Radiographs X-RAYS

Vincent Carrasco, MD, MSIS

NLM Postdoctoral Fellow & Doctoral Candidate

Carolina Health Informatics Program The University of

North Carolina Chapel Hill

Radiography

- 1. Electromagnetic Spectrum
- 2. X-ray History
- 3. X-ray Physics
- 4. Clinical Application

Electromagnetic Spectrum

History

Think of an x-ray as photo using x-rays

History of X-rays

History of X-rays

Wilhelm Roentgen's first x-ray of his wife's hand Anna Bertha Ludwig (wearing wedding ring), in 1895

Physics

Think of a radiograph as picture using x-rays

X-Ray Physics

Physics of X-rays

"Filament" (cathode -)

Anode (+) with Tungsten Target

Energy is released as heat
Tungsten target mounted on copper
Spinning the target helps to dissipate heat

X-rays

Physics of X-rays

- Ionizing radiation and have a
- very high frequency (7×10⁸ Hz)
- very short wavelength (0.001 to 10 nm)

Think of a radiograph as picture using x-rays

Types of X-rays

- Abdominal x-ray
- Barium x-ray
- Bone x-ray
- Chest x-ray
- Dental x-ray
- Extremity x-ray
- Hand x-ray
- Joint x-ray

- Lumbosacral spine x-ray
- Neck x-ray
- Pelvis x-ray
- Sinus x-ray
- Skull x-ray
- Thoracic spine x-ray
- Upper GI and small bowel series
- X-ray of the skeleton

X-rays best for imaging bone

- High resolution
- Attenuation (absorb X-rays). increases with atomic density (number of protons in the nuclei).
- Bones have high attenuation -dark
- Soft tissue low attenuation faint

X-ray of a broken leg

Projectional X-ray

Ο Αν Επεντ 🗆 Ρελατεδ Τασκ Παραδιγμ

- Α νεω μετηοδολογψ φορ στυδψινγ ινφορματιον βεηασιορ ισ
- βεινγ δεσελοπεδ το ινσεστιγατε τηε βιολογιχ υνδερπιννινγσ οφ
- σεαρχη βεηασιορ. Τηερε αρε μανψ ματυρε βεηασιοραλ μοδελσ
- βυτ φεω ιφ ανψ, τηατ διρεχτλψ εξαμινε πηψσιολογιχ προχεσσεσ
- ωιτηιν τηε ηυμαν βραιν ωηιλε τηεσε βεηαπιορσ αρε οχχυρρινγ. Ουρ
- γοαλ ισ το εξπλορε νεω τεχηνολογιεσ τηατ αρε υσεδ φορ τηε στυδψ
- οφ βραιν φυνχτιον. Ιν τηισ παπερ ωε ωιλλ δισχυσσ δεωελοπμεντ οφ α
- φυνχτιοναλ μαγνετιχ ιμαγινγ (φΜΡΙ) μετηοδολογψ ινχλυδινγ τηε
- δεπελοπμεντ οφ α σπεχιαλιζεδ τασκ σετ, δατα πρε-προχεσσινγ ανδ
- στατιστιχαλ παραμετριχ δατα αναλψσισ.

QUESTIONS

BREAK

X-rays

Chest X-rays

Chest X-rays

Normal plain abdomen

Broad spectrum of "Normality" for AXR

KUB

- KUB stands for: kidneys, ureter & bladder.
- No contrast material is used, it is the same for plain abdominal X-ray to show the different abdominal & pelvic organs as soft tissue shadows.
- It is useful also to show radioopaque renal stones.

Mammography!

Normal (left) versus cancerous (right) mammography image

Τιμε φορ Λυνχη?

Τιμε φορ Λυνχη?

Are we there yet?

Are we there yet?

Technologies using X-rays

Fluoroscopy

Edison and Dally

Thomas Edison examines Clarence Dally's, his assistant, hand thru a fluoroscope of his own design. (Science Source / Photo Researchers)

- 1896-Clarence Dally was one of Edison's "muckers" (researcher). He saw Roentgen's x-ray.
- Exposing himself to poisonous radiation for hours on end
- 1900 lesions and degenerative skin conditions on his hands and face. His hair began to fall out, then his eyebrows and eyelashes, too. His left hand was especially swollen and painful.
- Carcinoma appeared on his left arm, Dally agreed to have it amputated

X-rays are Damaging Radiation

C-Arm- real-time x-rays –portable fluoroscopy

- X-ray burn causing deformity.
- Accident: not shielded when first discovered

Fluoroscopy

C-arm- real-time x-rays (portable fluoroscopy)

- Fluoroscopy term invented by Edison
- fluorescence observed when a glowing plate bombarded with Xrays
- View movement (of tissue or a contrast agent

Fluoroscopy

C-Arm- real-time x-rays –portable fluoroscopy

A fluoroscopy X-ray machine is a great asset during surgery for implants

High Resolution Fluoroscope

- Radiography fixed still images
- Fluoroscopy provided live moving pictures
- Now all digital imaging modes and data storage and retrieval.

X-ray and Fluoroscopy

Contrast

Types of Contrast

- lodinated (intravascular)
 - Organic iodine molecules used for contrast include iohexol, iodixanol and ioverso
- Barium (gastro-intestinal)
 - Barium sulfate (insoluble)
 - Swallowed as a slurry

Barium Swallow

Cardiac Angiography

 Angio-radiography fixed still images

Cardiac Angiography

Video of procedure

Angiography "footage"

Cerebral Angiography

Early cerebral angiography radiography were fixed still images

Cerebral Angiography

Video of Cerebral procedure

Cerebral Angiography "footage"

QUESTIONS

References

Geleijns J, Tack D. Medical physics: radiation risks. In: Adam A, Dixon AK, Gillard JH, Schaefer-Prokop CM, eds. *Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging*. 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2015:chap 1.

Medical Physics - X-Rays. (n.d.). Retrieved May 30, 2018, from http://www.genesis.net.au/~ajs/projects/medical_physics/x-rays/index.html