universität freiburg

Probability Theory

Summer semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024ss_wtheorie.html

https://www.stochastik.uni-freiburg.de/

Tutorial 5 - Borel-Cantelli-Lemma and Kolmogorov's 0-1-Law

Exercise 1 (4 Points).

Let $X_1, X_2,...$ be \mathbb{Z}_+ -valued, independent, and identically distributed. Show that

$$|\{n: X_n \ge n | < \infty \text{ almost surely } \iff \mathbf{E}[X_1] < \infty$$

Exercise 2 (4 points).

Give one example and one counterexample of real-valued random variables $(X_n)_{n\in\mathbb{N}}$ and a set $A\in\mathcal{B}(\mathbb{R})$ for the following identities:

(a)
$$\mathbf{P}(\{\limsup_{n\to\infty} X_n \in A\}) = \mathbf{P}(\limsup_{n\to\infty} \{X_n \in A\}).$$

(b)
$$\mathbf{P}(\limsup_{n\to\infty} \{X_n \in A\}) = \limsup_{n\to\infty} \mathbf{P}(\{X_n \in A\}).$$

(c)
$$\limsup_{n \to \infty} \mathbf{P}(\{X_n \in A\}) = \mathbf{P}(\{\limsup_{n \to \infty} X_n \in A\}).$$

Exercise 3 (4 Points).

Let I by arbitrary and $p_i \in [0,1], i \in I$. In addition, let $X_i \sim B(1,p_i)$ for $i \in I$.

(a) Show that

$$(X_i)_{i=1,\dots,n}$$
 independent $\iff \mathbf{P}(X_i=1,i\in J) = \prod_{i\in J}\mathbf{P}(X_i=1)$ for all $J\subseteq_f I$.

(b) Show that

$$(X_i)_{i=1,\dots,n}$$
 pairwise uncorrelated $\iff (X_i)_{i=1,\dots,n}$ independent.

Exercise 4 (4 Points).

On a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ let there be a sequence of independent random variables $(X_n)_{n\in\mathbb{N}}$ which are exponentially distributed identically to the parameter $\alpha > 0$. Show that

(a)
$$\mathbf{P}(\limsup_{n\to\infty} \frac{X_n}{\ln n} = \frac{1}{\alpha}) = 1$$
,

(b)
$$\mathbf{P}(\liminf_{n\to\infty} \frac{X_n}{\ln n} = 0) = 1.$$

Hint: Use the Borel-Cantelli lemma. It states that $\limsup_{n\to\infty} \frac{X_n}{\ln n} \leq \frac{1}{\alpha}$ if and only if for all $\varepsilon > 0$ only at most finitely many of the events $\{\frac{X_n}{\ln n} \geq \frac{1}{\alpha} + \varepsilon\}$ occur.