

Year 12 Mathematics Methods Test 4 Logarithmic functions and Calculus of Log functions

Section 1: Calculator Free

39 marks

40 minutes

1. [1, 1, 1, 2 marks]

Suppose that two variables x and y are related by $y = 6^{x}$.

- a) Use the *definition of a logarithm* to express x in terms of y.
- b) Given that $\log_6 2 = q$, write the following in terms of q:
 - i) $\log_6 24$

ii) $log_6 0.5$

 $_{iii)}$ $log_6 3$

2. [2, 2, 2 marks]

Solve the following, giving your answers in exact form involving logarithms where necessary.

a)
$$3^{x-4} = 14$$

b)
$$\log(x+4) - \log(x-5) = 1$$

c)
$$11(3^x) = 5 + 3^{x+2}$$

3. [3, 3, 2 marks]

On the sets of axes below, sketch the functions:

a)
$$y = \log_3(x-2)$$

b)
$$y = \log_{0.5} x + 4$$

c) Use the graph to solve $\log_{0.5} x = 0.5$

4. [3, 2 marks]

Let
$$g(x) = \frac{\ln x}{x^2}$$
, for $x > 0$.

(a) Use the quotient rule to show that
$$g'(x) = \frac{1 - 2 \ln x}{x^3}$$
.

(b) The graph of g has a maximum point at A. Find the x-coordinate of A.

5. [2 marks]

Find the derivative with respect to x of $y = \ln(x^3 + x^2)$

- 6. [2, 1, 2, 2, 2 marks]
 - a) Given the function $g(x) = x \ln x x + 1$, determine g'(x)
 - b) Hence determine an expression for $\int ln(x) dx$
 - $\int_{1}^{2} \ln(x) dx$ c) Evaluate 1
 - $\int_{1}^{2} \ln \sqrt{x} dx$ d) Evaluate 1
 - $\int_{a}^{b} \ln(x) dx$ e) Determine an expression for $\int_{a}^{b} \ln(x) dx$ in terms of a and b, such that b > a > 0

7. [2, 2 marks]

Consider the function
$$f(x) = 2 + \frac{1}{x-1}$$
; $x > 1$

The region enclosed by the graph of f(x), the x-axis and the lines x = 2 and x = 4, is shaded below.

(a) Find
$$\int f(x) dx$$
.

(a) Find
$$\int f(x) dx$$
.

(b) Find a simplified expression for the exact area of A.

Year 12 Mathematics Methods Test 4 Logarithmic functions and Calculus of Log functions

Name:

Section 2: Calculator & Notes Allowed

13 marks

15 minutes

8. [1, 1, 3 marks]

The faintest sound that can be heard by the human ear has intensity

$$I_0 = 10^{-16}$$
 watts per square centimetre.

Noise levels, β , are measured in decibels and are related to intensity:

$$\beta = 10 \log \frac{I}{I_0}$$
 decibels

Where I is the intensity of sound in watts per square centimetre.

- a) The maximum intensity which a human ear can tolerate is 10^{-4} watts per square centimetre. Determine the corresponding value of β .
- b) Busy motor traffic has a noise level of 70 decibels. Determine the corresponding intensity.
- c) The graph (without scales) of $\log I$ against β is sketched below; it is linear. By expressing $\log I$ in terms of β , determine the gradient and the intercept on the vertical axis.

9. [3, 2 marks]

A particle P moves along a straight line. Its velocity, v ms⁻¹ at time t seconds, is given by v = 10ln(t+3) + 2 for $t \ge 0$

(a) Find the initial velocity and acceleration

(b) Find the acceleration of P when its velocity is 20 ms⁻¹

10. [3 marks]

Draw the graph of $y = 2 \times 10^{2x}$, for $x \ge 0$; using semi-log grid.