Optimising query plans

Overview of this video

How to optimise the initial query plan?

Why Optimise Query Plans?

The initial query plan might not be the optimal one

How to Optimise?

Evaluation of query plans:

- Bottom-up
- Efficiency depends on size of intermediate results

Rewrite the initial query plan so that intermediate results will be smaller

Based on equivalence laws of relational algebra

- Many laws (see references for this lecture on Vital)
- Examples:
 - $\sigma_{A=a \text{ AND B=b}}(R) = \sigma_{A=a}(\sigma_{B=b}(R))$ If A is on R
 - $\circ \ \sigma_{A=a}(\mathbf{R} \times S) = \sigma_{A=a}(\mathbf{R}) \times S$
 - $\circ \sigma_{A=B}(R \times S) = R \bowtie_{A=B} S$

If A is on R and B is on S

Heuristics

#1: Push selections as far down the tree as possible

Intuition: This gets rid of many irrelevant tuples very early during execution.

Heuristics

#2: "Push" projections as far down the tree as possible, or insert projections where appropriate

Many more heuristics...

Heuristics

#3: If possible, introduce equijoins for \times followed by σ

Summary

Optimisation of query plans at the logical level

- Started with initial query plan
- Applied equivalence laws of relational algebra to optimise the plan