

Center for Industrial

Mathematics (ZeTeM)

Mathematics / Computer science

Faculty 03

Deep Learning for Real Life Problems

Tom Freudenberg, Nick Heilenkötter, Janek Gödeke Heidelberg, 08.11.2023

Session to start with your own problem or

work on one of our prepared examples

Template: .../KoMSO-Workshop/examples/Templates

Duration: 60 minutes

When to Use DL for PDEs?

Use for

- Parameter studies
- Solving similar problems multiple times
- Extrapolation of data

When to Use DL for PDEs?

Use for

- Parameter studies
- Solving similar problems multiple times
- Extrapolation of data

Do not use for

- Computing forward solution once [Grossmann et al. 2023]
- Solutions with need of high accuracy

Challenges for PI-Deep Learning

- Accuracy (open problem)
- Convergence (NNs are non-convex)
- Balancing different loss terms (data, initial, boundary, PDE)
- Finding a fitting network architecture
- Different scales
- Choosing the training parameters

Strategies for Better Results

Implement solution features into architecture:

- Hard constrains [Liu et al. 2023]
- Fourier Features [Tancik et al. 2020]
- Stiff-PINNs [Ji et al. 2021]
- ..

Fourier Features

• Suppose function $u:[0,1] \to \mathbb{R}$ has high frequencies

$$u(x) \approx \sum_{k=1}^{N} a_k \cos(2\pi kx) + b_k \sin(2\pi kx)$$

 Training standard PINN might be difficult

$$u_{\theta}: [0,1] \longrightarrow \mathbb{R}$$

 $x \longmapsto u_{\theta}(x)$

Fourier Features

• Suppose function $u:[0,1] \to \mathbb{R}$ has high frequencies

$$u(x) \approx \sum_{k=1}^{N} a_k \cos(2\pi kx) + b_k \sin(2\pi kx)$$

 Training standard PINN might be difficult

$$u_{\theta}: [0,1] \longrightarrow \mathbb{R}$$
 $x \longmapsto u_{\theta}(x)$

♀ Use Fourier Features as an input:

$$u_{ heta}: [0,1] imes [0,1]^{2P} \longrightarrow \mathbb{R}$$
 $z := \begin{pmatrix} x \\ \cos(2\pi x) \\ \sin(2\pi x) \\ \vdots \\ \cos(2\pi P x) \\ \sin(2\pi P x) \end{pmatrix} \longmapsto u_{ heta}(z) pprox u(x)$

Fourier Features - Example

• Groundtruth: Orange curve

NN Reconstruction: Blue curve

Universität Bremen

4 Fourier Features

8 Fourier Features

Strategies for Better Results

Modify training goal:

- Learning on a domain decomposition [Jagtap and Karniadakis 2020]
- Variational formulation [Kharazmi et al. 2019]
- Learn coefficients of basis functions [Moseley et al. 2021]
- ...

Learning on a domain decomposition

Suppose solution

- has important local details or
- behaves differently on local sections

Standard PINN might:

- be inaccurate
- need large network → expensive

Learning on a domain decomposition

Suppose solution

- has important local details or
- behaves differently on local sections

Stitch multiple small PINNs together:

$$u_{\theta}^{k}:\Omega_{k}\to\mathbb{R}$$

$$\bigcup\Omega_{k}=\Omega$$

- be inaccurate
- need large network → expensive

Strategies for Better Results

Modify training procedure:

- Include prior knowledge (e.g symmetries)
- Enrich training with data points
- Nondimensionalization [Lin et al. 2021]
- Normalization of input and output [Rasht-Behesht et al. 2022]
- Combine Adam and LBFGS [He et al. 2020]
- ..

- Scale each input into range [−1, 1]
 - → Most activation functions have interesting behavior around 0
- Also normalize output of network:

$$u_{\theta}:\Omega\rightarrow [-1,1]^n$$

- → Needs a priori solution bounds!
- Learning of scaling no longer necessary

Literature

- T. G. Grossmann, U. J. Komorowska, J. Latz, C.-B. Schönlieb. *Can Physics-Informed Neural Networks beat the Finite Element Method?*, 2023.
- S. Liu, Z. Hao, C. Ying, H. Su, J. Zhu, Z. Cheng. A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs, 2023.
- M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ramamoorthi, J. T. Barron, R. Ng. Fourier Features Let Net- works Learn High Frequency Functions in Low Dimensional Domains, 2020.
- *=*/ ...

→ Prepared a small literature collection on Github:

https://github.com/TomF98/torchphysics/blob/KoMSO-Workshop/examples/ literature_collection.pdf