Uncertainty Quantification and Quantification of Margins and Uncertainties

Brian Williams, CCS-6 LA-UR-08-06768

Outline

- Introduction
- Sensitivity Analysis
 - Exploration of input-output relationships
- Calibration
 - Probabilistic constraints from field data on input parameters
 - Discrepancy
- Quantification of Margins and Uncertainties (QMU)
 - Confidence ratio
 - Reliability

Introduction

- Sensitivity analysis techniques are useful for exploring input-output relationships
 - Provide information on individual and joint parameter effects on output variation
- Calibration techniques probabilistically tune computer models to experimental data
 - Many sources of uncertainty accounted for, including uncertainty in physics parameters, experimental error, and model inadequacy
- QMU methodology used to make certification or assessment decisions
 - Margin (M): Difference between expected nominal performance and threshold
 - Uncertainty (U): Combined performance and threshold uncertainties
 - Confidence Ratio (CR = M/U): CR > 1 defined as certification success

Example: Dropping Objects from a Tower

- Experiment: Drop a solid ball from a specified height
 - Output: Measured flight time (y)
- Computer Model: Implements Newton's Law with drag coefficient
 - Two parameters: x = height (controlled); $\theta =$ drag coefficient (uncertain physics)
 - Output: Calculated flight time $(\eta(x, \theta))$

flight time

 $\eta(x, \theta)$ is the root of the equation $s(\tau) = 0$.

Sensitivity Analysis

Single and multiple parameter effects (% total variation)

		θ
X	70.97%	5.46%
θ	•	23.57%

Single parameter effects (averaged over all other parameters)

Sensitivity analysis provides:

- Decomposition of total output variance due to individual and joint input parameter variations
 Plots of individual or
 - Plots of individual or joint input parameter effects

Calibration and Prediction

<u>Inputs</u>

x controllable t uncertain physics θ best, unknown value of t

Basic steps in calibration analysis:

- 1. Assume initial probability dist'n for physics uncertainties θ .
- 2. Calibrate parameters θ to field data and simultaneously infer model discrepancies.

UNCLASSIFIED

QMU for Certification

• Margin (M) is typically defined as the difference between expected performance, $E[\zeta(\mathbf{x})]$, and a threshold level, a, required for performance

Lower bound threshold Upper bound threshold $M(\mathbf{x}) = \max(E[\zeta(\mathbf{x})] - a,0) \qquad M(\mathbf{x}) = \max(a - E[\zeta(\mathbf{x})],0)$

• Uncertainty (U) is defined by some combination of uncertainties in performance, $U_1(\mathbf{x})$, and in the threshold level, U_2 . Performance uncertainty $U_1(\mathbf{x})$ is often taken to be the standard deviation of $\zeta(\mathbf{x})$. For example,

$$U(\mathbf{x}) = U_1(\mathbf{x}) + U_2 = SD[\zeta(\mathbf{x})] + U_2.$$

 Confidence ratio (CR) is defined as the ratio M/U. Margin M and, in particular, uncertainty U are chosen so that CR > 1 implies certification.

Reliability for Certification

• Reliability (R) is defined as the probability of successful performance. Assuming random threshold A, it is calculated as follows:

Lower bound threshold

Upper bound threshold

$$R(\mathbf{x}) = \Pr[\zeta(\mathbf{x}) > A]$$
 $R(\mathbf{x}) = \Pr[\zeta(\mathbf{x}) < A]$

$$R(\mathbf{x}) = \Pr[\zeta(\mathbf{x}) < A]$$

- Reliability exceeding a pre-specified level, e.g. 0.95, implies certification
- In general, no easily specified analytic relationship between CR and R

For tower, assume upper bound threshold A has mean, a = 3.5, and

standard deviation, $U_2 = 0.5$.

Confidence ratio and reliability will be calculated and compared.

From statistical analysis, $\zeta(\mathbf{x})$ is a mixture of Gaussian dist'ns. Threshold A is assumed to be Gaussian and independent of $\zeta(\mathbf{x})$ for calculating R.

Results

If x < 0.405, then CR > 1: Performance is certified for heights up to 0.405.

Reliability at x = 0.405 (CR = 1) is only 87%!

Reliability is a more meaningful measure for making certification decisions; however, more assumptions are required (e.g. joint dist'n of $\zeta(\mathbf{x})$ and A).

Confidence hatto					والموال والمراجع والمواجع المواجع والمواجع والمحاجع والمحاجع والمحاجع والمحاجع والمحاجع والمحاجع والمحاجع والم	A TON AND AND AND AND AND AND AND AND AND AN				_
0 0 3.5	0.1	0.2	0.3	0.4	0.5 x	0.6	0.7	0.8	0.9	
3-										_
2.5-										ĺ
2-										
1.5										/
0.5-								/		
0	0.1	0.2	0.3	0.4	0.5 Reliability	0.6	0.7	0.8	0.9	_

Confidence Ratio	
1	0.87
1.46	0.95
2.07	0.99
2.76	0.999

Required confidence for certification increases at higher rate as reliability requirement approaches one.

