EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos

2.ª FASE

2000

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Deve indicar claramente na sua folha de respostas a versão da prova.

A ausência desta indicação implicará a anulação de toda a primeira parte da prova.

Na página 11 deste enunciado encontra-se um formulário que, para mais fácil utilização, pode ser destacado do resto da prova, em conjunto com esta folha.

Primeira Parte

- As sete questões desta primeira parte são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- **1.** Seja f uma função polinomial de terceiro grau, cujo gráfico se encontra parcialmente representado na figura.

Quantas são as soluções da equação f(x)=2 ?

- (A) uma
- (B) duas
- **(C)** três
- (D) quatro
- **2.** Considere a função h definida em \mathbb{R} por $h(x) = \operatorname{sen} x$

Qual das seguintes equações pode definir uma recta tangente ao gráfico de $h \,\,$?

(A) $y = 2x + \pi$

(B) y = -2

(C) $y = \sqrt{2} x - 9$

(D) y = x

 $\textbf{3.} \qquad \text{O coeficiente de ampliação} \ \ A \ \ \text{de uma certa lupa \'e dado, em função da distância} \ d \ \ \text{(em decímetros)} \ \ \text{da lupa ao objecto, por }$

$$A(d) = \frac{5}{5-d}$$

Indique a que distância do objecto tem de estar a lupa para que o coeficiente de ampliação seja igual a 5.

(A) 2 dm

(B) 4 dm

(C) 6 dm

- **(D)** 8 dm
- **4.** Sejam f e g duas funções de domínio \mathbb{R} .

Sabe-se que:

- ullet o gráfico de $\,g\,$ é uma recta, que designamos por $\,s\,$
- $\lim_{x \to +\infty} (f(x) g(x)) = 0$

Qual das afirmações seguintes é necessariamente verdadeira ?

- (A) A recta s é tangente ao gráfico de f
- **(B)** A recta s é secante ao gráfico de f
- (C) A recta s não intersecta o gráfico de f
- **(D)** A recta s é uma assimptota do gráfico de f
- **5.** Três rapazes e duas raparigas vão dar um passeio de automóvel.

Qualquer um dos cinco jovens pode conduzir.

De quantas maneiras podem ocupar os cinco lugares, dois à frente e três atrás, de modo a que o condutor seja uma rapariga e a seu lado viaje um rapaz?

- **(A)** 36
- **(B)** 120
- **(C)** 12
- **(D)** 72

6. Lança-se duas vezes um dado equilibrado, com as faces numeradas de 1 a 6.

Seja $\, X \,$ o número de vezes que sai a face $\,$ 6 $\,$ nos dois lançamentos.

Qual é a distribuição de probabilidades da variável $\,X\,$?

(A)
$$x_i \qquad 0 \qquad 1 \qquad 2$$

$$P(X = x_i) \quad \left(\frac{5}{6}\right)^2 \quad 2 \times \frac{1}{6} \times \frac{5}{6} \quad \left(\frac{1}{6}\right)^2$$

(B)
$$x_i = 0$$
 1 2 $P(X = x_i) = \left(\frac{1}{6}\right)^2 = 2 \times \frac{1}{6} \times \frac{5}{6} = \left(\frac{5}{6}\right)^2$

(C)
$$x_i$$
 0 1 2 $P(X = x_i)$ $\frac{5}{6}$ $\frac{1}{6} \times \frac{5}{6}$ $\frac{1}{6}$

(D)
$$x_i$$
 0 1 2 $P(X = x_i)$ $\frac{1}{6}$ $\frac{1}{6} \times \frac{5}{6}$ $\frac{5}{6}$

7. Qual das seguintes condições define uma recta no plano complexo ?

(A)
$$|z-1|=4$$

(B)
$$arg(z) = \frac{\pi}{2}$$

(C)
$$3z + 2i = 0$$

(D)
$$|z-1| = |z+i|$$

Segunda Parte

Nas questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

- **1.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = 2x \cos x$
 - **1.1.** Recorrendo ao Teorema de Bolzano, mostre que a função f tem, pelo menos, um zero, no intervalo $]0,\pi[$.
 - **1.2.** Seja f' a função derivada de f. Mostre que f'(x)>0, $\forall\,x\in\mathbb{R}$, e justifique que o zero de f, cuja existência é garantida pelo enunciado da alínea anterior, é o único zero desta função.
 - **1.3.** Na figura abaixo estão representadas:
 - ullet parte do gráfico da função f
 - parte de uma recta $\,r$, cuja inclinação é $\,45^\circ$, que contém o ponto $\,A(\,-\,3,0)\,$ e que intersecta o gráfico da função $\,f\,$ no ponto $\,B\,$

Recorrendo à sua calculadora, determine a área do triângulo [AOB], onde O designa a origem do referencial. Apresente o resultado arredondado às unidades.

Nota: sempre que, nos valores intermédios, proceder a arredondamentos, conserve, no mínimo, uma casa decimal.

2. A pressão atmosférica de cada local da Terra depende da altitude a que este se encontra. Admita que a pressão atmosférica P (medida em quilopascal) é dada, em função da altitude h (em **quilómetros**), por

$$P(h) = 101 e^{-0.12 h}$$

2.1. A montanha mais alta de Portugal é o Pico, na ilha do Pico - Açores. A altitude do cume do Pico é 2350 metros.

Qual é o valor da pressão atmosférica, nesse local? Apresente o resultado em quilopascal, arredondado às unidades.

2.2. Determine x tal que, para qualquer h, $P(h+x)=\frac{1}{2}\,P(h)$. Apresente o resultado arredondado às décimas.

Interprete o valor obtido, no contexto desta igualdade.

- **3.** Seja $\mathbb C$ o conjunto dos números complexos, e sejam z_1 e z_2 dois elementos de $\mathbb C$. Sabe-se que:
 - z_1 tem argumento $\frac{\pi}{6}$
 - $z_2 = z_1^4$
 - $A_{\scriptscriptstyle 1}$ e $A_{\scriptscriptstyle 2}$ são as imagens geométricas de $z_{\scriptscriptstyle 1}$ e de $z_{\scriptscriptstyle 2}$, respectivamente

- **3.1.** Justifique que o ângulo A_1OA_2 é recto (O designa a origem do referencial).
- **3.2.** Considere, no plano complexo, a circunferência ${\cal C}$ definida pela condição $|z|=|z_1|$. Sabendo que o perímetro de ${\cal C}$ é 4π , represente, na forma algébrica, o número complexo z_1

4.

4.1. Seja S o conjunto de resultados associado a uma experiência aleatória.

Sejam E_1 e E_2 dois acontecimentos possíveis ($E_1 \subset S$ e $E_2 \subset S$).

Prove que
$$P(\overline{E_1} \cup \overline{E_2}) = 1 - P(E_1) \times P(E_2 | E_1)$$

(P designa probabilidade, $\overline{E_1}$ e $\overline{E_2}$ designam os acontecimentos contrários de E_1 e de E_2 , e P (E_2 | E_1) designa a probabilidade de E_2 , se E_1).

4.2. Um baralho de cartas completo é constituído por cinquenta e duas cartas, repartidas por quatro naipes de treze cartas cada: espadas, copas, ouros e paus.

De um baralho completo extraem-se, sucessivamente e sem reposição, duas cartas.

Qual é a probabilidade de pelo menos uma das cartas extraídas não ser do naipe de espadas? Apresente o resultado na forma de fracção irredutível.

Nota: se o desejar, utilize a igualdade referida na alínea anterior; neste caso, deverá começar por caracterizar claramente os acontecimentos E_1 e E_2 , no contexto da situação apresentada.

4.3. Num certo jogo de cartas, utiliza-se um baralho completo e dão-se treze cartas a cada jogador.

Imagine que está a participar nesse jogo.

Qual é a probabilidade de, nas treze cartas que vai receber, haver exactamente seis cartas do naipe de espadas? Apresente o resultado na forma de percentagem, arredondado às unidades.

FIM

COTAÇÕES

	Cada resposta certa	- 3
	Nota: um total negativo nesta parte da prova vale 0 (zero) pontos.	
eguno	da Parte	1
	1. 1.1. 16 1.2. 17 1.3. 18	51
	2.	33
	3.	21
	4. 12 4.2. 10 4.3. 10	32

Formulário

Áreas de figuras planas

Losango:
$$\frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\, maior + Base\, menor}{2} imes Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4\,\pi\,r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times Área \ da \ base \times Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \, . \, (\rho' \operatorname{cis} \theta') = \rho \, \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, \operatorname{cis} \theta}{\rho' \, \operatorname{cis} \theta'} = \frac{\rho}{\rho'} \, \operatorname{cis} \left(\theta - \theta'\right)$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \, = \, \sqrt[n]{\rho} \, \cos \frac{\theta {+} 2 \, k \, \pi}{n} \ , \, k \in \{0,...,\, n-1\}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$