Table of Contents

Introdução	1.1
Motivação para um livro open source	1.2
Capitulo 1 - Jornada de um paciente em um sistema de saúde	
Jornada do paciente	2.1
Desfecho	2.2
Workflow no sistema	2.3
Capitulo 2 - Rede pública e privada de saúde	
Redes privadas	3.1
Conceitos de atenção primária e secundária	3.2
Redes municipais	3.3
Redes estaduais	3.4
Rede SUS	3.5
EHR HIMSS Electronic Medical Record Adoption Model HIE RIS CIS LIS	4.1 4.2 4.3 4.4 4.5 4.6
Capitulo 4 - Sistemas de imagens	
Atores envolvidos	5.1
PACS	5.2
VNA	5.3
Sistemas de reconstrução pós processamento	5.4
Regulamentações	5.5
Capitulo 5 - Documentação e entrega de resultados de exames	
Filmes revelados	6.1
Filmes impressos	6.2
cd´s - Robôs de gravação	6.3
Sites de resultados / APP's	6.4

Impressão em papel	6.5
SAME	6.6
Capitulo 6 - Conceitos de imagens	
Imagens digitais	7.1
Imagens médicas	7.2
Images Dicom	7.3
Imagens impressão 3D	7.4
Capitulo 7 - Mercado de sistemas de saúde	
Mercado mundial	8.1
M ercado local	8.2
Capitulo 8 - Equipamentos médicos	
Equipamentos de radiologia	9.1
Equipamentos fora da radiologia	9.2
Monitores de vídeo	9.3
Engenharia clinica e físicos	9.4
Regulamentações	9.5
Capitulo 9 - Protocolos médicos e Interoperabilidade	
DICOM	10.1
HL7	10.2
FHIR	10.3
Interoperabilidade	10.4
Capitulo 10 - Bases de terminologia, classificação e ontol	logia
SNOMED CT	11.1
LOINC	11.2
CID	11.3
RADLEX	11.4
Capitulo 11 - Segurança da Informação	
НІРАА	12.1
LGPD	12.2
Conceitos de anonimização	12.3
Padrões de anonimização	12.4
Codificando para a anonimização	12.5

Capitulo 12 - Segurança do paciente	
Protocolos de segurança	13.1
Dose de radiação	13.2
Regulamentações	13.3
Capitule 12 Telemedicina	
Capitulo 13 - Telemedicina	
Conceitos de telemedicina	14.1
Regulamentações	14.2
Capitulo 14 - Teleradiologia	
Conceitos de teleradiologia	15.1
Regulamentações	15.2
Capitulo 15 - Ambientes produtivos de Imagens	
Monitoração ativa e passiva	16.1
Continuidade de operação (Resiliência)	16.2
Desenhos de arquitetura de TI	16.3
Contingências	16.4
Capitulo 16 - P&D	
Inteligência artificial	17.1
Arquiteturas básicas	17.2
Capitulo 17 - Ecossistemas de startup de saúde	
Startup de imagens médicas	18.1
Startup de sistemas de saúde	18.2
Capitulo 18 - Infraestrutura	
Arquitetura monolítica ou micro serviços	19.1
On premises	19.2
Serviços de imagens na nuvem	19.3
Capitulo 19 - Sistemas open source	
Discussão: prós e contras	20.1
Casos de uso	20.2

Principais open source área da saúde	20.3
Primeiros passos	20.4
Capitulo 20 - Analytics, BI e datalake	
CRM	21.1
Datalake dados saúde	21.2
Datalake de imagens DICOM	21.3
Bi de radiologia	21.4
Capitulo 21 - Tendências e inovação Saúde 4.0	22.1
Untitled	22.2
Controle de ativos por RFID	22.3
Controle de temperatura ambientes por RFID	22.4
Tecnologias futuras	22.5
Resumo de congressos	
Capitulo 22 - Congressos relevantes 2021 / 2022	23.1
Bibliografia	
Padrão bibliográfico	24.1

Introdução

Sobre esse repositório

Base de conhecimento criado e mantido por um grupo de profissionais engajados em compartilhar informações sobre tecnologia para saúde em língua portuguesa.

A estrutura dessa base de conhecimento (ou livro) está organizado em capítulos desde o nível mais básico até o nível mais aprofundado de cada tema.

Links relevantes

- Publicação do livro
- Como contribuir / Andamento do projeto
- Discussões
- Licença CC-BY-SA-4.0
- Código de conduta
- Também temos um grupo no WhatsApp

Motivação para um livro open source

A ideia de criação do livro foi proposta em um post do linkedin no grupo PACS ADMIN BRASIL, a qual sou criador (Daniel Tornieri), onde a partir do interesse das pessoas, organizamos um grupo de discussão e posterior reuniões por vídeo. Thiago Maltempi organizou o esquema de colaboração através do github e o grupo de discussão no WhatsApp.

Escrever um livro já é um grande desafio, escrever um livro em um grupo um desafio maior ainda, agora juntar tudo isso e propor um livro open source é uma coisa bem interessante sobre vários pontos de vista. Talvez uma maneira de retribuir a sociedade tudo que aprendemos e também unir forças e conhecimentos que estão espalhados em milhares de pessoas que trabalham ou já trabalharam na área da saúde pública ou privada.

Quem será o dono deste livro ? Todos serão donos deste livro, mas vamos colocar algumas regras, tipo se forem utilizar citem a origem, não pode ser comercializado e outras mais que serão descritas.

Ele esta sendo escrito como se fosse um software usando o github e a plataforma gitbook, que ajudam muito na questão de versionamento e edições simultâneas, de forma que as pessoas possam contribuir em um livro que vai estar sempre em constante evolução, um livro vivo.

Sejam bem vindos!!!

Jornada do paciente

```
NOTA: a sintaxe "{% api-*" não é compatível.
  {% api-method method="get" host="https://api.cakes.com" path="/v1/cakes/:id" %}
  {% api-method-summary %}
  Get Cakes
  {% endapi-method-summary %}
  {\% \ api-method-description \%}
  This endpoint allows you to get free cakes.
  {% endapi-method-description %}
  {% api-method-spec %}
  {% api-method-request %}
  {% api-method-path-parameters %}
  {% api-method-parameter name="id" type="string" %}
  {\tt ID} of the cake to get, for free of course.
  {% endapi-method-parameter %}
  {% endapi-method-path-parameters %}
  {% api-method-headers %}
  \label{eq:continuity} \ensuremath{\{\%\ api-method-parameter\ name="Authentication"\ type="string"\ required=true\ \%\}}
  Authentication token to track down who is emptying our stocks.
  {% endapi-method-parameter %}
  {% endapi-method-headers %}
  {% api-method-query-parameters %}
  {% api-method-parameter name="recipe" type="string" %}
  The API will do its best to find a cake matching the provided recipe.
  {% endapi-method-parameter %}
  {% api-method-parameter name="gluten" type="boolean" %}
  Whether the cake should be gluten-free or not.
  {% endapi-method-parameter %}
  {% endapi-method-query-parameters %}
  {% endapi-method-request %}
  {% api-method-response %}
  \label{eq:code} \ensuremath{\mbox{\$}} \mbox{$\mbox{$\rm $M$}$ api-method-response-example httpCode=200 %} \label{eq:code}
  {% api-method-response-example-description %}
  Cake successfully retrieved.
  {% endapi-method-response-example-description %}
{ "name": "Cake's name", "recipe": "Cake's recipe name", "cake": "Binary cake"}
  {% endapi-method-response-example %}
  {% api-method-response-example httpCode=404 %}
  {% api-method-response-example-description %}
  Could not find a cake matching this query.
  {% endapi-method-response-example-description %}
{ "message": "Ain't no cake like that."}
  {% endapi-method-response-example %}
  {% endapi-method-response %}
  {% endapi-method-spec %}
  {% endapi-method %}
```

Desfecho

Workflow no sistema

Redes privadas

Conceitos de atenção primária e secundária

Redes municipais

Redes estaduais

Rede SUS

EHR

What is an electronic health record (EHR)?

An electronic health record (EHR) is a digital version of a patient's paper chart. EHRs are real-time, patient-centered records that make information available instantly and securely to authorized users. While an EHR does contain the medical and treatment histories of patients, an EHR system is built to go beyond standard clinical data collected in a provider's office and can be inclusive of a broader view of a patient's care. EHRs are a vital part of health IT and can:

- Contain a patient's medical history, diagnoses, medications, treatment plans, immunization dates, allergies, radiology images, and laboratory and test results
- Allow access to evidence-based tools that providers can use to make decisions about a patient's care
- Automate and streamline provider workflow

One of the key features of an EHR is that health information can be created and managed by authorized providers in a digital format capable of being shared with other providers across more than one health care organization. EHRs are built to share information with other health care providers and organizations – such as laboratories, specialists, medical imaging facilities, pharmacies, emergency facilities, and school and workplace clinics – so they contain information from *all clinicians involved in a patient's care*.

EMR vs EHR – What is the Difference?

Electronic medical records (EMRs) are a digital version of the paper charts in the clinician's office. An EMR contains the medical and treatment history of the patients in one practice. EMRs have advantages over paper records. For example, EMRs allow clinicians to:

- Track data over time
- Easily identify which patients are due for preventive screenings or checkups
- · Check how their patients are doing on certain parameters—such as blood pressure readings or vaccinations
- Monitor and improve overall quality of care within the practice

But the information in EMRs doesn't travel easily *out* of the practice. In fact, the patient's record might even have to be printed out and delivered by mail to specialists and other members of the care team. In that regard, EMRs are not much better than a paper record.

Electronic health records (EHRs) do all those things—and more. EHRs focus on the total health of the patient—going beyond standard clinical data collected in the provider's office and inclusive of a broader view on a patient's care. EHRs are designed to reach out beyond the health organization that originally collects and compiles the information. They are built to share information with other health care providers, such as laboratories and specialists, so they contain information from *all the clinicians involved in the patient's care*. The National Alliance for Health Information Technology stated that EHR data "can be created, managed, and consulted by authorized clinicians and staff across more than one healthcare organization."

The information moves with the patient—to the specialist, the hospital, the nursing home, the next state or even across the country. In comparing the differences between record types, HIM SS Analytics stated that, "The EHR represents the ability to easily share medical information among stakeholders and to have a patient's information follow him or her through the various modalities of care engaged by that individual." EHRs are designed to be accessed by all people involved in the patients care—including the patients themselves. Indeed, that is an explicit expectation in the Stage 1 definition of "meaningful use" of EHRs.

And that makes all the difference. Because when information is shared in a secure way, it becomes more powerful. Health care is a team effort, and shared information supports that effort. After all, much of the value derived from the health care delivery system results from the effective communication of information from one party to another and, ultimately, the ability of multiple parties to engage in interactive communication of information.

Benefits of EHRs

With fully functional EHRs, all members of the team have ready access to the latest information allowing for more coordinated, patient-centered care. With EHRs:

• The information gathered by the primary care provider tells the emergency department clinician about the patient's life threatening

allergy, so that care can be adjusted appropriately, even if the patient is unconscious.

- A patient can log on to his own record and see the trend of the lab results over the last year, which can help motivate him to take his medications and keep up with the lifestyle changes that have improved the numbers.
- The lab results run last week are already in the record to tell the specialist what she needs to know without running duplicate tests.
- The clinician's notes from the patient's hospital stay can help inform the discharge instructions and follow-up care and enable the patient to move from one care setting to another more smoothly.

So, yes, the difference between "electronic medical records" and "electronic health records" is just one word. But in that word there is a world of difference.

https://www.healthit.gov/faq/what-electronic-health-record-ehr

HIMSS Electronic Medical Record Adoption Model

Electronic Medical Record Adoption Model (EMRAM)

The HIMSS Electronic Medical Record Adoption Model (EMRAM) is used to assess EMR implementation and adoption of the technology for hospitals and health systems globally, guiding the data-driven advancement of care in a health system's acute or inpatient care facilities through EMR technology.

With the EMRAM, optimize your EMR implementation to improve patient care and safety. Leveraging information digitally improves patient safety and satisfaction by reducing errors in care, length of stay for patients and duplicated care orders, among other things. Organizations can use the EMRAM to improve person-enabled health and governance and workforce dimensions of digital health in the acute care setting.

EMRAM Stages

STAGE 7: Complete EMR, External HIE, Data Analytics, Governance, Disaster Recovery, Privacy and Security

STAGE 6: Technology-Enabled Medication, Blood Products and Human Milk Administration, Risk Reporting, Full CDS

STAGE 5: Physician Documentation Using Structured Templates, Intrusion/Device Protection

STAGE 4: CPOE With CDS, Nursing and Allied Health Documentation, Basic Business Continuity

STAGE 3: Nursing and Allied Health Documentation, eMAR, Role-Based Security

STAGE 2: CDR, Internal Interoperability, Basic Security

STAGE 1: Ancillaries (Laboratory, Pharmacy and Radiology/Cardiology Information Systems), PACS, Digital Non-DICOM Image Management

STAGE 0: All Three Ancillaries Not Installed

http://www.himssla.org/ehome/168684/emram/

https://www.himss.org/what-we-do-solutions/digital-health-transformation/maturity-models/electronic-medical-record-adoption-model-emram

HIE

Health Information Exchange (HIE)

What is HIE?

Health Information Exchange allows health care professionals and patients to appropriately access and securely share a patient's medical information electronically. There are many health care delivery scenarios driving the technology behind the different forms of health information exchange available today.

HIE Benefits

Sharing electronic patient information enables providers to:

- Access and confidentially share patients' vital medical history, no matter where patients are receiving care—specialists' offices, labs, or emergency rooms
- Provide safer, more effective care tailored to patients' unique medical needs

https://www.healthit.gov/topic/health-it-and-health-information-exchange-basics/heal

RIS

CIS

CIS

LIS

Atores envolvidos

PACS

VNA

Sistemas de reconstrução pós processamento

Regulamentações

Filmes revelados

Filmes impressos

cd's - Robôs de gravação

Sites de resultados / APP's

Impressão em papel

SAME

Imagens digitais

O que é uma imagem digital?

Imagem digital é uma representação em duas dimensões de uma imagem como um conjunto finito de valores digitais, chamados de **pixel. Estas imagens são chamadas de duas dimensões 2D.

Pixel é o menor ponto que forma uma imagem digital, sendo que o conjunto de milhares de pixels formam a imagem inteira.

Resolução da imagem digital

A resolução de uma imagem é a somatória de todos seus *pixel*, este calculo é feito multiplicando o numero de *pixel* verticais pelo numero de *pixel* horizontais.

Imagem na forma digital

A representação de Imagens na forma digital nos permite capturar, armazenar e processar imagens na forma eletrônica assim como processamos um texto em um computador.

 $Em \ computação \ gr\'afica \ pode-se \ classificar \ uma \ imagem, \ em \ relação \ \grave{a} \ sua \ origem, \ de \ duas \ formas \ distintas:$

Vetorial

A forma vetorial é normalmente utilizada por programas de desenho e os objetos que formam a imagem são representados na forma de lista indicando suas dimensões e posicionamento.

Bitmap (mapa de bits)

São as imagens produzidas por scanners, maquinas digitais e também equipamentos médicos.

Os pontos são amostrados e representados bit a bit. Um bitmap pode ser monocromático, em escala de cinza ou colorido. Os pixels podem ser formados no padrão RGB, do inglês Red, Green, Blue, que utiliza três números inteiros para representar as cores vermelho, verde e azul ou serem representados por tons de cinza no caso de imagens preto e branco.

Conversão de imagens analógicas para digitais

Imagens médicas

Images Dicom

Imagens impressão 3D

Mercado mundial

Mercado local

Equipamentos de radiologia

Aparelhos de Ultrassom

Principio físico de funcionamento

Tipo de imagens geradas

Utilização

Equipamentos de raio x

Principio físico de funcionamento

Tipos de equipamentos (raio x, CR, DR)

Tipo de imagens geradas

Utilização

Equipamento emite radiação ionizante

Tomógrafos

Principio físico de funcionamento

Tipo de imagens geradas

Utilização

Equipamento emite radiação ionizante

Ressonância Magnética

Principio físico de funcionamento

Tipo de imagens geradas

Utilização

Equipamento gera forte campo magnético e gera risco para quem tem marca passo.

Mamógrafo

Principio físico de funcionamento

Tipo de imagens geradas

Utilização

Equipamento emite radiação ionizante

Medicina nuclear

Principio físico de funcionamento

Tipo de imagens geradas

Utilização

Equipamento emite radiação ionizante

PET-CT

Principio físico de funcionamento

Tipo de imagens geradas

Utilização

Equipamento emite radiação ionizante

Densitometria Óssea

Principio físico de funcionamento

Tipo de imagens geradas

Utilização

Equipamento emite radiação ionizante

Equipamentos fora da radiologia

Monitores de vídeo

Engenharia clinica e físicos

Regulamentações

DICOM

HL7

FHIR

Interoperabilidade

SNOMED CT

LOINC

CID

RADLEX

HIPAA

LGPD

Conceitos de anonimização

Padrões de anonimização

Codificando para a anonimização

15.0.0 - 2042-12-03

Fixed

• Removed humans, they weren't doing fine with animals.

Changed

• Animals are now super cute, all of them.

14.0.0 - 2042-10-06

Added

• Introduced animals into the world, we believe they're going to be a neat addition.

Protocolos de segurança

Dose de radiação

Regulamentações

Conceitos de telemedicina

Regulamentações

Conceitos de teleradiologia

Regulamentações

Monitoração ativa e passiva

Continuidade de operação (Resiliência)

Desenhos de arquitetura de TI

Contingências

Inteligência artificial

Arquiteturas básicas

Startup de imagens médicas

Startup de sistemas de saúde

Arquitetura monolítica ou micro serviços

Arquitetura monolítica e micro serviços

On premises

Serviços de imagens na nuvem

Discussão: prós e contras

Casos de uso

Principais open source área da saúde

Primeiros passos

CRM

teste crm

Datalake dados saúde

Datalake de imagens DICOM

Bi de radiologia

Saúde 4.0

Saúde 4.0

Untitled

A utilização de reconhecimento facial como instrumento de "Big Data Analytics" é uma fronteira tecnológica recente no mercado em geral, e sua aplicação em Saúde é ainda mais nova.

Como em diversos outros fenômenos de avanço tecnológico, a prática ultrapassou em muitos anos a consolidação da regulamentação de princípios, garantias, proteções e limites de atuação dos agentes; gerando um lapso de tempo, onde fornecedores e usuários interagem sem uma regulação bem estabelecida.

Um exemplo é o Marco Civil da Internet (lei número 12.965/14) que regulamenta a utilização da internet. Em vigor desde 23 de junho de 2014, ela busca assegurar os direitos e deveres dos usuários e das empresas, por outro lado, foi promulgada 2 décadas após o início da popularização da internet no país.

A tecnologia de reconhecimento facial para aplicações em espaços públicos é mais recente. Há que se diferenciar a técnica de reconhecimento facial individual, como quando o proprietário de um telefone celular desbloqueia a tela utilizando a sua face, da técnica de se reconhecer a face de um cidadão caminhando pelo shopping, para auferir informações de seu deslocamento, lojas que despertam seu interesse, gôndolas de supermercado onde ele dispende mais tempo, entre outros comportamentos relacionados ao consumo.

O reconhecimento facial para aplicações direcionadas à própria pessoa, como abrir portas eletrônicas, destravar o celular, e outras aplicações domésticas, é uma técnica utilizada desde os anos 2000, e a fronteira regulatória é similar à sua identificação por impressão digital.

Trata-se basicamente de uma "fechadura eletrônica", onde o usuário que possui a chave correta, que não esteja deformada ou desgastada, conseguirá "abrir a porta".

Em caso de identificação erroneamente negativa (é o rosto correto, mas a tecnologia não reconheceu e não abriu a fechadura), trata-se de um contratempo contornado com outro tipo de identificação (uma senha, ou impressão digital, ou uma chave física).

Em caso de identificação erroneamente positiva (é um rosto errado, mas a tecnologia abriu a fechadura reconhecendo como outro rosto), o resultado pode ser mais sério, com o acesso de pessoas não autorizadas, ou administração de um tratamento para a pessoa errada.

O terceiro erro, que pode derivar para uma identificação erroneamente negativa ou erroneamente positiva, é a deformação da chave. Em tempos de pandemia, a utilização de máscaras, óculos, toucas e outros acessórios aumentam a probabilidade dos dois tipos de erro.

As técnicas para se mitigar a possibilidade de erro, além de refinamento tecnológico, com aumento na resolução e precisão das câmeras, maior velocidade de processamento da informação, passa pelo estabelecimento de dois ou mais critérios, como por exemplo reconhecimento facial somado à digital, ou reconhecimento facial somado à marcha.

Por outro lado, o ambiente hospitalar é permeado por situações de urgência, com grande variação nas condições de medição e posicionamento das cameras e dos pacientes, obstrução por outros agentes que estão circulando de forma frenética, uso de máscaras, contaminação da medição por alterações nas feições (dor, inchaço, coloração, sangue).

Nessa linha de raciocínio, a utilização de reconhecimento facial para admissão rápida de pacientes em hospitais tem sido exercitada.....

ноовох

TEMPERATURA EINSTEIN (levantar)

TOTENS DE TEMPERATURA

Controle de ativos por RFID

Controle de temperatura ambientes por RFID

Tecnologias futuras

Capitulo 22 - Congressos relevantes 2021 / 2022

Padrão bibliográfico