Integrali

- 1. $\int x^a dx = \begin{cases} \frac{x^{a+1}}{a+1} + C & a \neq -1 \\ \ln|x| + C & a = -1 \end{cases}$
- 2. $\int \ln x \, dx = x \ln x x + C$
- 3. $\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$
- $4. \int e^x dx = e^x + C$
- $5. \int a^x \, dx = \frac{a^x}{\ln a} + C$
- 6. $\int \cos(ax) \, dx = \frac{\sin(ax)}{a} + C$
- 7. $\int_{a}^{b} \sin(ax) \, dx = \frac{-\cos(ax)}{a} + C$
- 8. $\int \tan x \, dx = -\ln|\cos x| + C$
- 9. $\int \frac{dx}{\cos^2 x} = \int \sec^2 x \, dx = \tan x + C$ 10. $\int \frac{dx}{\sin^2 x} = \int \csc^2 x \, dx = -\cot x + C$ 11. $\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C$ 12. $\int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b| + C$

- 13. $\int \frac{1}{x^2+1} \frac{1}{dx} = \arctan x + C$ 14. $\int \frac{dx}{x^2+a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$ 15. $\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$

2 Bounds

- $\Theta(g) = \{f; \exists c_1, c_2, n_0 > 0, \forall n > n_0 : 0 \le c_1 g(n) \le f(n) \le d(n) \le d($ $c_2g(n)$
- $\mathcal{O}(g) = \{f; \exists c, n_0 > 0, \forall n > n_0 : 0 \le f(n) \le cg(n)\}$
- $\Omega(g) = \{f; \exists c, n_0 > 0, \forall n > n_0 : 0 \le cg(n) \le f(n)\}\$
- $o(g) = \{f; \forall c > 0, \exists n_0 > 0, \forall n > n_0 : 0 \le f(n) < cg(n)\}\$
- $\omega(g) = \{f; \forall c > 0, \exists n_0 > 0, \forall n > n_0 : 0 \le cg(n) < f(n)\}\$

Properties 2.1

- transitivity $f \in \Theta(g) \land g \in \Theta(h) \Rightarrow f \in \Theta(h)$ (for all bounds)
- reflexivity $f \in \Theta(f)$ (for Θ , \mathcal{O} and Ω)
- symmetry $f \in \Theta(g) \Leftrightarrow g \in \Theta(f)$
- transpose symmetry $f \in \mathcal{O}(g) \Leftrightarrow g \in \Omega(f)$ $f \in o(g) \Leftrightarrow g \in \omega(f)$

2.2Simplified Masters

- $T(n) = aT(\frac{n}{h}) + \Theta(n^d)$
- $a \ge 1; b > 1; d \ge 0$
- $a > b^d \to T(n) = \Theta(n^{\log_b a})$
- $a = b^d \to T(n) = \Theta(n^d \log_b n)$
- $a < b^d \to T(n) = \Theta(n^d)$

2.3Masters

- $T(n) = aT(\frac{n}{b}) + f(n)$ $a \ge 1; b > 1$
- $f(n) = \mathcal{O}(n^{\log_b a \epsilon}) \to T(n) = \Theta(n^{\log_b a}), \epsilon > 0$
- $f(n) = \Theta(n^{\log_b a}) \to T(n) = \Theta(n^{\log_b a} \log(n))$
- $f(n) = \Omega(n^{\log_b a + \epsilon}) \to T(n) = \Theta(f(n)), \epsilon > 0$ and $af(\frac{n}{b}) \le$ cf(n) for some c < 1 and big enough n
- $=\Theta(n^{log_ba}log^k(n))$ • case2 ext: f(n) $\Theta(n^{log_ba}log^{k+1}(n))$

2.4Akra-Bazzi

$$T(n) = \sum_{i=1}^{k} a_i T(b_i n) + f(n), n > n_0$$

- $n_0 \ge \frac{1}{b_i}$, $n_0 \ge \frac{1}{1-b_i}$ for each i,
- $a_i > 0$ for each i,

- $0 < b_i$ for each i,
- $k \ge 1$,
- f(n) is non-negative function,
- $c_1 f(n) \leq f(u) \leq c_2 f(n)$, for each u satisfying condition:
- $T(n) = \Theta(n^p(1 + \int_1^n \frac{f(u)}{u^{p+1}} du))$ we get p from: $\sum_{i=1}^k a_i b_i^p = 1$

Extended Akra-Bazzi

 $T(n) = \sum_{i=1}^{k} a_i T(b_i n + h_i(n)) + f(n), n > n_0$ all of the conditions from Akra-Bazzi still hold plus: $|h_i(n)| = \mathcal{O}(\frac{n}{\log^2 n})$

2.6 Annihilators

Steps:

- Write the recurrence in operator form.
- Extract the annihilator for the recurrence.
- Factor the annihilator (if necessary).
- Extract the generic solution form the annihilator.
- Solve for coefficients using base cases (if known).

Operator	Definition
addition	(f+g)(n) := f(n) + g(n)
subtraction	(f-g)(n) := f(n) - g(n)
multiplication	$(a \cdot f)(n) := a \cdot (f(n))$
shift	Ef(n) := f(n+1)
k-fold shift	$E^k f(n) := f(n+k)$
composition	(X+Y)f := Xf + Yf
	(X - Y)f := Xf - Yf
	XYf := X(Yf) = Y(Xf)
distribution	X(f+g) = Xf + Xg

Operator	Functions annihilated
E-1	α
E-a	αa^n
(E-a)(E-b)	$\alpha a^n + \beta b^n \qquad (a \neq b)$
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n (a_i \text{ distinct})$
$(E-1)^2$	$\alpha n + \beta$
$(E-a)^2$	$(\alpha n + \beta)a^n$
$(E-a)^2(E-b)$	$(\alpha n + \beta)a^n + \gamma b^n (a \neq b)$
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$

If X annihilates f, then X also annihilates Ef. If X annihilates both f and g,

then X also annihilates $f \pm q$.

If X annihilates f, then X also annihilates αf , for any constant α .

If X annihilates f and Y annihilates q, then XY annihilates $f \pm g$.

3 Pseudo random generator

Linear congruential generators

$$x_i = (ax_{i-1} + c) \mod m$$

- RANDU: $x_i = 65539x_{i-1} \pmod{2^{31}}$
- MINSTD $x_i = 16807x_{i-1} \pmod{2^{31} 1}$

Blum-Blum-Shrub

- $p, q \in \mathbb{P}$, large (at least 40 decimal places)
- m = pq
- $\bullet \ X_i = X_{i-1}^2 \pmod{m}$
- $b_i = \text{parity}(X_i)$

Amortized analysis

- Aggregated analysis Determine upper bound T(n) for the total cost of a sequence of n operations. Amortized cost per operation is $\frac{T(n)}{n}$.
- Accounting method Some operations are overcharged to pay for other operations.
- Potential method $c'_i = c_i + \Phi(D_i) \Phi(D_{i-1}); \Phi(D_n) \ge \Phi(D_0)$

4.1 Vsote zaporedji

4.2Parallel programming

- Amdahl $S = \frac{1}{\frac{f}{P} + (1-f)}$ Gustafson $S_P = \frac{T_s + PT_p}{T_s + T_p}$

Linear programming

Standard LP 5.1

- given n real numbers c_1, c_2, \ldots, c_n
- m real numbers b_1, b_2, \ldots, b_m
- $m \times n$ real numbers a_{ij} for $i = 1, \ldots, m$ and $j = 1, \ldots, n$
- we wish to find n real numbers x_1, \ldots, x_n that

maximize $\sum_{i=1}^{n} c_i x_j$ subject to $\sum_{i=1}^{n} a_{ij} x_j \leq b_i, \forall i = 1, \dots, m; x_j \geq 0$

5.2 **Transformations**

- $\min f(x) \to \max -f(x)$
- $a \ge b \rightarrow -a \le -b$
- $x \in \Re \rightarrow x = x' x''$
- $a = b \rightarrow a \le b; -a \le -b$

5.3Metroplis algorithm

- If better neighbour exists, move to it.
- Otherwise choose a random neighbour, but accept better neighbours with larger probability.
- Decrease the probability of acceptance.
- In time, stohastic search turns into deterministic LS.

Simulated annealing 5.4

- Start with a random state S.
- Select random neighbour S1
- If q(S') < q(S), move to S'.
- Otherwise, move with probability $e^{\frac{-(q(S')-q(S))}{T}}$

Decrease temperature while it's not close to zero. Usually a geometrical rule is used: $T' = \lambda T$, $0 < \lambda < 1$ (typically $\lambda = 0.95$)

Metaheuristics 6

6.1 Tabu search

Idea: to prevent returning back to the same local extreme, supress (parts of) solutions.

6.2Guided local search

Metaheuristics which guide local search and helps it avoid local ex-

- define properties (attributes) of solutions
- penalize attributes, which occur too often in local extrema
- auxiliary objective function

$$h(s) = g(s) + \lambda \cdot \sum_{i \text{ is a feature}} (p_i \cdot I_i(s))$$

Utility of punishment for property i in local extreme s*

$$\operatorname{util}_{i}(s*) = I_{i}(s*) \cdot \frac{c_{i}}{1+p}$$

 c_i is cost, p_i is current punishment for property iIn local extreme we punish the property with the largest utility (we increment p_i by 1).

Variable neighbourhood search 6.3

Idea: define several neighbourhood structures and change neighbourhood when reaching local extreme in one of them. Order neighbourhoods by the efficiency of computation.

Swarm intelligence

- fixed population
- autonomous individual
- communication between agents
- aggregation of similar animals, generally cruising in the same direction
- simple rules for each individual
- decentralized
- emergent behaviour

Ant colony optimization 7.1

- ants find the shortest path to food source from the nest
- they deposit pheromone along traveled path, which is used by other ants to follow the trail
- this kind of indirect communication via the local environment is called stigmergy
- adaptability, robustness and redundancy

Possible daemon actions to apply centralized actions.

7.2Particle swarm optimization

- Individuals strive to improve themselves and often achieve this by observing and imitating their neighbours.
- Each individual has the ability to remember.
- Each particle is represented with two vectors, location and velocity.

Information exchange in the swarm

- historically best location x^*
- best location of informants x^+
- globally best location $x^!$

7.2.2 Moving

- Compute the fitness of each particle and update x^* , x^+ and $x^!$.
- Update the representation of particle. Velocity vector takes into account updated directions x^* , x^+ and $x^!$. Each direction is updated with some random noise.
- Move the particle in the direction of the velocity vector.