Druid在360的实践与优化

nichuanlei@360.cn

Agenda

- Druid在360的实践
- 功能优化
 - Virtual datasource
 - Naïve Virtual datasource
 - Improved Virtual datasource
 - 三个细节改进
- 未来计划
 - Druid realtime on flink

Druid在360的实践

- Druid版本
 - 在0.10.0的基础之上修复bug、增加功能
- 集群状态
 - 两个集群,分别包含20台、10台机器
 - 机器配置
 - 内存: 256G
 - CPU: 24核
 - 磁盘: 1.2T Flask卡
 - 网络: 普通千兆
- 业务状态
 - 60 ↑ data source
 - 平均每天导入100亿条原始数据
 - 95%查询在3秒以内,平均查询1.4s

Druid在360的实践

• 前端交互页面

• Virtual datasource的思路

+	+	-+
datasource	C	dims
+	+	-+
dm dss sj user di	129	br,is active,md
dm_dss_sj_user_di	100	br
dm_dss_sj_user_di	74	br,is_active
dm_dss_sj_user_di	45	br,md
dm_dss_sj_user_di	28	is_active
dm_dss_sj_user_di	19	is_active,package
dm_dss_sj_user_di	19	br,is_active,v
dm_dss_sj_user_di	18	is_active,sk
dm_dss_sj_user_di	13	br,city
dm_dss_sj_user_di	10	br,is_active,sk
dm_dss_sj_user_di	9	sk
dm_dss_sj_user_di	9	is_active,md
dm_dss_sj_user_di	7	ch_catef,price,md,sk
dm_dss_sj_user_di	6	is_active,v
dm_dss_sj_user_di	6	is_active,is_online

datasource	C	dims
sys-shbt_wukongtvsdk_logshare_event_hyper	432	event_key
sys-shbt_wukongtvsdk_logshare_event_hyper	51	packname,event_key
sys-shbt_wukongtvsdk_logshare_event_hyper	9	event_seg
sys-shbt_wukongtvsdk_logshare_event_hyper	6	packname
sys-shbt_wukongtvsdk_logshare_event_hyper	5	servercountry
sys-shbt_wukongtvsdk_logshare_event_hyper	5	channel
sys-shbt_wukongtvsdk_logshare_event_hyper	4	event_seg,event_ke
sys-shbt_wukongtvsdk_logshare_event_hyper	2	serverprovince

共41个维度

共17个维度

- Naïve Virtual datasource
 - 概念定义

derive tree作为整体对外提供查询服务, 我们把这个逻辑上的 datasource 称为virtual datasource

事实上, virtual datasource的schema与base datasource一致, 作为druid用户对整个derive tree无感知

- Naïve Virtual datasource (cont)
 - 实现思路

- Improved Virtual datasource
 - 简单版本的Virtual Datasource面临以下两个缺点
 - 在构建derive datasource期间, derive datasource不能发挥作用
 - 无法对实时灌入的datasource生效

- Virtual datasource的效果
 - 空间开销(多消耗2%以内的磁盘存储空间)
 - O wikiticker2
 - wikiticker2-0c224343
 - O wikiticker2-12dea96f
 - wikiticker2-4fcd0202
 - wikiticker2-665be35c
 - wikiticker2-6d61e5b1
 - wikiticker2-767013ce

以druid自带的wikiticker为例,我们在coordinator界面能看到左图的datasource

- 性能提升

- 某datasource 包含31个维度,每天30亿原始数据,build完成之后20G,平均查询延迟20秒
- 为其构建3个derive datasource, 每天消耗磁盘200M
- derive datasource覆盖80%以上查询,平均延迟2秒

细节改进1

• Historical单核打满

原因: historical并发地涉及到的segment处理完毕之后,由单个线程完成排序、序列化、压缩三个耗时功能解决方案:引入异步机制,将三个耗时操作并行化

细节改进2

• 传输层编码

Broker与Historical之间通过HTTP协议交换数据,默认打开gzip压缩,也可以选择不压缩 (plain json);如果Historical返回158M结果数据,使用不同编码、压缩方式发送耗时对比如下

单核问题+传输层编码=30%的性能提升

细节改进3

- Hive数据导入
 - 问题: hdfs上的数据不包含时间信息,时间信息只包含在partition中
 - 怎么办? 清洗一遍数据,将时间戳信息包含在hdfs中? 简单修改代码支持以下这种时间戳的配置格式

```
"timestampSpec" : {
    "format" : "yyyyMMdd",
    "column" : "__constant__",
    "missingValue": "20150912"
}
```

实际上hdfs原始数据中并不存在__constant__列,druid在build的时候遇到这种特殊情况就将其解析为20150912这一固定日期

未来计划

- 新的实时导入方案
 - kafka indexing service的问题
 - realtime node与historical资源竞争
 - 进程崩溃从头开始消费kafka
 - 作为一个实时统计方案,未能与现有系统完美融合
 - 我们的方案(druid realtime on flink)
 - On yarn
 - 管理实时灌入过程中的segment (checkpoint机制)
 - 完善的配套
 - 更有价值的意义
 - 成为实时统计业务的统一入口

总结

- ✓ Thanks
- ✓ Question?

