Chapitre 29: Fonctions de deux variables

1 Fonction continues sur un ouvert de \mathbb{R}^2

1.1 Ouverts de \mathbb{R}^2

Dans tout le chapitre, on munit \mathbb{R}^2 de sa norme euclidienne canonique.

Définition 1.1. Soit $p \in \mathbb{R}^2$ et r > 0

On appelle disque ouvert de centre p et de rayon r la partie $D(p,r) = \{z \in \mathbb{R}^2 \mid ||z-p|| < r\}$

Définition 1.2. Soit U une partie de \mathbb{R}^2

On dit que U est ouvert de \mathbb{R}^2 si $\forall p \in U$, $\exists r > 0 : D(p,r) \subseteq U$

1.2 Fonctions continues

Dans toute cette section, U désigne un ouvert non vide de \mathbb{R}^2

Étant donné une fonction $f: U \to \mathbb{R}$ et un point $p = (a, b) \in U$, on notera indifféremment f(p) ou f(a, b) la valeur de f en ce point.

On peut représenter graphiquement une fonction $f:U\to\mathbb{R}$ par son graphe :

$$\Gamma_f = \{ (x, y, f(x, y) \mid (x, y) \in U \}$$

qui est une partie de $U \times \mathbb{R}$, et donc de \mathbb{R}^3

Définition 1.3. Soit $f: U \to \mathbb{R}$ une fonction. Soit $p \in U$

* On dit que la fonction f est continue en p si

$$\forall \varepsilon > 0, \exists \eta > 0 : \forall z \in U \ (\|z - p\| \le \eta \implies |f(z) - f(p)| \le \varepsilon)$$

* On dit que *f* est continue si elle est continue en tout point de *U*

Proposition 1.4. Soit $f: U \to \mathbb{R}$, I un intervalle contenant f(U) et $\theta: I \to \mathbb{R}$

Si f est continue en $p \in U$ et que θ est continue en f(p), alors la composée $\theta \circ f$ est continue en p

Proposition 1.5. Soit $f: U \to \mathbb{R}$, I un intervalle non trivial et γ_1 et $\gamma_2: I \to \mathbb{R}$ deux fonctions telles que la fonction $\gamma: t \mapsto (\gamma_1(t), \gamma_2(t))$ soit à valeurs dans U

Si γ_1 et γ_2 sont continues en $a \in I$, et que f est continue en $\gamma(a)$, alors $f \circ \gamma : t \mapsto f(\gamma_1(t), \gamma_2(t))$ est continue en a

Proposition 1.6. Soit $f:U\to\mathbb{R}$, V un ouvert de \mathbb{R}^2 et $\varphi,\psi:V\to\mathbb{R}$ deux fonctions telles que

 $\Phi: z \mapsto (\varphi(z), \psi(z))$ soit à valeurs dans U

Si φ et ψ sont continues en $p \in V$, et que f est continue en $(\varphi(p), \psi(p))$, alors $f \circ \Phi : z \mapsto f(\varphi(z), \psi(z))$ est continue en p

2 Fonctions de classe C^1

Dans toute cette section, U désigne un ouvert non vide de \mathbb{R}^2 et f une fonction de U dans \mathbb{R}

2.1 Dérivées partielles

Étant donné un point $p = (a, b) \in U$, on considère les ensembles :

$$D_1 = \{ x \in \mathbb{R} \mid (x, b) \in U \}$$
 et $D_2 = \{ y \in \mathbb{R} \mid (a, y) \in U \}$

et les applications partielles :

$$\varphi_1: \begin{cases}
D_1 \to \mathbb{R} \\
x \mapsto f(x,b)
\end{cases}
\text{ et }
\varphi_2: \begin{cases}
D_2 \to \mathbb{R} \\
y \mapsto f(a,y)
\end{cases}$$

Comme *U* est ouvert, on peut trouver r > 0 tel que $D(p,r) \subseteq U$

On a alors les inclusions:

$$|a-r,a+r| \subseteq D_1$$
 et $|b-r,b+r| \subseteq D_2$

Notons que D_1 et D_2 peuvent ne pas être des intervalles, mais que cela n'a guère d'importance puisque la discussion est ici locale : seul ce qui se passe au voisinage de $a \in D_1$ et $b \in D_2$ nous intéresse.

Définition 2.1. Soit $p = (a, b) \in U$

* Si l'application partielle φ_1 est dérivable en a, on dit que f admet une première dérivée partielle

$$\partial_1 f(a,b) = \varphi_1'(a)$$

* Si l'application partielle φ_2 est dérivable en b, on dit que f admet une deuxième dérivée partielle

$$\partial_2 f(a,b) = \varphi_2'(b)$$

Remarque: On utilise en pratique une notation plus parlante.

Pour une fonction $f:(x,y)\mapsto f(x,y)$, on note plutôt:

$$\frac{\partial f}{\partial x}(a,b) = \partial_1 f(a,b)$$
 et $\frac{\partial f}{\partial y}(a,b) = \partial_2 f(a,b)$

en s'adaptant aux noms des variables apparaissant dans la définition de f. Par exemple, les dérivées partielles de la fonction $f:(r,\theta)\mapsto r\cos\theta$ sont données par :

$$\forall (s,\omega) \in \mathbb{R}^2, \frac{\partial f}{\partial r}(s,\omega) = \cos \omega \quad \text{et} \quad \frac{\partial f}{\partial \theta}(s,\omega) = -s \sin \omega$$

Cette notation est potentiellement ambigüe, car les variables apparaissant dans la définition de f sont en fait des variables muettes, mais elle ne pose guère de problème à l'usage.

Proposition 2.2. Soit $f, g : U \to \mathbb{R}$ et $p \in U$

* Si f et g admettent des dérivées partielles en p, alors f + g également, avec :

$$\frac{\partial (f+g)}{\partial x}(p) = \frac{\partial f}{\partial x}(p) + \frac{\partial g}{\partial x}(p) \quad \text{et} \quad \frac{\partial (f+g)}{\partial y}(p) = \frac{\partial f}{\partial y}(p) + \frac{\partial g}{\partial y}(p)$$

* Si f et g admettent des dérivées partielles en p, alors fg également, avec :

$$\frac{\partial (fg)}{\partial x}(p) = \frac{\partial f}{\partial x}(p)g(p) + f(p)\frac{\partial g}{\partial x}(p) \quad \text{et} \quad \frac{\partial (fg)}{\partial y}(p) = \frac{\partial f}{\partial y}(p)g(p) + f(p)\frac{\partial g}{\partial y}(p)$$

Remarque : L'existence des dérivées partielles, même en tout point de U, n'entraîne pas la continuité de f

2.2 Fonctions de classe C^1

Si la fonction f admet des dérivés partielles en tout point de U, on peut considérer $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ comme des fonctions définies sur U

Définition 2.3. La fonction f est dite <u>de classe</u> C^1 si elle admet des dérivées partielles en tout point de U et que les fonctions $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial u}$ sont continues.

On note $C^1(U;\mathbb{R})$ ou, plus simplement, $C^1(U)$ l'ensemble des fonctions de classe C^1 définies sur U

Théorème 2.4 (Développement limité à l'ordre 1). Soit $f \in C^1(U)$ et $p = (a, b) \in U$. Il existe alors une fonction $\varepsilon : U \to \mathbb{R}$ telle que $\varepsilon(z) \xrightarrow[z \to p]{} 0$ et pour tout $(x, y) \in U$:

$$f(x,y) = f(a,b) + (x-a)\frac{\partial f}{\partial x}(a,b) + (y-b)\frac{\partial f}{\partial y}(a,b) + \varepsilon(x,y) \|(x,y) - (a,b)\|$$

<u>Remarque</u> : On peut écrire de manière plus condensée le résultat précédent sous la forme d'un développement limité à l'ordre 1 :

$$f(a+h,b+k) = f(a,b) + h\frac{\partial f}{\partial x}(a,b) + k\frac{\partial f}{\partial y}(a,b) + o\left(\|(h,k)\|\right)$$

Corollaire 2.5. Soit $f \in C^1(U)$. Alors f est continue.

Proposition 2.6. Soit $f,g \in C^1(U)$. Alors la somme f+g et le produit fg sont des fonctions de classe C^1

2.3 Gradient

Définition 2.7. Soit $f \in C^1(U)$. Le gradient de f est l'application

$$\nabla f: \begin{cases} U \to \mathbb{R}^2 \\ (a,b) \mapsto \nabla f(a,b) = \left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right) \end{cases}$$

Remarque : Soit $f \in C^1(U)$ et $p \in U$.

Il existe alors une fonction $\varepsilon:U\to\mathbb{R}$ telle que $\varepsilon(z)\xrightarrow[z\to p]{}0$ et pour tout $z\in U$:

$$f(z) = f(p) + \langle \nabla f(z) \mid z - p \rangle + \varepsilon(z) ||z - p||$$

3 Dérivation des fonctions composées

Dans toute cette section, U désigne un ouvert non vide de \mathbb{R}^2 et I désigne un intervalle non trivial.

3.1 Composition avec une fonction d'une variable

Proposition 3.1. Soit $f \in C^1(U)$, I un intervalle contenant f(U) et $\theta \in C^1(I)$ Alors $\theta \circ f$ est une fonction de classe C^1 , avec, pour tout $p \in U$

$$\frac{\partial (\theta \circ f)}{\partial x}(p) = \theta' \big(f(p) \big) \frac{\partial f}{\partial x}(p) \quad \text{ et } \quad \frac{\partial (\theta \circ f)}{\partial y}(p) = \theta' \big(f(p) \big) \frac{\partial f}{\partial y}(p)$$

3.2 Première règle de la chaîne

Théorème 3.2. Soit $f \in C^1(U)$ et $\gamma_1, \gamma_2 \in C^1(I)$

On suppose que la fonction $\gamma: t \mapsto (\gamma_1(t), \gamma_2(t))$ est à valeurs dans U

Alors $f \circ \gamma : t \mapsto f(\gamma_1(t), \gamma_2(t))$ est de classe C^1 et l'on a, pour tout $a \in I$

$$(f \circ \gamma)'(a) = \frac{\partial f}{\partial x} (\gamma(a)) \gamma_1'(a) + \frac{\partial f}{\partial y} (\gamma(a)) \gamma_2'(a)$$

Remarque : Avec les mêmes notations que dans le théorème, on peut écrire de façon concise la dérivée de $f \circ \gamma$ à l'aide du gradient de f

$$\forall a \in I, (f \circ \gamma)'(a) = \langle \nabla f(\gamma(a)) \mid \gamma'(a) \rangle$$

où l'on a noté $\gamma'(a) = (\gamma'_1(a), \gamma'_2(a))$

3.3 Dérivée selon un vecteur

Proposition 3.3. Soit $f \in C^1(U)$, $p \in U$ et $v = \begin{pmatrix} h \\ k \end{pmatrix} \in \mathbb{R}^2$

L'application $\varphi_v: t \mapsto f(p+tv)$ est définie au voisinage de 0, dérivable en 0, de dérivée

$$\varphi'_v(0) = h \frac{\partial f}{\partial x}(p) + k \frac{\partial f}{\partial y}(p) = \langle \nabla f(p) \mid v \rangle$$

On note $D_v f(p) = \varphi'_v(0)$ cette dérivée, et on l'appelle dérivée de f en p selon le vecteur v

Remarque : Si v est un vecteur unitaire, l'inégalité de Cauchy-Schwarz donne

$$|D_v f(p)| = |\langle \nabla f(p) \mid v \rangle| \le ||\nabla f(p)||$$

En outre, la dérivée $D_v f(p)$ est alors maximale (resp. minimale) si v est positivement (resp. négativement) colinéaire à $\nabla f(p)$: elle vaut dans ce cas $\pm \|\nabla f(p)\|$

Le gradient de f en p pointe donc dans la direction dans laquelle f croît le plus vite (qui est aussi, en sens inverse, celle où elle décroît le plus vite). Cela correspond à la direction de plus grande pente sur le graphe Γ_f

3.4 Deuxième règle de la chaîne

Théorème 3.4. Soit $f \in C^1(U)$. Soit V un ouvert non vide de \mathbb{R}^2 et $\varphi, \psi \in C^1(V)$ deux fonctions telles que l'application $\Phi: (x,y) \mapsto (\varphi(x,y), \psi(x,y))$ soit à valeurs dans U

Alors l'application composée

$$f \circ \Phi : \begin{cases} V \to \mathbb{R} \\ (x,y) \mapsto f(\varphi(x,y), \psi(x,y)) \end{cases}$$

est de classe C^1 , et vérifie

$$\forall p \in V, \begin{cases} \partial_1(f \circ \Phi)(p) = \partial_1 f(\Phi(p)) \partial_1 \varphi(p) + \partial_2 f(\Phi(p)) \partial_1 \psi(p) \\ \partial_2(f \circ \Phi)(p) = \partial_1 f(\Phi(p)) \partial_2 \varphi(p) + \partial_2 f(\Phi(p)) \partial_2 \psi(p) \end{cases}$$

 $\underline{\mathsf{Remarque}} : \mathsf{Si} \ \mathsf{l'on} \ \mathsf{note} \ f : (x,y) \mapsto f(x,y) \ \mathsf{et} \ \Phi : (u,v) \mapsto (\varphi(u,v), \psi(u,v)), \mathsf{ces} \ \mathsf{formules} \ \mathsf{deviennent}, \mathsf{selon} \ \mathsf{la} \ \mathsf{notation} \ \mathsf{usuelle}$

$$\forall p \in V, \begin{cases} \frac{\partial (f \circ \Phi)}{\partial u}(p) = \frac{\partial f}{\partial x}(\Phi(p)) \frac{\partial \varphi}{\partial u}(p) + \frac{\partial f}{\partial y}(\Phi(p)) \frac{\partial \psi}{\partial u}(p) \\ \frac{\partial (f \circ \Phi)}{\partial u}(p) = \frac{\partial f}{\partial x}(\Phi(p)) \frac{\partial \varphi}{\partial u}(p) + \frac{\partial f}{\partial y}(\Phi(p)) \frac{\partial \psi}{\partial u}(p) \end{cases}$$

4 Extrema

Dans toute cette section, U désigne un ouvert non vide de \mathbb{R}^2 . En plus des notions générales d'extremum (sous-entendu : global), la norme euclidienne permet de définir les extrema locaux.

Définition 4.1. Soit *X* une partie non vide de \mathbb{R}^2 , $f: X \to \mathbb{R}$ une fonction et $p \in X$

* On dit que f admet un $\underline{\text{maximum local}}$ en p si

$$\exists \eta > 0 : \forall z \in X \cap D(p, \eta), f(z) \leq f(p)$$

* On définit de même les notions de minimum local

Définition 4.2. Soit $f \in C^1(U)$ et $p \in U$

On dit que p est un point critique pour f si $\frac{\partial f}{\partial x}(p) = \frac{\partial f}{\partial y}(p) = 0$, c'est-à-dire si $\nabla f(p) = (0,0)$

Théorème 4.3. Soit $f \in C^1(U)$ et $p \in U$

Si p admet un extremum local en p, alors p est un point critique de f