Introducción al Análisis Matemático Tema 2 Clase Práctica 3

Licenciatura en Matemática Curso 2022

Al estudiante:

Bienvenido a la Clase Práctica 3 del Tema 2 del curso *Introducción al Análisis Matemático*. Los siguientes ejercicios pueden ser abordados con los conocimientos adquiridos en la conferencia correspondiente. ¡Esperamos que le vaya bien!

Colectivo de la asignatura

EJERCICIOS

Ejercicio 1.

Sobre la curva y=x(x-2)(x-4) se consideran los puntos P_1,P_2 de abcisas $x_1=1,x_2=3$ respectivamente. ¿En qué puntos la tangente a la curva es paralela a la secante $\overline{P_1P_2}$?

Ejercicio 2.

Halle el punto c de las fórmulas del valor medio para los casos siguientes

a)
$$f(x) = 3x^2 - 5$$
, siendo $a = -2, b = 0$

b)
$$f(x) = \frac{1}{x}$$
, con $ab > 0$

c) $f(x) = x^3$, con a, b arbitrarios.

Ejercicio 3.

Analiza el crecimiento y los extremos relativos de las funciones siguientes:

a)
$$y = 3x^4 - 4x^3 - 12x^2$$

b)
$$y = 4x^2 + \frac{1}{x}$$

c)
$$y = x^2 + \frac{2a^3}{x}$$

d)
$$y = \sqrt[3]{(x^2 - 1)^2}$$

e)
$$y = \cos x - 1 + \frac{x^2}{2}$$

f)
$$y = 2\sin(\frac{x}{2}) + 3\cos(\frac{x}{2})$$

Ejercicio 4.

En cada caso trace un esquema apropiado del gráfico de una función con las propiedades indicadas

a)
$$f'(x) > 0, \forall x \in \mathbb{R}$$

b)
$$f'(0) = 1, f'(2) = 1$$

c)
$$f(1) = 0, f'(x) < 0$$
 si $x < 1, f'(x) \ge 0$ si $x \ge 1$

Ejercicio 5.

Pruebe que

a)
$$|\sin x - \sin y| \le |x - y|, \ \forall x, y \in \mathbb{R}$$

b)
$$\arctan x + \arctan \frac{1-x}{1+x} = \frac{\pi}{4}, \ x > -1$$

b.1) Qué puede afirmarse de
$$f(x) = \arctan x + \arctan \frac{1-x}{1+x}$$
 para $x < -1$?

Ejercicio 6.

Pruebe que

a)
$$\frac{1}{9} < \sqrt{66} - 8 < \frac{1}{8}$$
 SIN CALCULAR!!!

b)
$$\arcsin \frac{x-1}{x+1} = 2 \arctan \sqrt{x} - \frac{\pi}{2}$$

Ejercicio 7.

Sin efectuar cálculos decida cuál de los números es mayor

- a) π^3 o 3^{π}
- b) ln 8 o 2
- c) $2^{\sqrt{2}}$ o e

Ejercicio 8.

Pruebe que

- a) $\ln(1+x) \ge \frac{x}{x+1}$ para x > -1
- b) $\sqrt{ab} \le \frac{a+b}{2}$ para a, b > 0
- c) $\tan x > x + \frac{x^3}{3}$ para $0 < x < \frac{\pi}{2}$

Ejercicio 9.

Analiza la convexidad de los gráficos de las siguientes funciones

- a) $y = x^a$, x > 0, $a \in \mathbb{R}$
- b) $y = \arctan x$
- c) $y = (1 + x^2)e^x$
- $d) y = x \sin x$
- e) $y = x^2 \ln x$

f)
$$y = e^{\arctan x}$$

g)
$$y = \frac{\sqrt{x}}{1+x}$$

Ejercicio 10.

Demuesre que la curva $y=\frac{x+1}{x^2+1}$ posee 3 puntos de inflexión que están situados sobre una misma recta.

Ejercicio 11.

Diga Verdadero (V) o Falso (F). Justifique en cada caso.

- a) Si las funciones f y g tienen un máximo en x=a entonces f+g tiene un máximo en x=a.
- b) Si las funciones f y g tienen un máximo en x=a entonces fg tiene un máximo en x=a.
- c) Si las funciones f y g tienen un punto de inflexión en x=a entonces f+g tiene un punto de inflexión en x=a.
- d) Si las funciones f y g tienen un punto de inflexión en x=a entonces fg tiene un punto de inflexión en x=a.