

Ph. COURMONTAGNE

L2MP UMR CNRS 6137 / ISEM

UMR 6137

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding arome control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 14 MAR 2001		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
Linear Feature De	5b. GRANT NUMBER						
				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)		5d. PROJECT NUMBER					
Ph. COURMONTAGNE					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
ISEM Laboratoire	ZATION NAME(S) AND AE L2MP UMR 6137 (npidou 83000 TOUL	CNRS Maison des T	echnologies	8. PERFORMING REPORT NUMB	GORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See ADM001263 fo	or entire Adaptive S	ensor Array Process	sing Workshop.				
14. ABSTRACT See Briefing Chart	s						
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 18	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

INTRODUCTION

- O Ship wakes in Synthetic Aperture Radar (SAR) images
- O Detection using Radon transform (DEANS, 1983)

O SAR images affected by speckle

wedding between the Radon transform and a filtering method

CONTENTS

Q Radon transform

\$\discrete form

- O Stochastic matched filtering method
- O Interpolation-filtering method

\$\\$\\$\ theory and subimage processing

O Experimental results on SAR images

\$\top \comparison \text{ with the classical approach}\$

THE RADON TRANSFORM

OConsider an image I, with dimensions $M \times M$ The Radon transform \widehat{I} of this image is:

$$\widehat{I}(x_{\theta}, \theta) = \sum_{y_{\theta} = -M/2}^{M/2} I(x_{\theta} \cos \theta - y_{\theta} \sin \theta, x_{\theta} \sin \theta + y_{\theta} \cos \theta)$$

where $(x_{\theta}, y_{\theta}) \in \mathbb{Z}$ and $\theta \in [0; \pi]$

⇔ Computation of the new pixel values

- pixels localized at the edge in $\Re_{\theta} \notin I$ (surrounding points)

$$\Leftrightarrow$$
 Edge effect \Rightarrow size of the image in $\Re_{\theta}: \frac{M}{\sqrt{2}} \times \frac{M}{\sqrt{2}}$

STOCHASTIC MATCHED FILTERING METHOD

OConsider the stationary noise-corrupted signal defined over D:

$$Z(x,y) = S(x,y) + B(x,y)$$

where signal S(x, y) and noise B(x, y) are assumed to be independent.

Observed signal expansion:

$$\widehat{Z}(x,y) = \sum_{n=1}^{Q} z_n \Psi_n(x,y)$$

where: $\begin{cases} \Psi_n(x,y) : \text{deterministic and linearly independent basis functions} \\ Q : \text{number of basis functions retained for the expansion} \\ \text{uncorrelated random variables defined by } z_n = \iint_D Z(x,y) \Phi_n(x,y) dx dy$

ODetermination of functions $\Phi_n(x, y)$

 $\$ Making sure z_n are uncorrelated

 $\$ Optimization of the signal to noise ratio K expressed as a Rayleigh quotient

 \Rightarrow K will be maximized if $\Phi_n(x,y)$ are solutions of:

$$\iint_D \Gamma_{SS}(x-x',y-y')\Phi_n(x',y')dx'dy' = \lambda_n \iint_D \Gamma_{BB}(x-x',y-y')\Phi_n(x',y')dx'dy'$$

where Γ_{SS} and Γ_{BB} are the covariances of the signal and of the noise

ODetermination of functions $\Psi_n(x, y)$

$$\Psi_n(x,y) = \iint_D \Gamma_{BB}(x - x', y - y') \Phi_n(x', y') dx' dy'$$

OSignal to noise ratio of the n^{th} component of Z(x,y): $\frac{\sigma_S^2}{\sigma_B^2} \lambda_n$ \Rightarrow number Q of basis functions such as $\lambda_Q \geq 1$

INTERPOLATION-FILTERING METHOD

 \diamondsuit Observed signal expansion and restoration using interpolated functions $\Psi_n(x,y)$

- O Defaults: heavy CPU budget and memory problems
 - ⇒ new formulation using the discrete cosine transform

 \bigcirc Z(x,y) interpolation-filtering using DCT, with $D=[-T;T]^2$

Functions	DCT coefficients
$\Phi_n(x,y)$	$\alpha_{k,l}^n$
$\Psi_n(x,y)$	$eta^n_{p,q}$
Z(x,y)	$\vartheta_{p,q}$
$\widehat{Z}(x,y)$	$\widehat{artheta}_{k,l}$
Γ_{SS}	$\Omega_{k,l,p,q}^{\Gamma_{SS}}$
Γ_{BB}	$\Omega_{k,l,p,q}^{\Gamma_{BB}}$

$$\Phi_{n}(x,y) \iff \sum_{k=0}^{Nf} \sum_{l=0}^{Nf} \alpha_{k,l}^{n} \Omega_{k,l,p,q}^{\Gamma_{SS}} = \lambda_{n} \sum_{k=0}^{Nf} \sum_{l=0}^{Nf} \alpha_{k,l}^{n} \Omega_{k,l,p,q}^{\Gamma_{BB}}$$

$$\Psi_{n}(x,y) \iff \beta_{p,q}^{n} = T^{2} \sum_{k=0}^{Nf} \sum_{l=0}^{Nf} \alpha_{k,l}^{n} \Omega_{k,l,p,q}^{\Gamma_{BB}}$$

$$z_{n} \iff z_{n} = T^{2} \sum_{p=0}^{Nf} \sum_{q=0}^{Nf} \vartheta_{p,q} \alpha_{p,q}^{n}$$

$$\widehat{\mathcal{Z}}(x,y) \iff \widehat{\vartheta}_{k,l} = \sum_{n=1}^{Q} z_{n} \beta_{k,l}^{n}$$

OSignal of interest restoration in \Re_{θ}

$$\widehat{Z}_{\theta}(x_{\theta}, y_{\theta}) = \sum_{k=0}^{Nf} \sum_{l=0}^{Nf} \widehat{\vartheta}_{k,l} \cos\left(\frac{\pi k(x_{\theta} - T)}{2T}\right) \cos\left(\frac{\pi l(y_{\theta} - T)}{2T}\right)$$

Subimage processing

OAssumption: Z(x, y) is stationary

⇒ necessity of a subimage processing

OEdge effect

⇒ overlapping between adjacent subimages:

$$d = \frac{N}{\cos \theta + \sin \theta}$$
 and $h = \left| \frac{N \sin \theta}{\sin \theta + \cos \theta} \right|$

OSmoothing effect when Q is the same for the whole image

 \Rightarrow minimization of the mean square error to find Q for each subimage

$$\bar{\epsilon} = \sigma_S^2 + \frac{1}{4} \sum_{n=1}^{Q} (\sigma_B^2 - \lambda_n \sigma_S^2) \sum_{k=0}^{Nf} \sum_{l=0}^{Nf} (\beta_{k,l}^n)^2$$

EXPERIMENTAL RESULTS

moving ship

⇔dark turbulent wake (17 miles)

O256 gray levels (0: black, 255: white)

OImage size: 698×698

OVariation coefficient: 0.277

ODifficulty: dark patches in the upper right corresponding to smooth area of low wind

Signal and noise auto-correlation functions

Oa priori knowledge of the signal and the noise auto-correlation functions

⇒ determination of normalized auto-correlation models

Signal auto-correlation function

Noise auto-correlation function

Interpolation-filtering of the SIR-C/X-SAR image

ORotation angle: 35^{o}

ONumber Q of basis functions:

\$\\$\ approximately 13 for the wake

shear 1 for the rest of the image

OImage size: 973×973

OVariation coefficient: 0.016

SIR-C/X-SAR image in reference system \Re_{35}

Radon domain displayed as image

Radon domain displayed as graph

No ambiguity about the presence of a ship wake with our processing

⇒ detection by simply using a threshold contrarily to classical approach

Reconstructed image using the transform domain

\$Inverse Radon transform applied to the transform domain raised to the power of 3

ANOTHER SAR IMAGE

OERS SAR image

\$\\$ship pixels replaced by mean background

\$\dark turbulent wake

O256 gray levels (0: black, 255: white)

OImage size: 325×325

ODifficulty: dark patch near the wake (slick oil)

Radon domain displayed as image

♦ Trough corresponding to the wake localized near 115°

CONCLUSION

- O New processing for ship wakes detection
 - SAR image Radon transform
 - \$\square\$ original contribution: taking into account the speckle for image interpolation
- O Better detection with lower probability of false alarm or no detection
- Future work: extension of this method to the localized Radon transform