

Risk Mapping

... work in progress ...

Objective

- Develop and test a risk mapping methodology that is robust and credible enough for application in the context of JNR-baseline allocation.
- The risk mapping methodology should be:
 - 1. Accurate in predicting future risk
 - 2. Hard or impossible to bias
 - 3. Capable of recognizing areas of "Zero Risk", because these areas do exist (i.e. remote areas)
 - 4. Simple and replicable (i.e. easy to understand, applicable with minimum data requirements, etc.)

Approach

- Hypotheses: The "local" deforestation rate of the recent past is a good predictor
 of the risk of deforestation in the immediate future.
- To test this hypotheses we divide the historical reference period in two subperiods called "calibration period" and "validation period".

- If a risk map developed with data from the "calibration period" is capable to accurately predict the risk of "future deforestation", i.e. of the "validation period", then the risk mapping methodology should be considered OK.
- We then apply the risk mapping methodology using the data from the entire "historical reference period" to predict the risk of deforestation in the "VCUs accounting period".

Approach

- Hypotheses: The "local" deforestation rate of the recent past is a good predictor of the risk of deforestation in the immediate future.
 - "local" in the approach tested in Peru is a squared "window" that moves across the entire landscape.
 - The "local" deforestation rate is calculated for the area delimited by the window each time it moves to the next pixel.
 - The calculated "local" deforestation rate is assigned to the corner pixel of the window.

	1	2	3	4	5	6	7	8	9	10	11	12	13	
Α	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A
В	B1	B2	ВЗ	В4	B5	В6	В7	В8	В9	B10	B11	B12	B13	В
С	C1	C2	СЗ	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	С
D	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D
E	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E
F	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F
G	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	G13	G
	1	2	3	4	5	6	7	8	9	10	11	12	13	

Creation of the risk map

Areas at a distance from the forest edge at which less than 1% of the historical deforestation happened during the historical reference period are to be considered of having virtually 0 risk of deforestation.

Creation of the risk map

Window: $5 \times 5 = 25$ pixels

Period (T): 10 years

Deforestation: -3 pixels (= 22–25)

Deforestation rate: $DR_A = 1/10 * ln (22-25) = -0.83\%$

Window: $5 \times 5 = 25$ pixels

Period (T): 10 years

Deforestation: - 3 pixels (=22-25)

Deforestation rate: $DR_B = 1/10 * In (22-25) = -0.83\%$

Window: $5 \times 5 = 25$ pixels

Period (T): 10 years

Deforestation: -4 pixels (21-25)

Deforestation rate: $DR_C = 1/10 * ln (21-25) = -1.28\%$

Creation of the risk map

Step 1: Continuous risk map

Created using a moving window of X x X pixels.

Step 2: Zero Risk class

Mask out areas of "Zero Risk" using distance form forest edge criterion.

Output 1:

Continuous surface with "local" deforestation rate values.

Output 2:

Continues risk surface with Zero Risk class.

Step 3: Risk map with discrete categories

Slice the continuous risk map in n risk classes of equal area.

Output 3:

Risk map with *n* discrete risk classes (including the "Zero Risk" class).

Result

Step 1: Continuous risk map

Created using a moving window of X x X pixels

Risk map validation

What is the optimal window size (X x X pixels) that should be used to construct the risk map?

- To answer this question we developed 50 risk maps using window sizes ranging from 33 x 33 pixels (990 m x 990 m) to 1,650 x 1,650 pixels (49,500 m x 49,500 m).
- How to compare these 50 maps to select the one that "most accurately" predicts the risk of future deforestation (i.e. of the "validation period")?
- The window size of the "most accurate" risk map will be used to construct the final risk map for the "VCUs accounting period" using the pooled data of the "calibration" + "validation" periods.

Correlation between the rates of the "calibration" and "validation" periods

Risk class	FCBM 2000	FCBM 2014	FCBM 2017	Rates 2000-2014	Rates 2014-2017	
	ha	ha	ha	%	%	
0	15,469,665.12	15,452,957.70	15,438,608.64	0.0077%	0.0310%	
1	6,151,539.87	6,150,942.09	6,149,826.90	0.0007%	0.0060%	
2	6,323,160.42	6,319,952.10	6,316,898.67	0.0036%	0.0161%	
3	6,487,027.65	6,478,936.56	6,473,439.27	0.0089%	0.0283%	
4	6,332,095.08	6,314,102.19	6,304,573.89	0.0203%	0.0503%	
5	5,900,470.29	5,868,628.83	5,854,421.34	0.0387%	0.0808%	
6	5,818,392.81	5,763,493.17	5,737,998.87	0.0677%	0.1478%	
7	5,874,773.31	5,766,348.15	5,722,602.21	0.1331%	0.2538%	
8	6,138,507.06	5,872,249.71	5,779,809.63	0.3167%	0.5289%	
9	6,597,381.87	5,394,558.69	5,126,917.86	1.4377%	1.6962%	
Total	71,093,013.48	69,382,169.19	68,905,097.28	0.1740%	0.2300%	

Statistics	Value	Standa	r Error
Correlation coefficient	0.9956	0.0332	3.33%

CDI

Correlation between deforestation rates of the calibration (2000-2014) and validation (2014-2017) periods

Pros and Cons of the proposed risk mapping methodology

Pros:

- 1. Accurate in predicting the risk of future deforestation (?)
- 2. Hard to bias
- 3. Mandatory "Zero Risk" class
- 4. Simple*

Cons:

- 1. Methodology tested in only one country.
- 2. Requires a deforestation map.
- 3. Heavy computing requirements, if working in jurisdictions with large number of pixels*.

* Peru:

- 900+ million pixels
- ArcGIS Pro 2.6.0, 64 bits
- 24 hours to run the windows 50 times
- 12 days 24/7 for equal area slicing of the 50 maps
- Azure virtual processing machine, 256 GB RAM, 32 vCPU, Premium SSD (~ 2,300.00 USD)

Thank you very much

Lucio Pedroni

Ipedroni@carbondecisions.com

Calculating deforestation rates

LAND USE at time t₁

Forest Land Forest Land Area (FLA_1): 13 x 7 = 91

LAND USE at time t₂

- Forest Land
- Non-Forest Land

Forest Land Area (FLA_2): 91-8=83

LAND USE CHANGE in the period $T = t_2 - t_1$

- Forest Land remaining Forest Land
- Forest Land converted to Non-Forest Land

$$FLA_2 - FLA_1 = 91 - 83 = 8$$

(DEFORESTATION)

DEFORESTATION RATE (DR):

DR =
$$1/(t_2-t_1)$$
 * In (FLA₂ – FLA₁)
 t_1 = 2010; t_2 = 2020; T = t_2 - t_1 = 10

$$DR = 1/10 * In (83 - 91)$$

$$DR = -0.92\%$$

Year	FLA (ha)
2000	91.0
2001	90.2
2002	89.3
2003	88.5
2004	87.7
2005	86.9
2006	86.1
2007	85.3
2008	84.5
2009	83.7
2010	83.0