Cálculo de Programas

2.º Ano de LCC+LEI (Universidade do Minho) Ano Lectivo de 2012/13

> Miniteste — 22 de Maio de 2013 16h00 Salas CP2 201, 202, 203 e 204

Este miniteste consta de 6 questões que valem, cada uma, 2 valores. O tempo médio estimado para resolução de cada questão é de 15 min.

PROVA SEM CONSULTA (90m)

Questão 1 Considere as funções seguintes:

$$f = [i_1 \cdot i_1 , i_2 + id]$$

$$g = [id + i_1 , i_2 \cdot i_2]$$

Identifique (justificadamente) os seus tipos e mostre que $f \cdot g = id$.

Questão 2 Seja dada uma função δ da qual só sabe duas propriedades: $\pi_1 \cdot \delta = id$ e $\pi_2 \cdot \delta = id$. Mostre que, necessariamente, δ satisfaz também a propriedade natural $(f \times f) \cdot \delta = \delta \cdot f$.

Questão 3 Demonstre a seguinte propriedade do combinador condicional de McCarthy:

$$(f+g)\cdot(p\to i_1\cdot h,i_2\cdot k) = p\to i_1\cdot f\cdot h,i_2\cdot g\cdot k$$

Questão 4 A função $\pi_2: A \times B \to B$ é binária e, como tal, faz sentido a sua versão "curried" $\overline{\pi_2}: A \to (B \to B)$. Usando as leis da exponenciação mostre que, qualquer que seja f,

$$\overline{\pi_2} \cdot f = \overline{\pi_2}$$

Logo $\overline{\pi_2}$ é uma função constante. Qual?

Questão 5 A função factorial pode definir-se com recurso a uma função auxiliar:

$$fac 0 = 1$$

 $fac (n + 1) = fsuc n \times fac n$
 $fsuc 0 = 1$
 $fsuc (n + 1) = fsuc n + 1$

Recorrendo à lei de recursividade múltipla (entre outras) derive desse par de funções a seguinte implementação de fac como um ciclo-for:

```
fac = \pi_2 \cdot facfor

facfor = \text{for } \langle (\text{succ} \cdot \pi_1), mul \rangle (1, 1)
```

em que $facfor = \langle fsuc, fac \rangle$, succ = (1+) e $mul\ (n,m) = n \times m$. **NB:** Recorde que todo o ciclo-for é um catamorfismo de naturais: for $f\ k = ([\underline{k}\ ,f])$.

Questão 6 Quem programou a função seguinte

```
 \begin{split} f &:: \mathsf{LTree}\ a \to \mathbb{N}_0 \\ f &(\mathit{Leaf}\ a) = 0 \\ f &(\mathit{Fork}\ (t,t')) = \mathit{max}\ (f\ t,f\ t') \end{split}
```

deve ter-se enganado: f dará sempre 0 como resultado. Identifique o gene g do catamorfismo f=(g) e mostre que, de facto, $(g)=\underline{0}$.