Master M2 MVA 2018/2019 Reinforcement Learning - TP1

Souhaib ATTAIKI

November 10, 2018

1 Dynamic Programming

1.1 Q1: Optimal policy

The MPD is implemented in *exo1.py*. The guessed optimal policy is $\pi^* = [a_1, a_1, a_2]$.

1.2 Q2: Implementation of value iteration

Value iteration is implemented in $tp1_exo12.py$. In the following figure is plotted $\parallel v^k - v^* \parallel$ as a function of iterations.

The optimal policy returned by the value iteration algorithm is $\pi^* = [a_1, a_1, a_2]$ which is conform to our guess in **Q1**.

By implementing the policy evaluation, we found that the $v^* = [15.39, 16.54, 18.]$

1.3 Q3: Exact policy iteration

By implementing the exact policy iteration algorithm, we found that $\pi^* = [a_1, a_1, a_2]$. It can be seen that **PI** converges faster than **VI** in terms of iterations (4 versus 89), however, the latter's iterations are not itchy in terms of calculation unlike **PI**.

2 Reinforcement Learning

2.1 Q4: Policy evaluation

The code for computing J_n is provided in the notebook *visualisation.ipynb* or the generated pdf *visualtions.pdf*.

The plot of $J_n - J^{\pi}$ is shown in the next figure.

2.2 Q5: Policy optimization

See *visualisation.ipynb* or the generated pdf *visualtions.pdf*.

2.3 Q6: Effect of μ_0

No, the optimal policy is not affected by by the distribution of μ_0 . In fact, if we often start with states that give a good reward, then the decisions that will choose these states will be privileged, and if not, if we often start with states that give a bad reward, then the decisions that will choose these states will not be privileged.