Devoir à la maison n° 11

À rendre le 14 janvier

1) Une première équation fonctionnelle :

Dans cette question on considère une fonction f définie sur \mathbb{R} , à valeurs dans \mathbb{R} , continue et telle que :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y). \tag{L}$$

- a) Déterminer f(0).
- b) Déterminer la parité de f.
- c) Soit x_0 un réel quelconque, mais fixé. Montrer que $\forall n \in \mathbb{N}, \ f(nx_0) = nf(x_0)$. En déduire que $\forall n \in \mathbb{Z}, \ f(nx_0) = nf(x_0)$.
- **d)** En déduire que $\forall r \in \mathbb{Q}, f(r) = rf(1)$.
- e) Montrer que f est linéaire, i.e. qu'il existe $a \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$, f(x) = ax.

2) Une seconde équation fonctionnelle :

Dans cette question, on considère une fonction g définie sur $]0, +\infty[$, à valeurs dans \mathbb{R} , continue et telle que :

$$\forall (x,y) \in]0, +\infty[^2, \ g(xy) = g(x) + g(y). \tag{K}$$

- a) On définit alors $f: \mathbb{R} \to \mathbb{R}$ par : $\forall x \in \mathbb{R}$, $f(x) = g(e^x)$. Montrer que f vérifie la relation (L).
- **b)** En déduire g.

3) Étude de deux suites :

Soient 0 < a < b deux réels strictement positifs, on définit les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ par :

$$u_0 = a$$
, $v_0 = b$ et $u_{n+1} = \frac{2u_nv_n}{u_n + v_n}$, $v_{n+1} = \frac{u_n + v_n}{2}$.

- a) Établir l'inégalité suivante : $\forall (x,y) \in]0, +\infty[^2, \frac{2xy}{x+y} \leqslant \frac{x+y}{2}]$.
- **b)** Montrer que $\forall n \in \mathbb{N}, \ 0 < u_n \leq v_n$. En déduire les monotonies des suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$.
- c) Montrer que $\forall n \in \mathbb{N}, v_{n+1} u_{n+1} \leqslant \frac{v_n u_n}{2}$.
- d) Montrer que les deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent, vers la même limite ℓ .
- e) On définit la suite $(w_n)_{n\in\mathbb{N}}$ par : $\forall n\in\mathbb{N}, w_n=u_nv_n$. Justifier que $(w_n)_{n\in\mathbb{N}}$ est constante et en déduire que $\ell=\sqrt{ab}$.

4) Et encore une équation fonctionnelle :

Dans cette question on considère une fonction f définie sur $]0, +\infty[$, à valeurs dans \mathbb{R} , continue et telle que :

$$\forall (x,y) \in]0, +\infty[^2, f\left(\frac{x+y}{2}\right) + f\left(\frac{2xy}{x+y}\right) = f(x) + f(y). \tag{E}$$

- a) Montrer que si f est solution de (E) alors la fonction h = f f(1) est solution de (E). On suppose donc désormais que f(1) = 0.
- b) Soient 0 < a < b deux réels strictement positifs, $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ les suites définies dans la question 3); on définit la suite $(z_n)_{n \in \mathbb{N}}$ le terme général $z_n = f(u_n) + f(v_n)$. Montrer que la suite $(z_n)_{n \in \mathbb{N}}$ est constante.
- c) En déduire que pour tous les réels strictement positifs a < b, $2f(\sqrt{ab}) = f(a) + f(b)$, puis que $\forall a \in]0, +\infty[$, $2f(\sqrt{a}) = f(a)$.
- d) Montrer alors que les solutions continues de (E) sont les fonctions f telles que :

$$\exists (\alpha, \beta) \in \mathbb{R}^2, \ \forall x > 0, \ f(x) = \alpha \ln x + \beta.$$

- FIN -