1、课后习题: 5.3、5.4、5.5。

5.3 作"101"序列检测器的状态图。该同步时序电路有一个输入 x,一个输出 Z,对应于输入序列"101"的最后一个 1,输出 Z=1,其他情况总是 0.

(1) "101"序列可以重叠,例如:

x:010101101

Z:000101001

(2) "101" 不重叠, 例如:

x:010101101

Z:000100001

5.4 化简(a)、(b)所示原始状态表。

у х	0	1
Α	B/0	A/1
В	C/0	A/0
С	C/0	B/0
D	E/0	D/1
E	C/0	D/0

$y x_2 x_1$	00	01	11
А	D/1	C/0	E/1
В	D/0	E/0	C/1
С	A/0	E/0	B/1
D	A/1	B/0	E/1
E	A/1	C/0	B/1

(b)

化简(a):

根据原始状态表得出隐含表:

В	Х			
С	X	AB		
D	BE	Х	Х	
E	Х	AD	BD	X
	А	В	С	D

等效对: (A,D),(B,E)

 \diamondsuit (A,D) \rightarrow A', (B,E) \rightarrow B', C \rightarrow C'

y	0	1
A'	B'/0	A'/1
В'	C'/0	A'/0
C'	C'/0	B'/0

化简(b):

根据原始状态表得出隐含表:

В	Х			
С	X	AD		
D	ВС	Х	Х	
E	AD	Х	Х	ВС
	BE			BE
	А	В	С	D

等效对: (A,D),(B,C)

 $(A,D) \rightarrow A', (B,C) \rightarrow B', E=C'$

\mathbf{y} $\mathbf{x}_2 \mathbf{x}_1$	00	01	11
A'	A'/1	B'/0	C'/1
B'	A'/0	C'/0	B'/1
C'	A'/1	B'/0	B'/1

5.5 化简(a)、(b)所示不完全确定的原始状态表。

S	0	1
Α	B/d	C/0

В	D/1	E/d
С	d/d	E/1
D	A/0	C/d
E	B/1	C/d
	(a)	

	, -	•		
$y x_2 x_1$	00	01	11	10
1	1/0	d/d	2/1	3/0
2	d/d	4/0	5/1	2/0
3	1/0	d/d	2/1	1/0
4	3/0	4/0	5/1	4/0
5	6/1	1/0	2/1	d/d
6	5/1	3/0	d/d	2/0

(b)

化简(a):

根据原始状态表得出隐含表:

В	BD			
	CE			
С	X	√		
D	AB	X	CE	
Е	√	BD	√	Х
		CE		
	Α	В	С	D

相容对有: (A,E),(B,C),(C,D),(C,E)

 \diamondsuit (A,E) \rightarrow A', (B,C) \rightarrow B', (C,D)=C',(C,E) \rightarrow D'

S x	0	1
A'	B'/1	C'/0
В'	C'/1	A'/1
C'	A'/0	B'/d

化简(b):

	24	√	14		
	24	√	14		
4	13	,	13		
4	12	25	12	1	
		25			
3	√	12			
	25				
2	23				

相容对有: (1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(5,6)

 \diamondsuit (1,2,3,4) \to A', (2,5,6) \to B'

y x_2x_1	00	01	11	10
A'	A'/0	A'/0	B'/1	A'/0
B'	B'/1	A'/0	B'/1	B'/0

2、如何用数字电路实现超越函数计算,学习 CORDIC 算法。

一种有效的用数字电路实现超越函数计算的方法是 CORDIC 算法。它是一种简单而高效的算法,可以用来计算三角函数等超越函数,通常每迭代一次就可以得到一位的精度。CORDIC 算法的核心思想是用一系列固定角度的旋转来逼近目标角度,其基本理论基础是矢量旋转公式,即矢量(x,y)顺时针旋转 θ 之后,得到的矢量(x',y')满足 $x'=x\cos\theta+y\sin\theta,y'=y\cos\theta-x\sin\theta$ 。该算法有两种模式,旋转模式从矢量(0,1) 开始通过不断旋转逼近角度 θ ,从而得到坐标(x,y)以计算 θ 的三角函数值,矢量模式从(x,y) 始通过不断旋转逼近(1,0),从而得到角度 θ ,用于求取反三角函数值。CORDIC 算法的特点是只需要加减、移位和查表操作,因此适宜在没有硬件乘法器的情况下使用。