Slide Examples Solutions

Lecture 9

Lecture 9

GSM Example-1

GSM uses a frame structure where each frame consists of eight time slots, and each time slot contains 156.25 bits and data is transmitted over a channel at 270.833 kbps. Find (i) time duration of a bit, (ii) time duration of a time slot, (iii) time duration of a TDMA frame, and (iv) how long must a user wait when occupying a single time slot between two successive transmissions.

Solution: Added from the Lecture Slide

Solution

(i) To find time duration of a bit, T_b Channel data rate = 270.833 kbps (given) Time duration of a bit, T_b = 1/data rate Hence, time duration of a bit, T_b = 1/270.833 kbps = 3.69 us

(ii) To find time duration of a time slot, $T_{\rm slot}$ Number of bits per time slot = 156.25 bits (given) Time duration of a time slot, $T_{\rm slot}$ = 156.25 bits · T_b Time duration of a time slot, $T_{\rm slot}$ = 156.25 bits · 3.69 us = 577 us

(iii) To find time duration of a TDMA frame, T_t Number of time slots per TDMA frame = 8 (given) Time duration of a frame, T_t = number of time slots \cdot T_{slot} Time duration of a frame, T_t = 8 \cdot 577 us = 4.616 ms

(iv) To find time duration for a user occupying a single time slot between two successive transmissions has to wait for the time duration of a frame. Hence, a user has to wait for 4.616 ms between two successive transmissions.