SIMPLE CLOSED CURVES ON SURFACES

D. R. J. CHILLINGWORTH

1. Introduction

Let M be a surface (i.e. a connected compact 2-manifold) with boundary ∂M and some base-point $x_0 \in M$. In this paper we state an algorithm for determining in a finite number of steps whether a given element of the fundamental group $\pi_1(M, x_0)$ can be represented by a simple curve. Algorithms have been given by Reinhart [3] and Zieschang [5, 6]; one relies on non-euclidean geometry and the other involves the problem of equivalence of elements of a free group. The method here is based on winding numbers as defined by Reinhart [2, 4] and generalized in the author's Ph.D. thesis. We merely announce those results which are needed to describe the algorithm, and refer to [1] for the proofs. Also we restrict attention to orientable surfaces, although a similar algorithm (using winding numbers in \mathbb{Z}_2) works in the non-orientable case.

2. Winding numbers

Suppose that M is smooth, say C^{∞} . A regular curve γ in M is the image of a C^1 -map $f: S^1 \to M$ such that the tangent map $Tf: TS^1 \to TM$ is an embedding on each fibre. Assume $\partial M \neq \emptyset$ so that M admits continuous fields of non-zero tangent vectors, and let $X: M \to TM$ be such a field. When M is given a Riemannian metric and an orientation it is meaningful to refer to the angle $\theta(z)$ ($0 \le \theta(z) < 2\pi$) turned on going from Xf(z) to $(Tf)_z(1)$ in the tangent plane to M at f(z). The function θ defines a continuous map $h: S^1 \to S^1$ by $z \to \exp i\theta(z)$, and the homotopy class $\{h\} \in \pi_1(S^1) \cong Z$ is called the winding number of γ with respect to X and denoted by $\omega_X(\gamma)$. It can be loosely described as the total change in angle between the tangent to γ at x and the X-vector at x as x varies round γ , divided by 2π .

A closed curve on M is *direct* if and only if it contains no loop (i.e. image of an arc $z_1 z_2 \subset S^1$ with $f(z_1) = f(z_2)$) which is nullhomotopic as a closed curve.

LEMMA. Let M be as above, with X a continuous non-vanishing vector field on M. Let γ_1 , γ_2 be direct regular curves which are homotopic but not homotopic to a point. Then $\omega_X(\gamma_1) = \omega_X(\gamma_2)$. (Note that the directness condition is essential, since for example the addition of a small nullhomotopic loop to a curve alters its winding number by ± 1 .)

Let $c \in \pi_1(M, x_0)$ and let γ be a direct regular curve representing c: it is easy to show such a γ always exists. If $c \neq 1$ define the winding number of c to be $\omega_X(\gamma)$, and denote it by $\omega_X(c)$. By the lemma this depends only on c and not on γ . If c = 1 we conventionally define $\omega_X(c) = 1$.

The function $\omega_X : \pi_1(M, x_0) \to Z : c \to \omega_X(c)$ is not a homomorphism. For example, it is easy to verify that if M is a punctured torus with $\pi_1(M, x_0)$ a free group on two standard generators a, b then $\omega_X(aba^{-1}b^{-1}) \neq 0$ for any X. It is the way in which ω_X differs from a homomorphism that is used to provide the algorithm below. A full understanding of ω_X would do much to illuminate the relation between the geometry of a surface and the algebraic structure of its fundamental group.

3. The algorithm

Let M be any orientable surface which is not a sphere. The group $\pi_1(M, x_0)$ may be presented in terms of generators a_i , b_i $(1 \le i \le g)$ and $(\text{if } \partial M \ne \emptyset)$ s_j $(1 \le j \le r)$ (where g is the genus of M and r is the number of components of ∂M) with the defining relation

$$d = 1$$

where

$$d \equiv a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 \dots a_q^{-1} b_q^{-1} s_1 \dots s_r$$

if $\partial M \neq \emptyset$, or

$$d \equiv a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 \dots a_g^{-1} b_g^{-1}$$

if $\partial M = \emptyset$. Any $c \in \pi_1(M, x_0)$ can be represented (not uniquely) by a "word" $w = x_1 x_2 \dots x_p$ in the "letters" x_1, x_2, \dots, x_p where each $x_m = a_i^{\pm 1}, b_i^{\pm 1}$ or $s_j^{\pm 1}$ ($1 \le m \le p$). Write c = [w]. A word of the form $x_i x_{i+1} \dots x_p x_1 \dots x_{i-1}$ for some i ($1 \le i \le p$) is a cyclic permutation of w. The identity element is represented by the empty word, but since $1 \in \pi_1(M, x_0)$ can clearly be represented by simple closed curves we restrict attention to elements $c \ne 1$.

Given a word w consider the following operations which may be applied to w if p > 1:

- (i) removing x_m and x_{m+1} if $x_m^{-1} = x_{m+1}$ $(1 \le m \le p-1)$,
- (ii) removing any subword of w which consists of more than half of some cyclic permutation \tilde{d} of $d^{\pm 1}$ and replacing it by the inverse of its complement in \tilde{d} ,
- (iii) removing any subword of w which consists of exactly half of some cyclic permutation \tilde{d} of d^{ε} ($\varepsilon = \pm 1$) and does not contain a_1^{ε} (if g > 0) or s_1^{ε} (if g = 0), and replacing it by the inverse of its complement in \tilde{d} .

It is easy to check that if M is not a torus (g = 1, r = 0) a sequence of the operations (i)-(iii) together with cyclic permutations of the letters will eventually reduce w to a word W with the property that no further operations (i)-(iii) can be applied to W or to any cyclic permutation of W. We call W a completely reduced word obtained from the element c = [w].

A word w represents not only an element of $\pi_1(M, x_0)$ but also an element of the free group F generated by the a_i , b_i and s_j , which is the fundamental group of a surface M' obtained by removing an open disc from M disjoint from x_0 . Denote by $[w]' \in \pi_1(M', x_0)$ the element represented by w, and write $\omega_X(w)$ for $\omega_{X/M'}([w]')$.

If \tilde{w} is some cyclic permutation of $w = x_1 \dots x_p$ there are (p-1) ways of expressing \tilde{w} as uv where u, v are non-empty subwords of \tilde{w} . Call each of these a *division* of w, and write $w \sim u|v$. Regarding u|v as the same as v|u we have therefore $\frac{1}{2}p(p-1)$ possible divisions of w.

Now we can state the algorithm. If M is a sphere the problem is trivial, and if M is a torus it is easily proved that a non-trivial element $a^m b^n$ of $\pi_1(M, x_0) \cong Z \oplus Z$ contains simple representatives if and only if m, n are coprime. Hence assume M is not a sphere or a torus.

ALGORITHM. Let $c \in \pi_1(M, x_0)$ and let W be a completely reduced word obtained from c. Then c has representatives which are simple closed curves if and only if W satisfies either of the following conditions:

- (1) W is empty (i.e. c = 1) or contains only one letter;
- (2) W contains at least two letters, $W \neq t^k$ for any $k \geq 2$, and for every division $W \sim u|v$ the equation

$$\omega_X(uv^{-1}) - \omega_X(u) - \omega_X(v^{-1}) = 0$$

is satisfied, where X is any continuous non-vanishing vector field on M'.

4. A formula for the winding number

In order to verify (2) it is of course necessary to be able to calculate $\omega_X(u)$, etc. We state a formula for this which is derived in [1], and observe that (as would be expected) the vector field X and the smoothness of M are irrelevant to (2).

A word $w = x_1 \dots x_p$ such that $x_p^{-1} \neq x_1$ and (if $p \geq 2$) $x_m^{-1} \neq x_{m+1}$ $(1 \leq m \leq p-1)$ is cyclically reduced. Let $w = x_1 \dots x_p$ be cyclically reduced, let y denote any particular one of the letters $a_i^{\pm 1}$, $b_i^{\pm 1}$ or $s_j^{\pm 1}$, and let N(w, y) be the total number of values of m for which $x_m = y$. Write

$$\overline{A}(w) = \sum_{i=1}^{\theta} N(w, a_i^{-1}),$$

$$B(w) = \sum_{i=1}^{\theta} N(w, b_i),$$

$$\overline{S}(w) = \sum_{j=1}^{r} N(w, s_j^{-1}) \quad (\partial M \neq \emptyset)$$

$$= 0 \qquad (\partial M = \emptyset).$$

Thus $\overline{A}(w)$ is just the number of letters in w which are inverses of a_i 's, and so on. Let \mathcal{R} denote the following ordering of the letters $a_i^{\pm 1}$, etc.:

$$a_1, b_1^{-1}, a_1^{-1}, b_1, a_2, b_2^{-1}, ..., a_g^{-1}, b_g, s_1, s_1^{-1}, s_2, ..., s_r^{-1}.$$

If $p \ge 2$ let P(w) be the number of values of m for which x_m^{-1} appears before x_{m+1} in the ordering \mathcal{R} (where x_{p+1} means x_1). Write

$$T(w) = P(w) - (\bar{A}(w) + B(w) + \bar{S}(w)),$$

and define T(w)=0 if p=1. Finally, let $\phi_X: F \to Z$ be the homomorphism defined by $\phi_X(a_i)=\omega_X(a_i)$, $\phi_X(b_i)=\omega_X(b_i)$ $(1 \le i \le g)$, $\phi_X(s_j)=\omega_X(s_j)$ $(1 \le j \le r)$ and write $\phi_X(w)$ for $\phi_X([w]')$. Then the formula for ω_X is

$$\omega_X(w) = \phi_X(w) + T(w).$$

Now in the application of the algorithm the word W will automatically be cyclically reduced since it is completely reduced, although u, v^{-1} and uv^{-1} will not necessarily be cyclically reduced. However, any word w can be converted into a cyclically reduced word \overline{w} by a sequence of applications of operation (i) together with cyclic permutations of the letters, and the elements [w]' and $[\overline{w}]'$ will be conjugate in $\pi_1(M', x_0)$. From the fact that there is a diffeomorphism $M' \to M'$ isotopic to the identity that induces an automorphism of $\pi_1(M', x_0)$ taking [w]' to $[\overline{w}]'$, it follows easily that $\omega_X(w) = \omega_X(\overline{w})$. Since ϕ_X is a homomorphism we have $\phi_X(\overline{w}) = \phi_X(w)$ for all w, and so also $\phi_X(\overline{uv^{-1}}) = \phi_X(\overline{u}) + \phi_X(\overline{v^{-1}})$. Hence

$$\omega_X(uv^{-1}) - \omega_X(u) - \omega_X(v^{-1}) = T(\overline{uv^{-1}}) - T(\overline{u}) - T(\overline{v^{-1}}),$$

and the right-hand side is independent of X. Therefore condition (2) of the algorithm can be replaced by the following condition:

(2') W contains at least two letters, $W \neq t^k$ for any $k \geq 2$, and for every division $W \sim u|v$ the equation

$$T(\overline{uv^{-1}}) - T(\overline{u}) - T(\overline{v^{-1}}) = 0$$

is satisfied.

so

5. Some examples

1. $g \ge 2$, $c = [a_1 a_2]$. Take $W = a_1 a_2$ which is already completely reduced. The unique division is $W \sim a_1 | a_2$. We have

$$\overline{A}(a_1 a_2^{-1}) = 1$$
, $B(a_1 a_2^{-1}) = \overline{S}(a_1 a_2^{-1}) = 0$; $P(a_1 a_2^{-1}) = 1$,
 $T(a_1 a_2^{-1}) = 1 - (1 + 0 + 0) = 0 = T(a_1) + T(a_2^{-1})$.

Therefore c does contain representatives which are simple curves.

2.
$$g \ge 2$$
, $c = [a_1 a_2^{-1}]$. Here
$$\overline{A}(a_1 a_2) = 0 = B(a_1 a_2) = \overline{S}(a_1 a_2), \ P(a_1 a_2) = 1$$
 so
$$T(a_1 a_2) = 1 \ne T(a_1) + T(a_2).$$

Therefore c contains no simple curves.

3. $g \ge 2$, $c = [b_1^{-1} b_2 a_1^{-1} b_2 a_2^{-1} b_1 a_2^{-1} a_1 b_1]$. A completely reduced word obtained from c is $W = b_2 a_1^{-1} b_2 a_2^{-1} b_1 a_2^{-1} a_1$. Consider the division

$$W \sim a_1 b_2 a_1^{-1} b_2 a_2^{-1} |b_1 a_2^{-1} = u|v,$$

say. In this case $\bar{u} = u$, $\bar{v}^{-1} = v^{-1}$ but $\bar{u}\bar{v}^{-1} = a_1 b_2 a_1^{-1} b_2 b_1^{-1}$.

$$\bar{A}(\bar{u}) = 2$$
, $B(\bar{u}) = 2$; $P(\bar{u}) = 3$; $T(\bar{u}) = 3 - (2 + 2) = -1$

$$\overline{A}(\overline{v^{-1}}) = 0$$
, $B(\overline{v^{-1}}) = 0$; $P(\overline{v^{-1}}) = 1$; $T(\overline{v^{-1}}) = 1 - (0 + 0) = 1$

$$\overline{A}(\overline{uv^{-1}}) = 1$$
, $B(\overline{uv^{-1}}) = 2$; $P(\overline{uv^{-1}}) = 2$; $T(\overline{uv^{-1}}) = 2 - (2 + 1) = -1$

and so $T(\overline{uv^{-1}}) - T(\overline{u}) - T(\overline{v^{-1}}) = -1 \neq 0$. Hence c contains no simple curves.

4. g=0, $r \ge 1$. Here M is a "disc with holes". The fundamental group is generated by s_1, \ldots, s_r with the defining relation d=0 where $d \equiv s_1 s_2 \ldots s_r$, the ordering \mathcal{R} is just $s_1, s_1^{-1} s_2, \ldots, s_r^{-1}$, and $T=P-\bar{S}$. Consider for example $c=[s_1 s_2 s_3]$ when $r \ge 6$. There are three divisions of $W=s_1 s_2 s_3$, namely $u|v=s_1|s_2 s_3$, $s_2|s_3 s_1$ or $s_3|s_1 s_2$, and in each case $T(\bar{u})=0$, $T(\bar{v}^{-1})=1-2=-1$ and $T(\bar{u}\bar{v}^{-1})=1-2=-1$. Hence c contains simple curves. However, $c=[s_1 s_3 s_2]$ does not contain simple curves since

$$T(s_2) = 0$$
, $T(s_3^{-1} s_1^{-1}) = 1 - 2 = -1$
 $T(s_2 s_3^{-1} s_1^{-1}) = 2 - 2 = 0$.

but .

References

- 1. D. R. J. Chillingworth, "Winding numbers on surfaces" (to appear).
- 2. B. L. Reinhart, "The winding number on two manifolds", Ann. Inst. Fourier (Grenoble), 10 (1960), 271-283.
- 3. ——, "Algorithms for Jordan curves on compact surfaces", Ann. Math., 75 (1962), 209-222.
- 4. —, "Further remarks on the winding number", Ann. Inst. Fourier (Grenoble), 13 (1963), 155-160.
- 5. H. Zieschang, "Algorithmen für einfache Kurven auf Flächen", Math. Scand., 17 (1965), 17-40.
- 6. —, "Algorithmen für einfache Kurven auf Flächen II" (to appear).

Mathematics Institute,

University of Warwick,

Coventry.