ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN

Môn: Toán rời rạc (MAT3500 2, 2023-2024)

ĐỀ KIỂM TRA GIỮA KỲ

 $(D\grave{e}\ g\grave{o}m\ 4\ c\^{a}u/4\ trang)$ Thời gian: 50 phút

- Điền các thông tin về Họ Tên, Mã Sinh Viên, Lớp trước khi bắt đầu làm bài.
- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.
- Điểm bài kiểm tra này chiếm 20% tổng số điểm của môn học. Tổng điểm nhỏ hơn hoặc bằng 10 thì giữ nguyên, còn ngược lại thì tính là 10 điểm.

Họ và Tên:		
•		
Mã Sinh Viên:	Lớp:	

Câu:	1	2	3	4	Tổng
Điểm tối đa:	3	3	3	3	12
Điểm:					

- 1. Gọi F là tập hợp tất cả các hàm $f: \mathbb{R} \to \mathbb{R}$ với tập xác định và tập giá trị là tập các số thực. (Ví dụ, hàm plusOne định nghĩa bởi plusOne(x) = x + 1 là một hàm $plusOne: \mathbb{R} \to \mathbb{R}$, và do đó $plusOne \in F$.) Các mệnh đề sau là đúng hay sai? Hãy giải thích đáp án của bạn.
 - (a) (1 điểm) $\forall c \in \mathbb{R} \ [\exists f \in F \ (f(0) = c)].$
 - (b) $(1 \text{ diểm}) \exists f \in F \ [\forall c \in \mathbb{R} \ (f(0) = c)].$
 - (c) $(1 \text{ diểm}) \exists f \in F \ [\forall c \in \mathbb{R} \ (f(c) = 0)].$

Lời giải:

- (a) Mệnh đề $\forall c \in \mathbb{R} \left[\exists f \in F \ (f(0) = c) \right]$ là đúng. Lý do là với mỗi $c \in \mathbb{R}$, ta có thể chọn $f: \mathbb{R} \to \mathbb{R}$ là hàm định nghĩa bởi f(x) = x + c, và ta luôn có f(0) = c.
- (b) Mệnh đề $\exists f \in F \ [\forall c \in \mathbb{R} \ (f(0) = c)]$ là sai. Lý do là nếu tồn tại một hàm $f \in F$ thỏa mãn mệnh đề thì với các giá trị $c_1, c_2 \in \mathbb{R}$ bất kỳ thỏa mãn $c_1 \neq c_2$, ta cũng có $f(0) = c_1$ và $f(0) = c_2$. Do f là một hàm, ta cần có $c_1 = c_2$, đây là một mâu thuẫn.
- (c) Mệnh đề $\exists f \in F \ [\forall c \in \mathbb{R} \ (f(c) = 0)]$ là đúng. Lý do là ta có thể chọn $f : \mathbb{R} \to \mathbb{R}$ là hàm đinh nghĩa bởi f(x) = 0, và ta luôn có f(c) = 0 với moi $c \in \mathbb{R}$.

2. (3 điểm) Sử dụng phương pháp quy nạp, hãy chứng minh $10^n - 1$ chia hết cho 9 với mọi $n \ge 0$.

Lời giải: Gọi P(n) là vị từ " $10^n - 1$ chia hết cho 9". Ta chứng minh $\forall n \geq 0$ P(n).

- Bước cơ sở: Với n=0, ta có $10^0-1=0$ chia hết cho 9. Do đó P(0) đúng.
- Bước quy nạp: Giả sử P(k) đúng với số nguyên $k \geq 0$ nào đó, nghĩa là, $10^k 1$ chia hết cho 9. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh $10^{k+1} 1$ cũng chia hết cho 9. Thật vậy, ta có $10^{k+1} 1 = 10(10^k 1) + 9$. Theo giả thiết quy nạp, $10^k 1$ chia hết cho 9, nghĩa là tồn tại $\ell \in \mathbb{N}$ thỏa mãn điều kiện $10^k 1 = 9\ell$. Do đó, $10^{k+1} 1 = 10(10^k 1) + 9 = 10 \cdot (9\ell) + 9 = 9(10\ell + 1)$. Do $10\ell + 1 \in \mathbb{N}$, ta có $10^{k+1} 1$ chia hết cho 9, hay P(k+1) đúng.

Theo nguyên lý quy nạp, ta có $\forall n \geq 0 \ P(n)$.

- 3. Cho S là tập các số nguyên dương được định nghĩa theo đệ quy như sau:
 - Bước cơ sở: $5 \in S$.
 - Bước đệ quy: Nếu $n \in S$ thì $3n \in S$ và $n^2 \in S$.
 - (a) (2 điểm) Chứng minh rằng với mọi $n \in S$, n = 10a + 5 với a là số nguyên không âm nào đó.
 - (b) (1 điểm) Chứng minh rằng tồn tại một số nguyên dương m thỏa mãn điều kiện $m \notin S$ và m = 10a + 5 với a là số nguyên không âm nào đó

Lời giải:

- (a) Ta chứng minh bằng quy nap theo cấu trúc.
 - **Bước cơ sở:** Do $n = 5 \in S$ được định nghĩa ở bước cơ sở của định nghĩa của S, ta cần chỉ ra phát biểu đúng với n = 5. Thật vậy, ta có $5 = 10 \cdot 0 + 5$.
 - Bước quy nạp: Giả sử phát biểu đúng với số nguyên $n \in S$ nào đó, nghĩa là, n = 10a + 5 với a là số nguyên không âm nào đó. Ta chứng minh phát biểu đúng với $3n \in S$ và $n^2 \in S$, nghĩa là chứng minh tồn tại các số nguyên không âm c và d thỏa mãn 3n = 10c + 5 và $n^2 = 10d + 5$. Ta có 3n = 3(10a + 5) = 10(3a + 1) + 5 và $n^2 = (10a + 5)^2 = 10(10a^2 + 10a + 2) + 5$. Do đó, ta chọn c = 3a + 1 và $d = 10a^2 + 10a + 2$.
- (b) Theo định nghĩa, chú ý rằng mọi số nguyên $n \in S$ thỏa mãn $n \ge 5$. Lấy $m = 35 = 10 \cdot 3 + 5$. Ta chứng minh $35 \notin S$ bằng phương pháp phản chứng. Giả sử $35 \in S$. Do đó, tồn tại số nguyên $n \in S$ thỏa mãn 3n = 35 hoặc $n^2 = 35$. Đây là một mâu thuẫn vì không tồn tại số nguyên dương nào thỏa mãn ít nhất một trong hai điều kiện trên. Do đó, $35 \notin S$.

4. (3 điểm) Dãy Lucas $\{\ell_n\}$ là một dãy được định nghĩa đệ quy như sau: $\ell_0=2$, $\ell_1=1$, và $\ell_n=\ell_{n-1}+\ell_{n-2}$ với $n\geq 2$. Tương tự, dãy Fibonacci f_n được cho bởi: $f_0=0$, $f_1=1$, và $f_n=f_{n-1}+f_{n-2}$ với $n\geq 2$. Chứng minh rằng $f_n+f_{n+2}=\ell_{n+1}$ với mọi số nguyên dương n.

Lời giải: Ta sử dụng phương pháp quy nạp mạnh để chứng minh vị từ P(n) sau:

$$f_n + f_{n+2} = \ell_{n+1}$$

đúng với mọi $n \ge 1$.

- Bước cơ sở: Ta chứng minh P(1) và P(2) đúng. Thật vậy, với $n=1, f_1+f_3=1+2=3$ và $\ell_2=\ell_1+\ell_0=1+2=3$. Do đó, $f_1+f_3=\ell_2$, nghĩa là P(1) đúng. Với $n=2, f_2+f_4=1+3=4$ và $\ell_3=\ell_2+\ell_1=3+1=4$. Do đó, $f_2+f_4=\ell_3$, nghĩa là P(2) đúng.
- Bước quy nạp: Giả sử với số nguyên $k \geq 2$ nào đó và với mọi i thỏa mãn $1 \leq i \leq k$, P(i) đúng, nghĩa là $f_i + f_{i+2} = \ell_{i+1}$. Ta chứng minh P(k+1) đúng, nghĩa là chứng minh $f_{k+1} + f_{k+3} = \ell_{k+2}$. Thật vậy, ta có

$$\begin{split} f_{k+1} + f_{k+3} &= (f_k + f_{k-1}) + (f_{k+2} + f_{k+1}) \\ &= (f_k + f_{k+2}) + (f_{k-1} + f_{k+1}) \\ &= \ell_{k+1} + \ell_k \\ &= \ell_{k+2} \end{split} \qquad \qquad \text{Dịnh nghĩa dãy Fibonacci}$$