Butcher tables

March 19, 2015

In the lectures we have made use of *Butcher tables* to succinctly summarize Runge–Kutta methods. These notes serve as a quick introduction for those who have not attended lectures, since Kreyszig does not cover the topic.

1 Butcher tables specify Runge-Kutta methods

Runge–Kutta methods are numerical methods for solving first-order ordinary differential equations of the form

$$y'(x) = f(x, y(x)) \tag{1}$$

(or systems of such equations).

A Butcher table has the form

and is a simple mnemonic device for specifying a Runge-Kutta method¹

$$y_{n+1} = y_n + \sum_{i=1}^{s} b_i k_i$$

where, for $1 \le i \le s$,

$$k_i = hf(x_n + c_i h, y_n + \sum_{i=1}^{s} a_{i,j} k_j).$$

Observe that the *explicit methods* are precisely those for which the only non-zero entries in the $a_{i,j}$ -part of the table lie *strictly below* the diagonal. Entries at or above the diagonal will cause the right hand side of equation (1) to involve y_{n+1} , and so give an *implicit method* (verify this for yourself).

1.1 Butcher tables for the covered methods

The four Runge–Kutta methods we have covered have Butcher tables as follows. Verify for yourself that the tables give formulas in agreement with Kreyszig!

• Euler's method (explicit):

• Improved Euler's method (Heun's method) (explicit):

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& 1/2 & 1/2 \\
\end{array}$$

One often also wants to demand that $c_i = \sum_{j=1}^s a_{i,j}$. That is clearly the case for our four methods.

• RK4 (explicit):

• Backwards Euler's method (implicit):