BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

DE 101 15 927 A 1

(51) Int. Cl.⁷: H 01 M 8/02

C 04 B 41/81 H 01 M 4/88

101 15 927.7 (21) Aktenzeichen: 2 Anmeldetag: 30. 3.2001

10. 10. 2002 (43) Offenlegungstag:

(71) Anmelder:

CREAVIS Gesellschaft für Technologie und Innovation mbH, 45772 Marl, DE

(74) Vertreter:

Hartz, N., Dipl.-Chem. Univ.Dr.rer.nat. (USA), Pat.-Anw., 80331 München

(72) Erfinder:

Hennige, Volker, Dr., 46282 Dorsten, DE; Hörpel, Gerhard, Dipl.-Chem. Dr., 48301 Nottuln, DE; Hying, Christian, Dipl.-Chem. Dr., 46414 Rhede, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (3) Elektrolytmembran, diese umfassende Membranelektrodeneinheiten, Verfahren zur Herstellung und spezielle Verwendungen
- Für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässige, protonenleitfähige, flexible Elektrolytmembran für eine Brennstoffzelle, umfassend einen stoffdurchlässigen Verbundwerkstoff aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial, wobei der Verbundwerkstoff mit einem protonenleitfähigen Material durchsetzt ist, das geeignet ist, selektiv Protonen durch die Membran zu leiten.

BEST AVAILABLE COPY

[0001] Die vorliegende Erfindung betrifft spezielle protonenleitfähige, flexible Elektrolytmembranen für eine Brennstoffzelle, Verfahren zur Herstellung dieser Elektrolytmembranen sowie eine flexible Membranelektrodeneinheit für eine Brennstoffzelle, die eine erfindungsgemäße Elektrolytmembran umfasst. Die vorliegende Erfindung betrifft ferner spezielle Zwischenprodukte bei der Herstellung der Membranelektrodeneinheit und spezielle Verwendungen der Elektrolytmembran und Membranelektrodeneinheit.

[0002] Brennstoffzellen enthalten Elektrolytmembranen, die einerseits den Protonenaustausch zwischen den Halbzellenreaktionen gewährleisten und andererseits verhindern, dass es zu einem Kurzschluss zwischen den Halbzellenreaktionen kommt

[0003] Herkömmlicherweise werden in Brennstoffzellen sogenannte Membranelektrodeneinheiten (MEAs) eingesetzt, die aus einer ionenleitenden Elektrolytmembran und den darauf aufgebrachten gegebenenfalls katalytisch wirksamen Elektroden (Anode und Kathode) bestehen.

[0004] Aus dem Stand der Technik sind als protonenaustauschende Membranen (PEMs) für Brennstoffzellen Elektrolytmembranen aus organischen Polymeren bekannt, die mit sauren Gruppen modifiziert sind, wie beispielsweise Nafion® (DuPont, EP 0 956 604) sulfonierte Polyetherketone (Höchst, EP 0 574 791), sulfonierte Kohlenwasserstoffe (Dais, EP 1 049 724) oder die phosphorsäurehaltigen Polybenzimidazolmembranen (Celanese, WO 99/04445).

[0005] Organische Polymere haben jedoch den Nachteil, dass die Leitfähigkeit vom Wassergehalt der Membranen abhängt. Deshalb müssen diese Membranen vor dem Einsatz in der Brennstoffzelle in Wasser gequellt werden und obwohl an der Kathode ständig Wasser gebildet wird, muss während des Betriebs der Membran von aussen zusätzlich Wasser zugesetzt werden, um ein Austrocknen bzw. eine Abnahme der Protonenleitfähigkeit, zu verhindern. Typischerweise müssen organische Polymermembran in einer Brennstoffzelle sowohl anoden- als auch kathodenseitig in einer mit Wasserdampf gesättigten Atsmosphäre betrieben werden.

[0006] Bei erhöhter Betriebstemperatur können Elektrolytmembranen aus organischen Polymeren nicht verwendet werden, weil bei Temperaturen von mehr als etwa 100°C der Wassergehalt in der Membran bei Atmosphärendruck nicht mehr gewährleistet werden kann. Der Einsatz von solchen Membranen in einer Reformat- oder Direktmethanol-Brennstoffzelle ist daher in der Regel nicht möglich. Dazu kommt, dass die Polymermembranen beim Einsatz in einer Direktmethanol-Brennstoffzelle eine zu große Permeabilität für Methanol zeigen. Durch das sogenannte cross-over von Methanol auf die Kathodenseite lassen sich nur geringe Leistungsdichten in der Direktmethanol-Brennstoffzelle realisieren. [0007] Daher sind herkömmliche organische Polymermembranen zur Anwendung in einer Reformat- oder Direktmethanol-Brennstoffzelle trotz der hohen Protonenleitfähigkeit in der Praxis nicht brauchbar.

[0008] Anorganische Protonenleiter sind z. B. aus "Proton Conductors", P. Colomban, Cambridge University Press, 1992 bekannt. Für die Zwecke einer Brennstoffzelle zeigen aus der EP 0 838 258 bekannte protonenleitfähige Zirkoniumphosphate aber zu geringe Leitfähigkeiten. Andererseits wird bei Defektperowskiten eine brauchbare Protonenleitfähigkeit erst bei Temperaturen erreicht, die über den in der Praxis vorkommenden Betriebstemperaturen einer Brennstoffzelle liegen. Bekannte protonenleitende MHSO₄-Salze sind leicht in Wasser löslich und kommen daher für Brennstoffzellenanwendungen bei denen bei der Brennstoffzellenreaktion Wasser gebildet wird, nur mit Einschränkungen in Frage (WO 00/45447).

[0009] Bekannte anorganische protonenleitende Materialien lassen sich zudem nicht in Form von dünnen Membranfolien herstellen, die zur Bereitstellung eines geringen Gesamtwiderstands der Zelle erforderlich sind. Geringe Flächenwiderstände und hohe Leistungsdichten einer Brennstoffzelle für technische Anwendungen im Automobilbau sind mit den bekannten Materialien daher nicht möglich.

[0010] Die WO 99/62620 schlägt einen Ionenleitenden, stoffdurchlässigen Verbundwerkstoff sowie dessen Verwendung als Elektrolytmembran einer MEA in einer Brennstoffzelle vor. Die Elektrolytmembran aus dem Stand der Technik besteht aus einem Metallnetz, das mit einem porösen keramischen Material beschichtet ist auf das ein protonenleitendes Material aufgebracht wurde. Diese Elektrolytmembran hat eine im Hinblick auf eine organische Nafionmembran überlegene Protonenleitfähigkeit bei Temperaturen von mehr als 80°C. Der Stand der Technik enthält aber keine Ausführungsform einer Brennstoffzelle, bei der eine solche Elektrolytmembran verwendet wurde.

[0011] Es wurde nun gefunden, dass die aus der WO 99/62620 bekannte Elektrolytmembran gravierende Nachteile aufweist im Hinblick auf die Brauchbarkeit einer diese Elektrolytmembran enthaltenden MEA in der Praxis und im Hinblick auf das Herstellungsverfahren, das zur Bereitstellung von solchen MEAs erforderlich ist. Durch diese Nachteile ist die aus der WO 99/62620 bekannte MEA für den Einsatz in einer Brennstoffzelle in der Praxis ungeeignet. Es hat sich nämlich gezeigt, dass die bekannten Elektrolytmembranen zwar bei erhöhten Temperaturen eine gute Protonenleitfähigkeit aufweisen, dass andererseits aber unter praktischen Anwendungsbedingungen in einer Brennstoffzelle Kurzschlüsse auftreten, die die Elektrolytmembranen unbrauchbar machen. Die Verwendung von Glasträgern ist zwar nicht ausgeschlossen, aufgrund der geringen Säurestabilität von Gläsern ist die Langzeitstabilität unter den stark sauren Bedingungen in einer Brennstoffzelle aber problematisch, insbesondere im Hinblick auf die Langzeitstabilität bei geforderten Standzeiten von mehr als 5000 Stunden in einer Brennstoffzelle an Bord eines Fahrzeugs. Ferner sind die aus der WO 99/62620 bekannten Elektrolytmembranen hinsichtlich der Haftung des Keramikmaterials auf dem Metallträger problematisch, so dass bei langen Standzeiten mit einem Ablösen der Keramikschicht vom Metallnetz gerechnet werden

[0012] Es ist daher Aufgabe der vorliegenden Erfindung eine protonenleitfähige, flexible Elektrolytmembran für eine Brennstoffzelle bereitzustellen, die für einen Einsatz in der Praxis geeignet ist und insbesondere

- (i) eine hohe Protonenleitfähigkeit bei deutlich reduzierter Luftfeuchtigkeit im Vergleich zu Polymermembranen aufweist,
- (ii) einen geringen Gesamtwiderstand einer Membranelektrodeneinheit ermöglicht,
- (iii) mechanische Eigenschaften, wie Zugfestigkeit und Flexibilität, aufweist, die für einen Einsatz unter extremen

Bedingungen, wie sie beim Bereines Fahrzeugs auftreten, geeignet sind,

(iv) erhöhte Betriebstemperaturen von mehr als 80°C toleriert.

(v) unabhängig von dem protonenleitfähigen Material in Membranstärken hergestellt werden kann, die geringer sind als diejenigen, die mit herkömmlichen Nafionmembranen erreicht werden,

(vi) Kurzschlüsse und insbesondere in einer Direktmethanolbrennstoffzelle cross-over-Probleme vermeidet, und

(vii) einfach hergestellt werden kann.

[0013] Diese Aufgabe wird mit einer für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässigen, protonenleitfähigen, flexiblen Elektrolytmembran für eine Brennstoffzelle gemäß Anspruch 1 gelöst. Die vorliegende littindung stellt eine Elektrolytmembran bereit, die eine Kombination aus einem speziellen Verbundwerkstoff und einem protonenleitfähigen Material umfasst.

[0014] Es wurde gefunden, dass die praktische Unbrauchbarkeit einer aus dem Stand der Technik bekannten Elektrolytmembran damit zusammenhängt, dass die Keramikbeschichtung des Metallnetzes an den Überwurfstellen der Metallläden leicht einreißt und dadurch die leitfähige Oberfläche des Metallträgers freigelegt wird. Es genügt schon ein einziger sehr kleiner Riß in der Keramikbeschichtung, um die gesamte Membran unbrauchbar zu machen. Aus diesem Grund
ist es nicht möglich die aus dem Stand der Technik bekannte Elektrolytmembran in einer Größe herzustellen, die für den
Einsatz in einer Brennstoffzelle erforderlich ist, ohne dass es unter Betriebsbedingungen zu einer starken Beanspruchung
der Keramikbeschichtung kommt, die die Membran in kurzer Zeit zerstört.

[0015] Die vorliegende Erfindung schlägt daher eine für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässige, protonenleitfähige, flexible Elektrolytmembran für eine Brennstoffzelle vor, umfassend einen stoffdurchlässigen Verbundwerkstoff aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial, wobei der Verbundwerkstoff mit einem protonenleitfähigen Material durchsetzt ist, das geeignet ist selektiv Protonen durch die Membran zu leiten.

[0016] Es wurde gefunden, dass überraschenderweise eine in der Praxis brauchbare und insbesondere gegenüber Kurzschlussen und eross-over-Problemen unempfindliche Elektrolytmembran bereitgestellt werden kann, wenn als Material tur von Membranträger eine Keramik gewählt wird.

[0017] Die Elektrolytmembran der vorliegenden Erfindung hat den Vorteil, dass sie nicht in Wasser gequellt werden muss, am eine brauchbare Leitfähigkeit bereitzustellen. Es ist daher wesentlich einfacher die Elektroden und die Elektrolymembran zu einer Membranelektrodeneinheit zu kombinieren. Insbesondere ist es nicht erforderlich eine gequellte Membran um einer Elektrodenschicht zu versehen, wie dies im Fall einer Nafionmembran notwendig ist, um zu verhindern, dass die Elektrodenschicht beim Quellen einreißt. Auch ist durch die Wahl des speziellen vollkeramischen Trägers eine teste Hattung des porösen Keramikmaterials an den Träger möglich. In einer speziellen Ausführungsform können durch Verwendung von lediglich einem einzigen Keramikmaterial Phasengrenzen zwischen unterschiedlichen Materialien im ertindungsgemäßen Verbundwerkstoff vermieden werden. So ist es möglich einen Verbundwerkstoff bereitzustellen bei dem Probleme beispielsweise durch unterschiedliche thermische Ausdehnungskoeffizienten von verschiedenen Materialien nicht auftreten können. Dadurch kann eine stabile MEA hergestellt werden, die auch hohen mechanischen Belastungen standhält. Durch die gute Stabilität und Leitfähigkeit kann die erfindungsgemäße Elektrolytmembranen in einer Retormat- oder Direktmethanol-Brennstoffzelle eingesetzt werden, die lange Standzeiten sowie hohe Leistungsdichten auch bei geringen Wasserpartialdrucken und hohen Temperaturen bereitstellen. Ferner ist es möglich den Wasserhaushalt der neuen Membranelektrodeneinheiten durch die Anpassung der Hydrophobie/Hydrophilie von Membran und Elektroden zu steuern. Durch gezielte Schaffung von Nanoporen in der Membran lässt sich zusätzlich der Effekt der Kapillarkondensation ausnutzen. Eine Flutung der Elektroden durch Produktwasser bzw. eine Austrocknung der Membran bei höherer Betriebstemperatur bzw. Stromdichte kann so vermieden werden. Ferner ist es möglich die Elektrolytmembranen der vorliegenden Erfindung in einer Membranstärke unabhängig von dem protonenleitfähigen Material herzustellen, die geringer ist als diejenige, die mit herkömmlichen Nafionmembranen erreicht werden kann. Dadurch läßt sich die Leitfähigkeit und der Flächenwiderstand über die Membrandicke in einem Bereich steuem, der für Nationmembranen nicht zugänglich ist, wobei gleichzeitig aus einer Vielzahl von protonenleitfähigen Materialien ausgewählt werden kunn. Die erfindungsgemäße Entkopplung der Wahl des protonenleitfähigen Materials von der erreichbaren Schichtdicke zur Schaffung von Elektrolytmembranen für Brennstoffzellen mit gewünschten Leitfähigkeiten und Flächenwiderständen ist ohne Vorbild im Stand der Technik und ermöglicht den Zugang zu maßgeschneiderten Elektrolytmembranen. [0018] Die Keramik des Trägers ist vorzugsweise ein Keramikvlies oder ein Keramikgewebe aus feuerfesten Keramikfasern mit vorwiegend polykristalliner Mikrostruktur. Ein Keramikvlies ist gegenüber einem Keramikgewebe bevorzugt, weil es eine höhere Porosität und keine Maschen aufweist.

[0019] Virzugsweise ist die Keramik ein Material, dass zu einem hohen Anteil aus Aluminiumoxid, Siliziumcarbid, Siliziumnitrid oder einem Zirkonoxid besteht. Für den Fall, dass die Fasern Aluminiumoxid enthalten, liegt ein Verhältnis von () bis 3()% Siliziumoxid in Bezug zu Aluminiumoxid vor. Fasern, die Aluminiumoxid enthalten sind bevorzugt. [0020] Der Träger muss unter den Betriebsbedingungen in einer Brennstoffzelle stabil sein. Daher ist die Keramik für den Träger vorzugsweise stabil gegenüber Protonen, die durch die Membran geleitet werden, das protonenleitende Material mit dem der Verbundwerkstoff durchsetzt ist und das Keramikmaterial mit dem der Träger kontaktiert wird. Ferner ist die Keramik vorzugsweise auch stabil gegenüber dem Reaktionsmedium mit dem der Träger in Kontakt kommen kann, wenn die Keramikbeschichtung des Trägers Risse aufweist.

[0021] Die Keramik aus dem der Träger hergestellt wird hat vorzugsweise einen Schmelz-/Erweichungspunkt von > 1400°C, besonders bevorzugt > 1550°C.

[0022] Der flexible, durchbrochene, eine Keramik umfassende Träger kann ferner ein Material umfassen, das ausgewählt ist aus Glas, Mineralien, Kunststoffen, amorphen nichtleitenden Substanzen, Naturprodukten, Verbundstoffen, Verbundwerkstoffen oder aus zumindest einer Kombination dieser Materialien, vorausgesetzt, dass diese Materialien die Brauchbarkeit der erfindungsgemäßen Elektrolytmembran unter den Betriebsbedingungen in einer Brennstoffzelle nicht beeinträchtigen. Als flexibler, durchbrochener, eine Keramik umfassender Träger, kann auch ein Träger verwendet wer-

den, der durch Behandlung mit Laserstrahlen oder Ionenstrahlen stoffdurchlässig gemacht wurde.

[0023] Der Träger umfasst vorzugsweise Fasern und/oder Filamente mit einem Durchmesser von 1 bis 150 µm, vorzugsweise 1 bis 20 μm, und/oder Fäden mit einem Durchmesser von 5 bis 150 μm, vorzugsweise 20 bis 70 μm.

[0024] Für den Fall, dass der Träger ein Gewebe ist, dann handelt es sich dabei vorzugsweise um ein Gewebe aus 11-Tex-Garnen mit 5-50 Kett- bzw. Schussfäden und insbesondere 20-28 Kett- und 28-36 Schussfäden. Ganz besonders bevorzugt werden 5,5-Tex Garne mit 10-50 Kett- bzw. Schussfäden und bevorzugt 20-28 Kett- und 28-36 Schussfäden. [0025] Das poröse Keramikmaterial weist vorzugsweise Poren mit einem mittleren Durchmesser von mindestens 20 nm, vorzugsweise von mindestens 100 nm, ganz besonders bevorzugt mehr als 500 nm, auf. Das Keramikmaterial des Verbundwerkstoffs hat vorzugsweise eine Porosität von 10% bis 60%, vorzugsweise von 20% bis 45%.

[0026] Das protonenleitfähige Material einer erfindungsgemäßen Elektrolytmembran umfasst vorzugsweise eine Brönstedsäure, eine immobilisierte Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon, und/oder eine ionische Flüssigkeit. Diese Komponenten verleihen der Elektrolytmembran Protonenleitfähigkeit. Gegebenenfalls kann das protonenleitfähige Material ein Oxid von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphor enthalten. Ein solches Oxid ist bei Verwendung einer Brönstedsäure wesentlich. Für den Fall, dass eine immobilisierte Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon, und/oder eine ionische Flüssigkeit verwendet werden, kann auf das zusätzliche Oxid verzichtet werden.

[0027] Die Brönstedsäure kann Schwefelsäure, Phosphorsäure, Perchlorsäure, Salpetersäure, Chlorwasserstoffsäure, schweflige Säure, phosphorige Säure sowie Ester davon und/oder eine polymere organische Säure sein.

[0028] Die erfindungsgemäße Elektrolytmembran ist vorzugsweise bei mindestens 80°C, vorzugsweise bei mindestens 120°C, und ganz besonders bevorzugt bei mindestens 140°C, stabil.

[0029] Der Verbundwerkstoff der Elektrolytmembran hat bei Verwendung eines Keramikvlieses als Träger vorzugsweise eine Dicke im Bereich von 5 bis 150 μm, vorzugsweise 5 bis 50 μm, ganz besonders bevorzugt 5 bis 30 μm. Der Verbundwerkstoff der Elektrolytmembran hat bei Verwendung eines Keramikgewebes als Träger vorzugsweise eine Dicke im Bereich von 10 bis 150 µm, vorzugsweise 10 bis 80 µm, ganz besonders bevorzugt 10 bis 50 µm.

[0030] Die erfindungsgemäße Elektrolytmembran toleriert vorzugsweise einen Biegeradius von mindestens 100 mm, insbesondere von mindestens 20 mm und ganz besonders bevorzugt von mindestens 5 mm.

[0031] Die erfindungsgemäße Elektrolytmembran weist bei Raumtemperatur und bei einer relativen Luftfeuchtigkeit von 35% vorzugsweise eine Leitfähigkeit von mindestens 2 mS/cm, vorzugsweise mindestens 20 mS/cm, ganz besonders bevorzugt 23 mS/cm auf.

[0032] Im folgenden wird die Herstellung der erfindungsgemäßen Elektrolytmembranen beschrieben.

[0033] Eine Elektrolytmembran der vorliegenden Erfindung ist erhältlich durch

- (a) Infiltration eines stoffdurchlässigen Verbundwerkstoffs aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial mit einer ionischen Flüssigkeit, um ein den Verbundwerkstoff durchsetzendes Material zu schaffen, das geeignet ist selektiv Protonen durch die Membran zu leiten, oder
- (b) Infiltration eines stoffdurchlässigen Verbundwerkstoffs aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial mit
 - (b1) einer Mischung, enthaltend eine immobilisierbare Hydroxysilylalkylsäure von Schwefel oder Phosphor oder einem Salz davon; oder
 - (b2) einer Mischung, enthaltend
 - eine Brönstedsäure und/oder eine immobilisierbare Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon sowie ein Sol, das eine Vorstufe für Oxide von Aluminium, Silizium, Titan, Zirkonium, und/ oder Phosphor umfasst und

Verfestigung der den Verbundwerkstoff infiltrierenden Mischung,

und gegebenenfalls Infiltration des nach Stufe (b) erhaltenen Verbundwerkstoffs mit einer ionischen Flüssigkeit, um ein den Verbundwerkstoff durchsetzendes Material zu schaffen, das geeignet ist selektiv Protonen durch die Membran zu leiten.

[0034] Die Elektrolytmembranen der vorliegenden Erfindung können einen speziellen Verbundwerkstoff, der in allgemeiner Form und für eine andere Anwendung aus der PCT/EP 98105939 bekannt ist, enthalten. Dieser Verbundstoff kann mit einem protonenleitenden Material oder einer Vorstufe davon, infiltriert werden, worauf die Membran getrocknet, verfestigt und gegebenenfalls in geeigneter Weise modifiziert wird, so dass eine stoffundurchlässige, ionen/protonenleitende and flexible Membran erhalten wird. Zur Herstellung des Verbundwerkstoffs wird zunächst der eine Keramik enthaltende Träger gemäß PCT/EP 98/05939 in eine mechanisch and thermisch stabile, stoffdurchlässige keramische Grundmembran überführt, die weder elektrisch-noch ionenleitend ist. Anschließend wird diese poröse, elektrisch isolierende Grundmembran mit dem protonenleitenden Material durchsetzt.

[0035] Bei der Herstellung des Verbundwerkstoffes wird ein flexibler, durchbrochener, eine Keramik umfassender Träger, mit einer Suspension kontaktiert bzw. infiltriert, die eine Vorstufe für das poröse Keramikmaterial enthält. Als Vorstufe für das poröse Keramikmaterial kommt mindestens eine anorganische Komponente aus einer Verbindung eines Metalls, eines Halbmetalls oder eines Mischmetalls mit einem der Elemente der 3. bis 7. Hauptgruppe in Frage, die als Suspension auf den Träger aufgebracht werden und vorzugsweise durch Erwärmen verfestigt werden kann. Das Kontaktieren bzw. Infiltrieren kann durch Aufdrucken, Aufpressen, Einpressen Aufrollen, Aufrakeln, Aufstreichen, Tauchen, Spritzen oder Aufgießen erfolgen.

[0036] Bei Verwendung eines Keramikvlieses als Träger kann vor dem Aufbringen des porösen Keramikmaterials eine Behandlung des Trägers mit einem Sol erfolgen. Das Sol enthält vorzugsweise Vorstufenverbindungen der Oxide von Aluminium, Titan, Zirkonium oder Silicium. Durch Verfestigen des Sols wird ein Verkleben der Fasern des Keramikvlieses und dadurch eine Verbesserung der mechanischen Stabilität des Vlieses erreicht.

[0037] Die Suspension mit der der Träger kontaktiert wird, enthält vorzugsweise eine anorganische Komponente und

35

40

ein Metalloxidsol, ein Halbmetallox oder ein Mischmetalloxidsol oder eine Mischung der vorzugte Suspension kann durch Suspendieren einer anorganischen Komponente in einem dieser Sole hergestellt werden.

[0038] Es können handelsübliche Sole, wie Titannitratsol, Zirkonnitratsol oder Silikasol eingesetzt werden. Die Sole sind aber auch erhältlich durch Hydrolyse einer Metallverbindung, Halbmetallverbindung oder Mischmetallverbindung in einem Medium, wie Wasser, Alkohol oder einer Säure. Als zu hydrolisierende Verbindung wird vorzugsweise ein Metallnitrat, ein Metallchlorid, ein Metallcarbonat, eine Metallalkoholatverbindung oder eine Halbmetallalkoholatverbindung, besonders bevorzugt zumindest eine Metallalkoholatverbindung, ein Metallnitrat, ein Metallchlorid, ein Metallcarbonat oder zumindest eine Halbmetallalkoholatverbindung ausgewählt aus den Verbindungen der Elemente Ti, Zr, Al, Si, Sn, Ce und Y oder der Lanthanoiden und Actinoiden, wie z. B. Titanalkoholate, wie z. B. Titanisopropylat, Siliziumalkoholate, Zirkoniumalkoholate, oder ein Metallnitrat, wie z. B. Zirkoniumnitrat, hydrolisiert. Es kann vorteilhaft sein, die Hydrolyse mit mindestens dem halben Molverhältnis an Wasser, bezogen auf die hydrolisierbare Gruppe der hydrolisierbaren Verbindung, durchzuführen. Die hydrolisierte Verbindung kann mit einer Säure, vorzugsweise mit einer 10 bis 60%igen Säure, bevorzugt mit einer Mineralsäure, ausgewählt aus Schwefelsäure, Salzsäure, Perchlorsäure. Phosphorsäure und Salpetersäure oder einer Mischung dieser Säuren peptisiert werden.

15

[0039] Eine anorganische Komponente mit einer Korngröße von 1 bis 10 000 nm kann in dem Sol suspendiert, werden. Vorzugsweise wird eine anorganische Komponente, die eine Verbindung, ausgewählt aus Metallverbindungen, Halbmetallverbindungen, Mischnietallverbindungen und Metallmischverbindungen mit zumindest einem der Elemente der 3. bis 7. Hauptgruppe, oder zumindest eine Mischung dieser Verbindungen aufweist, suspendiert. Besonders bevorzugt wird zumindest eine anorganische Komponente, die zumindest eine Verbindung aus den Oxiden der Nebengruppenelemente oder den Elementen der 3. bis 5. Hauptgruppe, vorzugsweise Oxide, ausgewählt aus den Oxiden der Elemente Sc, Y, Ti, Zr, Nb, Ce, V, Cr, Mo, W, Mn, Fe, Co, B, Al, In, Ti, Si, Ge, Sn, Pb und Bi, wie z. B. Y₂O₃, ZrO₂, Fe₂O₃, Fe₃O₄, SiO₂, Al₂O₃, aufweist, suspendiert. Die anorganische Komponente kann auch Alumosilicate, Aluminiumphospate, Zeolithe oder partiell ausgetauschte Zeolithe, wie z. B. ZSM-5, Na-ZSM-5 oder Fe-ZSM-5 oder amorphe mikroporöse Mischoxide, die bis zu 20% nicht hydrolisierbare organische Verbindungen enthalten können, wie z. B. Vanadinoxid, Siliziumoxid-Glas oder Aluminiumoxid-Siliziumoxid-MethylSiliziumsesquioxid-Gläser, aufweisen.

[0040] Vorzugsweise beträgt der Massenanteil der suspendierten Komponente das 0,1- bis 500fache der eingesetzten hydrolisierten Verbindung.

[0041] Durch geeignete Wahl der Komgröße der suspendierten Verbindungen in Abhängigkeit von der Größe der Poren, Löcher oder Zwischenräume des Trägers, aber auch durch geeignete Wahl der Schichtdicke des Verbundwerkstoffes sowie des anteiligen Verhältnisses von Sol: Lösungsmittel: Metalloxid lassen sich Risse im Verbundwerkstoff vermeiden.

[0042] Bei Verwendung eines Maschengewebes mit einer Maschenweite von z. B. 100 µm können zur Erhöhung der Rissfreiheit vorzugsweise Suspensionen verwendet werden, die eine suspendierte Verbindung mit einer Korngröße von mindestens 0,7 µm aufweist. Im allgemeinen sollte das Verhältnis Korngröße zu Maschen- bzw. Porengröße von 1:1000 bis 50:1000 betragen. Der Verbundwerkstoff kann vorzugsweise eine Dicke von 5 bis 1000 µm, besonders bevorzugt von 10 bis 70 µm und ganz besonders bevorzugt von 10 bis 30 µm aufweisen. Die Suspension aus Sol und zu suspendierenden Verbindungen weist vorzugsweise ein Verhältnis von Solden zu den zu suspendierenden Verbindungen von 0,1:100 bis 100:0,1, vorzugsweise von 0,1:10 bis 10:0,1 Gewichtsteilen auf.

[0043] Die Suspension kann nach Kontaktieren mit dem Träger durch Erwärmen des Verbundes aus Suspension und Träger auf 50 bis 1000°C verfestigt werden. In einer besonderen Ausführungsform wird der Verbund für 10 Sekunden bis 1 Stunde, vorzugsweise 10 Sekunden bis 10 Minuten, einer Temperatur von 50 bis 100°C ausgesetzt. In einer weiteren besonderen Ausführungsform wird der Verbund für 5 Sekunden bis 10 Minuten, vorzugsweise 5 Sekunden bis 5 Minuten, besonders bevorzugt für 5 Sekunden bis 1 Minute, einer Temperatur von 100 bis 800°C ausgesetzt. Das Erwärmen des Verbundes kann mit erwärmter Luft, Heißluft, Infrarotstrahlung, Mikrowellenstrahlung oder elektrisch erzeugter Wärme, erfolgen. In einer weiteren Ausführungsform kann das Verfestigen der Suspension dadurch erreicht werden, dass die Suspension mit einem vorgewärmten Träger kontaktiert wird und somit sofort nach dem Kontaktieren verfestigt wird.

[0044] In einer weiteren besonderen Ausführungsform wird der Träger von einer Rolle abgerollt mit einer Geschwindigkeit von 1 m/h bis 1 m/s, auf eine Apparatur, die die Suspension mit dem Träger kontaktiert und anschließend zu einer weiteren Apparatur, die das Verfestigen der Suspension durch Erwärmen ermöglicht, und der so hergestellte Verbundwerkstoff wird auf einer zweiten Rolle aufgerollt. Auf diese Weise ist es möglich, den Verbundwerkstoff kontinuierlich herzustellen.

[0045] Durch mehrmaliges einer eines Trägers mit einer Suspension bzw. einem Sol ist es möglich, zur Herstellung von Verbundwerkstoffen mit einer bestimmten Porengröße auch solche Träger zu verwenden, deren Poren- bzw. Maschenweite zur Herstellung eines Verbundwerkstoffes mit der geforderten Porengröße nicht geeignet ist. Dies kann z. B. der Fall sein, wenn ein Verbundwerkstoff mit einer Porengröße von 0,25 μm unter Verwendung eines Trägers mit einer Maschenweite von über 300 μm hergestellt werden soll. Zum Erhalt eines solchen Verbundwerkstoffes kann es vorteilhaft sein, auf den Träger zuerst zumindest eine Suspension zu bringen, die geeignet ist Träger mit einer Maschenweite von 300 μm zu behandeln, und diese Suspension nach dem Aufbringen zu verfestigen. Der auf diese Weise erhaltene Verbundwerkstoff kann nun als Träger mit einer geringeren Maschen- bzw. Porengröße eingesetzt werden. Auf diesen Träger kann eine weitere Suspension aufgebracht werden, die eine Verbindung mit einer Komgröße von 0,5 μm aufweist. [0046] Die Rissunempfindlichkeit bei Verbundwerkstoffen mit großen Maschen- bzw. Porenweiten kann auch dadurch verbessert werden, dass Suspensionen auf den Träger aufgebracht werden, die zumindest zwei suspendierte Verbindungen aufweisen. Vorzugsweise werden zu suspendierende Verbindungen verwendet, die ein Korngrößenverhältnis von 1:1 bis 1:20, besonders bevorzugt von 1:1,5 bis 1:2,5 aufweisen. Der Gewichtsanteil von der Komgrößenfraktion mit der kleineren Korngröße sollte einen Anteil von höchstens 50%, vorzugsweise von 20% und ganz besonders bevorzugt von 10%, an dem Gesamtgewicht der eingesetzten Korngrößenfraktion nicht überschreiten.

[0048] Das protonenleitfähige Material kann eine Brönstedsäure, eine immobilisierte Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon, und/oder eine ionische Flüssigkeit, sowie gegebenenfalls ein Oxid von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphor umfassen. Als geeignetes protonenleitendes Material zur Herstellung der Elektrolytmembran können insbesondere alle in der WO 99/62620 beschriebenen protonenleitenden Materialien verwendet werden.

[10049] Das erfindungsgemäße Verfahren zur Herstellung einer Elektrolytmembran kann ausgehend von dem stoffdurchlässigen Verbundwerkstoff insbesondere folgende Schritte umfassen:

- (a) Infiltration eines stoffdurchlässigen Verbundwerkstoffs aus einem flexiblen, durchbrochenen, eine Keramik umtussenden Träger und einem porösen Keramikmaterial mit einer ionischen Flüssigkeit, um ein den Verbundwerkstoff durchsetzendes Material zu schaffen, das geeignet ist selektiv Protonen durch die Membran zu leiten, oder
- (b) Infiltration eines stoffdurchlässigen Verbundwerkstoffs aus einem flexiblen, durchbrochenen, eine Keramik umtassenden Träger und einem porösen Keramikmaterial mit
 - (b1) einer Mischung, enthaltend eine immobilisierbare Hydroxysilylalkylsäure von Schwefel oder Phosphor oder einem Salz davon; oder
 - (b2) einer Mischung, enthaltend
 - eine Brönstedsäure und/oder eine immobilisierbare Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon sowie ein Sol, das eine Vorstufe für Oxide von Aluminium, Silizium, Titan, Zirkonium, und/oxler Phosphor umfasst und
 - Verlestigung der den Verbundwerkstoff infiltrierenden Mischung, und gegebenenfalls Infiltration des nach Stufe (b) erhaltenen Verbundwerkstoffs mit einer ionischen Flüssigkeit,
- um ein den Verbundwerkstoff durchsetzendes Material zu schaffen, das geeignet ist selektiv Protonen durch die Nembran zu leiten.

100501 Die Mischung, enthaltend ein Sol mit dem der Verbundwerkstoff infiltriert wird ist erhältlich durch Hydrolyse eine: hydrolysierbaren Verbindung, vorzugsweise in einer Mischung aus Wasser und Alkohol, zu einem Hydrolysat, wobei die hydrolysierbare Verbindung ausgewählt ist aus hydrolysierbaren Alkoholaten, Acetaten, Acetylacetonaten, Nitraten, Oxymiraten, Chloriden, Oxychloriden, Carbonaten, von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphoroder Ustern, vorzugsweise Methylestern, Ethylestern und/oder Propylestern der Phosphorsäure oder der phoshorigen Säure, und Peptisierung des Hydrolysats zu der ein Sol enthaltenden Mischung.

10051 Les kann vorteilhaft sein, wenn die hydrolysierbare Verbindung nicht hydrolysierbare Gruppen neben hydrolysierbaren Gruppen trägt. Vorzugsweise wird als eine solche zu hydrolysierende Verbindung eine Alkyltrialkoxy- oder Dialkyltrialkoxy- oder Trialkylalkoxyverbindung der Elements Silizium verwendet.

10052 | Der Mischung kann eine in Wasser und/oder Alkohol lösliche Säure oder Base zugegeben werden. Vorzugsweise wird eine Säure oder Base der Elemente Na, Mg, K, Ca, V, Y, Ti, Cr, W, Mo, Zr, Mn, Al, Si, P oder S zugegeben. 10053 | Die Mischung kann auch nichtstöchiometrische Metall-, Halbmetall- oder Nichtmetalloxide beziehungsweise Hydroxide umfassen, die durch Änderung der Oxidationsstufe des entsprechenden Elements erzeugt wurden. Die Änderung der Oxidationsstufe kann durch Reaktion mit organischen Verbindungen oder anorganische Verbindungen oder durch elektrochemische Reaktionen erfolgen. Vorzugsweise erfolgt die Änderung der Oxidationsstufe durch Reaktion mit einem Λlkohol, Aldehyd, Zucker, Ether, Olefin, Peroxid oder Metallsalz. Verbindungen die auf diese Weise die Oxidationsstufe ändern sind z. B. Cr, Mn, V, Ti, Sn, Fe, Mo, W oder Pb.

[0054] Der Mischung können auch Substanzen zugesetzt werden, die zur Bildung von anorganischen ionenleitenden Strukturen führen. Solche Substanzen können z. B. Zeolith- und/oder β-Alumosilikatpartikel sein.

[0055] Der stoffdurchlässige Verbundwerkstoff kann auch durch die Behandlung mit einem Silan ionisch ausgestattet werden. Dazu wird eine 1- bis 20%ige Lösung dieses Silans in einer Wasser enthaltenden Lösung angesetzt und der Verbundwerkstoff wird eingetaucht. Als Lösungsmittel können aromatische und aliphatische Alkohole, aromatische und aliphatische Kohlenwasserstoffe und andere gängige Lösungsmittel oder Gemische verwendet werden. Vorteilhaft ist der Einsatz von Ethanol, Octanol, Toluol, Hexan, Cylohexan und Octan. Nach Abtropfen der anhaftenden Flüssigkeit wird der getränkte Verbundwerkstoff bei ca. 150°C getrocknet und kann entweder direkt oder nach mehrmaliger nachfolgender Beschichtung und Trocknung bei 150°C als ionenleitender stoffdurchlässiger Verbundwerkstoff genutzt werden. Hierzu eignen sich sowohl kationische als auch anionische Gruppen tragende Silane. Im Falle von protonenleitenden Materialien sind Sulfon- bzw. Phosphonsäuregruppen bevorzugt.

[0056] Lis kann weiterhin vorteilhaft sein, wenn die Lösung oder Suspension zur Behandlung des Verbundwerkstoffs neben einem Trialkoxysilan auch saure oder basische Verbindungen und Wasser umfaßt. Vorzugsweise umfassen die sauren oder basischen Verbindungen zumindest eine dem Fachmann bekannte Brönstedt- oder Lewissäure oder -base. [0057] Die Mischung mit der der Verbundwerkstoff infiltriert wird kann weitere protonenleitende Stoffe, vorzugsweise Titanphosphate, Titanphosphonate, Zirkoniumphosphate, Zirkoniumphosphonate, Iso- und Heteropolysäuren, nanokristalline und/oder kristalline Metalloxide, wobei Al₂O₃-, ZrO₂-, TiO₂- oder SiO₂-Pulver bevorzugt sind, enthalten. Iso- und Heteropolysäuren sind beispielsweise Wolframphosphorsäure oder Siliziumwolframsäure.

[0058] Die Infiltration des Verbundwerkstoffs kann durch Aufdrucken, Aufpressen, Einpressen, Aufrollen, Aufrakeln, Aufstreichen, Tauchen, Spritzen oder Aufgießen der Mischung auf den stoffdurchlässigen Verbundwerkstoff erfolgen. Die Infiltration mit der Mischung kann wiederholt durchgeführt werden. Gegebenenfalls kann ein Trocknungsschritt, vorzugsweise bei einer erhöhten Temperatur in einem Bereich von 50 bis 200°C, zwischen der wiederholten Infiltration erfolgen. In einer bevorzugten Ausführungsform erfolgt die Infiltration des stoffdurchlässigen Verbundwerkstoff konti-

15

20

nuierlich. Es kann vorteilhaft sein, der Verbundwerkstoff zur Infiltration vorgewärmt wir

[0059] Die Versestigung der Mischung in dem Verbundwerkstoff kann durch durch Erwärmen auf eine Temperatur von 50 bis 800°C, vorzugsweise 100 bis 600°C, ganz besonders bevorzugt 150 bis 200°C erfolgen, wobei die Erwärmung durch erwärmte Lust, Heißlust, Infrarotstrahlung oder Mikrowellenstrahlung erfolgen kann.

[0060] Die Elektrolytmembran kann aber auch durch Verwendung eines Sols, enthaltend ein ionenleitendes Material oder ein Material, das nach einer weiteren Behandlung ionenleitende Eigenschaften aufweist, bei der Herstellung des Verbundwerkstoffs erhalten werden. Vorzugsweise werden dem Sol Materialien zugesetzt, die zur Bildung von anorganischen ionenleitenden Schichten auf den inneren und/oder äusseren Oberflächen der im Verbundwerkstoff enthaltenen Partikel führen.

[0061] Zur Herstellung der Elektrolytmembran kann eine saure und/oder basische Gruppen enthaltende Trialkoxysilanlösung oder -suspension eingesetzt wird. Vorzugsweise ist zumindest eine der sauren oder basischen Gruppen eine quartäre Ammonium-, Phosphonium-, Alkylsulfonsäure-, Carbonsäure- oder Phosphonsäuregruppe.

[0062] Im folgenden wird eine erfindungsgemäße Membranelektrodeneinheit beschrieben. Die flexible Membranelektrodeneinheit für eine Brennstoffzelle umfasst eine Anodenschicht und eine Kathodenschicht, die jeweils auf gegenüberliegenden Seiten einer für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässigen, protonenleitfähigen, flexiblen Elektrolytmembran für eine Brennstoffzelle vorgesehen sind, wobei die Elektrolytmembran einen stoffdurchlässigen Verbundwerkstoff aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial umfasst, wobei der Verbundwerkstoff mit einem protonenleitfähigen Material durchsetzt ist, das geeignet ist selektiv Protonen durch die Membran zu leiten, und wobei die Anodenschicht und die Kathodenschicht porös sind und jeweils einen Katalysator für die Anoden- und Kathodenreaktion, eine protonenleitfähige Komponente und gegebenenfalls einen Katalysatorträger umfassen.

[0063] Die protonenleitfähige Komponente der Anoden- und/oder Kathodenschicht und/oder das protonenleitfähige Material des Verbundwerkstoffs umfasst jeweils vorzugsweise

(i) eine immobilisierte Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon, sowie gegebenenfalls ein Oxid von Aluminium, Silizium, Titan, Zirkonium und/oder Phosphor, und/oder

(ii) eine Brönstedsäure und ein Oxid von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphor sowie gegebenenfalls

(iii) anorganische Oxide, Phosphate, Phosphide, Phosphonate, Sulfate, Sulfonate, Vanadate, Antimonate, Stannate, Plumbate, Chromate, Wolframate, Molybdate, Manganate, Titanate, Silikate, Alumosilikate und Aluminate der Elemente Lithium, Natrium, Kalium, Magnesium, Calcium, Aluminium, Silizium, Titan, Zirkonium, Yttrium, Phosphor Vanadium, Wolfram, Molybdän, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink oder Cerium oder einer Kombination dieser Elemente,

und das protonenleitfähige Material des Verbundwerkstoffs umfasst gegebenenfalls eine ionische Flüssigkeit, die eine 35 Brönstedsäure enthalten kann.

[0064] In einer bevorzugten Ausführungsform ist die Hydroxysilylalkylsäure des Schwefels oder Phosphors oder ein Salz davon eine siliziumorganische Verbindung der allgemeinen Formeln

$$[\{(RO)_y(R^2)_z\}_a Si\{R^1-SO_3^-)_a]_x M^{x+}$$
 (I)

oder

$$[(RO)_v(R^2)_zSi\{R^1-O_b-P(O_cR^3)O_2^{-1}\}_a]_xM^{x+}$$
 (II)

wobei R¹ für eine lineare oder verzweigte Alkyl- oder Alkylengruppe mit 1 bis 12 C-Atomen, eine Cycloalkylgruppe mit 5 bis 8 C-Atomen oder eine Einheit der allgemeinen Formeln

45

50

55

65

$$-(CH_2)_{n}$$
 (III)

oder

$$-(CH_2)_{\overline{n}}$$
 H $(CH_2)_{\overline{m}}$

steht,

wobei n, m jeweils für eine ganze Zahl von 0 bis 6 steht,

M für H, NH4 oder ein Metall steht,

x = 1 bis 4,

y = 1 bis 3, z = 0 bis 2 and z = 1 bis 3 bedeuten, mit der Maßgabe, dass z = 4 - 1 a ist, b, z = 0 oder 1,

R, R² gleich oder verschieden sind und für Methyl-, Ethyl-, Propyl-, Butylreste oder H stehen

R³ für M oder einen Methyl-, Ethyl-, Propyl- oder Butylrest steht.

[0065] Die Hydroxysilylalkylsäure des Schwefels oder Phosphors ist vorzugsweise Trihydroxysilylpropylsulfonsäure, Trihydroxysilylpropylmethylphosphonsäure oder Dihydroxysilylpropylsulfondisäure. Vorzugsweise ist die Hydroxysilylalkylsäure des Schwefels oder Phosphors oder ein Salz davon mit einer hydrolysierten Verbindung des Phosphors oder einem hydrolisierten Nitrat, Oxynitrat, Chlorid, Oxychlorid, Carbonat, Alkoholat, Acetat, Acetylacetonat eines Metalls oder Halbmetalls immobilisiert. In einer weiteren bevorzugten Ausführungsform ist die Hydroxysilylalkylsäure des Schwefels oder des Phosphors oder ein Salz davon mit einer hydrolysierten Verbindung, erhalten aus Titanpropylat, Titanethylat. Tetraethylorthosilikat (TEOS) oder Tetramethylorthosilikat (TMOS), Zirkoniumnitrat, Zirkoniumoxynitrat. Zirkoniumpropylat, Zirkoniumacetat, Zirkoniumacetylacetonat, Phosphorsäuremethylester, Diethylphosphit (DEP) oder Diethylethylphosphonat (DEEP) immobilisiert.

[0066] Vorteilhafterweise kann der mit einem protonenleitfähigen Material durchsetzte Verbundstoff zusätzlich eine ionische Flüssigkeit enthalten, die ein Kation umfasst, das ausgewählt ist, aus den Imidazoliumionen, Pyridiniumionen, Ammoniumionen oder Phosphoniumionen der folgenden Formeln:

wobei R und R' gleich oder verschieden sein können und für Alkyl-, Olefin- oder Arylgruppen stehen oder Wasserstoff bedeuten.

und wobei die ionische Flüssigkeit ein Anion umfasst, das ausgewählt ist aus folgenden Ionen: Nitrat, Sulfat, Hydrogensulfat, Chloroaluminationen, BF_4^- , Alkyl-Borat-Ionen, vorzugsweise Triethylhexylborat, Halogeno-Phosphat-Ionen, vorzugsweise PF_6^- .

[10067] Die erfindungsgemäße Membranelektrodeneinheit kann vorzugsweise in einer Brennstoffzelle bei einer Temperatur von mindestens 80°C, vorzugsweise bei mindestens 120°C, und ganz besonders bevorzugt bei mindestens 140°C betrieben werden kann. Die erfindungsgemäße Membranelektrodeneinheit toleriert vorzugsweise einen Biegeradius von mindestens 100 mm, insbesondere von mindestens 20 mm, ganz besonders bevorzugt von mindestens 5 mm toleriert. [10068] In einer speziellen Ausführungsform der erfindungsgemäßen Membranelektrodeneinheit weisen die protonenleitlähige Komponente der Anodenschicht und Kathodenschicht und das protonenleitfähige Material der Elektrolytmembran die gleiche Zusammensetzung auf. Andererseits ist es auch möglich, dass lediglich die Anodenschicht und die Kathodenschicht die gleiche Zusammensetzung aufweisen oder dass die Anodenschicht und die Kathodenschicht unterschiedliche Katalysatoren aufweisen. In einer bevorzugten Ausführungsform ist der Katalysatorträger in der Anodenschicht elektrisch leitfähig.

[0069] Zur Herstellung der Membranelektrodeneinheit wird eine Elektrolytmembran durch ein geeignetes Verfahren mit dem gegebenenfalls katalytisch aktiven Elektrodenmaterial beschichtet.

[0070] Die Elektrolytmembran kann auf verschiedenen Wegen mit der Elektrode versehen werden. Die Art und Weise sowie die Reihenfolge, wie das elektrisch leitfähige Material, Katalysator, Elektrolyt und ggf. weitere Additive auf die Membran aufgebracht werden steht im Belieben des Fachmanns. Es ist lediglich darauf zu achten, dass die Grenzfläche Gasraum/Katalysator(Elektrode)/Elektrolyt gebildet wird. In einem speziellen Fall wird auf das elektrisch leitfähige Material als Katalysatorträger verzichtet, in diesem Fall sorgt der elektrisch leitfähige Katalysator direkt für die Ableitung der Elektronen aus der Membranelektrodeneinheit.

[0071] Zur Herstellung der Membranelektrodeneinheit werden in einer speziellen Ausführungsform auf der Elektrolytmembran die katalytisch aktiven (Gasdiffusions-)Elektroden aufgebaut. Hierzu wird eine Tinte aus einem Ruß-Katalysator-Pulver und mindestens einem protonenleitenden Material hergestellt. Die Tinte kann aber noch weitere Additive enthalten, die die Eigenschaften der Membranelektrodeneinheit verbessern. Der Ruß kann auch durch andere, elektrisch leitfähige Materialien (wie z. B. Metallpulver, Metalloxidpulver, Kohlenstoff, Kohle) ersetzt werden. In einer speziellen Ausführungsform wird als Katalysatorträger anstelle von Ruß ein Metall- oder Halbmetalloxidpulver (wie z. B. Aerosil) eingesetzt. Diese Tinte wird dann beispielsweise durch Siebdruck, Aufräkeln, Aufsprühen, Aufwalzen oder durch Tauchen auf die Membran aufgebracht.

55 [0072] Die Tinte kann sämtliche ionenleitenden Materialien enthalten, die auch zur Infiltration des Verbundwerkstoffs verwendet werden. So kann die Tinte also eine Säure oder deren Salz enthalten, die oder das durch eine chemische Reaktion im Laufe eines Versestigungsprozesses nach dem Aufbringen der Tinte auf die Membran immobilisiert wird. Diese Säure kann also z. B. einfache Brönstedsäure, wie Schwefel- oder Phosphorsäure, oder aber eine Silylsulson- oder Silylphosphonsäure sein. Als Materialien, die die Versestigung der Säure unterstützen, können z. B. Al₂O₃, SiO₂, ZrO₂, TiO₂ dienen, die auch über molekulare Vorstusen der Tinte zugesetzt werden.

[0073] Im Gegensatz zu dem protonenleitfähigen Material des Vebundwerkstoffs, der für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässig sein muss, müssen sowohl Kathode als auch Anode eine große Porosität aufweisen, damit die Reaktionsgase, wie Wasserstoff und Sauerstoff, ohne Stofftransporthemmung an die Grenzfläche von Katalysator und Elektrolyt herangeführt werden können. Diese Porosität lässt sich beispielsweise durch Verwendung von Metalloxidpartikeln mit einer geeigneten Partikelgröße sowie von organischen Porenbildnern in der Tinte oder durch ei-

nen geeigneten Lösungsmittel-anteil in der Tinte beeinflussen.

[0074] Als spezielle Tinte kann ein Mittel verwendet werden, das folgende Komponenten umfasst:

- (T1) eine kondensierbare Kongeninte, die nach der Kondensation einer Anodenschild er einer Kathodenschicht einer Membranelektrodenenheit einer Brennstoffzelle Protonenleitfähigkeit verleiht,
- (T2) einen Katalysator, der die Anodenreaktion oder die Kathoden-reaktion in einer Brennstoffzelle katalysiert, oder eine Vorläuferverbindung des Katalysators,
- (T3) gegebenenfalls einen Katalysatorträger
- (T4) gegebenenfalls einen Porenbildner, und
- (T5) gegebenenfalls Additive zur Verbesserung von Schaumverhalten, Viskosität und Haftung.

[0075] Die kondensierbare Komponente, die nach der Kondensation der Anodenschicht oder der Kathodenschicht Protonenleitfähigkeit verleiht, wird vorzugsweise ausgewählt aus

(I) hydrolysierbaren Verbindung des Phosphors und/oder

hydrolysierbaren Nitraten, Oxynitraten, Chloriden, Oxychloriden, Carbonaten, Alkoholaten, Acetaten, Acetylacetonaten eines Metalls oder Halbmetalls, vorzugsweise Aluminiumalkoholaten, Vanadiumalkoholaten, Titanpropylat, Titanethylat, Zirkoniumnitrat, Zirkoniumoxynitrat, Zirkoniumpropylat, Zirkoniumacetat oder Zirkoniumacetylacetonat, und/oder

Metallsäuren des Aluminiums, Titans, Vanadiums, Antimons, Zinns, Bleis, Chroms, Wolframs, Molybdäns, Mangans, wobei Wolframphosphorsäure und Siliziumwolframsäure bevorzugt sind, und/oder

(II) einer immobilisierbaren Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon und in einer besonders bevorzugten Ausführungsform zusätzlich eine die Hydroxysilylalkylsäure des Schwefels oder Phosphors bzw. deren Salz immobilisierende hydrolysierbare Verbindung des Phosphors oder ein hydrolisierbares Nitrat, Oxynitrat, Chlorid, Oxychlorid, Carbonat, Alkoholat, Acetat, Acetylacetonat eines Metalls oder Halbmetalls, vorzugsweise Phosphorsäuremethylester, Diethylphosphit (DEP), Diethylethylphosphonat (DEEP) Titanpropylat, Titanethylat, Tetraethylorthosilikat (TEOS) oder Tetramethylorthosilikat (TMOS), Zirkoniumnitrat, Zirkoniumoxynitrat, Zirkoniumpropylat, Zirkoniumacetat oder Zirkoniumacetylacetonat.

[0076] Die Tinte kann aber zur Erhöhung der Protonenleitfähigkeit auch nanoskalige Oxide, wie z. B. von Aluminium, Titan, Zirkonium oder Silizium, oder aber Zirkonium- oder Titanphosphate oder -phosphonate enthalten.

[0077] Der Katalysator oder die Vorstufenverbindung des Katalysators umfasst vorzugsweise Platin oder eine Platinlegierug und gegebenenfalls einen Cokatalysator, wobei der Cokatalysator ein Übergangsmetallkomplex des Phtalocyanins oder substituierter Phthalocyanine ist. Die Vorstufenverbindung des Katalysators umfasst vorzugsweise Platin, Palladium und/oder Ruthenium. Der Übergansmetallkomplex des Cokatalysators umfasst vorzugsweise Nickel und/oder Kohalt

[0078] Der Porenbildner, der gegebenenfalls in der Tinte enthalten ist, kann ein organischer und/oder anorganischer Stoff sein, der sich bei einer Temperatur zwischen 50 und 600°C und bevorzugt zwischen 100 und 250°C zersetzt. Insbesondere kann der anorganische Porenbildner Ammoniumcarbonat oder Ammoniumbicarbonat sein.

[0079] Der Katalysatorträger, der gegebenenfalls in der Tinte enthalten ist, ist vorzugsweise elektrisch leitfähig und enthält vorzugsweise Ruß, Metallpulver, Metalloxidpulver, Kohlenstoff oder Kohle.

[0080] In eine weiteren Ausführungsform kann ein vorgefertigter Gasverteiler, der die Gasdiffusionselektrode, bestehend aus elektrisch leitfähigem Material (z. B. ein poröses Kohlevlies) Katalysator und Elektrolyt enthält, direkt auf die Membran aufgebracht werden. Im einfachsten Fall erfolgt die Fixierung von Gasverteiler und Membran durch ein Pressverfahren. Hierzu ist es erforderlich, dass Membran oder Gasverteiler bei der Presstemperatur thermoplastische Eigenschaften aufweisen. Der Gasverteiler kann aber auch durch einen, Klebstoff auf der Membran fixiert werden. Dieser Klebstoff muss Ionenleitende Eigenschaften aufweisen und kann prinzipiell aus den bereits oben genannten Materialklassen bestehen. Beispielsweise kann als Klebstoff ein Metalloxidsol eingesetzt werden, das zusätzlich eine Hydroxysilylsäure enthält. Schließlich kann der Gasverteiler aber auch "in situ" bei der letzten Stufe der Membran- oder Gasdiffusionselektroden-herstellung aufgebracht werden. In dieser Stufe ist das protonenleitende Material im Gasverteiler oder in der Membran noch nicht ausgehärtet und lässt sich als Klebstoff nutzen. Der Klebevorgang erfolgt in beiden Fällen durch eine Gelierung des Sols mit anschließender Trocknung/Verfestigung.

[0081] Es ist aber auch möglich den Katalysator direkt auf der Membran abzuscheiden und mit einer offenporigen Gasdiffusionselektrode (wie z. B. einem offenporigen Kohlepapier) zu versehen. Hierzu kann z. B. ein Metallsalz oder eine Säure auf die Oberfläche aufgebracht und in einem zweiten Schritt zum Metall reduziert werden. So lässt sich beispielsweise Platin über die Hexachloroplatinsäure aufbringen und zum Metall reduzieren. Im letzten Schritt wird die Ableitelektrode durch ein Pressverfahren oder über einen elektrisch leitfähigen Klebstoff fixiert. Die Lösung, die die Metallvorstufe enthält, kann zusätzlich noch eine Verbindung enthalten, die bereits protonenleitfähig ist oder zumindest am Ende des Herstellungsverfahrens ionenleitend ist. Als geeignete Materialien kommen wieder die bereits oben genannten ionenleitenden Stoffe in Frage.

[0082] Man erhält auf diese Weise eine Membranelektrodeneinheit, die in einer Brennstoffzelle, insbesondere in einer Direktmethanol-Brennstoffzelle oder einer Reformat-Brennstoffzelle, verwendet werden kann.

[0083] Die erfindungsgemäße Elektrolytmembran und die erfindungsgemäße Membranelektrodeneinheit kann insbesondere zur Herstellung einer Brennstoffzelle oder eines Brennstoffzellenstacks eingesetzt werden, wobei die Brennstoffzelle insbesondere eine Direktmethanol-Brennstoffzelle oder eine Reformat-Brennstoffzelle ist, die in einem Fahrzeug eingesetzt wird.

[0084] Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert.

65

50

5

BEISPIELE

Herstellungsbeispiel 1

Herstellung von Suspensionen

Herstellungsbeispiel 1.1

[0085] 120 g Titantetraisopropylat werden mit 140 g entionisiertem Eis unter kräftigem Rühren bis zur Feinstverteilung des entstehenden Niederschlages gerührt. Nach Zugabe von 100 g 25%ige Salzsäure wird bis zu Klarwerden der Phase gerührt. Anschliessend werden 280 g Aluminiumoxid des Typs CT300OSG der Fa. Alcoa, Ludwigshafen, zugegeben und über mehrere Tage bis zum Auflösen der Aggregate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.2

[0086] 80 g Titantetraisopropylat werden mit 20 g Wasser hydrolysiert und der entstandene Niederschlag wird mit 120 g Salpetersäure (25%ig) peptisiert. Diese Lösung wird bis zum Klarwerden gerührt und nach Zugabe von 40 g Titandioxid der Fa. Degussa (P25) wird bis zum Auflösen der Agglomerate gerührt.. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.3

[0087] 90 g Titanisopropylat werden mit 40 g Ethanol versetzt und mit 10 g Wasser hydrolysiert. Das dabei ausfallende Gel wird mit 80 g einer 30% igen Schwefelsäure peptisiert und nach vollständigem Auflösen des Gels werden 30 g Aluminiumoxid der Fa. Degussa zugegeben und bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.4

[0088] 50 g Titantetraethoxylat wurden mit 270 g Wasser hydrolysiert und mit 30 g Salpetersäure (25%ig) peptisiert. Anschließend wurden 100 g Ethanol und 350 g CT 2000 SG der Fa. Alcoa zugegeben und verührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.5

[0089] 40 g Titanisopropylat und 30 g Methyltriethoxysilan werden mit 60 g Ethanol versetzt und mit 10 g Wasser hydrolysiert. Das dabei ausfallende Gel wird mit 60 g einer 30%igen Salzsäure peptisiert und nach vollständigem Auflösen des Gels werden 90 g amorphe mikroporöse Mischoxide (vgl. DE 195 45 (42) zugegeben und bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.6

[0090] 80 g Titantetraisopropylat werden mit 20 g Wasser hydrolysiert und der entstandene Niederschlag wird mit 120 g Salpetersäure (25%ig) peptisiert. Diese Lösung wird bis zum Klarwerden gerührt und nach Zugabe von 20 g Titandioxid der Fa. Degussa (P25) und 40 g Titandioxids in der Anatase-Form wird bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.7

[0091] 40 g Titantetraisopropylat werden mit 20 g Wasser hydrolysiert und der entstandene Niederschlag wird mit 60 g Salpetersäure (25%ig) peptisiert. Diese Lösung wird bis zum Klarwerden gerührt und nach Zugabe von 40 g Zinnoxid der Fa. Aldrich wird bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.8

[0092] 80 g Titantetraisopropylat werden mit 40 g Wasser hydrolysiert und der entstandene Niederschlag wird mit 120 g Salzsäure (25%ig) peptisiert. Diese Lösung wird bis zum Klarwerden gerührt und nach Zugabe von 200 g Titandioxid der Fa. Bayer wird bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

5

15

30

45

10

15

20

25

30

45

50

55

60

[0093] 120 g Titantetraisopropylat werden mit 140 g entionisiertem Eis unter kräftigem Rühren bis zur Feinstverteilung des entstehenden Niederschlages gerührt. Nach Zugabe von 100 g 25%ige Salpetersäure wird bis zum Klarwerden der Phase gerührt und 280 g Aluminiumoxid des Typs CT3(0)OSG der Fa. Alcoa, Ludwigshafen, zugegeben und über mehrere Tage bis zum Auflösen der Aggregate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.10

[0094] 20 g Titantetraisopropylat und 120 g Titanhydroxidhydrat (\$500-300, Versuchsprodukt der Fa. Rhone-Poulenc wurden mit 45 g Wasser hydrolysiert bzw. gelöst und mit 50 g einer 25%igen Salzsäure peptisiert. Nach Klarwerden und Zugabe von 300 g Aluminiumoxid (7988 E330, der Fa. Norton Materials) und 50 g Eisen(III)chlorid wird bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.11

[0095] 6 g Titantetrachlorid wurden mit 10 g einer 25%igen Salzsäure hydrolisiert. Nach Klarwerden und Zugabe von 13 g Aluminiumoxid (7988 E330, der Fa. Norton Materials) und 2 g Rutheniumchlorid wurde bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.12

[0096] 100 g Silicasol (Levasil 200, der Fa. Bayer AG) wurden mit 180 g Aluminiumoxid AA07 der Fa. Sumitomo Chemical bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.13

[0097] 70 g Tetraethoxysilan werden mit 20 g Wasser hydrolysiert und der entstandene Niederschlag wird mit 120 g Salpetersäure (25%ig) peptisiert. Diese Lösung wird bis zum Klarwerden gerührt und nach Zugabe von 40 g amorpher Kieselsäure oder amorphem Siliziumdioxids der Fa. Degussa bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.14

[0098] 20 g Aluminiumtriisopropylat werden in 10 g Ethanol vorgelegt und mit 5 g Wasser hydrolysiert. Das entstehende Gel wird mit 45 g Salpetersäure (15%ig) peptisiert und bis zum vollständigen Auflösen des Gels gerührt. Nach Zugabe von 60 g Vanadiumpentoxid der Fa. Aldrich wird bis zur vollständigen Lösung der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1. 15

[0099] 20 g Zirkoniumtetraisopropylat werden mit 15 g Wasser hydrolysiert und der entstehende Niederschlag wird mit 30 g Salpetersäure (25%ig) peptisiert. Nach vollständigem Lösen des Niederschlages wird nach Zugabe von 60 g Zeolith Y (Typ CBV 780 der Fa. Zeolyst) bis zum vollständigen Lösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.16

[0100] 20 g Zirkoniumtetraisopropylat werden mit 15 g Wasser hydrolysiert und der entstehende Niederschlag wird mit 30 g Salpetersäure (25%ig) peptisiert. Nach vollständigem Lösen des Niederschlages wird nach Zugabe von 10 g Zirkoniumdioxid der Fa. Degussa (Teilchengröße 50 run) bis zum vollständigen Lösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.17

[0101] 20 g Zirkoniumtetraisopropylat werden mit 15 g Wasser hydrolysiert und der entstehende Niederschlag wird mit 30 g Salpetersäure (25%ig) peptisiert. Nach vollständigem Lösen des Niederschlages wird nach Zugabe von 60 g Korundpulver der Teilchengröße 10 Mikrometer (Amperit, HC Stark) bis zum vollständigen Lösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines. Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

[0102] 20 g Zirkonnitratsol (30%ig der Fa. MEL Chemicals wurden mit 150 g Wasser, 25 g Titandioxid (Finntianx 78173 der Fa. Kemira Pigments und 210 g Glasmehl (HK, der Fa. Robert Reidt) verrührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden

Herstellungsbeispiel 1.19

[0103] 10 g Zirkonnitratsol (30%ig der Fa. MEL Chemicals und 50 g Titandioxid-Filterkuchen, Versuchsprodukt der Fa. Sachtzleben wurden mit 150 g Wasser, 290 g Aluminiumoxid 71340 RA der Fa Nabaltec bis zum Auflösen der Agglomerate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 1.20

[0104] 120 g Zirkontetraisopropylat werden mit 140 g entionisiertem Eis unter kräftigem Rühren bis zur Feinstverteilung des entstehenden Niederschlages gerührt. Nach Zugabe von 100 g 25%ige Salzsäure wird bis zum Klarwerden der Phase gerührt und 280 g α-Aluminiumoxid des Typs CT300OSG der Fa. Alcoa, Ludwigshafen, wurden zugegeben und für mehrere Tage bis zum Auflösen der Aggregate gerührt. Diese Suspension kann anschließend zur Herstellung eines Verbundwerkstoffs oder als Vorstufe für ein protonenleitendes Material verwendet werden.

Herstellungsbeispiel 2

Herstellung der Verbundwerkstoffe

Herstellungsbeispiel 2.1

[0105] Ein Keramikvlies mit einer Dicke von etwa 10 µm aus Al₂O₃-Fasern wird mit einem Zikonnitratsol, enthaltend 30 Gew.-% ZrO₂, behandelt und bei 200°C getempert, um die Keramikfasern zu verkleben. Eine Suspension nach Beispiel 1.9 wird auf das behandelte Keramikvlies aufgerakelt und durch Beblasen mit heißer Luft, die eine Temperatur von 550°C aufwies, innerhalb von 10 Sekunden getrocknet. Es wurde ein flächiger Verbundwerkstoff erhalten der als Verbundwerkstoff mit einer Porenweite von 0,2 bis 0,4 µm eingesetzt werden kann. Der Verbundwerkstoff ist bis auf einen Radius von 5 mm biegbar, ohne dass der Verbundwerkstoff zerstört wird. Der Verbundwerkstoff kann zur Herstellung einer erfindungsgemäßen Elektrolytmembran verwendet werden.

Herstellungsbeispiel 2.2

[0106] Eine Suspension nach Herstellungsbeispiel 1.2 wurde auf einen wie in Beispiel 2.1 beschriebenen Verbundwerkstoff durch Aufrollen mit einer Schichtdicke von 5 µm aufgetragen. Das Verfestigen der Suspension erfolgte wiederum durch Beblasen des Verbundes mit 550°C heißer Luft für eine Dauer von etwa 5 Sekunden. Es wurde ein Verbundwerkstoff erhalten, der eine Porenweite von 30–60 nm aufwies und zur Herstellung einer erfindungsgemäßen Elektrolytmembran geeignet ist.

Herstellungsbeispiele 2.3 bis 2.19

[0107] Die Suspensionen der Herstellungsbeispiele 1.3 bis 1.19 werden jeweils auf den in Herstellungsbeispiel 2.1 beschriebenen Träger aufgebracht und durch Beblasen mit Luft einer Temperatur von 450–550°C für wenige Sekunden getrocknet. Der erhaltene Verbundwerkstoff kann zur Herstellung einer erfindungsgemäßen Verbundmembran eingesetzt werden.

Herstellungsbeispiel 2.20

[0108] Die gemäß Herstellungsbeispiel 1.20 hergestellte Suspension wird in dünner Schicht auf ein Keramikvlies aufgebracht und bei 550°C innerhalb von 5 Sekunden verfestigt. Der erhaltene Verbundwerkstoff kann zur Herstellung einer erfindungsgemäßen Verbundmembran eingesetzt werden.

Beispiel 1

Herstellung einer Elektrolytmembran durch Behandlung eines Verbundwerkstoffes mit Silanen

[0109] Ein anorganischer, stoffdurchlässiger Verbundwerkstoff, der hergestellt wurde durch Aufbringen einer dünnen Schicht der Suspension aus Herstellungsbeispiel 1.1 auf einen Keramikträger gemäß Herstellungsbeispiel 2.1, wurde in eine Lösung getaucht, die aus folgenden Komponenten bestand: 5% Degussa Silan 285 (ein Propylsulfonsäuretriethoxysilan), 20% vollentsalztes (VE) Wasser in 75% Ethanol. Vor der Benutzung musste die Lösung 1 h bei Raumtemperatur gerührt werden.

[0110] Nach Abtropfen von überstehender Lösung wurde der Verbundwerkstoff bei 80 bis 150°C getrocknet, um eine Elektrolytmembran der vorliegenden Erfindung zu schaffen.

15

25

45

Beispiel 2

Herstellung einer Elektrolytmembran

[0111] 20 g Aluminiumalkoholat und 17 g Vanadiumalkoholat wurden mit 20 g Wasser hydrolisiert und der entstandene Niederschlag wurde mit 120 g Salpetersäure (25%ig) peptisiert. Diese Lösung wurde bis zum Klarwerden gerührt und nach Zugabe von 40 g Titandioxid der Fa. Degussa (P25) wurde noch bis zum Auflösen aller Agglomerate gerührt. Nach Einstellung eines pH-Wertes von etwa 6 wurde die Suspension auf einen nach Herstellungsbeispiel 2.1 hergestellten Verbundwerkstoff aufgerakelt und getrocknet, um eine mit negativen Festladungen ausgestattete protonenleitende Elektrolytmembran zu schaffen.

10

5

Beispiele 3 und 4

Herstellung einer Elektrolytmembran mit Zeolithen

[0112] 10 g Methyltriethoxisilan, 30 g Tetraethylorthosiloxan und 10 g Aluminiumtrichlorid wurden mit 50 g Wasser in 100 g Ethanol hydrolysiert. Hierzu wurden dann 190 g Zeolith USY (CBV 600 der Fa. Zeolyst) gegeben. Es wurde noch so lange gerührt, bis sich alle Agglomerate aufgelöst hatten und anschließend wurde die Suspension auf einen nach Herstellungsbeispiel 2.1 bzw. 2.2 hergestellten Verbundwerkstoff gestrichen und durch Temperaturbehandlung bei 600°C verfestigt, um eine protonenleitende Elektrolytmembran zu schaffen.

15

20

Beispiel 5

Herstellung einer Elektrolytmembran

25

30

[0113] 10 ml wasserfreie Trihydroxysilylpropylsulfonsäure, 30 ml Ethanol sowie 5 ml Wasser werden durch Rühren gemischt. Zu dieser Mischung wird unter Rühren langsam 40 ml TEOS (Tetraethylorthosilikat) zugetropft. Zur Kondensation wird dieses Sol für 24 h in einem abgeschlossenen Gefäß gerührt. Der Verbundwerkstoff aus Herstellungsbeispiel 2.20 wird für 15 Minuten in dieses Sol getaucht. Anschließend lässt man das Sol in der getränkten Membran für 60 min an Luft gelieren und trocknen. Die mit dem Gel gefüllte Membran wird bei einer Temperatur von 150°C für 60 min getrocknet, so dass das Gel verfestigt und wasserunlöslich wird. Auf diese Weise wird eine dichte Membranen erhalten, die eine Protonenleitfähigkeit bei Raumtemperatur und normaler Umgebungsluft von ca. $2 \cdot 10^{-3}$ S/cm aufweist.

Beispiel 6

35

Herstellung einer Elektrolytmembran

[0114] In 50 ml des Sols aus Beispiel 5 werden zusätzlich 25 g Wolframphosphorsäure gelöst. In diesem Sol wird der Verbundwerkstoff aus Herstellungsbeispiel 2.1 für 15 min getaucht. Dann wird weiter wie bei Beispiel 5 verfahren.

40

Beispiel 7

Herstellung einer Elektrolytmembran

[0115] 100 ml Titanisopropylat wird unter kräftigem Rühren zu 1200 ml Wasser getropft. Der entstandene Niederschlag wird 1 h gealtert und dann mit 8,5 ml konzentrierte Salpetersäure versetzt und in der Siedehitze für 24 h peptisiert. In 25 ml dieses Sols werden 50 g Wolframphosphorsäure gelöst. Zu dieser Lösung gibt man weitere 25 ml Trihydroxysilylpropylsulfonsäure und rührt für eine Stunde bei Raumtemperatur. In dieses Sol wird dann der Verbundwerkstoff aus Herstellungsbeispiel 2.1 für 15 min eingetaucht. Dann wird die Membran getrocknet und durch eine Temperaturbehandlung bei 150°C verfestigt und in die protonenleitende Form überführt.

45

50

Beispiel 8

Herstellung einer Elektrolytmembran

55

[0116] In wenig Wasser gelöstes Natriumtrihydroxysilylmethylphosphonat wird mit Ethanol verdünnt. Zu dieser Lösung gibt man die gleiche Menge TEOS und rührt kurz weiter. In diesem Sol wird der Verbundwerkstoff aus Herstellungsbeispiel 2.1 für 15 min eingetaucht. Dann wird die Membran getrocknet und durch eine Temperaturbehandlung bei 250°C verfestigt und durch eine Säurebehandlung in die protonenleitende Form überführt.

- 60

Beispiel 9

Herstellung einer Elektrolytmembran

[0117] 10 g Methyltriethoxisilan, 30 g Tetraethylorthosilikat und 10 g Aluminiumtrichlorid werden mit 50 g Wasser in 100 g Ethanol hydrolysiert. Zu dieser Mischung werden dann 190 g Zeolith USY (CBV 600 der Fa. Zeolvst) gegeben. Es wird noch so lange gerührt bis sich alle Agglomerate aufgelöst haben und anschließend wird die Suspension auf einen nach Beispiel 2.20 hergestellten Verbundwerkstoff gestrichen und durch eine Temperaturbehandlung bei 500°C verfe-

stigt und in die ionenleitende Membran überführt.

Beispiele 10 bis 14

5 Herstellung einer Elektrolytmembran durch Infiltrieren einer protonenleitenden Membran mit einer ionischen Flüssigkeit

[0118] Eine poröse Elektrolytmembran gemäß den Beispielen 5 bis 9 wird jeweils mit [EMIM]CF₃SO₃ (EMIM: 1-Ethyl-3-methylimidazolium) als ionischer Flüssigkeit besprüht. Das Besprühen erfolgt so lange von einer Seite des Verbundwerkstoffes, bis die gegenüberliegende Seite des Verbundwerkstoffes durch die durch den Verbundwerkstoff hindurchgetretene ionische Flüssigkeit ebenfalls benetzt ist. Auf diese Weise wird erreicht dass die in dem porösen ionenleitenden Verbundwerkstoff enthaltende Luft durch die ionisch leitende Flüssigkeit verdrängt wird. Man kann diese Membran nach dem Abstreifen überschüssiger ionischer Flüssigkeit an der Luft trocknen lassen. Durch Kapillarkräfte bleibt die ionische Flüssigkeit in der erfindungsgemäßen Membran erhalten. Da ionische Flüssigkeiten keinen messbaren Dampfdruck haben, ist auch nach längerer Lagerung der erfindungsgemäß hergestellten Membrane nicht mit einer Reduzierung der ionischen Flüssigkeit in der Membran zu rechnen.

Beispiel 15 bis 74

20 Herstellung einer Elektrolytmembran durch Infiltrieren einer protonenleitenden Membran mit einer ionischen Flüssigkeit

[0119] Anstelle des [EMIM]CF₃SO₃ aus den Beispielen 10 bis 14 werden die zwölf ionischen Flüssigkeiten nach [EMIM]CF₃SO₃ gemäß folgender Tabelle eingesetzt:

25	Salz bzw. ionische	Schmelzpunkt /°C
30	Flüssigkeit	
	[EMIM]CF ₃ SO ₃ (Bsp.10-14)	- 9
	[BMIM]CF ₃ SO ₃	16
	[Ph₃Poc]Ots	70 - 71
35	[Bu3NMe]Ots	62
	[BMIM]CI	65 - 69
	[EMIM]CI	87
40	[MMIM]CI	125
	[EMIM]NO ₂	87
	[EMIM]NO ₃	55
	[EMIM]AICI₄	38
45	[EMIM]BF₄	7
	[EMIM]CF ₃ CO ₂	- 14
	[EMIM][(CF ₃ SO ₂) ₂ N]	- 3

[0120] Die Abkürzungen haben folgende Bedeutung:

EMIM = 1-Ethyl-3-methylimidazolium-Ion, BMIM = 1-n-Butyl-3-methylimidazolium-Ion, MMIM = 1-Methyl-3-methylimidazolium-Ion, Ts = $H_3CC_6H_4SO_2$ (Tosyl), Oc = Octyl, Et = Ethyl, Me = Methyl, Bu = n-Butyl, CF_3SO_3 = Triflat-Anion und Ph = Phenyl verwendet werden.

Beispiel 75

Herstellung einer Elektrolytmembran durch Immobilisieren einer Brönstedsäure

[0121] Eine TEOS-Lösung, bestehend aus TEOS: Ethanol: H₂O: HCl = 1:8:4:0,05 mol, wird für 24 h vorkondensiert. Danach gibt man 20 Vol-% konz. HClO₄ (70%ig) zum Sol und beschichtet nach kurzem Weiterrühren durch Aufrakeln damit eine Grundmembran, die gemäß dem Herstellungsbeispiel 2.20 hergestellt wurde. Im Anschluss an die Infiltration wird die Membran bei RT verfestigt und getrocknet. Die Leitfähigkeit der Membran bei Raumtemperatur und ca. 35% r. F. liegt bei ca. 20 mS/cm.

Beispiel 76

65
Herstellung einer Elektrolytmembran durch Immobilisieren einer Brönstedsäure

[0122] Eine Elektrolytmembran wurde wie in Beispiel 75 hergestellt, wobei anstelle von HClO₄ als Säure H₂SO₄

(98%ig) dem Sol zugesetzt wurde. ibt sich unter den gleichen Messbedingungen (Rau beratur und ca. 35% r. F.) eine Leitfähigkeit von etwa 23 ms/cm nach einer thermischen Behandlung von 100°C (1 h).

Beispiel 77

Herstellung einer Elektrolytmembran durch Immobilisieren einer Brönstedsäure

[0123] Ein TEOS-Sol, bestehend aus TEOS (11 ml), Diethylphosphit (19 ml), Ethanol (11 ml) und H₃PO₄ (10 ml) wird eine Stunde vorkondensiert und dann damit eine Grundmembran, die gemäß dem Herstellungsbeispiel 2.20 hergestellt wurde, durch Aufrakeln infiltriert. Die Membran wird bei 150°C 1 h getrocknet. Die Leitfähigkeit der Membran bei Raumtemperatur und ca. 35% r. h. liegt bei etwa. 2,9 mS/cm.

Beispiel 78

Herstellung einer Elektrolytmembran durch Immobilisieren einer Brönstedsäure

[0124] 100 ml Titanisopropylat werden unter kräftigem Rühren in 1200 ml Wasser getropft. Der entstandene Niederschlag wird 1 h gealtert und dann mit 8,5 ml konz. HNO₃ versetzt und in der Siedehitze für 24 h peptisiert. Zu 100 ml clieses Sols gibt man 10 ml H₂SO₄ (98%ig). Nach der Beschichtung der Grundmembran 2.20 mit einem solchen Sol und dem Vertestigen bei Temperaturen von bis ca. 150°C wird die protonenleitende Membran erhalten.

Beispiel 79

Herstellung einer Anodentinte

101251 10 ml wasserfreie Trihydroxysilylpropylsulfonsäure, 60 ml Ethanol sowie 5 ml Wasser werden durch Rühren germscht Zu dieser Mischung wird unter Rühren langsam 40 ml TEOS (Tetraethylorthosilikat) zugetropft. In diesem Sol wird der aus DE 197 21 437 bzw. DE DE 198 16 622 bekannte Katalysator dispergiert so dass in der Elektrode ein Kataly sater-Belegungsgrad von etwa 0,2 mg/cm² bzw. 0,5 mg/cm² erzielt werden kann.

Beispiel 80

Herstellung einer Anodentinte

[0126] 100 ml Titanisopropylat werden unter kräftigem Rühren in 1200 ml Wasser getropft. Der entstandene Niederschlag wird 1 h gealtert und dann mit 8,5 ml konz. HNO₃ versetzt und in der Siedehitze für 24 h peptisiert. In 50 ml dieses Sols werden 50 g Wolframphosphorsäure gelöst und dann der Katalysator wie in Beispiel 79 beschrieben darin dispergien.

Beispiel 81

Herstellung einer Anodentinte

[0127] 20 g Aluminiumalkoholat und 17 g Vanadiumalkoholat werden mit 20 g Wasser hydrolysiert und der entstandene Niederschlag wird mit 120 g Salpetersäure (25%ig) peptisiert. Diese Lösung wird bis zum Klarwerden gerührt und nach Zugabe von 40 g Titandioxid der Fa. Degussa (P25) wird noch bis zum Auflösen aller Agglomerate gerührt. Nach Einstellung eines pH Wertes von ca. 6 wird der Katalysator wie in Beispiel 79 beschrieben darin dispergiert.

Beispiel 82

Herstellung einer Kathodentinte

[0128] 10 ml wasserfreie Trihydroxysilylpropylsulfonsäure, 60 ml Ethanol sowie 5 ml Wasser werden durch Rühren gemischt. Zu dieser Mischung wird unter Rühren langsam 20 ml TEOS (Tetraethylorthosilikat) und 20 ml Methyltriethoxysilan zugetropft. In diesem Sol wird der in DE 196 11 510 oder der in DE 198 12 592 verwendete Katalysator dispergiert so dass in der Elektrode ein Pt-Belegungsgrad von etwa 0,15 mg/cm² bzw. 0,25 mg/cm² erzielt werden kann.

Beispiel 83

Herstellung einer Kathodentinte

[0129] 20 g Methyltriethoxysilan, 20 g Tetraethylorthosilikat und 10 g Aluminiumtrichlorid werden mit 50 g Wasser in 200 g Ethanol hydrolysiert. Hierzu werden dann 190 g Zeolith USY (CBV 600 der Fa. Zeolyst) gegeben. Es wird noch so lange gerührt, bis sich alle Agglomerate aufgelöst haben und anschließend wird der Katalysator wie in Beispiel 82 beschrieben darin dispergiert.

15

5

15

10

20

30

35

25

40

45

50

55

60

Beispiel 84

Herstellung einer Membranelektrodeneinheit

[0130] Eine Membran gemäß Beispiel 1 wird mit der Tinte gemäß Beispiel 79 durch Siebdruck zunächst auf der Vorderseite bedruckt. Diese Seite dient in der späteren Membranelektrodeneinheit als Anode. Die bedruckte Membran wird bei einer Temperatur von 150°C getrocknet. Neben dem Entweichen des Lösemittels kommt es gleichzeitig zu einer Immobilisierung der Silylpropylsulfonsäure.

[0131] Im zweiten Schritt wird die Membran auf der Rückseite, die später als Kathode dienen soll, mit der Tinte aus Beispiel 82 bedruckt. Auch jetzt wird die bedruckte Membran wiederum bei einer Temperatur von 150°C getrocknet wobei das Lösemittel entweicht und es gleichzeitig zu einer Immobilisierung der Silylpropylsulfonsäure kommt. Da die Kathode hydrophob ist, kann beim Betrieb der Membranelektrodeneinheit in der Brennstoffzelle das Produktwasser leicht entweichen. Diese Membranelektrodeneinheit kann in eine Direktmethanol-Brennstoffzelle oder eine Reformat-Brennstoffzelle eingebaut werden.

Beispiel 85

Herstellung einer Membranelektrodeneinheit

[0132] Zur Herstellung der Elektroden werden sowohl die Anodentinte gemäß Beispiel 80 als auch die Kathodentinte gemäß Beispiel 83 jeweils auf ein elektrisch leitfähiges Kohlepapier aufgebracht. Durch eine Wärmebehandlung bei einer Temperatur von 150°C wird das Lösemittel entfernt und die protonenleitfähige Komponente immobilisiert. Diese beiden Gasdiffusionselektroden werden mit einer protonenleitfähigen Membran zu einer Membranelektrodeneinheit verpresst, die dann in die Brennstoffzelle eingebaut werden kann.

Beispiel 86

Herstellung einer Brennstoffzelle

[0133] Zur Herstellung der MEA werden zunächst die Elektroden gefertigt. Hierzu wird ein Keramikvlies mit einem Ruß/Platingemisch (40%) beschichtet. Diese Elektroden werden auf die Elektrolytmembran gemäß Beispiel 77 gepresst. Die Anpressung erfolgt über eine graphitische Gasverteilerplatte, die gleichzeitig zur elektrischen Kontaktierung dient. Auf der Anodenseite kommt reiner Wasserstoff und auf der Kathodenseite reiner Sauerstoff zum Einsatz. Beide Gase werden über Wasserdampfsättiger (sogenannte "Bubbler") befeuchtet.

Vergleichsbeispiel

[0134] Eine Brennstoffzelle wurde wie in Beispiel 86 beschrieben hergestellt, außer, das als MEA eine herkömmliche Nation®117-Membran eingesetzt wurde. Es wurde gefunden, dass die Protonenleitfähigkeit bei Verwendung einer Nafionmembran bei einer relativen Luftfeuchtigkeit von weniger als 100% drastisch abfiel und der Flächenwiderstand stark anstieg, so dass die Brennstoffzelle nicht mehr betrieben werden konnte. Andererseits kann eine erfindungsgemäße Membran auch bei einer relativen Luftfeuchtigkeit betrieben werden, die anodenseitig bei etwa 10% und kathodenseitig bei etwa 5% lag, ohne dass die Funktion der Brennstoffzelle wesentlich beeinträchtigt wurde.

Patentansprüche

- 1. Für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässige, protonenleitfähige, flexible Elektrolytmembran für eine Brennstoffzelle, umfassend einen stoffdurchlässigen Verbundwerkstoff aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial, wobei der Verbundwerkstoff mit einem protonenleitfähigen Material durchsetzt ist, das geeignet ist selektiv Protonen durch die Membran zu leiten.
- 2. Elektrolytmembran nach Anspruch 1, dadurch gekennzeichnet, dass das protonenleitfähige Material
 - (i) eine immobilisierte Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon, sowie gegebenenfalls ein Oxid von Aluminium, Silizium, Titan, Zirkonium und/oder Phosphor, und/oder
 - (ii) eine ionische Flüssigkeit, die gegebenenfalls eine Brönstedsäure enthalten kann, und/oder
- (iii) eine Brönstedsäure und ein Oxid von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphor umfasst.
- 3. Für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässige, protonenleitfähige, flexible Elektrolytmembran für eine Brennstoffzelle, erhältlich durch
 - (a) Infiltration eines stoffdurchlässigen Verbundwerkstoffs aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial mit einer ionischen Flüssigkeit, um ein den Verbundwerkstoff durchsetzendes Material zu schaffen, das geeignet ist selektiv Protonen durch die Membran zu leiten oder.
 - (b) Infiltration eines stoffdurchlässigen Verbundwerkstoffs aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial mit
 - (b1) einer Mischung, enthaltend eine immobilisierbare Hydroxysilylalkylsäure von Schwefel oder Phosphor oder einem Salz davon; oder
 - (b2) einer Mischung, enthaltend eine Brönstedsäure und/oder eine immobilisierbare Hydroxysilylalkyl-

16

\SDOCID: <DE_____10115927A1_I_>

55

15

25

35

45

50

60

säure von Schwefel hosphor oder ein Salz davon sowie ein Sol, das ein Stufe für Oxide von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphor umfasst und

10

15

25

- (c) Verfestigung der den Verbundwerkstoff infiltrierenden Mischung, und gegebenenfalls Infiltration des in Stufe (b) erhaltenen Verbundwerkstoffs mit einer ionischen Flüssigkeit, um ein den Verbundwerkstoff durchsetzendes Material zu schaffen, das geeignet ist selektiv Protonen durch die Membran zu leiten.
- 4. Elektrolytmembran nach einem der Ansprüche 1 bis 3, wobei der Träger feuerfeste Keramikfasern mit polykristalliner Mikrostruktur umfasst.
- 5. Elektrolytmembran nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Keramik des Trägers ein Material ist, das zu einem hohen Anteil aus Aluminiumoxid, Siliziumcarbid, Siliziumnitrid oder einem Zirkonoxid besteht.
- 6. Elektrolytmembran nach einem der Ansprüche 1 bis 5, wobei der Träger Fasern oder Filamente aus Aluminiumoxid enthält, die ein Verhältnis von 0 bis 30% Siliziumoxid/Aluminiumoxid aufweisen.
- 7. Elektrolytmembran nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Brönstedsäure Schwefelsäure, Phosphorsäure, Perchlorsäure, Salpetersäure, Chlorwasserstoffsäure, schweflige Säure, phosphorige Säure sowie Ester davon und/oder eine monomere oder polymere organische Säure umfasst.
- 8. Elektrolytmembran nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Träger ein Gewebe und besonders bevorzugt ein Vlies umfasst.
- 9. Elektrolytmembran nach Anspruch 8, dadurch gekennzeichnet, dass der Träger Fasern und/oder Filamente mit einem Durchmesser von 0,5 bis 150 μm, vorzugsweise 0,5 bis 20 μm, und/oder Fäden mit einem Durchmesser von 5 bis 150 μm, vorzugsweise 20 bis 70 μm, umfasst.
- 10. Elektrolytmembran nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Träger ein Gewebe mit einer Maschenweite von 5 bis 500 μm, vorzugsweise 10 bis 200 μm, ist, oder dass der Träger ein Vlies mit einer Dicke von 5–100 μm und bevorzugt von 10–30 μm ist.
- 11. Elektrolytmembran nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das poröse Keramikmaterial eine Porosität von 10% bis 60%, vorzugsweise von 20% bis 45% aufweist.
- 12. Elektrolytmembran nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das poröse Keramikmaterial Poren mit einem mittleren Durchmesser von mindestens 20 nm, vorzugsweise von mindestens 100 nm, ganz besonders bevorzugt mehr als 250 nm, aufweist.
- 13. Elektrolytmembran nach einem der Ansprüche 1 bis 12, die bei mindestens 80°C, vorzugsweise bei mindestens 120°C, und ganz besonders bevorzugt bei mindestens 140°C, stabil ist.
- 14. Elektrolytmembran nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Verbundwerkstoff eine Dicke im Bereich von 5 bis 150 μm, bei Verwendung eines Gewebes vorzugsweise 10 bis 80 μm, ganz besonders bevorzugt 10 bis 50 μm, und bei Verwendung eines Vlieses vorzugsweise 5 bis 50 μm, ganz besonders bevorzugt 10 bis 30 μm aufweist.
- 15. Elektrolytmembran nach einem der Ansprüche 1 bis 14, die einen Biegeradius von mindestens 100 mm, vorzugsweise von mindestens 20 mm, ganz besonders bevorzugt von mindestens 5 mm toleriert.
- 16. Elektrolytmembran nach einem der Ansprüche 1 bis 15, die bei Raumtemperatur und bei einer relativen Luftfeuchtigkeit von 35% eine Leitfähigkeit von mindestens 2 mS/cm, vorzugsweise mindestens 20 mS/cm, ganz besonders bevorzugt 23 mS/cm aufweist.
- 17. Verfahren zur Herstellung einer Elektrolytmembran nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
 - (a) Infiltration eines stoffdurchlässigen Verbundwerkstoffs aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial mit einer ionischen Flüssigkeit, um ein den Verbundwerkstoff durchsetzendes Material zu schaffen, das geeignet ist selektiv Protonen durch die Membran zu leiten, oder
 - (b) Infiltration eines stoffdurchlässigen Verbundwerkstoffs aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial mit
 - (b1) einer Mischung, enthaltend eine immobilisierbare Hydroxysilylalkylsäure von Schwefel oder Phosphor oder einem Salz davon; oder
 - (b2) einer Mischung, enthaltend eine Brönstedsäure und/oder eine immobilisierbare Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon sowie ein Sol, das eine Vorstufe für Oxide von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphor umfasst und
 - Verfestigung der den Verbundwerkstoff infiltrierenden Mischung, und gegebenenfalls Infiltration des in Stufe (b) erhaltenen Verbundwerkstoffs mit einer ionischen Flüssigkeit, um ein den Verbundwerkstoff durchsetzendes Material zu schaffen, das geeignet ist selektiv Protonen durch die Membran zu leiten.
- 18. Verfahren nach Anspruch 17, wobei das Sol erhältlich ist durch (a1-1) Hydrolyse einer hydrolysierbaren Verbindung, vorzugsweise in einer Mischung aus Wasser und Alkohol, zu einem Hydrolysat, wobei die hydrolysierbare Verbindung ausgewählt ist aus hydrolysierbaren Alkohologier verbindung ausgewählt ist aus hydrolysierbaren Verbindung ausgewählt ist ausgewählt i
 - laten, Acetaten, Acetylacetonaten, Nitraten, Oxynitraten, Chloriden, Oxychloriden, Carbonaten, von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphor oder Estern, vorzugsweise Methylestern, Ethylestern und/oder Propylestern der Phosphorsäure oder der phoshorigen Säure, (a1-2) Peptisierung des Hydrolysats zu einem Sol.
- 19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die Mischung weitere protonenleitende Stoffe, vorzugsweise Titanphosphate, Titanphosphonate, Zirkoniumphosphate, Zirkoniumphosphonate, Iso- und Heteropolysäuren, vorzugsweise Wolframphosphorsäure oder Siliziumwolframsäure, nanokristalline und/oder kristalline Metalloxide, wobei Al₂O₃-, ZrO₂-, TiO₂- oder SiO₂-Pulver bevorzugt sind, enthält.
- 20. Verfahren nach einem der Ansprüche 17 bis 19, wobei die Infiltration durch Aufdrucken, Aufpressen, Einpressen, Aufrollen, Aufrakeln, Aufstreichen, Tauchen, Spritzen oder Aufgießen der Mischung auf den stoffdurchlässi-

gen Verbundwerkstoff erfolgt.

21. Verfahren nach einem der Ansprüche 17 bis 20, wobei die Infiltration mit der Mischung wiederholt durchgeführt wird und gegebenenfalls ein Trocknungsschritt, vorzugsweise bei einer erhöhten Temperatur in einem Bereich von 50 bis 200°C, zwischen der wiederholten Infiltration erfolgt.

22. Verfahren nach einem der Ansprüche 17 bis 21, wobei die Infiltration des stoffdurchlässigen Verbundwerkstoff kontinuierlich erfolgt.

23. Verfahren nach einem der Ansprüche 17 bis 22, wobei ein erwärmter Verbundwerkstoff infiltriert wird.

24. Verfahren nach einem der Ansprüche 17 bis 23, wobei die Verfestigung durch Erwärmen auf eine Temperatur von 50 bis 800°C, vorzugsweise 100 bis 600°C, ganz besonders bevorzugt 150 bis 200°C erfolgt.

25. Verfahren nach Anspruch 20 oder 21, wobei die Erwärmung durch erwärmte Luft, Heißluft, Infrarotstrahlung oder Mikrowellenstrahlung erfolgt.

26. Plexible Membranelektrodeneinheit für eine Brennstoffzelle, mit einer elektrisch leitfähigen Anoden- und Kathoxlenschicht, die jeweils auf gegenüberliegenden Seiten einer für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässigen, protonenleitfähigen, flexiblen Elektrolytmembran für eine Brennstoffzelle, insbesondere nach einem der Ansprüche 1 bis 16, vorgesehen sind, wobei die Elektrolytmembran einen stoffdurchlässigen Verbundwerkstoff aus einem flexiblen, durchbrochenen, eine Keramik umfassenden Träger und einem porösen Keramikmaterial umfasst, wobei der Verbundwerkstoff mit einem protonenleitfähigen Material durchsetzt ist, das geeignet ist selektiv Protonen durch die Membran zu leiten, und wobei die Anodenschicht und die Kathodenschicht porös sind und jeweils einen Katalysator für die Anoden- und Kathodenreaktion, eine protonenleitfähige Komponente und gegebenenfalls einen Katalysatorträger umfassen.

27. Membranelektrodeneinheit nach Anspruch 26, wobei die protonenleitfähige Komponente der Anoden- und/
order Kathodenschicht und/oder das protonenleitfähige Material des Verbundwerkstoffs jeweils umfasst

(i) eine immobilisierte Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon, sowie gegebenenfalls ein Oxid von Aluminium, Silizium, Titan, Zirkonium und/oder Phosphor, und/oder

(ii) eine Brönstedsäure und ein Oxid von Aluminium, Silizium, Titan, Zirkonium, und/oder Phosphor sowie

anorganische Oxide, Phosphate, Phosphide, Phosphonate, Sulfate, Sulfonate, Vanadate, Antimonate, Stannate, Plumbate, Chromate, Wolframate, Molybdate, Manganate, Titanate, Silikate, Alumosilikate und Muminate der Elemente Lithium, Natrium, Kalium, Magnesium, Calcium, Aluminium, Silizium, Titan, Zirkomum, Yitrium, Phosphor Vanadium, Wolfram, Molybdän, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink oder Cerium oder einer Kombination dieser Elemente,

und das protonenleitfähige Material des Verbundwerkstoffs gegebenenfalls eine ionische Flüssigkeit, die eine Brönstedsaure enthalten kann, umfasst.

28. Membranelektrodeneinheit nach Anspruch 27, wobei die Hydroxysilylalkylsäure des Schwefels oder Phosphyrs wer ein Salz davon eine siliziumorganische Verbindung der allgemeinen Formeln

 $\{\{(RO),(R^2),\}_a Si\{R^1-SO_3^-\}_a\}_x M^{x+}$ (I)

 $[(R()),(R^2)_{z}Si\{R^1-O_b-P(O_cR^3)O_2^-\}_a]_xM^{x+} \quad (II)$

ist, wobei R¹ für eine lineare oder verzweigte Alkyl- oder Alkylengruppe mit 1 bis 12 C-Atomen, eine Cycloalkylgruppe mit 5 bis 8 C-Atomen oder eine Einheit der allgemeinen Formeln

$$-(CH_2)_{\overline{n}}$$
 (III)

oder

50

55

60

65

ю

15

20

25

30

35

40

45

$$-(CH2)\frac{H}{m}$$
(IV)

steht.

wobei n, m jeweils für eine ganze Zahl von 0 bis 6 steht,

M für II, NH4 oder ein Metall steht,

x = 1 bis 4

y = 1 bis 3, z = 0 bis 2 und a = 1 bis 3 bedeuten, mit der Maßgabe, dass y + z = 4 - a ist, b, c = 0 oder 1,

R, R² gleich oder verschieden sind und für Methyl-, Ethyl-, Propyl-, Butylreste oder H stehen

R³ für M oder einen Methyl-, Ethyl-, Propyl- oder Butylrest steht.

29. Membranelektrodeneinheit nach Anspruch 28, wobei die Hydroxysilylalkylsäure des Schwefels oder Phosphors Trihydroxysilylpropylsulfonsäure, Trihydroxysilylpropylmethylphosphonsäure oder Dihydroxysilylpropylsulfondisäure ist.

- 30. Membranelektrodeneinheit gesteinem der Ansprüche 27 bis 29, dadurch gekennzeit aus als die Hydroxysilylalkylsäure des Schwefels oder Phosphors oder ein Salz davon mit einer hydrolysierten Verbindung des Phosphors oder einem hydrolisierten Nitrat, Oxynitrat, Chlorid, Oxychlorid, Carbonat, Alkoholat, Acetat, Acetylacetonat eines Metalls oder Halbmetalls immobilisiert ist.
- 31. Membranelektrodeneinheit nach Anspruch 30, dadurch gekennzeichnet, dass die Hydroxysilylalkylsäure des Schwefels oder des Phosphors oder ein Salz davon mit einer hydrolysierten Verbindung, erhalten aus Diethylphosphit (DEP), Diethylethylphosphonat (DEEP), Titanpropylat, Titanethylat, Tetraethylorthosilikat (TEOS) oder Tetramethylorthosilikat (TMOS), Zirkoniumnitrat, Zirkoniumoxynitrat, Zirkoniumpropylat, Zirkoniumacetat oder Zirkoniumacetylacetonat oder Phosphorsäuremethylester immobilisiert ist.
- 32. Membranelektrodeneinheit nach einem der Ansprüche 26 bis 31, dadurch gekennzeichnet, dass der mit einem protonenleitfähigen Material durchsetzte Verbundstoff zusätzlich eine ionische Flüssigkeit enthält, die ein Kation umfasst, das ausgewählt ist, aus den Imidazoliumionen, Pyridiniumionen, Ammoniumionen oder Phosphoniumionen der folgenden Formeln:

10

50

60

65

wobei R und R' gleich oder verschieden sein können und für Alkyl-, Olefin- oder Aryl-Grppen stehen oder für Wasserstoff stehen,

und wobei die ionische Flüssigkeit ein Anion umfasst, das ausgewählt ist aus folgenden Ionen: Nitrat, Sulfat, Hydrogensulfat, Chloroaluminationen, BF₄-, Alkyl-Borat-Ionen, vorzugsweise Triethylhexylborat, Halogeno-Phosphat-Ionen, vorzugsweise PF₆-.

- 33. Membranelektrodeneinheit nach einem der Ansprüche 26 bis 32, die bei einer Temperatur von mindestens 80°C, vorzugsweise bei mindestens 120°C, und ganz besonders bevorzugt bei mindestens 140°C betrieben werden kann.
- 34. Membranelektrodeneinheit nach einem der Ansprüche 26 bis 33, wobei der flexible, durchbrochene Träger eine säurefeste Keramik umfasst.
- 35. Membranelektrodeneinheit nach einem der Ansprüche 26 bis 34, das einen Biegeradius von mindestens 100 mm, vorzugsweise von mindestens 20 mm, ganz besonders bevorzugt von mindestens 5 mm toleriert.
- 36. Membranelektrodeneinheit nach einem der Ansprüche 26 bis 35, wobei die protonenleitfähige Komponente der Anodenschicht und Kathodenschicht und das protonenleitfähige Material der Elektrolytmembran die gleiche Zusammensetzung aufweisen.
- 37. Membranelektrodeneinheit nach einem der Ansprüche 26 bis 36, wobei die Anodenschicht und die Kathodenschicht die gleiche Zusammensetzung aufweisen.
- 38. Membranelektrodeneinheit nach einem der Ansprüche 26 bis 36, wobei die Anodenschicht und die Kathodenschicht unterschiedliche Katalysatoren aufweisen.
- 39. Membranelektrodeneinheit nach einem der Ansprüche 26 bis 38, wobei der Katalysatorträger in der Anodenschicht und in der Kathodenschicht elektrisch leitfähig ist.
- 40. Verfahren zur Herstellung einer Membranelektrodeneinheit nach einem der Ansprüche 26 bis 39, wobei das Verfahren folgende Schritte umfasst,
 - (A) Bereitstellung einer für die Reaktionskomponenten der Brennstoffzellenreaktion undurchlässigen, protonenleitfähigen, flexiblen Elektrolytmembran für eine Brennstoffzelle, insbesondere nach einem der Ansprüche 1 bis 16, wobei die Elektrolytmembran einen stoffdurchlässigen Verbundwerkstoff aus einem flexiblen, durchbrochenen, eine Kerannik umfassenden Träger und einem porösen Keramikmaterial, wobei der Verbundwerkstoff mit einem protonenleitfähigen Material durchsetzt ist, das geeignet ist selektiv Protonen durch die Membran zu leiten, umfasst,
 - (B) Bereitstellung jeweils eines Mittels zur Herstellung einer Anodenschicht und einer Kathodenschicht, wobei das Mittel jeweils umfasst:
 - (B1) eine kondensierbare Komponente, die nach der Kondensation der Elektrodenschicht Protonenleitfähigkeit verleiht.
 - (B2) einen Katalysator, der die Anodenreaktion bzw. die Kathodenreaktion katalysiert, oder eine Vorstufenverbindung des Katalysators,
 - (B3) gegebenenfalls einen Träger und
 - (B4) gegebenenfalls einen Porenbildner,
 - (C) Aufbringen der Mittel aus Stufe (B) auf jeweils eine Seite der Elektrolytmembran aus Stufe (A) zur Bildung einer Beschichtung,
 - (D) Schaffung eines festen Verbundes zwischen den Beschichtungen und der Elektrolytmembran unter Ausbildung einer porösen, protonenleitfähigen Anodenschicht oder Kathodenschicht, wobei die Ausbildung der Anodenschicht und der Kathodenschicht gleichzeitig oder nacheinander erfolgen kann.
- 41. Verfahren nach Anspruch 40, wobei das Aufbringen des Mittels in Schritt (C) durch Aufdrucken, Aufpressen, Einpressen, Aufrollen, Aufrakeln, Aufstreichen, Tauchen, Spritzen oder Aufgießen erfolgt.
- 42. Verfahren nach einem der Ansprüche 40 oder 41, wobei das Mittel gemäß Schritt (B) zur Herstellung einer Anodenschicht oder einer Kathodenschicht eine Suspension ist, die erhältlich ist durch
 - (S1) Herstellung eines Hydrosols, umfassend

eine Hydroxysilylalkylsäure des Schwefels oder Phosphors bzw. deren Salz und

gegebenenfalls eine die Hydroxysilylalkylsäure des Schwefels oder Phosphors bzw. deren Salz immobilisierende hydrolysierbare Verbindung des Phosphors

oder ein hydrolisierbares Nitrat, Öxynitrat, Chlorid, Oxychlorid, Carbonat, Alkoholat, Acetat, Acetylacetonat eines Metalls oder Halbmetalls,

vorzugsweise Phosphorsäuremethylester, Diethylphosphit (DEP), Diethylethylphosphonat (DEEP), Titanpropylat, Titanethylat, Tetraethylorthosilikat (TEOS) oder Tetramethylorthosilikat (TMOS), Zirkoniumnitrat, Zirkoniumoxynitrat, Zirkoniumpropylat, Zirkoniumacetat oder Zirkoniumacetylacetonat,

(S2) Dispergieren des Katalysators und gegebenenfalls des Katalysatorträgers und Porenbildners.

- 43. Verfahren nach einem der Ansprüche 40 bis 42, wobei das Mittel gemäß Schritt (B) zur Herstellung einer Anodenschicht oder einer Kathodenschicht eine Suspension ist, die erhältlich ist durch
 - (H1) Hydrolyse einer hydrolysierbaren Verbindung zu einem Hydrolysat, wobei die hydrolysierbare Verbindung ausgewählt ist aus einer hydrolysierbaren Verbindung des Phosphors oder
 - hydrolysierbaren Nitraten, Oxynitraten, Chloriden, Oxychloriden, Carbonaten, Alkoholaten, Acetaten, Acetylacetonaten eines Metalls oder Halbmetalls, vorzugsweise Aluminiumalkoholaten, Vanadiumalkoholaten, Titanpropylat, Titanethylat, Zirkoniumnitrat, Zirkoniumoxynitrat, Zirkoniumpropylat, Zirkoniumacetat oder Zirkoniumacetylacetonat, oder

Metallsäuren des Aluminiums, Siliziums, Titans, Vanadiums, Antimons, Zinns, Bleis, Chroms, Wolframs, Molybdäns, Mangans, wobei Wolframphosphorsäure und Siliziumwolframsäure bevorzugt ist,

(H2) Peptisierung des Hydrolysats mit einer Säure zu einer Dispersion,

(H3) Vermischen der Dispersion mit einem nanokristallinen und/oder kristallinen Metalloxid, vorzugsweise Al₂O₃-, ZrO₂-, TiO₂- oder SiO₂-Pulver,

(H4) Dispergieren des Katalysators und gegebenenfalls des Trägers und Porenbildners.

44. Verfahren nach Anspruch 42 oder 43, wobei die Mittel zur Herstellung einer Anodenschicht und einer Kathodenschicht in Schritt (C) aufgedruckt werden und zur Schaffung eines festen Verbundes zwischen den Beschichtungen und der Elektrolytmembran unter Ausbildung einer porösen, protonenleitfähigen Anodenschicht oder Kathodenschicht in Schritt (D) auf eine Temperatur von 100 bis 800°C, vorzugsweise 150 bis 500°C, ganz besonders bevorzugt 180 bis 250°C erwärmt wird.

45. Verfahren nach Anspruch 40 oder 41, gekennzeichnet durch

(M1) Aufbringen des Mittels zur Herstellung einer Anodenschicht oder Kathodenschicht auf eine Stützmembran, vorzugsweise aus Polytretrafluorethylen, als Beschichtung

(M2) Antrocknen der unter (M1) erhaltenen Beschichtung,

- (M3) Aufpressen der angetrockneten Beschichtung auf die Elektrolytmembran bei einer Temperatur von 100 bis 800°C, vorzugsweise 150 bis 500°C, ganz besonders bevorzugt 180 bis 250°C,
- (M4) Entfernen der Stützmembran insbesondere durch mechanisches Ablösen, chemisches Auflösen, oder Pyrolisieren oder

gekennzeichnet durch

5

10

15

20

25

30

35

40

45

50

55

60

- (N1) Aufbringen des Mittels zur Herstellung einer Anodenschicht oder Kathodenschicht auf eine Stützmembran, vorzugsweise aus Kohlepapier oder einem elektrisch leitfähigen Vlies, als Beschichtung,
- (N2) Antrocknen der unter (N1) erhaltenen Beschichtung zur Herstellung einer beschichteten Stützmembran, (N3) Aufpressen der beschichteten Stützmembran auf die Elektrolytmembran bei einer Temperatur von
- Raumtemperatur bis 800°C, vorzugsweise 150 bis 500°C, ganz besonders bevorzugt 180 bis 250°C.
- 46. Verfahren nach einem der Ansprüche 40 oder 41, wobei
- in Schritt (B) bei der Bereitstellung jeweils eines Mittels zur Herstellung einer Anodenschicht und einer Kathodenschicht das Mittel jeweils umfasst:
 - (v1) eine kondensierbare Komponente, die nach der Kondensation der Elektrodenschicht Protonenleitfähigkeit verleiht und
 - (v2) ein Katalysatormetallsalz, vorzugsweise Hexachloroplatinsäure, nach dem Aufbringen der Mittel durch Schritt (C) das Katalysatormetallsalz zu einem Katalysator, der die Anodenreaktion oder die Kathodenreaktion katalysiert, reduziert wird,
- in Schritt (D) eine offenporige Gasdiffusionselektrode, vorzugsweise ein offenporiges Kohlepapier, auf den Katalysator aufgepresst oder mit einem elektrisch leitfähigen Klebstoff auf den Katalysator geklebt wird.
- 47. Verfahren nach einem der Ansprüche 40 bis 46, wobei das Aufbringen des Mittels zur Herstellung einer Anodenschicht oder Kathodenschicht wiederholt durchgeführt wird und gegebenenfalls ein Trocknungsschritt, vorzugsweise bei einer erhöhten Temperatur in einem Bereich von 100 bis 200°C, zwischen der wiederholten Durchführung des Aufbringens erfolgt.
- 48. Verfahren nach einem der Ansprüche 40 bis 47, wobei das Aufbringen des Mittels zur Herstellung einer Anodenschicht oder Kathodenschicht auf eine von einer ersten Rolle abgerollten flexiblen Elektrolytmembran oder flexiblen Stützmembran erfolgt.
- 49. Verfahren nach einem der Ansprüche 40 bis 48, wobei das Aufbringen des Mittels zur Herstellung einer Anodenschicht oder Kathodenschicht kontinuierlich erfolgt.
- 50. Verfahren nach einem der Ansprüche 40 bis 49, wobei das Aufbringen des Mittels zur Herstellung einer Anodenschicht oder Kathodenschicht auf eine erwärmte Elektrolyt- oder Stützmembran erfolgt.
- 51. Verfahren nach einem der Ansprüche 40 bis 50, wobei in Schritt (D) zur Schaffung eines festen Verbundes zwischen den Beschichtungen und der Elektrolytmembran auf eine Temperatur von 100 bis 800°C, vorzugsweise 150 bis 500°C, ganz besonders bevorzugt 180 bis 250°C erwärmt wird.
- 52. Verfahren nach Anspruch 51, wobei mittels erwärmter Luft, Heißluft, Infrarotstrahlung oder Mikrowellenstrahlung erwärmt wird.

- DE 101 15 927 A 1 53. Mittel, umfassend: (T1) eine kondensierbare Komponente, die nach der Kondensation einer Anodenschicht oder einer Kathodenschicht einer Membranelektrodeneinheit einer Brennstoffzelle Protonenleitfähigkeit verleiht, (T2) einen Katalysator, der die Anodenreaktion oder die Kathoden-reaktion in einer Brennstoffzelle katalysiert, oder eine Vorläuferverbindung des Katalysators, (T3) gegebenenfalls einen Katalysatorträger und (T4) gegebenenfalls einen Porenbildner, und (T5) gegebenenfalls Additive zur Verbesserung von Schaumverhalten, Viskosität und Haftung. 54. Mittel nach Anspruch 53, wobei die kondensierbare Komponente, die nach der Kondensation der Anodenschicht oder der Kathodenschicht Protonenleitfähigkeit verleiht, ausgewählt ist aus (I) hydrolysierbaren Verbindung des Phosphors oder hydrolysierbaren Nitraten, Oxynitraten, Chloriden, Oxychloriden, Carbonaten, Alkoholaten, Acetaten, Acetylacetonaten eines Metalls oder Halbmetalls, vorzugsweise Aluminiumalkoholaten, Vanadiumalkoholaten, Titanpropylat, Titanethylat, Zirkoniumnitrat, Zirkoniumoxynitrat, Zirkoniumpropylat, Zirkoniumacetat oder Zirkoniumacetylacetonat, oder Metallsäuren des Aluminiums, Titans, Vanadiums, Antimons, Zinns, Bleis, Chroms, Wolframs, Molybdäns, Mangans, wobei Wolframphosphorsäure bevorzugt ist, und/oder (II) einer immobilisierbaren Hydroxysilylalkylsäure von Schwefel oder Phosphor oder ein Salz davon und gegebenenfalls einer die Hydroxysilylalkylsäure des Schwefels oder Phosphors bzw. deren Salz immobilisierende hydrolysierbare Verbindung des Phosphors oder einem hydrolisierbaren Nitrat, Oxynitrat, Chlorid, Oxychlorid, Carbonat, Alkoholat, Acetat, Acetylacetonat eines Metalls oder Halbmetalls, vorzugsweise Diethylphosphonat (DEP), Diethylethylphosphonat (DEEP), Phosphorsäuremethylester, Titanpropylat, Titanethylat, Tetraethylorthosilikat (TEOS) oder Tetramethylorthosilikat (TMOS), Zirkoniumnitrat, Zirkoniumoxynitrat, Zirkoniumpropylat, Zirkoniumacetat oder Zirkoniumacetylacetonat. 55. Mittel nach Anspruch 53 oder 54, bei dem der Katalysator oder die Vorläuferverbindung des Katalysators ein Platinmetall oder eine Legierung von Platinmetallen und gegebenenfalls einen Cokatalysator umfasst, wobei der Cokatalysator ein Übergangsmetallkomplex des Phtalocyanins oder substituierter Phthalocyanine ist. 56. Mittel nach Anspruch 55, bei dem der Katalysator oder die Vorläuferverbindung des Katalysators Platin, Palladium und/oder Ruthenium umfasst und gegebenenfalls der Übergansmetallkomplex Nickel und/oder Kobalt um-57. Mittel nach einem der Ansprüche 53 bis 56, bei dem der Porenbildner ein organischer und/oder anorganischer Stoff ist, der sich bei einer Temperatur zwischen 50 und 600°C und vorzugsweise zwischen 100 und 250°C zersetzt. 58. Mittel nach Anspruch 57, bei dem der anorganische Porenbildner Ammoniumcarbonat oder Ammoniumbicarbonat ist. 35 59. Mittel nach einem der Ansprüche 53 bis 54, wobei der Katalysatorträger elektrisch leitfähig ist und vorzugs-
- weise aus Ruß, Graphit, Kohle, Kohlenstoff, Aktivkohle oder Metalloxiden besteht.
- 60. Verwendung einer Elektrolytmembran gemäß einer der Ansprüche 1 bis 16 in einer Brennstoffzelle.
- 61. Verwendung nach Anspruch 61, wobei die Brennstoffzelle eine Direktmethanol-Brennstoffzelle oder eine Reformat-Brennstoffzelle ist.
- 62. Verwendung einer Elektrolytmembran gemäß einer der Ansprüche 1 bis 16 zur Herstellung einer Membranelektrodeneinheit, einer Brennstoffzelle, oder eines Brennstoffzellenstacks.
- 63. Verwendung einer Membranelektrodeneinheit gemäß einem der Ansprüche 26 bis 39 in einer Brennstoffzelle.
- 64. Verwendung nach Anspruch 63, wobei die Brennstoffzelle eine Direktmethanol-Brennstoffzelle oder eine Reformat-Brennstoffzelle ist.
- 65. Brennstoffzelle mit einer Elektrolytmembran gemäß einem der Ansprüche 1 bis 16.
- 66. Brennstoffzelle mit einer Membranelektrodeneinheit gemäß einem der Ansprüche 26 bis 39.
- 67. Mobiles oder stationäres System mit einer Membranelektrodeneinheit, einer Brennstoffzelle oder einem Brennstoffzellenstack, enthaltend eine Elektrolytmembran nach einem der Ansprüche 1 bis 16 oder eine Membranelektrodeneinheit gemäß einem der Ansprüche 26 bis 39.
- 68. Mobiles oder stationäres System nach Anspruch 67, das ein Fahrzeug oder ein Hausenergiesystem ist.

60

55

50

40

10

15

20

- Leerseite -

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)