Obliczenia Naukowe Karol Janic 21 października 2023

# Spis treści

| 1        | Zad | anie 1           |      |      |      |      |  |  |  |  |  |  |  |  |  | 2 |
|----------|-----|------------------|------|------|------|------|--|--|--|--|--|--|--|--|--|---|
|          | 1.1 | Cel              | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 2 |
|          | 1.2 | Rozwiązanie      | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 2 |
|          | 1.3 | Wyniki i wnioski | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 2 |
| <b>2</b> | Zad | anie 2           |      |      |      |      |  |  |  |  |  |  |  |  |  | 4 |
| -        | 2.1 | Cel              |      |      |      |      |  |  |  |  |  |  |  |  |  | - |
|          | 2.2 | Rozwiązanie      |      |      |      |      |  |  |  |  |  |  |  |  |  |   |
|          |     | Wyniki i wnioski |      |      |      |      |  |  |  |  |  |  |  |  |  |   |
| 3        | Zad | anie 3           |      |      |      |      |  |  |  |  |  |  |  |  |  | 4 |
|          | 3.1 | Cel              | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 4 |
|          | 3.2 | Rozwiązanie      |      |      |      |      |  |  |  |  |  |  |  |  |  |   |
|          |     | Wyniki i wnioski |      |      |      |      |  |  |  |  |  |  |  |  |  |   |
| 4        | Zad | anie 4           |      |      |      |      |  |  |  |  |  |  |  |  |  | 5 |
|          | 4.1 | Cel              | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | E |
|          | 4.2 | Rozwiązanie      |      |      |      |      |  |  |  |  |  |  |  |  |  |   |
|          | 4.3 | Wyniki i wnioski |      |      |      |      |  |  |  |  |  |  |  |  |  |   |
| 5        |     | anie 5           |      |      |      |      |  |  |  |  |  |  |  |  |  | 6 |
|          | 5.1 | Cel              | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 6 |
|          | 5.2 | Rozwiązanie      | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 6 |
|          | 5.3 | Wyniki i wnioski | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 8 |
| 6        |     | anie 6           |      |      |      |      |  |  |  |  |  |  |  |  |  | 8 |
|          | 6.1 | Cel              | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 8 |
|          | 6.2 | Rozwiązanie      | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 8 |
|          | 6.3 | Wyniki i wnioski | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 8 |
| 7        | Zad | anie 7           |      |      |      |      |  |  |  |  |  |  |  |  |  | g |
|          | 7.1 | Cel              | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | G |
|          | 7.2 | Rozwiązanie      | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | 6 |
|          | 7.3 | Wyniki i wnioski | <br> | <br> | <br> | <br> |  |  |  |  |  |  |  |  |  | ç |

## 1 Zadanie 1

#### 1.1 Cel

Celem zadania jest wyznaczenie liczb:

- macheps najmniejszej liczby, takiej że fl(1.0 + macheps) > 1.0 oraz fl(1.0 + macheps) = 1.0 + macheps
- eta najmniejszej dodatniej liczby
- max największej reprezentowalnej liczby

w arytmetykach 16-, 32- oraz 64-bitowej, porównanie ich wartości z wartościami zwracanymi przez wbudowane funkcje w języku Julia oraz wartościami zdefiniowanymi w języku C. Dodatkowo należy ocenić związki macheps z precyzją arytmetyki,  $MIN_{sub}$  z eta,  $MIN_{nor}$  z wbudowaną funkcją języka Julia floatmin oraz MAX z floatmax. Określone są one przez wzory:

### 1.2 Rozwiązanie

Wymienione powyżej liczby obliczane są w sposób iteracyjny. Obliczenie wykonywane są w arytmetyce zmiennopozycyjnej:

- macheps inicjalizowany jest wartością 1.0 a następnie połowiony do momentu aż dodanie jego połowy do 1.0 nie da w wyniku liczby większej niż 1.0
- eta inicjalizowana jest wartością 1.0 a następnie połowiona dopóki jego połowa jest większa od 0.0
- max inicjalizowany jest wartością 1.0 a następnie podwajany dopóki jego podwojona wartośc nie będzie nieskończonością. Następnie jest powiększany o coraz mniejsze liczby dopóki dodanie kolejnej liczby nie spowoduje osiągnięcia nieskończoności

### Algorytm 1 Wyznaczanie macheps

```
\begin{array}{c} macheps \leftarrow 1.0 \\ \textbf{while} \ fl(1.0 + \frac{macheps}{2}) > 1.0 \ \textbf{do} \\ macheps \leftarrow \frac{macheps}{2} \\ \textbf{end while} \end{array}
```

#### Algorytm 2 Wyznaczanie eta

```
eta \leftarrow 1.0
while fl(\frac{eta}{2}) > 0.0 do
eta \leftarrow \frac{eta}{2}
end while
```

## Algorytm 3 Wyznaczanie max

```
\begin{array}{l} max \leftarrow 1.0 \\ \textbf{while} \ fl(2*max) \neq \infty \ \textbf{do} \\ max \leftarrow 2*max \\ \textbf{end while} \\ gap \leftarrow \frac{max}{2} \\ \textbf{while} \ fl(max + gap) \neq \infty \ \text{and} \ fl(gap) > 0.0 \ \textbf{do} \\ max \leftarrow max + gap \\ gap \leftarrow \frac{gap}{2} \\ \textbf{end while} \end{array}
```

## 1.3 Wyniki i wnioski

Wartości macheps wyznaczone przy użyciu opisanego wyżej algorytmu pokrywają się z wartościami otrzymanymi z wbudowanych funkcji języka Julia oraz są bliskie stałymi w języku C (za wyjątkiem 16-bitowej reprezentacji,

której język C nie zapewnia).

| typ     | wartość wyznaczona    | wartość eps w Julii   | wartość w float.h w C |
|---------|-----------------------|-----------------------|-----------------------|
| Float16 | 0.000977              | 0.000977              | niezdefiniowana       |
| Float32 | 1.1920929e-7          | 1.1920929e-7          | 1.192093e-7           |
| Float32 | 2.220446049250313e-16 | 2.220446049250313e-16 | 2.220446e-16          |

Tabela 1: Porównanie wartości macheps.

Prezycję ayrtmetyki  $\epsilon$  określa formuła:

$$\epsilon = \frac{1}{2}\beta^{t-1},$$

gdzie  $\beta$  jest bazą rozwinięcia, a t liczbą cyft użytych do zapisu mantysy. Dla typów Float16, Float32, Float64  $\beta=2$  a t przyjmuje kolejno wartości 10, 23, 52. Łatwo można sprawdzić, że wartości macheps pokrywają się z prezycją arytmetyki.

| typ     | macheps               | $\epsilon$            |
|---------|-----------------------|-----------------------|
| Float16 | 0.000977              | 0.000977              |
| Float32 | 1.1920929e-7          | 1.1920929e-7          |
| Float64 | 2.220446049250313e-16 | 2.220446049250313e-16 |

Tabela 2: Porównanie wartości macheps z  $\epsilon$ .

Wartości eta wyznaczone przy użyciu opisanego wyżej algorytmu pokrywają się z wartościami otrzymanymi z wbudowanych funkcji języka Julia. Język C nie definiuje takiej stałej.

| typ     | wartość wyznaczona | wartość nextfloat(Typ(0.0)) w Julii |
|---------|--------------------|-------------------------------------|
| Float16 | 6.0e-8             | 6.0e-8                              |
| Float32 | 1.0e-45            | 1.0e-45                             |
| Float64 | 5.0e-324           | 5.0e-324                            |

Tabela 3: Porównanie wartości eta.

 $MIN_{sub}$  jest najmiejszą dla arytmetyki nieznormalizowaną liczbą.  $MIN_{nor}$  jest najmniejszą dla arytmetyki znormalizowaną liczbą.

$$MIN_{sub} = 2^{1-t} \cdot 2^{c_{min}}$$
$$MIN_{nor} = 2^{c_{min}},$$

gdzie  $c_{min}$  jest minimalną możliwą do zapisania cechą wyznaczaną ze wzoru:

$$c_{min} = -2^{d-1} + 2,$$

gdzie d jest liczbą bitów przeznaczonych na zapis cechy. Dla typów zmiennopozycyjnych Float16, Float32, Float64 są to kolejno 5, 8, 11.

| typ     | eta      | $MIN_{sub}$ | $MIN_{nor}$             | floatmin(typ)           |
|---------|----------|-------------|-------------------------|-------------------------|
| Float16 | 6.0e-8   | 6.0e-8      | 6.104e-5                | 6.104e-5                |
| Float32 | 1.0e-45  | 1.0e-45     | 1.1754944e-38           | 1.1754944e-38           |
| Float64 | 5.0e-324 | 5.0e-324    | 2.2250738585072014e-308 | 2.2250738585072014e-308 |

Tabela 4: Porównanie wartości eta,  $MIN_{sub},\,MIN_{nor}$  oraz floatmin.

Z powyższych obliczeń wynika, że wartość  $MIN_{sub}$  jest równa eta a  $MIN_{nor}$  floatmin. Można zauważyc, że wartości  $MIN_{nor}$  są większe od wartości  $MIN_{sub}$ .

Wartości max wyznaczone przy użyciu opisanego wyżej algorytmu pokrywają się z wartościami otrzymanymi z wbudowanych funkcji języka Julia oraz są bliskie stałymi w języku C (za wyjątkiem 16-bitowej reprezentacji, której język C nie zapewnia).

| typ     | wartość wyznaczona     | Wartość floatmax(typ) w Julii | wartość w float.h w C |
|---------|------------------------|-------------------------------|-----------------------|
| Float16 | 6.55e4                 | 6.55e4                        | niezdefiniowana       |
| Float32 | 3.4028235e38           | 3.4028235e38                  | 3.402823e38           |
| Float64 | 1.7976931348623157e308 | 1.7976931348623157e308        | 1.797693e308          |

Tabela 5: Porównanie wartości max.

## 2 Zadanie 2

#### 2.1 Cel

Celem zadania jest sprawdzenie poprawności wzoru Kahana na wartość epsilona maszynowego. Przedstawił on następujący wzór:

$$\epsilon_{Kahan} = 3 \cdot \left(\frac{4}{3} - 1\right) - 1$$

## 2.2 Rozwiązanie

Zaimplementowano funkcję wzracającą wartość epsilona przedstawioną przez Kahana. Dla różnych typów danych wygenerowano ją oraz porównano z wartościami macheps.

# 2.3 Wyniki i wnioski

Z przeprowadzonych obliczeń wynika, że wartości obliczone na podstawie wzoru Kahana różnią się wyłącznie znakiem od wartości macheps.

| typ     | macheps               | $\epsilon_{Kahan}$     |
|---------|-----------------------|------------------------|
| Float16 | 0.000977              | -0.000977              |
| Float32 | 1.1920929e-7          | 1.1920929e-7           |
| Float64 | 2.220446049250313e-16 | -2.220446049250313e-16 |

Tabela 6: Porównanie wartości macheps z wartościami obliczonymi ze wzoru Kahana.

## 3 Zadanie 3

#### 3.1 Cel

Celem zadania jest sprawdzenie, czy liczby w arytmetyce zmiennopozycyjnej Float64 są równomiernie rozłożone w przedziałe [1,2] z krokiem  $\delta=2^{-52}$  oraz w przedziałach  $[\frac{1}{2},1]$  i [2,4].

## 3.2 Rozwiązanie

W celu odpowiedzi na powyższe pytanie w podanych przedziałach generowano kolejne liczby w arytmetyce Float64 na dwa różne sposoby oraz porównano je. Jednym z nich jest dodawanie  $\delta$  zaś drugim zwiekszanie liczby reprezentującej mantysę o jeden.

## 3.3 Wyniki i wnioski

W wyniku działania programu dla przedziału [1,2] nie wykryto rozbieżności. W przypadku dwóch pozostałych przedziałów oraz takiej samej  $\delta$  test daje wynik negatywny. Aby sprawdzić co jest tego przyczyną wypisano po kilka wartości liczb i ich bitowych reprezentacji dla przedziałów [1,2] oraz  $[\frac{1}{2},1]$ . Przedstawiają się one następująco:

| wartość              | zapis bitowy                            |
|----------------------|-----------------------------------------|
| 0.500000000000000000 | 0 01111111110 0000000000000000000000000 |
| 0.50000000000000001  | 0 011111111110 000000000000000000000000 |
| 0.500000000000000002 | 0 011111111110 000000000000000000000000 |
| 0.50000000000000003  | 0 011111111110 000000000000000000000000 |
| :                    | <u>:</u>                                |
| 0.999999999999997    | 0 01111111110 1111111111111111111111111 |
| 0.99999999999998     | 0 01111111110 1111111111111111111111111 |
| 0.99999999999999     | 0 01111111110 1111111111111111111111111 |
| 1.00000000000000000  | 0 01111111111 0000000000000000000000000 |

Tabela 7: Bitowy zapis kilku liczb z przedziału  $\left[\frac{1}{2},1\right]$ .

| wartość                                 | zapis bitowy                            |
|-----------------------------------------|-----------------------------------------|
| 1.000000000000000000                    | 0 01111111111 0000000000000000000000000 |
| 1.0000000000000000000000000000000000000 | 0 01111111111 0000000000000000000000000 |
| 1.000000000000000004                    | 0 01111111111 0000000000000000000000000 |
| 1.00000000000000007                     | 0 01111111111 0000000000000000000000000 |
| :                                       | i:                                      |
| 1.999999999999993                       | 0 0111111111 11111111111111111111111111 |
| 1.99999999999999                        | 0 0111111111 11111111111111111111111111 |
| 1.999999999999998                       | 0 0111111111 11111111111111111111111111 |
| 2.000000000000000000                    | 0 1000000000 00000000000000000000000000 |

Tabela 8: Bitowy zapis kilku liczb z przedziału [1, 2].

Można zauważyć, że w przypadku przedziału  $[\frac{1}{2},1]$  maleje wartość cechy. Bity mantysy zachowują się w taki sam sposób jak w przypadku przedziału [1,2]. Wynika z tego, że wartość  $\delta$  dla przedziału  $[\frac{1}{2},1]$  powinna zostać pomniejszona o połowę a w przypadku przedziału [1,2] podwojona. Dla tak zmienionych delt testy zakończyły się powodzeniem.

Z tak przeprowadzonego doświadczenia można wyciągnąć kilka wniosków:

- liczby w arytmetyce zmiennopozycyjnej są równomiernie rozłożone na przedziałach  $[2^k, 2^{k+1}]$
- $\bullet$  każdy przedział  $[2^k, 2^{k+1}]$  zawiera tyle samo liczb
- $\bullet$  gdy potegi dwójki będące końcami przedziałów rosną, rośnie także  $\delta$

# 4 Zadanie 4

#### 4.1 Cel

Celem zadania jest wyznaczenie najmniejszej liczby x w arytmetyce Float64 z przedziału (1,2), takiej, że  $x \cdot \frac{1}{x} \neq 1$ .

# 4.2 Rozwiązanie

Z poprzedniego zadania wynika, że w przedziale (1,2) kolejne liczby różnią się o  $\delta = 2^{-52}$ . Zatem algorytm, będzie przechodził po kolejnych liczbach zaczynając od  $1.0 + \delta$  dopóki nie natrafi na liczbę, której iloczyn

z jej odwrotnością w arytmetyce zmiennopozycyjnej nie wyniesie 1.0.

#### Algorytm 4 Wyznaczanie 'złej' odwrotności

```
\begin{array}{l} \textbf{Input: } \delta > 0 \\ x \leftarrow 1.0 + \delta \\ \textbf{while } fl(x+\delta) \cdot fl(\frac{1}{x+\delta}) = 1.0 \textbf{ do} \\ x \leftarrow x + \delta \\ \textbf{end while} \end{array}
```

## 4.3 Wyniki i wnioski

Najmiejszą liczbą spełniającą podane wyżej założenia jest x = 1.000000057228997.

Z przeprowadzonego doświadczenia wynika, że w arytmetyce zmiennopozycyjnej nie zawsze zachodzą własności algebraiczne prawdziwe w liczbach rzeczywistych.

# 5 Zadanie 5

#### 5.1 Cel

Celem zadania jest eksperymentalne porównanie czterech metod obliczania iloczynu skalarnego:

- "w przód"
- "w tvł"
- "od największego do najmniejszego"
- "od najmniejszego do największego"

dla wektorów:

```
\begin{split} X &= [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957] \text{ oraz} \\ Y &= [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049] \end{split}
```

#### 5.2 Rozwiązanie

Zaimplementowano cztery algorytmy przedstawione na poniższych listingach oraz porównano ich działanie dla różnych arytmetyk zmiennopozycyjnych: Float32, Float64.

# Algorytm 5 Wyznaczanie iloczyny skalarnego metodą "w przód"

```
\begin{aligned} \textbf{Input:} \ \ X[1 \dots n], \ Y[1 \dots n] \\ \ \ product \leftarrow 0.0 \\ \ \ \textbf{for} \ i \leftarrow 1 \ \text{to} \ n \ \textbf{do} \\ \ \ product \leftarrow product + X[i] \cdot Y[i] \\ \ \textbf{end for} \end{aligned}
```

#### Algorytm 6 Wyznaczanie iloczyny skalarnego metodą "w tył"

```
\begin{aligned} \textbf{Input:} \ X[1 \dots n], \, Y[1 \dots n] \\ product &\leftarrow 0.0 \\ \textbf{for} \ i \leftarrow n \ \text{to} \ 1 \ \textbf{do} \\ product &\leftarrow product + X[i] \cdot Y[i] \\ \textbf{end} \ \textbf{for} \end{aligned}
```

#### Algorytm 7 Wyznaczanie iloczyny skalarnego metodą "od największego do najmniejszego"

```
Input: X[1...n], Y[1...n]
  pos \ partials \leftarrow [], neg \ partials \leftarrow []
  n_1 \leftarrow 1, n_2 \leftarrow 1
  for i \leftarrow i to n do
       partial \leftarrow X[i] \cdot Y[i]
       if partial > 0 then
           pos \ partials[n_1] \leftarrow partial
           n_1 \leftarrow n_1 + 1
       else
           neg partials[n_2] \leftarrow partial
           n_2 \leftarrow n_2 + 1
       end if
  end for
  sort pos partials descending
  sort neg_partials ascending
  pos partial product \leftarrow 0.0
  for i \leftarrow 1 to n_1 do
       pos partial product \leftarrow pos partial product + pos partials[i]
  end for
  neg partial product \leftarrow 0.0
  for i \leftarrow 1 to n_2 do
       neg\_partial\_product \leftarrow neg\_partial\_product + neg\_partials[i]
  product \leftarrow pos \ partial \ product + neg \ partial \ product
```

## Algorytm 8 Wyznaczanie iloczyny skalarnego metodą "od najmniejszego do największego"

```
Input: X[1 \dots n], Y[1 \dots n]
  pos\_partials \leftarrow [], neg\_partials \leftarrow []
  n_1 \leftarrow 1, n_2 \leftarrow 1
  for i \leftarrow i to n do
       partial \leftarrow X[i] \cdot Y[i]
       if partial > 0 then
           pos\_partials[n_1] \leftarrow partial
           n_1 \leftarrow n_1 + 1
       else
           neg\_partials[n_2] \leftarrow partial
           n_2 \leftarrow n_2 + 1
       end if
  end for
  sort pos partials ascending
  sort neg_partials descending
  pos partial product \leftarrow 0.0
  for i \leftarrow 1 to n_1 do
       pos partial product \leftarrow pos partial product + pos partials[i]
  end for
  neg partial product \leftarrow 0.0
   for i \leftarrow 1 to n_2 do
       neg\_partial\_product \leftarrow neg\_partial\_product + neg\_partials[i]
   product \leftarrow pos\_partial\_product + neg\_partial\_product
```

# 5.3 Wyniki i wnioski

Prawidłową wartością jest -1.00657107000000e-11. Otrzymane eksperymentalnie wyniki przedstawiają się następująco:

| metoda                             | typ        |                         |  |  |  |  |
|------------------------------------|------------|-------------------------|--|--|--|--|
| metoda                             | Float32    | Float64                 |  |  |  |  |
| "w przód"                          | -0.4999443 | 1.0251881368296672e-10  |  |  |  |  |
| "w tył"                            | -0.454345  | -1.5643308870494366e-10 |  |  |  |  |
| "od największego do najmniejszego" | -0.5       | 0.0                     |  |  |  |  |
| "od najmniejszego do największego" | -0.5       | 0.0                     |  |  |  |  |

Tabela 9: Porównanie wartości iloczynu skalarnego obliczonego różnymi sposobami.

Żadna z metod nie zwraca dokładnej wartości. Obliczenia w arytmetyce Float32 są bardzo niedokładne.

W przypadku zwiększonej precyzji otrzymane wyniki są bliższe wartości dokładnej. Z doświadczenia wynika, że kolejność wykonywania operacji w arytmetyce zmiennopozycyjnej ma wpływ na wynik końcowy obliczeń. Najlepsze efekty zapewniają metody, które dodają wartości w posortowanej kolejności.

Przyczyną rozbieżności jest fakt, że wektory X i Y są prawie prostopadłe zatem iloczyn jest blisko zeru oraz rzędy wielkości składowych wektorów bardzo się różnią.

# 6 Zadanie 6

#### 6.1 Cel

Celem zadania jest porównanie wartości dwóch równoważnych funkcji:

• 
$$f(x) = \sqrt{x^2 + 1} - 1$$

• 
$$g(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

dla argumentów  $x=8^{-1},8^{-2},8^{-3},\ldots$ 

#### 6.2 Rozwiązanie

Zaimplementowano dwie procedury realizujące wyżej podane funkcje. Następnie w arytmetyce Float64 obliczono ich wartości dla pierwszych dwóstu argumentów w podanej wyżej postaci.

## 6.3 Wyniki i wnioski

Kilka obliczonych wartości prezentuje się następująco:

| x          | f(x)                   | g(x)                   |
|------------|------------------------|------------------------|
| $8^{-1}$   | 0.0077822185373186414  | 0.0077822185373187065  |
| 8-2        | 0.00012206286282867573 | 0.00012206286282875901 |
| 8-3        | 1.9073468138230965e-6  | 1.907346813826566e-6   |
| $8^{-4}$   | 2.9802321943606103e-8  | 2.9802321943606116e-8  |
| $8^{-5}$   | 4.656612873077393e-10  | 4.6566128719931904e-10 |
| 8-6        | 7.275957614183426e-12  | 7.275957614156956e-12  |
| $8^{-7}$   | 1.1368683772161603e-13 | 1.1368683772160957e-13 |
| 8-8        | 1.7763568394002505e-15 | 1.7763568394002489e-15 |
| 8-9        | 0.0                    | 2.7755575615628914e-17 |
| 8-10       | 0.0                    | 4.336808689942018e-19  |
| :          | :                      | :                      |
| $8^{-178}$ | 0.0                    | 1.6e-322               |
| $8^{-179}$ | 0.0                    | 0.0                    |

Z przeprowadzonego doświadczenia wynika, że pomimo tego, że funkcje są sobie równe w sensie matematycznym, ich wartości dla tych samych argumentów różnią się. Ponadto wartości funkcji f szybko stają się niewiarygodne. Może być to skutkiem odejmowanie od siebie bliskich siebie liczb, które powoduje duży błąd względny. W przypadku funkcji g wartości stają się bezużyteczne o wiele później. Należy z tego wysnuć wniosek, że przeformułowanie problemu może poprawić dokładność obliczeń zmiennopozycyjnych.

# 7 Zadanie 7

#### 7.1 Cel

Celem zadania jest wyznaczenie przybliżonej wartości pochodnej funkcji  $f(x) = \sin x + \cos 3x$  w punkcie  $x_0 = 1$  korzystając ze wzoru  $f'(x_0) \approx \frac{f(x_0+h)-f(x)}{h}$ , gdzie  $h = 2^{-n}$  dla  $n = 0, 1, 2, \dots, 54$ . Należy także porównać te wartości z dokładnymi wartościami pochodnej.

# 7.2 Rozwiązanie

Pochodną funkcji f jest funkcja  $f'(x) = \cos x - 3\sin 3x$ .

Zaimplementowano procedury obliczające pochodną w punkcie korzystając ze wzoru przybliżonego oraz dokładnego. Porównano otrzymane wyniki oraz przeanalizowano błędy bezwzględne dla n od 0 do 54. Zbadano także zachowanie wartości 1+h.

# 7.3 Wyniki i wnioski

Wyniki zostały przedstawione na poniższych wykresach:



Rysunek 1: Obliczone wartości dokładne i przybliżone



Rysunek 2: Błąd pomiędzy wartością dokładną a obliczoną



Rysunek 3: Badanie wartości 1.0+h

Początkowe zmiejszanie wartości h poprawia jakość przybliżenia. Jednak gdy n jest przewyższa 40 błąd rośnie. Powodem takiego zachowania może być fakt, że dodawanie małej wartości do 1.0 nie zwiększa znacząco jej wartości przez co odejmowane są liczby bliskie siebie c generuje duży błąd. Dodatkowo dzielenie przez bardzo małe wartości powiększa błąd.