[4]

Q.6	Attempt any two:

- (a) What is directory? What are the various operations performed 5 on a File?
 - (b) Find Effective Memory Access Time if the miss ratio is 30%. Time to look up in TLB is 10ns and time to access memory is 100ns.
- Assume the following request of tracks is given. Find the total no. 5 of head movements in SSTF and LOOK strategies if the head served 24th track position and currently on 45th position among 200 tracks.

28, 6, 42, 98, 62, 29, 99, 58, 145, 82, 176, 63, 180, 198, 39

- Explain disk structure. Also discuss the following-
 - (a) Rotational latency

(b) Seek time

5

Total No. of Questions: 6

Total No. of Printed Pages:4

Faculty of Engineering / Science End Sem (Even) Examination May-2022 CA3CO12 Operating System

Programme: BCA / BCA-Branch/Specialisation: Computer MCA (Integrated) Application

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

		should be written in full insta	ead of only a, b, c or d.	.13				
) .1	i.	Which one of the follow structure?	ing is the innermost element of OS					
		(a) Shell	(b) Kernel					
		(c) Operating System	(d) Hardware					
	ii.	Which one of the following	is not a service of operating system?	-				
		(a) File manipulation	(b) Program execution					
		(c) Resource allocation	(d) Memory management					
	iii.	Which one is not a type of s	schedulers?					
		(a) Medium term	(b) Long term					
		(c) Dispatcher	(d) None of these					
	iv.	1 /						
		except the lowest queue-						
		(a) SJF	(b) FCFS					
		(c) RR	(d) PRIORITY					
	v.		ing is not a necessary condition for	-				
		deadlock?						
		(a) Mutual exclusion						
		(c) No pre-emption	(d) Circular wait					
	vi.	A semaphore written for resource is called-	handling more than 5 instances of a					
		(a) Binary semaphore	(b) Counting semaphore					
		(c) Multiple semaphore	(d) Both (b) and (c)					

P.T.O.

	vii.	ng is true about the size of page and	1							
		frame? (a) Page>Frame	(b) Frame>Page							
		(c) Frame=Page	(d) Either (a) or (b)							
	.,:::	· /		1						
	viii.	Compaction is the solution of		1						
		(a) Internal fragmentation	(b) External fragmentation							
		(c) Hole fragmentation (d) All of these								
	ix.	Which one of the following	_	1						
		(a) Head assembly	(b) Cylinder							
		(c) Sector	(d) Plot							
	х.	Which one of the follow	ving is not a way for free space	1						
		management?								
		(a) Bit vector	(b) Linked List							
		(c) Aging	(d) Grouping							
Q.2	i.	Discuss components of oper	rating systems.	2						
	ii.	Write various functions of o	perating system.	3						
	iii.	Briefly discuss shell, kernel,	system call, trap and interrupts.	5						
OR	iv.	Explain multitasking, multitasking	tiprogramming and batch processing	5						
		with an example.								
		1								
Q.3	i.	Discuss PCB and its attribut	es.	2						
	ii.	How a program is converted into a process? Write steps. Explain 8								
		various stages of a process during its execution.								
OR	iii.	• •	owing processes is given along with	8						
OIC	111.	•	ne average turnaround time, average	·						
			e and the sequence of completion of							
		processes. Apply RR algorit								
		PROCESS CPU BURS								
		P1 5	1							
		P2 3	0							
		P3 6	0							
		P4 7	4							
		P5 4	6							

Q.4	i. ii.	Discuss concurrent, cooperative and parallel processes. Consider the following information-											3 7			
		Max Allocated				ed Available										
		Process	A	В	C	D	A	В	C	D	A	В	\mathbf{C}	D		
		P0	6	8	4	7	1	2	1	2	1	2	2	1		
		P1	4	3	6	4	2	0	3	3						
		P2	2	2	2	1	1	1	2	0						
		P3	6	8	9	5	2	2	3	1						
		P4	7	3	3	4	4	2	4	3						
		(a) Find to	tal r	um	ber	of in	stance	es of	res	ource	A, E	3, C,	D.			
		(b) Find sa	fe s	eque	ence	of t	he pro	ces	ses.							
		(c) If an ac	ddit	iona	1 re	ques	t of P	2 fc	or (1	1	0 0)	is i	mm	ediatel	y	
		granted						-		is in	safe	state	e or	not.		
OR	iii. Explain the following with an example- (a) RAG (b) Claim edge									7						
		(a) RAG					` ′			_						
		(c) Assignm	ent	edg	e		(d)	Req	uest	edge	;					
Q.5	i.	Suppose a	21	hit	lone	~ 1 ₀ ,	rion1	مططء	rogg	oone	sigt 1	024	120	roc on	d	4
Q.J	1.	Suppose a 21 bit long logical address consist 1024 pages and physical memory divided into 128 equal no. of partitions. Find the											7			
		no. of bits in physical address and the frame size of memory if														
		each character requires a byte for storage.														
	ii.	Let's assum									250K	ίВ,	350	KB an	d	6
		650KB men	nory	pa	rtiti	ons a	are av	ailal	ole i	n or	ler. A	Appl	y W	orst fi	t,	
		First fit and Best Fit algorithm to grant the request of processes of														
		size 262KB,	, 46′	7KE	3, 16	52KE	3, 476	KB	in o	rder.						
OR	iii.	Assume tha	t th	e re	efere	ence	string	g for	r the	e req	uest	of p	oage	s give	n	6
		below-				_		_			_					
		1, 2, 3, 2, 1,														
		Find the total	-	_												
		and the policy to allocate frames is FCFS, LRU and Optimal page							iai pag	;e						
		replacement	·•													

Marking Scheme CA3CO12 Operating System

Q.1	i.	(d) Hardware			1					
	ii.	(d) Memory management								
	iii.	(d) None of these								
	iv.	(c) RR								
	v.	(b) Starvation								
	vi.	(b) Counting semaphore								
	vii.	(c) Frame=Page								
	viii.	(b) External fragmentation								
	ix.	(d) Plot			1					
	х.	(c) Aging			1					
Q.2	i.	Definition			2					
	ii.	Functions of operating system	ı		3					
		Any 3 function 1 Mark for each	ch	(1 Mark*3)						
	iii.	Shell, kernel, system call, trap	and interrupt	S.	5					
		1 Mark for each		(1 Mark*5)						
OR	iv.	Definition	3 Marks	5						
		Example.		2 Marks						
Q.3	i.	Definition of PCB and its attr	ributes.		2					
	ii.	Program is converted into a pr	rocess	2 Marks	8					
		Steps		3 Marks						
		Stages of a process during its	execution	3 Marks						
OR	iii.	The average turnaround time,	average waiti	ng time, response time.	8					
		Solution & Steps for sequence	e of completio	n of processes						
Q.4	i.	Definition of concurrent, coop	perative and pa	arallel processes.	3					
		1 Mark for each		(1 Mark*3)						
	ii.	Steps and Solution		7						
OR	iii.	Explain the following			7					
		(a) RAG	(b) Claim edg	e						
		(c) Assignment edge	(d) Request ed	lge						
		1.5 Marks for each		(1.5 Mark*3)						
				4.5 Marks						
		2.5 Marks for RAG		2.5 Marks						

Q.5	i.	Steps and Solution.				4			
	ii.	Steps and Solution.				6			
OR	iii.	Total page faults if there are 4 empty frames are available 2 Marks							
		The policy to allocate frames	is FCFS, LRU		2 Marks				
		Optimal page replacement. 2							
Q.6		Attempt any two:							
	i.	(a) Directory		3 Marks		5			
		(b)		2 Marks					
	ii.	SSTF and LOOK				5			
		2.5 Marks for each		(2.5 Marks*2	2)				
	iii.	Disk structure		1 Mark		5			
		(a) Rotational latency	(b) Seek time						
		2 Marks for each		(2 Marks*2)					
				4 Marks					
