Exam 3 CHEM 1142 Fall 2008

Name: KEY

Multiple choice. Circle	the best respon	nse. [3 pts. each]		
Q1. Given the follow most soluble in pure	0 0 .	ole salts and solu	bility-product c	constants, which salt would be	
•		Value of the State	15	Most Soluble = a	
a) AgCl: $K_{sp} = 1.8 \times 10^{-10}$ b) AgCl: $K_{sp} = 8.5 \times 10^{-17}$ d) A		b) AgBr: $K_{sp} =$ d) AuCl: $K_{sp} =$	5.0×10^{-13} 2.0×10^{-13}	Least Soluble = c	
			Ca (Da	t for calcium phosphate? $+)_{2(5)} \rightleftharpoons 3(3^{2+}_{(6)} + 200^{3-}_{(6)}) \Rightarrow k$ response is not given.	-sp
Q3. Calculate the pH formic acid in 1.0 L c	of a buffer prep of solution. [Forr u	oared by mixing (mic Acid: HCO ₂ I	0.10 mol of sod H: K _a = 1.8 x 10	lium formate and 0.05 mol of ρ^{-4} ρ^{-	0.10
a) 1.8×10^{-4}	b) 3.44	(c) 4.05	d) 5.31	e) none of these	
What is the value of t $\[\[\] \]$ a) 3.5×10^{-22}	the base ionization $= k_w = 3 k_b = 10^{-8}$ b) 3.5×10^{-8}	on equilibrium co kw/k, = 1.0 x 10-14	hypochlorous a constant, K_b , for $\frac{1}{2} \cdot \frac{3.5 \times 10^{-8}}{3.5 \times 10^{-7}} = 0$	cid (HOCl, $K_a = 3.5 \times 10^{-8}$). hypochlorite ion? $2 \cdot 85 \times 10^{-7}$	
d) 2.9×10^7	e) 4.7×10^9				
Q5. A buffer can be j	prepared by mix	ing:			
a) a strong acid and its c) a weak acid and its e) all responses above	conjugate base.		ong base and its ak acid and a st	s conjugate acid. crong acid.	
iodide?			PhT	10 ⁻³ M. What is the K_{sp} for lead $c_{11} \ge Pb_{rap}^{24} + 2I_{rap}^{-3}$ $1 - 2 \cdot 4 \times 10^{-3} M$ $1 \cdot 2 \times 10^{-3} M$	
Q7. Identify the conj	ugate base of HI	PO_4^{2-} in the follo	wing reaction:	ksp=(Pb2)[I-]2=6.9 x10-7	
	H_2 C				
a) H ₂ O b) HO	CO ₃ c) H ₂ C	CO ₃ d PO ₄	e) Non	ne of these.	

Ba(OH)2 -> Ba2+ 20H 1.0x10-3 2.0x10-3 Q8. The OH⁻ concentration in a 1.0 x 10⁻³ M Ba(OH)₂ solution is b) $1.0 \times 10^{-3} \text{ M}$ (c) $2.0 \times 10^{-3} \text{ M}$ a) $0.50 \times 10^{-3} \text{ M}$ d) 0.01 M e) 0.020 M. Q9. Calculate the pH of a beer in which the hydrogen ion concentration is 6.3 x 10⁻⁵ M. pH=-log[H+] (a) 4.20 c) 5.63 d) 9.83 Q10. Calculate the pH of a 6.71 x 10^{-2} M NaOH solution.

(a) 12.83 b) 2.17 c) 11.82 d) 6.71 e) 1.17

Q11. Which one of the following salts will form an acidic solution upon dissolving in water? $\rho H = 14 - \rho 0 H$ e) NaCN a) KBr (c) NH₄I d) KOH NHit = conj. acid of a weat base (NH,) Short Response. Show all work to receive credit. Q12. [5 pts.] What is the pOH of a 0.025 M solution of HCl(aq) at 25 °C? Ha -> H++a pH = -log [H+] = 1.60 Lo.025M pOH = 14.00-pH = 12.40. Q13. [8 pts.] A 0.065 M aqueous solution of pyruvic acid (HC₃H₃O₃, a weak monoprotic acid) has a pH of 3.10 at 25 °C. What is K_a for pyruvic acid? H (3 H303 (ag) + H20cm = H30tap + C3H303 (ag) C -x E(0.065-x) _ (x) Ka = [H30+)[(3H30] - X2 [H(3H30,) - 0.065 - x $PH = -\log(H^{+}) \Rightarrow (H^{+}) = 10^{-PH} = 10^{-3 \cdot (0)} = 7.94 \times 10^{-4} M = x^{1/2}$ $\Rightarrow K_{a} = \frac{(7.94 \times 10^{-4})^{2}}{0.065 - 7.94 \times 10^{-4}} = 9.83 \times 10^{-6}$ Q14. [6 pts.] Consider the chemical reaction: $HC_2H_3O_2 + HClO_4 \longrightarrow H_2C_2H_3O_2^+ + ClO_4^-$ Identify (and label as acid/base) both conjugate acid-base pairs. HC2H3O2 + HC1O4 = H2C2H3O2 + C1O4 BASE ACID BASE

Q15. [4 pts.] State the Lewis and Brønstëd definitions of an acid and a base.

Lewis

Bronsted

Acid: e acceptor

Acid: H+ donor

Base: e donor

Base: Ht acceptor

Q16. [7 pts.] $K_{\rm w}$ is equal to 4.5 x 10^{-12} at 205 °C. What pH corresponds to a neutral solution at this $2H_{2}O(e) = H_{3}O(e_{1}) + O(e_{1})$ $= X = \sqrt{K_{W}} = \sqrt{4\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = 2 \cdot 12 \times (0^{-6})$ $= \frac{1}{2\pi S_{X}(0^{-12})} = \frac{1}{2\pi S_{X}(0^{-12})}$

$$K_{\omega} = [H_30^{\dagger}][OH^{-}] = 3c^2$$

Q17. [5 pts.] Calculate the pH of a 4.2 x 10⁻⁴ M solution of KOH(aq).

Q18. [8 pts.] What is the molar solubility of strontium sulfate, SrSO₄, in 0.15 M sodium sulfate,

 $Na_2SO_4(aq)$? $K_{sp}(SrSO_4) = 2.5 \times 10^{-7}$

$$SrSO_{4rs1} = Sr^{2t}_{rag1} + SO_{4rag1}^{2-}$$

$$K_{SP} = (S_1^{2+})(S_0^{2-}) \Rightarrow 2.5 \times 10^{-7} = (s)(0.15+s)$$

 $\Rightarrow 2.5 \times 10^{-7} \times (s)(0.15)$

$$\Rightarrow 5 = \frac{2.5 \times 10^{-7}}{0.15} = 1.67 \times 10^{-6} \text{M}$$

 $HC_2H_3O_2(aq)$ with 55 mL of 0.15 M sodium acetate, $NaC_2H_3O_2(aq)$? $K_a(HC_2H_3O_2) = 1.7 \times 10^{-5}$. We have a buffer, since 2 components are weak acid + conj-band $H(zH_3O_2 + C_2H_5O_2^-)$ Vol- changes on viving > let's use # moles. #mol HCHzOz 35mL 1 0.10 mol H(2H302 = 0.0035mol H(2H302 #mol C2H302 Na GH202 - Nat+C2H302 55mL IL 0.15mol Na (2H302 | mol C2H302 = 0.00825 mol C2H302 pH = pKq + log (base) = 4.77 + log (0.00825mol C2H302 / 0.090L) = 0.090C =4.77+log(2.357)= 5.14

Q19. [12 pts.] What is the pH of the solution obtained from mixing 35 mL of 0.10 M acetic acid,

```
Q20. [12 pts.] Calculate the pH of a solution obtained by mixing 10.0 mL of 0.150 M KOH(aq) with
           35.0 mL of 0.135 M acetic acid, HC_2H_3O_2(aq). K_a(HC_2H_3O_2) = 1.7 \times 10^{-5}.
                                                    Vol's change a best to work w/ moles
        KOH is a STRONG base!
                                                           101 201 210.0+35.0 = 45.0 mL = 0.0450L
       Authic acid is a WEAK acid!
      => Start with a complete neutralization men, end up with eque
            KOH - K-+ OH-
       #mol OHT 10.00mL 1L 0.150mol KOH | mol OHT = 0.00150mol OHT
    TXN: H (2H302(ag) + OH(ag) - + H20(a) + C2H302(ag)
                               0.00150mol
Howol HCzHzQ
 35.0 mL 16 0.135mol H(2H302 = 0.004725mol H(2H302
              HC2H3O2(ag) + OHiag) -> H2O(a) + C2H3O2 (ag)
\Rightarrow \mathsf{kn}(!):
            I 0.004725md 0.00150md
                                                       +0.00150
            ©C -0.00150 -0.00150
                                                       0.00150mol
            E 0.003225mol 0
(2) Now we have weak acid + conj. base! Could write Ka ear + Solve ICE chart.

But ... since this is a britler, let's use Hendelson-Hassedbalch eggs!

PH = pKa + los (base) = 4.077 + log (0.00150mol/0.0450L)

O.003225mol/0.0450L
                            => pH= H-77 + lag (0.465)
                                       > PH = 4.44
```

BONUS Questions:

A) Given the thermochemical equation: $C_4H_8O_2(s) + 5O_2(g) \rightarrow 4CO_2(g) + 4H_2O(l)$; $\Delta H^o = 3370 \text{ kJ mol}^{-1}$

How much heat is absorbed/released when 34.2 g of $C_4H_8O_2$ reacts? Is the process exothermic or endothermic?

B) Calculate the osmotic pressure of a solution of $0.0350~M~CaCl_2(aq)$ at a temperature of 24 °C. State any assumptions you are making.

$$T = i \cdot M \cdot R \cdot T = 3 \times 0.0350 M \times 0.08206 \frac{\text{ahm.L}}{\text{mol.K}} \times 297 K = 2.56 \text{ahm}$$

$$Ca Q_2 \rightarrow Ca^{24} + 2Q$$

$$i = 3$$

Assuming i=3

a high concs, get ion-pairing which reduces i from its theoretical value.