Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Héctor Pastén

Curso: Teoría de Números

Fecha: 18 de agosto de 2023

Ayudante: José Cuevas Barrientos

Sigla: MAT2225

Congruencias y funciones multiplicativas

1. Congruencias

Primero un par de problemas de práctica:

- 1. (Gersónides) Las únicas potencias consecutivas de 2 y 3 son 1, 2, 3, 4, 8 y 9.
- 2. Demuestre que la ecuación diofantina $x^2 + y^2 = 4z + 3$ no tiene soluciones enteras.

Ahora subamos de nivel:

3. Considere la sucesión

$$q_n := \underbrace{33\dots33}_{n \text{ veces}} 1.$$

Demuestre que contiene infinitos números compuestos.

Lo divertido de la sucesión es que q_1, q_2, \ldots, q_7 son todos primos y $q_8 = 17 \cdot 19607843$ es el primer número compuesto en ella.

4. (Japón 1999) Sea $f(x) := x^3 + 17$. Demuestre que para todo natural $n \ge 2$ existe un entero x tal que $3^n \mid f(x)$ pero $3^{n+1} \nmid f(x)$.

2. Funciones aritméticas y multiplicativas

Recuérdese:

Definición 2.1: Una función aritmética es una función $f: \mathbb{N}_{\neq 0} \to \mathbb{C}$. Una función aritmética no nula se dice:

Completamente multiplicativa: Si para todo $n, m \in \mathbb{N}_{\neq 0}$ se cumple que f(nm) = f(n)f(m). Multiplicativa: Si para todo par de naturales $n, m \in \mathbb{N}_{\neq 0}$ coprimos se cumple que f(nm) = f(n)f(m).

- 5. (Prueba de sanidad) Sea f una función aritmética. Demuestre:
 - a) Si f es multiplicativa, entonces f(1) = 1.
 - b) Si f es multiplicativa, entonces está totalmente determinado por los valores que toma $f(p^{\alpha})$ para todo primo p y todo exponente $\alpha > 1$. En cuyo caso, dados p_1, \ldots, p_m primos distintos y $\alpha_i \in \mathbb{N}$ se tiene

$$f(p_1^{\alpha_1} \cdots p_m^{\alpha_m}) = f(p_1^{\alpha_1}) \cdot f(p_2^{\alpha_2}) \cdots f(p_m^{\alpha_m}).$$

c) Si f es completamente multiplicativa, entonces está totalmente determinado por los valores que toma f(p) para todo primo p. En cuyo caso, dados p_1, \ldots, p_m primos distintos y $\alpha_i \in \mathbb{N}$ se tiene

$$f(p_1^{\alpha_1}\cdots p_m^{\alpha_m})=f(p_1)^{\alpha_1}\cdot f(p_2)^{\alpha_2}\cdots f(p_m)^{\alpha_m}.$$

- 6. Demuestre que las siguientes son funciones multiplicativas:
 - a) La función de Möbius, dada por

$$\mu(n) := \begin{cases} (-1)^r, & \text{si } n = p_1 \cdots p_r, \text{ con } p_i \text{ primos distintos,} \\ 0, & \text{si existe un primo } p \text{ tal que } p^2 \mid n. \end{cases}$$

b) Las funciones de la forma:

$$\sigma_s(n) := \sum_{d|n} d^s, \qquad s \in \mathbb{Z}_{\geq 0}.$$

En particular, denotamos $\tau(n) := \sigma_0(n)$ la función que cuenta la cantidad de divisores de n; y $\sigma(n) := \sigma_1(n)$ la función que suma los divisores de n.

- 7. (Corolario) Sea $n \in \mathbb{N}$ con factorización prima $n = p_1^{\alpha_1} \cdots p_m^{\alpha_m}$. Concluya lo siguiente:
 - a) La cantidad de divisores que posee es

$$\tau(n) = (\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_m + 1).$$

b) La suma de sus divisores es

$$\sigma(n) = \frac{p_1^{\alpha_1+1}-1}{p_1-1} \cdot \frac{p_2^{\alpha_2+1}-1}{p_2-1} \cdots \frac{p_m^{\alpha_m+1}-1}{p_m-1}.$$

Definición 2.2: Se dice que un número natural n es **perfecto** si es igual a la suma de los divisores menores que él, o equivalentemente, si $\sigma(n) = 2n$.

Un ejemplo de un número perfecto es el 6 pues 6 = 1 + 2 + 3.

- 8. (Euclides-Euler) Demuestre que un número par es perfecto syss es de la forma $2^{n-1}(2^n-1)$, donde $p:=2^n-1$ es un número primo. (Los primos de la forma 2^n-1 se dicen primos de Mersenne.)
- 9. (Euler) Demuestre que un número impar perfecto es de la forma $p^r m^2$ donde $p \nmid m$ y $p \equiv r \equiv 1 \pmod 4$.

Problemas abiertos

- ¿Habrán infinitos primos de Mersenne?
- ¿Existen números impares perfectos? Por computación sabemos que, de existir, han de ser mayores que 10¹⁵⁰⁰ (cfr. Ochem y Rao [4]).

La expresión del enunciado 9 puede refinarse, uno puede demostrar (sin tanto esfuerzo) que r=1 (cfr. de Souza [3]).

• ¿Existen números n tales que $\sigma(n) = 2n + 1$?

REFERENCIAS Y LECTURAS ADICIONALES

- 1. Andreescu, T. y Andrica, D. Number Theory (Birkäuser Boston, 2009).
- 2. Burton, D. M. Elementary Number Theory (McGraw-Hill, 1991).
- 3. De Souza, A. N. Where do odd perfect numbers live? 2018. arXiv: 1801.06182 [math.NT].
- 4. OCHEM, P. y RAO, M. Odd perfect numbers are greater than 10¹⁵⁰⁰. *Math. Comp.* **81**, 1869-1877. doi:10.1090/S0025-5718-2012-02563-4 (2012).

Correo electrónico: josecuevasbtos@uc.cl