Modules

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 13, 2021

Overview

Modules

Direct Products and Direct Sums

Direct Products

Let $\{M_i: i \in I\}$ be a collection of R-modules. Then the Cartesian product of $\{M_i\}$ is the set $\prod M_i$ of all choice functions $f: I \to \bigcup M_i$. Write $(m_i)_{i \in I}$ instead for f where $m_i = f(i)$. Define $(m_i) + (m'_i)$ and $r(m_i)$ by

$$(m_i) + (m'_i) = (m_i + m'_i), r(m_i) = (rm_i).$$

Then $\prod M_i$ has an R-module structure.

Direct Sums

Consider a subset M of $\prod M_i$ such that the set of all $f \in \prod M_i$ such that $\{i : f(i) \neq 0\}$ is finite. Then for $f, g \in M$ and for $r \in R$, $f + g, rf \in M$. Hence M is a submodule of $\prod M_i$. We call M the direct sum of $\{M_i\}$, denoted by $\bigoplus M_i$.

Recall

If I is finite, then $M_1 \times \cdots \times M_n \cong M_1 \oplus \cdots \oplus M_n$.

Proposition

Let I be a nonempty index set and for each $i \in I$, let N_i be a submodule of M. The following are equivalent:

- (1) $\sum N_i \cong \bigoplus N_i$;
- (2) For any finite subset $\{i_1, \dots, i_k\}$ of I, $N_{i_1} \cap (N_{i_2} + \dots + N_{i_k}) = 0$;
- (3) For any finite subset $\{i_1, \dots, i_k\}$ of I, $N_{i_1} + \dots + N_{i_k} = N_{i_1} \oplus \dots \oplus N_{i_k}$;
- (4) For every $x \in \sum M_i$, there are unique elements $a_i \in N_i$ for all $i \in I$ such that all but only finite number of a_i are zero and $x = \sum a_i$,

where $\sum M_i$ is the submodule generated by all M_i .

Proposition

Suppose F is a free R-module with basis A. Then $F \cong \bigoplus_{a \in A} R$ (copy of R's).

Corollary

Let $\{F_i : i \in I\}$ be a collection of free R-modules. Then $\bigoplus F_i$ is again free.

Example (Direct products and direct sums may differ)

Let $I = \mathbb{Z}^+$. Then $\prod_{i \in I} \mathbb{Z} \neq \bigoplus_{i \in I} \mathbb{Z}$ because the latter is free but the formal is not.

Proposition

Let M_i, M, N_i, N be R-modules.

- (1) $\operatorname{Hom}_R(M, \prod N_i) \cong \prod \operatorname{Hom}_R(M, N_i)$.
- (2) $\operatorname{Hom}_R(\oplus M_i, N) \cong \prod \operatorname{Hom}_R(M_i, N).$

Let M be a right R-module and N_i be left R-modules. Then

$$M \otimes (\bigoplus N_i) \cong \bigoplus (M \otimes N_i)$$

as groups. If M is (S,R)-bimodule, then the above map is an S-module isomorphism.

The End