

2N3904 General Purpose NPN Transistors Universal-NPN-Transistoren

 I_C = 200 mA h_{FE1} ~ 200 T_{jmax} = 150°C

Pb

4000

0.18 g

UL 94V-0

260°C/10s

MSL N/A

 $V_{CEO} = 40 \text{ V}$ $P_{tot} = 625 \text{ mW}$

Typische Anwendungen

Signalverarbeitung,

Schalten, Verstärken

Version 2017-12-06

Typical ApplicationsSignal processing,
Switching, Amplification
Commercial grade ¹)

FeaturesGeneral Purpose
Compliant to RoHS, REACH,
Conflict Minerals ¹)

Mechanical Data 1)

Taped in ammo pack (Raster 2.54) Weight approx. Case material Solder & assembly conditions Standardausführung ¹) **Besonderheiten**Universell anwendbar

Konform zu RoHS, REACH,

Konfliktmineralien ¹)

Mechanische Daten ¹)

Gegurtet in Ammo-Pack (Raster 2.54) Gewicht ca. Gehäusematerial Löt- und Einbaubedingungen

Recommended complementary PNP transistors Empfohlene komplementäre PNP-Transistoren	2N3906
--	--------

Maximum ratings ²) Grenzwerte ²)

			2N3904
Collector-Emitter-voltage - Kollektor-Emitter-Spannung	B open	V_{CEO}	40 V
Collector-Base-voltage - Kollektor-Basis-Spannung	E open	V_{CBO}	60 V
Emitter-Base-voltage - Emitter-Basis-Spannung	C open	V_{EBO}	6 V
Power dissipation – Verlustleistung		P _{tot}	625 mW ³)
Collector current – Kollektorstrom	DC	\mathbf{I}_C	200 mA
Junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur		T _j T _s	-55+150°C -55+150°C

Characteristics Kennwerte

	$T_j = 25^{\circ}C$	Min.	Тур.	Max.
DC current gain – Kollektor-Basis-Stromverhältnis ⁴)				
$ \begin{split} &I_{\text{C}} = 0.1 \text{ mA,} & V_{\text{CE}} = 1 \text{ V} \\ &I_{\text{C}} = 1 \text{ mA,} & V_{\text{CE}} = 1 \text{ V} \end{split} $		40 70	_	_ _
$I_C = 10 \text{ mA}, \qquad V_{CE} = 1 \text{ V}$	h _{FE}	100	_	300
$I_C = 50 \text{ mA}, \qquad V_{CE} = 1 \text{ V}$		60	_	_
$I_C = 100 \text{ mA}, V_{CE} = 1 \text{ V}$		30	_	_

¹ Please note the <u>detailed information on our website</u> or at the beginning of the data book Bitte beachten Sie die <u>detaillierten Hinweise auf unserer Internetseite</u> bzw. am Anfang des Datenbuches

² $T_A = 25$ °C, unless otherwise specified – $T_A = 25$ °C, wenn nicht anders angegeben

³ Mounted on P.C. board with 3 mm² copper pad at each terminal Montage auf Leiterplatte mit 3 mm² Kupferbelag (Lötpad) an jedem Anschluss

⁴ Tested with pulses t_p = 300 μs, duty cycle $\leq 2\%$ – Gemessen mit Impulsen t_p = 300 μs, Schaltverhältnis $\leq 2\%$

Characteristics Kennwerte

	$T_j =$	25°C	Min.	Тур.	Max.
h-Parameters at/bei V_{CE} = 10 V, - I_{C} = 1 mA, f = 1 kHz					
Small signal current gain – Kleinsignal-Stromverstär	kung l	h _{fe}	100	_	400
Input impedance – Eingangs-Impedanz		h _{ie}	1 kΩ	_	10 kΩ
Output admittance – Ausgangs-Leitwert	ŀ	h _{oe}	1 μS	_	40 µS
Reverse voltage transfer ratio – Spannungsrückwirk	ung l	h _{re}	0.5*10-4	_	8*10-4
Collector-Emitter saturation voltage – Kollektor-Sättigur	ngsspannung 1)				
$I_{\text{C}}=$ 10 mA, $I_{\text{B}}=$ 1 mA $I_{\text{C}}=$ 50 mA, $I_{\text{B}}=$ 5 mA	V	CEsat	- -	- -	0.2 V 0.3 V
Base-Emitter saturation voltage – Basis-Sättigungsspan	nung ¹)				
$I_{\text{C}}=10$ mA, $I_{\text{B}}=1$ mA $I_{\text{C}}=50$ mA, $I_{\text{B}}=5$ mA	V	BEsat	0.65 V –	- -	0.85 V 0.95 V
Collector-Base cutoff current – Kollektor-Basis-Reststro	n				
$V_{CE} = 30 \text{ V}, V_{EB} = 3 \text{ V}$	I	[_{CBX}	_	_	50 nA
Emitter-Base cutoff current – Emitter-Basis-Reststrom					
$- V_{CE} = 30 \text{ V, } - V_{EB} = 3 \text{ V}$	I	[_{EBV}	_		50 nA
Gain-Bandwidth Product – Transitfrequenz					
I_{C} = 10 mA, V_{CE} = 20 V, f = 100 MHz		f⊤	300 MHz	_	-
${\bf Collector\text{-}Base\ Capacitance-Kollektor\text{-}Basis\text{-}Kapazit\"{a}t}$					
$V_{CB}=5~V,~I_{E}=i_{e}=0,~f=1~MHz$	C	Сво	-	-	4 pF
Emitter-Base Capacitance – Emitter-Basis-Kapazität					
$V_{EB}=0.5\ V,\ I_{C}=i_{c}=0,f=1\ MHz$	C	EBO	_	_	8 pf
Noise figure – Rauschzahl					
V_{CE} = 5 V, I_{C} = 1 $\mu A,~R_{G}$ = 1 $k\Omega,~f$ = 1 kHz		F	_	_	5 dB
Switching times – Schaltzeiten (between 10% and 90%)	levels)				
delay time $V_{CC} = 3 \text{ V, } V_{BE} = 0$		t_{d}	_	_	35 ns
rise time I_{C} = 10 mA, I_{B1}	= 1mA	t _r	_	_	35 ns
storage time $V_{cc} = 3 \text{ V, } I_c =$	10 mA,	ts	_	_	200 ns
$I_{\text{B1}} = I_{\text{B2}} = 1 \text{ m/}$	4	t_{f}	_	_	50 ns
Thermal resistance junction to ambient Wärmewiderstand Sperrschicht – Umgebung	F	₹ _{thA}		< 200 K/W ²)	

Disclaimer: See data book page 2 or <u>website</u> Haftungssauschluss: Siehe Datenbuch Seite 2 oder Internet

2

Tested with pulses t_p = 300 μs, duty cycle ≤ 2% - Gemessen mit Impulsen t_p = 300 μs, Schaltverhältnis ≤ 2%
 Mounted on P.C. board with 3 mm² copper pad at each terminal Montage auf Leiterplatte mit 3 mm² Kupferbelag (Lötpad) an jedem Anschluss