CB N°2 - Intégrales généralisées - Sujet 1

EXERCICE 1

Justifier que

$$\int_0^1 \ln(t) dt$$

converge et la calculer.

Soit $f: t \mapsto \ln(t)$.

f est continue sur]0,1], donc admet des primitives sur]0,1]. $t\mapsto t\ln(t)-t$ est l'une d'elles, et $\forall x \in]0,1], \int_x^1 \ln(t) dt = [t \ln(t) - t]_x^1 = -1 - x \ln(x) + x \text{ qui tend vers } -1 \text{ lorsque } x \text{ tend vers } 0.$

Donc par définition, $\int_0^1 \ln(t) dt$ converge et $\int_0^1 \ln(t) dt = -1$.

EXERCICE 2

Justifier que

$$\int_{0}^{+\infty} \sin^{2}(t) dt$$

diverge.

Soit $f: t \mapsto \sin^2(t)$.

f est continue sur $[0, +\infty[$, donc admet des primitives sur $[0, +\infty[$.

De plus, pour $t \ge 0$, $f(t) = \frac{1 - \cos(2t)}{2}$ donc une primitive de f sur $[0, +\infty[$ est $t \mapsto \frac{2t - \sin(2t)}{4}$, et $\forall x \in [0, +\infty[$, $\int_0^x \sin^2(t) dt = \left[\frac{2t - \sin(2t)}{4}\right]_0^x = \frac{2x - \sin(2x)}{4} \ge \frac{2x - 1}{4}$.

$$\forall x \in [0, +\infty[, \int_0^x \sin^2(t) dt] = \left[\frac{2t - \sin(2t)}{4}\right]_0^x = \frac{2x - \sin(2x)}{4} \ge \frac{2x - 1}{4}$$

Par minoration, $\lim_{x \to +\infty} \frac{2x - \sin(2x)}{4} = +\infty$ et donc par définition, $\int_0^{+\infty} \sin^2(t) dt$ diverge.

EXERCICE 3

1. Justifier, sans la calculer, la convergence de

$$\int_{1}^{+\infty} \frac{\operatorname{Arctan}(t)}{t^2} dt$$

Soit $f: t \mapsto \frac{\operatorname{Arctan}(t)}{t^2}$

f est continue donc localement intégrale sur $[1, +\infty[$, et positive sur cet intervalle; de plus $f(t) \underset{t \to +\infty}{\sim} \frac{\frac{\pi}{2}}{t^2}$, donc, comme $\int_1^{+\infty} \frac{1}{t^2} dt$ converge, on en déduit que $\int_1^{+\infty} \frac{\operatorname{Arctan}(t)}{t^2} dt$ converge.

2. Calculer alors

$$\int_{1}^{+\infty} \frac{\operatorname{Arctan}(t)}{t^2} dt$$

à l'aide d'une intégration par parties. On admettra que $\forall t \neq 0, \ \frac{1}{t(t^2+1)} = \frac{1}{t} - \frac{t}{t^2+1}$.

Soient $x \in [1, +\infty[$, $u: t \mapsto \operatorname{Arctan}(t) \text{ et } v: t \mapsto \frac{-1}{t}$. $u, v \text{ sont } C^1 \text{ sur } [1, x]$.

Par intégration par parties, on obtient :

Spé PT B

$$\begin{split} & \int_{1}^{x} \frac{\operatorname{Arctan}(t)}{t^{2}} \mathrm{d}t = \left[-\frac{\operatorname{Arctan}(t)}{t} \right]_{1}^{x} + \int_{1}^{x} \frac{1}{t(t^{2}+1)} \mathrm{d}t = \left[-\frac{\operatorname{Arctan}(t)}{t} \right]_{1}^{x} + \int_{1}^{x} \frac{1}{t} - \frac{t}{t^{2}+1} \mathrm{d}t \\ & = \left[-\frac{\operatorname{Arctan}(t)}{t} + \ln(t) - \frac{1}{2} \ln(1+t^{2}) \right]_{1}^{x} = \left[-\frac{\operatorname{Arctan}(t)}{t} + \ln \frac{t}{\sqrt{1+t^{2}}} \right]_{1}^{x} \\ & = -\frac{\operatorname{Arctan}(x)}{x} + \ln \frac{x}{\sqrt{1+x^{2}}} + \frac{\pi}{4} + \frac{1}{2} \ln(2). \end{split}$$

Enfin, en passant à la limite lorsque x tend vers $+\infty$, et sachant que $\frac{x}{\sqrt{1+x^2}} \sim 1$, on conclut que $\int_{1}^{+\infty} \frac{\operatorname{Arctan}(t)}{t^2} dt = \frac{\pi}{4} + \frac{1}{2} \ln(2).$

EXERCICE 4

Soit

$$I = \int_0^1 \frac{1 + t^2}{1 + t^4} dt$$

1. Justifier que I converge.

Soit $f: t \mapsto \frac{1+t^2}{1+t^4}$. f est continue sur le segment [0,1]. L'intégrale existe donc.

2. A l'aide du changement de variable $t = e^{-x}$, montrer, après l'avoir justifié soigneusement, que

$$I = \int_0^{+\infty} \frac{\operatorname{ch}(x)}{1 + 2\operatorname{sh}^2(x)} \mathrm{d}x$$

On rappelle que

$$\forall x \in \mathbb{R}, \quad \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2} \quad \text{et} \quad \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$$

On pose $t = e^{-x} = \varphi(x)$. φ est C^1 et bijective de $[0, +\infty[$ dans]0, 1].

On peut conclure, par le théorème du changement de variable, que I et $J = \int_{+\infty}^{0} \frac{1 + e^{-2x}}{1 + e^{-4x}} \left(-e^{-x}\right) dx$ sont de même nature à savoir convergentes, et par suite égales.

sont de même nature à savoir convergentes, et par suite égales. Comme
$$J=\int_0^{+\infty}\frac{\mathrm{e}^x+\mathrm{e}^{-x}}{\mathrm{e}^{2x}+\mathrm{e}^{-2x}}\mathrm{d}x=\int_0^{+\infty}\frac{\mathrm{ch}(x)}{1+2\,\mathrm{sh}^2(x)}\mathrm{d}x,$$
 on a donc bien

$$I = \int_0^{+\infty} \frac{\operatorname{ch}(x)}{1 + 2\operatorname{sh}^2(x)} dx$$

3. En déduire I.

On a
$$I = \int_0^{+\infty} \frac{\cosh(x)}{1 + 2\sinh^2(x)} dx = \frac{1}{\sqrt{2}} \int_0^{+\infty} \frac{\sqrt{2} \cosh(x)}{1 + (\sqrt{2} \sinh(x))^2} dx = \left[\operatorname{Arctan} \left(\sqrt{2} \sinh(x) \right) \right]_0^{+\infty} = \frac{\pi}{2\sqrt{2}}.$$

Spé PT B CB2 - 2018-2019

CB N°2 - Intégrales généralisées - Sujet 2

EXERCICE 1

Soit a > 0. Justifier que

$$\int_0^{+\infty} e^{-at} dt$$

converge et la calculer.

Soit $f: t \mapsto e^{-at}$.

f est continue sur $[0, +\infty[$, donc admet des primitives sur $[0, +\infty[$. $t \mapsto -\frac{1}{a}e^{-at}$ est l'une d'elles, et $\forall x \in [0, +\infty[, \int_0^x e^{-at} dt = \left[-\frac{1}{a}e^{-at}\right]_0^x = -\frac{1}{a}e^{-ax} + \frac{1}{a}$ qui tend vers $\frac{1}{a}$ lorsque x tend vers $+\infty$.

Donc par définition, $\int_{0}^{+\infty} e^{-at} dt$ converge et $\int_{0}^{+\infty} e^{-at} dt = \frac{1}{a}$.

EXERCICE 2

Justifier que

$$\int_0^{+\infty} \cos^2(t) dt$$

diverge.

Soit $f: t \mapsto \cos^2(t)$.

f est continue sur $[0, +\infty[$, donc admet des primitives sur $[0, +\infty[$.

De plus, pour $t \ge 0$, $f(t) = \frac{1 + \cos(2t)}{2}$ donc une primitive de f sur $[0, +\infty[$ est $t \mapsto \frac{2t + \sin(2t)}{4}$, et $\forall x \in [0, +\infty[$, $\int_0^x \cos^2(t) dt = \left[\frac{2t + \sin(2t)}{4}\right]_0^x = \frac{2x + \sin(2x)}{4} \ge \frac{2x - 1}{4}$.

$$\forall x \in [0, +\infty[, \int_0^x \cos^2(t) dt] = \left[\frac{2\tilde{t} + \sin(2t)}{4}\right]_0^x = \frac{2x + \sin(2x)}{4} \ge \frac{2x - 1}{4}$$

Par minoration, $\lim_{x\to\infty} \frac{2x+\sin(2x)}{4} = +\infty$ et donc par définition, $\int_0^{+\infty} \cos^2(t) dt$ diverge.

EXERCICE 3

1. Justifier, sans la calculer, la convergence de

$$\int_{1}^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) \mathrm{d}t$$

Soit $f: t \mapsto \ln\left(1 + \frac{1}{t^2}\right)$.

f est continue donc localement intégrable sur $[1, +\infty[$, et positive sur cet intervalle; de plus $f(t) \sim \frac{1}{t \to +\infty} \frac{1}{t^2}$, donc, comme $\int_1^{+\infty} \frac{1}{t^2} dt$ converge, on en déduit que $\int_1^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$

2. Calculer alors

$$\int_{1}^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) \mathrm{d}t$$

à l'aide d'une intégration par parties.

Soient $x \in [1, +\infty[$, $u: t \mapsto \ln\left(1 + \frac{1}{t^2}\right)$ et $v: t \mapsto t$. u, v sont C^1 sur [1, x].

Spé PT B CB2 - 2018-2019 Par intégration par parties, on obtient

$$\int_{1}^{x} \ln\left(1 + \frac{1}{t^{2}}\right) dt = \left[t \ln\left(1 + \frac{1}{t^{2}}\right)\right]_{1}^{x} - \int_{1}^{x} t \frac{-\frac{2}{t^{3}}}{1 + \frac{1}{t^{2}}} dt = \left[t \ln\left(1 + \frac{1}{t^{2}}\right)\right]_{1}^{x} + 2 \int_{1}^{x} \frac{1}{1 + t^{2}} dt$$

$$= \left[t \ln\left(1 + \frac{1}{t^{2}}\right) + 2\operatorname{Arctan}(t)\right]_{1}^{x} = x \ln\left(1 + \frac{1}{x^{2}}\right) + 2\operatorname{Arctan}(x) - \ln(2) - \frac{\pi}{2}.$$

Enfin, en passant à la limite lorsque x tend vers $+\infty$, et sachant que $x \ln \left(1 + \frac{1}{x^2}\right) \underset{x \to +\infty}{\sim} x \times \frac{1}{x^2} = \frac{1}{x}$, on conclut que $\int_{1}^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt = \frac{\pi}{2} - \ln(2)$.

EXERCICE 4

Soit

$$I = \int_{1}^{+\infty} \frac{1 + x^2}{1 + x^4} \mathrm{d}x$$

1. Justifier que I converge.

Soit
$$f: x \mapsto \frac{1+x^2}{1+x^4}$$
.

Soit $f: x \mapsto \frac{1+x^2}{1+x^4}$. f est continue donc localement intégrable sur $[1, +\infty[$, et positive sur cet intervalle;

de plus $f(x) \sim \frac{1}{x^2}$, donc, comme $\int_1^{+\infty} \frac{1}{t^2} dt$ converge, on en déduit que f est intégrable sur $[1, +\infty[$

2. A l'aide du changement de variable $x = e^t$, montrer, après l'avoir justifié soigneusement, que

$$I = \int_0^{+\infty} \frac{\operatorname{ch}(t)}{1 + 2\operatorname{sh}^2(t)} dt$$

On rappelle que

$$\forall t \in \mathbb{R}, \quad \operatorname{ch}(t) = \frac{e^t + e^{-t}}{2} \quad \text{et} \quad \operatorname{sh}(t) = \frac{e^t - e^{-t}}{2}$$

On pose $x = e^t = \varphi(t)$.

 φ est C^1 et bijective de $[0, +\infty[$ dans $[1, +\infty[$.

On peut conclure, par le théorème du changement de variable, que I et $J = \int_0^{+\infty} \frac{1 + e^{2t}}{1 + e^{4t}} (e^t) dt$ sont

de même nature à savoir convergentes, et par suite égales. Comme $J = \int_0^{+\infty} \frac{\mathrm{e}^t + \mathrm{e}^{-t}}{\mathrm{e}^{2t} + \mathrm{e}^{-2t}} \mathrm{d}t = \int_0^{+\infty} \frac{\mathrm{ch}(t)}{1 + 2 \, \mathrm{sh}^2(t)} \mathrm{d}t$, on a donc bien

$$I = \int_0^{+\infty} \frac{\operatorname{ch}(t)}{1 + 2\operatorname{sh}^2(t)} \mathrm{d}t$$

On a
$$I = \int_0^{+\infty} \frac{\operatorname{ch}(t)}{1 + 2\operatorname{sh}^2(t)} dt = \frac{1}{\sqrt{2}} \int_0^{+\infty} \frac{\sqrt{2}\operatorname{ch}(t)}{1 + \left(\sqrt{2}\operatorname{sh}(t)\right)^2} dt = \left[\operatorname{Arctan}\left(\sqrt{2}\operatorname{sh}\left(t\right)\right)\right]_0^{+\infty} = \frac{\pi}{2\sqrt{2}}.$$

Spé PT B CB2 - 2018-2019