Stochastische Signale und Systeme

Zusammenfassung Formeln

Autor: Daniel Thiem - studium@daniel-thiem.de

Version 0.5 - 20.09.2012

Inhaltsverzeichnis

1	Kon	ibinatorik & reine Stochastik	:				
	1.1	Wahrscheinlichkeitsdichtefunktion	3				
		1.1.1 Eigenschaften der Wahrscheinlichkeitsdichtefunktion	3				
		1.1.2 Berechnung bei Abhängigkeit zu anderer Zufallsvariablen	3				
	1.2	Verteilungsfunktion	3				
		1.2.1 Eigenschaften der Verteilungsfunktion	3				
		1.2.2 Wahrscheinlichkeitsrechnung mittels der Verteilungsfunktion	2				
	1.3	Verteilungen	2				
		1.3.1 Normalverteilung	2				
		1.3.2 Rechteckverteilung	2				
		1.3.3 Exponentialverteilung	2				
	1.4	Formel von Bayes	2				
	1.5	Erwartungswerte					
		1.5.1 Erwartungswertberechnung					
		1.5.2 Rechenregeln für Erwartungswerte					
	1.6	Varianz					
	1.0	1.6.1 Berechnung der Varianz					
		1.6.2 Rechenregeln für Varianzen					
		1.0.2 Reclientegent für varianzen.	٠				
2	Disc	Discrete-Time-Fourier-Transformation					
		Abtastung	e				
		2.1.1 Im Zeitbereich	6				
		2.1.2 Im Frequenzbereich	6				
	2.2	Transformation	f				
		2.2.1 Rücktransformation	e				
		2.2.2 Zusammenhang Ω und n	í				
		2.2.3 Berechnen einer Übertragungsfunktion im zeitdiskreten Fall	f				
		2.2.5 Bereemen emer obertragungstunktion im Zeituskreten run	•				
3	Prozesse						
	3.1	Strikte Stationarität	-				
	3.2	Second order moment function(SOMF)	-				
	٠	3.2.1 Stationär im weiteren Sinne	-				
		3.2.2 Eigenschaften der SOMF	-				
	3.3	Cross-SOMF	-				
	0.0	3.3.1 Gemeinsame Statonarität (joint stationary)	-				
		3.3.2 Eigenschaften der Cross-SOMF	5				
		3.3.3 Unkorreliertheit (uncorrelated) anhand der Cross-SOMF	8				
		3.3.4 Orthogonalität					
	3.4	Kovarianz (Covariance, Central-SOMF)	3				
	ა.4		8				
		3.4.1 Eigenschaften der Kovarianz	8				
	2.5	3.4.2 Überführung der Central-SOMF in die Varianz	3				
	3.5	Kreuz-Kovarianz (Cross-covariance)	7				
		3.5.1 Eigenschaften der Kreuzkovarianz	5				

		3.5.2	Unkorreliertheit (uncorrelated) anhand der Kreuzkovarianz	9
	3.6	Kompl	lexe Prozesse	9
		3.6.1	Erwartungswert eines Komplexen Zufallsprozess	9
		3.6.2	SOMF eines Komplexen Zufallsprozess	9
		3.6.3	cross-SOMF komplexer Zufallsprozesse	9
		3.6.4	Kovarianz (Covariance) eines komplexen Zufallsprozess	9
		3.6.5	Kreuzkovarianz(cross-covariance) komplexer Zufallsprozesse	10
		3.6.6	Eigenschaften komplexer Zufallsprozesse	10
4	Spe	ktraldi	chten (Power Spectral Density)	11
	4.1		ngsdichte	
			Leistungsspektraldichte (Power Spectral Density, PSD)	
		4.1.2	Durchschnittliche Leistung eines Zufallsprozesses	
		4.1.3	Kreuzleistungsdichte (cross-power density)	
		4.1.4	Durchschnittliche Kreuzleistung zweier Zufallsprozesse	12
		4.1.5	Wiener-Khinchine theorem	12
		4.1.6	Kreuzleistungsdichte durch Cross-SOMF	
	4.2		enz (coherence)	
			Eigenschaften der Kohärenz	
	4.3		Mean Square (RMS) und Gleichsstrom (DC) Werte	
			DC-Values	
			Normalisierte DC-Leistung	
			RMS-Value	
	4.4	-	rum	
		4.4.1	Spektrum eines stationären Zufallsprozesses	13
5	Son	stiges		14
	5.1		elle Funktionen	
			Gaussian white noise process	
		5.1.2	Kronecker delta function	14

Vorwort

Fehler und Verbesserungen bitte an studium@daniel-thiem.de senden oder als Issue bei https://github.com/Tyde/stosigsysfs/issues melden. Der Quelltext dieser Formelsammlung ist auf https://github.com/Tyde/stosigsysfs und darf gerne erweitert werden.

1 Kombinatorik & reine Stochastik

1.1 Wahrscheinlichkeitsdichtefunktion

Sei $F_X(x)$ die Verteilungsfunktion der Zufallsvariablen X

$$f(x) = \frac{dF_X(x)}{dx} \tag{1.1}$$

1.1.1 Eigenschaften der Wahrscheinlichkeitsdichtefunktion

$$f_X(x) \ge 0 \tag{1.2a}$$

$$f_X(x) = P(X = x) \tag{1.2b}$$

1.1.2 Berechnung bei Abhängigkeit zu anderer Zufallsvariablen

Sei Y = g(X) und die Wahrscheinlichkeitsdichtefunktion von Y, $f_y(t)$, sei gesucht, während die Wahrscheinlichkeitsdichtefunktion $f_x(t)$ gegeben ist,

$$f_y(t) = f_x(g^{-1}(t)) \left| \frac{d}{dy} g^{-1} \right|$$
 (1.3)

1.2 Verteilungsfunktion

f(t) sei die Wahrscheinlichkeitsdichtefunktion der Zufallsvariablen X

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$
 (1.4)

1.2.1 Eigenschaften der Verteilungsfunktion

$$0 \le F_X(x) \le 1 \tag{1.5a}$$

$$F_X(\infty) = 1 \tag{1.5b}$$

$$F_X(-\infty) = 0 \tag{1.5c}$$

 $F_X(x)$ ist rechtsstetig, d.h.

$$\lim_{\epsilon \to 0} F_X(x + \epsilon) = F_X(x) \tag{1.5d}$$

1.2.2 Wahrscheinlichkeitsrechnung mittels der Verteilungsfunktion

$$F(a-) = \lim_{\epsilon \to 0} F_X(x - \epsilon) \tag{1.6a}$$

$$P(X = a) = F(a) - F(a-)$$
 (1.6b)

$$P(a < X \le b) = F(b) - F(a)$$
 (1.6c)

$$P(a \le X < b) = F(b-) - F(a-) \tag{1.6d}$$

$$P(a \le X \le b) = F(b) - F(a-)$$
 (1.6e)

$$P(X > a) = 1 - F(a)$$
 (1.6f)

1.3 Verteilungen

1.3.1 Normalverteilung

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2} \tag{1.7}$$

1.3.2 Rechteckverteilung

$$f(t) = \begin{cases} \frac{1}{b-a} & a < t < b \\ 0 & \text{sonst} \end{cases}$$
 (1.8)

$$f(t) = \begin{cases} \frac{1}{b-a} & a < t < b \\ 0 & \text{sonst} \end{cases}$$

$$F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & x \in (a,b] \\ 1 & x > b \end{cases}$$
(1.8)

1.3.3 Exponentialverteilung

$$f(t) = \begin{cases} 0 & t < 0 \\ \lambda e^{-\lambda t} & t \ge 0 \end{cases}$$
 (1.10)

$$f(t) = \begin{cases} 0 & t < 0 \\ \lambda e^{-\lambda t} & t \ge 0 \end{cases}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda t} & x \ge 0 \end{cases}$$

$$(1.10)$$

1.4 Formel von Bayes

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A_k|B) = \frac{P(A_k \cdot P(B|A_k))}{\sum_{i=1}^n P(B|A_i) \cdot P(A_i)}$$
(1.12)

1.5 Erwartungswerte

1.5.1 Erwartungswertberechnung

Allgemein

Sei f(x) die Wahrscheinlichkeitsdichtefunktion von X

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$
 (1.13)

Erweitert

Sei Y = g(X) und f(x) die Wahrscheinlichkeitsdichtefunktion von X

$$E[Y] = E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$$
 (1.14)

1.5.2 Rechenregeln für Erwartungswerte

Sei A eine von B unabhängige Zufallsvariable

$$E[A \cdot B] = E[A] \cdot E[B] \tag{1.15}$$

Sei X eine Zufallsvariable und a, b jeweils Konstanten

$$E[aX + b] = aE[X] + b \tag{1.16}$$

Seien X_i Zufallsvariablen

$$E\left[\sum_{i=0}^{n} X_i\right] = \sum_{i=0}^{n} E\left[X_i\right] \tag{1.17}$$

1.6 Varianz

1.6.1 Berechnung der Varianz

$$Var(X) = E(X^2) - E(X)^2$$
 (1.18)

1.6.2 Rechenregeln für Varianzen

$$Var(aX + b) = a^{2}Var(x)$$
(1.19)

Seien X_i Zufallsvariablen

$$\operatorname{Var}\left[\sum_{i=0}^{n} X_{i}\right] = \sum_{i=0}^{n} \operatorname{Var}\left[X_{i}\right]$$
(1.20)

2 Discrete-Time-Fourier-Transformation

2.1 Abtastung

2.1.1 Im Zeitbereich

Sei $x_c(t)$ das zu abtastende Signal und $T_s = \frac{1}{f_s}$ die Abtastdauer bzw. Abtastfrequenz

$$x_s(t) = \sum_{n = -\infty}^{\infty} x_c(nT_s)\delta(t - nT_s)$$
(2.1)

2.1.2 Im Frequenzbereich

$$X_{s}(j\Omega) = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - \frac{2\pi k}{T_{s}}))$$

$$= \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X_{c}(j\Omega - kj\Omega_{s}) \quad \text{mit} \quad \Omega_{s} = \frac{2\pi}{T_{s}}$$
(2.2)

(2.3)

2.2 Transformation

2.2.1 Rücktransformation

$$x[n] = \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega$$
 (2.4)

2.2.2 Zusammenhang Ω und n

ACHTUNG: Dieser zusammenhang ist in SSS etwas anders im gegensatz zu dem Hilfsblatt von DSS

$$\omega = \Omega T_s \tag{2.5}$$

2.2.3 Berechnen einer Übertragungsfunktion im zeitdiskreten Fall

- 1. Zeitkontinuierliches $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$ berechnen
- 2. Formel aus (2.2.2) einsetzen, um $H(j\Omega)$ zu erreichen

3 Prozesse

3.1 Strikte Stationarität

$$F_x(x_1, \dots, x_N; n_1, \dots, n_N) = F_x(x_1, \dots, x_N; n_1 + n_0, \dots, n_N + n_0) \quad \text{mit } N \to \infty$$
 (3.1)

3.2 Second order moment function(SOMF)

$$r_{XX}(n_1, n_2) = \mathbb{E}[X(n_1)X(n_2)]$$
 (3.2)

3.2.1 Stationär im weiteren Sinne

$$E[X(n)] = const. (3.3a)$$

$$r_{XX}(n_1, n_2) = r_{XX}(\kappa) = \mathbb{E}[X(n + \kappa) \cdot X(n)] \quad \text{mit} \quad \kappa = |n_2 - n_1|$$
 (3.3b)

3.2.2 Eigenschaften der SOMF

$$r_{XX}(0) = E[X(n)^2] = \sigma_X^2 + \mu_X^2$$
 (3.4a)

$$r_{XX}(\kappa) = r_{XX}(-\kappa) \tag{3.4b}$$

$$r_{XX}(0) \ge |r_{XX}(\kappa)| \quad , |\kappa| > 0$$
 (3.4c)

3.3 Cross-SOMF

$$r_{XY}(n_1, n_2) = \mathbb{E}[X(n_1) \cdot Y(n_2)]$$
 (3.5)

3.3.1 Gemeinsame Statonarität (joint stationary)

$$r_{XY} = r_{XY}(n_1 - n_2) = r_{XY}(\kappa)$$
 mit $\kappa = n_1 - n_2$ (3.6)

3.3.2 Eigenschaften der Cross-SOMF

$$r_{XY}(-\kappa) = r_{YX}(\kappa) \tag{3.7a}$$

$$|r_{XY}(\kappa)| \le \sqrt{r_{XX}(0) \cdot r_{YY}(0)} \tag{3.7b}$$

$$|r_{XY}(\kappa)| \le \frac{1}{2}(r_{XX}(0) + r_{YY}(0))$$
 (3.7c)

3.3.3 Unkorreliertheit (uncorrelated) anhand der Cross-SOMF

$$r_{XY}(\kappa) = \mu_{X} \cdot \mu_{Y} = \mathbb{E}\left[X(n+\kappa)\right] \mathbb{E}\left[Y(n)\right]$$
(3.8)

3.3.4 Orthogonalität

$$r_{XY}(\kappa) = 0 \tag{3.9}$$

3.4 Kovarianz (Covariance, Central-SOMF)

$$c_{XX}(n+\kappa,n) = \mathbb{E}\left[\left(X(n+\kappa) - \mathbb{E}\left[X(n+\kappa)\right]\right) \cdot \left(X(n) - \mathbb{E}\left[X(n)\right]\right)\right] \tag{3.10a}$$

$$c_{XX}(n+\kappa,n) = r_{XX}(n+\kappa,n) - \mathbb{E}\left[X(n+k)\right]\mathbb{E}\left[X(n)\right]$$
(3.10b)

3.4.1 Eigenschaften der Kovarianz

Falls X zumindest stationär im weiteren Sinne(3.2.1) ist, gilt

$$c_{XX}(\kappa) = r_{XX}(\kappa) - (\mathbb{E}[X(n)])^2 \tag{3.11}$$

3.4.2 Überführung der Central-SOMF in die Varianz

$$c_{XX}(0) = \operatorname{Var}(X) \tag{3.12}$$

3.5 Kreuz-Kovarianz (Cross-covariance)

$$c_{XY}(n+\kappa,n) = \mathbb{E}\left[\left(X(n+\kappa) - \mathbb{E}\left[X(n+\kappa)\right]\right) \cdot \left(Y(n) - \mathbb{E}\left[Y(n)\right]\right)\right] \tag{3.13a}$$

$$c_{XY}(n+\kappa,n) = r_{XY}(n+\kappa,n) - \mathbb{E}\left[X(n+k)\right]\mathbb{E}\left[Y(n)\right]$$
(3.13b)

3.5.1 Eigenschaften der Kreuzkovarianz

Falls X und Y zumindest gemeinsam stationär im weiteren Sinne (3.3.1) sind, gilt:

$$c_{XY}(\kappa) = r_{XY}(\kappa) - \mathbb{E}[X(n)]\mathbb{E}[Y(n)]$$
(3.14)

3.5.2 Unkorreliertheit (uncorrelated) anhand der Kreuzkovarianz

$$c_{XY}(\kappa) = 0 \tag{3.15}$$

3.6 Komplexe Prozesse

Seien X(n) und Y(n) reale Zufallsprozesse, so ist

$$Z(n) = X(n) + jY(n) \tag{3.16}$$

ein Komplexer Zufallsprozess

3.6.1 Erwartungswert eines Komplexen Zufallsprozess

$$E[Z(n)] = E[X(n)] + jE[Y(n)]$$
 (3.17)

3.6.2 SOMF eines Komplexen Zufallsprozess

$$r_{ZZ}(n_1, n_2) = \mathbb{E}\left[Z(n_1) \cdot Z(n_2)^*\right]$$
 (3.18)

Besondere Eigenschaften

Für einen komplexen Zufallsprozess, welcher stationär im weiteren Sinne(3.2.1) ist, gilt

$$r_{ZZ}(-\kappa) = r_{ZZ}(\kappa)^* \tag{3.19}$$

3.6.3 cross-SOMF komplexer Zufallsprozesse

$$r_{Z_1Z_2}(n_1, n_2) = \mathbb{E}\left[Z_1(n_1) \cdot Z_2(n_2)^*\right]$$
 (3.20)

3.6.4 Kovarianz (Covariance) eines komplexen Zufallsprozess

$$c_{ZZ}(n+\kappa,n) = \mathbb{E}\left[\left(Z(n+\kappa) - \mathbb{E}\left[Z(n+\kappa)\right]\right) \cdot \left(Z(n) - \mathbb{E}\left[Z(n)\right]\right)^*\right]$$
(3.21)

3.6.5 Kreuzkovarianz(cross-covariance) komplexer Zufallsprozesse

$$c_{Z_1 Z_2}(n + \kappa, n) = \mathbb{E}\left[(Z_1(n + \kappa) - \mathbb{E}\left[Z_1(n + \kappa) \right]) \cdot (Z_2(n) - \mathbb{E}\left[Z_2(n) \right])^* \right]$$
(3.22)

3.6.6 Eigenschaften komplexer Zufallsprozesse

Unkorreliertheit verhält sich wie (3.5.2), genauso wie Orthogonalität (3.3.4)

4 Spektraldichten (Power Spectral Density)

4.1 Leistungsdichte

4.1.1 Leistungsspektraldichte (Power Spectral Density, PSD)

$$S_{XX}(e^{j\omega},\xi) = \lim_{M \to \infty} \frac{\mathbb{E}\left[\left|X_N\left(e^{j\omega},\xi\right)\right|^2\right]}{2M+1}$$
(4.1)

mit

$$X_N(e^{j\omega},\xi) = \sum_{n=-M}^M x_N(n,\xi)e^{-j\omega n}$$
(4.2)

Eigenschaften der Leistungsspektraldichte

$$S_{XX}(e^{j\omega})^* = S_{XX}(e^{j\omega}) \quad \text{mit} \quad X(n) \in \mathbb{C}$$
 (4.3a)

$$S_{XX}(e^{j\omega}) \ge 0$$
 mit $X(n) \in \mathbb{C}$ (4.3b)

$$S_{XX}(e^{-j\omega}) = S_{XX}(e^{j\omega}) \quad \text{mit} \quad X(n) \in \mathbb{R}$$
 (4.3c)

4.1.2 Durchschnittliche Leistung eines Zufallsprozesses

$$P_{XX} = \int_{-\pi}^{\pi} S_{XX}(e^{j\omega}) \frac{d\omega}{2\pi} = r_{XX}(0)$$
 (4.4a)

$$= \lim_{M \to \infty} \int_{-\pi}^{\pi} \frac{E\left[\left|X_{N}\left(e^{j\omega}, \xi\right)\right|^{2}\right]}{2M + 1} \frac{d\omega}{2\pi}$$
(4.4b)

4.1.3 Kreuzleistungsdichte (cross-power density)

$$S_{XY}(e^{j\omega},\xi) = \lim_{M \to \infty} \frac{\mathbb{E}\left[X_N\left(e^{j\omega},\xi\right)Y_N\left(e^{j\omega},\xi\right)^*\right]}{2M+1}$$
(4.5)

Eigenschaften der Kreuzleistungsdichte

$$S_{XY}(e^{j\omega})^* = S_{YX}(e^{j\omega}) \qquad \text{mit} \quad X(n), Y(n) \in \mathbb{C}$$
 (4.6a)

$$S_{XY}(e^{j\omega})^* = S_{YX}(-e^{j\omega}) \qquad \text{mit} \quad X(n), Y(n) \in \mathbb{R}$$
 (4.6b)

$$\mathfrak{Re}\{S_{XY}(e^{j\omega})\}\ \text{und}\ \mathfrak{Re}\{S_{YX}(e^{j\omega})\}\ \text{sind gerade, wenn}\ X(n), Y(n)\in\mathbb{R}$$
 (4.6c)

$$\mathfrak{Im}\{S_{XY}(e^{j\omega})\}\$$
und $\mathfrak{Im}\{S_{YX}(e^{j\omega})\}\$ sind ungerade, wenn $X(n),Y(n)\in\mathbb{R}$ (4.6d)

$$S_{XY}(e^{j\omega}) = S_{YX}(e^{j\omega}) = 0$$
 wenn $X(n)$ und $Y(n)$ orthogonal (3.3.4) (4.6e)

4.1.4 Durchschnittliche Kreuzleistung zweier Zufallsprozesse

$$P_{XY} = \int_{-\pi}^{\pi} S_{XY}(e^{j\omega}) \frac{d\omega}{2\pi}$$
 (4.7)

4.1.5 Wiener-Khinchine theorem

Ist X(n) ein im weiteren Sinne stationärer (3.2.1) Zufallsprozess, do kann die Leistungsspektraldichte (4.1.1) aus der Fourier-Transformation der Momentenfunktion zweiter Ordnung (SOMF) (3.2) gewonnen werden:

$$S_{XX}(e^{j\omega}) = \mathscr{F}\{r_{XX}(\kappa)\} = \sum_{k=-\infty}^{\infty} r_{XX}(\kappa)e^{-k\omega\kappa}$$
(4.8a)

und invers

$$r_{XX}(\kappa) = \mathcal{F}^{-1}\{S_{XX}(e^{j\omega})\} = \int_{-\pi}^{\pi} S_{XY}(e^{j\omega\kappa}) \frac{d\omega}{2\pi}$$
 (4.8b)

4.1.6 Kreuzleistungsdichte durch Cross-SOMF

$$S_{XY}(e^{j\omega}) = \mathscr{F}\{r_{XY}(\kappa)\} = \sum_{k=-\infty}^{\infty} r_{XY}(\kappa)e^{-k\omega\kappa}$$
(4.9)

4.2 Kohärenz (coherence)

$$Coh_{XY}(e^{j\omega}) = \frac{\left|S_{XY}(e^{j\omega})\right|^2}{S_{XX}(e^{j\omega})S_{YY}(e^{j\omega})}$$
(4.10)

4.2.1 Eigenschaften der Kohärenz

Die Kohärenz zwischen den Zufallsprozessen X(n) und Y(n) besagt, wie gut X zu Y bei einer gegebenen Frequenz ω korrespondiert.

$$0 \le \operatorname{Coh}_{XY}(e^{j\omega}) \le 1 \tag{4.11}$$

4.3 Root Mean Square (RMS) und Gleichsstrom (DC) Werte

4.3.1 DC-Values

$$X_{dc} = \lim_{M \to \infty} \frac{1}{2M+1} \sum_{n=-M}^{M} X(n) = E[X(n)] = \mu_X$$
 (4.12)

4.3.2 Normalisierte DC-Leistung

$$P_{dc} = \left[\lim_{M \to \infty} \frac{1}{2M+1} \sum_{n=-M}^{M} X(n)\right]^2 = \mathbb{E}[X(n)]^2 = X_{dc}^2$$
 (4.13)

4.3.3 RMS-Value

$$X_{RMS} = \sqrt{\lim_{M \to \infty} \frac{1}{2M + 1} \sum_{n = -M}^{M} X(n)^2} = \sqrt{r_{XX}(0)} = \sqrt{\int_{-\pi}^{\pi} S_{XX}(e^{j\omega}) \frac{d\omega}{2\pi}}$$
(4.14)

4.4 Spektrum

4.4.1 Spektrum eines stationären Zufallsprozesses

Ist X(n) ein stationärer (3.1) Zufallsprozess, so ist sein Spektrum die Fouriertransformierte der Kovarianzfunktion (3.4)

$$C_{XX}(e^{j\omega}) = \sum_{n = -\infty}^{\infty} c_{xx}(n)e^{-j\omega n}$$
(4.15)

5 Sonstiges

5.1 Spezielle Funktionen

5.1.1 Gaussian white noise process

GauSSsches weiSSes Rauschen ist immer stationär (3.1)

$$r_{WW}(\kappa) = \sigma_W^2 \delta(\kappa) \tag{5.1a}$$

$$r_{WW}(\kappa) = \sigma_W^2 \delta(\kappa)$$
 (5.1a)
 $S_{WW}(e^{j\omega}) = \sigma_W^2$ (5.1b)

5.1.2 Kronecker delta function

$$\delta(\kappa) = \begin{cases} 1 & \kappa = 0 \\ 0 & \kappa \neq 0 \end{cases}$$
 (5.2)