17. 超纯 $Ga(CH_3)_3$ 是制备第三代半导体的支撑源材料之一,近年来,我国科技工作者开发了超纯纯化、超纯分析和超纯灌装一系列高新技术,在研制超纯 $Ga(CH_3)_3$ 方面取得了显著成果,工业上以粗镓为原料,制备超纯 $Ga(CH_3)_3$ 的工艺流程如下:

已知: ①金属 Ga 的化学性质和 Al 相似, Ga 的熔点为 29.8℃;

② Et₂O(乙醚)和 NR₃(三正辛胺)在上述流程中可作为配体;

③相关物质的沸点:

物质	Ga(CH ₃) ₃	Et ₂ O	CH ₃ I	NR ₃
沸点/℃	55.7	34.6	42.4	365.8

回答下列问题:

- (1) 晶体 Ga(CH₃), 的晶体类型是 ;
- (2)"电解精炼"装置如图所示,电解池温度控制在40-45℃的原因是 , 阴极的电极反应式为

- (3)"合成 $Ga(CH_3)_3(Et_2O)$ "工序中的产物还包括 MgI_2 和 CH_3MgI ,写出该反应的化学方程式:_____;
- (4)"残渣"经纯水处理,能产生可燃性气体,该气体主要成分是;

(5)下列说法错误的是_____;
A. 流程中 Et₂O 得到了循环利用
B. 流程中, "合成 Ga₂Mg₅"至"工序 X"需在无水无氧的条件下进行
C. "工序 X"的作用是解配 Ga (CH₃)₃ (NR₃), 并蒸出 Ga (CH₃)₃
D. 用核磁共振氢谱不能区分 Ga (CH₃)₃和 CH₃I
(6)直接分解 Ga (CH₃)₃(Et₂O) 不能制备超纯 Ga (CH₃)₃, 而本流程采用"配体交换"工艺制备超纯 Ga (CH₃)₃ 的理由是_____;
(7)比较分子中的 C - Ga - C 键角大小: Ga (CH₃)₃ ______ Ga (CH₃)₃ (Et₂O) (填">""<"或"="), 其原

因是____。