

City Recommendation in the USA using Yahoo Flickr Creative Commons 100M Dataset

by Anant Jain, Ahmet Salih Gündoğdu

DS 5500 Fall 2018 --- Prof. Cody Dunne, Northeastern University

Motivation

Let's start with the first set of slides

A picture is worth a thousand words

A complex idea can be conveyed with just a single still image, namely making it possible to absorb large amounts of data quickly.

Data & EDA

Yahoo Flickr Creative Commons 100M

In short, YFCC100M

- One of the largest assemblages of multimedia check-ins ever created
- Publicly hosted on AWS
- Released under the Yahoo Web-Scope program
- Hundred million media objects dating between 2004 and 2014

 Omitting records that weren't geo-tagged (i.e. more than 50%)

Workable with limited RAM

 Omitting records that came with a wrong date format (0.01%)

FILTER TO USA

- YFCC100M Places Expansion Dataset
- Reverse geocode information of all records.

YFCC100M + Pruning + Merging + Cleaning = YFCC_USA16M

Columns

pid	Unique media identifier
user_nickname	User identifier
date	Date the media object was created
longitude	Longitude of the location the media object was checked at
latitude	Latitude of the location the media object was checked at
town	Town the media object was checked in
state	State the media object was checked in

EDA (contd.)

Objective

Utilize the travel check-in data and use data-based visualizations to explore, assess and evaluate multiple SVD algorithms for the purposes of identifying anomalies, generating trust and providing the best recommendation for cities to visit in the USA

Task Analysis

Tasks

Priority	Domain Task	Analytic Task	Search Task	Analyze Task
3	Examining and evaluating the model performance of the recommended places against the given user's travel history	Compare	Locate	Present
2	Generate a ranked list of recommendations	Sort	Explore	Present
1	Visualize different models and hyperparameters for assessment of the best set of modeling parameters to use.	Compare	Explore	Discover
4	Exploratory Data Analysis	Compare	Explore	Discover

Intended Users

Experts

Researchers and machine learning engineers who are interested in recommendation systems.

Travelers

Anybody who wants to get travel recommendations in the USA

Model Description

Backend

Assorted selection of Hyperparameters and Models

PREPROCESSING	MODELS	LATENT DIMENSIONS	METRIC
♦ Numeric: # ♦ Binary: 1 or 0	SVD_explicitSVD_implicit:AlternatingLeast Squares	Number of dimensions/fea tures to extract for each user and location	 Precision-Train Set Recall-Train Set Precision-Validation Set Recall-Validation Set

Design Process

Design Process

Preliminary Sketches Digital Sketches Final Visualization

MODEL

HYTELTERANCE

MADEL HYPE & PACINE

right or wrong. S. Bar Flot: used to two where the predictions are

gaing arrong, Boxs more-data mean better predictions? 6. Variable

Importance graph, height denotes importance.

W

ALTE SAND SOME ASSET

Final Visualization

Video Walkthrough

Exploratory Data Analysis Hyperparameter Testing & Model Selection Evaluation and Results

Exploratory Data Analysis

Hyperparameter Testing & Model Selection

Evaluation and Results

elect the parameters for whats randomly selected from			e based on. The
Model:			
Preprocessing:	Numeric		¥
Model:	SVD_explicit		v
Latent Dimensions:	10		· ·
anked List of Resul		Whatknot	
	or: V	Whatknot #6 Sug:	ar Land
	m		
Recommendations for #1 Birmingha	m urg	#6 Sug:	ange
Recommendations for #1 Birmingha #2 Fredericksb	m urg	#6 Sug:	ange /eston

Conclusion

Bind ML with Visualizations

Proper Visual Encodings

Include User in the ML tasks

Build Trust in Results

Enjoyment:)

Future Work

Integration of more complex models

E.x. Autoencoders

Better evaluation techniques

Distance-based, etc.

Scale to cover the whole world instead of just the US

Thanks!

Any questions?

You can find us at:

- https://github.com/antujn
- https://github.com/asgundogdu

Github URLs are attached to the icons.

Credits

Special thanks to all the people who made and released these awesome resources for free:

- ♦ d3
- ♦ leaflet
- colorbrewer
- ♦ tipsy
- ♦ plotly

- ♦ flask
- ♦ bootstrap
- multi-select
- pylab
- implicit

