MATH 722 HOMEWORK

MARIO L. GUTIERREZ ABED PROF. B. SHAY

Problem 1. i) Prove that every ring $A \neq 0$ has at least one maximal ideal. ii) Prove that if A is a ring and \mathfrak{m} is a maximal ideal of A, then A/\mathfrak{m} is a field.

Proof of i). Let Σ be the set of all ideals not equal to $\langle 1 \rangle$ in A. Now order Σ by inclusion (note that Σ is not empty, since $0 \in \Sigma$). We must show that every chain in Σ has an upper bound in Σ . Let (\mathfrak{a}_{α}) be a chain of ideals in Σ , so that for each pair of indices α, β we have either

$$\mathfrak{a}_{\alpha} \subseteq \mathfrak{a}_{\beta}$$
 or $\mathfrak{a}_{\beta} \subseteq \mathfrak{a}_{\alpha}$.

Let $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. We claim that \mathfrak{a} is an ideal. Indeed, \mathfrak{a} is clearly closed under multiplication by A, so we show closure under addition. Let $x, y \in \mathfrak{a}$. Then $x \in \mathfrak{a}_{\alpha}$ and $y \in \mathfrak{a}_{\beta}$ for some α, β . Then one of these ideals contains the other since they are elements of a chain, and we therefore have x, y contained in the same ideal and thus $x + y \in \mathfrak{a}$. Note that $1 \notin \mathfrak{a}$ since $1 \notin \mathfrak{a}_{\alpha}$ for any α . Hence $\mathfrak{a} \in \Sigma$ and \mathfrak{a} is an upper bound of the chain. Thus, by Zorn's Lemma, Σ contains a maximal element, which is a maximal ideal in A.

Proof of ii). Let \mathfrak{m} be maximal. Then since, by a previous proposition¹, there is a 1-1 correspondence between ideals of A/\mathfrak{m} and ideals containing \mathfrak{m} , the maximality of \mathfrak{m} says that A/\mathfrak{m} has no nontrivial ideals. But since we know that a ring with no nontrivial ideals must be a field, A/\mathfrak{m} is guaranteed to be a field.

Problem 2. Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1 (depending on x). Show that every prime ideal in A is maximal.

Proof. Let \mathfrak{p} be an arbitrary prime ideal of A. We need to show that the only ideal of A properly containing \mathfrak{p} is $\langle 1 \rangle$. Let \mathfrak{a} be an ideal such that $\mathfrak{p} \subsetneq \mathfrak{a}$. Then there exists an element $x \in a \setminus \mathfrak{p}$. But by assumption, $x^n = x$ for some n > 1. That is, $x - x^n = x(1 - x^{n-1}) = 0 \in \mathfrak{p}$, which implies that $(1 - x^{n-1}) \in \mathfrak{p} \subsetneq \mathfrak{a}$ since \mathfrak{p} is prime and $x \notin \mathfrak{p}$. But then we have $1 = (1 - x^{n-1}) + x^{n-1} \in \mathfrak{a}$. Hence $\mathfrak{a} = \langle 1 \rangle$ is the unit ideal and thus \mathfrak{p} must be maximal. Since \mathfrak{p} was arbitrary, we conclude that every prime ideal in A is maximal, as desired.

Problem 3. If A is a ring and \mathfrak{p} is a prime ideal of A, show that $S = A \setminus \mathfrak{p}$ is multiplicatively closed. Also, show that $S^{-1}A$ is a local ring.

Proof. It is obvious that $S = A \setminus \mathfrak{p}$ is multiplicatively closed. To see why, note that if $s, t \in A \setminus \mathfrak{p}$, then st must also be in $A \setminus \mathfrak{p}$ since, if otherwise $st \in \mathfrak{p}$, we must have that either $s \in \mathfrak{p}$ or $t \in \mathfrak{p}$ by primality of \mathfrak{p} . But this contradicts our assumption that $s, t \in A \setminus \mathfrak{p}$. $(\Rightarrow \Leftarrow)$

¹The proposition states that there is a 1-1 correspondence between the ideals \mathfrak{b} containing the ideal \mathfrak{a} and the ideals $\bar{\mathfrak{b}}$ of A/\mathfrak{a} , given by $\mathfrak{b} = \phi^{-1}(\bar{\mathfrak{b}})$.

Now, to show that S^{-1} is a local ring, note that the elements a/s (with $a \in \mathfrak{p}$ and $s \in S$) form an ideal \mathfrak{m} in $S^{-1}A$. If an element $b/t \not\in \mathfrak{m}$, then $b \not\in \mathfrak{p}$, hence $b \in S$ and therefore b/t is a unit in $S^{-1}A$. It then follows that if \mathfrak{a} is an ideal in $S^{-1}A$ and $\mathfrak{a} \not\subseteq \mathfrak{m}$, then \mathfrak{a} contains a unit and is therefore the whole ring. Hence \mathfrak{m} is the only maximal ideal in $S^{-1}A$, i.e., $S^{-1}A$ is a local ring.