Algebra

Leonardo Ganzaroli

Indice

	Inti	roduzione	1			
1	Nu	meri	4			
	1.1	Interi	4			
		1.1.1 Operazioni	4			
	1.2	Razionali	4			
		1.2.1 Operazioni	5			
	1.3	Teorema fondamentale dell'algebra	5			
2	Divisibilità in $\mathbb Z$ 5					
	2.1	MCD	6			
	2.2	$\operatorname{mcm} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	6			
3	Str	utture algebriche principali	7			
4	Teo	ria dei gruppi	8			
	4.1	Sottogruppi	8			
	4.2	Gruppi ciclici	9			
	4.3	Classi laterali	10			
	4.4	Gruppi simmetrici	10			
5	Teo	ria degli anelli	11			
	5.1	Invertibili	11			
	5.2	Sottoanelli	11			
	5.3	Ideali	11			
6	\mathbb{Z}_n		12			
	6.1	Congruenze lineari	13			
	6.2	Sistemi e Tcs	13			
7	Omomorfismi 1					
8	Spa	Spazi vettoriali 1				

9	Matrici				
	9.1	Definizioni	17		
	9.2	Sistemi lineari	18		
	9.3	Determinante	19		
	9.4	Applicazioni lineari	20		
		9 4 1 Diagonalizzazione	20		

Introduzione

Questi appunti del corso Algebra sono stati creati durante la laurea Triennale di informatica all'università "La Sapienza".

Prima di procedere rivedere la parte di insiemistica, relazioni e funzioni negli appunti di *Metodi Matematici per l'informatica* e gli insiemi numerici in *Calcolo differenziale*.

1 Numeri

1.1 Interi

Partendo da $\mathbb{N}\times\mathbb{N}$ costruisco la relazione di equivalenza:

$$(n,m) \sim (n',m') \iff n+m'=m+n'$$

Scegliendo come rappresentanti per ogni classe di equivalenza gli elementi contenenti uno 0 definisco i sottoinsiemi:

$$\mathbb{Z}^+ = \{ [(n,0)] \mid n \in \mathbb{N} \setminus \{0\} \} \text{ (positivi)}$$
$$\mathbb{Z}^- = \{ [(0,n)] \mid n \in \mathbb{N} \setminus \{0\} \} \text{ (negativi, rappresentati con } -n)$$

Si può quindi definire $\mathbb{Z}=\mathbb{Z}^+\cup[(0,0)]\cup\mathbb{Z}^-=\mathbb{N}\times\mathbb{N}_{/\sim}$

Definizione Due numeri $a,b\in\mathbb{Z}$ si dicono coprimi sse il loro unico divisore comune è ± 1 .

Teorema 1 (Fondamentale dell'aritmetica) Ogni numero naturale maggiore di 1 o è un numero primo o si può esprimere come prodotto di numeri primi.

1.1.1 Operazioni

• Somma

$$[(n,m)] + [(n',m')] = [(n+n',m+m')]$$

• Prodotto

$$[(n,m)] * [(n',m')] = [(n*n'+m*m',n'*m+n*m')]$$

1.2 Razionali

Partendo da $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ costruisco la relazione di equivalenza:

$$(a,b) \sim (c,d) \iff a*d = b*c$$

Come per gli interi definisco $\mathbb{Q} = \{\mathbb{Z} \times \mathbb{Z} \setminus \{0\}_{/\sim}\}$, un elemento [(a,b)] sarà rappresentato come $\frac{a}{b}$.

1.2.1 Operazioni

• Somma

$$[(a,b)] + [(c,d)] = [(a*d+b*c,b*d)]$$

• Prodotto

$$[(a,b)] * [(c,d)] = [(a*c,b*d)]$$

1.3 Teorema fondamentale dell'algebra

Teorema 2 Ogni equazione algebrica con coefficienti complessi di grado n ammette n soluzioni in \mathbb{C} , inoltre \mathbb{C} si dice algebricamente chiuso.

2 Divisibilità in \mathbb{Z}

Definizione Dati $m, n \in \mathbb{Z}$. La relazione "m divide n" (m|n) è definita come:

$$m|n\iff \exists q\in\mathbb{Z}\mid n=mq$$

Definizione Dati $a, b \in \mathbb{Z}, n \in \mathbb{N}$ con $n \geq 2$. La relazione "a è congruente a b in modulo n" $(a \equiv b \mod n)$ è definita come:

$$a \equiv b \mod n \iff n|(b-a)$$

Teorema 3 (Divisione euclidea con resto)

Dati $m, n \in \mathbb{Z}$ con n > 0. Si ha:

$$\exists !q,r \in \mathbb{Z} \ 0 \leq r < n \ | \ m = nq + r$$

2.1 MCD

Definizione Dati $a,b\in\mathbb{Z}.\ d\geq 1$ è detto massimo comun divisore di a,b se:

- $d|a \wedge d|b$
- $d'|a \wedge d'|b \Rightarrow d'|d$

Per trovare l'MCD si può usare l'algoritmo euclideo:

- 1. $a|b \rightarrow a = bq_1 + r_1$, se $r_1 \neq 0$ continuo
- 2. $b|r_1 \to b = r_1q_2 + r_2$, se $r_2 \neq 0$ continuo
- 3. $r_1|r_2 \to r_1 = r_2q_3 + r_3$, se $r_3 \neq 0$ continuo
- 4. ...
- 5. $r_{n-2}|r_{n-1} \to r_{n-2} = r_{n-1}q_n + r_n \text{ con } r_n = 0$

A questo punto si ha che $MCD(a,b) = r_{n-1}$, ossia l'ultimo resto non nullo.

Definizione Un'equazione diofantea è un'equazione in una o più incognite con coefficienti interi di cui si ricercano le soluzioni intere, le equazioni con forma ax + by = c hanno soluzione intera sse MCD(a, b)|c.

Definizione Il MCD di 2 numeri si può riscrivere come l'equazione diofantea $d = ax_0 + by_0$, questa forma viene detta identità di Bézout.

Per risolvere ax + by = c si seguono questi passi:

- 1. Se MCD(a, b) = d|c allora ammette soluzione
- 2. Trovare un'identità di Bézout per d
- 3. Moltiplicare (x_0, y_0) per $\frac{c}{d}$
- 4. $\forall k \in \mathbb{Z}$ le soluzioni sono $(x_0 + k * \frac{b}{d}, y_0 k * \frac{a}{d})$

2.2 mcm

Definizione Dati $a, b \in \mathbb{Z}$. $d \in \mathbb{Z}$ è detto minimo comune multiplo di a, b se:

- $a|d \wedge b|d$
- $a|d' \wedge b|d' \Rightarrow d|d'$

In particolare risulta che MCD(a, b) * mcm(a, b) = ab

3 Strutture algebriche principali

Definizione Una funzione è detta operazione binaria se ha la forma:

$$f: S \times S \to S$$

Un'operazione binaria gode di:

- Prop. associativa se l'ordine di applicazione non influenza il risultato
- Prop. commutativa se l'ordine degli elementi non influenza il risultato
- Esistenza del neutro se $\exists ! e \in S \mid \forall \ x \in S \ f(x,e) = f(e,x) = x$
- Esistenza dell'inverso se $\forall x \in S \ \exists ! x^{-1} \in S \ | \ f(x, x^{-1}) = f(x^{-1}, x) = e$

N.B. Da qui in poi f(x,y) sarà scritta come xy.

Definizione Una struttura algebrica è un insieme S con una o più operazioni binarie applicate su di esso, alcune sono (+e * sono 2 operazioni generiche):

• Semigruppo (S,+)

L'operazione deve essere associativa.

• Monoide (S, +)

Un semigruppo + l'elemento neutro (indicato con 0).

• **Gruppo** (S, +)

Un monoide + l'elemento inverso.

• Gruppo abeliano (S, +)

Un gruppo + commutatività.

- Anello (A, +, *)
 - -(A, +)è un gruppo abeliano
 - -(A,*)è un semigruppo
 - $\forall a, b, c \in A \ a(b+c) = ab + ac, \ (b+c)a = ba + ca$
- Anello commutativo

Un anello ma * è commutativa.

• Anello unitario

Un anello + il neutro per * (indicato con 1).

• Dominio d'integrità

Un anello commutativo e unitario senza divisori dello 0, ossia $a*b=0 \Rightarrow (a=0 \lor b=0)$

- Campo (K, +, *)
 - -(K,+,*) è dominio d'integrità
 - $\ \forall \ x \in K \setminus \{0\} \ \exists ! x^{-1} \in K \setminus \{0\} \mid xx^{-1} = x^{-1}x = 1$

Esempi:

- $(\mathbb{N} \setminus \{0\}, +)$ è un semigruppo
- $\bullet \ (\mathbb{N},+)$ è un monoide commutativo
- $\bullet \ (\mathbb{R},*)$ è un gruppo abeliano
- $(\mathbb{Z}, +, *)$ è un anello
- $(\mathbb{Q}, +, *)$ è un campo

4 Teoria dei gruppi

4.1 Sottogruppi

Definizione Dato (G,*). (H,*) è un sottogruppo di G $(H\leqslant G)$ se:

- $H \subseteq G$
- ullet H contiene il neutro di G
- $x, y \in H \Rightarrow xy \in H$
- $x \in H \Rightarrow x^{-1} \in H$

In particolare i sottogruppi:

• Di $(\mathbb{Z},+)$ hanno la forma $n\mathbb{Z}$

 $(2\mathbb{Z},+)$ è un sottogruppo formato dai numeri pari

 $\bullet\,$ Di $(\mathbb{Z}_n,+)$ hanno la forma H_d con d divisore di n

$$\mathbb{Z}_{12} \to \{[0]\}, \mathbb{Z}_{12}, H_2, H_3, H_4, H_6$$

.

4.2 Gruppi ciclici

Definizione Dato un gruppo (G, *). Prendendo $g \in G, t \in \mathbb{Z}$ definisco:

$$g^{t} = \begin{cases} 1_{G} & \text{se } t = 0\\ g * \dots * g & \text{per t volte se } t > 0\\ g^{-1} * \dots * g^{-1} & \text{per t volte se } t < 0 \end{cases}$$

L'insieme $\{g^t, t \in \mathbb{Z}\}$ risulta essere un sottogruppo di G, viene definito generato da g e si indica con $\langle g \rangle$.

Definizione Un gruppo ciclico è un gruppo generato da un solo elemento.

Definizione L'ordine di un gruppo ciclico (o(g)) è un numero $n \in \mathbb{N}$ tale che $g^n = 1$, esso combacia con la cardinalità dell'insieme.

Per esempio $(\mathbb{Z},+)=\langle 1\rangle$, infatti si può ottenere qualsiasi numero intero k sommando k volte 1.

Definizione Il gruppo di Klein è il più piccolo gruppo non ciclico:

$$\kappa_4 = \{1, a, b, c\}$$

Teorema 4 (Struttura dei gruppi ciclici)

- $H \leqslant G = \langle q \rangle \Rightarrow H \ \dot{e} \ ciclico$
- $H \leqslant G = \langle g \rangle \land |G| = n \Rightarrow o(H)|n$
- $\forall k \ n = k * c \ \exists ! H \leqslant G \mid (|H| = k \Rightarrow H = \langle g^{\frac{n}{k}} \rangle)$

Teorema 5 (Cauchy)

Dati G gruppo finito e $p \in \mathbb{P}$:

$$p||G| \Rightarrow \exists g \in G \mid o(g) = p$$

4.3 Classi laterali

Definizione Dati $H \leq G$ e le relazioni:

$$x \sim_{sx} y \iff x^{-1}y \in H, \ x \sim_{dx} y \iff xy^{-1} \in H$$

Si definiscono le classi laterali sx/dx di $x \in G$ come:

$$xH = [x]_{sx} = \{y \in G \mid x \sim_{sx} y\}, \ Hx = [x]_{dx} = \{y \in G \mid x \sim_{dx} y\}$$

Teorema 6 (Lagrange)

Dati $H \leq G$. Risulta che |G| = |H| * numero di classi laterali sx (o dx) distinte

Definizione Un sottogruppo è detto normale $(H \subseteq G)$ se $\forall x \in G \ xH = Hx$.

4.4 Gruppi simmetrici

Definizione Un gruppo simmetrico è formato dalle permutazioni degli elementi di un certo insieme X, nel caso X sia finito il gruppo ha grado |X|.

In questo caso si denota S_n come il gruppo formato dalle mappature biunivoche $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$, esso ha ordine n!.

Una permutazione viene denotata come $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$.

Definizione Il supporto (supp()) di una permutazione è $\{j \in \sigma \mid \sigma(j) \neq j\}$.

Definizione Una trasposizione è una permutazione $(i,j) = \begin{pmatrix} 1 & 2 & \dots & i & j & \dots & n \\ 1 & 2 & \dots & j & i & \dots & n \end{pmatrix}$.

Definizione Un k-ciclo è una permutazione tale che:

$$\sigma(j_1) = j_2, \ \sigma(j_2) = j_3, \ \dots, \ \sigma(j_k) = j_1$$

L'ordine di una permutazione è il mcm tra le lunghezze dei suoi cicli.

In presenza di cicli è possibile scomporre una permutazione in un unico prodotto:

$$\sigma = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_k \mid \forall i, j \leq k \ supp(\sigma_i) \cap supp(\sigma_i) = \emptyset$$

Per esempio
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 4 & 1 & 2 \end{pmatrix} \longrightarrow (1 \ 3 \ 5)(2 \ 6)$$

Un prodotto può a sua volta essere scomposto in una serie di trasposizioni:

$$(1\ 2\ 3\ 4) = (1\ 4)(1\ 3)(1\ 2)$$

Se il numero di elementi è pari allora la permutazione è pari, altrimenti dispari.

5 Teoria degli anelli

5.1 Invertibili

In caso di anello unitario si definisce l'insieme degli invertibili come:

$$A^* = \{ a \in A \mid \exists a' \ a' * a = a * a' = 1 \}$$

Esso forma un gruppo con *.

Vale inoltre $a, b \in A^* \Rightarrow a * b \in A^*$.

5.2 Sottoanelli

Definizione Dato (A, +, *). (B, +, *) è un sottoanello di A $(A \le B)$ se:

- $(B, +) \leq (A, +)$
- $x, y \in B \Rightarrow xy \in B$

5.3 Ideali

Definizione Dato (A, +, *). (I, +, *) è un ideale di A $(I \triangleleft A)$ se:

- $I \subseteq A$
- $(I, +) \leq (A, +)$
- $\{ax \mid x \in I, a \in A\} \subseteq I$
- $\{yb \mid y \in I, b \in A\} \subseteq I$

Definizione Dato l'anello A e $a_1, \ldots, a_n \in A$. Un ideale I è detto generato da a_1, \ldots, a_n se:

$$I(a_1, \ldots, a_n) = \{a_1b_1 + \ldots + a_nb_n \mid b_1, \ldots, b_n \in A\}$$

Nel caso $I(a) \triangleleft A$ si dice ideale principale.

6 \mathbb{Z}_n

 \mathbb{Z}_n è l'insieme quoziente della relazione:

$$a \sim_n b \iff n|a-b|$$

Insieme a +,* forma un anello commutativo unitario infatti:

- [k] + [h] = [k+h], con neutro [0]
- \bullet +, * sono commutatice e associative
- Vale la proprietà distributiva
- Esistono divisori dello zero

Definizione La funzione di Eulero (φ) restituisce il numero di numeri coprimi inferiori a n.

Gli invertibili di \mathbb{Z}_n sono gli elementi coprimi ad n, il loro numero è dato dalla funzione di Eulero.

Per esempio gli invertibili di \mathbb{Z}_8 sono le classi 1,3,5,7.

6.1 Congruenze lineari

Definizione Una congruenza lineare $ax \equiv b \mod n$ equivale all'equazione diofantea:

$$ax + ny = b$$

Se x_0 è soluzione, tutte le soluzioni della congruenza sono della forma:

Il numero di soluzioni diverse è dato da MCD(a, n).

Teorema 7 (Eulero)

Dati a, n interi positivi coprimi:

$$a^{\varphi(n)} \equiv 1 \mod n$$

Teorema 8 (Fermat)

Dato p numero primo:

$$\forall a \in \mathbb{Z} \ a^p \equiv a \mod p$$

6.2 Sistemi e Tcs

Teorema 9 (Cinese del resto)

Dato il sistema (detto cinese):

$$\begin{cases} x \equiv b_1 \mod a_1 \\ x \equiv b_2 \mod a_2 \\ \dots \\ x \equiv b_n \mod a_n \end{cases}$$

In cui:

- $\forall i, j \in [1, n] \ i \neq j \Rightarrow MCD(a_i, a_j) = 1$
- $\forall i \in [1, n] \quad 0 \le b_i < a_i$

Se il sistema è compatibile allora esiste un'unica soluzione in $\mod a_1 * ... * a_n$.

Si può trasformare un sistema di congruenze lineari in cinese a patto che:

- Ogni equazione ammetta soluzione
- Gli argomenti dei moduli siano tutti coprimi

Procedimento:

- 1. Dividere ogni elemento dell'equazione per il corrispettivo MCD tra a_i e n_i
- 2. Moltiplicare ogni riga per l'inverso di $\frac{a_i}{d_i}$

7 Omomorfismi

Definizione Una funzione tra 2 strutture algebriche dello stesso tipo $f:G\to H$ viene detta omomorfismo se:

$$\forall g, h \in G \ f(g *_G h) = f(g) *_H f(h)$$

Nel caso le strutture abbiano più operazioni deve valere per ognuna.

Definizione Un isomorfismo è un omomorfismo biunivoco.

Definizione Un endomorfismo è un omomorfismo sulla stessa struttura.

Definizione Un automorfismo è l'unione dei 2 precedenti.

Si può definire la relazione "G è isomorfo ad H" $(G \cong H)$ come:

$$G \cong H \iff \exists f: G \to H \text{ isomorfismo}$$

Il nucleo di un omomorfismo (ker()) è $\{g \in G \mid f(g) = 0_H\}$

L'immagine di un omomorfismo (im()) è $\{y\in H\ |\ \exists x\in G\ f(x)=y\}$

Se tra gruppi risulta $ker(f) \leq G$ e $im(f) \leq H$.

Teorema 10 (Isomorfismo tra gruppi ciclici)

Se esiste un isomorfismo tra due gruppi ciclici G, H e $o(g \in G)$ è finito allora $\langle g \rangle \cong \langle f(g) \rangle$.

Teorema 11 (Primo teor. d'isomorfismo)

$$f:A \to B$$
 è omomorfismo tra anelli $\Rightarrow A \setminus ker(f) \cong im(f)$

8 Spazi vettoriali

Definizione Uno spazio vettoriale su un campo K è una struttura algebrica (V, +, *) dove:

- $\bullet \ +: V \times V \to V: (u,v) \to w$
- $*: K \times V \to V : (\lambda, v) \to w$
- ullet Un elemento v di V è detto vettore
- Un elemento λ di K è detto scalare
- (V, +) è un gruppo abeliano
- $\exists x \in K \mid \forall v \in V \ x * v = v$
- $\forall s, t \in K, v \in V \quad (s*t)v = s(t*v)$
- $\forall s, t \in K, v \in V \ (s+t)v = sv + tv$
- $\forall s \in K, v, w \in V \ s(v+w) = sv + sw$

Dato V su K. W su K è un sottospazio di V se:

- $(W, +) \leq (V, +)$
- $w \in W, \lambda \in K \Rightarrow \lambda w \in W$

Definizione Una combinazione lineare dei vettori v_1, \ldots, v_n è:

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_k v_k \quad \text{con } \alpha_1, \ldots, \alpha_k \in K$$

Definizione Lo span dei vettori v_1,\dots,v_n è l'insieme di tutte le combinazioni lineari di quei vettori:

$$span(v_1, \ldots, v_n) = \{\lambda_1 v_1 + \ldots + \lambda_n v_n \mid \lambda_1, \ldots, \lambda_n \in K\}$$

Definizione I vettori $v_1, \ldots, v_n \neq 0_v$ sono un insieme di generatori per V sse:

$$\forall v \in V \ \exists \lambda_1, \dots, \lambda_n \mid v = \lambda_1 v_1 + \dots \lambda_n v_n$$

Definizione I vettori $v_1, \ldots, v_n \neq 0_v$ sono linearmente indipendenti sse:

$$\lambda_1 v_1 + \dots \lambda_n v_n = 0_v \iff \lambda_1 = \dots = \lambda_n = 0$$

Definizione Un insieme di generatori linearmente indipendenti sono detti base.

Definizione Una base è detta canonica se contiene solo 0 e 1.

Teorema 12 (Cardinalità delle basi) Tutte le basi di uno spazio vettoriale hanno la stessa cardinalità.

Definizione La dimensione di uno spazio vettoriale è pari alla cardinalità di una sua base.

Teorema 13 (Grassmann)

Dati U, V sottospazi dello stesso spazio:

$$U+V=\{u+v\mid u\in U,v\in V\}$$

$$U \cap V = \{ u \mid u \in U \land u \in V \}$$

Entrambi gli insiemi sono sottospazi, la loro dimensione è legata dalla formula:

$$dim(U+V) = dim(U) + dim(V) - dim(U \cap V)$$

Definizione Dati V,W su K. Una funzione $f:V\to W$ è detta trasformazione lineare se:

- $\forall v, v' \in V \quad f(v+v') = f(v) + f(v')$
- $\forall \lambda \in K, v \in V \quad f(\lambda v) = \lambda f(v)$

Teorema 14 (Dimensione)

Data $T: V \to W$:

$$dim(V) = dim(im(T)) + dim(ker(T))$$

Teorema 15 (Rango)

Data $f: V \to W$. Il rango di f è:

$$dim(V) - dim(ker(f))$$

9 Matrici

9.1 Definizioni

Definizione Dati $m, n \in \mathbb{N}$. Una matrice $m \times n$ a coefficienti in campo K è una griglia di m righe e n colonne i cui elementi appartengono al campo:

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix}$$

Definizione Un vettore riga è una matrice $1 \times n$, uno colonna invece $n \times 1$.

Definizione Data una matrice A. La matrice trasposta di A (A^T) ha l'*i*-esima riga pari all'*i*-esima colonna di A.

Definizione Una matrice è detta a scala se il pivot della riga i (primo elemento non nullo da sx) è più a sinistra di quello della riga i+1.

Definizione Una matrice è detta triangolare (superiore) se tutti gli elementi sotto la diagonale principale sono pari a 0.

Definizione Una matrice quadrata è detta simmetrica se $\forall i, j \in [1, n] \ a_{i,j} = a_{i,i}$.

Le operazioni elementari eseguibili sono:

- Scambio di 2 righe/colonne
- Somma di una riga/colonna ad un'altra riga/colonna
- Moltiplicazione di una riga/colonna per uno scalare

Definizione Due matrici si dicono equivalenti se usando solo operazioni elementari si può ottenere una partendo dall'altra.

Definizione La moltiplicazione tra matrici A, B è il prodotto riga per colonna, un elemento $c_{i,j}$ della nuova matrice sarà dato da:

$$\sum_{r=1}^{n} a_{i,r} b_{r,j}$$

Risulta necessario num. righe B = num. colonne A.

Definizione Il rango di una matrice è il massimo numero di righe/colonne linearmente indipendenti.

9.2 Sistemi lineari

Definizione Una sottomatrice di una matrice A è ottenuta cancellando un certo numero di righe/colonne da A.

Un sistema di equazioni lineari può essere riscritto in forma di matrice:

$$\begin{cases} a_{1_1}x_1 + a_{2_1}x_2 + \dots + a_{1_n}x_n = b_1 \\ \dots \\ a_{m_1}x_1 + a_{m_2}x_2 + \dots + a_{m_n}x_n = b_m \end{cases}$$

Si riscrive come:

$$\begin{pmatrix} a_{1_1} & \cdots & a_{1_n} \\ \vdots & \ddots & \vdots \\ a_{m_1} & \cdots & a_{m_n} \end{pmatrix} * \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \to A\bar{x} = \bar{b}$$

Si può anche rappresentare tramite la matrice completa dei coefficienti A_b :

$$\begin{pmatrix}
a_{1_1} & \cdots & a_{1_n} & b_1 \\
\vdots & \ddots & \vdots & \vdots \\
a_{m_1} & \cdots & a_{m_n} & b_n
\end{pmatrix}$$

Teorema 16 (Rouché-Capelli)

Il sistema Ax = b ammette soluzioni sse $rg(A) = rg(A_b)$.

Teorema 17 (Fondamentale per i sistemi lineari)

Dati Ax = b e la sua riduzione a scala Sx = c:

- Hanno le stesse soluzioni
- Hanno lo stesso rango
- Le colonne di S con i pivot sono quelle di A linearmente indipendenti

Riducendo la matrice completa a scala è possibile semplificare il sistema associato, per farlo si può usare l'algoritmo di Gauss:

- 1. Se la prima riga ha il primo elemento nullo, scambiala con una riga che ha il primo elemento non nullo
- 2. Per ogni riga A_i con primo elemento non nullo (eccetto la prima) moltiplica la prima riga per un coefficiente scelto in maniera tale che la somma tra la prima riga e A_i abbia il primo elemento nullo, sostituisci A_i con la somma appena ricavata
- 3. Riapplica i punti precedenti sulla sottomatrice ottenuta cancellando la prima riga e colonna

Teorema 18 (Sistemi triangolari) Un sistema triangolare Tx = c ammette un'unica soluzione sse la diagonale principale di T non ha valori nulli.

9.3 Determinante

Definizione Il determinante di una radice quadrata è un numero che ne descrive alcune proprietà.

Ci sono diversi modi per calcolarlo:

- 1 × 1, equivale all'unico elemento
- 2×2 , $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow (a*d) (b*c)$

•
$$3 \times 3$$
, $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \rightarrow aei + bfg + cdh - gec - hfa - idb$

• Sviluppo di Laplace:

$$\sum_{k=1}^n (-1)^{i+k} * a_{i,k} * det(A_{i,k}) \ \text{con} \ i \in [1,n] \ \text{e} \ M_{i,k} \ \text{sottomatrice senza riga} \ i \ \text{e} \ \text{colonna} \ k$$

• Se la matrice è triangolare allora è il prodotto della diagonale

Definizione Il polinomio caratteristico di una matrice è:

$$\det(xI_n-A)~$$
 con xI_n la matrice identità con x invece di 1

Teorema 19 (Binet)

$$det(AB) = det(A) * det(B)$$

9.4 Applicazioni lineari

Definizione L'insieme delle coordinate di un vettore rispetto alla base è l'insieme degli scalari per cui va moltiplicata la base per ottenere il vettore.

Data la trasformazione lineare $f: V \to W$ con dim(V) = n, dim(W) = m. Si può associare una matrice $m \times n$ alla funzione usando come colonne i coefficienti ottenuti applicando la funzione sui vettori della base canonica di V.

N.B. La matrice è unica per ogni coppia di basi scelte.

Se la funzione dà:

•
$$f \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

•
$$f \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

•
$$f \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

La matrice sarà
$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, quindi $f: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x+y \\ z \end{pmatrix}$.

9.4.1 Diagonalizzazione

Definizione Dato un endomorfismo sullo spazio V. Un vettore $v \neq 0_V$ è detto autovettore associato all'autovalore $\lambda \in K$ se $f(v) = \lambda * v$, risulta che anche ogni vettore $\neq 0_V$ multiplo di v è un autovettore associato a λ .

Definizione L'autospazio relativo di un autovalore è l'insieme di autovettori con esso come autovalore, forma uno sottospazio.

Definizione La molteplicità algebrica di un autovalore è il numero di volte che esso è radice del polinomio caratteristico.

Definizione La molteplicità geometrica di un autovalore è la dimensione del suo autospazio relativo.

Definizione Dato un endomorfismo sullo spazio V. f è diagonalizzabile se esiste una base di V formata da autovettori.