Université de Montpellier Faculté des Sciences

Année 2017-2018

Licence L2 - Techniques mathématiques EEA

Rattrapage du contrôle continu - 2 Mars 2018 - Durée : 2h Documents interdits. Calculatrice non programmable autorisée.

Devoir noté sur 40 points

Les calculs et les méthodes utilisés devront être clairement justifiés. Une importance particulière sera apportée à la présentation. Les exercices devront être faits dans l'ordre, les étapes séparées, et les résultats soulignés.

Exercice 1

(3 points) Calculer les limites suivantes:

(a)
$$l_1 = \lim_{x \to 1} \frac{\sqrt{3+x} - 2}{x-1}$$
 (b) $l_2 = \lim_{x \to 0} \frac{1 - \cos x}{x^2}$

(b)
$$l_2 = \lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

Exercice 2

(7 points)

- 1. Calculer les dérivées successives de la fonction f définie par $f(x) = \ln(1-x)$.
- 2. Rappeler la formule de Taylor permettant de calculer le développement limité d'ordre n d'une fonction F au point x = 0.
- **3.** En déduire le développement limité de f en 0 : $f(x) = -x x^2/2 x^3/3 \cdots x^n/n + o(x^n)$.

Exercice 3

(6 points) Déterminer les primitives suivantes :

(a)
$$\int \frac{1}{x(1+\ln^2(x))} dx$$
 (b) $\int \frac{x^3}{x^2-4} dx$

$$\mathbf{(b)} \int \frac{x^3}{x^2 - 4} dx$$

Exercice 4

(6 points) Calculer de deux manières différentes les intégrales suivantes :

$$I = \int_0^{+\infty} e^{-x} \cos x \, dx$$
 et $J = \int_0^{+\infty} e^{-x} \sin x \, dx$.

(4 points) Calculer la surface de la partie Δ du plan délimitée par les portions de courbes d'équations $\{x^2 - y = 0\}$ et $\{(x - 1)^2 + y^2 = 1\}$, pour $x \in [0, 1]$ et $y \ge 0$.

Exercice 6 (3 points) Calculer
$$\iint_{[1,2]\times[0,1]} y^x dx$$
.

(4 points) Soit $I = \int_{-\infty}^{+\infty} e^{-x^2} dx$. Calculer I^2 au moyen d'une intégrale double et en déduire I.

Exercice 8

(3 points) Résoudre l'équation différentielle : y' - 2y = 4, avec y(0) = 0.

Exercice 9

(4 points) Pour $a, b, c \in \mathbb{R}$ donner les solutions possibles de l'équation différentielle : ay'' + by' + cy = 0.