Lecture-17

Sushrut Tadwalkar; 55554711

October 16, 2023

Quote of the day

"After the math conference mathematicians go to the bar. The first one says can I get a beer, the second one says can I get half a beer, the third one says can I get a quarter of a beer, and so on. The bartender slams two beers on the counter, and says 'figure it out yourself!'." - Dr. Loewen, 10/16/2023

Theorem: Archimedean property

The set \mathbb{N} has no upper bound in \mathbb{R} .

Proof. For the sake of contradiction, suppose that $\mathbb N$ has an upper bound; consider $\alpha=\sup(\mathbb N)$. In this case, $\alpha-\frac12$ cannot be an upper bound (by the definition of the supremum), i.e., there exists some $n\in\mathbb N$ such that $\alpha-\frac12< n$. However, this gives us $n+1>n+\frac12>\alpha\implies\alpha$ is not an upper bound, and therefore not the supremum; contradiction. Hence, $\mathbb N$ is not bounded.

Note. This seems like a very obvious fact, but we need some work because there can be cases where this breaks down. One of them is mentioned in the example that follows.

Example 1. Let \mathscr{F} be the set of rational functions $f: \mathbb{R} \to \mathbb{Q}[x]$ (here $\mathbb{Q}[x]$ denotes the set of all polynomials with rational coefficients) such that,

$$f(x) = \frac{p_0 + p_1 x + \dots + p_m x^m}{q_0 + q_1 x + \dots + x q_n x^n}$$

To define an order, say "f>0" when some representation as above has $\frac{p_m}{q_n}>0$; equivalently, f(x)>0 for sufficiently large x. The constants in the numerator and denominator show that $\mathbb Q$ is a sub-field of $\mathscr F$ with a well defined "<". However, we get a contradiction, since the function f(x)=x is an upper bound for $\mathbb N$. The proof for this is fairly elementary where for each n, we have f(x)-n>0 for $x>n_0$. We are not saying that the set $\mathbb N$ has a supremum; this is clearly false. However, this does not mean that we cannot find an upper bound. This is a very pedantic point; since the range of the function f(x)=x is the rational numbers, it includes the natural numbers, so for every natural number we have a greater natural number (this fact needs no proof.) However, this does not imply there's a supremum because while this upper bound is technically "increasing" (it is not exactly; we just find larger values in the range), the exists no numerical value that can serve as the supremum.

1 Series

Definition: Series

Given a sequence (a_n) in \mathbb{R} , the corresponding *series* is the new sequence s_1, s_2, \ldots defined by

$$s_n = \sum_{k=1}^n a_k.$$

The "sum" is

$$S' = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k,$$

denoted

$$S = \sum_{k=1}^{\infty} a_k$$
, or $S = \sum_{k \in \mathbb{N}} a_k$.

A series *converges* when $S \in \mathbb{R}$ and *diverges* otherwise. Some divergent series can be described with extended values $\pm \infty$.

Note. The key point is "some" can be described this way because saying that they diverge and are one of $\pm \infty$ is more than saying that they diverge; we are describing how they diverge.

1.1 Geometric series

For any real r,

$$\begin{split} (1-r)(1+r+r^2+\dots+r^n) = & 1+r+r^2+\dots+r^n-r-r^2-\dots-r^n-r^{n+1} \\ = & 1-r^{n+1} \\ \implies 1+r+r^2+\dots+r^n = & \frac{1-r^{n+1}}{1-r} \quad (\text{when } r \neq 1). \end{split}$$

Thus,

$$\sum_{k\in\mathbb{N}} r^k = \begin{cases} \lim_{n\to\infty} \frac{1-r^{n+1}}{1-r}, & \text{if } r\neq 1\\ \lim_{n\to\infty} (n+1), & \text{if } r=1 \end{cases},$$

i.e.,

$$\sum_{k \in \mathbb{N}} r^k = \begin{cases} \frac{1}{1-r}, & \text{if } |r| < 1\\ +\infty, & \text{if } r > 1\\ \text{DNE}, & \text{if } r < -1 \end{cases}.$$

Alternatively, we define $f(x) = \sum_{k \in \mathbb{N}} x^k$. Then, $\operatorname{Domain}(f) = (-1, 1)$, and $f(x) = \frac{1}{1-x}$.

Note. It is generally tricky to look at a series and find the value it exactly converges to, but we can often talk about the domain it converges in.

Example 2. Consider

$$\sum_{n \in \mathbb{N}} \frac{2}{4n^2 - 1} = 1.$$

Using partial fractions, we have

$$\frac{2}{4n^2-1} = \frac{1}{2n-1} - \frac{1}{2n+1},$$

so clearly, this is "telescoping", i.e., all the terms except a select few cancel out:

$$\begin{split} \sum_{n=1}^{n} \frac{2}{4n^2 - 1} &= \sum_{n \in \mathbb{N}} \left[\frac{1}{2n - 1} - \frac{1}{2n + 1} \right] \\ &= \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} + \dots - \frac{1}{2n - 1} + \frac{1}{2n - 1} - \frac{1}{2n + 1} \\ &= \frac{1}{2} - \frac{1}{2n + 1}, \end{split}$$

as as we take the limit as $n \to \infty$, we get

$$\sum_{n \in \mathbb{N}} \frac{2}{4n^2 - 1} = \frac{1}{2}.$$