${\bf \acute{I}ndice}$

0.1.	Diseño Propuesto	
	0.1.1. Análisis de realimentación negativa	
0.2.		
	0.2.1. Elemento de Referencia	
	0.2.2. Circuito de Detección	
	0.2.3. Amplificador de Error y Pre-regulador	
	0.2.4. Transistor de Paso	
0.3.		
	0.3.1. Protección Lineal	(
	0.3.2. Protección Foldback	
0.4.		
	0.4.1. Amplificador Operacional	
	0.4.2. Transistores de Paso	
	0.4.3. Componentes de Protección	
	0.4.4. Diodo de Referencia	
	0.4.5. Fuentes de Alimentación	
	0.4.6. Resistencia circuito de detección	
0.5.	Análisis de cargas	10
0.6.		
	0.6.1. Amplificador Operacional	
	0.6.2. Transistores	
	0.6.3. Diodos y Resistencias	
0.7.		
0.8.		
	0.8.1. Respuesta en régimen transitorio de Regulación	
	0.8.2. Respuesta en régimen permanente de Regulación	
	0.8.3. Respuesta en Frecuencia	
	0.8.4. Curva de Foldback	
	0.8.5. Impedancia de Salida	
	0.8.6. Potencias	
0.0	Conclusiones	

0.1. Diseño Propuesto

En la siguiente instancia se realiza una fuente de tensión regulada, la cual se ajusta a las especificaciones de:

$$0V \le V_o \le 9V \qquad \land \qquad I_{o-Max} = 2.5A \tag{1}$$

Se optó por un diseño que muestre tensión y sume corriente, siendo el diseño elegido para la fuente el presentado a continuación.

Figura 1: Circuito regulador de tensión propuesto.

Dicho circuito puede ser separado en 5 bloques fundamentales:

- Amplificador error
- Transistor de paso
- Elemento de referencia
- Circuito de detección
- Circuito de protección

0.1.1. Análisis de realimentación negativa

La teoría de la realimentación negativa plantea que dado un sistema a lazo cerrado ideal, con un número impar de inversiones de fase, la ganancia de este puede aproximarse como la inversa del factor de realimentación si la ganancia de lazo en módulo es mucho mayor a la unidad, es decir

$$P.E. = \frac{A}{1+f \cdot A} = \frac{1}{f} \cdot \frac{|T|}{1+|T|}$$
 (2)

donde A es la respuesta a lazo abierto, f el factor de realimentación y T es la ganancia de lazo. Se puede observar que bajo las condiciones descritas anteriormente, se tiene entonces que

$$P.E. \approx \frac{1}{f}$$
 (3)

Figura 2: Lazo de realimentación negativa.

En el circuito realizado puede observarse un lazo de realimentación negativa el cual posee una inversión de fase producida por el amplificador operacional detallado en la Figura (2). También es de interés observar los siguientes puntos:

- Por tierra virtual, el opamp trabaja para mantener la tensión nula en su terminal negativo.
- El diodo zener consume la corriente necesaria para mantener la caída de tensión sobre este fija.
- El lazo de realimentación trata de fijar una tensión a la salida de la fuente regulada.

Teniendo en cuenta dichos aspectos, es de notar que la fuente realiza un muestreo de tensión a la salida mediante la resistencia R_1 , la cual inyecta una corriente proporcional a la dicha, realizándose una suma de corrientes en el nodo del terminal negativo del amplificador operacional, siendo la referencia la corriente fija proporcionada por la resistencia R_2 .

En resumidas cuentas, el parámetro estabilizado del sistema es

$$P.E. = \frac{V_o}{I_N} = -\frac{V_o \cdot R_2}{|V_z|} = \frac{1}{f} \cdot \frac{|T|}{1 + |T|} \tag{4}$$

Luego, se puede demostrar que la ganancia f se puede aproximar como la razón entre el parámetro que se suma en el lazo y el parámetro que se muestrea, cuando la tensión en el nodo del terminal negativo del opamp es cero, obteniendo así

$$f \approx -\frac{1}{R_1} \tag{5}$$

Si se considera que la ganancia de lazo en módulo es mucho mayor que la unidad dado que se utiliza un opamp como amplificador, se obtiene finalmente que

$$V_o = |V_z| \cdot \frac{R_1}{R_2} \tag{6}$$

0.2. Bloques del Regulador

0.2.1. Elemento de Referencia

El elemento de referencia (o también llamado entrada o generador en un circuito de realimentación negativa) proporciona la tensión de entrada al sistema, la cual comparte nodo con el amplificador error y el circuito de detección, como se mencionó anteriormente.

En cuanto al funcionamiento, el zener está polarizado por V^- y R_Z . Esta etapa del sistema es prácticamente independiente del resto del circuito, y además debe ser altamente estable, es por ello que se utiliza $R_Z >> r_Z$ para evitar variaciones de V_Z , es decir, de la tensión de referencia, con respecto a V^- . Para ello se plantea las ecuaciones propias del nodo V_Z :

Figura 3: Circuito de transistor de paso.

$$\frac{V^{-} - V_Z}{R_Z} + I_Z = \frac{V_Z - V_1}{R_2} \approx \frac{V_Z}{R_2}$$

$$V^{-} - V_Z = \left(\frac{V_Z}{R_2} - I_Z\right) \cdot \frac{1}{R_Z}$$

$$R_Z = R_2 \cdot \frac{V^{-} - V_Z}{V_Z - R_2 I_Z}$$
(7)

0.2.2. Circuito de Detección

El circuito de detección está compuesto por la resistencia R_1 . La caída de potencial sobre esta depende solamente de la tensión a la salida de la fuente, lo que permite generar una corriente proporcional a esta.

Figura 4: Circuito de detección.

De esta manera, se genera una resta de corrientes en el nodo del terminal negativo del operacional, siendo estas la corriente suministrada por la R_2 , la corriente fija suministrada por la R_1 y la corriente del terminal negativo del opamp. Se denomina a esta última corriente como el error de la fuente regulada.

0.2.3. Amplificador de Error y Pre-regulador

Figura 5: Corrientes en circuito de detección, elemento de referencia y operacional.

En la Sección (0.2.2) se analizó como se genera una resta de corrientes en el nodo del terminal negativo del operacional. Se observa que, si se define a la corriente i_1 como la corriente suministrada por la resistencia R_1 , la cual depende de la tensión fija impuesta por el zener, la corriente i_2 como la corriente suministrada por la resistencia R_2 , la cual depende de la tensión que efectivamente provee la fuente regulada, e i_e como la corriente error que atraviesa el terminal negativo del operacional, se tiene que

$$i_e = i_1 - i_2 = \frac{V_o}{R_1} - \frac{-V_z}{R_2} \tag{8}$$

Esta corriente error es amplificada por el operacional para luego ser inyectada a la base del transistor de paso, lo cual aumenta (o disminuye) la tensión a la salida de la fuente regulada, mitigando la corriente de error. Si se da la situación que $i_e = 0$, se observa el resultado obtenido en la Sección (0.1.1) dado que

$$V_o = |V_z| \cdot \frac{R_1}{R_2} \tag{9}$$

Es por ello que el amplificador operacional amplifica el error de la fuente regulada y además entrega la corriente necesaria a la base del transistor de paso.

0.2.4. Transistor de Paso

El transistor de paso se encarga de llevar a cabo las correcciones detectadas por el circuito de detección y amplificadas por el amplificador de error, proveyendo así la corriente necesaria para mantener la diferencia de potencial fija a la salida. Este bloque se puede implementar con un par Darlington integrado, el cual tiene una gran ganancia de corriente, pero en este caso se implementa con un Darlington discreto, el cual debe soportar una corriente y potencia elevada, lo cual se profundiza más adelante en el informe. Por estas razones, se optó por utilizar dos transistores en paralelo para el segundo transistor del par, con la idea de dividir la carga de la siguiente manera:

Figura 6: Circuito de transistor de paso.

siendo Q_2 y Q_3 transistores de potencia. Por otro lado, la función de R_5 es obtener una corriente de colector de Q_1 razonable.

0.3. Protección por Corto-circuito

Implementar una protección de cortocircuito es una sección fundamental en el diseño de una fuente de tensión debido que no se conoce con exactitud que carga va a ser proporcionadas al circuito, como puede ser el caso de que el usuario, en contra-indicación de las especificaciones del equipo, utilice una carga menor a la mínima. En dicha situación, es deseable que el circuito no sufra un daño irreversible. Es por ello que se evaluaron 2 alternativas, las cuales son presentadas a continuación.

0.3.1. Protección Lineal

La implementación de una protección lineal resulta ser la mas sencilla debido a la facilidad de cálculo y que utiliza pocos componentes, como se ve a continuación:

Figura 7: Circuito de Protección lineal.

El cálculo para la resistencia es simple, siendo este

$$R_a = \frac{V_{BE}}{I_{o-Max}}$$

Esta protección limita la corriente de salida del regulador haciéndola constante. Esto es así debido a que el transistor de protección se encuentra censando la tensión sobre la resistencia R_a . Al superar cierto valor $V_a = R_a I_{o-Max}$ el

transistor pasa a modo activo directo, quitándole corriente de la base al de paso. Es por ello que cuenta con la siguiente característica:

Figura 8: Característica de la protección Lineal.

En la Figura (8) se observa que I_{max} corresponde a la máxima corriente que uno define para el circuito, mientras que I_{damage} es la corriente bajo la cual el circuito sufre un daño irreversible.

Se puede notar que en el peor caso $(V_o = 0)$, la corriente de salida, como la caída de potencial sobre el transistor de paso, son máximas, haciendo que también sea máxima la disipación de potencia sobre este.

0.3.2. Protección Foldback

La protección de Foldback es una variación de la lineal, la cual cuenta con 2 resistencias adicionales conectadas de la siguiente manera:

Figura 9: Circuito de Protección Foldback.

Si se desea resolver para I_{o-Max} basta con recorrer la malla:

$$-I_{o-Max} \cdot R_a + V_{BE} - (V_b - V_a) = 0 (10)$$

$$V_b = V_a \cdot \frac{R_c}{R_c + R_b} \tag{11}$$

$$-I_{o-Max} \cdot R_a + V_{BE} + V_a \cdot (1 - \frac{R_c}{R_c + R_b}) = 0$$
 (12)

$$-I_{o-Max} \cdot R_a + V_{BE} + (I_{o-Max} \cdot R_a + V_o) \cdot \frac{R_b}{R_c + R_b} = 0$$
 (13)

lo cual despejando para I_{o-Max} queda:

$$I_{o-Max} = \frac{V_o \cdot R_b + V_{BE} \cdot (R_b + R_c)}{R_a \cdot R_c} \tag{14}$$

De aquí se puede ver que la corriente cae en función de la tensión de salida hasta establecerse en una corriente fija para la carga nula denominada I_{sc} .

$$I_{sc} = V_{BE} \cdot \frac{R_b + R_c}{R_a \cdot R_c} \tag{15}$$

Graficando la curva se obtiene:

Figura 10: Característica de la protección Foldback.

Se puede apreciar la razón de su nombre dado que la curva de la corriente se "dobla" sobre si misma. Si bien armar esta fuente resulta en una mayor cantidad de componentes, el hecho de que reduzca la corriente de paso al tener una carga nula, y que por ello reduzca la potencia consumida, es un factor no menor. Por dicha razón, esta fue la protección elegida para el diseño. A modo ilustrativo se grafica ambas curvas de las protecciones superpuestas.

Figura 11: Característica de la protección Foldback y Lineal.

0.4. Análisis de Componentes

0.4.1. Amplificador Operacional

En la elección del amplificador operacional, se analizaron diversos componentes, siendo estos los presentados a continuación en el siguiente cuadro comparativo:

Amplificador Operacional	GBP [Mhz]	$\mathbf{SR}[rac{\mathbf{V}}{\mu\mathbf{s}}]$	$ m Z_{in}[\Omega]$	$\mathrm{Z}_{\mathrm{out}}[\Omega]$	$I_{ m bias}[A]$	$I_{off}[A]$	$V_{\mathrm{off}}[\mathrm{mV}]$	THD
TL082	3	13	1T	-	30p	5p	3	0.003%
LM324	1	0.3	-	-	45n	5n	2	-
LM833	10	5	-	37	300n	10n	0.3	0.002%
LF356	2.5	12	1T	-	20p	50p	3	-
OP284	4.25	4	-	210	60n	2n	$125 \mathrm{m}$	$\leq 0.005\%$
LM741	1.5	0.5	2M	75	80n	20n	2	-
NE5534	10	13	100k	0.3	500n	20n	0.5	-

Tabla 1: Comparación de operacionales.

Es notable que de todos los integrados el OP284 es rail to rail, lo cual es de gran utilidad si se desea obtener un valor de V_1 inferior. Además, se tuvo en cuenta el GBP, las corrientes de bias, la tension de offset, para optar utilizar el OP284.

0.4.2. Transistores de Paso

Para la sección de transistor de paso, se eligió utilizar los transistores QTIP41C que son transistores de potencia, al igual que un BC547C, utilizando los TIP41C como el transistor por el cual pasará la mayoría de la corriente y el BC547 como el que recibe la corriente del opamp. Adicionalmente se le agrega una resistencia R_5 al emisor del BC547C con el objetivo de que en el analisis incremental el transistor posea un hfe estable. Esto se puede observar claramente en el gráfico de GFE en función de la corriente de colector del datasheet del BC547C, mostrado en la Figura (??).

Figura 12: Gráfico de HFE en función a la corriente de colector del BC547.

Lo que se busca es tener una corriente de colector tal que el hfe se encuentre en la zona azul, sin esta resistencia la corriente de colector probablemente se encontraría en la zona verde, lo cual no corresponde a un hfe estable.

El valor de R_5 se obtiene a partir de la siguiente ecuación:

$$\frac{V_{BE}}{R_5} = I_{R5} \approx I_c \tag{16}$$

Para un valor de 13 mA corresponderá una resistencia de 56 Ω .

0.4.3. Componentes de Protección

Para la elección de estos componentes, se tuvo en cuenta la Ecuación (14) para la cual, dado que se cuenta con dos grados de libertad, se fijó R_a así la potencia disipada en corto-circuito no es de un valor muy elevado. Luego se tomó un valor para R_c , lo cual definió inequívocamente R_b . Para el cálculo de estos valores, se tuvo en cuenta que la máxima corriente (2.5 A) es suministrada únicamente cuando se regule a la tensión máxima. También se observó la pendiente de la curva de Foldback, la cual fue seleccionada para que cuando baje la tensión de regulación, aún tenga una corriente de salida máxima apreciable. Teniendo en cuenta esto, los valores seleccionados son los siguientes:

$$R_a = 0.56 \ \Omega$$
 $R_b = 680 \ \Omega$ $R_c = 10 \ k\Omega$ $I_{o-Max} = 2.5 \ A$ $I_{sc} = 1.34 \ A$ (17)

Donde el valor de I_{sc} queda fijado por la Ecuación (15).

0.4.4. Diodo de Referencia

El diodo zener elegido es el BZX84B6V2L, debido a su reducida corriente de mantenimiento de 5 mA.

Es primordial que el diodo se encuentre bien polarizado para proveer una referencia estable, para ello se fijó una corriente de zener de $I_Z = 5.5 \ mA$, sabiendo que $V_Z = 6.2 \ V$ y utilizando la Ecuación (7). De esta forma se llega a un valor $R_Z = 120 \ \Omega$, siendo adicionalmente el valor de V_2 definido en la Sección (0.4.5), mientras que el valor de R_2 es discutido en la Sección (0.4.6).

0.4.5. Fuentes de Alimentación

En cuanto a la elección de la fuente de alimentación, se buscó el $V_{1_{min}}$ tal que el sistema regule. Para esto, se pidió que el transistor de paso no se encuentre saturado en regulación, en otras palabras:

$$V_{1_{min}}^{Transistor} = V_{CE_{sat}} + V_{O_{reg}} + V_{R_a} = 1.4 \ V + 9 \ V + 1.4 \ V = 11.8 \ V$$
 (18)

Otro punto de interés es la tensión a la salida del operacional, la cual no debe ser mayor a la de alimentación del mismo. Para obtener la variable en este nodo basta con seguir el circuito, observándose que:

$$V_{1_{min}}^{Operacional} = V_o + V_{Ra} + 2 \cdot V_{BE} = 11.8 V \tag{19}$$

Luego, dado que este es el mínimo absoluto, se deja cierto margen de error para la tensión de saturación del transistor, al igual que para variaciones en la tensión de linea, las cuales pueden saturar a alguno de los transistores o al operacional. De esta forma se eligió un valor de $V_1 = 14 \ V$.

Finalmente para V_2 se fijó un valor que sea levemente mayor a la V_Z , tal que con el valor de resistencia R_Z se encuentre polarizado correctamente. Es así que se obtuvo $V_2 = 7 V$.

0.4.6. Resistencia circuito de detección

Dado que la salida en regulación depende directamente de la Ecuación (6), basta con definir un valor de R_1 tal que $V_o = 9 \ V$, dado que la R_1 es un potenciómetro con el cual se varia la tensión de regulación. Así queda definido: $R_1 = 10 \ k\Omega$ (potenciómetro) y $R_2 = 6.8 \ \Omega$

0.5. Análisis de cargas

En la búsqueda de la carga mínima, basta con una vez definida la máxima corriente y la máxima tensión de regulación, queda:

$$R_{Lmin} = \frac{V_{Omax}}{I_{Omax}} = 3.6 \ \Omega \tag{20}$$

Luego la máxima carga corresponde a $R_{LMax} = \infty$

0.6. Análisis de Potencias Máximas

0.6.1. Amplificador Operacional

Como ya analizado en la Sección (0.2.3), el amplificador operacional OP-284 cumplirá la función de suministrar corriente al transistor de paso. Si bien esta corriente suministrada a la base del transistor es pequeña, análisis en la Sección (0.4.5) demuestra que la caída de potencial en el opamp es grande. Por esta razón se debe realizar un análisis de potencia disipada para no quemar a este. Para el caso presente, se observa que el OP284 puede llegar

hasta temperaturas de operación de 125°C. Asumiendo una temperatura ambiente de 40°C, y dejando un margen de seguridad de 15°C en la temperatura del operacional, se calcula que la potencia máxima disipada por operacional será de 0.7 W.

Figura 13: Circuito equivalente de potencias con $R_{\theta a-j}=103~\frac{^{\circ}C}{W}$.

Para hallar la potencia máxima que disipará el amplificador operacional se deben considerar dos modos de funcionamiento de la fuente: en regulación, y cuando la protección se encuentra activada. Cuando la fuente se encuentra regulando, la tensión V_0 será constante, sin embargo, la corriente de salida será cada vez mayor, causando que el operacional deba entregar una corriente mayor a la base del transistor de paso. En este caso, y suponiendo que el transistor de protección esta totalmente apagado, se tiene que la corriente máxima que deberá entregar el opamp será

$$I_{opamp_{max}}|_{reg} = \frac{\frac{I_o}{\beta_{Q_2}} + \frac{V_{BE_{Q_2}}}{R_5}}{\beta_{Q_1}} = \frac{\frac{2.5A}{100} + \frac{0.7V}{56\Omega}}{480} = 78uA$$
 (21)

Luego, utilizando la ley de mallas, se obtiene que

$$V_{opamp_{max}}|_{reg} = V_o + I_{reg_{max}} \cdot R_a + V_{BE_{Q_2}} + V_{BE_{Q_1}} = 11.8V$$
 (22)

Por lo que la potencia máxima disipada por el operacional en regulación será

$$P_{opamp_{max}}|_{reg} = 920.4uW \tag{23}$$

Lo cual estará muy por debajo del máximo.

Por otro lado, cuando se activa la protección de foldback, si bien será menor, el transistor de paso seguirá pidiendole corriente al operacional, mientras que el transistor de protección Q_p también pedirá corriente, la cual será suministrada por el operacional. Se puede observar que aunque la corriente I_o decrezca, la corriente que pedirá Q_p es mediante su colector, por lo que no será reducida en un factor de β_p como sucedía con el transistor de paso, por lo que la corriente que se le pedirá al opamp será mucho mayor que en regulación y el peor caso será cuando la carga tienda a cero.

Sin embargo, la tensión a la salida de la fuente regulada disminuirá, por lo que disminuirá también la tensión en el amplificador operacional, contrarrestando, pero no en su mayoría, el aumento de corriente. En la Sección 0.8.6 se analizó la curva de potencia disipada del operacional cuando la fuente se encuentra cortocircuitada, obteniendo una potencia máxima disipada de $P_{opamp_{max}}|_{cc}=330mW$ el cual se encuentra aún por debajo de la máxima potencia que puede disipar el amplificador operacional.

0.6.2. Transistores

Figura 14: Circuito térmico para el cálculo de disipador del transistor.

$$\frac{T_j - T_a}{R_{\theta jc} + R_{\theta cs} + R_{\theta sa}} = P \tag{24}$$

Asumiendo una temperatura ambiente de 40 °C; una temperatura máxima de juntura en funcionamiento de 140 °C, 20 °C menor a la especificada por el fabricante; la $R_{\theta jc}$ también especificada, de 3.125 $\frac{^{\circ}C}{W}$; el uso de una grasa siliconada de 0.002 pulgadas de espesor con una resistencia térmica de 204 $\frac{^{\circ}C \cdot inch}{W}$, y área estándar de un empaquetado de TO-220 de 0.41 · 0.59 $inch^2$, obteniendo una $R_{\theta cs}$ de 1.6866 $\frac{^{\circ}C}{W}$; y finalmente una potencia disipada de 9.6 W, levemente mayor a la máxima disipada; se obtiene

$$R_{\theta sa} = 4.57 \frac{^{\circ}C}{W} \tag{25}$$

0.6.3. Diodos y Resistencias

■ Diodo zener: Se obtiene que

$$P_z = I_z^2 \cdot r_z + I_z \cdot V_z = 34.4 mW \tag{26}$$

La máxima potencia capaz de disipar dicho diodo es de 250mW, por lo que este componente se encuentra en perfectas condiciones.

■ R_a : Será

$$P_{Ra} = I_{max}^2 \cdot R_a + = 3.5W \tag{27}$$

Utilizando una R_a de potencia.

■ R₅: La potencia será

$$P_{R5} = I_{R5}^2 \cdot R_5 = 9.46mW \tag{28}$$

será una resistencia de 0.25W

 $\blacksquare R_2 \operatorname{ser\'a}$

$$P_{R2} = \frac{V_z^2}{R_2} = 57mW \tag{29}$$

 $\blacksquare R_z \text{ será}$

$$P_{Rz} = \frac{(V^- - V_z)^2}{R_z} = 5.33mW \tag{30}$$

0.7. Rendimiento

0.8. Simulaciones

0.8.1. Respuesta en régimen transitorio de Regulación

La respuesta transitoria del sistema se asemeja a la de un sistema de segundo orden como se observa a continuación: ¹

 $^{^{1}}$ Todos los gráficos a continuación fueron realizados con una carga igual a la mínima que el sistema soporta

Figura 15: Respuesta transitoria.

Es notable señalar, que el sobrepico del sistema alcanza 9.15V, lo cual es un 1.6 % de desvío respecto de la tensión de regulación, y también observar que el tiempo de establecimiento del sistema es aproximadamente 22 μs . Además se simuló el circuito siendo afectado por ruido, con una frecuencia de 10kHz y una amplitud de 0.5V, estos valores fueron elegidos asi es apreciable la variación durante el transitorio.

Figura 16: Respuesta transitoria con ruido.

Si bien la imagen es realmente similar, esto se debe a la frecuencia del ruido, aun así se puede apreciar una diferencia de las pequeñas oscilaciones generedadas por el ruido en la tensión estabilizada en 9V. En cuanto a los parámetros del transitorio, el máximo sobrepico alcanzado es de 9.15V y el tiempo de establecimiento es de aproximadamente $32 \mu s$.

0.8.2. Respuesta en régimen permanente de Regulación

En el caso del regiment permantente se verá la capacidad de mantener al tensión regulada en la salida. En el caso de que la señal no tenga ruido la tensión regulada será $9\ V$ sin ningún tipo de variación.

Figura 17: Respuesta en régimen permanente.

Lo cual es perfectamente esperable, ahora veremos como es la respuesta frente a señales con distintos tipos de contaminación. Para la primer prueba se vera la señal original, con la adición de una señal senoidal de 10 kHz de amplitud 0.5 V. La salida es la siguiente:

Figura 18: Respuesta en régimen permanente con ruido senoidal.

Se puede ver que el desvío respecto de los 9 V es del 0.14 %. Luego se agregó adicionalmente una señal triangular de frecuencia 50 Hz y amplitud unitaria.

Figura 19: Respuesta en régimen permanente con ruido senoidal y triangular.

Es notable que incluso con estas dos fuentes de ruido, de distinta amplitud y frecuencia el sistema continúa regulando con un desvio no mayor del $0.24\,\%$.

0.8.3. Respuesta en Frecuencia

0.8.4. Curva de Foldback

La curva correspondiente al foldback fue simulada y graficada como se ve a continuación:

Figura 20: Curva de Foldback.

Se puede apreciar, que la máxima corriente es de 2.5A como fue calculado al igual que el valor de I_{sc} , vale la pena mencionar que a medida que se varíe la R_1 variará la corriente máxima de salida acorde a la ecuación (14)

0.8.5. Impedancia de Salida

La impedancia de salida fue simulada y graficada:

Figura 21: Impedancia de salida.

Se observa que la impedancia de salida es baja para la mayor parte del espectro, no superando nunca los 220Ω .

0.8.6. Potencias

En esta sección se simularon las curvas de potencias sobre los componentes al variar la carga del circuito.

■ Diodo Zener: Se puede ve que la máxima potencia disipada corresponde a la mínima caraga, dicha potencia es de 37mW lo cual no es un problema para dicho diodo.

Figura 22: Potencia sobre el zener.

■ BC547C Darlington: La máxima potencia es de 330mW lo cual no es un problema para dicho transistor, al igual que la anterior curva se observa un aumento considerable una vez que se activa el foldback, pero aun en la zona de operación tiene una pendiente.

Figura 23: Potencia sobre el BC547C del darlington.

• R_a : La potencia máxima disipada corresponde a 3.5W lo cual es esperado dado que es $R_a \cdot I_{max}^2$

Figura 24: Potencia sobre la R_a .

■ TIP31C: La potencia sobre estos transistores de potencia es de 9W, lo cual indica que un disipador debe ser utilizado para su correcto funcionamiento.

Figura 25: Potencia sobre el TIP31C.

■ BC547 Protección: Se debe notar que el transistor consume nada de potencia, hasta el momento en el cual se activa, alcanzando un limite de 60mW.

Figura 26: Potencia sobre el BC547C de la protección.

• Operacional: Para el operacional se observa que la máxima potencia corresponde a 330mW para la carga nula, y vale la pena mencionar que al medir la potencia en spice, tambien son consideradas las corrientes de alimentación.

Figura 27: Potencia sobre el operacional.

■ Carga: Se observa que el crecimiento es lineal hasta la activación de la protección y luego sigue la curva del foldback, teniendo una potencia máxima de 22.5W.

Figura 28: Potencia sobre la carga.

0.9. Conclusiones

En la siguiente sección, se busca elaborar una fuente regulada de tensión que cumpla con una salida que varíe entre $0\ V\ y\ 9\ V$, con una corriente de salida máxima de $2.5\ A$. Dado que la tensión mínima debe ser nula, se implementó un regulador serie que utiliza un lazo de realimentación negativa que muestrea tensión y suma corriente, siendo así el circuito resultante el presentado a continuación.

$$\frac{V^{-} - V_Z}{R_Z} + I_Z = \frac{V_Z}{R_9} \tag{31}$$