NavMe: Challenges of Crowdsourcing Indoor Context

Lahlou, A.

A system for Indoor Navigation

What is NavMe?

A project

A framework

How can a person with VBI navigate indoors

The Big Problems

Take a survey of the problem from different point of views:

- User
- Engineer
- Ad-hoc crowd
- Stakeholder

User Requirements

- Must not depend on visual ability
- Cannot interfere with other senses
- Inconspicuous, non-stigmatizing

Helps with mental maps

Engineer

- How to scale
- Keep costs low
- Validating crowdsourced data
- Fix data decay

Ad-hoc Crowds

- Clear directions
- Low cognitive load
- Self-correcting
- Rewards

Problem Overview

- Hands-free, inconspicuous, safe user directives using smart watches in addition to smartphones to deliver on the wrist directives. Compared to other approaches such as haptic cane handles.
- Guaranteeing crowdsourced data quality at collection time real time, local methods that involve machine and human computation.
- Find-Fix-Verify redesigned for NavMe while not immediately transferrable, using users as an ad-hoc crowd to improve data corpus.
- Machine-based approaches for data verification and correction for building information
- Machine-based approaches for detecting data decay for building information
- NavMe as a training tool for developing mental maps

TL;DR - Lots of problems

TL;DR - Lots of problems

Time to get creative

TL;DR - Lots of problems

Time to get creative

and break it down

Marking up a building

Make a "language" for describing buildings

Benefits

- Great precision, accuracy
- Restricts data decay

Most importantly, enables knowledge driven expert system

First Step - Formalizing Declarative Facts

Adhere to OpenCyc/RDF standards

Obstacles, scenarios, time to live, constraints, probabilities

"Stairs must include elevation change....doors must be solid"

First Step - Formalizing Axioms

The least properties that we must assume so that we can reason with our facts

Distances can be added, paths are composable, reversing path reverses partial equivalence trait

First - Formalizing an Interpretation

Goals of interpretation:

- Verifies new data
- Gives feedback to user
- Prompts user to collect more information
- Handles data decay

Using smart devices

Deliver inconspicuous, safe directives while even being stylish.

Enable on the fly input with low cognitive load. Tacit improvement over time

Form factor

Usage Story

Machine-Based Strategies

Collecting paths

Leveraging the ad-hoc crowd

Leveraging the first time user

Collecting Paths

Leveraging Ad-hoc Crowd

- Social Rewards by ranks, similar to Stack Overflow (explorer, commando, etc.)
- Find-Fix-Verify, breaking up problem into smaller parts

Leveraging the first time

- No competing mental map
- Can make assumptions about their usage of NavMe

The most raw, the most honest data is from them. So it should be weighted more.

Thank you

Acknowledgements

- The Friedman Place
- Segal Design Institute
- The Norman Fund Foundation
- Mellon Mayes Undergraduate Fellowship