

Presentation outline

- Executive summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive summary

- Business Understanding: a binary Classification challenge- predicting whether Falcon9 rockets can land successfully or not
- Data Understanding: revealed need for multiple data sources, therefore compiled a dataset from,
 - SpaceX Rest API
 - Webscraping the Falcon rocket Wikipedia page
- Data Preparation: used several Python data manipulation and visualisation libraries, along with SQL to manipulate the data and ensure a clean meaningful dataset stored in a database
- Exploratory Data Analysis: carried out using Pandas and Matplotlib, and Seaborn to identify feature variables
- Key outputs:
 - Developed an interactive leaflet map with Folium, and an interactive dashboard with Plotly Dash
 - Predictive model for Falcon 9 Landings using K-Nearest neighbour
- Outstanding:
 - Evaluation with stakeholders
 - Model deployment
 - Further refinement

Introduction

- Business Understanding:
- Space travel is an expensive exercise, with each launch costing 62m USD by SpaceX, and almost three times as much from other vendors.
- Predicting whether a SpaceX Falcon9 rocket will land is crucial to deciding a vendor for a rocket launch
- A successful prediction would result in savings of up to tens of millions of dollars if the decision is correct
- Question: Can publicly available data of historic SpaceX launches be used to develop a Machine Learning model to predict whether Falcon9 launches land successfully or not?

Methodology

Executive Summary

- Data collection methodology:
 - Compiling a dataset from,
 - SpaceX Rest API
 - Complemented with data from webscraping SpaceX Wikipedia page
 - Using BeautifulSoup method
- Perform data wrangling
 - Payload mass had five missing values: replaced with the mean
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data collection

- SpaceX REST API used to gather some of the data
 - Gathered data includes Booster version, longitude and latitudes of launch sites, payload, cores, flight number, and date
 - Filtered out other Falcon versions to leave only Falcon9
- Webscraping of the Falcon9 Wikipedia page used to extract critical tables for the final dataframe
 - Data points under this included: Flight number, Date, Time, Booster Version, Launch site, Payload, Payload mass, Orbit, Customer, Launch Outcome, and Booster Landing
 - Methods used: Get requests, BeautifulSoup, and html.parser

Data collection – SpaceX API

 After steps in flowchart on right, then filtered out other Falcon versions to leave only Falcon9 1st API call to rockets: For Booster Version names

2nd API Call to launchpads: For launch sites along with their longitudes & latitudes

3rd API Call to Payloads: for payload masses and orbits

4th API Call to Cores: for landing outcome, info on cores, gridfins, legs, and landing pad

Data parsed in a Dictionary with column names as keys, and data as values

Data collection - Scraping

Sent a Get Request to Falcon9 Wiki page Created a
BeautifulSoup
Object

Used findall() to search for all tables on page Appended empty table with contents, and then cast it into a dataframe

Iterated through column names

Data wrangling

Checked for missing data under each variable and expressed as a %

Checked data types of each variable using method dtypes to prevent issues later in analysis and modeling

Conducted value_counts() on key variables

Used "Outcome" variable to add new column "Class" depending on whether successful landing or not

EDA with data visualization

- Used Pandas, Matplotlib and Seaborn to plot
 - Scatterplot of Flight number, Payload mass, and Class
 - To assess whether progressive flights succeed or not, and effect of payload mass on safe return
 - Scatterplot of Flight number, Launch site, and Class
 - To check for striking data points on launch site, and flight number and their effect on class
 - Bar chart showing success rate of each type of orbit
 - To see if any orbits have outstanding outcomes compared to others
 - Scatterplot of Orbit, Flight number, and Class
 - To see if any orbits have striking relationships with flight number and class
 - Scatterplot of Orbit, Payload mass, and Class
 - Assess relationship between Orbit, payload mass and success rate
 - Line plot of mean annual success rate
 - To show whether the program has been improving with time

EDA with SQL

- A query to identify unique site used for launch by SpaceX
- Showed five records from launch sites with names containing string "CCA"
- Displayed total payload mass carried by boosters launched by NASA (CRS)
- Showed the mean payload mass carried by booster version F9 v1.1
- Listed the date when the first successful landing outcome in ground pad was achieved.
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- Used a subquery to list the names of the Booster versions which have carried the maximum payload mass
- Used Substr() to List the records which will display the month names, failure landing outcomes in drone ship ,booster versions, launch site for the months in year 2015.
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

Build an interactive map with Folium

- Created circles and markers for each of the four launch sites
- Added additional markers to each launch site in which
 - Green markers for successful launches
 - Red markers for unsuccessful launches
- Put a marker on nearest coastline, and calculated distance to a launch site using the geometry of the earth(assuming the earth's radius is 6373km)
- Drew a Polyline between the coastline above, and the launch site
- Put markers on, and then calculated distances to the following objects,
 - Highway (very close, for logistical ease)
 - Railroad (very close for logistical ease)
 - City (further away, for public safety)

Build a dashboard with plotly Dash

- Added,
 - a "Launch Site" Drop-down Input Component
 - a callback function to render "Success Pie-chart" based on selected site dropdown
 - a Range Slider to select "Payload"
 - a callback function to render the "Success Payload Scatter-chart" scatter plot
- These will assist the business colleagues to make informed decisions using an interactive platform to gain insights

Predictive analysis (Classification)

Created a Numpy array for the target Y from "Class" variable Used StandardScaler to standardize the data of the Features (X)

Did Train-Test split using 80:20

Identified bestperforming approach For each approach,
1. Identified best
parameters 2.
Assessed them
accuracy using test
data 3. Plotted
Confusion Matrix

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

EDA: Flight number vs Launch Site

EDA: Payload vs launch site

EDA: Success rate vs orbit type

EDA: Flight number vs orbit type

EDA: Payload vs orbit type

EDA: Launch success yearly trend

EDA: All launch site names

```
In [16]:
              %sql select DISTINCT ("Launch_Site") from SPACEXTABLE
           * sqlite:///my_data1.db
          Done.
Out[16]:
            Launch_Site
            CCAFS LC-40
            VAFB SLC-4E
             KSC LC-39A
          CCAFS SLC-40
```

EDA: Launch site names beginning with CCA

```
1 %sql Select * from SPACEXTABLE where "Launch Site" like "%CCA%" limit 5;
In [24]:
             * sqlite:///my datal.db
            Done.
Out[24]:
                               Booster_Version Launch_Site
                                                                             Payload PAYLOAD_MASS_KG_
                                                                                                              Orbit
                                                                                                                       Customer Mission_Outcome Landing_Outcome
               Date
                                                 CCAFS LC-
              2010-
                                                                     Dragon Spacecraft
                      18:45:00
                                 F9 v1.0 B0003
                                                                                                               LEO
                                                                                                          0
                                                                                                                         SpaceX
                                                                                                                                                    Failure (parachute)
              04-06
                                                                      Qualification Unit
                                                              Dragon demo flight C1, two
                                                 CCAFS LC-
                                                                                                               LEO
              2010-
                                                                                                                          NASA
                                 F9 v1.0 B0004
                      15:43:00
                                                              CubeSats, barrel of Brouere
                                                                                                                                          Success
                                                                                                                                                    Failure (parachute)
              08-12
                                                                                                                     (COTS) NRO
                                                                               cheese
                                                 CCAFS LC-
                                                                                                                          NASA
              2012-
                                                                                                               LEO
                      07:44:00
                                 F9 v1.0 B0005
                                                                  Dragon demo flight C2
                                                                                                        525
                                                                                                                                          Success
                                                                                                                                                          No attempt
              05-22
                                                                                                              (ISS)
                                                                                                                         (COTS)
              2012-
                                                 CCAFS LC-
                      00:35:00
                                 F9 v1.0 B0006
                                                                        SpaceX CRS-1
                                                                                                        500
                                                                                                                     NASA (CRS)
                                                                                                                                                          No attempt
                                                                                                                                          Success
              08-10
                                                 CCAFS LC-
              2013-
                                                                                                               LEO
                      15:10:00
                                 F9 v1.0 B0007
                                                                        SpaceX CRS-2
                                                                                                        677
                                                                                                                     NASA (CRS)
                                                                                                                                          Success
                                                                                                                                                          No attempt
              01-03
```

EDA: Total payload mass

```
In [38]:
             %sql Select SUM("PAYLOAD_MASS__KG_") from SPACEXTABLE where "Customer"="NASA (CRS)";
          * sqlite:///my datal.db
         Done.
Out[38]:
          SUM("PAYLOAD_MASS__KG_")
                            45596
```

EDA: Average payload mass for Falcon 9 v1.1

EDA: First successful ground landing date

EDA: Successful Drone Ship Landing with Payload between 4000 and 6000

```
1 ion") from SPACEXTABLE where "Landing_Outcome"="Success (drone ship)" AND "PAYLOAD_MASS__KG_" between 4000 and 6000
In [18]:
           * sqlite:///my datal.db
          Done.
Out[18]:
          Booster_Version
              F9 FT B1022
              F9 FT B1026
            F9 FT B1021.2
            F9 FT B1031.2
```

EDA: Total number of Successful and failure missions

```
%sql Select "Mission_Outcome", Count("Mission_Outcome") from SPACEXTABLE group by "Mission_Outcome"
In [52]:
            * sqlite:///my datal.db
           Done.
Out[52]:
                     Mission_Outcome Count("Mission_Outcome")
                        Failure (in flight)
                             Success
                             Success
           Success (payload status unclear)
```

EDA: Maximum payload for each booster

[63]: 1 %sql Sel	ect DISTINCT "Boost	er_Version","PAYLOAD_MASSKG_"	from SPACEXTABLE where	"PAYLOAD_MASSKG_" = (Select
* sqlite:// Done.	/my_data1.db			
[63]: Booster_Version	PAYLOAD_MASSKG_			
F9 B5 B1048.4	15600			
F9 B5 B1049.4	15600			
F9 B5 B1051.3	15600			
F9 B5 B1056.4	15600			
F9 B5 B1048.5	15600			
F9 B5 B1051.4	15600			
F9 B5 B1049.5	15600			
F9 B5 B1060.2	15600			
F9 B5 B1058.3	15600			
F9 B5 B1051.6	15600			
F9 B5 B1060.3	15600			
F9 B5 B1049.7	15600			

EDA: 2015 launch record

EDA: Ranking landing outcomes

```
1 %sql Select "Landing Outcome", count(*) from SPACEXTABLE where Date between '2011-06-04' and '2017-03-20'
In [65]:
            * sqlite:///my_datal.db
           Done.
Out[65]:
              Landing_Outcome count(*)
                    No attempt
            Success (ground pad)
                                    5
             Success (drone ship)
                                    5
              Failure (drone ship)
                                    5
               Controlled (ocean)
             Uncontrolled (ocean)
            Precluded (drone ship)
```

Interactive analysis: Folium leaflet of SpaceX launch sites

Interactive analysis: success and failure of SpaceX launches

Interactive analysis: Polylines to landmarks

Dashboard: Launch success rate by launch site

Dashboard: Success rate of the most prolific launch site

Dashboard: Payload vs launch outcome

Predictive analysis: classification accuracy

Predictive analysis: K-nearest neighbor confusion matrix

Conclusion

- Data science can be used to predict Falcon9 landings,
 - With near-perfect accuracy of out-of-sample prediction by some models i.e. KNN (and high accuracy by the other three models)
 - This can potentially save tens of millions in USD per launch
- Data mining of high-quality, clean and labelled data can be an asset when developing predictive models
- High-quality interactive dashboards and leaflet maps for day-to-day operations of business is demonstrably feasible
- Model evaluation methods to improve model selection based on meritocratic performance measures of out-of- sample data is also feasible

Appendix

Full github repository: https://github.com/adityanaik240402/Applied-data-sciencecapstone-project

Falcon9 and Falcon Heavy Wikipedia page:
 https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches