TRIGONOMETRY

Review chapter 10, 11 and 12

Determine el ángulo y/o la razón trigonométrica que falta.

I.
$$sen30^{\circ}$$
. $csc_{30^{\circ}} = 1$

II.
$$\cos 50^{\circ} \sec 50^{\circ} = 1$$

Calcule las razones trigonométricas recíprocas, según corresponda.

$$\operatorname{sen}\alpha = \frac{a}{b}$$
 $\operatorname{csc}\alpha = \frac{b}{a}$

$$\cos \beta = \frac{m}{n}$$
 $\sec \beta = \frac{n}{m}$

$$\tan\theta = \frac{x}{y} \qquad \cot\theta = \frac{y}{x}$$

$$1. \cos \beta = \frac{3}{5} \qquad \qquad \sec \beta = \frac{5}{3}$$

II.
$$\tan\theta = \frac{9}{5}$$
 $\cot\theta = \frac{5}{9}$

III.
$$\csc\alpha = 3$$
 $\sec n\alpha = \frac{1}{3}$

Alessandro y Raúl tienen a y b años, respectivamente. Averigüe quién de los dos es el mayor si se cumplen las siguientes condiciones $sen(3a + 10)^{\circ} \cdot csc(4a - 7)^{\circ} = 1$ y $tan(5b - 6)^{\circ} \cdot cot(4b + 11)^{\circ} = 1$

Recordar:

$$sen\alpha. csc\alpha = 1$$

$$tan\alpha. cot\alpha = 1$$

sen(3a + 10)°·csc(4a - 7)° = 1

$$3a + 10 = 4a - 7$$

 $10 + 7 = 4a - 3a$
 $17 = a$

Edad de Alessandro = 17

: El mayor es Alessandro

Calcule M = $\frac{a+b}{c}$; si sen 2a = cos 70° tan b = cot 40° sec 42° = csc 4c

Recordar

 $sen\theta = cos\beta$

 $tan\theta = cot\beta$

$$sec\theta = csc\beta$$

Resolucións

$$2a+70^{\circ} = 90^{\circ}$$

 $2a = 20^{\circ}$
 $a = 10^{\circ}$

$$b+40^{\circ} = 90^{\circ}$$

 $b = 50^{\circ}$

$$42^{\circ}+4c = 90^{\circ}$$

 $4c = 48^{\circ}$
 $c = 12^{\circ}$

Piden:

$$M = \frac{a+b}{C} = \frac{10^{\circ} + 50^{\circ}}{12^{\circ}}$$

$$M = \frac{60^{\%}}{12^{\%}}$$

∴ M = 5

Calcule el valor de sec 2n, si $tan(25^{\circ} - 7m) = cot (2n + 7m + 35^{\circ})$

Recuerda que: Si $\theta + \beta = 90^{\circ}$

$$25^{\circ} - 7m + 2n + 7m + 35^{\circ} = 90^{\circ}$$

$$60^{\circ} + 2n = 90^{\circ}$$

$$2n = 30^{\circ} \qquad n = 15^{\circ}$$

Piden: $sec2n = sec2(15^{\circ}) = sec30^{\circ}$

$$\therefore \sec 2n = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

Si
$$\alpha + \beta = 90^{\circ}$$
, además
tan $\alpha = \frac{5}{7}$; efectúe:
P = 21cot β - 1

Recuerda que: $si \theta + \Phi = 90^{\circ}$

Resolución:

Como
$$\alpha + \beta = 90^{\circ}$$
 pero: $\tan \alpha = \frac{3}{7}$

tan
$$\alpha$$
 = cot β Luego: cot β = $\frac{5}{7}$

Piden:
$$P = 21\cot\beta - 1$$

$$P = 21\left(\frac{5}{7}\right) - 1$$

$$P = 15 - 1$$

∴ P = 14

Calcule el valor de P =
$$cot(4x + 5)^{\circ}$$
 si $sen(4x + 10^{\circ}).csc(3x + 20^{\circ}) = 1$

Resolución:

$$sen(4x + 10^{\circ}). csc(3x + 20^{\circ}) = 1$$

$$4x + 10^{\circ} = 3x + 20^{\circ}$$

$$4x - 3x = 20^{\circ} + 10^{\circ}$$

$$x = 10^{\circ}$$

Piden:

$$P = \cot(4x + 5)$$

$$P = \cot(4(10^{\circ}) + 5)$$

$$P = \cot(45^{\circ})$$

$$\therefore P = 1$$

Remember:

$$\operatorname{sen} \alpha \cdot \operatorname{csc} \alpha = 1$$

Remember:

$$\cos \theta \cdot \sec \theta = 1$$

Remember:

$$\tan \beta \cdot \cot \beta = 1$$

Calcule el valor de K = $sen(3\beta + 7^{\circ})$, si:

$$\tan(\beta + 20^{\circ}) = \cot(3\beta + 30^{\circ})$$

Resolución:

$$\tan(\beta + 20^{\circ}) = \cot(3\beta + 30^{\circ})$$

$$\beta + 20^{\circ} + 3\beta + 30^{\circ} = 90^{\circ}$$

Remember:

$$SI: \alpha + \beta = 90^{\circ}$$

$$sen \alpha = cos \beta$$

$$4\beta = 90^{\circ} - 50^{\circ}$$

$$\beta = 40^{\circ}$$

Reemplazamos:

$$sen(3\beta + 7^{\circ}) = sen(30^{\circ} + 7^{\circ})$$

$$\therefore \mathbf{sen}(37^\circ) = \frac{3}{5}$$

$$tan \alpha = cot \beta$$

Calcule el valor de φ si $sen7\varphi.sec20^{\circ} = 1$

Recordamos:

Complementarias

$$SI: \alpha + \beta = 90^{\circ}$$

$$sec \alpha = csc\beta$$

R.T Reciprocas

$$sen \beta \cdot csc \beta = 1$$

$$sen7\varphi$$
. $sec20^\circ = 1$

$$sen7\varphi$$
. $csc70^{\circ} = 1$

$$\phi = 70^{\circ}$$

$$\therefore \boldsymbol{\varphi} = \mathbf{10}^{\circ}$$

Calcule el valor de tan(x + y), si: $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1$ (a) $sec(2y + 16^{\circ}) = csc(y + 23^{\circ})$ (b)

Recordamos:

Complementarias

$$SI: \alpha + \beta = 90^{\circ}$$

 $sec(\alpha) = csc(\beta)$

R.T Reciprocas

 $tan\varphi.cot\varphi = 1$

En (a):
$$\tan(2x + 15^{\circ}) \cdot \cot(4x - 25^{\circ}) = 1$$

 $2x + 15^{\circ} = 4x - 25^{\circ}$
 $40^{\circ} = 2x$
 $x = 20^{\circ}$
En (b): $\sec(2y + 16^{\circ}) = \csc(y + 23^{\circ})$
 $2y + 16 + y + 23^{\circ} = 90^{\circ}$
 $3y = 90 - 39^{\circ}$
 $4y = 51^{\circ}$
 $4y = 17^{\circ}$

MUCHAS GRACIAS POR TU ATENCIÓN

¡Que la fuerza este contigo!

EL CAMINANTE SOBRE EL MAR DE NUBES David Caspar Friedrich