A Tale of Three Signatures: Practical Attack of ECDSA with wNAF

Gabrielle De Micheli

Joint work with Rémi Piau and Cécile Pierrot

Université de Lorraine, Inria Nancy, France

How to attack ECDSA

1. Focus on the primitive: DLP on elliptic curves

2. OR get extra informations from an implementation: side channel attacks.

Our work

- Improve the processing step of already known side-channel ECDSA attacks, using the Extended Hidden Number Problem and lattice techniques.
- Optimize the attack to maximize the success probability and minimize the overall time.
- Perform an attack with the minimum number of signatures needed to recover the secret key: only 3 signatures!

Our work

- Improve the processing step of already known side-channel ECDSA attacks, using the Extended Hidden Number Problem and lattice techniques.
- Optimize the attack to maximize the success probability and minimize the overall time.
- Perform an attack with the minimum number of signatures needed to recover the secret key: only 3 signatures

Our work

- Improve the processing step of already known side-channel ECDSA attacks, using the Extended Hidden Number Problem and lattice techniques.
- Optimize the attack to maximize the success probability and minimize the overall time.
- Perform an attack with the minimum number of signatures needed to recover the secret key: only 3 signatures!

Elliptic Curve Digital Signature Algorithm is a variant of the Digital Signature Algorithm, DSA, which uses elliptic curves instead of finite fields.

Public Parameters

- An elliptic curve E over a prime field.
- A generator G of prime order q on E.
- A hash function H to \mathbb{Z}_q .

Secret Key

- An integer $\alpha \in [1, q-1]$. Public Key
 - $p_k = [\alpha]G$: scalar multiplication of G by α .

Elliptic Curve Digital Signature Algorithm is a variant of the Digital Signature Algorithm, DSA, which uses elliptic curves instead of finite fields.

Public Parameters

- An elliptic curve E over a prime field.
- A generator G of prime order q on E.
- A hash function H to \mathbb{Z}_q .

Secret Key

- An integer $\alpha \in [1, q-1]$. Public Key
 - $p_k = [\alpha]G$: scalar multiplication of G by α

Elliptic Curve Digital Signature Algorithm is a variant of the Digital Signature Algorithm, DSA, which uses elliptic curves instead of finite fields.

Public Parameters

- An elliptic curve E over a prime field.
- A generator G of prime order q on E.
- A hash function H to \mathbb{Z}_q .

Secret Key

• An integer $\alpha \in [1, q-1]$.

Public Key

• $p_k = [\alpha]G$: scalar multiplication of G by α .

Elliptic Curve Digital Signature Algorithm is a variant of the Digital Signature Algorithm, DSA, which uses elliptic curves instead of finite fields.

Public Parameters

- An elliptic curve E over a prime field.
- A generator G of prime order q on E.
- A hash function H to \mathbb{Z}_q .

Secret Key

• An integer $\alpha \in [1, q-1]$.

Public Key

• $p_k = [\alpha]G$: scalar multiplication of G by α .

To sign a message m:

- Step 1: Randomly select nonce $k \leftarrow_R \mathbb{Z}_q$
- Step 2: Compute the point (r, y) = [k]G.
- Step 3: Compute $s = k^{-1}(H(m) + \alpha r) \mod q$
- Step 4: Output the signature (r, s)

To sign a message m:

Step 1: Randomly select nonce $k \leftarrow_R \mathbb{Z}_q$

Step 2: Compute the point (r, y) = [k]G.

Step 3: Compute $s = k^{-1}(H(m) + \alpha r) \mod q$

Step 4: Output the signature (r, s)

To sign a message m:

Step 1: Randomly select nonce $k \leftarrow_R \mathbb{Z}_q$

Step 2: Compute the point (r, y) = [k]G.

Step 3: Compute $s = k^{-1}(H(m) + \alpha r) \mod q$

Step 4: Output the signature (r, s)

To sign a message m:

Step 1: Randomly select nonce $k \leftarrow_R \mathbb{Z}_q$

Step 2: Compute the point (r, y) = [k]G.

Step 3: Compute $s = k^{-1}(H(m) + \alpha r) \mod q$.

Step 4: Output the signature (r, s)

To sign a message m:

Step 1: Randomly select nonce $k \leftarrow_R \mathbb{Z}_q$

Step 2: Compute the point (r, y) = [k]G.

Step 3: Compute $s = k^{-1}(H(m) + \alpha r) \mod q$.

Step 4: Output the signature (r, s).

Step 2: Compute the point
$$(r, y) = [k]G$$

- Requires a fast algorithm
- Ideally that doesn't leak any information on k!

Step 2: Compute the point
$$(r, y) = [k]G$$

- Requires a fast algorithm
- Ideally that doesn't leak any information on k!

Step 2: Compute the point
$$(r, y) = [k]G$$

- Requires a fast algorithm
- Ideally that doesn't leak any information on k!

Step 2: Compute the point
$$(r, y) = [k]G$$

- Requires a fast algorithm
- Ideally that doesn't leak any information on k!

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert
$$k$$
 to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3: For
$$j = t, \dots, 0$$
, do:
• $Q \leftarrow 2Q$ double

• if
$$k_i = 1$$
: add $Q \leftarrow Q + G$

- Faster than repeated additions
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert
$$k$$
 to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \cdots + 2^tk_t$$

Step 2: Initialize
$$Q = C$$

Step 3: For $j = t, \dots, 0$, do:
• $Q \leftarrow 2Q$ double
• if $k_i = 1$: add $Q \leftarrow Q + G$

- Faster than repeated additions
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert *k* to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3 : For
$$j = t, \dots, 0$$
, do:
• $Q \leftarrow 2Q$ double
• if $k_i = 1$: add $Q \leftarrow Q + G$

- Faster than repeated additions
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert *k* to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3: For
$$j = t, \dots, 0$$
, do:

•
$$Q \leftarrow 2Q$$
 double

• if
$$k_i = 1$$
: add $Q \leftarrow Q + G$

- Faster than repeated additions
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert *k* to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3 : For
$$j = t, \dots, 0$$
, do:
• $Q \leftarrow 2Q$ double

• if
$$k_j = 1$$
: add $Q \leftarrow Q + G$

- Faster than repeated additions
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert
$$k$$
 to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3: For
$$j = t, \dots, 0$$
, do:

•
$$Q \leftarrow 2Q$$
 double

• if
$$k_j = 1$$
: add $Q \leftarrow Q + G$

- Faster than repeated additions
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert *k* to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3: For
$$j = t, \dots, 0$$
, do:

•
$$Q \leftarrow 2Q$$
 double

• if
$$k_j = 1$$
: add $Q \leftarrow Q + G$

- Faster than repeated additions
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert
$$k$$
 to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3 : For
$$j = t, \dots, 0$$
, do:

•
$$Q \leftarrow 2Q$$
 double

• if
$$k_j = 1$$
: add $Q \leftarrow Q + G$

- Faster than repeated additions.
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert *k* to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3: For
$$j = t, \dots, 0$$
, do:

•
$$Q \leftarrow 2Q$$
 double

• if
$$k_j = 1$$
: add $Q \leftarrow Q + G$

- Faster than repeated additions.
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Goal: compute fast point multiplication on elliptic curves

- Input: integer k and point G.
- Output: Q = [k]G

Step 1 : Convert *k* to binary:

$$k = k_0 + 2k_1 + 2^2k_2 + \dots + 2^tk_t$$

Step 2 : Initialize
$$Q = \mathcal{O}$$

Step 3: For
$$j = t, \dots, 0$$
, do:

•
$$Q \leftarrow 2Q$$
 double

• if
$$k_i = 1$$
: add $Q \leftarrow Q + G$

- Faster than repeated additions.
- Time of execution depends on number of 1s.
- Reduce Hamming weight of scalar k
 → (w)NAF representation.

Non-adjacent form (NAF) and windowed-NAF (wNAF)

NAF:

- Impossible to have two consecutive non-zero digits,
- signed digits -1, 0, 1

wNAF

- Impossible to have two consecutive non-zero digits,
- signed digits are in a larger window: $\in [-2^w + 1, 2^w 1]$.

Example, 3 representations of 23:

- binary: $23 = 2^4 + 2^2 + 2^1 + 2^0 = (1, 0, 1, 1, 1)$
- NAF: $23 = 2^5 2^3 2^0 = (1, 0, -1, 0, 0, -1)$
- wNAF (for w=3): $23 = 2^4 + 7 \times 2^0 = (1, 0, 0, 0, 7)$

Non-adjacent form (NAF) and windowed-NAF (wNAF)

NAF:

- Impossible to have two consecutive non-zero digits,
- signed digits -1, 0, 1

wNAF:

- Impossible to have two consecutive non-zero digits,
- signed digits are in a larger window: $\in [-2^w + 1, 2^w 1]$.

Example, 3 representations of 23:

- binary: $23 = 2^4 + 2^2 + 2^1 + 2^0 = (1, 0, 1, 1, 1)$
- NAF: $23 = 2^5 2^3 2^0 = (1, 0, -1, 0, 0, -1)$
- wNAF (for w=3): $23 = 2^4 + 7 \times 2^0 = (1, 0, 0, 0, 7)$

Non-adjacent form (NAF) and windowed-NAF (wNAF)

NAF:

- Impossible to have two consecutive non-zero digits,
- signed digits -1, 0, 1

wNAF:

- Impossible to have two consecutive non-zero digits,
- signed digits are in a larger window: $\in [-2^w + 1, 2^w 1]$.

Example, 3 representations of 23:

- binary: $23 = 2^4 + 2^2 + 2^1 + 2^0 = (1, 0, 1, 1, 1)$
- NAF: $23 = 2^5 2^3 2^0 = (1, 0, -1, 0, 0, -1)$
- wNAF (for w=3): $23 = 2^4 + 7 \times 2^0 = (1, 0, 0, 0, \frac{7}{2})$

wNAF in the wild

ECSDA with wNAF representation is used in:

- Bitcoin, as the signing algorithm for the transactions
- Some common libraries:
 - OpenSSL up to May 2019
 - Cryptlib
 - BouncyCastle
 - Apple's CommonCrypto

The power of side-channel attacks:

Double and add is **not** constant time (depends on the number of non-zero coeff).

(Cache) timing attacks identify (most) of the positions of the non-zero coefficients in the wNAF representation of the nonce k.

Real *k* (wNAF) representation (unknown from an attacker):

1 0 0 0 7 0 0 0 0 0 -7 0 0 0 0 0 3 0 0 0 0 0 0 5 0 0 0 0 0 0

Information obtained by side channels:

The power of side-channel attacks:

Double and add is **not** constant time (depends on the number of non-zero coeff).

(Cache) timing attacks identify (most) of the positions of the non-zero coefficients in the wNAF representation of the nonce k.

The power of side-channel attacks:

Double and add is **not** constant time (depends on the number of non-zero coeff).

 \longrightarrow (Cache) timing attacks identify (most) of the positions of the non-zero coefficients in the wNAF representation of the nonce k.

The power of side-channel attacks:

Double and add is **not** constant time (depends on the number of non-zero coeff).

 \longrightarrow (Cache) timing attacks identify (most) of the positions of the non-zero coefficients in the wNAF representation of the nonce k.

Oh no! Information is being leaked!

The power of side-channel attacks:

Double and add is **not** constant time (depends on the number of non-zero coeff).

 \longrightarrow (Cache) timing attacks identify (most) of the positions of the non-zero coefficients in the wNAF representation of the nonce k.

What we have:

Many messages m_i with their signatures (s_i, r_i) , signed by a unique secret key α .

Side channels give the trace of k_i :

- number of non-zero coefficients, ℓ_i
- position of non-zero coefficients, $\lambda_1, \cdots, \lambda_{\ell_i}$

What we have:

Many messages m_i with their signatures (s_i, r_i) , signed by a unique secret key α .

Side channels give the trace of k_i :

$$\star$$
 0 0 0 \star 0 0 0 0 \star 0 0 0 \star 0 0 0 \star 0 0 0 \star 0 0 0

- number of non-zero coefficients, ℓ_i
- position of non-zero coefficients, $\lambda_1, \cdots, \lambda_{\ell_i}$

What we have:

Many messages m_i with their signatures (s_i, r_i) , signed by a unique secret key α .

Side channels give the trace of k_i :

 \star 0 0 0 \star 0 0 0 0 \star 0 0 0 \star 0 0 0 \star 0 0 0 \star 0 0 0

- number of non-zero coefficients, ℓ_i
- position of non-zero coefficients, $\lambda_1, \cdots, \lambda_{\ell_i}$

What we have:

Many messages m_i with their signatures (s_i, r_i) , signed by a unique secret key α .

Side channels give the trace of k_i :

$$\star$$
 0 0 0 \star 0 0 0 0 \star 0 0 0 \star 0 0 0 \star 0 0 0

- number of non-zero coefficients, ℓ_i
- position of non-zero coefficients, $\lambda_1, \cdots, \lambda_{\ell_i}$

What we have:

Many messages m_i with their signatures (s_i, r_i) , signed by a unique secret key α .

Side channels give the trace of k_i :

- number of non-zero coefficients, ℓ_i
- position of non-zero coefficients, $\lambda_1, \cdots, \lambda_{\ell_i}$

Hlavác, Rosa (SAC 2007), Extended hidden number problem and its cryptanalytic applications.

Consider u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

- Unknowns: the secret α and $0 \leqslant k_{i,j} \leqslant 2^{\eta_{ij}}$,
- known values: modulus $q, \eta_{ij}, a_i, b_{i,j}, c_i, \ell_i$ for $1 \leqslant i \leqslant u$,

Hlavác, Rosa (SAC 2007), Extended hidden number problem and its cryptanalytic applications.

Consider u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

- Unknowns: the secret α and $0 \leq k_{i,j} \leq 2^{\eta_{ij}}$,
- known values: modulus $q, \eta_{ij}, a_i, b_{i,j}, c_i, \ell_i$ for $1 \leqslant i \leqslant u$,

Hlavác, Rosa (SAC 2007), Extended hidden number problem and its cryptanalytic applications.

Consider u congruences of the form

$$a_i \frac{\alpha}{\alpha} + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

- Unknowns: the secret α and $0 \leqslant k_{i,j} \leqslant 2^{\eta_{ij}}$,
- known values: modulus $q, \eta_{ij}, a_i, b_{i,j}, c_i, \ell_i$ for $1 \leq i \leq u$,

Hlavác, Rosa (SAC 2007), Extended hidden number problem and its cryptanalytic applications.

Consider u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

- Unknowns: the secret α and $0 \leqslant k_{i,j} \leqslant 2^{\eta_{ij}}$,
- known values: modulus $q, \eta_{ij}, a_i, b_{i,j}, c_i, \ell_i$ for $1 \leqslant i \leqslant u$,

Hlavác, Rosa (SAC 2007), Extended hidden number problem and its cryptanalytic applications.

Consider u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

- Unknowns: the secret α and $0 \leqslant k_{i,j} \leqslant 2^{\eta_{ij}}$,
- known values: modulus $q, \eta_{ij}, a_i, b_{i,j}, c_i, \ell_i$ for $1 \leqslant i \leqslant u$,

Goal: Transform ECDSA into an EHNP setup.

• ECDSA equation:

$$\alpha r = sk - H(m) \pmod{q}.$$

• Known information on the nonce k:

$$\mathbf{k} = \sum_{j=1}^{\ell} k_j 2^{\lambda_j} = \bar{k} + \sum_{j=1}^{\ell} \mathbf{d}_j 2^{\lambda_j + 1},$$

• By substitution:

$$\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i d_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}$$

Goal: Transform ECDSA into an EHNP setup.

• ECDSA equation:

$$\alpha r = sk - H(m) \pmod{q}.$$

• Known information on the nonce k:

$$\mathbf{k} = \sum_{j=1}^{\ell} k_j 2^{\lambda_j} = \bar{k} + \sum_{j=1}^{\ell} \mathbf{d}_j 2^{\lambda_j + 1},$$

By substitution:

$$\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i d_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}$$

Goal: Transform ECDSA into an EHNP setup.

• ECDSA equation:

$$\alpha r = sk - H(m) \pmod{q}$$
.

• Known information on the nonce k:

$$\mathbf{k} = \sum_{j=1}^{\ell} k_j 2^{\lambda_j} = \bar{k} + \sum_{j=1}^{\ell} \frac{d_j}{d_j} 2^{\lambda_j + 1},$$

By substitution:

$$\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i \mathbf{d}_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}$$

Goal: Transform ECDSA into an EHNP setup.

• ECDSA equation:

$$\alpha r = sk - H(m) \pmod{q}.$$

• Known information on the nonce k:

$$\mathbf{k} = \sum_{j=1}^{\ell} k_j 2^{\lambda_j} = \bar{k} + \sum_{j=1}^{\ell} d_j 2^{\lambda_j + 1},$$

By substitution:

$$lpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i rac{d_{i,j}}{d_{i,j}} - (s_i ar{k}_i - H(m_i)) \equiv 0 \pmod{q}$$

We now have u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

given by

$$E_i: \boxed{\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i \mathbf{d}_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}}$$

- Unknowns: the secret key α and $0 \leqslant d_{i,j} \leqslant 2^{\mu_{i,j}}$,
- known values: modulus $q, r_i, \lambda_{i,j}, s_i, \bar{k}_i, \ell_i, H(m_i), \mu_{i,j}$ for $1 \leq i \leq u$,

Recover α in polynomial time.

We now have u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

given by

$$E_i: \boxed{\frac{\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i \mathbf{d}_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}}$$

- Unknowns: the secret key α and $0 \leqslant d_{i,j} \leqslant 2^{\mu_{i,j}}$,
- known values: modulus $q, r_i, \lambda_{i,j}, s_i, \bar{k}_i, \ell_i, H(m_i), \mu_{i,j}$ for $1 \leq i \leq u$,

Recover α in polynomial time.

We now have u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

given by

$$E_i: \boxed{\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i \mathbf{d}_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}}$$

- Unknowns: the secret key α and $0 \leqslant d_{i,j} \leqslant 2^{\mu_{i,j}}$,
- known values: modulus $q, r_i, \lambda_{i,j}, s_i, \bar{k}_i, \ell_i, H(m_i), \mu_{i,j}$ for $1 \leq i \leq u$,

Recover α in polynomial time.

We now have u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

given by

$$E_i: \boxed{\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i \mathbf{d}_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}}$$

- Unknowns: the secret key α and $0 \leqslant d_{i,j} \leqslant 2^{\mu_{i,j}}$,
- known values: modulus $q, r_i, \lambda_{i,j}, s_i, \bar{k}_i, \ell_i, H(m_i), \mu_{i,j}$ for $1 \leq i \leq u$,

Recover α in polynomial time.

We now have u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

given by

$$E_i: \boxed{\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i \mathbf{d}_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}}$$

- Unknowns: the secret key α and $0 \leqslant d_{i,j} \leqslant 2^{\mu_{i,j}}$,
- known values: modulus $q, r_i, \lambda_{i,j}, s_i, \bar{k}_i, \ell_i, H(m_i), \mu_{i,j}$ for $1 \leq i \leq u$,

Recover α in polynomial time.

We now have u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

given by

$$E_i: \boxed{\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i \mathbf{d}_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}}$$

- Unknowns: the secret key α and $0 \leqslant d_{i,j} \leqslant 2^{\mu_{i,j}}$,
- known values: modulus $q, r_i, \lambda_{i,j}, s_i, \bar{k}_i, \ell_i, H(m_i), \mu_{i,j}$ for $1 \leq i \leq u$,

Recover α in polynomial time.

We now have u congruences of the form

$$a_i \alpha + \sum_{j=1}^{\ell_i} b_{i,j} k_{i,j} \equiv c_i \pmod{q},$$

given by

$$E_i: \frac{\alpha r_i - \sum_{j=1}^{\ell_i} 2^{\lambda_{i,j}+1} s_i \mathbf{d}_{i,j} - (s_i \bar{k}_i - H(m_i)) \equiv 0 \pmod{q}}{}$$

- Unknowns: the secret key α and $0 \leqslant d_{i,j} \leqslant 2^{\mu_{i,j}}$,
- known values: modulus $q, r_i, \lambda_{i,j}, s_i, \bar{k}_i, \ell_i, H(m_i), \mu_{i,j}$ for $1 \leq i \leq u$,

Recover α in polynomial time.

- We start with our system of modular equations E_i .
- Basic trick: Reduce the size of the system by eliminating α from the equations: $r_1E_i r_iE_1$
 - Remember that

$$\alpha = r_1^{-1} \left(\sum_{i=1}^{\ell_1} 2^{\lambda_{1,j}+1} s_1 d_{1,j} + (s_1 \bar{k}_1 - z_1) \right) \pmod{q}$$

$$E'_{i}: \sum_{j=1}^{\ell_{1}} \underbrace{(2^{\lambda_{1,j}+1}s_{1}r_{i})}_{:=\tau_{j,i}} d_{1,j} + \sum_{j=1}^{\ell_{i}} \underbrace{(-2^{\lambda_{i,j}+1}s_{i}r_{1})}_{:=\sigma_{i,j}} d_{i,j} - \underbrace{r_{1}(s_{i}\bar{k}_{i} - H(m_{i})) + r_{i}(s_{1}\bar{k}_{1} - H(m_{1}))}_{:=\sigma_{i,j}} \equiv 0 \pmod{q}$$

- We start with our system of modular equations E_i .
- Basic trick: Reduce the size of the system by eliminating α from the equations: $r_1E_i r_iE_1$
 - Remember that

$$\alpha = r_1^{-1} \left(\sum_{i=1}^{\ell_1} 2^{\lambda_{1,j}+1} s_1 d_{1,j} + (s_1 \bar{k}_1 - z_1) \right) \pmod{q}$$

$$E'_{i}: \sum_{j=1}^{\ell_{1}} \underbrace{(2^{\lambda_{1,j}+1}s_{1}r_{i})}_{:=\tau_{j,i}} d_{1,j} + \sum_{j=1}^{\ell_{i}} \underbrace{(-2^{\lambda_{i,j}+1}s_{i}r_{1})}_{:=\sigma_{i,j}} d_{i,j} - \underbrace{r_{1}(s_{i}\bar{k}_{i} - H(m_{i})) + r_{i}(s_{1}\bar{k}_{1} - H(m_{1}))}_{:=\gamma} \equiv 0 \pmod{q}$$

- We start with our system of modular equations E_i .
- Basic trick: Reduce the size of the system by eliminating α from the equations: $r_1E_i r_iE_1$
 - Remember that

$$\frac{\alpha}{\alpha} = r_1^{-1} \left(\sum_{i=1}^{\ell_1} 2^{\lambda_{1,j}+1} s_1 \frac{d_{1,j}}{d_{1,j}} + (s_1 \bar{k}_1 - z_1) \right) \pmod{q}.$$

$$E'_{i}: \sum_{j=1}^{\ell_{1}} \underbrace{(2^{\lambda_{1,j}+1}s_{1}r_{i})}_{:=\tau_{j,i}} \frac{d_{1,j} + \sum_{j=1}^{\ell_{i}} \underbrace{(-2^{\lambda_{i,j}+1}s_{i}r_{1})}_{:=\sigma_{i,j}} d_{i,j} - \underbrace{r_{1}(s_{i}\bar{k}_{i} - H(m_{i})) + r_{i}(s_{1}\bar{k}_{1} - H(m_{1}))}_{:=\sigma_{i,j}} \equiv 0 \pmod{q}$$

- We start with our system of modular equations E_i .
- Basic trick: Reduce the size of the system by eliminating α from the equations: $r_1E_i r_iE_1$
 - Remember that

$$\alpha = r_1^{-1} \left(\sum_{i=1}^{\ell_1} 2^{\lambda_{1,j}+1} s_1 \frac{d_{1,j}}{d_{1,j}} + (s_1 \bar{k}_1 - z_1) \right) \pmod{q}.$$

$$E'_{i}: \sum_{j=1}^{\ell_{1}} \underbrace{\left(2^{\lambda_{1,j}+1} s_{1} r_{i}\right)}_{:=\tau_{j,i}} \frac{d_{1,j} + \sum_{j=1}^{\ell_{i}} \underbrace{\left(-2^{\lambda_{i,j}+1} s_{i} r_{1}\right)}_{:=\sigma_{i,j}} d_{i,j}}_{:=\sigma_{i,j}} - \underbrace{r_{1}(s_{i} \bar{k}_{i} - H(m_{i})) + r_{i}(s_{1} \bar{k}_{1} - H(m_{1}))}_{:=\sigma_{i,j}} \equiv 0 \pmod{q}.$$

Lattice: Definition, bad and good bases

Definition

A lattice is a discrete additive subgroup of \mathbb{R}^n , usually identified by a basis $\{b_1, \dots, b_n\}$.

Reduction algorithms: BKZ or LLL Given an arbitrary basis $\{b_1, \dots, b_n\}$, find a "better" basis $\{b_1^*, \dots, b_n^*\}$.

Better \rightarrow the first vectors are shorter (and more orthogonal) in the reduced basis.

Lattice: Definition, bad and good bases

Definition

A lattice is a discrete additive subgroup of \mathbb{R}^n , usually identified by a basis $\{b_1, \dots, b_n\}$.

Reduction algorithms: BKZ or LLL Given an arbitrary basis $\{b_1, \dots, b_n\}$, find a "better" basis $\{b_1^*, \dots, b_n^*\}$.

Better \rightarrow the first vectors are shorter (and more orthogonal) in the reduced basis.

Our lattice construction

We construct a lattice such that there exists a linear combination v of the lines containing the $d_{i,j}$:

$$v = (0, \dots, 0, \frac{d_{1,1}}{2^{m-\mu_{1,1}}} - 2^{m-1}, \dots, \frac{d_{u,\ell_u}}{2^{m-\mu_{u,\ell_u}}} - 2^{m-1}, -2^{m-1}).$$

- Good point: v has a particular shape
- Ilt has no reason to appear in the basis
- ullet \longrightarrow
 - 1. Make it short (by ugly manipulations of the lattice)
 - 2. Run BKZ on the basis¹
 - 3. Pray to find a good shaped vector in the reduced basis
 - 4. Try to reconstruct α with the plausible $d_{i,j}$ you get

 $^{^{1}}$ In practice $80 \leqslant \operatorname{dim}(\operatorname{lattice}) \leqslant 215$.

- Good point: v has a particular shape
- <u>I</u>It has no reason to appear in the basis
- ----
 - 1. Make it short (by ugly manipulations of the lattice)
 - 2. Run BKZ on the basis¹
 - 3. Pray to find a good shaped vector in the reduced basis
 - 4. Try to reconstruct α with the plausible $d_{i,j}$ you get

 $^{^{1}}$ In practice $80 \leqslant \mathsf{dim}(\mathsf{lattice}) \leqslant 215$.

- Good point: v has a particular shape
- <u>/!</u>It has no reason to appear in the basis
- **-**
 - 1. Make it short (by ugly manipulations of the lattice)
 - 2. Run BKZ on the basis¹
 - 3. Pray to find a good shaped vector in the reduced basis
 - 4. Try to reconstruct α with the plausible $d_{i,j}$ you get

 $^{^{1}}$ In practice 80 \leqslant dim(lattice $) \leqslant$ 215.

- Good point: v has a particular shape
- <u>I</u>It has no reason to appear in the basis
- ---
 - 1. Make it short (by ugly manipulations of the lattice)
 - 2. Run BKZ on the basis¹
 - 3. Pray to find a good shaped vector in the reduced basis
 - 4. Try to reconstruct α with the plausible $d_{i,j}$ you get

 $^{^{1}}$ In practice 80 ≤ dim(lattice) ≤ 215.

- Good point: v has a particular shape
- <u>I</u>It has no reason to appear in the basis
- ---
 - 1. Make it short (by ugly manipulations of the lattice)
 - 2. Run BKZ on the basis¹
 - 3. Pray to find a good shaped vector in the reduced basis
 - 4. Try to reconstruct α with the plausible $d_{i,j}$ you get

 $^{^{1}}$ In practice 80 ≤ dim(lattice) ≤ 215.

- Good point: v has a particular shape
- <u>I</u>It has no reason to appear in the basis
- **→**
 - 1. Make it short (by ugly manipulations of the lattice)
 - 2. Run BKZ on the basis¹
 - 3. Pray to find a good shaped vector in the reduced basis
 - 4. Try to reconstruct α with the plausible $d_{i,j}$ you get.

 $^{^{1}}$ In practice 80 ≤ dim(lattice) ≤ 215.

A new pre-processing method to speed-up the reduction

The slowest part of the attack: lattice reduction.

BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on *m*.

Idea: pre-select traces with small weight

$$S_a = \{t \in \mathcal{T} | \mu(t) \leqslant a\}$$

Numerical experiment: 5000 traces from OpenSSL: $a \in [11, 67]$.

The slowest part of the attack: lattice reduction. BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on *m*.

Idea: pre-select traces with small weight

$$S_a = \{t \in \mathcal{T} | \mu(t) \leqslant a\}$$

The slowest part of the attack: lattice reduction. BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on *m*.

Idea: pre-select traces with small weight

$$\boxed{S_a = \{t \in \mathcal{T} | \mu(t) \leqslant a\}}$$

The slowest part of the attack: lattice reduction. BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on *m*.

Idea: pre-select traces with small weight

$$S_a = \{t \in \mathcal{T} | \mu(t) \leqslant a\}$$

The slowest part of the attack: lattice reduction. BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on *m*.

Idea: pre-select traces with small weight

$$S_a = \{t \in \mathcal{T} | \mu(t) \leqslant a\}$$

The slowest part of the attack: lattice reduction. BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on m.

Idea: pre-select traces with small weight

$$S_a = \{t \in \mathcal{T} | \mu(t) \leqslant a\}$$

The slowest part of the attack: lattice reduction. BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on m.

Idea: pre-select traces with small weight

$$\boxed{S_{a} = \{t \in \mathcal{T} | \mu(t) \leqslant a\}}$$

The slowest part of the attack: lattice reduction. BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on *m*.

Idea: pre-select traces with small weight

$$S_a = \{t \in \mathcal{T} | \mu(t) \leqslant a\}$$

The slowest part of the attack: lattice reduction. BKZ reduction time \searrow if dimension \searrow OR coefficients size \searrow .

Goal: Speed up the reduction time by \searrow the size of the coefficients.

- Each trace t comes with a notion of "weight" $\mu(t)$.
- Each coefficient of the basis is multiplied by $m = \max \mu(t)$ to get integer coefficients.
- The size of the coefficients depends on *m*.

Idea: pre-select traces with small weight

$$S_{\mathsf{a}} = \{t \in \mathcal{T} | \mu(t) \leqslant \mathsf{a}\}$$

Key recovery time = time of 1 trial \times nbr of trials to find the key.

- S_{19} : already 44% of the traces
- 3 traces: from 12 days (S_{all}) to 39 h (S_{11}) on a single core.

Key recovery time = time of 1 trial \times nbr of trials to find the key.

- S_{19} : already 44% of the traces
- 3 traces: from 12 days (S_{all}) to 39 h (S_{11}) on a single core.

Key recovery time = time of 1 trial \times nbr of trials to find the key.

- S₁₉: already 44% of the traces
- 3 traces: from 12 days (S_{all}) to 39 h (S_{11}) on a single core.

Key recovery time = time of 1 trial \times nbr of trials to find the key.

- S₁₉: already 44% of the traces
- 3 traces: from 12 days (S_{all}) to 39 h (S_{11}) on a single core.

Several parameters need to be balanced to mount an attack:

- the preprocessing subset of traces S_a , if any
- BKZ block size β : varies between 20 and 35

• a multiplying coeff. in the lattice

What is the minimal amount of signatures an attacker can use?

- the fastest attack?
- the best probability of success?

Several parameters need to be balanced to mount an attack:

- the preprocessing subset of traces S_a , if any
- BKZ block size β : varies between 20 and 35

- but $\beta \nearrow \Rightarrow$ reduction time \nearrow
- a multiplying coeff. in the lattice

What is the minimal amount of signatures an attacker can use?

- the fastest attack?
- the best probability of success?

Several parameters need to be balanced to mount an attack:

- the preprocessing subset of traces S_a , if any
- BKZ block size β : varies between 20 and 35

• a multiplying coeff. in the lattice

What is the minimal amount of signatures an attacker can use?

- the fastest attack?
- the best probability of success?

Several parameters need to be balanced to mount an attack:

- the preprocessing subset of traces S_a , if any
- BKZ block size β : varies between 20 and 35

• but $\beta \nearrow \Rightarrow$ reduction time \nearrow

a multiplying coeff. in the lattice

What is the minimal amount of signatures an attacker can use?

- the fastest attack?
- the best probability of success?

Our Main Results

- 3 signatures: 39 hours, small probability of success, S_{11} , BKZ-35.
- Our fastest attack:
 - 4 signatures: 1 hour 17 minutes, BKZ-25, S_{15}
 - 8 signatures: 2 minutes 25 seconds, BKZ-20, S_{all}
- Our most successful attack:
 - 4 signatures: 4% of success per trial, BKZ-35, S_{all}
 - 8 signatures: 45% of success per trial, BKZ-35, S_{all}

Our Main Results

- 3 signatures: 39 hours, small probability of success, S_{11} , BK7-35.
- Our fastest attack:
 - 4 signatures: 1 hour 17 minutes, BKZ-25, S_{15}
 - 8 signatures: 2 minutes 25 seconds, BKZ-20, S_{all}
- Our most successful attack:
 - 4 signatures: 4% of success per trial, BKZ-35, S_{all}
 - \bullet 8 signatures: 45% of success per trial, BKZ-35, S_{all}

Our Main Results

- 3 signatures: 39 hours, small probability of success, S_{11} , BK7-35.
- Our fastest attack:
 - 4 signatures: 1 hour 17 minutes, BKZ-25, S_{15}
 - 8 signatures: 2 minutes 25 seconds, BKZ-20, S_{all}
- Our most successful attack:
 - 4 signatures: 4% of success per trial, BKZ-35, S_{all}
 - ullet 8 signatures: 45% of success per trial, BKZ-35, $S_{\it all}$

Previous attacks on ECDSA with wNAF

Comparing with another variant of EHNP
 Fan, Wang, Cheng (CCS 2016), Attacking OpenSSL implementation of ECDSA with a few signatures

Attack	# signatures	Probability of success	Overall time		
[FWC2016]	5	4%	15 hours/18 minutes		
	6	35%	1 hour 21 minutes/18 minutes		
	7	68%	2 hours 23 minutes/34.5 minutes		
Our attack	3	0.2%	39 hours		
	4	4%	1 hour 17 minutes		
	5	20%	8 minutes 20 seconds		
	6	40%	5 minutes		
	7	45%	3 minutes		
	8	45%	2 minutes		

Comparing with the Hidden Number Problem
 Van de Pol, Smart, Yarom (CT-RSA 2015) Just a Little Bit More
 13 signatures, 54% probability of success and 21 seconds tota
 time to key recovery.

Previous attacks on ECDSA with wNAF

Comparing with another variant of EHNP
 Fan, Wang, Cheng (CCS 2016), Attacking OpenSSL implementation of ECDSA with a few signatures

Attack	# signatures	Probability of success	Overall time		
[FWC2016]	5	4%	15 hours/18 minutes		
	6	35%	1 hour 21 minutes/18 minutes		
	7	68%	2 hours 23 minutes/34.5 minutes		
Our attack	3	0.2%	39 hours		
	4	4%	1 hour 17 minutes		
	5	20%	8 minutes 20 seconds		
	6	40%	5 minutes		
	7	45%	3 minutes		
	8	45%	2 minutes		

Comparing with the Hidden Number Problem
 Van de Pol, Smart, Yarom (CT-RSA 2015) Just a Little Bit More.
 13 signatures, 54% probability of success and 21 seconds total time to key recovery.

Errors can occur, and they often do!

Side-channel analyzis is not perfect.

Real k (wNAF) representation (unknown from an attacker):

1000700000-700000030000005000000

Information obtained by side channels

Errors can occur, and they often do!

Side-channel analyzis is not perfect.

Real k (wNAF) representation (unknown from an attacker):

Probability of success with various types of error

Error type 1:

A 0 coefficient misread as *: adds a new variable to the system, the nbr of non-zero digits is overestimated.

Error type 2:

A non-zero coefficient misread as 0: lose information necessary for key recovery.

Error 2 affects the probability of success of key recovery much more.

Probability of success with various types of error

Error type 1:

A 0 coefficient misread as *: adds a new variable to the system, the nbr of non-zero digits is overestimated.

Error type 2:

A non-zero coefficient misread as 0: lose information necessary for key recovery.

Error 2 affects the probability of success of key recovery much more.

Probability of success with various types of error

Error type 1:

A 0 coefficient misread as *: adds a new variable to the system, the nbr of non-zero digits is overestimated.

Error type 2:

A non-zero coefficient misread as 0: lose information necessary for key recovery.

Error 2 affects the probability of success of key recovery much more.

Resilience up to 2% of errors

- Morality: Resilience to errors up to 2% of misread digits.
- Resilience increase to 4% if we avoid certain types of errors.
- Strategy: in the side channel part, if you are not confident about your reading, choose to put a * instead of a 0.

Resilience up to 2% of errors

- Morality: Resilience to errors up to 2% of misread digits.
- Resilience increase to 4% if we avoid certain types of errors.
- Strategy: in the side channel part, if you are not confident about your reading, choose to put a * instead of a 0.

Resilience up to 2% of errors

- Morality: Resilience to errors up to 2% of misread digits.
- Resilience increase to 4% if we avoid certain types of errors.
- Strategy: in the side channel part, if you are not confident about your reading, choose to put a ★ instead of a 0.

Thank you!

A Tale of Three Signatures: practical attack of ECDSA with wNAF Gabrielle De Micheli, Cécile Pierrot, Rémi Piau https://eprint.iacr.org/2019/861

Fastest attack

Number of	Total		Parameters	Probability of	
signatures	time	BKZ Preprocessing Δ		Δ	success (%)
3	39 hours	35	S ₁₁	$\approx 2^3$	0.2
4	1 hour 17	25	S_{15}	$\approx 2^3$	0.5
5	8 min 20	25	S_{19}	$\approx 2^3$	6.5
6	3 min 55	20	S_{all}	$\approx 2^3$	7
7	2 min 43	20	S_{all}	$\approx 2^3$	17.5
8	2 min 25	20	S_{all}	$\approx 2^3$	29

Total time key recovery = time of single trial \times number of trials to find the key.

Highest probability of success of a single trial

Number of	Probability of	Parameters			Total
signatures	success (%)	BKZ	Preprocessing	Δ	time
3	0.2	35	S ₁₁	$\approx 2^3$	39 hours
4	4	35	S_{all}	$\approx 2^3$	25 hours 28
5	20	35	S_{all}	$\approx 2^3$	2 hours 42
6	40	35	S_{all}	$\approx 2^3$	1 hour 04
7	45	35	S_{all}	$\approx 2^3$	2 hours 36
8	45	35	S _{all}	$\approx 2^3$	5 hours 02

Comparing times with Fan et al, CCS 2016

Number of	Our attack	Fan et al		
signatures	Time	Success (%)	Time	Success (%)
3	39 hours	0.2%	_	_
4	1 hour 17 minutes	0.5%	41 minutes	1.5%
5	8 minutes 20 seconds	6.5%	18 minutes	1%
6	\approx 5 minutes	25%	18 minutes	22%
7	\approx 3 minutes	17.5%	34 minutes	24%
8	\approx 2 minutes	29%	_	_

Comparing success probabilities with Fan et al, CCS 2016

Nur	nber of	Our attack		Fan et al	
sig	natures	Success (%) Time		Success (%)	Time
	3	0.2%	39 hours	_	-
	4	4%	25 hours 28 minutes	1.5%	41 minutes
	5	20%	2 hours 42 minutes	4%	36 minutes
	6	40%	1 hour 4 minutes	35%	1 hour 43 minutes
	7	45%	2 hours 36 minutes	68%	3 hours 58 minutes
	8	45%	5 hours 2 minutes	_	-

Error analysis using BKZ-25, $\Delta \approx 2^3$ and S_{all} .

Number of	Probability of success (%)				
signatures	0 errors	5 errors	10 errors	20 errors	30 errors
4	0.28	≪ 1	0	0	0
5	4.58	0.86	0.18	$\ll 1$	0
6	19.52	5.26	1.26	0.14	$\ll 1$
7	33.54	10.82	3.42	0.32	≪ 1
8	35.14	13.26	4.70	0.58	≪ 1

- Corresponds to a resilience of 2% of errors.
- Total time: 1 out of 5000 experiments, 46 sec per experiment, 65 hours on a single core