

Matemática A

12.º ANO DE ESCOLARIDADE

Duração: 90 minutos | **Data:** MARÇO 2023

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- 1. Em música, chama-se "acorde" ao som emitido quando três notas são executadas simultaneamente. Com as notas musicais: dó, ré mi, fá, sol, lá, si, quantos acordes diferentes é possível executar?
 - **(A)** 21
- **(B)** 35
- **(C)** 210
- **(D)** 840
- 2. Admita que a magnitude, M, de um sismo é dada, na escala de Richter, por:

$$M = \frac{2}{3} \log \frac{E}{E_0},$$

sendo $E_0 = 7 \times 10^{-3}$, e E a energia, em kWh, libertada pelo sismo.

O maior terramoto já registado, ocorreu no Chile em 1960, com uma magnitude de 9,5 graus na escala de Richter.

Calcule a energia libertada por este sismo.

- 3. O valor de $\lim_{x\to\pi} \frac{\sin x}{\pi x}$ é:
 - **(A)** −1
- **(B)**
- **(C)** 1
- **(D)** −∞
- **4.** Considere a função f, definida em $\left] -\frac{\pi}{2}, \frac{3\pi}{2} \right[\left\{ \frac{\pi}{2} \right\}, \text{ por } f(x) = \frac{1-\sin x}{\cos(2x)+1}.$
 - **4.1.** Determine as abcissas dos pontos do gráfico de f com ordenada 1.
 - **4.2.** Estude a função f quanto à existência de assíntotas do seu gráfico.

5. Na figura estão representados, em referencial ortonormado xOy, a circunferência trigonométrica e o triângulo [PQR].

Sabe-se que:

- Os pontos $A, B \in C$ têm coordenadas $(1,0), (0,1) \in (-1,0)$, respetivamente;
- A reta r é tangente à circunferência no ponto A;
- O ponto P desloca-se ao longo do arco BC.

Para cada posição do ponto P:

- β é a amplitude, em radianos, do ângulo $AOP\left(\beta \in \left]\frac{\pi}{2}, \pi\right[\right);$
- a reta PO interseta a reta r no ponto Q;
- R é o ponto da reta r tal que a reta PR é paralela ao eixo Ox.

A área triângulo [PQR], em função de β , é dada por:

$$(\mathbf{A}) \quad \frac{1}{2} \tan \beta (\cos \beta - 1)^2$$

(B)
$$\frac{1}{2}\tan\beta\sin^2\beta$$

(C)
$$-\frac{1}{2}\tan\beta(\cos\beta-1)^2$$

(D)
$$-\frac{1}{2}\tan\beta\sin^2\beta$$

- 6. Considere a função f definida em $]2,+\infty[$ por: $f(x) = \log_4(x-2) + \log_2(x-2)$
 - **6.1.** Mostre que: $f(x) = \frac{1}{2} \log_2(x-2)^3$
 - **6.2.** Resolva a condição f(x) = 6.
 - **6.3.** O gráfico da função g, definida em \mathbb{R} por $g(x) = (x-10)^2 5$, interseta gráfico de f em dois pontos $P \in Q$.

Utilize as capacidades gráficas da calculadora para determinar as coordenadas desses pontos bem como o comprimento do segmento de reta [PQ], com arredondamento às décimas.

Na sua resposta deve:

- apresentar a equação que lhe permite resolver o problema;
- reproduzir o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar na calculadora, devidamente identificado(s), incluindo o referencial;
- nos cálculos intermédios, utilize pelo menos 3 casas decimais.
- 7. Seja g a função de domínio \mathbb{R} , definida por: $g(x) = 4e^{-x} + e^{x}$
 - 7.1. Estude a função g quanto à monotonia e quanto à existência de extremos relativos.
 - **7.2.** Escreva uma equação da reta tangente ao gráfico de *g* no ponto de abcissa nula.

FIM

Cotações:

Item											
Cotação (em pontos)											
1.	2.	3.	4.1.	4.2.	5.	6.1.	6.2.	6.3.	7.1.	7.2.	
15	20	15	20	20	15	15	20	20	20	20	200

Proposta de resolução

1.
$${}^{7}C_{3} = 35$$

Resposta: (B)

2.
$$M = \frac{2}{3} \log \frac{E}{7 \times 10^{-3}} \text{ e } M = 9,5$$

$$9,5 = \frac{2}{3} \log \frac{E}{7 \times 10^{-3}} \Leftrightarrow 9,5 \times \frac{3}{2} = \log E - \log(7 \times 10^{-3}) \Leftrightarrow$$

$$\Leftrightarrow \log E = 14,25 + \log(7 \times 10^{-3}) \Leftrightarrow$$

$$\Leftrightarrow \log E = 14,25 + \log 7 + \log 10^{-3} \Leftrightarrow$$

$$\Leftrightarrow \log E = 14,25 + \log 7 - 3 \Leftrightarrow$$

$$\Leftrightarrow \log E = 11,25 + \log 7 \Leftrightarrow E = 10^{11,25 + \log 7} \Leftrightarrow$$

$$\Leftrightarrow E = 10^{11,25} \times 10^{\log 7} \Leftrightarrow E = 10^{11,25} \times 7$$

A energia libertada pelo sismo foi $7 \times 10^{11,25}$ kWh.

3.
$$\lim_{x \to \pi} \frac{\sin x}{\pi - x} = \lim_{y \to 0} \frac{\sin(\pi + y)}{-y} =$$

$$= \lim_{y \to 0} \frac{-\sin y}{-y} = \lim_{y \to 0} \frac{\sin y}{y} = 1$$

$$|y = x - \pi \Leftrightarrow x = \pi + y$$
Se $x \to \pi$ então $y \to 0$

Resposta: (C)

4.
$$f(x) = \frac{1 - \sin x}{\cos(2x) + 1}, D_f = \left[-\frac{\pi}{2}, \frac{3\pi}{2} \right] \setminus \left\{ \frac{\pi}{2} \right\}$$

4.1. Em D_f , tem-se:

$$f(x) = 1 \Leftrightarrow \frac{1 - \sin x}{\cos(2x) + 1} = 1 \Leftrightarrow$$

$$\Leftrightarrow 1 - \sin x = \cos(2x) + 1 \Leftrightarrow$$

$$\Leftrightarrow -\sin x = \cos^{2} x - \sin^{2} x \Leftrightarrow$$

$$\Leftrightarrow -\sin x = 1 - \sin^{2} x - \sin^{2} x \Leftrightarrow$$

$$\Leftrightarrow 2\sin^{2} x - \sin x - 1 = 0 \Leftrightarrow$$

$$\Leftrightarrow \sin x = -\frac{1}{2} \vee \sin x = 1 \Leftrightarrow$$

$$\Leftrightarrow x = \frac{7}{6}\pi + 2k\pi \vee x = -\frac{\pi}{6} + 2k\pi \vee x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$$
Em
$$-\frac{\pi}{2}, \frac{3\pi}{2} \left[\vee \left\{ \frac{\pi}{2} \right\}, \text{ as abcissas são } -\frac{\pi}{6} \text{ e } \frac{7\pi}{6}. \right]$$

4.2. Não existem assíntotas não verticais dado que o domínio de f é um conjunto limitado.

Atendendo a que f é contínua em $D_f = \left] -\frac{\pi}{2}, \frac{3\pi}{2} \left[\sqrt{\frac{\pi}{2}} \right]$, apenas poderão existir assíntotas

verticais em
$$x = -\frac{\pi}{2}$$
, $x = \frac{\pi}{2}$ e $x = \frac{3\pi}{2}$.

$$\lim_{x \to \left(-\frac{\pi}{2}\right)^{+}} f(x) = \lim_{x \to \left(-\frac{\pi}{2}\right)^{+}} \frac{1 - \sin x}{\cos(2x) + 1} = \frac{2}{0^{+}} = +\infty$$

$$\lim_{x \to \left(\frac{3\pi}{2}\right)^{-}} f(x) = \lim_{x \to \left(\frac{3\pi}{2}\right)^{-}} \frac{1 - \sin x}{\cos(2x) + 1} = \frac{2}{0^{+}} = +\infty$$

As retas de equações $x = -\frac{\pi}{2}$ e $x = \frac{3\pi}{2}$ são assíntotas ao gráfico de f.

$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos(2x) + 1} = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x - \sin^2 x + 1} =$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos^2 x + \cos^2 x} = \lim_{x \to \frac{\pi}{2}} \frac{(1 - \sin x)(1 + \sin x)}{2\cos^2 x(1 + \sin x)} =$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin^2 x}{2\cos^2 x(1 + \sin x)} = \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{2\cos^2 x(1 + \sin x)} =$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin^2 x}{2\cos^2 x(1 + \sin x)} = \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{2\cos^2 x(1 + \sin x)} =$$

$$= \lim_{x \to \frac{\pi}{2}} \frac{1}{2(1 + \sin x)} = \frac{1}{4}$$

A reta de equação $x = \frac{\pi}{2}$ não é assíntota ao gráfico de f.

5.
$$P(\cos\beta, \sin\beta); \qquad R(1, \sin\beta); \qquad Q(1, \tan\beta)$$

$$\overline{PR} = \overline{PD} + \overline{DR} = -\cos\beta + 1 = -(\cos\beta - 1)$$

$$\overline{RQ} = \overline{RA} + \overline{AQ} = \sin\beta - \tan\beta = \sin\beta - \frac{\sin\beta}{\cos\beta} =$$

$$= \sin\beta \left(1 - \frac{1}{\cos\beta}\right) = \sin\beta \left(\frac{\cos\beta - 1}{\cos\beta}\right) =$$

$$= \frac{\sin\beta}{\cos\beta} \times (\cos\beta - 1) = \tan\beta \times (\cos\beta - 1)$$

$$A_{[PQR]} = \frac{\overline{PR} \times \overline{RQ}}{2} = \frac{-(\cos\beta - 1) \times \tan\beta \times (\cos\beta - 1)}{2} =$$

$$= -\frac{1}{2}\tan\beta (\cos\beta - 1)^{2}$$

Resposta: (C)

6.
$$f(x) = \log_4(x-2) + \log_2(x-2), x \in]2, +\infty[$$

6.1.
$$f(x) = \log_4(x-2) + \log_2(x-2) \Leftrightarrow$$

$$\Leftrightarrow f(x) = \frac{\log_2(x-2)}{\log_2 4} + \log_2(x-2) \Leftrightarrow$$

$$\Leftrightarrow f(x) = \frac{\log_2(x-2)}{2} + \log_2(x-2) \Leftrightarrow$$

$$\Leftrightarrow f(x) = \frac{1}{2} \log_2(x-2) + \log_2(x-2) \Leftrightarrow$$

$$\Leftrightarrow f(x) = \frac{3}{2} \log_2(x-2) \Leftrightarrow f(x) = \frac{1}{2} \times 3 \log_2(x-2) \Leftrightarrow$$

$$\Leftrightarrow f(x) = \frac{1}{2} \log_2(x-2)^3$$

6.2.
$$f(x) = 6 \Leftrightarrow \frac{3}{2} \log_2(x-2) = 6 \Leftrightarrow$$

$$\Leftrightarrow \log_2(x-2) = \frac{6 \times 2}{3} \Leftrightarrow \log_2(x-2) = 4 \Leftrightarrow$$

$$\Leftrightarrow x - 2 = 2^4 \land x > 2 \Leftrightarrow$$

$$\Leftrightarrow x = 16 + 2 \Leftrightarrow x = 18$$

$$S = \{18\}$$

6.3. Pretende-se determinar as soluções da equação f(x) = g(x).

Recorrendo à calculadora gráfica, com $Y_1 = \frac{3}{2} \log_2(x-2)$ e $Y_2 = (x-10)^2 - 5$, determinaram-se

as abcissas dos pontos de interseção dos dois gráficos.

Foi obtido o seguinte resultado:

$$\overline{PQ} \approx \sqrt{(13,198-7,081)^2 + (5,228-3,518)^2} \approx 6,4$$

7.
$$g(x) = 4e^{-x} + e^{x}$$

7.1.
$$g'(x) = (4e^{-x} + e^x)' = -4e^{-x} + e^x$$

$$g'(x) = 0 \Leftrightarrow -4e^{-x} + e^{x} = 0 \Leftrightarrow e^{x} - \frac{4}{e^{x}} = 0 \Leftrightarrow$$

$$\Leftrightarrow \frac{e^{2x} - 4}{e^x} = 0 \Leftrightarrow e^{2x} - 4 = 0 \Leftrightarrow$$

$$\Leftrightarrow$$
 $e^{2x} = 4 \Leftrightarrow 2x = \ln 4 \Leftrightarrow$

$$\Leftrightarrow x = \frac{\ln 2^2}{2} \Leftrightarrow x = \frac{2 \ln 2}{2} \Leftrightarrow x = \ln 2$$

x	-∞	ln 2	+∞
g'	_	0	+
g	\	4	7

$$g(\ln 2) = 4e^{-\ln 2} + e^{\ln 2} = 4e^{\ln 2^{-1}} + 2 = 4 \times \frac{1}{2} + 2 = 4$$

A função g é estritamente decrescente em $]-\infty$, $\ln 2]$, estritamente crescente em $[\ln 2, +\infty[$ e admite um mínimo relativo igual a 4 para $x = \ln 2$.

7.2.
$$g'(x) = -4e^{-x} + e^{x}$$

Declive:
$$m = g'(0) = -4e^{-0} + e^{0} = -4 + 1 = -3$$

$$g(0) = 4e^{-0} + e^{0} = 4 + 1 = 5$$

Ponto de tangência: (0, 5)

Equação da reta tangente: y = -3x + 5