CURRENT VERSION OF THE CLAIMS

The following listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1-12. (Canceled)
- 13. (Original): A method of producing a polarizing plate, comprising:

dyeing a PVA film in a dye bath containing a dye selected from the group consisting of dichroic iodine and dichroic dyestuff, and crosslinking in at least two crosslinking baths containing a crosslinking agent while stretching the PVA film in the respective crosslinking steps, in which a stretch ratio in a first crosslinking bath is 1-4 and a stretch ratio in a second crosslinking bath is higher than the stretch ratio in the first bath;

the polarizing plate having

- a (single transmittance)/(crossed transmittance) > 600 when a wavelength is 440 nm;
- a (single transmittance)/(crossed transmittance) > 3000 when a wavelength is 550 nm; and
- a (single transmittance)/(crossed transmittance) > 11000 when a wavelength is 610 nm;

where single transmittance denotes optical transmittance of one polarizing plate and crossed transmittance denotes optical transmittance of two polarizing plates arranged so that the polarizing axes cross at right angles.

- 14. (Original): The method according to claim 13, wherein the crosslinking agent is boric acid.
- 15. (Original): The method according to claim 13, wherein a total stretch ratio for the PVA film ranges from 5 to 7.

16. (Original): The method according to claim 13, wherein the polarizing plate has

- a (parallel transmittance)/(crossed transmittance) > 700 when a wavelength is 440 nm;
- a (parallel transmittance)/(crossed transmittance) > 3000 when a wavelength is 550 nm; and

a (parallel transmittance)/(crossed transmittance) > 11000 when a wavelength is 610 nm; where parallel transmittance denotes optical transmittance of two polarizing plates arranged so that the polarizing axes become parallel to each other, and crossed transmittance denotes optical transmittance of two polarizing plates arranged so that the polarizing axes cross at right angles.

- 17. (Previously presented): The method according to claim 13, wherein a luminous corrected transmittance Y is at least 42.5% when a standard illuminant is a C light source having luminous factor correction per 10 nm in a range from 700 nm to 400 nm.
- 18. (Previously presented): The method according to claim 17, wherein the transmittance Y is at least 43.0% but not more than 44.0%.
- 19. (Original): The method according to claim 13, wherein the polarization degree is at least 99.98%.

20-23. (Canceled)

24. (Previously presented): A method of producing a polarizing plate, comprising:

dyeing a PVA film in a dye bath containing a dye selected from the group consisting of dichroic iodine and dichroic dyestuff, and crosslinking in at least one crosslinking bath containing a crosslinking agent while stretching the PVA film in respective crosslinking steps in which a stretch ratio in a first crosslinking step is 1-4 and a stretch ratio in a second crosslinking step is

Serial Number: 09/970,444 Group Art Unit: 2872

higher than the stretch ratio in the first crosslinking step;

the polarizing plate having:

- a (single transmittance)/(crossed transmittance) > 600 when a wavelength is 440 nm;
- a (single transmittance)/(crossed transmittance) > 3000 when a wavelength is 550 nm;
- a (single transmittance)/(crossed transmittance) > 11000 when a wavelength is 610 nm.
- 25-32. (Canceled)