Plan du cours

l.	Introduction	1
П.	Définition de la symétrie axiale	3
Ш.	Symétrique d'un point par rapport à une droite 1. Définition	4
IV.	Symétrique de figures usuelles 1. Symétrique d'une droite	7
V.	Propriétés de la symétrie axiale	8

I. Introduction

Activité 1

.....

Activité 2

Dans cet exercice, on se propose de tracer la figure symétrique d'une des figures ci-dessus en utilisant un papier calque.

- Pour cela, placer le calque exactement le long de la droite.
- Scotcher ensuite votre papier calque à l'aide de deux petits morceaux.
- Décalquer la figure choisie.
- Faire pivoter votre feuille autour de la droite, puis repasser les contours.

Activité 3

Voici plusieurs maisons paisibles au bord d'un lac très calme mais aux reflets étranges. Barrer les reflets qui ne sont pas réalistes et expliquer pourquoi ils ne conviennent pas.

Mes objectifs:

- \hookrightarrow Associer la symétrie axiale à la notion de pliage

- → Connaître / utiliser les propriétés de conservation de la symétrie axiale.
- $\hookrightarrow \ \mathsf{Construire} \ \mathsf{l'image} \ \mathsf{d'une} \ \mathsf{figure} \ \mathsf{compos\'{e}e} \ \mathsf{par} \ \mathsf{sym\'{e}trie} \ \mathsf{axiale}$
- \hookrightarrow Compléter une figure symétrique possédant un axe de symétrie
- → Connaître et utiliser la définition de la médiatrice d'un segment

II. Définition de la symétrie axiale

→ Dans quelle figure observe-t-on une symétrie axiale?

Définition

Lorsque **deux figures se superposent** par pliage suivant une droite, on dit que les deux figures sont symétriques par rapport à cette droite.

Cette droite est alors appelée un axe de symétrie.

Exemples:

III. Symétrique d'un point par rapport à une droite

1. Définition

<u>|||llustration</u> :

.....

Définition

Deux points E et E' sont symétriques par rapport à une droite (d) si la droite (d) est la médiatrice du segment [EE'].

2. Première méthode de construction à l'aide de l'équerre

On trace la droite perpendiculaire à la droite (d) passant par A grâce à l'équerre et on y reporte la distance séparant A de (d) soit en utilisant la règle, soit le compas.

A vous de jouer! Tracer le symétrique des points M et S par rapport à la droite (d).

3. Deuxième méthode de construction à l'aide du compas

On reporte deux distances prises entre n'importe quel point de l'axe de symétrie et le point A.

A vous de jouer! Tracer le symétrique des points J et O par rapport à la droite (d).

Remarque : Lorsqu'un point est situé sur l'axe de symétrie, son symétrique est

Exercice d'application 1 -

Construire A' et B', les symétriques respectifs des points A et B par rapport à la droite (d).

IV. Symétrique de figures usuelles

1. Symétrique d'une droite

Propriété

Le symétrique d'une **droite** (d) par rapport à une droite (Δ) est **une droite** (d').

2. Symétrique d'un segment

Propriété

Le symétrique d'un **segment** par rapport à une droite (Δ) est **un segment de même longueur.**

3. Symétrique d'un cercle

Propriété

Le symétrique d'un cercle par rapport à une droite (Δ) est un cercle de même rayon.

En résumé:

En pratique, pour construire l'image d'une figure géométrique par une symétrie axiale, on construit l'image de ses points caractéristiques :

V. Propriétés de la symétrie axiale

Activité d'introduction

Dans la figure ci-dessous, les parties du haut et du bas sont symétriques par rapport à la droite (d). Les longueurs sont exprimées en cm.

- 1. Par rapport à la droite (d), les symétriques de chacun des points A, C, S et M sont, dans l'ordre,
- 2. Par rapport à la droite (d), les symétriques de chacun des segments [TP], [AE] et [EC] sont, dans l'ordre,
- 3. Par rapport à la droite (d), les symétriques de chacun des angles $\widehat{TPM},\widehat{PMT}$ et \widehat{MTP} sont, dans l'ordre,
- 4. Les angles \widehat{EAC} et sont symétriques par rapport à la droite (d). Or : $\widehat{TPM} = \dots$

Donc: $\widehat{EAC} = \dots$

5. Les angles \widehat{MTP} et sont symétriques par rapport à la droite (d).

6. Les segments [MT] et sont symétriques par rapport à la droite (d).

7. Les segments [AE] et sont symétriques par rapport à la droite (d).

Propriété

Dans une symétrie axiale, les longueurs, les angles, l'alignement des points, le parallélisme, et les aires sont conservés.