

Edge Detection

Sung Soo Hwang

- Edge pixels: Pixels at which the intensity of an image changes abruptly
- Edges: Sets of connected edge pixels

- How to detect edges? (in case of 1D)
 - The magnitude of the first derivative can be used to detect edges

- How to detect edges(in case of 2D)
 - By using image gradient

$$\nabla f \equiv grad(f) \equiv \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$M(x,y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2}$$
$$\alpha(x,y) = tan^{-1} \left[\frac{g_y}{g_x} \right]$$

• Effect of noise on edge detection

Image smoothing for noise reduction should be performed

Sobel operators

$$g_x = \frac{\partial f(x, y)}{\partial x} = f(x + 1, y) - f(x, y)$$
$$g_y = \frac{\partial f(x, y)}{\partial y} = f(x, y + 1) - f(x, y)$$

-1
1

-1	1
----	---

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel

$$M(x,y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2} = |g_x| + |g_y|$$

Sobel operators

Result of applying gradient operators

• Result of applying gradient operators after 5X5 averaging filter

Sobel operators

• Thresholding on magnitude of gradient

Canny Edge Detector

- Algorithm
 - 1. smooth the input image with a Gaussian filter
 - For noise removal
 - 2. Compute the gradient magnitude and angle images
 - Use Sobel edge mask
 - 3. Apply nonmaxima suppression to the gradient magnitude image
 - Find the direction d_k that is closest to $\alpha(x,y)$ (α :gradient direction)
 - If the value of M(x,y) is less than at least one of its two neighbors along d_k , suppress it(set to zero)

Canny Edge Detector

- Algorithm
 - 4. Use double thresholding and connectivity analysis to detect and link edges
 - $M(x,y) \ge T_H \leftarrow \text{edge}$
 - $M(x,y) < T_L \leftarrow$ non-edge
 - Otherwise ← undetermined, use connectivity analysis

Line Detection

Sung Soo Hwang

- The concept of Hough transform
 - = y=ax + b \rightarrow b= -ax + y
 - Find all combinations of (a, b) for each edge pixel
 - A combination of (a, b) which is used multiple times can be a line of an input image

- The concept of Hough transform
 - a becomes infinity as the line approaches the vertical direction
 - Use $\rho\theta$ representation instead
 - $x\cos\theta + y\sin\theta = \rho$

Hough Transform

- Algorithm
 - 1. obtain a binary edge image
 - 2. specify subdivision in the $\rho\theta$ plane
 - 3. Examine the counts of the accumulator cells for high pixel concentrations

Hough Transform

- Circle detection
 - Hough transform is applicable to any function of the form g(v, c)=0,
 where v is a vector of coordinates and c is a vector of coefficients
 - Points lying on the circle

•
$$(x-c_1)^2+(y-c_2)^2=c_3$$

The result is a 3D parameter space