Assignment: You may discuss the problems with other students, but all work must be your own. If you consult a book or online resource, cite it.

Each problem below refers to the following setup. We are conducting a study of people who have epilepsy. We record the number X_i of seizures person i experiences in one week, for $i=1,\ldots,n$. We observe $\mathbf{X}=(X_1,\ldots,X_n)$, where we model $X_i\sim \operatorname{Poisson}(\lambda)$ independently. Our prior beliefs about the seizure rate λ (before seeing the data \mathbf{X}) are summarized by $\lambda\sim \operatorname{Exponential}(\alpha)$, where $\alpha>0$ is fixed and known. Call the prior density $p(\lambda|\alpha)$. In Bayesian statistics, our new belief about λ (after seeing the data) is embodied by the posterior distribution of the unknown parameter λ :

$$p(\lambda | \mathbf{X}, \alpha) = \frac{L(\lambda; \mathbf{X}) p(\lambda | \alpha)}{\int_0^\infty L(\lambda; \mathbf{X}) p(\lambda | \alpha) \, d\lambda}$$

where $L(\lambda; \mathbf{X})$ is the likelihood.

Problem 1: The posterior distribution

- a. Write the likelihood and an expression for the posterior distribution $p(\lambda | \mathbf{X}, \alpha)$.
- b. Find the maximum likelihood estimate $\hat{\lambda}_{\text{MLE}} = \operatorname{argmax}_{\lambda} L(\lambda; \mathbf{X})$ analytically. Derive an expression for its asymptotic standard error.
- c. Find the maximum a posteriori (MAP) estimate $\hat{\lambda}_{MAP} = \operatorname{argmax}_{\lambda} p(\lambda | \mathbf{X}, \alpha)$ analytically. How is the MAP estimate different from the MLE in part (a)? Which one is bigger? What happens as $n \to \infty$? Why is it useful to have prior beliefs about λ , and what is the role of α in the MAP estimate?

Problem 2: The mean and variance of the posterior

- a. Is it easy or difficult to find an analytic formula for $\mathbb{E}[\lambda|\mathbf{X},\alpha]$? Why?
- b. Derive the normal approximation $g(\lambda)$ to the posterior distribution $p(\lambda|\mathbf{X})$ at $\lambda = \lambda_{\text{MAP}}$. Remember that $\lambda > 0$, and specify your importance distribution accordingly. State explicitly the distribution or density for your approximation.
- c. Let $\alpha = 0.7$ and write a computer program to draw the true value of $\lambda \sim \text{Exponential}(\alpha)$. Then, conditional on this value of λ , generage n = 13 independent Poisson(λ) variables. Call these values X_1, \ldots, X_n .
- d. Derive an importance sampling estimator to find the mean and variance of the posterior $p(\lambda|\mathbf{X},\alpha)$. For the importance distribution q(y) use your normal approximation. Since the

normalizing constant of $p(\lambda|\mathbf{X},\alpha)$ is unknown, you may use the following fact:

$$\frac{\frac{1}{m} \sum_{j=1}^{m} \frac{\lambda_{j} p(\lambda_{j} | \mathbf{X}, \alpha)}{g(\lambda_{j})}}{\frac{1}{m} \sum_{k=1}^{m} \frac{p(\lambda_{k} | \mathbf{X}, \alpha)}{g(\lambda_{k})}} \to \mathbb{E}[\lambda | \mathbf{X}, \alpha]$$

for $\lambda_1, \ldots, \lambda_m \sim g$, as $m \to \infty$.

e. Apply your importance sampling estimator to numerically compare the posterior mean and standard deviation to the MLE and its asymptotic SE, and the MAP estimate. How do they differ?

Problem 3: MCMC for the posterior distribution of λ

We will derive an MCMC algorithm for learning about the posterior distribution $p(\lambda | \mathbf{X}, \alpha)$.

a. Consider the proposal density

$$g(\lambda^*|\lambda) = \frac{\frac{1}{\sqrt{2\pi}\sigma} \exp[-\frac{1}{2\sigma^2}(\lambda^* - \lambda)^2]}{\int_0^\infty \frac{1}{\sqrt{2\pi}\sigma} \exp[-\frac{1}{2\sigma^2}(\lambda' - \lambda)^2] d\lambda'}$$

Why is this a reasonable proposal function for λ ? Is it symmetric?

- b. Derive the Metropolis-Hastings acceptance probability $\rho(\lambda, \lambda^*)$.
- c. Using the values of **X** and α from the last part, implement a Metropolis-Hastings algorithm to draw N = 10,000 samples $\lambda_1, \ldots, \lambda_N \sim p(\lambda | \mathbf{X}, \alpha)$. Use the proposal density $g(\lambda^* | \lambda)$ given above. Explain how you chose σ^2 .
- d. Plot the samples of λ from your algorithm by iteration and as a histogram. Overlay your previous estimates on this histogram. What do you see?
- e. Compute an estimate of the posterior mean and variance of $p(\lambda|\mathbf{X}, \alpha)$ using your Metropolis-Hastings samples and compare to your importance sampling estimates and the MAP estimate and the MLE.