PLAGADEPROTOTIPADO!

SALIDADIGITAL

¡Hola mundo!

```
int LED = 13;

void setup() {
  pinMode(LED,OUTPUT);
}

void loop() {
  digitalWrite(LED,HIGH);
  delay(1000);
  digitalWrite(LED,LOW);
  delay(1000);
}
```


Ejercicio

Luces del Coche Fantástico

ENTRADA DIGITAL

Pulsador

```
int pinLED = 13;
     int pinBoton = 3;
     void setup() {
       pinMode(pinLED,OUTPUT);
       pinMode(pinBoton, INPUT);
     void loop() {
       if(digitalRead(pinBoton) == HIGH){
10 *
           digitalWrite(pinLED, HIGH);
12
       else{
           digitalWrite(pinLED,LOW);
14
15
       delay(100);
16
17
```


 $R_{LED}=220\Omega$

 $R_{BOTON} = 10k\Omega$

Ejercicio

Pulsa un botón para encender todos los LED

Pulsa el otro botón para apagar todos los LED

Pista: usa if pero sin utilizar else

 $R_{LED}=220\Omega$

 $R_{BOTON} = 10k\Omega$

ENTRADA ANALÓGICA

Potenciómetro

```
int valorPot;

R<sub>LED</sub>=220Ω

void setup() {
    Serial.begin(9600);
}

void loop() {
    valorPot = analogRead(A0);
    Serial.println(valorPot);

delay(100);
}
```


Ejercicio. Vumetro

Medir el valor del potenciómetro.

Encender uno, dos, tres o los cuatro LED según la potencia leída.

Pista: puedes usar la estructura else if()

 $R_{LED} = 220\Omega$

SALIDAANALÓGICA

PWM

```
int pinLED = 10;
                              R_{LED}=220\Omega
     int valorPot;
     int valorLED;
     void setup() {
       Serial.begin(9600);
 6
       pinMode(pinLED,OUTPUT);
 8
 9
     void loop() {
10 4
       valorPot = analogRead(A0);
11
       Serial.println(valorPot);
12
13
       valorLED = valorPot/4;
14
15
       analogWrite(pinLED, valorLED);
16
17
       delay(100);
18
19
```


Ejercicio

Hacer que la intensidad del LED aumente y disminuya sólo por software, sin potenciómetro

Pista: usar bucles for()

```
for(int i=0; condición; i++){
    CÓDIGO
}
```


 $R_{IFD}=220\Omega$

Theremin con sensor de luz

SENSOR DE LUZ


```
int valorLDR;
                                     R_{IFD}=220\Omega
     int valorLED;
     int pinLED = 10;
                                     R_{LDR}=10k\Omega
 4
     void setup() {
       Serial.begin(9600);
 6
       pinMode(pinLED,OUTPUT);
 8
10 +
     void loop() {
       valorLDR = analogRead(A0);
11
12
       Serial.println(valorLDR);
13
14
       valorLED = map(valorLDR,0,1023,0,255);
15
16
       analogWrite(pinLED, valorLED);
17
18
       delay(100);
19
    valSalida = map(valEntrada, minINPUT, MAXINPUT, minOUTPUT, MAXOUTPUT);
```

BUZZER PIEZOELÉCTRICO:


```
int piezo = 10;
    void setup() {
 4
         pinMode(piezo,OUTPUT);
 5
 6
     void loop() {
         tone(piezo, 440);
8
         delay(2000);
         noTone(piezo);
10
         delay(1000);
11
12
```

tone(pin, frecuencia)

TUTURNO: THEREMIN

Combina los ejemplos anteriores

La frecuencia variará en función del nivel de luz que mida el sensor.

Tendrás que ajustar con map() tanto el rango de entrada como el de salida.

Espectro audible 20 - 20000 Hz (aprox.)

Aviso - Las frecuencias altas son particularmente molestas

