

A deep Learning Approch to DNA Sequence Classification

Purpose: To extract meaningful features from raw data and use these features for the classification of gene sequences.

In this work is present a deep learning neural network for the classification of DNA sequences, based on the spectral representation of the sequence.

The work is tested on a dataset of 16S genes and its performance in terms of accuracy and F1-score.

It is shown that the presented convolutional network is "better" for this type of task than other learning models.

A deep Learning Approch to DNA Sequence Classification

Dataset: 16S, taxonomy.csv

Steps:

- Data preprocessing : Sequence Cleaning and Spectral Representation in k-mers
- Use of CNN (Convolutional Neural Network) based on LeNet5
- Comparison of the results with the results obtained by other models (SVM, NB, RF)

Datasets

Taxonon	UN CEN

	Seguence	PHYLUM	CLASS	ORDER	FAMILY	GENUS
	S001014081	Actinobacteria	Actinobacteria	Acidimicrobiales	Acidimicrobidae incertae sedis	llumatobacter
	S000002314	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Atopobium
	S000004268	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Atopobium
	S000130242	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Atopobium
_	S000390775	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Atopobium
	S000414609	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Atopobium
	S001100366	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Enterorhabdus
	S000013627	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Coriobacterium
	S000734935	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Asaccharobacter
	S001168715	Actinobacteria	Actinobacteria	Coriobacteriales	Coriobacteriaceae	Gordonibacter

16s.fasta

>S001014081 Ilumatobacter fluminis (T); YM22-133; AB360343 zacgaacgctggcgtgcttaacacatgcaagtcgaacgaggtccatggagcttgctc :ggaagacctagtggcgaacgggtgcgtaacacgtgagaaacctgccccggacttgggaa taacagtcggaaacgactgctaataccgaataccttcacaccgtcgcatggcggagtgaa gaaagcttttgcggtttgggagggtctcgcggcctatcagctagttggtgaggtaacggc tcaccaaggcatcgacgggtagctggtctgagaggatgatcagccacactgggactgaga cacggcccagactcctacgggaggcagcagtggggaatattgcacaatgggcgcaagcct zatgcagcaacgccgcgtgcgggaagaaggccctagggttgtaaaccgctttcagcaggg aagaaaatgacggtacctgcagaagaaggtgcggccaactacgtgccagcagccgcggtg acacgtaggcaccaagcgttgtccggatttattgggcgtaaagagctcgtaggcggtttt gtaagtcgggtgtgaaaactctgggctcaacccagagaggccacccgatactgcaatgac ttgagtacggtaggggagcggggaattcctggtgtagcggtgaaatgcgcagatatcagg aggaacaccagtggcgaaggcgccgctctgggccgtaactgacgctgaggagcgaaagca tgggtagcaaacaggattagataccctggtagtccatgccgtaaacgttgggcactaggt gtgggtctcaaccaacgagatccgcgccgtcgctaacgcattaagtgccccgcctgggga ztacggtcgcaagactaaaactcaaaggaattgacgggggcccgcacaagcagcggagcg tgttgcttaattcgatgcaacgcgaagaaccttacctgggtttgacatgtagggaaaagc tctagagatagggtgtccttcggggctctacacaggtggtgcatggctgtcgtcagctcg tgtcgtgagatgttgggttaagtcccgcaacgagcgcaacccttatcctatgttgccagc atttagttggggactcgtaggagactgccggggtcaactcggaggaaggtggggatgacg tcaagtcatcatgccccttatgcccagggctgcaaacacgctacaatggacggtacagag zgctgcgatcccgcgagggtgagcgaatcccacaaagccgttctcagttcggattggagt :tgcaactcgactccatgaagccggagttgctagtaatcctggatcagcacgccagggtg aatacgttcccgggccttgtacacaccgcccgtcacaccacgaaagtcggtaacacccga agccggtggcccaaccctctgggagggagccgtcgaaggtgggatcggtgattggggtg >S000002314 Atopobium parvulum (T); X67150

scgaacggctgagtaacacgtgggcaacctgcccctttcattgggatagccacgggaaac cgtgataataccgaatacttcgagttccgcatggaagactcgagaaagctccggcgga sagggatggcccgtggcctgttagcttgttggtggggtaacggcctaccaaggcaatgat gggtagctgggttgagagaccgaccagccagattgggatgagacacggcccagactcct scgggaggcagcagtggggaatcttgcacaatgggcgaaagcctgatgcagcgacgcgc tgcgggatgaaggccttcgggttgtaaaccgctttcagcagggagagaggcgaaagtgac ggtacctgcagaagaagaccccggctaactacgtgccagcagcgcggtaatacgtagggg

respondent to the agent to attack and agent to a transport to a tr

of seq = 3000 Length of sequences > 1200bp

In total we have the sequences divided as follows:

Three main bacteria phyla	Number of categories for each taxa					
	Phylum	Class	Order	Family	Genus	
Actinobacteria	1	1	3	12	79	
Firmicutes	1	2	3	19	110	
Proteobacteria	1	2	13	34	204	

Spectral Representation

Network architecture:

1° Layer

Filters = 10 kernel size=5

2° Layer

Filters = 20 kernel_size=5

Output of each level:

$$dim(q) = \frac{dim(x) - (dim(w) - 1)}{\text{size of max-pooling}}$$

Hidden Layer: 500 units

Output Layer: 1 units for each

class

CININ (Convolutional Neural Network)

1.Input Sequences

The length of the input sequences considered is:

Stage 1: around 1400bp for sequence (full)

Stage 2: 500bp for sequence (short)

3.Metrics

$$Accuracy = \frac{TP + FN}{TP + FP + TN + FN}$$

2.Models

$$F1 = \frac{2TP}{2TP + FP + FN} = 2 * \frac{precision * recall}{precision + recall}$$

CNN

SVM Support Vector Machine con Kernel Gaussian Radial Basis

Naive Bayesian

Random Forest

Results obtained on full-length Accurancy (>1200bp) max-pooling stride=2

Results obtained on full-length F1 (>1200bp) max-pooling stride=2

Results obtained on short length Accuracy (500bp) max pooling stride=2

Results obtained on short length F1 (500bp) max pooling stride=2

Results obtained on full-length Accurancy (>1200bp)

Results obtained on full-length F1 (>1200bp)

Results obtained on short length Accuracy (500bp)

Results obtained on short length F1 (500bp)

