Combinatorial Rounding Section 7.3

1905026 - Wasif Hamid

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

17 November 2024

Presentation Outline

- Introduction
- Minimum Weight Vertex Cover
- Minimum 2-Satisfiability
- Scheduling on Unrelated Parallel Machines

Table of Contents

- Introduction
- 2 Minimum Weight Vertex Cover
- Minimum 2-Satisfiability
- 4 Scheduling on Unrelated Parallel Machines

Combinatorial Rounding

 To efficiently solve Integer Linear Programs, we can relax them into linear programs that permit real values, making them easier to solve. However, this may result in non-feasible solutions.

Combinatorial Rounding

- To efficiently solve Integer Linear Programs, we can relax them into linear programs that permit real values, making them easier to solve. However, this may result in non-feasible solutions.
- Combinatorial Rounding applies various rounding strategies to convert these optimal real-valued solutions into integer values, yielding feasible solutions that also provide good approximation ratios.

Table of Contents

- Introduction
- Minimum Weight Vertex Cover
- Minimum 2-Satisfiability
- 4 Scheduling on Unrelated Parallel Machines

Minimum Weight Vertex Cover

A vertex cover problem with weights on vertices and we need to minimize the weight of the solution set. For a graph G = (V, E) the ILP version of the problem can be defined below-

Min-WVC Integer Linear Program

Minimize
$$w_1x_1+w_2x_2+\cdots+w_nx_n$$
 Subject to $x_i+x_j\geq 1,$ for each $\{v_i,v_j\}\in E$ $x_i=0 \text{ or } 1,$ $i=1,2,3,\ldots,n$

Minimum Weight Vertex Cover

A vertex cover problem with weights on vertices and we need to minimize the weight of the solution set. For a graph G=(V,E) the ILP version of the problem can be defined below-

Min-WVC Integer Linear Program

Minimize
$$w_1x_1 + w_2x_2 + \cdots + w_nx_n$$

Subject to
$$x_i + x_j \ge 1$$
,

for each
$$\{v_i, v_j\} \in E$$

$$x_i = 0 \text{ or } 1,$$

$$i = 1, 2, 3, \ldots, n$$

Relaxation to Linear Program

$$x_i = 0$$
 or 1

$$0 < x_i < 1$$

Example

Example

Figure: Minimum Weight Vertex Cover

Linear Programming Approximation Algorithm for Min-WVC

Input: A graph G = (V, E) and a weight function $w : V \to \mathbb{N}$.

- **1.** Convert the input into a 0-1 integer program, and construct the corresponding linear program.
- **2.** Find an optimal solution x^* to the linear program (7.12).
- **3.** For i = 1, 2, ..., n:

$$x_i^A = \begin{cases} 1, & \text{if } x_i^* \ge \frac{1}{2}, \\ 0, & \text{otherwise.} \end{cases}$$

4. Output x^A .

For each $\{v_i, v_j\} \in E$:

$$x_i^* + x_j^* \ge 1 \Rightarrow \text{at least one of } x_i^* \text{ or } x_j^* \ge \frac{1}{2}.$$

For each $\{v_i, v_j\} \in E$:

$$x_i^* + x_j^* \ge 1 \Rightarrow$$
 at least one of x_i^* or $x_j^* \ge \frac{1}{2}$.

This implies that at least one of x_i^A or x_j^A is equal to 1, so x^A is a feasible solution to the integer program.

For each $\{v_i, v_j\} \in E$:

$$x_i^* + x_j^* \ge 1 \Rightarrow$$
 at least one of x_i^* or $x_j^* \ge \frac{1}{2}$.

This implies that at least one of x_i^A or x_j^A is equal to 1, so x^A is a feasible solution to the integer program.

Furthermore,

$$\sum_{i=1}^{n} w_i x_i^{A} \le 2 \sum_{i=1}^{n} w_i x_i^{*}.$$

This shows that the cost of x^A is at most twice the cost of the optimal solution x^* to the linear program.

For each $\{v_i, v_j\} \in E$:

$$x_i^* + x_j^* \ge 1 \Rightarrow$$
 at least one of x_i^* or $x_j^* \ge \frac{1}{2}$.

This implies that at least one of x_i^A or x_j^A is equal to 1, so x^A is a feasible solution to the integer program.

Furthermore,

$$\sum_{i=1}^{n} w_i x_i^{A} \le 2 \sum_{i=1}^{n} w_i x_i^{*}.$$

This shows that the cost of x^A is at most twice the cost of the optimal solution x^* to the linear program.

Therefore the proposed algorithm is a **polynomial-time 2-approximation** for Min-WVC.

Example

Example

Objective:

$$Z = x_1 + 4x_2 + 2x_3 + 6x_4 + 7x_5 + 3x_6$$

Constraints:

Constraints:
$$x_1 + x_2 \ge 1$$
, $x_1 + x_3 \ge 1$, $x_1 + x_4 \ge 1$, $x_2 + x_3 \ge 1$, $x_2 + x_5 \ge 1$, $x_2 + x_6 \ge 1$, $x_3 + x_5 \ge 1$ $x_4 + x_6 \ge 1$ $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

Example(Cont.)

Solving the linear program we get the following:

$$min(Z) = 10$$
 for $x^* = [1, 1, 1, 0, 0, 1]$

The solution is already integers so we do not need to round up or down.

So, the solution set is

$$C = \{1, 2, 3, 6\}$$

Example(Cont.)

Solving the linear program we get the following:

$$min(Z) = 10$$
 for $x^* = [1, 1, 1, 0, 0, 1]$

The solution is already integers so we do not need to round up or down.

So, the solution set is

$$C = \{1, 2, 3, 6\}$$

Table of Contents

- Introduction
- 2 Minimum Weight Vertex Cover
- Minimum 2-Satisfiability
- 4 Scheduling on Unrelated Parallel Machines

Minimum 2-Satisfiability

Problem Statement

Given a Boolean formula in 2-CNF, determine whether it is satisfiable and, if it is, find a satisfying assignment that contains a minimum number of true variables.

Min-2SAT Linear Program

Minimize
$$x_1+x_2+x_3+\cdots+x_n$$

Subject to $x_i+x_j\geq 1,$ for each clause $\{x_i\vee x_j\}$ in F $(1-x_i)+x_j\geq 1,$ for each clause $\{\bar{x}_i\vee x_j\}$ in F $(1-x_i)+(1-x_j)\geq 1,$ for each clause $\{\bar{x}_i\vee \bar{x}_j\}$ in F $0< x_i< 1,$ $i=1,2,3,\ldots,n$

Linear Programming Approximation Algorithm for Min-2SAT

```
Step 1: Convert formula F into a linear program and find an optimal solution x^* for it.

Step 2: for i \leftarrow 1 to n do

if x_i^* > \frac{1}{2} then

x_i^A \leftarrow 1
else if x_i^* < \frac{1}{2} then
x_i^A \leftarrow 0
end if
end for
```

Linear Programming Approximation Algorithm for Min-2SAT

```
Step 1: Convert formula F into a linear program and find an optimal solution x^* for it.

Step 2: for i \leftarrow 1 to n do

if x_i^* > \frac{1}{2} then

x_i^A \leftarrow 1

else if x_i^* < \frac{1}{2} then

x_i^A \leftarrow 0

end if
end for
```

```
Step 3: Let F_1 be the collection of all clauses both of whose two variables have x^* value equal to \frac{1}{2}, and let J \leftarrow \{j \mid 1 \leq j \leq n, x_j \text{ is in } F_1\}. Step 4: for i \leftarrow 1 to n do

if x_i^* = \frac{1}{2} and i \notin J then x_i^A \leftarrow 0
end if end for
```

Linear Programming Approximation Algorithm for Min-2SAT

```
Step 3: Let F_1 be the collection of
Step 1: Convert formula F into
                                                   all clauses both of whose two
   a linear program and find an
                                                   variables have x^* value equal to
   optimal solution x^* for it.
                                                   \frac{1}{2}, and let
Step 2: for i \leftarrow 1 to n do
                                                   J \leftarrow \{j \mid 1 \leq j \leq n, x_i \text{ is in } F_1\}.
       if x_i^* > \frac{1}{2} then
                                                Step 4: for i \leftarrow 1 to n do
           x_i^A \leftarrow 1
       else if x_i^* < \frac{1}{2} then
                                                        if x_i^* = \frac{1}{2} and i \notin J then
                                                            x_i^A \leftarrow 0
           x_i^A \leftarrow 0
                                                        end if
       end if
                                                   end for
   end for
Step 5: if F_1 is satisfiable then
        Let x_{I}^{A} be a satisfying assignment for F_{1} and output x^{A}.
   else
        Output "F is not satisfiable."
```

end if

Satisfiability and Performance Ratio of the algorithm

Satisfiability of Clauses

- By step (5), every clause in F_1 is satisfied by x^A .
- For a clause $(x_i \vee x_j)$ not in F_1 :
 - $x_i^* + x_j^* \ge 1$ implies $x_i^* > \frac{1}{2}$ or $x_j^* > \frac{1}{2}$.
 - By step (2), either $x_i^A = 1$ or $x_j^A = 1$, ensuring the clause $(x_i \vee x_j)$ is satisfied.
- The same reasoning applies to other types of clauses, such as $(x_i \vee \bar{x}_i)$ or $(\bar{x}_i \vee \bar{x}_i)$.

Satisfiability and Performance Ratio of the algorithm

Satisfiability of Clauses

- By step (5), every clause in F_1 is satisfied by x^A .
- For a clause $(x_i \vee x_j)$ not in F_1 :
 - $x_i^* + x_j^* \ge 1$ implies $x_i^* > \frac{1}{2}$ or $x_j^* > \frac{1}{2}$.
 - By step (2), either $x_i^A = 1$ or $x_j^A = 1$, ensuring the clause $(x_i \vee x_j)$ is satisfied.
- The same reasoning applies to other types of clauses, such as $(x_i \vee \bar{x}_j)$ or $(\bar{x}_i \vee \bar{x}_j)$.

Performance Ratio

- For each i = 1, 2, ..., n, we have $x_i^A \leq 2x_i^*$.
- Thus, x^A is an approximation with a performance ratio ≤ 2 .

Input: A 2-CNF formula F_1 over variables x_1, x_2, \ldots, x_n .

1. Construct a digraph $G(F_1) = (V, E)$ as follows:

$$V \leftarrow \{x_i, \bar{x}_i \mid 1 \leq i \leq n\},\$$

$$E \leftarrow \{(\neg y_i, y_j), (\neg y_j, y_i) \mid (y_i \lor y_j) \text{ is a clause in } F_1\},$$

where y_i denotes a literal x_i or \bar{x}_i .

Input: A 2-CNF formula F_1 over variables x_1, x_2, \ldots, x_n .

1. Construct a digraph $G(F_1) = (V, E)$ as follows:

$$V \leftarrow \{x_i, \bar{x}_i \mid 1 \leq i \leq n\},\$$

$$E \leftarrow \{(\neg y_i, y_j), (\neg y_j, y_i) \mid (y_i \lor y_j) \text{ is a clause in } F_1\},$$

where y_i denotes a literal x_i or \bar{x}_i .

Figure: Digraph for

$$F_1 = (\neg x_1 \lor x_2) \land (\neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3) \land (x_3 \lor \neg x_4) \land (x_1 \lor \neg x_4)$$

Input: A 2-CNF formula F_1 over variables x_1, x_2, \ldots, x_n .

1. Construct a digraph $G(F_1) = (V, E)$ as follows:

$$V \leftarrow \{x_i, \bar{x}_i \mid 1 \le i \le n\},$$

$$E \leftarrow \{(\neg y_i, y_i), (\neg y_i, y_i) \mid (y_i \lor y_i) \text{ is a clause in } F_1\},$$

where y_i denotes a literal x_i or \bar{x}_i .

2. For $i \leftarrow 1$ to n do

Input: A 2-CNF formula F_1 over variables x_1, x_2, \ldots, x_n .

1. Construct a digraph $G(F_1) = (V, E)$ as follows:

$$V \leftarrow \{x_i, \bar{x}_i \mid 1 \leq i \leq n\},\$$

$$E \leftarrow \{(\neg y_i, y_j), (\neg y_j, y_i) \mid (y_i \lor y_j) \text{ is a clause in } F_1\},$$

where y_i denotes a literal x_i or \bar{x}_i .

2. For $i \leftarrow 1$ to n do

- **3.** For $i \leftarrow 1$ to n do
 - If there is a path from x_i to \bar{x}_i , then for each literal y_j that is reachable from \bar{x}_i , set $\tau(y_i) \leftarrow 1$.
 - If there is a path from \bar{x}_i to x_i , then for each literal y_j that is reachable from x_i , set $\tau(y_i) \leftarrow 1$.

Input: A 2-CNF formula F_1 over variables x_1, x_2, \ldots, x_n .

1. Construct a digraph $G(F_1) = (V, E)$ as follows:

$$V \leftarrow \{x_i, \bar{x}_i \mid 1 \leq i \leq n\},\$$

$$E \leftarrow \{(\neg y_i, y_j), (\neg y_j, y_i) \mid (y_i \lor y_j) \text{ is a clause in } F_1\},$$

where y_i denotes a literal x_i or \bar{x}_i .

2. For $i \leftarrow 1$ to n do

- **3.** For $i \leftarrow 1$ to n do
 - If there is a path from x_i to \bar{x}_i , then for each literal y_j that is reachable from \bar{x}_i , set $\tau(y_i) \leftarrow 1$.
 - If there is a path from \bar{x}_i to x_i , then for each literal y_j that is reachable from x_i , set $\tau(y_i) \leftarrow 1$.
- **4.** For $i \leftarrow 1$ to n do
 - If $\tau(x_i)$ is undefined, then for each literal y_j that is reachable from x_i , set $\tau(y_i) \leftarrow 1$.

Input: A 2-CNF formula F_1 over variables x_1, x_2, \ldots, x_n .

1. Construct a digraph $G(F_1) = (V, E)$ as follows:

$$V \leftarrow \{x_i, \bar{x}_i \mid 1 \leq i \leq n\},\$$

$$E \leftarrow \{(\neg y_i, y_j), (\neg y_j, y_i) \mid (y_i \lor y_j) \text{ is a clause in } F_1\},$$

where y_i denotes a literal x_i or \bar{x}_i .

2. For $i \leftarrow 1$ to n do

- **3.** For $i \leftarrow 1$ to n do
 - If there is a path from x_i to \bar{x}_i , then for each literal y_j that is reachable from \bar{x}_i , set $\tau(y_i) \leftarrow 1$.
 - If there is a path from \bar{x}_i to x_i , then for each literal y_j that is reachable from x_i , set $\tau(y_i) \leftarrow 1$.
- **4.** For $i \leftarrow 1$ to n do
 - If $\tau(x_i)$ is undefined, **then** for each literal y_j that is reachable from x_i , set $\tau(y_i) \leftarrow 1$.
- 5. Output τ .

• Given $F_1 = (\bar{x}_1 \lor x_2) \land (\bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_3) \land (x_3 \lor \bar{x}_4) \land (x_1 \lor \bar{x}_4)$, we constructed the above digraph.

- Given $F_1 = (\bar{x}_1 \lor x_2) \land (\bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_3) \land (x_3 \lor \bar{x}_4) \land (x_1 \lor \bar{x}_4)$, we constructed the above digraph.
- None of any x_i and \bar{x}_i pair are strongly connected. So we continue to step 3.

- Given $F_1 = (\bar{x}_1 \lor x_2) \land (\bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_3) \land (x_3 \lor \bar{x}_4) \land (x_1 \lor \bar{x}_4)$, we constructed the above digraph.
- At the start $\tau = [-, -, -, -]$
 - \bar{x}_1 is reachable from x_1 .
 - \bar{x}_4 is reachable from \bar{x}_1 :
 - Using Step 3.1, Set $\bar{x}_4 = 1$, so $x_4 = 0$.
 - No other negation of a literal reachable from itself gives us more

- Given $F_1 = (\bar{x}_1 \lor x_2) \land (\bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_3) \land (x_3 \lor \bar{x}_4) \land (x_1 \lor \bar{x}_4)$, we constructed the above digraph.
- After previous step $\tau = [-, -, -, 0]$
 - x_1 is still undefined.
 - $x_2, \bar{x}_3, \bar{x}_1$ is reachable from x_1 :
 - Set $x_2 = 1$, $\bar{x}_3 = 1$ and $\bar{x}_1 = 1$, so we get $x_2 = 1$, $x_3 = 0$ and $x_4 = 0$.

Example of 2-SAT Assignment

- Given $F_1 = (\bar{x}_1 \lor x_2) \land (\bar{x}_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_3) \land (x_3 \lor \bar{x}_4) \land (x_1 \lor \bar{x}_4)$, we constructed the above digraph.
- Resulting assignment:

$$\tau(x_1) = 0, \quad \tau(x_2) = 1, \quad \tau(x_3) = 0, \quad \tau(x_4) = 0$$

• This assignment satisfies all the clauses in F_1

$$\tau(y) = 1 \implies \tau(z) = 1.$$

• If there is an edge (y, z) in E, any satisfying assignment τ must satisfy:

$$\tau(y) = 1 \implies \tau(z) = 1.$$

 This property extends to all pairs y, z where there is a path from y to z.

$$\tau(y) = 1 \implies \tau(z) = 1.$$

- This property extends to all pairs y, z where there is a path from y to z.
- Thus, if any variable x_i and its negation \bar{x}_i are in the same strongly connected component F_1 is **unsatisfiable**. So, the Algorithm terminates correctly in Step (2).

$$\tau(y) = 1 \implies \tau(z) = 1.$$

- This property extends to all pairs y, z where there is a path from y to z.
- Thus, if any variable x_i and its negation \bar{x}_i are in the same strongly connected component F_1 is **unsatisfiable**. So, the Algorithm terminates correctly in Step (2).
- If there is a path from $y \to z$, then there is a path from $\bar{z} \to \bar{y}$. This ensures that no variable is assigned both 1 and 0 at the same time in step 3 and step 4.

$$\tau(y) = 1 \implies \tau(z) = 1.$$

- This property extends to all pairs y, z where there is a path from y to z.
- Thus, if any variable x_i and its negation \bar{x}_i are in the same strongly connected component F_1 is **unsatisfiable**. So, the Algorithm terminates correctly in Step (2).
- If there is a path from $y \to z$, then there is a path from $\bar{z} \to \bar{y}$. This ensures that no variable is assigned both 1 and 0 at the same time in step 3 and step 4.
 - Suppose a variable w is assigned both. So, $\tau(w)=1$, so there must be path $\bar{u} \to u \to w$. So there must be a path from \bar{w} to \bar{u} .

$$\tau(y) = 1 \implies \tau(z) = 1.$$

- This property extends to all pairs y, z where there is a path from y to z.
- Thus, if any variable x_i and its negation \bar{x}_i are in the same strongly connected component F_1 is **unsatisfiable**. So, the Algorithm terminates correctly in Step (2).
- If there is a path from $y \to z$, then there is a path from $\bar{z} \to \bar{y}$. This ensures that no variable is assigned both 1 and 0 at the same time in step 3 and step 4.
 - Suppose a variable w is assigned both. So, $\tau(w)=1$, so there must be path $\bar{u} \to u \to w$. So there must be a path from \bar{w} to \bar{u} .
 - Again, $\tau(\bar{w})=1$, so there must be path $\bar{v}\to v\to \bar{w}$. So there must be a path from w to \bar{v} .

$$\tau(y) = 1 \implies \tau(z) = 1.$$

- This property extends to all pairs y, z where there is a path from y to z.
- Thus, if any variable x_i and its negation \bar{x}_i are in the same strongly connected component F_1 is **unsatisfiable**. So, the Algorithm terminates correctly in Step (2).
- If there is a path from $y \to z$, then there is a path from $\bar{z} \to \bar{y}$. This ensures that no variable is assigned both 1 and 0 at the same time in step 3 and step 4.
 - Suppose a variable w is assigned both. So, $\tau(w)=1$, so there must be path $\bar{u} \to u \to w$. So there must be a path from \bar{w} to \bar{u} .
 - Again, $\tau(\bar{w}) = 1$, so there must be path $\bar{v} \to v \to \bar{w}$. So there must be a path from w to \bar{v} .
 - So we get a path, $w \to \bar{v} \to \bar{w} \to \bar{u} \to w$ which is a cycle. If that exists step 2 would have already discarded the problem.

$$\tau(y) = 1 \implies \tau(z) = 1.$$

- This property extends to all pairs y, z where there is a path from y to z.
- Thus, if any variable x_i and its negation \bar{x}_i are in the same strongly connected component F_1 is **unsatisfiable**. So, the Algorithm terminates correctly in Step (2).
- If there is a path from $y \to z$, then there is a path from $\bar{z} \to \bar{y}$. This ensures that no variable is assigned both 1 and 0 at the same time in step 3 and step 4.
- Each clause $(y_i \lor y_j)$ in F_1 generates two edges (\bar{y}_i, y_j) and (\bar{y}_j, y_i) in E. From steps (3) and (4), we see that it is not possible to assign $\tau(y_i) = \tau(y_i) = 0$

$$\tau(y) = 1 \implies \tau(z) = 1.$$

- This property extends to all pairs y, z where there is a path from y to z.
- Thus, if any variable x_i and its negation \bar{x}_i are in the same strongly connected component F_1 is **unsatisfiable**. So, the Algorithm terminates correctly in Step (2).
- If there is a path from $y \to z$, then there is a path from $\bar{z} \to \bar{y}$. This ensures that no variable is assigned both 1 and 0 at the same time in step 3 and step 4.
- Each clause $(y_i \lor y_j)$ in F_1 generates two edges (\bar{y}_i, y_j) and (\bar{y}_j, y_i) in E. From steps (3) and (4), we see that it is not possible to assign $\tau(y_i) = \tau(y_i) = 0$
- τ must be a satisfying assignment for F_1 .

Table of Contents

- Introduction
- 2 Minimum Weight Vertex Cover
- Minimum 2-Satisfiability
- 4 Scheduling on Unrelated Parallel Machines

Scheduling on Unrelated Parallel Machines

Problem Statement

Given n jobs, m machines and, for each $1 \le i \le m$ and each $1 \le j \le n$, the amount of time t_{ij} required for the ith machine to process the jth job, find the schedule for all n jobs on these m machines that minimizes the maximum processing time over all machines.

Scheduling on Unrelated Parallel Machines

Problem Statement

Given n jobs, m machines and, for each $1 \le i \le m$ and each $1 \le j \le n$, the amount of time t_{ij} required for the ith machine to process the jth job, find the schedule for all n jobs on these m machines that minimizes the maximum processing time over all machines.

SCHEDULE-UPM Linear Program

Minimize
$$t$$
 Subject to $\sum_{i=1}^m x_{ij}=1,$ $1\leq j\leq n,$ $\sum_{j=1}^n x_{ij}t_{ij}\leq t,$ $1\leq i\leq m,$ $0\leq x_{ji}\leq 1,$ $1\leq i\leq m, 1\leq j\leq n.$

• Let
$$J = \{j \mid 0 < x_{ij}^* < 1\}$$
 and $M = \{1, \dots, m\}$.

- Let $J = \{j \mid 0 < x_{ij}^* < 1\}$ and $M = \{1, \dots, m\}$.
- Define H = (M, J, E), where:

$$E = \{(i,j) \mid 0 < x_{ij}^* < 1\}.$$

- Let $J = \{j \mid 0 < x_{ij}^* < 1\}$ and $M = \{1, \dots, m\}$.
- Define H = (M, J, E), where:

$$E = \{(i,j) \mid 0 < x_{ij}^* < 1\}.$$

 We need to show, H contains a matching covering J. For that, it suffices to show each connected component of H contains a matching covering all jobs in the component.

- Let $J = \{j \mid 0 < x_{ij}^* < 1\}$ and $M = \{1, \dots, m\}$.
- Define H = (M, J, E), where:

$$E = \{(i,j) \mid 0 < x_{ij}^* < 1\}.$$

- We need to show, H contains a matching covering J. For that, it suffices to show each connected component of H contains a matching covering all jobs in the component.
- Consider a connected component H' = (M', J', E') of H.

- Let $J = \{j \mid 0 < x_{ij}^* < 1\}$ and $M = \{1, \dots, m\}$.
- Define H = (M, J, E), where:

$$E = \{(i,j) \mid 0 < x_{ij}^* < 1\}.$$

- We need to show, H contains a matching covering J. For that, it suffices to show each connected component of H contains a matching covering all jobs in the component.
- Consider a connected component H' = (M', J', E') of H.
- Fix $x_{ij} = x_{ii}^*$ for $i \notin M'$ or $j \notin J'$.

- Let $J = \{j \mid 0 < x_{ij}^* < 1\}$ and $M = \{1, \dots, m\}$.
- Define H = (M, J, E), where:

$$E = \{(i,j) \mid 0 < x_{ij}^* < 1\}.$$

- We need to show, H contains a matching covering J. For that, it suffices to show each connected component of H contains a matching covering all jobs in the component.
- Consider a connected component H' = (M', J', E') of H.
- Fix $x_{ij} = x_{ij}^*$ for $i \notin M'$ or $j \notin J'$.
- Remaining variables form a new LP with extreme point

$$x'=(x_{ij}^*)_{i\in M',j\in J'}$$

.

- Let $J = \{j \mid 0 < x_{ij}^* < 1\}$ and $M = \{1, \dots, m\}$.
- Define H = (M, J, E), where:

$$E = \{(i,j) \mid 0 < x_{ij}^* < 1\}.$$

- We need to show, H contains a matching covering J. For that, it suffices to show each connected component of H contains a matching covering all jobs in the component.
- Consider a connected component H' = (M', J', E') of H.
- Fix $x_{ij} = x_{ii}^*$ for $i \notin M'$ or $j \notin J'$.
- Remaining variables form a new LP with extreme point

$$x' = (x_{ij}^*)_{i \in M', j \in J'}$$

• x' is determined by |M'||J'| active constraints(constraint that are at equality).

- Let $J = \{j \mid 0 < x_{ij}^* < 1\}$ and $M = \{1, \dots, m\}$.
- Define H = (M, J, E), where:

$$E = \{(i,j) \mid 0 < x_{ij}^* < 1\}.$$

- We need to show, H contains a matching covering J.For that, it suffices to show each connected component of H contains a matching covering all jobs in the component.
- Consider a connected component H' = (M', J', E') of H.
- Fix $x_{ij} = x_{ij}^*$ for $i \notin M'$ or $j \notin J'$.
- Remaining variables form a new LP with extreme point

$$x'=(x_{ij}^*)_{i\in M',j\in J'}$$

- x' is determined by |M'||J'| active constraints(constraint that are at equality).
- At most |M'| + |J'| non-integral components, implying H' has at most |M'| + |J'| edges.

Matching in H'

Case 1: H' is a Tree

- Root the tree at any vertex $r \in J'$.
- A vertex $j \in J'$ cannot be a leaf, as $\sum_{i \in M'} x_{ij} = 1$ implies at least two edges incident on j.
- For each $j \in J'$, match it to one of its children.

Matching in H'

Case 1: H' is a Tree

- Root the tree at any vertex $r \in J'$.
- A vertex $j \in J'$ cannot be a leaf, as $\sum_{i \in M'} x_{ij} = 1$ implies at least two edges incident on j.
- For each $j \in J'$, match it to one of its children.

Case 2: H' is a Tree Plus an Edge

- The extra edge forms a cycle and H' is the cycle plus some trees growing out.
- Match all vertices on the cycle. (This is always possible as H' is bipartite guaranteeing even length cycle).
- ullet Contract the cycle into a root point o remaining graph becomes a tree.
- Match internal vertices as in Case 1.

Final Approximation Strategy

Steps:

- Assign jobs with $x_{ii}^* = 1$ directly to machine *i*.
- For partially assigned jobs, find a matching in *H* and assign jobs accordingly.

Final Approximation Strategy

Steps:

- Assign jobs with $x_{ij}^* = 1$ directly to machine *i*.
- For partially assigned jobs, find a matching in H and assign jobs accordingly.

Approximation Bound:

$$\mathsf{Makespan} \ \leq \mathsf{opt} + \max_{1 \leq i \leq m, 1 \leq j \leq n} t_{ij},$$

where opt is the minimum makespan. But we can't bound max t_{ij} by a constant times opt as it can be much greater than opt.

Final Approximation Strategy

Steps:

- Assign jobs with $x_{ii}^* = 1$ directly to machine *i*.
- For partially assigned jobs, find a matching in *H* and assign jobs accordingly.

Approximation Bound:

$$\mathsf{Makespan} \ \leq \mathsf{opt} + \max_{1 \leq i \leq m, 1 \leq j \leq n} t_{ij},$$

where opt is the minimum makespan. But we can't bound max t_{ij} by a constant times opt as it can be much greater than opt.

Observation: If $t_{ij} > \text{opt}$, job j cannot be assigned to machine i in the optimal solution. Therefore, we can prune the variable x_{ij} from the LP, and expect to get the same solution

• If $t_{ij} > T$, remove the variable x_{ij} from the LP effectively creating a bound T to find feasible solutions while ensuring $T \ge \text{opt.}$

- If $t_{ij} > T$, remove the variable x_{ij} from the LP effectively creating a bound T to find feasible solutions while ensuring $T \ge$ opt.
- Solve the following LP (7.16) to find the minimum T:

Minimize
$$t$$
 Subject to $\sum_{1 \leq i \leq m, t_{ij} \leq T} x_{ij} = 1,$ $1 \leq j \leq n,$ $\sum_{1 \leq j \leq n, t_{ij} \leq T} x_{ij} t_{ij} \leq t,$ $1 \leq i \leq m,$ $0 \leq x_{ij} \leq 1,$ $1 \leq i \leq m, 1 \leq j \leq n.$

- If $t_{ij} > T$, remove the variable x_{ij} from the LP effectively creating a bound T to find feasible solutions while ensuring $T \ge \text{opt.}$
- Solve the following LP (7.16) to find the minimum T:

$$\begin{array}{ll} \text{Minimize} & t \\ \text{Subject to} & \displaystyle \sum_{1 \leq i \leq m, t_{ij} \leq T} x_{ij} = 1, & 1 \leq j \leq n, \\ & \displaystyle \sum_{1 \leq j \leq n, t_{ij} \leq T} x_{ij} t_{ij} \leq t, & 1 \leq i \leq m, \\ & 0 \leq x_{ij} \leq 1, & 1 \leq i \leq m, 1 \leq j \leq n. \end{array}$$

• Use bisection to determine the minimum T^* for feasibility.

- If $t_{ij} > T$, remove the variable x_{ij} from the LP effectively creating a bound T to find feasible solutions while ensuring $T \ge \text{opt.}$
- Solve the following LP (7.16) to find the minimum T:

Minimize
$$t$$
 Subject to $\sum_{1 \leq i \leq m, t_{ij} \leq T} x_{ij} = 1,$ $1 \leq j \leq n,$ $\sum_{1 \leq j \leq n, t_{ij} \leq T} x_{ij} t_{ij} \leq t,$ $1 \leq i \leq m,$ $0 \leq x_{ij} \leq 1,$ $1 \leq i \leq m, 1 \leq j \leq n.$

- Use bisection to determine the minimum T^* for feasibility.
- $T^* \leq \text{opt}$, and $t_{ij} \leq T^*$ for all $x_{ij}^* > 0$.

- If $t_{ij} > T$, remove the variable x_{ij} from the LP effectively creating a bound T to find feasible solutions while ensuring $T \ge \text{opt.}$
- Solve the following LP (7.16) to find the minimum T:

Minimize
$$t$$
 Subject to $\sum_{1 \leq i \leq m, t_{ij} \leq T} x_{ij} = 1,$ $1 \leq j \leq n,$ $\sum_{1 \leq j \leq n, t_{ij} \leq T} x_{ij} t_{ij} \leq t,$ $1 \leq i \leq m,$ $0 \leq x_{ij} \leq 1,$ $1 \leq i \leq m, 1 \leq j \leq n.$

- Use bisection to determine the minimum T^* for feasibility.
- $T^* \leq \text{opt}$, and $t_{ij} \leq T^*$ for all $x_{ii}^* > 0$.
- This yields a 2-approximation for SCHEDULE-UPM.

Thank You!

Any Questions?

•