## Creational Design Pattern

Hung Tran

Fpt software

August 8, 2021

### Outline

Creational Pattern Overview

Pactory Method pattern

### Creational Pattern Overview

### Construction process of an object.

- Singleton: Ensure only one instance.
- Factory Method: Create instance without depending on its concrete type.
- Object pool: Reuse existing instances.
- Abstract factory: Create instances from a specific family.
- Prototype: Clone existing objects from a prototype.
- Builder: Construct a complex object step by step.

# "new" operator problem

```
#include <iostream>

using namespace std;

class Box {
  private:
    double length;
    double breadth;
    double height;
};

int main(void) {
    Box *pBox = new Box();
    delete pBox;
    return 0;
}
```

- Need name of class
- Tightly coupled with the name
- Add new class, modify the existing code

## The Intent of Factory Method Design Pattern

Define an interface for creating an object, but let subclasses which class to instantitate. Factory method lets class defer instantiation to subclasses.

## How to Implement of Factory Method Design Pattern?

- Different ways to implement
- An overridable method is provide that returns an instance of a class
- This method can be overridden to return instance of a subclass
- Behave likes constructor
- However, the constructor always returns the same instance
- The factory method can returns any sub-type
- The factory method also called virtual constructor

## Structure of Singleton pattern?



## Basic implementation



### Pros and Cons

#### **Pros**

- Class itself control the instantiation process.
- Can allow multiple instances.
- Better than global variable.
- Can be subclassed.

#### Cons

- Testing is difficult
- DCLP is defective
- Lazy destruction is complex

#### Where to use?

### When only one instance should be use because:

- multiple instances cause data corruption.
- managing global state or shared state.
- multiple instances are not required.