TARBES Occitanie

TECHNIQUES QUANTITATIVES ET REPRÉSENTATION FEUILLE DE TRAVAUX DIRIGÉS N° 2

Tableaux de contingence, distributions marginales, distributions conditionnelles, dépendance entre deux variables

BUT-Tech. de Co. Semestre: 2 A.U.: 2021-2022 Prof. H. El-Otmany

Exercice n°1 On interroge 60 étudiants de BUT-Techniques de Commercialisation de cinq groupes G_i , $1 \le i \le 5$ sur leur niveau d'absentéisme aux cours pendant le semestre 1. Le tableau reporte les résultats où X est la variable correspondante aux groupes et Y est la variable correspondante au niveau d'absentéisme.

Y	G_1	G_2	G_3	G_4	G_5
Rare	7	2	3	6	2
Moyen	3	4	5	1	5
Fréquent	3	5	7	2	5

- 1. Établir le tableau des distributions en effectifs et en fréquences.
- 2. Donner la distribution marginale (en effectif et en fréquence) de X et celle de Y.
- 3. Calculer la moyenne marginale et la variance marginale de X (resp. de Y).
- 4. Donner les distributions conditionnelles de $X_{|Y=\text{Moyen}}$ et de $Y_{|X=G_3}$.
- 5. Déduire si la variable X est indépendante de la variable Y. Commenter le résultat.

Exercice $n^{\circ}2$ (Travail personnel) On souhaite étudier la répartition des salaires des employés dans une université en fonction de leurs âges. Le tableau reporte les résultats où X désigne l'âge en années et Y désigne le salaire en euros.

X (années) Y(€)	[19; 25[[25; 35[[35; 45[[45; 55[[55; 65[
[1100; 1300[130	2	3	6	2
[1300; 1500[109	4	5	1	5
[1500; 1700[56	5	7	2	5
[1700; 2000[25	5	7	2	5
[2000; 3000[0	5	7	2	5
[3000; 5000[0	5	7	2	5

Reprendre les questions de l'exercice 1. en modifiant la question 4 (les distributions conditionnelles de $X_{|Y=[1700;2000[}$ et de $Y_{|X=35;45[}$).

Exercice n°3 Une promotion de 150 étudiants en BUT-Techniques de Commercialisation est répartie en cinq groupes G_i , $1 \le i \le 5$. Le tableau reporte les résultats où X est la variable correspondant aux groupes et Y est la variable correspondant à la validation de l'année.

Y	G_1	G_2	G_3	G_4	G_5
V	22	20	24	20	25
\bar{V}	6	17	5	6	5

On souhaite savoir si le fait pour un étudiant de valider son année est indépendante du groupe d'appartenance avec un niveau de confiance 98% (ou seuil de risque 2%).. (Indication : utiliser le test d'indépendance χ^2).