(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-290963

(43)公開日 平成8年(1996)11月5日

(51) Int.Cl. 6		識別記号	庁内整理番号	FΙ		技術表示箇所
C 0 4 B	35/46			C 0 4 B	35/46	В
B 0 1 D	39/20			B01D	39/20	D
	46/00	302			46/00	302

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号	特願平7-96399	(71) 出顧人 000005821
		松下電器産業株式会社
(22)出顧日	平成7年(1995)4月21日	大阪府門真市大字門真1006番地
		(72)発明者 永井 伸明
		大阪府門真市大字門真1006番地 松下電器
	•	産業株式会社内
		(72)発明者 和田 信二
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(72)発明者 村野 雄一
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		最終頁に続く

(54) 【発明の名称】 低熱膨張材料及びそれを用いた排ガスフィルター

(57) 【要約】

【目的】 本発明は、熱膨張係数が小さく、耐熱温度が高く、高温での長時間熱処理後結晶分解による熱膨張係数の増加がなく耐熱衝撃性に優れた低熱膨張材料及びそれを用いた排ガスフィルターの提供を目的とする。

20

【特許請求の範囲】

【請求項1】チタン酸アルミニウムを主成分とし、30~800℃の熱膨張係数が0.1×10~~0.8×10~/℃で、耐熱温度が1400±50℃であることを特徴とする低熱膨張材料。

【請求項2】 チタン酸アルミニウムを主成分とし、 $1000 \sim 1200$ で 200 時間熱処理した後の $30 \sim 800$ の 00 の 熱膨張係数が $0.5 \times 10^{-6} \sim 1.2 \times 10^{-6}$ / 00 であることを特徴とする低熱膨張材料。

【請求項3】前記チタン酸アルミニウムに SiO_2 , $F10e_2O_3$, Al_2O_3 , TiO_2 , MgO, CaO等のうち少なくとも2種以上含有されていることを特徴とする請求項1又は2の内いずれか1に記載の低熱膨張材料。

【請求項4】軸方向に多数形成されたセルと、前記セルの一方の開口端に閉塞された多数の前記セルを交互に閉塞する閉塞材と、を有し柱状に形成された排ガスフィルターであって、前記排ガスフィルターが請求項1乃至3の内いずれか1に記載の低熱膨張材料で形成されていることを特徴とする排ガスフィルター。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、低熱膨張材料及びそれを用いたディーゼル自動車等に搭載される排ガスフィルター及びそれを用いた排ガスフィルターに関するものである。

[0002]

【従来の技術】近年、チタン酸アルミニウムは高融点を有し低熱膨張を示す唯一の材料であるが、緻密な焼結体が得られず機械的強度が小さいとともに1200℃以下 30で熱処理すると結晶分解を起こして熱膨張係数が大きくなるという問題点があり、このことがチタン酸アルミニウムの高温での用途を制限していた。

【0003】そこで、これらの問題点を解決するものとして、特公昭56-7996号公報(以下イ号公報と称す)には、チタン酸アルミニウムに対してジルコニウムのみをZrO、に換算して $5.0\sim10.0$ 重量%含有してなる低熱膨張セラミックスが開示されている。また、特公昭56-35631号公報(以下口号公報と称す)には、Sn成分をSnO、換算で $1.5\sim20$ 重量 40%、SiO、を $2\sim13$ 重量%含むアルミニウムチタネート体が開示されている。

[0004]

【発明が解決しようとする課題】しかしながら上記従来の構成では、従来のチタン酸アルミニウムに比べ添加剤の使用により機械的強度及び高温での熱処理後の結晶分解は多少改善されたものの、イ号公報に開示された低熱膨張セラミックスでは、チタン酸アルミニウムの高温での用途に対してはまだ熱膨張係数が1.0~2.0×10-6/℃と大きく、また、口号公報に開示されたアルミ 50

ニウムチタネート体では、10時間足らずの高温熱処理 で結晶分解により熱膨張係数が序々に増加するという問 題点を有していた。また、低熱膨張係数の材質を必要と する排ガスフィルターでは、一般に材質の熱膨張係数が 0. 8×10⁻⁶/℃以上となると再生燃焼時の熱応力 (サーマルストレス) によって排ガスフィルターが破壊 する危険性が高くなり、このため、排ガスフィルターに 前記イ号公報の低熱膨張セラミックスを使用するには極 めて危険性を伴い、信頼性に欠けるという問題点を有し ていた。また、ディーゼル自動車等で高温で長時間連続 して使用される排ガスフィルターでは、一般に材質が1 000~1200℃で200時間熱処理した後の熱膨張 係数が1. 2×10 ⁶ / ℃以上であると、再生燃焼を繰 り返す内に耐熱衝撃性が劣化して前記熱応力によって破 壊する戯があるので、前記ロ号公報のアルミニウムチタ ネート体では短時間で破壊する危険性が高くなるので、 信頼性に欠けるという問題点を有していた。さらに、排 ガスフィルターでは、材質の耐熱温度が1400℃より 低いと再生燃焼時の異常燃焼によって溶損する虞があ り、前記イ号公報又は口号公報のものでは、信頼性に欠 けるという問題点を有していた。

2

【0005】本発明は上記従来の問題点を解決するもので、熱膨張係数が小さく、耐熱温度が高く、高温での長時間熱処理後結晶分解による熱膨張係数の増加がなく耐熱衝撃性に優れた低熱膨張材料を提供すること,及びそれを用いて熱膨張係数が小さく、耐熱温度が高く、高温での長時間熱処理後の結晶分解による熱膨張係数の増加がなく、耐熱衝撃性に優れたディーゼル自動車等に搭載される排ガスフィルターを提供することを目的とする。【0006】

【課題を解決するための手段】この目的を達成するため に本発明の請求項1に記載された低熱膨張材料は、チタ ン酸アルミニウムを主成分とし、30~800℃の熱膨 張係数が0.1×10⁻⁶~0.8×10⁻⁶/℃で、耐熱 温度が1400±50℃である構成を有しており、本発 明の請求項2に記載された低熱膨張材料は、チタン酸ア ルミニウムを主成分とし、1000~1200℃で20 0時間熱処理した後の30~800℃の熱膨張係数が 0. 5×10⁻⁶~1. 2×10⁻⁶/℃である構成を有し ており、本発明の請求項3に記載された低熱膨張材料 は、請求項1又は2の内いずれか1において、前記チタ ン酸アルミニウムにSiO1, Fe1O1, Al1O ₃, TiO₂, MgO, CaO等のうち少なくとも2種 以上含有されている構成を有しており、本発明の請求項 4 に記載された排ガスフィルターは、軸方向に多数形成 されたセルと、セルの一方の開口端に閉塞された多数の セルを交互に閉塞する閉塞材と、を有し柱状に形成され た排ガスフィルターであって、排ガスフィルターが請求 項1乃至3の内いずれか1に記載の低熱膨張材料で形成 されている構成を有している。

3

【0007】ここで、チタン酸アルミニウムとしては、 酸化アルミニウム(アルミナ、A1、〇、)又は水酸化 アルミニウム (Al (OH), Al, O, ·xH, O) と二酸化チタン(チタニア, TiO,) の各粉末の 混合物、又は前述の混合物を1400~1600℃で仮 焼したものが挙げられる。また、チタン酸アルミニウム を主成分とする低熱膨張材料とは、チタン酸アルミニウ ムに二酸化珪素(シリカ, SiO,),三酸化二鉄(F e, O,), 酸化アルミニウム (アルミナ, Al, O ,),二酸化チタン(チタニア, TiO;),酸化マグ 10 ネシウム (マグネシア、MgO), 酸化ジルコニウム (ジルコニア、ZrO:),酸化ストロンチウム(スト ロンチア、SrO)、酸化パリウム(重土又はパライタ 又はバリタ、BaO)、酸化イットリウム(Y₂O₃) 等の酸化物の内少なくとも2以上含有したものが好適に 用いられる。前記酸化物の含有量としては、チタン酸ア ルミニウム100wt部に対し0.5wt部~25wt部,好 適には1.5wt部~20wt部とされるのが好ましい。酸 化物の含有量がチタン酸アルミニウム100wt部に対し 1. 5 wt部より小さくなるにつれ1000℃~1200 20 ℃で熱処理した後このチタン酸アルミニウムを主成分と する低熱膨張材料が結晶分解を起こして熱膨張係数が増 加する傾向が現れだし、0.5wt部より小さくなると特 にその傾向が著しくなり、酸化物の含有量がチタン酸ア ルミニウム100wt部に対し20wt部より大きくなるに つれ熱膨張係数が増加し耐熱温度が低下する傾向が現れ だし、25wt部より大きくなると特にその傾向が著しく なるので、いずれも好ましくない。

[0008]

【作用】この構成によって、チタン酸アルミニウムにS 30 i O₁ , Fe₂ O₃ , A l₃ O₃ , T i O₄ , M g O₅ C a O等の酸化物内少なくとも 2 以上を含有させたこと*

1

* により、チタン酸アルミニウムの結晶中に酸化物が固溶 するか、又はチタン酸アルミニウムの結晶の周囲に酸化 物が析出することで、チタン酸アルミニウム本来の特性 である低熱膨張性や髙耐熱性を維持したまま該低熱膨張 材料の機械的強度が大きくなると共に熱処理による結晶 分解が抑制されるので、該低熱膨張材料の30~800 ℃の熱膨張係数を0.1×10-6~0.8×10-6/℃ で、かつ耐熱温度を1400±50℃とすることがで き、また、1000~1200℃で200時間熱処理し た後の30~800℃の熱膨張係数を0.5×10⁻⁶~ 1. 2×10⁻¹/℃とすることができる。また、排ガス フィルターの材質として前述の低熱膨張材料を用いたこ とにより、排ガスフィルターの30~800℃の熱膨張 係数を0.1×10⁻⁶~0.8×10⁻⁶/℃、耐熱温度 を1400±50℃、さらに1000~1200℃で2 00時間熱処理した後の30~800℃の熱膨張係数を 0. 5×10⁻⁶~1. 2×10⁻⁶/℃とすることができ るので、結晶分解による熱膨張係数の増加等の虞れがな く耐熱衝撃性を著しく向上させることができる。

[0009]

【実施例】以下、本発明の一実施例について、図面等を 参照しながら説明する。

【0010】(実施例1)酸化アルミニウムと二酸化チタンの各粉末の等モル混合物よりなるチタン酸アルミニウムと SiO_2 , Fe_2O_3 , Al_2O_3 , TiO_2 , MgO, CaOを(表1)に示した比率になるように配合し、アルミナらい塊機(日陶科学社製;商品名ANM200WES型)で60分間それぞれ混合してチタン酸アルミニウムを主成分とする混合粉末(以下チタン酸アルミニウム系混合粉末という)を作成した。

[0011]

【表 1 】

RUN	配	合	比	率	(w t	部)	
NO.	チタン 酸がにつな	SiO ₂	Fe ₂ O ₈	Al ₂ O ₂	TiO ₂	MgO	Ca0
1	100	1.0	1.0	-	-	-	-
2	100	1.0	2.0	-	-	_	
3	100	5.2	2.0	-	1	-	-
4	100	1.0	1.0	2.0	ı	ı	<u>.</u>
5	100	-	2.0	-	2.0	1.0	-
6	100	-	1.0	-	-	2.0	20.
7	100	1.5	-	1.5	_	-	2.5
8	100	-	<u>.</u> .	-	1.0	1.5	0.5
9	100	5.0	4.5	_	3.0	-	-
10	100	_	-	10.0	-	5.0	5.0
11	100	-	-	0.5	0.5	1. 0	0.5
12	100	-	0.5	1.0	1.0	· •	1.0
13	100	0.5	-	-	0.5	0.5	-

【0012】次に、得られたチタン酸アルミニウム系混合粉末、又はこのチタン酸アルミニウム系混合粉末を1 30 200℃で2時間仮焼した後アルミナらい塊機(日陶科学社製;商品名ANM200WES型)で60分間粉砕して得たチタン酸アルミニウム系混合粉末100wt部に対して、10%のポリビニルアルコール溶液を12wt部加えた後、アルミナ製乳鉢中で混合して造粒粉末を得た。次いで、得られた造粒粉末を800kg/cm²の圧力で成形し、直径(φ)=30.0mm,厚み(t)=4~6mmの円盤状の成形体を作成した後、1450~1550℃の温度範囲内で焼成して各々焼成体を得た。次いで、*

* 得られた焼成体を縦幅(a) = $3 \sim 5$ mm,横幅(b) = $0 \sim 5$ mm,高さ(h) = $10 \sim 20$ mmの角柱状になるようにダイヤモンドカッターで加工し熱膨張係数の測定用試料を作成した。次いで、得られた試料について熱膨張計を用いて $30 \sim 800$ Cの熱膨張係数を測定した。また、 $1000 \sim 1200$ Cで200 時間熱処理した後の $30 \sim 800$ Cの熱膨張係数を測定した。その結果を(表 2)に示した。

[0013]

【表2】

8

RUN NO.	熱膨張係数 (10 ⁻⁴ / °C)	1000°C/200時間 熱処理後の熱膨 張係数 (10 ⁻⁶ / °C)	1100°C/200時間 熱処理後の熱膨 張係数 (10 ⁻⁶ / °C)	1200°C/200時間 熱処理後の熱膨 張係数 (10 - */ °C)	
ı	0. 1	0. 3	0.5	0.5	
2	0. 1	0. 2	0.4	0.4	
3	0. 3	0. 9	1.1	1. 0	
4	. 0.1	0. 3	1.0	0. 8	
5	0.3	0, 5	0.8	0. 6	
6	0. 4	0. 6	0.8	0.7	
7	0.5	0.8	1.1	0.9	
8	0. 7	0.9	1.2	0. 9	
9	0. 6	0.7	1.1	0.9	
10	0.8	1.0	1.2	1.0	
11	0.7	0. 9	1.2	1.1	
12	0.8	1.1	1.2	1.2	
13	0.4	0.8	0. 9	1.0	

【0014】この(表2)から明らかなように、本実施例の低熱膨張材料は、 $30\sim800$ ℃の熱膨張係数が 0.8×10^{-6} /℃以下であり、かつ $1000\sim120$ 0℃で200時間熱処理した後の $30\sim800$ ℃の熱膨張係数が 1.2×10^{-6} /℃以下であることがわかった。さらに本実施例の低熱膨張材料は電気炉を用いた耐熱試験の結果、1400℃の耐熱温度を有していることがわかった。

【0015】以上のように本実施例によれば、熱膨張係数が小さく、耐熱温度が高く、高温における長時間熱処理後の熱膨張係数の増加がなく耐熱衝撃性に優れた低熱膨張材料が得られることがわかった。また、チタン酸アルミニウム系化合物として特性を損なわない範囲においてSiO,, Fe,O,, Al,O,, TiO,, MgO, CaO等の内少なくとも2以上を含有するものであれば差し支えない。

【0016】(実施例2)図1は本発明の第2実施例に おける排ガスフィルターの外観斜視図であり、図2は本 発明の第2実施例における排ガスフィルターの要部断面 図である。1は本発明の第2実施例における排ガスフィ ルター、2はセル、3は閉塞材、4は排ガス流入口、5*50

* は浄化ガス流出口である。図1及び図2から明らかなように、本実施例の排ガスフィルター1は、柱状をなし、内部に排ガスの入口側22から出口側23に向けて軸方向に多数のセル2が形成され、このセル2は排ガスの入口側22か出口側23のいずれか一方が交互に閉塞材3により閉塞されている構造を有していることがわかった

【0017】以上のように構成された本実施例の排ガスフィルターについて、以下その製造方法を説明する。チタン酸アルミニウム100 wt部に対して SiO_2 を 5.2 wt部,Fe₂ O₃ を 2 wt部それぞれ含有するチタン酸アルミニウム系化合物よりなる低熱膨張材料と、メチルセルロース系の結合剤と、高分子エステル系の潤滑剤と、ポリエチレン系の造孔剤と、水と、を(表 3)に示した比率になるように配合し高速ミキサー(宮崎鉄工社製;商品名MHS-165型)で3分間混合した後、混練機(宮崎鉄工社製;商品名MP-100-1型)で30~120分間混練して押し出し成形用塊状物を得た。【0018】

【表3】

	配合比率(wt部)
低熱膨張材料	100
結合剤	15
潤滑剂	3
造孔剤	30
水	25

【0019】次に、得られた塊状物を真空押し出し成形機(宮崎鉄工社製;商品名MV-FM-A-1型)を用いて直径(ϕ)=170m,高さ(h)=180mの軸方向に多数のセルを有する柱状成形体を作成した後、この成形体を乾燥機(ヤマト社製;商品名DF61)を用いて $80\sim100$ での温度で24時間乾燥した。次いで、乾燥した成形体を電気炉(モトヤマ社製;商品名昇降式カンタルスーパー炉)を用いて $1450\sim1550$ 20 での温度範囲内で焼成して焼成体を作成し、この焼成体の両端のセルのいずれか一方を交互に閉塞材により閉塞して、加工し、図1に示す本実施例の排ガスフィルター1を作成した。

【0020】本実施例の低熱膨張材料も実施例1と同様に $30\sim800$ ℃の熱膨張係数が $0.1\times10^6\sim0.8\times10^6$ /℃であり、かつ $1000\sim1200$ ℃で200時間熱処理した後の $30\sim800$ ℃の熱膨張係数が $0.5\times10^6\sim1.2\times10^6$ /℃以下であった。さらに電気炉を用いた耐熱試験の結果 1400 ± 50 ℃の 30耐熱温度を有していることがわかった。

【0021】以上のように本実施例によれば、熱膨張係数が小さく、耐熱温度が高く、高温における長時間熱処理後の熱膨張係数の増加がなく、耐熱衝撃性に優れた排ガスフィルターが得られることがわかった。また、本実*

* 施例においてチタン酸アルミニウム系化合物として特性を損なわない範囲において、チタン酸アルミニウムにSiOz, Fe,O,, AlzOz, TiOz, MgO, CaO等の内少なくとも2以上を含有するものであれば、差し支えない。

[0022]

【発明の効果】以上のように本発明によれば、以下の優れた効果を奏する。 すなわち、

①チタン酸アルミニウムにSiO₂, Fe₂O₃, Al
10 2 O₃, TiO₂, MgO, CaO等の内少なくとも2以上を含有することにより、30~800℃の熱膨張係数が0.1×10-6~0.8×10-6/℃と熱膨張係数が小さく、また、耐熱温度が1400±50℃と高く、さらに、1000~1200℃で200時間熱処理した後の30~800℃の熱膨張係数が0.5×10-6~1.2×10-6/℃の高温での長時間熱処理後結晶分解による熱膨張係数の増加を防止することができる耐熱衝撃性に優れた低熱膨張材料を実現することができるものである。

■②熱膨張係数が小さく、耐熱温度が高く、高温での長時間熱処理後の結晶分解による熱膨張係数の増加がなく、耐熱衝撃性に優れた信頼性に優れた排ガスフィルターを実現することができるものである。

【図面の簡単な説明】

【図1】本発明の第2実施例における排ガスフィルター の外観斜視図

【図2】本発明の第2実施例における排ガスフィルターの要部断面図

【符号の説明】

- 1 排ガスフィルター
- 2 セル
- 3 閉塞材
- 4 排ガス流入口
- 5 浄化ガス流出口

【図1】

【図2】

フロントページの続き

(72) 発明者 池田 幸則

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72) 発明者 渡辺 浩一

大阪府門真市大字門真1006番地 松下電器

産業株式会社内