Ciphers with Python

•••

By: Ryan Gordon

Overview

- What is a cipher?
- Common ciphers
 - Caesar cipher
 - Transposition cipher
 - Vigenère cipher
- Modified Vigenère cipher
- Significance for encryption
- Comparison
- Github repository
- Works cited

What is a cipher?

- Encoded message
- Secret way to communicate
- Any algorithm to obfuscate a message
- Primitive
 - Caesar cipher
 - Transposition
- Complex
 - Modern encryption
 - One-time pad
 - o AES256

Caesar Cipher

- Most commonly taught cipher
- Named after Julius Caesar
- Also known as a 'shift cipher'
- Accomplished by shifting across an established alphabet by a set number of letters

```
• Before: ABCDEFGHIJKLMNOPQRSTUVWXYZ
```

○ **Shift by** n=3

• After: DEFGHIJKLMNOPQRSTUVWXYZABC

Caesar Cipher in Python

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890~!@#\$%^&*()_+`-=[]\{}|;':",,/<>?

Encrypt

```
Caesar Cipher:
Enter the shift value n:
4
Enter the plaintext.
hello world
Plaintext:
hello world
Ciphertext:
lippsD1svph
```

```
Caesar Cipher:
Enter the shift value n:
4
Enter the ciphertext.
lippsD1svph
Ciphertext:
lippsD1svph
Plaintext:
hello world
```

Transposition Cipher

- Plaintext characters are shifted in a regular pattern
- Ciphertext is ultimately one of n! possible permutations of the plaintext characters, where n is the length of the message
 - O This means that the characters are generally the same in the ciphertext as the plaintext (except for null characters in some ciphers if (n % columns != 0))
- Because the frequency of each character in the plaintext is (generally) the same as the frequency in the ciphertext, transposition ciphers can be broken through brute-force rearrangement of characters until a meaningful message is produced

Column Transposition Cipher

- **key** = 3
- plaintext = hello world
 - The plaintext is written on the rows of the table of length key
- ciphertext = hlwleoodl r
 - The ciphertext is read from the columns of the table
- Message length is constant
- Character frequency remains constant:

h	е	1	0	W	r	S	
1	1	3	2	1	1	1	1

1	2	3
h	е	1
1	0	
W	0	r
1	d	

Transposition Cipher in Python

Encrypt

```
Transposition Cipher:
Enter an integer key
3
Enter the plaintext.
hello world
Plaintext:
hello world
Ciphertext:
hlwleoodl r
```

```
Transposition Cipher:
Enter an integer key
3
Enter the ciphertext.
hlwleoodl r
Ciphertext:
hlwleoodl r
Plaintext:
hello world
```

Vigenère Cipher

- Le chiffre indéchiffrable
 - 'The indecipherable cipher'
- In use since the 1500s
- Mainly unbroken until the 1900s
 - A few exceptions exist in the 1800s
- Works through polyalphabetic substitution

Vigenère Cipher

- Key on the top row
- Message on the left side
- plaintext = cipher
- key = key = keykey
- Go to c on the left side and k on the top
 = m
- Go to i on the left side and e on the top
 = m
- Go to p on the left side and y on the top
 = n
- etc.
- ciphertext = mmnrip

```
ABCDEFGHIJKLMNOPQRSTUVWXYZ
AABCDEFGHIJKLMNOPQRSTUVWXYZ
      F G H I J K L M N O P Q R S T U V W X
       IKLMNOPORSTUVWX
          LMNOPQRSTUVWXY
        KLMNOPORSTUVWXYZ
     J K L M N O P Q R S T U V W X Y Z A
      LMNOPQRSTUVWXYZA
  J K L M N O P Q R S T U V W X Y Z A B C D E F G H
      NOPQRSTUVWXYZA
      ORSTUVWXYZABCD
     VWXYZABCDEFGHIIKLMNO
T T U V W X Y Z A B C D E F G H I J K L M N O P Q
UUVWXYZABCDEFGHIJKLMNOPQRST
V V W X Y Z A B C D E F G H I J K L M N O P Q R S
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
XXYZABCDEFGHIJKLMNOPQRSTUVW
YYZABCDEFGHIJKLMNOPORSTUVWX
ZZABCDEFGHIJKLMNOPQRSTUVWXY
```

Vigenère Cipher in Python

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890~!@#\$%^&*()_+`-=[]\{}|;':",,/<>?

Encrypt

```
Classic Vigenere Cipher:
Enter a key:
key
Enter the plaintext.
hello world
Plaintext:
hello world
Ciphertext:
&9"_*x;*?_8
```

```
Classic Vigenere Cipher:
Enter a key:
key
Enter the ciphertext.
&9"_*x;*?_8
Ciphertext:
&9"_*x;*?_8
Plaintext:
hello world
```

Vigenère Keys

- Classic Vigenère is weak with short keys
 - Key repeats over length of the entire message

o Message: hello world

Entered key: key

• Used key: keykeyke

Modified Vigenère Keys

- Run an algorithm to 'randomize' the key
 - Dependent on seed value and repeated Caesar-shift of the key
 - Length of key = length of message
 - Increases key entropy (unpredictability)
 - Reduces risk of frequency analysis

```
# encrypts the key with a block size of len(key) and an unpredictable rotating caesar
# cipher based on user seed input, resulting in a new key of size len(message).
# vigenere ciphers are vulnerable to frequency analysis, especially with short keys.
# this modified vigenere cipher resolves that by generating a new key of the maximum
# effective length.

def getNewKey(seed,key,length):
    newKey=''
    i=1
# print('Old key:', key)
    while len(newKey) < length:
        newKey+=caesar.encrypt(int(seed)+((i*2)+1),key)
        i+=seed+1

    return newKey[:length]</pre>
```

Modified Vigenère Keys

Modified Vigenère is strong even with short keys

```
Message: hello worldEntered key: key
```

○ **Seed**: 17

Unmodified key: keykeykeyke
Modified key: 5y*>: Lhbv&!

 Makes frequency analysis based on short keys with repeating characters more difficult/impossible

Modified Vigenère Key Values

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890~!@#\$%^&*()_+`-=[]\{]\;':",,/<>?

Seed = 17

```
Modified Vigenere Keys:
Enter a positive seed value:
17
Enter a key:
key
Enter a message:
hello world
Entered key: key
Used key: 5y*>:Lhbv&!
```

Seed = 8

```
Modified Vigenere Keys:
Enter a positive seed value:
8
Enter a key:
key
Enter a message:
hello world
Entered key: key
Used key: vp0#8]|=CGA
```

Modified Vigenère Cipher in Python

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890~!@#\$%^&*()_+`-=[]\{]\;'.",,/<>? Seed = 17

Encrypt

```
Modified Vigenere Cipher:
Enter a positive seed value:
17
Enter a key:
key
Enter the plaintext.
hello world
Plaintext:
hello world
Ciphertext:
.3MifK4p@L>
```

```
Modified Vigenere Cipher:
Enter a positive seed value:
17
Enter a key:
key
Enter the ciphertext.
.3MifK4p@L>
Ciphertext:
.3MifK4p@L>
Plaintext:
hello world
```

Modified Vigenère Cipher in Python

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890~!@#\$%^&*()_+`-=[]\{]\;'.",,/<>? Seed = 8

Encrypt

```
Modified Vigenere Cipher:
Enter a positive seed value:
8
Enter a key:
key
Enter the plaintext.
hello world
Plaintext:
hello world
Ciphertext:
3tDHE[kWtrd
```

```
Modified Vigenere Cipher:
Enter a positive seed value:
8
Enter a key:
key
Enter the ciphertext.
3tDHE[kWtrd
Ciphertext:
3tDHE[kWtrd
Plaintext:
hello world
```

Comparison

Cipher	Shift/Key	Seed	Key Used	Plaintext	Ciphertext
Caesar	4	N/A	4	hello world	lippsD1svph
Transposition	3	N/A	3	hello world	hlwleoodl r
Classic Vigenère	key	N/A	keykeykeyke	hello world	&9"_*x;*?_8
Modified Vigenère	key	17	5y*>:Lhbv&!	hello world	.3MifK4p@L>

Github Repository

- Available at https://github.com/flashrgordon/encryption
- Covered under GNU General Public License 3.0

Works Cited

"Caesar Cipher." Wikipedia. Wikimedia Foundation, October 17, 2020. https://en.wikipedia.org/wiki/Caesar_cipher.

Sweigart, Al. Cracking Codes with Python: an Introduction to Building and Breaking Ciphers. San Francisco, California: No Starch Press, Inc., 2018.

"Transposition Cipher," October 13, 2020. https://en.wikipedia.org/wiki/Transposition_cipher.

"Vigenère Cipher." Wikipedia. Wikimedia Foundation, October 25, 2020. https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher.