SYDE 556/750 Simulating Neurobiological Systems Lecture 0: Administrative Remarks

Terry Stewart

September 8, 2021

Organization (I)

Instructor

Terry Stewart

```
Email terry.stewart@gmail.com
Website https://terrystewart.ca
```

Course website

- https://github.com/tcstewar/syde556-f21
- ▶ syde556-f21.slack.com

Organization (II)

Course times and logistics

- ► Saturday:

 Pre-recorded lectures posted
- ► Monday: 8:30-9:50 online lecture and discussion (LEARN)
- ► Tuesday: 9:00-9:50 online discussion (LEARN) (SYDE 750, optional for 556)
- ► Wednesday: 8:30-9:50 online lecture and discussion (LEARN)
- ► Any time: Email terry.stewart@gmail.com Slack syde556750-f21.slack.com

Textbooks and Readings

Main text:

Chris Eliasmith and Charles H. Anderson Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems, MIT Press, 2003.

Optional:

Chris Eliasmith

How to Build a Brain,
Oxford University Press,
2013.

Coursework (SYDE 556 & SYDE 750)

Five Assignments

- ► 20%, 20%, 15%, 15%, 30%, respectively
- Roughly two weeks for each assignment
- Everyone must write their own code, generate their own graphs, and write their own answers.

Final Project (SYDE 750 only)

- Build a model of some neural system.
- Replicable science: report everything needed to recreate your model and analysis
- ➤ 25% of grade (assignments are rescaled to 75%)
- ► Have your project proposal approved via email by Oct 27

Coursework (SYDE 750 only)

Class Participation in the Seminar (SYDE 750 only; optional for SYDE 556)

- ► General discussion about Neuroscience, cognitive science, AI, etc.
- Special interest: replicable science and computational modelling
- ► SYDE 750 students must attend the seminar (Tuesday, 9:00-9:50).
- No marks for this part of the course.

Schedule (I)

Date	Reading	Topic	Assignments
WEEK 1 Sept 8	Chapter 1	Introduction	
WEEK 2	Chapter 1	mtroduction	
Sept 13	Chapter 2	Neurons	
Sept 15	Chapter 2	Population Representation (I)	#1 posted
WEEK 3			
Sept 20	Chapter 2	Population Representation (II)	
Sept 22	Chapter 4	Temporal Representation	
WEEK 4 Sept 27		Guest Lecture	
Sept 29		Guest Lecture	
WEEK 5			
Oct 4	Chapters 5, 6	Feedforward Transformations (I)	#1 due*, $#2$ posted
Oct 6	Chapters 5, 6	Feedforward Transformations (II)	
WEEK 6		— Reading week, no lectures -	_

Schedule (II)

Date	Reading	Торіс	Assignments
WEEK 7			
Oct 18	Chapter 8	Dynamics (I)	
Oct 20	Chapter 8	Dynamics (II)	
WEEK 8			
Oct 25	Chapter 7	Analysis of Representation	#2 due*, $#3$ posted
Oct 27	provided	Temporal Basis Functions	
			SYDE 750 Project proposal due
WEEK 9			
Nov 1	provided	Symbols (I)	
Nov 3	provided	Symbols (II)	
WEEK 10			
Nov 8	Chapter 8	Memory	#3 due*, #4 posted
Nov 10	provided	Action Selection	

Schedule (III)

Date	Reading	Topic	Assignments
WEEK 11			
Nov 15	Chaper 9	Learning (I)	
Nov 17	Chaper 9	Learning (II)	
WEEK 12			
Nov 22	provided	Spatial Semantic Pointers	#4 due*
Nov 24	provided	Biological Details	
WEEK 13			
Nov 29	provided	Other modelling frameworks	
Dec 1		Conclusion	
WEEK 14			
Dec 6		Discussion	
WEEK 16			
Dec 23			#5 due; SYDE 750 projects due*

^{*} The project and all assignments are due at midnight (\approx 11:59p Eastern) of that day.

Homework

- ► Get the textbook, read the first chapter ("Neural Engineering", Chris Eliasmith and Charles Anderson, 2003)
- ▶ Be able to run jupyter lab or (jupyter notebook) with Python 3 Install numpy, scipy, and matplotlib. You may want to use Anaconda, which ships with these packets preinstalled.