Supervised Learning for Environmental Applications

From Theory to Practice in Sustainability Research

Nipun Batra

Sustainability Lab
IIT Gandhinagar

July 2025

Outline

Introduction to Supervised Learning

Core Algorithms

Model Evaluation

Real-World Applications

Challenges & Future Directions

Conclusion

What is Supervised Learning?

Supervised learning uses labeled training data to predict outcomes on new data.

- Classification: Predicting discrete categories
- Regression: Predicting continuous values
- Key Components: Features, labels, model, loss function

Environmental Applications

- Energy consumption prediction
- Air quality classification
- Species identification from sensor data
- Climate pattern recognition

Supervised Learning Workflow

Linear Regression

Mathematical Form:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n x_n + \epsilon$$

Key Properties:

- Simple and interpretable
- Fast training and prediction
- Assumes linear relationships
- Good baseline model

Energy Consumption Example

Variables:

- y: Daily energy usage (kWh)
- x_1 : Temperature (°C)
- *x*₂: Humidity (%)
- x_3 : Number of occupants

Model learns how each factor influences energy consumption

Implementation Example


```
from sklearn.linear_model import LinearRegression
from sklearn.model selection import train test split
import pandas as pd
from sklearn.metrics import mean squared error, r2 score
# Load data
data = pd.read csv('energy consumption.csv')
X = data[['temperature', 'humidity', 'occupancy']]
v = data['energy_kwh']
# Split and train
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
```

Decision Trees

How it works:

- Splits data based on feature values
- Creates if-then rules automatically
- Handles non-linear relationships
- Easy to interpret and visualize

Advantages:

- No assumptions about data distribution
- Handles mixed data types
- Built-in feature selection

Decision Tree Example


```
if PM2.5 > 35:
   if NO2 > 40:
      class = "Poor"
   else:
      class = "Moderate"

else:
   if O3 < 80:
      class = "Good"
   else:
      class = "Moderate"</pre>
```

Neural Networks

Architecture:

- Interconnected layers of neurons
- Non-linear activation functions
- Learns complex patterns automatically
- Requires more data but higher accuracy

Input Layer Hidden Layer Output Layer

Neural Network Applications

Environmental Use Cases:

- Air Quality Prediction: Multi-pollutant forecasting
- Energy Load Forecasting: Grid demand prediction
- Climate Modeling: Temperature and precipitation patterns
- Species Classification: Biodiversity monitoring from audio/images

Architecture Considerations:

- **Feedforward**: Standard prediction tasks
- LSTM/RNN: Time series data (weather, energy)
- **CNN**: Satellite imagery analysis
- Transformer: Multi-modal environmental data

Performance Metrics

Metric	Regression	Classification
Primary	Mean Squared Error	Accuracy
Secondary	R ² Score	F1-Score
Interpretable	Mean Absolute Error	Confusion Matrix

Key Considerations:

- Choose metrics relevant to your problem
- Consider class imbalance in classification
- Use cross-validation for robust estimates

Model Comparison

Algorithm	Energy Prediction (R ² Score)	Air Quality (Accuracy)	Training Time (seconds)
Linear Regression	0.73	_	0.02
Logistic Regression	_	0.84	0.05
Decision Tree	0.68	0.79	0.12
Random Forest	0.81	0.87	2.45
Support Vector Machine	0.76	0.85	12.30
Neural Network	0.83	0.89	45.60

Table: 5-fold cross-validation results on sustainability datasets

Key Insights:

- Random Forest offers good balance of accuracy and speed
- Neural networks achieve highest accuracy but require more computation
- Linear models remain competitive for simpler problems

Smart Grid Optimization

Problem Setup:

- Predict hourly electricity demand
- Features: weather, time, historical usage
- Goal: Optimize energy generation and storage

Data Sources:

- Smart meter readings (10M+ households)
- Weather station data
- Calendar information
- Economic indicators

Grid Optimization Results

Model Performance:

Accuracy: 92% within 5% error

Cost savings: \$2.3M annually

CO2 reduction: 15,000 tons/year

Deployment:

Real-time predictions every 15 minutes

Automatic model retraining weekly

Integration with grid control systems

Feature Importance Analysis

Feature Importance (Random Forest):

Feature	Importance	
Hour of day	0.34	
Temperature	0.22	
Day of week	0.18	
Previous day usage	0.12	
Humidity	0.08	
Wind speed	0.04	
Holiday indicator	0.02	

Key Insights

Analysis Results:

- Time patterns dominate (52% combined)
- Weather matters, especially temperature
- Historical usage provides context
- Complex interactions between features

Business Impact:

- Better demand forecasting
- Reduced energy waste
- Improved grid stability

Current Challenges

Data Quality Issues:

- Missing sensor readings
- Measurement errors and drift
- Inconsistent data collection
- Privacy and access constraints

Model Limitations:

- Assumption violations
- Overfitting to training data
- Poor generalization

Environmental Complexity

Environmental Challenges:

- Non-stationary patterns (climate change)
- Multi-scale temporal effects
- Spatial dependencies
- Extreme events and outliers

Practical Constraints:

- Computational resources
- Real-time requirements
- Model maintenance and updates
- Stakeholder acceptance

Future Research Directions

Advanced Methodologies:

- Transfer Learning: Adapt models across regions
- Federated Learning: Distributed sensor networks
- Physics-Informed ML: Incorporate domain knowledge
- Uncertainty Quantification: Better risk assessment

Integration Opportunities:

- Multi-modal data fusion
- Real-time learning and adaptation
- Human-in-the-loop decision making
- Explainable AI for policy makers

Impact Areas

Sustainability Applications:

- Climate change mitigation and adaptation
- Sustainable urban planning
- Renewable energy optimization
- Biodiversity conservation

Key Takeaways

What We've Learned:

- Supervised learning provides powerful tools for environmental problems
- Model selection depends on data characteristics and requirements
- Evaluation must consider domain-specific metrics
- Real-world deployment requires practical considerations

Best Practices:

- Start simple, then increase complexity
- Invest in data quality and understanding
- Use appropriate validation strategies
- Consider interpretability alongside accuracy

Questions and Discussion

How can we better leverage supervised learning for sustainability challenges?