Высшая школа общей и прикладной физики

Отчет по лабораторной работе

Низкочастотные процессы в многомодовом твердотельном лазере

Работу выполнили студенты

Поляков Андрей, Козлов Александр

Содержание

1	Основные элементы теории				
	1.1	Неодимовые лазеры	3		
	1.2	Уравнения многомодового лазера	3		
	1.3	Стационарная генерация	4		
	1.4	Спектр релаксационных колебаний	5		
2	Cxe	Схема установки			
3	Протокол измерений				
4	Резу	льтаты эксперимента с оценкой погрешности и их сравнение с теорией	7		
	4.1	Определение пороговой мощности	7		
	4.2	Расчёт параметра G	8		
	4.3	Графики зависимости мощности излучения и релаксационной частоты от пара-			
		метра накачки	9		
	4.4	Оценка полосы резонатора лазера	9		
	4.5	Сравнение оценочной величины полосы резонатора с теоретической	10		
5	Природа многомодовости и отличие многомодовости для однородного и неодно-				
	полного уширения линий				

1 Основные элементы теории

1.1 Неодимовые лазеры

Неодимовые лазеры работают по четырёхуровневой схеме. На Рис. 1 представлена упрощенная схема энергетических уровней иона Nd^{3+} в алюмоиттриевом гранате. Эти уровни обусловлены переходами внутри 4f электронной оболчки, которая является внутренней и хорошо экранирована от кристаллического поля, в связи с чем уровни узкие.

Рис. 1: Упрощенная схема энергетических уровней иона Nd^{3+} в алюмоиттриевом гранате.

Обычно используется полоса накачки 0.8 мкм, которая связана быстрой ($\sim 10^{-7}$ с) безызлучательной релаксацией с уровнем $^4F_{3/2}$. Этот уровень метастабилен ($T_1 \approx 0.23$ мс). Среди возможных переходов с уровня $^4F_{3/2}$ на нижележащие наиболее интенсивным является переход $^4F_{3/2} \rightarrow ^4I_{11/2}$. Уровень $^4I_{11/2}$ связан с уровнем $^4I_{9/2}$ безызлучательной релаксацией, поэтому его можно считать пустым.

Выходит, что в кристалле Nd:YAG переход $^4F_{3/2} \to ^4I_{11/2}$ хорошо подходит для получения лазерной генерации по четырёхуровневой схеме. Этот переход имеет длину волны $\lambda=1.064$ мкм и однородно уширен вследствие взаимодействия с фононами решетки. Ему соответствует ширина $\delta \nu=195$ ГГц при температуре T=300 К.

1.2 Уравнения многомодового лазера

Для описания динамических процессов в твердотельных лазерах с резонаторами Фабри-Перо традиционно применяются балансные уравнения. В безразмерном виде для идеализированного одномерного случая они выглядят следующим образом:

$$\begin{cases}
\frac{\mathrm{d}}{\mathrm{d}\tau}I_p(\tau) = GI_p(\tau) \left(\gamma_p \int_0^L \mathcal{N}(z,\tau) \Psi_p^2(z) \,\mathrm{d}z - 1 \right), \\
\frac{\mathrm{d}}{\mathrm{d}\tau} \mathcal{N}(z,\tau) = A - \mathcal{N}(z,\tau) \left(1 + \sum_{p=1}^M \gamma_p I_p(\tau) \Psi_p^2(z) \right).
\end{cases} \tag{1}$$

В этой модели подразумевается, что резонатор имеет длину L и полностью заполнен активной средой; $I_p=|E_p|^2$ — интенсивность поля p-ой моды, $p=1,\ldots,M$; \mathcal{N} — разность населенностей рабочих уровней; $G=T_1/T_{\rm c}$; γ_p — коэффициент усиления p-ой моды, нормированный на коэффициент усиления моды, ближайшей к центру линии усиления ($\gamma_p \leq 1$); A — параметр накачки; $\Psi_p(z)=\sqrt{2}\sin(\pi q_p z/L)$ — собственная функция холодного резонатора; q_p — (большое целое) число полуволн, укладывающихся в длине L; $\tau=t/T_1$ — безразмерное время.

Уравнение 1 можно упростить, если разложить разность населенностей $N(z,\tau)$ в пространственный ряд Фурье и отбросить все гармоники, кроме тех, которые непосредственно входят в уравнения для интенсивности мод. Тогда получаем:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\tau} I_p = GI_p[\gamma_p(N_0 - N_p) - 1], \\ \frac{\mathrm{d}}{\mathrm{d}\tau} N_0 = A - \left(1 + \sum_{p=1}^M \gamma_p I_p(\tau)\right) N_0 + \sum_{p=1}^M \gamma_p I_p(\tau) N_p, \\ \frac{\mathrm{d}}{\mathrm{d}\tau} N_p = -\left(1 + \sum_{p=1}^M \gamma_p I_p(\tau)\right) N_p + \frac{1}{2} \gamma_p I_p(\tau) N_0. \end{cases}$$
(2)

Здесь пространственно однородная компонента

$$N_0 = \frac{1}{L} \int_0^L \mathcal{N}(z) \, \mathrm{d}z \tag{3}$$

и р-ая гармоника инверсии

$$N_p = \frac{1}{L} \int_0^L \mathcal{N}(z) \cos(\pi q_p z/L) \, \mathrm{d}z.$$
 (4)

1.3 Стационарная генерация

Система 2 имеет два стационарных решения. Первое соответствует отсутствию генерации

$$\overline{I}_p = 0, \quad \overline{N}_p = 0, \quad \overline{N}_0 = A.$$
 (5)

Оно устойчиво при $A \leq 1$ и неустойчиво при

$$A > 1. (6)$$

Это так называемое условие самовозбуждения лазера.

Второе стационарное решение соответствует многомодовой лазерной генерации:

$$\overline{N}_{p} = \overline{N}_{0} - 1/\gamma_{p}, \quad \overline{I}_{p} = (\overline{N}_{p} - 1/\gamma_{p})/\gamma_{p} [S_{1} - (M - 1/2)\overline{N}_{0}],$$

$$\overline{N}_{0} = \frac{2S_{1} + A(M - 1/2) - \sqrt{[2S_{1} + A(M - 1/2)]^{2} - 4(M - 1/2)(AS_{1} + S_{2})}}{2M - 1},$$

$$S_{1} = \sum_{p=1}^{M} 1/\gamma_{p}, \quad S_{2} = \sum_{p=1}^{M} (1/\gamma_{p})^{2}.$$
(7)

Оказывается, что при выполнении условия самовозбуждения (6) второе стационарное решение всегда устойчиво. Таким образом, при повышении мощности накачки порогового значения в твердотельном лазере развивается многомодовая генерация. Число генерируемых мод зависит от уровня накачки A и параметров линии усиления.

1.4 Спектр релаксационных колебаний

Проведём линейный анализ устойчивости второго стационарного решения (7). Аналитически это можно сделать лишь в двух случаях: одномодовый случай и случай равного усиления мод.

Рассмотрим сперва одномодовый режим. В этом случае мы можем исключить N_1 (пренебрегаем эффектом выжигания дырок), тогда

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\tau}I = GI(N_0 - N_p), \\ \frac{\mathrm{d}}{\mathrm{d}\tau}N_0 = A - (1+I)N_0. \end{cases}$$
(8)

Нетривиальное стационарное состояние

$$\overline{I} = A - 1, \quad \overline{N}_0 = 1 \tag{9}$$

имеет физический смысл лишь при A>1. Линеаризация системы 8 в окрестности состояния равновесия (9) достигается заменой переменных $I=\overline{I}+\xi,\ N_0=\overline{N}_0+\eta,$ и приводит к системе

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}\tau}\xi = G\eta(N_0 - N_p),\\ \frac{\mathrm{d}}{\mathrm{d}\tau}\eta = -A\eta - \xi. \end{cases}$$
(10)

Что приводит к характеристическому уравнению

$$\lambda^2 + A\lambda + G(A - 1) = 0, (11)$$

которое обладает корнями

$$\lambda_{1,2} = -\frac{A}{2} \pm \sqrt{\frac{A^2}{4} - G(A - 1)}. (12)$$

Для твердотельных лазеров параметр G велик, поэтому

$$\lambda_{1,2} \approx -\frac{A}{2} \pm i\sqrt{G(A-1)}.\tag{13}$$

Это означает, что стационарное состояние (9) является устойчивым фокусом, а уравнения 10 описывает затухающие колебания интенсивности излучения около стационарного уровня \overline{I} с частотой

$$\Omega_R = \sqrt{G(A-1)} \tag{14}$$

и декрементом

$$\Theta_R = -A/2. \tag{15}$$

Это релаксационные колебания.

2 Схема установки

Схема экспериментальной установки представлена на Рис. 2. В качестве источника накачки используется полупроводниковый лазер (2) со следующими характеристиками

- 1. длина волны генерации 810 нм;
- 2. пороговый ток питания 200 мА;
- 3. максимальная мощность излучения $0.5\,\mathrm{Bt}$;
- 4. поляризация излучения линейная, вектор электрического поля лежит в вертикальной плоскости.

Рис. 2: Схема установки.

Короткофокусная линза (3) используется для формирования параллельного пучка из сильно расходящегося у торца лазера излучения накачки. Линза (4) закреплена в поворотном устройстве, позволяющем перемещать луч накачки в горизонтальной и вертикальной плоскостях.

Резонатор твердотельного лазера (5–7) установлен на платформе, передвигающейся в продольном и поперечном направлениях. В качестве активной среды лазера используется кристалл алюмоиттриевого граната YAG, легированный ионами Nd^{3+} с концентрацией 1%. Кристалл Nd:YAG (6) имеет форму цилиндра длинной 1 см и диаметром 0.6 см. Он закреплён в юстировочном устройстве, позволяющем плавно изменять положение оси кристалла относительно оси резонатора. Торцы кристалла имеют дихроичное покрытие. Один формирует входное зеркало резонатора (5), обеспечивая пропускание света $T \approx 1$ на длине волны $\lambda = 810$ нм и отражение $R_1 pprox 1$ на длине волны $\lambda = 1064$ нм, другой просветлен на длине волны $\lambda = 1064$ нм. Выходное зеркало резонатора (7), имеющее коэффициент отражения $R_2=0.98\dots0.995$ на длине волны $\lambda = 1064$ нм, закреплено в юстировочном устройстве, позволяющем плавно поворачивать его относительно входного зеркала резонатора. Установка позволяет менять длину резонатора от 5 до 7.5 см. Для отсекания излучения накачки на выходе резонатора используется фильтр (8). Излучение Nd: YAG лазера подается через поворотное зеркало (9) на фотодиод (10), выход которого подключен к микроамперметру (12) и анализатору спектра СК4-58 (11). Последний предназначен для наблюдения низкочастотных шумов лазера в диапазоне 0...600 кГц. Не-Ne лазер (15) используется для юстировки резонатора. Для визуального наблюдения генерации Nd: YAG лазера используется карточка-визуализатор инфракрасного диапазона.

3 Протокол измерений

Измерили зависимость релаксационной частоты $f_{\rm pen}$ и мощности излучения $P_{\rm изл}$ от мощности накачки $P_{\rm нак}$. Результаты измерений приведены в Табл. 1.

4 Результаты эксперимента с оценкой погрешности и их сравнение с теорией

4.1 Определение пороговой мощности

Для дальнейшей работы важно определить пороговую мощность $P_{\text{пор}}$, ведь ниже будет часто использоваться параметр накачки A, который определяется как $P_{\text{нак}}/P_{\text{пор}}$ ($P_{\text{нак}}$ измеряется напрямую). Чтобы определить пороговую мощность $P_{\text{пор}}$, надо найти такую мощность накачки, что при мощностях накачки меньше данной мощность излучения равна нулю, а при больших мощностях накачки мощность излучения отлична от нуля.

На Рис. За показана снятая зависимость мощности излучения от мощности накачки с учётом фоновой засветки. Видно, что при $P_{\rm Hak} < 210\,{\rm mBt}$ излучения нет. Снятые данные дискретны и поэтому точно определить порог нам не удастся, мы лишь знаем, что при $P_{\rm Hak} = 210 \pm 5\,{\rm mBt}$ излучение есть, а при $P_{\rm Hak} = 205 \pm 5\,{\rm mBt}$ излучения нет. Порог находится где-то между $200\,{\rm mBt}$ и $210\,{\rm mBt}$. Значит, $P_{\rm пор} = 205 \pm 5\,{\rm mBt}$.

		$P_{ m Hak}$, м B т	$P_{\text{изл}}$, м \mathbf{B} т
$P_{\text{нак}}$, мВт	f v.Cu	420	9
	$f_{\rm peл}$, к Γ ц	410	8.37
216	112	400	7.85
225	212	391	7.6
235	276	381	7.3
245	336	371	6.8
255	392	361	6.1
265	432	350	5.5
270	448	340	4.6
275	458	330	4
280	476	320	3.76
285	491		
296	508	290	3.3
304	532	280	2.9
345	551	270	2.5
385	600	260	2.1
390	616	250	1.7
395	627	239	1.2
405	639	230	0.9
420	672	220	0.5
420	072	210	0.19
		200	0.14

Таблица 1: Результаты измерений.

4.2 Расчёт параметра **G**

Расчёт параметра G проводился для каждого из экспериментальных значений параметра накачки A. Связь параметра накачки A и параметра G с измеренными значениями мощности накачки $P_{\text{нак}}$ и релаксационной частоты $f_{\text{рел}}$ даётся выражениями

$$A = \frac{P_{\text{Hak}}}{P_{\text{пор}}}, \quad \Omega = 2\pi f_{\text{pen}} T_1, \quad \Omega^2 = G(A - 1),$$
 (16)

где $T_1 = 0.23 \,\mathrm{mc}$ — время релаксации насыщения.

Конечная формула для G и погрешности ΔG

$$G = \frac{(2\pi f_{\text{pen}}T_{1})^{2}}{A-1}, \quad \Delta_{\text{изм}}G = \frac{2(2\pi T_{1})^{2} f_{\text{pen}} \Delta_{\text{изм}} f_{\text{pen}}}{A-1} + \frac{(2\pi f_{\text{pen}}T_{1})^{2}}{(A-1)^{2}} \Delta_{\text{изм}}A,$$

$$\Delta_{\text{изм}}A = \frac{\Delta_{\text{изм}}P_{\text{нак}}}{P_{\text{пор}}} + P_{\text{нак}}\frac{\Delta_{\text{изм}}P_{\text{пор}}}{P_{\text{пор}}^{2}},$$
(17)

где $\Delta_{\text{изм}}f_{\text{рел}}=10\,\text{к}\Gamma$ ц — измерительная погрешность измерения релаксационной частоты.

Рис. 3: (a) Зависимость мощности излучения от мощности накачки. Фоновая засветка учтена и вычтена из мощности излучения. (b) Зависимость параметра G от параметра накачки.

На Рис. 3b представлена зависимость параметра G от параметра накачки A. Среднее значение $\langle G \rangle = 1.07 \times 10^6$. Найдём погрешность для параметра G

$$\Delta G = \sqrt{\left(\Delta_{\text{изм}}G\right)^2 + \left(\Delta_{\text{случ}}G\right)^2},\tag{18}$$

где случайная погрешность считается как стандартное отклонение. Тогда можно записать для среднего значения параметра ${\cal G}$

$$\langle G \rangle = (1.07 \pm 0.35) \times 10^6.$$
 (19)

4.3 Графики зависимости мощности излучения и релаксационной частоты от параметра накачки

На Рис. 4а представлена зависимость мощности излучения $P_{\text{изл}}$ от параметра накачки A. Линейный тренд находился в виде $p\cdot (A-1)$, где p — параметр, то есть линейный тренд проходит при A=1 через 0.

На Рис. 4b представлена зависимость мощности излучения $P_{\rm изл}$ от параметра накачки A. Экспериментальные данные сопоставляются с результатами теоретическими, которые были построены по формуле $\Omega = \sqrt{\langle G \rangle (A-1)}$. Ошибки вычисления среднего значения $\langle G \rangle$ учтены синей областью на графике. Видно, что с учётом ошибок определения среднего значения $\langle G \rangle$ экспериментальные данные сходятся с теоретическими результатами.

4.4 Оценка полосы резонатора лазера

Оценим по среднему значению $\langle G \rangle$ полосу резонатора лазера $\delta f_{
m skcn} = 1/(2\pi T_{
m c}).$ По определению $G = T_1/T_{
m c}$, тогда для $\delta f_{
m skcn}$ получаем выражение

$$\delta f_{\text{эксп}} = \frac{\langle G \rangle}{2\pi T_1}.\tag{20}$$

Рис. 4: (а) Зависимость мощности излучения $P_{\text{изл}}$ от параметра накачки A. (b) Зависимость частоты релаксационных колебаний Ω от параметра накачки A. Теоретическая кривая построена для среднего значения $\langle G \rangle$. Синяя область около теоретической кривой учитывает ошибку вычисления среднего значения $\langle G \rangle$.

Подставляем числа и с учетом погрешности получаем $\delta f_{
m эксп} = (7.44 \pm 2.43) imes 10^8$ Гц.

4.5 Сравнение оценочной величины полосы резонатора с теоретической

Теоретическое значение

$$\delta f_{\rm reop} = - rac{c \ln \sqrt{R_1 R_2}}{2\pi L} pprox -3 imes 10^8 \ln \sqrt{1 imes 0.98} \ / \ (6.28 imes 0.01) = 4.83 imes 10^8 \ \Gamma$$
ц.

Взяли L=1 мм. Теоретическое значение не совпадает в оценочной величиной даже с учётом погрешности. Стоит отметить, что если взять один из коэффициентов отражения хоть на одну сотую поменьше, то теоретическое значение будет совпадать с оценочным.

5 Природа многомодовости и отличие многомодовости для однородного и неоднородного уширения линий

Различают однородное и неоднородное уширение спектральных линий. При неоднородном уширении наблюдаемый профиль линии является суммой спектральных линий отдельных излучателей. Так, тепловое движение приводит к доплеровскому уширению спектральных линий (вследствие разброса скоростей отдельных атомов или молекул). Сдвиг длины волны отдельных излучателя в газовой или плазменной среде определяется проекцией его скорости на направление взгляда наблюдения.

Однородное уширение спектральных линий связано с увеличением ширины энергетических уровней излучающей системы вследствие её зависящего от времени взаимодействия с возму-

щающим полем. Примером такого эффекта является ударное уширение спектральных линий, возникающее при столкновениях излучающей системы с электронами.

Из формулы для N_p (4) видно, что есть области пространства с нулевой инверсией внутри активной среды. Это так называемый эффект "выжигания" дырок. Дело в том, что в резонаторе Фабри-Перо поле моды имеет вид стоячей волны с периодом $\lambda_p/2$ и в узлах этой волны, где поле моды равно нулю, инверсия не уменьшается вследствие взаимодействия с полем. Разные продольные моды резонатора не совпадают, что служит причиной многомодовой генерации в лазерах с однородно уширенной линией усиления.

При неоднородном уширении каждый отдельный излучатель среды излучает на своей длине волны, что приводит к многомодовой генерации в лазерах с неоднородным уширением спктральных линий.