Análise e Projeto de Sistemas de Controle para Reator Químico

Estudo Comparativo de Técnicas de Controle

Lucas William Junges

Universidade Federal de Santa Catarina (UFSC)

3 de julho de 2025

Controle de Reator Químico

Análise e Projeto de Sistemas de Controle para Reater Químico Estudo Compuesto de Técnica de Controle Lucia William Jungos Universida frateria de Loca Custa (UESC) 3 de julho de 2025

Apresentação do trabalho sobre o controle de um reator químico, explorando diferentes estratégias de controle, desde as mais simples até as mais avançadas.

Roteiro da Apresentação

- O Problema e a Modelagem
- 2 Estratégias de Controle
- 3 Conclusões

Controle de Reator Químico

Roteiro da Apresentação

O Problema e a Modelagem

Estratégias de Controle

Conclusões

Roteiro da Apresentação

Este é o roteiro da nossa discussão. Começaremos com o problema, passaremos pela modelagem, exploraremos três abordagens de controle e finalizaremos com as conclusões.

O Problema: Controlando uma "Fábrica" Química

Nosso Objetivo Principal:

Controlar um reator químico (CSTR) que produz cyclopentenol. A meta é manter a **concentração do produto final** (C_b) em um nível ideal, automaticamente.

A Missão: Projetar um controlador que ajuste a vazão de diluição (u) para corrigir desvios e anular o efeito de **perturbações na entrada** (C_{af}) .

Figura 1: O Reator Químico (CSTR).

Controle de Reator Químico O Problema e a Modelagem

> -O Problema: Controlando uma "Fábrica" Química

O Problema: Controlando uma "Fábrica" Química

Nosso Objetivo Principal:

Controlar um reator químico (CSTR) que produz cyclopentenol. A meta é manter a concentração do produto final (C₄) em um nível ideal.

perturbações na entrada (Car).

Agui, definimos o problema central: manter a qualidade do produto estável, mesmo quando as condições de entrada variam. Apresentamos os três elementos-chave: a meta (saída), o ajuste (entrada) e o vilão (perturbação).

A "Receita": Entendendo a Dinâmica do Processo

A dinâmica do processo é descrita por reações químicas e equações diferenciais.

Reações Químicas:

$$A \xrightarrow{k_1} B \quad \text{(Produto)}$$

$$2A \xrightarrow{k_3} D \quad \text{(Subproduto)}$$

Equações de Estado:

$$\begin{aligned} \frac{dC_a}{dt} &= -k_1 C_a - k_3 C_a^2 + u(C_{af} - C_a) \\ \frac{dC_b}{dt} &= k_1 C_a - k_2 C_b - uC_b \end{aligned}$$

Este é um sistema **não linear**, cujo comportamento muda com as condições de operação.

-A "Receita": Entendendo a Dinâmica do Processo A "Bectat". Entendendo a Dicidinica do Processo
A disinicio de processe á escrita por respira quincia e espacies
Respira Quintiese

A 2-8 present
A 2-8 pres

Apresentamos o modelo matemático. É crucial entender que o sistema é não linear, e é por isso que a linearização se torna uma ferramenta importante para o projeto de controladores clássicos.

Parte I: A Solução Clássica (Controlador PI)

Abordagem: Linearizar o sistema e projetar um controlador PI.

- 1. Linearização: O modelo é simplificado em torno de um ponto de operação ($C_{af}=5.1,\ u=1$) para se obter uma aproximação linear.
- **2. Projeto do PI:** Com a técnica de **alocação de polos**, projetamos um controlador para atender aos critérios de desempenho ($t_{5\%} \in [1.5, 1.7]$ min, pico < 5%).

Controlador: $C(s) = 1.85162 \frac{s+1.91627}{s}$

Figura 2: Resposta do sistema com controlador PI.

Controle de Reator Químico Estratégias de Controle

Parte I: A Solução Clássica (Controlador PI)

Parte I: A Solução Clássica (Controlador PI)

Abordagem: Linearizar o sistema e projetar um controlador PI.

1. Limerização: O modelo é simplificado em tomo de um porto de operação (C_a = 5.1, u = 1) para se obter uma aprovimação (nexa. 2. Projeta do DP Econ a sicion de sibacação de plos, projetarmos um

Controlador: Cid = 1 mag mag

Figura 2: Request do sistema som motorische Pi.

Explicamos a primeira abordagem: a mais simples e direta. Linearizamos o modelo para poder aplicar técnicas clássicas e projetamos um controlador PI. O resultado é bom, mas apenas perto do ponto onde linearizamos.

Parte II: A Solução Inteligente (LR + Feedforward)

Abordagem: Melhorar o desempenho com um controlador mais robusto e uma estratégia preditiva.

1. Controlador por Lugar das Raízes (LR): Projetamos um controlador mais sofisticado para a função de transferência de $2^{\underline{a}}$ ordem, resultando em uma resposta mais suave.

$$C(s) = \frac{5.2946(s+3.835)^2}{s(s+20)}$$

2. Controle Feedforward: Para combater a perturbação (C_{af}) proativamente, nós a medimos e usamos essa informação para ajustar a entrada e anular seu efeito.

Figura 3: Desempenho sem (esquerda) e com (direita) Feedforward.

mais robusto e uma estratégia preditiva 1. Controlador por Lugar das Raízes (LR): Projetamos um olador mais sofisticado para a função de transferência de 2ª ordem

2. Controle Feedforward: Para combater a perturbação (C_{al})

entrada e anular seu efeito.

prostivamente, nós a medimos e usamos essa informação para siustar a

Agui, damos um passo à frente. O controlador por LR é mais adaptado à dinâmica do sistema. O grande salto de qualidade vem com o Feedforward, que nos permite anular a perturbação de forma muito eficaz.

Parte III: Lidando com o Mundo Real (Atraso de Medição)

Abordagem: Compensar um atraso de 3 minutos na medição.

O Problema: Atrasos na medição são comuns e podem desestabilizar o sistema, pois o controlador reage a uma informação "velha".

A Solução: Preditor de Smith. Esta técnica usa um modelo do processo para "prever" a saída *sem* o atraso. O controlador reage à previsão, não à medição atrasada, contornando o problema.

Figura 4: Estrutura do Preditor de Smith.

Abordagem: Compensar um atraso de 3 minutos na

O Problema: Atzasos na medição são comuns e podem desentabilizar o sistema, pois o controlador reage a uma informação "velha".

A Solução: Preditor de Smith. Esta técnica sua um modelo do processo para "presur" a saída amo a atzaso. O controlador reage à

Parte III: Lidando com o Mundo Real (Atraso de Medição)

Este é o desafio mais realista. Atrasos são um grande problema em controle de processos. O Preditor de Smith é uma solução elegante que nos permite usar o controlador que já projetamos, adicionando uma camada de "previsão" para compensar o atraso.

Quadro Comparativo das Estratégias de Controle

Estratégia	Princípio	Prós	Contras
PI Clássico	Linearização e controle PI	Simples, robusto, fácil implementação	Eficaz só perto do ponto de operação, desempe- nho limitado
LR + Feedforward	Alocação de polos + ação preditiva	Excelente rejeição a per- turbações, desempenho superior	Mais complexo, requer sensor extra, maior custo
Preditor de Smith	Compensação de atraso via modelo	Essencial para sistemas com atraso, mantém de- sempenho	Depende da precisão do modelo, sensível a erros de atraso

FI Clause	Linearização e sontrole Pl	Emple, release, facili Implementação	Elfragrad perto de puesto de esperação, desempo- ebo limitado
LR Fasilioned	Abroque de polos :	Económic rejelção a par- turbaçãos, dinamporês seportor	Male complete, requer sensor antre, major mate
Preditor de Smith	Componeção do atraso	Eleannial para sistemas	Deposite da procisão do

—Quadro Comparativo das Estratégias de Controle

Este quadro facilita a comparação direta das estratégias, ajudando a escolher a mais adequada para cada situação. Use este slide para reforçar os pontos-chave antes das conclusões.

Aplicação Ideal de Cada Estratégia

- PI: Processos estáveis, sem grandes perturbações ou atrasos.
- LR+FF: Processos sujeitos a perturbações mensuráveis.
- Smith: Processos com atraso de medição relevante.

Aplicação Ideal de Cada Estratégia

- PI: Processos estáveis, sem grandes perturbações ou atrasos.
 LR+FF: Processos sujeitos a perturbações mensuráveis.
- u Smith: Processos com atraso de medição relevante.

Este slide separa a aplicação ideal de cada estratégia, tornando a apresentação mais limpa e evitando excesso de conteúdo em um único frame.

Conclusões: Qual a Melhor Estratégia? I

Não existe uma única resposta. A escolha ideal depende do balanço entre **desempenho, complexidade e custo**.

- Controlador PI (Parte I):
 - Prós: Simples de projetar e implementar. Robusto.
 - **Contras:** Desempenho limitado, eficaz apenas perto do ponto de operação.
- LR + Feedforward (Parte II):
 - Prós: Desempenho muito superior, excelente rejeição a perturbações.
 - Contras: Mais complexo de projetar. Requer um sensor adicional para medir a perturbação (mais caro).
- Preditor de Smith (Parte III):

Controle de Reator Químico Conclusões

—Conclusões: Qual a Melhor Estratégia?

Não existe uma única resposta. A escolha ideal depende do balanço entre desempenho, complexidade e custo.

• Controlador PI (Parte I):

• Prêts Simples de projetar e implementar. Robusto.

Conclusões: Qual a Melhor Estratégia? I

- Prôs: Simples de projetar e implementar. Nobusto.
 Contras: Desempenho limitado, eficaz apenas perto do ponto de operação.
 LR + Feedforward (Parte II):
- LR + Feedforward (Parte II):
 Prés: Desempenho muito superior, escelente rejeição a perturbações.
 Contras: Mais compleso de projetar. Requer um sensor adicional para medir a parturbação (mais caro).

 Preditor de Smith (Parte III):

Resumimos os aprendizados. Cada técnica tem seu lugar. A engenharia de controle consiste em entender esses trade-offs para escolher a solução mais adequada para cada problema.

Conclusões: Qual a Melhor Estratégia? II

- Prós: Essencial para sistemas com atraso, recuperando o desempenho.
- **Contras:** O desempenho depende da precisão do modelo. Erros na estimativa do atraso podem degradar a resposta.

Perguntas? Obrigado!