Fine-Tuning YOLOv8 for Small Object Detection in Traffic Monitoring

Gaurav Patil 012629189 CSCI611 - Spring 2025

March 19, 2025

1 Introduction

Object detection is a fundamental task in computer vision, playing a crucial role in areas such as autonomous driving, traffic surveillance, and smart city development. While state-of-the-art models like YOLOv8 excel at detecting large objects such as vehicles and pedestrians, they often struggle with **small** and distant objects like traffic lights, stop signs, and speed limit signs.

This project investigates the effectiveness of fine-tuning YOLOv8 for small object detection, specifically in the context of traffic monitoring. The objective is to enhance the model's performance in detecting traffic signs while analyzing the trade-offs between **specialization and generalization** when training on a **new**, **limited dataset**.

2 Dataset and Preprocessing

2.1 Dataset Source

For this experiment, I used the **Self-Driving Car dataset** from Roboflow [1], which contains a variety of **traffic signs**, **signals**, **and road markers**. The dataset was downloaded and extracted using the following setup in Google Colab:

```
[ ] from roboflow import Roboflow

rf = Roboflow(api_key="<KEY>")

project = rf.workspace("selfdriving-car-qtywx").project("self-driving-cars-lfjou")

version = project.version(6)

dataset = version.download("yolov8")

1 loading Roboflow workspace...

loading Roboflow project...

Downloading Dataset Version Zip in Self-Driving-Cars-6 to yolov8:: 100%| 100921/100921 [00:08<00:00, 11899.73it/s]

Extracting Dataset Version Zip to Self-Driving-Cars-6 in yolov8:: 100%| 100921/100921 [00:08<00:00, 7022.44it/s]
```

Figure 1: Downloading and extracting the dataset in Google Colab.

2.2 Data Preprocessing

The dataset was carefully prepared to ensure compatibility with YOLOv8's training pipeline. The key preprocessing steps included:

- Image resizing: Adjusted to 1280x1280 pixels for improved detection of small objects.
- Data augmentation: Applied techniques such as flipping, scaling, rotation, and blurring to improve generalization.
- Annotation verification: Checked and converted bounding box labels to YOLO format.
- Class mapping: Ensured that class names matched expected model inputs.

3 Training Configuration and Constraints

3.1 Training Setup

The model was trained on **Google Colab** using a Tesla T4 GPU. The following image shows the actual training setup, including hyperparameters, validation results, and final accuracy:

Figure 2: Training YOLOv8 model in Google Colab.

3.2 Training Constraints and Accuracy Limitations

This project was conducted on **Google Colab**, which provides limited access to GPU resources. The constraints included:

- Limited Training Epochs: Due to hardware restrictions, the model was only trained for 20 epochs. A longer training duration could have significantly improved accuracy.
- GPU Memory Limitations: Batch sizes had to be reduced to prevent out-of-memory errors.
- Restricted Training Duration: Colab imposes time limits on GPU usage, restricting extensive hyperparameter tuning.

• Limited Dataset Size: Since the dataset used for fine-tuning contained only traffic signs and not other objects such as vehicles, the model lost its ability to detect previously recognized objects.

These constraints resulted in a model that, while improved for small object detection, had limited generalization capability. Training on a **larger dataset** with **higher computational resources** would have likely improved accuracy and robustness.

4 Challenges and Observations

4.1 Loss of General Object Detection

A key issue observed after fine-tuning was that the model **stopped detecting vehicles and other previously recognized objects**. This occurred due to:

- Catastrophic Forgetting: The new dataset contained only traffic signs and signals, causing YOLOv8 to gradually "forget" how to detect vehicles.
- Class Overwriting: YOLO relies on dataset annotations to determine what objects exist. Since vehicles were absent in the fine-tuning dataset, the model stopped recognizing them.
- Limited Class Set: Without training on both old and new classes, YOLOv8 restructured its detection head to focus only on newly learned objects.

4.2 Stop Sign Detection - Pre-trained vs Fine-tuned Model

The stop sign detection results before and after fine-tuning are shown below:

Figure 3: Stop sign detection using the pre-trained YOLOv8 model.

Figure 4: Stop sign detection using the fine-tuned YOLOv8 model.

The fine-tuned model demonstrated improved confidence in detecting traffic signs, but it no longer recognized other objects such as vehicles.

4.3 Processed Model and Video Links

The trained models and processed videos can be accessed here:

Google Drive Link for Models and Processed Videos

5 Evaluation and Results

5.1 Training Loss and Metrics

Figure 5: Training Loss and Performance Metrics

5.2 Confusion Matrices

Figure 6: Normalized Confusion Matrix

5.3 Precision-Recall and Confidence Curves

Figure 7: Precision-Confidence Curve

Figure 8: Recall-Confidence Curve

Figure 9: Precision-Recall Curve

Figure 10: F1-Confidence Curve

6 Conclusion and Future Work

This project highlights the benefits and trade-offs of fine-tuning YOLOv8 for small object detection in traffic environments. While detection accuracy for **traffic lights and signs** improved, the model lost its ability to detect larger objects such as vehicles.

Key Takeaways:

- Fine-tuning improved small object detection but caused the model to forget previously learned classes.
- **Higher resolution training** (1280x1280) enhanced small object visibility.
- Limited epochs and dataset size restricted accuracy improvements and generalization.

Future Work:

- Integrate a Multi-Task Dataset: Training on both small and large objects will help maintain general detection.
- Increase Training Duration: Running for 50+ epochs with better hardware will likely improve accuracy.
- Use Transfer Learning: Freezing early layers and using knowledge distillation can mitigate catastrophic forgetting.

• Optimize Video Processing: Explore more efficient encoding techniques to reduce output file size.

References

[1] Roboflow Self-Driving Car Dataset. Available: https://universe.roboflow.com/selfdriving-car-qtywx/self-driving-cars-lfjou/dataset/6