

教师

泰勤公式

-、 $f(x) = x \arctan x$ 在 $x_0 = 1$ 处展开为二阶 Taylor 公式.

$$\begin{aligned} \mathfrak{D}\hat{f} & = \frac{\Pi}{4} , & f'(1) = \left(\text{Arctann} + \frac{\pi}{1+\pi^2} \right) \Big|_{\pi=1} = \frac{\Pi}{4} + \frac{1}{2} \\ f''(1) &= \left(\frac{1}{1+\pi^2} + \frac{1+\pi^2-2\pi^2}{(1+\pi^2)^2} \right) \Big|_{\pi=0} = \frac{1}{2} \end{aligned}$$

$$f(3) = \frac{\Pi}{4} + \left(\frac{\Pi}{4} + \frac{1}{2} \right) (\pi-1) + \frac{1}{4} (\pi-1)^2 + \ell (\pi-1)^3$$

T. $f(x) = x^4 - 5x^3 + 5x^2 + x + 2$ 展开为 x - 1 的多项式.

三、求 $x \to 0$ 时,无穷小量 $e^x - 1 - x + x \sin x$ 关于 x 的阶.

$$\ell^{3}-1-3+35m7 = 7+\frac{3^{2}}{2}+o(x^{3})-7+3(3-0(x^{5}))$$
$$=\frac{3}{2}x^{2}+o(x^{3})$$

极处对为政府和

四、求 a,b,使 $x \rightarrow 0$ 时 $f(x) = \sin 2x + ax + bx^3$ 为 x 的尽可能高阶无穷小,并求此时的阶.

$$f(n) = 2x - \frac{6x^3}{3!} + \frac{(2x)^5}{5!} + 0x + bx^3 + o(x^7)$$

$$= (2+0)x + (b-\frac{4}{3})x^3 + \frac{6x)^5}{5!} + o(x^7)$$

$$f(x) = 2x - \frac{6x^3}{3!} + \frac{(2x)^5}{5!} + 0(x^7)$$

$$= (2+0)x + (b-\frac{4}{3})x^3 + \frac{6x)^5}{5!} + o(x^7)$$

$$f(x) = 2x - \frac{6x^3}{3!} + \frac{(2x)^5}{5!} + 0(x^7)$$

$$= (2+0)x + (b-\frac{4}{3})x^3 + \frac{6x)^5}{5!} + o(x^7)$$

$$f(x) = 2x - \frac{6x^3}{3!} + \frac{(2x)^5}{5!} + 0(x^7)$$

$$= (2+0)x + (b-\frac{4}{3})x^3 + \frac{6x)^5}{5!} + o(x^7)$$

五、求 $\lim_{x\to 0} \frac{\sin x^2 + 2\cos x - 2}{x^4}$.

$$= \lim_{\Lambda \to 0} \frac{\pi^2 + 0(\pi^6) + 2\left(1 - \frac{\Lambda^2}{2} + \frac{\pi^4}{24} + 0(\pi^6) - 2\right)}{\pi^4}$$

$$= \lim_{n \to \infty} \frac{\frac{7^4}{1^2} + O(76)}{7^4} = \frac{1}{12}$$

六、已知 $0 < x < \frac{1}{2}$,证明: $e^x \approx 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$ 的绝对误差不超过 0.01,并求 \sqrt{e} 的误差 不超过 0.01 的近似值.

$$\sqrt{6} \propto 1 + \frac{1}{2} + \frac{(\frac{1}{2})^2}{2} + \frac{(\frac{1}{6})^3}{6} = \frac{79}{48}$$

附加题:1. f(x) 在区间 [a,b] 有二阶导数,且 f'(a) = f'(b) = 0. 试证明: (a,b) 内至少 有一点 ξ ,使得 $|f''(\xi)| \geqslant \frac{4}{(b-a)^2} |f(b)-f(a)|$;

2.
$$f(x)$$
在 $x_0 = 0$ 处二阶可导, $\lim_{x\to 0} \frac{f(x)+2}{x^2} = 3$,求 $f(0)$, $f'(0)$, $f''(0)$.

1. (1)
$$f(x) = f(\alpha) + f'(\alpha)(x-\alpha) + \frac{f'(x)}{2}(x-\alpha)^2$$
 2. $\lim_{x \to 0} \frac{f(x) + 2}{x^2}$
= $f(\alpha) + \frac{f''(x)}{2}(x-\alpha)^2$ - $\lim_{x \to 0} f(x) + f'(x)(x)(x-\alpha)$

$$= f(a) + \frac{f''(3)}{2} (3-a)^{2}$$

$$= f(b) + f'(b) (3-b) + \frac{f''(3)}{2} (3-b)^{2}$$

$$= f(b) + \frac{f''(3)}{2} (3-b)^{2}$$

$$= f(b) + \frac{f''(3)}{2} (3-b)^{2}$$

$$= f(b) + \frac{f''(3)}{2} (3-b)^{2}$$

$$=3 \Rightarrow f(0)=-2 \cdot f'(0)=$$

$$f(\frac{a+b}{2}) = f(a) + \frac{f''(g)}{2} \frac{(b-a)^2}{4} = f(b) + \frac{f''(g)}{2} \frac{(b-a)^2}{4}$$

$$|f(b) - f(a)| = \frac{(b-a)^2}{4} \left| \frac{f''(x_1) - f''(x_2)}{2} \right| \le \frac{(b-a)^2}{4} \frac{|f''(x_1)| + |f'(x_2)|}{2}$$