

ATGGCTTGG AACAGAACCA GTCAACAGAT TATTATTATG AGGAAAATGA	50
M A L E Q N Q S T D Y Y Y E E N E	
AATGAATGGC ACTTATGACT ACAGTCATA TGAACGTGATC TGTATCAAAG	100
M N G T Y D Y S Q Y E L I C I K E	
AAGATGTCAG AGAATTGCA AAAGTTTCC TCCCTGTATT CCTCACAAATA	150
D V R E F A K V F L P V F L T I	
GTTTCTGCA TTGGACTTGC AGGCAATTCC ATGGTAGTGG CAATTATGC	200
V F V I G L A G N S M V V A I Y A	
CTATTACAAG AAACAGAGAA CCAAAACAGA TGTGTACATC CTGAATTGG	250
Y Y K K Q R T K T D V Y I L N L A	
CTGTAGCAGA TTTACTCCTT CTATTCACTC TGCCCTTTG GGCTGTTAAT	300
V A D L L L F T L P F W A V N	
GCAGTTCATG GGTGGGTTT AGGGAAAATA ATGTGAAAAA TAACTTCAGC	350
A V H G W V L G K I M C K I T S A	
CTTGTACACA CTAAACTTTG TCTCTGGAAT GCAGTTCTG GCTTGATCA	400
L Y T L N F V S G M Q F L A C I S	
GCATAGACAG ATATGTGGCA GTAACAAAG TCCCCAGCCA ATCAGGAGTG	450
I D R Y V A V T K V P S Q S G V	
GGAAAACCAT GCTGGATCAT CTGTTCTGT GTCTGGATGG CTGCCATCTT	500
G K P C W I I C F C V W M A A I L	
GCTGAGCATA CCCCAGCTGG TTTTTTATAC AGTAAATGAC AATGCTAGGT	550
L S I P Q L V F Y T V N D N A R C	
GCATTCCCAT TTTCCCCCGC TACCTAGGAA CATCAATGAA AGCATTGATT	600
I P I F P R Y L G T S M K A L I	
CAAATGCTAG AGATCTGCAT TGGATTTGTA GTACCCCTTC TTATTATGGG	650
Q M L E I C I G F V V P F L I M G	
GGTGTGCTAC TTTATCACAG CAAGGACACT CATGAAGATG CCAAACATTA	700
V C Y F I T A R T L M K M P N I K	
AAATATCTCG ACCCCTAAAAA GTTCTGCTCA CAGTCGTTAT AGTTTCATT	750
I S R P L K V L L T V V I V F I	
GTCACTCAAC TGCCTTATAA CATTGTCAAG TTCTGCCAG CCATAGACAT	800
V T Q L P Y N I V K F C R A I D I	
CATCTACTCC CTGATCACCA GCTGCAACAT GAGCAAACGC ATGGACATCG	850
I Y S L I T S C N M S K R M D I A	
CCATCCAAGT CACAGAAAGC ATCGCACTCT TTCACAGCTG CCTCAACCCA	900
I Q V T E S I A L F H S C L N P	
ATCCTTATG TTTTATGGG AGCATCTTC AAAAACTACCG TTATGAAAGT	950
I L Y V F M G A S F K N Y V M K V	
GGCCAAGAAA TATGGTCCT GGAGAAGACA GAGACAAAGT GTGGAGGAGT	1000
A K K Y G S W R R Q R Q S V E E F	
TTCCTTTGA TTCTGAGGGT CCTACAGAGC CAACCAAGTAC TTTTACGATT	1050
P F D S E G P T E P T S T F S I	
TAAAGGTAAA ACTGCTCTGC CTGGCTTG GATACATATG AATGATGCTT	1100
- R - N C S A F C L D T Y E - C F	
TCCCCTCAAA TAACACATCT GCCTTATTCT GAAAAAAAAM AAAAAAM	1147
P L K - N I C L I L K K K K K	

FIG. 1

CCX-CKR MALEQNQSTDYYYE--ENEMNGT-----DYSQYELICIK 33
 CCR9 MTPTDFTSPIPNMADDYG-SESTSSM-EDMVN----FNFTDF--YCEK
 CCR7 MDLGKPMKSVLVVALVIFQVCLCQDEVTDDYIGDNTTVDTLFESLCSK
 CCR6 MSGESMNFSDFDSSEDYFVS----VNTSMYS---VDSEML--LCNL
 STRL33 MAEHDYHEDYGF-----SF-NDSSQEEHQDF--L---

TM1

CCX-CKR EDVREFAKVFLPVFLTIVFVIGLAGNSMVAIMAYKKORTKTDVYILNL 83
 CCR9 NNRQFASHFLPPLYWLVEIVGALGNISLMLVWYCTRVKIIMTLMFLLNL
 CCR7 KDRNFKAFLPIMYSIICFVGLLGNGLVLTYTFKRLKIMTDLVLLNL
 CCR6 QEVROFSRLFVPIAYSLICVFGLLGNILVITFAFYKKARSMTDVYILNM
 STRL33 ----QESKVELBCMYLVVFUCGLVGNSIMLVISIFMHLQSITDVFLVNL

TM2

TM3

CCX-CKR AMADLLILETLPPFWAV-NAVHGWLCKIMCKITSALYTUNFVSGMQFLAC 132
 CCR9 ATADLLFLVTLPPFWAIA-AADQWKQTFMCKVNSMMKMNFYSCVLLIMC
 CCR7 AVADILFLULTLPPFWAYS-AAKSWVFGVHFCKLIFAIKMMSFFSGMLILC
 CCR6 ATADILFLVTLPPFWAVSHATGAWVFSNATCKLLKGIMAINFNCGMLILC
 STRL33 PLADILFVCTLPPFWAYA-GIHEWVFGQVMCKSLLGIYTINFYTSMLILC

TM4

CCX-CKR ISIDRYVAVTK-VPSQSGVGK-----CWIICFCVWMAAILLSIEQLVFYTV 178
 CCR9 ISMDRYIAIAQAMRAHTWREKRLLYSKMCFTIWVLAACIHEILYSQI
 CCR7 ISIDRYVAAIVQAVSAHRHRARVLLISKLSGVGSAIALAFVLSIEHELLYSDL
 CCR6 ISMDRYIAIVQATKSFRRLRSRTLPRTKIIICLVWGLSVIISSSSTFVNQK
 STRL33 ITVIDEFIVVVKATKAYNQQAKRMTWGKVTSLINVISLLVISIEQIIVGNV

TM5

CCX-CKR NDNR---CIPIFPRY-LGTSMKALIQMLEICIGFVVPFIMGVCYFITA 224
 CCR9 KEESGIAICTMVYPS-DESTKLKSAVLTKVILGFFLPFVVMACCYTIII
 CCR7 QRSSSEQAMRCSSLIT-EHVEAF-ITIQVAQMVIIGFLVPLLAMSF CYLVII
 CCR6 YNTQGSDVCEPKYQTVSEPIRWKLLMLGELLFGGFIPLMFMIFCYTFIV
 STRL33 FNLDKL-IC-GYH--DEAIS--TVVLAQMTLGEFLBLLTIVCYSVII

TM6

CCX-CKR RTLMKMPNIKISRHLKVLLTIVFIVTQLPYNIVKFCRAIDIYSLITS 274
 CCR9 HTLIQAKKSSKHKALKVTTITVLFVLSQFPYNCILLVQTIDAYAMFISN
 CCR7 RTLLQARNFERNKAIKVIIIAVVVVEIVFQLPYNGVVLQAQTVAFNITSST
 CCR6 KTLVQAONSKRHKAIRMIIAVVVLVFLACQIPHNMULLV-TAANLGKMNRS
 STRL33 KTLHAGGFQKRSLKIIIFLMAVELLTQMPFNLMKFIRSTH-----WE

FIG. 2A

TM7

CCX-CKR	CNMSKRMDIAIQVTEESTALFHSCLNHILYVEMGASF K NYVMK-----V	317
CCR9	CAVSTNIDICFQVITQTLIAFFHSCLNEVLYVFVGERFRRDLVKILKNLGCI	
CCR7	CELSKOLNAYDVTVSIAACVRCCMNHFLYAFIGVKFRNDIFKLFKD LGCL	
CCR6	CQSEKLIGYTKTIVTEVLAFLHCCLNELVLYAFIGQKFRNYFLKILKDLWCV	
STRL33	YYAMTSFHYTIMVTEATAYLRACLNEVLYAEVSLKERQNFWKLVKDIGCL	

CCX-CKR	AKK Y --GSWRRQRQSVEEF PFDSEGP--TEPTSTFSI	350
CCR9	SQA-QWVSFTR---REGSLK-LSSMLLETTSGAISL	
CCR7	SQE-QLRQWSS---CRHIRR-SSMSVEAETTITFSP	
CCR6	R K YKSSGFSCAGRYSENISRQTSETADNDNASSFTM	
STRL33	P--Y--LGVSHQWKSEEDNSKTF SASHNVEATSMEQL	

*FIG. 2A
(CONTINUED)*

FIG. 2B

FIG. 2C

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 4A

FIG. 4A
(CONTINUED)

human chemokines		murine chemokines		
		IC-50	IC-50	
■	h ELC	6 nM	m ELC	1 nM
□	h SLC	12 nM	m SLC	4 nM
●	h TECK	7 nM	m TECK	2 nM
◆	h BLC-1	140 nM	m MIP-1 γ	70 nM
○	HHV8 vMIP-II	90 nM		
◇	h MCP-3	>2000 nM		

FIG. 4B

5' upstream CCXCKR	ATGCAGC ATC TCGTTATAA AAGGCAACTA GTGAAATT TAATGC 50
5' upstream CCXCKR	TGAGAGAATT TATTAAC TT ATTAAATTA AATTATAAAA TAACATCAA 100
5' upstream CCXCKR	ATAAAAAATA AATTAAATTT AAATAAACCA AGTAATTGC TATTTCGTT 150
5' upstream CCXCKR	TTTATTCAAT TTGTGTAGA TATACTTTA CGATTCACAA AATTATGTAT 200
5' upstream CCXCKR	GTAAAGATTA TAACACTATT TATTCTTTT AGTAAAATC TAATTAAATT 250
5' upstream CCXCKR	TTCATATT TT AAAATCATT TTTACATAAA AGTCTTCACT TTTATTAGG 300
5' upstream CCXCKR	ATTTAATGAT TAAGAAAATT CTCCAGGGCA TTATGTTAT TGTCTGTTC 350
5' upstream CCXCKR	AAATCCAAGC TCTTCACAC AGAATTGTAC AAGCAAAGTT TGAGTAAC 400
5' upstream CCXCKR	ATCTTGGGT CATATTCCAA TGIGGCTCCC ATTAAAGCAT TTCAAAGAGT 450
5' upstream CCXCKR	GCTAGATTCA GGTCACATA TGTTACAGCA ACAGGCTATA CTCTAGGGAA 500
5' upstream CCXCKR	AGAACAAAAC AGCTTGATAG AAACTGTGTG CTTTAAGCA TATTTAGACA 550
TRANSLATION START	
5' upstream CCXCKR	AATATCTATC CTGTATTCTC TTTGCCATCT AGATTGGAGC CATGGCTTTG 600 ATGGCTTTG 9
5' upstream CCXCKR	GAACAGAAC GTCAACAGA TTATTATTAT GAGGAGAAGT GAAATGAATG 649 GAACAGAAC AGTCACAGA TTATTATTAT GAGGA AAAT GAAATGAATG 58
5' upstream CCXCKR	GC CTGATGA CTACAGTCAG TATGAACGTGA TCTGT TC 685. GC ACTTATGA CTACAGTC TATGAACGTGA TCTGTATCAA AGAAGATGTC 108
5' upstream CCXCKR	AGAGAAGAGA CAGAGGAT GC AGAGGT TGCTCCCTGT ATT GCTCACC 734 AGAGA TTT GCAAAAGTTT TGCTCCCTGT ATT GCTCACC 147
5' upstream CCXCKR	ATAG ATAG TTTTCG TCATTGGACT TGCAGGCAAT TCCATGGTAG AG TGGCAATTAA 740 ATAG TTTTCG TCATTGGACT TGCAGGCAAT TCCATGGTAG TGGCAATTAA 197
5' upstream CCXCKR	----- TGCCTATTAC AAGAAACAGA GAACCAAAAC AGATGTGTAC ATCCTGAATT 740 ----- TGCCTATTAC AAGAAACAGA GAACCAAAAC AGATGTGTAC ATCCTGAATT 247
5' upstream CCXCKR	----- TGGCTGTAGC AGATTTACTC CTTCTATTCA CTCTGCCTTT TTGGGCTGTT 740 ----- TGGCTGTAGC AGATTTACTC CTTCTATTCA CTCTGCCTTT TTGGGCTGTT 297
5' upstream CCXCKR	----- AATGCAGTTC ATGGGTGGGT TTTAGGGAAA ATAATGTGCA AAATAACTTC 740 ----- AATGCAGTTC ATGGGTGGGT TTTAGGGAAA ATAATGTGCA AAATAACTTC 347

FIG. 5

FIG. 6A

FIG. 6B