Решение уравнений вида y' + p(x)y = q(x).

- 1) Решение однородного уравнения y'+p(x)y=0. $\frac{dy}{dx}=-p(x)y; \frac{dy}{y}=-p(x)dx; y=ce^{-\int p(x)dx}$. Последнее является общим решением однородного уравнения. Тогда частным решением при c=1 будет являться $y_0=e^{-\int p(x)dx}$.
- 2) Решение неоднородного уравнения будем искать в виде $y=c(x)y_0(x)$, где y_0 частное решение однородного уравнения. Подставим в уравнение: $c'(x)y_0+c(x)y_0'+p(x)c(x)y_0=q(x)$. Второе и третье слагаемые в сумме равны нулю, т.к. y_0 частное решение однородного уравнения. Отсюда получаем $c'(x)y_0=q(x)$; $c'(x)=\frac{q(x)}{y_0}$; $c=\int \frac{q(x)}{y_0}dx+c_1$. Получается, что общее решение неоднородного уравнения будет иметь вид $y(x)=\left(\int \frac{q(x)}{y_0}dx+c_1\right)y_0$.

Пример: $y'+2xy=xe^{-x^2}$. Однородное: $y'+2xy=0; \frac{dy}{y}=-2xdx; \ln |y|=\ln |c|-x^2; y=ce^{-x^2}$ — общее решение. Тогда $y_0=e^{-x^2}$ — частное решение. Неоднородное: $y=c(x)e^{-x^2}$. Подставим $y'=c'(x)e^{-x^2}-c(x)*2xe^{-x^2}+c(x)*2xe^{-x^2}=xe^{-x^2}$. При решении данным методом обязательно должны сократиться слагаемые, содержащие c(x). В противном случае было неверно найдено общее решение однородного уравнения. $c'(x)=x; c(x)=\frac{x^2}{2}+c_1; y=\left(\frac{x^2}{2}+c_1\right)e^{-x^2}$ — общее решение неоднородного уравнения.

П.3. Уравнения Бернулли

Уравнением Бернулли называется уравнение вида $y'+p(x)y=q(x)y^{\alpha}$, где $\alpha \neq 1,0$ (потому что в противном случае получим линейное однородное уравнение). Будем решать это уравнение методом Бернулли. Искать решение будем в виде y=u(x)v(x). Подставим в исходное уравнение. $u'v+uv'+puv=q(x)u^{\alpha}v^{\alpha}$; $v(u'+pu)+uv'=q(x)u^{\alpha}v^{\alpha}$. Потребуем v(u'+pu)=0. Тогда u_0 — частное решение. $u_0v'=q(x)u_0^{\alpha}v^{\alpha}$; $\frac{dv}{v^{\alpha}}=q(x)u_0^{\alpha-1}dx$.

П.4. Уравнения с однородной функцией

Функция F(x,y) называется однородной функцией n – го измерения, если $F(tx,ty)=t^nF(x,y).$

Пример: $F(x,y) = x^2 + 2xy + 3y^2 = t^2x^2 + 2t^2xy + 3t^2y^2 = t^2(x^2 + 2xy + 3y^2)$ – однородная функция второго измерения.

В частности, если F(tx,ty)=F(x,y), то F(x,y) – однородная функция нулевого измерения.

Замечание. Если F и G — однородные функции n — го измерения, то $\frac{F}{G}$ — однородная функция нулевого измерения.

Если y' = f(x,y), где f(x,y) – однородная функция нулевого измерения, то y' = f(x,y) называется дифференциальным уравнением первого порядка с однородной функцией.

Замечание. Если G(x,y)dy = F(x,y)dx, где F,G – однородные функции n – го измерения, то такое уравнение будет называться дифференциальным уравнением с однородной функцией.

Принцип решения: делается замена y=xu(x); y'=u(x)+xu'(x); f(x,u*x)=f(1,u). Получаем $u+xu'=f(1,u); xu'=f(1,u)-u; \frac{du}{f(1,u)-u}=\frac{dx}{x}$.

<u>Пример:</u> $y' = \frac{x}{y} + \frac{y}{x}$; y = xu; $u'x + u = \frac{1}{u} + u$; $udu = \frac{dx}{x}$; $\frac{u^2}{2} = \ln|x| + \ln|c|$; $e^{\frac{y^2}{2x^2}} = cx$. Последнее называется общим интегралом.

П.5. Уравнения в полных дифференциалах

Уравнение вида M(x,y)dx+N(x,y)dy=0, если $d\Phi=M(x,y)dx+N(x,y)dy$, называется уравнением в полных дифференциалах, т.е. если $M(x,y)=\frac{\partial\Phi}{\partial x}$; $N(x,y)=\frac{\partial\Phi}{\partial y}$. Если $d\Phi=0$, то $\Phi(x,y)=c$. Последнее называется общим интегралом.

Теорема 26. M(x,y)dx + N(x,y)dy = 0 является уравнением в полных дифференциалах тогда и только тогда, когда $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Доказательство. Пусть есть уравнение в полных дифференциалах, т.е. существует такая функция $\Phi(x,y)$, что $M(x,y)=\frac{\partial\Phi}{\partial x}$; $N(x,y)=\frac{\partial\Phi}{\partial y}$. Тогда $\frac{\partial^2\Phi}{\partial y\partial x}=\frac{\partial M}{\partial y}=\frac{\partial^2\Phi}{\partial x\partial y}=\frac{\partial N}{\partial x}$.

Замечание. Пусть функции M и N дважды дифференцируемые функции. M(x,y)dx + N(x,y)dy = 0 не всегда является уравнением в полных дифференциалах, но всегда существует интегрирующий множитель $\mu(x,y)$ такой, что $\mu M(x,y) + \mu N(x,y)dy = 0$ будет являться уравнением в полных дифференциалах.

§3. Уравнения высших порядков, допускающие понижение порядка

$$\Pi.1. F(x, y', y'') = 0$$

Замена y'=z(x); y''=z'(x). Уравнение приводится к уравнению первого порядка F(x,z,z')=0.

Пример: $xy'' = y' \ln \frac{y'}{x}; z(x) = y'(x); xz' = z \ln \frac{z}{x}; z' = \frac{z}{x} \ln \frac{z}{x}; u = \frac{z}{x}; z = ux; u'x + u = u \ln u; \frac{du}{u(\ln u - 1)} = \frac{dx}{x}; \ln |\ln u - 1| = \ln |x| + \ln c; \ln u - 1 = cx; u = e^{cx + 1}; \frac{z}{x} = e^{cx + 1}; z = xe^{cx + 1}; y' = xe^{cx + 1}; y = \int xe^{cx + 1} dx$. Не забывайте про вторую константу.

$$\Pi.2. F(y, y', y'') = 0$$

Замена $y'=p(y); y_{xx}''=p'(y)y_x'=p_y'p$. Уравнение приводится к уравнению первого порядка F(y,p,p'*p)=0.

§4. Линейные однородные уравнения высших порядков

Уравнение вида $a_0(x)y^{(n)}+a_1(x)y^{(y-1)}+\cdots+a_{n-1}(x)y'+a_n(x)y=f(x)$, где $a_0\neq 0$, называется линейным дифференциальным уравнением n – го порядка. Если f(x)=0, то оно будет являться линейным однородным дифференциальным уравнением.

Не умоляя общности, будем рассматривать уравнения второго порядка $y'' + a_1(x)y' + a_2(x)y = 0$ (*).

Теорема 27. Пусть $y_1(x)$ и $y_2(x)$ являются частными решениями (*), тогда $c_1y_1(x)+c_2y_2(x)$ тоже будет являться частным решением (*).

Доказательство. Подстановкой.

Замечание. Теорема обобщается на уравнения n – го порядка.

Пусть функции $f_1(x),\dots,f_n(x)$ определены на отрезке [a;b]. Их комбинация будет являться линейно-независимой, если из равенства $c_1f_1(x)+c_2f_2(x)+\cdots+c_nf_n(x)=0$ следует $c_1=c_2=\cdots=c_n=0$.

Функции f_1, f_2 линейно-зависимы, если существует нулевая линейная комбинация с константами, среди которых хотя бы одна отлична от нуля.

<u>Пример:</u> $f_1(x)=x; f_2=x^2$ – линейно-независимы, $f_1(x)=x, f_2(x)=x^2, f_3(x)=x+x^2$ – линейно-зависимы.

Пусть функции $f_1(x), f_2(x), ... f_n(x)$ определены на отрезке [a;b] и дифференцируемы n-1 раз. Тогда определитель матрицы $W(f_1,f_2,...,f_n)=$

$$\begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f_1' & f_2' & \dots & f_n' \\ \dots & \dots & \dots & \dots \\ f_1^{(n-1)} & f_1^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$
 будет называться определителем Вронского, или врон-

скианом. Если он равен нулю, то функции, на которых он построен, линейно-зависимы.