Quina shell és la més ràpida?

11.2.

Rubén Catalán Rua Ismael El Basli Muhammad Yasin Khokhar

Introducció

Què és una Shell?

- Intèrpret de comandes
- Interfície pel sistema de Linux
- En el nostre treball utilitzem les vuit mostrades

Eines utilitzades per l'estudi:

/usr/bin/t ime

Sort de vectors

ash

fish

Shell

Plantejament de l'estudi

- Comparació de vuit shells
- Comparem temps d'execució en 2 programes
- També mirem la relació temps usuari sistema
- Vuit execucions per shell i programa, guardem els tres temps (8*8*2*3 = 384 dades)

1.Comparació de temps entre les Shells

Variables que es tracten:

Y: Temps total → Variable de resposta

X: Tipus de shell

Ho: μ (sh)= μ (ash)= μ (fish)= μ (bash)= μ (dash)= μ (ksh)= μ (tcsh)= μ (zsh)

H1:alguna sigui distinta

Dades recollides i premisses

Intèrval de confiança del 95% (risc 5%)

2.5 % 97.5 %
SHELLash 3.513884 3.612366
SHELLbash 3.510759 3.609241
SHELLdash 3.520134 3.618616
SHELLfish 3.507009 3.605491
SHELLksh 3.522009 3.620491
SHELLsh 3.512009 3.610491
SHELLtcsh 3.492634 3.591116
SHELLzsh 3.487634 3.586116

Discussió dels resultats obtinguts

No s'ha arribat a trobar diferència entre shells.

 Θ **Ho:** μ (sh)= μ (ash)= μ (fish)= μ (bash)= μ (dash)= μ (ksh)= μ (tcsh)= μ (zsh)

2. Relació entre temps usuari i temps sistema

Variables:

Y: Temps usuari → Variable de resposta

X: Temps sistema → Variable de resposta

Ho: No hi ha rel·lació, pendent nul·la

H1: Si hi ha rel·lació

Dades recollides i premisses

Programa "Sort"

Partida d'EDA

Dades recollides i premisses

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.63467 0.01064 341.672 <2e-16 ***
TEMPS SISTEMA -0.32892 0.66454 -0.495 0.622

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03384 on 62 degrees of freedom Multiple R-squared: 0.003936, Adjusted R-squared: -0.01213

F-statistic: 0.245 on 1 and 62 DF, p-value: 0.6224

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) | (Intercept) | 1.01912 | 0.21943 | 4.644 | 1.82e-05 *** | TEMPS_USUARI | -0.27225 | 0.06559 | -4.151 | 0.000103 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01813 on 62 degrees of freedom Multiple R-squared: 0.2174, Adjusted R-squared: 0.2048

F-statistic: 17.23 on 1 and 62 DF, p-value: 0.000103

Programa "Sort"

Partida d'EDA

Discussió dels resultats aconseguits

No s'ha arribat a trobar una relació lineal entre temps usuari i temps sistema.

3. Limitacions de l'estudi

• Reduït nombre d'execucions.

Variabilitat en quant als tipus de programa usats.

4. Problemes trobats

- Dades plantejades inicialment: 4 (Programes) x 4 (execucions) x 8 (Shells) x 3(temps total, usuari i sistema) = **384**
- Dades actuals: 2 (Programes) x 8 (execucions) x 8 (Shells) x 3 (temps total, usuari i sistema) = 384
- Raó: Complir les **premises** per poder emprar el model lineal

5. Recomanacions per futurs estudis

- Major nombre d'execucions
- Un únic programa amb molta variabilitat
- Afegir variants que puguin influir en el temps d'execució (Arquitectura, sistema operatiu ...)

FI DE LA PRESENTACIÓ

Gràcies per la vostra atenció.

