Dr. Vasile Gradinaru

Dr. Adrian Montgomery Ruf

Serie 11

Best before: Di. 19.05. / Mi. 20.05, in den Übungsgruppen

Koordinatoren: Adrian Montgomery Ruf, HG G 54.1, adrian.ruf@sam.math.ethz.ch

Webpage: http://metaphor.ethz.ch/x/2020/fs/401-1662-10L/#exercises

1. Konditionszahl

Für $A \in \mathbb{R}^{m \times n}$, $m \ge n$, ist die Konditionszahl definiert durch

$$\operatorname{cond}(A) = \frac{\max_{\|x\|=1} \|Ax\|}{\min_{\|x\|=1} \|Ax\|}.$$

Sei A=QR die QR-Zerlegung von A mit $R=\begin{pmatrix} \tilde{R}\\0 \end{pmatrix}$. Zeigen Sie, dass für die zur euklidischen Norm gehörende Konditionszahl cond $_2$ gilt:

1.
$$\operatorname{cond}_2(A) = \operatorname{cond}_2(R) = \operatorname{cond}_2(\tilde{R}) \ge \frac{\max_{i=1,\dots,n} |r_{ii}|}{\min_{k=1,\dots,n} |r_{kk}|}$$

2.
$$\operatorname{cond}_2(A^T A) = \operatorname{cond}_2(A)^2$$

2. Zerlegung einer reellen Matrix

Gegeben seien $M \in \mathbb{R}^{n \times n}$ und eine Matrix $G \in \mathbb{R}^{m \times n}$, $m \le n$, die vollen Rang besitzt. Zeigen Sie:

- 1. Falls $v^T M v > 0$ für alle $v \neq 0$ mit G v = 0, so ist die Matrix $A = \begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix}$ invertierbar.
- 2. Falls M symmetrisch und positiv definit ist, existiert eine Zerlegung der Form

$$\begin{bmatrix} M & G^T \\ G & 0 \end{bmatrix} = \begin{bmatrix} L & 0 \\ GL^{-T} & R^T \end{bmatrix} \begin{bmatrix} I_n & 0 \\ 0 & -I_m \end{bmatrix} \begin{bmatrix} L^T & L^{-1}G^T \\ 0 & R \end{bmatrix}$$

Wieviele Operationen sind zur Lösung eines Gleichungssystems Ax = b mit einer derartigen Matrix nötig?

Hinweis: Cholesky-Zerlegung von M.

3. Radioaktiver Zerfall

In einem Gefäss befinden sich n verschiedene Elemente Z_1, \ldots, Z_n . Zum Zeitpunkt t sei $M_k(t)$ die Menge von Element Z_k . Die Elemente seien radioaktiv und die Zerfallsprodukte zerfallen selbst nicht weiter. Die Zerfallskonstanten $\lambda_1, \ldots, \lambda_n$ sind gegeben. Zu $m \ (m \ge n)$ Zeiten t_j erfolgt eine Messung der Aktivität $G(t_j)$.

Folgende physikalische Gesetze werden angenommen:

1. Zerfallsgesetz: $M_i(t) = M_i(0) \exp(-\lambda_i t), t \ge 0$

2. Gesamtaktivität:
$$G(t) = \sum_{i=1}^{n} G_i(t) = \sum_{i=1}^{n} \lambda_i M_i(t)$$

Formulieren Sie ein Ausgleichsproblem zur Bestimmung von $M_1(0), \ldots, M_n(0)$.

Wählen Sie verschiedene n, Stoffmengen $M_k(0) \in [100, 500]$ und Zerfallsraten $\lambda_k \in [10^{-2}, 10^{-1}]$. Berechnen Sie die exakte Gesamtaktivität für verschiedene Zeitpunkte t_i . Erstellen Sie künstliche Messdaten, indem Sie $G(t_i)$ mit einem Messfehler versehen, auch hier sollten Sie verschieden starke Messfehler ausprobieren. Lösen Sie das Ausgleichsproblem für die jeweils gewählten Parameter. Was beobachten Sie?

4. Die Normalengleichungen sind schlecht konditioniert

Wir betrachten die Matrix:

$$\mathbf{A} = \begin{pmatrix} 1 + \varepsilon & 1 \\ 1 - \varepsilon & 1 \\ \varepsilon & \varepsilon \end{pmatrix}. \tag{1}$$

In exakter Arithmetik ist die Normalengleichung:

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}x = \mathbf{A}^{\mathrm{T}}b\tag{2}$$

äquivalent zu

$$\mathbf{B}_{\alpha} \begin{pmatrix} \underline{r} \\ \underline{x} \end{pmatrix} := \begin{pmatrix} -\alpha \mathbf{I} & \mathbf{A} \\ \mathbf{A}^{\mathrm{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \underline{r} \\ \underline{x} \end{pmatrix} = \begin{pmatrix} \underline{b} \\ \underline{0} \end{pmatrix}. \tag{3}$$

Schreiben Sie ein Python-Skript, das die Kondition von \mathbf{A} , $\mathbf{A}^{\mathrm{T}}\mathbf{A}$, \mathbf{B}_{1} und \mathbf{B}_{α} mit $\alpha = \varepsilon \|\mathbf{A}\|_{2}/\sqrt{2}$ für $10^{-5} < \varepsilon < 1$ plottet. Das Python-Modul numpy.linalg hat eine Funktion cond.

Hinweis: Verwenden Sie das Template condi.py.