PREVIOUS HOMEWORK

Bonus points, explain the reason based on what you learned in lecture

```
# Why are these two elements almost the same? additional 10 points
print(f'pi : {EM_model.pi}')
print(f'count / total : {np.bincount(EM_pred) / 150}')
```

The answer lies in online lecture and lecture note

EM Algorithm

```
M-step: find z^k(x) and \theta^{k+1} with maximizing the EXPECTATION from E-step

1) Calculate z^k(x)

Let us now define w(x|y;\theta^k) \triangleq \frac{q(x,y;\theta^k)}{f(y;\theta^k)} = \frac{q(x,y;\theta^k)}{\int_{\mathcal{I}} q(x,y;\theta^k) dx}
then note that F(z,\theta^k) \triangleq \int_x z(x) \log \left[ \frac{w(x|y;\theta^k) f(y;\theta^k)}{z(x)} \right] dx
= \log f(y;\theta^k) - D(z(x)||w(x|y;\theta^k))
where D(z_1(x)||z_2(x)) \triangleq \int_x z_1(x) \log \left[ \frac{z_1(x)}{z_2(x)} \right] dx
(0 \text{ is the Kullback Leibler distance})
In order to maximize F(z,\theta^k), z^k(x) = w(x|y;\theta^k) = P(X|Y,\theta^k), a prior i a posterior i and i an
```

<과제물 작성시 주의사항>

[공통]

과제물 제출시 완성된 소스파일 및 보고서를 반드시 'HW_03_학번.zip' 형식으로 압축하여 첨부합니다. (이름 약어.py, HW_03_학번.pdf)

[소스파일] - 40점

1. 소스파일은 .py파일만 작성하며 반드시 문제에서 지시 또는 요구한 조건에 맞추어서 작성합니다.

(jupyter로 작성하였어도 코드를 제출 시 py파일로 작성하여 제출하여야 합니다.)

- 2. 각 코드마다 반드시 주석을 달아 주셔야 합니다. 주석을 달지 않을 경우, 부분적으로 감점이 있을 수 있습니다.
- 3. 결과가 올바르더라도 과정이 옳지 않을 경우, 부분적으로 감점이 있을 수 있습니다.
- 4. 제출한 파일이 실행되지 않을 경우, 제출한 과제물은 0점 처리됩니다.

[보고서] - 60점

- 1. PDF로 제출하며, 표지를 포함해야 합니다.
- 2. 보고서에는 #1(데이터에 대한 설명과 목적), #2(네트워크 구조에 대한 설명), #3(소스 코드에 대한 설명), #4(실행 결과 + Plot), #5(참고문헌)이 포함되어야 합니다.
- 3. 자신의 코드 혹은 오픈소스 코드에 대한 설명이 부족할 시 감점 당할 수 있습니다.
- 4. 실행 결과는 실행 결과를 캡처하여 첨부하도록 합니다.
- 5. 참고문헌은 반드시 적어도 한 개 이상을 명시하여야 합니다.

CONVOLUTION NEURAL NETWORK USING TENSORFLOW

Machine learning homework-3

Assistant : Choongseop Lee, cndtjq97@gmail.com

CNN USING TF

Implementation of Convolution Neural Network Using TensorFlow

- You can implement your own network or use open source (Make sure to state the source)
- All CNN-based models may be used to increase accuracy
- However, a deep understanding of CNN and the progress of the code should be shown in the report

DATASET #1

https://www.kaggle.com/datasets/pratik2901/multiclass-weather-dataset

- Using a kaggle open dataset
- The report should state the description and objectives of the dataset.

NETWORK STRUCTURE #2

The network structure and each layer need to be explained

Operation Layer Input image		Number of Filters	Size of Each Filter	Stride Value	Padding Value	Size of Output Image
Pooling Layer	Max pooling	1	2 × 2	2 × 2	0	112 × 112 × 64
Convolution Layer (two times)	Convolution ReLU	128	3 × 3 × 64	1 × 1	1 × 1	$112 \times 112 \times 128$ $112 \times 112 \times 128$
Pooling Layer	Max pooling	1	2 × 2	2 × 2	0	$56 \times 56 \times 128$
Convolution Layer (four times)	Convolution ReLU	256	3 × 3 × 128	1 × 1	1 × 1	56 × 56 × 256 56 × 56 × 256
Pooling Layer	Max pooling	1	2 × 2	2 × 2	0	$28 \times 28 \times 256$
Convolution Layer (four times)	Convolution ReLU	512	3 × 3 × 256	1 × 1	1 × 1	28 × 28 × 512 28 × 28 × 512
Pooling Layer	Max pooling	1	2 × 2	2 × 2	0	$14 \times 14 \times 512$
Convolution Layer (four times)	Convolution ReLU	512	3 × 3 × 512	1 × 1	1 × 1	14 × 14 × 512 14 × 14 × 512
Pooling Layer	Max pooling	1	2 × 2	2 × 2	0	$7 \times 7 \times 512$
Inner Product Layer	Fully connected ReLU	: :			22	4096 4096

- You have to make structural figure and table with your hands
- Write down the selected layers and functions
- And explain how they work, respectively
- Conv, pool, FC layers and regularization, activation functions must be described

SOURCE CODE #3

- Open source is available but must be explainable
- Comments are also required and explain process of forward and back propagation
- Explain with an example how an image example is transformed when forwarding

Describe how and why you chose mini-batch, epoch, loss function, optimization function, and so on

RESULTS AND PLOTS #4

Experiment with modifying hyperparameters and measure accuracy

Explain the results through a visible plot, such as a confusion matrix

Discuss why such results came about

POINT ALLOCATION

- Code score 40 points
 - Quantitative evaluation
 - **40** Top 15 accuracy model
 - **30** Works well
 - **20** Works
- 10 points if report description is insufficient
- Code copy is not allowed among students

- Report score 60 points
 - Qualitative evaluation
 - **60** Excellent
 - **45** Good
 - 30 Fair
- Additionally, the score may be deducted

REFERENCES

- https://becominghuman.ai/what-are-convolutional-neural-network-cnn-d065414546a3
- https://www.analyticsvidhya.com/blog/2022/01/convolutional-neural-network-an-overview/
- https://www.researchgate.net/publication/326916041 Deep Learning Based Enhanced Presentation Attack Detection for Iris Recognition by Combining Features from Local and Global Regions Based on NIR Camera Sensor/figures?lo=1