

Exploration visuelle des données

Nicoleta ROGOVSCHI

nicoleta.rogovschi@parisdescartes.fr

M2-INFO

Isometric feature mapping (Isomap)

Plan du cours

- Introduction et définitions
- Algorithme
- Exemple
- Conclusions

Réduction des dimensions par extraction de caractéristiques

Deux grandes familles de méthodes :

Méthodes linéaires

- Analyse en Composantes Principales (ACP)
- Analyse Discriminante Linéaire (ADL)
- Multi-Dimensional Scaling (MDS)
- ...

Méthodes non-linéaires

- → Isometric feature mapping (Isomap)
 - Locally Linear Embedding (LLE)
 - Kernel PCA
 - Segmentation spectrale (spectral clustering)
 - Methodes supervisées (S-Isomap)
 - ...

Rappel MDS

On rencontre deux types de technique de MDS:

- MDS métrique (MDS classique)
 - On suppose que D est la matrice des distances aux carrée.

- MDS non-métrique
 - Traite des mesures de dissimilarités plus générales.

Introduction

- Des techniques comme : ADL, ACP et leurs variantes réalise une transformation globales des données
 - Ces techniques supposent que le maximum d'information dans les données est contenu dans un sous-espace linéaire
 - Quelle approche on va utiliser quand les données sont imbriquées dans un espace nonlinèaire?

Introduction

• L'ACP ne peut pas découvrir la structure d'un jeu de données sous forme de spirale

Distance Euclidienne vs. Distance Géodésique

Introduction

- Le but de ISOMAP est de trouver une variété non-linéaire contenant les données
- On utilise le fait que pour des points proches, la distance euclidienne est une bonne approximation de la distance géodésique sur la variété
- On construit un graphe reliant chaque point à ses *k* plus proches voisins

Introduction

- Les longueurs des géodésiques sont alors estimées en cherchant la longueur du plus court chemin entre deux points dans le graphe
- Par la suite on applique MDS aux distances obtenues afin de déterminer un positionnement des points dans un espace de dimension réduite

ISOMAP

- ISOMAP [Tenebaum et al. 2000]
 - Pour des points voisins, la distance euclidienne fournit une bonne approximation à la distance géodésique
 - Pour des points éloignés, la distance géodésique peut être approximée avec une séquence de pas entres les groupes des points voisins

ISOMAP

ISOMAP est composé de 3 étapes:

- 1. Construire le graphe de voisinage G
- 2. Pour chaque paire de points du *G*, calculer le plus court chemin (la distance géodésique)
- 3. Utiliser le MDS classique sur les distances géodésiques

Distance euclidienne -> Distance géodésique

Algorithme ISOMAP

• Etape 1

- Construire le graphe de voisinage, basé sur les distances $d_X(i,j)$ dans l'espace de départ X.
- On peut le faire de deux manières différentes:
 - Connecter chaque points à tous les points selon un rayon fixé ε
 - Connecter chaque points à tous ses k plus proches voisins
- On obtient un graphe pondéré de voisinage G, ou $d_X(i,j)$ est le poids de chaque arrêt entre les points voisins.

Algorithme ISOMAP

• Etape 2

- Calculer les distances géodésique $d_M(i,j)$ entre toutes les paires de points de la variété M en calculant les plus courts chemins $d_G(i,j)$ dans le graphe G.
- On peut le faire en utilisant l'algorithme de Dijkstra ou l'algorithme de Floyd.

Algorithme ISOMAP

• Etape 3

- Appliquer MDS classique sur la matrice du graphe des distances
 D.
- Les vecteurs des coordonnées y_i sont déterminés de manière à minimiser la fonction de cout suivante:

$$E = \left\| \tau(D_G - \tau(D_Y)) \right\|_{L^2}$$

- Où D_Y représente la matrice des distances euclidiennes $\{d_y(i,j)=||y_i-y_j||\}$ et l'opérateur τ est déterminé de la manière suivante: $\tau=-HSH/2$
- Où S est la matrice des distances au carré $\{S_{ij}=D^2_{ij}\}$ et H est la matrice de centrage définit de la manière suivante :

$$H = I - \frac{1}{N} e e^{T}; \quad e = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \end{bmatrix}^{T}$$

– Le minimum global de E est obtenu en attribuant aux coordonnées y_i les d vecteurs propres les plus en haut de la matrice $\tau(D_G)$.

Complexité de ISOMAP

- Pour des jeux de données de grandes tailles ISOMAP peut être assez lent :
- Etape 1: Complexité de k-plus proches voisins $O(n^2 D)$
- Etape 2 : Complexité de l'algorithme de Djikstra $O(n^2 \log n + n^2 k)$
- Etape 3 : Complexité de MDS $O(n^2 d)$

Le jeu de données «Swiss roll»

- Le jeu de données «Swiss roll» contient 20000 points.
- On représente dans cette figure un échantillon de 1000 points.
- Par la suite on va représenter sur cette exemple le déroulement de l'algorithme de ISOMAP.

Construction du graphe de voisinage G

K- plus proches voisins (K=7)

 D_G est une matrice de distance Euclidienne 1000 x 1000 de deux points voisins (figure A)

Calcul des plus courts chemins dans G

Maintenant D_G est une matrice de distances géodésiques de deux points arbitraires le long de la varieté M (figure B)

Utilisation de MDS pour representer le graphe en R^d

Trouver un espace euclidien Y à d-dimensions qui préserve les distances par paires (Figure C)

Exemple sur les images

Pour chaque image on a 64x64 = 4096 pixels

Conclusions

Avantages

- Non-linéaire
- Non-itérative
- Préserve les propriétés globale des données

Désavantages

- Sensible aux bruits
- Paramètres à fixer : k ou ε
- Assez lent pour des grands jeux de données
- k doit être élevé pour éviter les "raccourcis linéaires"
 près des régions de forte courbure de la surface

Locally Linear Embedding (LLE)

Réduction des dimensions par extraction de caractéristiques

Deux grandes familles de méthodes :

Méthodes linéaires

- Analyse en Composantes Principales (ACP)
- Analyse Discriminante Linéaire (ADL)
- Multi-Dimensional Scaling (MDS)
- ...

Méthodes non-linéaires

- Isometric feature mapping (Isomap)
- → Locally Linear Embedding (LLE)
 - Kernel PCA
 - Segmentation spectrale (spectral clustering)
 - Methodes supervisées (S-Isomap)
 - ...

Locally Linear Embedding (LLE)

• LLE («plongement localement linéaire») aborde le même problème que ISOMAP par une voie différente.

• LLE préserve les propriétés locales des données en représentant chaque point par une combinaison linéaire de ses plus proches voisins.

• LLE construit une projection vers un espace linéaire de faible dimension préservant le voisinage.

LLE utilise 3 étapes:

- Calcule les k plus proches voisins
- Calcule les poids nécessaires pour reconstruire chaque point utilisant une combinaison linéaire des ses voisins
- Projette les résultats selon les nouvelles coordonnées trouvées.

- La géométrie locale est modelée par des poids linéaires qui reconstruisent chaque point par une combinaison linéaire de ses voisins
- Les erreurs de reconstruction sont mesurées selon cette fonction de coût :

$$\varepsilon(W) = \sum_{i=1}^{N} \left| X_i - \sum_{j=1}^{N} W_{ij} X_j \right|^2$$

- Où les poids W_{ij} le mesurent la contribution du j-ième exemple à la construction du i-ième exemple
- Les poids sont minimisés selon deux contraintes :
 - 1) Chaque point est reconstruit seulement par ces voisins

$$2) \quad \sum_{i} W_{ij} = 1$$

• On cherche les coordonnées Y_i de d-dimension qui minimisent la fonction de coût suivante:

$$\phi(Y) = \sum_{i=1}^{N} \left| Y_i - \sum_{j} W_{ij} Y_j \right|^2$$

Estimation des paramètres

- On considère un échantillon x avec k plus proches voisins η_j et les poids reconstruits w_j (dont la somme est égale à 1). On peut trouver ces poids en 3 étapes :
 - Etape 1 : On calcule la matrice de corrélation de voisinage C_{jk} et son inverse C⁻¹

$$C_{jk} = \eta_j^T \eta_k$$

– Etape 2 : On calcule le multiplicateur Langragien λ qui renforce la contrainte $\sum_j w_j = 1$

$$\lambda = \frac{1 - \sum_{jk} C^{-1}_{jk} (x^{T} \eta_{k})}{\sum_{jk} C^{-1}_{jk}}$$

Etape 3 : Calculer les poids reconstruit de la manière suivante:

$$W_j = \sum_{k} C^{-1}_{jk} (x^T \eta_k + \lambda)$$

Estimation des paramètres

• On trouve les vecteurs Y_i en minimisant la fonction de coût suivante:

$$\phi(Y) = \sum_{i=1}^{N} |Y_i - \sum_{j} W_{ij} Y_j|^2$$

• Pour optimiser cette fonction on introduit 2 contraintes:

$$\sum_{j} Y_{j} = 0 \qquad \frac{1}{N} \sum_{i} Y_{i} Y_{i}^{T} = I$$

• Ce qui nous permet d'exprimer la fonction de coût de la manière suivante:

$$\phi(Y) = \sum_{ij} M_{ij} (Y_i^T Y_j)$$

- Où $M_{ij} = \delta_{ij} W_{ij} W_{ji} + \sum_{k} W_{ki} W_{kj}$
- δ_{ij} est égal à 1 si i=j et est égal à 0 sinon.
- On retrouve la meilleure représentation en calculant les d+1 vecteurs propres d'en bas de la matrice M

Exemples sur LLE

- Les points initiaux représentent des images de visages.
- Dans l'espace de 2 dimensions, ces images sont regroupées selon la position, l'éclairage et l'expression.
- Les images placées en bas de la figure correspondent aux points successifs rencontrées sur la ligne en haut à droite, balayant un continuum d'expression du visage.

• ACP vs LLE

[Roweis and Saul 2000]

• ACP vs LLE

Conclusions

• LLE est une technique non-linéaire qui préserve les propriétés locales des données en représentant chaque point par une combinaison linéaire de ses plus proches voisins dans un nouvel espace de dimensions réduite

• LLE utilise 3 étapes:

- Calcule les k plus proches voisins
- Calcule les poids nécessaires pour reconstruire chaque point utilisant une combinaison linéaire des ses voisins
- Projette les résultats selon les nouvelles coordonnées trouvées.

Conclusions

- Sensible aux bruits
- Paramètres à fixer : k
- Assez lent pour des grands jeux de données

Réferences

- J. B. Tenenbaum, V. De Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290:2319-2323, 2000.
- Sam Roweis & Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326, 2000.