COMPUTER SCIENCE & IT

Lecture No.

Combinational Circuit

MUX & Question Discussion

DeMUX

Question	Discussion	Cont.	

A digital circuit is as given below:

A digital circuit is as given below: $= C \oplus S_1 \oplus S_0$

Output y is

$$A \oplus B \oplus C \qquad (b) \times A \odot B \oplus C$$

(c)
$$\times \overline{A \oplus B} \odot C \subset (d) \times A \oplus B \odot$$

A digital circuit is as given below:

Above circuit works as:

(a) X 3-input OR gate A (b) X 3-input NOR gate A

(c) 3-input AND gate 0 (d) 3-input NAND gate

Question 10) | 0 0 | 7 9 000 |

A digital circuit is as given below:

Output y will be:
$$Y(A,B,GD)$$

+ ABD.1

+ ABD.C-15

ABDC -> O

$$I_2$$

(a)
$$y = \Sigma (0,3,4,6,7,9,11,12,14,15)$$

$$I_3$$
 8:1

$$I_4$$

(b)
$$y = \Sigma(0,1,3,4,6,8,9,11,12,14,15)$$

$$I_{5}$$

$$I_6$$

$$I_6$$

$$I_6$$

(d)
$$y = \Sigma (0,3,4,6,9,10,11,12,14,15)$$

$$A = R$$

$$= \Xi(0,3,4,6,9,11,12,14,15)$$

(c)
$$y = \Sigma (0,3,4,6,9,11,12,14,15)$$

(d) $y = \Sigma (0,3,4,6,9,10,11,12,14,15)$

A 4 : 1 multiplexer is used for generating output carry of a full adder. A and B are bits to be added while C_{in} is input carry and C_{out} is output carry. Which of the following is choice of signals at I_0 , I_1 , I_2 , I_3 .

(a)
$$I_0 = 0$$
, $I_1 = C_{in}$, $I_2 = C_{in}$, $I_3 = 1$
(b) $I_0 = 1$, $I_1 = C_{in}$, $I_2 = C_{in}$, $I_3 = 1$
(c) $I_0 = C_{in}$, $I_1 = 0$, $I_2 = 1$, $I_3 = C_{in}$
(d) $I_0 = 0$, $I_1 = C_{in}$, $I_2 = 1$, $I_3 = C_{in}$
 $I_1 = C_{in}$, $I_2 = 1$, $I_3 = C_{in}$
 $I_3 = C_{in}$

A digital circuit is as given below:

A logical function is given as : $f(A, B, C) = \bar{A}B + B\bar{C} + AB = \sum$ Its implementation using MUX is given below. Then

$$=1$$
, $I_0=1$

$$-f(A, B, C)$$
 $B=0$, $C=1$, $f(A, B, C)=$

$$B=1, C=0$$
 $f(A,B,C)=\lambda$
 $B=1, C=1$ $f(A,B,C)=\lambda$

A MUX circuit is as given below:

Delay of each NOT gate $t_{\text{not}} = 4$ nsec, delay of AND gate is $t_{\text{AND}} = 3$ nsec, delay of OR gate is $t_{\text{OR}} = 4.5$ nsec and delay of each MUX is 5 nsec. If P, Q, R, S are applied at t = 0, then maximum delay in generating output y is $\frac{|gn \& C|}{|gn \& C|}$.

H.A. and F.A. using 2:1 MUX

H.A. using 2 : 1 MUX :

$$S = x \oplus y \longrightarrow 1(2:1) MUX$$

$$C = x \cdot y \longrightarrow 1(2:1) MUX$$

$$\begin{cases} 3(2:1) MUX \\ 3(2:1) MUX \end{cases}$$

Note: 3 (2:1) Mux is suggested to implement HA or H.S.

· 7 (2:1) MUX is graphised to implement F.A or F.S.

DeMUX

What is DeMUX?

Ly gt is combinational CKt having one ilp & many O/P and on the baxis of select line i/P is transferred to one of the olp line.

1:2 DeMUX

• 1:4 DeMUX

Higher order DeMUX using lower order DeMUX

• 1:4 Using 1:2
$$2+1=3=2^{2}$$

• 1:8 Using 1:2
$$4+2+1=7=2^3-1$$

• 1:16 Using 1:2
$$8+4+2+1=15=(2^4-1)$$

•
$$1:2^n \xrightarrow{\text{Using } 1:2} (2^n)$$

• 1:32
$$\frac{\text{Using 1:4}}{\binom{8+2}{(1.4)}} + 1(1.2) = 11(1.4)$$

one(1.4) will be und as (1.2)

(1:8)
$$\frac{1:2}{1:3}$$
 4+2+1
 L 52,51,51
 L I, $y_0 - y_7$

Q. 9 mplement (1:8) De MUX uning (1:4) De MUX. # Q. 9 mplement (1:32) De MUX uning (1:8) De MUX.

2 Minute Summary

→ MUX & Question Discurring → De MUX.

Thank you

Seldiers!

