Syntaks og semantik

Lektion 5

19 februar 2007

Sprog DFA NFA Lukningsegenskaber RE Oversigt Ikke-regulære sprog Anvendelser At forstå Bog

Regulære sprog

En anden bog

1 Bogstaver, ord og sprog (13f, 44)
2 Deterministiske endelige automater (35f, 40)
3 Nondeterministiske endelige automater (53–56)
4 Lukningsegenskaber (45f, 58–63, 85)
5 Regulære udtryk (64, 67, 69–74)
6 Oversigt (77–80)
8 Anvendelser
9 At forstå

- alfabet: en endelig mængde, normalt betegnet Σ
- bogstav / tegn / symbol: et element i Σ
- ord / streng: en endelig følge $(a_1, a_2, ..., a_k)$ af bogstaver. Normalt skrevet uden parenteser og komma: $a_1 a_2 ... a_k$
- ε: det tomme ord (med 0 bogstaver)
- at sammensætte ord: abe ∘ kat = abekat
- ε er identiteten for \circ : $w \circ \varepsilon = \varepsilon \circ w = w$ for alle ord w

- Sprog (over Σ): en mængde af ord med bogstaver fra Σ
- Ø: det tomme sprog
- Σ^* : sproget bestående af *alle* ord over Σ
- \Rightarrow L er et sprog over Σ hvis og kun hvis $L \subset \Sigma^*$
- Givet sprog $L_1, L_2 \subseteq \Sigma^*$, da kan vi danne sprogene

•
$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ eller } w \in L_2 \}$$

foreningsmængden

•
$$L_1 \circ L_2 = \{ w_1 \circ w_2 \mid w_1 \in L_1 \text{ og } w_2 \in L_2 \}$$

sammensætningen stjernen

•
$$L_1^* = \{ w_1 \circ w_2 \circ \cdots \circ w_k \mid \text{alle } w_i \in L_1 \}$$

Disse 3 operationer kaldes de regulære operationer på sprog.

- Vi kan også danne andre sprog; de vigtigste andre operationer:
 - $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ og } w \in L_2 \}$
 - $\bullet \ \overline{L}_1 = \Sigma^* \setminus L_1 = \{ w \in \Sigma^* \mid w \notin L \}$

fællesmængden komplementet Sprog

DFA

- Definition 1.5: En deterministisk endelig automat (DFA) er en 5-tupel $M = (Q, \Sigma, \delta, q_0, F)$, hvor delene er
 - Q: en endelig mængde af tilstande
 - Σ : input-alfabetet
 - **3** $\delta: Q \times \Sigma \to Q$: transitionsfunktionen
 - $a_0 \in Q$: starttilstanden
 - $F \subseteq Q$: mængden af accepttilstande
- *M* siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $w_1, w_2, \ldots, w_k \in \Sigma$ og $r_0, r_1, \ldots, r_k \in Q$ således at $W = W_1 W_2 \dots W_k$ og
 - $0 r_0 = q_0$
 - 2 $r_{i+1} = \delta(r_i, w_{i+1})$ for alle i = 0, 1, ..., k-1, og
 - \circ $r_k \in F$.
- Sproget som genkendes af M er $\llbracket M \rrbracket = \{ w \in \Sigma^* \mid M \text{ accepterer } w \}.$
- Definition 1.16: Et sprog siges at være regulært hvis der findes en DFA der genkender det.

DFA

Sprog

- Definition 1.37: En nondeterministisk endelig automat (NFA) er en 5-tupel $M = (Q, \Sigma, \delta, q_0, F)$, hvor delene er
 - Q: en endelig mængde af tilstande
 - Σ : input-alfabetet
 - **③** $\delta: \mathbf{Q} \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(\mathbf{Q})$: transitionsfunktionen
 - $a_0 \in Q$: starttilstanden
 - $F \subseteq Q$: mængden af accepttilstande
- *M* siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $w_1, w_2, \ldots, w_k \in \Sigma \cup \{\varepsilon\}$ og $r_0, r_1, \ldots, r_k \in Q$ således at $W = W_1 W_2 \dots W_k$ 00
 - $0 r_0 = q_0$
 - 2 $r_{i+1} \in \delta(r_i, y_{i+1})$ for alle i = 0, 1, ..., k-1, og
 - \circ $r_k \in F$.
- Sproget som genkendes af M er $\llbracket M \rrbracket = \{ w \in \Sigma^* \mid M \text{ accepterer } w \}.$

- Enhver DFA er også en NFA.
- Sætning 1.39: Til enhver NFA findes der en DFA der genkender samme sprog.
- Bevis ved brug af
 - delmængdekonstruktionen: Hvis NFAen har tilstandsmængde Q, skal DFAens tilstandsmængde være $\mathcal{P}(Q)$
 - og ε -aflukningen: Den nye transitionsfunktion skal være
 - $\delta'(R, a) = \{q \in Q \mid q \text{ kan nås fra } R \text{ ved en } a\text{-transition } \}$ efterfulgt af 0 eller flere ε -transitioner

- Sætning 1.45, 1.47, 1.49: Mængden af regulære sprog er lukket under de regulære operationer. Dvs. $A_1, A_2 \in \Sigma^*$ regulære $\Rightarrow A_1 \cup A_2, A_1 \circ A_2, A_1^*$ regulære
- Bevis ved at sammensætte NFAs på en meget intuitiv måde
- Sætning 1.25 (fodnote): Mængden af regulære sprog er lukket under \cap .
- Bevis ved at konstruere produktet af to DFAs
- Opgave 1.14: Mængden af regulære sprog er lukket under -(komplement)
- Bevis ved at bytte om på accept- og reject-tilstandene i en DFA

RE

- Definition 1.52: Et regulært udtryk over et alfabet Σ er et udtryk af formen
 - \bullet a for et $a \in \Sigma$, ε eller \emptyset ,
 - $(R_1 \cup R_2)$, $(R_1 \circ R_2)$ eller (R_1^*) , hvor R_1 og R_2 er regulære udtryk.
- Sproget, som et regulært udtryk R beskriver, betegnes [R] og er defineret som følger:

 - $[R_1^*] = [R_1]^*$
- Sætning 1.54: Et sprog er regulært hvis og kun hvis det kan beskrives ved et regulært udtryk.
- (følger af Lemma 1.55 og Lemma 1.60)

Sprog

DFA

- Bevis ved brug af strukturel induktion:
 - **1** Vis at de basale regulære udtryk a, ε og \emptyset kan konverteres til NFAs
 - Konvertér sammensætninger af regulære udtryk til sammensætninger af NFAs
- Lemma 1.60: Hvis et sprog er regulært, da kan det beskrives ved et regulært udtryk.
- Bevis ved brug af
 - generaliserede NFAs: Konvertér en DFA til en GNFA, der har regulære udtryk på transitionerne (i stedet for bare bogstaver)
 - og rekursion: Konvertér en GNFA til en ny med én tilstand mindre, ved at fjerne en tilstand og lave tilsvarende ændringer på transitionerne.

Tre formalismer der beskriver den samme klasse af sprog:

```
NFA

delmængde

DFA

GNFA, rekursion

RE

strukturel induktion, lukningsegenskaber

NFA
```

 Findes der endnu andre formalismer til det? Jep, f.x. regulære grammatikker. Sprog

- Sætning 1.70 (Pumpelemmaet): For ethvert regulært sprog A findes der et (naturligt) tal p (pumpelængden) således at ethvert ord s ∈ A der har længde mindst p kan pumpes, dvs. opsplittes i tre stykker, s = xyz, med
 - $|y| \ge 1$ og $|xy| \le p$,
 - og således at ordene $xy^iz \in A$ for alle $i \in \mathbb{N}_0$.
- Bevis ved at tage en DFA for A og lade p være antallet af dens tilstande
- Anvendelse: At vise at et givet sprog B ikke er regulært:
 - antag at B er regulært
 - 2 så må der findes en pumpelængde p for B
 - 3 tag et velegnet ord s som
 - har længde $|s| \ge p$, dvs. bør kunne pumpes,
 - men som ikke kan pumpes.
 - Modstrid!

udtryk til en NFA for at søge og erstatte

grep, sed, teksteditorer etc.: konverterer et givet regulært

 lex, flex etc.: konverterer et eller flere givne regulære udtryk til en DFA der kan bruges til leksikalsk analyse

[sok.lex]

Sprog NFA Lukningsegenskaber Oversigt Ikke-regulære sprog Anvendelser At forstå Bog

Vigtige emner indtil nu

- Sprog
- DFA, NFA
- Konvertering NFA → DFA
- Lukningsegenskaber (+ beviser)
- Regulære udtryk
- Konvertering RE → NFA
- Konvertering DFA → RE
- Pumpelemma (+ bevis)
- Anvendelse af pumpelemma

At forstå (på forskellige måder)

	formelt	grafisk	ved eksempel
Sætninger	√		✓
Beviser	√	√	✓
Anvendelser	√	√	✓

Hvis I synes at *Sipser* er for blød, eller hvis I vil vide mere end hvad *Sipser* skriver om, prøv at kigge i

Hopcroft, Motwani, Ullman: Introduction to automata theory, languages, and computation. 2nd ed. Addison-Wesley, 2001

Kontekst-frie sprog Eksempel Definition Parse-træer Opsummering

Kontekst-frie grammatikker

- Montekst-frie sprog
- 12 Eksempel
- Definition
- Parse-træer
- Opsummering
- 16 Sok

Sok

- Problem: Mange interessante sprog er ikke regulære. F.x.
 - sproget ADD fra opgave 1.53
 - sproget L₃ fra syntaksopgaven
 - programmeringssprog generelt
- Brug for "stærkere" værktøjer til at beskrive dem:
 - kontekst-frie grammatikker (CFG) for at generere dem
 - push-down-automater (PDA) for at genkende dem
- sprog genereret af CFGs = sprog genkendt af PDAs = kontekst-frie sprog
- Er alle sprog kontekst-frie? Nej.
- Anvendelse: parsere

En kontekstfri grammatik:

$$S \xrightarrow{1} ASB$$

$$S \xrightarrow{2} \varepsilon$$

$$A \xrightarrow{3} 0$$

$$B \xrightarrow{4} 1$$

- S, A, B: variable
- 0, 1: terminaler
- startvariablen: S

At generere ord:

•
$$S \stackrel{2}{\Longrightarrow} \varepsilon$$
 \checkmark

•
$$S \stackrel{1}{\Longrightarrow} ASB \stackrel{2}{\Longrightarrow} A \varepsilon B \stackrel{3}{\Longrightarrow} 0B \stackrel{4}{\Longrightarrow} 01$$

•
$$S \stackrel{1}{\Longrightarrow} ASB \stackrel{1}{\Longrightarrow} AASBB \stackrel{2}{\Longrightarrow} AA \in BB \stackrel{3,3,4,4}{\Longrightarrow} 0011$$

•
$$S \stackrel{1,\dots,1}{\Longrightarrow} A^n S B^n \stackrel{2}{\Longrightarrow} A^n \varepsilon B^n \stackrel{3,4}{\Longrightarrow} 0^n 1^n$$

• grammatikken genererer sproget $\{0^n1^n \mid n \in \mathbb{N}_0\}$

Definition 2.2: En kontekstfri grammatik (CFG) er en 4-tupel $G = (V, \Sigma, R, S)$, hvor delene er

- V : en endelig mængde af variable
- **3** $R: V \to \mathcal{P}((V \cup \Sigma)^*)$: produktioner / regler
- $S \in V$: startvariablen
- produktioner skrives $A \rightarrow w$ i stedet for $w \in R(A)$
 - Hvis $u, v, w \in (V \cup \Sigma)^*$ er ord og $A \to w$ er en produktion, siges uAv at frembringe uwv: $uAv \Rightarrow uwv$.
 - Hvis $u, v \in (V \cup \Sigma)^*$ er ord, siges u at derivere v: $u \stackrel{*}{\Rightarrow} v$, hvis u = v eller der findes en følge u_1, u_2, \dots, u_k af ord således at $U \Rightarrow U_1 \Rightarrow U_2 \Rightarrow \ldots \Rightarrow U_k \Rightarrow V.$
 - Sproget som G genererer er $[G] = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}.$
- dvs. et ord $w \in \Sigma^*$ genereres af G hvis og kun hvis der findes en derivation $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow \ldots \Rightarrow w_k \Rightarrow w$, hvor alle $w_i \in (V \cup \Sigma)^*$.

Eksempel 2.3: $G_3 = (\{S\}, \{a, b\}, R, S)$ med produktioner

$$S \rightarrow aSb \mid SS \mid \varepsilon$$

Et par derivationer:

- $S \Rightarrow \varepsilon$
- $S \Rightarrow aSb \Rightarrow ab$
- $S \Rightarrow aSb \Rightarrow aSSb \Rightarrow aaSbSb \Rightarrow aaSbaSbb \Rightarrow aababb$

Generelt er det nok at opskrive *produktionerne* for at specificere en kontekstfri grammatik:

- de variable er venstresiderne
- terminalerne er alle andre bogstaver
- startvariablen er venstresiden af den øverste produktion

Eksempel 2.4: Aritmetiske udtryk

$$\mathsf{Expr} \to \mathsf{Expr} + \mathsf{Term} \mid \mathsf{Term}$$
 $\mathsf{Term} \to \mathsf{Term} \times \mathsf{Factor} \mid \mathsf{Factor}$
 $\mathsf{Factor} \to (\mathsf{Expr}) \mid a$

En derivation:

$$\mathsf{Expr} \Rightarrow \mathsf{Expr} + \mathsf{Term} \Rightarrow \mathsf{Term} + \mathsf{Term} \stackrel{*}{\Rightarrow} \mathsf{Factor} + \mathsf{Term} \times \mathsf{Factor}$$
$$\Rightarrow \mathsf{Factor} + \mathsf{Factor} \times \mathsf{Factor} \stackrel{*}{\Rightarrow} a + a \times a$$

Et parse-træ:

Kontekst-frie sprog Eksempel Definition Parse-træer Opsummering Sok

Et parsetræ:

- Parsetræer udtrykker betydningen af et ord
- At parse: programkode → parsetræ → . . .
- En kontekstfri grammatik i hvilken der er et ord der har to forskellige parsetræer kaldes tvetydig.
- to forskellige parsetræer ⇒ to forskellige betydninger
 ⇒ BAD

Kontekst-frie sprog Eksempel Definition Parse-træer **Opsummering**

Sok

Opsummering:

- CFG: et (endeligt) antal produktioner af formen
 A → s₁ | s₂ | ... s_k for symboler A og strenge s₁, s₂,..., s_k.
- "|" kendetegner alternativer (nondeterminisme!)
- symboler på venstre side af produktionerne: variable (eller non-terminaler)
- alle andre symboler: terminaler
- venstre side af første produktion: startsymbolet
- at frembringe: $uAv \Rightarrow uwv$ hvis $A \rightarrow w$ er en produktion
- hvis w er en streng af terminaler: grammatikken genererer w hvis der findes en derivation $S \Rightarrow w_1 \Rightarrow \ldots \Rightarrow w_k \Rightarrow w$, hvor alle w_i er strenge af terminaler og variable.
- vigtigt: parsetræer
- Definition: Et sprog siges at være kontekstfrit hvis det kan genereres af en CFG.

Eksempel: En CFG til sproget

$$\{w \in \{a,b\}^* \mid \text{antallet af } a \text{ i } w = \text{antallet af } b \text{ i } w\}$$

Idé: Variable som tilstande:

- S: Jeg har set lige mange a og b
- A: Jeg mangler et a
- B: Jeg mangler et b

$$S \rightarrow aB \mid bA \mid \varepsilon$$

 $A \rightarrow aS \mid bAA$
 $B \rightarrow bS \mid aBB$

Eksempel: En (ufuldstændig og ikke helt rigtig) CFG for Sok

ProGram → VarErkList; MetErkList

VarErkList o VarErk ; $VarErkList \mid \varepsilon$

 $VarErk \rightarrow var VarNavn = HelTal$

 $MetErkList \rightarrow MetErk$; $MetErkList \mid \varepsilon$

MetErk → *metode* MetNavn StateMentList *end*

Sok

StateMentList \rightarrow StateMent; StateMentList $\mid \varepsilon \mid$

StateMent → MetKald | TilSkriv

TilSkriv → VarNavn := ArUdtryk

MetKald → kald MetNavn