PEP 151 Lab 2 Report Distance Determination from Cepheid Variable Stars

Name: Julia Nelson

I pledge my honor that I have abided by the Stevens Honor System.

I. Introduction

In this lab, we are using information on light cruves from Cepheid Variable star called "delta Cephei" to determine its distance. Both time/period and absolute and apparent magnitudes are taken into consideration.

II. Plots

(Insert the light curve and luminosity-period relation plots you made using either excel or other package. The plots need to have titles with units on the axes to clearly indicate what you're plotting.)

III. Results

From the light curve above, I have determined that the pulsation period of "delta Cephei" to be _____125_____ hours, or ______5.2____ days.

From the light curve, I have also determined the average apparent magnitude of "delta Cephei" to be

(4.37+3.45)/2 = 3.91

From the luminosity-period relation plot and use the pulsation period I have determined above estimate the absolute magnitude of "delta Cephei" to be $M =3.3$
Using the relation between apparent magnitude m and absolute magnitude M: m-M=2.5 $\log_{10}(d/10)^2$, I have calculated the distance d to be276.694 parsecs. m-M=2.5 $\log_{10}(d/10)^2$ 3.91-(-3.3) = 2.5 $\log_{10}(d/10)^2$ 7.21 = 2.5 $\log_{10}(d/10)^2$ d = 276.694
Looking up resources online (cite your source), the established value for the distance to "delta Cephei" is $\frac{n/a}{n}$ parsec.