import pandas as pd

data = pd.read_csv('/content/Churn Modelling.csv')
data

₽		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenı
	0	1	15634602	Hargrave	619	France	Female	42	
	1	2	15647311	Hill	608	Spain	Female	41	
	2	3	15619304	Onio	502	France	Female	42	
	3	4	15701354	Boni	699	France	Female	39	
	4	5	15737888	Mitchell	850	Spain	Female	43	
	9995	9996	15606229	Obijiaku	771	France	Male	39	
	9996	9997	15569892	Johnstone	516	France	Male	35	
	9997	9998	15584532	Liu	709	France	Female	36	
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	
	9999	10000	15628319	Walker	792	France	Female	28	

10000 rows × 14 columns

data.head

<pre><bound customerid="" method="" ndframe.head="" of="" pre="" rownumber="" surname<=""></bound></pre>										
Credi	tScore G	eography (Sender	Age \						
0		1 15634	1602	Hargrave		619	France	Female	42	
1		2 15647	311	Hill		608	Spain	Female	41	
2		3 15619	304	Onio		502	France	Female	42	
3		4 15701	354	Boni		699	France	Female	39	
4		5 15737	7888	Mitchell		850	Spain	Female	43	
• • •	•	• •					• • •	• • •		
9995	99	96 15606	5229	Obijiaku		771	France	Male	39	
9996	99	97 15569	892	Johnstone		516	France	Male	35	
9997	99	98 15584	1532	Liu		709	France	Female	36	
9998	99	99 15682	2355	Sabbatini		772	Germany	Male	42	
9999	100	00 15628	319	Walker		792	France	Female	28	
	m	D-1	N0	6D	II G G-	1 т	- 7 - 1 M	.l \		
0	Tenure	Balance	Numo	fProducts	Hascrca	ra I	sActiveMem	'		
0	2	0.00		1		1		1		
1	1	83807.86		1		0		1		
2	8	159660.80		3		1		0		
3	1	0.00		2		0		0		
4	2	125510.82		1		1		1		
• • •	• • •	• • •		• • •	•	• •		• • •		
9995	5	0.00		2		1		0		

9996	10	57369.61	1	1	1
9997	7	0.00	1	0	1
9998	3	75075.31	2	1	0
9999	4	130142.79	1	1	0

EstimatedSalary	Exited
101348.88	1
112542.58	0
113931.57	1
93826.63	0
79084.10	0
• • •	
96270.64	0
101699.77	0
42085.58	1
92888.52	1
38190.78	0
	112542.58 113931.57 93826.63 79084.10 96270.64 101699.77 42085.58 92888.52

[10000 rows x 14 columns]>

import seaborn as sns
sns.displot(data['CreditScore'])

<seaborn.axisgrid.FacetGrid at 0x7feb9295a050>

sns.histplot(data['CreditScore'])

<matplotlib.axes._subplots.AxesSubplot at 0x7feb83d0aed0>

sns.boxplot(x = data['CreditScore'])

<matplotlib.axes._subplots.AxesSubplot at 0x7feb83733790>

sns.distplot(data['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWawarnings.warn(msg, FutureWarning)

sns.histplot(data['Age'])

<matplotlib.axes._subplots.AxesSubplot at 0x7feb8369ed10>

sns.boxplot(data['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feb8342f3d0>


```
import matplotlib.pyplot as plt
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x7feb83414790>
```

```
plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7feb833858d0>


```
plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7feb86e6ac90>

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7feb81145210>

200000 -

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7feb812da890>

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

<matplotlib.axes._subplots.AxesSubplot at 0x7feb810490d0>

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

<matplotlib.axes. subplots.AxesSubplot at 0x7feb7f54f990>

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7feb7f4ceb50>

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7feb7f48bc90>

sns.pairplot(data)


```
5.000500e+03
    RowNumber
    CustomerId
                       1.569094e+07
    CreditScore
                       6.505288e+02
                       3.892180e+01
    Age
    Tenure
                       5.012800e+00
    Balance
                       7.648589e+04
    NumOfProducts
                       1.530200e+00
    HasCrCard
                       7.055000e-01
    IsActiveMember
                       5.151000e-01
    EstimatedSalary
                       1.000902e+05
    Exited
                       2.037000e-01
    dtype: float64
data.median(numeric only = True)
    RowNumber
                       5.000500e+03
    CustomerId
                       1.569074e+07
    CreditScore
                       6.520000e+02
    Age
                       3.700000e+01
    Tenure
                       5.000000e+00
    Balance
                       9.719854e+04
    NumOfProducts
                      1.000000e+00
    HasCrCard
                       1.000000e+00
    IsActiveMember
                       1.000000e+00
    EstimatedSalary
                       1.001939e+05
    Exited
                       0.000000e+00
    dtype: float64
data['CreditScore'].mode()
         850
    dtype: int64
data['EstimatedSalary'].mode()
         24924.92
    dtype: float64
data['HasCrCard'].unique()
    array([1, 0])
data['Tenure'].unique()
    array([ 2, 1, 8, 7, 4, 6, 3, 10, 5, 9,
                                                     0])
data.std(numeric only=True)
    RowNumber
                        2886.895680
    CustomerId
                       71936.186123
    CreditScore
                           96.653299
                           10.487806
```

Tenure	2.892174
Balance	62397.405202
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	0.499797
EstimatedSalary	57510.492818
Exited	0.402769

dtype: float64

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balar
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8892
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4052
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5400
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2400
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0900

data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtvpe: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0

NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited 0

dtype: int64

sns.boxplot(data['CreditScore']) #Outlier detection - box plot

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7feb7d935310>


```
fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot
ax.scatter(data['Balance'], data['Exited'])
# x-axis label
ax.set_xlabel('Balance')
# y-axis label
ax.set_ylabel('Exited')
plt.show()
sns.boxplot(x=data['Balance'])
```

```
1.0 - 0.8 - 0.6 - 0.6 - 0.4 - 0.2 -
```

from scipy import stats #Outlier detection - zscore import numpy as np zscore = np.abs(stats.zscore(data['CreditScore'])) print(zscore) print('No. of Outliers : ', np.shape(np.where(zscore>3))) 0 0.326221 1 0.440036 2 1.536794 3 0.501521 4 2.063884 . . . 9995 1.246488 9996 1.391939 9997 0.604988

Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 8)

q = data.quantile([0.75,0.25])
q

1.256835

1.463771

9998

9999

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts
0.75	7500.25	15753233.75	718.0	44.0	7.0	127644.24	2.0
0.25	2500.75	15628528.25	584.0	32.0	3.0	0.00	1.0

iqr = q.iloc[0] - q.iloc[1]
iqr

RowNumber	4999.5000
CustomerId	124705.5000
CreditScore	134.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000

dtype: float64

u = q.iloc[0] + (1.5*iqr)

u

```
RowNumber
                        1.499950e+04
    CustomerId
                        1.594029e+07
    CreditScore
                        9.190000e+02
    Age
                        6.200000e+01
    Tenure
                        1.300000e+01
    Balance
                        3.191106e+05
    NumOfProducts
                        3.500000e+00
    HasCrCard
                        2.500000e+00
    IsActiveMember
                        2.500000e+00
    EstimatedSalary
                        2.969675e+05
                        0.000000e+00
    Exited
    dtype: float64
1 = q.iloc[1] - (1.5*iqr)
                       -4.998500e+03
    RowNumber
    CustomerId
                        1.544147e+07
    CreditScore
                        3.830000e+02
                       1.400000e+01
    Age
    Tenure
                       -3.000000e+00
    Balance
                      -1.914664e+05
    NumOfProducts
                      -5.000000e-01
                       -1.500000e+00
    HasCrCard
    IsActiveMember
                      -1.500000e+00
                      -9.657710e+04
    EstimatedSalary
                        0.000000e+00
    Exited
    dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] >upper))
count = count + np.size(np.where(data['EstimatedSalary'] <lower))</pre>
print('No. of outliers : ', count)
    98386.1375
    No. of outliers: 0
data['CreditScore'] = np.where(np.logical or(data['CreditScore']>900, data['CreditS
sns.boxplot(data['CreditScore'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7feb81064cd0>

```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]</pre>
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))
    Upper range: 70.38521935511383
    Lower range: 7.458380644886169
    No. of Outliers: 133
columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditS
#After outlier removal
for i in columns:
Q1 = data[i].quantile(0.25)
Q3 = data[i].quantile(0.75)
iqr = Q3 - Q1
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data[i] >upper))
count = count + np.size(np.where(data[i] <lower))</pre>
print('No. of outliers in ', i, ' : ', count)
    No. of outliers in EstimatedSalary : 0
    No. of outliers in Age : 359
    No. of outliers in Balance : 0
    No. of outliers in NumOfProducts : 60
    No. of outliers in Tenure
                               • 0
    No. of outliers in CreditScore : 0
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit transform(data['Surname'])
data['Gender'] = le.fit transform(data['Gender'])
data['Geography'] = le.fit transform(data['Geography'])
data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	1115	619	0	0	42	2	
1	2	15647311	1177	608	2	0	41	1	
2	3	15619304	2040	502	0	0	42	8	
3	4	15701354	289	699	0	0	39	1	

x = data.iloc[:, 0:13]

x # independent values (inputs)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenu
0	1	15634602	1115	619	0	0	42	
1	2	15647311	1177	608	2	0	41	
2	3	15619304	2040	502	0	0	42	
3	4	15701354	289	699	0	0	39	
4	5	15737888	1822	850	2	0	43	
9995	9996	15606229	1999	771	0	1	39	
9996	9997	15569892	1336	516	0	1	35	
9997	9998	15584532	1570	709	0	0	36	
9998	9999	15682355	2345	772	1	1	42	
9999	10000	15628319	2751	792	0	0	28	

10000 rows × 13 columns

```
y = data['Exited']
```

y # dependent values (output)

```
0
         1
1
2
         1
3
         0
         0
9995
         0
9996
9997
         1
9998
         1
9999
```

Name: Exited, Length: 10000, dtype: int64

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled
```

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167,
             0.97024255, 0.021886491,
           [-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799,
             0.97024255, 0.21653375],
           [-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167,
            -1.03067011, 0.2406869 1,
           [1.73118479, -1.47928179, 0.07353887, ..., -1.54776799,
             0.97024255, -1.008643081,
           [1.7315312, -0.11935577, 0.98943914, ..., 0.64609167,
            -1.03067011, -0.125230711,
           [ 1.73187761, -0.87055909, 1.4692527 , ..., 0.64609167,
            -1.03067011, -1.07636976]])
from sklearn.model selection import train test split
x train, x test, y train, y test = train test split(x scaled, y, test size = 0.3, r
x train
    array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167,
             0.97024255, -0.77021814],
           [1.39655257, 0.71431365, -1.58808148, ..., 0.64609167,
            -1.03067011, -1.395766751,
           [-0.4532777, 0.96344969, -0.24082173, ..., -1.54776799,
             0.97024255, -1.49965629],
           [-0.60119484, -1.62052514, -0.36136603, ..., 0.64609167,
           -1.03067011, 1.41441489],
           [ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167,
             0.97024255, 0.84614739],
           [-0.78548505, -1.36411841, 1.3829808, ..., 0.64609167,
            -1.03067011, 0.3263049511)
x train.shape
    (7000, 13)
x test
    array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167,
             0.97024255, 1.613045971,
           [-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167,
            -1.03067011, 0.49753166
           [-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167,
             0.97024255, -0.4235611],
           [1.49216178, -0.14646448, 0.6868966, ..., 0.64609167,
             0.97024255, 1.17045451],
           [1.1758893, -1.29228727, -1.38481071, ..., 0.64609167,
             0.97024255, -0.50846777],
           [0.08088677, -1.38538833, 1.11707427, ..., 0.64609167,
             0.97024255, -1.1534268511)
```

```
x_test.shape
     (3000, 13)
y_train
     7681
             1
     9031
             0
     3691
             0
     202
             1
     5625
             0
     9225
             0
     4859
             0
     3264
             0
     9845
             0
     2732
             1
    Name: Exited, Length: 7000, dtype: int64
y_test
     9394
             0
     898
              1
     2398
             0
     5906
             0
     2343
             0
     4004
             0
     7375
             0
     9307
             0
     8394
              0
     5233
              1
    Name: Exited, Length: 3000, dtype: int64
```