Daniel Delgado Acosta Andrew Goldbaum Eric Duong 5/1/2022

Lab 9: Flip-flops and Counter

Objective: To implement a RS latch and a binary counter with D-type flip flops.

Provided: 74X374 (D flip-flops), 7400 (quad 2-input NAND), breadboard.

9.1 Experiment: RS Latch

Input S=0 R=0 is undesirable or forbidden because the output Q=1 Qprime=1 is an invalid state.

9.2 Experiment: Binary Counter

r) resent	State		Next state Dy D ₂ D ₂		D,		
Q4(+)	Q3(f)	$Q_2(t)$	Q, (+)	Q4 (++1)	Q3(++1)	Q2(++1) Q	, (++1)	Unused
0	0	0	0 -	0	0	0	1	1010
0	0	0	1	0	0	1	0	1100
0	0	1	0	0	0	{	1	1101
0	0	1	1 .	0	1	0	0	Don't Cares
0	1	0	0	0	1	0	1	1)041
0	(O	1	0	1	-[0	
0	1	1	0	0	. 1	1	1	
0	(1	1	1	0	0	0	
(0	0	0.	1	0	0	1	
1	0	0	1 -	0	0	0	0	

_		U		,				
			/1		_		1	ŧ
X	X	χ	X		X	X	X	X
9		N	X		1)		X	(x
)3=Q3(22+0	3a'+	Q,'Q2	R _I	D4=	Q46	1+6	302

Circuit Diagram:

