algoritmi e strutture di dati

complessità dei problemi

m.patrignani

085-complessita-problemi-06

copyright @2015 patrignani@dia.uniroma3.it

nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

085-complessita-problemi-06

contenuto

- definizioni
 - complessità O(f(n)), $\Omega(f(n))$ e $\Theta(f(n))$ di un problema
- problemi e complessità
 - esempi di problemi di complessità ignota
 - lower bound per gli algoritmi di ordinamento per confronto
- bucket sort
 - ordinamento in tempo lineare

085-complessita-problemi-06

copyright @2015 patrignani@dia.uniroma3.it

problemi e complessità

- · sappiamo che
 - un algoritmo corretto per un problema computazionale è una "ricetta" per la sua soluzione
 - · termina sempre
 - produce un output che, nella definizione del problema, corrisponde all'istanza in input
- un problema ammette infiniti algoritmi corretti
 - di ogni algoritmo possiamo calcolare la complessità asintotica
- alcuni problemi ammettono algoritmi più efficienti di altri problemi
 - i problemi hanno una complessità asintotica intrinseca?

085-complessita-problemi-06 copyric

analisi della complessità dei problemi

• obiettivo

- classificare i problemi in base alla loro difficoltà di soluzione intrinseca
 - determinare la quantità di risorse che comunque è necessario spendere per risolverli

strumento

 associare al problema la complessità dell'algoritmo più efficiente che lo risolve

inconveniente

- dato un problema non è possibile considerare tutti gli infiniti algoritmi che lo risolvono
 - non possiamo determinare direttamente la complessità dell'algoritmo più efficiente

085-complessita-problemi-06

copyright @2015 patrignani@dia.uniroma3.it

complessità O(f(n)) di un problema

- un problema ha *complessità temporale O(f(n))* se **esiste** un algoritmo che lo risolve che ha complessità temporale O(f(n))
- in forma stenografica:

$$P \in O(f(n)) \Leftrightarrow \exists A \in O(f(n))$$

• O(f(n)) sono le risorse *sufficienti* a risolvere il problema

085-complessita-problemi-06

complessità O(f(n)) di un problema

- se un problema ha complessità temporale O(f(n))
 - è garantito che il problema possa essere risolto spendendo O(f(n)) risorse
 - è possibile che il problema possa essere risolto spendendo meno di O(f(n)) risorse
 - potrebbe esistere un algoritmo più efficiente che non conosciamo
 - f(n) è un *limite superiore* (upper bound) alle risorse necessarie per risolvere il problema
- per dimostrare che un problema ha complessità O(f(n))
 - è sufficiente produrre un algoritmo che lo risolva e che abbia complessità O(f(n))

085-complessita-problemi-06 copyright ©2015 patrignani@dia.uniroma3.it

esempio: problema O(f(n))

```
SOMMA(A) ▷ restituisce la somma degli elementi dell'array A

1. somma = A[0]

2. for i = 1 to A.length-1

3. somma = somma + A[i]

4. return somma
```

- la complessità temporale dell'algoritmo SOMMA è O(n), dove n è il numero degli elementi dell'array A
- il problema della somma di *n* interi
 - ha complessità temporale O(n)
 - è limitato superiormente da f(n) = n
 - "è O(n)"

complessità $\Omega(f(n))$ di un problema

- un problema ha *complessità temporale* $\Omega(f(n))$ se **ogni** algoritmo che lo risolve ha complessità temporale $\Omega(f(n))$
- in forma stenografica:

$$P \in \Omega(f(n)) \Leftrightarrow \forall A \in \Omega(f(n))$$

• $\Omega(f(n))$ sono le risorse *necessarie* a risolvere il problema

085-complessita-problemi-06

copyright @2015 patrignani@dia.uniroma3.it

complessità $\Omega(f(n))$ di un problema

- se un problema ha *complessità temporale* $\Omega(f(n))$
 - non è possibile che il problema possa essere risolto spendendo meno di $\Omega(f(n))$
 - non è detto che il problema sia risolvibile spendendo O(f(n))
 - f(n) è un *limite inferiore* (lower bound) alle risorse necessarie per risolvere il problema
- per dimostrare che un problema ha complessità $\Omega(f(n))$
 - non possiamo considerare tutti gli algoritmi che lo risolvono
 - non esiste un metodo preciso per determinare $\Omega(f(n))$
 - generalmente si ragiona sulla natura delle istanze e delle relative soluzioni

085-complessita-problemi-06

esempio: problema $\Omega(f(n))$

- consideriamo il problema del calcolo della somma di n interi
- tutti gli algoritmi che risolvono il problema devono necessariamente prendere in considerazione gli *n* interi in input
 - altrimenti cambiando un valore di input l'algoritmo darebbe lo stesso output, e questo è assurdo
- il problema della somma di *n* interi
 - ha complessità temporale $\Omega(n)$
 - è limitato inferiormente da f(n) = n
 - "è $\Omega(n)$ "

085-complessita-problemi-06 copyright ©2015 patrignani@dia.uniroma3.it

complessità $\Theta(f(n))$ di un problema

- un problema ha *complessità temporale* $\Theta(f(n))$ se se ha contemporaneamente complessità temporale O(f(n)) e $\Omega(f(n))$
 - non è possibile che il problema possa essere risolto spendendo meno di O(f(n))
 - esiste almeno un algoritmo che risolve il problema in $\Theta(f(n))$
- limite inferiore e limite superiore coincidono
 - -f(n) è la complessità intrinseca del problema
- non sempre è possibile determinare $\Theta(f(n))$
 - di molti problemi la complessità intrinseca è ignota

esempio: problema $\Theta(f(n))$

- per quanto detto sopra il problema della somma di n interi ha complessità $\Theta(n)$
 - l'algoritmo proposto per dimostrare che il problema è O(n) è un algoritmo asintoticamente ottimo
 - possiamo desistere dalla ricerca di algoritmi più efficienti
 - è anche vero che questo algoritmo ha complessità temporale $\Theta(n)$
 - attenzione: non è vero il viceversa: se un algoritmo è $\Theta(n)$ non vuol dire che il problema è $\Theta(n)$

085-complessita-problemi-06

copyright @2015 patrignani@dia.uniroma3.it

problemi dalla complessità ignota

- problema del commesso viaggiatore
 - trovare il circuito più breve che tocca n città
- upper-bound
 - esiste un algoritmo che ha complessità $O(n^22^n)$
- lower-bound
 - siccome occorre leggere l'input, il problema è $\Omega(n)$
 - non è mai stato dimostrato che il problema non possa essere risolto in tempo polinomiale
 - in realtà non è mai stato dimostrato che il problema non possa essere risolto in tempo lineare!
- nota
 - si sa che se esistesse un algoritmo che risolve in tempo polinomiale questo problema esisterebbero algoritmi per risolvere in tempo polinomiale tutti i problemi appartenenti ad una classe di problemi detta NP

085-complessita-problemi-06

algoritmi di ordinamento

- MERGE-SORT ha una complessità temporale $\Theta(n \log n)$
 - è questa la complessità intrinseca del problema dell'ordinamento di una sequenza di interi?
- non riusciremo a dimostrare che il problema dell'ordinamento è $\Theta(n \log n)$
 - dovremmo dimostrare che ogni possibile algoritmo di ordinamento ha complessità $\Omega(n \log n)$
 - lo dimostreremo solamente per una vasta famiglia di algoritmi di ordinamento, chiamati algoritmi di ordinamento "per confronto"

085-complessita-problemi-06 copyright ©2015 patrignani@dia.uniroma3.it

algoritmi di ordinamento per confronto

- un algoritmo di ordinamento è detto "*algoritmo di ordinamento per confronto*" se il flusso delle operazioni dipende dal confronto tra due elementi della sequenza
- esempio
 - nel MERGE-SORT l'operazione MERGE confronta i valori delle due sotto-sequenze ordinate per ottenere un'unica sequenza ordinata

esecuzione di un algoritmo per confronto • immaginiamo di lanciare un algoritmo di ordinamento per confronto con una generica sequenza di input (a,b,c) • l'algoritmo $(a \le b)$ eseguirà un certo no numero di confronti per poi produrre un output $c \leq b$ l'output è un'opportuna no permutazione dei valori di input se lo lanciamo con una $a \le c$ sequenza con valori diversi no alcuni confronti avranno esito diverso b, a, c b, c, a l'output prodotto è una diversa permutazione dei valori di input 085-complessita-problemi-06 copyright @2015 patrignani@dia.uniroma3.it

numero di confronti necessari

- tutte le permutazioni degli elementi da ordinare devono essere foglie dell'albero di decisione
 - ogni possibile permutazione dei valori di input deve essere raggiungibile
 - se *n* sono gli elementi da ordinare le possibili permutazioni sono *n*!
- il numero di confronti eseguiti nel caso peggiore equivale al cammino più lungo tra la radice ed una foglia
 - l'altezza di un albero binario con n! foglie è almeno $\log_2 n!$
 - il problema dell'ordinamento per confronto è $\Omega(\log_2 n!)$

085-complessita-problemi-06

copyright @2015 patrignani@dia.uniroma3.it

approssimazione di Stirling

- consideriamo la funzione ln *n*!
 - nel calcolo asintotico la base del logaritmo è indifferente

$$\ln n! = \ln 1 + \ln 2 + \dots + \ln n = \sum_{k=1}^{n} \ln k \approx \int_{1}^{n} \ln x dx$$

$$\sum_{k=1}^{n} \ln k$$

$$\sum_{k=1}^{n} \ln k$$

calcolo di $\int_{1}^{n} \ln x dx$

- integrazione per parti: $\int u \frac{dv}{dx} dx = uv \int v \frac{du}{dx} dx$
- nel nostro caso

$$u=\ln x$$
 $v=x$

•
$$dv/dx = 1$$
; $du/dx = 1/x$

$$\int \ln x \cdot 1 dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - x$$

$$\sum_{k=1}^{n} \ln n \approx \int_{1}^{n} \ln x dx = (x \ln x - x) \Big|_{1}^{n} = n \ln n - n + 1$$

085-complessita-problemi-06

copyright ©2015 patrignani@dia.uniroma3.it

ordinamento per confronto: lower bound

- l'esecuzione di un algoritmo di ordinamento per confronto corrisponde alla discesa in un albero di decisione con *n*! foglie
 - -n è il numero di elementi da ordinare
- nel caso peggiore il numero di confronti (nodi interni nel cammino radice-foglia) è $\Omega(n \ln n)$
 - MERGE-SORT è un algoritmo di ordinamento per confronto asintoticamente ottimo

085-complessita-problemi-06

ordinamento in tempo lineare

- in alcuni casi è possibile ordinare degli elementi senza eseguire confronti tra i loro valori
- in questi casi si possono concepire algoritmi con complessità Θ(n) nel caso peggiore
- generalmente occorre fare assunzioni sui valori degli *n* elementi

085-complessita-problemi-06

copyright @2015 patrignani@dia.uniroma3.it

bucket-sort

- assume che gli n elementi in input siano interi minori o uguali a k, con k noto e $k \in \Theta(n)$
 - $-\ k$ può essere maggiore, minore o uguale ad n
 - l'input può contenere ripetizioni
 - alcuni interi in [0...k] potrebbero non essere presenti
- la strategia è la seguente
 - creo una lista (bucket) per ogni *i* minore o uguale a k• tempo $\Theta(k) = \Theta(n)$
 - scorro l'array di input e metto l'elemento corrente nel bucket che corrisoponde al suo valore
 - tempo $\Theta(n)$
 - svuoto i bucket ponendo i loro elementi nell'array di output
 - tempo $\Theta(n)$

BUCKET-SORT

• algoritmo per ordinare n interi minori o uguali a k, con $k \in \Theta(n)$

domande sulla complessità dei problemi

- supponiamo che il problema P abbia complessità O(n). E' possibile che esista un algoritmo A che risolve P che abbia una complessità $\Omega(n^2)$?
- supponiamo che un problema P abbia complessità $\Theta(n^2)$. Può esistere un algoritmo A che risolve P e ha compessità $\Omega(n)$?
- supponiamo che un problema P abbia complessità Θ(n). Può esistere un algoritmo A che risolve P e ha complessità $\Theta(n^2)$?

085-complessita-problemi-06

copyright @2015 patrignani@dia.uniroma3.it

soluzioni

- 1. $P \in O(n)$. Può esistere $A \in \Omega(n^2)$?
 - Sì, se $P \in O(n)$ vuol dire che esiste un (opportuno) algoritmo A'∈O(n). Gli altri algoritmi, tra cui A, che risolvono P possono avere complessità arbitrariamente elevata
- 2. $P \in \Theta(n^2)$. Può esistere $A \in \Omega(n)$?
 - Sì. Non solo, tutti gli algoritmi che risolvono P hanno complessità $\Omega(n^2)$ e dunque anche $\Omega(n)$
- 3. $P \in \Theta(n)$. Può esistere $A \in \Theta(n^2)$?
 - Sì, ciò non contraddice $P \in O(n)$ né $P \in \Omega(n)$.