1	2	3a	3b	4	5	6	7	8	TOTAL	
										<u> </u>

1. Determine the number of solutions modulo $3^3 \times 5^3$ of the congruence $X^{20} - 1 \equiv 0 \pmod{3^2 \times 5^2}$.

2. Prove that a real number admits a finite continued fraction if and only if it is rational.

8.	Give a complete proof squares.	of Lagrange Theorem	that states that	t every integer car	n be written as th	e sum of at most four