Computational Optimal Transport

Stochastic Wasserstein Barycenters

Inès VATI*

JAN 19, 2024

Table of contents

- 1. Problem statement
- 2. Proposed Method
 - Ascent step
 - Snap step
 - Theoretical and Empirical Convergence
- 3. Experiments and Numerical Analysis
- 4. Conclusion and Perspectives

Overview

1. Problem statement

- 2. Proposed Method
 - Ascent step
 - Snap step
 - Theoretical and Empirical Convergence
- Experiments and Numerical Analysis
- 4. Conclusion and Perspectives

Problem statement

Article: Claici, Chien, and Solomon 2018, Stochastic Wasserstein Barycenters

- Compute the Wasserstein barycenter ν of a set of any probability measures $\{\mu_j\}_{j=1}^J$ defined of a metric space (\mathcal{X}, d) with $\mathcal{X} \subset \mathcal{R}^D$
- Primal problem

$$\min_{\nu} \frac{1}{J} \sum_{j=1}^{J} W_2^2(\mu_j, \nu) \tag{1}$$

Problem statement

Article: Claici, Chien, and Solomon 2018, Stochastic Wasserstein Barycenters

- Compute the Wasserstein barycenter ν of a set of any probability measures $\{\mu_j\}_{j=1}^J$ defined of a metric space (\mathcal{X}, d) with $\mathcal{X} \subset \mathcal{R}^D$
- Primal problem

$$\min_{\nu} \frac{1}{J} \sum_{j=1}^{J} W_2^2(\mu_j, \nu) \tag{1}$$

Approximation of the barycenter

$$\hat{\nu} = \frac{1}{M} \sum_{i=1}^{M} \delta_{x_i}$$

with optimized support $\Sigma = \{x_i\}_{i=1}^{M}$

ullet Problem. Find a minimizer of (1) with $\Sigma\subset\mathcal{X}$ and $|\Sigma|=M$

Overview

- 1 Problem statement
- 2. Proposed Method
 - Ascent step
 - Snap step
 - Theoretical and Empirical Convergence
- 3. Experiments and Numerical Analysis
- 4. Conclusion and Perspectives

Proposed method

Dual problem

$$F\left(\left\{\phi_{j}\right\}_{j=1}^{J},\left\{x_{i}\right\}_{i=1}^{M}\right) = \frac{1}{J}\sum_{j=1}^{J}F_{dual}\left(\phi_{j},\left\{x_{i}\right\}_{i=1}^{M}\right)$$

$$F_{dual}\left(\phi_{j},\left\{x_{i}\right\}_{i=1}^{M}\right) = \int_{\mathcal{X}}\phi_{j}(x)d\nu(x) + \int_{\mathcal{X}}\overline{\phi}_{j}(y)d\mu_{j}(y)$$

$$= \frac{1}{M}\sum_{i=1}^{M}\phi_{j}(x_{i}) + \int_{\mathcal{X}}\overline{\phi}_{j}(y)d\mu_{j}(y)$$

- Stochastic Gradient Ascent to optimize the potentials $\{\phi_j\}_{j=1}^J$ (ascent step)
- Fixed point iteration to optimize the positions $\{x_i\}_{i=1}^M$ (snap step)

Ascent step

Gradient $\frac{\partial F}{\partial \phi_i}$ depend on the terms

$$\begin{aligned} a^i_j &= \int_{V^i_{\phi_j}} d\mu_j(y) & b^i_j &= \int_{V^i_{\phi_j}} y \ d\mu_j(y) \\ &= \mathbb{E}_{y \sim \mu_j} \left[\mathbf{1}_{y \in V^i_{\phi_j}} \right] & = \mathbb{E}_{y \sim \mu_j} \left[y . \mathbf{1}_{y \in V^i_{\phi_j^i}} \right] \end{aligned}$$

where ${f 1}$ is the indicator function and the *power cell* $V^i_{\phi_j}$ of point x_i is

$$V_{\phi}^{i} = \{x \in \mathcal{X}, d(x, x_{i})^{2} - \phi_{i} \leq d(x, x_{i'})^{2} - \phi_{i'}, \forall i'\}$$

where $d(x, y)^2 = ||x - y||_2^2$.

Ascent step

Algorithm Ascent step

- 1: **for** j = 1, ..., J **do**
- 2: $z^{(0)} \leftarrow 0$
- 3: while $\left\|\frac{\widehat{\partial F}}{\partial \phi_j}\right\|_2^2 > \epsilon_{ascent}$ do
- 4: Compute \hat{a}_i^i by Monte Carlo approximation
- 5: $z^{l+1} \leftarrow \beta z^{(l)} + \widehat{\partial_{\phi_i} F}(\phi_j)$ {Nesterov acceleration}
- 6: $\phi_j^{(l+1)} \leftarrow \phi_j^{(l)} + \alpha z^{(l+1)}$
- 7: end while
- 8: end for

We will use $\epsilon_{ascent}=10^{-4}$ and set a maximum number of iterations for the while loop to $T_{max}=1500$

And fix lpha= 0.05 and eta= 0.99 like in (Claici, Chien, and Solomon 2018

Snap step

The update of the point $\{x_i\}$ is given by

$$\frac{\partial F}{\partial x_i} = 0 \implies x_i = \frac{\sum_{j=1}^J b_j^i}{\sum_{j=1}^J a_j^i}$$

Intuition:

$$\frac{\partial F_{dual}}{\partial \phi^i_j} = \frac{1}{M} - \int_{V^i_{\phi_j}} d\mu_j(y) = 0$$

- ightarrow Each cell V_{ϕ}^{i} contains as much mass as its associated source point x_{i}
- \rightarrow the fixed point iteration moves each point to the center of its power cell.

Ascent Snap algorithm

Algorithm Ascent and Snap algorithm for computing Stochastic Wasserstein Barycenters

- 1: **for** t = 1, ..., T **do**
- 2: Update $\{\phi_i\}$ with algorithm {Ascent step}
- 3: Compute \hat{b}_i^i by Monte Carlo approximation
- 4: for $x_i \in \Sigma$ do
- 5: $x_i \leftarrow \frac{\sum_{j=1}^J \hat{b}_j^i}{\sum_{j=1}^J \hat{a}_i^j} \{ \text{Snap step} \}$
- 6: end for
- 7: end for
- 8: **return** Opitimized barycenter support $\Sigma^* = \{x_i\}_{i=1}^M$

Theoretical and Empirical Convergence

Assumptions

- At least one of the input distribution μ_j is absolutely continuous with respect to the Lebesgue measure.
- The domain \mathcal{X} is a compact subset of the Euclidean space \mathbb{R}^d .

Garantees

- ullet The global minimizer of (1) efficiently approximate the true barycenter as $M o \infty$
- ullet No garantee of convergence toward u_M^*
- The ascent snap algorithm converges to a local minimum
- Algorithm monotonically $\searrow F_{primal}$ (1)
- The support of the estimated barycenter is empirically demonstrated to be contained within the support of the true barycenter
- \bullet Empirical evidences \implies convergence even in cases where these assumptions are not met

Overview

- 1. Problem statement
- 2. Proposed Method
 - Ascent step
 - Snap step
 - Theoretical and Empirical Convergence
- 3. Experiments and Numerical Analysis
- 4. Conclusion and Perspectives

Experiments and Numerical Analysis

Applications to both 1D and 2D cases

Continuous skewed normal distributions

Discrete uniform distributions

Comparison to existing methods

- McCann's interpolation
- Iterative Sinkhorn algorithm
- Free support Sinkhorn algorithm (Cuturi and Doucet 2014) from POT toolbox (Flamary et al. 2021)

Experiment 1

Experiment 2

Sinkhorn Algorithm (left), Proposed method (middle), Free support Sinkhorn using POT (right)

Computation time

Experiment	McCann	Iterative Bregman	POT free support	Ascent Snap
1D skewnorm	0.02 ± 0.01	0.22 ± 0.02	0.74 ± 0.28	7814.27 ± 0.37
2D discrete	-	2.18 ± 0.34	0.38 ± 0.30	16351.66 ± 0.23

Table: Computation time (in seconds) for the different methods. The experiments were conducted three times for the Ascent snap algorithm and ten times for the others.

Ascent step convergence

(a) Two 1D continuous distributions

(b) Two 2D discrete distributions

Figure: Evolution of $\left\| \frac{\partial F}{\partial \phi_i} \right\|$ during the ascent step for each experiment. In the x-axis, is the number of interations of the while loop.

Ascent step time

Experiment	Ascent step	Snap step
1D skewnorm	8309.44 ± 0.33	5.28 ± 0.23
2D discrete	11938.70 ± 0.34	9.81 ± 0.34

Table: Computation time (in seconds) for each step of the proposed algorithm. The experiences were repeated 3 times.

Overview

- 1. Problem statement
- 2. Proposed Method
 - Ascent step
 - Snap step
 - Theoretical and Empirical Convergence
- 3. Experiments and Numerical Analysis
- 4. Conclusion and Perspectives

Conclusion and Perspectives

Notes

- Huge computation time
- Robust and versatile method
- ullet Support of $\hat{
 u}$ not necessarily included in the support of u

Perspectives

- Test another choice for the initialization of x_i
- Compare with the Log-domain Sinkhorn Algorithm

References

Claici, Sebastian, Edward Chien, and Justin Solomon (June 6, 2018). Stochastic Wasserstein Barycenters. arXiv:

1802.05757 [cs, math, stat]. URL:

http://arxiv.org/abs/1802.05757 (visited on 12/21/2023).

Flamary, Rémi et al. (2021). "POT: Python Optimal Transport". In: Journal of Machine Learning Research 22.78, pp. 1–8. ISSN: 1533-7928. URL: http://jmlr.org/papers/v22/20-451.html (visited on 01/13/2024).

