

Consensus-based Refinement And Learning

A Research & Development Final Year Project

Presenters:

- Muhammad Rafay Khan Khattak (211-0423)
- Muhammad Ali Irfan (211-2572)
- Muhammad Nouman Hafeez (211-0416)

Supervisor:

Ms. Kainat Iqbal

Co-supervisor:

Ms. Saira Qamar

CORAL Overview

Turn multiple ASR outputs into one more-accurate Urdu transcript

Designed to work with existing ASR models without retraining.

If models disagree, CORAL picks the word that looks most reliable while keeping the sentence natural.

Outputs per-word confidence scores so other applications can decide which parts to trust.

Motivation

Live captions for TV, lectures, and online classes

Call-center & customer support analytics

Voice assistants that understand code-switched Urdu-English

Clearer subtitles for deaf and non-native viewers

Problem Statement

"Single-model Urdu ASR systems fail to reliably resolve acoustic and linguistic ambiguity, leading to high WER. We need a confidenceguided ensemble correction method"

LITERATURE REVIEW

Paper	Reference	Year	Approach	Key features	Deficiencies
Better Pseudo-labeling with Multi- ASR Fusion and Error Correction by SpeechLLM	https://arxiv.org/abs/2506.11089	2025	Multi-ASR ensemble (Icefall, Nemo, Whisper) fused and corrected by an instruction-tuned SpeechLLM.	Unified pipeline using an LLM to refine ASR hypotheses with both audio and text cues, yielding near ground-truth labels.	High computational cost and latency Requires multiple pre-trained ASR models for the target language.
ASR Confidence Estimation using True Class Lexical Similarity Score (TruCLeS)	https://www.isca- archive.org/interspeech_2025/ravi25_intersp eech.pdf	2025	Trains a neural confidence model using a novel, continuous word-level confidence target (TruCLeS).	Provides a fine-grained confidence score reflecting partial correctness. Model-agnostic and tested on Hindi, showing generality.	Requires forced alignment for training. Does not directly reduce WER. Does not address using confidences for correction.
Leveraging LLMs for Post- Transcription Correction	https://arxiv.org/pdf/2506.11089	2024	Post-ASR correction using a retrieval-augmented LLM (GPT-3.5) to find and replace domain-specific errors.	Model-agnostic and effective for fixing critical, known terms in a specific domain by leveraging LLM knowledge.	Highly specialized to known target words. Requires access to powerful LLMs and historical data. English business data only.
Ensembles of Hybrid and End- to-End Speech Recognition	https://aclanthology.org/2024.lrec- main.547.pdf	2024	Combines a hybrid HMM- Kaldi ASR with a wav2vec2.0 XLS-R model using confidence- calibrated ROVER.	Achieves significant WER reduction (14-20%) by combining complementary strengths and addresses E2E model overconfidence.	Requires training two separate ASR systems. Tested only on a low-resource European language. ROVER is sensitive to alignment errors.
Code-Mixed Street Address Recognition	https://www.researchgate.net/publication/3 85763612_Code- mixed_street_address_recognition_and_acc ent_adaptation_for_voice- activated_navigation_services	2024	Builds a custom hybrid TDNN-LSTM ASR system trained on bespoke Urdu- English datasets for street addresses.	Achieves very low WER (~4.0%) in a narrow domain. Explicitly handles code-mixing and accent adaptation for Urdu.	Does not generalize outside its specific application. Relies on cumbersome hybrid architecture and custom data.

Challenges

Match words despite splits or missing parts

Confidence can be wrong

Latency and cost

Models give confidence differently

LLMs may hallucinate

Test across languages

Proposed Solution

Stage 1

1. Multi-ASR Decoding

Run multiple ASR models in parallel to get word tokens, timestamps, and confidence scores for every token.

2. Confidence Normalization

Convert raw model scores to a uniform 0–1 scale and calibrate them using held-out data.

3. LLM Fusion

Provide aligned alternatives with their confidences to an instruction-tuned LLM. The LLM outputs a single transcript.

4. Comparison with Baselines

Evaluate against ROVER (voting), confusion networks, and highest-confidence fusion.

TIMELINE

Iteration 1

(Sep - Oct 2025)

Foundation & Confidence Extraction

- Integrate ASR models
- Extract word-level confidences
- Establish baselines.

Iteration 2

(Nov - Dec 2025)

Instruction Prompt Development

- Design prompts
- Test LLM behavior
- Structured input/output parsing

Iteration 3

(Feb - Mar 2026)

End-to-End Integration

- Integrate pipeline
- Run preliminary evaluations

Iteration 4

(Apr - May 2026)

Optimization & Comprehensive Evaluation

- Calibrate
- Profile latency, optimize
- Prepare final report

WORK DIVISION

- ASR ensemble integration
- Confidence extraction
- Benchmarking
- N-best & oracle evaluation

- Black-box LLM integration
- Prompt engineering
- Alignment parser for LLM input
- Final fusion evaluation

- System architecture
- Optimization (quantization/ONNX)
- Deployment-ready pipeline and latency profiling

Tools and Technologies

Python

Jupyter notebook

Scikit-learn

Pytorch

Huggingface

GitHub

Docker

Runpod

React

Conclusion

CORAL uses word-level confidence + LLMs for zero-shot Urdu ASR refinement.

No fine-tuning; combines pre-trained models for better generalization.

Finalize experiments, cut LLM latency, deploy demo, prepare results.

REFERENCES

- Prakash, J., et al. (2025). Better Pseudo-labeling with Multi-ASR Fusion and Error Correction by SpeechLLM. In Proceedings of Interspeech 2025.
- <u>Nagarathna R., et al. (2025). ASR Confidence Estimation using True Class Lexical Similarity Score (TruCLeS). In Proceedings of Interspeech 2025.</u>
- Koilakuntla, B., et al. (2024). Leveraging Large Language Models for Post-Transcription Correction in Contact Centers. In Proceedings of Interspeech 2024.
- <u>Parikh, A. K., et al. (2024). Ensembles of Hybrid and End-to-End Speech Recognition. In Proceedings of LREC-COLING</u> 2024.
- Naqvi, S. M. R. & Tahir, M. A. (2024). Code-Mixed Street Address Recognition and Accent Adaptation for Voice-Activated Navigation Services. IEEE Access.
- Radford, A., et al. (2023). Robust Speech Recognition via Large-Scale Weak Supervision. arXiv:2212.04356.
- Mohiuddin, H. A., et al. (2023). UrduSpeakXLSR: Multilingual Model for Urdu Speech Recognition. In 2023 18th International Conference on Emerging Technologies (ICET).
- <u>Kam, E. M. W., & Uebel, L. (2021). On Confidence Score Generation for Transformer-based ASR. In Proceedings of Interspeech 2021.</u>

THANK YOU

FROM TEAM CORAL

