На правах рукопису

Копаліані Дар'я Сергіївна

УДК 004.032.26

Еволюційні нейро-фаззі мережі з каскадною Структурою для інтелектуального аналізу данних

05.13.23 — системи та засоби штучного інтелекту

Дисертація на здобуття наукового ступеня кандидата технічних наук

Науковий керівник **Бодянський Євгеній Володимирович**, доктор технічних наук, професор

3MICT

Розділ 1. Багатовимірна каскадна нейро-мережа, що еволюціо-	
нує	3
1.0.1. Оптимізація вихідних сигналів пул	у нео-фаззі нейронів
багатовимірної каскадної системи, і	цо еволюціонує 3
Список використаних джерел	5

РОЗДІЛ 1

БАГАТОВИМІРНА КАСКАДНА НЕЙРО-МЕРЕЖА, ЩО ЕВОЛЮЦІОНУЄ

Задача прогнозування багатовимірних часових рядів доволі часто виникає у багатьох технічних, медико-біологічних та інших дослідженнях, де якість прийнятих рішень істотно залежить від точності синтезован

1.0.1. Оптимізація вихідних сигналів пулу нео-фаззі нейронів багатовимірної каскадної системи, що еволюціонує. Вихідні сигнали нейронів пулу кожного каскаду пропонується об'єднати узагальнюючим нейроном $GN_d^{[m]}$, що його було введено у ??? розділі. Таким чином, у кожному каскаді системи маємо g $GN_d^{[m]}$ елементів, що узагальнюють вихідні сигнали нейронів пулу для кожного елементу вихідного вектору:

$$\hat{y}_d^{*[m]}(k) = \left(\hat{y}_{d1}^{[m]}(k), \hat{y}_{d2}^{[m]}(k), \dots, \hat{y}_{dq}^{[m]}(k)\right)^T; \tag{1.1}$$

Нагадаймо, точність вихідного сигналу узагальнюючих елементів має бути не меншою від точності будь-якого сингналу, що узагальнюється (подається на вхід до $GN_d^{[m]}$). Рекурента форма метод навчання «на плаваючому вікні» елементів $GN_d^{[m]}$ кожного каскаду має вигляд

$$\begin{cases} \tilde{P}_{d}^{[m]}(k+1) = P_{d}^{[m]}(k) - \frac{P_{d}^{[m]}(k)\hat{y}_{d}^{[m]}(k+1)\hat{y}_{d}^{[m]T}(k+1)P_{d}^{[m]}(k)}{1 + \hat{y}_{d}^{[m]T}(k+1)P_{d}^{[m]}(k)\hat{y}_{d}^{[m]}(k+1)}, \\ P_{d}^{[m]}(k+1) = \tilde{P}_{d}^{[m]}(k+1) + \\ \frac{\tilde{P}_{d}^{[m]}(k+1)\hat{y}_{d}(k-s+1)\hat{y}_{d}^{[m]T}(k-s+1)\tilde{P}_{d}^{[m]}(k+1)}{1 - \hat{y}_{d}^{[m]T}(k-s+1)\tilde{P}_{d}^{[m]}(k+1)\hat{y}_{d}^{[m]}(k-s+1)}, \\ \hat{y}_{d}^{*[m]}(k+1) = \frac{\hat{y}_{d}^{[m]T}(k+1)P_{d}^{[m]}(k+1)E}{E^{T}P_{d}^{[m]}(k+1)E}, \end{cases}$$

$$(1.2)$$

а у випадку, коли s = 1:

$$\hat{y}_{d}^{[m]}(k+1) = \frac{\hat{y}_{d}^{[m]T}(k+1)\hat{y}_{d}^{[m]}(k+1)}{E^{T}\hat{y}_{d}^{[m]}(k+1)}$$

$$= \frac{\left\|\hat{y}_{d}^{[m]}(k+1)\right\|^{2}}{E^{T}\hat{y}_{d}^{[m]}(k+1)}$$

$$= \frac{\sum_{j=1}^{q} \left(\hat{y}_{d}^{[m]}(k+1)\right)^{2}}{\sum_{j=1}^{q} \hat{y}_{d}^{[m]}(k+1)}.$$
(1.3)

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ