First Missing Positive in C++

```
#include <iostream>
#include <vector>
using namespace std;
int firstMissingPositive(vector<int>& nums) {
  int n = nums.size();
  int i = 0;
  while (i < n) {
     if (nums[i] == i + 1) {
       i++;
       continue;
     if (nums[i] \le 0 \mid | nums[i] > n) {
       i++;
       continue;
     int idx1 = i;
     int idx2 = nums[i] - 1;
     if (nums[idx1] == nums[idx2]) {
       i++;
       continue;
     int temp = nums[idx1];
     nums[idx1] = nums[idx2];
     nums[idx2] = temp;
  }
  for (int j = 0; j < n; j++) {
     if (nums[j] != j + 1) {
       return j + 1;
  }
  return n + 1;
int main() {
  vector<int> nums = \{3, 4, -1, 1\};
  int result = firstMissingPositive(nums);
  cout << "First missing positive: " << result << endl;</pre>
  return 0;
}
```

Input:

vector<int> nums = $\{3, 4, -1, 1\}$;

¶ Goal:

Find the **smallest positive integer** that is **missing** from the array.

𝔰 Algorithm Insight:

You're trying to place each positive integer x (1 \leq x \leq n) at index x - 1 using cyclic swaps.

Q Dry Run Table:

♦ While loop swaps

Step	i	nums[i]	Action	nums after
1	0	3	swap nums[0] with nums[2] (index 2 = 3 - 1)	{-1, 4, 3, 1}
2	0	l - I	invalid (\leq 0), move to $i = 1$	{-1, 4, 3, 1}
3	1	4	swap nums[1] with nums[3] (index 3 = 4 - 1)	{-1, 1, 3, 4}
4	1	1	swap nums[1] with nums[0] (index 0 = 1 - 1)	{1, -1, 3, 4}
5	1	-1	invalid, move to i = 2	{1, -1, 3, 4}
6	2	3	already at correct index (2 = 3 - 1)	no change
7	3	4	already at correct index (3 = 4 - 1)	no change

★ Final nums array after placements:

 $\{1, -1, 3, 4\}$

∜ Final Check:

Go through the array to find first j where nums[j] ! = j + 1:

j nums[j] j + 1 Match? $0.1 1 \checkmark$

1 -1 $2 \times \rightarrow \text{return } 2$

	① Output: First missing positive: 2				
First missing positive: 2					