On Extending Kodkod to Support Temporal Features and Scenario Exploration

Nuno Macedo and Alcino Cunha et al HASLab, INESC TEC & Universidade do Minho

Context

- Our group uses Alloy in research, teaching and consultancy
- We have explored extensions to problem expressibility, scenario exploration and solving procedures
 - target-oriented model finding
 - decomposed parallel solving strategy
 - symbolic relation bounds
 - o dynamic relations and linear temporal formulas
- Required adapting or extending Kodkod, unified into a single release -Pardinus
- Testbed for functionalities, used under Electrum

Kodkod Model Finding

Problem definition

universe of atoms

relations declared with upper- and lower-bounds (tuple sets)

$$r : \{\} \{a,b\}$$
 $s : \{\} \{a,b\}$

first-order relational formulas

Solving

- SAT solvers
- incremental solving for solution iteration
- symmetry breaking

- generate solution to problem
- o new problem discarding previous solution

Target-Oriented Model Finding

Problem definition

relations may have targets assigned (tuple sets between lower- and upper-bounds)

```
r : \{\} \{a\} \{a,b\} s : \{\} \{b\} \{a,b\}
```

improved expressibility (search for optimal solution)

Solving

- PMaxSAT solvers
- Nicely fits Kodkod's architecture, but solvers still unpredictable
- o how to perform symmetry breaking?

- generate minimal/maximal solutions to problem
- solution with minimal/maximal changes from the previous solution

Decomposed Model Finding

Problem definition

set of partition variables (define configurations)

```
r : {} {a,b}
```

manual or automatic criteria

Solving

staged, generate configurations, then try to extend to full solutions in parallel

```
r : {a} {a} s : {} {a,b} r : {b} {b} s : {} {a,b}
```

. . .

- large performance gains for certain classes of problems
- symmetry breaking preserved

- focus on alternative configurations
- challenging since configurations solved in parallel

Model Finding with Symbolic Bounds

Problem definition

o bounds are **symbolic**, relational expressions over relations + tuple sets

 $r : \{\} \{a,b\}$ $s : \{\} r$

cleaner bounds, but no added expressibility

Solving

- bounds are resolved into tuple sets prior to plain SAT solving
- establish dependencies between relations, used in decomposition criterion
- o resolution of symbolic bounds results in smaller search spaces when decomposed

r: {a} {a} s: {} {a}

Scenario exploration

 \circ NA

Temporal Model Finding

Problem definition

- relations declared as static our dynamic with upper- and lower bounds traces
 r: {} {a,b}
 s: [{},...,{}] [{},...,{a,b}]
- first-order relational LTL formulas.
- search within a range of trace lengths

Solving

- o **bounded**: problem expanded into plain Kodkod with state idiom
- unbounded: translation into SMV (through Electrod)
- o can we break symmetries specific to traces?

- solution with minimal trace length
- solution with minimal/maximal states
- solution fixed with a known prefix
- solution with same/different static configuration
- 0 ...