Discrete Math for Computer Science

Peter Schaefer

Freshman Fall

Contents

1	Log	ic 5
	1.1	Propositions and Logical Operations
	1.2	Evaluating Compound Propositions
	1.3	Conditional Statements
	1.4	Logical Equivalence
	1.5	Laws of Propositional Logic
	1.6	Predicates and Quantifiers
	1.7	Quantified Statements
	1.8	DeMorgan's law for Quantified Statements
	1.9	Nested Quantifiers
	1.10	More Nested Quantifiers
		1.10.1 Expressing Uniqueness in Quantified Statements
		1.10.2 Moving Quantifiers in Logical Statements
	1.11	Logical Reasoning
		1.11.1 The Form of an Argument
	1.12	Rules of Inference with Propositions
		Rules of Inference with Quantifiers
		1.13.1 Example of using the Laws of Inference for Quantified Statements
		1.13.2 Showing an Argument with Quantified Statements is Invalid
2	Pro	
	2.1	Mathematical Definitions
	2.2	Introduction to Proofs
	2.3	Writing Proofs: Best Practices
	2.4	Writing Direct Proofs
	2.5	Proof by Contrapositive
	2.6	Proof by Contradiction
	2.7	Proof by Cases
3	Sets	3
J	3.1	Sets and Subsets
	3.2	Sets of sets
	$\frac{3.2}{3.3}$	Union and Intersection
	3.4	More set operations
	$\frac{3.4}{3.5}$	-
	3.6	Cartesian products
	3.7	Partitions

CONTENTS

4	Fun	actions	11
	4.1	Definition of functions	11
	4.2	Floor and Ceiling functions	11
	4.3	Properties of functions	11
	4.4	The inverse of a function	11
	4.5	Composition of functions	11
	4.6	Logarithms and exponents	11
5	Boo	olean Algebra	11
J	5.1	· · · · · · · · · · · · · · · · · · ·	11
	5.2		11
	5.3		11
	5.4		11
	5.5	•	11
	5.6	v	11
	0.0	dated and entered	11
6		0 1	12
	6.1	v	12
	6.2	ı v	12
	6.3		12
	6.4	*	12
	6.5	1 1	12
	6.6		12
	6.7		12
	6.8	v O 1	12
	6.9	1	12
	6.10	N-ary relations and relational databases	12
7	Con	nputation	12
	7.1		12
	7.2		12
	7.3	· - ·	12
	7.4	· · · ·	12
	7.5		12
	7.6	Decision problems and languages	12
6	T., J.	maticus and December	10
8	8.1		13 13
	8.2	Recurrence relations	13
	8.3		13
	8.4		13
	8.5		13
	8.6	±	13
	8.7		13
	8.8	•	13
	8.9		13
			13
		9	13
	2 11	THE CONTRACTOR OF THE CONTRACT	
	8.12	Analyzing the time complexity of recursive algorithms	13
	8.12 8.13	Analyzing the time complexity of recursive algorithms	13 13
	8.12 8.13 8.14	Analyzing the time complexity of recursive algorithms	13 13 13
	8.12 8.13 8.14 8.15	Analyzing the time complexity of recursive algorithms	13 13 13 13
	8.12 8.13 8.14 8.15 8.16	Analyzing the time complexity of recursive algorithms Divide-and-conquer algorithms: Introduction and mergesort Divide-and-conquer algorithms: Binary Search Solving linear homogeneous recurrence relations Solving linear non-homogeneous recurrence relations	13 13 13

CONTENTS

9	Inte	eger Properties 13
	9.1	The Division Algorithm
	9.2	Modular arithmetic
	9.3	Prime factorizations
	9.4	Factoring and primality testing
	9.5	Greatest common factor divisor and Euclid's algorithm
	9.6	Number representation
	9.7	Fast exponentiation
	9.8	Introduction to cryptography
	9.9	The RSA cryptosystem
10		oduction to Counting 14
		Sum and Product Rules
		The Bijection Rules
		The generalized product rule
		Counting permutations
		Counting subsets
		Subset and permutation examples
		Counting by complement
		Permutations with repetitions
		Counting multisets
		0Assignment problems: Balls in bins
	10.11	1 Inclusion-exclusion principle
11	A -1	
ΙI		Vanced Counting Generating permutations
		Binomial coefficients and combinatorial identities
		The pigeonhole principle
	11.4	Generating functions
12	Disc	crete Probability
	12.1	Probability of an event
		Unions and complements of events
		Conditional probability and independence
	12.4	Bayes' Theorem
		Random variables
		Expectation of random variables
		Linearity of expectations
		Bernoulli trials and the binomial distribution
	12.0	
13	Gra	phs 15
	13.1	Introduction to Graphs
	13.2	Graph representations
		Graph isomorphism
		Walks, trails, circuits, paths, and cycles
		Graph connectivity
		Euler circuits and trails
		Hamiltonian cycles and paths
		Planar coloring
		Graph coloring
		· · · · · · · · · · · · · · · · · · ·

CONTENTS

14	I Trees
	14.1 Introduction to trees
	14.2 Tree application examples
	14.3 Properties of trees
	14.4 Tree traversals
	14.5 Spanning trees and graph traversals
	14.6 Minimum spanning trees

1 Logic

1.1 Propositions and Logical Operations

Proposition: a statement that is either <u>true</u> or <u>false</u>.

Some examples include "It is raining today" and " $3 \cdot 8 = 20$ ".

However, not all statements are propositions, such as "open the door"

Name	Symbol	alternate name	p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \oplus q$
NOT	Г	negation	Т	Т	F	Т	Т	F
AND	\wedge	conjunction	\mathbf{T}	F	F	F	T	Γ
OR	V	disjunction	\mathbf{F}	Т	T	F	T	Γ
XOR	\oplus	exclusive or	\mathbf{F}	F	Т	F	F	F

XOR is very useful for encryption and binary arithmetic.

1.2 Evaluating Compound Propositions

p: The weather is bad. $p \wedge q$: The weather is bad and the trip is cancelled

q: The trip is cancelled. $p \lor q$: The weather is bad or the trip is cancelled

r: The trip is delayed. $p \wedge (q \oplus r)$: The weather is bad and either the trip is cancelled or delayed

Order of Evaluation \neg , then \wedge , then \vee , but parenthesis always help for clarity.

1.3 Conditional Statements

 $p \to q$ where p is the hypothesis and q is the conclusion

Format	Terminology				
$ \begin{array}{c} p \to q \\ \neg q \to \neg p \\ q \to p \\ \neg p \to \neg q \end{array} $	given contrapositive converse inverse	given inverse	$\begin{array}{c} p \rightarrow q \\ \neg p \rightarrow \neg q \end{array}$	1 1	contrapositive converse

Order of Operations: $p \wedge q \rightarrow r \equiv (p \wedge q) \rightarrow r$

1.4 Logical Equivalence

Tautology: a proposition that is always <u>true</u> Contradiction: a proposition that is always <u>false</u>

Logically equivalent: same truth value regardless of the truth values of their individual propositions

Verbally,

It is not true that the patient has migraines or high blood pressure \equiv

 \equiv The patient does not have migraines and does not have high blood pressure

It is not true that the patient has migraines and high blood pressure \equiv

 \equiv The patient does not have migraines or does not have high blood pressure

1.5 Laws of Propositional Logic

You can use **substitution** on logically equivalent propositions.

Law Name	∨ or	\wedge and
Idempotent	$p \lor p \equiv p$	$p \wedge p \equiv p$
Associative	$(p \vee q) \vee r \equiv p \vee (q \vee r)$	$(p \land q) \land r \equiv p \land (q \land r)$
Commutative	$p \vee q \equiv q \vee p$	$p \wedge q \equiv q \wedge p$
Distributive	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Identity	$p \lor F \equiv p$	$p \wedge T \equiv p$
Domination	$p \lor T \equiv T$	$p \wedge F \equiv F$
Double Negation	$\neg \neg p \equiv p$	
Complement	$p \vee \neg p \equiv T$	$p \land \neg p \equiv F$
DeMorgan	$\neg (p \lor q) \equiv \neg p \land \neg q$	$\neg (p \land q) \equiv \neg p \lor \neg q$
Absorption	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Conditional	$p \to q \equiv \neg p \lor q$	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

1.6 Predicates and Quantifiers

Predicate: a logical statement where truth value is a <u>function</u> of a variable.

P(x): x is an even number. P(x)

P(5): false

P(2): true

Domain: the set of all possible values for a variable in a predicate.

Ex. \mathbb{Z}^+ is the set of all positive integers.

*If domain is not clear from context, it should be given as part of the definition of the predicate.

Quantifier: converts a predicate to a proposition.

Quantifier	Symbol	Meaning
Universal	\forall	"for all"
Existential	∃	"there exists"

$$\exists x(x+1 < x)$$
 is false.

Counter Example: universally quantified statement where an element in the domain for which the predicate is false. Useful to prove a \forall statement false.

1.7 Quantified Statements

Consider the two following two predicates:

 $P(x): x \text{ is prime, } x \in \mathbb{Z}^+$

O(x): x is odd

Proposition made of predicates:

 $\exists x (P(x) \land \neg O(x))$

Verbally: there exists a positive integer that is prime but is not odd.

Free Variable: a variable that is free to be any value in the domain.

Bound Variable: a variable that is bound to a quantifier.

P(x): x came to the party $P(x) \stackrel{?}{\equiv} \neg S(x)$ $P(x) \stackrel{?}{\equiv} \neg S(x)$

1.8 DeMorgan's law for Quantified Statements

Consider the predicate: F(x): "x can fly", where x is a bird. According to the DeMorgan Identity for Quantified Statements,

$$\neg \forall x F(x) \equiv \exists x \neg F(x)$$

"not every bird can fly \equiv " there exists a bird that cannot fly

Example using DeMorgan Identities:

$$\neg \exists x (P(x) \to \neg Q(x)) \equiv \forall x \neg (P(x) \to \neg Q(x))$$
$$\equiv \forall x (\neg \neg P(x) \land \neg \neg Q(x))$$
$$\equiv \forall x (P(x) \land Q(x))$$

1.9 Nested Quantifiers

A logical expression with more than one quantifier that binds different variables in the same predicate is said to have **Nested Quantifiers**.

Logic	Variable Boundedness	Logic	Meaning
		$\forall x \forall y \ \mathrm{M}(x,y)$	"everyone sent an email to everyone"
$\forall x \exists y \ P(x,y)$ $\forall x \ P(x,y)$	x, y bound x bound, y free	$\forall x \exists y \ \mathbf{M}(x,y)$	"everyone sent an email to someone"
$\exists x \exists y \ \mathrm{T}(x,y,z)$	x bound, y free x , y bound, z free	$\exists x \forall y \ \mathrm{M}(x,y)$	"someone sent an email to everyone"
$\exists x \exists y \ 1(x, y, z)$		$\exists x \exists y \ \mathrm{M}(x,y)$	"someone sent an email to someone"

There is a two-player game analogy for how quantifiers work:

Player	Action	Goal
Existential Player ∃	selects value for existentially-bound variables	tries to make expression <u>true</u>
Universal Player \forall	selects value for universally-bound variables	tries to make expression <u>false</u>

Consider the predicate L(x, y): "x likes y".

 $\exists x \forall y L(x, y)$ means "there is a student who likes everyone in the school". $\neg \exists x \forall y L(x, y)$ means "there is no student who likes everyone in the school".

After applying DeMorgan's Laws,

 $\forall x \exists y \neg L(x, y)$ means "there is no student who likes everyone in the school".

1.10 More Nested Quantifiers

M(x,y): "x sent an email to y". Consider $\forall x \forall y \ M(x,y)$. It means that "email sent an email to everyone including themselves". Using $(x \neq y \rightarrow M(x,y))$ can fix this quirk.

 $\forall x \forall y (x \neq y \rightarrow M(x,y))$ means "everyone sent an email to everyone else

1.10.1 Expressing Uniqueness in Quantified Statements

Consider L(x): x was late to the meeting. If someone was late to the meeting, how could you express that that someone was the only person late to the meeting? You want to express that there is someone where everyone else was not late, which can be done with

$$\exists x (L(x) \land \forall y (x \neq y \rightarrow \neg L(y)))$$

1.10.2 Moving Quantifiers in Logical Statements

Consider M(x, y): "x is married to y" and A(x): "x is an adult". One way of expressing "For every person x, if x is an adult, then there is a person y to whom x is married to" is by this statement:

$$\forall x (A(x) \to \exists M(x,y))$$

Since y does not appear in A(x), " $\exists y$ " can be moved so that it appears just after the " \forall ", resulting with

$$\forall x \exists y (\mathbf{A}(x) \to \mathbf{M}(x,y))$$

When doing this, keep in mind that $\forall x \exists y \not\equiv \exists y \forall x$:

$$\forall x \exists y (A(x) \rightarrow M(x,y)) \text{ means}$$

for every x, if x is an adult, there exists y who is married to x.

$$\exists y \forall x (A(x) \rightarrow M(x,y))$$
 means

There exists a y, such that every x who is an adult is also married to y

1.11 Logical Reasoning

Argument: a sequence of propositions, called <u>hypothesis</u>, followed by a final proposition, called the conclusion.

An argument is **valid** if the conclusion is true whenever the hypothesis are $\underline{\text{all}}$ true, otherwise the argument is **invalid**.

An argument is denoted as:
$$\begin{array}{c} p_1\\p_2\\\vdots\\p_n\\\hline \vdots c\end{array}$$
 where
$$\begin{array}{c} p_1,p_2,\ldots,p_n \text{ are hypothesis}\\c \text{ is the conclusion}\\ \end{array}$$

The argument is valid whenever the proposition $(p_1 \wedge p_1 \wedge \cdots \wedge p_n) \to c$ is a tautology. Additionally, because of the commutative law, hypothesis can be reordered without changing the argument.

$$\begin{array}{c} p \\ p \to q \\ \hline \therefore q \end{array} \equiv \begin{array}{c} p \to q \\ p \\ \hline \therefore q \end{array}$$

1.11.1 The Form of an Argument

The argument is <u>valid</u> because its form, $p \to q \over \therefore q$ is an valid argument.

5 is not an even number.
$$p$$
If 5 is an even number, then 7 is an even number. $p \rightarrow q$
 \therefore 7 is not an even number. \therefore q

The argument is <u>invalid</u> because its form, $p \to q \over \therefore \neg q$ is an invalid argument.

1.12 Rules of Inference with Propositions

Using truth tables to establish the validity of an argument can become tedious, especially if an argument uses a large number of variables.

$$\begin{array}{c} p \\ p \to q \\ \hline \therefore q \end{array} \quad \text{Modus Ponens} \quad \begin{array}{c} p \\ q \\ \hline \therefore p \land q \end{array} \quad \text{Conjunction} \\ \\ \hline \begin{array}{c} \neg q \\ p \to q \\ \hline \therefore \neg p \end{array} \quad \text{Modus Tollens} \quad \begin{array}{c} p \to q \\ q \to r \\ \hline \therefore p \to r \end{array} \quad \text{Hypothetical Syllogism} \\ \\ \hline \begin{array}{c} p \\ \hline \therefore p \lor q \end{array} \quad \begin{array}{c} p \lor q \\ \hline \neg p \\ \hline \hline \therefore p \lor q \end{array} \quad \text{Disjunctive Syllogism} \\ \\ \hline \begin{array}{c} p \land q \\ \hline \hline \therefore p \end{array} \quad \begin{array}{c} p \to q \\ \hline \hline \end{array} \quad \begin{array}{c} p \to q \\ \hline \hline \therefore q \end{array} \quad \text{Resolution} \\ \\ \hline \begin{array}{c} p \to q \\ \hline \hline \end{array} \quad \begin{array}{c} p \to q \\ \hline \hline \end{array} \quad \text{Resolution} \\ \hline \begin{array}{c} p \to q \\ \hline \hline \end{array} \quad \begin{array}{c} p \to q \\ \hline \hline \end{array} \quad \text{Resolution} \\ \hline \end{array}$$

Example expressed in English:

If it is raining or windy or both, the game will be cancelled.	$(r \lor w) \to c$
The game will not be cancelled	$\neg c$
:. It is not windy.	$\neg w$

Steps to Solve:

$(r \vee w) \to c$	Hypothesis	(1)
$\neg c$	Hypothesis	(2)
$\neg(r \lor w)$	Modus Tollens: 1, 2	(3)
$\neg r \wedge \neg w$	DeMorgan's Law: 3	(4)
$\neg w \wedge \neg r$	Commutative Law: 4	(5)
$\neg w$	Simplification: 5	(6)

1.13 Rules of Inference with Quantifiers

In order to apply the rules of quantified expressions, such as $\forall x \neg (P(x) \land Q(x))$, we need to remove the quantifier by plugging in a value from the domain to replace the variable x.

For example:

Every employee who received a large bonus works hard.	$\forall x (B(x) \to H(x))$
Linda is an employee at the company.	$Linda \in x$
Linda received a large bonus.	B(Linda)
Some employee works hard.	$\exists x \; \mathrm{H}(x)$

Arbitrary Element: has no special properties other than those shared by all elements of the domain. **Particular Element:** may have special properties that are not shared by all the elements of the domain. For example, if the domain is the set of all integers, \mathbb{Z} , a particular element is 3, because it is odd, which is not true for all integers.

Rules of Inference for Quantified Statements

1.13.1 Example of using the Laws of Inference for Quantified Statements

Consider the following argument: $\begin{array}{c} \forall x (\mathrm{P}(x) \vee \mathrm{Q}(x)) \\ 3 \text{ is an integer} \\ \neg \mathrm{P}(3) \\ \hline \therefore \mathrm{Q}(3) \end{array}$

Steps to Solve:

$$\forall x (P(x) \lor Q(x))$$
 Hypothesis (1)
3 is an integer Hypothesis (2)
 $(P(3) \lor Q(3))$ Universal Instantiation: 1, 2 (3)
 $\neg P(3)$ Hypothesis (4)
 $Q(3)$ Disjunctive Syllogism: 3, 4 (5)

1.13.2 Showing an Argument with Quantified Statements is Invalid

Consider the following argument: $\frac{\exists x P(x)}{\exists x Q(x)}$ $\therefore \exists x (P(x) \land Q(x))$

Using a supposed domain $\{c,d\}$, with truth values of $\begin{array}{c|c} & P & Q \\ \hline c & T & F \\ \hline d & F & T \\ \end{array}$, the argument is invalid.

2 Proofs

- 2.1 Mathematical Definitions
- 2.2 Introduction to Proofs
- 2.3 Writing Proofs: Best Practices
- 2.4 Writing Direct Proofs
- 2.5 Proof by Contrapositive
- 2.6 Proof by Contradiction
- 2.7 Proof by Cases

^{*}Each use of Existential Instantiation must define a new element with its own symbol or name.

- 3 Sets
- 3.1 Sets and Subsets
- 3.2 Sets of sets
- 3.3 Union and Intersection
- 3.4 More set operations
- 3.5 Set identities
- 3.6 Cartesian products
- 3.7 Partitions

a

4 Functions

- 4.1 Definition of functions
- 4.2 Floor and Ceiling functions
- 4.3 Properties of functions
- 4.4 The inverse of a function
- 4.5 Composition of functions
- 4.6 Logarithms and exponents

a

5 Boolean Algebra

- 5.1 An introduction to Boolean Algebra
- 5.2 Boolean functions
- 5.3 Disjunctive and conjunctive normal form
- 5.4 Functional completeness
- 5.5 Boolean satisfiability
- 5.6 Gates and circuits

6 Relation and Digraphs

- 6.1 Introduction to binary relations
- 6.2 Properties of binary relations
- 6.3 Directed graphs, paths, and cycles
- 6.4 Composition of relations
- 6.5 Graph powers and the transitive closure
- 6.6 Matrix multiplication and graph powers
- 6.7 Partial orders
- 6.8 Strict orders and directed acyclic graphs
- 6.9 Equivalence relations
- 6.10 N-ary relations and relational databases

a

7 Computation

- 7.1 An introduction to algorithms
- 7.2 Asymptotic growth of functions
- 7.3 Analysis of algorithms
- 7.4 Finite state machines
- 7.5 Turing machines
- 7.6 Decision problems and languages

8 Induction and Recursion

- 8.1 Sequences
- 8.2 Recurrence relations
- 8.3 Summations
- 8.4 Mathematical induction
- 8.5 More inductive proofs
- 8.6 Strong induction and well-ordering
- 8.7 Loop invariants
- 8.8 Recursive definitions
- 8.9 Structural induction
- 8.10 Recursive algorithms
- 8.11 Induction and recursive algorithms
- 8.12 Analyzing the time complexity of recursive algorithms
- 8.13 Divide-and-conquer algorithms: Introduction and mergesort
- 8.14 Divide-and-conquer algorithms: Binary Search
- 8.15 Solving linear homogeneous recurrence relations
- 8.16 Solving linear non-homogeneous recurrence relations
- 8.17 Divide-and-conquer recurrence relations

a

9 Integer Properties

- 9.1 The Division Algorithm
- 9.2 Modular arithmetic
- 9.3 Prime factorizations
- 9.4 Factoring and primality testing
- 9.5 Greatest common factor divisor and Euclid's algorithm
- 9.6 Number representation
- 9.7 Fast exponentiation
- 9.8 Introduction to cryptography
- 9.9 The RSA cryptosystem

10 Introduction to Counting

- 10.1 Sum and Product Rules
- 10.2 The Bijection Rules
- 10.3 The generalized product rule
- 10.4 Counting permutations
- 10.5 Counting subsets
- 10.6 Subset and permutation examples
- 10.7 Counting by complement
- 10.8 Permutations with repetitions
- 10.9 Counting multisets
- 10.10 Assignment problems: Balls in bins
- 10.11 Inclusion-exclusion principle

11 Advanced Counting

- 11.1 Generating permutations
- 11.2 Binomial coefficients and combinatorial identities
- 11.3 The pigeonhole principle
- 11.4 Generating functions

a

12 Discrete Probability

- 12.1 Probability of an event
- 12.2 Unions and complements of events
- 12.3 Conditional probability and independence
- 12.4 Bayes' Theorem
- 12.5 Random variables
- 12.6 Expectation of random variables
- 12.7 Linearity of expectations
- 12.8 Bernoulli trials and the binomial distribution

 \mathbf{a}

13 Graphs

- 13.1 Introduction to Graphs
- 13.2 Graph representations
- 13.3 Graph isomorphism
- 13.4 Walks, trails, circuits, paths, and cycles
- 13.5 Graph connectivity
- 13.6 Euler circuits and trails
- 13.7 Hamiltonian cycles and paths
- 13.8 Planar coloring
- 13.9 Graph coloring

a

14 Trees

- 14.1 Introduction to trees
- 14.2 Tree application examples
- 14.3 Properties of trees
- 14.4 Tree traversals
- 14.5 Spanning trees and graph traversals
- 14.6 Minimum spanning trees