PHY 293 Lecture Notes

Hei Shing Cheung Waves and Modern Physics, Fall 2025

PHY293

The up-to-date version of this document can be found at https://github.com/HaysonC/skulenotes

Chapter 1

Waves

1.1 Harmonic Oscillators

1.1.1 Governing Equations of Harmonic Oscillators

Types of Harmonic Oscillators There are three types of harmonic oscillators: simple, damped, and driven harmonic oscillators. Consider a simple one dimensional harmonic oscillator, they are defined by the following differential equations:

Definition 1.1.1.1 (Simple Harmonic Oscillator). A simple harmonic oscillator is described by Hooke's law:

$$m\frac{d^2x}{dt^2} + kx = 0\tag{1.1}$$

where k is the spring constant, m is the mass, and x is the displacement from equilibrium.

Definition 1.1.1.2 (Damped Harmonic Oscillator). A damped harmonic oscillator is described by the following differential equation, by adding a damping term proportional to \dot{x} to the simple harmonic oscillator equation:

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = 0 ag{1.2}$$

where b is the damping coefficient.

Definition 1.1.1.3 (Driven Harmonic Oscillator). A driven harmonic oscillator is described by the following differential equation, which includes an external driving force F(t):

$$m\frac{d^2x}{dt^2} + b\frac{dx}{dt} + kx = F(t)$$
(1.3)

1.1.2 The Wave Equation

Definition 1.1.2.1 (The Wave Equation). The wave equation is a second-order linear partial differential equation that describes the propagation of waves, such as sound waves, light waves, and water waves, through a medium. In one dimension, it is given by the following PDE:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0 \tag{1.4}$$

where u(x,t) is the wave function, c is the speed of the wave in the medium, x is the spatial coordinate, and t is time.

1.1.3 Simple Harmonic Motion

Definition 1.1.3.1 (Simple Harmonic Motion). You should have leaned the Hooke's law and Newton's second law, which gives us the equation of motion for a simple harmonic oscillator. The same with the equation (1.1), which can be rewritten as:

$$F = m\ddot{x} = -kx \tag{1.5}$$

By setting $\omega^2 = \frac{k}{m}$, ageneral solution can be written as:

$$x(t) = x_0 + A_1 \cos(\omega t) + A_2 \sin(\omega t) \tag{1.6}$$

where A are the constants determined by the IVP, ω is the angular frequency, and ϕ is the phase constant. x_0 is the equilibrium position where we generally set it to be 0. The unknown constant can be determined by knowing x, \dot{x} at specific times.

Definition 1.1.3.2 (Period, Frequency, and Angular Frequency). The period T is the time it takes for one complete cycle of the motion, given by:

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{1.7}$$

The frequency f is the number of cycles per unit time, given by:

$$f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \tag{1.8}$$

The angular frequency ω is related to the frequency by:

$$\omega = 2\pi f = \sqrt{\frac{k}{m}} \tag{1.9}$$

Example 1.1.3.3. A simple harmonic oscillator consisting of mass m = 11.0 kg attached to a spring with spring constant $k = 201 \text{ N m}^{-1}$. At time t = 0 s the oscillator is at position x(0) = -0.207 m and has velocity $v(0) = -1.33 \text{ m s}^{-1}$. Determine all coefficients of the equation describing the position x(t) of the oscillator as a function of time, assuming the offset is zero.

To solve for A_1 and A_2 , while we assume $x_0 = 0$, we can use the initial conditions:

$$x(0) = A_1 \cos(0) + A_2 \sin(0) = A_1 = -0.207 \text{ m}$$

 $v(0) = -A_1 \omega \sin(0) + A_2 \omega \cos(0) = A_2 \omega = -1.33 \text{ m s}^{-1}$

We can find ω from the given m and k:

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{201 \text{ N m}^{-1}}{11.0 \text{ kg}}} \approx 4.28 \text{ rad s}^{-1}$$

Therefore, we can solve for A_2 :

$$A_2 = \frac{v(0)}{\omega} = \frac{-1.33 \text{ m s}^{-1}}{4.28 \text{ rad s}^{-1}} \approx -0.311 \text{ m}$$

Thus, the equation describing the position x(t) of the oscillator as a function of time is:

$$x(t) = -0.207\cos(4.28t) - 0.311\sin(4.28t)$$

Theorem 1.1.3.4 (A Trigonometric Identity). We can also express the solution in a more compact form using a single cosine function with a phase shift:

$$x(t) = A\cos(\omega t + \phi) \tag{1.10}$$

where

$$A = \sqrt{A_1^2 + A_2^2},\tag{1.11a}$$

$$\phi = \arctan\left(\frac{-A_2}{A_1}\right) = \arctan\left(\frac{-v(0)/\omega}{x(0)}\right). \tag{1.11b}$$

Proof. Let $A = \sqrt{A_1^2 + A_2^2}$ and choose ϕ such that

$$\cos(\phi) = \frac{A_1}{A}, \quad \sin(\phi) = -\frac{A_2}{A}.$$

Then, we can rewrite our original solution as

$$x(t) = A_1 \cos(\omega t) + A_2 \sin(\omega t)$$

$$= A \cos(\phi) \cos(\omega t) - A \sin(\phi) \sin(\omega t)$$

$$= A \left[\cos(\phi) \cos(\omega t) - \sin(\phi) \sin(\omega t)\right]$$

$$= A \cos(\omega t + \phi),$$

by the cosine addition formula.

Example 1.1.3.5. To determine the amplitude A and phase constant ϕ for the oscillator in the previous example, we can use the values of A_1 and A_2 we found:

$$\begin{split} A &= \sqrt{(-0.207)^2 + (-0.311)^2} \approx 0.374 \text{ m} \\ \phi &= \arctan\!\left(\frac{-(-0.311)}{-0.207}\right) \approx 4.12 \text{ rad} \quad \text{(since $A_1 < 0$ and $A_2 < 0$)} \end{split}$$

Therefore, the equation describing the position x(t) of the oscillator as a function of time can also be written as:

$$x(t) = 0.374\cos(4.28t + 4.12)$$

1.1. HARMONIC OSCILLATORS

Definition 1.1.3.6 (The Energy of a Simple Harmonic Oscillator). The total mechanical energy E of a simple harmonic oscillator is the sum of its kinetic energy K and potential energy U.

$$E = K + U \tag{1.12}$$

First we consider the change of potential energy from a position x_i to x_f , assuming the path is along the spring or the curve C of the oscillator. The force exerted by the spring is given by Hooke's law, F = -kx. The change in potential energy can be simply parametized and calculated as follows:

$$\Delta U = \int_C F \cdot ds = -\int_{x_i}^{x_f} F \, dx = \int_{x_i}^{x_f} kx \, dx = \left[\frac{1}{2} kx^2 \right]_{x_i}^{x_f} = \frac{1}{2} k(x_f^2 - x_i^2) \tag{1.13}$$

Therefore, the potential energy U at a position x (taking the reference point at x=0) is given by:

$$U(x) = \frac{1}{2}kx^2 (1.14)$$

The kinetic energy K of the oscillator is given by:

$$K = \frac{1}{2}m\dot{x}^2\tag{1.15}$$

Therefore, the total mechanical energy E of the simple harmonic oscillator is:

$$E = K + U = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 \tag{1.16}$$

The total mechanical energy E remains constant over time, as energy is conserved in the absence of non-conservative forces (like friction or air resistance).

1.1.4 Damped Harmonic Motion

Definition 1.1.4.1 (Damped Harmonic Motion). For small velocities, the drag force is approximately proportional to the velocity and acts in the opposite direction. This drag force can be modeled as $F_d = -\gamma \dot{x}$, where γ is the damping coefficient. Including this drag force in the equation of motion for a harmonic oscillator leads to the damped harmonic oscillator equation (1.2). Which could be rewritten as:

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0 \tag{1.17}$$

where $\omega_0 = \sqrt{\frac{k}{m}}$ is the natural angular frequency of the undamped oscillator, and $\gamma = \frac{b}{m}$ is the damping coefficient per unit mass.

To skip the math, lets assume a solution of the form $x(t) = e^{i\omega t}$, substituting into the differential equation gives us a formulation for ω :

$$-\omega^2 - i\gamma\omega + \omega_0^2 = 0$$

$$\omega = -i\frac{\gamma}{2} \pm \sqrt{\omega_0^2 - \frac{\gamma^2}{4}}$$
(1.18)

Also, we can characterize the real and imaginary parts of ω as:

$$\omega_r = \text{Re}(\omega) = \pm \sqrt{\omega_0^2 - \frac{\gamma^2}{4}}$$
 (1.19a)

$$\omega_i = \operatorname{Im}(\omega) = -\frac{\gamma}{2} \tag{1.19b}$$

The general solution for the damped harmonic oscillator can be written as:

$$x(t) = \exp(\omega_i t) \exp(-i\omega_r t) = \exp\left(-\frac{\gamma}{2}t\right) \exp(\mp i\sqrt{\omega_0^2 - \frac{\gamma^2}{4}}t)$$
 (1.20)

• No Damping ($\gamma = 0$): The system behaves like a simple harmonic oscillator with angular frequency ω_0 . Given by:

$$z = \exp(-i\omega_0 t) \tag{1.21a}$$

• Underdamping $(0 < \gamma < 2\omega_0)$: The system oscillates with a gradually decreasing amplitude. The angular frequency of oscillation is given by $\omega_r = \sqrt{\omega_0^2 - \frac{\gamma^2}{4}}$. Given by:

$$z = \exp\left(-\frac{\gamma}{2}t\right) \exp(-i\omega_r t) \tag{1.21b}$$

The trigonometric form of the solution is:

$$x(t) = A_0 \exp\left(-\frac{\gamma}{2}t\right) \cos(\omega_r t + \phi) \tag{1.21c}$$

where A_0 and ϕ are constants determined by the initial conditions From this, we can derive the following cases:

• Critical Damping ($\gamma = 2\omega_0$): The system returns to equilibrium as quickly as possible without oscillating. Consider: $x(t) = e^{-\frac{\gamma}{2}t}f(t)$

J (*)

Inserting into the differential equation, we get:

$$\ddot{f} + \left(\omega_0^2 - \frac{\gamma^2}{4}\right)f = 0$$

Since $\gamma = 2\omega_0$, we have $\omega_0^2 - \frac{\gamma^2}{4} = 0$, leading to:

$$\ddot{f} = 0 \implies f(t) = A_1 t + A_2$$

Therefore, the general solution for the critically damped case is:

$$x(t) = (A_1t + A_2) \exp\left(-\frac{\gamma}{2}t\right)$$
 (1.21d)

where A_1 and A_2 are constants determined by

1.1. HARMONIC OSCILLATORS

• Overdamping ($\gamma > 2\omega_0$): The system returns to equilibrium without oscillating, but more slowly than in the critically damped case. The solution is given by:

$$z = \exp\left(-\frac{\gamma}{2}t\right) \exp\left(\sqrt{\frac{\gamma^2}{4} - \omega_0^2}t\right) \tag{1.21e}$$

So the general solution is (the solution is via a substitution of $x(t) = e^{-\gamma t/2} f(t)$ into the differential equation, which resolves the ODE to a simple form):

$$x(t) = A_1 \exp\left[\left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} - \omega_0^2}\right)t\right] + A_2 \exp\left[\left(-\frac{\gamma}{2} - \sqrt{\frac{\gamma^2}{4} - \omega_0^2}\right)t\right]$$
(1.21f)

where A_1 and A_2 are constants determined by the initial conditions.

1.1.5 Energy and Quality Factor

Definiton 1.1.5.1 (Energy of a Very Light Damping). Consider a very lightly damped harmonic oscillator, where $\gamma \ll \omega_0$. In this case, the angular frequency of oscillation ω_r can be approximated as:

$$\omega_r \approx \omega_0 \left(1 - \frac{\gamma^2}{8\omega_0^2} \right) \approx \omega_0$$

So the motion of the lightly damped oscillator can be approximated as:

$$x(t) \approx A_0 e^{-\frac{\gamma}{2}t} \cos(\omega_0 t + \phi)$$

Then, we can calculate the velocity of the oscillator:

$$\dot{x}(t) = -\frac{\gamma}{2} A_0 e^{-\frac{\gamma}{2}t} \cos(\omega_0 t + \phi) - A_0 \omega_0 e^{-\frac{\gamma}{2}t} \sin(\omega_0 t + \phi)$$
$$= A_0 \omega_0 e^{-\frac{\gamma}{2}t} \left(-\frac{\gamma}{2\omega_0} \cos(\omega_0 t + \phi) - \sin(\omega_0 t + \phi) \right)$$

The total mechanical energy E(t) of the lightly damped oscillator is given by:

$$\begin{split} E(t) &= \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 \\ &= \frac{1}{2}m\left[A_0\omega_0e^{-\frac{\gamma}{2}t}\left(-\frac{\gamma}{2\omega_0}\cos(\omega_0t+\phi) - \sin(\omega_0t+\phi)\right)\right]^2 + \frac{1}{2}k\left[A_0e^{-\frac{\gamma}{2}t}\cos(\omega_0t+\phi)\right]^2 \\ &= \frac{1}{2}mA_0^2\omega_0^2e^{-\gamma t}\left[\left(-\frac{\gamma}{2\omega_0}\cos(\omega_0t+\phi) - \sin(\omega_0t+\phi)\right)^2 + \cos^2(\omega_0t+\phi)\right] \\ &= \frac{1}{2}mA_0^2\omega_0^2e^{-\gamma t}\left[\sin^2(\omega_0t+\phi) + \cos^2(\omega_0t+\phi) + \frac{\gamma^2}{4\omega_0^2}\cos^2(\omega_0t+\phi) + \frac{\gamma}{\omega_0}\sin(\omega_0t+\phi)\cos(\omega_0t+\phi)\right] \\ &\approx \frac{1}{2}mA_0^2\omega_0^2e^{-\gamma t}\left[1 + \frac{\gamma^2}{4\omega_0^2}\cos^2(\omega_0t+\phi)\right] \quad \text{(neglecting the small term } \frac{\gamma}{\omega_0}\sin(\omega_0t+\phi)\cos(\omega_0t+\phi)) \\ &\approx \frac{1}{2}mA_0^2\omega_0^2e^{-\gamma t} \quad \text{(since } \frac{\gamma^2}{4\omega_0^2} \text{ is very small)} \\ &= E_0e^{-\gamma t} \quad \text{where } E_0 = \frac{1}{2}mA_0^2\omega_0^2 \text{ is the initial energy at } t = 0 \end{split}$$

We can also define the time constant τ as the time it takes for the energy to decrease to $\frac{1}{e}$ of its initial value:

$$\tau = \frac{1}{\gamma} \tag{1.22}$$

So we have, for very light damping:

$$E(t) = E_0 e^{-\frac{t}{\tau}} (1.23)$$

Definition 1.1.5.2 (Rate of Energy Loss). Taking the time derivative of the total mechanical energy E(t):

$$\frac{dE}{dt} = \frac{d}{dt} \left(\frac{1}{2} m \dot{x}^2 + \frac{1}{2} k x^2 \right)$$
$$= (ma + kx) \dot{x}$$

For a undamped harmonic oscillator, ma + kx = 0, so $\frac{dE}{dt} = 0$, indicating that the total mechanical energy is conserved and obeys Hooke's law completely. However, for a damped harmonic oscillator, $ma + kx = -b\dot{x}$, leading to:

$$\frac{dE}{dt} = -b\dot{x}^2\tag{1.24}$$

Definition 1.1.5.3 (Quality Factor (Q-Factor)). The quality factor Q is a dimensionless parameter that characterizes the damping of a harmonic oscillator. It is defined as:

$$Q = \frac{\omega}{\gamma} = \omega \tau \tag{1.25a}$$

And for very light damping, we can approximate $\omega \approx \omega_0$, leading to:

$$Q \approx \frac{\omega_0}{\gamma} = \omega_0 \tau \tag{1.25b}$$

This allows us to rewrite the equation of a damped harmonic oscillator as:

$$\ddot{x} + \frac{\omega_0}{Q}\dot{x} + \omega_0^2 x = 0 \tag{1.26}$$

and:

$$\omega = \omega_0 \sqrt{1 - \frac{1}{4Q^2}} \tag{1.27}$$

Chapter 2

Modern Physics