Einführung in die Algebra

BLATT 5

Jendrik Stelzner

17. November 2013

Aufgabe 5.1.

(i)

Nach Definition von N_H ist gH=Hg für alle $g\in N_H$. Da $x\in N_H$, ist $\langle x\rangle\subseteq N_H$ eine Untergruppe, also $\langle x\rangle H=H\langle x\rangle$. Es ist

$$1 = 1 \cdot 1 \in \langle x \rangle H$$

und für $a,b\in\langle x\rangle\,H$ mit $a=x^nh$ und $b=x^m\tilde{h}$ ist

$$ab^{-1} = x^{n}h\tilde{h}^{-1}x^{-m} \in \langle x \rangle H \langle x \rangle = \langle x \rangle \langle x \rangle H = \langle x \rangle H,$$

also $\langle x \rangle$ H eine Untergruppe. Da $\langle x \rangle$, $H \subseteq N_H$ ist $\langle x \rangle$ H eine Untergruppe von N_H , also insbesondere von G.

(ii)

Angenommen, es ist $N_H \neq H$. Dann gibt es ein $x \in N_H$ mit $x \notin H$. Wie oben gezeigt ist $\langle x \rangle H$ eine Untergruppe von N_H . Offenbar ist $H \subsetneq \langle x \rangle H$ eine echte Untergruppe, und da H normal in N_H ist, ist H auch normal in $\langle x \rangle H$. Auch ist

$$\langle x \rangle H/H \cong \langle x \rangle /H \cap \langle x \rangle$$

zyklisch, da $\langle x \rangle$ zyklisch ist, und somit insbesondere abelsch. Da Hauflösbar ist, gibt es eine Normalreihe

$$1 = H_0 \subsetneq H_1 \subsetneq \ldots \subsetneq H_n = H$$

mit abelschen Faktoren. Da $\langle x \rangle H/H$ abelsch ist, ist daher

$$1 = H_0 \subseteq H_1 \subseteq \ldots \subseteq H_n \subseteq H_{n+1} =: \langle x \rangle H$$

eine Normalreihe von $\langle x \rangle$ H mit abelschen Faktoren. Das steht aber im Widerspruch zur maximalen Auflösbarkeit von H, da H eine echte Untergruppe von $\langle x \rangle$ H ist. Also ist bereits $N_H = H$.

Aufgabe 5.2.

(i)

Bemerkung 1. Sei $n \geq 2$. Dann ist $(\mathfrak{S}_n : \mathfrak{A}_n) = 2$. Insbesondere ist \mathfrak{A}_n normal in \mathfrak{S}_n (dies folgt auch aus $\mathfrak{A}_n = \text{Ker sgn}$).

Beweis. Sei $\tau=(1\ 2)\in\mathfrak{S}_n$ und φ die Linkstranslation mit τ . Aufgrund der Injektivität von φ induziert φ eine injektive Abbildung von der Menge aller gerader Permutation $\mathfrak A$ in die Menge aller ungerader Permutationen $\mathfrak S_n-\mathfrak A_n$, sowie eine injektive Abbildung von $\mathfrak S_n-\mathfrak A_n$ nach $\mathfrak A$. Da φ involutiv ist, ist es auch die induzierte Abbildung, also

$$\operatorname{ord} \mathfrak{A}_n = |\mathfrak{S}_n - \mathfrak{A}_n| = \operatorname{ord} \mathfrak{S}_n - \operatorname{ord} \mathfrak{A}_n$$

da \mathfrak{S}_n endlich ist, und somit ord $\mathfrak{S}_n = 2$ ord \mathfrak{A}_n .

Es ist $H\mathfrak{A}_n=\mathfrak{S}_n$: Sei $\sigma\in H$ eine ungerade Permutation. Da $\mathfrak{A}_n\subseteq H\mathfrak{A}_n$ enthält $H\mathfrak{A}_n$ alle geraden Permutationen. Jede ungerade Permutation $\pi\in\mathfrak{S}_n$ lässt sich als

$$\pi = \sigma \cdot \sigma \pi$$

schreiben, wobei $\sigma \in H$ und $\sigma \pi$ als Produkt zweier ungerader Permutationen gerade ist, also in \mathfrak{A}_n ist. Also ist $\pi \in H\mathfrak{A}_n$.

Nach Bemerkung 1 ist \mathfrak{A}_n normal in \mathfrak{S}_n mit $(\mathfrak{S}_n : \mathfrak{A}_n) = 2$. Also ist $\mathfrak{A}_n \cap H$ normal in H mit

$$H/\mathfrak{A}_n \cap H \cong H\mathfrak{A}_n/\mathfrak{A}_n = \mathfrak{S}_n/\mathfrak{A}_n$$
.

Insbesondere ist daher

$$(H:\mathfrak{A}\cap H)=\operatorname{ord} H/\mathfrak{A}_n\cap H=\operatorname{ord}\mathfrak{S}_n/\mathfrak{A}_n=(\mathfrak{S}_n:\mathfrak{A}_n)=2.$$

(ii)

Da ord H>2 enthält H ein $\pi\neq \mathrm{id}$ gerader Ordnung: Da H nichttrivial ist, gibt es ein $\sigma\in H$ mit $\sigma\neq \mathrm{id}$. Ist σ gerade, so sei $\pi:=\sigma$. Ist σ ungerade so wird zwischen zwei Fällen unterschieden: Ist σ nicht selbstinvers, so sei $\pi:=\sigma^2$. Ist σ selbstinvers, so muss H wegen ord H>2 noch ein weiteres Element $\tau\in H-\{\mathrm{id},\sigma\}$ beinhalten. Wiederholt man die oberen Schritte für τ , so findet man entweder ein entsprechendes Element π oder auch τ ist selbstinvers. Sind σ und τ beide ungerade und selbstinvers, so sei $\pi:=\sigma\tau$.

Es folgt, dass $H \cap \mathfrak{A}_n \supseteq \{\mathrm{id}, \pi\}$ nichttrivial ist. Da \mathfrak{A}_n normal in \mathfrak{S}_n ist, ist $H \cap \mathfrak{A}_n$ normal in H. Da H einfach ist, folgt, dass $H \cap \mathfrak{A}_n = H$ ist. Also ist $H \subseteq \mathfrak{A}_n$ eine Untergruppe.

Aufgabe 5.3.

Bemerkung 2. Sei R ein Ring mit mindestens zwei Elementen. Dann ist sind Null-und Einselement in R verschieden.

Beweis. Da R mindestens zwei Elemente besitzt, gibt es ein $a \in R$ mit $a \neq 0$. Es ist

$$1 \cdot a = a \neq 0 = 0 \cdot a,$$

also $0 \neq 1$.

Bemerkung 3. Sei R ein Integritätsring. Gibt es für $b \in R$ ein $a \in R$ mit $a \neq 0$ und ab = a oder ba = a, so ist bereits b = 1. Insbesondere gilt für jede Ringerweiterung $R' \subseteq R$ mit $R' \neq 0$, dass R' genau dann ein Einselement beinhaltet, wenn $1 \in R'$.

Beweis. Da $a \neq 0$ impliziert die Nullteilerfreiheit von R direkt die Injektivität der Links-, bzw. Rechtsmultiplikation mit a. Da $1 \cdot a = a = a \cdot 1$ ist daher b = 1.

Nach Aufgabenstellung ist R ein kommutativer Ring mit Einselement. Da R mindestens zwei Elemente besitzt folgt aus Bemerkung 2, dass $0 \neq 1$. Es gilt also nur noch zu zeigen, dass es für jedes $a \in R$ mit $a \neq 0$ ein multiplikativ Inverses $b \in R$ mit ab = 1 gibt.

Sei $a \in R$ mit $a \neq 0$ beliebig aber fest und $\mathfrak{a} := (a)$ das von a erzeugte Ideal in R. Da $a \in \mathfrak{a}$ ist $\mathfrak{a} \neq 0$, und es gilt bereits $\mathfrak{a} = R$: Als Ideal ist \mathfrak{a} eine additive Untergruppe von R sowie unter der Multiplikation abgeschlossen, wobei sich Assoziativität, Kommutativität und Distributivität der Multiplikation von R auf \mathfrak{a} vererben. Aus der entsprechenden Eigenschaft von R folgt, dass \mathfrak{a} ein Ring mit Einselement bildet. Aus Bemerkung 3 folgt damit, dass $1 \in \mathfrak{a}$, und daher bereits $\mathfrak{a} = R$. Da $aR = \mathfrak{a} = R$ gibt es insbesondere ein $b \in R$ mit ab = 1.

Aufgabe 5.4.

(ii)

Für alle $a \in R$ ist

$$a^{2} + 1 = a + 1 = (a + 1)^{2} = a^{2} + 2a + 1,$$

also 2a = 0. Insbesondere ist a = -a.

(i)

Für alle $a,b \in R$ ist

$$ab - ba = ab + ba = (a + b)^{2} - a^{2} - b^{2} = a + b - a - b = 0.$$

also ab = ba, und daher R kommutativ.

(iii)

Seien $a, b \in R$ mit $a \neq b$. Es ist

$$(a-b)ab = a^2b - ab^2 = ab - ab = 0.$$

Da $a \neq b$ ist $a-b \neq 0$, wegen der Nullteilerfreiheit von R also ab=0. Wegen der Nullteilerfreiheit ist also a=0 oder b=0. Aus der Beliebigkeit von a und b folgt, dass es neben 0 nur ein weiters Element in R gibt. Da aus Bemerkung 2 folgt, dass $0 \neq 1$, ist also $R=\{0,1\}$. Betrachtet man die Verknüpfungstabellen von R,

+	0	1			0	1	
0	0	1	und	0	0	0	
1	1	0		1	0	1	

so ist R offenbar isomorph zu \mathbb{F}_2 .

Aufgabe 5.5.

(i)

Es bezeichne

$$\mathfrak{a}[X] := \left\{ f \in R[X] : f = \sum_{i=0}^n a_i X^i \text{ mit } n \geq 0, a_i \in \mathfrak{a} \text{ für alle } i \right\}$$

die Menge aller Polynome in R[X] mit Koeffizienten in \mathfrak{a} . Da \mathfrak{a} als Ideal abgeschlossen unter Addition ist, ist es auch $\mathfrak{a}[X]$. Das von \mathfrak{a} in R[X] erzeugte Ideal \mathfrak{b} hat die Form

$$\mathfrak{b} = \sum_{a \in \mathfrak{a}} aR[X] = \sum_{a \in \mathfrak{a}} \{af : f \in R[X]\}$$

Sei $f \in \mathfrak{a}[X]$. Dann hat f die Form $f = \sum_{i=0}^n a_i X^i$ mit $a_i \in \mathfrak{a}$ für alle i. Es ist $a_i X^i \in a_i R[X]$ für alle i, und daher $f \in \sum_{i=0}^n a_i R[X] \subseteq \mathfrak{b}$. Also ist $\mathfrak{a}[X] \subseteq \mathfrak{b}$. Sei $a \in \mathfrak{a}$ und $f \in aR[X]$. Dann hat f die Form $f = \sum_{i=0}^n (aa_i) X^i$ mit $a_i \in R$ für alle i. Da $a \in \mathfrak{a}$ und \mathfrak{a} ein Ideal ist, ist $aa_i \in \mathfrak{a}$ für alle i. Es ist daher $f \in \mathfrak{a}[X]$. Also ist $aR[X] \subseteq \mathfrak{a}[X]$ für alle $a \in \mathfrak{a}$. Da $\mathfrak{a}[X]$ abgeschlossen unter Addition ist, ist daher auch $\mathfrak{b} = \sum_{a \in \mathfrak{a}} aR[X] \subseteq \mathfrak{a}[X]$.

(ii)

Lemma 4. Seien R, R' Ringe und $\phi: R \to R'$ ein Ringhomomorphismus. Dann induziert ϕ einen Ringhomomorphismus $\psi: R[X] \to R'[X]$ mit

$$\psi\left(\sum_{i=0}^{n} a_i X^i\right) := \sum_{i=0}^{n} \phi(a_i) X^i.$$

Dabei ist

$$\operatorname{Ker} \psi = \left\{ f \in R[X] : f = \sum_{i=0}^n a_i X^i \text{ mit } n \geq 0 \text{ und } a_i \in \operatorname{Ker} \phi \text{ für alle } i \right\}$$

und

$$\operatorname{Im} \psi = \left\{g \in R'[X] : g = \sum_{i=0}^n b_i X^i \text{ mit } n \geq 0 \text{ und } b_i \in \operatorname{Im} \phi \text{ für alle } i \right\}.$$

Insbesondere ist ψ genau dann injektiv, wenn ϕ injektiv ist, und ψ genau dann surjektiv, wenn ϕ surjektiv ist.

Beweis. Es gilt zunächst zu zeigen, dass ψ ein Ringhomomorphismus ist. Hierfür bemerken wir, dass sich ψ auch als

$$\psi: R[X] \to R'[X], f \mapsto \phi \circ f = \phi f$$

schreiben lässt, indem $f \in R[X]$ als Abbildung $f: \mathbb{N} \to R$ gesehen wird. Da ϕ ein Ringhomomorphismus ist und die Addition in R[X] komponentenweise verläuft, ist für alle $f,g \in R[X]$

$$\psi(f+g) = \phi(f+g) = \phi f + \phi g = \psi(f) + \psi(g).$$

Auch ist für alle $i \in \mathbb{N}$

$$\psi(f \cdot g)(i) = \phi(f \cdot g)(i) = \phi\left(\sum_{\mu+\nu=i} f(\mu) \cdot g(\nu)\right)$$
$$= \sum_{\mu+\nu=i} (\phi f)(\mu) \cdot (\phi g)(\nu) = ((\phi f) \cdot (\phi g))(i) = (\psi(f) \cdot \psi(g))(i),$$

also $\psi(f \cdot g) = \psi(f) \cdot \psi(g)$. ψ ist auch unitär, da

$$\psi(1) = \psi(1 \cdot X^0) = \phi(1) \cdot X^0 = 1 \cdot X^0 = 1.$$

Dies zeigt, dass ψ ein Ringhomomorphismus ist.

Es ist $f = \sum_{i=0}^n a_i X^i \in R[X]$ genau dann in Ker ψ , wenn $\psi(f) = 0$, also $\phi(a_i) = 0$

für alle i, also $a_i \in \operatorname{Ker} \phi$ für alle i. Andererseits ist $g = \sum_{i=0}^n b_i X^i \in R'[X]$ genau dann in $\operatorname{Im} \psi$, wenn es ein $f = \sum_{i=0}^n a_i X^i \in R[X]$ mit $\psi(f) = g$ gibt, also $\phi(a_i) = b_i$ für alle i, also $b_i \in \operatorname{Im} \phi$ für alle i.

Es sei $\pi: R \to R/\mathfrak{a}$ die kanonische Projektion. Da π ein Ringepimorphismus ist, folgt aus Lemma 4, dass π einen Ringepimorphismus $\psi: R[X] \to (R/\mathfrak{a})[X]$ induziert. Auch folgt wegen Ker $\pi=\mathfrak{a}$ aus dem Lemma, dass Ker ψ genau aus den Polynomen besteht, deren Koeffizienten alle in $\mathfrak a$ liegen, also $\mathfrak a[X]$; wie im vorherigen Aufgabenteil gezeigt, ist dies gerade b. Es ist daher

$$R[X]/\mathfrak{b} = R[X]/\operatorname{Ker} \psi \cong \operatorname{Im} \psi = (R/\mathfrak{a})[X].$$