Package 'SpeciesPool'

June 16, 2020
Title Plot-specific species pools based on Beal's smoothing
Version 0.0.1.9001
Description Set of functions to calculate the plot-specific species pool based on a vegetation database and Beals' smoothing.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Depends dplyr, Matrix, dismo, tidyr, reshape2, SpadeR, sp, vegan, parallel, doParallel, foreach, rgeos
R topics documented:
beals.all 2 bray.curtis 2 Mij.calc 3 SAR.IIIb 3 SpeciesPool 4
Index 6

2 bray.curtis

		-	-
bea]	I٩	aІ	П
DCU.	┖ • •	u_{\perp}	_

Beals' smoothing

Description

Calculates Beals' smoothing for all species in a target plot, based on Mij matrix

Usage

```
beals.all(x.names, x.cover, Mij)
```

Arguments

x.names vector of species names or labelsx.cover vector of species presence-absences

Mij matrix of pairwise likelihood of species co-occurrence (sparse matrices accepted)

Value

A vector of Bray-Curtis dissimilarity between the target plot and all the other relevés in input.data

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

References

Ewald, J. (2002) Multiple controls of understorey plant richness in mountain forests of the Bavarian Alps. Phytocoenologia, 32, 85-100.

bray.curtis

Bray-Curtis dissimilarity

Description

Calculates Bray-Curtis dissimilarity between a target plot, and all the other relevés in the dataset

Usage

```
bray.curtis(input.data, target.plot.ID)
```

Arguments

```
input.data A species x relevés matrix with abundance values
```

target.plot.ID ID or label of target plot

Mij.calc 3

Value

A vector of Bray-Curtis dissimilarities between the target and all the other relevés in input.data

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

Mij.calc

Pairwise likelihood of species co-occurrence

Description

Intermediate step to calculate Beals' smoothing

Usage

```
Mij.calc(dt, verbose = F)
```

Arguments

dt

A data.frame with three columns: releve ID, species ID, and abundance

Value

Returns a square matrix of the likelihood of pairwise species co-occurrence

Author(s)

Francesco Maria Sabatini

Helge Bruelheide

SAR.IIIb

Rarefaction curves

Description

Builds an empirical rarefaction curve

Usage

```
SAR.IIIb(x, areas, n = 10)
```

SpeciesPool SpeciesPool

Arguments

x A vector of species richness
 areas A vector of plot sizes
 n numeric - number of intervals of rarefaction curve

Value

Returns a dataframe of cumulative richness and pooled plot areas

Author(s)

Francesco Maria Sabatini Helge Bruelheide

SpeciesPool

Species pool based on Beal's smoothing

Description

For each relevé, this function selects all neighbouring relevés having a similar potential species composition, and fits empirical non-linear functions to rarefaction curves.

Usage

```
SpeciesPool(
  input.data,
  coords,
  Mij = NULL,
  ncores = 1,
  rows = NULL,
  t.radius = 20000,
  t.bray = 0.2,
  t.plot.number = 10L,
  cutoff = c("iChao2", "Gompertz", "Michaelis"),
  verbose = T,
  species.list = F,
  mycrs = NULL,
  lonlat = NULL
)
```

Arguments

input.data

data.frame of species abundances across relevés. It should have three columns: one with Relevé IDs, one with Species ID, and one with species abundance/cover values

SpeciesPool 5

coords	Either a SpatialPointsDataFrame or a DataFrame with the geographic coordinates of all plots. If SpatialPointsDataframe, it should have Relevé IDs and areas defined in the data. If DataFrame, columns 1:2 should be coordinates (Long, Lat), columns 3:4 should be RelevèIDs and plot area, respectively.
Mij	matrix of pairwise likelihood of species co-occurrence (sparse matrices accepted). If not provided, it will be calculated from the data
ncores	integer indicating the number of cores to use. If ncores>1 the calculation will be done in parallel
rows	a vector of integers indicating on which plots of the input.data the function should run
t.radius	threshold of geographic buffer around target relevé
t.bray	threshold of Bray-Curtis dissimilarity for selecting relevés compositionally similar to target relevé
t.plot.number	minimum number of neighbouring relevés for calculating rarefaction curves
cutoff	method used to estimate the size of the species pool. Default is 'iChao2', other possible are 'Gompertz' or 'Michaelis'
verbose	logical
species.list	logical: Should the list of species composing the species pool be returned?
mycrs	a CRS object defining the coordinate reference of coords, if coords is a data.frame
lonlat	Specify whether the CRS is projected (lonlat=T) or unprojected (lonlat=F)

Value

Returns a dataframe containing for each relevé: - Species - the number of species observed across all relevés neighouring the target relevé

- Chao, iChao2, jack1, jack2 various species richness estimates and standard errors, as derived from the function SpadeR::ChaoSpecies
- nplots number of relevés within a t.radius distance from the target relevé having a bray-curtis dissimilarity lower than t.bray
- beals.at.chao cut-off of Beals' occurrence likelihood, selected as the ith species corresponding to chao
- n.plots.area number of relevés within a t.radius distance, and t.bray dissimilarity from target relevés for which area data is available
- arr, gomp, mm, Asymp parameter estimates for different empirical non-linear functions fitted to rarefaction curves, with relative AIC
- sp.pool.list list of species compatible with target relevé, i.e. having a Beals' likelihood lower than beals.at.chao

Author(s)

Francesco Maria Sabatini Helge Bruelheide

Index

```
beals.all, 2
bray.curtis, 2
Mij.calc, 3
SAR.IIIb, 3
SpeciesPool, 4
```