Assignment 1

Collect Research Paper and write their conclusions.

Sr.No	Title of Paper	Name of Authors	Published Year	Remarks
1	Stress Detection with machine learning and deep learning using multimodal physiological data	1.Pramod Bobade 2. Vani M.	2020	Algorithms:- K- Nearest Neighbour, Linear Discriminat analysis, Random Forest, Decision Tree, AdBoot And Kernal Support Vector Machine.
2.	Automatic Stress Detection using wearable sensors and machine learning	Shruti Gedam Sanchita Paul	2020	Algorithms: Support vector machines, Random Forest, and K nearest Neighbor, Logistic regression, Decision Tree
3.	Detection and analysis of stress using machine learning technique	1.Reshma Radheshamjee Baheti, 2.Supriya Kinariwala	2019	Alogithms: SVM
4.	Stress Detection using Machine learning and deep learning	1. Z. Zainudin 2. S. Hasan 3. S.M.Shamsuddin 4. S. Argawal	2021	Algorithms: Random Forest, Support vector machine, k-nearest neighbor, Decision Tree, Adaptive boosting, Linear Discriminant analysis, Deep learning, logistic regression.
5.	A decision tree optimized SVM Model for stress detection using biosignals	1.Alana Paul Cruz 2.Aravind Pradeep 3. Kavali Riya Sivasankar 4.Krishnaveni K.S	2020	ECG, Machine learning, SVM,Matlab,

Assignment 2

Take Binary data and calculate the probability.

To calculate probablity, Whether the person					
play	Batminton	or not.			
Data	diameter and			-	
Days	Tempraturo	Humidity	Wind	play.	
Day 1	HOT	High	Weak	No	
Day 2	HOT	High	strong	No	
pay 3	HOT	High	weak	yes	
Day 4	mild	High	Weak	yes	
Day 5	cool	Normal	Weak	Yes	
Day 6	COOL	Normal	strong	NO	
Day 7	COOL	Normal	strong	Yes.	
	play Batmin	nton = yes nton = No) = 4/7) = 3/7	= 0.5	
10		X 10	3		
Condi Z Temp		The second second second	3		
{ Temp		opablities.	T Wiles		

```
p (Temp = cool | play Batminton = No) = 1/3
   p(Humidity = High | play Batminton = No) = 2/3
p(Wind= strong | play Batminton = No) = 2/3
 * Need to find out two probabilities:
) p(play Barminton = yego 1x) =
        = (p(x | play Batminton = yes) x:
p(play Batminton = yese))/p(x)
2) p ( play Batminton = NO | x).
         = (P(X) play Badminton = No) *
           p (play Batminton = No)) / p(x).
 1) P (play Batminton = Yes 1x)
    = ((2/4 × 2/4 × 1/4) x 4/7 / P(x)
  = \frac{4}{64} \times \frac{4}{7} / p(x)
      = 0.03/P(X)
2) p (play Batminton = NO | X)
     = ((1/3 x 2/3 x 2/3) x 3/7 / P(x)
         4 × 3 / P(x)
       = 0.06 /P(x)
```

* calculate P(x). P(X) = P(Temp = cool) X (Humidity = High) X (wind = strong). $= \frac{3}{7} \times \frac{4}{7} \times \frac{3}{7}$ 36 = 0.10 We get Finally. @ p (play Batminton = yes)x) = 0.03 / 0.10 (2) p(play Batminton = NO |X) = 0.06 / 0.10 = 0.6 .. probability of second Equation is more than first. Hence, the probability of play Batminton = yes. so, the person not play satminton.