MENU

SEARCH

INDEX DETAIL JAPANESE

1/1

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2002-111754

(43)Date of publication of application: 12.04.2002

(51)Int.Cl.

H04L 27/00

H04L 27/38

H04L 27/14

H04L 27/22

(21)Application number: 2000-301517

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

29.09.2000

(72)Inventor: TANDAI TOMOYA

YOSHIDA HIROSHI

(54) RECEIVING DEMAPPING UNIT DEALING WITH A PLURALITY OF MODULATION SYSTEMS (57) Abstract:

PROBLEM TO BE SOLVED: To provide a receiving demapping unit in which demapping can be switched easily and a plurality of modulation systems can be dealt with without reloading new demapping software.

SOLUTION: In a receiving demapping unit for regenerating the symbol values of an original data series from digital modulated signals modulated based on one arbitrary modulation system among a plurality of predetermined modulation systems, a digital signal processing section 2 generates symbol values from received digital modulated signals according to demapping software preloaded to a program memory 3 and parameters 5 corresponding to the modulation system of the received digital modulated signals from a parameter input section 4 are inputted, as an argument for the demapping software, to the digital signal processing section 2.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-111754 (P2002-111754A)

(43)公開日 平成14年4月12日(2002.4.12)

(51) Int.Cl.7	識別配号	FΙ			ゲーマコ	*(参考	f)
H04L 27/0	0	H04L 27	7/00	•	C 5	K 0 0 4	:
27/3	8			•	G		
27/1	4	27	7/14		۸		
27/2	2	27	7/22		F		
		審査請求	未請求	請求項の数 6	OL	(全 14	頁)
(21)出願番号	特願2000-301517(P2000-301517)	(71)出願人	0000030 株式会社				
(22) 出顧日	平成12年9月29日(2000.9.29)	(mo) shout if	東京都洋	格区芝浦一丁 目:	1番1月	}	
		(72)発明者	神奈川リ	智哉 県川崎市幸区小「 東芝研究開発セン			株
		(72)発明者	吉田 引	Ц			
			神奈川リ	県川崎市幸区小 [向東芝 町	丁1番地	株
			式会社》	東芝研究開発セス	ンターは	A	
		(74)代理人	1000584	179			
			弁理士	鈴江 武彦	(外6年	4)	
		Fターム(参	考) 5K0	104 AA01 AA04 <i>A</i>	AO5 AA	08 BA02	
				EG11 FA06 F	GO2 JA	03 JG01	

(54) 【発明の名称】 複数の変調方式に対応可能な受信デマッピング装置

(57)【要約】

【課題】デマッピング処理の切り換えが容易であって、 変調方式に対応して新たなデマッピングソフトウェアを ロードし直すことなく複数の変調方式に対応可能な受信 デマッピング装置を提供する。

【解決手段】予め定められた複数の変調方式のうちの任意の一つの変調方式に基づいて変調されたディジタル変調信号から元のデータ系列のシンボル値を再生するデマッピング処理を行う受信デマッピング装置において、プログラムメモリ3に予めロードされたデマッピングソフトウェアに従って受信ディジタル変調信号からシンボル値を生成するディジタル信号処理部2を設け、パラメータ入力部4から受信ディジタル変調信号の変調方式に対応したパラメータ5をデマッピングソフトウェアに対する引数としてディジタル信号処理部2に入力する。

【特許請求の範囲】

【請求項1】予め定められた複数の変調方式のうちの任意の一つの変調方式で変調された受信ディジタル変調信号から元のデータ系列のシンボル値を生成するデマッピング処理を行う受信デマッピング装置において、

前記受信ディジタル変調信号の変調方式に対応した前記 デマッピング処理のためのパラメータを入力するパラメ ータ入力部と、

前記複数の変調方式に対応可能に構成され、前記パラメータに従って前記受信ディジタル変調信号を該ディジタル変調信号の変調方式に対応した復調方式で復調する復調部と、

前記パラメータに従って前記復調部からの出力信号を復 号化する少なくとも一つの復号化部とを備えたことを特 徴とする受信デマッピング装置。

【請求項2】予め定められた複数の変調方式のうちの任意の一つの変調方式で変調されたディジタル変調信号から元のデータ系列のシンボル値を再生するデマッピング処理を行う受信デマッピング装置において、

予め読み込まれた前記デマッピング処理のためのソフトウェアに従って、ディジタル信号処理により前記受信ディジタル変調信号から前記シンボル値を生成するディジタル信号処理部と、

前記ディジタル変調信号の変調方式に対応した前記デマッピング処理のためのパラメータを前記ソフトウェアに対する引数として前記ディジタル信号処理部に入力するパラメータ入力部とを備えたことを特徴とする受信デマッピング装置。

【請求項3】前記パラメータ入力部は、前記変調方式のタイプと、変調多値数と、前記変調方式が周波数変調の場合の変調指数と、前記変調方式が位相変調の場合の位相オフセットと、グレイ復号化のオン/オフ及び差動復号化のオン/オフを指定する情報を前記パラメータとして入力することを特徴とする請求項1記載の受信デマッピング装置。

【請求項4】前記復調部は、前記パラメータとして与えられる変調多値数及び位相オフセットに応じて前記受信ディジタル変調信号の同相成分データ及び直交成分データに基づいて位相平面上で信号点を判定する信号点判定部と、位相変調されたディジタル変調信号の位相情報とシンボル値との対応関係を記憶したテーブルと、前記信号点判定部の出力に基づいて前記テーブルを参照することにより前記シンボル値を求めるテーブル参照部とからなる位相復調部を有することを特徴とする請求項1記載の受信デマッピング装置。

【請求項5】前記復調部は、前記復調パラメータとして 与えられる前記変調多値数及び変調指数に応じて前記受 信ディジタル変調信号の同相成分データ及び直交成分デ ータを必要なサンプル数貯える入力バッファと、前記入 力バッファの出力に基づいて角速度を判定する角速度判 定部と、周波数変調されたディジタル変調信号の角速度 情報とシンボル値との対応関係を記憶したテーブルと、 前記角速度判定部の出力に基づいて前記テーブルを参照 することによりシンボル値を求めるテーブル参照部とか らなる周波数復調部を有することを特徴とする請求項1 記載の受信デマッピング装置。

【請求項6】前記復調部は、前記復調パラメータとして 与えられる変調多値数に応じて前記受信ディジタル変調 信号の同相成分データ及び直交成分データに基づいて位 相平面上で信号点を判定する信号点判定部と、直交振幅 変調されたディジタル変調信号の振幅及び位相情報とシ ンボル値との対応関係を記憶したテーブルと、前記信号 点判定部の出力に基づいて前記テーブルを参照すること によりシンボル値を求めるテーブル参照部とからなる直 交振幅復調部を有することを特徴とする請求項1記載の 受信デマッピング装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、無線機の受信部に備えられる受信デマッピング装置に関し、特にソフトウェアによって無線機能を実現するいわゆるソフトウェア無線機において複数の変調方式により変調された受信ディジタル変調信号から元のデータ系列のシンボル値を生成可能な受信デマッピング装置に関する。

[0002]

【従来の技術】近年の移動通信システムの急速な発展に伴い、ユーザの利用形態も従来の音声通話から、メールやインタネットなどのデータ通信及び動画像通信など、多様性を帯びてきている。このような利用形態の多様化に伴い、一台の端末で複数のシステムを利用できる、いわゆるマルチモード端末への要求が高まっている。このような流れを受けて、PHS(Personal Handy-phone System)とPDC(PersonalDigital Cellular)を一台の端末で利用可能なデュアルモード端末が開発され市場に投入されている。

【0003】このデュアルモード端末は、PHSに対応した機能を実現するハードウェアとPDCに対応した機能を実現するハードウェアの二つのハードウェアを一つの筐体に収めたものである。従って、このデュアルモード端末はPHSとPDCには対応可能であるが、さらに別の無線通信システムに対応した機能を実現したり、既に内蔵している機能をバージョンアップすることは不可能であった。

【0004】この問題を解決するための一つの手段として、ディジタル シグナル プロセッサなどの一つのハードウェアを用いて無線通信機能或いは無線通信機能の一部をソフトウェア処理で実現し、ソフトウェアを入れ替えるだけで複数の無線通信システムに対応可能で、かつ内蔵している機能のバージョンアップが可能な、いわゆるソフトウェア無線機が提案され、実用化に向けて検討

が行われている。

【0005】このソフトウェア無線機に内蔵されている 受信デマッピング装置は、それぞれの無線通信システム によって異なる、複数の変調方式によって変調された信 号をデマッピング処理する機能を備えている。デマッピ ングとは、受信ディジタル変調信号から元のデータ系列 のシンボル値を生成する処理である。しかし、ソフトウ ェア無線機に内蔵されている従来の受信デマッピング装 置は、あらかじめ用意された変調方式にしか対応できな かった。また、変調方式を切換えるためには、一度デマ ッピング処理を中断して、所望のデマッピングソフトウ ェアをメモリからプロセッサにロードしてから再びデマ ッピング処理を開始する、という手順を踏まなければな らなかった。さらに、用意されていない別の変調方式に より変調された信号をデマッピング処理するためには、 その変調方式により変調された信号をデマッピング処理 する機能を実現するデマッピングソフトウェアを新たに ダウンロードする必要があった。

【0006】このようなソフトウェア無線機における従来の受信デマッピング装置は、具体的にはプロセッサとこれに接続されたメモリからなり、メモリに例えばBPSKデマッピングソフトウェア、π/4-QPSKデマッピングソフトウェア、GMSKデマッピングソフトウェア及びASKデマッピングソフトウェアが格納される。このような構成により、所望の変調方式に従ってメモリ内にあるデマッピングソフトウェアをプロセッサにロードし、プロセッサが入力された変調信号をデマッピング処理して所望のデマッピング処理出力を得る。

【0007】変調方式を切換える場合は、一旦処理を止め、メモリ内にある別のデマッピングソフトウェアをプロセッサに再ロードして、再びプロセッサがデマッピング処理を行う。例えば、BPSK変調方式を選択した場合は、BPSKデマッピングソフトウェアがプロセッサにロードされ、入力されたBPSK変調信号に対してデマッピング処理が施され、復調信号が出力される。変調方式を $\pi/4$ -QPSKに変更する場合は、BPSKデマッピング処理を一旦止め、 $\pi/4$ -QPSKを選択することにより、メモリから $\pi/4$ -QPSKデマッピングソフトウェアがプロセッサに再ロードし、入力された $\pi/4$ -QPSK変調信号に対して $\pi/4$ -QPSKデマッピング処理を行う。

【0008】この従来の受信デマッピング装置を用いて、新たにQPSK変調方式により変調された信号をデマッピング処理するためには、新たにQPSKデマッピングソフトウェアをメモリにダウンロードしてから、上記と同様の処理を行わなければならない。従って、所望の変調方式に対応したデマッピング処理に切換えるために非常に多くの時間と手順を要し、無線伝送路の安定性に応じて各タイムスロット毎に変調方式を切換えるようなシステムには実質的に対応できないという欠点を有し

ていた。

【0009】また、従来の受信デマッピング装置では、多くの変調方式に対応したデマッピング処理を行うために、想定される変調方式の数分だけのデマッピングソフトウェアをメモリに格納しておかなければならず、非常に大きな容量のメモリを必要とする欠点を有していた。そして、ダウンロードによる新たな変調方式のデマッピングソフトウェアのメモリへの追加が二度、三度と多数回に渡った場合、あらかじめ内蔵されているメモリの容量が不足し、メモリ自体をさらに大容量のメモリに交換しなければならないという重大な欠点も有していた。

【0010】さらに、従来の受信デマッピング装置では、新たな変調方式に対応したデマッピングソフトウェアをダウンロードすることは、無線機へダウンロードするソフトウェアの総量の増加につながり、ダウンロードのために非常に長い時間を要するという欠点を有していた。

[0011]

【発明が解決しようとする課題】上述のように、従来の受信デマッピング装置では、所望の変調方式に対応したデマッピング処理に切り換えるために多くの手順と長い時間を要するばかりでなく、新たな変調方式に対応したデマッピングソフトウェアをダウンロードする場合にメモリの容量が不足する可能性が生じ、またダウンロードするソフトウェアの総量が増加するという問題点を有していた。

【0012】本発明は、このような問題点を解消して、デマッピング処理の切り換えが容易であって、変調方式に対応して新たなデマッピングソフトウェアをロードし直すことなく複数の変調方式に対応可能な受信デマッピング装置を提供することを目的とする。

[0013]

【課題を解決するための手段】上記課題を解決するため、本発明は予め定められた複数の変調方式のうちの任意の一つの変調方式で変調された受信ディジタル変調信号から元のデータ系列のシンボル値を生成するデマッピング処理を行う受信デマッピング装置において、受信ディジタル変調信号の変調方式に対応したデマッピング処理のためのパラメータを入力するパラメータ入力部と、複数の変調方式に対応可能に構成され、該パラメータに従って受信ディジタル変調信号を該ディジタル変調信号の変調方式に対応した復調方式で復調する復調部と、該パラメータに従って復調部からの出力信号を復号化する少なくとも一つの復号化部とを有する。

【0014】復調部及び復号化部は、具体的にはディジタル信号処理部によって実現が可能であり、ディジタル信号処理部は予め読み込まれたされたデマッピング処理のためのソフトウェアに従って、復調及び復号化をディジタル信号処理により実行し、受信ディジタル変調信号からシンボル値を生成する。この場合、ディジタル変調

信号の変調方式に対応したデマッピング処理のためのパラメータは、ディジタル信号処理部にロードされている ソフトウェアに対する引数としてディジタル信号処理部 に入力される。

【0015】パラメータ入力部は、具体的には変調方式のタイプと、変調多値数と、前記変調方式が周波数変調の場合の変調指数と、変調方式が位相変調の場合の位相オフセットと、グレイ復号化のオン/オフ及び差動復号化のオン/オフを指定する情報をパラメータとして入力する。

【0016】このように本発明では、変調方式のタイプ、変調多値数、位相オフセット(PSKの場合)及び変調指数(FSKの場合)といったパラメータを例えばディジタル信号処理部にデマッピングのためのソフトウェアに対する引数として与えることによ、複数の変調方式によって変調された信号をデマッピング処理して、元のデータ系列のシンボル値を復調信号として出力することが可能なデマッピング装置を提供することができる。【0017】従って、変調方式毎にメモリからプロードすることがのデマッピングソフトウェアをダウンロードもり、新たなデマッピングソフトウェアをダウンロードし直すことなく、種々の複数の変調方式に対応したデマッピング処理を行うことが可能となる。

[0018]

【発明の実施の形態】以下、図面を参照して本発明の実施の形態を説明する。図1に、本発明の一実施形態に係る受信デマッピング装置の概略構成を示す。入力端子1にはデマッピング処理の対象である受信ディジタル変調信号が入力され、ディジタル信号処理部2によってデマッピング処理される。ディジタル信号処理部2は、ディジタル信号処理によって所望の機能を実現する装置であり、例えばDSP(ディジタル・シグナル・プロセッサ)あるいはFPGA(フィールド・プログラマブル・ゲート・アレイ)が用いられる。このディジタル信号処理部2は、内蔵のプログラムメモリ3にロードされたデマッピング処理のためのソフトウェア(以下、デマッピングソフトウェアという)に従って、受信ディジタル変調信号に対しデマッピング処理を行う。

【0019】ここで、プログラムメモリ3にロードされたデマッピングソフトウェアは、複数の変調方式に共通であり、このデマッピングソフトウェアには例えばCPUからなるパラメータ入力部4から入力された、受信ディジタル変調信号の変調方式に対応したデマッピング処理のためのパラメータ5が引数として与えられる。従って、このパラメータ5を受信ディジタル変調信号の変調方式に対応させて変更することにより、ディジタル信号処理部2においては共通の一種類のデマッピングソフトウェアを用いて、複数の変調方式に対応することが可能となる。このようにしてディジタル信号処理部2におい

てデマッピング処理が行われ、シンボル値系列が生成されて出力端子6から出力される。

【0020】図1においては、ディジタル信号処理部2においてプログラムメモリ3にロードされたデマッピングソフトウェアによって実現される機能をブロック図で表している。ディジタル信号処理部2は、基本的に復調部10とグレイ復号化部14及び差動復号化部15の機能を有する。復調部10は、PSK復調部11、FSK復調部12及びQAM復調部13と、これらを切り換えるためのスイッチSW1,SW2の機能を有する。一方、グレイ復号化部14及び差動復号化部15は、スイッチSW3~SW6とバイパス路L1,L2によって個別にバイパスできる構造となっており、これによって差動復号化のN/OFF、グレイ復号化ON/OFFの選択が可能となっている。

【0021】一方、デマッピング処理のためのパラメータ5としては、変調方式のタイプ(PSK/FSK/QAM)、変調多値数(2のべき乗、QAMでは4のべき乗)、位相オフセット(PSKの場合)、変調指数(FSKの場合)を受信ディジタル変調信号の変調方式に応じて適宜設定することが可能となっている。このパラメータ5がプログラムメモリ3にロードされているデマッピングソフトウェアに引数として与えられることにより、受信ディジタル変調信号に対応するデマッピング処理がディジタル信号処理部2で実行される。

【0022】例として、最初にパラメータ5を「変調方式のタイプ=PSK」、「変調多値数=4」、「位相オフセット=0」、「グレイ復号化ON」、「差動復号化OFF」と設定して、次に復調パラメータ5を「変調方式のタイプ=QAM」、「変調多値数=16」、「グレイ復号化OFF」、「差動復号化ON」に変更する場合について説明する。

【0023】まず、PSKデマッピング処理が選択され、PSK復調部11に入力されたPSK信号に対して「変調多値数=4」、「位相オフセット=0」のPSK(QPSK)復調がなされる。次に、PSK復調部11からの出力はグレイ復号化部14に入力され、グレイ復号化処理がなされる。グレイ復号化部14からの出力は差動復号化部15をバイパスし、出力端子6から出力される。

【0024】次に、パラメータ5を「変調方式のタイプ=QAM」、「変調多値数=16」、「グレイ復号化OFF」、「差動復号化ON」に変更すると、QAMデマッピング処理が選択され、QAM復調部12に入力されたQAM信号に対して「変調多値数=16」のQAM(16QAM)デマッピング処理がなされる。次に、QAM復調部12からの出力はグレイ復号化部14をバイパスし、差動復号部15に入力して差動復号化処理がなされ、出力端子6から出力される。

【0025】このように本実施形態による受信デマッピ

ング装置では、メモリからデマッピングソフトウェアをロードすることなく、パラメータ5を設定することにより、瞬時に所望のデマッピング処理に切り換えることができる。従って、タイムスロット毎に変調方式が切り換わるような通信システムにおいても、各タイムスロットの先頭に変調方式を決めるパラメータをパイロット信号として付加することにより、タイムスロット毎に変調方式に合わせたデマッピング処理を行うことが可能である。

【0026】また、さらにもう一つの例として、この受信デマッピング装置に「変調方式のタイプ=FSK」、「変調多値数=8」、「変調指数=0.5」、「グレイ復号化ON」、「差動復号化ON」のデマッピング処理(8FSK)が必要とされた場合について説明する。

【0027】本実施形態による受信デマッピング装置では、この8FSKデマッピング処理機能を実現するために、新たに8FSKデマッピングソフトウェアをダウンロードする必要はなく、パラメータとして「変調方式のタイプ=FSK」、「変調多値数=8」、「変調指数=0.5」、「グレイ復号化ON」、「差動復号化ON」を設定するだけで、所望の8FSKデマッピング処理機能を実現することが可能である。従って、新たなソフトウェアのダウンロードを必要とせず、無線機にダウンロードするソフトウェアの総量を増加させないという点で有効である。

【0028】なお、本実施形態では、復調部10にPS K復調部11、FSK復調部12及びQAM復調部13 が用意されている例を示したが、さらにASK復調部な どの他の変調方式に対応した復調部が追加されいても本 発明の効果を損なうものではなく、さらに有効に利用す ることが可能である。

【0029】(PSK復調部11について)次に、図2を用いてPSK復調部11の構成を説明する。入力端子21から入力されたPSK信号の同相成分及び直交成分データは、信号点判定部22に入力される。信号点判定部22では、入力されたPSK信号の位相平面上での信号点を判定する。この位相平面上で信号点を判定する方法は、次の通りである。

【0030】PSKでは、あるシンボルの情報はベースバンド信号の位相情報として変調され、送信される。しかし、無線伝播経路を経て受信デマッピング装置に入力した変調信号は、雑音や干渉及びフェージング等により、変調時に設定した本来の信号点からずれる。このように受信した信号の信号点が本来の信号点からずれていたとしても、位相平面上で信号点が存在する領域を判定することにより、元の位相情報を求めることができる。【0031】n値PSKでは、位相平面上の原点を中心とする単位円周上に、隣接する信号点間の位相差(これを単位位相差と呼ぶ)が一定となるn個の点に信号点が配置される。ただし、nは2のべき乗であるとする。単

位位相差θは、

 $\theta = 2\pi / n$

と表され、n個の信号点の位相

は、

 $\phi = \theta k + \alpha$

(k=0, 1, ..., n-1) と表わされる。ただし、 α は位相オフセットである。この様子を8値P S K の場合を例に図3に示している。

【0032】また、各信号点と隣接する信号点のなす角を二等分する直線(これを判定境界直線と呼ぶ)によって、位相平面を位相情報に対応するn個の領域に分割することができる。この様子を8値PSKの場合を例にとって図4に示している。

【0033】従って、受信したPSK信号の信号点がn個の領域のうちのどの領域に存在するかを判定することができれば、元の位相情報が判定できる。以下に、これを実現するための具体的な方法の一つの例を説明する。まず、与えられた位相オフセットに従って、入力PSK信号の同相成分データ及び直交成分データを位相平面上で原点を中心として位相オフセットの大きさだけ負の方向に回転する。同相成分データ及び直交成分データの振幅値をそれぞれV(I)及びV(Q)、回転後の同相成分データ及び直交成分データの振幅値をV(I)及びV(Q)、位相オフセットをV(I)0、位相オフセットをV(I)0、位相オフセットをV(I)0、位相オフセットをV(I)0、回転後の同相成分データ及び直交成分データの振幅値な

 $U(I) = \cos(-\alpha) V(I) - \sin(-\alpha) V(Q)$

 $U(Q) = \sin(-\alpha) V(I) + \cos(-\alpha) V(Q)$

と求められる。そして、U(I)及びU(Q)の値をメモリに保持する。

【0034】次に、U(I)及びU(Q)の信号点について位相平面上での存在領域を判定する。信号点が存在する領域を判定するための判定境界直線は、同相成分をI、直交成分をQとして、

a(k) Q = b(k) I

と表わすことができる。ここで、a(k), b(k)は判定境 界直線の係数であり、次式で表される。

[0035]

【数1】

$$a(k) = \cos\left\{\frac{\theta}{2}(1+2k)\right\}$$

$$b(k) = \sin\left\{\frac{\theta}{2}(1+2k)\right\}$$

【0036】ここで、a(k)が負の場合はa(k), b(k) それぞれに-1を乗算する。この理由は、信号点を判定する際に、判定境界直線のQの値の大小を比較判定するためであり、判定境界直線のQの係数a(k)は常に正でなくてはならないからである。そして、これらの係数をメモリに保持する。

【0037】また、n/2本の判定境界直線で分けられるn個の領域に対して、図5に示すように番号pを決め

る。すなわち、この番号pが位相情報を表わしている。 kを0から(n/2)-1まで+1ずつ変化させていき、U(I)、U(Q)が以下の判定条件を満たした場合にその信号点についての判定は終了し、次の信号点についての判定を開始するという処理を繰返す。

【0038】 [k = (n/4)-1の場合(ケース1)] a(k) U(Q)>b(k) U(I)を満たすとき、<math>a(k+1) U(Q)>b(k+1) U(I)を満たすならば、

p = n / 4

と求められ、a(k) U(Q)>b(k) U(I)を満たさないとき、a(k+1) U(Q)<b(k+1) U(I)を満たすならば、p=3 n/4

と求められる。

【0039】 [kがそれ以外の場合(ケース2)] a (k) V(Q) > b(k) V(I) を満たすとき、a(k+1) V(Q) < b(k+1) V(I) を満たすならば、

【数2】

$$p = \begin{cases} \frac{n}{2} \cdot k - 1 & (k = n/2 - 1) \\ k + 1 & (k < n/4) \\ \frac{n}{2} \cdot k + 1 & (k \ge n/4) \end{cases}$$

【 O O 4 O 】 a (k) V(Q) > b (k) V(I)を満たさないとき、a (k+1) U(Q) > b (k+1) U(I)を満たすならば、 【数3】

$$p = \begin{cases} n - k - 1 & (k = n/2 - 1) \\ \frac{n}{2} \div k + 1 & (k < n/4) \\ k + 1 & (k \ge n/4) \end{cases}$$

【0041】と求められる。

【0042】ただし、k=(n/4)-1の場合(ケース1)は、k番目とk+1番目の2つの判定境界直線がそれぞれQ軸を挟む場合である。この様子を8値PSKを例にとって図6に示している。図6では8値PSKであるから、k=(8/4)-1=2-1=1のとき、k=1とk=2の判定境界直線がQ軸を挟んでおり、この場合はケース1の判定条件によりp=2またはp=6と決まる。また、ケース2の場合を8値PSKを例にとって図7に示している。この場合は、2つの判定境界直線がQ軸を挟まない場合で、ケース2の判定条件によりp=1またはp=5と決まる。

【0043】信号点判定部22で判定された結果は、テーブル参照部23に入力される。テーブル参照部23では、入力された位相情報を表わす番号pから、位相情報とシンボル値との対応関係を記憶したテーブル24を参照してシンボル値を求める。求められたシンボル値は、出力端子25から出力される。

【0044】テーブル24には、位相情報を表わす番号 pとそれに対応したシンボル値が記載されている。この テーブル24の構成を8値PSKを例にとって、図8に 示している。図8を例に考えると、テーブル参照部23 に位相情報を表わす番号p=2が入力された場合には、テーブル24を参照して、p=2に対応したシンボル値 "101" が出力され、p=6が入力された場合には、テーブル24を参照して、p=6に対応したシンボル値 "001" が出力される。

【0045】以上のようにPSK復調部11を構成することにより、変調多値数n及び位相オフセットαを変更することによって、あらゆる変調多値数のPSKデマッピング処理が可能となる。

【0046】(QPSKの例)以下、具体例を示す。信号点判定部22に入力された同相成分データ及び直交成分データの振幅が

V(I) = -A

V(Q) = 0

であり、位相オフセット α =0であるとする。ただし、A>0とする。また、位相情報とシンボル値との対応関係を記憶したテーブル24は、図9のように構成されているとする。

【0047】判定境界直線の係数は次式のように計算され、メモリに記憶保持される。

【数4】

$$a(0) = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} \qquad b(0) = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$a(1) = \cos\frac{3\pi}{4} = \frac{1}{\sqrt{2}} \qquad b(1) = \sin\frac{3\pi}{4} = -\frac{1}{\sqrt{2}}$$

$$a(2) = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}} \qquad b(2) = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

【0.048】kを0から(n/2)-1、すなわち1まで+1ずつ変化させると、k=1のとき、次式を満たす。

【数5】

$$\frac{1}{\sqrt{2}} \cdot 0 < -\frac{1}{\sqrt{2}} \cdot (-A)$$

【0.049】すなわち、 α (k) U(Q)>b(k) U(I)を満たさない。このとき、

【数6】

$$\frac{1}{\sqrt{2}} \cdot 0 > \frac{1}{\sqrt{2}} \cdot (-A)$$

【0050】すなわち、a(1+1) V(I)>b(1+1) V(Q) を満たし、かつk=1=(n/2)-1 であるから、位相情報を表わす番号 p は、

p = n - 1 - k = 4 - 1 - 1 = 2

と求めることができる。

【0051】p=2はテーブル参照部23に入力され、 図9のテーブル24を参照することにより、シンボル値は "00" と求めることができる。従って、この場合のシンボル値 "00" が出力端子25から出力される。

【0052】(FSK復調部12について)次に、図1

0を用いてFSK復調部12の構成を説明する。入力端子31から入力されたFSK信号の同相成分データ及び直交成分データは、まず入力バッファ32に入力される。入力バッファ32には、1シンボル前の同相成分データ及び直交成分データと現在の同相成分データ及び直交成分データが貯えられる。

【0053】これらの同相成分データ及び直交成分データは角速度判定部33に入力され、信号点の角速度が判定される。角速度を判定する方法は、次の通りである。 FSKでは、あるシンボルの情報はベースバンド信号の角速度情報として変調され、送信される。無線伝播経路を経て受信デマッピング装置に入力した変調信号は、雑音や干渉及びフェージング等により、変調時に設定した本来の角速度からずれる。しかし、受信した信号の角速度が本来の角速度からずれていたとしても、角速度を判定することにより、元の角速度情報を求めることができる。

【0054】n値FSKでは、多値数nと変調指数hが与えられると、角速度は隣接する角速度の大きさ(これを単位角速度差と呼ぶ)ωが一定となるような異なるn個の値をとる。これを数直線上にプロットすると、図11のようになる。ただし、nは2のべき乗であるとする。単位角速度差ωは、

 $\omega = (\pi h/T) / (n-1)$

と表わされ、n個の角速度Ωは、

 $\Omega = \omega \left\{ -(n-1) + 2k \right\}$

 $(k=0, 1, \dots, n-1)$ と表される。ただし、hは変調指数、Tはシンボルレートの逆数である。

【0055】また、それぞれの角速度と隣接する角速度の中点を判定境界値と呼ぶと、数直線は(n-1)個の判定境界値によってn個の領域に分割される。この様子を図12に示している。

【0056】従って、受信した信号の角速度が上記 n個の領域のうちどの領域に存在するかを判定することができれば、元の角速度情報が判定できる。以下に、これを実現するための具体的な方法の一つの例を説明する。この例では、現在の同相成分データ及び直交成分データと1つ前の同相成分データ及び直交成分データの内積及び外積の値により角速度を判定するが、まず、その理由について述べる。

【0057】r-1番目のシンボルの同相成分と直交成分データの信号点P(r-1)及び r番目のシンボルの同相成分と直交成分データの信号点P(r)は、

 $P(r-1) = (A\cos (\phi(r-1)T)), A\sin (\phi(r-1)T))$ $P(r) = (A\cos \phi(rT)), A\sin \phi(rT))$

と表わされる。ただし、 ϕ (rT)は r番目のシンボルの位相である。

【0058】これら2点の内積(P(r) P(r-1))をLとし、外積(P(r) P(r-1))をMとすると、

 $L = A^2 \cos \{\phi (rT) - \phi (r-1)T\}$

 $M=A^2\sin\{\phi(rT)-\phi(r-1)T)\}$ と計算され、位相と角速度の関係、 $\phi(rT)=\Omega$ $T+\phi((r-1)T)$

を用いると、

 $L = A^2 \cos(\Omega T)$

 $M = A^2 \sin(\Omega T)$

と求められる。このように計算された内積及び外積は、 それぞれ(角速度)×(シンボルレートの逆数)のコサイン関数及びサイン関数の値であり、角速度に対応して 決まることがわかる。

【0059】次に、角速度の判定方法について説明する。(n-1)個の角速度の判定境界値の値は、

 $G = \omega \left(-n + 2 + 2k \right)$

 $(k=0, 1, \cdots, n-1)$ で与えられるから、この判定境界値のサイン関数及びコサイン関数の値と、入力された同相成分データ及び直交成分データの内積及び外積の値とを比較、判定する。

【0060】また、(n-1)個の判定境界値によって分割されたn個の領域に対して、図13に示すように番号sを決める。すなわち、この番号sが角速度情報を表わしている。r-1番目のシンボルの信号点P(r-1)及びr番目のシンボルの信号点P(r)から、内積L及び外積Mを計算する。

【0.061】《M>0の場合》kを(n/2)-1から +1ずつ変化させ、初めて

 $L > cos \{\omega (-n + 2 + 2 k)\}$

を満たしたとき、

s = k + 1

と求められる。

【0062】《M<0の場合》kを(n/2)-1から -1ずつ変化させ、初めて

 $L < cos \{\omega (-n + 2 + 2 k)\}$

を満たしたとき、

s = k

と求められる。

【0063】角速度判定部33で判定された結果は、テーブル参照部34に入力される。テーブル参照部34では、入力された角速度情報を表わす番号sから、角速度情報とシンボル値との対応関係を記憶したテーブル35を参照してシンボル値を求める。求められたシンボル値は、出力端子36から出力される。テーブル35はあらかじめ与えておく。このテーブル35には、角速度情報を表わす番号sと、それに対応したシンボル値が記載されている。このテーブルを8値PSKを例にとって図14に示している。

【0064】図14を例に考えると、テーブル参照部34に位相情報を表わす番号s=7が入力された場合には、テーブル35を参照してs=7に対応したシンボル値"010"が出力され、p=3が入力された場合には、テーブル35を参照してs=3に対応したシンボル

値"011"が出力される。

【0065】以上のようにFSK復調部12を構成することにより、変調多値数n及び変調指数hを変更することによって、あらゆる変調多値数及び変調指数のFSKデマッピング処理が可能となる。

【0066】 (4値FSKの例)以下、具体例を示す。 4値FSKで変調指数が<math>0.75、角速度情報とシンボル値との対応関係を記憶したテーブル35は図15のように構成されているとする。r-1番目のシンボルの信号点をP(r-1)、r番目のシンボルの信号点P(r)が次式であるとする。

【数7】

$$P(r-1) = (0,1)$$

 $P(r) = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

【0067】内積Lと外積Mは、次式で計算される。 【数8】

$$L = -\frac{1}{\sqrt{2}}$$
$$M = \frac{1}{\sqrt{2}}$$

【0068】M>0であるから、kを(n/2)-1、すなわち1から+1ずつ変化させると、k=2のとき 【数9】

$$L = -\frac{1}{\sqrt{2}} > -1 - \cos\left\{\frac{\pi}{4} \cdot (-4 + 2 + 2 \cdot 2)\right\}$$

【0069】すなわち、

 $L > cos{\omega(-n+2+2k)}$

を初めて満たすので、角速度を表わす番号sは、

s = k + 1 = 3

と求めることができる。

【0070】s=3はテーブル参照部34に入力され、図15のテーブル35を参照することにより、シンボル値は"01"と求めることができる。従って、この場合のシンボル値"01"が出力端子36から出力される。【0071】(QAM復調部13について)次に、図16を用いてQAM復調部13の構成を説明する。入力端子41から入力されたQAM信号の同相成分データ及び直交成分データは、まず信号点判定部42に入力される。信号点判定部42では、入力されたQAM信号の位相平面上での信号点を判定する。この位相平面上で信号点を判定する方法は、次の通りである。

【0072】QAMでは、あるシンボルの情報はベースバンド信号の振幅と位相の両方の情報として変調され、送信される。無線伝播経路を経て受信デマッピング装置に入力した変調信号は、雑音や干渉及びフェージング等により、変調時に設定した本来の信号点からずれる。しかし、受信した信号の信号点が本来の信号点からずれていたとしても、位相平面上で信号点が存在する領域を判定することにより、元の振幅・位相情報を求めることが

できる。

【0073】n値QAMの信号点は、位相平面上の格子 点上に、隣接する信号点間の距離が一定となるn個の点 に配置される。ただし、nは4のべき乗であるとする。 この様子を16値QAMの場合を例に図17に示してい る。また、同相成分だけに着目すると、各信号点は信号 点の中点を通る n1/2-1本の直線(同相成分判定境界 直線)によって分割される n1/2個の領域のいずれかに 存在する。この様子を16値QAMを例に図18に示し ている。同様に、直交成分だけに着目すると、各信号点 は信号点の中点を通る n^{1/2}-1本の直線(直交成分判 定境界直線)によって分割される n1/2-1 個の領域の いずれかに存在する。この様子を16値QAMを例に図 19に示している。従って、受信した信号の信号点が同 相成分、直交成分毎にどの領域に存在するかを判定する ことができれば、元の振幅・位相情報を復元することが できる。

【0074】以下に、これを実現するための具体的な方法の一つの例を説明する。まず、位相平面上において、同相成分について $n^{1/2}-1$ 本の直線によって分割される c 個の領域に対して、図20のように番号xを決める。同様に、直交成分について $n^{1/2}-1$ 本の直線によって分割される $n^{1/2}$ 個の領域に対して、図21のように番号yを決める。この番号xとyの組合せは、入力された信号の振幅・位相情報を表す。

【0075】次に、入力された同相成分データの振幅値 V(I) に対して、k ϵ 0 から $n^{1/2}$ - 2 まで + 1 ずつ変化 させ、初めて

【数10】

$$V(I) < -(\sqrt{n} - 2)a + 2ak$$

【0076】を満たしたときに、

x = k + 1

と求められる。ただし、a>0である。kが $n^{1/2}-2$ になっても上記条件を満たさない場合は、

 $x = n^{1/2}$

と求められる。

【0077】同様に、入力された直交成分データの振幅値V(Q)に対して、kを0から $n^{1/2}-2$ まで+1ずつ変化させ、初めて

【数11】

$$V(Q) < -(\sqrt{n}-2)a + 2ak$$

【0078】を満たしたときに、

y = k + 1

と求められる。ただし、a>0である。kが $n^{1/2}-2$ になっても上記条件を満たさない場合は、

 $y = n^{1/2}$

と求められる。

【0079】信号点判定部42で判定された結果は、テーブル参照部43に入力される。テーブル参照部43では、入力された振幅・位相情報を表す番号×及びyか

ら、振幅・位相情報とシンボル値との対応関係を記憶したテーブル44を参照して、シンボル値を求める。求められたシンボル値は、出力端子45から出力される。

【0080】振幅・位相情報とシンボル値との対応関係を記憶したテーブル44はあらかじめ与えておく。このテーブル44には、振幅・位相情報を表す番号×及びyと、それに対応したシンボル値が記載されている。このテーブル44の構成を16QAMを例にとって図22に示している。

【0081】図22を例に考えると、テーブル参照部4 3に振幅・位相情報を表す番号x=1、y=3が入力された場合には、テーブル44を参照してx=1、y=3に対応したシンボル値"0010"が出力端子45へ出力される。

【0082】以上のようにQAM復調部13を構成することにより、変調多値数nを変更することによって、あらゆる変調多値数のQAMデマッピング処理が可能となる。

【0083】(16QAMの例)以下、具体例を示す。 信号点判定部42に入力された同相成分データ及び直交 成分データの振幅が

V(I) = a

 $\dot{V}(Q) = -a$

であるとする。ただし、a>Oとする。また、振幅・位相情報とシンボル値との対応関係を記憶したテーブル44は、図22のように構成されているとする。

【0084】まず、同相成分V(I)=aは、k=2のとき初めて

【数12】

$$V(I)<-(\sqrt{n}-2)a+2ak$$

【0085】すなわち、

a < -(4-2) a + 2a 2 = 2a

を満たすから、

x = 3

と求められる。

【0086】次に、直交成分V(Q)=-aは、k=1のとき初めて

【数13】

$$V(Q) < -(\sqrt{n}-2)a + 2ak$$

【0087】すなわち、

-a < -(4-2)a+2a1=0

を満たすから、

y = 2

と求められる。

【0088】x=3、y=2はテーブル参照部43に入力され、図22のテーブル43を参照することにより、シンボル値は"1111"と求めることができる。従って、この場合シンボル値"1111"が出力端子45から出力される。

【0089】(グレイ復号化部14について)次に、グ

レイ復号化部14について説明する。グレイ復号化部1 4には、グレイ符号化されたデータが入力する。まず、 与えられた多値数 n に応じて、グレイ符号化前の値 c と、グレイ符号化された値 g (c)のテーブルを作成す る。

【0090】次に、入力されたデータ、すなわちグレイ 符号化された値g(c)に対して、作成したテーブルを 参照し、g(c)に対応したcをグレイ復号化したデータとして出力する。このような動作を繰り返すことにより、グレイ復号化を行うことができる。

【0091】(4値グレイ復号化の例)まず、与えられた多値数n=4から、グレイ符号化前の値 c と、グレイ符号化された値 g (c)のテーブルを作成する。このテーブルは以下のように求められる。

g(00) = 00

g(01) = 01

g(10) = 11

g(11) = 10

次に、入力されたグレイ符号化されたデータが"10"であるとすると、作成したテーブルを参照することにより、"11"がグレイ復号化されたデータとして出力される。

【0092】(差動復号化部15について)次に、差動復号化部15について説明する。差動復号化部15には、差動符号化された0/1のデータが入力される。一つ前に入力したデータビットをD(pre)とし、入力するデータビットをDとすると、差動復号化による出力データビットD(out)は、

【数14】

$$D(out) = \begin{cases} 1: D(pre) と D が 異なるとき \\ 0: D(pre) と D が 等しいとき \end{cases}$$

【0093】となる。このような動作を繰返すことにより、差動復号化されたデータを出力することができる。 【0094】(差動復号化の例)まず、与えられた初期 データビットが0であるとすると、

D(pre) = 0

となる。入力されたデータビットDが、

D = 1

のとき、出力データビットD(out)は

D (out) = 1

となる。これで1ビットの出力は終わる。

【0095】次に、2ビット目の出力は、1つ前(1ビット目)に入力されたデータビットは1であるから、

D(pre) = 1

となり、入力されたデータビットDが、

D = 1

であれば、出力データビットD(out)は、

D(out) = 0

となる。このようにして、差動復号化されたデータを出

力することができる。

[0096]

【発明の効果】以上説明したように、本発明によれば一つの受信デマッピング装置で複数の変調方式に対応したデマッピング処理出力を得ることが可能であるため、複数のシステムを一台の端末で取扱うようなアプリケーションに用いることによって、所望のデマッピング処理出力が得られる。また、パラメータを設定することによりデマッピング処理可能な変調方式が切り換わるため、タイムスロット毎に変調方式が切り換わるようなシステムにも対応可能である。さらに、新たに別の変調方式のデマッピング処理を行わなければならないような場合に、新たなデマッピングソフトウェアをダウンロードすることなく、デマッピングソフトウェアに引数として与えるパラメータを変更するだけで、所望の変調方式に対応したデマッピング処理を行うことができる。

【図面の簡単な説明】

【図1】本発明の一実施形態に係る受信デマッピング装置の構成を示すブロック図

【図2】同実施形態におけるPSK復調部の構成を示す ブロック図

【図3】PSK復調部について説明するための8値PS Kにおける位相平面上の信号点配置を示す図

【図4】PSK復調部について説明するための8値PS Kにおいて位相平面を複数の領域に分割する様子を示す 図

【図5】PSK復調部について説明するための位相平面 上の位相情報を表す番号を示す図

【図6】PSK復調部について説明するための8値PS Kにおける信号点の判定方法の一例を示す図

【図7】PSK復調部について説明するための8値PS Kにおける信号点の判定方法の他の例を示す図

【図8】図2におけるテーブルの内容の一例を示す図

【図9】図2におけるテーブルの内容の他の例を示す図 【図10】同実施形態におけるFSK復調部の構成を示す図

【図11】FSK復調部について説明するための数直線上に等間隔にプロットされた n個の角速度Ωを示す図 【図12】FSK復調部について説明するための角速度 Ωが判定境界値によって分割された領域のいずれかに存 在することを示す図

【図13】 FSK復調部について説明するための数直線 上の角速度情報を表す番号を示す図

【図14】図10におけるテーブルの内容の一例を示す

X

【図15】図10におけるテーブルの内容の他の例を示 す図

【図16】同実施形態におけるQAM復調部の構成を示す図

【図17】QAM復調部について説明するための16Q AMにおける位相平面上の信号点配置を示す図

【図18】QAM復調部について説明するための同相成分について分割された領域を示す図

【図19】QAM復調部について説明するための直交成分について分割された領域を示す図

【図20】QAM復調部について説明するための直交成分に付けられた番号を示す図

【図21】QAM復調部について説明するための同相成分に付けられた番号を示す図

【図22】図16におけるテーブルの内容の他の例を示す図

【符号の説明】

1…ディジタル変調信号の入力端子

2…ディジタル信号処理部

3…プログラムメモリ

4…パラメータ入力部

5…パラメータ

6…シンボル値の出力端子

10…復調部

11…PSK復調部

12…FSK復調部

1 3…QAM復調部

21…PSK信号の入力端子

22…信号点判定部

23…テーブル参照部

24…テーブル

25…シンボル値の出力端子

31…FSK信号の入力端子

32…入力バッファ

33…角速度判定部

34…テーブル参照部

35…テーブル

41…QAM信号の入力端子

42…信号点判定部

43…テーブル参照部

44…テーブル

45…シンボル値の出力端子

8値PSKの場合の信号点の判定(ケース1)

【図7】

【図8】

p=4	k=1 情号点 p=0 +1
p=6 p=6 p=6	:7
信号点	1
	\

位相情報を表わす哥号p	シンポル値
000	111
001	110
010	101
011	100
100	011
101	Ō10
110	001
111	000

位相情報を表わす番号とシンボル値の関係を表わすテーブル (8 値PSKの場合)

【図11】

$\Omega(0)$	Ω(1)	Q(2)	Ω (n-3) Ω (n-2)	Ω(n-1)	
		-	 	-	- -Ω

8値PSKの場合の信号点の判定(ケース2)

1	W	0	1
L	囜	7	4

位相情報を表わす番号p	シンボル値		
00	10		
01	11		
10	00		
11	01		

位祖情報を表わす番号とシンボル値の関係を表わすテーブル (QPSKの場合)

数直線上に等間隔にプロットされた。個の角速度Ω

【図13】

数直線上の角速度情報を表わす番号s

【図12】

角速度Ωは、(n-1) 個の判定境界値によって分けられる n値の領域のいずれかに存在する

【図14】

角速度信報を表わす番号s	シンボル値
000	101
001	111
010	ô0 1
011	011
100	100
101	110
110	000
111	010

角速度情報を表わす番号とシンボル値の関係を表わずテーブル (8 包FSKの場合)

【図15】

角速度情報を表わす番号s	シンボル値
00	` 11
01	00
10	10
11	01

角速度情報を表わす番号とシンボル値の関係を表わすデーブル (4値FSKの場合)

【図18】

同相成分について、√i-1本の直線によって分割された
√in個の領域

【図20】

【図17】

直交成分について、√i-1本の直線によって分割された √n個の領域

【図22】

×	1	2	3	4
1	000	1011	1010	1001
2	0001	1100	1111	1000
3	0010	1101	1110	0111
4	0011	0100	0101	Ū11 0

振温・位相怜報を表わす番号とシンボル値の関係を**表わすテ** - ブル (16QAMの場合)

【図21】

	Q y=√n	
	y=√n y=√n-1	-
	•	
	y=√n/2+2	
	y=√n/2+1	
0	y=√n/2	- 1
	y=√n/2-1	
	•	
	y=2	_
	y=1	_

同相成分について、「n個の領域につけられた番号y