NLPIE

Word vectors or embeddings as vector of content values.

A word is defined by its surrounding words.

Co-occurance Matrix: A matrix in which each value fij represents the number of teines word wi is in content of C_j .

- Deta _ _ content words (content) - In formatie - complete date stored meny comp sytem _ deteban in formation_ et contents words. - lack content words is based on some window outride the - g. "Data is stored in memory of a computer system." 12 Jensbring co-occurre matrix with Windom siz ±2 & size /1/ Ludbrews Len Data stored memory computer system 2 computer stores data in memory computer stores data memory

- data

Vector Semantics

Pointwise Mutual Information (PMI): The measure how often two events x and y occur together, compared with if they occur independently

$$I(x,y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$
 — Joint prop
Independent Prob

PMI between a terget word w and context word c may be defined as $PMI(w,c) = log_2 \frac{P(w,c)}{P(w)P(c)}$

Co-occuring things less often leads to negative PMIvalues. However, we are concerned with co-occuring things vey often. Therefore, it is common to use Positive PMI,

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

Given a co-occurance metrix with W rows of words, C columns of contexts, and fij is the number of times word w occurs in context cj. Then PPMI matrix may be defined with PPMIij

$$PPMI_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)$$

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \quad p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}} \quad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

Co-occurrence counts for four words in 5 contexts in the Wikipedia corpus

	computer	data	result	pie	sugar	count(w)
cherry	2	8 7	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
ount(context)	(4997	(5673)	473	512	(61)	(11716)
p(w-	information,c	-data) —	3982	.3399		/ \
7("-	-mnormation,c-	-data) —		.3377		\
	P(w=inform	ation) —	7703	.6575		\bigvee
	/ (w=iiiioiiii	auon) –	11716	.03/1		Y \
	D/-	1-4-)	5673	1010		
	P(C	=data) =	$\frac{5673}{11716}$ =	.4842		
ppı	mi(information	,data) =	log 2(.339	99/(.657	5 * .4842)) =	= .0944
		,	U (/ \		

$$p_{ij} = \sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij} p_{i*} = \sum_{j=1}^{C} f_{ij} p_{*j} = \sum_{i=1}^{W} f_{ij} p_{*j}$$

	p(w,context)					
	computer	data	result	pie	sugar	p(w)
cherry	0.0002	0.0007	0.0008	0.0377	0.0021	0.0415
strawberry	0.0000	0.0000	0.0001	0.0051	0.0016	0.0068
digital	0.1425	0.1436	0.0073	0.0004	0.0003	0.2942
information	0.2838	0.3399	0.0323	0.0004	0.0011	0.6575
p(context)	0.4265	0.4842	0.0404	0.0437	0.0052	

Joint Probabilities with marginals

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

The PPMI Matrix