

planetmath.org

Math for the people, by the people.

quotient of languages

Canonical name QuotientOfLanguages
Date of creation 2013-03-22 18:56:06
Last modified on 2013-03-22 18:56:06

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Definition
Classification msc 68Q70
Classification msc 68Q45
Defines quotient
Defines left quotient
Defines right quotient

Let L_1, L_2 be two languages over some alphabet Σ . The quotient of L_1 by L_2 is defined to be the set

$$L_1/L_2 := \{ u \in \Sigma^* \mid uv \in L_1 \text{ for some } v \in L_2 \}.$$

 L_1/L_2 is sometimes written $L_1L_2^{-1}$. The quotient so defined is also called the right quotient, for one can similarly define the left quotient of L_1 by L_2 :

$$L_1 \backslash L_2 := \{ u \in \Sigma^* \mid vu \in L_1 \text{ for some } v \in L_2 \}.$$

 $L_1 \setminus L_2$ is sometimes written $L_2^{-1}L_1$.

Below are some examples of quotients:

- If $L_1 = \{a^n b^n c^n \mid n \ge 0\}$ and $L_2 = \{b, c\}^*$, then
 - $-L_1/L_2 = \{a^m b^n \mid m \ge n \ge 0\}$
 - $-L_2/L_1 = L_2$
 - $L_1 \setminus L_2 = {\lambda}$, the singleton consisting the empty word
 - $-L_2 \backslash L_1 = L_2$
- for any language L over Σ :
 - L/Σ^* is the language of all prefixes of words of L
 - $-\ \Sigma^*/L = \Sigma^*$
 - $-L \Sigma^*$ is the language of all suffixes of words of L
 - $\Sigma^* \backslash L = \Sigma^*$
- $\lambda \in L/L \cap L \setminus L$, and if $\lambda \in L$, then $L \subseteq L/L \cap L \setminus L$.

Here are some basic properties of quotients:

- 1. $L_1 \subseteq (L_1/L_2)L_2 \cap L_2(L_1 \setminus L_2)$.
- 2. $(L_1/L_2)L_2 \subseteq (L_1L_2)/L_2$, and $L_2(L_1 \setminus L_2) \subseteq (L_2L_1) \setminus L_2$.
- $3.\ {\rm right}$ and left quotients are related via reversal:

$$(L_1 \backslash L_2)^R = \{u^R \mid vu \in L_1 \text{ for some } v \in L_2\}$$

= $\{u^R \mid (vu)^R \in L_1^R \text{ for some } v^R \in L_2^R\}$
= $\{u^R \mid u^R v^R \in L_1^R \text{ for some } v^R \in L_2^R\}$
= L_1^R / L_2^R .

A family \mathscr{F} of languages is said to be closed under quotient by a language L if for every language $M \in \mathscr{F}$, $M/L \in \mathscr{F}$. Furthermore, \mathscr{F} is said to be closed under quotient if $M/L \in \mathscr{F}$ for any $M, L \in \mathscr{F}$. Closure under quotient is also termed closure under right quotient. Closure under left quotient is similarly defined.

It can be shown that the families of regular, context-free, and type-0 languages are closed under quotient (both left and right) by a regular language. The family of context-sensitive languages does not have this closure property.

Since all of the families mentioned above are closed under reversal, each of the families, except the context-sensitive family, is closed under left quotient by a regular language, according to the second property above.

References

[1] J.E. Hopcroft, J.D. Ullman, Formal Languages and Their Relation to Automata, Addison-Wesley, (1969).