Introduction to Smooth Manifolds: Chapter #3

Chris Phelps

Problem 1

Suppose M and N are smooth manifolds with or without boundary, and $F:M\mapsto N$ is a smooth map. Show that $dF_p:T_pM\mapsto T_{F(p)}N$ is the zero map for each $p\in M$ if and only if F is constant on each component of M.

 \Longrightarrow

Assume dF_p is the zero map, let (U, ϕ) be a coordinate chart on M containing p and (V, ψ) be a coordinate chart on N containing F(p).

 $\phi^{-1}\circ F\circ \psi$ is a map from $\phi(U)\mapsto \phi(V)$ and $d(\phi^{-1}\circ F\circ \psi)=0$, so $\phi^{-1}\circ F\circ \psi$ is constant on $\phi^{-1}(U)$. Since ψ is a diffeomorphism this means $\phi^{-1}\circ F$ is and ϕ^{-1} is a diffeomorphism this means F is constant on $U\cap V$. Then we can use the fact that F is constant on every coordinate chart (U,ϕ) to determine that F is constant on M. By the gluing lemma, there is a unique smooth map that agree with this construction on all intersections of smooth charts, therefore it is the constant map.

 \Leftarrow

Assume F be constant and let $f \in C^{\infty}(N)$, then $dF_p(v)(f) = v(f \circ F)$. Note that $f \circ F$ is constant. Therefore by Lemma 3.4a, $v(f \circ F) = 0$. Since $dF_p(v)(f) = 0$ for all f, $dF_p(v) = 0$ for all $v \in T_pM$ and dF_p is the zero map.

Problem 2

Prove Proposition 3.14: Let M_1,\ldots,M_k be smooth manifolds, and for each j, let $\pi_j:M_1\times\ldots\times M_k\mapsto M_j$ be the projection onto the M_j factor. For any point $p=(p_1,\ldots,p_k)\in M_1\times\ldots\times M_k$, the map

$$\alpha: T_P(M_1 \times \ldots \times M_k) \mapsto T_{P_1}M_1 \oplus \ldots \oplus T_{p_k}M_k$$

defined by

$$\alpha(v) = (d(\pi_1)_p(v), \dots, d(\pi_k)_p(v))$$

is an isomorphism.

Problem 3

Prove that if M and N are smooth manifolds, then $T(M \times N)$ is diffeomorphic to $TM \times TN$.

Problem 4

Show that TS_1 is diffeomorphic to $S_1 \times \mathbb{R}$.

First, it is clear that $T\mathbb{S}^1=\mathbb{S}^1\times\mathbb{R}$ as a set. Will attempt to brute force this for learning porpoises.

Pick two points a,b in \mathbb{S}^1 and two coordinate charts $(U_\alpha,\phi_\alpha),(U_\beta,\phi_\beta)$ where $U_\alpha=\mathbb{S}^1\setminus b,U_\beta=\mathbb{S}^1\setminus a,\phi_\alpha(U_\alpha)=[-\pi,\pi),\phi_\beta(U_\beta)=[0,2\pi).$ It is clear that this is possible by taking the normal identification of \mathbb{S}^1 with the unit circle and letting a=(1,0),b=(-1,0). In addition, note that this choice satisfies the smooth manifold chart lemma.

Now take the standard $(\pi^{-1}(U_{\alpha}), \tilde{\phi_{\alpha}})$ coordinate maps. Then $\tilde{\phi}_{\alpha} \circ \tilde{\phi}_{\beta}^{-1}(x, v) = 0$

TODO: review and complete

Problem 5

Let $\mathbb{S}^1 \subset \mathbb{R}^2$ be the unit circle, and let $K \subset \mathbb{R}^2$ be the boundary of the square of side 2 centered at the origin. Show that there is a homeomorphism $F: \mathbb{R}^2 \mapsto \mathbb{R}^2$ such that $F(\mathbb{S}^1) = K$ but no diffeomorphism with the same property.

Note that
$$K=\{(x,y):\max|x|,|y|=1\}$$
. Let $G:\mathbb{R}^2\setminus 0\mapsto \mathbb{R}^2\setminus 0$ st $G(x,y)=\frac{x^2+y^2}{\max|x|,|y|}$ and let $F(x,y)=\begin{cases} (x\cdot G(x,y),y\cdot G(x,y)) & (x,y)\neq (0,0)\\ 0 & \text{otherwise} \end{cases}$ Then on the unit circle

$$F(x,y) = \begin{cases} \left(\frac{x}{|x|}, \frac{y}{|x|}\right) & |x| >= |y| \\ \left(\frac{x}{|y|}, \frac{y}{|y|}\right) & |x| < |y| \end{cases}$$

So that $F(\mathbb{S}^1)=K$. Proof that this is a homeomorphism is omitted, but basically divide plane on lines y=x and y=-x, it is a homeomorphism on each, and stitch back together. Then observe that $\lim_{x\to 0, y\to 0} F(x,y)=0$.

To show that there is no diffeomorpishm, consider a smooth curve $\gamma: J \mapsto \mathbb{S}^1$. Suppose that such a diffeomorphism F exists, and let $t_0 \in J$ s.t. $F(\gamma(t_0)) = (1,1)$.

we need a way to show that t < t0 is on one leg and t0 > j is on the other

Do the normal thing of identifying $\gamma \circ \iota = \gamma$.

Then $F \circ \gamma$ is a diffeomorphism so that $dF \circ d\gamma : TJ \to \mathbb{R}^2$. Taking a limit from $t < t_0$ and $t > t_0$ shows that this map cannot even be continuous.

TODO: review and complete

Problem 6

Consider \mathbb{S}^3 as the unit sphere in \mathbb{C}^2 under the usual identification. For each $z=(z^1,z^2)\in\mathbb{S}^3$, define a curve $\gamma_z:\mathbb{R}\mapsto\mathbb{S}^3$ by $\gamma_z=e^{it}z^1,e^{it}z^2)$. Show that γ_z is a smooth curve whose velocity is never zero.

Problem 7

Let M be a smooth manifold with or without boundary and p be a point of M. Let $C_p^\infty(M)$ denote the algebra of germs of smooth real-valued functions at p, and let \mathcal{D}_pM denote the vector space of derivations of $C_p^\infty(M)$. Define a map $\Phi:\mathcal{D}_pM\mapsto T_pM$ by $(\Phi v)f=v([f]_p)$. Show that Φ is an isomorphism.

Problem 8

Let M be a smooth manifold with or without boundary and $p \in M$. Let \mathcal{V}_pM denote the set of equivalence classes of smooth curves starting at p under the relation $\gamma_1 = \gamma_2$ if $(f \circ \gamma)'(0) = (f \circ \gamma_2)'(0)$ for every smooth real valued function f defined in a neighborhood of f. Show that the map $\Psi: \mathcal{V}_pM \mapsto T_pM$ defined by $\Psi[\gamma] = \gamma'(0)$ is well-defined and bijective.