Time Value of Money: Useful Shortcuts

Michael R. Roberts

William H. Lawrence Professor of Finance

The Wharton School, University of Pennsylvania

Last Time Time Value of Money

Compounding

This Time Time Value of Money

Useful Shortcuts

ANNUITY

An annuity is a finite stream of cash flows of identical magnitude and equal spacing in time

An annuity is a finite stream of cash flows of identical magnitude and equal spacing in time

E.g., Savings, vehicle, home mortgage, auto lease, bond payments

An annuity is a finite stream of cash flows of identical magnitude and equal spacing in time

O 1 T-1 T

CF CF

CF CF

PV of Annuity =
$$\frac{CF}{R} (1-(1+R)^{-T})$$

= $CF \times \frac{1-(1+R)^{-T}}{R}$

Annuity Factor

An annuity is a finite stream of cash flows of identical magnitude and equal spacing in time

$$\begin{array}{cccc}
0 & 1 & T-1 & T \\
\hline
CF & CF & CF
\end{array}$$

$$\begin{array}{ccccc}
CF & CF & CF
\end{array}$$

$$\begin{array}{ccccc}
PV \text{ of Annuity } & = & \frac{CF}{R} (1 - (1 + R)^{-T}) \\
\end{array}$$

*The first cash flow arrives one period from today

Example 1 – Savings

How much do you have to save today to withdraw \$100 at the end of each of the next 20 years if you can earn 5% per annum?

Example 1 – Savings

How much do you have to save today to withdraw \$100 at the end of each of the next 20 years if you can earn 5% per annum?

Example 1 – Savings

How much do you have to save today to withdraw \$100 at the end of each of the next 20 years if you can earn 5% per annum?

PV of Annuity =
$$\frac{100}{0.05} (1 - (1 + 0.05)^{-20}) = 1,246.22$$

GROWING ANNUITY

A growing annuity is a finite stream of cash flows that grow at a constant rate and that are evenly spaced through time

A growing annuity is a finite stream of cash flows that grow at a constant rate and that are evenly spaced through time

E.g., Income streams, savings strategies, project revenue/expense streams

A growing annuity is a finite stream of cash flows that grow at a constant rate and that are evenly spaced through time

PV of Growing Annuity =
$$\frac{CF}{R-g} \left(1 - \left(\frac{1+R}{1+g} \right)^{-T} \right)$$

A growing annuity is a finite stream of cash flows that grow at a constant rate and that are evenly spaced through time

*The first cash flow arrives one period from today

Example 2 – Savings

How much do you have to save today to withdraw \$100 at the end of this year, 102.5 next year, 105.06 the year after, and so on for the next 19 years if you can earn 5% per annum?

Example 2 – Savings

How much do you have to save today to withdraw \$100 at the end of this year, 102.5 next year, 105.06 the year after, and so on for the next 19 years if you can earn 5% per annum?

Example 2 – Savings

How much do you have to save today to withdraw \$100 at the end of this year, 102.5 next year, 105.06 the year after, and so on for the next 19 years if you can earn 5% per annum?

PV of Growing Annuity =
$$\frac{CF}{R-g} \left(1 - \left(\frac{1+R}{1+g} \right)^{-T} \right)$$

= $\frac{100}{0.05 - 0.025} \left(1 - \left(\frac{1+0.05}{1+0.025} \right)^{-20} \right) = 1,529.69$

PERPETUITY

Perpetuity

An perpetuity is an infinite stream of cash flows of identical magnitude and equal spacing in time

Perpetuity

An perpetuity is an infinite stream of cash flows of identical magnitude and equal spacing in time

E.g., Perpetuities, consol bonds

Perpetuity

An perpetuity is an infinite stream of cash flows of identical magnitude and equal spacing in time

PV of Perpetuity =
$$\frac{CF}{R}$$

Example 3 – Savings

How much do you have to save today to withdraw \$100 at the end of each year forever if you can earn 5% per annum?

Example 3 – Savings

How much do you have to save today to withdraw \$100 at the end of each year forever if you can earn 5% per annum?

Discount CFs one at a time...impossible!

Example 3 – Savings

How much do you have to save today to withdraw \$100 at the end of each year forever if you can earn 5% per annum?

PV of Perpetuity =
$$\frac{100}{0.05}$$
 = 2,000

GROWING PERPETUITY

A growing perpetuity is an infinite stream of cash flows that grow at a constant rate and that are evenly spaced through time

A growing perpetuity is an infinite stream of cash flows that grow at a constant rate and that are evenly spaced through time

E.g., Dividend streams

A growing perpetuity is an infinite stream of cash flows that grow at a constant rate and that are evenly spaced through time

PV of Growing Perpetuity =
$$\frac{CF}{R-g}$$

A growing perpetuity is an infinite stream of cash flows that grow at a constant rate and that are evenly spaced through time

PV of Growing Perpetuity =
$$\frac{CF}{R-g}$$

*The first cash flow arrives one period from today

Example 4 – Savings

How much do you have to save today to withdraw \$100 at the end of this year, 102.5 next year, 105.06 the year after, and so on forever if you can earn 5% per annum?

Example 4 – Savings

How much do you have to save today to withdraw \$100 at the end of this year, 102.5 next year, 105.06 the year after, and so on forever if you can earn 5% per annum?

Example 4 – Savings

How much do you have to save today to withdraw \$100 at the end of this year, 102.5 next year, 105.06 the year after, and so on forever if you can earn 5% per annum?

PV of Growing Perpetuity =
$$\frac{CF}{R - g} = \frac{100}{0.05 - 0.025} = 4,000$$

Lessons

 An annuity is a finite stream of cash flows of identical magnitude and equal spacing in time

PV of Annuity =
$$\frac{CF}{R} (1 - (1 + R)^{-T})$$

 A perpetuity is an infinite stream of cash flows of identical magnitude and equal spacing in time

PV of Perpetuity =
$$\frac{CF}{R}$$

Lessons

 A growing annuity is a finite stream of cash flows growing at a constant rate and equally spaced in time

PV of Growing Annuity =
$$\frac{CF}{R-g} \left(1 - \left(\frac{1+R}{1+g} \right)^{-T} \right)$$

 A growing perpetuity is an infinite stream of cash flows growing at a constant rate and equally spaced in time

PV of Growing Perpetuity =
$$\frac{CF}{R-g}$$

Caution

- Annuity and perpetuity formulas assume first cash flow occurs one period from today
- Growth rate, g, must be less than the discount rate, R, for PV formulas to make sense
- Understand excel functions assumptions

Coming up next

Problem Set

Taxes