Distributed Multicell and **Multiantenna Precoding**

Characterization and Performance Evaluation

Emil Björnson and Björn Ottersten Randa Zakhour and David Gesbert

Content

- Multicell Precoding
 - Users served by multiple cooperating base stations
 - Goal: Control interference with full frequency reuse
 - Also known as:

Network MIMO, Coordinated Multipoint transmission (CoMP)

- Characterization of Optimal Precoding
 - Instantaneous/statistical channel information (CSI)
- Distributed Precoding Design
 - Motivation and performance evaluation

Intro: No Cooperation

- Non-Cooperative Multicell Downlink
 - Conventional single cell processing
 - Interference at cell edge users uncontrollable
 - Can be improved by coordinating interference

Intro: Full Cooperation

- Centralized Cooperative Multicell Downlink
 - Backhaul network and central station (CS)
 - Centralized processing as "one cell"
 - Capacity in [Yu06], [Weingarten06]
 (MIMO broadcast, special power constraints)

Intro: Four Main Approaches

Interference Channel

(Centralized)

Handle interference by beamforming, scheduling, interference alignment

Game Theory is useful

Network MIMO

(Centralized Precoding)

Mimic single-cell MIMO broadcast channel with centralized control

Available CSI

Local

Global

Interference Channel

(Distributed)

Iterative implementations of centralized approaches

Heuristic solutions

Network MIMO

(Distributed Precoding)

?

Considered in our paper

Local Global Available Data Messages

System Model

- K_t multi-antenna base stations
- K_r single-antenna user terminals
- h_{jk} channel vector from BS_j to MS_k

$$K_t = K_r = 2$$

General case in [Björnson2010]

Local CSI
(estimated on reverse links)

Multicell Precoding

- Symbol $s_k \in \mathcal{CN}(0,1)$ Intended for MS_k
 - Available at all transmitters
 - Enables cooperative multicell precoding

• Signal from BS_j: $\mathbf{x}_j = \sum_{k=1}^{K_r} \sqrt{p_{jk}} \mathbf{w}_{jk} s_k$

Power allocation $\sum_{k=1}^{K_r} p_{jk} \le P_j$

Beamformer (unit norm)

Multicell Precoding

- Symbol $s_k \in \mathcal{CN}(0,1)$ Intended for MS_k
 - Available at all transmitters
 - Enables cooperative multicell precoding

• Signal from BS_j:
$$\mathbf{x}_j = \sum\limits_{k=1}^{K_r} \sqrt{p_{jk}} \mathbf{w}_{jk} s_k$$

Power allocation $\sum_{k=1}^{K_r} p_{ik} \le P_j$

Beamformer (unit norm)

SINR at MS_k:

$$\begin{aligned} \text{SINR at MS}_k : & \frac{\left|\sum\limits_{j=1}^{K_t} \sqrt{p_{jk}} \mathbf{h}_{jk}^H \mathbf{w}_{jk}\right|^2}{\sum\limits_{\substack{\bar{k}=1\\\bar{k}\neq k}}^{K_r} \left|\sum\limits_{j=1}^{K_t} \sqrt{p_{j\bar{k}}} \mathbf{h}_{jk}^H \mathbf{w}_{j\bar{k}}\right|^2 + \sigma^2} \end{aligned} \\ & \text{(perfect synchronization)} \end{aligned}$$

Achievable Rate Region

- Precoding Design
 - ullet Feasible selection of \mathbf{w}_{jk} and p_{jk} for all j,k
- Rates: $R_k = \log_2(1 + SINR_k)$

- Pairs (R_1, R_2) achieved by some precoding design
- Upper boundary: Pareto boundary
- Rate Pairs (R_1, R_2) on Pareto Boundary
 - Cannot increase R_k without decreasing $R_{\overline{k}},\,\overline{k}
 eq k$
 - Maximizes some weighted sum rate
 - Non-constructive

Achievable Rate Region (2)

Example: Pareto Boundary

Large Potential Gain of Data Sharing!

Achievable Rate Region (3)

- How to Attain the Pareto Boundary?
 - Achieved for certain \mathbf{w}_{jk} and p_{jk}
 - Need strategy to find good ones!

Classical Beamforming Strategies:

• Maximum Ratio
$$\mathbf{w}_{jk}^{(\mathsf{MRT})} = \frac{\mathbf{h}_{jk}}{\|\mathbf{h}_{jk}\|}$$

• Zero-Forcing:
$$\mathbf{w}_{jk}^{(\mathsf{ZF})} = \frac{\Pi_{\mathbf{h}_{j\bar{k}}}^{\perp} \mathbf{h}_{jk}}{\|\Pi_{\mathbf{h}_{i\bar{k}}}^{\perp} \mathbf{h}_{jk}\|}$$

Only require local transmit-side CSI

Achievable Rate Region (4)

- What is Optimal Beamforming?
 - MRT "optimal" at low SNR
 - ZF "optimal" at high SNR

Theorem 1. Each (R_1, R_2) on Pareto boundary can be achieved using full power and

$$\mathbf{w}_{jk} = c_{jk}\mathbf{w}_{jk}^{(\mathsf{MRT})} + d_{jk}\mathbf{w}_{jk}^{(\mathsf{ZF})}, \text{ for some } c_{jk}, d_{jk} \in \mathbb{C}.$$

Generalization of [Jorswieck08]

- Conclusion:
 - ullet Beamformer in span of $\mathbf{w}_{jk}^{(\mathsf{MRT})}, \mathbf{w}_{jk}^{(\mathsf{ZF})}$ (local CSI)
 - ullet Precoding design means finding good c_{jk}, d_{jk}
 - Optimal solution requires global CSI

Distributed Precoding Design

- Local Precoding using Only Local CSI
 - Limited backhaul signaling and central processing
 - Cannot maximize any global performance measure
 - Only heuristic solutions possible
- Proposal 1: Maximize virtual SINR

$$\mathbf{w}_{jk}^{(\text{LVSINR})} = \mathop{\arg\max}_{\|\mathbf{w}\|=1} \frac{|\mathbf{h}_{jk}^H \mathbf{w}|^2}{\frac{\sigma^2}{p_{jk}} + \sum\limits_{ar{k} \neq k} |\mathbf{h}_{jar{k}}^H \mathbf{w}|^2}{\text{Interference}}$$

- Gives heuristic values on c_{jk}, d_{jk} (Rayleigh quotient)
- Used for interference channels in [Zakhour09]

Distributed Precoding Design (2)

Motivation: Layers of Interference Channels

Summation of Outputs from two Interference Channels

Distributed Precoding Design (3)

- Heuristic Power Allocation
 - More power allocated to strong users
- Proposal 2: Based on percentage of total gain

- More advanced power allocation in [Björnson10]
- Minor performance difference

Generalization: Statistical CSI

- Similar Analysis with Local Statistical CSI
 - Especially with spatial correlation

- Channel vectors not known exactly
- Depends on dominating eigendirections
- Distributed Precoding
 - Proposed scheme is extendable

Statistical Power in Different Directions

Generalization: Arbitrary Dim.

- Arbitrary number of BSs and MSs
 - Analyzed in [Björnson2010]
- Characterization of Pareto Boundary
 - Linear combination of MRT and multiple ZF vectors
- Distributed Precoding Design
 - Definition directly extendable
 - Simulations show that it works well

Numerical Example

- System Parameters
 - Uncorrelated channels: $\mathbf{h}_{jk} \in \mathcal{CN}(\mathbf{0}, \beta_{jk}\mathbf{I})$
 - Different average gains β_{jk} (path loss)

- Precoding Schemes
 - Optimal Beamforming and Power allocation
 - Maximum Ratio Transmission (MRT)
 - Zero-Forcing Beamforming (ZF)
 - Layered VSINR Beamforming (LVSINR)

Proposed Heuristic Power Allocation

Numerical Example (2)

- Average Performance in Multicell Area
 - Scenarios with uniformly distributed users
 - Cell edge SNR defined in the center

Parameters

4 BS, 4 MS 4 antennas/BS

Summary

- Interference Limits Multicell Performance
 - Managed by base station cooperation
 - Special case with data sharing and only local CSI

- Beamforming: Linear combination of MRT and ZF
- Generalization of results on interference channels
- Distributed Precoding Design
 - Proposal 1: Maximization of virtual SINRs
 - Proposal 2: Heuristic power allocation
 - Finds reasonable linear combination of MRT and ZF
 - Good performance using only local CSI

References

[Björnson10]

E. Björnson, R. Zakhour, D. Gesbert, and B. Ottersten, "Cooperative multicell precoding: Rate region characterization and distributed strategies with instantaneous and statistical strategies with instantaneous and statistical CSI," IEEE Trans. Signal Process., submitted for publication.

[Zakhour10]

R. Zakhour and D. Gesbert, "Distributed multicell-MIMO precoding using the layered virtual SINR framework," in IEEE Trans. Wireless Commun., submitted for publication.

Rician conditions and Different Levels of Cooperation

[Björnson09b]

E. Björnson and B. Ottersten, "On the Principles of Multicell Precoding with Centralized and Distributed Cooperation," in Proc. WCSP'09, 2009.

Best Paper Award.

References (2)

MISO Interference Channels

[Jorswieck08]

E. Jorswieck, E. Larsson, "Complete Characterization of the Pareto Boundary for the MISO Interference Channel," IEEE Trans. on Signal Processing, vol. 56, pp. 5292-5296, 2008.

OF TECHNOLOGY

[Zakhour09]

R. Zakhour and D. Gesbert, "Coordination on the MISO interference channel using the virtual SINR framework," in Proc. WSA'09, 2009.

Broadcast Channel Capacity

[Yu06]

W. Yu, "Uplink-downlink duality via minimax duality," IEEE Trans. Inf. Theory, vol. 52, pp. 361–374, 2006.

[Weingarten06]

H. Weingarten, Y. Steinberg, and S. Shamai, "The capacity region of the Gaussian multiple-input multiple-output broadcast channel," IEEE Trans. Inf. Theory, vol. 52, pp. 3936–3964, 2006.

Thank You for Listening! Questions?

Papers and Presentations Available:

http://www.ee.kth.se/~emilbjo