Ideal Timing for a Starting Pitcher Change

Depending on the latent class for each situation

2024/06/07

YSAL 4기 TEAM BASEBALL 김지원, 송화윤, 이주원, 이환욱, 전희연, 정현지

Contents.

01 Introduction

- work cited

02 Process

- data preprocessing
- EM algorithm
- Expected run value

73 Result

- analysis of results

04

Discussion

01. Introduction

Work Cited.

"A Prediction Model of Runs Allowed Based on Latent-Class

Markov Chain for Starters of Professional Baseball Pitchers"

- 1. Consider pitcher's ability & the condition of the game day & batting order
- 2. EM algorithm을 사용하여 상황 별 잠재 클래스 할당
- 3. 잠재 클래스 별로 각각의 transition matrix 생성
- 4. 이닝별 기대 득점 계산
- 5. 선발 투수 교체 타이밍 제안

02. Process

Data.

Data: Player's ability.

투수의 컨디션 투수의 능력 타자의 능력 Pitcher's ability Pitcher's condition batter's ability 직전 게임까지의 누적 바로 직전 이닝의 현재 상황의 상대 타자의 타순 WHIP WHIP ERA **ERA** GO/FO% GO/FO% K/9 K/9 1이닝은 모든 변수를 0으로 설정

- WHIP (walks and hits per play) : 이닝당 출루허용률
- ERA (earned run average) : 평균자책점, 9이닝당 실점율
- GO/FO% (Ground out/ fly out ratio): 땅볼 아웃 / 플라이 아웃 비율
- K/9:9이닝당 탈삼진 수

Data: State.

STATE

NEW STATE

- 총 25개의 state존재
- transition matrix : 특정 state에서 다른 state로 갈 확률을 Matrix로 나타낸 것
- 특정 state를 시작점 지정한 뒤 simulation을 계속 반복하여 기대 득점을 구할 수 있음

타석

CLUSTERING.

EM algorithm에 넣기 전, 직전 이닝의 지표들을[[WHIP, ERA, GO/FO%, K/9]]이용하여 투수의 컨디션을 4가지 index로 누적 [[WHIP, ERA, GO/FO%, K/9]]을 이용하여 투수의 능력을 4가지 index로 클러스터링

CLUSTERING.

K-Means/GMM

1. 변수 네 개를 한 번에 설명하기 어려움. 2. pitcher's condition에 대한 클러스터링이 잘 수행되지 않음

KOHONEN'S SOM

1. 연산속도가 빠름 2. 변수의 개수가 많더라도 직관적으로 시각화 가능

: expectation-maximization algorithm

Definition

관측되지 않는 잠재변수에 의존하는 확률 모델에서 최대가능도(maximum likelihood)나 최대사후확률 (maximum a posteriori, MAP)을 갖는 모수의 추정값을 찾는 반복적인 알고리즘

E - Step

Likelihood의 expectation을 계산

M - Step

Likelihood의 expectation을 최대화하는 새로운 모수 제안

: expectation-maximization algorithm

In this case..

- Z: 모든 상황을 담은 Latent Class

- S: 타자의 타석 전 State (현재 상황)

- Y: 타자의 타석 후 State (미래 상황)

- X: Row별로 투수의 능력, 당일 선수 컨디션, 타순에 대한 정보를 담은 모든 Row E-step

Posterior:
$$p\left(z_k \middle| \mathbf{x}, y_j, s_i\right) = \frac{p(\mathbf{x} \middle| z_k) p\left(y_j \middle| s_i, z_k\right) p(z_k)}{\sum_{k=1}^K p(\mathbf{x} \middle| z_k) p\left(y_j \middle| s_i, z_k\right) p(z_k)}.$$
 (14)

M-step

Prior:
$$p(z_k) = \frac{\sum_{j=1}^{J} \sum_{i=1}^{I} \sum_{m_1=1}^{M_1} \cdots \sum_{m_L=1}^{M_L} p\left(z_k \middle| \mathbf{x}, \mathbf{y}_j, s_i\right)}{\sum_{k=1}^{K} \sum_{j=1}^{J} \sum_{i=1}^{I} \sum_{m_1=1}^{M_1} \cdots \sum_{m_L=1}^{M_L} p\left(z_k \middle| \mathbf{x}, \mathbf{y}_j, s_i\right)}.$$
 (15)

Emission1:
$$p(x_{m_l}^l|z_k) = \frac{\sum_{j=1}^{J} \sum_{i=1}^{I} \sum_{m_1=1}^{M_1} \cdots \sum_{m_{l-1}}^{M_{l-1}} \sum_{m_{l+1}}^{M_{l+1}} \cdots \sum_{m_L=1}^{M_L} p(z_k | \boldsymbol{x}, y_j, s_i)}{\sum_{j=1}^{J} \sum_{i=1}^{I} \sum_{m_1=1}^{M_1} \cdots \sum_{m_L=1}^{M_L} p(z_k | \boldsymbol{x}, y_j, s_i)}$$
 (16)

Emission2:
$$p(y_j|s_i, z_k) = \frac{\sum_{m_1=1}^{M_1} \cdots \sum_{m_L=1}^{M_L} p(z_k | \mathbf{x}, y_j, s_i)}{\sum_{j=1}^{J} \sum_{i=1}^{I} \sum_{m_1=1}^{M_1} \cdots \sum_{m_L=1}^{M_L} p(z_k | \mathbf{x}, y_j, s_i)}$$
 (17)

The EM algorithm iterates the E-step and M-step until the log-likelihood converges.

: expectation-maximization algorithm

k = 6으로 설정

summation

1. Multivariate Multinomial Mixture Model 가정

2. Assign random values

summation: 1
- prior: p(z_k)

p(z_0) p(z_1) p(z_2) p(z_3) p(z_4) p(z_5)

6 X 1

-emssion1: $p(x | z_k)$

$$p(x = 0 | z_{-}0) p(x = 0 | z_{-}1)$$

$$p(x = 1 | z_{-}0)$$

$$p(x = 143 | z_{-}0)$$

$$144 \times 6$$

* 가능한 x의 값은 총 144개 (4 X 4 X 9)

- emission2 : p(y_j | s_i , z_k)

- 3. Compute posterior (앞 페이지의 수식에 따라)
- 4. Compute the log likelihood of the posterior (len(df) X 25 X 25 X 6)
- 5. Update prior / emissions
- 6. keep updating while new likelihood is less than old likelihood
- 7. train완료한 3개의 matrix를 .npz 파일로 저장
- 8. 새로운 data의 x,s,y를 넣어 (6,1)의 posterior probs를 얻음

: expectation-maximization algorithm

E - step

```
numerator1 = np.multiply(self.emissions2, np.reshape(self.prior, (1, self.C))) # (25,25,6)
numerator2 = self.emissions1[dataset["x"],:] #(len(train_),6)
numerator2_ = numerator2[:, np.newaxis, np.newaxis, :]

numerator = np.multiply(numerator2_, numerator1)

denominator = np.sum(numerator, axis=3)
denominator_ = np.expand_dims(denominator, axis=3)
posterior_estimate = np.divide(numerator, denominator_) # (len(train),25,25,6)

likelihood = np.sum(np.log(numerator))

likelihood_list.append(likelihood)
print("Mixture model training: epoch ", current_epoch, ", likelihood = ", likelihood)

delta = likelihood - old_likelihood
old_likelihood = likelihood
```

Predict

M - step

```
numerator = self.smoothing + np.sum(np.sum(np.sum(posterior_estimate, axis=0),axis=0)
denominator = self.smoothing * self.C + np.sum(posterior_estimate)
self.prior = np.divide(numerator, denominator)
numerator2 = self.smoothing + np.zeros((self.ks[0], self.C))
np.add.at(numerator2, dataset["x"], np.sum(np.sum(posterior_estimate,axis=1),axis=1))
numerator1 = np.sum(posterior_estimate, axis=0)
denominator2 = self.smoothing * self.ks[0] + np.sum(np.sum(np.sum(posterior_estimate,axis=0),axis=0),axis=0)
denominator1 = self.smoothing * self.ks[1] + np.sum(np.sum(np.sum(posterior_estimate,axis=0),axis=0),axis=0)
self.emissions1 = np.divide(numerator2, np.reshape(denominator2, (1, self.C)))
self.emissions2 = np.divide(numerator1, denominator1)

if likelihood > max_likelihood :

np.savez(path + '/em4.npz', arrayl=self.prior, array2= self.emissions1, array3=self.emissions2)
max_likelihood = likelihood

current_epoch += 1
```

>> 해당 sequence에서의 상황을 형식을 맞춰 x,s,y로 넣어주면 그 상황이 어떤 class에 속하는 지 확률값을 반환해줌

EM clustering.

: 6개의 cluster (z0 ~ z5)로 타격 상황 및 투수 특징 분석

Class	Z1	Z2	Z 5	
Pitcher's ability	Good WHIP,ERA	Good WHIP,ERA	Bad WHIP,ERA	
	High FO ratio	High FO ratio	High FO ratio	
	Bad K/9	Bad K/9	Good K/9	
Pitcher's condition	Bad WHIP	Bad WHIP, K/9	Bad WHIP	
	Good K/9	High FO ratio	Good K/9	
	Normal GO/FO ratio	Good ERA	Normal GO/FO ratio	
Batting order	4th	1st	2nd	
Example	Darin Ruf	Acuna Jr.	Juan Soto	
	vs Kim.K	vs Will Crowe	vs Tayler Widener	

transition matrix

$$P = \begin{pmatrix} A & B & C_0 & d_0 \\ \mathbf{0} & A & B & e_1 \\ \mathbf{0} & \mathbf{0} & A & f \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & 1 \end{pmatrix}$$

특정 Base occupation과 out 상황에서 다른 State로의 변환 확률을 나타내는 (25,25) Matrix

$$\mathbf{A} = \begin{pmatrix} p_{HR} & p_S + p_W & p_D & p_T & 0 & 0 & 0 & 0 \\ p_{HR} & 0 & 0 & p_T & p_S + p_W & 0 & p_D & 0 \\ p_{HR} & p_S & p_D & p_T & p_W & 0 & 0 & 0 \\ p_{HR} & p_S & p_D & p_T & 0 & p_W & 0 & 0 \\ p_{HR} & 0 & 0 & p_T & p_S & 0 & p_D & p_W \\ p_{HR} & 0 & 0 & p_T & p_S & 0 & p_D & p_W \\ p_{HR} & p_S & p_D & p_T & 0 & 0 & 0 & p_W \\ p_{HR} & p_S & p_D & p_T & 0 & 0 & 0 & p_W \\ p_{HR} & 0 & 0 & p_T & p_S & 0 & p_D & p_W \end{pmatrix}$$

A: no out-count increase

$$\boldsymbol{B} = p_{o} \boldsymbol{I}$$
,

B: out-count after at bat C: 0 to 2 outs (double play) d: 0 to 3 outs (triple play) e: double play from 1 out

$$\boldsymbol{f} = (p_0, \dots, p_0)^{\mathrm{T}}.$$

f:2 to 3 outs

Real Matrix

	000 0	000 1	000 2	001 0	001 1
00 0	0.0351985151	0.6808592512	0	0.004142333288	0
00 1	0	0.03187399231	0.6910889247	0	0.003596676175
00 2	0	0	0.03216363006	0	0
01 0	0.03378378378	0.1936936937	0.004504504505	0.009009009009	0.4189189189
01 1	0	0.02884615385	0.2025641026	0	0.005128205128
01 2	0	0	0.03194390339	0	0
10 0	0.02584954981	0.001742666279	0.004647110078	0.005227998838	0.2065059541
10 1	0	0.02980265807	0.003221908981	0	0.005034232783

algorithm

$$U_{n|i} = \sum_{r=0}^{4} U_{n-1|i-r} P^{(r)}.$$
 $(i = 1, 2, ..., R_{max} + 1), i > r$

z0~z5에 대한 matrix P

$$ER = \sum_{i=1}^{R_{\text{max}}+1} u_i \times (i-1)$$
.

compute U

0000 1000 ... •

compute U

- U_{n-1}

STATE 0000 1000 ...

calculation

Weighted ER

특정 상황에서 각각의 Latent Class에 속할 확률을 가중치로 가지는 Transition Matrix를 생성하여 상황마다의 각기 다른 Transition Matrix을 이용하여 Expected Run 계산

03. Result

Result.

: Expected Runs

- 상황 별 ER 계산

p_ability	X	s	У	p_z	Z	bat_count E	R
2	13	0	1	[0.207482	5	3	0.77
2	29	1	2	[0.1527484	5	3	0.66
2	45	2	24	[0.1257618	5	3	0.66
2	61	0	1	[0.1989352	3	4	0.54
2	77	1	2	[0.1868518	5	4	0.43
2	93	2	14	[0.1013764	5	4	0.47
2	109	14	24	[0.1361369	1	4	0.44
2	125	0	12	[0.162641	5	3	0.73
2	141	12	13	[0.1605636	3	3	0.71
2	13	13	24	[0.2433872	0	3	0.7
2	29	0	12	[0.160573	5	4	0.57
2	45	12	13	[0.1095413	5	4	0.42
2	61	13	14	[0.2583760	0	4	0.55
2	. 77	14	24	[0.2135608	0	4	0.38
2	89	0	0	[0.186695	2	6	0
2	105	0	1	[0.101118	5	6	0
2	121	1	13	[0.1294756	3	6	0.06
2	137	13	14	[0.212484	5	6	0.06
2	9	14	20	[0.2544993	0	6	0.07
2	25	20	24	[0.283830	0	6	0.08

- 성능 평가 (RMSE)

>> 실제 득점 값과 비교한 결과 1.3의 RMSE값을 가짐 (논문은 1.7)

Result.

의의

투수와 타자의 능력과 매치업을 모두 고려한 기대득점 계산 가능 Threshold를 설정 한 뒤 특정 이닝에서 기대 득점이 해당 임계치를 초과할 때 투수 교체의 가이드라인을 제공

Proposal

중간계투 교체 타이밍 계산으로 모델 확장 기대득점 대신 기대피안타율, 출루허용률을 계산하여 투수 교체 타이밍을 제안하는 모델 생성

04. Discussion