P510/1 PHYSICS (Theory) Paper 1 Nov./Dec.2019 2½ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

PHYSICS (THEORY)

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

Answer five questions, including at least one, but not more than two from each of the sections A, B and C.

Any additional question(s) answered will **not** be marked.

Non-programmable scientific calculators may be used.

Assume where necessary:

Acceleration due to gravity, g $= 9.81 \text{ ms}^{-2}$ Electron charge, e $= 1.6 \times 10^{-19} \,\mathrm{C}$ Electron mass $= 9.11 \times 10^{-31} \text{ kg}$ Mass of the earth $= 5.97 \times 10^{24} \,\mathrm{kg}$ Plank's constant, h $= 6.6 \times 10^{-34} \, \text{Js}$ Stefan's - Boltzmann's constant, σ $= 5.67 \times 10^{-8} \,\mathrm{Wm^{-2}\,K^{-4}}$ Radius of the earth $= 6.4 \times 10^6 \,\mathrm{m}$ Radius of the sun $= 7 \times 10^8 \,\mathrm{m}$ Radius of the earth's orbit about the sun $= 1.5 \times 10^{11} \text{m}$ Speed of light in a vacuum, c $= 3.0 \times 10^8 \,\mathrm{ms^{-1}}$ Thermal conductivity of copper $= 390 \text{ Wm}^{-1}\text{K}^{-1}$ Thermal conductivity of aluminium $= 210 \text{ Wm}^{-1}\text{K}^{-1}$ Specific heat capacity of water $= 4,200 \text{ Jkg}^{-1}\text{K}^{-1}$ Universal gravitational constant, G $= 6.67 \times 10^{-11} \,\mathrm{Nm^2\,kg^{-2}}$ $= 6.02 \times 10^{23} \text{ mol}^{-1}$ Avogadro's number, N_A $= 7.0 \times 10^{-2} \text{ Nm}^{-1}$ Surface tension of water Density of water $= 1000 \text{ kgm}^{-3}$ $= 8.31 \text{ Jmol}^{-1} \text{ K}^{-1}$ Gas constant, R Charge to mass ratio, e / m $= 1.8 \times 10^{11} \text{ Ckg}^{-1}$ The constant $= 9.0 \times 10^9 \,\mathrm{F}^{-1}\mathrm{m}$ $= 9.65 \times 10^4 \, \text{Cmol}^{-1}$ Faraday constant, F

© 2019 Uganda National Examinations Board

Turn Over

- 1. (a) (i) Distinguish between scalar quantity and vector quantity.

 (01 mark)
 - (ii) Give **two** examples of each type of quantity. (02 marks)
 - (b) A body of mass 0.2 kg at rest is acted on by four forces of 2.8 N, 6.0 N, 4.5 N and 1.2 N as shown in figure 1.

Calculate the;

- (i) resultant force on the body. (04 marks) (ii) distance moved in 4s. (02 marks)
- (c) State **Newton's laws of motion** and use them to derive the law of conservation of momentum. (06 marks)
- (d) A body of mass 800 kg moving at 30 ms⁻¹ collides with another body of mass 1400 kg moving in the same direction at 25 ms⁻¹. The two bodies stick together after collision. Calculate the;
 - (i) common velocity just after collision. (02 marks)
 (ii) kinetic energy lost during the collision. (03 marks)
- 2. (a) Define moment of a force and give its SI unit. (02 marks)
 - (b) Explain briefly how to locate the centre of gravity of an irregular sheet of cardboard. (04 marks)
 - (c) State the conditions necessary for equilibrium of a rigid body under the action of a system of forces. (02 marks)

(d) A wheel of radius 0.5 m rests on a level surface at point C and makes contact with edge E of a block of height 0.2 m as shown in figure 2.

A force F is applied horizontally through the axle of the wheel at X to just move the wheel over the block. If the weight of the wheel is 180 N, find the:

- (i) force exerted at point E. (02 marks)
- (ii) force \mathbf{F} . (04 marks)
- (e) State the laws of solid friction and explain each of them. (06 marks)
- 3. (a) Define the following as applied to circular motion:
 - (i) Centripetal acceleration. (01 mark)
 - (ii) Period. (01 mark)
 - (b) (i) Explain why a cyclist bends inwards while going round a curved path. (03 marks)
 - (ii) Show that if θ is the angle of inclination of the cyclist to the vertical and μ is the coefficient of limiting friction between the ground and the bicycle tyres, then for safe riding $\tan \theta \leq \mu$.

 (04 marks)
 - (iii) A body of mass 1.5 kg moves once round a circular path to cover 44.0 cm in 5.0 s. Calculate the centripetal force acting on the body.

 (04 marks)
 - (c) Define simple harmonic motion. (01 mark)

- (d) A body executes simple harmonic motion with amplitude A and angular velocity ω .
 - (i) Write down the equation for the velocity of the body at a displacement x from the mean position. (01 mark)
 - (ii) Sketch the velocity displacement graph for the body in (d) (i) for $\omega < 1$. (02 marks)
 - (iii) If the body moves with amplitude 14.142 cm, at what distance from the mean position will the kinetic energy be equal to potential energy? (03 marks)
- 4. (a) State and illustrate Archimedes Principle. (05 marks)
 - (b) (i) State the law of floatation. (01 mark)
 - (ii) Describe an experiment to verify the law in (b) (i). (05 marks)
 - (c) (i) Write **Bernouli's equation** and define each term in the equation. (02 marks)
 - (ii) Explain the origin of the lift force on the wing of a plane.

 (03 marks)
 - (iii) Air flows over the upper surfaces of the wings of an aeroplane at a speed of 120 ms⁻¹, and past the lower surfaces of the wings at 110 ms^{-1} . Calculate the lift force on the aeroplane if it has a total wing area of 20 m². (Density of air = 1.29 kgm⁻³) (04 marks)

SECTION B

- 5. (a) (i) State any three properties of ultraviolet radiation. (03 marks) (ii) What is a black body? (01 mark)
 - (b) A cylindrical metal rod with a well insulated curved surface has one end blackened and then exposed to thermal radiation from a body at a temperature 500 K. If the equilibrium temperature of the blackened end is 400 K and the length of rod is 10 m, calculate the temperature of the other end. (*Thermal conductivity of the metal* = $500 \text{ Wm}^{-1}\text{K}^{-1}$).
 - (c) (i) Describe an electrical method of determining the specific heat capacity of a good conducting solid. (06 marks)
 - (ii) Give any **two** reasons why the value obtained using the method in (c)(i) may **not** be accurate.

 (02 marks)
 - (d) Explain why cloudy nights are warmer than cloudless ones. (04 marks)

(d)

6.	(a)	(i) What is meant by a reversible process?	(02 marks)	
0.	(a)	t and unsat	urated	
			(02	
		vapour. (iii) Explain why evaporation causes cooling.	(03 marks)	
		Describe an experiment to determine the temperature depe	endence of	
	(b)	saturated vapour pressure of water.	(07 marks)	
	(c)	(i) State Dalton's law of partial pressures.	(01 mark)	
	W M	(ii) A sealed container has liquid water, water vapour at 27 °C. The total pressure inside the container is 69 °C.	emrig.	
		When the temperature is raised to 85 °C, the total prochanges to 96 cmHg.	ressure	
(km)		If the saturation vapour pressure of water at 27 °C is 5 cml and the water vapour remains saturated, calculate the saturated.		
		vapour pressure of water at 85 °C.	(05 marks)	
_	, 111	With the aid of a dogue of describe Militage of perform		
7.	(a)	Define the following:	(01 mark)	
		(i) Thermal conductivity,	(01 mark)	
		(ii) Specific latent heat of vaporisation.	(01 mark)	
	(b)	A boiler with a base made of steel 15 cm thick, rests on a large area of the bottom of the boiler is 1.5×10^3 cm ² .		
		The water inside the boiler is at 100 °C. If 750 g of water is		
		evaporated every 5 minutes, find the temperature of the surface of the		
		boiler in contact with the stove.		
		(Thermal conductivity of steel = $50.2 \text{ Wm}^{-1}\text{K}^{-1}$, Specific latent heat of		
		vaporisation of water = 2.26×10^6 Jkg ⁻¹).		
	(c)	Hot water in a metal tank is kept constant at 65 °C by an immersion		
	1.101	heater in the water. The matrices of the suppose to the Vital Vita		
		The tank has a lagging all round it of thickness 20 mm ar	nd thermal	
		conductivity 0.04 Wm ⁻¹ K ⁻¹ and its surface area is 0.5 m ² .		
		The heat lost per second by the lagging is 0.8 W per degree	e excess	
		above the surroundings.	1111	

Calculate the power of the immersion heater if the temperature of the surrounding is 15 °C. (05 marks (05 marks) (01 mark)

Define a thermometric property. (i) Describe how a liquid-in-glass thermometer can be used to (ii) (04 marks) measure temperature in degrees Celsius.

Turn Over

(iii) A thermometer is constructed with a liquid which expands according to relation;

$$V_t = V_0(1 + \alpha t + \beta t^2)$$

Where V_t is the volume at t °C and V_0 is the volume at 0 °C on the scale of the gas thermometer and α and β are constants.

Given that $\alpha = 1000 \, \beta$, what will the liquid thermometer read when the gas thermometer reads 50 °C? (04 marks)

SECTION C

- 8. (a) (i) What are cathode rays? (01 mark)
 - (ii) State two properties of cathode rays. (01 mark)
 - (iii) Explain two disadvantages of using the discharge tube in producing cathode rays. (02 marks)
 - (b) With the aid of a diagram, describe Millikan's experiment to determine the charge on an oil drop. (07 marks)
 - (c) A beam of electrons is accelerated through a potential difference of 1.98 kV and directed mid-way between two horizontal plates of length 4.8 cm and separated by a distance of 2.0 cm. The potential difference applied across the plates is 80.0 V.
 - (i) Calculate the speed of the electrons as they enter the region between the plates. (03 marks)
 - (ii) Explain the motion of the electrons between the plates. (02 marks)
 - (iii) Find the speed of the electrons as they emerge from the region between the plates. (04 marks)
- 9. (a) (i) What is meant by thermionic emission? (01 mark)
 - (ii) Describe how full-wave rectification of a.c can be achieved using four semiconductor diodes. (04 marks)
 - (b) (i) Draw a labelled diagram to show the main parts of a cathode ray oscilloscope (C.R.O). (03 marks)
 - (ii) Describe how a C.R.O can be used as an a.c voltmeter.

(02 marks)

- An electron of charge -e and mass m moves in a circular orbit (c) (i) round a central hydrogen nucleus of charge +e. Derive an expression for the total energy of the electron in an orbit of (05 marks) radius r.
 - (01 mark) (ii) Why is the energy always negative?
- (01 mark) What is meant by excitation potential of an atom? (d) (i)
 - Some of the energy levels in the mercury spectrum are shown (ii) in figure 3.

Figure 3

Calculate the wavelengths of the radiation emitted when electron makes a transition from level A to level C. (03 marks)

- What is meant by the following as applied to radioactivity? 10. (a)
 - (01 mark) Activity. (i)
 - (01 mark) Half-life of a radioactive material. (ii)
 - Using the radioactive decay law $N=N_0 e^{-\lambda t}$, show that the half-life (b) $T_{1/2}$ is given by;

$$T_{1/2} = \frac{0.693}{\lambda}$$
.

(02 marks)

- With the aid of a labelled diagram, describe the action of an ionisation (c) (05 marks) chamber.
- What is meant by unified atomic mass unit and electron volt. (d)
- The nucleus $^{212}_{83}Bi$ decays by alpha emission as follows; (i) (e)

$$^{212}_{83}Bi \longrightarrow ^{208}_{81}Tl + ^{4}_{2}He$$

Calculate the energy released by 2 g of $^{212}_{83}Bi$. (05 marks)

Explain two uses of radioactive isotopes. (04 marks) (ii)