(19)日本国特許庁(JP)

(g)公開特許公報(A)

(11)特許出願公開番号

特開2002-350728

(P2002-350728A) (43)公開日 平成14年12月4日(2002.12.4)

(51) Int. Cl. 7

識別記号

FΙ

テーマコード (参考)

G02B 15/20

13/18

G02B 15/20 13/18 2H087

審査請求 未請求 請求項の数5 OL (全13頁)

(21)出願番号

(22)出願日

特願 2001-160044 (P 2001-160044)

平成 13年 5月29日 (2001.5.29)

(71)出願人 000000527

旭光学工業株式会社

東京都板橋区前野町2丁目36番9号

(72)

(72)発明者 伊藤 孝之

東京都板橋区前野町2丁目36番9号 旭光

学工業株式会社内

(72)発明者 江口 勝

東京都板橋区前野町2丁目36番9号 旭光

学工業株式会社内

(74)代理人 100083286

弁理士 三浦 邦夫

最終頁に続く

(54) 【発明の名称】 ズームレンズ系

(57)【要約】

【目的】 正、負、正及び負の4群から構成されるズームレンズ系において、中レンズ群(第2、第3レンズ 群)のピント感度を低減し、製造上有利な小型・高変倍 ズームレンズ系を得ることを目的とする。

【構成】 次の条件式(1)を満足するズームレンズ 系

(1) 0. $4 < K_1 / K_1 < 1$. 6

但し、

K,; 第2レンズ群のピント感度、K,; 第3レンズ群のピント感度。

【特許請求の範囲】

【謝求項1】 物体側から順に、正の屈折力を有する第 1レンズ群と、負の屈折力を有する第2レンズ群と、正 の屈折力を有する第3レンズ群と、負の屈折力を有する 第4レンズ群とから構成され、各群を光軸方向に移動さ せてズーミングを行い、次の条件式(1)を満足するこ とを特徴とするズームレンズ系。

(1) 0. $4 < \{ (f_T/f_{12T})^2 - (f_T/f_1)^2 \} /$ $\{(f_1/f_{1237})^2 - (f_1/f_{127})^2\} < 1.6$

f_τ:長焦点距離端での全系の焦点距離、

f: : 第1レンズ群の焦点距離、

f127: 長焦点距離端での第1レンズ群と第2レンズ群 の合成焦点距離、

f , , , , : 長焦点距離端での第1レンズ群と第2レンズ群 と第3レンズ群の合成焦点距離。

【請求項2】 請求項1記載のズームレンズ系におい て、次の条件式(2)を満足するズームレンズ系。

(2) 3. $0 < [\{(f_1/f_{121})^2 - (f_1/f_1)^2\}]$ $+ \{ (f_1/f_{1231})^2 - (f_1/f_{121})^2 \}]/Z <$ 4.0

但し、

 $Z = f_{\tau} / f_{\tau}$

f,: 短焦点距離端での全系の焦点距離。

【請求項3】 請求項1または2記載のズームレンズ系 において、ズーミング時における第1レンズ群と第4レ ンズ群の移動量は同一であるズームレンズ系。

【請求項4】 請求項3記載のズームレンズ系におい て、次の条件式(3)を満足するズームレンズ系。

(3) 2. $5 < |(f_1/f_1)^2 + 1 - (f_1/f_{1237})|$ 1 / Z < 4. 0

【請求項5】 請求項1ないし4のいずれか1項記載の ズームレンズ系において、第2レンズ群と第3レンズ群 を一体として移動させてフォーカシングを行うズームレ ンズ系。

【発明の詳細な説明】

[0001]

【技術分野】本発明は、写真用カメラ、特にレンズシャ ッター式カメラに用いられるズームレンズ系に関する。 [0002]

【従来技術及びその問題点】コンパクトカメラ用のズー ムレンズ系は、レンズ後方にミラーの配置スペースを要 する一眼レフカメラ用のズームレンズ系と異なり、長い バックフォーカスを必要としない。このようなバックフ ォーカスの制約の少ないレンズシャッターカメラ用ズー ムレンズ系としては、物体側から順に、正、正、負の3 群から構成されるズームレンズ系 (例えば特開平2-2 56015号公報) や、物体側から順に、正、負、正、 負の4群から構成されるズームレンズ系 (例えば特開平 6-265788号公報および特開2000-1807 50 Z=f₁/f₁、

25号公報)が提案されている。

【0003】しかし、これらのズームレンズ系におい て、高変倍化と同時に長焦点距離端での全長を短くしよ うとすると、長焦点距離端でのピント感度が増大し、そ のため各レンズ群の僅かな移動誤差に対して、焦点位置 が大きく変化し、結像性能が大幅に劣化してしまうとい う問題がある。

【0004】特に、物体側から順に、正、負、正、負の 4 群から構成されるズームレンズ系で高変倍化した場 10 合、3群から構成されるズームレンズ系と比較して、長 焦点距離端全長の小型化に有利であるが、従来例では中 群 (第2、第3レンズ群) のピント感度低減は達成でき ていない。

[0005]

【発明の目的】本発明は、物体側から順に、正、負、 正、及び負の4群から構成されるズームレンズ系におい て、特に大きくなる傾向のある中レンズ群(第2、第3 レンズ群)のピント感度を低減し、製造上有利な小型で 高変倍ズームレンズ系を得ることを目的とする。

20 【0006】本発明のズームレンズ系は、ズーム比2 $(=f_{,}/f_{,})$ t

Z > 4

と高変倍で、長焦点距離端での全長TLIが $TL_{\tau}/f_{\tau} < 1.0$

と短く、前玉径も小さい、沈胴式レンズシャッターカメ ラに最適なズームレンズ系を提供するものである。

[0007]

【発明の概要】本発明によるズームレンズ系は、物体側 から順に、正の屈折力を有する第1レンズ群と、負の屈 30 折力を有する第2レンズ群と、正の屈折力を有する第3 レンズ群と、負の屈折力を有する第4レンズ群とから構 成され、各群を光軸方向に移動させてズーミングを行 い、次の条件式(1)を満足することを特徴としてい る。

(1) 0. $4 < \{ (f_1/f_{121})^2 - (f_1/f_1)^2 \} /$ $\{(f_1/f_{1237})^2 - (f_1/f_{127})^2\} < 1.6$ 但し、

fr: 長焦点距離端での全系の焦点距離、

f,:第1レンズ群の焦点距離、

40 f ...: 長焦点距離端での第1レンズ群と第2レンズ群 の合成焦点距離、

f1237: 長焦点距離端での第1レンズ群と第2レンズ群 と第3レンズ群の合成焦点距離、である。

【0008】本発明のズームレンズ系は、次の条件式 (2) を満足することが好ましい。

(2) 3. $0 < [\{(f_1/f_{121})^2 - (f_1/f_1)^2\}]$ $+ \{ (f_{1}/f_{1231})^{2} - (f_{1}/f_{121})^{2} \}]/Z <$ 4. 0

但し、

f.: 短焦点距離端での全系の焦点距離、である。条件 式(1)(2)の{ $(f_{\tau}/f_{12\tau})^{2}$ - $(f_{\tau}/f_{1})^{2}$ } は第2レンズ群のピント感度(K.)として定義され、 同 { (f, / f, 237) '- (f, / f, 27) '} は第3レン ズ群のピント感度(K,)として定義される量である。 【0009】本発明によるズームレンズ系は、好ましい 一熊様では、ズーミング時に第1レンズ群と第4レンズ 群の移動量が同一である(一体に移動する)。ズーミン グ時に第1レンズ群と第4レンズ群が一体に移動する と、鏡筒構造が簡素化できると同時に、ピント感度を低 減できる。

【0010】ズーミング時に第1レンズ群と第4レンズ 群を一体に移動させる態様では、次の条件式(3)を満 足することが好ましい。

(3) 2. $5 < |(f_{\tau}/f_{1})^{2}+1-(f_{\tau}/f_{1237})$ $^{2} | / Z < 4.0$

この条件式(3)の(f₇/f₁)*+1-(f₇/ f_{1237}) ²は、 $|K_1+k_4|$ /Zで定義される量であ

【0011】また、フォーカシングは、第2レンズ群と 第3レンズ群を一体に移動させて行うことが好ましい。 カメラの小型化のためには、フォーカシングレンズ群は 小型・軽量で且つ移動量が小さいことが望ましい。光線 有効径が他の群よりも相対的に小さい第2レンズ群また は第3レンズ群をフォーカシング群とすればよいが、第 2レンズ群または第3レンズ群単体でフォーカシングを 行うと、移動量が大きくなり、小型化が困難となる。第 2 レンズ群と第 3 レンズ群一体でフォーカシングを行う ことにより、小型化が達成でき、また近接時の性能劣化 も少なくできる。

[0012]

【発明の実施の形態】本発明によるコンパクトカメラ用 4群ズームレンズ系は、図25、図26の簡易移動図に 示すように、物体側から順に、正のパワーの第1変倍レ ンズ群10と、負のパワーの第2変倍レンズ群20と、 正のパワーの第3変倍レンズ群30と、負のパワーの第 4変倍レンズ群40とからなり、ズーミング時には、第 1レンズ群から第4レンズ群の4つのレンズ群が光軸方 向に移動する。絞りSは、第3レンズ群30と第4レン ズ群40の間に位置し、第3レンズ群30と一体に移動 する。

【0013】図25の簡易移動図は、中間焦点距離で切 替移動のある移動軌跡の例であり、短焦点距離端 f wか ら長焦点距離端 f t に向けてのズーミングに際し、第1 レンズ群10、第2レンズ群20、第3レンズ群30及 び第4レンズ群40は、短焦点距離端fwから中間焦点 距離 f mまでの焦点距離域 Z W (第1の焦点距離域、短 焦点距離側ズーミング域)で、ともに物体側に移動し、 中間焦点距離 f mにおいて、所定の距離だけ像側に移動 して切替後中間焦点距離 f m'となり、さらに、切替後 50 レンズ群と第3レンズ群のピント感度の比を規定するも

中間焦点距離fm'から長焦点距離端ftまでの焦点距 離域ZT(第2の焦点距離域、長焦点距離側ズーミング 域) でともに物体側に移動する。また、第2レンズ群2 0と第3レンズ群30は、焦点距離域ZWで、各々の間 隔を一定(d1)に保持し(第1の状態)、中間焦点距 離fmにおいて各々の間隔を狭め(d2)、さらに焦点 距離域2 Tで、その狭めた間隔(第2の状態)を保持す る。中間焦点距離fmは、第1の焦点距離域に属し、切 替後中間焦点距離 f m' は、中間焦点距離 f mにおい て、第1レンズ群10と第4レンズ群40が像側へ移動 し、かつ第2レンズ群20と第3レンズ群30が間隔を 狭めたときの焦点距離である。絞りSは、第3レンズ群 30と第4レンズ群40の間に位置し、ズーミングに際

し第3レンズ群30とともに移動する。

【0014】図25の移動図は、簡易的なもので、第 1、第2、第3、第4レンズ群10、20、30、40 のズーミング基礎軌跡を直線で描いているが、実際には 直線であるとは限らない。図25の簡易移動図では、フ オーカシングは、焦点距離域に拘わらず、第2レンズ群 20と第3レンズ群30を一体に移動させて行う。ま た、以上のズームレンズ系のズーミング基礎軌跡は、中 間焦点距離 f m、f m' において不連続であるが、短焦 点距離端fw、中間焦点距離fm、fm'及び長焦点距 離端ftでの第1、第2、第3、第4レンズ群、10、 20、30、40の位置を適当に定めることにより、常 時正しく像面に結像するような解が存在する。そして、 このようなズーミング基礎軌跡によると、高ズーム比で ありながら小型のズームレンズ系が得られる。また、各 レンズ群の停止位置は、図25の簡易移動図上でステッ 30 プワイズに決定することができ、実際の機械構成では、 各群をこのようにステップワイズの停止位置に停止させ ることができる。例えば、停止位置を f m (f m')上 とせず、fm(fm')の前後から適当に選択すること により、fm (fm') における不連続軌跡を、実際は 滑らかに通過させることができる。また第1の焦点距離 域 Z W の最も f m 側の停止位置より、第2の焦点距離域 ZTの最もfm'側の停止位置を物体側に設定すること により、実際の移動軌跡がUターンすることを避けられ るので動作精度を高めることができる。

【0015】図26は、切替中間焦点距離を持たない簡 易移動図の例であって、短焦点距離端から長焦点距離端 へのズーミングに際し、すべてのレンズ群が互いの空気 間隔を変化させながら物体側へ移動する。絞りSは、第 3レンズ群30と第4レンズ群40の間に位置し、第3 レンズ群30と一緒に移動する。図26においても、第 1、第2、第3、第4レンズ群10、20、30、40 のズーミング基礎軌跡を直線で描いているが、実際には 直線であるとは限らない。

【0016】条件式(1)は長焦点距離端における第2

ので、高ズーム比とピント感度低減を両立させるためのものである。本実施形態では、従来例では変倍作用が小さくピント感度も低かった第2レンズ群に、第3レンズ群の変倍作用を分担させ、第3レンズ群と同符号で同程度のピント感度を持たせることで、第3レンズ群のピント感度を付ける。条件式(1)の下限を超えると、第2レンズ群と第3レンズ群の変倍作用の分担割合が小さくなり、第3レンズ群のピント感度が増大してしまう。条件式(1)の上限を超えると、第2レンズ群の変倍作用が大きくなり、ズーミング時における各収差の

【0017】条件式(2)は、長焦点距離端におけるズーム比に対する第2レンズ群と第3レンズ群のピント感度の和を規定するものである。条件式(2)の下限を超えると、ピント感度は小さくできるが、ズーム移動量が大きくなるため、長焦点距離端での全長が長くなってしまう。条件式(2)の上限を超えると、高ズーム比の本実施形態のズームレンズ系ではピント感度が高くなりすぎるため、好ましくない。

変動を抑えるのが困難となる。

【0018】条件式(3)は、第1レンズ群と第4レンズ群を一体にしたときのピント感度を規定したものである。ピント感度の符号が異なる第1レンズ群と第4群を一体に動かすことにより1・4群のピント感度を低減できる。条件式(3)の下限を超えると、低減の効果を大きくするために第1レンズ群のパワーが増大してしまい、収差補正が困難となる。上限を超えると、ピント感度低減の効果が小さくなる。

【0019】次に具体的な実施例を示す。諸収差図中、 球面収差で表される色収差(軸上色収差)図及び倍率色 収差図中のd線、g線、C線はそれぞれの波長に対する 収差であり、Sはサジタル、Mはメリディオナルであ る。また、表中のFnoはFナンバー、fは全系の焦点距 離、Wは半画角(*)、fnはバックフォーカス、rは 曲率半径、dはレンズ厚またはレンズ間隔、Naはd線

$$\begin{split} F_{\text{N o}} = 1 &: 5.8 - 11.4 - 9.4 - 14.1 \\ f = & 39.28 - 90.00 - 90.00 - 200.00 \\ \text{W} = & 28.0 - 13.5 - 13.0 - 6.1 \end{split}$$

に対する屈折率、vはアッベ数を示す。また、回転対称 非球面は次式で定義される。

 $x=cy^2/[1+[1-(1+K)c^2y^2]^{1/2}]+A4y^4+A6y^6+A8y^6+A10y^{10}+A12y^{12}\cdots$

(但し、cは曲率 (1/r)、yは光軸からの高さ、K は円錐係数、A4、A6、A8、・・・・は各次数の 非球面係数)

【0020】 [実施例1] 図1ないし図5は、本発明の ズームレンズ系の第1実施例を示している。この実施例 10 は、図25の移動軌跡を有するズームレンズ系に適用し たもので、図1はレンズ構成図を示し、図2、図3、図 4及び図5はそれぞれ短焦点距離端 (fw)、短焦点距 離側ズーミング域中間焦点距離 (fm)、長焦点距離側 ズーミング域中間焦点距離 (fm') 及び長焦点距離端 (ft)における諸収差図を示している。表1はその数 値データである。f、W、及びfoの値は、fw-fm - f m' - f t の順に示している。第2レンズ群20と 第3レンズ群30は、焦点距離域ZWでは第一の間隔d 1 (=4.00) を維持し、焦点距離域 Z T では第二の間隔 20 d 2 (=0.50) を維持する。面No. 1~4は第1レンズ 群10、面No. 5~7は第2レンズ群20、面No. 8~ 10は第3レンズ群30、面No. 11~14は第4レン ズ群40であり、絞り5は第3レンズ群(第10面)の 後方(像側面) 1.0mmの位置にある。第1レンズ群10 は、物体側から順に、負単レンズと正単レンズからな り、第2レンズ群20は、物体側から順に、両凹負レン ズと正レンズの接合レンズからなり、第3レンズ群30 は、物体側から順に、物体側に凸の負メニスカスレンズ と正レンズの接合レンズからなり、第4レンズ群40 30 は、物体側から順に、正単レンズと負単レンズからなっ ている。

【0021】 【表1】

f ₈ =9.37 - 39.83 - 31.45 - 86.95						
面 No.	r	d	N_d	ν		
1	-24. 990	1. 50	1. 84666	23. 8		
2	-40. 187	0. 10	-			
3	29. 998	3. 00	1. 48749	70. 2		
4	-55. 568	2. 50 - 11. 63 - 11. 72 - 17. 59	-	-		
5	-31.413	1. 00	1.88300	40.8		
6	11.786	2. 78	1.84666	23. 8		
7	74. 437	4.00 - 4.00 - 0.50 - 0.50	-	-		
8	13. 198	1. 20	1. 84666	23. 8		
9	8.777	5. 59	1. 58636	60. 9		
10*	-25. 902	13. 88 - 4. 75 - 8. 16 - 2. 30	•	-		
11*	33. 087	2. 90	1. 58547	29. 9		

8 286, 686 5. 29 12* 13 -9.899 1.50 1.72916 54.7 -1005. 374 14

*は回転対称非球面。

非球面データ (表示していない非球面係数は0.00である。) :

面No.	ĸ	A 4	A 6	A 8
10	0.00	0.65922×10^{-4}	-0.20286×10^{-6}	-
11	0. 00	0.20270×10^{-4}	-0.19872×10^{-6}	0.97064×10°
12	0.00	-0.79376×10^{-4}	0.12147×10^{-6}	•

【0022】 [実施例2] 図6ないし図10は本発明の ズームレンズ系の第2実施例を示している。この実施例 は、実施例1と同じく、図25の移動軌跡を有するズー ムレンズ系に適用したもので、図6はレンズ構成図を示 し、図7、図8、図9及び図10はそれぞれ短焦点距離 端(fw)、短焦点距離側ズーミング域中間焦点距離 (fm)、長焦点距離側ズーミング域中間焦点距離 (f m')及び長焦点距離端 (f t)における諸収差図を示 している。表2はその数値データであり、f、W、及び

 $F_{n,0}=1:5.8-11.4-11.7-13.8$

f_a =9. 44 - 39. 92 - 31. 53 - 84. 52

f= 39. 28 - 90. 00 - 90. 00 - 195. 00 W=28. 1 - 13. 4 - 13. 0 - 6. 3

18 5. 11	00.02	71.00 01.02		
面 No.	r	d	N_d	ν
1	-24. 738	1.50	1.84666	23. 8
2	-41.865	0. 10	-	-
3	42. 018	3.00	1.61800	63. 4
4	-51. 984	2. 50 - 11. 56 - 11. 71 - 17. 46	-	-
5	-30. 566	1.00	1. 88300	40. 8
6	11. 699	2.80	1.84666	23. 8
7	76. 261	4. 00 - 4. 00 - 0. 50 - 0. 50	-	-
8	13. 347	1. 20	1.84666	23. 8
9	8. 790	5. 92	1. 58636	60. 9
10*	-24. 896	14. 31 - 5. 25 - 8. 60 - 2. 85	-	-
11*	42. 658	2. 90	1. 58547	29. 9
12*	-218. 830	5. 05	-	-
13	-9 . 753	1. 50	1. 72916	54. 7
14	-508. 814	-	-	-

*は回転対称非球面。

非球面データ (表示していない非球面係数は0.00である。):

面No.	K	A 4	A 6	A 8
10	0.00	0.64024×10^{-4}	-0.26444×10^{-6}	-
11	0.00	0.44240×10^{-4}	-0.63486×10^{-6}	$0.11841 \times 10^{-}$
12	0.00	-0.59001×10^{-4}	-0.30620×10^{-6}	-

【0024】 [実施例3] 図11ないし図15は本発明 のズームレンズ系の第3実施例を示している。この実施 例は、実施例1と同じく、図25の移動軌跡を有するズ ームレンズ系に適用したもので、図11はレンズ構成図 を示し、図12、図13、図14及び図15はそれぞれ 短焦点距離端 (fw)、短焦点距離側ズーミング域中間 焦点距離 (fm)、長焦点距離側ズーミング域中間焦点

距離 (fm')及び長焦点距離端 (ft)における諸収 差図を示している。表3はその数値データであり、f、 W、及びfaの表記は実施例1と同様である。第2レン ズ群20と第3レンズ群30は、焦点距離域ZWでは第 一の間隔 d 1 (= 3.10) を維持し、焦点距離域 Z T では 第二の間隔 d 2 (=0.50) を維持する。基本的なレンズ 50 構成は実施例1と同様であり、絞りSは第3レンズ群

と第3レンズ群30は、焦点距離域2Wでは第一の間隔 d1 (=4.00) を維持し、焦点距離域2Tでは第二の間 隔 d 2 (= 0.50) を維持する。基本的なレンズ構成は実 施例1と同様であり、絞りSは第3レンズ群 (第10 面)の後方(像側面)1.0mmの位置にある。

10 f の表記は実施例1と同様である。第2レンズ群20

[0023]

【表2】

【表3】

(第10面) の後方(像側面) 1.0mmの位置にある。 [0025]

 $F_{N,0}=1:4.2-8.0-8.3-12.3$

f= 39.30 - 90.00 - 90.00 - 170.00

W=28. 2 - 13. 4 - 13. 1 - 7. 2

f_B=10.33 - 44.23 - 37.00 - 83.54

面 No.	r	ď	N ₄	ν
1	-26. 785	1. 50	1.84666	23. 8
2	-46. 643	0. 10	-	-
3	52. 378	2. 90	1. 69680	55. 5
4	-52. 378	2. 49 - 12. 31 - 12. 46 - 17. 64	! -	-
5	-24. 922	1.50	1. 78590	44. 2
6	14. 011	3. 31	1.80518	25. 4
7	57. 831	3. 10 - 3. 10 - 0. 50 - 0. 50	-	-
8	14. 286	1. 50	1.84666	23. 8
9	10.000	4. 19	1. 58636	60. 9
10*	-22. 418	15. 06 - 5. 24 - 7. 69 - 2. 51	-	-
11*	636. 626	2. 90	1. 58547	29. 9
12	-36. 701	3. 96	-	-
13	-10. 417	1.50	1. 72916	54. 7
14	-165. 355	-	-	-

非球面データ (表示していない非球面係数は0.00である。):

K 面No. A 4 0.78571×10^{-4} 10 0.00 11 0.00 0.81437×10^{-4}

*は回転対称非球面。

A 6 8 A -0.13367×10^{-6} -0.24992×10^{-6} 0.69077×10^{-8}

【0026】 [実施例4] 図16ないし図20は本発明 のズームレンズ系の第4実施例を示している。この実施 例は、実施例1と同じく、図25の移動軌跡を有するズ ームレンズ系に適用したもので、図16はレンズ構成図 を示し、図17、図18、図19及び図20はそれぞれ 短焦点距離端 (fw)、短焦点距離側ズーミング域中間 焦点距離 (fm)、長焦点距離側ズーミング域中間焦点 距離 (fm') 及び長焦点距離端 (ft) における諸収

差図を示している。表4はその数値データであり、f、

÷

 $F_{80} = 1:5.0-11.9-8.8-12.5$ f= 39.00 - 110.75 - 110.75 - 200.59 W=28.2 - 11.0 - 10.7 - 6.1

 $f_8 = 9.48 - 52.00 - 40.72 - 84.48$

面 No. d N_d -23.981 1.50 1.84666 23.8 1 2 -38. 181 0.10 3 39.917 3.00 1.61800 63.4 -50, 453 2, 50 - 13, 02 - 13, 05 - 17, 45 -27.082 1.00 1.80400 5 46.6 6 11.869 2.62 1.84666 23.8 4.00 - 4.00 - 0.50 - 0.50 7 36. 166 8 13.099 1.00 1.84666 23.8 8.712 5. 10 1.58913 61.2 -21.741 16.15 - 5.62 - 9.09 - 4.69

W、及びf_aの表記は実施例1と同様である。第2レン ズ群20と第3レンズ群30は、焦点距離域ZWでは第 一の間隔 d 1 (=4.00) を維持し、焦点距離域 Z T では 30 第二の間隔 d 2 (=0.50) を維持する。基本的なレンズ 構成は実施例1と同様であり、絞り5は第3レンズ群 (第10面) の後方(像側面) 1.0mmの位置にある。

[0027]

【表4】

1	1

	11			
11*	135. 888	2. 90	1. 58547	29. 9
12*	-39. 004	3. 47	-	-
13	-10. 128	1.50	1. 72916	54. 7
14	266 244	-	-	_

*は回転対称非球面。

非球面データ (表示していない非球面係数は0.00である。) :

面No.	K	A 4	A 6	A 8
10	0.00	0.77245×10^{-4}	-0.21237×10^{-6}	-
11	0.00	0.39287×10^{-4}	-0.11410×10^{-5}	0.12382×10^{-7}
12	0. 00	-0.73200×10^{-4}	-0.77701×10^{-6}	-0.61450×10^{-9}

【0028】 [実施例5] 図21ないし図24は本発明 のズームレンズ系の第5実施例を示している。この実施 例は、実施例1ないし4と異なり、図26の移動軌跡を 有するズームレンズ系に適用したもので、図21はレン ズ構成図を示し、図22、図23及び図24はそれぞれ 短焦点距離端 (fw)、中間焦点距離 (fm)及び長焦 点距離端(ft)における諸収差図を示している。表5 はその数値データである。面 No. 1~4は第1レンズ群 10、面No. 5~6は第2レンズ群20、面No. 7~9 は第3レンズ群30、面No. 10~13は第4レンズ群 20 【表5】

40であり、絞りSは第3レンズ群 (第10面) の後方 (像側面) 1.0mmの位置にある。第1レンズ群10は、 物体側から順に、負単レンズと正単レンズからなり、第 2レンズ群20は、両凹負レンズからなり、第3レンズ 群30は、物体側から順に、物体側に凸の負メニスカス レンズと正レンズの接合レンズからなり、第4レンズ群 40は、物体側から順に、正単レンズと負単レンズから なっている。

[0029]

 $F_{N,0}=1:4.5-7.5-12.4$

f= 39.00 - 109.78 - 195.70

W=28. 1 - 10. 9 - 6. 2

f₈=9.30 - 43.14 - 84.30

面 No.	r	d	N_d	ν
1	-35. 287	1. 50	1.84666	23. 8
2	-44. 491	0. 10	-	-
3	22. 080	3. 00	1. 49700	81. 6
4	323. 124	2. 50 - 14. 45 - 17. 45	-	-
5	-18. 846	1.00	1.61800	63. 4
6	36. 620	4. 50 - 1. 99 - 1. 00	-	-
7	17. 807	1.00	1.84666	23. 8
8	14. 088	4. 20	1.58913	61. 2
9*	-18. 408	15. 99 - 6. 20 - 2. 78	-	-
10*	67.766	3. 00	1. 58547	29. 9
11*	-63. 481	3. 45	-	-
12	-10. 956	1.50	1.72916	54. 7
13	156. 316	•	=	-

*は回転対称非球面。

非球面データ (表示していない非球面係数は0.00である。):

面No	. K	A 4	A 6	A 8
9	0.00	0.71252×10^{-4}	-0.14086×10^{-6}	-
10	0.00	0.51542×10^{-4}	-0.73993×10^{-6}	0.86383×10 ⁻⁸
11	0.00	-0.48855×10^{-4}	-0.33759×10^{-6}	-

【0030】各実施例の各条件式に対する値を表8に示 【表6】 す。

		実施例1	実施例2	実施例3	実施例4	実施例 5
条件式	(1)	0.870	0.773	0. 576	0.822	1. 481
条件式	(2)	3. 828	3. 722	3. 642	3. 250	3. 469
多仕式	(3)	3 631	3 521	3 410	3 056	3 270

【0031】 表8から明らかなように、実施例1ないし 実施例6の数値は、条件式(1)ないし(3)を満足し ており、かつ収差図に示すように各焦点距離での諸収差 もよく補正されている。

[0032]

【発明の効果】本発明によれば、物体側から順に、正、 負、正及び負の4群から構成されるズームレンズ系において、特に大きくなる傾向のある中レンズ群(第2、第 3レンズ群)のピント感度を低減し、製造上有利な小型 で高変倍ズームレンズ系を得ることができる。

【図面の簡単な説明】

【図1】本発明によるズームレンズ系の第1実施例のレンズ構成図である。

【図2】図1のレンズ構成の短焦点距離端における諸収 差図である。

【図3】図1のレンズ構成の短焦点距離側ズーミング域 中間焦点距離における賭収差図である。

【図4】図1のレンズ構成の長焦点距離側ズーミング域中間焦点距離における諸収差図である。

【図5】図1のレンズ構成の長焦点距離端における諸収 20 差図である。

【図6】本発明によるズームレンズ系の第2実施例のレンズ構成図である。

【図7】図6のレンズ構成の短焦点距離端における諸収 差図である。

【図8】図6のレンズ構成の短焦点距離側ズーミング域中間焦点距離における諸収差図である。

【図9】図6のレンズ構成の長焦点距離側ズーミング域中間焦点距離における諸収差図である。

【図10】図6のレンズ構成の長焦点距離端における賭 30 収差図である。

【図11】本発明によるズームレンズ系の第3実施例の

レンズ構成図である。

【図12】図11のレンズ構成の短焦点距離端における 諸収差図である。

【図13】図11のレンズ構成の短焦点距離側ズーミング域中間焦点距離における諸収差図である。

【図14】図11のレンズ構成の長焦点距離側ズーミング域中間焦点距離における諸収差図である。

【図15】図11のレンズ構成の長焦点距離端における 諸収差図である。

10 【図16】本発明によるズームレンズ系の第4実施例のレンズ構成図である。

【図17】図16のレンズ構成の短焦点距離端における 諸収差図である。

【図18】図16のレンズ構成の短焦点距離側ズーミング域中間焦点距離における諸収差図である。

【図19】図16のレンズ構成の長焦点距離側ズーミング域中間焦点距離における諸収差図である。

【図20】図16のレンズ構成の長焦点距離端における 諸収差図である。

20 【図21】本発明によるズームレンズ系の第5実施例のレンズ構成図である。

【図22】図21のレンズ構成の短焦点距離端における 諸収差図である。

【図23】図21のレンズ構成の中間焦点距離における 諸収差図である。

【図24】図21のレンズ構成の長焦点距離端における 諸収差図である。

【図25】実施例1ないし4のズームレンズ系の簡易移動図である。

30 【図26】同実施例5のズームレンズ系の別の簡易移動 図である。

【図1】

【図2】

0

フロントページの続き

. KŠ F ターム (参考) 2H087 KA01 LA01 MA13 MA14 PA06 PA18 PA19 PB07 PB08 QA03 QA06 QA07 QA17 QA21 QA26 QA37 QA39 QA41 QA45 RA05 RA12 RA13 RA36 SA23 SA27 SA29 SA33 SA62 SA63 SA64 SA65 SB03 SB12 SB13 SB23 SB33