數值分析

Chapter 7 Ordinary Differential Equations: Initial Value Problems

授課教師:劉耀先

國立陽明交通大學 機械工程學系 EE464

yhliu@nctu.edu.tw

110學年度第一學期

Outline

- Background (7.1)
- Euler's method (7.2, 7.3)
- Midpoint method (7.4)
- Runge-Kutta methods (7.5)
- Multistep methods (7.6)
- Predictor-corrector methods (7.7)
- Systems of first-order ODEs (7.8)
- Higher order initial value ODE (7.9)
- MATLAB built-in functions (7.10)

7.1 Background

 First order ODEs involve the first derivative of the dependent variable (y) with respect to the independent variable(x):

$$\frac{dy}{dx} + ax^2 + by = 0$$
 (Linear)
$$\frac{dy}{dx} + ayx + b\sqrt{y} = 0$$
 (Nonlinear)

Consider the water flow out of the tank:

$$\frac{dm_{in}}{dt} = K_1 + K_2 \cos(Ct)$$

The equation can be rewritten as:

$$\rho A_{\tan k} \frac{dh}{dt} = K_1 + K_2 \cos(Ct) - \rho A_{pipe} \sqrt{2gh}$$

- Initial condition: h = h_o at t = t_o
- Initial-value problem(IVP)

7.1 Background

First-order ODE problem

$$\frac{dy}{dx} = f(x, y)$$
 with the initial condition $y(x_1) = y_1$

- Analytical solution of a first-order ODE:
 - Mathematical expression
- Numerical solution of a first-order ODE:
 - A set of discrete points that approximate the function y(x)
 - Single-step and multi-step

Explicit vs. Implicit method

Explicit:

- use an explicit formula for calculating the value of the dependent variable
- The right-hand side of the equation only has known quantities

$$y_{i+1} = F(x_i, x_{i+1}, y_i)$$

Implicit:

- calculate the unknown from unknown quantities
- The unknown quantities appears on both sides of the equation

$$y_{i+1} = F(x_i, x_{i+1}, \underline{y_{i+1}})$$

Single-step explicit method

Calculate the approximate numerical solution (x_{i+1}, y_{i+1}) from the known solution at point (x_i, y_i):

$$x_{i+1} = x_i + h$$
$$y_{i+1} = y_i + Slope \cdot h$$

- Slope: the estimate value of dy/dx
- The procedure continues with i=3 and so on until the points cover the while domain of the solution

7.2 Euler's methods

 Euler's method is the simplest technique for solving a first-order ODE of the form:

$$\frac{dy}{dx} = f(x, y)$$
 with the initial condition $y(x_1) = y_1$

• Euler's explicit method (forward Euler method):

$$Slope = \frac{dy}{dx}\bigg|_{x=x_i} = f(x_i, y_i)$$

$$x_{i+1} = x_i + h$$

$$y_{i+1} = y_i + f(x_i, y_i) \cdot h$$

Euler's method

Using numerical integration:

 Evaluate the integral using the numerical integration (ex Rectangle method):

$$y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} f(x, y) dx = y_i + f(x_i, y_i)(x_{i+1} - x_i)$$

 The derivate can also be estimated by finite difference approximation:

$$\left. \frac{dy}{dx} \right|_{x=x_i} \approx \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = f(x_i, y_i)$$

Example 7-1: First-order ODE with Euler's explicit method

 Use Euler's explicit method to solve the ODE from x=0 to x=2.5 with the initial condition y=3 at x=0

$$\frac{dy}{dx} = -1.2y + 7e^{-0.3x}$$

- (a) solve by hand using h=0.5
- (b) write a MATLAB program that solves the equation using h=0.1
- (c) use the program from (b) to solve the equation using h=0.01

• (a)
$$x_{i+1} = x_i + h = x_i + 0.5$$

 $y_{i+1} = y_i + f(x_i, y_i) \cdot h = y_i + (-1.2y_i + 7e^{-0.3x_i}) \cdot 0.5$

Example 7-1

7.2.2 Truncation error in Euler's explicit method

- Local truncation error:
 - the error inherent in the formula used to obtain the numerical solution in a single step (subinterval)
- Using two-term Taylor series expansion:

$$y_{i+1}^{Taylor} = y_i^{NS} + f(x_i, y_i^{NS})h + \frac{d^2y}{dx^2}\bigg|_{x=\xi_i} \frac{h^2}{2}$$

• With Euler's explicit method:

$$y_{i+1}^{NS} = y_i^{NS} + f(x_i, y_i^{NS})h$$

The local truncation error:

$$e_i^{TR} = y_{i+1}^{Taylor} - y_{i+1}^{NS} = \frac{d^2 y}{dx^2} \bigg|_{x=\xi_i} \frac{h^2}{2} = O(h^2)$$

Global truncation error

- The total error due to truncation alone
- The truncation error is propagated from the previous subinterval to the next subinterval
- The global truncation error at the last point is:

$$E_{N+1}^{TR} \le \frac{hM}{C} \left[e^{hCN} - 1 \right] = \frac{hM}{C} \left[e^{C(x_{N+1} - x_i)} - 1 \right]$$

7.2.3 Euler's Implicit Method

The form of Euler's implicit method (backward Euler's method) uses the slope of the function y(x) is taken to be a constant at the endpoint (x_{i+1}, y_{i+1})

$$x_{i+1} = x_i + h$$
 $y_{i+1} = y_i + f(x_{i+1}, y_{i+1}) \cdot h$

- This is a nonlinear equation for the unknown y_{i+1}
- Evaluate the integral by the Rectangle method with the end point of the interval
- The approximation of the derivative:

$$\left. \frac{dy}{dx} \right|_{x=x_{i+1}} \approx \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = f(x_{i+1}, y_{i+1})$$

Example 7-2: First-order ODE using Euler's Implicit Method

The differential equation :

$$\frac{dn(t)}{dt} = -0.8n^{3/2} + 10n_1(1 - e^{-3t})$$

 Where n₁=2000 at t=0 is the initial condition. Solve the differential equation from t=0 until t=0.5s using h=0.002.

$$t_{i+1} = t_i + h$$

$$n_{i+1} = n_i + [-0.8n_{i+1}^{3/2} + 10n_1(1 - e^{-3t_{i+1}})] \cdot h$$

7.3 Modified Euler's Method

- Single step, explicit method for solving first-order ODE
- The slope is calculated based on the average of the slope at the **beginning** and the estimate at the **end** point

$$\frac{dy}{dx}\bigg|_{x=x_i} = f(x_i, y_i) \qquad \frac{dy}{dx}\bigg|_{\substack{y=y_{i+1}^{\text{Eu}}\\ x=x_{i+1}}} = f(x_{i+1}, y_{i+1}^{\text{Eu}}) \qquad y_{i+1}^{\text{Eu}} = y_i + f(x_i, y_i) \cdot h$$

• The value is calculated from: $y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{Eu})}{2} \cdot h$

Algorithm for modified Euler's method

 Given a solution at point (x_i, y_i), calculate the next value of the independent variable:

$$x_{i+1} = x_i + h$$

- Calculate f(x_i, y_i)
- Estimate y_{i+1} using Euler's method:

$$y_{i+1}^{Eu} = y_i + f(x_i, y_i) \cdot h$$

- Calculate $f(x_{i+1}, y_{i+1}^{Eu})$
- Calculate the numerical solution at x_{i+1}

$$y_{i+1} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{Eu})}{2} \cdot h$$

Ex 7-3: Modified Euler's Method

 Use modified Euler's method to solve the following ODE from x=0 to x=2.5 with the initial condition y=3 at x=0, using h=0.5:

$$\frac{dy}{dx} = -1.2y + 7e^{-0.3x}$$

Euler's method

Modified Euler's method

7.4 Midpoint Method

- Estimate the slope at the middle point of the interval
- First calculate the approximate value at the middle point of the interval:

$$x_m = x_i + h/2$$
 $y_m = y_i + f(x_i, y_i) \cdot h/2$

Use the estimated midpoint to calculate the slope:

$$y_m = y_i + f(x_m, y_m) \cdot h$$

$$\frac{dy}{dx}\Big|_{x=x_m} = f(x_m, y_m)$$

7.5 Runge-Kutta Methods

- A single-step, explicit method for solving first-order ODE
- The slope is calculated from number of points (order) within the subinterval
- The second-order Runge-Kutta methods use the slope at two points, third-order Runge-Kutta methods uses the slope at three points, and so on.
- The classical Runge-Kutta method is of fourth order
- The accuracy increases with increasing order

7.5.1 Second-Order Runge-Kutta Methods

The general form of second-order Runge-Kutta method:

$$y_{i+1} = y_i + (c_1 K_1 + c_2 K_2) \cdot h$$

with

$$K_1 = f(x_i, y_i)$$
 $K_2 = f(x_i + a_2h, y_i + b_{21}K_1h)$

- The constants vary with the specific second-order method
 - Modified Euler's method
 - Midpoint method
 - Heun's method

Modified Euler Method / Midpoint Method

Modified Euler Method for 2nd-order RK method:

$$c_{1} = \frac{1}{2} \qquad c_{2} = \frac{1}{2} \qquad a_{2} = 1 \qquad b_{21} = 1$$

$$y_{i+1} = y_{i} + \frac{1}{2} (K_{1} + K_{2}) \cdot h$$

$$K_{1} = f(x_{i}, y_{i}) \qquad K_{2} = f(x_{i} + h, y_{i} + K_{1}h)$$

• Midpoint Method for 2nd-order RK method:

$$c_1 = 0$$
 $c_2 = 1$ $a_2 = \frac{1}{2}$ $b_{21} = \frac{1}{2}$
$$y_{i+1} = y_i + K_2 \cdot h$$

$$K_1 = f(x_i, y_i) \quad K_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_1h)$$

Heun's method

Heun's Method for 2nd-order RK method:

$$c_{1} = \frac{1}{4} \qquad c_{2} = \frac{3}{4} \qquad a_{2} = \frac{2}{3} \qquad b_{21} = \frac{2}{3}$$

$$y_{i+1} = y_{i} + (\frac{1}{4}K_{1} + \frac{3}{4}K_{2}) \cdot h$$

$$K_{1} = f(x_{i}, y_{i}) \quad K_{2} = f(x_{i} + \frac{2}{3}h, y_{i} + \frac{2}{3}K_{1}h)$$

 From Taylor's series expansion, the second-order Runge-Kutta method has the following equations:

$$c_1 + c_2 = 1$$
 $c_2 a_2 = 1$ $c_2 b_{21} = 1$

Third-Order Runge-Kutta Methods

General form:

$$y_{i+1} = y_i + (c_1 K_1 + c_2 K_2 + c_3 K_3) \cdot h$$

$$K_1 = f(x_i, y_i) \quad K_2 = f(x_i + a_2 h, y_i + b_{21} K_1 h)$$

$$K_3 = f(x_i + a_3 h, y_i + b_{31} K_1 h + b_{31} K_2 h)$$

• For the classical 3rd-order RK method:

$$y_{i+1} = y_i + \frac{1}{6}(K_1 + 4K_2 + K_3) \cdot h$$

$$K_1 = f(x_i, y_i) \qquad K_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_1h) \qquad K_3 = f(x_i + h, y_i - K_1h + 2K_2h)$$

Method	c_1	c_2	c_3	a_2	b ₂₁	a_3	b ₃₁	b ₃₁
Classical	1/6	4/6	1/6	1/2	1/2	1	-1	2
Nystrom's	2/8	3/8	3/8	2/3	2/3	2/3	0	2/3
Nearly Optimal	2/9	3/9	4/9	1/2	1/2	3/4	0	3/4
Heun's Third	1/4	0	3/4	1/3	1/3	2/3	0	2/3

Fourth-Order Runge-Kutta Method

General form:

$$y_{i+1} = y_i + (c_1 K_1 + c_2 K_2 + c_3 K_3 + c_4 K_4) \cdot h$$

$$K_1 = f(x_i, y_i) \quad K_2 = f(x_i + a_2 h, y_i + b_{21} K_1 h)$$

$$K_3 = f(x_i + a_3 h, y_i + b_{31} K_1 h + b_{31} K_2 h)$$

$$K_4 = f(x_i + a_4 h, y_i + b_{41} K_1 h + b_{42} K_2 h + b_{43} K_3 h)$$

The classical fourth-order RK method:

$$y_{i+1} = y_i + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4) \cdot h$$

$$K_1 = f(x_i, y_i) \quad K_2 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_1h) \quad K_3 = f(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_2h)$$

$$K_4 = f(x_i + h, y_i + K_3h)$$

Classical Fourth-order Runge-Kutta Method

Ex 7-6: First-order ODE with 4th-order RK method

- Write a user-defined MATLAB function that solve a firstorder ODE using classical 4th-order RK method:
- From x=0 to 2.5 with y(0)=3 and h=0.5
- [x, y] = odeRK4(ODE, a, b, h)

$$\frac{dy}{dx} = -1.2y + 7e^{-0.3x}$$

The results show small error even with large step size

4th order RK

Modified Euler's method

7.6 Multistep Methods

- Calculate the solution of y_{i+1} at x_{i+1} using two or more previous points
- Explicit or implicit
- If three points are used for the explicit form:

$$y_{i+1} = F(x_{i-2}, y_{i-2}, x_{i-1}, y_{i-1}, x_i, y_i, x_{i+1})$$

- The first few points can be determined by single-step methods or by multistep methods that use fewer prior points
- In implicit multistep methods, the unknown y_{i+1} appears on both sides of the equation

7.6.1 Adams-Bashforth Method

- An explicit multistep method for solving a first-order ODE
- The order is determined by the number of points used in the formula
- Consider integrating the differential equation over an arbitrary interval:

$$\frac{dy}{dx} = f(x, y)$$
 $y_{i+1} = y_i + \int_{x_i}^{x_{i+1}} f(x, y) dx$

 The integration is carried out by approximating f(x,y) with a polynomial that interpolates the value of f(x,y) at (x_i, y_i) and at previous points

7.6.1 Adams-Bashforth Method

2nd order Adams-Bashforth method

$$y_{i+1} = y_i + \frac{h}{2} [3f(x_i, y_i) - f(x_{i-1}, y_{i-1})]$$

3rd order Adams-Bashforth method

$$y_{i+1} = y_i + \frac{h}{12} [23f(x_i, y_i) - 16f(x_{i-1}, y_{i-1}) + 5f(x_{i-2}, y_{i-2})]$$

4th order Adams-Bashforth method

$$y_{i+1} = y_i + \frac{h}{24} [55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3}]$$

7.6.2 Adams-Moulton Method

- An implicit multistep method for solving a first-order ODE
- Use the points (x_i, y_i) and (x_{i+1}, y_{i+1}) to determine the interpolation points
- 2nd order Adams-Moulton method:

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$$

• 3rd order Adams-Moulton method:

$$y_{i+1} = y_i + \frac{h}{12} [5f(x_{i+1}, y_{i+1}) + 8f(x_i, y_i) - f(x_{i-1}, y_{i-1})]$$

• 4th order Adams-Moulton method:

$$y_{i+1} = y_i + \frac{h}{24} [9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2}]$$

7.7 Predictor-Corrector Method

- Solving ODEs using two formulas: predictor and corrector formulas
- The predictor is an explicit formula and is used first to determine an estimate of the solution y_{i+1}
- The corrector is applied once an estimate of y_{i+1} is found, which uses the estimated value of y_{i+1} on the right hand side of an otherwise implicit formula for calculating a new, more accurate value of y_{i+1} on the left hand side
- No solution of a nonlinear equation is required
- The application of corrector formula can be repeated several times to obtain a more refined value

Algorithm for the Predictor-Corrector

- Given a solution at points $(x_1, y_1), (x_2, y_2)...(x_i, y_i)$
- (1) Calculate y_{i+1} using an explicit method
- (2) Substitute y_{i+1} from step (1), as well as any required values from already known solution at previous points, in the right hand side of an implicit formula to obtain a refined value of y_{i+1}
- (3) Repeat Step 2 as many times as necessary untilthe desired level of accuracy

Algorithm: Euler predictor-corrector

- Modified Euler predictor-corrector method
- Calculate a first estimate using Euler's explicit method as a predictor

$$y_{i+1}^{(1)} = y_i + f(x_i, y_i) \cdot h$$

• Calculate better estimates using corrector for k = 2, 3,...

$$y_{i+1}^{(k)} = y_i + \frac{f(x_i, y_i) + f(x_{i+1}, y_{i+1}^{(k-1)})}{2} \cdot h$$

Stop the iteration when:

$$\left| \frac{y_{i+1}^{(k)} - y_{i+1}^{(k-1)}}{y_{i+1}^{(k-1)}} \right| \le \varepsilon$$

Algorithm: Adams-Bashforth and Adams-Moulton

- The explicit formula (Adams-Bashforth) and implicit formula(Adams-Moulton) can be used together as a predictor-corrector method
- For the 3rd order formula, the first estimate is:

$$y_{i+1}^{1} = y_{i} + \frac{h}{12} [23f(x_{i}, y_{i}) - 16f(x_{i-1}, y_{i-1}) + 5f(x_{i-2}, y_{i-2})]$$

• The corrector equation is: (for k = 2, 3...)

$$y_{i+1}^{k} = y_i + \frac{h}{12} [5f(x_{i+1}, y_{i+1}^{k-1}) + 8f(x_i, y_i) - f(x_{i-1}, y_{i-1})]$$

7.8 System of 1st Order ODEs

General form of a system of first-order ODEs:

$$\frac{dy_1}{dt} = f_1(t, y_1, y_2, y_3, ..., y_n)
\frac{dy_2}{dt} = f_2(t, y_1, y_2, y_3, ..., y_n)
\vdots
\frac{dy_n}{dt} = f_n(t, y_1, y_2, y_3, ..., y_n)
y_1(t_1) = Y_1
y_2(t_1) = Y_2
\vdots
y_n(t_1) = Y_n$$

• Solving the system of first-order ODEs:

$$\begin{aligned} t_{i+1} &= t_i + h & y_{1,i+1} &= y_{1,i} + Slope_1 \cdot h \\ y_{2,i+1} &= y_{2,i} + Slope_2 \cdot h \\ &\vdots \\ y_{n,i+1} &= y_{n,i} + Slope_n \cdot h \end{aligned}$$

System of 1st Order ODEs

- Euler's explicit method
- Consider a system of two equations with y and z as the dependent variables:

$$\frac{dy}{dx} = f_1(x, y, z) \qquad \frac{dz}{dx} = f_2(x, y, z)$$

The initial condition:

$$y(a) = y_1 \qquad z(a) = z_1$$

The Euler's explicit method is given by:

$$x_{i+1} = x_i + h$$

$$y_{i+1} = y_i + f_1(x_i, y_i, z_i) \cdot h$$

$$z_{i+1} = z_i + f_2(x_i, y_i, z_i) \cdot h$$

System of 1st Order ODEs: RK method

- Second-order RK Method (modified Euler):
- Consider a system of three equations with y, z, and w as the dependent variables:

$$\frac{dy}{dx} = f_1(x, y, z, w) \qquad \frac{dz}{dx} = f_2(x, y, z, w) \qquad \frac{dw}{dx} = f_3(x, y, z, w)$$

The initial condition:

$$y(a) = y_1$$
 $z(a) = z_1$ $w(a) = w_1$

• The solution process is given by:

$$x_{i+1} = x_i + h$$

$$K_{y,1} = f_1(x_i, y_i, z_i, w_i)$$

$$K_{z,1} = f_2(x_i, y_i, z_i, w_i)$$

$$K_{w,1} = f_3(x_i, y_i, z_i, w_i)$$

System of 1st Order ODEs: RK method

Next calculate the slope K₂:

$$K_{y,2} = f_1(x_i + h, y_i + K_{y,1}h, z_i + K_{z,1}h, w_i + K_{w,1}h)$$

$$K_{z,2} = f_2(x_i + h, y_i + K_{y,1}h, z_i + K_{z,1}h, w_i + K_{w,1}h)$$

$$K_{w,2} = f_3(x_i + h, y_i + K_{y,1}h, z_i + K_{z,1}h, w_i + K_{w,1}h)$$

 Finally the values of the three dependent variables can be calculated:

$$y_{i+1} = y_i + \frac{1}{2}(K_{y,1} + K_{y,2}) \cdot h$$

$$z_{i+1} = z_i + \frac{1}{2}(K_{z,1} + K_{z,2}) \cdot h$$

$$w_{i+1} = w_i + \frac{1}{2}(K_{w,1} + K_{w,2}) \cdot h$$

Example 7-7: Two first-order ODEs

Consider the following initial value problem using 2nd order Runge-Kutta method:

$$\frac{dy}{dx} = (-y+z)e^{(1-x)} + 0.5y \qquad y(0) = 3$$

$$\frac{dz}{dx} = y - z^2 \qquad z(0) = 0.2$$

Write a MATLAB program using h=0.1

Fourth-order RK method

Solve the value of K₁:

$$K_{y,1} = f_1(x_i, y_i, z_i, w_i)$$
 $K_{z,1} = f_2(x_i, y_i, z_i, w_i)$ $K_{w,1} = f_3(x_i, y_i, z_i, w_i)$

Solve the value of K₂ and K₃:

$$K_{y,2} = f_1(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_{y,1}h, z_i + \frac{1}{2}K_{z,1}h, w_i + \frac{1}{2}K_{w,1}h)$$

$$K_{z,2} = f_2(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_{y,1}h, z_i + \frac{1}{2}K_{z,1}h, w_i + \frac{1}{2}K_{w,1}h)$$

$$K_{w,2} = f_3(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_{y,1}h, z_i + \frac{1}{2}K_{z,1}h, w_i + \frac{1}{2}K_{w,1}h)$$

$$K_{y,3} = f_1(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_{y,2}h, z_i + \frac{1}{2}K_{z,2}h, w_i + \frac{1}{2}K_{w,2}h)$$

$$K_{z,3} = f_2(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_{y,2}h, z_i + \frac{1}{2}K_{z,2}h, w_i + \frac{1}{2}K_{w,2}h)$$

$$K_{w,3} = f_3(x_i + \frac{1}{2}h, y_i + \frac{1}{2}K_{y,2}h, z_i + \frac{1}{2}K_{z,2}h, w_i + \frac{1}{2}K_{w,2}h)$$

Fourth-order RK method

Solve the value of K₄:

$$K_{y,4} = f_1(x_i + h, y_i + K_{y,3}h, z_i + K_{z,3}h, w_i + K_{w,3}h)$$

$$K_{z,4} = f_2(x_i + h, y_i + K_{y,3}h, z_i + K_{z,3}h, w_i + K_{w,3}h)$$

$$K_{w,4} = f_3(x_i + h, y_i + K_{y,3}h, z_i + K_{z,3}h, w_i + K_{w,3}h)$$

The value of the dependent variables can be calculated:

$$y_{i+1} = y_i + \frac{1}{6}(K_{y,1} + 2K_{y,2} + 2K_{y,3} + K_{y,4}) \cdot h$$

$$z_{i+1} = z_i + \frac{1}{6}(K_{z,1} + 2K_{z,2} + 2K_{z,3} + K_{z,4}) \cdot h$$

$$w_{i+1} = w_i + \frac{1}{6}(K_{w,1} + 2K_{w,2} + 2K_{w,3} + K_{w,4}) \cdot h$$

7.9 Solving a Higher-Order Initial Value Problem

Consider a second order ODE:

$$\frac{d^2y}{dx^2} = f(x, y, \frac{dy}{dx})$$

The equation can be solved if the initial condition:

$$y(a) = A \quad \frac{dy}{dx}\Big|_{x=a} = B$$

 This equation can be transformed into a system of two first-order ODEs by introducing a new dependent variable w:

$$\frac{dy}{dx} = w y(a) = A$$

$$\frac{dw}{dx} = f(x, y, w) w(a) = B$$

Ex 7-8: Second order differential equation

 Solve the following second order differential equation with the fourth-order Runge-Kutta method

$$\frac{d^2\theta}{dt^2} = -\frac{c}{m}\frac{d\theta}{dt} - \frac{g}{L}\sin\theta$$

This equation can be written as:

Higher-order IVP

For the nth-order IVP with the initial condition:

$$\frac{d^{n}y}{dx^{n}} = f(x, y, \frac{dy}{dx}, \frac{d^{2}y}{dx^{2}}, \dots, \frac{d^{n-1}y}{dx^{n-1}})$$

$$y(a) = A_{1} \qquad \frac{dy}{dx}\Big|_{x=a} = A_{2} \qquad \frac{d^{2}y}{dx^{2}}\Big|_{x=a} = A_{3}, \dots, \frac{d^{n-1}y}{dx^{n-1}}\Big|_{x=a} = A_{n}$$

 Transform the nth-order ODE into a system of n firstorder ODEs using the similar method

$$w_{1} = \frac{dy}{dx} \qquad y(a) = A_{1}$$

$$w_{2} = \frac{dw_{1}}{dx} = \frac{d^{2}y}{d^{2}x} \qquad w_{1}(a) = A_{2}$$

$$w_{3} = \frac{dw_{2}}{dx} = \frac{d^{3}y}{d^{3}x} \qquad w_{2}(a) = A_{3}$$

$$\vdots$$

$$\vdots$$

$$w_{n-1} = \frac{dw_{n-2}}{dx} = \frac{d^{n-1}y}{d^{n-1}x} \qquad w_{n-2}(a) = A_{n-1}$$

System of higher-order IVP

- Any coupled system of higher-order ODEs can also be written as a system of first-order ODEs
- Consider a system of two second order ODEs:

$$\frac{d^2x}{dt^2} = f(x, y, t, \frac{dx}{dt}, \frac{dy}{dt}) \qquad \frac{d^2y}{dt^2} = f(x, y, t, \frac{dx}{dt}, \frac{dy}{dt})$$

This can be written as a system of four first-order ODEs:

$$\frac{dx}{dt} = u$$

$$\frac{dy}{dt} = w$$

$$\frac{du}{dt} = f(x, y, t, u, w)$$

$$\frac{dw}{dt} = f(x, y, t, u, w)$$

MATLAB Built-in functions

Solver Name	Description
ode45	For nonstiff problems, best to apply as a first try for most problems. Single-step method based on fourth and fifth-order explicit Runge–Kutta methods.
ode23	For nonstiff problems. Single-step method based on second and third-order explicit Runge–Kutta methods. Often quicker but less accurate than ode45.
ode113	For nonstiff problems. Multistep method based on Adams–Bashforth–Moulton methods.
ode15s	For stiff problems. Multistep method that uses a variable-order method. Low to medium accuracy.
ode23s	For stiff problems. One-step solver. Can solve some problems that ode15 cannot. Low accuracy.
ode23t	For moderately stiff problems. Low accuracy.
ode23tb	For stiff problems. Uses an implicit Runge–Kutta method. Often more efficient than ode15s.