Statistik o6. Nichtparametrische Verfahren

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Statistik

Inhalt

- 1 Testverfahren für Zähldaten

 Vierfelder-Unterschiedstest
 - Fisher-Exakt-Test
 - Effektstärke: Cramérs v

- Chancenverhältnis
- Binomialtest
- 2 Nächste Woche | Überblick

Zähldaten

Übersicht

- Unterschiede in Zähldaten
- · Signifikanz und Effektstärke
- Unterschiede bei Ja/Nein-Experimenten

2/38

<u>Literatur</u>

- Gravetter & Wallnau 2007
- Bortz & Lienert 2008

3/38

Kreuztabelle

Beobachtungen von zwei kategorialen Variablen. Auxiliarwahl beim Perfekt: haben, sein Herkunft des Belegs: nord, sued

Fall	Aux	Region
1	haben	nord
2	haben	nord
3	sein	nord
4	sein	sued
5	sein	sued
6	haben	nord
7	haben	sued
8	haben	sued

	Aux		
Region	haben	sein	
nord	3	1	
sued	2	2	

Kreuztabelle mit Randsummen

Spaltensumme für Spalte $i: \sum_{k} x_{ik}$ Zeilensumme für Zeile $j: \sum_{k} x_{kj}$

	haben	sein	Zeilensummen
nord	3	1	4
sued	2	2	4
Spaltensummen	5	3	8

```
n=100
50 mal haben, 50 mal sein (= Spaltensummen)
50 mal Norden, 50 mal Süden (= Zeilensummen)
```

erwartete Häufigkeiten unter Annahme der NULL
 kein Zusammenhang zwischen Hilfsverb und Region?

	haben	sein	Zeilensummen
nord	25	25	50
sued	25	25	50
Spaltensummen	50	50	100

```
n=100
50 mal haben, 50 mal sein (= Spaltensummen)
30 mal Norden, 70 mal Süden (= Zeilensummen)
```

• erwartete Häufigkeiten unter Annahme der NULL?

	haben	sein	Zeilensummen
nord	15	15	30
sued	35	35	70
Spaltensummen	50	50	100

n=100 30 mal Norden, 70 mal Süden 40 mal *haben*, 60 mal *sein*

	haben	sein	Zeilensummen
nord	12	18	30
sued	28	42	70
Spaltensummen	40	60	100

Allgemein: erwartete Häufigkeit für Zellen: $\frac{Spaltensumme \cdot Zeilensumme}{n}$

bzw.:
$$EH(x_{ij}) = \frac{\sum\limits_{k} x_{ik} \cdot \sum\limits_{k} x_{kj}}{n}$$

beobachtete Häufigkeiten für eine DeReKo-Stichprobe (geschwebt):

	haben	sein	Zeilensummen
nord	27	33	60
sued	3	34	37
Spaltensummen	30	67	97

erwartete Häufigkeiten:

	haben	sein	Zeilensummen
nord	18.56	41.44	60
sued	11.44	25.56	37
Spaltensummen	30	67	97

Problem

- Beobachtete und erwartete Häufigkeit weichen ab.
- NULL: kein Zusammenhang zwischen Region und Aux.
- Ab wann ist der Unterschied "signifikant"?
- Ein gemessener Unterschied ist siginifikant, wenn er angesichts der Stichprobengröße groß genug ist, dass wir das im Experiment gefundene Ergenbis nur sehr selten (typischwerweise in unter 5% der Fälle) erwarten würden, wenn er gar nicht bestünde.
- Diese 5% (als Anteil 0.05) sind das Signifikanzniveau.
- In Fishers Philosophie abgekürzt SIG, nicht wie oft zu lesen "α-Niveau".

χ^2 -Unterschiedstest

beobachtet:

	haben	sein	
nord	27	33	
sued	3	34	

erwartet:

0.110.101.			
	haben	sein	
nord	18.56	41.44	
sued	11.44	25.56	

$$\chi^2 = \sum \frac{(beobachtet-erwartet)^2}{erwartet}$$

bzw.:
$$\chi^2 = \sum_{ij} \frac{(x_{ij} - EH(x_{ij}))^2}{EH(x_{ij})}$$

Berechnung des χ^2 -Werts

$$\chi^2 = \sum \frac{(beobachtet-erwartet)^2}{erwartet}$$

beobachtet:

	haben	sein
nord	27	33
sued	3	34

erwartet:

	haben	sein
nord	18.56	41.44
sued	11.44	25.56

$$\chi^2 = \frac{(27-18.56)^2}{18.56} + \frac{(33-41.44)^2}{41.44} + \frac{(3-11.44)^2}{11.44} + \frac{(34-25.56)^2}{25.56}$$

$$\chi^2 = 3.84 + 1.72 + 6.23 + 2.79 = 14.58$$

Die χ^2 -Verteilung

Die χ^2 -Verteilung für Stichproben aus Grundgesamtheiten ohne Zusammenhang:

Freiheitsgrad?

Was sind "Freiheitsgrade" oder degrees of freedom (df)?

- Das kommt später noch ausführlicher.
- Für n-Felder-Tests: (Zeilenzahl-1)-(Spaltenzahl-1)
- Bei Vierfelder-Test also: df = 1

Die χ^2 -Verteilung II

- Wahrscheinlichkeit eines bestimmten χ^2 -Werts unter Annahme der NULL? VOR dem Experiment! Nach dem Experiment ist die Wahrscheinlichkeit des gemessenen p-Werts immer 1.
- In Fishers Philosophie Entscheidung nach Signifikanzniveau (SIG): Der χ^2 -Wert muss in den extremen SIG-Anteilen liegen, um die NULL zu SIG zurückzuweisen.

• Also ist für χ^2 = 14.58 auf jeden Fall p < 0.05 (weil 14.58 > 3.84).

Mehr oder weniger signifikant?

- Oft liest man etwas von " α -Niveaus" wie:
 - ► 5% ("signifikant")
 - **1**%
 - o.1% ("hochsignifikant")
- Diese Niveaus entsprechen einem falsch interpretierten Sig.
- Die Idee von "mehr oder weniger signifikant" ist kompletter Schwachsinn.
- Entweder ist das gesetzte Niveau akzeptabel, und dann bringt ein kleineres p aber auch nicht mehr.
- Oder es müsste eigtl. ein strengeres SIG-Niveau gewählt werden, und dann ist p < 0.05 schlicht nicht ausreichend (s. Fishers Sensitivität).
- Die Entscheidung für ein bestimmtes SIG-Niveau muss auf Basis konzeptueller/inhaltlicher Gründe gefällt werden.
- EIN signifikantes Testergebnis alleine sagt nicht viel aus!!!

Voraussetzungen für χ^2 -Tests

- Die Beoabachtungen sind voneinander unabhängig.
- 2 In jeder Zelle ist die erwartete Häufigkeit mindestens 5.
- Keine Beschränkung auf vier Felder!

Mit einer Matrix my.matrix:

> chisq.test(my.matrix)

Eingabe einer einfachen Vierfeldermatrix:

> my.matrix <- matrix(c(27,33,3,34), 2, 2, byrow=TRUE)

Ausgeben der erwarteten Häufigkeiten:

> chisq.test(my.matrix)\$expected

Wann und wie Fisher-Exakt?

Der Fisher-Exakt-Test ist eine Alternative zum χ^2 -Test.

- exakter Test: direkte Berechnung der Wahrscheinlichkeit
- keine allgemein bessere Alternative zu χ^2
- · robuster bei sehr kleinen Stichproben
- aber nur für feststehende Randsummen geeignet!
- ohne feste Randsummen: Barnards Test

Fisher-Exakt in R:

- > fisher.test(my.matrix)
- > fisher.test(my.vector.1, my.vector.2)

Effektstärke

Der χ^2 -Wert sagt nichts über die Stärke eines Zusammenhangs! Bei höheren absoluten Frequenzen wird auch der χ^2 -Wert größer.

	haben	sein	
nord	27	33	
sued	3	34	

$$\chi^2 = 12,89$$

	haben	sein
nord	27.84%	34.02%
sued	3.09%	35.05%

	haben	sein	
nord	54	66]
sued	6	68	

$$\chi^2 = 27,46$$

	haben	sein
nord	27.84%	34.02%
sued	3.09%	35.05%

Effektstärke II

Pearsons ϕ : Maß für die Stärke des Zusammenhangs in 2×2-Tabellen

$$\phi = \sqrt{\frac{\chi^2}{n}}$$

φ ist eine Zahl zwischen o und 1:

Je größer, desto stärker der Zusammenhang zwischen den Variablen.

Beispiel:
$$\phi = \sqrt{\frac{\chi^2}{n}} = \sqrt{\frac{12.89}{97}} = 0.3648$$

Cramérs v

Cramérs v für $n \times n$ -Tabellen mit n > 2 oder m > 2

$$V = \sqrt{\frac{\frac{\chi^2}{n}}{min(s-1,z-1)}}$$

mit: s die Spaltenzahl und z die Zeilenzahl

Beachte: für 2×2 -Tabellen: s - 1 = 1 und z - 1 = 1,

also
$$min(s - 1, z - 1) = 1$$

daher:
$$v = \sqrt{\frac{\frac{\chi^2}{n}}{1}} = \sqrt{\frac{\chi^2}{n}} = \phi$$

Speichern des Test-Objekts: > my.chi2.test <- chisq.test(my.matrix)</pre> Speichern des χ^2 -Werts mit: > my.chi2.value <- as.numeric(my.chi2.test\$statistic)</pre> Speichern von *n*: > my.n <- sum(my.matrix)</pre> Also Effektstärke (mit Ausgabe): > my.phi <- sqrt(my.chi2.value / my.n); my.phi</pre>

Chance (odds)

 Die Chance (odds) o setzt die Wahrscheinlichkeit p eines Ereignisses E in Relation zur Gegenwahrscheinlichkeit:

$$o(E) = \frac{p(E)}{1 - p(E)}$$

und damit

$$p(E) = \frac{o(E)}{1 + o(E)}$$

- Ein Ereignis ist in Korpusstudien i. d. R. das Auftreten einer Variablenausprägung.
- Die Information in den Maßen Wahrscheinlichkeit und Chance ist dieselbe (s. Umrechenbarkeit ineinander).

Chance und Wahrscheinlichkeit und Zähldaten

Aux	Anzahl
haben	27
sein	33

$$p(haben) = \frac{27}{27+33} = \frac{27}{60} = 0.45$$
 (Wahrscheinlichkeit)

1 -
$$p(haben) = p(\neg haben) = \frac{33}{27+33} = \frac{33}{60} = 0.55$$
 (Gegenwahrscheinlichkeit)

Beachte: $p(haben) + p(\neg haben) = 1$

$$o(haben) = \frac{\frac{27}{60}}{\frac{33}{60}} = \frac{27}{60} \cdot \frac{60}{33} = \frac{27}{33} = 0.82$$

allgmein:
$$p(E) = \frac{Anzahl(E)}{Anzahl(E) + Anzahl(\neg E)}$$
 und $o(E) = \frac{Anzahl(E)}{Anzahl(\neg E)}$

Chancenverhältnis (odds ratio)

 Das Chancenverhältnis (odds ratio) gibt das Verhältnis an, wie sich die Chancen einer Variablenausprägung E unter Bedingung A – also o(E|A) – und unter Bedingung B – also o(E|B) – zueinander Verhalten:

$$r(E|A, E|B) = \frac{o(E|A)}{o(E|B)}$$

Beispiel zum Chancenverhältnis (1)

- Wir haben Texte aus Süddeutschland und Norddeutschland auf das Auftreten des Perfektauxiliars haben und sein bei bestimmten Verben untersucht.
- Die Kreuztabelle:

	nord	sued
haben	27	3
sein	33	34

Beispiel zum Chancenverhältnis (2)

	nord	sued
haben	27	3
sein	33	34

- $o(haben|nord) = \frac{27}{33} = 0.82$
- $o(haben|sued) = \frac{3}{34} = 0.09$
- Verhältnis zwischen den Chancen: $or = \frac{0.82}{0.09} = 9.11$
- D. h. die Chance von haben ist 9.11 mal größer, wenn die Region nord ist.
- Ersatz für Effektstärke bei Fisher-Test

Bernoulli-Experimente

- binäre Daten: Ereignis vs. Nicht-Ereignis bzw. Ja/Nein
- Vgl. Behauptung: "Gen/Dat alternieren frei bei wegen."
 - "frei alternieren" = beide Kasus haben den gleichen Anteil.
 - ► Grundgesamtheit per Null-Hypothese: 50% Genitive und 50% Dative
- Korpusstichprobe: F(Genitiv)=41 und F(Dativ)=59
- Stimmt das mit der Null überein bei sig = 0.05?

Binomial-Test

NULL: Es gibt keine Abweichung von den erwarteten gleich großen Anteilen.

NULL: p(Dativ) = 0.5 (p für proportion)

Binomialtest im Einzelnen

Benötigte Größen:

- Stichproben der Größe n
- Proportion p (hier p = 0.5)
- Anzahl der beobachteten Ereignisse: X (hier X(Dativ) = 59)

Unter Annahme der NULL...

- Wenn $p \cdot n > 10$ und $(1 p) \cdot n > 10$ approximiert die Binomialverteilung die Normalverteilung.
- Es gilt dann (unter Annahme der NULL!) für die Normalverteilung:
 - ► Mittel: $\mu = p \cdot n$
 - ► Standardabweichung: $s = \sqrt{n \cdot p \cdot (1 p)}$
 - Wir können für den gemessenen Wert den z-Wert ausrechnen.

$$Z = \frac{X - \mu}{s} = \frac{X - p \cdot n}{\sqrt{n \cdot p \cdot (1 - p)}}$$

Ausrechnen des Beispiels und Signifikanz

$$Z = \frac{59 - (0.5 \cdot 100)}{\sqrt{100 \cdot 0.5 \cdot 0.5}} = \frac{59 - 50}{\sqrt{25}} = \frac{9}{5} = 1.8$$

- Der gemessene Wert liegt 1.8 Standardabweichungen vom Null-Mittel entfernt.
- Wir kennen bereits die kritischen Werte für Normalverteilungen und sig = 0.05: -1.96..1.96
- Die NULL kann also nicht zurückgewiesen werden bei sig = 0.05.
- Interpretation: Entweder ist die Variation nicht genau gleich verteilt oder ein seltenes Ereignis ist eingetreten.

```
> binom.test(59, 100, 0.5)
```

Exact binomial test

```
data: 59 and 100
```

number of successes = 59, number of trials = 100, p-value = 0.08863 alternative hypothesis: true probability of success is not equal to 0.5 95 percent confidence interval:

0.4871442 0.6873800 sample estimates:

probability of success 0.59

Einzelthemen

- 1 Inferenz
- Deskriptive Statistik
- Nichtparametrische Verfahren
- z-Test und t-Test
- 5 ANOVA
- 6 Freiheitsgrade und Effektstärken
- Power und Severity
- 8 Lineare Modelle
- Generalisierte Lineare Modelle
- 10 Gemischte Modelle

Literatur I

Bortz, Jürgen & Gustav Lienert. 2008. Kurzgefasste Statistik für die klinische Forschung. Heidelberg: Springer.

Gravetter, Frederick J. & Larry B. Wallnau. 2007. Statistics for the Behavioral Sciences. 7. Aufl. Belmont: Thomson.

Statistik

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung -Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.

38 / 38