EXERCISES – BIOLOGICAL SIGNALS

What will we do today?

- Introduction to Wavelet Transform
- 2. Heart rate variability with Wavelet Transform
- 3. Summary

Fourier Transform vs. Wavelet Transform

- Fourier analysis represents a signal as either a function of time or frequency, but not both.
- Like sines and cosines in Fourier analysis, wavelets are used as basis functions in representing other functions.
- □ Wavelets are waveform of limited duration that has an average value of zero.
- Wavelets are located in both frequency (via dilation) and time (via translation) domains.

Wavelets

Wavelets are generated from a single basic wavelet $\psi(t)$ called mother wavelet as follows: $\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi(\frac{t-b}{a})$, where b is the shift-coefficient and a is the scale coefficient.

Prominent examples are the Haar and Daubechies wavelets

Haar wavelet

Daubechies wavelets

The Wavelets Transform

- Wavelet Transform is the representation of a signal f(t) as a linear combination of wavelet basis functions: $f(t) = c_0 \varphi(t) + \sum_{a,b} c_{a,b} \psi_{a,b}$
- \Box A wavelet basis consists of a father wavelet $\varphi(t)$ that represents the smooth baseline trend and a mother wavelet $\psi_{a,b}$ that is dilated and shifted to construct different levels of detail.
- The wavelet basis functions are chosen according to the signal being approximated.

Step1: take a wavelet and correlate it with a section of the signal

Step2: shift the wavelet to the right and repeat step 1 until the whole signal is covered

Step3: scale (stretch) the wavelet and repeat steps 1 and 2

Example of wavelet transform

Example of wavelet transform

Consider the following data x with two component frequencies components

The scalogram is a visual method of displaying a spectrum of frequencies over time.

There are 3 axes: x representing time, y representing scale, and z representing wavelet coefficient value

Using the function scal2freq, we compute the correspondence table of scales and frequencies for the **gaus4** wavelet. Then, we find the scales corresponding to the frequencies F1 = 10 and F2 = 40.

coefs = cwt(x,scales,'wname','scalCNT') computes the continuous wavelet transform (CWT) coefficients of the real-valued signal x at real, positive scales, using wavelet 'wname' and displays a contour representation of the scalogram

wscalogram('image',coefs,'scales',scales,'ydata',x) computes the scalogram SC which represents the percentage of energy for each coefficient.

Heart rate variability with Wavelets Transform

- Discrete WT can be performed using a Daubechies 4 wavelet with 6 logarithmically progressing scales
 - scale 1 and 2 correspond to 0.5-2 Hz
 - scales 3 and 4 correspond approximately to HF (0.125 –0.5 Hz)
 - \square scales 5 and 6 correspond to LF (0.03125 0.125 Hz).

Exercice 1: RR Interval measurement with BIOPAC

- Biopac MP35 measurement system
 - ECG is recorded using Biopac SS2L wires plugged in the first channel.
- Biopac Student Lab PRO software
 - □ The acquisition is set up at a sampling rate of 200 Hz.
 - Analog Channel CH1 should have the preset ECG (.5 35 Hz).
 - Calculation Channel C1 should have the preset ECG RR Interval

- Importing RR intervals from Biopac into Matlab
 - □ File -> Save as text

```
Resample from 200 Hz to 4 Hz
```

```
Fs = 4;

x = resample (RR, Fs, 200) 

clf; plot(x,'r');

axis tight

title('Signal');

xlabel('Time or Space')
```

```
Wavelet name
                                            scales
wname = 'gaus4'; \leftarrow
scales = 1:1:128; <
TAB\_Sca2Frq = scal2frq(scales, wname, 1/Fs); \leftarrow
                                                                       table of scales and frequencies
LF = (0.15-0.04)/2;
HF = (0.4-0.15)/2;
[~,idxSca_1] = min(abs(TAB_Sca2Frq-LF));
Sca_1 = scales(idxSca_1)
[~,idxSca_2] = min(abs(TAB_Sca2Frq-HF));
Sca_2 = scales(idxSca_2) <
                                                     Scale for LF frequency 0.04 - 0.15 Hz
                                Scale for HF frequency 0.15 - 0.4 Hz
```


Exercice 2: HRV with wavelet transform during breathe holding

- Procedure
 - □ Subject is instrumented for ECG measurement with Biopac.
 - □ Take a couple minutes relaxation before the experiment
 - □ Perform a 1 min recording in a sitting position while breathing normally.
 - Perform another recording while the subject exhales and empties the lungs; then immediately holds breathing as long as possible.
 - Perform another 1 min recording while breathing normally
- Evaluation
 - □ Export the data from BSL Pro as txt File (Edit →Clipboard →Copy Wave Data).
 - Import the data into Matlab using tdfread or csvread
 - Estimate the total power of each frequency band (LF and HF) using Matlab wavelet transform functions: cwt, waveinfo, scal2frq, wscalogram.
 - Reveal the change in the power of HF component over the time

Exercice 3: HRV with wavelet transform during active standing

Procedure

- □ Subject is instrumented for ECG measurement with Biopac.
- □ Perform a 1 min recording in a sitting position.
- Perform another 1 min recording while the subject actively stands up from the sitting position.
- □ Perform a 1 min recording in a sitting position.

Evaluation

- □ Export the data from BSL Pro as txt File (Edit →Clipboard →Copy Wave Data).
- Import the data into Matlab using tdfread or csvread
- Estimate the total power of each frequency band (LF and HF) using Matlab wavelet transform functions: cwt, waveinfo, scal2frq, wscalogram.
 - Reveal the change in the power of HF and LF components over the time

Team Projects

- Project 1: Cardiovascular Signal Analyzer
 - Digital filtering of a raw PPG signal
 - Extraction of PH (pulse height) and PP (peak-to-peak) values from a filtered PPG signal
 - MAP estimation using PH
 - Fourier transform of PP intervals and estimation of HF and LF
 - Implementation in Matlab, if possible with an interactive GUI
 - User should be able to import the raw signal import from a Biopac text export
 - User should be able to enter the sampling frequency, signal type (ECG or PPG or both) and channel numbers
 - User should be able to filter the raw signal
 - User should be able to execute PP, PH, MAP, LF, HF computation
 - User should be able to display plots of the raw signal for a given start and end timestamp
 - User should be able to display plots of PP, PH, MAP over the time for a given start and end timestamp and display the value of LF and HF

Team Projects

- Project 2: Nervous Activity Analyzer
 - Digital filtering of a raw EEG signal
 - Extraction of alpha, beta, theta, delta waves from a filtered EEG signal
 - Computation of STD, AVG and CC
 - Implementation in Matlab, if possible with an interactive GUI
 - User should be able to import the raw signal import from a Biopac text export
 - User should be able to enter the sampling frequency
 - User should be able to filter the raw signal
 - User should be able to execute alpha, beta wave, theta, delta wave computation using Fourier or Wavelet transform or digital filtering
 - User should be able to execute STD, AVG, CC computation
 - User should be able to display plots of the raw signal for a given start and end timestamp
 - User should be able to display plots of alpha, beta wave, theta, delta waves over the time for a given start and end timestamp and display the values for STD, AVG and CC

Team Projects

- Project 3: Muscle Activity Analyzer
 - Digital filtering of a raw EMG signal
 - Computation of rectified EMG from a filtered EMG signal
 - Computation of the spectrum of the filtered EMG signal using Fourier transform
 - Computation of RMS, ARV
 - Implementation in Matlab, if possible with an interactive GUI
 - ☐ User should be able to import the raw signal import from a Biopac text export
 - User should be able to enter the sampling frequency
 - ☐ User should be able to filter the raw signal
 - User should be able to execute rectified EMG computation
 - User should be able to execute Fourier transform of the rectified EMG for a given start and end timestamp
 - □ User should be able to execute RMS, ARV computation for a given start and end timestamp
 - User should be able to display plots of the raw EMG, rectified EMG, EMG Fourier transform for a given start and end timestamp
 - □ User should be able to display the values for RMS, ARV for a given start and end timestamp

