Regression

CISC 7026: Introduction to Deep Learning

University of Macau

Today, we will learn about linear regression

Today, we will learn about linear regression

Probably the oldest method for machine learning (Gauss and Legendre)

Today, we will learn about linear regression

Probably the oldest method for machine learning (Gauss and Legendre)

ML

Many problems in ML can be reduced to **regression** or **classification**

ML

Many problems in ML can be reduced to **regression** or **classification**

Regression asks how many

Regression asks how many

• How much money will I make?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

ML

Many problems in ML can be reduced to **regression** or **classification**

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

• Is this a dog or muffin?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

- Is this a dog or muffin?
- Will it rain tomorrow? Yes or no?

Lecture 1: Introduction

ML

Many problems in ML can be reduced to **regression** or **classification**

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

- Is this a dog or muffin?
- Will it rain tomorrow? Yes or no?
- What color is this object?

Regression asks how many

- How much money will I make?
- How much rain will there be tomorrow?
- How far away is this object?

Classification asks which one

- Is this a dog or muffin?
- Will it rain tomorrow? Yes or no?
- What color is this object?

Let us start with regression

Today, we will come up with a regression problem and then solve it!

1. Define an example problem

- 1. Define an example problem
- 2. Define our machine learning model *f*

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

The World Health Organization (WHO) has collected data on life expectancy

The World Health Organization (WHO) has collected data on life expectancy

Available for free at https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-life-expectancy-and-healthy-life-expectancy

The WHO collected data from roughly 3,000 people from 193 countries

Lecture 1: Introduction

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

Lecture 1: Introduction

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

Home country

The WHO collected data from roughly 3,000 people from 193 countries

- Home country
- Alcohol consumption

The WHO collected data from roughly 3,000 people from 193 countries

- Home country
- Alcohol consumption
- Education

The WHO collected data from roughly 3,000 people from 193 countries

- Home country
- Alcohol consumption
- Education
- Gross domestic product (GDP) of the country

The WHO collected data from roughly 3,000 people from 193 countries

- Home country
- Alcohol consumption
- Education
- Gross domestic product (GDP) of the country
- Immunizations for Measles and Hepatitis B

The WHO collected data from roughly 3,000 people from 193 countries

- Home country
- Alcohol consumption
- Education
- Gross domestic product (GDP) of the country
- Immunizations for Measles and Hepatitis B
- How long this person lived

The WHO collected data from roughly 3,000 people from 193 countries

For each person, they recorded:

- Home country
- Alcohol consumption
- Education
- Gross domestic product (GDP) of the country
- Immunizations for Measles and Hepatitis B
- How long this person lived

We can use this data to make future predictions

Since everyone here is very educated, we will focus on how education affects life expectancy

Since everyone here is very educated, we will focus on how education affects life expectancy

There are studies showing a causal effect on education on health

Since everyone here is very educated, we will focus on how education affects life expectancy

There are studies showing a causal effect on education on health

• The causal effects of education on health outcomes in the UK Biobank. Davies et al. Nature Human Behaviour.

Since everyone here is very educated, we will focus on how education affects life expectancy

There are studies showing a causal effect on education on health

- The causal effects of education on health outcomes in the UK Biobank. Davies et al. Nature Human Behaviour.
- By staying in school, you are likely to live longer

Task: Given your education, predict your life expectancy

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Goal: Given someone's education, predict how long they will live

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Soon, f will be a deep neural network

Soon, f will be a deep neural network

For now, it is easier if we make f a **linear function**

Soon, f will be a deep neural network

For now, it is easier if we make f a **linear function**

$$f(x, \boldsymbol{\theta}) = f\left(x, \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}\right) = \theta_1 x + \theta_0$$

Soon, f will be a deep neural network

For now, it is easier if we make f a **linear function**

$$f(x, \boldsymbol{\theta}) = f\left(x, \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}\right) = \theta_1 x + \theta_0$$

Now, we need to find the parameters $m{ heta} = egin{bmatrix} heta_1 \\ heta_0 \end{bmatrix}$ that makes $f(x, m{ heta}) = y$

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Now, we need to find the parameters $\pmb{\theta} = \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}$ that make $f(x,\pmb{\theta}) = y$

Now, we need to find the parameters $\pmb{\theta} = \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}$ that make $f(x, \pmb{\theta}) = y$

Question: How do we find θ ? (Hint: We want $f(x, \theta) = y$)

Now, we need to find the parameters $\pmb{\theta} = \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}$ that make $f(x,\pmb{\theta}) = y$

Question: How do we find θ ? (Hint: We want $f(x, \theta) = y$)

Answer: We will minimize the **loss** (error) between $f(x, \theta)$ and y, for all

$$x \in X, y \in Y$$

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x,y,\boldsymbol{\theta})$$

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x,y,\boldsymbol{\theta})$$

The loss function tells us how close $f(x, \theta)$ is to y

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x, y, \boldsymbol{\theta})$$

The loss function tells us how close $f(x, \theta)$ is to y

By **minimizing** the loss function, we make $f(x, \theta) = y$

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x, y, \boldsymbol{\theta})$$

The loss function tells us how close $f(x, \theta)$ is to y

By **minimizing** the loss function, we make $f(x, \theta) = y$

There are many possible loss functions, but for regression we often use the **square error**

We compute the loss using the **loss function** $\mathcal{L}: X \times Y \times \Theta \mapsto \mathbb{R}$

$$\mathcal{L}(x, y, \boldsymbol{\theta})$$

The loss function tells us how close $f(x, \theta)$ is to y

By **minimizing** the loss function, we make $f(x, \theta) = y$

There are many possible loss functions, but for regression we often use the **square error**

$$\operatorname{error}(y, \hat{y}) = (y - \hat{y})^2$$

Let's derive the error function

Let's derive the error function

$$f(x, \boldsymbol{\theta}) = y$$

f(x) should predict y

Let's derive the error function

$$f(x, \boldsymbol{\theta}) = y$$

$$f(x, \boldsymbol{\theta}) - y = 0$$

f(x) should predict y

Move y to LHS

Let's derive the error function

$$f(x, \boldsymbol{\theta}) = y$$

$$f(x, \boldsymbol{\theta}) - y = 0$$

$$(f(x, \boldsymbol{\theta}) - y)^2 = 0$$

f(x) should predict y

Move y to LHS

Square for minimization

Let's derive the error function

$$f(x, \boldsymbol{\theta}) = y$$

$$f(x, \boldsymbol{\theta}) - y = 0$$

$$\left(f(x,\boldsymbol{\theta}) - y\right)^2 = 0$$

$$\operatorname{error}(f(x, \boldsymbol{\theta}), y) = (f(x, \boldsymbol{\theta}) - y)^2$$

f(x) should predict y

Move y to LHS

Square for minimization

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We want to find the parameters θ that minimize \mathcal{L}

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We want to find the parameters $oldsymbol{ heta}$ that minimize \mathcal{L}

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathop{\mathrm{error}}(f(x_i, \boldsymbol{\theta}), y_i) = \mathop{\arg\min}_{\boldsymbol{\theta}} \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We want to find the parameters $oldsymbol{ heta}$ that minimize \mathcal{L}

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

Question: Any issues with \mathcal{L} ? Will it give us a good prediction for all x?

We can write the loss function for a single datapoint x_i, y_i as

$$\mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \operatorname{error}(f(x_i, \boldsymbol{\theta}), y_i) = \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

We want to find the parameters $oldsymbol{ heta}$ that minimize \mathcal{L}

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathop{\mathrm{error}}(f(x_i, \boldsymbol{\theta}), y_i) = \mathop{\arg\min}_{\boldsymbol{\theta}} \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

Question: Any issues with \mathcal{L} ? Will it give us a good prediction for all x?

Answer: We only consider a single datapoint! We want to learn θ for the entire dataset

For a single x_i, y_i :

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

For a single x_i, y_i :

$$\mathop{\arg\min}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\arg\min}_{\pmb{\theta}} \mathop{\mathrm{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\arg\min}_{\pmb{\theta}} \left(f(x_i, \pmb{\theta}) - y_i\right)^2$$

For the entire dataset:

$$oldsymbol{x} = \begin{bmatrix} x_1 & x_2 & ... & x_n \end{bmatrix}^ op, oldsymbol{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix}^ op$$

$$\mathop{\operatorname{rg\,min}}_{\pmb{\theta}} \mathcal{L}(\pmb{x}, \pmb{y}, \pmb{\theta}) = \mathop{\operatorname{arg\,min}}_{\pmb{\theta}} \sum_{i=1}^n \mathop{\operatorname{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\operatorname{arg\,min}}_{\pmb{\theta}} \sum_{i=1}^n \left(f(x_i, \pmb{\theta}) - y_i\right)$$

For a single x_i, y_i :

$$\underset{\boldsymbol{\theta}}{\arg\min}\, \mathcal{L}(x_i, y_i, \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\arg\min}\, \text{error}(f(x_i, \boldsymbol{\theta}), y_i) = \underset{\boldsymbol{\theta}}{\arg\min}\, \left(f(x_i, \boldsymbol{\theta}) - y_i\right)^2$$

For the entire dataset:

$$oldsymbol{x} = \begin{bmatrix} x_1 & x_2 & ... & x_n \end{bmatrix}^{ op}, oldsymbol{y} = \begin{bmatrix} y_1 & y_2 & ... & y_n \end{bmatrix}^{ op}$$

$$\mathop{\operatorname{rg\,min}}_{\pmb{\theta}} \mathcal{L}(\pmb{x}, \pmb{y}, \pmb{\theta}) = \mathop{\operatorname{arg\,min}}_{\pmb{\theta}} \sum_{i=1}^n \mathop{\operatorname{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\operatorname{arg\,min}}_{\pmb{\theta}} \sum_{i=1}^n \left(f(x_i, \pmb{\theta}) - y_i\right)$$

Minimizing this loss function will give us the optimal parameters!

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Lecture 1: Introduction

Question: How do we minimize:

$$\mathop{\operatorname{eg \, min}}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\operatorname{arg \, min}}_{\pmb{\theta}} \sum_{i=1}^n \mathop{\operatorname{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\operatorname{arg \, min}}_{\pmb{\theta}} \sum_{i=1}^n \left(f(x_i, \pmb{\theta}) - y_i\right)$$

Question: How do we minimize:

$$\mathop{\operatorname{eg \, min}}_{\pmb{\theta}} \mathcal{L}(x_i, y_i, \pmb{\theta}) = \mathop{\operatorname{arg \, min}}_{\pmb{\theta}} \sum_{i=1}^n \mathop{\operatorname{error}}(f(x_i, \pmb{\theta}), y_i) = \mathop{\operatorname{arg \, min}}_{\pmb{\theta}} \sum_{i=1}^n \left(f(x_i, \pmb{\theta}) - y_i\right)$$

Answer: For now, magic! We need more knowledge before we can derive this.

First, we will construct a $\operatorname{\mathbf{design}}$ $\operatorname{\mathbf{matrix}}$ X_D containing input data x

First, we will construct a **design matrix** X_D containing input data x

$$oldsymbol{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix}$$

We add the column of ones so that we can multiply X_D^{\top} with θ to get a linear function $\theta_1 x + \theta_0$ evaluated at each data point

$$m{X}_Dm{ heta} = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix} egin{bmatrix} heta_1 \ heta_0 \ heta_1 \end{bmatrix} = egin{bmatrix} heta_1x_1 + heta_0 \ heta_1x_2 + heta_0 \ dots \ heta_1x_n + heta_0 \end{bmatrix}$$

With our design matrix X_D and desired output y,

$$oldsymbol{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix}, oldsymbol{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$$

and our parameters θ ,

$$oldsymbol{ heta} = egin{bmatrix} heta_1 \ heta_0 \end{bmatrix},$$

$$oldsymbol{ heta} = ig(oldsymbol{X}_D^ op oldsymbol{X}_D^ op ig)^{-1} oldsymbol{X}_D^ op oldsymbol{y}$$

We can find the parameters that minimize \mathcal{L}

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Lecture 1: Introduction

Back to the example...

Back to the example...

Task: Given your education, predict your life expectancy

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Goal: Given someone's education, predict how long they will live

Back to the example...

Task: Given your education, predict your life expectancy

 $X \in \mathbb{R}_+$: Years in school

 $Y \in \mathbb{R}_+$: Age of death

Approach: Learn the parameters θ such that

$$f(x,\theta) = y; \quad x \in X, y \in Y$$

Goal: Given someone's education, predict how long they will live

You will be doing this in your first assignment!

Back to the example...

Task: Given your education, predict your life expectancy

Back to the example...

Task: Given your education, predict your life expectancy

Tips for assignment 1

```
Tips for assignment 1

def f(theta, design):
    # Linear function
    return design @ theta
```

Tips for assignment 1 def f(theta, design): # Linear function return design @ theta

Not all matrices can be inverted! Ensure the matrices are square and the condition number is low

```
A.shape
cond = jax.numpy.linalg.cond(A)
```

Tips for assignment 1 def f(theta, design): # Linear function return design @ theta

Not all matrices can be inverted! Ensure the matrices are square and the condition number is low

```
A.shape
cond = jax.numpy.linalg.cond(A)
```

Everything you need is in the lecture notes

- 1. Define an example problem
- 2. Define our machine learning model f
- 3. Define a loss function \mathcal{L}
- 4. Use \mathcal{L} to learn the parameters θ of f

Lecture 1: Introduction

Relax

Task: Given your education, predict your life expectancy

Task: Given your education, predict your life expectancy

Task: Given your education, predict your life expectancy

We figured out linear regression!

Task: Given your education, predict your life expectancy

We figured out linear regression!

But can we do better?

1. Beyond linear functions

- 1. Beyond linear functions
- 2. Overfitting

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers
- 4. Regularization

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers
- 4. Regularization

Lecture 1: Introduction

Or maybe more logarithmic?

Or maybe more logarithmic?

Does the data look linear?

Or maybe more logarithmic?

However, linear regression must be linear!

Does the data look linear?

Or maybe more logarithmic?

However, linear regression must be linear!

Answer: The function $f(x, \theta)$ is a linear function of x and θ

Answer: The function $f(x, \theta)$ is a linear function of x and θ

Trick: Change of variables to make f nonlinear: $x_{\text{new}} = \log(1 + x_{\text{data}})$

Answer: The function $f(x, \theta)$ is a linear function of x and θ

Trick: Change of variables to make f nonlinear: $x_{\text{new}} = \log(1 + x_{\text{data}})$

$$m{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix} \Rightarrow m{X}_D = egin{bmatrix} \log(1+x_1) & 1 \ \log(1+x_2) & 1 \ dots & dots \ \log(1+x_n) & 1 \end{bmatrix}$$

Now, f is a linear function of $\log(x)$ – a nonlinear function of x!

New design matrix...

$$m{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix} \Rightarrow m{X}_D = egin{bmatrix} \log(1+x_1) & 1 \ \log(1+x_2) & 1 \ dots & dots \ \log(1+x_n) & 1 \end{bmatrix}$$

New function...

$$f\bigg(x, \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix} \bigg) = \theta_1 \log(1+x) + \theta_0$$

New design matrix...

$$m{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix} \Rightarrow m{X}_D = egin{bmatrix} \log(1+x_1) & 1 \ \log(1+x_2) & 1 \ dots & dots \ \log(1+x_n) & 1 \end{bmatrix}$$

New function...

$$f\!\left(x, \begin{bmatrix} \theta_1 \\ \theta_0 \end{bmatrix}\right) = \theta_1 \log(1+x) + \theta_0 \qquad \qquad \boldsymbol{\theta} = \left(\boldsymbol{X}_D^\top \boldsymbol{X}_D\right)^{-1} \boldsymbol{X}_D^\top \boldsymbol{y}$$

Same solution...

$$oldsymbol{ heta} = \left(oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{X}_D^ op oldsymbol{y}^{-1} oldsymbol{X}_D^ op oldsymbol{y}$$

Better, but still not perfect

Better, but still not perfect Can we do even better?

$$f(x) = ax^n + bx^{n-1} + \dots + cx + d$$

$$f(x) = ax^n + bx^{n-1} + \dots + cx + d$$

Polynomials can approximate **any** function (universal function approximator)

$$f(x) = ax^{n} + bx^{n-1} + \dots + cx + d$$

Polynomials can approximate **any** function (universal function approximator)

Can we extend linear regression to polynomials?

$$f(x) = ax^{n} + bx^{n-1} + \dots + cx + d$$

Polynomials can approximate **any** function (universal function approximator)

Can we extend linear regression to polynomials?

Expand to multi-dimensional input space...

Expand to multi-dimensional input space...

$$m{X}_D = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots & dots \ x_n & 1 \end{bmatrix} \Rightarrow m{X}_D = egin{bmatrix} x_1^n & x_1^{n-1} & \dots & x_1 & 1 \ x_2^n & x_2^{n-1} & \dots & x_2 & 1 \ dots & dots & \ddots & \ x_n & x_n^{n-1} & \dots & x_n & 1 \end{bmatrix}$$

And add some new parameters...

$$oldsymbol{ heta} = \left[eta_n \;\; heta_{n-1} \;\; ... \;\; oldsymbol{ heta}_1 \;\; oldsymbol{ heta}_0
ight]^{ op}$$

$$\boldsymbol{X}_{D}\boldsymbol{\theta} = \begin{bmatrix} x_{1}^{n} & x_{1}^{n-1} & \dots & x_{1} & 1 \\ x_{2}^{n} & x_{2}^{n-1} & \dots & x_{2} & 1 \\ \vdots & \vdots & \ddots & & \vdots \\ x_{n} & x_{n}^{n-1} & \dots & x_{n} & 1 \end{bmatrix} \begin{bmatrix} \theta_{n} \\ \theta_{n-1} \\ \vdots \\ \theta_{0} \end{bmatrix} = \begin{bmatrix} \theta_{n}x_{1}^{n} + \theta_{n-1}x_{1}^{n-1} + \dots + \theta_{0} \\ \theta_{n}x_{2} + \theta_{n-1}x_{2}^{n-1} + \dots + \theta_{0} \\ \vdots \\ \theta_{n}x_{n}^{n} + \theta_{n-1}x_{n}^{n-1} + \dots + \theta_{0} \end{bmatrix}$$

$$\boldsymbol{X}_{D}\boldsymbol{\theta} = \begin{bmatrix} x_{1}^{n} & x_{1}^{n-1} & \dots & x_{1} & 1 \\ x_{2}^{n} & x_{2}^{n-1} & \dots & x_{2} & 1 \\ \vdots & \vdots & \ddots & & \vdots \\ x_{n} & x_{n}^{n-1} & \dots & x_{n} & 1 \end{bmatrix} \begin{bmatrix} \theta_{n} \\ \theta_{n-1} \\ \vdots \\ \theta_{0} \end{bmatrix} = \begin{bmatrix} \theta_{n}x_{1}^{n} + \theta_{n-1}x_{1}^{n-1} + \dots + \theta_{0} \\ \theta_{n}x_{2} + \theta_{n-1}x_{2}^{n-1} + \dots + \theta_{0} \\ \vdots \\ \theta_{n}x_{n}^{n} + \theta_{n-1}x_{n}^{n-1} + \dots + \theta_{0} \end{bmatrix}$$

New function...

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$\boldsymbol{X}_{D}\boldsymbol{\theta} = \begin{bmatrix} x_{1}^{n} & x_{1}^{n-1} & \dots & x_{1} & 1 \\ x_{2}^{n} & x_{2}^{n-1} & \dots & x_{2} & 1 \\ \vdots & \vdots & \ddots & & \vdots \\ x_{n} & x_{n}^{n-1} & \dots & x_{n} & 1 \end{bmatrix} \begin{bmatrix} \theta_{n} \\ \theta_{n-1} \\ \vdots \\ \theta_{0} \end{bmatrix} = \begin{bmatrix} \theta_{n}x_{1}^{n} + \theta_{n-1}x_{1}^{n-1} + \dots + \theta_{0} \\ \theta_{n}x_{2} + \theta_{n-1}x_{2}^{n-1} + \dots + \theta_{0} \\ \vdots \\ \theta_{n}x_{n}^{n} + \theta_{n-1}x_{n}^{n-1} + \dots + \theta_{0} \end{bmatrix}$$

New function...

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

Same solution...

$$oldsymbol{ heta} = ig(oldsymbol{X}_D^ op oldsymbol{X}_D^ opig)^{-1} oldsymbol{X}_D^ op oldsymbol{y}$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

Summary: By changing the input space, we can fit a polynomial to the data using a linear fit!

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers
- 4. Regularization

Lecture 1: Introduction

- 1. Beyond linear functions
- 2. Overfitting
- 3. Outliers
- 4. Regularization

Lecture 1: Introduction

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

How do we choose n (polynomial order) that provides the best fit?

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

How do we choose n (polynomial order) that provides the best fit?

How do we choose n (polynomial order) that provides the best fit?

Pick the *n* with the smallest loss

$$\operatorname*{arg\ min}_{\boldsymbol{\theta},n} \mathcal{L}(\boldsymbol{x},\boldsymbol{y},(\boldsymbol{\theta},n))$$

Question: Which n do you think has the smallest loss?

Question: Which n do you think has the smallest loss?

Answer: n = 5 – but intuitively, n = 5 does not seem very good...

Back to the example...

Task: Given your education, predict your life expectancy

Back to the example...

Task: Given your education, predict your life expectancy

Back to the example...

Task: Given your education, predict your life expectancy

Could we do better than a linear function f?

Could we do better than a linear function f?

Could we do better than a linear function f?

What if we used a polynomial instead?

Could we do better than a linear function f?

What if we used a polynomial instead?

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

But we said we were using a linear model, how can we come up with a nonlinear polynomial?

But we said we were using a linear model, how can we come up with a nonlinear polynomial?

$$f(x, \boldsymbol{\theta}) = f\left(x, \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}\right) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$f(x, \boldsymbol{\theta}) = f\left(x, \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}\right) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$f(x,\boldsymbol{\theta}) = \begin{bmatrix} \theta_n & \theta_{n-1} & \dots & \theta_1 & b \end{bmatrix} \begin{bmatrix} x^n \\ x^{n-1} \\ \vdots \\ x^1 \\ 1 \end{bmatrix}$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 x^1 + \theta_0$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 x^1 + \theta_0$$

How do we choose n? Let us try different n

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 x^1 + \theta_0$$

How do we choose n? Let us try different n

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

Question: Which *n* should we pick?

$$f(x, \theta) = \theta_n x^n + \theta_{n-1} x^{n-1}, ..., \theta_1 + x^1 + \theta_0$$

Question: Which *n* should we pick?

Answer: n = 2 feels right, but why?

Data can be noisy and we want to fit the trend, not the noise

The world is governed by random processes

The world is governed by random processes

,

This is just an estimate

This is just an estimate

Going to school for 20 years will not save you from a hungry bear

When we fit to noise instead of the trend, we call it **overfitting**

When we fit to noise instead of the trend, we call it **overfitting**Overfitting is bad because new predictions will be inaccurate

How can we measure overfitting?

How can we measure overfitting?

Learn our parameters from one subset of data: training dataset

How can we measure overfitting?

Learn our parameters from one subset of data: training dataset

Test our model on a different subset of data: **testing dataset**

How can we measure overfitting?

Learn our parameters from one subset of data: training dataset

Test our model on a different subset of data: **testing dataset**

Question: How do we choose the training and testing datasets?

Question: How do we choose the training and testing datasets?

$$egin{aligned} \mathcal{D}_{ ext{train}} &= egin{bmatrix} x_1 & y_1 \ x_2 & y_2 \ x_3 & y_3 \end{bmatrix} \ \mathcal{D}_{ ext{test}} &= egin{bmatrix} x_4 & y_4 \ x_5 & y_5 \end{bmatrix} \end{aligned}$$

$$\mathcal{D}_{ ext{train}} = egin{bmatrix} x_4 & y_4 \ x_1 & y_1 \ x_3 & y_3 \end{bmatrix}$$

$$\mathcal{D}_{ ext{test}} = \begin{bmatrix} x_2 & y_2 \\ x_5 & y_5 \end{bmatrix}$$

Answer: Always shuffle the data

Question: How do we choose the training and testing datasets?

$$egin{aligned} \mathcal{D}_{ ext{train}} &= egin{bmatrix} x_1 & y_1 \ x_2 & y_2 \ x_3 & y_3 \end{bmatrix} & \mathcal{D}_{ ext{train}} &= egin{bmatrix} x_4 & y_4 \ x_1 & y_1 \ x_3 & y_3 \end{bmatrix} \ \mathcal{D}_{ ext{test}} &= egin{bmatrix} x_2 & y_2 \ x_5 & y_5 \end{bmatrix} \end{aligned}$$

Answer: Always shuffle the data

Note: The model must never see the testing dataset during training. This is very important!

Today we:

• Came up with a linear regression task

- Came up with a linear regression task
- Proposed a linear model

- Came up with a linear regression task
- Proposed a linear model
- Defined the square error loss function

- Came up with a linear regression task
- Proposed a linear model
- Defined the square error loss function
- Found θ that minimized the loss
- Used a trick to extend linear regression to nonlinear functions

- Came up with a linear regression task
- Proposed a linear model
- Defined the square error loss function
- Found θ that minimized the loss
- Used a trick to extend linear regression to nonlinear functions
- Discussed overfitting and test/train splits