Assignment 14

Matish Singh Tanwar

Abstract—This document solves a problem of Linear Algebra.

Download all latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment 14

1 Problem

Let $B : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the function B(a, b) = ab. Which of the following is true-

- 1) B is a linear transformation
- 2) B is a positive definite bilinear form
- 3) B is symmetric but not positive definite
- 4) B neither linear nor bilinear

2 SOLUTION

Let

$$\mathbf{x} = \begin{pmatrix} x & y \end{pmatrix}^T \tag{2.0.1}$$

Then

$$B(x, y) = \mathbf{x}^T \frac{\mathbf{R}}{2} \mathbf{x}$$
 (2.0.2)

where **R** is the reflection matrix defined as:-

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{2.0.3}$$

(2.0.2) represent Quadratic form of B(x,y)

Options	Explanation
B is a linear transformation	Let the transformation be $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that,
	$B(\mathbf{x}) = xy$ where $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ Now $B(\mathbf{e}) = ab$ where $\mathbf{e} = \begin{pmatrix} a \\ b \end{pmatrix}$
	Now $B(\mathbf{e}) = ab$ where $\mathbf{e} = \begin{pmatrix} a \\ b \end{pmatrix}$
	Hence, $B(c\mathbf{e}) = c^2 B(\mathbf{e})$
	Hence B is not a linear transformation.
	Hence incorrect.
B is a positive definite bilinear form	$f: \mathbb{V} \times \mathbb{V} \to \mathbb{F}$ where \mathbb{V} is a vector space and \mathbb{F} is a field
Bilinear Form	f is a bilinear if the following holds true -
	$1.f(c\alpha_1 + \alpha_2, \beta) = cf(\alpha_1, \beta) + f(\alpha_2, \beta)$
	$2. f(\alpha_1, c\beta_1 + \beta_2) = cf(\alpha_1, \beta_1) + f(\alpha_1, \beta_2)$
	Now, $B(ca_1 + a_2, b) = (ca_1 + a_2)b = cB(a_1, b) + B(a_2, b)$
	And, $B(a_1, cb_1 + b_2) = a_1(cb_1 + b_2) = cB(a_1, b_1) + B(a_1, b_2)$
	Hence B is a bilinear form.
Symmetric	Again a bilinear form f is symmetric if $f(\alpha, \beta) = f(\beta, \alpha)$
	Here, $B(a,b) = ab = ba = B(b,a)$ hence B is symmetric.
Positive Definite	A symmetric bilinear f is positive definite if
	$f(\alpha, \alpha) > 0 \ \forall \alpha \neq 0$
	Here, $B(a, a) = a^2 > 0 \ \forall a \neq 0$
	Conclusion: <i>B</i> is symmetric and positive definite bilinear form.
	Hence Correct.
B is symmetric but not positive definite	From previous proof it is obvious that
	B is both symmetric as well as positive definite
	Hence incorrect
B neither linear nor bilinear	From previous proofs it is obvious that
	B is bilinear.
	Hence incorrect.
Result	B is symmetric and positive definite bilinear form

TABLE 1: Finding Correct Option