EK "Risikoanalysen in der IT"

Markov-Modelle

Ralf Mock, 9. November 2015

Lernziele

Lernziele

Allgemeines

Zustandsdiagramm

mit Reparatur stationäre Zustände

Beispiel

Literatur

Die Teilnehmendem können

- die Grundlagen von Markov-Modellen skizzieren
- Zustandsdiagramme zeichnen
- ▶ einfache Markov-Modelle von Komponenten erstellen
- ► Anwendbarkeit und Ergebnisse beurteilen.

Corcher Fachbordershole

Lernziele

Allgemeines

Zustandsdiagramm keine Reparatur

mit Reparatur stationäre Zustände

Beispiel

Literatur

Allgemeines

- ▶ Die bisherigen Betrachtungen gelten nur für nichtinstandsetzbare Einheiten ("Teststand für Glühbirnen").
- ▶ Instandsetzung ("Reparaturen") beeinflusst die Verfügbarkeit eines Systems wesentlich: Es gibt Schleifen von Funktion – Ausfall – Funktion.
- ➤ **Gesucht:** Methode, um Zustandswahrscheinlichkeiten von Systemen einschl. Instandsetzung mathematisch beschreiben zu können.

Weiterführende Literatur

Es gibt viel Literatur zu Markov-Modellen (auch Markoff, Markow geschrieben). Für den Einstieg und praxisnah sind: [1], [2] und [Wikipedia].

3/18

Lernziele

Allgemeines

Zustandsdiagramm keine Reparatur

mit Reparatur stationäre Zustände

Beispiel

Literatur

Nicht-instandsetzbare Einheit: Eine Einheit geht in Abhängigkeit von der Zeit *t* vom Ausgangszustand "Funktion" in den Endzustand "Ausfall".

Überführung

in ein

Zustandsdiagramm

- ▶ 1: Zustand 1 \equiv "Funktion"; 2: Zustand 2 \equiv "Ausfall"
- ▶ $P_1: P_1(t)$: Zustandswahrscheinlichkeit, dass sich die Einheit zum Zeitpunkt t oder Zeitintervall $t = t + \Delta t$ im Zustand 1 befindet $(P_2:$ entsprechend $P_1)$

$$- P_1: P_1(t+\Delta t) = [P_1(t) \land P_{11}(\Delta t)]$$

- $P_2: P_2(t+\Delta t) = [P_1(t) \land P_{12}(\Delta t)] \lor [P_2(t) \land P_{22}(\Delta t)]$

- ▶ $P_{11}: P_{11}(\Delta t):$ Wahrscheinlichkeit, dass die Einheit im Zeitintervall von t bis $t + \Delta t$ im Zustand 1 bleibt ($P_{22}:$ entsprechend P_{11})
- ▶ $P_{12}: P_{12}(\Delta t): Übergangswahrscheinlichkeit, dass die Einheit im Zeitintervall von <math>t$ bis $t+\Delta t$ vom Zustand 1 in den Zustand 2 übergeht, also ausfällt

the Fabbounds

Lernziele

Allgemeines

Zustandsdiagramm

keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

Erstellen eines Gleichungssystems

- Annahmen
 - $-P = \lambda \cdot t$, wobei $\lambda = \text{konstant} \Rightarrow \text{Exponential verteilung}$
 - Ausfallwahrscheinlichkeit F(t=0)=0
- Gleichungssystem (1)

$$P_1(t + \Delta t) - P_1(t) = -\lambda \Delta t \cdot P_1(t)$$

$$P_2(t+\Delta t) - P_2(t) = +\lambda \Delta t \cdot P_1(t)$$

wobei: $\lambda \cdot \Delta t = P$: Wahrscheinlichkeit, dass die Einheit zwischen tund $t + \Delta t$ ausfällt

als Differentialgleichungssystem

$$\frac{d}{dt}P_1(t) = -\lambda \cdot P_1(t)$$

$$\frac{d}{dt}P_2(t) = +\lambda \cdot P_1(t)$$

in Matrizenschreibweise

$$\frac{d}{dt} \begin{pmatrix} P_1(t) \\ P_2(t) \end{pmatrix} = \begin{pmatrix} -\lambda & 0 \\ +\lambda & 0 \end{pmatrix} \cdot \begin{pmatrix} P_1(t) \\ P_2(t) \end{pmatrix}$$

Lernziele

Allgemeines

Zustandsdiagramm

keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

Zustandswahrscheinlichkeiten mit $P_{12} = 0.01$

cher Falshördnichdale 6/18

Lernziele

Allgemeines

Zustandsdiagramm

keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

Exkurs Zuverlässigkeitstheorie

- ► Ausfalldichte $f(t) = \frac{dF(t)}{dt}$
- "Modell Exponentialverteilung"
 - Ausfallwahrscheinlichkeit $F(t) = 1 \exp(-\lambda \cdot t)$,
 - Überlebenswahrsch. $R(t) = 1 F(t) = \exp(-\lambda \cdot t)$
 - Ausfalldichte $f(t) = \lambda \cdot \exp(-\lambda \cdot t)$
- ▶ mit $P_i = \int_0^\infty \frac{dP_i}{dt}$ und $P_1 \equiv R(t)$ ist Gleichungssystem (1):

$$\frac{\mathit{d}}{\mathit{d}t} P_1(t) = -\lambda \cdot P_1(t) = -\lambda \cdot \exp(-\lambda \cdot t)$$

$$\frac{d}{dt}P_2(t) = +\lambda \cdot P_1(t) = +\lambda \cdot \exp(-\lambda \cdot t)$$

und über die Integration folgt dann das Ergebnis

$$-P_1(t) = \exp(-\lambda \cdot t)$$

$$- P_2(t) = 1 - \exp(-\lambda \cdot t)$$

Lernziele

Allgemeines

Zustandsdiagramm keine Reparatur mit Reparatur

stationäre Zustände Beispiel

Literatur

Instandsetzbare Einheit: Eine Einheit geht in Abhängigkeit von der Zeit *t* vom Ausgangszustand "Funktion" in den Zustand "Ausfall" und dann wieder in den Ausgangszustand "Funktion" zurück.

Überführung in ein Zustandsdiagramm

- ▶ 1: Zustand 1 \equiv "Funktion"; 2: Zustand 2 \equiv "in Reparatur"
- $ightharpoonup P_1: P_1(t) \text{ s. o. } (P_2: \text{entspr. } P_1)$
 - $-\ P_1: P_1(t+\Delta t) = [P_1(t) \wedge P_{11}(\Delta t)] \vee [P_2(t) \wedge P_{21}(\Delta t)]$
 - $P_2: P_2(t + \Delta t) = [P_1(t) \land P_{12}(\Delta t)] \lor [P_2(t) \land P_{22}(\Delta t)]$
- $ightharpoonup P_{11}: P_{11}(\Delta t): s.o.$
- $ightharpoonup P_{12}: P_{12}(\Delta t): s.o.$
- ▶ $P_{21}: P_{21}(\Delta t): Übergangswahrscheinlichkeit, dass die Einheit im Zeitintervall von <math>t$ bis $t + \Delta t$ vom Zustand 2 wieder in den Zustand 1 übergeht, also instandgesetzt wird.

8/18

Lernziele

Allgemeines

Zustandsdiagramm keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

Einbezug der Reparaturrate μ

- $ightharpoonup \mu$ entspricht der Definition der Ausfallrate und wird hier als konstant angenommen. Damit gilt: Reparaturwahrscheinlichkeit $F_R=1-\exp[-\mu \cdot t]$
- MTTR (Mean Time to Repair) ist der Kehrwert von μ . Kennt man die mittlere Reparaturdauer, dann ist der Kehrwert die gesuchte (konstante) Reparaturrate.

Gleichungssystem (1) wird zu (2) erweitert

$$\frac{d}{dt}P_1(t) = -\lambda \cdot P_1(t) + \mu \cdot P_2(t)$$

$$\frac{d}{dt}P_2(t) = +\lambda \cdot P_1(t) - \mu \cdot P_2(t)$$

Dieses Gleichungssystem verlangt andere Lösungsverfahren, z.B. die La Place-Transformation. Allerdings gibt es Tools zur Berechnung und Darstellung von Diffentialgleichungssystemen, z.B. CARMS (veraltet), ES-SaRel, Matlab.

9 / 18

Lernziele

Allgemeines

Zustandsdiagramm

keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

Zustandswahrscheinlichkeiten mit $P_{12} = 0.01$; $P_{21} = 0.1$

Zürcher Fachhochschule

Lernziele

Allgemeines

Zustandsdiagramm keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

Vereinfachung: stationäre Zustandswahrscheinlichkeiten für $t \to \infty$

- ▶ Die Ableitung einer Funktion zeigt deren Steigung
- ▶ Die Steigung der Zuverlässigkeitsfunktion $P_i(t)$ strebt nach "unendlich" langer Zeit gegen null, d.h.

Beispiel: eine instandsetzbare Einheit

Gleichungssystem (2) wird zum stationären Gl.-System (3)

$$0 = -\lambda \cdot P_1(\infty) + \mu \cdot P_2(\infty)$$

$$0 = +\lambda \cdot P_1(\infty) - \mu \cdot P_2(\infty)$$

Gleichungssystem (3) ist nicht lösbar, da der N-te Zustand aus den vorherigen Zuständen folgt (F = 1 - R)

▶ Zusätzliche Information: $\sum_{i} P_i(\infty) = 1$

Lernziele

Allgemeines

Zustandsdiagramm

mit Reparatur

Beispiel

Literatur

Für das stationäre Gleichungssystem (3) bedeutet dies

$$0 = -\lambda \cdot P_1(\infty) + \mu \cdot P_2(\infty)$$

$$0 = 1 - P_1(\infty) - P_2(\infty)$$
oder
$$0 = 1 - P_1(\infty) - P_2(\infty)$$

$$0 = \lambda \cdot P_1(\infty) - \mu \cdot P_2(\infty)$$

Beispiel linke Gleichung: Auflösen nach $P_2(\infty) = 1 - P_1(\infty)$ und Einsetzen in die obere Gleichung ergibt eine Gleichung, die nur noch von $P_1(\infty)$ abhängt: $0 = -\lambda \cdot P_1(\infty) + \mu \cdot (1 - P_1(\infty))$.

Auflösen nach $P_1(\infty)$ ergibt die stationäre Wahrscheinlichkeit für den Zustand 1 "Funktion" – d.h. die stationäre Verfügbarkeit

$$P_1(\infty) = \frac{\mu}{\lambda + \mu}$$

Die stationäre Ausfallwahrscheinlichkeit (bzw. Nichtverfügbarkeit) ist dann

$$P_2(\infty) = 1 - P_1(\mu) = \frac{\lambda}{\lambda + \mu}$$

Lernziele

Allgemeines

Zustandsdiagramm keine Reparatur mit Reparatur

stationäre Zustände

Beispiel

Literatur

Beispiel: PW in der Wüste

Ein Fahrer ist alleine mit dem PW in einer Wüste unterwegs. Ein Reservereifen wird mitgeführt. Wie gross ist die Wahrscheinlichkeit, dass das Fahrzeug mit Reifenschaden stehen bleibt?

Zustandsdiagramm

Zustände

- 1: vier Reifen intakt (Reserverad wird nicht gebraucht!)
- 2: drei Reifen intakt, d.h. ein Reifen platt
- drei Reifen intakt und Reservereifen platt.

Tarcher Fachbookshule

Lernziele

Allgemeines

Zustandsdiagramm

keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

Quantifizierung: Simulation

Kenngrössen

- B1: Versagen eines Reifens: $\lambda = 10^{-4} \left[\frac{1}{h} \right]$
- ▶ B3: Versagen des Reservereifens $\lambda_R = 10^{-3} \left[\frac{1}{h} \right]$
- B2: Reparaturdauer 2 [h]: $\mu = 0.5 \left\lceil \frac{1}{h} \right\rceil$

Rahmenbedingung

$$P_1(t=0) = 1$$
; $P_2(t=0) = P_3(t=0) = 0$

Anmerkung: Kenngrössen sind willkürlich.

Ergebnisse: Nach 10⁵ Stunden ist das Fahrzeug

- ▶ verfügbar: $P_1(t = 1 \cdot 10^5 [h]) = 0.9226 \approx 92.3\%$
- ▶ nicht verfügbar: $P_2(t = 1 \cdot 10^5 [h]) + P_3(t = 1 \cdot 10^5 [h]) = 7.00 \cdot 10^{-4} + 7.67 \cdot 10^{-2} = 0.0774 \approx 7.7\%$

Lernziele

Allgemeines

Zustandsdiagramm

keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

Beispiel: PW in der Wüste, stationär Gleichungssystem (4)

$$0 = -4 \cdot \lambda \cdot P_1(\infty) + \mu \cdot P_2(\infty)$$

$$0 = 4 \cdot \lambda \cdot P_1(\infty) - \lambda_R \cdot P_2(\infty) - \mu \cdot P_2(\infty)$$

$$1=P_1(\infty)+P_2(\infty)+P_3(\infty)$$

Lösung des Gleichungssystems (4)

$$ightharpoonup P_1(\infty) = 0$$

$$ightharpoonup P_2(\infty) = 0$$

$$ightharpoonup P_3(\infty) = 1$$

Fazit: nach (unendlich) langer Zeit wird der PW zu 100% nicht verfügbar sein; Zustand 3 ist absorbierend.

Lernziele

Allgemeines

Zustandsdiagramm

mit Reparatur

Beispiel

Literatur

erweitertes Beispiel: PW in der Wüste: Ein Reservereifen ist ersetzbar. Um einen Reifen zu holen und wieder zum PW zu kommen braucht der Fahrer eine Woche (B4: $\mu_R \approx 6 \cdot 10^{-3} \, [1/h]$). Die restlichen Kenngrössen bleiben gleich.

Gleichungssystem (5)

$$0 = -4 \cdot \lambda \cdot P_1(\infty) + \mu \cdot P_2(\infty)$$

$$1 = P_1(\infty) + P_2(\infty) + P_3(\infty)$$

$$0 = \lambda_R \cdot P_2(\infty) - \mu_R \cdot P_3(\infty)$$

Lösung (stationär)

$$P_1(\infty) = \frac{\mu \cdot \mu_R}{\mu \cdot \mu_R + 4 \cdot \lambda \cdot \mu_R + 4 \cdot \lambda \cdot \lambda_R} = 0.99907$$

$$P_2(\infty) = \frac{4 \cdot \lambda \cdot \mu_R}{\mu \cdot \mu_R + 4 \cdot \lambda \mu_R + 4 \cdot \lambda \cdot \lambda_R} = 7.9925 \cdot 10^{-4}$$

$$P_3(\infty) = \frac{4 \cdot \lambda \cdot \lambda_R}{\mu \cdot \mu_R + 4 \cdot \lambda \mu_R + 4 \cdot \lambda \cdot \lambda_R} = 1.3321 \cdot 10^{-4}$$

Fazit: Der PW ist auf lange Sicht fast immer verfügbar.

Lernziele

Allgemeines

Zustandsdiagramm

mit Reparatur stationäre Zustände

Beispiel

Literatur

erweitertes Beispiel: PW in der Wüste; Simulation

Kenngrössen

- ▶ B1: Versagen eines Reifens: $\lambda = 10^{-4} \left[\frac{1}{h} \right]$
- B3: Versagen des Reservereifens $\lambda_B = 10^{-3} \left[\frac{1}{h} \right]$
- B2: Reparaturdauer 2 [h]: $\mu = 0.5 \left\lceil \frac{1}{h} \right\rceil$
- ▶ B4: Reserverad ersetzen: $\mu_R \approx 6 \cdot 10^{-3} \left[\frac{1}{h}\right]$)

Rahmenbedingung

$$P_1(t=0) = 1; P_2(t=0) = P_3(t=0) = 0$$

Anmerkung: Kenngrössen sind willkürlich.

Ergebnisse: Nach 10⁴ Stunden ist das Fahrzeug

- ▶ verfügbar: $P_1(t=10^4 [h]) = 0.9991 \approx 99.9\%$
- ▶ nicht verfügbar: $P_2(t = 10^4 [h]) + P_3(t = 10^4 [h]) = 8.00 \cdot 10^{-4} + 1.00 \cdot 10^{-4} = 9.00 \cdot 10^{-4} \approx 0.1\%$

Literatur

Lernziele

Allgemeines

Zustandsdiagramm

keine Reparatur mit Reparatur stationäre Zustände

Beispiel

Literatur

- PUKITE, J. and P. PUKITE: Modeling for Reliability Analysis. IEEE Press Series on Engineering of Complex Computer Systems.
 IEEE Press Series on Engineering of Complex Computer Systems, New York, 1998.
- VDI-4008: Markoff-Zustandsänderungsmodelle mit endlich vielen Zuständen. Technical Report VDI-4008-Blatt 3, Beuth Verlag, Berlin, 1999.

20x1xx Fathbookshi/x