Föreläsning 4: Modellering I

- Repetition
- Modeller och modellbygge
- Arbetsgång vid modellbygge
- Exempel

Lärandemål:

- Analysera linjära systems egenskaper i tids- och frekvensplanet och transformera mellan olika representationsformer.
- ► Formulera dynamiska modeller för enklare tekniska system, såväl i form av tillståndsekvationer som överföringsfunktioner.

Repetition - blockschema

En extern modell med överföringsfunktionen G(s), med insignal u och utsignal y kan beskrivas av en grafisk symbol:

$$U \longrightarrow G(s) \longrightarrow G(s)$$

Seriekoppling:

$$\xrightarrow{u} G_1(s) \longrightarrow G_2(s) \xrightarrow{y} \Rightarrow Y(s) = (G_1(s)G_2(s)) \cdot U(s)$$

Återkoppling:

Repetition – kvarstående fel

Ett enkelt återkopplat system:

Reglerfelet ges av

$$E(s) = \frac{1}{1 + F(s)G(s)}R(s) = \frac{1}{1 + L(s)}R(s),$$

där L(s) = F(s)G(s) är kretsöverföringen (eng. open loop transfer function). Det kvarstående felet, dvs det stationära felet då börvärdet r är ett enhetssteg, kan beräknas med slutvärdessatsen:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} s \frac{1}{1 + L(s)} \frac{1}{s} = \lim_{s \to 0} \frac{1}{1 + L(s)}$$

<ロ > → □ → → □ → → □ → への

Repetition – stegsvar

Första ordningens system med reell pol -1/T:

$$G(s) = \frac{K}{1 + sT}$$

Andra ordningens system med komplexa poler $-\zeta \omega_n \pm i \sqrt{1-\zeta^2} \omega_n$:

$$G(s) = \frac{K}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Reglerdesign – arbetsflöde

Modellbygge

- ► En modell är en förenklad bild av "verkligheten" (systemet, processen)
- Modeller finns av olika slag:
 - Ritning
 - Funktionsbeskrivning
 - Blockschema, flödesschema
 - Graf, nätverk, diagram
 - Fysisk skalmodell
 - Matematisk modell

Vårt fokus: matematiska modeller för *dynamiska* system, närmare bestämt *linjära*, *tidsinvarianta modeller (LTI)* i kontinuerlig och diskret tid:

- ► Differential- och differensekvation
- Överföringsfunktion
- Faltningsintegral och -summa
- Tillståndsmodell

Varför modeller?

- Kompakt representation av kunskap
- Process- och produktdesign i tidigt skede
- ► Stödjer återanvändbarhet och flexibilitet
- ► Modellbaserad design av styrsystem:
 - Reglerstrukturer
 - Övervakning och diagnostik
 - Regulatordesign
 - Simularing och verifiering

Fysikaliskt modellbygge – arbetsgång

- 1. Analysera systemets funktion, strukturera
 - Nedbrytning i delsystem
 - Vilka variabler?
 - Vilka kvalitativa samband?
 - → Graf eller blockschema
- 2. Ställ upp basekvationer
 - Balansekvationer
 - Konstitutiva samband
 - Dimensionskontroll
 - → Differentialekvationer och algebraiska samband
- 3. Formulera modell
 - Linjärisera?
 - Laplace-transformera, bilda överföringsfunktioner, eller...
 - ▶ Välj tillståndsvariabler och formulera tillståndsmodell (nästa föreläsning)
 - $\rightarrow \ \mathsf{Differentialekvation,\ \"{o}verf\"{o}ringsfunktion\ eller\ tillst\"{a}ndsmodell}$

Exempel: Strukturering

Modell av en förbränningsmotor:

Utgångspunkt för modelleringen är ofta en abstrakt systemskiss:

Efter strukturering: blockschema

Att ställa upp basekvationer

Balansekvationer:

Konstitutiva samband, exempel:

- ▶ Ohms lag: $U = R \cdot I$
- Allmänna gaslagen: pV = nRT
- Ventilkarakteristik: $q = k\sqrt{p_1 p_2}$

Energiflöden i tekniska system – analogier

Energiflöden i tekniska system förmedlas ofta via en intensitet e(t) och ett flöde f(t), som tillsammans ger en effekt $P(t) = e(t) \cdot f(t)$.

Vanliga komponenter beskriver relationer mellan dessa variabler:

- ► Intensitetsupplagring (induktivt element)
- Flödesupplagring (kapacitivt element)
- Dissipation (resistivt element)

	Allmänt	Elektriskt	Flöde	Mekaniskt
Intensitet	e	и	р	F
Flöde	f	i	Q	V
Resistans	$e = \gamma f$	u = Ri	$p = R_f Q$	F = dv
Induktans	$f = \frac{1}{\alpha} \int e \cdot dt$	$i = \frac{1}{L} \int u \cdot dt$	$Q = \frac{1}{L_f} \int p \cdot dt$	$v = \frac{1}{m} \int F \cdot dt$
Kapacitans	$e = \frac{1}{\beta} \int f \cdot dt$	$u=\frac{1}{C}\int i\cdot dt$	$p = \frac{1}{C_f} \int Q \cdot dt$	$F = k \int v \cdot dt$

Systemtyper

