矢量分析

吴粮宇

2022年12月16日

目录

1	Ein	astein求和约定	3		
2	Kro	onecker符号与Levi-Cevita符号	3		
	2.1	Kronecker符号	3		
		2.1.1 定义	3		
		2.1.2 性质	3		
	2.2	Levi-Cevita符号	3		
	2.3	定义	3		
		2.3.1 性质	4		
3	δ 函数				
	3.1	定义	5		
	3.2	两个恒等式	5		
	3.3	性质	5		
4	矢量的代数运算				
	4.1	加法与减法	5		
	4.2	数乘	5		
	4.3	数量积(内积)	6		
	4.4		6		
	4.5	并积	6		
	4.6		6		
	4.7	三重矢积	7		
5	矢量的微积分				
	5.1	微分	7		
		5.1.1 一元情况	7		
		5.1.2 多元情况			
		5.1.3 求导注册	8		

	5.2	积分	8
		5.2.1 定积分	8
		5.2.2 推论	8
		5.2.3 分部求导	8
6	梯度	。 《、旋度与散度	9
•	6.1	梯度	9
		6.1.1 定义	9
		6.1.2 物理意义	9
		6.1.3 性质	9
	6.2	散度	9
		6.2.1 定义	9
		6.2.2 物理意义	10
		6.2.3 性质	10
	6.3	旋度	10
		6.3.1 定义	10
		6.3.2 物理意义	10
		6.3.3 性质	10
	6.4	算符与矢量的并积	11
	6.5	Laplace算符	11
	6.6	其他矢量公式	11
		6.6.1 梯度场无旋	11
		6.6.2 旋度场无源	11
		6.6.3 旋度的旋度	11
		6.6.4 点乘的梯度	11
			11
		6.6.6 叉乘的旋度	12
7	并矢	的几个运算法则	12
	7.1	矢量点乘并矢	12
	7.2	双点积	12
	7.3	叉积	12
	7.4	旋度与散度	12
	7.5	梯度与散度	12
8	常用	正交曲线坐标系中的梯度算符	12
	8.1		12
	8.2	在坐标系	
	8 3		12

1 Einstein求和约定

- ① 同一项中,对于重复出现的指标,可以省略求和符号,遍历其取值范围求和。
- ② 上述成对出现的指标叫做哑指标,简称哑标。表示哑标的小写字母可以用另一对小写字母替换,只要其取值范围不变。
 - ③ 当两个求和式相乘时,两个求和式的哑标不能使用相同的小写字母。

2 Kronecker符号与Levi-Cevita符号

2.1 Kronecker符号

2.1.1 定义

任意两个正交单位向量点积用 δ_{ij} 表示,即

$$\mathbf{e}_{i} \cdot \mathbf{e}_{j} = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 (2.1.1)

2.1.2 性质

① 对称性:

$$\delta_{ij} = \delta_{ji} \tag{2.1.2}$$

② 定义单位向量/矩阵:

$$\vec{e}_i = \begin{pmatrix} \delta_{i1} \\ \delta_{i2} \\ \delta_{i3} \end{pmatrix} \tag{2.1.3}$$

$$I = \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix}$$
 (2.1.4)

3

$$\delta_{im}\delta_{mj} = \delta_{ij} \tag{2.1.5}$$

2.2 Levi-Cevita符号

2.3 定义

三维情况:

$$\varepsilon_{ijk} = \begin{cases} 1 & ijk = 123, 231, 312 \\ -1 & ijk = 321, 213, 132 \\ 0 & \text{otherwise} \end{cases}$$
 (2.3.1)

2.3.1 性质

① 定义叉乘:

$$\vec{a} \times \vec{b} = \varepsilon_{ijk} a_i b_j \vec{e}_k \tag{2.3.2}$$

② 与混合积对应:

$$\varepsilon_{ijk} = \vec{e}_i \cdot (\vec{e}_j \times \vec{e}_k) = \begin{vmatrix} \delta_{1i} & \delta_{2i} & \delta_{3i} \\ \delta_{1j} & \delta_{2j} & \delta_{3j} \\ \delta_{1k} & \delta_{2k} & \delta_{3k} \end{vmatrix}$$

$$(2.3.3)$$

③ 交换任意两个指标,元素变号:

$$\varepsilon_{ijk} = -\varepsilon_{jik} \tag{2.3.4}$$

④ 符号相乘:

$$\varepsilon_{ijk}\varepsilon_{lmn} = \begin{vmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{vmatrix}$$

$$(2.3.5)$$

Proof:

$$\varepsilon_{lmn} = \begin{vmatrix} \delta_{1l} & \delta_{2l} & \delta_{3l} \\ \delta_{1m} & \delta_{2m} & \delta_{3m} \\ \delta_{1n} & \delta_{2n} & \delta_{3n} \end{vmatrix} = \begin{vmatrix} \delta_{1l} & \delta_{1m} & \delta_{1n} \\ \delta_{2l} & \delta_{2m} & \delta_{2n} \\ \delta_{3l} & \delta_{3m} & \delta_{3n} \end{vmatrix}$$
(2.3.6)

$$\varepsilon_{lmn} = \begin{vmatrix}
\delta_{1l} & \delta_{2l} & \delta_{3l} \\
\delta_{1m} & \delta_{2m} & \delta_{3m} \\
\delta_{1n} & \delta_{2n} & \delta_{3n}
\end{vmatrix} = \begin{vmatrix}
\delta_{1l} & \delta_{1m} & \delta_{1n} \\
\delta_{2l} & \delta_{2m} & \delta_{2n} \\
\delta_{3l} & \delta_{3m} & \delta_{3n}
\end{vmatrix}$$

$$\Longrightarrow \varepsilon_{ijk}\varepsilon_{lmn} = \begin{vmatrix}
\delta_{1i} & \delta_{2i} & \delta_{3i} \\
\delta_{1j} & \delta_{2j} & \delta_{3j} \\
\delta_{1k} & \delta_{2k} & \delta_{3k}
\end{vmatrix} \begin{vmatrix}
\delta_{1l} & \delta_{1m} & \delta_{1n} \\
\delta_{2l} & \delta_{2m} & \delta_{2n} \\
\delta_{3l} & \delta_{3m} & \delta_{3n}
\end{vmatrix} = \begin{vmatrix}
\delta_{il} & \delta_{im} & \delta_{in} \\
\delta_{jl} & \delta_{jm} & \delta_{jn} \\
\delta_{kl} & \delta_{km} & \delta_{kn}
\end{vmatrix}$$

$$(2.3.6)$$

③推论:

a) 一个指标相同:

$$\varepsilon_{ijk}\varepsilon_{mnk} = \begin{vmatrix} 0 & \delta_{im} & \delta_{in} \\ 0 & \delta_{jm} & \delta_{jn} \\ 1 & 0 & 0 \end{vmatrix} = \delta_{im}\delta_{jn} - \delta_{jm}\delta_{in}$$
(2.3.8)

b) 两个指标相同:

$$\varepsilon_{ijk}\varepsilon_{mjk} = \sum_{n=1}^{3} \left(\delta_{im}\delta_{nn} - \delta_{nm}\delta_{in}\right) = 3\delta_{im} - \delta_{im} = 2\delta_{im}$$
(2.3.9)

c) 三个指标相同:

$$\varepsilon_{ijk}\varepsilon_{ijk} = 6 \tag{2.3.10}$$

④ 单位矢量叉乘:

$$\vec{e}_i \times \vec{e}_j = \varepsilon_{ijk} \vec{e}_k \tag{2.3.11}$$

3 δ 函数

3.1 定义

$$\delta(\vec{r}) = \begin{cases} 0, & \vec{r} \neq 0 \\ \infty, & \vec{r} = 0 \end{cases}; \quad \int_{-\infty}^{\infty} \delta(\vec{r}) d\tau = 1$$
 (3.1.1)

3.2 两个恒等式

$$\delta(\vec{k}) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} e^{i\vec{k}\cdot\vec{r}} d\tau \tag{3.2.1}$$

$$\delta(\vec{r}) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} e^{i\vec{k}\cdot\vec{r}} d\tau_k \tag{3.2.2}$$

Proof:

利用函数 $f(\vec{r})$ 傅里叶变换:

$$f(\vec{r}) = \int_{-\infty}^{\infty} f(\vec{k}) e^{-i\vec{k}\cdot\vec{r}} d\tau_k$$
 (3.2.3)

$$f(\vec{k}) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} f(\vec{r}) e^{i\vec{k}\cdot\vec{r}} d\tau$$
 (3.2.4)

3.3 性质

- $\delta(\vec{r}) = \delta(-\vec{r})$
- $\delta(a\vec{r}) = \frac{1}{|a|^3}\delta(\vec{r})$
- $\bullet \int_{-\infty}^{\infty} \delta(\vec{r}) f(\vec{r}) d\tau = f(0)$

4 矢量的代数运算

4.1 加法与减法

- ① 满足平行四边形法则。
- ② 数学定义:

$$\vec{a} + \vec{b} = a_i \vec{e}_i + b_i \vec{e}_i = (a_i + b_i) \vec{e}_i \tag{4.1.1}$$

4.2 数乘

$$\lambda \vec{a} = \lambda \left(a_i \vec{e}_i \right) = (\lambda a_i) \, \vec{e}_i \tag{4.2.1}$$

4.3 数量积(内积)

$$\vec{a} \cdot \vec{b} = \delta_{ij} a_i b_j = a_i b_i = |\vec{a}| |\vec{b}| \cos(\vec{a}, \vec{b}) \tag{4.3.1}$$

4.4 矢量积(叉积)

$$\vec{a} \times \vec{b} = \varepsilon_{ijk} a_i b_j \vec{e}_k = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
(4.4.1)

性质:

① 反交换律:

$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a} \tag{4.4.2}$$

② 图像:

$$\left| \vec{a} \times \vec{b} \right| = |\vec{a}||\vec{b}|\sin(\vec{a}, \vec{b}) \tag{4.4.3}$$

4.5 并积

$$\vec{a}\vec{b} = a_i b_j \vec{e}_i \vec{e}_j = \begin{pmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \\ a_2 b_1 & a_2 b_2 & a_2 b_3 \\ a_3 b_1 & a_3 b_2 & a_3 b_3 \end{pmatrix}$$

$$(4.5.1)$$

对于单位矢量:

$$\vec{e}_i \vec{e}_j = \begin{pmatrix} \delta_{i1} \\ \delta_{i2} \\ \delta_{i3} \end{pmatrix} \begin{pmatrix} \delta_{j1} & \delta_{j2} & \delta_{j3} \end{pmatrix} = \begin{pmatrix} \delta_{i1} \delta_{j1} & \delta_{i1} \delta_{j2} & \delta_{i1} \delta_{j3} \\ \delta_{i2} \delta_{j1} & \delta_{i2} \delta_{j2} & \delta_{i2} \delta_{j3} \\ \delta_{i3} \delta_{j1} & \delta_{i3} \delta_{j2} & \delta_{i3} \delta_{j3} \end{pmatrix}$$
(4.5.2)

4.6 三重标积(混合积)

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = a_l \vec{e}_l \cdot \varepsilon_{ijk} b_i c_j \vec{e}_k = \varepsilon_{ijk} a_l b_i c_j \delta_{lk} = \varepsilon_{ijk} a_k b_i c_j = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$(4.6.1)$$

性质:

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$

$$(4.6.2)$$

4.7 三重矢积

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \tag{4.7.1}$$

Proof:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \varepsilon_{ijk} a_i (\vec{b} \times \vec{c})_i \vec{e}_k = \varepsilon_{ijk} a_i (\varepsilon_{mnj} b_m c_n) \vec{e}_k$$
(4.7.2)

$$\vec{a} \times (\vec{b} \times \vec{c}) = -\varepsilon_{ikj}\varepsilon_{mnj}a_ib_mc_n\vec{e}_k \tag{4.7.3}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = \delta_{in} \delta_{km} a_i b_m c_n \vec{e}_k - \delta_{im} \delta_{kn} a_i b_m c_n \vec{e}_k$$

$$(4.7.4)$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = a_i c_i b_k \vec{e}_k - a_i b_i c_k \vec{e}_k = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

$$(4.7.5)$$

5 矢量的微积分

5.1 微分

5.1.1 一元情况

微分:

$$d\vec{A} = \vec{A}(t+dt) - \vec{A}(t) \tag{5.1.1}$$

导数:

$$\vec{A}'(t) = \frac{d\vec{A}}{dt} = \lim_{\Delta t \to 0} \frac{\vec{A}(t + \Delta t) - \vec{A}(t)}{\Delta t}$$
(5.1.2)

将 \vec{A} 写作 $a_i\vec{e_i}$, 当 $\vec{e_i}$ 是常矢量时:

$$\frac{d\vec{A}}{dt} = \frac{d}{dt} \left(a_i \vec{e}_i \right) = \frac{da_i}{dt} \vec{e}_i \tag{5.1.3}$$

5.1.2 多元情况

对于 $\vec{A}(x_1, x_2, x_3)$

$$\frac{\partial \vec{A}}{\partial x_1} = \lim_{\Delta x_1 \to 0} \frac{\vec{A}(x_1 + \Delta x_1, x_2, x_3) - \vec{A}(x_1, x_2, x_3)}{\Delta x_1}$$
 (5.1.4)

$$\frac{\partial \vec{A}}{\partial x_j} = \frac{\partial}{\partial x_j} \left(a_i \vec{e}_i \right) = \frac{\partial a_i}{\partial x_j} \vec{e}_i \tag{5.1.5}$$

全微分:

$$d\vec{A} = \frac{\partial a_i}{\partial x_j} dx_j \vec{e_i} \tag{5.1.6}$$

5.1.3 求导法则

- $\bullet \ \frac{d}{dt}C = 0$
- $\frac{d}{dt}(\mathbf{A} \pm \mathbf{B}) = \frac{d\mathbf{A}}{dt} \pm \frac{d\mathbf{B}}{dt}$
- $\bullet \ \frac{d}{dt}(k\mathbf{A}) = k\frac{d\mathbf{A}}{dt}$
- $\frac{d}{dt}(u\mathbf{A}) = \frac{du}{dt}\mathbf{A} + u\frac{d\mathbf{A}}{dt}$
- $\bullet \ \frac{d}{dt}(\mathbf{A} \cdot \mathbf{B}) = \frac{d\mathbf{A}}{dt} \cdot \mathbf{B} + \mathbf{A} \cdot \frac{d\mathbf{B}}{dt}$
- $\frac{d}{dt}(\mathbf{A} \times \mathbf{B}) = \frac{d\mathbf{A}}{dt} \times \mathbf{B} + \mathbf{A} \times \frac{d\mathbf{B}}{dt}$
- $\bullet \ \frac{d\mathbf{A}}{dt} = \frac{d\mathbf{A}}{du} \frac{du}{dt}$

5.2 积分

5.2.1 定积分

$$\int_{a}^{b} \vec{A}(t)dt = \lim_{\max\{\Delta t_i\} \to 0} \sum_{i=1}^{n} \vec{A}(t_i) \Delta t_i$$
(5.2.1)

$$\int_{a}^{b} \vec{A}(t)dt = \int_{a}^{b} (a_i \vec{e}_i) dt = \left(\int_{a}^{b} a_i dt\right) \vec{e}_i$$
(5.2.2)

5.2.2 推论

$$\vec{A} \cdot d\vec{A} = \left| \vec{A} \right| d \left| \vec{A} \right| \tag{5.2.3}$$

Proof:

$$\vec{A} \cdot d\vec{A} = (a_i \vec{e}_i) \cdot d (a_j \vec{e}_j)$$

$$= a_i da_i (\vec{e}_i \cdot \vec{e}_i)$$

$$= \frac{1}{2} d (a_i \cdot a_i)$$

$$= \frac{1}{2} d |\vec{A}|^2 = |\vec{A}| d |\vec{A}|$$
(5.2.4)

5.2.3 分部求导

- ② $d(\vec{u} \times \vec{v}) = d\vec{u} \times \vec{v} + \vec{u} \times d\vec{v}$
- $3 d(f\vec{u}) = df\vec{u} + fd\vec{u}$

梯度、旋度与散度

6.1 梯度

6.1.1 定义

$$grad f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \frac{\partial f}{\partial x_3} \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} f = \partial_i f \vec{e}_i$$
(6.1.1)

P.S.:

Hamilton算符:

$$\nabla \equiv \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} = \partial_i \vec{e_i}$$
 (6.1.2)

 $grad f = \nabla f$ (6.1.3)

Note:

该算符同时具有矢量性与微分性

物理意义 6.1.2

标量场的变化速度。

6.1.3 性质

①
$$df = \partial_i f dx_i = \nabla f \cdot d\vec{r}$$

② $\nabla f \cdot \hat{n} = \frac{\partial f}{\partial n} ; \nabla f \cdot \vec{e_i} = \frac{\partial f}{\partial x_i}$
③ $\nabla (\alpha f + \beta g) = \alpha \nabla f + \beta \nabla g$

$$\nabla r = \frac{\vec{r}}{r} = \hat{r}$$

②
$$\nabla r = \frac{\vec{r}}{r} = \hat{r}$$

③ $\nabla (\vec{a} \cdot \vec{r}) = \vec{a} \quad (\vec{a}$ 为常矢量)

6.2 散度

6.2.1 定义

$$\operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial x_3} = \partial_i F_i = \nabla \cdot \vec{F}$$

$$(6.2.1)$$

P.S.

Gauss公式:

$$\oint \vec{F} \cdot d\vec{S} = \iiint \left(\operatorname{div} \vec{F} \right) dV \tag{6.2.2}$$

6.2.2 物理意义

判断矢量场的奇性(有源/无源)。

6.2.3 性质

①
$$\nabla \cdot \left(\alpha \vec{F} + \beta \vec{G} \right) = \alpha \nabla \cdot \vec{F} + \beta \nabla \cdot \vec{G}$$

② $\nabla \cdot \left(f \vec{F} \right) = \nabla f \cdot \vec{F} + f \nabla \cdot \vec{F}$
③ $\nabla \cdot \vec{F}(r) = \nabla r \cdot \frac{\partial \vec{F}}{\partial r}$

6.3 旋度

6.3.1 定义

$$rot \vec{F} = curl \vec{F} = \begin{pmatrix} \frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3} \\ \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} \\ \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \end{pmatrix} = \nabla \times \vec{F} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{vmatrix} = \varepsilon_{ijk} \partial_i F_j \vec{e}_k$$
 (6.3.1)

P.S.:

Stokes公式:

$$\oint \vec{F} \cdot d\vec{r} = \iint \left(rot \, \vec{F} \right) \cdot d\vec{S} \tag{6.3.2}$$

6.3.2 物理意义

当空间位置改变时,场方向"扭曲"的速率,即矢量场旋转的趋势。

6.3.3 性质

①
$$rot \ (\mathbf{A} \pm \mathbf{B}) = rot \ \mathbf{A} \pm rot \ \mathbf{B}$$

② $\nabla \times \left(f \vec{F} \right) = \nabla f \times \vec{F} + f \nabla \times \vec{F}$
③ $\nabla \times \vec{F}(r) = \nabla r \times \frac{\partial \vec{F}}{\partial r}$
④ $\nabla \times \vec{r} = 0$

6.4 算符与矢量的并积

$$\nabla \vec{F} = \begin{pmatrix} \partial_1 \\ \partial_2 \\ \partial_3 \end{pmatrix} \begin{pmatrix} F_1 & F_2 & F_3 \end{pmatrix} = \begin{pmatrix} \partial_1 F_1 & \partial_1 F_2 & \partial_1 F_3 \\ \partial_2 F_1 & \partial_2 F_2 & \partial_2 F_3 \\ \partial_3 F_1 & \partial_3 F_2 & \partial_3 F_3 \end{pmatrix} = \partial_i F_j \vec{e}_i \vec{e}_j$$
(6.4.1)

6.5 Laplace算符

$$\Delta = \nabla^2 = \nabla \cdot \nabla \tag{6.5.1}$$

$$\nabla^2 = \delta_{ij}\partial_i\partial_j = \partial_i\partial_i \tag{6.5.2}$$

$$\nabla^2 f = \nabla \cdot (\nabla f) \qquad ; \qquad \nabla^2 \vec{F} = \nabla \cdot (\nabla \vec{F})$$
 (6.5.3)

6.6 其他矢量公式

6.6.1 梯度场无旋

$$\nabla \times (\nabla f) \equiv 0 \tag{6.6.1}$$

6.6.2 旋度场无源

$$\nabla \cdot \left(\nabla \times \vec{F} \right) \equiv 0 \tag{6.6.2}$$

6.6.3 旋度的旋度

$$\nabla \times \left(\nabla \times \vec{F}\right) = \nabla \left(\nabla \cdot \vec{F}\right) - \nabla^2 \vec{F} \tag{6.6.3}$$

6.6.4 点乘的梯度

$$\nabla \left(\vec{a} \cdot \vec{b} \right) = (\vec{a} \cdot \nabla) \vec{b} + (\vec{b} \cdot \nabla) \vec{a} + \vec{a} \times (\nabla \times \vec{b}) + \vec{b} \times (\nabla \times \vec{a})$$

$$(6.6.4)$$

6.6.5 叉乘的散度

$$\nabla \cdot \left(\vec{a} \times \vec{b} \right) = \vec{b} \cdot (\nabla \times \vec{a}) - \vec{a} \cdot \left(\nabla \times \vec{b} \right)$$
(6.6.5)

6.6.6 叉乘的旋度

$$\nabla \times \left(\vec{a} \times \vec{b} \right) = \vec{a} \left(\nabla \cdot \vec{b} \right) - \vec{b} \left(\nabla \cdot \vec{a} \right) + \left(\vec{b} \cdot \nabla \right) \vec{a} - \left(\vec{a} \cdot \nabla \right) \vec{b}$$

$$(6.6.6)$$

7 并矢的几个运算法则

7.1 矢量点乘并矢

- $\vec{A} \cdot (\vec{B}\vec{C}) = (\vec{A} \cdot \vec{B})\vec{C}$
- $\bullet \ \left(\vec{B}\vec{C} \right) \cdot \vec{A} = \vec{B} \left(\vec{C} \cdot \vec{A} \right)$

7.2 双点积

$$(\vec{A}\vec{B}):(\vec{C}\vec{D}) = (\vec{B}\cdot\vec{C})(\vec{A}\cdot\vec{D})$$
(7.2.1)

7.3 叉积

$$\vec{A} \times \vec{e_i} \vec{e_j} = \left(\vec{A} \times \vec{e_i} \right) \vec{e_j} \tag{7.3.1}$$

$$\vec{e_i}\vec{e_j} \times \vec{A} = \vec{e_i} \left(\vec{e_j} \times \vec{A} \right) \tag{7.3.2}$$

7.4 旋度与散度

$$\nabla \times \left(\vec{A}\vec{B} \right) = \left(\nabla \times \vec{A} \right) \vec{B} - \left(\vec{A} \times \nabla \right) \vec{B} \tag{7.4.1}$$

$$\nabla \cdot \left(\vec{A} \vec{B} \right) = \left(\nabla \cdot \vec{A} \right) \vec{B} - \left(\vec{A} \cdot \nabla \right) \vec{B} \tag{7.4.2}$$

7.5 梯度与散度

$$\nabla \varphi = \nabla \cdot (\varphi \mathbf{I}) \tag{7.5.1}$$

8 常用正交曲线坐标系中的梯度算符

8.1 直角坐标系

$$\bullet \ \nabla = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_z \frac{\partial}{\partial z}$$

对于任意矢量函数 $\vec{a} = a_x \vec{e}_x + a_y \vec{e}_y + a_z \vec{e}_z$ 和任意标量函数 Ψ :

$$\bullet \ \nabla \cdot \vec{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$$

$$\bullet \ \nabla \times \vec{a} = \vec{e_x} \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z} \right) + \vec{e_y} \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x} \right) + \vec{e_z} \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y} \right)$$

•
$$\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}$$

8.2 柱坐标系

•
$$\nabla = \vec{e}_{\rho} \frac{\partial}{\partial \rho} + \vec{e}_{\phi} \frac{\partial}{\rho \partial \phi} + \vec{e}_{z} \frac{\partial}{\partial z}$$

单位矢量变换关系:

•
$$\vec{e}_{\rho} = \cos\phi \vec{e}_x + \sin\phi \vec{e}_y$$

$$\bullet \ \vec{e}_{\phi} = -\sin\phi \vec{e}_x + \cos\phi \vec{e}_y$$

•
$$\vec{e}_x = cos\phi\vec{e}_\rho - sin\phi\vec{e}_\phi$$

•
$$\vec{e}_y = \sin\phi \vec{e}_\rho + \cos\phi \vec{e}_\phi$$

对于任意矢量函数 \vec{a} 和任意标量函数 Ψ :

•
$$\nabla \cdot \vec{a} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho a_{\rho}) + \frac{1}{\rho} \frac{\partial a_{\phi}}{\partial \phi} + \frac{\partial a_{z}}{\partial z}$$

$$\bullet \ \nabla \times \vec{a} = \vec{e_{\rho}} \left(\frac{1}{\rho} \frac{\partial a_z}{\partial \phi} - \frac{\partial a_{\phi}}{\partial z} \right) + \vec{e_{\phi}} \left(\frac{\partial a_{\rho}}{\partial z} - \frac{\partial a_z}{\partial \rho} \right) + \vec{e_z} \frac{1}{\rho} \left(\frac{\partial (\rho a_{\phi})}{\partial \rho} - \frac{\partial a_{\rho}}{\partial \phi} \right)$$

$$\bullet \ \nabla^2 \Psi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \Psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \Psi}{\partial \phi^2} + \frac{\partial^2 \Psi}{\partial z^2}$$

8.3 球坐标系

•
$$\nabla = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \vec{e}_\phi \frac{1}{rsin\theta} \frac{\partial}{\partial \phi}$$

单位矢量变换关系:

$$\bullet \ \vec{e_r} = sin\theta cos\phi \vec{e_x} + sin\theta sin\phi \vec{e_y} + cos\theta \vec{e_z}$$

•
$$\vec{e}_{\theta} = cos\theta cos\phi \vec{e}_x + cos\theta sin\phi \vec{e}_y - sin\theta \vec{e}_z$$

•
$$\vec{e}_{\phi} = -\sin\phi\vec{e}_x + \cos\phi\vec{e}_y$$

对于任意矢量函数 \vec{a} 和任意标量函数 Ψ :

•
$$\nabla \cdot \vec{a} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 a_r \right) + \frac{1}{r sin \theta} \frac{\partial \left(sin \theta a_{\theta} \right)}{\partial \theta} + \frac{1}{r sin \theta} \frac{\partial a_{\phi}}{\partial \phi}$$

- $\bullet \ \nabla \times \vec{a} = \frac{\vec{e_r}}{rsin\theta} \left(\frac{\partial \left(sin\theta a_{\phi} \right)}{\partial \theta} \frac{\partial a_{\theta}}{\partial \phi} \right) + \frac{\vec{e_{\theta}}}{r} \left(\frac{1}{sin\theta} \frac{\partial a_r}{\partial \phi} \frac{\partial \left(ra_{\phi} \right)}{\partial r} \right) + \frac{\vec{e_{\phi}}}{r} \left(\frac{\partial \left(ra_{\theta} \right)}{\partial r} \frac{\partial a_r}{\partial \theta} \right)$
- $\bullet \ \nabla^2 \Psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Psi}{\partial r} \right) + \frac{1}{r^2 sin\theta} \frac{\partial}{\partial \theta} \left(sin\theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{1}{r^2 sin^2 \theta} \frac{\partial^2 \Psi}{\partial \phi^2}$