எளிய சமன்பாடுகள்

இப்பாடத்தைக் கற்பதன் மூலம் நீங்கள்

- * இரண்டு வகை அடைப்புகளைக் கொண்ட எளிய சமன்பாடுகளைத் தீர்த்தல்
- * பின்னங்களைக் கொண்ட எளிய சமன்பாடுகளைத் தீர்த்தல்
- * ஒரு மாறியின் எண்ரீதியிலான குணகம் சமனாகவுள்ள ஒருங்கமை சமன்பாடுகளைத் தீர்த்தல் என்னும் தேர்ச்சிகளை அடைவீர்கள்.

14.1 எளிய சமன்பாடுகளைத் தீர்த்தல்

ஒரு சமன்பாட்டின் தீர்வைக் காண்பதற்கு அச்சமன்பாடு உருவாகியுள்ள முறையைப் பற்றி அறிந்திருப்பது அவசியமாகும்.

கீழே தரப்பட்டுள்ள சமன்பாடுகள் உருவாகியுள்ள முறையைப் பற்றிப் பார்ப்போம்.

$$(2x-3) = 1$$

 $oldsymbol{x}$ என்னும் எண்ணை $oldsymbol{2}$ ஆல் பெருக்கி $oldsymbol{3}$ ஐக் கழித்துப்பெறும் விடையை $oldsymbol{5}$ ஆல் வகுக்கும் போது விடை $oldsymbol{1}$ ஆகும்.

$$4\left(\frac{a}{2}+3\right)=8$$

a என்னும் எண்ணை 2 ஆல் வகுத்து 3 ஐக் கூட்டிப் பெறப்படும் விடையை 4 ஆல் பெருக்கும்போது விடை 8 ஆகும்.

$$*$$
 $\frac{(5-3y)}{2}+3=4$

у என்னும் எண்ணை (**–3) ஆல் பெருக்கி 5 ஐக் கூட்டி 2 ஆல் வகுத்துப்** பெறப்படும் விடையுடன் **3 ஐக் கூட்டும்போது** விடை 4 ஆகும். இனி கீழே காட்டப்பட்டுள்ள சமன்பாடுகளின் தீர்வுகளைக் காணும் முறை பற்றிப் பார்ப்போம்.

உதாரணம் 14.1

தீர்க்க
$$\frac{(2x-3)}{5} = 1$$
 $\frac{(2x-3)}{5} \times 5^1 = 1 \times 5$ (சமன்பாட்டின் இருபக்கமும் 5 ஆல் பெருக்குதல்) $2x-3 = 5$ $2x-3+3 = 5+3$ (சமன்பாட்டின் இரு பக்கமும் 3 வீதம் கூட்டுதல்) $2x = 8$ $\frac{\cancel{2}x}{\cancel{2}} = \frac{8}{2}$ (சமன்பாட்டின் இரு பக்கமும் 2 ஆல் வகுத்தல்) $x = 4$

உதாரணம் 14.2

தீர்க்க

$$4\left(\frac{a}{2}+3\right) = 8$$

$$\frac{1}{\cancel{4}}\left(\frac{a}{2}+3\right) = \frac{8}{4}$$

$$\frac{a}{2}+3 = 2$$

$$\frac{a}{2}+\cancel{3}-\cancel{3} = 2-3$$

$$\frac{a}{2} = -1$$

$$\frac{a}{\cancel{2}}\times\cancel{2} = -1\times 2$$

$$a = -2$$

உதாரணம் 14.3

தீர்க்க

$$\frac{(5-3y)}{2} + 3 = 4$$

$$\frac{(5-3y)}{2} + 3 - 3 = 4 - 3$$

$$\frac{(5-3y)}{2} = 1$$

$$\frac{(5-3y)}{2} \times 2^{-1} = 1 \times 2$$

$$5 - 3y = 2$$

$$5 - 3y - 5 = 2 - 5$$

$$-3y = -3$$

$$\frac{-3y}{-3} = \frac{-3}{-3}$$

$$y = 1$$

1. பின்வரும் சமன்பாடுகள் உருவாகியுள்ள முறையைச் சொற்களில் விவரிக்க.

(i)
$$\frac{x}{2} - 3 = 5$$

(ii)
$$3+2a=-1$$

(i)
$$\frac{x}{2} - 3 = 5$$
 (ii) $3 + 2a = -1$ (iii) $\left(\frac{y}{3} + 1\right) = 10$

(iv)
$$5\left(\frac{3x}{2} - 1\right) = 5$$
 (v) $\frac{3p-1}{4} = 2$

(v)
$$\frac{3p-1}{4} = 2$$

2. கீழே தரப்பட்டுள்ள சமன்பாடுகளைத் தீர்க்க.

(i)
$$5x - 2 = 8$$

(ii)
$$3x-4=-10$$

(ii)
$$3x-4=-10$$
 (iii) $2x-5=x+1$

(iv)
$$\frac{2-x}{5} = 4$$

(v)
$$5(a+3)-2=8$$

(iv)
$$\frac{2-x}{5} = 4$$
 (v) $5(a+3) - 2 = 8$ (vi) $3(x-1) = 2(x+4)$

(vii)
$$5 - \frac{x}{2} = -3$$
 (viii) $\frac{3x}{2} = x + 6$ (ix) $\frac{a}{2} - \frac{a}{3} = 5$

(viii)
$$\frac{3x}{2} = x + 6$$

(ix)
$$\frac{a}{2} - \frac{a}{3} = 5$$

(x)
$$\frac{1}{3} \left(\frac{2x}{3} - 3 \right) = -1$$

- 3. (i) கமலா எட்டுப் பேனைகளை வாங்குவதற்காக ரூபா 100 தாளொன்றை கடை உரிமையாளரிடம் கொடுத்து ரூபா 4 ஐ மீதியாகப் பெற்றாள். ஒரு பேனையின் விலை x எனக் கொண்டு ஒரு சமன்பாட்டை உருவாக்குக. அதிலிருந்து ஒரு பேனையின் விலையைக் காண்க.
 - (ii) எனது தமையனிடம் உள்ள பணம் என்னிடமுள்ள பணத்தின் இருமடங்கிலும் ரூபா 20 கூடியதாகும். எம் இருவரிடமும் உள்ள மொத்தப் பணம் ருபா 120 ஆகும்.
 - (அ) தம்பியிடம் உள்ள பணத்தினை *a* எனக் கொண்டு தமையனிடம் உள்ள பணத்தை a யில் எழுதுக.
 - (ஆ) ஒரு சமன்பாட்டின் மூலம் இருவரிடமும் உள்ள பணத்தை வெவ்வேறாகக் காண்க.
- 4. ஒரு செவ்வகத்தின் நீளம் அதன் அகலத்தின் இரண்டு மடங்கிலும் 5 cm ஆல் கூடியதாகும். அதன் சுற்றளவு 52 cm ஆயின் செவ்வகத்தின் நீளம், அகலம் ஆகியவற்றைக் காண்க.
- 5. ஒரு சதுரமும் ஒரு சமபக்க முக்கோணியும் உண்டு. சமபக்க முககோணியின் ஒரு பக்க நீளம் சதுரத்தின் ஒரு பக்க நீளத்தின் இரண்டு மடங்காகும். சமபக்க முக்கோணியின் சுற்றளவு சதுரத்தின் சுற்றளவிலும் 30 cm கூடியதாகும். சதுரத்தின் ஒரு பக்க நீளத்தையும் சமபக்க முக்கோணியின் ஒரு பக்க நீளத்தையும் காண்க.

14.2 இரண்டு அடைப்புகளுடனான சமன்பாடுகளைத் தீர்த்தல்

அடைப்புகளின் பிரயோகம்

(எளிய அடைப்புகளை உபயோகிப்பது பற்றி நாம் கற்றுள்ளோம்) அடைப்புகளை இடுவது பின்வரும் முறையில் இடம்பெற வேண்டும். ()

அடைப்புகளை நீக்குதல்

உள்ளே அமைந்துள்ள அடைப்பிலிருந்து படிப்படியாக வெளியே அமைந்துள்ள அடைப்பு வரை எளிய அடைப்பு ———> சங்கிலி அடைப்பு —> இரட்டை அடைப்பு என்றவாறு அடைப்பு நீக்குதலைச் செய்ய வேண்டும்.

உதாரணம் 14.4

$$5\{3(x+2)+2\}=10$$
 அடைப்பு நீக்கல் முறை $5\{3(x+2)+2\}=10$ (முதலில் எளிய அடைப்பை நீக்குதல்) $5\{3x+6+2\}=10$ (முதலில் எளிய அடைப்பை நீக்குதல்) $15x+40=10$ (சங்கிலி அடைப்பை நீக்குதல்) $15x+40-40=10-40$ $15x=-30$ $\frac{15x}{15}=\frac{-30}{15}$ $x=-2$

தீர்க்க

(i)
$$2{2(5-x)+3} = -2$$

(i)
$$2{2(5-x)+3} = -2$$
 (ii) $3{3(x+2)-2(x-1)} = 0$

(iii)
$$5 + 2\{x - 3(1 - x)\} = 7$$

(iii)
$$5 + 2\{x - 3(1 - x)\} = 7$$
 (iv) $4 - 3\left\{\frac{1}{2}(2x - 4) + 3x + 2\right\} = 0$

(v)
$$2\left\{2\left(\frac{x}{2}-1\right)+3\right\}=6$$

14.3 ஒருங்கமை சமன்பாடுகளைத் தீர்த்தல்

இரண்டு மாறிகளைக் கொண்ட பின்வரும் ஏகபரிமாணச் சமன்பாட்டுச் சோடியைக் கருதுக.

$$x + v = 5$$

x , y என்பன இரண்டு முழு எண்களாயின், அதற்குப் பொருத்தமான சில பெறுமானச் சோடிகளைக் கவனிப்போம்.

	l
\mathcal{X}	у
1	1
,	,
-1	+6
-1 0	5
1	+6 5 4 3
2	3
1 2 3 4	2
4	1
1	'
,	',

x + y = 5 என்னும் சமன்பாட்டைத்
 திருப்தியாக்கும் பெறுமானச் சோடிகளின்
 எண்ணிக்கை எல்லையற்றது.

x	$-\nu$	= 1

x , y என்பன இரண்டு முழு எண்களாயின், அதற்குப் பொருத்தமான சில பெறுமானச் சோடிகளைக் கவனிப்போம்.

x	\mathcal{Y}
•	1
,	,
6	5
5	4
4	5 4 3 2
3	2
6 5 4 3 2 1	1 0
1	0
•	,
•	1

x-y=1 என்னும் சமன்பாட்டைத் திருப்தியாக்கும் பெறுமானச் சோடிகளின் எண்ணிக்கை எல்லையற்றது.

ஆயினும் x+y=5 , x-y=1 ஆகிய இரண்டு சமன்பாடுகளையும் திருப்தியாக்கும் பெறுமானச் சோடி ஒன்று மட்டுமே உண்டு. அதாவது x=3 உம் y=2 உம் ஆகும். இவை மேற்குறித்த சோடிச் சமன்பாட்டின் தீர்வுகள் எனப்படும்.

இரண்டு மாறிகளைக் கொண்ட இவ்வாறான சோடிச் சமன்பாடுகள் ஒருங்கமை சமன்பாடுகள் எனப்படும்.

இனி நாம் ஓர் ஒருங்கமை சமன்பாட்டுச் சோடியைத் தீர்க்கும் முறையைப் பார்ப்போம்.

உதாரணம் 14.5

(i) தீர்க்க.

$$a+b=2$$
$$a-b=-4$$

முதலில் சமன்பாடுகளை இனங்கண்டு கொள்வதற்காக அவற்றைப் பெயரிடுவோம்.

முறை I

மேலேயுள்ள சமன்பாட்டுச் சோடியிலிருந்து a, b ஆகிய மாறிகளில் ஏதேனுமொன்றை அகற்றுவதன் மூலம் அவற்றைத் தீர்க்கலாம். இதற்கு, அகற்ற எதிர்ப்பார்க்கும் மாறியின் குணகங்கள் சமனாயிருக்க வேண்டும். சமன்பாடுகளைக் கூட்டுவதன் மூலம் b ஐ அகற்றலாம். சமன்பாடுகளைக் கழிப்பதன் மூலம் a ஐ அகற்றலாம்.

$$(1) + (2)$$

$$a + b + a - b = 2 - 4$$

$$2a = -2$$

$$\frac{2a}{2} = \frac{-2}{2}$$

$$a = -1$$

இனி α யிற்குப் பெறப்படும் பெறுமானத்தை மேற்குறித்த இரண்டு சமன்பாடுகளில் ஏதேனுமொன்றில் பிரதியிட்டு b யின் பெறுமானத்தை அறியலாம்.

a இன் பெறுமானத்தை (1) இல் பிரதியிடல்

$$a+b=2$$

 $-1+b=2$
 $-1+b+1=2+1$
 $b=3$ $a=-1$
 $b=3$ 到低的.

முறை 2 (ஒப்பிடல் முறை)

முதலில் (1), (2) ஆகிய இரண்டு சமன்பாடுகளிலும் ஒரே மாறி எழுவாயாக மாற்றப்படும்.

(1)
$$a+b = 2$$

 $a+b-b = 2-b$
 $a = 2-b$ (3)
(2) $a-b = -4$

இனி (3), (4) என்பவற்றில் *a* இற்குப் பெறப்பட்ட கோவைகளைச் சமப்படுத்துவோம்.

$$2 - b = -4 + b$$

$$2 - b + 4 = -4 + b + 4$$

$$6 - b = b$$

$$6 - b + b = b + b$$

$$6 = 2b$$

$$\frac{6}{2} = \frac{2b}{2}$$

$$b = 3$$

பெறப்பட்ட பெறுமானத்தை (1) இல் பிரதியிடுவோம்.

(தேவையாயின் (2) இலும் பிரதியிடலாம்)

$$a=2-b$$

 $a=2-3$
 $a=-1$ $\begin{cases} a=-1 \\ b=3 \end{cases}$ ஆகம்.

உதாரணம் 14.6

முறை I

$$3x + y = 5$$
 (1)
 $x + y = -3$ (2)

(1) - (2)

$$3x + y - (x + y) = 5$$
 - (-3)
 $3x + y - x - y = 5 + 3$
 $2x = 8$

$$\frac{2x}{2} = \frac{8}{2}$$

 $x = 4$

x இன் பெறுமானத்தை (2)இல் பிரதியிடல்

$$x + y = -3$$

 $4 + y = -3$
 $4 + y - 4 = -3 - 4$
 $y = -7$
 $\begin{cases} x = 4 \\ y = -7 \end{cases}$ 到低ம்.

முறை II

$$3 x + y = 5$$
 (1)

$$x + y = -3$$
 (2)

(2) இலிருந்து
$$y = -3 - x$$
———(4)

(3), (4) என்பற்றில்
$$y$$
 ஐச் சமப்படுத்தல் $5-3x=-3-x$

$$5 + 3 = -x + 3x$$
$$8 = 2x$$
$$x = 4$$

x இன் பெறுமானத்தை (1)இல் பிரதியிடல்

$$y = 5 - 3x$$

 $y = 5 - 3 \times 4$
 $y = 5 - 12$
 $y = -7$

$$\begin{cases} x = 4 \\ y = -7 \end{cases}$$

பின்வரும் ஒருங்கமை சமன்பாட்டுச் சோடிகளை தீர்க்க.

1.
$$a+b = 7$$

$$2x - y = 7 \\
3x + y = 8$$

3.
$$2a-b=10$$

 $a+b=-1$

$$a-b = 3$$

x + y = 1

4.
$$3x + y = 7$$
 5.

5.
$$x - 2y = -1$$

 $x - 5y = -6$

6.
$$p=2q+3$$

 $p+q=9$

7.
$$7a-3b=5$$

 $a+3b=3$

7.
$$7a-3b=5$$

 $a+3b=3$
8. $3c-2d=5$
 $3c+d=-1$

9.
$$3m - 2n = -5$$

 $n - 3m = 1$

10.
$$\frac{x}{2} - y = 3$$

11.
$$\frac{2x}{3} - y = 1$$

10.
$$\frac{x}{2} - y = 3$$
 11. $\frac{2x}{3} - y = 1$ 12. $\frac{a}{2} + b = 4$

$$\frac{x}{2} + y = 5$$

$$\frac{x}{2} + y = 5 3y - \frac{2x}{3} = 1$$

$$\frac{a}{2} - 2b = 1$$