Multiphase Flows – WS 2022/23 Problem Session 4 – **Solution**: Surface Tension

Aranya Dan, M.Tech.

Institute for Combustion Technology RWTH Aachen University

Problem 1: Solution

a) Force balance for bubble: $(p_{s,0}-p_{a,0})\pi\left(\frac{4d_0}{2}\right)^2=2\cdot 3\sigma\cdot 4\pi d_0$ $=>p_{s,0}-p_{a,0}=\frac{6\sigma}{d_0}$ Force balance for droplet: $(p_{i,0}-p_{s,0})\frac{\pi d_0^2}{d_0}=\sigma\cdot \pi d_0$

Force balance for droplet:
$$(p_{\rm i,0}-p_{\rm s,0})\frac{\pi d_0^2}{4}=\sigma\cdot\pi d_0$$
 => $p_{\rm i,0}-p_{\rm s,0}=\frac{4\sigma}{d_0}$

$$=> \Delta p_0 = p_{i,0} - p_{a,0} = \frac{10\sigma}{d_0}$$

Problem 1: Solution

Mass of air in bubble (constant)

b) Ideal gas EOS for air in bubble: $p_{s,1} = \frac{m}{V} \frac{R}{M} T = \frac{m_0}{\frac{4}{3} \pi \left(\frac{D_1}{2}\right)^3 - \frac{4}{3} \pi \left(\frac{d_0}{2}\right)^3} \frac{R}{M} T$ (1)

Force balance for bubble: $(p_{s,1} - 2p_{a,0})\pi \left(\frac{D_1}{2}\right)^2 = 2 \cdot 3\sigma \cdot \pi D_1$

$$=> p_{s,1} = \frac{24\sigma}{D_1} + 2p_{a,0}$$
 (2)

Mass of air in bubble: $m_0 = \frac{p_{s,0} \cdot \frac{4}{3} \pi \left(\left(\frac{D_0}{2}\right)^3 - \left(\frac{d_0}{2}\right)^3\right) M}{RT}$ (3)

(2) & (3) in (1):
$$\frac{24\sigma}{D_1} + 2p_{a,0} = \frac{\left(p_{a,0} + \frac{6\sigma}{d_0}\right)\left(\left(\frac{D_0}{2}\right)^3 - \left(\frac{d_0}{2}\right)^3\right)}{\left(\frac{D_1}{2}\right)^3 - \left(\frac{d_0}{2}\right)^3} \rightarrow \text{to be solved for } D_1$$

Problem 2: Solution

 F_1 and F_2 : surface tensions forces

$$\rightarrow F_1 = F_2 = \sigma L$$

Force balance in y-direction:

$$-mg + 2\sigma L \cdot \cos(\Theta) = 0$$
$$=> m = \frac{2\sigma L \cdot \cos(\Theta)}{g}$$

Maximum for $\Theta = 0^{\circ}$: $m_{\text{max}} = 0.476 \text{ g}$

- Force balance can be different at needle ends
- $\Theta = 0^{\circ}$ will never be reached (infinite depth)

Problem 3: Capillary Action

$$F = \sigma \cdot 2\pi r$$

Force balance in y-direction:

$$\sigma \cdot 2\pi r \cdot \cos(\phi) = \rho g \pi r^2 h$$
$$=> h = \frac{2\sigma \cos(\phi)}{\rho g r}$$

Problem 4: Solution

Thermodynamic equilibrium: $T_i=T_a,~g_i=g_a$ But: $p_i\neq p~=>~\Delta p=p_i-p=\frac{2\sigma}{r}~=>~r=\frac{2\sigma(T)}{p_i-p}=\frac{2\sigma(T)}{p_{sat}(T)-p}$

Phase equilibrium:
$$g = g_i \implies g_{\rm v}(p,T) = g_{\rm l}\left(p + \frac{2\sigma(T)}{r},T\right) =>$$
 solve for r (in MATLAB)

Edit file getpressures.m and implement surface tension and pressure models

Thank you for your attention

Aranya Dan, M. Tech.

Institute for Combustion Technology RWTH Aachen University

http://www.itv.rwth-aachen.de

