Knowledge Discovery & Data Mining

— Data Exploration: Data Visualization—

Instructor: Yong Zhuang

yong.zhuang@gvsu.edu

Outline

- Data Visualization
 - Quantile-Quantile (Q-Q) plot
 - Histograms
 - Pie chart
 - Scatter plots

Anscombe's Quartet

 The following four data sets comprise the Anscombe's Quartet; all four sets of data have identical simple summary statistics.

	Dataset I		Dataset II		Dataset III		Dataset IV	
	Х	у	Х	У	Х	У	Х	У
	10	8.04	10	9.14	10	7.46	8	6.58
	8	6.95	8	8.14	8	6.77	8	5.76
	13	7.58	13	8.74	13	12.74	8	7.71
	9	8.81	9	8.77	9	7.11	8	8.84
	11	8.33	11	9.26	11	7.81	8	8.47
	14	9.96	14	8.1	14	8.84	8	7.04
221 33	6	7.24	6	6.13	6	6.08	8	5.25
-74.11	4	4.26	4	3.1	4	5.39	19	12.5
	12	10.84	12	9.13	12	8.15	8	5.56
	7	4.82	7	7.26	7	6.42	8	7.91
	5	5.68	5	4.74	5	5.73	8	6.89
Sum:	99.00	82.51	99.00	82.51	99.00	82.51	99.00	82.51
Avg:	9.00	7.50	9.00	7.50	9.00	7.50	9.00	7.50
Std:	3.32	2.03	3.32	2.03	3.32	2.03	3.32	2.03

Anscombe's Quartet

 Summary statistics clearly don't tell the story of how they differ.

A picture can be worth a thousand words.

More Visualization Motivation

 If I tell you that the average score for a Homework is: 7.64/15 = 50.9%,
what does that suggest?

And what does this graph suggest?

Types of Visualizations

- What do you want your visualization to show about your data?
 - Distribution: how a variable or variables in the dataset distribute over a range of possible values.
 - Relationship: how the values of multiple variables in the dataset relate
 - Composition: how the dataset breaks down into subgroups
 - Comparison: how trends in multiple variable or datasets compare

Quantile-Quantile plot: or q-q plot, graphs the quantiles of one univariate distribution against the corresponding quantiles of another.

Suppose that we have two sets of observations for the attribute or variable *unit price*, taken from two different branch locations. Let x_1, \ldots, x_N be the data from the first branch, and y_1, \ldots, y_M be the data from the second, where each data set is sorted in ascending order. If M = N (i.e., the number of points in each set is the same), then we simply plot y_i against x_i , where y_i and x_i are both (i - 0.5)/N quantiles of their respective data sets. If M < N (i.e., the second branch has fewer observations than the first), there can be only M points on the q-q plot. Here, y_i is the (i - 0.5)/M quantile of the y data, which is plotted against the (i - 0.5)/M quantile of the x data. This computation typically involves interpolation.

Quantile-Quantile plot: or q-q plot, graphs the quantiles of one univariate distribution against the corresponding quantiles of another.

Suppose that we have two sets of observations for the attribute or variable *unit price*, taken from two different branch locations. Let x_1, \ldots, x_N be the data from the first branch, and y_1, \ldots, y_M be the data from the second, where each data set is sorted in ascending order. If M = N (i.e., the number of points in each set is the same), then we simply plot y_i against x_i , where y_i and x_i are both (i - 0.5)/N quantiles of their respective data sets. If M < N (i.e., the second branch has fewer observations than the first), there can be only M points on the q-q plot. Here, y_i is the (i - 0.5)/M quantile of the y data, which is plotted against the (i - 0.5)/M quantile of the x data. This computation typically involves interpolation.

Why is the subtraction of 0.5 needed when calculating the quantiles?

Quantile-Quantile plot: or q-q plot, graphs the quantiles of one univariate distribution against the corresponding quantiles of another.

Suppose that we have two sets of observations for the attribute or variable *unit price*, taken from two different branch locations. Let x_1, \ldots, x_N be the data from the first branch, and y_1, \ldots, y_M be the data from the second, where each data set is sorted in ascending order. If M = N (i.e., the number of points in each set is the same), then we simply plot y_i against x_i , where y_i and x_i are both (i - 0.5)/N quantiles of their respective data sets. If M < N (i.e., the second branch has fewer observations than the first), there can be only M points on the q-q plot. Here, y_i is the (i - 0.5)/M quantile of the y data, which is plotted against the (i - 0.5)/M quantile of the x data. This computation typically involves interpolation.

Why is the subtraction of 0.5 needed when calculating the quantiles?

center the data

Example. The following figure shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.

Example. The following figure shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.

Example. The following figure shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. **Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.**

Histograms to visualize distribution

 A histogram is a way to visualize how 1- dimensional data is distributed across certain values.

Note: Trends in histograms are sensitive to number of bins.

Pie chart for a categorical variable

A pie chart is a way to visualize the static composition (aka, distribution) of a variable

(or single group).

Scatter plots to visualize relationships

- A scatter plot is a way to visualize the relationship between two different attributes of multi-dimensional data.
 - Provides a first look at bivariate data to see clusters of points, outliers, or to explore the possibility of correlation relationships

• Each pair of values is treated as a pair of coordinates and plotted as points in the

plane

Positively and Negatively Correlated Data

Summary

- Data Visualization
 - Quantile-Quantile (Q-Q) plot
 - Histograms
 - Pie chart
 - Scatter plots