Algoritmos e Estruturas de Dados 1° Projeto

Universidade de Aveiro

Diogo Carvalho, Tiago Garcia

Algoritmos e Estruturas de Dados 1º Projeto

Dept. de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

Diogo Carvalho, Tiago Garcia (113221) diogo.tav.carvalho@ua.pt, (114184) tiago.rgarcia@ua.pt

22 de novembro de 2023

Conteúdo

1	Introdução	2
2	ImageBlur	3
	2.1 Análise formal	3
	2.1.1 Primeira abordagem	3
	2.1.2 Segunda abordagem	
	2.2 Análise experimental	4
	2.2.1 Primeira abordagem	4
	2.2.2 Segunda abordagem	
	2.3 Algoritmo optimizado da ImageBlur	
	2.3.1 Imagem Integral	
	2.3.2 Imagem desfocada	6
3	Conclusões	8
4	Anexos	9
	4.1 ImageBlur: Primeira Abordagem	
	4.2 ImageBlur: Segunda Abordagem	10

Introdução

ImageBlur

2.1 Análise formal

2.1.1 Primeira abordagem

Descrição do algoritmo

Este algoritmo percorre todos os pixeis da imagem original e para cada pixel calcula a média dos pixeis num retângulo de desfocagem centrado no pixel atual. Para tal, vai iterar por todos os pixeis da imagem e para cada pixel vai iterar de novo por todos os pixeis que se encontram no retângulo de dimensões $2dx + 1 \times 2dy + 1$, faz a soma dos valores desses pixeis, divide pelo número de pixeis desse retângulo e atribui esse resultado ao pixel central.

Este algoritmo, por mais que seja simples, fica bastante ineficiente quando o retângulo de desfocagem é grande pois temos de calcular a soma de todos os pixeis do retângulo para cada pixel da imagem. Por mais que para imagens pequenas não seja uma diferença notável, à medida que os valores das variáveis aumenta, também o tempo necessário para o algoritmo aumenta imenso.

O código completo deste algoritmo pode ser visto no anexo 4.1.

Análise de complexidade

• Complexidade Temporal

Assim, a complexidade temporal total da função é $O(img \rightarrow height * img \rightarrow width * (2 * dy + 1) * (2 * dx + 1))$ que significa que a complexidade temporal escala linearmente tanto em função da àrea da imagem quanto em função da área do retângulo de desfocagem (independentes uma da outra neste requisito).

• Complexidade Espacial

- 1. **Criação da Nova Imagem:** Esta parte da função aloca memória para a nova imagem onde será guardada a imagem desfocada. Uma vez que a nova imagem tem as mesmas dimensões que a imagem original, a complexidade espacial desta parte é $O(imq \rightarrow height * imq \rightarrow width)$.
- Desfocagem da Image: Esta parte modifica a imagem criada, por isso n\u00e3o ter\u00e1 complexidade espacial
 associada.
- 3. Transferência da Nova Imagem: Esta parte da função apenas transfere o ponteiro da nova imagem para o ponteiro da imagem original, por isso não terá complexidade espacial associada.

Assim, a complexidade espacial total da função é $O(img \rightarrow height*img \rightarrow width)$ que significa que a complexidade espacial escala linearmente em função da área da imagem.

2.1.2 Segunda abordagem

Descrição do algoritmo

Este algoritmo passa por calcular as somas de todos os pixeis num retângulo entre (0,0) e (x,y) antes de começar a criar a imagem desfocada. Uma vez que teremos as somas todas calculadas, podemos calcular o valor de cada pixel da imagem desfocada com base nas somas calculadas anteriormente. Este algoritmo é mais eficiente que o anterior pois não temos de calcular as somas de cada pixel do retângulo de desfocagem, mas sim apenas uma vez para cada pixel da imagem original. Visto que este altoritmo é mais complexo, está explicado mais detalhadamente na secção 2.3.

O código completo deste algoritmo pode ser visto no anexo 4.2.

Análise de complexidade

• Complexidade Temporal

- 1. Criação da Imagem Integral: Esta parte da função itera sobre todas as linhas $(img \rightarrow height)$ e para cada linha itera sobre todos os pixeis da linha $(img \rightarrow width)$. Assim, a complexidade temporal desta parte é $O(img \rightarrow height * img \rightarrow width)$.
- 2. Desfocagem da Image: Tal como a anterior, esta parte também itera sobre todas as linhas (img→height) e para cada linha itera sobre todos os pixeis da linha (img→width). Uma vez que todas as operações dentro dos 'for loops' têm complexidade temporal constante, a complexidade temporal desta parte é O(img→height * img→width).
- 3. Limpeza da Imagem Integral: Esta parte da função tem sempre complexidade temporal constante, por isso a complexidade temporal desta parte é O(1).

Assim, a complexidade temporal total da função é $O(img \rightarrow height*img \rightarrow width) + O(img \rightarrow height*img \rightarrow width) + O(1)$ que simplifica para $O(img \rightarrow height*img \rightarrow width)$. Isto significa que a complexidade temporal escala linearmente em função da área da imagem, com esta abordagem, a área do retângulo de desfocagem não irá alterar a complexidade do algoritmo.

• Complexidade Espacial

- 1. Criação da Imagem Integral: Esta parte aloca memória para a imagem integral que tem mais uma linha e uma coluna que a imagem original. Assim, a complexidade espacial desta parte é $O((img \rightarrow height + 1) * (img \rightarrow width + 1))$.
- 2. **Desfocagem da Image:** Esta parte modifica a imagem original, por isso não terá complexidade espacial associada.

Assim, a complexidade espacial total da função é $O((img \rightarrow height + 1) * (img \rightarrow width + 1))$ que simplifica para $O(img \rightarrow height * img \rightarrow width)$. Isto significa que a complexidade espacial escala linearmente em função da área da imagem.

2.2 Análise experimental

2.2.1 Primeira abordagem

2.2.2 Segunda abordagem

2.3 Algoritmo optimizado da ImageBlur

2.3.1 Imagem Integral

Considerando img como uma matriz $m \times n$, onde $m = img \to height$ e $n = img \to width$, vamos gerar uma matriz $m+1 \times n+1$ onde a primeira linha e a primeira coluna vão ser zeros, a partir daí, o elemento (y,x) desta matriz irá corresponder ao elemento (y-1,x-1) da matriz da imagem com $x \in [1,n]$ e $y \in [1,m]$. Esta nova imagem será armazenada como um array de m+1*n+1 elementos, com 32 bits cada (visto que será um array de inteiros). Para inicializar a matriz, usamos as linhas de código:

```
int integral_width = img->width + 1;
int integral_height = img->height + 1;
int* integral = (int*)calloc(integral_width * integral_height, sizeof(int));
```

Agora vamos ter de completar o resto das células. Cada célula da nova matriz será igual à soma de todos os pixeis que estão acima e à esquerda do mesmo.

Figura 2.1: Representação da matriz integral

Como podemos ver na figura acima, para calcular o pixel representado a **vermelho** $(I_{(y,x)})$, teremos de adicionar ao pixel original da imagem, depois, o elemento representado acima a **laranja** $(I_{(y-1,x)})$ que já contém todos os pixeis acima e à esquerda do mesmo (representados a **verde** acima do pixel mencionado), e por fim, teremos de adicionar o elemento representado à esquerda também a **laranja** $(I_{(y,x-1)})$ que contém todos os pixeis na linha horizontal à esquerda do mesmo (representados a **verde** à esquerda do pixel mencionado). Uma vez que o pixel $I_{(y,x-1)}$, também contém a área acima dele (parte já incluída pelo pixel $I_{(y-1,x)}$), então teremos de remover a parte duplicada (área representada a **azul**) que corresponde ao valor do pixel representado a **amarelo** $(I_{(y-1,x-1)})$. Com isto, podemos concluir que a expressão para cálcular a área a atribuir a um determinado pixel será:

$$I_{(y,x)} = O_{(y-1,x-1)} + I_{(y-1,x)} + I_{(y,x-1)} - I_{(y-1,x-1)}$$
(2.1)

De notar que as células representadas a cinzento serão as células cujo valor do elemento será sempre zero. Para calcular todas estas células da matriz, usamos as linhas de código:

2.3.2 Imagem desfocada

Uma vez que já temos a imagem integral, podemos agora calcular a imagem desfocada. Para isso, vamos percorrer a imagem integral e para cada pixel, teremos de efetuar o seguinte procedimento:

1. Calcular os cantos do retângulo de blur

Vamos calcular a soma dos pixeis que estão dentro do retângulo de dimensões 2dx + 1 e 2dy + 1 para o comprimento e largura, respetivamente, centrado no pixel atual. Poderemos obter esse retângulo usando o canto superior esquerdo bem como o canto inferior direito.

(a) Canto superior esquerdo

Para obter cada uma das coordenadas deste ponto, teremos de subtrair a cada coordenada do pixel, os valores do dy e dx, dy para a borda superior e dx para a borda da esquerda. No caso do resultado de uma dessas coordenadas ultrapassar um dos limites mínimos do retângulo, então esta coordenada deverá ser o limite mínimo. Este limite normalmente seria 0 mas visto que na imagem integral temos uma linha e uma coluna extra em cima e à esquerda, então temos de somar 1 a esses limites para compensar pelos pixeis extra e redefinir o início da parte útil da matriz. Isto fará que o limite mínimo seja 1 à esquerda e em cima. Para calcular as coordenadas, usamos as linhas de código:

```
int x1 = x - dx < 1 ? 1 : x - dx;
int y1 = y - dy < 1 ? 1 : y - dy;</pre>
```

(b) Canto inferior direito

Para obter cada uma das coordenadas deste ponto, teremos de somar a cada coordenada do pixel, os valores do dy e dx, dy para a borda inferior e dx para a borda da direita. No caso do resultado de uma dessas coordenadas ultrapassar um dos limites máximos do retângulo, então esta coordenada deverá ser o limite máximo. Uma vez que deste lado não temos nenhuma linha ou coluna extra, o limite máximo será o último indice, ou seja, $integral_width-1$. Isto fará que o limite máximo seja a largura menos 1 à direita e a altura menos 1 em baixo. Aos resultados, teremos de adicionar o valor 1 visto que não é contabilizada a linha/coluna do pixel central. Para calcular as coordenadas, usamos as linhas de código:

```
int x2 = x + dx + 1 > integral_width - 1 ? integral_width - 1 : x + dx + 1;
int y2 = y + dy + 1 > integral_height - 1 ? integral_height - 1 : y + dy + 1;
```

2. Cálculo da quantidade de pixeis

Para calcular a quantidade de pixeis que estão dentro do retângulo, basta calcular a área do retângulo em pixeis, ou seja, a multiplicação do comprimento pela largura. Para tal, usamos a linha de código:

```
int count = (x2 - x1) * (y2 - y1);
```

3. Cálculo da soma

Figura 2.2: Representação do retângulo de blur

Como podemos ver pela figura anterior, para conseguir a área pretendidada (representada a amarelo), temos de usar como base a área associada ao pixel do canto inferior direito e subtrair a área associada ao pixel do canto superior direito (área acima do retângulo) bem como subtrair a área associada ao pixel do canto inferior esquerdo (área à esquerda do retângulo). Estas áreas exteriores ao retângulo estão representadas a verde. Visto que uma parte destas áreas coincide, temos de tirar a parte duplicada que será a área associada ao pixel do canto superior esquerdo e representada a azul na imagem. Importante notar que enquanto que o canto inferior direito será incluído na área, os outros 3 cantos não serão. A partir disto, podemos obter a soma do retângulo de blur a partir da seguinte expressão:

$$S_{(y,x)} = I_{(y2,x2)} - I_{(y1,x2)} - I_{(y2,x1)} + I_{(y1,x1)}$$
(2.2)

Para calcular o resultado desta expressão, usamos as linhas de código:

4. Definir o novo valor do pixel

Para definir o novo valor do pixel, basta dividir a soma pelo número de pixeis que estão dentro do retângulo. Para tal, usamos a linha de código:

```
ImageSetPixel(img, x, y, (sum + count / 2) / count);
```

De notar que somamos count/2 à soma para que o resultado da divisão seja arredondado corretamente.

Após repetir este procedimento para todos os pixeis da imagem, obtemos a imagem desfocada.

Conclusões

Anexos

4.1 ImageBlur: Primeira Abordagem

```
void ImageBlur(Image img, int dx, int dy) {
        assert(img != NULL);
2
        assert(dx >= 0 \&\& dy >= 0);
4
        if (dx == 0 && dy == 0) return;
        Image img_new = ImageCreate(img->width, img->height, img->maxval);
        if (img_new == NULL) return;
10
        for (int x = 0; x < img->width; x++) {
11
            for (int y = 0; y < img->height; y++) {
                int sum = 0;
12
                int count = 0;
13
14
                for (int ix = x - dx; ix <= x + dx; ix++) {</pre>
15
                    for (int iy = y - dy; iy <= y + dy; iy++) {</pre>
                         if (!ImageValidPos(img, ix, iy)) continue;
17
                        sum += ImageGetPixel(img, ix, iy);
18
                        count++;
19
20
21
22
                ImageSetPixel(img_new, x, y, (sum + count / 2) / count);
23
24
26
        uint8 *tmp = img->pixel;
        img->pixel = img_new->pixel;
28
29
        img_new->pixel = tmp;
30
        ImageDestroy(&img_new);
31
```

4.2 ImageBlur: Segunda Abordagem

```
void ImageBlur(Image img, int dx, int dy) {
1
       assert(img != NULL);
2
        assert(dx >= 0 \&\& dy >= 0);
3
4
       if (dx == 0 && dy == 0) return;
6
       int integral_width = img->width + 1;
7
        int integral_height = img->height + 1;
        int* integral = (int*)calloc(integral_width * integral_height, sizeof(int));
9
        for (int y = 1; y < integral_height; y++) {</pre>
10
           for (int x = 1; x < integral_width; x++) {</pre>
11
                integral[y * integral_width + x] = ImageGetPixel(img, x - 1, y - 1)
12
13
                    + integral[(y - 1) \star integral_width + x]
                    + integral[y * integral_width + (x - 1)]
14
                    - integral[(y - 1) * integral_width + (x - 1)];
15
16
       }
17
18
19
        for (int y = 0; y < img->height; y++) {
           for (int x = 0; x < img->width; x++) {
20
21
                int x1 = x - dx < 1 ? 1 : x - dx;
                int y1 = y - dy < 1 ? 1 : y - dy;
22
23
                int x2 = x + dx + 1 > integral_width - 1 ? integral_width - 1 : x + dx + 1;
                int y2 = y + dy + 1 > integral_height - 1 ? integral_height - 1 : y + dy + 1;
25
26
                int count = (x2 - x1) * (y2 - y1);
28
29
                int sum = integral[y2 * integral_width + x2]
                    - integral[y1 * integral_width + x2]
30
                    - integral[y2 * integral_width + x1]
31
32
                    + integral[y1 * integral_width + x1];
33
34
                ImageSetPixel(img, x, y, (sum + count / 2) / count);
35
36
37
38
        free(integral);
39
```