CS 669 Assignment 1

Rohit Patiyal Devang Bacharwar

September 14, 2015

Contents

1	Obj 1.1 1.2			ata of 3 or 4 classe a set										2 2 2
2	Pro	cedure	9											2
3	Obs	ervati	ons											2
	3.1	Bayes	Classifier				 			 				2
		3.1.1	Linearly	separable data ser	· · · · · ·		 			 				2
		3.1.2	Non-Lin	early separable da	ta set		 			 				4
			3.1.2.1	Data of Interlock	ing Classes		 			 				4
			3.1.2.2	A ring with a cer	tral mass		 			 				6
			3.1.2.3	Spiral Dataset .			 			 				7
		3.1.3	Overlap	ping data set			 			 				9
		3.1.4	Real wo	rld data set			 			 				12
	3.2	Naive-		ssifier										13
		3.2.1	Linearly	separable data ser	· · · · · ·		 			 				13
		3.2.2	Non-Lin	early separable da	ta set		 			 				15
			3.2.2.1	Data of Interlock	-									15
			3.2.2.2	A ring with a cer										17
			3.2.2.3	Spiral Dataset .										18
		3.2.3		ping data set										20
		3.2.4	Real wo	rld data set			 			 				23
		3.2.5	Linearly	separable data ser	· · · · · ·		 			 		•		24
4	Con	clusio	n											24

1 Objective

To build Bayes and Naive-Bayes classifiers for different types of data sets:

1.1 2-D artificial Data of 3 or 4 classes

- 1. Linearly separable data set
- 2. Nonlinearly separable data sets (3 Data sets)
- 3. Overlapping data set

1.2 Real World data set

2 Procedure

- 1. Data for each class is partitioned into 75 % for training and 25 % for testing
- 2. Mean and Covariances are calculated for each class using the training data.
- 3. For points in a grid, likelihood is calculated for each class and is labeled as of the class with the maximum likelihood probability.
- 4. For bayes classifier, the likelihood is assumed to be a multivariate gaussian distribution
- 5. These labelled points are plotted with different colors to visualize the different regions separated by the decision boundaries.
- 6. The testing data is also plotted over the regions, and observations are made.

3 Observations

3.1 Bayes Classifier

3.1.1 Linearly separable data set

The decision boundary clearly separates the testing data according to the estimated classes, as the data forms widely separated clusters. Results are similar when the covariance is either taken as the average of individual class covariances and when the covariance is calculated using all classes' data together.

Figure 1: Decision region plot for every pair of classes

 $\begin{array}{l} {\rm Correct}: 374 \\ {\rm Incorrect}: 1 \\ {\rm Acurracy}: 99.733 \end{array}$

		Predicted			
		Class 1	Class 2	Class 3	
	Class 1	125	0	0	
Act	Class 2	0	125	0	
L _A	Class 3	0	1	124	

Figure 2: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 374 Incorrect: 1 Acurracy: 99.733

			Predicted	
		Class 1	Class 2	Class 3
	Class 1	125	0	0
rct	Class 2	0	125	0
	Class 3	0	1	124

Figure 3: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 375 Incorrect: 0 Acurracy: 100

		Predicted				
		Class 1	Class 2	Class 3		
	Class 1	125	0	0		
Act	Class 2	0	125	0		
Ą	Class 3	0	0	125		

Figure 4: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.2 Non-Linearly separable data set

3.1.2.1 Data of Interlocking Classes

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Pred	icted
		Class 1	Class 2
·	Class 1	46	29
Act	Class 2	158	142

Figure 5: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 188 Incorrect: 187 Acurracy: 50.133

Class 1 Class 2 Class 1 46 29 Class 2 158 142			Predicted			
			Class 1	Class 2		
턴 Class 2 158 142		Class 1	46	29		
	1ct	Class 2	158	142		

Figure 6: Decision region plot for all the classes together with the training data superposed with average covariance

 $\begin{array}{l} {\rm Correct}:\,375 \\ {\rm Incorrect}:\,0 \\ {\rm Acurracy}:\,100 \end{array}$

		Pred	icted
		Class 1	Class 2
	Class 1	75	0
Act	Class 2	0	300

Figure 7: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.2.2 A ring with a central mass

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Pred	icted
		Class 1	Class 2
	Class 1	46	29
Act	Class 2	158	142

Figure 8: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Pred	icted
		Class 1	Class 2
·	Class 1	46	29
Act	Class 2	158	142

Figure 9: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 375 Incorrect: 0 Acurracy: 100

		Pred	icted
		Class 1	Class 2
	Class 1	75	0
1ct	Class 2	0	300
7			

Figure 10: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.2.3 Spiral Dataset

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Pred	icted
		Class 1	Class 2
	Class 1	46	29
Act	Class 2	158	142

Figure 11: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Predicted				
		Class 1	Class 2			
	Class 1	46	29			
λct	Class 2	158	142			
- 4						

Figure 12: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 375 Incorrect: 0 Acurracy: 100

		Predicted		
		Class 1	Class 2	
	Class 1	75	0	
Act	Class 2	0	300	

Figure 13: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.3 Overlapping data set

Correct: 450 Incorrect: 50 Acurracy: 90.000

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	111	4	4	6
Act.	Class 2	1	116	0	8
AC	Class 3	9	0	116	0
	Class 4	6	12	0	107

Figure 15: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Figure 14: Decision region plot for every pair of classes

Correct: 453 Incorrect: 47 Acurracy: 90.600

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	111	6	4	4
<u>;</u>	Class 2	2	118	0	5
Act	Class 3	9	0	116	0
	Class 4	5	12	0	108

Figure 16: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 452 Incorrect: 48 Acurracy: 90.400

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	113	4	4	4
ct.	Class 2	2	118	0	5
Ac	Class 3	12	0	113	0
	Class 4	5	12	0	108

Figure 17: Decision region plot for all the classes together with the training data superposed with different covariance

3.1.4 Real world data set

Correct: 374 Incorrect: 1 Acurracy: 99.733

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
Act.	Class 2	0	125	0
₹	Class 3	0	1	124

Figure 18: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 374 Incorrect: 1 Acurracy: 99.733

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
Act.	Class 2	0	125	0
A.	Class 3	0	1	124

Figure 19: Decision region plot for all the classes together with the training data superposed with average covariance

Figure 21: Decision region plot for every pair of classes

Correct: 375 Incorrect: 0 Acurracy: 100

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
Act.	Class 2	0	125	0
Į ₹	Class 3	0	0	125

Figure 20: Decision region plot for all the classes together with the training data superposed with different covariance

3.2 Naive-Bayes classifier

3.2.1 Linearly separable data set

Correct: 374 Incorrect: 1 Acurracy: 99.733

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
Act	Class 2	0	125	0
	Class 3	0	1	124

Figure 22: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 374 Incorrect: 1 Acurracy: 99.733

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
Act	Class 2	0	125	0
₹,	Class 3	0	1	124

Figure 23: Decision region plot for all the classes together with the training data superposed with average covariance $\frac{1}{2}$

Figure 25: Decision region plot for every pair of classes

Correct: 375 Incorrect: 0 Acurracy: 100

		Predicted		
		Class 1	Class 2	Class 3
	Class 1	125	0	0
Act.	Class 2	0	125	0
Į ₹	Class 3	0	0	125

Figure 24: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.2 Non-Linearly separable data set

3.2.2.1 Data of Interlocking Classes

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Predicted		
		Class 1	Class 2	
	Class 1	46	29	
Act	Class 2	158	142	

Figure 26: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Predicted		
		Class 1	Class 2	
	Class 1	46	29	
Act	Class 2	158	142	

Figure 27: Decision region plot for all the classes together with the training data superposed with average covariance $\frac{1}{2}$

Correct: 375 Incorrect: 0 Acurracy: 100

		Predicted	
		Class 1	Class 2
	Class 1	75	0
Act	Class 2	0	300

Figure 28: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.2.2 A ring with a central mass

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Predicted	
		Class 1	Class 2
	Class 1	46	29
Act	Class 2	158	142

Figure 29: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Predicted	
		Class 1	Class 2
	Class 1	46	29
Act	Class 2	158	142

Figure 30: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 375 Incorrect: 0 Acurracy: 100

		Predicted		
		Class 1	Class 2	
	Class 1	75	0	
1ct	Class 2	0	300	

Figure 31: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.2.3 Spiral Dataset

Correct: 188 Incorrect: 187 Acurracy: 50.133

			Predicted	
			Class 1	Class 2
		Class 1	46	29
+	1	Class 2	158	142

Figure 32: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 188 Incorrect: 187 Acurracy: 50.133

		Predicted		
		Class 1	Class 2	
	Class 1	46	29	
1ct	Class 2	158	142	
7				

Figure 33: Decision region plot for all the classes together with the training data superposed with average covariance $\frac{1}{2}$

Correct: 375 Incorrect: 0 Acurracy: 100

		Predicted	
		Class 1	Class 2
	Class 1	75	0
Act	Class 2	0	300

Figure 34: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.3 Overlapping data set

Correct: 450 Incorrect: 50 Acurracy: 90.000

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	111	4	4	6
نب ا	Class 2	1	116	0	8
Act.	Class 3	9	0	116	0
	Class 4	6	12	0	107

Figure 36: Decision region plot for all the classes together with the training data superposed with alltogether covariance $\frac{1}{2}$

Figure 35: Decision region plot for every pair of classes

 $\begin{array}{l} {\rm Correct}: 453 \\ {\rm Incorrect}: 47 \\ {\rm Acurracy}: 90.600 \end{array}$

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	111	6	4	4
بب ا	Class 2	2	118	0	5
Act	Class 3	9	0	116	0
	Class 4	5	12	0	108

Figure 37: Decision region plot for all the classes together with the training data superposed with average covariance

Correct: 452 Incorrect: 48 Acurracy: 90.400

		Predicted			
		Class 1	Class 2	Class 3	Class 4
	Class 1	113	4	4	4
ا بر	Class 2	2	118	0	5
Act.	Class 3	12	0	113	0
	Class 4	5	12	0	108

Figure 38: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.4 Real world data set

Correct: 374 Incorrect: 1 Acurracy: 99.733

		Predicted			
		Class 1	Class 2	Class 3	
	Class 1	125	0	0	
Act.	Class 2	0	125	0	
A.	Class 3	0	1	124	

Figure 39: Decision region plot for all the classes together with the training data superposed with alltogether covariance

Correct: 374 Incorrect: 1 Acurracy: 99.733

		Predicted			
		Class 1	Class 2	Class 3	
	Class 1	125	0	0	
Act.	Class 2	0	125	0	
A.	Class 3	0	1	124	

Figure 40: Decision region plot for all the classes together with the training data superposed with average covariance

Figure 42: Decision region plot for every pair of classes

 $\begin{array}{l} {\rm Correct}:\,375 \\ {\rm Incorrect}:\,0 \\ {\rm Acurracy}:\,100 \end{array}$

		Predicted		
		Class 1	Class 2	Class 3
Act.	Class 1	125	0	0
	Class 2	0	125	0
	Class 3	0	0	125

Figure 41: Decision region plot for all the classes together with the training data superposed with different covariance

3.2.5 Linearly separable data set

The decision boundaries are very similar to the bayes classifier, where most of test data fit in the estimated class regions.

4 Conclusion

As per the observations, we can make the following conclusions : $% \left\{ \left\{ 1\right\} \right\} =\left\{ 1\right\} =\left\{$

1. The Decision Boundaries are more accurate in the case of different covariance for different classes

as compared to the other cases.

- 2. The curvature of the decision boundaries is due to the covariance term in the likelihood probabilty which makes the surface quadratic.
- 3. The Decision Boundaries are better in cases where data is not overlapping and is separable either linearly or non linearly.
- 4. In case of real data, the data is more overlapping and non linear, resulting in lesser accuracy of the testing data.
- > data=read.table("hw2_chol.txt")
- > hist(data\$V1,xlab='Cholesterol (mg/dL)',main='Histogram of Total Cholesterol')
- > boxplot(data\$V1,main='Total Cholesterol',ylab='Cholesterol (mg/dL)')