2015 Fall CS 333402 Engineering Mathematics Midterm (I)

- 1. (7%) Solve the initial value problem of the ODE: $xy^2y'=y+1\;;\;y(4e^{-3})=3$
- 2. (10%) Solve the general solution of the ODE: $y' = \frac{3x y 11}{x + y + 3}$
- 3. (8%) Solve the general solution of the ODE: $y' = \frac{x^3 y^3}{xy^2}$

- 4. (10%) Given an ODE y'+P(x)y=Q(x). Show that it has an integrating factor $I(x)=e^{\int P(x)dx}$, and the general solution of the ODE is $y(x)=\frac{1}{I(x)}\Big[\int Q(x)I(x)dx+c\Big]$ where c is arbitrary constant.
- 5. (10%) Solve the general solution of the ODE: $y' + 2xy = x^2 + y^2$

The state of the s

6. (10%, 5%) Given an ODE: $(2x^2y^2 + xy)dx + (x^3y + xy)dy = 0$. Please find an integrating factor such that the ODE becomes exact after multiplying the integrating factor into the original ODE. What is the general solution of this ODE?

1

- 7. (10%) Given an ODE: $y' = P(x)y^2 + Q(x)y + R(x)$, with a particular solution S(x). Show that the original ODE will become a first-order linear ODE with respect to z(x) if the general solution $y = S(x) + \frac{1}{z(x)}$.
- 8. (10%) Solve the general solution of the ODE: $x^4y' = x^3y 2y^3$
- 9. (6%, 6%) In the following circuit, the capacitor is initially discharged and R is $100\text{k}\Omega$. How long after the switch is closed will the capacitor voltage be 50 volts? Determine the current in the resistor at the time. (Here μF denotes 10^{-6} farads.)

10. (8%) A cup contains B₀ number of bacteria initially. At the time of 1 hour, the number of bacteria is 3B₀. If the growth rate of bacteria is proportional to the number of bacteria N(t) presented at time t, determine the time required for the number of bacteria to 20B₀.

$$U = \chi - 2$$

$$10 = \frac{4+5}{\chi - 2}$$