Discrete Maths Supervision Work 2

Morgan Saville

November 17, 2020

2.21

- 1. (i, k, l, m) = (-1, 1, 6, 5) meets the requirement
- 1. $(\iota, \kappa, \iota, m) = (-1, 1, 0, 0)$ meets the requirement

 2. RTP: $\forall N \, \forall k_0, k_1.k_2, ...k_N \, (\exists a \sum_{i=0}^N k_i 10^i = 3a \iff \exists b \sum_{i=0}^N k_i = 3b)$ Let N arbitrary natural number, and let $k_0, k_1, k_2, ..., k_N$ arbitrary natural numbers
 First we prove ' \Rightarrow '.

 Assume $\exists a \sum_{i=0}^N k_i 10^i = 3a$ Instantiating, let a such that $\sum_{i=0}^N k_i 10^i = 3a$ RTP: $\exists b \sum_{i=0}^N k_i = 3b$ INCOMPLETE

 3. RTP: $\forall n \, (\text{rem}(n^2 + 1, 4) = 0 \, \forall \, \text{rem}(n^2 + 1, 4) = 1)$ C0: $n = 2k \, \text{for some integer} \, k$ $n = 2k \, \text{for some integer} \, k$ $n = 2k \, \text{for some integer} \, k$

$$n = 2k$$
 for some integer k
 $rem(n^2, 4) = rem((2k)^2, 4) = rem(4k^2, 4) = 0$

C1:

$$n = 2k + 1$$
 for some integer k
 $rem(n^2, 4) = rem((2k + 1)^2, 4) = rem(4k^2 + 4k + 1, 4) = rem(4(k^2 + k) + 1, 4) = 1$

Since the above cases are exhaustive, we have shown the required statement.

4.

- (a) $rem(55^2, 79) = rem(3025, 79) = 23$
- (b) $rem(23^2, 79) = rem(529, 79) = 55$
- (c) rem(23.55,79) = rem(1265,79) = 1
- (d)

$$rem(55^{78}, 79) = rem((55^{2})^{39}, 79)$$

$$= rem(23^{39}, 79)$$

$$= rem(23 \cdot (23^{2})^{19}, 79)$$

$$= rem(23 \cdot 55 \cdot (55^{2})^{9}, 79)$$

$$= rem(23 \cdot (23^{2})^{4}, 79)$$

$$= rem(23 \cdot 55^{2} \cdot 55^{2}, 79)$$

$$= rem(23 \cdot 23 \cdot 23, 79)$$

$$= rem(55 \cdot 23, 79)$$

$$= 1$$

5.

$$2^{153} \equiv 2 \cdot (2^8)^{19}$$

$$\equiv 2 \cdot 256^{19}$$

$$\equiv 2 \cdot 103^{19}$$

$$\equiv 206 \cdot (103^2)^9$$

$$\equiv 53 \cdot 10609^9$$

$$\equiv 53 \cdot 52^9$$

$$\equiv 2756 \cdot (52^2)^4$$

$$\equiv 2 \cdot (103^2)^2$$

$$\equiv 2 \cdot 52^2$$

$$\equiv 2 \cdot 103$$

$$\equiv 206$$

$$\equiv 53 \pmod{153}$$

Cerred We will see another proof in person as well, using that

This does not contradict Fermat's Little Theorem because 153 is not prime.

6.

(a) \mathbb{Z}_3

a	b	a+b	ab	-b	$\frac{1}{b}$
0	0	0	0	0	
0	1	1	0	2	1
0	2	2	0	1	2
1	1	2	1		
1	2	0	2		
2	2	1	1		

when asked for tables for some binary operation, it is t. make a

(b) \mathbb{Z}_6

a	b	a+b	ab	-b	$\frac{1}{b}$
0	0	0	0	0	0
0	1	1	0	5	1
0	2	2	0	4	
0	3	3	0	3	
0	4	4	0	2	
0	5	5	0	1	5
1	1	2	1		
1	2	3	2		
1	3	4	3		
1	4	5	4		
1	5	0	5		
2	2	4	4		
2 2 2 3	3	5	0		
2	4	0	2		
2	5	1	4		
3	3	0	3		
3	4	1	0		
3	5	2	3		
4	4	2	4		
4	5	3	2		
5	5	4	1		

· Since me can easily read information from it

- commutativity

 first new is some as

(c) \mathbb{Z}_7

a	b	a+b	ab	-b	$\frac{1}{b}$
0	0	0	0	0	
0	1	1	$0 \\ 0$	6	1
0	3	2	0	5	4
0		3	0	4	5
0 0 0	4 5	4	0	3	2
0	5	2 3 4 5	0 0 0 0 0 1	$0 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1$	4 5 2 3 6
0 1	6 1	6	0	1	6
1	1	2	1		
1	2	2 3 4 5 6 0	2		
1	3	4	3		
1	4	5	4		
1	5	6	5		
1	6	0	6		
1 1 2 2 2 2 2 2 3 3 3	3 4 5 6 2 3 4 5 6 3		3 4 5 6 4 6		
2	3	4 5	6		
2	4	6	1		
2	5	6 0	3		
2	6		5		
3	3	$\begin{array}{c} 1 \\ 0 \end{array}$	2		
3	4	0	5		
3	5	1	1		
3	5 6 4	1 2 1	4		
4	4	1	2		
3 4 4 4 5 5	5	2 3 3	1 3 5 2 5 1 4 2 6 3 4		
4	6	3	3		
5	5	3	4		
5	6	4	2 1		
6	6	5	1		

7. Assume $n^3 \equiv (\text{rem}(n,6))^3 \pmod{6}$. We can therefore check all possibilities for rem(n,6)

rem(n,6) $(rem(n,6))^3$ $rem((rem(n,6))^3, 6)$ 0 0 0 1 1 2 8 6 3 27 4 64 4 125

n3-n=(n-1)n(n+1)=0

Since $\operatorname{rem}((\operatorname{rem}(n,6))^3, 6) \equiv (\operatorname{rem}(n,6))^3 \equiv n^3 \pmod{6}$, we can see that $\forall n \ n^3 \equiv n \pmod{6}$

8. Assume $n \equiv 1 \pmod{p-1}$.

Equivalently, assume n = j(p-1) + 1 for some integer j

RTP: $\forall i \text{ not multiple of } p i^n \equiv i \pmod{p}$

By universal instantiation, let i some positive integer not a multiple of p.

RTP: $i^n \equiv i \pmod{p}$

Equivalently, **RTP:** $i^n = kp + i$ for some integer k.

Substituting n into the left-hand side,

As required.

9. $n^7 \equiv n \pmod{7}$ By question 8

 $n^7 \equiv n^3 n^3 n \equiv n \cdot n \cdot n \equiv n^3 \equiv n \pmod{6}$ By question 7

We can therefore claim that $n^7 \equiv 3(n) + (n) \pmod{42}$ and we prove this below by showing that this solution satisfies both of the above equations:

(a)
$$n^7 \equiv (36n + 7n) \equiv 1n + 0 \equiv n \pmod{7}$$

(b)
$$n^7 \equiv (36n + 7n) \equiv 0 + 1n \equiv n \pmod{6}$$

nz = n (med 6) by above nz = n (med 7) by FLT

Therefore, $n^7 \equiv 43n \equiv n \pmod{42}$ as required.

Se 6/n2-n 7/n2-n 6 6.7 coprime

2 2.3

Thus 6.7/n7-n.

1. RTP: $\forall n \ ((\exists i, j \ n = i^2 - j^2) \iff (n \equiv 0 \pmod 4) \lor n \equiv 1 \pmod 4) \lor n \equiv 3 \pmod 4))$ Let n arbitrary integer. First we prove ' \Leftarrow '.

RTP: $\exists i, j \ n = i^2 - j^2$

Note that the following cases are exhaustive but not mutually exclusive.

They are n can not be of and 1 med 4 at

 $n \equiv 0 \pmod{4}$ $\therefore n = 4a \text{ for some integer } a$ $\therefore n = (a+1)^2 - (a-1)^2$ the same time for example.

C1:

 $n \equiv 1 \pmod{4}$

 $\therefore n = 4a + 1$ for some integer a

 $\therefore n = (2a+1)^2 - (2a)^2$

C2:

 $n \equiv 3 \pmod{4}$

 $\therefore n = 4a + 3$ for some integer a

 $\therefore n = (2a+2)^2 - (2a+1)^2$

Now we prove '⇒'

Assume $\exists i, j \ n = i^2 - j^2$

Let *i*, *j* such that $n = i^2 - j^2 = (i - j)(i + j)$

RTP: $n \equiv 0 \pmod{4} \lor n \equiv 1 \pmod{4} \lor n \equiv 3 \pmod{4}$

C0:

i is odd and j is odd

Therefore i - j = 2a, i + j = 2b for some integers a, b

Therefore $n = (i - j)(i + j) = 4ab \equiv 0 \pmod{4}$

C1:

Exactly one of i and j is even. Without loss of generality, take i is odd and j is even. Therefore i-j=2a+1, i+j=2b+1 for some integers a,b

Therefore $n = (i - j)(i + j) = 4ab + 2(a + b) + 1 \equiv 2c + 1 \pmod{4}$ where c = a + b

Therefore $n \equiv 1 \pmod{4} \lor n \equiv 3 \pmod{4}$

C2:

i is even and j is even

Therefore i - j = 2a, i + j = 2b for some integers a, b

Therefore $n = (i - j)(i + j) = 4ab \equiv 0 \pmod{4}$

2.

(a) 1, 11, 111 1, 3, 7

(b) The k^{th} decimal repunit in base n can be written as $\frac{n^k-1}{n-1}$

Consider the expression $(2a)^k - 1 \pmod{(4)}$ in the two following exhaustive cases

C0:

k2i for some integer i

C1:

k = 2i + 1 for some integer i

$$\equiv 3 \pmod{4}$$

$$(2a)^{i} - 1 \equiv 4^{i} \cdot 2 \cdot a^{k} - 1$$

$$\equiv -1$$

$$\equiv 3 \pmod{4}$$

 $(2a)^k - 1 \equiv 4^i \cdot a^k - 1$

for $i \ge 1$ or eq^{niv} .

As such, the expression is always congruent to 3 (mod 4). Next, note that n-1 is a square number $\Rightarrow (\frac{n^k-1}{n-1})$ is a square number $\Rightarrow n^k-1$ is a square number) Therefore, for all bases n such that n is even and n-1 is square (for example, n=2 or n=10), then $\frac{n^k-1}{n-1} \equiv 3 \pmod{4}$, which, by Lemma 26, means it cannot be a square number.

5