Оглавление

Bı	веде	ние	2				
1	Ана	алитическая часть	3				
	1.1	Формализация задачи					
	1.2	2 Трассировка ядра					
		1.2.1 Linux Security Module	4				
		1.2.2 Модификация таблицы системных вызовов	5				
		1.2.3 kprobes	5				
		1.2.4 Kernel tracepoints	6				
		1.2.5 ftrace	6				
	1.3	Информация о процессах и памяти	8				
		1.3.1 Структура struct task_struct	8				
		1.3.2 Структура struct sysinfo	10				
	1.4	Загружаемые модули ядра	11				
		1.4.1 Пространство ядра и пользователя	12				
	1.5	Виртуальная файловая система /proc	13				
2	Koı	нструкторская часть	15				
	2.1	Архитектура приложения	15				
	2.2	Структура struct ftrace_hook	15				
	2.3	Алгоритм перехвата системного вызова	16				
	2.4	Алгоритм подсчёта количества системных вызовов	19				
3	Tex	нологическая часть	21				
	3.1	Выбор языка программирования	21				
	3.2	Поиск адреса перехватываемой функции	21				
	3.3	Инициализация ftrace	22				
	3.4	Функции обёртки	24				
	3.5	Примеры работы разработанного ПО	25				
За	клю	очение	29				
Л	итер	атура	30				

Введение

В настоящее время большую актуальность имеют системы мониторинга состояния загруженности операционной системы. Особое внимание уделяется операционным система с ядром Linux [1].

В современном мире на большой части серверов используется именно такие операционные системы. На таких серверах размещаются специальные хранилища с пользовательскими данными, Web-приложения и так далее. За любым из таких серверов нужно наблюдать: в любой момент могут возникнуть сбои, что может привести к потери данных пользователя или недоступности какого-либо ресурса, что в своё время может привести к денежным потерям.

Для обнаружения и предотвращения сбоев необходимо иметь хорошую систему мониторинга, которая будет анализировать работу операционной системы. Данный курсовой проект посвящен исследованию структур ядра, хранящим информацию о процессах в системе и памяти, и способам перехвата системных вызовов ядра с их последующим логированием.

Целью данной курсовой работы является разработка загружаемого модуля ядра, предоставляющего информацию о загруженности системы: количество системных вызовов за выбранный промежуток времени, количество выделенной памяти, статистика по процессам и в каких состояниях они находятся.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- изучить структуры и функции ядра, которые предоставляют информацию о процессах и памяти;
- проанализировать существующие подходы к перехвату системных вызовов и выбрать наиболее подходящий;
- реализовать загружаемый модуль ядра.

1 Аналитическая часть

В данном разделе производится постановка задачи и анализ методов решения поставленной задачи.

1.1 Формализация задачи

В соответствии с техническим задание на курсовую работу по курсу «Операционные системы» необходимо разработать загружаемый модуль ядра, который позволит посмотреть следующую информацию о состоянии системы:

- количество системных вызовов за выбранный промежуток времени;
- количество свободной и доступной оперативной памяти;
- количество процессов в системе и их состояния на данный момент.

Для решение данной задачи необходимо:

- проанализировать различные подходы к трассировке ядра и перехвату функций;
- исследовать структуры и функции ядра, предоставляющие информацию о процессах и памяти;
- изучить основные принципы загружаемых модулей ядра.

1.2 Трассировка ядра

Трассировка ядра – получение информации о том, что происходит внутри работающей системы. Для этого используются специальные программные инструменты, регистрирующие все происходящие события в системе.

Такие программы могут одновременно отслеживать события как на уровне отдельных приложений, так и на уровне операционной системы.

Полученная в ходе трассировки информации может оказаться полезной для диагностики и решения системных проблем.

Во время трассировки записывается информация о событиях, происходящих на низком уровне. Их количество исчисляется сотнями и даже тысячами.

Далее будут рассмотрены существующие различные подходы к трассировке ядра и перехвату вызываемых функций, и выбран наиболее подходящий для реализации в курсовой работе.

1.2.1 Linux Security Module

Linux Security Module (LSM) [2] — это специальный интерфейс, созданный для перехвата функций. В критических местах кода ядра расположены вызовы security-функций, которые вызывают коллбеки (англ. callback [3]), установленные security-модулем. Данный модуль может изучать контекст операции и принимать решение о её разрешении или запрете [2].

Особенности рассматриваемого интерфейса:

- security-модули являются частью ядра и не могу быть загружены динамически;
- в стандартной конфигурации сборки ядра флаг наличия LSM неактивен большинство уже готовых сборок ядра не содержут внутри себя интерфейс LSM;
- в системе может быть только один security-модуль [2].

Таким образом, для использования Linux Security Module необходимо поставлять собственную сборку ядра Linux, что является трудоёмким вариантом – как минимум, придётся тратить время на сборку ядра. Кроме того, данный интерфейс обладает излишним функционалом (например решение о блокировке какой-либо операции), который не потребуется в написании разрабатываемого модуля ядра.

1.2.2 Модификация таблицы системных вызовов

Все обработчики системных вызовов расположены в таблице sys_call_table. Подмена значений в этой таблице приведёт к смене поведения всей системы. Сохранив старое значение обработчика и подставив в таблицу собственный обработчик, можно перехватить любой системный вызов.

Особенности данного подхода:

- минимальные накладные расходы;
- не требуется специальная конфигурация ядра;
- техническая сложность реализации необходимо модифицировать таблицу системных вызовов;
- из-за ряда оптимизаций, реализованных в ядре, некоторые обработчики невозможно перехватить [4];
- можно перехватить только системные вызовы нельзя перехватить обычные функции.

1.2.3 kprobes

kprobes [5] — специальный интерфейс, предназначенный для отладки и трассировки ядра. Данный интерфейс позволяет устанавливать пред- и пост-обработчики для любой инструкции в ядре, а так же обработчики на вход и возврат из функции. Обработчики получают доступ к регистрам и могут изменять их значение. Таким образом, kprobes можно использовать как и в целях мониторинга, так и для возможности повлиять на дальнейший ход работы ядра [4].

Особенности рассматриваемого интерфейса:

• перехват любой инструкции в ядре – это реализуется с помощью точек останова (инструкция int3), внедряемых в исполняемый код ядра. Таким образом, можно перехватить любую функцию в ядре;

- хорошо задокументированный API;
- нетривиальные накладные расходы для расстановки и обработки точек останова необходимо большое количество процессорного времени [4];
- техническая сложность реализации. Так, например, чтобы получить аргументы функции или значения её локальных переменных нужно знать, в каких регистрах, или в каком месте на стеке они находятся, и самостоятельно их оттуда извлекать;
- при подмене адреса возврата из функции используется стек, реализованный с помощью буффера фиксированного размера. Таким образом, при большом количестве одновременных вызовов перехваченной функции, могут быть пропущены срабатывания.

1.2.4 Kernel tracepoints

Kernel tracepoints [6] — это фреймворк для трассировки ядра, реализованный через статическое инструментирование кода. Большинство важных функций ядра статически инструментировано — в теле функций добавлены вызовы функций фреймворка рассматриваемого фреймворка.

Особенности рассматриваемого фреймворка:

- минимальные накладные расходы необходимо только вызвать функцию трассировки в необходимом месте;
- отсутствие задокументированного АРІ;
- не все функции ядра статически инструментированны;
- не работает, если ядро не сконфигурировано должным образом [4].

1.2.5 ftrace

ftrace [7] — это фреймворк для трассировки ядра на уровне функций, реализованный на основе ключей компилятора -pg [8] и mfentry [8].

Данные функции вставляют в начало каждой функции вызов специальной трассировочной функции mcount() или __fentry()__. В пользовательских программах данная возможность компилятора используется профилировщиками, с целью отслеживания всех вызываемых функций. В ядре эти функции используются исключительно для реализации рассматриваемого фреймворка.

Для большинства современных архитектур процессора доступна оптимизация: динамический frace [8]. Ядро знает расположение всех вызовов функций mcount() или __fentry()__ и на ранних этапах загрузки ядра подменяет их машинный код на специальную машинную инструкцию NOP [9], которая ничего не делает. При включении трассировки, в нужные функции необходимые вызовы добавляются обратно. Если ftrace не используется, его влияние на производительность системы минимально.

Особенности рассматриваемого фреймворка:

- имеется возможность перехватить любую функцию;
- перехват совместим с трассировкой;
- фреймворк зависит от конфигурации ядра, но, в популярных конфигурациях ядра (и, соответственно, в популярных образах ядра) установлены все необходимые флаги для работы;

Вывод

В таблице 1.1 приведено сравнение приведенных выше технологий трассировки ядра.

В ходе анализа подходов к перехвату функций, был выбран фреймворк ftrace, так как он позволяет перехватить любую функцию зная лишь её имя, может быть загружен в ядро динамически и не требует специальной сборки ядра и имеет хорошо задокументированный API.

Название	Дин. за-	Перехват	Любая	Простота	Наличие
	грузка	любых	конфи-	реализа-	докумен-
		функций	гурация	ции	тации
			ядра		
Linux	Нет	Да	Нет	Нет	Нет
Security					
Module					
Модификация	Да	Нет	Да	Нет	Нет
таблицы си-					
стемных					
вызовов					
kprobes	Да	Да	Да	Нет	Да
kernel	Да	Да	Нет	Да	Нет
tracepoints					
ftrace	Да	Да	Нет	Да	Да

Таблица 1.1: Сравнение технологий, позволяющих трассировать ядро

1.3 Информация о процессах и памяти

1.3.1 Структура struct task_struct

Информация о процессах в ядре хранится с помощью специальной структуры struct task_struct [10]. Каждому процессу в системе соответствует структура task_struct, которая полностью описывает процесс. Сами структуры связаны друг с другом по средствам кольцевого связанного списка.

Структура описывает текущее состояние процесса, его флаги, указатель на процессы-потомки и так далее. Стоит отметить, что для описания потоков, в ядре Linux так же используется данная структура – различие лишь в установленных флагах. В листинге 1.1 представлено объявление структуры с наиболее интересными полями.

```
struct task_struct {

#ifdef CONFIG_THREAD_INFO_IN_TASK

struct thread_info thread_info;

#endif

#endif
```

```
unsigned int
                        __state;
    unsigned int
                        flags;
    #ifdef CONFIG SMP
10
               on cpu;
12
    int
               recent used cpu;
13
    #endif
14
    int
               recent used cpu;
16
17
    #ifdef CONFIG CGROUP SCHED
18
    struct task group
                         *sched task group;
19
    #endif
21
    struct sched_info sched info;
22
23
    struct list head
                         tasks;
2.4
25
26 }
```

Листинг 1.1: Листинг структуры task_struct с наиболее интересными полями

Для работы с данной структурой внутри ядра объявлен ряд макросов. Например, чтобы обойти все процессы в системе, существует макрос for_each_process, который итерируется по связанному списку процессов. Состояния процесса так же описываются с помощью специальных макросов. Кроме того, существует ряд макросов, позволяющих проверить текущее состояние процесса, например, узнать, выполняется ли процесс в данный момент. Список этих макросов приведён в листингах 1.2 - 1.3.

```
#define TASK RUNNING
                              0x0000
 #define TASK INTERRUPTIBLE
                                  0x0001
3 #define TASK UNINTERRUPTIBLE
                                    0x0002
_{4}|\#define __TASK_STOPPED
                                0x0004
 #define TASK TRACED
                              0x0008
6 #define EXIT DEAD
                         0x0010
7 #define EXIT_ZOMBIE
                            0 \times 0020
 #define EXIT TRACE
                            (EXIT ZOMBIE | EXIT DEAD)
9 #define TASK PARKED
                            0x0040
10 #define TASK_DEAD
                         0x0080
#define TASK WAKEKILL
                              0x0100
12 #define TASK WAKING
                            0 \times 0200
```

```
13 #define TASK NOLOAD
                          0x0400
14 #define TASK NEW
                        0x0800
#define TASK RTLOCK WAIT
                              0x1000
16 #define TASK STATE MAX
                              0x2000
#define TASK KILLABLE
                            (TASK WAKEKILL | TASK UNINTERRUPTIBLE)
                            (TASK WAKEKILL | TASK STOPPED)
18 #define TASK STOPPED
19 #define TASK TRACED
                          (TASK_WAKEKILL | __TASK_TRACED)
                        (TASK UNINTERRUPTIBLE | TASK NOLOAD)
20 #define TASK IDLE
                          (TASK INTERRUPTIBLE | TASK UNINTERRUPTIBLE)
21 #define TASK NORMAL
                          (TASK RUNNING | TASK INTERRUPTIBLE | \
22 #define TASK REPORT
23 TASK UNINTERRUPTIBLE | TASK STOPPED | \
24 TASK TRACED | EXIT DEAD | EXIT ZOMBIE | \
25 TASK PARKED)
```

Листинг 1.2: Описание состояний процесса с помощью макросов

Листинг 1.3: Макросы с помощью которых можно узнать текущее состояние процесса

1.3.2 Структура struct sysinfo

Структура struct sysinfo [11] хранит информацию статистику о всей системе: информацию о времени, прошедшем с начала запуска системы, количество занятой памяти и так далее. В листинге 1.4 приведёно объявление рассматриваемой структуры.

Листинг 1.4: Листинг структуры struct sysinfo

Для инициализации этой структуры используется функция si_meminfo(). Стоит отметить, что рассматриваемая структура не содержит информации о свободной памяти в системе. Для того чтобы получить эту информацию, необходимо воспользоваться функцией si_mem_available().

1.4 Загружаемые модули ядра

Одной из особенностей ядра Linux является способность расширения функциональности во время работы, без необходимости компиляции ядра заново. Таким образом, существует возможность добавить (или убрать) функциональность в ядро можно когда система запущена и работает. Часть кода, которая может быть добавлена в ядро во время работы, называется модулем ядра. Ядро Linux предлагает поддержку большого числа классов модулей. Каждый модуль – это подготовленный объектный код, который может быть динамически подключен в работающее ядро, а позднее может быть выгружен из ядра.

Каждый модуль ядра сам регистрирует себя для того, чтобы обслуживать в будущем запросы, и его функция инициализации немедленно прекращается. Задача инициализации модуля заключается в подготовке функций модуля для последующего вызова. Функция выхода модуля вызывается перед выгрузкой модуля из ядра. Функция выхода должна отменить все изменения, сделанные функций инициализации, освободить захваченные в процессе работы модуля ресурсы.

Возможность выгрузить модуль помогает сократить время разработки – нет необходимости перезагрузки компьютера при последовательном тестировании новых версий разрабатываемого модуля ядра.

Модуль связан только с ядром и может вызывать только те функции,

1.4.1 Пространство ядра и пользователя

Приложения работаю в пользовательском пространстве, а ядро и его модули – в пространстве ядра. Такое разделение пространств – базовая концепция теории операционных систем.

Ролью операционной системы является обеспечение программ надёжным доступом к аппаратной части компьютера. Операционная система должна обеспечивать независимую работу программ и защиту от несанкционированного доступа к ресурсам. Решение этих задач становится возможным только в том случае, если процессор обеспечивает защиту системного программного обеспечения от прикладных программ.

Выбранный подход заключается в обеспечении разных режимов работы (или уровней) в самом центральном процессоре. Уровни играют разные роли и некоторые операции на более низких уровнях не допускаются; программный код может переключить один уровень на другой только ограниченным числом способов. Все современные процессоры имеют не менее двух уровней защиты, а некоторые, например семейство процессоров х86, имеют больше уровней; когда существует несколько уровней, используется самый высокий и самый низкий уровень защиты.

Ядро Linux выполняется на самом высоком уровне, где разрешено выполнение любых инструкций и доступ к произвольным участкам памяти, а приложения выполняются на самом низком уровне, в котором процессор регулирует прямой доступ оборудованию и несанкционированный доступ к памяти. Ядро выполняет переход из пользовательского пространства в пространство ядра, когда приложение делает системный вызов или приостанавливается аппаратным прерыванием. Код ядра, выполняя системный вызов, работает в контексте процесса — он действует от имени вызывающего процесса и в состоянии получить данные в адресном пространстве процесса. Код, который обрабатывает прерывания является асинхронным по отношению к процессам и не связан с каким-либо определенным процессом [4].

Ролью модуля ядра является расширение функциональности ядра без

1.5 Виртуальная файловая система /ргос

Для организации доступа к разнообразным файловым системам в Unix используется промежуточный слой абстракции — виртуальная файловая система. С точки зрения программиста, виртуальная файловая система организована как специальный интерфейс. Виртуальная файловая система объявляет API доступа к ней, а реализацию этого API отдаёт на откуп к драйверам конкретных файловых систем.

Виртуальная файловая система /proc – специальный интерфейс, с помощью которого можно мгновенно получить некоторую информацию о ядре в пространство пользователя. /proc отображает в виде дерева каталогов внутренние структуры ядра.

В каталоге /proc в Linux присутствуют несколько деревьев файловой системы. В основном дереве, каждый каталог имеет числовое имя и соответствует процессу, с соответствующим PID. Файлы в этих каталогах соответствуют структуре task_struct. Так, например, с помощью команды cat /proc/1/cmdline, можно узнать аргументы запуска процесса с идентификатором равным единице. В дереве /proc/sys отображаются внутренние переменные ядра.

Ядро предоставляет возможность добавить своё дерево в каталог /proc. Внутри ядра объявлена специальная структура struct proc_ops [12]. Эта структура содержит внутри себя указатели на функции чтения файла, записи в файла и прочие, определенные пользователем. В листинге [?] представлено объявление данной структуры в ядре.

```
struct proc_ops {
   unsigned int proc_flags;
   int (*proc_open)(struct inode *, struct file *);
   ssize_t (*proc_read)(struct file *, char __user *, size_t , loff_t *);
   ssize_t (*proc_read_iter)(struct kiocb *, struct iov_iter *);
   ssize_t (*proc_write)(struct file *, const char __user *, size_t , loff_t *);
   loff_t (*proc_lseek)(struct file *, loff_t , int);
   int (*proc_release)(struct inode *, struct file *);
   __poll_t (*proc_poll)(struct file *, struct poll_table_struct *);
   long (*proc_ioctl)(struct file *, unsigned int , unsigned long);
   #ifdef CONFIG_COMPAT
```

Листинг 1.5: Листинг структуры struct sysinfo

С помощью вызова функций proc_mkdir() и proc_create() в модуле ядра можно зарегистрировать свои каталоги и файлы в /proc соотвественно. Функции copy_to_user() и copy_from_user() реализуют передачу данных (набора байтов) из пространства ядра в пространство пользователя и наооборот.

Таким образом, с помощью виртуальной файловой системы /proc можно получать (или передавать) какую-либо информацию из пространства ядра в пространство пользовтеля (из пространства пользовтаеля в пространство ядра).

Вывод

В данном разделе были проанализированны различные подходы к трассировке ядра и перехвату функций и был выбран наиболее оптимальный метод для реализации поставленной задачи. Были рассмотрены структуры и функции ядра, предоставляющие информацию о процессах и памяти; основные принципы загружаемых модулей ядра и понятия пространств ядра и пространства пользователя, а так же рассмотрен способ взаимодействия этих двух пространств с целью передачи данных из одного в другого.

2 Конструкторская часть

В данном разделе будет рассмотрена общая архитектура приложения, алгоритм перехвата системных вызовов и подсчёт количества этих вызовов за выбранный промежуток времени.

2.1 Архитектура приложения

В состав разработанного программного обеспечения входит один загружаемый модуль ядра, который перехватывает все вызовы системных вызовов, подсчитывая их количество за определенный промежуток времени, предоставляет пользователю информацию о процессах и их состояниях, а так же информацию и состояние о загруженности оперативной памяти – её общее количество, свободной и доступной в данный момент.

2.2 CTPYKTYPA struct ftrace_hook

В листинге 2.1 представлено объявление структуры struct ftrace_hook, которая описывает каждую перехватываемую функцию.

```
struct ftrace_hook {
   const char *name;
   void *function;
   void *original;

unsigned long address;
   struct ftrace_ops ops;
};
```

Листинг 2.1: Листинг структуры ftrace_hook

Необходимо заполнить только первые три поля:

- name имя перехватываемой функции;
- function адрес функции обёртки, вызываемой вместо перехваченной функции;

• original – указатель на перехватываемую функцию.

Остальные поля считаются деталью реализации. Описание всех перехватываемых были собраны в массив, а для инициализации был написан специальный макрос (см. листинг 2.2).

```
#define ADD_HOOK(_name, _function, _original) \
2 {
    .name = SYSCALL NAME( name),
    . function = (\_function),
    . original = ( original),
  static struct ftrace hook hooked functions[] = {
   ADD HOOK("sys execve", hook sys execve, &real sys execve),
   ADD HOOK("sys write", hook sys write, &real sys write),
10
   ADD HOOK("sys open", hook sys open, &real sys open),
   ADD HOOK("sys close", hook sys close, &real sys close),
12
   ADD HOOK("sys mmap", hook sys mmap, &real sys mmap),
1.3
   ADD HOOK("sys sched yield", hook sys sched yield, &real sys sched yield),
   ADD HOOK("sys socket", hook sys socket, &real sys socket),
15
   ADD HOOK("sys connect", hook sys connect, &real sys connect),
   ADD HOOK("sys accept", hook sys accept, &real sys accept),
   ADD HOOK("sys sendto", hook sys sendto, &real sys sendto),
18
   ADD_HOOK("sys_recvfrom", hook_sys_recvfrom, &real_sys_recvfrom),
19
   ADD HOOK("sys sendmsg", hook sys sendmsg, &real sys sendmsg),
   ADD HOOK("sys recvmsg", hook sys recvmsg, &real sys recvmsg),
21
   ADD HOOK("sys shutdown", hook sys shutdown, &real sys shutdown),
   ADD_HOOK("sys_read", hook_sys_read, &real_sys_read),
23
   ADD_HOOK("sys_clone", hook_sys_clone, &real sys clone),
24
   ADD HOOK("sys mkdir", hook sys mkdir, &real sys mkdir),
25
   ADD HOOK("sys rmdir", hook sys rmdir, &real sys rmdir),
 };
```

Листинг 2.2: Объявление массива перехватываемых функций и специальный макрос для его инициализации

2.3 Алгоритм перехвата системного вызова

На риснуке 2.1 представлена схема алгоритма перехвата системных вызовов на примере sys_clone.

Рис. 2.1: Алгоритм перехвата системного вызова

- 1. Пользовательский процесс выполняет инструкцию SYSCALL. С помощью этой инструкции выполняется переход в режим ядра и управление передаётся низкоуровневому обработчику системных вызовов entry_SYSCALL_64(). Этот обработчик отвечает за все системные вызовы 64-битных программ на 64-битных машинах.
- 2. Управление переходит к обработчику системного вызова. Ядро передаёт управление функции do_syscall_64(). Эта функция обращается к таблице обработчиков системных вызовов sys_call_table и с помощью неё вызывает конкретный обработчик системного вызова sys_clone().
- 3. Вызывается ftrace. В начале каждой функции ядра находится вы-

зов функции __fentry__(), реализованная фреймворком ftrace. Перед этим состояние регистров сохраняется в специальную структуру pt_regs.

- 4. ftrace вызывает разработанный коллбек.
- 5. Коллбек выполняет перехват. Коллбек анализирует значение parent_ip и выполняет перехват, обновляя значение регистра rip (указатель на следующую исполняемую инструкцию) в структуре pt_regs.
- 6. ftrace восстанавливает значение регистров с помощью структуры pt_regs. Так как обработчик изменяет значение регистр rip это приведёт к передачу управления по новому адресу.
- 7. Управление получает функция обёртка. Благодаря безусловному переходу, управление получает наша функция hook_sys_clone(), а не оригинальная функция sys_clone(). При этом всё остальное состояние процессора и памяти остаётся без изменений функция получает все аргументы оригинального обработчика и при завершении вернёт управление в функцию do_syscall_64().
- 8. Функция обёртка вызывает оригинальную функцию. Функция hook_sys_clone() может проанализировать аргументы и контекст системного вызова и запретить или разрешить процессу его выполнение. В случае его запрета, функция просто возвращает код ошибки. Иначе вызывает оригинальный обработчик sys_clone() повторно, с помощью указателя real_sys_clone, который был сохранён при настройке перехвата.
- 9. Управление получает коллбек. Как и при первом вызове sys_clone(), управление проходит через ftrace и передается в коллбек.
- 10. Коллбек ничего не делает. В этот раз функция sys_clone() вызывается разработанной функцией hook_sys_clone(), а не ядром из функции do_syscall_64(). Коллбек не модифицирует регистры и выполнение функции sys_clone() продолжается как обычно.
- 11. Управление передаётся функции обёртке.

- 12. Управление передаётся ядру. Функция hook_sys_clone() завершается и управление переходит к do_syscall_64().
- 13. Управление возвращает в пользовательский процесс. Ядро выполняет инструкцию IRET, устанавливая регистры для нового пользовательского процесса и переводя центральный процессор в режим исполнения пользовательского кода.

2.4 Алгоритм подсчёта количества системных вызовов

На риснуке 2.2 представлена схема алгоритма подсчёта системных вызовов.

Рис. 2.2: Алгоритм подсчёта количества системных вызовов

• Аггрегирующий массив – это массив на 86400 элементов, состоящий из структур, имеющих два поля в виде 64-битных без знаковых целых

чисел. Это позволяет фиксировать до 128 системных вызов в секунду на протяжении 24 часов. Такой массив занимает всего лишь 1350 килобайт оперативной памяти;

• спин-блокировка необходима с той целью, что несколько системных вызовов могут быть вызваны в один и тот же момент времени – в таком случае, без блокировки, аггрегирующий массив потеряет часть данных;

Вывод

В данном разделе была рассмотрена общая архитектура приложения, алгоритм перехвата системных вызовов и подсчёта их количества за выбранный промежуток.

3 Технологическая часть

В данном разделе рассматривается выбор языка программирования для реализации поставленной задачи, листинги реализации разработанного программного обеспечения и приведены результаты работы ПО.

3.1 Выбор языка программирования

Разработанный модуль ядра написан на языке программирования С [13]. Выбор языка программирования С основан на том, что исходный код ядра Linux, все его модули и драйверы написаны на данном языке.

В качестве компилятора выбран дсс [14].

3.2 Поиск адреса перехватываемой функции

Для корректной работы ftrace необходимо найти и сохранить адрес функции, которую будет перехватывать разрабатываемый модуль ядра.

В старых версиях ядра (в версии ядра 5.7.0 данная функция перестала быть экспортируемой [15]) найти адрес функции можно было с помощью функции kallsyms_lookup_name() — списка всех символов в ядре, в том числе не экспортируемых для модулей. Так как модуль ядра разрабатывался на системе с версией ядра 5.14.9, воспользоваться данным способом было нельзя. В конечном итоге проблемы была решена с помощью интерфейса kprobes (который был описан в 1.1.3).

Из-за того что данный способ имеет больше накладных расходов, чем поиск с помощью kallsyms_lookup_name() (требуется регистрация и удаление kprobes в системе), для версий ядра ниже 5.7.0 поиск адреса производится с помощью kallsyms_lookup_name(). Такое реализация стала возможной благодаря директивам условной компиляции [16] и специальным макросам LINUX_VERSION_CODE и KERNEL_VERSION().

Реализация функции lookup_name(), возвращающей адрес функции перехватываемой функции по её названию, представлена в листинге 3.1.

```
#if LINUX VERSION CODE >= KERNEL VERSION(5,7,0)
  static unsigned long lookup_name(const char *name)
    struct kprobe kp = {
      . symbol name = name
    unsigned long retval;
    ENTER LOG();
10
    if (register kprobe(\&kp) < 0) {
      EXIT LOG();
12
      return 0;
13
    }
14
15
    retval = (unsigned long) kp.addr;
    unregister kprobe(&kp);
17
18
    EXIT LOG();
20
    return retval;
21
  }
23 #else
  static unsigned long lookup name(const char *name)
24
    unsigned long retval;
26
27
    ENTER LOG();
28
    ret val = kallsyms_lookup_name(name);
29
    EXIT LOG();
3.0
    return retval;
32
33 }
34 #endif
```

Листинг 3.1: Реализация функции lookup_name()

3.3 Инициализация ftrace

В листинге 3.2 представлена реализация функции, которая инициализирует структуру ftrace_ops.

```
static int install_hook(struct ftrace_hook *hook) {
```

```
int rc;
     ENTER LOG();
     if ((rc = resolve hook address(hook))) {
       EXIT LOG();
        return rc;
     }
10
     hook \rightarrow ops.func = ftrace\_thunk;
     hook->ops.flags = FTRACE OPS FL SAVE REGS
12
     | FTRACE OPS FL RECURSION
13
     | FTRACE OPS FL IPMODIFY;
14
15
     if \quad ((rc = ftrace\_set\_filter\_ip(\&hook->ops, hook->address, 0, 0))) \  \  \{
16
        pr debug("ftrace set filter ip() failed: %d\n", rc);
17
        return rc;
18
19
     }
20
     if ((rc = register_ftrace_function(&hook->ops))) {
21
        pr debug("register ftrace function() failed: %d\n", rc);
22
        \label{local_set_filter_ip} \texttt{ftrace\_set\_filter\_ip}\,(\&\,hook-\!\!>\!\!ops\,,\ hook-\!\!>\!\!ad\,d\,ress\,,\ 1\,,\ 0)\,;
23
     }
24
25
     EXIT LOG();
26
27
28
     return rc;
29
```

Листинг 3.2: Реализация функции install_hook()

В листинге 3.3 представлена реализация отключения перехвата функции.

```
static void remove_hook(struct ftrace_hook *hook) {
    int rc;

ENTER_LOG();

if (hook->address == 0x00) {
    EXIT_LOG();
    return;
}

if ((rc = unregister_ftrace_function(&hook->ops))) {
    pr_debug("unregister_ftrace_function() failed: %d\n", rc);
}
```

```
if ((rc = ftrace_set_filter_ip(&hook->ops, hook->address, 1, 0))) {
    pr_debug("ftrace_set_filter_ip() failed: %d\n", rc);
}

hook->address = 0x00;

EXIT_LOG();
}
```

Листинг 3.3: Реализация функции remove_hook()

3.4 Функции обёртки

При объявлении функций обёрток, которые будут запущены вместо перехватываемой функции, необходимо в точности соблюдать сигнатуру. Так, должны совпадать порядок, типы аргументов и возвращаемого значения. Оригинальные описания функций были из исходных кодов ядра Linux.

В листинге 3.4 представлена реализация функции обёртки на примере sys_clone().

```
static asmlinkage long (*real_sys_clone)(unsigned long clone_flags,
unsigned long newsp, int __user *parent_tidptr,
int __user *child_tidptr, unsigned long tls);

static asmlinkage long hook_sys_clone(unsigned long clone_flags,
unsigned long newsp, int __user *parent_tidptr,
int __user *child_tidptr, unsigned long tls)

{
    update_syscall_array(SYS_CLONE_NUM);
    return real_sys_clone(clone_flags, newsp, parent_tidptr, child_tidptr, tls);
}
```

Листинг 3.4: Реализация функции обёртки

В листинге 3.5 представлена реализация функции которая обновляет массив, хранящий количество системных вызовов за последние 24 часа.

```
static DEFINE_SPINLOCK(my_lock);

static void inline update_syscall_array(int syscall_num) {
 ktime_t time;
```

```
time = ktime_get_boottime_seconds() - start_time;

spin_lock(&my_lock);

if (syscall_num < 64) {
    syscalls_time_array[time % TIME_ARRAY_SIZE].p1 |= 1UL << syscall_num;
} else {
    syscalls_time_array[time % TIME_ARRAY_SIZE].p2 |= 1UL << (syscall_num % 64);
}

spin_unlock(&my_lock);
}

spin_unlock(&my_lock);
}</pre>
```

Листинг 3.5: Реализация функции update_syscall_array()

3.5 Примеры работы разработанного ПО

На рисунках 3.1 - 3.4 представлены примеры работы разработанного модуля ядра. Для наглядности перехватываются только 18 системных вызовов.

Вывод

В данном разделе был обоснован выбор языка программирования, рассмотрены листинги реализованного программного обеспечения и приведены результаты работы ПО.

```
alexey@alexey
                                                                  cat /proc/monitor/memory
Memory total:
                16331132 kB
Time 23:19:41
                9627696 kB
Free:
Available:
                11282292 kB
Time 23:19:51
                9607744 kB
Free:
Available:
                11263236 kB
Time 23:20:01
                9476708 kB
Free:
Available:
                11132236 kB
Time 23:20:11
                9464692 kB
Free:
Available:
                11121132 kB
Time 23:20:21
                9456292 kB
Free:
Available:
                11112756 kB
Time 23:20:31
Free:
                9455248 kB
Available:
                11111728 kB
Time 23:20:41
                9454784 kB
Free:
Available:
                11111296 kB
Time 23:20:51
Free:
Available:
                9451044 kB
                11107568 kB
Time 23:21:01
                9444484 kB
Free:
Available:
                11101040 kB
Time 23:21:11
                9387032 kB
Free:
Available:
                 11045600 kB
```

Рис. 3.1: Информация о оперативной памяти в системе

```
cat /proc/monitor/tasks
alexey@alexey
Total processes: 306
Running: 1
Sleeping: 303 [Interruptible: 203 | Uninterruptible: 100]
Stopped: 1
Zombie: 1
alexey@alexey
                                                                  cat /proc/monitor/tasks
Total processes: 304
Running: 1
Sleeping: 302 [Interruptible: 202 | Uninterruptible: 100]
Stopped: 1
Zombie: 0
alexey@alexey
                                                               cat /proc/monitor/tasks
Total processes: 304
Running: 1
Sleeping: 302 [Interruptible: 202 | Uninterruptible: 100]
Stopped: 1
Zombie: 0
alexey@alexey
                                                               cat /proc/monitor/tasks
Total processes: 302
Running: 1
Sleeping: 301 [Interruptible: 201 | Uninterruptible: 100]
Stopped: 0
Zombie: 0
alexey@alexey
```

Рис. 3.2: Информация о процессах и их состояниях на текущий момент в системе

```
alexey@alexey
                                                             main ± cat /proc/monitor/syscalls
Syscall statistics for the last 122 seconds.
sys_read called 122 times.
sys_write called 121 times.
sys_open called 2 times.
sys_close called 87 times.
sys_mmap called 69 times.
sys_sched_yield called 53 times.
sys_socket called 17 times.
sys_connect called 15 times.
sys_accept called 4 times.
sys_sendto called 86 times.
sys_recvfrom called 24 times.
sys_sendmsg called 111 times.
sys_recvmsg called 122 times.
sys_shutdown called 4 times.
sys_clone called 30 times.
sys_execve called 24 times.
sys_mkdir called 4 times.
sys_rmdir called 2 times.
alexey@alexey
```

Рис. 3.3: Информация о количестве системных вызовов за последние 122 секунды

Рис. 3.4: Конфигурирование модуля для отображение информации о системных вызовов за последние 15 секунд

Заключение

В ходе проделанной работы был разработан загружаемый модуль ядра, предоставляющий информацию о загруженности системы: количество системных вызовов за выбранный промежуток времени, количество свободной и доступной оперативной памяти, статистика по процессам и в каких состояниях они находятся.

Изучены структуры и функции ядра, которые предоставляют информацию о процессах и памяти. Проанализированы существующие подходы к перехвату системных вызовов.

На основе полученных знаний и проанализированных технологий реализован загружаемый модуль ядра.

Литература

- [1] Linux Operating System [Электронный ресурс]. Режим доступа: https://www.linux.org/ (дата обращения: 08.11.2021).
- [2] Linux Security Module Usage [Электронный ресурс]. Режим доступа: https://www.kernel.org/doc/html/v4.16/admin-guide/LSM/index.html (дата обращения: 08.11.2021).
- [3] Колбэк-функция Глоссарий MDN Web Docs [Электронный ресурс]. Режим доступа: https://developer.mozilla.org/ru/docs/Glossary/Callback_function (дата обращения: 08.11.2021).
- [4] Механизмы профилирования Linux Habr [Электронный ресурс]. Режим доступа: https://habr.com/ru/company/metrotek/blog/261003/ (дата обращения: 08.11.2021).
- [5] Kernel Probes (Kprobes) [Электронный ресурс]. Режим доступа: https://www.kernel.org/doc/html/latest/trace/kprobes.html (дата обращения: 08.11.2021).
- [6] Using the Linux Kernel Tracepoints [Электронный ресурс]. Режим доступа: https://www.kernel.org/doc/html/latest/trace/tracepoints.html (дата обращения: 08.11.2021).
- [7] Using ftrace | Android Open Source Project [Электронный ресурс]. Режим доступа: https://source.android.com/devices/tech/debug/ftrace (дата обращения: 08.11.2021).
- [8] Трассировка ядра с ftrace Habr [Электронный ресурс]. Режим доступа: https://habr.com/ru/company/selectel/blog/280322/ (дата обращения: 08.11.2021).
- [9] NOP: No Operation (x86 Instruction Set Reference) [Электронный ресурс]. Режим доступа: https://c9x.me/x86/html/file_module_x86_id_217.html (дата обращения: 08.11.2021).

- [10] include/linux/sched.h Linux source code (v5.15.3) [Электронный ресурс]. Режим доступа: https://elixir.bootlin.com/linux/latest/source/include/linux/sched.h (дата обращения: 08.11.2021).
- [11] include/uapi/linux/sysinfo.h Linux source code (v5.15.3) [Электронный ресурс]. Режим доступа: https://elixir.bootlin.com/linux/latest/source/include/uapi/linux/sysinfo.h#L8 (дата обращения: 08.11.2021).
- [12] include/linux/proc_fs.h Linux source code (v5.15.3) [Электронный ресурс]. Режим доступа: https://elixir.bootlin.com/linux/latest/source/include/linux/proc_fs.h#L29 (дата обращения: 08.11.2021).
- [13] C99 standard note [Электронный ресурс]. Режим доступа: http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf (дата обращения: 10.11.2021).
- [14] GCC, the GNU Compiler Collection [Электронный ресурс]. Режим доступа: https://gcc.gnu.org/ (дата обращения: 10.11.2021).
- [15] Unexporting kallsyms_lookup_name() [Электронный ресурс]. Режим доступа: https://lwn.net/Articles/813350/ (дата обращения: 10.11.2021).
- [16] Директивы препроцессора С [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/dotnet/csharp/language-reference/preprocessor-directives (дата обращения: 10.11.2021).