INTEGRATED OPTICS I: SILICON PHOTONICS

SHIRAZ UNIVERSITY

DR. M. MIRI

2015

PHOTONICS AND SILICON PHOTONICS

- PHOTONICS IS THE TECHNOLOGY ASSOCIATED WITH SIGNAL GENERATION, PROCESSING, TRANSMISSION AND DETECTION WHERE THE SIGNAL IS CARRIED BY PHOTONS (I. E. LIGHT)
- PHOTONIC DEVICES PRODUCED WITHIN STANDARD SILICON FACTORY
 AND WITH STANDARD SILICON PROCESSING

OUTLINE

- MICROELECTRONIC EVOLUTION
 - THREE RULES: SMALLER, CHEAPER, FASTER.
 - LIMITATIONS!
- OPTICAL COMMUNICATION EVOLUTION
- A NEW TECHNOLOGY PLATFORM: SILICON PHOTONICS
 - CURRENT STATUS
 - EXPECTATIONS

THE INVENTION OF THE TRANSISTOR

• 1947

THE FIRST PLANAR TRANSISTOR

• 1959

THE FIRST PLANAR INTEGRATED CIRCUIT

• 1961

MOORE'S LAW

Gordon Moore Prediction Circa 1977 CLOCK F 10000 1000 2X every 2 years Frequency (Mhz) ¥ P6 100 Pentium ® proc 386 10 8085 8086 286 8080 8008 1970 2000 2010 1980 1990

Year

LIMITATIONS OF ELECTRONIC

• The Problem of Interconnects

- Power Dissipation
- Delay

POWER DENSITY

POWER DENSITY

Power = Capacitance x Voltage² x Frequency also
Power ~ Voltage³

(intelligence and also project

The Rise of Multi-Core Architectures

- Rise of parallel multi-core architectures to mitigate power dissipation
- Parallel architectures with multiple simpler processing cores provide better performance per watt than architectures based on a single complex processor
- State-of- the-art commercial chips feature more parallel and distributed architectures that are essentially multicore chips
 - Montecito (Intel)
 - Cell (IBM, Toshiba, Sony)
- Key is to design robust, scalable, fast, and power-efficient:

intra-chip communication networks

INTERCONNECTS POSE PROBLEMS NOT ONLY WITHIN THE CHIP

AN EXAMPLE

DATA SERVERS AND SUPERCOMPUTERS

- Facebook datacenter
 - $> 130,000 \text{ m}^2$
 - >65 MW
 - >75% data traffic is inside datacenter

OPTICAL VS. ELECTRICAL DATA COMMUNICATION

OPTICAL INTERCONNECTS

OPTICAL COMMUNICATIONS: A BRIEF HISTORY

- 1958-59 KAPANY CREATES OPTICAL FIBER WITH CLADDING
- 1960-TED MAIMAN DEMONSTRATES FIRST LASER IN RUBY
- 1962-4 GROUPS SIMULTANEOUSLY MAKE FIRST SEMICONDUCTOR LASERS
- 1970-FIRST ROOM TEMP. CW SEMICONDUCTOR LASER-HAYASHI & PANISH
- APRIL 1977-FIRST FIBER LINK WITH LIVE TELEPHONE TRAFFIC
 - GTE LONG BEACH 6 MB/S
- MAY 1977-FIRST BELL SYSTEM 45 MB/S LINKS 850NM MM
- EARLY 1980S-IN-GA-AS-P 1.3 µM LASERS
 - 0.5 DB/KM, LOWER DISPERSION-SINGLE MODE
- LATE 1980'S-SINGLE MODE TRANSMISSION AT 1.55 μM, 0.2 DB/KM
- 1989-ERBIUM DOPED FIBER AMPLIFIER
- 1996- 8 CHANNEL WDM

EVOLUTION OF COMMUNICATION

WHY SILICON?

- TRANSPARENT IN 1.3-1.6 UM WAVELENGTH REGION
- COMS COMPATIBILITY
 - MATURE AND WIDESPREAD TECHNOLOGY
- LOW COST
 - CHEAPER THAN OTHER SEMICONDUCTORS
- HIGH INDEX CONTRAST → SMALL FOOT PRINT

WHY SILICON?

		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
	Wafer size (R&D)	Wafer size (commercial)	Wafer cost (€)	mm² substrate cost
				(€)
Si	450 mm	300 mm	100	0.001
SOI	?	300 mm	800	0.008
InP	150 mm	100 mm	300	0.03
GaAs	200 mm	150 mm	300	0.013
troduction	/ Optical Com	m. Integ. optics	/ Shiraz Uni. 20	15 20/43
	SOI InP GaAs	(R&D) Si 450 mm SOI ? InP 150 mm GaAs 200 mm	(R&D) (commercial) Si 450 mm 300 mm SOI ? 300 mm InP 150 mm 100 mm GaAs 200 mm 150 mm	(R&D) (commercial) (€) Si 450 mm 300 mm 100 SOI ? 300 mm 800 InP 150 mm 100 mm 300 GaAs 200 mm 150 mm 300

PROBLEMS WITH SILICON

- NO DETECTION IN 1.3 1.6 UM BANDWIDTH
 - INDIRECT BANDGAP
- HIGH INDEX CONTRAST
 - → POOR COUPLING
- NO ELECTRO-OPTIC EFFECT
- LACKS EFFICIENT LIGHT EMISSION

SILICON PHOTONICS

- APPLICATION OVERVIEW
- CURRENT STATUS AND PREDICTED NEAR FUTURE
- OPTO-ELECTRONIC INTEGRATED CIRCUIT (OEIC)
- BUILDING BLOCKS OF OEIC'S
 - WAVEGUIDES, WAVEGUIDE/FIBER COUPLERS
 - SOURCE AND DETECTOR
 - MODULATOR, MULTIPLEXER, DEMULTIPLEXER

APPLICATIONS

Applications	Examples	Data Rate
Telecom	Used in Metro (1 - 80Km) and long haul applications (40 - 1,000 Km)	10G, 40G, 100G, 400Gbps systems
Datacom	Used in data centers ($<1m$ - $2Km$) and campus applications (1 - $5Km$)	10G, 25G, 40G, 100Gbps interconnects between systems
Consumer	Connecting desktop PC devices and PCs with HDTVs	5G - 50Gbps
HPC & Data Centers	One High Performance Computer "supercomputer" may consume 40,000 AOCs or 250,000 mid-board modules	Up to 100 Gbps
Commercial Video	Digital signage, digital cinemas, video recording and studios; 4xx2K displays and recording equipment	10G - 50Gbps interconnects
Metrology and Sensors	Measurement of time, temperature, sound, frequency, and stress, range	Typically low data rates but using special silicon photonics sensors
Medical	DNA, glucose, molecular and cellular analysis, etc.	Typically low data rates but using special silicon photonics Sensors
Military / Aerospace	Used in scientific instruments at corporate and national labs; aircraft, space, missiles, radar, imaging and intelligence applications.	High

CURRENT STATUS AND FUTURE

SILICON PHOTONICS MARKET

AN EXAMPLE OF APPLICATIONS

- Facebook datacenter
 - $> 130,000 \text{ m}^2$
 - >65 MW
 - >75% data traffic is inside datacenter

OPTICAL VS. ELECTRICAL DATA COMMUNICATION

CURRENT TECHNOLOGY

CURRENT TECHNOLOGY

microPODTM parallel optical TX/RX

[M. Fields, Avago, OFC 2010, paper OTuP1]

Fiber to the Module 1,000,000 optical links

Hub/switch module, with IC and 56 microPODs

INTEGRATED PHOTONIC ELECTRONIC CIRCUIT

SILICON COMPATIBLE DETECTOR

- > Dark current: 10uA @ 1V
- > Responsivity: 0.7 A/W
- ➤ Bandwidth: 18 GHz
- ➤ Capacitance: 20 fF

Introduction / Silicon Photonics

Integrated optics / Shiraz Uni. 2015 31/43

Hybrid Silicon Laser

Silicon / III-V bonded wafers

Introduction / Silicon Photonics Integrated optics / Shiraz Uni. 2015 32/43

HYBRID SILICON LASERS

[Microring lasers]

(Left) Photo of a hybrid silicon microring laser. (Right) SEM image of ring and output coupler.

SILICON PHOTONICS MODULATOR

- MODULATION MECHANISMS
 - ELECTRO-OPTICAL REFRACTIVE INDEX CHANGE DUE TO:
 - FREE CARRIER INJECTION IS FORWARD BIASED SI PIN STRUCTURE
 - CARRIE ACCUMULATION IN REVERSED BIASED PIN STRUCTURE
 - CARRIER ACCUMULATION IN MOS CAPACITOR STRUCTURE
- MODULATOR STRUCTURES
 - MZI STRUCTURE
 - COUPLED WAVEGUIDE RING RESONATOR STRUCTURE

SILICON PHOTONICS MODULATORS

CMOS COMPATIBLE FABRICATION

Photonics as a new feature in standard CMOS

FIBER TO WAVEGUIDE COUPLING (PACKAGING)

PACKAGING (PUTTING IT ALL TOGETHER)

photonics chip

1 mm

optical fiber probe

electrical probe

CMOS chip

optical fiber probe

PACKAGING (PUTTING IT ALL TOGETHER)

PACKAGING (PUTTING IT ALL TOGETHER)

Automated assembly

IBM Watson, NY USA

Interface design, Si fabrication

Tymon Barwicz and team

IBM Research - Tokyo

Ribbon to ferrule assembly

Yoichi Taira and team

IBM Bromont - C2MI

Ribbon to Si assembly

Paul Fortier and team

Partners

- ✓ Bandwidth 1260-1360nm
- ✓ Insertion loss -1.3dB
- ✓ Worst PDL 0.6dB
- ✓ Return loss -30dB

T. Barwicz et al., IEEE ECTC, 2015.

T. Barwicz, et al OFC 2015

OEIC SYSTEM EXAMPLES

OEIC SYSTEM EXAMPLES

OEIC EXAMPLES

Reference Design: 4x25G CWDM Transceiver

- √ 4x25G Ge PD RX
- √ 4x25G TW MZITX
- ✓ CWDM 1310nm
- ✓ Polarization S&R
- ✓ DAC/ADC controllers
- ✓ SMF coupling
- ✓ Packaging structures

- ✓ Monolithic single-die 100Gbps silicon nanophotonics transceiver
- ✓ Fabrication tolerant and manufacturable

© 2015 IBM Corporation