线性代数, 习题 12

叶卢庆*

2014年8月19日

习题. 令 $P_2(\mathbf{R})$ 为所有次数不超过 2 的实系数多项式形成的线性空间. 在 $P_2(\mathbf{R})$ 上定义内积

$$\langle f, g \rangle := \int_0^1 f(x)g(x)dx.$$

- 求出 $P_2(\mathbf{R})$ 的一组标准正交基.
- 求出 (1,x)[⊥] 的一个基.

• $P_2(\mathbf{R})$ 是一个三维线性空间, $(1,x,x^2)=(\nu_1,\nu_2,\nu_3)$ 是一组有序基. 显然这组基并非正交基, 证明. 但是我们可以利用 Gram-Schimidt 正交化过程将这组基正交化. 令 $w_1 = v_1$,

$$w_2 = v_2 - \lambda_1 v_{1,1} = x - \lambda_{1,1},$$

且 w₂ 与 v₁ 正交, 因此

$$\int_0^1 x - \lambda dx = 0 \Rightarrow \lambda_{1,1} = \frac{1}{2}.$$

因此 $w_2 = x - \frac{1}{2}$. 令 w_3 与 w_1, w_2 都正交, 且

$$w_3 = v_3 - \lambda_{1,2}v_1 - \lambda_{2,2}v_2 = x^2 - \lambda_{1,2} - \lambda_{2,2}x,$$

且

$$\begin{cases} \int_0^1 x^2 - \lambda_{1,2} - \lambda_{2,2} x dx = 0, \\ \int_0^1 (x - \frac{1}{2})(x^2 - \lambda_{1,2} - \lambda_{2,2} x) dx = 0. \end{cases} \Rightarrow \begin{cases} \int_0^1 x^2 - \lambda_{1,2} - \lambda_{2,2} x dx = 0, \\ \int_0^1 x^3 - \lambda_{1,2} x - \lambda_{2,2} x^2 dx = 0. \end{cases} \Rightarrow \lambda_{1,2} = \frac{-1}{6}, \lambda_{2,2} = 1.$$

因此 $(1,x-\frac{1}{2},x^2-x+\frac{1}{6})$ 是 $P_2(\mathbf{R})$ 的一组正交基. 进一步, $(1,12x-6,180x^2-180x+30)$ 是 $P_2(\mathbf{R})$ 的一组标准正交基.

^{*}叶卢庆 (1992—),E-mail:yeluqingmathematics@gmail.com