11

```
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12. «
13.
14.
15.
16.
17.
              G = (V, E) —
```

 $f:V\to N_k$,

k -

 $N_k = \{1, 2, ..., k\},\$ k -

G.

 $(u,v)\in E$ $f(u) \neq f(v)$. *k* -, |V| = kk $V_1 \cup V_2 \cup ... \cup V_l = V$, $l \le k$, $V_i \ne \emptyset$, i = 1, 2, ..., l. k, $X_p(G)$. G, $X_p(G) = k$, G*k k* - $G \qquad k = X_p(G)$ G, 1,2,3,4 *k* -

1.
$$X_p(K_n) = n$$

 K_n ,

n

 $2. K_n - e,$

3.

|B|=n,

|A| = m

1-

c

G, G $\check{S}(G)$. $G \qquad X(G) \ge \check{S}(G).$. G

 $\begin{array}{c}
G\\X(G) \ge \frac{n(G)}{\mathsf{S}(G)}
\end{array}$

G - n = n(G) - G, m = m(G) - G, $X(G) \ge \frac{n^2}{n^2 - 2m},$ (,)

, , ,

1.

2. 1.

3. 1.

4. , .4.1.–4.2.:

4.1.

4.2.

5.

·

•

•

· ·

• •

(1931-1988 .),

· .

 $v \in V \qquad G(V,E)$ $1- \qquad -R_1(v).$ $2- \qquad V \qquad ,$ $C(V,E) \qquad v \in V$

G(V,E), $v \in V$ $R_1(v)$

 ν .

 v_1 v_2

 $R_2(v_1)$ $, v_2 \in R_2(v_1).$

, $r \qquad \qquad v_2 \in R_2 \left(v_1 \right).$, $r \qquad \qquad$

. 14.1. $: v_1' := v_1 \cup v_2$

G

1.
$$i := 0$$
.
2. G v .
3. $i := i + 1$.
4. v i .
5. $R_2(v)$, G .
6. G .
7. K_i . G .
7. K_i . G .
8. G .
9. G .
14.2 G .
14.2 G .
14.2 G .
14.3. G_i . G .
14.4. G .
14.4. G .
15. G .
16. G .
17. G .
18. G .
19. G .

.14.4.

 G_2 .

 v_1' v_5

 v_1'' : G_2 $R_2\left(v_1''\right) = \left\{v_7\right\}.$ v₁"
. 14.5, $v_7: v_1''' = v_1'' \cup v_7.$ G_3 ,

.14.5. G_3 .

 G_3 $R_2(v_2) = \{v_6, v_8\}.$ v_2 ,

.14.6.

 G_4 .14.6. K_4 . v_1'' v_6

 G_4 .14.6 G_4 $: v_3, v_5$ v_1 (v_2 *v*₆. (v_4

 v_8

.14.7.

.14.7. G,

```
procedure visit(i:Byte);
 Var i,Cmax:Byte;
 Function NiceColor:Boolean;
 Var CN:Boolean;
 Begin
  CN:=true;
  For j=1 to n do
  If (A[j,i]=1) AND (color[j]=c) then CN:=false;
 End;
begin
 if i = n + 1 then Print else
 begin
  If color[i]=0 then
  begin
   for c:=color[i]+1 to Cmax do
   if NiceColor then
   begin
   color[i]:=c;
   visit(i+1);
   end;
  end;
 end;
end;
```

« G(V,E). $monochrom := \emptyset$, 1. 2. **Procedure Greedy** $v \in V$) do For (If vmonochrom then begin color(v) := $monochrom := monochrom \cup \{v\}$ end

«

>>

,

$$G$$
 — $r \ge 3$, $X_p(G) \le r$.

, , , K_{1n} , . . .

n ,

, (–))). .

, $X_p(G) \leq 6.$ G

. G $X_p(G) \le 5$.

. 4-

Wolfgang Haken. Every Planar Map is Four Colorable. Contemporary Mathematics 98, American Mathematical Society, 1980).

8
$$v_1, v_2, ..., v_8$$
. $a_1, a_2, ..., a_6$.

:

-				,				
	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
a_1	+		+				+	+
a_2		+		+				
a_3			+			+	+	
a_4	+	+		+	+			
a_5			+		+			+
a_6					+	+		+

. 1 . ? . G, $v_1, v_2, ..., v_8$, (, , , ,).

$$v_1, v_2, v_4, v_5$$
 $G,$ $X\{G\} \ge 4.$ $X(G).$

 K_4 .

G, 1 v_6 , v_1 2 v_2 v_3 , 3 v_8 , v_7 . 4-

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
a_1	+		+				+	+
a_2		+		+				
a_3			+			+	+	
a_4	+	+		+	+			
a_5			+		+			+
a_6					+	+		+

1.

2. 3.

, (« »).

1. :1 2.

- , , , , , , , Y, . Y, . Z.

1, 2, 1, 2, M1, 2, 1 2 (, —).

,

B1 B2 M2 M2 Y1

 $1, \quad 2, \quad 1 \qquad 2 \qquad , \\ K_4. \qquad ,$

4.

.

	1	2
1		
2	•	
3	•	
4		

