Интегральные суммы

Определение. Дробление отрезка [a,b] это разбиение отрезка на n частей следующим образом:

$$x_0 = a < x_1 < x_2 < \ldots < x_n = b \quad [x_{i-1}, x_i]$$

Определение. Ранг (мелкость) дробления — длина самого длинного из отрезков дробления:

$$\tau = \{x_0 \dots x_n\} \quad |\tau| = \max(x_i - x_{i-1})$$

Определение. Оснащение — множество точек $\{\xi_1 \dots \xi_n\} : \xi_i \in [x_{i-1}, x_i]$

Определение. Интегральная сумма для разбиения $\{x_i\}$, произвольной функции f и оснащения $\{\xi_i\}$ это следующая сумма:

$$\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1})$$

Геометрически интегральная сумма интерпретируема следующим образом:

Теорема 1. Об интеграле как пределе интегральных сумм. $f \in C[a,b]$

$$\forall arepsilon > 0 \; \exists \delta > 0 \; \forall$$
дробление $au = \{x_0 \dots x_n\} : | au| < \delta \; \forall$ оснащение $\xi_i = \left| \int_a^b f(x) dx - \sum_{i=1}^n f(\xi_i) (x_i - x_{i-1}) \right| < arepsilon$

Доказательство. По теореме Кантора о равномерной непрерывности на компакте. [a,b] — компакт, f непрерывна на [a,b] \Rightarrow f равномерно непрерывна на [a,b]:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, \overline{x} \in [a, b] : |x - \overline{x}| < \delta \ |f(x) - f(\overline{x})| < \varepsilon$$

По двойной бухгалтерии заменим ε на $\frac{\varepsilon}{b-a}$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, \overline{x} \in [a, b] : |x - \overline{x}| < \delta \quad |f(x) - f(\overline{x})| < \frac{\varepsilon}{b - a}$$

М3137у2019 Лекция 6

Разобьем интеграл на части:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \left(\int_{x_{i-1}}^{x_i} f(x)dx \right)$$

Запишем (x_i-x_{i-1}) в виде интеграла $\int_{x_{i-1}}^{x_i} dx$

$$\left| \int_{a}^{b} f(x)dx - \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \right| = \left| \sum_{i=1}^{n} \left(\int_{x_{i-1}}^{x_{i}} f(x)dx - f(\xi_{i}) \int_{x_{i-1}}^{x_{i}} dx \right) \right| =$$

$$= \left| \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} (f(x) - f(\xi_{i}))dx \right| \le \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_{i}} |(f(x) - f(\xi_{i}))dx| \le \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} \frac{\varepsilon}{b - a} dx =$$

$$= \frac{\varepsilon}{b - a} \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} dx = \frac{\varepsilon}{b - a} \sum_{i=1}^{n} (x_{i} - x_{i-1}) = \frac{\varepsilon}{b - a} (b - a) = \varepsilon$$

Примечание. $f \in C^1[a,b]; M := \max_{x \in [a,b]} |f'(x)|$

$$|f(x) - f(\overline{x})| = |f'(\overline{x})(x - \overline{x})| \le M|x - \overline{x}|$$

Следствие. Равномерное дробление: $x_i = a + \frac{b-a}{n}i; | au| = \frac{b-a}{n}$

$$\int -\sum \leq M(b-a)^2 \frac{1}{n}$$

Теорема 2. Об интегральных суммах центральных прямоугольников

 $f \in C^2[a,b]$ $x_0 = a < x_1 \ldots < x_n = b$ $\delta = \max(x_i - x_{i-1})$ $\xi_i := rac{x_{i-1} + x_i}{2}$. Тогда

$$\left| \int_{a}^{b} f - \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) \right| \le \frac{\delta^{2}}{8} \int_{a}^{b} |f''| dx$$

Доказательство.

$$\int_{x_{i-1}}^{x_i} f(x)dx = \int_{x_{i-1}}^{\xi_i} f(x)dx + \int_{\xi_i}^{x_i} f(x)dx = \int_{x_{i-1}}^{\xi_i} f(x)d(x - x_{i-1}) + \int_{\xi_i}^{x_i} f(x)d(x - x_i) =$$

$$= f(x)(x - x_{i-1})|_{x = x_{i-1}}^{x = \xi_i} - \int_{x_{i-1}}^{\xi_i} f'(x)(x - x_{i-1})dx + f(x)(x - x_{i-1})|_{x = \xi_i}^{x = x_i}$$

M3137y2019 Лекция 6