Capítulo 7

Endereçamento IP IPv4

Tabela ASCII (mostra na Lousa)

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0:	0		32	20	40	[space]	64	40	100	@	96	60	140	(ey
1	1	1		33	21	41	1	65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	C	99	63	143	C
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	9%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	H	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	1
10	A	12		42	2A	52		74	4A	112	1	106	6A	152	i
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54	,	76	4C	114	L	108	6C	154	1
13	D	15		45	2D	55	92	77	4D	115	M	109	6D	155	m
14	E	16		46	2E	56	2	78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	1	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	p
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	S
20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	×	120	78	170	×
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	3A	72	3	90	5A	132	Z	122	7A	172	z
27	1B	33		59	3B	73	1	91	5B	133	1	123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	1	124	7C	174	1
29	1D	35		61	3D	75	=	93	5D	135	1	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	A	126	7E	176	ew.
31	1F	37		63	3F	77	?	95	5F	137		127	7F	177	

Teorema Fundamental da Numeração

<--- Quanto maior o valor a esquerda, mais alto o valor de sua potência.

Sistema Decimal

Notação Posicional - Base 10 (mais utilizado no nosso dia-a-dia)

Descrição	Milhares	Centenas	Dezenas	Unidade		
Raiz/Base	10	10	10	10		
Expoente	^3	^2	^1	^0		
Valor Posicional	1000	100	10	1		
Identificando	9	1	9	2		
Valor Numérico	9*1000	1*100	9*10	2*1		
Fórmula	((9*1000)+(1*100)+(9*10)+(2*1))=9192					

Base 2: 0 1 - Binário **Base 8:** 0 1 2 3 4 5 6 7 **Base 10:** 0 1 2 3 4 5 6 7 8 9

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Exponenciação = 10^2 = Potência de 2

Todo número elevado a 0 (zero) é 1 (um)

Todo número elevado a 1 (um) é ele mesmo, exemplo: 5^1=5 | 133^1=133 Zero foi criado para deslocar os valores para esquerda (simboliza nada).

Sistema Binário: Base 2 = 0 ou 1 (bits)

Lembrando: 8 bits = 1 Byte

Lembrando novamente: 0 (zero) conta em valores binários

Conversão de Decimal para Binário: (Regra = divisão CONTÍNUA por 2)

Exercício: Converter os números decimais abaixo:

Conversão de Binário para Decimal (Regra = Usar teorema fundamental da númeração - Multiplicação e Exponenciação)

```
Valor em binário: 1010

=(1 x 2^3) + (0 x 2^2) + (1 x 2^1) + (0 x 2^0)

=(1 x 8) + (0 x 4) + (1 x 2) + (0 x 1)

=8 + 2

=10

Valor em binário: 1111

=(1 x 2^3) + (1 x 2^2) + (1 x 2^1) + (1 x 2^0)

=(1 x 8) + (1 x 4) + (1 x 2) + (1 x 1)

=8 + 4 + 2 + 1

=15
```

Exercício: Converter os números decimais abaixo:

Base 10	Teorema	Resultado
$101101_{b2} =$	$(1x2^5)+(0x2^4)+(1x2^3)+(1x2^2)+(0x2^1)+(1x2^0) = 32+8+4+1$	= 45
$111001_{b2} =$	$(1x2^5)+(1x2^4)+(1x2^3)+(0x2^2)+(0x2^1)+(1x2^0) = 32+16+8+1$	= 57
$110001_{b2} =$	$(1x2^5)+(1x2^4)+(0x2^3)+(0x2^2)+(0x2^1)+(1x2^0) = 32+16+1$	= 49
$101010_{b2} =$	$(1x2^5)+(0x2^4)+(1x2^3)+(0x2^2)+(1x2^1)+(0x2^0) = 32+8+2$	= 42
$1111110_{b2} =$	$(1x2^5)+(1x2^4)+(1x2^3)+(1x2^2)+(1x2^1)+(0x2^0) = 32+16+8+4+2$	= 62

Utilizando tabela de Conversão de Binário ou Decimal.

Exemplo: Endereço IP: **192**.168.10.10 (endereço formado por 4 octetos separados por ponto na conotação decimal)

1 octeto = 8 bits ou 1 Byte $2^8 = 256 \mid 4$ octetos = 32 bits ou 4 Bytes $2^3 = 4.294.967.296$ (+4 bilhões).

Descrição	Potência							
Expoente/Potência	7	6	5	4	3	2	1	0
Raiz/Base	2	2	2	2	2	2	2	2
Valor Decimal	128	64	32	16	8	4	2	1
Binário	1	1	0	0	0	0	0	0

Fórmula: 128 + 64 = 192

Exercício: Converte de Decimal para Binário utilizando a Tabela de Referência os valores abaixo:

```
Base 10
              Base 1
                             Teorema
27
              00011011 =
                             (0x2^{7})+(0x2^{6})+(0x2^{5})+(1x2^{4})+(1x2^{3})+(0x2^{2})+(1x2^{1})+(1x2^{0})
209
              11010001 = (1x2^{7}) + (1x2^{6}) + (0x2^{5}) + (1x2^{4}) + (0x2^{3}) + (0x2^{2}) + (0x2^{1}) + (1x2^{0})
223
               11011111 = (1x2^7) + (1x2^6) + (0x2^5) + (1x2^4) + (1x2^3) + (1x2^2) + (1x2^1) + (1x2^0)
                             (1x2^7)+(1x2^6)+(1x2^5)+(1x2^4)+(0x2^3)+(1x2^2)+(1x2^1)+(1x2^0)
247
               11110111 =
7
                             (0x2^{7})+(0x2^{6})+(0x2^{5})+(0x2^{4})+(0x2^{3})+(1x2^{2})+(1x2^{1})+(1x2^{0})
              00000111 =
197
              11000101 = (1x2^7) + (1x2^6) + (0x2^5) + (0x2^4) + (0x2^3) + (1x2^2) + (0x2^1) + (1x2^0)
              01000111 = (0x2^7) + (1x2^6) + (0x2^5) + (0x2^4) + (0x2^3) + (1x2^2) + (1x2^1) + (1x2^0)
71
         =
255
                             (1x2^7)+(1x2^6)+(1x2^5)+(1x2^4)+(1x2^3)+(1x2^2)+(1x2^1)+(1x2^0)
              11111111 =
127
              011111111 = (0x2^7) + (1x2^6) + (1x2^5) + (1x2^4) + (1x2^3) + (1x2^2) + (1x2^1) + (1x2^0)
         =
                             (0x2^{7})+(0x2^{6})+(0x2^{5})+(0x2^{4})+(0x2^{3})+(0x2^{2})+(0x2^{1})+(1x2^{0})
1
              00000001 =
```

Surgimento da Máscara de Rede (necessidade de dividir redes e computadores)

Exemplo: IP 192 . 168 . 10 . 10 MASK: 255 . 255 . 255 . 0

Binário: 11111111 11111111 11111111 00000000

Utilizada para separar os computadores das redes:

Surgimento do Prefixo de Rede em 1993 - Exemplo: /8 /16 /24 /32 (facilita o entendimento da mascara), vai ajudar os conceitos de:

CIDR: Classless Inter-Domain Routing - Roteamento sem classes entre domínios

VLSM: Variable Length Subnet Masks - Máscaras de sub-rede de comprimento variável

Prefixo: Rede = Bits ativo da máscara

Host = Bits desativado da máscara

ID de Rede = Identificação da Rede (primeiro endereço válido da rede)
Broadcast = Endereço de difusão (último endereço válido da rede)

Calculando o Prefixo da Rede

IP	192	168	10	10
Máscara	255	255	255	0
Bits ativos	8	8	8	0

Prefixo da Rede: 8 + 8 + 8 = 24 bits /24 bits de rede e 8 bits de host

Calculando: Rede: $2^24 = 16.777.216 (16 \text{ milhões})$

Host: $2^8 = 256$ (zero conta no cálculo)

Host válidos: $2^8-2 = 254$ (descontar ID de Rede e Broadcast)

IP	192	168	10	10
Máscara	255	255	255	0
Bits de Rede	8	8	8	0
Bits de Host	-	-	-	8
ID de Rede	192	168	10	0
Primeiro IP	192	168	10	1
Último IP	192	168	10	254
Broadcast	192	168	10	255

Matemática do Prefixo

Rede = 2^ Bits utilizados para Rede

Host = 2° Bits utilizados para Host - 2 (dois)

Por que -2? Descontar os Bits de ID de Rede e de Broadcast

Calculando o Prefixo da Rede (pegando Bits emprestados)

Rede	192	168	200	0	Préfixo
Máscara Padrão	255	255	255	0	/24

Pegar 1 Bit emprestado da porção de Host para criar Subredes:

Rede	192	168	200	0	
Máscara Padrão	255	255	255	0	
Nova Máscara	255	255	255	128	64 32 16 08 04 02 01
Bits emprestado				1	0 0 0 0 0 0 0

Calculando: Rede = 2^2 = +33 Milhões de Redes

Host = $2^7 - 2 = 126$ Hosts por Rede

Prefixo = /25

ID Primeira Rede	192	168	200	0	Par
Máscara	255	255	255	128	
Primeiro IP	192	168	200	1	Impar
Último IP	192	168	200	126	Par
Broadcast	192	168	200	127	Impar
ID Segunda Rede	192	168	200	128	Par
Máscara	255	255	255	128	
Primeiro IP	192	168	200	129	Impar
Ultimo IP	192	168	200	254	Par
Broadcast	192	168	200	255	Impar

Exercício: Pegar 2 Bits emprestados da parte de hosts = $\frac{26 - 2^2}{}$

3 Bits emprestados da parte de hosts = $/27 - 2^3$

Rede: 10.10.0.0/24 Máscara: 255.255.255.0

Endereço de Rede, Host e Broadcast

Rede: Todos os Bits 0 (zero)
Broadcast: Todos os Bits 1 (um)

Rede	192	168	35	0
Máscara	255	255	255	0
Primeiro IP	192	168	35	1
Último IP	192	168	35	254
Broadcast	192	168	35	255

Função AND (E) - Tabela Verdade AND (Função Booleana | Álgebra Booleana)

Operação AND = Multiplicação Lógica

Binário: 2 (duas) possibilidades = 0 ou 1 (exemplo: $2^2 - 4$ variações possíveis)

Tabela Verdade: $0 \times 0 = 0$

Roteadores e Computadores fazem cálculos AND para saber qual rede ele pertence (funções: OR (OU) e NOT (NÃO) não é usado no aprendizado)

Cálculo AND na Rede

IP	11000000	10101000	00001010	
Máscara	11111111	11111111	11111111	
AND	192	168	10	

Cálculo AND no Host

IP	11000000	10101000	00001010	00001010
Máscara	11111111	11111111	11111111	00000000
AND	192	168	10	0

Exercício: Calcular o AND da rede abaixo:

IP: 10.10.10.224 MASK: 255.255.255.128

Endereçamento Estático e Dinâmico

Atribuição Estática: Administrador da Rede configurar o endereçamento manualmente nos host

Redes Pequenas ou Controladas Servidores e Serviços de Rede

Atribuição Dinâmica: Serviço de DHCP (Dynamic Host Configuration Protocol) instalado na rede

Redes Grandes, utilizado para dispositivo final

ISC (Internet Systems Consortium) responsável pelo desenvolvimento do DHCP e DNS

Modos de Transmissão do IPv4

Unicast - 1 para 1 (origem: 192.168.10.10 - destino: 192.168.10.11)

Broadcast - 1 para Todos (origem: 192.168.10.10 - destino 192.168.10.255)

Direcionada ou Limitada: 255.255.255.255

Multicast - 1 para Grupo (origem: 192.168.10.10 - destino 224.0.0.1)

Faixa do Multicast: 224.0.0.0 até 239.255.255.255.255 /4

Utilização de software Cliente de Multicast

Anycast - IPv4 não suporte Anycast (mais próximo) apenas no IPv6 tem esse suporte

.br - 64.233.177.104

google .us - 64.233.177.104

.ca - 64.233.177.104

Origem: 192.168.10.10 (br) - destino: 64.233.177.104 (br)

Endereços Públicos e Privados do IPv4

IPv4 endereços Públicos designados

Endereços Particulares - RFC 1918 - Faixas:

10.0.0.0 até 10.255.255.255 prefixo: /8 172.16.0.0 até 172.31.255.255 prefixo: /12 192.168.0.0 até 192.168.255.255 prefixo: /16

Endereços Compartilhados - RFC 6598 - NAT (Network Address Translation) de Operadores ISP

Faixa: 100.64.0.0 prefixo: /10

Endereços Públicos - Utilizados na Internet (faixa será analisada)

Endereços IPv4 de Uso Especial

Loopback 127.0.0.1/8

Faixa: 127.0.0.0 até 127.255.255.255 prefixo: /8

Endereço de Link Local - APIPA (Automatic Private IP Addressing) - RFC 3927

Faixa: 169.254.0.0 até 169.254.255.255 prefixo: /16

(obs: os 16 bits da parte de host são completados com a conversão do endereço MAC de hexadecimal para decimal, usado em redes Mcirosoft)

Enderecos TEST-NET - Educacional

Faixa: 192.0.2.0 até 192.0.2.255 prefixo: /24

Endereços Experimentais - Reservados - RFC 3330 (no futuro podem ser utilizados - já foi, kkk)

Faixa: 240.0.0.0 até 255.255.255.254 prefixo: /4

Endereços de Rede

ID: 192.168.0.0/24

192.168.0.128/25 192.168.0.64/26 Endereços de Broadcast

Classe A -

ID: 192.168.0.255/24 192.168.0.127/25 192.168.0.63/26

Surgimento das Classes de Rede

Bit mais significativo para a Classe (utilizando o primeiro octeto com referência)

0

início:

2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
128	64	32	16	8	4	2	1

até: 127 **01**1111111 Classe B -**100**00000 início: 128 **101**111111 191 até: Classe C -**1100**0000 192 início: 223 **1101**11111 até:

00000000

Classe D - 11100000 início: 224 11101111 até: 239

Classe E - 11110000 início: 240 11111111 até: 255

Endereçamento Classful de Legado (hoje utilizamos o Classless - CIDR) Bit mais significativo no primeiro Octeto

RFC - 1700 - Intervalos Válidos de Internet e Unicast em tamanhos específicos, deram o nome de Classful - Criação dos blocos de redes (fim década de 90 - 1993 surgiu o CIDR).

Bloco Classe A-Prefixo: /8Endereços-1 até 127Máscara padrão-255.0.0.0Network-2^7 = 128 redes

Hosts - $2^24-2 = 16.777.214$ hosts por rede

Obs: - rede perde -1

Bloco Classe B - Prefixo: /16 Endereços - 128 até 191 Máscara padrão - 255.255.0.0

Network - $2^14 = 16.384$ redes

Hosts - $2^16-2 = 65.534$ hosts por rede

Obs: - rede perde -2

Bloco Classe C-Prefixo: /24Endereços-192 até 223Máscara padrão-255.255.255.0

Network - $2^21 = 2.097.152$ redes Hosts - $2^8-2 = 254$ hosts por rede

Obs: - rede perde -3

Bloco Classe D - Prefixo: /4 - Reservado para Multicast

Endereços - 224 até 239 Máscara padrão - 240.0.0.0

Obs: - rede perde -4

Bloco Classe E - Reservado para uso futuro - Faixa experimental

Endereços - 240 até 255

Enderecos Privados de Rede Local

Classe A 10.0.0.0 até 10.255.255.255 Classe B 172.16.0.0 até 172.31.255.255 Classe C 192.168.0.0 até 192.168.255.255

Máscara Padrão de Enderecos Privados de Rede Local

Classe A 255.0.0.0 CIDR: /8 Classe B 255.255.0.0 CIDR: /16 Classe C 255.255.255.0 CIDR: /24

Gerenciamento e Atribuição de Endereços IPv4

IANA - Internet Assigned Numbers Authority

RIRs - Registros Internet Regionais - exemplo: registro.br

ISP - Provedores de Serviços de Internet

(compra de bloco de endereços IPv4 e IPv6 dos RIRs - Gerenciado pela IANA)

Três camadas dos ISP (Internet Service Provider) - Backbone da Internet

Camada 1 (Tier 1 - Direto ao backbone da Internet): Grandes Empresas - ISP Nacional ou Internacional.

Camada 2 (Tier 2 - Foco em empresas): Obtem serviços da Internet dos Tier2 1

Camada 3 (Tier 3 - Foco no mercado doméstico): Obtém serviços da Internet dos Tiers 2

Capítulo 8

Divisão de redes IP em sub-redes

Segmentação de Redes: Dividir a rede em pequenos pedaços = Divisão em Sub-redes - Foco: limitar/diminuir o Domínio de Broadcast

Comunicação entre Sub-redes: Necessidade dos Roteadores (Gateway), será utilizado o Função AND (E) para decidir qual rede o computador pertence ou em qual rede o pacote está sendo enviado.

Plano de Endereçamento

Cada rede tem a sua necessidade

- * Tamanho da rede;
- * Topologia da rede;
- * Número de hosts por sub-rede;
- * Configuração DHCP/Static;
- * Usuários (Fixo/Movel) BYOD;
- * Ativos (Dispositivos de meio);
- * Etc.

Atribuição de Endereços IPv4

Endereços Estático (Manual): Serviços de Rede, Servidores, Print Server, Roteadores, Access Point, Switch, Gateway, Firewall, etc.

Endereços Dinâmicos (DHCP): Usuários da Rede, Desktop, Notebook, Tablet, Smartphone, etc

Divisão em Sub-redes (dica sempre abrir todos os bits)

Endereço	192.168.1	0000 0000
Máscara	255.255.255	0000 0000
Bits	/24 - Rede	/8 - Host

Pegar Bits emprestado dos Host (lembrar função AND)

Endereço	192.168.1	1000 0000
Máscara	255.255.255	1000 0000
Bits	/25 - Rede	/7 - Host

Cálculo Rede: 2^N (número de bits usados para rede) = 2^1 = 2 Redes

Cálculo de host: 2^N-2 (número de bits usados para hosts descontando ID e Broadcast) = 2^7-2 =

126

Rede 1

IP: 192.168.0.0/25 Máscara: 255.255.255.128

Rede: $2^1 = 2$ Host: $2^7 - 2 = 126$

Rede 2

IP: 192.168.0.128/25 Máscara: 255.255.255.128

Rede: $2^1 = 2$ Host: $2^7-2 = 126$

Total de redes: $2^25 = 33.554.432$

(EXPLICAR A TABELA PARA AJUDAR NO CENÁRIO E COMPREENSÃO DO TEMA)

Nova Tabela para ajudar nos Cálculos de Endereçamento IPv4 em Sub-redes = 2^8 = 256

CIDR - Mask	/25	/26	/27	/28	/29	/30	/31	/32
Máscara de Rede	128	192	224	240	248	252	254	255
Valores Potência	128	64	32	16	8	4	2	1
Potência de 2	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
IP: 192.168.1.10	0	0	0	0	1	0	1	0
Máscara: 255.255.255.128	1	0	0	0	0	0	0	0

Desafio: Calcular 4 Sub-redes - Cenário:

Financeiro = 20 hosts

Compras = 30 hosts Rede: 192.168.1.0/24

Estoque = 50 hosts Total: (20+30+50+10) = 110 hosts

Servidores = 10 hosts Perda: 2*4 = 8 IP's

Dica: analisar sempre o maior número de hosts por rede, deixar em ordem crescente, somar todos os hosts para verificar se a quantidade não ultrapassar a rede fornecida, não esquecer de descontar os IP perdidos de ID de Rede e Broadcast.

Resposta Rede: qual potência de 2 temos 4 redes? $2^{2} = 4$ **Resposta Hosts:** qual potência de 2 temos >= 50 hosts? 2^{6} -2=62

Dica Variação: descobrir variação da rede: 256 - 192 = 64 <-- fórmula mágica (LEMBRAR)

CIDR - Mask	/25	/26	/27	/28	/29	/30	/31	/32
Máscara de Rede	128	192	224	240	248	252	254	255
Valores Potência	128	64	32	16	8	4	2	1
Potência de 2	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
Rede: 192.168.1.0	0	0	0	0	0	0	0	0
Máscara Padrão: 255.255.255.0	0	0	0	0	0	0	0	0
Nova Máscara: 255.255.255.192	1	1	0	0	0	0	0	

Abrindo das Redes: dica: abrir primeiro o ID de Rede e depois o Broadcast

Descrição	ID Rede	Primeiro IP	Último IP	Broadcast
	Dica: sempre Par	Dica: sempre Ímpar	Dica: sempre Par	Dica: sempre Ímpar
Primeira Rede	192.168.1.0	192.168.1.1	192.168.1.62	192.168.1.63
Segunda Rede	192.168.1.64	192.168.1.65	192.168.1.126	192.168.1.127
Terceira Rede	192.168.1.128	192.168.1.129	192.168.1.190	192.168.1.191
Quarta Rede	192.168.1.192	192.168.1.193	192.168.1.254	192.168.1.255

Exercício de Sub-redes: Cenário AMBEV

Bohemia = 25 hosts

10 hosts 172.16.10.0/24 Antarctica Rede: Skol **= 30 hosts** Mask: 255.255.255.0 Brahma = 28 hosts Variação: 256-224=32 $2^{3}=8$ Original 18 hosts Cálculo de rede: Stella Cálculo de hosts: $2^{5}-2=30$ = 29 hosts

Cenário Roteadores a Hosts (analisar desperdício de endereços IP)

Rede: 10.10.0.0/24 255.255.255.0

Quantas redes são necessárias nesse cenário? $2^N=$ $2^3=8$ Quantidade de hosts por rede $2^N-2=$ $2^5-2=30$

Variação de rede 256-Máscara= 256-224=32 ou 8*32=256

Cenário maiores:

Criação de 100 sub-redes: Rede: 172.16.0.0/16

Mask: 255.255.0.0

Soma	16	15	14	13	12	11	10	9	256 - 8 bits							
Valores	65536	32768	16384	8192	4096	2048	1024	512	128	64	32	16	8	4	2	1
Potência	2^16	2^15	2^14	2^13	2^12	2^11	2^10	2^9	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
IP: 172.16.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mask: 255.255.	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0

Rede = $2^{7}=128$ Hosts = $2^{9}-2=510$ Máscara = 255.255.254.0

Prefixo = /23

Variação = 256-254=2 no terceiro octeto

Descrição	ID Rede	Primeiro IP	Último IP	Broadcast
	Dica: sempre Par	Dica: sempre Ímpar	Dica: sempre Par	Dica: sempre Ímpar
Primeira Rede	172.16.0.0	172.16.0.1	172.16.1.254	172.16.1.255
Segunda Rede	172.16.2.0	172.16.2.1	172.16.3.254	172.16.3.255
Terceira Rede	172.16.4.0	172.16.4.1	172.16.5.254	172.16.5.255
Quarta Rede	172.16.6.0	172.16.6.1	172.16.7.254	172.16.7.255

VLSM (Variable Lenght Subnet Masks) - Divisão das Redes em partes menores

- * Segmentação da Rede = Física Objetivo: diminuir Domínio de Broadcast e Colisão (lembrando que Domínio de Colisão não existe mais, pois cada porta do Switch é um domínio de colisão isolado, usando Full Duplex não tem colisão)
- * Comunicação entre redes = Roteador (aplicação de filtros)
- * O Plano = Tamanho da rede (LAN ou WAN), Hosts (números), Endereços (Faixa de IP), Usuários (Local, Movél, etc), Atribuição Dinâmica ou Estático.
- * Divisão Básica = Rede --> bits a direita | Hosts <-- bits a esquerda

Tipos de Sub-redes

- *Sub-redes baseadas em hosts + dispositivos do meio (switch, router, access point, etc);
- *Sub-redes baseadas em estrutura organizacional (organograma, matriz, filial);
- *Sub-redes baseadas em departamentos, setores ou serviços;

Planejamento de Intervalos de IP para sua necessidade, vamos analisar o cenário abaixo:

Rede: 172.16.20.0/24 Máscara: 255.255.255.0

Quantas redes tem no cenário? Quantos bits de hosts sobra? Resposta: 14 redes - $2^{4}=16$

Resposta: 4 bits - 2^4-2=14 (contra prova: 16*16=256)

Nova máscara Resposta: 255.255.255.240 - 256-240=16 (variação)

Pergunta? Nesse cenário, onde está o desperdício de endereços IP? - Resposta: Link de WAN, mais por que? Links WAN são Ponto-a-Ponto utilizando apenas dois IP's válidos para se comunicar. Host = $2^n-2 = 2^2-2=2$ (ID, Broadcast 2 hosts).

Uso do VLSM (Máscara de Rede de Tamanho Variável) é utilizado para diminuir o desperdício de endereços IP na rede, distribuindo de forma balanceada os endereços conforme necessidade.

Início: 0.0.0.0 - Fim: 255.255.255.255

Exercício de VLSM: Empresa precisa de 3 sub-redes (lembrar no CCNA sempre o mais próximo)

Diretoria DIR = 5 IP'S

Administração ADM = 25 IP'S Rede: 172.31.10.0/24

Vendas VEN = 92 IP'S Privado

1ª Regra: Organizar os endereços IP's do Maior para o Menor

VEN = 92 ADM = 25 DIR = 5

2ª Regra: Analisar a Máscara de Rede (Bits de Rede e Bits de Hosts) Utilizar a tabela:

Rede: 2^1=2 VEN = 92Hosts: $2^{7}-2=126$ Regra: 128*2=256 Máscara: /25 Rede: $2^{3}=8$ **ADM** = 25Hosts: $2^{5}-2=30$ Regra: 32*8=256 Máscara: /27 DIR =5Hosts: $2^{3}-2=6$ Rede: 2^5=32 Regra: 8*32=256 Máscara: /28

Total: -----

122 (256-122=134 IP's disponível)

Tabela de Prefixo:

Prefixo	IP Disponível
/23	512 - 2 = 510
/24	256 - 2 = 254
/25	128 - 2 = 126
/26	64 - 2 = 62
/27	32 - 2 = 30
/28	16 - 2 = 14
/29	8 - 2 = 6
/30	4 - 2 = 2

Abrindo a Redes

Rede		Quant	Rede	1º IP	Último IP	Broad	Máscara	CIDR
1 ^a	VEN	92	172.31.10.0	1	126	127	255.255.255.128	/25
2ª	ADM	25	172.31.10.128	129	158	159	255.255.255.224	/27
3	DIR	5	172.31.10.160	161	174	175	255.255.255.240	/28

Análise de cenário:


```
SPO
                Hosts 15
        Rede 1
RJO
        Rede 1
                Hosts 15
        Rede 1
                Hosts 10
SDR
BHE
        Rede 1
                Hosts 10
PAE
        Rede 1
                Hosts 10
WAN1
        Rede 1
                Hosts 2
WAN2
        Rede 1
                Hosts 2
WAN3
        Rede 1
                Hosts 2
WAN4
        Rede 1
                Hosts 2
                Hosts 2
WAN5
        Rede 1
WAN6
        Rede 1
                Hosts 2
WAN7
        Rede 1
                Hosts 2
WAN8
        Rede 1
                Hosts 2
WAN9
        Rede 1
                Hosts 2
```

Qual o total de desperdício de endereços IP na rede WAN??? $2^{4}=16*9=144 \mid 2^{4}-2=14*9=126$

Total de redes? $14 - 2^{4} = 16$ (perca de 2 redes)

Hosts válidos por redes? 2⁴-2=14

Total de Links de WAN? 9

Sobra de endereços IP? ((15*2)+(10*3)+(2*9))=78 | 256-78=178

Desperdício de IP na WAN? 2⁴-2=14*9=126 | 2*9=18 | 126-18=**108** (já descontado ID rede e Broadcast)

Obs: Lembrar que 9 Links x 2 = 18 endereços Perdidos na hora de fazer os cálculos do VLSM.

VLSM - 195.8.10.0 / 24 (255.255.255.0)

FIN = 120 hosts 1^a Colocar na ordem de Maior para Menor CAP = 60 hosts 2^o Ver necessidade de Redes e Hosts por Rede

CAR = 30 hosts 3° Somar total de hosts

EST = 14 hosts 4° Cuidado com as percas (ID Rede e Broadcast)

DIR = 8 hosts 5° Cálculo de Hosts = 2^{n} -2

Total = 232 hosts - 256-232=24 (sobra - usar a tabela)

128	64	32	16	8	4	2	1
27	26	25	24	2 ³	22	21	2°
128	192	224	240	248	252	254	255

Hosts: 27-2=126 Rede: 21=2 CIDR: /25 Máscara: 128 FIN = 120 Rede: 22=4 CAP 60 Hosts: 2⁶-2=62 CIDR: /26 Máscara: 192 =Hosts: 2⁵-2=30 Rede: $2^3 = 8$ **CAR** 30 CIDR: /27 Máscara: 224 Hosts: 24-2=14 **EST** 14 Rede: 24=16 CIDR: /28 Máscara: 240 DIR Hosts: 24-2=14 Rede: 24=16 CIDR: /28 Máscara: 240

Descrição	ID Rede	Primeiro IP	Último IP	Broadcast	CIDR
FIN	195.8.10.0	195.8.10.1	195.8.10.126	195.8.10.127	/25
CAP	195.8.10.128	195.8.10.129	195.8.10.190	195.8.10.191	/26
CAR	195.8.10.192	195.8.10.193	195.8.10.222	195.8.10.223	/27
EST	192.8.10.224	195.8.10.225	195.8.10.238	195.8.10.239	/28
DIR	192.8.10.240	195.8.10.241	195.8.10.254	195.8.10.255	/28

Calculando VLSM Máscara CIDR /24 (Usar tabela)

Rede: 2ⁿ Hosts: 2ⁿ-2 Variação: 256-Máscara CIDR: somar dos bits usados

128	64	32	16	8	4	2	1
27	26	25	24	23	2 ²	21	2º
128	192	224	240	248	252	254	255

Hosts: 26-2=62 FIN = 60 Rede: $2^2 = 4$ CIDR: /26 Máscara: 192 CAP 30 Hosts: 25-2=30 Rede: $2^{3}=8$ CIDR: /27 Máscara: 224 Hosts: 24-2=14 CAR = 12 Rede: 24=16 CIDR: /28 Máscara: 240 WAN 2 Hosts: 2²-2=2 Rede:26=64 CIDR: /30 Máscara: 252

Descrição	Endereçamento	Máscara	Variação	CIDR
FIN	0 até 63	255.255.255.192	64 (256-192=64)	/26
CAP	64 até 95	255.255.255.224	32 (256-224=32)	/27
CAR	96 até 111	255.255.255.240	16 (256-240=16)	/28
WAN	112 até 115	255.255.255.252	04 (256-252=4)	/30

Obs: Protocolos de Roteamento como RIP v2, EIGRP e OSPF tem as opções: auto sumary (veremos ainda esse conceito de auto sumarização mais para frente);

Soma	16	15	14	13	12	11	10	9	256 - 8 bits							
Valores	65536	32768	16384	8192	4096	2048	1024	512	128	64	32	16	8	4	2	1
Potência	2^16	2^15	2^14	2^13	2^12	2^11	2^10	2^9	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
IP: 198.5.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mask: 255.255.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

128	64	32	16	8	4	2	1
27	26	25	24	23	2 ²	21	2º
128	192	224	240	248	252	254	255

SPO	2000	Hosts: 2 ¹¹ -2=2046	Rede: 2 ⁵ =32	CIDR: /21	Máscara: 248.0
RJO	1000	Hosts: 2 ¹⁰ -2=1022	Rede: 26=64	CIDR: /22	Máscara: 252.0
CAM	128	Hosts: 28-2=254	Rede: 28=256	CIDR: /24	Máscara: 255.0
RGS	128	Hosts: 28-2=254	Rede: 28=256	CIDR: /24	Máscara: 255.0
BAH	60	Hosts: 26-2=62	Rede: 2 ¹⁰ =1024	CIDR: /26	Máscara: 255.192
PER	30	Hosts: 2 ⁵ -2=30	Rede: 2 ¹¹ =2048	CIDR: /27	Máscara: 255.224

Descrição	Rede	Primeiro IP	Último IP	Broadcast	CIDR
SPO	198.5.0.0	198.5.0.1	198.5.7.254	198.5.7.255	/21
RJO	198.5.8.0	198.5.8.1	198.5.11.254	198.5.11.255	/22
CAM	198.5.12.0	198.5.12.1	198.5.12.254	198.5.12.255	/24
RGS	198.5.13.0	198.5.13.1	198.5.13.254	198.5.13.255	/24
BAH	198.5.14.0	198.5.14.1	198.5.14.62	198.5.14.63	/26
PER	198.5.14.64	198.5.14.65	198.5.14.94	198.5.14.95	/27

Sumarização (Módulo 1 não é utilizado, apenas nos Módulos 2, 3 e 4)

Exemplo: 1^a Regra - Ver as redes;

2ª Regra - Converte em binário;
 3ª Regra - Alinhar os bits comum;
 4ª Regra - Quantidade de bits comum;
 5ª Regra - Parar nos últimos bits iguais.

Prática: 10.1.12.0 /24

10.1.13.0 /24 10.1.14.0 /24 10.1.15.0 /24

Abrindo os bits de rede:

10.1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
10.1	0	0	0	0	1	1	0	1	0	0	0	0	0	0	0	0
10.1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0
10.1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
16 bits			6 b	its												

Rede: 2²²=4.194.304 - Hosts: 2¹⁰-2=1.022 Máscara: 255.255.252.0 CIDR: /22

Nova rede: 10.1.12.0 / 22

Variação: 256-252=4 Redes: $0 \sim 3 \mid 4 \sim 7 \mid 8 \sim 11 \mid 12 \sim 15 \mid 16 \sim 19 \mid 4$ redes sumarizadas

Exercício: 192.168.3.0 /24

192.168.4.0 /25 192.168.5.0 /26

Abrindo os bits de rede:

192.168.	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
192.168.	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
192.168.	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
Bits		5	bit	ts												

Rede: 2²¹=20.971.152 - Hosts: 2¹¹-2=2.046 Máscara: 255.255.248.0 CIDR: /21

Nova rede: 192.168.0.0 / 21

Variação: 256-248=8 Redes: $0 \sim 7 \mid 8 \sim 15 \mid 16 \sim 23 \mid 24 \sim 31 \mid \text{redes sumarizadas}$

Wildcard Mask - Máscara Coringa | Máscara Invertida (Módulo 1 não é utilizado, apenas nos Módulos 2, 3 e 4)

É importante ter em mente que a máscara de rede e a máscara coringa não estão diretamente relacionadas uma com a outra. Lembrem-se que o propósito da máscara de rede é estabelecer uma fronteira entre aquilo que chamamos de prefixo de rede (identificador da rede) e o sufixo de host (identificador de um host na rede), necessariamente nessa ordem (contíguas).

Ou seja, na estrutura da máscara de rede há uma sequência ininterrupta de bits 1 (prefixo) e, depois, uma sequência ininterrupta de bits 0, sem que haja intercalação de bits 0s e 1s. Por outro lado a wildcard mask não tem essa estrutura rígida e os bits são tratados individualmente, por isso é possível ter máscaras coringas que intercalam bits 0s e 1s.

Uma recomendação para trabalhar rapidamente com as máscaras coringas no cotidiano operacional é pensar nela como o "inverso" da máscara de rede. Por exemplo, os valores das *wildcard masks* associados com as máscaras padrões são:

```
255.0.0.0 (/08) = WC 0.255.255.255

255.255.0.0 (/16) = WC 0.0.255.255

255.255.255.0 (/24) = WC 0.0.0.255
```

```
a) Exemplo: Sub-Rede /26 | b) Exemplo: Sub-Rede /30

255.255.255.255 | 255.255.255.255 |
(-) | (-) |
255.255.255.255.192 | 255.255.255.252 |
(=) | (=) |
0.0.0.63 | 0.0.3
```

Capítulo 7

Endereçamento IP IPv6

Conversão de Decimal para Hexadecimal

Hexa: 0 1 2 3 4 5 6 7 8 9 A B C D E F --> 16 possibilidades --> 2⁴=16

Conversão de Hexadecimal para Decimal.

Valor: 0x1E (primeiro, substituir a letra para número na tabela de referencia: E=14 - lembrar que os valores em Hexadecimal é igual a 24 utilizando 4 bits.

		-	1				14	1			
	8	4	2	1	8	3	4	2	1		
	0	0	0	1	1		1	1	()	
	27	26	25	24	2	3	2 ²	21	2	0	
	128	64	32	16	8	3	4	2	1		
	0	0	0	16	8	3	4	2	()	
		5 12									
	8	4	2	1		8	4	2		1	
	0	1	0	1		1	1	0		0	
	27	26	25	24	2	23	2^2	21	2	20	
	128	64	32	16		8	4	2		1	
	0	64	0	16		8	4	0		0	
			8					1			
	8	4	2	1		8	4	2		1	
	1	0	0	0	(0	1	0		0	
	27	26	25	24	2	23	2^2	21	2	20	
	128	64	32	16		8	4	2		1	
	128	0	0	0		0	4	0		0	
	2				0 0				<u> </u>	_	
8	4	2	1	8	4	2	1	8	4	2	Г
0	0	1	0	0	0	0	0	0	0	0	t
2 ¹ 1	210	29	28	27	26	25	24	2 ³	22	21	
048	1024	512	256	128	64	32	16	8	4	2	Ť
	-										+

Conhecendo o IPv6

IPv6 = 2^{128} =+340 undecilhão (endereçamento Fim-a-Fim)

IPv4 = 2^{32} =+4 bilhões (uso de NAT)

IPv6 = Foco para o IoT (Internet of Things) é IoE (Internet of Everythings)

Hoje o IPv6 trabalha com Coexistência de IPv4 e IPv6

Pilha Dupla: dois protocolos simultaneamente

Encapsulamento = IPv6 encapsulado no IPv4

Conversão (Tradução) = NAT64 - IPv6 ativo comunicando com IPv4 ativo

Representação do IPv6 (8 Hextets) - separado por : (dois pontos) = 16*8=128 bits

	64	bits		64 bits						
16 bits										
X:										
0000	0000	0000	0000	0000	0000	0000	0000			
FFFF										
	F	F		F	F	4 H	lexa			
	0000	0000		0000	0000	16 B	inário			
	1111	1111		1111	1111					

Informações:

IPv6 2^128	340282366920938000000000000000000000000
População Mundial (Bi)	7125000000
IP por pessoa	47758928690658000000000000000
Área total da Terra Km2 (Mi)	510000000
IP por Km2	667220327295958000000000000000

Regras de omissão de 0 (zeros) no IPv6 (objetivo: mais informação a serem apresentadas).

Primeira Regra: Omitir os 0 (zeros) a esquerda (OBS: O ENDEREÇO IPv6 NÃO SÃO CASE SENSITIVE)

2001:	0 DB8:	0000:	1111:	0000:	0000:	0000:	0 200
2001:	DB8:	0:	1111:	0:	0:	0:	200

Segunda Regra: Omissão de segmento de 0 (zero) em sequência, modo Compactado:

OBSERVAÇÃO: apenas uma vez, em apenas um bloco sequencial.

2001:	DB8:	0:	1111:	0 :	0 :	0 :	200
2001:	DB8:	0:	1111:	::	200		

Métodos de Comunicação do endereçamento IPv6

Unicast = Interface -> endereço de origem; Multicast = Único pacote IPv6 para um Grupo;

Anycast = Qualquer endereço Unicast, vários hosts associados a um único endereço

O roteamento será sempre para o mais próximo.

Comprimento do IPv6 - Prefixo: /64

	Prefixo	64 bits		ID Interface 64 bits				
2001:	0DB8:	000A:	0000:	0000:	0000:	0000:	0000	
	4 He	xtets		4 Hextets				
	16 x 4	1 = 64		16 x 4 = 64				

Endereços Unicast IPv6 - Possui 6 tipos diferentes:

Unicast Global: Igual ao IPv4 Público, Roteáveis na Internet, Globalmente Único (Fim-a-Fim), geralmente iniciando com a prefixo: 2001:0000::/23

Link Local (APIPA - usa a técnica EUI64): Endereços locais (origem) de conexão dentro da mesma LAN (sub-rede), roteadores não encaminha pacotes de Link Local, geralmente iniciando com o prefixo: FE80::/64

Loopback: Igual ao IPv4 = 127.0.0.1 no IPv6 é: ::1/128 ou ::1 compactado

Endereço não especificado: Todos os endereços IP 0 (zero) ::/128 ou ::

Unique Local Address (ULA): Igual aos endereços de Classe de IPv4 Privado, endereço utilizado localmente, os roteadores não roteia tráfego desses prefixos, geralmente iniciando com o prefixo: FC00::/7, FDFF::/7 e FEC0::/10, conhecidos também como Endereço Local de Site.

IPv4 incorporado: endereços unicast IPv4 incorporado é o processo de transição para o IPv6 (não cai no CCNA R&S v5.0)

Unicast Locais IPv6 = Link Local

Origem: FE80::AAAA - Destino: FE80::DDDD --> FE80: Sub-rede

Obrigatório ter endereço de Link Local nas interfaces, o Unicast Global não é obrigatório

Intervalo do Link Local: FE80::/10 = 10 bits de rede (FE80 até FEBF)

Observação: Protocolos de roteamento usa o Link Local para troca de mensagens e atualização de tabelas de roteamento.

Observação: O endereço de Link Local do roteador do sua LAN é usado como Gateway para os computadores da rede, não usamos o endereço de Unicast Global.

10 bits	54 bits	64 bits
1111 1110 10	Remanescentes	ID da Interface
FE80::/10		Dinâmico (EUI64) ou Estático
		(Manual)

Endereços Unicast Global IPv6

Prefixo Global | ID Sub-rede | ID Interface Primeiro hextet será determinado Unicast Global

001 **0010 0000 0000 0000**::/64 (2000) **0011 1111 1111 1111 1111**::/64 (3FFF)

Prefixo Global	ID Sub-rede	ID Interface
48 bits	16 bits	64 bits
Prefixo	Hosts	

Endereçamento Completo e Compactado de Unicast Global

	4 Hextets				4 Hextets			
2001:	0DB8:	ACAD:	0001:	0000:	0000:	0000:	0010/48	
2001:	DB8:	ACAD:	1:	::	10/48			
	Prefixo de Rede /64 ou /48				ID Interface			

Prefixo Unicast Global: 2001:DB8:ACAD::/48

ID Sub-rede: 0001 ID Interface: ::0010

Observação: Endereços Host All 0 (todos os zeros) e Host All 1 (todos os um) podem ser atribuídos aos dispositivos, coisa que no IPv4 não pode, por exemplo: IP 192.168.10.0/24 ou IP 192.168.10.255/24

Endereço All 0 (todos os zeros) utilizar somente em roteador = anycast

Configuração Dinâmica de IPv6

SLAAC (Stateless address autoconfiguration - Configuração automática de endereços de vida curta)

Obter: Prefixo da Rede, Tamanho do Préfixo (/48 ou /64) é o Gateway.

SLAAC depende dos Anúncios dos Roteadores (RA), roteadores com o Suporte ao Protocolo IPv6 manda mensagens periódicas de RA.

Mensagem Solicitação de Roteador (RS) = Hosts: tipo ARP

Endereço Multicast

Opção 1 = Mensagem RA padrão;

Opção 2 = SLAAC + DHCPv6 = mensagem RA + outras informações do DHCPv6 como DNS,

NTP, etc.

Opção 3 = Não usar RA, usar somente DHCPv6

Esse recurso e fornecido pelos Roteadores, por padrão não está habilitado.

Conhecendo o Processo EUI64 (Extended Unique Identifier) - MAC

OUI - Organizationally Unique Identifier				ID Dispositivo			
24 bits				24 bits			
FC	99	47	16 bits		75	CE	E0
1111 11 0 0	1001 1001	0100 0111			0111 0101	1100 1110	1110 0000
1111 1110	1001 1001	0100 0111	1111 1111	1111 1110	0111 0101	1100 1110	1110 0000
FE	99	47	FF	FE	75	CE	E0
7 bit							

Regra: Mudar o 7 (sétimo) bit (conhecido como bit universal local UL), RFC-5342;

Processo: Reverter o estado do bit = 0 para 1 ou 1 para 0

Acréscimo: 16 bits na separação do OUI e ID Dispositivo, colocando FF FE

Segurança: Gera preocupação na rede???? Sim pois infelizmente não temos rastreamento das informações, deve usar um sistema de Monitoramento/Gerenciamento de MAC na rede.

ID gerados aleatoriamente = não usa o endereço MAC e o processo EUI64: Linux=EUI64

Mac=EUI64

Windows: Aleatório

EUI64 = sempre acrescenta o FF:FE

Formas de utilização do processo EUI64: Global Unicast + EUI64 = 2001:0DB8:ACAD:0001::/64

Link Local + EUI64 = FE80::/64

Endereços Multicast IPv6

Prefixo: FF00::/8

Endereço Multicast só pode ser endereços para o destino não para o origem: exemplo: FE80::/64 para

FF00::/8

Multicast atribuído: Endereços reservados para grupos pré-definidos, usado junto com o DHCPv6

Grupo todos os nós: FF02::1/8 Grupo todos roteadores: FF02::2/8

Dispositivos com IPv6 manda mensagens Solicitação de Roteador (RS)

Mensagens Solicitação de Roteador (RS) solicita Mensagem de Anúncio de Roteador (RA)

Endereços Multicast do nó solicitado

Prefixo Multicast: FF02:0:0:0:0:1:FF00::/104 - utiliza 104 bits

24 bits = Menos significativo = copiados para o final do endereço IPv6

Divisão de Sub-rede IPv6

/48	/64	/64
Prefixo Global	ID Sub-rede	ID Interface
48	16	64
	0000 até FFFF	
	65.536 sub-redes	

Bloco: 2001:0DB8:ACAD: 0000 ::/64

0003 5 sub-redes

Capítulo 10

Camada de Aplicação

Capítulo 10 - Tópicos Importante da Camada de Aplicação

Camadas dos Modelos	OSI	ТСР	PDU	
1	Aplicação			
2	Apresentação	Apresentação Aplicação Dad		
3	Sessão			
4	Transporte	Transporte	Seguimento	
5	Rede	Internet	Pacote	
6	Enlace	Acesso a Rede	Quadro	
7	Física	Acesso a Reue		

Camada de Aplicação: Modelo OSI e TCP são iguais, lembrando que as camadas: 1, 2 e 3 estão juntas numa única camada.

Protocolos de Aplicação: DNS, HTTP, SMTP, POP, DHCP, FTP, etc

Camada de Apresentação e Sessão: Modelo OSI e TCP

Objetivo da camada de apresentação: Formatar, Comprimir, Criptografia, Codificação: MPEG, JPEG, PNG, MP3, ZIP, etc

Protocolo da camada de aplicação são utilizados pelos dispositivos origem e destino, no momento da estabilização da conexão.

Tipos de Redes:

Redes P2P - duas partes: Rede e Aplicação

- 1. Cliente e Servidor descentralização;
- 2. Aplicação Cliente e Servidor;
- 3. Sistema Hibrido, descentralizado, utilização de indice de diretórios central
- 4. Aplicações: eMule, Shareaza, Bit Torrent, etc.

Redes Cliente e Servidor

- 1. Solicitantes de informação = cliente
- 2. Atendentes de informação = servidor
- 3. Troca de informações = autenticação
- 4. Fluxo: servidor -> cliente ou cliente -> servidor

Protocolos conhecidos: Numeração: 1 ~ 1023

HTTP (Hyper Text Transfer Protocol - Porta 80)

Solicitação GET - servidor envia a página HTML solicitada

Protocolo baseado em solicitação/resposta = tipos de mensagens

Get = solicitação cliente - dados

Put = envia arquivos para o servidor

Post = envia dados para o servidor

HTTPS (Hyper Text Transfer Protocol Secure - Porta 443)

Utiliza o SSL para criptografar as solicitações Get, Put e Post.

SMTP (Simple Mail Transfer Protocol - Porta 25 - Nova Porta 585 - 465 SMTPS)

POP3(Post Office Protocol - Porta 110 - 995 POP3S) IMAP (Internet Message Access Protocol - Porta 143 - 993 IMAPS) DNS (Domain Name System - Porta 53)

Serviço de Domínio - DNS

Sistema de Nome de Domínio (DNS): Responsável por traduzir nome para IP (vice-versa) Nome para IP = pesquisa direta; IP para Nome = pesquisa reversa.

DNS utiliza o software BIND (Berkeley Internet Name Domain) - criado pela ISC (Internet Systems Consortium) para o servidores Unix 1980

Tipos de registro do DNS:

Tipo A = Dispositivo Final = Nome para IP

Tipo NS = Nome Autoritativo = Nome do domínio

CNAME = Nome capânica = Nome para Pagistra Tip

CNAME = Nome canônico = Nome para Registro Tipo A (conhecido por Apelido)

MX = Troca de Correspondência, utilizado em servidores de Email SMTP

DNS trabalha com Hierarquia (Igual ao endereçamento IP):

. (ponto) = Root Hints (InterNIC - 13 servidores - A até M) - Site para consultar Root Hints: http://www.root-servers.org/

Serviço de Configuração Dinâmica de Endereçamento IP (DHCP - Porta padrão 67/68)

Protocolo de Configuração Dinâmica de Host - DHCP ISC (também desenvolvido pela Berkeley)

- 1. **DHCPDISCOVER** Mensagem de descoberta do servidor DHCP cliente
- 2. DHCPOFFER Mensagem do pacote DHCP Leasing para o Cliente (IP/Mask/Gw/DNS)
- 3. DHCPREQUEST Mensagem de solicitação e confirmação Aceite do Leasing
- 4. **DHCPPACK** Mensagem de Confirmação Leasing foi Finalizado
- 5. **DHCPNACK** Mensagem Negativa Começa a negociação novamente

Protocolo de Transferência de Arquivos (FTP Porta padrão 21)

FTP (**File Transfer Protocol**): Transferência de arquivos em ambas as direções (Cliente - Server ou Servidor - Cliente);

Comandos utilizados: Get (receber), Put (enviar), Mget ou Mput (vários arquivos), Delete, Rmdir.

Cliente estabelece a conexão, Cliente determinar os comandos/ações

Protocolo de Compartilhamento de Arquivos, Diretórios e Impressoras Microsoft (SMB/CIFS - 137, 138, 139 e 445)

SMB (Server Message Block - Portas padrão: 137 até 139); CIFS (Common Internet File System - Porta padrão 445).

IBM (década de 80): criou o protocolo para Autenticação e controle de acesso, criando os conceitos de Permissões de Acesso remoto.

Antes do Windows Server 2000 a Microsoft utiliza o NetBIOS - NBMS (Network Basic Input/Output System) e WINS (Windows Internet Name Service)

A partir do Windows Server 2000 a Microsoft começou a utilizar o TCP/IP integrado com o DNS

Desde a criação do Unix/Linux/Apple já trabalha com TCP/IP e DNS, integração com Microsoft utiliza o software SAMBA (Samba Unix criado em Dezembro 1991 por Andrew Tridgell - Australia).

Tendências da Rede

BYOD (Bring your own device - Traga o seu próprio dispositivo) IoT (Internet of Things - Internet das Coisas) IoE (Internet of Everything - Internet de Todas as Coisas)

50 Bilhões de Devices vai está conectado até 2020 (4 anos), lembrar que o IPv4 tem 4.3 bilhões de enderecos IP's (tirando os vários que não pode ser utilizado);

Somente em 2010 cerca de 350.000 (API - Aplicativo) foi desenvolvido para aparelhos Móvel

5.5 Bilhões de Smartphone ativo hoje

Resumo de tudo:

Aplicativo: Envia o Fluxo de Dados - exemplo: HTTP/GET

Transporte: Divide o Fluxo de Dados e Adiciona o Cabeçalho TCP ou UDP criando Segmento

Internet: Datagrama/Pacote endereçamento IP, foco: IP Origem - IP Destino

Acesso a Rede: Enquadra o Pacote, criando o Quadro (Frame), utiliza MAC de Origem e MAC de Destino, faz a conversão em Sinais Elétricos/Ondas Sonoras/Luz.

Capítulo 11

É uma Rede

Capítulo 11 - Tópicos Importante É uma rede

nic.br - Núcleo de Informação e Coordenação do Ponto BR

cgi.br - Comitê Gestor da Internet no Brasil

registro.br - Registro de Manutenção dos Nomes de Domínio que usam Ponto BR

cetic.br - Centro Regional de Estudos para o Desenvolvimento da Sociedade da Informação

ceweb.br - Centro de Estudos sobre Tecnologias Web

cert.br - Centro de Estudos, Resposta e Tratamento de Incidentes de Segurança no Brasil

ceptro.br - Centro de Estudo e Pesquisa em Tecnologia de Redes e Operações

ptt.br - Ponto de Tráfego de Troca

ntp.br - Network Time Protocol do Brasil

CGI.br - Responsável pelo Marco Civil da Internet: http://www.cgi.br/resolucoes/documento/2009/003

Topologia de Rede Pequena: Desktop, Notebook, Switch, Access Point, Phone, Router com Acesso a WAN (geralmente 1 Link)

Fatores para a escolha do dispositivo: Custo, Porta, Velocidade, Expansão, Modular, Gerenciável, Recursos, Segurança, QoS, VoIP, PAT/NAT, DHCP, etc.

Endereçamento IP: Plano de endereçamento, Classe (lembrar do CIDR), VLSM, quantidade de Devices na rede, Quantidade de Dispositivos do meio, etc

Redundância na Rede: Servidores, Switch, Router, Serviços de Rede e Aplicação, Acesso a WAN (Dual Link - LB - Load Balancing e HA - High Availability)

Priorizar Tráfego: Voz (alta), SMTP (média), FTP (baixa) - Backbone da Internet

- 1. Centralização;
- 2. Segurança Física;
- 3. Redundância de Servidores:
- 4. Caminhos Redundante (Módulo II).

Aplicativos Comuns: Aplicativos de Rede, Servicos de Camada de Aplicação (Fazer Levantamento);

Protocolos Comuns: DNS, SSH, Telnet, SMTP, POP, IMAP, DHCP, HTTP, HTTPS, FTP, TFTP, SMB, CIFS, etc.

Aplicativos de Tempo-Real: VoIP (PoE), Telefone IP, Áudio e Vídeo Conferência, Protocolo RTP (Real-Time-Protocol), aplicação de QoS, etc

Dimensionar Rede: Documentação, Inventário, Tráfego, etc.

Análise dos Protocolos e Tráfego de Rede: Capturar Pacotes, Analisar Tráfico (por período, segmento, horário, usuários, departamentos), software Whareshark

Crescimento da Rede: Sistema Operacional, Serviços, Processos, Recursos, Protocolos, Tráfego, Usuários.

Segurança (ameaças): Roubo de Informações, Perda de Dados, Roube de Identidade, Interrupção de Serviços.

Segurança Física: Ameaça ao hardware, ambientais, elétricas, manutenção, etc.

Tipos de Vulnerabilidades: Tecnologia = Protocolo HTTP

Sistema Operacional Windows

Switch, Router, Access Point, etc

Configuração = Usuário, Senhas, etc

Contas de Sistema Configuração Padrão

Política Segurança Falta de Política

Controle de Acesso

Desastre = Plano de Recuperação

Códigos Maliciosos: Vírus, Worms, Trojan, etc. (cert.br - Centro de Estudo, Resposta e Tratamento de Incidentes de Segurança no Brasil)

Vírus: código malicioso adicionado/anexado em outro programa ou arquivo, dependente da execução do usuário para se instalado no computador;

Worms: códigos malicioso que não depende da ação do usuário, ataca um sistema ou vulnerabilidade conhecida, tem a capacidade de se auto-copiar e executa automaticamente tarefas de replicação

Cavalo de Tróia: código malicioso que se esconde dentro de outro programa, geralmente fotos ou arquivo de música, após sua execução, o arquivo e apresentado e o código malicioso e executado.

Ataques conhecidos: Ataque de reconhecimento (nmap, nessus);

Ataques de acesso (hydra, brute force);

Ataque de negação (pacote +100.000, pps +1.000.000)

DoS = Denial of Service DDoS = Distributed DoS

Atenuando ataques: Contenção = propagação

Inoculação = corrigir Quarentena = desconecte

Tratamento = Limpe, Corrige, Vacina

Ferramentas = Backup, Upgrade, Atualização, Patch's, Firewall, etc.

AAA (Autenticação, Autorização e Contabilização): AD-DS, LDAP, Keberos, Radius, Tacacs+, Router e Switch - VTY (Telnet ou SSH), acesso a Porta do Device, criação de ACL's (Access Control List).

Firewall: Filtragem = Pacote/Quadro - IP/MAC

Aplicativos - Porta

Site - URL/Palavra/Conteúdo

Inspeção de Status Completo do Pacote / Inspeção Completa de Respostas Legítimas (SPI - Exemplo: Websense) e Inspeção Profunda de Pacote (DPI)

NAT - traz um segurança para a rede, devido ao mascaramento do endereço IP de origem.

Tipos de Firewall: Baseado em dispositivo = Appliance

Baseado em servidor = Sistema Operacional/Aplicação

Integrado = Adiciona funcionalidade de Router

Pessoal = Integrado ao Sistema Pessoal

Segurança End-Point: BYOD = Desafio da TI, funcionários, engenharia social, etc.

```
Proteção de dispositivos:
                            Nomes/Senhas alteradas:
                            Recursos do Sistema/Restrito
                            Serviços/Aplicação Instalada/Desinstalada
Senhas Fortes: Fortes/Alteração - site Kaspersky - https://goo.gl/pkmQnj
Cyber Ataques: Cyberthreat Real Time - site Kaspersky - https://goo.gl/9b7TB8
Cyber Ataques: Digital Attack Map - site Digital Attack Map - https://goo.gl/8Aa2Uo
Cyber Ataques: Cyber Attack Real Time - site Norse - https://goo.gl/hEbKiU
Práticas: service password-encryption
         security password min-length 8
         login block-for 120 attempts 3 within 60
         username cisco secret netacadcisco
         ip domain-name cisco.com
         crypto key generate rsa general-keys module 1024
         line vty 0 4
              login local
              transport input ssh
              exec-timeout 10
         console 0
              login local
              exec-timeout 10
              password netacadcisco
         aux 0
              login local
              exec-timeout 10
              password netacadcisco
Linha de Base: Utilização dos Link e o tempo de resposta (SNMP, MRTG, Nagios, etc)
Cisco IOS Sistema de Arquivos: IOS ficam na Memória Flash
IFS (IOS File System) igual para Router ou Switch
Backup em servidor TFTP ou FTP
NVRAM fica o arquivo startup-config, backup para servidor TFTP ou FTP
show file systems
dir flash:
dir nyram:
cd nvram
    pwd
    dir
    copy
Backup Router/Switch Cisco: Captura de Texto, Cópia para TFTP ou Porta USB;
copy running-config startup-config (NVRAM)
copy startup-config tftp
copy startup-config usbflash0:
```

Serviços de Roteamento Integrado - Access Point Router: Dispositivo Multifuncional: tem as funções de: Switch 802.3, Router, Access Point 802.11 b/g/n/ac, WEP/WAP, ADSL, Firewall, DHCP, etc.

Dicas para prova:

Desperdício;
Menor Número;
O maior | Mais Alto | Gateway;
O Primeiro; Wasting Fewest

The Highest = The First = The Last = O Último.