Travelling Salesperson Problem

Ádám Fischer 22203265 online presentation

Data and Computational Science MSc

2023. 08. 04.

Introduction

- The problem statement starts with a simple question: given a list of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
- Alternative phrasing: what is the shortest Hamilton cycle of a graph?

P vs. NP

- The question can be viewed as a combinatorial optimization problem
- Why not list all possible routes and choose the shortest one?
 - TSP is a NP-hard problem
 - ullet Since it is suspected (but never been proven) that NP ${\scriptstyle \neq}$ P there is no algorithm that could solve a NP-hard problem in polynomial time
 - As the number of cities increases the problem becomes practically unsolvable just by checking each possible route

Applications

- Many practical applications mainly in logistics
- Appears in apparently remote areas such as DNA sequencing, manufacture of microchips

Proposed methods

- Simulated Annealing
- Ant Colony Optimization

Simulated Annealing

- Optimize a cost function E(x) (distance traveled)
- Inspired by ideas from Physics: we need to view the optimization of E(x) as the process of "cooling down" a physical system to zero temperature
- Simulated annealing uses a probabilistic approach to find the solution x_* , closely resembles the Metropolis–Hasting algorithm ¹

¹Metropolis; Equation of state calculations by fast computing machines (1953)

Simulated Annealing

- We start with an initial (guess) state x_0 for the solution, and with an initial temperature T_0
- In every iteration we propose a new state for the solution, and if it's a better solution than the previous best guess, we accept it. If it's worse, we accept the propesed state with a given probability.
- As the systems "cools down" we will accept worse proposals for the solution with smaller and smaller probabilities
- This way the algorithm is able to escape from local optima and can find global optima

Pseudo code for Simulated Annealing

Algorithm 1 Simulated Annealing

Set initial state x_0 and $x = x_0$

Set initial temperature T_0

Set a cooling schedule T_k (somehow), that defines the number of iterations at each temperature

while stopping criterion is not met do

```
propose new state x_k
```

calculate
$$\Delta E = E(x_k) - E(x)$$

if $\Delta E < 0$ then

accept the new state $x = x_k$

else

accept the new state $x = x_k$ with probability $e^{-\Delta E/T_k}$

end if

end while

Results I.

Results II.

Results III.

Ant Colony Optimization

- ACO method is inspired by the behavior of ants
- In real life, ants move randomly and leave pheromones as they go. Other ants are more likely to choose paths with more pheromones
- The pheromone left behind evaporates over time, so the pheromone density will be lower on paths that take more time for the ants to travel, compared to shorter paths ⇒ longer paths will be less likely to be chosen

Figure: Pheromone trail is formed along the shorter path $^{\rm 2}$

²Alok Bajpai, Raghav Yadav; Ant Colony Optimization For The Traveling Salesman Problem (2015)

Ant Colony Optimization

• Initially we place some ants on some nodes. Ant number k at iteration t will traverse from node i to node j with a probability of 2

$$p_{ij}^k(t) = \begin{cases} \frac{[\tau_{ij}(t)]^{\alpha}[\eta_{ij}(t)]^{\beta}}{\sum_{k \in \mathit{allowed}} [\tau_{ij}(t)]^{\alpha}[\eta_{ij}(t)]^{\beta}} & \text{if j } \in \mathit{allowed} \\ 0 & \text{otherwise} \end{cases}$$

- where η_{ij} is the visibility of an edge (inversely proportional to the distence between node i and j)
- \bullet au_{ij} is the pheromone concentration which is updated at the end of every iteration
- ullet α and β are hyperparameters to be set

 $^{^3}$ Raghavendra; Solving Traveling Salesmen Problem using Ant Colony Optimization Algorithm (2015)

ACO flowchart

Results IV.

Results V.

Model comparison

• Hyperparameters set by hand (experince, recommendations in literature)

- Mean reduction with SA: 61.27%
- Standard deviation of reduction with SA: 4.88%
- Mean reduction with ACO: 60.5%
- Standard deviation of reduction with ACO: 5.9%

Thank you for your attention!