

Lecture # 5.2 CHE331A

- Rate as a function of conversion
- Developed stoichiometric table for single reaction
- Determined the relationship between concentration versus conversion for constant volume systems
- Need to determine concentration vs.
 conversion for variable volume system

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR

In gas phase reactions with change in total number of moles \dot{v} changes with residence time

- ► For gas-phase systems we can use the following equation of state: In general, for Batch: $PV = ZN_TRT$ or for Flow: $P\dot{v} = ZF_TRT$
- Above equation of state is also valid for the initial state/inlet For Batch: $P_0V_0=Z_0N_{T0}RT_0$ or for Flow: $P_0\dot{v}_0=Z_0F_{T0}RT_0$
- ► Thus, $V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) \frac{N_T}{N_{T_0}}$ OR $\dot{v} = \dot{v}_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) \frac{F_T}{F_{T_0}}$
- ▶ Using the definition of δ (change in total moles per mol A reacted)

$$\delta = \frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1$$
, then $N_T = N_{T0} + \delta N_{A0}X$ OR $F_T = F_{T0} + \delta F_{A0}X$

The volume/volumetric flowrate can be further generalized

$$N_T = N_{T0} + \delta N_{A0} X \qquad \text{OR} \qquad F_T = F_{T0} + \delta F_{A0} X \text{ can be presented as}$$

$$\frac{N_T}{N_{T0}} = 1 + \varepsilon X \quad \text{OR} \quad \frac{F_T}{F_{T0}} = 1 + \varepsilon X$$

where $\epsilon = y_{A0}\delta$ and y_{A0} is the initial/inlet mol fraction of limiting reactant A

Thus,
$$V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) (1 + \varepsilon X)$$
 OR $\dot{v} = \dot{v}_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) (1 + \varepsilon X)$

$$\dot{v} = \dot{v}_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) (1 + \varepsilon X)$$

For gas-phase systems with compressibility factor not changing

$$V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} (1 + \varepsilon X)$$
 OR $\dot{v} = \dot{v}_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} (1 + \varepsilon X)$

$$\dot{v} = \dot{v}_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} (1 + \varepsilon X)$$

Concentrations in terms of conversion for variable volume systems

- ► For Batch systems: $V = V_0 \left(\frac{P_0}{P}\right) \frac{T}{T_0} \left(\frac{Z}{Z_0}\right) (1 + \varepsilon X)$
- ▶ And the Volume, Temp., Pressure and conversion are related
 - e.g., for constant volume system the pressure is related to temp. and conv.
- With $C_j = \frac{N_j}{V}$ also $C_T = \frac{N_T}{V} = \frac{P}{ZRT}$ and $C_{T0} = \frac{N_{T0}}{V_0} = \frac{P_0}{Z_0RT_0}$

▶ The same expression will be obtained for flow reactors

After determining the relationship between vol. & conv. then $-r_A = f(X)$ can be determined

▶ For a rate law $-r_A = k$. C_A . C_B and after substituting for C_A and C_B

► For a constant volume system:

$$-r_A = kC_{A0}^2(1 - X) \cdot \left(\theta_B - \frac{b}{a}X\right) = f(X)$$

And for a variable volume system

$$-r_{A} = k. C_{A0}^{2}. \frac{(1-X)\left(\theta_{B} - \frac{b}{a}X\right)}{(1+\varepsilon X)^{2}} \left(\frac{P}{P_{0}}\right)^{2} \left(\frac{T_{0}}{T}\right)^{2} \left(\frac{Z_{0}}{Z}\right)^{2} = g(X)$$

The rate law can be simplified further

- ▶ For equimolar amounts of A and B, $\theta_B = 1$, and $A + B \rightarrow products$
 - \circ For constant vol. system: $-r_A = kC_{A0}^2 \cdot (1-X)^2 = f_1(X)$
 - o For variable vol. system: $-r_A = k \cdot C_{A0}^2 \cdot \frac{(1-X)^2}{(1+\varepsilon X)^2} \left(\frac{P}{P_0}\right)^2 \left(\frac{T_0}{T}\right)^2 \left(\frac{Z_0}{Z}\right)^2 = g_1(X)$
 - \circ With $P=P_0$, $T=T_0$ and $Z=Z_0$

$$-r_A = k \cdot C_{A0}^2 \cdot \frac{(1-X)^2}{(1+\varepsilon X)^2}$$

► Thus, $\frac{1}{-r_A}$ versus X can be determined and, from Levenspiel plots the volume of the CSTR or PFR can be determined

Example 3.5

► A mixture of 28% SO₂ and 7.2% air is charged to a flow reactor where the total pressure is 1485 kPa (14.7 atm) and T = 227 °C. Make the Levenspiel plot from which the volume of isothermal flow reactors can be determined for various conversion.

