IE 529 Homework set 3

- 1. Consider the basic <u>single-swap</u> algorithm discussed in class, where we will assume the *new* center is selected randomly. Determine the computational complexity required to complete one iteration of the algorithm. Explain your reasoning.
- 2. Consider 100 points evenly distributed on a **unit square** to form a 10×10 grid, and 100 points randomly chosen from the uniform distribution on the **unit square**. Suppose you use k-means to find the centroid of each data set (so you are applying k-means with k = 1).
 - (a) Which of the two data sets is *likely* to have the smaller cost (sum of square error terms), and why? (You can use simulations to explain your answer if you like).
 - (b) How do you expect these costs would compare as n, the number of points, gets larger? Provide a sketch of a proof for your answer.
- 3. As we have and will encounter Jensen's inequality and the *geometric-mean algebraic-mean* (GM-AM) inequality in our readings, we will work through the details of these in this homework problem.

Preliminary: A subset D of a real vector space (e.g., \mathbf{R}^d) is convex (concave) if every convex (concave) linear combination of a pair of points of D is in D, i.e., if $x, y \in D$ and $0 < \alpha < 1$ imply that $\alpha x + (1 - \alpha)y \in D$. A function $f: D \to \mathbf{R}$ is similarly said to be convex (concave) if $f(\alpha x + (1 - \alpha)y) \leq (\geq)\alpha f(x) + (1 - \alpha)f(y)$. These notions can be extended to linear combinations of any finite number of points, with scalings α_i such that $\sum_i \alpha_i = 1$.

Prove the following.

Jensen's inequality: Suppose the function $f: D \to \mathbf{R}$ is a <u>concave</u> function. Assume $x_1, x_2, \ldots, x_n \in D$ and $0 < \alpha_i < 1$ for $i = 1, 2, \ldots, n$ with $\sum_i \alpha_i = 1$. Then

$$\sum_{i=1}^{n} \alpha_i f(x_i) \le f\left(\sum_{i=1}^{n} \alpha_i x_i\right).$$

Hints: First note for the case n=1 there is nothing to prove and for n=2 the statement follows immediately from the definitions. So consider $n \geq 3$ and an induction argument. That is, assume the statement is true for some small n, and show it holds for n+1.

When will equality hold?

4. Now using Jensen's show the **GM-AM inequality** holds:

Let $\{x_i\}$, i = 1, 2, ... n, be a set of n non-negative real numbers. Show that the following inequality holds:

$$\left(\prod_{i=1}^{n} x_i\right)^{\frac{1}{n}} \le \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right).$$

Hint: note that the function f(x) = log x is concave on $(0, \infty)$.

5. Here you are given a simple set of data, from which you should formulate a linear model, a quadratic model and a logistic model to fit the data, and compare these three models using the AIC_c test. You can use existing functions in Matlab or Python for all pieces of this problem (for example, in Matlab to fit a logistic model consider the command 'glmfit').

The data is from a study of the effectiveness of a pesticide (a gaseous agent) on a certain species of beetles. For a total of 481 beetles, the data indicates dose versus mortality: dose is given as \log_{10} of concentration of gas in mg/l. Note that the result is binary, that is the beetle is either "dead" or "alive" following the trial; after n_i trials you have a sample proportion for each dose level. The data is below.

Please provide your models (equations with the learned parameters), a plot of your models versus the data, and the AIC_c values for each of your models. Based on your simulation plots and AIC_c values, which model structure do you think is most appropriate for the data?

dose	no. dead beetles	total no. beetles
1.6907	6	59
1.7242	13	60
1.7552	18	62
1.7842	28	56
1.8113	52	63
1.8369	53	59
1.8610	61	62
1.8839	60	60