

Tema 3-3. Procesadores Superescalares

Arquitectura de Computadores Grado en Ingeniería Informática

Sumario

- Introducción: CPI<1
- Planificación Estática
 - Desenrrollamiento de bucles
- Planificación Dinámica
 - Algoritmo de Tomasulo

CPI < 1: Enviar a ejecutar varias Instrucciones/Ciclo

- · 2 filosofías de procesadores que alcanzan CPI<1
- Very Long Instruction Words VLIW: número fijo de instrucciones (4-16) planificadas por el compilador y ejecutadas en paralelo
 - IA-64
- <u>Superscalar (SS)</u>: número variable de instrucciones/ciclo (1 á 8), planificadas por: (a) el compilador, y/o (b) HW (Tomasulo y otros)
 - Procesadores de Intel, AMD, etc.
- Una nueva forma de medir prestaciones : <u>Instrucciones por ciclo (IPC=CPI-1)</u> vs. CPI

DLX32ss: Superescalar con Planificación Estática

- DLX32ss Superescalar con Planificación Estática 2 Vías:
 2 instrucciones de 32-bit (1 FP & 1 ENTEROS)
 - IF: Búsqueda 64-bits/ciclo
 - » Emparejamiento en IF: ENTEROS izquierda, FP derecha
 - EX: Envío a ejecución en orden
 - » <u>Emparejamiento en EX:</u> Se envía a ejecutar la 2ª instrucción si se envía la 1ª
 - » Dependencias se analizan en la etapa de envío a ejecutar (EX)
 - Prestaciones de procesador pueden mejorar en factor 2X IPC_{max}=2

Tipo Ins			Ciclos	•				ible debido	
ENT	IF	ID	EX	WEW	WB		/ ex	kistencia de bancos de	
FP	IF	ID	EX	EX	EX	(WB)	re	gistros: EN	
ENT		IF	ID	EX	WEW	WB/		FP	
FP		IF	ID	EX	EX	EX	WB		
ENT			IF	ID	EX	WEW	WB		
FP			IF	ID	EX	EX	EX	WB	

Microarquitectura generalizada de un procesador superescalar DLX32ss

David Patterson & John Hennessy
Computer Organization and Design RISC-V 1st Edition. The Hardware
Software Interface. Morgan Kaufmann, 2017

Tema 3-3/7

Recordatorio: Desenrollamiento + Reordenamiento en el DLX32p escalar (Optimización "-03")

LD á ADDD: 1 clk ADDD á SD: 2 clk

1 Loop:	LD	F0,0(R1)	Loop:	LD	F0,0(R1)
2	LD	F6,-8(R1)		LD	F6,-8(R1)
3	LD	F10,-16(R1)	_	LD	F10,-16(R1)
4	LD	F14,-24(R1)		ADDD	F4,F0,F2
5	ADDD	F4,F0,F2		LD	F14,-24(R1)
6	ADDD	F8,F6,F2	-	ADDD	F8,F6,F2
7	ADDD	F12,F10,F2		SUBI	R1,R1,#32
8	ADDD	F16,F14,F2	Transformación:	ADDD	F12,F10,F2
9	SD	0(R1),F4	Optimizar el _	SD	32(R1),F4
10	SD	-8(R1),F8	emparejamiento	ADDD	F16,F14,F2
11	SD	-16(R1),F12	en DLX32ss	SD	24(R1),F8
12	SUBI	R1,R1,#32	manteniendo las	SD	16(R1),F12
13	BNEZ	R1,LOOP	latencias	BNEZ	R1, Loop
14	SD	8(R1),F16		SD	8(R1),F16

4 iteraciones: 14 clks, 3.5 clk / iteración (2.6X)

Desenrollamiento en DLX32ss Superscalar con Planificación Estática "-05"

ORDEN DEL PROGRAMA
EN LA CACHE DE
INSTRUCCIONES

F0,0(R1)

Loop: LD

INT FP CLK LD F0,0(R1) LD F6,-8(R1) LD F6,-8(R1) LD F10=16(R1) ADDD F4,F0,F2 LD F14,-24(R1) ADDD F3,F6,F2 SUBI R1,R1,#32 ADDD F12,F10,F2 SD 32(R1),F4 ADDD F16,F14,F2 SD 24(R1),F8 SD 16(R1),F12 BNEZ R1, Loop SD 8(R1),F16	Loop: LD F0,0(R1) 1 ADDD F4,F0,F2 LD F10,-16(R1) ADDD F4,F0,F2 LD F10,-16(R1) ADDD F4,F0,F2 LD F14,-24(R1) ADDD F8,F6,F2 SUBI R1,R1,#32 ADDD F8,F6,F2 SUBI R1,R1,#32 ADDD F12,F10,F2 SD 32(R1),F4 ADDD F16,F14,F2 SD 24(R1),F8 SD 24(R1),F8 SD 24(R1),F8 SD 16(R1),F12 BNEZ R1, Loop SD 8(R1),F16							, , , , , , , ,
Loop: LD F0,0(R1) LD F6,-8(R1) LD F10=16(R1) ADDD F4,F0,F2 LD F14,-24(R1) ADDD F8,F6,F2 SUBI R1,R1,#32 ADDD F12,F10 F2 SD 32(R1),F4 ADDD F16,F14,F2 SD 24(R1),F8 SD 16(R1)(F12) BNEZ R1, Loop 1 ADDD F4,F0,F2 2 LD F14,-24(R1) ADDD F8,F6,F2 3 SUBI R1,R1,#32 ADDD F12,F10,F2 5 SD 32(R1),F4 ADDD F16,F14,F2 7 SD 24(R1),F8 SD 16(R1),F12 BNEZ R1, Loop SD 8(R1),F16	Loop: LD F0,0(R1) LD F6,-8(R1) LD F10=16(R1) ADDD F4,F0,F2 LD F14,-24(R1) ADDD F8,F6,F2 SUBI R1,R1,#32 ADDD F8,F6,F2 ADDD F12,F10,F2 SD 32(R1),F4 ADDD F12,F10,F2 SD 24(R1),F8 SD 16(R1),F12 BNEZ R1, Loop 1 ADDD F4,F0,F2 2 LD F14,-24(R1) ADDD F8,F6,F2 SUBI R1,R1,#32 ADDD F12,F10,F2 5 SD 32(R1),F4 ADDD F16,F14,F2 6 ADDD F16,F14,F2 7 SD 24(R1),F8 SD 16(R1),F12 BNEZ R1, Loop SD 8(R1),F16]	INT	FP	CLK		•
	SI) XIDI) FI6	Loop:	LD LD LD SUBI SD SD SD SD BNEZ	F0,0(R1) F6,-8(R1) F10)=16(R1) F14,-24(R1) R1,R1,#32 32(R1),F4 24(R1),F8 16(R1),F12 R1, Loop	ADDD F4,F0,F2 ADDD F8,F6,F2 ADDD F12,F10 F2	1 2 3 4 5 6 7 8 9	ADDD LD ADDD SUBI ADDD SD ADDD SD SD SD BNEZ	F4,F0,F2 F14,-24(R1) F8,F6,F2 R1,R1,#32 F12,F10,F2 32(R1),F4 F16,F14,F2 24(R1),F8 16(R1),F12 R1, Loop

- · Desenrrollado 4 veces
- · 10 ciclos, 2.5 clk/iteración (3.6X)
- Eficiencia = 14 inst/20 inst_max=70%, IPC=14/10=1.4

Resumen de Prestaciones

- · Codificación Inicial sin optimización: 9 clk/iteración
- "-01" Reordenamiento Instrucciones: 6 clk/ iteración (1.5X)
- · "-O2" Desenrollamiento Bucles: 6.8 clk/ iteración (1.3X)
- "-03" Desenrollamiento Bucles + Reordenamiento Instrucciones: 3.5 clk/ iteración (2.6X)
- "-04" DLX32vliw + Desenrollamiento Bucles + Reordenamiento Instrucciones: 1.3 clk/ iteración (6.9X)
- "-05" Desenrollamiento Bucles + DLX32ss:
 2.5 clk/iteración (3.6X)

Problemas con Planificación Estática que obstaculizan conseguir en DLX32ss el IPC_{max}

- · Se require recompilar el código fuente
- Un retardo de 1 ciclo de las cargas produce una penalización en SS de 3 instrucciones
 - Mitad derecha y siguiente pareja no pueden usar el resultado de la carga → reducción de eficiencia en procesadores SS

Problemas con DLX32ss en general que obstaculizan conseguir el IPC_{max}

- Se requieren múltiples unidades funcionales FP o segmentarlas, porque si no sería un cuello de botella y no se observarían las mejoras asociadas a SS
- Riesgo Estructural y/o RAW: Al enviar a ejecutar un load/store/move sobre un registro FP + una instrucción FP
 - Añadir un puerto de escritura más a banco FP
- La diferencia en latencias de las operaciones que se ejecutan en cada via del SS puede hacer que las excepciones sean imprecisas

Problemas con DLX32ss en general que obstaculizan conseguir el IPC_{max}

- · PARA LLEGAR A MENTENER EL RITMO IPC_{max} SE REQUIEREN DE NUEVAS TÉCNICAS QUE DISMINUYAN LOS EFECTOS NEGATIVOS QUE ORIGINAN ESTOS PROBLEMAS
- Posible alternativa: Planificación dinámica de instrucciones en procesadores SS
 - Principal ventaja: no hace falta recompilar el código fuente
 - Principal desventaja: complica el diseño del procesador

Planificación DINÁMICA en Superscalares

- Objetivo: ejecutar instrucciones fuera de orden en procesadores superescalares (DLX32ss)
- "Arquitectura Desacoplada": Aplica el algoritmo de Tomasulo a un procesador superescalar (por ejemplo, suponemos que es de 2 vías: FP + ENT)
 - 2 caminos independientes de ejecución: FP, ENT
 - Envío a ejecutar en orden
 - Ejecución fuera de orden
 - Terminación fuera de orden
 - Colas de desacoplo entre las dos vías

SW Fx,

Planificación DINAMICA en Superscalares

PROBLEMA-1: Las instrucciones ENT "cargas FP (LW)"
y los "moves ENT->FP (MOVI2FP F2, R0)" podrían
causar dependencias entre las partes ENT (fuente) y FP
(destino) durante el ciclo en que se envían en paralelo en
la etapa IS una instrucción ENT y otra FP

Solución

- Arquitectura desacoplada con 2 buses de datos común (CDB): 1 FP + 1 ENT
- AÑADIR una Cola para Cargas: los datos cargados desde la cache de datos son leídos desde FP usando esta cola en el orden que son buscados a memoria
- AÑADIR una Cola para Almacenamientos de Resultados FP: los datos que se van a guardar en la cache de datos son previamente alojados en esta cola desde FP
- Las cargas consultan la *Cola de Almacenamiento* para evitar RAW (un almacenamiento previo coincide en dirección que una carga posterior)
- Los almacenamientos consultan la Cola para Cargas para evitar WAR y WAW (WAR: una carga previa podría usar el resultado de un almacenamiento posterior)

Detalle de las Colas de Desacoplo

LD F4,32(R2)
ADDD F6,F4,F4

Estaciones Reserva Cargas/Almacenamientos:

Nombre	Осира	Op	dirección	Cola LW
LD1	Si	LD	32+R2	b1

Cuando se envía a
ejecutar, se reserva
una posición de la
cola ENT->FP

Estaciones Reserva FP:

Cociveri	•		51	52	110	110
Nombre	Осир	a Op	Vj	Vk	Qj	Qk
Add1	Si	ADDD			LD1	LD1

\$1

S2

RS

RS

bl: LD1&F4

FP

Colas de Desacoplo

Etiqueta valor

bl: LD1&F4

ENT

Cuando se recibe el dato dependiente, proviene de la estación de reserva LD1 reservada en la etapa issue y que se indica en la cola ENT->FP

Tema 3-3/21

Detalle de las Colas de Desacoplo

ADDD F6,F4,F4 SD F6,32(R2)

RS

a1

Estaciones Reserva Cargas/Almacenamientos:

Nombre Ocupa Op dirección Vj Qj

SD1 Si SD 32+R2 Add1

Estaciones Reserva FP:

serva FP:S1S2RSNombre Ocupa OpVjVkQjQkCola SW

Add1 Si ADDD F4 F4

Cuando se recibe el dato dependiente, proviene de la estación de reserva Add1 reservada en la etapa issue y que se indica en la cola FP->ENT

Cuando se envía a ejecutar, se reserva una posición de la cola FP->ENT

EJEMPLO-1: Planificación Dinámica en DLX32ss "sin" Predicción de Saltos (sin ROB)

Latencias

LD= 2 cic	los (Dir +	Acceso)
-----------	------------	---------

Saltos no emparejables

No saltos retardados

SIN Especulación de Saltos debido a la inseguridad de actualizar el estado del procesador correctamente

						Empieza	Empieza
Iteració	in Inst	trucció	n		IS	EX	WB
1	LD	F0	0+	R1	1	2	4
<u> </u>	ADDD	F4	F0	F2	1	5	8
1	SD	F4	0+	R1	2	9	
1	SUBI	R 1	R 1	#8	3	4	5
1	BNEZ	R 1	LOOP		4	6	
2	∫ LD	F0	0+	R1	7	8	10
2	ADDD	F4	F0	F2	7	11	14
2	SD	F4	0+	R1	8	15	
2	SUBI	R 1	R 1	#8	9	10	11
2	BNEZ	R1	LOOP		10	12	

Envío a ejecutar (IS): 5 ciclos/iteración (10 ciclos/2 iteraciones)

Ocupación unidades funcionales (SD, LD, ENT, FP)= 7.5 ciclos/iteración (15 ciclos / 2 iteraciones): realmente UF ocupadas 6 ciclos: iter-1 termina en clk=9, iter-2ª termina en clk=15 -> diferencia= 6 clks

Ritmo IS > Ritmo EX: PROBABLE Saturación de la Cola de Instrucciones

Resumen de Prestaciones

Tipo de Planificación	ID de Planificación	Descripción de Planificación	Ciclos /ite- ración	Speed-
Estática	-	Inicial, sin optimización	9,0	1,0X
Estática	-01	Reordenamiento Instrucciones	6,0	1,5X
Estática	-02	Desenrrollamiento Bucles	6,8	1,3X
Estática	-03	Desenrrollamiento Bucles + Reordenamiento	3,5	2,6X
Estática	-04	DLX32vliw + Desenrrollamiento Bucles + Reordenamiento Instrucciones	1,3	6,9X
Estática	-05	Desenrrollamiento Bucles + DLX32ss	2,5	3,6X
D inámica	-	Tomasulo + DLX32ss	6,0	1,5X