Image and Video Processing

Programming Assignment 2

Matrix operations

Submitted by
Madhu Krishnan A P
(Student ID: 24100488)
M.Tech VLSI and Embedded Systems
Cochin University of Science and Technology

Cochin - 22

Contents

1	I Introduction	2
2	2 Matrix Operations	2
	2.1 Define Matrix Size	. 2
	2.2 Define Square Matrix and Display It	. 2
	2.3 Transpose Operation	. 2
	2.4 Conjugate Transpose Operation	. 2
	2.5 Inverse Operation	. 2
	2.6 Check Orthogonality of the Matrix	. 3
	2.7 Check Whether the Matrix is Unitary	. 3
3	3 Screenshots	3

1 Introduction

The basic matrix operations were performed using the **Matlab**. Besides Matlab core operations, the Matrix computations toolbox and Linear Algebra toolbox were used. The following core operations were used.

- inv(): Inverse of a matrix.
- det(): Determinant of a matrix.
- transpose(): Transpose of a matrix (or use 'for conjugate transpose).
- isequal(): Compare matrices for equality.
- eye(): Identity matrix.
- *: Matrix multiplication.

2 Matrix Operations

2.1 Define Matrix Size

```
matrixSize = 4;
```

2.2 Define Square Matrix and Display It

2.3 Transpose Operation

```
transposeMatrix = squareMatrix';
disp('Transpose of the Matrix:');
disp(transposeMatrix);
```

2.4 Conjugate Transpose Operation

```
conjugateTransposeMatrix = squareMatrix';
disp('Conjugate Transpose of the Matrix:');
disp(conjugateTransposeMatrix);
```

2.5 Inverse Operation

```
if det(squareMatrix) == 0
    disp('The matrix is singular and does not have an inverse.');
else
    inverseMatrix = inv(squareMatrix);
    disp('Inverse of the Matrix:');
    disp(inverseMatrix);
end
```

2.6 Check Orthogonality of the Matrix

isOrthogonal = isequal(round(squareMatrix * transposeMatrix), eye(matrixSize));
disp(['Is the matrix orthogonal?', mat2str(isOrthogonal)]);

Is the matrix orthogonal? true

2.7 Check Whether the Matrix is Unitary

isUnitary = isequal(round(squareMatrix * conjugateTransposeMatrix), eye(matrixSize));
disp(['Is the matrix unitary?', mat2str(isUnitary)]);

Is the matrix unitary? true

3 Screenshots

Figure 1: Matrix operations