BAS	- 24

Roll No.					

Name of the Course: B. Tech Year: 2nd Semester: III Major Examination: 2016-17

Subject Name: Applied Computational Methods

Time: 3 hrs.

Max. Marks: 40

Note: Attempt all questions. Each question carries equal marks.

Q.1 Attempt any three of the following. Q. 1(a) is compulsory

Marks

(a) (i) Find the positive root of 2x = Cos x + 3 by Bisection method.

4

- (ii) Evaluate $\left(\frac{\Delta^2}{E}\right)x^4$
- (b) Determine the root of $x^4 + x^3 7x^2 x + 5 = 0$ by method of False Position which 3 lies between 2 and 3 correct to three decimal places.
- (c) Solve the system of equations

$$2x - 6y + 8z = 2$$

3

3

$$5x + 4y - 3z = 2$$

$$3x + y + 2z = 16$$

by Crout's method.

(d) Solve the system of equations by Gauss – Seidel iteration method upto the fifth iterations.

$$54x + y + z = 110$$

$$2x+15v+6z=72$$

$$-x+6y+27z=85$$

- Q.2 Attempt any three of the following. Q. 2(a) is compulsory.
 - (a) Find the interpolating polynomial for the following data.

4

x	0	1	2	5
f(x)	2	3	12	147

Also evaluate $\int_{0.1}^{1.1} x^{1/2} e^{-x} dx$ by Simpson's one third rule by taking h = 0.1.

Using Simpson's 3/8 rule with h = 0.1 evaluate $\int_0^{0.8} (1 - \frac{1}{4} Sin^2 x)^{1/2} dx$ by tabulating the integrand to five places after decimal.

3

(c) Compute the value of definite integral $\int_{2}^{1.4} (Sinx - \log_{e} x + e^{x}) dx$ by Trapezoidal rule

3

х	5	10	15	20	25	30
у	7 .	y ₁	13	15	y_2	25

- Q. 3 Attempt any three of the following. Q. 3(a) is compulsory.
 - (a) Solve the difference equation

$$u_{n+2} - 2u_{n+1} + 4u_n = -2^n \{6\cos\frac{n\pi}{3} + 2\sqrt{3}\sin\frac{n\pi}{3}\}$$

3

3

3

- (b) Solve $\frac{dy}{dx} = x + y^2$ given y(0) = 0, by Picard's method up to third approximation.
- (c) Using Euler's method, find an approximate value of y corresponding to x = 1.6 given 3 $\frac{dy}{dx} = y^2 \frac{y}{x}$ and y(1) = 1.
- (d) Solve the following by Euler's modified method the equation $\frac{dy}{dx} = \log_{10}(x+y) + x^2, \quad y(0) = 2 \text{ at } x = 1.0 \text{ with } h = 0.2.$
- Q.4 Attempt any three of the following. Q. 4(a) is compulsory.
 - (a) Suppose the number of telephone calls on an operator received from 9.00 AM to 9.05 AM follow a Poisson distribution with mean 3. Find the probability that
 - (i) The operator will receive no calls in that time interval tomorrow.
 - (ii) In the next three days the operator will receive a total of 1 call in that time interval.
 - (b) Find the coefficient of correlation and obtain the equation of lines of regression for the data

***** ** *** * * * * * * * * * * * * *	Х	6	2	10	4	8
	y ·	9	11		8	7

(c) Calculate the Karl Pearson's coefficient of skewness from the given data

Life time in months	30- 40	40- 50	50- 60	60- 70	70- 80	80- 90	90- 100	100- 110	110- 120	3
No. of mobiles	4	6	8	26	28	12	8	5	3	

(d) Calculate the first four moments of the following data about the mean.

Values	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Freque -	1	20	69	108	78	22	2
ncy			82				

Also calculate the coefficient of skewness.