

Zastosowanie algorytmów uczenia maszynowego do oceny degeneracyjnych zmian kręgosłupa lędźwiowego na podstawie obrazów MRI

Autor: Jakub Skwierczyński Promotor: Dr inż. Łukasz Jeleń

Plan prezentacji

- Cel i zakres pracy
- Przegląd literatury
- Opis zbioru danych
- Wstępne przetwarzanie danych
- Implementacja modeli
- Walidacja i ocena modeli
- Podsumowanie

Cel pracy

Celem pracy jest opracowanie i walidacja modeli uczenia maszynowego do automatycznej identyfikacji i oceny degeneracyjnych zmian kręgosłupa lędźwiowego na podstawie obrazów z rezonansu magnetycznego. Proponowane rozwiązanie ma szansę znacząco wspierać proces diagnostyczny zarówno w ortopedii jaki i reumatologii.

Praca obejmuje eksplorację metod głębokiego uczenia i ich potencjału diagnostycznego w interpretacji obrazów z rezonansu magnetycznego.

Zakres pracy

- 1. Przegląd literatury dotyczącej degeneracyjnych zmian kręgosłupa oraz metod analizy obrazów medycznych.
- 2. Zebranie i analiza odpowiednich danych obrazowych.
- 3. Wstępna obróbka danych:
 - Segmentacja ROI
 - Przygotowanie zbioru danych treningowych, walidacyjnych i testowych.
- 4. Implementacja i strojenie parametrów wybranych modeli.
- 5. Walidacja modeli oraz analiza wyników.
- 6. Dyskusja i podsumowanie badań.
- 7. Opracowanie wniosków i synteza pracy.

Przegląd literatury

Multi-input, multi-task, and multi-class version of ResNeXt-50

Jen-Tang Lu, Stefano Pedemonte, Bernardo Bizzo, Sean Doyle, Katherine P. Andriole, Mark H. Michalski, R. Gilberto Gonzalez, Stuart R. Pomerantz W DeepSPINE: Automated Lumbar Vertebral Segmentation, Disc-level Designation, and Spinal Stenosis Grading Using Deep Learning

Przegląd literatury

Table 1: Class accuracy for stenosis grading.

rable 1. Class accuracy for storiosis grading.					
Spinal Canal Stenosis ($\%$, mean \pm std)					
Normal	Mild	Mod.	Severe	Class Avg.	
78.7 ± 5.4	59.6 ± 2.0	61.3 ± 2.1	82.7 ± 5.6	70.6 ± 2.1	
Normal	Mild / Moderate		Severe	Class Avg.	
$\textbf{79.7}\pm\textbf{3.3}$	$\textbf{83.7}\pm\textbf{3.4}$		$\textbf{77.7}\pm\textbf{1.5}$	$\textbf{80.4}\pm\textbf{1.6}$	
Foraminal Stenosis (%, mean \pm std)					
Normal	Mild	Mod.	Severe	Class Avg.	
80.5 ± 0.3	61.3 ± 5.8	52.0 ± 6.0	74.8 ± 3.1	67.1 ± 2.2	
Normal	Mild / Moderate		Severe	Class Avg.	
$\textbf{79.6}\pm\textbf{0.8}$	$\textbf{84.2}\pm\textbf{0.7}$		$\textbf{70.5}\pm\textbf{0.8}$	$\textbf{78.1}\pm\textbf{0.4}$	

Table 2: Comparison of models trained with axial input only, sagittal input only, and both inputs in class average accuracy (%, mean \pm std).

	Axial Only	Sagittal Only	Axial + Sagittal
Spinal Canal Stenosis	78.6 ± 2.7	78.6 ± 2.4	80.4 ± 1.6
Foraminal Stenosis	76.6 ± 2.5	74.3 ± 1.7	78.1 ± 0.4

Przegląd literatury

Table 3: Comparison of the proposed algorithm with the best published results on binary classification of spinal canal and foraminal stenosis. Performance metric is overall accuracy.

	Zhang et al. (2017)	Jamaludin et al. (2017a)	Ours		
Type of Scan	Axial	Sagittal	Axial + Sagittal		
Spinal canal st	Spinal canal stenosis (%, mean ± std)				
L3-L4	87.2 ± 3.2	94.7	94.5 ± 0.7		
L4-L5	85.1 ± 3.4	85.9	95.3 ± 0.2		
L5-S1	87.5 ± 3.3	93.7	99.1 ± 0.5		
Foraminal stenosis ($\%$, mean \pm std)					
L3-L4	84.3 ± 3.9	N/A	94.0 ± 0.7		
L4-L5	84.0 ± 4.0	N/A	89.0 ± 1.4		
L5-S1	87.1 ± 3.4	N/A	91.2 ± 1.6		

Opis zbioru danych

Zbiór danych pochodzi z konkursu RSNA 2024, w którym wykorzystano obrazy MRI odcinka lędźwiowego kręgosłupa w formacie DICOM. Dane obejmują:

- **1975 badań**, łącznie 147 218 obrazów MRI,
- **5 klas** zmian degeneracyjnych:
 - Zwężenie kanału kręgowego (Spinal Canal Stenosis),
 - Zwężenie otworów międzykręgowych (Foraminal Narrowing) - lewego i prawego,
 - Stenoza podchrzęstna (Subarticular Stenosis) lewa i prawa.
- Każde badanie zawiera oceny nasilenia zmian na poziomach od L1/L2 do L5/S1:
 - Normalne/Łagodne, Umiarkowane, Ciężkie.

Odcinek lędźwiowy kręgosłupa

Lumbar Spine (Lumbar Vertebrae)

Sekwencje MRI i płaszczyzny

Sekwencje MRI:

- T1-zależne sekwencje, które dają obrazy o wysokim kontraście między tkankami o różnej zawartości wody i tłuszczu. Na obrazach T1-zależnych tkanki tłuszczowe są jasne, a obszary z dużą ilością wody są ciemne.
- T2-zależne w tych sekwencjach obszary z dużą ilością wody są jasne, a tkanki tłuszczowe są ciemne. Są one szczególnie przydatne w wykrywaniu patologii, takich jak obrzęki czy guzy.

Sekwencje MRI i płaszczyzny

https://www.researchgate.net/publication/353949715_Feasibility_and_Implementation_of_a_Deep_Learning_MR_Reconstruction_for_TSE_Sequences_in_Musculoskeletal_Imaging/figures?lo=1&utm_source=google&utm_medium=organic

Rozkład zbioru danych

Lokalizacja schorzenia

Rozkład nasilenia schorzenia

Przykładowe dane

Sagittal T2/STIR

Axial T2

Przykładowe dane

['Sagittal T2/STIR'], Study: 4003253, Series: 702807833, Instance: 8

Przykładowe dane

['Sagittal T1'], Study: 4003253, Series: 1054713880, Instance: 4

Wstępne przetwarzanie danych

Condition: Spinal Canal Stenosis Series: Sagittal T2/STIR

Condition: Right Neural Foraminal Narrowing Series: Sagittal T1

Study ID: 4003253, Series ID: 1054713880 Condition: Right Neural Foraminal Narrowing Series: Sagittal T1

Condition: Left Neural Foraminal Narrowing Series: Sagittal T1

Study ID: 4003253, Series ID: 1054713880 Condition: Left Neural Foraminal Narrowing Series: Sagittal T1

SCS

LNFN

RNFN


```
git/ml_lumbar_mri/data/interim/
   full_series_128x128_15D
   full_series_128x128_17D
   full_series_128x128_19D
   full_series_128x128_1D
   full_series_128x128_25D
   full_series_96x96_15D
   full_series_96x96_17D
   full_series_96x96_19D
   full_series_96x96_1D
   full_series_96x96_25D
   target_window_128x128_3D_B1A1
   target_window_128x128_5D_B2A2
   target_window_96x96_3D_B1A1
   target_window_96x96_5D_B2A2
```


Slice 1

torch.Size([1, 128, 128])

torch.Size([5, 128, 128])

torch.Size([15, 128, 128])

Dalszy preprocessing

S. Suhas and C. R. Venugopal, "MRI image preprocessing and noise removal technique using linear and nonlinear filters," 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 2017, pp. 1-4, doi: 10.1109/ICEECCOT.2017.8284595.

Implementacja modeli

Modele zostały zaimplementowane jako klasyfikatory wieloklasowe i wieloetykietowe, gdzie dla każdej patologii przewidywane są trzy poziomy nasilenia:

- 0 (Normal/Mild) stan normalny lub łagodny,
- 1 (Moderate) umiarkowane nasilenie,
- 2 (Severe) ciężkie nasilenie.

Dodatkowo, dla każdej patologii przeprowadzono klasyfikację binarną, w której uwzględniono dwa stany:

- 0 (Brak patologii lub łagodna) stan normalny lub łagodny,
- 1 (Umiarkowana lub ciężka) stan umiarkowany lub ciężki.

Cztery podejścia klasyfikacji

- Single Multiclass (single_multiclass)
 - Klasyfikacja tylko jednej choroby z trzema możliwymi poziomami zaawansowania (0 – Normal/Mild, 1 – Moderate, 2 – Severe).
- Single Binary (single_binary)
 - Klasyfikacja jednej choroby w trybie binarnym (brak zmian vs. obecne zmiany).
- Multi Multiclass (multi_multiclass)
 - Jednoczesna klasyfikacja trzech chorób (np. Spinal Canal Stenosis, Left Neural Foraminal Narrowing, Right Neural Foraminal Narrowing).
- Multi Binary (multi_binary)
 - Jednoczesna klasyfikacja tych samych trzech chorób, ale każda w trybie binarnym.

Przegląd architektur modeli

Zaimplementowane:

- 3D CNN
- 3D CNN + LSTM + Attention
- ResNet3D (wiele wariantów: 10, 18, 34, 50, 101)
- MedicalNet (ResNet3D)

Plany na przyszłość:

- ResNeXt
- DenseNet
- EfficientNet

Single Multiclass - SCS

Single Multiclass - SCS

Accuracy: 0.8737 Classification Report:						
	precision	recall	f1-score	support		
0	0.96	0.95	0.95	149		
1	0.48	0.43	0.45	23		
2	0.73	0.85	0.79	26		
accuracy			0.87	198		
macro avg	0.72	0.74	0.73	198		
weighted avg	0.87	0.87	0.87	198		
Confusion Matr	ix:					
[[141 7 1]					
[6 10 7]						
[0 4 22]	1					

Single Multiclass - RNFN

Single Multiclass - RNFN

Accuracy: 0.7 Classification				
	precision	recall	f1-score	support
0	0.90	0.86	0.88	149
1	0.23	0.35	0.28	23
2	0.76	0.62	0.68	26
accuracy			0.77	198
macro avg	0.63	0.61	0.61	198
weighted avg	0.80	0.77	0.78	198
Confusion Mat [[128 19	rix: 2]			
[12 8 3				

Single Multiclass - LNFN

Single Multiclass - LNFN

Accuracy: 0.7121 Classification F				
	ecision	recall	f1-score	support
0	0.78	0.84	0.81	121
1	0.56	0.49	0.53	63
2	0.67	0.57	0.62	14
accuracy			0.71	198
macro avg	0.67	0.64	0.65	198
weighted avg	0.70	0.71	0.71	198
Confusion Matrix	:			
[[102 19 0]				
[28 31 4]				
[1 5 8]]				

Single Binary - SCS

Single Binary - SCS

Single Binary - RNFN

Single Binary - RNFN

Single Binary - LNFN

3D CNN + LSTM + Attention

Single Binary - LNFN

3D CNN + LSTM + Attention

Accuracy: Classifica	tion I		recall	f1-score	support
Θ	.0	0.84	0.80	0.82	121
1	.0	0.71	0.76	0.73	76
accura	су			0.79	197
macro a	vg	0.78	0.78	0.78	197
weighted a	vg	0.79	0.79	0.79	197
Confusion [[97 24] [18 58]]	Matri	x:			

Custom ResNet-12

Custom ResNet-12

```
=== Metrics for SCS ===
Accuracy: 0.8624
Classification Report:
              precision
                           recall f1-score
                                               support
                             0.99
                                        0.95
            0
                    0.92
                                                   143
                    0.50
                             0.17
                                        0.26
                                                    23
                    0.64
                              0.78
                                        0.71
                                                    23
                                        0.86
                                                   189
    accuracy
   macro avg
                    0.69
                              0.65
                                        0.64
                                                   189
weighted avg
                              0.86
                    0.84
                                        0.84
                                                   189
 Confusion Matrix:
  [[141 1 1]
  [ 10 4 9]
  [ 2 3 18]]
=== Metrics for RNfN ===
Accuracy: 0.7302
Classification Report:
              precision
                           recall f1-score
                                              support
           Θ
                   0.77
                             0.85
                                       0.80
                                                  117
                   0.64
                             0.54
                                       0.58
                                                   65
                   0.80
                             0.57
                                       0.67
                                       0.73
                                                  189
    accuracy
                                       0.68
   macro avg
                   0.73
                             0.65
                                                  189
weighted avg
                   0.72
                             0.73
                                       0.72
                                                  189
Confusion Matrix:
 [[99 18 0]
 [29 35 1]
```

```
=== Metrics for LNfN ===
Accuracy: 0.6878
Classification Report:
              precision
                           recall f1-score
                                              support
           0
                   0.81
                             0.74
                                       0.77
                                                  115
                   0.57
                             0.62
                                       0.60
                                                   64
           2
                   0.36
                             0.50
                                       0.42
                                                   10
    accuracy
                                       0.69
                                                  189
                                       0.60
   macro avg
                   0.58
                             0.62
                                                  189
weighted avg
                   0.70
                             0.69
                                       0.69
                                                  189
Confusion Matrix:
 [[85 25 5]
 [20 40 4]
 [0 5 5]]
```

[1 2 4]]

ResNet-18

ResNet-18

4]]

```
=== Metrics for SCS ===
Accuracy: 0.8579
Classification Report:
              precision
                           recall f1-score
                                              support
           Θ
                   0.91
                             0.95
                                       0.93
                                                  149
                                       0.46
                   0.46
                             0.46
                                                   24
                   0.94
                                       0.78
                             0.67
                                                   24
                                       0.86
    accuracy
                                                  197
                                       0.72
   macro avg
                   0.77
                             0.69
                                                  197
weighted avg
                             0.86
                   0.86
                                       0.86
                                                  197
Confusion Matrix:
[[142 6 1]
[ 13 11 0]
[ 1 7 16]]
=== Metrics for RNfN ===
Accuracy: 0.7157
Classification Report:
              precision
                           recall f1-score
                                              support
                                       0.82
           0
                   0.77
                             0.87
                                                  124
                             0.44
                                       0.52
                   0.63
                                                   66
                   0.40
                             0.57
                                       0.47
    accuracy
                                       0.72
                                                  197
   macro avg
                                       0.60
                                                  197
                   0.60
                             0.63
weighted avg
                   0.71
                             0.72
                                       0.70
                                                  197
Confusion Matrix:
 [[108 15
           1]
 [ 32 29
            5]
```

```
=== Metrics for LNfN ===
Accuracy: 0.7208
Classification Report:
              precision
                           recall f1-score
                                              support
           Θ
                   0.79
                             0.87
                                       0.82
                                                  122
                   0.60
                             0.48
                                       0.53
                                                   65
                   0.50
                             0.50
                                       0.50
                                                   10
   accuracy
                                       0.72
                                                  197
   macro avg
                   0.63
                             0.62
                                       0.62
                                                  197
weighted avg
                   0.71
                             0.72
                                       0.71
                                                  197
Confusion Matrix:
 [[106 16 0]
 [ 29 31
           5]
            5]]
  0
```


Porównanie wymiarów tensorów

96x96x5

Choroba	Dokładność [%]
SCS	86
LNFN	69
RNFN	67

128x128x5

Dokładność [%]
86
69
73

Porównanie wymiarów tensorów

Multi Binary

ResNet-18

Multi Binary

ResNet-18

```
=== Metrics for SCS ===
Accuracy: 0.9206
Classification Report:
             precision
                          recall f1-score
                                             support
         0.0
                   0.96
                            0.94
                                       0.95
                                                 143
                            0.87
         1.0
                   0.82
                                      0.84
                                                  46
   accuracy
                                       0.92
                                                  189
  macro avg
                   0.89
                             0.90
                                      0.89
                                                  189
weighted avg
                   0.92
                             0.92
                                      0.92
                                                  189
Confusion Matrix:
 [[134 9]
 [ 6 40]]
```

=== Metrics for	LNfN ===			
Accuracy: 0.7884				
Classification R	eport:			
pr	ecision	recall	f1-score	support
	. 70			
0.0	0.79	0.89	0.84	115
1.0	0.78	0.64	0.70	74
accuracy			0.79	189
macro avg	0.79	0.76	0.77	189
weighted avg	0.79	0.79	0.78	189
Confusion Matrix				
[[102 13]				
[27 47]]				

```
=== Metrics for RNfN ===
Accuracy: 0.7884
Classification Report:
              precision
                           recall f1-score
                                              support
                                       0.83
         0.0
                   0.82
                             0.85
                                                   117
         1.0
                   0.74
                                       0.71
                             0.69
                                                   72
    accuracy
                                       0.79
                                                   189
   macro avg
                   0.78
                             0.77
                                       0.77
                                                   189
weighted avg
                   0.79
                             0.79
                                       0.79
                                                   189
Confusion Matrix:
 [[99 18]
 [22 50]]
```


Podsumowanie

Klasyfikacja ze stopniowaniem:

Choroba	Artykuł	Moje rozwiązanie
Spinal Canal Stenosis	78.6%	87/86%
Foraminal Stenosis	74.3%	73/71%

Klasyfikacja binarna:

Choroba	Artykuł	Moje rozwiązanie
Spinal Canal Stenosis	85.9%	94/92%
Foraminal Stenosis	89.0% (Axial + Sagittal)	81/79%

Podsumowanie

W ramach dalszych prac planowane są następujące kroki:

- Dalszy preprocessing
- Augmentacja danych?
- Analiza hiperparametrów
- Eksploracja metod głębokiego uczenia (np. ResNeXt, DenseNet, EfficientNet)

Literatura

- Merali, Z., Wang, J. Z., Badhiwala, J. H., et al. A deep learning model for detection of cervical spinal cord compression in MRI scans. Scientific Reports, 2021.
- Abuhayi, B. M., Bezabh, Y. A., Ayalew, A. M. Lumbar Disease Classification Using an Involutional Neural Based VGG Nets. IEEE Access, 2024.
- Wang, T., Chen, R., Fan, N., et al. Machine Learning and Deep Learning for Diagnosis of Lumbar Spinal Stenosis. J Med Internet Res, 2024.
- Liawrungrueang, W., Kim, P., et al. Automatic Detection, Classification, and Grading of Lumbar Intervertebral Disc Degeneration. Diagnostics, 2023.

Dziękuję za uwagę

