

- **Prediction**
- ▶ Image Preprocessing
- Text Preprocessing
- ▶ Recommendation

ABOUT

EDA Prediction

EDA, or Exploratory Data Analysis, is a critical phase in the data analysis process that involves visually and statistically exploring and summarizing key of trends within a dataset. The primary objectives of EDA are to uncover insights, identify relationships, and gain an understanding of the structure and di process is crucial for informing subsequent steps in the data analysis pipeline, such as feature engineering, modeling, and hypothesis testing.

No.of.Rows: 100000

No.of.Columns: 46

In this 100000 rows there are 90793 duplicates, for model building we can delete all duplicates from the dataset. So that classification will perform better

No.of.Rows: 9207

No.of.Columns: 46

From this table we can take the mean, min, max, etc... for a

	count_session	count_hit	totals_newVisits	geoNe
count	9,207	9,207	9,207	
mean	19.908	2,489.7939	0.0124	
std	21.059	3,399.7782	0.1106	
min	1	2	0	
25%	7	525	0	
50%	14	1,347	0	
75%	26	3,149	0	
max	270	48,744	1	

Data Preprocessing

Null Percentage

From this table there is no empty values. So we don't need to make any changes

Column_Name	Null_Percentage
count_session	0
latest_medium	0
time_latest_visit	0
avg_visit_time	0
days_since_last_visit	0
days_since_first_visit	0
visits_per_day	0
bounce_rate	0
earliest_source	0
latest_source	0

Sparsity Data

In this sparsity table the columns having more than 50 percent of zero values we can delete that columns

Column_name	Zero_Percentage
youtube	100
days_since_last_visit	100
bounces	99.84
totals_newVisits	98.76
bounce_rate	95.83
has_converted	58.37
avg_session_time_page	58.26
historic_session_page	58.26
transactionRevenue	48.13
latest_isTrueDirect	14.96

Note: The column has_conv we should not make any chan numeric values.

Column_name	Zero
has_converted	
transactionRevenue	
count_session	
count_hit	
geoNetwork_latitude	
geoNetwork_longitude	
historic_session	
avg_session_time	
single_page_rate	
sessionQualityDim	

Outlier Detection:

It's an unusually extreme value that lies outside the typical range of values in a dataset. Identifying outliers is important in machine learning

We can treat the outliers by changing the values using box outlier the mean,median and mode values will be in the pl

localhost:8501 2/10

Distributation Curve:

This graphs are ploted to show the distribution of values for induvial columns. Most of the columns are Right Skewed this is not normaly distributed

Here we used boxcox and log1p method to make right skew distribution

View Distribution curve

localhost:8501 3/10

Final_Project

geoNetwork_longitude

Correlation Heatmap:

Correlation heatmap for all continous variables that quantifies the degree to which two variables are related

From the previous correlation map the columns **count sess historic_session**, **single_page_rate** are having highest concolumns

localhost:8501 9/10

Feature Importance:

	Columns	Feature_percentage
8	transactionRevenue	60.8309
	sessionQualityDim	12.7368
	num_interactions	6.272
	time_on_site	6.2651
2	avg_session_time	6.1817
	visits_per_day	4.3661
	avg_visit_time	1.9718
	geoNetwork_latitude	0.7012
1	geoNetwork_longitude	0.6743

In this Feature Importance we can understand the importa

We can remove the sessionqualityDim, geonetwork latitud avg_"visit_time

Made with Streamli

localhost:8501 10/10