Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет **«Робототехника и комплексная автоматизация» (РК)** Кафедра **«Теория механизмов и машин» (РК-2)**

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

По домашнему заданию №1 По курсу «Прикладная механика» Вариант 7

Исполнители: Бабаян В.Ф.,

Ермоленко С.Е., Наваркин А.А., Ухачев В.С., Хмылев К.В.

Tpynna: PK6-44

Руководители проекта: Подчасов Е.О.,

Шашурин Г.В.

РЕФЕРАТ

Пояснител	ьная записка	к домашнем	у заданию №	1 по курсу	«Прикладная	механика»	сдержит	страниц і	машинописного
текста,	рисунков,	таблиц,	приложений.	Cocmoum u	ıз <u> </u> частей,	для написс	тнпа дечо	использован	0
источников	3 .								

Ключевые слова:

В пояснительной записке приведено:

СОДЕРЖАНИЕ

Вариант 7.

Рисунок 1— Исходный механизм.

Для заданного механизма:

- 1. Составить описание работы механизма, определить входное и выходное звенья.
- 2. Составить структурную схему механизма с абсолютно жесткими звеньями и голономными связями. Для полученной структурной схемы
 - а. Определить число подвижностей на плоскости с использованием формулы Чебышева.
 - ь. Выделить
 - Все возможные первичные механизмы.
 - Группы Ассура, соответствующие всем первичным механизмам.
 - с. Проверить правильность определения числа подвижностей.
- 3. Составить структурную схему механизма с учетом различных вариантов упругости звеньев (схему эквивалентного механизма).
- 4. Определить число подвижностей на плоскости для эквивалентного механизма.
- 5. Составить геометрически параметризованные модели звеньев механизма.
- 6. Используя метод начальных параметров или метод конечных элементов получить значения жесткостей для первичных механизмов.

ОПИСАНИЕ РАБОТЫ МЕХАНИЗМА

Кривошипно-кулисный механизм качающегося цилиндра (№1338 по Артоболевскому).

Механизм относится:

- По структурно-сконтруктивным признакам механизм поршневых машин.
- По функциональному назначению механизм поршневых машин.

Двухступенчатый цилиндр 2 качается вокруг оси А. Со штоком звена 3 жестко соединены два поршня различных диаметров. С кривошипом 1 жестко связан тяжелый маховик 4.

Кривошипно-кулисный механизм с качающейся кулисой служит для преобразования вращательного движения кривошипа 1 в качательное движение кулисы 2 и при этом происходит быстрый ход при движении камня кулисы 3 в одну сторону и медленный — в другую. Механизм широко применяется в металлорежущих станках, например: в поперечно-строгальных, зубодолбежных и др.

Входное звено— кривошип 1. Выходное звено— кулиса 2.

СТРУКТУРНАЯ СХЕМА МЕХАНИЗМА С АБСОЛЮТНО ЖЕСТКИМИ ЗВЕНЬЯМИ И ГОЛОНОМНЫМИ СВЯЗЯМИ

Рисунок 2— Структурная схема механизма.

а. Определим число подвижностей на плоскосте заданного механизма (Рисунок 2) с использованием формулы Чебышева:

$$W^{\Pi\Pi} = 3 \cdot n - (2 \cdot p_{H} - 1 \cdot p_{B} - q_{\Pi}),$$
 (1)

где п — число подвижных звеньев схемы,

 p_{H} — число нижних кинематических пар,

рв — число высших кинематических пар,

q_n — число избыточных (повторных) связей.

Расчитаем подвижность на плоскости для нашего механизма:

$$n = 3$$
, $p_{\text{H}} = 4$, $p_{\text{B}} = 0$:

$$W^{\Pi\Pi} = 3 \cdot 3 - 2 \cdot 4 = 1$$

ь. Условия ассурова механизма,

т — четное (общее число звениев),

$$W = 0$$
, $p_b = 0 \rightarrow p_H = 1.5 \cdot n$.

Оба условия выполняются, следовательно, данный механизм можно разбить на группы Ассура.

Рисунок 3— Первичный механизм I и группа Ассура соответствующая ему.

$$n = 1, p_{\rm H} = 1, p_{\rm B} = 0$$
:

$$n = 2, p_{\rm H} = 3, p_{\rm B} = 0$$
:

$$W^{\Pi\Pi} = 3 \cdot 1 - 2 \cdot 1 = 1$$

$$W^{\Pi \Pi} = 3 \cdot 2 - 2 \cdot 3 = 0$$

$$q = 0;$$

$$q = 0;$$

Рисунок 4 — Первичный механизм II и группа Ассура соответствующая ему.

$$n = 1, p_{\text{H}} = 1, p_{\text{B}} = 0$$
: $n = 2, p_{\text{H}} = 3, p_{\text{B}} = 0$: $W^{\Pi \Pi} = 3 \cdot 1 - 2 \cdot 1 = 1$ $W^{\Pi \Pi} = 3 \cdot 2 - 2 \cdot 3 = 0$ $q = 0$; $q = 0$;

с. $\sum W_0 = \sum W_I = \sum W_{II} = 1$ ightarrow число подвижностей данного механизма определено правильно.

Задание 3,4

$$W$$
пл = $3 \cdot 3 - 2 \cdot 4 = 1$

$$W \pi \pi = 3 \cdot 4 - 2 \cdot 5 = 2$$

$$W\pi\pi = 3 \cdot 4 - 2 \cdot 5 = 2$$

$$W$$
пл = $3 \cdot 5 - 2 \cdot 6 = 3$

$$W\pi\pi = 3 \cdot 4 - 2 \cdot 5 = 2$$

$$W \pi \pi = 3 \cdot 4 - 2 \cdot 5 = 2$$

$$W$$
пл = $3 \cdot 5 - 2 \cdot 6 = 3$

Wпл = $3 \cdot 5 - 2 \cdot 6 = 3$

$$W$$
пл = $3 \cdot 7 - 2 \cdot 8 = 5$

$$W$$
пл = $3 \cdot 5 - 2 \cdot 6 = 3$

Wпл = $3 \cdot 6 - 2 \cdot 7 = 4$

Задание 5

Поршень

Маховик Кривошип

Стакан поршня