Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа М320	5	К работе допущен
Студент <u>Степані</u> <u>Виктория</u>	<u>ок Аврора, Тросько</u>	Работа выполнена
Преподаватель	Шоев В.И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.03

Определение удельного заряда электрона

1. Цель работы.

Определение удельного заряда электрона $\frac{e}{m}$ методом магнетрона посредством анализа зависимости анодного тока вакуумного диода от магнитного поля, создаваемого соленоидом, при различных анодных напряжениях.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Провести измерения зависимости анодного тока I_a вакуумного диода от величины тока в соленоиде при различных значениях анодного напряжения.
 - 2. Найти значение коэффициента связи между током соленоида и магнитным полем B внутри него.
 - 3. Построить графики зависимостей I_a от B и определить по ним величины критических полей для каждого значения анодного напряжения.
 - 4. По значениям критического поля найти величину удельного заряда электрона и оценить ее погрешность
- 3. Объект исследования.

Электроны в вакуумном диоде.

4. Метод экспериментального исследования.

Лабораторный эксперимент.

5. Рабочие формулы и исходные данные.

Рабочие формулы:

- 1. $\frac{e}{m} = \frac{8U(l^2 + d^2)}{(\mu_0 r_a N I_{LC})^2} = \frac{8U}{B_c^2 r_a^2}$ формула для расчета удельного заряда, где:
 - а. U анодное напряжение,
 - b. l = 0.036 м, d = 0.037 м длина и диаметр соленоида,
 - с. $\mu_0 = 4\pi \times 10^{-7} \Gamma H/M MAITHUTHAR ПОСТОЯННАЯ,$
 - d. $r_a = 0.003$ м радиус анода,
 - е. N = 1500 -число витков соленоида,
 - f. I_{Lc} критический ток соленоида.
- 2. $B_c = \mu_0 I_{Lc} N \frac{1}{\sqrt{I^2 + d^2}}$ формула связи магнитной индукции с током соленоида.
- 6. Измерительные приборы.

№ п/п	Наименование	Используемый диапазон	Погрешность прибора		
1	Мультиметр МҮ64	0 ÷ 10 A	$\pm(2.0\% + 5D)$		
2	Мультиметр МҮ65	0 ÷ 2 мА	$\pm(0.5\% + 5D)$		
3	Вольтметр	0 ÷ 15 B	±0,1 B		

7. Схема установки

Рис. 6. Принципиальная электрическая схема измерительного стенда (цепь питания накала катода не показана)

8. Результаты прямых измерений и их обработки. **Таблица 1:** Зависимость напряжения U_R от тока в соленоиде.

No	Анодное напряжение									
Nº	$U = 7 \pm 0.1 \mathrm{B}$		$U = 9 \pm 0.1 \mathrm{B}$		$U = 10,5 \pm 0,1 \text{ B}$		$U = 11 \pm 0.1 \mathrm{B}$		$U = 13,5 \pm 0,1 \text{ B}$	
опыта	I_L , м $\mathsf A$	I_a , м A	I_L , м A	I_a , мА	I_L , м $\mathsf A$	I_a , м A	I_L , м A	I_a , мА	I_L , м $\mathsf A$	I_a , м $\mathsf A$
1	0	0,183	0	0,217	0	0,26	0	0,274	0	0,343
2	0,025	0,177	0,028	0,217	0,025	0,26	0,025	0,274	0,024	0,349
3	0,052	0,178	0,051	0,218	0,048	0,26	0,05	0,274	0,055	0,348
4	0,075	0,178	0,072	0,218	0,074	0,26	0,075	0,274	0,074	0,349
5	0,098	0,178	0,098	0,218	0,094	0,26	0,099	0,274	0,091	0,349
6	0,123	0,178	0,122	0,218	0,123	0,261	0,12	0,274	0,117	0,349
7	0,142	0,178	0,146	0,218	0,14	0,261	0,137	0,275	0,141	0,35
8	0,166	0,177	0,168	0,217	0,161	0,261	0,165	0,275	0,162	0,351
9	0,192	0,172	0,192	0,213	0,183	0,26	0,187	0,272	0,182	0,35
10	0,213	0,162	0,212	0,205	0,205	0,254	0,215	0,264	0,209	0,344
11	0,236	0,121	0,234	0,166	0,228	0,233	0,232	0,238	0,228	0,333
12	0,257	0,098	0,259	0,125	0,249	0,176	0,252	0,182	0,25	0,271
13	0,282	0,077	0,277	0,107	0,269	0,144	0,275	0,144	0,271	0,211
14	0,304	0,066	0,3	0,09	0,294	0,119	0,302	0,121	0,298	0,169
15	0,327	0,055	0,318	0,082	0,317	0,107	0,322	0,112	0,318	0,151
16	0,351	0,046	0,346	0,066	0,334	0,096	0,346	0,096	0,342	0,142
17	0,37	0,041	0,369	0,057	0,359	0,082	0,364	0,087	0,357	0,13
18	0,399	0,035	0,387	0,052	0,38	0,073	0,388	0,076	0,379	0,116
19	0,417	0,032	0,412	0,046	0,405	0,064	0,408	0,068	0,404	0,103
20	0,438	0,029	0,432	0,042	0,428	0,057	0,43	0,061	0,424	0,094

21	0,467	0,026	0,457	0,037	0,449	0,052	0,455	0,055	0,451	0,083
22	0,482	0,025	0,478	0,035	0,47	0,047	0,475	0,05	0,468	0,077
23	0,504	0,023	0,5	0,032	0,495	0,043	0,495	0,047	0,489	0,071
24	-	-	-	-	0,513	0,041	0,521	0,043	0,51	0,066

Таблица 2: Значения критической силы катодного тока и индукции магнитного поля в центре соленоида.

U, B	$I_{L_{ m KP}}$, мк ${ m A}$	$B_{ m kp}$, мкТл	$\frac{e}{m}$, Кл/кг		
7	0,203	7,41	$1,13 \times 10^{11}$		
9	0,205	7,49	$1,27 \times 10^{11}$		
10,5	0,206	7,52	$1,65 \times 10^{11}$		
11	0,21	7,67	$1,66 \times 10^{11}$		
13,5	0,224	8,18	$1,79 \times 10^{11}$		

9. Расчет результатов косвенных измерений.

1.
$$B_c=\mu_0 I_{Lc} N \frac{1}{\sqrt{l^2+d^2}}$$
 Для $\mu_0=4\pi\times 10^{-7}$ Гн/м, $I_{Lc}=0.203$ мкА, $N=1500$, $l=0.036$ м, $d=0.037$ м получим $B_c=7.41\times 10^{-3}$ мкТл. 2. $\frac{e}{m}=\frac{8U(l^2+d^2)}{(\mu_0 r_a N I_{Lc})^2}=\frac{8U}{B_c^2 r_a^2}$

2.
$$\frac{e}{m}=\frac{8U(l^2+d^2)}{(\mu_0r_aNI_{Lc})^2}=\frac{8U}{B_c^2r_a^2}$$
 Для $U=7$ B , $B_c=7$,41 \times 10^{-3} мкТл, $r_a=0$,003 м получим $\frac{e}{m}=1$,13 \times 10^{11} Кл/кг.

- 10. Расчет погрешностей измерений.
 - 1. Погрешность анодного напряжения Погрешность анодного напряжения составляет $\pm 0.1 \, \mathrm{B}$ – погрешность прибора.
 - 2. Погрешность тока соленоида Для $I_L=0.343$ мА погрешность составит $\Delta_{I_I}=2\%\times0.343+5\times0.001=0.012$ мА, так как погрешность прибора составляет $\pm (2.0\% + 5D)$.
 - 3. Погрешность анодного тока Для $I_a = 0.51$ мА погрешность составит $\Delta_{I_a} = 0.5\% \times 0.5 + 5 \times 0.001 = 0.008$ мА, так как погрешность прибора составляет $\pm (0.5\% + 5D)$.
 - 4. Погрешность $I_{L_{\rm km}}$ Погрешность была определена программно для каждого U.
 - 5. Погрешность $B_{\kappa n}$

$$\begin{split} \Delta_{B_{\mathrm{Kp}}} &= \sqrt{\frac{\partial B_{\mathrm{Kp}}}{\partial L_{\mathrm{Kp}}}} \Delta_{L_{\mathrm{Kp}}} + \frac{\partial B_{\mathrm{Kp}}}{\partial l} \Delta_{l} + \frac{\partial B_{\mathrm{Kp}}}{\partial d} \Delta_{d} \\ \Delta_{B_{\mathrm{Kp}}} &= \sqrt{(\mu_{0} \frac{N}{\sqrt{l^{2} + d^{2}}})^{2} \Delta_{L_{\mathrm{Kp}}} + \left(-\mu_{0} \frac{N I_{L_{\mathrm{Kp}}} l}{(l^{2} + d^{2})^{3/2}}\right)^{2} \Delta_{l} + \left(-\mu_{0} \frac{N I_{L_{\mathrm{Kp}}} d}{(l^{2} + d^{2})^{3/2}}\right)^{2} \Delta_{d}} \end{split}$$

Для $B_{\mathrm{кp}}=7{,}41 \times 10^{-3}$ мкТл получим $\Delta_{B_{\mathrm{kp}}}=0{,}514$ мТл.

6. Погрешность $\frac{e}{m}$

$$\Delta_{\frac{e}{m}} = \sqrt{\left(\frac{\partial \left(\frac{e}{m}\right)}{\partial U} \Delta_{U}\right)^{2} + \left(\frac{\partial \left(\frac{e}{m}\right)}{\partial L_{\text{Kp}}} \Delta_{L_{\text{Kp}}}\right)^{2} + \left(\frac{\partial \left(\frac{e}{m}\right)}{\partial l} \Delta_{l}\right)^{2} + \left(\frac{\partial \left(\frac{e}{m}\right)}{\partial d} \Delta_{d}\right)^{2} + \left(\frac{\partial \left(\frac{e}{m}\right)}{\partial r_{a}} \Delta_{r_{a}}\right)^{2}}$$

$$\sqrt{\left(\frac{8}{\mu_0^2 N^2 r_a^2 B_{\mathrm{Kp}}^2}\right)^2 + \left(-\frac{16U}{\mu_0^2 N^2 r_a^2 B_{\mathrm{Kp}}^3} \frac{\mu_0 N}{\sqrt{(l^2 + d^2)}}\right)^2 + \left(\frac{16Ul}{\mu_0^2 N^2 r_a^2 B_{\mathrm{Kp}}^3} \frac{\mu_0^2 N^2 I_{\mathrm{LKp}}}{(l^2 + d^2)^{3/2}}\right)^2 + \left(-\frac{16U}{\mu_0^2 N^2 r_a^2 B_{\mathrm{Kp}}^3}\right)^2 + \left(\frac{16Ud}{\mu_0^2 N^2 r_a^2 B_{\mathrm{Kp}}^3} \frac{\mu_0^2 N^2 I_{\mathrm{LKp}}}{(l^2 + d^2)^{3/2}}\right)^2}$$

Для
$$\frac{e}{m}=1$$
,13 \times 10 11 Кл/кг: $\Delta_{\frac{e}{m}}=0$,39 \times 10 11 Кл/кг.

7. Относительная погрешность $\frac{e}{m}$

$$\frac{e}{m_{\rm cpe,d}} = 1,502 \times 10^{11} \, {\rm K}_{\rm J}/{\rm K}_{\rm F}$$

$$\Delta \frac{e}{m} = \frac{\frac{e}{m_{\rm Teop}} - \frac{e}{m_{\rm JKCII}}}{\frac{e}{m_{\rm Teop}}} \times 100\%$$

$$\Delta \frac{e}{m} = 14,68\%$$

Таблица 3: Погрешности анодного тока и тока соленоида.

$U = 7 \pm 10^{-1}$	- 0,1 B	U=9	$0 \pm 0.1 B$	U = 10,5	<u>±</u> 0,1 B	U = 11	± 0,1 B	U = 13	$5.5 \pm 0.1 \mathrm{B}$
I_a , м $\mathsf A$	I_L , м $\mathsf A$	I_a , м $\mathsf A$	I_L , м $\mathsf A$	I_a , м $\mathsf A$	I_L , м $\mathsf A$	I_a , м A	I_L , м $\mathsf A$	I_a , м A	I_L , м $\mathsf A$
0,005	0,009	0,005	0,009	0,005	0,01	0,005	0,01	0,005	0,012
0,005	0,009	0,005	0,009	0,005	0,01	0,005	0,01	0,005	0,012
0,005	0,009	0,005	0,009	0,005	0,01	0,005	0,01	0,005	0,012
0,005	0,009	0,005	0,009	0,005	0,01	0,005	0,01	0,005	0,012
0,005	0,009	0,005	0,009	0,005	0,01	0,005	0,01	0,005	0,012
0,006	0,009	0,006	0,009	0,006	0,01	0,006	0,01	0,006	0,012
0,006	0,009	0,006	0,009	0,006	0,01	0,006	0,011	0,006	0,012
0,006	0,009	0,006	0,009	0,006	0,01	0,006	0,011	0,006	0,012
0,006	0,008	0,006	0,009	0,006	0,01	0,006	0,01	0,006	0,012
0,006	0,008	0,006	0,009	0,006	0,01	0,006	0,01	0,006	0,012
0,006	0,007	0,006	0,008	0,006	0,01	0,006	0,01	0,006	0,012
0,006	0,007	0,006	0,008	0,006	0,009	0,006	0,009	0,006	0,01
0,006	0,007	0,006	0,007	0,006	0,008	0,006	0,008	0,006	0,009
0,007	0,006	0,007	0,007	0,006	0,007	0,007	0,007	0,006	0,008
0,007	0,006	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,008
0,007	0,006	0,007	0,006	0,007	0,007	0,007	0,007	0,007	0,008
0,007	0,006	0,007	0,006	0,007	0,007	0,007	0,007	0,007	0,008
0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,007	0,007	0,007
0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,007
0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,007
0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,007
0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,006	0,007	0,007

Таблица 4: Погрешности критической силы катодного тока и индукции магнитного поля в центре соленоида.

_ ' ' '		
$\Delta_{I_{L_{ ext{KP}}}}$, мк A	$\Delta_{B_{\mathrm{KP}}}$, мк T л	$\Delta \frac{e}{m} \times 10^{11}$, Кл/кг
0,21	7,63	0,39
0,2	7,27	0,44
0,19	6,92	0,56
0,2	7,29	0,56
0,25	9,08	0,6

11. Графики.

График 1: Зависимость анодного точка I_a от тока соленоида I_L .

График 2: Зависимость $\frac{I_a}{I_L}$ от тока соленоида.

График 3: Зависимость B_c^2 от анодного напряжения U.

Коэффициент аппроксимирующей прямой равен 1,81, что немного больше, чем максимальное значение $\frac{e}{m}$, которое мы получили в результате измерений, однако близко к табличному.

12. Окончательные результаты.

$$\frac{e}{m_{\rm cpeg}} = (1,502 \pm 0,51) \times 10^{11} \, {\rm K} {\rm J/kr}$$

13. Выводы и анализ результатов работы.

В ходе работы определен удельный заряд электрона методом магнетрона. По графикам зависимости анодного тока I_a от тока соленоида I_L найдены критические значения магнитного поля B_c для разных напряжений. Среднее экспериментальное значение: $\frac{e}{m}=1,502\times 10^{11}~{\rm K} {\rm f}/{\rm k} {\rm f}$. Погрешность составила 14,7% относительно табличного значения $(1,76\times 10^{11}~{\rm K} {\rm f}/{\rm k} {\rm f})$. Погрешность может быть вызвана ограниченной точностью используемых приборов, человеческим фактором и небольшим количеством измерений.

- 15. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).
- 1. Отсутствие погрешностей