Digital Image Processing (DIP)

Dr. Akram alsubari

Computer Vision

The Segmentation Problem

- •Segmentation attempts to partition the pixels of an image into groups that strongly correlate with the objects in an image
- •Typically the first step in any automated computer vision application

Detection Of Discontinuities

- •There are three basic types of grey level discontinuities that we tend to look for in digital images:
 - Points
 - Lines
 - Edges
- •We typically find discontinuities using masks and correlation

Point Detection

Point detection can be achieved simply using the mask below:

-1	-1	-1
-1	8	-1
-1	-1	-1

Points are detected at those pixels in the subsequent filtered image that are above a set threshold

Point Detection (cont...)

Line Detection

- •The next level of complexity is to try to detect lines
- •The masks below will extract lines that are one pixel thick and running in a particular direction

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
Н	orizon	tal		+45°		'	Vertica	ıl		-45°	

Line Detection (cont...)

Binary image of a wire bond mask

After processing with -45° line detector

Result of thresholding filtering result

Edge Detection

An edge is a set of connected pixels that lie on the boundary between

two region $_{\mathrm{Model\ of\ an\ ideal\ digital\ edge}}$

Gray-level profile of a horizontal line through the image

Model of a ramp digital edge

Gray-level profile of a horizontal line through the image

Edge Types

Edges & Derivatives

- •We have already spoken about how derivatives are used to find discontinuities
- •1st derivative tells us where an edge is
- •2nd derivative can be used to <u>show</u> <u>edge direction</u>

Derivatives & Noise

- •Derivative based edge detectors are extremely sensitive to noise
- •We need to keep this in mind

Common Edge Detectors

•Given a 3*3 region of an image the following edge detection filters can

be used

z_1	z_2	<i>z</i> ₃
z_4	z_5	z ₆
Z ₇	z_8	Z9

z_1	z_2	z_3
z_4	z_5	z ₆
Z ₇	z_8	Z9

-1	0	0	-1
0	1	1	0

Roberts

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel

Sobel Operator

- Looks for edges in both horizontal and vertical directions, then combine the information into a single metric.
- The masks are as follows:

$$y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \qquad x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Edge Magnitude =
$$\sqrt{x^2 + y^2}$$
 Edge Direction = $\tan^{-1} \left[\frac{y}{x} \right]$

Prewitt Operator

• Similar to the Sobel, with different mask coefficients:

$$y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Edge Magnitude =
$$\sqrt{x^2 + y^2}$$

Edge Direction =
$$\tan^{-1} \left\lfloor \frac{y}{x} \right\rfloor$$

Vertical Gradient Component

Combined Edge Image

Edge Detection Problems

- •Often, problems arise in edge detection is that there are too much detail
- •For example, the brickwork in the previous example
- One way to overcome this is to smooth images prior to edge detection

Edge Detection Example With Smoothing

Vertical Gradient Component

Combined Edge Image

Image Segmentation

Click here

Similar-based approach

- Thresholding in color image
- In the case of color images the feature vector x can be three RGB image components {IR(r,c),IG(r,c),IB(r,c)
- A simple segmentation rule may have the form:

```
P(R,x,t) : (IR(r,c) < T(R)) && (IG(r,c) < T(G)) && (IB(r,c) < T(B))
```

Why Region-Based Segmentation?

- Disconnecting-based
 - Edge detection and Thresholding not always effective.
- Homogenous regions
 - Region-based segmentation.
 - Effective in noisy images.

Definitions

- Based on sets.
- Each image R is a set of regions R_i .
 - Every pixel belongs to one region.
 - One pixel can only belong to a single region.

$$R_i \cap R_j = \emptyset$$

Region growing

- Groups pixels into larger regions.
- Starts with a **seed** region.
- Grows region by merging neighboring pixels.

- Iterative process
 - How to start?
 - How to iterate?
 - When to stop?

- Seed Pixel
- † Direction of Growth

(a) Start of Growing a Region

- Grown Pixels
- Pixels Being Considered

(b) Growing Process After a Few Iterations

Thank You