Lietišķie algoritmi -2. mājas darbs

Termiņš: otrdiena, 30.oktobris. Mājas darbā tiks izmantotas konstantes a, b, kas vienādas ar Jūsu studenta apliecības numura pēdējiem 2 cipariem.

- 1. **Heminga kodi.** Atrast kļūdas (ja tādas ir) sekojošos Heminga koda ziņojumos:
 - (a) 1100000.
 - (b) 0110011.
 - (c) 001001111000101 (15-bitu Heminga kods, bitu secība no x_{1111} līdz x_{0001}).

2. Rīda-Solomona kods.

- (a) Mēs kodējam informāciju ar 10 pakāpes polinomiem, pārraidot 20 polinoma vērtības $(f(0), f(1), \ldots, f(19))$. Kāds ir maksimālais kļūdu skaits, pie kura iespējams viennozīmīgi atjaunot sākotnējo ziņojumu? Pamatot, kāpēc ir iespējams koriģēt šādu kļūdu skaitu un kāpēc nav iespējams koriģēt lielāku kļūdu skaitu.
- (b) Atkodēt ar RS kodu (2 pakāpes polinoms, 5 vērtības $f(0), \ldots, f(4)$, operācijas pēc mod 11) kodētu ziņojumu 2, *, (a+b) mod 11, (3b+2) mod 11, kur saņemtās vērtības visas ir pareizas, bet ar * apzīmētās vērtības ir pazaudētas.

3. Grafu kodi.

Ziņojums nokodēts ar grafu kodu, kas atbilst augstāk uzzīmētajam grafam $(x_i$ ir ziņojuma biti, y_i ir kontrolbiti). Saņemot pazaudēti 3 ziņojuma biti. Rezultātā kā ziņojuma biti x_1, \ldots, x_6 saņemti *, 1, *, 1, 0, *(kā vienmēr, * apzīmē pazaudētu vērtību) un kā kontrolbiti y_1, \ldots, y_4 saņemti 0, 1, 0, 0. Atjaunot trūkstošos bitus.

4. I-iespēja (atzīmei 10).

- (a) Uzrakstīt grafu kodu ar 9 ziņojuma bitiem x_1, \ldots, x_{15} un pēc iespējas mazāku skaitu kontrolbitu y_1, \ldots, y_k tā, lai kods spētu atjaunot jebkurus 2 pazaudētus ziņojuma bitus x_i .
- (b) Pamatot, ka mazāks kontrolbitu skaits nav iespējams.
- (c) Uzrakstīt grafu kodu ar 9 ziņojuma bitiem x_1, \ldots, x_{15} un pēc iespējas mazāku skaitu kontrolbitu y_1, \ldots, y_k tā, lai kods spētu atjaunot jebkurus 3 pazaudētus ziņojuma bitus x_i .