

University of California College of Engineering Department of Electrical Engineering and Computer Sciences

J. Rabaey

WeFr 2-3:30pm

We, April 22, 2:00-3:30pm

EECS 141: SPRING 09—MIDTERM 2

NAME	Last	First
SID		
		Problem 1 (10):
		Problem 2 (9):
		Problem 3 (11):
		<u> </u>
		Total (30)

PROBLEM 1: MOS TRANSISTORS (10 Points)

An MOS device can operate in one of the four regions:

- a. cut off;
- b. linear;
- c. saturation;
- d. velocity saturation.

Transistor parameters are:

NMOS:
$$V_T = 0.3V$$
, $V_{D,VSAT} = 0.3V$, $k = \mu C_{OX} = 100\mu A/V^2$, $\lambda = 0$, $\gamma = 0$ PMOS: $V_T = -0.3V$, $V_{D,VSAT} = -0.5V$, $k = \mu C_{OX} = -50\mu A/V^2$, $\lambda = 0$, $\gamma = 0$

Determine regions of operation of the devices shown below.

Device	V_{X}	Region of Operation
M1	0.5V	
IVII	0.1V	

Device	Region of Operation
M1	
M2	

Device	Region of Operation
M1	
M2	

Device	Region of Operation
M1	
M2	

PROBLEM 2 – Dynamic Logic (9 Points)

Given the logic network below that is composed of a dynamic CMOS gate Y, a static CMOS inverter gate R, and a static CMOS NOR gate Z:

(1) Size the transistors of the first-stage dynamic CMOS gate Y such that the worst-case drive strength for all inputs is the same as a unit inverter (PMOS to NMOS ratio of 2/1). What is logical effort of Y for input A and B? (Freebee!) (1 pt)

m1=m2=m3=

m4=

 $LE_A = LE_B =$

(2) Determine the logic function F of the logic network in terms of input A, B, and C. (Another freebee!) (1 pt)

F=

$$\alpha_{\scriptscriptstyle o1(0->1)} =$$

$$\alpha_{{}_{o2(0->1)}} =$$

$$\alpha_{{\scriptscriptstyle F(0->1)}} =$$

PROBLEM 3: Wire Delay (11 points)

Consider the clock distribution network plotted below. Assume the following design parameters: R_d and C_d are the drive resistance and output capacitance of the inverters, and equal 1 k Ω and 4 fF, respectively. You may assume that $\gamma=1$ (that is input and output capacitance of the inverter are identical). Wires are characterized by their sheet resistance and area capacitance $r_w=0.06~\Omega/\text{sq}$, $c_w=0.04~\text{fF/}\mu\text{m}^2$. The fringing capacitance can be ignored. Each wire segment has a length L of 5 mm, while its width W is kept as a variable. The load capacitance C_L equals 10 fF.

a. Derive an expression for the delay between nodes Clk_{in} and Clk_{out} as a function of the wire width *W*. Carefully identify each component of the delay.

HINT: Think Elmore! (6 pts)

b.	De	erive the wire width	W that minimize	s the delay. (3 pts)			
V =							
c.	Ch	Check for each of the following statements if it is TRUE or FALSE or DOES NOT MATTER (2 Pts):					
	• The delay between Clkin and Clkout can be further reduced by partitioning the wires into shorter se and introducing inverters in between.						
		TRUE □	FALSE \square	DOES NOT MATTER \square			
	• Introducing inverters along the length of the wire helps to reduce power comsumption.			gth of the wire helps to reduce power comsumption.			
		TRUE □	FALSE □	DOES NOT MATTER \square			
	• Using Gold instead of Copper for the wires would reduce the delay.			he wires would reduce the delay.			
		TRUE □	FALSE \square	DOES NOT MATTER \square			
	Suspending the wire in free space rather than surrounding them with SiO2 would reduce the			ather than surrounding them with SiO2 would reduce the delay.			
		TRUE □	FALSE □	DOES NOT MATTER \square			

EECS 141: SPRING 09—MIDTERM 2