Math 164: HW 1

Wonjun Lee

July 2, 2019

1 Solution to Exercise 8.12

Let x^* be a minimizer of f. Define an open interval $I := (\frac{1}{\sqrt{3}} - \beta, \frac{1}{\sqrt{3}} + \beta)$ for some $\beta > 0$. Suppose $x^0 \in I$. We will show $x^k \to x^*$ if α satisfies the following:

$$0 < \alpha < \frac{2}{\max_{z \in I} f''(z)} \tag{1.1}$$

For the sake of contradiction, suppose $\alpha \leq 0$ or $\alpha \geq \frac{2}{\max_{z \in I} f''(z)}$. Then,

$$x^{k+1} = x^k - \alpha f'(x^k)$$

$$x^{k+1} - x^* = x^k - x^* - \alpha (f'(x^k) - f'(x^*))$$
 (By SONC, $f'(x^*) = 0$)

By the mean value theorem, we can find z between x^k and x^* such that $f'(x^k) - f'(x^*) = f''(z)(x^k - f^*)$. Thus,

$$x^{k+1} - x^* = x^k - x^* - \alpha f''(z)(x^k - x^*)$$

$$x^{k+1} - x^* = (1 - \alpha f''(z))(x^k - x^*)$$

$$\|x^{k+1} - x^*\| = \|(1 - \alpha f''(z))(x^k - x^*)\|$$

$$= |1 - \alpha f''(z)| \|x^k - x^*\|$$

$$= \cdots$$

$$= |1 - \alpha f''(z)|^{k+1} \|x^0 - x^*\|$$

Since $\alpha \leq 0$ or $\alpha \geq \frac{2}{\max_{z \in I} f''(z)}$,

$$|1 - \alpha f''(z)| \ge 1 \tag{1.2}$$

Thus,

$$||x^{k+1} - x^*|| \ge ||x^0 - x^*|| \tag{1.3}$$

for all k. This shows x^k cannot converge to x^* .

By the above claim, x^k converges to x^* if α satisfies (1.1). Now let's find $\max_{z \in I} f''(z)$.

$$\max_{z \in I} f''(z) = \max_{z \in I} 6z = 6\left(\frac{1}{\sqrt{3}} + \beta\right)$$
 (1.4)

Thus, the range of α is

$$0 < \alpha < 1 / 3 \left(\frac{1}{\sqrt{3}} + \beta \right) \tag{1.5}$$