

Bölüm 1: Giriş

Mikroişlemciler

- Bilgisayarın beyni.
- Programlanabilir bir aygıt.
 - girdi alır,
 - aritmetik ve mantıksal işlemler gerçekleştirir,
 - istenen çıktıyı üretir.

- Getir (fetch):
 - Komutları bellekten çeker.
- Çöz (decode):
 - Komutları anlar ve çözer.
- Yürüt (execute):
 - Çözülen komutları uygular.
- Sonuç (result):
 - İşlemlerin sonuçlarını üretir.

- Mikroişlemci, makina dilinde komutları alır ve gerçekleştirir.
- Aritmetik ve Mantıksal Birimi (ALU) kullanarak temel işlemleri yapar.
- Veri, bir yerden başka bir yere taşınabilir.
- Program Sayacı (PC) yazmacı, bir sonraki komutun adresini saklar.

Temel İşlevleri

- Aritmetik ve Mantıksal İşlemler (Arithmetic and Logical Operations):
 - Temel işlemleri (toplama, çıkarma, karşılaştırma gibi) gerçekleştirir.
 - Aritmetik ve Mantıksal Birim (ALU) kullanılarak yapılır.
 - Yeni Mikroişlemciler, kayan noktalı sayılar üzerinde de çalışabilir.
- Veri Taşıma (Data Movement):
 - Veri, bir yerden başka bir yere taşınabilir.
- Program Sayacı Yazmacı (Program Counter (PC) Register):
 - Bir sonraki komutun adresini saklar.
 - PC'nin değerine göre, bir yerden diğerine atlanır ve kararlar alınır.

■ **8086**: 4.7 *MHz*, 8 *MHz*, 10 *MHz*

■ **8088**: 5 *MHz*

■ **80186/80188**: 6 *MHz*

■ **80286**: 8 *MHz*

■ **80386**: 16 *MHz* - 33 *MHz*

■ **80486**: 16 *MHz* - 100 *MHz*

■ PENTIUM: 66 MHz

■ **CORE-2**: 1.2 *GHz* - 3 *GHz*

• **i7**: 66 *GHz* - 3.33 *GHz*

• **i5**: 2.4 *GHz* - 3.6 *GHz*

• **i3**: 2.93 *GHz* - 3.33 *GHz*

İşlemci Türleri

- Karmaşık Komut Seti Bilgisayar
 - Complex Instruction Set Computer (CISC)
- Azaltılmış Komut Seti Bilgisayar
 - Reduced Instruction Set Computer (RISC)
- Açıkça Paralel Komut İşleme
 - Explicitly Parallel Instruction Computing (EPIC)

- CISC mimarisi, karmaşık işlemleri tek bir komutla gerçekleştirebilir.
- Bir komut, bellekten yükleme, belleğe kaydetme veya aritmetik işlemler gibi çok sayıda düşük seviyeli işlem içerebilir.
- Bir komutta birden çok adresleme (bellek erişimi) bulunur.
- CISC, az sayıda yazmaç kullanır.
- Örnekler:
 - Intel 386, 486
 - Pentium, Pro, II, III
 - Motorola 68000, 68020, 68040 gibi

- Optimize komutlar ve boru hattı (pipeline) ile komutlar hızlı yürütülür.
- Komutlar bir saat döngüsünde (clock) tamamlanır.
- Boru hattı, komut aşamalarının etkili ve eşzamanlı yürütülmesini sağlar.
- Bellek etkileşimini azaltmak için daha fazla yazmaç kullanır.
- Komutlar basit ve hızlı bir şekilde gerçekleştirilmek üzere tasarlanmıştır.
- Örnekler:
 - IBM RS6000,
 - MC88100
 - DEC Alpha 21064, 21164, 21264

- EPIC mimarisi, derleyicilerle paralel komut yürütme yeteneği sunar.
- Yüksek performanslı paralel işleme yeteneği sağlar.
- Yüksek saat frekansları gerekmeden karmaşık komutlar yürütülebilir.
- Komutları 128-bit paketlere kodlar.
- Her paket,
 - 41 bitte kodlanmış üç komut, ve
 - 5 bitlik şablon alanı içerir.
- Örnek:
 - IA-64 (Intel Architecture-64)

Vektör İşlemcisi

- Vector processor
- Vektör adı verilen veri dizileri üzerinde matematiksel işlemler gerçekleştirir.
- Tek bir veri öğesi üzerinde çalışan Skalar işlemcilere göre daha hızlıdır.
- Birden çok veri öğesi üzerinde aynı anda işlemler gerçekleştirebilir.
- Süper bilgisayar, sunucu, GPU gibi performanslı sistemlerde kullanılır.

Dizi İşlemcisi

- Array processor
- SIMD (single instruction multiple data) olarak da adlandırılır.
- Paralel hesaplamalar ve vektör işlemleri için optimize edilmiştir.
- Birden çok veri öğesi kullanarak paralel olarak çalışabilirler.
- Tek bir veri öğesi üzerinde çalışan skalar işlemcilerden farklıdır.
- Süper bilgisayar, sunucu, GPU gibi performanslı sistemlerde kullanılır.
- Genel amaçlı hesaplama uygulamalarında nadiren kullanılır.

Sayıl İşlemci

- Scalar processor
- Sayıl veriyi işleyen (vektör olmayan) bir işlemci türüdür.
- Basit sayıl işlemciler, tamsayıları işleyebilir.
- Güçlü sayıl işlemciler, kayan nokta sayılarını da işleyebilir.
- Tamsayı (ALU) ve kayan nokta birimini (FPU) aynı CPU yongasında içerir.
- CISC veya RISC mimarisinde olabilir.
- Birden çok boru hattına sahiptir.
- Bir saat döngüsünde birden fazla komutu işleyebilir.
- Genel amaçlı hesaplamalarda yaygın olarak kullanılır.

- RISC İşlemciler
 - Az ve basit komut kümesine (instruction set) sahip.
 - Daha az çeşitli komutları daha hızlı gerçekleştirebilir.
 - Yüksek performans ve düşük güç tüketimi sağlar.
- CISC İşlemciler
 - Geniş ve karmaşık komut kümesine sahip.
 - Daha geniş bir komut yelpazesi ve esnek kullanım sağlar.
 - Komutları RISC işlemcilerinden daha yavaş gerçekleştirir.

- Digital signal processor
- Dijital sinyaller üzerinde işlemler gerçekleştirmek için optimize edilmiştir.
- Dijital sinyaller, ses, görüntü gibi duyusal bilgileri temsil eden veri dizileri.
- Sinyal işleme işlemleri için özel komut kümesi ve donanım desteği.
- Ses ve video işleme, telekomünikasyon gibi uygulamalar.
 - Ses işleme ve filtreleme
 - Görüntü işleme ve işaretleme
 - Telekomünikasyon altyapısı

- Symbolic processor
- Sembolik hesaplama yapmak üzere tasarlanmıştır.
- PROLOG işlemcileri olarak da adlandırılır.
- Semantik hesaplama ve sembolik mantık kuralları üzerine odaklanır.
- Matematiksel ifade ve sembolleri işler.
- Matematiksel ifadelerin karmaşıklığını ele alabilir.
- Uygulama alanları:
 - Uzman sistemler (expert systems).
 - Makine zekası (machine intelligence).

- Graphics processor
- 2D ve 3D grafiklerin hızlandırılması için özel olarak tasarlanmıştır.
- Gerçek zamanlı yüksek kaliteli grafikler için kullanılır.
- Grafik oluşturma (render) görevlerinde etkin ve verimlidir.
 - Gölgelendirme (shading), dokulama (texturing) ...
- GPU, grafik işleme için özel olarak tasarlanmıştır.
- Grafik kartı, hızlandırıcı (accelerators) gibi özel donanımlarda kullanılır.

- Mikroişlemcilerin yapısı, örgütlenimi (organization) ve teknoloji,
 - ilk genel amaçlı mikroişlemci 8080'den,
 - 29000 transistörlü 8086'ya,
 - 820 milyon transistöre sahip, dört çekirdekli Intel Core 2'ye kadar,
 - dramatik bir şekilde değişmiştir.

8080:

- ilk genel amaçlı mikroişlemci.
- 8-bit veri yoluna sahip.
- ilk kişisel bilgisayarlarda kullanıldı.

8086:

- 16-bit veri yoluna ve büyük yazmaçlara sahip.
- 1 MB adreslenebilir belleği destekler.
- Gerçek modu (real mode) var.
- Komutu önbelleğe (cache), ve kuyruğa (queue) alma özelliği var.
- Komutu çalıştırmadan önce getirerek (prefetch) hız sağlar.

80286:

- 16 MB adreslenebilir belleği destekler.
- Gerçek mod ve 16-bit korumalı mod (protected mode) içerir.
- 16-bit veri yolu ve yazmaçlara sahip.

80386:

- Intel'in ilk 32-bit mikroişlemcisi.
- Çoklu görevi (multitasking) destekler.
- 32-bit korumalı moda sahip, sayfalamayı (paging) destekler.
- 4 GB adreslenebilir belleği destekler.

80486:

- Onbellek (cache) ve komut boru hattı (pipeline) destekler.
- Yazma koruması (write protect) özelliğine sahip.
- Karmaşık aritmetik işlemler için entegre matematik işlemcisine sahip.

Pentium:

- Komutları paralel olarak çalıştırılabilir.
- Sayfa boyutu uzantısı (page size extension) sayfalamada iyileştirme.

Pentium Pro:

- Dallanma tahmini (brach prediction),
- Veri akış analizi (data flow analysis),
- Spekülatif yürütme (speculative execution),
- Düzey II (L2) önbellek,
- 32-bit sanal (virtual), 36-bit fiziksel (physical) bellek adresine çevrilir.

Pentium II:

- MMX teknolojisi (multimedya veri kümesi) geldi.
- Video, ses ve grafik verilerini etkili bir şekilde işleyebilir.

Pentium III:

- SMD (streaming extensions) komutları (SSE) içerir.
- 3D grafik yazılımını destekler.
- Maksimum CPU saat hızı 1.4 GHz.
- 70 adet yeni komut içerir.

Pentium IV:

Multimedya için kayan nokta geliştirmeleri içerir.

Core:

- İki çekirdekli ilk Intel mikroişlemcisi,
- 2 işlemciyi tek bir yongada uygulama.
- Görüntüleme teknolojisi (visualizing technology) eklendi.

• Core 2:

- 64-bit mimari.
- Core 2 Quad, tek bir yongada dört işlemci.
- 64-bit destekli yazmaç kümesi ve adresleme modları.

Avantajlar

- Uyum (Compatibility):
 - Eski yazılımlar değişiklik yapılmadan yeni x86 işlemcilerde çalışır.
- Performans (Performance):
 - Her yeni işlemci nesli, öncekilerinden daha hızlı ve verimli olmuştur.
- Çeşitlilik (Versatility):
 - Kişisel bilgisayarlardan sunuculara, gömülü sistemlere ve
 - Mobil cihazlara kadar geniş bir uygulama yelpazesine sahip.
- 4. Geniş Endüstri Desteği (Support):
 - Geniş bir donanım yazılım sağlayıcı ekosistemi tarafından desteklenir.
 - Bu destek, yenilik ve gelişmenin itici gücü olmuştur.

- Karmaşık Talimat Seti (Complex Instruction Set):
 - x86 mimarisi, karmaşık bir komut kümesine sahip.
 - Kodu performans için optimize etmeyi zorlaştırabilir.
- Güç Tüketimi (Power Consumption):
 - x86 evrimi, güç tüketiminde önemli bir artışa neden oldu.
 - Pil ömrünün kritik olduğu aygıtlarda büyük bir sorun.
- Isı Yayılımı (Heat Dissipation):
 - x86 işlemcileri güçlendikçe daha fazla ısınmaya başlamıştır.
- Maliyet (Cost):
 - x86 mimarisi, Intel tarafından lisanslanmaktadır, daha pahalı.

- Transistörün icadı (1948), ile mikroelektronik devrimi başladı.
- İlk Entegre devre (Integrated Chip),
 - 1958'de Texas Instruments tarafından geliştirildi.
- Bir dizi transistör tek bir yonga üzerine entegre edilerek,
 - karmaşık elektronik devrelerin oluşturulması sağlanmıştır.
- İlk mikroişlemci, Intel tarafından geliştirildi.
- Mikroişlemci, bilgisayarın merkezi işlem birimi (CPU) olarak görev yapar.
- Bilgisayarları daha küçük, daha güçlü ve daha hızlı hale getirdi.

Name	Year of Invention	Clock speed	Number of transistors	Inst. per sec
4004/4040	1971 by Ted Hoff and Stanley Mazor	740 kHz	2300	60,000

Name	Year of Invention	Clock speed	Number of transistors	Inst. per sec
8008	1972	500 kHz	3500	50,000
8080	1974	2 MHz	6000	10 times faster than 8008
8085	1976 (16-bit address bus)	3 MHz	6500	769230

Name	Year of Invention	Clock speed	Number of transistors	Inst. per sec
8086	1978 (multiply and divide instruction, 16-bit data bus	4.77 MHz, 8 MHz, 10 MHz	29000	2.5 Million
8088	and 20-bit address bus) 1979 (cheaper version of 8086 and 8-bit external bus)			2.5 Million
	1982 (80188 cheaper version of 80186, and additional			
80186/80188	components like interrupt controller, clock generator, local bus controller, counters)	6 MHz		
80286	1982 (data bus 16bit and address bus 24 bit)	8 MHz	134000	4 Million

Name	Year of Invention	Clock speed	Number of transistors	Inst. per sec
INTEL 80386	1986 (other versions 80386DX, 80386SX, 80386SL , and data bus 32-bit address bus 32 bit)	16 MHz – 33 MHz	275000	
INTEL 80486	1986 (other versions 80486DX, 80486SX, 80486DX2, 80486DX4)	16 MHz – 100 MHz	1.2 Million transistors	8 KB of cache memory
PENTIUM	1993	66 MHz		Cache memory 8 bit for instructions 8 bit for data

Name	Year of Invention	Clock speed	Number of transistors	Inst. per sec
INTEL core 2	2006 (other versions core2 duo, core2 quad, core2 extreme)	1.2 GHz to 3 GHz	291 Million transistors	64 KB of L1 cache per core 4 MB of L2 cache
i3, i5, i7	2007, 2009, 2010	2.2GHz – 3.3GHz, 2.4GHz – 3.6GHz, 2.93GHz – 3.33GHz		

Özellikler

- Saat Hızı (Clock Speed):
 - İşlemcinin birim zamanda işleyebileceği komut sayısı.
- Komut Kümesi Mimarisi (Instruction Set Architecture):
 - CISC ve RISC gibi mimariler, verimlilik ve karmaşıklığı etkiler.
- Önbellek (Cache Memory):
 - Küçük ve yüksek hızlı bellek, hızlı erişim için sık kullanılan veriyi saklar.
- Çok Çekirdekli İşlemciler (Multi-core Processors):
 - Birden çok görevin aynı anda yürütülmesini sağlar, performansı artırır.
- Sanallaştırma (Virtualization):
 - Aynı donanım üzerinde birden çok işletim sisteminin çalışmasını sağlar.

Özellikler

1/20/2023

38

- Güç Yönetimi (*Power Management*):
 - Modern işlemciler, güç tüketimini azaltır ve enerji verimliliğini artırır.
- Grafik İşleme (Graphics Processing):
 - Entegre grafik işleme birimleri (GPU) içerir.
 - Grafik yoğun görevlerin daha hızlı ve verimli işlenmesine sağlar.
- Güvenlik Özellikleri (Security Features):
 - Donanım düzeyinde şifreleme ve güvenli önyükleme (secure boot).
- İnternet Bağlantısı (Internet Connectivity):
 - Wi-Fi ve Ethernet gibi yerleşik ağ yeteneklerini içerir.
- Makine Öğrenme Yetenekleri (Machine Learning Capabilities):
 - Makine öğrenmesi ve yapay zeka için özel işleme birimlerini içerir.

SON