Республиканская олимпиада по математике, 2014 год, 11 класс

- **1.** Пусть a_1 , a_2 , ..., a_{2014} перестановка чисел 1, 2, ..., 2014. Какое наибольшее количество чисел среди чисел $a_1^2 + a_2$, $a_2^2 + a_3$, ..., $a_{2013}^2 + a_{2014}$, $a_{2014}^2 + a_1$ могут быть точными квадратами? (Сатылханов K.)
- **2.** Существуют ли натуральные числа a и b такие, что для каждого натурального n числа $a^n + n^b$ и $b^n + n^a$ взаимно просты? (Сатылханов K.)
- 3. Треугольник ABC вписан в окружность Γ . Вписанная в треугольник окружность касается стороны BC в точке N. ω окружность, вписанная в сегмент BAC окружности Γ , и проходящая через точку N. Пусть точки O и J центры окружностей ω и вневписанной окружности (касающейся стороны BC), соответственно. Докажите, что прямые AO и JN параллельны. (Ильясов C.)
- 4. В неравнобедренном треугольнике ABC вписанная окружность касается сторон AB и BC в точках C_1 и A_1 соответственно, а вневписанная окружность (касающаяся стороны AC) соответственно в точках C_2 и A_2 . Точка N основание биссектрисы из вершины B. Прямая A_1C_1 пересекают прямую AC в точке K_1 . Пусть описанная окружности треугольника BK_1N повторно пересекают описанную окружность треугольника ABC в точке P_1 . Аналогично определим точки P_2 . Докажите, что P_3 и P_4 (P_3 и P_4).
- **5.** Обозначим через \mathbb{Q} множество всех рациональных чисел. Найдите все функции $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$, удовлетворяющие для любых рациональных чисел x,y,z равенству f(x,y) + f(y,z) + f(z,x) = f(0,x+y+z). (A. Васильев)
- **6.** Докажите, что для любого натурального n на отрезке $[n-4\sqrt{n}, n+4\sqrt{n}]$ найдется число, представимое в виде x^3+y^3 , где x и y неотрицательные целые числа. (А. Васильев)