Getting More from Summary Statistics in Online Experiments: Inference on a New Class of Sample Average Treatment Effects

Jasjeet Sekhon
joint work with Yotam Shem-Tov

UC Berkeley

October 26, 2017

Motivation

- ▶ With heterogeneity, the average treatment effect is *not* sufficient to evaluate the impacts of an intervention
- Going beyond the mean is difficult:
 - ► Rank tests and quantile regression have no clear interpretation ⇒ What is the estimand they identify?
 - Machine learning methods require complex computations
- ► We can gain efficiency by changing the estimand, even asymptotically

Potential Outcomes Framework

- ightharpoonup A fixed population of N units
- A binary treatment is randomly assigned
- Each unit has two potential outcomes:

$$(Y(1), Y(0)) \perp T \in \{0, 1\}$$

- ► The potential outcomes are fixed (not random variables)
- Let τ_i denote the treatment effect on unit *i*:

$$\tau_i = Y_i(1) - Y_i(0)$$

lacktriangleright T is the only random component in this data generating process

Potential estimands

The sample average treatment effect (SATE):

$$\mathsf{SATE} = \frac{1}{N} \cdot \sum_{i=1}^{N} \tau_i$$

The sample average treatment effect on the treated (SATT):

SATT =
$$\frac{1}{m} \cdot \sum_{i=1}^{N} \tau_i \cdot T_i$$
, where $m = \sum_{i=1}^{N} T_i$

The sample average treatment effect on the control (SATC):

$$\mathsf{SATC} = \frac{1}{N-m} \cdot \sum_{i=1}^{N} \tau_i \cdot (1 - T_i)$$

Efficiency gains in actual experiments

Figure: CI / PI length gains of SATT vs. SATE

What we do

- We generalize Robins (1988) results for non-binary outcomes
- We derive general variance formulas for inference on a new class of estimands:

$$\omega \cdot \text{SATT} + (1 - \omega) \cdot \text{SATC}$$

- ► Theoretical results (e.g., CLTs) on how to conduct non-parametric inference on a new and general class of estimands
- CI for SATE will not have correct coverage of SATT or SATC
- We provide inference for the estimand that can be estimated most accurately

Outline

1. Inference on SATE

2. Inference on **SATT** and a comparison to **SATE**

A new class of estimands: The Sample Average Treatment Effect Optimal (SATO)

4. Conclusions

Inference on SATE

▶ The variance of $\left(\hat{\bar{Y}}_1 - \hat{\bar{Y}}_0 - \mathsf{SATE}\right)$ is:

$$\underbrace{\frac{\sigma_0^2}{N(1-p)} + \frac{\sigma_1^2}{Np}}_{\text{Neyman's variance estimator}} - \frac{\sigma_\tau^2}{N}$$

- ▶ $p = \Pr(T = 1)$
- σ_0^2 variance of Y(0)
- $ightharpoonup \sigma_1^2$ variance of Y(1)
- σ_{τ}^2 variance of $Y(1) Y(0) \Rightarrow \sigma_{\tau}^2 = \sigma_0^2 + \sigma_1^2 2\sigma_1\sigma_0\rho$

$$\rho = \mathsf{Corr}\left(Y(1), Y(0)\right)$$

cannot be identified, and must be bounded

Inference on SATE is conservative

Inference on SATT (and SATC)

▶ The variance of $\left(\hat{\bar{Y}}_1 - \hat{\bar{Y}}_0 - \mathsf{SATT}\right)$ is:

$$\frac{1}{N \cdot (1-p) \cdot p} \cdot \sigma_0^2$$

- \Rightarrow Var $(ar{Y}_1 ar{Y}_0 extbf{SATT})$ is independent of ho
- ► Inference on SATT can be done using a consistent non-conservative variance estimator

Lemma (Decomposition of $\hat{ar{Y}}_1 - \hat{ar{Y}}_0$)

The difference-in-means can be decomposed to.

$$\frac{N}{m \cdot (N-m)} \cdot \sum_{i=1}^{N} Y_i(0) \cdot T_i - \frac{1}{N-m} \cdot \sum_{i=1}^{N} Y_i(0) + \textit{SATT}$$

Inference on SATT (and SATC)

▶ The variance of $\left(\hat{\bar{Y}}_1 - \hat{\bar{Y}}_0 - \mathsf{SATT}\right)$ is:

$$\frac{1}{N \cdot (1-p) \cdot p} \cdot \sigma_0^2$$

- \Rightarrow Var $(\bar{Y}_1 \bar{Y}_0 \textbf{SATT})$ is independent of ho
- ► Inference on SATT can be done using a consistent non-conservative variance estimator

Lemma (Decomposition of $\hat{\bar{Y}}_1 - \hat{\bar{Y}}_0$)

The difference-in-means can be decomposed to:

$$\frac{N}{m \cdot (N-m)} \cdot \sum_{i=1}^{N} Y_i(0) \cdot T_i - \frac{1}{N-m} \cdot \sum_{i=1}^{N} Y_i(0) + \textbf{SATT}$$

Change of estimand: Efficiency gains relative to the standard benchmark (Neyman's variance estimator)

Treatment probability:

◆ 0.2

◆ 0.5

● 0.8

The estimand that maximizes accuracy (SATO)

Sample Average Treatment Effect Optimal (SATO) is the estimand that maximizes accuracy given the difference-in-means test statistic:

$$\begin{aligned} \mathbf{SATO} &\equiv \omega^* \cdot \mathbf{SATT} + (1 - \omega^*) \cdot \mathbf{SATC} \\ s.t \\ \omega^* &= \operatorname*{argmin} \operatorname{Var} \left(\hat{\bar{Y}}_1 - \hat{\bar{Y}}_0 - \mathbf{SATO} \right) \end{aligned}$$

▶ The optimal ω weight is:

$$\omega^* = \frac{\left(\frac{\sigma_1}{\sigma_0}\right)^2 - \rho \cdot \frac{\sigma_1}{\sigma_0}}{\left(\frac{\sigma_1}{\sigma_0}\right)^2 + 1 - 2\rho\left(\frac{\sigma_1}{\sigma_0}\right)}$$

▶ Inference on SATO is generally *more* efficient than SATE

Optimal ω for different $\frac{\sigma_1}{\sigma_0}$ and ρ

Efficiency gains in actual experiments

Figure: Rejection rate

Conclusions

- We derive a unified framework for identifying and estimating average treatment effects
- ▶ Implementation requires *only* aggregate data (e.g., \bar{Y}_1 , $\hat{\sigma}_0^2$) \Rightarrow Ideal for online platforms that run thousands of experiments
- Combining these results with sequential testing
- ω^* is independent of p unlike **SATE** ($\omega = p$)
- ► SATE is equal to SATO under a constant treatment effect model

Additional slides

Monte Carlo simulations

1. Random coefficient data generating process:

$$Y_i(0) \sim N(\mu = 10, \ \sigma_0^2 = 1)$$

 $\tau_i \sim N(\mu = 0, \ \sigma_\tau^2)$
 $Y_i(1) = \tau_i + Y_i(1)$

2. Tobit data generating process:

$$Y(1) = \left\{ \begin{array}{ll} Y(0) + \tau, & Y(0) \geq 0 \\ Y(0), & Y(0) < 0 \end{array} \right. \quad \text{and} \quad \tau > 0$$

Inference on **SATE** relative to **SATT**:

- CI/PI length (efficiency)
- Coverage (Type-I error)

Figure: Coverage (Type-I error rate) of SATE and SATT when using a PI for SATT

Random coefficient

Tobit

Figure: Confidence Interval/Prediction Interval length

: Random coefficient

Tobit

Heterogeneity in estimated treatment effects

Figure: Confidence intervals for average treatment effects (using data from Tunca and Egeli, 1996)

Table: Example for when the SATT can substantially differ from the SATE

Unit	Y(1)	Y(0)
1	1	0
2	-1	0
3	-100	0
4	100	0

A comparison of SATE and SATT when ρ is *known*

Theorem

For all σ_0 and σ_1 such that $\sigma_0 < \sigma_1$:

1. There exists a threshold level of ρ , $\bar{\rho}$ such that:

$$\begin{split} \rho &\leq \bar{\rho} \Rightarrow \textit{Var}\left(\hat{\bar{Y}}_{1} - \hat{\bar{Y}}_{0} - \textit{SATE}\right) \leq \textit{Var}\left(\bar{Y}_{1} - \bar{Y}_{0} - \textit{SATT}\right) \\ \rho &> \bar{\rho} \Rightarrow \textit{Var}\left(\hat{\bar{Y}}_{1} - \hat{\bar{Y}}_{0} - \textit{SATE}\right) > \textit{Var}\left(\bar{Y}_{1} - \bar{Y}_{0} - \textit{SATT}\right) \end{split}$$

2. When $\frac{\sigma_1}{\sigma_0} > \sqrt{\frac{1-p^2}{(1-p)^2}}$ then, $\bar{\rho} < 0$.

We can empirically test whether $\bar{\rho}$ is negative:

$$H_0: \frac{\sigma_1}{\sigma_0} \le \sqrt{\frac{1-p^2}{(1-p)^2}},$$

 \Rightarrow if the null is rejected, then $\bar{\rho} < 0$

Estimating SATE vs. SATT when ρ is *unknown*

▶ The classic variance estimator for $Var(\bar{Y}_1 - \bar{Y}_0 - SATE)$ is:

$$\mathbb{V}_{\mathsf{Neyman}} = \frac{1}{m}\sigma_1^2 + \frac{1}{N-m}\sigma_0^2$$

▶ More efficient estimators exist by bounding ρ (e.g., Arronow et al., 2014)

Theorem

When $\sigma_1 \neq \sigma_0$, a prediction interval for either **SATT**or **SATC**will be shorter than a confidence interval for the **SATE**using V_{Neyman} .

► The gain in terms of interval length (in %) is:

$$1 - \frac{1}{\sqrt{\left(\frac{\sigma_1^2}{\sigma_0^2}(1-p) + p\right)}}$$

Estimating SATE vs. SATT when ρ is *unknown*

▶ The classic variance estimator for $Var(\bar{Y}_1 - \bar{Y}_0 - SATE)$ is:

$$\mathbb{V}_{\mathsf{Neyman}} = \frac{1}{m}\sigma_1^2 + \frac{1}{N-m}\sigma_0^2$$

▶ More efficient estimators exist by bounding ρ (e.g., Arronow et al., 2014)

Theorem

When $\sigma_1 \neq \sigma_0$, a prediction interval for either **SATT**or **SATC**will be shorter than a confidence interval for the **SATE**using V_{Neyman} .

► The gain in terms of interval length (in %) is:

$$1 - \frac{1}{\sqrt{\left(\frac{\sigma_1^2}{\sigma_0^2}(1-p) + p\right)}}$$