TD 4: Compacité

Exercice 1 : Échauffement

Dites si les affirmations suivantes sont vraies ou fausses.

- 1. Soit X un espace topologique et $K \subset X$ quasi-compact, alors K est fermé.
- 2. Soit X un espace topologique compact et $F \subset X$ fermé. Alors F est compact.
- 3. Soit Y = [-1, 1], muni de la topologie usuelle, et la relation d'équivalence \mathcal{R} dont les classes sont $\{-1\}, \{1\}$ et les $\{-a, a\}, a > 0$. Alors Y/\mathcal{R} , muni de la topologie quotient est compact.
- 4. L'espace $E = [0; 1]^{[0;1]}$ des fonctions de [0; 1] vers [0; 1], muni de la topologie produit, est compact.
- 5. L'espace $F \subset E$ des fonctions 1-lipschitziennes, muni de la topologie induite par celle de E, est compact.
- 6. L'espace $G \subset E$ des fonctions continues, muni de la topologie induite par celle de E, est compact.
- 7. Soit E un \mathbb{R} -espace vectoriel normable. E est localement compact si et seulement si il est de dimension finie.

Exercice 2: Les compacts sont normaux

Soit X un espace topologique compact.

- 1. Montrer que X est régulier (T3) : pour tout fermé $F \subset X$ et pour tout $x \in F^c$, il existe deux ouverts disjoints U et V tel que $F \subset U$ et $x \in V$.
- 2. Montrer que X est normal (T4) : pour tous fermés disjoints F et G, il existe des ouverts disjoints U et V tels que $F \subset U$ et $G \subset V$.

Exercice 3 : Un théorème de point fixe

- 1. Soit (X, d) un espace métrique compact et $f: X \to X$ tel que pour tous $x \neq y \in X, d(f(x), f(y)) < d(x, y)$. Alors f possède un unique point fixe.
- 2. Soit (x_n) une suite de X telle que pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$. Montrer que (x_n) converge vers cet unique point fixe.

Exercice 4: Applications propres

Soit X,Y deux espaces topologiques séparés et $f:X\to Y$ une application continue. On dit que f est propre si f est fermée (i.e. l'image d'un fermé est un fermé) et si l'image réciproque d'un singleton de Y est un compact de X.

1. On suppose que f est propre. Montrer que l'image réciproque de tout compact de Y est un compact.

Corentin Gentil 1 ENS Paris, DMA

- 2. On suppose de plus que Y est localement compact. Montrer que si l'image réciproque d'un compact est compact, alors f est propre. Indication : on pourra utiliser, voire démontrer, le fait que dans un espace localement compact, tout point possède une base de voisinages compacts.
- 3. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une bijection continue telle que $||f(x)|| \to +\infty$ quand $||x|| \to \infty$.
 - a) Montrer que f est propre.
 - b) En déduire que f est un homéomorphisme.

Exercice 5 : Compactification d'Alexandrov

Soit X un espace topologique localement compact (i.e. séparé et tel que tout point possède un voisinage compact). On fixe ∞ un point (qui n'est pas dans X) et on pose $\hat{X} = X \cup \{\infty\}$. On dit que $U \subset \hat{X}$ est ouvert si U vérifie l'une des deux propriétés suivantes :

- $U \subset X$ et U est un ouvert de X
- $\infty \in U$ et $\hat{X} \setminus U$ est un compact de X
- 1. Montrer que cela définit une topologie sur X.
- 2. Montrer que \hat{X} est compact.
- 3. Montrer $\iota: X \to \hat{X}; x \mapsto x$ est un homéomorphisme sur son image.
- 4. Soit Y un espace topologique compact tel qu'il existe $j: X \to Y$ homéomorphisme sur son image tel que $Y \setminus j(X)$ est réduit à un point. Montrer que Y est homéomorphe à \hat{X} .
- 5. **Un exemple.** On considère \mathbb{S}^{n-1} la sphère unité de \mathbb{R}^n et on note $N=(0,\ldots,0,1)$ le pôle Nord. On appelle projection stéréographique l'application qui a un point $X \in \mathbb{S}^{n-1} \setminus \{N\}$ lui associe l'unique point d'intersection de la droite (NX) avec le plan $\{x_n=-1\}$. En utilisant la projection stéréographique, montrer que le compactifié d'Alexandrov de \mathbb{R}^n est (homéomorphe à) \mathbb{S}^n .

Corentin Gentil 2 ENS Paris, DMA

Exercice 6: Dimension métrique

Soit (X, d) un espace métrique. On dit que (X, d) est précompact si pour tout $\epsilon > 0$, il existe $n \in \mathbb{N}, x_1, \ldots, x_n \in X$ tels que $X \subset \bigcup_{i=1}^n B(x_i, \epsilon)$. On notera alors $N(\epsilon)$ le plus petit n qui convient.

1. (Re)démontrer qu'un espace métrique compact (au sens de Bolzano-Weierstrass) est précompact.

Dans toute la suite, (X, d) désigne un espace métrique précompact.

2. On note également $P(\epsilon) = \max\{n \in \mathbb{N}; \exists x_1, \dots, x_n \in X, \forall i \neq j, d(x_i, x_j) > \epsilon\}$. Montrer que :

 $N(\epsilon) \le P(\epsilon) \le N\left(\frac{\epsilon}{2}\right)$

3. On dit que (X, d) possède une dimension métrique (ou de boîte), si la limite suivante existe :

$$\lim_{\epsilon \to 0} \frac{\log(N(\epsilon))}{-\log(\epsilon)}$$

Dans ce cas, on note $\dim_B(X)$ cette limite, appelée dimension métrique de X. Montrer que les ensembles suivants possèdent une dimension de boîte et la calculer.

- a) La boule unité de \mathbb{R}^n (on pourra utiliser la mesure de Lebesgue).
- b) L'ensemble triadique de Cantor.
- c) Si $\alpha > 0$, $\{0\} \cap \{n^{-\alpha}; n \in \mathbb{N}^*\}$.

Exercice 7 : Retour sur la distance de Hausdorff

On considère un espace métrique compact (X,d). A l'image du TD 1, on peut définir une distance δ sur l'ensemble des parties compactes de X, ensemble que l'on note $\mathcal{K}(X)$. On admet que les deux définitions suivantes de δ définissent effectivement une distance et sont équivalentes : $\delta(A,B) = ||d_A - d_B||_{\infty}$ où $d_A(y) = \inf_{x \in X} d(x,y)$ est la distance à A; et $\delta(A,B) = \inf\{\varepsilon > 0, A \subset V_{\varepsilon}(B) \text{ et } B \subset V_{\varepsilon}(A)\}$ où $V_{\varepsilon}(A) = \{x \in X, d(x,A) \leq \varepsilon\}$.

L'objectif de cet exercice est de montrer que $(\mathcal{K}(X), \delta)$ est compact.

- 1. Préliminaires.
 - a) Montrer que X est à base dénombrable d'ouverts. On note $(U_m)_{m\in N}$ une telle base.
 - b) Soit (K_n) une suite de $\mathcal{K}(X)$ qui converge vers K et soit (x_n) une suite de X telle que $x_n \in K_n$ pour tout $n \in \mathbb{N}$ et $x_n \to x$. Montrer que $x \in K$.

 Dans la suite, on considère une suite quelconque (K_n) de $\mathcal{K}(X)$ et on souhaite montrer qu'on peut en extraire une sous-suite convergente.
- 2. a) Soit U un ouvert de X. Montrer qu'on peut extraire de $(K_n)_n$ une sous-suite $(K_{\sigma(n)})_n$ tel que soit $\forall n, K_{\sigma(n)} \cap U = \emptyset$ soit $\forall n, K_{\sigma(n)} \cap U \neq \emptyset$.
 - b) En déduire qu'il existe une extraction ϕ telle que pour tout $m \in \mathbb{N}$, soit $K_{\phi(n)} \cap U_m = \emptyset$ à partir d'un certain rang, soit $\forall n, K_{\phi(n)} \cap U_m \neq \emptyset$ à partir d'un certain rang.

Dès lors, on note $L_n = K_{\phi(n)}$ et L l'ensemble des points $x \in X$ tel que pour tout voisinage V de x, $L \cap L_n \neq \emptyset$ à partir d'un certain rang :

$$L := \{x \in X; \forall V \in \mathcal{V}(x), \exists n_0 \in \mathbb{N}, \forall n \ge n_0; V \cap L_n \ne \emptyset\}$$

- 3. Montrer que L est compact.
- 4. On souhaite finalement montrer que $L_n \to L$ dans $(\mathcal{K}(X), \delta)$. On fixe $\varepsilon > 0$.
 - a) Montrer qu'il existe une famille finie $(U_i)_{i\in I}$ avec $I\subset\mathbb{N}$ finie telle que :
 - $\forall i \in I, U_i \cap L \neq \emptyset$
 - $\forall i \in I, \operatorname{diam} U_i < \varepsilon$
 - $L \subset \bigcup_{i \in I} U_i \subset V_{\varepsilon}(L)$

On note $U = \bigcup_{i \in I} U_i$.

- b) En déduire que pour tout $i \in I$ $U_i \cap L_n \neq \emptyset$ à partir d'un certain rang puis que $U \subset V_{\varepsilon}(L_n)$ à partir d'un certain rang.
- c) Montrer qu'il existe $0 < r < \varepsilon$ et $J \subset \mathbb{N}$ finie tels que $X \setminus U \subset \bigcup_{j \in J} U_j \subset X \setminus V_r(L)$
- d) Montrer que $L_n \subset U$ à partir d'un certain rang.
- e) Conclure.

Exercice 8 : Être ou ne pas être compact ou séquentiellement compact.

On rappelle qu'un espace topologique est dit séquentiellement compact si de toute suite on peut extraire une sous-suite qui converge.

- 1. Soit I = [0, 1] muni de la topologie usuelle et $X = I^I$ muni de la topologie produit.
 - a) Justifier que X est compact.
 - b) On définit $a_n: I \to I$ par $a_n(x) = \text{le } n$ -ième chiffre dans l'écriture en base 2 de x. Montrer que l'on ne peut pas extraire de (a_n) une sous-suite qui converge.
- 2. [Pour celles et ceux qui suivent le cours de Logique] On note Ω le premier ordinal non dénombrable (à savoir $\Omega = \{\alpha; \alpha \text{ ordinal dénombrable }\}$). On muni Ω de la topologie de l'ordre (cf. TD 2).
 - a) En considérant le recouvrement $U_{\alpha} := \{\beta \in \Omega; \beta < \alpha\}$, montrer que Ω n'est pas compact. On rappelle que Ω est non dénombrable.
 - b) Montrer que Ω est séquentiellement compact. Indication : On pourra montrer que toute suite possède une sous-suite monotone.

Exercice 9 : Théorème de Tychonoff

Faire le DM 2. Si vous voulez qu'il soit corrigé, à rendre la semaine du 21 Octobre.

Corentin Gentil 4 ENS Paris, DMA