线性代数 小测 2

2025 年 4 月 14 日

题 1. 考虑二阶实矩阵构成的实线性空间 V,记矩阵 $A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$, $B=\begin{bmatrix}5&6\\7&8\end{bmatrix}$. 定义线性变换 $T\colon V\to V$ 为 T(X)=AXB. 求 $\mathrm{tr}(T)$.

题 2. 如下归纳地定义方阵

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A_n = \begin{bmatrix} A_{n-1} & I \\ I & -A_{n-1} \end{bmatrix}.$$

求 $\det A_n$.

- **题 3.** 设 V 是一个 2025 维实线性空间, $T: V \to V$ 是一个线性变换, 且 $T^2 = 0$. 求 T 的秩的最大可能值.
- **题 4.** 1. 假设 V 是一个 7 维实线性空间, 是否存在线性变换 $T_1: V \to V$, $T_2: V \to V$ 使得 $T_1 \circ T_2 T_2T_1 = Id$. 这里 Id 是恒等变换.
 - 2. 假设有限域 $\mathbb{F}_7 = \mathbb{Z}/7\mathbb{Z}$, V 是一个 7 维的 \mathbb{F}_7 线性空间,是否存在线性变换 $T_1: V \to V$, $T_2: V \to V$ 使得 $T_1 \circ T_2 T_2 \circ T_1 = Id$. 这里 Id 是恒等变换.

题 5. 已知

$$A = \left(\begin{array}{cccc} 1 & 1 & 0 & 2 \\ -1 & -1 & 1 & 1 \\ 2 & 5 & -1 & -1 \\ 3 & 2 & -2 & 0 \end{array}\right),$$

将 A 的 a_{ij} 所在的第 i 行第 j 列划掉后得一个 3×3 子矩阵,其行列式记为 M_{ij} ,定义 $A_{ij}=(-1)^{i+j}M_{ij}$,试求

- (1) $A_{11} + A_{12} + A_{13} + A_{14}$;
- (2) $M_{12} + 2M_{22} + 3M_{32} + 4M_{42}$.