Exploratory Data Analysis - VIDEO GAME SALES

Yipeng CHEN

Contents

Description	4
1.EDA - VIDEO GAME SALES using R	5
1.1 Libraries & Data loading	5
1.1 A. Database Loading	5
1.1 B. Summary of data	6
1.2 Descriptive Analysis	7
1.2 A. Frequency Distribution	7
1.2 B. Central Trend Measures	31
1.2 C. Separating Measures	35
1.2 D. Dispersion Measures	36
1.3 Exploratory Analysis	41
1.3 A. Analysis of the world's best-selling games	41
1.3 B. Number of Sales per platform	49
1.3 C. Game Sales by Genre	58
1.3 D. Number of sales per publisher	67
1.3 E. Global Sales Number per Year	76
2.EDA - VIDEO GAME SALES using Python	81
2.1 What genre games have been made the most?	35
2.2 Which years had the most game release?	37
2.3 Top 5 years games release by genre	38
2.4 Which years had the highest sales worldwide?	39
2.5 Which genre game has been released the most in a single year? 9	91
2.6 Which genre game has been sold the most in a single year?	93
2.7 Which genre games have the highest sale price globally?	95
2.8 Which platfrom has the highest sale price globally?	97
2.9 Which individual game has the highest sale price globally?	98
2.10 Sales comparison by genre	99
2.11 Sales comparison by platform	01
2.12 Top 20 Publisher	03

2.13 Top global sales by publisher	104
2.14 Publisher comparison	105
2.15 Top publisher by count each year	107
2.16 Total revenue by region	109
2.17 Relations of columns	112

Here, I just combined two excellent Kaggle Notebooks of Exploratory Data Analysis (EDA) on video games sales.

Description

The Original Dataset - Video Game Sales

This dataset contains a list of video games with sales greater than 100 000 copies. It was generated by a scrape of VGChartz.

Fields include:

Rank - Ranking of overall sales

Name - The games name

Platform - Platform of the games release (i.e. PC,PS4, etc.)

Year - Year of the game's release

Genre - Genre of the game

Publisher - Publisher of the game

NA Sales - Sales in North America (in millions)

EU Sales - Sales in Europe (in millions)

JP Sales - Sales in Japan (in millions)

Other Sales - Sales in the rest of the world (in millions)

Global Sales - Total worldwide sales.

Many thanks for the original notebooks:

EDA - VIDEO GAME SALES

Video Games Sales Analysis And Visualization

1.EDA - VIDEO GAME SALES using R

The data used in the first part ("EDA - VIDEO GAME SALES using R") contains information only from 1980 to 2016.

1.1 Libraries & Data loading

1.1 A. Database Loading

Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
Wii Sports	Wii	2006	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
Super Mario Bros.	NES	1985	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
Mario Kart Wii	Wii	2008	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
Wii Sports Resort	Wii	2009	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
Pokemon Red/Pokemon Blue	GB	1996	Role-Playing	Nintendo	11.27	8.89	10.22	1.00	31.37

```
# Viewing the first 5 DataFrame records
pacman::p_load(knitr,kableExtra)
kable(head(data, 5)) %>% kable_styling(font_size = 7)
```

1.1 B. Summary of data

summary(data)

```
##
        Name
                          Platform
                                                 Year
                                                              Genre
##
    Length: 16323
                       Length: 16323
                                           2009
                                                   :1431
                                                           Length: 16323
    Class : character
                        Class : character
                                           2008
                                                   :1428
                                                           Class : character
                                                           Mode : character
    Mode :character
                       Mode :character
                                                   :1259
##
                                           2010
##
                                           2007
                                                   :1202
##
                                           2011
                                                   :1139
                                           2006
##
                                                   :1008
##
                                           (Other):8856
##
                                                                JP_Sales
     Publisher
                           NA_Sales
                                             EU_Sales
##
    Length:16323
                       Min. : 0.0000
                                          Min.
                                                 : 0.0000
                                                             Min.
                                                                    : 0.00000
                                          1st Qu.: 0.0000
    Class : character
                        1st Qu.: 0.0000
                                                             1st Qu.: 0.00000
    Mode :character
                       Median : 0.0800
                                          Median : 0.0200
                                                             Median : 0.00000
##
##
                              : 0.2655
                                          Mean
                                                 : 0.1476
                                                             Mean
                                                                    : 0.07868
                       Mean
##
                        3rd Qu.: 0.2400
                                          3rd Qu.: 0.1100
                                                             3rd Qu.: 0.04000
##
                               :41.4900
                                                 :29.0200
                                                             Max.
                       Max.
                                          Max.
                                                                     :10.22000
##
##
     Other_Sales
                         Global_Sales
##
    Min.
          : 0.00000
                       Min.
                             : 0.0100
    1st Qu.: 0.00000
                        1st Qu.: 0.0600
##
##
    Median : 0.01000
                       Median: 0.1700
##
    Mean
         : 0.04834
                       Mean
                             : 0.5403
##
    3rd Qu.: 0.04000
                        3rd Qu.: 0.4800
##
    Max.
           :10.57000
                       Max.
                               :82.7400
##
```

1.2 Descriptive Analysis

1.2 A. Frequency Distribution

Year => Year of the game's release

kable(head(freq_year, 10))

	Frequency	Percent
2009	1431	8.766771
2008	1428	8.748392
2010	1259	7.713043
2007	1202	7.363842
2011	1139	6.977884
2006	1008	6.175335
2005	941	5.764872
2002	829	5.078723
2003	775	4.747902
2004	763	4.674386

kable(tail(freq_year, 10))

	Frequency	Percent
1982	36	0.2205477
1986	21	0.1286528
1983	17	0.1041475
1989	17	0.1041475
1987	16	0.0980212
1990	16	0.0980212
1988	15	0.0918949
1984	14	0.0857685
1985	14	0.0857685
1980	9	0.0551369

The 10 most frequent years in the database

The 10 least frequent years in the database

NA_Sales => Sales in North America (in millions)

North American-Sales Histogram

North American-Sales < 2 millions

EU_Sales => Sales in Europe (in millions)

```
ggplot(data = data, mapping = aes(x = EU_Sales)) +
    geom_histogram(bins = 80, fill = "#00CED1", color = "#7FFF00") +
    xlab("Sales in Europe (in millions)") +
    ylab("Frequency") +
    ggtitle("Europe-Sales Histogram") +
    theme_minimal() +
    theme(plot.title = element_text(size = 24, hjust = .5, face = "bold"),
        axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),
        axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),
        axis.text.x = element_text(size = 20, face = "bold"),
        axis.text.y = element_text(size = 20, face = "bold"),
        legend.position = "none")
```


JP_Sales => Sales in Japan (in millions)

```
ggplot(data = data, mapping = aes(x = JP_Sales)) +
    geom_histogram(bins = 80, fill = "#4B0082", color = "#FF00FF") +
    xlab("Sales in Japan (in millions)") +
    ylab("Frequency") +
    ggtitle("Japan-Sales Histogram") +
    theme_minimal() +
    theme(plot.title = element_text(size = 24, hjust = .5, face = "bold"),
        axis.title.x = element_text(size = 24, hjust = .5, face = "italic"),
        axis.title.y = element_text(size = 24, hjust = .5, face = "italic"),
        axis.text.x = element_text(size = 24, hjust = .5, face = "italic"),
        axis.text.y = element_text(size = 20, face = "bold"),
        legend.position = "none")
```


Japan-Sales < 2 millions

Other_Sales => Sales in the rest of the world (in millions)

Sales in the rest of the world

Sales in the rest of the world < 2 millions

Global_Sales => Total worldwide sales

Total worldwide sales < 2 millions

With these graphical analysis, we can overlook that the sales of video games is mostly below 2 million dollars.

Name -> The games name

The 5 most frequent games in the database

	Frequency	Percent
Need for Speed: Most Wanted	12	0.0735159
FIFA 14	9	0.0551369
LEGO Marvel Super Heroes	9	0.0551369
Ratatouille	9	0.0551369
Angry Birds Star Wars	8	0.0490106

```
ggplot(data = freq name, mapping = aes(x = row.names(freq name), y = Frequency)) +
         geom segment(aes(xend=row.names(freq name), yend=0,
                          color = row.names(freq_name)),
                      linewidth = 2.5, alpha = .25) +
        geom point(mapping = aes(fill = row.names(freq name)),
                    size = 5, shape = 21) +
         coord flip() +
        theme minimal() +
        xlab("") +
        ylab("") +
        theme(plot.background = element_rect(fill = "#F8F8FF", color = "purple"),
               axis.title.x = element text(size = 12, hjust = .5, face = "italic"),
               axis.title.y = element text(size = 12, hjust = .5, face = "italic"),
               axis.text.x = element_text(size = 6, face = "bold"),
               axis.text.y = element_text(size = 12, face = "bold"),
               legend.position = "none")
```



```
ggplot(data = freq name, mapping = aes(x = row.names(freq name), y = Frequency)) +
        geom segment(aes(xend=row.names(freq name), yend=0,
                         color = row.names(freq_name)),
                      linewidth = 2.5, alpha = .5) +
        geom point(mapping = aes(fill = row.names(freq name)),
                    size = 5, shape = 21) +
        theme economist() +
        xlab("") +
        ylab("") +
        coord polar() +
        theme(plot.background = element_rect(fill = "#F8F8FF", color = "purple"),
               axis.title.x = element text(size = 14, face = "italic"),
               axis.title.y = element text(size = 14, hjust = .5, face = "italic"),
               axis.text.x = element_text(size = 7, face = "bold"),
               axis.text.y = element_text(size = 14, face = "bold"),
               legend.position = "none")
```


Platform -> Platform of the games release (i.e. PC, PS4, etc.)

kable(unique(data\$Platform), col.names = 'Platform')

Platform
Wii
NES
GB
DS
X360
PS3
PS2
SNES
GBA
3DS
PS4
N64
PS
XB
PC
2600
PSP
XOne
GC
WiiU
GEN
DC
PSV
SAT
SCD
WS
NG
TG16
3DO

GG PCFX

The 5 most frequent gaming platforms in the database

	Frequency	Percent
DS	2132	13.061324
PS2	2127	13.030693
PS3	1304	7.988728
Wii	1290	7.902959
X360	1235	7.566011

```
ggplot(data = freq platform, mapping = aes(x = row.names(freq platform),
                                           y = Frequency)) +
        geom_bar(stat = "identity", aes(fill = row.names(freq_platform)),
                  linewidth = 1, alpha = .5, color = "black") +
        geom label(mapping = aes(label = Frequency), fill = "purple",
                    color = "white", size = 4, fontface = "bold") +
         coord flip() +
        theme economist() +
        ylab("Frequency") +
        xlab("") +
        theme(plot.background = element_rect(fill = "#F0E68C",
                                              color = "orange", linewidth = 1),
               axis.title.y = element text(size = 12, hjust = .5, face = "italic"),
               axis.title.x = element_text(size = 16, hjust = .5,
                                           vjust = -2, face = "italic"),
               axis.text.x = element text(size = 10, face = "bold"),
               axis.text.y = element text(size = 12, face = "bold"),
               legend.position = "none")
```


Genre -> Genre of the game

	Frequency	Percent
Action	3252	19.922808
Sports	2304	14.115052
Misc	1710	10.476015
Role-Playing	1469	8.999571
Shooter	1282	7.853948
Adventure	1276	7.817190
Racing	1226	7.510874
Platform	876	5.366661
Simulation	850	5.207376
Fighting	836	5.121607
Strategy	671	4.110764
Puzzle	571	3.498131
Adventure Racing Platform Simulation Fighting Strategy	1276 1226 876 850 836 671	7.8171 7.5108 5.3666 5.2073 5.1216 4.1107

```
ggplot(data = freq genre, mapping = aes(x = Frequency, y = row.names(freq genre))) +
         geom bar(stat = "identity", mapping = aes(fill = row.names(freq genre),
                                                   color = row.names(freq_genre)),
                                                   alpha = .7, linewidth = 1.1) +
         geom_label(mapping = aes(label=Frequency), fill = "#B22222", size = 4,
                    color = "white", fontface = "bold", hjust=.7) +
         ggtitle("Genre Frequency Distribution") +
         xlab(" ") +
         ylab("") +
         theme minimal() +
         theme(
               plot.title = element text(size = 20, hjust = .5, face = "bold"),
               axis.title.x = element text(size = 20, hjust = .5, face = "italic"),
               axis.title.y = element_text(size = 20, hjust = .5, face = "italic"),
               axis.text.x = element_text(size = 16, face = "bold", angle = 20),
               axis.text.y = element text(size = 16, face = "bold"),
               legend.position = "none")
```

Genre Frequency Distribution

Publisher -> Publisher of the game

kable(head(unique(data\$Publisher), 25),col.names ='Publisher')

Publisher
Nintendo
Microsoft Game Studios
Take-Two Interactive
Sony Computer Entertainment
Activision
Ubisoft
Bethesda Softworks
Electronic Arts
Sega
SquareSoft
Atari
505 Games
Capcom
GT Interactive
Konami Digital Entertainment
Sony Computer Entertainment Europe
Square Enix
LucasArts
Virgin Interactive
Warner Bros. Interactive Entertainment
Universal Interactive
Eidos Interactive
RedOctane
Vivendi Games
Enix Corporation

The 10 most frequent Publisher in the database

	Frequency	Percent
Electronic Arts	1339	8.203149
Activision	966	5.918030
Namco Bandai Games	928	5.685229
Ubisoft	917	5.617840
Konami Digital Entertainment	823	5.041965
THQ	712	4.361943
Nintendo	696	4.263922
Sony Computer Entertainment	682	4.178153
Sega	630	3.859585
Take-Two Interactive	412	2.524046

```
ggplot(data = freq published, mapping = aes(x = Frequency,
                                            y = row.names(freq published))) +
        geom_line(group = 1, linewidth = 1, color = "blue",
                   linetype = "dashed") +
        geom label(mapping = aes(label=Frequency,
                                  fill = row.names(freq published)),
                    size = 2.25, color = "white", fontface = "bold", hjust=.7) +
        ggtitle("Publisher distribution") +
        xlab("Frequency") +
        ylab("") +
        theme_economist() +
        theme(plot.background = element rect(fill = "#98FB98", color = "blue"),
               plot.title = element text(size = 15, hjust = .5, face = "bold"),
               axis.title.x = element_text(size = 15, hjust = .5, face = "italic"),
               axis.title.y = element text(size = 15, hjust = .5, face = "italic"),
               axis.text.x = element text(size = 8, face = "bold"),
               axis.text.y = element_text(size = 8, face = "bold"),
               legend.position = "none")
```


1.2 B. Central Trend Measures

Mean

	Mean
NA_Sales	0.2654635
EU_Sales	0.1475905
JP_Sales	0.0786773
Other_Sales	0.0483361
Global_Sales	0.5403431

Median

	Median
NA_Sales	0.08
EU_Sales	0.02
JP_Sales	0.00
Other_Sales	0.01
Global_Sales	0.17

Mode

	Mode
NA_Sales	0
EU_Sales	0
JP_Sales	0
Other_Sales	0
Global_Sales	0.02

Mean + Median + Mode

```
df_mmm <- data.frame(Mean = df_means$Mean, Median = df_median, Mode = df_mode)
kable(df_mmm)</pre>
```

	Mean	Median	Mode
NA_Sales	0.2654635	0.08	0
EU_Sales	0.1475905	0.02	0
JP_Sales	0.0786773	0.00	0
Other_Sales	0.0483361	0.01	0
Global_Sales	0.5403431	0.17	0.02

1.2 C. Separating Measures

Percentile

	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
25%	0.0000	0.00	0.00	0.00	0.0600
50%	0.0800	0.02	0.00	0.01	0.1700
75%	0.2400	0.11	0.04	0.04	0.4800
99%	2.8156	1.94	1.27	0.65	5.4678

1.2 D. Dispersion Measures

Mean-Absolute Deviation

	MeanAbsoluteDeviation
NA_Sales	0.3094731
EU_Sales	0.1912648
JP_Sales	0.1167081
Other_Sales	0.0617212
Global_Sales	0.5945282

Variance

	Variance
NA_Sales	0.6751640
EU_Sales	0.2589006
JP_Sales	0.0970904
Other_Sales	0.0360648
Global_Sales	2.4520629

Standard deviation

	StandardDeviation
NA_Sales	0.8216836
EU_Sales	0.5088228
JP_Sales	0.3115934
Other_Sales	0.1899074
Global_Sales	1.5659064

Mad + Var + Std

	MeanAbsoluteDeviation	Variance	StandardDeviation
NA_Sales	0.3094731	0.6751640	0.8216836
EU_Sales	0.1912648	0.2589006	0.5088228
JP_Sales	0.1167081	0.0970904	0.3115934
Other_Sales	0.0617212	0.0360648	0.1899074
Global_Sales	0.5945282	2.4520629	1.5659064

```
ggplot(data = df dispersion) +
    geom bar(stat = "identity", mapping = aes(x = row.names(df_dispersion),
                                              y = Variance, fill = "Variance"),
             alpha = .9, linewidth = 1, color = "blue") +
    geom bar(stat = "identity", mapping = aes(x = row.names(df dispersion),
                                          y = StandardDeviation, fill = "Std"),
             alpha = .4, linewidth = 1, color = "green") +
    geom_bar(stat = "identity", mapping = aes(x = row.names(df_dispersion),
                                      y = MeanAbsoluteDeviation, fill = "Mad"),
            alpha = .9, linewidth = 1, color = "red") +
    xlab("") +
    ylab("") +
    theme minimal() +
    theme(plot.title = element_text(size = 12, hjust = .5, face = "bold"),
          axis.title.x = element_text(size = 12, hjust = .5, face = "italic"),
          axis.title.y = element text(size = 12, hjust = .5, face = "italic"),
          axis.text.x = element text(size = 9, face = "bold"),
          axis.text.y = element text(size = 9, face = "bold"),
          legend.position = "bottom",
          legend.title = element text(color = "white"),
          legend.text = element text(size = 8, face = "bold"))
```


1.3 Exploratory Analysis

1.3 A. Analysis of the world's best-selling games

The best selling games in North America, Europe, Japan and the rest of the world

```
# NA Sales
t v name NA <- aggregate(list(NA Sales = data$NA Sales),
                          list(Name = data$Name), sum)
t_v_name_NA <- t_v_name_NA[order(t_v_name_NA$NA_Sales,</pre>
                                  decreasing = T), ]
# EU_Sales
t v name EU <- aggregate(list(EU Sales = data$EU Sales),
                          list(Name = data$Name), sum)
t v name EU <- t v name EU[order(t v name EU$EU Sales,
                                  decreasing = T), ]
# JP Sales
t_v_name_JP <- aggregate(list(JP_Sales = data$JP_Sales),</pre>
                          list(Name = data$Name), sum)
t v name_JP <- t_v_name_JP[order(t_v_name_JP$JP_Sales,</pre>
                                  decreasing = T), ]
# Other Sales
t_v_name_Other <- aggregate(list(Other_Sales = data$Other Sales),</pre>
                             list(Name = data$Name), sum)
t v name Other <- t v name Other[order(t v name Other$Other Sales,
                                        decreasing = T), ]
# Global_Sales
t v name Global <- aggregate(list(Global Sales = data$Global Sales),
                              list(Name = data$Name), sum)
t_v_name_Global <- t_v_name_Global[order(t_v_name_Global$Global_Sales,</pre>
                                           decreasing = T), ]
```

The 10 best selling games in North America

The 10 best selling games in Europe

The 10 best selling games in Japan

The best selling games in the world from 1980 to 2016

```
a <- c()
for(i in 1:nrow(t_v_name_Global)){
    a <- c(a, i)
}
row.names(t_v_name_Global) <- a
kable(head(t_v_name_Global, 10))</pre>
```

Name	Global_Sales
Wii Sports	82.74
Grand Theft Auto V	55.92
Super Mario Bros.	45.31
Tetris	35.84
Mario Kart Wii	35.82
Wii Sports Resort	33.00
Pokemon Red/Pokemon Blue	31.37
Call of Duty: Modern Warfare 3	30.83
New Super Mario Bros.	30.01
Call of Duty: Black Ops II	29.72

```
ggplot(data = head(t v name Global, 5),
       mapping = aes(x = Name, y = Global Sales)) +
         geom_bar(stat = "identity", mapping = aes(fill = Name, color = Name),
                  linewidth = 1, alpha = .7) +
         geom label(mapping = aes(label = Global Sales),
                color = "white", fill = "blue", size = 3, fontface = "bold") +
         xlab("") +
         ylab("") +
         ggtitle("The best selling games in the world from 1980 to 2016") +
         theme minimal() +
         coord_flip() +
         theme(legend.position = "none",
               plot.title = element text(size = 25, face = "bold",
                                         hjust = -2, vjust = 4),
               axis.text.x = element_text(size = 20, face = "bold"),
               axis.text.y = element text(size = 18, face = "bold"),
               axis.title.y = element text(size = 20))
```



```
df top 5 <- data[data$Name == "Wii Sports" | data$Name == "Grand Theft Auto V" |
                   data$Name == "Super Mario Bros." | data$Name == "Tetris" |
                   data$Name == "Mario Kart Wii", ]
ggplot(data = df top 5, mapping = aes(x = Year, y = Global Sales)) +
    geom_bar(stat = "identity", mapping = aes(fill = Name, color = Name),
             linewidth = 1, alpha = .8) +
    facet wrap(~Name) +
    theme bw() +
    xlab("") +
    ylab("Sales in the world (in millions)") +
    theme(
          legend.position = "none",
          strip.text.x = element_text(margin = margin(5, 5, 5, 5),
                                      size = 10, face = "bold", color = "white"),
          strip.background = element rect(fill = "#BC8F8F", color = "black"),
          plot.title = element text(size = 10, face = "bold", hjust = .5),
          axis.text.x = element text(size = 5, face = "bold"),
          axis.text.y = element_text(size = 10, face = "bold"),
          axis.title.y = element text(size = 10))
```


1.3 B. Number of Sales per platform

Number of Sales per platform in North America, Europe, Japan and the rest of the world

```
# NA Sales
p_name_NA <- aggregate(list(NA_Sales = data$NA_Sales),</pre>
                        list(Platform = data$Platform), sum)
p name NA <- p name NA[order(p name NA$NA Sales, decreasing = T), ]
# EU Sales
p name EU <- aggregate(list(EU Sales = data$EU Sales),
                        list(Platform = data$Platform), sum)
p_name_EU <- p_name_EU[order(p_name_EU$EU_Sales, decreasing = T), ]</pre>
# JP_Sales
p_name_JP <- aggregate(list(JP_Sales = data$JP_Sales),</pre>
                        list(Platform = data$Platform), sum)
p name JP <- p name JP[order(p name JP$JP Sales, decreasing = T), ]
# Other Sales
p name Other <- aggregate(list(Other Sales = data$Other Sales),
                           list(Platform = data$Platform), sum)
p_name_Other <- p_name_Other[order(p_name_Other$Other Sales,</pre>
                                    decreasing = T), ]
# Global Sales
p_name_Global <- aggregate(list(Global_Sales = data$Global Sales),</pre>
                            list(Platform = data$Platform), sum)
p_name_Global <- p_name_Global[order(p_name_Global$Global_Sales,</pre>
                                       decreasing = T), ]
```

Number of sales per platform in North America

Number of sales per platform in Europe

Number of sales per platform in Japan

Number of sales per platform in rest of the world

The 10 platforms with the highest number of game sales in the world

```
a <- c()

for(i in 1:nrow(p_name_Global)){
    a <- c(a, i)
}

row.names(p_name_Global) <- a

kable(head(p_name_Global, 10))</pre>
```

Platform	Global_Sales
PS2	1233.46
X360	969.61
PS3	949.35
Wii	909.81
DS	818.67
PS	727.39
GBA	313.56
PSP	291.71
PS4	278.07
PC	255.05

```
ggplot(data = head(p name Global, 10),
   mapping = aes(x = Platform, y = Global Sales)) +
   geom_segment(aes(xend=Platform, yend=0,
                    color = Platform), linewidth = 2.3, alpha = .8) +
   geom point(mapping = aes(fill = Platform), size = 5, shape = 21) +
   geom_line(group = 1, linewidth = 1.1, linetype = 10, color = "red") +
  xlab("") +
   ylab("") +
   ggtitle("The 10 platforms with the highest number of game sales in the world") +
   theme minimal() +
   theme(plot.title = element_text(size = 10, face = "bold", hjust = .5),
         axis.title.x = element text(size = 10, hjust = .5, face = "italic"),
        axis.title.y = element text(size = 10, hjust = .5, face = "italic"),
        axis.text.x = element_text(size = 12, face = "bold"),
         axis.text.y = element text(size = 12, face = "bold"),
        legend.position = "none")
```



```
ggplot(data = d top 10, mapping = aes(x = Year, y = Global Sales)) +
    geom bar(stat = "identity",
             mapping = aes(fill = Platform, color = Platform),
             linewidth = .1, alpha = .8) +
    facet wrap(~Platform) +
    theme bw() +
    xlab("") +
    ylab("Sales in the world (in millions)") +
    theme(
          legend.position = "none",
          strip.text.x = element_text(margin = margin(5, 5, 5, 5), size = 10,
                                      face = "bold", color = "white"),
          strip.background = element rect(fill = "#F4A460", color = "black"),
          plot.title = element_text(size = 12, face = "bold", hjust = .5),
          axis.text.x = element_text(size = 10, face = "bold"),
          axis.text.y = element text(size = 10, face = "bold"),
          axis.title.y = element text(size = 10))
```


1.3 C. Game Sales by Genre

Best-selling people from 1980 to 2016 by features

```
# NA Sales
g_name_NA <- aggregate(list(NA_Sales = data$NA_Sales),</pre>
                        list(Genre = data$Genre), sum)
g name NA <- g name NA[order(g name NA$NA Sales, decreasing = T), ]
# EU Sales
g name EU <- aggregate(list(EU Sales = data$EU Sales),
                        list(Genre = data$Genre), sum)
g name EU <- g name EU[order(g name EU$EU Sales, decreasing = T), ]</pre>
# JP Sales
g_name_JP <- aggregate(list(JP_Sales = data$JP_Sales),</pre>
                        list(Genre = data$Genre), sum)
g_name_JP <- g_name_JP[order(g_name_JP$JP_Sales, decreasing = T), ]</pre>
# Other Sales
g_name_Other <- aggregate(list(Other_Sales = data$Other_Sales),</pre>
                           list(Genre = data$Genre), sum)
g name Other <- g name Other[order(g name Other$Other Sales,
                                     decreasing = T), ]
# Global_Sales
g name Global <- aggregate(list(Global Sales = data$Global Sales),
                            list(Genre = data$Genre), sum)
g_name_Global <- g_name_Global[order(g_name_Global$Global_Sales,</pre>
                                      decreasing = T), ]
```

```
ggplot(data = g name NA, mapping = aes(x = Genre, y = NA Sales)) +
        geom_segment(aes(xend=Genre, yend=0, color = Genre),
                      linewidth = 2.3, alpha = .8) +
        geom point(mapping = aes(fill = Genre), size = 5, shape = 21) +
        geom line(group = 1, linewidth = 1.1, linetype = 10, color = "red") +
        xlab("") +
        ylab("") +
        ggtitle("Number of sales by gender in North America (in millions)") +
        theme minimal() +
        theme(plot.title = element_text(size = 10, face = "bold", hjust = .5),
               axis.title.x = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.title.y = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.text.x = element_text(size = 5, face = "bold"),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by gender in North America (in millions)


```
ggplot(data = g name EU, mapping = aes(x = Genre, y = EU Sales)) +
        geom_segment(aes(xend=Genre, yend=0, color = Genre),
                      linewidth = 2.3, alpha = .8) +
        geom point(mapping = aes(fill = Genre), size = 5, shape = 21) +
        geom line(group = 1, linewidth = 1.1, linetype = 10, color = "red") +
        xlab("") +
        ylab("") +
        ggtitle("Number of sales by gender in Europe (in millions)") +
        theme minimal() +
        theme(plot.title = element_text(size = 10, face = "bold", hjust = .5),
               axis.title.x = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.title.y = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.text.x = element_text(size = 5, face = "bold"),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by gender in Europe (in millions)


```
ggplot(data = g name JP, mapping = aes(x = Genre, y = JP Sales)) +
        geom_segment(aes(xend=Genre, yend=0, color = Genre),
                      linewidth = 2.3, alpha = .8) +
        geom point(mapping = aes(fill = Genre), size = 5, shape = 21) +
        geom_line(group = 1, linewidth = 1.1, linetype = 10, color = "red") +
        xlab("") +
        ylab("") +
        ggtitle("Number of sales by gender in Japan (in millions)") +
        theme minimal() +
        theme(plot.title = element_text(size = 10, face = "bold", hjust = .5),
               axis.title.x = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.title.y = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.text.x = element_text(size = 5, face = "bold"),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by gender in Japan (in millions)


```
ggplot(data = g name Other, mapping = aes(x = Genre, y = Other Sales)) +
        geom_segment(aes(xend=Genre, yend=0, color = Genre),
                      linewidth = 2.3, alpha = .8) +
        geom point(mapping = aes(fill = Genre), size = 5, shape = 21) +
        geom line(group = 1, linewidth = 1.1, linetype = 10, color = "red") +
        xlab("") +
        ylab("") +
        ggtitle("Number of sales by gender in rest of the world (in millions)") +
        theme minimal() +
        theme(plot.title = element text(size = 10, face = "bold", hjust = .5),
               axis.title.x = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.title.y = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.text.x = element_text(size = 5, face = "bold"),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by gender in rest of the world (in millions)

Best selling genres in the world

```
a <- c()

for(i in 1:nrow(g_name_Global)){
    a <- c(a, i)
}

row.names(g_name_Global) <- a

kable(g_name_Global)</pre>
```

Global_Sales
1722.87
1309.24
1026.20
923.80
829.15
797.62
726.77
444.05
389.87
242.22
234.80
173.43

```
ggplot(data = g name Global, mapping = aes(x = Genre, y = Global Sales)) +
         geom_bar(stat = "identity", mapping = aes(fill = Genre),
                  alpha = .7, linewidth = 1, color = "black") +
         geom label(mapping = aes(label=Global Sales), fill = "purple",
                    size = 3, color = "white", fontface = "bold", hjust=.7) +
         ggtitle("Best selling genres in the world") +
         xlab(" ") +
         ylab("") +
         theme minimal() +
         theme(
               plot.title = element_text(size = 12, hjust = .5,
                                         face = "bold"),
               axis.title.x = element_text(size = 12, hjust = .5,
                                           face = "italic"),
               axis.title.y = element_text(size = 12, hjust = .5,
                                           face = "italic"),
               axis.text.x = element text(size = 10, face = "bold",
                                          angle = 20),
               axis.text.y = element_text(size = 10, face = "bold"),
               legend.position = "none")
```

Best selling genres in the world


```
ggplot(data = g top 10, mapping = aes(x = Year, y = Global Sales)) +
   geom_bar(stat = "identity", mapping = aes(fill = Genre,
                       color = Genre), linewidth = .1, alpha = .8) +
    facet wrap(~Genre) +
    theme bw() +
    xlab("") +
    ylab("Sales in the world (in millions)") +
    theme(
          legend.position = "none",
          strip.text.x = element_text(margin = margin(5, 5, 5, 5),
                              size = 10, face = "bold", color = "white"),
          strip.background = element_rect(fill = "black", color = "red"),
          plot.title = element text(size = 11, face = "bold", hjust = .5),
          axis.text.x = element_text(size = 10, face = "bold"),
          axis.text.y = element_text(size = 10, face = "bold"),
          axis.title.y = element text(size = 10))
```


1.3 D. Number of sales per publisher

```
# NA_Sales
pu name NA <- aggregate(list(NA Sales = data$NA Sales), list(Publisher</pre>
                                                                = data$Publisher), sum)
pu_name_NA <- pu_name_NA[order(pu_name_NA$NA_Sales, decreasing = T), ]</pre>
# EU Sales
pu_name_EU <- aggregate(list(EU_Sales = data$EU_Sales), list(Publisher</pre>
                                                                = data$Publisher), sum)
pu_name_EU <- pu_name_EU[order(pu_name_EU$EU Sales, decreasing = T), ]</pre>
# JP Sales
pu name JP <- aggregate(list(JP Sales = data$JP Sales), list(Publisher</pre>
                                                                = data$Publisher), sum)
pu name JP <- pu name JP[order(pu name JP$JP Sales, decreasing = T), ]
# Other Sales
pu name Other <- aggregate(list(Other Sales = data$Other Sales), list(Publisher</pre>
                                                                = data$Publisher), sum)
pu name Other <- pu name Other[order(pu name Other$Other Sales, decreasing = T), ]
# Global Sales
pu name Global <- aggregate(list(Global Sales = data$Global Sales), list(Publisher
                                                                = data$Publisher), sum)
pu name Global <- pu name Global[order(pu name Global$Global Sales, decreasing = T), ]</pre>
```

```
ggplot(data = head(pu name NA, 10), mapping = aes(x = Publisher, y = NA Sales))+
         geom_bar(stat = "identity", aes(fill = Publisher, color = Publisher),
                  linewidth = 1.2, alpha = .8)+
         geom label(mapping = aes(label=NA Sales), fill = "#FF8C00",
                    size = 4, color = "white", fontface = "bold", hjust=.7)+
         xlab("")+
         ylab("")+
         ggtitle("Number of sales by Publisher in North America (in millions)")+
         theme minimal()+
         theme(plot.title = element_text(size = 12, face = "bold", hjust = .5),
               axis.title.x = element_text(size = 8, hjust = .5,
                                           face = "italic"),
               axis.title.y = element text(size = 8, hjust = .5,
                                           face = "italic"),
               axis.text.x = element_text(size = 10, face = "bold", angle = 20),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by Publisher in North America (in millions)


```
ggplot(data = head(pu name EU, 10), mapping = aes(x = Publisher, y = EU Sales))+
         geom_bar(stat = "identity", aes(fill = Publisher, color = Publisher),
                  linewidth = 1.2, alpha = .8)+
         geom label(mapping = aes(label=EU Sales), fill = "#FF8C00",
                    size = 4, color = "white", fontface = "bold", hjust=.7)+
         xlab("")+
         ylab("")+
         ggtitle("Number of sales by Publisher in Europe (in millions)")+
         theme minimal()+
         theme(plot.title = element_text(size = 12, face = "bold", hjust = .5),
               axis.title.x = element_text(size = 8, hjust = .5,
                                           face = "italic"),
               axis.title.y = element text(size = 8, hjust = .5,
                                           face = "italic"),
               axis.text.x = element_text(size = 10, face = "bold", angle = 20),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by Publisher in Europe (in millions)


```
ggplot(data = head(pu name JP, 10), mapping = aes(x = Publisher, y = JP Sales))+
         geom_bar(stat = "identity", aes(fill = Publisher, color = Publisher),
                  linewidth = 1.2, alpha = .8)+
         geom label(mapping = aes(label=JP Sales), fill = "#FF8C00",
                    size = 4, color = "white", fontface = "bold", hjust=.7)+
         xlab("")+
         ylab("")+
         ggtitle("Number of sales by Publisher in Japan (in millions)")+
         theme minimal()+
         theme(plot.title = element_text(size = 12, face = "bold", hjust = .5),
               axis.title.x = element_text(size = 8, hjust = .5,
                                           face = "italic"),
               axis.title.y = element text(size = 8, hjust = .5,
                                           face = "italic"),
               axis.text.x = element_text(size = 10, face = "bold", angle = 20),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by Publisher in Japan (in millions)


```
ggplot(data = head(pu name Other, 10), mapping = aes(x = Publisher,
                                                     v = Other Sales))+
         geom_bar(stat = "identity", aes(fill = Publisher, color = Publisher),
                  linewidth = 1.2, alpha = .8)+
         geom label(mapping = aes(label=Other Sales), fill = "#FF8C00",
                    size = 4, color = "white", fontface = "bold", hjust=.7)+
         xlab("")+
         ylab("")+
         ggtitle("Number of sales by Publisher in rest of the world (in millions)")+
         theme minimal()+
         theme(plot.title = element_text(size = 12, face = "bold", hjust = .5),
               axis.title.x = element text(size = 8, hjust = .5,
                                           face = "italic"),
               axis.title.y = element_text(size = 8, hjust = .5,
                                           face = "italic"),
               axis.text.x = element text(size = 10, face = "bold", angle = 20),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by Publisher in rest of the world (in millions)

The 10 publishers with the most sales

```
a <- c()

for(i in 1:nrow(pu_name_Global)){
    a <- c(a, i)
}

row.names(pu_name_Global) <- a
head(pu_name_Global, 10)</pre>
```

```
Publisher Global_Sales
##
## 1
                                         1784.43
                          Nintendo
## 2
                   Electronic Arts
                                         1093.39
## 3
                        Activision
                                          721.41
## 4
       Sony Computer Entertainment
                                          607.28
## 5
                           Ubisoft
                                          473.25
## 6
              Take-Two Interactive
                                          399.30
## 7
                                          340.44
      Konami Digital Entertainment
## 8
                                          278.56
## 9
                                          270.66
                               Sega
## 10
                Namco Bandai Games
                                          253.65
```

```
ggplot(data = head(pu name Global, 10), mapping = aes(x = Publisher,
                                                      v = Global Sales)) +
         geom bar(stat = "identity", mapping = aes(fill = Publisher),
                  alpha = .7, linewidth = 1, color = "black") +
         geom label(mapping = aes(label=Global Sales), fill = "purple",
                    size = 4, color = "white", fontface = "bold", hjust=.7) +
         ggtitle("The 10 publishers with the most sales (in millions)") +
         xlab(" ") +
         ylab("") +
         theme minimal() +
         theme(
               plot.title = element_text(size = 12, hjust = .5, face = "bold"),
               axis.title.x = element text(size = 12, hjust = .5,
                                           face = "italic"),
               axis.title.y = element_text(size = 12, hjust = .5,
                                           face = "italic"),
               axis.text.x = element text(size = 10, face = "bold", angle = 20),
               axis.text.y = element text(size = 10, face = "bold"),
               legend.position = "none")
```

The 10 publishers with the most sales (in millions)


```
pu top 10 <- data[data$Publisher == "Nintendo"</pre>
                  | data$Publisher == "Electronic Arts"
                  | data$Publisher == "Activision"
                  | data$Publisher == "Sony Computer Entertainment"
                  | data$Publisher == "Ubisoft"
                  | data$Publisher == "Take-Two Interactive"
                  | data$Publisher == "THQ"
                  | data$Publisher == "Konami Digital Entertainment"
                  | data$Publisher == "Sega"
                  | data$Publisher == "Namco Bandai Games", ]
pu_top_10$Year <- as.numeric(levels(pu_top_10$Year))[pu_top_10$Year]</pre>
ggplot(data = pu top 10, mapping = aes(x = Year, y = Global Sales)) +
    geom_bar(stat = "identity",
             mapping = aes(fill = Publisher, color = Publisher),
             linewidth = .1, alpha = .8) +
    facet wrap(~Publisher) +
    theme bw() +
    xlab("") +
    ylab("Sales in the world (in millions)") +
    theme(
          legend.position = "none",
          strip.text.x = element text(margin = margin(5, 5, 5, 5),
                                       size = 7, face = "bold",
                                       color = "#4B0082"),
          strip.background = element_rect(fill = "#FFB6C1", color = "green"),
          plot.title = element text(size = 10, face = "bold", hjust = .5),
          axis.text.x = element text(size = 10, face = "bold"),
          axis.text.y = element text(size = 10, face = "bold"),
          axis.title.y = element_text(size = 10))
```


1.3 E. Global Sales Number per Year

```
##
      Year Global Sales
## 1 1980
                  11.38
## 2 1983
                  16.79
## 3 1987
                  21.74
## 4 1982
                  28.86
## 5 1991
                  32.23
## 6 1981
                  35.77
## 7 1986
                  37.07
## 8 1993
                  45.98
## 9 1988
                  47.22
## 10 1990
                  49.39
## 11 1984
                  50.36
## 12 1985
                  53.94
## 13 2016
                  70.93
## 14 1989
                  73.45
## 15 1992
                  76.16
## 16 1994
                  79.17
## 17 1995
                  88.11
## 18 1996
                 199.15
## 19 1997
                 200.98
## 20 2000
                 201.56
## 21 1999
                 251.27
## 22 1998
                 256.47
## 23 2015
                 264.44
## 24 2001
                 331.47
## 25 2014
                 337.05
## 26 2003
                 357.85
## 27 2012
                 363.54
```

##	28	2013	368.11
##	29	2002	395.52
##	30	2004	419.31
##	31	2005	459.94
##	32	2011	515.99
##	33	2006	521.04
##	34	2010	600.45
##	35	2007	611.13
##	36	2009	667.30
##	37	2008	678.90

```
ggplot(data = df global, mapping = aes(x = Year, y = Global Sales)) +
         geom line(linewidth = 1, linetype = 10, color = "blue", group = 1) +
        geom_point(size = 6, shape = 21, mapping = aes(fill = Year)) +
        xlab("") +
        ylab("Global Sales") +
        ggtitle("Number of sales by Year in world (in millions)") +
        theme classic() +
        theme(legend.position = "none",
               strip.text.x = element_text(margin = margin(7, 7, 7),
                              size = 20, face = "bold", color = "#4B0082"),
              strip.background = element_rect(fill = "#FFB6C1",
                                               color = "green"),
              plot.title = element text(size = 10, face = "bold", hjust = .5),
              axis.text.x = element_text(size = 4),
               axis.text.y = element_text(size = 10, face = "bold"),
               axis.title.y = element text(size = 10))
```

Number of sales by Year in world (in millions)


```
ggplot(data = df global, mapping = aes(x = Year, y = Global Sales)) +
         geom_segment(aes(xend=Year, yend=0, color = Year),
                      linewidth = 2.3, alpha = .8) +
         geom point(mapping = aes(fill = Year), size = 5, shape = 21) +
         geom line(group = 1, linewidth = 1.1, linetype = 10, color = "red") +
         xlab("") +
         ylab("Global Sales") +
         ggtitle("Number of sales by Year in world (in millions)") +
         theme classic() +
         theme(plot.title = element_text(size = 10, face = "bold", hjust = .5),
               axis.title.x = element_text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.title.y = element text(size = 10, hjust = .5,
                                           face = "italic"),
               axis.text.x = element_text(size = 4),
               axis.text.y = element_text(size = 10, face = "bold"),
               legend.position = "none")
```

Number of sales by Year in world (in millions)


```
ggplot(data = df global, mapping = aes(x = Year, y = Global Sales)) +
         geom line(linewidth = 1, linetype = 10, color = "blue", group = 1) +
         geom_label(mapping = aes(label=Global_Sales), fill = "blue",
                    size = 2, color = "white", fontface = "bold", alpha = .5) +
         xlab("") +
         ylab("Global Sales") +
         ggtitle("Number of sales by Year in world (in millions)") +
         theme classic() +
         theme(legend.position = "none",
               strip.text.x = element text(margin = margin(7, 7, 7, 7),
                              size = 20, face = "bold", color = "#4B0082"),
               strip.background = element rect(fill = "#FFB6C1",
                                               color = "green"),
               plot.title = element_text(size = 11, face = "bold", hjust = .5),
               axis.text.x = element_text(size = 4),
               axis.text.y = element text(size = 10, face = "bold"),
               axis.title.y = element text(size = 10))
```

Number of sales by Year in world (in millions)

2.EDA - VIDEO GAME SALES using Python

```
library(reticulate)
```

```
import numpy as np
import pandas as pd
import scipy.stats as st

import math

import matplotlib.pyplot as plt

import seaborn as sns
sns.set_style('whitegrid')

import missingno as msno

from sklearn.preprocessing import StandardScaler
from scipy import stats
```

```
data = pd.read_csv('vgsales.csv')
data = data[data['Year'] <= 2015]
data.head()</pre>
```

```
##
      Rank
                                Name Platform ...
                                                    JP_Sales Other_Sales Global_Sales
## 0
        1
                          Wii Sports
                                          Wii ...
                                                        3.77
                                                                    8.46
                                                                                82.74
## 1
        2
                                          NES
                                                        6.81
                                                                    0.77
                                                                                40.24
                   Super Mario Bros.
                                                        3.79
## 2
                                                                    3.31
                                                                                35.82
                      Mario Kart Wii
                                          Wii
## 3
        4
                   Wii Sports Resort
                                          Wii
                                                       3.28
                                                                    2.96
                                                                                33.00
## 4
        5 Pokemon Red/Pokemon Blue
                                           GB
                                                       10.22
                                                                    1.00
                                                                                31.37
                                              . . .
##
## [5 rows x 11 columns]
```

data.shape

```
## (15979, 11)
```

data.info()

```
## <class 'pandas.core.frame.DataFrame'>
## Int64Index: 15979 entries, 0 to 16597
## Data columns (total 11 columns):
##
   #
       Column
                     Non-Null Count Dtype
## ---
       _____
                     -----
##
   0
       Rank
                     15979 non-null int64
       Name
##
   1
                     15979 non-null object
                     15979 non-null object
##
   2
       Platform
   3
       Year
                     15979 non-null float64
##
                     15979 non-null object
##
   4
       Genre
   5
       Publisher
                     15945 non-null object
##
##
   6
       NA Sales
                     15979 non-null float64
##
   7
       EU_Sales
                     15979 non-null float64
##
   8
       JP Sales
                     15979 non-null float64
##
   9
       Other Sales
                     15979 non-null float64
       Global_Sales 15979 non-null float64
##
   10
## dtypes: float64(6), int64(1), object(4)
## memory usage: 1.5+ MB
```

```
data.isnull().sum()
## Rank
                    0
## Name
## Platform
                    0
## Year
                    0
## Genre
                    0
## Publisher
                   34
## NA_Sales
                    0
## EU_Sales
                    0
## JP_Sales
                    0
## Other_Sales
                    0
## Global_Sales
                     0
## dtype: int64
data = data[data['Publisher'].isnull()!=True]
data.isnull().sum()
                   0
                   0
```

```
## Rank
## Name
## Platform
                   0
## Year
## Genre
                   0
## Publisher
## NA Sales
                   0
## EU_Sales
## JP_Sales
                   0
## Other_Sales
## Global_Sales
                   0
## dtype: int64
```

data.info()

```
## <class 'pandas.core.frame.DataFrame'>
## Int64Index: 15945 entries, 0 to 16597
## Data columns (total 11 columns):
   #
        Column
                      Non-Null Count
                                      Dtype
## ---
##
   0
        Rank
                      15945 non-null
                                      int64
##
   1
        Name
                      15945 non-null object
        Platform
##
                      15945 non-null object
   3
       Year
                      15945 non-null float64
##
   4
                      15945 non-null object
##
        Genre
                      15945 non-null object
   5
        Publisher
##
##
   6
        NA_Sales
                      15945 non-null float64
##
   7
        EU Sales
                      15945 non-null float64
   8
        JP Sales
##
                      15945 non-null float64
   9
##
        Other_Sales
                      15945 non-null float64
##
        Global_Sales 15945 non-null float64
   10
## dtypes: float64(6), int64(1), object(4)
## memory usage: 1.5+ MB
```

2.1 What genre games have been made the most?

```
data['Genre'].value_counts()
## Action
                  3132
                  2266
## Sports
## Misc
                  1668
## Role-Playing
                 1428
## Shooter
                  1250
## Adventure
                 1241
## Racing
                 1205
## Platform
                   865
## Simulation
                   838
## Fighting
                   822
## Strategy
                   660
## Puzzle
                   570
## Name: Genre, dtype: int64
plt.figure(figsize=(15, 10))
sns.countplot(x="Genre", data=data, order = data['Genre'].value_counts().index)
plt.xticks(rotation=45,fontsize=6)
```


Answer is => "Action" and "Sports"

2.2 Which years had the most game release?

```
plt.figure(figsize=(15, 10))
sns.countplot(x="Year", data=data,
order = data.groupby(by=['Year'])['Name'].
count().sort_values(ascending=False).index)
plt.xticks(rotation=90,fontsize=6)
# data.groupby(by=['Year'])['Name'].count().sort_values(ascending=False)
```

```
plt.show()
```


Answer is =>

- 1. 2009.0 -> 1431
- 2. 2008.0 -> 1428
- 3. 2010.0 -> 1257
- 4. 2007.0 -> 1201
- 5. 2011.0 -> 1136

2.3 Top 5 years games release by genre

```
plt.figure(figsize=(10, 5))
sns.countplot(x="Year", data=data, hue='Genre',
order=data.Year.value_counts().iloc[:5].index)
# Move the legend outside the plot area
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=5.5)
plt.xticks(fontsize=5, rotation=90)
# data.Year.value_counts().iloc[:5]
```

```
plt.show()
```


2.4 Which years had the highest sales worldwide?

```
data_year = data.groupby(by=['Year'])['Global_Sales'].sum()
data_year = data_year.reset_index()
# data_year.sort_values(by=['Global_Sales'], ascending=False)

plt.figure(figsize=(15, 10))
sns.barplot(x="Year", y="Global_Sales", data=data_year)
plt.xticks(rotation=90,fontsize=5)
```


Answer is =>

- 1. 2008.0 -> 678.90
- 2. 2009.0 -> 667.30
- 3. 2007.0 -> 609.92
- 4. 2010.0 -> 600.29
- 5. 2006.0 -> 521.04

2.5 Which genre game has been released the most in a single year?

```
year_max_df = data.groupby(['Year', 'Genre']).size().reset_index(name='count')
year max idx = year max df\
.groupby(['Year'])['count'].transform(max) == year max df['count']
year_max_genre = year_max_df[year_max_idx].reset_index(drop=True)
year max genre = year max genre.drop duplicates(subset=["Year", "count"],
keep='last').reset index(drop=True)
# year_max_genre
genre = year max genre['Genre'].values
# genre[0]
plt.figure(figsize=(30, 15))
g = sns.barplot(x='Year', y='count', data=year_max_genre)
index = 0
for value in year max genre['count'].values:
    #print(asd)
    g.text(index, value + 5, str(genre[index] + '----' +str(value)),
    color='#000', size=11, rotation= 90, ha="center")
    index += 1
plt.xticks(rotation=90,fontsize=5.5)
```

plt.show()

Answer is => 2009 Action —> 272 2012 Action —> 266

2.6 Which genre game has been sold the most in a single year?

```
year_sale_dx = data.groupby(by=['Year', 'Genre'])\
['Global_Sales'].sum().reset_index()
year_sale = year_sale_dx.groupby(by=['Year'])\
['Global_Sales'].transform(max) == year_sale_dx['Global_Sales']
year_sale_max = year_sale_dx[year_sale].reset_index(drop=True)
# year_sale_max
genre = year_sale_max['Genre']
plt.figure(figsize=(30, 18))
g = sns.barplot(x='Year', y='Global_Sales', data=year_sale_max)
index = 0
for value in year_sale_max['Global_Sales']:
    g.text(index, value + 1, str(genre[index] + '----' +str(round(value, 2))),
    color='#000', size=7, rotation= 90, ha="center")
    index += 1
plt.xticks(rotation=90,fontsize=5.5)
```

plt.show()

Answer is => 2009 Action —> 139.36 million 2008 Action —> 136.39 million

2.7 Which genre games have the highest sale price globally?

```
data_genre = data.groupby(by=['Genre'])['Global_Sales'].sum()
data_genre = data_genre.reset_index()
data_genre = data_genre.sort_values(by=['Global_Sales'], ascending=False)
# data_genre
plt.figure(figsize=(15, 10))
sns.barplot(x="Genre", y="Global_Sales", data=data_genre)
plt.xticks(rotation=45,fontsize=5.5)
```


Action and Sports are always in top

2.8 Which platfrom has the highest sale price globally?

```
data_platform = data.groupby(by=['Platform'])['Global_Sales'].sum()
data_platform = data_platform.reset_index()
data_platform = data_platform.sort_values(by=['Global_Sales'], ascending=False)
# data_platform
plt.figure(figsize=(15, 10))
sns.barplot(x="Platform", y="Global_Sales", data=data_platform)
plt.xticks(rotation=45,fontsize=7)
```

```
plt.show()
```


The winner is PS2

2.9 Which individual game has the highest sale price globally?

The winner is Wii Sports

```
top_game_sale = data.head(20)
top_game_sale = top_game_sale[['Name', 'Year', 'Genre', 'Global_Sales']]
top game sale = top game sale.sort values(by=['Global Sales'], ascending=False)
# top_game_sale
name = top_game_sale['Name']
year = top_game_sale['Year']
y = np.arange(0, 20)
plt.figure(figsize=(15, 10))
g = sns.barplot(x='Name', y='Global_Sales', data=top_game_sale)
for value in top game sale['Global Sales']:
    g.text(index, value - 18, name[index],
    color='#000', size=7, rotation= 90, ha="center")
    index += 1
plt.xlabel('Release Year')
plt.xticks(y, top_game_sale['Year'], fontsize=7, rotation=90)
plt.show()
```


2.10 Sales comparison by genre

```
comp_genre = data[['Genre', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales']]
# comp_genre
comp_map = comp_genre.groupby(by=['Genre']).sum()
# comp_map
plt.figure(figsize=(15, 10))
sns.set(font_scale=1)
sns.heatmap(comp_map, annot=True, fmt = '.1f')
plt.xticks(fontsize=10)

plt.yticks(fontsize=10)
```



```
comp_table = comp_map.reset_index()
comp_table = pd.melt(comp_table, id_vars=['Genre'],
value_vars=['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales'],
var_name='Sale_Area', value_name='Sale_Price')
comp_table.head()
```

```
##
          Genre Sale_Area Sale_Price
## 0
         Action NA Sales
                               855.90
## 1
      Adventure NA_Sales
                               101.59
## 2
       Fighting NA_Sales
                               219.14
                 NA\_Sales
                               396.70
## 3
           Misc
## 4
       Platform NA_Sales
                               445.20
```

```
plt.figure(figsize=(20, 15))
sns.barplot(x='Genre', y='Sale_Price', hue='Sale_Area', data=comp_table)
plt.xticks(rotation=45,fontsize=5.5)
```

plt.show()

2.11 Sales comparison by platform

```
comp_platform = data[['Platform', 'NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales']]
comp platform.head()
##
     Platform NA Sales EU Sales JP Sales Other Sales
## 0
          Wii
                  41.49
                            29.02
                                       3.77
                                                    8.46
## 1
          NES
                  29.08
                             3.58
                                       6.81
                                                    0.77
## 2
          Wii
                  15.85
                            12.88
                                       3.79
                                                    3.31
## 3
          Wii
                  15.75
                            11.01
                                       3.28
                                                    2.96
## 4
          GB
                  11.27
                             8.89
                                      10.22
                                                    1.00
comp platform = comp platform.groupby(by=['Platform']).sum().reset index()
# comp table = comp map.reset index()
comp_table = pd.melt(comp_platform, id_vars=['Platform'],
value vars=['NA Sales', 'EU Sales', 'JP Sales', 'Other Sales'],
var_name='Sale_Area', value_name='Sale Price')
comp table.head()
##
     Platform Sale_Area Sale_Price
## 0
         2600
              NA\_Sales
                              80.78
## 1
          3D0
              NA Sales
                               0.00
## 2
               NA Sales
                              77.20
          3DS
               NA Sales
## 3
          DC
                               5.43
## 4
          DS
               NA Sales
                             388.26
```

```
plt.figure(figsize=(15, 10))
sns.barplot(x='Platform', y='Sale_Price', hue='Sale_Area', data=comp_table)
plt.xticks(fontsize=6)
```

```
plt.yticks(fontsize=6)
```

plt.show()

2.12 Top 20 Publisher

```
top_publisher = data.groupby(by=['Publisher'])\
['Year'].count().sort_values(ascending=False).head(20)
top_publisher = pd.DataFrame(top_publisher).reset_index()
# top_publisher
plt.figure(figsize=(20, 15))
sns.countplot(x="Publisher", data=data,
order = data.groupby(by=['Publisher'])\
['Year'].count().sort_values(ascending=False).iloc[:20].index)
plt.xticks(rotation=90,fontsize=4)
```

```
plt.show()
```


2.13 Top global sales by publisher

```
sale_pbl = data[['Publisher', 'Global_Sales']]
sale_pbl = sale_pbl.groupby('Publisher')\
['Global_Sales'].sum().sort_values(ascending=False).head(20)
sale_pbl = pd.DataFrame(sale_pbl).reset_index()
# sale_pbl
plt.figure(figsize=(20, 15))
sns.barplot(x='Publisher', y='Global_Sales', data=sale_pbl)
plt.xticks(rotation=90,fontsize=4)
```

```
plt.show()
```


2.14 Publisher comparison

```
comp publisher = data[['Publisher',
'NA Sales', 'EU Sales',
'JP Sales', 'Other Sales',
'Global_Sales']]
comp publisher.head()
    Publisher NA Sales EU Sales
                                   JP Sales Other Sales Global Sales
##
## 0 Nintendo
                  41.49
                            29.02
                                       3.77
                                                    8.46
                                                                 82.74
## 1 Nintendo
                  29.08
                             3.58
                                       6.81
                                                    0.77
                                                                 40.24
## 2 Nintendo
                  15.85
                            12.88
                                       3.79
                                                    3.31
                                                                 35.82
## 3 Nintendo
                  15.75
                            11.01
                                       3.28
                                                    2.96
                                                                 33.00
## 4 Nintendo
                 11.27
                             8.89
                                      10.22
                                                    1.00
                                                                 31.37
comp publisher = comp publisher.groupby(by=['Publisher'])\
.sum().reset index().sort values(by=['Global Sales'], ascending=False)
comp_publisher = comp_publisher.head(20)
# comp publisher
comp_publisher = pd.melt(comp_publisher, id_vars=['Publisher'],\
value_vars=['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales'],\
```

##		Publisher	Sale Area	Sale Price
##	0	Nintendo	NA Sales	- 814.59
##	1	Electronic Arts	NA_Sales	580.58
##	2	Activision	NA_Sales	424.34
##	3	Sony Computer Entertainment	NA_Sales	262.79
##	4	Ubisoft	${\tt NA_Sales}$	248.69
##				
##	75	Disney Interactive Studios	Other_Sales	13.15
##	76	Eidos Interactive	Other_Sales	7.90
##	77	LucasArts	Other_Sales	10.28
##	78	Bethesda Softworks	Other_Sales	9.81
##	79	Midway Games	Other_Sales	5.69
##				
##	[80	rows x 3 columns]		

var_name='Sale_Area', value_name='Sale_Price')

comp_publisher

```
plt.figure(figsize=(20, 15))
sns.barplot(x='Publisher', y='Sale_Price',
hue='Sale_Area', data=comp_publisher)
plt.xticks(fontsize=4, rotation=90)

plt.yticks(fontsize=8)
```

plt.show()

2.15 Top publisher by count each year

```
top publisher = data[['Year', 'Publisher']]
top publisher df = top publisher.groupby(by=['Year', 'Publisher'])\
.size().reset index(name='Count')
top_publisher_idx = top_publisher_df.groupby(by=['Year'])\
['Count'].transform(max) == top_publisher df['Count']
top publisher count = top publisher df[top publisher idx]\
.reset index(drop=True)
top_publisher_count = top_publisher_count.\
drop_duplicates(subset=["Year", "Count"], keep='last').reset_index(drop=True)
# top publisher count
publisher= top publisher count['Publisher']
plt.figure(figsize=(30, 20))
g = sns.barplot(x='Year', y='Count', data=top publisher count)
index = 0
for value in top_publisher_count['Count'].values:
      print(asd)
    g.text(index, value + 5, str(publisher[index] + '----' +str(value)),
    color='#000', size=15, rotation= 90, ha="center")
    index += 1
plt.xticks(rotation=90,fontsize=15)
```


2.16 Total revenue by region

```
top_sale_reg = data[['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales']]
# pd.DataFrame(top_sale_reg.sum(), columns=['a', 'b'])
top_sale_reg = top_sale_reg.sum().reset_index()
top_sale_reg = top_sale_reg.rename(columns={"index": "region", 0: "sale"})
top_sale_reg
```

```
## region sale

## 0 NA_Sales 4304.72

## 1 EU_Sales 2379.93

## 2 JP_Sales 1270.55

## 3 Other_Sales 781.14
```

```
plt.figure(figsize=(12, 8))
sns.barplot(x='region', y='sale', data = top_sale_reg)
```



```
plt.show()
```

```
labels = top_sale_reg['region']
sizes = top_sale_reg['sale']
plt.figure(figsize=(10, 8))
plt.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90)
plt.show()
```


2.17 Relations of columns


```
import sys
print(sys.version)
```

3.9.16 (main, Mar 8 2023, 10:39:24) [MSC v.1916 64 bit (AMD64)]

End