CS 60-454 Design and Analysis of Algorithms

ASSIGNMENT #2

FALL 2018

Due Date: November 6 (before lecture)

The following rules apply to all assignments handed out in this course.

- For every algorithm you present, you must include:
 - 1. a clear English description of the algorithm;
 - 2. the algorithm in a pseudo-code (possibly with examples showing how it works);
 - 3. a correctness proof of the algorithm;
 - 4. an analysis of the time complexity of the algorithm.

Omitting any of the above, particularly items 3 or 4, would result in getting a 0 mark.

- Type your solutions if your hand-written is not legible.
- 1. Present an $\Theta(n \lg n)$ -time algorithm that takes a list of elements drawn from a totally ordered set as input and reports the number of inversions in the list.

Solution: We modify Algorithm MERGESORT as follows.

Algorithm Inversion(*L*, *lower*, *upper*, *icount*);

Input : L[lower ... upper];

Output: L[lower .. upper] sorted in ascending order;

icount: the number of inversions in L

begin

icount := 0;

if (lower < upper) **then**

- 1. **INVERSION**(L, lower, $\left\lfloor \frac{(lower+upper)}{2} \right\rfloor$, icnt1);
- 2. **INVERSION**(L, $\left\lfloor \frac{(lower+upper)}{2} \right\rfloor + 1$, upper, icnt2);
- 3. $\mathbf{Merge}(L\left[lower..\left[\frac{(lower+upper)}{2}\right]\right], L\left[\left[\frac{(lower+upper)}{2}\right] + 1..upper\right], icnt3)$ into L[lower..upper];
- 4. icount := icnt1 + icnt2 + icnt3

end.

Algorithm Merge(A, B, Inversion);

Input: Two sorted lists A[1..m] and B[1..n];

Output: The number of Inversions in $A \oplus B$, where \oplus is the concatenation operator, and the sorted $A \oplus B$. **begin**

```
index_A := 1; index_B := 1; Inversion := 0; while ( index_A \le m and index_B \le n ) do
```

```
if (A[index_A] \leq B[index_B])

then C[index_C] := A[index_A]; index<sub>A</sub> := index<sub>A</sub>+1;

else C[index_C] := B[index_B]; index<sub>B</sub> := index<sub>B</sub>+1;

Inversion := Inversion + (m - index_A + 1);

index_C := index_C + 1

endwhile;

if (index_A > m)

then copy B[index_B..n] into C[index_C..m+n];

else copy A[index_A..m] into C[index_C..m+n]

end.
```

Recall that (a_i, a_j) is an inversion if and only if $(i < j) \land (a_i > a_j)$.

Remark: For clarity and convinence, from here onwards, we shall use L[1..n] instead of L[lower..upper] to represent any sublist of L.

Lemma 1: Let (a_i,a_j) be an inversion in L[1..n]. Then $a_i,a_j \in L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$, or $a_i,a_j \in L\left[\left\lfloor\frac{1+n}{2}\right\rfloor+1..n\right]$, or $a_i \in L\left[\left\lfloor\frac{1+n}{2}\right\rfloor\right] \wedge a_j \in L\left[\left\lfloor\frac{1+n}{2}\right\rfloor+1..n\right]$.

Proof: Either $a_i \in L\left[1..\left\lfloor \frac{1+n}{2} \right\rfloor\right]$ or $a_i \in L\left[\left\lfloor \frac{1+n}{2} \right\rfloor + 1..n\right]$.

Suppose $a_i \in L[1..\lfloor \frac{1+n}{2} \rfloor]$.

Then either $a_j \in L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$ or $a_j \in L\left[\left\lfloor\frac{1+n}{2}\right\rfloor+1..n\right]$.

In the former case, $a_i, a_j \in L[1..\lfloor \frac{1+n}{2} \rfloor]$. In the latter case, $a_i \in L[1..\lfloor \frac{1+n}{2} \rfloor]$ and $a_j \in L[\lfloor \frac{1+n}{2} \rfloor + 1..n]$.

Suppose $a_i \in L[|\frac{1+n}{2}| + 1..n]$.

Since i < j, we thus have $\left\lfloor \frac{1+n}{2} \right\rfloor + 1 < j \le n$ which implies that $a_j \in L\left[\left\lfloor \frac{1+n}{2} \right\rfloor + 1..n\right]$. Hence, $a_i, a_j \in L\left[\left\lfloor \frac{1+n}{2} \right\rfloor + 1..n\right]$.

Owing to Lemma 1, the set of inversions in L[1..n] can be partitioned into the following three disjoint subsets:

$$\begin{split} I_1 &= \big\{ (a_i, a_j) \mid (i < j) \land (a_i > a_j) \land a_i, a_j \in L\big[1..\big\lfloor \frac{1+n}{2} \big\rfloor \big] \big\}, \\ I_2 &= \big\{ (a_i, a_j) \mid (i < j) \land (a_i > a_j) \land a_i, a_j \in L\big[\big\lfloor \frac{1+n}{2} \big\rfloor + 1..n\big] \big\}, \text{ and} \\ I_3 &= \big\{ (a_i, a_j) \mid (i < j) \land (a_i > a_j) \land a_i \in L\big[1..\big\lfloor \frac{1+n}{2} \big\rfloor \big] \land a_j \in L\big[\big\lfloor \frac{1+n}{2} \big\rfloor + 1..n\big] \big\}. \end{split}$$

Lemma 2: Let $I_3' = \{(a_i, a_j) \mid (i < j) \land (a_i > a_j) \land a_i \in L[1..\lfloor \frac{1+n}{2} \rfloor] \land a_j \in L[\lfloor \frac{1+n}{2} \rfloor + 1..n]\}$ be the set of inversions with $a_i \in L[1..\lfloor \frac{1+n}{2} \rfloor]$ and $a_j \in L[\lfloor \frac{1+n}{2} \rfloor + 1..n]$ after Step 2 and before Step 3 of Algorithm INVERSION is executed. Then $I_3' = I_3$.

Proof:

$$\Leftarrow$$
) Let $(a,b) \in I_3$. Then $(\exists i,j)(a_i = a \land a_j = b)$ with $(i < j) \land (a_i > a_j)$ and $a_i \in L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right] \land a_j \in L\left[\left\lfloor\frac{1+n}{2}\right\rfloor + 1..n\right]$.

It follows that $a \in L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right] \wedge b \in L\left[\left\lfloor\frac{1+n}{2}\right\rfloor+1..n\right]$.

Let $a_k = a$ and $a_l = b$ after Step 2 and before Step 3 is executed.

Since a remains in $L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$ and b remains in $L\left[\left\lfloor\frac{1+n}{2}\right\rfloor+1..n\right]$, therefore, $a_k\in L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$ and $a_l\in L\left[\left\lfloor\frac{1+n}{2}\right\rfloor+1..n\right]$.

It follows that $(k < l) \land (a_k > a_l)$ which implies that $(a_k, a_l) \in I_3'$. Hence $(a, b) \in I_3'$.

 \Rightarrow) Similar to the above case.

Lemma 3: Algorithm Merge correctly counts the number of inversions in I_3' .

Proof: For each $a_l \in L[|\frac{1+n}{2}| + 1..n]$, let $I'_{3_l} = \{(a_i, a_j) \in I'_3 \mid j = l\}$.

If $I_{3_l}' = \emptyset$, then there is no inversion in I_3' involving a_l . It follows that $(\not\exists i)(i < l \land a_i > a_l)$ and $a_i \in L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$. This implies that when $B[index_B] = a_l$, the **else** part of the **if** statement is never executed. Hence, the Inversion counter correctly remains unchanged.

On the other hand, if $I'_{3_l} \neq \emptyset$, let a_k be the smallest element in $L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$ such that $a_k > a_l$.

As $L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$ is sorted in ascending order after Step 2, we must have $a_i \leq a_l, 1 \leq i < k$, and $a_i > a_l, k \leq i \leq \left\lfloor\frac{1+n}{2}\right\rfloor$. Therefore, there are exactly $\left\lfloor\frac{1+n}{2}\right\rfloor - k + 1$ inversions involving a_l in I'_{3_l} . As a result, when $B[index_B] = a_l$ and $A[index_A] = a_k$, as $a_k > a_l$, the **else** part of the **if** statement is executed which correctly increases the Inversion counter by the amount of $m - index_A + 1 = \left\lfloor\frac{1+n}{2}\right\rfloor - k + 1$ and removes a_l from further consideration.

Hence, when the execution of Algorithm Merge terminates, $Inversion = |I_3'|$.

Theorem 4: Algorithm INVERSION correctly counts the number of inversions in the input list L.

Proof: (By induction on |L|)

Induction basis: When |L| = 1, The body of the **if** statement is never executed and the algorithm correctly returns 0 as the number of inversions in L.

Induction hypothesis: Suppose Algorithm INVERSION correctly counts the number of inversions for any input list L with |L| < n.

Induction step: Consider an input list L with |L| = n.

Since $\left|L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]\right| < n$ and $\left|L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]\right| < n$, by the induction hypothesis, Algorithm INVERSION correctly counts the number of inversions in both sublists. Therefore, after Step 2, $icnt1 = |I_1|$ and $icnt2 = |I_2|$ which are the number of inversions in $L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$ and $L\left[1..\left\lfloor\frac{1+n}{2}\right\rfloor\right]$, respectively.

By Lemma 3, icnt3 contain the number inversions in I_3 which is also the number inversions in I_3 owing to Lemma 2. Therefore, $icnt3 = |I_3|$

As a result, the value of *icount* returned by Algorithm INVERSION is $|I_1| + |I_2| + |I_3|$ which is the total number of inversions in the input list L.

Theorem 5: Algorithm INVERSION runs in $\Theta(n \lg n)$ time.

Proof: Since the modification made on Algorithm MERGESORT involves instructions that increase the time complexity by only a constant factor, the time complexity of Algorithm INVERSION is thus $\Theta(n \lg n)$.