최종 발표

7조

김희균, 송준규, 정승연, 정하연

목차

- 1. Goal of the Project
- 2. 데이터 분석 및 전처리
 - Get the Data
 - Discover and Visualize the data
 - Prepare the data
- 3. Select and Train Models
- 4. Final Test
- 5. Feedback

1. Goal of the Project

" 높은 점수보다 Overfitting을 막는 최대한 내성이 강한 모델을 만들자" (노이즈, 테두리, shifted)

(1) 15개(0~9, +, -, /, x, =) 클래스 이외의 데이터 → **제거**

	숫자	기호
Training	(15119, 28, 28)	(15329, 28, 28)
Test	(2160, 28, 28)	(2190, 28, 28)

〈Data Cleaning 이전 dataset의 shape〉

	숫자 + 기호
Training	(30448, 28, 28)
Test	(4350, 28, 28)

〈15개 클래스 분류기를 위한 데이터 통합〉

최종 데이터셋 shape						
Training	(26249, 28, 28)					
Test	(3730, 28, 28)					

〈최종 데이터셋〉

제거된 데이터셋 개수						
Training	4199 (13.8%)					
Test	620 (14.3%)					

〈15개 이외 라벨 제거〉

- Discover and Visualize the data
- (1) 15개(0~9, +, -, /, x, =) 클래스 이외의 데이터 → **제거**
- (2) 잘못된 라벨링 → **육안으로 판별 후 제거**

(3) 학습에 애매한 데이터 → 육안으로 판별 후 제거 (2, 3번 과정에서 1910(train)+209(test)개 삭제됨)

- Discover and Visualize the data
- (4) Handmade dataset 데이터 수 : 약 30000개 → Combined Dataset 구성 (총 60,000개, trainset : 각 4200개, testset : 각 700개)
- (5) 픽셀값(feature 값)의 차이 → 파이프라인에 Normalizer() 추가 (Normalizer에 대한 분석 및 결정 과정 추가 필요)
 - Original Dataset: 0~255
 - Handmade Dataset : 0~1
- (6) 노이즈가 있는 데이터 → **노이즈 추가하여** trainset, testset 구축 + **파이프라인에** denoising 함수 추가

- 픽셀값이 0에서 1이라고 하면, 0에서 0.4 사이의 랜덤 값을 픽셀에 추가
- 임계값을 0.4로 설정하여 픽셀값이 0.4보다 크면 유효한 값(숫자나 기호)으로 판별

Discover and Visualize the data

shift된 데이터, 테두리가 남은 데이터 → **파이프라인에 중앙화, 최대화 과정 추가**

Label 0

(7) 비슷한 숫자 및 기호의 존재 → **삭제, 향후 Confusion Matrix 분석 계획**

(8) 데이터 크기: 28*28 데이터만 있음 → **현재 가진 데이터를 확대, 축소해서 새로운 데이터를 만드는 데 한계가 있음**

• Prepare the data

Handmade Dataset

• Prepare the data

Combined Dataset (Training)

• Prepare the data

• Final Test Dataset

Training

(Let's Train with the Original dataset)

(1) Original Dataset → 학습, 예측 시간이 너무 긴 SVM, VotingClassifier를 사용하지 말자.

Model	KNN	SVM	Extra-tree	Softmax	Decision Tree	Random Forest	MLP	Voting (hard)	Voting (soft)
Training Time (sec)	0.9169		12.76156	0.05638	35.14291	35.14291	47.88176	129.84410	131,20013
Original Testset 예측시간	0.97564		0.29157	0.05638	0.02232	0.22734	0.05838	8,99141	9.08884
Accuracy on Original Testset	0.97564		0,97000	0.91979	0,87364	0,96636	0.97400	0,97336	0.97479
Team Testset 예측시간	0.23000		0.01019	0.00128	0.16250	0.00857	0.20750	0.77231	0.76504
Accuracy on Team Testset	0.23000		0.18000	0.18500	0.16250	0.19500	0.20750	0.19500	0.19750

(Let's Train with the Original dataset)

(1) Original Dataset → 학습, 예측 시간이 너무 긴 SVM, VotingClassifier를 사용하지 말자.

• Training Time (sec)

• Inference Time (Original, Team)

Accuracy (Original, Team)

Original Testset : 예측이 잘 되었다. (약 90%) ←

Team Testset: 거의 예측이 안됨 (약 20%) ←

(2) Handmade Dataset → Softmax, DecisionTree의 성능이 낮으니 사용하지 말자.

Model	KNN	SVM	Extra-tree	Softmax	Decision Tree	Random Forest	MLP	Voting (hard)	Voting (soft)
Training Time (sec)	0.09063		2.82671	1.77935	1.44450	3.69965	26.31937		
Original Testset 예측시간	3.95527		0.23225	0.04901	0.02034	0.21984	0.08072		
Accuracy on Original Testset	0,68907		0.68571	0.35757	0,32886	0.62143	0.71271		
Team Testset 예측시간	0.05734		0.01308	0.00144	0.00124	0.01171	0.00197		
Accuracy on Team Testset	0.41500		0,37250	0.21000	0.22750	0.33000	0.38250		

- (2) Handmade Dataset → Softmax, DecisionTree의 성능이 낮으니 사용하지 말자.
- Training Time (sec)

• Inference Time (Original, Team)

Accuracy (Original, Team)

Original Testset : 예측 잘 안됨 (약 40% ~ 70%) ←

Team Testset: 예측 잘 안되지만 이전보다 성능 향상됨 (약 30~40%) ←

● Combined Dataset (10 classes) → KNN은 예측 시간이 길고, Random은 성능이 낮으니 사용하지 말자.

Model	KNN	SVM	Extra-tree	Softmax	Decision Tree	Random Forest	MLP	Voting (hard)	Voting (soft)
Training Time (sec)	0.29248		14.58727			33.62962	146.48267		
Original Testset 예측시간	19.26764		0.31900			0,24504	0.0561		
Accuracy on Original Testset	0.97514		0.96914			0.96543	0.9764		
Team Testset 예측시간	0.24254		0.01468			0.01233	0.00418		
Accuracy on Team Testset	0.43000		0.39000			0.34500	0.38250		

● Combined Dataset (10 classes) → KNN은 예측 시간이 길고, Random은 성능이 낮으니 사용하지 말자.

● Combined Dataset (10 classes) → KNN은 예측 시간이 길고, Random은 성능이 낮으니 사용하지 말자.

Model	KNN	SVM	Extra-tree	Softmax	Decision Tree	Random Forest	MLP	Voting (hard)	Voting (soft)
Training Time (sec)	0.29248		14.58727			33.62962	146.48267		
Original Testset 예측시간	19.26764		0.31900			0,24504	0.0561		
Accuracy on Original Testset	0.97514		0.96914			0.96543	0.9764		
Team Testset 예측시간	0.24254		0.01468			0.01233	0.00418		
Accuracy on Team Testset	0.43000		0.39000			0.34500	0.38250		

4. Fine-Tune the Model

[최적화 과정 제시]

1. 최대화, 최적화 과정 추가

[결과 분석]

- 학습 시간 - 예측 시간 (inference time) - 정확도 [epoch에 따른 Learning curve]

- 여기서 파라미터 별 learning curve 다 따로 제시해야 하나?

4. Fine-Tune the Model

• Search Time (sec)

• Inference Time

Accuracy: Validation Dataset

4. Fine-Tune the Model

• Combined Dataset (Training Dataset: 59612, Validation Dataset: 9900)

Model	KNN	SVM	Extra-tree	Softmax	Decision Tree	Random Forest	MLP	Voting (all)	Voting (score < 0.9 제외)
Search Time (sec)	109.44	23871.02	317.18	918.22	336.02	3774.88	8017.84	Soft: 2462 Hard: 2422	Soft: 2344 Hard: 2390
			max_depth : 20	C : 10	Criterion : entropy		alpha : 0.01	soft	soft
Best Parameters	n_neighbors : 3		n_estimators : 300	max_iter : 500	max_depth : 50	n_estimators : 700	max_iter : 2000		
				multi_class : multinomial					
Best Accuracy on Validation	0.9192	0.9488	0.9232	0.8426	0.7514	0.9147	0.9387	soft: 0.9408, hard: 0.9361	Soft: 0.9494, Hard: 0.9414

4. Final Test

Confusion Matrix

-> 0과 6, 1과 / (human test 진행, 각도의 기준이 예를 들어 딱 45도로 설정된게 아님.) Overfitting 분석

4. Final Test

Handmade Test Dataset (Accuracy, Inference Time)

5. Feedback

● Shifted data 처리 방식 결정 과정

● 한계 1 : Rotate, 테두리

5. Feedback

● 한계 2:다양한 노이즈에 대한 해결책?

MNIST-back-image (MNISTbi)

MNIST-back-rand (MNISTbr)

Noise

Border

Patches

Grid

Clutter

Deletion

감사합니다