A Tannakian context for Galois

Martín Szyld

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

December 6, 2011

Galois context

Tannakian context

Galois context

Tannakian context

Relations in $s\ell$

- $s\ell = \text{Category of Sup-lattices}$.
- ▶ \mathcal{E} ns $\overset{\ell}{\to}$ s ℓ , $X \mapsto \ell X = \mathcal{P}(X)$, $f \mapsto f$ free Sup-lattice functor.
- ▶ $Rel = \text{image of } \ell \ (\ell X \stackrel{R}{\to} \ell Y \text{ corresponds to } X \times Y \stackrel{R}{\to} \{0,1\}).$

Hopf algebras in $s\ell$

- ▶ $s\ell$ is a tensor category with \otimes and I=2.
- ▶ $Alg_{s\ell} := \text{commutative algebras in } s\ell = \{(S, S \otimes S \rightarrow S, 2 \rightarrow S)\}.$
- ► Hopf := group objects in $Alg_{s\ell}^{op} = \{(A, A \to A \otimes A, A \to 2, A \to A)\}.$

Localic Groups

- ▶ $Loc := \{(S, \land, 1)\}$ ∴ $Loc \subset Alg_{s\ell}$.
- $Gr\text{-}Loc := group objects in } Loc^{op} \subset Alg^{op}_{s\ell}.$
- ▶ Therefore: Gr-Loc \subset Hopf.

Their representations

- ▶ G localic group $\leadsto \beta^G := \text{sets with an action of } G$.
- ▶ G Hopf algebra \rightsquigarrow Cmd₀(G) := G-comodules in $s\ell$ of the form ℓX .
- ► Theorem 1:

$$G$$
 localic group $\Rightarrow Rel(\beta^G) = Cmd_0(G)$.

Galois context

Tannakian context

Hypotheses

- \triangleright \mathcal{E} locally conected topos with a point F.
- ▶ $F: \mathcal{E} \to \mathcal{E}$ ns can be though of as:
- ▶ $F : C \rightarrow \mathcal{E}ns$, C = small site of connected objects.

Localic Galois Theory

$$\mathcal{C}$$
 \leadsto $G = Aut(F)$ localic group. \mathcal{E} ns

Lifting

Theorem $\mathcal{G}:\mathcal{E}$ atomic if and only if \widetilde{F} equivalence.

Galois context

Tannakian context

\mathcal{V} -Tannaka theory

$$\mathcal{X}$$
 \leadsto $H = End^{\vee}(T)$ Hopf algebra.

Lifting

$$\mathcal{X} \stackrel{\widetilde{T}}{\longrightarrow} Cmd_0(H)$$

$$\downarrow_{\mathcal{V}_0}$$

known: $\mathcal{V}_0 = \textit{Vec}_{<\infty} + \text{ hypotheses} \Rightarrow \mathcal{T}$ equivalence.

It is an open problem if T is an equivalence in general.

Tannakian context associated to Galois

$$\mathcal{V}_0 = Rel \subset s\ell; \ \mathcal{X} = Rel(\mathcal{E}); \ T = Rel(F)$$

$$\beta^{G} \longrightarrow \mathcal{R}el(\beta^{G}) \xrightarrow{Th \ 1} Cmd_{0}(G) \xrightarrow{Th \ 2} Cmd_{0}(H)$$

$$\widetilde{F} \qquad \qquad \mathcal{R}el(\widetilde{F}) \qquad \widetilde{T}$$

$$\mathcal{E} \longrightarrow \mathcal{R}el(\mathcal{E})$$

$$\downarrow F \qquad \qquad \downarrow T$$

$$\mathcal{E} ns \longrightarrow \mathcal{R}el$$

$$G = Aut(F); H = End^{\vee}(T)$$

Theorem 2 : G = H

Galois context

Tannakian contex

Conclussions

In the Tannakian context associated to the Galois context (that is a locally connected topos \mathcal{E} with a point F), we have

$$Rel(\mathcal{E}) \xrightarrow{\widetilde{T}} Cmd_0(H)$$

$$\downarrow^T$$
 Rel

Therefore \widetilde{T} is an equivalence $\stackrel{Teo}{\Longleftrightarrow} \mathcal{E}$ is atomic.

Thank you!

