Compilers Design

M. T. Bennani Assistant Professor, FST - University of Tunis El Manar, URAPOP-FST

-Academic Year 2020-2021-

Outline

- Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation
 - ▶ $RegExp \Rightarrow NFA \Rightarrow DFA \Rightarrow Tables$
- Exercises

Regular expressions extension

Variation in regular expression notation

▶ Union : $A \mid B \Leftrightarrow A + B$

▶ Option : $A + \varepsilon \Leftrightarrow A$?

► Range : $a'+b'+...+z' \Leftrightarrow [a-z]$

► Excluded range : complement of $[a-z] \Leftrightarrow [^a-z]$

Regular expression to lexical specification (1)

- 1. Write a rexp for the lexemes of each token
 - ► Number = digit+
 - ► Keyword = 'if'+'else'+...
 - ► Identifier = letter(letter+digit)*
- 2. Construction R, matching all lexemes for all tokens
 - ightharpoonup R = Keyword + Identifier + Number + ...
 - ► $R = R_1 + R_2 + ...$
- 3. Verify if the input $(X_1...X_n)$ belongs to the language
 - ▶ For $1 \le i \le n$ check $X_1...X_i \in L(R)$
- 4. If success
 - ▶ $X_1...X_i \in L(R_i)$ for some j

remove the lexeme $X_1...X_i$ from the input and go to (3)

Ambiguities

- How much input is used? What if
 - ▶ $X_1...X_i \in L(R)$ and also
 - $X_1...X_k \in L(R)$

Rule 1

Pick longest possible string in L(R): "The maximal munch" algorithm

- ▶ Which token is used? What if
 - ▶ $X_1...X_i \in L(R_i)$ and also
 - $ightharpoonup X_1...X_i \in L(R_k)$

Rule 2

Use rule listed first (j if j < k)

- Treats "if" as a keyword, not an identifier

Error Handling

- ▶ What if: No rule matches a prefix of input?
 - Write a rule matching all "bad" strings
 - Put it last (lowest priority)

Definitions

- ► Regular expressions = Specification
- ▶ Finite automata = implementation

Finite automaton consists of

- An input alphabet Σ
- A set of states S
- A start state n
- ▶ A set of accepting states $F \subseteq S$
- ▶ A set of transitions state \rightarrow^{input} state

Notations

- ▶ Transition : $S_1 \rightarrow^a S_2$
 - ▶ In state S_1 on input "a" go to state S_2
- ▶ If end of input and in accepting state ⇒ accept
- ► Otherwise ⇒ reject

Examples

- Design a finite automaton that accepts only "1"
- ▶ Design a finite automaton that accepts numbers of 1's followed by a single 0.

Automata examples

- ▶ Alphabet {0,1}
- ▶ What language does this recongnize?

Epsilon moves

- Another kind of transition: ε -moves
 - $A \rightarrow^{\varepsilon} B$
- ► Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

Deterministic Finite Automata (DFA)

- One transition per input per state
- No ε -moves
- ⇒ A DFA can take only one path through the state graph
- Completely determined by input

Nondeterministic Finite Automata (NFA)

- Can have multiple transitions for one input in a given state
- ▶ Can have ε -moves
- ⇒ NFAs can choose
 - \blacktriangleright Whether to make ε -moves
 - ▶ Which of multiple transitions for a single input to take

NFA and DFA

NFA acceptance

► Let the following NFA

١,	State	0	1
	-A	{A,B}	Α
	В	C	Ø
	C+	Ø	Ø

► For input: 1 0 0, The NFA accepts the input if it can get to the final state

Comparaison

- NFAs and DFAs recognize the same set of languages (regular languages)
- DFSs are faster to execute because there are no choices to consider
- ► For a given language NFA can be simpler than DFA

NFA to DFA (1/2)

- Step 1 Create state table from the given NDFA.
- Step 2 Create a blank state table under possible input alphabets for the equivalent DFA.
- Step 3 Mark the start state of the DFA by q0 (Same as the NDFA).
- Step 4 Find out the combination of States Q0, Q1,... , Qn for each possible input alphabet.
- Step 5 Each time we generate a new DFA state under the input alphabet columns, we have to apply step 4 again, otherwise go to step 6.
- Step 6 The states which contain any of the final states of the NDFA are the final states of the equivalent DFA.

NFA to DFA (2/2)

- ► Each state of DFA is a non-empty subset of states of the NFA
- Start state
 - ▶ The set of NFA states reachable through ε -moves from NFA start state
- ▶ Add a transition $S \rightarrow^a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a, considering ε -moves as well

Example

The regular expression is: (1+0)*1

- ▶ A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - ▶ For each transition $S_i \rightarrow^a S_k$ define T[i,a] = k
- DFA execution
 - ▶ If in state S_i and input a, read T[i,a]=k and skip to the state S_k
 - very efficient

Note

- NFA to DFA conversion is the heart of the tools such as flex
- But, DFAs can ve huge
- In practive, flex-like tools trade off speed for space in the choice of NFA and DFA representations