Note Titl	iassical Search +	Hill Cli	mbing
	ical Binary Search:	ghe	m X ₀ , X ₁ , - · · X _n
	(x, key, lo, hi)		X ₀ ≤ X, ≤ ··· ≤ X _h , 1
18	(10 > hi) eturn -1	FINA	K such that Xx = key
M	2 lo4hi		of return -1 if ho K exists
	x _m == ky return m		y base: Array Xo Xn-1, key, state=[10, hi]
1£	return BS (X) k, b, m-1)	God:	$ 0 = -h $ mid = $\frac{107h}{2}$
16	xm < Key return BS(x, k, m+1, hi)	Rules:	[10, hi] -> [10, mid-1] [16, hi] -> [mid, mid] Precondition: xmid > Key Precondition: xmid==Ke
L	I CANTH ROLLY NIME TO A		[lo, hi] -> [mid+1, hi] [lo,hi] -> [-1,-1]
		•	Precondition: Xmid < Key Precondition: 10>hi
		III-Climbing Function	g(loshis= lo-hi { <0 if lochi, =0 if lo== hi}

Initial State: [a,6] an interval for which fa) and f(6) have a posite signs - ne, fa) (6) 40 Geal condition 6-a < E where E is some small "tolerance" that says at b are sufficiently close

· [a,b] -> [a,m] precondition:
f(b) f(m) >0 (some sign)

· [a,6] -> [m,6] Ire undition: f(a)f(m) >0

Hill Climbing Function as and g(state) = g(a,b) = a-b

Newton's Method

find a point where g(x)=0:

[Newton's Method]

start with an initial guess, Xo

update by moving in direction of

slape at X : 9 (X)

find a point where g(x)=0:

find a point where g(x)=0:

Example:

$$g(x) = x^{4} - 16$$

$$\chi_1 = \chi - \left(\frac{\chi^4 - 16}{4 \chi^3}\right)$$

$$\frac{g(x)}{g'(x)} = \frac{x^4 - 16}{4x^3}$$

$$= \frac{3x^4 + 16}{4x^3}$$

$$\chi_{1} = \frac{3\chi_{0} + 1L}{4\chi_{0}^{3}} = \frac{19}{9} = 43y$$

	i	x[i]	x[i+1]	abs. err	rel.err
Ī	0	1	4.75	2.75	1.375
ſ	1	4.75	3.599823	1.599823	0.799912
	2	3.599823	2.785614	0.785614	0.392807
ſ	3	2.785614	2.274264	0.274264	0.137132
	4	2.274264	2.045744	0.045744	0.022872
	5	2.045744	2.001512	0.001512	0.000756
ſ	6	2.001512	2.000002	1.71E-06	8.56E-07
	7	2.000002	2	2.2E-12	1.1E-12
1	8	2	2	0	0
	9	2	2	0	0
	10	2	2	0	0

ritial Sta	te = x	(.		(Second:)	implies a	, function
		$\chi \rightarrow \chi$	g(x)]	(Precond: g'(x) \$ 6	blen	nouthinmized
rules		$\chi \rightarrow \chi$	9'(x)	(100.)		
joal					here, we	
		tnew - Xold	4 6		Min imi	Zing
		A			1)
Irrev	rocable:	old values.	f state	Liscarded	ERPR =	Knew-Xold
Irrev	ocable:	old values.	f state	Liscarded	ERRAR =	Knew-Xold
Irrev	so cable:	old values.	f shate	Liscarded	Principal	
Irrev	locable;	old values.	f shorte	Liscarded		Knew-Sid

Note: This process finds a local maximum

Common occurrences of hill-climbing algorithms

- Michine Learning

Find best set of weights $w_0, --- w_{K-1}$ for a function $f(x) = w_0 f_0(x) + --- + w_{K-1} f_{K-1}(x)$

- . Start with initial set of weights W = (Wor ... Wky)
- Experiment (e.g play game using this heunstic)
- · Atjust as needed w= (wo',...., wei)

- Training Neural Network:

initial set of weights - W compute new set W'

Simplex Method for solving Linear Programming problems. the interior of the polyhedron is the set of all feasible solutions to a set of mequalities 9, X, + - + 9, n x 5 bs amy X1 + ···· + amn Xn < bm X1 --- Xh 20 Simplex Method: Find feasible sol'h with in this Start at a vertex maximal value of (which is a fessible case, Objective function x, =0, x2=0, x3=0 Solution Z = C1/21 + + Cn/2h 15 feacible look at adjacent vertices [slide to one of them] - most likely, the one w/ highest value of Z

o if optimal (there is a quick way of checking this!) stop

(stop when no adjacent vertex has a higher value of 2 than current vertex

All of these are guided by some objective function — a function to be maximized—

if multiple optima exist, can get stuck at local optimum by using of f'n to drive the algorithm, cannot re-visit

a previous point! Important — since we aren't maintaining a record of previous points visited

Handling multiple optima

Try several initial guesses and run Several times. Choose maximum

