People Analytics & Econometrics The Evaluation of Management Practices

Sander Kraaij, Dirk Sliwka Fall Term 2024

Contents

- 0. Python Tutorial
- 1. Regressions
- 2. Statistical Tests
- 3. Regression and Causality
- 4. Survey Data and Scale Reliability
- 5. Using Panel Data
- 6. Predictions and Machine Learning

Introduction

Key questions addressed in this course:

- How can we evaluate the effect of management practices on outcome variables such as profits or job satisfaction?
- Why and when are regressions useful?
- When and how can we identify causal effects?
- How can we assess the reliability of measurement?
- How do we analyze cross-sectional and longitudinal data sets?
- How can a field experiment be set up?
- How can we set up machine learning algorithms to make predictions?

Useful Literature/Online Sources:

Econometrics & Causal Inference:

- Angrist and Pischke's <u>Mostly Harmless Econometrics</u> (Ch. 2 and 3) and <u>Mastering 'Metrics: The Path from Cause to Effect</u>
- Scott Cunningham's <u>Causal Inference The Mixtape</u>
- Andrea Ichino's <u>Lecture slides</u>

Data Science and Econometrics with Python:

- Arthur Turell's: <u>Coding for Economists</u> and <u>Python for Data Science</u>
- Matheus Facure Alves's: <u>Causal Inference for The Brave and True</u>

Machine Learning with Python:

- James, Witten, Hastie, Tibshirani:
 An Introduction to Statistical Learning with Applications in Python
- Guido Müller's <u>Introduction to machine learning with Python</u>

Key distinction for study designs:

Study based on observational data

- Data creation process not affected by the researcher
- Example data: Data from surveys, balance sheets, personnel records, ...
- Typically no exogenous variation in management practices (i.e. differences in use of practices may be related to unobserved variables)

Laboratory experiment

- Data generated by the researcher in the lab
- Typically students are hired to make certain decisions/work
- Exogenous treatment variation allows to study causal effects

Field experiment

- Also: RCT
 (Randomized
 Controlled Trial), or in
 practice A/B test
- Data generated in the field (for instance in a firm)
- Exogenous treatment variation allows to study causal effects

Types of Data

- To evaluate management practices, it is useful to combine different types of data
- Key sources within firms: administrative and survey data (operational vs. experience, or o-data and x-data)

Administrative data, "O-data"

- Data from IT systems/personnel records on operational processes
- Examples: Quit rates, bonuses, salaries, sales, profits, hiring durations, performance evaluations, ...

Survey data, "X-data"

- Typically generated through (online) employee surveys
- Perceptions and Attitudes
- Examples: Job satisfaction, Customer satisfaction, Job engagement, commitment, ...
- Also: text data from open survey questions or verbal feedback

Types of Data

Characteristics of operational/administrative data:

- Can be directly drawn from company ERP system or data warehouses
- Typically rather accurate (for instance payroll information, hiring data, ...)
- But also depends on quality of processes to store subjectively assessed information (example: reasons for employee terminations)

Characteristics of survey/experience data:

- Cheap to collect through online surveys
- Measures of subjective perceptions that can be biased
- Anonymity of respondents has to be safeguarded which can make it hard to map to O-data
- Can also use population/workplace surveys (GSOEP, NLSY, LPP, MOPS, ...)

0. Python Tutorial

 Now that we have been introduced to types of data, let us learn how to work with data using

1. Regressions

Suppose we are interested in the connection between

- an outcome variable y (e.g. job satisfaction, engagement, ...)
- and a variable x which may affect y (e.g. wage, the size of bonus payments, whether the firm uses performance pay or not, ...)

Let e be a variable which describes all other determinants of y that we do not observe

Then we can denote the relationship between y and x as

$$y = f(x, e) \tag{1}$$

Key aim: Understand this function and learn about it by analyzing data

Distinction: Prediction and Causality

(i) Prediction

- Question: to what extent does knowing x allow us to predict y?
- Example:
 - When we as observers see that a company uses performance pay
 - What can we predict about the job satisfaction of its employees?
 - In other words: Is employee satisfaction higher in firms that use performance pay?

(ii) Causality

- Question: to what extent does a change of x lead to a change of y?
- Example:
 - A firm introduced performance pay
 - We want to know how this affected employee satisfaction
 - In other words: Did the change in performance pay cause a change in employee satisfaction?

These are different questions!

Further examples:

- Education and wages
 - The fact that more educated people earn more does not tell us that education causes higher earnings
- Gender diversity and performance
 - The fact that successful firms employ more women on boards does not tell us that a higher share of women causes a higher performance

Note:

- Answering the first (prediction) is typically substantially simpler than answering the second (causality)
- In the public debate (and also still in some fields in academia) these questions are often confounded
- We will start by thinking about the first question and then move to the second

The key idea of the following:

- Question: Why are regressions so important in empirical research?
- Answer:
 - Because they provide useful approximations to conditional expectation functions
 - And conditional expectation functions are a powerful tool to predict outcomes

But:

Without further ingredients they do not automatically detect causal relationships

1.1 The Conditional Expectation Function

- Think of X_i and Y_i as random variables (where X_i may be a vector)
- We are interested in the conditional expectation function (CEF) of Y_i given X_i in the population

$$E[Y_i|X_i]$$

- Useful interpretation:
 - Think of $E[Y_i|X_i]$ as a function stating the mean of Y_i among all people who share the same value(s) of X_i
- If Y_i is discrete and takes values out of a set T

$$E[Y_i|X_i = x] = \sum_{t \in T} \Pr(Y_i = t|X_i = x) \cdot t$$

where $Pr(Y_i = t | X_i = x)$ is the conditional probability that $Y_i = t$ when $X_i = x$

Distinguish:

- *Population:* Complete group of potential observations for our question (for example: all working age people living in Germany, all US firms, ...)
- A sample: the observations that we can use for our research
 - employees who take part in a survey study like the GSOEP or LPP
 - set of firms for which we have information on management practices
 - subjects taking part in an experiment
- We can estimate the population CEF from a representative sample
 - If we for instance observe pairs (Y_i, X_i) for i = 1, ..., n
 - We can estimate the conditional expectation of Y_i for a specific value of $X_i = x$ by taking the average of Y_i across observations with $X_i = x$

Example: The CEF of earnings as a function of years of education

Statistical Analyses using Python

There are several packages/modules in Python that can be used to perform statistical analyses

- NumPy is the underlying package for scientific computing
- Pandas: provides data structures
- Statsmodels or PyFixest: to perform regressions
- Seaborn: to visualize data with graphs
- In the beginning of our Python file we import these modules

```
import pandas as pd
import numpy as np
import pyfixest as pf
import seaborn as sns
```

We then call functions from these modules by something like

```
df = pd.read_csv(path_to_data)
(Here: call function read_csv from pandas)
```

Statistical Analyses using Python

Key concepts:

- DataFrame is a 2-dimensional data structure
 - Provided by Pandas
 - Like an Excel spreadsheet
 - Columns contain variables (example: age, wage)
 - Rows contain observations (example: different people)
 - The first column contains an index (a label for the row)
 - On the previous slide: df = pd.read_csv(path_to_data) reads a table
 from the file and stores it in a new DataFrame called df
- Missing data in a DataFrame is noted with value NaN
- A Series is like a list containing one variable (also has an index)

Printing Summary Statistics

- We typically start an analysis by looking at descriptive statistics
 - What are the means of the key variables?
 - What are their standard deviations?
 - How are specific variables correlated?
- To print summary statistics, use the describe() method
 - df.describe() prints summary statistics for all variables
 - df['varname'].describe() or df.varname.describe() prints summary
 statistics for variable varname
- Or we can directly compute the mean or standard deviation with df.varname.mean() and df.varname.std()
- We can also explore summary statistics for specific subgroups (rows)
 df.groupby('country').varname.describe()

Graphs in Python

- It is often useful to visualize data with graphs
- Particularly useful & easy to use: package Seaborn (import seaborn as sns)

Examples:

- sns.barplot(x='country', y='income', data=df)
 - Plots one bar for each realization of x with height equal to mean of y
 - Note: illustrates the estimated CEF for categorical variables
 - Adds confidence bands: from all samples that can be drawn, the confidence interval will contain the true population mean in 95% of the cases (more about this in chapter 3)
- sns.relplot(x='income', y='happiness', data=df)
 - Scatter plot where each dot is a data point
- sns.histplot(df['wage'])
 - Plots histogram of the variable
 - Note: df['x'] returns a series of all observations of variable x

Feedback Talks and Job Satisfaction

- Analyze data from the LPP, a matched employer-employee survey data set for Germany (see <u>Kampkötter et al. (2016)</u>) which combines
 - An establishment survey on HR practices
 - An employee survey on HR practices and attitudes
- We can access a campus file generated by IAB for teaching purposes that matches the two data sets for a subset of firms and employees
- Variables from the establishment survey start with a b, those from the employee survey with an m
- Files:
 - https://raw.githubusercontent.com/dsliwka/EEMP2024/refs/heads/m ain/Data/LPP-CF 1215 v1.csv (CSV format version of the data set)
 - https://github.com/dsliwka/EEMP2024/blob/main/Data/VariablesLab elsLPP.pdf (short English variable description)
 - http://doku.iab.de/fdz/reporte/2017/DR 09-17.pdf (detailed documentation; unfortunately only in German)

Feedback Talks and Job Satisfaction

- Create a new Colab notebook and import packages
 - import pandas as pd
 - import numpy as np
 - import seaborn as sns
- Read the data (subset of the data for teaching purposes) into a DataFrame
 - path_to_data = 'https://raw.githubusercontent.com/dsliwka/EEMP2024/refs/ heads/main/Data/LPP-CF 1215 v1.csv'
 - df = pd.read_csv(path_to_data)
- Inspect the data with describe
- Look at the employees' job satisfaction (for instance plot a histogram):
 - msat job gives you the job satisfaction stated in the survey
- What is the share of employees who have an annual feedback interview?
 - mmagespr is a dummy which has value 1 if the employee had a feedback interview with his/her boss last year.
- Save your notebook as LPPanalysis.ipynb

Feedback Talks and Job Satisfaction

- Let us use the LPP to study the association between the use of feedback interviews and employee engagement
- To estimate the CEF, simply compare the mean of job satisfaction between employees who had a feedback interview and those who didn't
 - msat job gives you the job satisfaction stated in the survey
 - mmagespr is a dummy variable which is equal to 1 if the employee had a feedback interview and 0 otherwise
 - Note: To do this, it is convenient to use the groupby method
 Syntax (adapt!): df.groupby(df.country).wage.describe()
- Visualize the CEF with a barplot
 Adapt: sns.barplot(x='country', y='income', data=df)
- Save the notebook

Two key results (for the proofs see Angrist/Pischke (2009, pp. 32-33)

Result: CEF Decomposition Property

We can decompose Y_i such that $Y_i = E[Y_i | X_i] + \varepsilon_i$

- (i) where ε_i is mean independent of X_i , that is $E\left[\varepsilon_i \middle| X_i\right] = 0$
- (ii) and therefore, ε_i is uncorrelated with any function of X_i
- Therefore: A random variable Y_i can be decomposed into a piece that is "explained by X_i " (the Conditional Expectation Function) and a piece that remains unexplained by any function of X_i
- In the example: We can decompose the wage of a person
 - in a piece that is "explained" by education (i.e. the CEF)
 - and piece that is left over
 - and this latter piece is uncorrelated with ("orthogonal to") any function of education

Result: CEF Prediction Property

Let $m(X_i)$ be any function of X_i . The CEF solves

$$E[Y_i|X_i] = \arg\min_{m(X_i)} E[(Y_i - m(X_i))^2]$$

so it is the best predictor of Y_i given X_i in the sense that it solves the minimum mean square error (MMSE) prediction problem.

- The CEF is a very useful predictor: If I observe other related variables and "plug them into the CEF", the value of the CEF comes close to the true value of the outcome variable
- We want a function (call it $m(X_i)$) that gives us a good prediction for Y_i $\widehat{Y}_i = m(X_i)$
- Important criterion: The distance between \widehat{Y}_i and Y_i should be small
- The result now states: When we use the quadratic distance $(Y_i m(X_i))^2$, then the CEF is the best function we can find

Therefore:

- The CEF provides a natural summary of empirical relationships
 - It gives the population average of Y_i for the group of people having the same X_i
 - It describes the best (MMSE) predictor of Y_i given X_i
 - It allows to decompose variance in the data (see appendix)
- If I know the CEF, I can make predictions which value Y_i would take for different values of X_i

(Note: in the population; not in the sense of a causal change in Y_i because of a change of X_i !)

But: What is connection between the CEF and regression analysis and machine learning?

 In the following: regressions and other machine learning algorithms are tools to approximate the CEF

1.2 Regression and Conditional Expectations

- Typically, we will not know the functional form of the CEF when Y is a continuous variable
- But we can try to approximate it
- Start with simple case of two variables and consider the linear function

$$Y_i = \beta_0 + \beta_1 X_i$$

• Now determine β_0 and β_1 such that

$$(\beta_0, \beta_1) = \arg\min_{b_0, b_1} E[(Y_i - b_0 - b_1 X_i)^2]$$

- Let us call this the *Population Regression Function (PRF)*
- Of all possible linear functions of X_i which one gives us the least (quadratic) deviation from Y_i in expected terms?

$$(\beta_0, \beta_1) = \underset{b_0, b_1}{\operatorname{argmin}} E[(Y_i - b_0 - b_1 X_i)^2]$$

First order conditions

$$E[2(Y_i - b_0 - b_1 X_i)] = 0$$

$$E[2(Y_i - b_0 - b_1 X_i)X_i] = 0$$

Hence,

$$b_0 = E[Y_i] - b_1 E[X_i]$$

$$b_1 E[X_i^2] = E[X_i Y_i] - b_0 E[X_i]$$

such that

$$b_1 = \frac{E[Y_i X_i]}{E[X_i^2]} - (E[Y_i] - b_1 E[X_i]) \frac{E[X_i]}{E[X_i^2]}$$

$$\Leftrightarrow b_1 = \frac{E[Y_i X_i] - E[Y_i] E[X_i]}{E[X_i^2] - (E[X_i])^2}$$

Hence, in the bivariate case

$$\beta_1 = \frac{E[Y_i X_i] - E[Y_i] E[X_i]}{E[X_i^2] - (E[X_i])^2} = \frac{Cov[Y_i, X_i]}{V[X_i]}$$

This is the population version of OLS regression for the bivariate case

We can do the same in the **multivariate case**

We can approximate the CEF with a multivariate linear function

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik}$$

• Proceeding analogously to the bivariate case, we obtain (then β and X_i are vectors)

$$\beta = E[X_i X_i']^{-1} E[X_i Y_i]$$

From a Sample to the Population

- So far, we spoke about whole populations but in reality, we (typically) do not know the population parameters
- We work with samples (subsets) of a population, but we want to say something about the population
- That is, we want to estimate the population parameters β using a sample
- And we want to have an idea how good these estimates are

We want to

- obtain the estimated coefficients $\hat{\beta}$
- and learn about the precision of these estimates

The Bivariate Case: We want to estimate the parameter $\beta_1 = \frac{Cov[Y_i,X_i]}{V[X_i]}$

- We have a sample of size N and thus observe (Y_i, X_i) for i = 1, ..., N
- We can estimate
 - $Cov[Y_i, X_i]$ by the sample covariance $\frac{1}{N} \sum_{i=1}^{N} (X_i \overline{X}) (Y_i \overline{Y})$
 - $V[X_i]$ by the sample variance $\frac{1}{N}\sum_{i=1}^{N}(X_i-\bar{X})^2$
- And this leads to the OLS estimator $\hat{\beta} = \frac{\frac{1}{N}\sum_{i=1}^{N}(X_i \bar{X})(Y_i \bar{Y})}{\frac{1}{N}\sum_{i=1}^{N}(X_i \bar{X})^2}$

Note:

Proceed in the same way in the multivariate case (not shown here)

OLS Regressions in Python: The PyFixest Package

- Several Python packages which you can use to estimate regression: (most prominent are Statsmodels and Linearmodels)
- We will use a new and very convenient package <u>PyFixest</u>
 - Install the latest version:

```
!pip install pyfixest -q
```

- This is a Python implementation of package <u>Fixest</u> in R. Hence, when switching to R, you will be able to use essentially the same syntax.
- Basic use: If you have a DataFrame df containing variables y, x1 and x2
 - To regress y (dependent variable) on x1 and x2 (indep. variables):

reg = pf.feols ('y
$$\sim$$
 x1 + x2', data=df)

– And show the results with one of:

```
reg.summary()
reg.tidy()
```

Multiple Regressions with PyFixest

• It is often much more convenient to display tables with different specifications side by side with etable:

```
reg1 = pf.feols('y \sim x1', data=df)
reg2 = pf.feols('y \sim x1 + x2', data=df)
pf.etable([reg1, reg2])
```

- feols has built-in *stepwise* functions with which you can quickly estimate multiple regressions in one line of code: sw, swo, csw, cswo ("o" is a zero)
 - regs = pf.feols('y \sim x1 + sw(x2, x3)', data=df) will directly run two regressions y \sim x1 + x2 and y \sim x1 + x3 and return their results
 - regs = pf.feols('y \sim x1 + swo(x2, x3)', data=df) will also include y \sim x1
 - regs = pf.feols('y \sim x1 + csw(x2, x3)', data=df) will do this cumulatively, i.e. regress y \sim x1 + x2 and y \sim x1 + x2 + x3
- You can display all regressions results with pf.etable (regs)

Generating New Variables

- New variables can be created by df['newvarname'] = ...
- You can also generate new variables and compute their value as a function of existing variables:

- A Boolean variable takes values True or False
 - A condition such as (x>5) returns the value True when it's true and False otherwise
- A Boolean variable can be used like a dummy variable, i.e. a variable which takes only values 0 and 1
- A dummy variable can thus be created using a condition
 - Hence, df['dummy'] = (df['X']==5)*1 creates a dummy variable (column) that takes value 1 if the variable X is equal to 5 and 0 otherwise

Study

Observational Data: Management Practices and Performance

Bloom and Van Reenen (2007), Bloom and Van Reenen (2012) study survey data

- Evaluate whether differences in the use management practices can explain productivity differences between firms
- Use an interview-based evaluation tool to assess 18 basic management practices
- Run the survey in many industries and countries
- Interviewers give a score from 1-5 on the 18 practices
- Compute a management score computed from the surveys
- Study the association between
 - the management score and
 - the financial success of the companies (e.g. sales, ROCE)

Management Practice Dimensions

(examples, see Bloom und Van Reenen (2010, p. 206))

- Introduction of modern manufacturing techniques
- Rationale for introduction of modern manufacturing techniques
- Performance tracking
- Performance dialogue
- Consequence management
- Target time horizon
- Targets are stretching
- Managing human capital
- Promoting high performers
- Attracting human capital

Association between Management Practices & Performance

- Use data from Bloom, Genakos, Sadun and Van Reenen. "Management Practices Across Firms and Countries." The Academy of Management Perspectives, 26, no. 1 (2012): 12-33.
- Start a new notebook (you can copy the first part with the imports and adapt from the previous exercise, but save it under a different name)
- Read the data into a DataFrame
 - path_to_data = 'https://raw.githubusercontent.com/dsliwka/EEMP2024/refs/heads/main /Data/AMP_Data.csv'
 - df = pd.read csv(path to data)
- The data set for instance contains variables management (the management score across practices) and financial KPI roce (=EBIT/Capital employed)
- Type df to show the DataFrame
- Inspect the data set

Association between Management Practices & Performance

- Inspect the data in more detail by plotting graphs, for instance use
 - sns.histplot(df.xvar) to plot a histogram of a variable xvar
 - sns.relplot(x='xvar', y='yvar', data=df) for a scatter plot
 - sns.regplot(x='xvar', y='yvar', data=df) for a scatter plot that includes a regression line
- Compare the management scores between different countries
 - Convenient to generate Dataframe with scores aggregated by country:
 dfagg = df.groupby('country').management.mean().reset_index()
 Note: reset_index() adds country as variable (otherwise it is the index)
 - Then you can sort this Dataframe with dfagg = dfa.sort_values()
 - And plot it with sns.barplot
 Note: Better use country as y variable and management as x

Association between Management Practices & Performance

- Now run a regression of roce as dependent variable on management
 - Recall the syntax (adapt!):
 - reg = pf.feols ('yvar ~ xvar1 + xvar2', data=df) etable(reg)
- In a second step, add the number of employees emp and the firm's capital ppent as control variables in a second regression and show them side-by-side
- Interpret your result
- Save your notebook as ManagementPractices to reuse it later

Python

Table Layout with PyFixest etable

- You can improve the layout of the regression table
- For instance, when you want to give your variables different names, you can create a dictionary with labels

- And then pass the dictionary to etable pf.etable([reg1,reg2], labels=labels)
- For more examples see
 https://py-econometrics.github.io/pyfixest/table-layout.html

1.3 Dummy Variables

When X_i is a single dummy variable that only takes value 0 or 1

• Then $E[Y_i|X_i=0]$ is a constant and $E[Y_i|X_i=1]$ is another constant and the CEF is fully characterized by these constants:

$$E[Y_i|X_i] = \underbrace{E[Y_i|X_i=0]}_{\beta_0} + X_i \underbrace{(E[Y_i|X_i=1] - E[Y_i|X_i=0])}_{\beta_1}$$

is a linear function of X_i

• When I have precise estimates of the PRF, I have a precise estimate of $E[Y_i|X_i]$

Note:

- The PRF exactly describes the CEF
- Linearity is not an assumption but a fact
- This is a very common data structure, for instance in an experiment: X_i indicates whether somebody is in the treatment instead of the control group

Regression & Conditional Expectation

- Open again the notebook LPPanalysis.ipynb
- Estimate a regression of job satisfaction on the mmagespr dummy
- Compare the constant term (intercept) and coefficient of mmagespr with the means for the two groups computed in the last exercise.
 What do you see?
- Inspect the robustness of the connection between job satisfaction and the use of appraisal interviews
- To do so, estimate a multivariate regression adding the following further explanatory variables (variable names in parentheses):
 - Age (alter)
 - Manager (dummy mleitung)
 - Temporary contract (dummy mbef)
 - Part time work (dummy maz voll teil)
 - Working from home (dummy mheim)
 - Training (dummy mwb)

Generate Dummy Variables

- Dummy variables are variables that take only values 1 or 0
- A simple way to generate a dummy variable is to use a Boolean expression df['old'] = (df.age>50)
 - This generates a Boolean variable which takes the value True when the condition holds and otherwise False
 - If you want a numerical dummy, just write df['old'] = (df.age>50)*1
 (It is common to use the numerical 0/1 coding)
- If you have a categorical variable (such as country) that contains multiple values you can also use the get dummies method in Pandas:
 - df = pd.get_dummies(df, columns=['country'])
 - This adds a dummy variable for each country and names the variables country Australia, country Brazil, ...

1.4 Interaction Terms

- Sometimes we expect that the conditional expectation function $E[Y_i|X_{i1},X_{i2}]$ is not additively separable such that it can sensibly be approximated by a population regression $Y_i=\alpha+\beta_1X_{i1}+\beta_2X_{i2}$
- Then we may want to allow for the possibility that the effect of X_{i1} depends on the value of X_{i2} , for instance
 - The effect of performance pay on job satisfaction may depend on gender
 - The effect of a training may depend on experience
- In experiments we might consider a setting in which X_{i1} is a treatment dummy and X_{i2} is a specific characteristic of a treated object and we may want to study heterogeneous treatment effects
- For instance, the object is a
 - person and the characteristic is the age, gender, or experience
 - firm and the characteristic is the size, industry, region, ...

• When expecting that the effect of X_{i1} depends on the size of X_{i2} , researchers typically estimate a regression

$$Y_i = \alpha + \beta_1 \cdot X_{i1} + \beta_2 \cdot X_{i2} + \beta_3 \cdot X_{i1} \cdot X_{i2} + \varepsilon_i$$

- We thus include an *interaction term* and approximate the CEF by a linear function from $\mathbb{R}^2 \to \mathbb{R}$
- Note: Never forget to include both variables as well as their interaction
- If we estimate a regression of this form, the effect of X_{i1} on Y_i is

$$\frac{\partial E[Y_i|X_{i1},X_{i2}]}{\partial X_{i1}} \approx \beta_1 + \beta_3 \cdot X_{i2}$$

• β_3 thus estimates the extent to which the effect of X_{i1} depends on X_{i2}

Python

Selecting Subsets of the Data

- Sometimes we want to use only a subset of the DataFrame, for instance if we want to run a regression only on a subset of the data
- Pandas has different methods for subset selection
- For instance, one could use the indexing operator [] to select columns
 - df['age'] gives back a series that contains only column age
 - df[['age', 'wage']] gives a DataFrame including only columns age & wage from the initial DataFrame df
- If we put a condition in the brackets, then rows are selected that satisfy this condition
 - df[df['age']>50] returns a DataFrame containing only rows
 (observations) where age is larger than 50
 - We can use & (for and) and | (for or):
 - df[(df['age']>50) | (df['age']<30)] returns a DataFrame that contains only observations where age<30 or >50

Python

Categorical Variables and Interaction Terms in Regressions

• For categorical variables, PyFixest can automatically generate dummy variables for each category with the C() operator:

```
pf.feols('Wage ~ age + C(Region)', data=df)
```

- Interaction terms can also be directly generated with *
 pf.feols('Wage ~ age * female', data=df)
- Note: when using *, feoIs also includes the two interacted variables separately
- Furthermore: You can use functions (from numpy) to transform variables directly in the regression equation

```
pf.feols('np.log(Wage) ~ age * female', data=df)
```

Note: the function np.log(x) computes the natural logarithm of x

Illustrate Patterns in Data

- When inspecting categorical variables, add a third dimension to a barplot: sns.barplot(x='country', y='income', hue='gender', data=df)
- When inspecting the connection between continuous and categorical variables, you can plot different regressions on top of each other, for instance to see how a relationship looks in subsamples defined by the categorical variable:

```
sns.regplot(x='xvar', y='yvar', data=df[df.year==2005])
sns.regplot(x='xvar', y='yvar', data=df[df.year==2008])
```

- regplot has further convenient options:
 - Instead of plotting each data point, you can create bins:
 x_bins=10 for instance specifies that not each observation is plotted as a dot but neighboring observations are averaged in bins (here 10)
 - You can turn off the scatter plot with scatter=False

Association between Management Practices & Performance

- Open your ManagementPractices notebook
- Research question: Is a management practice scoring that has been developed in one country is equally predictive for performance in a country with a different culture?
- Background: the B/vR scoring has been developed in Great Britain (GB)
- Your task: Find out whether the management score is equally predictive for ROCE in China as compared to GB
- First create a dummy variable China that indicates whether an observation is from China (inspect variable country)
- Then create a data frame that only includes data from GB and China:
 - Here it is convenient to use the x.isin(list) method that checks whether a variable (here x) is in a list (list) such as

Association between Management Practices & Performance

- Now work with the smaller dfn DataFrame you just created
- First compare the management score between China and Great Britain
- And regress roce on management using the smaller Dataframe
- Now add an interaction term between management and the China dummy
- Note: It is instructive to compare these two regressions with two further regressions (put all four in one table with etable)
 - only with Chinese data
 - only with the British data

Recall you can run a regression on a subset of the data with feols('y \sim x', data=df[df.colour=='blue'])

Interpret your results

1.5 Estimating Non-linear functions

- In some applications, we have reason to believe that the CEF is non-linear
- For instance, wages may first increase in age and then decrease
- Many applied researchers then start by estimating a quadratic function

$$Y_i = \alpha + \beta_1 \cdot X_i + \beta_2 \cdot X_i^2 + \varepsilon_i$$

- Hence, we approximate the CEF with a quadratic function
- This can also be useful when we suspect that the CEF is concave or convex
- But be careful when interpreting β_1 : this is no longer the slope parameter but

$$\frac{\partial E[Y_i|X_i]}{\partial X_i} \approx \beta_1 + \beta_2 \cdot 2X_i$$

• Sign of eta_2 estimates the sign of the second derivative of the function, as

$$\frac{\partial^2 E[Y_i|X_i]}{\partial X_i^2} \approx 2\beta_2$$

Age and Job Satisfaction

- Open again the notebook LPPanalysis.ipynb
- Generate a new variable alter2 which is alter2
 To do so you can either compute alter*alter or alter**2
- Now regress job satisfaction on alter and alter2
- How do you interpret the results?
- Hint: You can also graphically inspect the connection (but think about the interpretation first!) using

```
sns.regplot(y='msat_job', x='age', data=df, x_bins=10, order=2)
```

- x_bins specifies that not each observation is plotted as a dot but neighboring observations are averaged in bins (here 10)
- order=2 specifies that the regression plot fits a polynomial of order 2
 which estimates a parabola

Sometimes researchers replace the dependent variable with its logarithm

$$ln Y_i = \alpha + \beta \cdot X_i + \varepsilon_i$$

- Part of reason: Logs are less sensitive to outliers and may reduce heteroscedasticity (→ statistical tests)
- But also: logs sometimes lead to convenient interpretations
- When X_i is a dummy variable, our CEF is fully captured by a regression:

$$- ln Y_{i1} = \alpha + \beta + \varepsilon_i$$

$$- ln Y_{i0} = \alpha + \varepsilon_i$$

$$\beta = \ln Y_{i1} - \ln Y_{i0} = \ln \frac{Y_{i1}}{Y_{i0}}$$

$$\frac{Y_{i1}}{Y_{i0}} = \exp(\beta) \approx 1 + \beta$$

- \rightarrow The coefficient β is approximately equal to the percentage change in the outcome variable (approximation is okay for small enough β (like β < 0.2))
- \rightarrow The outcome is unaffected by the units in which Y_i is measured

Mean Squared Error and the Coefficient of Determination R²

- We can use our regression to make predictions (much more on this in chapter 6 on Machine Learning)
- To so we use our estimates to predict Y based on X
 - We can do so by computing the prediction $\hat{Y}_i = \alpha + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2}...$
 - This gives us an estimate of Y for specific values of $X_1, X_2, ...$
- Sometimes we are thus interested in the predictive power of our regression
- Useful starting point is often the mean squared error (MSE)
- That is, the average squared deviation between actual values of Y and predicted values \hat{Y}

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

Mean Squared Error and the Coefficient of Determination R²

The coefficient of determination R² is the proportion of the variance in the dependent variable that is predictable from the independent variables

$$R^{2} = 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} (Y_{i} - \hat{Y}_{i})^{2}}{\frac{1}{N} \sum_{i=1}^{N} (Y_{i} - \bar{Y})^{2}} = 1 - \frac{MSE}{V[Y]}$$

where $\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$ is the mean of the Y_i

- When the prediction is perfectly accurate the MSE=0 and $R^2=1$
- When it is completely inaccurate the best prediction is $\hat{Y}_i = \overline{Y}$ and then $R^2 = 0$
- Note: When the \mathbb{R}^2 is small, the regression...
 - \dots is likely not useful to make good predictions of Y
 - ... but can still (sometimes) be useful to estimate the impact of a specific variable provided that we estimate this impact precisely
 - This is what we look at in the next chapters

Summary:

- Regression provides the best linear predictor for the dependent variable;
 the CEF provides the best unrestricted predictor
- Even if the CEF is non-linear, regressions provide the best linear approximation
- A/P: This "lines up with our view of empirical work as an effort to describe essential features of statistical relationships without necessarily trying to pin them down exactly"
- Furthermore
 - Imposing linearity reduces complexity
 - A linear function is summarized in a few parameters that often have accessible interpretations
- But: there is danger of oversimplification
 - Other machine learning techniques allow to relax the assumption of linearity or specific functional forms
 - May allow to come closer to the true CEF in complex data