# **Determining Probabilities of Handwriting Formations using PGMs**

#### Alina Vereshchaka

Department of Computer Science and Engineering State University of New York at Buffalo 306 Davis Hall, Buffalo, NY, 14228 avereshc@buffalo.edu

## 1 Task 1

For this task we needed to evaluate pairwise correlations and independences that exist in the data. Thus if  $p(x,y) \approx p(x)p(y)$  that means that the data is independent, otherwise we can estimate how much one data is correlated to another. The approximate correlation was calculated using Eq. 1.

$$\sum \left| \left| \left( (P(x,y) - P(x)P(y)) \right| \right. \tag{1}$$

Thus, the higher the parameter, the higher correlation between the pair. Results of the pairwise features correlation are in Table 1.

Table 1: Pairwise correlations of the features

| Pair | Correlation |
|------|-------------|
| x1x2 | 0.1598      |
| x1x4 | 0.1194      |
| x1x6 | 0.1601      |
| x2x3 | 0.2185      |
| x2x5 | 0.1293      |
| x3x2 | 0.2187      |
| x3x5 | 0.1155      |
| x3x6 | 0.1132      |
| x4x1 | 0.1195      |
| x4x2 | 0.1157      |
| x4x6 | 0.1435      |
| x5x2 | 0.1293      |
| x5x3 | 0.1160      |
| x6x1 | 0.1604      |
| x6x2 | 0.1753      |
| x6x3 | 0.0943      |
| x6x4 | 0.1431      |

As we can see the highest correlation is between height relationship of t to h (x1) and shape of loop of h (x2) features, while the lowers is between shape of t (x6) and shape of arch of h (x3).

## 2 Task 2

For this task we need to construct a Bayesian network with the fewest number of edges that maximizes the likelihood. The threshold was set to 1.12 in order to include all the features to the final graph.

Table 2: Pairs with correlations > 0.12

| Pair | Correlation |
|------|-------------|
| x1x2 | 0.1598      |
| x1x6 | 0.1601      |
| x2x3 | 0.2185      |
| x2x5 | 0.1293      |
| x3x2 | 0.2187      |
| x4x6 | 0.1435      |
| x5x2 | 0.1293      |
| x6x1 | 0.1604      |
| x6x2 | 0.1753      |
| x6x4 | 0.1431      |

I begin constructing the Bayesian network with the most correlated pairs, by increasing the number of edges and trying various directions. To estimate the constructed network, I generate samples using ancestral sampling and applied K2 algorithm, a well-known score-based algorithm to estimate Bayesian network (Eq.2). It recovers the underlying distribution in the form of DAG efficiently.

Some of the helpful equations used to construct and estimate BNs.

Bayes Rule:

$$p(x1|x2) = \frac{p(x2|x1)p(x1)}{p(x2)}$$

K2 Bayseian scoring function:

$$g_{K2}(G:D) = log(p(G)) + \sum_{i=1}^{n} \left[ \sum_{j=1}^{q_i} \left[ log\left(\frac{(r_i - 1)!}{(N_{ij} + r_i - 1)!}\right) + \sum_{k=1}^{r_i} log(N_{ijk}!) \right] \right]$$

, where p(G) represents the prior probability of the DAG G.

The full list of constructed BNs and their evaluation is presented in Table 3, the image representation is on Fig. 1.

Table 3: Constructed Bayesian Networks evaluation

| Bayesian Network | Edges                                                                | K2Score |
|------------------|----------------------------------------------------------------------|---------|
| 1                | ('x2', 'x3')                                                         | -2304   |
| 2                | ('x6', 'x2'), ('x2', 'x3')                                           | -3641   |
| 3                | ('x6', 'x2'), ('x6', 'x1'), ('x2', 'x3')                             | -4399   |
| 4                | ('x6', 'x2'), ('x2', 'x3'), ('x2', 'x5')                             | -4863   |
| 5                | ('x6', 'x4'), ('x6', 'x1'), ('x1', 'x2'), ('x2', 'x3'), ('x2', 'x5') | -6465   |
| 6                | ('x6', 'x4'), ('x6', 'x2'), ('x2', 'x3'), ('x2', 'x1'), ('x3', 'x5') | -6429   |
| 7                | ('x1', 'x6'), ('x1', 'x2'), ('x6', 'x4'), ('x2', 'x3'), ('x2', 'x5') | -6481   |
| 8                | ('x4', 'x6'), ('x6', 'x1'), ('x1', 'x2'), ('x2', 'x3'), ('x2', 'x5') | -6461   |

## 3 Task 3

Bayesian Network 7 was converted to Markov network using pgmpy fucntion **to\_markov\_model**(). Obtained Markov network:



Figure 1: Image representations of constructed Bayesian networks

## 4 Task 4

For this task, using the "and" image dataset we needed to construct a Bayesian network and evaluate the goodness score of several Bayesian networks. The data has 8 features and 1025 samples. The Bayesian Network was constructed using Hill Climb Search algorithms using pgmpy liblary in Python. This algorithm performs local hill climb search to estimates the BayesianModel structure that has optimal score, according to the scoring method supplied in the constructor.

## 4.1 Constructing Bayesian networks using BicScore

Using BicScore as a scoring method for constructing Bayesian network, the algorithm returned the best network, given the data.

#### Nodes used in the network:

'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9'

## **Edges:**

[('f3', 'f5'), ('f4', 'f3'), ('f8', 'f9'), ('f9', 'f1'), ('f9', 'f5'), ('f9', 'f6'), ('f9', 'f7')]

## Network, where all nodes have at most 1 parents:

[('f4', 'f3'), ('f8', 'f9'), ('f9', 'f5'), ('f9', 'f7'), ('f9', 'f1'), ('f9', 'f6')]

## Network, where all nodes have at most 2 parents:

[('f3', 'f5'), ('f4', 'f3'), ('f8', 'f9'), ('f9', 'f5'), ('f9', 'f7'), ('f9', 'f1'), ('f9', 'f6')]

#### **K2Score**

-8175.27



Figure 2: Best Bayesian Network for "and" image dataset using BicScore

## MLE for all features

Below are the maximum likelihood estimation for each fearure, based on the Bayesian network presented on Fig. 2.

| f9    | '                  | f9(2)               |
|-------|--------------------|---------------------|
| f1(0) |                    | 0.10638297872340426 |
| f1(1) |                    | 0.26032540675844806 |
| f1(2) |                    | 0.3692115143929912  |
|       | 0.0881057268722467 |                     |

Figure 3: MLE for feature f1

| - |       | 4                        | 4                  | L                    |                     |                     |
|---|-------|--------------------------|--------------------|----------------------|---------------------|---------------------|
|   | f4    | f4(0)                    | f4(1)              | f4(2)                | f4(3)               | f4(4)               |
|   | ` '   | 0.061971830985915494<br> | 0.1415525114155251 | 0.55555555555556     | 0.05063291139240506 | 0.10714285714285714 |
| Ì | f3(1) | •                        | 0.8264840182648402 | 0.4351851851852      | 0.9177215189873418  | 0.2857142857142857  |
|   |       | 0.005633802816901409     | 0.0319634703196347 | 0.009259259259259259 | 0.03164556962025317 | 0.6071428571428571  |
|   |       |                          |                    |                      |                     |                     |

Figure 4: MLE for feature f2

|       | +           |
|-------|-------------|
| f4(0) | 0.346004    |
| f4(1) | 0.21345     |
| f4(2) | 0.105263    |
| f4(3) | 0.307992    |
|       | 0.0272904   |
| T     | <del></del> |

Figure 5: MLE for feature f4

| f3    | f3(0)                | f3(0)                | f3(1)                | f3(1)                | f3(2)              | f3(2)               |
|-------|----------------------|----------------------|----------------------|----------------------|--------------------|---------------------|
| f9    | f9(1)                | f9(2)                | f9(1)                | f9(2)                | f9(1)              | f9(2)               |
| f5(0) | 0.9615384615384616   | 0.12264150943396226  | 0.3641025641025641   | 0.09969788519637462  | 0.3333333333333333 | 0.1935483870967742  |
| f5(1) | 0.0                  | 0.0                  | 0.005128205128205128 | 0.055891238670694864 | 0.0                | 0.0                 |
| f5(2) | 0.038461538461538464 | 0.8679245283018868   | 0.6256410256410256   | 0.8383685800604229   | 0.3333333333333333 | 0.6451612903225806  |
| f5(3) | 0.0                  | 0.009433962264150943 | 0.005128205128205128 | 0.006042296072507553 | 0.3333333333333333 | 0.16129032258064516 |

Figure 6: MLE for feature 5

| f9    | f9(1)                | f9(2)                |
|-------|----------------------|----------------------|
| f6(0) | 0.004405286343612335 | 0.017521902377972465 |
| f6(1) | 0.31718061674008813  |                      |
| f6(2) | 0.5947136563876652   | 0.60450563204005     |
|       | 0.08370044052863436  |                      |
|       |                      |                      |

Figure 7: MLE for feature f6

| f9    |                      | f9(2)               |
|-------|----------------------|---------------------|
| f7(0) | 0.2511013215859031   | 0.5281602002503129  |
| f7(1) | 0.4669603524229075   | 0.3078848560700876  |
| f7(2) | 0.23348017621145375  | 0.04380475594493116 |
| : :   | 0.048458149779735685 | •                   |

Figure 8: MLE for feature f7

| +     | +             |
|-------|---------------|
| . ,   | 0.170565<br>+ |
| f8(1) | 0.232943      |
| f8(2) | 0.255361      |
| f8(3) | 0.206628      |
|       | 0.134503      |

Figure 9: MLE for feature f8

|   | f8  | +                   | f8(1) | f8(2) | +                    | f8(4)                |
|---|-----|---------------------|-------|-------|----------------------|----------------------|
| Ī | ` ' | 0.21714285714285714 |       |       | 0.009433962264150943 | 0.050724637681159424 |
| Ī |     | 0.7828571428571428  |       |       |                      | 0.9492753623188406   |

Figure 10: MLE for feature f9

#### 4.2 Constructing Bayesian networks using K2Score

### Nodes used in the network:

'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9'

## **Edges:**

('f3', 'f4'), ('f3', 'f8'), ('f3', 'f9'), ('f5', 'f3'), ('f5', 'f9'), ('f9', 'f1'), ('f9', 'f2'), ('f9', 'f4'), ('f9', 'f6'), ('f9', 'f7'), ('f9', 'f8')

# Network, where all nodes have at most 1 parents:

('f3', 'f4'), ('f5', 'f9'), ('f5', 'f3'), ('f9', 'f8'), ('f9', 'f7'), ('f9', 'f1'), ('f9', 'f6'), ('f9', 'f2')

## Network, where all nodes have at most 2 parents:

('f3', 'f4'), ('f3', 'f9'), ('f3', 'f8'), ('f5', 'f9'), ('f5', 'f3'), ('f9', 'f8'), ('f9', 'f7'), ('f9', 'f1'), ('f9', 'f6'), ('f9', 'f2'), ('f9', 'f4')

#### **K2Score**

-9462.704892371386

# MLE for all features

Below are the maximum likelihood estimation for each fearure, based on the Bayesian network presented on Fig. 11.



Figure 11: Best Bayesian Network for "and" image dataset using K2Score

| _ |       |                     | +                   |
|---|-------|---------------------|---------------------|
|   | f9    | f9(1)               | •                   |
|   | f1(0) | 0.19823788546255505 | 0.10638297872340426 |
|   | f1(1) | 0.44933920704845814 | 0.26032540675844806 |
|   | f1(2) | 0.2643171806167401  | 0.3692115143929912  |
|   |       |                     | 0.2640801001251564  |

Figure 12: MLE for feature f1

| 4 |       |                      | L                   |
|---|-------|----------------------|---------------------|
|   | f9    | f9(1)                | f9(2)               |
|   | f2(0) | 0.14537444933920704  | 0.18648310387984982 |
|   | ` ' ' | 0.6255506607929515   | 0.4856070087609512  |
| ] | f2(2) | 0.14537444933920704  | 0.12640801001251564 |
|   |       | 0.013215859030837005 |                     |
|   | f2(4) | 0.07048458149779736  | 0.1902377972465582  |
| ٦ |       |                      | r                   |

Figure 13: MLE for feature f2

| + |       | 4                   |       |                     | L                   |
|---|-------|---------------------|-------|---------------------|---------------------|
|   | f5    | f5(0)               | f5(1) | f5(2)               | f5(3)               |
|   | f3(0) | 0.20765027322404372 | 0.0   | 0.11742424242424243 | 0.07692307692307693 |
|   | f3(1) | 0.7486338797814208  | 1.0   | 0.8547979797979798  | 0.38461538461538464 |
| ĺ | f3(2) | 0.04371584699453552 | 0.0   | 0.0277777777777777  | 0.5384615384615384  |
| - |       | +                   |       |                     | +                   |

Figure 14: MLE for feature f3

| f3                                | f3(0)                                         | f3(0)                | f3(1)                | f3(1)               | f3(2)               | f3(2)               |  |
|-----------------------------------|-----------------------------------------------|----------------------|----------------------|---------------------|---------------------|---------------------|--|
| f9                                | f9(1)                                         | f9(2)                | f9(1)                | f9(2)               | f9(1)               | f9(2)               |  |
| f4(0)                             | f4(0)   0.11538461538461539   0.1792452830188 |                      | 0.3641025641025641   | 0.39274924471299094 | 0.1666666666666666  | 0.03225806451612903 |  |
| f4(1)                             | 0.5769230769230769                            | 0.1509433962264151   | 0.28717948717948716  | 0.18882175226586104 | 0.333333333333333   | 0.16129032258064516 |  |
| f4(2)                             | +                                             |                      | 0.07692307692307693  | 0.04833836858006042 | 0.0                 | 0.03225806451612903 |  |
| f4(3)                             |                                               |                      | 0.2666666666666666   | 0.3595166163141994  | 0.0                 | 0.3225806451612903  |  |
| f4(4)   0.0   0.02830188679245283 |                                               | 0.005128205128205128 | 0.010574018126888218 | 0.5                 | 0.45161290322580644 |                     |  |

Figure 15: MLE for feature f4

| +                 | + |
|-------------------|---|
| f5(0)   0.178363  | • |
| f5(1)   0.037037  |   |
| f5(2)   0.77193   |   |
| f5(3)   0.0126706 |   |

Figure 16: MLE for feature f5

|   |       |                      | ++                   |
|---|-------|----------------------|----------------------|
| ĺ | f9    | f9(1)                |                      |
| İ | f6(0) | 0.004405286343612335 | 0.017521902377972465 |
|   | f6(1) | 0.31718061674008813  |                      |
|   | f6(2) | 0.5947136563876652   |                      |
|   | f6(3) | 0.08370044052863436  |                      |
| т | T     |                      | г                    |

Figure 17: MLE for feature f6

| _ |       |                      |                     |
|---|-------|----------------------|---------------------|
| ĺ | f9    |                      | f9(2)               |
| ĺ | f7(0) | 0.2511013215859031   | 0.5281602002503129  |
|   | f7(1) | 0.4669603524229075   | 0.3078848560700876  |
| İ | f7(2) | 0.23348017621145375  | 0.04380475594493116 |
| ĺ | f7(3) | 0.048458149779735685 | 0.12015018773466833 |
| т |       |                      |                     |

Figure 18: MLE for feature f7

## 4.2.1 Converting to Markov Network

Bayesian Network that was generated using K2Score: ('f3', 'f4'), ('f3', 'f8'), ('f3', 'f9'), ('f5', 'f3'), ('f5', 'f9'), ('f9', 'f1'), ('f9', 'f2'), ('f9', 'f4'), ('f9', 'f6'), ('f9', 'f7'), ('f9', 'f8')

was converted to Markov network using pgmpy fucntion **to\_markov\_model**(). Obtained Markov network: ('f3', 'f4'), ('f3', 'f8'), ('f3', 'f9'), ('f3', 'f5'), ('f4', 'f9'), ('f8', 'f9'), ('f9', 'f1'), ('f9', 'f5'), ('f9', 'f6'), ('f9', 'f7'), ('f9', 'f5')

| 4     | 4                   |                     | +                    |                     |                    |                     |  |
|-------|---------------------|---------------------|----------------------|---------------------|--------------------|---------------------|--|
| f3    | f3(0)               | f3(0)               | f3(1)                | f3(1)               | f3(2)              | f3(2)               |  |
| f9    | f9(1)               | f9(2)               | f9(1)                | f9(2)               | f9(1)              | f9(2)               |  |
| f8(0) | 0.19230769230769232 | 0.16037735849056603 | 0.16923076923076924  | 0.18126888217522658 | 0.0                | 0.0                 |  |
| f8(1) | 0.3076923076923077  | 0.11320754716981132 | 0.37948717948717947  | 0.2084592145015106  | 0.666666666666666  | 0.0967741935483871  |  |
| f8(2) | 0.4230769230769231  | 0.20754716981132076 | 0.4153846153846154   | 0.19939577039274925 | 0.3333333333333333 | 0.45161290322580644 |  |
| f8(3) | 0.0                 | 0.42452830188679247 | 0.010256410256410256 | 0.23564954682779457 | 0.0                | 0.2903225806451613  |  |
| f8(4) | 0.07692307692307693 | 0.09433962264150944 | 0.02564102564102564  | 0.17522658610271905 | 0.0                | 0.16129032258064516 |  |
|       |                     |                     |                      |                     |                    |                     |  |

Figure 19: MLE for feature f8

| +  | +                       | +     | 4     | +     | +     | <b>*</b> | +     | +     | +     | +     | +     | +     |  |
|----|-------------------------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|-------|--|
| f3 | f3(0)                   | f3(0) | f3(0) | f3(0) | f3(1) | f3(1)    | f3(1) | f3(1) | f3(2) | f3(2) | f3(2) | f3(2) |  |
| f5 | f5(0)                   | f5(1) | f5(2) | f5(3) | f5(0) | f5(1)    | f5(2) | f5(3) | f5(0) | f5(1) | f5(2) | f5(3) |  |
|    | )   0.6578947368421053  |       | •     |       |       |          |       |       |       |       |       |       |  |
|    | )   0.34210526315789475 |       | •     |       | •     |          | •     |       |       |       | •     |       |  |

Figure 20: MLE for feature f9