MATH 532

 $f(\phi) = \sum_{y} (-1)^{y} f(y)$ A ambient set $f(\phi) = \sum_{y} (-1)^{y} f(y)$ $f(y) = \sum_{y} (-1)^{y} f(y)$

 \underline{Gx} . $f = (T) = {\text{we} S_n \mid f: xelpt of } \omega \text{ are exactly } T}$ here. $f_{\geq}(T) = \# \{ \omega \in S_n \mid \omega(i) = i \text{ if } i \in T \}$ cesy to court dreing.

f₂(y) = (n-#y)!, | f #y- #X, Same court. $\Rightarrow f(\emptyset) = \sum_{k=0}^{n} (-1)^{k} {n \choose k} (n-k)!$ deraymets choose Y of size k $f_{\geq}(Y)$.

 $f_{-}(\emptyset) + \sum_{i} f_{2}(y) = \sum_{i} f_{2}(y)$ #Yodd #Your

T: M U M Tyour

No property in S (21, 7, 2)

(π , ϕ , ϕ)

(π , ϕ , ϕ)

(π , ϕ , ϕ)

(π , π , π)

Example 1

Example 2

Example 2

Example 2

Example 2

Example 2

Example 3

Example 3

Example 4

Example 4

Example 4

Example 4

Example 5

Example 6

Example 6

Example 6

Example 7

Example 6

Example 7

Example 7

Example 6

Example 7

Example 8

Example 7

Examp write the sets M, N, N' livery tree map. $M = \{231, 312\}$

2 molitier en NUN' satisfy:

- · If &(x)=y at y + x then exact one of x, y belongs toN (except one to N')
- · If r(x)=x, then x ∈N+ (positive helf)