

what is lepton universality and what do we know about it?

Lars Kolk

23. Januar 2020

Fakultät Physik

Einführung

Lepton Universality in the Standard Modell

Lepton Universality Tests

The Electroweak Sector Pseudoscalar Mesons Meson Mixing

Beyond Standard Model: Leptoquarks

Conclusion

L. Kolk | 23. Januar 2020

Lepton Universality in the Standard Modell

Lepton Universality Tests

The Electroweak Secto Pseudoscalar Mesons

Reyond Standard Model: Lentoquark

Conclusion

- gauge theory
- $\blacksquare SU(3)_C \otimes SU(2)_L \otimes U(1)_y$

Standard Model of Elementary Particles

https://en.wikipedia.org/wiki/Standard Model

- gauge theory
- $\blacksquare SU(3)_C \otimes SU(2)_L \otimes U(1)_y$
 - strong interaction
 - EM interaction
 - weak interaction

Standard Model of Elementary Particles

¹https://en.wikipedia.org/wiki/Standard_Model

- gauge theory
- $SU(3)_C \otimes SU(2)_L \otimes U(1)_y$
 - strong interaction
 - FM interaction
 - weak interaction
- twelve elementary fermions
 - six quarks
 - six leptons
 - three generations

Standard Model of Elementary Particles

¹https://en.wikipedia.org/wiki/Standard_Model

- gauge theory
- $\blacksquare \; SU(3)_C \otimes SU(2)_L \otimes U(1)_y \overset{SSB}{\to} SU(3)_C \otimes U(1)_{\text{QED}}$
 - Masses generated
 - Higgs-Boson
- twelve elementary fermions
 - six quarks
 - six leptons
 - three generations

Standard Model of Elementary Particles

https://en.wikipedia.org/wiki/Standard_Model

Leptons in the Standard Model

Particle	Q / e	Mass $/\mathrm{MeV}$
electron (e) neutrino (ν_e)	-1 0	0.511 0
muon (μ) neutrino (ν_{μ})	-1 0	105.66 0
tau ($ au$) neutrino ($ u_{ au}$)	-1 0	1776.86 0

- Charged Currents (CC)
- lacksquare W^{\pm} -Boson interactions
 - left handed fermions
 - right handed anti-fermions
 - → violates C and P

- Neutral Currents (NC)
- Z-Boson, Photon
 - \blacksquare decays into $l\bar{l}$
 - \blacksquare never observed: $Z \to e^{\pm} \mu^{\mp}$

- Charged Currents (CC)
- $lackbox{W}^{\pm}$ -Boson interactions
 - left handed fermions
 - right handed anti-fermions
 - → violates C and P

- Neutral Currents (NC)
- Z-Boson, Photon
 - lacksquare decays into $lar{l}$
 - \blacksquare never observed: $Z \to e^{\pm} \mu^{\mp}$

- Charged Currents (CC)
- $lackbox{W}^{\pm}$ -Boson interactions
 - left handed fermions
 - right handed anti-fermions
 - → violates C and P

- Neutral Currents (NC)
- Z-Boson, Photon
 - lacksquare decays into $lar{l}$
 - $_{\blacksquare}$ never observed: $Z \rightarrow e^{\pm} \mu^{\mp}$

- Charged Currents (CC)
- \blacksquare W^{\pm} -Boson interactions
 - left handed fermions
 - right handed anti-fermions
 - → violates C and P

- Neutral Currents (NC)
- Z-Boson, Photon
 - lacksquare decays into $lar{l}$
 - lacksquare never observed: $Z
 ightarrow e^\pm \mu^\mp$

Charged Current

In the SM, the lagrangian for the charged current is ²

$$\mathcal{L}_{CC} = \frac{g_1}{2\sqrt{2}} \left\{ W^\dagger_\mu \left[\bar{u} \gamma^\mu (1-\gamma^5) d + \bar{\nu}_e \gamma^\mu (1-\gamma^5) e \right] \right\}$$

$$\blacksquare \ g_1 = \frac{e}{sin(\theta_W)}$$

■ independent of mass

²arXiv:hep-ph/0502010

Neutral Current

In the SM, the lagrangian for the neutral current is ³

$$\mathcal{L}_{\mathrm{NC}} = \frac{g_2}{2\sin\left(\theta_W\right)} Z_{\nu} \sum_{f} \bar{f} \gamma^{\mu} \left(\nu_f - a_f \gamma_5\right) f$$

- $\blacksquare \ g_2 = \frac{e}{cos(\theta_W)}$
- independent of mass

	u	d	ν_e	e
$2v_f$	$1 - \frac{8}{3}\sin^2\theta_W$	$-1 + \frac{4}{3}\sin^2\theta_W$	1	$-1 + 4\sin^2\theta_W$
$2 a_f$	1	-1	1	-1

³arXiv:hep-ph/0502010

Lepton Universality

- charged and neutral currents studied:
 - inpependent of mass
 - constant coupling to all leptons
- → lepton flavour does not matter

Lepton Universality in the Standard Modell

Lepton Universality Tests

The Electroweak Sector Pseudoscalar Mesons Meson Mixing

Beyond Standard Model: Leptoquarks

Conclusion

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements 4 5 :

⁵arXiv:hep-ex/0509008

⁵arXiv:1612.03016

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements 4 5 :

$$\frac{\Gamma_{Z\to\mu^+\mu^-}}{\Gamma_{Z\to e^+e^-}} = 1.0009 \pm 0.0028$$

⁵arXiv:hep-ex/0509008

⁵arXiv:1612.03016

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements 4 5 :

$$\frac{\Gamma_{Z\to\mu^+\mu^-}}{\Gamma_{Z\to e^+e^-}} = 1.0009 \pm 0.0028$$

$$\frac{\Gamma_{Z \to \tau^+ \tau^-}}{\Gamma_{Z \to e^+ e^-}} = 1.0019 \pm 0.0032$$

⁵arXiv:hep-ex/0509008

⁵arXiv:1612.03016

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements 4 5 :

$$\frac{\Gamma_{Z\to\mu^+\mu^-}}{\Gamma_{Z\to e^+e^-}} = 1.0009 \pm 0.0028$$

$$\frac{\Gamma_{Z\to\tau^+\tau^-}}{\Gamma_{Z\to e^+e^-}} = 1.0019 \pm 0.0032$$

$$\frac{\Gamma_{Z\to\mu^+\mu^-}}{\Gamma_{Z\to e^+e^-}} = 0.9974 \pm 0.0050$$

⁵arXiv:hep-ex/0509008

⁵arXiv:1612.03016

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements ⁶:

⁶arXiv:1302.3415

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements ⁶:

$$\frac{\Gamma_{W \to \tau^- \bar{\nu}_\tau}}{\Gamma_{W \to e^- \bar{\nu}_e}} = 1.063 \pm 0.027$$

⁶arXiv:1302.3415

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements ⁶:

$$\frac{\Gamma_{W \to \tau^- \bar{\nu}_\tau}}{\Gamma_{W \to e^- \bar{\nu}_e}} = 1.063 \pm 0.027$$

$$\frac{\Gamma_{W \to \tau^- \bar{\nu}_{\tau}}}{\Gamma_{W \to \mu^- \bar{\nu}_{\mu}}} = 1.070 \pm 0.026$$

⁶arXiv:1302.3415

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements ⁶:

$$\frac{\Gamma_{W \rightarrow \tau^- \bar{\nu}_\tau}}{\Gamma_{W \rightarrow e^- \bar{\nu}_e}} = 1.063 \pm 0.027$$

$$\frac{\Gamma_{W \to \tau^- \bar{\nu}_\tau}}{\Gamma_{W \to \mu^- \bar{\nu}_\mu}} = 1.070 \pm 0.026$$

$$\frac{2 \varGamma_{W \to \tau^- \bar{\nu}_\tau}}{\varGamma_{W \to \mu^- \bar{\nu}_\mu} + \varGamma_{W \to e^- \bar{\nu}_e}} = 1.066 \pm 0.025$$

⁶arXiv:1302.3415

- compare partial widths → ratios
 - no favoured flavour
 - → expect ratios near 1
- measurements ⁶:

$$\frac{\Gamma_{W \rightarrow \tau^- \bar{\nu}_\tau}}{\Gamma_{W \rightarrow e^- \bar{\nu}_e}} = 1.063 \pm 0.027$$

$$\frac{\Gamma_{W \to \tau^-\bar{\nu}_\tau}}{\Gamma_{W \to \mu^-\bar{\nu}_\mu}} = 1.070 \pm 0.026$$

$$\frac{2 \varGamma_{W \to \tau^- \bar{\nu}_\tau}}{\varGamma_{W \to \mu^- \bar{\nu}_\mu} + \varGamma_{W \to e^- \bar{\nu}_e}} = 1.066 \pm 0.025$$

 $\approx 2.3\sigma$ deviation!

⁶arXiv:1302.3415

- channels
 - \blacksquare τ_l
 - ${lue{T}_{\mathsf{had}}}$

- channels
 - $\blacksquare \tau_l$
 - $-\tau_{\rm had}$
- $lacktriangleq au_{
 m had}$ means a hadronically decaying tau-leptons
 - no visible jets
 - decay products form pions

- channels
 - $\blacksquare \tau_l$
 - $~=~\tau_{\rm had}$
- $lacktriangleq au_{
 m had}$ means a hadronically decaying tau-leptons
 - no visible jets
 - decay products form pions
- lacktriangleright $au_{\rm len}$ means leptonically decaying tau-leptons
 - two neutrinos ⇒difficult to reconstruct
 - \blacksquare only leptons (e, μ) visible

- channels
 - $= \tau_1$
 - $\tau_{\rm had}$
- \blacksquare au_{had} means a hadronically decaying tau-leptons
 - no visible jets
 - decay products form pions
- lacktriangleright $au_{\rm len}$ means leptonically decaying tau-leptons
 - two neutrinos >difficult to reconstruct
 - \blacksquare only leptons (e, μ) visible
- may be cause of deviation

Branching Ratios of the W^\pm -Boson

J. Phys. G34 (2007) 2457

LEP: 1.007 ± 0.019 Phys. Rept. 532 (2013) 119

LHCb: 1.020 ± 0.019

JHEP 10 (2016) 030

 $ATLAS: 0.997 \pm 0.010$

Eur. Phys. J. C77 (2017) 367

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

$${\rm B}(W^-\to e^-\;\overline{\nu}_e)\,/\,{\rm B}(W^-\to \mu^-\;\overline{\nu}_\mu)$$

- \blacksquare study decay of $\pi^$
 - lacksquare composed of d, \bar{u}
 - Spin 0

$$\left(\frac{\Gamma_{\pi^-\to e^-\bar{\nu}_e}}{\Gamma_{\pi^-\to \mu^-\bar{\nu}_\mu}}\right)^{SM} \neq 1$$

- \blacksquare study decay of $\pi^$
 - lacksquare composed of d, \bar{u}
 - Spin 0
 - → consider helicity

$$\left(\frac{\Gamma_{\pi^-\to e^-\bar{\nu}_e}}{\Gamma_{\pi^-\to \mu^-\bar{\nu}_u}}\right)^{SM} \neq 1$$

- \blacksquare study decay of $\pi^$
 - lacksquare composed of d, \bar{u}
 - Spin 0
 - → consider helicity

$$\left(\frac{\Gamma_{\pi^-\to e^-\bar{\nu}_e}}{\Gamma_{\pi^-\to \mu^-\bar{\nu}_\mu}}\right)^{SM} = \left(\frac{M_e}{M_\mu}\right)^2 \frac{M_\pi^2 - M_e^2}{M_\pi^2 - M_\mu^2} (1 + \delta_{\rm QED})$$

- \blacksquare study decay of $\pi^$
 - lacksquare composed of d, \bar{u}
 - Spin 0
 - → consider helicity

$$\begin{split} \left(\frac{\Gamma_{\pi^- \to e^- \bar{\nu}_e}}{\Gamma_{\pi^- \to \mu^- \bar{\nu}_\mu}}\right)^{SM} &= \left(\frac{M_e}{M_\mu}\right)^2 \frac{M_\pi^2 - M_e^2}{M_\pi^2 - M_\mu^2} (1 + \delta_{\rm QED}) \\ &= (1.2352 \pm 0.0001) \cdot 10^{-4} \end{split}$$

- \blacksquare study decay of $\pi^$
 - lacksquare composed of d, \bar{u}
 - Spin 0
 - → consider helicity

$$\begin{split} \left(\frac{\Gamma_{\pi^- \to e^- \bar{\nu}_e}}{\Gamma_{\pi^- \to \mu^- \bar{\nu}_\mu}}\right)^{SM} &= \left(\frac{M_e}{M_\mu}\right)^2 \frac{M_\pi^2 - M_e^2}{M_\pi^2 - M_\mu^2} (1 + \delta_{\rm QED}) \\ &= (1.2352 \pm 0.0001) \cdot 10^{-4} \end{split}$$

$$\begin{array}{c} {\color{red} \bullet } \;\; \frac{\Gamma_{\pi^- \to e^- \bar{\nu}_e}}{\Gamma_{\pi^- \to \mu^- \bar{\nu}_\mu}} = (1.230 \pm 0.004) \cdot 10^{-4} \end{array}$$

R_K and R_{K^\ast}

- lacksquare anomalies in $ar{B}^0
 ightarrow ar{H} l ar{l}$
 - $\blacksquare H = K, K^*$

R_K and R_{K^\ast}

lacksquare anomalies in $ar{B}^0
ightarrow ar{H} l ar{l}$

$$H = K, K^*$$

$$\begin{array}{c} \blacksquare R_K = \frac{\displaystyle \int_{q_{min}^2}^{q_{max}^2} \frac{\mathrm{d}\mathcal{B}[B \to H\mu^+\mu^-]}{\mathrm{d}q^2}}{\int_{q_{max}^2}^{q_{max}^2} \mathrm{d}\mathcal{B}[B \to He^+e^-]} \stackrel{!}{=} 1 \end{array}$$

⁷arXiv:1406.6482

R_K and R_{K^\ast}

- \blacksquare anomalies in $\bar{B}^0 \to \bar{H} l \bar{l}$
 - $H = K, K^*$

$$R_K = \frac{\int_{q^2_{min}}^{q^2_{max}} \frac{\mathrm{d}\mathcal{B}[B \to H\mu^+\mu^-]}{\mathrm{d}q^2}}{\int_{q^2}^{q^2_{max}} \frac{\mathrm{d}\mathcal{B}[B \to He^+e^-]}{\mathrm{d}q^2}} \stackrel{!}{=} 1$$

- LHCb ⁷:
 - $R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$
 - $R_{K^*} = 0.69^{+0.11}_{-0.07} \pm 0.005$

⁷arXiv:1406.6482

R_K and R_{K^\ast}

- anomalies in $\bar{B}^0 \to \bar{H} l \bar{l}$
 - $H = K, K^*$

$$R_K = \frac{\int_{q_{min}^2}^{q_{max}^2} \frac{\mathrm{d}\mathcal{B}[B \to H \mu^+ \mu^-]}{\mathrm{d}q^2}}{\int_{q_{max}^2}^{q_{max}^2} \frac{\mathrm{d}\mathcal{B}[B \to H e^+ e^-]}{\mathrm{d}q^2}} \stackrel{!}{=} 1$$

- LHCb ⁷:
 - $R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$
 - $R_{K^*} = 0.69_{-0.07}^{+0.11} \pm 0.005$
- Potential lepton flavour-violation (2.6σ)
- Leptoquarks may be the answer to this!

⁷arXiv:1406.6482

Lepton Universality in the Standard Modell

Lepton Universality Tests

The Electroweak Sector Pseudoscalar Mesons

Beyond Standard Model: Leptoquarks

Conclusion

- Theories: supersymmetry, grand unification
 - imply: scalars with colour and different quantum numbers
 - → Leptoquarks

Possible Leptoquarks and their quantum numbers⁸

Spin	3B+L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling
0	-2	$\bar{3}$	1	1/3	$\bar{q}_L^c \ell_L$ or $\bar{u}_R^c e_R$
0	-2	$\bar{3}$	1	4/3	$ar{d}_R^c e_R$
0	-2	$\bar{3}$	3	1/3	$ar{q}_L^c\ell_L$
1	-2	$\bar{3}$	2	5/6	$\bar{q}_L^c \gamma^\mu e_R$ or $\bar{d}_R^c \gamma^\mu \ell_L$
1	-2	$\bar{3}$	2	-1/6	$ar{u}_R^c \gamma^\mu \ell_L$
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
0	0	3	2	1/6	$\bar{d}_R\ell_L$
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$
1	0	3	1	5/3	$\bar{u}_R\gamma^\mu e_R$
1	0	3	3	2/3	$ar{q}_L \gamma^\mu \ell_L$

Beyond Standard Model: Leptoquarks

⁹Phys. Lett. B 191 (1987) 442

- Theories: supersymmetry, grand unification
 - imply: scalars with colour and different quantum numbers
 - → Leptoquarks
- Leptoquarks (LQs)

Possible Leptoquarks and their quantum numbers⁸

Spin	3B+L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling
0	-2	$\bar{3}$	1	1/3	$\bar{q}_L^c \ell_L$ or $\bar{u}_R^c e_R$
0	-2	$\bar{3}$	1	4/3	$ar{d}^c_R e_R$
0	-2	$\bar{3}$	3	1/3	$ar{q}_L^c\ell_L$
1	-2	$\bar{3}$	2	5/6	$\bar{q}_L^c \gamma^\mu e_R$ or $\bar{d}_R^c \gamma^\mu \ell_L$
1	-2	$\bar{3}$	2	-1/6	$\bar{u}_R^c \gamma^\mu \ell_L$
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
0	0	3	2	1/6	$ar{d}_R \ell_L$
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$
1	0	3	1	5/3	$ar{u}_R \gamma^\mu e_R$
1	0	3	3	2/3	$ar q_L \gamma^\mu \ell_L$

⁹Phys. Lett. B 191 (1987) 442

- Theories: supersymmetry, grand unification
 - imply: scalars with colour and different quantum numbers
 - → Leptoquarks
- Leptoquarks (LQs)
 - spin 0 or spin 1
 - lepton number (L) \neq 0
 - baryon number (B) \neq 0

Possible Leptoquarks and their quantum numbers⁸

Spin	3B+L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling
0	-2	$\bar{3}$	1	1/3	$\bar{q}_L^c \ell_L$ or $\bar{u}_R^c e_R$
0	-2	$\bar{3}$	1	4/3	$ar{d}_R^c e_R$
0	-2	$\bar{3}$	3	1/3	$ar{q}_L^c\ell_L$
1	-2	$\bar{3}$	2	5/6	$\bar{q}_L^c \gamma^\mu e_R$ or $\bar{d}_R^c \gamma^\mu \ell_L$
1	-2	$\bar{3}$	2	-1/6	$\bar{u}_R^c \gamma^\mu \ell_L$
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
0	0	3	2	1/6	$ar{d}_R \ell_L$
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$
1	0	3	1	5/3	$\bar{u}_R \gamma^\mu e_R$
1	0	3	3	2/3	$ar q_L \gamma^\mu \ell_L$

⁹Phys. Lett. B 191 (1987) 442

- Theories: supersymmetry, grand unification
 - imply: scalars with colour and different quantum numbers
 - → Leptoquarks
- Leptoquarks (LQs)
 - spin 0 or spin 1
 - lepton number (L) \neq 0
 - baryon number (B) \neq 0
 - \blacksquare mass $\mathcal{O}\left(TeV\right)$

Possible Leptoquarks and their quantum numbers⁸

Spin	3B+L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling
0	-2	$\bar{3}$	1	1/3	$\bar{q}_L^c \ell_L$ or $\bar{u}_R^c e_R$
0	-2	$\bar{3}$	1	4/3	$ar{d}_R^c e_R$
0	-2	$\bar{3}$	3	1/3	$ar{q}_L^c\ell_L$
1	-2	$\bar{3}$	2	5/6	$\bar{q}_L^c \gamma^\mu e_R$ or $\bar{d}_R^c \gamma^\mu \ell_L$
1	-2	$\bar{3}$	2	-1/6	$ar{u}_R^c \gamma^\mu \ell_L$
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
0	0	3	2	1/6	$\bar{d}_R\ell_L$
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$
1	0	3	1	5/3	$ar{u}_R \gamma^\mu e_R$
1	0	3	3	2/3	$ar q_L \gamma^\mu \ell_L$

⁹Phys. Lett. B 191 (1987) 442

- Theories: supersymmetry, grand unification
 - imply: scalars with colour and different quantum numbers
 - → Leptoquarks
- Leptoquarks (LQs)
 - spin 0 or spin 1
 - lepton number (L) \neq 0
 - baryon number (B) \neq 0
 - \blacksquare mass $\mathcal{O}\left(TeV\right)$
 - Three generations of LQs:
 - \blacksquare Generation X of LQs couples to Generation X of the SM $X \in \{1,2,3\}$

Possible Leptoquarks and their quantum numbers⁸

Spin	3B+L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling
0	-2	$\bar{3}$	1	1/3	$\bar{q}_L^c \ell_L$ or $\bar{u}_R^c e_R$
0	-2	$\bar{3}$	1	4/3	$ar{d}_R^c e_R$
0	-2	$\bar{3}$	3	1/3	$ar{q}_L^c\ell_L$
1	-2	$\bar{3}$	2	5/6	$\bar{q}_L^c \gamma^\mu e_R$ or $\bar{d}_R^c \gamma^\mu \ell_L$
1	-2	$\bar{3}$	2	-1/6	$\bar{u}_R^c \gamma^\mu \ell_L$
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
0	0	3	2	1/6	$ar{d}_R \ell_L$
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$
1	0	3	1	5/3	$\bar{u}_R \gamma^\mu e_R$
1	0	3	3	2/3	$ar q_L \gamma^\mu \ell_L$

⁹Phys. Lett. B 191 (1987) 442

- Theories: supersymmetry, grand unification
 - imply: scalars with colour and different quantum numbers
 - → Leptoquarks
- Leptoquarks (LQs)
 - spin 0 or spin 1
 - lepton number (L) \neq 0
 - baryon number (B) \neq 0
 - \blacksquare mass $\mathcal{O}\left(TeV\right)$
 - Three generations of LQs:
 - \blacksquare Generation X of LQs couples to Generation X of the SM $X \in \{1,2,3\}$
 - Coupling across generations possible

Possible Leptoquarks and their quantum numbers⁸

Spin	3B+L	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	Allowed coupling
0	-2	$\bar{3}$	1	1/3	$\bar{q}_L^c \ell_L$ or $\bar{u}_R^c e_R$
0	-2	$\bar{3}$	1	4/3	$ar{d}_R^c e_R$
0	-2	$\bar{3}$	3	1/3	$ar{q}_L^c\ell_L$
1	-2	$\bar{3}$	2	5/6	$\bar{q}_L^c \gamma^\mu e_R$ or $\bar{d}_R^c \gamma^\mu \ell_L$
1	-2	$\bar{3}$	2	-1/6	$ar{u}_R^c \gamma^\mu \ell_L$
0	0	3	2	7/6	$\bar{q}_L e_R$ or $\bar{u}_R \ell_L$
0	0	3	2	1/6	$\bar{d}_R\ell_L$
1	0	3	1	2/3	$\bar{q}_L \gamma^\mu \ell_L$ or $\bar{d}_R \gamma^\mu e_R$
1	0	3	1	5/3	$ar{u}_R \gamma^\mu e_R$
1	0	3	3	2/3	$ar{q}_L \gamma^\mu \ell_L$

⁹Phys. Lett. B 191 (1987) 442

How LQs can contribute to ${\cal R}_K$ and ${\cal R}_{K^*}$

 $\quad \blacksquare \ R_K < 1$

How LQs can contribute to ${\cal R}_K$ and ${\cal R}_{K^*}$

- $\blacksquare R_K < 1$
 - too many electrons
 - too few muons
 - combination of both?

How LQs can contribute to ${\cal R}_K$ and ${\cal R}_{K^*}$

- $R_K < 1$
 - too many electrons
 - too few muons
 - combination of both?
- LQs have toouple differently to different lepton generations

Lepton Universality in the Standard Model

Lepton Universality Tests

The Electroweak Sector Pseudoscalar Mesons

Beyond Standard Model: Leptoquarks

Conclusion

L Kolk | 23. Januar 2020 Conclusion 20 / 21

Conclusion

- Lepton Universality:
 - Interaction of gauge bosons and leptons is flavour-independent
- Most tests correspond to LU
- \blacksquare R_{K} and $R_{K^{*}} \mathpunct{:} 2.6\sigma$ deviaton
- $\hfill \blacksquare$ Leptoquarks may explain R_K and R_{K^*}