

Week 6 - Applications of Integration

∷ Tags

Theorem 2.1 Finding the Area between 2 Curves

If $f(x) \geq g(x)$ and both are continuous

The area between the 2 curves and x=a and x=b is

$$\int_a^b f(x) - g(x) dx$$

Theorem 2.2 Finding the Area of a Region between Curves that cross

If f(x) and g(x) are continuous

The area between the curves and x=a and x=b

Is still
$$\int_a^b |f(x)-g(x)| dx = \int_a^c f(x)-g(x) dx + \int_c^b f(x)-g(x) dx$$

Theorem 2.3 Finding the Area Between 2 Curves, Integrating along the y-axis

If $u(y) \geq v(y)$ are continuous functions

The area between the curves and y=c and y=d is

$$\int_{c}^{d}|u(y)-v(y)|dy$$

Disk Method

If f(x) is continuous and non-negative

Volume of the solid of revolution formed by f(x) and lines x=a and x=b is $V=\int_a^b\pi(f(x))^2dx$

Disk Method for Solids of Revolution around y-axis

$$V=\int_{c}^{d}\pi(u(y))^{2}dy$$

Washer Method

Volume of revolution when there are 2 functions and $f(x) \geq g(x)$

$$V = \int_a^b \pi [(f(x))^2 - (g(x))^2] dx$$

Proof:

Washer Method for Solids of Revolution around y-axis

$$V = \int_{c}^{d} \pi [(u(y))^{2} - (v(y))^{2}] dy$$

Volume of Revolution with a different axis of revolution

Instead of $V=\int_a^b\pi(f(x))^2dx$

If the axis is x = e

$$V = \int_a^b \pi (f(x) - e)^2 - (-e)^2 dx$$

Theorem 2.4 Arc Length

$$L = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

We start by looking at the distance between 2 points. By Pythagoras' theorem, this is $\sqrt{(\Delta x)^2 + (\Delta y)^2}$

If we make the \boldsymbol{x} distances constant, then this becomes:

$$egin{aligned} \sqrt{(\Delta x)^2 + (\Delta y_i)^2} \ &= \Delta x \sqrt{1 + (rac{\Delta y_i}{\Delta x})^2} \end{aligned}$$

According to the Mean Value Theorem, there is a point such that $f'(x_i^*) = \dfrac{\Delta y_i}{\Delta x}$, so

$$=\Delta x\sqrt{1+(f'(x))^2}$$

If we add up all the lengths of the line segments

$$Lpprox \Sigma_{i=1}^n \sqrt{1+(f'(x))^2}\Delta x$$

This is a Riemann sum

Taking the limit as $n o \infty$

$$L = \lim_{n o \infty} \Sigma_{i=1}^n \sqrt{1 + (f'(x))^2} \Delta x$$

$$L = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

Theorem 2.5 Arc Length for a y-function

$$L=\int_c^d \sqrt{1+(g'(y))^2}dy$$

Proof:

Same proof as Theorem 2.4

Theorem 2.6 Surface Area of Revolution

Around x-axis

$$A=\int_a^b 2\pi f(x)\sqrt{1+(f'(x))^2}dx$$

Around y-axis

$$A=\int_c^d 2\pi g(y)\sqrt{1+(g'(y))^2}dy$$

Lateral surface area of a cone (excludes base)

 $=\pi rs$ where r is radius and s is slant height

The small cone and large cone are similar triangles so

$$rac{r_2}{r_1} = rac{s-l}{s}$$

Which leads to

$$s=\frac{r_1l}{r_1-r_2}$$

The lateral surface area of frustum

= Lateral surface area of large cone - Lateral surface area of small cone

$$=\pi r_1 s - \pi r_2 (s-l)$$

$$=\pi[r_1(rac{r_1l}{r_1-r_2})-r_2(rac{r_1l}{r_1-r_2}-l)]$$

$$=\pi[rac{r_1^2l}{r_1-r_2}-rac{r_1r_2l}{r_1-r_2}+r_2l]$$

$$=\pi [rac{r_1^2 l}{r_1-r_2}-rac{r_1 r_2 l}{r_1-r_2}+rac{r_2 l (r_1-r_2)}{r_1-r_2}]$$

$$egin{align} &=\pi[rac{r_1^2l}{r_1-r_2}-rac{r_1r_2l}{r_1-r_2}+rac{r_1r_2l}{r_1-r_2}-rac{r_2^2l}{r_1-r_2}]\ &=\pi[rac{(r_1^2-r_2^2)l}{r_1-r_2}]\ &=\pi[rac{(r_1-r_2)(r_1+r_2)l}{r_1-r_2}]\ &=\pi(r_1+r_2)l \ \end{pmatrix}$$

Both radii are actually just the y values $f(x_i)$ and $f(x_{i-1})$

Therefore

$$egin{aligned} s &= \pi(r_1 + r_2) l \ &= \pi(f(x_i) + f(x_i) \sqrt{\Delta x^2 + (\Delta y_i)^2}) \ &= \pi(f(x_i) + f(x_i) \Delta x \sqrt{1 + rac{\Delta y i}{\Delta x}}) \end{aligned}$$

Again, using the Mean Value Theorem

$$=\pi(f(x_{i-1})+f(x_i))\Delta x\sqrt{1+f'(x_i^*)^2}$$

By the Intermediate Value Theorem, there is a point x^{**} such that $f(x^{**})=rac{1}{2}[f(x_{i-1})+f(x_i)] = 2\pi f(x^{**})\Delta x\sqrt{1+f'(x_i^*)^2}$

Then the area over the whole revolution will be

$$Approx \Sigma_{i=1}^n 2\pi f(x^{**})\Delta x\sqrt{1+f'(x_i^*)^2}$$

We can do a Riemann Sum because as $n\to\infty$, both x^* and x^{**} will approach x, since they are both in the range $[x_{i-1},x_i]$

Therefore

$$A=\lim_{n}n
ightarrow \Sigma_{i=1}^{n}2\pi f(x^{stst})\Delta x\sqrt{1+f'(x_{i}^{st})^{2}}$$

$$A=\int_a^b (2\pi f(x)\Delta x\sqrt{1+f'(x_i)^2})dx$$

Theorem 2.7 Mass-Density Formula of a One-Dimensional Object

Let $\rho(x)$ denote a linear density function, giving the density of the object at point x along the x axis

Mass
$$m=\int_a^b
ho(x)dx$$

Proof:

We treat a rod as if it had no thickness

$$m_ipprox
ho(x_i^*)(x_i-x_{i-1})$$

$$m_ipprox
ho(x_i^*)\Delta x$$

$$m = \Sigma_{i=1}^n m_i pprox
ho(x_i^*) \Delta x$$

This is a Riemann sum, taking the limit as $n o \infty$

$$m = \lim_{n o \infty} \Sigma_{i=1}^n
ho(x_i^*) \Delta x$$

$$m = \int_a^b
ho(x) dx$$

Theorem 2.8 Mass–Density Formula of a Circular Object

Let ho(x) be an integrable function representing radial density of a disk r

Mass
$$m=\int_0^r 2\pi x
ho(x) dx$$

Area
$$A=\pi(x_i^2)-\pi(x_{i-1})^2$$
 $=\pi[x_i^2-x_{i-1}^2]$ $=\pi(x_i+x_{i-1})(x_i-x_{i-1})$ $=\pi(x_i+x_{i+1})\Delta x$ $x_i^*pprox rac{(x_i+x_{i-1})}{2}$, so $pprox 2\pi x_i^*\Delta x$

Using $ho(x^*)$ to approximate the density of the washer

$$mpprox \Sigma_{i=1}^n m_ipprox 2\pi x_i^*
ho(x_i^*)\Delta x$$

This is a Riemann sum, hence as $n o \infty$

$$m = \lim_{n o \infty} \Sigma_{i=1}^n 2\pi x_i^*
ho(x_i^*) \Delta x$$

$$m=\int_0^r 2\pi x
ho(x) dx$$

Work

Work done by a force F(x) from point a to b is

$$\int_a^b F(x)dx$$

$$W_ipprox F(x_i^*)(x_i{-}x_{i-1})$$

$$W_i pprox F(x*i)\Delta x$$

$$W = \Sigma_{i=1}^n W_i pprox \Sigma_{i=1}^n F(x_i^*) \Delta x$$

Which is a Riemann sum, hence as $n o \infty$

$$W = \lim_{n o \infty} \Sigma_{i=1}^n F(x_i^*) \Delta x$$

$$W = \int_a^b F(x) dx$$

Pumping Problems

Work for pumping water from the initial distance of h_0 to the bottom h is:

$$W=\int_{h_0}^h \pi
ho r^2 x dx$$

Proof:

Density equation

$$ho = rac{m}{V} \!
ightarrow m =
ho V$$
 1.

Force equation

$$F = mq$$

Plugging in 1.:

$$F=
ho Vg$$
 2.

Work equation

$$W = Fd$$

Plugging in 2.:

$$W =
ho V g d$$

$$W_i =
ho \pi r^2 x_i^* \Delta x$$

$$\Sigma_{i=1}^n W_i = \Sigma_{i=1}^n
ho \pi r^2 x_i^* \Delta x$$

This is a Riemann sum, hence as $n o \infty$

$$W = \lim_{n o \infty} \Sigma_{i=1}^n
ho \pi r^2 x_i^* \Delta x$$

$$W=\int_{h_0}^h \pi
ho r^2 x dx$$

Hydrostatic Force

Force = Pressure*Area*Distance below water

$$F_i = \rho As$$

Assuming the thickness is thin enough, we can assume a constant force on the slice:

$$=
ho[w(x_i^*)\Delta x]s(x_i^*)$$

$$Fpprox \Sigma_{i=1}^n F_i = \Sigma_{i=1}^n
ho[w(x_i^*)\Delta x] s(x_i^*)$$

This is a Riemann sum, so as $n o \infty$

$$\lim_{n o\infty} \Sigma_{i=1}^n
ho[w(x_i^*)\Delta x] s(x_i^*) = \int_a^b
ho w(x) s(x) dx$$

Theorem 2.9 Centre of Mass of Objects on a Line

Moment $M=\Sigma_{i=1}^n m_i x_i$

Centre of mass $ar{x} = rac{M}{m}$

Theorem 2.10 Centre of Mass of Objects in a Plane

Moments

$$M_x = \Sigma_{i=1}^n m_i x_i$$

$$M_y = \Sigma_{i=1}^n m_i y_i$$

Coordinates of Centre of Mass

$$ar{x} = rac{M_x}{m}$$

$$ar{y} = rac{M_y}{m}$$

Theorem 2.11 Symmetry Principle

If a region R is symmetric about a line l, then the centroid of R lies on l

Theorem 2.12 Centre of Mass of a Thin Plate in the xy Plane

ho is the density of the lamina

Mass of the Lamina

$$m =
ho \int_a^b f(x) dx$$

Moments of the Lamina

$$M_x =
ho \int_a^b rac{f(x)^2}{2} dx$$

$$M_y =
ho \int_a^b f(x) x dx$$

Centres of Mass of the Lamina

$$ar{x} = rac{M_x}{m}$$

$$ar{y} = rac{M_y}{m}$$

Proof:

Partition the lamina and let $x_i^* = \dfrac{x_{i+1} + x_i}{2}$ which is the midpoint

Construct a rectangle and let $f(x_i^st)$ be the height of the rectangle

Therefore, the centre of mass will be $(x_i^*, \frac{f(x_i^*)}{2})$

Mass of the rectangle will be $ho f(x_i^*) \Delta x$ where ho is the density

Mass $m pprox \Sigma_{i=1}^n
ho f(x_i^*) \Delta x$

This is a Riemann sum, hence as $n \to \infty$

Week 6 - Applications of Integration

$$m = \lim_{n o \infty} \Sigma_{i=1}^n
ho f(x_i^*) \Delta x =
ho \int_a^b f(x) dx$$

Finding Moment

Moment = Mass*Distance to centre of mass

$$M =
ho f(x_i^*) \Delta x rac{f(x_i^*)}{2}$$

Taking a Riemann sum:

$$M_y = \lim_{n o\infty} \Sigma_{i=1}^n
ho f(x_i^*) \Delta x rac{f(x_i^*)^2}{2} =
ho \int_a^b f(x) rac{f(x)^2}{2} dx$$

Similarly

$$M_x =
ho \int_a^b x f(x) dx$$

Theorem 2.13: Centre of Mass of a Lamina Bounded by Two Functions

Mass

Mass
$$m=
ho\int_a^b f(x)-g(x)dx$$

Proof

The height of the of the rectangle is $f(x_i^*) - g(x_i^*)$

Therefore the area is $[f(x_i^*) - g(x_i^*)] \Delta x$

Hence the mass is $m=
ho\int_a^bf(x)-g(x)dx$

Moment

$$egin{aligned} M_x &=
ho \int_a^b x (f(x) - g(x)) dx \ M_y &=
ho \int_a^b rac{1}{2} [f(x)^2 - g(x)^2] dx \end{aligned}$$

Proof

The moment is found by multiplying the area $[f(x_i^*)-g(x_i^*)]\Delta x$ by the distance $\frac{f(x_i^*)+g(x_i^*)}{2}$

Which gives $rac{1}{2}[f(x)^2-g(x)^2]\Delta x$ for M_y and $x[f(x)^2-g(x)^2]\Delta x$ for M_x

Theorem 2.14 Theorem of Pappus for Volume

Let R be a region in the plane and let l be a line in the plane that does not intersect R. Then the volume of the solid of revolution formed by revolving R around l is equal to the area of R multiplied by the distance d travelled by the centroid of R.

Proof:

The area of the region between f(x) and g(x) is $\int_a^b f(x) - g(x) dx$

If the axis of rotation is the y axis, the distance travelled by the centroid of the region depends only on \bar{x} , which is

$$\bar{x} = \frac{M_y}{m}$$

where

$$egin{aligned} m &=
ho \int_a^b f(x) - g(x) dx \ M_y &=
ho \int_a^b x [f(x) - g(x)] dx \end{aligned}$$

Then

$$d=2\pirac{
ho\int_a^bx[f(x)-g(x)]}{
ho\int_a^bf(x)-g(x)dx}$$

Since

 $d=2\pi ar{x}$, because the distance travelled is a circumference of a circle around the y-axis

Thus

$$dA =
ho \int_a^b x [f(x) - g(x)] dx$$

Using the method of cylindrical shells, we get

$$V =
ho \int_a^b x [f(x) - g(x)] dx$$

$$V = d \cdot a$$

Exponential Growth Model

Systems that exhibit exponential growth:

$$y = y_0 e^{kt}$$

Exponential Decay Model

Systems that exhibit exponential decay:

$$y = y_0 e^{-kt}$$

Half-Life

• Time taken for the quantity to halve

$$\lambda = \frac{\ln 2}{k}$$