

Lecture 14

VE 311 Analog Circuits

Xuyang Lu 2023 Summer

Recap of Last Lecture

- MOSFET Circuits:
 - Diode Connected Load and its variations.
 - Source degeneration

Topic to be covered

Review for the midterm

Format of the Midterm

- 100 minutes, 4 sections in total.
- 1st section consists of several quick-response questions, each shall take several minutes.
- The following four questions are
 - Diode Circuit
 - MOSFET
 - BJT

Suggestions on the Midterm

Suggestions on the exam:

- During preparation, you shall get very familiar with the basic concepts. Remember most of the stuff or know precisely where to find it in your cheating sheet.
- The suggested amount of time (which also implies the credit) is shown. If you find a question difficult, you can come back and solve it.
- If you find a question not reasonable, state your reason for receiving credit.
- To receive partial credit, you must write something.
- The exam will be curved, show your best effort.

Review of the first-half of our course

How to make an amplifier.

- 1 What is amplification? concepts: DC+AC / Diff+Comm Gain
- The big picture of amplifiers input/output impedance, non-ideal op-amp
- 3 Component required: Linear and non-linear components Diode, BJT, MOSFET Till this stage, we' ve only investigated Common Emitter/source.
- ① To be discussed: Inside an op-amp. (Bias, circuit components, Gain boosting, bandwidth and frequency.)

DC + AC Analysis

- DC sets the biasing condition.
- AC sets the gain at a specific frequency.

8/49

Small-Signal/Large-Signal

What is Amplification

Recap of Last Lecture

Review of Midterm (diode)

What is Amplification

Recap of Last Lecture

Review of Midterm (diode)

Non-Ideal Opamps

- Gain
- Rout
- Rin
- CMRR
- Offset voltage
- Clipping
- Bandwidth
- Slew rate

Non-Ideal Opamps

Recap of Last Lecture

Output Impedance

Make sure you know how to find out output impedance.

- How to find out the output impedance?
- \bullet Apply a test voltage and see what is V_T/i_T

In general, We want large input impedance and small output impedance.

Determining R_o

To find the output resistance, we follow the same procedure as we did for finding the Thevenin equivalent resistance.

- Short the input terminal, since the input is an independent voltage source
- $\bullet \ \, \mathsf{Apply} \,\, \mathsf{a} \,\, \mathsf{test} \,\, \mathsf{source} \,\, v_x$
- ullet Find i_x
- \bullet Find the ratio of $R_o=v_x/i_x$

Difference Amplifier

Cons: Input impedance is finite.

Gain is not high.

Difference Amplifier

Recap of Last Lecture

Use a unit gain buffer? Impedance is fine. Gain is not.

Difference Amplifier

Cons: Possible op-amps saturation Mismatch between branches

Instrumentation Amplifier

What defines a good amplifier? Common/ differential (CMRR ratio)

Instrumentation Amplifier

$$A_d \equiv \frac{v_O}{v_{Id}} = \frac{R_4}{R_3} \left(1 + \frac{R_2}{R_1} \right)$$

Common mode first stage gain = 1

Thevenin and Norton Model of Amps

Voltage Amp. Transimpedance Transconductance Current Amp.

Do we want large or small input/output impedance?

Thevenin and Norton Model of Amps

Do we want larger or smaller Rs to get the largest output voltage?

From a current perspective, do we want large or small Rs?

Review of the first-half of our course

How to make an amplifier.

- What is amplification? concepts: DC+AC / Diff+Comm Gain
- The big picture of amplifiers input/output impedance, non-ideal op-amp
- Component required: Linear and non-linear components Diode, BJT, MOSFET Till this stage, we' ve only investigated Common Emitter/source.
- To be discussed: Inside an op-amp. (Bias, circuit components, Gain boosting, bandwidth and frequency.)

Electrons and Holes

I will not ask you for any calculations on devices this time.

P-Type

$$E_i = q\phi_p \qquad \uparrow$$

$$np = n_i^2 \tag{1}$$

$$p = N_a = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{q\phi_p}{kT}} \tag{2}$$

$$n = \frac{n_i^2}{N_a} = n_i e^{\frac{E_f - E_i}{kT}} = n_i e^{\frac{-q\phi_p}{kT}}$$
 (3)

• Hu, Chenming. Modern semiconductor devices for integrated circuits.

 E_v

N-Type

(4)

(5)

$$n =$$

$$n = N_{d} = n_{i}e^{\frac{E_{f} - E_{i}}{kT}} = n_{i}e^{\frac{q\phi_{n}}{kT}} \tag{5}$$

 $np = n_i^2$

$$p = \frac{n_i^2}{N_d} = n_i e^{\frac{E_i - E_f}{kT}} = n_i e^{\frac{-q\phi_n}{kT}}$$
 (6)

 Magnitude of the current at any point is proportional to the slope of the concentration profile, or the concentration gradient, at that point

$$J_{D,n} = qD_n \frac{dn(x)}{dx} \tag{7}$$

Drift Current

Drift current is independent of the value of the depletion-layer voltage V_0 .

The Junction Built-in Voltage

$$V_0 = V_T \ln(\frac{N_A N_D}{n_i^2}) \tag{8}$$

Forward Bias (When $V_a > 0$)

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) > 0$$
 (9)

- $e^{\frac{qV_a}{kT}}$ is the diffusion current.
- -1 stands for the drift current.
- $Q(\phi_i V)$ The energy barrier formed by the diffusion built-in electric field becomes smaller. $q(\phi_i - V_a)$.
 - Meamen, Donald A. Semiconductor Physics and Devices Basic Principles, chapter 8

Forward Bias (When $V_a > 0$)

More electrons/holes diffuse to the opposite sides. \rightarrow Diffusion current increases.

Review of Midterm (diode)

- 2 The drift current is limited by the number of minority carriers on either side of the p-n junction and is unchanged by the increased E-field.
- 3 There is (+) net current flowing.
- The depletion width becomes narrower.

Recap of Last Lecture

Reverse Bias ($V_a < \mathbf{0}$)

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) < 0 \tag{10}$$

The energy barrier formed by the built-in electric field becomes larger, $q(\phi_i + V_a)$.

Reverse Bias ($V_a < 0$)

$$I_D = I_S \left(e^{\frac{qV_a}{kT}} - 1 \right) < 0 \tag{11}$$

- 1 Less electrons/holes diffuse to the $Q(\phi_i + V_A)$ opposite sides. o Diffusion current decreases, while drift current remains the same.
 - 2 There is (-) net current flowing.
 - The depletion width becomes wider.

Diode model

Remember the following equation

$$\bullet \ I = I_S \left(e^{V/\mathcal{V}_T} - 1 \right)$$

Ideal model

Constant voltage model

I will ask you to solve a diode related circuit!

Application of Diodes

Recap of Last Lecture

- Regulators
- Photodetectors
- Rectifiers

Regulator

Rectifier

There is not going to be a difficult calculation on a full-wave rectifier. All caps are treated as ideal since we did not cover the frequency domain yet.

Full Wave Rectifier

$$V_{dc} = V_s - V_{on} \tag{12}$$

$$I_{dc} = \frac{V_{dc}}{R} \tag{13}$$

$$V_r = (V_s - V_{on}) \left(1 - e^{-\frac{T/2 - \Delta T}{RC}} \right)$$
 (14)

$$\cong (V_s - V_{on}) \left(\frac{T/2 - \Delta T}{RC} \right) \text{ if } \left(\frac{T}{2} - \Delta T \right) \ll RC$$
 (15)

$$\cong (V_s - V_{on}) \left(\frac{T}{2RC}\right) \text{ if } \Delta T \ll \frac{T}{2}$$
 (16)

Ripple Voltage Derivation

$$V_{dc} = V_s - V_{on} \tag{17}$$

$$I_{dc} = \frac{V_{dc}}{R} \tag{18}$$

$$V_r = (V_s - V_{on}) (1 - e^{-\frac{T/2 - \Delta T}{RC}})$$
 (19)

Ripple Voltage Derivation

Time

I-V Curve of Solar Cells

Blue:

$$I = I_S \left(\mathbf{e}^{\frac{\mathrm{qV}}{\mathrm{kT}} - 1} \right)$$

Green:

$$I = I_S \left(\mathbf{e}^{\frac{\mathrm{qV}}{\mathrm{kT}} - 1} \right) - I_{SC}$$

IV of Diodes vs. that of solar Cells

What are fill factor and power conversion efficiency?

npn BJT Transistors

pnp BJT Transistors

$$I_R \cong 0$$
 (23)

$$I_C \cong I_E$$
 (24)

$$I_E = I_C + I_B \qquad (25)$$

$$\frac{I_C}{I_E} = \alpha \qquad (26)$$

$$\frac{C}{C_B} = \beta \qquad (27)$$

$$V_{BE}>0$$
 and $V_{CB}=0$ ($N_{d1}\gg N_a$, W_B very short)

- The n (electron) diffusion is much larger than the p (hole) diffusion at the Base-Emitter junction.
- Nearly all the n (electron) diffusion from the Base-Emitter junction pass through the Base, enter into the depletion region of the Base-Collector junction, and are swept to the Collector side by the built-in electric field.

NPN & PNP BJT Transistors

$$V_{CE} \ge V_{BE} \tag{28}$$

$$I_C = I_S \left(e^{\frac{qV}{BT}} - 1 \right) \tag{29}$$

$$\alpha = \frac{I_C}{I_E} \cong 1 \tag{30}$$

$$\beta = \frac{I_C}{I_B} = \frac{\alpha}{1 - \alpha} \tag{31}$$

 ${\cal I}_s$ is a constant in the spice model

Hybrid- π Model

$$I_C = I_S \left(e^{\frac{qV_{BE}}{kT}} - 1 \right) \left(1 + \frac{V_{CE}}{V_A} \right) \tag{32}$$

$$r_{\pi} = \frac{dV_{BE}}{dI_B} = \frac{1}{\frac{dI_C}{\beta dV_{BE}}}$$
 (33)

$$=\frac{1}{\frac{g_m}{\beta}} = \frac{\beta}{g_m} \tag{34}$$

$$g_m = \frac{dI_C}{dV_{BE}} \cong \frac{I_C}{kT/q}$$
 (35)

$$r_o = \frac{1}{\frac{dI_C}{dV_{CE}}} \cong \frac{V_A}{I_C}$$
 (36)

Impedance Looking into Emitter

$$r_e = \frac{r_\pi}{(\beta + 1)} \tag{37}$$

$$=\frac{1}{(\beta+1)}\frac{\beta}{g_m}=\frac{\alpha}{g_m}\cong\frac{1}{g_m} \qquad \text{(38)}$$

Common Emitter With Degeneration

$$\frac{v_o}{v_i} \approx \frac{-g_m R_C}{1 + g_m R_E} \tag{39}$$

the gain has reduced by $1+g_{m}R_{E} \\$

• If $g_m R_E \gg 1$ then the gain is:

$$\frac{v_o}{v_i} \approx \frac{-R_C}{R_E} \tag{40}$$

 This means the gain is independent of the BJT transistor