Sieci komputerowe

00000000

Wykład 5 — Warstwa sieciowa

Marta Szarmach Zakład Telekomunikacji Morskiej Wydział Elektryczny Uniwersytet Morski w Gdyni

03.2022

Routing

- Warstwa sieciowa modelu OSI
- 2 Protokół IP
 - Cechy
 - IPv4
 - IPv6
- Routing
 - Definicja
 - Tablica routingu
 - Protokoły routingu
 - Brama domyślna
- Protokół ICMP
 - Rola
 - Rodzaje komunikatów
 - ICMPv6

1. Warstwa sieciowa

Rola, protokoły i rodzaje transmisji

1. Warstwa sieciowa

Warstwa sieciowa — przypomnienie:

Rola

Zapewnienie komunikacji pomiędzy urządzeniami nawet z różnych sieci:

- trasowanie (routing),
- load balancing,
- adresowanie urządzeń sieciowych na poziomie globalnym.

Protokoły

IP: IPv4, IPv6

Routing

- IPX
- także ICMP

Jednostka danych

Pakiet

1. Warstwa sieciowa

Warstwa sieciowa modelu OSI

Rodzaje komunikacji:

- Unicast komunikacja jeden do jednego
- Broadcast komunikacja jeden do wszystkich (oprócz siebie)
- Multicast komunikacja jeden do wielu (grupowa)
- Anycast komunikacja do najbliższego sąsiada (tylko w IPv6)

2. Protokół IP

IPv4 vs IPv6

2.1 Protokół IP. Cechy

Cechy protokołu IP:

- Bezpołączeniowość podczas transmisji pakietu nie jest tworzona sesja pomiędzy komunikującymi się urządzeniami
- Działanie best effort nie ma zapewnienia bezstratnego dostarczenia pakietu
- Niezależność od medium transmisyjnego protokołu IP nie interesuje, czy pakiet jest przesyłany przez medium przewodowe czy bezprzewodowe (tym zajmują się niższe warstwy)

Protokół IP jest zdecydowanie najbardziej popularnym protokołem na warstwie 3.

Nagłówek IPv4:

+	Bity 0 - 3	4 - 7	8 - 15	16 - 18	19 - 31					
0	Wersja	Długość nagłówka	agłówka Typ usługi Całkowita długość							
32		Numer ident	Flagi	Kontrola przesunięcia						
64	Czas ży	cia pakietu (TTL)	Protokół warstwy wyższej	j Suma kontrolna nagłówka						
96	Adres źródłowy IP									
128	Adres docelowy IP									
160		O	Uzupełnienie							
192	Dane									

Grafika: https://www.soisk-me.pl/

Nagłówek IPv4 — ważniejsze pola:

- Wersja określa wersję protokołu IPv4
- Differentiated Services (DS) (wcześniej: ToS, Type of Service) — określa priorytet pakietu,
- Flagi informują o tym, czy dany pakiet może być/jest podzielony i wysłany w ramach kilku ramek ethernetowych (ramka ethernetowa może zawierać ładunek o wielkości maksymalnie 1500 bajtów, jeśli pakiet wyższej warstwy jest większy, musi zostać podzielony, o ile nie jest ustawiona flaga Don't fragment)

Nagłówek IPv4 — ważniejsze pola:

- TTL (ang. Time to Live) czas życia, jaki pozostał
 pakietowi przed usunięciem go z sieci, innymi słowy
 maksymalna ilość przeskoków (routerów na trasie), które może
 jeszcze dokonać dany pakiet
- Protokół warstwy wyższej informacja o zawartości pakietu (PDU jakiego protokołu enkapsulowany jest w ramach pakietu)
- Adres źródłowy adres IPv4 urządzenia nadającego pakiet
- Adres docelowy adres IPv4 urządzenia, ko którego adresowany jest pakiet

Przyczyny powstania IPv6:

 Ograniczona ilość adresów IPv4 — przy rosnącej ilości urządzeń podłączonych do sieci, zaczynało brakować adresów, które można było stworzyć na 32 bitach

Routing

 Konieczność dokonywania translacji adresów w IPv4 — z powodu małej ilości adresów IPv4, część adresów była "ukryta", używana lokalnie i tłumaczona na adresy zewnętrzne, co czasem zaburzało komunikację

Różnice pomiędzy IPv6 a IPv4:

- Zwiększona liczba bitów adresu IP z 32 bitów do 128 bitów
- Znaczne uproszczenie nagłówka
- Brak ARP w to miejsce wymieniane są pakiety ND (Neighbor Discovery)
- Brak ruchu typu broadcast zastąpiono go multiacastem na adresy link-local oraz transmisją anycast
- Brak konieczności nadawania adresów statycznie lub przez DHCP — zastąpiono to automatycznym rozgłaszaniem adresów SLAAC (ang. StateLess Address AutoConfiguration)

Nagłówek IPv6:

Bity	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31			
0	Wersja Priorytet			Etykieta przepływu							
32	Długość danych				Następny nagłówek		Limit przeskoków				
64											
96	Adres źródłowy (128 bitów)										
128	Adies Ziodiowy (126 bitow)										
160											
192											
224	Adres docelowy (128 bitów)										
256											
288											

Grafika: https://www.soisk-me.pl/

Nagłówek IPv6 — ważniejsze pola:

- Wersja określa wersję protokołu IPv6
- Priorytet odpowiednik pola DS w IPv4
- Następny nagłówek odpowiednik pola Protokół warstwy wyższej w IPv4
- Limit przeskoków odpowiednik pola TTL w IPv4
- Adres źródłowy adres IPv6 urządzenia nadającego pakiet
- Adres docelowy adres IPv6 urządzenia, ko którego adresowany jest pakiet

Routing

•0000000

Definicja, rola tablicy routingu i bramy domyślnej, protokoły

3.1 Routing. Definicja

Definicja

Routing — proces kierowania pakietu w sieci taką optymalną drogą (tj. poprzez takie urządzenia), aby dotarł on do urządzenia docelowego.

- Urządzeniem wykonującym routing jest router
- Decyzje podejmowane są na podstawie tablicy routingu

3.1 Routing. Definicja

Proces routingu:

Urządzenie, po otrzymaniu pakietu, dokonuje dekapsulacji i sprawdza docelowy adres IP:

- Jeśli pakiet skierowany jest to tego urządzenia, przekazywany jest do wyższych warstw
- Jeśli pakiet ma być wysłany do innego urządzenia, sprawdzana jest tablica routingu — poszukiwany jest wpis zawierający informację o docelowej sieci, a pakiet wypuszczany jest wskazanym w tablicy routingu interfejsem
- Jeśli trasa docelowa nie jest znana, pakiet wysyłany jest trasą ostatniej szansy (o ile jest skonfigurowana)

Routing

3.2 Routing. Tablica routingu

Tablica routingu

```
6.1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default. U - per-user static route. o - ODR
      P - periodic downloaded static route
Gateway of last resort is 10.10.10.6 to network 0.0.0.0
    10.0.0.0/30 is subnetted, 1 subnets
       10.10.10.4 is directly connected, Serial0/1/0
    172.16.0.0/24 is subnetted, 1 subnets
       172.16.1.0 is directly connected, FastEthernet0/1
    0.0.0.0/0 [1/0] via 10.10.10.6
```

- Zawiera informacje o znanych trasach, tj. dostępnych sieciach i którym interfejsem należy wypuścić pakiet, aby do niej dotarł
- Budowana zarówno przez komputery, jak i routery

3.2 Routing. Tablica routingu

Rodzaje tras w tablicy routingu routera:

- Trasy statyczne (S) skonfigurowane ręcznie przez administratora
- Trasy do sieci bezpośrednio dołączonych (C, directly connected) — prowadzące do sieci zapiętych na interfejsach routera
- Trasy dynamiczne otrzymane od sąsiednich routerów w wyniku działania protokołu routingu

3.3 Routing. Protokół routingu

Protokół routingu vs protokół routowany:

Protokoły routingu

Służą do przekazywania informacji pomiędzy routerami na temat tras do sieci przez nie znanych:

- wewnętrzne RIP, EIGRP, OSPF, IS-IS
- zewnętrzne (używane pomiędzy sieciami różnych dostawców) — BGP

Protokoły routowane

Służą do przenoszenia danych w sieci za pomocą dostępnych tras:

- IP: IPv4, IPv6
- IPX

Nie mają wpływu na to, którą trasą zostanie przekazany pakiet, dbają jedynie o to, by dotarł do docelowego (wskazanego adresem sieciowym) urządzenia.

3.4 Routing. Brama domyślna

Definicja

Brama domyślna — urządzenie (najczęściej pierwszy router na trasie), które odbiera od hostów pakiety mające trafić do zdalnych sieci i jest w stanie je tam przekierować.

- Adres bramy domyślnej jest jedną z podstawowych (oprócz adresu IP i maski sieciowej) rzeczy do skonfigurowania na hoście
- Przy braku dostępu do bramy domyśnej (błędnej adresacji lub trasie, uszkodzonym urządzeniu) host nie będzie miał możliwości komunikowania się z zewnętrznymi hostami (poza swoją siecią)

3.4 Routing. Brama domyślna

Tablica routingu komputera:

```
c:∖>route print
Lista interfejsów
                           ..... MS TCP Loopback interface
0x10004 ...00 1a 92 32 3f a9 ..... Realtek RTL8168/8111 PCI-E Gigabit Ethernet
NIC - Sterownik miniport Harmonogramu pakiet~w
Aktuwne trasu:
Miejsce docelowe w sieci
                                Maska sieci
                                                  Brama
                                                              Interfe.is
                                                                              Metryka
          0.0.0.0
                                          172.16.1.254
                                                             172.16.1.1
                                                                               20
                             0.0.0.0
        127. R. R. R
                          255.0.0.0
                                             127. N. N. 1
                                                              127. N. N. 1
                      255.255.255.0
                                            172.16.1.1
                                                             172.16.1.1
                                             127.0.0.1
                                                                               20
                    255.255.255.255
                                            172.16.1.1
                                                             172.16.1.1
        224. N. N. N
                           240.0.0.0
                                                                               2Й
  255.255.255.255
                    255.255.255.255
Domvślna brama:
Trasu trwałe:
  Brak
```

Zawiera trasę domyślną (do bramy domyślnej), trasy do innych urządzeń w ramach sieci oraz do samego siebie

4. Protokół ICMP

Rola i rodzaje komunikatów

4.1 Protokół ICMP. Rola

Definicia

Protokół ICMP (ang. Internet Control Message Protocol) — protokół wspomagający działanie warstwy sieciowej modelu OSI, pełniący funkcje kontrolne.

- Zadaniem ICMP jest przesyłanie komunikatów umożliwiających sprawdzenie poprawności komunikacji w sieci, np. dostępność urządzeń sieciowych.
- Wykorzystywany podczas wykonywania takich komend jak ping lub tracert.

Nagłówek ICMP:

Warstwa sieciowa modelu OSI

- Rodzaj wiadomości (czy jest to zapytanie, odpowiedź ICMP czy informacja o błędzie) przekazywana jest w polu Type
- Dokładniejsza informacja o źródle niepowodzenia transmisji umieszczona jest w polu Code

Rodzaje komunikatów (wartości w polu Type):

- Echo Request (type 8) żądanie echa (prośba o potwierdzenie poprawności komunikacji)
- Echo Reply (type 0) odpowiedź na żądanie echa
- Destination Unreachable (type 3) miejsce docelowe jest nieosiągalne, błąd w transmisji
- Time Exceeded (type 11) przekroczono czas życia pakietu

Rodzaje błędów (wartości w polu Code dla wiadomościi typu 3 — Destination Unreachable):

- Sieć nieosiągalna (code 0)
- Host nieosiągalny (code 1)
- Protokół nieosiągalny (code 2)
- Port nieosiągalny (code 3)
- Zbyt duży pakiet, aby przesłać go bez fragmentacji (code 4)

Wykonanie komendy ping – proste sprawdzenie komunikacji pomiędzy dwoma urządzeniami:

- Urządzenie wysyłające ping wysyła do urządzenia zdalnego (co do którego chce się przekonać, czy jest dostępne) tak naprawdę wiadomość ICMP o typie 8 — echo request
- Jeśli urządzenie zdalne jest dostępne, odsyła w odpowiedzi wiadomość ICMP typu 0 — echo reply
- Jeśli komunikacja nie doszła do skutku, wysyłany do drodze jest komunikat ICMP odpowiedniego typu, np. 3 — Destination Unreachable

Wykonanie komendy tracert — sprawdzenie trasy do urządzenia docelowego:

- Urządzenie początkowe wysyła wiadomość ICMP echo request ustawiając w nagłówku IP w polu TTL wartość 1
- Pierwszy router, który odbierze pakiet, musi zmiejszyć TTL o 1, jest on wówczas zerowany, przez co router musi odrzucić ten pakiet i odesłać nadawcy informację zwrotną o odrzuceniu (pakiet ICMP typu 11 — Time to Live Exceeded) — komputer początkowy czeka na pierwszy pakiet ICMP typu 11, jego nadawcą jest pierwszy router na trasie do urządzenia docelowego
- Następnie z komputera początkującego wysyłany jest pakiet o wyższym TTL (2) i oczekiwana jest odpowiedź od następnego routera na trasie (pierwszy router zmniejszy TTL z 2 na 1 i pakiet przepuści, drugi będzie musiał go odrzucić)
- Całość kontynuowana jest do momentu, w którym osiągnięte jest urządzenie docelowe — odebrany jest zwykły echo reply

Standardowe komunikaty informacyjne ICMPv6:

- Echo Request żądanie echa (typ 128)
- Echo Reply odpowiedź echa (typ 129)

Raporty błędów ICMPv6:

- Destination Unreachable cel nieosiągalny (typ 1)
- Packet Too Big za duży pakiet (typ 2)
- Time Exceeded przekroczono czas (typ 3)
- Parameter Problem problem z parametrami (typ 4)

Komunikaty ND (ang. Neighbor Discovery):

- Neighbor Solicitation (NS) komunikat wywołania sąsiada, odpowiednik ARP request (typ 135)
- Neighbor Advertisement (NA) komunikat rozgłoszenia sąsiada, odpowiednik ARP reply (typ 136)
- Router Solicitation (RS) komunikat wywołania routera (typ 133)
- Router Advertisement (RA) komunikat rozgłoszenia routera (typ 134)