outliers for each numerical column
        outliers_count_post = outliers_post.sum()
        # Print the number of outliers after handling
        print("Number of Outliers After Handling:")
        print(outliers_count_post)
       Number of Outliers After Handling:
       price
                    0
       latitude
                    0
       longitude 0
       baths
       bedrooms
       Area Size
       dtype: int64
```

Analysis of House Price Distribution and Feature Relationships

Pair Plot

```
In [ ]: # Pair plot of numerical columns
    sns.pairplot(df[numerical_columns])
    plt.suptitle('Pair Plot of Numerical Features', y=1.02)
    plt.show()
```


Correlation Heatmap

```
In []: # Calculate correlation matrix
    corr_matrix = df[numerical_columns].corr()

# Plot heatmap
    plt.figure(figsize=(10, 8))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=.5)
    plt.title('Correlation Heatmap of Numerical Features')
    plt.show()
```


Voilin Plot

```
In []: # Violin plot of Property Type vs. Price
    plt.figure(figsize=(8, 6))
    sns.violinplot(x='property_type', y='price', data=df)
    plt.title('Violin Plot of Property Type vs. Price')
    plt.xlabel('Property Type')
    plt.ylabel('Price')
    plt.xticks(rotation=45)
    plt.show()
```


Box PLot

```
In []: # Box plot: City vs. Price
plt.figure(figsize=(8, 6))
sns.boxplot(x='city', y='price', data=df)
plt.title('Box Plot of City vs. Price')
plt.xlabel('City')
plt.ylabel('Price')
plt.xticks(rotation=45)
plt.show()
```


Histogram

```
In []: # Histogram with KDE of Price
plt.figure(figsize=(10, 6))
sns.histplot(df['price'], kde=True, bins=50, color='blue')
plt.title('Distribution of House Prices')
plt.xlabel('Price')
plt.ylabel('Frequency')
plt.show()
```


4. Feature Engineering

```
In [ ]: import datetime
        # Extract the year from 'date_added' and calculate the age
        current_year = datetime.datetime.now().year
        df['date_added'] = pd.to_datetime(df['date_added'], errors='coerce')
        df['house_age'] = current_year - df['date_added'].dt.year
In [ ]: # Handle any possible errors due to 'date_added' conversion by filling NaN with med
        df['house_age'].fillna(df['house_age'].median(), inplace=True)
In [ ]: # Create a new feature: number of bathrooms per bedroom
        df['baths_per_bedroom'] = df['baths'] / df['bedrooms']
        # Handle any possible errors due to division by zero or NaN values
        df['baths_per_bedroom'].replace([np.inf, -np.inf], np.nan, inplace=True)
        df['baths_per_bedroom'].fillna(df['baths_per_bedroom'].median(), inplace=True)
In [ ]: # Display the new features
        print(df[['house_age', 'baths_per_bedroom']].head())
          house_age baths_per_bedroom
       0
                  5
                                   1.0
                  5
                                   1.0
       1
       2
                  5
                                   1.2
       3
                  5
                                   1.0
                                   1.0
In [ ]: df.head()
```

Out[]:		property_id	location_id	page_url	property_type
	0	237062	3325	https://www.zameen.com/property/g_10_g_10_2_gr	flat
	1	346905	3236	https://www.zameen.com/property/e_11_2_service	flat
	2	386513	764	https://www.zameen.com/property/islamabad_g_15	house
	3	656161	340	https://www.zameen.com/property/islamabad_bani	house
	4	841645	3226	https://www.zameen.com/property/dha_valley_dha	house
	4				•
In []:	<pre># Save the dataset with new features df.to_csv('cleaned_dataset.csv', index=False)</pre>				

Categorical Feature Encoding for Modeling

5. Outlier Analysis

```
In []: # Calculate Z-scores for 'price' to identify outliers
    from scipy.stats import zscore

df['price_zscore'] = zscore(df['price'])

# Define a threshold for identifying outliers (e.g., z-score greater than 3 or less
    outliers_high = df[df['price_zscore'] > 3]
    outliers_low = df[df['price_zscore'] < -3]

# Display the number of outliers</pre>
```

```
print("Number of High Price Outliers:", len(outliers_high))
       print("Number of Low Price Outliers:", len(outliers_low))
      Number of High Price Outliers: 1716
      Number of Low Price Outliers: 0
In [ ]: # Print information about high price outliers
       print("High Price Outliers:")
       print(outliers_high[['property_id', 'price', 'location', 'area', 'bedrooms', 'baths
      High Price Outliers:
             property_id
                                       location
                                                    area bedrooms baths \
                              price
                                          f-11
      9
                 1418706 40000000.0
                                                  1 Kanal
                                                               5
                                                                       5
      48
                 482892 40000000.0 multan road 1 Kanal
                                                               5
                                                                       5
                 983075 40000000.0 izmir town 1.6 Kanal
      56
                                                                6
                                                                       0
                1997947 39500000.0
                                        gulberg 10 Marla
                                                               6
                                                                       6
                2146098 40000000.0 chaman park 11 Marla
                                                               6
                                                                       3
      66
      168360 17355128 39500000.0 dha defence 1 Kanal
                                                               6
                                                                      7
               17356096 40000000.0 dha defence 1.2 Kanal
      168381
                                                                5
                                                                       6
      168406
               17356560 40000000.0 askari 17 Marla
                                                               5
                                                                       5
      168407 17356585 41500000.0 dha defence 1 Kanal
                                                               5
                                                                       5
                                                               5
               17357038 41500000.0 nfc 1 1 Kanal
                                                                       6
      168415
             house_age
      9
                     5
      48
                     6
                     5
      56
      64
                     5
                     5
      66
                   . . .
      168360
                   5
      168381
                     5
                     5
      168406
      168407
                     5
                     5
      168415
      [1716 rows x 7 columns]
In [ ]: # Visualize the distribution of house prices with outliers highlighted
       plt.figure(figsize=(12, 6))
       sns.histplot(df['price'], kde=True, bins=50, color='blue')
       plt.title('Distribution of House Prices with High Price Outliers')
       plt.xlabel('Price')
       plt.ylabel('Frequency')
       # Highlight high price outliers in the plot
       plt.scatter(outliers_high['price'], [0] * len(outliers_high), color='red', label='H
       plt.legend()
       plt.show()
```


In []: # Visualize distributions of key features for the entire dataset and high price out
plt.figure(figsize=(16, 10))

Distribution of 'area'
plt.subplot(2, 2, 1)
sns.histplot(df['area'], kde=True, bins=30, color='blue', label='All Properties')
sns.histplot(outliers_high['area'], kde=True, bins=10, color='red', label='High Pri
plt.title('Distribution of Area')
plt.legend()

Out[]: <matplotlib.legend.Legend at 0x18a541a0560>


```
In [ ]: # Distribution of 'bedrooms'
plt.subplot(2, 2, 2)
sns.histplot(df['bedrooms'], kde=True, bins=10, color='blue', label='All Properties
sns.histplot(outliers_high['bedrooms'], kde=True, bins=5, color='red', label='High
plt.title('Distribution of Bedrooms')
plt.legend()
```

Out[]: <matplotlib.legend.Legend at 0x18a52df7e60>


```
In [ ]: # Distribution of 'baths'
    plt.subplot(2, 2, 3)
    sns.histplot(df['baths'], kde=True, bins=10, color='blue', label='All Properties')
    sns.histplot(outliers_high['baths'], kde=True, bins=5, color='red', label='High Pri
    plt.title('Distribution of Baths')
    plt.legend()
```

Out[]: <matplotlib.legend.Legend at 0x18a5600c1a0>


```
In []: # Distribution of 'house_age'
plt.subplot(2, 2, 4)
sns.histplot(df['house_age'], kde=True, bins=20, color='blue', label='All Propertie
sns.histplot(outliers_high['house_age'], kde=True, bins=5, color='red', label='High
plt.title('Distribution of House Age')
plt.legend()
```

```
plt.tight_layout()
plt.show()
```



```
In []: # Compare summary statistics for key features
summary_stats_all = df[['area', 'bedrooms', 'baths', 'house_age']].describe()
summary_stats_outliers = outliers_high[['area', 'bedrooms', 'baths', 'house_age']].
print("Summary Statistics for All Properties:")
print(summary_stats_all)
print("\nSummary Statistics for High Price Outliers:")
print(summary_stats_outliers)
```

Summary Statistics for All Properties:

	bedrooms	baths	house_age
count	168443.000000	168443.000000	168443.000000
mean	3.100224	2.835707	5.072731
std	1.777040	2.177108	0.259695
min	0.000000	0.000000	5.000000
25%	2.000000	0.000000	5.000000
50%	3.000000	3.000000	5.000000
75%	4.000000	4.000000	5.000000
max	6.000000	7.000000	6.000000

Summary Statistics for High Price Outliers:

	•	•	
	bedrooms	baths	house_age
count	1716.000000	1716.000000	1716.000000
mean	4.397436	4.315851	5.049534
std	1.691162	2.428068	0.217043
min	0.000000	0.000000	5.000000
25%	4.000000	3.000000	5.000000
50%	5.000000	5.000000	5.000000
75%	6.000000	6.000000	5.000000
max	6.000000	7.000000	6.000000

6. Predictive Modeling

```
In [ ]: # Function to convert area measurements to square feet
    def convert_area(area):
        if isinstance(area, str):
```

```
area = area.replace(',', '') # Remove commas from the string
if 'Marla' in area:
    value = float(area.split()[0])
    return value * 272.25
elif 'Kanal' in area:
    value = float(area.split()[0])
    return value * 20 * 272.25
elif 'Square Feet' in area:
    value = float(area.split()[0])
    return value
    return area

# Apply the conversion function to the 'area' column
df['area'] = df['area'].apply(convert_area)
```

Linear Regression

```
In [ ]: from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LinearRegression
        from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
        # Select features and target
        features = ['area', 'bedrooms', 'baths', 'house_age', 'latitude', 'longitude']
        target = 'price'
        X = df[features]
        y = df[target]
        # Split the dataset into training and testing sets
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
        # Train the Linear Regression model
        lr_model = LinearRegression()
        lr model.fit(X_train, y_train)
LinearRegression()
In [ ]: # Make predictions
        y_pred_lr = lr_model.predict(X_test)
```

Evaluate the Model Performance

```
In []: # Evaluate the model
    mae_lr = mean_absolute_error(y_test, y_pred_lr)
    mse_lr = mean_squared_error(y_test, y_pred_lr)
    r2_lr = r2_score(y_test, y_pred_lr)

print("Linear Regression Performance:")
    print("Mean Absolute Error:", mae_lr)
    print("Mean Squared Error:", mse_lr)
    print("R-squared:", r2_lr)
```

Linear Regression Performance:

Mean Absolute Error: 6411662.5088074645 Mean Squared Error: 71347429312049.25

R-squared: 0.2395611909711216

```
In []: # Plot predictions vs actual prices for Linear Regression
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred_lr, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=3)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs Predicted House Prices (Linear Regression)')
plt.show()
```


Random forest

```
In [ ]: # Make predictions
y_pred_rf = rf_model.predict(X_test)
```

Evaluate the Model Performance

```
In []: # Evaluate the model
    mae_rf = mean_absolute_error(y_test, y_pred_rf)
    mse_rf = mean_squared_error(y_test, y_pred_rf)
    r2_rf = r2_score(y_test, y_pred_rf)

    print("Random Forest Performance:")
    print("Mean Absolute Error:", mae_rf)
    print("Mean Squared Error:", mse_rf)
    print("R-squared:", r2_rf)

Random Forest Performance:
    Mean Absolute Error: 3814927.587887695
```

Mean Absolute Error: 3814927.587887695 Mean Squared Error: 41168477731548.66

R-squared: 0.5612160315014497

```
In [ ]: # Plot predictions vs actual prices for Random Forest
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred_rf, alpha=0.5)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=3)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs Predicted House Prices (Random Forest)')
plt.show()
```


Gradient Boosting

```
In [ ]: from sklearn.ensemble import GradientBoostingRegressor
```

```
# Train the Gradient Boosting model
        gb_model = GradientBoostingRegressor(n_estimators=100, random_state=42)
        gb_model.fit(X_train, y_train)
Out[ ]:
                GradientBoostingRegressor
        GradientBoostingRegressor(random_state=42)
In [ ]: # Make predictions
        y_pred_gb = gb_model.predict(X_test)
        Evaluate the Model Performance
In [ ]: # Evaluate the model
        mae_gb = mean_absolute_error(y_test, y_pred_gb)
        mse_gb = mean_squared_error(y_test, y_pred_gb)
        r2_gb = r2_score(y_test, y_pred_gb)
        print("Gradient Boosting Performance:")
        print("Mean Absolute Error:", mae_gb)
        print("Mean Squared Error:", mse_gb)
```

```
print("R-squared:", r2_gb)

Gradient Boosting Performance:
Mean Absolute Error: 5135581.0343836965
Mean Squared Error: 51133995148997.57
R-squared: 0.4550010456308714
```

```
In []: # Plot predictions vs actual prices for Gradient Boosting
   plt.figure(figsize=(10, 6))
   plt.scatter(y_test, y_pred_gb, alpha=0.5)
   plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=3)
   plt.xlabel('Actual')
   plt.ylabel('Predicted')
   plt.title('Actual vs Predicted House Prices (Gradient Boosting)')
   plt.show()
```


7. Future price Prediction

```
In [ ]: # Define the hypothetical scenarios (adjust as per your data structure)
        hypothetical_data = {
            'area': [2500, 1500, 2000], # in square feet
            'bedrooms': [4, 2, 3],
            'baths': [3, 1, 2],
            'house_age': [10, 5, 8],
            'latitude': [31.5204, 33.6844, 31.4278],
            'longitude': [74.3587, 73.0479, 73.0867]
        # Create a DataFrame with hypothetical scenarios
        df_hypothetical = pd.DataFrame(hypothetical_data)
        # Use trained models to predict prices for hypothetical scenarios
        predicted_prices_lr = lr_model.predict(df_hypothetical)
        predicted_prices_rf = rf_model.predict(df_hypothetical)
        predicted_prices_gb = gb_model.predict(df_hypothetical)
In [ ]: # Print the predicted prices for each model
        print("Predicted Prices for Hypothetical Scenarios (Linear Regression):")
        print(predicted_prices_lr)
        print("\nPredicted Prices for Hypothetical Scenarios (Random Forest):")
        print(predicted_prices_rf)
        # Print the predicted prices for the hypothetical scenarios
```

```
print(predicted_prices_gb)

Predicted Prices for Hypothetical Scenarios (Linear Regression):
[10081272.47202951 4385032.10518862 7591245.030196 ]

Predicted Prices for Hypothetical Scenarios (Random Forest):
[27841729.24805562 1565870.76190476 13569395.25258376]
```

print("\nPredicted Prices for Hypothetical Scenarios (Gradient Boosting):")

Predicted Prices for Hypothetical Scenarios (Gradient Boosting): [22078417.57633539 3412520.94760612 8819282.0253196]