Case Study: Analysis of a seriously unbalanced design

Prof L. Gentzbittel *Digital Agriculture Laboratory - Skoltech Prof C. Ben †Digital Agriculture Laboratory - Skoltech

April, 5th 2021 - Skoltech

CASE STUDY PRESENTATION

Ten genotypes are assessed at two different locations.

For different reasons, different numbers of measurements or replicates are performed at each site

PREPARATION OF THE WORKING INTERFACE IN R.

```
### I. Set working directory
#On RStudio: tab 'Session'-> Set Working Directory -> Choose Directory.
#Choose the directory containing the datafile and the associated R script.

### II. Installation R packages needed for the analysis on RStudio:
#Click on the 'Packages' tab in the bottom-right window of R Studio interface->'Install Packages'
#Comment #1: R package installation requires a connection to internet
#Comment #2: Once packages have been installed, no need to re-install them again when you close-open again

### III. Initialisation of the working space
# To erase all graphs
graphics.off()
# To erase objects from the working space - Clean up of the memory
rm(list = ls())
# use of the constraint 'set-to-zero' for ANOVAs ## will see later in this script
options(contrasts=c('contr.treatment','contr.poly'))
# can also use 'contr.sum' for a 'sum-to-zero' constraint
```

LOADING REQUIRED METHODS FOR ANALYSIS

```
## Loading of the R packages needed for the analysis.
library(car)  # Levene's test and types of SS
library(agricolae)  # Newman-Keuls & Tukeys tests
library(ggplot2)
library(dplyr)
library(openxlsx)  # to load excel files
```

STARTING THE ANALYSIS

```
## loading data file
StemLength <- read.xlsx("08_UnbalancedDesign.xlsx", sheet = 1)
str(StemLength)</pre>
```

^{*}l.gentzbittel@skoltech.ru

[†]c.ben@skoltech.ru

```
## 'data.frame':
                   12 obs. of 3 variables:
## $ StemLength: num 30 50 30 35 55 100 102 20 22 75 ...
## $ Genotype : chr "G1" "G1" "G1" "G1" ...
## $ Site
               : chr "S1" "S1" "S1" "S1" ...
## check the design
with (StemLength,
    table(Genotype, Site)) ## seriously unbalanced
##
## Genotype S1 S2
##
        G1 5 2
##
        G2 2 3
## ANOVA tables of unbalanced design depends on order of factor fitted in the model !
## fit ANOVA2 mmodels, with interaction:
ana1 <- aov( StemLength ~ 1 + Genotype * Site, data = StemLength)
summary(ana1)
##
                Df Sum Sq Mean Sq F value
                                            Pr(>F)
## Genotype
                 1
                       3
                                3
                                    0.041
## Site
                     9490
                             9490 125.699 3.59e-06 ***
                 1
## Genotype:Site 1
                        3
                                3
                                    0.035
                                             0.857
                 8
                      604
                               76
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ana2 <- aov( StemLength ~ 1 + Site * Genotype, data = StemLength)
summary(ana2)
##
                Df Sum Sq Mean Sq F value
                                           Pr(>F)
## Site
                 1 8451 8451 111.935 5.56e-06 ***
## Genotype
                1
                     1042
                             1042 13.805 0.00591 **
## Site:Genotype 1
                      3
                               3
                                   0.035 0.85716
## Residuals
                 8
                      604
                               75
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## clear case !
#########
## Taking unbalanceness into account using different types of sum-of-squares
#########
# create the 'most complete' model
model <- lm( StemLength ~ 1 + Site * Genotype, data = StemLength )</pre>
anova(model) ## type I analysis, the default method for R ## OK
## Analysis of Variance Table
##
## Response: StemLength
##
                Df Sum Sq Mean Sq F value
                                             Pr(>F)
                 1 8451.1 8451.1 111.9349 5.564e-06 ***
## Site
                1 1042.3 1042.3 13.8054 0.005909 **
## Genotype
## Site:Genotype 1
                      2.6
                             2.6
                                   0.0346 0.857164
## Residuals
                 8 604.0
                             75.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova(model, type = "II") ## interesting
## Anova Table (Type II tests)
```

```
##
## Response: StemLength
             Sum Sq Df F value Pr(>F)
             9490.3 1 125.6994 3.592e-06 ***
## Site
## Genotype 1042.3 1 13.8054 0.005909 **
## Site:Genotype 2.6 1 0.0346 0.857164
## Residuals 604.0 8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova(model, type = "III") ## usual in agronomy
## Anova Table (Type III tests)
##
## Response: StemLength
               Sum Sq Df F value
                                  Pr(>F)
## (Intercept) 8000.0 1 105.9603 6.836e-06 ***
## Site
            5315.7 1 70.4068 3.093e-05 ***
## Genotype 515.7 1 6.8307 0.03096 *
## Site:Genotype 2.6 1 0.0346 0.85716
## Residuals 604.0 8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```