1 Estimate the performance of large scale run

We provide a model for estimating the performance of an execution with multiple file sets and multiple nodes based on that with single file set and one node. The same model can be applied to all steps of NGS Analyzer workflow: Alignment, Remove Duplicate and SNP. As the model does not include resource contention, calculated results are the maximum performance values.

Parameter	Type	Meaning
$Node_Count$	Variable	Number of nodes (processes)
$File_Count$	Variable	Number of target read files
$\overline{Elapse_Time_1}$	Constant	Elapse time of run with one file set and one node
$MFLOPS_1$	Constant	MFLOPS of run with one file set and one node
$MPIS_1$	Constant	MIPS of run with one file set and one node
$MEM_Throughput_1$	Constant	Memory throughput of run with one file set and one
		node
$File_Size_1$	Constant	Average file size of one file set

1.1 Elapse Time

$$\frac{File_Count \times Elapse_Time_1}{Node_Count}$$

1.2 MFLOPS

 $Node_Count \times MFLOPS_1$

1.3 MFLOP

 $File_Count \times Elapse_Time_1 \times MFLOPS_1$

1.4 MIPS

 $Node_Count \times MPIS_1$

1.5 Mega Instructions

 $File_Count \times Elapse_Time_1 \times MPIS_1$

1.6 Memory Throughput

 $Node_Count \times MEM_Throughput_1$

1.7 Memory Consumption

 $File_Count \times Elapse_Time_1 \times MEM_Throughput_1$

1.8 IO Read/Write Size

 $File_Count \times File_Size_1$

1.9 IO Read/Write Throughput

 $\frac{Node_Count \times File_Size_1}{Elapse_Time_1}$

2 Estimate the required performance when maximum elapse time is given

We provide a model for estimating the required performance of each workflow step when the execution should be completed within the specified elapse time. The same model can be applied to all steps of NGS Analyzer workflow: Alignment, Remove Duplicate and SNP.

The meanings of parameters are same as the above table.

2.1 MFLOPS

$$\frac{File_Count \times Elapse_Time_1 \times MFLOPS_1}{Time}$$

2.2 MFLOP

$$File_Count \times Elapse_Time_1 \times MFLOPS_1$$

2.3 MIPS

$$\frac{File_Count \times Elapse_Time_1 \times MPIS_1}{Time}$$

2.4 Mega Instructions

$$File_Count \times Elapse_Time_1 \times MPIS_1$$

2.5 Memory Throughput

$$\frac{File_Count \times Elapse_Time_1 \times MEM_Throughput_1}{Time}$$

2.6 Memory Consumption

 $File_Count \times Elapse_Time_1 \times MEM_Throughput_1$

2.7 IO Read/Write Size

 $File_Count \times File_Size_1$

2.8 IO Read/Write Throughput

 $\frac{File_Count \times File_Size_1}{Time}$

3 Estimate the required performance for staging when maximum staging time is given

We provide a model for estimating the required performance of stage-in/out of input/output data on a system that employs staging when the staging should be completed within the specified time. The same model can be applied to all steps of NGS Analyzer workflow: Alignment, Remove Duplicate and SNP.

Parameter	Type	Meaning
$Node_Count$	Variable	Number of nodes where files are staged-in/out
$File_Count$	Variable	Number of read files to be staged-in/out
Time	Variable	Maximum time for staging
$\overline{DB_Size}$	Constant	Database size
$File_Size_1$	Constant	Average file size of one file set

3.1 Stage In Throughput

$$\frac{Node_Count \times DB_Size + File_Count \times File_Size_1}{Time}$$

3.2 Stage Out Throughput

$$\frac{File_Count \times File_Size_1}{Time}$$