SPREADING PROCESS ON NETWORKS

Lots of different types!

Site Percolation

Bond Percolation

Percolation on complex networks: Theory and application

Ming Li ^a, Run-Ran Liu ^b, Linyuan Lü ^{c,b,d,*}, Mao-Bin Hu ^a, Shuqi Xu ^c, Yi-Cheng Zhang ^e

Tutorial, Springer (2016)

Networks

Mason A. Porter James P. Gleeson

Dynamical

Systems on

Networks

See Chapter 3 of Porter & Gleeson, Dynamical Systems on Networks: A

Sergey V. Buldyrev ☑, Roni Parshani, Gerald Paul, H. Eugene Stanley & Shlomo Havlin

Network reliability analysis based on percolation theory Daqing Li ^{a,*}, Qiong Zhang ^a, Enrico Zio ^{b,c}, Shlomo Havlin ^d, Rui Kang ^a

Assessing police topological efficiency in a major sting operation on the dark web

Bruno Requião da Cunha [™], Pádraig MacCarron, Jean Fernando Passold, Luiz Walmocyr dos Santos Jr., Kleber A. Oliveira & James P. Gleeson

- Site Percolation
- Bond Percolation

Catastrophic cascade of failures in interdependent networks

Sergey V. Buldyrev [™], Roni Parshani, Gerald Paul, H. Eugene Stanley & Shlomo Havlin

- Site Percolation
- Bond Percolation

Assessing police topological efficiency in a major sting operation on the dark web

Bruno Requião da Cunha [™], Pádraig MacCarron, Jean Fernando Passold, Luiz Walmocyr dos Santos Jr., Kleber A. Oliveira & James P. Gleeson

- Site Percolation
- Bond Percolation

Assessing police topological efficiency in a major sting operation on the dark web

Bruno Requião da Cunha [™], Pádraig MacCarron, Jean Fernando Passold, Luiz Walmocyr dos Santos Jr., Kleber A. Oliveira & James P. Gleeson

Threshold models of social contagion

- Each node i has a threshold R_i that is drawn from a distribution -> this does not change in time.
- Node states at any time:
 - 0 (inactive, not adopted, not infected, etc.) or 1 (active, adopted, infected, etc.)
 - At time t=0 some (small) fraction ρ_0 of the nodes are in the active state
- Update rule: if inactive, node i compares its fraction m_i/k_i of active neighbours
 - m_i is the number of active neighbours
 - k_i is the node's degree
 - becomes active if $\frac{m_i}{k_i} \ge R_i$.

Threshold Models of Collective Behavior

Mark Granovetter

A simple model of global cascades on random networks

Duncan J. Watts³

Complex Contagions and the Weakness of Long Ties1

Damon Centola, and Michael Macy

Threshold models of social contagion

- If active, node i does not change its state.
- Sometimes called complex contagion models
 - in contrast to the simple contagion of diseasespread models
 - because threshold models generally require a node to have more than one infected neighbour in order to become infected itself
- More on simple vs complex contagion later

Threshold Models of Collective Behavior

Mark Granovetter

A simple model of global cascades on random networks

Duncan J. Watts*

Complex Contagions and the Weakness of Long Ties1

Damon Centola, and Michael Macy

Other discrete-state models:

- Voter model
- Axelrod model of opinion dynamics

Some continuous-state models:

- Bounded-confidence opinion dynamics models
- Metapopulation models
- Oscillator synchronisation

Related topics:

- Temporal networks
- Adaptive networks: dynamics on and of networks

MODELS OF SIMPLE CONTAGIONS, BRIEFLY

SEIR type models for biological contagion

- States: exposed, susceptible (healthy), infected, or recovered
- Event are governed by 'hazard rate'; probability per unit time

But how do we account for the network?

Different levels of approximation are made

- a) Heterogeneous Mean-Field (MF)
- MF approximation assume states neighbouring nodes are statistically independent

Epidemic Spreading in Scale-Free Networks

Romualdo Pastor-Satorras and Alessandro Vespignani Phys. Rev. Lett. **86**, 3200 – Published 2 April 2001

b) Pair approximation and closure conditions

Epidemic processes in complex networks

Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani Rev. Mod. Phys. **87**, 925 – Published 31 August 2015 SI: $S \alpha$ SIS: $S \alpha$

Further...

Binary-State Dynamics on Complex Networks: Pair Approximation and Beyond

James P. Gleeson*

MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland (Received 8 October 2012; published 29 April 2013)

TYPES OF CONTAGIONS

Which network would a contagion spread faster on?

Which network would a contagion spread faster on?

Type of contagion models

The Spread of Behavior in an Online Social Network

Experiment

Damon Centola

• See all authors and affiliations

- Two types that are of interest in this setting
 - Simple contagion
 - Complex contagion
- How do they spread differently?
 - Simple contagion faster on a network with low clustering
 - Complex contagion faster on a network with high clustering

Complex contagion and clustering

Found both in spread of behaviours and topics

Complex Contagions: A Decade in Review

Douglas Guilbeault, Joshua Becker and Damon Centola*

Complex contagion and clustering

Clustering has been incorporated in to continuous time dynamics (your SIR type models)

Propagation dynamics on networks featuring complex topologies

Laurent Hébert-Dufresne, Pierre-André Noël, Vincent Marceau, Antoine Allard, and Louis J. Dubé Phys. Rev. E **82**, 036115 – Published 27 September 2010

And complex contagion

 But would be great to have a model for it using branching process to model cascade spread

Complex contagion and clustering

- Cascade dynamics for simple contagion: ICM
 - Simulation based

Maximizing the Spread of Influence through a Social Network

David Kempe *
Dept. of Computer Science
Cornell University, Ithaca NY
kempe@cs.cornell.edu

Jon Kleinberg^T
Dept. of Computer Science
Cornell University, Ithaca NY
kleinber@cs.cornell.edu

Éva Tardos

Dept. of Computer Science
Cornell University, Ithaca NY
eva@cs.cornell.edu

Branching processes

Branching process descriptions of information cascades on Twitter 3

James P Gleeson ▼, Tomokatsu Onaga, Peter Fennell, James Cotter, Raymond Burke, David J P O'Sullivan

Journal of Complex Networks, Volume 8, Issue 6, 1 December 2020, cnab002, https://doi.org/10.1093/comnet/cnab002

Published: 20 March 2021 Article history ▼

CASCADES

Cascade

- How might we construct cascades to compare a simple model to?
- Irish marriage referendum dataset was extensive
 - Allowed us to generate retweet cascades
 - See how information spreads
 - Across the network
 - How the cascades were created
 - Summarized
 - Comparison to synthetic cascades -> ICM

Cascade

- Dataset was extensive
 - Allowed us to generate retweet cascades

The Structural Virality of Online Diffusion

Sharad Goel, Ashton Anderson

Stanford University, Stanford, California, 94305 [scgoel@stanford.edu, ashton@cs.stanford.edu]

Jake Hofman, Duncan J. Watts

Microsoft Research, New York, New York 10016 [jmh@microsoft.com, duncan@microsoft.com]

- Corpus identification: We take the full dataset of tweets and identify the ones that were part of a retweet cascade, either as *seed* content (the original post) or as a retweet (the rebroadcasted post).
- Parent attribution: For each retweet and user who sent the retweet, we ascribe a parent: the user who most likely introduced the user to the retweeting content that was retweeted.

Cascade Construction

Corpus identification

• Goel et al., Management Science, 62, 180 (2015)

Cascade Construction

Patent attribution for tweets with common text

• Goel et al., Management Science, 62, 180 (2015)

How to summarise the spread?

 How can we best summarise the structure or size of a cascade?

$$M(T) = \max_{l} d_{lj}$$

$$A(T) = \frac{1}{n} \sum_{l}^{n} d_{lj}$$

$$V(T) = \begin{cases} \frac{1}{n(n-1)} \sum_{l=1}^{n} \sum_{j=1}^{n} d_{lj} & \text{if } n > 0, \\ 0 & \text{if } n = 0 \end{cases}$$

How to summarise the spread?

The Cascades Models

- We have
 - The empirical cascade & networks
 - Some cascade summary measures
 - (Focus on V(T))
- Need synthetic cascades
 - ICM & LAM
- Both
 - Popular models
 - Simple mechanisms
 - Capture global features
 - Fast to simulate
 - Simple contagion

Finally, lets play with some cascades

- Two types that are of interest in this setting
 - Simple contagion
 - Complex contagion
- How do they spread differently?
 - Simple contagion
 - Faster on a network with high clustering or low?

Again, another little break with R

- 7_cascade_simulation.R
- Recreate the cascades results from with the cascades fitted
- Use the ICM model to see how simple contagion spreads on network with various amounts of clustering

SUMMING UP