

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 30° Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 0.73$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.150 (Procesure)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away hom the duridoo.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{ds}$ of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>101.41</u>	<u>4780.64</u>	k
3462.02	<u>4128.10</u>	k
<u>18.17</u>	<u>3018.76</u>	k
<u>0.04</u>	0.00	k
	3462.02 18.17	101.41 4780.64 3462.02 4128.10 18.17 3018.76

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi **Overturning Check** $M_O = 121649.2 \text{ in-lbs}$ Resisting Force Required = 1843.17 lbs A minimum 132in long x 25in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3071.95 lbs to resist overturning. Minimum Width = <u>25 in</u> in Weight Provided = 4984.38 lbs Sliding 725.26 lbs Force = Friction = Use a 132in long x 25in wide x 18in tall 0.4 Weight Required = 1813.14 lbs

Weight Required = 1813.14 lbs
Resisting Weight = 4984.38 lbs
Additional Weight Required = 0 lbs

Ballast foundation to resist sliding.

Friction is OK.

Cohesion
Sliding Force = 725.26 lbs
Cohesion = 130 psf
Area = 22.92 ft²

Resisting = 2492.19 lbs

Additional Weight Required = 0 lbs

8 in

Shear Key
Additional Force = 0 lbs
Lateral Bearing Pressure = 200 psf/ft
Required Depth = 0.00 ft

Length =

wired Depth = 0.00 ft Shear key is not required. $f'_c = 2500 \text{ psi}$

Bearing Pressure

Rev. 11.05.2015

 $\frac{\text{Ballast Width}}{25 \text{ in}} = \frac{26 \text{ in}}{26 \text{ in}} = \frac{27 \text{ in}}{28 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.08 \text{ ft}) = \frac{4984 \text{ lbs}}{200 \text{ lbs}} = \frac{5383 \text{ lbs}}{200 \text{ lbs}} = \frac{5583 \text{ lbs}}{200 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D+	- 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D +	+ 1.0W	
Width	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in
FA	1347 lbs	1347 lbs	1347 lbs	1347 lbs	1064 lbs	1064 lbs	1064 lbs	1064 lbs	1666 lbs	1666 lbs	1666 lbs	1666 lbs	-42 lbs	-42 lbs	-42 lbs	-42 lbs
F _B	1286 lbs	1286 lbs	1286 lbs	1286 lbs	1735 lbs	1735 lbs	1735 lbs	1735 lbs	2130 lbs	2130 lbs	2130 lbs	2130 lbs	-2292 lbs	-2292 lbs	-2292 lbs	-2292 lbs
F_V	208 lbs	208 lbs	208 lbs	208 lbs	1334 lbs	1334 lbs	1334 lbs	1334 lbs	1136 lbs	1136 lbs	1136 lbs	1136 lbs	-1451 lbs	-1451 lbs	-1451 lbs	-1451 lbs
P _{total}	7617 lbs	7816 lbs	8016 lbs	8215 lbs	7783 lbs	7982 lbs	8182 lbs	8381 lbs	8780 lbs	8980 lbs	9179 lbs	9378 lbs	656 lbs	776 lbs	896 lbs	1015 lbs
M	3770 lbs-ft	3770 lbs-ft	3770 lbs-ft	3770 lbs-ft	3019 lbs-ft	3019 lbs-ft	3019 lbs-ft	3019 lbs-ft	4695 lbs-ft	4695 lbs-ft	4695 lbs-ft	4695 lbs-ft	3085 lbs-ft	3085 lbs-ft	3085 lbs-ft	3085 lbs-ft
е	0.49 ft	0.48 ft	0.47 ft	0.46 ft	0.39 ft	0.38 ft	0.37 ft	0.36 ft	0.53 ft	0.52 ft	0.51 ft	0.50 ft	4.70 ft	3.98 ft	3.44 ft	3.04 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	242.6 psf	241.7 psf	240.8 psf	239.9 psf	267.8 psf	265.8 psf	264.0 psf	262.4 psf	271.4 psf	269.3 psf	267.4 psf	265.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	422.1 psf	414.2 psf	407.0 psf	400.2 psf	411.5 psf	404.0 psf	397.1 psf	390.7 psf	494.9 psf	484.2 psf	474.3 psf	465.2 psf	262.6 psf	156.7 psf	129.1 psf	117.9 psf

Use a 132in long x 25in wide x 18in tall

Maximum Bearing Pressure = 495 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

800.9 ft-lbs $M_O =$

768.88 lbs Resisting Force Required =

S.F. = 1.67

Weight Required = 1281.47 lbs Minimum Width =

<u>25 in</u> in

A minimum 132in long x 25in wide x 18in tall ballast foundation is required to resist overturning.

Weight Provided = 4984.38 lbs

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		25 in			25 in			25 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	269 lbs	687 lbs	269 lbs	792 lbs	2213 lbs	792 lbs	79 lbs	201 lbs	79 lbs	
F _V	2 lbs	0 lbs	2 lbs	7 lbs	0 lbs	7 lbs	1 lbs	0 lbs	1 lbs	
P _{total}	6440 lbs	4984 lbs	6440 lbs	6666 lbs	4984 lbs	6666 lbs	1883 lbs	4984 lbs	1883 lbs	
M	7 lbs-ft	0 lbs-ft	7 lbs-ft	24 lbs-ft	0 lbs-ft	24 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft	
f _{min}	280.1 psf	217.5 psf	280.1 psf	287.9 psf	217.5 psf	287.9 psf	81.9 psf	217.5 psf	81.9 psf	
f _{max}	281.9 psf	217.5 psf	281.9 psf	293.9 psf	217.5 psf	293.9 psf	82.4 psf	217.5 psf	82.4 psf	

Maximum Bearing Pressure = 294 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 25in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	2.663 k	Maximum Axial Load = 3.182 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>36%</u>	Utilization = 43%
Diagonal Strut		
Maximum Axial Load =	1.956 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>26%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 48.27 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.965 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.081 \text{ in} \\ \end{array}$

N/A

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Strong Axis:

3.4.14

$$L_b = 132 \text{ in}$$

$$J = 0.432$$

$$365.174$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 132 \\ J &= 0.432 \\ 232.229 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}] \\ \phi F_L &= 28.4 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.1 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 2.788 \text{ k-ft} \end{array}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$
 $ly = 446476 \text{ mm}^4$
 1.073 in^4
 $x = 45.5 \text{ mm}$
 $Sy = 0.599 \text{ in}^3$
 $M_{max} W k = 1.152 \text{ k-ft}$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

 $\phi F_L =$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$

 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.2$$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C$$

$$S2 = C_t$$

S2 = 141.0

$$\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$k_1Bbr$$

$$S2 = \frac{\kappa_1 BB}{mDbr}$$
$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$
 2.366 in^4

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{max}St = 3.363 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 16.2$$

S1 =12.21 (See 3.4.16 above for formula)

32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87

$$\varphi F_L = \varphi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 58.55 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} L_b = & 24.8 \text{ in} \\ J = & 0.942 \\ 38.7028 \\ \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 31.4$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

24.5

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $0.621 in^{3}$

1.460 k-ft

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

$$V = 1.460 \text{ k-ft}$$

Sx =

 $M_{max}St =$

Compression

$$λ = 0.57371$$
 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $φcc = 0.87952$
 $φF_L = φcc(Bc-Dc^*λ)$

 $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{\rm b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

 $M_{max}St =$ 1.460 k-ft

Compression

3.4.7

$$λ = 2.00335$$
 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $φcc = 0.86047$
 $φF_L = (φccFcy)/(λ^2)$
 $φF_L = 7.50396$ ksi

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

30.0 ksi

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

$$L_b = 70.83$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1 Not Used N/A for Weak Direction $\phi F_L =$ 38.9 ksi

24.5

36.9

0.65

27.5 27.5

77.3

43.2 ksi

28.2 ksi

0.672 in⁴

0.621 in³

1.460 k-ft

27.5 mm

 $ly = 279836 \text{ mm}^4$

mDbr

 k_1Bbr

mDbr

m =

x =

 $M_{max}Wk =$

3.4.183.4.18
$$h/t = 24.5$$
 $h/t = 24.5$ $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$ $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3}{mDbr}$ $S1 = 36.9$ $S1 = 36.9$ $m = 0.65$ $m = 0.65$ $C_0 = 27.5$ $C_0 = 27.5$ $C = 27.5$ $C = 27.5$ $S2 = \frac{k_1Bbr}{mDbr}$ $S2 = \frac{k_1Bbr}{mDbr}$ $S2 = 77.3$ $S2 = 77.3$ $\phi F_L = 1.3\phi y F c y$ $\phi F_L = 1.3\phi y F c y$ $\phi F_L = 43.2$ ksi $\phi F_L = 43.2$ $\phi F_L St = 28.2$ ksi $\phi F_L W k = 28.2$ $w = 279836$ mm4 $w = 279836$ $w = 27.5$ mm $w = 27.5$ $w = 27.5$ $w = 27.5$

Compression

 $M_{max}St =$

3.4.7 λ = 1.63853 0.81 in $\frac{Bc-Fcy}{1.6Dc^*}$ $S1^* = \frac{1}{2}$ S1^{*} = 0.33515 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ 1.23671 $\phi cc = 0.80939$ $\phi F_L = (\phi cc Fcy)/(\lambda^2)$ $\phi F_{L} = 10.5516 \text{ ksi}$

1.460 k-ft

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.55 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 10.86 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Υ	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-36.38	-36.38	0	0
2	M14	V	-36.38	-36.38	0	0
3	M15	V	-58.525	-58.525	0	0
4	M16	V	-58.525	-58.525	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	82.251	82.251	0	0
2	M14	V	63.27	63.27	0	0
3	M15	V	34.799	34.799	0	0
4	M16	V	34 799	34 799	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E				1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	_		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	570.125	2	961.476	2	.789	1	.003	1	0	1	Ó	1
2		min	-731.96	3	-1117.731	3	.043	15	0	15	0	1	0	1
3	N7	max	.044	9	1050.873	1	682	15	001	15	0	1	0	1
4		min	114	2	7.104	3	-13.977	1	028	1	0	1	0	1
5	N15	max	.035	9	2663.091	1	0	1	0	11	0	1	0	1
6		min	-1.345	2	-78.009	3	0	2	0	2	0	1	0	1
7	N16	max	2201.978	2	3175.46	2	0	14	0	14	0	1	0	1
8		min	-2322.122	3	-3677.417	3	0	9	0	1	0	1	0	1
9	N23	max	.044	9	1050.873	1	13.977	1	.028	1	0	1	0	1
10		min	114	2	7.104	3	.682	15	.001	15	0	1	0	1
11	N24	max	570.125	2	961.476	2	043	15	0	15	0	1	0	1
12		min	-731.96	3	-1117.731	3	789	1	003	1	0	1	0	1
13	Totals:	max	3340.656	2	9690.166	1	0	11						
14		min	-3786.094	3	-5976.679	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	LC
1	M13	1	max	136.65	1_	386.751	1	-9.487	15	0	3	.327	1	0	1
2			min	6.488	15	-523.824	3	-200.395	1	011	2	.016	15	0	3
3		2	max	136.65	1	271.179	1	-7.303	15	0	3	.11	1	.545	3
4			min	6.488	15	-368.649	3	-154.206	1	011	2	.005	15	402	1
5		3	max	136.65	1	155.606	1	-5.12	15	0	3	001	12	.901	3
6			min	6.488	15	-213.475	3	-108.018	1	011	2	05	1	663	1
7		4	max	136.65	1	40.034	1	-2.936	15	0	3	007	12	1.067	3
8			min	6.488	15	-58.301	3	-61.829	1	011	2	154	1	782	1
9		5	max	136.65	1	96.874	3	753	15	0	3	009	12	1.044	3
10			min	6.488	15	-75.538	1	-15.641	1	011	2	201	1	761	1
11		6	max	136.65	1	252.048	3	30.547	1	0	3	009	15	.83	3
12			min	6.488	15	-191.11	1	.979	12	011	2	192	1	598	1
13		7	max	136.65	1	407.222	3	76.736	1	0	3	006	15	.428	3
14			min	6.488	15	-306.682	1	3.162	12	011	2	126	1	294	1
15		8	max	136.65	1	562.397	3	122.924	1	0	3	0	10	.152	1
16			min	6.488	15	-422.254	1	5.345	12	011	2	004	1	165	3
17		9	max	136.65	1	717.571	3	169.112	1	0	3	.174	1	.739	1
18			min	6.488	15	-537.827	1	7.529	12	011	2	.006	12	947	3
19		10	max	136.65	1	872.745	3	215.301	1	.011	2	.409	1	1.467	1
20			min	6.488	15	-653.399	1	9.712	12	0	3	.017	12	-1.919	3
21		11	max	136.65	1	537.827	1	-7.529	12	.011	2	.174	1	.739	1
22			min	6.488	15	-717.571	3	-169.112	1	0	3	.006	12	947	3
23		12	max	136.65	1	422.254	1	-5.345	12	.011	2	0	10	.152	1
24			min	6.488	15	-562.397	3	-122.924	1	0	3	004	1	165	3
25		13	max	136.65	1	306.682	1	-3.162	12	.011	2	006	15	.428	3
26			min	6.488	15	-407.222	3	-76.736	1	0	3	126	1	294	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					
27		14	max	136.65	1	191.11	_1_	979	12	.011	2	009	15	.83	3
28			min	6.488	15	-252.048	3	-30.547	1_	0	3	192	1	598	1
29		15	max	136.65	1	75.538	1	15.641	1	.011	2	009	12	1.044	3
30			min	6.488	15	-96.874	3	.753	15	0	3	201	1	761	1
31		16	max	136.65	1	58.301	3	61.829	1	.011	2	007	12	1.067	3
32			min	6.488	15	-40.034	1_	2.936	15	0	3	154	1	782	1
33		17	max	136.65	1	213.475	3	108.018	1	.011	2	001	12	.901	3
34			min	6.488	15	-155.606	1_	5.12	15	0	3	05	1	663	1
35		18	max	136.65	1	368.649	3	154.206	1_	.011	2	.11	1	.545	3
36			min	6.488	15	-271.179	1_	7.303	15	0	3	.005	15	402	1
37		19	max	136.65	1	523.824	3	200.395	1_	.011	2	.327	1	0	1
38			min	6.488	15	-386.751	1_	9.487	15	0	3	.016	15	0	3
39	M14	1	max	59.829	1_	404.608	_1_	-9.758	15	.006	3_	.369	1	0	1
40			min	2.847	15	-407.726	3	-206.136	1	008	1	.018	15	0	3
41		2	max	59.829	1	289.036	_1_	-7.574	15	.006	3	.145	1	.426	3
42			min	2.847	15	-289.67	3	-159.947	1	008	1	.007	15	424	1
43		3	max	59.829	1	173.463	1	-5.391	15	.006	3	0	3	.708	3
44			min	2.847	15	-171.614	3	-113.759	1	008	1	022	1	707	1
45		4	max	59.829	1	57.891	1	-3.207	15	.006	3	005	12	.846	3
46			min	2.847	15	-53.558	3	-67.57	1	008	1	133	1	848	1
47		5	max	59.829	1	64.498	3	-1.024	15	.006	3	009	12	.839	3
48			min	2.847	15	-57.681	1	-21.382	1	008	1	187	1	848	1
49		6	max	59.829	1	182.554	3	24.806	1	.006	3	009	15	.688	3
50			min	2.847	15	-173.253	1	.718	12	008	1	185	1	707	1
51		7	max	59.829	1	300.61	3	70.995	1	.006	3	006	15	.393	3
52			min	2.847	15	-288.825	1	2.901	12	008	1	126	1	425	1
53		8	max	59.829	1	418.666	3	117.183	1	.006	3	0	10	.004	9
54			min	2.847	15	-404.397	1	5.084	12	008	1	012	1	047	3
55		9	max	59.829	1	536.722	3	163.371	1	.006	3	.16	1	.564	1
56			min	2.847	15	-519.97	1	7.267	12	008	1	.006	12	631	3
57		10	max	59.829	1	654.778	3	209.56	1	.008	1	.388	1	1.27	1
58			min	2.847	15	-635.542	1	9.45	12	006	3	.016	12	-1.359	3
59		11	max	59.829	1	519.97	1	-7.267	12	.008	1	.16	1	.564	1
60			min	2.847	15	-536.722	3	-163.371	1	006	3	.006	12	631	3
61		12	max	59.829	1	404.397	1	-5.084	12	.008	1	0	10	.004	9
62		12	min	2.847	15	-418.666	3	-117.183	1	006	3	012	1	047	3
63		13	max	59.829	1	288.825	1	-2.901	12	.008	1	006	15	.393	3
64		10	min	2.847	15	-300.61	3	-70.995	1	006	3	126	1	425	1
65		14	max	59.829	1	173.253	1	718	12	.008	1	009	15	.688	3
66		17	min	2.847	15	-182.554	3	-24.806	1	006	3	185	1	707	1
67		15			1	57.681	1	21.382	1	.008	1	009	12	.839	3
68		10	min	2.847	15	-64.498	3	1.024	15	006	3	187	1	848	1
69		16	max	59.829	1	53.558	3	67.57	1	.008	<u> </u>	005	12	.846	3
70		10	min	2.847	15	-57.891	1	3.207	15	006	3	133	1	848	1
71		17	max	59.829	1	171.614	3	113.759	1	.008	1	0	3	.708	3
72		11/	min	2.847	15	-173.463	1	5.391	15	006	3	022	1	707	1
73		18		59.829	1	289.67	3	159.947	1	.008	1	.145	1	.426	3
74		10	max min	2.847	15	-289.036	1	7.574	15	006	3	.007	15	424	1
75		19		<u>2.647</u> 59.829	1	407.726	3		1	.008	<u> </u>	.369	1	4 <u>2</u> 4	1
		19	max					206.136						-	
76	MAE	4	min	2.847	15	-404.608 -404.608	1	9.758	15	006	3	.018	15	0	3
77	M15	1	max	-3.005	15	514.119	2	-9.755	15	.009	1	.369	1	0	2
78		2	min	<u>-63.16</u>	1	-219.921	3	-206.099	1_	005	3	.017	15	0	12
79		2	max	-3.005	15	366.051	2	-7.572	15	.009	1	.145	1	.231	3
80			min	<u>-63.16</u>	1_	-157.541	3	-159.911	1_	005	3	.007	15	538	2
81		3	max	-3.005	15	217.983	2	-5.388	15	.009	1	0	3	.385	3
82			min	<u>-63.16</u>	1_	-95.162	3	-113.722	1_	005	3	022	1	895	2
83		4	max	-3.005	15	69.915	2	-3.205	15	.009	<u>1</u>	006	12	.463	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-63.16	1	-32.783	3	-67.534	1	005	3	133	1	-1.071	2
85		5	max	-3.005	15	29.597	3	-1.021	15	.009	1	009	12	.465	3
86			min	-63.16	1_	-78.153	2	-21.345	1	005	3	187	1	-1.066	2
87		6	max	-3.005	15	91.976	3	24.843	1	.009	1	009	15	.391	3
88			min	-63.16	1	-226.222	2	.754	12	005	3	185	1	88	2
89		7	max	-3.005	15	154.355	3	71.031	1	.009	1	006	15	.24	3
90			min	-63.16	1_	-374.29	2	2.937	12	005	3	127	1	513	2
91		8	max	-3.005	15	216.735	3	117.22	1	.009	1	0	15	.035	2
92			min	-63.16	1	-522.358	2	5.121	12	005	3	011	1	0	15
93		9	max	-3.005	15	279.114	3	163.408	1	.009	1	.16	1	.764	2
94			min	-63.16	1	-670.426	2	7.304	12	005	3	.006	12	289	3
95		10	max	-3.005	15	341.493	3	209.596	1	.005	3	.388	1	1.674	2
96			min	-63.16	1	-818.494	2	9.487	12	009	1	.016	12	669	3
97		11	max	-3.005	15	670.426	2	-7.304	12	.005	3	.16	1	.764	2
98			min	-63.16	1	-279.114	3	-163.408	1	009	1	.006	12	289	3
99		12	max	-3.005	15	522.358	2	-5.121	12	.005	3	0	15	.035	2
100			min	-63.16	1	-216.735	3	-117.22	1	009	1	011	1	0	15
101		13	max	-3.005	15	374.29	2	-2.937	12	.005	3	006	15	.24	3
102			min	-63.16	1	-154.355	3	-71.031	1	009	1	127	1	513	2
103		14	max	-3.005	15	226.222	2	754	12	.005	3	009	15	.391	3
104			min	-63.16	1	-91.976	3	-24.843	1	009	1	185	1	88	2
105		15	max	-3.005	15	78.153	2	21.345	1	.005	3	009	12	.465	3
106			min	-63.16	1	-29.597	3	1.021	15	009	1	187	1	-1.066	2
107		16	max	-3.005	15	32.783	3	67.534	1	.005	3	006	12	.463	3
108			min	-63.16	1	-69.915	2	3.205	15	009	1	133	1	-1.071	2
109		17	max	-3.005	15	95.162	3	113.722	1	.005	3	0	3	.385	3
110			min	-63.16	1	-217.983	2	5.388	15	009	1	022	1	895	2
111		18	max	-3.005	15	157.541	3	159.911	1	.005	3	.145	1	.231	3
112			min	-63.16	1	-366.051	2	7.572	15	009	1	.007	15	538	2
113		19	max	-3.005	15	219.921	3	206.099	1	.005	3	.369	1	0	2
114		10	min	-63.16	1	-514.119	2	9.755	15	009	1	.017	15	0	12
115	M16	1	max	-6.969	15	496.881	2	-9.495	15	.009	1	.329	1	0	2
116	IVIIO			-146.507	1	-207.945	3	-200.622	1	008	3	.016	15	0	3
117		2	max	-6.969	15	348.813	2	-7.311	15	.009	1	.112	1	.216	3
118			min	-146.507	1	-145.566	3	-154.434	1	008	3	.005	15	517	2
119		3	max	-6.969	15	200.745	2	-5.128	15	.009	1	001	12	.356	3
120				-146.507	1	-83.187	3	-108.245	1	008	3	049	1	853	2
121		4	max	-6.969	15	52.676	2	-2.944	15	.009	1	007	12	.419	3
122		_		-146.507	1	-20.807	3	-62.057	1	008	3	153	1	-1.008	2
123		5	max	-6.969	15	41.572	3	761	15	.009	1	009	12	.407	3
124				-146.507	1		2	-15.869	1	008	3	201	1	981	2
125		6	max		15	103.951	3	30.32	1	.009	1	009	15	.318	3
126				-146.507	1	-243.46	2	1.095	12	008	3	192	1	774	2
127		7	max	-6.969	15	166.331	3	76.508	1	.009	1	006	15	.153	3
128				-146.507	1	-391.528	2	3.278	12	008	3	127	1	386	2
129		8	max	-6.969	15	228.71	3	122.696	1	.009	1	0	10	.183	2
130		0		-146.507	1	-539.596	2	5.462	12	008	3	005	1	089	3
131		9	max		15	291.089	3	168.885	1	.009	1	.173	1	.933	2
		9													3
132 133		10		-146.507 -6.969	<u>1</u>	-687.664	3	7.645 215.073	<u>12</u>	008 .008	3	.007 .408	12	406 1.864	2
		10	max		<u>15</u>	353.469					1		12		3
134		11		-146.507	1_	-835.732	2	9.828	12	009		.017		8	
135		11	max	-6.969	<u>15</u>	687.664	2	-7.645	12	.008	3	.173	1	.933	2
136		10		-146.507	1_	-291.089	3	-168.885		009	1	.007	12	406	3
137		12	max	-6.969	<u>15</u>	539.596	2	-5.462	12	.008	3	0	10	.183	2
138		40		-146.507	1_	-228.71	3	-122.696	1	009	1	005	1	089	3
139		13	max		<u>15</u>	391.528	2	-3.278	12	.008	3	006	15	.153	3
140			min	-146.507	1	-166.331	3	-76.508	1	009	1	127	1	386	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
141		14	max	-6.969	15	243.46	2	-1.095	12	.008	3	009	15	.318	3
142			min	-146.507	1	-103.951	3	-30.32	1	009	1_	192	1	774	2
143		15	max	-6.969	15	95.392	2	15.869	1	.008	3_	009	12	.407	3
144				-146.507	1_	-41.572	3	.761	15	009	1_	201	1	981	2
145		16	max	-6.969	15	20.807	3	62.057	1	.008	3_	007	12	.419	3
146			min	-146.507	1	-52.676	2	2.944	15	009	1_	153	1	-1.008	2
147		17	max	-6.969	15	83.187	3	108.245	1	.008	3	001	12	.356	3
148			min	-146.507	1	-200.745	2	5.128	15	009	1_	049	1	853	2
149		18	max	-6.969	15	145.566	3	154.434	1	.008	3	.112	1	.216	3
150			min	-146.507	1	-348.813	2	7.311	15	009	1	.005	15	517	2
151		19	max	-6.969	15	207.945	3	200.622	1	.008	3	.329	1	0	2
152			min	-146.507	1	-496.881	2	9.495	15	009	1	.016	15	0	3
153	M2	1	max	885.303	1	1.928	4	.629	1	0	5	0	3	0	1
154			min	-966.878	3	.454	15	.03	15	0	1	0	1	0	1
155		2	max	885.779	1	1.842	4	.629	1	0	5	0	1	0	15
156			min	-966.521	3	.434	15	.03	15	0	1	0	15	0	4
157		3	max	886.254	1	1.757	4	.629	1	0	5	0	1	0	15
158			min	-966.165	3	.414	15	.03	15	0	1	0	15	001	4
159		4	max	886.73	1	1.671	4	.629	1	0	5	0	1	0	15
160			min	-965.808	3	.393	15	.03	15	0	1	0	15	002	4
161		5	max	887.206	1	1.586	4	.629	1	Ö	5	0	1	0	15
162			min	-965.451	3	.373	15	.03	15	0	1	0	15	002	4
163		6	max	887.682	1	1.5	4	.629	1	0	5	.001	1	0	15
164			min	-965.094	3	.353	15	.03	15	0	1	0	15	003	4
165		7	max	888.157	1	1.414	4	.629	1	0	5	.001	1	<u>.005</u>	15
166			min	-964.737	3	.333	15	.03	15	0	1	0	15	003	4
167		8	max	888.633	1	1.329	4	.629	1	0	5	.001	1	<u>003</u> 0	15
168			min	-964.38	3	.313	15	.03	15	0	1	0	15	004	4
169		9	max	889.109	1	1.243	4	.629	1	0	5	.002	1	004	15
170		9		-964.024	3	.293	15	.03	15	0	1	.002	15	004	4
171		10	min	889.585	1		4	.629	1	0	•	.002	1	004 001	15
		10	max			1.158	15		15		<u>5</u> 1		15		
172		11	min	-963.667	3	.273		.03		0		0		004	4
173		11	max	890.06	1	1.072	4	.629	1	0	<u>5</u> 1	.002	1	001	15
174		40	min	-963.31	3	.253	15	.03	15	0		0	15	005	4
175		12	max	890.536	1	.986	4	.629	1	0	5_	.002	1	001	15
176		40	min	-962.953	3	.232	15	.03	15	0	1_	0	15	005	4
177		13	max	891.012	1	.901	4	.629	1	0	5	.002	1	001	15
178			min	-962.596	3	.212	15	.03	15	0	1_	0	15	005	4
179		14	max	891.488	1	.815	4	.629	1	0	5_	.003	1	001	15
180			min	-962.24	3	.18	12	.03	15	0	<u>1</u>	0	15	006	4
181		15		891.963	1	.73	4	.629	1	0	5_	.003	1	001	15
182				-961.883	3	.147	12	.03	15	0	_1_	0	15	006	4
183		16		892.439	1	.663	2	.629	1	0	5	.003	1	001	15
184				-961.526	3	.113	12	.03	15	0	1_	0	15	006	4
185		17		892.915	1	.596	2	.629	1	0	5_	.003	1	002	15
186				-961.169	3	.08	12	.03	15	0	1_	0	15	006	4
187		18		893.391	1_	.529	2	.629	1	0	5	.003	1	002	15
188				-960.812	3	.047	12	.03	15	0	1_	0	15	007	4
189		19		893.866	1	.463	2	.629	1	0	5	.004	1	002	15
190			min	-960.455	3	.006	3	.03	15	0	1	0	15	007	4
191	M3	1	max		2	7.778	4	.289	1	0	12	0	1	.007	4
192			min	-621.234	3	1.829	15	.014	15	0	1	0	15	.002	15
193		2		473.845	2	7.013	4	.289	1	0	12	0	1	.004	2
194				-621.362	3	1.649	15	.014	15	0	1	0	15	0	12
195		3	max		2	6.249	4	.289	1	0	12	0	1	.002	2
196			min		3	1.469	15	.014	15	Ö	1	0	15	0	3
197		4	max		2	5.484	4	.289	1	0	12	0	1	0	15
										_			-		

Model Name

Schletter, Inc. HCV

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-621.618	3	1.29	15	.014	15	0	1	0	15	002	3
199		5	max	473.334	2	4.72	4	.289	1	0	12	.001	1	0	15
200			min	-621.745	3	1.11	15	.014	15	0	1	0	15	004	4
201		6	max		2	3.955	4	.289	1	0	12	.001	1	001	15
202			min	-621.873	3	.93	15	.014	15	0	1	0	15	006	4
203		7	max		2	3.191	4	.289	1	0	12	.001	1	002	15
204			min	-622.001	3	.751	15	.014	15	0	1	0	15	007	4
205		8	max	472.822	2	2.427	4	.289	1	0	12	.001	1	002	15
206			min	-622.129	3	.571	15	.014	15	0	1	0	15	008	4
207		9	max	472.652	2	1.662	4	.289	1	0	12	.001	1	002	15
208			min	-622.256	3	.391	15	.014	15	0	1	0	15	009	4
209		10	max		2	.898	4	.289	1	0	12	.002	1	002	15
210			min	-622.384	3	.211	15	.014	15	0	1	0	15	01	4
211		11	max	472.311	2	.229	2	.289	1	0	12	.002	1	002	15
212			min	-622.512	3	093	3	.014	15	0	1	0	15	01	4
213		12	max		2	148	15	.289	1	0	12	.002	1	002	15
214			min	-622.64	3	631	4	.014	15	0	1	0	15	01	4
215		13	max	471.971	2	328	15	.289	1	0	12	.002	1	002	15
216			min	-622.767	3	-1.396	4	.014	15	0	1	0	15	009	4
217		14	max	471.8	2	507	15	.289	1	0	12	.002	1	002	15
218			min	-622.895	3	-2.16	4	.014	15	0	1	0	15	009	4
219		15	max	471.63	2	687	15	.289	1	0	12	.002	1	002	15
220			min	-623.023	3	-2.925	4	.014	15	0	1	0	15	007	4
221		16	max	471.46	2	867	15	.289	1	0	12	.002	1	001	15
222			min	-623.151	3	-3.689	4	.014	15	0	1	0	15	006	4
223		17	max		2	-1.046	15	.289	1	0	12	.002	1	001	15
224			min	-623.278	3	-4.453	4	.014	15	0	1	0	15	004	4
225		18	max	471.119	2	-1.226	15	.289	1	0	12	.003	1	0	15
226			min	-623.406	3	-5.218	4	.014	15	0	1	0	15	002	4
227		19	max	470.949	2	-1.406	15	.289	1	0	12	.003	1	0	1
228			min	-623.534	3	-5.982	4	.014	15	0	1	0	15	0	1
229	M4	1		1047.807	1	0	1	682	15	0	1	.002	1	0	1
230			min	4.804	3	0	1	-14.4	1	0	1	0	15	0	1
231		2		1047.977	1_	0	1	682	15	0	1	0	1	0	1
232			min	4.932	3	0	1	-14.4	1_	0	1	0	15	0	1
233		3		1048.148	_1_	0	1	682	15	0	1	0	12	0	1
234		-	min	5.06	3	0	1	-14.4	1_	0	1	001	1	0	1
235		4		1048.318	1_	0	1	682	15	0	1	0	15	0	1
236		-	min	5.188	3_	0	1	-14.4	1_	0	1	003	1	0	1
237		5		1048.488	1_	0	1	682	15	0	1	0	15	0	1
238		_	min		3	0	1	-14.4	1	0	1	004	1	0	1
239		6		1048.659	1	0	1	682	15	0	1	0	15	0	1
240		-	min	5.443	3	0	1	-14.4	1_	0	1	006	1	0	1
241		7		1048.829		0	1	682	15	0	1	0	15	0	1
242		0	min	5.571	3	0	1	-14.4	1	0	1	008	1	0	1
243		8		1048.999	1	0	1	682	15	0	1	0	15	0	1
244		0	min	5.699	3	0	1	-14.4	1_	0	1	009	1	0	1
245		9	max		1	0	1	682	15	0	1	0	15	0	1
246		40	min	5.826	3	0	1	-14.4	1	0	1	011	1	0	
247		10	max		1	0	1	682	15	0	1	0	15	0	1
248		4.4	min		3	0	1	-14.4	1_	0	1	013	1	0	1
249		11	max		1	0	1	682	15	0	1	0	15	0	1
250		40	min	6.082	3_	0	1	-14.4	1	0	1	014	1	0	1
251		12		1049.681	1	0	1	682	15	0	1	0	15	0	1
252		40	min	6.21	3	0	1	-14.4	1_	0	1	016	1	0	1
253		13		1049.851	1	0	1	682	15	0	1	0	15	0	1
254			min	6.337	3	0	1	-14.4	1	0	1	018	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255 256		14	min	1050.021 6.465	<u>1</u> 3	0	1	682 -14.4	<u>15</u> 1	0	<u>1</u> 1	019	<u>15</u> 1	0	1
257		15		1050.192	<u> </u>	0	1	682	15	0	1	0	15	0	1
258		10	min	6.593	3	0	1	-14.4	1	0	1	021	1	0	1
259		16		1050.362	1	0	1	682	15	0	1	001	15	0	1
260			min	6.721	3	0	1	-14.4	1	0	1	023	1	0	1
261		17		1050.533	1	0	1	682	15	0	1	001	15	0	1
262			min	6.848	3	0	1	-14.4	1	0	1	024	1	0	1
263		18		1050.703	1	0	1	682	15	0	1	001	15	0	1
264			min	6.976	3	0	1	-14.4	1	0	1	026	1	0	1
265		19	max	1050.873	1	0	1	682	15	0	1	001	15	0	1
266			min	7.104	3	0	1	-14.4	1	0	1	028	1	0	1
267	M6	1	max	2862.312	1	2.099	2	0	1	0	1	0	1	0	1
268			min	-3181.638	3	.306	12	0	1	0	1	0	1	0	1
269		2	max	2862.788	1	2.033	2	0	1	0	1	0	1	0	12
270			min		3	.273	12	0	1	0	1	0	1	0	2
271		3		2863.264	<u>1</u>	1.966	2	0	_1_	0	_1_	0	1_	0	12
272				-3180.924	3	.239	12	0	1_	0	1	0	1	001	2
273		4		2863.739	1_	1.899	2	0	1_	0	_1_	0	1	0	12
274			min	-3180.568	3	.206	12	0	1_	0	1	0	1_	002	2
275		5		2864.215	_1_	1.833	2	0	1	0	1	0	1	0	12
276			min	-3180.211	3	.173	12	0	1_	0	1	0	1	003	2
277		6		2864.691	_1_	1.766	2	0	1_	0	1	0	1	0	12
278				-3179.854	3	.139	12	0	1_	0	1	0	1	003	2
279		7		2865.167	1_	1.699	2	0	1_	0	1	0	1	0	12
280				-3179.497	3	.106	12	0	1_	0	1_	0	1	004	2
281		8		2865.642	1	1.633	2	0	1_4	0	1	0	1	0	12
282			min	-3179.14	3	.064	3	0	1	0	<u>1</u> 1	0	1	004	2
283		9		2866.118 -3178.784	<u>1</u> 3	1.566	3	0	1	0	1	0	1	0	12
284		10	min	2866.594	<u>ა</u> 1	.014 1.499	2	0	1	0	1	0	1	005 0	12
286		10	min	-3178.427	3	036	3	0	1	0	1	0	1	005	2
287		11	max		1	1.432	2	0	1	0	1	0	1	0	12
288				-3178.07	3	086	3	0	1	0	1	0	1	006	2
289		12		2867.545	1	1.366	2	0	1	0	1	0	1	0	12
290		- '-	min		3	136	3	0	1	0	1	0	1	006	2
291		13		2868.021	1	1.299	2	0	1	0	1	0	1	0	12
292				-3177.356	3	186	3	0	1	0	1	0	1	007	2
293		14		2868.497	1	1.232	2	0	1	0	1	0	1	0	3
294				-3176.999	3	236	3	0	1	0	1	0	1	007	2
295		15		2868.973	1	1.166	2	0	1	0	1	0	1	0	3
296			min	-3176.643	3	286	3	0	1	0	1	0	1	007	2
297		16		2869.448	1	1.099	2	0	1	0	1	0	1	0	3
298				-3176.286	3	336	3	0	1	0	1	0	1	008	2
299		17		2869.924	1_	1.032	2	0	1_	0	1	0	1	0	3
300				-3175.929	3	386	3	0	1	0	1	0	1	008	2
301		18		2870.4	1_	.966	2	0	_1_	0	1	0	1	0	3
302				-3175.572	3	436	3	0	1	0	1	0	1	008	2
303		19		2870.876	_1_	.899	2	0	_1_	0	1	0	1_	0	3
304				-3175.215	3	486	3	0	1_	0	1_	0	1	009	2
305	<u>M7</u>	1_		1906.419	2	7.814	4	0	1_	0	1	0	1	.009	2
306			min	-1953.606	3	1.834	15	0	_1_	0	1	0	1_	0	3
307		2		1906.249	2	7.049	4	0	1_	0	1	0	1	.006	2
308				-1953.734	3	1.655	15	0	1_	0	1	0	1	002	3
309		3		1906.078	2	6.285	4	0	1_	0	1	0	1	.004	2
310				-1953.862	3	1.475	15	0	1_	0	1	0	1	003	3
311		4	max	1905.908	2	5.521	4	0	_1_	0	_1_	0	1	.002	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
312			min	-1953.99	3	1.295	15	0	1	0	1	0	1	004	3
313		5	max	1905.738	2	4.756	4	0	1	0	_1_	0	1	0	2
314			min	-1954.117	3	1.116	15	0	1	0	1	0	1	005	3
315		6		1905.567	2	3.992	4	0	1	0	_1_	0	1_	001	15
316			min	-1954.245	3	.936	15	0	1	0	1	0	1	006	3
317		7	max		2	3.227	4	0	1	0	_1_	0	1_	002	15
318			min	-1954.373	3	.756	15	0	1	0	1	0	1	007	3
319		8		1905.226	2	2.463	4	0	1	0	_1_	0	1	002	15
320			min	-1954.501	3	.576	15	0	1	0	1	0	1	008	4
321		9		1905.056	2	1.758	2	0	1	0	_1_	0	1	002	15
322			min	-1954.628	3	.302	12	0	1	0	1	0	1	009	4
323		10	max	1904.886	2	1.162	2	0	1	0	_1_	0	_1_	002	15
324			min	-1954.756	3	028	3	0	1	0	1	0	1	009	4
325		11	max	1904.715	2	.567	2	0	1	0	_1_	0	1	002	15
326			min	-1954.884	3	475	3	0	1	0	1	0	1	01	4
327		12	max	1904.545	2	029	2	0	1	0	1	0	1	002	15
328			min	-1955.012	3	922	3	0	1	0	1	0	1	01	4
329		13	max	1904.375	2	322	15	0	1	0	1	0	1	002	15
330			min	-1955.139	3	-1.368	3	0	1	0	1	0	1	009	4
331		14	max	1904.204	2	502	15	0	1	0	1	0	1	002	15
332			min	-1955.267	3	-2.124	4	0	1	0	1	0	1	008	4
333		15	max	1904.034	2	681	15	0	1	0	1	0	1	002	15
334			min	-1955.395	3	-2.888	4	0	1	0	1	0	1	007	4
335		16	max	1903.864	2	861	15	0	1	0	1	0	1	001	15
336			min	-1955.523	3	-3.653	4	0	1	0	1	0	1	006	4
337		17	max	1903.693	2	-1.041	15	0	1	0	1	0	1	001	15
338			min	-1955.65	3	-4.417	4	0	1	0	1	0	1	004	4
339		18	max	1903.523	2	-1.22	15	0	1	0	1	0	1	0	15
340			min	-1955.778	3	-5.182	4	0	1	0	1	0	1	002	4
341		19	max	1903.353	2	-1.4	15	0	1	0	1	0	1	0	1
342			min	-1955.906	3	-5.946	4	0	1	0	1	0	1	0	1
343	M8	1	max	2660.025	1	0	1	0	1	0	1	0	1	0	1
344			min	-80.309	3	0	1	0	1	0	1	0	1	0	1
345		2	max	2660.196	1	0	1	0	1	0	1	0	1	0	1
346			min	-80.181	3	0	1	0	1	0	1	0	1	0	1
347		3		2660.366	1	0	1	0	1	0	1	0	1	0	1
348			min	-80.053	3	0	1	0	1	0	1	0	1	0	1
349		4	max	2660.536	1	0	1	0	1	0	1	0	1	0	1
350			min	-79.926	3	0	1	0	1	0	1	0	1	0	1
351		5		2660.707	1	0	1	0	1	0	1	0	1	0	1
352				-79.798	3	0	1	0	1	0	1	0	1	0	1
353		6		2660.877	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		2661.047	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		2661.218	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9		2661.388	1	0	1	0	1	0	1	0	1	0	1
360				-79.287	3	0	1	0	1	0	1	0	1	0	1
361		10		2661.558	1	0	1	0	1	0	1	0	1	0	1
362		10		-79.159	3	0	1	0	1	0	1	0	1	0	1
363		11		2661.729	<u> </u>	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		2661.899	<u> </u>	0	1	0	1	0	1	0	1	0	1
366		14	min		3	0	1	0	1	0	1	0	1	0	1
367		13		2662.069			1		1		1		1	_	1
		13				0	1	0	1	0	1	0	1	0	1
368			min	-78.776	3	0		0		0		0		0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC		LC		LC
369		14	max	2662.24	<u>1</u> 3	0	1	0	1	0	1	0	1	0	1
370 371		15	min	-78.648 2662.41	<u>ာ</u> 1	0	1	0	1	0	1	0	1	0	1
372		10	max	-78.52	3	0	1	0	1	0	1	0	1	0	1
		16	min	-76.52 2662.58	<u>၂</u> ၂		1	-	1	_	1	0	1	0	1
373 374		10	max	-78.393	3	0	1	0	1	0	1	0	1	0	1
		17	min						1	_			1		1
375		17		2662.751 -78.265	<u>1</u> 3	0	1	0	1	0	1	0	1	0	1
376		4.0	min		<u>ာ</u> 1		1		1	_	1		1		1
377		18		2662.921		0		0		0	1	0		0	
378		10	min	-78.137	3	0	1	0	1	0	1	0	1	0	1
379		19		2663.091	1	0	1	0	1	0	1	0		0	_
380	MAO	4	min	-78.009	3_	1 000		0	•	0		0	1	0	1
381	M10	1	max	885.303	1	1.928	4	03	15	0	1	0	1	0	1
382			min	-966.878	3	.454	15	629	1_	0	5	0	3	0	_
383		2	max	885.779	1	1.842	4	03	15	0	1_	0	15	0	15
384			min	-966.521	3	.434	15	629	1_	0	5	0	1_	0	4
385		3	max	886.254	1_	1.757	4	03	15	0	1_	0	15	0	15
386			min	<u>-966.165</u>	3	.414	15	629	1_	0	5_	0	1_	001	4
387		4	max	886.73	1_	1.671	4	03	15	0	1_	0	15	0	15
388		_	min	-965.808	3	.393	15	629	1_	0	5_	0	1_	002	4
389		5	max	887.206	1_	1.586	4	03	15	0	1_	0	15	0	15
390			min	<u>-965.451</u>	3	.373	15	629	1_	0	5	0	1_	002	4
391		6	max	887.682	1_	1.5	4	03	15	0	<u>1</u>	0	15	0	15
392			min	-965.094	3	.353	15	629	1	0	5	001	1	003	4
393		7	max	888.157	1_	1.414	4	03	15	0	_1_	0	15	0	15
394			min	-964.737	3	.333	15	629	1	0	5	001	1	003	4
395		8	max	888.633	_1_	1.329	4	03	15	0	_1_	0	15	0	15
396			min	-964.38	3	.313	15	629	1	0	5	001	1	004	4
397		9	max	889.109	_1_	1.243	4	03	15	0	_1_	0	15	0	15
398			min	-964.024	3	.293	15	629	1	0	5	002	1	004	4
399		10	max	889.585	_1_	1.158	4	03	15	0	_1_	0	15	001	15
400			min	-963.667	3_	.273	15	629	1	0	5	002	1	004	4
401		11	max	890.06	_1_	1.072	4	03	15	0	_1_	0	15	001	15
402			min	-963.31	3	.253	15	629	1	0	5	002	1	005	4
403		12	max	890.536	_1_	.986	4	03	15	0	_1_	0	15	001	15
404			min	-962.953	3	.232	15	629	1_	0	5	002	1_	005	4
405		13	max	891.012	_1_	.901	4	03	15	0	_1_	0	15	001	15
406			min	-962.596	3	.212	15	629	1	0	5	002	1	005	4
407		14	max	891.488	_1_	.815	4	03	15	0	_1_	0	15	001	15
408			min	-962.24	3	.18	12	629	1	0	5	003	1	006	4
409		15		891.963	_1_	.73	4	03	15	0	_1_	0	15	001	15
410				-961.883	3	.147	12	629	1	0	5	003	1	006	4
411		16		892.439	1_	.663	2	03	15	0	_1_	0	15	001	15
412				-961.526	3	.113	12	629	1	0	5	003	1	006	4
413		17		892.915	_1_	.596	2	03	15	0	_1_	0	15	002	15
414				-961.169	3	.08	12	629	1	0	5	003	1	006	4
415		18		893.391	1_	.529	2	03	15	0	1	0	15	002	15
416				-960.812	3	.047	12	629	1	0	5	003	1	007	4
417		19		893.866	_1_	.463	2	03	15	0	_1_	0	15	002	15
418			min	-960.455	3	.006	3	629	1	0	5	004	1	007	4
419	M11	1	max		2	7.778	4	014	15	0	_1_	0	15	.007	4
420			min	-621.234	3	1.829	15	289	1	0	12	0	1	.002	15
421		2		473.845	2	7.013	4	014	15	0	1_	0	15	.004	2
422			min	-621.362	3	1.649	15	289	1	0	12	0	1	0	12
423		3	max		2	6.249	4	014	15	0	1	0	15	.002	2
424			min		3	1.469	15	289	1	0	12	0	1	0	3
425		4	max	473.504	2	5.484	4	014	15	0	1	0	15	0	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]		y-y Mome			LC
426		_	min	-621.618	3	1.29	15	289	_1_	0	12	0	1_	002	3
427		5	max	473.334	2	4.72	4	014	15	0	_1_	0	15	0	15
428			min	-621.745	3_	1.11	15	289	1_	0	12	001	1_	004	4
429		6	max		2	3.955	4	014	<u>15</u>	0	1_	0	15	001	15
430		_	min	-621.873	3	.93	15	289	_1_	0	12	001	1_	006	4
431		7	max	472.993	2	3.191	4	014	<u>15</u>	0	1_	0	15	002	15
432			min	-622.001	3	.751	15	289	_1_	0	12	001	1	007	4
433		8	max		2	2.427	4	014	15	0	_1_	0	15	002	15
434			min	-622.129	3	.571	15	289	1_	0	12	001	1_	008	4
435		9	max	472.652	2	1.662	4	014	<u>15</u>	0	1_	0	15	002	15
436			min	-622.256	3_	.391	15	289	_1_	0	12	001	1_	009	4
437		10	max	472.482	2	.898	4_	014	15	0	_1_	0	15	002	15
438			min	-622.384	3_	.211	15	289	_1_	0	12	002	1_	01	4
439		11	max		2	.229	2	014	15	0	1_	0	15	002	15
440			min	-622.512	3	093	3	289	_1_	0	12	002	1_	01	4
441		12	max	472.141	2	148	15	014	<u>15</u>	0	1_	0	15	002	15
442			min	-622.64	3_	631	4	289	_1_	0	12	002	1_	01	4
443		13	max		2	328	15	014	<u>15</u>	0	1_	0	15	002	15
444			min	-622.767	3	-1.396	4	289	1_	0	12	002	1	009	4
445		14	max	471.8	2	507	15	014	<u>15</u>	0	1_	0	15	002	15
446			min	-622.895	3	-2.16	4_	289	_1_	0	12	002	1_	009	4
447		15	max	471.63	2	687	15	014	15	0	_1_	0	15	002	15
448			min	-623.023	3_	-2.925	4	289	_1_	0	12	002	1_	007	4
449		16	max	471.46	2	867	15	014	15	0	_1_	0	15	001	15
450			min	-623.151	3_	-3.689	4_	289	_1_	0	12	002	1_	006	4
451		17	max	471.289	2	-1.046	15	014	<u>15</u>	0	1_	0	15	001	15
452			min	-623.278	3_	-4.453	4	289	<u>1</u>	0	12	002	1_	004	4
453		18	max		2	-1.226	15	014	15	0	_1_	0	15	0	15
454			min	-623.406	3	-5.218	4	289	1_	0	12	003	1	002	4
455		19	max	470.949	2	-1.406	15	014	<u>15</u>	0	1_	0	15	0	1
456		_	min	-623.534	3	-5.982	4	289	1_	0	12	003	1	0	1
457	M12	1	max		1_	0	1	14.4	_1_	0	1_	0	15	0	1
458			min	4.804	3	0	1_	.682	15	0	1_	002	1_	0	1
459		2		1047.977	_1_	0	1	14.4	1_	0	_1_	0	15	0	1
460			min	4.932	3	0	1_	.682	15	0	1_	0	1	0	1
461		3	max	1048.148	1_	0	1	14.4	1	0	_1_	.001	1	0	1
462			min	5.06	3	0	1_	.682	15	0	1_	0	12	0	1
463		4		1048.318	1_	0	1_	14.4	_1_	0	_1_	.003	1	0	1
464		_	min	5.188	3	0	1_	.682	15	0	1_	0	15	0	1
465		5	max	1048.488	1_	0	1_	14.4	_1_	0	_1_	.004	1	0	1
466			min		3_	0	1_	.682	15	0	_1_	0	15	0	1
467		6		1048.659	1_	0	1_	14.4	1_	0		.006	1	0	1
468		_	min	5.443	3	0	1	.682	15	0	1_	0	15	0	1
469		7		1048.829	1_	0	1_	14.4	1	0	1_	.008	1	0	1
470			min	5.571	3	0	1_	.682	15	0	1_	0	15	0	1
471		8		1048.999	1_	0	1	14.4	1_	0	1_	.009	1	0	1
472			min	5.699	3	0	1_	.682	15	0	1_	0	15	0	1
473		9	max		1_	0	1	14.4	1_	0	1_	.011	1	0	1
474		4.0	min	5.826	3	0	1	.682	15	0	1_	0	15	0	1
475		10	max		1	0	1	14.4	1_	0	1_	.013	1	0	1
476		4.4	min		3	0	1_	.682	15	0	1_	0	15	0	1
477		11	max		_1_	0	1	14.4	1_	0	_1_	.014	1_	0	1
478		4 -	min	6.082	3	0	1_	.682	15	0	1_	0	15	0	1
479		12		1049.681	_1_	0	1	14.4	1_	0	1_	.016	1_	0	1
480		4 -	min	6.21	3	0	1	.682	15	0	1_	0	15	0	1
481		13		1049.851	1_	0	1	14.4	1_	0	_1_	.018	1_	0	1
482			min	6.337	3	0	1	.682	15	0	1_	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

400	Member	Sec		Axial[lb]						Torque[k-ft]					
483		14		1050.021	1	0	1	14.4	1	0	1	.019	1	0	1
484		4.5	min	6.465	3	0	1_	.682	15	0	1_	0	15	0	1
485		15		1050.192	1	0	<u>1</u> 1	14.4	1_	0	1	.021	1_	0	1
486		4.0	min	6.593	3	0		.682	15	0		0	15	0	
487		16		1050.362	<u>1</u> 3	0	1	14.4	1 15	0	1	.023	1 15	0	1
488		17	min	6.721		0	_	.682		0	_	.001		0	-
489		17		1050.533	1	0	1_	14.4	1_	0	1_	.024	1_	0	1
490		40	min	6.848	3	0	1_	.682	15	0	1_	.001	15	0	1
491		18		1050.703	1	0	1_	14.4	1_1	0	1_	.026	1_	0	1
492		40	min	6.976	3	0	1_	.682	15	0	1_	.001	15	0	1
493		19		1050.873	1_	0	1_	14.4	1	0	1	.028	1	0	1
494		_	min	7.104	3	0	1_	.682	15	0	1_	.001	15	0	1
495	<u>M1</u>	1	max	200.401	_1_	523.8	3	-6.488	15	0	1_	.327	1	0	3
496		_	min	9.487	15	-385.435	1_	-136.458	1	0	3	.016	15	011	2
497		2	max	201.117	_1_	522.87	3	-6.488	15	0	1_	.255	1	.193	1
498		_	min	9.703	15	-386.676	1_	-136.458	1	0	3	.012	15	275	3
499		3	max	379.252	3	430.945	_1_	-6.459	15	0	3_	.183	1_	.388	1
500			min	-222.532	2	-375.76	3	-136.114	1	0	1_	.009	15	54	3
501		4	max		3	429.704	_1_	-6.459	15	0	3	.111	1_	.161	1
502			min	-221.816	2	-376.69	3	-136.114	1	0	1_	.005	15	342	3
503		5	max	380.326	3_	428.464	<u>1</u>	-6.459	15	0	3	.039	1	003	15
504			min	-221.1	2	-377.621	3	-136.114	1	0	1_	.002	15	143	3
505		6	max	380.864	3	427.223	1_	-6.459	15	0	3	002	15	.057	3
506			min	-220.384	2	-378.551	3	-136.114	1	0	1	032	1	297	2
507		7	max	381.401	3	425.983	1	-6.459	15	0	3	005	15	.257	3
508			min	-219.668	2	-379.481	3	-136.114	1	0	1	104	1	516	1
509		8	max	381.938	3	424.742	1	-6.459	15	0	3	008	15	.457	3
510			min	-218.951	2	-380.412	3	-136.114	1	0	1	176	1	741	1
511		9	max	397.816	3	37.192	2	-9.306	15	0	9	.102	1	.534	3
512			min	-132.046	2	.379	15	-195.978	1	0	3	.005	15	845	1
513		10	max	398.353	3	35.951	2	-9.306	15	0	9	0	15	.52	3
514			min	-131.33	2	.005	15	-195.978	1	0	3	001	1	855	1
515		11	max	398.89	3	34.71	2	-9.306	15	0	9	005	15	.506	3
516				-130.614	2	-1.501	4	-195.978	1	0	3	105	1	868	2
517		12	max	414.711	3	247.122	3	-6.301	15	0	2	.174	1	.44	3
518			min	-77.978	10	-480.418	2	-132.914	1	0	3	.008	15	77	2
519		13	max	415.248	3	246.191	3	-6.301	15	0	2	.104	1	.31	3
520			min	-77.381	10	-481.658	2	-132.914	1	0	3	.005	15	519	1
521		14	max	415.785	3	245.261	3	-6.301	15	0	2	.034	1	.181	3
522			min	-76.784	10	-482.899	2	-132.914	1	0	3	.002	15	273	1
523		15		416.322	3	244.33	3	-6.301	15	0	2	002	15	.051	3
524		-10	min	-76.188	10	-484.139	2	-132.914	1	0	3	037	1	027	1
525		16	max		3	243.4	3	-6.301	15	0	2	005	15	.25	2
526		10		-75.591	10	-485.38	2	-132.914	1	0	3	107	1	077	3
527		17	max		3	242.47	3	-6.301	15	0	2	008	15	.506	2
528		- ' '	min		10	-486.62	2	-132.914	1	0	3	177	1	206	3
529		18	max		15	498.61	2	-6.969	15	0	3	012	15	.255	2
530		10		-201.333	1	-207.073	3	-146.692	1	0	2	251	1	102	3
531		19	max		15	497.37	2	-6.969	15	0	3	016	15	.008	3
532		13		-9.495	1	-208.004	3	-146.692	1	0	2	329	1	009	1
533	M5	1				1745.391	3		1	0	1		1	.021	2
	CIVI		max		12	-1298.745	<u> </u>	0	1		1	0	1		3
534		2	min	19.425	<u>12</u>			0	•	0	1	0		001	
535		2	max		1	1744.46	3		1	0	1		1	.706	1
536		2		19.783	12	-1299.985	1_1	0	•	0		0	-	922	3
537		3		1222.091	3	1330.796	1	0	1	0	1	0	1	1.361	1
538		4		-813.799	2		3	0	1_	0	1_	0	1	-1.807	3
539		4	max	1222.628	3	1329.556	_1_	0	1	0	1_	0	1	.659	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

540	Member	Sec	min	Axial[lb]	LC 2	y Shear[lb]	LC 3	z Shear[lb]	LC 1	Torque[k-ft]	LC 1	y-y Mome	LC 1	z-z Mome	LC 3
541		5		1223.165	3	1328.315	1	0	1	0	1	0	1	.002	9
542			min	-812.367	2	-1224.255	3	0	1	0	1	0	1	516	3
543		6		1223.702	3	1327.074	1	0	1	0	1	0	1	.131	3
544			min	-811.651	2	-1225.186	3	0	1	0	1	0	1	756	2
545		7		1224.239	3	1325.834	1	0	1	Ö	1	0	1	.777	3
546			min	-810.934	2	-1226.116	3	0	1	0	1	0	1	-1.443	1
547		8		1224.777	3	1324.593	1	0	1	0	1	0	1	1.425	3
548				-810.218	2	-1227.046	3	0	1	0	1	0	1	-2.142	1
549		9		1253.578	3	123.442	2	0	1	0	1	0	1	1.64	3
550			min	-632.499	2	.377	15	0	1	0	1	0	1	-2.425	1
551		10		1254.115	3	122.202	2	0	1	0	1	0	1	1.589	3
552		10	min	-631.783	2	.002	15	0	1	0	1	0	1	-2.46	1
553		11		1254.652	3	120.961	2	0	1	0	1	0	1	1.538	3
554		- 1 1	min	-631.066	2	-1.321	4	0	1	0	1	0	1	-2.5	2
555		12		1283.569	3	795.948	3	0	1	0	1	0	1	1.351	3
556		12	min	-453.357	2	-1507.035	2	0	1	0	1	0	1	-2.238	2
557		13		1284.106	3	795.018	3	0	1	0	1	0	1	.931	3
558		13		-452.641	2	-1508.276	2	0	1	0	1	0	1	-1.455	1
559		14		1284.643	3	794.087	3	0	1	0	1	0	1	.512	3
560		14	min	-451.925	2	-1509.516	2	0	1	0	1	0	1	686	1
561		15		1285.18	3	793.157	3	0	1	0	1	0	1	.151	2
562		13	max	-451.208	2	-1510.757	2	0	1	0	1	0	1	004	13
563		16	_	1285.717	3	792.226	3	0	1	0	1	0	1	004 .948	
		10				-1511.998	2	_	1		1	0	1		3
564		17	min	<u>-450.492</u>	2			0	1	0	1		1	325	
565		17			3	791.296	3	0	1	0		0	_	1.746	2
566		4.0	min	-449.776	2	-1513.238	2	0	•	0	1_	0	1	743	3
567		18	max	-20.013	12	1675.614	2	0	1_	0	1	0	1	.9	2
568		40		-430.872	1_	-706.392	3	0	1	0	1_	0	1	388	3
569		19	max	-19.655	12	1674.374	2	0	1	0	1	0	1	.018	1
570	140	4	min	-430.156	1_	-707.322	3	0	1	0	1_	0	1_	015	3
571	M9	1	max	200.401	1_	523.8	3	136.458	1	0	3	016	15	0	3
572			min	9.487	<u>15</u>	-385.435	1	6.488	15	0	1_	327	1_	011	2
573		2	max	201.117	1_	522.87	3	136.458	1	0	3	012	15	.193	1
574			min	9.703	<u>15</u>	-386.676	1	6.488	15	0	_1_	255	1_	<u>275</u>	3
575		3	max	379.252	3_	430.945	1	136.114	1	0	1	009	15	.388	1
576			min	-222.532	2	-375.76	3	6.459	15	0	3	183	1_	54	3
577		4	max	379.789	3_	429.704	1	136.114	1	0	1	005	15	.161	1
578		_	min	-221.816	2	-376.69	3	6.459	15	0	3	111	1_	342	3
579		5	max		3_	428.464	1	136.114	1_	0	1	002	15	003	15
580				-221.1	2	-377.621		6.459	15	0	3_	039	1	143	3
581		6	max		3_	427.223	1_	136.114	1	0	1	.032	1_	.057	3
582				-220.384	2	-378.551	3	6.459	15	0	3	.002	15	297	2
583		7		381.401	3_	425.983	_1_	136.114	1	0	1	.104	1	.257	3
584				-219.668	2	-379.481	3	6.459	15	0	3	.005	15	<u>516</u>	1
585		8		381.938	3_	424.742	1	136.114	1	0	1	.176	1_	.457	3
586				-218.951	2	-380.412	3	6.459	15	0	3	.008	15	741	1
587		9		397.816	3	37.192	2	195.978	1	0	3	005	15	.534	3
588				-132.046	2	.379	15	9.306	15	0	9	102	1	845	1
589		10	max		3_	35.951	2	195.978	1	0	3	.001	1_	.52	3
590				-131.33	2	.005	15	9.306	15	0	9	0	15	855	1
591		11	max		3	34.71	2	195.978	1	0	3	.105	1	.506	3
592				-130.614	2	-1.501	4	9.306	15	0	9	.005	15	868	2
593		12	max	414.711	3	247.122	3	132.914	1	0	3	008	15	.44	3
594			min	-77.978	10	-480.418	2	6.301	15	0	2	174	1	77	2
595		13	max		3	246.191	3	132.914	1	0	3	005	15	.31	3
596			min	-77.381	10	-481.658	2	6.301	15	0	2	104	1	519	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	415.785	3	245.261	3	132.914	1	0	3	002	15	.181	3
598			min	-76.784	10	-482.899	2	6.301	15	0	2	034	1	273	1
599		15	max	416.322	3	244.33	3	132.914	1	0	3	.037	1	.051	3
600			min	-76.188	10	-484.139	2	6.301	15	0	2	.002	15	027	1
601		16	max	416.86	3	243.4	3	132.914	1	0	3	.107	1	.25	2
602			min	-75.591	10	-485.38	2	6.301	15	0	2	.005	15	077	3
603		17	max	417.397	3	242.47	3	132.914	1	0	3	.177	1	.506	2
604			min	-74.994	10	-486.62	2	6.301	15	0	2	.008	15	206	3
605		18	max	-9.711	15	498.61	2	146.692	1	0	2	.251	1	.255	2
606			min	-201.333	1	-207.073	3	6.969	15	0	3	.012	15	102	3
607		19	max	-9.495	15	497.37	2	146.692	1	0	2	.329	1	.008	3
608			min	-200.617	1	-208.004	3	6.969	15	0	3	.016	15	009	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1	max	.001	1	.085	2	.007	3 7.042e-3	2	NC	_1_	NC	1
2			min	0	15	009	3	003	2 -1.04e-3	3	NC	1_	NC	1
3		2	max	.001	1	.32	3	.06	1 8.194e-3	2	NC	5	NC	2
4			min	0	15	142	1	.003	15 -1.114e-3	3	800.403	3	4567.426	
_ 5		3	max	.001	1	.587	3	.145	1 9.346e-3	2	NC	5	NC	3
6			min	0	15	321	1	.007	15 -1.188e-3	3	442.292	3	1846.294	1
7		4	max	0	1	.75	3	.219	1 1.05e-2	2	NC	5_	NC	3
8			min	0	15	424	1	.011	15 -1.262e-3	3	347.827	3	1214.373	1
9		5	max	0	1	.787	3	.258	1 1.165e-2	2	NC	15	NC	3
10			min	0	15	435	1	.012	15 -1.337e-3	3	331.463	3	1030.049	1
11		6	max	0	1	.703	3	.251	1 1.28e-2	2	NC	5	NC	5
12			min	0	15	357	1	.012	15 -1.411e-3	3	370.736	3	1062.718	1
13		7	max	0	1	.522	3	.198	1 1.395e-2	2	NC	5	NC	3
14			min	0	15	21	1	.01	15 -1.485e-3	3	497.025	3	1347.425	1
15		8	max	0	1	.292	3	.117	1 1.51e-2	2	NC	5	NC	3
16			min	0	15	029	1	.006	15 -1.559e-3	3	875.862	3	2306.815	1
17		9	max	0	1	.142	2	.035	1 1.626e-2	2	NC	4	NC	2
18			min	0	15	.004	15	004	10 -1.633e-3	3	2835.369	3	7993.933	1
19		10	max	0	1	.208	2	.021	3 1.741e-2	2	NC	3	NC	1
20			min	0	1	01	3	014	2 -1.708e-3	3	2145.777	2	NC	1
21		11	max	0	15	.142	2	.035	1 1.626e-2	2	NC	4	NC	2
22			min	0	1	.004	15	004	10 -1.633e-3	3	2835.369	3	7993.933	1
23		12	max	0	15	.292	3	.117	1 1.51e-2	2	NC	5	NC	3
24			min	0	1	029	1	.006	15 -1.559e-3	3	875.862	3	2306.815	1
25		13	max	0	15	.522	3	.198	1 1.395e-2	2	NC	5	NC	3
26			min	0	1	21	1	.01	15 -1.485e-3	3	497.025	3	1347.425	1
27		14	max	0	15	.703	3	.251	1 1.28e-2	2	NC	5	NC	5
28			min	0	1	357	1	.012	15 -1.411e-3	3	370.736	3	1062.718	1
29		15	max	0	15	.787	3	.258	1 1.165e-2	2	NC	15	NC	3
30			min	0	1	435	1	.012	15 -1.337e-3	3	331.463	3	1030.049	1
31		16	max	0	15	.75	3	.219	1 1.05e-2	2	NC	5	NC	3
32			min	0	1	424	1	.011	15 -1.262e-3	3	347.827	3	1214.373	1
33		17	max	0	15	.587	3	.145	1 9.346e-3	2	NC	5	NC	3
34			min	001	1	321	1	.007	15 -1.188e-3	3	442.292	3	1846.294	1
35		18	max	0	15	.32	3	.06	1 8.194e-3	2	NC	5	NC	2
36			min	001	1	142	1	.003	15 -1.114e-3	3	800.403	3	4567.426	1
37		19	max	0	15	.085	2	.007	3 7.042e-3	2	NC	1	NC	1
38			min	001	1	009	3	003	2 -1.04e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.16	3	.006	3 4.253e-3	1	NC	1	NC	1
40			min	0	15	278	1	003	2 -2.822e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC			
41		2	max	0	1	.465	3	.042	1 5.136e-3 1	NC 5		2
42			min	0	15	608	1	.002	15 -3.464e-3 3	799.362 1	6580.377	1
43		3	max	0	1	.72	3	.118	1 6.02e-3 1	NC 1		3
44			min	0	15	89	1	.006	15 -4.106e-3 3	431.603 1		1
45		4	max	0	1	.893	3	.19	1 6.903e-3 1	NC 1		3
46			min	0	15	-1.089	1	.009	15 -4.747e-3 3	325.634 1	1406.46	1
47		5	max	0	1	.968	3	.231	1 7.787e-3 1	9108.323 1	5 NC	3
48			min	0	15	-1.189	1	.011	15 -5.389e-3 3	289.9 1	1153.157	1
49		6	max	0	1	.944	3	.229	1 8.67e-3 1	9151.665 1	5 NC	3
50			min	0	15	-1.19	1	.011	15 -6.031e-3 3	289.645 1	1164.459	1
51		7	max	0	1	.84	3	.184	1 9.554e-3 1	NC 1	5 NC	3
52			min	0	15	-1.108	1	.009	15 -6.673e-3 3	318.127 1	1454.246	1
53		8	max	0	1	.691	3	.11	1 1.044e-2 1	NC 1	5 NC	3
54			min	0	15	978	1	.006	15 -7.314e-3 3	377.508 1	2459.255	1
55		9	max	0	1	.549	3	.034	1 1.132e-2 1	NC 1	5 NC	2
56			min	0	15	848	1	003	10 -7.956e-3 3	463.093 1	8369.642	1
57		10	max	0	1	.483	3	.019	3 1.22e-2 1	NC 5	NC NC	1
58			min	0	1	787	1	013	2 -8.598e-3 3	518.574 1	NC	1
59		11	max	0	15	.549	3	.034	1 1.132e-2 1	NC 1	5 NC	2
60			min	0	1	848	1	003	10 -7.956e-3 3	463.093 1	8369.642	1
61		12	max	0	15	.691	3	.11	1 1.044e-2 1	NC 1		3
62			min	0	1	978	1	.006	15 -7.314e-3 3	377.508 1		1
63		13	max	0	15	.84	3	.184	1 9.554e-3 1	NC 1	5 NC	3
64			min	0	1	-1.108	1	.009	15 -6.673e-3 3	318.127 1		
65		14	max	0	15	.944	3	.229	1 8.67e-3 1	9151.665 1		3
66			min	0	1	-1.19	1	.011	15 -6.031e-3 3	289.645 1		
67		15	max	0	15	.968	3	.231	1 7.787e-3 1	9108.323 1		3
68		1.0	min	0	1	-1.189	1	.011	15 -5.389e-3 3	289.9		1
69		16	max	0	15	.893	3	.19	1 6.903e-3 1	NC 1		3
70		1.0	min	0	1	-1.089	1	.009	15 -4.747e-3 3	325.634 1		1
71		17	max	0	15	.72	3	.118	1 6.02e-3 1	NC 1		3
72			min	0	1	89	1	.006	15 -4.106e-3 3	431.603 1		1
73		18	max	0	15	.465	3	.042	1 5.136e-3 1	NC 5		2
74		10	min	0	1	608	1	.002	15 -3.464e-3 3	799.362 1		1
75		19	max	0	15	.16	3	.002	3 4.253e-3 1	NC 1		1
76		13	min	0	1	278	1	003	2 -2.822e-3 3	NC 1		1
77	M15	1	max	0	15	.163	3	.006	3 2.43e-3 3	NC 1		1
78	IVITO		min	0	1	278	1	002	2 -4.383e-3 1	NC 1		1
79		2	max	0	15	.35	3	.042	1 2.989e-3 3	NC 5		2
80		 ^	min	0	1	675	2	.002	15 -5.3e-3 1	662.902		
81		3	max	0	15	.511	3	.118	1 3.547e-3 3		5 NC	3
82		-	min	0	1	-1.011	2	.006	15 -6.218e-3 1		2 2270.622	
83		4	max	0	15	.627	3	.19	1 4.105e-3 3	NC 1		3
84		14	min	0	1	-1.243	2	.009	15 -7.135e-3 1	273.145 2		
85		5		0	15	.688	3	.231		9122.243 1		3
		1 3	max	0	1	-1.35	2	.011	1 4.663e-3 3 15 -8.053e-3 1			
86		6	min									
87		6	max	0	15	.695	3	.229	1 5.221e-3 3	9168.541 1		3
88		7	min	0	1	-1.333	2	.011	15 -8.97e-3 1	250.074 2		
89		7	max	0	15	.657	3	.184	1 5.78e-3 3	NC 1		3
90		0	min	0	1	-1.212 F01	2	.009	15 -9.888e-3 1			
91		8	max	0	15	.591	3	.11	1 6.338e-3 3	NC 1		3
92			min	0	1	<u>-1.033</u>	2	.006	15 -1.081e-2 1	349.047 2		
93		9	max	0	15	.524	3	.034	1 6.896e-3 3	NC 1		2
94		4.0	min	0	1	86	2	003	10 -1.172e-2 1	452.717 2		
95		10	max	0	1	.492	3	.017	3 7.454e-3 3	NC 5		1
96			min	0	1	78 <u>5</u>	1	012	2 -1.264e-2 1	520.268 1		1
97		11	max	0	1	.524	3	.034	1 6.896e-3 3	NC 1	5 NC	2

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
98			min	0	15	86	2	003	10	-1.172e-2	1_	452.717	2	8283.422	1
99		12	max	0	1	.591	3	.11	1_	6.338e-3	3	NC	<u>15</u>	NC	3
100			min	0	15	-1.033	2	.006	15	-1.081e-2	1	349.047	2	2451.215	1
101		13	max	0	1	.657	3	.184	1	5.78e-3	3	NC	15	NC	3
102			min	0	15	-1.212	2	.009	15		1	282.199	2	1451.219	
103		14	max	0	1	.695	3	.229	1	5.221e-3	3	9168.541	15	NC	3
104			min	0	15	-1.333	2	.011	15	-8.97e-3	1	250.074	2	1162.421	1
105		15	max	0	1	.688	3	.231	1	4.663e-3	3	9122.243	15	NC	3
106			min	0	15	-1.35	2	.011	15	-8.053e-3	1	245.953	2	1151.157	1
107		16	max	0	1	.627	3	.19	1	4.105e-3	3	NC	15	NC	3
108			min	0	15	-1.243	2	.009	15	-7.135e-3	1	273.145	2	1403.704	1
109		17	max	0	1	.511	3	.118	1	3.547e-3	3	NC	15	NC	3
110			min	0	15	-1.011	2	.006	15	-6.218e-3	1	359.416	2	2270.622	1
111		18	max	0	1	.35	3	.042	1	2.989e-3	3	NC	5	NC	2
112			min	0	15	675	2	.002	15	-5.3e-3	1	662.902	2	6550.914	1
113		19	max	0	1	.163	3	.006	3	2.43e-3	3	NC	1	NC	1
114			min	0	15	278	1	002	2	-4.383e-3	1	NC	1	NC	1
115	M16	1	max	0	15	.082	1	.005	3	4.211e-3	3	NC	1	NC	1
116			min	002	1	052	3	002	2	-6.286e-3	1	NC	1	NC	1
117		2	max	0	15	.065	3	.059	1	5.031e-3	3	NC	5	NC	2
118			min	001	1	221	2	.003	15	-7.261e-3	1	887.525	2	4600.437	1
119		3	max	0	15	.158	3	.144	1	5.852e-3	3	NC	5	NC	3
120			min	001	1	459	2	.007	15		1	493.055	2	1853.196	
121		4	max	0	15	.208	3	.219	1	6.672e-3	3	NC	5	NC	3
122			min	001	1	598	2	.011		-9.212e-3	1	391.614	2	1216.721	1
123		5	max	0	15	.21	3	.258	1	7.492e-3	3	NC	5	NC	3
124		+ -	min	0	1	619	2	.012	15		1	379.756	2	1030.62	1
125		6	max	0	15	.165	3	.25	1	8.312e-3	3	NC	5	NC	3
126		1	min	0	1	526	2	.012	15	-1.116e-2	1	438.77	2	1061.72	1
127		7	max	0	15	.083	3	.198	1	9.133e-3	3	NC	5	NC	3
128		- 1	min	0	1	342	2	.01	15	-1.214e-2	1	631.309	2	1343.029	1
129		8	max	0	15	0	15	.117	1	9.953e-3	3	NC	4	NC	3
130		-0	min	0	1	115	2	.006	15	-1.311e-2	1	1384.576	2	2286.538	
131		9	max	0	15	.113	1	.036	1	1.077e-2	3	NC	2	NC	2
132		9		0	1	106	3	002	10		1	4929.481	3	7693.914	
133		10	min	0	1	.199	1	.015	3	1.159e-2	3	NC	4	NC	1
134		10	max		1	145	3	011	2	-1.507e-2	-	2259.111	1	NC NC	
		11		0	1				1		1	NC		NC NC	1
135		111	max	0		.113	1	.036		1.077e-2	<u>3</u>	4929.481	2		2
136		40	min	0	15	106	3	002	10	-1.409e-2	_		3	7693.914	
137		12	max	0	1	0	15	.117	1	9.953e-3	3	NC	<u>4</u> 2	NC 2286.538	3
138		10	min	0	15	115		.006		-1.311e-2		1384.576			
139		13	max	0	1	.083	3	.198	1	9.133e-3	3	NC	5	NC	3
140		4.4	min	0	15	342	2	.01		-1.214e-2	1_	631.309	2	1343.029	
141		14	max	0	1	.165	3	.25	1	8.312e-3	3	NC	5	NC	3
142		4-	min	0	15	526	2	.012		-1.116e-2	1_	438.77	2	1061.72	1
143		15	max	0	1	.21	3	.258	1	7.492e-3	3	NC	5	NC	3
144			min	0	15	<u>619</u>	2	.012	15	-1.019e-2	1_	379.756	2_	1030.62	1
145		16	max	.001	1	.208	3	.219	1_	6.672e-3	3	NC	5	NC TO 1	3
146		1	min	0	15	598	2	.011	15	-9.212e-3	1_	391.614	2	1216.721	1
147		17	max	.001	1	.158	3	.144	1	5.852e-3	3_	NC	_5_	NC	3
148			min	0	15	459	2	.007	15	-8.237e-3	1_	493.055	2	1853.196	
149		18	max	.001	1	.065	3	.059	1	5.031e-3	3	NC	5	NC	2
150			min	0	15	221	2	.003	15	-7.261e-3	1_	887.525	2	4600.437	1
151		19	max	.002	1	.082	1	.005	3	4.211e-3	3	NC	1	NC	1
152			min	0	15	052	3	002	2	-6.286e-3	1_	NC	1_	NC	1
153	M2	1	max	.006	1	.005	2	.011	1	-1.442e-5	15	NC	_1_	NC	2
154			min	006	3	01	3	0	15	-3.042e-4	1	NC	1	6633.9	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r.			LC	, ,	
155		2	max	.006	1	.005	2	.01	1 -1.359e-		NC	_1_	NC	2
156			min	006	3	01	3	0	15 -2.866e-4	1 1	NC	1	7234.893	1
157		3	max	.005	1	.004	2	.009	1 -1.276e-	5 15	NC	1	NC	2
158			min	006	3	009	3	0	15 -2.69e-4	. 1	NC	1	7951.085	1
159		4	max	.005	1	.003	2	.008	1 -1.193e-		NC	1_	NC	2
160			min	005	3	009	3	0	15 -2.515e-4	1 1	NC	1	8812.998	1
161		5	max	.005	1	.002	2	.007	1 -1.109e-	15	NC	1	NC	2
162			min	005	3	009	3	0	15 -2.339e-4	1 1	NC	1	9862.285	1
163		6	max	.004	1	.001	2	.006	1 -1.026e-	5 15	NC	1	NC	1
164			min	005	3	009	3	0	15 -2.164e-4		NC	1	NC	1
165		7	max	.004	1	0	2	.005	1 -9.429e-6		NC	1	NC	1
166			min	004	3	008	3	0	15 -1.988e-4		NC	1	NC	1
167		8	max	.004	1	0	2	.005	1 -8.597e-6		NC	1	NC	1
168			min	004	3	008	3	0	15 -1.813e-4		NC	1	NC	1
169		9	max	.003	1	0	2	.004	1 -7.765e-6		NC	1	NC	1
170			min	004	3	007	3	0	15 -1.637e-4		NC	1	NC	1
171		10	max	.003	1	001	15	.003	1 -6.933e-6		NC	1	NC	1
172		10	min	003	3	007	3	0	15 -1.462e-4		NC	1	NC	1
173		11	max	.003	1	001	15	.003	1 -6.101e-6		NC	1	NC	1
174				003	3	006	3	0	15 -1.286e-4		NC	1	NC	1
175		12	min	.002	1	006 001	15	.002	1 -5.269e-6		NC NC	1	NC NC	1
		12	max	003	3		3							
176		40	min			006		0	15 -1.11e-4		NC NC	1_	NC NC	1
177		13	max	.002	1	001	15	.002	1 -4.437e-6		NC	1_	NC NC	1
178		4.4	min	002	3	005	3	0	15 -9.349e-5		NC NC	1_	NC NC	1
179		14	max	.002	1	001	15	.001	1 -3.605e-6		NC	1	NC NC	1
180			min	002	3	005	3	0	15 -7.593e-		NC	1_	NC	1
181		15	max	.001	1	0	15	0	1 -2.773e-6		NC	_1_	NC	1
182			min	001	3	004	4	0	15 -5.838e-8		NC	<u>1</u>	NC	1
183		16	max	0	1	0	15	0	1 -1.941e-6		NC	1_	NC	1
184			min	001	3	003	4	0	15 -4.082e-		NC	1_	NC	1
185		17	max	0	1	0	15	0	1 -1.109e-6		NC	_1_	NC	1
186			min	0	3	002	4	0	15 -2.327e-		NC	1_	NC	1
187		18	max	0	1	0	15	0	1 -2.766e-7		NC	<u>1</u>	NC	1
188			min	0	3	001	4	0	15 -5.713e-6	3 1	NC	1	NC	1
189		19	max	0	1	0	1	0	1 1.184e-5	1	NC	1_	NC	1
190			min	0	1	0	1	0	1 5.25e-7	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1 -2.221e-7	7 12	NC	1	NC	1
192			min	0	1	0	1	0	1 -4.723e-6	3 1	NC	1	NC	1
193		2	max	0	3	0	15	0	1 2.415e-5	5 1	NC	1	NC	1
194			min	0	2	002	4	0	12 1.145e-6		NC	1	NC	1
195		3	max	0	3	0	15	0	1 5.302e-5		NC	1	NC	1
196			min	0	2	004	4	0	12 2.511e-6		NC	1	NC	1
197		4	max	0	3	001	15	0	1 8.189e-5		NC	1	NC	1
198			min	0	2	006	4	0	15 3.878e-6		NC	1	NC	1
199		5	max	.001	3	002	15	0	1 1.108e-4		NC	1	NC	1
200			min	0	2	008	4	0	15 5.245e-6		NC	1	NC	1
201		6	max	.002	3	002	15	0	1 1.396e-4		NC	1	NC	1
202			min	001	2	01	4	0	15 6.612e-6		9624.063	4	NC	1
203		7	max	.002	3	003	15	0	1 1.685e-4		NC	1	NC	1
204			min	001	2	003 011	4	0	15 7.979e-6			4	NC	1
205		8	max	.002	3	003	15	.001	1 1.974e-4		NC	2	NC NC	1
		0												
206		0	min	002	2	012	4	0	15 9.346e-6		7467.797	4	NC NC	1
207		9	max	.002	3	003	15	.002	1 2.262e-4		NC	3	NC NC	1
208		40	min	002	2	013	4	0	15 1.071e-5		6984.719	4	NC NC	1
209		10	max	.003	3	003	15	.002	1 2.551e-4		NC CZEZ 04	3	NC NC	1
210		4.	min	002	2	<u>014</u>	4	0	15 1.208e-5		6757.21	4	NC	1
211		11	max	.003	3	003	15	.003	1 2.84e-4	1_	NC	3	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio	LC		
212			min	002	2	014	4	0	15	1.345e-5	15	6751.943	4	NC	1
213		12	max	.003	3	003	15	.003	1	3.129e-4	1_	NC	3	NC	1
214			min	003	2	013	4	0	15	1.481e-5	15	6973.025	4	NC	1
215		13	max	.004	3	003	15	.004	1	3.417e-4	1	NC	2	NC	1
216			min	003	2	013	4	0	15	1.618e-5	15	7465.24	4	NC	1
217		14	max	.004	3	003	15	.005	1	3.706e-4	1	NC	1	NC	1
218			min	003	2	011	4	0	15	1.755e-5	15	8336.968	4	NC	1
219		15	max	.004	3	002	15	.006	1	3.995e-4	1	NC	1	NC	1
220			min	003	2	01	4	0	15	1.891e-5	15	9827.343	4	NC	1
221		16	max	.005	3	002	15	.006	1	4.283e-4	1	NC	1	NC	1
222			min	003	2	008	4	0	15	2.028e-5	15	NC	1	NC	1
223		17	max	.005	3	001	15	.008	1	4.572e-4	1	NC	1_	NC	1
224			min	004	2	006	1	0	15	2.165e-5	15	NC	1_	NC	1
225		18	max	.005	3	0	15	.009	1	4.861e-4	1	NC	1	NC	1
226			min	004	2	004	1	0	15	2.301e-5	15	NC	1	NC	1
227		19	max	.005	3	0	10	.01	1	5.15e-4	1	NC	1	NC	2
228			min	004	2	003	1	0	15	2.438e-5	15	NC	1	9013.33	1
229	M4	1	max	.003	1	.004	2	0	15	1.172e-4	1	NC	1	NC	3
230			min	0	3	006	3	01	1	5.562e-6	15	NC	1	2478.23	1
231		2	max	.002	1	.004	2	0	15	1.172e-4	1	NC	1	NC	3
232			min	0	3	005	3	009	1	5.562e-6	15	NC	1	2691.229	1
233		3	max	.002	1	.003	2	0	15	1.172e-4	1	NC	1	NC	3
234			min	0	3	005	3	008	1	5.562e-6	15	NC	1	2944.955	1
235		4	max	.002	1	.003	2	0	15	1.172e-4	1	NC	1	NC	3
236			min	0	3	005	3	008	1	5.562e-6	15	NC	1	3249.947	1
237		5	max	.002	1	.003	2	0	15	1.172e-4	1	NC	1	NC	3
238			min	0	3	004	3	007	1	5.562e-6	15	NC	1	3620.533	
239		6	max	.002	1	.003	2	0	15	1.172e-4	1	NC	1	NC	3
240			min	0	3	004	3	006	1	5.562e-6	15	NC	1	4076.58	1
241		7	max	.002	1	.003	2	0	15	1.172e-4	1	NC	1	NC	2
242			min	0	3	004	3	005	1	5.562e-6	15	NC	1	4646.29	1
243		8	max	.002	1	.002	2	0	15	1.172e-4	1	NC	1	NC	2
244			min	0	3	003	3	005	1	5.562e-6	15	NC	1	5370.791	1
245		9	max	.001	1	.002	2	0	15	1.172e-4	1	NC	1	NC	2
246			min	0	3	003	3	004	1	5.562e-6	15	NC	1	6311.988	
247		10	max	.001	1	.002	2	0	15	1.172e-4	1	NC	1	NC	2
248			min	0	3	003	3	003	1	5.562e-6	15	NC	1	7566.64	1
249		11	max	.001	1	.002	2	0	15	1.172e-4	1	NC	1	NC	2
250			min	0	3	002	3	003	1	5.562e-6	15	NC	1	9293	1
251		12	max	0	1	.001	2	0	15	1.172e-4	1	NC	1	NC	1
252			min	0	3	002	3	002		5.562e-6	15	NC	1	NC	1
253		13	max	0	1	.001	2	0		1.172e-4	1	NC	1	NC	1
254			min	0	3	002	3	002	1	5.562e-6	15	NC	1	NC	1
255		14	max	0	1	.001	2	0	15	1.172e-4	1	NC	1	NC	1
256			min	0	3	002	3	001	1	5.562e-6	15	NC	1	NC	1
257		15	max	0	1	0	2	0	15	1.172e-4	1	NC	1	NC	1
258		1	min	0	3	001	3	0	1	5.562e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	1.172e-4	1	NC	1	NC	1
260		1.0	min	0	3	0	3	0	1	5.562e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.172e-4	1	NC	1	NC	1
262			min	0	3	0	3	0	1	5.562e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.172e-4	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	5.562e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.172e-4	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	5.562e-6	15	NC NC	1	NC	1
267	M6	1	max	.019	1	.022	2	0	1	0	1	NC	3	NC	1
268	IVIO		min	021	3	031	3	0	1	0	1	3117.947	2	NC	1
200			1111111	UZ I	J	031	J	U		U		3117.347		INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
269		2	max	.018	1	.02	2	0	1	0	_1_	NC	3	NC	1
270			min	02	3	03	3	0	1	0	1_	3437.569	2	NC	1
271		3	max	.017	1	.018	2	0	1	0	1_	NC	3	NC	1
272			min	019	3	028	3	0	1	0	1	3826.463	2	NC	1
273		4	max	.016	1	.016	2	0	1	0	1_	NC	3	NC	1
274			min	018	3	026	3	0	1	0	1	4305.222	2	NC	1
275		5	max	.015	1	.014	2	0	1	0	1	NC	1	NC	1
276			min	017	3	025	3	0	1	0	1	4902.993	2	NC	1
277		6	max	.014	1	.012	2	0	1	0	1	NC	1	NC	1
278			min	015	3	023	3	0	1	0	1	5662.118	2	NC	1
279		7	max	.013	1	.011	2	0	1	0	1	NC	1	NC	1
280			min	014	3	021	3	0	1	0	1	6646.065	2	NC	1
281		8	max	.012	1	.009	2	0	1	0	1	NC	1	NC	1
282			min	013	3	02	3	0	1	0	1	7953.567	2	NC	1
283		9	max	.011	1	.007	2	0	1	0	1	NC	1	NC	1
284			min	012	3	018	3	0	1	0	1	9745.335	2	NC	1
285		10	max	.01	1	.006	2	0	1	0	1	NC	1	NC	1
286			min	011	3	016	3	0	1	0	1	NC	1	NC	1
287		11	max	.009	1	.004	2	0	1	0	1	NC	1	NC	1
288			min	01	3	014	3	0	1	0	1	NC	1	NC	1
289		12	max	.008	1	.003	2	0	1	0	1	NC	1	NC	1
290			min	008	3	013	3	0	1	0	1	NC	1	NC	1
291		13	max	.006	1	.002	2	0	1	0	1	NC	1	NC	1
292			min	007	3	011	3	0	1	0	1	NC	1	NC	1
293		14	max	.005	1	.001	2	0	1	0	1	NC	1	NC	1
294			min	006	3	009	3	0	1	0	1	NC	1	NC	1
295		15	max	.004	1	0	2	0	1	0	1	NC	1	NC	1
296			min	005	3	007	3	0	1	0	1	NC	1	NC	1
297		16	max	.003	1	0	2	0	1	0	1	NC	1	NC	1
298			min	004	3	005	3	0	1	0	1	NC	1	NC	1
299		17	max	.002	1	0	2	0	1	0	1	NC	1	NC	1
300			min	002	3	004	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	1	0	2	0	1	0	1	NC	1	NC	1
302			min	001	3	002	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	0	3	0	15	0	1	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	0	15	0	1	0	1	NC	1	NC	1
310			min	002	2	005	3	0	1	0	1	NC	1	NC	1
311		4	max	.003	3	001	15	0	1	0	1	NC	1	NC	1
312			min	003	2	007	3	0	1	0	1	NC	1	NC	1
313		5	max	.004	3	002	15	0	1	0	1	NC	1	NC	1
314			min	004	2	009	3	0	1	0	1	NC	1	NC	1
315		6	max	.005	3	002	15	0	1	0	1	NC	1	NC	1
316			min	005	2	01	3	0	1	0	1	9862.229	4	NC	1
317		7	max	.006	3	003	15	0	1	0	1	NC	1	NC	1
318			min	006	2	012	3	0	1	0	1	8479.061	4	NC	1
319		8	max	.007	3	003	15	0	1	0	1	NC	1	NC	1
320			min	006	2	013	3	0	1	0	1	7626.162	4	NC	1
321		9	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
322			min	007	2	013	3	0	1	0	1	7123.51	4	NC	1
323		10	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
324			min	008	2	014	4	0	1	0	1	6883.894	4	NC	1
325		11	max	.009	3	003	15	0	1	0	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

326		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
328	326			min		2			0	1		1	6872.129	4	NC	1
329			12	max					0		0	1		1_		1
330										-		•		4		
331			13							-	_					_
333			1.4									_				_
333			14													
334			45							-						
336			15													-
336			4.0							-		•				
338			16													-
18			17									•		_		-
339			17													_
3440			10									•				
341			10													
342			10									_				_
343 M8			13													
344		M8	1			_				-						
345		IVIO														1
346			2							-		•		1		1
347						-										-
348			3							1		1		1		1
349										1		1		1		1
S50			4		.005	1			0	1	0	1		1		1
SS1						3			0	1	0	1		1		1
353			5		.005	1			0	1	0	1	NC	1	NC	1
354	352			min	0	3	014	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.005	1	.011	2	0	1	0	1	NC	1	NC	1
356	354			min	0	3	013	3	0	1	0	1	NC	1	NC	1
357			7		.004	-			0	1		1_		1_		1
358				min								1		1_		-
359			8	max					0	1	0	1		1_		1
360				min					0	-		•		1_		1
361			9													
362											_	_				
363 11 max .003 1 .007 2 0 1 0 1 NC 1 NC 1 364 min 0 3 008 3 0 1 0 1 NC 1 NC 1 365 12 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 366 min 0 3 007 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1			10													_
364 min 0 3 008 3 0 1 0 1 NC 1 NC 1 365 12 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 366 min 0 3 007 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 006 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 005 3 0 1 0 1						_				-						
365 12 max .002 1 .006 2 0 1 0 1 NC 1 NC 1 366 min 0 3 007 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 006 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 005 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .004 2 0 1 0 1 NC 1			11											1_		1
366 min 0 3 007 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 006 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 005 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 004 3 0 1 0 1			40							-				1_		1
367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 006 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 005 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 004 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .003 2 0 1 0 <td>365</td> <td></td> <td>12</td> <td>max</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	365		12	max				2								
368 min 0 3 006 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 005 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 004 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1			40													_
369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3005 3 0 1 0 1 NC 1 NC 1 NC 1 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 1 NC 1 372 min 0 3004 3 0 1 0 1 NC 1 NC 1 NC 1 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1 NC 1 374 min 0 3003 3 0 1 0 1 NC 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 NC 1 NC 1 NC 1 378 min 0 3 0 3 0 3 0 1 NC 1 NC 1 NC 1 379 19 max 0 1 0 1 NC 1 NC 1 NC 1 380 min 0 1 0 1 NC 1 NC 1 NC <td></td> <td></td> <td>13</td> <td></td> <td>_</td>			13													_
370 min 0 3 005 3 0 1 0 1 NC 1 NC 1 371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 004 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 NC 1			11							-		•		•		
371 15 max .001 1 .004 2 0 1 0 1 NC 1 NC 1 372 min 0 3 004 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC			14							-						_
372 min 0 3 004 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC			15									_		_		_
373 16 max .001 1 .003 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC <td></td> <td></td> <td>13</td> <td></td>			13													
374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			16													
375 17 max 0 1 .002 2 0 1 0 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 3.042e-4 1 NC 1 NC 2			10													
376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 3.042e-4 1 NC 1 NC 2			17							-						•
377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 3.042e-4 1 NC 1 NC 2			11/			-										-
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 3.042e-4 1 NC 1 NC 2			18									_		_		
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 3.042e-4 1 NC 1 NC 2			10													
380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 3.042e-4 1 NC 1 NC 2			19							-		•				
381 M10 1 max .006 1 .005 2 0 15 3.042e-4 1 NC 1 NC 2			'		-	_								1		_
		M10	1			1				15		1		1		
	382			min	006	3	01	3	011		1.442e-5	15	NC	1	6633.9	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.006	1	.005	2	0	15	2.866e-4	<u>1</u>	NC	_1_	NC	2
384			min	006	3	01	3	01	1	1.359e-5	15	NC	1	7234.893	1
385		3	max	.005	1	.004	2	0	15	2.69e-4	1	NC	1	NC	2
386			min	006	3	009	3	009	1	1.276e-5	15	NC	1	7951.085	1
387		4	max	.005	1	.003	2	0	15	2.515e-4	1_	NC	1_	NC	2
388			min	005	3	009	3	008	1	1.193e-5	15	NC	1	8812.998	1
389		5	max	.005	1	.002	2	0	15	2.339e-4	1	NC	1	NC	2
390			min	005	3	009	3	007	1	1.109e-5	15	NC	1	9862.285	1
391		6	max	.004	1	.001	2	0	15	2.164e-4	1_	NC	1	NC	1
392			min	005	3	009	3	006	1	1.026e-5	15	NC	1	NC	1
393		7	max	.004	1	0	2	0	15	1.988e-4	1	NC	1	NC	1
394			min	004	3	008	3	005	1	9.429e-6	15	NC	1	NC	1
395		8	max	.004	1	0	2	0	15	1.813e-4	1_	NC	1	NC	1
396			min	004	3	008	3	005	1	8.597e-6	15	NC	1	NC	1
397		9	max	.003	1	0	2	0	15	1.637e-4	1	NC	1	NC	1
398			min	004	3	007	3	004	1	7.765e-6	15	NC	1	NC	1
399		10	max	.003	1	001	15	0	15	1.462e-4	1	NC	1	NC	1
400			min	003	3	007	3	003	1	6.933e-6	15	NC	1	NC	1
401		11	max	.003	1	001	15	0	15	1.286e-4	1	NC	1	NC	1
402			min	003	3	006	3	003	1	6.101e-6	15	NC	1	NC	1
403		12	max	.002	1	001	15	0	15	1.11e-4	1	NC	1	NC	1
404			min	003	3	006	3	002	1	5.269e-6	15	NC	1	NC	1
405		13	max	.002	1	001	15	0	15	9.349e-5	1	NC	1	NC	1
406			min	002	3	005	3	002	1	4.437e-6	15	NC	1	NC	1
407		14	max	.002	1	001	15	0	15	7.593e-5	1	NC	1	NC	1
408			min	002	3	005	3	001	1	3.605e-6	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	5.838e-5	1	NC	1	NC	1
410			min	001	3	004	4	0	1	2.773e-6	15	NC	1	NC	1
411		16	max	0	1	0	15	0	15	4.082e-5	1	NC	1	NC	1
412			min	001	3	003	4	0	1	1.941e-6	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	2.327e-5	1	NC	1	NC	1
414			min	0	3	002	4	0	1	1.109e-6	15	NC	1	NC	1
415		18	max	0	1	0	15	0	15	5.713e-6	1	NC	1	NC	1
416			min	0	3	001	4	0	1	2.766e-7	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-5.25e-7	12	NC	1	NC	1
418			min	0	1	0	1	0	1	-1.184e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	4.723e-6	1	NC	1	NC	1
420	.,,,,,		min	0	1	0	1	0	1	2.221e-7	12	NC	1	NC	1
421		2	max	0	3	0	15	0	12	-1.145e-6	15	NC	1	NC	1
422		_	min	0	2	002	4	0	1	-2.415e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0		-2.511e-6		NC	1	NC	1
424			min	0	2	004	4	0	1	-5.302e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15			NC	1	NC	1
426			min	0	2	006	4	0	1	-8.189e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0	15		•	NC	1	NC	1
428			min	0	2	008	4	0	1	-1.108e-4	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	15			NC	1	NC	1
430			min	001	2	01	4	0	1	-1.396e-4	1	9624.063	4	NC	1
431		7	max	.002	3	003	15	0	15		15	NC	1	NC	1
432			min	001	2	011	4	0	1	-1.685e-4	1	8289.99	4	NC	1
433		8	max	.002	3	003	15	0	15		15	NC	2	NC	1
434			min	002	2	012	4	001	1	-1.974e-4	1	7467.797	4	NC	1
435		9	max	.002	3	003	15	0	15		15	NC	3	NC	1
436		9	min	002	2	013	4	002	1	-2.262e-4	1	6984.719	4	NC	1
437		10	max	.002	3	013	15	<u>002</u> 0		-1.208e-5	15	NC	3	NC	1
438		10	min	002	2	003 014	4	002	1	-2.551e-4	1	6757.21	4	NC	1
439		11	max	.003	3	014	15	<u>002</u> 0		-1.345e-5	_	NC	3	NC	1
403		<u> </u>	πιαλ	.003	J	003	ΙÜ	U	10	-1.0 4 0 6- 0	ıυ	INC	<u> </u>	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	002	2	014	4	003	1	-2.84e-4	1_	6751.943	4	NC	1
441		12	max	.003	3	003	15	0	15		15	NC	3	NC	1
442			min	003	2	013	4	003	1	-3.129e-4	1_	6973.025	4	NC	1
443		13	max	.004	3	003	15	0	15		15	NC	2	NC	1
444			min	003	2	<u>013</u>	4	004	1_	-3.417e-4	1_	7465.24	4_	NC	1
445		14	max	.004	3	003	15	0	15		<u>15</u>	NC	1	NC NC	1
446		45	min	003	2	011	4	005	1	-3.706e-4	1_	8336.968	4	NC NC	1
447		15	max	.004	3	002	15	0	15		<u>15</u>	NC 0007.040	1_	NC	1
448		4.0	min	003	2	01	4	006	1	-3.995e-4	1_	9827.343	4	NC NC	1
449		16	max	.005	3	002 008	15	0 006	15	-2.028e-5	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450		17	min	003 .005	3		15	<u>006</u> 0	15	-4.283e-4 -2.165e-5	1_	NC NC	1	NC NC	1
451 452		17	max	005	2	001 006	1	008	1	-4.572e-4	<u>15</u> 1	NC NC	1	NC NC	1
452		18	max	.005	3	<u>006</u> 0	15	_ 008	15		15	NC NC	1	NC NC	1
454		10	min	004	2	004	1	009	1	-4.861e-4	1	NC	1	NC	1
455		19	max	.005	3	004 0	10	<u>009</u> 0	15		15	NC	1	NC	2
456		13	min	004	2	003	1	01	1	-5.15e-4	1	NC	1	9013.33	1
457	M12	1	max	.003	1	.003	2	.01	1	-5.562e-6	15	NC	1	NC	3
458	IVIIZ	•	min	0	3	006	3	0		-1.172e-4	1	NC	1	2478.23	1
459		2	max	.002	1	.004	2	.009	1	-5.562e-6	15	NC	1	NC	3
460			min	0	3	005	3	0	15		1	NC	1	2691.229	1
461		3	max	.002	1	.003	2	.008	1	-5.562e-6	15	NC	1	NC	3
462			min	0	3	005	3	0	15	-1.172e-4	1	NC	1	2944.955	1
463		4	max	.002	1	.003	2	.008	1	-5.562e-6	15	NC	1	NC	3
464			min	0	3	005	3	0	15	-1.172e-4	1	NC	1	3249.947	1
465		5	max	.002	1	.003	2	.007	1	-5.562e-6	15	NC	1	NC	3
466			min	0	3	004	3	0	15		1	NC	1	3620.533	1
467		6	max	.002	1	.003	2	.006	1	-5.562e-6	15	NC	1	NC	3
468			min	0	3	004	3	0	15	-1.172e-4	1	NC	1	4076.58	1
469		7	max	.002	1	.003	2	.005	1	-5.562e-6	<u>15</u>	NC	1_	NC	2
470			min	0	3	004	3	0	15		1_	NC	1	4646.29	1
471		8	max	.002	1	.002	2	.005	1	-5.562e-6	15	NC	_1_	NC	2
472			min	0	3	003	3	0	15	-1.172e-4	1_	NC	1_	5370.791	1
473		9	max	.001	1	.002	2	.004	1	-5.562e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	3	003	3	0	15	-1.172e-4	_1_	NC	_1_	6311.988	1
475		10	max	.001	1	.002	2	.003	1	-5.562e-6	<u>15</u>	NC	_1_	NC	2
476			min	0	3	003	3	0	15		_1_	NC	1_	7566.64	1
477		11	max	.001	1	.002	2	.003	1	-5.562e-6		NC	1_	NC	2
478		40	min	0	3	002	3	0	15		1_	NC	1_	9293	1
479		12	max	0	1	.001	2	.002	1	-5.562e-6	<u>15</u>	NC	1_	NC NC	1
480		40	min		3	002	3	0		-1.172e-4		NC NC	1	NC NC	1
481		13	max	0	3	.001	2	.002	1	-5.562e-6	15	NC NC	1	NC NC	1
482		1.1	min	0	1	002	2	0	15	-1.172e-4 -5.562e-6	1 =	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	3	.001	3	.001	1 15			NC NC	1	NC NC	1
484 485		15	min max	0	1	002 0	2	<u> </u>	1	-1.172e-4 -5.562e-6	1_	NC NC	1	NC NC	1
486		15	min	0	3	001	3	0		-1.172e-4	1	NC	1	NC	1
487		16	max	0	1	<u>001</u> 0	2	0	1	-5.562e-6		NC	1	NC	1
488		10	min	0	3	0	3	0		-1.172e-4	1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-1.172e-4 -5.562e-6	•	NC NC	1	NC NC	1
490		17	min	0	3	0	3	0	<u> </u>	-1.172e-4	1	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-5.562e-6		NC	1	NC	1
492		10	min	0	3	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-5.562e-6	•	NC	1	NC	1
494		1.0	min	0	1	0	1	0	1	-1.172e-4	1	NC	1	NC	1
495	M1	1	max	.007	3	.085	2	.001	1	1.602e-2	1	NC	1	NC	1
496			min	003	2	009	3	0		-2.332e-2	3	NC	1	NC	1
											_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio			LC
497		2	max	.007	3	.041	1	0	15	7.752e-3	_1_	NC	3	NC	1_
498			min	003	2	002	3	007	1	-1.154e-2	3	2572.241	2	NC	1
499		3	max	.007	3	.01	3	0	15	7.789e-6	10	NC	5	NC	2
500			min	003	2	008	2	011	1	-2.243e-4	1_	1237.305	2	9770.587	1
501		4	max	.007	3	.033	3	0	15	4.107e-3	1_	NC	5_	NC	1_
502			min	003	2	063	2	01	1	-4.065e-3	3	778.93	2	NC	1
503		5	max	.006	3	.062	3	0	15	8.439e-3	1	NC	15	NC	1
504			min	003	2	12	2	007	1	-8.012e-3	3	560.877	2	NC	1
505		6	max	.006	3	.095	3	0	15	1.277e-2	1	NC	15	NC	1
506			min	003	2	176	2	003	1	-1.196e-2	3	440.644	1	NC	1
507		7	max	.006	3	.126	3	0	1	1.71e-2	1	NC	15	NC	1
508			min	003	2	226	2	0	12	-1.591e-2	3	368.767	1	NC	1
509		8	max	.006	3	.152	3	.001	1	2.143e-2	1	9051.708	15	NC	1
510			min	003	2	266	1	0	15	-1.985e-2	3	326.416	1	NC	1
511		9	max	.006	3	.169	3	0	15	2.377e-2	1	8455.406	15	NC	1
512			min	003	2	291	1	0	1	-1.987e-2	3	304.43	1	NC	1
513		10	max	.006	3	.175	3	0	1	2.478e-2	1	8273.92	15	NC	1
514			min	002	2	3	1	0	12	-1.727e-2	3	297.865	1	NC	1
515		11	max	.006	3	.17	3	0	1	2.675e-2	2	8455.121	15	NC	1
516			min	002	2	291	1	0	15	-1.468e-2	3	304.903	1	NC	1
517		12	max	.006	3	.156	3	0	15	2.593e-2	2	9051.116	15	NC	1
518			min	002	2	265	1	001	1	-1.215e-2	3	327.898	1	NC	1
519		13	max	.005	3	.133	3	0	15	2.081e-2	2	NC	15	NC	1
520			min	002	2	223	1	0	1	-9.72e-3	3	372.447	1	NC	1
521		14	max	.005	3	.103	3	.003	1	1.57e-2	2	NC	15	NC	1
522		1-7	min	002	2	172	1	0	15	-7.293e-3	3	448.596	1	NC	1
523		15	max	.005	3	.07	3	.006	1	1.058e-2	2	NC	15	NC	1
524		10	min	002	2	114	1	0	15	-4.866e-3	3	579.544	1	NC	1
525		16	max	.005	3	.036	3	.009	1	5.462e-3	2	NC	5	NC	1
526		10	min	002	2	057	2	0	15	-2.439e-3	3	821.642	1	NC	1
527		17	max	.005	3	.004	3	.01	1	6.602e-4	1	NC	5	NC	1
528		17	min	002	2	005	2	0	15	-1.187e-5	3	1338.246	1	NC	1
529		18	max	.005	3	.042	1	.007	1	1.053e-2	2	NC	4	NC	1
530		10	min	002	2	025	3	0	15	-4.092e-3	3	2833.139	1	NC	1
531		19	max	.005	3	.082	1	0	15	2.107e-2	2	NC	1	NC	1
532		19	min	002	2	052	3	002	1	-8.324e-3	3	NC NC	1	NC	1
533	M5	1		.021	3	.208	2	002 0	1		1	NC	1	NC	1
534	IVIO	_	max	014	2	01	3	0	1	0	1	NC NC	1	NC NC	1
		2	min						1		1		•		•
535		2	max	.021	3	.096	1	0	1	0	1	NC	5	NC NC	1
536		2	min	014	2	.002	3	0	1	0	_	1036.231		NC NC	1
537		3	max	.021	3	.033	3	0	1	0	1	NC 490 211	<u>15</u>	NC NC	1
538		1	min	014	2	028	2	0		0	1	489.311	<u>2</u>	NC NC	1
539		4	max	.021	3	.097	3	0	1	0	1		<u>15</u>	NC NC	1
540		_	min	014	2	175	2	0	1	0	1_	300.935	2	NC NC	1
541		5	max	.02	3	.185	3	0	1	0	1	6590.451	<u>15</u>	NC NC	1
542		_	min	014	2	334	2	0	1	0	1_	212.629	2	NC NC	1
543		6	max	.02	3	.283	3	0	1	0	1		<u>15</u>	NC NC	1
544			min	013	2	<u>492</u>	1	0	1	0	1_	164.071	1_	NC	1
545		7	max	.019	3	.379	3	0	1	0	1		<u>15</u>	NC	1
546			min	013	2	<u>637</u>	1	0	1	0	1_	135.866	1_	NC	1
547		8	max	.019	3	.459	3	0	1	0	1	3693.689	<u>15</u>	NC	1
548			min	013	2	752	1	0	1	0	1_	119.437	1_	NC	1
549		9	max	.019	3	.51	3	0	1	0	_1_		<u>15</u>	NC	1_
550			min	012	2	825	1	0	1	0	1	111.004	1	NC	1
551		10	max	.018	3	.528	3	0	1	0	_1_	3354.003	15	NC	1_
552			min	012	2	849	1	0	1	0	1	108.499	1	NC	1
553		11	max	.018	3	.515	3	0	1	0	1	3432.751	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
554			min	012	2	824	1	0	1	0	1_	111.191	1_	NC	1
555		12	max	.017	3	.471	3	0	1	0	<u>1</u>		15	NC	1
556			min	012	2	749	1	0	1	0	1	120.052	1	NC	1
557		13	max	.017	3	.399	3	0	1	0	1	4202.98	15	NC	1
558			min	012	2	629	1	0	1	0	1	137.459	1	NC	1
559		14	max	.016	3	.309	3	0	1	0	1	5078.058	15	NC	1
560			min	012	2	48	1	0	1	0	1	167.647	1	NC	1
561		15	max	.016	3	.209	3	0	1	0	1	6592.395	15	NC	1
562			min	011	2	317	1	0	1	0	1	220.517	1	NC	1
563		16	max	.016	3	.107	3	0	1	0	1		15	NC	1
564			min	011	2	156	1	0	1	0	1	320.572	1	NC	1
565		17	max	.015	3	.011	3	0	1	0	1	NC	5	NC	1
566		1 '	min	011	2	015	2	0	1	0	1	539.357	1	NC	1
567		18	max	.015	3	.102	1	0	1	0	1	NC	5	NC	1
568		10	min	011	2	071	3	0	1	0	1	1172.233	1	NC	1
569		19		.015	3	.199	1	0	1	0	1	NC	1	NC	1
		19	max		2		3	0	1	0	1	NC NC	1	NC NC	1
570	MO	1	min	011		145				•	•				
571	<u>M9</u>	1_	max	.007	3	.085	2	0	15	2.332e-2	3	NC	1_	NC	1
572			min	003	2	009	3	001	1	-1.602e-2	1_	NC	1	NC	1
573		2	max	.007	3	.041	1	.007	1_	1.154e-2	3_	NC	3	NC	1
574			min	003	2	002	3	0	15	-7.752e-3	1_	2572.241	2	NC	1
575		3	max	.007	3	.01	3	.011	1	2.243e-4	_1_	NC	5	NC	2
576			min	003	2	008	2	0	15	-7.789e-6		1237.305	2	9770.587	1
577		4	max	.007	3	.033	3	.01	1	4.065e-3	3	NC	5	NC	1
578			min	003	2	063	2	0	15	-4.107e-3	1	778.93	2	NC	1
579		5	max	.006	3	.062	3	.007	1	8.012e-3	3	NC	15	NC	1
580			min	003	2	12	2	0	15	-8.439e-3	1	560.877	2	NC	1
581		6	max	.006	3	.095	3	.003	1	1.196e-2	3	NC	15	NC	1
582			min	003	2	176	2	0	15	-1.277e-2	1	440.644	1	NC	1
583		7	max	.006	Ω	.126	3	0	12	1.591e-2	3	NC	15	NC	1
584			min	003	2	226	2	0	1	-1.71e-2	1	368.767	1	NC	1
585		8	max	.006	3	.152	3	0	15	1.985e-2	3		15	NC	1
586			min	003	2	266	1	001	1	-2.143e-2	1	326.416	1	NC	1
587		9	max	.006	3	.169	3	0	1	1.987e-2	3		15	NC	1
588			min	003	2	291	1	0	15	-2.377e-2	1	304.43	1	NC	1
589		10	max	.006	3	.175	3	0	12	1.727e-2	3	8273.92	15	NC	1
590		1.0	min	002	2	3	1	0	1	-2.478e-2	1	297.865	1	NC	1
591		11	max	.002	3	.17	3	0	15	1.468e-2	3		15	NC	1
592			min	002	2	291	1	0	1	-2.675e-2	2	304.903	1	NC	1
593		12	max	.002	3	.156	3	.001	1	1.215e-2	3		15	NC	1
594		12	min	002	2	265	1	_		-2.593e-2	2	327.898	1	NC	1
595		13		.005	3	.133	3	0	1	9.72e-3	3		15	NC	1
		13													
596		4.4	min	002	2	223	1	0		-2.081e-2		372.447	1_	NC NC	1
597		14	max	.005	3	.103	3	0	15		3		15	NC	1
598		4.5	min	002	2	172	1	003	1_	-1.57e-2	2	448.596	1_	NC NC	1
599		15	max	.005	3	.07	3	0	15	4.866e-3	3	NC	<u>15</u>	NC	1
600			min	002	2	114	1	006	1_	-1.058e-2	2	579.544	1_	NC	1
601		16	max	.005	3	.036	3	0	15	2.439e-3	3	NC	5	NC	1
602			min	002	2	057	2	009	1	-5.462e-3	2	821.642	1	NC	1
603		17	max	.005	3	.004	3	0	15	1.187e-5	3	NC	5	NC	1
604			min	002	2	005	2	01	1	-6.602e-4	1	1338.246	1	NC	1
605		18	max	.005	3	.042	1	0	15	4.092e-3	3	NC	4	NC	1
606			min	002	2	025	3	007	1	-1.053e-2	2	2833.139	1	NC	1
607		19	max	.005	3	.082	1	.002	1	8.324e-3	3	NC	1	NC	1
608			min	002	2	052	3	0	15	-2.107e-2		NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	,N $\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.