Data Mining for CFS

Team 7 Epitome

Amey Jain Bingyu Zhang Jhalak Goyal Jiali Chen Qianwen Li

Agenda

Main Problems

Data We Use

---- Product Selection

Туре	Life-style	Vacation	eCredit	Salary	Property Value	Class
Student	Spending>>Saving	6	40	13.62	3.2804	C1

Checking Account

Data We Use

---- Product Introduction

New Product Data

≥40 records

➤ Missing label and missing score

Existing Product Data

≥160 records

8 attributes

2 class representations

Label: 1 ---> success

0 ---> failure

Score: sales of first year

Fund Student 0.64 0.95 Small Full 0 10 1 26.7	Service _Type	Customer	Monthly_Fee	Budget	Size	Promotion	Interest_ Rate	Period	Label	Score
Tana Stadent 0.04 0.55 Sman Tan 0 10 1 20.7	Fund	Student	0.64	0.95	Small	Full	0	10	1	26.72

Two Algorithms Used

K Nearest Neighbors

KNN

Implement KNN algorithm to find the nearest records with the one we need to classify

Decision Tree

Weka

Using the C4.5 algorithm built in weka

C4.5 implemented

Implement the decision tree using C4.5 and reduced error pruning

Two Algorithms Used

--- KNN

KNN

Implement KNN algorithm to find the nearest instances with the one we need to classify

Preprocess data

Normalize numeric value

Calculate similarity between instances

Apply similarity matrix for non-numeric attribute

- Using weighted voting to determine the class
- Adjust the weights of different attributes

Туре	Life-style	Vacation	eCredit	Salary	Property Value	Class
Student	Spending <saving< td=""><td>0.079</td><td>0.107</td><td>0.220</td><td>0.183</td><td>C1</td></saving<>	0.079	0.107	0.220	0.183	C1

Two Algorithms Used

--- Decision Tree

- ➤ Generate a tree-like graph
- > C4.5 which can handle continuous value
- Post-prune the tree to overcome over-fitting

Weka

Using the J48 algorithm built in weka

C4.5 Implemented

Implement the decision tree using C4.5 and reduced error pruning

Two Algorithms UsedDecision Tree

Result of Product Selection

Decision Tree in Weka

C4.5 **Implemented**

The Weight of Attributes:

Most Important: eCredit Least Important: Life Style

Cross Validation Accuracy									
1	94.4%	6	88.9%						
2	100%	7	94.4%						
3	100%	8	83.3%						
4	100%	9	77.8%						
5	88.9%	10	88.9%						

=== Confusion Matrix ===

a b c d e <-- classified as 23(2)191 | a = C1 $1\ 25\ 0\ 0\ 0\ |\ b = C2$ $2 \ 0 \ 39 \ 0 \ 0 \ | \ c = C3$ 10 0 0 36 1 | d = C4 $0 \ 0 \ 0 \ 2 \ 34 \mid e = C5$

Cross	Cross Validation Accuracy									
1	89.5%	6	89.5%							
2	73.4%	7	73.7%							
3	78.9%	8	78.9%							
4	94.7%	9	89.5%							
5	89.5%	10	86.7%							

Result of Product Introduction

--- Binary Label

Decision Tree In Weka

C4.5 **Implemented**

The Weight of Attributes:

Most Important: Budget

Cros	Cross Validation Accuracy									
1	93.75%	6	100%							
2	93.75%	7	100%							
3	87.5%	8	100%							
4	100%	9	81.25%							
5	100%	10	93.75%							

=== Confusion Matrix ===

Cross	Validation	n Accu	iracy
1	87.5%	6	100%
2	93.75%	7	81.25%
3	93.75%	8	100%
4	93.75%	9	93.75%
5	100%	10	81.25%

Result of Product Introduction

--- Real Label

Output of KNN:

Service_Type	Customer	Monthly_ Fee	Budget	Size	Promotion	Interest_R ate	Period	Label	Score
Fund	Student	0.75	0.93	Small	Web&Email	1	5	1	21.542
Fund	Business	1.1	0.93	Small	Web&Email	1	65	1	23.588
Loan	Other	2.17	3.07	Small	Full	1	89	1	27.6459
Mortgage	Business	1.2	1.17	Small	Web	4	10	1	28.1259
CD	Business	1.2	1.09	Small	Web	0	26	0	20.666
Bank_Account	Professional	2.02	0.94	Large	None	3	15	1	21.798
Bank Account	Doctor	4.11	1.07	Large	Web	1	20	0	21.616
Bank_Account	Student	4.08	0.98	Large	None	0	15	0	19.266
Loan	Business	14.17	4.83	Medium	Web	3	84	1	32.166
Loan	Professional	11.12	5.19	Large	Web	4	103	1	32.078
Mortgage	Professional	10.68	6.01	Large	Web	2	85	1	31.6579
Mortgage	Doctor	12.99	5.21	Medium	Web	3	87	1	33.63
Mortgage	Business	13.65	3.71	Large	None	1	87	1	31.3659
CD	Business	5.63	7.15	Medium	Web	1	88	1	33.2940

Lessons Learned

Data Requirements

- > Training data where the attributes is correlated with the class we need to classify.
- > Test data with the same attributes as the training data.

U2 Highlights of KNN

- ► Normalization of the data
- **→** Weight of the attributes is very important when using KNN

84.4% ----> 92%

03 Highlights of Decision Tree

- **► Using C4.5 to handle** continuous value
- **Post-pruning to avoid overfit**

Lessons Learned

Choice of Classifiers

- Easy to interpret
- Performs well when dataset is large

Decision Tree **STRENGTH**

- Easy to implement
- Can predict continuous and discrete values
 - Robust to noisy data

KNN **STRENGTH**

Decision Tree WEAKNESS

- Only can predict discrete values
- Over-fitting problem

- Low performance when dataset is large
- Similarity matrix is required for categorical value

