CSP模拟题第一套

题目名称	字符串匹配	公约数	优美度	强制在线
输入文件名	match.in	GCD.in	grace.in	online.in
输出文件名	match.out	GCD.out	grace.out	online.out
时间限制	1s	3s	2s	4s
是否捆绑测试	否	否	否	否
内存限制	512MB	512MB	512MB	512MB
是否有部分分	是	是	是	是
题目类型	传统	传统	传统	传统
编译开关	-O2 -std=c++14	-O2 -std=c++14	-O2 -std=c++14	-O2 -std=c++14

Problem A. 字符串匹配

Time limit: 1 seconds

Memory limit: 512 MB

Grammy最近对正则表达式很感兴趣,她想通过正则表达式解决OI中常见的匹配问题。具体来说,她会给出一个字符串S,她想知道使用最短的,能匹配S的正则表达式有多长,并且有几个。

具体来说,我们这里只考虑由a-z, a-z, a-z,

- 1. 正常匹配:正则表达式的英文字母正常匹配。
- 2. 或符号 | : 在匹配时可以选择或符号前后字符串进行匹配,比如 abc | def 能够匹配 abc 或者 def。
- 3. 问号? :问号前面的符号可以参与匹配也可以不参与,比如 abc?d 可以匹配 abcd 或者 abd。
- 4. 星号 * :星号前面的符号可以参与匹配任意多次(可以为0次),比如 ab*c 可以匹配 ac , abc , abb . . . bc 等。
- 5. 加号 + : 类似于星号, **但是匹配次数不能为**0次。比如 ab*c 可以匹配 abc, abbc, abb...bc等, 但不能匹配 ac。
- 6. 通配符 . : 可以匹配任意非空字母。如 . a 既可以匹配 aa , 也可以匹配 ba , ca 等。特别的,通配符 . 可以和星号 * 和加号 + 连接。比如 a . * b 表示能够匹配任意 a 开头 , b 结尾的字符串 , 而 a . + b 可以匹配任意 a 开头 , b 结尾且长度大于等于3的字符串.
- 7. 括号(): 可以通过括号将两个正则表达式连接起来,如R,S是两个正则表达式,分别表示R=(a|b),S=(c|d),那么(RS)则表示((a|b)(c|d)),可以匹配 ac,ad,bc,bd等字符串。

为了方便你更好理解匹配规则,这里再给出几个匹配例子:

正则表达式: a?bcd. 能够匹配 abcda - abcdz, 也能匹配 bcda - bcdz。

正则表达式: ((abc|.)(a+)) 能够匹配 abca, abcaa等, 但不能匹配 abc。

还能匹配 aa , ba , ca , da 等 , 但不能匹配 a

Grammy准备了很多组这样的字符串,现在请你对每组字符串进行回答。

Input

第一行包含一个整数T表示数据组数,后面T行每行一个字符串S。

Output

输出T行,每行两个整数a,b表示最短能匹配的正则表达式长度和个数。

Examples

match1.in	match1.out
2 a ab	1 2 2 6

Notes

对于所有的T 有 $T \leq 100$,对于所有的S有 $|S| \leq 10^5$

编号	分值	$ S \leq$	特殊性质
1	20	10	无
2	10	10^5	S仅由一种字母构成
3	10	10^{5}	S仅由两种字母构成
4	20	10^{3}	
5	40	10^{5}	

Problem B. 公约数

Time limit: 3 seconds

Memory limit: 512 MB

给定一个 $n\times m$ 的矩阵M,且每个在1-nm中的数在M中出现了恰好一次。定义一个子矩形的价值为其所有元素的最小公共因数。现在欲求M的所有子矩形的价值和。

Input

第一行包含一个整数 $n, m(nm \le 10^6)$ 。

后面n行每行m个整数,表示 $M_{i,j}$ 。保证1-nm在M中出现了刚好一次。

Output

输出1行表示答案。

Examples

GCD1.in	GCD1.out
3 3 1 2 3 4 5 6 7 8 9	78

Notes

对于全部数据 $nm \leq 10^6, n \leq 10^3$

编号	分值	$nm \leq$	特殊性质
1	10	2000	
2	15	8000	
3	15	10000	$M_{i,j} = (i-1) st m + j$
4	10	10^{6}	$n=1$ 且 $M_{i,j}=(i-1)*m+j$
5	20	10^{6}	n = 1
6	30	10^{6}	

Problem C. 优美度

Time limit: 2 seconds

Memory limit: 512 MB

小S现在手上有一个序列a,他定义一个子区间的优美度为这个区间所有值的异或,即对于区间[l,r],其优美度为 a_l xor a_{l+1} xor a_{l+1} ... xor a_r 。现在他需要选出k个不交的区间,且这k个区间的优美度之和最大。

Input

输入共2行。

第一行包含两个数 n, k 。

第二行输入n个整数。

Output

输出一个整数表示答案。

Examples

Grace1.in	Grace1.out
7 2 3 6 3 1 5 4 2	13

Grace2.in	Grace2.out
133 1145141919810	31

Notes

对于 100% 的数据, $k \le n \le 3000, 0 \le a_i \le 10^9$.

编号	分值	$n \le$	特殊性质
1	10	10	$k \leq 3$
2	15	3000	k = 1
3	10	n=2048	$a_i=i-1$ $\!\!\!\!\perp k\leq 3$
4	10	n = 2048	$a_i=i-1$
5	10	3000	k = 2
6	15	300	特殊性质A
7	30	3000	特殊性质A
8	0	3000	

特殊性质A: 保证数据随机, 即 a_i 是随机生成的。

Problem D. 强制在线

Time limit: 2 seconds

Memory limit: 512 MB

给定一棵以 1 为根, 由 n 个点组成的有根树, 每个点有点权 c_i 。

定义每个点的 val_i 值为:以它为根的子树内所有 c_i 的最大值。

定义函数 f(x,y) 表示将 c_x 改为 y 后整棵树的val 值之和。

现在请您回答 q 组询问,每次询问给定 3 个量 (l,r,a) ,请求出 $\sum_{i=l}^r f(a,i)$ 对 998244353 取模的结果。

Input

第一行三个正整数,n、q 和opt,分别表示树的点数、询问数和控制强制在线的量。

第二行 n 个正整数,表示每个点的点权。

接下来 n-1 行,每行两个正整数 u_i, v_i 表示树的每一条边。

接下来 q 行,每行三个正整数 l', r', a'。请计算出真实的 l, r, a 后完成询问。

$$egin{aligned} l = (l' + opt imes lastans) & \mod n + 1 \ r = (r' + opt imes lastans) & \mod n + 1 \ a = (a' + opt imes lastans) & \mod n + 1 \end{aligned}$$

其中lastans 表示上一组询问的答案,初始为 0 。 如果此时出现 l>r 的情况,请交换 l 和 r 。

Output

输出一个整数表示答案。

Examples

online1.in	online1.out
5 3 0	
5 3 4 2 1	
12	
13	42
2 4	48
25	52
135	
2 4 1	
1 3 4	

Notes

对于 100% 的数据, $n,q \leq 10^5, 1 \leq l', r', c', c \leq n$ 。

编号	分值	$n,q \leq$	特殊性质
1	10	100	opt=0
2	15	2000	opt = 0
3	10	10^{5}	opt=0,树是以 1 为首的一条链
4	10	10^{5}	$opt=0$,且保证 $l'\geq c_a$
5	15	10^{5}	$opt=0$,且保证 $l^\prime=r^\prime$
6	10	10^{5}	opt=0, $q=1$,特殊性质A
7	10	10^{5}	opt = 0
8	20	10^{5}	

特殊性质A: 树是随机生成的