LAPORAN PRAKTIKUM ALGORITMA DAN PEMROGRAMAN 2

MODUL 5 REKURSIF

Oleh:

BERTHA ADELA

103112400041

IF-12-01

S1 TEKNIK INFORMATIKA TELKOM UNIVERSITY PURWOKERTO 2025

I. DASAR TEORI

Definisi Rekursif: Subprogram yang dipanggil adalah dirinya sendiri merupakan teknik yang dikenal dengan istilah rekursif. Rekursif secara sederhana dapat diartikan sebagai cara menyelesaikan suatu masalah dengan cara menyelesaikan sub-masalah yang identik dari masalah utama. Sebagai contoh:

```
package main
import "fmt"
func main(){
   cetak(5)
}
func cetak(x int){
   fmt.Println(x)
   cetak(x+1)
}
```

Komponen Rekursif:

Algoritma rekursif terdiri dari dua komponen utama:

- Base-case (Basis), yaitu bagian untuk menghentikan proses rekursif dan menjadi komponen terpenting di dalam sebuah rekursif. Base-case adalah kondisi proses rekursif berhenti. Base-case merupakan hal terpenting dan pertama yang harus diketahui ketika akan membuat program rekursif. Mustahil membuat program rekursif tanpa mengetahui base-case terlebih dahulu.
- Recursive-case, yaitu bagian pemanggilan subprogramnya. Recursivecase adalah kondisi dimana proses pemanggilan dirinya sendiri dilakukan. Kondisi recursive-case adalah komplemen atau negasi dari base-case.

II. GUIDED

• GUIDED 1

Code:

```
SMT2 > Pertemuan4 > 103112400041_MODUL5 > © 103112400041_Guided1.go > © main

1    package main
2    import "fmt"
3    //Fungsi iteratif untuk menghitung pangkat (base^exp)
4    func pangkatIteratif(base, exp int) int {
5         hasil:= 1
6         for i := 0; i < exp; i++ {
7             hasil *= base
8         }
9         return hasil
10    }
11
12    //Fungsi iteratif untuk menghitung faktorial (n!)
13    func faktorialIteratif(n int) int {
14         hasil := 1
15         for i := 2; i <= n; i++ {
16             hasil *= i
17         }
18         return hasil
19    }
20</pre>
```

```
SMT2 > Pertemuan4 > 103112400041_MODUL5 > -00 103112400041_Guided1.go > ① main
20
21     func main() {
22         var base, exp, n int
23         // Input pangkat
24         fmt.Print("Masukkan bilangan: ")
25         fmt.Scanln(&base)
26         fmt.Print("Masukkan pangkat: ")
27         fmt.Scanln(&exp)
28
29         fmt.Printf("%d^%d = %d\n", base, exp, pangkatIteratif(base, exp))
30
31         // Input faktorial
32         fmt.Printf("Masukkan angka untuk faktorial")
33         fmt.Scanln(&n)
34
35         fmt.Printf("%d! = %d\n", n, faktorialIteratif(n))
36
```

Output:

```
PS C:\Users\levina\OneDrive\Documents\golang> go run "c:\Users\levina\OneDrive\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documente\Documen
```

Penjelasan:

Program diatas berguna untuk menghitung pangkat dari suatu bilangan serta berguna untuk mencari faktorial dari suatu bilangan menggunakan fungsi iteratif.

GUIDED 2

Code:

```
SMT2 > Pertemuan4 > 103112400041_MODUL5 > ••• 103112400041_Guided2.go > 😚 faktorial
      package main
      //pangkat 0 adalah 1
      func pangkatRekursif(base, exp int) int {
         if exp == 0 {
              return 1
          return base * pangkatRekursif(base, exp-1)
       func faktorialRekursif(n int) int {
 10
         if n == 0 || n == 1 {
             return 1
           return n * faktorialRekursif(n-1)
      func main() {
        var base, exp, n int
         fmt.Print("Masukkan bilangan: ")
         fmt.Scanln(&base)
          fmt.Print("Masukkan pangkat: ")
          fmt.Scanln(&exp)
          fmt.Printf("%d^%d = %d\n", base, exp, pangkatRekursif(base, exp))
          fmt.Print("Masukkan angka untuk faktorial: ")
          fmt.Scanln(&n)
          fmt.Printf("%d!=%d\n", n, faktorialRekursif(n))
```

Output:

```
PS C:\Users\levina\OneDrive\Documents\golang> go run "c:\Users\levina\OneDrive\Doc
DUL5\103112400041_Guided1.go"

Masukkan bilangan: 5

Masukkan pangkat: 2

5^2 = 25

Masukkan angka untuk faktorial: 12

12! = 479001600

PS C:\Users\levina\OneDrive\Documents\golang>
```

Penjelasan:

Program diatas berguna untuk menghitung pangkat dari suatu bilangan serta berguna untuk mencari faktorial dari suatu bilangan menggunakan fungsi rekursif.

III. UNGUIDED

• UNGUIDED 1

Code:

Output:

```
PS C:\Users\levina\OneDrive\Documents\golang> go run "c:\Users\levina\OneDriv
DUL5\103112400041_Unguided1.go"
10
1 1 2 3 5 8 13 21 34 55
PS C:\Users\levina\OneDrive\Documents\golang>
```

Penjelasan:

Program ini berguna untuk mencari deret fibonacci dari suku ke-1 hingga suku ke n. Sebagai contoh untuk mencari deret fibonacci tersebut hanya perlu menginputkan suku ke-10, maka akan otomatis memberi output deret fibonacci dari suku ke-1 hingga suku ke-10 menggunakan fungsi rekursif.

UNGUIDED 2

Code:

```
SMT2 > Pertemuan4 > 103112400041_MODUL5 > • 103112400041_Unguided2.go
    package main
      import "fmt"
      func main() {
          var n int
          fmt.Scan(&n)
          hitung(n, 1)
      func hitung(n, skrg int) int {
          if skrg > n {
              return 0
          cetakBintang(skrg)
          fmt.Println()
          hitung(n, skrg+1)
          return 0
      func cetakBintang(jumlah int) int {
          if jumlah == 0 {
               return 0
          fmt.Print("*")
           cetakBintang(jumlah-1)
           return 0
 26
```

Output:

```
PS C:\Users\levina\OneDrive\Documents\golang> go run "c:\Users\levina\OneDDUL5\103112400041_Unguided2.go"

*

**

***

***

PS C:\Users\levina\OneDrive\Documents\golang> go run "c:\Users\levina\OneDDUL5\103112400041_Unguided2.go"

1

*

PS C:\Users\levina\OneDrive\Documents\golang> go run "c:\Users\levina\OneDDUL5\103112400041_Unguided2.go"

3

*

**

**

***
```

Penjelasan:

Program ini digunakan untuk menampilkan pola bintang segitiga siku siku dengan menginputkan alas dari segitiga menggunakan fungsi rekursif.

• UNGUIDED 3

Code:

```
SMT2 > Pertemuan4 > 103112400041_MODUL5 > ••• 103112400041_Unguided3.go
      //103112400041
     package main
  4 import "fmt"
  5 func main() {
          fmt.Scan(&n)
           prima(n, 1)
      func prima(p, x int) int {
           if p<x {</pre>
               return 0
           if p%x == 0 {
              fmt.Print(x, " ")
           prima(p, x+1)
           return 0
       }
 19
```

Output:

```
PS C:\Users\levina\OneDrive\Documents\golang> go run "c:\Users\levina\OneDrive\DUL5\103112400041_Unguided3.go"

5
1 5
PS C:\Users\levina\OneDrive\Documents\golang> go run "c:\Users\levina\OneDrive\DUL5\103112400041_Unguided3.go"

12
1 2 3 4 6 12
PS C:\Users\levina\OneDrive\Documents\golang>
```

Penjelasan:

Program ini menampilkan faktor bilangan n menggunakan fungsi rekursif.

IV. KESIMPULAN

Teknik rekursif ini merupakan salah satu alternatif untuk mengganti struktur kontrol perulangan dengan memanfaatkan subprogram (bisa fungsi ataupun prosedure). Untuk menghentikan proses rekursif digunakan percabangan (if-then). **Base-case** adalah kondisi proses rekursif berhenti. Base-case merupakan hal terpenting dan pertama yang harus diketahui ketika akan membuat program rekursif. Mustahil membuat program rekursif tanpa mengetahui base-case terlebih dahulu. **Recursive-case** adalah kondisi dimana proses pemanggilan dirinya sendiri dilakukan. Kondisi recursive-case adalah komplemen atau negasi dari base-case. Setiap algoritma rekursif selalu memiliki padanan dalam bentuk algoritma interatif.

REFERENSI

MODUL 5 REKURSIF