Lambda Calculus Domain Reasoner

Satoshi Takimoto takimoto.s.ab@m.titech.ac.jp

May 20, 2024

1 Features

The domain reasoner is for the Untyped Lambda Calculus with the named representation of variables. The goal of an exercise is to reduce a (possibly open) lambda term into its β -normal form. Students do not have to make it $\beta\eta$ -normal, but η -reduction is still a valid step.

In the domain reasoner, α -conversion is made explicit as a rewrite step. The purpose is to teach the notion of variable capture. The Lambda Calculus is all about β -reduction, and thus substitution. However, variable capture is one of the subtle points where students are likely to struggle while learning. By having α -conversion as an explicit rewrite step, students can ask for a hint of which variables to rename, for example, helping them understand variable capture.

I could have chosen the Lambda Calculus with explicit substitutions[2] as the domain instead but did not because writing out substitutions would be a lengthy process.

2 Implementation

In this section, I will only explain interesting parts of the domain reasoner in detail: a strategy for capture avoidance and an equivalence relation that captures the "unhelpfulness" of α -conversion.

2.1 A strategy for capture avoidance

The domain reasoner is implemented using the DSL provided by the Ideas Library[1]¹. In the DSL, valid steps of rewrite rules are described as a strategy, which is roughly a context-free language whose terminal symbols are rewrite rules[3].

The following is a strategy for β -reduction preceded by enough α -conversions for capture avoidance. In other words, β -reduction gets "blocked" until sufficient α -conversions are applied.

```
captureAvoidingBeta =
2
    repeatS (
3
       -- If the current term is a redex (\x. t) u, save the substitution x -> u
4
      ruleSaveSubst
5
       -- Go down to t
6
       .*. ruleDown .*. ruleDownLast
       -- Apply alpha-conversion to an appropriate subterm
       .*. traverse [traversalFilter notShadowed] ruleAlpha
9
       -- Go back up to the redex
10
       .*. ruleUp .*. ruleUp)
11
     -- Apply beta reduction
     .*. liftToContext ruleBeta
```

Basically, it greedily repeatSs applying the α -conversion rewrite rule ruleAlpha to some subterm that needs to be renamed, then applies the β -reduction rewrite rule ruleBeta. ruleSaveSubst in line 4 is an administrative rule that saves to the context the substitution to apply. The saved substitution is used in ruleAlpha to calculate a fresh variable, as well as in notShadowed not to wrongly apply ruleAlpha to subterms where the variable to be substituted is shadowed.

¹I used the following branch to develop with a more recent version of GHC: https://github.com/ideas-edu/ideas/tree/ideas-hastiaan

The following is an example of the sequences of rewrite rules valid in captureAvoidingBeta:

$$(\lambda x. \underbrace{\lambda y. \lambda z. x})(yz) \xrightarrow[v/y]{\text{ruleAlpha}} (\lambda x. \lambda v. \underbrace{\lambda z. x})(yz) \xrightarrow[w/z]{\text{ruleAlpha}} \underbrace{(\lambda x. \lambda v. \lambda w. x)(yz)} \xrightarrow[w/z]{\text{ruleBeta}} \lambda v. \lambda w. yz$$

2.2 An equivalence relation that captures the "unhelpfulness" of α -conversion

In the Ideas library, we have to define two equivalences on terms for checking if a student's step is semantically/syntactically equivalent to an expected step, respectively. I specified $\alpha\beta\eta$ -equivalence (up to a finite amount of reductions as a term can be non-terminating) for the former. For the latter, because we want to make α -conversion explicit as a rewrite step, α -equivalence is too flexible as α -conversion is a no-op under the equivalence, while the syntactic equality is too strict. So, I defined a new one which I call ρ -equivalence. Two terms are ρ -equivalent if they are α -equivalent and have the same places of binders that need to be renamed for capture avoidance (to "unblock" the subsequent β -reduction step in the captureAvoidingBeta strategy). The following showcases how ρ -equivalence behaves.

- $(\lambda x.\lambda y.\underline{\lambda z}.\lambda x)(yzw) \neq_{\rho} (\lambda x.\lambda a.\underline{\lambda z}.\lambda x)(yzw) =_{\rho} (\lambda x.\lambda b.\underline{\lambda z}.\lambda x)(yzw)$
- $\bullet \ (\lambda x.\lambda y.\underline{\lambda z.}\lambda x)(yzw) =_{\rho} (\lambda x.\underline{\lambda z.}\lambda y.\lambda x)(yzw) =_{\rho} (\lambda x.\lambda y.\underline{\lambda w.}\lambda x)(yzw)$
- $\bullet \ (\lambda x.\lambda a.\underline{\lambda z.}\lambda x)(yzw)\neq_{\rho} (\lambda x.\lambda y.\lambda b.\lambda x)(yzw)$

References

- [1] The Ideas library package. https://hackage.haskell.org/package/ideas.
- [2] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. *Journal of Functional Programming*, 1(4):375–416, 1991. doi:10.1017/S0956796800000186.
- [3] Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying rewrite strategies for interactive exercises. *Mathematics in Computer Science*, 3:349–370, 05 2010. doi:10.1007/s11786-010-0027-4.