

AgMRC Beginning Farmer Asset Mapping

Data Science for the Public Good

IOWA STATE UNIVERSITY

Grad Fellow

Sanika Gokakkar

Nabil Idris Intern

Cory Roth Intern

Bailey Hanson Extension Specialist Project Lead Agricultural Marketing Resource Center lowa State University Sponsor

Table of contents

- Specialty Crop Data
 - 1. Initial findings
 - 2. Growing Degree Day
 - 3. Crop rotation examples
- Weather Data
 - 1. Data discovery
 - 2. Extracting weather information
 - 3. Risk management resources
- Soil Data
 - 1. Web Soil Survey (SSURGO)
 - 2. Obtaining data
 - 3. Combining soil and crop data

- Tableau
 - 1. Making of Tableau
 - 2. Making visualizations dynamic
 - 3. Making website
 - 4. Dashboard demo
- Flowcharts
 - 1. Current code workflow
 - 2. Future code workflow

Data Sources

Iowa Environmental MesoNet Reanalysis Tool

• The IEMRE is a tool available publicly to provide climate information that tries to bypass the many problems associated with single site observations. From this tool, we receive our precipitation and temperature data for selected periods of time.

Soil Survey Geographic Database (SSURGO)

• The SSURGO database was our choice of data for the soil information required by our project. This is a survey conducted by the National Cooperative Soil Survey covering soil maps for more than 95 percent of the nation's counties.

Specialty Crop Information

- "Midwest Vegetable Production Guide for Commercial Growers 2022" Provided by the Iowa State Horticulture Extension
- "Knott's Handbook for Vegetable Growers" Donald N. Maynard

Soil pH-Levels for Crops

Specialty Crop Dataset

- Initial Findings
 - Sources
 - Challenges
- Growing Degree Day
 - How to calculate GDD
 - Merging Specialty Crop Dataset with Weather Data
- Crop Rotation Examples
 - What is Crop Rotation?

Initial Findings

- Started by choosing 19 specialty crops, and focused on various factors such as
 - 1. Soil Types
 - 2. pH Levels
 - 3. Rooting Depths
 - 4. Storage Conditions
 - 5. Crop Maturity
 - 6. Soil Nutrients etc.

- Sources- The research involved scraping data from various sources.
 Primary sources includes 2022-Midwest-Veg-Guide and Donald N. Maynard, George J. Hochmuth -Knott's Handbook for Vegetable Growers-Wiley
- Challenges- Commonly faced hurdles included Data Insufficiency, misleading/incorrect data, and no area specific information

Snippet of Specialty Crop Dataset

Crops	Soil Types	Base Temp Rooting Depth Depth	_low De	pth_higlpH- Level	ph_L p	h_H TemperatureTe	emp (°F) ın	nidity (%)	Storage Life	CropMaturity Early
Onions	Sandy loam	40 Shallow (18-24	18	24 6.8-6.0	6.8	6 Cool-season	32	65-70	8-16 weeks	90
Peas	Clay	39 Moderate (36-	18	48 6.8-5.5	6.8	5.5 Cool-season	32	90-98	< 2 weeks	56
Asparagu	Sandy loam	50 Deep (>48 inch	48	100 6.8-6.0	6.8	6 Cool-season	36	95-100	< 2 weeks	
Potato	Sandy loam	32 Shallow (18-24	18	24 6.8-5.0	6.8	5 Cool-season (40-54	95-98	8-16 weeks	90
Cabbage	Loam	40 Shallow (18-24	18	24 6.8-6.0	6.8	6 Cool-season	32	95-100	2-4 weeks	70
Sweet Po	t Sandy loam	65 Deep (>48 incl	48	100 6.8- 5.0	6.8	5 Cool-season	55-59	85-95	8-16 weeks	120
Squash	Sandy, fertile	60 Moderate (36-	36	48 6.8-5.5	6.8	5.5 Warm-seasor	45-50	95	< 2 weeks	40
Cucumbe	r loose sandy l	60 Moderate (36-	36	48 6.8-5.5	6.8	5.5 Warm-seasor	50-54	85-90	< 2 weeks	55
Cauliflow	ewell drained,	40 Shallow (18-24	18	24 6.8-6.0	6.8	6 Cool-season	32	95-98	< 2 weeks	55
Pumpkin	well-drained,	60 Deep (>48 incl	48	100 6.8-5.5	6.8	5.5 Warm-seasor	54-59	50-70	8-16 weeks	85
Tomato	Fertile loam	50 Deep (>48 incl	48	100 6.8-5.5	6.8	5.5 Warm-seasor	50-55	90-95	2-4 weeks	60
Waterme	Sandy Loam	50 Deep (>48 incl	48	100 6.8-5.0	6.8	5 Warm-seasor	50-60	90	2-4 weeks	75
Carrot	Sandy Clay	40 Moderate (36-	36	48 6.8-5.5	6.8	5.5 Cool-season	32	98-100	4-8 weeks	50
Sweet Co	r Clay	50 Shallow (18-24	18	24 6.8-5.5	6.8	5.5 Warm-seasor	32	95-98	< 2 weeks	60
Lettuce	Loose	40 Shallow (18-24	18	24 6.8-6.0	6.8	6 Cool-season	32	98-100	< 2 weeks	70
Eggplant	Sandy loam	50 Moderate (36-	36	48 6.8-5.5	6.8	5.5 Warm-seasor	50	90-95	2-4 weeks	60
Radish	Sandy	40 Shallow (18-24	18	24 6.8-5.5	6.8	5.5 Cool-season	32	95-100	4-8 weeks	22
Spinach	Clay	35 Shallow (18-24	18	24 6.8-6.0	6.8	6 Cool-season	32	95-100	< 2 weeks	37
Cantalou	pLoam	65 Moderate (36-	36	48 6.8-6.0	6.8	6 Warm-seasor	36-41	95	< 2 weeks	80

What is GDD?

Used to estimate the growth and development of plants and insects during the growing season.

$$GDD = T_{MEAN} - T_{RASE}$$
, if T_{MEAN} is greater than T_{RASE}
 $GDD = 0$, if T_{MEAN} is less than T_{RASE}

Reported Base Temperatures for GDD Computations

BASE TEMP	CROP
40° F	wheat, barley, rye, oats, flaxseed,
	lettuce, asparagus
45° F	sunflower, potato
50° F	sweet corn, corn, sorghum, rice, soybeans, tomato

BASE TEMP	INSECT
44° F	Corn Rootworm
48° F	Alfalfa Weevil
50° F	Black Cutworm, European Corn Borer
52° F	Green Cloverworm

GDDs are used as a comparison tool that is used with the context of a Normal Growing Degree Day (NGDD), which is an average of the GDDs of the same day over the past 30 years.

GDDs can also be accumulated for a month and compared to past years as well.

The greater the GDD is than the NGDD, the more developed the crop is seen to be at that stage.

	sday	ogdd5086	oprecip	osdd86	cgdd5086	cgdd5086_acc
2014-05-01	0501	0	0.031102	0	9.145833333	9.145833333
2014-05-02	0502	8.271	0	0	9.743055556	18.88888889
2014-05-03	0503	10.431	0.031102	0	9.854166667	28.74305556
2014-05-04	0504	6.273001	0.020735	0	10.76388889	39.50694444
2014-05-05	0505	9.900002	0	0	11.29166667	50.79861111
2014-05-06	0506	11.943	0	0	11.00694444	61.8055556
2014-05-07	0507	20.475	0	1.133999	11.00694444	72.8125
2014-05-08	0508	17.163	0	0	11.71527778	84.52777778
2014-05-09	0509	8.973	0	0	11.49305556	96.02083333
2014-05-10	0510	14.796	0	0	12.06944444	108.0902778
2014-05-11	0511	13.446	0.746531	0	12.01388889	120.1041667
2014-05-12	0512	11.691	0.43551	0	11.125	131.2291667
2014-05-13	0513	3.582001	0	0	11.26388889	142.4930556
2014-05-14	0514	5.813999	0.031102	0	12.0555556	154.5486111
2014-05-15	0515	0	0.020735	• 0	12.81944444	167.3680556
2014-05-16	0516	2.034	0	0	13.57638889	180.9444444
2014-05-17	0517	8.405998	0	0	14.35416667	195.2986111
2014-05-18	0518	10.044	0	0	13.97222222	209.2708333
2014-05-19	0519	14.787	0.093306	0	14.15972222	223.4305556
2014-05-20	0520	21.762	0.850204	0.792	14.85416667	238.2847222
2014-05-21	0521	18.162	0	0	13.90972222	252.1944444
2014-05-22	0522	14.652	0	0	14.4375	266.6319444
2014-05-23	0523	16.047	0	0	14.76388889	281.3958333
2014-05-24	0524	17.505	0	0	14.5	295.8958333
2014-05-25	0525	18.081	0.010367	0	14.18055556	310.0763889
2014-05-26	0526	20.745	0.186612	0	14.11805556	324.1944444
		_				

GDD data from Iowa State Mesonet

Calculating GDD

Combined the climate data from the Iowa State Mesonet, IEM with the Base Temperatures of Crops

Row Labels - Sur	m of OnionGDD Sun	n of PeasGDD Sum o	f AsparagusGDD
2015	5161.731	5375.228	3129.867
Apr	361.064	390.561	116.649
May	662.314	693.314	359.118
Jun	913.395	943.395	613.395
Jul	1011.28	1042.28	701.28
Aug	914.53	945.53	604.53
Sep	872.679	902.679	572.679
Oct	426.469	457.469	162.216
2016	5451.5	5661.485	3438.9
±2017	5255.047	5463.195	3253.077
±2018	5210.896	5406.46	3345.273
± 2019	4981.047	5186.356	3072.888
2020	5003.897	5198.862	3146.292
± 2021	5454.38	5663.994	3461.832
Grand Total	36518.498	37955.58	22848.129

#		▼ Filter					C	Ų.
-	year ‡	Month ‡	acc_gdd_onion *	acc_gdd_peas ‡	acc_gdd_asparaguss 🗦	acc_gdd_potato 🗦	acc_gdd_cabbage ‡	acc_gdd_sweet_
1	2015	October	426.469	457.469	162.216	674.469	426.469	
2	2015	April	361.064	390.561	116.649	600.561	361.064	
3	2015	May	662.314	693.314	359.118	910.314	662.314	
4	2015	June	913.395	943.395	613.395	1153,395	913.395	
5	2015	July	1011.280	1042.280	701.280	1259,280	1011.280	
6	2015	August	914.530	945.530	604.530	1162,530	914,530	
7	2015	September	872.679	902.679	572.679	1112.679	872.679	
8	2016	October	522.364	553.364	237.042	770.364	522.364	
9	2016	April	352.942	378.927	148.896	580.752	352.942	
10	2016	May	647.581	678.581	344.349	895.581	647.581	
11	2016	June	1034.670	1064.670	734.670	1274.670	1034.670	
12	2016	July	1038.847	1069.847	728.847	1286.847	1038.847	
13	2016	August	1007.815	1038.815	697.815	1255.815	1007.815	
14	2016	September	847.281	877.281	547.281	1087.281	847.281	
15	2017	October	450.134	476.271	201.942	677.709	450.134	
16	2017	April	372.125	401.136	138.717	611,136	372.125	
17	2017	May	626.053	657.053	325.683	874.053	626.053	

Visualization of GDD, Crop- Carrot

Crop Rotation

 Crop Rotation is the process of growing crops on the same land in sequence. Practicing crop rotation has several benefits for soil systems, such as improvements in its chemical and nutritional properties and physical characteristics. Cover crop rotation also benefits the crop system by including fewer weeds, insects, and plant diseases.

Examples of Integrating Cover Crops

Cover crops help add organic matter, manage soilborne diseases, and avoid soil erosion. Below are examples of five, four-year cropping sequences that you can use with vegetable crops. Each cover crop rotation sequence is designed to take advantage of legumes for N-fixation, grass or buckwheat to suppress weeds, and brassica cover crops for bio-fumigation and reducing soil compaction. These rotations won't work on every farm. Growers should try likely rotations in manageable areas to develop the best strategy for their farms.

Cover Crop	Pounds/ Quantity of Seed Bushel per Acre (pounds)		Desirable		
Nonlegumes	Busnei	per Acre (pounds)	Seeding Dates		
Rye	60	90-120 (alone) 90 (mixture)	Sept. 1-Nov. 10		
Perennial or common ryegrass	24	15-20 (alone) 5-8 (mixture)	Aug. 1-Sept. 15		
Sudangrass	40	20-30	May 15-July 1		
Field corn	56	50-60	May 15-July 1		
Winter barley	48	80-100	2-3 weeks before fly-safe date		
Wheat	60	90-120	Hessian fly-safe date		
Legumes	_	•	•		
Sweet clover	60	16-20 (alone) 10-12 (mixture)	March 1-April 15 July 15-Aug. 20		
Red clover	60	10-15 (alone)	Feb. 1-April 1		
Soybean	60	90-100	May 15-July 1		
Alfalfa	60	12-18	March-April		
Hairy vetch	60	15-20 (mixture)	Sept. 1-Nov. 1		
Mixtures	•				
Rye/ hairy vetch		90/15-20	Sept. 1-Oct. 1		
Ryegrass/ sweet clover		5-8 12-15	July 15-Aug. 20		
Sweet clover/ orchardgrass		6-8	March 1-April 15		

Crop Rotation Example

Rotati... Cro... S... Weath... Risk Links G...

Examples of Crop Rotation Select A Crop

			_	Sweet Corn	•
Exampl	Year	Months	Crop		
	0	Fall	Cereal Rye		
			Hairy Veto		
	4	March-June		e (terminate)	
	1			ch (terminate)	
		June-October	Pumpkin	(-	
		March-May		e (terminate)	
	2	May-September	Tomato		
2	_	September-Novem	Buckwhea		
2		Novermber-May	Cereal Rye		
		March	Buckwhea	it (leave)	
	3	April-August	Carrot		
		August-November	Crimson C		
		March-May	Crimson Clover (termi		
	4	May-September	Sweet Cor		Matc
	4	September-Novem	Cereal Rye		
			Hairy Veto		
	0	Fall	Cowpea		
		March-May	Cowpea (I		
	1	May-August	Sweet Cor		Mato
		August-October	Buckwhea		
		March-August	Garlic (lea	ive)	
_	2	August-November	Sorghum		
4		October-August	Garlic		
	3	March-June	Sorghum (leave)		
		June-November	Pumpkin/\		
		March		e (terminate)	
	4	April-August	Potato		
	4	August-October	Cowpea		
		November-April	Cereal Rye	9	

Example 1

Year 0

Fall before Year 1: Plant oats and peas as cover crops

Year 1

March: If field peas do not winter kill, terminate by mowing,

Examples

1

tillage, or herbicide

April-August: Onion production

August-November: Crimson clover as a cover crop

Year 2

March: If crimson clover does not winter kill, terminate by

tillage or herbicide

April-August: Potato production

August-November: Sorghum-sudangrass as a cover crop

Year 3

March-May: Leave winter-killed sorghum-sudangrass

May-October: Sweet potato production

October-June of Year 4: Cereal rye as a cover crop

Year 4

April-May: Terminate cereal rye by tillage, herbicide, or

roller-crimping

June-September: Cucumber production

September-November: Oats and field peas as a cover crop

Year 5

Return to Year 1

Weather Data

- Data Discovery: Weather
 - Sources
 - Challenges
- Extracting Weather Information
 - How to leverage R to extract weather information from IEMRE
 - Extracting Weather Information with User Input
- Risk Management
 - •What resources are available?

Data Discovery: Weather

Objective: Find data of locations by latitude and longitude

Data is available for stations but not always there for rural areas

Weather Stations usually interpolate based on data from surrounding stations to estimate temperatures across the US

Difficulties:

Websites such as NOAA have weather observations from stations and trying to locate data for areas in

between the stations were difficult.

■Climate Data Online: Dataset Discovery
Click on each dataset name to expand and view more details. Information generally includes a description of each dataset, links to related tools, FTP access, and downloadable samples.
Climate Data Online
The datasets listed in this section are accessible within the Climate Data Online search interface.
□ Daily Summaries
Global Historical Climate Network includes daily land surface observations from around the world. The GHCN-Daily was developed to meet the needs of climate analysis and monitoring studies that require data at a sub-monthly time resolution (e.g., assessments of the frequency of heavy rainfall, heat wave duration, etc.). The dataset includes observations from World Meteorological Organization, Cooperative, and CoCoRaHS networks. If observed, the station dataset includes max and minimum temperatures, total precipitation, snowfall, and depth of snow on ground. Some U.S. station data are typically delayed only 24 hours. More »
■ Search Tool ■ Mapping Tool ■ FTP Documentation & Samples ▼

□ Daily Summaries
 □ Global Marine Data
 □ Global Summary of the Month
 □ Global Summary of the Year
 □ Local Climatological Data
 □ Normals Annual/Seasonal
 □ Normals Daily
 □ Normals Hourly
 □ Normals Monthly
 □ Precipitation 15 Minute
 □ Precipitation Hourly
 □ Weather Radar (Level II)

■ Weather Radar (Level III)

DATA TYPE	DESCRIPTION	START	END	COVERAGE ²
DAIATIFE	DESCRIPTION	JIAKI	LIND	COVERAGE
DAPR	Number of days included in the multiday precipitation total (MDPR)	1893-01- 02	2022-06- 05	100%
DASF	Number of days included in the multiday snow fall total (MDSF)	1893-01- 02	2010-02- 11	100%
MDPR	Multiday precipitation total (use with DAPR and DWPR, if available)	1893-01- 02	2022-06- 05	100%
MDSF	Multiday snowfall total	1893-01- 02	2010-12- 31	100%
PRCP	Precipitation	1891-07- 01	2022-06- 05	100%
SNOW	Snowfall	1891-12- 01	2022-06- 05	100%
SNWD	Snow depth	1893-01- 01	2022-06- 05	100%

Example: Climate Data Online

Iowa Environmental Mesonet Reanalysis (IEMRE)

- The Iowa Environmental Mesonet (IEM) collects environmental data from cooperating members with observing networks
- Provides a regular dataset of Iowa Environmental Data. IEM Reanalysis provides access to hourly and daily interval data.

How Hot on Wednesday?

Posted: 29 Jul 2022 05:26 AM, Views: 273

The pessimistic lowan has had a difficult time enjoying the near perfect July weather this week knowing that "payback" will soon come. Sure enough, this pessimism was warranted as much of next week looks to be scorching hot with Wednesday currently forecast to be the hottest of them all! The featured map presents the latest NWS grid forecast for afternoon high temperature on 3 August. Much of the state is shown in the upper 90s with a good chuck over 100 and even pushing 104 around the Des Moines metro.

Rate Feature

Bad (2 votes)

Previous Years' Features

2021: "II Daily Climate Report

2019: " 2019 Severe T'Storm Warnings

2015: July maxes

2013: ...I Cold above our heads

2010: Muggy Hours

2008: Sunday Night's event

2004: Humidity has returned

2002: Rain is moving out.

2020: July Highs vs Lows

2016: "II Hourly Dew Point Extremes

2014: Last week's RAGBRAI

2011: "II Dubuque's Record Rainfall

2009: Lack of GDDs

2005: Those that missed out

2003: Fog

IEM Homepage

IEM Reanalysis (IEMRE)

IEM Reanalysis is an effort to provide a regular dataset of lowa Environmental Data without many of the problems associated with single site observations. The IEM will continue to provide single site observational data, but for some purposes, this dataset will be easier to work with. No dataset is perfect and this dataset is provided without warranty.

Previously, the IEM has only provided raw observations with limited quality control checks in place. Quality control is hard! Many times, users are simply looking for something "close" and perhaps not as perfect as high quality sensor observations can be. Producing a gridded analysis is one way to produce a dataset from point observations which can be sampled as a means of spatial interpolation

Isn't this a duplication of effort?

While there are other "reanalysis" type projects out there with data freely available, many times their data does not update in near real-time and does not include many of the datasets the IEM uniquely collects. We may also produce an analysis on sub-

Having said that, here are some alternatives:

DayMet GridMet

IEMRE Homepage

Extracting Weather Information

```
base_url <- "<u>https://mesonet.agron.iastate.edu/iemre/</u>'
target_request <- "multiday/"
lat <- 42.038534290775225
lon <- -93.85498251613917
end_of_url <- "ison"
start_dates = as.Date(c("2015-04-01", "2016-04-01", "2017-04-01", "2018-04-01", "2019-04-01","2020-04-01","2021-04-01"))
end dates = as.Date(c("2015-10-31", "2016-10-31", "2017-10-31", "2018-10-31", "2019-10-31", "2020-10-31","2021-10-31"))
url_list <-list()
df <- data.frame()
or (i in 1:length(start_dates)) {
 for (j in 1:length(end_dates)) {
     url <- pasteO(base_url, target_request, as.Date(start_dates[i]), "/", as.Date(end_dates[j]), "/", lat, "/", lon, "/", end_of_url)
     url_list <- c(url_list, url)</pre>
     data <- as.data.frame(jsonlite::fromJSON(url))</pre>
     df <- rbind(df,data)</pre>
```

Variable	Description
base_url	Url for IEMRE
target_request	Which data to access. Ex."Multiday" – Multiday Request
End_of_url	Output is a JSON file

- Data retrieved from IEMRE
- The data used are the values of PRISM (Parameter elevation Regression on Independent Slopes Model) and Daily Values(high,low,precipitation)

Extracting Weather Information with User Input

```
/ear= 2015
startMonthName = "March"
EndMonthName = "February"
lat = 42
lon= -93
startMonth <- match(startMonthName, month.name)</pre>
EndMonth <- match(EndMonthName,month.name)</pre>
CurrentDate <- Sys.Date()-2
StartDates <- list()</pre>
EndDates <-list()</pre>
EndDay = lubridate::days_in_month(as.Date(paste("2000/",EndMonth,"/01",sep="")))
StartMonthCorrect <-format(as.Date(paste(startMonth, "/01/2000", sep=""), "%m/%d/%y"), "%m")
EndMonthCorrect <-format(as.Date(paste(EndMonth,"/01/2000",sep=""), "%m/%d/%y"),"%m")</pre>
YearRange = as.numeric(format(CurrentDate, "%Y"))-Year
for(yearVal in 0:YearRange){
  StartDate = paste(Year+yearVal,"-",StartMonthCorrect,'-',"01",sep="")
  EndDate = paste(Year+yearVal,"-",EndMonthCorrect,"-",EndDay,sep="")
  if(Year+yearVal==as.numeric(format(CurrentDate, "%Y"))){
    EndDate <- format(Sys.Date()-2,"%Y-%m-%d")</pre>
  StartDates <-append(StartDates,StartDate)</pre>
  EndDates <-append(EndDates,EndDate)</pre>
```

```
base_url <- "https://mesonet.agron.iastate.edu/iemre/"</pre>
target_request <- "multiday/"</pre>
end of url <- "json"
#Create empty list to store url's
url_list <-list()</pre>
#Loop through the start and end dates. First date is the start date, second date is the end date. Dates are paired.
#url format is: https://mesonet.agron.iastate.edu/iemre/multiday/start_dates/end_dates/lat/lon/json
#Create empty dataframe
df <- data.frame()</pre>
for (i in 1:length(StartDates)) {
    url <- paste0(base_url, target_request, StartDates[i], "/", EndDates[i], "/", lat, "/", lon, "/", end_of_url)</pre>
    url_list <- c(url_list, url)</pre>
    print(url)
    data <- as.data.frame(jsonlite::fromJSON(url))</pre>
    df <- rbind(df,data)</pre>
write.csv(df,"Output\\WeatherData.csv")
```

- Updated script to take user input (location and dates)
- Data is saved to a csv file and passed on to a script that aggregates the weather data.

Risk Management Resources

Farming entails a certain amount of risk. And managing agricultural risks is a crucial task that every farmer should take into account. We have provided some resources to help farmers.

- Hazard Index Map
 - The National Risk Index is an online tool that aims to illustrate the communities most at risk of natural hazards, including drought.

Risk Indicator	Description
Expected Annual Loss	Represents average economic loss in dollars resulting from natural hazards each year
Social Vulnerability	Susceptibility of social groups to the adverse impacts of natural hazards, including disproportionate death, injury, loss, or disruption of livelihood.
Community Resilience	The ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions.

- FEMA's National Flood Hazard Layer (NFHL) Viewer (arcgis.com)
 - The National Flood Hazard Layer (NFHL) is a geospatial database that contains current effective flood hazard data. FEMA provides the flood hazard data to support the National Flood Insurance Program.
 User can use the information to better understand the level of flood risk and type of flooding.

In the <u>NFHL Viewer</u>, you can use the address search or map navigation to locate an area of interest and the NFHL Print Tool to download and print a full Flood Insurance Rate Map (FIRM) or FIRMette (a smaller, printable version of a FIRM) where modernized data exists.

- US Drought Monitor
 - The U.S. Drought Monitor is a map released every Thursday, showing parts of the U.S. that are in drought.
 - The map uses five classifications:
 - Abnormally dry (D0), showing areas that may be going into or are coming out of drought
 - Four levels of drought: moderate (D1), severe (D2), extreme (D3) and exceptional (D4).

Soil Data

- Initial Findings
- The SSURGO Data Set
 - Uses
 - Challenges
- Using R to gather and combine information
 - Process
 - Changes Made

Initial Findings

- What soil datasets are out there
 - SSURGO vs STATSGO
 - Choosing to go with SSURGO
 - Data available for smaller areas
 - SSURGO is data underling in STATSGO anyways
- Soil Factors Affecting Crop Growth
 - pH
 - Soil Texture
 - Organic Matter
 - Nutrient Level
 - And More

Soil Texture Triangle

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2 054167

Nutrients Important to Crop Growth:

- Phosphorus
- Potassium
- Calcium
- Iron
- Magnesium
- Nitrogen
- Boron
- Manganese
- Molybdenum
- Chlorine

USDA Web Soil Survey (SSURGO)

- A website that allows users to select a preexisting area (county) or user defined area and get soil (SSURGO) data
- The plan was to use this to download Soil Information
 - Decide whether to download it for whole county or just the selected Area

Soil Survey Correlation Date

SSURGO Data

- The information included in SSURGO data is divided into three parts for the soil
 - Mapunits, Componets, and Chorizon

 Can use provided mukey, cokey, chkey to merge different parts together

Using R to obtain data

Area<- get_ssurgo(template = s,label = "CropSelection_V3", force.redo =TRUE)

*s is a raster that has coordinates of the area selected

- Don't want to be stuck downloading large files (county wide) or have manual downloading
- Use FedData package to download SSURGO data for a given area in R
 - Downloads both Spatial and Tabular Data

- SSURGO data cleaning
 - Cm to Inches
 - Averaging values with differing depths
 - Selecting surface level qualitative values

```
##Tables of data we are using
componet <- Data$component
muaggart <-Data$muaggatt
mapunit <-Data$mapunit
comonth <- Data$comonth %>% filter(month=="May") ##only want month of may to follow CSR2
coerosionacc <- Data$coerosionacc %>% filter(rvindicator=="Yes") ##only care about dominant areas
chorizon <- Data$cherizon
chtexturegrp <-Data$chtexturegrp %>%filter(rvindicator == "Yes") ##only care about dominant areas
```

Can merge Tabular Data Together

Beginning to put Soil and Crop Data Together

- Linked Soil Data to Crop Data by finding if Soil pH is in Crop Suitable pH
- Used pH, and Soil Texture to determine suitability
 - Colored by word share of soil Texture
- However, there are more than just those factors to consider, and removing areas because they don't meet one criteria

test2 <- sqldf("select * from Overall left join CropData
on (Overall.pH_average >= CropData.ph_L and Overall.pH_average <= CropData.ph_H
and Overall.depth <= CropData.Depth_h and Overall.depth >= CropData.Depth_l)")

Initial Code Used to merge soil and crop data

Initial design on how to show suitability.

Color was % of words shared for soil texture

Area would only be highlighted if Soil pH was in range of Crops

New Factors To Consider

Looked Into What Factors Affect Corn Suitability Rating (CSR2)

Found more Information relating to soil on:

- Erosion (Tolerance and Type)
- Flooding Frequency
- Drainage
- Water Storage
- Nutrient Levels

rokind	erocl	tfact	Kfact	wei	niccdcd	hydgrp	soilslippot	drainagect	drclassdcd	awc	aws025wta	aws0150wta	flodfreqci
heet erosion	Class 1	5	0.3025000	48	2	8	NA.	Well drained	Well drained	0.1875	5.12	27.64	None
US.	None - deposition	5	0.2933333	45	2	C/D	NA	Poorly drained	Poorly drained	0,1800	4.57	27.17	None
heet erosion	Class 1	5	0.3100000	86	1	B/D	NA	Somewhat poorly drained	Somewhat poorly drained	0.2000	5.17	28.30	None
iA.	None - deposition	5	0.3366667	86	3	C/D	NA	Very poorly drained	Very poorly drained	0.2100	5.35	30.38	None
heet erosion	Class 2	5	0.3233333	56	3	В	NA.	Well drained	Well drained	0.1800	4.57	27.07	None
heet erosion	Class 1	5	0.2800000	45	2	c	A/A	Moderately well drained	Moderately well drained	0.1950	5.20	27.74	
neet erosion	Class 1	5	0.3125000	48	1	8/D	NA	Somewhat poorly drained	Somewhat poorly drained	0.1950	5.21	28.04	None
UL.	None - deposition	5	0.3100000	86	2	C/D	NA	Poorly drained	Poorly drained	0.1900	4.68	27.95	None
heet erosion	Class 1	5	0.3025000	48	3	8	NA	Well drained	Well drained	0.1875	5.04	27.54	None
04	None - deposition	5	0.3060000	86	2	C/D	NA	Poorly drained	Poorly drained	0,1780	4.58	27.00	None
14	None - deposition	5	0.3200000	86	3	C/D	NA	Very poorly drained	Very poorly drained	0.2200	5.35	30.38	None
heet erosion	Class 1	5	0.2800000	86	1	B/D	NA	Somewhat poorly drained	Somewhat poorly drained	0.2100	5.17	28.30	None
heet erosion	Class 1	5	0.2800000	48	2	В	NA.	Well drained	Well drained	0.1900	5.12	27.64	None
heet erosion	Class 2	5	0.3000000	56	3	8	NA	Well drained	Well drained	0.1800	4.57	27.07	None
heet erosion	Class 1	5	0.2933333	48	7	B/D	AM	Somewhat poorly drained	Somewhat poorly drained	0.2000	5.21	28.04	None
heet erosion	Class 1	5	0.2800000	48	2	c	266	Moderately well drained	Moderately well drained	0.1950	5.20	27.74	
(A	None - deposition	5	0.2800000	86	2	C/D	MA	Poorly drained	Poorly drained	0.1800	4.58	27.00	None

Nitrogen:

- Have not found sources on Nitrogen levels in soil because of variability
- Have found source that gives recommendations on how much nitrogen to add while growing certain crops

Recommendations

The following information provides guidelines for additional amounts and timing of N needed by vegetables during the growing season, to ensure they produce the best crop possible.

Asparagus

Apply 1.6 to 2,4 ounces of N per 100 square foot area in early spring as the asparagus emerges and again after the last harvest in June.

Beans

Use an inoculum of nitrogen-fixing bacteria-do not side-dress2 with N.

Broccoli

Side-dress with 4 ounces of N per 250 foot of row when plants are half grown.

Brussels sprouts

Apply one side-dress application of 4 ounces of N per 250 foot of row when plants are 12 inches tall. Water appropriately to keep the crop growing vigorously during the heat of summer.

Cabbage

Side-dress with 8 ounces of N per 250 foot row when plants are half grown.

Carrots and beets

Side-dress with 4 ounces of N per 250 foot of row, 4 to 6 weeks after planting. Do not apply fresh manure; misshapen roots may result.

https://extension.colostate.edu/topic-areas/yard-garden/vegetable-gardening-nitrogen-recommendations-7-247/

Redesigning of Merging Data Together

- Updated How Suitability is Determined
- Updated how we merged data

Color Process:

- Based on amount of Issues with Crop and Soil
- For example: if the average pH of the soil is not in range with crop, will increase the # of flags
- Based on both crop and soil information
- •The more flags, the more issues that would have to be changed in order to grow that crop in that area.
- Weights every issue the same as of now

MergedData <- sqldf("select * from chorizon2 left join CropData on (chorizon2.depth <= CropData.Depth 1)")

Updated Code for Merging Soil and **Crop Data**

Crop Asparagus Cabbage Cantaloupe

Cauliflower

Eggplant

Lettuce Oats Onion

Peas

Pumpkin

Spinach Sauash

Tomato

Sweet Corn

soil texture does not match, this soil's organ percent could be an issue, this soil's topsoil may have

Making of Tableau

Setup

- Used tabs to separate information by type
- Easier to digest and not overcrowding one dashboard

Linking data together

- In Tableau
 - Map is joined with crop and soil info
 - Crop and soil info joined to GDD and Crop Rotation
 - Weather and Risk information are separate

Tabs used to separate Data

Rotation Crops Soil Weather Risk Links GDD

Making Visualizations Dynamic

- Risk management links are general, and want to show based on users' inputs
 - Use R script to add user inputs as query tools
- Want to have tabs working together, if crop is selected on one, want to have it be changed in the other
- Dynamic images for Crop Rotation

Making Website

- Want a way for users to select their area and be able to determine for what months do they want weather data for
 - For weather, uses year selected to the current date for month ranges specified

Bounding Box Selection

Using User Inputs

 Use PHP to allow for inputs to be selected and run the code we've created to gather the data

```
##Takes in user inputs from OutlineUI.html
#coords should be an array of 4 numbers, xmin,xmax,ymin,ymax of a bounding box
$coords = $_POST['coords'];

##startmonth is for range of months to look at for weather data
$startmonth = $_POST['smonth'];

##endmonth is for range of months to look at for weather data
$endmonth = $_POST['emonth'];

##year is for weather data
$year = $_POST['year'];

##Bounding Box of user input, use for soil data
$xmin = $coords[0];
$xmax = $coords[1];
$ymin = $coords[3];
$ymax = $coords[2];
```

Obtaining user inputs from HTML

Running Our R scripts to gather and clean data with user inputs

Future implementation of code workflow

- •Things that can be improved upon
 - •Consolidate files into one location
 - •Implement process to create unique user ID
 - Making the scripts run simultaneously vs running individual scripts
 - Weighting flags by how hard they are to change
 - Add script to clean up/remove user data
 - •Output is saved to a server and Tableau updates in real-time.

Data Science for the Public Good

IOWA STATE UNIVERSITY

Dashboard Demo

https://dspg-2022.github.io/Farmer-Asset-Mapping/index.html

