The Calderón Problem

on Riemannian Manifolds

Colin Roberts

In 1980, Alberto Calderón proposed a problem in his paper On an inverse

boundary value problem.

■ He wanted to know if one can determine the conductivity of a domain by making voltage and current measurements along the boundary.

- He wanted to know if one can determine the conductivity of a domain by making voltage and current measurements along the boundary.
- making voltage and current measurements along the boundary.

 This is the Electrical Impedence Tomography problem.

- He wanted to know if one can determine the conductivity of a domain by making voltage and current measurements along the boundary.
- This is the Electrical Impedence Tomography problem.
- Originally his motivation was for oil prospecting.

- He wanted to know if one can determine the conductivity of a domain by making voltage and current measurements along the boundary.
- This is the Electrical Impedence Tomography problem.
- Originally his motivation was for oil prospecting.
- This problem sparked interest due to its usefulness in geophysical and medical imaging.

The two main groups working on this problem now are

The two main groups working on this problem now are
■ Practitioners: Work with incomplete and noisy data to recover information
in the real world.

The two main groups working on this problem now are...

- Practitioners: Work with incomplete and noisy data to recover information in the real world.
- Theorists: Work in ideal scenarios with a chosen amount of information to see the scope of possibilities.

The two main groups working on this problem now are...

- Practitioners: Work with incomplete and noisy data to recover information in the real world.
- Theorists: Work in ideal scenarios with a chosen amount of information to see the scope of possibilities.

<u>Idea:</u> Given a domain Ω with interior Ω^+ that we cannot probe, can we determine the conductivity γ matrix by studying the boundary $\partial\Omega$?

■ Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.

- Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.
- Apply a known voltage f at the boundary $\partial\Omega$. Hence $f = u|_{\partial\Omega}$.

- Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.
- Apply a known voltage f at the boundary $\partial\Omega$. Hence $f = u|_{\partial\Omega}$.
- Measure the current flux h through the boundary $\partial\Omega$. Hence, $h = \frac{\partial u}{\partial\nu}$.

- Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.
- Apply a known voltage f at the boundary $\partial\Omega$. Hence $f = u|_{\partial\Omega}$.
- Measure the current flux h through the boundary $\partial\Omega$. Hence, $h = \frac{\partial u}{\partial\nu}$.
- This defines the voltage-to-current map Λ so that $\Lambda(f) = h$.

- Ω^+ is free of charges, hence $\nabla \cdot (\gamma \nabla u) = 0$ in Ω^+ where u is the electrostatic potential.
- Apply a known voltage f at the boundary $\partial\Omega$. Hence $f = u|_{\partial\Omega}$.
- Measure the current flux h through the boundary $\partial\Omega$. Hence, $h = \frac{\partial u}{\partial\nu}$.
- This defines the voltage-to-current map Λ so that $\Lambda(f) = h$.
- Can we determine the conductivity matrix γ from Λ ?

■ Let (unknown) connected Ω be a smooth compact Riemannian manifold with boundary $\partial\Omega$.

- Let (unknown) connected Ω be a smooth compact Riemannian manifold with boundary $\partial\Omega$.
- Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.

- Let (unknown) connected Ω be a smooth compact Riemannian manifold with boundary $\partial\Omega$.
- Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.
- Let $\Delta u = 0$ in Ω^+ and u = f on $\partial \Omega$, with Δ the Hodge-Laplacian $d\delta + \delta d$.

- Let (unknown) connected Ω be a smooth compact Riemannian manifold with boundary $\partial\Omega$.
- Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.
- Let $\Delta u = 0$ in Ω^+ and u = f on $\partial \Omega$, with Δ the Hodge-Laplacian $d\delta + \delta d$.
- Dirichlet-to-Neumann operator Λ maps Dirichlet data $f = u|_{\partial\Omega}$ to $g = \frac{\partial u}{\partial \nu} = \iota^*(\star du)$.

- Let (unknown) connected Ω be a smooth compact Riemannian manifold with boundary $\partial\Omega$.
- Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.
- Let $\Delta u = 0$ in Ω^+ and u = f on $\partial \Omega$, with Δ the Hodge-Laplacian $d\delta + \delta d$.
- Dirichlet-to-Neumann operator Λ maps Dirichlet data $f = u|_{\partial\Omega}$ to $g = \frac{\partial u}{\partial \nu} = \iota^*(\star du)$.
- Recover g from knowing Λ .

- Let (unknown) connected Ω be a smooth compact Riemannian manifold with boundary $\partial\Omega$.
- Replace conductivity be represented by (unknown) g since $\gamma^{jk} = \sqrt{|g|}g^{jk}$.
- Let $\Delta u = 0$ in Ω^+ and u = f on $\partial \Omega$, with Δ the Hodge-Laplacian $d\delta + \delta d$.
- Dirichlet-to-Neumann operator Λ maps Dirichlet data $f = u|_{\partial\Omega}$ to $g = \frac{\partial u}{\partial \nu} = \iota^*(\star du)$.
- Recover g from knowing Λ .
- The EIT problem and the Calderón problem on manifolds are equivalent in dimensions $n \neq 2$.