CCN and NDN TLV encodings in 802.15.4 packets

Marc Mosko
Palo Alto Research Center
marc.mosko@parc.com

Christian Tschudin University of Basel christian.tschudin@unibas.ch

Contributions

- A new TLV encoding called 1+0:
 - 1 byte for T and L
 - assumes «contextual type values»
- Embeddable in fixed-length CCNx1.0 as well as variable size NDN codes
- Concrete IoT example, emphasizing security important for IoT, think door locks etc
- Take home message: size matters
 - permit for enough security bits
 - reduce air time (battery life)
 - avoid fragmentation

Overview

- 802.15.4 intro, packet examples
- The case for 1-byte IoT TLV encoding
- Example using 1+0 encoding

802.15.4 PHY MTU of 127 bytes

Same problems as IPv6 (RFC 4944)

	2-byte addr	8-byte addr
Maximum Payload	127	127
802.15.4 MAC header	-11	-23
802.15.4 Security header	-5	-5
AES-CCM-16 Encrypted MAC*	-16	-16
802.15.4 FCS	-2	-2
Available Payload Size	93	81

See also Sastry & Wagner, "Security considerations for IEEE 802.15.4", http://www.cs.berkeley.edu/~daw/papers/15.4-wise04.pdf

^{*} Encrypted Message Authentication Code

802.15.4 Packet Assumptions

- Use worst case 8-byte addresses with PAN ID
- AES-CCM-16 encryption with authentication
- Content Object/Data uses 16-byte HMAC sig
- Name /abcd/efgh/ijkl (4/4/4)
- Only mandatory fields
- 32-bytes of user payload
- No fragmentation! Fit in one packet.

Disclaimer

- You can always twiddle fields or use less overhead, different names, etc.. If you hand craft CCN/NDN packets for 802.15.4, you can obviously do better – we wanted to stick with TLV.
- The 32-byte payload was picked before creating the packets to see if we could make that fit.
- One could use the 802.15.4 AES-CCM-16 signature and encryption instead of a CCN/NDN Signature on the Data -- has drawbacks.
- Comparing 1+0 with: 2+2 CCN, 1+1 CCN, 1+1 NDN

	DUIV			ng OCTI		1.0	
		Fixed	Data	2+2	1+1	1+0	
802.15.4 GFSK PHY header	6	20					We kent 8 byte fixed header
802.15.4 64-bit address		23 5					We kept 8 byte fixed header,
802.15.4 Security header		5					this is obvious place to save
Fixed Header		8	-				•
ContentObjectMessage TL				4	2		l
Name TL				4	2	:	L
Name Component TL				4	2	:	L
Name /abcd			4				
Name Component TL				4	2	:	l
Name /efgh			4				
Name Component TL				4	2	•	l
Name /ijkl			4	4	2		
Payload TL			32	4	2	•	L
Payload Validator Alg TL			32	4	2		L
Validator HMAC				4	2		L L
Keyld TL				4	2		
Keyld			2	·	-	•	•
Validator Payload TL				4	2		L
Validator Payload (128-bit HMAC)			16				
802.15.4 AES-CCM-128 Auth		16					
802.15.4 FCS		2					
SUBTOTAL	6	54	62	40	20	10	A 2+2 or 1+1 CCN
		JT	02				
TOTAL 802.15.4 PHY P	ayload			156	136	126	Encoding with Fixed
OVERHEAD	-			65%	32%	16%	Header is too large
OVENHEAD				03%	3 2%	10%	i leader is too large

Overhead = encoding / data (e.g. 40 / 62 = 0.65)

	N[ON En	coding	OCTETS		
		ixed	Data	NDN	1+0	
		ixeu	Data	INDIN	1+0	
802.15.4 GFSK PHY header	6					
802.15.4 64-bit address		23				
802.15.4 Security header		5				
Data Packet TL				2	1	Note: No fixed heade
Name TL				2	1	no nonce (it's a Data
Name Component TL				2	1	•
Name /abcd			4			packet)
Name Component TL				2	1	,
Name /efgh			4			
Name Component TL				2	1	
Name /ijkl			4			
Content TL				2	1	
Contents			32			
Signature Info TL				2	1	
Signature Type TL				2	1	
Signature Type			1			
KeyLocator TL				2	1	
Keyld TL				2	1	
Keyld			2			
Signature Value TL				2	1	
Signature (128-bit HMAC)			16			
802.15.4 AES-CCM-16 Auth		16				
802.15.4 FCS		2				
SUBTOTAL	6	46	63	22	11	A 1+1 NDN encoding
JUDIUIAL	U	40	US	~~	TT	is too large
TOTAL 802.15.4 PHY P	ayload			131	120	13 130 141 80
	•			250/	4 70/	
OVERHEAD				35%	17%	

Overhead = encoding / data (e.g. 22/63 = 0.35)

Maximum payload, Gain when changing the encoding while keeping name and crypto bits fixed

	absolute	relative
	(octets)	increase
CCN 2+2	3	
CCN 1+1	23	667%
CCN 1+0	33	43%
NDN 1+1	28	
NDN 1+0	39	39%

Increase = (current - previous)/previous

The case for 1+0 Encoding

- There are very few fields needed. You cannot really fit more anyway.
- Can mix 1+0 with other encodings when need more types or longer lengths (see next slides)
- It saves a lot of bytes.
- Requires a separate specification on packet format, as there are only 4 available "T"s per container in the 1+0 format.

Embedding 1+0 in NDN: Encoding

Approach:

- Reserve some type code space for IoT encoding (four type values)
- Reserve some codes for overflow (announcing length of T)

```
(y = type bit, x = length bit)
001yyyyy <5-bit type> VAR-NUMBER(length)
00111101 2-byte(type) VAR-NUMBER(length)
00111110 4-byte(type) VAR-NUMBER(length)
00111111 8-byte(type) VAR-NUMBER(length)
000xxxxx type 0 length 0xxxxx (5-bit length)
01xxxxxx type 1 length xxxxxx (6-bit length)
10xxxxxx type 2 length xxxxxx (6-bit length)
11xxxxxx type 3 length xxxxxx (6-bit length)
```

Embedding 1+0 in NDN: Pseudocode

```
if (type_val & 0b11100000 == 0b00100000) {
   // VAR-NUMBER type processing
   if (type val < 0x3D ) {
      type = type val & 0x1F;
   } else if ( type_val == 0x3D ) {
      // 2-byte VAR-NUMBER type follows
   } else if ( type val == 0x3E ) {
      // 4-byte VAR-NUMBER type follows
   } else {
      // 8-byte VAR-NUMBER type follows
   // VAR-NUMBER length follows
} else {
   // IOT processing
   type = type val >> 6;
   length = type val & Ob0011111;
```

Embedding 1+0 in CCN 2+2: Encoding & Pseudocode

```
(y = type bit, x = length bit)
001yyyyy yyyyyyy xxxxxxxx xxxxxxxx (8K types, 64K length)
000xxxxx type 0 length 0xxxxx (5-bit length)
01xxxxxx type 1 length xxxxxx (6-bit length)
10xxxxxx type 2 length xxxxxx (6-bit length)
11xxxxxxx type 3 length xxxxxxx (6-bit length)
   if (type val & 0b11100000 == 0b00100000) {
       type = (uint16_t) type_val << 8 | next_byte;</pre>
      // 2-byte length follows
   } else {
       // IOT processing
       type = type val >> 6;
       length = type val & 0b0011111;
```

```
PHY HEADER
                                             Control
                                        Aux. Sec. Hdr
                        Source
   Aux. Sec. Hdr
                      Ver | PktType |
                                   Packet Length Reserved
Reserved Flags
                                    // Content Object TL (49 bytes)
01110001
      00001111
                                    // 1+0 Name TL (15 bytes)
                              f
             00000100
             00000100
                       i
        -----+----+----+-----+
                                   // 1+0 Payload TL
      10100000
                             (32 bytes of payload)
                 ____+_
10000011
                                   // 1+0 ValidatorAlg TL
      |01000011|01000010| (2-byte keyid) | // 1+0 HAMC TL + KEYID TL
11010000
              16-byte CCN HMAC signature
              16-byte 802.15.4 AES-CCM-16 encrypted MAC
 802.15.4 FCS
_____+
```

Conclusions

- The examples stimulate discussion not absolute judgments on encodings
- 2+2 and 1+1 have a lot of overhead for IoT
- 802.15.4 case:
 - 1+1 formats (CCN and NDN) slightly too large for 32-byte payload with AES-CCM-16
 - 1+0 format works for 32-byte payload
- Graceful overflow: 1+0 format can be combined with existing NDN- and CCN-style encodings