Modular Arithmetic

30/9/2024

Pre-Session Question: Why is 13 00 equal to 1 a.m.? Is there a general rule on how the hour on 24-hour clock relates to the 12-hour one?

Answer: $12 \mid (a - b)$ aka $a \equiv b \pmod{12}$. For e.g. $12 \mid (13 - 1)$, $12 \mid (14 - 2)$, ...

"
$$\equiv$$
 " Definition
$$a \equiv b \pmod{n}$$
 if $n \mid (a - b)$

More examples:

$$4 \equiv 10 \pmod{3}$$

 $32 \equiv -1 \pmod{11}$
 $42 \equiv 98 \pmod{7}$
 $-6 \equiv 2 \pmod{8}$

To note:

- Negative numbers are allowed.
- $a \equiv r \pmod{n}$ where r is the remainder of a when divided by n and $0 \le r \le n$.

Some Modular Arithmetic Properties

• Addition: If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ $a - c \equiv b - d \pmod{m}$

In particular,

$$ka \equiv kb \pmod{m}$$
 for some integer k

Multiplication: If a ≡ b (mod m) and c ≡ d (mod m), then
 ac ≡ bd (mod m)

 In particular,

 $a^k \equiv b^k \pmod{m}$ for some positive integer k

• Division: If $ac \equiv bc \pmod{m}$,

$$a \equiv b \pmod{\frac{m}{\gcd(m,c)}}$$

In particular,

if $ac \equiv bc \pmod{m}$, gcd(c, m) = 1, then $a \equiv b \pmod{m}$

Complete System of Modulo n

By the division algorithm, any integer is just congruent to one of the numbers $0,1, \dots, n-1$ modulo n and the n numbers $0,1, \dots, n-1$ are not congruent each other modulo n. Therefore, there are totally n different classes modulo n.

Q1: Prove that $6 \mid n \pmod{1} \pmod{2n+1}$ for n is a positive integer, using modular arithmetic.

```
Solution: 6 \mid n \ (n+1) \ (2n+1) \Leftrightarrow 2 \mid n \ (n+1) \ (2n+1) \ and 3 \mid n \ (n+1) \ (2n+1)
2 \mid n \ (n+1) \ (n+2) because either n or n+1 is even.

Then 3 \mid n \ (n+1) \ (2n+1)?
n \equiv 0 \ \text{or } n \equiv 1 \ \text{or } n \equiv 2 \ (\text{mod } 3) [Using the idea of complete system of modulo n]

Case 1: n \equiv 0 \ (\text{mod } 3) \Rightarrow 3 \mid n \Rightarrow 3 \mid n \ (n+1) \ (2n+1)
Case 2: n \equiv 1 \ (\text{mod } 3) \Rightarrow 2n+1 \equiv 2(1)+1 \equiv 3 \equiv 0 \ (\text{mod } 3) \Rightarrow 3 \mid n \ (n+1) \ (2n+1)
Case 3: n \equiv 2 \ (\text{mod } 3) \Rightarrow n + 1 \equiv 2 + 1 \equiv 3 \equiv 0 \ (\text{mod } 3) \Rightarrow 3 \mid n \ (n+1) \ (2n+1)
We are done.
```

Some Modular Contradictions

```
n^{2} \equiv 0 \text{ or } 1 \pmod{3}
n^{2} \equiv 0 \text{ or } 1 \pmod{4}
n^{2} \equiv 0 \text{ or } \pm 1 \pmod{5}
odd^{2} \equiv 1 \pmod{8}
```

Proof: try the complete system of modulo n

As an example, we will try proving $n^2 \equiv 0$ or 1 (mod 4):

By the idea of complete system of modulo n, we know that any integer n belongs to any of the three categories:

$$n \equiv 0 \pmod{4}$$
; $n \equiv 1 \pmod{4}$; $n \equiv 2 \pmod{4}$); $n \equiv 3 \pmod{4}$

Case 1:
$$n \equiv 0 \pmod{4}$$
 $\rightarrow n^2 \equiv 0^2 \equiv 0 \pmod{4}$

Case 2:
$$n \equiv 1 \pmod{4} \implies n^2 \equiv 1^2 \equiv 1 \pmod{4}$$

Case 3:
$$n \equiv 2 \pmod{4}$$
 $\Rightarrow n^2 \equiv 2^2 \equiv 4 \equiv 0 \pmod{4}$

Case 4:
$$n \equiv 3 \pmod{4}$$
 $n^2 \equiv 3^2 \equiv 9 \equiv 1 \pmod{4}$

We only get $n^2 \equiv 0$ or 1 (mod 4) in all four cases. Therefore, we are done.

Q2: Assume that integers x, y and z satisfy

$$(x - y)(y - z)(z - x) = x + y + z.$$

Prove that x + y + z is divisible by 27.

Solution: $x \equiv 0$ or $x \equiv 1$ or $x \equiv 2 \pmod{3}$, and likewise with y and z.

Take a, b and c such that $x \equiv a$, $y \equiv b$ and $z \equiv c \pmod{3}$ and $0 \le a,b,c \le 2$.

Since
$$(x - y)(y - z)(z - x) \equiv x + y + z \pmod{3}$$

We will divide this problem into two cases:

- 1) Two of a,b,c are the same
- 2) None of a,b,c are the same, i.e. (a,b,c) = (0,1,2)

Case 1) If two of a,b,c are the same:

Let a = b.

LHS of eq
$$(1) = 0$$

RHS of eq(1) =
$$a+b+c = 2a + c$$
.

Since 2a + c must be $0 \pmod{3}$, $2a \equiv -c \pmod{3}$. [Note that $2a \equiv -a$ because $3a \equiv 0 \pmod{3}$.] Therefore, $-a \equiv -c \pmod{3} \implies a = c$.

Therefore, a = b = c.

Case 2) none of a,b,c are the same:

RHS of eq(1) =
$$3 \equiv 0 \pmod{3}$$

However, LHS will never be equivalent to 0 (mod 3).

So, case 2 is totally impossible.

Concluding both cases, only the scenario where a = b = c is possible.

Since
$$a = b = c$$
, $3 | x - y$ and $3 | y - z$ and $3 | z - x$.

Therefore, $27 \mid (x-y)(y-z)(z-x)$. We are done.

Note: The solution is a little (just a little) different from what was explained in the lecture because this is way more efficient. In the lecture, I tried to focus more on the natural thought process and it was brute forced.

Two Equal Sets

Let p be a prime and consider $S = \{1, 2, ..., p-1\}$ to be the set of non-zero remainder modulo p. Let a be any integer coprime to p (gcd (p,a) = 1). Then

$$aS \equiv S \pmod{p}$$

For e.g. let p = 5 and a = 3.

Elements of S	1	2	3	4
Elements of 3S	3	6	9	12
Elements of 3S (mod 5)	3	1	4	2

Fermat's Little Theorem

1. Let a be any number. Then

$$a^p \equiv a \pmod{p}$$

in which p is a prime.

2. Let a be a number co-prime to p. Then,

$$a^{p-1} \equiv 1 \pmod{p}$$

(can be proven with two equal sets)

Proof: take
$$S = \{1,2,3,...,p-1\}$$
 and $aS = \{a,2a,3a,...,(p-1)a\}$

$$aS \equiv S \pmod{p}$$

Multiplying all the elements on both side gives (this can be done because the two sets are identical at mod p):

$$a^{p-1} (p-1)! \equiv (p-1)! \pmod{p}$$

Since gcd((p-1)!, p) =1,
 $a^{p-1} \equiv 1 \pmod{p}$

Wilson's Theorem

For a prime p,

$$(p-1)! \equiv -1 \pmod{p}$$

[Although I promised a proof, I decided not to add it because it used the idea of inverse.]

Q3(Myanmar TST 2024): Prove that if p is a prime number congruent to 1 (mod 4), then

$$\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv -1 \pmod{p}$$

Solution: Since $p \equiv 1 \pmod{4}$, let p = 4x + 1 for some x. $\frac{p-1}{2} = \frac{4x+1-1}{2} = 2x$.

Wilson's Theorem: $(p-1)! \equiv -1 \pmod{p}$

$$1.2.3....(p-3).(p-2).(p-1) \equiv -1 \pmod{p}$$

LHS =
$$[1(p-1)] \cdot [2(p-2)] \cdot [3(p-3)] \cdot \dots \cdot [(\frac{p-1}{2}) \cdot (\frac{p+1}{2})]$$

=
$$(p-1^2)(2p-2^2)(3p-3^2)...((\frac{p-1}{2})p-(\frac{p-1}{2})^2)$$

 \equiv (-1²) (-2²) (-3²) ... (-($\frac{p-1}{2}$)²) (mod p) {p's can be eliminated because p-a \equiv -a (mod p)}

$$\equiv ((-1)^{\frac{p-1}{2}}) (1.2.3. \dots \frac{p-1}{2})^2 \pmod{p}$$

$$\equiv ((-1)^{2x}) (\frac{p-1}{2}!)^2 \pmod{p}$$

$$\equiv ((\frac{p-1}{2})!)^2 \pmod{p}$$

Therefore, $((\frac{p-1}{2})!)^2 \equiv -1 \pmod{p}$.

Q4(MOMC 2024 Senior Round 2): Find the remainder when 23 divides 3^{2023} .

Solution: By Fermat's Little Theorem, $3^{22} \equiv 1 \pmod{23}$

$$3^{2023} = (3^{22})^{91}$$
. $3^{21} \equiv 1^{91}$. $3^{21} \equiv 3^{21} \pmod{23}$

$$3^1 \equiv 3 \pmod{23}$$

$$3^2 \equiv 9 \pmod{23}$$

$$3^3 \equiv 27 \equiv 4 \pmod{23}$$

$$3^4 \equiv 3 \cdot 3^3 \equiv 3 \cdot 4 \equiv 12 \pmod{23}$$

$$3^7 \equiv 3^3 \cdot 3^4 \equiv 4 \cdot 12 \equiv 48 \equiv 2 \pmod{23}$$

$$3^{21} \equiv (3^7)^3 \equiv 2^3 \equiv 8 \pmod{23}$$

Therefore, $3^{2023} \equiv 3^{21} \equiv 8 \pmod{23}$. The remainder is 8.