Catégoriser automatiquement des questions

Mestapha Oumouni

P5 OC parcours IML Mentor: Samir Tanfous Août 2022

Contexte et problématique

Nettoyage et exploration des données

Extraction des features

Modélisation supervisée

Modélisation non-supervisée

Déploiement Api et gestion de code

Conclusion

Contexte du projet

- Très grande plateforme de questions-réponses liée au développements informatiques
- Il faut entrer plusieurs étiquettes liées à la question.
- ❖ Tâche fastidieuse pour les utilisateurs moins expérimentés
- Les tags sont un texte libre

Objectifs: Développer un système automatique de suggestion de tags pour le site en assignant automatiquement plusieurs tags pertinents à une question

→ Utilisons les algorithmes de machine learning

Source de données

Données importées depuis la plateforme "stackexchange explorer" proposé par Stack Overflow

```
1 SELECT TOP 500000 Title, Body, Tags, Id, Score, ViewCount, FavoriteCount, AnswerCount
2 FROM Posts
3 WHERE PostTypeId = 1 AND ViewCount > 10 AND FavoriteCount > 10
4 AND Score > 5 AND AnswerCount > 0 AND LEN(Tags) - LEN(REPLACE(Tags, '<','')) >= 5
```

Base de données de 27528 lignes et 8 colonnes (fichier .csv).

Comptent les titres, les corps et les tags associés à chaque question et les informations sur le score et le nombre de vues et de réponses.

Nettoyage et exploration des données

Particularité des questions et des Tags

Contient du code Balise html

Tags avec des balise <>. seront remplacé par ''

- ☐ Filtrer le corps suivant la langues anglaise
- Formatage des Tags
- ☐ Typage des questions
- Suppression des balises HTML avec BeautifulSoup
- Passage au minuscule
- Suppression des ponctuations, extra-espace, nombre, et d'autre caractères spéciales ... sauf(c# et c++)
- □ Tokenisation
- Lemmatisation avec POS
- ☐ Suppression des stopwords
- ☐ Suppression les doublons de Tags

Nettoyage et exploration des données

Nombre et fréquence des mots dans les titres, corps et tags.

Suppression des tags inexistants dans les listes de corps+title

filtrer les données suivant len(tags)>0 1< len(title)< 10 5< len(body)< 120

Top 500 word Cloud of Title

Extraction des features

- Bag of Words: créer une matrice creuse (n,k)
 - n documents et k le nombre de n-grams
 - entrée ij compte le nombre de fois où le mot j apparaît dans le document i
- ❖ TF- idf = Term-Frequency Inverse Document Frequency
 - matrice creuse (n,k)
 - entrées sont des fréquences des mots pondérées par les ordres des mots.
 - > but: réduire l'importance relative des tokens très fréquents et moins significatifs

Word2vec: plongement des mots (avec des matrice dense)

- Les mots sont représentés par vecteurs => calculer les distances, similarités des mots opérations arithmétiques
- Dictionnaires pré-entraînés, exemple: Google News dataset (100 billion mots)
- Entrainer son propre modèle par un réseau de neurone

Modélisation supervisée

Tf-idf features

- Utilisation 50 top tags
- One-versus-rest(Classifier)
- Prédiction avec probabilité d'appartenance à chaque classe
- Seuil optimal de décision
- métrique Précision et ROC-AUC moyenne
- Comparaison des modèles via le temps de prédiction, le meilleur score et le nombre de tags vide

Avantage: prédiction directe des tags

Modèles

- Régression logistique
- KNN
- SVM (linéaire)
- Forêt aléatoire
- Gradient boosting

Modélisation supervisée (Comparaison)


```
print('le nombre de prédiction vide par la Regression Logistic est: ', sum(count_lr==0)) print('le nombre de prédiction vide par le Random Forest est: ', sum(count_rf==0)) print('le nombre de prédiction vide par le SVM: ', sum(count_svm==0))
```

```
le nombre de prédiction vide par la Regression Logistic est: 89
le nombre de prédiction vide par le Random Forest est: 192
le nombre de prédiction vide par le SVM: 185
```

Word2vec: paramètres à analyser pour améliorer les scores
 Les modèles près-entraînés USE et Bert-sentence améliore certains scores à un-deux point/100 .
 Le temps d'entraînement (matrice dense) est important/Tf-idf.
 Utilisation de GPU

Modélisation non-supervisée (LDA modèle)

=

- LDA méthode non-supervisée générative des topics (cachés) dans le corpus
- Objectif: Trouvez les topics les plus pertinente pour représenter les documents
- Désavantage : Difficile de trouver des topics précis, distincts et interprétables.
 - NMF: algorithme alternative

Preprocessing LDA avec Gensim:

- Bag of words: Dictionnaires des mots du corpus
- Analyse de sensibilité avec les paramètres:
 - alpha : paramètre de doc/topic distribution
 - eta : paramètre de topic-word distribution
 - nombre de topics K

Modélisation non-supervisé (LDA modèle)

LDA entrainé avec: k =17, alpha ='asymmetric', eta =symmetric

Modélisation non-supervisé (LDA modèle)

- Matrice des scores tags/topic: assigné à chaque doc
- 'n' tags : scores<= seuil</p>

topic_tag = np.matmul(topic_dist.T, y_binarized)

[javascript]

deux approches de prédiction:

Utiliser la matrice document/topic comme features dans un modèle de régression logistique

```
OC | lda_model = gensim.models.LdaMulticore(corpus=corpus, id2word=id2word, num_topics=17, random_state=42, passes=10, alpha='asymmetric', eta='symmetric')

S | # obtain topic distributions for each document topic_dist = pd.DataFrame(lda_model.get_document_topics(corpus, minimum_probability=0.0))

time1 =time.time()
```

x train, x test, y train, y test = train test split(topic dist, y binarized, test size=

```
# normalizing
topic_tag = topic_tag/np.sum(y_binarized,axis=0)
topic_tag.head(3)

0 1 2 3 4 5 6 7 8 9

0 0.128682 0.069742 0.049993 0.162818 0.054312 0.290504 0.143000 0.457608 0.089989 0.093337
```


y_pred	best_topic	Tags	
(array, json, string)	1	[java, array, android]	0
(c++, linux, memory, multithreading)	0	[file, c]	1
(database, mysql, server, sql)	9	[web, service, c#, net]	2

<pre>df_LDA_lr = metrics_r print(df_LDA_lr)</pre>	eport("LDA_lr", y_test, y_pred_lr,fit_time, df=None)
	LDA 1r
Av_precision(macro)	0.182246
Av_precision(micro)	0.252294
ROC_AUC(macro)	0.844211
ROC_AUC(micro)	0.866935
Fit time	7.000000

#score of prediction

(array, ison, string)

y pred lr = lr.predict proba(x test)

fit_time = np.round(time.time() - time1,1)

Api et gestion de code

**

*

- Sérialisation du pipeline de modèle Tf-idf + ovr(LR)
- ❖ Module des fonctions de nettoyage et d'inversement
- Déploiement en local avec Flask
- L'api répond à l'adresse 127.0.0.1 :5000; methods = ['GET', 'POST']

- Dépôt disponible sur Github https://github.com/Bounkass/Proj5ml_oc.git
- Cloner: git clone https://github.com.....
- Instructions après modifications:
 - > git status
 - git add nom_fichier
 - git commit -m "message"
 - git push -u origin master

Tags Recommandation

Title for your Query?

How to set Error.code property in Node.js v12.x ?

Description of your Ouery?

Setting setError.code property in Node.js v12.x or above is a bit complex process. Problem Statement: Sometimes we want to set the error code manually & show our own error code instead of a pre-built error code when throwing an error.Approach:extend prebuilt Error class and set code property according to our needs.Inside inherit class create a constructor to set the error message. class manualError extends Error(constructor(message) { super(message);code = 'ERRORGEEK';

Envover

Tags Recommandation

-Title & description -

Title: How to set Error.code property in Node.js v12.x?

Query: Setting setError.code property in Node.js v12.x or above is a bit complex process. Problem Statement: Sometimes we want to set the error code manually & show our own error code instead of a pre-built error code when throwing an error.Approach:extend prebuilt Error class and set code property according to our needs.Inside inherit class create a constructor to set the error message. class manualError extends Error {constructor(message) { super(message);code = 'ERRORGEEK';

-Proposed Tags-

[('c#', 'java', 'javascript', 'node')]

Conclusion

- Application des approches de ML à un problème de NLP
- Développer un outil de suggestion de Tags (API) des questions des utilisateurs

- Meilleur modèle: Régression logistique
 - prédiction rapide
 - > meilleure précision et moins de prédiction vide

- Pistes d'amélioration
 - Entraîner un modèle de Word embeddings adapté au sujet des questions
 - optimiser le seuil de ROC

Merci de votre attention!

