Automatic Multimeter PM2519

Service Manual

9499 475 02111 870309

Industrial & Electro-acoustic Systems **PHILIPS**

Automatic Multimeter PM2519

Service Manual

9499 475 02111 870309

IMPORTANT

This service manual is based on instruments with a serial number DY 01 3611 and onwards.

In chapter 9, modifications to the PM 2519, an overview is given of modifications in the earlier instruments.

PHILIPS

IMPORTANT

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

NOTE:

The design of this instrument is subject to continuous development and improvement. Therefore the instrument may not exactly comply with the information in the manual.

PHILIPS

Scientific & Analytical Equipment
Test & Measuring Instruments
Industrial Automation
Advanced Automation Systems

Scientific & Industrial Equipment Division

840917

PM2519

SME116

Already issued: --

Re : Accuracy counter level

As documentation for the PM2519 the service manual 9499 475 02111 and this information sheet should be used.

Problem: Signals with a level between 1,5V and 1,8V peak-peak 100 KHz cannot be measured with the PM2519.

Specified is that signals must not be lower than 1,5V 100 KHz.

Remedy: Roplace resistor R1306 for a resistor with a value of 64K9 (orderingnumber 5322 116 50514).

Note : All the instruments to be repaired must be adapted

PM2519/01 serialnumber lower than DY 01 01 711 PM2519/21 serialnumber lower than DY 21 00 726 PM2519/51 serialnumber lower than DY 51 01 061

DHILIDS

Scientific & Analytical Equipment Test & Measuring Instruments Industrial Automation Advanced Automation Systems

Scientific & Industrial Equipment Division

841205

PH2519

SME117

Already issued: SME116 Re

: Mains interference and this information sheet should be used.

remote operation.

As documentation for the PM2519 the service manual 9499 475 02111, SME 116

Problem: The display shows the previously displayed value, (e.g. the display does not change) and does not react to manual or

Cause : Mains interference will sometimes hang up the I2C bus of the microprocessor. The microprocessor of the IEC-625/IEEE-488 interface can also cause these problems .

Remedy : Replace capacitor C1600 for a capacitor with a value of 2200 uF 16V. (orderingnumber 5322 116 50514).

Proceed as follows:

- Unsolder C1600 and remove it - Place the mentioned capacitor (the (-) connection is the same. the (+) connections are the two last points of the mains switch) (see fig 1.)

Note : All the instruments to be repaired, with the following serial numbers, must be modified:

> PM2519/01 serial number lower than DY 01 01 411 PM2519/21 serial number lower than DY 21 00 626 PM2519/51 serial number lower than DY 51 01 766

Fig. 1. Main p.c.b., lay-out, component

•	TECHNICAL DA	NIA .								1-1
	1.1.	General	٠.	٠.	٠.	 :	٠.	٠.		. 1-1
	1.2.	DC voltage measurements		, ,	٠.	 				. 1-1
	1,3,	dB measurements in DC ranges		٠.		 				1-2
	1.4.	AC voltage measurements	٠.		٠.	 				1-2
	1.5.	dB measurements in AC ranges		٠.	٠.	 ,				. 1-3
	1.6.	DC current measurements			٠.	 	٠.			. 1-3
	1.7.	AC current measurements		. :		 	٠.			. 1-4
	1.8.	Resistance measurements				 				. 1-4
	1.9.	Diode measurements				 				1-5
	1.10.	Continuity check				 				1-5
	1.11.	Temperature measurements				 				1-5
	1,12,	Frequency measurements				 			,	1-6
	1.13.	Relative reference measurements		٠.		 				1-6
	1.14.	Conversion characteristics		٠.		 				. 1-6
	1.15.	Visual representation				 				. 1-7
	1,16.	Operating conditions in accordance with IEC-359				 				. 1-7
	1.17.	Mains supply conditions in accordance with IEC-359, group	p S	2 .		 				. 1-7
	1.18.	Battery supply (PM2519/21 version only)		٠.		 				. 1-7
	1,19.	Input terminals arrangement				 				. 1-8
	1.20.	Time function ADC				 				. 1-8
	1,21.	Warm-up time	٠.			 				. 1-8
	1,22.	Calibration				 				. 1-8
	1,23.	Accessoires				 				. 1-8
	1.24.	Miscellaneous	٠.			 	٠.			. 1-8
	1,25.	Safety		٠.		 				1-8

2.	CIRCUIT DESCR	RIPTION	2-1
	2.1.	General	. 2-1
	2.2.	Survey of the sections	2-2
	2.2.1.	Analog section	2.2
	2.2.2.	Digital section	
	2.2.3.	Display section .	
	2.2.3.	Display securit	. 2-3
	2.3.	Functional section	. 2-4
	2.3.1.	General	. 2-4
	232	Analog section	. 2-4
	2221	DC voltage measurements	
		Alternating voltage measurements	
		DC current measurements	
		Alternating current measurements	
		Resistance measurements	
		Diode measurements	
	2,3,2,7.	Temperature measurements	. 2-8
	2.3.2.8.	Frequency measurements	. 2-9
	2.3.3.	RMS converter	2.12
	2.3.4.	Analog to digital converter	
	2.0.4.	runing to digital control	. 2-10
	2,4.	Digital section	. 2-14
	2,4.1.	ADC interface	. 2-14
	2.4.1.1.	Overview ranges	. 2-16
	2.4.2.	Microcomputer	2-17
	2.4.3.	I ² C interface	
	244	Measuring sequence	
	2.4.5.	Control inputs	
	2.4.6.	RAM	. 2-22
	2.5.	Display	. 2-22
	2.6.	Power supply	. 2-23
	2.7.	PM2519/21	2.23
	2.7.1.	General	
	2.7.1.	Charging circuit	
	2.1.2.	Charging circuit	. 2-23
	2.8.	PM2519/51	2.24
	2.8.1.	IEC-625/IEEE-488 interface	
3.	CHECKING AND	ADJUSTING	3-1
	3.1.	General	. 3-2
	3.2.	Adjusting the PM2519 with the aid of a controller	. 3-3
	3.3.	Part A	3-6
	3.4.	Part B	. 3-8
	3.5.	Adjusting the battery power supply	3-13

4.	FAULT-FINDING	G 4	-1
	4.1.	General	
	4.1.1.	Service hints	
	4.1.2.	Fault-finding procedure	-2
	4.2.	Fault-finding flowcharts	.2
	4.2.1.	Initial test	
	422.	Function part test	
	4.2.3.	Vdc, mV and 11 > preset test	
	424	Vac part test	
	4.2.5.	Add part test	
	42.6	Aac part test 4	
	4.2.7.	Ohm part test	
	4.2.8.	Hz part test 4	
	4.2.9.	ADC part test	
	4.2.10.	Digital part test 4	
	4.2.10.	Display part test	
	4.2.12.	Power supply test	
		Galvanic separation test (PM2519/51)	
	4,2.14.	IEC-bus test (PM2519/51)	-16
5.	ACCESS	5	-1
	5.1.	Dismantling the PM2519	1
	5.2,	Dismantling the battery power supply (PM2519/21)	
	5.3.	Dismantling the IEC-bus and the galvanic separation	-6
6.	PARTS LIST	6	-1.
	6,1,	Main pcb	-1
	6.1.1.	Resistors	-1
	6.1.2.	Capacitors	-2
	6.1.3.	Semi-conductors 6	-4
	6.1.4.	Integrated circuits	-5
	6.1.5.	Miscellaneous	
		A LINE COLUMN TO A PROPERTY OF THE PROPERTY OF	
	6.2.	Additions to the parts list for PM2519/21 (bettery version)	
	6.2.1.	Resistors	
	6.2.2.	Semi-conductors	
	6.2.3.	Capacitors	
	6.2.4.	Integrated circuits	
	6.2.5.	Miscellaneous	-8
	6.3.	Additions to the parts list for PM2519/51	.9
	6.3.1.	Galvanic separation	9
	6.3.1.1.	Resistors 6	
		Capacitors 6	
		Semi-conductors	
		Integrated circuits	
		Miscellaneous	

	6.3.2.	IEC-bus interface	
	6,3,2,1,	Resistors	6-12
	6.3.2.2.	Capacitors	6-12
	6,3,2,3,	Semi-conductors	6-12
		Integrated circuits	
	6,3,2,5,	Miscellaneous	6-12
7.	CIRCUIT DIAGE	RAMS AND PCB LAY-OUT	7-1
8.	ADAPTING TO	THE LOCAL MAINS	8-1
	8,1.	PM2519/01/21	8-1
	8.2.	PM2519/51	8-1
9.	MODIFICATION	s	9-1
	9.1.	Modifications to the PM2519/01	9-1
	9.2.	Modifications to the PM2519/51	9-3
10	COMPONENT D	ATA	10-1

1. TECHNICAL DATA

All values mentioned in this description are nominal; those given with tolerances are binding and guaranteed by the manufacturer.

11 GENERAL

SMRR

Manufacturer : PHILIPS HIG S&I

Type number : PM 2519

Designation : Digital multimeter

Measured functions : V----, V~, dB, A----, A~, Ohm, ---- , in . °C. Hz. zero suppression

(Terms used in these specifications are based on definitions laid down in IEC 495.)

12 DC VOLTAGE MEASUREMENTS

Ranges : 100 mV*, 1 V, 10 V, 100 V, 1000 V

1 V. 10 V. 100 V. 1000 V with audible tone for input signals > preset

: 60 dB for a.c. signals at 50 Hz ± 0.1%

LO and earth 250 Vrms

(max, input voltage in highest range) - 1000 V

Resolution : 10 µV in 100 mV range

Number of representation units : 11000

Accuracy : ± (0.1% of reading + 0.02% of range)

Temperature coefficient : ± 0.015%/9C

Input impedence : 100 mV range 1 MO + 19/ 10 MΩ ± 1% 1 V, 10 V range

100 V, 1000 V range 9,11 MΩ ± 1%

Offeet current in input < 20 nA

40 dB for a.c. signals at 50 Hz ± 1%

CMRR : > 100 dB for d.c. signals > 100 dB for d.c. signals 50/60 Hz

Maximum CM-voltage : 250 V, 354 Vpeak

Response time : < 1 s including ranging

< 0.5 s excluding ranging

1000 Vrms** Maximum input voltage between : HI and LO HI and earth 1000 Vrms**

Max. V-Hz product of input signal : 107

Zeroina : Automatic

Zero point drift : Included in accuracy and temp. coefficient

Relative reference setting : With push-button "zero set on/off" Audible tone : For nominal voltage > preset value

± 3 digits, on separate position function switch :

in display if Vin > 110 V High voltage sign

^{*)} on separate position function switch

^{**)} in 100 mV range 250 Vrms

1.3. dB MEASUREMENTS IN DC RANGÉS

Range : -57 ... +43 dB (reference resistor 600 ohm)

Messured value less than 1 mV is displayed as -UL.,

measured value > 110 V is displayed as OL and
OdB reference : 1 mW in reference resistor or when selecting the relative

Resolution : 0.1 dB for signals ≥ 10mV

1. dB for signals < 10mV

Number of representation units : 999 for signals > 10 mV

99 for signals < 10 mV
Accuracy : Signals > 10 mV: 0.2 dB

Signals ≤ 10 mV: 1 dB
Temperature coefficient : 0.0013 dB/°C

Input impedance : 10 M Ω ± 1% for signals < 100 V 9.11 M Ω ± 1% for signals > 100 V

CMRR :> 100 dB for d.c. signals

> 100 dB for a.c. signals 50/60 Hz
Response time : < 1 s

Maximum input voltage between : HI and LO 1000 Vrms
HI and earth 1000 Vrms

1.4. AC VOLTAGE MEASUREMENTS

Input impedance

Renges : 1 V, 10 V, 100 V, 1000 V

(max. input voltage in highest range) : 600 V

Resolution : 100 pV in 1 V range
Measured value less than 0.2% of range is displayed as zero
Number of representation units : 11000

LO and earth

250 Vrms

10 kHz ... 20 kHz ± (5 % of reading + 0.5% of range)

Accuracy : 40 Hz ... 1 kHz ± (0.5% of reading + 0.1% of range) (valid between 3% and 100% of range) 1 kHz ... 10 kHz ± (1 % of reading + 0.1% of range)

Temperature coefficient :< 0.03%/°C

100 V, 1000 V range 1,802 M Ω ± 1% :> 100 dB for d.c. signals

> 80 dB for a.c. signals 50/60 Hz

Freq. range : 40 Hz ... 20 kHz

AC detector : rms converter, a.c. coupled

Crest factor : 2 at full scale, indication (\$\frac{1}{4}\) when crest factor exceeded Response time : < 2 s including, < 1 s excluding ranging

High voltage sign : ✓ in display if Vin 110 Vrms

Maximum input voltage between : HI and LO 600 Vrms

HI and earth 1000 Vrms

LO and earth 250 Vrms

: 1 V, 10 V range 2 MΩ ± 1%

Maximum d.c. voltage

Maximum V-Hz product Relative reference setting : 400 V : 107

: With pushbutton "zero set on/off"

15 **dB MEASUREMENTS IN AC RANGES**

Range

: -51 ... +43 dB (reference resistor 600 ohm).

0 dB reference

Measured value less than 2 mV is displayed as UL, measured value > 110 V is displayed as OL and

Reference resistor

: 1 mW in reference resistor or when selecting the relative reference function with push-button zero set on/off : 50, 75, 93, 110, 125, 135, 150, 250, 300, 500, 600, 800, 900, 1000, 1200, 8000 ohms can be selected with preset

Resolution

knob : 0.1 dB for signals ≥ 10 mV 1 dB for signals < 10 mV

Number of representation units

: 999 for signals > 10 mV 99 for signals < 10 mV

Accuracy for signals ≥ 80 mV

: 40 Hz ... 10 kHz ± 0.3 dB 10 kHz ... 20 kHz ± 1 dB

Signals > 10 mV < 80 mV : 40 Hz ... 10 kHz ± 1 dB 10 kHz ... 20 kHz ± 4 dB

: 0.003 dB/°C

Temperature coefficient Input impedance

: 2 MΩ ± 1% for signals < 100 V 1,802 MΩ ± 1% for signals ≥ 100 V

CMRR Freq, range : > 100 dB for d.c. signals > 80 dB for a.c. signals 50/60 Hz : 40 Hz ... 20 kHz

AC detector Crest factor : rms converter, a.c. coupled : 2 at full scale, indication (4) when crest factor exceeded

Response time Maximum input voltage between

: HI and LO 600 Vrms HI and earth 600 Vrms 250 Vrms

Maximum DC voltage

LO and earth - 400 V - 107

:<2 s

Maximum V-Hz product Relative reference setting

: With push button "zero set on/off"

1.6. DC CURRENT MEASUREMENTS

Ranges (max, input current in highest range) Resolution

: 20 mA 200 mA 2 A 20 A : 10 A (20 A for max. 20 sec.)

Number of representation units

: 10 µA in 20 mA range

Accuracy

: 2200 : ± (0.5% of reading + 0.1% of full scale)

Temperature coefficient

· 0.06%/PC : 20 mA, 2 A range < 60 mV 200 mA range < 300 mV

Voltage drop at end of range

at 10 A in 20 A range < 200 mV

1.7.

Response time Protected up to

Max. CM-voltage

Maximum input voltage between

Relative reference setting

AC CURRENT MEASUREMENTS

Ranges

(max, input current in highest range) Number of representation units

Resolutions

.

Accuracy (valid between 3% and 100% of range)

Temperature coefficient Voltage drop at end of range

AC detector

Crest factor Response time

Protected up to

Max. input voltage between

Relative reference setting

1.8. RESISTANCE MEASUREMENTS

Ranges Resolution

SMRR

Number of representation units

Accuracy

Temperature coefficient
Messuring current

Maximum voltage at open input

Relative reference setting Polarity input sockets

: - on HI + on LO

: < 1 s including, < 0.5 s excluding ranging

: 250 mVrms range 20 mA, 200 mA, Range 2 A, 20 A,not protected max. current 20 A for 20 sec.

: 250 Vrms, 354 Vpeak : HI and LO 250 Vrms HI and earth 250 Vrms

HI and earth 250 Vrms
LO and earth 250 Vrms
: With push-button "zero set on/off"

Tittle page outcome and and and

: 20 mA, 200 mA, 2 A, 20 A : 10 A (20 A for max, 20 sec.)

: 2200

: 10 µA in 20 mA range Measured value less than 20 digits is displayed as 0000

: 40 Hz ... 1 kHz : ± (0.8% of reading ± 0.1% of full scale) 1 kHz ... 5 kHz : ± (5 % of reading ± 0.1% of full scale)

: 0.05%/°C : 20 mA, 2 A range < 60 mV 200 mA range < 300 mV

at 10 A and 20 A range < 200 mV

: 9 at full scale; indication (‡) when crest factor exceeded

: < 2 s including, < 1 s excluding ranging : 250 Vrms range 20 mA, 200 mA. Range 2 A, 20 A, not protected; max. current 20 A for 20 sec.

: HI and LO 250 Vrms HI and earth 250 Vrms LO and earth 250 Vrms

: With push-button "zero set on/off" : 14 dB for d.c. signals at full scale

: 1000 Ω. 10 kΩ. 100 kΩ. 1 MΩ. 10 MΩ

: 100 m Ω in 1000 Ω range

: 11000

: 1000 Ω ... 100 k Ω ± (0.3% of reading + 0.1 of full scale) 1 M Ω ... 10 M Ω ± (0.5% of reading + 0.1 of full scale)

: 1000 Ω , 10 k Ω , 100 k Ω , 1 M Ω ranges: ± 0,02%/°C 10 M Ω range: ± 0.05%/°C

: 1 mA, 100 μ A, 10 μ A, 1 μ A, 100 nA, 10 nA

:3V

: With push-button "zero set on/off"

Response time

: < 2 s including ranging

< 1 s excluding ranging in ranges 1 k Ω ... 1 M Ω , 1.5 s for 10 MΩ range

Protected up to

Maximum input voltage between

: 250 Vrms : HI and LO

250 Vrms

HI and earth 250 Vrms LO and earth 250 Vrms

10 DIODE MEASUREMENTS

Driving current

: 1 mA

: 1000 mV Range

: 250 Vrms

Protected up to Maximum input voltage between

: HI and LO 250 Vrms HI and earth 250 Vrms

LO and earth 250 Vrms

Resolution : 100 aV

Number of representation units : 11000

: With push-button "zero set on/off"

: V/Ω/mA negative, "0" positve

Polarity input terminals 1.10. CONTINUITY CHECK

Isolation

Relative reference setting

: In diode range (Buzzer range)

: Diode/buzzer Range

Driving current : 1 mA

Short circuit : Audible tone from 0 ... 10 Ω : Resistance > 10 Ω, no tone

Response time : < 0.25 sec

1.11. TEMPERATURE MEASUREMENTS

Accessory required for temperature measurements ; Pt 100 probe

Range : -50 °C ... +200 °C

Resolution : 0.1 °C

Accuracy : -50 °C ... 0 °C = ± (3% of reading +0.5 °C)

0 °C ... 100 °C = ± (1% of reading +0.5 °C) 100 °C ... 200 °C = ± (2% of reading +0.5 °C)

Relative reference setting : With push-button "zero set on/off"

1 12 FREQUENCY MEASUREMENTS

Range

Range selection

Resolution

Number of representation units

Accuracy

Gate time range 1 kHz

ranges 10 kHz, 100 kHz, 1 MHz Conversion rate

range 1 kHz

ranges 10 kHz, 100 kHz, 1 MHz

Input sensitivity

10 Hz ... 100 kHz 100 kHz ... 1 MHz

Input attenuation

Coupling

Relative reference setting Maximum input voltage between : 1000 Hz. 10 kHz. 100 kHz, 1 MHz

: ranges 10 kHz, 100 kHz, 1 MHz: manual or automatic range 1000 Hz; manual only

: 0.1 Hz in rance 1000 Hz

: 11000

: ± 0.02% of full scale

: 10 :

: 1 conv/10 s

: 1 conv/s

: 1.5 V peak-peak

: 5 V peak-peak : automatically

LO and earth

: 2 MΩ

: AC : With push-button "zero set on/off"

: HI and LO 600 Vrms HI and earth 600 Vrms

1.13. RELATIVE REFERENCE SETTING

1.14. CONVERSION CHARACTERISTICS

Last measured value

Preset value (not for dB_{de} and dB_{se} measurements) : By pressing push-button "zero set on/off" : By selecting the preset value and pressing push-button

250 Vrms

"zero set on/off".

The preset value is a manual selected value; within the range of the number of representation units of the

selected function.

Recall of the relative reference setting : By pressing RCL knob

Type of conversion : linear

Operating principle : delta modulation
Basic mode of operation : repetitive triggered

Range setting : automatic or manual by means of UP-DOWN steps
Polarity setting : sutomatic on V-w-, A-w-, 9°C, trigger level dB and
zero set

1 16 VISUAL REPRESENTATION

Range hold

: Range up at 2200 +0. -4 digits for fm1 A----Range changing

[m] A~ ranges; 11000 +0, -4 digits for other ranges

: Possible via Man./Auto. switch

Range down at 200 ± 4 digits for [m] A----[m] A~ ranges; 1000 ± 4 digits for other ranges

Means of representation of output value : LCD, II mm, reflective

Additional analog representation by means of bargraph in LCD

Means of polarity representation : Automatic + and - in LCD

: With the function selector on the text plate Means of function representation

: Automatic in the LCD Meens of unit representation

Means of overload representation : LCD indicates OL Means of decimal point representation : Automatic, depending on the selected range in the LCD

Data hold : By using Data Hold probe PM 9267

OPERATING CONDITIONS IN ACCORDANCE WITH IEC 359 1.16.

: Group I of IEC 359 with extension of the temperature Climatic conditions

limit

Upper temperature limit 1 +45 °C Reference temperature : +23 °C ± 1 °C

Rated range of use · + n 9C 40 9C : ± 21 °C ... 25 °C (factory only) Adjustment temp, range

Relative humidity : 20 ... 80% non-condensing Max, dew-point 26 °C

Limit range of storage and transport : -40 °C ... +70 °C

Mechanical conditions : Group 2

: Electric and electromagnetic fields From external origin Magnetic fields

Ionizing radiation

MAINS SUPPLY CONDITIONS IN ACCORDANCE WITH IEC 359, GROUP \$2 1.17.

Reference value 220 V ± 1% Rated range of use : 220 V ± 10%

· Instrument can be altered for nominal voltage 240 V Note

Mains supply frequency

Reference value 50 Hz/60 Hz

: 47 ... 63 Hz Bated range of use Power consumption · < 10 VA

1.18. BATTERY SUPPLY (PM 2519/21 version only)

: > 20 hours Operating time Charging time

: 18 hours

1.19. INPUT TERMINALS ARRANGEMENT

Number of sockets : 4 : LO, HI, 20 A, probe; asymmetrical floating

1.20. TIME FUNCTION ADC

Conversion rate : 2.5 measurements/s

Range changing time : 0.3 seconds

Recovery time overload for DC voltage ranges :<5 seconds

1.21. WARM UP TIME : 1 hour before calibration

1.22. CALIBRATION

Recalibration interval : 1 year

1.23. ACCESSORIES

Supplied with instrument : Measuring leads (Incl. probe)

Mains supply cable Fuses Operating manual

Optional : Temperature probe

: Temperature probe PM 9249
EHT probe PM 9246
Current transformer PM 9245
HF probe PM 9210
Shunt PM 9244

Data hold probe PM 9267
Measuring leads PM 9260
Measuring leads PM 9266
Current oun PM 9101

Current gun PM 9101 HF probe PM 9213

1.24. MISCELLANEOUS

Dimensions (h x w x d) : 95 x 235 x 280 Weight : 2 kg

Cabinet material : ABS

1.25. SAFETY

Class : I, according IEC 348 for PM 2519/51 version,

II, for the other versions

2. CIRCUIT DESCRIPTION

2.1. GENERAL

The circuit of the basic Automatic Multimater PM 2519 can be subdivided into three main functional sections as shown in Fig. 2.1.

- Analog section
- Digital section

- Display section

From the basic versions of the Automatic Multimeter the following type-numbers are derived:

- PM 2519/21 In the battery version (PM 2519/21) a rechargeable battery is used to supply the instrument with power.
- PM 2519/51 The PM 2519/51 version has a galvanic separation and an IEC-625/IEEEE-488 bus interface for digital output data and remote control.

Each of the sections is described separately in conjunction with the overall circuit diagrams (Fig. 7.1., 7.2.). However, basic diagrams of the various stages are included, within the text, where considered necessary to said in a barter understanding of the complex parts of the overall circuit.

Fig. 2.1. Basic built-up of PM 2519

2.2. SURVEY OF THE SECTIONS

2.2.1. Analog section

The analog section comprises the following input measuring signal facilities:

- a. A voltage measuring path consisting of:
 - AC/DC voltage attenuators
 - RMS converter (OQ 0068)
 - ADC converter (OQ 0067)
 - ADC interface (OQ 0071)
- b. A current measuring path consisting of:
 - AC/DC current shunt
 - RMS converter
 - ADC
 - ADC interface
- c. A resistance/diode measuring path consisting of:
 - Current source (OQ 0063)
 - ADC - ADC interface
- d. A temperature measuring path consisting of:
- Pt 100 input
 - ADC - ADC interface
- e. A frequency measuring path consisting of:
 - AC voltage attenuator
 - RMS converter (part of)
 - Dividing circuits

Note: The OQ integrated circuits used in this instrument are specially designed LSI circuits for multimeter applications to ensure high accuracy and stability.

2.2.2. Digital section

- The microcomputer MAB 8440 (with internal ROM and RAM)
 - The external RAM with battery back-up
 - The function selector
 - ~ The mode switches with their decoding
 - The ADC interface (FET switch control)
 - The dividing circuits for the frequency measurements

2.2.3. Display section

- The display section consists of:
- The display interface circuit
- The 4.5 digit liquid-crystal display

2.3. FUNCTIONAL DESCRIPTION

221 General

The automatic multimeter PM 2519 is designed around the microcomputer integrated circuit MAB 8440. The microcomputer has 4k internal ROM and 128 bytes RAM. It also comprises 20 quasi-bidirectional I/O

parts, one serial I/O line and an 8-bit timer/event counter.

In combination with the ADC interface, the microcomputer controls the timing and measuring functions of the instrument. The communication between these devices is achieved by the aid of a serial bus, the so-called I2C-bus.

All the inputs are converted into d.c. signals and supplied to the ADC. The ADC in combination with the ADC interface converts these d.c. signals into digital logic signals and are sent via the I²C bus to the microcomputer.

2.3.2. Analog section

2.3.2.1. DC voltage measurements

The unknown voltage to be measured is passed to the d.e. attenuator where by means of resistors switched by FET awritches, the attenuation factor in changed (Fig. 2.3.). Depending on the selection, the input voltage is attenuated 11.11 or 1111.11 times. The table indicates the attenuation factor for each range, the ADC input sensitivity and the range FETS.

The 11.11 attenuation is achieved with the resistors R1102, R103 and the Ri of the ADC. The 1111.11 attenuation, which is switched on by the signal RNG D, is achieved by the voltage division of R1102, R1103, R1108 and the Ri of the ADC.

Flg. 2.3. DC attenuator

BANGE	ATTENUATION	RA	NGE	INPUT ADC	Ri PM 2519
HANGE	ATTENUATION	RNG D	RND E	INFOT ADC	H1 FW 2019
100 mV	1.11	-	Ō	90 mV	1 ΜΩ
1 V 10 V	11.11	0	1 1	90 mV 900 mV	10 MΩ 10 MΩ
100 V 1000 V	1111.11 1111.11	1	0 1	90 mV 900 mV	9.11 MΩ 9.11 MΩ

The 100 mV range is achieved by using a separate range. Attenuation is effected by means of R1110 and the Ri of the ADC.

2.3.2.2. Alternating voltage measurements

The input voltage to be measured is applied to the AC voltage attenuator, which changes the attenuation factor by means of RC-networks switched by a FET switch. The table for each range gives the attenuation

factor the RMS converter input sensitivity and the range signals.

The basic attenuation (10) is given by the voltage division of the components R1400, R1401/C1401, C1402 and R1404. An attenuation of 10000 is achieved by the basic attenuation and the resistors R1403 and R1402. The attenuation signal is then passed to the RMS converter, which produces a d.c. signal between 0 and 900 mV. Any d.c. component at the input is blocked by C1400.

V O m A

Fig. 2.4. AC attenuator

			R/A	NGE		INPUT AC
RANGE	ATTENUATION	AC INPUT RANGE	RNG F	RNG G	Ri PM 2519	INPUT AC
1 V 10 V 100 V 1000 V	10 10 1000 1000	100 mV 1000 mV 100 mV 1000 mV	0 0 1	0 1 0	2 MΩ 2 MΩ 1.802 MΩ 1.802 MΩ	900 mV 900 mV 900 mV 900 mV

2.3.2.3. DC current measurer

In the function mA, two ranges (20 mA, 200 mA) are available. The ranges are determined by shunt R1301 and R1303 and the input impedance of the ADC. The ranges are protected by fuse F1300 (630 mA). If in case of measuring voltages, the function switch is changed to the (m) A function with the voltage still on the input terminals, then due to the low resistance of the shunts a high current is switched, which would normally damage the function switch. To prevent this, the (m)A function is protected by means of a switch position (m)A*, In this case the input is first connected with resistor R1300. If the input voltage at the input is too high then fuse F1300 will blow.

The high currents 2 A, 20 A to be measured are supplied to the A-socket. The ranges are determined by the shunt R1303 and the input impedance of the ADC.

When inserted, the X1003 input socket, links the input socket with the base of transistor V1700, which sends # logic 0 to the I/O port of the microcomputer, to signal that the high current ranges have been selected.

RANGE	INPUT SENSITIVITY ADC	INPUT	RNG E
20 mA 200 mA 2 A 20 A	18 mV 180 mV 18 mV 180 mV	mA socket mA socket A socket A socket	0 1 0

2.3.2.4. Alternating current measurements

The ac input current ranges are shunted in the same way as the dc currents (refer to 2.3.2.3.). The voltage from the shunts is supplied to the I2 input of the RMS converter. Input I1 of the OQ 0061 is exthed via resistance R1404.

RANGE	INPUT SENSITIVITY RMS	INPUT	RNG G	INPUT SENSITIVITY ADC
20 mA 200 mA 20 mA 200 mA	20 mV 200 mV 20 mV 20 mV	mA mA A	0 1 0	190 mV 190 mV 180 mV 180 mV

2.3.2.5. Resistance measurements

The unknown relatance is connected between the V. I., sha and 0 input socket and susplies internally by a contrast-current owner. This current results in a posterial difference across the resistor that is proportional to the resistance value. The measuring currents in the 00 0005 are derived from a reference current source fread galaxed by R1810 in pacialle with residence R1811. The equality current for of the reference current source fread on the number of the reference current source fread with the part of the part of the reference current source fread with the part of the

As stated, the voltage Vs. developed across Rs is applied to the ADC for measurements. However, the ADC injury resistance is failed in [OMI ADI of the mail injury control cleans by the ADC has to be compensated or evoid incorrect readings. This is achieved as follows: The voltage Vs. across Rs is amplified by a faited or 32 in the compensation and prelified (Vvibl) the gain being determined by the acquiry law restored in 1505 and 1500. This coupts voltage of 2 Vs. across Rs is applied to the compensation and the way, the local impose of the ADC, the injurt current is compensated. In this way, the local impose by the ADC is compensated as lone ? I way, the ISDS is the injury control of the ADC, the injurt current is compensated. In the Injury control of the ADC, the injurt current is compensated. In the Injury control of the ADC, the injurt current is compensated. In the Injury control of the ADC, the injurt current is compensated. In the Injury control of the ADC, the injurt current is compensated. In the Injury control of the ADC, the injurt current is compensated. In the Injury control of the ADC, the injurt current is compensated. In the Injury control of the ADC, the injurt current is compensated. In the Injury control of the ADC, the injurt current is compensated. In the Injury current is compensated. In the Injury control of the ADC and the ADC and the Injury current is compensated and the Injury current is compensated. In the Injury current is compensated and the Injury current is compensated and the Injury current is compensated. In the Injury current is compensated and the Injury current is compensated and the Injury current is compensated. In the Injury current is compensated and the Injury current is c

Protection for the current source is afforded by the PTC resistors R1600 and R1601, zener diodes V1550, V1563 and diodes V1551, V1562 and V1564.

In the event of a high voltage on the input terminals, the parallel network R1500/R1501 goes high resistance. To prevent part of Irx leaking through the protection diodes, the anodes of V1554 and V1550 are connected to buffered V3. The leakage current is zero because the voltage over the protection diodes is zero.

2.3.2.6. Diode measurements

Diode measurements and measurements of semiconductor junctions are performed in the same ways as for resistance measurements in the 1000 II rapp, except for the juncy of the ADC. The unknown voltage across the diode is round via R1110 to the ADC. This is done to get a quick response for the biseper measurements. The value displayed is the voltage in forward or reverse discribed nazers the foliosit in the highest range of ADC. In the diode measuring range, the constant current derived from the OQ 0063 is 1 mA (see previous service)

Fig. 2.6. Ohm measurements

2 3 2 7 Temperature measurements (°C)

When the ⁹C is selected, the constant current for fit mad la request from pin 2 of the prote connector X1DA, which is connected in the prote to one end of the Politor resistance thermometers. The other laid is connected to earth. This current gives a voltage drop which desents on the resistance value across the P-100 prote. The voltage drop is alwasser is shown does not resistance value across the P-100 prote. The voltage drop is measured is shown other points of X1DM (4 devire measurements), 0 °C will give a voltage of 100 mV, The 100 mV offset is subtracted in the microcomputer so that 0 °C will be disclosed.

Fig. 2.7. Temperature measurements

2.3.2.8. Frequency measurements

The life function switch, connects the input signal to be measured via the attrauctor to the RMS converter is always 500 meV, Input SEL (IRNG H) is switched to loge 0. This means that the azero-coosing detection is enabled. The output CF will give a source was well in fecuniously which is equal to the input frequency. The square was in life to a divided witch violed the frequency which seals to the input frequency. The square was in life to a divided witch violed the frequency by to when 10 or 100. This depends on the frequency are provided to the specific or provided to the specific or the specific or the specific or provided to the specific or the specific or provided to the specific or

FREQUENCY	DIVIDING	MEASURING TIME
1000 Hz	1	10 s
10 kHz	1	1 8
100 kHz	10	1 8
1 MHz	100	1 1 1 1

To create a 1000 Hz range the measure time is 10 s instead of 1 s.

2.3.3. RMS Converter

In the BMS converter the difference between the inputs I1 and I2 is converted into current in a dual V-I converter.

The current is determined by Vin/R and the state of the RNG G signal (where R is either R1405 or R1406+R1407). This RNG G from D1703 selects the input sensitivity of the RMS converter.

The current in the ac-to-dc converter is rectified and then converted into a current again by the RMS section. This current is proportional to the RMS value of the input signal. Capacitor C1406 is the integrating capacitor for the RMS section. Capacitors C1404 and C1405 provide the automatic zero (AZC) compensation for the RMS converter. The output of the RMS converter is converted into a voltage by resistor R1408.

In the RMS converter there is also an output to indicate whether the crest factor has been exceeded. When point 10 (RNG H) of the RMS converter becomes logic 1 on the CF (point 9) indicates to the microcomputer that the crest factor is exceeded. If RNG H is low then the output CF is switched to detect zero crossings. This is used to measure frequencies (see 2.3.2.8.).

2.3.4. Analog-to-digital converter

The ADC converts the analog signal into a digital signal by the delta modulation principle. Basically, the delta modulation ADC counts the difference in the time taken to charge and to discharge a capacitor about a fixed level, over a fixed period of time.

The rumber of charge/discharge cycles within this fixed time depends on the charge/discharge current which is made proportional to the unknown input votiage to the ADC. Therefore, the number of pulses counted within a fixed measuring period is proportional to the unknown voltage Vx. The obtained data signal is fed to the ADC interface D1700 where it is counted.

To obtain sutomatic zero i.e. counteract drift and internal offset, one complete measurement consist of two fixed measuring periods (two AZC periods).

One complete measurement is used to update the bargraph or for automatic ranging. However, a display result consist of two complete measurements.

During the first period of a measurement the AZC input is low and the ADC instrator counts up on each clock-edge the logical state of the data signal. The value is kept in a register. Ouring the scool period, the data signal is inverted by the ADC interface and on each clock-edge the logical state of the legislar, the register is counted down. Also the input of the ADC is inverted to that offset in the result is compressed.

The ADC has two input sensitivities 90 mV and 900 mV, selected by the signal RNG E. This signal selects either R1211 or R1216 as conversion resistor.

2.4. DIGITAL SECTION

2.4.1 ADC interface

The information transport to this device is by means of an I^2C compatible interface (see 2.4.3.). This ADC interface is activated by a start condition so that it first rasks an eight bit address. The four mostspirificant bits contain the group address, and the four least-significant bits contains a command to be executed by the device. This is in contradiction to the I^2C specification where these bytes are reserved for the relative surfaces.

The main purpose of the ADC interface is to count the number of clock-pulses within a given time period (F2, the measuring time) in which the data input to popular to the AZC input of the ADC, plus the number of clock-pulses in another time period (F2) in which the AZC signal has been inverted. The time periods are preceded by a whiten time F1 (extina time). The flagur below explains this isocurence.

Fig. 2.11, AZC period

At the end of this cycle the device generates a ready (READY) which interrupts the microcomputer, it instructs the microcomputer or end the internal counter of the ADC interface. The organisation should be such that when data continuously high and the number in T2 is N, that at the end of the count-time the content are the continuously high and the number in T2 is N, that at the end of the count-time the content are also N.

Flow-chart of the sequence:

Fig. 2.12. Flowchart AZC period

Fig. 2.13. ADC interface

Besides these functions, the ADC interface has eight output latches to control to analog section (input sensitivities, output current OQ 0063 etc.). One of the latches is used to give an a.c. signal which is used for the bleeper.

2.4.1.1. Survey of ranges

RNG E	0 1 0 1		0-0-		00000	4 4 4 4	
00 0067 ADC	7m 06 7m 06 7m 06 7m 06	7m 006 7m 006 7m 006 800 m/	180 mV 18 mV 18 mV	180 mV 180 mV 180 mV	VE 08 80 80 80 80 80 80 80 80 80 80 80 80		900 mV 900 mV
RNG B RNG C					-0000	4 4 4 4	
RNG B					-00		
RNG A					-0-0-		
OO 0063 Current source					100 µA 10 µA 10 µA 10 µA		1 mA
RNG H						0000	
RNG G		0-0-					
OO OOBS RMS conv.		100 mV 100 mV 100 mV		18 mV 18 mV 18 mV		1000 mV 1000 mV 1000 mV	
RNG F		00				0000	
ACATTN		01 10×10 10×10					
RNG D	000				00000		
DCATTN	11,11 11,11 11,11 11,11 10,11,110				55555		
Range	100 mV* 1	- 0 0 0	200 mA 200 mA 20 A A	200 mA 200 mA 20 A	000 t c c c c c c c c c c c c c c c c c	1000 Hz 10 KHz 100 KHz 1 MHz	
Function	<u> </u> -	<i>></i>	¥.	Ž.	а	ž	8 ‡

2.4.2. Microcomputer

The integrated circuit MAB 8440, one of the MCS-48 family of single-chip microcomputers, forms the bials of the digital section of the PM 2519. The MAB 8440 has an internal 4k ROM and 128 bytes RAM with address/ data dec

In addition to this, the 8440 has 20 quasi-bidirectional I/O ports. Data written to these ports remains unchanged until written. Each line is able to serve as input or output, or both, even through outputs are statically latched.

The microcomputer has been designed with an I²C bus to perform data transfer (see I²C).

Fig. 2.14. Microcomputer

2.4.3. I²C interface

The I²C bus differs considerably from the conventional bus structures in that data-transfer is effected in a bitserial rather than in byte-parallel format.

In a conventional microcomputer such as the 8048 for instance, 12 address, 8 data and 4 control lines are necessary for parallel data transfer. The 1°C5 8440 microcomputer, on the other hand requires only 2 lines to transfer serially the same amount of data. Chips used for ADC, RAM and LCD drivers are 1°C compatible and use alto the same two lines.

These two lines are respectively the SDA (serial data line) and SCL (serial clock line) the function of which is to synchronise data-transfer between the appropriate [2C devices.

Almost any number of devices can be connected to the 1^2 C bus. Each device is allocated its own specific 7-bit address, which enables any two of these devices to communicate with each other upon receipt of a

7-ort adorest, which enables any rule of rines devices to communicate with each other upon receipt or a message prefixed with the appropriate 7-bit address.

This specific 7-bit address usually comprises a fixed address pert (4 bits), a user definable part (3 bits). The latter being assignable by rying "Doffine Address" (pins to high or low levels.

The latter cerning assignation by Gyring Lettinus Address recognition is effected in the 1²C interface hardware of each device, and this eliminates the need for decoding logic. The use of an automatic-invoked arbitration procedure, which prevents two or more devices from transmittines simultaneously, makes 1²C technology eminently suitable for a multiprocessor system.

For an appraisal of the 1^2 C data-transfer process, consider the operation of the PCD 8571, IN-bit CMOS RAM, in conjunction with the 8440 microcomputer, When connected to the 1^2 C bus this 8-pin RAM serves as a slave transceiver to the master processor. To transmit data to the RAM, the processor first transmits the specific 7-bit address, plus a Withia Action Identifier bit.

The master processor then defines the specific location it wants to address, and starts to transmit its data.

Correct synchronisation between the devices is effected by the SCL (serial clock line).

For further information about I²C see: Phillips data handbook; Integrated circuits for digital systems in radio, audio and video equipment.

2.4.4. Measuring segue

After power on, the PM 2519 carries out some routines to measure and evaluate the input signal applied. The software applications are briefly indicated by the following sequence.

Fig. 2.15. Flowchart measuring sequence

Set-up routine: This routine sets-up the QQ 0071. The microcomputer reads the calibrated value out of the RAM and sends it to the QQ 0071. This device performs the necessary setting (e.g. range).

Output routine: The output routine starts the first (part) measurement. It gives the ADC the start command to perform the measurement. This routine displays also the previous measurement.

Compute: This routine reads the counter in the ADC interface and makes the necessary calculations.

Measure: The measure routine starts the second (part) measurement. The PM 2519 makes two measurements for one display result. The measurement is displayed in the output routine.

The sequence of a measurement is: set-up, output, compute, measure, compute, set-up, output, compute etc.

2.4.5. Control inputs

The ten function switches, when selected, provide a -5 V supply to one of the inputs of the microcomputer. The microcomputer reads a bit pattern on port \square and knows which range is selected.

The microcomputer reads a bit pattern on port II and knows which range is selected.

The mode switches (push-buttons) are connected to a HEF 4532 an 8-input priority encoder. This encoder

The mode switches (push-buttons) are connected to a HEF 4532 an 8-input priority encoder. This enc gives a binary bit pattern on the output and is also supplied to the microcomputer.

Fig. 2.16. Switch decading

2.4.6. RAM

The external RAM in the PM 2519 is an I²C device; data and address are transferred sorially via two lines. The organication internal is 128x8 bits. In the RAM all the calibration values are stored and also the preset values for each function. A battery G1719 supplies the RAM if the power is switched off.

NOTE: To prevent loss of information during battery replacement, the latter can be done when the voltage at Tp1005 and Tp1007 is present.

2.5. DISPLAY

The OQ 0070 is a single chip silicon-gate C-MOS circuit, designed to drive a Liquid Crystal Display with up to 54 segments in a triplex manner. Reference voltages are internally generated with temperature compen-

to be segments in a triplex matter. Presented to the segment in a triplex matter segment in a segment in a claim of the segment in a se

each segment that will be driven by that line.

When triplexing (in the PM 2519) is used, each backplane is driven one third of a timeperiod. To ensure a

longer lifetime, the driving pulse is inverted every time period.

The data derived from one data output is fed to three segments.

To these segments also one of the backplanes is supplied.

The voltage across a segment will determine if it is lit or not.

The following is an example.

Fig. 2.17. Signals LCD drivers

2.6. POWER SUPPLY

The recified voltage is fed to A (2000 (pin 7) and also senser disole V 1000. This gives a voltage of 2.7 V on the minus insport of A (2000 dig views negletic voltage on the output. Due to this, V1000 and V1001 start conducting. The voltage on the collector is fed back to the input and in now stabilized by sener disold V 1002. Together with the voltage disolder F1002 on 411004, it was obtained by a vener disolder V 1002. Together with the voltage disolder F1002 on 411004, it was obtained as a level converter which start to constitut. It converts the liquet voltage to -0 V and 4V. Y The circuit to stabilized with the feed back circuit consisting of series of color V 1007 outpelled to

2.7. PM 2619/21

2.7.1. General

The PM 2519/21 version is a standard PM 2519 that includes a built-in battery power supply.

The battery power supply part consists of one Pb cell and a circuit that converts the battery voltage into $\pm 5 \text{ V}$, $\pm 13 \text{ V}$ and $\pm 13 \text{ V}$.

The circuit of the battery power supply can be subdivided into three main parts:

As the battery pack is also used in the PM 2521, the level converters and the Schmitt trigger are not used for the PM 2519/21.

2.7.2. Charging circuit (refer to the overall circuit Fig. 7.12)

If the battery is charged by the power supply (power switch in position "OFF", PM 2519 connected to the mains), the voltage on point 2 of X9101 is stabilized by A9101. The output voltage of A9101 is the charging voltage for the battery.

When the temperature changes, the output voltage is compensated by V9101, so the required charging voltage is always available.

In the PM 2519, the converters are always disabled by means of two diodes V9202 and V9203. By this means, the battery is prevented from discharging via the converters.

NOTE: A PM 2519/01 in combination with a PM 9121 will convert the PM 2519/01 into a PM 2519/21

2.8. PM 2519/51

2.8.1. IEC-625/IEEE-488 interface

An IEC-bus interface is used in multi-device systems to connect instruments in parallel to the same interface interes. Each instrument has its own specific address (selected with whichtess SDA4 on the rare of the instrument.) This addressing system means that an instrument is only listening or talking after it has received its specific address (MLA; my listen address, MTA; my talk address).

The litten or talk addresses are generated by the controller of the system (computer) and are transmitted via the data of the but. Durning an address or interface message the ATN (latertoon) line is active to indicate that the information on the bus has a special interface function. The IEC-bus can be split up into three functional parts, the data bus, the handwhake bus and the management bus.

- The data bus is used to transport messages for the device functions as well for the interface functions and consist of 8 lines (DI01-8).
- The handshake bus controls the correct transfer of data bytes with the next three signals. Data valid (DAV)
 indicates if the data is valid. Not Ready For Data (NRFD) indicates the condition of readiness of device(s)
 to accept data.
- Not Data Accepted (NDAC) indicates the condition of acceptance of data bytes by devices.
- The management bus is used to manage an orderly flow of information across the interface. For this
 purpose the next five signals are available:

Attention Specifies how data on the DIO lines are to be interpreted.

Active indicates a interface message is transferred via the data bus (for example a listen address), not active status is present during normal data transfer (for example a command for ranging).

Interface clear IFC places the interface of all interconnected devices in the idle state.

Service request SRQ indicates that one of the instruments wants the attention of the controller for example to indicate that there is valid data.

Remote enable REN sets an instrument to its remote-control mode if it is in the addressed state.

When the PM 2519/51 is switched on, the microcomputer reads the switches to identify the mode of the interface. Listen-only, Telk-only or Addressable mode.

Receiving

First the system controller sends a listen address (MLA) via the DIO lines (ATN is true). Due to ATN is true D804 and D803 are switched to receive direction.

Also via the hardware, NDAC is generated. The TA (talker active) signal is high so that the input of D802 (a special GPIB device) is low. This means that a part of D602 acts as input and another part as output.

D602 Outputs: NDAC, NRFD, SRQ

After this it sets the interface in a condition to input data.

Inputs - DAV DEN ATM EOU IEC

End of Identify EQI indicates the end of a multiple byte transfer.

Also after ATN, the microcomputer reads the selected device address by making pin 10 of DB05 low and input 19 of DB04 high high impedance). Then the microcomputer starts handhaking the device address on the bus. This is controlled via P1 of the microcomputer. If the device address on the bus is the same as the device address selected with the avoithce, the microcomputer starts to handhake in the other data bytes.

Transmitting

After the microcomputer has received MTA (or in Talk-only mode) as described above, the interface becomes talker. This means that DB04 and DB03 are now transmitters. The bytes on P0 are now date for the controller. If the interface becomes talker it makey P13 low. The CP18 device DB02 is switched to another configuration.

The PM 2519/51 is now handshaking so that the bytes are sent to a controller or another device. At the end of the databytes the PM 2519/51 generates an EOI. The interface will remain talker until the Listener address is a

CHECKING AND ADJUSTING

WARNING: Before switching-on, ensure that the instrument has been installed in accordance with the instructions outlined in Section 4 of the Operating Manual.

The opening of covers or removal of parts, except those to which access can be gained by hand is likely to expose live parts, and accessible terminals may also the live.

The instrument shall be disconnected from all voltage sources before any replacement or maintenance and repair during which the instrument will be opened.

If afterwards, any adjustment, maintenance or repair of the opened instrument under voltage conditions is inevitable, it shall be carried out only by a skilled person who is aware of the basent involved.

Bear in mind that capacitors inside the instrument may still be charged even if the instrument is separated from all voltage sources.

The tolerances in this chapter correspond to the factory data, which only apply to a completely re-adjusted instrument. These tolerances may deviate from those mentioned in the Technical Data. (Chapter 1 of the Service Manual).

For a complete re-adjustment of the instrument the sequence in this chapter should be adhered too. When individual components, especially semi-conductors are replaced, the relevant section should be completely re-adjusted.

To calibrate this measuring instrument, only reference voltages and measuring equipment with the required accuracy should be applied. If such equipment is not evailable, comparative measurements can be made with another calibrated PM 2519. However, theoratically in extreme cases, the tolerances may leave some room for doubt.

The measuring arrangement should be such that the measurement cannot be affected by external influences. Protect the circuit against temperature variations (fans, sun).

With all measurements, the cables should be kept as short as possible; at higher frequencies co-axial leads should be used.

Non screened measuring cables may acts as aerials so that the measuring instrument could measure LF voltage values or hum voltage.

3.1. GENERAL

ATTENTION: Before checking and adjusting, the PRESET values, which are stored in RAM must be reset.

To do this, shorteircuit Tp1001 and Tp1002, for one second in position ## £1 < 102.

If the instrument is closed, shorteircuit spots via hole 2 and 6 in position ## £1 < 103.

The adjusting procedure consists of two parts: A and B. The first part (A) and the second part (B) of the procedure only should be used when the OO 0063 or the OQ 0068 have been replaced. In all other cases it is

possible to start direct with part B. If a calibration cannot be made it is recommended to start first with part A.

If the software there are subroutines which are used to adjust the PM 2519. To call these subroutines shortcircuit TP1001 and TP1002 for one second in position Hz, if the instrument is opened.

If only calibration part B must be done, it is not necessary to open the instrument. In the bottom there are 8 holes. Short circuiting the spots via hole 2 and 5, will bring up the calibration mode. This must be done in the position Hz.

Fig. 3.1. Bottom cover

100.0u mV

NOTE: For instruments with a serial no, lower than DY01 3611, resetting the PRESET values and entering the calibration mode is done via hole 2 and 4 (teffon holes).

When the calibration mode is entered the instrument will respond with 1000.c.H4z. The other calibration routiner can be selected with the function switch and the up/down buttons (see calibration procedure). To calibrate the range, supply the displayed signal to the input terminals, and push the ZERO SET ON/OFF knob. The PM 2519 will respond with e.g. 100,0 rm.V. If the supplied signal is not the right one the PM 2519 will respond with 0.0.0 Fm vol if the input serial is unstable the PM 2519 relianced with 100.0 Fm vol if the input serial is unstable the PM 2519 relianced with 100.0 Fm vol if the input serial is unstable the PM 2519 responds with

If a range is selected which cannot be calibrated while pushing the ZERO SET ON/OFF button the PM 2519 will respond with Err.

After using these subroutines the PM 2519 should be reset (switch the PM 2519 off and on).

3.2. ADJUSTING THE PM 2519 WITH THE AID OF A CONTROLLER (for PM 2519/51 only)

The calibration mode can be called via the IEC-bus. To use this feature, a program string must be sent to the PM 2519, It is device programming, so the message consists of a header, a body and a separator.

On receipt of a character which is equivalent to decimal 195, on most controllers programmed as CHR\$(195), the calibration mode is entered. The same effect is afforded when short-circuiting TP1001 and TP1002 in the

The body (rance) is a decimal character which selects the range to be calibrated (see table).

After entering the calibration mode, an execute command (X1 or GET) must be given. This has to be done before a new listen address is sent otherwise the calibration mode will be left. Example: To calibrate the 100 mV range CHR\$(195)+"1X1" must be sent.

FUNCTION	1	2	3	
mV= V= A= A~ Ohm °C V~	100 mV 1 V 20 mA 2 A* 20 mA 1000 ohm 0 °C	10 V	100 V	* lead in

A-bus

If the calibration mode is entered, the output data is e.g. VDC 100.0c mV. A range is calibrated, when the PM 2519/51 will respond in his output data with e.g. VDC 100.0r mV. If the supplied signal is not the right one the PM 2519/51 responds with VDC 100.0F mV or if the supplied signal is unstable it responds with 100.0u mV. If a range has been selected, which does not need to be calibrated the PM 2519/51 does not give output data!

Program example on P2000C

- 10 IEC INIT
- 20 PRINT "Select mV function and supply 100 mV"
- 30 IEC PRINT #22, CHRS (195) + "1X1": REM enter calibration mode, range 1 and execute
- 40 IEC END

PART A

3-6

_			
Messuring points	A100 point 21 and 0-socket	0 and V-Q-mA socket	Display
Adjusting data	Annabase 2 0.5%	1 mA measured with an A-meter ± 0.5%	.0000 V ± 0 dig.
Input signals			Short circuit the V-Ω-mA and the 0 socket
Preparations	Position V-w Position V-w Position V-w Connect an Armeter at follows: 1	Set instrument in position Ω Select: MAN ranging 1000 Ω range Connect an Ammeter to the 0 and V·Ω·mA socket	Set instrument in position V Select: AUTO ranging
Adjusting element	Resistro R.201; UM.R25; 1%: E86 series)	Resistor R1510 (MR25, 1% E96 series)	Trimming capacitor C1201
Adjustment	Reference current of ADC (000067)	Reference current of current source (OQOD63)	Zero setting
No.	e ·	6	ei

Š	Adjustment	Adjusting element	Preparation	Input signals	Adjusting data	Remarks
4	Ω ranges		Set instrument in Hz Short-circuit TP1001 and TP1002 for one second, Set instrument in mV			
	1000 th range	1	Set instrument in Ω Select: 1000 Ω range	1000 to ± 0.1%	1000.13	Press ZERO SET ON/OFF
ιά	10 Mß renge	Resistor R1504	Switch instrument off and on	10 MΩ ± 0.1%	10.000 MΩ	Display
			Select: MAN ranging			

PART		FF.	PFF	140	10	14C	J-F.F	
Remarks	Press ZERO SET ON/OFF	Press ZERO SET ON/OFF	Press ZERO SET ON/OFF	Press ZERO SET ON/OFF	Press ZERO SET ON/OFF	Press ZERO SET ON/OFF	Press ZERO SET ON/OFF	
Adjusting data	+100.0 r mV	+1.000 r V	+10.00 r V	+100.0 r V	+20.0 r m.A	+2.00 r A	~20.0 r m.A	0 0000
Input signals	+100 mV ± 0.01%	+1 V ± 0.01%	+10 V ± 0.01%	+100 V ± 0.01%	+20 mA ± 0.05%	+2 A ± 0.05% supplied to A and 0 socket	~2 A 1 kHz ± 0.05%	
Preparation	Set instrument in Hz Short-circuit the spots via hole 2 and 6 (see Fig. 3.1.) for one second. Set instrument in mV	Set instrument in V Select: 1 V range	Set instrument in V Select: 10 V range	Set instrument in V Select: 100 V range	Set instrument in A Select: 20 mA range	Set instrument in A Select: 2 A range	Set instrument in A~ Select: 20 mA range	
Adjusting element		1	(1		ı	- I	
Adjustment	DC ranges 100 mV range	1 V range	10 V range	100 V range	A ranges 20 mA range	2 A range	A∼ ranges 20 mA range	Ω ranges
No.	-	6	mi mi	4	ьó	øj.	7.	od ,

é	Adjustment	Adjusting element	Preparation	Input signals	Adjusting data	Remarks
oi .	OC calibration		Set instrument in OC	100.3 ± 0.1% TO THE PROBE IMPUT 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	J ₀ - 000	Pres ZERO SET ON/OFF
0.	V∼ ranges 10 V range	1	Set instrument in V~ Select: 10 V range	~ 10 V 60 Hz \pm 0.01% supplied to V- Ω mA and 0 socket.	~ 10.00 r V	Press ZERO SET ON/OFF
11.	1	ı	Switch instrument off and on	-	1	1

Cheeks	Preparations	Input signals	Adjusting data	Measuring points	3-1
V~ range	Set instrument in V~ Select: MAN ranging : 1 V range	0 mV ~ 1 V 60 Hz ± 0.05%, ~ 200 mV 600 Hz ± 0.05%, ~ 1 V 500 Hz ± 0.05%, ~ 1 V 10 Hz ± 0.05%, ~ 1 V 20 KHz ± 0.05%	~ ,0000 V ± 0 dig. ~ 1,0000 V ± 0 dig. ~ 0,2000 V ± 12 dig. ~ 1,0000 V ± 88 dig. ~ 1,0000 V ± 88 dig. ~ 1,0000 V ± 440 dig.	Display	
	Select: 10 V range : dB (Rref = 600 Ω)	~ 10 V 60 Hz ± 0.05%	~ 022,2 dB ± 1 dig.		
	: Press ZERO SET ON/OFF	~ 10 V 60 Hz ± 0.05%	~ 000.0 dB ± 1 dlg.		

		: Press dB/V	~ 10 V 60 Hz ± 0.05% ~ 10 V 500 Hz ± 0.05%	~ 10.000 V ± 10 dig. ~ 10.000 V ± 48 dig.	Display
		: 100 V range	~ 10 V 20 kHz ± 0.05% ~ 100 V 60 Hz ± 0.05%	~ 10.000 V ± 440 dig. ~ 100.00 V ± 48 dig.	
			~ 100 V 500 Hz ± 0.05% ~ 100 V 10 kHz ± 0.05%	~ 100.00 V ± 48 dig. ~ 100.00 V ± 88 dig.	
		: 1000 V range		~ 100.00 V ± 440 dig. ~ 220.0 V ± 17 dig.	-
			~ 600 V 60 HZ = 0.06%	~ 600.0 V ± 32 dig.	
13. Vr	V ranges	Set instrument in V			
		: 100 mV range	+100 mV ± 0.01% +1 V ± 0.01%	+100,00 V ± 5 dig. +1,0000 V ± 5 dig.	Display
			-1 V ± 0.01%	-1.0000 V ± 10 dig.	
				+. ,3000 V ± 4 dig.	
		: 10 V range	+10 V ± 0.01%	+10,000 V ± 5 dig.	
		: 100 V range		+100.00 V ± 5 dig.	
-		: 1000 V range	+1000 V ± 0.01%	+ 1000.0 V ± 10 dig.	
14. Check	Check V, € > preset	Set instrument in	+10.5 V ± 0.01%	10.500 V ± 10 dig.	Audible tone
		V-rrv, (1) > preset Select: Preset value of 10 V			
15. Check	Check A~ ranges	Select: MAN ranging			
		: 20 mA	~ 20 mA 60 Hz ± 0.06%	~ 20.00 mA ± 14 dig.	Display
		. 200 mA	~ 200 mA 60 Hz = 0.05%	~ 200.0 mA ± 14 dig.	
		7 8		~ 10 00 A ± 14 dia	

Ones Am range Ones D range Ones D range Ones P V C O D Ones H ranges	No.	Checks	Preparations	Input signals	Adjusting data	Mesuring point
Ones it ranges Ones it ranges Ones it ranges	9	Check Arm range	Set instrument in A-m- Select: MAN ranging : 20 mA : 200 mA	+20 mA ± 0.05% +200 mA ± 0.05% +2 A ± 0.05%	+20.00 mA ± 5 dig. +200,0 mA ± 10 dig. +2.000 A ± 5 dig.	Display
Selection Sele			NOTE: The high current ra 0,2 - 10 A socket ar	oges (0.2 - 20 A) are selected by of the UP/DOWN buttons.	connecting the leads betwe	en the Geocket and the
Onest Ones	6	Check Ω ranges	Set instrument in Ω Select: MAN ranging : 1000 Ω range : 100 KΩ range : 100 KΩ range : 100 KΩ range	1000 D3 ± 0.1% 10 KD3 ± 0.1% 100 KD3 ± 0.1% 1000 KD3 ± 0.1% 10 MD3 ± 0.1%	1000.0	Display
Ovels for range of the representation of the representation of the region of the range of the ra	89	Check ★・瓜<10 ß	Set instrument in ♣, II] < 10 Ω	1000 Ω±0.1%	1000,0 mV ± 100 dig.	
Check Hz ranges Set instrument in Hz Set Check Hz ranges : 10 M4z range : 100 M4z range : 100 M4z range	<u>6</u>	, c	Set instrument in °C	100 ft ± 0.1% to the PROBE Input 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100.0 ± 10 dig.	Displey
_	50	Check Hz ranges	Set instrument in Hz Select: MAN ranging : 10 kHz range : 100 kHz range	(3 V) 10 kHz±0.01% (3 V) 100 kHz±0.01% (3 V) 1 MHz±0.01%	10,000 kHz ± 3 dig. 100,00 kHz ± 3 dig. 1,0000 MHz ± 3 dig.	Display

3.5. ADJUSTING THE BATTERY POWER SUPPLY PM 2519/21

- Disconnect the battery power supply from the PM 2519/21.
- Remove the battery.
- $-\,$ In its place, fit a 1 $k\Omega$ resistor across the battery terminals of the power supply unit.
- Connect a voltage of +10 V (20 mA) across point 10(+) and 8(--) of the printed circuit board.
- With the preset R105, adjust the voltage across the external 1 kΩ resistor to 6.9 V.
- Connect the PM 2519/21 to the mains and check if the charging current is between 5 mA and 400 mA.
 (Insert an Ammeter in series with the battery, range 1 A).

4. FAULT-FINDING

WARNING: The opening of covers or removal parts, except those to which access can be gained by hand is likely to expose live parts, and accessible terminals may also be live.

The instrument shall be disconnected from all voltage sources before any replacement or

maintenance and repair during which the instrument will be opened.

If afterwards, any adjustment, maintenance or repair of the opened instrument under voltage conditions is inevitable, it shall be carried out only by a skilled person who is aware of the hazard

Bear in mind that capacitors inside the instrument may still be charged even if the instrument is separated from all voltage sources.

4.1. GENERAL

4.1.1. Service hints

If servicing is necessary the following points should be taken into account in order to avoid damaging the instrument

- Take care to avoid short-circuits with measuring clips and hooks if the instrument is switched-on, especially near the input terminals when high-voltages are present.
- Use a miniature soldering iron (35 W max.) with a thin cleaner or a vacuum soldering iron,
- Use an acid-free solder.
- When fault-finding, remove top and bottom covers and connect an external power supply of +7 V to TP1005 (+) and TP1007 (--)
- After repair, the instrument should be recalibrated.

4.1.2. Fault-finding procedure

This chapter gives a fault-finding procedure to locate the faulty section in the instrument. From this procedure the faulty parts can often be found by using the detailed flow-charts.

NOTE: The procedure is only intended as an aid to fault-finding, and obviously the faulty component will not be found in every case.

Measuring instruments used:

- Digital multimeter
- Oscilloscope
- Counter
- Signature analyser

After repair, the preset values, which are stored in RAM, must be reset. To do this short-circuit TP1001 and TP1002 for one second in the position 👆

4.2. FAULT-FINDING FLOW-CHARTS

4.2.1. Initial test

4.2.2. Function part test

4.2.3. Vdc, mV and | > preset part test

4.2.4. Vac part test

NOTE: The voltage on pin 17 must be measured with a high impedance voltameter (100 MSL). If this is not possible take account of the shunting effect (input impedance PM 2519).

Signal 1 pin 6 and 7 of the RMS converter.

0 = -9 V 1 = 0 V

RANGE	ATTN	SENS. RMS	RNG F	RNG G
1 V	10	100 mV	0	0
10 V	10	1000 mV	0	1
100 V	1000	100 mV	1	0
1000 V	1000	1000 mV	1	1

NOTE: Input sensitivity ADC 900 mV. Measurement zero is the low socket.

4.2.5. Adc part test

NOTE: Measurement zero is the low socket.

4.2.6. Aac part test

NOTE: Measurement zero is the low socket.

4.2.7. Ohm part test

NOTE: Measurement zero is the low socket.

4.2.9. ADC part test

ST4428 840629

NOTE: Measurement zero is the low socket.

4.2.11. Display part test

Fig. 4.1. Signals LCD

ST4431 840727

4.2.12. Power supply test

NOTE: Measurement zero is the low socket.

4.2.13. Galvanic separation test (PM 2519/51)

4.2.14. IEC-bus test (PM 2519/51)

ACCESS

WARNING: The opening of covers or removal of parts, except those to which access can be gained by hand is likely to expose live parts, and accessible terminals may also be live.

The instrument shall be disconnected from all voltage sources before any replacement or

maintenance and repair during which the instrument will be opened.

If afterwards, any adjustment, maintenance or repair of the opened instrument under voltage conditions is inevitable, it shall be carried out only by a skilled person who is aware of the hazard involved.

Bear in mind that capacitors inside the instrument may still be charged even if the instrument is separated from all voltage sources.

5.1. DISMANTLING THE PM 2519

Removing the top cover (Fig. 5.1.)

- Place the hand in its bottom position.
- Remove the two fixing screws at the rear which attach the top cover to the bottom cover.
- Lever the top cover and pull it backwards.

Disconnect the mains plugs which are connected to the p.c.b.

Removing the bottom cover (Fig. 5,2,)

- Remove the top cover.
- Remove the handle.
- Remove the three fixing screws which attach the printed circuit board to the bottom cover (Fig. 5.2, item 1)
- Bend out the two hooks of the front plate (Fig. 5.2, item 2).
 Remove the bottom cover.

Removing the front assembly

- Remove top and bottom cover.
- Disconnect the flexible print from the connector X1700 (Fig. 5.2, item 3),
- Disconnect X1702 (Fig. 5.2. item 4),
- Bend out the two hooks of the front plate at the bottom of the printed-circuit board (Fig. 5.3, item 1),
- Disconnect the front from the printed circuit board,

DEPLACING PARTS

Liquid crystal display (Fig. 5.4, item 1), display unit N4 (Fig. 5.4, item 2), interconnection rubber (Fig. 5.4, item 3) or function knob (Fig. 5.4, item 4).

- Remove the front assembly.
- Remove the three screws which attach N3 to the front (Fig. 5.4. item 5).
- Remove the three screws of the screening.
- Remove the function knob by bending out the four hooks of the front plate (only for replacing the
- function knob) (Fig. 5.4. item 8).
- Remove the three screws from the display unit cover and the cover itself (Fig. 5.4, item 9).
- Replace the defective component and mount the L.C.D. unit again as described above.
- Heplace the detective component and mount the E.C.D. only again as described above.

NOTE 1: Make sure that the L.C.D., the display unit cover and the interconnection rubber are placed in the most right hand position (Fig. 5.4, Item 7).

NOTE 2: Do not touch the contacts of the L.C.D., the interconnection rubber and the display unit N4 with the fingers.

Function switch (Fig. 5.4)

- Remove the top- and bottom cover. Remove also the front assembly.
- Bend out the two hooks and remove the printed-circuit board (Fig. 5.4. item 6).
- The function switch consist of:
 - 2 slide bodies - 4 springs
 - 4 switch contacts
- Remove the screws and nuts from the slide bodies. The bodies can now be lifted from the printed-circuit board.

NOTE: The slide body is stocked complete with springs and switch contacts.

Fig. 5.1. Removing the top cover

Fig. 5.2. Removing the bottom cover

Fig. 5.3. Removing the fron

Fig. 5.4. Front assembly

DISMANTLING THE BATTERY POWER SUPPLY (PM 2519/21)

- Remove the top cover as described. - Disconnect the connector from X1600.
- Remove the two screws from the battery power supply cover (Fig. 5.5, item 1),
- Lever up the cover and remove it.
- Remove the two screws (Fig. 5.5, item 2). - The battery and the printed-circuit board can now be removed.

Fig. 5.5. Dismantling the battery power supply

5.3. DISMANTLING THE IEC-BUS AND THE GALVANIC SEPARATION (PM 2519/51)

Dismantling the IEC-bus

- Remove the two screws (Fig. 5.6. item 1).
- Remove the connector X602.
- The IEC-bus can now be removed.
 Remove the screening of the IEC bus.

Fig. 5.6. IEC-bus

Dismantling the galvanic separation

- Remove the top cover.
- Unfasten the four screws to remove the screening.
- Unfasten the four screws that attach the galvanic separation to the top cover.
- Remove the two plugs of the main connector, which are connected to the p.c.b.

Fig. 5.7, Galvanic separation and IEC-bus

6. PARTS LIST

6.1. MAIN P.C.B.

6.1.1. Resistors

Pos. nr.	Description	7		Ordering code
R1100 R1101 R1102 R1103	MR30 MR30	0.5% 0.5% 0.25% 0.25%	51K1 48K7 4M53 4M53	5322 116 55577 5322 116 51388 5322 116 52126 5322 116 52126
R1104 R1105	MR25	1%	100K 10K	4822 116 51268 4822 116 51253
R1107 R1108 R1109	MR25 MR25	1% 0.1% 1%	100E 7K57 75K	5322 116 55549 5322 116 52118 4822 116 51267
R1110 R1200 R1205 R1206	MR30 MR25 MR25	0.5% 0.1% 0.5% 1%	100K 8K76 1K15 30E1	5322 116 52125 5322 116 52117 5322 116 52121 5322 116 50904
R1209 R1210		0.1%	825K 825K	5322 116 52119 5322 116 52119
R1211 R1216 R1300 R1301	MR25 MR25	1% 1% 10% 1 %	1K78 17K8 50E 1E	5322 116 50516 5322 116 54637 4822 116 30008 5322 113 21004
R1303 R1304	MR25 MR25	1%	110K 3K32	5322 116 54701 4822 116 51247
R1306 R1306 R1308 R1400	MR25 MR25 MR25 MR30	1% 1% 1% 0.5%	100K 20K5 205K 909K	4822 116 51268 5322 116 55419 5322 116 54727 5322 116 55211
R1401 R1402 R1403 R1404 R1405	MR30 MR25	0.5% 1% 0.1% 0.1% 0.1%	887K 38E3 1K78 200K 3K01	5322 116 55265 5322 116 50954 5322 116 51776 5322 116 51773 5322 116 51777
R1406 R1407 R1408 R1411	MR25 MR25 MR25	1% 0.1% 1% 1%	33E2 30K1 6K81 6K81	5322 116 50527 5322 116 51781 4822 116 51252 4822 116 51252
R1500 R1501	PTC		750 ÷ 1K5 750 ÷ 1K5	5322 116 44006 5322 116 44006
R1502 R1503 R1504	MR25 MR25	1% 0.5% Carb. lin.	10K 2K87 100E	4822 116 51253 5322 116 55279 4822 100 10075
R1505 R1506	MR25 VR25	0.5%	2K87	5322 116 55279 5322 116 51786
R1508 R1511 R1512	MR25	1% 0.1% 0.1%	100E 16K9 121K	5322 116 55549 5322 116 52116 5322 116 51774
R1513	MR25	1%	100K	4822 116 51268

6.1.2

	Pos nr.	Description			Ordering code
	R1514	MR25	1%	226K	5322 116 54729
	B1600	PB37	5%	15E	4822 116 51144
	R1602	MR25	0.5%	1K87	5322 116 52123
	B1603	MR25	1%	1M	5322 116 55535
	B1604	MR25	1%	3K65	5322 116 54587
	R1605	MR25	1%	348E	5322 116 54515
	R1606	MR25	1%	51K1	5322 116 50672
	R1607	MR25	1%	953K	5322 116 51368
	R1608	MR25	1%	10K	4822 116 51253
	R1609	MR25	1%	1K27	5322 116 50555
	R1610	MR25	0.5%	1K78	5322 116 52122
	R1611	MR25	1%	3K48	5322 116 55367
	R1612	MR25	0.5%	3K65	5322 116 52124
	R1613	MR25	1%	100K	4822 116 51268
	R1650	MR25	1%	2K26	5322 116 50675
	R1651	MR25	1%	538K	5322 116 54758
	R1653	MR25	1%	10E	5322 116 54/56
	R1700	MR25	1%	1M	5322 116 55535
	R1701	MR25	1%	1K	4822 116 55535
	R1704	MR25	1%	10K	4822 116 51253
	R1705	MR25	1%	100E	5322 116 55549
	R1706	MR25	1%	100E	5322 116 55549
	R1707	MR25	1%	5K11	5322 116 54595
	R1708	MR25	1%	90K9	5322 116 54694
	R1709	MR25	1%	1M	5322 116 55535
	R1710	MR25	1%	5K11	5322 116 54595
	R1711	MR25	1%	90K9	5322 116 54694
	R1712	MR25	1%	1M	5322 116 55535
	B1713	MR25	1%	100E	5322 116 55549
	B1714	MR25	1%	100E	5322 116 55549
	B1715	MR25	1%	10K	4822 116 51253
	R1716	MR25	1%	5K11	5322 116 54595
	B1717	MR25	1%	10E	5322 116 54595
	R1718	MR25	1%	100K	4822 116 51268
	R1719	MR25	1%	1K	4822 116 51206
	R3800	51K1	1%	0.4W	5322 116 50672
	R3801	51K1	1%	0.4W	5322 116 50672
	R3802	51K1	1%	0.4W	5322 116 50672
	R3803	51K1	1%	0.4W	5322 116 50672
	R3804	51K1	1%	0.4W	5322 116 50672
	R3805	51K1	1%	0.4W	5322 116 50672
	R3806	51K1	1%	0.4W	5322 116 50672
		•			
2.	Capacitors				
	Pos. nr.	Description			Ordering code
	C1100	250V	10%	68NF	5322 121 44137
	C1101	100V	10%	220NF	4822 121 40232
	C1102	630V	1%	9,53NF	5322 121 50923
	C1102	400V	10%	3.33NF	5322 121 90925
	C1104		-20+50%	10NF	4822 122 31414
	01104		-20-30%	IOW.	4026 126 31414

Pos. nr.	Description			Ordering code
C1105 C1201 C1203 C1204 C1205	250V 250V	-20+50% 10% 2% 2%	10NF 1.4/10PF 47NF 390PF 390PF	4822 122 31414 4822 125 50062 5322 121 44138 4822 122 31426 4822 122 31426
C1206 C1207 C1208 C1209 C1210		2% -20+50% -20+50% -20+50%	47PF 3.9PF 10NF 10NF	4822 122 31244 5322 122 34107 4822 122 31414 4822 122 31414 4822 122 31414
C1211 C1212 C1213 C1214 C1215		-20+50% -20+50% 2% 2% 2%	10NF 10NF 47PF 39PF 39PF	4822 122 31414 4822 122 31414 4822 122 31244 5322 122 32047 5322 122 32047
C1302 C1400 C1401 C1402	400V	10% 10%	2.7NF 33NF 3.9PF 3.9PF	4822 122 31174 5322 121 44025 4822 122 31217 4822 122 31217
C1403 C1404 C1405 C1406 C1407 C1408	100V 10V 100V	10% 2% 20% 10% -20+50% -20+50%	1.8NF 100PF 15UF 680NF 10NF	4822 122 30048 4822 122 31504 5322 124 14036 5322 121 40233 4822 122 31414 4822 122 31414
C1409 C1410 C1411 C1412 C1500	100V	10% -20+50% -20+50% -20+50% 10%	1UF 10NF 10NF 10NF 22NF	5322 121 40197 4822 122 31414 4822 122 31414 4822 122 31414 4822 121 41587
C1501 C1502 C1503 C1504 C1505	2007	10% 10% -20+50% -20+50% -20+50%	4.7NF 1NF 10NF 10NF 10NF	4822 122 30128 4822 122 30027 4822 122 31414 4822 122 31414 4822 122 31414
C1506 C1507 C1508 C1509 C1600	400V 25V	10% 20% 10% -20+50% -10+50%	33NF 1UF 1NF 10NF 330UF	5322 121 44025 4822 124 20944 4822 122 30027 4822 122 31414 4822 124 20705
C1601 C1602 C1603 C1604 C1605	10V 25V 25V 25V	20% -10+50% 50% 50% 50%	10UF 330UF 22UF 22UF 22UF	5322 124 14066 4822 124 20684 4822 124 20698 4822 124 20698 4822 124 20698
C1608 C1609 C1610 C1611 C1612	10V	20% -20+50% 2% 10% 10%	10UF 10NF 47PF 1NF 1NF	5322 124 14066 4822 122 31414 4822 122 31244 4822 122 30027 4822 122 30027
C1613 C1614 C1700 C1701 C1702		10% 10% -20+50% -20+50% -20+50%	1NF 1NF 10NF 10NF	4822 122 30027 4822 122 30027 4822 122 31414 4822 122 31414 4822 122 31414

6.1

	Pos. nr.	Description			Ordering code
	C1703 C1704 C1705 C1706 C1707		-20+50% -20+50% -20+50% -20+50% -20+50%	10NF 10NF 10NF 10NF 10NF	4822 122 31414 4822 122 31414 4822 122 31414 4822 122 31414 4822 122 31414
	C1708 C1709 C1710 C1711 C1712	25V	-20+50% -20+50% 2% -20+50% 20%	10NF 10NF 47PF 10NF 1UF	4822 122 31414 4822 122 31414 4822 122 31244 4822 122 31414 4822 124 20944
	C1713 C1714 C1715 C1716 C1717		-20+50% 10% -20+50% -20+50% 10%	10NF 2.2NF 10NF 10NF 2.2NF	4822 122 31414 4822 122 30114 4822 122 31414 4822 122 31414 4822 122 30114
	C1718 C1719 C1720	25V 25V	-20+50% 20% 40%	10NF 1UF 1UF	4822 122 31414 4822 124 20944 4822 124 20944
.3.	Semi-conductors				
	Pos.nr.	Description			Ordering code
	V1100 V1101 V1350 V1400 V1401	BF256B BF256B BAW62 BF256B BF256B			5322 130 44744 5322 130 44744 4822 130 30613 5322 130 44744 5322 130 44744
	V1450 V1451 V1550 V1551 V1552	BAW62 BAW62 BZV85-C5V1 BAX12A BAX12A			4822 130 30613 4822 130 30613 4822 130 31456 5322 130 34605 5322 130 34605
	V1553 V1554 V1600 V1601 V1602	BZV46-C2V0 BAW62 BC638 BD140 BC547B			4822 130 31248 4822 130 30613 4822 130 41087 4822 130 40824 4822 130 40959
	V1603 V1605 V1606 V1651 V1652	BC559B BC559B BC547B BZV85-C18 BZV85-C18			4822 130 44358 4822 130 44358 4822 130 40959 5322 130 32212 5322 130 32212
	V1653 V1654 V1655 V1656 V1657	BYV27-150 BYV27-150 BYV27-150 BYV27-150 BAW62			4822 130 31628 4822 130 31628 4822 130 31628 4822 130 31628 4822 130 30613
	V1658 V1660 V1661 V1662 V1663	BAW62 BZX79-B3V3 BAW62 BZX79-B3V3 BRY39			4822 130 30613 5322 130 31504 4822 130 30613 5322 130 31504 5322 130 40482

	Pos. nr.	Description		Order	ing code	
	V1670	BAW62		4000	130 30613	
	V1670 V1671	BZX79-B10			130 30613	
	V1671 V1672	BAW62			130 34297	
	V1673	BAW62			130 30613	
	V1674	BAW62			130 30613	
	V1700	BC547B			130 40959	
	V1750	BAW62			130 30613	
	V1751	BAW62			130 30613	
	V1752	BAW62			130 30613	
	V1753	BAW62		4822	130 30613	
	V1754	BAW62		4822	130 30613	
	V1755	BAT85		4822	130 31983	
6.1.4.	Integrated circ	ou its				
	Pos. nr.	Description		Order	ing code	
	D1700	MAB8440/D021			209 10565	
	D1701	HEF4520BD		4822	209 10276	
	D1702	HEF4001BD			209 10246	
	D1703	000071			209 81901	
	D1706	HEF4518BD		4822	209 10275	
	D1707	HEF4011BF		4822	209 10247	
	D1708	PCD8571		4822	209 10427	
	D3800	HEF4532BD			209 10278	
	D4704	OQ0070T		5322	209 81899	
	D4705	OQ0070T		5322	209 81899	
	A1200	OQ0067A		F222	209 81883	
	A1400	OQ0068A			209 81884	
	A1500	OQ0063KA			209 81898	
	A1600	μA741CN			209 80617	
6.1.5.	Miscellaneous					
	Top cover asse	mbly				
	Description		Ordering number	Qty	Item	Fig.
	Top cover assy		5322 447 70078	1	. 1	5,1.
	Mains connect		5322 267 30434	1		
	Cable mains or	nnector to p.c.b.	5322 321 20854	1		
	Bottom cover	assembly				
	Cover with scr	eening and feet	5322 447 70077	1	5	5.2.
	Carrying hand		5322 498 54105	1	. 2	5.1.
	Front assemble	y .				
	Front		5322 447 70076	1	10	5.4.
	Function selec	tor	5322 414 40016	1	4	5.4.
	Window		5322 381 10562	1.	11	5.4.
	L.C.D.		5322 130 90158	1	1	5.4.
	Rubber connec	ction	5322 290 84079	1	3	5.4.
	Ball		4822 520 40044	1	12	5.4.
	Display p.c.b.		5322 216 91847	1 .	2	5,4.

Description	nn .	Ordering number	Oty	Item	Fig.
Preset swi	tch n.c.h	5322 216 91844	1	5	5.4.
Buzzer	tor pieto.	5322 280 10158	i i	13	5.4.
	witch p.c.b,	5322 321 20773	- 1	14	5.4.
Cathe to s	witch p.c.b,	3322 321 20773		14	5.4.
Switch as	sembly				
N2 printe	d circuit board	5322 276 11242	1	6	5.2.
Function	switch complete	5322 278 80181	2	7	5.2.
VRPP cor	nector X1005	5322 265 61022	1	6	5.4.
Printed ci	rouit board				
Pos. nr.	Description	Ordering code	Qty	Item	Fig.
		5322 414 60037	4	18	5.4.
	Knobs ranging	5322 414 60037	1		5.4.
	Knob preset	5322 414 20043	,	15 16	5.4.
	Knob power switch Knobs zero set	5322 414 20033	2		5.4.
	Knobs zero set			19	
S3001		5322 276 14338	1	18	5.4.
S3002		5322 276 14338	1	18	5.4.
\$3003		5322 276 14338	1	18	5.4.
S3004		5322 276 14338	1	18	5.4.
S3005		5322 276 14338	1	18	5.4.
\$3006		5322 276 14338	1	18	5.4.
S3007		5322 276 14338	1	18	5.4.
\$3008		5322 276 14338	i	18	5.4.
S1009	Power switch	5322 276 84077	1	16	5.4.
X1001	Input socket	5322 267 30544	1	17	5.4.
X1002	Input socket	5322 267 30544	1	17	5.4.
X1003	Input socket	5322 267 30544	1	17	5.4.
F1601	Thermal fuse	5322 252 20117	i	8	5.2.
F1300	Fuse 630MA	4822 253 30018			0.111
F1600	Fuse 50MA	4822 253 30013			
T1600	Mains transformer	5322 148 80164	1	8	5.2.
		5322 144 14011	1	9	5.2.
T1601	Transformer		1	10	5.2.
G1719	Lith, battery	5322 138 10095	1	10	0.2.
X1004		5322 267 54107			
X1600		5322 264 54061			
X1700		5322 266 44028			
X1701		5322 284 44084			
X1702		4822 266 40063			
X3001		4822 265 40157			
B1700	Crystal	4822 242 70323			
	Fuse holder	5322 256 34081	1	11	5.2.
	Mains cable	5322 321 10329			
	Test leads + test pins	5322 327 10329			
	rest roous # test pins	0322 38/ 00080			

6.2. ADDITIONS TO THE PARTS LIST FOR PM2519/21 (battery version)

6.2.1. Resistors

Pos. nr.	Description	%		Ordering code
R9101	20	В	PR37	5322 116 55615
R9102	6.49	0.5	MR30	5322 116 55614
R9103	6.49	0.5	MR30	5322 116 55614
R9104	261	1	MR25	5322 116 54502
R9105	220	20	0.05W	4822 100 10019
R9106	825	1	MR25	5322 116 54541
R9201	100K	1	MR25	4822 116 51268
R9301	2.2K	20	0.05W	4822 100 10029
R9302	10K	1	MR25	4822 116 51253
R9303	4.22K	1	MR25	5322 116 50729
R9304	100K	1	MR25	4822 116 51268
R9305	10K	1	MR25	4822 116 51253
R9306	10K	1	MR25	4822 116 51253
R9401	26.1K	1	MR25	5322 116 54651
R9402	154	1	MR25	5322 116 50506
R9403	6.19K	1	MR25	5322 116 55426
R9404	16.2K	1	MR25	5322 116 55361
R9405	4.7K	20	0.05W	4822 100 10036
R9406	5.36K	1	MR25 .	5322 116 54597
R9501	464	1	MR25	5322 116 50536
R9502	14.7K	1	MB25	5322 116 54632

6.2.2. Semi-conductors

V9101	BZV46-C2V0	4822 130 3124
V9102	BY527	4822 130 3150
V9201	BY527	4822 130 3150
V9202	BAW62	4822 130 3061
V9203	BAW62	4822 130 3061
V9301	BC557B	4822 130 4456
V9401	BD140	4822 130 4082
V9402	BC557B	4822 130 4456
V9403	BZX79-C3V9	4822 130 3198
V9501	BC369	5322 130 4459
V9502	BAW62	4822 130 3061
V9503	BZX79-C24	4822 130 3439
V9504	BAW62	4822 130 3061
V9506	BAW62	4822 130 3061
V9506	BAX12A	5322 130 3460
V9507	BAX12A	5322 130 3460

6.2.3. Capacitors

C9101	1000UF	-10+50%	16V	4822 124 20777
C9201	15UF	10%	16V	4822 124 20977
C9401	2.2UF	20%	16V	4822 124 10204
C9402	33UF	40%	10V	4822 124 20945
C9501	100UF	-10+50%	10V	4822 124 20679
C9502	270PF	2%	100V	4822 122 31331
C9503	47UF	-10+50%	25V	4822 124 20699
C9504	47UF	-10+50%	25V	4822 124 20699

Pos. nr. Description Ordering code

6.2.4. Integrated circuits

Cable to battery

A9101 LM317 4822 209 80591 A9401 CA3086 5322 209 86236

6.2.5. Miscellaneous

L9501 5.222 158 10052 L9502 522 158 10052 T9501 Transformer 5.322 148 34061 VL9101 Fuse 4822 232 201285 Cable to 2519 5.222 321 20256

5322 321 20591

6.3. ADDITIONS TO THE PARTS LIST FOR PM 2519/51

6.3.1. Galvanic separation

6.3.1.1. Resistors

Pas. nr.	Descriptio	a		Ordering code
R501	2.49K	1	MR25	5322 116 50581
R502	3.65K	1	MR25	5322 116 54587
R503	3.65K	1	MR25	5322 116 54587
R604	3.65K	1	MR25	5322 116 54587
R505	2.49K	1	MR25	5322 116 50581
R506	787K			5322 116 52161
R507	16K2			5322 116 55361
R508	287E			5322 116 54506
R509	100	1	MR25	5322 116 55549
R510	287E		MITES	5322 116 54506
R511	100	1	MR25	5322 116 55549
R512	16K2			5322 116 55361
R513	787K			5322 116 52161
R514	2.49K	1	MR25	5322 116 50581
R515	3.65K	. 1	MR25	5322 116 54587
R516	3.65K	1	MR25	5322 116 54587
R517	2.49K	1	MR25	5322 116 50581
R518	3.65K	1	MR25	5322 116 54587
R619	2.49K	1	MR25	5322 116 50581
R520	3.65K	1	MR25	5322 116 54587
R521	3.65K	1	MR25	5322 116 54587
R522	3.65K	1	MR25	5322 116 54587
R523	2.49K	1	MR25	5322 116 50581
R524	787K			5322 116 52161
R525	16K2			5322 116 55361
R526	287E			5322 116 54506
R527	100	1	MR25	5322 116 55549
R528	787K			5322 116 52161
R529	16K2			5322 116 55361
R530	287E			5322 116 54506
R531	100E			5322 116 55549
R532	2.49K	1	MR25	5322 116 50581
R533	3.65K	1	MR25	5322 116 50561
R534	3.65K	1	MR25	5322 116 54587
R536	2.49K	1	MR25	5322 116 50581
R536	3.65K	1	. MR25	5322 116 54587
R537	681E			4822 116 51233
R538	121K	1	MR25	5322 116 54704
R539	3K48			5322 116 55367
R540	10K	1	MR25	4822 116 51253
R541	10K	1	MR25	4822 116 51253
R542	100E	1	MR25	5322 116 55549
R543	14.7	1	MR25	5322 116 50412
R544	10K	1	MR25	4822 116 51253
R545	106	1	MR25	4822 116 51253

	Pos. nr.	Description			Ordering code
	R546	10K	i	MR25	4822 116 51253
	R547	10K			4822 116 51253
	R548	16K2			5322 116 55361
	R549	16K2			5322 116 55361
	R550	16K2			5322 116 55361
	R551	16K2			5322 116 55361
	R562	16K2 287E			5322 116 55361
	H002	28/E			D322 116 04000
6.3.1.2	Capacitors				
	C501	10UF	50%	16 V	5322 124 14066
	C503	10NF	100 V		4822 122 31414
	C504	10NF	100V		4822 122 31414
	C507	10NF	100V		4822 122 31414
	C509	10NF	100V		4822 122 31414
	C510	1UF	40%	25V	4822 124 20944
	C511	1UF	40%	25V	4822 124 20944
	C512	10UF	50%	16V	5322 124 14066
	C513	2200UF	10%	100 V	4822 124 21382
	C513	100NF	10%	100 V	5322 121 40323
				1000	
	C520	1NF	400V		5322 122 40364
	C521	1NF	400V		5322 122 40364
6.3.1.3.	Semi-conductors				
	V501	BC559B			4822 130 44358
	V502	BC547B			4822 130 44358
	V502 V503	BC547B			4822 130 40959
	V504	BSX20			4822 130 41705
	V504 V506	BSX20			4822 130 41705
	V508	BC559B			4822 130 44358
	V509	BC547B			4822 130 40959
	V510	BC547B			4822 130 40959
	V511	BC559B			4822 130 44358
	V512	BC547B			4822 130 40959
	V513	BC547B			4822 130 40959
	V514	BSX20			4822 130 41795
	V516	BSX20			4822 130 41705
	V518	BC559B			4822 130 44358
	V519	BC547B			4822 130 40959
	V520	BC547B			4822 130 40959
	V522	BYV27-150			4822 130 31628
	V523	BYV27-150			4822 130 31628
	V524	BYV27-150			4822 130 31628
	V525	BYV27-150			4822 130 31628
	V526	BZV85-C18			5322 130 32212
	V526 V527	BZV85-C18 BZV85-C18			5322 130 32212
	V527 V528	BC559B			4822 130 32212
	V528	BC327			4822 130 44356
		JUJ2/			1011 10004
6.3.1.4.	Integrated circuits				
	A501	LM 393P			4822 209 81223
	A502	LM 393P			4822 209 81223
	A521	UA 7805			5322 209 84841

		1				
	Pas. nr.	Description	Ordering code	Oty	Item	Fig.
6.3.1.5.	Miscellan	eous				
	B501	Opto coupler CNX36*	5322 130 90175	1		
	B502	Opto coupler CNX36*	5322 130 90175	1		
	B503	Opto coupler CNX36*	5322 130 90175	1		
	B504	Opto coupler CNX36*	5322 130 90175	1		
	B505	Opto coupler CNX36*	5322 130 90175	1		
	T501	Transformer	5322 148 80164	1	1	5.7.
	F501	Thermal fuse	5322 252 20117	1		
	X1500	Connector 5P	5322 284 50122	1		
	X1501	Connector 5P	5322 284 50122	1		
	Cable mai	ns con. + galv. separation	5322 321 20862	1	2	5.7.
	Cable mai	ns galv. separation + main p.c.	b. 5322 321 20854	1	3	5.7.
		Flatcable IEC galv.	5322 321 20863	1	4	5.7.
		Flatcable IEC 2519	5322 321 20864	1	5	5.7.
		Top cover assy	5322 447 70079			
	X1	Mains connector	5322 267 40511	1		
		Mains cable	5322 321 20697			

^{* ********}

	Pos. nr.	1	Description					Ordering	code		
6.3.2.	IEC-bus in	terface									
	Resistors										
6.3.2.1.	R601 R602 R603 R604 R605	1	10K 100 10K 10K	1 1 1 1		MR25 MR25 MR25 MR25 MR25		4822 11 5322 11 5322 11 4822 11 4822 11	6 55549 6 55649 6 51253		
	R606 R607 R608 R609 R610 R611 R612		1M 2.74K 1.64K 3.66K 10K 10K	1 1 1		MR25 MR26 MR25 MR25		5322 11: 5322 11: 5322 11: 5322 11: 4822 11: 4822 11:	6 50636 6 50484 6 54613 6 51253 6 51253		
6.3.2.2.	Capacitors C601 C602 C603 C604 C605 C606 C607 C608		33UF 1UF 33UF 1ONF 1ONF 1ONF 33UF 33PF	40% 40% 40% 100V		10V 25V 10V		4822 12 4822 12 4822 12 4822 12 4822 12 4822 12 4822 12 4822 12	4 20944 4 20945 2 31414 2 31414 2 31414 4 20945 2 31067		
	C609		33PF					4822 12	2 31067		
6.3.2.3.	Semi-cond V601 V602 V603 V604 V605 V606 V607 V608		BAW62 BAW62 BAW62 BAW62 BAW62 BAW62 BAW62 BAW62 BAW62 BAW62					4822 13 4822 13 4822 13 4822 13 4822 13 4822 13 4822 13	0 30613 0 30613 0 30613 0 30613 0 30613 0 30613		
6.32.4.	4. Integrated circuits D601 D602 D603 D604 D605 D606		MAB 8440/D SN 75161 SN 75180 HEF40245BI N74LS02N N74LS05N					5322 20 5322 20 5322 20 5322 20 5322 20 5322 20	9 81842 9 81807 9 10867 9 85312		
6.3.2.5.	Miscellaneaus										
	Pos. X601 X602 B601 S601	Description Connecte Connecte Crystal G DIP swite Plastic ris	r 24P r 5P MHZ thes		5322 26 5322 26 4822 26 5322 27	g number 35 51041 34 50122 12 70392 17 60217 58 20141	1 1 1		/tem 6 8 7	5. 5. 5.	7.

7. CIRCUIT DIAGRAMS AND PCB LAY-OUT

LIST OF	FIGURES	Pi
Fig.7.1.	Analog part	7-
Flg. 7.2.	Digital part	
	Power supply	
Fig. 7.4.	Mein pcb, lay-out, conductor side	7-
Fig. 7,5.	Main pcb, lay-out component side	
Fig. 7.6.	Switch pcb, ley-out, front view	7.
Fig. 7.7.	Switch pcb, lay-out, rear view	7.
Fig. 7.8.	Display pcb, lay-out component side	7.
Fig. 7.9.	Display pcb, lay-out, conductor side	7-
Fig. 7.10.	Preset pcb. lay-out, component side	7.
Fig. 7.11.	Preset pcb, lay-out, conductor side	7.
Fig. 7,12.	Battery power supply	
Fig. 7.13.	Battery power supply pcb, lay-out, component side	7.
Flg. 7,14,	Battery power supply pcb, lay-out, conductor side	7.
Fig. 7.15.	Galvanic separation	7-
Fig. 7.16.	Galvanic separation pcb. lav-out, component side	7.
Fig. 7.17.	Galvanic separation pcb, lay-out, conductor side	7.
Fig. 7,18.	IEC-625/IEEE-488 Interface	7.
Fig. 7.19.	IEC -825/IEEE-488 interface pcb, lev-out component side	7.

Fig. 7.2. Digital part

Fig. 7.3, Power supp

Fig. 7.4. Main p.c.b., lay-out, conductor side

Fig. 7.5. Main p.c.b., lay-out, component

Fig. 7.6. Switch p.c.b., lay-out, front view

Fig. 7.7. Switch p.c.b., lay-out, rear view

Fig. 7.8. Display p.c.b., lay-out, component side

Fig. 7.9, Display p.c.b., lay-out, conductor aid

Fig. 7.10. Preset p.c.b., lay-out, component side

Fig. 7.11. Preset p.c.b., lay-out, conductor side

Fig. 7.16. Galvanic separation p.c.b., lay-out, component side

Fig. 7.17. Galvanic separation p.c.b., lay-out, conductor sid

Fig. 7.18. IEC-625/IEEE-488 interface p.c.b., law-out, component vide

Fig. 7.19, IEC-625/IEEE-488 Interface pcb, lay-out component side

Fig. 7,20. IEC-625/IEEE-488 interface pcb, lay-out, conductor side

ADAPTING TO THE LOCAL MAINS VOLTAGE

PM 2519/01/21

Fig. 8.1. Adaption to the local mains voltage PM 2519/01/21

Adaptation for	Connections				
~ 220 V	TP1009	TP1008	(drawn		

TP1010 TP1008 NOTE: The fuse F1001 is the same for both adaptations (50 mAF).

8.2. PM 2519/51

~ 240 V

Fig. 8.2. Adaption to the local mains voltage PM 2519/51

Adaptation for	Connections			
~ 220 V ~.240 V	TP510 TP511 (drawn) TP509 TP511			

NOTE: In the PM 2519/51 the mains leads coming from the galvanic separation are for both adaptations always connected to TP1009 and TP1008 on the main p.c.b. The fuse F1001 is the same for both adaptations (125 mAF).

9. MODIFICATIONS

9.1. MODIFICATIONS TO THE PM 2519/01

This service manual is based on the instrument numbers DY 01 3611 and onwards. For the instruments with a lower number, the following modifications are given.

1. Modifications to main p.c.b. levout

For instruments with a serial no. lower than DY 01 2811 the following components are mounted at the solder side of the panel (Fig. 9.1.): V1765, R1105 and three wires. Also R1301 is connected in a different WeV.

Fig. 9.1.

For instruments with a serial no. between DY 01 2411 and DY 01 3610, R1105 is mounted on the solder side of the panel (Fig. 9.2.).

Fig. 9.2.

9.2. MODIFICATIONS TO THE PM 2519/51

This service manual, also for the PM2519/51, is based on the instruments numbers DY 5101236 and onwards, For instruments with a lower number the following modifications are given.

For instruments with a lower number than DY 51672 the IEC p.c.b. is supplied with a piggy-back processor. This is a MAB8440 with a 4K ROM on the back (see Fig. 9.3.). For the circuit diagram refer to Fig. 7.18,

Fig. 9.3.

For instruments with a serial number DY 51672 up to DY 5101236 the piggy-back processor is replaced by a MAB8440/D026 with internal ROM (mask programmed ROM). Due to a fault in the software the IEC-bus p.c.b. must be adosted as follows:

10. COMPONENT DATA

HEF4001B QUADRUPLE 2-INPUT NOR GATE

HEF4011B QUADRUPLE 2-INPUT NAND GATE

Functional diagram

Pinning diagram

HEF4618R DUAL BCD COUNTER

Functional disgram

PINNING

 $\frac{\text{CP}_{0A}, \text{CP}_{0B}}{\text{CP}_{1A}, \frac{\text{CP}_{0B}}{\text{CP}_{1B}}}$ clock inputs (L to H triggered)

MRA, MRB master reset inputs Ona to O3a outputs

One to Oak outputs

Pinning diagram

FUNCTION TABLE

CP ₀	Ĉ₽ ₁	MR	Mode
	Н	L	counter advances
L		L	counter advances
	X	L	no change
Х		L	no change
	L	L.	no change
н		L	no change
x	Y	н	On to On = LOW

- H = HIGH state (the more positive voltage)
- L = LOW state (the less positive voltage)
- X = state is immaterial = positive-going transition
 - = negative-going transition

HEF4520B DUAL BINARY COUNTER

Functional diagram

PINNING

 $\begin{array}{ll} CP_{0,A}, CP_{0B} & \text{clock inputs (L to H triggered)} \\ \overline{CP}_{1A}, \overline{CP}_{1B} & \text{clock inputs (H to L triggered)} \\ MR_{A}, MR_{B} : & \text{master reset inputs} \end{array}$

O_{0A} to O_{3A} outputs

 0_{0B} to 0_{3B} outputs

FUNCTION TABLE

T--T

CP ₀	CP₁	MR	Mode
L X H X	H X L	LLLLLH	counter advances counter advances no change no change no change no change On to O ₃ = LOW

- H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage) X = state is immaterial
 - = positive-going transition
 - = negative-going transition

HEF4532R 8-INPUT PRIORITY ENCODER

10		RI/B1		
- 10	210		Oα	-
11	WZ11		10	7
12	2/212		2α	6
13	3/213			
1	4/214	ηr	>1	
_ 2	5/215	11 🛊		16
_ 3	6/216	12		
- 6	71 Z 17	16		
		15		15
_	ENG/VIE	16	19	<u> </u>
		17		I

Functional diagram

PINNING

I₀ to I₇ priority inputs

E_{in} enable input

E_{out} enable output

GS group select output

On to On outputs

TRUTH TABLE

Ein	17	18	15	14	13	12	11	10	GS	02	01	00	Eout
L	х	x	×	х	х	X	х	х	L	L	L	L	L
н	L.	L	Ł	L.	L	Ł	L	L	L	L	L	L	н
н	н	X	Х	Х	X	X	X	X	н	н	н	н	L
н	L	н	X	X	х	X	X	Х	н	н	н	L	L
н	L	L	Н	X	Х	Х	X	х	н	н	L	Н	L
н	L	L	L	H	х	X	X	X	н	н	L	L	L
н	L.	L	L	L	н	X	X	Х	Н	L	н	Н	L
н	L	L	L	L	L	н	х	X	н	L	н	L	L
н	L	L	L	L	L.	L	н	X	н	L	L	н	L
н	L	L	L	L	L	L.	L	н	Н.	L	L	L	L

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

HEF40245B OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

Functional diagram

Pinning diagram

PINNING

A₀ to A₇ data input/output
B₀ to B₇ data input/output
DR direction input
EO output enable input

FUNCTION TABLE

Inpu	outputs		
ĒΘ	DR	An	Bn
L L	L H X	A = B input Z	input B = A Z

- H = HIGH state (the more positive voltage)
- L = LOW state (the less positive voltage)
- X = state is immaterial
- Z = high impedance OFF-state

SN75160A

SN75160A, SN75161A IEEE-488 GPIB BUS TRANSCEIVERS

IN DUAL-IN-LINE PACKAGE (TOP VIEW)

BUS

Table of abbreviations

CLASS	NAME	IDENTITY
CONTROL INPUTS	DC PE TE	Direction Control Pull-up Enable Talk Enable
SN75160A I/O PORTS	B D	Bus side of device Terminal side of device
SN75161A/162A SIGNAL MNEMONICS	ATN DAV EOI IFC NDAC NRFD REN SRQ SC	Attention Data Valid End of Identify Interface Clear Not Data Accepted Not Ready for Data Remote Enable Service Request System Controller

SN75160A function tables

Dr	Drivers				Receivers				
IN	PUTS	_	ОИТРИТ	IN	PUTS	3	OUTPUT		
D	TE	PE	В	В	TE	PE	D		
н	н	н	н	L	L	х	L.		
L	Н	н	L	н	L	Х	н		
н	X	L	F	×	н	X	z		
L	Н	L	L	ı			1		
X	L	х	F	1			1		

 $F=free \ state, H=high \ level, L=low \ level, X=irrelevant, Z=high-irrepedance state of a normal 3-state output modified by the internal resistors to <math>V_{CC}$ and

Description

These octal bus transceivers are designed to provide communication on the general-purpose interface bus (GPIB) between operating units of the instrumentation

system.

ST 4551

The sixteen signal lines normally required by the interface yether can be inplemented with two devices. The SNTPS IGAD handless the eight-line data but. The dataprostle and but manufacent signals are handled by the required and but manufacent signals are handled by the source of the signal when the signal signal signal signal with signal signal signal signal with signal signal signal with signal signal with signal signal signal with signal signal signal with signal

SN75161A N DUAL-IN-LINE PACKAGE (TOP VIEW)

\$14552

SN75161A function table

00	NTR	OLS*	DIRECTION OF DATA**							
ΤĒ	DC	Level	AYN Direction	601	REN	IFC	\$80	HPFO	NDAC	DAV
м	н	н	8	T	8	В	Y	R	R	т
ж	н	i i	8	-		15	T	8	8	Y
ж	ъ 1	×	т 1	т	T	T	В	n	n	T
	н	×	18	8	- 91	8	Y	T	T	8
ũ	ü	н	T	- 61	т	т	п	T	T	8
ī.	i. I	L.	T I	T	T	T	В	T	T	п

rnn nr.	Name	Description							
1	Irs '	Ref. current adjustment	With Rs	the output current c	an be adju	sted.			
2	Cs	Smoothing Capacitor	Smoothi	Smoothing capacitor for the switched currents.					
3	Irc	I Ref Common	Commo	Common connection of Rs and Rp.					
4	Vss	Supply	Negative	supply voltage					
5 6	C clock C clock	,	Capacito	Capacitor for the clock-oscillator.					
7	RNG B	Range B	Range in	nformation (see 12, 1	3).				
8	V out	Output voltage	Output	Output of the compensation amplifier,					
9	C comp.	C. Compensation	Compen	Compensation capacitor for the compensation amplifier.					
10 11	+Vin –Vin	+ Input Input	+ and — input of the compensation/protection amplifier. Compensation: With the amplifier the current consumption of the ADC is compensated during <u>\Omega measurements</u> . Protection: With the amplifier also the leak curent through the protection diodes during <u>\Omega measurements</u> is compensated.						
12 13	RNG C RNG A	Range C Range A	Together with signal RNG 8 the signals determine the digits range information from the OQ 0059.						
			Range	Measuring current	RNGA	RNG B	RNG C		
			1 kΩ	1 mA	1	1	1		
1			10 kΩ	100 μA	0	0	0		
- 1			100 kΩ		1	0	0		
- 1	- 1		1 MΩ		0	1	0		
			10 MΩ	100 nA	1	1	0		
14	Vdd	Supply	Positive s	supply voltage.					
15	GND	GROUND	Supply z	ero.					
16	I out		Output o	surrent.					
17	Cs Cs		Smoothi	ng capacitor.					
18	Irp		With Rp determin	the temperature-coef	ficient of 1	he referen	ce current is		

TOP VIEW NOTE: Pin numbers 7 and 12 are not connected together internally.

OQ 0068 RMS CONVERTER

Pin nr.	Name	Description
1	RB	Range resistor B
2	RB	Range resistor B
3	11	Input 1
4	RA	Range resistor A
5	VN	Negative supply
6	CAZ	Autozero capacitor
7	CAZ	Autozero capacitor
8	GND	Ground
9	CF/ZC OUT	Digital output
10	CF/ZC SEL	Digital output select
11	PROT	Input protection clamp
12	CRMS	Integrating capacitor
13	JOUT	Current output
14	VP	Positive supply
15	RNG SEL	Range selection
16	ENA	Enable input
17	12	Input 2
18	RA	Range resistor A

OPERATION MODES

ENA	SEL CF/ZC	SEL RNG	FUNCTION
1	×	×	Power down mode
0	1	. 0	Low range Measurement mode
0	1	1 1	High range Measurement mode
0	0	0	Low range Counter mode
0	0	1.1	High range Counter mode

OO 0070 DISPLAY DRIVER

VEE 1	U	28 VDD	Name	Pìn no.	Description
503 2 504 3		27 BP1 25 BP2	S01-S0	2-13) 17-22)	Driver outputs
SOS C		25 BP3	BP1-BP3	25-27	Back planes
S06 5		24 REF ADJ	REF AD	J 24	Voltage reference adjustment
S07 E		23 osc	SDA	15	Serial data line
SO# 7	090070	22 501	SCL	16	Serial clock line
509 B	040070	21 502	VEE	1	Neg. voltage supply
S010 9		25 5015	VDD	28	Ground
5011 10		19 5016	VSS	14	Pos. voltage supply
5012 11		18 5017			
5017 12		17 5018			
5014 13		16 SCL			
VSS 16		15 SOA			
	S1 84	6471 0713			

Pinning OQ 0070 (Top view)

BLOCK DIAGRAM

OQ 0071 ADC INTERFACE

(Top view)

PCDR571 128 x 8-BIT STATIC RAM

General description

The PCD8571 is a low-power 1024-bit static CMOS/RAM, organized as 128 words of 8 bits each. Data and address are transferred serially via a two-line bidirectional bus (f²Cl). Automatic word address incrementing in read/write modes minimize bus traffic. Three hardware address pins A0, A1 and A2 identify when several devices are connected on the bus, which allows the use of up to 8 RAMs without additional hardware.

Block disgram

Pinning diagram

PINNING

1 to 3	A0 to A2	Address inputs
4	Vss	Negative supply
Б	SDA	Serial data line
В	SCL	Serial clock line)
7	TEST	Test input for test speed-up; must be connected to VSS when not in use (power down mode, see figures)
8	VDD	Positive supply