Welcome to the Seminar!

Overview of Bioinformatics

Seminar "Informatics in Biochemistry"

By Lukas Jarosch and Leonhard Kohleick

Question Round

In what semester are you?

What is your name?

Let's proceed with www.menti.com

What even is "Bioinformatics"?

Definition of Bioinformatics

Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data

- Wikipedia

Research fields in Bioinformatics

Genomics (DNA)

- genotype-phenotype patterns
- protein homology
- ancestral relationships

Transcriptomics (RNA)

- identifying expressed genes
- o understanding disease mechanisms
- gene regulatory relationships

Proteomics (proteins)

- protein-protein interactions
- post-translational modifications
- biomarkers

Structural modeling

- o protein structure prediction
- simulating protein function
- drug identification

Image Analysis, Systems Biology, ...

What skills does a Bioinformatician need?

- Programming (mostly Python & R)
- Statistics
- Biology
- Physics

Why should you consider learning Bioinformatics?

Why should you consider learning Bioinformatics?

- Current trend towards high-throughput technologies that generate massive amounts of data
- Lots of exciting new research fields
- PhD applications increasingly require coding skills
- Coding is (mostly) reproducible
- Programming can automate a lot of tedious tasks

Sequence Alignments & Genomics

Sequence alignment

Protein 1

KINLKVIKNTLLFRAL

Protein 2

GKALLRVRNTLIELAI

Sequence alignment

Aligned sequences

Multiple sequence alignment

Phylogenetics

Large-scale genome sequencing

http://www.genome.gov/sites/default/files/genome-old/images/content/1 000genomes.jpg

Genome-wide association studies (GWAS)

Low et al., 2013

20

Modeling

Protein engineering with Rosetta

Rosetta can predict protein folding and also has various design features

PDB-ID: 1QYS

(Englander and Mayne, 2014) & (Kuhlman et al., 2003)

Designing a protein with Rosetta

Vaccines designed with Rosetta (for RSV)

A new quadrivalent vaccine against influenza

Rosetta has a lot of capabilities

Molecular Dynamics

Studying physical movements of atoms and molecules

Hemoglobin

Molecular dynamics searches for the lowest energy conformation

Use of Molecular Dynamics in Biochemistry

- Using Newton's laws of motion, we predict the position of each atom as a function over time

Studying conformational flexibility and stability

https://www. youtube.co m/watch?v= 7AhQ19m2o k4

Modeling the lipid bilayer to better understand cell behaviour

https://www.youtube.c om/watch?v=SbWh_X gCHyw

Drug screening

Normal drug screening workflow

In silico screening reduces the number of molecules of interest

Deep learning yields new antibiotics candidates

10⁸ molecules screened

Introduction to programming languages

From machine code to Python

```
b8
      21 0a 00 00
a3
      0c 10 00 06
b8
      6f 72 6c 64
      08 10 00 06
a3
68
      6f 2c 20 57
a3
      04 10 00 06
b8
      48 65 6c 6c
a3
         10 00 06
b9
      00 10 00 06
ba
      10 00 00 00
bb
      01 00 00 00
b8
      04 00 00 00
cd
      80
b8
      01 00 00 00
cd
      80
```


Languages suited for general applications

Languages suited for research

Why Python?

- Easy to Learn and Use
- Big Community
- Established in the Corporate World (primarily Google and YouTube)
- Versatility, Efficiency, Reliability, and Speed
- Hundreds of Libraries and Frameworks

Python vs. R

	Python	R
Purpose	multi purpose language	mainly statistical and data science applications
Learning curve:	easy to learn, linear learning curve	easy to learn, advanced functionalities can be difficult to use
Used by:	industry, academia, engineering	academics, scientists without programming skills, (few industries)
Visualization of Data	can be difficult	easy, straightforward

How to run Python?

The most relevant ways are:

- Simply executing .py files in your command line
- Using an IDE (Integrated Development Environment)
- The standard Python shell
- What we use in the course: Jupyter notebook

What is the "Jupyter Notebook"?

- Integrated framework to write:
 - Python code
 - Text/Markdown
 - Figures, Tables, animations
- Runs inside your browser
- Makes research reproducible and allows others to understand your code better

Jupyter Notebook

Editor that allows you to combine Python code with formatted text, plots, tables, and even animations.

Runs in your web-browser and is compatible with all operating systems

- reproducible research
- great for sharing

https://jupyter.org/assets/jupyterpreview.png

Our roadmap for today:

Day 1 9:00-18:00 (Lunch Break 13:00-13:45)				
Topic	Time	Break		
Talk "Overview of Bioinformatics"	1h			
Basic Variables and DataTypes	2h	15min		
Conditional Clauses				
Lists and Tuple	2h	15min		
Sets and Dictionaries				
Loops	2h	15min		
Functions				

Schedule for tomorrow

Day 2 10:00 -15:00 (Lunch Break 12:45 - 13:30)				
Topic	Time	Break		
Working with .txt and .csv files	2h	15 min		
Data plotting				
Big Exercise 1	1h	10 min		
Big Exercise 2	1h			
Guest talk by Jannik Buhr: "Data Science with R"	30min			

References and further reading material

References: Modeling

Kuhlman, B., Dantas, G., Ireton, G.C., Varani, G., Stoddard, B.L., and Baker, D. (2003). Design of a Novel Globular Protein Fold with Atomic-Level Accuracy. Science 302, 1364–1368.

Englander, S.W., and Mayne, L. (2014). The nature of protein folding pathways. PNAS 111, 15873-15880.

Boyoglu-Barnum, S., Ellis, D., Gillespie, R.A., Hutchinson, G.B., Park, Y.-J., Moin, S.M., Acton, O.J., Ravichandran, R., Murphy, M., Pettie, D., et al. (2021). Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592, 623–628.

Marcandalli, J., Fiala, B., Ols, S., Perotti, M., de van der Schueren, W., Snijder, J., Hodge, E., Benhaim, M., Ravichandran, R., Carter, L., et al. (2019). Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell 176, 1420-1431.e17

Leman JK et al. . Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods. 2020 Jul;17(7):665-680. doi: 10.1038/s41592-020-0848-2. Epub 2020 Jun 1. PMID: 32483333; PMCID: PMC7603796.

Hub JS, Kubitzki MB, de Groot BL. Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation. PLoS Comput Biol. 2010 May 6;6(5):e1000774. doi: 10.1371/journal.pcbi.1000774. PMID: 20463873; PMCID: PMC2865513.

Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H. Computational drug discovery. Acta Pharmacol Sin. 2012 Sep;33(9):1131-40. doi: 10.1038/aps.2012.109. Epub 2012 Aug 27. PMID: 22922346; PMCID: PMC4003107.

Liu J, Li K, Cheng L, Shao J, Yang S, Zhang W, Zhou G, de Vries AAF, Yu Z. A high-throughput drug screening strategy against coronaviruses. Int J Infect Dis. 2021 Feb;103:300-304. doi: 10.1016/j.ijid.2020.12.033. Epub 2020 Dec 14. PMID: 33333250; PMCID: PMC7832824.

Stokes JM et al. A Deep Learning Approach to Antibiotic Discovery. Cell. 2020 Feb 20;180(4):688-702.e13. doi: 10.1016/j.cell.2020.01.021. Erratum in: Cell. 2020 Apr 16;181(2):475-483. PMID: 32084340; PMCID: PMC8349178.