Objective :

• Ola, driver team attrition. You are provided with the monthly information for a segment of drivers for 2019 and 2020 and tasked to predict whether a driver will be leaving the company or not based on their attributes

```
In [26]: 1 import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    warnings.filterwarnings("ignore")

In [3]: 1 ola = pd.read_csv(r"C:\Users\Acer\Downloads\ola_driver_scaler.csv")
```

Column Profiling:

- 1. MMMM-YY: Reporting Date (Monthly)
- 2. Driver_ID: Unique id for drivers
- 3. Age: Age of the driver
- 4. Gender: Gender of the driver Male: 0, Female: 1
- 5. City: City Code of the driver
- 6. Education_Level: Education level 0 for 10+,1 for 12+,2 for graduate
- 7. Income: Monthly average Income of the driver
- 8. Date Of Joining: Joining date for the driver
- 9. LastWorkingDate: Last date of working for the driver
- 10. Joining Designation: Designation of the driver at the time of joining
- 11. Grade: Grade of the driver at the time of reporting
- 12. Total Business Value: The total business value acquired by the driver in a month (negative business indicates cancellation/refund or car EMI adjustments)
- 13. Quarterly Rating: Quarterly rating of the driver: 1,2,3,4,5 (higher is better)

In [4]:

1 ola

Out[4]:

	Unnamed: 0	MMM- YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	Total Business Value
0	0	01/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	2381060
1	1	02/01/19	1	28.0	0.0	C23	2	57387	24/12/18	NaN	1	1	-665480
2	2	03/01/19	1	28.0	0.0	C23	2	57387	24/12/18	03/11/19	1	1	0
3	3	11/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	0
4	4	12/01/20	2	31.0	0.0	C7	2	67016	11/06/20	NaN	2	2	0
19099	19099	08/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	740280
19100	19100	09/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	448370
19101	19101	10/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	0
19102	19102	11/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	200420
19103	19103	12/01/20	2788	30.0	0.0	C27	2	70254	06/08/20	NaN	2	2	411480

19104 rows × 14 columns

4

Objective :

Ola, driver team attrition. You are provided with the monthly information for a segment of drivers for 2019 and 2020 and tasked to predict whether a driver will be leaving the company or not based on their attributes

Observation 1:

- Here the Target variable is not shown explicitly
- from the observation the last working day can be made the Target column
- We need to convert the nan values to 0 and others to 1 maybe , need to converm later

Problems:

- here the data is not given in driver id terms, its a monthly data which is not useful for our analysis.
- will have to figure ways to make this to driver id terms for analysis

▼ 1. Import the dataset and do usual exploratory analysis steps like checking the structure

```
In [5]: 1 df = ola.copy()
In [9]: 1 df.shape
Out[9]: (19104, 14)
```

Observation 2

- in the description there are only 14 columns but in the dataset there is 15:
- · unnamed column can be dropped

```
In [17]: 1 df.drop(columns=['Unnamed: 0'],inplace = True)
```

In [22]: | 1 | df.describe(include= 'all')

Out[22]:

	MMM- YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation
count	19104	19104.000000	19043.000000	19052.000000	19104	19104.000000	19104.000000	19104	1616	19104.000000
unique	24	NaN	NaN	NaN	29	NaN	NaN	869	493	NaN
top	2019- 01-01 00:00:00	NaN	NaN	NaN	C20	NaN	NaN	2015-07-23 00:00:00	2020-07-29 00:00:00	NaN
freq	1022	NaN	NaN	NaN	1008	NaN	NaN	192	70	NaN
first	2019- 01-01 00:00:00	NaN	NaN	NaN	NaN	NaN	NaN	2013-04-01 00:00:00	2018-12-31 00:00:00	NaN
last	2020- 12-01 00:00:00	NaN	NaN	NaN	NaN	NaN	NaN	2020-12-28 00:00:00	2020-12-28 00:00:00	NaN
mean	NaN	1415.591133	34.668435	0.418749	NaN	1.021671	65652.025126	NaN	NaN	1.690536
std	NaN	810.705321	6.257912	0.493367	NaN	0.800167	30914.515344	NaN	NaN	0.836984
min	NaN	1.000000	21.000000	0.000000	NaN	0.000000	10747.000000	NaN	NaN	1.000000
25%	NaN	710.000000	30.000000	0.000000	NaN	0.000000	42383.000000	NaN	NaN	1.000000
50%	NaN	1417.000000	34.000000	0.000000	NaN	1.000000	60087.000000	NaN	NaN	1.000000
75%	NaN	2137.000000	39.000000	1.000000	NaN	2.000000	83969.000000	NaN	NaN	2.000000
max	NaN	2788.000000	58.000000	1.000000	NaN	2.000000	188418.000000	NaN	NaN	5.000000

◆

```
In [19]:
           1 df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 19104 entries, 0 to 19103
         Data columns (total 13 columns):
                                    Non-Null Count Dtype
              Column
                                    19104 non-null datetime64[ns]
              MMM-YY
              Driver ID
                                    19104 non-null int64
                                    19043 non-null float64
          2
              Age
              Gender
                                    19052 non-null float64
              City
                                    19104 non-null object
              Education Level
                                    19104 non-null int64
              Income
                                    19104 non-null int64
              Dateofjoining
                                    19104 non-null datetime64[ns]
              LastWorkingDate
                                    1616 non-null
                                                   datetime64[ns]
              Joining Designation
                                    19104 non-null int64
          10 Grade
                                    19104 non-null int64
          11 Total Business Value 19104 non-null int64
          12 Quarterly Rating
                                    19104 non-null int64
         dtypes: datetime64[ns](3), float64(2), int64(7), object(1)
         memory usage: 1.9+ MB
```

observation 3

- will have to convert MMM-YY to date time format
- will have to convert Dateofjoining to date time format
- last working date should also be converted to the same

▼ 2. Convert date-like features to their respective data type

```
In [20]: 1 | df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19104 entries, 0 to 19103
Data columns (total 13 columns):
```

Data	columns (total 13 columns	umns):	
#	Column	Non-Null Count	Dtype
0	MMM-YY	19104 non-null	<pre>datetime64[ns]</pre>
1	Driver_ID	19104 non-null	int64
2	Age	19043 non-null	float64
3	Gender	19052 non-null	float64
4	City	19104 non-null	object
5	Education_Level	19104 non-null	int64
6	Income	19104 non-null	int64
7	Dateofjoining	19104 non-null	<pre>datetime64[ns]</pre>
8	LastWorkingDate	1616 non-null	<pre>datetime64[ns]</pre>
9	Joining Designation	19104 non-null	int64
10	Grade	19104 non-null	int64
11	Total Business Value	19104 non-null	int64
12	Quarterly Rating	19104 non-null	int64
	es: datetime64[ns](3), ry usage: 1.9+ MB	float64(2), into	54(7), object(1)

localhost:8888/notebooks/Ola Cab IOM .ipynb#

Observation 4:

• there is no point in doing a heatmap now as the data is not on id level and there needs to be alot of work done

▼ 3. Check for missing values and Prepare data for KNN Imputation

You may consider only numerical features for this purpose

```
1 df.isnull().sum()/len(df)*100
In [30]:
Out[30]: MMM-YY
                                   0.000000
         Driver ID
                                   0.000000
         Age
                                   0.319305
         Gender
                                   0.272194
         City
                                   0.000000
         Education Level
                                   0.000000
         Income
                                   0.000000
         Dateofjoining
                                   0.000000
         LastWorkingDate
                                  91.541039
         Joining Designation
                                   0.000000
         Grade
                                   0.000000
         Total Business Value
                                   0.000000
         Quarterly Rating
                                   0.000000
         dtype: float64
```

Observation 5:

- There are 31% missing data in the age column
- There are 27% missing data in the gender column
- There are 91% missing data in the lastworkingday column but this is the target variable and can be dealt with seperatly

In [34]:	1 nı	umericdf									
[umer 1001									
Out[34]:		Driver_ID	Age	Gender	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating	
	0	1	28.0	0.0	2	57387	1	1	2381060	2	
	1	1	28.0	0.0	2	57387	1	1	-665480	2	
	2	1	28.0	0.0	2	57387	1	1	0	2	
	3	2	31.0	0.0	2	67016	2	2	0	1	
	4	2	31.0	0.0	2	67016	2	2	0	1	
	19099	2788	30.0	0.0	2	70254	2	2	740280	3	
	19100	2788	30.0	0.0	2	70254	2	2	448370	3	
	19101	2788	30.0	0.0	2	70254	2	2	0	2	
	19102	2788	30.0	0.0	2	70254	2	2	200420	2	
	19103	2788	30.0	0.0	2	70254	2	2	411480	2	
	19104	rows × 9 co	olumn	s							•
In [37]:	1 nu	umericdf.	isnul	.1().sum	()/len(numeric	df)*100					
Out[37]:	Driver	 `_ID		0.0	90000						
	Age				319305						
	Gender	` :ion_Leve	1		272194 00000						
	Income		L		000000 000000						
		ng Designa	ation		000000						
	Grade	U			000000						
	_		_	_							

▼ KNN

Total Business Value

Quarterly Rating

dtype: float64

0.000000

0.000000

```
In [38]: 1 | from sklearn.impute import KNNImputer
```

• since the data needs to be aggregated on the basis of driver id, we dont need to impute the Driver id making it float and reconverting it back to int again, so we drop it

Out[47]:

	Age	Gender	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating
0	28.0	0.0	2	57387	1	1	2381060	2
1	28.0	0.0	2	57387	1	1	-665480	2
2	28.0	0.0	2	57387	1	1	0	2
3	31.0	0.0	2	67016	2	2	0	1
4	31.0	0.0	2	67016	2	2	0	1
19099	30.0	0.0	2	70254	2	2	740280	3
19100	30.0	0.0	2	70254	2	2	448370	3
19101	30.0	0.0	2	70254	2	2	0	2
19102	30.0	0.0	2	70254	2	2	200420	2
19103	30.0	0.0	2	70254	2	2	411480	2

19104 rows × 8 columns

In [50]:

1 # we got the output without the names of column
2 new_numericdf

Out[50]:

	0	1	2	3	4	5	6	7
0	28.0	0.0	2.0	57387.0	1.0	1.0	2381060.0	2.0
1	28.0	0.0	2.0	57387.0	1.0	1.0	-665480.0	2.0
2	28.0	0.0	2.0	57387.0	1.0	1.0	0.0	2.0
3	31.0	0.0	2.0	67016.0	2.0	2.0	0.0	1.0
4	31.0	0.0	2.0	67016.0	2.0	2.0	0.0	1.0
19099	30.0	0.0	2.0	70254.0	2.0	2.0	740280.0	3.0
19100	30.0	0.0	2.0	70254.0	2.0	2.0	448370.0	3.0
19101	30.0	0.0	2.0	70254.0	2.0	2.0	0.0	2.0
19102	30.0	0.0	2.0	70254.0	2.0	2.0	200420.0	2.0
19103	30.0	0.0	2.0	70254.0	2.0	2.0	411480.0	2.0

19104 rows × 8 columns

Out[51]:

	Age	Gender	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating
0	28.0	0.0	2.0	57387.0	1.0	1.0	2381060.0	2.0
1	28.0	0.0	2.0	57387.0	1.0	1.0	-665480.0	2.0
2	28.0	0.0	2.0	57387.0	1.0	1.0	0.0	2.0
3	31.0	0.0	2.0	67016.0	2.0	2.0	0.0	1.0
4	31.0	0.0	2.0	67016.0	2.0	2.0	0.0	1.0
19099	30.0	0.0	2.0	70254.0	2.0	2.0	740280.0	3.0
19100	30.0	0.0	2.0	70254.0	2.0	2.0	448370.0	3.0
19101	30.0	0.0	2.0	70254.0	2.0	2.0	0.0	2.0
19102	30.0	0.0	2.0	70254.0	2.0	2.0	200420.0	2.0
19103	30.0	0.0	2.0	70254.0	2.0	2.0	411480.0	2.0

19104 rows × 8 columns

In [52]: 1 new_numericdf.isnull().sum()/len(numericdf)*100

Out[52]: Age 0.0 Gender 0.0 Education_Level 0.0 Income 0.0 Joining Designation 0.0 Grade 0.0 Total Business Value 0.0 Quarterly Rating 0.0 dtype: float64

Observation 6:

- Now we have to stitch back the dataset back to original form as the imupation has been done
- for that we can use the join / merge or concat for this

In [61]: 1 dff

Out[61]:

	MMM- YY	Driver_ID	Age	Gender	City	Education_Level	Income	Dateofjoining	LastWorkingDate	Joining Designation	Grade	Total Business Value	Quarterly Rating
0	2019- 01-01	1	28.0	0.0	C23	2	57387	2018-12-24	NaT	1	1	2381060	2
1	2019- 02-01	1	28.0	0.0	C23	2	57387	2018-12-24	NaT	1	1	-665480	2
2	2019- 03-01	1	28.0	0.0	C23	2	57387	2018-12-24	2019-03-11	1	1	0	2
3	2020- 11-01	2	31.0	0.0	C7	2	67016	2020-11-06	NaT	2	2	0	1
4	2020- 12-01	2	31.0	0.0	C7	2	67016	2020-11-06	NaT	2	2	0	1
19099	2020- 08-01	2788	30.0	0.0	C27	2	70254	2020-06-08	NaT	2	2	740280	3
19100	2020- 09-01	2788	30.0	0.0	C27	2	70254	2020-06-08	NaT	2	2	448370	3
19101	2020- 10-01	2788	30.0	0.0	C27	2	70254	2020-06-08	NaT	2	2	0	2
19102	2020- 11-01	2788	30.0	0.0	C27	2	70254	2020-06-08	NaT	2	2	200420	2
19103	2020- 12-01	2788	30.0	0.0	C27	2	70254	2020-06-08	NaT	2	2	411480	2

19104 rows × 13 columns

	Age	Gender	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating
0	28.0	0.0	2.0	57387.0	1.0	1.0	2381060.0	2.0
1	28.0	0.0	2.0	57387.0	1.0	1.0	-665480.0	2.0
2	28.0	0.0	2.0	57387.0	1.0	1.0	0.0	2.0
3	31.0	0.0	2.0	67016.0	2.0	2.0	0.0	1.0
4	31.0	0.0	2.0	67016.0	2.0	2.0	0.0	1.0
19099	30.0	0.0	2.0	70254.0	2.0	2.0	740280.0	3.0
19100	30.0	0.0	2.0	70254.0	2.0	2.0	448370.0	3.0
19101	30.0	0.0	2.0	70254.0	2.0	2.0	0.0	2.0
19102	30.0	0.0	2.0	70254.0	2.0	2.0	200420.0	2.0
19103	30.0	0.0	2.0	70254.0	2.0	2.0	411480.0	2.0

19104 rows × 8 columns

In [80]:

1 df

Out[80]:

	MMM- YY	Driver_ID	Age	City	Dateofjoining	LastWorkingDate	Gender	Education_Level	Income	Joining Designation	Grade	Total Business Value	Quarterly Rating
0	2019- 01-01	1	28.0	C23	2018-12-24	NaT	0.0	2.0	57387.0	1.0	1.0	2381060.0	2.0
1	2019- 02-01	1	28.0	C23	2018-12-24	NaT	0.0	2.0	57387.0	1.0	1.0	-665480.0	2.0
2	2019- 03-01	1	28.0	C23	2018-12-24	2019-03-11	0.0	2.0	57387.0	1.0	1.0	0.0	2.0
3	2020- 11-01	2	31.0	C7	2020-11-06	NaT	0.0	2.0	67016.0	2.0	2.0	0.0	1.0
4	2020- 12-01	2	31.0	C7	2020-11-06	NaT	0.0	2.0	67016.0	2.0	2.0	0.0	1.0
19099	2020- 08-01	2788	30.0	C27	2020-06-08	NaT	0.0	2.0	70254.0	2.0	2.0	740280.0	3.0
19100	2020- 09-01	2788	30.0	C27	2020-06-08	NaT	0.0	2.0	70254.0	2.0	2.0	448370.0	3.0
19101	2020- 10-01	2788	30.0	C27	2020-06-08	NaT	0.0	2.0	70254.0	2.0	2.0	0.0	2.0
19102	2020- 11-01	2788	30.0	C27	2020-06-08	NaT	0.0	2.0	70254.0	2.0	2.0	200420.0	2.0
19103	2020- 12-01	2788	30.0	C27	2020-06-08	NaT	0.0	2.0	70254.0	2.0	2.0	411480.0	2.0

19104 rows × 13 columns

Re_indexing to old format for ease of understanding

In [85]: 1 df

Out[85]:

	Driver_ID	MMM- YY	Age	Gender	City	Education_Level	Income	Joining Designation	Grade	Dateofjoining	LastWorkingDate	Total Business Value	Quarterly Rating
0	1	2019- 01-01	28.0	0.0	C23	2.0	57387.0	1.0	1.0	2018-12-24	NaT	2381060.0	2.0
1	1	2019- 02-01	28.0	0.0	C23	2.0	57387.0	1.0	1.0	2018-12-24	NaT	-665480.0	2.0
2	1	2019- 03-01	28.0	0.0	C23	2.0	57387.0	1.0	1.0	2018-12-24	2019-03-11	0.0	2.0
3	2	2020- 11-01	31.0	0.0	C7	2.0	67016.0	2.0	2.0	2020-11-06	NaT	0.0	1.0
4	2	2020- 12-01	31.0	0.0	C7	2.0	67016.0	2.0	2.0	2020-11-06	NaT	0.0	1.0
19099	2788	2020- 08-01	30.0	0.0	C27	2.0	70254.0	2.0	2.0	2020-06-08	NaT	740280.0	3.0
19100	2788	2020- 09-01	30.0	0.0	C27	2.0	70254.0	2.0	2.0	2020-06-08	NaT	448370.0	3.0
19101	2788	2020- 10-01	30.0	0.0	C27	2.0	70254.0	2.0	2.0	2020-06-08	NaT	0.0	2.0
19102	2788	2020- 11-01	30.0	0.0	C27	2.0	70254.0	2.0	2.0	2020-06-08	NaT	200420.0	2.0
19103	2788	2020- 12-01	30.0	0.0	C27	2.0	70254.0	2.0	2.0	2020-06-08	NaT	411480.0	2.0

19104 rows × 13 columns

4. Aggregate data in order to remove multiple occurrences of same driver data (We did something similar in Delhivery business Case)

You can start from storing unique Driver IDs in an empty dataframe and then bring all the features at same level (Groupby Driver ID)

- Observation 7:
 - Here the data can be aggregated on the basis of driver ID and month which leaves us with the question of what to do with the other columns
 - for each column we can take different strategies like :

```
- Age : max
- MMM-YY : last
- Gender : first
- Education_level : last
- Income : last
- Joining Designation : last
- Grade : last
- Dateofjoining : last
- last working day : last
- Total business value : sum
- Quarterly Rating : last
```

```
1 dff = df.pivot table(index= ['Driver_ID' , 'City' , 'Education_Level'],
In [122]:
            2
            3
                                   values= [ 'MMM-YY', 'Age', 'Gender', 'Income', 'Dateofjoining', 'LastWorkingDate', 'Joining Designa'
                                             'Grade', 'Total Business Value'],
            5
                                   aggfunc= {'Age' : 'max' ,'MMM-YY' : 'last', 'Gender' : 'first' ,
            6
                                              'Income' : 'last', 'Joining Designation' : 'last', 'Grade' : 'last',
            7
                                              'Dateofjoining' : 'last', 'LastWorkingDate' : 'last',
            8
            9
                                              'Total Business Value' : 'sum' })
           10
           11 dff.reset index(inplace= True)
```

In [123]:

1 dff

Out[123]:

	Driver_ID	City	Education_Level	Age	Dateofjoining	Gender	Grade	Income	Joining Designation	LastWorkingDate	MMM- YY	Total Business Value
0	1	C23	2.0	28.0	2018-12-24	0.0	1.0	57387.0	1.0	2019-03-11	2019- 03-01	1715580.0
1	2	C7	2.0	31.0	2020-11-06	0.0	2.0	67016.0	2.0	NaT	2020- 12-01	0.0
2	4	C13	2.0	43.0	2019-12-07	0.0	2.0	65603.0	2.0	2020-04-27	2020- 04-01	350000.0
3	5	C9	0.0	29.0	2019-01-09	0.0	1.0	46368.0	1.0	2019-03-07	2019- 03-01	120360.0
4	6	C11	1.0	31.0	2020-07-31	1.0	3.0	78728.0	3.0	NaT	2020- 12-01	1265000.0
2376	2784	C24	0.0	34.0	2015-10-15	0.0	3.0	82815.0	2.0	NaT	2020- 12-01	21748820.0
2377	2785	C9	0.0	34.0	2020-08-28	1.0	1.0	12105.0	1.0	2020-10-28	2020- 10-01	0.0
2378	2786	C19	0.0	45.0	2018-07-31	0.0	2.0	35370.0	2.0	2019-09-22	2019- 09-01	2815090.0
2379	2787	C20	2.0	28.0	2018-07-21	1.0	1.0	69498.0	1.0	2019-06-20	2019- 06-01	977830.0
2380	2788	C27	2.0	30.0	2020-06-08	0.0	2.0	70254.0	2.0	NaT	2020- 12-01	2298240.0

2381 rows × 12 columns

Observation 7:

- this doesnot comtain the Quartely rating which has to be feature engineed and fitted later.
- the data are segregated and stiched to a driver level doing all the aggregation works mentioned above

5. Feature Engineering Steps:

Create a column which tells whether the quarterly rating has increased for that driver - for those whose quarterly rating has increased we assign the value 1

Target variable creation: Create a column called target which tells whether the driver has left the company- driver whose last working day is present will have the value 1

Create a column which tells whether the monthly income has increased for that driver - for those whose monthly income has increased we assign the value 1

▼ 5.1 Create a column which tells whether the quarterly rating has increased for that driver - for those whose quarterly rating has increased we assign the value 1

Out[133]:

Quarterly Rating

2.0
1.0
1.0
1.0
1.0
3.0
1.0
2.0
2.0
1.0

2381 rows × 1 columns

Out[135]:

Quarterly Rating

Driver_ID	
1	2.0
2	1.0
4	1.0
5	1.0
6	2.0
2784	4.0
2785	1.0
2786	1.0
2787	1.0
2788	2.0

2381 rows × 1 columns

Observastion -

- we notice that our aggregated new dataset has 2381 rows and this quarterly also contails 2381 for both first and last
- so assign a value for those first and last are different ie if last > first = 1

```
In [138]: 1 c = (b['Quarterly Rating'] > a['Quarterly Rating']).reset_index()
```

Out[138]:

	Driver_ID	Quarterly Rating
0	1	False
1	2	False
2	4	False
3	5	False
4	6	True
2376	2784	True
2377	2785	False
2378	2786	False
2379	2787	False
2380	2788	True

2381 rows × 2 columns

Out[144]:

	Driver_ID	Quarterly Rating
0	1	0
1	2	0
2	4	0
3	5	0
4	6	1
2376	2784	1
2377	2785	0
2378	2786	0
2379	2787	0
2380	2788	1

2381 rows × 2 columns

In [152]:

1 dff

Out[152]:

	Driver_ID	City	Education_Level	Age	Dateofjoining	Gender	Grade	Income	Joining Designation	LastWorkingDate	MMM- YY	Total Business Value	Increased_Q
0	1	C23	2.0	28.0	2018-12-24	0.0	1.0	57387.0	1.0	2019-03-11	2019- 03-01	1715580.0	
1	2	C7	2.0	31.0	2020-11-06	0.0	2.0	67016.0	2.0	NaT	2020- 12-01	0.0	
2	4	C13	2.0	43.0	2019-12-07	0.0	2.0	65603.0	2.0	2020-04-27	2020- 04-01	350000.0	
3	5	C9	0.0	29.0	2019-01-09	0.0	1.0	46368.0	1.0	2019-03-07	2019- 03-01	120360.0	
4	6	C11	1.0	31.0	2020-07-31	1.0	3.0	78728.0	3.0	NaT	2020- 12-01	1265000.0	
				•••									
2376	2784	C24	0.0	34.0	2015-10-15	0.0	3.0	82815.0	2.0	NaT	2020- 12-01	21748820.0	
2377	2785	C9	0.0	34.0	2020-08-28	1.0	1.0	12105.0	1.0	2020-10-28	2020- 10-01	0.0	
2378	2786	C19	0.0	45.0	2018-07-31	0.0	2.0	35370.0	2.0	2019-09-22	2019- 09-01	2815090.0	
2379	2787	C20	2.0	28.0	2018-07-21	1.0	1.0	69498.0	1.0	2019-06-20	2019- 06-01	977830.0	
2380	2788	C27	2.0	30.0	2020-06-08	0.0	2.0	70254.0	2.0	NaT	2020- 12-01	2298240.0	

2381 rows × 13 columns

In []: 1

```
In [ ]: 1
```

▼ 5.2 Target variable creation: Create a column called target which tells whether the driver has left the company- driver whose last working day is present will have the value 1

	Driver_ID	LastWorkingDate
0	1	1
1	2	0
2	4	1
3	5	1
4	6	0
2376	2784	0
2377	2785	1
2378	2786	1
2379	2787	1
2380	2788	0

2381 rows × 2 columns

```
In [190]: 1 ddd = dd['LastWorkingDate'].values
```

Out[190]: 2381

```
In [191]: 1 dff['Target'] = ddd

In [200]: 1 # Droppped the Last working day column now that we have feature engineered from it 2 dff.drop(['LastWorkingDate'],axis = 1, inplace = True)
```

In [198]: 1 dff

Out[198]:

	Driver_ID	City	Education_Level	Age	Dateofjoining	Gender	Grade	Income	Joining Designation	MMM- YY	Total Business Value	Increased_Quarterly_Ratio	ıg Ta
0	1	C23	2.0	28.0	2018-12-24	0.0	1.0	57387.0	1.0	2019- 03-01	1715580.0		0
1	2	C7	2.0	31.0	2020-11-06	0.0	2.0	67016.0	2.0	2020- 12-01	0.0		0
2	4	C13	2.0	43.0	2019-12-07	0.0	2.0	65603.0	2.0	2020- 04-01	350000.0		0
3	5	C9	0.0	29.0	2019-01-09	0.0	1.0	46368.0	1.0	2019- 03-01	120360.0		0
4	6	C11	1.0	31.0	2020-07-31	1.0	3.0	78728.0	3.0	2020- 12-01	1265000.0		1
2376	2784	C24	0.0	34.0	2015-10-15	0.0	3.0	82815.0	2.0	2020- 12-01	21748820.0		1
2377	2785	C9	0.0	34.0	2020-08-28	1.0	1.0	12105.0	1.0	2020- 10-01	0.0		0
2378	2786	C19	0.0	45.0	2018-07-31	0.0	2.0	35370.0	2.0	2019- 09-01	2815090.0		0
2379	2787	C20	2.0	28.0	2018-07-21	1.0	1.0	69498.0	1.0	2019- 06-01	977830.0		0
2380	2788	C27	2.0	30.0	2020-06-08	0.0	2.0	70254.0	2.0	2020- 12-01	2298240.0		1
2381 rows × 13 columns													
4													•

5.3 Create a column which tells whether the monthly income has increased for that driver - for those whose monthly income has increased we assign the value 1

localhost:8888/notebooks/Ola Cab IOM .ipynb#

In [193]:

1 dff

Out[193]:

	Driver_ID	City	Education_Level	Age	Dateofjoining	Gender	Grade	Income	Joining Designation	LastWorkingDate	MMM- YY	Total Business Value	Increased
0	1	C23	2.0	28.0	2018-12-24	0.0	1.0	57387.0	1.0	2019-03-11	2019- 03-01	1715580.0	
1	2	C7	2.0	31.0	2020-11-06	0.0	2.0	67016.0	2.0	NaT	2020- 12-01	0.0	
2	4	C13	2.0	43.0	2019-12-07	0.0	2.0	65603.0	2.0	2020-04-27	2020- 04-01	350000.0	
3	5	C9	0.0	29.0	2019-01-09	0.0	1.0	46368.0	1.0	2019-03-07	2019- 03-01	120360.0	
4	6	C11	1.0	31.0	2020-07-31	1.0	3.0	78728.0	3.0	NaT	2020- 12-01	1265000.0	
2376	2784	C24	0.0	34.0	2015-10-15	0.0	3.0	82815.0	2.0	NaT	2020- 12-01	21748820.0	
2377	2785	C9	0.0	34.0	2020-08-28	1.0	1.0	12105.0	1.0	2020-10-28	2020- 10-01	0.0	
2378	2786	C19	0.0	45.0	2018-07-31	0.0	2.0	35370.0	2.0	2019-09-22	2019- 09-01	2815090.0	
2379	2787	C20	2.0	28.0	2018-07-21	1.0	1.0	69498.0	1.0	2019-06-20	2019- 06-01	977830.0	
2380	2788	C27	2.0	30.0	2020-06-08	0.0	2.0	70254.0	2.0	NaT	2020- 12-01	2298240.0	
2381 r	ows × 14 c	olum	ns										_

localhost:8888/notebooks/Ola Cab IOM .ipynb#

```
In [224]: 1 a = df.groupby('Driver_ID').agg({'Income' : 'first'})
2 a
3
```

Out[224]:

Income

Driver_ID 1 57387.0 2 67016.0 4 65603.0

5 46368.0

6 78728.0

...

2784 82815.0

2785 12105.0

2786 35370.0

2787 69498.0

2788 70254.0

2381 rows × 1 columns

```
In [225]: 1 b = df.groupby('Driver_ID').agg({'Income' : 'last'})
2 b
```

Out[225]:

Income

Driver_ID									
1	57387.0								
2	67016.0								
4	65603.0								
5	46368.0								
6	78728.0								
2784	82815.0								
2785	12105.0								
2786	35370.0								
2787	69498.0								
2788	70254.0								

2381 rows × 1 columns

Out[228]:

	Driver_ID	Income
0	1	False
1	2	False
2	4	False
3	5	False
4	6	False
2376	2784	False
2377	2785	False
2378	2786	False
2379	2787	False
2380	2788	False

2381 rows × 2 columns

instead of concating or joining we can do this.
dff['Increased_Income'] = d In [219]:

In [236]: 1 dff

Out[236]:

	Driver_ID	City	Education_Level	Age	Dateofjoining	Gender	Grade	Income	Joining Designation	MMM- YY	Total Business Value	Increased_Quarterly_Rating	Та
0	1	C23	2.0	28.0	2018-12-24	0.0	1.0	57387.0	1.0	2019- 03-01	1715580.0	0	1
1	2	C7	2.0	31.0	2020-11-06	0.0	2.0	67016.0	2.0	2020- 12-01	0.0	0	I
2	4	C13	2.0	43.0	2019-12-07	0.0	2.0	65603.0	2.0	2020- 04-01	350000.0	0	ı
3	5	C9	0.0	29.0	2019-01-09	0.0	1.0	46368.0	1.0	2019- 03-01	120360.0	0	ı
4	6	C11	1.0	31.0	2020-07-31	1.0	3.0	78728.0	3.0	2020- 12-01	1265000.0	1	
					•••				•••				
2376	2784	C24	0.0	34.0	2015-10-15	0.0	3.0	82815.0	2.0	2020- 12-01	21748820.0	1	
2377	2785	C9	0.0	34.0	2020-08-28	1.0	1.0	12105.0	1.0	2020- 10-01	0.0	0	ı
2378	2786	C19	0.0	45.0	2018-07-31	0.0	2.0	35370.0	2.0	2019- 09-01	2815090.0	0	ı
2379	2787	C20	2.0	28.0	2018-07-21	1.0	1.0	69498.0	1.0	2019- 06-01	977830.0	0	I
2380	2788	C27	2.0	30.0	2020-06-08	0.0	2.0	70254.0	2.0	2020- 12-01	2298240.0	1	
2381 r	ows × 14 c	colum	ns										

6.Statistical summary of the derived dataset

In [243]: 1 import seaborn as sns
In [238]: 1 dff.describe()

Out[238]:

	Driver_ID	Education_Level	Age	Gender	Grade	Income	Joining Designation	Total Business Value	Increased_Quarterly_Rating
count	2381.000000	2381.00000	2381.000000	2381.000000	2381.000000	2381.000000	2381.000000	2.381000e+03	2381.000000
mean	1397.559009	1.00756	33.663167	0.411172	2.096598	59334.157077	1.820244	4.586742e+06	0.150357
std	806.161628	0.81629	5.983375	0.491740	0.941522	28383.666384	0.841433	9.127115e+06	0.357496
min	1.000000	0.00000	21.000000	0.000000	1.000000	10747.000000	1.000000	-1.385530e+06	0.000000
25%	695.000000	0.00000	29.000000	0.000000	1.000000	39104.000000	1.000000	0.000000e+00	0.000000
50%	1400.000000	1.00000	33.000000	0.000000	2.000000	55315.000000	2.000000	8.176800e+05	0.000000
75%	2100.000000	2.00000	37.000000	1.000000	3.000000	75986.000000	2.000000	4.173650e+06	0.000000
max	2788.000000	2.00000	58.000000	1.000000	5.000000	188418.000000	5.000000	9.533106e+07	1.000000
4									•

Observation 9:

- Age: the maximum age is 58 and the minimum age is 21
- Income: Mean income 59,334 and max income is 1,88,418 with 75% people making less than 75,986
- Total business value of 50% people are around 8,17,680

Contineous

```
In [274]: 1 continuous = ['Age', 'Income', 'Total_Business_Value']
```


In []:

1


```
In [ ]: 1
```


Observation 10:

- The contineous columns like 'Age', 'Income', 'Total_Business_Value' has got outliers
- For the Age the distribution looks almost normal with some outliers
- For Income the distribution is not normal, its to the right and it has got some outliers as well.

Categorical Features

In [294]: 1 categorical = ['City', 'Education_Level', 'Gender', 'Grade', 'Joining Designation', 'Increased_Quarterly_Rating', 'T

```
In [296]:
              def barplot_columns(data, categorical):
                   for col in categorical:
            2
            3
                       print(f'Plotting the : {col}')
                       print('_'*50)
            4
                       plt.figure(figsize=(10,3))
            5
                       x = dff[col].value_counts(normalize = True).index
            6
                       y = dff[col].value counts(normalize = True).values
            7
                       sns.barplot(x=x, y=y)
            8
                       plt.xticks(rotation=0)
            9
                       plt.ylabel('percentage of Total')
           10
           11
                       plt.show()
           12 barplot columns(df, categorical)
```

Plotting the : City

Plotting the : Education_Level

_

Plotting the : Gender

Plotting the : Grade

Plotting the : Joining Designation

Plotting the : Increased_Quarterly_Rating

Plotting the : Target

7. Check correlation among independent variables and how they interact with each other

In [327]:

1 dff

Out[327]:

_ID	City	Education_Level	Age	Dateofjoining	Gender	Grade	Income	Joining Designation	MMM- YY	Total Business Value	Increased_Quarterly_Rating	Target	Increase
1	C23	2.0	28.0	2018-12-24	0.0	1.0	57387.0	1.0	2019- 03-01	1715580.0	0	1	
2	C7	2.0	31.0	2020-11-06	0.0	2.0	67016.0	2.0	2020- 12-01	0.0	0	0	
4	C13	2.0	43.0	2019-12-07	0.0	2.0	65603.0	2.0	2020- 04-01	350000.0	0	1	
5	C9	0.0	29.0	2019-01-09	0.0	1.0	46368.0	1.0	2019- 03-01	120360.0	0	1	
6	C11	1.0	31.0	2020-07-31	1.0	3.0	78728.0	3.0	2020- 12-01	1265000.0	1	0	
784	C24	0.0	34.0	2015-10-15	0.0	3.0	82815.0	2.0	2020- 12-01	21748820.0	1	0	
785	C9	0.0	34.0	2020-08-28	1.0	1.0	12105.0	1.0	2020- 10-01	0.0	0	1	
786	C19	0.0	45.0	2018-07-31	0.0	2.0	35370.0	2.0	2019- 09-01	2815090.0	0	1	
787	C20	2.0	28.0	2018-07-21	1.0	1.0	69498.0	1.0	2019- 06-01	977830.0	0	1	
788	C27	2.0	30.0	2020-06-08	0.0	2.0	70254.0	2.0	2020- 12-01	2298240.0	1	0	

14 columns

4

localhost:8888/notebooks/Ola Cab IOM .ipynb#

Target	0	1
Education_Level		
0.0	242	542
1.0	268	527
2.0	255	547

Out[331]: <AxesSubplot:xlabel='Education_Level'>


```
In [333]: 1 grade = pd.crosstab(dff['Grade'],dff['Target'])
2 print(grade)
3 grade.plot.bar(rot=0 , color = ['orange','grey'])
```

Target	0	1
Grade		
1.0	145	596
2.0	255	600
3.0	286	337
4.0	68	70
5.0	11	13

Out[333]: <AxesSubplot:xlabel='Grade'>


```
In [326]: 1 gender = pd.crosstab(dff['Gender'],dff['Target'])
2 print(gender)
3 gender.plot.bar(rot=0 , color = ['orange','grey'])
```

Target	0	1
Gender		
0.0	456	944
0.2	0	1
0.6	0	2
0.8	0	2
1.0	309	667

Out[326]: <AxesSubplot:xlabel='Gender'>

Target		0	1
Joining	Designation		
1.0		274	752
2.0		255	560
3.0		219	274
4.0		14	22
5.0		3	8

Out[336]: <AxesSubplot:xlabel='Joining Designation'>


```
Target 0 1
Increased_Quarterly_Rating
0 489 1534
1 276 82
```

Out[340]: <AxesSubplot:xlabel='Increased_Quarterly_Rating'>

Observation 12:

- Education Level: Education level of drivers is uniformly distributed. All three categories have almost equal number of drivers.
- The proportion of gender and education is more or less the same for both the employees who left the organization and those who did not leave.
- Grade: 5 unique Grades, Grade 2 has highest & Grade 5 has lowest number of drivers
- Joining Designation :5 unique categories present. JD-1 has highest count & JD-5 has lowest count.
- The employees who have their grade as 3 or 4 at the time of joiningDesignation are less likely to leave the organization.

• The employees whose quarterly rating has increased are less likely to leave the organization.

Out[382]: <AxesSubplot:xlabel='City'>


```
In [384]: 1 plt.rcParams["figure.figsize"] = (12, 8)
2 dff['Age_Bin'] = pd.cut(dff['Age'],bins=[20,35,50,65])
3 city = pd.crosstab(dff['Age_Bin'],dff['Target'])
4 city.plot.bar(rot=0 , color = ['orange','grey'])
```

Out[384]: <AxesSubplot:xlabel='Age_Bin'>

Out[386]: <AxesSubplot:xlabel='Income_Bin'>

Observation 12:

- For the Age bins we can see that lesser age with less income has more chance of leaving
- for the age bin of same lesss with large income has a more probability to stay
- There is a great correlation between Income and Grade ,indicating drivers with higher grades have higher monthly income.
- There is a significant correlation between Joining Designation and Grade, This indicates as the Grade of Driver increases, joining designation also increases.

In [390]:	<pre>1 dff.drop(['Age_Bin','Income_Bin'],axis=1,inplace=True)</pre>	
In [391]:	1 dff.head()	
0+[204].		

Out[391]:

	Driver_ID	City	Education_Level	Age	Dateofjoining	Gender	Grade	Income	Joining Designation	MMM- YY	Total Business Value	Increased_Quarterly_Ratir	g '	Target
0	1	C23	2.0	28.0	2018-12-24	0.0	1.0	57387.0	1.0	2019- 03-01	1715580.0		0	1
1	2	C7	2.0	31.0	2020-11-06	0.0	2.0	67016.0	2.0	2020- 12-01	0.0		0	0
2	4	C13	2.0	43.0	2019-12-07	0.0	2.0	65603.0	2.0	2020- 04-01	350000.0		0	1
3	5	C9	0.0	29.0	2019-01-09	0.0	1.0	46368.0	1.0	2019- 03-01	120360.0		0	1
4	6	C11	1.0	31.0	2020-07-31	1.0	3.0	78728.0	3.0	2020- 12-01	1265000.0		1	0
4														•

8 . One hot encoding of the categorical variable

9. Standardization of training data

• we only want to do scaling on numerical columns and thus we exclude the colums - City, Driver ID, Target and DateOfJoining

```
In [405]:
            1 | X = df.drop(['Dateofjoining'],axis=1,inplace=True)
In [415]:
            1 X = df
In [419]:
            1 Xcols=X.columns
            2 Xcols
Out[419]: Index(['Education_Level', 'Age', 'Gender', 'Grade', 'Income',
                  'Joining Designation', 'Total Business Value',
                  'Increased Quarterly Rating', 'Increased Income', 'City C1', 'City C10',
                  'City C11', 'City C12', 'City C13', 'City C14', 'City C15', 'City C16',
                  'City_C17', 'City_C18', 'City_C19', 'City_C2', 'City_C20', 'City_C21',
                  'City_C22', 'City_C23', 'City_C24', 'City_C25', 'City_C26', 'City_C27',
                  'City C28', 'City C29', 'City C3', 'City C4', 'City C5', 'City C6',
                  'City_C7', 'City_C8', 'City_C9'],
                dtype='object')
```

Out[426]:

	Education_Level	Age	Gender	Grade	Income	Joining Designation	Total Business Value	Increased_Quarterly_Rating	Increased_Income	City_C1	 City_
0	1.0	0.189189	0.0	0.00	0.262508	0.00	0.032064	0.0	0.0	0.0	
1	1.0	0.270270	0.0	0.25	0.316703	0.25	0.014326	0.0	0.0	0.0	
2	1.0	0.594595	0.0	0.25	0.308750	0.25	0.017944	0.0	0.0	0.0	
3	0.0	0.216216	0.0	0.00	0.200489	0.00	0.015570	0.0	0.0	0.0	
4	0.5	0.270270	1.0	0.50	0.382623	0.50	0.027405	1.0	0.0	0.0	
2376	0.0	0.351351	0.0	0.50	0.405626	0.25	0.239197	1.0	0.0	0.0	
2377	0.0	0.351351	1.0	0.00	0.007643	0.00	0.014326	0.0	0.0	0.0	
2378	0.0	0.648649	0.0	0.25	0.138588	0.25	0.043432	0.0	0.0	0.0	
2379	1.0	0.189189	1.0	0.00	0.330673	0.00	0.024436	0.0	0.0	0.0	
2380	1.0	0.243243	0.0	0.25	0.334928	0.25	0.038088	1.0	0.0	0.0	

2381 rows × 38 columns

▼ 10. Model building

In [427]: 1 from sklearn.model_selection import train_test_split,GridSearchCV

BAGGING

Random Forest with class weights

since Random forest can work with Imbalanced data we are trying this out now

```
In [433]:
            1 from sklearn.ensemble import RandomForestClassifier
            2 from sklearn.utils import class weight
In [447]:
            1 rfmodel = RandomForestClassifier(class weight = 'balanced')
            1 param_grid = {'max_depth':np.arange(2,20,5), 'n_estimators':[5,10,50,100,500,1000] , 'criterion' : ['gini', 'entropy'
In [450]:
              gs rfmodel = GridSearchCV(rfmodel , param grid , cv = 3 , scoring = 'roc auc')
              gs rfmodel.fit(X train,y train)
Out[450]:
                       GridSearchCV
            ▶ estimator: RandomForestClassifier
                 ▶ RandomForestClassifier
           1 print(f'We can get roc_auc score of {np.round(gs_rfmodel.best_score_, 4)} using {gs_rfmodel.best_params_}')
In [451]:
          We can get roc_auc score of 0.8145 using {'criterion': 'entropy', 'max_depth': 12, 'n_estimators': 1000}
```

localhost:8888/notebooks/Ola Cab IOM .ipynb#

```
In [ ]:
           1 rfmodel = RandomForestClassifier(class_weight = 'balanced_subsample')
In [439]:
            param grid = {'max depth':np.arange(2,20,5), 'n estimators':[5,10,50,100,500,1000] , 'criterion' : ['gini', 'entropy
In [440]:
              gs rfmodel = GridSearchCV(rfmodel , param grid , cv = 3 , scoring = 'roc auc')
             gs rfmodel.fit(X train,y train)
Out[440]:
                       GridSearchCV
            ▶ estimator: RandomForestClassifier
                 ▶ RandomForestClassifier
In [441]:
           1 print(f'We can get roc auc score of {np.round(gs rfmodel.best score , 4)} using {gs rfmodel.best params }')
          We can get roc auc score of 0.8151 using {'criterion': 'entropy', 'max depth': 7, 'n estimators': 50}
 In [ ]:
```

11. Class Imbalance Treatment

```
In [443]:
            1 print("Before OverSampling, counts of label '1': {}".format(sum(y train == 1)))
            2 print("Before OverSampling, counts of label '0': {} \n".format(sum(y train == 0)))
            3
              # import SMOTE module from imblearn library
            5 # pip install imblearn (if you don't have imblearn in your system)
            6 from imblearn.over sampling import SMOTE
            7 sm = SMOTE(random state = 23)
            8 X train sm, y train sm = sm.fit resample(X train, y train.ravel())
           10 print('After OverSampling, the shape of train X: {}'.format(X train sm.shape))
           11 print('After OverSampling, the shape of train v: {} \n'.format(v train sm.shape))
           12
           13 print("After OverSampling, counts of label '1': {}".format(sum(y train sm == 1)))
           14 print("After OverSampling, counts of label '0': {}".format(sum(y train sm == 0)))
          Before OverSampling, counts of label '1': 1278
          Before OverSampling, counts of label '0': 626
          After OverSampling, the shape of train X: (2556, 38)
          After OverSampling, the shape of train_y: (2556,)
          After OverSampling, counts of label '1': 1278
          After OverSampling, counts of label '0': 1278
  In [ ]:
            1 rfmodel = RandomForestClassifier(class weight = 'balanced')
In [444]:
```

```
In [445]:
            param grid = {'max depth':np.arange(2,20,5), 'n estimators':[5,10,50,100,500,1000] , 'criterion' : ['gini', 'entropy']
              gs rfmodel = GridSearchCV(rfmodel , param_grid , cv = 3 , scoring = 'roc_auc')
              gs rfmodel.fit(X train sm,y train sm)
Out[445]:
                        GridSearchCV
            ▶ estimator: RandomForestClassifier
                 ▶ RandomForestClassifier
            1 print(f'We can get roc auc score of {np.round(gs rfmodel.best score , 4)} using {gs rfmodel.best params }')
In [446]:
          We can get roc auc score of 0.895 using {'criterion': 'gini', 'max depth': 17, 'n estimators': 1000}
 In [ ]:
            1
          Random Forest with best Hyperparameters
In [461]:
            1 rfc = RandomForestClassifier(bootstrap=True,
                                               criterion = 'gini',
            3
                                               max depth=17,
                                               n estimators=1000)
In [462]:
            1 rfc.fit(X train sm, y train sm)
Out[462]:
                            RandomForestClassifier
           RandomForestClassifier(max_depth=17, n_estimators=1000)
In [463]:
            1 y pred rf = rfc.predict(X test)
```

```
In [464]: 1 #ROC_AUC Curve
2 from sklearn import metrics
3 y_pred_rf_proba = rfc.predict_proba(X_test)
4 fpr, tpr, thr = metrics.roc_curve(y_test , y_pred_rf_proba[:,1])
5 auc_score = metrics.roc_auc_score( y_test, y_pred_rf_proba[:,1] )
```

```
In [465]: 1 plt.figure(figsize=(10,6))
2 plt.plot(fpr,tpr, label='ROC curve (area = %0.2f)' % auc_score )
3 plt.plot([0, 1], [0, 1], 'k--')
4 plt.title('ROC Curve: Random Forest Model', fontsize = 20, fontweight = 'bold')
5 plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
6 plt.ylabel('True Positive Rate')
7 plt.legend(loc="lower right")
8 plt.show()
9 print('-'*70)
10 print(f'ROC_AUC score = \t {np.round(auc_score,5)}')
11 print('-'*70)
```

ROC Curve: Random Forest Model

ROC_AUC score = 0.80639

Important Metrics of Random Forest Model

ROC_AUC score = 0.80639 Accuracy of Model : 0.80294 f1_score of Model : 0.86377 Precision of Model : 0.84659 Recall of Model : 0.88166

Classification Report: Random Forest

	precision	recall	f1-score	support	
0	0.68 0.85	0.61 0.88	0.64 0.86	139 338	
_	0.03	0.00			
accuracy macro avg	0.76	0.75	0.80 0.75	477 477	
weighted avg	0.80	0.80	0.80	477	

```
In [468]: 1    conf_matrix_rf = confusion_matrix(y_test,y_pred_rf)
        plt.figure(figsize=(8,5))
        sns.heatmap(conf_matrix_rf, annot = True, cmap = 'YlOrRd', fmt="1.0f")
        plt.title('Confusion Matrix of Random Forest Model',fontsize = 20, fontweight = 'bold')
        plt.xlabel('Predicted Labels')
        plt.ylabel('Actual Labels')
        plt.show()
```

Confusion Matrix of Random Forest Model

In [471]:

1 df

Out[471]:

	Education_Level	Age	Gender	Grade	Income	Joining Designation	Total Business Value	Increased_Quarterly_Rating	Increased_Income	City_C1	 City_C27
0	2.0	28.0	0.0	1.0	57387.0	1.0	1715580.0	0	0	0	 0
1	2.0	31.0	0.0	2.0	67016.0	2.0	0.0	0	0	0	 0
2	2.0	43.0	0.0	2.0	65603.0	2.0	350000.0	0	0	0	 0
3	0.0	29.0	0.0	1.0	46368.0	1.0	120360.0	0	0	0	 0
4	1.0	31.0	1.0	3.0	78728.0	3.0	1265000.0	1	0	0	 0
2376	0.0	34.0	0.0	3.0	82815.0	2.0	21748820.0	1	0	0	 0
2377	0.0	34.0	1.0	1.0	12105.0	1.0	0.0	0	0	0	 0
2378	0.0	45.0	0.0	2.0	35370.0	2.0	2815090.0	0	0	0	 0
2379	2.0	28.0	1.0	1.0	69498.0	1.0	977830.0	0	0	0	 0
2380	2.0	30.0	0.0	2.0	70254.0	2.0	2298240.0	1	0	0	 1

2381 rows × 38 columns

4

Increased_Quarterly_Rating

In []: 1

▼ BOOSTING

▼ Model-02 LightGBM BOOSTING : Hyperparameter tuning using GridSearch_CV

```
In [497]:
            1 param grid lgb = {
                   'lgb_learning_rate': [0.005,0.01,0.05,0.1],
                   'lgb n estimators': [40,60,80,100],
                  'lgb num leaves': np.arange(10,20,2),
                   'lgb num iterations': [ 100, 500, 1000, 2000] }
            5
              gs lgbmodel = GridSearchCV(lgbmodel , param grid lgb , cv = 3 , n jobs=-1, verbose=1, scoring = 'roc auc')
              gs lgbmodel.fit(X train sm,v train sm)
          Fitting 3 folds for each of 320 candidates, totalling 960 fits
          [LightGBM] [Warning] Unknown parameter: lgb num iterations
          [LightGBM] [Warning] Unknown parameter: lgb learning rate
          [LightGBM] [Warning] Unknown parameter: lgb n estimators
          [LightGBM] [Warning] Unknown parameter: lgb num leaves
Out[497]:
                   GridSearchCV
            ▶ estimator: LGBMClassifier
                 ▶ LGBMClassifier
           1 print(f'We can get roc auc score of {np.round(gs lgbmodel.best score , 4)} using {gs lgbmodel.best params }')
In [498]:
          We can get roc auc score of 0.8744 using {'lgb learning rate': 0.005, 'lgb n estimators': 40, 'lgb num iterations':
          100, 'lgb num leaves': 10}
 In [ ]:
```

Model with the best hyperparameters

```
In [499]: 1 lgb = lgb.LGBMClassifier(learning_rate = 0.005 ,n_estimators = 40, num_iterations=100 , num_leaves = 10)
```

```
In [504]:

1  plt.figure(figsize=(10,6))
2  plt.plot(fpr,tpr, label='ROC curve (area = %0.2f)' % auc_score )
3  plt.plot([0, 1], [0, 1], 'k--')
4  plt.title('ROC Curve: Random Forest Model', fontsize = 20, fontweight = 'bold')
5  plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
6  plt.ylabel('True Positive Rate')
7  plt.legend(loc="lower right")
8  plt.show()
9  print('-'*70)
10  print(f'ROC_AUC score = \t {np.round(auc_score,5)}')
11  print('-'*70)
```

ROC Curve: Random Forest Model

```
Important Metrics of LightGBM Model
```

ROC_AUC score = 0.80491
Accuracy of Model : 0.81132
f1_score of Model : 0.87324
Precision of Model : 0.83333
Recall of Model : 0.91716

Classification Report: Random Forest

	precision	recall	f1-score	support	
0	0.73	0.55	0.63	139	
1	0.83	0.92	0.87	338	
accuracy			0.81	477	
macro avg	0.78	0.74	0.75	477	
weighted avg	0.80	0.81	0.80	477	

```
In [508]: 1 conf_matrix_rf = confusion_matrix(y_test,y_pred_lgb)
    plt.figure(figsize=(8,5))
    sns.heatmap(conf_matrix_rf, annot = True, cmap = 'YlOrRd', fmt="1.0f")
    plt.title('Confusion Matrix of Random Forest Model',fontsize = 20, fontweight = 'bold')
    plt.xlabel('Predicted Labels')
    plt.ylabel('Actual Labels')
    plt.show()
```

Confusion Matrix of Random Forest Model

Feature Importance in LighGBM Model

XGBoost Classifier

```
In [515]: 1 # !pip install xgboost
In [517]: 1 import xgboost as xgb
In [518]: 1 xgbmodel = xgb.XGBClassifier(class_weight ='balanced')
```

Fitting 3 folds for each of 320 candidates, totalling 960 fits
[00:13:58] WARNING: C:/buildkite-agent/builds/buildkite-windows-cpu-autoscaling-group-i-03de431ba26204c4d-1/xgboost/xgb
oost-ci-windows/src/learner.cc:767:
Parameters: { "class weight", "xgb learning rate", "xgb n estimators", "xgb num iterations", "xgb num leaves" } are

not used.

In [523]: 1 print(f'We can get roc_auc score of {np.round(gs_xgbmodel.best_score_, 4)} using {gs_xgbmodel.best_params_}')
We can get roc auc score of 0.8745 using {'xgb learning rate': 0.005, 'xgb n estimators': 40, 'xgb num iterations':

Model with the best hyperparameters

100, 'xgb num leaves': 10}

```
In [528]: 1 xgb = xgb.XGBClassifier(learning_rate = 0.005 ,n_estimators = 40, num_iterations=100 , num_leaves = 10)
```

```
In [529]:
            1 xgb.fit(X train sm, y train sm)
          [00:31:59] WARNING: C:/buildkite-agent/builds/buildkite-windows-cpu-autoscaling-group-i-03de431ba26204c4d-1/xgboost/xgb
          oost-ci-windows/src/learner.cc:767:
          Parameters: { "num iterations", "num leaves" } are not used.
Out[529]:
                                            XGBClassifier
           XGBClassifier(base score=0.5, booster='gbtree', callbacks=None,
                         colsample bylevel=1, colsample bynode=1, colsample bytree=1,
                         early stopping rounds=None, enable categorical=False,
                         eval metric=None, feature types=None, gamma=0, gpu id=-1,
                         grow policy='depthwise', importance type=None,
                         interaction constraints='|', learning rate=0.005, max bin=256,
                         max cat threshold=64, max cat to onehot=4, max delta step=0,
                         max depth=6, max leaves=0, min child weight=1, missing=nan,
                         monotone constraints='()', n estimators=40, n jobs=0,
                         num iterations=100, num leaves=10, num parallel tree=1, ...)
In [530]:
            1 y pred xgb = xgb.predict(X test)
In [531]:
            1 #ROC AUC Curve
            2 from sklearn import metrics
            3 y pred xgb proba = xgb.predict proba(X test)
            4 fpr, tpr, thr = metrics.roc curve(y test , y pred xgb proba[:,1])
            5 auc score = metrics.roc auc score( y test, y pred xgb proba[:,1] )
```

```
In [532]:

1    plt.figure(figsize=(10,6))
    plt.plot(fpr,tpr, label = 'ROC curve (area = %0.2f)' % auc_score )
    plt.plot([0, 1], [0, 1], 'k--')
    plt.title('ROC Curve: Random Forest Model', fontsize = 20, fontweight = 'bold')
    plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
    plt.ylabel('True Positive Rate')
    plt.legend(loc = "lower right" )
    plt.show()
    print('-'*70)
    print(f'ROC_AUC score = \t {np.round(auc_score,5)}')
    print('-'*70)
```

ROC Curve: Random Forest Model


```
ROC_AUC score = 0.79825
```

In [535]:

```
#Important Metrics of Model
print('-'*70)
print('Important Metrics of XGBoost Model')
print('-'*70)
print(f'ROC_AUC score = \t {np.round(auc_score,5)}')
print(f'Accuracy of Model : \t {np.round(metrics.accuracy_score(y_test,y_pred_xgb),5)}')
print(f'f1_score of Model : \t {np.round(metrics.f1_score(y_test,y_pred_xgb),5)}')
print(f'Precision of Model : \t {np.round(metrics.precision_score(y_test,y_pred_xgb),5)}')
print(f'Recall of Model : \t {np.round(metrics.recall_score(y_test,y_pred_xgb),5)}')
print('-'*70)
```

Important Metrics of XGBoost Model

ROC_AUC score = 0.79825 Accuracy of Model : 0.81132 f1_score of Model : 0.87465 Precision of Model : 0.82632 Recall of Model : 0.92899

Classification Report: XG Boost

precision recall f1-score support

0 0.75 0.53 0.62 139

0.83 0.93 0.87 338 1 accuracy 0.81 477 0.75 477 macro avg 0.79 0.73 weighted avg 0.80 0.81 0.80 477

```
In [537]: 1 conf_matrix_rf = confusion_matrix(y_test,y_pred_xgb)
    plt.figure(figsize=(8,5))
    sns.heatmap(conf_matrix_rf, annot = True, cmap = 'YlOrRd', fmt="1.0f")
    plt.title('Confusion Matrix of XG Boost',fontsize = 20, fontweight = 'bold')
    plt.xlabel('Predicted Labels')
    plt.ylabel('Actual Labels')
    plt.show()
```

Confusion Matrix of XG Boost


```
In [538]: 1 plt.figure(figsize=(15,15))
2 plt.barh(df.columns[:], xgb.feature_importances_)
3 plt.title('Feature Importance in XG Boost Model',fontsize = 20, fontweight = 'bold')
4 plt.show()
```


Actionable Insights & Recommendations

Observation 1:

- Here the Target variable is not shown explicitly
- from the observation the last working day can be made the Target column
- We need to convert the nan values to 0 and others to 1 maybe , need to converm later

Observation 2

- in the description there are only 14 columns but in the dataset there is 15 :
- unnamed column can be dropped

Observation 3

- will have to convert MMM-YY to date time format
- will have to convert Dateofjoining to date time format
- last working date should also be converted to the same

Observation 4:

- there is no point in doing a heatmap now as the data is not on id level and there needs to be alot of work don e

Observation 5:

- There are 31% missing data in the age column
- There are 27% missing data in the gender column
- There are 91% missing data in the lastworkingday column but this is the target variable and can be dealt with seperatly

Observation 6:

- Now we have to stitch back the dataset back to original form as the imupation has been done
- for that we can use the join / merge or concat for this

Observation 9:

- Age : the maximum age is 58 and the minimum age is 21
- Income: Mean income 59,334 and max income is 1,88,418 with 75% people making less than 75,986
- Total business value of 50% people are around 8,17,680

Observation 10:

- The contineous columns like 'Age', 'Income', 'Total_Business_Value' has got outliers
- For the Age the distribution looks almost normal with some outliers
- For Income the distribution is not normal, its to the right and it has got some outliers as well.

Observation 12:

- Education Level : Education level of drivers is uniformly distributed. All three categories have almost equal number of drivers.
- The proportion of gender and education is more or less the same for both the employees who left the organizati on and those who did not leave.
- Grade : 5 unique Grades, Grade 2 has highest & Grade 5 has lowest number of drivers
- Joining Designation :5 unique categories present. JD-1 has highest count & JD-5 has lowest count.
- The employees who have their grade as 3 or 4 at the time of joiningDesignation are less likely to leave the or ganization.
- The employees whose quarterly rating has increased are less likely to leave the organization.

Observation 13:

- For the Age bins we can see that lesser age with less income has more chance of leaving
- for the age bin of same lesss with large income has a more probability to stay
- There is a great correlation between Income and Grade ,indicating drivers with higher grades have higher month ly income.
- There is a significant correlation between Joining Designation and Grade, This indicates as the Grade of Drive
- r increases, joining designation also increases.

Model-01 Random Forest: Hyperparameter tuning using GridSearch_CV

• Model was created using Bagging Technique: Random Forest. Hyperparameter tunning was done using GridSearchCV. Best model was selected based on highest ROC_AUC score.

Important Metrics of Random Forest Model

ROC AUC score = 0.80639

Accuracy of Model: 0.80294 f1_score of Model: 0.86377 Precision of Model: 0.84659 Recall of Model: 0.88166

Feature Importance of Random Forest: =>

- Total Business Value has highest importance followed by City.

Model-02 LightGBM BOOSTING : Hyperparameter tuning using GridSearch CV

• Model was created using Boosting Technique: LightGBM. Hyperparameter tunning was done using GridSearchCV. Best model was selected based on highest ROC_AUC score.

Important Metrics of LightGBM Model

ROC_AUC score = 0.80491
Accuracy of Model : 0.81132
f1_score of Model : 0.87324
Precision of Model : 0.83333
Recall of Model : 0.91716

Feature Importance of LightGBM Model: =>

- Joining Designation has highest importance followed by City.

Model-03 XG BOOSTING: Hyperparameter tuning using GridSearch_CV

• Model was created using Boosting Technique: XGBM. Hyperparameter tunning was done using GridSearchCV. Best model was selected based on highest ROC_AUC score.

Important Metrics of XGBoost Model

 ROC_AUC score = 0.79825

Accuracy of Model: 0.81132 f1_score of Model: 0.87465 Precision of Model: 0.82632 Recall of Model: 0.92899

Feature Importance of XGBoost Model: =>

- Increased Quarterly Rating has highest importance followed by City.

Recommendations

- Action points for Business based on Analysis:
- Churn rate of Drivers is very high (i.e. around 70%). This is not a healthy situation for business.
- Based on both model created, it was concluded that City & Quarterly Rating has significant impact on Churning of Drivers.
- Company should take extra care of Cities where Churn rate is high.
- Company should take extra efforts in terms of training of compensation to improve the Quarterly Rating of Drivers.
- those drivers tends to stay whose incomes and quaterly ratings are increased, thus Ola needs to increase income and quaterly rating to retain drivers who are working with them for long time.

In []:

1