This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Currently Amended) A method of simultaneously optimizing code for at least two target machines, comprising the steps of:

abstracting a rule of instruction scheduling for each of said at least two target machines;

generating a hypothetical machine <u>model of a hypothetical machine</u> based on said rule of instruction scheduling for each of said at least two target machines, wherein a <u>different</u> rule of instruction scheduling for said hypothetical machine is a restrictive set of said rule of instruction scheduling for each of said at least two target machines; and

targeting said hypothetical machine, wherein said hypothetical machine model is capable of operating on each of said at least two target machines.

- 2. (Canceled)
- 3. (Currently Amended) The method of claim 1 further including the steps of: detecting a conflict between said rule of instruction scheduling for each of said at least two target machines; and

resolving said conflict.

U.S. Application No. 09/823,207 Amendment dated November 23, 2005 Reply to Office Action of August 25, 2005

- 4. (Currently Amended) The method of claim 3 wherein said step of resolving said conflict includes a step of selecting a less damaging option for said detected conflict.
- 5. (Previously Presented) The method of claim 3 wherein said detected conflict corresponds to an inherent conflict between said rule of instruction scheduling for each of said at least two target machines.
- 6. (Currently Amended) The method of claim 1 further including the steps of: modeling each of said at least two target machines; and retrieving scheduling information corresponding to each of said at least two target machines.
- 7. (Original) The method of claim 1 wherein said at least two target machines include an UltraSPARC-II configured to operate at a speed of 360 MHz and an UltraSPARC-III configured to operate at a speed of 600 MHz.
- 8. (Currently Amended) A method of simultaneously optimizing code for at least two target machines, comprising the steps of:

retrieving scheduling information corresponding to each of said at least two target machines;

U.S. Application No. 09/823,207 Amendment dated November 23, 2005 Reply to Office Action of August 25, 2005

abstracting a rule of instruction scheduling for each of said at least two target machines;

generating a hypothetical machine <u>model of a hypothetical machine</u> based on said rule of instruction scheduling for each of said at least two target machines, wherein a <u>different</u> rule of instruction scheduling for said hypothetical machine is a restrictive set of said rule of instruction scheduling for each of said at least two target machines; and

targeting said hypothetical machine, wherein said hypothetical machine model is capable of operating on each of said at least two target machines.

9. (Currently Amended) The method of claim 8 further including the steps of: detecting a conflict between said rule of instruction scheduling for each of said at least two target machines; and resolving said conflict.

10. (Canceled)

- 11. (Currently Amended) The method of claim 9 wherein the step of resolving said conflict includes a step of selecting a less damaging option for said detected conflict.
- 12. (Previously Presented) The method of claim 9 wherein said detected conflict corresponds to an inherent conflict between said rule of instruction for each of said at least two target machines.

U.S. Application No. 09/823,207 Amendment dated November 23, 2005 Reply to Office Action of August 25, 2005

13. (Currently Amended) An apparatus for simultaneously optimizing code for at least two target machines, comprising:

means for abstracting a rule of instruction scheduling for each of said at least two target machines;

means for generating a hypothetical machine <u>model of a hypothetical machine</u> based on said rule of instruction scheduling for each of said at least two target machines, wherein a <u>different</u> rule of instruction scheduling for said hypothetical machine is a restrictive set of said rule of instruction scheduling for each of said at least two target machines; and

means for targeting said hypothetical machine, wherein said hypothetical machine model is capable of operating on each of said at least two target machines.

- 14. (Canceled)
- 15. (Previously Presented) The apparatus of claim 13 further including:

means for detecting a conflict between said rule of instruction scheduling for each of said at least two target machines; and

means for resolving said conflict.

16. (Previously Presented) The apparatus of claim 15 wherein said resolving means includes means for selecting a less damaging option for said detected conflict.

- 17. (Previously Presented) The apparatus of claim 15 wherein said detected conflict corresponds to an inherent conflict between said rule of instruction scheduling for each of said at least two target machines.
- 18. (Original) The apparatus of claim 13 further including:

 means for modeling each of said at least two target machines; and

 means for retrieving scheduling information corresponding to each of said at least two target machines.
- 19. (Currently Amended) An apparatus for simultaneously optimizing code for at least two target machines, comprising:

means for receiving scheduling information corresponding to each of said at least two target machines;

means for abstracting a rule of instruction scheduling for each of said at least two target machines;

means for generating a hypothetical machine <u>model of a hypothetical machine</u> based on said rule of instruction scheduling for each of said at least two target machines, wherein a <u>different</u> rule of instruction scheduling for said hypothetical machine is a restrictive set of said rule of instruction scheduling for each of said at least two target machines; and

means for targeting said hypothetical machine, wherein said hypothetical machine model is capable of operating on each of said at least two target machines.

20. (Currently Amended) An apparatus for simultaneously optimizing code for a plurality of target machines, comprising:

means for modeling a plurality of target machines;

means for retrieving scheduling information corresponding to each of said plurality of target machines;

means for abstracting a rule of instruction scheduling for each of said plurality of target machines;

means for generating a hypothetical machine <u>model of a hypothetical machine</u> based on said rule of instruction scheduling for each of said at least two target machines, wherein a <u>different</u> rule of instruction scheduling for said hypothetical machine is a restrictive set of said rule of instruction scheduling for each of said at least two target machines; and

means for targeting said hypothetical machine, wherein said hypothetical machine model is capable of operating on each of said at least two target machines.

means for detecting a conflict between said rule of instruction scheduling for each of said plurality of target machines; and

Page 7 of 12

means for resolving said conflict.