```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('supermarket_sales.csv')

df.head()
```

 \rightarrow

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%
0	750-67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	26.1415
1	226-31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3.8200
2	631-41- 3108	А	Yangon	Normal	Male	Home and lifestyle	46.33	7	16.2155
3	123-19- 1176	А	Yangon	Member	Male	Health and beauty	58.22	8	23.2880
4	373-73-	٨	Vanaan	Mariaal	Mala	Sports and	06 04	7	20 2005

df.shape

```
→ (1000, 17)
```

```
print("Number of rows : ",df.shape[0])
print("Number of columns : ",df.shape[1])
print("Columns : ",df.columns)
```

Number of rows: 1000

Number of columns: 17

Columns: Index(['Invoice ID', 'Branch', 'City', 'Customer type', 'Gender', 'Product line', 'Unit price', 'Quantity', 'Tax 5%', 'Total', 'Date', 'Time', 'Payment', 'cogs', 'gross margin percentage', 'gross income', 'Rating'], dtype='object')

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1000 entries, 0 to 999
 Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	Invoice ID	1000 non-null	object
1	Branch	1000 non-null	object
2	City	1000 non-null	object

			_	1 7	
3	Customer type	1000 non-nu	11	object	
4	Gender	1000 non-nu	11	object	
5	Product line	1000 non-nu	11	object	
6	Unit price	1000 non-nu	11	float64	
7	Quantity	1000 non-nu	11	int64	
8	Tax 5%	1000 non-nu	11	float64	
9	Total	1000 non-nu	11	float64	
10	Date	1000 non-nu	11	object	
11	Time	1000 non-nu	11	object	
12	Payment	1000 non-nu	11	object	
13	cogs	1000 non-nu	11	float64	
14	gross margin percentage	1000 non-nu	11	float64	
15	gross income	1000 non-nu	11	float64	
16	Rating	1000 non-nu	11	float64	
dtyp	es: float64(7), int64(1),	object(9)			

memory usage: 132.9+ KB

df.describe()

	Unit price	Quantity	Tax 5%	Total	cogs	gross margin percentage	
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000	1.000000e+03	10
mean	55.672130	5.510000	15.379369	322.966749	307.58738	4.761905e+00	
std	26.494628	2.923431	11.708825	245.885335	234.17651	6.131498e-14	
min	10.080000	1.000000	0.508500	10.678500	10.17000	4.761905e+00	
25%	32.875000	3.000000	5.924875	124.422375	118.49750	4.761905e+00	
50%	55.230000	5.000000	12.088000	253.848000	241.76000	4.761905e+00	
75%	77.935000	8.000000	22.445250	471.350250	448.90500	4.761905e+00	•

df.describe(include='object')

→		Invoice ID	Branch	City	Customer type	Gender	Product line	Date	Time	Payment
	count	1000	1000	1000	1000	1000	1000	1000	1000	1000
	unique	1000	3	3	2	2	6	89	506	3
	top	849-09- 3807	Α	Yangon	Member	Female	Fashion accessories	2/7/2019	19:48	Ewallet

Observation

- The dataset contains 1000 rows and 17 columns.
- Dataset has no missing values.
- Data Types:

- Numeric Columns: Unit price, Quantity, Tax 5%, Total, COGS, Gross margin %, Gross income, Rating.
- Categorical Columns: Invoice ID, Branch, City, Customer Type, Gender, Product line, Date, Time, Payment.
- The average unit price is approximately \$55.67.
- The average quantity purchased per transaction is about 5.51 items.
- The average customer rating is around 6.97 out of 10.

• Branch C is performing Great in terms of revenue, with the highest total sales.

Branch A is behind the Branch after which is followed by Branch B

```
purchase = df.groupby('Customer type')['Total'].mean()
purchase
```

 $\overline{2}$

Total

Customer type	
Member	327.791305
Normal	318.122856

dtype: float64

```
plot = purchase.plot(kind='bar', color=['Skyblue', 'green'],edgecolor="black", figsize=(7
plot.bar_label(plot.containers[0], fmt='%.2f', label_type='edge', padding=3)
```

```
plt.title('Average Purchase Amount by Customer Type')
plt.xlabel('Customer Type')
plt.ylabel('Average Purchase Amount')
plt.xticks(rotation=0)
```

plt.show()

 \rightarrow

Average Purchase Amount by Customer Type

• Members spend more per transaction than Normal customers.

```
product = df.groupby('Product line')['Total'].sum()
product
```


Total

Product line	
Electronic accessories	54337.5315
Fashion accessories	54305.8950
Food and beverages	56144.8440
Health and beauty	49193.7390
Home and lifestyle	53861.9130
Sports and travel	55122.8265

dtype: float64

```
plot = product.plot(kind='barh', color='orange',edgecolor="black",orientation="horizontal
plot.bar_label(plot.containers[0], fmt='%.2f', padding=3)

plt.title('Total Sales by Product Line')
plt.xlabel('Total Sales')
plt.ylabel('Product Line')

plt.show()
```

 $\overline{\Rightarrow}$

- Food and beverages are the top product category in terms of revenue.
- This insight suggests that the company's current strategies in this product category are
 effective. By analysing and understanding what's driving success here—whether it's
 pricing, promotions, product quality, or customer preferences—the company can replicate
 similar approaches across underperforming product lines to enhance overall sales and
 profitability

```
plt.figure(figsize=(8, 6))
sns.histplot(data=df, x='Rating', bins=10, color='r', edgecolor="black")
plt.title('Distribution of Customer Ratings')
plt.xlabel('Rating Score')
plt.ylabel('Frequency')
```

 $\overline{2}$

Distribution of Customer Ratings

Ratings are evenly distributed, it indicates varied customer experiences

Summary

Key Business Insights

- Branch Performance
 - Branch B outperformed the others in total sales, establishing itself as the top revenue-generating location.
 - This reflects strong operational efficiency, effective local marketing, or a strategically advantageous location.
- Customer Spending Behavior
 - Loyalty program members consistently made higher-value purchases than nonmembers.
 - This highlights the **positive impact of the loyalty program** on customer spending and engagement.

- Best-Selling Product Line
 - The Food and Beverages category led all product lines in revenue contribution.
 - Fashion Accessories and Electronic Accessories followed, indicating a strong customer preference for daily-use and lifestyle products.
- Customer Satisfaction Ratings
 - Customer ratings were **evenly distributed**:
 - 50% fell in the moderate range (4-7)