

Algorithms for solving the discrete log

Cryptography, Spring 2021

L. Batina, J. Daemen

June 1, 2021

Institute for Computing and Information Sciences Radboud University

Outline

Overview

Baby-step giant-step

Pollard's ρ method

Pohlig-Hellman

Index calculus

Overview

Algorithms to compute the discrete logarithm

(Elliptic curve) Discrete log problem

Determine a given G and $A \in \langle G \rangle$ with [a]G = A

- ▶ We distinguish two types of methods
 - generic methods: work for any cyclic group, including EC
 - specific methods: exploit properties of the group
- ▶ Generic methods:
 - Baby-step giant-step
 - Pollard's ρ
 - Pohlig-Hellman
 - . . .
- Method specific for subgroups of multiplicative modular groups $(\mathbb{Z}/p\mathbb{Z})^*$
 - index calculus
 - . . .
- ▶ We explain the algorithms in blue and give an idea of those in red

Baby-step giant-step

Baby-step giant-step, the algorithm (Daniel Shanks, 1971)

```
Input: A, G and table size m
Output: a that satisfies [a]G = A
i \leftarrow 0, X \leftarrow G, T \leftarrow \{(X,1)\}
repeat
   i \leftarrow i + 1, X \leftarrow X + G, T \leftarrow T \cup \{(X, i)\} \{\text{baby step}\}
until i = m
i \leftarrow 0, Y \leftarrow A
repeat
   j \leftarrow j + 1, Y \leftarrow Y - [m]G {giant step}
until \exists (X, i) \in T with X = Y
return i + mj
```

Baby-step giant-step, visually in $E(\mathbb{F}_{23}): y^2 = x^3 - x - 4$

Say
$$G = (5,1)$$
 and $A = (20,8)$

m=4, baby steps, giant steps $A-[3\cdot 4]G=[2]G\Rightarrow a=14$

Baby-step giant-step, discussion

- ► Generic algorithm: works for any cyclic group
- Baby steps
 - compute the values of [i] G for i up to m
 - store them in table T
 - work: *m* point additions
 - storage: *m* points
- Giant steps
 - compute A, A [m]G, A [2m]G, etc.
 - until the point A [jm]G, is also in table T
 - expected work: ord(G)/2m point additions and table checks
- ▶ The matching points satisfies [i]G = A [jm]G so A = [i + mj]G
- ▶ # point additions minimized by taking $m \approx \sqrt{\operatorname{ord}(G)}$
- ▶ Storage and table-check cost may favor $m \ll \sqrt{\operatorname{ord}(G)}$

Pollard's ρ method

Pollard's ρ method (John Pollard, 1975)

- ▶ Requires a transformation f over $\mathbb{Z}/q\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ with $q = \operatorname{ord}(G)$
 - given (c_i, d_i) , it computes $(c_{i+1}, d_{i+1}) = f(c_i, d_i)$
 - let $P_i = [c_i]A + [d_i]G$ then
 - ▶ f shall define a mapping f' over $\langle G \rangle$: $P_{i+1} = f'(P_i)$
 - ► f' shall behave like a random transformation
- ► Algorithm:
 - pick random couple (c_0, d_0)
 - compute the sequence (c_i, d_i) with $(c_i, d_i) = f(c_{i-1}, d_{i-1})$
 - stop if for some $i < j : P_i = P_j$
 - now $[c_i]A + [d_i]G = [c_j]A + [d_j]G$ or $[c_i c_j]A = [d_j d_i]G$
 - so if $(c_i, d_i) \neq (c_j, d_j)$ it follows that $a = \frac{d_j d_i}{c_i c_j}$
- ▶ It is unlikely this ends up in $(c_i, d_i) = (c_j, d_j)$
 - $(c_i, d_i) \in \mathbb{Z}/q\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ and $\#(\mathbb{Z}/q\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}) = q^2$
 - $P_i \in \langle G \rangle$ and $\operatorname{ord}(G) = q$

Pollard's ρ : how many iterations are needed?

- ► Assume f' behaves like a random mapping
 - probability that P_i equals one of the previous points: (i-1)/q
 - probability there is a collision after *n* iterations $\approx n^2/2q$
 - expected value of *n* until the collision: $\sqrt{\frac{\pi q}{2}}$
- Experiments confirm this

Pollard's ρ : how to find colliding couples (x, y)?

- Storing all points P_i
 - requires about \sqrt{q} storage and many comparisons
 - not better than baby-step giant-step
- ▶ Reducing storage with method of distinguished points
 - only store points that have some rare property
 - e.g., x-coordinate ends in ℓ trailing zeroes
 - reduces storage size by a factor $2^{-\ell}$
 - ullet expected overshoot of $2^{\ell-1}$ additional iterations into the loop
 - taking 2^{ℓ} close to \sqrt{q} solves storage problem
- ► There exist other methods to reduce storage

Pollard's ρ : choosing f

- Partitioning approach:
 - partition $\langle G \rangle$ in s classes $S_0, S_1, \ldots, S_{s-1}$ of similar size
 - have a different function f (and f') per class
 - choose classes so that it is easy to find the class of a point
- ▶ Classical choice: s = 3
 - S_0 : f(c,d) = (2c,2d) so f'(P) = [2]P
 - S_1 : f(c,d) = (c+1,d) so f'(P) = P + A
 - S_2 : f(c,d) = (c,d+1) so f'(P) = P + G
- \triangleright ECC-oriented choice: s = 20
 - per class S_k randomly choose $a_k, b_k \in \mathbb{Z}/q\mathbb{Z}$
 - S_k : $f(c,d) = (c + a_k, d + b_k)$ so $f'(P) = P + M_k$ with $M_k = [a_k]A + [b_k]G$
 - seems to work well

Pollard's ρ : toy example over $E(\mathbb{F}_{1093}): y^2 = x^3 + x + 1$

$$G = (0,1), \operatorname{ord}(G) = 1067, A = (413,959)$$

▶ s = 3 with $P \in S_i$ if $x \mod 3 = i$ and $f'(P) = P + M_i$ with $M_0 = [4]G + [3]A, M_1 = [9]G + [17]A, M_2 = [19]G + [6]A$

▶
$$P_0 = [3]G + [5]A = (326,69) \in S_2$$
 so $P_1 = P_0 + M_2 = (727,589)$
 $P_1 = (727,589)$ $P_2 = (560,365),$ $P_3 = (1070,260),$
 $P_4 = (473,903),$ $P_5 = (1006,951),$ $P_6 = (523,938),...,$
 $P_{58} = (1006,951),$ $P_{59} = (523,938),$...

▶ we see $P_5 = P_{58}$ and kept track of (c, d):

$$P_5 = [88]G + [46]A$$
 $P_{58} = [685]G + [620]A$

- ▶ So [88]G + [46]A = [685]G + [620]A and hence [-597]G = [574]A
- ► Since ord(G) = 1067 : $a = (1067 597)574^{-1} \mod 1067 = 499$

Pollard's ρ in the real world

Pollard's ρ is the best method for prime-order subgroups of elliptic curves

Many efforts to solve discrete log in standard curves:

- ► European project ECRYPT(II) 2004-2013
 - ECC2K-130 challenge: Koblitz $E(\mathbb{F}_{2^{131}}): y^2 + xy = x^3 + 1$
 - evaluated on several platforms: FPGA, ASIC, CPU, GPU (PS3)
 - E.g.: 1 year on 3039 Intel CPU Q6850, 4 cores, 2.997 GHz
- ▶ Wenger and Wolfger in 2014:
 - ECC2K-112 challenge: Koblitz $E(\mathbb{F}_{2^{112}}): y^2 + xy = x^3 + x^2 + 1$
 - 24 days using 18-core Virtex-6 FPGA cluster
- ► Kusaka et al. in 2017:
 - Some special curve (used for pairings) over a 114-bit prime field
 - 6 months with 2000 Intel CPU cores

Pohlig-Hellman

Pohlig-Hellman method, the core idea

Stephen Pohlig and Martin Hellman, 1978

Let $ord(G) = p_1p_2$ with p_1 and p_2 coprime

- \blacktriangleright We look for a that satisfies [a]G = A for given G and A
- ▶ Multiply both sides by $[p_1]$: $[p_1][a]G = [p_1]A$
 - let $G_{p_2} = [p_1]G$ and $A_{p_2} = [p_1]A$
 - we have $\operatorname{ord}(G_{p_2}) = p_2$ and $A_{p_2} \in \langle G_{p_2} \rangle$
 - if a satisfies [a]G = A, it also satisfies $[a]G_{p_2} = A_{p_2}$
 - if a is a solution of $[a]G_{p_2} = A_{p_2}$, so is a mod q
 - so solving $[a]G_{p_2} = A_{p_2}$ gives $a_{p_2} = a \mod p_2$
 - with Pollard's ρ this costs roughly $\sqrt{p_2}$ computations
- ▶ Multiply both sides by $[p_2]$: $[a][p_2]G = [p_2]A$
 - along similar lines this gives $a_{p_1} = a \mod p_1$
 - costs roughly $\sqrt{p_1}$ computations
- ▶ Compute a from a_{p_1} and a_{p_2} using CRT

Pohlig-Hellman method, the implications

- \blacktriangleright If ord(G) is composite, Pohlig-Hellman allows to
 - solve the discrete log problem for each of the factors of ord(G)
 - combine the results with CRT
- ▶ For each prime power $p^n \mid \operatorname{ord}(G)$, work factor is \sqrt{p}
 - if n = 1, this is straightforward
 - if n > 1: the sophistication of Pohlig-Hellman [out of scope]
- ▶ Bottom line: complexity is dominated by the largest prime factor(s)

Why groups $\langle G \rangle$ for discrete-log crypto have prime order

This is mostly due to the Pohlig-Hellman discrete log algorithm!

Index calculus

Index calculus by example [for info only]

Example: $3^a \equiv 37 \pmod{1217}$, so A = 37 and g = 3

It uses a *factor base*, in this case $\{2, 3, 5, 7, 11, 13, 17, 19\}$

First step: find the discrete log of the elements of the factor base

(mod 1217)	(mod 1216)	(mod 1216)
$3^1 \equiv 3$	$1 \equiv L(3)$	$L(2) \equiv 216$
$3^{24} \equiv -2^2 \cdot 7 \cdot 13$	$24 \equiv 608 + 2L(2) + L(7) + L(13)$	$L(3)\equiv 1$
$3^{25} \equiv 5^3$	$25 \equiv 3L(5)$	$L(5) \equiv 819$
$3^{30} \equiv -2 \cdot 5^2$	$30 \equiv 608 + L(2) + 2L(5)$	$L(7) \equiv 113$
$3^{34} \equiv -3 \cdot 7 \cdot 19$	$34 \equiv 608 + L(3) + L(7) + L(19)$	$L(11) \equiv 1059$
$3^{54} \equiv -5 \cdot 11$	$54 \equiv 608 + L(5) + L(11)$	$L(13) \equiv 87$
$3^{71} \equiv -17$	$71 \equiv 608 + L(17)$	$L(17) \equiv 679$
$3^{87} \equiv 13$	$87 \equiv L(13)$	$L(19) \equiv 528$

Find powers of g that have only factors in the base, take log and solve

Independent of A: valid for all key pairs with same domain parameters!

Index calculus by example (cont'd) [for info only]

Our equation:
$$3^a \equiv 37 \pmod{1217}$$
, so $A = 37$ and $g = 3$

For the factor base we have:

$$L(2) \equiv 216$$
 $L(3) \equiv 1$ $L(5) \equiv 819$ $L(7) \equiv 113$ $L(11) \equiv 1059$ $L(13) \equiv 87$ $L(17) \equiv 679$ $L(19) \equiv 528$

Now find j such that $g^j \cdot A = 3^j \cdot 37$ factors over elements of the base We find

$$3^{16} \cdot 37 \equiv 2^3 \cdot 7 \cdot 11 \pmod{1216}$$

We now have

$$L(37) \equiv 3L(2) + L(7) + L(11) - 16 \pmod{1216}$$

 $\equiv 3 \cdot 216 + 113 + 1059 - 16 \pmod{1216}$
 $\equiv 588 \pmod{1216}$

Index calculus, discussion

- \blacktriangleright Works for $\langle g \rangle$ a subgroup of multiplicative groups $(\mathbb{Z}/p\mathbb{Z})^*$
- ▶ Index calculus is much faster than generic attacks discussed and scales better with increasing p
- ▶ Forces us to take $p \ge 2^{3072}$ for 128 bits of security
- Norks even better for subgroups of the multiplicative groups in prime power fields \mathbb{F}_{p^n}
- Many variants and sophistications, also for factoring
- ▶ Logs of factor base can be pre-computed for given domain parameters
- ▶ Index calculus does not work on elliptic-curve groups!

Conclusions

Conclusions

- ▶ Index calculus
 - forces us to choose large p for subgroups of $(\mathbb{Z}/p\mathbb{Z})^*$
 - very unlikely that it can be extended to ECC
- ▶ Pohlig-Hellman
 - forces us to take prime-order groups $\langle G \rangle$ for discrete-log crypto as it reduces security strength to that of the largest prime-order subgroup of $\langle G \rangle$
- ▶ Baby-step giant-step
 - has expected complexity $\operatorname{ord}(G)/m$ point additions
 - ullet . . . with m the # points the attacker can store
- ightharpoonup Pollard's ρ
 - has expected complexity $\sqrt{\operatorname{ord}(G)}$ point additions
 - ...and uses little memory
- ▶ Latter two force us to $\langle G \rangle$ with ord $(G) \ge 2^{256}$ for 128-bit security