

Machinery Systems Group

MSD-50-TR-2002/15

January 2002

TECHNICAL REPORT

Structural Analysis of Alvin Variable Ballast Piping

Prepared by
Gordon D. Mayers, Jr.
Anteon Corporation, Machinery Systems Group

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Sulte 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington. DC 205503.

PLEASE DO NO	T RETURN YOU	JR FORM TO THI	E ABOVE ADDRESS.					
1. REPORT DATE (DD-MM-YYYY) 2. REPORT DATE					3. DATES COVERED (From - To)			
19 June 2002		FINAL			22 Oct 2001 - 31 Jan 2002			
4. TITLE AND S	I. TITLE AND SUBTITLE 5a. CONTRACT NUMBER							
Structural Analy	sis of Alvin VB Pipi	ing			N/A			
					5b. GRA	NT NUMBER		
					N00014	-02-1-0108		
					5c. PRO	GRAM ELEMENT NUMBER		
					N/A			
				·	Ed DDO	JECT NUMBER		
6. AUTHOR(S)					130108			
Robert S. Brown	n							
						NUMBER		
					N/A			
					5f. WOR	K UNIT NUMBER		
					N/A			
7. PERFORMIN	G ORGANIZATIO	ON NAME(S) AND	ADDRESS(ES)			8. PERFORMING ORGANIZATION		
	ceaographic Institu		, ,			REPORT NUMBER		
Woods Hole, M	Massachusetts 0254	4 3				Non Assigned		
			- NO - W					
		AGENCY NAME	(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
Office of Naval Code 321 RF	Research							
800 North Quni	cv Street				11. SPONSORING/MONITORING			
Arlington, VA 2					AGENCY REPORT NUMBER			
rumgion, vree								
12. DISTRIBUT	ION AVAILABILI	TY STATEMENT						
Approved	d for public rel	ease; distribut	tion is unlimited					
13. SUPPLEME	NTARY NOTES							
13. SOFFEEINE	MIAKINOILO							
14. ABSTRACT								
						conducted in accordance with		
NAVSE	A SS800-S	G-MAN-01	0/P-9290 Rev. A	(9290). T	his anal	lysis evaluated all the stress		
cataego	ories listed i	n 9290 Sec	tion B.10.2. A f	atique an	alysis in	accordance with ASME Boiler		
and Pre	essure Vess	sel Code, So	ection III, Divisio	n 1, consi	stant wi	th the structural design basis of		
			o performed.					
		•	•					
		·						
15. SUBJECT 1								
Alvin, b	allast							
16 SECURITY	CLASSIFICATIO	N OF:	17. LIMITATION OF	18. NUMBER	19a. NAME	OF RESPONSIBLE PERSON		
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	Barrie B.			
UC	UC	UC	SAR		19b. TELEP	ONE NUMBER (Include area code)		
	50		JAN.	58	508-289-	2407		

FINAL PROJECT REPORT N00014-02-1-0108

Structural Analysis of Alvin VB Piping

For the period: October 22, 2001 – January 31, 2002

As a result of *Alvin's* post overhaul NAVSEA survey an analysis of newly installed variable ballast system piping was required to determine if the piping met the requirements of NAVSEA P-9290. Anteon Corporation was contracted to do the analysis and completed the project in January 2002. The analyses concluded that all stresses were below their applicable allowable values. The fatigue analysis established a design fatigue life of 30,000 cycles. Based on average usage this would provide a design life of 200 years for the new variable ballast piping. The Anteon report was submitted to NAVSEA, reviewed and accepted.

Abstract

A structural analysis of the Alvin variable ballast system was conducted in accordance with NAVSEA SS800-AG-MAN-010/P-9290 Rev. A (9290). The analysis determined stresses for all stress categories listed in Section B10.2.1 of 9290. Fatigue analysis performed in accordance with the ASME Boiler and Pressure Vessel Code, Section III, Division 1, which is consistent with the structural design basis of Section B.10.2 of 9290, established a design fatigue life of 30,000 cycles. Based on an average of 150 cycles per year, the design life for fatigue of the variable ballast system is 200 years.

Table of Contents

Abstractüi
Table of Contentsv
Administrative Informationvi
Introduction1
Background1
Approach1
Structural Adequacy Calculations3
Review Information3
Piping Flexibility Analysis6
Results7
Conclusions9
References10
List of Figures
Figure 1. Beam Model of Pressure Lower Sphere Mounting Brackets5
Figure 2. Lower Piping Flexibility Analysis Model6
Figure 3. Upper Piping Flexibility Analysis Model6
Figure 4. Fatigue Curve for Grade 2 Titanium Including Effect of Hold Time8
List of Tables
Table 1. Stress Indices
Table 2. Analyzed Loads
Table 3 Calculated Stresses

List of Appendix

Appendix I.	Deflection of Alvin Variable Ballast Sphere	11
Appendix 2.	Beam Model of Lower Sphere Mounting Brackets	13
Appendix 3.	Lower Variable Ballast Piping for Alvin on Even Keel	19
Appendix 4.	Upper Variable Ballast Piping for Alvin on Even Keel	.31
Appendix 5.	Maximum Primary Loads	.45
Appendix 6.	Maximum Primary Plus Secondary Load Range	.47
Appendix 7.	Stress Analysis of Alvin Variable Ballast Piping	.49
	External Pressure Analysis of Alvin Variable Ballast Piping	

Administrative Information

This study was performed under Purchase Order No. S108770. The work was sponsored by the Woods Hole Oceanographic Institution, Woods Hole, MA (Mr. Robert Brown). The work described in this report was performed at the Anteon Corporation, Machinery Systems Group facility in Annapolis, MD.

Introduction

The Machinery Systems Group of Anteon Corporation was tasked by Woods Hole Oceanographic Institution to conduct a fatigue analysis of the variable ballast system on the submersible Alvin.

Background

Chronic problems with the sealing of mechanical joints in the variable ballast piping on the submersible Alvin occurred due to the high strength of the original 3Al-2.5V-Titanium tubing. Based on recommendations from the fitting supplier the tubing material was changed to Grade 2 Titanium tubing in accordance ASTM B338. Since the Grade 2 Titanium is weaker than 3Al-2.5V-Titanium, a structural analysis is required to verify the structural adequacy of the weaker material.

Approach

The structural design basis for deep submersibles is established by NAVSEA SS800-AG-MAN-010/P-9290 Rev. A (9290)¹. This design basis provides for the following categories of stress:

- Primary stress. A primary stress is one, which is required to produce a state of
 equilibrium with the applied loads. Primary stresses are not self-limiting.
 Internal pressure and weight are two examples of loads causing primary stresses.
 Primary stresses are further classified as general membrane stress, local
 membrane stress and bending stress.
- Secondary stress. A stress developed by constraint of adjacent parts of the component and not required to produce equilibrium with applied loads.
 Secondary stresses are self-limiting. Submergence anchor movements, for example, cause secondary stresses in piping.
- Peak stress. The maximum combined stress at any point. The peak stress will be the maximum combined primary and secondary stresses suitably intensified for local stress concentrations. Peak stresses typically do not cause noticeable distortion and are primarily a concern for fatigue life or brittle fracture.

Specific limits on stresses of these categories are provided in 9290 as multiples of the allowable operating stress, S_m . For nonferrous materials, S_m is defined in 9290 as the lesser of two-thirds of the minimum yield strength or one-forth of the minimum specified tensile strength. The stresses and their limiting value are listed below. Of the stresses listed, the first three are primary stresses, and the fourth is the summation of primary plus secondary stresses.

- General membrane stress should not exceed S_m.
- Local membrane stress must not exceed 1.5 S_m.
- The highest value of the combination of membrane stress and primary bending stress must not exceed 1.5 S_m.
- The highest valued combination of primary and secondary stresses must not exceed 3 S_m .
- Peak stresses, including the effects of local stress concentrations, must be limited by fatigue considerations.

Calculation of the above listed stresses requires the use of stress intensification factors. However, 9290 does not provide guidance for establishing stress intensification factors for piping except in section B.2.1, which states: "Stress concentration factors used in the calculation of peak stresses shall be based on experimental data on similar structures." Obviously experiments to determine stress intensification factors are beyond the scope of this task. Therefore, existing recognized methodology must be used. Methodologies closely resembling that of 9290 are provided in the ASME Boiler and Pressure Vessel (B&PV) Code Section III, and ASME B&PV Code Section VIII, Division 2. Of the two, ASME B&PV Code Section III is the most suitable for the analysis of piping and is used for the analysis of the Alvin variable ballast system.

The theoretical basis of the ASME B&PV Code Section III methodology is described in "Criteria of the ASME Boiler and Pressure Vessel Code for Design by Analysis in Section III and VIII, Division 2", hereafter referred to as the "ASME Criteria". The ASME Criteria lists the stress categories that are evaluated as primary stress, secondary stress and peak stress. Table 1 of the ASME Criteria lists the stress limits as multiples of the design stress intensity values, S_m . The multiples in the ASME Criteria are identical to the multiples used in 9290. The ASME S_m values differ from 9290 in that one-third of the minimum specified tensile strength is used for nonferrous materials instead of the one-forth as required by 9290. The Alvin variable ballast system analysis uses the 9290 S_m values.

The fatigue analysis described in the ASME Criteria is consistent with 9290 requirements. However, design fatigue curves for Grade 2 Titanium developed by Czyryca³ are used in the Alvin variable ballast system fatigue analysis because the ASME code does not have fatigue curves for Titanium. Czyryca's curves are consistent with the ASME Criteria, and the correction for hold time included in the curves is considered necessary to account for Grade 2 Titanium's susceptibility to creep and stress relaxation at room temperature. Stress indices used in the ASME Section III analyses have been verified by experimental testing as required in 9290. Although numerous investigators have conducted experimental verification, the paper by Rodabaugh and Moore⁴ is cited as an example of experimental verification for girth butt welds, butt welding elbows, tees, and girth fillet welds. Unfortunately, the Alvin variable ballast system is fabricated using clamped connections, which are not addressed in ASME Section III. However, Markl⁵ showed clamp connection on Carbon steel piping have the same fatigue resistance as girth butt welds. Therefore, stress indices for girth butt welds are used in the Alvin variable ballast system analyses.

External pressure loads are evaluated separately from the primary loads discussed above. Two methods are used. One is contained in ASME B&PV Code Section III NB-3133.3, and the other is work conducted by Kaldor⁶. The SUBSAFE Design Review Procedures Manual⁷ invokes Kaldor's work for SUBSAFE piping on operational submarines with the caveat that the design pressure to be used is the design pressure established by Kaldor, divided by 1.5. The factors of safety on collapse of the two methods are roughly 3 for the ASME method and 1.5 for the SUBSAFE method.

Structural Adequacy Calculations

Structural adequacy calculations are performed using loads calculated by piping flexibility analysis. Although 9290 does not require flexibility analysis of ½-inch diameter tubing, it does require the tubing to be arranged such that the relative deflections of anchors and restraints do not cause excessive stresses. Because the piping run connecting to the bottom of the two lower spheres of the Alvin variable ballast system appears relatively stiff, flexibility analysis calculations are performed to verify the acceptability of the stresses of the complete system.

Review Information

The following information is provided, in accordance with 9290, to permit easy review of the calculations.

- Theoretical basis of calculations The theoretical basis of calculations is the ASME Criteria², which is consistent with 9290 and is addressed at length in the above approach discussion.
- Method of performing calculations Flexibility analysis calculations are
 performed using the AUTOPIPE computer program, a NAVSEA approved
 program. Flexibility factors in accordance with ASME B31.1 are used as required
 by Section B.10.1 of 9290. Moments thus calculated are used to calculate stresses
 for all required categories of stresses using the methodology of ASME B&PV
 Section III.
- Sign Convention The sign convention has the X-axis forward, the Y-axis vertically upward, and the Z-axis to starboard.
- Simplifying assumptions The following simplifying assumptions were used:
 - O All temperature changes are gradual and represent uniform thermal expansion.
 - No differential thermal expansion exists between the frame, piping and pressure spheres because the frame, piping and pressure spheres. All of the stated items are fabricated from Titanium, have the same coefficient of thermal expansion, have no sources of heating or cooling, and are fully immersed in seawater.

- Assumed material and dimensional Data The variable ballast tubing is in accordance with ASTM B338 and is Grade 2 Titanium with an outside diameter of 0.5 inches and a nominal wall thickness of .065 inches. Although ASTM B338 allows a ± 10% variation in wall thickness, nominal wall thickness is used for calculation of all stress categories except general membrane stress.
- Fatigue reduction factors No stress reduction factors are used because the ASME B&PV Section III methodology uses fatigue curves for the actual material rather than general fatigue reduction factors that are applied to all materials. A fatigue curve for Grade 2 titanium developed by Czyryca³ that includes the effects of creep and stress relaxation at room temperature is used. Consistent with the ASME Criteria, the fatigue curve is corrected for the maximum effect of mean stress.
- Stress intensification factors Stress indices from the ASME B&PV Code
 Section III are used. Indices for a girth butt welds are used for the Swagelok
 connections because no stress indices exist for Swagelok connections. Testing
 has shown clamped connections have similar fatigue strength to girth butt welds.
 The Code equation for C₂ for girth butt welds in pipes with wall thickness less
 than 0.237 inches is:

$$C_2 = 1.0 + \frac{0.094}{t}$$

As noted by Rodabaugh⁸, the purpose of the 0.094/t-term is to correct for weld reinforcement and mismatch. The correction term may be neglected in the Alvin variable ballast system analysis for the following two reasons.

- o Markl⁵ used pipe with 0.237 inches thickness to show that the fatigue strength of a clamped connection equivalent to a girth butt weld. Test data for pipe with 0.237 inches thickness would only have a minor influence due to weld reinforcement and mismatch.
- Swagelok connections have no weld reinforcement and mismatch.

Stress indices used in the Alvin variable ballast system analysis are tabulated below.

Table 1. Stress Indices

	Pre	ssure Loa	ding	Moment loading		
Piping Product or Joint	B_1	C_1	K ₁	B ₂	C ₂	K ₂
Straight pipe remote from discontinuities	0.5	1.0	1.0	1.0	1.0	1.0
Swagelok terminations	0.5	1.0	1.2	1.5	1.0	1.8
Bends	0.5	1.06	1.0	1.0	1.5	1.0

 Allowable stress range – The allowable operating stress, S_m, for nonferrous materials, are the lesser of two-thirds of the minimum yield strength or one-forth of the minimum specified tensile strength. For the minimum yield strength of 40 ksi and minimum specified tensile strength of 50 ksi listed in ASTM B338, the design stress intensity value is 12,500 psi. Limits on stresses of the various categories are shown below.

- o General membrane stress should not exceed 12,500 psi.
- o Local membrane stress must not exceed 18,750 psi.
- o The highest value of the combination of membrane stress and primary bending stress must not exceed 18,750 psi.
- o The highest valued combination of primary and secondary stresses must not exceed 37,500 psi.
- Deflection of anchors and support points Anchor movements for temperature change are zero, based on the assumption that no differential thermal expansion exists between the frame, piping and pressure spheres. However, submergence pressure results in deformation of the variable ballast spheres. Deformation of the four upper spheres does not cause piping anchor deflections because the upper spheres are mounted to the frame at the piping attachment point, only. However, deformation of the two lower spheres does result in anchor deflections. Deformations were calculated by assuming the spheres to be of uniform thickness. Appendix 1 contains the calculations. The uniform thickness assumption is valid except for thickening at the piping connections, which is deemed to have a minimal effect on deformations. Deformations of the spheres are applied to an AUTOPIPE beam model of the supporting brackets shown in figure 1. The sphere is included as a stiff pipe with thermal expansion equal to the sphere's pressure deformation. Only the starboard sphere and the starboard half of the supporting brackets are modeled. The port half is replaced by symmetric boundary conditions at the centerline. Except of the reflected port side, the remainder of the frame, not included in the model, is considered as rigid. Appendix 2 provides the output of the AUTOPIPE analysis.

Figure 1. Beam Model of Pressure Lower Sphere Mounting Brackets

Piping Flexibility Analysis

Piping flexibility analysis models were prepared for the upper and lower piping sections of the variable ballast system. Figures 2 and 3 show the idealizations, which were used to calculate responses due to weight and submergence anchor deflections.

Figure 2. Lower Piping Flexibility Analysis Model

Figure 3. Upper Piping Flexibility Analysis Model

Although no dynamic motion criteria were provided for Alvin, responses were calculated for 30° pitch and roll for completeness. The pitch and roll responses were calculated by rotating each of the above two models to the various pitch and roll orientations. Although this method neglects dynamic loads, dynamic loads are small and typically are not considered in pitch and roll analyses of operational submarine piping. Each of the various orientations was evaluated both above water and submerged. Buoyancy was included in all submergence cases. For the upper run only, the pipe was considered as empty in all submergence cases. Table 2, below, tabulates the load conditions analyzed.

Table 2. Analyzed Loads

Loading	Ship Attitude
Submergence anchor deformations	N/A
Weight	Even keel
Weight	30° Pitch up
Weight	30° Pitch down
Weight	30° Roll port
Weight	30° Roll starboard
Weight plus buoyancy	Even keel
Weight plus buoyancy	30° Pitch up
Weight plus buoyancy	30° Pitch down
Weight plus buoyancy	30° Roll port
Weight plus buoyancy	30° Roll starboard

Appendices 3 and 4 provide listings of the AUTOPIPE output for submergence anchor movements and above water, even keel gravity loads. The appendices include listings of B31.1 stresses for information, however; only the calculated moments are used for the structural adequacy evaluation. Appendix 5 lists the calculated primary bending moments for the most highly loaded straight pipe and the most highly loaded bend. Load ranges were determined for all possible combinations of the analyzed loads and the worst-case resultant moments used in the structural adequacy evaluation. Appendix 6 shows the primary plus secondary bending moment ranges for the most highly loaded straight pipe and the most highly loaded bend.

Results

Structural adequacy calculations are included in Appendix 7 and are summarized in Table 3. The moments used in the calculations are the maximum for all load combinations. Since no cyclic design history exists, cumulative damage calculations are not provided, and pitch and roll loads are combined with submergence loads where they have the most impact on fatigue life. The impact of pitch and roll loads taken separately is insignificant. The largest peak stress for pitch or roll load cycles is only 810 psi compared to 42,881 psi for submergence only.

Table 3. Calculated Stresses

Stress Category	Calculated Stress	Limiting Value
General membrane stress	10274 psi	12,500 psi
Local membrane stress	10274 psi	18,750 psi
Membrane stress plus primary bending stress	6495 psi	18,750 psi
Primary plus secondary stresses	36526 psi	37,500 psi
Peak stress	43047 psi	N/A

The tabulated value for the primary plus secondary stress is 97% of the allowable value. The high value validates the need for conducting the flexibility analysis. The calculated peak stress is divided by 2 to obtain the stress amplitude, and the stress amplitude is entered on the ordinate of Czyryca's fatigue curve³, reproduced below. Reading from the lower curve, the design fatigue life is 30,000 cycles.

Figure 4. Fatigue Curve for Grade 2 Titanium Including Effect of Hold Time

External pressure calculations are included in Appendix 8 and show the variable ballast tubing to fail the ASME method but pass the SUBSAFE method. The disparity stems from the factors of safety included in the calculations. The factor of safety on collapse for the ASME method is roughly 3 and 1.5 for the SUBSAFE method. Since the tubing passes the SUBSAFE method, which is used for operational submarines, and since samples of the tubing have been tested for external pressure, its external pressure performance is considered satisfactory.

Conclusions

The analyses described herein determined stresses for all stress categories listed in Section B10.2.1 of 9290. All stresses were below their applicable allowable values. Fatigue analysis performed in accordance with the ASME Boiler and Pressure Vessel Code, Section III, Division 1, which is consistent with the structural design basis of Section B.10.2 of 9290, established a design fatigue life of 30,000 cycles. Based on an average of 150 cycles per year, the design life of the Titanium tube in the variable ballast system is 200 years.

References

- 1. System Certification Procedures and Criteria Manual for Deep Submergence Systems, NAVSEA SS800-AG-MAN-010/P-9290, Rev. A
- 2. "Criteria of the ASME Boiler and Pressure Vessel Code for Design by Analysis in Section III and VIII, Division 2", ASME
- Czyryca, E.J., "The Effect of Hold-Time on the Low-Cycle Fatigue Properties of Commercially Pure Titanium", David Taylor Research Center Report No. DTRC/SME-88/77, Dec 1988
- Rodabaugh, E.C. and Moore, S.E., "Phase Report No. 15-10 on Comparisons of Test Data with Code Methods for Fatigue Evaluation", Oak Ridge National Laboratory Report No. ORNL-TM-3520, Nov 1971
- 5. Markl, A.R.C., "Fatigue Tests of Piping Components", ASME Transactions 1952
- 6. Kaldor, L.M., "Analysis of Externally Pressurized Piping Systems, Phase One, Part A", DTNSRDC Report DTNSRDC/PAS-80/3 dated Mar 80
- 7. Submarine Safety (SUBSAFE) Design Review Procedure Manual (NOFORN), NAVSEA 0941- 041-3010 Change 7
- Rodabaugh, E.C. and Moore, S.E., "Stress Indices for Girth Welded Joints, Including Radial Weld Shrinkage, Mismatch and Tapered-Wall Thickness", Oak Ridge National Laboratory Report No. ORNL/Sub-2913/9 (NUREG/CD-0371), Sep 1978

Appendix 1. Deflection of Alvin Variable Ballast Sphere

$$OD := 23.78 \cdot in$$

$$E := 15.5 \cdot 10^6 \cdot psi$$
 $v := .32$

$$R := \frac{(OD - t)}{2}$$
 $R = 11.695 in$

Radial Displacement - Roark 3rd Edition Table XIII Case No. 2

$$s := p \cdot \frac{R}{2 \cdot t}$$
 $s = -7.234 \times 10^4 \text{ psi}$

$$d:=R\cdot\frac{s}{E}\cdot\left(1-\nu\right)$$

$$d = -0.037 in$$

Appendix 2. Beam Model of Lower Sphere Mounting Brackets

SPR_FR 01/25/2002	 SPHERE	FRAME	REBIS AutoPIPE+6.00 MODEL PAGE 1

Pipe Stress Analysis and Design Program

Version: 6.00.16

Edition: Plus-Win

Developed and Maintained by

REBIS Industrial Workgroup Software 1600 Riviera Ave., Suite 300 Walnut Creek, CA 94596 SPR_FR LOWER SPHERE FRAME REBIS
01/25/2002 AutoPIPE+6.00 MODEL PAGE 2

SYSTEM NAME : SPR_FR

PROJECT ID : LOWER SPHERE FRAME

PREPARED BY : G. MAYERS

CHECKED BY :

PIPING CODE : B31.1

VERTICAL AXIS : Y

AMBIENT TEMPERATURE : 70.0 deg F

COMPONENT LIBRARY : AUTOPIPE
MATERIAL LIBRARY : AUTOB311

MODEL REVISION NUMBER : 11

SPR_FR 01/25/2002	LOWER	SPHERE	FRAME	REBIS AutoPIPE+6.00	MODEL	PAGE	3

POINT DATA LISTING

POINT NAME		O	FFSETS (ft Y) Z	DESCRIPTION
*** S A00 A01	EGMENT Run Run	A 0 -1.18		0	PIPE ID = 1

Total weight of empty pipes : 0 lb

COMPONENT DATA LISTING

	COORE			DESCRIPTION
*** SE	GMENT A			
A00	0.00	0.00	0.00	
A01	-1.18	1.69	0.00	

Number of points in the system : 2

PIPE DATA LISTING

Pipe ID/	Nom/	O.D.		Thickn	ess (inch) ·		Spec	Weig!	ht (lb/1	Et)	ZL/
Material	Sch	inch	W.Th.	Corr	Mill	Insu	Ling	Grav	Pipe	Other	Total	ZC
1	4	4.500	2.240	0	0.28	0	0	0	0	0	0	
NS	NS											1.00

MATERIAL DATA LISTING

Material		Density	Pois.	Temper.	Mod	Expans.		
Name	Pipe ID	lb/cu.ft	Ratio	deg F	Axial	Ноор	Shear	in/100ft
NS	1	0.0	0.30	70.0	3000.000	3000.000	1000.000	
				40.1	3000.000			-3.5880

MATERIAL ALLOWABLE DATA LISTING

Material			Temp	er.	Allow.
Name	Pipe	ID	deg	F	psi
NS	1		-	70.0	12500.0
			4	10.1	12500.0

SPR_FR LOWER SPHERE FRAME REBIS
01/25/2002 AutoPIPE+6.00 MODEL PAGE 4

FRAME POINT DATA LISTING

POINT NAME		-COORDI	NATE(ft Y) Z		DESCRIP	TION				
A00		0.00	0.00	0.00							
F01		0.00	0.00	1.15	ANCHOR		movemen	ts : Non	e		
F00		0.00	0.00	,-1.02	ANCHOR	<pre>X= FREE Rotatio X= RIGI</pre>	Y= nal stif D Y=	tiffness FREE fness ft RIGID ts : Non	Z= -1b/ Z=	RIGI deg	
A01		1.18	1.69	0.00							
F02	-	0.94	1.86	0.00	ANCHOR	-	movemen	ts : Non	e		
			(Lena	BEAM 1	DATA LI		ft \				
BEAM		POINT	(20119	SECTION				RIGID	R	ELEA	SE
ID		NAME	LENGTH	MATERIAL	ID	TYPE	ANGLE	END	Ax	Y-Y	Z-Z
M1	From	A00	1.15	LWR		NS	125 00	0.00		 N	
1.11	То	F01	1.15	TIL		N3	123.00	0.00			N
M2	From	F00	1.02	LWR		NS	125.00	0.00	N	N	N
	To	A00		TIL				0.00	N	N	N
мз	From		0.29			NS	0.00	0.00	N	N	N
	To	F02		SS				0.00	N	N	N

Section ID/ Section Type	Axial	Area(sq.i Y-Shear	n) Z-Shear	Inert Torsion	ia (in**4 Y-Y Bend) Z-Z Bend
L2.5X2.5X3/16 L	0.90	0.31	0.31	0.0	0.6	0.6
L4X3X1/4 L	1.69	0.67	0.50	0.0	1.4	2.8
LWR NS	0.80	0.00	0.00	0.0	0.6	1.2
₩6X9 ₩	2.68	1.00	1.13	0.0	2.2	16.4
UPR NS	1.00	0.00	0.00	0.0	1.3	0.0

SPR_FR 01/25/2002	 SPHERE	FRAME	REBIS AutoPIPE+6.00 MODEL	PAGE	5

BEAM MATERIAL LISTING

MATERIAL ID	Elastic modulus E6 psi	Poissons ratio	Yield Stress psi	Density lb/cu.ft	Expansion E-6 /F	Ultimate stress psi
A36	29.000	0.250	36000	490.00	6.50000	58000
TIL	15.500	0.320	40000	0.00	0.00000	50000
SS	28.300	0.300	40000	0.00	0.00000	50000

TEMPERATURE AND PRESSURE DATA

	C	ASE	1	C	ASE	2	C	A S E	3
POINT	PRESS.	TEMPER	EXPAN.	PRESS.	TEMPER	EXPAN.	PRESS.	TEMPER	EXPAN.
NAME	psi	deg F	in/100ft	psi	deg F	in/100ft	psi	deg F	in/100ft
	•	_							

*** SEGMENT A

A00 0 40.10 -3.588 A01 0 40.10 -3.588

HOT MODULUS (E6 psi)

POINT

NAME CASE 1 CASE 2 CASE 3

*** SEGMENT A

A00 3000.000* A01 3000.000*

* Non-standard material

						ES (psi			
_	C	ASE 1		C	ASE 2	2	C	ASE	3
POINT		NOT	NOT		NOT	NOT		NOT	TON
NAME A	LLOW	USED	USED	ALLOW	USED	USED	ALLOW	USED	USED

*** SEGMENT A A00 12500* A01 12500*

- < User-defined code allowable
 * Non-code material</pre>

SPR_FR LOWER SPHERE FRAME REBIS
01/25/2002 AutoPIPE+6.00 RESULT PAGE 1

DISPLACEMENTS

Point name	Load combination	X		n) Z	ROTATI X	ONS (deg	z 	
*** Seg	ment A begir	***						
00A	Т1	-0.03	2 , 0.050	0.000	0.001	0.001	0.004	
A01	T1	0.00	8 -0.012	0.000	0.001	0.001	0.004	
*** Seg	ment A end	***						
A00	T1	-0.032	2 0.050	0.000	0.001	0.001	0.004	
F01	T1	0.000	0.000	0.000	0.000	0.000	0.000	
F00	т1	-0.03	3 0.050	0.000	0.000	0.000	0.004	
A01	Tl	0.008	8 -0.012	0.000	0.001	0.001	0.004	
F02	T1	0.000	0.000	0.000	0.000	0.000	0.000	
		R E S	STRAIN	T REA	CTIO	N S		
Point name	Load combination	X	RCES (1b Y Z	Result	X	NTS (ft-	Z Result	t
F01	Anchor Tl	-1199	2001 -30	5 2353	1151	690	0 134	42
F00	Anchor T1	0	0 -34	2 342	1	1	0	1
F02	Anchor Tl	1199 -	-2001 64	7 2421	-55	78	343 35	56
	GLO	BAL	FORCE:	S & M (MENT	S		
name	Load combination	X	RCES (1b Y Z	Result	X	NTS (ft-	Z Result	t
	ment A begin							
00A	Т1	1199 -	-2001 64	7 2421	1149	689	0 133	39
A01	Tl	1199 -	-2001 64	7 2421	55	-77	-341 35	54
*** Seg	ment A end	***						

Appendix 3. Lower Variable Ballast Piping for Alvin on Even Keel

VAB_LWR1 ALVIN LOWER VAB PIPING MTD SPHERE INPTS REBIS
01/24/2002 AutoPIPE+6.00 MODEL PAGE 1

Pipe Stress Analysis and Design Program

Version: 6.00.16

Edition: Plus-Win

Developed and Maintained by

REBIS Industrial Workgroup Software 1600 Riviera Ave., Suite 300 Walnut Creek, CA 94596

SYSTEM NAME : VAB_LWR1

PROJECT ID : ALVIN LOWER VAB PIPING MTD SPHERE INPTS

PREPARED BY : G. MAYERS

CHECKED BY : _____

PIPING CODE : B31.1

VERTICAL AXIS : Y

AMBIENT TEMPERATURE : 70.0 deg F

COMPONENT LIBRARY : AUTOPIPE

MATERIAL LIBRARY : AUTOB311

MODEL REVISION NUMBER : 9

POINT DATA LISTING

POIN	т -	OFFS	ETS (ft-in)		
NAME	TYPE	Х	Y	Z	DESCRIPTION
***	SEGMENT	A			
A09 A08	Run	-1.26" 1.26"	1.80" -1.80"	-1.42" 0.00"	PIPE ID = FTG
A00		0.00"	04.00"	1.42"	PIPE ID = TI
A01		0.00"	0.00"	2.99"	Elbow, Radius = 2.00 inch Bend angle change = 90.00 deg Mid point at 50.00 percent SIF = 1.00 Flex = 1.000
A02	Bend	-5.75"	0.00"	0.00"	Elbow, Radius = 2.00 inch Bend angle change = 90.10 deg Mid point at 50.00 percent SIF = 1.00 Flex = 1.000
A03	Bend	0.00"	0.00"	6.00"	Elbow, Radius = 2.00 inch Bend angle change = 90.10 deg Mid point at 50.00 percent SIF = 1.00 Flex = 1.000
A04	Valv	-4.72"	0.00"	0.00"	NS , Rating = Non-standard Weight = 0 lb Surface factor = 1.00 Non-standard joint, SIF = 1.00
A05 A06	Run Bend	-4.00" -7.36"	0.00"	0.00"	Elbow, Radius = 2.00 inch Bend angle change = 90.00 deg Mid point at 50.00 percent SIF = 1.00 Flex = 1.000
A07	Run	0.00"	3.99"	0.00"	

Total weight of empty pipes : 0 lb

COMPONENT DATA LISTING

POINT	COOR	DINATE(ft-in)	DATA	
NAME	X	Y	Z	TYPE	DESCRIPTION
*** SE	GMENT A				
A09	-1.26"	1.80"	-1.42"	ANCHOR	Rigid Thermal movements : T1
A08	0.00"	0.00"	-1.42"		The state of the s
A00	0.00"	0.00"	0.00"		
A01 N	0.00"	0.00"	0.99"		
A01	0.00"	0.00"	2.99"	TI	
A01 M	-0.59"	0.00"	2.40"		
A01 F	-2.00"	0.00"	2.99"		
A02 N	-3.75"	0.00"	2.99"		
A02	-5.75"	0.00"	2.99"	TI	
A02 M	-5.16"	0.00"	3.58"		
A02 F	-5.75"	0.00"	4.99"		
A03 N	-5.74"	0.00"	6.99"		
A03	-5.74"	0.00"	8.99"	TI	
A03 M	-6.33"	0.00"	8.40"		
A03 F	-7.74"	0.00"	8.99"		
A04	-10.46"	0.00"	8.99"		
A05	-1'2.46"	0.00"	8.99"		
A06 N	-1'7.82"	0.00"	8.99"		
A06	-1'9.82"	0.00"	8.99"	TI	
A06 M	-1'9.23"	0.59"	8.99"		
A06 F	-1'9.82"	2.00"	8.99"		
A07	-1'9.82"	3.99"	8.99"	ANCHOR	Rigid
					Thermal movements : None

Number of points in the system : 22

VAB_LWR1 AI						AutoPT	PE+6.00	MODEI	L PAGE	5
	Р	IPE	D A T	A LI	STI	I N G				
Pipe ID/ Material	coh inch	w Th	Corr Mi	ll Insu	Lina	Grav	Pipe	otner	Total	20
TI NS	NS 0.50	0 0.065	0 0.	01 0	0	1.03	0.17	0	0.22	1.00
FTG NS	NS 0.87	5 0.374	0 0.	05 0	0	0	0	0	0	1.00
	мате									
Material Name	Pipe ID 1	ensity b/cu.ft	Pois. T	emper.	Axia	Modulu l F	is E6 ps loop	Shear	Expa in/1	ans. 100ft
NS		0.0								
NS	TI	282.0	0.32	70.0	15.	500 1	5.500	5.8	70	
мА	TERIA	L A L	LOWA	ABLE	D A	T A	LIST	rin	G	
Material Name	Pipe ID d	leg F	psi	_						
NS	FTG	70.0	12500.0 16700.0)						
NS	TI	70.0 70.0	16700.0 16700.0							
		TEMPE	RATURE A	AND PRES	SSURE	DATA			2	
POINT PRESS	dog F ir	EXPAN.	PRESS.	TEMPER deg F	EXPA in/10	N. Pl Oft p:	RESS. TI si d	EMPER eg F	in/100	ft
*** SEGMENT										

HOT MODULUS (E6 psi)

POINT

NAME CASE 1 CASE 2 CASE 3

*** SEGMENT A

A09 27900.000*

A00 0* A07 0*

* Non-standard material

HOT ALLOWABLES (psi)

-----C A S E 1----- ------ A S E 3----POINT NOT NOT NOT NOT NOT NOT NOT NAME ALLOW USED USED ALLOW USED USED USED USED

*** SEGMENT A

A09 16700*

A07 16700*

- < User-defined code allowable
- * Non-code material

THERMAL ANCHOR MOVEMENTS AND DISPLACEMENTS

POINT		DX	DY	DZ	RX	RY	RZ
NAME	LOAD CASE	(in)	(in)	(in)	(deg)	(deg)	(deg)
A09	Thermal 1	-0.03	0.05	0.00	0.017	0.007	0.003

D I S P L A C E M E N T S

Point name	Load combination	TRANSLA X	ATIONS (in) Z 	ROTAT: X	IONS (dea	g) Z
*** Seq	ment A begin	***					
A09	GR T1	0.000	0.000 0.050	0.000	0.000 0.017	0.000	0.000
80A	GR T1	0.000 -0.032	0.000 0.050	0.000 -0.001	0.000 0.017	0.000 0.007	0.000
A00	GR T1	0.000 -0.032	0.000 0.049	0.000 -0.001	0.000 0.017	0.000 0.007	0.000
A01 N	GR T1	0.000 -0.031	0.000 0.049	0.000 -0.001	0.003 0.030	-0.001 0.064	0.002 0.027
A01 M	GR T1	0.000 -0.029	0.000 0.047	0.000	0.005 0.045	-0.001 0.118	0.005 0.061
A01 F	GR T1	0.000 -0.027	0.000 0.045	0.000	0.008 0.058	-0.001 0.150	0.006 0.085
A02 N	GR T1	0.000 -0.027	-0.001 0.042	0.000 0.009	0.010 0.075	-0.002 0.196	0.006 0.105
A02 M	GR Tl	0.000 -0.025	-0.001 0.039	0.000 0.014	0.012 0.088	-0.002 0.245	0.005 0.116
A02 F	GR T1	0.000 -0.018	-0.001 0.035	0.000 0.017	0.014 0.094	-0.002 0.272	0.003 0.125
A03 N	GR T1	0.000	-0.002 0.032	0.000 0.017	0.014 0.095	-0.002 0.241	0.000 0.137
M E0A	GR T1	0.000	-0.002 0.028	0.000 0.019	0.013 0.087	-0.002 0.165	-0.002 0.145
A03 F	GR T1	0.000	-0.002 0.024	0.000 0.021	0.012 0.074	-0.001 0.067	-0.004 0.149
A04	GR T1	0.000	-0.002 0.017	0.000 0.021	0.009	0.000	-0.008 0.138
A05	GR T1	0.000 -0.002	-0.001 0.007	0.000 0.015	0.009 0.047	0.000	-0.008 0.138
N 90A	GR T1	0.000	0.000 -0.001	0.000 0.005	0.004	0.001 -0.117	-0.009 0.013
A06 M	GR T1	0.000	0.000	0.000	0.003 -0.018	0.001 -0.094	-0.007 -0.031

VAB_LWR1	ALVIN	LOWER	VAB	PIPING	MTD	SPHERE	INPTS	REBIS			
01/24/2002								AutoPIPE+6.00	RESULT	PAGE	2

DISPLACEMENTS

Point	Load	TRANSLA	TIONS (in)	ROTAT	IONS (de	g)
name	combination	X	Y	Z	X	Y	Z
A06 F	CD	0.000	0 000				
AUG F	GR T1	0.000	0.000	0.000	0.002	0.000	-0.004
	11	-0.001	0.000	0.000	-0.021	-0.055	-0.047
A07	GR	0.000,	0.000	0.000	0.000	0.000	0.000
	T1	0.000	0.000	0.000	0.000	0.000	0.000

*** Segment A end ***

RESTRAINT REACTIONS

Point	Load	1	FORCES	(lb)	MC	MENTS (f	t-lb)	
name	combination	X	Y	Z	Result	X	Y	Z	Result
A09	Anchor								
	GR				0.376	0.177	-0.043	0.026	0.184
	T1	11.296	-1.416	-3.422	11.888	1.394	4.946	2.437	5.687
A07	Anchor								
	GR	0.094	-0.409	-0.027	0.420	0.043	0.008	-0.081	0.092
	T1	-11.296	1.416	3.422	11.888	-0.790	-1.008	-2.072	2.436

GLOBAL FORCES & MOMENTS

Point name	Load combina		FORCES (lb)	Result		MENTS (f Y	t-lb) Z	Result
*** Se	gment A	begin ***							
A09	GR T1	0.094 -11.296	0:363 1.416	-0.027 3.422	0.376 11.888	-0.177 -1.394	0.043 -4.946	-0.026 -2.437	0.184 5.687
80A	GR T1	0.094 -11.296	0.363 1.416	-0.027 3.422	0.376 11.888	-0.181 -0.881	0.040 -4.586	-0.078 -0.891	0.201 4.754
00A	GR T1	0.094 -11.296	0.363 1.416	-0.027 3.422	0.376 11.888	-0.138 -0.713	0.029 -3.250	-0.078 -0.891	0.161 3.444
A01 N	GR T1	0.094 -11.296		-0.027 3.422	0.358 11.888	-0.108 -0.596	0.021 -2.318	-0.078 -0.891	0.135 2.554
A01 M	GR T1	0.094 -11.296		-0.027 3.422	0.331 11.888	-0.069 -0.429	0.011 -1.153	-0.062 -0.822	0.094 1.480
A01 F	GR T1	0.094 -11.296			0.303	-0.055 -0.360	0.010 -1.005	-0.027 -0.655	0.062 1.253
A02 N	GR T1	0.094 -11.296		-0.027 3.422	0.273 11.888	-0.055 -0.360	0.014 -1.503	0.013 -0.449	0.058 1.610
A02 M	GR T1	0.094 -11.296		-0.027 3.422	0.246 11.888	-0.043 -0.291	0.012 -1.354	0.041 -0.282	0.061 1.413
A02 F	GR T1	0.094 -11.296		-0.027 3.422	0.219	-0.018 -0.124	0.003 -0.188	0.051 -0.213	0.055 0.309
A03 N	GR T1	0.094 -11.296		-0.027 3.422	0.187 11.888	0.011 0.112	-0.013 1.690	0.051 -0.213	0.054 1.707
A03 M	GR T1	0.094 -11.296		-0.027 3.422	0.163 11.888	0.029 0.279	-0.023 2.856	0.058	
A03 F	GR Tl	0.094 -11.296		-0.027 3.422	0.141 11.888	0.034 0.348	-0.024 3.005	0.072	
A04	GR T1	0.094 -11.296		-0.027 3.422	0.110 11.888	0.034	-0.018 2.231	0.089 0.344	
A05	GR T1	0.094 -11.296	-0.215 1.416	-0.027 3.422	0.236	0.034	-0.009 1.090	0.062 0.816	
A06 N	GR Tl	0.094 -11.296	1 -0.314 5 1.416		0.329	0.034	0.003 -0.438	-0.056 1.448	
A06 M	GR T1	0.094 -11.296	1 -0.343 5 1.416		0.356	0.036 0.181	0.006 -0.841	-0.090 1.064	

GLOBAL FORCES & MOMENTS

Point	Load	1	FORCES	(lb)	MC	MENTS (f	t-1b)	
name	combination	X	Y	Z	Result	Х	Y	Z	Result
A06 F						0.039			
	T1	-11.296	1.416	3.422	11.888	-0.222	-1.008	-0.198	1.051
A07	GR	0.094	-0.409	-0.027	0.420	0.043	0.008	-0.081	0.092
	T1	-11.296	1.416	3.422	11.888	-0.790	-1.008	-2.072	2.436

*** Segment A end ***

		ASME	B31.1 (1998) CC	DE COMP	LIANC	E		
		(Mom	ents in ft-lb) Mb Mc		T	(Stre	ess in ps	1)
Point	Load	Ma	Mb Mc		Eq.	Load	Code	Code
name	combination	(Sus.)	(Occ.) (Exp.)	S.1.F	no.	type	Stress	Allow.
*** Se	gment A begi	n ***						
200	GR + Max P	0.184	ng.	1.00	(11)	SUST	33	12500
AUJ	Cold to T1	01101	5.687	1.00	(13)	DISP	33 1038	19800
	0020 00							
A08	GR + Max P	0.201		1.00	(11)	SUST	37 868	12500
	Cold to T1		4.754	1.00	(13)	DISP	868	19800
							0.0	10500
		0.161		1.00	(11)	SUST	29 629	12500
	Cold to T1		3.444	1.00	(13)	DISP	629	19800
- 00	65 . N F	0 161		1.00	(11)	CHICT	225	16700
A00 +	GR + Max P Cold to T1	0.161	3.444			DISP		25050
	Cold to 11		3.444	1.00	(13)	2101	1010	2000
Δ01 N-	GR + Max P	0.135		1.00	(11)	SUST	189	16700
AUI N	Cold to T1	0.100	2.554				3566	25050
	0010 00 11				, ,			
A01 N+	GR + Max P	0.135		1.00	(11)	SUST	189	16700
	Cold to T1		2.554	1.00	(13)	DISP	3566	25050
								4.6720
A01 M		0.094		1.00	(11)	SUST	131 2067	16700
	Cold to T1		1.480	1.00	(13)	DISP	2067	25050
201 5	CD I Mais D	0.062		1.00	(11)	TRIP	86	16700
A01 F-	GR + Max P Cold to Tl	0.062	1.253	1.00	(13)	DISP	1749	
	CO10 10 11		1.233	1.00	(10)	5101		
A01 F+	GR + Max P	0.062		1.00	(11)	SUST	86	16700
	Cold to T1		1.253	1.00		DISP		25050
A02 N-	GR + Max P	0.058		1.00			80	16700
	Cold to T1		1.610	1.00	(13)	DISP	2248	25050
				1 00	(11)	OHIGM	9.0	16700
A02 N+	GR + Max P	0.058	1 610	1.00	(11)	DICD	80 2248	25050
	Cold to T1		1.610	1.00	(13)	DISE	2240	23030
3 O 2 M	GR + Max P	0.061		1.00	(11)	SUST	85	16700
AUZ M	Cold to T1	0.001	1.413	1.00	(13)	DISP	1974	25050
	CO14 CO 11		27.10		(,			
A02 F-	GR + Max P	0.055		1.00	(11)	SUST	76	16700
***-	Cold to T1		0.309	1.00	(13)	DISP	432	25050
A02 F+	GR + Max P	0.055		1.00		SUST	76	16700
	Cold to T1		0.309	1.00	(13)	DISP	432	25050
- 05	an	0.054		1 00	(111	ciicm	76	16700
A03 N-	GR + Max P	0.054	1 707	1.00		SUST	2384	25050
	Cold to T1		1.707	1.00	(13)	DIGE	2304	20000
דו צטע עד	GR + Max P	0.054		1.00	(11)	SUST	76	16700
1102 111	Cold to T1	0,001	1.707	1.00		DISP	2384	25050
	2014 00 11				. ,			

AutoPIPE+6.00 RESULT PAGE 6

			B31.1 (1998) CC ents in ft-lb)				ess in ps	i)
name		Ma (Sus.)	Mb Mc (Occ.) (Exp.)		Eq.	Load type	Code Stress	Code
A03 M	GR + Max P Cold to T1	0.069	2.874				96 4013	16700 25050
A03 F-	GR + Max P Cold to Tl	0.083	3.026	1.00	(11) (13)	SUST	116 4226	16700 25050
A03 F+	GR + Max P Cold to Tl	0.083	3.026	1.00			116 4226	
A04	GR + Max P Cold to Tl	0.097	2.284	1.00	, ,		136 3190	
A05	GR + Max P Cold to Tl	0.071	1.405	1.00			100 1963	
A06 N-	GR + Max P Cold to T1	0.066	1.553	1.00			92 2169	
A06 N+	GR + Max P Cold to T1	0.066	1.553	1.00		SUST	92 2169	
A06 M	GR + Max P Cold to T1	0.097	1.368	1.00		SUST	136 1911	16700 25050
A06 F-	GR + Max P Cold to T1	0.104	1.051	1.00	, ,	SUST	146 1469	
A06 F+	GR + Max P Cold to T1	0.104	1.051	1.00			146 1469	
A 07	GR + Max P Cold to Tl	0.092	2.436	1.00 1.00			129 3402	

*** Segment A end ***

Appendix 4. Upper Variable Ballast Piping for Alvin on Even Keel

VAB UPA	FILLED	UPPER	VAB	PIPING	ON	SURFACE	REBIS		
01/25/2002							AutoPIPE+6.00 MODEL	PAGE	1

Pipe Stress Analysis and Design Program

Version: 6.00.16

Edition: Plus-Win

Developed and Maintained by

REBIS Industrial Workgroup Software 1600 Riviera Ave., Suite 300 Walnut Creek, CA 94596 VAB_UPA FILLED UPPER VAB PIPING ON SURFACE REBIS
01/25/2002 AutoPIPE+6.00 MODEL PAGE 2

SYSTEM NAME : VAB UPA

PROJECT ID : FILLED UPPER VAB PIPING ON SURFACE

PREPARED BY :

G. MAYERS

CHECKED BY :

PIPING CODE : B31.1

VERTICAL AXIS : Y

AMBIENT TEMPERATURE : 70.0 deg F

COMPONENT LIBRARY : AUTOPIPE
MATERIAL LIBRARY : AUTOB311

MODEL REVISION NUMBER : 27

POINT DATA LISTING

POIN		OFFS	ETS (ft Y) Z	DESCRIPTION
*** A00 A01	SEGMENT A Run Bend	0 0	0 0		PIPE ID = TI Elbow, Radius = 2.00 inch Bend angle change = 45.18 deg Mid point at 50.00 percent SIF = 1.00 Flex = 1.000
A02 A04 A05	Run Run Bend	0 -0.12 -2.27	-0.66 -0.08 0	0.08	PIPE ID = FTG PIPE ID = TI Elbow, Radius = 2.00 inch Bend angle change = 90.00 deg SIF = 1.00 Flex = 1.000
A06	Bend	0	3.45	0	Elbow, Radius = 2.00 inch Bend angle change = 90.00 deg SIF = 1.00 Flex = 1.000
A08 A09 A10 A11 A12 A13	Run Tee Run Run Run Bend	0 -0.10 0.10 0 -0.10 -0.16	0 -0.06 0.06 0 -0.06 -0.09	-0.12 -0.12 -2.41 -0.11	PIPE ID = FTG PIPE ID = TI PIPE ID = FTG PIPE ID = TI Elbow, Radius = 2.00 inch Bend angle change = 29.99 deg SIF = 1.00 Flex = 1.000
A14	Run	-0.53	0	0	
*** A09 B01	SEGMENT B Tee Bend	-2.48 -0.16	2.65 -0.09		PIPE ID = TI Elbow, Radius = 2.00 inch Bend angle change = 29.99 deg SIF = 1.00 Flex = 1.000
в02	Run	-0.53	0	0	

Total weight of empty pipes : 3 lb

VAB_UPA FILLED UPPER VAB PIPING ON SURFACE REBIS
01/25/2002 AutoPIPE+6.00 MODEL PAGE 4

COMPONENT DATA LISTING

POIN	VT -	COORD	INATE (ft)	DATA	
NAME		X	Y	z	TYPE	DESCRIPTION
***	SEC	SMENT A				
A 00	-	0.00	0.00	0.00	ANCHOR	Rigid Thermal movements : T1
A01	N	0.00	0.00	, 0.34		The state of the s
A01		0.00	0.00	0.41	TI	
A01	M	0.00	-0.01	0.41		
A01	F	0.00	-0.05	0.46		
A02		0.00	-0.66	1.07		
A04		-0.12	-0.74	1.15		
A05	N	-2.22	-0.74	1.15		
A05		-2.38	-0.74	1.15	TI	
A05	F	-2.38	-0.57	1.15		
A06	N	-2.38	2.54	1.15		
A06		-2.38	2.71	1.15	TI	
A06	F	-2.38	2.71	0.98		
80A		-2.38	2.71	0.89		
A09		-2.48	2.65	0.77	TEE	Other
						SIF - In = 1.00, $Out = 1.00$
A10		-2.38	2.71	0.66		
A11		-2.38	2.71	-1.76		
A12		-2.48	2.65	-1.87		
A13				-1.87		
A13				-1.87	TI	
A13		-2.69		-1.87		
A14		-3.17	2.56	-1.87	ANCHOR	
						Thermal movements : None
***	SEC	MENT B				
A09		-2.48	2.65	0.77	TEE	Other SIF - In = 1.00, Out = 1.00
B01	N	-2.61	2.58	0.77		•
B01		-2.65	2.56	0.77	TI	
B01	F	-2.69	2.56	0.77		
B02		-3.17	2.56	0.77	ANCHOR	Rigid Thermal movements : None

Number of points in the system : 27

AB_UPA F 1/25/2002	FILLED UPPE		PING ON SU		REBIS AutoP		DEL PAGE !
		PIPE	DATA	LIS	T I N G		
Material	Sch inc	h W.Th.	Corr Mil	l Insu L	ing Grav	Pipe Oth	b/ft) ZL er Total ZC
TI NS	NS 0.5	500 0.065	0 0.0	1 0	0 1.03	0.17	0 0.22 1.0
FTG NS	NS 1.0	000 0.315	0 0.0	4 0	0 1.03	1.33	0 1.38 1.0
	MATI	ERIAL	DAT	A LI	STING		
Material Name	Pine ID	1h/cu ft	Ratio de	or F A	xial	Hoop She	Expans. ar in/100f
NS	TI	282.0	0.32	70.0	15.500	15.500 5	.870
NS	FTG	282.0	0.32	70.0 1	55.000 1	55.000 58	.700
Material	Pipe ID	Temper. deg F	Allow. psi	ВЬЕ	DATA	LISTI	N G
NS	TI	70.0	16700.0 16700.0				
NS	FTG		16700.0 16700.0				
		TEMPE	RATURE AN	D PRESSU	RE DATA		2
		1	C A	SE 2		DECC TEMPE	D EXPAN
POINT PRESS	-C A S E S. TEMPER deg F	EXPAN. in/100ft	PRESS. T psi d	eq F in	/100ft p	si deg F	. in/1001f
POINT PRESS	S. TEMPER deg F	EXPAN. in/100ft	PRESS. T psi d	eq F in	/100ft p	si deg F	. in/1001f

VAB_UPA	FILLED	UPPER	VAB	PIPING	ON	SURFACE	REBIS		
01/25/2002							AutoPIPE+6.00 MODEL	PAGE	9

HOT MODULUS (E6 psi)

POIN	-	CASE 2	CASE 3
***	SEGMENT A		
A00	15.500*		
A02	155.000*		
A04	15.500*	1	
A08	155.000*		
A10	15.500*		
A14	15.500*		
***	SEGMENT B		
A09	155.000*		
B02	155.000*		

* Non-standard material

	H O T	ALLO	WABI	ES (ps	i)		
C A S E	1	C	ASE	2	C	ASE	3
POINT NOT	NOT		NOT	NOT		NOT	NOT
NAME ALLOW USED	USED	ALLOW	USED	USED	ALLOW	USED	USED
444 CECMENTE N							

*** SEGMENT A A00 16700* A14 16700* *** SEGMENT B A09 16700*

B02 16700*

- < User-defined code allowable
- * Non-code material

THERMAL ANCHOR MOVEMENTS AND DISPLACEMENTS

POINT		DX	DY	DZ	RX	RY	RZ
NAME	LOAD CASE	(in)	(in)	(in)	(deg)	(deg)	(deg)
00A	Thermal 1	0.01	-0.01	0.00	0.001	0.001	0.004

DISPLACEMENTS

Point name	Load combination	TRANSL	ATIONS (in) Z	ROTAT X	IONS (de Y	g) Z
*** Seg	ment A begin	***					
A00	GR T1	0.000° 0.008	0.000 -0.012	0.000	0.000	0.000 0.001	0.000
A01 N	GR T1	0.000	-0.002 -0.012	0.000	0.043 -0.003	-0.011 -0.002	-0.001 -0.004
A01 M	GR T1	-0.001 0.008	-0.002 -0.012	0.000	0.049 -0.004	-0.013 -0.003	-0.001 -0.006
A01 F	GR Tl	-0.001 0.008	-0.003 -0.012	-0.001 0.000	0.055 -0.004	-0.014 -0.003	-0.001 -0.007
A02	GR T1	-0.003 0.006	-0.013 -0.011	-0.010 0.001	0.084 -0.008	-0.030 -0.003	0.008 -0.022
A04	GR T1	-0.004 0.005	-0.014 -0.010	-0.012 0.001	0.084 -0.008	-0.030 -0.003	0.008 -0.022
A05 N	GR T1	-0.004 0.005	-0.014 0.000	-0.026 0.000	0.051 -0.003	-0.028 -0.002	-0.006 -0.012
A05 F	GR T1	-0.004 0.006	-0.014 0.000	-0.025 0.000	0.047 -0.002	-0.026 -0.001	0.000 -0.007
A06 N	GR T1	0.001	-0.014 0.000	-0.001 0.000	0.035 0.002	0.001	-0.060 0.008
A06 F	GR T1	0.003	-0.012 0.000	0.000	0.032	0.004	-0.080 0.004
80A	GR T1	0.003	-0.012 0.000	0.000	0.027 0.002	0.004	-0.088 0.003
A09	GR T1	0.002	-0.009 0.000	0.000	0.027	0.004	-0.088 0.003
A10	GR T1	0.003	-0.010 0.000	0.000	0.027 0.002	0.004	-0.088 0.003
A11	GR T1	0.001	-0.005 0.000	0.000	0.015 -0.001	0.001	-0.043 0.001

VAB_UPA FILLED UPPER VAB PIPING ON SURFACE REBIS
01/25/2002 AutoPIPE+6.00 RESULT PAGE 2

DISPLACEMENTS

Point	Load	TRANSLATIONS	(in)	ROTAT	IONS (de	g)
name	combination	X Y	Z	X	Y	Z
A12	GR T1	0.001 -0.004 0.000 0.000	0.000	0.015	0.001	-0.043 0.001
A13 N	GR T1	0.000 , -0.003 0.000 , 0.000	0.000	0.012 -0.001	0.000	-0.039 0.001
A13 F	GR T1	0.000 -0.002 0.000 0.000	0.000	0.010 -0.001	0.000	-0.036 0.001
A14	GR T1	0.000 0.000 0.000 0.000	0.000	0.000	0.000	0.000
*** Seg	ment A end	***				
*** Seg	ment B begin	***				
A09	GR T1	0.002 -0.009 0.000 0.000	0.000	0.027 0.002	0.004	-0.088 0.003
B01 N	GR T1	0.000 -0.007 0.000 0.000	0.000 0.000	0.022 0.001	0.003 0.001	-0.090 0.001
B01 F	GR T1	0.000 -0.005 0.000 0.000	0.000 0.000	0.018 0.001	0.002	-0.086 0.001
В02	GR T1	0.000 0.000 0.000 0.000	0.000	0.000	0.000	0.000
*** 500	mant D and	***				

*** Segment B end ***

RESTRAINT REACTIONS

Point	Load	FORCES	(1b)	MC	MENTS (f	t-lb)	
name	combination	X Y	Z	Result	X	Y	Z	Result
00A	Anchor							
	GR	-0.114 -0.73	3 -0.018	0.742	0.630	-0.148	-0.012	0.647
	Tl	-0.040 0.05	6 0.001	0.069	-0.058	-0.041	-0.076	0.104
A14	Anchor							
	GR	0.004 -0.56	6 0.024	0.567	0.065	-0.008	-0.425	0.430
	T1	-0.004 0.00	5 -0.005	0.008	-0.003	0.001	0.007	0.008
B02	Anchor							
	GR	0.110 -2.03	7 -0.005	2.040	0.116	0.020	-1.203	1.209
	T1	0.043 -0.06	1 0.004	0.075	0.008	0.003	-0.008	0.011

VAB_UPA FILLED UPPER VAB PIPING ON SURFACE REBIS
01/25/2002 RESULT PAGE 4 01/25/2002

GLOBAL FORCES & MOMENTS

Point	Load	1	FORCES			MO	MENTS (f	t-1b)	
name	combination	Х	Y	Z	Result	Х	Y	Z	Result
*** Se	gment A beg	in ***							
A00	GR		0.733				0.148		
	T1	0.040	-0.056	-0.001	0.069	0.058	0.041	0.076	0.104
A01 N	GR		0.657			-0.392	0.109	0.012	0.407
	T1	0.040	-0.056	-0.001	0.069	0.039	0.027	0.076	0.090
A01 M	GR		0.643		0.653	-0.350	0.102	0.010	
	T1	0.040	-0.056	-0.001	0.069	0.035	0.025	0.076	0.087
A01 F	GR	0.114		0.018	0.639	-0.315 0.032	0.095	0.006	0.329
	T1	0.040	-0.056	-0.001	0.009				
A02	GR T1	0.114	0.437	0.018		0.020 -0.003	0.026	-0.064 0.050	
	11								
A04	GR T1		0.215			0.048	0.015	-0.035 0.040	
						0.040	0 023	-0.074	0.091
A05 N	GR T1		-0.252 -0.056			0.048 -0.007	-0.023 -0.002	-0.078	
205 5	GD.		-0.310			0.045	-0.026	-0.100	0.113
A05 F	GR T1		-0.056			-0.007	-0.002	-0.081	
A06 N	GR	0 114	-1.001	0.018	1.008	-0.012	-0.026	0.254	0.256
AUG N	T1		-0.056			-0.004	-0.002	0.043	0.043
A06 F	GR	0.114	-1.059	0.018	1.066	0.158	-0.007	0.273	0.315
HOO I	T1		-0.056			0.006	0.005	0.050	0.050
A08	GR	0.114	-1.081	0.018	1.087	0.260	0.004	0.273	
	Tl	0.040	-0.056	-0.001	0.069	0.011	0.008	0.050	0.052
A09 -	GR		-1.304			0.399	0.015	0.148	
	T1	0.040	-0.056	-0.001	0.069	0.018	0.013	0.042	0.047
A09 +		0.004		0.024		0.282	-0.002	-0.012	
	T1	-0.004	0.005	-0.005	0.008	0.011	0.007	0.003	0.013
A10	GR	0.004				0.228	0.001	-0.057 0.002	
	Tl	-0.004	0.005	-0.005	0.008	0.010	0.006	0.002	0.012

VAB_UPA FILLED UPPER VAB PIPING ON SURFACE REBIS
01/25/2002 AutoPIPE+6.00 RESULT PAGE 5

GLOBAL FORCES & MOMENTS

Point	Load	FORCES	(1b)	MO	MENTS (f	t-lb)	
name	combination	X Y	Z	Result	Х	Y	Z	Result
A11	GR T1	0.004 -0.184			0.027	0.011		
A12	GR T1	0.004 -0.408 -0.004 0.005				0.009	-0.087 0.003	0.108 0.005
A13 N	GR T1	0.004 -0.439 -0.004 0.005			0.064		-0.139 0.004	0.153 0.005
A13 F	GR T1	0.004 -0.459 -0.004 0.005		0.459 0.008	0.065 -0.003	0.004 -0.002	-0.177 0.004	0.188 0.006
A14	GR T1	0.004 -0.566 -0.004 0.005			0.065 -0.003	-0.008 0.001		0.430
*** Se	gment A end	***						
*** Se	gment B beg	in ***						
A09	GR T1	0.110 -1.879 0.043 -0.061			0.116 0.007	0.016 0.006	0.159 0.039	0.198 0.040
B01 N	GR T1	0.110 -1.910 0.043 -0.061			0.116 0.007	0.017 0.005	-0.080 0.028	0.142
B01 F	GR T1	0.110 -1.929 0.043 -0.061		1.933 0.075	0.116 0.008	0.018 0.005	-0.242 0.022	0.269
B02	GR T1	0.110 -2.037 0.043 -0.061			0.116	0.020 0.003	-1.203 -0.008	1.209

*** Segment B end ***

VAB_UPA FILLED UPPER VAB PIPING ON SURFACE REBIS
01/25/2002 AutoPIPE+6.00 RESULT PAGE 6

	ASME B3	31.1 (1998) CO	DE COMPI	LIANCE	(0+	:	
Point Load	(Momer	nts in ft-lb) Mb Mc		Eα	Load	Code	Code
name combination	(Sus.)	(Exp.)	S.I.F	no.	type	Stress	Allow.
Traine Compination							
*** Segment A begi	.n ***						
A00 GR + Max P	0.647 4	•	1.00	(11)	SUST	904	16700
Cold to T1		0.104	1.00	(13)	DISP	146	25050
A01 N- GR + Max P	0.407		1.00		SUST		16700
Cold to Tl		0.090	1.00	(13)	DISP	125	25050
A01 N+ GR + Max P	0.407		1.00	(11)	SUST	568	16700
Cold to T1	0.407	0.090			DISP		
	0.265		1.00	(11)	SUST	509	16700
A01 M GR + Max P Cold to T1	0.365	0.087			DISP		
0014 00 11				, ,			
	0.329		1.00	(11)	SUST DISP	460 117	.16700 25050
Cold to T1		0.084	1.00	(13)	DISP	117	25050
A01 F+ GR + Max P	0.329		1.00		SUST		
Cold to T1		0.084	1.00	(13)	DISP	117	25050
A02 - GR + Max P	0.072		1.00	(11)	SUST	100	16700
Cold to T1	0.072	0.050		(13)	DISP	100 70	25050
	0 070		1.00	(11)	CIICT	9	16700
A02 + GR + Max P Cold to T1	0.072	0.050				6	25050
CO14 CO 11		0,,,,					
	0.061	0 041	1.00	(11)	SUST	8 5	16700 25050
Cold to T1		0.041	1.00	(13)	DISE	3	23030
A04 + GR + Max P	0.061		1.00			85	16700
Cold to Tl		0.041	1.00	(13)	DISP	57	25050
A05 N- GR + Max P	0.091		1.00	(11)	SUST	127	16700
Cold to Tl		0.079	1.00	(13)	DISP	110	25050
TOTAL OD I Man D	0 001		1.00	(11)	SUST	127	16700
A05 N+ GR + Max P Cold to T1	0.091	0.079			DISP		
		2.070		, ,			16706
A05 F- GR + Max P	0.113	0.003	1.00	(11)	SUST DISP	158 114	16700 25050
Cold to T1		0.081	1.00	(13)	חדסג	114	23030
A05 F+ GR + Max P	0.113		1.00	(11)	SUST	158	
Cold to T1		0.081	1.00	(13)	DISP	114	25050

ASME	B31	1	(1998)	CODE	COMPLIANCE

ASME B31.1 (1998) CODE COMPLIANCE									
Doint	Lood		oments in ft-lb)			(Stress in psi) Eq. Load Code Code			
Point name	Load combination	Ma (Sus)	Mb Mc (Occ.) (Exp.) S.I.F	-			Code	
			(Exp.				501655	Allow.	
A06 N-	GR + Max P	0.256		1.00		SUST	357	16700	
	Cold to T1		0.04	3 1.00		DISP		25050	
A06 N+	GR + Max P	0.256	1	1.00		SUST	357	16700	
	Cold to T1		0.04	3 1.00	(13)	DISP	60	25050	
A06 F-	GR + Max P	0.315		1.00	(11)	SUST	440	16700	
	Cold to T1	0.515	0.05			DISP	70	25050	
					(20)	0101	, 0	23030	
A06 F+	GR + Max P	0.315		1.00	(11)	SUST	440	16700	
	Cold to T1		0.05	0 1.00	(13)	DISP	70	25050	
3.00	6D + M D	0 277							
A08 -	GR + Max P Cold to T1	0.377	0.05	1.00		SUST	527	16700	
	C010 C0 11		0.05	2 1.00	(13)	DISP	72	25050	
A08 +	GR + Max P	0.377		1.00	(11)	SUST	47	16700	
	Cold to T1		0.05			DISP	6	25050	
A09 -	GR + Max P	0.425	0.04	1.00		SUST	53	16700	
	Cold to T1		0.04	7 1.00	(13)	DISP	6	25050	
A09 +	GR + Max P	0.283		1.00	(11)	SUST	35	16700	
	Cold to Tl		0.01			DISP	2	25050	
A10 -	GR + Max P	0.235		1.00		SUST	29	16700	
	Cold to T1		0.01	2 1.00	(13)	DISP	2	25050	
A10 +	GR + Max P	0.235		1.00	(11)	SUST	328	16700	
	Cold to T1	0.233	0.01			DISP	17	16700 25050	
			0.01	2.00	(13)	D101	* '	23030	
A11 -	GR + Max P	0.064		1.00	(11)	SUST	90	16700	
	Cold to T1		0.00	4 1.00	(13)	DISP	6	25050	
A11 +	GR + Max P	0.064		1 00	(11)	C110m	•	16700	
MII T	Cold to T1	0.004	0.00	1.00		SUST	8 1	16700 25050	
	0010 00 11		0.00	7 1.00	(13)	DISE	1	23030	
A12 -	GR + Max P	0.108		1.00	(11)	SUST	13	16700	
	Cold to T1		0.00	5 1.00	(13)	DISP	1	25050	
A12 +	CD + M D	0 100							
MIZ +	GR + Max P Cold to T1	0.108	0.00	1.00 5 1.00		SUST	150	16700	
	0010 00 11		0.00	5 1.00	(13)	DISE	7	25050	
A13 N-	GR + Max P	0.153		1.00	(11)	SUST	214	16700	
	Cold to T1		0.00	5 1.00	(13)	DISP	8	25050	

VAB_UPA FILLED UPPER VAB PIPING ON SURFACE REBIS
01/25/2002 RESULT PAGE 8

ASME B31.1 (1998) CODE COMPLIANCE (Moments in ft-lb) (Stress in psi)								i)	
Point	Load	Ma	Mb	Mc		Eq.	Load	Code	Code
name	combination	(Sus.)	(Occ.)	(Exp.)	S.I.F	no.	type	Stress	Allow.
A13 N+	GR + Max P	0.153			1.00	(11)	SUST		16700
1123 111	Cold to T1			0.005	1.00	(13)	DISP	8	25050
A13 F-	GR + Max P	0.188	4		1.00	(11)	SUST		16700
	Cold to T1			0.006	1.00	(13)	DISP	8	25050
A13 F+	GR + Max P	0.188			1.00		SUST		
	Cold to T1			0.006	1.00	(13)	DISP	8	25050
A14	GR + Max P	0.430			1.00	(11)	SUST	601	16700
	Cold to T1			0.008		(13)	DISP	11	25050
*** Se	gment A end	***							
*** Se	gment B begin	า ***							
A09	GR + Max P	0.198			1.00		SUST		
1100	Cold to T1			0.040	1.00	(13)	DISP	56	25050
B01 N-	GR + Max P	0.142			1.00	(11)	SUST		16700
202 11	Cold to T1			0.030	1.00	(13)	DISP	41	25050
B01 N+	GR + Max P	0.142			1.00	(11)	SUST	198	16700
202	Cold to T1			0.030	1.00	(13)	DISP	41	25050
B01 F-	GR + Max P	0.269			1.00	(11)	SUST	376	
201 1	Cold to Tl			0.024	1.00	(13)	DISP	33	25050
B01 F+	GR + Max P	0.269			1.00		SUST		16700
201 11	Cold to T1			0.024	1.00	(13)	DISP	33	25050
B02	GR + Max P	1.209			1.00		SUST		
	Cold to T1			0.011	1.00	(13)	DISP	15	25050
*** Se	gment B end	***							

Appendix 5. Maximum Primary Loads

Maximum Straight Pipe Primary Load

Upper Run Point B02

	Calculated	d Moments	(ft-lb)	Resultant
Load	X	Υ	Z	Load
Weight Surfaced	0.116	0.02	-1.203	1.209
Surf Pth Up	0.131	0.015	-1.058	1.067
Surf Pth Dwn	0.07	0.02	-1.026	1.028
Surf Roll Pt	0.238	0.347	-1.136	1.211 <maximum< td=""></maximum<>
Surf Roll St	-0.038	-0.312	-0.948	0.999
Sub Wt + Bouy	0.072	0.013	-0.769	0.772
Sub Pitch Up	0.044	0.033	-0.484	0.488
Sub Pth Dwn	0.029	-0.007	-0.482	0.483
Sub Roll Pt	0.096	-0.121	-0.531	0.554
Sub Roll St	-0.012	0.096	-0.458	0.468

Maximum Bend Primary Load

Upper Run Point A01 N

	Calculated	d Moments	Resultant	
Load	X	Υ	Z	Load
Weight Surfaced	-0.392	0.109	0.012	0.407
Surf Pth Up	-0.414	0.411	0.216	0.622
Surf Pth Dwn	-0.265	-0.222	-0.196	0.397
Surf Roll Pt	-0.705	0.413	0.051	0.819 <maximum< td=""></maximum<>
Surf Roll St	0.027	-0.224	-0.031	0.228
Sub Wt + Bouy	-0.257	0.069	0.01	0.266
Sub Pitch Up	-0.272	0.057	0.102	0.296
Sub Pth Dwn	-0.169	-0.017	-0.083	0.189
Sub Roll Pt	-0.337	0.161	-0.06	0.378
Sub Roll St	-0.008	-0.068	-0.051	0.085

Appendix 6. Maximum Primary Plus Secondary Load Range Maximum Straight Pipe Primary Plus Secondary Load Range

Calculated Moments (ft-lb)

Lower Run Point A00

Load	X	Υ	Z	
Weight Surfaced	-0.138	0.029	-0.078	
Sub Anchor Movements	-0.771	-3.408	-0.931	
Surf Pth Up	-0.135	-0.019	-0.072	
Surf Pth Dwn	-0.098	0.055	-0.063	
Surf Roll Pt	-0.125	-0.003	-0.079	
Surf Roll St	-0.120	0.007	-0.083	
Sub Wt + Bouy	-0.099	0.022	-0.056	
Sub Pitch Up	-0.097	-0.014	-0.051	
Sub Pth Dwn	-0.069	0.042	-0.045	
Sub Roll Pt	-0.090	-0.001	-0.057	
Sub Roll St	-0.085	0.006	-0.058	
	Sum of I	Moments	(ft-lb)	Resultant
Load Combinations	X	Υ	Z	Load Range
Submergence	-0.732	-3.415	-0.909	3.609
Surf Pitch Down to Sub Rise	-0.770	-3.477	-0.919	3.678 < Maximum
Surf Pitch Down to Sub Dive	-0.742	-3.421	-0.913	3.618
Surf Pitch Down to Sub Roll Port	-0.763	-3.464	-0.925	3.666
Surf Pitch Down to Sub Roll Stbd	-0.758	-3.457	-0.926	3.658
Surf Pitch Up to Sub Rise	-0.733	-3.403	-0.910	3.598
Surf Pitch Up to Sub Dive	-0.705	-3.347	-0.904	3.538
Surf Pitch Up to Sub Roll Port	-0.726	-3.390	-0.916	3.586
Surf Pitch Up to Sub Roll Stbd	-0.721	-3.383	-0.917	3.578
Surf Roll Port to Roll Stbd	0.005	0.010	-0.004	0.012
Surf Pitch Up to Surf Pitch Dwn	0.028	0.056	0.006	0.063
Surf Roll Stbd to Sub Roll Port	-0.741	-3.416	-0.905	3.611
Surf Roll Stbd to Sub Roll Stbd	-0.736	-3.409	-0.906	3.603
Surf Roll Stbd to Sub Rise	-0.748	-3.429	-0.899	3.623
Surf Roll Stbd to Sub Dive	-0.720	-3.373	-0.893	3.563
Surf Roll Port to Sub Roll Port	-0.736	-3.406	-0.909	3.601
Surf Roll Port to Sub Roll Stbd	-0.731	-3.399	-0.910	3.594
Surf Roll Port to Sub Rise	-0.743	-3.419	-0.903	3.613
Surf Roll Port to Sub Dive	-0.715	-3.363	-0.897	3.553
Sub Roll Port to Roll Stbd	0.005	0.007	-0.001	0.009
Sub Rise to Dive	0.028	0.056	0.006	0.063

Maximum Bend Primary Plus Secondary Load Range

Lower Run Point A03 F

	Calculate	d Momen	ts (ft-lb)	
Load	X	Υ	Z	
Weight Surfaced	0.034	-0.024	0.072	
Sub Anchor Movements	0.338	3.113	0.024	
Surf Pth Up	0.042	-0.009	0.066	
Surf Pth Dwn	0.018	-0.025	0.059	
Surf Roll Pt	0.029	0.019	0.063	
Surf Roll St	0.036	-0.005	0.076	
Sub Wt + Bouy	0.026	-0.019	0.053	
Sub Pitch Up	0.032	-0.008	0.049	
Sub Pth Dwn	0.013	-0.019	0.044	
Sub Roll Pt	0.022	0.014	0.047	
Sub Roll St	0.027	-0.004	0.056	
	Sum of	Mamanta	/64 1lm\	Decultant
Load Combinations	X	Moments	,	Resultant
Load Combinations	^	Υ	Z	Load Range
Submergence	0.330	3.118	0.005	3.135
Surf Pitch Down to Sub Rise	0.352	3.130	0.014	3.150
Surf Pitch Down to Sub Dive	0.333	3.119	0.009	3.137
Surf Pitch Down to Sub Roll Port	0.342	3.152	0.012	3.171 <maximum< td=""></maximum<>
Surf Pitch Down to Sub Roll Stbd	0.347	3.134	0.021	3.153
Surf Pitch Up to Sub Rise	0.328	3.114	0.007	3.131
Surf Pitch Up to Sub Dive	0.309	3.103	0.002	3.118
Surf Pitch Up to Sub Roll Port	0.318	3.136	0.005	3.152
Surf Pitch Up to Sub Roll Stbd	0.323	3.118	0.014	3.135
Surf Roll Port to Roll Stbd	0.007	-0.024	0.013	0.028
Surf Pitch Up to Surf Pitch Dwn	-0.019	-0.011	-0.005	0.023
Surf Roll Stbd to Sub Roll Port	0.324	3.132	-0.005	3.149
Surf Roll Stbd to Sub Roll Stbd	0.329	3.114	0.004	3.131
Surf Roll Stbd to Sub Rise	0.334	3.110	-0.003	3.128
Surf Roll Stbd to Sub Dive	0.315	3.099	-0.008	3.115
Surf Roll Port to Sub Roll Port	0.331	3.108	0.008	3.126
Surf Roll Port to Sub Roll Stbd	0.336	3.090	0.017	3.108
Surf Roll Port to Sub Rise	0.341	3.086	0.010	3.105
Surf Roll Port to Sub Dive	0.322	3.075	0.005	3.092
Sub Roll Port to Roll Stbd	0.005	-0.018	0.009	0.021
Sub Rise to Dive	-0.019	-0.011	-0.005	0.023

Appendix 7. Stress Analysis of Alvin Variable Ballast Piping

Piping Physical Parameters

Do := .500 in t := .065 in $R := 2 \cdot in$

General Membrane Stress < Sm

internal Pressure: P := 2500 psi

 $Do_max := 0.504 in \qquad t_min := .9 \cdot t \qquad \quad t_min = 0.058 in \qquad \text{ASTM B338 Tolerances Included}$

 $ri := \frac{(Do_max - 2 \cdot t_min)}{2} \qquad ro := \frac{Do_max}{2} \qquad rm := \frac{(Do_max - t_min)}{2}$

ri = 0.194in ro = 0.252in rm = 0.223in

Straight pipe $S2 := P \cdot \frac{\left(ro^2 + ri^2\right)}{ro^2 - ri^2}$ S2 = 9683psi Sm := 12500psi OK

Bends $S2 := P \cdot \frac{\left(ro^2 + ri^2\right)}{ro^2 - ri^2} \cdot \frac{(2 \cdot R - rm)}{(2 \cdot R - 2 \cdot rm)}$ S2 = 10274 psi Sm := 12500 psi OK

Local Membrane Stress < 1.5 Sm

In the absence of discontunities local membrane stress equals general membrane stress.

Primary Membrane Stress plus Primary Bending Stress < 1.5 Sm

Evaluated in accordance with ASME B&PV Code Section III, NB-3652

$$B1 \cdot \frac{(P \cdot Do)}{2 \cdot t} \, + \, B2 \cdot \frac{Do}{2 \cdot I} \cdot Mi \leq 1.5 \cdot Sm$$

Straight Tube Terminating at Fitting - Use Indices for as-welded butt weld.

B1 := .5 B2 := 1.0

Internal Pressure: $P := 2500 \, psi$ $Mi := 14.5 \, in \cdot lbf$ At node B02 of upper run

 $B_1 \cdot \frac{(P \cdot D_0)}{2 \cdot t} + B_2 \cdot \frac{D_0}{2 \cdot I} \cdot M_1 = 6495 psi$ $S_m := 12500 psi$ $1.5 \cdot S_m = 18750 psi$ OK

Bends

$$B1 := -0.1 + 0.4 h$$
 $B1 = 0.999$ but not < 0 nor > 0.5, Therefore: $B1 := .5$

B2 :=
$$\frac{1.30}{\frac{2}{h^3}}$$
 B2 = 0.663 but not < 1.0, Therefore: B2 := 1.0

where
$$h := t \cdot \frac{R}{m^2}$$

Internal Pressure:
$$P := 2500 \, psi$$
 $Mi := 9.8 \, in \cdot lbf$ At Node A01N of upper run

$$B1 \cdot \frac{(P \cdot Do)}{2 \cdot t} + B2 \cdot \frac{Do}{2 \cdot 1} \cdot Mi = 5948psi$$
 $Sm := 12500psi$ $1.5 \cdot Sm = 18750psi$ OK

Primary Plus Secondary Stress < 3 Sm

Evaluated in accordance with ASME B&PV Code Section III, NB-3653.1

$$Sn = C1 \cdot \frac{(Po \cdot Do)}{2 \cdot t} + C2 \cdot \frac{Do}{2 \cdot I} \cdot Mi \le 3 \cdot Sm$$

Straight Tube Terminating at Fitting - Use Indices for as-welded butt weld.

$$C1 := 1.0$$

C2 :=
$$1.0 + \frac{0.094}{t}$$
 As noted in the body of report, Swagelok connections do not require a correction for weld crown or mismatch.

Therefore:
$$C2 := 1.0$$

Pressure Range:
$$P_0 := 2500 \, psi + 4825 \, psi$$
 $P_0 = 7325 \, psi$

$$Mi := 44.1 \cdot in \cdot lbf$$
 At node A00 of the lower run

$$Sn = 33306psi$$
 $3.Sm = 37500psi$ OK

Bends

C1 :=
$$\frac{(2 \cdot R - rm)}{2 \cdot (R - rm)}$$
 C1 = 1.061

C1 :=
$$\frac{1.95}{2 \cdot (R - rm)}$$
 C1 = 1.061

C2 := $\frac{1.95}{\frac{2}{h^3}}$ but not < 1.5 C2 = 0.994 Therefore: C2 := 1.5

Pressure Range:

Mi := 38.0 in lbf

At Node A03F of lower run

Sn = 36526psi

$$3.Sm = 37500psi$$

Po = 7325psi

Peak Stress

Evaluated in accordance with ASME B&PV Code Section III, NB-3653.3

$$Sp := K1 \cdot C1 \cdot \frac{(Po \cdot Do)}{2 \cdot t} \, + \, K2 \cdot C2 \cdot \frac{Do}{2 \cdot I} \cdot Mi$$

Straight Tube Terminating at Fitting - Use Indices for as-welded butt weld.

C1 := 1.0

$$C2 := 1.0$$

As above

K1 := 1.2

$$K2 := 1.8$$

 $Mi := 44.1 \cdot in \cdot lbf$ At node A00 of the lower run

Sp = 43047psi

Salt :=
$$\frac{Sp}{2}$$

Salt = 21523psi

Therefore:

Bends

C1 := 1.061

$$C2 := 1.5$$

As above

K1 := 1

$$K2 := 1$$

 $Mi := 38.0 \, in \cdot lbf$ At Node A03F of lower run

Sp = 36526psi

Therefore: Straight pipe controls fatigue life

Appendix 8. External Pressure Analysis of Alvin Variable Ballast Piping

Piping Physical Parameters

Do :=
$$.500 in$$

$$t := .065 in$$

Evaluated in accordance with ASME B&PV Code Section III, NB-3133.3

$$T := t$$
 $\frac{Do}{T} = 7.692$ $\frac{L}{Do} > 50$

Per Section II Part D Figure G A = 0.019

$$A = 0.019$$

Per Section II Part D Figure NFT-2 B := 19300

Pal :=
$$\left[\frac{2.167}{\left(\frac{\text{Do}}{\text{T}} \right)} - 0.0833 \right] \cdot \text{B}$$
 Pal = 3829psi

S is lesser of 1.5 Sm or 0.9 Sy

$$Sm := 12500 \, psi$$
 and $Sy := 25000 \, psi$

$$Sy := 25000 psi$$

Lesser of $1.5 \cdot \text{Sm} = 18750 \text{psi}$ or $.9 \cdot \text{Sy} = 22500 \text{psi}$

or
$$.9.\text{Sy} = 22500\text{ps}$$

Therefore: $S := 18750 \, \text{psi}$

$$Pa2 := 2 \cdot \frac{S}{\frac{Do}{T}} \cdot \left(1 - \frac{1}{\frac{Do}{T}}\right) \qquad Pa2 = 4241 psi$$

Therefore, the maximum allowable external pressure is 3829 psi...

Evaluated in accordance with DTNSRDC Report DTNSRDC/PAS-80/3

Ref: Kaldor, L.M., "Analysis of Externally Pressurized Piping Systems, Phase One, Part A", DTNSRDC Report DTNSRDC/PAS-80/3 dated Mar 80

$$L := 100 \text{ in}$$
 $E := 15.5 \cdot 10^6 \cdot \text{psi}$ $S := Sy$

$$Dm := Do - T$$

Leritical:=
$$1.598 \, Dm \sqrt{\frac{Dm}{T}}$$

Lstar =
$$1.798$$
in

$$a := \frac{Lstar}{T} \cdot \frac{S}{E} \cdot \sqrt{\frac{Dm}{T}}$$

$$b := .276a + .383$$

$$Pc := \frac{S}{b} \cdot \frac{T}{Dm}$$

$$Pc = 9005psi$$

In accordance with SUBSAFE Design Review Procedure Manual (3010) Pdesign is taken as Pdesign in the DTNSRDC report divided by 1.5.

Pdesign := .85
$$\frac{Pc}{1.5}$$