ЯДЕРНЫЕ СТЕПЕНИЯ СВОБОДЫ В АТОМНОЙ ФИЗИКЕ

Е.В. Грызлова

НИИЯФ МГУ Весенний семестр 2020 г.

- о **«Разминка»**
- о Спектры систем со сферической симметрией
- о Сжатые атомы и резонансы формы
- о Двухуровневая система с сильно связанными состояниями
- о Атомная спектроскопия антипротония
- о Поляризация излучения и дихроизм
- о Плоская волна и волновой пакет волна вещества.
- Нобелевская премия по физике 2012 года.
 Изучение одиночной квантовой системы
- о Когерентные и сжатые состояния волновых пакетов
- о Приготовленные квантовые состояния, ионные ловушки
- Начала теории рассеяния
- о Особенности резонансного рассеяния и неэкспоненциальный распад

о Приготовленные квантовые состояния, ионные ловушки

- а) Реконструкция квантового состояния (QSR) (мода света, вибрационная мода диатомной молекулы или она в ловушке, состояние свободнодвижущейся частицы)
- б) Теорема Эрншоу
- в) Левитирующая лягушка Гейма
- г) Ионные ловушки Paul и Penning
- д) создание молекулы без электронов

Волновой пакет

Реализация когерентного и сжатого состояния

Определение состояния пакета

Реализация когерентного и сжатого состояния

$$E(\theta)=X\cos\theta+Y\sin\theta$$

Figure 1 Experimental scheme for generating bright squeezed light and squeezed vacuum with an optical parametric oscillator (OPA). The electric field quadratures are measured in the homodyne detector while scanning the phase θ . A computer performs the statistical analysis of the photocurrent i_{Ω} and reconstructs the quantum states. EOM, electro-optic modulator; DM, dichroic mirror; SHG, second harmonic generator; HR, high reflector.

FIG. 2. Spontaneous parametric down-conversion. a) Degenerate configuration, leading to single-mode squeezed vacuum. b) Non-degenerate configuration, leading to two-mode squeezed vacuum.

Состояния нескольких фотонов

Когерентное состояние

Reconstruction of non-classical cavity field states with snapshots of their decoherence S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond & S. Haroche Nature 455,510, (2008)

Figure 1 | Reconstructing a coherent state. a, The set-up, showing the

Состояния нескольких фотонов

Состояние с фиксированным числом фотонов

Reconstruction of non-classical cavity field states with snapshots of their decoherence S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond & S. Haroche Nature 455,510, (2008)

Состояния нескольких фотонов

Состояние кота Шредингера

Reconstruction of non-classical cavity field states with snapshots of their decoherence S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond & S. Haroche Nature 455,510, (2008)

Figure 3 | **Reconstructing Schrödinger cat states.** a, b, The Wigner the a

the atomic state superpos

Обобщенный принцип неопределенности

примеры

P. Bosso, S. Das, and R. B. Mann Planck scale corrections to the harmonic oscillator, coherent, and squeezed states Phys. Rev. D 96, 066008 (2017)

TABLE I. Some relevant examples of HO are considered, including their mass, frequency, and levels at which GUP effects become dominant, as given by Eq. (14).

m (Kg) Type Ref. $\omega/2\pi$ (Hz) 3×10^{40} Optomechanical 10^{-11} 10^{5} [16] system Bar detector [15] 1.1×10^{3} 900 3×10^{28} **AURIGA** Mechanical [14] 3.3×10^{-5} 5.64×10^{3} 2×10^{35} oscillators 3×10^{36} 7.7×10^{-8} 1.29×10^{5} 2×10^{-8} 1.42×10^{5} 10^{37} 2×10^{-11} 7.47×10^{5} 2×10^{39} 4×10^{30} LIGO detector 40 200 [27]

TABLE II. Period of oscillation of $(\Delta q)^2$ and $(\Delta p)^2$ for several systems, as given by Eq. (35).

J / C J I \ /				
Туре	Ref.	m (Kg)	$\omega/2\pi$ (Hz)	$T\gamma_0^2 \delta^2 - \epsilon (s)$
Optomechanical system	[16]	10^{-11}	10^{5}	1.61×10^{35}
Bar detector AURIGA	[15]	1.1×10^{3}	900	1.81×10^{25}
Mechanical oscillators	[14]	3.3×10^{-5}	5.64×10^{3}	1.53×10^{31}
		7.7×10^{-8}	1.29×10^{5}	1.26×10^{31}
		2×10^{-8}	1.42×10^{5}	3.99×10^{31}
		2×10^{-11}	7.47×10^{5}	1.44×10^{33}
LIGO detector	[27]	40	200	1.00×10^{28}

^[14] M. Bawaj et al., Probing deformed commutators with macroscopic harmonic oscillators, Nat. Commun. 6, 7503 (2015).

^[15] F. Marin et al., Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables, Nat. Phys.9, 71 (2013).

^[16] I. Pikovski et al Probing Planck-scale physics with quantumoptics, Nat. Phys. 8, 393 (2012).

^[27] B. P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116, 061102 (2016).

Теорема Эрншоу (Earnshaw)

Система точечных зарядов не может поддерживаться в состоянии устойчивого равновесия электростатическими полями.

Теорема верна для магнитостатики в случае постоянных диполей и токов; Теорема неприменима для наведенных зарядов в системах с отрицательной поляризуемостью, диамагнетиков и сверхпроводников, однако выполняется для систем с положительной поляризуемостью.

Левитирующая лягушка Гейма

Это первое наблюдение левитации живого объекта и первое наблюдение левитации при комнатной температуре

Молекулярный магнетизм очень слаб, как правило в миллион раз слабее, чем в ферромагнетиках, в результате бытует мнение, что материалы вокруг нас как правило немагнитны. Однако магнитные поля, необходимые для наблюдения левитации, как правило ~100 раз больше, чем для левитации сверхпроводников.

Magnet levitation at your fingertips

Figure 2 Levitation at your fingertips. A strong NdFeB magnet (1.4 tesla) levitates 2.5 metres below a powerful superconducting magnet. The field at the levitation point is about 500 Gauss.

Теорема Эрншоу, являющаяся следствием уравнений Максвелла, запрещает состояние устойчивого равновесия в магнитном поле, так как для устойчивого равновесия необходим максимум потенциальной энергии. Диамагнетики нарушают эту теорему, так как отрицательный знак магнитной восприимчивости приводит к требованию минимума, а не максимума амплитуды поля.

Figure 1 A NdFeB magnet (an alloy of neodymium, iron and boron; 4 mm high and 4 mm in diameter) levitating at the axis of a vertical solenoid of radius $R\approx 10$ cm and length $\approx 2R$ in a magnetic field of 100 gauss. The levitation is stabilized by a bismuth cylinder ($\chi=-1.5\times 10^{-4}$) with inner diameter $D\approx 8$ mm. The photograph shows the top view of the levitating magnet. The right-hand plot shows the stability functions $K_{\rm v}$ and $K_{\rm h}$ calculated for a solenoid with a height of twice its radius (solid curves). Diamagnetic interaction C shifts the horizontal stability function $K_{\rm h}$ to the left (dashed curve) and a small region of positive ΔU emerges above the point where $K_{\rm v}=0$.

Ионные ловушки Paul' и Penning'

- оЛовушка Paul' представляет из себя квадрупольное электрическое поел и переменное поле, осциллирующее на радиочастоте;
- оЛовушка Penning' представляет из себя однородное аксиальное поле для удержания радиального движения заряженной частицы и квадрупольное электрическое поле для сдерживания продольного движения.

Для создания квадрупольного поля используется система из линейных и кольцевых электродов, идентичных полю двух гиперболоидов вращения. Результирующий потенциал это аксиально симметричный квадрупольный потенциал.

$$\Phi = \frac{\Phi_0}{4d^2} (\rho^2 - 2z^2)$$

Уравнения для ловушки Penning'

оЛовушка Penning' представляет из себя однородное аксиальное поле для удержания радиального движения заряженной частицы и квадрупольное электрическое поле для сдерживания продольного движения.

Изначальная идея Penning trap (1930) изменение ионизации в присутствии магнитного поля перпендикулярного моменту частицы. Однако в его установке не было электродов перпендикулярных магнитному полю, и электрон был ограничен (confinment) только в одном направлении. Рierce доб; улярные поля и описал поведение заряженной частицы.

$$\vec{F}_{L} = q\vec{v} \times \vec{B}.$$
 $\omega_{c} = \frac{q}{m} B$

$$\Phi(z,r) = \frac{U_{\rm dc}}{2d^2} \left(z^2 - \frac{1}{2}r^2 \right)$$

для создания квадрупольного поля используется система из линейных и кольцевых электродов, идентичных полю двух гиперболоидов вращения. Поверхность электродов идентична эквипотенциальной поверхности.

$$m\ddot{z} = q E_z \qquad \qquad E_z = -\frac{U_{\rm dc}}{d^2} z$$

and

$$m\ddot{\vec{\rho}} = q(\vec{E_{\rho}} + \dot{\vec{\rho}} \times \vec{B}) , \qquad \vec{E_{\rho}} = \left(\frac{U_{\rm dc}}{2d^2}\right)\vec{\rho} ,$$

Движение заряда в ловушке Пеннинга

Реализация

D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J. Wineland Experimental Determination of the Motional Quantum State of a Trapped Atom PRL, 77, 4281 (1996)

Когерентное состояние

Создание молекулы без электронов

FIG. 1. Binding two same-sign charges with oscillating electric fields. (a) The 1D case requires a linearly polarized field; (b) the 2D case requires a circularly polarized field; (c) the 3D case requires circularly and linearly polarized fields, with a and b defining the laser-driven trajectory. Note that cycle-averaged potential alone cannot bind in 3D.

FIG. 2. Average potential $U^{\rm KH}$: (a) binding in 2D (a=3 a.u.); (b) "weak" linear field $b/a < \kappa_0$ (b=2 a.u., a=8 a.u.)—the repulsion is along the z axis; (c) "strong" linear field $b/a > \kappa_0$ (b=8 a.u., a=2 a.u.)—the repulsion is in the radial direction; (d) for $b/a=\kappa_0$ ($b\approx4.36$ a.u., a=2 a.u.) the potential is flat inside the cylinder.

O. Smirnova et al Phys. Rev. Lett. 243001 243001 (2003)