Sunday, 9/20/15 MATH 611 HW1 Solutions $a^3b = ba^3 = \gamma$ $a^{3n}b = ba^{3n}$ for all $n \in \mathbb{Z}$. $a^7 = e$, and g(d(3,7) = 1, so we can solve $3n = 1 \mod 7$ linding 1 = 5 mod 7. So, putting n=5 in T gives ab = ba. 161 = 22 = 2.11 (prime factorization). We are given e≠a∈6 and b ∉ <a>? $\frac{50}{7}$ $\frac{6}{7}$ $\frac{5}{7}$ $\frac{5}{7}$ $\frac{5}{7}$ $\frac{5}{7}$ $\frac{5}{7}$ $| \langle |\langle a \rangle| \langle |\langle a, b \rangle| \rangle \rangle$ Lagrange's theorem states that the order 141 of a subgroup H of a phile group & divides the order Hof G. Now, since It has only 2 factors in its prime foutanization, $(*) = 7 \quad ((a,b)) = (G), i.e., (a,b) = G, as required.$ $q: G \longrightarrow G'$ homomorphism, $|G| = 18 = 2.3^2$, |G'| = 15 = 3.5 $161 = |\varphi(6)| \cdot |\ker \varphi|$ and $|\varphi(6)| |161|$. φ nontrivial, i.e., $|\varphi(6)| \neq 1$. By 1 42, , 19(6) | gcd (161, 16'1) = 3. So $|\varphi(G)| = 3$, 4 $|\ker \varphi| = |G|/|\varphi(G)| = 6$.

ab = a (ba) a-1. So ab & ba are canjugate.

In general, conjugate elements have the same order

because the map G->G

gree by conjugation by $y \in G$ is an isomorphism

from G to itself (an automorphism of G).

5. Suppose G has no proper subgroups.

If G is not the trivial group les, choose e = q ∈ G.

Then $\langle a \rangle \leq G$, $\langle a \rangle \neq \langle e \rangle = 1$ $\langle a \rangle = G$

So G is cycling G = 72/17/2 For some NEIN

2/n2 has 10 preper subgroups iff n is prime (subgroups of 2/1/2 are given by <d? where d |n.)

Z does have proper subgroups (give by $\langle d \rangle = d \cdot Z$, d = 2)

So G has no proper subgroups <=> G = 72/p2 for some prive p OR G = Ye's, the trivial of comp. 6 a) Let Eks denote the elementary next matrix with entry 1 in position (k,l) and sever elsewhere WARNING: ELD is not investible! But we still have A & Z (GLA(R)) <=> A commuter w/ Ehr for each k,l. Part <=: A = \(\sigma \) ake \cdot \(\text{Ekg} \) (where akg denotes the \) k, l entry of A and dearly A.B=B.A => A.(AB) = (AB).A, AEIR A.B=B.A + A.C= (.A => A. (B+C) = (B+C). A => I+Ekl is invertible. Now A commutes n/ I 4 I+E/xl => A commuter ~/ Exg. [] Now compute: Eks. A = matrix w/ kk row equal to 1k row of A Ed all other rans zero. A. Ex = Matrix w/ lth col. equal to kth coal of A 4 all other columns zero. Thus Ekg. A = A. Exg <=> rag = 0 for j \floor aik = 0 for i ≠ k & all = akk If this holds for all k, l, we find $A = \lambda \cdot I$, LER. Thus Z(GL_(IR)) = {1.7 | U\$1 + IR }.

b) If $N \times n \le 2$, S_n is abelian, $Z(S_n) = S_n$. Suppose n > 3. We show $Z(S_n) = 1e^{\frac{1}{2}}$ Given $e \ne \sigma \in S_n$ we must find $T \in S_n$ such that $T \circ T = 0$.

	27 me apression of a planner of disjoint angles
	contains a cycle of length >>3, say (a192-98),
	Then $(a_1a_2)\sigma(a_1a_2)^{-1}\neq \sigma$.
A TOTAL S AND A CONTROL CONTROL CO. CO. CONTROL CO.	$(a_2a_1a_3\cdots a_g)\cdots,(a_1a_2\cdots a_g)\cdots$
	Otherwise, the expression of or as a product of disjoint cycles
CONTRACTOR OF THE CONTRACTOR O	contains a transposition (a_1a_2) , $(\sigma \neq e)$.
nnik Carl dark arman sanara sanara pagaman sanara sanara	Let az & <1,7,-,15 \ (a,192) (17,3)
	The (azaz) + (azaz)-1 + 0
Official and the contract of t	
	$(a_1a_3)\cdots$ $(a_1a_2)\cdots$
e Miller Strawn (dr. 1940) on 1822 (dr. 1822) on 1822 (dr. 1822) on 1822 (dr. 1822) on 1822 (dr. 1822) on 1822	
	c) Recall $D_A = \langle a, b \mid a^a = b^2 = e, ba = a^b \rangle$
	= < e,a,,a^-1, b,ab,,a^-1b',
	Since Dn is generated by a 4 b, g. Pn is in the caler
	ZD) :4 :t consulter w/ a 4 to
and the state of t	$Z(D_n)$ iff it commutes $w/a4b$. $(ba=a^{-1}b=7ba^{-1}=ab)$
Title (1970) And Andrews Comment of Comments of Commen	Now compute: $a \cdot (ab)a^{-1} = a^{i+1}ba^{-1} = a^{i+1}ab = a^{i+2}b$
	Now compute: $a - (ab)a^{-1} = a^{i+1}ba^{-1} = a^{i+1}.ab = a^{i+2}b$ $n > 3$ by assumption (D_n) is the symmetries of $(n-gan)$
THE CONTROL OF THE CO	So aib \neq ai+2 \downarrow (because $n \times 2$),
Securitiva in Charles (L.C. III Security) (L.C	a'b does NOT commute w/ a.
- 1-1886/99-seekseen telepen salatainen salatainen 1886-telepen 1886-telepen 1886-telepen 1886-telepen 1886-te	
TOTAL TOTAL CONTROL OF THE SECOND STATE OF THE	$\frac{2}{3}b \cdot a^{i} \cdot b^{-i} = a^{i} \cdot b \cdot b^{-i} = a^{-i}$
	So a commutes w/b iff $a^i = a^{-i}$, or $a^{2i} = e$.
t tid sinimat kuntah kemuda mengantah di Komer segait 1868 ini 1875 ini 1885 ini 1885 ini 1885 ini 1885 ini 18	Assuming $U < i < \Lambda$, this gives $\Lambda = 2\pi$, $i = M$.
	(Also, ai commutes u/a Vi of course.)
onnegativni vita uz njenjenizaci mjera ug T	(7/2) - 1/1 02 L. 7 K 10-1-
The state of the s	So Z(D) = le's in cold Remark: In the second case
	$ \langle e_1 a^m \rangle = 2m \text{ even.} a^m = -I \in GL_2(IR)$
Saster and the saster and the	regarding $D_{\Lambda} \leq GL_{Z}(\mathbb{R})$.

7. (a) Reaprding $D_{\Lambda} \leq GL_{2}(R)$

(choosing coordinates on R2 sud that the origin is the cated man of the regular 1-gan and the axis of reflection of b is the x-axis)

we have a = (coo - sin 0) $0 = 2\pi i$

 $b = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Now compute $ba = (\omega 0 - \sin 0)$

 $a^{-1}b = (\cos\theta \sin\theta) (10) = (\cos\theta - \sin\theta)$ $-\sin\theta \cos\theta (1-0) = (\cos\theta - \sin\theta)$

b) The regular n-gan is inscribed in the regular 21-gan.

Chaose a refex of the regular 1-gan and let b dente reflection

in the axis of symmetry passing through that vertex

The $D_{\Lambda} \leq D_{2\Lambda}$, where $\alpha' = \alpha^2$.

If $\alpha' = \Delta' = \Delta'$ where $\alpha' = \alpha' = \Delta'$ where $\alpha' = \Delta'$ is rotation when the enterodynamic $\alpha' = \Delta'$ thru angle $\alpha' = \Delta'$ counterclockwise.

The element an & Da is contral (i.e commutes u/all elements of), see 66c.

It tollows that the Map Q: D1 x 2/22 -> 1721 (g,i) +> q.ani

is a homomorphism of groups. The kernel of φ is trivial, ker $\varphi = 4e^{i}$, because $D_{\Lambda} \wedge \langle \alpha A \rangle = 4e^{i}$ (using n odd):- $\varphi(g,i) = e \iff g = a^{Ai} = e \iff g = a^{Ai}$ Since | Dx ×2/27/ = 1021 = 41, q is an isomorphism. c) For example, Drn has an element a of order 21, but Dx 2/22 has no sud element (Note: the order of 10,6) & Gxt1 equals the lon of the order of a & G & the order of b & H Gg has 6 elements of order 4 (±i,±j,±k) Da has 2 elevents of order 4 (q=1) 6 \$2 =1 Gx 7 D4. G = < a, b | a3 = b4 = e, ba = a-16> a) By the universal property stated in the question, we have a group homomorphism 9: 6 - 7 Z/4Z give by $\varphi(a) = 0$, $\varphi(b) = 1$ (We just need to check, using additive notation in 242, that

(We just need to check, using additive notation in $\frac{742}{42}$, that $3\varphi(a) = 4\varphi(b) = 0$ by $\varphi(b) + \varphi(a) = -\varphi(a) + \varphi(b)$ i.e. the relations defining G hold in $\frac{742}{42}$ when a, b are replaced by $\varphi(a)$, $\varphi(b)$.

Using the defining relations of G, any element $g \in G$ may be written in the form $g = a^ib^j$ to for some $0 \le i < 3$ 4 $0 \le j < 4$.

It is true (but requires proof) that the expression T is unique, so |G| = 12.

Probably the best way to prove it is to construct G explicitly as a semi-direct product. (I didn't realize his when I wrote the problem!)

One can make some progress as an anginally suggested:- $\varphi: G \to \mathbb{Z}_{4\mathbb{Z}} \quad \text{is a switchive har, } \quad \psi\left(\text{aibi}\right) = j.$

In particular j in t is uniquely determined,

and $\ker \varphi = \langle a \rangle$, the under subgroup of G generated by α . Since $\alpha^3 = \epsilon$, we have either $\ker \varphi \cong \mathbb{Z}/3\mathbb{Z}$ or $\alpha = \epsilon \in G$. It remains to rule out the second possibility.

b) Aq has 3 elements of order 2 { (12 (34), (13) (24), (14) (23) }

Do has 7 elements of order 2 (notation by II, 6 reflection,)

=> Aq 7 D6.

of order 4

=1 G 7 A or D6.

10 (appute: $A = SBS^{-1} <= 7$ AS = SB. Write S = (ab)(10)

1966

Gels

$$S = \begin{pmatrix} a & b \\ b & 0 \end{pmatrix}$$
 $def S = -b^2 < 0.$

So A and B are conjugate in GLZ[IR] but not in SLZ[IR]

Left cosets:
$$H = e \cdot H = \{e, [123], [132]\}$$

 $(124) \cdot H = \{(124), (14)(23), (134)\}$
 $(234) \cdot H = \{(234), (13)(24), (142)\}$

(143). H = 1(143), 112/(34), (243)}

H-11241 =
$$\langle 1124 \rangle$$
, (13)(24), (243) $\langle 134 \rangle$ H-(234) = $\langle 134 \rangle$, (12)(34), (134)

$$H = \left\{ \begin{pmatrix} \times 0 \\ 0 \end{pmatrix} \mid \times \in \mathbb{R}, \times > 0 \right\}$$

$$g = \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$
 e. G_1 a>0

Right cosets:

$$g \cdot H = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \times & 0 \\ 0 & 1 \end{pmatrix} \right\} \times \epsilon \mathbb{R}, \times > 0$$

$$= \left| \begin{pmatrix} ax b \\ 0 1 \end{pmatrix} \right| \times \epsilon \mathbb{R}, \times > 0 \right| = \left(y = b \right) \subset \mathbb{R}^{2}$$

$$H \cdot g = \left\{ \begin{array}{c} \left(\times U \right) \cdot \left(a b \right) \\ U \mid 1 \end{array} \right\} \times \left\{ \mathbb{R}_{1} \times \left\{ U \right\} \right\}$$

$$= \left\{ \begin{array}{c|c} (ax & bx \\ \hline (0 & 1) \end{array} \right\} \times \epsilon \mathbb{R}, \times 70^{1} = \left(\begin{array}{c} x > 0 \\ y = b_{4} \cdot x \end{array} \right) \subset \mathbb{R}^{2},$$