The number of occurrences of a word (5.7) and motif (5.9) in a DNA sequence, allowing overlaps

Covariance (2.4) and indicators (2.9)

Prof. Tesler

Math 283 February 25, 2013

Covariance

Let X and Y be random variables, possibly dependent.

•
$$\operatorname{Var}(X + Y) = E((X + Y - \mu_X - \mu_Y)^2)$$

$$= E\left(((X - \mu_X) + (Y - \mu_Y))^2\right)$$

$$= E\left((X - \mu_X)^2\right) + E\left((Y - \mu_Y)^2\right) + 2E\left((X - \mu_X)(Y - \mu_Y)\right)$$

$$= \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$$

where the *covariance* of *X* and *Y* is defined as

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

Expanding gives an alternate formula

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$
:

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

= $E(XY) - \mu_X E(Y) - \mu_Y E(X) + \mu_X \mu_Y = E(XY) - E(X)E(Y)$

Covariance properties

- \circ Cov(X, X) = Var(X)
- \circ Cov(X, Y) = Cov(Y, X)
- If X, Y are independent then Cov(X, Y) = 0 and Var(X + Y) = Var(X) + Var(Y).
 Beware, this is not reversible; Cov(X, Y) could be 0 for dependent variables.
- $\operatorname{Var}(X_1 + X_2 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n) + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_i, X_j)$

Sign of covariance

- When $\mathrm{Cov}(X,Y)$ is positive: there is a tendency to have $X>\mu_X$ when $Y>\mu_Y$ and vice-versa, and $X<\mu_X$ when $Y<\mu_Y$ and vice-versa.
- When $\operatorname{Cov}(X,Y)$ is negative: there is a tendency to have $X>\mu_X$ when $Y<\mu_Y$ and vice-versa, and $X<\mu_X$ when $Y>\mu_Y$ and vice-versa.

Occurrences of a word in a sequence — notation

• Consider a (long) single-stranded nucleotide sequence $\tau = \tau_1 \dots \tau_N$ and a (short) word $w = w_1 \dots w_k$:

$$\tau = \tau_1 \dots \tau_{19} = \text{CTATAGATAGACAGT}$$
 $w = w_1 \dots w_9 = \text{ATAGATAGA}$

• Say w occurs in τ at position j when w is in τ ending at position j:

so w occurs in τ at 11 and 15 (underlined).

- Let $I_j = \begin{cases} 1 & \text{if } w \text{ occurs in } \tau \text{ at } j; & I_{11} = I_{15} = 1 \\ 0 & \text{otherwise.} & \text{other } I_j = 0 \end{cases}$ $I_j \text{ is an } indicator \text{ variable (1 when a condition is true, 0 when false).}$
- $Y = I_k + I_{k+1} + \cdots + I_N$ is the number of times w occurs in τ . Here, Y = 2.

Computing mean number of occurrences $\mu = E(Y)$

- Suppose τ is generated by N independent rolls of a 4-sided die, whose sides have probabilities p_A , p_C , p_G , p_T adding up to 1.
- The probability of a word being generated by rolling such a die is the product of the probabilities of its nucleotides:

$$\pi(w) = p_{w_1} \cdots p_{w_k}$$
 $\pi(\text{ATAGATAGA}) = p_A^5 p_T^2 p_G^2$

- The probability of w occurring at j = k, k + 1, ..., N is $\pi(w)$.
- I_j 's are indicator variables, so

$$E(I_j) = 0P(I_j = 0) + 1P(I_j = 1) = P(I_j = 1) = \pi(w)$$
 for $j = k, k + 1, ..., N$.

• $Y = I_k + I_{k+1} + \cdots + I_N$ so the mean number of occurrences is $\mu = E(Y) = E(I_k) + \cdots + E(I_N) = (N - k + 1) \pi(w)$.

Dependencies between positions

- Occurrences at different positions have dependencies; if AGAG occurs in τ at 20, it cannot occur at 17, 19, 21, or 23, while the probability of overlapping occurrences at 18 or 22 is increased since 2 letters are already known to be correct in τ. So we have to account for overlapping prefixes/suffixes of w.
- Chapter 5.8 does the related problem of counting occurrences without overlaps.
 - Chapters 4 and 11 do the much more general problem of Markov chains.

Self-overlaps of a word

Define

$$\varepsilon_r = \begin{cases} 1 & \text{if the first } r \text{ letters of } w \text{ equal the last } r \text{ letters} \\ & \text{of } w \text{ in the exact same order (string equality);} \\ 0 & \text{otherwise.} \end{cases}$$

• This lets us account for dependencies between I_j and I_{j+k-r} .

	w:	A	T	Α	G	A	T	A	G	A								
r=9	$\varepsilon_9 = 1$	A	T	A	G	A	T	A	G	A								
r = 8	$\varepsilon_8 = 0$		A	T	A	G	A	T	A	G	A							
r = 7	$\varepsilon_7 = 0$			Α	T	A	G	A	T	A	G	A						
r = 6	$\varepsilon_6 = 0$				A	T	A	G	Α	T	Α	G	Α					
r = 5	$\varepsilon_5 = 1$					A	\boldsymbol{T}	A	\boldsymbol{G}	A	T	Α	G	Α				
r = 4	$\varepsilon_4 = 0$						A	T	A	G	A	T	Α	G	Α			
r = 3	$\varepsilon_3 = 0$							Α	T	Α	G	Α	T	Α	G	Α		
r = 2	$\varepsilon_2 = 0$								A	T	Α	G	Α	T	A	G	A	
r = 1	$\varepsilon_1 = 1$									A	T	A	G	Α	T	A	G	Α

Computing $\sigma^2 = Var(Y)$

• Since the I_j 's have dependencies, the variance of their sum $Y = I_k + \cdots + I_N$ is NOT necessarily the sum of their variances. We must consider covariance terms as well:

$$\operatorname{Var}(Y) = \sum_{j=k}^{N} \operatorname{Var}(I_{j}) + 2\sum_{j,\ell: k \leq j < \ell \leq N} \operatorname{Cov}(I_{j}, I_{\ell})$$

• First sum: Note that $I_j^2 = I_j$ since $I_j = 0$ or 1, so

$$Var(I_j) = E(I_j^2) - (E(I_j))^2 = \pi(w) - \pi(w)^2$$

and the first sum in Var(Y) is

$$\sum_{j=k}^{N} \text{Var}(I_j) = (N - k + 1)(\pi(w) - \pi(w)^2)$$

Second sum: next few slides.

Covariances $2\sum_{j,\ell:\ k\leqslant j<\ell\leqslant N} \operatorname{Cov}(I_j,I_\ell)$

The covariances sum is complicated:

- If $\ell j \geqslant k$ then I_j , I_ℓ are independent and $Cov(I_j, I_\ell) = 0$.
- If $0 < \ell j < k$, the words ending at ℓ and j overlap by $r = k (\ell j)$ letters. Rewrite ℓ as $\ell = j + k r$:

$$Cov(I_j, I_\ell) = Cov(I_j, I_{j+k-r}) = E(I_j I_{j+k-r}) - E(I_j) E(I_{j+k-r})$$

- $I_jI_{j+k-r}=1$ iff $w_1\ldots w_kw_{r+1}\ldots w_k$ occurs at position j+k-r in τ .
- $\bullet E(I_jI_{j+k-r}) = \varepsilon_r \cdot \pi(w_1 \dots w_k w_{r+1} \dots w_k).$
- $\operatorname{Cov}(I_j, I_{j+k-r}) = E(I_j I_{j+k-r}) E(I_j) E(I_{j+k-r})$ = $\varepsilon_r \cdot \pi(w_1 \dots w_k w_{r+1} \dots w_k) - (\pi(w))^2$.

Note that this depends on r but not j.

Covariances $2\sum_{j,\ell:\ k\leqslant j<\ell\leqslant N} \overline{\mathrm{Cov}(I_j,I_\ell)}$

The covariance sum becomes

$$\sum_{j,\ell: k \leq j < \ell \leq N} \text{Cov}(I_j, I_\ell) = \sum_{r=1}^{k-1} \sum_{j=k}^{N-k+r} \left(\varepsilon_r \cdot \pi(w_1 \dots w_k w_{r+1} \dots w_k) - (\pi(w))^2 \right)$$

$$= \sum_{r=1}^{k-1} (N - 2k + r + 1) \left(\varepsilon_r \cdot \pi(w_1 \dots w_k w_{r+1} \dots w_k) - (\pi(w))^2 \right)$$

$$= \left(\sum_{r=1}^{k-1} \varepsilon_r \cdot (N - 2k + r + 1) \pi(w_1 \dots w_k w_{r+1} \dots w_k) \right)$$

$$- \left(\frac{((N - 2k + 2) + (N - k))(k - 1)}{2} (\pi(w))^2 \right)$$

Mean and variance of number of occurrences

Combining all the parts together and simplifying gives

Mean number of occurrences

$$E(Y) = (N-k+1) E(I_k) = (N-k+1) \pi(w)$$

Variance of number of occurrences

$$Var(Y) = (N - k + 1)\pi(w) - ((2k - 1)N - 3k^{2} + 4k - 1)(\pi(w))^{2} + 2\sum_{r=1}^{k-1} \varepsilon_{r} \cdot (N - 2k + r + 1)\pi(w_{1} \dots w_{k} w_{r+1} \dots w_{k})$$

Computation for $w = w_1 \dots w_9 = \text{ATAGATAGA } (k = 9)$ over all τ of length N

$$\pi(w) = p_A^5 p_T^2 p_G^2 \quad \text{and } w \text{ self-overlaps at } r = 1,5$$

$$E(Y) = (N - k + 1)\pi(w) = (N - 8)\pi(w) = (N - 8)p_A^5 p_T^2 p_G^2$$

$$\text{Var}(Y) = (N - k + 1)\pi(w) - ((2k - 1)N - 3k^2 + 4k - 1)(\pi(w))^2$$

$$+2\sum_{r=1}^{k-1} \varepsilon_r \cdot (N - 2k + r + 1)\pi(w_1 \dots w_k w_{r+1} \dots w_k)$$

$$= (N - 8)\pi(w) - (17N - 208)(\pi(w))^2$$

$$+2(N - 16)\pi(\text{ATAGATAGATAGA})$$

$$+2(N - 12)\pi(\text{ATAGATAGATAGA})$$

$$= (N - 8)p_A^5 p_T^2 p_G^2 - (17N - 208)p_A^{10} p_T^4 p_G^4$$

$$+2(N - 2k + 2)p_A^9 p_G^4 p_T^4 + 2(N - 2k + 6)p_A^7 p_G^3 p_T^3$$

Frequencies of words and motifs in SARS

• The genome of SARS described previously has N = 29751 bases:

Nucleotide	Frequency	Proportion
A	8481	$p_A \approx 0.2851$
C	5940	$p_C \approx 0.1997$
G	6187	$p_G \approx 0.2080$
T	9143	$p_T \approx 0.3073$
Total	N = 29751	1

- These were used below to compute "Estimated" μ and σ .
- "Observed frequency" y was determined from the DNA sequence.

Word	Estim	ated	Ob		
	μ	σ	y = Freq.	$z = (y - \mu)/\sigma$	$\Phi(z)$
GAGA	104.5456	10.6943	106	0.1360	0.5541
GCGA	73.2226	8.4830	37	-4.2700	10^{-5}
TGCG	78.9381	8.8018	59	-2.2652	0.0118
motif M	256.7064	17.6583	202	-3.0980	10^{-3}

(M consists of all three words; details on computing μ , σ are later.)

Hypothesis tests on frequencies in SARS

- We have not determined the complete distribution of Y.
 We will assume it is approximately normal with mean and standard deviation as computed above.
- That lets us compute Z and use it as a test statistic to see if the observed frequencies are consistent with a "random" sequence.

Three possible hypothesis tests

Null Hypothesis H_0 : The genome sequence is generated by independent rolls of a 4-sided die with probabilities for each letter p_A, \ldots, p_T as given previously.

vs. one of three alternative hypotheses:

 H_1 : The word w (or motif M) is over-represented.

 H_2 : The word w (or motif M) is under-represented.

 H_3 : The word w (or motif M) is over- or under-represented.

Hypothesis tests (at significance level $\alpha = 5\%$)

Word	Estim	ated	Ob		
	μ	σ	y = Freq.	$z = (y - \mu)/\sigma$	$\Phi(z)$
GAGA	104.5456	10.6943	106	0.1360	0.5541
GCGA	73.2226	8.4830	37	-4.2700	10^{-5}
TGCG	78.9381	8.8018	59	-2.2652	0.0118
motif M	256.7064	17.6583	202	-3.0980	10^{-3}

- H_0 vs. H_1 (over-represented). Reject H_0 if Z is too big: $\Phi(Z) \ge 0.95$, so $Z \ge 1.6449$. In all the cases shown, we accept H_0 (a.k.a. "insufficient evidence to reject H_0 ").
- H_0 vs. H_2 (under-represented). Reject H_0 if Z is too small: $\Phi(Z) \leq 0.05$, so $Z \leq -1.6449$. By this test, GAGA is not under-represented, but each of GCGA, TGCG, and motif M, are considered to be under-represented.
- H_0 vs. H_3 (under or over). Reject H_0 if Z is too far away from 0: $\Phi(Z) \leq 0.025$ (so $Z \leq -1.96$) or $\Phi(Z) \geq 0.975$ (so $Z \geq 1.96$). We accept H_3 for GCGA, for TGCG, and for M, and accept H_0 for GAGA.

Critical regions (at significance level $\alpha = 5\%$)

- For TGCG & N=29751, the null hypothesis gives $\mu=78.9381$ and $\sigma=8.8018$.
- The *critical region* (where we reject H_0) is blue. The *acceptance region* is white.
- The one-sided critical regions have area $\alpha = 0.05$. The two-sided critical regions have area $\alpha/2 = 0.025$ in each part.
- Our test statistic y = 59 or z = -2.2652 is shown as a red line.

H_1 : Over-represented?

Critical region for H_1 : One–sided (right), α =0.05

Critical region for H_1 : One-sided (right), α =0.05

*H*₂: Under-represented?

Critical region for H_a : One-sided (left), α =0.05

 H_3 : Either over or under?

Critical region for H_3 : Two-sided, α =0.05

Same tests using *P*-values (at sig. level $\alpha = 5\%$)

• TGCG has $P(Z \le -2.2652) = \Phi(-2.2652) = 0.0118$.

• H_0 vs. H_1 (over-represented?):

 $P = P(Z \ge -2.2652) = 1 - 0.0118 = 0.9881$ Since $P > \alpha$, we accept H_0 (TGCG is not over-represented).

• H_0 vs. H_2 (under-represented?):

$$P=P(Z\leqslant -2.2652)=0.0118.$$
 Since $P\leqslant \alpha$, we accept H_2 (TGCG is under-represented).

• H_0 vs. H_3 (either of over or under?):

$$P=P(|Z|\geqslant 2.2652)=2(0.0118)=0.0236.$$
 Since $P\leqslant \alpha$, we accept H_3 (TGCG is over- or under-represented).

• P-values let us check any α easily.

At $\alpha = 1\%$, all three tests accept H_0 .

At $\alpha = 2\%$, H_2 says it's under-represented but H_3 does not.

Motifs

- A motif is a set M of words that don't contain each other. Usually
 the words are very similar and have similar lengths.
- Suppose M has m words, all with length k:

$$M = \left\{ w^{(1)}, \dots, w^{(m)} \right\}.$$

• We'll work with an example of m=3 words, each with k=4 letters:

$$M = ig\{ exttt{GAGA}, exttt{TGCG}, exttt{GCGA} ig\}$$
 .

 When words of length k are generated at random by a 4-sided die, the total probability of the words in M is

$$\pi(M) = \pi(w^{(1)}) + \cdots + \pi(w^{(m)})$$

which is $p_A^2 p_G^2 + p_C p_G^2 p_t + p_A p_C p_G^2$ in this example.

Number of occurrences of a motif

• M occurs at position j in a nucleotide sequence τ if any of its words occurs (i.e., ends) there.

• Let
$$I_j = \begin{cases} 1 & \text{if } M \text{ occurs in } \tau \text{ at } j; \\ 0 & \text{otherwise.} \end{cases}$$

- The number of occurrences of M in τ is $Y = I_k + \cdots + I_N$.
- Note that $E(I_j) = \pi(M)$ and

$$E(Y) = (N - k + 1) \pi(M)$$

by the same argument as for one word before. For motifs of length k=4, this becomes $E(Y)=(N-3)\pi(M)$.

• In the variance formula, $\pi(w)$ is replaced by $\pi(M)$ as well, and we must recompute $Cov(I_j, I_{j+k-r})$ to take into account overlaps between any two words of M.

Overlaps between words in a motif

- If the first r letters of $w^{(u)}$ equal the last r letters of $w^{(v)}$ (r = 1, ..., k 1):
 - Set $\varepsilon_r(u,v)=1$;
 - let $w_r(u, v)$ be $w^{(v)}$ followed by $w^{(u)}$ but overlapped on the r letters;
 - let $\pi_r(u, v) = \pi(w_r(u, v))$.

Otherwise, set $\varepsilon_r(u, v) = \pi_r(u, v) = 0$.

• For words $w^{(3)} = GCGA$ and $w^{(2)} = TGCG$, the overlaps are

(r = 4 was shown, although we're only supposed to go up to r = k - 1 = 3.)

Overlap between words in a motif

$\varepsilon_r(u,v)$	v=1	v=2	v=3
$w_r(u,v)$	$w^{(1)} = GAGA$	$w^{(2)} = \text{TGCG}$	$w^{(3)} = GCGA$
u=1	$\varepsilon_1(1,1)=0$	$\varepsilon_1(1,2) = 1$	$\varepsilon_1(1,3)=0$
$w^{(1)} = GAGA$		TGC G AGA	
	$\varepsilon_2(1,1)=1$	$\varepsilon_2(1,2)=0$	$\varepsilon_2(1,3)=1$
	GA <i>GA</i> GA		GC <i>GA</i> GA
	$\varepsilon_3(1,1)=0$	$\varepsilon_3(1,2)=0$	$\varepsilon_3(1,3)=0$
u=2	$\varepsilon_1(2,1)=0$	$\varepsilon_1(2,2)=0$	$\varepsilon_1(2,3)=0$
$w^{(2)} = \text{TGCG}$	$\varepsilon_2(2,1)=0$	$\varepsilon_2(2,2)=0$	$\varepsilon_2(2,3) = 0$
	$\varepsilon_3(2,1)=0$	$\varepsilon_3(2,2)=0$	$\varepsilon_3(2,3)=0$
u=3	$\varepsilon_1(3,1)=0$	$\varepsilon_1(3,2) = 1$	$\varepsilon_1(3,3)=0$
$w^{(3)} = GCGA$		TGC G CGA	
	$\varepsilon_2(3,1)=0$	$\varepsilon_2(3,2)=0$	$\varepsilon_2(3,3)=0$
	$\varepsilon_3(3,1)=0$	$\varepsilon_3(3,2)=1$	$\varepsilon_3(3,3)=0$
		T <i>GCG</i> A	

Dependence between positions

- $I_j I_{j+k-r} = 1$ if there are some overlapping words ($\varepsilon_r(u, v) = 1$) whose combination word $w_r(u, v)$ actually occurs in τ at j + k r.
- $I_j I_{j+k-r} = 0$ if nothing of that form occurs at j + k r.
- So

$$E(I_{j}I_{j+k-r}) = \sum_{u=1}^{m} \sum_{v=1}^{m} \varepsilon_{r}(u, v) \pi_{r}(u, v)$$

replaces the analogous term for the one word case, leading to

Variance of number of occurrences of a motif

$$Var(Y) = (N - k + 1)\pi(M) -((2k - 1)N - 3k^{2} + 4k - 1)(\pi(M))^{2} +2\sum_{r=1}^{k-1} (N - 2k + r + 1)\sum_{u=1}^{m} \sum_{v=1}^{m} \varepsilon_{r}(u, v) \cdot \pi_{r}(u, v)$$

Example

 $M = \{GAGA, TGCG, GCGA\}$ has m = 3 words of length k = 4, and 5 overlaps

$$\pi(M) = \pi(\text{GAGA}) + \pi(\text{TGCG}) + \pi(\text{GCGA})$$
 $E(Y) = (N-3)\pi(M)$
 $\text{Var}(Y) = (N-3)\pi(M) - (7N-33)(\pi(M))^2 + 2(N-5)\pi(\text{GAGAGA}) + 2(N-6)\pi(\text{TGCGAGA}) + 2(N-5)\pi(\text{GCGAGA}) + 2(N-6)\pi(\text{TGCGCGA}) + 2(N-4)\pi(\text{TGCGA})$

If all nucleotides have equal probability 1/4, this becomes

$$\pi(M) = 3/4^4 = 3/256$$

$$E(Y) = (N-3)(3/256) = 3(N-3)/256$$

$$Var(Y) = (N-3)(3/256) - (7N-33)(9/65536)$$

$$+2(N-5)4^{-6} + 2(N-6)4^{-7}$$

$$+2(N-5)4^{-6} + 2(N-6)4^{-7} + 2(N-4)4^{-5}$$

$$= (913N-2935)/65536$$

Repeats in *C. elegans* that facilitate homologous pairing in meoisis Sanford and Perry, *Nucleic Acids Research*, 2001, 29(14):2920-2926.

- 1998: *C. elegans* is the first multicellular organism completely sequenced. 6 chromosomes, 13–21 Mb each, 100 Mb total.
- *NAR* 2001: Christopher Sanford and Marc Perry (U. Toronto) count all k-mers in C. elegans for $2 \le k \le 20$, looking for those over-represented on just one chromosome, plus other constraints.
- They found one unique candidate per chromosome, and speculate these facilitate homologous pairing during meiosis:

```
# on that chr. # on other
Chr. DNA Seq.
                     (# per Mb) (# per Mb)
                      611 (44.1)
                                 201 (2.5)
    TTGGTTGAGGCT
                      152 (10.3) 54 (0.7)
    TTTGTAGTCTAGCA
    TGCTAAATATTTAGCA 197 (15.4) 1 (0.0)
                      347 (21.5) 251 (3.2)
    GTATAATCATG
                      713 (34.2) 13 (0.2)
    TGGGCGCTGCT
                      335 (19.4)
                                  74 (0.9)
    TGGTCAGTGCA
```

• **RECOMB 2007:** Abby Dernburg (UC Berkeley) announces her lab proved it experimentally (but some *k*-mers were slightly adjusted).