SEMICONDUCTOR DEVICES

Junction Field-Effect Transistors: Part 1

M.B.Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* The flow of carriers (electrons or holes) from the "source" to the "drain" is modulated by changing the electric field perpendicular to the direction of current flow.

- * The flow of carriers (electrons or holes) from the "source" to the "drain" is modulated by changing the electric field perpendicular to the direction of current flow.
- * The change in field is brought about by a voltage applied to the "gate" terminal.

* The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector current is controlled by the base voltage.

- * The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector current is controlled by the base voltage.
- * However, there are some fundamental differences between the two devices.

- * The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector current is controlled by the base voltage.
- * However, there are some fundamental differences between the two devices.
 - In a BJT, both types of carriers electrons and holes participate in conduction (hence "bipolar").

- * The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector current is controlled by the base voltage.
- * However, there are some fundamental differences between the two devices.
 - In a BJT, both types of carriers electrons and holes participate in conduction (hence "bipolar").
 In a FET, either electrons or holes participate, depending on the type of the device
 - \rightarrow FET is a "unipolar" device.

- * The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector current is controlled by the base voltage.
- * However, there are some fundamental differences between the two devices.
 - In a BJT, both types of carriers electrons and holes participate in conduction (hence "bipolar").
 In a FET, either electrons or holes participate, depending on the type of the device
 FET is a "unipolar" device.
 - In a BJT, V_{BE} controls the collector current by changing the number of carriers injected by the emitter into the base.

- * The drain current can be controlled with the gate voltage. This is similar to a BJT in which the collector current is controlled by the base voltage.
- * However, there are some fundamental differences between the two devices.
 - In a BJT, both types of carriers electrons and holes participate in conduction (hence "bipolar").
 In a FET, either electrons or holes participate, depending on the type of the device
 FET is a "unipolar" device.
 - In a BJT, V_{BE} controls the collector current by changing the number of carriers injected by the emitter into the base
 - In a FET, V_{GS} controls the drain current by modulating the resistance between the source and the drain.

* As the name implies, the operation of a junction field-effect transistor (JFET) depends on "junctions," in particular, on pn junctions.

- * As the name implies, the operation of a junction field-effect transistor (JFET) depends on "junctions," in particular, on pn junctions.
- * An *n*-channel JFET structure consists of an *n*-type semiconductor "channel" between two ohmic contacts source and drain.

- * As the name implies, the operation of a junction field-effect transistor (JFET) depends on "junctions," in particular, on pn junctions.
- * An *n*-channel JFET structure consists of an *n*-type semiconductor "channel" between two ohmic contacts source and drain.
- * The top and bottom regions of the semiconductor are doped p^+ and are connected together as the gate terminal.

* A positive drain voltage V_D causes an electron flow from source to drain (i.e., a current I_D in the opposite direction).

- * A positive drain voltage V_D causes an electron flow from source to drain (i.e., a current I_D in the opposite direction).
- * A negative gate voltage V_G causes the p^+n junctions to be reverse biased, and through this "field effect," the conductance of the channel is modulated.

- * A positive drain voltage V_D causes an electron flow from source to drain (i.e., a current I_D in the opposite direction).
- * A negative gate voltage V_G causes the p^+n junctions to be reverse biased, and through this "field effect," the conductance of the channel is modulated.
- * This mechanism leads to a change ΔI_D in the drain current when a change ΔV_G is applied in the gate voltage.

Consider $V_D = V_S = 0 \, \text{V}$, and $V_G < 0 \, \text{V}$ (reverse bias).

Consider $V_D = V_S = 0 \, \text{V}$, and $V_G < 0 \, \text{V}$ (reverse bias).

* Since the doping density in the p^+ region is much larger than that in the n region, the depletion region extends mostly on the n-side.

Consider $V_D = V_S = 0 \text{ V}$, and $V_G < 0 \text{ V}$ (reverse bias).

* Since the doping density in the p^+ region is much larger than that in the n region, the depletion region extends mostly on the n-side.

Consider $V_D = V_S = 0 \text{ V}$, and $V_G < 0 \text{ V}$ (reverse bias).

- * Since the doping density in the p^+ region is much larger than that in the n region, the depletion region extends mostly on the n-side.
- * As the gate reverse bias is increased, the depletion width (W) increases, and the width of the neutral region (2h) decreases, since h = a W.

* The resistance offered by the *n* region (the "channel") is $R_{\rm ch}=rac{1}{\sigma}\,rac{L}{{
m Area}}=rac{L}{qN_d\mu_n(2hZ)}.$

- * The resistance offered by the *n* region (the "channel") is $R_{\rm ch} = \frac{1}{\sigma} \frac{L}{{\sf Area}} = \frac{L}{q N_d \mu_n (2hZ)}$.
- * $R_{\rm ch} \propto \frac{1}{h} \rightarrow R_{\rm ch} \uparrow$ as $h \downarrow$, i.e., as V_G is made more negative.

- * The resistance offered by the *n* region (the "channel") is $R_{\text{ch}} = \frac{1}{\sigma} \frac{L}{\text{Area}} = \frac{L}{qN_d \mu_n (2hZ)}$.
- * $R_{\rm ch} \propto \frac{1}{h} \rightarrow R_{\rm ch} \uparrow$ as $h \downarrow$, i.e., as V_G is made more negative.
- * When W=a (i.e., h=0), $R_{\rm ch}\to\infty$, and the channel is said to be "pinched off." The corresponding gate voltage V_G is known as the "pinch-off" voltage V_P .

Consider an *n*-channel Si JFET with $N_d=2\times10^{15}$ cm $^{-3}$, $\mu_n=1000$ cm 2 /V-s, a=1.5 μ m, L=10 μ m, Z=50 μ m. Let the built-in voltage for the p^+n (gate-to-channel) junction be 0.8 V.

- (a) Find the pinch-off voltage V_P .
- (b) Compute the device resistance for $V_G = 0 \text{ V}$, -1 V, -2 V.
- (c) Plot the $I_D V_D$ characteristics for $V_G = 0 \, \mathrm{V}, \, -1 \, \mathrm{V}, \, -2 \, \mathrm{V}, \, \mathrm{for} \, \, 0 < V_D < 50 \, \mathrm{mV}.$

(a) For a
$$p^+ n$$
 junction, $W = \sqrt{\frac{2\epsilon}{qN_d}(V_{bi} - V)}$ where $V = V_G - 0 = V_G$, since $V_S = V_D = 0$ V.
At pinch-off, $V_G = V_P$, and $W = a \rightarrow a = \sqrt{\frac{2\epsilon}{qN_d}(V_{bi} - V_P)} \rightarrow V_P = V_{bi} - \frac{qN_d}{2\epsilon} a^2$.
 $\rightarrow V_P = 0.8 - \frac{1.6 \times 10^{-19} \times 2 \times 10^{15}}{2 \times 11.7 \times 8.85 \times 10^{-14}} (1.5 \times 10^{-4})^2 = 0.8 - 3.48 \approx -2.7$ V.

(b) The channel resistance is
$$R_{\rm ch}=rac{1}{\sigma}rac{L}{{
m Area}}=rac{1}{qN_d\mu_n}rac{L}{2hZ}, \quad h=a-W=a-\sqrt{rac{2\epsilon}{qN_d}(V_{
m bi}-V_G)}.$$

(b) The channel resistance is
$$R_{\text{ch}} = \frac{1}{\sigma} \frac{L}{\text{Area}} = \frac{1}{qN_d\mu_n} \frac{L}{2hZ}, \quad h = a - W = a - \sqrt{\frac{2\epsilon}{qN_d}(V_{\text{bi}} - V_G)}.$$

V_G	R_{ch}
0 V	4.0 kΩ
-1 V	7.4 kΩ
-2 V	20.3 kΩ

(b) The channel resistance is
$$R_{\rm ch}=rac{1}{\sigma}\,rac{L}{{
m Area}}=rac{1}{qN_d\mu_n}\,rac{L}{2hZ},\quad h=a-W=a-\sqrt{rac{2\epsilon}{qN_d}(V_{
m bi}-V_G)}.$$

V_G	R_{ch}
0 V	$4.0\mathrm{k}\Omega$
-1 V	7.4 kΩ
-2 V	20.3 kΩ

(c) Since V_D is small (< 50 mV), h can be assumed to be constant from the source end to the drain end.

(c) Since V_D is small (< 50 mV), h can be assumed to be constant from the source end to the drain end.

The device behaves like a gate-controlled resistor, with

$$R_{\rm ch} = rac{1}{q N_d \mu_n} \, rac{L}{2hZ} = rac{1}{q N_d \mu_n} \, rac{L}{2Z} \, rac{1}{a - \sqrt{rac{2\epsilon}{q N_d} (V_{
m bi} - V_G)}}$$

Example

(c) Since V_D is small (< 50 mV), h can be assumed to be constant from the source end to the drain end.

The device behaves like a gate-controlled resistor, with

$$R_{\rm ch} = \frac{1}{q N_d \mu_n} \frac{L}{2hZ} = \frac{1}{q N_d \mu_n} \frac{L}{2Z} \frac{1}{a - \sqrt{\frac{2\epsilon}{q N_d} (V_{\rm bi} - V_G)}}$$

$$\rightarrow I_D = \frac{V_D}{R_{\rm ch}(V_G)}.$$

Example

(c) Since V_D is small (< 50 mV), h can be assumed to be constant from the source end to the drain end.

The device behaves like a gate-controlled resistor, with

$$R_{\rm ch} = \frac{1}{q N_d \mu_n} \frac{L}{2hZ} = \frac{1}{q N_d \mu_n} \frac{L}{2Z} \frac{1}{a - \sqrt{\frac{2\epsilon}{q N_d} (V_{\rm bi} - V_G)}}$$

$$\rightarrow \textit{I}_{\textit{D}} = \frac{\textit{V}_{\textit{D}}}{\textit{R}_{\mathsf{ch}}(\textit{V}_{\textit{G}})}.$$

Consider a rectangular bar of n-type silicon with a uniform doping density N_d .

Consider a rectangular bar of n-type silicon with a uniform doping density N_d .

* $I_D = \text{Area} \times |J|$

Consider a rectangular bar of n-type silicon with a uniform doping density N_d .

*
$$I_D = \text{Area} \times |J|$$

= $(2aZ) \times \sigma |\mathcal{E}(x)|$

Consider a rectangular bar of n-type silicon with a uniform doping density N_d .

*
$$I_D = \text{Area} \times |J|$$

= $(2aZ) \times \sigma |\mathcal{E}(x)|$
= $(2aZ) \times q\mu_n N_d |\mathcal{E}(x)|$.

Consider a rectangular bar of n-type silicon with a uniform doping density N_d .

*
$$I_D = \text{Area} \times |J|$$

= $(2aZ) \times \sigma |\mathcal{E}(x)|$
= $(2aZ) \times q\mu_n N_d |\mathcal{E}(x)|$.

* Since the conductivity σ is independent of x, \mathcal{E} is also independent of x, say $\mathcal{E}_0 \to \frac{dV}{dx} = \text{constant}$.

Consider a rectangular bar of n-type silicon with a uniform doping density N_d .

*
$$I_D = \text{Area} \times |J|$$

= $(2aZ) \times \sigma |\mathcal{E}(x)|$
= $(2aZ) \times q\mu_n N_d |\mathcal{E}(x)|$.

* Since the conductivity σ is independent of x, \mathcal{E} is also independent of x, say $\mathcal{E}_0 \to \frac{dV}{dx} = \text{constant}$.

*
$$\mathcal{E} = -\frac{dV}{dx} \rightarrow V \Big|_{0}^{L} = -\int_{0}^{L} \mathcal{E} \, dx$$

Consider a rectangular bar of n-type silicon with a uniform doping density N_d .

*
$$I_D = \text{Area} \times |J|$$

= $(2aZ) \times \sigma |\mathcal{E}(x)|$
= $(2aZ) \times q\mu_n N_d |\mathcal{E}(x)|$.

* Since the conductivity σ is independent of x, \mathcal{E} is also independent of x, say $\mathcal{E}_0 \to \frac{dV}{dx} = \text{constant}$.

*
$$\mathcal{E} = -\frac{dV}{dx} \rightarrow V \Big|_0^L = -\int_0^L \mathcal{E} dx$$

 $\rightarrow V(L) - V(0) = -\mathcal{E}_0 L \rightarrow \mathcal{E}_0 = -\frac{V_D}{L}.$

$$I_0 = 2aZ \times q\mu_n N_d \times |\mathcal{E}(x)|$$

= $2aZ \times q\mu_n N_d \times \frac{V_D}{L}$.

$$I_0 = 2aZ \times q\mu_n N_d \times |\mathcal{E}(x)|$$

= $2aZ \times q\mu_n N_d \times \frac{V_D}{L}$.

The bar behaves like a resistance $R = \frac{V_D}{I_0} = \frac{1}{q\mu_n N_d} \times \frac{L}{2aZ}$.

$$I_0 = 2aZ \times q\mu_n N_d \times |\mathcal{E}(x)|$$

= $2aZ \times q\mu_n N_d \times \frac{V_D}{L}$.

The bar behaves like a resistance $R = \frac{V_D}{I_0} = \frac{1}{q\mu_n N_d} \times \frac{L}{2aZ}$.

We can also view the structure as a series of resistances, each corresponding to a length I.

$$\begin{split} I_0 &= 2aZ \times q\mu_n N_d \times |\mathcal{E}(x)| \\ &= 2aZ \times q\mu_n N_d \times \frac{V_D}{L}. \end{split}$$

The bar behaves like a resistance $R = \frac{V_D}{I_0} = \frac{1}{q\mu_n N_d} imes \frac{L}{2aZ}.$

We can also view the structure as a series of resistances, each corresponding to a length *I*.

$$\begin{split} I_0 &= 2aZ \times q\mu_n N_d \times |\mathcal{E}(x)| \\ &= 2aZ \times q\mu_n N_d \times \frac{V_D}{L}. \end{split}$$

The bar behaves like a resistance $R = \frac{V_D}{I_0} = \frac{1}{q\mu_n N_d} \times \frac{L}{2aZ}$.

We can also view the structure as a series of resistances, each corresponding to a length *I*.

$$R' = rac{1}{\sigma} rac{I}{\mathsf{Area}} = rac{1}{q\mu_n N_d} rac{I}{2aZ}.$$

$$\begin{split} I_0 &= 2aZ \times q\mu_n N_d \times |\mathcal{E}(x)| \\ &= 2aZ \times q\mu_n N_d \times \frac{V_D}{L}. \end{split}$$

The bar behaves like a resistance $R = \frac{V_D}{I_0} = \frac{1}{q\mu_p N_d} \times \frac{L}{2aZ}$.

We can also view the structure as a series of resistances, each corresponding to a length *I*.

$$R' = rac{1}{\sigma} rac{I}{\mathsf{Area}} = rac{1}{q\mu_n \mathsf{N}_d} rac{I}{2\mathsf{a} Z}.$$

Since there are L/I resistors,

$$I_0 = rac{V_D}{\left(rac{L}{I}
ight)R'} = rac{V_D}{rac{L}{I}rac{1}{q\mu_nN_d}rac{I}{2aZ}}$$
 (same as before).

$$I_0 = 2aZ \times q\mu_n N_d \times |\mathcal{E}(x)|$$
$$= 2aZ \times q\mu_n N_d \times \frac{V_D}{L}.$$

The bar behaves like a resistance $R = \frac{V_D}{I_0} = \frac{1}{g\mu_B N_d} \times \frac{L}{2aZ}$.

We can also view the structure as a series of resistances, each corresponding to a length *I*.

$$R' = rac{1}{\sigma} rac{I}{\mathsf{Area}} = rac{1}{q\mu_n N_d} rac{I}{2aZ}.$$

Since there are L/I resistors,

$$I_0 = rac{V_D}{\left(rac{L}{I}
ight)R'} = rac{V_D}{rac{L}{I}rac{1}{q\mu_pN_d}rac{I}{2aZ}}$$
 (same as before).

We will find this picture useful in understanding the functioning of the JFET.

* We expect the potential to rise from 0 V at the source end to $V_{\mathcal{D}}$ at the drain end.

* We expect the potential to rise from 0 V at the source end to V_D at the drain end.

- * We expect the potential to rise from $0 \, \text{V}$ at the source end to V_D at the drain end.
- * As a result, the reverse bias V_R across the p^+n junction becomes a function of x, increasing from $V_S V_G$ at the source end to $V_D V_G$ at the drain end.

- * We expect the potential to rise from 0 V at the source end to V_D at the drain end.
- * As a result, the reverse bias V_R across the p^+n junction becomes a function of x, increasing from $V_S V_G$ at the source end to $V_D V_G$ at the drain end.
- * V_R increases with $x \to W (\propto \sqrt{V_{bi} + V_R}) \uparrow \to h \downarrow$

JFET: a discretised view R_2 R_3 depletion * A JFET can be thought of as a ۴VG region series of resistances. 2a $\overset{I_D}{\to} D$ $2h_1$ $2h_2$ S ← 0 V Х V_D ŏν V_D n-silicon n-silicon VG ٨V ٨V resistor 0

* A JFET can be thought of as a series of resistances.

*
$$R_k \propto \frac{1}{2h_k Z} \rightarrow$$

 $R_5 > R_4 > R_3 > R_2 > R_1$.

- * A JFET can be thought of as a series of resistances.
- * $R_k \propto \frac{I}{2h_k Z} \rightarrow$

 $R_5 > R_4 > R_3 > R_2 > R_1$.

* Since the current is the same for all resistors,

$$R_5 > R_4 > R_3 > R_2 > R_1 \to$$

 $\Delta V_5 > \Delta V_4 > \Delta V_3 > \Delta V_2 > \Delta V_1$.

- * A JFET can be thought of as a series of resistances.
- * $R_k \propto \frac{I}{2h_k Z} \rightarrow$

 $R_5 > R_4 > R_3 > R_2 > R_1$.

* Since the current is the same for all resistors,

$$\textit{R}_{5} > \textit{R}_{4} > \textit{R}_{3} > \textit{R}_{2} > \textit{R}_{1} \rightarrow$$

$$\Delta V_5 > \Delta V_4 > \Delta V_3 > \Delta V_2 > \Delta V_1$$
.

 V_D

- * A JFET can be thought of as a series of resistances.
- * $R_k \propto \frac{I}{2h_k Z} \rightarrow$

$$R_5 > R_4 > R_3 > R_2 > R_1$$
.

* Since the current is the same for all resistors,

$$R_5 > R_4 > R_3 > R_2 > R_1 \rightarrow$$

$$\Delta V_5 > \Delta V_4 > \Delta V_3 > \Delta V_2 > \Delta V_1.$$

$$|\mathcal{E}(x)| \approx \frac{\Delta V}{I} \uparrow \text{ as } x \uparrow$$

M. B. Patil, IIT Bombay

JFET *I-V* relationship

* Gradual channel approximation:

* Gradual channel approximation:

The potential in the channel is two-dimensional in nature, i.e., it varies with both x and y.

* Gradual channel approximation:

The potential in the channel is two-dimensional in nature, i.e., it varies with both x and y. Poisson's equation should now be written in the 2D form:

$$\frac{\partial \mathcal{E}_x}{\partial x} + \frac{\partial \mathcal{E}_y}{\partial y} = \frac{\rho}{\epsilon}$$

* Gradual channel approximation:

The potential in the channel is two-dimensional in nature, i.e., it varies with both x and y. Poisson's equation should now be written in the 2D form:

$$\frac{\partial \mathcal{E}_x}{\partial x} + \frac{\partial \mathcal{E}_y}{\partial y} = \frac{\rho}{\epsilon}.$$

If $L \gg a$, the "gradual channel approximation," viz., $\left| \frac{\partial \mathcal{E}_x}{\partial x} \right| \ll \left| \frac{\partial \mathcal{E}_y}{\partial y} \right|$ can be made, and the equation reduces to the 1D form, $\frac{\partial \mathcal{E}_y}{\partial y} = \frac{\rho}{\epsilon}$.

* Gradual channel approximation:

The potential in the channel is two-dimensional in nature, i.e., it varies with both x and y.

Poisson's equation should now be written in the 2D form:

$$\frac{\partial \mathcal{E}_{\mathsf{x}}}{\partial \mathsf{x}} + \frac{\partial \mathcal{E}_{\mathsf{y}}}{\partial \mathsf{y}} = \frac{\rho}{\epsilon}.$$

If $L \gg a$, the "gradual channel approximation," viz., $\left| \frac{\partial \mathcal{E}_x}{\partial x} \right| \ll \left| \frac{\partial \mathcal{E}_y}{\partial y} \right|$ can be made, and the equation

reduces to the 1D form,
$$\frac{\partial \mathcal{E}_{\mathbf{y}}}{\partial \mathbf{y}} = \frac{\rho}{\epsilon}.$$

$$\rightarrow W(x) = \sqrt{rac{2\epsilon}{qN_d}}(V_{\rm bi} - V(x))$$
, as in a 1D pn junction.

JFET I-V relationship

In the neutral channel region, $V(x,y) \approx V(x) o \mathbf{J}_n^{\mathrm{drift}}$ has only x-component.

In the neutral channel region, $V(x,y) \approx V(x) \to \mathbf{J}_n^{\mathrm{drift}}$ has only x-component.

$$\to J_n(x,y) = -q\mu_n N_d \frac{dV}{dx},$$

where we have neglected J_n^{diff} , a second-order effect.

In the neutral channel region, $V(x,y) \approx V(x) o \mathbf{J}_n^{\mathrm{drift}}$ has only x-component.

$$\to J_n(x,y) = -q\mu_n N_d \frac{dV}{dx},$$

where we have neglected J_n^{diff} , a second-order effect.

Since the same current flows throughout the device,

$$I_D = \iint J_n(x,y) \, dy \, dz = -q \mu_n N_d \iint \frac{dV}{dx} \, dy \, dz.$$

In the neutral channel region, $V(x,y) \approx V(x) o \mathbf{J}_n^{\mathrm{drift}}$ has only x-component.

$$\rightarrow J_n(x,y) = -q\mu_n N_d \frac{dV}{dx}$$

where we have neglected J_n^{diff} , a second-order effect.

Since the same current flows throughout the device,

$$I_D = \iint J_n(x,y) \, dy \, dz = -q \mu_n N_d \iint \frac{dV}{dx} \, dy \, dz.$$

With $L\gg a$, we can say that $\frac{dV}{dx}$ depends only on x.

$$\rightarrow I_D = -q\mu_n N_d (2hZ) \frac{dV}{dV}$$
.

$$I_D = -q\mu_n N_d (2hZ) \frac{dV}{dx}.$$

Integrating from x = 0 to x = L,

$$\int_{0}^{L}I_{D}\,dx=-q\mu_{n}N_{d}\left(2Z\right)\int_{0}^{V_{D}}h\,dV\rightarrow I_{D}L=-q\mu_{n}N_{d}\left(2Z\right)a\int_{0}^{V_{D}}\left(1-\frac{W}{a}\right)dV\ \ \therefore\ \ h=a-W=a\left(1-\frac{W}{a}\right).$$

$$I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$$

Integrating from x = 0 to x = L,

$$\int_{0}^{L}I_{D}\,dx=-q\mu_{n}N_{d}\left(2Z\right)\int_{0}^{V_{D}}h\,dV\rightarrow I_{D}L=-q\mu_{n}N_{d}\left(2Z\right)a\int_{0}^{V_{D}}\left(1-\frac{W}{a}\right)dV \ \ \because \ \ h=a-W=a\left(1-\frac{W}{a}\right).$$

The depletion width
$$W$$
 is $W(V) = \sqrt{\frac{2\epsilon}{qN_d} [V_{bi} - (V_G - V)]}$.

$$I_D = -q\mu_n N_d (2hZ) \frac{dV}{dx}.$$

Integrating from x = 0 to x = L,

$$\int_{0}^{L}I_{D}\,dx=-q\mu_{n}N_{d}\left(2Z\right)\int_{0}^{V_{D}}h\,dV\rightarrow I_{D}L=-q\mu_{n}N_{d}\left(2Z\right)a\int_{0}^{V_{D}}\left(1-\frac{W}{a}\right)dV\ \ \therefore\ \ h=a-W=a\left(1-\frac{W}{a}\right).$$

The depletion width W is $W(V) = \sqrt{\frac{2\epsilon}{aN_d} [V_{bi} - (V_G - V)]}$.

$$\rightarrow I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\},$$

 $I_D = -q\mu_n N_d (2hZ) \frac{dV}{dx}.$

Integrating from x = 0 to x = L,

$$\int_{0}^{L} I_{D} dx = -q \mu_{n} N_{d} (2Z) \int_{0}^{V_{D}} h dV \rightarrow I_{D} L = -q \mu_{n} N_{d} (2Z) a \int_{0}^{V_{D}} \left(1 - \frac{W}{a}\right) dV \quad \therefore \quad h = a - W = a \left(1 - \frac{W}{a}\right).$$

The depletion width W is $W(V) = \sqrt{\frac{2\epsilon}{gN_d}} [V_{bi} - (V_G - V)].$

$$\rightarrow I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\},$$

where $G_0 = \frac{(2aZ)}{I} \times (q\mu_n N_d)$ is the conductance of the channel if there was no depletion, i.e., h = a throughout.

JFET *I-V* relationship $V_{G} = -0.5 \text{ V}$

 $a = 1.5 \mu m$ $L = 10 \mu m$

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

* The first term G_0V_D represents the maximum current that we can get from the JFET structure without any channel depletion.

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

- * The first term G_0V_D represents the maximum current that we can get from the JFET structure without any channel depletion.
- * The second term represents reduction of the current due to channel depletion.

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

- * The first term G_0V_D represents the maximum current that we can get from the JFET structure without any channel depletion.
- * The second term represents reduction of the current due to channel depletion.

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{bi} - V_P \right) \left[\left(\frac{V_D + V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} - \left(\frac{V_{bi} - V_G}{V_{bi} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

- * The first term G_0V_D represents the maximum current that we can get from the JFET structure without any channel depletion.
- * The second term represents reduction of the current due to channel depletion.
- * Consider low values of V_D ($V_D \approx 0 \text{ V}$).

$$-\left.\frac{dI_{D}}{dV_{D}}\right|_{V_{D}\rightarrow0}=G_{0}^{\prime}=\frac{\left(2h_{0}Z\right)}{L}\times(q\mu_{n}N_{d}),\text{ with }h_{0}=a-\sqrt{\frac{2\epsilon}{qN_{d}}\left(V_{\text{bi}}-V_{G}\right)}.$$

$$I_D = G_0 \left\{ V_D - \frac{2}{3} \left(V_{\text{bi}} - V_P \right) \left[\left(\frac{V_D + V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} - \left(\frac{V_{\text{bi}} - V_G}{V_{\text{bi}} - V_P} \right)^{3/2} \right] \right\}, \quad G_0 = \frac{(2aZ)}{L} \times (q\mu_n N_d).$$

- * The first term G_0V_D represents the maximum current that we can get from the JFET structure without any channel depletion.
- * The second term represents reduction of the current due to channel depletion.
- * Consider low values of V_D ($V_D \approx 0 \text{ V}$).

$$-\frac{dI_D}{dV_D}\Big|_{V_D \to 0} = G_0' = \frac{(2h_0Z)}{L} \times (q\mu_nN_d), \text{ with } h_0 = a - \sqrt{\frac{2\epsilon}{qN_d}(V_{bi} - V_G)}.$$

- Note that G_0' is smaller than G_0 , the channel conductance with *no* depletion.

 $I_D = -q\mu_n N_d (2hZ) \frac{dV}{dx}.$

 \overrightarrow{V}_D

 $V_G = -0.5 \text{ V}$ $a = 1.5 \mu m$ $L = 10 \mu m$ $Z = 50 \mu m$ $V_{bi} = 0.8 V$ $N_d = 2 \times 10^{15} \, cm^{-3}$

$$I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$$

* When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.

 \overrightarrow{V}_D

 $V_G = -0.5 \text{ V}$ $a = 1.5 \mu m$ $L = 10 \mu m$ $Z = 50 \mu m$ $V_{bi} = 0.8 V$ $N_d = 2 \times 10^{15} \, cm^{-3}$

$$I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$$

* When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.

 \overrightarrow{V}_D

 $V_G = -0.5 \text{ V}$ $a = 1.5 \mu m$

 $L = 10 \mu m$

 $Z = 50 \mu m$

 $V_{bi} = 0.8 \, V$

 $I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$

* When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.

VD

 $V_G = -0.5 \text{ V}$ $a = 1.5 \mu m$ $L = 10 \mu m$ $Z = 50 \mu m$ $V_{bi} = 0.8 V$ $N_d = 2 \times 10^{15} \, cm^{-3}$

$$I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$$

- * When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.

V_D

 $V_G = -0.5 \text{ V}$ $a = 1.5 \mu m$ $L = 10 \mu m$ $Z = 50 \mu m$ $V_{bi} = 0.8 V$ $N_d = 2 \times 10^{15} \, cm^{-3}$

- $I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$
 - * When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.

V_D

 $V_G = -0.5 \text{ V}$ $a = 1.5 \mu m$ $L = 10 \mu m$ $Z = 50 \mu m$ $V_{bi} = 0.8 V$ $N_d = 2 \times 10^{15} \, cm^{-3}$

$$I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$$

- * When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.

V_D

 $V_G = -0.5 \text{ V}$ $a = 1.5 \,\mu\text{m}$ $L = 10 \,\mu\text{m}$ $Z = 50 \,\mu\text{m}$ $V_{bi} = 0.8 \,\text{V}$ $N_d = 2 \times 10^{15} \,\text{cm}^{-3}$ $\mu_0 = 1000 \,\text{cm}^2/\text{V-s}$

- $I_D = -q\mu_n N_d (2hZ) \frac{dV}{dx}.$
 - When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.

 $V_G = -0.5 \text{ V}$ $a = 1.5 \,\mu\text{m}$ $L = 10 \,\mu\text{m}$ $Z = 50 \,\mu\text{m}$ $V_{bi} = 0.8 \,\text{V}$ $N_d = 2 \times 10^{15} \,\text{cm}^{-3}$ $\mu_0 = 1000 \,\text{cm}^2/\text{V-s}$

- $I_D = -q\mu_n N_d (2hZ) \frac{dV}{dx}.$
 - When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.

 $V_{G} = -0.5 \text{ V}$ $a = 1.5 \mu\text{m}$ $L = 10 \mu\text{m}$ $Z = 50 \mu\text{m}$ $V_{bi} = 0.8 \text{ V}$ $N_{d} = 2 \times 10^{15} \text{ cm}^{-3}$ $\mu_{0} = 1000 \text{ cm}^{2}/\text{V-s}$

- $I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$
 - When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.

- $V_G = -0.5 \text{ V}$ $a = 1.5 \mu m$ $L = 10 \mu m$ $Z = 50 \mu m$ $V_{bi} = 0.8 V$ $N_d = 2 \times 10^{15} \, cm^{-3}$ $\mu_{\rm n} = 1000\,{\rm cm^2/V}\text{-s}$
- $I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dv}.$ * When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.

 $\begin{aligned} & V_{\rm G} = -0.5 \, \text{V} \\ & a = 1.5 \, \mu\text{m} \\ & L = 10 \, \mu\text{m} \\ & Z = 50 \, \mu\text{m} \\ & V_{\rm bi} = 0.8 \, \text{V} \\ & N_{\rm d} = 2 \times 10^{15} \, \text{cm}^{-3} \\ & \mu_{\rm m} = 1000 \, \text{cm}^2 / \text{V-s} \end{aligned}$

$$I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$$

- * When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.

 $I_D = -q\mu_n N_d \left(2hZ\right) \frac{dV}{dx}.$

 $V_{bi} = 0.8 \text{ V}$ $N_d = 2 \times 10^{15} \text{ cm}^{-3}$ $\mu_n = 1000 \text{ cm}^2/\text{V-s}$

 $V_G = -0.5 \text{ V}$ a = 1.5 μ m

 $L = 10 \mu m$

 $Z = 50 \mu m$

- * When V_D is increased, the reverse bias at the drain end increases, and the depletion width becomes larger at the drain end, causing the conduction channel to shrink.
- * Since the current, which is proportional to $h \frac{dV}{dx}$, is independent of x, a narrower channel at the drain end is accompanied by a larger electric field.
- * At point D, as the current reaches its maximum value, the channel at the drain end is almost pinched off because the voltage across the p^+n junction at that point has become equal to the pinch-off voltage V_P , i.e., $V_G V_D = V_P$.

What happens beyond punch-off?

* Our *I-V* equation is not valid beyond pinch-off.

- st Our I-V equation is not valid beyond pinch-off.
- * What actually happens is that a narrow high-field region develops near the drain end, and the "excess" voltage (over and above V_D at point D) drops across this high-field region, leaving the conditions in the rest of the channel virtually the same as those at point D.

- * Our I-V equation is not valid beyond pinch-off.
- * What actually happens is that a narrow high-field region develops near the drain end, and the "excess" voltage (over and above V_D at point D) drops across this high-field region, leaving the conditions in the rest of the channel virtually the same as those at point D.
- * Since the potential profile in most of the channel remains the same (as point D), W(x), h(x), $\mathcal{E}(x)$ also remain the same, and so does the current
- \rightarrow the drain current saturates at $I_{\rm D}^{\rm sat}$.

- * Our I-V equation is not valid beyond pinch-off.
- * What actually happens is that a narrow high-field region develops near the drain end, and the "excess" voltage (over and above V_D at point D) drops across this high-field region, leaving the conditions in the rest of the channel virtually the same as those at point D.
- * Since the potential profile in most of the channel remains the same (as point D), W(x), h(x), $\mathcal{E}(x)$ also remain the same, and so does the current
- \rightarrow the drain current saturates at $I_{\rm D}^{\rm sat}$.
- * The corresponding V_D is called the "drain saturation voltage" V_D^{sat} .

What happens beyond punch-off?

same as those at point D.

- * Our I-V equation is not valid beyond pinch-off.
- region develops near the drain end, and the "excess" voltage (over and above V_D at point D) drops across this high-field region, leaving the conditions in the rest of the channel virtually the
- * Since the potential profile in most of the channel remains the same (as point D), W(x), h(x), $\mathcal{E}(x)$ also remain the same, and so does the current
- \rightarrow the drain current saturates at $I_{\rm D}^{\rm sat}$.
- * The corresponding V_D is called the "drain saturation voltage" V_D^{sat} .
- * $V_G V_D^{\text{sat}} = V_P \rightarrow V_D^{\text{sat}} = V_G V_P$. For example, if $V_P = -2.5 \,\mathrm{V}$, $V_C = -1 \,\mathrm{V}$, the drain current will saturate at $V_D^{\text{sat}} = -1 - (-2.5) = 1.5 \,\text{V}.$

٩G depletion region JFET *I-V* relationship - Isat pinch-off I_D (mA) $I_D = G_0' V_D$ $\overset{\mathsf{D}}{\underset{\mathsf{V}_{\mathsf{D}}}{\longrightarrow}}$ $I_D = G_0 V_D$ 0 V $V_{D}(V)$ ΔL G V_D $(V_D^{} - V_D^{sat})$: x1 Х2 M. B. Patil, IIT Bombay

* In the region near the drain end (between $x=x_2$ and x=L), the electric field is larger than the rest of the channel. The "excess" voltage, $V_D-V_D^{\rm sat}$, drops across this region.

 $V_D(V)$

- * In the region near the drain end (between $x=x_2$ and x=L), the electric field is larger than the rest of the channel. The "excess" voltage, $V_D-V_D^{\rm sat}$, drops across this region.
- * Any further increase in V_D causes a larger field in this high-field region, and the voltage drop across that region increases accordingly.

JFET I-V relationship 0.2

and x=L), the electric field is larger than the rest of the channel. The "excess" voltage, $V_D-V_D^{\rm sat}$, drops across this region.

* In the region near the drain end (between $x = x_2$

 $V_{D}(V)$

- * Any further increase in V_D causes a larger field in this high-field region, and the voltage drop across that region increases accordingly.
- * The rest of the channel, "shielded" by the high-field region, does not experience any change as V_D is increased.

٩G depletion region JFET *I-V* relationship - Isat pinch-off I_D (mA) $I_D = G_0' V_D$ $\overset{\mathsf{D}}{\underset{\mathsf{V}_\mathsf{D}}{\longrightarrow}}$ $I_D = G_0 V_D$ 0 V $V_{D}(V)$ ΔL G V_D $(V_D^{} - V_D^{sat})$: x1 Х2 M. B. Patil, IIT Bombay

* At $x=x_1$ in the figure, for example, the channel potential as well as its derivative $\frac{dV}{dx}$ remain unaffected by the excess V_D , and therefore the current at x_1 , which depends on h(V) and $\frac{dV}{dx}$ remains constant. Since the current is the same throughout the device, I_D , the drain terminal current, remains constant.

- * At $x=x_1$ in the figure, for example, the channel potential as well as its derivative $\frac{dV}{dx}$ remain unaffected by the excess V_D , and therefore the current at x_1 , which depends on h(V) and $\frac{dV}{dx}$ remains constant. Since the current is the same throughout the device, I_D , the drain terminal current, remains constant.
- Note that the high-field region near the drain is not completely devoid of electrons (otherwise, the current would be zero).

Simulation results

 $\begin{aligned} &V_G = -1 \ V \\ &a = 0.2 \ \mu m \\ &L = 2 \ \mu m \\ &Z = 50 \ \mu m \\ &N_d = 10^{17} \ cm^{-3} \end{aligned}$

Simulation results

$\times 10^{17}$ Simulation results V_G • Gate 1.0 $V_{D} = 0.4 V$ $n \left(cm^{-3} \right)$ 0.8 -p+ V_D Drain 0 V 2 V 0.6 Source 3 V n-Si 3.6 V 0.4 4 V -V_G • Gate 0.2 $L=2 \mu m$ 0.5 $\times (\mu m)$ $L' = 2.8 \, \mu m$ $V_G = -1 V$ $a = 0.2 \mu m$ I_D (mA) $L = 2 \mu m$ $Z = 50 \, \mu m$ $N_d = 10^{17} \, cm^{-3}$ 4

V_D (volts)

2.5

$\times 10^{17}$ Simulation results V_G **•** Gate 1.0 $V_{D} = 0.4 \text{ V}$ $n \left(cm^{-3} \right)$ 0.8 V (volts) -p+ V_D Drain 0 V 2 V 0.6 Source 3 V n-Si 3.6 V 0.4 4 V -V_G • Gate 0.2 $L=2 \mu m$ 0.5 2.5 $\times (\mu m)$ $L' = 2.8 \, \mu m$ $V_G = -1 V$ $a = 0.2 \mu m$ I_D (mA) $L = 2 \mu m$ $Z = 50 \, \mu m$ $N_d = 10^{17} \, cm^{-3}$

4

V_D (volts)

* The channel is uniform from S to D at low V_D and becomes narrower at the drain end at high V_D .

- * The channel is uniform from S to D at low V_D and becomes narrower at the drain end at high V_D .
- * An increase in V_D is accompanied by a decrease in n and an increase in \mathcal{E} .

* Beyond saturation ($V_D \sim 3.6 \, \text{V}$), V(x) is almost constant except in the region close to the drain.

- * Beyond saturation ($V_D \sim 3.6 \, \text{V}$), V(x) is almost constant except in the region close to the drain.
- * Note that the I_D versus V_D curve has a non-zero slope beyond saturation (to be discussed).