

Probing Nonlinear Dynamics to Unlock New Insights into Battery Systems

Matt Murbach

Prof. Dan Schwartz

Department of Chemical Engineering
University of Washington
Seattle, WA 98195-1750

Vision for the future energy economy

Electric Power Grid:

Transportation Industry:

Low cost, efficient, and fast charging batteries are key to continued advancement of the grid and electric vehicles.

Li-ion battery prices are falling 14%/year!

Advances in battery costs have been made primarily in manufacturing and materials.

Today's Tool: Electrochemical Impedance Spectroscopy

Input:

Output:

Small Perturbation = **Linear** Response

EIS provides a linearized view into a nonlinear system.

Nonlinear Electrochemical Impedance Spectroscopy

Input:

Experimental Details:

750 mA-hr $LiCoO_2|C$ AUTOLAB PSTAT + FRA Room Temperature

Output:

Moderate Perturbation = **Harmonic** Response

Nonlinear EIS retains physics and information that are discarded in traditional EIS.

Harmonic, k

Frequency domain analysis reveals harmonic structure

Harmonic, k

Voltage:

Harmonic signals depend nonlinearly on perturbation amplitude

Power law formulation allows us to extract purely frequency dependent impedance coefficients

$$\tilde{V}(k\omega_1, \Delta I) \approx \tilde{Z}_k(\omega_1)\Delta I^k$$

 $ilde{Z}_1(\omega_1), ilde{Z}_2(\omega_1), ilde{Z}_3(\omega_1)$ are frequency dispersion functions

 Dependent on the fundamental physicochemical processes of the battery not how the experiment is performed

- Hierarchical structure means we have some fundamental insight into the system:
 - Even harmonics are sensitive to symmetry

$ilde{Z}_1(\omega_1)$ is the linear impedance response

First full NLEIS spectrum for a Li-ion battery

Full analysis: Mathematical modeling

Physics based models can unlock the informational power of nonlinear EIS measurements.

Standard literature parameters don't capture second harmonic physics

Experimental

Standard literature parameters don't capture second harmonic physics

Experimental

Computed

Changing single, symmetry parameter results in kinetic arc

Experimental

Computed

Nonlinear spectra are more sensitive to the battery's internal state

Nonlinear harmonics show sensitivity to varying internal states.

The next step: bringing together mathematical model and experiments

Explore physics not captured in linear EIS

Second Harmonic
$$j_{f_{2,2}}' = \frac{i_0(\alpha_a + \alpha_c)}{RT} \eta_{2,2}' + \frac{i_0(\alpha_a^2 - \alpha_c^2)F}{4R^2T^2} (\eta_{1,1}'^2 - \eta_{1,1}''^2)$$

Insight into interactions between processes

Second Harmonic Overpotential:
$$\eta_{2,2}' = \varphi_{2,2}^{s'} - \varphi_{2,2}' - \frac{dU}{dc^s} c_{2,2}^{s'} - \frac{1}{4} \frac{d^2 U}{dc^{s^2}} \left(c_{1,1}^{s'} - c_{1,1}^{s''} \right)$$
 Kinetics Thermodynamics Mass transport

Sensitivity analysis will give insight into information content and inform experimental design.

Conclusion

 Nonlinear EIS has been useful in characterizing many other complex electrochemical systems. We are exploiting this for batteries!

- Bringing together harmonics simulations and experimental NLEIS measurements can enable:
 - More discrimination in physical models
 - Improved parameter estimation
 - Deeper insight into nonlinear processes like degradation

Acknowledgements

Advisors

Prof. Dan Schwartz

Prof. Hanna Hajishirzi

Undergraduate Researcher

Stephanie Reusch

