

Models of Higher Brain Function Analytical Tutorial

Exercise 10

Lecturer: Prof. Dr. Henning Sprekeler

Assistant: Joram Keijser
(keijser@tu-berlin.de)

Homework: Motor control II

July 7, 2023

The solutions for these exercises should be handed in before **July 14, 2023 at 10:15 am** as a pdf through the Moodle interface. Please post your questions regarding the exercise on the Moodle forum.

LQG motor control for viscous flow fields

A common experimental paradigm to probe how humans learn motor skills is a robotic artificial environment, in which humans grab a controller that introduces additional perturbation forces that alter their movement. A common perturbation force f is a viscous flow field in two dimensions that makes the movement veer off to the side in proportion to the velocity $v \in \mathbb{R}^2$:

$$f = f_0 \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) v.$$

Here, f_0 controls the strength of the perturbation force.

The goal of the present exercise is to use the framework of linear-quadratic-Gaussian control to investigate how mismatches between the internal model and the actual behavior of the environment are reflected in the movements. To this end, you will get to simulate a time-discrete dynamical system of the form $x_{t+1} = Ax_t + Bu_t + \xi$. $x = (x_1, x_2, v_1, v_2) \in \mathbb{R}^4$ is the state vector. x_1, x_2 denote the hand position in two dimensions, and v_1, v_2 the hand velocities in those two dimensions. $u \in \mathbb{R}^2$ is the control force, and ξ is Gaussian noise with covariance matrix $Q = \sigma_{dyn}^2 \mathbb{I}_4$ (\mathbb{I}_n being the $n \times n$ identity matrix).

The matrices A and B can be derived from an forward-Euler approximation of Newton's law of motion ($\dot{v} = f/m$, $\dot{x} = v$, m = 1 being the "mass" of the hand):

$$A_0 = \begin{pmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & -f_0 \Delta t/m \\ 0 & 0 & f_0 \Delta t/m & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \Delta t/m & 0 \\ 0 & \Delta t/m \end{pmatrix}$$

Note that the perturbation force can be removed by setting $f_0 = 0$. We assume that the position of the "hand" can be observed (but not the velocity), but the observation is noisy: $(y_1,y_2) = (x_1,x_2) + \xi = Cx + \zeta$, where ζ is 2-dimensional Gaussian noise with covariance matrix $\sigma_{obs}^2 \mathbb{I}_2$. Cast into the format of LQG control, the matrix C is given by

$$C = \left(\begin{array}{ccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right) \, .$$

To force the movement to end at location (x_1, x_2) at time t = 1, we choose a final cost for the movement $x(t = 1)^T F x(t = 1)$, with a very large $F = 10^8 \cdot \mathbb{I}_4$. For the matrix that scales the control cost, choose $N = \mathbb{I}_2$. For simplicity, we ignore units.

Question 2

- 1. Implement the Kalman filter and the linear quadratic regulator. Feel free to use the provided code skeleton lqr_skeleton.ipynb. Run a simulated trajectory without perturbation ($f_0 = 0$). Use x = (0, -10, 0, 0) as starting point, $\Delta t = 0.001$ and $\sigma_{dyn}^2 = \sigma_{obs}^2 = 0.1$. Initialize the Kalman filter with the correct location and velocity, but with a very large initial estimate for the covariance matrix (What happens when you initialize the Kalman filter wrongly? Why?). Plot the true position and the estimated position as a function of time. Vary the two noise levels (i.e., σ_{obs} and σ_{dyn}). How much noise can you deal with until the quality of the internal state estimate declines heavily?
- 2. Plot x_1 and x_2 both as a function of time and against each other. Plot the time course of the velocities v_1, v_2 . Discuss the velocity profile. Is this a good model for human motor trajectories (see lecture)? Also, have a look at the control force. Anything that strikes you?
- 3. Now introduce the perturbation force $(f_0 = 1)$ to the dynamics, but leave untouched the matrix A that is used in the internal model, i.e., in the Kalman filter and the regulator. This corresponds to a situation where a human subject now feels an unexpected control force and has not yet learned a new control law. Plots the trajectory and discuss how it is changed.
- 4. Assume that the system has learned, i.e., use the internal model that uses the correct dynamics including the perturbation force. Plot the trajectories and discuss how they are altered.
- 5. Now remove the perturbation force, but don't tell the internal model. Again, plot and discuss the trajectories.