

Neural Networks Intuition

Neurons and the brain

Neural networks

Origins: Algorithms that try to mimic the brain.

Used in the 1980's and early 1990's. Fell out of favor in the late 1990's.

Resurgence from around 2005.

speech → images → text (NLP) → •••

Neurons in the brain

Biological neuron

Simplified mathematical model of a neuron outputs

Neural Network Intuition

Demand Prediction

Demand Prediction

Demand Prediction

(x,y) "hidden layer"
layer & can have multiple neurons

price

shipping cost

input layer

marketing

material

perceived = quality activation values

3 numbers 4 numbers

1 number

Multiple hidden layers

neural network architecture

Neural Networks Intuition

Example: Recognizing Images

Face recognition

1000 pixels

1000 pixels

1000 columns

13	197	185	203	. 04	•••)
	•••	57	64	92	
	::				
1000 Lams					
			•••	187	214

Face recognition

source: Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations by Honglak Lee, Roger Grosse, Ranganath Andrew Y. Ng

Car classification

source: Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations by Honglak Lee, Roger Grosse, Ranganath Andrew Y. Ng

Neural network model

Neural Network Model

More complex neural networks

More complex neural network

$$\vec{a} = \begin{bmatrix} a_1^{(3)} \\ a_1^{(3)} \\ a_2^{(3)} \\ a_3^{(3)} \end{bmatrix}$$

Neural Network Model

Inference: making predictions (forward propagation)

Handwritten digit recognition

Handwritten digit recognition

image is digit 1 image isn't digit 1

TensorFlow implementation

Inference in Code

Build the model using TensorFlow


```
x = np.array([[200.0, 17.0]])
layer_1 = Dense(units=3, activation='sigmoid')
a1 = layer_1(x)
```

```
layer_2 = Dense(units=1, activation='sigmoid')
a2 = layer_2(a1)
```

```
is a_1^{[2]} \ge 0.5?
y = 1
\hat{y} = 0
\hat{y} = 0
```

```
if a2 >= 0.5:
   yhat = 1
else:
   yhat = 0
```

Model for digit classification

if a3 >= 0.5:

yhat


```
x = np.array([[0.0,...245,...240...0]])
layer_1 = Dense(units=25, activation='sigmoid')
a1 = layer_1(x)

layer_2 = Dense(units=15, activation='sigmoid')
a2 = layer_2(a1)

layer_3 = Dense(units=1, activation='sigmoid')
a3 = layer_3(a2)
```


TensorFlow implementation

Data in TensorFlow

Feature vectors

temperature (Celsius)	duration (minutes)	Good coffee? (1/0)
200.0	17.0	1
425.0	18.5	0

Why?

Note about numpy arrays

```
0.2
4 rows
            2 columns
          4 x 2 matrix
```

```
x = np.array([[1, 2, 3],
               [4, 5, 6]])
[[1, 2, 3],
                                       2D array
 [4, 5, 6]]
x = np.array([[0.1, 0.2],
               [-3.0, -4.0,],
               [-0.5, -0.6,],
               [7.0, 8.0,]])
[[0.1, 0.2],
 [-3.0, -4.0,],
 [-0.5, -0.6,],
 [7.0, 8.0,]]
```

 2×3

4 x 2

1 x 2

2 x 1

Note about numpy arrays

```
x = np.array([[200, 17]]) = [200 \ 17] 1 x 2

x = np.array([[200], \Rightarrow [200] 2 x 1

[17]]) = [200] 2 x 1
```

Feature vectors

temperature (Celsius)	duration (minutes)	Good coffee? (1/0)
200.0	17.0	1
425.0	18.5	0

Activation vector


```
layer_2 = Dense(units=1, activation='sigmoid')
a2 = layer_2(a1)

1 x 1

tf.Tensor([[0.8]], shape=(1, 1), dtype=float32)

a2.numpy()

array([[0.8]], dtype=float32)
```


TensorFlow implementation

Building a neural network

Building a neural network architecture

```
model = Sequential([
                          Dense(units=3, activation="sigmoid"),
                           Dense(units=1, activation="sigmoid")])
                            x = np.array([[200.0, 17.0],
                                          [120.0, 5.0],
                                                            4 x 2
                                          [425.0, 20.0],
200
                                          [212.0, 18.0]])
                   targets y = np.array([1,0,0,1])
        5
              0
120
                            model.compile(...)
                                                more about this next week!
425
       20
              0
                            model.fit(x,y)
                            model.predict(x_new) <__</pre>
```

Digit classification model

Neural network implementation in Python

Forward prop in a single layer

forward prop (coffee roasting model)

```
a_1^{[2]} = g(\vec{\mathbf{w}}_1^{[2]} \cdot \vec{\mathbf{a}}^{[1]} + b_1^{[2]})
                                                         \rightarrow w2_1 = np.array([-7, 8, 9])
                                                         \rightarrow b2_1 = np.array([3])
                                                          \rightarrow z2_1 = np.dot(w2_1,a1)+b2_1
                                                          \rightarrowa2_1 = sigmoid(z2_1)
x = np.array([200, 17])
                                            10 arrays
                                         a_2^{[1]} = g(\vec{\mathbf{w}}_2^{[1]} \cdot \vec{\mathbf{x}} + b_2^{[1]})
a_1^{[1]} = g(\vec{\mathbf{w}}_1^{[1]} \cdot \vec{\mathbf{x}} + b_1^{[1]})
                                                                                    a_3^{[1]} = g(\vec{\mathbf{w}}_3^{[1]} \cdot \vec{\mathbf{x}} + b_3^{[1]})
                                          w1_2 = np.array([-3, 4])
w1_1 = np.array([1, 2])
                                                                                     w1_3 = np.array([5, -6])
                                         b1_2 = np.array([1])
                                                                                     b1_3 = np.array([2])
b1_1 = np.array([-1])
                                                                                     z1_3 = np.dot(w1_3,x)+b1_3
z1_1 = np.dot(w1_1,x)+b1_1
                                          z1_2 = np.dot(w1_2,x)+b1_2
                                                                                 a1_3 = sigmoid(z1_3)
a1_1 = sigmoid(z1_1)
                                       Ga1_2 = sigmoid(z1_2)
                                        = np.array([a1_1, a1_2, a1_3])
                                a1
```


Neural network implemenation in Python

General implementation of forward propagation

Forward prop in NumPy

```
\vec{\mathbf{w}}_{1}^{[1]} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \vec{\mathbf{w}}_{2}^{[1]} = \begin{bmatrix} -3 \\ 4 \end{bmatrix} \quad \vec{\mathbf{w}}_{3}^{[1]} = \begin{bmatrix} 5 \\ -6 \end{bmatrix}
                W = np.array([
       b_1^{[l]} = -1 b_2^{[l]} = 1 b_3^{[l]} = 2
```

b = np.array([-1, 1, 2])

 $a_{in} = np.array([-2, 4])$

 $\vec{a}^{[0]} = \vec{x}$

```
def sequential(x):
def dense(a_in,W,b):
3 units = W.shape[1] [0,0,0] (1) a1 = dense(x,W1,b1)
a_out = np.zeros(units) (2) a2 = dense(a1,W2,b2)
 for j in range(units): 0,1,2
W = W[: i]
    W = W[:,j]
                                         f x = a4
    z = np.dot(w,a_in) + b[j]
                                         return f_x
    a_{out}[j] = g(z)
  return a_out 🦹
                   Note: g() is defined outside of dense().
                    (see optional lab for details)
```

capital W refers to a matrix

How neural networks are implemented efficiently

For loops vs. vectorization

```
X = np.array([[200, 17]]) 2 Darray
x = np.array([200, 17])
W = np.array([[1, -3, 5], [-2, 4, -6]])
                                           W = np.array([[1, -3, 5], ] same
                                                          [-2, 4, -6]]
                                           B = np.array([[-1, 1, 2]]) | 1 \times 3 2 D erray
b = np.array([-1, 1, 2])
                                                      all 2Darrays
                                          def dense(A_in,W,B):
def dense(a_in,W,b):
                                vectorized Z = np.matmul(A_in,W) + B
A_out = g(Z) matrix multiplication
  units = W.shape[1]
  a_out = np.zeros(units)
  for j in range(units):
                                            return A_out
    w = W[:,j]
                                            [[1,0,1]]
    z = np.dot(w, a_in) + b[j]
    a_{out}[j] = g(z)
 return a_out
```


Matrix multiplication

Dot products

example

$$2 = (1 \times 3) + (2 \times 4)$$
 $3 + 8$
 44

in general

$$\begin{bmatrix} \uparrow \\ \vec{a} \\ \downarrow \end{bmatrix} \cdot \begin{bmatrix} \uparrow \\ \vec{w} \\ \downarrow \end{bmatrix}$$

$$z = \vec{a} \cdot \vec{w}$$

transpose

$$\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{\mathbf{a}}^T = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

equivalent

vector vector multiplication

$$\begin{bmatrix} \leftarrow \vec{a}^T & \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow \\ \vec{w} \\ \downarrow \end{bmatrix} 2XI$$

Vector matrix multiplication

$$\vec{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\vec{a}^T = \begin{bmatrix} 1 & 2 \end{bmatrix} \quad W = \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} \quad Z = \vec{a}^T W \quad [\leftarrow \vec{a}^T \rightarrow] \quad \begin{bmatrix} \uparrow & \uparrow \\ \vec{w}_1 & \vec{w}_2 \\ \downarrow & \downarrow \end{bmatrix}$$

$$\mathbf{Z} = \begin{bmatrix} \vec{\mathbf{a}}^T \vec{\mathbf{w}}_1 & a^T \vec{\mathbf{w}}_2 \end{bmatrix}$$

$$(1*3) + (2*4) \qquad (1*5) + (2*6)$$

$$3 + 8 \qquad 5 + 12$$

$$17$$

$$\mathbf{Z} = \begin{bmatrix} 11 & 17 \end{bmatrix}$$

matrix matrix multiplication

$$A = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} W = \begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix} Z = A^{T}W = \begin{bmatrix} -1 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 4 & 4 \end{bmatrix}$$

$$Columns$$

Matrix multiplication rules

Matrix multiplication rules

$$A = \begin{bmatrix} 1 & -1 & 0.1 \\ 2 & -2 & 0.2 \end{bmatrix} \quad A^{T} = \begin{bmatrix} 1 & -2 \\ -1 & -2 \\ 0.1 & 0.2 \end{bmatrix} \quad W = \begin{bmatrix} 3 & 5 & 7 & 9 \\ 4 & 6 & 8 & 0 \end{bmatrix} \quad Z = A^{T}W = \begin{bmatrix} 11 & 17 & 23 & 9 \\ -11 & -17 & -23 & -9 \\ 1.1 & 1.7 & 2.3 & 0.9 \end{bmatrix}$$

$$3 \times 2 \quad 2 \times 4$$

$$3 \text{ by 4 matrix}$$

can only take dot products of vectors that are same length

$$Z = \mathbf{A}^T \mathbf{W} = \begin{bmatrix} 11 & 17 & 23 & 9 \\ -11 & -17 & -23 & -9 \\ 1.1 & 1.7 & 2.3 & 0.9 \end{bmatrix}$$

3 by 4 matrix
4 same #rows as AT

Same # columns as W

Matrix multiplication code

Matrix multiplication in NumPy

$$A = \begin{bmatrix} 1 & -1 & 0.1 \\ 2 & -2 & 0.2 \end{bmatrix} \quad A^{T} = \begin{bmatrix} 1 & -2 \\ -1 & -2 \\ 0.1 & 0.2 \end{bmatrix} \quad W = \begin{bmatrix} 3 & 5 & 7 & 9 \\ 4 & 6 & 8 & 0 \end{bmatrix} \quad Z = A^{T}W = \begin{bmatrix} 11 & 17 & 23 & 9 \\ -11 & -17 & -23 & -9 \\ 1.1 & 1.7 & 2.3 & 0.9 \end{bmatrix}$$

$$A = \text{np.array}([[1, -1, 0.1], \quad [2, -2, 0.2]]) \quad W = \text{np.array}([[3, 5, 7, 9], \quad Z = \text{np.matmul}(AT, W))$$

$$AT = \text{np.array}([[1, 2], \quad [-1, -2], \quad [0.1, 0.2]]) \quad AT = A.T \quad Posse$$

$$AT = A.T \quad Tanspose$$

Dense layer vectorized

$$A^{T} = \begin{bmatrix} 200 & 17 \end{bmatrix} \qquad Z = A^{T}W + B$$

$$W = \begin{bmatrix} 1 & -3 & 5 \\ -2 & 4 & -6 \end{bmatrix} \qquad \begin{bmatrix} 165 & -55 \\ 2 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix}$$

$$A = g(Z)$$

```
AT = np.array([[200, 17]])
W = np.array([[1, -3, 5],
               [-2, 4, -6]]
b = np.array([[-1, 1, 2]])
def dense(AT,W,b):
  z = np.matmul(AT, W) + b
  a_out = g(z)
  return a_out
 [[1,0,1]]
```