Lab09-Approximation Algorithm

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2019.

* If there is any problem, please contact TA Jiahao Fan.

* Name:田雪飞 Student ID:515030910347 Email: 13487426939@qq.com

- 1. **Solution.** The following is process of solution.
 - **a**. The basic idea of a greedy algorithm is starting with an arbitrary center, and in each round, add the 'farthest' vertex to the center set until there are totally k centers.

Algorithm 1: Greedy approximation.

Input: an complete undirected graph with nonnegative edge G(V,E).

Output: minimal $max_v\{cost(v, S)\}$.

- 1 S $\leftarrow \{c_1\}$; c_1 is an arbitrary center we choose at first.
- $_2$ for $v \in extit{V-S}$ do
- $|\mathbf{s}| \quad |\mathbf{s}| \leq k \text{ then}$
- 4 Find the farthest vertex v_i to center set.
- $\mathbf{5} \quad \Big| \quad \Big[\quad \mathbf{S} \leftarrow \mathbf{S} \cup \{c_i\}.$
- $_{6}$ return S.
- **b.** Let's consider a set **S** and two vertices v_g and v_opt , The optimal choice is to choose v_{opt} but we choose the v_g by greedy algorithm. In this case, we can use an illustration to describe this question, then we can construct the following relation:

$$\begin{cases} cost(v_g, S) = max\{s_1, s\} = s_{m1}; \\ cost(v_{opt}, S) = mas\{s_2, s\} = s_{m2}; \end{cases}$$

According to the triangle inequality:

Figure 1: The flow of two nodes is 1

$$cost(v_g,S) = max\{s_1,s\} = s_{m1} \le s_2 + s \le 2 * max\{s_2,s\} = 2cost(v_{opt},S);$$
then
$$cost(v_g,S) \le 2cost(v_{opt},S) \text{ ,so } \frac{cost(v_g,S)}{cost(v_{opt},S)} \le 2.$$

2. **Solution.** The following is the process of proof.

proof: In this case, we can use a vertex \mathbf{v} which belongs to \mathbf{R} , set \mathbf{R} - \mathbf{v} and set \mathbf{S} , the goal is to find minimum cost tree, we can use an illustration to describe this question:

Figure 2: The flow of two nodes is 1

we consider the a vertex \mathbf{v} in \mathbf{R} ,according to approximation, we know vertex \mathbf{v} must connect to one vertex in \mathbf{R} - \mathbf{v} , but in optimal answer,we know \mathbf{v} can connect to one vertex in \mathbf{S} , so, we can construct to the following relation by illustration above.

$$\begin{cases} c_g = s_1 + min\{s_2, s_3\}; \\ c_{opt} = s_2 + s_3; \end{cases}$$

According to the triangle inequality: $c_g = s_1 + min\{s_2, s_3\} \le 2(s_2 + s_3) \le 2c_{opt}$; For all vertices in R,we have same relation,so $C_g \le 2C_{opt}$, then $\frac{C_g}{C_{opt}} \le 2$.

3. Minimum Weighted Vertex Cover:

a. Denote: we assume C is a cover vertex set, In graph G(V,E), for each vertex $v \in V$, if $v \in C$, x(v) = 1 (vertex v in vertex cover set), if $v \notin C$, x(v) = 0 (vertex v not in vertex cover set).at least one vertex is in vertex cover set for every edge: $x(v_j) + x(v_i) \ge 1$;

integer linear program:

$$\begin{cases} \sum_{v_i \in V} c_i x(v_i); \\ x(v_j) + x(v_i) \ge 1; \\ x(v_i), (v_j) = 0, 1; \\ i \in \{1, 2 \dots n\} \end{cases}$$

b. proof: As we know, the following is an approximation algorithm with value $m_{LP}(G)$, we assume: m^*LP is the best solution for linear program. Then $m^*(LP) \leq m^*(G)$; In solution **a**, we know $x(v_j) + x(v_i) \geq 1$; so there must have one vertex which $x(v) \geq \frac{1}{2}$; $\{v_i, v_j\} \geq \frac{1}{2}$; $m^*(LP) = \sum_{v_i \in V} c_i x(v_i) \geq \sum_{v_i \in V and x(v) \geq \frac{1}{2}} c_i x(v_i) \geq \sum_{v_i \in V and x(v) \geq \frac{1}{2}} \frac{1}{2} * c_i = \frac{1}{2} m_{LP}(G)$ Then, $\Rightarrow \frac{1}{2} m_{LP}(G) \leq m^*(G)$; So $\Rightarrow m_{LP}(G)/m^*(G) \leq 2$.

4. Give the corresponding (I, sol, m, goal) for Metric k-center and Minimum Weighted Vertex Cover respectively. Metric k-center(I,sol,m,goal):
I={G(V,E)|G is a graph}; poly time decidable.
sol={U ⊆ V|arbitrary select a vertex as center, add the 'farthest' vertex to the center set until there are totaly k centers.}
m=farthest distance v to k-center set U; v fnU;
goal = min{m};
Minimum Weighted Vertex Cover (I,sol,m,goal):
I={G(V,E)|G is a graph}; poly time decidable.
sol = U ⊆ V|∀(v, u) ∈ E(v ∈ Voru ∈ V).
m = ∑_{v∈V} c(v)x(v).v ∈ V, x(v) = 1; v ∉ V, x(v) = 0; c(v) is the cost of vertex v.

Remark: You need to include your .pdf and .tex files in your uploaded .zip file.

 $goal = min\{m\}$