

ساختمان دادهها و الگوريتمها

فصل دوم

<u>S.Najjar.G@Gmail.com</u>

فهرست مطالب

- ❖ مقدمهای بر الگوریتمها و مفاهیم پایه
- معرفی پیچیدگی زمانی و حافظهای و روشهای تحلیل مسائل
 - معرفی ساختمان دادههای مقدماتی و الگوریتمهای وابسته به آنها
 - ارايه
 - صف
 - پشته
 - لیست پیوندی
 - ❖ تئوری درخت و گراف و الگوریتمهای مرتبط
 - الگوریتمهای مرتبسازی و تحلیل پیچیدگی مربوط به آنها
 - مباحث تکمیلی در ساختمان دادهها

سوال

• اگر دو الگوریتم داشته باشیم که یک هدف را انجام دهند، چگونه باید فهمید که کدام بهتر عمل میکنند؟

• معیار ارزیابی چه پارامترهایی میتواند باشد؟

Space Complexity $S(P)=C+S_P(I)$

- Fixed Space Requirements (C)
 Independent of the characteristics of the inputs and outputs
 - instruction space
 - space for simple variables, fixed-size structured variable, constants
- Variable Space Requirements (S_P(I))
 depend on the instance characteristic I
 - number, size, values of inputs and outputs associated with I
 - recursive stack space, formal parameters, local variables, return address

Example

```
Program 1.9: Simple arithmetic function float abc(float a, float b, float c)  \{ \text{return } a + b + b * c + (a + b - c) / (a + b) + 4.00; \}
```

Program 1.10: Iterative function for summing a list of numbers

```
float sum(float list[], int n)
{
  float tempsum = 0;
  int i;
  for (i = 0; i<n; i++)
    tempsum += list [i];
  return tempsum;
}</pre>
```


Example (Cont.)

Space needed for one recursive call of Program 1.11

Type	Name	Number of bytes
parameter: float *	list	2
parameter: integer	n	2
return address:(used internally)		2(unless a far address)
TOTAL per recursive call		6

Time Complexity

$$T(P)=C+T_P(I)$$

- Compile time (C) independent of instance characteristics
- run (execution) time T_P
- Definition

A *program step* is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.

Example

abc =
$$a + b + b * c + (a + b - c) / (a + b) + 4.0$$

•
$$abc = a + b + c$$

Methods to compute the step count

- Introduce variable count into programs
- Tabular method
 - Determine the total number of steps contributed by each statement step per execution × frequency
 - add up the contribution of all statements

2n + 3 Steps

Variable Count Method (Example)

```
*Program 1.12: Program 1.10 with count statements
float sum(float list[], int n)
  float tempsum = 0; count++; /* for assignment */
  int i;
  for (i = 0; i < n; i++)
      count++; /*for the for loop */
     tempsum += list[i]; count++; /* for assignment */
  count++; /* last execution of for */
  return tempsum;
  count++; /* for return */
```


*Program 1.13: Simplified version of Program 1.12

```
float sum(float list[], int n)
{
    float tempsum = 0;
    int i;
    for (i = 0; i < n; i++)
        count += 2;
    count += 3;
    return 0;
}</pre>
```

2n + 3 Steps

2n + 2 Steps

Variable Count Method (Example Cont.)

*Program 1.14: Program 1.11 with count statements added

```
float rsum(float list[], int n)
       count++; /*for if conditional */
       if (n > 0) {
               count++; /* for return and rsum invocation */
               return rsum(list, n-1) + list[n-1];
       count++;
       return 0;
```


*Program 1.15: Matrix addition

```
void add( int a[ ] [MAX_SIZE], int b[ ] [MAX_SIZE], int c [ ] [MAX_SIZE], int rows, int cols) { int i, j; for (i = 0; i < rows; i++) for (j= 0; j < cols; j++) c[i][j] = a[i][j] + b[i][j]; }
```



```
*Program 1.16: Matrix addition with count statements (p.25)
void add(int a[][MAX_SIZE], int b[][MAX_SIZE],
                 int c[][MAX_SIZE], int row, int cols)
 int i, j;
 for (i = 0; i < rows; i++)
     count++; /* for i for loop */
     for (j = 0; j < cols; j++)
      count++; /* for j for loop */
      c[i][j] = a[i][j] + b[i][j];
       count++; /* for assignment statement */
     count++; /* last time of j for loop */
 count++; /* last time of i for loop */
```

2rows * cols + 2 rows + 1

*Program 1.17: Simplification of Program 1.16

```
void add(int a[][MAX_SIZE], int b[][MAX_SIZE],
                int c[][MAX_SIZE], int rows, int cols)
  int i, j;
  for(i = 0; i < rows; i++)
    for (j = 0; j < cols; j++)
      count += 2;
    count += 2;
  count++;
```

2rows * cols + 2 rows + 1

Suggestion: Interchange the loops when rows >> cols

Tabular Method (Example)

Iterative function to sum a list of numbers

steps/execution

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum = 0 ;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

Tabular Method (Example Cont.)

Step count table for recursive summing function

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, n-1)+list[n-1];	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

Tabular Method (Example Cont.)

Step count table for matrix addition

Statement	s/e	Frequency	Total steps	
Void add (int a[][MAX_SIZE] • • •) { int i, j; for (i = 0; i < row, i++) for (j=0; j < cols; j++) c[i][j] = a[i][j] + b[i][j]; }	0 0 0 1 1 1	0 0 rows+1 rows • (cols+1) rows • cols 0	0 0 0 rows+1 rows • cols+rows rows • cols	
Total	2rows • cols+2rows+1			

Home Work 1

Trade off between time and space complexity

Asymptotic Notation

- Determining step counts help us to compare the time complexities of two programs and to predict the growth in run time as the instance characteristics change.
- But determining exact step counts could be very difficult. Since the notion of a step count is itself inexact, it may be worth the effort to compute the exact step counts.
- How does the algorithm behave as the problem size gets very large?

Asymptotic Notation (O)

- Definition(Big oh)
- f(n) = O(g(n)) iff there exist positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$.
- Examples

```
□ 3n+2=O(n)/* 3n+2\le 4n for n\ge 2 */
□ 3n+3=O(n)/* 3n+3\le 4n for n\ge 3 */
□ 100n+6=O(n) /* 100n+6\le 101n for n\ge 10 */
□ 10n^2+4n+2=O(n^2)/* 10n^2+4n+2\le 11n^2 for n\ge 5 */
```

 $6*2^n+n^2=O(2^n)$ /* $6*2^n+n^2 \le 7*2^n$ for $n \ge 4*/$

- O(1): constant
- O(n): linear
- O(n²): quadratic
- $O(n^3)$: cubic
- O(2ⁿ): exponential
- O(logn) logarithmic
- O(nlogn) log linear

Practical Complexity

Practical Complexity Cont.

Practical Complexity Cont.

Practical Complexity Cont.

- Definition: [Omega] $f(n) = \Omega(g(n))$ iff there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n, n \ge n_0$.
- Example:
 - $-3n + 2 = \Omega(n)$
 - $-100n + 6 = \Omega(n)$
 - $-10n^2 + 4n + 2 = \Omega(n^2)$

Definition: $f(n) = \Theta(g(n))$ iff there exist positive constants c_1 , c_2 , and n_0 such that $c_1g(n) \le f(n) \le c_2g(n)$ for all n, $n \ge n_0$.

So, $f(n) = O(n^m)$

Theorem 1.2: If
$$f(n) = a_m n^m + ... + a_1 n + a_0$$
, then $f(n) = O(n^m)$.

Proof:
$$f(n) \le \sum_{i=0}^m |a_i| n^i$$

$$\le n^m \sum_{i=0}^m |a_i| n^{i-m}$$
for $n \ge 1$

$$\le n^m \sum_{i=0}^m |a_i|$$

Theorem 1.3: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Omega(n^m)$.

Theorem 1.4: If $f(n) = a_m n^m + ... + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Theta(n^m)$.

n $f(n)=n$	Time for $f(n)$ instructions on a 10^9 instr/sec computer								
	f(n)=n	$f(n) = \log_2 n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=n^4$	$f(n)=n^{10}$	$f(n)=2^n$		
10	.01µs	.03µs	.1µs	1µs	10µs	10sec	1µs		
20	.02µs	.09µs	.4μs	8µs	160µs	2.84hr	1ms		
30	.03µs	.15µs	.9µs	27µs	810µs	6.83d	1sec		
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3min		
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d		
100	.10µs	.66µs	10µs	1ms	100ms	3171yr	4*10 ¹³ yr		
1,000	1.00µs	9.96µs	1ms	1sec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr		
10,000	10.00µs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr			
100,000	100.00µs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr			
1,000,000	1.00ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr			

 μs = microsecond = 10^{-6} seconds ms = millisecond = 10^{-3} seconds

sec = seconds

min = minutes

hr = hours

d = days

yr = years

Home Work 2