The Digital Abstraction

Lecture 4 September 18th, 2018

Jae W. Lee (jaewlee@snu.ac.kr)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anant Agarwal at MIT

Review

 Discretize matter by agreeing to observe the lumped matter discipline (LMD)

Lumped Circuit Abstraction

- Analysis tool kit: KVL/KCL, node method, superposition,
 Thévenin, Norton
 - Remember superposition, Thévenin, Norton apply only for linear circuits

Today

■ Discretize value → Digital abstraction

 Interestingly, we will see shortly that the tools learned in the previous three lectures are sufficient to analyze simple digital circuits

Outline

Textbook: Ch. 5.1-5.3

- Voltage Levels and Static Discipline
- Boolean Logic
- Combinational Gates

But first, why digital?

In the past ...

Analog signal processing

By superposition,

$$V_0 = \frac{R_2}{R_1 + R_2} V_1 + \frac{R_1}{R_1 + R_2} V_2$$

If
$$R_1 = R_2$$
,
$$V_0 = \frac{V_1 + V_2}{2}$$

The above is an "adder" circuit.

Noise Problem

... noise hampers our ability to distinguish between small differences in value — e.g. between 3.1V and 3.2V.

Value Discretization

Restrict values to be one of two

Why is this discretization useful?

(Remember, numbers larger than 1 can be represented using multiple binary digits and coding, much like using multiple decimal digits to represent numbers greater than 9. E.g., the binary number 101 has decimal value 5.)

Digital System

With noise

Digital System

Better noise immunity Lots of "noise margin"

For "1": noise margin 5V to 2.5V = 2.5V

For "0": noise margin θV to 2.5V = 2.5V

Voltage Thresholds and Logic Values

But, but, but ... What about 2.5V?

For example, Hmmm... create "no man's land" or forbidden region forbidden sender receiver region

But, but, but ... Where's the noise margin?

What if the sender sent 1: V_H ?

Hold the sender to tougher standards! sender

But, but, but ... Where's the noise margin?

What if the sender sent 1: V_H ?

Static Discipline

Digital systems follow static discipline: if inputs to the digital system meet valid input thresholds, then the system guarantees its outputs will meet valid output thresholds.

Outline

Textbook: Ch. 5.1-5.3

- Voltage Levels and Static Discipline
- Boolean Logic
- Combinational Gates

Processing digital signals

Recall, we have only two values —

 $1,0 \Longrightarrow Map$ naturally to logic: T, F

⇒ Can also represent numbers

Processing digital signals

Boolean Logic

⇒ If X is true and Y is true

Then Z is true else Z is false.

$$\Rightarrow$$
 Z = X AND Y
Z = X • Y are digital signals
Boolean equation "0", "1"

$$\Rightarrow X = Z$$
 AND gate

⇒ Truth table representation:

X	У	Z
0	0	0
0	1	0
1	0	0
1	1	1

Enumerate all input combinations

Combinational gate abstraction

- Adheres to static discipline
- Outputs are a function of inputs alone.

Digital logic designers do not have to care about what is inside a gate.

19

Combinational gate abstraction

Example: Z = X•Y (AND gate)

Combinational gate abstraction

Another example of gate: OR gate

$$\Rightarrow$$
 C = A + B Boolean equation OR

$$\Rightarrow A \Rightarrow C$$
OR gate

More gates

$$Z = \overline{X \cdot Y}$$

Combinational gate abstraction

Boolean identities

$$X \cdot 1 = X$$

$$X \cdot 0 = X$$

$$X + 1 = 1$$

$$X + 0 = X$$

$$\overline{1} = 0$$

$$\overline{0} = 1$$

$$AB + AC = A \cdot (B + C)$$

■ Digital circuits: Z = A + B • C

