Géométrie affine euclidienne et groupes

Exercice 1

- 1. Dans le plan affine euclidien, on considère ABC triangle non aplati. On note G son isobarycentre, H son orthocentre, et O le centre de son cercle circonscrit. Montrer que $\overrightarrow{OH} = 3\overrightarrow{OG}$ (droite d'Euler; on pourra calculer $< 3\overrightarrow{OG} \overrightarrow{OH}, \overrightarrow{BC} >$).
- **2.** On passe dans le plan complexe, et on note a, b et c les affixes respectives des points A, B, C, et $j = e^{2i\pi/3}$. Montrer que le triangle ABC est équilatéral direct si et seulement si $a + jb + j^2c = 0$.
- **Exercice 2** Soit u une isométrie de \mathcal{E} espace affine euclidien de dimension n. On note \vec{u} la partie linéaire de u, et E l'espace vectoriel sous-jacent à \mathcal{E} .
- 1. Démontrer que $E = \operatorname{Ker}(\vec{u} \operatorname{id}_E) \oplus \operatorname{Im}(\vec{u} \operatorname{id}_E)$. On notera $F = \operatorname{Ker}(\vec{u} \operatorname{id}_E)$.
- 2. Caractériser les translations t_v de \mathcal{E} qui commutent avec u.
- **3.** Montrer que si u possède un point fixe et $v \in E$, alors $t_v \circ u$ possède un point fixe si et seulement si $v \in F^{\perp}$.
- **4.** Pour n = 1, puis 2 puis 3, quelles sont les isométries de \mathcal{E} qui s'écrivent comme produit de n + 1 réflexions orthogonales, et pas de moins?
- 5. Pour n=3, caractériser à quelle condition deux rotations de \mathcal{E} d'axes distincts commutent.

Pour les exercices 3. à 9. on se donne \mathcal{P} un plan affine euclidien.

Exercice 3 Soit ABC un triangle non aplati de \mathcal{P} . Soit M_0 un point de (AB). La parallèle à (BC) issue de M_0 coupe (AC) en M_1 . La parallèle à (AB) issue de M_1 coupe (BC) en M_2 etc. On définit ainsi des points M_n (pour $n \geq 0$). Montrer que $M_6 = M_0$.

Exercice 4

- 1. Étant donnés deux cercles \mathcal{C} et \mathcal{C}' de \mathcal{P} , de centres O et O' et de rayons inégaux R et R', combien y a-t-il d'homothéties de \mathcal{P} qui envoient \mathcal{C} sur \mathcal{C}' ? Construire leur centre.
- **2.** Soient A un point de \mathcal{P} , et D_1, D_2 deux droites sécantes de \mathcal{P} qui ne contiennent pas A. Justifier qu'il existe un unique couple de points (M_1, M_2) qui vérifie: $M_i \in D_i$ (i = 1, 2), et $2\overrightarrow{AM_1} + 3\overrightarrow{AM_2} = \overrightarrow{0}$. En donner une construction.
- **3.** Soit ABC un triangle non aplati de \mathcal{P} . À partir de tout point $M=M_0$ de \mathcal{P} , on construit M_1 le milieu de $[M_0A]$, puis M_2 le milieu de $[M_1B]$, M_3 le milieu de $[M_2C]$, M_4 le milieu de $[M_3A]$ et ainsi de suite. On pose $\varphi_n(M)=M_n$.
 - **a.** Montrer que pour tout $n \in \mathbb{N}^*$, φ_n est une application affine de \mathcal{P} .
 - **b.** Montrer que la suite $(M_{3n})_{n>0}$ est convergente. Quelle est sa limite?
 - **c.** Pensez-vous que la suite $(M_n)_{n\geq 0}$ soit convergente?

Exercice 5

Étant données r et r' deux rotations de \mathcal{P} de centres respectifs A et B et d'angles respectifs α et β , expliciter la composée $r' \circ r$ (on donnera une construction de ses éléments géométriques).

Exercice 6

Soient A, B, C trois points non alignés de \mathcal{P} . On note r_A (resp. g_A) la rotation de centre A et d'angle $a = \widehat{BAC}$ (resp. 2a/3), et on définit de même les rotations r_B et r_C (resp. g_B et g_C).

- 1. On note I le point d'intersection des deux trisectrices intérieures partant de A et B "proches" du côté AB. Déterminer l'isométrie $g_A \circ g_B$.
- **2.** Déterminer les isométries $f = r_C \circ r_B \circ r_A$ et $f' = r_A \circ r_B \circ r_C$. Que peut—on dire si le triangle ABC est équilatéral?
- **3.** Déterminer de même la composée de symétries orthogonales $g = s_{(AB)} \circ s_{(CA)} \circ s_{(BC)}$: montrer que g n'a pas de point fixe et préciser sa décomposition canonique, selon que ABC est ou non rectangle en B.
- **4.** Montrer que $r_A^2 \circ r_B^2 \circ r_C^2 = \mathrm{id}_{\mathcal{P}}$ (utiliser les symétries de 2.).

Exercice 7 Soient \mathcal{C} un cercle du plan \mathcal{P} , et $\Delta_1, \Delta_2, \Delta_3$ trois directions de droites distinctes de \mathcal{P} . À tout $M = M_0 \in \mathcal{C}$, on associe le point M_1 intersection de \mathcal{C} avec la droite (M, Δ_1) , puis le point M_2 intersection de \mathcal{C} avec la droite (M_1, Δ_2) , puis le point M_3 intersection de \mathcal{C} avec la droite (M_2, Δ_3) . À partir de M_3 , on reprend le procédé, comme pour M.

Montrer que la suite de points $(M_i)_i$ ainsi définie est périodique, et donner sa période.

Exercice 8 On se donne trois droites D_1, D_2, D_3 du plan \mathcal{P} , concourantes en un point O. Construire un triangle ABC dans \mathcal{P} de sorte que les droites D_i , $1 \le i \le 3$, soient respectivement les médiatrices de ses côtés [BC], [CA] et [AB].

Exercice 9 Dans le plan affine euclidien \mathcal{P} , on considère deux points A et B, situés dans un même demi-plan ouvert de frontière D.

- 1. Déterminer les points M de la droite D tels que la somme MA + MB soit minimale.
- **2.** Pour un tel point M, que peut-on dire des demi-droites [MA) et [MB)?
- 3. Reprendre la question 1. avec D droite, et A, B deux points de \mathcal{E} euclidien de dimension 3.

Exercice 10 Pentagone et isométries

Soient A,B,C,D,E cinq points de \mathcal{E} un espace affine euclidien de dimension 3. On suppose que $AB=BC=CD=DE=EA\neq 0$ et que les angles $\widehat{EAB},\widehat{ABC},\widehat{BCD},\widehat{CDE}$ et \widehat{DEA} sont égaux. L'objectif est de montrer que les cinq points A,B,C,D,E sont coplanaires.

1. Montrer qu'il existe une isométrie f de \mathcal{E} telle que f(A) = B, f(B) = C, f(C) = D, f(D) = E et f(E) = A.

On suppose que les cinq points ne sont pas coplanaires.

- **2.** Montrer que $f^5 = id_{\mathcal{E}}$.
- **3.** En déduire que f est une rotation de \mathcal{E} .
- 4. Conclure.
- 5. Peut-on étendre ce résultat à d'autres entiers que 5? Lesquels?