전력 데이터 기반 객실 수요 예측 및 관리 솔루션

- 2020 꿈꾸는 아이 (AI) 본선 2라운드 배틀경쟁 -

팀명: FE Lab.

발표자: 서기업

2020.12.05

Contents

Part I. 기술 내용

Part II. 비즈니스 모델

Part 皿. 참고문헌

Part IV. 부록

Part I. 기술 내용

I. 기술 내용

제안한 예측 모델 구성도

 F_N : prediction model for Nth building load

각 건물 부하마다 적합한 예측 모델을 구성하여 시간별, 일별, 월별
 예측을 수행

I. 기술 내용

Ensemble based adaptive prediction model

• 각 건물 부하의 Validation test에서 7가지 모델을 통해 예측을 수행하고 SMAPE 값 비교를 통해 weight를 할당하여 **앙상블 수행**

I. 기술 내용

일별, 월별 예측

- 일별 예측 모델
 - 24시간 데이터를 합하여, 하루 사용량 데이터로 만들어서 예측 모델 구현
 - Similar day approach 예측 모델로 예측
- 월별 예측 모델
 - 예측한 Day 데이터의 합을 통해 결과 예측

* 일별, 월별 예측의 경우, **데이터 수가 부족**하여 예측모델을 충분하게 학습을 수행할 수 없으므로 'similar day approach'를 활용하여 예측을 진행

I . 기술 내용

DACON 리더보드 결과

Pub	olic Private				
• WIN	NER •1% •4% •10%				
#	팀	팀 멤버	최종점수	제출수	등록일
1	FE lab.	2222	26.98438	31	16일 전
2	영듀	₩ 👙	27.3684	25	18일 전
3	shining_sunny		27.79991	15	17일 전
4	Alhard	222	28.59153	25	16일 전
5	수요왕		28.63262	18	16일 전
6	ImSoPa	222	29.37608	10	16일 전
7	WooSeok Shin	2	29.51326	7	16일 전
8	디엔에이		30.21613	30	16일 전

Part II. 비즈니스 모델

田. 비즈니스 모델

배경

• My data 사업 [1]

- 개인정보 가명 처리, 동의 없이 정보 활용
- 제 3자에게 제공 가능 (상업 목적 포함)
- 데이터 거래소 및 고객 맞춤 서비스 활성화

2022

2025

• 디지털 경제의 성장 [2]

- 25년도 175 ZB 규모의 데이터
- 21세기 원유로서 데이터의 가치
- 구글, 에어비엔비 등 데이터 관계 기업 성장

田. 비즈니스 모델

필요성

숙박 산업의 RM (Revenue Management)

- ▶ 빅데이터 적용 산업 리스트
 - 금융 산업
 - 제조 산업
 - •
 - 숙박 산업
- ▶ 성과 창출 및 경쟁 우위 확보 목적
 - 1) 객실 수요 예측 ←
 - 2) 숙박 가격 결정
 - 3) 비즈니스 운영 관련 의사결정

제안하는 비즈니스 모델

RM을 위한 전력 데이터 기반 객실 수요 예측 및 관리 솔루션 전력 산업 FE Lab. 숙박 산업 1 건물 전력 숙박업소 이용객 추정 데이터 데이터 airbnb 2 공급 수요 전력 예측 시스템을 활용한 숙박업소 이용객 추정 모델 3 **(4)** 공급 (A) Hilton 가격 체계 데이터 유통 데이터 암호화 표준화 송수신 THESHILLA 벽산파워

※RM: Revenue management

п. 비즈니스 모델

차별성

구분	기존 숙박업 관련 서비스	제안하는 서비스
기술적 부문	객실 예약 서비스 제공AI 기반 챗봇 운영	 전력 데이터 기반 객실 수요 예측 서비스 제공 숙박시설 운영 솔루션 제공
경제적 부문	객실 예약 및 광고 수수료를 통한 이득 창출 - 숙박 업체 및 일반 소비자	 솔루션 서비스 이용료 숙박 업체
사회적 부문	• 항공업 및 숙박업소 인근 관광지 활성화	 효율적인 객실 운영을 통한 환경보전 및 자원 절약 전력 사용량 및 투숙객 수 및예측을 통한 숙박 업체의 DR (demand response)참여 유도

기술적 실현 가능성

숙박 산업 관련 기술 동향 및 분석

스마트 프런트 개발 [4]

• 숙박 업소 재실 여부 판단 기술 개발 [5]

• 관련 기술 연구 동향 [6-7]

연도	저널	논문명	주요내용
2015	Energy and buildings	Statistical analysis of driving factors of residential energy demand in the greater Sydney region, Australia	가구원 수 및 가구 특성을 이용한 선형 회귀 모델을 통해 연간 전력 수요를 예측
2020	IEEE Trans. on industry applications	Time-Frequency Feature Combination Based Household Characteristic Identification Approach Using Smart Meter Data	전력 사용량을 기반으로 가구원 수 를 예측

田. 비즈니스 모델

시뮬레이션

전력 데이터와 투숙객 수의 상관관계

- 상관 계수가 0.9로, 높은 상관관계를 보임
- 투숙객 수 예측에 있어 전력 사용량이
 중요한 특징으로 사용될 수 있음

- 투숙객 수 데이터 기반 예측 모델의
 SMAPE는 20.16
- 제안하는 방법의 SMAPE는 15.79로,
 21.67%의 성능 향상을 보임

Π. 비즈니스 모델

모니터링 솔루션 시안

Part Ⅲ. 참고문헌

- [1]: https://newsroom.koscom.co.kr/wp-content/uploads/2020/06/koscomnews-report-0622.pdf
- [2]: Statista, Volume of data/information created worldwide from 2010 to 2025 (in zetabytes), 2018.12
- [3]: https://hotelrestaurant.co.kr/mobile/article.html?no=6658
- [4]: https://yanolja.in/ko/ 야놀자, IoT 기술역량 강화 위해 커누스에 투자
- [5]: 김에덴, 이병탁. "전력 데이터의 특정 추출 및 XGBoost를 이용한 숙박 업소 재실 여부 판단", 한국정보처리학회 2020년 춘계학술발표대회, VOL 27 NO. 01 PP. 0458 ~ 0460 2020. 05
- [6]: Fan, H., I. F. MacGill, and A. B. Sproul. "Statistical analysis of driving factors of residential energy demand in the greater Sydney region, Australia." *Energy and Buildings* 105 (2015): 9-25.
- [7]: Yan, Siqing, et al. "Time—Frequency Feature Combination Based Household Characteristic Identification Approach Using Smart Meter Data." *IEEE Transactions on Industry Applications* 56.3 (2020): 2251-2262.

THANK YOU

팀 명: FE Lab.

발표자: 서기업

데이터 분석

- 건물에 따라 **다양한 전력 사용량 프로파일**을 보임
- 전력 사용량이 측정되지 못하여 nan 값으로 표시되는 부분들이 있음

Bad data detection & interpolation

- 각 하루 전력 프로파일에 대해서 nan값 detection 수행
- 하루 전력 프로파일에서 nan 값이 특정 개수 (i.e., 4개) 이상을 넘어가면 그 날은 모델 학습에 사용하지 않음
- 하루 전력 프로파일에서 nan 값이 특정 개수 이하일 경우 nan 값이 있는 시간대를 기준으로 앞뒤로 20개 포인트를 이용해서 spline interpolation을 수행함

Day indexing

• Day type을 work day와 non-work day로 나눠 학습 및 테스트를 진행

^{*} Work day: 평일

^{*} Non-work day: 주말 및 법정공휴일

Ensemble method

- DNN 모델은 multi-layer perceptron (MLP)과 long short term memory (LSTM) 중 성능이 좋은 모델을 선택함
- 각 모델의 SMAPE 결과에 따라 weight를 할당하여 ensemble 수행
- 성능이 지나치게 낮은 경우에는 해당 모델을 선택하지 않음
- 각 건물 부하마다 개별적으로 다른 weight를 적용함

예측 결과

■ 개별 건물 부하에 대한 모델 선택 횟수

- Test.csv 데이터의 200개 건물 부하에 대하여 예측 모델들을 평가하였을 때 DNN이 가장 많이 선택됨
- SD, ET, SVR이 비슷한 정도로 선택됨
- AR, RF는 거의 선택되지 않음

예측 결과

제안한 앙상블 기반 예측 방법과 단일 예측 모델과의 예측 성능 비교

- Test.csv 데이터의 200개 건물 부하에 대한 평균 SMAPE 비교
- 단일 예측 모델에서 가장 예측 정확도가 높은 것은 RF이며 SMAPE는 30.8%로 나타남
- 제안한 앙상블 기반 예측의 SMAPE는 27.3%이며 단일 예측 RF 보다 약
 11.6% 개선됨

제안한 방법에 사용된 예측 모델

- Auto-regressive (AR) prediction model
 - 데이터 간의 선형 조합을 이용하여 데이터를 예측하는 모델
 - Pseudo-inverse method를 이용하여 AR model의 coefficient 계산

Equation	Parameter	
$P_t = c + \sum_{i=1}^n P_{t-i} * W_i + \epsilon_t$	$[P_t]$ Power $[W_i]$ Coefficient $[c]$ Constant $[\epsilon_t]$ White noise	

제안한 방법에 사용된 예측 모델

- Similar day approach (SD)
 - 과거 데이터 셋을 Day type에 따라 전력 프로파일을 분류
 - 예측 전날의 전력 프로파일과 가장 유사한 프로파일을 distance 계산하여 추출
 - 비슷한 날의 데이터를 여러 개 추출하여 전력 프로파일을 평균하여 예측

제안한 방법에 사용된 예측 모델

Multilayer perceptron (MLP)

- MAE loss 기반의 학습
- Adaptive Moment Estimation Algorithm (Adam) optimizer 사용
- Activation function: ReLU 사용
- Hidden layer의 개수와 unit의 개수는 예측하고자 하는 smart meter마다 개별적으로 설정

Long short-term memory (LSTM)

- 첫 번째 hidden layer에 LSTM을 사용
- 모든 smart meter에 대해 동일한 hyper parameter 적용

Layer type	Unit	Activation
Input	24	
Hidden layer 1	432	ReLU
Hidden layer 2	168	ReLU
Hidden layer 3	432	ReLU
output	24	Linear

제안한 방법에 사용된 예측 모델

- Random forest (RF)
 - 다수의 결정 트리를 통해 예측을 수행함
 - MAE (mean absolute error) loss를 이용한 학습
- Extra tree (ET)
 - Random forest보다 random성이 높음
- Decision tree (DT)
 - 간단한 계산을 통해 어떤 항목에 대한 관측 값과 목표 값을 예측
- Support vector regression (SVR)
 - Support Vector Machine이 가진 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 제안된 모델

시뮬레이션

■ 사용 데이터

주거용 전력 데이터 [1]		호텔 이용객 수 [2]	
Period	2009-09-01 - 2010-12-31	2015-09-01 - 2016-12-30	
Sampling rate	30분	1일	
Location	아일랜드	포르투갈	

- 호텔의 각 객실마다 이용객 수와 동일한 수의 사람이 주거하는 전력 데이터를 통해 가상의 전력 데이터를 생성
- 학습에 365일, 검증에 108일을 사용

■ 성능 검증 지표

Symmetric mean absolute percentage error (SMAPE)

SMAPE =
$$\frac{100\%}{n} \sum_{t=1}^{n} \frac{|X_t - \widehat{X_t}|}{(|X_t| + |\widehat{X_t}|)/2}$$

^[1] https://www.ucd.ie/issda/data/commissionforenergyregulationcer/

^[2] Antonio, Nuno, Ana de Almeida, and Luis Nunes. "Hotel booking demand datasets." Data in brief 22 (2019): 41-49.

데이터 솔루션 시장현황

■ 인공지능 기반 예측 솔루션 회사

업체명	제공 서비스	고객사	
Megaputer	• 빅데이터 분석 및 예측 솔루션 • 컨설팅 및 Biz 모델 제공	제조업, 요식업, 금융기관	
데이타솔루션	• 빅데이터 분석 및 예측 솔루션 • 컨설팅 및 Biz 모델 제공	금융기관, 공공기관, 통신사	
데일리인텔리전스	• 빅데이터 분석 및 예측 솔루션 • 챗봇 상담 서비스 제공	금융기관, 공공기관	

Part IV. 부록 (BM 내용)

시장진입

ADR: Average Daily Rate

RevPAR: Revenue Per Available Room

Occ: Occupancy

숙박업 시장	고객
코로나 영향에 의한 조정이 있었으나	숙박 사업자, 숙박시설 예약 업체
지속적인 성장이 기대됨	추크 시티시, 축크시크 에크 티 세

성과창출전략

■ 판매전략

- 숙박 산업 전문 전시회 부스 운영
- 숙박 사업자 대형 **커뮤니티 사이트 광고**
- 공공 숙박 시설 (e.g. 유스호스텔)과 협업 및 시범 운영을 통한 홍보
- 숙박 시설 예약 업체 (e.g. 야놀자)와 협업을 통한 정보 공유 및 사업 확장

자금소요 및 조달계획

■ 총 사업비 현황

총사업비	정부지원금	기업 대응자금	
<u> </u>	· 경구시편 a	현금	현물
100백만원	70백만원	10백만원	20백만원
100%	70%	10%	20%

*정부지원금: 청년창업지원금

■ 조달계획

- 청년창업지원금 (7천만원)
- 예비/초기 창업 패키지 자금 투자유치
- 성장사다리펀드 투자 유치
- 기술보증기금/신용보증기금/중소벤처기업진흥공단 정책자금 투자유치

자금소요 및 조달계획

■ 사업비 세부내역

		금액(원)		
비목	산출근거	정부지원금+대응자금 (현금)	대응자금 (현물)	
재료비	• 데이터저장장치 (NAS): 500천원× 1개	5,000,000	-	
기계자치 /고그 기그 비프	• 시뮬레이션용 서버 PC :300천원×4개	12,000,000	-	
기계장치 (공구, 가구, 비품, SW 등)	• 시뮬레이션용 SW (MATLAB): 1000천원× 1개	10,000,000	-	
이거비	• 홈페이지 및 홍보영상 제작비	3,000,000	-	
인건비	• 내부인건비: 5000천원×22%×12개월×4명	32,800,000	20,000,000	
트싱긔 드 ㅁ청지사 치드비	• 특허출원비 및 관납수수료	2,000,000	-	
특허권 등 무형자산 취득비	• 상표출원비 및 관납수수료	1,500,000	-	
광고선전비	• 홍보물 제작비: 카달로그, 브로셔	1,000,000	-	
교육훈련비	• SW 툴 및 알고리즘 관련 교육	1,200,000	-	
МП	• 국내 출장비: 300천원×10번	3,000,000	-	
여비	• 국외 출장비: 2000천원×2번	4,000,000	-	
지그스스크	• 전시회(박람회 참가비): 2000천원×2	4,000,000	-	
지급수수료	• 회계감사비	500,000	-	
	80,000,000	20,000,000		

수요 자원(Demand response) 거래시장

출처: 전력거래소(KPX)

전기 소비자가 아낀 전기를 전력 시장에 판매하고 금전으로 보상 받는
 제도