

新近的解析 O-記法 g(n) = O(h(n)) ← どの正の数nについても |g(n)| <= M |h(n)| であるような定数Mが存在する 例 T_reverse(x) = O(n^2) T_rev(x) = O(n) ・ T_f(x): f xの計算に要する簡約ステップ数 ・ リストxの長さをnとする ・ ・ リストxの長さをnとする ・ ・ リストxの長さをnとする ・ </

簡約の停止性

• 簡約順序によって簡約過程が停止しないことがある。

answer = fst (42, loop)
loop = tail loop
answer → fst (42, loop)
→ fst (42, tail loop)
→ fst (42. tail (tail loop))
→ ...
Answer → fst (42, loop)
→ 42

簡約法

- 正規簡約法(normal order reduction)
 - 最外簡約法
 - 性質1:正規形を持つ項は必ず正規簡約法によって 正規形に簡約することができる。
 - 性質2:解をもとめるために本質的に必要でなければ、簡約を行わない。→ 遅延評価
- 作用的簡約法(applicative order reduction)
 - 最内簡約法
 - → 先行評価 (f ⊥ = ⊥)

グラフ簡約計算モデル

・ 最外簡約に要する簡約段数が最内簡約の 段数を越えることはない? → ×

sqr(4+2) → sqr6 → 6*6 → 36 sqr(4+2) → (4+2) * (4+2) → 6 * (4+2) → 6 * 6 → 36

・グラフ簡約を用いると、... → 〇 _{共有}

頭部正規形

• ときには、式の全体を正規形するのではなく、ある部分項だけを簡約する必要がある。

head (map sqr [1..7])

- → head (map sqr (1:[2..7]))
- → head (sqr 1 : map sqr [2..7])
- → sqr 1
- → 1*1 → 1
- ・ 定義:簡約項でなく、その部分項のどれを簡約しも簡約項にはならない項は頭部正規形

簡約順序と所要領域

sum = fold(+)0
sum [1..1000]

→ fold(+)0 [1..1000]
→ fold(+)(0+1) [2..1000]
→ fold(+)((0+1)+2) [3..1000]
→ sum [1..1000]
→ fold(+)(...((0+1)+2)+...+1000) []
→ (...((0+1)+2)+...+1000)
→ (...((0+1)+2)+...+1000)
→ 500500
sum [1..1000]
→ fold(+)0 [1..1000]
→ fold(+)1 [2..1000]
→ fold(+) [1..1000]

簡約順序の制御

- ・計算モデル:最外簡約
- strictを用いて簡約順序を制御する
 - strict f eの簡約
 - ・まずはじめにeを頭部正規形に簡約する
 - ・次にfを適用する
 - strict sqr (4+2)
 - → sqr 6
 - **→** 6*6
 - **→** 36

strict f x = seq x (f x)