Math 109 Discussion 1

Neo Lee

01/29/2023

Problem 1.

Proposition 1. $m, n \in \mathbb{Z}^+ \Rightarrow n^2 - m^2 \neq 1$.

Proof. Assume to the contrary that $n^2-m^2=1$, then (n+m)(n-m)=1. Thus, n+m=1 and n-m=1. Since $n,m\in\mathbb{Z}^+,\ n\geq 1$ and $m\geq 1,\ n+m\geq 2$, which contradicts n+m=1. Hence, $m,n\in\mathbb{Z}^+\Rightarrow n^2-m^2\neq 1$.

Problem 2.

Proposition 2. Let n be an integer. If $n^2 - (n-2)^2$ is not divisible by 8, then n is even.

Proof. The contrapositive of the statement is: if n is odd, $8|n^2 - (n-2)^2$. Since n is odd, it can be written as n = 2k+1 for some whole number k. Then $n^2 - (n-2)^2 \Rightarrow (2k+1)^2 - (2k+1-2)^2 \Rightarrow (4k^2+4k+1) - (4k^2-4k+1) \Rightarrow 8k^2+8k = 8(k^2+k)$, which is divisible by 8 for $k \in \mathbb{Z}^{\geq}$. Hence, if $n^2 - (n-2)^2$ is not divisible by 8, then n is even.

Problem 3.

Proposition 3. $\sqrt{2} + \sqrt{3}$ is not rational.

Proof. Primary proof: Assume to the contrary that $\sqrt{2} + \sqrt{3}$ is rational, $(\sqrt{2} + \sqrt{3})^2 = 2 + 2\sqrt{6} + 3 = 5 + 2\sqrt{6}$ is rational $\Rightarrow 2\sqrt{6}$ is rational $\Rightarrow \sqrt{6}$ is rational.

Secondary proof: Now let's prove that $\sqrt{6}$ is irrational. Assume to the contrary that $\sqrt{6}$ is rational, which can be written as $\frac{a}{b}$ for $\{a,b\in\mathbb{Z}|gcd(a,b)=1\}$.

$$b\sqrt{6} = a \tag{1}$$

$$6b^2 = a^2 \tag{2}$$

Thus a^2 is even, which means a is even and can be written as a=2k for $k \in \mathbb{Z}$. From (2), $6b^2=a^2\Rightarrow 6b^2=(2k)^2\Rightarrow 6b^2=4k^2\Rightarrow 3b^2=2k^2\Rightarrow b^2$ is even $\Rightarrow b$ is even, which contracts that gcd(a,b)=1. Hence, $\sqrt{6}$ is irrational, which contradicts that $\sqrt{6}$ is rational is the primary proof. Thus, $\sqrt{2}+\sqrt{3}$ is not rational.