

СВЁРТОЧНЫЕ

НЕЙРОННЫЕ СЕТИ

ЗАНЯТИЕ #3

ПОЛНОСВЯЗНАЯ НЕЙРОННАЯ СЕТЬ

[0 0 0 0 0 0 ... 78 101 250 255 255 252 ... 0 0 0 0 0 0] • ./=255

 $[0\ 0\ 0\ 0\ 0\ \dots\ 0.23\ 0.56\ \dots\ 0.99\ 1\ 1\ 0.99\ \dots\ 0\ 0\ 0\ 0\ 0\ 0]$

Сеть для распознавания MNIST

Layer (type)	Output Shape	Param #	
dense (Dense)	 (None, 800)	628000	========
dense_1 (Dense)	(None, 400)	320400	
dense_2 (Dense)	(None, 10)	4010	=========

Total params: 952,410

Trainable params: 952,410

Принципы сверточных нейросетей

• Локальное восприятие

- Разделяемые веса
- Уменьшение размерности

ЛОКАЛЬНОЕВОСПРИЯТИЕ

Входные сигналы

Операция свертки

Ядро свертки

-1	0	1
-2	0	2
-1	0	1

Размытие

Выделение границ

1/9	1/9	1/9	0	-1	0
1/9	1/9	1/9	-1	4	-1
1/9	1/9	1/9	0	-1	0

Повышение четкости

0	-1	C
-1	5	-
0	-1	C

В нейронных сетях ядра свертки определяются автоматически в процессе обучения

РАЗДЕЛЯЕМЫЕВЕСА

Входные сигналы

MAX-Pooling Слой

4	6	1	1
1	3	1	3
4	0	0	8
8	5	4	0

Input (4x4)

Output (2x2)

УМЕНЬШЕНИЕ РАЗМЕРНОСТИ

Распознавание объектов вне зависимости от масштаба

Факт наличия признака важнее знания места его точного положения на изображении

Слои подвыборки (subsampling):

- Усреднение
- Выбор максимального значения

Flatten Слой

7	5
5	8

СВЕРТОЧНАЯ СЕТЬ LeNet-5

Back-Propagation Applied to Handwritten Zip Code Recognition / Y. LeCun, B. Boser, J. S. Denker et al. 1989

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks (2011)

Набор данных CIFAR-10

- Pasmep 32x32
- Цветные изображения (коды интенсивности RGB)
- Набор данных для обучения **50 000** (5 000 для каждого класса)
- Набор данных для тестирования 10 000
- На каждом изображении только один объект
- Нет пересечений

Набор данных CIFAR-10

Самолет

Собака

Автомобиль

Лягушка

Птица

ЛОШАДЬ

Кот

Корабль

Олень

Грузовик

СЕТЬ ДЛЯ РАСПОЗНАВАНИЯ CIFAR-10

Сеть для распознавания CIFAR-10

Демонстрация распознавания объектов из набора данных CIFAR-10 в Keras

ЗА ВНИМАНИЕ