Derin Öğrenme Tabanlı Otomatik Beyin Tümör Tespiti

Beyin tümörleri önemli bir ölüm nedenidir ve erken teşhis etkili tedavi için çok önemlidir. MRI (Manyetik Rezonans Görüntüleme) gibi geleneksel tanı yöntemleri değerli veriler sağlar, ancak radyologlar tarafından yapılan manuel analiz zaman alıcı olabilir ve hatalara açık olabilir. Bu çalışma, MRI taramalarından beyin tümörü tespitini otomatikleştirmek için derin öğrenmeyi, özellikle MobileNetV2 modelini k-En Yakın Komşular (k-NN) algoritmasıyla birleştiren AI tabanlı bir yaklaşım önermektedir.

Derin Öğrenme Modeli Mimarisi

Önerilen derin öğrenmeye dayalı sınıflandırma sistemi iki temel bileşenden oluşur:

1. MobileNetV2 Kullanarak Özellik Çıkarımı

- MobileNetV2, mobil ve düşük güç uygulamaları için tasarlanmış hafif bir evrişimli sinir ağıdır (CNN).
- ImageNet üzerinde önceden eğitilmiş olup, MRI görüntülerinden derin özellikleri verimli bir şekilde çıkarır.
- Özellik çıkarımını optimize etmek için derinliğe göre ayrılabilir evrişimler, ters kalıntılar ve doğrusal darboğazlar uygular.

2. k-En Yakın Komşular (k-NN) Kullanarak Sınıflandırma

- Çıkarılan derin özellikler k-NN kullanılarak sınıflandırılır.
- Öklid uzaklık metriği, her MRI taramasını tümör veya tümör olmayan sınıfa atamak için kullanılır.
- En iyi sınıflandırma performansı k=5 ile elde edildi.

Şekil 1: Önerilen modelin blok diyagramı

Veri Seti ve veri çoğaltma

- Veri Seti Kaynağı: Kaggle (Beyin Tümörü Tespiti için Beyin MRI Görüntüleri).
- Orijinal Veri: 253 MRI taraması (155'i tümörlü, 98'i tümörsüz).
- Artırılmış Veri: Aşağıdaki teknikler kullanılarak 1.265 görüntüye çıkarıldı:
 - Yatay çevirme
 - o Dikey çevirme
 - o Döndürmeler (90° ve 270°)
 - Yansıtma

Deneysel Sonuçlar ve Performans Değerlendirmesi

Deneyler, 16 GB RAM'li NVIDIA GTX 850M GPU kullanılarak MATLAB (2020b) üzerinde gerçekleştirildi. Deneysel çalışmalarda veri setinin %80'i (1012 MRG görüntü) eğitim ve %20'si (253 MRG görüntü) test için rastgele iki kısma ayrılmıştır. Eğitim veri seti önerilen MobilNetV2 modelin öğrenme sürecinde kullanıldı. Ayrıca test veri seti hem model parametrelerinin ayarlanmasında hem de performans değerlendirmesinde kullanıldı.

Şekil 2: MobileNetV2 eğitim-validasyon doğruluk grafiği

Şekil 6: MobileNetV2 eğitim-validasyon kayıp grafiği

Önerilen MobileNetV2 ile yapılan deneysel çalışmalarda hem orijinal veri seti ve hem çoğaltılmış veri setine ait MobileNetV2 ve k-EYK performans karşılaştırma sonuçları Tablo 1'de verilmiştir.

Veri Seti	Yöntem	Doğruluk	Duyarlılık	Özgüllük	Keskinlik	F1 Skor	MCC
Orijinal	MobileNetV2	86,56	86,73	86,45	80,19	83,33	0,722
	k-EYK	89,72	88,78	90,32	85,29	87,00	0,785
Çoğaltılmış	MobileNetV2	92,89	91,84	93,55	90,00	90,90	0,850
	k-EYK	96,44	96,94	96.13	94,06	95,48	0,925

Tablo 1: Orijinal ve çoğaltılmış veri setlerinde MobileNetV2 ve k-EYK performans karşılaştırma sonuçları

- k-NN sınıflandırıcısı %96,44 doğruluk elde ederek diğer geleneksel yöntemlerden daha iyi performans gösterdi.
- Veri artırma performansı önemli ölçüde iyileştirerek doğrulukta %6,72'lik bir artışa yol açtı.
- MobileNetV2 + k-NN kombinasyonu CapsNet, VGG19 ve ResNet-50 gibi diğer derin öğrenme modellerinden daha iyi performans gösterdi.

Yöntem	Model	Doğruluk (%)	
Arı ve diğerleri [8]	Bölütleme+k-NN	86,39	
Bulut ve diğerleri [9]	MRF	87,00	
Mohsen ve diğerleri [10]	ADD+PCA	93,94	
Afşar ve diğerleri [11]	CapsNet	86,56	
Vani ve diğerleri [12]	DVM	81,48	
Çıtak ve diğerleri [13]	DVM+ÇKA+LR	93,00	
Shahzadi ve diğerleri [14]	VGG+UKSB	84,00	
Swati ve diğerleri [15]	VGG19	94,82	
Saxena ve diğerleri [17]	ResNet50	95,00	
Önerilen Yöntem	MobileNetV2+k-EYK	96,44	

Tablo 2: Bazı yöntemlerin performans karşılaştırmaları