PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-232064

(43)Date of publication of application: 05.09.1995

(51)Int.CI.

B01J 23/58 B01D 53/86 B01D 53/94 B01J 20/04

(21)Application number: 06-025326

(71)Applicant: TOYOTA MOTOR CORP

CATALER KOGYO KK

(22)Date of filing:

23.02.1994

(72)Inventor: MIYOSHI NAOTO

TANIZAWA TSUNEYUKI KASAHARA KOICHI TATEISHI SHIYUUJI

(54) CATALYST FOR PURIFICATION OF EXHAUST GAS

(57)Abstract:

PURPOSE: To improve furthermore NOx purification rate by improving NOx absorbing power of an NOx absorbing material in a catalyst for purification of exhaust gas carrying the NOx absorbing material. CONSTITUTION: A noble metal 4 and an NOx absorbing material 5 carried by a porous layer 3 are uniformly dispersed and carried in the porous layer 3. As the noble metal and the NOx absorbing material are close to each other, NO in an exhaust gas is oxidized into NO2 by the noble metal when it is lean and it is absorbed simultaneously with the NOx absorbing material and the absorbed NO2 is reduced into HC and CO and purified by the action of the noble metal during stoichiometric time. Therefore, the NOx absorbing material absorbs NOx as much as possible.

LEGAL STATUS

[Date of request for examination]

15.12.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3391878 [Date of registration] 24.01.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-232064

最終頁に続く

(43)公開日 平成7年(1995)9月5日

(51) Int.Cl. ⁶		酸別記号	庁内整理番号		FI					技術表示箇所			
B01J	23/58	ZAB A	,,,,,										
B01D	•	ZAB											
2012	53/94	J2											
	w, 01				В	0 1 D	53/ 36		ZAB				
									102 H				
				審査請求	未請求	請求項	頁の数 1	OL	(全 6 頁)				
(21)出願番号		特顧平6-25326	顧平6-25326				000003207						
							トヨタ	自動車	朱式会社				
(22)出顧日		平成6年(1994)2/			愛知県	豊田市	トヨタ町1番	地					
					(71)	出願人	000104	607					
							キャタ	ラーエ	業株式会社				
					静岡県	静岡県小笠郡大東町千浜7800番地							
					(72)	発明者	三好	直人					
•							愛知県	豊田市	トヨタ町1番	地 トヨタ自動			
							車株式	会社内					
					(72)	発明者	谷澤	恒幸					
							愛知県	豊田市	トヨタ町1番	地 トヨタ自動			
							車株式	会社内					
					(74)	代理人	弁理士	大川	宏				

(54) 【発明の名称】 排気ガス浄化用触媒

(57)【要約】

【目的】NOx吸収材を担持した排気ガス浄化用触媒において、NOx吸収材のNOx吸収能を向上させることによりNOx浄化率をさらに向上させる。

【構成】多孔質層3に担持された貴金属4及びNOx吸収材5は、多孔質層3内に均一に分散担持していることを特徴とする。貴金属とNOx吸収材が近接しているため、排気ガス中のNOはリーン時に貴金属により酸化されてNO2となると同時にNOx吸収材に吸収され、ストイキ時には吸収されたNO2は貴金属の作用によりHC及びCOにより還元されて浄化される。したがってNOx吸収材は最大限にNOxを吸収する。

I

【特許請求の範囲】

【請求項1】 耐熱性担体と、該担体にコートされた多 孔質層と、該多孔質層に担持された貴金属とアルカリ土 類金属、希土類金属及びアルカリ金属の中から選ばれる 少なくとも1種のNOx吸収材と、よりなる排気ガス浄 化用触媒において、

該貴金属及び該NOx吸収材は互いに近接して該多孔質 層内に均一に分散担持していることを特徴とする排気ガス浄化用触媒。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は内燃機関の排気ガス浄化用触媒に関し、詳しくは、排ガス中に含まれる一酸化炭素 (CO) や炭化水素 (HC) を酸化するのに必要な量より過剰な酸素が含まれている排気ガス中の、窒素酸化物 (NOx) を効率よく浄化できる排気ガス浄化用触媒に関する。

[0002]

【従来の技術】従来より、自動車などの内燃機関の排気ガス浄化用触媒として、CO及びHCの酸化とNOxの還元とを同時に行って排気ガスを浄化する三元触媒が用いられている。このような触媒としては、例えばコージェライトなどからなる耐熱性ハニカム状のモノリス担体のセル壁上にγーアルミナからなる多孔質層を形成し、その多孔質層内にPt,Pd,Rhなどの貴金属を担持させたものが広く知られている。

【0003】ところで、このような排気ガス浄化用触媒の浄化性能は、エンジンの空燃比(A/F)によって大きく異なる。すなわち、空燃比の大きい、つまり燃料濃度が希薄なリーン側では排気ガス中の酸素量が多くなり(以下、リーン雰囲気という)、COやHCを浄化する酸化反応が活発である反面NOxを浄化する還元反応が不活発になる。逆に空燃比の小さい、つまり燃料濃度が濃いリッチ側では排気ガス中の酸素量が少なくなり(以下、リッチ雰囲気という)、酸化反応は不活発となるが還元反応は活発になる。

【0004】一方、自動車の走行において、市街地走行の場合には加速・減速が頻繁に行われ、空燃比はストイキ(理論空燃比)近傍からリッチ側までの範囲内で頻繁に変化する。このような走行における低燃費化の要請に 40 応えるには、なるべく酸素過剰の混合気を供給するリーン側での運転が必要となる。したがって排気ガス中の雰囲気がリーン雰囲気である場合においてもNOxを十分に浄化できる触媒の開発が望まれている。

【0005】そこで本願出願人は、先に多孔質体からなる担体にアルカリ土類金属とPtを担持した排気ガス浄化用触媒を提案している(特開平5-317652号)。この触媒によれば、排気ガス中の雰囲気がリーン雰囲気でNOx(排気ガス中にはNOが約90%、NO2等がその他の成分として含まれている。)、特にNO 50

がPtで酸化されてNO2となり、次いでアルカリ土類 金属と反応して例えば硝酸バリウム(Ba(N

O3)2)を生成することでアルカリ土類金属に吸収される。それがストイキからリッチ雰囲気に変化した時に吸収されていたNO2がアルカリ土類金属から放出され排気ガス中のHC、CO等とPtにより反応してN2に還元浄化されるため、リーン雰囲気においてもNOxの浄化性能に優れている。

【0006】つまり、排気ガス中に含まれるNOxに
10 は、NO成分が多く存在しているが、アルカリ土類金属
等のNOx吸収材はNOを直接吸収することはできず、
NOはPt等の貴金属の酸化作用によりNO2に酸化されて初めてNOx吸収材に吸収される。したがって、NOx吸収材のみではNOxは吸収されず、Ptなどの貴金属と近接した状態の時にNOx吸収材のNOx吸収能を最大限に発揮させることができる。

[0007]

【発明が解決しようとする課題】ところで上記した排気ガス浄化用触媒においては、Ptの担持方法は、セル壁上にアルミナ等からなる多孔質層を有するハニカム状のモノリス担体を、Pt含有量が約5g/溶液1リットル(担体への担持量を約1g/担体1リットル、担体の吸水量を約0.2リットル/担体1リットルとした場合)で該担体がもつ吸水量(多孔質層を構成する材質がアルミナの場合、該アルミナ自身がもつ細孔内に充填可能な溶液の総量)以上の溶液量の低濃度ジニトロジアンミン白金水溶液中に浸漬し、所定時間経過後引上げ、乾燥する方法であるため、上記水溶液は多孔質層の外層(担体のセル壁上にコートされた多孔質層を断面で見て、流通する排気ガスと接触する側をいう)から内層(担体と接触する側をいう)に向かって順に染み込むと同時に各層の例えばアルミナがもつ細孔内部に染み込む。

【0008】この時、Ptは低濃度であること(Pt量が少ないこと及び溶液量が多いことに基づく)、及びアルミナ等の多孔質層と非常に吸着し易い性質をもつことから、Ptの大部分が外層に瞬時に吸着担持され内層では担持されるPtが殆ど存在しない状態となって、結果的に外層程多く内層は少ないという分布をもって担持されることになる。

り 【0009】一方、アルカリ土類金属の担持方法は、上記のPt担持担体を、アルカリ土類金属例えばバリウムの場合、含有量が約137g/溶液1リットル(担体への担持量を約0.2mol/担体1リットル、担体の吸水量は上記に同じとした場合)で該担体がもつ吸水量と略同溶液量の高濃度の例えば酢酸バリウム水溶液中に浸渍し、担体内(アルミナ自身がもつ細孔内)に該水溶液を全て吸水した状態で乾燥、焼成を行う方法であるため、アルカリ土類金属は多孔質層の外層から内層まで殆ど均一に担持されることになる。

50 【0010】このように、Ptとアルカリ土類金属はそ

の担持方法の相違から、Ptは多孔質層の外層から内層に向かってその量が減少する担持となり、一方アルカリ土類金属は外層から内層まで均一な担持となる。この結果、多孔質層の外層はPtとアルカリ土類金属の出会う機会が多く、内層は逆に出会う機会が少なくアルカリ土類金属の近傍にPtが存在しない状態ができ、内層に担持されたアルカリ土類金属はその機能を全く働かせることができず、リーン雰囲気においてNOxを吸収しない(NOxを吸収しないから、NOxの放出、還元浄化作用もない)ため、上記触媒ではNOx浄化性能が向上しないという不具合があった。

【0011】なお、Ptの量を増加する、又はPtを溶解する溶液量を減らしてPt濃度を高める対策が考えられるが、貴金属使用量増加によるコストの上昇、及び溶液量を減らしてもPt量が変化せず、Ptと多孔質層との吸着し易い性質が不変であることから、Ptは依然として多孔質層の外層に多く担持されるため、これらの対策は採用することができない。

【0012】本発明はこのような事情に鑑みてなされたものであり、担体の多孔質層に均一に担持されているアルカリ土類金属等のNOx吸収材の近傍にPt等の貴金属を配置するようにして、NOx吸収及び放出能を充分に発揮できなかったNOx吸収材をより多く活用することにより、NOx浄化性能を向上させることを目的とする。

[0013]

【課題を解決するための手段】上記課題を解決する本発明の排気ガス浄化用触媒は、耐熱性担体と、担体にコートされた多孔質層と、多孔質層に担持された貴金属とアルカリ土類金属、希土類金属及びアルカリ金属の中から選ばれる少なくとも1種のNO×吸収材と、よりなる排気ガス浄化用触媒において、貴金属及びNO×吸収材は互いに近接して多孔質層内に均一に分散担持していることを特徴とする。

[0014]

【作用】本発明の排気ガス浄化用触媒では、貴金属及びNOx吸収材は互いに近接して多孔質層の外層から内層にかけて均一に分散担持している。したがって、排気ガス中の雰囲気がリーン雰囲気となった時に排気ガス中のNOxの大部分を占めるNOは、先ず多孔質層の外層で貴金属により酸化されてNO2になると同時に該貴金属に近接しているNOx吸収材に吸収される。

【0015】さらに、NOは多孔質層の内層にも進入し、外層と同様に内層に担持されている貴金属により酸化されてNO2になると同時に該貴金属に近接しているNOx吸収材に吸収される。また、排気ガス中の雰囲気がストイキからリッチ雰囲気に変化したとき、今まで吸収されていたNO2が放出され、NOx吸収材に近接した貴金属の作用により排気ガス中に存在するHC、CO等と反応し、N2に還元浄化される。

【0016】このように、多孔質層の内層に担持された NOx吸収材のNOx吸収能及び費金属の還元浄化能を 最大に発揮することができるため、高いNOx浄化率が 得られる。また、本発明の排気ガス浄化用触媒では、貴 金属の内、Pt及びPdの少なくとも1種は多孔質層の 外層から内層にかけて均一に分布させ、Rhは外層に高 濃度担持させることが望ましい。

【0017】これは、RhはPtよりも還元浄化能の点で優れているためであり、排気ガス中の雰囲気がストイ10 キからリッチ雰囲気になったときに、排気ガス中に存在するNOxとHC、CO等との還元反応及びNOx吸収材から放出されたNOxと排気ガス中のHC、CO等との還元反応を促進するために、NOxとHC、CO等とが接触する機会の多い外層にRhを担持するとよい。

【0018】なお、耐熱性担体としては、コージェライトなどからなるモノリス担体、あるいはメタル担体などを用いることができる。また多孔質層の材質には、アルミナを始めとしてシリカ、チタニア、ゼオライト、シリカアルミナ、ジルコニアなど従来と同様のものを用いることができる。そして貴金属としてはPt,Pd,Rhを、またNOx吸収材としては、Ba,Sr,Caなどのアルカリ土類金属、La,Y,Ceなどの希土類元素、あるいはLi,K,Na等のアルカリ金属を用いることができる。

【0019】これら金属のうち、貴金属の担持量は0. $1\sim10$. 0 g/L、2 種以上の貴金属を併用する場合には合計で0. $1\sim10$. 0 g/Lであることが好ましい。この貴金属の担持量が0. 1 g/Lの場合、充分な触媒活性が得られない恐れがある。また1 0. 0 g/Lを超えると、それ以上貴金属の担持量を増加させても貴金属の粒成長が促進され、活性向上には寄与せず高価となる。特に貴金属の担持量が0. $5\sim3$. 0 g/Lである場合は、活性とコストの面で好ましい。

【0020】またNOx吸収材の担持量は、0.05~10.0mol/Lであることが好ましい。2種以上の金属を併用する場合は合計で0.05~10.0mol/Lであることが好ましい。このNOx吸収材の担持量が0.05mol/L未満の場合、充分なNOx浄化率を得ることができない恐れがあり、また10.0mol/Lを超えると多孔質層の表面積を低下させる恐れがある。

[0021]

【実施例】以下、実施例により具体的に説明する。

(第1実施例)ジニトロジアンミン白金水溶液中に平均 粒径10μmのアルミナ粉末を混合し、攪拌後、乾燥・ 焼成してPt担持アルミナ粉末を調製した。

【0022】次に酢酸バリウム水溶液中に上記Pt担持 アルミナ粉末を混合し、攪拌後、乾燥・焼成してPt-Ba担持アルミナ粉末を調製した。このPt-Ba担持 50 アルミナ粉末500gに水150ccとアルミナゾル

40

5

(アルミナ含有率10重量%) 350 gを加え、攪拌混合してスラリーとした。このスラリーに1.3 Lの容積のコージェライト製ハニカム状のモノリス担体を浸漬し、引き上げた後余分なスラリーを吹き払い、80℃で乾燥後500℃で焼成してNo.1の排気ガス浄化用触媒を得た。なお、本実施例のPt-Ba担持方法を担持法Aという。

【0023】この排気ガス浄化用触媒の模式的な要部断面図を図1に示す。図1に示すようにこの排気ガス浄化用触媒は、担体1と、担体1のセル壁2表面にコートされた多孔質層3と、多孔質層3内に均一に分散担持されたPt4及びBa5と、から構成されている。このNo.1の排気ガス浄化用触媒では、多孔質層3は担体1リットル当たり100g形成され、表1に示すようにPtは1.0g/L、Baは0.2mol/L担持されている。

【0024】そしてNOx吸収材及び貴金属の種類と担持量を変化させ、同様の方法で表1に示すNo.2, No.3, No.6, No.7の各排気ガス浄化用触媒を調製した。さらに、No.1~No.3, No.6~No.7の5種の排気ガス浄化用触 20 媒を、硝酸ロジウム水溶液中に1時間浸漬し引き上げて乾燥・焼成することにより、多孔質層3の外層6にRh8を吸着担持してNo.9~No.13の排気ガス浄化用触媒を形成した。得られた排気ガス浄化用触媒の模式的な要部断面図を図2に示す。

(実施例2)アルミナ粉末500gに水150ccとアルミナゾル(アルミナ含有率10重量%)350gを加え、攪拌混合してスラリーとした。このスラリーに1.3Lのコージェライト製ハニカム状のモノリス担体を浸漬し、余分なスラリーを吹き払った後80℃で乾燥し500℃で焼成して多孔質層を形成した。

【0025】次に、所定量のジニトロジアンミン白金と 硝酸カリウムを担体の吸水量と略同液量の蒸留水に溶解 し、多孔質層をもった担体に吸水させた。この後80℃で乾燥500℃で焼成してNo.4の排気ガス浄化用触媒を 調製した。この場合、ジニトロジアンミン白金は高濃度 の溶液で細孔内に吸収されるため、多孔質層内でほぼ均一に分布する。なお、本実施例のPt-K担持方法を担持法Bという。

【0026】そしてNOx吸収材及び貴金属の種類と担持量を変化させ、同様の方法で表1に示すNo.5, No.8の各排気ガス浄化用触媒を調製した。さらに、No.4, No.5, No.8の3種の排気ガス浄化用触媒を、硝酸ロジウム水溶液中に1時間浸渍し引き上げて乾燥・焼成することにより、多孔質層の外層にRhを吸着担持して、No.18~No.20の3種の排気ガス浄化用触媒を調製した。

(実施例3) ジニトロジアンミン白金水溶液中に平均粒 径10μmのアルミナ粉末を混合し、攪拌後、乾燥・焼成してPt担持アルミナ粉末を調製した。

【0027】このPt担持アルミナ粉末500gに水1 50 る耐久試験を行い、その後上記と同じ条件でHC,C

50 c c とアルミナゾル (アルミナ含有率 10重量%) 350 g を加え、攪拌混合してスラリーとした。このスラリーに1.3 Lのコージェライト製ハニカム状のモノリス担体を浸漬し、余分なスラリーを吹き払った後80℃で乾燥し500℃で焼成してPtが均一に担持された多孔質層を形成した。

【0028】この多孔質層をもつ担体に担体の吸水量と略同液量の溶液に所定量のBaが含まれるように調整した酢酸バリウム水溶液を吸水させた後、80℃で乾燥し10 500℃で焼成して、No.14 の排気ガス浄化用触媒を調製した。なお、本実施例のPt-Ba担持方法を担持法Cという。そしてNOx吸収材及び費金属の種類と担持量を変化させ、同様の方法で表1に示すNo.15 ~No.17 の各排気ガス浄化用触媒を調製した。

(比較例) アルミナ粉末500gに水150ccとアルミナゾル (アルミナ含有率10重量%) 350gを加え、攪拌混合してスラリーとした。このスラリーに1.3Lのコージェライト製ハニカム状のモノリス担体を浸漬し、余分なスラリーを吹き払った後80℃で乾燥し500℃で焼成して多孔質層を形成した。

【0029】次に、上記多孔質層をもつ担体をジニトロジアンミン白金と硝酸ロジウムの混合水溶液1.5 Lに1時間浸漬し、引き上げて余分な溶液を吹き払った後、80℃で乾燥し500℃で焼成した。そして次に実施例3と同様な方法により酢酸バリウム水溶液を吸水させた後、80℃で乾燥し500℃で焼成してNo.21 の排気ガス浄化用触媒を調製した。なお、本実施例のPt-Ba 担持方法を担持法Dという。

【0030】そしてNOx吸収材及び貴金属の種類と担 30 持量を変化させ、同様の方法で表1に示すNo.22~No.2 3 の各排気ガス浄化用触媒を調製した。また、No.9の排気ガス浄化用触媒の調製方法で、硝酸ロジウムの担持法をジニトロジアンミン白金と硝酸ロジウムの混合水溶液でアルミナ粉末に最初に担持する方法に変えて、Rhが均一に担持した触媒No.24 を調製した。

(評価)上記各排気ガス浄化用触媒について、EPMAにより貴金属触媒及びNOx吸収材の多孔質層中の分布を調査した。その結果、実施例の触媒はPt,Pd及びNOx吸収材が多孔質層中に均一に分散して分布し、Rhは外層に多く分布して図1及び図2に示す状態となっていた。しかし比較例では、NOx吸収材は均一に分布していたものの、Pt,Pd,Rhは全て外層に多く分布し、分布に偏りがみられた。

【0031】次に希薄燃焼エンジン(1.6リットル) 搭載車両の排気通路に上記それぞれの触媒を配置し、市 街地走行モードで走行してHC, CO, NOxの浄化率 を測定した。結果を表1に示す。次に同じ型式のエンジンの排気系に各触媒を装着し、エンジンベンチにてA/ F=18、触媒入りガス温度650℃で50時間運転する耐久試験を行い、その後上即と同じ各性でHC C O, NOxの浄化率を測定し耐久後の浄化率とした。そ *【0032】 れぞれの結果を表1に示す。

		掛編(g/L)			担持是(nol/L)					提	初期到日本60			耐久發 停化率60		
	_	Pt	Pd	Rh	Ва	La	Li	К	Na	<u>~</u>	MOx	ЯC	СО	NDx	HC	СО
実	1	1.0		_	0.2			_	_	Α	92	97	100	62	96	99
	2	1.0	_			0.2	_	_	_	Α	91	98	100	60	98	99
	3	1.0			_	_	0.2		_	Α	90	95	100	60	96	99
	4	1.0			_		_	0, 2	_	В	92	95	100	62	92	100
	5	10				_	_	_	0, 2	В	92	95	100	61	92	99
	6	10	_	_	0.3		0.1	_	1	Α	90	96	100	65	95	99
	7	-	2.0		0.3	Q.I	_	_		A	92	9 5	100	66	93	100
	8		2.0		Q 3		_		0.1	В	91	94	100	65	92	99
	9	1.0		0.1	0.2	_	_	1	1	A	95	99	100	67	97	100
施	10	1.0		0.1	_	0,2	_	_	-	Α	92	99	100	65	99	99
Ø	11	1.0		0.1			0,2	-	1	Α	93	97	100	68	96	99
	12	1.0		0,1	0.3		0.1	_	_	Α	96	96	100	70	98	100
	13	1.0	_=	۵1	0.3	0.1		_		Α	96	96	100	68	95	99
	14	1.0			0.2			_		С	92	97	100	62	96	99
1	15		20			0.2		-		С	90	99	100	60	94	100
	16	1.0		0.1	0, 2	_				С	94	97	190	64	96	99
	17		2.0	0.1		_0,2	_		_	С	92	99	100	52	95	99
比較例	18	LO		0.1				0.2		В	96	97	100	67	96	99
	19	10		0.1		_		_	0.2	В	92	96	100	66	94	100
	20		20	0.1	0.3		-		0.1	В	91	96	100	60	94	99
	21	10		0.1	0.2			_=]	_=]	D	86	96	100	50	96	99
	22	1.0			0.3		0.1	-]]	D	83	96	100	43	96	99
	23	_=	20	0.1	0.3		_]	0, 1	D	86	96	100	45	95	99
	24	1.0	-	0.1	0.2	-		[Α	88	96	100	57	96	99

【0033】表1より、実施例の触媒は比較例に比べて 属とNOx吸収材を多孔質層内に均一分布担持すること で、初期及び耐久後のNOx浄化率が向上していること が明らかである。またRhを外層に担持することによ り、NOx浄化率がさらに向上していることも明らかで ある。

[0034]

【発明の効果】すなわち本発明の排気ガス浄化用触媒に よれば、排気ガス中の雰囲気がリーン雰囲気となった時 の多孔質層の内層に担持された貴金属とNOx吸収材と によるNOx吸収能及び排気ガス中の雰囲気がストイキ 40 4:Pt からリッチ雰囲気となった時の前記費金属によるNOx の還元浄化能とが、従来の外層に担持された貴金属とN Ox吸収材の各々のNOx吸収能及びNOx還元浄化能

に加えられるため、NOx浄化率が向上する。またロジ NOx浄化率が向上していることが明らかであり、貴金 30 ウムを外層に担持することにより、NOx浄化率がさら に向上する。

【図面の簡単な説明】

【図1】本発明の一実施例の排気ガス浄化用触媒の要部 模式的断面図である。

【図2】本発明の他の実施例の排気ガス浄化用触媒の要 部模式的断面図である。

【符号の説明】

1:担体 2:セル壁 3:多 孔質層 5 : Ba 6:外 層 7:内層 8 : Rh

【図1】

[図2]

: セル壁 6:外層 ::多孔質層 7:内所

フロントページの続き

(51) Int. CI. 6

識別記号 庁内整理番号

Z

FΙ

技術表示箇所

(72)発明者 笠原 光一

B O 1 J 20/04

静岡県小笠郡大東町千浜7800番地 キャタ ラー工業株式会社内 (72) 発明者 立石 修士

B O 1 D 53/36

静岡県小笠郡大東町千浜7800番地 キャタ ラー工業株式会社内

104 A