

Privacy-Preserving Convolutional Neural Networks through Homomorphic Encryption

Politecnico di Milano, DEIB

Carmen Barletta

Matr. 877129

Advisor: Prof. M. Roveri

Co-Advisor: S. Disabato

December 20, 2018

Introduction

- Machine Learning techniques have become popular thanks to their ability to solve complex problems.
- *Software as a Service* is a commonly used machine learning paradigm
 - Pros: fast, scalable, can be used by a large number of users ©
 - Cons: it involves an "honest but curious server" ©

A Threat To Data Owners' Privacy

Analyzed data, that might be sensible data, can be leaked on the outsourced server ©

 The EU's General Data Protection Regulation requires that personal data is processed ensuring adequate protection.

Goals

Methodological solution to design a privacy-preserving Convolutional Neural Network through the usage of the Homomorphic Encryption:

- Proposing a methodology to convert a plain CNN in a privacy-preserving CNN end able to execute calculi on encrypted data (i.e., images).
- Defining a heuristic to estimate optimal encryption parameters.
- 3 Providing a **library** that allows to accomplish the aforementioned transformation.

HE: Brakerski/Fan-Vercauteren Scheme

Definition

An encryption scheme that allows computations to be done directly on encrypted data is said to be a **homomorphic encryption scheme**.

- Add a "small" noise component during encryption.
- SK is noise extracted from a discrete gaussian error distribution.
- PK is built using SK (can't distinguish this from a Uniform instance)

The main parameters to set are n,t and q. Indeed:

- Plaintext space is $R_t = \mathbb{Z}_t[x]/(x^n+1)$
- Ciphertext space is $R_q = \mathbb{Z}_q[x]/(x^n+1)$
- A message is encrypted by passing from R_t to R_q with q>t

A ciphertext can be a result of Ciphertext-Ciphertext and/or Ciphertext-Plaintext operations.

BFV-Noise

By making operations, the initial noise in the ciphertext increases.

- The **noise budget** $NB \cong log_2 \frac{q}{t}$ is the maximum noise is possible to add to the ciphertext before decryption fails:
 - each operation adds a different quantity of noise
 - it indicates the maximum number of operations it is possible to evaluate on a ciphertext (*Circuit depth*)

Infinity norm $||\cdot||_{\infty}$

The maximum value of a coefficient in a polynomial. It grows by applying operations on the polynomial.

parameter	name	what it is	
n	poly_mod	max poly degree	
q	$coeff_mod$	UB of max infinity norm of ciphertext poly	
t	$plain_{-}mod$	UB of max infinity norm of plaintext poly	

December 20, 2018

Next Subsection

- Introduction and Motivations
- 2 Homomorphic Encryption and Brakerski/Fan-Vercauteren Scheme BFV - Problems
- 3 Proposed Methodology
 STEP 1 APPROXIMATION (OPTIONAL)
 STEP 2 ENCODING
 STEP 3 TESTING
- 4 Experimental Results
 Experimental Setup
 9 Layers CNN
- **5** Conclusions and Future Works

BFV - Problems(1)

Encryption Parameters Problem

We want to find the right mix of n, q and t for a given CNN.

CNNs require a big circuit depth \Rightarrow *NB* sufficiently large!

- ullet Setting a big n increases security, but there's a slowdown
 - Doubling $n \rightarrow$ Doubling execution time
- Setting an unnecessary big q introduces security issues, but increases the NB
- Setting an unnecessary big t reduces NB...
 - ... but a too small t can introduce incorrectness!

BFV - Problems(2)

- Operations allowed: addition and multiplication
 - ... can compute only polynomial functions
- Ciphertext-Ciphertext multiplications are the most expensive operations
- Some common CNN's operations:
 - Activation functions: ReLU, Sigmoid, Tanh
 - Pooling Functions: MaxPooling
- ... cannot be directly implemented

Function Problem

We want to find low degree polynomials that approximate these functions.

Solution Overview

CNN Encoding Implications

CNN is not encrypted, but only encoded:

- Ciphertext-Plaintext operations are used
- Possible to use the same network with different key pairs

Solution - From a plain CNN $\check{\Phi}$ to a privacy-preserving CNN $\tilde{\Phi}_{n,q,t}$

- STEP 1: solves the function approximation problem
- STEP 2: solves the encryption parameters choice problem
- STEP 3: tests the accuracy of the transformed CNN

Next Subsection

- Introduction and Motivations
- 2 Homomorphic Encryption and Brakerski/Fan-Vercauteren Scheme BFV - Problems
- 3 Proposed Methodology
 STEP 1 APPROXIMATION (OPTIONAL)
 STEP 2 ENCODING
 STEP 3 TESTING
- 4 Experimental Results
 Experimental Setup
 9 Layers CNN
- **5** Conclusions and Future Works

Step 1 Approximation (optional)

- ullet $reve{arPhi}$ is a pre-trained input CNN
- If $\check{\Phi}$ contains non-polynomial functions, it is approximated with only polynomial functions:

ReLU—→Square

- ... otherwise GOTO STEP 2
- ullet The produced approximated Φ is eventually retrained

Next Subsection

- Introduction and Motivations
- 2 Homomorphic Encryption and Brakerski/Fan-Vercauteren Scheme BFV - Problems
- 3 Proposed Methodology

STEP 1 APPROXIMATION (OPTIONAL)

STEP 2 ENCODING

STEP 3 TESTING

- 4 Experimental Results
 Experimental Setup
 9 Layers CNN
- **5** Conclusions and Future Works

Step 2 Encoding

- After selecting encryption parameters, the approximated Φ is encoded:
 - each weight in Φ becomes a polynomial with coefficients modulo t and of maximum degree n

Fractional Encoding Example

```
Encode r=5.8125 in base B=2, t\geq 2: 5.8125=2^2+2^0+2^{-1}+2^{-2}+2^{-4} IntEncode(5,B=2)= x^2+1 FractionEncode(0.875,B=2)= -x^{n-1}-x^{n-2}-x^{n-4} FractionEncode(5.875,B=2)= -x^{n-1}-x^{n-2}-x^{n-4}+x^2+1 FractionEncode(5.875,B=2)=x^{n-1}-x^{n-2}+x^{n-4}+x^2+1 FractionEncode(5.875,B=2)=x^{n-1}-x^{n-2}+x^{n-4}+x^2+1
```

- ullet The encoded $ilde{\varPhi}$ is produced
- ... but how do we select the optimal n, q and t?

Optimization Problem for Parameters

$$\min_{n,q,t} \alpha \sum_{i}^{D} (y_i - \tilde{y}_i)^2 + \gamma t + \delta n + \beta q$$

subject to

$$q \ge 2$$

 $t> \max ||p||_{\infty}$ with $p\in R_t$ and generic intermediate result of $ilde{\varPhi}$

$$\log_2(\frac{q}{t}) > \sum_{i=1}^{l} NB_{n,q,t}(\phi_{\tilde{\theta}_i}^{(i)})$$

$$log_2q \leq UB(\lambda, n)$$

$$n = 2^d$$
 s.t. $d \in \mathbb{N}$

$$t, q, n \in \mathbb{N}$$

$$\alpha, \beta, \gamma, \delta > 0$$

Heuristic Binary Search of Plaintext Modulus t

Input

- CNN Φ
- couple (n,q)
- t range
- K images to test
- maximum number of accepted re-encryption steps

Output

- plaintext modulus parameter t
- best point/s in the CNN for the re-encryption/s

Goals

Find the minimal t s.t.:

min plain mod optimal plain mod max plain mod

Mispredicted Success Out of Budget

Next Subsection

- Introduction and Motivations
- 2 Homomorphic Encryption and Brakerski/Fan-Vercauteren Scheme BFV - Problems
- 3 Proposed Methodology

STEP 1 APPROXIMATION (OPTIONAL)

STEP 2 ENCODING

STEP 3 TESTING

- 4 Experimental Results
 Experimental Setup
 9 Layers CNN
- **5** Conclusions and Future Works

Step 3 Testing

- The encoded $ilde{\Phi}_{n,q,t}$ is a privacy-preserving CNN
- The CNN is ready to be tested on encrypted images
 - provided that they are encoded and then encrypted using the same parameters
- The possible accuracy loss introduced by STEP 2 is computed

Next Subsection

- Introduction and Motivations
- 2 Homomorphic Encryption and Brakerski/Fan-Vercauteren Scheme BFV - Problems
- 3 Proposed Methodology
 STEP 1 APPROXIMATION (OPTIONAL)
 STEP 2 ENCODING
 STEP 3 TESTING
- 4 Experimental Results
 Experimental Setup
 9 Lavers CNN
- **5** Conclusions and Future Works

Experimental Setup

- Machine 40-cores Intel Xeon CPU E5-2640 @ 2.40GHz with 128GB of RAM on Ubuntu 16.04
- Starting plain CNNs trained using PyTorch
- The encoding and testing of each CNN and the encryption of the data is achieved through the C++ CrCNN library
- Experimental setting on MNIST:
 - 9-Layers CNN
 - 6-Layers CNN

Next Subsection

- Introduction and Motivations
- 2 Homomorphic Encryption and Brakerski/Fan-Vercauteren Scheme BFV - Problems
- 3 Proposed Methodology
 STEP 1 APPROXIMATION (OPTIONAL)
 STEP 2 ENCODING
 STEP 3 TESTING
- 4 Experimental Results
 Experimental Setup
 9 Layers CNN
- **5** Conclusions and Future Works

9 - Layers CNN (Approximation)

Starting CNN $\check{\Phi}$	Approximated CNN Φ
Convolution (5 \times 5 \times 20)	Convolution $(5 \times 5 \times 20)$
Average Pooling $(2 \times 2 \times 1)$	Average Pooling $(2 \times 2 \times 1)$
Batch Normalization	Batch Normalization
Convolution $(3 \times 3 \times 50)$	Convolution $(3 \times 3 \times 50)$
ReLU	Square
Average Pooling $(2 \times 2 \times 1)$	Average Pooling $(2 \times 2 \times 1)$
Batch Normalization	Batch Normalization
Fully Connected (800, 500)	Fully Connected (800, 500)
Fully Connected (500, 10)	Fully Connected (500, 10)

9 - Layers CNN (Encoding+Testing)

Relative testing error

$$\epsilon_{\Delta} = \frac{1}{|D|} \cdot \sum_{i \in |D|} \mathbb{I}(y_i \neq \tilde{y}_i) \geq 0$$

Can be added to the encoded model $\tilde{\varPhi}_{n,q,t}$ by non optimal encryption parameters

Binary Search $(n = 4096, q_{bits} = 109, max_reenc = 1, K = 40)$		
	Plaintext Mod Found $t = 2^{29}$	
ϵ_{Δ}	7/10000	
Time _{FW} [s]	69.07	
NB [bit]	69	

9 - Layers CNN (Timings+Accuracy Tracking)

Encoded CNN $\tilde{\Phi}_{n=4096,q,t=2^{29}}$	Threads' #	Time[s]	NB
Convolution $(5 \times 5 \times 20)$	20	30.73	69
Average Pooling $(2 \times 2 \times 1)$	1	2.45	64
Batch Normalization	1	2.03	61
Convolution $(3 \times 3 \times 50)$	50	7.89	59
Square	50	0.65	53
Average Pooling $(2 \times 2 \times 1)$	1	0.76	13
Decryption+Encryption	1	3.20	7
Batch Normalization	1	0.68	69
Fully Connected (800, 500)	40	18.23	67
Fully Connected (500, 10)	50	2.45	59

9 - Layers CNN (Timings+Accuracy Tracking)

Encoded CNN $ ilde{\Phi}_{n=4096,q,t=2^{29}}$	Threads' #	Time[s]	NB
Convolution $(5 \times 5 \times 20)$	20	30.73	69
Average Pooling $(2 \times 2 \times 1)$	1	2.45	64
Batch Normalization	1	2.03	61
Convolution $(3 \times 3 \times 50)$	50	7.89	59
Square	50	0.65	53
Average Pooling $(2 \times 2 \times 1)$	1	0.76	13
Decryption+Encryption	1	3.20	7
Batch Normalization	1	0.68	69
Fully Connected (800, 500)	40	18.23	67
Fully Connected (500, 10)	50	2.45	59

Accuracy 9-layers CNN				
Starting $reve{\Phi}$	Approximated Φ	Encoded $\tilde{\Phi}_{n=4096,q,t=2^{29}}$		
98.25%	97.05%	96.98%		

Conclusions and Future Works

This work:

- Proves that HE+CNNs is a solution to the privacy issues of cloud based ML
 - ...at the cost of a small accuracy loss and slower predictions.
- Provides a library to design privacy-preserving CNNs
 - freely downloadable at https://github.com/barlettacarmen/CrCNN

Further works can focus on:

- Performances improvement of the encoded CNN:
 - SIMD techniques
 - hardware accelerators, GPUs, FPGAs
- Training techniques of CNNs directly on encrypted data

Conclusions

Thank you for your attention

Questions?

Homomorphic Encryption

Definition

An encryption scheme that allows computations to be done directly on encrypted data is said to be a **homomorphic encryption scheme**.

- RSA (1978) had homomorphic properties, but Gentry (2009) proposed the 1st FHE scheme
 - Can perform an arbitrary number of additions and multiplications
 - Practical implementation is unfeasible
- Semantic Security property: encrypting the same information twice can produce different ciphertexts (Ciphertext indistinguishability under Chosen Plaintext Attack).

Security of Most Homomorphic Encryption Schemes

RLWE problem $\overset{as\ hard\ as}{\rightarrow}$ SVP $\overset{as\ hard\ as}{\rightarrow}$ NP-Hard

BFV scheme

- SecretKeyGen(λ) sample $\mathbf{s} \leftarrow \chi$ and output $\mathbf{s} k = \mathbf{s}$
- PublicKeyGen(sk) set $\mathbf{s} = s\mathbf{k}$, sample $\mathbf{a} \leftarrow R_q$, small error $\mathbf{e} \leftarrow \chi$ and output

$$pk = (\boldsymbol{p}_0, \boldsymbol{p}_1) \coloneqq ([-(\boldsymbol{a} \cdot \boldsymbol{s} + \boldsymbol{e})]_q, \boldsymbol{a})$$

• Encrypt(pk, m) to encrypt a message $m \in R_t$, sample $u, e_1, e_2 \leftarrow \chi$ and output

$$ct = (\boldsymbol{c}_0, \boldsymbol{c}_1) \coloneqq ([\boldsymbol{p}_0 \cdot \boldsymbol{u} + \boldsymbol{e}_1 + \Delta \cdot \boldsymbol{m}]_q, [\boldsymbol{p}_1 \cdot \boldsymbol{u} + \boldsymbol{e}_2]_q)$$

• Decrypt(sk, ct) set $m{s} = sk$ and $ct = (m{c}_0, m{c}_1)$ and compute

$$\left[\left\lfloor \frac{t \cdot [\boldsymbol{c}_0 + \boldsymbol{c}_1 \cdot \boldsymbol{s}]_q}{q} \right\rfloor \right]_t$$

Discrete Gaussian Distribution

Definition

Discrete Gaussian Distribution $D_{L,r}$ is the distribution whose support is L (which is typically a lattice), and in which the probability of each $\mathbf{x} \in L$ is proportional to $exp(-\pi|\mathbf{x}/r|^2)$

 $D_{L,2}$ (left) and $D_{L,1}$ (right) for a two-dimensional lattice L. The z-axis represents probability.

BFV Plain Multiplication

Let $\operatorname{ct}=(x_0,x_1)$ be a ciphertext encrypting m_1 with noise v, and let m_2 be a plaintext polynomial. Let N_{m_2} be an upper bound on the number of non-zero terms in the polynomial m_2 . Let $\operatorname{ct}_{pmult}$ denote the ciphertext obtained by plain multiplication of ct with m_2 . Then the noise in the plain product $\operatorname{ct}_{pmult}$ is $v_{pmult}=m_2v$, and can be bounded as $||v_{pmult}||_\infty \leq N_{m_2}||m_2||_\infty ||v||_\infty$. Proof. By definition $\operatorname{ct}_{pmult}=(m_2x_0,m_2x_1)$. Hence for some polynomials a,a' with integer coefficients,

$$\frac{t}{q} \operatorname{ct}_{pmult}(s) = \frac{t}{q} (m_2 x_0 + m_2 x_1 s)
= m_2 \frac{t}{q} (x_0 + x_1 s)
= m_2 \frac{t}{q} ct(s)
= m_2 (m_1 + v + at)
= m_1 m_2 + m_2 v + m_2 at
= [m_1 m_2]_t + m_2 v + (m_2 a - a') t.$$

where in the last line has been used $[m_1m_2]_t = m_1m_2 + a't$. Hence the noise is $v_{pmult} = m_2v$ and can be bounded as $||v_{pmult}||_{\infty} \le N_{m_1}||m_2||_{\infty} ||v||_{\infty}$.

BFV Plain Addition

Let $ct = (x_0, x_1)$ be a ciphertext encrypting m_1 with noise v, and let m_2 be a plaintext polynomial. Let ct_{padd} denote the ciphertext obtained by plain addition of ct with m_2 .

Then the noise in $\operatorname{ct}_{\operatorname{padd}}$ is $v_{\operatorname{padd}} = v - \frac{r_{\operatorname{t}}(q)}{q} m_2$, and the bound is

$$||v_{padd}||_{\infty} \leq ||v||_{\infty} + \frac{r_t(q)}{q} ||m_2||_{\infty}.$$

Proof. By definition of plain addition $\operatorname{ct}_{\mathsf{padd}} = (x_0 + \Delta m_2, x_1)$. Hence for some polynomials a, a' with integer coefficients,

$$\begin{split} \frac{t}{q} \mathrm{ct}_{\mathsf{padd}}(s) &= \frac{t}{q} (x_0 + \Delta m_2 + x_1 s) \\ &= \frac{\Delta t}{q} m_2 + \frac{t}{q} (x_0 + x_1 s) \\ &= \frac{\Delta t}{q} m_2 + \frac{t}{q} ct(s) \\ &= m_1 + v + \frac{q - r_t(q)}{q} m_2 + at \text{ (because } q = \Delta \cdot t + r_t(q)) \\ &= m_1 + m_2 + v - \frac{r_t(q)}{q} m_2 + at \\ &= [m_1 + m_2]_t + v - \frac{r_t(q)}{q} m_2 + (a - a')t, \end{split}$$

where in the last line has been used $[m_1 + m_2]_t = m_1 + m_2 + a't$. Hence the noise is $v_{padd} = v - \frac{r_t(q)}{q} m_2$ and can be bounded as $||v_{padd}||_{\infty} \le ||v||_{\infty} + \frac{r_t(q)}{q} ||m_2||_{\infty}$.

Default pairs (n, q) for 128-bit, 192-bit, and 256-bit λ -security levels.

		Bit-length of q	
n	128-bit security	192-bit security	256-bit security
1024	27	19	14
2048	54	37	29
4096	109	75	58
8192	218	152	118
16384	438	300	237
32768	881	600	476

At present the following algorithms are covered:

- meet-in-the-middle exhaustive search
- Coded-BKW
- dual-lattice attack and small/sparse secret variant
- lattice-reduction + enumeration
- primal attack via uSVP
- Arora-Ge algorithm using Gröbner bases

Heuristic Binary Search (Follow-up 1)

min pla	nin plain mod optimal plain mod		max plain mod
	Mispredicted	Success	Out of Budget
min plain mod max plain m			max plain mod
	Mispredicted		Out of Budget


```
Input: Model \Phi, sorted list t_{list}, t_{min} and t_{max}, security level \lambda, q_0, number of K images to test
Output: Plain modulus t or NOT FOUND T
  1:
       function SEARCH_T(\Phi, t_{list}, t_{min}, t_{max}, \lambda, q_0, K)
  2:
           if t_{max} - t_{min} = 1 then
                                                                                                                       ▶ Base Case
  3:
               test \leftarrow TEST\_PLAIN\_MOD(\Phi, t_{list}[t_{min}], \lambda, q_0, K)
4:
5:
6:
7:
8:
9:
10:
               if test=SUCCESS then
                   return t_{list}[t_{min}]
               end if
               if test=OUT_OF_BUDGET then
                   return NOT FOUND T
               end if
               if TEST_PLAIN_MOD(\Phi, t_{list}[t_{max}], \lambda, q_0, K)=SUCCESS then
11:
                   return tlist [tmax]
12:
13:
14:
15:
               end if
               return NOT FOUND T
           end if
           t_{index} \leftarrow t_{min} + (t_{max} - t_{min})/2
16:
           test \leftarrow TEST\_PLAIN\_MOD(\Phi, t_{list}[t_{index}], \lambda, q_0, K)
17:
           if test=SUCCESS or test=OUT OF BUDGET then
                                                                                                                          ⊳ Go Left
18:
               t_{smaller} \leftarrow SEARCH_{-}T(\Phi, t_{list}, t_{min}, t_{max} - 1, \lambda, q_0, K)
19:
               if t_{smaller} > 0 then
                                                                                                            20:
                   return t<sub>smaller</sub>
21:
22:
23:
               end if
               if test=SUCCESS then
                                                                                             return t_{list}[t_{index}]
24:
25:
26:
27:
               end if
               return NOT FOUND T
                                                                                         end if
           if t_{index} > t_{max} then
                                                                                                        \triangleright p_mod needed \notin T_{range}
28:
29:
30:
               return NOT_FOUND_T
           end if
           return SEARCH_T(\Phi, t_{list}, t_{min} + 1, t_{max}, \lambda, q_0, K)

⊳ Go Right
```

Test Plain Modulus

```
1: global variables
2:
3:
                                                                                                            \triangleright predicions given by model \Phi
                                                                                                                                      end global variables
Input: Model \Phi, four integers plain modulus to test t_{rest}, secuity level \lambda, upper bound for the coefficient modulus q_0, K
     images to test
Output: SUCCESS, OUT_OF_BUDGET or MISPREDICTED
5: function TEST_PLAIN_MOD(Φ, t<sub>test</sub>, λ, q<sub>0</sub>, K)
6:
         t \leftarrow t_{test}
                                                                                                               ▷ set encryption parameters
7:
8:
         q \leftarrow q_0
         n \leftarrow \lambda(q_0)
         sk \leftarrow GEN\_SEC\_KEY(n, a, t)
10:
          pk \leftarrow \text{GEN\_PUB\_KEY}(sk)
11:
          \tilde{\Phi} \leftarrow \mathsf{ENCODE}(\Phi, n, t)
                                                                                                                 \triangleright Transform each \theta_i in \tilde{\theta}_i
12:
13:
          for k in K do
               Enc(k) \leftarrow ENCRYPT(ENCODE(k, n, t), pk)
14:
               try
15:
                   Enc(y_k) \leftarrow \tilde{\Phi}(Enc(k))
                                                                                                                                     Forward
16:
               catch Out_Of_Budget_Exception
17:
                   return OUT_OF_BUDGET
18:
               end try
19:
               \tilde{y_k} \leftarrow \mathsf{DECRYPT}(Enc(y_k), sk)
20:
               if \tilde{v_{\nu}} \neq v_{\nu} then
                   return MISPREDICTED
               end if
          end for
          return SUCCESS
       end function
```

Case Study 2: 6-Layers CNN

Encoded CNN	Threads' #	Time(s)	NB
Convolution $(5 \times 5 \times 32)$	32	3.35	28
Average Pooling $(2 \times 2 \times 1)$	1	1.22	23
Convolution $(5 \times 5 \times 64)$	64	23.88	20
Average Pooling $(2 \times 2 \times 1)$	1	0.39	12
${\sf Decryption} + {\sf Encryption}$	1	1.77	7
Fully Connected (1024, 512)	42	4.34	28
Fully Connected (512, 10)	42	0.62	20

Binary Search			
Partial Full		Full	
	$t = 2^{16}$	$t = 2^{18}$	
ϵ_{Δ}	15/10000	0	
$Time_{FW}$	35.58	35.55	
NB	28	26	

Accuracy 6-layers CNN		
	Starting $reve{\Phi}$	Encoded $\tilde{\Phi}_{n=2048,q,t=2^{16}}$
	90%	89.85%
		<u> </u>