Complete-MFA: Complementary parallel labeling experiments technique for metabolic flux analysis

Robert W. Leighty, Maciek R. Antoniewicz

- **Table S1.** Metabolic network model of *E. coli* used for ¹³C metabolic flux analysis.
- **Table S2.** Biomass measurements, glucose measurements, and estimated growth rates for six parallel labeling experiments with *E. coli*.
- **Table S3.** Measured mass isotopomer distributions of six 13 C-labeled glucose tracers used in parallel labeling experiments with *E. coli*.
- **Table S4.** Measured mass isotopomer distributions of biomass amino acids from six parallel labeling experiments with *E. coli* grown on six different ¹³C-labeled glucose tracers.
- **Table S5.** Results of ¹³C-MFA and COMPLETE-MFA for *E. coli* grown in parallel batch cultures on six different ¹³C-labeled glucose tracers.
- **Table S6**. Goodness-of-fit analysis for 13 C-MFA and COMPLETE-MFA using a network model without the CO₂ exchange reaction v_{71} .
- **Figure S7.** Inconsistent metabolic fluxes were obtained when fluxes were estimated using an incomplete metabolic network model without the CO_2 exchange reaction (v_{71}) .
- **Figure S8.** Comparison of the precision of metabolic fluxes estimated using combined analysis of dual ¹³C-tracer experiments.

Table S1. Metabolic network model of E. coli used for ¹³C metabolic flux analysis

Glycolysis

- V_1 Gluc.ext (abcdef) + PEP (ghi) \rightarrow G6P (abcdef) + Pyr (ghi)
- v_2 G6P (abcdef) \leftrightarrow F6P (abcdef)
- V_3 F6P (abcdef) + ATP \rightarrow FBP (abcdef)
- V_4 FBP (abcdef) \leftrightarrow DHAP (cba) + GAP (def)
- v_5 DHAP (abc) \leftrightarrow GAP (abc)
- V_6 GAP (abc) \leftrightarrow 3PG (abc) + ATP + NADH
- v_7 3PG (abc) \leftrightarrow PEP (abc)
- v_8 PEP (abc) \rightarrow Pyr (abc) + ATP

Pentose Phosphate Pathway

- V_9 G6P (abcdef) \rightarrow 6PG (abcdef) + NADPH
- V_{10} 6PG (abcdef) \rightarrow Ru5P (bcdef) + CO2 (a) + NADPH
- V_{11} Ru5P (abcde) \leftrightarrow X5P (abcde)
- v_{12} Ru5P (abcde) \leftrightarrow R5P (abcde)
- V_{13} X5P (abcde) \leftrightarrow TK-C2 (ab) + GAP (cde)
- V_{14} F6P (abcdef) \leftrightarrow TK-C2 (ab) + E4P (cdef)
- V_{15} S7P (abcdefg) \leftrightarrow TK-C2 (ab) + R5P (cdefg)
- V_{16} F6P (abcdef) \leftrightarrow TA-C3 (abc) + GAP (def)
- V_{17} S7P (abcdefg) \leftrightarrow TA-C3 (abc) + E4P (defg)

Entner-Doudoroff Pathway

$$v_{18}$$
 6PG (abcdef) \rightarrow KDPG (abcdef)

$$V_{19}$$
 KDPG (abcdef) \rightarrow Pyr (abc) + GAP (def)

TCA Cycle

$$V_{20}$$
 Pyr (abc) \rightarrow AcCoA (bc) + CO2 (a) + NADH

$$V_{21}$$
 OAC (abcd) + AcCoA (ef) \rightarrow Cit (dcbfea)

$$V_{22}$$
 Cit (abcdef) \leftrightarrow ICit (abcdef)

$$V_{23}$$
 ICit (abcdef) \leftrightarrow AKG (abcde) + CO2 (f) + NADPH

$$V_{24}$$
 AKG (abcde) \rightarrow SucCoA (bcde) + CO2 (a) + NADH

$$V_{25}$$
 SucCoA (abcd) \leftrightarrow Suc (½ abcd + ½ dcba) + ATP

$$V_{26}$$
 Suc (½ abcd + ½ dcba) \leftrightarrow Fum (½ abcd + ½ dcba) + FADH2

$$V_{27}$$
 Fum ($\frac{1}{2}$ abcd + $\frac{1}{2}$ dcba) \leftrightarrow Mal (abcd)

$$V_{28}$$
 Mal (abcd) \leftrightarrow OAC (abcd) + NADH

Glyoxylate Shunt

$$V_{29}$$
 ICit (abcdef) \rightarrow Glyox (ab) + Suc (½ edcf + ½ fcde)

$$V_{30}$$
 Glyox (ab) + AcCoA (cd) \rightarrow Mal (abdc)

Amphibolic Reactions

$$V_{31}$$
 Mal (abcd) \rightarrow Pyr (abc) + CO2 (d) + NADPH

$$V_{32}$$
 Mal (abcd) \rightarrow Pyr (abc) + CO2 (d) + NADH

$$V_{33}$$
 PEP (abc) + CO2 (d) \rightarrow OAC (abcd)

$$V_{34}$$
 OAC (abcd) + ATP \rightarrow PEP (abc) + CO2 (d)

Acetic Acid Formation

$$V_{35}$$
 AcCoA (ab) \leftrightarrow Ac (ab) + ATP

Amino Acid Biosynthesis

$$V_{36}$$
 AKG (abcde) + NADPH + NH3 \rightarrow Glu (abcde)

$$V_{37}$$
 Glu (abcde) + ATP + NH3 \rightarrow Gln (abcde)

$$V_{38}$$
 Glu (abcde) + ATP + 2 NADPH \rightarrow Pro (abcde)

$$v_{39}$$
 Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) + AcCoA (pq) + 5 ATP + NADPH \rightarrow

$$V_{40}$$
 OAC (abcd) + Glu (efghi) \rightarrow Asp (abcd) + AKG (efghi)

$$V_{41}$$
 Asp (abcd) + 2 ATP + NH3 \rightarrow Asn (abcd)

$$V_{42}$$
 Pyr (abc) + Glu (defgh) \rightarrow Ala (abc) + AKG (defgh)

$$V_{43}$$
 3PG (abc) + Glu (defgh) \rightarrow Ser (abc) + AKG (defgh) + NADH

$$V_{44}$$
 Ser (abc) \leftrightarrow Gly (ab) + MEETHF (c)

$$V_{45}$$
 Gly (ab) \leftrightarrow CO2 (a) + MEETHF (b) + NADH + NH3

$$V_{46}$$
 Thr (abcd) \rightarrow Gly (ab) + AcCoA (cd) + NADH

$$V_{47}$$
 Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4 \rightarrow Cys (abc) + Ac (de)

```
V<sub>48</sub> Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH →

LL-DAP (½ abcdgfe + ½ efgdcba) + AKG (hijkl) + Suc (½ mnop + ½ ponm)
```

- V_{49} LL-DAP ($\frac{1}{2}$ abcdefg + $\frac{1}{2}$ gfedcba) \rightarrow Lys (abcdef) + CO2 (g)
- v_{50} Asp (abcd) + 2 ATP + 2 NADPH \rightarrow Thr (abcd)
- V₅₁ Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2 NADPH →

 Met (abcde) + Pyr (fgh) + Suc (½ ijkl + ½ lkji) + NH3
- V_{52} Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH \rightarrow Val (abcef) + CO2 (d) + AKG (ghijk)
- V_{53} AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH \rightarrow Leu (abdghe) + CO2 (c) + CO2 (f) + AKG (ijklm) + NADH
- V₅₄ Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH \rightarrow Ile (abfcdg) + CO₂ (e) + AKG (hijkl) + NH₃
- V₅₅ PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH →
 Phe (abcefghij) + CO2 (d) + AKG (klmno)
- v_{56} PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH \rightarrow Tyr (abcefghij) + CO2 (d) + AKG (klmno) + NADH
- v_{57} Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gln (stuvw) + 3 ATP + NADPH \rightarrow
 - Trp (abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw)
- v_{58} R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) + 5 ATP \rightarrow His (edcbaf) + AKG (ghijk) + Fum (lmno) + 2 NADH

One-Carbon Metabolism

$$V_{59}$$
 MEETHF (a) + NADH \rightarrow METHF (a)

$$V_{60}$$
 MEETHF (a) \rightarrow FTHF (a) + NADPH

Oxidative Phosphorylation

$$V_{61}$$
 NADH + $\frac{1}{2}$ O2 \rightarrow 2 ATP

$$v_{62}$$
 FADH2 + $\frac{1}{2}$ O2 \rightarrow 1 ATP

Transhydrogenation

$$V_{63}$$
 NADH \leftrightarrow NADPH

ATP Hydrolysis

$$V_{64}$$
 ATP \rightarrow ATP:ext

Transport

v65 Ac (ab)
$$\rightarrow$$
 Ac.ext (ab)

$$V_{66}$$
 CO2 (a) \rightarrow CO2.ext (a)

$$V_{67}$$
 O2.ext \rightarrow O2

$$v_{68}$$
 NH3.ext \rightarrow NH3

$$v_{69}$$
 SO4.ext \rightarrow SO4

Biomass Formation

 $\begin{array}{ll} v_{70} & 0.488 \text{ Ala} + 0.281 \text{ Arg} + 0.229 \text{ Asn} + 0.229 \text{ Asp} + 0.087 \text{ Cys} + 0.250 \text{ Glu} + 0.250 \\ \text{Gln} + 0.582 \text{ Gly} + 0.090 \text{ His} + 0.276 \text{ Ile} + 0.428 \text{ Leu} + 0.326 \text{ Lys} + 0.146 \text{ Met} + \\ 0.176 \text{ Phe} + 0.210 \text{ Pro} + 0.205 \text{ Ser} + 0.241 \text{ Thr} + 0.054 \text{ Trp} + 0.131 \text{ Tyr} + 0.402 \text{ Val} \\ + 0.205 \text{ G6P} + 0.071 \text{ F6P} + 0.754 \text{ R5P} + 0.129 \text{ GAP} + 0.619 \text{ 3PG} + 0.051 \text{ PEP} + \\ 0.083 \text{ Pyr} + 2.510 \text{ AcCoA} + 0.087 \text{ AKG} + 0.340 \text{ OAC} + 0.443 \text{ MEETHF} + 33.247 \\ \text{ATP} + 5.363 \text{ NADPH} \rightarrow 39.68 \text{ Biomass} + 1.455 \text{ NADH} \end{array}$

CO₂ Exchange

$$V_{71}$$
 CO_2 .unlabeled (a) + CO_2 (b) \rightarrow CO_2 (a) + CO_2 .out (b)

The net effect of reaction v_{71} is exchange of intracellular CO_2 for an unlabeled CO_2 without affecting intracellular carbon balances.

Table S2. Biomass measurements, glucose measurements, and estimated growth rates.

BIOMASS MEASUREMENTS (OD600)

Time (hr)	[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc
2.0 8.0 10.1 11.2 12.3	n/a 0.161 0.756 1.500 2.851	n/a 0.175 0.777 1.763 2.901	n/a 0.175 0.809 1.520 2.580	n/a 0.154 0.686 1.363 2.335	n/a 0.179 0.704 1.448 2.469	n/a 0.208 0.813 1.529 2.703
GLUCOSE MEASUREMENTS (m	iM)					
Time (hr)	[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc
2.0 8.0 10.1 11.2 12.3	14.9 14.0 11.5 8.0 1.1	13.7 13.2 10.2 6.3 0.0	14.2 13.6 10.8 7.5 1.8	14.1 13.4 10.6 7.5 3.0	14.2 13.5 10.6 7.1 2.2	14.5 13.6 10.4 6.8 1.1
ESTIMATED GROWTH RATES (1/hr)					
	[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc
	0.70	0.72	0.68	0.69	0.65	0.63

Table S3. Mass isotopomer distributions of 13C-labeled glucose tracers used in parallel labeling experiments with E. coli.

MEASURED MASS ISOTOPOMER DISTRIBUTIONS

CORRECTED MASS ISOTOPOMER DISTRIBUTIONS

	[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc		[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc
Gluc173 (M0)	90.8	90.8	90.6	90.6	0.9	1.4	Gluc173 (M0)	99.9	99.9	99.9	99.9	0.9	1.5
Gluc173 (M1)	8.1	8.1	8.2	8.2	91.9	91.3	Gluc173 (M1)	0.0	0.0	0.0	0.0	99.1	98.5
Gluc173 (M2)	1.2	1.1	1.2	1.2	7.3	7.3	Gluc173 (M2)	0.1	0.1	0.1	0.1	0.0	0.0
Gluc370 (M0)	0.3	0.2	0.2	0.4	0.8	80.9	Gluc370 (M0)	0.3	0.3	0.3	0.5	1.0	99.7
Gluc370 (M1)	81.8	81.9	81.9	81.7	81.5	15.7	Gluc370 (M1)	99.6	99.5	99.5	99.2	98.8	0.0
Gluc370 (M2)	14.8	14.7	14.8	14.7	14.7	2.8	Gluc370 (M2)	0.0	0.0	0.0	0.0	0.0	0.0
Gluc370 (M3)	2.7	2.7	2.7	2.7	2.7	0.5	Gluc370 (M3)	0.1	0.2	0.2	0.1	0.2	0.1
Gluc370 (M4)	0.3	0.3	0.4	0.3	0.3	0.1	Gluc370 (M4)	0.0	0.0	0.0	0.0	0.0	0.0
Gluc370 (M5)	0.1	0.1	0.1	0.1	0.1	0.1	Gluc370 (M5)	0.0	0.0	0.0	0.0	0.0	0.1
Gluc370 (M6)	0.0	0.0	0.0	0.0	0.0	0.0	Gluc370 (M6)	0.0	0.0	0.0	0.0	0.0	0.0
Gluc370 (M7)	0.0	0.0	0.0	0.0	0.0	0.0	Gluc370 (M7)	0.0	0.0	0.0	0.0	0.0	0.0
Gluc370 (M8)	0.0	0.0	0.0	0.0	0.0	0.0	Gluc370 (M8)	0.0	0.0	0.0	0.0	0.0	0.0

MEASURED AMINO ACID FRAGMENTS

ISOTOPIC PURITY OF TRACER (% 13C)

Fragment	Formula	C-atoms		[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc
Gluc173 Gluc370	C8H13O4 C17H24O8N	5-6 1-2-3-4-5	Isotopic Purity	99.6%	99.5%	99.5%	99.2%	99.0%	98.5%

MEASURED MASS ISOTOPOMER DISTRIBUTIONS					CORRECTED MASS ISOTOPOMER DISTRIBUTIONS								
	[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc		[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc
Ala232 (M0)	45.8	40.6	70.8	75.6	36.0	36.0	Ala232 (M0)	60.6	53.7	93.8	100.1	47.6	47.6
Ala232 (M1)	40.2	44.4	20.2	16.4	48.1	48.0	Ala232 (M1)	39.4	46.4	6.1	-0.2	52.6	52.5
Ala232 (M2) Ala232 (M3)	10.4 3.2	11.0 3.6	7.5 1.3	6.8 1.0	11.4 3.9	11.6 3.9	Ala232 (M2)	-0.1	-0.1	0.2	0.1	-0.2 -0.1	-0.1
Ala232 (M4)	0.5	0.5	0.2	0.2	0.5	0.6	Ala232 (M3) Ala232 (M4)	0.0	0.0	0.0	0.0	0.0	0.0
Ala260 (M0)	44.5	40.5	41.2	36.4	36.2	36.0	Ala260 (M0)	59.8	54.4	55.3	48.9	48.5	48.3
Ala260 (M1) Ala260 (M2)	40.6 10.7	41.5 13.0	41.2 12.7	47.1 11.7	47.2 11.8	47.4 11.7	Ala260 (M1) Ala260 (M2)	40.3 -0.2	42.7 2.8	42.1 2.4	51.4 -0.3	51.6 -0.2	51.9 -0.4
Ala260 (M2)	3.5	4.1	4.1	4.1	4.2	4.2	Ala260 (M3)	0.1	0.1	0.2	0.0	0.2	0.4
Ala260 (M4)	0.5	0.7	0.7	0.6	0.6	0.6	Ala260 (M4)	0.0	0.0	0.0	0.0	0.0	0.0
Ala260 (M5)	0.1	0.1	0.1	0.1	0.1	0.1	Ala260 (M5)	0.0	0.0	0.0	0.0	0.0	0.0
Gly218 (M0)	76.0	46.7	72.6	76.7	37.2	75.7	Gly218 (M0)	99.3	60.8	94.9	100.3	48.5	98.9
Gly218 (M1)	16.4	40.3	19.1	15.8	48.0	16.6	Gly218 (M1)	0.8	39.4	5.2	-0.2	51.8	1.2
Gly218 (M2)	6.6	9.9	7.0	6.6	11.0	6.7	Gly218 (M2)	-0.2	-0.3	-0.2	-0.1	-0.3	-0.1
Gly218 (M3)	0.9	3.1	1.2	0.9	3.8	1.0	Gly218 (M3)	0.0	0.0	0.0	0.0	0.0	0.0
Gly246 (M0)	74.3	44.2	43.1	37.8	36.9	74.9	Gly246 (M0)	98.6	58.6	57.2	50.2	48.9	99.3
Gly246 (M1)	17.3	41.0	40.3	46.7	47.2	16.9	Gly246 (M1)	1.3	41.0	40.5	50.4	51.3	0.7
Gly246 (M2) Gly246 (M3)	7.1 1.1	10.9 3.4	12.2 3.7	11.1 3.8	11.4 4.0	7.0 1.0	Gly246 (M2) Gly246 (M3)	0.1	0.4	0.0	-0.5 -0.1	-0.2 0.0	0.0
Gly246 (M4)	0.2	0.5	0.6	0.5	0.6	0.2	Gly246 (M4)	0.0	0.0	0.0	0.0	0.0	0.0
Val260 (M0)	27.3	21.5	64.0	73.2	16.9	16.8	Val260 (M0)	37.0	29.1	86.6	99.2	22.8	22.8
Val260 (M1)	41.9	42.2	24.5	17.8	41.2	40.9	Val260 (M1)	47.2	49.5	12.2	0.2	49.8	49.3
Val260 (M2)	22.5	26.7	9.0	7.4	31.0	31.0	Val260 (M2)	15.6	21.3	1.2	0.6	27.5	27.7
Val260 (M3)	6.3	7.2	2.0	1.2	8.1	8.3	Val260 (M3)	0.1	-0.1	0.0	0.0	-0.2	0.1
Val260 (M4)	1.7	2.1	0.4	0.2	2.4	2.5	Val260 (M4)	0.1	0.1	0.0	0.0	0.1	0.1
Val260 (M5) Val260 (M6)	0.3	0.3 0.1	0.1	0.0	0.4	0.4 0.1	Val260 (M5) Val260 (M6)	0.0	0.0	0.0	0.0	0.0	0.0
Val288 (M0)	26.5 41.9	21.5	37.3 41.2	35.2 47.1	17.1 41.0	16.8 40.7	Val288 (M0)	36.4 47.7	29.5 47.8	51.2	48.4 51.9	23.5 49.8	23.1 49.5
Val288 (M1) Val288 (M2)	23.0	40.6 26.5	15.3	12.5	30.5	30.9	Val288 (M1) Val288 (M2)	15.9	21.2	43.1 5.2	-0.3	26.7	27.4
Val288 (M3)	6.5	8.5	4.9	4.3	8.3	8.4	Val288 (M3)	-0.1	1.4	0.4	0.0	-0.1	-0.1
Val288 (M4)	1.7	2.3	1.1	0.7	2.5	2.5	Val288 (M4)	0.0	0.0	0.0	0.0	0.0	0.0
Val288 (M5)	0.3	0.5	0.2	0.1	0.5	0.5	Val288 (M5)	0.1	0.1	0.1	0.0	0.1	0.2
Val288 (M6) Val288 (M7)	0.0	0.1	0.0	0.0	0.1	0.1 0.0	Val288 (M6) Val288 (M7)	0.0	0.0	0.0	0.0	0.0	0.0
Leu274 (M0)	17.1	20.2	62.7	73.2	16.9	8.6	Leu274 (M0)	23.4	27.7	85.9	100.3	23.1	11.8
Leu274 (M1)	36.1	40.5	25.4	18.3	40.7	28.2	Leu274 (M1)	43.0	48.0	13.0	-0.2	49.3	35.2
Leu274 (M2)	29.9	27.6	9.2	7.0	30.8	36.0	Leu274 (M2)	27.6	22.8	1.1	-0.1	27.3	38.7
Leu274 (M3)	12.5	8.6	2.1	1.2	8.5	19.9	Leu274 (M3)	5.9	1.3	0.1	0.0	0.1	14.1
Leu274 (M4)	3.4	2.4	0.4	0.2	2.5	5.4	Leu274 (M4)	0.0	0.0	0.0	0.0	0.0	-0.1
Leu274 (M5) Leu274 (M6)	0.8 0.1	0.5 0.1	0.1	0.0	0.5 0.1	1.6 0.2	Leu274 (M5) Leu274 (M6)	0.1	0.1	0.1	0.0	0.1	0.2
Leu274 (M7)	0.0	0.0	0.0	0.0	0.0	0.0	Leu274 (M7)	0.0	0.0	0.0	0.0	0.0	0.0
Ile274 (M0)	23.2	20.4	49.2	52.3	16.2	14.9	Ile274 (M0)	31.8	28.0	67.4	71.7	22.2	20.4
Ile274 (M1)	39.5	40.3	33.6	33.9	39.7	38.0	Ile274 (M1)	45.6	47.5	28.6	27.9	48.2	46.4
Ile274 (M2)	25.5	27.4	12.6	10.3	31.2	32.1	Ile274 (M2)	20.2	22.6	3.6	0.2	28.2	29.9
Ile274 (M3)	8.8	8.9	3.7	2.9	9.5	11.0	Ile274 (M3)	2.4	1.8	0.3	0.1	1.4	3.1
Ile274 (M4) Ile274 (M5)	2.4 0.5	2.4 0.5	0.8 0.2	0.5 0.1	2.8 0.5	3.2 0.7	Ile274 (M4) Ile274 (M5)	0.0 0.1	0.0 0.1	0.0	0.0	0.0	0.1 0.1
Ile274 (M6)	0.1	0.1	0.0	0.0	0.1	0.1	Ile274 (M6)	0.0	0.0	0.0	0.0	0.0	0.0
Ile274 (M7)	0.0	0.0	0.0	0.0	0.0	0.0	Ile274 (M7)	0.0	0.0	0.0	0.0	0.0	0.0
Ser362 (M0)	40.4	36.4	61.7	65.5	31.5	32.5	Ser362 (M0)	61.3	55.1	94.2	100.2	47.6	49.2
Ser362 (M1)	39.7	41.8	24.7	22.0	45.6	45.1	Ser362 (M1)	39.1	44.1	5.8	-0.2	52.4	51.1
Ser362 (M2) Ser362 (M3)	14.6	15.8 6.0	10.9 2.7	10.2	16.4 6.4	16.1	Ser362 (M2) Ser362 (M3)	-0.4 0.0	0.7	-0.1	0.0	-0.1	-0.3 -0.1
JEI JOZ (IVIJ)	5.3	0.0	2.7	2.3	0.4	6.3		0.0	0.0	-0.1	0.0	-0.1	-0.1
Ser390 (M0) Ser390 (M1)	39.2 39.0	35.0 39.8	35.8 39.5	31.2 44.6	30.4 44.6	31.8 44.4	Ser390 (M0) Ser390 (M1)	61.2 39.0	54.5 42.5	55.9 41.7	48.7 52.0	47.4 52.5	49.6 51.3
Ser390 (M1)	14.8	16.9	16.4	16.1	16.5	15.9	Ser390 (M1) Ser390 (M2)	-0.3	2.9	2.3	-0.6	0.0	-0.8
Ser390 (M3)	5.5	6.4	6.3	6.4	6.6	6.3	Ser390 (M3)	0.1	0.1	0.2	0.0	0.1	-0.1
Ser390 (M4)	1.2	1.6	1.6	1.4	1.5	1.4	Ser390 (M4)	0.0	0.0	0.0	0.0	0.0	0.0
Ser390 (M5)	0.3	0.4	0.3	0.3	0.3	0.3	Ser390 (M5)	0.0	0.0	0.0	0.0	0.0	0.0
Phe302 (M0)	71.6	41.5	40.2	34.4	34.4	72.5	Phe302 (M0)	99.1	57.1	55.2	47.4	47.4	100.5
Phe302 (M1)	19.4	41.9	41.9	48.1	47.8	18.9	Phe302 (M1)	0.6	42.1	42.6	53.1	52.7	-0.3
Phe302 (M2) Phe302 (M3)	7.7 1.3	12.7 4.0	13.5 4.3	13.2 4.3	13.3 4.5	7.4 1.1	Phe302 (M2) Phe302 (M3)	0.3	0.0	0.2	-0.3 -0.1	-0.1	-0.2
. 110302 (1913)	1.3	4.0	4.5	4.5	4.5	1.1	1 110302 (1413)	0.0	0.0	0.2	0.1	0.1	0.2

AVERAGE CARBON LABELING (% 13C)

	[1]Glc	[2]Glc	[3]Glc	[4]Glc	[5]Glc	[6]Glc	SUM
Ala232	19.7	23.1	3.2	-0.1	26.1	26.3	98.4
Ala260	13.4	16.2	15.8	17.0	17.2	17.2	96.9
Gly218	0.8	39.4	5.2	-0.2	51.8	1.2	98.2
Gly246	0.7	20.9	22.6	24.7	25.4	0.4	94.8
Val260	19.8	23.1	3.7	0.4	26.1	26.4	99.4
Val288	15.9	19.0	11.0	10.3	20.7	20.9	97.9
Leu274	23.2	19.7	3.1	0.0	21.0	31.2	98.2
Ile274	18.7	19.7	7.4	5.8	21.8	23.2	96.6
Ser362	19.2	22.8	2.9	-0.1	26.3	25.3	96.3
Ser390	12.9	16.2	15.6	16.9	17.6	16.5	95.7
Phe302	0.6	21.9	23.3	26.2	26.2	-0.1	98.2
Phe308	12.6	15.9	15.6	9.4	22.6	22.3	98.4
Asp302	12.3	17.6	14.8	16.5	19.6	13.9	94.6
Asp390	17.8	17.0	9.6	9.1	18.7	21.1	93.3
Asp418	15.0	15.5	13.4	15.0	16.5	16.9	92.4
Glu330	21.0	21.7	3.3	0.0	24.3	27.9	98.3
Glu432	18.6	19.5	7.2	5.4	21.5	23.4	95.6
Tyr302	0.3	21.6	23.9	26.1	26.1	0.5	98.5

MEASURED AMINO ACID FRAGMENTS

Fragment	Formula	C-atoms
Ala232	C10H26ONSi2	2-3
Ala260	C11H26O2NSi2	1-2-3
Gly218	C9H24ONSi2	2
Gly246	C10H24O2NSi2	1-2
Val260	C12H30ONSi2	2-3-4-5
Val288	C13H30O2NSi2	1-2-3-4-5
Leu274	C13H32ONSi2	2-3-4-5-6
Ile274	C13H32ONSi2	2-3-4-5-6
Ser362	C16H40O2NSi3	2-3
Ser390	C17H40O3NSi3	1-2-3
Phe302	C14H32O2NSi2	1-2
Phe308	C16H30ONSi2	2-3-4-5-6-7-8-9
Asp302	C14H32O2NSi2	1-2
Asp390	C17H40O3NSi3	2-3-4
Asp418	C18H40O4NSi3	1-2-3-4
Glu330	C16H36O2NSi2	2-3-4-5
Glu432	C19H42O4NSi3	1-2-3-4-5
Tyr302	C14H32O2NSi2	1-2

Phe308 (M0)	20.4	14.6	4.5	17.5	4.0	4.3	Phe308 (M0)	28.9	20.6	6.4	24.8	5.6	6.0
Phe308 (M1)	37.8	34.0	49.0	58.6	21.6	22.0	Phe308 (M1)	44.7	41.7	66.8	75.0	28.6	29.0
Phe308 (M2)	27.2	30.2	30.2	16.6	38.0	38.2	Phe308 (M2)	22.6	28.3	23.0	0.0	44.3	44.4
Phe308 (M3)	10.5	14.5	11.8	6.0	26.3	25.8	Phe308 (M3)	3.5	7.8	3.3	0.2	21.5	20.7
Phe308 (M4)	3.0	5.1	3.5	1.0	7.5	7.3	Phe308 (M4)	0.1	1.3	0.4	-0.1	-0.1	-0.2
Phe308 (M5)	0.6	1.3	0.8	0.2	2.1	1.9	Phe308 (M5)	0.0	0.0	0.0	0.0	-0.1	-0.2
Phe308 (M6)	0.1	0.3	0.1	0.0	0.3	0.3	Phe308 (M6)	0.0	0.0	0.0	0.0	0.0	0.0
Phe308 (M7)	0.1	0.1	0.0	0.0	0.1	0.1	Phe308 (M7)	0.1	0.0	0.0	0.0	0.0	0.0
Phe308 (M8)	0.2	0.1	0.1	0.0	0.1	0.1	Phe308 (M8)	0.2	0.1	0.1	0.0	0.1	0.2
Asp302 (M0)	55.9	47.4	51.9	48.6	44.1	52.8	Asp302 (M0)	77.0	65.2	71.5	66.9	60.7	72.9
Asp302 (M1)	30.3	37.6	33.7	37.0	40.4	33.3	Asp302 (M1)	21.1	34.1	27.2	33.0	39.1	26.3
Asp302 (M2)	10.9	11.6	11.3	11.1	11.8	10.8	Asp302 (M2)	1.7	0.5	1.2	0.0	0.1	0.7
Asp302 (M3)	2.9	3.5	3.2	3.3	3.7	3.1	Asp302 (M3)	0.1	0.1	0.1	0.1	0.1	0.1
Asp390 (M0)	33.7	33.6	46.6	46.4	29.7	27.4	Asp390 (M0)	52.5	52.3	72.7	72.4	46.3	42.7
Asp390 (M1)	39.0	40.4	33.1	34.3	43.6	43.0	Asp390 (M1)	41.9	44.2	25.9	27.9	51.2	51.6
Asp390 (M2)	18.1	17.4	14.2	13.4	17.7	19.3	Asp390 (M2)	5.3	3.4	1.4	-0.4	2.4	5.4
Asp390 (M3)	6.9	6.6	4.8	4.6	6.9	7.7	Asp390 (M3)	0.3	0.0	0.1	0.0	0.0	0.3
Asp390 (M4)	1.9	1.7	1.1	1.0	1.7	2.1	Asp390 (M4)	0.0	0.0	-0.1	0.0	0.0	0.0
Asp390 (M5)	0.4	0.4	0.2	0.2	0.4	0.5	Asp390 (M5)	0.0	0.0	0.0	0.0	0.0	0.0
Asp418 (M0)	31.1	29.9	35.6	32.9	26.3	26.1	Asp418 (M0)	49.1	47.2	56.2	52.0	41.6	41.2
Asp418 (M1)	38.4	38.8	34.8	35.0	42.2	41.8	Asp418 (M1)	42.6	43.9	34.4	36.2	51.1	50.7
Asp418 (M2)	19.8	20.3	19.5	21.2	20.4	20.5	Asp418 (M2)	7.8	8.5	8.9	11.7	7.0	7.4
Asp418 (M3)	7.7	7.9	7.3	7.7	8.1	8.4	Asp418 (M3)	0.4	0.3	0.4	0.0	0.2	0.6
Asp418 (M4)	2.4	2.4	2.3	2.5	2.4	2.5	Asp418 (M4)	0.2	0.1	0.1	0.1	0.1	0.1
Asp418 (M5)	0.6	0.6	0.5	0.6	0.5	0.6	Asp418 (M5)	0.0	0.0	0.0	0.0	0.0	0.0
Asp418 (M6)	0.1	0.1	0.1	0.1	0.1	0.1	Asp418 (M6)	0.0	0.0	0.0	0.0	0.0	0.0
Glu330 (M0)	24.9	22.9	62.1	70.6	18.8	15.3	Glu330 (M0)	35.4	32.5	88.2	100.2	26.7	21.6
Glu330 (M1)	40.3	41.2	25.4	19.9	40.8	38.2	Glu330 (M1)	46.5	48.6	10.7	-0.4	49.7	47.4
Glu330 (M2)	24.1	25.4	9.5	7.7	28.7	31.7	Glu330 (M2)	17.0	18.5	1.0	0.1	23.4	28.8
Glu330 (M3)	7.9	7.8	2.3	1.4	8.6	10.7	Glu330 (M3)	0.9	0.3	0.1	0.1	0.1	1.9
Glu330 (M4)	2.3	2.3	0.5	0.3	2.6	3.3	Glu330 (M4)	0.2	0.1	0.1	0.0	0.1	0.2
Glu330 (M5)	0.4	0.4	0.1	0.0	0.5	0.7	Glu330 (M5)	0.0	0.0	0.0	0.0	0.0	0.0
Glu330 (M6)	0.1	0.1	0.0	0.0	0.1	0.1	Glu330 (M6)	0.0	0.0	0.0	0.0	0.0	0.0
Glu432 (M0)	20.1	17.9	42.7	45.7	14.4	13.1	Glu432 (M0)	32.2	28.7	68.3	73.0	23.0	20.9
Glu432 (M1)	36.2	36.7	33.5	34.1	36.1	33.9	Glu432 (M1)	45.4	47.4	27.9	27.1	48.6	45.9
Glu432 (M2)	26.5	28.0	15.9	13.9	30.8	31.5	Glu432 (M2)	19.8	22.0	3.3	-0.4	26.9	29.3
Glu432 (M3)	11.6	11.8	5.8	4.8	12.6	14.2	Glu432 (M3)	2.3	1.7	0.4	0.1	1.2	3.4
Glu432 (M4)	4.0	4.1	1.6	1.2	4.6	5.4	Glu432 (M4)	0.1	0.1	0.1	0.0	0.2	0.3
Glu432 (M5)	1.2	1.1	0.4	0.3	1.2	1.5	Glu432 (M5)	0.2	0.1	0.1	0.0	0.1	0.2
Glu432 (M6)	0.3	0.3	0.1	0.0	0.3	0.4	Glu432 (M6)	0.0	0.0	0.0	0.0	0.0	0.0
Glu432 (M7)	0.1	0.1	0.0	0.0	0.1	0.1	Glu432 (M7)	0.0	0.0	0.0	0.0	0.0	0.0
Tyr302 (M0)	71.6	41.4	39.5	34.2	34.4	71.6	Tyr302 (M0)	99.3	57.3	54.7	47.4	47.7	99.3
Tyr302 (M1)	19.2	41.4	41.5	47.3	47.2	19.2	Tyr302 (M1)	0.4	41.8	42.6	52.4	52.3	0.4
Tyr302 (M2)	7.5	12.5	13.9	13.1	13.1	7.6	Tyr302 (M2)	0.1	0.7	2.6	-0.1	-0.1	0.3
Tyr302 (M3)	1.3	3.9	4.3	4.5	4.5	1.4	Tyr302 (M3)	0.1	0.1	0.0	0.1	0.1	0.0
Tyr302 (M4)	0.4	0.8	0.9	0.9	0.8	0.3	Tyr302 (M4)	0.2	0.1	0.1	0.2	0.1	0.1

Shown are the estimated net and exchange fluxes (normalized to glucose uptake rate of 100).

Accurate 95% confidence intervals of fluxes (LB95 = lower bound, UB95 = upper bound) were determined by evaluating the sensitivity of the minimized SSR to flux variations (Antoniewicz et al., 2006)

	Data set :	[1-13C]Glucose	[2-13C]Glucose	[3-13C]Glucose	[4-13C]Glucose	[5-13C]Glucose	[6-13C]Glucose	COMPLETE-MFA
	SSR : Fit Statistically Accepted :	13 Yes	23 Yes	18 Yes	43 Yes	41 Yes	44 Yes	257 Yes
INTRACELLU		ies	ies	163	ies	ies	res	ies
Flux No.	Reaction	Best Fit LB95 UB95						
1 2	Gluc.Ext + PEP -> G6P + Pyr G6P <=> F6P (net)	100.0 100.0 100.0 68.6 65.6 75.9	100.0 100.0 100.0 71.7 68.7 74.9	100.0 100.0 100.0 74.3 72.1 76.1	100.0 100.0 100.0 59.6 -45.0 78.3	100.0 100.0 100.0 75.9 69.9 83.2	100.0 100.0 100.0 69.8 55.1 82.3	100.0 100.0 100.0 69.6 68.2 71.3
3	F6P + ATP -> FBP + ADP	81.6 80.0 84.3	83.4 80.5 84.3	83.1 82.2 84.5	77.9 39.0 84.2	83.6 81.0 86.3	82.7 76.5 86.7	81.6 81.1 82.2
4	FBP <=> DHAP + GAP (net)	81.6 80.0 84.3	83.4 80.5 84.3	83.1 82.2 84.5	77.9 39.0 84.2	83.6 81.0 86.3	82.7 76.5 86.7	81.6 81.1 82.2
5	DHAP <=> GAP (net)	81.6 80.0 84.3	83.4 80.5 84.3	83.1 82.2 84.5	77.9 39.0 84.2	83.6 81.0 86.3	82.7 76.5 86.7	81.6 81.1 82.2
6 7	GAP + NAD + ADP + Pi <=> 3PG + ATP + NADH (net)	168.9 166.5 171.9	171.0 167.7 172.3	171.0 169.3 173.9	166.1 129.1 172.8 153.4 118.4 160.9	171.1 168.1 173.7	170.2 164.0 174.3	169.2 168.4 169.8
8	3PG <=> PEP (net) PEP + ADP -> Pyr + ATP	158.0 152.6 163.4 27.1 20.3 34.3	157.7 153.6 159.6 29.8 26.0 34.9	157.9 155.2 163.1 34.8 18.4 40.6	153.4 118.4 160.9 30.3 0.0 38.5	157.5 153.8 160.6 29.2 25.2 34.8	157.8 151.1 162.6 28.8 21.1 35.4	155.8 154.7 156.6 28.2 26.9 30.2
9	G6P + NADP -> 6PG + NADPH	29.8 22.5 32.8	26.7 23.4 29.8	24.1 22.5 26.3	38.9 20.1 144.0	22.5 15.1 28.5	28.6 16.0 43.4	28.8 27.1 30.3
10	6PG + NADP -> Ru5P + CO2 + NADPH	28.8 21.8 31.8	26.6 23.4 28.8	22.1 20.1 24.6	36.2 16.7 144.0	20.9 13.5 27.0	28.6 16.0 42.3	27.2 25.4 28.7
11 12	Ru5P <=> X5P (net) Ru5P <=> R5P (net)	13.5 8.7 15.7 15.2 13.0 16.5	12.2 9.6 13.9 14.4 13.6 15.2	9.3 8.0 11.1 12.8 11.7 13.7	18.9 5.5 92.4 17.3 11.1 51.9	8.3 3.1 12.6 12.5 10.3 14.6	13.5 4.7 22.8 15.1 11.1 19.6	12.6 11.3 13.6 14.6 14.1 15.1
13	X5P <=> GAP + E-C2 (net)	13.5 8.7 15.7	12.2 9.6 13.9	9.3 8.0 11.1	18.9 5.5 92.4	8.3 3.1 12.6	13.5 4.7 22.8	12.6 11.3 13.6
14	F6P <=> E4P + E-C2 (net)	-5.3 -6.5 -2.8	-4.7 -5.6 -3.3	-3.3 -4.3 -2.6	-8.1 -41.8 -1.3	-2.7 -4.9 0.0	-5.4 -10.1 -0.9	-4.9 -5.4 -4.3
15	S7P <=> R5P + E-C2 (net)	-8.2 -9.2 -5.8	-7.5 -8.3 -6.3	-6.0 -6.8 -5.4	-10.8 -47.1 -4.2	-5.6 -7.6 -3.0	-8.2 -12.7 -3.9	-7.7 -8.2 -7.1
16 17	F6P <=> GAP + E-C3 (net) S7P <=> E4P + E-C3 (net)	-8.2 -9.2 -5.8 8.2 5.8 9.2	-7.5 -8.3 -6.3 7.5 6.3 8.3	-6.0 -6.8 -5.4 6.0 5.4 6.8	-10.8 -47.1 -4.2 10.8 4.2 47.1	-5.6 -7.6 -3.0 5.6 3.0 7.6	-8.2 -12.7 -3.9 8.2 3.9 12.7	-7.7 -8.2 -7.1 7.7 7.1 8.2
17	6PG -> KDPG	8.2 5.8 9.2 1.0 0.1 1.9	0.1 0.0 3.1	2.1 1.0 2.8	2.7 0.0 34.3	1.7 0.6 3.1	0.0 0.0 2.8	1.6 1.3 2.0
19	KDPG -> GAP + Pyr	1.0 0.1 1.9	0.1 0.0 3.1	2.1 1.0 2.8	2.7 0.0 34.3	1.7 0.6 3.1	0.0 0.0 2.8	1.6 1.3 2.0
20	Pyr + NAD -> AcCoA + CO2 + NADH	107.4 99.2 116.1	109.7 103.0 114.2	117.1 105.7 125.7	113.8 87.0 124.2	110.4 103.5 115.9	108.4 100.5 116.0	109.5 106.9 111.6
21	AcCoA + OAC -> Cit	16.4 12.4 22.1	17.6 14.1 19.4 17.6 14.1 19.4	20.7 16.6 29.5 20.7 16.6 29.5	18.8 5.7 30.3 18.8 5.7 30.3	17.5 15.4 19.0 17.5 15.4 19.0	16.4 14.2 18.5 16.4 14.2 18.5	16.5 15.8 16.9 16.5 15.8 16.9
22 23	Cit <=> ICit (net) ICit + NADP <=> AKG + CO2 + NADPH (net)	16.4 12.4 22.1 13.1 8.2 20.6	17.6 14.1 19.4 17.6 12.4 19.4	20.7 16.6 29.5 16.5 13.3 27.4	18.8 5.7 30.3 15.3 5.7 30.2	17.5 15.4 19.0 17.5 14.9 19.0	16.4 14.2 18.5 15.0 12.8 17.8	16.5 15.8 16.9 15.9 15.0 16.6
24	AKG + NAD -> SucCoA + CO2 + NADH	4.7 0.0 12.4	9.4 4.0 11.1	8.4 5.0 19.7	7.4 0.0 24.2	9.1 6.8 10.4	6.6 4.7 9.1	7.6 6.8 8.2
25	SucCoA + ADP + Pi <=> Suc + ATP (net)	0.9 -4.0 8.7	5.8 0.3 7.6	4.9 1.3 16.4	3.9 -4.3 21.7	5.5 3.2 6.7	2.9 1.2 5.3	4.0 3.1 4.6
26 27	Suc + FAD <=> Fum + FADH2 (net)	7.9 4.1 13.7	9.4 5.9 11.1 12.2 8.8 14.0	12.6 8.4 21.9 15.4 11.2 24.5	10.9 0.0 24.3 13.6 2.0 26.4	9.1 7.5 10.4	8.0 6.5 10.1 10.9 9.2 13.1	8.1 7.6 8.6
27	Fum <=> Mal (net) Mal + NAD <=> OAC + NADH (net)	10.9 6.9 16.6 14.2 8.6 18.9	12.2 8.8 14.0 12.2 10.6 14.5	15.4 11.2 24.5 19.6 6.0 23.4	13.6 2.0 26.4 17.1 -25.2 26.4	12.0 10.2 13.3 12.0 10.6 13.5	10.9 9.2 13.1 12.4 8.2 14.8	11.0 10.4 11.5 11.5 10.9 12.1
29	ICit -> Glyox + Suc	3.3 0.5 6.6	0.0 0.0 1.9	4.2 0.0 5.9	3.5 0.0 9.3	0.0 0.0 0.8	1.4 0.2 2.7	0.5 0.1 0.9
30	AcCoA + Glyox -> Mal	3.3 0.5 6.6	0.0 0.0 1.9	4.2 0.0 5.9	3.5 0.0 9.3	0.0 0.0 0.8	1.4 0.2 2.7	0.5 0.1 0.9
31	Mal + NADP -> Pyr + CO2 + NADPH	0.0 0.0 4.7	0.0 0.0 2.4	0.0 0.0 14.4	0.0 0.0 30.9	0.0 0.0 2.2	0.0 0.0 4.3	0.0 0.0 0.9
32 33	Mal + NAD -> Pyr + CO2 + NADH PEP + CO2 -> OAC + Pi	0.0 0.0 4.7 29.4 21.2 37.6	0.0 0.0 2.4 22.0 19.7 25.5	0.0 0.0 14.4 17.3 15.4 36.7	0.0 0.0 35.6 23.3 13.8 298.4	0.0 0.0 2.2 22.3 20.2 24.6	0.0 0.0 4.3 23.4 19.1 27.9	0.0 0.0 0.9 22.4 21.1 23.5
34	OAC + ATP -> PEP + CO2 + ADP	4.7 0.0 8.4	0.0 0.0 3.6	0.0 0.0 7.0	5.8 0.0 284.3	0.0 0.0 2.3	0.4 0.0 2.1	0.9 0.0 2.1
35	AcCoA + ADP + Pi <=> Ac + ATP (net)	66.0 55.9 76.0	65.6 55.8 75.6	66.3 56.3 76.1	66.2 55.6 77.0	66.0 55.9 75.9	66.0 55.9 76.1	65.9 61.9 70.0
36 37	AKG + NADPH + NH3 -> Glu + NADP	54.2 47.1 61.4 5.3 4.8 5.8	50.1 47.2 54.7 5.2 4.9 5.6	49.0 43.0 53.9	47.8 32.3 59.4	50.8 47.2 55.6	51.8 45.8 57.5 5.2 4.7 5.8	50.4 49.0 52.1
37	Glu + ATP + NH3 -> Gln + ADP + Pi Glu + 2 NADPH + ATP -> Pro + 2 NADP + ADP + Pi	5.3 4.8 5.8 1.7 1.5 1.8	5.2 4.9 5.6 1.6 1.5 1.8	5.1 4.4 5.5 1.6 1.4 1.7	4.9 3.3 6.1 1.5 1.0 1.9	5.3 4.9 5.8 1.6 1.5 1.8	5.2 4.7 5.8 1.6 1.5 1.8	5.2 5.1 5.4 1.6 1.6 1.7
39	Glu + CO2 + Gln + NADPH + Asp + AcCoA + 5 ATP -> Arg + AKG + NADP + Fum + A	2.2 2.0 2.4	2.2 2.0 2.4	2.1 1.8 2.3	2.1 1.4 2.6	2.2 2.0 2.4	2.2 1.9 2.4	2.2 2.1 2.2
40	OAC + Glu -> Asp + AKG	19.8 13.1 26.4	13.9 13.1 15.2	13.6 12.0 16.4	13.3 9.0 16.5	14.2 13.1 15.5	16.3 12.8 20.7	14.0 13.7 14.5
41	Asp + NH3 + 2 ATP -> Asn + 2 ADP + 2 Pi	1.8 1.6 2.0	1.8 1.7 1.9	1.7 1.5 1.9	1.7 1.1 2.1	1.8 1.7 2.0	1.8 1.6 2.0	1.8 1.7 1.8
42 43	Pyr + Glu -> Ala + AKG 3PG + Glu + NAD -> Ser + NADH + AKG + Pi	3.8 3.5 4.2 6.1 3.6 9.4	3.7 3.5 4.1 8.6 8.1 9.4	3.7 3.2 4.0 8.4 6.8 9.1	3.6 2.4 4.4 8.2 5.6 10.2	3.8 3.5 4.2 8.7 8.1 9.6	3.8 3.4 4.2 7.6 5.2 9.5	3.8 3.7 3.9 8.7 8.4 9.0
44	Ser + THF <=> Gly + MEETHF (net)	2.2 -0.1 5.3	4.8 4.6 5.3	4.7 3.5 5.1	4.6 3.1 5.7	4.9 4.6 5.4	3.8 1.7 5.3	4.9 4.7 5.0
45	Gly + THF + NAD <=> CO2 + MEETHF + NH3 + NADH (net)	3.1 0.3 5.8	0.4 0.4 0.6	0.4 0.3 1.3	0.4 0.2 0.8	0.4 0.4 0.5	1.5 0.3 3.5	0.4 0.4 0.4
46 47	Thr + NAD -> Gly + AcCoA + NADH Ser + AcCoA + SO4 + 3 ATP + 4 NADPH -> Cys + Ac + 4 NADP + 3 ADP + 3 Pi	5.5 0.0 10.8 1.8 1.7 2.0	0.0 0.0 0.4 1.8 1.7 2.0	0.0 0.0 1.8 1.7 1.5 1.9	0.0 0.0 0.7 1.7 1.2 2.1	0.0 0.0 0.2 1.8 1.7 2.0	2.2 0.0 6.2 1.8 1.6 2.0	0.0 0.0 0.1 1.8 1.7 1.9
48	Asp + Pyr + Glu + 2 NADPH + ATP + SucCoA -> LL-DAP + AKG + 2 NADP + ADP + P	2.6 2.3 2.8	2.5 2.4 2.7	2.4 2.1 2.6	2.4 1.6 3.0	2.5 2.4 2.8	2.5 2.3 2.8	2.5 2.4 2.6
49	LL-DAP -> Lys + CO2	2.6 2.3 2.8	2.5 2.4 2.7	2.4 2.1 2.6	2.4 1.6 3.0	2.5 2.4 2.8	2.5 2.3 2.8	2.5 2.4 2.6
50	Asp + 2 NADPH + 2 ATP -> Thr + 2 NADP + 2 ADP + 2 Pi	9.6 3.7 15.3	4.0 3.7 4.5	3.9 3.4 5.9	3.8 2.6 5.1	4.0 3.7 4.4	6.2 3.6 10.3	4.0 3.9 4.1
51 52	Asp + METHF + Cys + 2 NADPH + ATP + SucCoA -> Met + Pyr + 2 NADP + ADP + Pi 2 Pyr + NADPH + Glu -> Val + CO2 + NADP + AKG	1.1 1.0 1.3 3.2 2.9 3.5	1.1 1.1 1.2 3.1 2.9 3.4	1.1 1.0 1.2 3.0 2.6 3.3	1.1 0.7 1.3 2.9 2.0 3.7	1.1 1.1 1.2 3.1 2.9 3.4	1.1 1.0 1.3 3.1 2.8 3.4	1.1 1.1 1.2 3.1 3.0 3.2
53	2 Pyr + AcCoA + Glu + NADPH + NAD -> Leu + 2 CO2 + AKG + NADP + NADH	3.4 3.1 3.7	3.3 3.1 3.6	3.2 2.8 3.5	3.1 2.1 3.9	3.3 3.1 3.6	3.3 3.0 3.7	3.3 3.2 3.4
54	Thr + Pyr + Glu + NADPH -> Ile + CO2 + AKG + NADP + NH3	2.2 2.0 2.4	2.1 2.0 2.3	2.1 1.8 2.2	2.0 1.4 2.5	2.1 2.0 2.4	2.1 1.9 2.4	2.1 2.1 2.2
55	E4P + 2 PEP + Glu + NADPH + ATP -> Phe + CO2 + AKG + NADP + ADP + 4 Pi	1.4 1.3 1.5	1.4 1.3 1.5	1.3 1.2 1.4	1.3 0.9 1.6	1.4 1.3 1.5	1.4 1.2 1.5	1.4 1.3 1.4
56 57	E4P + 2 PEP + Glu + NADPH + NAD + ATP -> Tyr + CO2 + AKG + NADP + NADH + AD E4P + 2 PEP + R5P + Ser + Gln + NADPH + 3 ATP -> Trp + CO2 + Pyr + GAP + Gl	1.0 0.9 1.1 0.4 0.4 0.5	1.0 0.9 1.1 0.4 0.4 0.5	1.0 0.9 1.1 0.4 0.4 0.4	1.0 0.6 1.2 0.4 0.3 0.5	1.0 0.9 1.1 0.4 0.4 0.5	1.0 0.9 1.1 0.4 0.4 0.5	1.0 1.0 1.0 0.4 0.4 0.4
58	R5P + FTHF + Gln + Asp + 5 ATP + 2 NAD -> His + 2 NADH + AKG + Fum + 5 ADP	0.7 0.6 0.8	0.7 0.7 0.8	0.7 0.6 0.7	0.7 0.4 0.8	0.7 0.7 0.8	0.7 0.6 0.8	0.7 0.7 0.7
59	MEETHF + NADH -> METHF + NAD	1.1 1.0 1.3	1.1 1.1 1.2	1.1 1.0 1.2	1.1 0.7 1.3	1.1 1.1 1.2	1.1 1.0 1.3	1.1 1.1 1.2
60	MEETHF + NADP -> FTHF + NADPH	0.7 0.6 0.8	0.7 0.7 0.8	0.7 0.6 0.7	0.7 0.4 0.8	0.7 0.7 0.8	0.7 0.6 0.8	0.7 0.7 0.7
61 62	NADH + 0.5 O2 + 2 ADP + 2 Pi -> 2 ATP + NAD FADH2 + 0.5 O2 + ADP + Pi -> ATP + FAD	250.9 213.6 282.1 7.9 4.1 13.7	268.5 243.8 279.1 9.4 5.9 11.1	276.3 252.4 322.0 12.6 8.4 21.9	294.9 193.8 519.2 10.9 0.0 24.3	257.3 230.7 276.0 9.1 7.5 10.4	260.6 227.6 294.9 8.0 6.5 10.1	264.4 257.0 269.2 8.1 7.6 8.6
63	NADH + NADP <=> NADPH + NAD (net)	7.9 4.1 13.7 75.1 44.2 112.2	58.6 51.0 76.4	64.0 30.2 79.7	33.0 -230.4 78.3	70.4 52.1 94.8	64.2 26.6 98.8	58.3 54.6 64.4
64	ATP -> ATP.Ext	367.3 242.7 478.5	435.0 340.9 480.3	465.5 378.7 610.0	497.5 187.9 >1000	407.4 312.8 473.8	406.2 295.4 521.0	420.0 389.7 441.3
65	Ac -> Ac.Ext	70.0 60.3 79.8	69.5 60.2 79.2	70.2 60.4 79.8	70.0 60.2 79.8	70.0 60.3 79.7	70.0 60.3 79.7	69.9 66.0 73.8
66 67	CO2 -> CO2.Ext O2.Ext -> O2	147.5 129.5 162.9 129.4 110.0 146.1	156.6 144.7 161.7 138.9 125.5 144.7	161.8 149.5 186.7 144.5 131.3 171.4	169.8 117.8 248.8 152.9 96.9 237.2	151.1 139.1 159.6 133.2 119.7 142.6	152.2 137.8 167.6 134.3 118.1 151.4	154.0 150.9 156.1 136.3 132.6 138.6
68	O2.Ext -> O2 NH3.Ext -> NH3	129.4 110.0 146.1 54.8 49.8 60.2	138.9 125.5 144.7 53.4 50.3 58.3	144.5 131.3 1/1.4 52.3 45.7 56.6	152.9 96.9 237.2 50.9 34.5 63.3	133.2 119.7 142.6 54.2 50.3 59.3	134.3 118.1 151.4 54.0 48.2 59.7	136.3 132.6 138.6 53.7 52.3 55.6
69	SO4.Ext -> SO4	1.8 1.7 2.0	1.8 1.7 2.0	1.7 1.5 1.9	1.7 1.2 2.1	1.8 1.7 2.0	1.8 1.6 2.0	1.8 1.7 1.9
70	0.488 Ala + 0.281 Arg + 0.229 Asn + 0.229 Asp + 0.087 Cys + 0.25 Glu + 0.25	7.9 7.1 8.6	7.7 7.2 8.4	7.5 6.6 8.1	7.3 5.0 9.1	7.8 7.2 8.5	7.8 6.9 8.6	7.7 7.5 8.0
71	CO2.unlabeled + CO2 -> CO2 + CO2.out	34.2 0.0 98.9	123.7 0.0 368.4	0.0 0.0 57.4	5.2 0.0 65.7	415.4 0.0 Inf	0.5 0.0 Inf	47.8 42.2 54.8

FY	CH.	ΛN	GE	EI	IIYF	ς

EXCHANGE																						
2	G6P <=> F6P (exch)	233.0	0.0	Inf	184.0	31.4 >1		4.1	0.0	38.0	11.0	0.0	Inf	>1000	0.0	Inf	177.4	0.0	Inf		133.8	Inf
4	FBP <=> DHAP + GAP (exch)	203.1	0.0	Inf	157.4	0.0	Inf	194.2	0.0	Inf	185.6	0.0	Inf	27.1	0.0	Inf	113.3	0.0	Inf	78.2	0.0	Inf
5	DHAP <=> GAP (exch)	47.2	0.0	Inf	157.4	0.0	Inf	148.7	0.0	Inf	142.1	0.0	Inf	27.1	0.0	Inf	183.1	0.0	Inf	157.3	0.0	Inf
6	GAP + NAD + ADP + Pi <=> 3PG + ATP + NADH (exch)	2.3	0.0	Inf	>1000	0.0	Inf	43.7	0.0	Inf	41.2	0.0	Inf	583.4	0.0	Inf	2.3	0.0	Inf	1.5	0.0	Inf
7	3PG <=> PEP (exch)	0.0	0.0	Inf	Inf	0.0	Inf	1.7	0.0	Inf	1.7	0.0	Inf	>1000	0.0	Inf	0.0	0.0	Inf	0.0	0.0	Inf
11	Ru5P <=> X5P (exch)	59.4	0.0	Inf	54.6	2.8	Inf	104.1	6.3	Inf	99.9	0.0	Inf	>1000	0.0	Inf	88.2	0.0	Inf	97.9	16.5	Inf
12 13	Ru5P <=> R5P (exch) X5P <=> GAP + E-C2 (exch)	11.0 112.1	0.0	Inf Inf	336.9 54.6	0.0 2.8	Inf Inf	523.2 13.1	3.3 6.2	Inf Inf	499.8 12.9	0.0	Inf Inf	212.0 >1000	0.0	Inf Inf	147.3 18.5	0.0	Inf Inf	1.2 42.5	0.0 16.3	Inf Inf
14	F6P <=> E4P + E-C2 (exch)	1.1	0.0	10.2	5.2	2.8	7.7	2.3	0.6	4.2	6.0	0.0	Inf	>1000	4.5	Inf	110.8	0.0	Inf	2.1	0.4	3.5
15	S7P <=> R5P + E-C2 (exch)	13.4	0.0	Inf	0.0	0.0	Inf	2.1	1.2	Inf	0.0	0.0	Inf	339.3	0.0	Inf	116.2	0.0	Inf	5.9	1.0	Inf
16	F6P <=> GAP + E-C3 (exch)	0.0	0.0	Inf	48.0		237.1	>1000	0.0	Inf	>1000	0.0	Inf	2.1	0.0	97.5	81.6	0.0	Inf	16.1	1.5	47.3
17	S7P <=> E4P + E-C3 (exch)	6.4	0.0	Inf	426.4	0.0	Inf	106.8	1.3	Inf	101.9	0.0	Inf	241.4	0.0	Inf	165.9	0.0	Inf	11.7	1.1	Inf
22	Cit <=> ICit (exch)	192.2	0.0	Inf	157.4	0.0	Inf	279.7	0.0	Inf	267.2	0.0	Inf	27.1	0.0	Inf	42.1	0.0	Inf	62.4	0.0	Inf
23	ICit + NADP <=> AKG + CO2 + NADPH (exch)	256.0	0.0	Inf	111.2	0.0	Inf	653.5	0.0	Inf	623.5	0.0	Inf	>1000	0.0	Inf	190.0	0.0	Inf	0.0	0.0	Inf
25	SucCoA + ADP + Pi <=> Suc + ATP (exch)	38.3	0.0	Inf	157.4	0.0	Inf	191.0	0.0	Inf	182.4	0.0	Inf	27.1	0.0	Inf	166.6	0.0	Inf	117.2	0.0	Inf
26	Suc + FAD <=> Fum + FADH2 (exch)	57.0	0.0	Inf	157.4	0.0	Inf	2.2	0.0	Inf	2.1	0.0	Inf	27.1	0.0	Inf	106.3	0.0	Inf	149.4	0.0	Inf
27	Fum <=> Mal (exch)	463.1	74.1	Inf	>1000	35.4	Inf	>1000	30.3	Inf	>1000	13.1	Inf	611.8	48.0	Inf	138.8	51.1	Inf	>1000	57.4	Inf
28	Mal + NAD <=> OAC + NADH (exch)	140.6	73.2	Inf	53.7		64.3	17.7	5.4	Inf	24.5	0.0	Inf	63.6	49.8	Inf	131.6	50.2	Inf	62.2	55.7	67.4
35	AcCoA + ADP + Pi <=> Ac + ATP (exch)	234.3	0.0	Inf	228.2	0.0	Inf	109.5	0.0	Inf	104.6	0.0	Inf	95.4	0.0	Inf	108.4	0.0	Inf	51.1	0.0	Inf
44	Ser + THF <=> Gly + MEETHF (exch)	0.0	0.0	0.2	2.4	0.9	4.6	35.5	0.0	Inf	38.6	0.0	Inf	0.3	0.0	2.8	0.0	0.0	0.1	1.1	0.2	2.3
45	Gly + THF + NAD <=> CO2 + MEETHF + NH3 + NADH (exch)	238.5	0.0	Inf	0.0	0.0	0.3	0.0	0.0	1.4	0.0	0.0	9.1	0.0	0.0	0.2	449.8	0.0	Inf	0.1	0.1	0.2
63	NADH + NADP <=> NADPH + NAD (exch)	156.3	0.0	Inf	375.5	0.0	Inf	15.9	0.0	Inf	30.8	0.0	Inf	298.4	0.0	Inf	101.9	0.0	Inf	60.5	0.0	Inf
FRACTIONA	LABELING OF AMINO ACIDS (G-VALUES)																					
1	Fractional labeling of Ala (data set #1)	99%		100%																99%		100%
2	Fractional labeling of Gly (data set #1)	4%		100%																100%		100%
3	Fractional labeling of Val (data set #1)	99%		100%																99%		100%
4	Fractional labeling of Leu (data set #1)	99%		100%																98%	98%	99%
5	Fractional labeling of Ile (data set #1)	99%		100%																99%		100%
6	Fractional labeling of Ser (data set #1)	97%	96%	99%																98%	96%	99%
7	Fractional labeling of Phe (data set #1)	99%		100%																99%		100%
8	Fractional labeling of Asp (data set #1)	99%		100%																98%	97%	98%
9	Fractional labeling of Glu (data set #1)	99%		100%																98%	98%	99%
10	Fractional labeling of Tyr (data set #1)	55%	1%	100%																97%		100%
11	Fractional labeling of Ala (data set #2)				100%		100%													99%		100%
12	Fractional labeling of Gly (data set #2)				97%		100%													98%		100%
13	Fractional labeling of Val (data set #2)				100%		100%													99%		100%
14	Fractional labeling of Leu (data set #2)				99% 99%		L00% L00%													99%		100% 100%
15	Fractional labeling of Ile (data set #2)				98%		100%													100% 99%	98%	99%
16 17	Fractional labeling of Ser (data set #2) Fractional labeling of Phe (data set #2)				100%		100%													100%		100%
					100%	22/0 I	10076															
					0.00/	0.79/	00%															00%
18	Fractional labeling of Asp (data set #2)				98%		99%													99%	98%	99%
19	Fractional labeling of Glu (data set #2)				99%	98%	99%													99%	98%	99%
19 20	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2)					98%		05%	0.49/	100%										99% 99%	98% 98%	99% 100%
19 20 21	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3)				99%	98%	99%	95% 93%		100%										99% 99% 97%	98% 98% 96%	99% 100% 98%
19 20 21 22	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3)				99%	98%	99%	93%	92%	100%										99% 99% 97% 95%	98% 98% 96% 94%	99% 100% 98% 96%
19 20 21 22 23	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Val (data set #3)				99%	98%	99%	93% 97%	92% 96%	100% 100%										99% 99% 97% 95% 98%	98% 98% 96% 94% 97%	99% 100% 98% 96% 99%
19 20 21 22 23 24	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Yal (data set #3) Fractional labeling of Leu (data set #3)				99%	98%	99%	93% 97% 93%	92% 96% 87%	100%										99% 99% 97% 95% 98% 95%	98% 98% 96% 94% 97% 91%	99% 100% 98% 96% 99% 99%
19 20 21 22 23 24 25	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Val (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ile (data set #3)				99%	98%	99%	93% 97%	92% 96% 87% 94%	100% 100% 100% 100%										99% 99% 97% 95% 98% 95% 97%	98% 98% 96% 94% 97% 91% 95%	99% 100% 98% 96% 99% 99%
19 20 21 22 23 24	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Yal (data set #3) Fractional labeling of Leu (data set #3)				99%	98%	99%	93% 97% 93% 100%	92% 96% 87% 94% 94%	100% 100% 100%										99% 99% 97% 95% 98% 95%	98% 98% 96% 94% 97% 91% 95% 96%	99% 100% 98% 96% 99% 99%
19 20 21 22 23 24 25 26	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Val (data set #3) Fractional labeling of Ieu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Fer (data set #3) Fractional labeling of Phe (data set #3)				99%	98%	99%	93% 97% 93% 100% 96%	92% 96% 87% 94% 94% 97%	100% 100% 100% 100% 100%										99% 99% 97% 95% 98% 95% 97%	98% 98% 96% 94% 97% 91% 95% 96%	99% 100% 98% 96% 99% 99% 99%
19 20 21 22 23 24 25 26 27	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Val (data set #3) Fractional labeling of Ieu (data set #3) Fractional labeling of Ieu (data set #3) Fractional labeling of Ie (data set #3) Fractional labeling of Ie (data set #3)				99%	98%	99%	93% 97% 93% 100% 96% 98%	92% 96% 87% 94% 94% 97%	100% 100% 100% 100% 100% 100%										99% 99% 97% 95% 98% 95% 97% 97%	98% 98% 96% 94% 97% 91% 95% 96% 99%	99% 100% 98% 96% 99% 99% 99% 99%
19 20 21 22 23 24 25 26 27 28	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Val (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Phe (data set #3)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100%										99% 99% 97% 95% 98% 95% 97% 100% 94%	98% 98% 96% 94% 97% 91% 95% 96% 99% 93%	99% 100% 98% 96% 99% 99% 99% 100%
19 20 21 22 23 24 25 26 27 28 29	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Val (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ile (data set #3) Fractional labeling of Ser (data set #3)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	98%	79%	100%							99% 99% 97% 95% 98% 95% 97% 100% 94% 95%	98% 98% 96% 94% 97% 91% 95% 96% 99% 93%	99% 100% 98% 96% 99% 99% 99% 100% 95%
19 20 21 22 23 24 25 26 27 28 29 30	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Val (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Glu (data set #3)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	98% 93%	79% 72%	100% 100%							99% 99% 97% 95% 98% 95% 97% 100% 94% 95% 100%	98% 98% 96% 94% 97% 91% 95% 96% 93% 93%	99% 100% 98% 96% 99% 99% 99% 100% 95% 97%
19 20 21 22 23 24 25 26 27 28 29 30	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Yal (data set #3) Fractional labeling of Every (data set #3) Fractional labeling of Every (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ped (data set #3) Fractional labeling of Ped (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Ala (data set #4)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%										99% 99% 97% 95% 98% 95% 97% 100% 94% 95% 100%	98% 98% 96% 94% 97% 95% 96% 99% 93% 93% 97% 94%	99% 100% 98% 96% 99% 99% 99% 100% 95% 97% 100% 99%
19 20 21 22 23 24 25 26 27 28 29 30 31	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Sur (data set #3) Fractional labeling of Sur (data set #3) Fractional labeling of Har (data set #3) Fractional labeling of Idu (data set #4) Fractional labeling of Idu (data set #4) Fractional labeling of Idu (data set #4)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93%	72%	100%							99% 99% 97% 95% 98% 95% 100% 94% 95% 100% 98% 95%	98% 98% 96% 94% 91% 95% 96% 93% 93% 93% 97% 94%	99% 100% 98% 96% 99% 99% 100% 95% 97% 100% 99% 96%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Slu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Spi (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Iyr (data set #3) Fractional labeling of Iyr (data set #4)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99%	72% 80%	100% 100%							99% 99% 97% 95% 98% 95% 97% 100% 94% 95% 100% 98% 95%	98% 98% 96% 94% 97% 91% 95% 96% 93% 93% 97% 94% 98% 0%	99% 100% 98% 96% 99% 99% 99% 100% 95% 100% 96% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Slu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of U (data set #4) Fractional labeling of Ieu (data set #4)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96%	72% 80% 0% 71% 75%	100% 100% 100% 100% 100%							99% 99% 97% 95% 98% 97% 100% 94% 95% 100% 98% 100% 98%	98% 98% 96% 94% 97% 91% 95% 96% 93% 93% 97% 94% 98% 0% 95%	99% 100% 98% 96% 99% 99% 99% 100% 95% 97% 100% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Val (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #4) Fractional labeling of My (data set #4) Fractional labeling of My (data set #4) Fractional labeling of Gly (data set #4) Fractional labeling of Gly (data set #4) Fractional labeling of Leu (data set #4) Fractional labeling of Leu (data set #4)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98%	72% 80% 0% 71%	100% 100% 100% 100%							99% 99% 97% 95% 95% 97% 100% 94% 95% 100% 95% 99% 100% 97%	98% 98% 96% 94% 97% 91% 95% 96% 93% 93% 97% 94% 98% 0% 95%	99% 100% 98% 96% 99% 99% 99% 100% 95% 97% 100% 100% 100% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Slu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of U (data set #4) Fractional labeling of Ieu (data set #4)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96%	72% 80% 0% 71% 75%	100% 100% 100% 100% 100%							99% 99% 97% 95% 98% 97% 100% 94% 95% 100% 98% 100% 98%	98% 98% 96% 94% 97% 91% 95% 96% 93% 93% 97% 94% 98% 0% 95%	99% 100% 98% 96% 99% 99% 99% 100% 95% 97% 100% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Phe (data set #4) Fractional labeling of Phe (data set #4) Fractional labeling of Phe (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Sey (data set #4)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%							99% 99% 97% 95% 98% 95% 97% 100% 94% 95% 99% 100% 98% 97% 98% 100% 98%	98% 98% 96% 91% 91% 95% 93% 93% 94% 98% 0% 95% 95% 95% 95%	99% 100% 98% 96% 99% 99% 100% 95% 97% 100% 100% 100% 100% 100% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Eu (data set #3) Fractional labeling of Eu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Flow (data set #3) Fractional labeling of Flow (data set #3) Fractional labeling of Flow (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Har (data set #4) Fractional labeling of Val (data set #4) Fractional labeling of Labeling of Evaluate set #4) Fractional labeling of Evaluate set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Phe (data set #4) Fractional labeling of Flow (data set #4) Fractional labeling of Flow (data set #4) Fractional labeling of Flow (data set #4) Fractional labeling of Ill (data set #4)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96%	72% 80% 0% 71% 75% 76% 70%	100% 100% 100% 100% 100% 100% 100%							99% 99% 97% 95% 98% 95% 97% 100% 94% 95% 100% 98% 100% 97% 98% 100% 96% 33%	98% 98% 96% 94% 97% 95% 99% 93% 99% 94% 98% 0% 95% 97% 95% 91% 95%	99% 100% 98% 96% 99% 99% 99% 100% 95% 100% 100% 100% 100% 98% 100% 98% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Slu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Sphe (data set #3) Fractional labeling of Sphe (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Sphe (data set #4) Fractional labeling of Wala (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ger (data set #4) Fractional labeling of Spher (data set #4) Fractional labeling of Spher (data set #4) Fractional labeling of Fyr (data set #4) Fractional labeling of Tyr (data set #4) Fractional labeling of Tyr (data set #4) Fractional labeling of Jula (data set #4) Fractional labeling of Jula (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	100%		100%				99% 99% 97% 95% 98% 95% 97% 100% 94% 100% 95% 100% 97% 99% 100% 96% 93% 99%	98% 98% 96% 94% 91% 95% 96% 99% 93% 99% 94% 98% 98% 95% 95% 95% 95%	99% 100% 98% 99% 99% 100% 95% 100% 100% 100% 98% 100% 98% 100% 100% 100% 100% 100% 100% 100% 10
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Phe (data set #4) Fractional labeling of Phe (data set #4) Fractional labeling of Fye (data set #4) Fractional labeling of Fye (data set #4) Fractional labeling of Fye (data set #4) Fractional labeling of Fyr (data set #4) Fractional labeling of Fyr (data set #4) Fractional labeling of Iyr (data set #5) Fractional labeling of Iyr (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97%	96%	100%				99% 99% 97% 95% 98% 95% 97% 100% 98% 95% 100% 98% 100% 98% 99% 99%	98% 98% 94% 91% 91% 95% 99% 93% 99% 94% 98% 98% 95% 95% 95% 95% 95% 95%	99% 100% 96% 99% 99% 100% 95% 100% 100% 100% 98% 100% 100% 100% 100% 100% 100% 100% 10
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Eu (data set #3) Fractional labeling of Set (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Fly ((data set #4) Fractional labeling of Gly (data set #4) Fractional labeling of Set (data set #4) Fractional labeling of Pla (data set #4) Fractional labeling of Sat (data set #4) Fractional labeling of Pla (data set #5) Fractional labeling of Ola (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100%	96% 99%	100% 100%				99% 99% 97% 95% 98% 95% 90% 90% 100% 95% 100% 98% 100% 97% 99% 99% 99% 99% 99%	98% 96% 94% 91% 91% 95% 93% 93% 99% 97% 0% 95% 91% 98% 99% 95% 91% 98% 99%	99% 100% 98% 99% 99% 100% 95% 99% 100% 100% 98% 100% 100% 98% 100% 100% 100% 100% 100% 100% 100% 10
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Slu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Sp (data set #3) Fractional labeling of Sp (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Iyr (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Sp (data set #4) Fractional labeling of Sp (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Sp (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99%	96% 99% 99%	100% 100% 100%				99% 99% 97% 95% 98% 95% 100% 94% 95% 100% 97% 98% 99% 99% 99% 99% 99%	98% 98% 96% 94% 91% 91% 99% 93% 93% 97% 94% 0% 95% 97% 91% 98% 99% 99%	99% 100% 96% 99% 100% 95% 96% 100% 100% 100% 100% 100% 100% 100% 10
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Phe (data set #4) Fractional labeling of Phe (data set #4) Fractional labeling of Fyr (data set #4) Fractional labeling of Fyr (data set #4) Fractional labeling of Syr (data set #4) Fractional labeling of Syr (data set #4) Fractional labeling of Syr (data set #4) Fractional labeling of Yyr (data set #4) Fractional labeling of Yyr (data set #4) Fractional labeling of Yyr (data set #5) Fractional labeling of Yal (data set #5) Fractional labeling of Ieu (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100%	96% 99% 99% 99%	100% 100% 100% 100%				99% 99% 97% 95% 98% 97% 97% 100% 94% 95% 100% 98% 100% 99% 100% 99% 99% 99% 99%	98% 96% 96% 91% 91% 95% 93% 93% 93% 94% 98% 99% 95% 99% 95% 99% 98% 99% 99%	99% 100% 98% 99% 99% 100% 100% 100% 100% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ieu (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Shy (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Fly (data set #4) Fractional labeling of Myr (data set #4) Fractional labeling of Myr (data set #4) Fractional labeling of Shyr (data set #4) Fractional labeling of Myr (data set #5) Fractional labeling of Myr (data set #5) Fractional labeling of Leu (data set #5) Fractional labeling of Leu (data set #5) Fractional labeling of Myr (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99%	96% 99% 99% 99% 98%	100% 100% 100% 100% 100%				99% 99% 95% 97% 95% 97% 95% 97% 95% 97% 95% 97% 95% 97% 95% 95% 99% 95% 95% 95% 95% 95% 99% 99	98% 96% 96% 91% 95% 99% 93% 99% 99% 99% 91% 98% 91% 99% 99% 99% 99% 98%	99% 100% 98% 99% 99% 100% 100% 100% 100% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Slu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Iyr (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Iyr (data set #5) Fractional labeling of Ieu (data set #5) Fractional labeling of Ieu (data set #5) Fractional labeling of Ieu (data set #5) Fractional labeling of Ser (data set #5) Fractional labeling of Fle (data set #5) Fractional labeling of Fle (data set #5) Fractional labeling of Ser (data set #5) Fractional labeling of Fle (data set #5) Fractional labeling of Ser (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100%	96% 99% 99% 99% 98% 99%	100% 100% 100% 100% 100%				99% 99% 97% 95% 95% 95% 97% 90% 100% 98% 99% 98% 99% 99% 99% 99% 99%	98% 96% 96% 91% 95% 99% 93% 97% 99% 95% 99% 99% 99% 99% 99%	99% 100% 98% 99% 99% 100% 96% 100% 100% 100% 100% 100% 100% 100% 10
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Wal (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Set (data set #3) Fractional labeling of Set (data set #3) Fractional labeling of Set (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Flu (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Flu (data set #4) Fractional labeling of Wal (data set #4) Fractional labeling of Wal (data set #4) Fractional labeling of Leu (data set #4) Fractional labeling of Leu (data set #4) Fractional labeling of Set (data set #4) Fractional labeling of Flu (data set #4) Fractional labeling of Ryp (data set #4) Fractional labeling of Mal (data set #4) Fractional labeling of Syp (data set #4) Fractional labeling of Syp (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99%	96% 99% 99% 99% 98% 99%	100% 100% 100% 100% 100% 100% 100%				99% 99% 97% 95% 95% 97% 95% 97% 94% 94% 100% 98% 100% 99% 99% 99% 99% 99% 99% 99%	98% 98% 96% 94% 97% 91% 93% 93% 99% 97% 94% 06 95% 99% 95% 99% 98% 99% 98% 99%	99% 100% 98% 99% 99% 100% 100% 100% 100% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 44 45 46 47 48 49	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ieu (data set #3) Fractional labeling of Eve (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Sey (data set #3) Fractional labeling of Sey (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Ivr (data set #3) Fractional labeling of Ivr (data set #4) Fractional labeling of Fey (data set #4) Fractional labeling of Ivr (data set #4) Fractional labeling of Fey (data set #4) Fractional labeling of Fey (data set #4) Fractional labeling of Asp (data set #4) Fractional labeling of Ivr (data set #4) Fractional labeling of Ivr (data set #5) Fractional labeling of Phe (data set #5) Fractional labeling of Sey (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%				99% 99% 97% 95% 95% 95% 97% 100% 94% 95% 100% 95% 99% 99% 99% 100% 99% 99%	98% 98% 96% 91% 91% 95% 96% 99% 93% 97% 0% 95% 97% 99% 99% 99% 99% 99% 99% 99%	99% 100% 98% 99% 99% 100% 100% 100% 100% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Sly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Iye (data set #4) Fractional labeling of Iye (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Spe (data set #5) Fractional labeling of Spe (data set #5) Fractional labeling of Asp (data set #5) Fractional labeling of Spe (data set				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	901		4000	99% 99% 97% 95% 98% 95% 97% 97% 90% 100% 98% 99% 99% 99% 99% 99% 99% 99% 99% 99	98% 98% 96% 96% 91% 91% 99% 93% 99% 97% 98% 95% 95% 99% 99% 99% 99% 99% 99%	99% 100% 98% 99% 99% 99% 99% 99% 99% 99% 100% 100%
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Eu (data set #3) Fractional labeling of Eu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of SP (data set #3) Fractional labeling of SP (data set #3) Fractional labeling of SIV (data set #3) Fractional labeling of Hard (data set #3) Fractional labeling of Fly (data set #4) Fractional labeling of IV (data set #4) Fractional labeling of IV (data set #4) Fractional labeling of IV (data set #4) Fractional labeling of SV (data set #5) Fractional labeling of PN (data set #5) Fractional labeling of SV (data set				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	99%		100%	99% 97% 95% 95% 95% 97% 95% 100% 95% 100% 98% 100% 98% 99% 99% 99% 99% 99% 99% 99% 99%	98% 98% 96% 91% 91% 95% 96% 99% 93% 94% 95% 95% 91% 98% 99% 99% 99% 99% 99% 99% 99%	99% 100% 98% 99% 99% 99% 100% 100% 100% 100% 100% 1
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 44 45 46 47 48 49 50 51 52	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Sly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Sly (data set #3) Fractional labeling of Sly (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Iyr (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Ivr (data set #4) Fractional labeling of Apr (data set #4) Fractional labeling of Ivr (data set #4) Fractional labeling of Ivr (data set #5) Fractional labeling of Ivr (data set #5) Fractional labeling of Spr (data set #5)				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	4%	2%	5%	99% 99% 97% 95% 98% 95% 98% 100% 94% 95% 100% 98% 99% 100% 98% 99% 100% 99% 99% 100% 99% 99% 100%	98% 98% 96% 91% 91% 91% 93% 93% 93% 94% 95% 95% 91% 98% 99% 99% 99% 98% 99% 98% 99%	99% 100% 98% 99% 99% 99% 99% 100% 100% 100% 100% 10
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50 51 50 50 51 51 51 51 51 51 51 51 51 51 51 51 51	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Sly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of lee (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Spe (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Asp (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Glu (data set #4) Fractional labeling of Spe (data set #5) Fractional labeling of Spe (data set				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	4% 99%	2% 99%	5% 100%	99% 99% 97% 95% 98% 95% 97% 91% 100% 94% 99% 99% 99% 99% 99% 99% 100% 99% 99% 99% 99% 99% 99%	98% 98% 94% 91% 95% 91% 95% 93% 93% 94% 95% 98% 99% 99% 99% 99% 99% 99% 99% 99% 99	99% 100% 98% 99% 99% 99% 100% 100% 100% 100% 100% 1
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 66 47 48 49 50 51 52 53 54	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #2) Fractional labeling of Ala (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Sur (data set #3) Fractional labeling of Sur (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Fur (data set #4) Fractional labeling of Sur (data set #4) Fractional labeling of Sur (data set #4) Fractional labeling of Sur (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Sur (data set #5) Fractional labeling of Sur (data set #6) Fractional labeling of Sur (data set				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	4% 99% 99%	2% 99% 98%	5% 100% 99%	99% 99% 97% 95% 98% 95% 97% 95% 100% 94% 100% 95% 100% 99% 100% 99% 99% 100% 98% 100% 88% 100% 88% 100% 99% 99%	98% 98% 94% 97% 95% 93% 93% 93% 97% 94% 95% 95% 95% 98% 99% 98% 99% 98% 99% 98% 99% 98% 99% 98% 99%	99% 100% 100% 100% 100% 100% 100% 100% 1
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 34 40 41 42 43 44 45 50 51 52 53	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Su (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Su (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Syr (data set #4) Fractional labeling of Glu (data set #4) Fractional labeling of Syr (data set #4) Fractional labeling of Fyr (data set #5) Fractional labeling of Syr (data set #6) Fractional labeling of Syr (data set #6				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	4% 99% 99% 99%	2% 99% 98% 99%	5% 100% 99% 100%	99% 99% 97% 95% 95% 95% 95% 100% 94% 94% 100% 98% 100% 99% 100% 99% 100% 99% 100% 99% 100% 99% 100% 99%	98% 98% 99% 99% 46% 99% 46% 99% 99% 99% 99% 99% 99% 99% 99% 99% 9	99% 100% 98% 96% 100% 100% 100% 100% 100% 100% 100% 10
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Wal (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Glu (data set #3) Fractional labeling of Flu (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #4) Fractional labeling of Wal (data set #4) Fractional labeling of Wal (data set #4) Fractional labeling of Wal (data set #4) Fractional labeling of Leu (data set #4) Fractional labeling of Ser (data set #5) Fractional labeling of Ser (data set #6) Fractional labeling of Flu (data set #6) Fractional labeling of Ser (data set				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	4% 99% 99% 99% 97%	2% 99% 98% 99% 96%	5% 100% 99% 100% 97%	99% 99% 97% 95% 95% 97% 97% 97% 100% 94% 99% 100% 98% 100% 99% 99% 99% 99% 100% 99% 99% 99% 99% 99%	98% 98% 91% 95% 96% 93% 93% 93% 97% 94% 94% 95% 95% 99% 99% 98% 99% 99% 99% 99% 99% 99% 99	99% 98% 99% 99% 99% 100% 100% 100% 100% 100% 1
19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 50 51 52 53 54 55 56 57	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Ely (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ile (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Sur (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Wirel (data set #4) Fractional labeling of Wirel (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Fer (data set #4) Fractional labeling of Ser (data set #5) Fractional labeling of Ser (data set #6) Fractional labeling of Ser (data				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	4% 99% 99% 99% 97% 100%	2% 99% 98% 99% 96% 99%	5% 100% 99% 100% 97% 100%	99% 99% 95% 95% 95% 95% 98% 100% 94% 100% 94% 99% 99% 100% 88% 100% 88% 100% 88% 100% 99% 99% 99% 100% 88%	98% 98% 96% 94% 97% 95% 99% 93% 99% 95% 95% 95% 99% 99% 99% 99% 99% 99	99% 100% 99% 100% 99% 100% 99% 100% 99% 100% 99% 100% 100
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Su (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Iyr (data set #4) Fractional labeling of Iyr (data set #4) Fractional labeling of Wal (data set #4) Fractional labeling of Val (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ieu (data set #4) Fractional labeling of Fyr (data set #4) Fractional labeling of Fyr (data set #4) Fractional labeling of Fyr (data set #4) Fractional labeling of Glu (data set #4) Fractional labeling of Glu (data set #4) Fractional labeling of Glu (data set #5) Fractional labeling of Fyr (data set #5) Fractional labeling of Fyr (data set #5) Fractional labeling of Her (data set #5) Fractional labeling of Phe (data set #5) Fractional labeling of Fyr (data set #6) Fractional labeling of Fyr (data set #				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	4% 99% 99% 99% 97% 100% 99%	2% 99% 98% 99% 96% 99%	5% 100% 99% 100% 97% 100% 100%	99% 99% 97% 95% 95% 95% 95% 100% 94% 94% 100% 98% 100% 99% 100% 99% 100% 99% 100% 99% 100% 99% 100% 99% 100% 99% 100% 99% 100%	98% 98% 91% 95% 96% 96% 99% 99% 99% 99% 99% 99% 99% 99	99% 100% 98% 100% 100% 100% 100% 100% 100% 99% 100% 100
19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 50 51 52 53 54 55 56 57	Fractional labeling of Glu (data set #2) Fractional labeling of Tyr (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Gly (data set #3) Fractional labeling of Ely (data set #3) Fractional labeling of Leu (data set #3) Fractional labeling of Ile (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Phe (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Ser (data set #3) Fractional labeling of Sur (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Tyr (data set #3) Fractional labeling of Wirel (data set #4) Fractional labeling of Wirel (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Ser (data set #4) Fractional labeling of Fer (data set #4) Fractional labeling of Ser (data set #5) Fractional labeling of Ser (data set #6) Fractional labeling of Ser (data				99%	98%	99%	93% 97% 93% 100% 96% 98% 100% 97%	92% 96% 87% 94% 94% 97% 92%	100% 100% 100% 100% 100% 100% 100% 99%	93% 99% 99% 98% 96% 100% 96% 95%	72% 80% 0% 71% 75% 76% 70% 68%	100% 100% 100% 100% 100% 100% 100% 98%	97% 100% 99% 100% 99% 100% 99% 99%	96% 99% 99% 99% 98% 98% 98%	100% 100% 100% 100% 100% 100% 100%	4% 99% 99% 99% 97% 100%	2% 99% 98% 99% 96% 99% 97% 98%	5% 100% 99% 100% 97% 100%	99% 99% 95% 95% 95% 95% 98% 100% 94% 100% 98% 100% 99% 99% 100% 88% 100% 88% 100% 99% 99% 100% 88%	98% 98% 96% 94% 97% 95% 99% 93% 99% 95% 95% 95% 99% 99% 99% 99% 98% 99% 98% 99% 98% 99% 98% 99% 98% 99%	99% 100% 99% 100% 99% 100% 99% 100% 99% 100% 99% 100% 100

Table S6. Goodness-of-fit analysis for 13 C-MFA using a network model without the CO₂ exchange reaction v_{71} . Although acceptable fits were obtained for the six individual experiments, combined analysis of all six data sets did not produce a statistically acceptable fit. This suggests that CO₂ exchange reaction v_{71} is required for 13 C-MFA.

Fitted data set	No. of fitted	No. of	No. of	Maximum	SSR
	measurements*	estimated	redundant	acceptable	(accepted)
		free fluxes	measurements*	SSR at 95%	
		(and G-		confidence	
		values)		level	
[1- ¹³ C]glucose	71	16 (8)	47	68	19 (Yes)
[2- ¹³ C]glucose	73	16 (10)	47	68	22 (Yes)
[3- ¹³ C]glucose	69	16 (10)	43	63	18 (Yes)
[4- ¹³ C]glucose	42	14 (0)	28	44	43 (Yes)
[5- ¹³ C]glucose	65	14 (10)	41	60	43 (Yes)
[6- ¹³ C]glucose	68	14 (8)	46	66	44 (Yes)
COMPLETE-MFA	378	20 (55)	303	353	467 (No)

^{*} Number of fitted measurements includes external flux measurements and mass isotopomer measurements that were non-zero. Number of redundant measurements (n-p) was calculated from on the number of fitted measurements (n) minus the number of estimated free fluxes and G-values (p).

Figure S7. Inconsistent metabolic fluxes were obtained (i.e. the 95% confidence intervals were not overlapping) when fluxes were estimated using an incomplete metabolic network model without the CO_2 exchange reaction (v_{71}) . The 68% and 95% confidence intervals are shown for the TCA cycle flux (citrate synthase, v_{21}) and glyoxylate shunt (v_{29}) .

Figure S8. Comparison of the precision of metabolic fluxes estimated using combined analysis of dual 13 C-tracer experiments. The flux precisions (stdev) are shown for the oxidative pentose phosphate pathway flux (oxPPP, v_{10}), isocitrate dehydrogenase flux (IDH, v_{23}), and phosphoenolpyruvate carboxylase flux (PPC, v_{33}). Overall, the most precise fluxes were obtained when [2- 13 C]glucose and [3- 13 C]glucose tracers were used in parallel.