BAREM - Lucrarea 1 - Matematică

(23.11.2019 - 10:00-11:45)

SUBIECTUL I (20 de puncte)

•
$$(A \cap B)\Delta A = A \setminus B \Leftrightarrow \chi_{(A \cap B)\Delta A} = \chi_{A \setminus B}$$
 (1.1)

•
$$\chi_{(A \cap B)\Delta A} = \chi_{A \cap B} + \chi_B - 2\chi_{A \cap B}\chi_B = \chi_A - \chi_A \chi_B$$
 (1.2)

•
$$\chi_{A \setminus B} = \chi_A - \chi_A \chi_B$$
 (1.3)

•
$$(1.1)+(1.2)+(1.3) \Rightarrow (A \cap B)\Delta A = A \setminus B$$

SUBIECTUL II (30 de puncte)

a) 20 puncte

• Scrierea seriei de puteri sub forma:
$$\sum_{n=1}^{\infty} a_n t^{n-1}$$
, unde $t = 1 - x$, $a_n = \frac{(-1)^{n-1}}{4n^2 + 4n - 3}$ (2.1)

•
$$\exists \rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{4n^2 + 4n - 3}{4(n+1)^2 + 4(n+1) - 3} = 1$$
 (2.2)

• (2.2)
$$\Rightarrow R = 1 \Rightarrow$$
 mulțimile de convergență pentru (2.1): $D_c = D_{ac} = (-1,1)$ (2.3)

•
$$t = -1 \Rightarrow \sum_{n=1}^{\infty} \frac{1}{4n^2 + 4n - 3}(C) \sim \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2}(C)$$
 (2.4)

•
$$t=1\Rightarrow \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{4n^2+4n-3}(C)$$
 (Criteriul lui Leibniz) (2.5)

•
$$(2.3)\sim(2.5) \Rightarrow D_c = D_{ac} = [-1,1] (2.6)$$

•
$$(2.6) \Rightarrow$$
 Concluzia:

•
$$(2.6) \Rightarrow$$
 Concluzia:
Seria $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4n^2 + 4n - 3} (1-x)^{n-1}$ este convergentă (absolut) pe intervalul $[0,2]$

b) 10 puncte

• Scrierea seriei pentru
$$x = 2 \in D_c = [0, 2]$$
:
$$\sum_{n=1}^{\infty} \frac{(-1)^{2n-2}}{4n^2 + 4n - 3} (2.7)$$

• Rescrierea termenului general
$$\widetilde{a}_n$$
, $\widetilde{a}_n = \frac{1}{4n^2 + 4n - 3}$ al seriei (2.7):

$$\widetilde{a}_n = \frac{1}{(2n-1)(2n+3)} = \frac{1}{4} \left(\frac{1}{2n-1} - \frac{1}{2n+3} \right) (2.8)$$

•
$$(2.7)+(2.8) \Rightarrow \sum_{n=1}^{\infty} \frac{1}{4n^2+4n-3} = \frac{1}{4} \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k+3} \right)$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k+3} \right) = \lim_{n \to \infty} \left(1 + \frac{1}{3} - \frac{1}{2n+1} + \frac{1}{2n+3} \right) = \frac{4}{3}$$

• Concluzia: Suma seriei de puteri pentru x=2 este $\frac{1}{3}$.

SUBIECTUL III (40 de puncte)

- a) Calculul corect T(-1, -1, 3) = (-3, -3, 1) 5 puncte
- b) Matricea operatorului T în baza canonică este: $A=\begin{pmatrix}2&1&0\\1&2&0\\2-\alpha&\alpha&1\end{pmatrix}$ 5 puncte
- c) 15 puncte
 - Calculul valorilor proprii: $det(A-\lambda I_3)=0 \Leftrightarrow (1-\lambda)^2(3-\lambda)=0 \Rightarrow \lambda_1=1 \text{ cu } m_{\lambda_1}=2 \text{ și } \lambda_2=3 \text{ cu } m_{\lambda_2}=1$
 - Cazul I: $\lambda_1 = 1$, $(A I_3) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 2 \alpha & \alpha & 0 \end{pmatrix}$
 - dacă $\alpha=1$, atunci $rang(A-I_3)=1\Rightarrow dim(V_{\lambda_1})=2$ $m_{\lambda_1}=dim(\mathbb{R}^3)-rang(A-I_3)=2$ (3.1)
 - dacă $\alpha \neq 1$, atunci $rang(A I_3) = 2 \Rightarrow dim(V_{\lambda_1}) = 1$ $m_{\lambda_1} \neq dim(\mathbb{R}^3) - rang(A - I_3) \Rightarrow T$ nu este diagonalizabil
 - Cazul II: $\lambda_2 = 3$, $(A 3I_3) = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 2 \alpha & \alpha & -2 \end{pmatrix}$
 - Cum $\begin{vmatrix} -1 & 0 \\ \alpha & -2 \end{vmatrix} = 2 \neq 0 \Rightarrow rang(A 3I_3) = 2, \ \forall \alpha \in \mathbb{R}$ $m_{\lambda_2} = \dim(\mathbb{R}^3) rang(A 3I_3) = 1 \ (3.2)$
 - Concluzia: T este diagonalizabil pentru $\alpha=1$
- d) 10 puncte
 - $V_{\lambda_1} = \{(-\alpha, \alpha, \beta), \alpha, \beta \in \mathbb{R}\} = Lin(\{(-1, 1, 0), (0, 0, 1)\})$
 - $V_{\lambda_2} = \{(\alpha, \alpha, \alpha), \alpha \in \mathbb{R}\} = Lin(\{(1, 1, 1)\})$
 - Baza în care se manifestă forma diagonală: $B_D = \{(-1,1,0), (0,0,1), (1,1,1)\}$
 - Forma diagonală $A_D = S^{-1} \cdot A \cdot S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, unde S este matricea de schimbare de la baza canonică din \mathbb{R}^3 la baza B_D .
- e) 5 puncte

Baza B_D este ortogonală dacă și numai dacă vectorii săi sunt ortogonali, doi câte doi

$$\langle (-1,1,0),(0,0,1)\rangle = 0,\ \langle (-1,1,0),(1,1,1)\rangle = 0,\ \langle (1,1,1),(0,0,1)\rangle = 1 \neq 0$$

Concluzia: Baza B_D nu este ortogonală.

Precizări:

Se acordă 10 puncte din oficiu.

Pentru orice soluție corectă, chiar diferită de cea din barem, se acordă punctaj corespunzător. Nota finală reprezintă 1/10 din punctajul total obținut.