Universidad de Buenos Aires		Facultad de Ingeniería		
1º Cuatrimestre 2011	75.12 - Análisis Numérico I. Curso 008	Parcial. Última Oportunidad.	Tema Único	Nota
Padrón:	Apellido y Nombres			

Se tiene la siguiente ecuación diferencial y una grilla asociada a su resolución por el método de Euler Modificado:

$$y' = f(t, y) = t \cdot (t + y)$$

i	0	1	2	3	4
ti	0	0.2	0.4	0.6	0.8
wi	1	?	1.109354	1.282689	1.586577

a) Considerando la expresión de dicho método (dada a continuación) como una función de punto fijo, obtener w₁ con 7 dígitos significativos utilizando como aproximación inicial el valor w₀.

$$w_{i+1} = w_i + h.[f(t_i, w_i) + f(t_{i+1}, w_{i+1})]$$

- b) Obtener el valor de w₁ interpolando por el método de Lagrange Baricéntrico con los puntos t₀, t₂, t₃ y t₄.
- c) Indicar, a partir de los resultados de los puntos anteriores, cuál de ellos resulta más confiable. Justificar.
- d) Construir el SEL correspondiente a una interpolación por Spline con Frontera Sujeta entre t₂ y t₄.
- e) Teniendo en cuenta la distribución de los puntos dados ¿Podríamos utilizar métodos de diferenciación de orden mayor a O(h) para calcular $y'(t_2)$ e $y'(t_4)$? ¿Cuáles? Justificar.
- f) Realizar dos iteraciones mediante el método SOR con ω = 1.2, adoptando un vector inicial nulo, para resolver el SEL correspondiente a Spline.
- g) ¿Con qué criterio y cota de corte podríamos considerar "correcta" la solución hallada en el punto anterior?
- h) ¿Qué método se podría recomendar para integrar la interpolación de Spline propuesta? ¿Se podría obtener un resultado similar sin pasar previamente por la interpolación? Justificar
- i) Calcule la integral en el intervalo [t₂,t₄] mediante el método de los trapecios compuesto.
- j) Construir la gráfica de proceso de f(t,y) para hallar Cp y Te en forma teórica, adoptando ambos parámetros de entrada como variables independientes.
- k) ¿Sería posible proponer un algoritmo alternativo para la expresión f(t,y)? ¿Cómo deberían ser Te y Cp para este nuevo algoritmo? Justificar.
- I) Estimar Cp en (t_4, w_4) adoptando r=0.5% mediante perturbaciones experimentales y compararlo con el valor teórico obtenido en el punto anterior.

Firma