Pakistan Import / Export Analysis

This data contains all the imports and exports of Pakistan. This is a visualized comparison of the trade over the years from 2015 to 2019. The data was collected from www.pbs.gov.pk - the official website of Beauru of Statistics Pakistan.

Dataset link: https://www.kaggle.com/datasets/idrisonkaggle/import-and-export-data-of-pakistan)

Importing Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.graph_objs as go
import plotly
%matplotlib inline
import warnings # to ignore warnings
warnings.filterwarnings('ignore')
import os
```

Importing Dataset

```
In [251]: imp_data = pd.read_csv("C:/Users/zahid/Downloads/Pakistan Import Export/Strip
exp_data = pd.read_csv("C:/Users/zahid/Downloads/Pakistan Import Export/Strip
```

Introductory Details

In [252]: imp_data.head(10)

Out[252]:

	HSCode	Commodity	Unit	Country	Quantity	Value	Year	
0	1012100	PURE BRED BREEDING HORSES	NO	Argentina	24	14924	2015	
1	1012100	PURE BRED BREEDING HORSES	NO	Belgium	3	1678	2015	
2	1012100	PURE BRED BREEDING HORSES	NO	United Kingdom	4	1245	2015	
3	1019000	OTHER LIVE ANIMALS	NO	Argentina	6	1845	2015	
4	1019000	OTHER LIVE ANIMALS	NO	Ireland	1001	6771	2015	
5	1022110	PURE BRED BREEDING BULLS	NO	Australia	2	611	2015	
6	1022120	PURE BRED BREEDING COWS	NO	Australia	1491	374028	2015	
7	1022120	PURE BRED BREEDING COWS	NO	Netherlands	1930	451031	2015	
8	1022920	OTHER LIVE COWS	NO	Australia	38	6492	2015	
9	1051100	FOWLS (CHICKEN) WT UPTO 185G	NO	France	190882	149753	2015	

In [253]: exp_data.head(10)

	_		
O 4	- Гэ	E 2 1	
UILLI		77	1 1

	HSCode	Commodity	Unit	Country	Quantity	Value	Year
0	1019000	OTHER LIVE ANIMALS	NO	Germany	1	151	2015
1	1051100	FOWLS (CHICKEN) WT UPTO 185G	NO	Oman	1815	752	2015
2	1051100	FOWLS (CHICKEN) WT UPTO 185G	NO	Tajikistan	2900	1232	2015
3	1059400	OTH FOWLS OF THE SPE (CHICKEN)	NO	Oman	3445	348	2015
4	1059900	OTH LIVE POULTRY	NO	Afghanistan	2315653	230074	2015
5	1059900	OTH LIVE POULTRY	NO	Malaysia	50	50	2015
6	1059900	OTH LIVE POULTRY	NO	Oman	8544	3081	2015
7	1059900	OTH LIVE POULTRY	NO	Tajikistan	14000	1232	2015
8	1063200	PSITTACIFORMES(INCL.PARROTS)	NO	Bahrain	4080	1252	2015
9	1063200	PSITTACIFORMES(INCL.PARROTS)	NO	Indonesia	401	160	2015

In [254]: imp_data.tail()

Out[254]:

	HSCode	Commodity	Unit	Country	Quantity	Value	Year
305516	99100000	SAMPLES HAVING NO- COMMER VALUE	VAL	O.Asia(Tai.For.Pe.Ki	NaN	101	2019
305517	99100000	SAMPLES HAVING NO- COMMER VALUE	VAL	Poland	NaN	110	2019
305518	99100000	SAMPLES HAVING NO- COMMER VALUE	VAL	Thailand	NaN	27	2019
305519	99100000	SAMPLES HAVING NO- COMMER VALUE	VAL	United Arab Emirates	NaN	2198	2019
305520	99100000	SAMPLES HAVING NO- COMMER VALUE	VAL	United Kingdom	NaN	265	2019

In [255]: exp_data.tail()

Out[255]:

	HSCode	Commodity	Unit	Country	Quantity	Value	Year
175014	96190090	OTHER SANITARY ARTICLES	DOZ	Japan	4549	21805	2019
175015	96200000	MONOPODS, BIPODS, TRIPODS	NO	Germany	3	161	2019
175016	97011000	PAINTING,DRAWING,PASTELS.	NO	United Arab Emirates	19	411	2019
175017	97019000	OTH COLLAGES&SIMI DECORATIVE	NO	Australia	3	146	2019
175018	97030000	ORIGINAL SCULPTURES&STATUARY	NO	U.S.America	2	229	2019

In [256]: # Import data info imp_data.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 305521 entries, 0 to 305520 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	HSCode	305521 non-null	int64
1	Commodity	305521 non-null	object
2	Unit	305521 non-null	object
3	Country	305521 non-null	object
4	Quantity	298728 non-null	float64
5	Value	305521 non-null	int64
6	Year	305521 non-null	int64
44	Cl+c4	/1\+C1/2\	(3)

dtypes: float64(1), int64(3), object(3)

memory usage: 16.3+ MB

In [257]: # Export data info exp_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 175019 entries, 0 to 175018
Data columns (total 7 columns):

dtypes: float64(2), int64(2), object(3)

memory usage: 9.3+ MB

In [258]: # import describe

imp_data.describe(include='all')

Out[258]:

	HSCode	Commodity	Unit	Country	Quantity	Value	Year
count	305521	305521	305521	305521	298728	305521	305521
unique	NaN	6802	13	243	NaN	NaN	NaN
top	NaN	SAMPLES HAVING NO- COMMER VALUE	KG	China	NaN	NaN	NaN
freq	NaN	806	153783	26706	NaN	NaN	NaN
mean	63602257	NaN	NaN	NaN	383622	91444	2017
std	25220469	NaN	NaN	NaN	28068208	2028040	1
min	1012100	NaN	NaN	NaN	1	1	2015
25%	39211300	NaN	NaN	NaN	40	130	2016
50%	73079200	NaN	NaN	NaN	422	1041	2017
75%	84835090	NaN	NaN	NaN	5604	8546	2018
max	99100000	NaN	NaN	NaN	9475215364	303373679	2019

In [259]: # export describe

exp_data.describe(include='all')

Out[259]:

	HSCode	Commodity	Unit	Country	Quantity	Value	Year
count	175019	175019	175019	175019	173298	174999	175019
unique	NaN	5202	14	221	NaN	NaN	NaN
top	NaN	OTH INST,APP MEDICAL/SUR/VETEN	KG	United Arab Emirates	NaN	NaN	NaN
freq	NaN	852	69914	8712	NaN	NaN	NaN
mean	55476003	NaN	NaN	NaN	261690	76569	2017
std	23843787	NaN	NaN	NaN	3688200	787601	1
min	1019000	NaN	NaN	NaN	1	1	2015
25%	41139000	NaN	NaN	NaN	133	274	2016
50%	61051000	NaN	NaN	NaN	1526	1871	2017
75%	68041000	NaN	NaN	NaN	18675	12397	2018
max	99100000	NaN	NaN	NaN	438547993	109105010	2019

```
In [260]: # import describe on bases of objects
           imp_data.describe(include='object')
Out[260]:
                                         Commodity
                                                      Unit Country
                                            305521 305521
                                                           305521
            count
           unique
                                              6802
                                                       13
                                                              243
                                                      KG
              top SAMPLES HAVING NO-COMMER VALUE
                                                            China
              freq
                                                            26706
                                               806 153783
In [261]: # export describe on bases of objects
           exp_data.describe(include='object')
Out[261]:
                                      Commodity
                                                   Unit
                                                                 Country
                                          175019 175019
                                                                  175019
            count
                                            5202
                                                                     221
            unique
                                                     14
              top OTH INST,APP MEDICAL/SUR/VETEN
                                                    KG United Arab Emirates
                                            852
                                                  69914
                                                                    8712
              freq
In [262]: imp_data.index
Out[262]: RangeIndex(start=0, stop=305521, step=1)
In [263]: exp_data.index
Out[263]: RangeIndex(start=0, stop=175019, step=1)
In [264]: imp_data.columns
Out[264]: Index(['HSCode', 'Commodity', 'Unit', 'Country', 'Quantity', 'Value', 'Yea
           r'], dtype='object')
In [265]: exp_data.columns
Out[265]: Index(['HSCode', 'Commodity', 'Unit', 'Country', 'Quantity', 'Value', 'Yea
           r'], dtype='object')
```

```
In [266]: imp_data["Country"].unique()
                       exp_data["Country"].unique()
'Japan', 'Singapore', 'U.S.America', 'Mauritius', 'D.R.of Congo',
                                       'South Africa', 'Bangladesh', 'Belgium', 'Benin',
'Korea, Republic of', 'Sri Lanka', 'Fiji', 'India', 'Lebanon',
'Philippines', 'U.R.of Tanzania', 'Netherlands', 'Guinea', 'Libya',
'Mozambique', 'Seychelles', 'Sweden', 'Ireland', 'Italy',
                                       'Trinidad and Tobago', 'Greece', 'Albania', 'Tunisia', 'Myanmar',
                                       'Bulgaria', 'Czech Republic', 'France', 'Hungary', 'Lithuania',
                                       'Morocco', 'Poland', 'Portugal', 'Romania', 'Nepal', 'Brazil', 'Algeria', 'Mexico', 'Syrian Arab Republic', 'Maldives', 'Brunei Darussalam', 'Nigeria', 'Denmark', 'Norway', 'Switzerland', 'Kenya', 'Austria', 'Azerbaijan', 'Slovenia', 'Turkmenistan', 'Chile', 'Finland', 'Iceland', 'Latvia', 'Angola',
                                       'Cambodia Fr.Kampuche', 'Georgia', 'Kazakstan', 'Ukraine', 'Gambia', 'Madagascar', 'Estonia', 'Sudan', 'Somalia', 'Panama', 'Botswana', 'Guyana', 'Co,te d,Ivoire(Fr.Iv', 'Martinique', 'Argentina', 'Belarus', 'Comoros', 'Croatia', 'Cyprus', 'Djibouti',
                                       'Haiti', 'Liberia', 'Malawi', 'Malta', 'Mauritania', 'Mayotte',
                                       'Republic of Moldova', 'Reunion', 'Senegal', 'Swaziland', 'Zimbabwe', 'Aruba', 'Cameroon', 'Congo, Republic of',
                                       'Equatorial G.(Ri.Mi)', 'Guinea-Bissau', 'Jamaica', 'Mali', 'Namibia', 'Sao Tome & Principe', 'Sierra Leone', 'Togo', 'Zambia',
                                       'Solomon Islands', 'Dominican Republic', 'Kyrgyzstan/Kyrgyz R.',
                                      'Solomon Islands', 'Dominican Republic', 'Kyrgyzstan/Kyrgyz R.',
'Slovakia/Slovak R.', 'Paraguay', 'Ecuador', 'Peru', 'Uruguay',
'Uganda', 'Colombia', 'Guatemala', 'Venezuela, Bolivar. R', 'Gabon',
'Barbados', 'Costa Rica', 'Bosnia & Herzegovina', 'Ethiopia',
'Niger', 'Macao.China', 'Belize', 'Burundi', "Lao People's D.R.",
'St.Kitts and Nevis', 'Mongolia', 'Grenada',
'St.Vincent/Grenadine', 'Serbia', 'Bahamas', 'Papua New Guinea',
'Rwanda', 'Antigua and Barbuda', 'Armenia', 'Eritrea', 'Nicaragua',
'Cuba', 'Honduras', 'Fr.Yugoslav R.Macedo', 'Korea D.P.Republic',
'New Caledonia', 'Lesotho', 'El Salvador', 'Luxembourg', 'Vanuatu',
'French Polynesia'. 'Puerto Rico'. 'Dominica'.
                                       'French Polynesia', 'Puerto Rico', 'Dominica',
                                       'Burkina Faso(Fr.Up.V', 'Cook Islands', 'St. Lucia', 'Suriname', 'Bolivia', 'Cayman Islands', 'Bermuda', 'Guam',
                                       'Netherlands Antilles', 'British Virgin Is.', 'US.Virgin Islands', 'Cape Verde', 'Chad', 'US.Minor Outlying Is', 'Guadeloupe',
                                       'St.Pierre & Miquelon', 'American Samoa', 'Samoa', 'South Sudan', 'Timor Leste', 'Tuvalu', 'Europien Union', 'Tonga', 'Anguilla', 'French Guiana', 'Central African R.', 'Gibraltar', 'San Marino',
                                       'Andorra', 'Micronesia, F. States', 'Western Sahara (Ri. De',
                                       'Gaza Strip', 'Liechtenstein', 'Monaco', 'Bhutan', 'Bouvet Island', 'Kiribati', 'Montenegro', 'Macedonia', 'French West Indies', 'Heard/Mac Donald Is.', 'Montserrat', 'Turks & Caicos Is.'],
                                    dtype=object)
 In [267]: # the dataset of import and export from the year 2015 to year 2019
                       imp_data["Year"].unique()
                       exp_data["Year"].unique()
```

Out[267]: array([2015, 2016, 2017, 2018, 2019], dtype=int64)

Checking for missing or inconsistent data

```
In [268]: # for Import data
          imp_data.isnull().sum()
Out[268]: HSCode
                     0
          Commodity
                        0
                        0
          Unit
          Country
                        0
          Quantity
                     6793
          Value
                         0
          Year
                         0
          dtype: int64
In [269]: |imp_data = imp_data.dropna()
In [270]: |imp_data.isnull().sum()
Out[270]: HSCode
          Commodity
          Unit
                     0
          Unit v
Country 0
          Quantity
                     0
          Value
                      0
          Year
          dtype: int64
In [271]: # For export data
          exp_data.isnull().sum()
Out[271]: HSCode
                    0
          Commodity
                         0
          Unit
                         0
          Country
                        0
          Quantity
                      1721
          Value
                        20
          Year
                         0
          dtype: int64
In [272]: exp_data = exp_data.dropna()
In [273]: exp_data.isnull().sum()
Out[273]: HSCode 0
          Commodity
                      0
          Unit
                     0
          Country
                     0
          Quantity
                     0
          Value
          Year
          dtype: int64
          Duplicate Values
In [274]: |imp_data.duplicated().sum()
Out[274]: 0
In [275]: exp_data.duplicated().sum()
Out[275]: 0
```

Insights

```
imp_mean_value = imp_data['Value'].mean() # mean of import data
In [276]:
          imp_mean_value
Out[276]: 93155.89027141748
In [277]: imp_median_value = imp_data['Value'].median() # median of import data
          imp_median_value
Out[277]: 1079.0
In [278]: imp_std_value = imp_data['Value'].std() # std of import data
          imp_std_value
Out[278]: 2050837.1321119326
In [279]: | exp_mean_value = exp_data['Value'].mean() # mean of export data
          exp_mean_value
Out[279]: 77284.57531250361
          exp_median_value = exp_data['Value'].median() # median of export data
In [280]:
          exp_median_value
Out[280]: 1912.0
In [281]: exp_std_value = exp_data['Value'].std() # std of export data
          exp_std_value
Out[281]: 791464.0231889783
In [282]: # Import with No. of countries and different commodities
          num_countries = len(imp_data['Country'].unique())
          num_items = len(imp_data['Commodity'].unique())
          print('Pakistan imports from', num_countries, 'different countries.')
          print('Pakistan imports', num_items, 'different items.')
          Pakistan imports from 241 different countries.
          Pakistan imports 6753 different items.
In [283]: # Export with No. of countries and different commodities
          num_countries = len(exp_data['Country'].unique())
          num_items = len(exp_data['Commodity'].unique())
          print('Pakistan exports to', num_countries, 'different countries.')
          print('Pakistan exports', num_items, 'different items.')
          Pakistan exports to 221 different countries.
          Pakistan exports 5156 different items.
```

Visualization

```
In [298]: # Looking for most popular commodities and countries in exports
          Country_data = pd.DataFrame(exp_data['Country'].value_counts())
          Commodity_data = pd.DataFrame(exp_data['Commodity'].value_counts())
          # Create subplots with 1 row and 2 columns
          fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,6))
          # Plot the top 5 countries
          top_countries = Country_data.head(5)
          top_countries.plot(kind='barh', ax=ax1, legend=None)
          ax1.set_title('Top 5 Countries with the Most Exports')
          ax1.set_xlabel('Number of Exports')
          ax1.set_ylabel('Country')
          # Plot the top 5 commodities
          top_commodities = Commodity_data.head(5)
          top_commodities.plot(kind='barh', ax=ax2, legend=None)
          ax2.set_title('Top 5 Commodities with the Most Exports')
          ax2.set_xlabel('Number of Exports')
          ax2.set_ylabel('Commodity')
          plt.tight_layout() # adjust the layout
          plt.show()
```



```
In [285]: # Looking for most popular commodities and countries in import
          Country_data = pd.DataFrame(imp_data['Country'].value_counts())
          Commodity_data = pd.DataFrame(imp_data['Commodity'].value_counts())
          # Create subplots with 1 row and 2 columns
          fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
          # Plot the top 5 countries
          top_countries = Country_data.head(5)
          sns.barplot(x=top_countries['Country'], y=top_countries.index, ax=ax1, color=
          ax1.set_title('Top 5 Countries with the Most Imports')
          ax1.set_xlabel('Number of Imports')
          ax1.set_ylabel('Country')
          # Plot the top 5 commodities
          top_commodities = Commodity_data.head(5)
          sns.barplot(x=top_commodities['Commodity'], y=top_commodities.index, ax=ax2,
          ax2.set_title('Top 5 Commodities with the Most Imports')
          ax2.set_xlabel('Number of Imports')
          ax2.set_ylabel('Commodity')
          plt.tight_layout() # adjust the Layout
          plt.show()
```



```
In [286]: |# Group the data by year and calculate the total imports and exports
          df = imp_data.groupby(['Year']).agg(Value = ('Value','sum'))
          df2 = exp_data.groupby(['Year']).agg(Value= ('Value','sum'))
          # Calculate the trade deficit by subtracting exports from imports
          df['Deficit'] = df2.Value - df.Value
          # Set the format of numbers to display without scientific notation
          pd.set_option('float_format','{:.0f}'.format)
          # Create a line plot for the imports, exports, and deficit
          plt.figure(figsize=(10,6))
          plt.plot(df.index, df['Value'], label='Imports')
          plt.plot(df2.index, df2['Value'], label='Exports')
          plt.plot(df.index, df['Deficit'], label='Trade Deficit')
          # Set the x and y axis labels and title
          plt.xlabel('Year')
plt.ylabel('Value in Millions USD')
          plt.title('Yearwise Imports, Exports, and Trade Deficit')
          plt.legend()
          plt.show()
```



```
In [287]: # Group the data by year and calculate the total imports and exports
          df = imp_data.groupby(['Year']).agg(Value = ('Value','sum'))
          df2 = exp_data.groupby(['Year']).agg(Value= ('Value','sum'))
          # Calculate the trade deficit by subtracting exports from imports
          df['Deficit'] = df2.Value - df.Value
          # Set the format of numbers to display without scientific notation
          pd.set_option('float_format','{:.0f}'.format)
          # Create a bar plot for the imports, exports, and deficit
          fig, ax = plt.subplots(figsize=(10, 6))
          ax.bar(df.index, df['Value'], label='Imports', color='red', width=0.4)
          ax.bar(df2.index + 0.4, df2['Value'], label='Exports', color='green', width=0
          ax.bar(df.index, df['Deficit'], label='Trade Deficit', color='blue', width=0.
          # Set the x and y axis labels and title
          ax.set_xlabel('Year')
ax.set_ylabel('Value in Millions USD')
          ax.set_title('Year-wise Imports, Exports, and Trade Deficit')
          ax.legend()
          plt.show()
```



```
In [293]: # Country wise imports and exports

df3 = imp_data.groupby(['Country']).agg(Value = ('Value', 'sum'))
    df3 = df3.sort_values(by='Value', ascending = False)
    df3 = df3[:5]

df4 = exp_data.groupby(['Country']).agg(Value = ('Value', 'sum'))
    df4 = df4.sort_values(by = 'Value', ascending = False)
    df4 = df4[:5]

sns.set(rc={'figure.figsize':(15,6)})
    axis1 = plt.subplot(121)

sns.barplot(df3.Value, df3.index).set_title('Countrywie Import')

axis2 = plt.subplot(122)
    sns.barplot(df4.Value, df4.index).set_title('Countrywise Export')

plt.tight_layout()
    plt.show()
```



```
In [289]: df5 = pd.concat([df3, df4], axis=1, keys=['Imports', 'Exports'])
df5 = df5.sort_values(('Imports', 'Value'), ascending=False)[:5]

sns.set(rc={'figure.figsize':(15,6)})
ax = df5.plot(kind='bar', stacked=True)

# set x-axis label
ax.set_xlabel('Country')

# set y-axis label
ax.set_ylabel('Value')

# set chart title
ax.set_title('Country-wise Imports and Exports')

plt.tight_layout()
plt.show()
```


In [290]: # A dataframe containing the top 5 countries and their most imported commodition top_countries = imp_data.groupby(['Country']).agg(Total_Value = ('Value', 'sum top_countries = top_countries.sort_values(by='Total_Value', ascending=False).top_commodities = pd.DataFrame() for country in top_countries.index: temp = imp_data[imp_data['Country'] == country].groupby(['Commodity']).ag; temp['Country'] = country top_commodities = pd.concat([top_commodities, temp]) # Plot the scatter plot sns.scatterplot(x='Total_Value', y='Commodity', hue='Country', data=top_commoplt.title('Most imported commodities for top countries') plt.show() # Prover measurement of the provided commodities for top countries for top countries in the provided commodities for top countries in the provided comm


```
In [292]: | df = imp_data.groupby(['Commodity']).agg(Value=('Value','sum'))
          df = df.sort_values(by='Value', ascending = False)
          df = df[:10]
          df['Percentage'] = df['Value']/df['Value'].sum() * 100
          df2 = exp_data.groupby(['Commodity']).agg(Value=('Value','sum'))
          df2 = df2.sort_values(by='Value', ascending=False)
          df2 = df2[:10]
          df2['Percentage'] = df2['Value']/df2['Value'].sum() * 100
          sns.set(rc={'figure.figsize':(20,10)})
          plt.subplot(1,2,1)
          ax = sns.barplot(df['Percentage'], df.index)
          ax.set_title('Commodity Wise Imports')
          ax.set_xlabel('Percentage')
          ax.set_ylabel('Commodity')
          for i, v in enumerate(df['Percentage']):
              ax.text(v + 0.5, i + .10, str(round(v,2)) + '%', color='black', fontsize='
          plt.subplot(1,2,2)
          ax2 = sns.barplot(df2['Percentage'], df2.index)
          ax2.set_title('Commodity Wise Exports')
          ax2.set xlabel('Percentage')
          ax2.set_ylabel('Commodity')
          for i, v in enumerate(df2['Percentage']):
              ax2.text(v + 0.5, i + .10, str(round(v,2)) + '%', color='black', fontsize
          plt.tight_layout()
          plt.show()
```


Follow

Github: https://www.github.com/ZaidArman (<a href="http

Linkedin: https://www.linkedin.com/in/zaid-ullah07 (https://www.linkedin.com/in/zaid-ullah07)

Twitter: https://www.twitter.com/ZaidArman (https://www.twitter.com/ZaidArman)_

Instagram: https://www.instagram.com/zaid arman7 https://www.instagram.com/zaid arman7)

Facebook: https://www.facebook.com/profile.php?id=100011010551170)

Made by 💚 Zaid Ullah 💚