Probabilités

Pierron Théo

ENS Ker Lann

Table des matières

1	Not	tions de base	1
	1.1	Espaces de probabilité, langage probabiliste	1
		1.1.1 Introduction	1
		1.1.2 Rappels	1
	1.2	Variables aléatoires, lois	6
		1.2.1 Définitions	6
		1.2.2 Variables aléatoires à densité	9
	1.3	Vecteurs aléatoires	10
		1.3.1 Variables discrètes	10
		1.3.2 Variables à densité	11
	1.4	Simuler des variables aléatoires	11
	1.5	Espérance, variance, co-variances et inégalités	12
2	Ind	épendance	17
	2.1	Définitions et premières propriétés	17
	2.2	Somme de variables aléatoires indépendantes	20
	2.3	Suites d'évènements et de v.a. indépendantes	21
		2.3.1 Construction d'un produit infini de probabilités	21
		2.3.2 Construction explicite d'une suite de variables aléa-	01
		1	21
		2.3.3 Lois de 0–1	22
3	Fon	ctions caractéristiques	25
	3.1	Définitions et premières propriétés	25
	3.2	Propriété de la fonction caractéristique	29
	3.3	Vecteurs gaussiens	32
4	Loi	des grands nombres – Convergence	37
	4.1		37
	4.2		41
	4.3	•	46

Chapitre 1

Notions de base

1.1 Espaces de probabilité, langage probabiliste

1.1.1 Introduction

<u>Définition 1.1</u> Soit Ω l'ensemble des résultats possibles d'une expérience.

On appelle résultats les éléments de Ω .

Les sous-ensembles de Ω sont des évènements.

 $\mathcal{P}(\Omega)$ est l'ensemble des évènements si Ω est au plus dénombrable. Sinon, on va prendre comme famille d'évènements une tribu \mathcal{A} sur Ω .

À tout évènement A, on va associer un nombre P(A) où P est une mesure finie de masse 1.

On appelle alors espace de probabilité le triplet (Ω, \mathcal{A}, P) .

1.1.2 Rappels

<u>Définition 1.2</u> Une classe $A \in \mathcal{P}(\mathcal{P}(E))$ est dite algèbre (de Boole) ssi :

- \bullet $\varnothing \in A$
- $a \in A \Rightarrow a^c \in A$
- $a_1, a_2 \in A^2 \Rightarrow a_1 \cup a_2 \in A$

<u>Définition 1.3</u> Une classe de parties $A \subset \mathcal{P}(E)$ est dite une tribu (σ -algèbre de Boole) ssi :

- $\bullet \varnothing \in A$
- $a \in A \Rightarrow a^c \in A$
- $(a_i)_i \in A^{\mathbb{N}} \Rightarrow \bigcup_{i \geqslant 0} a_i \in A$

Définition 1.4 Une classe de parties $A \subset \mathcal{P}(E)$ est dite classe monotone ssi:

- \bullet $\varnothing \in A$
- $(a_i)_i \in A^{\mathbb{N}}$ croissante $\Rightarrow \bigcup_{i \geqslant 0} a_i \in A$ $(a_i)_i \in A^{\mathbb{N}}$ décroissante $\Rightarrow \bigcap_{i \geqslant 0} a_i \in A$

Proposition 1.1

- Une algèbre est une tribu ssi c'est aussi une classe monotone
- Soit $\mathcal{E} \subset \mathcal{P}(\Omega)$. Il existe une unique tribu (resp. classe monotone) minimale pour l'inclusion qui contient \mathcal{E} .

On l'appelle tribu (resp. classe monotone) engendrée par \mathcal{E} notée $\sigma(\mathcal{E})$ (resp. $M(\mathcal{E})$).

- Si $A \subset \Omega$, $\sigma(A) = \{\varnothing, A, A^c, \Omega\}$.
- Si \mathcal{E} est une algèbre, $\sigma(\mathcal{E}) = M(\mathcal{E})$.
- Si \mathcal{E} est une algèbre et $\mathcal{C} \subset \mathcal{P}(\Omega)$ contenant \mathcal{E} et stable par union croissante et intersection décroissante, alors $\mathcal{C} \supset \Sigma(\mathcal{E})$.

Définition 1.5 Soit \mathcal{A} une tribu sur Ω et $P: A \to \mathbb{R}$.

P est une probabilité ssi :

- $\forall A \in \mathcal{A}, P(A) \geqslant 0.$
- Si $(A_j)_j \in \mathcal{A}^{\mathbb{N}}$ sont disjoints (ie incompatibles), alors $P\left(\bigcup_{j\geqslant 0}A_j\right) =$ $\sum_{j=0}^{\infty} P(A_j).$

Proposition 1.2

- $P(\varnothing) = 0$.
- $P(A) \leq 1$ pour tout A.
- $P(A^c) = 1 P(A)$.
- $P(A \cup B) + P(A \cap B) = P(A) + P(B)$.
- Si $A \subset B$, $P(A) = P(B) P(B \setminus A)$.
- Si $A = \bigcup_{j \geqslant 0} A_j$ avec $(A_j)_j$ croissante, ou $A = \bigcap_{j \geqslant 0} A_j$ avec $(A_j)_j$ décroissante, alors $\lim_{n \to +\infty} P(A_n) = P(A)$.
- $P\left(\bigcup_{j\geqslant 0}A_j\right)\leqslant \sum_{j=0}^{\infty}P(A_j).$
- La σ -additivité est équivalente à l'additivité et (si $(A_n)_n$ est décroissante, $\bigcap_{n\geqslant 0} A_n = \emptyset \Rightarrow \lim_{n\to +\infty} P(A_n) = 0$).

• Soit \mathcal{E} une algèbre et $p:\mathcal{E}\to\mathbb{R}$ positive, de masse 1, additive et vérifiant si $(A_n)_n$ est décroissante, $\bigcap_{n \to \infty} A_n = \emptyset \Rightarrow \lim_{n \to +\infty} p(A_n) = 0$, alors il existe une unique extension de p à une probabilité P sur $\sigma(\mathcal{E})$.

Démonstration.

- $\varnothing = \bigcup_{j\geqslant 0} \varnothing$ donc $P(\varnothing) = \sum_{j=0}^{\infty} P(\varnothing)$ donc $P(\varnothing) = 0$. Clair
- $\Omega = A \cup A^c \text{ donc } 1 = P(A) + P(A^c).$
- $A \cup B = (A \setminus (A \cap B)) \cup B$ donc $P(A \cup B) = P(A) P(A \cap B) + P(B)$.
- Si $A \subset B$, $B = A \cup (B \setminus A)$ et $A \cap (B \setminus A) = \emptyset$ donc $P(B) = \emptyset$ $P(A) + P(B \setminus A)$ d'où le résultat.
- cf. INTP
- idem
- Un sens est clair via l'INTP. Soit $(A_i)_i$ une suite de parties disjointes $de \mathcal{A}$.

 $\bigcup_{k>n+1} A_k$ décroit vers \varnothing donc, par hypothèse, $P\left(\bigcup_{k>n+1} A_k\right)$ tend vers 0.

On a donc:

$$P\left(\bigcup_{j\geqslant 0} A_j\right) = P\left(\left(\bigcup_{j=1}^n A_j\right) \cup \left(\bigcup_{k\geqslant n+1} A_k\right)\right)$$
$$= P\left(\bigcup_{j=1}^n A_j\right) + P\left(\bigcup_{k\geqslant n+1} A_k\right)$$
$$= \sum_{j=1}^n P(A_j) + P\left(\bigcup_{k\geqslant n+1} A_k\right)$$

Avec $n \to +\infty$, on a bien la σ -additivité.

Admis

Exemple 1.1

• $\Omega = \{\omega_j, j \geq 1\}$ dénombrable, $\mathcal{A} = \mathcal{P}(\Omega)$. Soit $(p_j)_j$ une suite de réels tels que $p_j \ge 0$, $\sum_{j \ge 1} p_j = 1$. On définit, pour

$$A \in \mathcal{P}(\Omega), \ P(A) = \sum_{\{j,\omega_j \in A\}} p_j.$$

C'est une probabilité sur (Ω, \mathcal{A}) .

• Soit f positive intégrable pour la mesure de Lebesgue et d'intégrale 1. Pour tout borélien B, on pose $P(B) = \int_{B} f(x)\lambda(\mathrm{d}x)$.

P est une probabilité sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.

• Soit $F: \mathbb{R} \to [0,1]$ croissante telle que $F(+\infty) = 1$ et $F(-\infty) = 0$. On définit une probabilité sur les unions finies disjointes d'intervalles semi-ouverts par:

$$P_F([a,b]) = F(b) - F(a) \text{ et } P(\emptyset) = 0$$

$$P_F(]-\infty,b]) = F(b) \text{ et } P_F(]a,+\infty[) = A - F(a)$$

On a de plus:

Théorème 1.1 de Lebesgue-Stieltjes P_F est positive, additive et de masse 1. De plus, pour tout $\forall (A_n)_n$ décroissant vers \varnothing , $\lim_{n\to+\infty} P_F(A_n)=0$ ssi F est continue à droite.

Ainsi, si F est une fonction continue à droite, croissante vérifiant les conditions $F(+\infty) = 1$ et $F(-\infty) = 0$, il existe une unique probabilité P_F sur $\mathscr{B}(\mathbb{R})$ telle que $F(x) = P_F([-\infty, x])$. Inversement, chaque probabilité $sur \mathcal{B}(\mathbb{R})$ définit une telle fonction. Elle est appelée fonction de répartition.

Démonstration.

$$\Rightarrow$$
 On a vu que si $t_n \to t^+$, alors $\bigcap_{n \ge 1}]-\infty, t_n] =]-\infty, t]$ donc $F(t_n) = P_F(]-\infty, t_n[) \to P_F(]-\infty, t]) = F(t).$

← Dans l'autre sens, on remarque que les trois premières propriétés sont vraies par définition de P_F . Soit donc une suite décroissante $(A_n)_n$ de limite \varnothing .

Notons
$$A_n = \bigcup_{j=1}^{k_n} [a_{j,n}, b_{j,n}]$$
. Soit $\delta > 0$.

Il existe R>0 tel que $F(-R)\leqslant \frac{\delta}{4}$ et $1-F(R)\leqslant \frac{\delta}{4}$. Par continuité à droite de F pour tout n,j, il existe $c_{j,n}\in]a_{j,n},b_{j,n}]$ tel

que
$$F(c_{j,n}) - F(a_{j,n}) \leqslant \frac{\delta}{2^{j+n+1}}$$
.
Posons de plus $B_n = \bigcup_{i=1}^{k_n} (]c_{j,n}, b_{j,n}] \cap] - R, R])$ et $C_n = \bigcap_{m=1}^n B_m$.
On a $B_n \in \mathcal{A}$, $B_n \subset A_n$, $C_n \in \mathcal{A}$ et $C_n \subset A_n$.

On a
$$B_n \in \mathcal{A}$$
, $B_n \subset A_n$, $C_n \in \mathcal{A}$ et $C_n \subset A_n$

De plus, $A_n \setminus C_n \subset \bigcup_{m=1} (A_m \setminus B_m)$ donc :

$$A_n \cap \left(\bigcup_{n=1}^m B_m^c\right) = \bigcup_{m=1}^n (A_n \cap B_n^c)$$

D'où:

$$P_{F}(A_{n}) - P_{F}(C_{n}) \leq P_{F}(] - R, R]^{c}) + \sum_{m=1}^{n} P_{F}((A_{m} \setminus B_{m}) \cap] - R, R])$$

$$\leq P_{F}(] - R, R]^{c}) + \sum_{m=1}^{n} \sum_{j=1}^{k_{m}} P_{F}(]c_{j,m}, b_{j,m}])$$

$$= F(-R) + 1 - F(R) + \sum_{m=1}^{n} \sum_{j=1}^{k_{m}} (F(b_{j,m}) - F(c_{j,m}))$$

$$\leq \frac{\delta}{2} + \sum_{m=1}^{\infty} \sum_{j=1}^{k_{m}} \frac{\delta}{2^{m+j+1}} = \delta$$

 $\overline{C_n}$ est borné donc compact. Il est de plus inclus dans A_n donc la suite des $\overline{C_n}$ converge vers \varnothing donc il existe m tel que pour $n \geqslant m$, $\overline{C_n} = \varnothing$ donc $\forall n \geqslant m$, $C_n = \varnothing$. Donc $P_F(C_n) = 0$ pour tout $n \geqslant m$.

Donc il existe
$$m \ge 1$$
 tel que pour tout $n \ge m$, $P_F(A_n) = P_F(A_n) - P_F(C_n) \le \delta$ donc $\lim_{n \to +\infty} P_F(A_n) = 0$.

Remarque 1.1 Si Ω est au plus dénombrable, pour construire une proba, on doit disposer d'une suite $p \in [0,1]^{\mathbb{N}}$ tels que $\sum_{n=1}^{\infty} p_n = 1$. Par exemple, pour un lancer de dé à n faces non pipé, on pose $p_1 = \ldots = p_n = \frac{1}{n}$ et $p_i = 0$ pour i > n.

Sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, on peut définir une probabilité à l'aide d'une fonction borélienne d'intégrale 1.

Soit (Ω, \mathcal{A}) un espace mesurable. Si $\Omega = \{\omega_i, i \in \mathbb{N}\}$ et si p est une suite positive telle que $\sum_{i=0}^{\infty} p_i = 1$, alors une probabilité sur Ω est donnée par :

$$P = J \mapsto \sum_{j \in J} p_j \delta_{\omega_j}(J).$$

<u>Définition 1.6</u> Soit $(\Omega, \mathcal{A}, \mathcal{P})$ un espace de probabilité.

On dit que $N \subset \Omega$ est négligeable ssi il existe $B \in \mathcal{A}$ tel que $N \subset B$ et P(B) = 0.

On note $\mathcal N$ la famille des négligeables et $\mathcal A^C=\sigma(\mathcal A\cup\mathcal N)$ la tribu complétée.

THÉORÈME 1.2 Il existe une unique extension de P à P^C sur \mathcal{A}^C . L'espace $(\Omega, \mathcal{A}^C, P^C)$ est alors appelé espace complet. Par la suite, tous les espaces de probabilités seront complets.

Définition 1.7 Un évènement A est dit presque sûr ssi A^c est négligeable.

1.2 Variables aléatoires, lois

1.2.1 Définitions

Soit (Ω, \mathcal{A}, P) un espace de probabilités et $X : \Omega \to \mathbb{R}^d$ muni de $\mathscr{B}(\mathbb{R}^d)$.

<u>Définition 1.8</u> X est une variable aléatoire d-dimesionnelle ssi X est mesurable.

On notera $\{X \in B\} = X^{-1}(B)$.

Exemple 1.2 Pour $A \subset \Omega$, 1_A est une variable aléatoire ssi $A \in \mathcal{A}$.

Proposition 1.3 X est une variable aléatoire réelle ssi $\forall t, \{X \leq t\} \in \mathcal{A}$.

Démonstration. $\{B \in \mathcal{B}(\mathbb{R}), X^{-1}(B) \in \mathcal{A}\}$ est une tribu qui contient une famille de générateurs de $\mathcal{B}(\mathbb{R})$ donc elle contient $\mathcal{B}(\mathbb{R})$.

Proposition 1.4 La tribu engendrée par une variable aléatoire réelle X: $\Omega \to \mathbb{R}^d$ est la plus petite tribu sur Ω qui rendre mesurable l'application X.

Proposition 1.5 Chaque variable aléatoire réelle sur (Ω, \mathcal{A}, P) induit un espace de probabilité avec la probabilité image Q = X(P) définie par $Q(B) = P(X \in B)$.

Démonstration. $Q(B) \ge 0$, $Q(\mathbb{R}^d) = P(\Omega) = 1$. Si les B_i sont disjoints,

$$Q\left(\bigcup_{j=1}^{\infty} B_j\right) = P\left(X^{-1}\left(\bigcup_{j=1}^{\infty} B_j\right)\right)$$

$$= P\left(\bigcup_{j=1}^{\infty} X^{-1}(B_j)\right)$$

$$= \sum_{j=1}^{\infty} P(X^{-1}(B_j))$$

$$= \sum_{j=1}^{\infty} Q(B_j)$$

<u>Définition 1.9</u> Soit X une variable aléatoire réelle sur (Ω, \mathcal{A}, P) . La loi de X est la probabilité Q de la proposition précédente qui sera notée P_X : $\mathscr{B}(\mathbb{R}^d) \to [0,1]$.

Définition 1.10 La fonction de répartition de la variable aléatoire réelle X est la fonction de répartition associée à la probabilité P_X :

$$F_X: \begin{cases} \mathbb{R} & \to & [0,1] \\ t & \mapsto & P_X(]-\infty,t] \end{cases}$$

Remarque 1.2 Si on connaît X, on peut déterminer P_X donc F_X . En revanche, si on connaît F_X , on ne peut pas trouver X.

Théorème 1.3 La fonction de répartiton caractérise la loi de la variable aléatoire réelle, ie $F_X = F_Y \Rightarrow P_X = P_Y$.

Démonstration. $F_X = F_Y \operatorname{donc} P_X(]-\infty,t]) = P_Y(]-\infty,t]) \operatorname{donc} P_X(]a,b]) = P_Y([a,b])$ pour tous a < b.

Donc P_X et P_Y sont égales sur les intervalles.

$$\mathcal{M}_1 = \{ B \in \mathscr{B}(\mathbb{R}), P_X(B) = P_Y(B) \}$$

est une classe monotone (par continuité de P_X et P_Y) contenant les intervalles dont vaut $\mathscr{B}(\mathbb{R})$.

Proposition 1.6 Soit X une variable aléatoire réelle et soit $g: \mathbb{R}^d \to \mathbb{R}^k$ borélienne. Alors g(X) est une variable aléatoire k-dimensionnelle.

Corollaire 1.1

- Soit X une variable aléatoire réelle et $g: \mathbb{R} \to \mathbb{R}$ continue. g(X) est une variable aléatoire réelle donc on a : X^r , $|X|^r$, $e^{-\lambda X}$, e^{itX} .
- $X \lor Y = \max\{X,Y\}, \ X \land Y, \ X+Y, \ X-Y, \ XY, \ \frac{X}{Y} \ sont \ des \ variables$ aléatoires avec Y une autre variable aléatoire réelle
- Soit $(X_n)_n$ une suite de variables aléatoires. Alors :

$$\sup_{n} X_{n}, \quad \inf_{n} X_{n}, \quad \limsup_{n} X_{n}, \quad \liminf_{n} X_{n}$$

sont des variables aléatoires et si $\lim_{n} X_n$ existe, alors, c'est une variable aléatoire réelle

<u>Définition 1.11</u> Une variable aléatoire réelle est dite simple ssi elle est étagée.

Proposition 1.7 Toute variable aléatoire réelle X est limite simple de d'uine suite de variable aléatoire réelle simples. Si X est positive, alors les termes de la suite sont positives et la suite peut être choisie croissante.

Exemple 1.3 Une variable aléatoire réelle est discrète ssi il existe $B \subset \mathbb{R}^d$ au plus dénombrable telle que $P(X \in B) = 1$. Cela signifie que X prend un nombre au plus dénombrable de valeurs avec une probabilité positive.

On a donc
$$X : \Omega \to \{x_i, i \in \mathbb{N}\}.$$

Posons
$$p_j = P(X = x_j) = P_X(\lbrace x_j \rbrace)$$
. On a donc $P_X = \sum_{j \ge 1} p_j \delta_{x_j}$.

Si on suppose les x_i croissants, le graphe de la fonction est un escalier croissant nul jusqu'à x_1 et qui est constant sur tous les $[x_i, x_{i+1}]$.

Proposition 1.8 Soit $g : \{x_i\} \to \{y_j\}$ surjective. Soit Y = g(X) une variable aléatoire discrète.

$$P(Y = y_l) = \sum_{j,g(x_j)=y_l} P(X = x_j)$$

Démonstration.

$$P(Y = y_l) = P(\{\omega, Y(\omega) = y_l\})$$

$$= P(\{\omega, g(X(\omega)) = y_l\})$$

$$= P\left(\bigcup_{j, g(x_j) = y_l} \{\omega, X(\omega) = x_j\}\right)$$

$$= \sum_{j, g(x_j) = y_l} P(X = x_j)$$

Exemple 1.4

• Loi de Bernoulli (B(1,p)):

$$\begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}$$

(On tire 1 avec une probabilité p et 0 avec 1-p)

• Loi binômiale (B(n,p))

$$\begin{pmatrix} 0 & 1 & \dots & k & \dots & n \\ (1-p)^n & np(1-p)^{n-1} & \dots & \binom{n}{k} p^k (1-p)^{n-k} & \dots & p^n \end{pmatrix}$$

• Loi géométrique $\mathcal{G}(p)$:

$$\begin{pmatrix} 1 & \dots & k & \dots \\ p & \dots & p(1-p)^{k-1} & \dots \end{pmatrix}$$

• Loi uniforme:

$$\begin{pmatrix} 1 & \dots & n \\ \frac{1}{n} & \dots & \frac{1}{n} \end{pmatrix}$$

• Loi de Poisson :

$$\begin{pmatrix} 0 & 1 & \dots & k & \dots \\ e^{-\lambda} & \lambda e^{-\lambda} & \dots & e^{-\lambda} \frac{\lambda^k}{k!} & \dots \end{pmatrix}$$

1.2.2Variables aléatoires à densité

Définition 1.12 Soit X un variable aléatoire.

On note $P_X(B) = \int_B f_X(x) dx$. Quand $f_X \ge 0$ est borélienne telle que $\int_{\mathbb{D}} f_X(x) dx$, P_X est une probabilité.

 f_{X} est la densité de probabilité de la loi P_{X} (par rapport à la mesure de Lebesgue).

On a
$$P_X(]-\infty,t]) = F_X(t) = \int_{-\infty}^t f_X(x) \, dx.$$

Proposition 1.9 F_X est dérivable pp et $F_X' = f_X$.

Exemple 1.5

• Variable aléatoire de la loi gaussienne standard $X \sim \mathcal{N}(0,1)$. La densité de X est $f_X(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$. On notera $\Phi(t) = F_X(t) = \int_{-\infty}^t f_X(x) dx$ la fonction de Laplace. On a $\Phi(-t) = 1 - \Phi(t)$. De plus,

$$P(-X \leqslant t) = P(X > -t) = 1 - P(X \leqslant -t)$$
$$= 1 - \Phi(-t) = \Phi(t) = P(X \leqslant t)$$

Donc X et -X ont même loi : $X \sim -X$.

• Variable aléatoire de loi gaussienne générale $Y \sim \mathcal{N}(m, \sigma^2)$. On a $Y = \sigma X + m$ avec $X \sim \mathcal{N}(0, 1), m \in \mathbb{R}$ et $\sigma \neq 0$. Si $\sigma > 0$,

$$F_Y(t) = P(Y \leqslant t) = P(\sigma X \leqslant t - m) = \Phi\left(\frac{t - m}{\sigma}\right)$$

Donc $F_Y(t)$ est dérivable et sa dérivée vaut $f_Y(t) = \frac{e^{-\frac{(t-m)^2}{2\sigma^2}}}{\sqrt{2\pi\sigma^2}}$.

• Variable aléatoire de la loi de Laplace :

$$f_X(t) = \frac{\mathrm{e}^{-|t|}}{2}$$

• Variable aléatoire de loi exponentielle (modélisation de la durée de vie d'un composant):

$$f_X(x) = \lambda e^{-\lambda x} \mathbf{1}_{\{x \ge 0\}}$$

On a $F_X(t) = 1 - e^{-\lambda t}$.

• Loi uniforme sur [a, b]:

$$f_U = \frac{1}{b-a} \mathbb{1}_{[a,b]}$$

On a $F_U(t) = 0$ si $t \leq a$, $F_U(t) = 1$ si $i \geq b$ et $F_U(t) = \frac{t}{b-a}$ sinon.

• Loi de Cauchy:

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$

• Loi Γ :

$$f_X(x) = \frac{\lambda^p}{\Gamma(p)} x^{p-1} e^{-\lambda x} 1_{\{x>0\}}$$

1.3 Vecteurs aléatoires

<u>Définition 1.13</u> Soit $X: \Omega \to \mathbb{R}^d$.

X est un vecteur aléatoire ssi X_1,\dots,X_d sont des variables aléatoires réelles.

<u>Définition 1.14</u> Soit $P_X : \mathbb{R}^d \to [0,1]$ la loi d'un vecteur aléatoire $X = (X_1, \dots, X_d)$.

On définit la fonction de répartition jointe par :

$$F_X(t_1,\ldots,t_d) = P_X(]-\infty,t_1]\times\ldots\times]-\infty,t_d]$$

La loi de la marginale X_j est donnée par la fonction de répartition

$$F_{X_j}(t) = \lim_{t_i \to +\infty, i \neq j} F_X(t_1, \dots, t_d)$$

1.3.1 Variables discrètes

$$P(X = x_j) = P\left(\bigcup_{i=0}^{\infty} \{X = x_j, Y = y_i\}\right) = \sum_{i=0}^{\infty} P(X = x_j, Y = y_i).$$

La loi marginale de X est donnée par :

$$\begin{pmatrix} x_j \\ p_j = \sum_{i=0}^{\infty} p_{j,i} \end{pmatrix}$$

1.3.2 Variables à densité

$$P_X(B) = \int_B f_X(x) \, \mathrm{d}x.$$

$$F_X(t_1,\ldots,t_d) = \int_{-\infty}^{t_1} \ldots \int_{-\infty}^{t_d} f_X(x) \, \mathrm{d}x$$

Dans le cas $(X, Y) \in \mathbb{R}^d \times \mathbb{R}^k$,

$$P_X(B) = P_{X,Y}(B \times \mathbb{R}^k) = \iint_{B \times \mathbb{R}^k} f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_B \underbrace{\int_{\mathbb{R}^k} f_{X,Y}(x,y) \, \mathrm{d}y}_{f_X(x)} \, \mathrm{d}x$$

On vérifie que f_X est positive, borélienne d'intégrale 1. C'est donc la densité marginale de X.

Proposition 1.10 Soit X un vecteur aléatoire d-dimensionnel de densité f_X et $g: \mathbb{R}^d \to \mathbb{R}^d$ un C^1 -difféomorphisme.

$$f_X$$
 et $g: \mathbb{R}^d \to \mathbb{R}^d$ un C^1 -difféomorphisme.
 $Y = g(X)$ est à densité $f_Y(y) = F_X(g^{-1}(y)) \det(J_y(g^{-1}))$.

Exemple 1.6 Soit (X,Y) deux vecteurs bidimensionnels à densité. On cherche la loi de X+Y.

On pose $g:(x,y)\mapsto (x+y,y)$. C'est un difféomorphisme et le déterminant de la jacobienne est 1.

On a donc $f_{X+Y,Y}(u,v) = f_{X,Y}(u-v,v)$.

D'où:

$$f_{X+Y}(u) = \int_{\mathbb{R}} f_{X+Y,Y}(u,v) \, \mathrm{d}v = \int_{\mathbb{R}} f_{X,Y}(u-v,v) \, \mathrm{d}v$$

1.4 Simuler des variables aléatoires

L'ordinateur sait choisir aléatoirement un nombre entre 0 et 1 : ça revient à simuler une variable aléatoire uniforme sur [0,1].

Pour simuler un lancer de pile ou face avec une probabilité de pile p, on pose $X=1_{\{1-p\leq U\leq 1\}}$ et ça marche.

Proposition 1.11 Soit X une variable aléatoire réelle de répartition F.

Posons $G(u) = \inf\{t \in \mathbb{R}, F(t) \ge u\}$ pour $u \in]0, 1]$.

G(U) a la répartition F.

Démonstration. On vérifie que $G(u) \leq t$ ssi $u \leq F(t)$:

Soit
$$A(u) = \{t \in \mathbb{R}, F(t) \geqslant u\}.$$

Comme F est continue à droite, A est fermé.

Si $G(u) \leq t$, alors comme A(u) est fermé, $t \in A(u)$ donc $F(t) \geq u$.

De plus, si G(u) > t, inf A(u) > t donc $t \notin A(u)$ donc F(t) < u

Donc $P(G(u) \leqslant t) = P(U \leqslant F(t)) = F(t)$.

Remarque 1.3

- Si F est continue et strictement croissante, $G = F^{-1}$.
- Si A(u) est fermé, inf $A(u) \in A(u)$ donc $F(G(u)) \ge u$. Si F est continue à gauche, F(G(u)) = u.

1.5 Espérance, variance, co-variances et inégalités

 $\underline{\bf D\acute{e}finition~1.15}$ On appelle espérance de X l'intégrale par rapport à P de X :

$$E(X) = \int_{\Omega} X(\omega) P(\mathrm{d}\omega)$$

Remarque 1.4

- $E(c1_A) = cP(A)$
- E est linéaire sur les variables aléatoires étagées
- $Si(X_n)_n \ croît \ vers \ X \geqslant 0, \ E(X) = \lim_{n \to +\infty} E(X_n)$
- Si X est quelconque, on décompose en X^+ et X^- et on dit que X est intégrable ssi E(|X|) est finie. On a alors $E(X) = E(X^+) E(X^-)$.
- E est linéaire tout court.

Proposition 1.12

- $|E(X)| \leq E(|X|)$.
- Toute variable aléatoire bornée est intégrable
- Si $(X_n)_n$ positive croît vers X alors $E(X_n)$ tend vers E(X) et

$$E\left(\sum_{n\geqslant 1} X_n\right) = \sum_{n\geqslant 1} E(X_n)$$

- Si $(X_n)_n$ est minorée par Z intégrable, $E(\liminf_{n\to+\infty}X_n)\leqslant \liminf_{n\to+\infty}E(X_n)$.
- Si $(X_n)_n$ est dominée par Z intégrable et converge simplement vers X alors $E(X_n)$ converge vers E(X) et $E(|X_n X|)$ tend vers 0.
- Si $\sum_{n\geqslant 1} E(|X_n|)$ est finie alors $\sum_{n\geqslant 1} X_n$ est finie presque sûrement et

$$E\left(\sum_{n\geqslant 1} X_n\right) = \sum_{n\geqslant 1} E(X_n)$$

Démonstration. Soit $S_n = \sum_{k=1}^n |X_k|$.

On a
$$E(S_n) = \sum_{k=1}^{n} E(|X_k|)$$
.

Or
$$S_n$$
 croît vers $S = \sum_{n \ge 1} |X_n|$.

Par convergence monotone, $E(S) = \sum_{n \ge 1} E(|X_n|)$. Donc S est intégrable.

Soit $\delta > 0$.

 $1_{\{S=\infty\}} \leqslant \delta S$ donc $E(1_{\{S=\infty\}}) \leqslant \delta E(S)$ donc $P(\{S=\infty\}) \leqslant \delta E(S)$. Avec $\delta \to 0$, $P(\{S=\infty\}) = 0$ donc S est finie presque sûrement. Or

 $\left|\sum_{k=1}^{n} X_k\right| \leqslant S_n \leqslant S$ vérifie les hypothèses de la convergence dominée.

On a donc le résultat.

Théorème 1.4 de transport ou tranfert Soit $X: \Omega \to \mathbb{R}^d$ une variable aléatoire, $g: \mathbb{R}^d \to \mathbb{R}$ borélienne. Notons Y = g(X).

$$Y \in \mathscr{L}^1(\mu) \text{ ssi } g \in \mathscr{L}^1(P_X).$$

$$E(Y) = E(|g(X)|)$$
 ssi $\int_{\mathbb{R}^+} |g(t)| P_X(\mathrm{d}t)$ est finie. Dans ce cas $E(g(X)) = \int_{\mathbb{R}} g(t) P_X(\mathrm{d}t)$.

Démonstration. C'est vrai pour $g = 1_B$. Par linéarité, on a le résultat pour les fonctions étagées.

Par convergence dominée, on a le résultat pour les fonctions mesurables positives puis pour les mesurables quelconques.

Exemple 1.7

- Si X suit une loi de Bernoulli $(X \sim \mathcal{B}(1, p))$ alors E(X) = p
- Si X suit une loi binômiale $(X \sim \mathcal{B}(n, p))$ alors E(X) = np
- Si X suit une loi de Poisson $(X \sim \mathcal{P}(\lambda))$ alors $E(X) = \lambda$
- Si X suit une loi normale $(X \sim \mathcal{N}(0,1))$ alors E(X) = 0
- Si X suit une loi normale $(X \sim \mathcal{N}(m, \sigma^2))$ alors E(X) = m

Définition 1.16 (d=1) Si $|X|^k \in \mathcal{L}^1$ avec X une variable aléatoire réelle, alors:

$$E(X^k) = \int_{\mathbb{R}} t^k P_X(\mathrm{d}t) = \mu_k(t)$$

On appelle $\mu_k(X)$ le moment d'ordre k de X.

Si $X^2 \in \mathcal{L}^1$ alors la variance de X est $V(X) = E((X - E(X))^2) =$ $E(X^2) - (E(X))^2$.

Remarque 1.5

- $0 \leqslant V(X)$
- $X \in \mathcal{L}^2$ ssi $X \in \mathcal{L}^1$ et V(X) finie.
- $V(cX) = c^2V(X)$
- V(X+c) = V(X)
- $Si X \sim \mathcal{N}(m, \sigma^2), V(X) = \sigma^2.$

• Si X est à densité, $E(g(X)) = \int_{\mathbb{R}} g(t) f_X(t) dt$.

Proposition 1.13 Soit X une variable aléatoire réelle.

$$E(X) = \int_0^\infty P(X>t) \,\mathrm{d}t = \int_0^\infty (1-F_X(t)) \,\mathrm{d}t$$
 De plus, $E(X) - 1 \leqslant \sum_{n\geqslant 1} P(X>n) \leqslant E(X)$.
Ainsi, $X \in \mathscr{L}^1$ ssi $\sum_{n\geqslant 1} P(X>n) < \infty$.

Démonstration.

$$\int_0^\infty P(X > t) dt = \int_0^\infty E(1_{\{X > t\}}) dt$$

$$= E\left(\int_0^\infty 1_{\{X > t\}} dt\right)$$

$$= E\left(\int_0^\infty 1_{[0,X[}(t) dt\right)$$

$$= E\left(\int_0^X dt\right)$$

$$= E(X)$$

Donc:

$$E(X) = \sum_{n \ge 1} \int_{n-1}^{n} P(X > t) dt$$

$$\leqslant \sum_{n \ge 1} P(X > n - 1)$$

$$= P(X > 0) + \sum_{n \ge 2} P(X > n - 1)$$

$$\leqslant 1 + \sum_{n \ge 1} P(X > n)$$

$$\leqslant 1 + \sum_{n \ge 1} \int_{n-1}^{n} P(X > t) dt$$

$$= 1 + E(X)$$

Proposition 1.14 (Inégalités de Markov et Tchebytchev) Soit X une variable aléatoire réelle.

Si
$$X \in \mathcal{L}^1$$
 alors pour tout t , $P(X \ge t) \le \frac{E(X^+)}{t} \le \frac{E(|X|)}{t}$.
Si $X \in \mathcal{L}^2$ alors pour tout $t > 0$, $P(|X - E(X)| \ge t) \le \frac{V(X)}{t^2}$.

Démonstration.

- $1_{[t,+\infty[} \leqslant \frac{X}{t} 1_{[t,+\infty[}(X) \leqslant \frac{X^+}{t} \leqslant \frac{|X|}{t}$ Donc $P(X \geqslant t) = E(1_{[t,+\infty[}) \leqslant \frac{E(|X|)}{t})$.
- Y = X EX. On a $t^2 1_{\{|Y| \geqslant t\}} \leqslant Y^2$ et on prend l'espérance.

Remarque 1.6 Par Markov, E(|X|) = 0 ssi X = 0 presque sûrement.

L'inégalité pour Y se la preuve de Tchebychev marche avec $p \geqslant 1$ à la place de 2 et on a $P(|Y| \geqslant t) \leqslant \frac{E(|Y|)^p}{t^p}$.

Proposition 1.15 (Inégalité de Jensen) Soit $X \in \mathcal{L}^1$ à valeurs dans $I \subset \mathbb{R}$. Soit φ convexe.

Alors $\varphi(X)$ est une variable aléatoire réelle \mathscr{L}^1 et $\varphi(E(X)) \leqslant E(\varphi(X))$.

Lemme 1.4.1

Si φ est convexe, pour tout x < t < y, on a $S(x,t) \leq S(x,y) \leq S(t,y)$ avec $S(x,y) = \frac{\varphi(x) - \varphi(y)}{x-y}$.

Lemme 1.4.2

Si φ est convexe, φ est dérivable à gauche et à droite en tout point. De plus la dérivée à droite est croissante et $\varphi(y) = \sup \varphi(x) + \varphi'_d(x)(y-x)$.

Remarque 1.7 $|E(X)|^p \leqslant E(|X|^p)$ quand $X^p \in \mathcal{L}^1$.

Définition 1.17 Soient X, Y des variables aléatoires réelles de \mathcal{L}^2 .

Alors $XY \in \mathcal{L}^1$ et la covariance de X et Y notée Cov(X,Y) = E((X - E(X))(Y - E(Y))) = E(XY) - E(X)E(Y) est bien définie.

Le coefficient de corrélation de X et Y est défini par $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{V(X)V(Y)}$ si X et Y ne sont pas constantes presque sûrement.

COROLLAIRE 1.2 (Inégalité de Hölder)

Soit
$$X \in \mathcal{L}^p$$
, $Y \in \mathcal{L}^q$ avec $\frac{1}{p} + \frac{1}{q} = 1$.

Alors
$$XY \in \mathcal{L}^1$$
 et $E(|XY|) \leqslant E(|X|^p)^{\frac{1}{p}} E(|X|^q)^{\frac{1}{q}}$.

Démonstration. On peut supposer que $E(|Y|)^q = 1$.

Posons $Q(A) = E(|Y|^q 1_A)$. C'est une probabilité. On applique alors Jensen pour $\varphi = x \mapsto x^p$, la variable aléatoire $|X||Y|^{1-q}$ et la probabilité Q.

On a
$$E_Q(Z) = E(Z|Y|^q)$$
 donc $\varphi(E_Q(|X||Y|^{1-q})) \leq E_Q(\varphi(|X||Y|^{1-q}))$. Après simplifications, on a le résultat.

Remarque 1.8 Avec p = q = 2, on obtient Cauchy-Schwartz.

COROLLAIRE 1.3 (INÉGALITÉ DE MINKOWSKI) $X \mapsto E(|X|^p)^{\frac{1}{p}}$ vérifie l'inégalité triangulaire.

<u>Définition 1.18</u> $L^p = \mathcal{L}^p/\mathrm{ps.}$

Proposition 1.16 L^p est un Banach pour $\|\cdot\|_p$. De plus L^2 est un Hilbert.

Proposition 1.17 Soit $r > p \geqslant 1$.

Alors $L^r \subset L^p$ et $\|\cdot\|_p \leqslant \|\cdot\|_r$ sur L^r .

 $D\acute{e}monstration.$ On peut supposer $X\geqslant 0$ car l'inégalité fait apparaı̂tre seulement |X|.

De plus on peut approcher X par $(X_n)_n$ avec $X_n = \min(X, n)$ et $0 \le X_n \le X$.

On peut supposer X bornée. On utilise alors Jensen avec $\varphi(x) = |x|^s$ avec $s = \frac{r}{n}$.

On a
$$||X||_p^r = (E(|X|^p))^s \le E(|X|^s) = ||X||_r^r$$
.

<u>Définition 1.19</u> Soit X un vecteur aléatoire tel que $E(|X|^2)$ soit finie. La matrice de covariance de X est la matrice $K_X = (\text{Cov}(X_i, X_j))_{i,j}$.

Proposition 1.18 $K_X \in S_n^{++}$.

Pour toute matrice A et vecteur aléatoire X, E(AX) = AE(X) et $K_{AX} = AK_XA^*$.

Démonstration. On a :

$$\sum_{j=1}^{d} \sum_{k=1}^{d} K_X(j,k) u_j u_k = V(u^*X) \ge 0$$

Le deuxième point est débile.

Chapitre 2

Indépendance

2.1 Définitions et premières propriétés

<u>Définition 2.1</u> Une famille $(A_t)_{t\in T}$ d'évènements est dite indépendante ssi pour tout $J\subset T$ fini,

$$P\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}P(A_i)$$

<u>Définition 2.2</u> Une famille $(A_t)_{t\in T}$ de tribus est dite indépendante ssi pour tout $J \subset T$ fini et pour tout choix d'évènements $A_j \in A_j$,

$$P\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}P(A_i)$$

<u>Définition 2.3</u> Une famille $(X_t)_{t\in T}$ de variables aléatoires est dite indépendante ssi pour tout $J\subset T$ fini et pour tout choix $(B_j)_{j\in J}$ de boréliens,

$$P\left(\bigcap_{i\in J} \{X_j \in B_j\}\right) = \prod_{i\in J} P(X_j \in B_j)$$

Remarque 2.1 On note l'indépendance $A \perp B$.

 $A \perp \!\!\!\perp B \ ssi \ \sigma A \perp \!\!\!\!\perp \sigma(B).$

De manière générale, une famille de variable aléatoires est indépendantes ssi la famille des tribus images est indépendante.

Proposition 2.1 Soient E et F deux algèbres de parties de Ω .

On suppose $E \perp \!\!\! \perp F$. Alors $\sigma(E) \perp \!\!\! \perp \sigma(F)$.

Démonstration. Soit $A \in E$ fixé.

Soit
$$\mathcal{M}_1 = \{ B \in \sigma(F), P(A \cap B) = P(A)P(B) \}.$$

 \mathcal{M}_1 est une classe monotone qui contient F. En effet, si $(B_n)_n$ en est une suite croissante,

$$P(A \cap \lim_{n \to +\infty} B_n) = P(\lim_{n \to +\infty} (A \cap B_n))$$

$$= \lim_{n \to +\infty} P(A \cap B_n)$$

$$= \lim_{n \to +\infty} P(A)P(B_n)$$

$$= P(A)P(\lim_{n \to +\infty} B_n)$$

Par le théorème de classe monotone, $\sigma(F) = \mathcal{M}_1$ donc tout élément de $\sigma(F)$ est indépendant de tout élément de E.

De même, pour $B \in \sigma(F)$, $\mathcal{M}_2 = \{A \in \sigma(E), P(A \cap B) = P(A)P(B)\}$ est une classe monotone qui contient E.

Donc tout élément de $\sigma(E)$ est indépendant de tout élément de $\sigma(F)$.

COROLLAIRE 2.1 Soit $(X_t)_{t\in T}$ une famille de variables aléatoires réelles.

C'est une famille indépendante ssi pour tout $J \subset T$ finie et pour tout choix $(s_i)_{i \in J}$ réels, on a:

$$P\left(\bigcap_{j\in J} \{X_j \leqslant s_j\}\right) = \prod_{j\in J} P(\{X_j \leqslant s_j\})$$

Démonstration. Il suffit de vérifier que $\{X_1^{-1}(]-\infty,s]$, $s\in\mathbb{R}\}\perp\{X_2^{-1}(]-\infty,s]$), $s\in\mathbb{R}\}$.

Corollaire 2.2 $X_1 \perp X_2$ ssi $P_{X_1,X_2} = P_{X_1} \otimes P_{X_2}$.

Démonstration.

$$\Rightarrow P_{(X,Y)}(A\times B) = P(X\in A,Y\in B) = P(X\in A)P(Y\in B) = P_X(A)P_Y(B)$$
 \Leftarrow On a

$$P(X \in A, Y \in B) = P_{(X,Y)}(A \times B) = P_X \otimes P_Y(A \times B)$$
$$= P_X(A)P_Y(B) = P(X \in A)P(Y \in B)$$

COROLLAIRE 2.3 X_1, \ldots, X_n sont indépendantes ssi $F_{X_1, \ldots, X_n}(t_1, \ldots, t_n) = F_{X_1}(t_1) \ldots F_{X_n}(t_n)$ pour tous (t_1, \ldots, t_n) .

COROLLAIRE 2.4 Soient $(X_1, ..., X_n)$ des variables indépendantes et $n_1 + ... + n_r = n$ des entiers positifs.

Les variables aléatoires

$$(X_1,\ldots,X_{n_1}),(X_{n_1+1},\ldots,X_{n_2}),\ldots,(X_{n_1+\ldots+n_{r-1}+1},\ldots,X_n)$$

sont indépendantes.

Proposition 2.2 Soient X, Y deux variables aléatoires de dimension d et k.

 $X \perp \!\!\! \perp Y$ ssi une des conditions suivantes est vérifiée :

- 1. $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ pour $A \in \mathcal{B}(\mathbb{R}^d)$, $B \in \mathcal{B}(\mathbb{R}^k)$
- 2. $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ pour A, B générateurs de $\mathscr{B}(\mathbb{R}^d)$ et $\mathscr{B}(\mathbb{R}^k)$
- 3. $f(X) \perp g(Y)$ pour tout $f: \mathbb{R}^d \to \mathbb{R}^{d'}$ et $g: \mathbb{R}^k \to \mathbb{R}^{k'}$ boréliennes
- 4. E(f(X)g(Y)) = E(f(X))E(g(Y)) pour chaque paire de fonctions boréliennes bornées (ou positives) $\mathbb{R}^d \to \mathbb{R}$ et $\mathbb{R}^k \to \mathbb{R}$

Démonstration.

1 ⇔ 2 Déjà vu

 $3 \Rightarrow 1$ Il suffit de prendre f = Id et g = Id.

 $1 \Rightarrow 3 \ f(X)^{-1}(\mathscr{B}(\mathbb{R}^d)) = X^{-1}(f^{-1}(\mathscr{B}(\mathbb{R}^d))) \subset X^{-1}(\mathscr{B}(\mathbb{R}^d)).$

De même $g(Y)^{-1}(\mathscr{B}(\mathbb{R}^k)) \subset Y^{-1}(\mathscr{B}(\mathbb{R}^k))$.

Donc $X \perp Y$ ssi $X^{-1}(\mathscr{B}(\mathbb{R}^d)) \perp Y^{-1}(\mathscr{B}(\mathbb{R}^k))$. Il y a donc indépendance des familles $X^{-1}(\mathscr{B}(\mathbb{R}^d))$ et $Y^{-1}(\mathscr{B}(\mathbb{R}^k))$.

 $4 \Rightarrow 1$ Il suffit de prendre $f = 1_A$ et $g = 1_B$.

$$E(1_A(X)1_B(Y)) = E(1_{A \times B}(X, Y)) = P(X \in A)P(Y \in B)$$

 $1 \Rightarrow 4$ Par 1, c'est vrai pour les indicatrices. On conclut par convergence monotone et décomposition de Han-Jordan.

Exemple 2.1

- \bullet Soient X, Y discrètes.
 - On note $p_{j,k} = P((X,Y) = (p_j, p_k))$. $X \perp \!\!\! \perp Y$ ssi $p_{j,k} = p_j p_k$.
- Soit (X,Y) à densité sur \mathbb{R}^2 de densité $f_{X,Y}$.

Alors X et Y sont à densité de densités $f_X(x) = \int_{\mathbb{R}} f_{X,Y}(x,y) \, \mathrm{d}y$ et

$$f_Y(y) = \int_{\mathbb{R}^d \times Y}^f (x, y) \, \mathrm{d}x.$$

 $X \perp Y$ ssi $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ pour presque tout x,y.

De gauche à droite, on utilise le théorème de classe monotone sur

$$\left\{ C \in \mathscr{B}(\mathbb{R}^2), \iint_C f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y = \iint_C f_X(x) f_Y(y) \, \mathrm{d}x \, \mathrm{d}y \right\}$$

Pour la réciproque, on écrit des intégrales.

2.2 Somme de variables aléatoires indépendantes

Proposition 2.3 Soient X, Y deux variables aléatoires réelles indépendantes.

Si X, Y et XY sont positives ou intégrables alors E(XY) = E(X)E(Y).

Démonstration.

$$E(|XY|) = \iint |xy| P_{(X,Y)}(\mathrm{d}x,\mathrm{d}y) = \iint |x| |y| P_X(\mathrm{d}x) P_Y(\mathrm{d}y) < \infty$$

Ensuite on refait pareil sans valeurs abolues.

Remarque 2.2 Si $X \perp Y$, Cov(X,Y) = 0. Mais la réciproque est fausse $(X \sim \mathcal{N}(0,1) \text{ et } Y = X^2)$.

<u>Définition 2.4</u> On dit que X et Y sont non-corrélées ssi Cov(X,Y) = 0.

Proposition 2.4 Si $X_1, \ldots, X_n \in L^2$ sont non corrélées deux à deux, alors :

$$Var(X_1 + \ldots + X_n) = \sum_{j=1}^n Var(X_j)$$

$$P\left(\left|\sum_{j=1}^{n} (X_j - E(X_j))\right| \geqslant t\right) \leqslant \frac{1}{t^2} \sum_{j=1}^{n} \operatorname{Var}(X_j)$$

Démonstration. L'inégalité découle directement de Bienaymé-Tchebychev.

Pour le reste, OPS que X_1, \ldots, X_n sont centrées (d'espérance nulle).

On développe alors $(X_1+\ldots+X_n)^2$ et on passe à l'espérance pour obtenir le résultat.

Proposition 2.5 Soit X, Y indépendantes.

X + Y a la loi $P_X * P_Y$ (convolution).

Pour toute fonction mesurable h,

$$\int f(t)(P_X * P_Y)(\mathrm{d}t) = \iint h(x+y)P_X(\mathrm{d}x)P_Y(\mathrm{d}y)$$

Remarque 2.3 Si X et Y sont de plus à densité, alors la densité de X+Y est $f_X * f_Y$.

Démonstration.

$$\int h(t)P_{X+Y}(dt) = E(h(X+Y))$$

$$= \iint h(x+y)P_{(X,Y)}(dx, dy)$$

$$= \iint h(x+y)P_X \otimes P_Y(dx, dy)$$

$$= \iint h(x+y)P_X(dx)P_Y(dy)$$

Exemple 2.2

- Si $X \sim B(n, p)$, $Y \sim B(m, p)$ et $X \perp Y$, alors $X + Y \sim B(n + m, p)$.
- Si $X \sim \mathcal{P}(\lambda)$, $Y \sim \mathcal{P}(\mu)$ et $X \perp Y$, alors $X + Y \sim \mathcal{P}(\lambda + \mu)$.
- Si $X \sim \mathcal{N}(m, \sigma^2)$, $Y \sim \mathcal{N}(n, \tau^2)$ et $X \perp Y$ alors $X + Y \sim \mathcal{N}(m + n, \tau^2 + \sigma^2)$.

2.3 Suite d'évènements et de variables aléatoires indépendantes

2.3.1 Construction d'un produit infini de probabilités

On note \mathbb{R}^{∞} l'ensemble des suites réelles.

Soient $(\mathbb{R}, \mathscr{B}(\mathbb{R}), P_1), (\mathbb{R}, \mathscr{B}(\mathbb{R}), P_2), \dots$ des espaces de probabilités.

Les cylindre ouverts $(\prod_{i=1}^{\infty} A_i \text{ avec } A_i = \mathbb{R} \text{ sauf un nombre fini})$ donnent la topologie produit sur $\mathbb{R}^{\infty} : \mathscr{B}(\mathbb{R}^{\infty})$.

On pose $P^{(n)} = P_1 \otimes \ldots \otimes P_n$. $(P^{(n)})_n$ est consistante : $P^{(n)}(A_1 \times \ldots \times A_n) = P^{(n+1)}(A_1 \times \ldots \times A_n \times \mathbb{R})$.

THÉORÈME 2.1 DE KOLMOGOROV Si une famille $(P^{(n)})_n$ de probabilités sur \mathbb{R}^{∞} est consistante, alors il existe une unique probabilité $P^{(\infty)}$ sur \mathbb{R}^{∞} tel que $\pi_n(P^{\infty}) = P^{(n)}$ avec $\pi_n : x \mapsto (x_1, \dots, x_n)$.

2.3.2 Construction explicite d'une suite de variables aléatoires indépendantes

On se place sur $(]0,1], \mathcal{B}(]0,1]), \lambda)$.

Pour $\omega \in]0,1]$, sa représentation diadique la suite $(d_n(\omega))_n$ telle que :

$$\omega = \sum_{n=1}^{\infty} \frac{d_n(\omega)}{2^n}$$

Il y a unicité sauf pour les réels de la forme $\frac{k}{2^n}$ (en nombre dénombrable donc de mesure nulle).

 $(d_n)_n$ est une famille de variables aléatoires indépendantes de loi $B(1, \frac{1}{2})$. On pose $A_1 =]\frac{1}{2}, 1], A_2 =]\frac{1}{4}, \frac{1}{2}] \cup]\frac{3}{4}, 1]$ et :

$$A_n = \bigcup_{u_1, \dots, u_{n-1} \in \{0,1\}}]0.u_1u_2 \dots u_{n-1}100 \dots, 0.u_1u_2 \dots u_{n-1}11 \dots]$$

 $(A_n)_n$ est une suite d'évènements indépendants.

2.3.3 Lois de 0-1

<u>Définition 2.5</u> Soit $(A_n)_n$ une suite de sous-tribus de \mathcal{A} . On pose $T_n = \sigma\left(\bigcup_{m\geqslant n}\mathcal{A}_m\right)$.

La tribu $T_{\infty} = \bigcap_{n \ge 1} T_n$ est appellée tribu terminale ou asymptotique de A_n .

THÉORÈME 2.2 (LOI DE 0-1 DE KOLMOGOROV) Soit $(A_n)_n$ une suite de tribus indépendantes.

Chaque évènement de T_{∞} est de probabilité 0 ou 1 (La tribu terminale est presque sûrement triviale).

Démonstration. Soit $A \in T_{\infty}$. On note \mathcal{D} l'ensemble des évènements indépendants de $A: D \in \mathcal{D}$ ssi $P(A \cap D) = P(A)P(D)$.

Montrons que \mathcal{D} est une classe monotone, on aura alors $P(A)^2 = P(A)$ et le résultat.

Pour tout
$$n, A \in T_{n+1}$$
 donc $A \perp \underbrace{\sigma(A_1 \cup \ldots \cup A_n)}_{=S_n}$ car $T_{n+1} \perp S_n$.

Donc pour tout $B \in \bigcup_{n=1}^{\infty} S_n$, $A \perp \!\!\! \perp B$ donc \mathcal{D} est une classe monotone.

Or
$$\mathcal{A}_n \subset \bigcup_{n=1}^{\infty} \mathcal{S}_n$$
 donc $T_n \subset \sigma \left(\bigcup_{n=1}^{\infty} \mathcal{S}_n\right)$.
Donc $T_{\infty} \subset \mathcal{D}$ donc $A \in \mathcal{D}$.

COROLLAIRE 2.5 (LOI 0-1 DE BOREL) Pour toute suite $(A_n)_n$ d'évènements indépendants, on a $P(\limsup_n A_n) = 0$ ou 1.

Démonstration. Soit $A_n = \sigma(A_n)$. C'est une suite de tribus indépendantes.

On pose
$$B_n = \bigcup_{m \geqslant n} B_m$$
. Ce sont des éléments de T_n .

 $\limsup A_n = \bigcap_{j=1}^{\infty} B_k \in T_j$ pour tout j. Donc $\limsup A_n \in T_{\infty}$ et Kolmogorov conclut.

Théorème 2.3 (Borel-Cantelli) Soit $(A_n)_n$ une suite d'évènements de \mathcal{A} .

$$\sum_{n=1}^{\infty} A_n < \infty \Rightarrow P(\limsup_{n} A_n) = 0$$

Et si les évènements sont indépendants alors la réciproque est vraie.

Démonstration. Soit $A = \limsup A_n$. $A \subset \bigcup_{j \geqslant n} A_j$ pour tout n.

Donc $P(A) \leqslant P\left(\bigcup_{j \ge n} A_j\right) \leqslant \sum_{j \ge n} P(A_j)$ qui est un reste dde série convergente.

Donc P(A) = 0.

Notons
$$I_n = 1_{A_n}$$
, $S_n = \sum_{j=1}^n I_j$ et $S = \sum_{m=1}^{\infty} I_m$.

On a $I_i^2 = I_j$ par Bienaymé et :

$$\operatorname{Var}(S_n) = \sum_{j=1}^n \operatorname{Var}(I_j)$$

$$= \sum_{j=1}^n (E(I_j^2) - E(I_j)^2)$$

$$= \sum_{j=1}^n (E(I_j) - E(I_j)^2)$$

$$= E(S_n) - \sum_{j=1}^n E(I_j)^2$$

$$\leq E(S_n)$$

Par hypothèse, $\sum_{n\geqslant 1} E(I_n) = +\infty$.

Comme $\lim_{n\to+\infty} S_n^{n\geqslant 1} = S$, on a $\lim_{n\to+\infty} E(S_n) = E(S) = +\infty$. Or $\omega \in A$ ssi $\omega \in A_n$ pour une infinité de n donc $S(\omega) = +\infty$.

Donc $A = \{S = +\infty\}$ et on montre que $P(S = +\infty) = 1$:

$$P(|S_n - E(S_n)| \leqslant t) \geqslant 1 - \frac{\operatorname{Var}(S_n)}{t^2}$$

Comme $\lim_{n\to+\infty} S_n = +\infty$, on peut supposer $E(S_n) > 0$. Alors:

$$P\left(S_n \geqslant \frac{E(S_n)}{2}\right) \geqslant P\left(|S_n - E(S_n)| \leqslant \frac{E(S_n)}{2}\right) \geqslant 1 - 4\frac{\operatorname{Var}(S_n)}{E(S_n)^2}$$

Mais ce terme tend vers 1 donc pour tout $\varepsilon > 0$, $P(S_n \ge \frac{E(S_n)}{2}) \ge 1 - \varepsilon$. Comme $S \ge S_n$, $P(S \ge \frac{E(S_n)}{2}) \ge 1 - \varepsilon$ pour tout n sauf un nombre fini. Donc, avec $n \to +\infty$ et $\varepsilon \to 0$, $P(S = +\infty) \ge 1$.

COROLLAIRE 2.6 Si $(A_n)_n$ contient une sous-suite d'évènements indépendants dont la somme des probabilités diverge alors $P(\limsup A_n) = 1$.

 $D\acute{e}monstration$. $\limsup A_{\varphi(n)} \subset \limsup A_n$.

THÉORÈME 2.4 Soit $(X_n)_n$ une suite de variables aléatoires indépendantes. On note $A_n = \sigma(X_n)$.

Alors chaque évènement asymptotique pour $(A_n)_n$ est de probabilité 0 ou 1.

Remarque 2.4 Si les remarques spnt positives et indépendantes, est-ce que $\left\{\sum_{n=1}^{\infty} X_n = +\infty\right\}$ est un évènement asymptotique?

COROLLAIRE 2.7 Soit $X: \Omega \to \mathbb{R}$ est une variable aléatoire T-mesurable avec T presque sûrement triviale.

Alors il existe $c \in \mathbb{R}$ tel que X = c presque sûrement.

Démonstration. $F_X(t) = P(X \leqslant t) = P(X^{-1}(]-\infty,t])$.

Donc $F_X(t) \in \{0,1\}$. Il y a donc un saut de taille 1. On pose $c = \inf\{t, F_X(t) = 1\}$.

Il existe t_n qui décroît vers c. On a $\{X \leq t_n\}$ qui tend vers $\{X \leq c\}$.

Donc $P(X \leq t_n)$ tend vers $P(X \leq c)$ donc $c \in \{t, F_X(t) = 1\}$.

Chapitre 3

Fonctions caractéristiques

Définitions et premières propriétés 3.1

Définition 3.1 Soit $X:\Omega\to\mathbb{R}^d$ une variable aléatoire de loi P_X . La fonction caractéristique de la variable aléatoire X ou de sa loi P_X est φ_X : $\mathbb{R}^d \to \mathbb{C}$ définie par :

$$\varphi_X(t) = E(e^{i\langle t, X \rangle}) = E(\cos(\langle t, X \rangle)) + iE(\sin(\langle t, X \rangle))$$

Remarque 3.1

- $\varphi_x(0) = 1$
- $|\varphi_X(t)| = |E(e^{i\langle t, X \rangle})| \leqslant E(1) = 1$
- $\overline{\varphi_X(t)} = \varphi_X(-t) = \varphi_{-X}(t) \ donc \ si \ X \ est \ de \ loi \ symétrique, \ (X \sim -X),$ alors $\varphi_{-X}(t) = \varphi_X(t)$ donc $\overline{\varphi_X(t)} = \varphi_X(t)$.

Calculs:

- Si X est discrète, $\varphi_X(t) = \sum_{j\geqslant 1} p_j e^{i\langle t, x_j \rangle}$. Si $X \sim \mathcal{P}(\lambda), P(X = n) = e^{\lambda(e^{it} 1)}$.
- Si X est à densité, $\varphi_X(t) = \int_{\mathbb{R}^d} e^{i\langle t, x \rangle} f_X(x) dx$.
- Si $X \sim \mathcal{E}(\lambda)$, $\varphi_X(t) = \frac{\lambda}{\lambda it}$.

Proposition 3.1 φ_X est uniformément continue, vaut 0 en 1 et est de type positif:

$$\forall n \geqslant 1, \forall z_1, \dots, z_n \in \mathbb{C}, \forall t_1, \dots, t_n \in \mathbb{R}^d, \sum_{j=1}^n \sum_{k=1}^n \varphi_X(t_k - t_j) z_k \overline{z_j} \geqslant 0$$

Démonstration. On a :

$$\begin{aligned} |\varphi_X(t+h) - \varphi_X(t)| &= |E(e^{i\langle t+h,X\rangle} - e^{i\langle t,X\rangle})| \\ &= |E(e^{i\langle t,X\rangle}(e^{i\langle h,X\rangle} - 1))| \\ &\leqslant E(|e^{i\langle t,X\rangle}(e^{i\langle h,X\rangle} - 1)|) \\ &= E(|e^{i\langle h,X\rangle} - 1|) \to 0 \end{aligned}$$

D'où l'uniforme continuité. De plus,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \varphi_{X}(t_{k} - t_{j}) z_{k} \overline{z_{j}} = \sum_{j=1}^{n} \sum_{k=1}^{n} z_{k} \overline{z_{j}} E(e^{i\langle t_{k} - t_{j}, X \rangle})$$

$$= E\left(\sum_{j=1}^{n} \sum_{k=1}^{n} z_{k} e^{i\langle t_{k}, X \rangle} \overline{z_{j}} e^{i\langle t_{j}, X \rangle}\right)$$

$$= E\left(\left(\sum_{k=1}^{n} z_{k} e^{i\langle t_{k}, X \rangle}\right) \overline{\left(\sum_{j=1}^{n} z_{j} e^{i\langle t_{j}, X \rangle}\right)}\right)$$

$$= E\left(\left|\sum_{k=1}^{n} z_{k} e^{i\langle t_{k}, X \rangle}\right|\right) \geqslant 0$$

THÉORÈME 3.1 (BOCHNER) Si $q: \mathbb{R}^d \to \mathbb{C}$ est continue en 0, de type positif et vaut 1 en 0 alors il existe une variable aléatoire X et que $g = \varphi_X$.

Proposition 3.2 Pour tout $t \in \mathbb{R}$, $\varphi'_X(t) = E(iXe^{itX})$.

Démonstration. Soit $h \neq 0$.

$$\frac{\varphi_X(t+h) - \varphi_X(t)}{h} - E(iXe^{tX}) = E\left(e^{itX}\frac{e^{ihX} - 1 - ihX}{h}\right)$$

On a de plus $|e^{ix} - 1 - ix| \le \min\{\frac{|x|^2}{2}, 2|x|\}$. Donc $\frac{e^{ihX} - 1 - ihX}{h} \le 2|X| \in L^1$ et $\frac{e^{ihX} - 1 - ihX}{h} \le \frac{|h||X|^2}{2} \to 0$ quand $h \to 0$. Par convergence dominée, on a le résultat.

Remarque 3.2 En particulier, $\varphi'_X(0) = iE(X)$.

Proposition 3.3 Soit $X \in L^p$ une variable aléatoire de fonction caractéristique φ_X .

Alors φ_X est p fois dérivable (avec des dérivées continues).

Pour tout $k \in [1, p]$, $\varphi_X^{(k)}(t) = i^k E(X^k e^{itX})$.

Remarque 3.3

• De plus, $\varphi_X^{(k)}(0) = i^k E(X^k)$.

3.1. DÉFINITIONS ET PREMIÈRES PROPRIÉTÉS

- En particulier, si p=2, $E(X)=\frac{1}{i}\varphi_X'(0)$ et $E(X^2)=-\varphi_X''(0)$.
- La réciproque est fausse : on peut avoir φ_X dérivable mais pas l'existence de E(X).

Par exemple : on prend X discrète tel que $P(X=\pm j)=\frac{c}{j^2\ln(j)}$ avec c>0 pour que ce soit un loi de probabilité.

$$E(X) = 2\sum_{j=2}^{\infty} \frac{c}{j \ln(j)} = +\infty.$$

$$\varphi_X(t) = 2c \sum_{j=2}^{\infty} \frac{\cos(tj)}{j^2 \ln(j)} \ et \sum_{j=2}^{\infty} \frac{\sin(tj)}{j \ln(j)} < \infty \ et \ converge \ uniform\'ement.$$

Donc φ_X est dérivable et vaut 0 en 0.

Proposition 3.4 Soit X un variable aléatoire réelle de fonction caractéristique φ_X .

Si φ_X est p fois dérivable en 0 avec $p \geqslant 2$ alors X admet des moments d'ordres inférieurs à 2r avec $r = \lfloor \frac{p}{2} \rfloor$.

Démonstration. On le fait dans le cas φ_X deux fois dérivable en 0.

$$\varphi_X''(0) = \lim_{h \to 0} \frac{\varphi_X(h) - \varphi_X(-h) - 2\varphi_X(0)}{h^2}$$

$$= \lim_{h \to 0} \frac{E(e^{ihX} + e^{-ihX}) - 2}{h^2}$$

$$= \lim_{h \to 0} \frac{2}{h^2} (E(\cos(hX)) - 1)$$

On peut montrer que $x^2 = \lim_{h \to 0} \frac{2(1 - \cos(hX))}{h^2}$.

$$E(X^{2}) = E\left(\lim_{h \to 0} \frac{2(1 - \cos(hX))}{h^{2}}\right)$$

$$\leq \liminf_{h \to 0} E\left(2\frac{1 - \cos(hX)}{h^{2}}\right) = -\varphi_{X}''(0) < \infty$$

via Fatou.

Remarque 3.4 Si $X \in L^2$ et E(X) = 0, alors $\varphi_X(u) = 1 - \frac{\sigma^2 u^2}{2} + o(u)$ avec $\sigma^2 = E(X^2) = \text{Var}(X)$.

Calcul de la fonction caractéristique de $\mathcal{N}(0,1)$

• Première méthode :

$$\varphi_X(t) = \int_{-\infty}^{\infty} e^{itx} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$$

$$= \int_{-\infty}^{\infty} \cos(tx) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx + i \underbrace{\int_{-\infty}^{\infty} \sin(tx) \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx}_{=0}$$

$$= \int_{-\infty}^{\infty} \cos(tx) e^{-\frac{x^2}{2}} \sqrt{2\pi} dx$$

On dérive sous l'intégrale (oui oui, on peut) :

$$\varphi_X'(t) = \frac{1}{\sqrt{2\pi}}$$

$$= \int_{-\infty}^{\infty} -x\sin(tx)e^{-\frac{x^2}{2}} dx$$

$$\stackrel{IPP}{=} -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t\cos(tx)e^{-\frac{x^2}{2}} dx$$

$$= -t\varphi_X(t)$$

Donc $\varphi_X(t) = e^{-\frac{t^2}{2}} \varphi_X(0) = e^{-\frac{t^2}{2}}$.

• Deuxième méthode :

Pour $a \in \mathbb{R}$, on a :

$$\int_{-\infty}^{\infty} e^{ax} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{a^2}{2}} e^{-\frac{(x-a)^2}{2}} dx$$
$$= e^{\frac{a^2}{2}} \underbrace{\int_{-\infty}^{\infty} \frac{e^{-\frac{(x-a)^2}{2}}}{\sqrt{2\pi}} dx}_{=1}$$

On pose $h_1 = z \mapsto e^{\frac{z^2}{2}}$ et $h_2 : z \mapsto \int_{-\infty}^{\infty} e^{zx} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} dx$. h_1 et h_2 sont holomorphes et égales sur \mathbb{R} donc par prolongement ana-

lytique (voir CDHO), $h_1 = h_2$ sur \mathbb{C} .

Donc
$$h_1(it) = h_2(it)$$
 donc $\varphi_X(t) = e^{-\frac{t^2}{2}}$.

Proposition 3.5 Soit X un vecteur aléatoire de dimension d vérifiant que $E(|X|^p) < \infty$ où $p \ge 1$. Alors φ_X admet des dérivées partielles continues jusqu'à l'ordre p et :

$$\frac{\partial^p}{\partial t_{j_1} \dots \partial t_{j_p}} \varphi_X(t) = i^p E(X_{j_1} \dots X_{j_p} e^{i\langle t, X \rangle})$$

Remarque 3.5 En particulier, $E(X_{j_1}...X_{j_p}) = \frac{\partial^p}{\partial t_{j_1}...\partial t_{j_p}} \varphi_X(t)|_{t=0}$. De plus, si $X \in L^2$, $\varphi_X(t) = 1 + i\langle t, E(X) \rangle - \frac{1}{2}t^*E(XX^*)t + o(|t|^2)$.

 $D\acute{e}monstration.$ On dérive sous l'espérance, ce qui est possible car on domine aisément $\frac{\partial^p}{\partial t_{j_1}...\partial t_{j_p}} e^{i\langle t,x\rangle}$ par $|x_{j_1}|...|x_{j_p}| \in L^1$.

Propriété fondamentale de la fonction ca-3.2ractéristique

Théorème 3.2 $\varphi_X = \varphi_Y$ ssi $P_X = P_Y$.

 $\begin{array}{l} \textit{D\'{e}monstration dans le cas } d=1. \\ \bullet \ \ \text{On a, pour tout } t, \int_{\mathbb{R}} \mathrm{e}^{itu} \mathrm{e}^{-\lambda |u|} \, \mathrm{d}u = \frac{2\lambda}{\lambda^2 + t^2}. \end{array}$ Avec $t = X(\omega) - s$ et $s \in \mathbb{R}$, on a :

$$E\left(\int_{\mathbb{R}} e^{i(X-s)u}\right) = E\left(\frac{2\lambda}{\lambda^2 + (X-s)^2}\right)$$

$$E\left(\frac{2\lambda}{\lambda^2 + (X - s)^2}\right) \stackrel{\text{Fubini}}{=} \int_{\mathbb{R}} E(e^{i(X - s)u}e^{-\lambda|u|}) du$$
$$= \int_{\mathbb{R}} e^{-isu - \lambda|u|} \underbrace{\int_{\mathbb{R}} e^{ixu} P_X(dx)}_{=\varphi_X(u)} du$$

Par hypothèse, $\varphi_X = \varphi_Y$ donc, en reprenant les calculs avec Y au lieu de X, on a:

$$E\left(\frac{2\lambda}{\lambda^2 + (X-s)^2}\right) = E\left(\frac{2\lambda}{\lambda^2 + (Y-s)^2}\right)$$

Soit g continue à support compact.

$$\int_{\mathbb{R}} g(s) \int_{\mathbb{R}} \frac{2\lambda}{\lambda^2 + (x - s)^2} P_X(dx) ds \stackrel{\text{Fubini}}{=} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{2\lambda g(s)}{\lambda^2 + (x - s)^2} ds P_X(dx)$$
$$= 2 \int_{\mathbb{R}} \frac{g(x - \lambda t)}{1 + t^2} dt P_X(dx)$$

Ainsi, on a:

$$\int_{\mathbb{R}} P_X(\mathrm{d}x) \int_{\mathbb{R}} \frac{g(x - \lambda t)}{1 + t^2} \, \mathrm{d}t = int_{\mathbb{R}} P_Y(\mathrm{d}x) \int_{\mathbb{R}} \frac{g(x - \lambda t)}{1 + t^2} \, \mathrm{d}t$$

- On fait tendre λ vers 0 et on obtient E(g(X)) = E(g(Y)) via la convergence dominée.
 - En effet, $\int_{\mathbb{R}} \frac{g(x-\lambda t)}{1+t^2} dt \to \pi g(x)$ quand $\lambda \to 0$. On a donc $\pi E(g(X)) = \pi E(g(Y))$.
- Soit $a, b \in \mathbb{R}$ et g_n qui approche $1_{[a,b]}$ en étant non nulle sur $[a, b + \frac{1}{n}]$. On a $E(g_n(X)) = E(g_n(Y))$ donc par convergence dominée,

$$E(1_{[a,b]}(X)) = E(1_{[a,b]}(Y))$$

Donc $P_X = P_Y$ sur tout intervalle]a,b] donc, par classe monotone, $P_X = P_Y$.

Proposition 3.6 (inversion de Fourier) Soit $\varphi \in L^1$ la fonction caractéristique d'une variable X.

Alors X est à densité continue, bornée :

$$f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{-i\langle t, x \rangle} \varphi(t) dt$$

Démonstration dans le cas d = 1. Soit $\lambda > 0$.

$$2\pi E(g(X)) = \lim_{\lambda \to 0} \int_{\mathbb{R}} P_X(\mathrm{d}x) \int_{\mathbb{R}} \frac{2g(x - \lambda t)}{1 + t^2} \, \mathrm{d}t$$

$$= \lim_{\lambda \to 0} \int_{\mathbb{R}} g(s) \, \mathrm{d}s \int_{\mathbb{R}} \frac{2\lambda}{\lambda^2 + (x - s)^2} P_X(\mathrm{d}x)$$

$$= \lim_{\lambda \to 0} \int_{\mathbb{R}} g(s) \, \mathrm{d}s \int_{\mathbb{R}} \mathrm{e}^{-isu - \lambda |u|} \varphi_X(u) \, \mathrm{d}u$$

$$= \int_{\mathbb{R}} g(s) \, \mathrm{d}s \int_{\mathbb{R}} \mathrm{e}^{-isu} \varphi_X(u) \, \mathrm{d}u \text{ Par convergence dominée}$$

Donc f(s) est la densité de X

Fonction caractéristique de la loi de Laplace

On a
$$f_X(x) = \frac{1}{2}e^{-|x|}$$
.

$$\varphi_X(t) = E(e^{itX})
= \int_{-\infty}^{\infty} e^{itX} \frac{e^{-|x|}}{2} dx
= \frac{1}{2} \int_{-\infty}^{0} e^{(it+1)x} dx + \frac{1}{2} \int_{0}^{\infty} e^{(it-1)x} dx
= \frac{1}{2(it+1)} - \frac{1}{2(it-1)}
= \frac{1}{1+t^2}$$

Fonction caractéristique de la loi de Cauchy

On a
$$f_Y(y) = \frac{1}{\pi(1+y^2)}$$
.

$$\varphi_Y(t) = E(e^{itY}) = \int_{-\infty}^{\infty} \frac{1}{\pi(1+y^2)} e^{ity} dy$$

 $\varphi_X \in L^1$ donc par l'inversion de Fourier,

$$\frac{e^{-|x|}}{2} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \varphi_X(t) dt = \frac{1}{2} \underbrace{\int_{\mathbb{R}} e^{it(-x)} f_Y(t) dt}_{=\varphi_Y(-x)}$$

Donc $\varphi_Y(x) = e^{-|x|}$.

Proposition 3.7 Soit (X, Y) un vecteur aléatoire.

$$X \perp \!\!\! \perp Y \operatorname{ssi} \varphi_{(X,Y)}(s,t) = \varphi_X(s)\varphi_Y(t).$$

Démonstration.

$$\Rightarrow$$
 Si $X \perp \!\!\! \perp Y$, on a :

$$\varphi_{(X,Y)}(s,t) = E\left(\exp\left(i\left\langle \begin{pmatrix} s \\ t \end{pmatrix}, \begin{pmatrix} X \\ Y \end{pmatrix} \right\rangle\right)\right)$$

$$= E(e^{i(sX+tY)})$$

$$= E(e^{isX}e^{itY})$$

$$= E(e^{isX})E(e^{itY})$$

$$= \varphi_X(s)\varphi_Y(t)$$

← On a:

$$\iint e^{isx+ity} P_{(X,Y)}(dx, dy) = \int e^{isx} P_X(dx) \int e^{ity} P_Y(dy)$$
$$= \iint e^{i(sx+ty)} P_X(dx) P_Y(dy)$$
$$= \iint e^{isx+ity} (P_X \otimes P_Y)(dx, dy)$$

Donc $P_{(X,Y)} = P_X \otimes P_Y$. Le théorème de caractérisation assure que $X \perp \!\!\! \perp Y$.

Proposition 3.8 Si $X \perp \!\!\! \perp Y$, $\varphi_{X+Y} = \varphi_X \varphi_Y$.

Démonstration.

$$E(e^{it(X+Y)}) = E(e^{itX}e^{itY})$$
$$= E(e^{itX})E(e^{itY})$$
$$= \varphi_X(t)\varphi_Y(t)$$

3.3 Vecteurs gaussiens

Proposition 3.9 Y est une variable aléatoire gaussienne ssi il existe a, b et $X \sim \mathcal{N}(0, 1)$ tel que Y = aX + b.

<u>Définition 3.2</u> On note $\mathcal{N}_1 = {\mathcal{N}(m, \sigma^2), m, \sigma}$.

Proposition 3.10 \mathcal{N}_1 est stable par multiplication par un scalaire.

<u>Définition 3.3</u> Un vecteur aléatoire X de dimension d est dit vecteur gaussien ssi pour tout $u \in \mathbb{R}^d$,

$$\langle u, X \rangle = \sum_{j=1}^{d} u_j X_j$$

est une variable aléatoire gaussienne.

Autrement dit, X est un vecteur aléatoire gaussien ssi toute combinaison linéaire de ses coordonnées est une variable aléatoire gaussienne.

Remarque 3.6

- Si X est un vecteur gaussien alors X_1, \ldots, X_d sont gaussiennes et dans L^p .
- Si X_1, \ldots, X_d sont des variables gaussiennes indépendantes, alors le vecteur (X_1, \ldots, X_d) est qaussien.
- On dit que le vecteur X est gaussien ssi pour toute forme linéaire h, le loi de h(X) appartient à N₁.
 En effet, il existe u tel que h = ⟨u,·⟩.

Proposition 3.11 Si X est un vecteur gaussien d'espérance $m \in \mathbb{R}^d$ et de matrice de covariance K, alors sa fonction caractéristique est donnée par :

$$\varphi_X(t) = e^{i\langle t, m \rangle - \frac{t^*Kt}{2}}$$

Démonstration.

$$\varphi_X(t) = E e^{i\langle t, X \rangle} = \varphi_{\langle t, X \rangle}(1) = e^{iE(\langle t, X \rangle) - \frac{1}{2} \operatorname{Var}(\langle t, X \rangle)}$$

De plus,

$$E(t^*X) = t^*E(X) = \langle t, E(X) \rangle = \langle t, m \rangle$$

et

$$Var(t^*X) = Cov(t^*X) = t^*Cov(X)t = t^*Kt$$

D'où le résultat.

Proposition 3.12 Soit X un vecteur gaussien d-dimensionnel d'espérance m et de matrice de covariance K.

Soit $A \in \mathfrak{M}_{k,d}(\mathbb{R})$ et $b \in \mathbb{R}^k$.

On note Y = b + AX. Alors Y est un vecteur gaussien d'espérance b + Am et de matrice de covariance AKA^* .

 $D\acute{e}monstration$. On montre que Y est un vecteur gaussien.

Soit $s \in \mathbb{R}^k$.

 $d^*Y = s^*(b+AX) = s^*b + (A^*s)^*X$ et $A^*s \in \mathbb{R}^d$ donc $(A^*s)^*X$ est gaussienne, ce qui conclut.

Proposition 3.13 Soit $m \in \mathbb{R}^d$ et K une matrice $d \times d$ symétrique positive. Alors il existe un vecteur gaussien d'espérance m et de variance K.

Démonstration. Il existe $A \in \mathfrak{M}_d(\mathbb{R})$ tel que $K = AA^*$.

Soient Y_1, \ldots, Y_d d'variables aléatoires indépendantes de même loi $\mathcal{N}(0, 1)$. $Y = (Y_1, \ldots, Y_d)$ est un vecteur gaussien d'espérance 0 et de matrice de

 $Y = (Y_1, \ldots, Y_d)$ est un vecteur gaussien d'espérance 0 et de matrice de covariance Id.

On pose Y = m + AY. Alors X est le vecteur gaussien recherché.

Proposition 3.14 Soit X un vecteur gaussien de matrice de covariance K et d'espérance m.

Les variables aléatoires X_1, \dots, X_d sont indépendantes ssi K est diagonale.

Démonstration.

 \Rightarrow trivial

 \Leftarrow Si K est diagonale, on a :

$$\varphi_X(t) = E(e^{i\langle t, X \rangle})$$

$$= e^{i\langle t, m \rangle - \frac{t^* K t}{2}}$$

$$= \exp\left(i\sum_{j=1}^d t_j m_j - \frac{1}{2}\sum_{j=1}^d t_j^2 \sigma_j^2\right)$$

Soit $t^{(l)} = (0, \dots, 0, t_l, 0, \dots, 0) \in \mathbb{R}^d$.

$$E(e^{it_l X_l}) = e^{it_l m_l - \frac{t_l^2 \sigma_l^2}{2}}$$

Donc $\varphi_{X_l}(t_l) = e^{it_l m_l - \frac{t_l^2 \sigma_l^2}{2}}$ pour tout l. D'où :

$$\varphi_X(t) = \exp\left(i\sum_{j=1}^d t_j m_j - \frac{1}{2}\sum_{j=1}^d t_j^2 \sigma_j^2\right)$$
$$= \prod_{j=1}^d e^{it_j m_j - \frac{t_j^2 \sigma_j^2}{2}}$$
$$= \prod_{j=1}^d \varphi_{X_j}(t_j)$$

Donc X_1, \ldots, X_d sont indépendantes.

Proposition 3.15 Soit X un vecteur gaussien d'espérance m et de matrice de covariance K.

X admet une densité ssi K est inversible. Dans ce cas,

$$f_X(x) = \frac{1}{(2\pi)^{\frac{d}{2}} \sqrt{\det(K)}} e^{-\frac{(x-m)^* K^{-1}(x-m)}{2}}$$

Démonstration.

Lemme 3.2.1

Soit Z un vecteur aléatoire d-dimensionnel ayant une densité.

Soit $H \subset \mathbb{R}^d$ un sous-espace vectoriel tel que $\dim(H) < d$. Alors $P(Z \in H) = 0$.

 $D\acute{e}monstration$. Soit H' un hyperplan contenant H.

Quitte à changer les coordonnées, on peut supposer que

$$H' = \{(x_1, \dots, x_d), x_d = 0\}$$

$$P(Z \in H) \leqslant P(Z \in H') = \int f_Z(x_1, \dots, x_d) 1_{\{x_d = 0\}} dx_1 \dots dx_d = 0$$

On a vu que X et m+AY ont la même loi avec $Y=(Y_1,\ldots,Y_d)$ et Y_1,\ldots,Y_d indépendantes de même loi et avec A telle que $K=AA^*$.

On a $det(K) = det^2(A)$ donc A et K sont inversibles ou non en même temps.

Si A est non inversible, Im(A) est de dimension < d donc, si X est à densité, X-m aussi et $P(X-m \in H)=0$.

On a donc $P((m+AY)-m\in H)=0$ donc $0=P(AY\in H)=1$. Donc X n'est pas à densité.

Si A est inversible, m+AY est un C^1 difféomorphisme donc à densité donc X est à densité.

De plus,

$$f_Y(y) = \prod_{j=1}^d \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{y_j^2}{2}} \right) = \frac{1}{(2\pi)^{\frac{d}{2}}} e^{-\frac{\langle y, y \rangle}{2}}$$

Notons X' = m + AY. On a $Y = A^{-1}(X' - m)$ et $x \mapsto A^{-1}(x - m)$ est de jacobienne A^{-1} donc de jacobien $\frac{1}{\sqrt{\det(K)}}$.

On a aussi:

$$\langle y, y \rangle = \langle A^{-1}(x - m), A^{-1}(x - m) \rangle$$

$$= (A^{-1}(x - m))^* A^{-1}(x - m)$$

$$= (x - m)^* (A^{-1})^* A^{-1}(x - m)$$

$$= (x - m)^* K^{-1}(x - m)$$

D'où la densité de X dans le cas inversible.

CHAI	PITRE 3.	FONCTIONS	CARACTI	ÉRISTIQUES	
PIERRON Thé	0	Page 3	86	Tous droits	s réservés

Chapitre 4

Loi des grands nombres – Convergence

4.1 Loi des grands nombres

On a différents types de convergence :

- La convergence presque partout.
- La convergence en norme L^p .
- La convergence en probabilité :

$$X_n \to X$$
 ssi $\forall \varepsilon > 0, \lim_{n \to +\infty} P(|X_n - X| \ge \varepsilon) = 0$

Remarque 4.1 La convergence presque sûre est équivalente à

$$P(\limsup_{n \to +\infty} \{|X_n - X| \ge \varepsilon\} = 0$$

Proposition 4.1 La convergence presque sûre implique la convergence en probabilité.

Démonstration. Si X_n converge presque sûrement vers X alors pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} P\left(\bigcup_{k \geqslant n} \{|X_k - X| \geqslant \varepsilon\}\right) = 0$$

Or $\{|X_n - X| \ge \varepsilon\} \subset \bigcup_{k \ge n} \{|X_k - X| \ge \varepsilon\}$ donc X_n converge en probabilité vers X.

Remarque 4.2 La réciproque est fausse.

On considère
$$X_1 = 1_{[0,1]}, X_2 = 1_{[0,\frac{1}{2}]}, X_3 = 1_{[\frac{1}{2},1]}, \dots$$

Si $X_n=1_{[\frac{j_n-1}{k_n},\frac{j_n}{k_n}]}$ alors $\lambda(|X_n|\geqslant\varepsilon)=\frac{1}{k_n}\to 0$ donc X_n converge en probabilité vers 0.

Or pour tout $\omega \in [0,1]$ et k entier, il existe j tel que $\omega \in \left[\frac{j-1}{k}, \frac{j}{k}\right]$ donc pour une infinité de $n, X_n(\omega) \neq 0$.

Donc X_n ne converge pas presque sûrement vers 0.

Proposition 4.2 Soit X_n une suite de variables aléatoires réelles. Si X_n converge presque sûrement (resp. en probabilité) vers X.

Soit $g: \mathbb{R} \to \mathbb{R}$ continue.

Alors $g(X_n)$ converge presque sûrement (resp. en probabilité) vers g(X).

Proposition 4.3 Lemme de Borel-Cantelli de convergence presque sûre

- (i) Si $\forall \varepsilon > 0$, $\sum_{n=1}^{\infty} P(|X_n X| \geqslant \varepsilon) < \infty$ alors X_n converge presque sûrement vers X.
- (ii) Si $(X_n)_n$ est une suite de variables indépendantes, alors X_n converge presque sûrement vers c ssi $\forall \varepsilon > 0$, $\sum_{n=1}^{\infty} P(|X_n c| \ge \varepsilon) < \infty$.

Démonstration.

(i) On pose $A_n = \{|X_n - X| \ge \varepsilon\}$. On a $\sum_{n=1}^{\infty} P(A_n) < \infty$ donc par Borel-Cantelli, $P(\limsup A_n) = 0$.

Donc on a la convergence presque sûre de X_n vers X.

(ii) Si $\sum_{n=1}^{\infty} P(A_n) = +\infty$ avec $A_n = \{|X_n - c| \ge \varepsilon\} = X_n^{-1}(]c - \varepsilon, c + \varepsilon[)^c$ des évènements indépendants.

Par Borel-Cantelli, $P(\limsup A_n) = 1$, d'où une contradiction car la convergence presque sûre implique $P(\limsup A_n) = 0$.

Proposition 4.4 X_n converge en probabilité vers X ssi :

$$\lim_{n \to +\infty} E\left(\frac{|X_n - X|}{1 + |X_n - X|}\right) = 0$$

Proposition 4.5 X_n est une suite de variables convergeant en probabilité vers X ssi elle est de Cauchy en probabilité :

$$\forall \varepsilon > 0, \lim_{n,m \to +\infty} P(|X_n - X_m| \geqslant \varepsilon) = 0$$

Démonstration.

 \Rightarrow On a:

$$|X_n - X_m| \leqslant |X_n - X| + |X_m - X| \leqslant 2\frac{\varepsilon}{2}$$

Donc, $\{|X_n - X| < \frac{\varepsilon}{2}\} \cap \{|X_m - X| < \frac{\varepsilon}{2}\} \subset \{|X_n - X_m| < \varepsilon\}.$ Donc en passant au complémentaire,

$$P(|X_n - X_m| \ge \varepsilon) \le P\left(|X_n - X| \ge \frac{\varepsilon}{2}\right) + P\left(|X_m - X| \ge \frac{\varepsilon}{2}\right)$$

Donc $\lim_{n \to +\infty} P(|X_n - X_m| \ge \varepsilon) = 0.$

 \Leftarrow Nous allons montrer que sous cette hypothèse, il existe une sous suite (X_{n_i}) qui converge presque sûrement vers X.

La condition de Cauchy pour $\varepsilon = \frac{1}{2^j}$ est : pour tout j,

$$\lim_{n,m\to+\infty} P(|X_n - X_m| \geqslant \frac{1}{2^j}) = 0$$

On va construire la suite $n_i : n_1 = 1$, et :

$$n_{j+1} = \min\left\{n > n_j, P\left(|X_r - X_s| \geqslant \frac{1}{2^j}\right) \leqslant \frac{1}{2^j}, \forall r, s \geqslant n\right\}$$

 n_j est croissante et $P(|X_{n_{j+1}}-X_{n_j}|\geqslant \frac{1}{2^j})\leqslant \frac{1}{2^j}.$

Comme $\sum_{i=1}^{\infty} P(|X_{n_{j+1}} - X_{n_j}| \ge \frac{1}{2^j}) < \infty$, on peut appliquer le lemme de Borel-Cantelli:

$$P\left(\liminf\left\{|X_{n_{j+1}} - X_{n_j}| < \frac{1}{2^j}\right\}\right) = 1$$

On pose $\Omega' = \liminf\{|X_{n_{j+1}} - X_{n_j}| < \frac{1}{2^j}\}.$ $\omega \in \Omega'$ ssi à partir d'un certain rang, $|X_{n_{j+1}} - X_{n_j}| < \frac{1}{2^j}.$

Autrement dit, à partir d'un certain rang, presque sûrement, $|X_{n_{i+1}}|$ $|X_{n_i}| < \frac{1}{2^j}$.

Soient k > l deux entiers suffisamment grands,

$$|X_{n_k}(\omega) - X_{n_l}(\omega)| \leqslant \sum_{j=l}^{k-1} |X_{n_{j+1}}(\omega) - X_{n_j}(\omega)| \leqslant \sum_{j=l}^{\infty} \frac{1}{2^j} \to 0$$

quand $l \to +\infty$.

Donc X_{n_i} satisfait une condition de Cauchy pour presque tout ω .

Donc X_{n_i} converge presque sûrement, donc en probabilité vers X.

On a
$$P(|X_n - X| \ge \varepsilon) \le P(|X_{n_j} - X| \ge \frac{\varepsilon}{2}) + P(|X_n - X_{n_j}| \ge \frac{\varepsilon}{2}) \to 0.$$

Proposition 4.6 Soit X_n une suite.

 X_n converge en probabilité vers X ssi chaque sous-suite $(X_{n_j})_j$ contient une sous-suite $(X_{n_{j_i}})_l$ qui converge presque sûrement vers X.

Démonstration.

 \Rightarrow Supposons que X_n converge vers X en probabilités.

Soit n_i une suite quelconque.

 X_{n_j} converge vers X en probabilité donc X_{n_j} est de Cauchy en probabilité donc il existe n_{j_l} une sous-suite de n_j telle que $X_{n_{j_l}}$ converge presque sûrement vers X.

 \Leftarrow Supposons par l'absurde que X_n ne converge pas en probabilité vers X.

Alors il existe X_{n_j} une suite extraite telle que X_{n_j} ne converge pas en probabilité vers X.

Mais par hypothèse, X_{n_j} contient une sous-suite $X_{n_{j_l}}$ qui converge presque sûrement donc en probabilité.

THÉORÈME 4.1 Soit $(X_n)_n$ une suite de variables aléatoires indépendantes et identiquement distribuées intégrables.

Alors:

$$\frac{X_1 + \ldots + X_n}{n} \to E(X_1)$$

en probabilité (faible) et presque sûrement (forte).

Remarque 4.3 On a une réciproque :

Soit X_n une suite de variables iid telles que $(\frac{S_n}{n})_n$ admet une limite presque sûre.

Alors les variables sont intégrables et la limite de $\frac{S_n}{n}$ est $E(X_1)$.

Preuve de la loi faible dans le cas L^2 . On note m et σ^2 l'espérance et la variance communes.

On pose aussi $\overline{X_n} = \frac{X_1 + \ldots + X_n}{n}$. On remarque que $E(\overline{X_n}) = m$. Soit $\varepsilon > 0$ quelconque.

$$P(|\overline{X_n} - m| \geqslant \varepsilon) \leqslant \frac{\operatorname{Var}(\overline{X_n})}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \to 0$$

Donc on a la convergence en probabilité de $\overline{X_n}$ vers m.

Preuve de la loi forte dans le cas L^2 . On a $Var(S_n) = n\sigma^2$.

Donc $Var(S_{n^4}) = n^4 \sigma^2$.

Donc $\operatorname{Var}(\overline{X_{n^4}}) = \frac{\sigma^2}{n^4}$

On a alors pour n > 1, $P(|\overline{X_{n^4}} - m| \ge \frac{1}{n}) \le n^2 \operatorname{Var}(\overline{X_{n^4}}) = \frac{\sigma^2}{n^2}$.

Donc c'est une série sommable et par Borel-Cantelli, $P(\liminf_n \{|\overline{X_{n^4}} - m| < \frac{1}{n}\}) = 1$

Donc presque sûrement, il existe $n_0 > 1$ tel que pour $n \ge n_0$, $|\overline{X_{n^4}} - m| < \frac{1}{n}$.

Il est loisible de supposer X_n positive.

 $(S_n)_n$ est une suite croissante et si $k \in [n^4, (n+1)^4]$, on a :

$$\frac{S_k}{k} \leqslant \frac{S_{(n+1)^4}}{n^4} = \frac{S_{(n+1)^4}}{(n+1)^4} \left(\frac{n+1}{n}\right)^4 < \left(m+\frac{1}{n}\right) \left(\frac{n+1}{n}\right)^4$$

pour $n > n_0$.

Donc, presque sûrement, $\limsup \overline{X_k} \leqslant m$.

De même on minore et on trouve finalement $\limsup \overline{X_k} = m$ presque sûrement.

4.2 Convergences de suites de variables aléatoires

<u>Définition 4.1</u> Soit $(X_n)_n$ une suite de L^p et $X \in L^p$.

On dit que X_n converge vers X dans L^p ssi $\lim_{n\to+\infty} E(|X_n-X|^p)=0$.

Proposition 4.7 Converger dans L^p implique converger en probabilité.

Démonstration. Soit $\varepsilon > 0$.

$$P(|X_n - X| \ge \varepsilon) \le P(|X_n - X|^p \ge \varepsilon^p) \le \frac{E(|X_n - X|^p)}{\varepsilon^p} \to 0$$

D'où le résultat.

Remarque 4.4 La réciproque est fausse : prendre $X_n = 2^n 1_{]0,\frac{1}{n}[}$. On a convergence en probabilité mais pas dans L^p .

<u>Définition 4.2</u> Soit $(X_n)_n$ une suite de variables aléatoires réelles intégrables est dite uniformément intégrable ssi

$$\lim_{R \to +\infty} \sup_{n \geqslant 1} E(|X_n| 1_{|X_n| > R}) = 0$$

Exemple 4.1

- Une suite constante est uniformément intégrable.
- Une suite dominée par $Y \in L^1$ est uniformément intégrable.
- Une famille finie de variables intégrables est uniformément intégrable.

Proposition 4.8 Soit $(X_n)_n$ une suite de variables aléatoires intégrables.

 X_n converge dans L^1 ssi X_n est de Cauchy dans L^1 ssi X_n est uniformément intégrable et converge en probabilité.

<u>Définition 4.3</u> On dit qu'une suite $(X_n)_n$ converge en loi vers X ssi pour tout g continue bornée,

$$E(g(X_n)) \to E(g(X))$$

On dit aussi que la suite des probabilités P_{X_n} converge faiblement (ou étroitement) vers P_X .

cas particulier

Proposition 4.9 Si X_n converge en loi vers X alors $h(X_n)$ converge en loi vers h(X) pour tout h continue.

Proposition 4.10 Si X_n converge en probabilité vers X alors X_n converge en loi vers X.

Démonstration.

$$|E(g(X_n)) - E(g(X))| \le E(|g(X_n) - g(X)|)$$

$$= E(|g(X_n) - g(X)|1_{|X_n - X| \le \varepsilon}) + E(|g(X_n) - g(X)|1_{|X_n - X| > \varepsilon})$$

$$\le \delta(\varepsilon) + 2 \|g\|_{\infty} P(|X_n - X| > \varepsilon) \to 0$$

si g est uniformément continue.

On a donc $\limsup |E(g(X_n)) - E(g(X))| \le \delta(\varepsilon) \to 0$ quand $\delta \to 0$.

Si g est continue bornée quelconque,

On pose $I_R =]-R$, R[il existe R_{ε} tel que $1-P_X(I_{R_{\varepsilon}}) < \varepsilon$.

On pose u_{ε} la fonction qui vaut 1 sur $I_{R_{\varepsilon}}$, nulle sur $I_{R_{\varepsilon+1}}^c$ et affine sur les autres intervalles.

On pose $\tilde{g} = u_{\varepsilon}g$. Elle est uniformément continue et bornée.

Donc on a
$$E(\widetilde{g}(X_n)) \to E(\widetilde{g}(X))$$
 et $E(u_{\varepsilon}(X_n)) \to E(u_{\varepsilon}(X))/$
Ainsi,

$$|E(g(X_n)) - E(g(X))| \le E(|g(X_n) - \widetilde{g}(X_n)|) + |E(\widetilde{g}(X_n)) - E(\widetilde{g}(X))| + E(|\widetilde{g}(X) - g(X)|)$$

Le deuxième terme tend vers 0 quand $n \to +\infty$.

On remarque que $\int (1 - u_{\varepsilon})(x) P_X(dx) \leq 1 - P_X(R_{\varepsilon}) < \varepsilon$. Donc

$$E(|g(1-u_{\varepsilon})(X)|) \leqslant ||g||_{\infty} \int (1-u_{\varepsilon})(x) P_X(\mathrm{d}x) < \varepsilon ||g||_{\infty}$$

De plus, on a $\int_{\mathbb{R}} (1 - u_{\varepsilon})(x) P_{X_n}(\mathrm{d}x) \to \int_{\mathbb{R}} (1 - u_{\varepsilon})(x) P_X(\mathrm{d}x)$. On a ainsi pour n assez grand:

$$\int (1 - u_{\varepsilon})(x) P_{X_n}(\mathrm{d}x) < 2\varepsilon$$

Ainsi, pour tout ε et n assez grand,

$$|E(g(X_n)) - E(g(X))| \le \varepsilon(3 ||g||_{\infty} + 1)$$

Proposition 4.11 Si X_n converge en loi vers une constante c alors X_n converge en probabilité vers c.

 $D\acute{e}monstration.$ La convergence en probabilité est la convergence dans la métrique :

$$d(X,Y) = E\left(\frac{|X-Y|}{1+|X-Y|}\right)$$

Or $g_c = x \mapsto \frac{|x-c|}{1+|x-c|}$ est continue bornée donc, comme X_n converge en loi, $E(g_c(X_n)) \to E(g_c(X)) = 0$ donc X_n converge dans cette métrique.

Théorème 4.2 de convergence en loi $Soit(X_n)_n$ une suite de variables aléatoires. Les conditions suivantes sont équivalentes :

- 1. $X_n \to X$ en loi
- 2. $\varphi_{X_n}(t) \to \varphi_X(t) \ sur \ \mathbb{R}$
- 3. $F_{X_n}(t) \to F_X(t)$ pour tout point de continuité de F_X .

Remarque 4.5 F_X est monotone donc le nombre de points de discontinuité est dénombrable, donc de mesure de Lebesque nulle.

Proposition 4.12 Slutsky Si $X_n \to X$ et $Y_n \to c$ en loi alors (X_n, Y_n) converge en loi vers (X, Y).

Démonstration.

$$\begin{aligned} |\varphi_{(X_n,Y_n)}(s,t) - \varphi_{(X,c)}(s,t)| &= |E(e^{isX_n}e^{itY_n}) - E(e^{isX}e^{itc})| \\ &\leq |E(e^{isX_n + itY_n}) - E(e^{isX_n + itc})| + |E(e^{isX_n + itc}) - E(e^{isX + itc})| \\ &\leq E(|e^{isX_n}(e^{itY_n} - e^{itc})|) + |e^{itc}(E(e^{isX_n}) - E(e^{isX}))| \\ &= E(|e^{itY_n} - e^{itc}|) + |\varphi_{X_n}(s) - \varphi_X(s)| \end{aligned}$$

On a:

$$E(e^{itY_n} - e^{itc}) \le |t|\varepsilon P(|Y_n - c| \le \varepsilon) + 2P(|Y_n - c| > \varepsilon)$$

$$\le |t|\varepsilon + 2P(|Y_n - c| > \varepsilon) \to 0$$

Donc on a le résultat.

Exemple 4.2 Soit G gaussienne, $X_n = G$ et $Y_n = (-1)^n G$. On a $X_n \to G$ et $Y_n \to G$ mais pas $(X_n, Y_n) \to (G, G)$ (en loi).

Proposition 4.13 Si X_n et X sont des variables aléatoire discrètes à valeurs dans \mathbb{Z} .

Alors X_n converge en loi vers X ssi $P(X_n = k) \to P(X = k)$ pour tout $k \in \mathbb{Z}$.

Proposition 4.14 Scheffé Soit $(X_n)_n$ une suite de variables aléatoires ayant de densités f_n .

Si $f_n \to f$ presque partout, avec $\int_{\mathbb{R}} f(x) \, \mathrm{d}x = 1$, alors $X8n \to X$ en loi avec X de densité f.

Démonstration.

$$|\varphi_{X_n}(t) - \varphi_X(t)| \le \left| \int e^{itx} f_n(x) dx - \int e^{itx} f(x) dx \right|$$
$$= \left| \int e^{itx} (f_n(x) - f(x)) dx \right|$$
$$\le \int |f_n(x) - f(x)| dx \to 0$$

par convergence dominée.

Démonstration du théorème de convergence en loi.

 $1 \Rightarrow 2$ X_n converge en loi vers X et $x \mapsto \cos(tx)$, $x \mapsto \sin(tx)$ sont continues bornées donc :

$$E(\cos(tX_n)) \to E(\cos(tX))$$
 et $E(\sin(tX_n)) \to E(\sin(tX))$

Donc $\varphi_{X_n}(t) \to \varphi_X(t)$

 $2 \Rightarrow 1$ On suppose $\varphi_{X_n}(t) \rightarrow \varphi_X(t)$.

Si g est continue à support compact telle que $g \in L^1$. On a :

$$g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \widehat{g}(t) dt$$

On a donc:

$$E(g(X_n)) = E\left(\frac{1}{2\pi} \int_{\mathbb{R}} e^{-itX_n} \widehat{g}(t) dt\right)$$
$$= \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_{X_n}(-t) \widehat{g}(t) dt$$
$$\to \frac{1}{2\pi} \int_{\mathbb{R}} \varphi_X(t) \widehat{g}(t) dt = E(g(X))$$

On montre aussi que si g est C^2 à support compact alors elle vérifie la condition précédente.

Il faut alors approcher les fonctions continues bornées par des fonctions C^2 à support compact.

 $1 \Rightarrow 3$ Si $X_n \to X$ en loi, soit $\varepsilon > 0$ et t un point de continuité de F_X . On pose $g_{\varepsilon} : \mathbb{R} \to [0, 1]$ valant 1 jusqu'à t, nulle après $t + \varepsilon$ et C^2 sur $[t, t + \varepsilon]$.

On a $E(g_{\varepsilon}(X_n)) \to E(g_{\varepsilon}(X))$ et :

$$E(g_{\varepsilon}(X)) \leqslant E(1_{]-\infty,t+\varepsilon]}(X) = P(X \leqslant t+\varepsilon) = F_X(t+\varepsilon)$$

De plus, $E(g_{\varepsilon}(X_n)) \geqslant E(1_{]-\infty,t]}(X_n) = F_{X_n}(t)$.

Donc $\limsup F_{X_n}(t) \leqslant \lim E(g_{\varepsilon}(X_n)) = E(g_{\varepsilon}(X)) \leqslant F_X(t+\varepsilon).$

Donc $\limsup F_{X_n}(t) \leqslant F_X(t)$ (car F_X continue en t).

On fait de même avec h_{ε} définie comme g avec $t-\varepsilon$ et t.

On obtient $\liminf F_{X_n}(t) \geqslant F_X(t-\varepsilon)$.

Avec $\varepsilon \to 0$, on a $F_{X_n}(t) \to F_X(t)$.

 $3 \Rightarrow 1$ On suppose g C^1 à support compact. On note Q_n la loi de X_n .

$$E(g(X_n)) = \int_{\mathbb{R}} g(x)Q_n(dx)$$

$$= \int_{\mathbb{R}} Q_n(dx) \int_{-\infty}^x g'(t) dt$$

$$= \int_{\mathbb{R}} (1 - F_{X_n}(t))g'(t) dt \to \int_{\mathbb{R}} (1 - F_X(t))g'(t) dt$$

On approche g par des fonctions \mathbb{C}^1 à support compact et ça marche. \blacksquare

Théorème 4.3 Lévy Soit $(\varphi_n)_n$ une suite de fonctions caractéristiques associées à des variables aléatoires X_n (ou à des lois Q_n).

 $Si \ \varphi_n \to \varphi \ ponctuellement \ avec \ \varphi \ continue \ en \ 0 \ alors \ \varphi \ est \ la \ fonction caractéristique d'une variable aléatoire <math>X \ avec \ X_n \to X$.

<u>Définition 4.4</u> Une suite de variables X_n est dite tendue ssi

$$\forall \varepsilon > 0, \exists R > 0, \sup_{n \ge 1} P(|X_n| > R) < \varepsilon$$

Remarque 4.6 Si X_n est tendue, il existe une sous-suite qui converge en loi.

4.3 Théorème central limite

Théorème 4.4 Central Limite Soit X_n une suite de variables aléatoires iid de carrés intégrables/

$$\frac{\sqrt{n}(\overline{X_n} - m)}{\sigma} \to G \sim \mathcal{N}(0, 1)$$

avec

$$\overline{X_n} = \frac{X_1 + \ldots + X_n}{n} \to m$$

Démonstration. Il est loisible de supposer m=0.

On note φ la fonction caractéristique commune.

$$\frac{\sqrt{n}\overline{X_n}}{\sigma} = \frac{S_n}{\sqrt{n}\sigma}$$
 et :

$$\varphi_{\frac{S_n}{\sqrt{n}\sigma}}(t) = E(e^{it\frac{S_n}{\sqrt{n}\sigma}})$$

$$= E\left(\exp\left(i\frac{t}{\sqrt{n}\sigma}\sum_{k=1}^n X_k\right)\right)$$

$$= \prod_{k=1}^n E(e^{i\frac{t}{\sqrt{n}\sigma}X_k})$$

$$= E(e^{i\frac{t}{\sqrt{n}\sigma}X_1})^n$$

$$= \varphi\left(\frac{t}{\sqrt{n}\sigma}\right)^n$$

Comme $X_1 \in L^2$, $\varphi(u) = 1 - \frac{\sigma^2 u^2}{2} + o(u^2)$ donc

$$\varphi_{\frac{S_n}{\sqrt{n}\sigma}}(t) = \left(1 - \frac{t^2}{2n} + o(t^2)\right)^n$$

Donc pour $n \to +\infty$, on a $\varphi_{\frac{S_n}{\sqrt{n}\sigma}}(t) \to e^{-\frac{t^2}{2}} = \varphi(t)$.