

A meta regression analysis

Chaochen Wang 王超辰

2017/7/14 in NCC

METHODS

Data extraction (1)

- 43 papers
 - + JPHC Cohort II
 - + JPHC-NEXT Cohort Study included for meta-regression analysis (Table 1)(←click here).
- Prevalence of H. pylori infection reported by birth year group of participants^[1~7].
 - 1. Ueda J. *Helicobacter*. 2014;
 - 2. Watanabe M. Cancer Sci. 2015;
 - 3. Reploge M.L. Int J Epidemiol. 1996;
 - 4. Shimoyama T. *Gastric Cancer*. 2012;
 - 5. Shimatani T. *J Gastroenterol Hepatol.* 2005;
 - 6. JPHC Cohort II;
 - 7. JPHC-NEXT

Data extraction (2)

- 38 studies reported prevalence with age groups.
 - 34 studies reported data collection period:
 - Example:
 - 60-70 years old group;
 - data collection done in 1990;
 - birth year should be 1920~1930.
 - 4 studies reported age groups with data collection year unavailable, year of publication was used instead of data collection period.

Data extraction example

(rules are decided by researchers)

Sasazuki, S. et al. *Cancer Epidemiol Biomarkers Prev* 15, 1341–1347 (2006). (Study No. 12)

Table 2. Adjusted ORs (95% Cls) of developing gastric cancer for all subjects with *H. pylori* IgG seropositivity and with stratification by several factors

	No. <i>H. pylori</i> – positive cases/controls	Adjusted OR* (95% CI)
All subjects (511 pairs)	478/383	5.1 (3.2-8.0)
Gender		
Men (342 pairs)	327/259	6.8 (3.6-12.6)
Women (169 pairs)	151/124	4.6 (2.1-9.9)
Age at baseline (y)		
40-49 (77 pairs)	72/52	7.0 (1.8-27.4)
50-59 (235 pairs)	220/180	4.4 (2.2-8.7)
60-69 (199 pairs)	186/151	5.4 (2.5-11.6)
Duration between blood		
donation and cancer		
diagnosis (y)		
0-4 (205 pairs)	190/144	7.4 (3.4-16.2)
4-8 (181 pairs)	170/141	4.9 (2.2-10.9)
≥8 (125 pairs)	118/98	4.5 (1.8-11.4)
Tumor location	16.05.00	,
Upper third of stomach,	37/33	3.7 (0.2-68.4)
including cardia (39 pairs)		,
Distal portion of stomach	344/274	5.1 (3.0-8.6)
(368 pairs)		,
Histologic type		
Differentiated type	281/223	5.8 (3.1-10.8)
(299 pairs)		
Undifferentiated type (159 pairs)	149/122	5.1 (2.1-12.3)

- \Rightarrow 1990 (the earlier one) used as the year of research
- Birth year groups:

$$\circ 40-49 \Rightarrow 1941-1950$$

- \circ 50-59 \Rightarrow 1931-**1940**
- \circ 60-69 \Rightarrow 1921-**1930**
- Many studies reported no upper limit of age (e.g. 70 or older) ⇒ 1920

[•] Control samples of this study (JPHC I/II) were collected during 1990-1993.

^{*}Matched for age, gender, resident area, blood donation date, and fasting times at blood donation. Adjusted for smoking status, consumption of fish gut,

273 Data Points from 45 Studies were available for meta-regression

Show	100 entries		Search:		
No 🏺	Author •	adultdults.or.child	hildren 🛊	Source.population •	$S_{]}$
1	Kikuchi, 1998	adult		General	S
1	Kikuchi, 1998	adult		General	S
1	Kikuchi, 1998	adult		General	S
1	Kikuchi, 1998	adult		General	S
2	Fujisawa, 1999	adult		General	S
2	Fujisawa, 1999	adult		General	S ▼
[4]					F

Showing 1 to 100 of 284 entries

Dravious

STATISTICAL ANALYSIS

Step 1: Data Point Weight Calculation

```
library(meta)
library(metafor)
library(mgcv)
meta <- metaprop( event = Number_of_Positive,</pre>
                        = Number_of_Subjects_in_the_corresponding_gro
                  byvar = Birth_Year,
                        = "PLOGIT", # Logit transformation
             method.tau = "REML") # Restricted Maximum-likelihoo
                                        # estimator to estimate the
                                        # between-study variance
weight<-meta$w.random # Weight of each data point extracted</pre>
```

Step 2: Meta-regression (Generalized Additive Mixed Model, GAMM)

```
##########################
                       res1 <- gam(cbind(event,n) ~ s(Birth_Year, bs="cr") +
                     # Cubic Spline Regression 三次スプライン曲線
s(Study_ID, bs="re") + # Study ID as random effect
Source_of_population + # Community OR Clinical based
Specimen_type + # Serum OR Others (urinary, salivary, stool,
                  + # Antigen derived from demostic or foreign
Kit.from
early,
                     # Data collection period, cutoff = 2000
data = data, weights=weight,
family="binomial"(link=logit), method="REML")
```

Summary from Model 1 comparable to Table 3 ← click here

```
##
## Family: binomial
## Link function: logit
##
## Formula:
## cbind(mp, n_total - mp) ~ s(birth.year_high, bs = "cr") + s(No,
      bs = "re") + Source.population + Specimen.type + kit.from +
##
##
      early
##
## Parametric coefficients:
                          Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                          -0.17064
                                     0.14022 - 1.217
                                                      0.2236
## Source.populationPatient 0.28630
                                                      0.1571
                                   0.20234 1.415
## Specimen.typeother
                                   0.19256 - 2.143
                          -0.41271
                                                      0.0321 *
## kit.fromforeign
                                                      0.9132
                   0.01836
                                   0.16847 0.109
## kit.fromunknown -0.11517
                                   0.25923 - 0.444
                                                      0.6569
## earlylate
              -0.25471
                                     0.15813 - 1.611
                                                      0.1072
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                       edf Ref.df Chi.sq p-value
##
## s(birth.year_high) 7.372 8.158 4255 <2e-16 ***
## s(No)
                    34.754 38.000 1910 <2e-16 ***
```

10 / 19

Step 3: Model Modification

```
##########################
                        res2 <- gam(cbind(event,n) ~ s(Birth_Year, bs="cr") +
             s(Study_ID, bs="re") +
             Specimen_type,
             data = data, weights=weight,
             family="binomial"(link=logit), method="REML")
##############################
res3 <- gam(cbind(event,n) ~ s(Birth_Year, bs="cr") +
             s(Study_ID, bs="re"),
             data = data, weights=weight,
             family="binomial"(link=logit), method="REML")
```

TABLE 2. Informations for tested models.

	AIC	BIC	LogLik
Model 1: Logit(P) = s(birth year) + r(study ID) + f(source of population) + f(diagnostic test) + f(ELIZA kits) + f(research year)	1716.444	1895.216	-808.6935 (df=49.53)
Model 2: Logit(P) = s(birth year) + r(study ID) + f(diagnostic test)	1730.349	1904.178	-817.0157 (df=48.16)
Model 3: Logit(P) = s(birth year) + r(study ID)	1731.451	1906.366	-817.2658 (df=48.46)
Abbreviations and definitions: AIC: Akaike's information criterion; BIC: Bayesian information criterion; LogLik: Log-likelihood; P: prevalence; s: penalized cubic spline; r: random effect; f: fixed effect; df: degree of freedom.			

Step 4: Point Estimation

```
library(visreg) # Visualization of Regression Models
library(plyr)
use(com_data)
plotdata_res0 <- visreg(res0, type = "contrast", plot = F)</pre>
smooths <- ldply(plotdata_res0, function(part)</pre>
  data.frame(Variable = part$meta$x,
              x=part$fit[[part$meta$x]],
              smooth=part$fit$visregFit,
              lower=part$fit$visregLwr,
              upper=part$fit$visregUpr))
lg=smooths$smooth
p=exp(lg)/(1+exp(lg))
p_low <- exp(smooths$lower)/(1+exp(smooths$lower))</pre>
p_high <- exp(smooths$upper)/(1+exp(smooths$upper))</pre>
dt_plot <- data.frame(smooths$x[1:101],p[1:101], p_low[1:101], p_high</pre>
names(dt_plot) <- c("Birthyear", "Prevalence", "95%CI_low", "95%CI_h-</pre>
print(dt_plot)
```

Table 4. Predicted Prevalence of *H. pylori* infection from 1908 to 2003

Show 100 - entri	es	Search:	
Birthyear	Prevalence	• 95%CI_low •	95%CI_high
1908	0.574	0.520	0.626
1909	0.580	0.530	0.628
1910	0.586	0.540	0.631
1911	0.592	0.549	0.633
1912	0.597	0.559	0.635
1913	0.603	0.567	0.638
1914	0.609	0.576	0.640
1915	0.614	0.584	0.643
1016	0 610	0.501	0.645

PLOT

by package ggplot2

Figure 2. Multivariable adjusted prevalence of *H. pylori* infection in Japanese by birth year from year of 1908 to 2003

Interactive PLOT Click above ↑

