ST 705 Linear models and variance components Homework problem set 5

February 17, 2021

- 1. Show that $I_n P_X$ is the unique symmetric projection matrix onto $\operatorname{null}(X')$.
- 2. Let $X \in \mathbb{R}^{n \times p}$ with full column rank, $\Phi \in \mathbb{R}^{p \times m}$, and $U \in \mathbb{R}^{p \times p}$ be positive definite. Show that,

$$\|\Phi'X'(P_X - X(X'X + U)^{-1}X')^2X\Phi\| \le \|\Phi'X'(P_X - X(X'X + U)^{-1}X')X\Phi\|,$$
 where $P_X = X(X'X)^{-1}X'$.

- 3. Let V be a finite-dimensional inner product space over \mathbb{C} , and let $\{v_1, \ldots, v_n\}$ be an orthonormal basis for V.
 - (a) Show that for any $x, y \in V$,

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

This is called Parseval's identity.

- (b) For $V = \mathbb{R}^2$ use Parseval's identity to prove the Pythagorean theorem. Generalize this result to \mathbb{R}^n .
- 4. Exercise A.34 from Monahan.
- 5. Exercise A.35 from Monahan.
- 6. Exercise 2.12 from Monahan.