

Query Optimization

- > Amongst all equivalent plans choose the one with lowest cost
- > Cost is measured as total time for answering query
- > Factors that contribute to time cost
 - disk accesses (predominant)
 - CPU and network communication
- > Disk access cost in terms of
 - Number of seeks X average-seek-cost
 - Number of blocks read X average-block-read-cost
 - Number of blocks written X average-block-write-cost
 - note that a write of a block requires a re-read after being written to ensure correctness

291

Measures of Query Cost (Cont.)

- We use the number of block transfers from disk and the number of seeks
 - t_T time to transfer one block
 - t_S time for one seek
 - Cost for b block transfers plus the number S of seeks
 b * t_T + S * t_S
- > We ignore CPU costs for simplicity
 - Real systems do take CPU cost into account
- > Some algorithms can reduce disk IO by extra buffer space
 - Size of real buffer memory available depends on other concurrent queries
 - known only during execution
 - We use worst case estimates, assuming minimum amount of memory needed for the operation
 - Concurrent queries may share blocks needed avoiding disk I/O
 - Impossible to measure this in our cost estimation (during optimization)

© Nick Roussopoulos

Cost Parameters

- > Statistical information maintained in the system's catalog
 - n_r = number of tuples in the relation r
 - $b_{\rm r}$ = number of blocks containing tuples of relation r
 - s_r = average size of a tuple of relation r
 - f_r = blocking factor of r, l.e. the number of r tuples that fit in a block

Note:
$$b_r = \frac{n_r}{f}$$

- V(A,r) = number of distinct values of attribute A in r
 - = n_r if A is a key
- min(A,r) = minimum value of attribute A in r max(A,r) = maximum value of attribute A in r
- > Two important computations
 - I/O cost of each operation
 - Number of blocks accessed
 - Number of seeks
 - the size of the result

293

Types of Access & Algorithms

- 1. Linear Scan (simple predicate)
 - Single value
 - Range of values
- 2. Index Scan (simple predicate)
 - Single value
 - Range of values
- 3. Complex Predicates
- 4. Merge-Sort
- 5. Join Algorithms
 - Nested Loop
 - Indexed
 - Merge-Sort
 - Hash
- 6. Other Operations (outerjoins, group by, duplicate elimination, etc)
- 7. Expressions

© Nick Roussopoulos

294

1. Linear Scan: Selection/Projection

simple predicate: R.A = v

> A1: search for equality on a non key-unsorted: R.A = v [or R.A ≤ v]

$$Cost = ts + b_r * t_T$$

1 seek + b, transfers

> projection on attribute A without duplicate elimination: cost as above

$$Cost = t_S + b_r * t_T$$

> A1: R.A=v and R.A is a primary key – sorted (we stop early when the key is found)

$$Cost = ts + \frac{b_r}{2} * t_T$$

A1: If the relation is sorted (primary key), we can stop earlier for R.A ≤ v

 $Cost = ts + \frac{b_r}{2} * t_T$

295

2. Index Scan: Selection

simple predicate: R.A = v

- Index scan search uses an index to find records (selection condition must be on search-key of index)
- > A2 (primary key index, equality).

R.A=v retrieves a single record

$$Cost = (h_i + 1)(t_S + t_T)$$

> A3 (clustering index, equality on nonkey)

R.A=v retrieves multiple records (clustering index- records are on consecutive blocks):

$$Cost = h_i * (t_S + t_T) + t_T * b$$

Where

$$b = \frac{\frac{n_r}{V(A, r)}}{f_r}$$

296

© Nick Roussopoulos

Index Scan: Selection

simple predicate: R.A = v

> A4 (secondary index, equality on candidate key)

R.A=v retrieves a single record:

$$Cost = (h_i + 1)(t_S + t_T)$$

(same as A2)

R.A=v retrieves multiple records (each of which may be on a different block)

$$Cost = (h_i + 1 + B)(t_S + t_T)$$

where $B = \frac{n_r}{V(A,r)}$

Can be very expensive!

297

Index Scan: Range Selection

predicate: $R.A \ge v$

- A5 (clustering index, range). R.A≥v (Relation is sorted on A)
 - Use the index to find first tuple $\geq v$ and scan the relation sequentially from that point on

$$Cost = h_i * (t_S + t_R) + t_S + t_R * B$$

w/ a known value v

$$B = b_r * \frac{\max(A, r) - v}{\max(A, r) - \min(A, r)}$$

w/ v unbounded

$$B = \frac{b_r}{2}$$

- For R.A ≤ v
 - do not use the index
 - scan the relation sequentially till first tuple > v

w/ a known v

w/ v unbounded

$$Cost = b_r * \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$$

 $Cost = \frac{b_r}{2}$

298

Index Scan: Range Selection

predicate: $R.A \ge v$

- A6 (secondary index, range). R.A≥v (Relation is not sorted on A)
 - Use the index to find first index entry in the B+Tree leaves $\geq v$; then scan the B+TreeLeaves sequentially (to the right) to find for each entry its pointer to the sub-leaf level records

$$Cost = (h_i + \frac{B + TreeLeaves}{2} + C)(t_S + t_R)$$
w/a bounded v

w/ v unbounded

w/ a bounded v

w/ v unbounded

$$C = \frac{n_r}{2}$$

- $Cost = (\frac{B + TreeLeaves}{2} + C)(ts + t_R)$ $C = (1 + \frac{n_r}{V(A, r)})(v \min(A, r))$
- tuples with the same value are scattered
- can be a lot more expensive than a linear scan

3. Complex Selection Predicates

Conjunction: $\sigma_{\theta 1} \wedge \theta_2 \wedge \dots \theta_n(r)$

- > A7 (conjunctive selection using one index).
 - Select one of θ_i and algorithms A1 through A6 that results in the least cost for $\sigma_{\theta_i}(r)$.
 - Test other conditions on tuple after fetching it into memory buffer.
- > A8 (conjunctive selection using composite index).
 - Use appropriate composite (multiple-key) index if available.
- > A9 (conjunctive selection by intersection of TIDs).
 - Requires multiple indices
 - Use corresponding index for each condition, and take intersection of all the obtained sets of TIDs.
 - Then fetch records from file
 - For those attributes that do not have indices, apply the predicate tests in memory

300

© Nick Roussopoulos

Complex Selection Predicates

Disjunction: $\sigma_{\theta 1} \vee_{\theta 2} \vee \ldots_{\theta n} (r)$

- > A10 (disjunctive selection by union of TIDs).
 - Applicable if only all conditions have available indices.
 - Otherwise use linear scan.
 - Use corresponding index for each condition, and take union of all the obtained sets TIDs
 - Then fetch records from file
- > Negation: $\sigma_{-\theta}(r)$
 - Use linear scan on file

301

5.1 Cost of Block-Oriented Nested Loop

Buffer size M+1

- > cost depends on the number of buffers and the buffer replacement strategy
 - fasten 1 block from the outer relation, allocate M for the inner, and LRU $Cost = b_r + b_r b_s \qquad \qquad \text{block transfers assuming that } b_s > \text{M}$ (wastes M-1 buffers and is the same as if M=2) $Seeks = 2b_r \qquad \qquad \text{1 to get each outer block+1 to get to the 1st inner block}$

fasten M blocks from the outer relation, allocate 1 for the inner

1: read M from the outer cost: M blocks
2: for each block of s join 1 X M blocks cost: b_s blocks
3: repeat with the next M blocks of r until all done repeated b,/M times

$$Cost = \frac{(M + b_s)b_r}{M} = b_r + \frac{b_r b_s}{M}$$

which relation should be the outer?

306

Nick Roussonoulos

5.2 Indexed Nestet-Loop Join (equi-join)

- inner relation has an index (clustering or not) on the joining attribute
 - Consider building one just for doing the join

for each block b_r in r do begin
for each tuple t(r) in b_r do begin
search the index B on s with the value t.A of the joining attr. A
and join(t(r),t.A)
end
end

> cost = $b_r (t_T + t_S) + n_r^* Cost(\sigma(S.A=c))$ where Cost($\sigma(S.A=c)$) is as computed for indexed selection (A2-A6)

307

Hash-Join Algorithm Details

The hash-join of *r* and *s* is computed as follows:

- 1. Partition the relation *s* using hashing function *h*.
 - When partitioning a relation, one block of memory is reserved as the output buffer for each partition.
- 2. Partition *r* similarly.
- 3. For each i:
 - (a) Load s_i into memory and build an in-memory hash index on it using the join attribute. This hash index uses a different hash function than the earlier one h.
 - (b) Read the tuples in r_i from the disk one by one. For each tuple t_r locate each matching tuple t_s in s_i using the in-memory hash index. Output the concatenation of their attributes.

Relation s is called the **build input** and r is called the **probe input**.

310

© Nick Roussopoulos

Hash-Join Number of Partitions

- The number n of partitions and the hash function h is chosen such that each s_i should fit in memory.
 - Typically we choose n_h= b_S/M ↑ f where f is a "fudge factor", typically around 1.2
 - The probe relation partitions r_i need not fit in memory

311

Cost of Hash-Join

> cost of hash join is

$$3(b_r + b_s) + 4 * n_h$$
 block transfers
 $2(\lceil b_r/b_b \rceil + \lceil b_s/b_b \rceil) + 2 * n_h$ seeks

the red font factors account for the partially filled blocks in the partitions and \boldsymbol{b}_b is the number of blocks you read into the buffer every time

- If the entire build input can be kept in main memory no partitioning is required
 - Cost estimate goes down to b_r + b_s.

Assumption: after hashing the partitions of r and s have the same size with r and s. Otherwise, we need to add another small fudge factor.

312

© Nick Roussopoulos

Example of Cost of Hash-Join

instructor | teaches

- > M=20 blocks
- $b_{instructor} = 100$
- $b_{teaches} = 400$
- > instructor is the build input. Partition it into 5 partitions, each of size 20 blocks. This partitioning can be done in one pass
- Partition teaches into 5 partitions, each of size 80. This is also done in one pass
- During partitioning, we need to allocate a buffer for input, and a buffer for output in each of the 5 partitions. Therefore, b_b=M/(1+5)=20/6=3
- > Total cost, ignoring cost of writing partially filled blocks:
 - 3(100 + 400) + 4*5 = 1500 + 20 block transfers $2(\lceil 100/3 \rceil + \lceil 400/3 \rceil) + 2*5 = 336 + 10$ seeks

313

6. Other Operations

- > Outer Joins
 - Left outerjoin easy
 - Right/Full outerjoin (may need some bookkeeping)
- > Duplicate elimination
 - Sort at the end and eliminate
 - Hash output and eliminate
- > Aggregates
 - Sum, count, min, max easily kept during execution
 - Avg = Sum / count
 - Std = sqrt(ssum/count)
- > Set operations (\cup , \cap and \longrightarrow): can either use
 - A variant of merge-join after sorting, or
 - A variant of hash-join

314

© Nick Roussopoulos

7. Evaluation of Expressions

Relational expressions may contain several operations- evaluation tree

- > Alternatives for evaluating an evaluation tree
- 1. Materialization:
 - generate and store(=materialize) intermediate results of an expression
 - Input materialized intermediate results to compute remaining operators
 - Repeat until done
- 2. Pipelining:
 - pass on tuples to parent operations even as an operation is being executed
 - No intermediate results

315

Materialization

- Materialized evaluation: evaluate one operation at a time, starting at the lowest-level. Use intermediate results materialized into temporary relations to evaluate next-level operations.
- > E.g., in figure below, compute and store

$$\sigma_{building = "Watson"}(department)$$

then join the stored intermediate result with *instructor*, and finally compute the projection on *name*.

Nick Pausannulas

Materialization (Cont.)

- > Materialized evaluation is always applicable
- Cost of writing results to disk and reading them back can be quite high
- > Double buffering:
 - use two output buffers for each operation, when one is full write it to disk while the other is getting filled
 - Allows overlap of disk writes with computation and reduces execution time

317

316

Pipelining

Pipelined evaluation: evaluate several operations simultaneously, passing the results of one operation on to the next.

E.g., do not materialize or use temp store

 $\sigma_{building = "Watson"}(department)$

- instead, pass tuples directly to the join.
- Much cheaper than materialization: no need to store a temporary results
- Pipelining may not always be possible e.g., sort, hash-join.
- Pipelines can be executed in two ways: demand driven and producer driven

318

© Nick Roussopoulos

Pipelining (Cont.)

- > Implementation of demand-driven pipelining
 - Each operation is implemented as an iterator:
 - open()
 - E.g. file scan: initialize file scan
 - state: pointer to beginning of file
 - next()
 - E.g. for file scan: Output next tuple, advance, and save pointer as iterator state. .
 - close()

BOS