Математический анализ 1. Лекция 2. Множества и функции. Последовательности и их пределы

6 сентября 2023 г.

Множества и отношение принадлежности

Соответствия и функции

Числовые последовательности

Сходящиеся последовательности и их простейшие свойства

Множества и отношение принадлежности

Основные математические понятия — это множество и отношение принадлежности. Множества и отношение принадлежности на универсуме всех множеств обычно считаются неопределимыми понятиями. Содержательно, множество X — это произвольная совокупность каких-либо объектов, которые называются его элементами (они принадлежат множеству X).

Формально свойства множеств и отношения принадлежности задаются с помощью *аксиом*. Основной аксиомой теории множеств является *аксиома объемности* (экстенсиональности):

Множество однозначно определяется своими элементами, иначе говоря, если два множества X и Y имеют одни и те же элементы, то эти множества равны.

Остальные аксиомы декларируют существование некоторых специальных множеств и допустимость различных операций над множествами.

Основные обозначения

- $ightharpoonup \in$ символ отношения принадлежности. Выражение " $x \in X$ " означает, что x есть элемент множества X.
- Ø пустое множество, т.е. множество, не содержащее ни одного элемента.
- $\{a_1,a_2,\ldots,a_n\}$ конечное множество задается перечислением его элементов a_1,a_2,\ldots,a_n . Пример: $\{3,9,1\}$. По аксиоме объемности такое множество единственно.
- $\{x \in X : \varphi(x)\}$ множество всех элементов из X, удовлетворяющих условию φ . Если X ясно из контекста, то пишут короче: $\{x : \varphi(x)\}$. Пример: $\{x \in \mathbb{R} : x^2 3x + 2 < 0\} = (1,2)$, где \mathbb{R} множество вещественных чисел.
- \blacktriangleright \subset символ отношения включения (не путать с \in !). X \subset Y означает, что для любого x \in X также x \in Y . Тогда X называют подмножеством Y .
 - Пример (для подмножеств \mathbb{R}): $(1,2) \subset (0,+\infty) \subset \mathbb{R}$.
- ▶ Логические символы: связки \vee (или), \wedge (и), \neg (отрицание), \Rightarrow (следует) и так называемые кванторы \forall (для всех), \exists (существует). Пример (прочитаем сейчас, а осмыслим сегодня позже)

$$\forall \varepsilon \in \mathbb{R}, \ \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}: \ |a_n| < \varepsilon \ \forall n \geqslant N(\varepsilon).$$

Свойства отношения включения

- lacktriangle Если $X\subset Y$ и $Y\subset X$, то X=Y (свойство антисимметричности).
- lacktriangle Если $X\subset Y$ и $Y\subset Z$, то $X\subset Z$ (свойство транзитивности).
- $ightharpoonup X \subset X$ (свойство рефлексивности).
- \triangleright $\varnothing \subset X$.

Операции над множествами

- lackbox Объединение: $X \cup Y = \{x : x \in X \$ или $x \in Y\} = \{x : x \in X \lor x \in Y\}.$
- $lack \square$ Пересечение: $X\cap Y=\{x:x\in X\ \mathrm{id}\ x\in Y\}=\{x:x\in X\wedge x\in Y\}.$
- ightharpoonup Разность: $X \setminus Y = \{x : x \in X \text{ и } x \notin Y\}.$
- ▶ Дополнение (относительно фиксированного универсального множества Ω): $\bar{X} = \Omega \setminus X$ (для множеств $X \subset \Omega$). Пример: для множеств на числовой прямой $\Omega = \mathbb{R}$, и для $X = (0, +\infty)$ имеем $\bar{X} = \mathbb{R} \setminus (0, +\infty) = (-\infty, 0]$.
- Симметрическая разность: $X\Delta Y=(X\setminus Y)\cup (Y\setminus X)$ множество таких x, которые принадлежат только одному из множеств X или Y. Поэтому $X\Delta Y=(X\cup Y)\setminus (X\cap Y)$.

Пример: для X=(0,2), Y=(1,3) имеем $X\cup Y=(0,3), X\cap Y=(1,2),$ $X\setminus Y=(0,1], Y\setminus X=[2,3),$ а также $\overline{X}=\mathbb{R}\setminus X=(-\infty,0]\cup [2,+\infty),$ $X\Delta Y=(0,1]\cup [2,3)=(0,3)\setminus (1,2).$

Более сложные операции над множествами

Объединения и пересечения семейств множеств

Если дано семейство множеств X_{α} , где α пробегает некоторое множество индексов A, то аналогично вводятся

$$\bigcup_{\alpha \in I} X_\alpha = \{x : x \in X_\alpha \text{ при некотором } \alpha \in A\},$$

$$\bigcap_{\alpha \in A} X_{\alpha} = \{x : x \in X_{\alpha} \text{ при всех } \alpha \in A\}.$$

Упорядоченные пары, декартово произведение

Из аксиомы объемности следует, что элементы принадлежат множеству "без учета порядка": $\{1,2\} = \{2,1\}$.

Можно ввести упорядоченную пару (x,y) элементов $x \in X$ и $y \in Y$. Для таких пар

$$(x,y)=(x^{\prime},y^{\prime})$$
 тогда и только тогда, когда $x=x^{\prime}$ и $y=y^{\prime}.$

Пример: для упорядоченных пар $(1,2) \neq (2,1)$.

Декартово (или прямое) произведение множеств X и Y – это множество упорядоченных пар

$$X \times Y = \{(x, y) : x \in X, \ y \in Y\}.$$

Пример: произведение интервалов $(a,b) \times (c,d)$ можно отождествить с прямоугольником на плоскости. 🛨

Аналогично вводится декартово произведение n множеств $X_1 \times \ldots \times X_n$.

В частности, декартова n-я степень множества X – это множество

$$X^n = \underbrace{X \times X \times \ldots \times X}_{n \text{ pa3}}.$$

Его элементы отождествляют с упорядоченными n-ками элементов X. Пример (очень важный): $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n \in \mathbb{R}\}$

Соответствия и функции

Соответствие из множества X в множество Y – это любое подмножество декартова произведения $X\times Y$. Это обобщение понятия функции. Для иллюстрации соответствия $R\subset X\times Y$ иногда изображают в виде схем, состоящих из элементов X и Y и стрелок, которые соединяют элементы x и y для каждой пары $(x,y)\in R$.

Пример. На картинке изображено соответствие

$$R = \{(a,g), (c,f), (d,e), (d,g)\}$$
 из множества $X = \{a,b,c,d\}$ в множество $Y = \{e,f,g,h\}.$

Обратным к соответствию $R\subset X\times Y$ называется соответствие

$$R^{-1} = \{ (y, x) \in Y \times X \colon (x, y) \in R \}.$$

из множества Y в множество X. В нашем примере

$$R^{-1} = \{(g, a), (f, c), (e, d), (g, d)\}\$$

Соответствие f называется ϕ ункциональным или просто ϕ ункцией из множества X в множество Y, если каждому элементу $x \in X$ поставлен в соответствие ровно один элемент $y \in Y$, т.е.

- 1. для каждого $x \in X$ существует такой $y \in Y$, что $(x,y) \in f$;
- 2. для всех $x\in X$, $y_1,y_2\in Y$, если $(x,y_1)\in f$ и $(x,y_2)\in f$, то $y_1=y_2.$

Обозначения:

$$f: X \to Y, \quad y = f(x)$$
 (вместо $(x, y) \in f$).

В примере выше соответствия R и R^{-1} функциональными не являются. \bigstar Еще пример: соответствие из $\mathbb R$ в $\mathbb R$ вида $\{(x, \operatorname{tg} x): x \neq \frac{\pi}{2} + \pi k, k \in \mathbb Z\}$ и обратное к нему функциональными также не являются.

Графиком функции $f:X \to Y$ называют множество пар $\{(x,y) \in X \times Y: y = f(x)\}.$

Замечание: данное определение функции соответствует *классическому* определению функции. В нем фактически понятия "функция" и "график функции" тождественны.

Но чаще функцию "определяют" как способ получения по каждому $x \in X$ некоторого $y = f(x) \in Y$. Такое определение больше соответствует интуиции, однако понятие *способа* с трудом поддается строгой формализации.

Обозначения. Пусть дана функция f:X o Y. Тогда:

- 1. область определения X обозначают через $\mathrm{dom}\, f, D(f), D_f.$
- 2. образ множества $A\subset X$ посредством функции f обозначают через $f(A)=\{f(a):a\in A\}.$
- 3. область значений $f(X) = \{f(x) : x \in X\}$ обозначают через $\operatorname{ran} f, R(f), R_f, E(f), E_f.$

Пример: $\sin x : \mathbb{R} \to \mathbb{R}$ и $D(\sin x) = \mathbb{R}$, $\sin([0,\pi]) = [0,1]$, $R(\sin x) = [-1,1]$.

Понятие соответствия важно потому, что нередко стандартного определения функции недостаточно, его приходится расширять, и рассматривать "функции" с $D(f) \neq X$, многозначные функции и т.д.

Определения. Функция f:X o Y называется:

- 1. сюръективной (или из X на Y), если для каждого $y\in Y$ существует $x\in X$ такой, что f(x)=y; это эквивалентно тому, что R(f)=Y;
- 2. инъективной (или вложением), если $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ для всех $x_1, x_2 \in X$;
- 3. биективной (взаимно однозначной), если она инъективна и сюръективна одновременно, т.е. для каждого $y \in Y$ существует единственный $x \in X$ такой, что f(x) = y;
- 4. обратимой, если обратное соответствие f^{-1} функционально.

Свойства. 1. Если функция $f:X\to Y$ является вложением, то функция $f:X\to R(f)$ биективна (взаимно однозначна). \bigstar

2. Функция $f: X \to Y$ обратима тогда и только тогда, когда она взаимно однозначна. \bigstar

Примеры: $1. \ x^2: \mathbb{R} \to \mathbb{R}$ — функция из \mathbb{R} в \mathbb{R} , но не на \mathbb{R} и не вложение. $x^2: \mathbb{R} \to [0,+\infty)$ — функция на $[0,+\infty)$, но не вложение. $x^2: [0,+\infty) \to [0,+\infty)$ — функция на $[0,+\infty)$ и вложение \Leftrightarrow она взаимно однозначна, а $\sqrt{x}: [0,+\infty) \to [0,+\infty)$ — обратная к ней функция. \bigstar 2. $\arctan x: \mathbb{R} \to \mathbb{R}$ — функция из \mathbb{R} в \mathbb{R} , но не на \mathbb{R} , но вложение. \bigstar $\arctan x: \mathbb{R} \to (-\frac{\pi}{2}, -\frac{\pi}{2})$ функция из \mathbb{R} на $(-\frac{\pi}{2}, -\frac{\pi}{2})$ и вложение \Leftrightarrow она взаимно однозначна,

Композиция функций

Пусть даны функции $f:X \to Y$ и $g:U \to V$, причем $R(f) \cap U \neq \varnothing$. Тогда определена их композиция $g \circ f: X_0 \to V$ такая, что $(g \circ f)(x) = g(f(x))$ для любого $x \in D(g \circ f) = X_0 \subset X$, где $X_0 = \{x \in X: f(x) \in U\}$. Композицию числовых функций часто называют сложной функцией.

Пример. Пусть
$$f(x)=1-x^2:\mathbb{R}\to\mathbb{R}$$
, а $g(x)=\sqrt{x}:[0,+\infty)\to\mathbb{R}$. Тогда $(g\circ f)(x)=\sqrt{1-x^2}:[-1,1]\to\mathbb{R}$. Можно рассмотреть и другую композицию $(f\circ g)(x)=1-(\sqrt{x})^2=1-x:[0,+\infty)\to\mathbb{R}$.

Теорема

Пусть функция f:X o Y обратима. Тогда

- 1. $f\circ f^{-1}$ есть тождественная функция из множества Y в множество Y, т.е. $f(f^{-1}(y))=y$ для всех $y\in Y$. \bigstar
- 2. $f^{-1} \circ f$ есть тождественная функция из множества X в множество X, т.е. $f^{-1}(f(x)) = x$ для всех $x \in X$.

Пример. Пусть
$$f(x)=e^x:X=\mathbb{R}\to Y=(0,+\infty).$$
 Тогда $f^{-1}(x)=\ln x:(0,+\infty)\to\mathbb{R}$ и $(f\circ f^{-1})(x)=e^{\ln x}=x:(0,+\infty)\to(0,+\infty),$ $(f^{-1}\circ f)(x)=\ln(e^x)=x:\mathbb{R}\to\mathbb{R}.$

Принципы супремума и инфимума

Определения.

- lacktriangle Число $d\in\mathbb{R}$ называется верхней гранью множества $X\subset\mathbb{R}$, если $x\leqslant d$ для всех $x\in X$.
- Множество $X \subset \mathbb{R}$ называется **ограниченным сверху**, если оно имеет верхнюю грань. В противном случае в X имеются сколь угодно большие элементы.
- Число $d_* \in \mathbb{R}$ называется **точной верхней гранью** (супремумом) множества $X \subset \mathbb{R}$, если d_* есть верхняя грань множества X и $d_* \leqslant d$ для всех верхних граней d (т.е. d_* есть наименьшая верхняя грань; иными словами, любое число $d_1 < d_*$ уже не является верхней гранью множества X). Обозначение: $d_* = \sup X$.

Примеры: 1.
$$\sup(a,b) = \sup(a,b] = b$$
.

2.
$$\sup\{x \in \mathbb{R} : \operatorname{arctg} x\} = \sup_{x \in \mathbb{R}} \operatorname{arctg} x = \frac{\pi}{2}$$
.

 \Rightarrow тем самым не обязательно, чтобы $\sup X \in X$.

Если же $\sup X \in X$, то $\sup X = \max X$ является **максимумом** (максимальным элементом) X таким, что $x \leqslant \max X$ при всех $x \in X$.

Определение (продолжение).

- lacktriangle Число $c\in\mathbb{R}$ называется **нижней гранью** множества $X\subset\mathbb{R}$, если $x\geqslant c$ для всех $x\in X.$
- ightharpoonup Множество $X\subset\mathbb{R}$ называется **ограниченным снизу**, если оно имеет нижнюю грань.
 - В противном случае в X имеются сколь угодно большие по модулю отрицательные элементы.
- Число $c_* \in \mathbb{R}$ называется **точной нижней гранью** (инфимумом) множества $X \subset \mathbb{R}$, если c_* есть нижняя грань множества X и $c_* \geqslant c$ для всех нижних граней c множества X (т.е. c_* есть наибольшая верхняя грань; иными словами, любое число $c_1 > c_*$ уже не является нижней гранью X). Обозначение: $c_* = \inf X$.

Пример: 1. $\inf(a,b) = \inf[a,b) = a$. 2. $\inf\{x \in \mathbb{R} : \operatorname{arctg} x\} = \inf_{x \in \mathbb{R}} \operatorname{arctg} x = -\frac{\pi}{2}$.

 \Rightarrow тем самым снова не обязательно, чтобы $\inf X \in X$.

Если же $\inf X \in X$, то $\inf X = \min X$ является **минимумом** (минимальным элементом) X таким, что $x \geqslant \min X$ при всех $x \in X$.

Принцип супремума.

Каждое ограниченное сверху множество $X\subset \mathbb{R}$ имеет точную верхнюю грань (супремум) $\sup X\in \mathbb{R}.$

Принцип инфимума.

Каждое ограниченное снизу множество $X\subset\mathbb{R}$ имеет точную нижнюю грань (инфимум) $\inf X\in\mathbb{R}.$

Справедлива простая формула, связывающая точную верхнюю и точную нижнюю грани (если одна из них существует, то существует и вторая)

$$-\sup X = \inf(-X),$$
 где $(-X) = \{-x : x \in X\}.$

Пример: пусть
$$X=R(\sin x+1)=[0,2]$$
, тогда $\sup X=2$, а $(-X)=R(-\sin x-1)=[-2,0]$ и $\inf(-X)=-2$.

Принципы супремума и инфимума, в частности, обеспечивают возможность извлекать квадратные корни из натуральных чисел, а возводить натуральные числа в произвольную вещественную степень

$$\begin{split} \sqrt{2} &= \sup\{q \in \mathbb{Q} : q^2 < 2\} = \inf\{q \in \mathbb{Q} : q^2 > 2\}, \\ 2^{\pi} &= \sup\{2^q : q \in \mathbb{Q}, \ q < \pi\} = \inf\{2^q : q \in \mathbb{Q}, \ q > \pi\}, \end{split}$$

а также определять различные более сложные операции.

Числовые последовательности

Последовательности – это функции $a:\mathbb{N} \to Y.$ Последовательности $a:\mathbb{N} \to \mathbb{R}$ называются числовыми.

Обычно пишут a_n вместо a(n). Последовательность "целиком" записывают как a, или (a_n) или, для наглядности, a_1,a_2,\ldots

Примеры:

- ▶ последовательность $1, 2, 3, \ldots \Leftrightarrow a_n = n$
- lacktriangle последовательность $1, \frac{1}{2}, \frac{1}{3}, \ldots \Leftrightarrow a_n = \frac{1}{n}$
- ightharpoonup последовательность $1, 1, 1, \ldots \Leftrightarrow a_n = 1$.

Замечание: иногда для удобства элементы последовательности нумеруют не с a_1 , а с a_0 или a_{n_0} для некоторого натурального числа n_0 .

Типы последовательностей

Последовательность (a_n) называется:

- lacktriangle (строго) возрастающей, если $a_n < a_{n+1}$ для всех $n \in \mathbb{N}$. Эквивалентно, если $a_n < a_m$ для всех натуральных n < m. Примеры: $a_n = n$; $b_n = 1 \frac{1}{n} = \frac{n-1}{n} \Leftrightarrow 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots$
- ▶ неубывающей, если $a_n \leqslant a_{n+1}$ для всех $n \in \mathbb{N}$. Эквивалентно, если $a_n \leqslant a_m$ для всех натуральных n < m. Пример: $a_n = \left\lceil \frac{n}{2} \right\rceil \iff 0, 1, 1, 2, 2, 3, 3, \ldots$
- lacktriangle (строго) убывающей, если $a_n>a_{n+1}$ для всех $n\in\mathbb{N}.$ Эквивалентно, если $a_n>a_m$ для всех натуральных n< m. Примеры: $a_n=-n;\ b_n=rac{1}{n}.$
- ▶ невозрастающей, если $a_n\geqslant a_{n+1}$ для всех $n\in\mathbb{N}.$ Эквивалентно, если $a_n\geqslant a_m$ для всех натуральных n< m. Пример: $a_n=-\left\lceil\frac{n}{2}\right\rceil.$

Замечание: последовательность a_n возрастающая $\Leftrightarrow -a_n$ убывающая (т.к. $a_n < a_{n+1} \Leftrightarrow -a_n > -a_{n+1}$). Последовательность a_n неубывающая $\Leftrightarrow -a_n$ невозрастающая (т.к. $a_n \leqslant a_{n+1} \Leftrightarrow -a_n \geqslant -a_{n+1}$).

Эти простые факты важны, т.к. позволяют легко сводить результаты для убывающих или невозрастающих последовательностей к аналогичным результатам для возрастающих или неубывающих последовательностей.

Последовательность (a_n) называется:

- **ограниченной сверху** (числом C), если $a_n \leqslant C$ при всех $n \geqslant 1$
- **ограниченной снизу** (числом C), если $C \leqslant a_n$ при всех $n \geqslant 1$
- ▶ ограниченной, если $|a_n| \leqslant C$ при всех $n \geqslant 1$,

т.е. если она ограничена и сверху, и снизу.

Примеры. Последовательность $a_n = \frac{1}{n}$ ограничена сверху (единицей) и снизу (нулем); последовательность $a_n = n$ – только снизу (единицей); последовательность $a_n = (-1)^n n$ не ограничена ни снизу, ни сверху.

Замечание:

неубывающая последовательность (a_n) ограничена снизу числом a_1 , невозрастающая последовательность (a_n) ограничена сверху числом a_1 .

Последовательность (a_n) называется:

• бесконечно малой, если для любого (сколь угодно малого) $\varepsilon>0$ выполнено $|a_n|<\varepsilon$ при всех (достаточно больших) $n\geqslant N=N(\varepsilon)$; Пример: $a_n=\frac{1}{n}$ (здесь $\frac{1}{n}<\varepsilon\Leftrightarrow n>\frac{1}{\varepsilon}$, что выполнено при $n\geqslant N(\varepsilon)=\left[\frac{1}{\varepsilon}\right]+1$).

Формальная запись этого свойства была использована в начале лекции

$$\forall \varepsilon \in \mathbb{R}, \ \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ |a_n| < \varepsilon \ \forall n \geqslant N(\varepsilon).$$

• бесконечно большой, если для любого (сколь угодно большого) C>0 выполнено $|a_n|>C$ при всех (достаточно больших) $n\geqslant N=N(C);$ Пример: $a_n=(-1)^nn$ (здесь $|a_n|=n>C$ при $n\geqslant N(C)=[C]+1$). Поскольку $0<|a_n|<\varepsilon\Leftrightarrow |a_n|>C=rac{1}{\varepsilon}$, то: последовательность $a_n\neq 0$ является бесконечно малой \Leftrightarrow последовательность $b_n=rac{1}{a_n}$ определена и является бесконечно большой.

Сходящиеся последовательности

Окрестность точки $x\in\mathbb{R}$ – это любой интервал (a,b), содержащий точку x.

Эпсилон-окрестность (arepsilon-окрестность) точки x – это интервал $O_{arepsilon}(x)=(x-arepsilon,x+arepsilon)$, где arepsilon>0.

Фундаментальное определение:

последовательность (a_n) называется **сходящейся** к числу c, если для любого (достаточно малого) $\varepsilon>0$ существует (достаточно большой) номер $N=N(\varepsilon)$ такой, что $|a_n-c|<\varepsilon$ при всех $n\geqslant N$. Это свойство записывается как $c=\lim_{n\to\infty}a_n$, а число c называется пределом последовательности (a_n) .

Геометрически, последовательность (a_n) сходится к числу c, если для любого $\varepsilon>0$ существует номер $N=N(\varepsilon)$ такой, что $a_n\in O_\varepsilon(x)$ при всех $n\geqslant N.$

Бесконечно малая последовательность (a_n) – это последовательность, сходящаяся к 0 (имеющая $\lim_{n\to\infty}a_n=0$).

Непосредственно из определений следует, что последовательность (a_n) сходится к числу $c\Leftrightarrow$ последовательность (a_n-c) — бесконечно малая.

Свойства сходящихся последовательностей и пределов

А. Единственность предела (даже над таким свойством надо задуматься!). Если $\lim_{n\to\infty} a_n$ существует, то он единствен. Геометрическое доказательство от противного: \bigstar

В. Независимость предела от конечного числа элементов последовательности. Существование и значение $\lim_{n \to \infty} a_n$ не зависят от любого конечного числа элементов последовательности (a_n) . Иначе говоря, пусть $a_n = b_n$ для всех $n \geqslant N_0$. Тогда пределы $\lim_{n \to \infty} a_n$ и $\lim_{n \to \infty} b_n$ существуют или не существуют одновременно и, если они существуют, то равны.

Это свойство сразу ясно из определения, и оно подчеркивает, что сходимость (a_n) – это свойство ее элементов при больших n.

С. **Ограниченность сходящейся последовательности.** Если последовательность сходится (т.е. имеет предел), то она ограничена (сверху и снизу).

Доказательство. Пусть $\lim_{n \to \infty} a_n = c$. Фиксируем некоторое $\varepsilon > 0$, например, пусть $\varepsilon = 1$. Тогда по определению существует такое число N, что для всех $n \geqslant N$ выполнено $|a_n - c| < 1$ и поэтому $|a_n| \leqslant |a_n - c| + |c| < |c| + 1$. Следовательно, $|a_n| \leqslant C := \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, |c| + 1\}$ при всех $n \geqslant 1$.

D. Пусть дана последовательность a_n . Если часть ее элементов (конечную или счетную) удалить, так чтобы осталось счетное множество элементов, то эти оставшиеся элементы будут образовывать **подпоследовательность** элементов a_n . Элементы подпоследовательности, не изменяя их порядка, можно заново перенумеровать натуральными числами $1, 2, 3, \ldots$ Примеры: $b_n = a_{2n-1}$ (все элементы с нечетными номерами), $b_n = a_{2n}$ (все элементы с четными номерами), $b_n = a_{n^2}$. Иными словами, подпоследовательность – это последовательность элементов вида $a_{i_1}, a_{i_2}, \ldots, a_{i_n}, \ldots$ с возрастающей последовательностью номеров (i_n) , т.е. $1 \le i_1 < i_2 \ldots < i_n < \ldots$ Обратим внимание на то, что $i_n \geqslant n$ при всех $n \geqslant 1$. Равенство пределов последовательности и ее **подпоследовательностей.** Пусть последовательность (a_n) – сходящаяся, а (b_n) – ее подпоследовательность. Тогда и (b_n) – сходящаяся и $\lim b_n = \lim a_n$.

Примеры: 1. Если существует $\lim_{n\to\infty}a_n$, то существуют и пределы $\lim_{n\to\infty}a_{2n-1}, \lim_{n\to\infty}a_{2n}, \lim_{n\to\infty}a_{n2}$, и все они равны $\lim_{n\to\infty}a_n$. 2. $\lim_{n\to\infty}(-1)^n$ не существует (от противного) \bigstar

Доказательство: если (i_n) – возрастающая последовательность номеров, и некоторое свойство элементов последовательности (a_n) верно при $n\geqslant N$, то оно тем более верно при $i_n\geqslant N$.

Е. Более глубокое свойство.

Пределы монотонных ограниченных последовательностей.

1. Если последовательность (a_n) – неубывающая и ограничена сверху, то она сходится, причем $\lim_{n\to\infty}a_n=\sup_{n>1}a_n.$

Пример: $\lim_{n\to\infty} \frac{n-1}{n} = 1$.

2. Если последовательность (a_n) – невозрастающая и ограничена снизу, то она сходится, причем $\lim_{n\to\infty}a_n=\inf_{n\geqslant 1}a_n.$

Пример: $\lim_{n\to\infty}\frac{1}{n}=0$.

Доказательство. 1. Пусть $d=\sup_{n\geqslant 1}a_n.$ Во-первых, т.к. d есть верхняя грань

множества $\{a_n:n\geqslant 1\}$, то $a_n\leqslant d$ при всех $n\geqslant 1$. Во-вторых, фиксируем любое $\varepsilon>0$. Тогда найдется хотя бы один элемент a_N (с $N=N(\varepsilon)$) такой, что $d-\varepsilon< a_N< d$: в противном случае число $d-\varepsilon$ было бы верхней гранью множества $\{a_n:n\geqslant 1\}$, а это противоречит тому, что d есть его точная верхняя грань. Далее, последовательность (a_n) — неубывающая, поэтому $d-\varepsilon< a_N\leqslant a_n$ при $n\geqslant N$. Значит, для всех $n\geqslant N$ выполнено $d-\varepsilon< a_n\leqslant d< d+\varepsilon$, т.е. $|a_n-d|<\varepsilon$, что и требовалось.

2. Вторую часть утверждения можно доказать аналогично или свести к первой, поскольку тогда $(-a_n)$ – невозрастающая последовательность и

$$\lim_{n\to\infty} a_n = -\lim_{n\to\infty} (-a_n) = -\sup_{n\geqslant 1} (-a_n) = \inf_{n\geqslant 1} a_n.$$

