

Clustered Monotone Transforms for Rating Factorization

Gaurush Hiranandani 2* , Raghav Somani 1* , Oluwasanmi Koyejo 2 and Sreangsu Acharyya 1

¹Microsoft Research, India and ²University of Illinois at Urbana-Champaign

Abstract

- Existing problem: Existing recommendation engines force users with heterogeneous rating profiles to map their intrinsic rating scales to a common rating scale (e.g. 1-5) of the engine which shatters the low dimensional structure of the rating matrix resulting in a poor fit.
- Our approach: We address the (non-linear) scale mismatch between users and the engine by performing regression up to monotonic transformations.
- Our algorithms:
- perform regression up to unknown monotonic transforms over unknown population segments combining the underlying matrix factorization model to exploit the shared low dimensional structure, and
- have a unique solution in terms of transformed rating scale and regression matrix under verifiable conditions.

Problem Setup

- \mathcal{U} and \mathcal{V} are the set of users and items. $|\mathcal{U}| = N, |\mathcal{V}| = M$. \mathcal{V}_i is the set of items rated by user i.
- $R_{ij} \in [L]$ and $\hat{R}_{ij} \in \mathbb{R}$ are true and predicted ratings of user i to item j. $L \in \mathbb{N}$. \mathbf{r}^* : base rating vector $[L, L-1, \ldots, 1]$.
- $W \in \{0,1\}^{N \times M}$, where $w_{ij} = 1$ iff user i rated item j.
- $E_i \in \mathbb{R}^{|\mathcal{V}_i| \times L}$ is the one hot representation of the ratings of user i for each item. $\therefore R_{i,:}^T = E_i \mathbf{r}^*$.

Bregman Divergence

$$D_{\phi}(\mathbf{x} \mid\mid \mathbf{y}) := \phi(\mathbf{x}) - \phi(\mathbf{y}) - \langle \mathbf{x} - \mathbf{y}, \nabla \phi(\mathbf{y}) \rangle$$

- ϕ : dom $(\phi) \to \mathbb{R}$ is strictly convex, closed and differentiable on int $(\text{dom }(\phi))$.
- $D_{\phi}(\mathbf{x} \mid\mid \mathbf{y}) \geq 0 \& D_{\phi}(\mathbf{x} \mid\mid \mathbf{y}) = 0 \text{ iff } \mathbf{x} = \mathbf{y}. \text{ E.g. KL}$ Divergence, Generalized I Divergence, Squared ℓ_2 metric.

Matrix Factorization

Prediction of the form $\hat{R}_{ij} = \langle \mathbf{u}_i, \mathbf{v}_j \rangle$ where $\mathbf{u}_i, \mathbf{v}_j \in \mathbb{R}^d$ are user and item factors respectively.

$$\min_{U,V} \sum_{i \in \mathcal{U}, i \in \mathcal{V}} \frac{1}{2} w_{ij} \left(R_{ij} - \hat{R}_{ij} \right)^2$$

• Enforces a low rank structure on \hat{R} ; rank $(\hat{R}) \leq d$.

CMTRF

- CMTRF transforms the base rating scale \mathbf{r}^* of size L.
- Explores partitions of users into groups that share same monotonic transformation of the rating scale.
- Learns the transformed rating non-parametrically from a subset of the set

$$\mathcal{R}_{L,\epsilon} = \left\{ \mathbf{r} \in \mathbb{R}^L \mid r_k \ge r_{k+1} + \epsilon \ \forall \ k \in [L-1], \epsilon > 0 \right\}.$$

Formulating the optimization problems

If $D(\cdot, \cdot) = D_{\phi}(\cdot || \cdot)$ is the loss function for some ϕ , and f is a regression function, we propose 3 variants of the optimization formulation

• One transformation for all users:

$$\min_{U,V,\{\mathbf{r}\in\mathcal{R}_{L,\epsilon}\}} \sum_{i\in\mathcal{U}} D\left(E_i\mathbf{r}, f(V_i\mathbf{u}_i)\right) \tag{1}$$

• Separate transformation for all users:

$$\min_{U,V,\{\mathbf{r}_i \in \mathcal{R}_{L,\epsilon}\}} \sum_{i \in \mathcal{U}} D\left(E_i \mathbf{r}_i, f(V_i \mathbf{u}_i)\right) \tag{2}$$

• Separate transformation for each cluster: Consider K clusters in \mathcal{U}

$$\min_{\substack{U,V,\left\{\mathbf{z}_{i}\in\left\{0,1\right\}^{K}\right\}_{i=1}^{K},\ k\in\left[K\right]}} \sum_{i\in\mathcal{U}} \sum_{z_{ik}} D\left(E_{i}\mathbf{r}_{k},f(V_{i}\mathbf{u}_{i})\right) \qquad (3)$$

$$\left\{\mathbf{r}_{k}\in\mathcal{R}_{L,\epsilon}\right\}_{k=1}^{K}$$

where \mathbf{z}_i denotes the one hot encoding for cluster assignment for user i.

Note: The monotonic transformations and the clusterings are a-priori unknown and are obtained from the data.

Cost function

- We choose $D(\cdot, \cdot)$ to be a Bregman Divergence $D_{\phi}(\cdot || \cdot)$ and the regression function $f = (\nabla \phi)^{-1}$ so that the optimization formulations are tractable.
- The objectives defined in (1)-(3) are convex in $\hat{R}_i = V_i \mathbf{u}_i$, and also in \mathbf{r} , $\mathbf{r}_i \ \forall \ i \in [N]$ and $\mathbf{r}_k \ \forall \ k \in [K]$.
- The objective functions are separately convex in \mathbf{r} (or \mathbf{r}_i) and $V_i\mathbf{u}_i$ and not jointly convex allowing us to use **coordinate-wise minimization** (alternate minimization) over product of convex sets.
- Under mild conditions it can be shown that (1) and (2) using squared loss recovers the unique solution, whereas we can only guarantee local optimality for (3).

Algorithms

We define $C_{\phi}(\mathbf{x} || \mathbf{y}) = D_{\phi}(\mathbf{x} || (\nabla \phi)^{-1}(\mathbf{y}))$ for simplicity, and use alternating minimization to solve the optimization problems (1)-(3).

1-CMTRF

$$\mathbf{x}^{t+1} = \underset{\mathbf{x} \in \mathcal{R}_{L,\epsilon}}{\operatorname{arg \, min}} \sum_{i \in \mathcal{U}} C_{\phi} \left(E_{i} \mathbf{x} \mid\mid V_{i}^{t} \mathbf{u}_{i}^{t} \right)$$

$$U^{t+1}, V^{t+1} = \underset{U,V}{\operatorname{arg \, min}} \sum_{i \in \mathcal{U}} C_{\phi} \left(E_{i} \mathbf{x}^{t+1} \mid\mid V_{i} \mathbf{u}_{i} \right)$$

$$+ \frac{\lambda_{u}}{2} \left\| U \right\|_{F}^{2} + \frac{\lambda_{v}}{2} \left\| V \right\|_{F}^{2}$$

N-CMTRF

$$\mathbf{x}_{i}^{t+1} = \underset{\mathbf{x}_{i} \in \mathcal{R}_{L,\epsilon}}{\operatorname{arg \, min}} \sum_{i \in \mathcal{U}} C_{\phi} \left(E_{i} \mathbf{x}_{i} \mid\mid V_{i}^{t} \mathbf{u}_{i}^{t} \right) \ \forall \ i \in \mathcal{U}$$

$$U^{t+1}, V^{t+1} = \underset{U,V}{\operatorname{arg \, min}} \sum_{i \in \mathcal{U}} C_{\phi} \left(E_{i} \mathbf{x}_{i}^{t+1} \mid\mid V_{i} \mathbf{u}_{i} \right)$$

$$+ \frac{\lambda_{u}}{2} \left\| U \right\|_{F}^{2} + \frac{\lambda_{v}}{2} \left\| V \right\|_{F}^{2}$$

K-CMTRF

$$\mathbf{z}_{i}^{t+1} = \underset{k \in [K]}{\operatorname{arg \, min}} C_{\phi} \left(E_{i} \mathbf{x}_{k}^{t} \parallel V_{i}^{t} \mathbf{u}_{i}^{t} \right) \ \forall \ i \in \mathcal{U}$$

$$\mathbf{x}_{k}^{t+1} = \underset{\mathbf{x}_{k} \in \mathcal{R}_{L,\epsilon}}{\operatorname{arg \, min}} \sum_{i: \mathbf{z}_{ik}^{t+1} = 1} C_{\phi} \left(E_{i} \mathbf{x}_{k} \parallel V_{i}^{t} \mathbf{u}_{i}^{t} \right)$$

$$\forall \ k \text{ in parallel}$$

$$U^{t+1}, V^{t+1} = \underset{U,V}{\operatorname{arg \, min}} \sum_{k \in [K]} \sum_{i: \mathbf{z}_{ik}^{t+1} = 1} C_{\phi} \left(E_{i} \mathbf{x}_{k}^{t+1} \parallel V_{i} \mathbf{u}_{i} \right)$$

$$+ \frac{\lambda_{u}}{2} \|U\|_{F}^{2} + \frac{\lambda_{v}}{2} \|V\|_{F}^{2}$$

Baselines for Experiments

- Baselines models: (a) regularized Matrix Factorization, (b) LMaFit, (c) Monotonic single index model for Matrix Completion (MMC), and (d) Neural Network Matrix Factorization (NNMF).
- Baseline datasets: We consider 7 real world datasets, and 2 synthetic datasets (a) SD-1, and (b) SD-2.
- **Splits**: Datasets having timestamps were split chronologically for training (80%) and validation which is more realistic than uniform random split.

Experiment results

Table 1:Datasets description.

Datasets	Users	Items	Ratings	Density	Split	
ML100k	751	1616	82,863	6.83%		
ML1M	5301	3682	901,851	4.62%	C1	
ML10M	62007	10586	6,950,602	1.06%	Chrono- logical	
GB	42813	9403	4,729,637	1.17%		
Epinions	77264	150497	808,690	0.007%		
Douban	2999	3000	136891	1.52%		
Flixster	2307	2945	26173	2.01%	Uniform	
ML100k_u	943	1650	100000	6.43%		

Figure 1:MSE on chronologically and uniformly split test datasets.

Table 2:MSE on synthetic datasets. 1-C, N-C, and K-C denote 1-CMTRF, N-CMTRF, and K-CMTRF, respectively.

Data	MF	LMaFit	MMC	NNMF	1-C	N-C	K-C
SD-1	0.140	0.306	0.139	0.137	0.122	0.122	0.123
SD-2	0.804	0.674	1.995	1.893	0.326	0.347	0.326

*Equal contribution