

Generative Adversarial Networks (GANs) and Its Applications

Ankit Jha,

Assistant Professor, Dept. of CSÉ, The LNMIIT, Jaipur Ph.D. CSRE, IIT Bombay, Postdoc, INRIA, Grenoble, France

Lecture 1 06 August, 2024

Outline about the course:

- Problems tackled by the Deep Generative Models
- Concept of Generative Adversarial Networks (GANs) and its elements
- Challenges while using GANs
- Advancements in GANs
- GAN evaluation protocols
- Applications of GAN

Detailed course structure:

- Introduction
- Basic tools
 - Overview on deep learning (architecture design, training, optimization, evaluation)
- Introduction to deep generative models
- GAN architectures, training, evaluation
- Applications of GANs

Marking scheme:

- Assignments/Quiz (20)
 - Paper reading (related to GANs) and publishing the same on blogs (in 1-2 pages)
 - Class presentation (team of 2-4 members)
- Mid-term (15)
- End-term (25)
- Projects (40)
 - Implementing papers related to GANs and its applications
 - Discussion on the practical challenges

Programming Tools:

- Pytorch (I'll be using)
- TensorFlow/Keras

Unveiling SpectralGPT: A Breakthrough in Remote Sensing with 3D Generative Pretrained Transformers

This blog post offers a condensed overview of the scholarly work authored by Danfeng Hong, Senior Member, and colleagues, titled "SpectralGPT: Spectral Remote Sensing Foundation Model," which is accessible through the following link: <u>SpectralGPT</u>. The content has been composed collaboratively by Hariseetharam (23D1383) and Chamanbanolia (23D1389) as a requirement for GNR638 — Machine Learning for Remote Sensing II by <u>Prof. Biplab Banerjee</u>.

Generative

Adversarial

Networks

Overview of GANs:

- Belongs to class of Machine Learning (Proposed by Ian Goodfellow in 2014)
- Consists of two neural networks
 - Generator (create data that is indistinguishable from real data)
 - Generates fake data samples, attempting to mimic the real data distribution
 - Discriminator (aims to differentiate between real and generated data)
 - Evaluates the authenticity of the data, distinguishing between real and fake samples
- These two networks playing a zero-sum game (Game theory)
 - The gain of one player is exactly balanced by the loss of another player
 - The total payoff for all players in the game adds up to zero

Overview of GANs:

- Generator's objective:
 - Maximize the probability that the Discriminator classifies its outputs as real
 - Or minimize the Discriminator's ability to distinguish real from fake
- Discriminator's objective:
 - Maximize its accuracy in distinguishing real samples from fake ones
 - Minimize the Generator's success in fooling the Discriminator

Timeline of GANs:

Generative

Adversarial

Networks

Learn generative model

Generative

Adversarial

Networks

Trained in an adversarial mode competitive relationship

Competitive relationship between two components of the network: the Generator and the Discriminator.

Generative

Adversarial

Networks

Using Deep Neural Networks

Why generative model?

- Discriminative Models:
 - Learn the conditional probability distribution P(Y | X)
 - o Focus on drawing boundaries between different classes in the data, making them well-suited for classification tasks
 - Mapping from input features X to output labels Y
 - Do not model the underlying data distribution explicitly
 - Examples:
 - SVM, Logistic Regression, Neural Network (classification or regression tasks)

Why generative model?

- Discriminative Models:
 - Learn the joint probability distribution P(X,Y) of the input data X and the corresponding labels Y
 - Generate new data instances that are similar to the training data
 - Model the distribution of the data, providing insights into the data structure
 - o They model how the data is generated in terms of a probabilistic model
 - For instance, given a label Y, a generative model can generate a sample X from the distribution P(X|Y)
 - Examples:
 - Gaussian Mixture Models (GMMs)
 - Variational Autoencoders (VAEs)
 - GANs, etc.

Applications of GANs:

- Image-to-Image Translation (pix2pix)
- Denoising
- Super-resolution
- Inpainting
- Neural Style Transfer
- Text-to-Image Synthesis

Input

Applications of GANs:

Mustache

No Mustache

Applications of GANs:

primaries and secondaries.

breast and crown, and black almost all black with a red crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

Figure 1. Examples of generated images from text descriptions

Applications of GANs:

