8.0 时序电路的特点

- 时序电路的特点
- 双稳态触发器的特点

1. 时序电路的特点

组合逻辑电路的特点

- □ 它是一种无记忆电路──输入信号消失,则 输出信号也会立即消失
- □ 电路输出端的状态完全由输入端的状态决定

- ❖ 有时需要将参与运算的数据和运算结果保存起来——在组合逻辑电路的输出端添加具有记忆功能的部件
- ❖ 锁存器和触发器就是构成存储电路的基本 单元。

1. 时序电路的特点

数字逻辑电路由两部分组成——

	构成	定义	结构	电路框图	逻辑函数表达式
数字逻	组合逻辑 电路	电路的输出── ■ 仅与当前时刻的输入有关 $Z_{\rm m} = f_{\rm m} (x_1,, x_{\rm n})$	不包含存 储元件	X ₁ -	只有一组: Z _m = f _m (x ₁ ,, x _n)
辑电路	时序逻辑 电路	 电路的输出与以下均有关: ■ 当前时刻的输入 ■ 电路过去(上一个时刻)的工作状态 Z_m = f_m (x₁,, x_n, y₁,, y_s) 	包含存储元件	X1 Xn 组合电路 Y1 F储电路 Y2 Y2 Y2 Xn Y1 Xn Y2 Y2 Xn Y2 Xn Xn	有三组: 输出方程, 驱动方程, 状态方程: $Z_m = f_m (x_1,,x_n, y_1,,y_r)$ $Y_r = g_r (x_1,,x_n,y_1,,y_s)$ $Y_s^{n+1} = q_s (x_1,,x_n,Y_1^n,,Y_s^n)$

■ 锁存器(Latche)和触发器(flip-flop)是构成存储电路的基本元件

■ 两个重要概念—— 现态(原态):存储电路当前时刻的状态 Q_n

次态(新态):存储电路下一时刻的状态 Q_{n+1}

2. 双稳态触发器的特点

触发器/锁存器的特性(双稳态)

每个锁存器(触 发器)可以存放<mark>1</mark> 位二进制数

- 1. 有两个互补的输出端 Q 和 Q'
- 2. 有两个稳定的状态: 0态, 1态
- 3. 在外界信号的刺激下,可以从一个稳定状态转变到另一个稳定状态。
- 4. 没有(或无效的)外界信号刺激,维持当前状态不变。

触发器: 有时钟输入端,并且只在时钟信号到来时,才发生状态转换

锁存器:没有时钟输入端

双稳态 1 Q 1 0 1

记忆功能

8.1 锁存器

- 基本RS锁存器
 - 或非门构成的基本RS锁存器
 - 与非门构成的基本RS锁存器
- 门控D锁存器

■ 基本RS锁存器(触发器的鼻祖)

(1) 电路构成(或非门)

Q(Q_n)——现态

 $Q^+(Q_{n+1})$ ——次态

Q = 0 ($\overline{Q} = 1$) : state 0

 $Q = 1 (\overline{Q} = 0)$: state 1

R: 置0端(Reset the output to Q=0)

S: 置1端(Set the output to Q=1)

时序电路的关注点

- ◆时序电路当前时刻的状态是什么?
- ◆ 在输入信号的作用下,下一时刻的状态是什么?

(2) 功能表

置0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	_
1	1	1	_

保持

■ 基本RS锁存器(触发器的鼻祖)

(1) 电路构成(或非门)

Q(Q_n)——现态

 $Q^+(Q_{n+1})$ ——次态

Q = 0 ($\overline{Q} = 1$) : state 0

 $Q = 1 (\overline{Q} = 0)$: state 1

R: 置0端(Reset the output to Q=0)

S: 置1端(Set the output to Q=1)

(2) 功能表

置0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1 1	1	0	_
1	1,	1	_
<u> </u>	'		

保持

置 1

置 0

×不允	许
-----	---

置0端 R	置1端 S	次态 Q _{n+1}
0	0	Q _n
0	1	1
1	0	0
1	1	

输入<mark>高电平</mark> 有效

RS对同时 取1互斥

- 基本RS锁存器(触发器的鼻祖)
 - (3) 次态方程

(4) 逻辑符号

功能表

置0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	_
1	1	1	_

(5) 驱动表:完成状态转换需要满足的输入条件

 Q_n \rightarrow Q_{n+1} R
 S

 0
 \rightarrow 0
 X
 0

 0
 \rightarrow 1
 0
 1

 1
 \rightarrow 0
 1
 0

 1
 \rightarrow 1
 0
 X

置0端 R	置1端 S	次态 Q _{n+1}
0	0	\mathbf{Q}_{n}
0	1	1
1	0	0
1	1	_
	R 0	R S 0 0 1

保持

置 0

(6) 状态图

反映时序电路状态转移规律及相应输入、输出取值关系的<u>有向图</u>

图中元素的含义

- 圆圈:表示电路的状态
- 有向线段:表示状态的转换关系
- 有向线段旁的文字:表示转换条件,即输入信号取值

■ 另一种形式的基本RS锁存器(与非门)

逻辑符号:

(2) 功能表

置0端 R	置1端 S	现态 Q _n	次态 Q _{n+1}
1	1	0	0
1	1	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
0	0	0	_
0	0	1	_

保持

置 1

置 0

×不允许

(6) 锁存器的应用——开关去颤

(7) 典型芯片

74LS279: 4 R-S latches

- 基本RS锁存器是众多触发器 的鼻祖
- 其余的触发器都是在它的基础 上逐步改进和完善后形成的

基本RS锁存器总结

- ❖由于机械弹性作用, 机械式开关在使用中, 通常伴随有一定时间的触点机械抖动。
- ❖触点抖动可能导致判断出错(一次按下或释放被错误地认为是多次操作)
- ♦ 优点: 结构简单
- ♦ 缺点: ① 输入存在约束,使用不便;
 - ② 状态改变由输入直接控制,容易引发错误。
- ◆用途:记忆输入状态

2. 门控 D 锁存器

(1) 电路构成

(4) 逻辑符号

(5) 时序分析

(2) 功能表

使能端 G	输入端 D	现态 Q _n	次态 Q _{n+1}
0	Х	0	0
0	Х	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

(3) 次态方程

(6) 典型芯片

74LS373: 8D锁存器

2. 门控 D 锁存器

◆ 特点:结构简单,仅一个输入端,不存在输入约束问题。

◆ 缺点: 使能电位G作用期间,只要输入信号D改变(有时是干扰信号),Q也跟

着改变;存在"空翻"现象

违背了构造时钟触发器的初衷:一个时钟内,最多允许触发器状态翻转一次

锁存器的使能端 送时钟信号,就 是电平触发方式 的触发器 一个时钟内, 触发器状态发 生多次变化

"空翻"现象是锁存器(或电平方式触发器)共有的问题

"空翻"使以上器件不能正确实现计数功能!

☆ 关键问题: 电平(电位)触发

☆ 解决方案: 改电平触发为边沿触发

时钟信号的<u>上升</u> 沿或<u>下降沿,</u>触发 器改变状态

8.2 边沿触发器

- D触发器
- RS触发器
- JK锁存器
- T触发器
- T′ 触发器

1. 触发器的分类

时钟触发器

- •受时钟脉冲(用CP或CK表示)控制的触发器称作时钟触发器。
- •时钟也称同步信号。将多个触发器的时钟端相连,可以控制它们同一时刻动作。
- •触发方式有电平触发和边沿触发两种

2. 边沿触发器—— D触发器

(1) 逻辑符号

上升沿

触发

Q Q' Q Q' CK D

(2) 功能表 (上升沿为例)

时钟端 CK	输入端 现态 D Q _n		次态 Q _{n+1}		
†	0	0		0	
†	0	1		0	
<u>†</u>	1	0	·	1	
1	1	1		1	

(3) 次态方程

 $Q^{n+1} = D$

下降沿

触发

最简单,应用最广

0

2. 边沿触发器—— RS触发器

■RS 触发器

(1) 逻辑符号

(3) 次态方程

$$Q_{n+1} = S + R\overline{Q}_n$$

SR = 0 (约束条件)

(2) 功能表(上升沿)

时钟端 输入端 R 输入端 Q _n 现态 Q _{n+1} ↑ 0 0 0 0 0 ↑ 0 1 1 1 ↑ 0 1 0 1 1 ↑ 1 0 0 0 0 ↑ 1 0 0 0 0 ↑ 1 0 0 0 0 ↑ 1 1 0 0 0 0 ↑ 1 1 1 0 0 0 0 ↑ 1 1 1 0 0 0 0 ↑ 1 1 1 0 0 0 0					
† 0 0 1 1 † 0 1 0 1 † 0 1 1 1 † 1 0 0 0 † 1 0 1 0 † 1 1 0 —				现态 Q _n	次态 Q _{n+1}
† 0 1 0 1 † 0 1 1 1 † 1 0 0 0 † 1 0 1 0 † 1 1 0 —	†	0	0	0	0
† 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>†</u>	0	0	1	1
† 1 0 0 0 † 1 0 1 0 † 1 1 0 —	T T	0	1	0	1
† 1 0 1 0 † 1 1 0 —	1	0	1	1	1
† 1 1 0 <u></u>	†	1	0	0	0
	<u>†</u>	1	0	1	0
† 1 1 1 <u> </u>	†	1	1	0	_
	†	1	1	1	_

(4) 驱动表

Q _n	\rightarrow	Q_{n+1}	R	S
0	\rightarrow	0	Х	0
0	\rightarrow	1	0	1
1	\rightarrow	0	1	0
1	\rightarrow	1	0	X

驱动表可以从触发 器功能推导出来

输入存 在约束

RS触发器:输入存在约束

D触发器: 没有约束,但是只有

一个输入端

2. 边沿触发器—— JK触发器

输入端

0

0

K

0

0

■JK 触发器

(1) 逻辑符号

功能最全,输 入没有约束

(3) 次态方程

次态

 Q_{n+1}

 \mathbf{Q}_{n}

0

 $\overline{\mathbf{Q}}_{n}$

 $Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$

ال م	₹	01	11	10
 0	0	0	1	1
1		0	0	1

(2) 功能表 (下降沿)

↓ 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1	时钟端 CK	输入端 J	输入端 K	现态 Q _n	次态 Q _{n+1}	
↓ 0 0 1 1 ↓ 0 1 0 0 ↓ 1 0 0 1 ↓ 1 0 0 1 ↓ 1 0 1 1 ↓ 1 1 0 1	↓	0	0	0	0	仴
↓ 0 1 1 0 ↓ 1 0 0 1 ↓ 1 0 1 1 ↓ 1 1 0 1	↓	0	0	1	1	"
↓ 0 1 1 0 ↓ 1 0 0 1 ↓ 1 0 1 1 ↓ 1 1 0 1	↓	0	1	0	0	뒽
↓ 1 0 1 1 ↓ 1 1 0 1	↓	0	1	1	0	_
↓ 1 0 1 1 ↓ 1 1 0 1	↓	1	0	0	1	.
1	↓	1	0	1	1	-
↓ 1 1 1 0 ¹	↓	1	1	0	1	۱,
	↓	1_	1	1	0	#

呆持

置 0

置 1

翻转

(4) 驱动表

跟异或门 很象嘛!

Q _n	\rightarrow	Q_{n+1}	J	K
0	\rightarrow	0	0	Х
0	\rightarrow	1	[1	X
1	\rightarrow	0	Х	1
1	\rightarrow	1	Х	0

2. 边沿触发器—— JK触发器

输入	次态 Q _{n+1}	
J	K	Q _{n+1}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	Q _n

2. 边沿触发器—— T触发器

■T触发器

(1) 逻辑符号

(2) 功能表(下降沿)

时钟端 CK	输入端 T	现态 Q _n	次态 Q _{n+1}
+	0	0	0
	0	1	1
+	1	0	1
Li Li	1	1	0

7	
输入端 T	次态 Q _{n+1}
0	Q _n
1	$\overline{\mathbf{Q}}_{n}$

翻转

保持

(3) 次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$\mathbf{Q}_{n+1} = \mathbf{T} \overline{\mathbf{Q}}_n + \mathbf{T} \overline{\mathbf{Q}}_n$$
$$= \mathbf{T} \oplus \mathbf{Q}_n$$

2. 边沿触发器—— T'触发器

■ T' 触发器

(1) 逻辑符号

(3) 次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$IF J=K=T=1$$

$$Q_{n+1} = \overline{Q}_n$$

(2) 功能表(下降沿)

时钟端 CK	输入端 T	现态 Q _n	次态 Q _{n+1}
↓	1	0	1
↓	1	1	0

(4) 波形分析

- 计数
- ・二分频

2. 边沿触发器—— 总结

时钟边沿触发器的特点

- ◆由时钟脉冲边沿确定状态转换的时刻(即何时转换?),其余时刻都是保持功能
- ◆ 由输入信号确定触发器状态转换的方向(即如何转换?)

思考:对于一个下降沿触发的JK触发器,如果让它实现保持功能,有几种方法可以做到?

♦ 方法1:

最简单的方法:不给有效的时钟边沿(此时不用考虑J端和K端的信号)

方法 二

给时钟下降沿,此时触发器的保持功能就必须依靠J端和K端的信号配合才能完成

♦ 方法2:

■ 带异步清零端和异步置1端

异步:独立于 时钟信号 用途: 为触发器 设置指定状态

时钟端 CK	输入端 D	异步置1端 PreN	异步清零端 ClrN	次态 Q _{n+1}
Х	X	0	0	不允许
X	Х	0	1	1
X	X	1	0	0
†	0	1	1	0
†	1	1	1	1
0,1, ↓	Х	1	1	Q _n

$$Q_{n+1} = D$$

■帯时钟使能端

Solution:

$$Q^+ = Q \cdot CE' + D \cdot CE$$

例1: 写出JK触发器的次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$= J \overline{Q}_n$$

$$= \overline{A} \overline{Q}_n + \overline{B} \overline{Q}_n \overline{Q}_n$$

$$= \overline{A} \overline{Q}_n \cdot \overline{B} \overline{Q}_n \overline{Q}_n$$

$$= (\overline{A} + \overline{Q}_n) (\overline{B} + \overline{Q}_n) \overline{Q}_n$$

$$= \overline{A} \overline{B} \overline{Q}_n + \overline{B} \overline{Q}_n$$

$$= \overline{B} \overline{Q}_n$$

例2: 画出Q端波形图

方法1: 写出JK触发器的次态方程

$$Q_{n+1} = J \overline{Q}_n + \overline{K} Q_n$$

$$= (A \oplus B) \overline{Q}_n + Q_n Q_n$$

$$= A \oplus B + Q_n$$

方法2:在每一个时钟下降沿,计算J和 K的取值,从而确定Q端波形

第1个↓:	J=0,	K=1	置0功能
第2个↓:	J=0,	K=1	置0功能
第3个↓:	J=1,	K=1	翻转功能
第4个↓:	J=0,	K=0	保持功能
第5个↓:	J=0,	K=0	保持功能

输え	次态 Q _{n+1}	
J	K	Q_{n+1}
0	0	\mathbf{Q}_{n}
0	1	0
1	0	1
1	1	$\overline{\mathbf{Q}}_{n}$

- 触发器类型主要有5种,用到最多的是D触发器
- 触发器类型可以相互转换 (例如,设计中手头没有需要的触发器类型)

□ 代数法

1.
$$JK \rightarrow D$$
, $T(T')$, RS

(1) $JK \rightarrow D$

$$\mathsf{JK}_{:} \quad \mathsf{Q}_{\mathsf{n+1}} = \mathsf{J} \; \overline{\mathsf{Q}}_{\mathsf{n}} + \overline{\mathsf{K}} \; \mathsf{Q}_{\mathsf{n}}$$

$$D: Q_{n+1} = D$$

$$J = f(D,Q)$$

$$K = f(D,Q)$$

$$D = J \overline{Q}_n + \overline{K} Q_n$$

$$D(Q_n + \overline{Q}_n) = J \overline{Q}_n + K \overline{Q}_n \Rightarrow \begin{cases} J = D \\ \overline{K} = D \end{cases}$$

CK

2. $D \rightarrow JK \setminus T (T') \setminus RS$

(1)
$$D \rightarrow JK$$

$$D = f(J,K,Q)$$

$$D = J \overline{Q}_n + \overline{K} Q_n \implies$$

$(2) D \rightarrow T(T')$

$$\begin{array}{ll} T_{:} & Q_{n+1} = T \oplus Q_{n} \\ D_{:} & Q_{n+1} = D \\ & & \\ T'_{:} & Q_{n+1} = \overline{Q}_{n} \end{array} \right\} \quad D = T \oplus Q_{n}$$

(3) $D \rightarrow RS$?

□ 卡诺图法

1. $T \rightarrow JK$, D, RS

(1) $T \rightarrow JK$

Q _n	→	Q_{n+1}	Т	J	K
0	→	0	0	0	X
0	→	1	1	1	X
1	→	0	1	Х	1
1	→	1	0	Х	0

T = f(J,K,Q)

 $T = J\overline{Q}_n + KQ_n \Rightarrow$

(2) T→ **D**

Q _n	→	Q_{n+1}	T	D
0	→	0	0	0
0	→	1	1	1
1	→	0	1	0
1	→	1	0	0

T = f(D,Q)

 $T = D \oplus Q_n$

(3) $T \rightarrow RS$

Q _n	→	Q_{n+1}	Т	R	S
0	→	0	0	X	0
0	→	1	1	0	1
1	→	0	1	1	0
1	→	1	0	0	X

2. $RS \rightarrow JK$, D, T(T')

8.5 触发器的应用

1. 存储功能的应用——保存瞬态信号,直到清除为止

【例】举重裁判逻辑电路V2.0: 一个主裁判A和两个副裁判B和C,只有两人以上(必须包含主裁判在内)认定试举动作合格,并按下自己的按钮时,输出信号Z=1,该信号一直保持下去,直到工作人员按下清除按钮 P为止。

分析:

- □ 三个人的按钮动作有先后、长短之别,所以需要3个存储元件分别保存三个按钮信号;
- □ 存储元件有置1和置0功能即可(锁存器和RS 、JK、D触发器均可)

8.5 触发器的应用

对于每个锁存器:

- □ 裁判按钮按下,执 行<mark>置1</mark>功能,按钮弹 起,执行<mark>保持</mark>功能;
- □ 按钮P按下,全体执 、 行置**0**功能

基本RS锁存器

- □锁存器的置1端S: 连接主裁按钮A
 - 、和副裁B、C输出的低电平
- □锁存器的置0端R:连接工作人员按钮P给出的低电平
- □输出信号Z:三个锁存器输出状态的 。或与逻辑。

采用JK触发器或D触发器, 如何实现?哪种方法更简单?

8.5 触发器的应用

2. 分频/计数功能的应用——

利用触发器的置**0**、置**1**功能,由多个触发器组成分频电路,对输入的时钟信号进行分频。

【例】分析输出信号 Q_1 、 Q_2 、 Q_3 与时钟信号CLK之间的频率关系,R为清零端

实际应用电路——输入输出电路

□ 2片8D触发器74273,上 升沿触发。清零端低电 平有效。

AEN 🗆

□ 1片3:8译码器74138

实际应用电路——输入输出电路

- □ 74138不译码: Y₀ 输出高电平 1, 反向后, CLK初始为低电 平0
- □ 74138译码: 译中 Y₀,则有

Ź	2	F				0			
A ₉	$\mathbf{A_8}$	A ₇	A ₆	A ₅	$\mathbf{A_4}$	$\mathbf{A_3}$	A ₂	\mathbf{A}_{1}	$\mathbf{A_0}$
1	0	1	1	1	1	0	0	0	0

AEN -

- Y₀ 输出低电平0,反向后,使CLK为高电平1,此时 CLK产生一个上升沿 ↑
- □ U1: 将8位数据D₇~D₀送出

具体功能:对I/O端口(2F0H)写操作

实际应用电路——输入输出电路

- 74138不译码: Y₁ 输出高电平1,反向后,→CLK初始为低电平0
- □ 74138译码: 译中 Y₁,则有

2		F				1			
A ₉	A ₈	A ₇	\mathbf{A}_{6}	\mathbf{A}_{5}	$\mathbf{A_4}$	A ₃	\mathbf{A}_2	$\mathbf{A_1}$	$\mathbf{A_0}$
1	0	1	1	1	1	0	0	0	1

AEN 🕀

- Y₁輸出低电平0,反向后, 使CLK为高电平1,此时
 CLK产生一个上升沿 ↑
- □ U2: 将8位数据D₇~D₀送出

具体功能:对I/O端口(2F1H)写操作

