Metagenomic Binning Pipelines - the State of the Art

1

3 Contents	3	Content	S
------------	---	---------	---

4 1 Abstract

5	2	Background	2
6	3	Overview of recent methods for metagenomic binning	3
7		3.1 Progress in recent binning strategies	3
8		3.1.1 Binning co-abundant genes	4
9		3.1.2 Binning microbial genomes with deep learning	4
10		3.2 Binning of viral genomes	5
11		3.3 Binning Pipelines	5
12	4	Suggestions on choosing a binning algorithm	6
13	5	Conclusion	8
14	Re	eferences	8
15	1	Abstract	
16	Nε	ew generations of sequencing platforms coupled with numerous bioinformatics tools have led	to
17	raj	pid technological progress in metagenomics to investigate complex microorganism communities	s.
18	Nε	evertheless, a combination of different bioinformatic tools remains necessary to draw conclusion	ns
19	ou	t of microbiota studies. As sequencing costs have dropped at a rate above 'Moore's law',	a
20	gre	eater number of large data sets are being produced than ever before. Newer algorithms the	at
21	tal	ke advantage of the size of these datasets are continually being developed. Binning algorithm	ns
22	are	e defined as the grouping of assembled metagenomic contigs by their genome of origin (Figure 1).

Figure 1: Summary of binning principles and techniques.

- 23 Selecting the most appropriate binning algorithm can be a daunting task and is influenced by many
- 24 factors. This review serves as a guide to direct the researcher to the binning algorithm that best
- 25 suits their needs.

2 Background

The explosion in popularity and success in the field of metagenomics over the last 25 years can be largely attributed to the advances in computing technologies. An example of the outcomes of this can be found in the Human Microbiome Project; a project that has been greatly improved the understanding of the microbila flora involved in human health and disease. These advances have brought with them greater demands for storage, CPU time, and consequently more efficient 31 algorithms. The main function of binning tools is to reconstruct species/biological entities from metagenomic samples. Compared to amplicon, shotgun metagenome can provide functional gene 33 profiles directly and reach a much higher resolution of taxonomic annotation. However, due to the high demands on computational resources, cost, and expertise necessary to perform this analysis, 35 researchers have historically been limited in their capacity to collect and analyse sequencing data. As the cost of sequencing is rapidly falling, this burden has been significantly lessened. Whole Genome Shotgun sequences does not require cultivation. At the time of writing, shotgun metagenomic sequencing costs on average three times as much as 16S sequencing in comparison. Here we will briefly recapitulate recent binning algorithms and highlight some of the developments in

- 41 the field, among them, the use of new algorithms and strategies employed to achieve the goal of
- 42 identifying the organisms composing microbiome communities. We hope this overview could aid
- the reader to choose a binning algorithm or a combination of them based on their specific needs.

3 Overview of recent methods for metagenomic binning

45 3.1 Progress in recent binning strategies

- 46 A metagenomic sample is comprised of many organisms and the goal of binning is to reconstruct
- 47 the sequences from each organism present in the original sample. The majority of binning tools
- 48 we can find are oriented toward clustering contigs (contig-binning) into bins, which may represent
- 49 the genome from a single biological entity/organism. A Metagenome-Assembled Genome (MAG)
- $_{50}$ is a single-taxon assembly based on one or more binned metagenomes that has been asserted to
- be a close representation to an actual individual genome (that could match an already existing
- isolate or represent a novel isolate).
- 53 Current contig-binning tools normally are reference free (i.e do not depend on reference se-
- quences to perform clustering) and rely on coverage information and sequence composition. Progress
- 55 in contig-binning algorithms can be seen in the proposals to integrate new sources of information
- 66 (for example, from scaffold-graphs(Binnacle), paired-end reads(COCACOLA), or 3D contact in-
- ₅₇ formation(MetaTOR)) and state of the art algorithms in machine learning (CoCoNet, Variational
- Autoencoders for Metagenomic Binning (VAMB)).
- We also notice the development of Bin refinement tools (DAS-tool, Binning Refiner), this tools
- 60 rely on the outputs from multiple contig-binning algorithms and attempt to combine them to
- 61 produce better results.
- Binning of contigs have played a central role in software development in the field, a review on
- the benchmarking binning algorithms was done by Yue et al., 2020.
- Beside contig-binning tools we can also distinguish read-binning tools and co-abundant-gene-
- 65 binning tools.
- The main purpose of read-binning tools is to pre-process reads into clusters for a posterior
- targeted assembly, here we find reference-free and non-reference-free tools, and tools designed for
- short-read or long-read sequencing technologies. Among the binning tools developed in recent
- 69 years a subset of them are dedicated to cluster reads (read-binning) (MetaBBC-LR, BioBloom
- Tools, CLAME, LVQ-KKN, Meta VW, HirBin, MEGAN-LR).

1 3.1.1 Binning co-abundant genes

Binning of co-abundant genes represents an alternative proposal to reconstruct species/biological entities from a set of metagenomic samples. Co-abundant gene binning methods assume each gene coming from a shared chromosome will display proportional abundances across samples, if you have enough samples from a similar environment you can identify the sets of genes from a common organism of origin (MLGs Chameleon-clust 2012, CAGs and MGSs Canopy 2014, Markovclust-MGCs Karlsson 2013, MSPs MSPminner 2018) (Karypis, Han, & Kumar, 1999; Plaza Oñate et al., 2019). In the past few years the MSP miner software was developed exploiting this approach. MSPminer introduced a robust proportionality measure detecting co-abundant but no necessarily co-occurring. This tools groups co-abundant genes into Metagenomic Species Pan-genomes or Metagenomic Species Pan-genomess (MSPs) and classify genes within an MSP as core, accessory 81 and shared. Core genes are present in all strains, accessory are present only in some (Medini et al., 2005), the shared category applies for those genes which may be present in more than one MSP due to horizontal transfer. The factors that impact directly on MSP quality include the sample composition, the sequencing depth, the previous bioinforamtic steps to build the reference gene dataset and to map the reads. MSPs can be employed for taxonomic profiles of new samples from similar ecosystems at the species level, and also to compare strains between samples building a presence/absence table of accessory genes and for biomarker discovery. By binning contigs carrying genes from the same MSP it is also possible to build a MAG.

3.1.2 Binning microbial genomes with deep learning

The integration of deep learning techniques into the field of metagenomics has revolutionised the field of metagenomics. The Software VAMB and CoCoNet constitute two such examples in the binning area.

The main feature VAMB is the application of the Deep Learning technique knwon as Variational Auto Encoders (VAE). The variational autoencoders in VAMB learn how to integrate two data types, coabundance and kmer composition. The reulting latent representation clusters better than either of the inputs, but in principe is not limited by only two data types, and it would be possible to incorpoate more data as input to the VAE. VAMB also applies a "mulitsplit" approach where each cluster should correpond to an organism representation across samples and each bin in a cluster to a per-sample representation of the genome of that organism. Deep learning approaces also benefit from the fact GPU technology has advanced rapidly over the past few years.

The CoCoNet software uses deep learning and clustering to bin contigs into clusters representing species present in the samples. The algorithm consists in two phases, the first phase train a neural network to estimate the probability that two contigs come from the same genome, given their composition and coverage information. The second use a heuristic to bin the contigs using the probabilities inferred in the first stage An interesting feature in CoCoNet is it was trained on viral genomes. In the following section we discuss more about binning on viral genomes.

3.2 Binning of viral genomes

102

104

106

107

112

113

115

117

118

119

120

121

122

124

126

Most binning algorithms are designed for prokariotic organisms leaving viruses out of the software scope. Viruses important for many reasons, thus it was not unexpected binning algorithms focusing on sequences of viral origin also have shown some progress.

CoCoNet uses deep leaning to model co-ocurrence of contigs from the same viral genome. The network was optimized for diverse viral metagenomes, the network learns to model coverage variability within samples, a critical feature in viral metagenomes where DNA amplification methods are needed to increase input genetic material.

VirBin clusters contigs for genome reconstruction of viral strains, different strains within viral species may show different biological properties such as transmissibility or virulence. Composition based features are usually are not enough to separate haplotypes, VirBin receives contigs as inputs and outputs the estimated number of haplotypes via contig alignment and returns the contigs for each haplotype based on relative abundance distribution, when the contigs are long enough VirBin produce better results.

Newer strategies has been proposed and employed to reconstruct viral genomes from metagenomic samples, in a recent work (Natfach 2021) a new compendium of 189680 DNA viruses from the human gut microbiome was produced. In this work they use viral informative features, among them are presence of viral protein families (Paez-Espino 2016), and absence of non-viral families (El Gebali 2019), gene strand switch rate (Roux 2015) and the score produced from the VirFinder(Ren et al 2017) software

3.3 Binning Pipelines

Other advances in binning consist in the integration of existing tools and software into bioinformatic pipelines, which allow the automatic processing from beginning to end of read samples into bins or the addition of extra processing steps to address specific biological questions or problems ² related to the sample of origin.

MetaWRAP is a modular pipeline ready to perform common tasks in metagenomic analysis, starting from read quality checks up to bin creation, refinement, reassembly quantification,
taxonomic annotation and functional annotation. MAGO pipeline integrates metagenome assembly, binning, bin improvement, bin quality check, bin functional annotation, and bin taxonomic
annotation. SqueezeMeta also integrates external software to perform the complete analysis of
metagenomic samples from sequences reading to MAG construction and annotation.nf-coreMAG
supports both short and long reads, performs quality and adapter trimming, quality check, performs assembly, binning, checks bin quality and assigns taxonomy.

Autometa was developed to deal with non-model Eukariotic host contamination and complex single metagenomes, the application integrate sequence homology, nucleotide composition, coverage and single-copy marker genes to separate microbial genomes from non model host genomes. Sequences is a tool written in R which tries to separate endosymbionts from their host sequences, they propose the use specific features in endosymbiotic systems to better solve this problem. This tool combines partial taxonomic annotations obtained trough homology searches and sequence composition to predict the contig's organism of origin from host and its endosymbionts and helps the user to understand how effective is the classification.

Among pipelines benefits we can mention they ease the reproducibility and scalability of metagenomic analysis, and they allow people with little computational experience to perform complete analysis in less time.

4 Suggestions on choosing a binning algorithm

A number of aspects should be considered when performing binning analysis on metagenomic samples, among them we can mention the computational resources available, the sequencing technology, the number of samples and the sample's source. Some tools employ more resources than others, and some perform better under specific circumstances, a review on the benchmarking contig-binning algorithms was done by Yue et al., 2020. If you are dealing with a large number of samples a gene-binning strategy could be taken into consideration, tools like CoMet were built around single sample binning. Long read sequence technology is gaining momentum and some tools also integrate the characteristic features generated under this technology. The environment under study also play an important role for binning, sometimes there exists host organisms whose genome sequences would be removed before starting the analysis. The environment also has a

Table 1: Comparison of binning algorithms

Software/Algorithm	Year	Description/purpose	Comment/Highlight	Doi	PubmedID
CoCoNet	2021	Deep learning tool for Viral Metagenome Binning	Reconstucts viral genomes	10.1093/bioinformatics/btab213	33822891
Binnacle	2021	Using scaffolds to improve Metagenomic bin quality	Incorporates scaffold information	10.3389/fmicb.2021.638561	33717033
VAMB	2021	Metagenome binning using deep variational autoe	Antoencoder algorithm, fast processing	10.1038/841587-020-00777-4	33398153
phyloFlash	2020	serBNA profiling and MAG assembly	incorporates serBNA profiling info into MAG ass	10 1128/mSvstems 00920-20	33109753
MetaBCC-1.B	00000	Metagenomic binning for Long-Reads	Suitable for Long Reads segmenting technology	10 1003/bioinformatics/btss441	32657364
Metaboo-Liv	0000	Metagenomic Diming for Long-reads	Santable for nong reads sequenting technology	10.1030/ DIOINIOIMAGICS/ DEGG441	4.500000
BioBloom Tools	2020	Keads binning for targeted assembly, alignment	Data preparation for targeted assembly, using s	10.1073/pnas.1903436117	32641514
GraphBin	2020	Refined binning of metagenomic contigs using as	Incorporates assembly graphs information	10.1093/bioinformatics/btaa180	32167528
MetaSIPSim	2020	Simulating metagenomic stable isotope probing d	Augment binning resolution with extra experimen	10.1186/s12859-020-3372-6	32000676
MetaCon	2019	Unsupervised binning k-mers and coverage, focus	Focus different lengths contigs	10.1186/s12859-019-2904-4	31757198
VirBin	2019	Binning viral haplotypes from assembled contigs	Viral haplotypes MAGs	10.1186/s12859-019-3138-1	31684876
MAGO (*only tool pipeline)	2019	Framework for Production and analysis of MAGs	pipeline	10.1093/molbev/msz237	31633780
SeqDex	2019	Genome separation of Endosymbionts from mixed s	Identification of endosymbiont	10.3389/fgene.2019.00853	31608107
MetaTOR	2019	High quality MAGs from mammalian guts using met	Incorporates 3D contact information	10.3389/fgene.2019.00753	31481973
MetaBAT 2	2019	Adatptative binning algorithm for genome recons	Eliminates manual parameter tuning from previou	10.7717/peeri.7359	31388474
MetaBMF	2019	Scalable binning algorithm for large scale meta	Employs sample X contigs of mapped read counts	10.1093/bioinformatics/btz577	31347687
PolyCRACKER	2019	Method for partitioning polyploid sub genomes b	Haplotypes for polyploid genomes	10.1186/s12864-019-5828-5	31299888
SolidBin	2019	Improving metagenome binning with semi-supervis	NaN	10.1093/bioinformatics/btz253	30977806
Autometa	2019	extraction of microbial genomes from individual	Handles eukaryotic contamination	10.1093/nar/gkz148	30838416
MLBP MrGBP (Algorithm)	2019	Signal processing method for alignment free met	Alternative description of sequences designed f	10.1038/s41598-018-38197-9	30770850
CLAME	2018	Aligment based algorithm allowed description of	Aligment based for reads	10.1186/s12864-018-5191-y	30537931
3D BH SNE (Algorithm)	2018	Fuzzy binning of metagenomic sequence fragments	Horizontal gene transfer and regions of uncerta	10.1109/EMBC.2018.8512529	30440633
LVQ-KNN	2018	Composition based RNA or DNA binning of short s	Classify into DNA or RNA sequence	10.1016/j.virusres.2018.10.002	30291874
MSPminer	2018	Abundance based reconstitution of microbial pan	Pan genome reconstitution	10.1093/bioinformatics/bty830	30252023
MetaWRAP*	2018	Flexible pipeline for genome resolved metagenom	Hybrid bin extraction algorithm	10.1186/s40168-018-0541-1	30219103
MetaVW	2018	Large scale Machine Learning Sequence classific	Machine learning for reads based on Khmer profile	10.1007/978-1-4939-8561-6_2	30030800
Opal (algorithm*)	2018	Metagenomic binning through low density binning	Improvement at higher taxonomic levels, discove	10.1093/bioinformatics/bty611	30010790
BMC3C	2018	Binning contigs using codon usage sequence comp	Add codon usage information	10.1093/bioinformatics/bty519	29947757
AMBER tool	2018	Assessment of Metagenome Binners	NaN	10.1093/gigascience/giy069	29893851
DAS Tool	2018	Derreplication aggregation and scoring strategy	Combines several binning algorithm results	10.1038/s41564-018-0171-1	29807988
MEGAN-LR	2018	Long Read/contigs taxonomic binning	Aligment of long reads against reference sequences	10.1186/s13062-018-0208-7	29678199
CoMet	2018	Binning workflow using contain coverage and com	Single sample, include gc content and 4mer fre	10.1186/s12859-017-1967-3	29297295
٥.	2017	Metagenomic binning and association of plasmids	Plasmid banning at strain level using methylati	10.1038/nbt.4037	29227468
MetaGen	2017	reference-free learning with multiple metagenom	Requires multiple samples	10.1186/s13059-017-1323-y	28974263
d2sBin add onn	2017	Improved formula for calculate oligonucleotide	Math formula to calculate oligo sequence dissim	10.1186/s12859-017-1835-1	28931373
BusyBee Web	2017	Bootstrapped supervises binning and annotation	2d interactive scatterplots supervised binning	10.1093/nar/gkx348	28472498
ICoVer	2017	Interactive visualisation tool for verification	Interactive visualisation tool	10.1186/s12859-017-1653-5"	28464793
HirBin*	2017	High resolution identification of differentiall	Supervised annotation, unsupervised clustering	10.1186/s12864-017-3686-6	28431529
BinSanity	2017	Unsupervised clustering using coverage and affi	Reduce bias for high/low abundance	10.7717/peerj.3035	28289564
Binning_refinner	2017	Improve genome bins through the combination of	Combination of different binning algorithms	10.1093/bioinformatics/btx086	28186226
IFCM add on	2016	Improved binning using Fuzzy C-Means Method	Add estimated distribution of real genome lengths	10.1109/TCBB.2016.2576452	27295684
COCACOLA	2016	binning contigs using composition, read coverag	Adds paired end read and coaligment information	10.1093/bioinformatics/btw290	27256312
GroopM (2)	2014	Tool for automatic recovery of population genom	Adds differential coverage to complement compos	10.7717/peerj.603	25289188

profound effect on the sample's diversity, higher diversity need more sequencing depth and are harder to bin. It is also difficult for binning tools to discern between similar strains within the same sampe. It is also worth mentioning that most of the available tools are not mutually exclusive and it is possible to benefit from the advantages each one has to offer and merge results depending of the aim of the study. Besides binning, other types of metagenomic analysis can be performed on microbiomes, recent reviews provide an overview of the complete process and practical guides to apply available software.

5 Conclusion

Until now binning methods perform poorly in samples that contain similar strains. Also do not perform great assigning 16S sequences to bins maybe due to high copy number of these sequences within a genome. Binning has been focused mainly in prokariotic organisms. Binning of organisms outside prokariotes need more development, lately some advances have been observed in viral genomes (cite viral catalogue and viral binning organims) but the huge diversity in viral genomes still poses a challenge for current methodologies. Eukariotic microscopic organisms does not appear in the current picture.

The continuously increasing number of sequences available require more efficient/faster algorithms and new strategies to reconstruct single organisms from environmental samples. New sources of experimental information might add up into solving the binning central problem. Development of Machine learning algorithms have started in the field and we expect to see more development soon

References

178

179

181

190

191

Karypis, G., Han, E.-H., & Kumar, V. (1999). Chameleon: Hierarchical clustering using dynamic modeling. Computer, 32(8), 68–75.
Plaza Oñate, F., Le Chatelier, E., Almeida, M., Cervino, A. C., Gauthier, F., Magoulès, F., ...
Pichaud, M. (2019). Mspminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics, 35(9), 1544–1552.
Yue, Y., Huang, H., Qi, Z., Dou, H.-M., Liu, X.-Y., Han, T.-F., ... Tu, J. (2020). Evaluating

BMC bioinformatics, 21(1), 1–15.

metagenomics tools for genome binning with real metagenomic datasets and cami datasets.