

Winning Space Race with Data Science

<Jorlina Panoti> <03/18/2023>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

□ Methodologies

- Data were collected by Space X API (get request) and Wikipedia (Web scraping)
- Eda Analysis is done using SQL, Visualization using Pandas, Matplotlib, Interactive visual Analytics(Folium and Plotly dashboard).
- Machine Learning for building models.

□Summary of Results

- The success rate of the Falcon 9 rocket launches is associated with the launch sites, payload mass, orbit type and year of launch.
- Visualization were great for decision making
- We gained the optimal model using the decision tree.

Introduction

□ Project background and context

- The purpose is to predict if the Falcon 9 rocket first stage will land successfully
- The Falcon 9 rocket launches is estimated to be about 62 million dollars which is cheaper than other providers due to SpaceX ability to reuse the first stage
- We will determine if the first stage will land, and this will help to determine the cost of the launches.

☐ Problems you want to find answers

- Will the rocket land successfully?
- What factors are associated with the success rate of Falcon 9 rocket launches?
- What is the accuracy of successful landing?

Methodology

Executive Summary

Data collection methodology:

Rest API (https://api.spacexdata.com/v4/launches/past)

Web scraping

Perform data wrangling

The data was transformed

Perform exploratory data analysis (EDA) using visualization and SQL

Perform interactive visual analytics using Folium and Plotly Dash

Perform predictive analysis using classification models

Data Collection- SpaceX API

SpaceX launch data is gathered from an API -The SpaceX REST.(https://api.spacexdata.com/v4/launches/past)

o I collected data with an API Call

```
spacex_url="https://api.spacexdata.com/v4/launches/past"

response = requests.get(spacex_url)
```

Converted to a data frame with JSON

Convert the data to a CSV file(data_falcon9.to_csv('dataset_part_1.csv', index=False))

Data Collection – SpaceX API

• The GitHub URL of the completed SpaceX API calls notebook

(Applied-Data-Science-Capstone/data collection api.ipynb at main · Jorlina1/Applied-Data-Science-Capstone (github.com))

Data Collection - Scraping

Created a BeautifulSoup object from the HTML response

Extracted all column/variable names from the HTML table header

Created a data frame by parsing the launch HTML tables

1.Created an empty dictionary

launch_dict= dict.fromkeys(column_names)

- 2.Filled up the launch_dict with launch records extracted from table rows.
- 3. Converted it to a Pandas dataframe
- 4.. Export it to a CSV file

df.to_csv('spacex_web_scraped.csv', index=False)

<u>Applied-Data-Science-Capstone/webscraping.ipynb at main ·</u> <u>Jorlina1/Applied-Data-Science-Capstone (github.com)</u>

```
# Use BeautifulSoup() to create a BeautifulSoup object from a response text content
soup = BeautifulSoup(response.text)

print(column_names)
['Flight No.', 'Date and time ( )', 'Launch site', 'Payload', 'Payload mass', 'Orbit', 'Customer', 'Launch outcome']
```

df=pd.DataFrame(launch_dict)

	Flight No.	Launch	Payload	Payload mass	048	Customer	Leunch outcome	Version Booster	Booster landing	Date	Time
9	1	CEAFS	Oragon Spacecraft Qualification Unit	0	UEO	SpeceX	Suxmin	F9 v1.080003.1	Fallure	4 June 2010	1845
1	2	COAFS	Dragon	0	tto	NASA	Success	F9-y1.080004.1	falun	8 December 2010	
1	3	COAFS	Diagon	525 kg	(90)	NASA	Success	F9 V1.080005.1	No attemption	22 May 2012	D/AI
3	4	CCAFS	SpanalX CRS-1	4,700 kg	150	NASA	Successyn	F9 v1.080006.1	No attempt	8 October 2012	0035
4	- 3	CCAFS	SpaceK CRS-2	4,877 kg	180	NASA	Succesive	19 v1.0000011	No attemption	1 March 2013	15:10
	- 3	- 3		-	-	9	-		-		
114	117	00345	Statisk	15.600 kg	180	SpaceX	Successor	65 8581051.10	Sucress	9 May 2021	0042
117	118	KSC.	Stafink	~14,000 kg	180	Specifi	Succession	79 8581058.8	Success	15 May 2021	22.56
118	119	0095	Safek	13,600 kg	uto.	Spacelt	Successor	19 85810612	Successi	26 May 2021	18.59
119	120	XSC	SpaceX CRS-22	3,328 kg	UEO	NASA.	Successiva	F9 8581067.1	Success	3 June 2021	17.29
120	121	(0395	5064	7,000 kg	670	Strug XM	Successor	19.85	Sucress	6 June 2021	0426

Data Wrangling

• Identified numerical or categorical columns and calculated the percentage

of the missing values.

int64	
object	
object	
float64	
object	
object	
object	
int64	
bool	
bool	
bool	
object	
float64	
int64	
object	
float64	
float64	
	object object float64 object object int64 bool bool bool object float64 int64 object

FlightNumber	0.000
Date	0.000
BoosterVersion	0.000
PayloadMass	0.000
Orbit	0.000
LaunchSite	0.000
Outcome	0.000
Flights	0.000
GridFins	0.000
Reused	0.000
Legs	0.000
LandingPad	40.625
Block	0.000
ReusedCount	0.000
Serial	0.000
Longitude	0.000
Latitude	0.000
dtype: float64	

df.isnull().sum()/df.count()*100

Data Wrangling

- The number of launches on each site
- The number and occurrence of each orbit
- The number and occurrence of mission outcome per orbit type

```
df['LaunchSite'].value_counts()

CCAFS SLC 40 55

KSC LC 39A 22

VAFB SLC 4E 13

Name: LaunchSite, dtype: int64
```

```
landing outcomes=df['Outcome'].value counts()
df['Orbit'].value_counts()
                                                  landing outcomes
GTO
ISS
            21
                                                  True ASDS
            14
VLEO
PO
                                                  True RTLS
LEO
                                                  False ASDS
SSO
MEO
                                                  True Ocean
ES-L1
                                                  False Ocean
HEO
SO
                                                  False RTLS
                                                  Name: Outcome, dtype: int64
Name: Orbit, dtype: int64
```

 Applied-Data-Science-Capstone/data wrangling eda.ipynb at main · Jorlina1/Applied-Data-Science-Capstone (github.com)

EDA with Data Visualization

• The increase of Flight Number comes with the increase of success rate in launch sites

• The increase of Pay load Mass comes with the increase of success rate in Launch Sites

EDA with Data Visualization

• The relationship between success rate of each orbit type.(SO has no success rate and ESL-1,GEO,HEO and SSO has a success rate of 100%)

No relationship between Flight Number and Orbit type

EDA with Data Visualization

The relationship between Payload and Orbit type

• The launch success yearly trend (the success rate since 2013 kept increasing till 2020)

EDA with SQL

- The names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

	Launch_Site
	CCAFS LC-40
	VAFB SLC-4E
	KSC LC-39A
(CAFS SLC-40

- The total payload mass carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version F9 v1.1

Average 2534.666666666665

sum

45596

EDA with SQL

• The date of the first successful landing outcome in ground

01-03-2013

Date

Total number of successful and failure mission outcomes

Mission_Outco	ome	Count
Failure (in fli	ight)	1
Suc	cess	98
Suc	cess	1
Success (payload status unc	lear)	1

The booster_versions which have carried the maximum payload mass

F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3 F9 B5 B1049.7

Booster Version

Build an Interactive Map with Folium

- All launch sites on a map
- folium.Circle and folium.Marker to create markers and circles above markers.
- Mark the success/failed launches for each site on the map
- folium.PolyLine object to draw PolyLine between a launch site to the selected coastline point
- Launch sites are in close proximity to railways, to highways and to coastline.
- Launch sites have significant distance from cities.
- Closest distance of launch sites is to the city of Tutsville at about 0.9km.

	Launch Site	Lat	Long
0	CCAFS LC-40	28.562302	-80.577356
1	CCAFS SLC-40	28.563197	-80.576820
2	KSC LC-39A	28.573255	-80.646895
3	VAFB SLC-4E	34.632834	-120.610745

	Launch Site	Lat	Long	class	marker_color
46	KSC LC-39A	28,573255	-80.646895	1	green
47	KSC LC-39A	28.573255	-80.646895	- 3	green
48	KSC LC-39A	28.573255	-80.646895	1	green
49	CCAPS SLC-40	28.563197	-80.576820	1	green
50	CCAPS SLC-40	28.563197	-80.576820	1	green
51	CCAFS SLC-40	28.563197	-80.576820	0	red
52	CCAFS SLC-40	28.563197	-80.576820	0	red
53	CCAPS SLC-40	28.563197	-80.576820	0	red
54	CCAPS SLC-40	28,563197	-80.576820	1	green
55	CCAFS SLC-40	28.563197	-80.576820	0	red

Dashboard with Plotly Dash

- Added a launch site drop-down input component
- Added a callback function to render the required success outcome pie chart
- Added a range slider to choose payload
- Added callback function to render the payload-outcome scatter plot

SpaceX Launch Records Dashboard Total Success Launches by All Sites Correlation Between Payload and Success for All Sites # vt.t 8 24

Dashboard with Plotly Dash

Total Success Launches by All Sites

The Highest Launch Success Rate

KSC LC-39A Total Success Launches for Site - KSC LC-39A 76.9%

Payload Mass range for successful Launches

Payload range for unsuccessful lauches

Payload Mass range

- The highest success rate is from 0-5000
- The lowest success rate is from 6000-10000
- FT booster version has the highest score

SpaceX Launch Records Dashboard

Predictive Analysis (Classification)

- Used method to_numpy() to create an array from column Class.
- We standardized data
- We split the data into training and testing data using the function train_test_split
- We only have 18 test samples
- Created a logistic regression and a GridSearchCV object
- The accuracy on the test data using the method score: 0.8333

Predictive Analysis

- Created a decision tree classifier object then create a GridSearchCV object tree_cv
- The accuracy of tree_cv on the test data using the method score is 0.9444444
- The method performs best is Decision Tree

]:		ML Method	Accuracy Score(%)
	0	Support Vector Machine	83.333333
	1	Logistic Regression	83.333333
	2	K Nearest Neighbour	83.333333
	3	Decision Tree	94.444444

Conclusions

- The site with the highest score of landing successfully is KSC LC-39A
- The highest success rate is for payload mass=[0-5000]
- The rate of successful launch is correlated with flight number and payload mass.
- The method performs best is Decision Tree with accuracy of 94%

Apendix

You can find all my notebook to this link:

<u>Applied-Data-Science-Capstone/data wrangling eda.ipynb at main ·</u> <u>Jorlina1/Applied-Data-Science-Capstone (github.com)</u>

