Procedimiento de Resolución -Ejercicios de Factorización

Christian Bueno

Desarrollador de Software 15 de febrero del 2025 +593 99 028 8710 Guayaquil, Ecuador christianbueno.me

Contents

1	Fac	torización - Procedimientos Detallados
	1.1	Factor común monomio
	1.2	Diferencia de cuadrados
	1.3	Suma o diferencia de cubos
	1.4	Suma o diferencia de potencias impares iguales
	1.5	Trinomio cuadrado perfecto
	1.6	Factorización por evaluación y división sintética

1 Factorización - Procedimientos Detallados

1.1 Factor común monomio

Ejercicio 1: Factorizar $6x^3 + 9x^2$. Solución:

- Se identifica el factor común: $3x^2$.
- Se extrae el factor común:

$$6x^3 + 9x^2 = 3x^2(2x+3)$$

Ejercicio 5: Factorizar $12p^5q^2 - 18p^3q^4 + 24p^2q$. Solución:

- Factor común: $6p^2q$.
- Se extrae el factor común:

$$12p^5q^2 - 18p^3q^4 + 24p^2q = 6p^2q(2p^3q - 3pq^3 + 4)$$

1.2 Diferencia de cuadrados

Ejercicio 1: Factorizar $x^2 - 16$.

Solución:

• Se escribe como diferencia de cuadrados:

$$x^2 - 16 = (x - 4)(x + 4)$$

Ejercicio 5: Factorizar $x^4 - 81$. Solución:

 \bullet Se reconoce como $(x^2)^2-9^2$, aplicando la diferencia de cuadrados:

$$x^4 - 81 = (x^2 - 9)(x^2 + 9)$$

• Luego, se sigue factorizando $x^2 - 9$:

$$x^4 - 81 = (x - 3)(x + 3)(x^2 + 9)$$

1.3 Suma o diferencia de cubos

Ejercicio 1: Factorizar $x^3 + 27$. Solución:

• Se usa la fórmula de la suma de cubos:

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

• Identificamos a = x y b = 3:

$$x^3 + 27 = (x+3)(x^2 - 3x + 9)$$

Ejercicio 5: Factorizar $343p^3 + 512q^3$. Solución:

- Se identifican a = 7p y b = 8q.
- Aplicamos la fórmula:

$$343p^3 + 512q^3 = (7p + 8q)(49p^2 - 56pq + 64q^2)$$

1.4 Suma o diferencia de potencias impares iguales

Ejercicio 1: Factorizar $x^5 - y^5$.

Solución:

• Se usa la factorización:

$$x^5 - y^5 = (x - y)(x^4 + x^3y + x^2y^2 + xy^3 + y^4)$$

Ejercicio 5: Factorizar $t^{15} - u^{15}$. Solución:

- Se expresa como $(t^5)^3 (u^5)^3$.
- Aplicamos la diferencia de cubos y luego de potencias impares:

$$t^{15} - u^{15} = (t^5 - u^5)(t^{10} + t^5u^5 + u^{10})$$

• Finalmente, factorizamos t^5-u^5 usando la regla anterior.

1.5 Trinomio cuadrado perfecto

Ejercicio 1: Factorizar $x^2 + 6x + 9$. Solución:

• Se reconoce como un trinomio cuadrado perfecto:

$$x^2 + 6x + 9 = (x+3)^2$$

Ejercicio 5: Factorizar $25p^2 + 70p + 49$. Solución:

- Se reconoce que $25p^2 = (5p)^2$ y $49 = 7^2$.
- Se tiene:

$$25p^2 + 70p + 49 = (5p + 7)^2$$

1.6 Factorización por evaluación y división sintética

Ejercicio 1: Factorizar $x^3 - 4x^2 - 7x + 10$, con raíz x = 2. Solución:

• Se realiza división sintética de $x^3 - 4x^2 - 7x + 10$ entre x - 2.

- El cociente es $x^2 2x 5$.
- Se factoriza si es posible.

Ejercicio 5: Factorizar $x^4 - 10x^3 + 35x^2 - 50x + 24$, con raíz x = 3. Solución:

• Se realiza división sintética:

4

• El cociente $x^3 - 7x^2 + 14x - 8$ se sigue factorizando.