

Sept 4 2019

Neural Network Usage Catalogue

Bhadale Group of Companies

Bhadale Group of Companies consists of Bhadale IT Developers Pvt. Ltd and Bhadale Real Estate Developers Pvt Ltd.

1. Bhadale IT Developers Pvt. Ltd is an IT and Computer Engineering company

This company provides consultation in areas of cutting edge technologies, research outsourcing, and software consultation related to data center and related engineering practices

2. Bhadale Real Estate Developers Pvt. Ltd is a Real estate company

This company provides development of Infrastructure for IT Datacenter and allied sectors. It manages the engineering design, landscaping, civil architecture, presently serving internal projects.

Bhadale Group of Companies has aggressive programs in place to serve the niche market.

Bhadale IT Developers Pvt. Ltd Programs and Services

IT Division programs

- 1 Cloud Architecture
- 2 AI
- 3 Digital
- 4 Automation
- 5 R&D services
- 6 Engineering services
- 7 Mentoring Services
- 8 Data center services
- 9 Outsourcing

There are various services offered under each program, details are described below

IT Division program related services

Cloud Architecture

- Cloud Enterprise Architecture
- Cloud Business Architecture
- Cloud Information / Website data Architecture
- Cloud Solution Architecture
- Data center Virtualization and Cloud services (IaaS)
- Cloud Technical Architecture Project specific
- Cloud ERP Solutions (SaaS, PaaS)
- Cloud Strategy and Transformation
- Cloud Systems Integration and consolidation
- Cloud Project Management
- Cloud Pre sales support
- Business Needs (RFI/RFQ/RFP assistance)

Neural Network Usage catalogue

- Cloud Quality Initiatives
- Cloud Business Analysis
- Cloud Infrastructure Planning hardware , network, storage , backup (laaS, PaaS)
- Cloud business portfolio assessment services (workshops)

ΑI

- Artificial intelligence and advanced machine learning
- Intelligent applications, Intelligent things
- Conversational systems
- Mesh app and service architecture
- Adaptive security architecture

Digital

- Virtual reality and augmented reality: Brief capability, deliverables and service offering
- Digital twins
- Blockchains and distributed ledgers
- Digital technology platforms

Automation

- Robotic Process Automation
- IoT
- Manufacturing robots
- BPO call center robots
- Chatbots
- Remote workers
- Hazardous jobs robots(Mine bombs, nuclear waste, underwater, space etc)

R&D services

- PHD mentor, buddy
- BPO Outsourced work in areas of research areas related to IT and Computer Engineering

Engineering services (Only Engg)

- Engineering services for Data centers
- Engineering services for IT Departments
- Engineering architectures, drawings, road ways, town house planning, parking, safety, outdoor maintenance, lighting etc
- All other aspects of engineering: Civil, electrical, water and sewage, safety and mechanical motors, pumps, refrigeration, cooling

Mentoring Services

- IT Mentoring
- Engineering Mentoring
- Business Mentoring
- Mentoring for specials categories based on age, and disabled
- Mentoring for special professionals like Military and Govt officials under Govt Programs

Data center services (Engg + IT)

- Data center Engineering services
- Data Center IT Services
- Data center Security services
- Data Center QA services
- Datacenter Cloud services
- Datacenter compliances services
- Data center based business solutions

Outsourcing

- Insourcing
- Outsourcing
- Near sourcing
- Cloud sourcing
- BPO services
- IT specific services
- Engineering specific services
- Training specific services

Service details for Bhadale IT Developers Pvt. Ltd

IT Division programs – Neural Network types and their usage services

Image courtesy (The Web), no intention for copyright infringement

We have a large set of subcategories; few are mentioned below with details tabulated

NN No	NN Name	Key NN component features / Data Structures/ Algorithms / Use cases	
	Multilayer	Is a class of feedforward artificial neural network, utilizes a supervised learning	
1	Perceptron (MLP)	technique called backpropagation for training. Offer approximate solutions for	
		extremely complex problems like fitness approximation, MLPs make good classifier	
<u>.</u>		algorithms, MLF NN in Chemistry to predict chemical changes in alkene structure, most	
	!	popular applications are Google's autonomous or self-driving cars	
	Feed forward	They are mostly used in pattern generation, pattern recognition and classification.	
2	neural networks-		
<u> </u>	General		
•	RBF neural	NW uses radial basis functions as activation functions. Radial basis function neural	
3	networks	network (RBFNN) to study transformer switching overvoltages. new approach to study	
	i ! !	transformer switching overvoltages during power system restoration For this purpose,	
:		an RBFNN has been used to estimate the peak and duration overvoltages due to	
!		transformer energization. Equivalent circuit parameters have been used as RBFNN	
:		inputs to achieve good generalization capability for trained ANN	
		https://www.hindawi.com/journals/cin/2012/654895/	
!		Application of Radial Basis Function Network with a Gaussian Function of Artificial	
į	; ; ;	Neural Networks in Osmo-dehydration of Plant Materials. The mass transfer in the	
<u> </u>	1 1 	three plant materials were successfully predicted by the ANN models indicating the	

De Convolution

18

Ieural Network Usage catalogue	Bhadale Group of Companies

Neur	ral Network Usage cata	logue Bhadale Group of Companies
	NW (DNs)	
19	Deep Convolution	
	Inverse Graph	
	NW (DCIGN)	
20	Generative	ja
	Adversal NW	
	(GAN)	
21	Deep	i
21	Convolutional	
	Generative	
	Adversarial	
	!	
	Network (DCGAN)	;
22	Conditional GAN(
	CGAN)	
23	Liquid State	
	Machine(LSM)	
24	Extreme Learning	
	machine (ELM)	
25	Echo State NW	
	(ESN)	
26	Deep Residual	
	NW (DRN)	
27	Kohonen NW (KN)	;
28	Support Vector	·
	Matrix (SVM)	
29	Neural Turing	! !
23	Machine (NTM)	
30	Bidirectional	i
30	Recurrent Neural	
	Networks (BRNN)	i
31	BPTT	
32	Truncated BPTT	
31	Combination of a	
	CNN and a BRNN	
33	Sequence-To-	Consists of two recurrent neural networks. There's an encoder that processes the input
	Sequence Models	and a decoder that processes the output.
34	Deep stacking	
	network (DSN)	
35		
	General	
	regression neural	
	network	
	(GRNN)	
36		
	Self-organizing	
	map (SOM)	
37		r
	Hierarchical RNN	;
38		
	Neocognitron	· ·
39	Calling	
	Spiking neural	ı !

m I I I			
Bhadale	(-roun	ot Con	ananiac
Dilauale	dioup	UI CUII	ipailles

Neural	Network	Heage	catalogue
iveurai	NELWOIK	OSARE	Lataiugue

	motuverke (CNN)	iogue Bhadale Group of Companies
	networks (SNN)	·
40	Multilayer kernel machines (MKM)	applications to optical character recognition and DNA analysis.
41	Neuro-fuzzy	
42	Hierarchical temporal memory (HTM)	
43	Holographic Associative Memory (HAM)	
44	Capsule NN	
45	Hierarchical Convolutional Deep Maxout Network	
46	Ensembles- DNN/CNN/RNN	
47	Feed backward neural networks- General	applied to tasks like un-segmentation, and pattern recognition (connected handwriting recognition), examples are Kohonen's self organizing map and recurrent neural network (RNN). They are used in content addressable memories
48	k-nearest neighbours (kNNs)	
49	Wavelet networks	Forecasting the daily total amount of solar radiation

Reverse table

Use Case No	Use Case Name	Key NN component
1	Predicting normal and pathological cases / Prediction of Intrapartum Hypoxia from Cardiotocography Data	These classifiers include the back-propagation trained feed-forward neural network classifier (BPXNC), Levenberg–Marquardt trained feed-forward neural network classifier (LMNC), automatic neural network classifier (NEURC), radial basis function neural network classifier (RBNC), random neural network classifier (RNNC), and the perceptron linear classifier (PERLC)
2	Organ Detection Using Deep Learning, Stacked autoencoder	Stacked autoencoder models learn representative features of data from the given dataset in an unsupervised manner using deep neural networks. This can be promising in medical image analysis, because it can be applied to automatically analyze a diverse, large set of medical images, despite the difficulty of obtaining libraries of accurately labeled example datasets and the intrinsic abnormalities present in patient datasets.

Neural	Network Usage catalogue	Bhadale Group of Companies
35	, , ,	
36	 	
37 38	, , ,	
	1 	
39	1 	
40	, , ,	
41	 	
42	; ; ;	
43	, 	
44	 	
45	; ; !	
46	! ! !	
47	1 1 1	
48	, 	
49	 	

https://www.sciencedirect.com/topics/computer-science/feedforward-neural-network

https://en.wikipedia.org/wiki/Types of artificial neural networks

https://en.wikipedia.org/wiki/Deep_learning

TODO:

- 1. Collect various types of nn used based on use cases that are mapped to real business cases, solutions.
- 2. Table the units as catalogue for ready reference that u can use to use the generic nn components with logic, algorithm, data structures and other useful black box enumeration.
- 3. Collect, see your offerings that use nn components. Table these in another table, Use case driven components selection.
- 4. Have a ready reference for the performance, deployed target servers, platforms, IoT mobiles, nw units etc. Tabulate these in the tables.
- 5. All these tables help anyone choose right one for automation. See how DataRobot automates tasks and how you can personalize, selections using this and other automation tools.
- 6. Finally see how much time, effort needed to deliver a business solution and how you price it
- 7. Please add generic block diagrams for solutions and see how these can be deployed in platform specific servers, containers, that ensure scalability, integration into IDe specific and reduced dev time as much as 50%.

For more details, contact below:

Contact

Bhadale IT Developers Pvt. Ltd

CTO: Vijay Mohire, 9741040195; Email: vijaymohire@gmail.com