第三节

第二章

惠阶导数

- 一、高阶导数的概念
- 二、高阶导数的运算法则

一、高阶导数的概念

引例: 变速直线运动 s = s(t)

速度
$$v = \frac{\mathrm{d}s}{\mathrm{d}t}$$
, 即 $v = s'$

加速度
$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(\frac{\mathrm{d}s}{\mathrm{d}t})$$

則
$$a = (s')'$$

定义. 若函数y = f(x) 的导数y' = f'(x) 可导, 则称

f'(x)的导数为f(x)的二阶导数,记作y''或 $\frac{d^2y}{dx^2}$,即

$$y'' = (y')' \quad \overrightarrow{\text{gl}} \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

类似地,二阶导数的导数称为三阶导数,依次类推,n-1 阶导数的导数称为 n 阶导数,分别记作

$$y''', y^{(4)}, \dots, y^{(n)}$$

或 $\frac{\mathrm{d}^3 y}{\mathrm{d} x^3}$, $\frac{\mathrm{d}^4 y}{\mathrm{d} x^4}$, ..., $\frac{\mathrm{d}^n y}{\mathrm{d} x^n}$

例1. 设 $y = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, 求 $y^{(n)}$.

$$y' = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$$
$$y'' = 2 \cdot 1a_2 + 3 \cdot 2a_3x + \dots + n(n-1)a_nx^{n-2}$$

依次类推,可得

$$y^{(n)} = n! a_n$$

思考: 设
$$y = x^{\mu}$$
 (μ 为任意常数), 问 $y^{(n)} = ?$
$$(x^{\mu})^{(n)} = \mu(\mu-1)(\mu-2)\cdots(\mu-n+1)x^{\mu-n}$$

例2. 设 $y = e^{ax}$, 求 $y^{(n)}$.

#:
$$y' = ae^{ax}, \quad y'' = a^2 e^{ax}, \quad y''' = a^3 e^{ax}, \cdots,$$

$$v^{(n)} = a^n e^{ax}$$

$$v' = -$$

特别有:
$$(e^x)^{(n)} = e^x$$

例3. 设
$$y = \ln(1+x)$$
, 求 $y^{(n)}$.

#:
$$y' = \frac{1}{1+x}$$
, $y'' = -\frac{1}{(1+x)^2}$, $y''' = (-1)^2 \frac{1 \cdot 2}{(1+x)^3}$,

...,
$$y^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$$
 规定 $0! = 1$

思考:
$$y = \ln(1-x)$$
, $y^{(n)} = -\frac{(n-1)!}{(1-x)^n}$

770/12 0 . 1

例4. 设 $y = \sin x$, 求 $y^{(n)}$.

##:
$$y' = \cos x = \sin(x + \frac{\pi}{2})$$

 $y'' = \cos(x + \frac{\pi}{2}) = \sin(x + \frac{\pi}{2} + \frac{\pi}{2})$
 $= \sin(x + 2 \cdot \frac{\pi}{2})$

$$y''' = \cos(x + 2 \cdot \frac{\pi}{2}) = \sin(x + 3 \cdot \frac{\pi}{2})$$

一般地,
$$(\sin x)^{(n)} = \sin(x + n \cdot \frac{\pi}{2})$$

类似可证:

$$(\cos x)^{(n)} = \cos(x + n \cdot \frac{\pi}{2})$$

例5.设 $y = e^{ax} \sin bx (a,b)$ 常数),求 $y^{(n)}$.

$$y' = ae^{ax} \sin bx + be^{ax} \cos bx$$

$$= e^{ax} (a \sin bx + b \cos bx)$$

$$= e^{ax} \sqrt{a^2 + b^2} \sin(bx + \varphi) \qquad (\varphi = \arctan \frac{b}{a})$$

$$y'' = \sqrt{a^2 + b^2} \left[ae^{ax} \sin(bx + \varphi) + be^{ax} \cos(bx + \varphi) \right]$$

$$= \sqrt{a^2 + b^2} e^{ax} \sqrt{a^2 + b^2} \sin(bx + 2\varphi)$$

• • • • • • • •

$$y^{(n)} = (a^2 + b^2)^{\frac{n}{2}} e^{ax} \sin(bx + n\varphi) \quad (\varphi = \arctan \frac{b}{a})$$

例6. 设 $f(x) = 3x^3 + x^2 |x|$, 求使 $f^{(n)}(0)$ 存在的最高

阶数
$$n = 2$$

分析: $f(x) = \begin{cases} 4x^3, & x \ge 0 \\ 2x^3, & x < 0 \end{cases}$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{2x^{3} - 0}{x} = 0$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{4x^{3} - 0}{x} = 0$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{4x^{3} - 0}{x} = 0$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{4x^{3} - 0}{x} = 0$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{4x^{3} - 0}{x} = 0$$

二、高阶导数的运算法则

设函数u = u(x) 及v = v(x) 都有 n 阶导数,则

1.
$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$

2.
$$(Cu)^{(n)} = Cu^{(n)}$$
 (C为常数)

3.
$$(u v)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v'' + \cdots + \frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v^{(k)} + \cdots + uv^{(n)}$$

莱布尼兹(Leibniz) 公式

例7. $y = x^2 e^{2x}$, 求 $y^{(20)}$.

解: 设
$$u = e^{2x}, v = x^2$$
, 则
$$u^{(k)} = 2^k e^{2x} \quad (k = 1, 2, \dots, 20)$$

$$v' = 2x, \quad v'' = 2,$$

$$v^{(k)} = 0 \quad (k = 3, \dots, 20)$$

代入莱布尼兹公式,得

$$y^{(20)} = 2^{20}e^{2x} \cdot x^2 + 20 \cdot 2^{19}e^{2x} \cdot 2x + \frac{20 \cdot 19}{2!} 2^{18}e^{2x} \cdot 2$$
$$= 2^{20}e^{2x} (x^2 + 20x + 95)$$

例8. 设 $y = \arctan x$, 求 $y^{(n)}(0)$.

令
$$x = 0$$
, 得 $y^{(n+1)}(0) = -n(n-1)y^{(n-1)}(0)$ $(n = 1, 2, \dots)$

由
$$y(0) = 0$$
,得 $y''(0) = 0$, $y^{(4)}(0) = 0$,…, $y^{(2m)}(0) = 0$

由
$$y'(0) = 1$$
, 得 $y^{(2m+1)}(0) = (-1)^m (2m)! y'(0)$

$$\exists \mathbb{P} \ y^{(n)}(0) = \begin{cases} 0, & n = 2m \\ (-1)^m (2m)!, & n = 2m + 1 \end{cases} (m = 0, 1, 2, \cdots)$$

内容小结

高阶导数的求法

- (1)逐阶求导法
- (2) 利用归纳法
- (3) 间接法 —— 利用已知的高阶导数公式

如,
$$\left(\frac{1}{a+x}\right)^{(n)} = (-1)^n \frac{n!}{(a+x)^{n+1}}$$

$$\left(\frac{1}{a-x}\right)^{(n)} = \frac{n!}{(a-x)^{n+1}}$$

(4) 利用莱布尼兹公式

思考与练习

1. 如何求下列函数的 n 阶导数?

$$(1) \quad y = \frac{1-x}{1+x}$$

$$y^{(n)} = 2(-1)^n \frac{n!}{(1+x)^{n+1}}$$

(2)
$$y = \frac{x^3}{1-x}$$

$$y^{(n)} = \frac{n!}{(1-x)^{n+1}}, \ n \ge 3$$

 $(3) y = \frac{1}{x^2 - 3x + 2}$

提示: 令
$$\frac{1}{(x-2)(x-1)} = \frac{A}{x-2} + \frac{B}{x-1}$$

$$A = (x-2) \cdot 原式 \Big|_{x=2} = 1$$

$$B = (x-1) \cdot 原式 \Big|_{x=1} = -1$$

$$\therefore y = \frac{1}{x-2} - \frac{1}{x-1}$$

$$y^{(n)} = (-1)^n n! \left[\frac{1}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right]$$

$$(4) \quad y = \sin^6 x + \cos^6 x$$

#:
$$y = (\sin^2 x)^3 + (\cos^2 x)^3$$

= $\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x$

$$= (\sin^2 x + \cos^2 x)^2 - 3\sin^2 x \cos^2 x$$

$$=1-\frac{3}{4}\sin^2 2x \qquad \qquad \sin^2 \alpha = \frac{1-\cos 2\alpha}{2}$$

$$=\frac{5}{8}+\frac{3}{8}\cos 4x$$

$$y^{(n)} = \frac{3}{8} \cdot 4^n \cos(4x + n\frac{\pi}{2})$$

|2. (填空题) (1) 设 $f(x) = (x^2 - 3x + 2)^n \cos \frac{\pi x^2}{16}$, 则

$$f^{(n)}(2) = n! \frac{\sqrt{2}}{2}$$

提示:
$$f(x) = (x-2)^n (x-1)^n \cos \frac{\pi x^2}{16}$$

$$f^{(n)}(x) = n! (x-1)^n \cos \frac{\pi x^2}{16} + \cdots$$

(2) 已知f(x) 任意阶可导,且 $f'(x) = [f(x)]^2$,则当

$$n \ge 2$$
 时 $f^{(n)}(x) = n! [f(x)]^{n+1}$

提示:
$$f''(x) = 2f(x)f'(x) = 2![f(x)]^3$$

$$f'''(x) = 2! \cdot 3[f(x)]^2 f'(x) = 3! [f(x)]^4$$

各项均含因

3. 试从
$$\frac{dx}{dy} = \frac{1}{y'}$$
 导出 $\frac{d^2 x}{dy^2} = -\frac{y''}{(y')^3}$.

$$\frac{d^2 x}{dy^2} = \frac{d}{dy} \left(\frac{dx}{dy} \right) = \frac{d}{dx} \left(\frac{1}{y'} \right) \cdot \frac{dx}{dy}$$

$$= -\frac{y''}{(y')^2} \cdot \frac{1}{y'} = -\frac{y''}{(y')^3}$$

同样可求 $\frac{d^3 x}{dy^3}$

作业

P97 97,101,104,110,113,115, 118

备用题

设
$$y = x^2 f(\sin x)$$
 求 y'' , 其中 f 二阶可导.

解:
$$y' = 2x \cdot f(\sin x) + x^2 \cdot f'(\sin x) \cdot \cos x$$

 $y'' = (2xf(\sin x))' + (x^2f'(\sin x)\cos x)'$
 $= 2f(\sin x) + 2x \cdot f'(\sin x) \cdot \cos x$
 $+ 2xf'(\sin x)\cos x + x^2f''(\sin x)\cos^2 x$
 $+ x^2f'(\sin x)(-\sin x)$
 $= 2f(\sin x) + (4x\cos x - x^2\sin x)f'(\sin x)$
 $+ x^2\cos^2 x f''(\sin x)$

