Cálculo Integral En Una Variable

José Juan Hernández Cervantes

Julio-Diciembre 2017

Chapter 1

Propiedades de los Números Reales

1.1 Axioma Del Supremo

Todo subconjunto no vacío de R acotado superiormente tiene supremo.

Definición: Supremo

Sea $A \supseteq \mathbb{R}$ y $A \neq \emptyset$ acotado superiormente.

Diremos que \bar{x} es el supremo de A si cumple:

1.- \bar{x} es cota superior de A

2.- Si z es cota superior de A, ocurre $\bar{x} \leq z$

Teorema: Unicidad del supremo.

Si \bar{x} es el supremo de A, \bar{x} es único.

Demostración

Supongamos \bar{x} y \bar{y} supremos de A. Entonces, por definición de supremo ocurre:

```
\bar{x} \leq \bar{y} \wedge \bar{y} \leq \bar{x}

\therefore \bar{x} = \bar{y}

Q.E.D
```

1.2 Propiedad Arquimedeana.

Para todo par de números $x, y \in \mathbb{R}$ con x > 0 $\exists n \in \mathbb{N}$ tal que nx > y

Demostración: por reducción a lo absurdo

Supongamos $\forall n \in \mathbb{N}, nx \leq y$.

Si $y \le 0$ entonces $x \le 0$, contradicción con la hipótesis x > 0.

Si y > 0 sea $A = \{nx : n \in \mathbb{N}\}.$

Trivialmente $A\subseteq\mathbb{R}$ y $A\neq\varnothing$ pues $x\in A,$ además A está acotado superiormente por y.

Invocando el axioma del supremo, existe $\bar{x} = SupA$.

Como $x > 0 \Rightarrow -x < 0 \Rightarrow \bar{x} - x < \bar{x}$.

Con lo que $\bar{x}-x$ no es cota superior de A. Entonces existe a tal que $\bar{x}-x < a$. Esto es $\exists n \in \mathbb{N}$ tal que $\bar{x}-x < xn = a$. Equivalentemente $\bar{x} < (n+1)x$.

Como $(n+1)x \in A$, llegamos a una contradicción con la definicion de supremo.

 $\therefore \exists n \in \mathbb{N} \text{ tal que } nx > y \ \forall x > 0, y \in \mathbb{R}$

1.3 Principio Del Buen Orden

Todo subconjunto no vacío de $\mathbb N$ tiene elemento más pequeño. $\forall A\subseteq \mathbb R,\ A\neq\varnothing,\ \exists a_0:a_0\leq a\ \forall a\in A.$

1.4 Principio De Inducción Matemática Fuerte

Si $A:=\{P(j):j\in\mathbb{N}\}$ es una colección de enunciados con las siguientes propiedades:

1.-P(1) es verdadero.

2.-P(n+1)es verdadero siempre que P(n),P(n-1),...,P(2),P(1) sean verdaderos.

Entonces P(j) es verdadero $\forall j \in \mathbb{N}$

1.4.1 El principio de inducción matemática fuerte implica el Principio de Buen Orden

Demostración : por reducción a lo absurdo

Supongamos que existe $A \subseteq \mathbb{N}, A \neq \emptyset$