

Cat

Fish

Horse

Rabbit

Sheep

Rabbit

Relation Module

Embedding

Module

$$f_{\varphi}(image)$$

 $g_{\varphi}(e_1,e_2)$

$$de^{(S,Q)}$$

$$\varphi, \phi \leftarrow \arg\min_{\varphi, \phi} \mathbb{E}_{L \sim \mathcal{T}} \left[\mathbb{E}_{S \sim L, Q \sim L} \left[\mathcal{L}_{episode}(S, Q) \right] \right]$$

 $\mathcal{L}_{episode}(S, Q) = \sum_{i} \sum_{j} \left(r_{i,j} - 1(y_i = y_j) \right)^2$

Relation Nets One-Shot Testing

