Colles - Semaine 10

Exercice 1

On donne les matrices carrées d'ordre 3 suivantes :

$$A = \begin{pmatrix} 5 & 5 & -14 \\ 6 & 6 & -16 \\ 5 & 5 & -14 \end{pmatrix}; \quad B = \begin{pmatrix} 8 & 4 & -16 \\ 0 & 4 & -8 \\ 4 & 4 & -12 \end{pmatrix}; \quad P = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Ainsi que les matrices colonnes : $V_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$; $V_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$; $V_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. Vérifier que V_1, V_2 , et V_3 sont des vecteurs propres de A. Quelles sont les valeurs propres associées?
- 2. a) Montrer que P est inversible et calculer P^{-1} .
 - **b)** Justifier la relation : $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -4 \end{pmatrix}$. On note D cette matrice diagonale.
 - c) Calculer la matrice $\Delta = P^{-1}BP$ et vérifier qu'elle est diagonale.
- 3. On se propose de calculer les matrices colonne X_n définies par les relations :

$$X_0 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad X_1 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \quad \text{et} \quad \forall n \in \mathbb{N} \quad , \quad X_{n+2} = A \, X_{n+1} + B \, X_n$$

A cet effet, on définit, pour tout $n \in \mathbb{N}$: $Y_n = P^{-1}X_n$ et on pose également $Y_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.

- a) Montrer que $Y_0 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$ et $Y_1 = \begin{pmatrix} -3 \\ -1 \\ 4 \end{pmatrix}$.
- b) Montrer que pour tout entier naturel $n, Y_{n+2} = DY_{n+1} + \Delta Y_n$.
- c) Montrer alors que pour tout entier naturel n:

$$\begin{cases} u_{n+2} = u_{n+1} \\ v_{n+2} = 4v_n \\ w_{n+2} = -4w_{n+1} - 4w_n \end{cases}$$

En déduire les expressions explicites de u_n , v_n et w_n en fonction de n.

d) Donner finalement la matrice X_n , en fonction de n.

Exercice 2

On note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et on considère l'endomorphisme de \mathbb{R}^3 défini par :

$$f(e_1) = \frac{1}{3}(e_2 + e_3), \text{ et } f(e_2) = f(e_3) = \frac{2}{3}e_1$$

- 1. Écrire la matrice de f dans la base \mathscr{B} .
- 2. Déterminer la dimension de Im(f) puis celle de Ker(f).
- 3. En déduire une valeur propre de f ainsi que le sous-espace propre associé.
- 4. Déterminer les autres valeurs propres de f ainsi que les sous-espaces propres associés.
- $\mathbf{5}$. En déduire que f est diagonalisable.

Exercice 3

L'application f désigne un endomorphisme de \mathbb{R}^n . On munit \mathbb{R}^n d'une base (e_1, \dots, e_n) .

1. On suppose que

$$\forall x \in \mathbb{R}^n, \ \exists \lambda_x \in \mathbb{R} \ \text{tel que } f(x) = \lambda_x x$$

- a) Écrire de deux manières différentes le vecteur $f(e_1 + \cdots + e_n)$.
- b) En déduire qu'il existe un réel λ tel que $f = \lambda \cdot id$.
- 2. Soit x un vecteur non nul de \mathbb{R}^n .

Justifier qu'il existe une base de \mathbb{R}^n de la forme $(x, \varepsilon_2, \dots, \varepsilon_n)$.

On note alors p_x l'application de \mathbb{R}^n dans \mathbb{R}^n définie par :

$$\forall (a, b_2, \dots, b_n) \in \mathbb{R}^n, \ p_x \left(a \cdot x + \sum_{k=2}^n b_k \cdot \varepsilon_k \right) = a \cdot x$$

- a) Montrer que p_x est un endomorphisme de \mathbb{R}^n .
- **b)** Montrer que pour tout $z \in \mathbb{R}^n$, on a

$$p_x(z) = z \iff z \in \text{Vect}(x)$$

3. Montrer l'équivalence suivante :

$$\forall g \in \mathcal{L}(\mathbb{R}^n), \ f \circ g = g \circ f \iff \exists \lambda \in \mathbb{R}, \ f = \lambda \cdot \mathrm{id}$$

Exercice 4

On note m un paramètre réel et on considère les matrices H_m définies par : $H_m = \begin{pmatrix} -1 - m & m & 2 \\ -m & 1 & m \\ -2 & m & 3 - m \end{pmatrix}$.

On note h_m l'endomorphisme de \mathbb{R}^3 ayant pour matrice H_m dans la base canonique de \mathbb{R}^3 .

- 1. On suppose dans cette question que m=2.
 - a) Écrire la matrice H_2 .
 - b) Déterminer les valeurs propres de l'endomorphisme h_2 et les sous-espaces propres associés.
 - c) L'endomorphisme h_2 est-il diagonalisable? Si oui, donner une base de vecteurs propres de h_2 .
- 2. Étudier de même les valeurs propres et les sous-espaces propres de h_0 . Cet endomorphisme est-il diagonalisable?
- 3. a) Montrer qu'il existe un réel a, qu'on déterminera, qui est valeur propre de l'endomorphisme h_m pour toutes les valeurs du paramètre m.
 - b) Déterminer, pour chaque valeur de m, le sous-espace propre de h_m associé à la valeur propre a. Montrer qu'on peut trouver un vecteur non nul v_1 appartenant à tous ces sous-espaces.
- 4. Soit F le sous-espace de \mathbb{R}^3 engendré par les vecteurs $v_2 = (1,0,1)$ et $v_3 = (1,1,0)$: $F = \text{Vect}(v_2, v_3)$.

Déterminer les vecteurs $h_m(v_2)$ et $h_m(v_3)$ et montrer que ces vecteurs appartiennent à F pour tout m réel.

En déduire que le F est stable par h_m , c'est-à-dire que $h_m(F) \subset F$.

5. Montrer que (v_1, v_2, v_3) est une base de \mathbb{R}^3 .

Écrire la matrice de h_m dans la base (v_1, v_2, v_3) . En déduire les valeurs de m pour lesquelles l'endomorphisme h_m est diagonalisable.

2