# Reading group mathematical foundations of statistics

Stefan Franssen, Msc

September 9, 2019

### Goals

■ To understand the current knowledge of nonparametric statistics better

### Goals

- To understand the current knowledge of nonparametric statistics better
- To translate this knowledge into new results in statistics

# Getting to know the Audience

Who are you?

■ Held biweekly.

- Held biweekly.
- Alternates with the causality seminar.

- Held biweekly.
- Alternates with the causality seminar.
- Amine, Bart, Geerten, Lasse and I will be the main speakers.

- Held biweekly.
- Alternates with the causality seminar.
- Amine, Bart, Geerten, Lasse and I will be the main speakers.
- First two talks will be held in Room 312, the rest of the semester will be in 176.

- Held biweekly.
- Alternates with the causality seminar.
- Amine, Bart, Geerten, Lasse and I will be the main speakers.
- First two talks will be held in Room 312, the rest of the semester will be in 176.
- Any questions so far?

# Springer Series in Statistics

Aad W. van der Vaart Jon A. Wellner

#### Weak Convergence and Empirical Processes

With Applications to Statistics



The book we will start with.

You can get it from Springer link, where you can also order a softcover version for 25 euro.

I also have a pdf version of the second version of the book which I can share with the people here.

# Topic of the book

The main object of interest is the empirical distribution

$$\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

# Topic of the book

The main object of interest is the empirical distribution

$$\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

We will study its asymptotic normality, not just for a single function f but also uniformly over a class  $\mathcal{F}$  of functions.

# Topic of the book

The main object of interest is the empirical distribution

$$\mathbb{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}.$$

We will study its asymptotic normality, not just for a single function f but also uniformly over a class  $\mathcal F$  of functions. We will develop tools for showing asymptotic normality in a uniform sense.

### Outline of the book

■ Part 1: Introduction of the basic definitions

### Outline of the book

- Part 1: Introduction of the basic definitions
- Part 2: The theory on empirical processes

### Outline of the book

- Part 1: Introduction of the basic definitions
- Part 2: The theory on empirical processes
- Part 3: Applications of the theory to statistical problems.

### Part 1

Part 1 contains the basic theory of convergence of random variables in various settings.

### Part 2

Part 2 contains the empirical process theory. The first 5 chapters are dealing with the main theory and the latter chapters deal mostly with examples.

### Part 3

Part 3 contains a lot of statistical applications, for example the theory of M- and Z-estimators and the bootstrap is treated here.

# Overview for today

We start the first two weeks with the first part of the book. Today I will do the following sections:

- Introduction
- Outer integrals and Measurable Majorants
- Weak convergence
- Product spaces

### Introduction

The classical theory of weak convergence.

### Introduction: weak convergence of probability measures

#### Definition

Let  $(\mathbb{D}, d)$  be a metric space, and let  $(P_n)_{n \in \mathbb{N}}$  and P be probability measures on the borel measurable space  $(\mathbb{D}, \mathcal{D})$ . Then  $P_n$  converges weakly to P if and only if

$$\int f dP_n \to \int f dP, \quad \forall f \in C_b(\mathbb{D})$$

### Introduction: Weak convergence of random variables

#### Definition

In the same notation as before, let  $X_n$ , X be random variables taking values in  $\mathbb{D}$ . Then  $X_n$  converges weakly to X if and only if

$$\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)] \quad \forall f \in C_b(\mathbb{D}).$$

### Introduction: The limitation of the classical theory

In the classical theory of weak convergence, we run into measurability issues, namely all the random variables  $X_n$  are measurable maps.

### Introduction: The limitation of the classical theory

In the classical theory of weak convergence, we run into measurability issues, namely all the random variables  $X_n$  are measurable maps. However, classical examples of objects of interest are not measurable.

### Introduction: The limitation of the classical theory

In the classical theory of weak convergence, we run into measurability issues, namely all the random variables  $X_n$  are measurable maps. However, classical examples of objects of interest are not measurable. For example let  $X_i$  be iid uniformly distributed random variables. Then the following two maps are not measurable in the natural spaces (exercise 1.7.3):

$$\mathbb{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t}$$

$$\mathbb{G}_n(t) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbb{1}_{X_i \le t}$$

### Introduction: Suggested solutions

Several people have suggested solutions, but the one that can cover the most is suggested by Hoffmann-Jørgensen. We will follow this approach.

# The suggested solution

The suggested solution is to drop the measurability requirement and only require asymptotic measurability.

#### The four main differences are:

■ The notion of (uniform) tightness of sequences needs a modification

#### The four main differences are:

- The notion of (uniform) tightness of sequences needs a modification
- Prohorov's theorem, asymptotic tightness implies relative compactness, must be modified by the addition of the requirement of asymptotic measurability

#### The four main differences are:

- The notion of (uniform) tightness of sequences needs a modification
- Prohorov's theorem, asymptotic tightness implies relative compactness, must be modified by the addition of the requirement of asymptotic measurability
- (Almost) sure convergence is meaningless without asymptotic measurability

#### The four main differences are:

- The notion of (uniform) tightness of sequences needs a modification
- Prohorov's theorem, asymptotic tightness implies relative compactness, must be modified by the addition of the requirement of asymptotic measurability
- (Almost) sure convergence is meaningless without asymptotic measurability
- No general Fubini's theorem.

# Outer integrals and Majorants: The outer integral

### Definition (p. 6)

Let  $(\Omega, \mathcal{A}, \mathbb{P})$  be an probability space and let  $T : \Omega \to \overline{\mathbb{R}}$  be any (possibly nonmeasureable) function. The **outer integral** of T with respect to P is defined as:

$$\mathbb{E}^*\left[\mathit{T}\right] = \inf\left\{\mathbb{E}\mathit{U}: \mathit{U} \geq \mathit{T}, \mathit{U}: \Omega \rightarrow \mathbb{\bar{R}} \; \mathit{integrable}\right\}$$

# Outer integrals and Majorants: The outer probability

### Definition (p. 6)

Let  $(\Omega, \mathcal{A}, \mathbb{P})$  be an probability space and let B be any (possibly nonmeasureable) subset of  $\Omega$ . The **outer probability** of B with respect to P is defined as:

$$\mathbb{P}^* (B) = \inf \{ \mathbb{P}(A) : B \subset A, A \in \mathcal{A} \}$$

# Outer integrals and Majorants: Inner versions

The inner integral and probability are defined by reversing the direction of the inequalities.

# Outer integrals and Majorants: Existance of a Majorant

#### Lemma (Lem 1.2.1)

For any map  $T:\Omega\to \bar{\mathbb{R}}$  there exists a measurable function  $T^*:\Omega\to \bar{\mathbb{R}}$  with

 $T^* \geq T$ ;

# Outer integrals and Majorants: Existance of a Majorant

#### Lemma (Lem 1.2.1)

For any map  $T:\Omega\to \bar{\mathbb{R}}$  there exists a measurable function  $T^*:\Omega\to \bar{\mathbb{R}}$  with

- $T^* \ge T$ ;
- $T^* \leq U$  almost surely, for any measurable  $U : \Omega \to \mathbb{R}$  with  $U \geq T$  a.s.

# Outer integrals and Majorants: Existance of a Majorant

#### Lemma (Lem 1.2.1)

For any map  $T:\Omega\to \bar{\mathbb{R}}$  there exists a measurable function  $T^*:\Omega\to \bar{\mathbb{R}}$  with

- $T^* \geq T$ ;
- $T^* \leq U$  almost surely, for any measurable  $U : \Omega \to \mathbb{R}$  with  $U \geq T$  a.s.

For any  $T^*$  satisfying these requirements, it holds that  $\mathbb{E}^*T=\mathbb{E}T^*$ , provided that  $\mathbb{E}T^*$  exists. The latter is certainly true if  $\mathbb{E}^*T<\infty$ .

# Outer integrals and Majorants: Relation between outer measure and probability

## Lemma (Lem 1.2.3)

For any subset B of  $\Omega$ ,

$$P^*(B) = \mathbb{E}^* \mathbb{1}_B$$
;  $\mathbb{P}_*(B) = \mathbb{E}(\mathbb{1}_B)_*$ ;

# Outer integrals and Majorants: Relation between outer measure and probability

#### Lemma (Lem 1.2.3)

For any subset B of  $\Omega$ ,

- $P^*(B) = \mathbb{E}^* \mathbb{1}_B; \mathbb{P}_*(B) = \mathbb{E}(\mathbb{1}_B)_*;$
- there exists a measurable set  $B^*$  containing B with  $\mathbb{P}(B^*) = \mathbb{P}^*(B)$ , for any such  $B^*$  it holds that  $\mathbb{1}_{B^*} = (\mathbb{1}_B)^*$ .

# Outer integrals and Majorants: Relation between outer measure and probability

## Lemma (Lem 1.2.3)

For any subset B of  $\Omega$ ,

- $P^*(B) = \mathbb{E}^* \mathbb{1}_B$ ;  $\mathbb{P}_*(B) = \mathbb{E}(\mathbb{1}_B)_*$ ;
- there exists a measurable set  $B^*$  containing B with  $\mathbb{P}(B^*) = \mathbb{P}^*(B)$ , for any such  $B^*$  it holds that  $\mathbb{1}_{B^*} = (\mathbb{1}_B)^*$ .

#### Lemma (Lemma 1.2.6)

Let T be defined on a product probability space. Then

$$\mathbb{E}_* T \leq \mathbb{E}_{1*} \mathbb{E}_{2*} T \leq \mathbb{E}_1^* \mathbb{E}_2^* T \leq \mathbb{E}^* T$$

#### Lemma (Lemma 1.2.6)

Let T be defined on a product probability space. Then

$$\mathbb{E}_* T \leq \mathbb{E}_{1*} \mathbb{E}_{2*} T \leq \mathbb{E}_1^* \mathbb{E}_2^* T \leq \mathbb{E}^* T$$

#### Lemma (Lem 1.2.7)

Let  $(\Omega_1, A_1)$  be a separable metric space equipped with its Borel  $\sigma$ -field.

#### $\overline{\text{Lemma}}$ (Lemma 1.2.6)

Let T be defined on a product probability space. Then

$$\mathbb{E}_* T \leq \mathbb{E}_{1*} \mathbb{E}_{2*} T \leq \mathbb{E}_1^* \mathbb{E}_2^* T \leq \mathbb{E}^* T$$

#### Lemma (Lem 1.2.7)

Let  $(\Omega_1, \mathcal{A}_1)$  be a separable metric space equipped with its Borel  $\sigma$ -field. Suppose the map  $T: \Omega_1 \times \Omega_2 \to \mathbb{R}$  is defined on a product probability space

#### Lemma (Lemma 1.2.6)

Let T be defined on a product probability space. Then

$$\mathbb{E}_* T \leq \mathbb{E}_{1*} \mathbb{E}_{2*} T \leq \mathbb{E}_1^* \mathbb{E}_2^* T \leq \mathbb{E}^* T$$

#### Lemma (Lem 1.2.7)

Let  $(\Omega_1, A_1)$  be a separable metric space equipped with its Borel  $\sigma$ -field. Suppose the map  $T: \Omega_1 \times \Omega_2 \to \mathbb{R}$  is defined on a product probability space and satisfies  $|T(\omega_1, \omega_2) - T(\omega_1', \omega_2)| < d(\omega_1, \omega_1')H(\omega_2)$ ,

#### Lemma (Lemma 1.2.6)

Let T be defined on a product probability space. Then

$$\mathbb{E}_* T \leq \mathbb{E}_{1*} \mathbb{E}_{2*} T \leq \mathbb{E}_1^* \mathbb{E}_2^* T \leq \mathbb{E}^* T$$

#### Lemma (Lem 1.2.7)

Let  $(\Omega_1, \mathcal{A}_1)$  be a separable metric space equipped with its Borel  $\sigma$ -field. Suppose the map  $T: \Omega_1 \times \Omega_2 \to \mathbb{R}$  is defined on a product probability space and satisfies  $|T(\omega_1, \omega_2) - T(\omega_1', \omega_2)| \le d(\omega_1, \omega_1')H(\omega_2)$ , for a function H with  $P_2^*H < \infty$  and for every sufficiently small  $d(\omega_1, \omega_1')$ .

#### $\overline{\text{Lemma}}$ (Lemma 1.2.6)

Let T be defined on a product probability space. Then

$$\mathbb{E}_* T \leq \mathbb{E}_{1*} \mathbb{E}_{2*} T \leq \mathbb{E}_1^* \mathbb{E}_2^* T \leq \mathbb{E}^* T$$

#### Lemma (Lem 1.2.7)

Let  $(\Omega_1, \mathcal{A}_1)$  be a separable metric space equipped with its Borel  $\sigma$ -field. Suppose the map  $T:\Omega_1\times\Omega_2\to\mathbb{R}$  is defined on a product probability space and satisfies  $|T(\omega_1,\omega_2)-T(\omega_1',\omega_2)|\leq d(\omega_1,\omega_1')H(\omega_2)$ , for a function H with  $P_2^*H<\infty$  and for every sufficiently small  $d(\omega_1,\omega_1')$ . Then  $\mathbb{E}^*T=\mathbb{E}_1\mathbb{E}_2^*T$ 

## The monotone convergence theorem

## Lemma (Ex. 1.2.3)

Let  $T_n$ , T be maps on a probability space with  $T_n \uparrow T$  pointwise on a set of probability one.

## The monotone convergence theorem

#### Lemma (Ex. 1.2.3)

Let  $T_n$ , T be maps on a probability space with  $T_n \uparrow T$  pointwise on a set of probability one. Then  $T_n^* \uparrow T^*$  almost surely.

## The monotone convergence theorem

#### Lemma (Ex. 1.2.3)

Let  $T_n$ , T be maps on a probability space with  $T_n \uparrow T$  pointwise on a set of probability one. Then  $T_n^* \uparrow T^*$  almost surely. If the maps are bounded from below, then  $\mathbb{E}^* T_n \uparrow \mathbb{E}^* T$ .

## The dominated convergence theorem

#### Lemma (Ex 1.2.4)

Let  $T_n$ , T be maps on a probability space with  $|T_n - T|^*$  converging to zero almost surely.

## The dominated convergence theorem

#### Lemma (Ex 1.2.4)

Let  $T_n$ , T be maps on a probability space with  $|T_n - T|^*$  converging to zero almost surely. Suppose  $\mathbb{E}^*[\sup_n |T_n|] < \infty$ , then  $\mathbb{E}^*T_n \to \mathbb{E}^*T$ .

## Polish spaces

#### Definition (P. 17)

A topological space X is called **Polish** if it is separable and its topology can be generated by a complete metric.

#### Definition (p. 16, 17)

■ A Borel probability measure P is **tight** if for every  $\epsilon > 0$  there exists a compact K such that  $P(K) \ge 1 - \epsilon$ .

#### Definition (p. 16, 17)

- A Borel probability measure P is **tight** if for every  $\epsilon > 0$  there exists a compact K such that  $P(K) \ge 1 \epsilon$ .
- A Borel probability measure P is **pre-tight** if for every  $\epsilon > 0$  there exists a totally bounded measurable K such that  $P(K) \ge 1 \epsilon$ .

#### Definition (p. 16, 17)

- A Borel probability measure P is **tight** if for every  $\epsilon > 0$  there exists a compact K such that  $P(K) \ge 1 \epsilon$ .
- A Borel probability measure P is **pre-tight** if for every  $\epsilon > 0$  there exists a totally bounded measurable K such that  $P(K) \ge 1 \epsilon$ .
- We call a Borel probability measure **separable** if there exists a separable measurable set S with P(S) = 1.

#### Definition (p. 16, 17)

- A Borel probability measure P is **tight** if for every  $\epsilon > 0$  there exists a compact K such that  $P(K) \ge 1 \epsilon$ .
- A Borel probability measure P is **pre-tight** if for every  $\epsilon > 0$  there exists a totally bounded measurable K such that  $P(K) \ge 1 \epsilon$ .
- We call a Borel probability measure **separable** if there exists a separable measurable set S with P(S) = 1.

## Lemma (1.3.2)

On a complete metric space these concepts are equivalent.



#### Nets

#### Definition

Let A be a directed set with order relation  $\geq$  and X be a topological space. A map  $f:A\to X$  is called a net.

#### Example

Sequences

# Weak convergence of random variables

#### Definition (1.3.3)

Let  $(\Omega_{\alpha}, \mathcal{A}_{\alpha}P_{\alpha})$  be a net of probability spaces and let  $X_{\alpha}: \Omega_{\alpha} \to \mathbb{D}$  be arbitrary maps. The net  $X_{\alpha}$  converges weakly to a borel measure L if

$$\mathbb{E}^* f(X_{\alpha}) o \int f dL, \qquad \forall f \in C_b(\mathbb{D}).$$

We denote this convergence by  $X_{\alpha} \rightsquigarrow L$ .

## Lemma (1.3.4)

The following statements are equivalent.

 $\blacksquare X_{\alpha} \leadsto L;$ 

## Lemma (1.3.4)

- $X_{\alpha} \rightsquigarrow L;$
- lim inf  $P_*(X_\alpha \in G) \ge L(G)$  for every open G;

#### Lemma (1.3.4)

- $X_{\alpha} \rightsquigarrow L;$
- $\liminf P_*(X_\alpha \in G) \ge L(G)$  for every open G;
- $\limsup P^*(X_\alpha \in F) \le L(F)$  for every closed F;

## Lemma (1.3.4)

- $X_{\alpha} \rightsquigarrow L;$
- $\liminf P_*(X_\alpha \in G) \ge L(G)$  for every open G;
- $\limsup P^*(X_\alpha \in F) \le L(F)$  for every closed F;
- lim inf  $\mathbb{E}_* f(X_\alpha) \ge \int f \ dL$  for every lower semicontinuous f that is bounded below;

## Lemma (1.3.4)

- $X_{\alpha} \rightsquigarrow L;$
- $\liminf P_*(X_\alpha \in G) \ge L(G)$  for every open G;
- $\limsup P^*(X_\alpha \in F) \le L(F)$  for every closed F;
- lim inf  $\mathbb{E}_* f(X_\alpha) \ge \int f \, dL$  for every lower semicontinuous f that is bounded below;
- $\limsup \mathbb{E}^* f(X_\alpha) \le \int f \ dL$  for every upper semicontinuous f that is bounded above;

## Lemma (1.3.4)

- $X_{\alpha} \rightsquigarrow L;$
- $\liminf P_*(X_\alpha \in G) \ge L(G)$  for every open G;
- $\limsup P^*(X_\alpha \in F) \le L(F)$  for every closed F;
- lim inf  $\mathbb{E}_* f(X_\alpha) \ge \int f \, dL$  for every lower semicontinuous f that is bounded below;
- $\limsup \mathbb{E}^* f(X_\alpha) \le \int f \ dL$  for every upper semicontinuous f that is bounded above;
- $\lim P^*(X_\alpha \in B) = \lim P_*(X_\alpha \in B) = L(B)$  for every Borel set B with  $L(\delta B) = 0$ ;

## Lemma (1.3.4)

- $X_{\alpha} \rightsquigarrow L;$
- $\liminf P_*(X_\alpha \in G) \ge L(G)$  for every open G;
- $\limsup P^*(X_\alpha \in F) \le L(F)$  for every closed F;
- lim inf  $\mathbb{E}_* f(X_\alpha) \ge \int f \ dL$  for every lower semicontinuous f that is bounded below;
- $\limsup \mathbb{E}^* f(X_\alpha) \le \int f \ dL$  for every upper semicontinuous f that is bounded above;
- $\lim P^*(X_\alpha \in B) = \lim P_*(X_\alpha \in B) = L(B)$  for every Borel set B with  $L(\delta B) = 0$ ;
- lim inf  $\mathbb{E}_* f(X_\alpha) \ge \int f \ dL$  for every bounded, Lipschitz continuous, nonnegative f.



## The continuous mapping theorem for weak convergence

#### Lemma (1.3.6)

Let  $g: \mathbb{D} \to \mathbb{E}$  be continous at every point of set  $\mathbb{D}_0 \subset \mathbb{D}$ .

# The continuous mapping theorem for weak convergence

## Lemma (1.3.6)

Let  $g: \mathbb{D} \to \mathbb{E}$  be continous at every point of set  $\mathbb{D}_0 \subset \mathbb{D}$ . If  $X_{\alpha} \rightsquigarrow X$  and X takes its values in  $\mathbb{D}_0$ ,

# The continuous mapping theorem for weak convergence

## Lemma (1.3.6)

Let  $g : \mathbb{D} \to \mathbb{E}$  be continous at every point of set  $\mathbb{D}_0 \subset \mathbb{D}$ . If  $X_{\alpha} \rightsquigarrow X$  and X takes its values in  $\mathbb{D}_0$ , then  $g(X_{\alpha}) \rightsquigarrow g(X)$ .

# Asymptotically measurability and asymptotically tight

#### Definition (1.3.7)

The net of maps  $X_{\alpha}$  is:

■ asymptotically measurable iff

$$\mathbb{E}^* f(X_\alpha) - \mathbb{E}_* f(X_\alpha) \to 0, \quad \forall f \in C_b(\mathbb{D}).$$

# Asymptotically measurability and asymptotically tight

#### Definition (1.3.7)

The net of maps  $X_{\alpha}$  is:

asymptotically measurable iff

$$\mathbb{E}^* f(X_{\alpha}) - \mathbb{E}_* f(X_{\alpha}) \to 0, \quad \forall f \in C_b(\mathbb{D}).$$

■ Asymptitically tight if for every  $\epsilon > 0$  there exists a compact K such that

$$\liminf P_*(X_\alpha \in K^\delta) \ge 1 - \epsilon, \qquad \forall \delta > 0.$$

Here  $K^{\delta} = \{ y \in \mathbb{D} : d(y, K) < \delta \}$  the  $\delta$ -enlargement around K.



## Prohorov's theorem 1: The forward statement

#### Lemma (1.3.8)

■ If  $X_{\alpha} \rightsquigarrow X$ , then  $X_{\alpha}$  is asymptotically measurable.

## Prohorov's theorem 1: The forward statement

#### Lemma (1.3.8)

- If  $X_{\alpha} \rightsquigarrow X$ , then  $X_{\alpha}$  is asymptotically measurable.
- If  $X_{\alpha} \rightsquigarrow X$ , then  $X_{\alpha}$  is asymptotically tight if and only if X is tight.

## Prohorov's theorem 2: The reverse statement

## Lemma (1.3.9)

• If the net  $X_{\alpha}$  is asymptotically tight and asymptotically measurable, then it has a subnet  $X_{\alpha(\beta)}$  that converges in law to a tight Borel law.

## Prohorov's theorem 2: The reverse statement

#### Lemma (1.3.9)

- If the net  $X_{\alpha}$  is asymptotically tight and asymptotically measurable, then it has a subnet  $X_{\alpha(\beta)}$  that converges in law to a tight Borel law.
- If the sequence  $X_n$  is asymptotically tight and asymptotically measurable, then it has a subsequence  $X_{n_j}$  that converges weakly to a tight Borel law.

## Prohorov's theorem 2: The reverse statement

## Lemma (1.3.9)

- If the net  $X_{\alpha}$  is asymptotically tight and asymptotically measurable, then it has a subnet  $X_{\alpha(\beta)}$  that converges in law to a tight Borel law.
- If the sequence  $X_n$  is asymptotically tight and asymptotically measurable, then it has a subsequence  $X_{n_j}$  that converges weakly to a tight Borel law.

https://math.stackexchange.com/questions/2150490/ trying-to-understand-how-a-subnet-of-a-sequence-differs-fr https://math.stackexchange.com/questions/1209341/example-ofconverging-subnet-when-there-is-no-converging-subsequence? noredirect=1&lq=1

## The end

Any questions?