CURVES, K3 SURFACES, FANO THREEFOLDS

PAUL HACKING

(Notes by Anna Kazanova)

No Fano 3-fold in fact (too bad).

First let's talk about curves. Let X be a complex projective smooth curve, i.e. a compact Riemann surface. We will concentrate on genus $g \geq 2$. (If g = 0, then $X \simeq \mathbb{P}^1$ and if g = 1 then $X = \mathbb{C}/\mathbb{Z}\lambda_1 + \mathbb{Z}\lambda_2$).

- g = 2, there is a map $\phi : X \xrightarrow{2:1} \mathbb{P}^1$ with 6 branch points. In other words, $X = (F_6(X_0, X_1, Y)) \subset \mathbb{P}(1, 1, 3)$. After a change of coordinates the equation is of the form $Y^2 = G_6(X_0, X_1)$.
- g = 3. If X is not hyperelliptic then $X \hookrightarrow \mathbb{P}^2$ given by $F_4(X_0, X_1, X_2) = 0$ is a plane quartic.
- g = 4. Here $X \hookrightarrow \mathbb{P}^3$ is a codimension two complete intersection $F_2 = G_3 = 0$ (if not hyperelliptic).
- g=5. $X \hookrightarrow \mathbb{P}^4$ is given by $(F_2=G_2=H_2=0)$.

Complete intersection property is not true in higher genus.

What is this embedding? Let X be a curve of genus g, then $\Gamma(X, \Omega_X) = \{\text{global holomorphic 1-forms on } X\}$. It is a complex vector space of dimension g, and $\Gamma(X, \Omega_X) = \langle \omega_1, \dots, \omega_g \rangle_{\mathbb{C}}$. Then we can define a map $\phi: X \to \mathbb{P}^{g-1}$ by $(\omega_1: \dots: \omega_g)$. It is called the canonical map, and there is the following theorem.

Theorem 0.1. The map ϕ is embedding unless X is hyperelliptic.

Note that $\deg(\phi(X)) = \#X \cap H$ where H is a general hyperplane in \mathbb{P}^{g-1} , $\deg(\phi(X)) = (2g-2) = \{ \# \text{ of zeroes of general } \omega \in \Gamma(\Omega) \}.$

For g > 5, $\phi(X) \subset \mathbb{P}^{g-1}$ is not complete intersection.

For g = 6, 7, 8, 9 Mukai gives an explicit description.

Eyal's note: In general, if $g \geq 2$, $\mathcal{M}_g = \text{moduli space}$ of curves of genus g. So for the case g = 3 we have $(\mathbb{P}\Gamma(\mathcal{O}_{\mathbb{P}^2}(4)) \setminus \Delta)/PGL(3)$ is Zariski open in \mathcal{M}_3 . Here $\Delta = \text{discriminant}$ (locus of singular curves).

Recap: The Grassmannian $G(r,n) = \{r \text{ dimensional subspaces of } \mathbb{C}^n\} \to \mathbb{P}(\wedge^r \mathbb{C}^n)) \simeq \mathbb{P}^{\binom{n}{r}-1}$. Dimension dim G(r,n) = r(n-r).

Date: 03/02/2012.

- g = 6. Take Grassmanian G(2,5). Then $X = X_{1^4,2} = H_1 \cap \cdots \cap H_4 \cap Q \subset G(2,5) \subset \mathbb{P}^9$. (H = hyperplane section, Q = quadric section.) $X \subset \mathbb{P}^5 = H_1 \cap \cdots \cap H_4$ is the canonical embedding.
- g=8. Then $X=X_{1^7}=H_1\cap\cdots\cap H_7\subset G(2,6)\subset\mathbb{P}^{14}$.
- g = 7. Then $X = X_{1^7} = H_1 \cap \cdots \cap H_7 \subset OGr_+(5, 10) \subset \mathbb{P}^{15}$. Here $OGr_+ = \text{orthogonal Lagrangian Grassmanian}$. Take $V = \mathbb{C}^{2n}, \ q = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$, then OGr_+ is one of the two connected components of $\{L \subset V | \dim L = 1/2 \dim V, q|_L = 0\}$.
- g = 9, then $X = X_{1^5} \subset SG(3,6) \subset \mathbb{P}^{13}$ where SG = symplectic Lagrangian Grassmanian, defined as above but with the symmetric form q replaced by the alternating form $\omega = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$.

How? Why?

Recall X a variety, L a line bundle. Look at $\Gamma(X, L) = \langle s_0, \dots, s_N \rangle_{\mathbb{C}}$. Assume that those sections do not vanish simultaneously, we get a map $\phi: X \to \mathbb{P}^N$ defined by $(s_0: \dots: s_N)$. Equivalently, $\Gamma(X, L) \to L_p$ should be surjective for all $p \in X$.

Similarly, if E is a vector bundle on X of rank r. Assume E is globally generated: the map

(1)
$$\Gamma(X,E) \to E_p$$

is surjective for all $p \in X$. Then we get a map $X \hookrightarrow G(r, \Gamma(X, E)^*)$ defined by $p \mapsto E_p^* \subset \Gamma(X, E)^*$ dual to the surjection (1).

Let $L = \det E = \wedge^r E$. Assume that $\wedge^r \Gamma(E) \to \Gamma(L)$ is a surjection (so the dual map $\Gamma(L)^* \hookrightarrow \wedge^r \Gamma(E)^*$ is injective). Then we have a commutative diagram

$$\begin{array}{ccc} X & \stackrel{\phi_E}{\longrightarrow} & G(r, \Gamma(X, E)^*) \\ \downarrow^{\phi_L} & & & \downarrow^{\text{Plucker}} \\ \mathbb{P}(\Gamma(L)^*) & \xrightarrow{\text{linear}} & \mathbb{P}(\wedge^r \Gamma(E)^*) \end{array}$$

If we are lucky, it is Cartesian, i.e. $X = \mathbb{P}(\Gamma(L)^*) \cap G(r, \Gamma(E)^*)$.

Who is E?

Idea: If X curve such that $g \leq 9$, then X lies on a K3 surface S. Why do we care about lying on a K3? Mukai classified vector bundles on a K3. (paper from Tata institute on the webpage).

Situation we will use: Let S be a K3, L a line bundle on S, C a smooth curve on a K3 given by a global section of L. Also we want to assume that $Pic(S) = \mathbb{Z}L$. We consider vector bundles E over S such that 1) det E = L and 2) E is uniquely determined by its topological

data, i.e. rank, $c_1(E) = L$ and $c_2(E)$. The second condition is achieved by insisting that E is stable in the sense of Mumford and choosing rank and $c_2(E)$ appropriately.

Look at $\chi(End(E)) = \sum (-1)^i \dim H^i(EndE)$. By Riemann –Roch $\chi(End(E)) = r^2\chi(\mathcal{O}_S) + (r-1)c_1(E)^2 - 2rc_2(E)$. Also $\chi(End(E)) = 1-0+1=2$ (because $h^0(End(E))=1$ by stability, $h^2=h^0=1$ by Serre duality (using End(E) is self dual and $\omega_S \simeq \mathcal{O}_S$), and $h^1(End(E))=0$ if E is rigid (no nontrivial deformations)). So $2=2r^2+(r-1)L^2-2rc_2$. By adjunction $L^2=2g-2$, thus we get the equation

$$rc_2 = (r-1)(r+g).$$

Eg. if g=8, then $C\to G(2,6)$, so $C\subset S\to G(2,6)$. E is a vector bundle on S of rank 2, det E=L, and $C\in |L|$, $L^2=2g-2=14$. Then $2c_2=1(2+g)=10$, r=2, thus $c_2=5$. So E is a vector bundle on a K3 surface S with rank 2, $c_1(E)^2=14$, $c_2(E)=5$. The K3 S containing C is not uniquely determined by C, so it is not obvious from this construction that $E|_C$ is uniquely determined by C, but one can show that it is.