EI M5

2010-11

## MATHEMATIK

# GLUCK 00 ERFOLG

## 1.\*\* Klausur - Pflichtteil

In diesem Teil sind weder GTR noch die Formelsammlung erlaubt. Um den Wahlteil zu erhalten, gib bitte diesen Pflichtteil bearbeitet ab.

### 1. Aufgabe - light up!

(5 Punkte)

Leite die folgenden Funktionsterme nach der Variablen ab und vereinfache sie!

$$a(x) = \sin(x)\cos(x)$$
 |  $b(x) = (2x^2 + x)^2$  |  $c(x) = \frac{6}{5x^2} - \frac{5x^3}{6}$  |  $d(x) = \sin(\sqrt{x^2 + 1}) + t^2$ 

#### 2. Aufgabe - Kurvendiskussion old style

(5 Punkte)

Gegeben ist die Funktion f mit  $f(x) = x^3 + x^2 - 2x$  für reelle x-Werte.

- a) Liegt eine Symmetrie vor? Begründe kurz.
- b) Bestimme die Nullstellen dieser Funktion.
- c) Wie verhält sich die Funktion für sehr große positive bzw. negative x-Werte? Begründe kurz.
- d) Bestimme die Tangente für den Punkt N<sub>1</sub>(1|0).

## EI M5

#### 2010-11

## MATHEMATIK



## 1.\*\* Klausur – Wahlteil

In diesem Teil sind GTR und Formelsammlung erlaubt. Vergiss nicht, deinen Gedankengang zu dokumentieren (damit ich weiß, was du dir so überlegt hast).

#### 4. Aufgabe - GTR on!

(2 Punkte)

Berechne folgende Werte:

a) 
$$f(0)$$
 und  $f(-7)$  für  $f(x) = \sin(\sqrt{x^2 - 13})$  b)  $g'(1)$  und  $g''(-1)$  für  $g(x) = \sin(2x - \sqrt{3x})$ 

b) 
$$g'(1)$$
 und  $g''(-1)$  für  $g(x) = \sin(2x - \sqrt{3x})$ 

### 6. Aufgabe – große Kurvenschar

(12 Punkte)

Gegeben ist die Kurvenschar  $f_t$  über  $f_t(x) = -x^4 + tx^2$  (t > 0) für reellen Zahlen x.

- a) Liegt eine Symmetrie vor? Begründe kurz.
- b) Bestimme  $f_3(0)$  und  $f_6(1)$ .
- c) Bestimme alle Extrempunkte der Kurvenschar.
- e) Bestimme die Ortskurve für die Hochpunkte.
- f) Bestimme die Wendepunkte.
- g) Skizziere die Schaubilder von  $f_1, f_2, f_3$  in einem geeigneten Koordinatensystem (L.E.=1cm).