哈尔滨工业大学(深圳)

《数据结构》实验报告

实验一 栈与队列的应用

字	阮:	计算机科字与技术专业
姓	名:	房正耀
学	号:	200111213
专	业:	计算机科学与技术专业
日	期:	2021-3-31

一、问题分析

栈的数组实现以及在栈的接口基础上实现的队列的实现(一个队列包含两个 栈,队列的最大元素个数仍是栈的最大元素的的个数,则将元素在两个队列之间 来回倒以实现对队头、队尾的插入、删除操作。

二、详细设计

2.1 设计思想

数组实现栈的四个功能:

入栈: 栈顶位序值 i++, 且在数组的该序位赋值存储;

出栈:数组顶序位赋值,栈顶位序值--

得到栈顶元素:返回数组的位序顶的值

判断非空: 栈顶位序值是否为-1

两个栈实现队列的 4+1 个功能:

队列结构: 栈 1 底为队尾, 栈 2 底为队首, 两栈出口相对, 互相承接函数使队首/队尾暴露操作。

2.2 存储结构及操作

(1) 存储结构 (一般为自定义的数据类型,比如单链表,栈等。)

栈为结构体定义的数组存储结构:

```
typedef struct
{
    DataType data[MaxSize];
    int top; // 找顶指针
} Stack; // 结构体类型名
```

队列为结构体定义的双栈结构 (容量为 MaxSize):

```
typedef struct
{
    Stack stack1;
    Stack stack2;
} Queue;
```

(2) 涉及的操作(一般为自定义函数,可不写过程,但要注明该函数的含义。)

栈的四个操作:

函数(栈)	说明
StackEmpty	判断是否非空
GetTop	返回栈顶元素
Push	若不满则元素入栈
Pop	若非空则栈顶元素出栈

队列的 4+1 个操作:

函数 (队列)	说明
QueueEmpty	判断队列是否为空
EnQueue	入队操作
DeQueue	出队操作
GetHead	获取队列头
QueueToArray	获取队列的一个拷贝

2.3 程序整体流程

三、用户手册

操作	指令	说明	举例
将元素压入栈	0	操作入栈 操作次数 具体数据	0512345
移除返回栈顶元素	1	打印输出栈顶元素	
得到栈顶元素	2	打印输出栈顶元素	
判断栈是否为空	3	输出栈的状态	
将元素推到队尾	4	操作入队 操作次数 具体数据	0212
删除队头返回数据	5	打印输出队头	
返回队头元素	6	打印输出对头	
判断队列是否为空	7	打印输出队列状态	

Ps: 每操作一次会自动打印队/栈内容

四、结果

五. 总结

在本次实验中,数组实现栈的过程对栈的结构掌握更加清楚,以栈为底层实现队列除了锻炼数据结构的设计能力之外,更让我对函数的封装、应用有了更加深刻的认识,抽象思维更加殷实。同时我的 debug 能力有显著提升。