Claims

- 1. A method for generating an undeniable signature $(y_1, ..., y_t)$ on a set of data, the method comprising the following steps:
- transforming the set of data (m) to a sequence of a predetermined number (t) of blocks (x_1, \ldots, x_t), these blocks being members of an Abelian group, this transformation being a one way function,
- applying to each block (x_i) a group homomorphism (f) to obtain a resulting value (y_i) , in which a number of elements of an initial group (G) is larger than the number of elements (d) of a destination group (H).
- 2. The method of claim 1, wherein the initial group (G) is formed by invertible integers modulo n, i.e. \vec{Z}_n .
- 3. The method according to claim 2, wherein the group homomorphism (f) computation is based on computation of a residue character (χ) on a set of elements Z_n .
- 4. The method according to claim 3, wherein the residue character (χ) computation in based on a parameter (π) serving as a key.
- 5. The method according to the claim 4, wherein this key parameter (π) is determined such as : $\pi \cdot \overline{\pi} = n$, $\overline{\pi}$ being the complex conjugate of π .
- 6. The method according to claim 2, wherein the group homomorphism (f) computation is determined in raising an element of Z_n to the power of r(q-1), in which $n = p \cdot q$ such that p = rd + 1 and q are prime, gcd(r, d) = 1, gcd(q 1, d) = 1, then by computing a discrete logarithm.
- 7. The method according to claim 6, wherein the group homomorphism is calculated using a factorization of n.

- 8. The method according to claim 1, wherein the length of the signature is dependent of the number of elements of the destination group (d) and the number of blocks (t).
- 9. The method according to claim 4, wherein the parameter (π) is a secret key on an asymmetric key pair public/secret.
- 10. A Method of confirming by a Verifier an undeniable signature $(y_1, ..., y_t)$ of a set of data (m) generated by a Signer taking into account a predefined security parameter (k) of the confirmation protocol, this Signer having a public/secret key pair, this method comprising the following steps:
- obtaining a personal value (ρ) from the Signer, this personal value being part of the public key (G, H, d, ρ , (e₁, ... e_s)) of the Signer,
- extracting a first sequence of elements (e₁, ... e_s) from the public key,
- generating a second sequence of elements $(g_1, ..., g_s)$ from the personal value (ρ) ,
- generating a third sequence of elements $(x_1, ..., x_t)$ from the set of data (m),
- randomly picking challenge parameters $r_i \in G$ and $a_{ij} \in Z_d$ for $i=1,\ldots,k$ and $j=1,\ldots,s+t$ and computing a challenge value $u_i=dr_i+a_{i1}g_1+\ldots a_{is}g_s+a_{is+1}y_1+\ldots+a_{is+t}y_t$,
- sending by the Verifier the challenge value uito the Signer,
- receiving from the Signer a commitment value ($\langle v_i \rangle$), this commitment value ($\langle v_i \rangle$) being calculated by the Signer based on a response value $v_i = f(u_i)$,
- sending by the Verifier the challenge parameters r_i and a_{ij} to the Signer,
- verifying by the Signer whether $u_i = dr_i + a_{i1}g_1 + ... + a_{is+1}y_1 + ... + a_{is+t}y_t$, and in the positive event, opening by the Signer the commitment on the response value (v_i) ,

- verifying by the Verifier whether $v_i = a_{i1}e_1 + ... + a_{is}e_s + a_{is+1}y_1 + ... + a_{is+t}y_t$.
- 11. A method for denying to a Verifier by a Signer on an alleged non-signature (z1, ..., zt) of a set of data (m), this signature being supposedly generated according to claim 1 by the Signer, this Signer having a public/secret key pair, this method taking into account a predefined security parameter (ℓ) of the denial protocol and comprising the following steps:
- obtaining by the Verifier a personal value (ρ) of the Signer, this personal value being part of the public key (G, H, d, ρ , (e_1 , ... e_s)) of the Signer,
- extracting by the Verifier a first sequence of elements ($e_1, \dots e_s$) from the public key,
- generating by the Verifier and the Signer a second sequence of elements (g_1 , ... g_s) from the personal value (ρ),
- generating by the Verifier and the Signer a third sequence of elements $(x_1, ..., x_i)$ from the set of data (m),
- calculating by the Signer the true signature $(y_1, ..., y_t)$,
- repeating the following steps ℓ times, ℓ being the predetermined security parameter,
 - randomly picking by the Verifier challenge parameters $r_j \in G$ and $a_{ji} \in Z_d$ for i
 - = 1, ..., s and j = 1, ..., t and $\lambda \in \vec{Z_p}$ where p is the smallest prime dividing d,
 - computing $u_j := dr_j + a_{j1}g_1 + \dots + a_{js}g_s + \lambda x_j$, and $w_j := a_{j1}e_1 + \dots + a_{js}e_s + \lambda z_j$ for $j = 1 \dots t$,
 - sending by the Verifier the challenge values ui and wi to the Signer,
 - computing by the Signer a response test value $TV_i := (z_i y_i)$.
 - for each j = 1 to t, determining whether the test value $TV_i = 0$.

- in the negative event, calculating a test parameter λ_j according to the following formula : w_j - v_j , = λ_j (z_j - y_j)
- determining an intermediate value IV, this value being equal to one valid test parameter λ and in case of no valid test parameter is found, selecting as intermediate value a random value,
- sending a commitment value CT based on the intermediate value IV, to the Verifier,
- sending by the Verifier the challenge parameters \mathbf{r}_{j} , \mathbf{a}_{ji} and test parameter λ to the Signer,
- verifying by the Signer whether $u_j = dr_j + a_{j1}g_1 + ... a_{js}g_s + \lambda x_j$ and $w_j := a_{j1}e_1 + ... a_{js}e_s + \lambda z_j$ for j = 1 .. t hold, in the positive event, the Signer opens the commitment on the intermediate value (IV) to the Verifier.
- verifying by the Verifier that the test parameter λ is equal to the intermediate value IV.
- 12. The method of claim 11, in which the determination of the valid test parameter comprises the check whether $(w_i-v_{i,})$ and (z_i-y_i) are not equal to 0.
- 13. The method of claim 11, in which j > 1, the determination of the valid test parameter comprises the check whether $(w_j-v_{j,})$ and (z_j-y_j) are not equal to 0, and that all of the test parameters are the same.