Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Professora: Rosiane Soares Cesar

2^a Lista de Exercícios - Álgebra

- (1) Indique se as seguintes proposições são verdeiras os falsas, justificando suas respostas:
 - (a) $\{a\} \subset \{a, \{a\}\}$
 - (b) $b \in \{a, \{a, b\}\}$
 - (c) $\emptyset \in P(A)$
 - (d) $\{\emptyset\} \subset \{\{\emptyset\}\}$

- (e) $\{a\} \in \{a, \{a\}\}$
- (f) $\{\{a\}\}\in P(P(\{a\}))$
- (g) $\emptyset \subset P(A)$
- (h) $P(\emptyset) = \emptyset$.
- (2) Mostre que $A \subset B$ nos seguintes casos:
 - (a) $A = \{x \in \mathbb{R}: x^2 + x 1 = 0\}$
 - (b) $A = \{x \in \mathbb{R}; x < 0\}$
 - (c) $A = \{0, \frac{1}{2}, 1\}$

- $B = \{x \in \mathbb{R}; \ x^3 + 3x^2 + x 2 = 0\}$
- $B = \{x \in \mathbb{R}, x^{2} + 6x + a^{2} = 1\}$ $B = \{x \in \mathbb{R}; x^{2} 5x + 6 \ge 0\}$ $B = \{x \in \mathbb{R}; \exists a \in \mathbb{R} \text{ tal que } x = \frac{3a}{(a^{2} + 1)}\}$
- (3) Sejam $A = \{x \in \mathbb{R}; x^2 8x + 12 < 0\}$ e $B = \{x \in \mathbb{R}; |x 3| < 2\}$. Determine
 - (a) A B

(d) $A \cup B$

(b) B-A

(e) $A^c \cap B^c$

(c) $A \cap B$

- (f) $A^c \cup B^c$
- (4) Prove as proposições abaixo, onde A, B e C estão contidos em U, U conjunto universo
 - (a) $A B = A \cap B^c$.
 - (b) $A \cap B = \emptyset \Rightarrow A \subset B^c$
 - (c) $A \cup B = U \Rightarrow A^c \subset B$
 - (d) $A = (A B) \cup (A \cap B)$
 - (e) $A \cup (A^c \cap B) = A \cup B$
- (5) Sejam A, B e C conjuntos contidos em U, U conjunto universo. Determine se as proposições seguintes são verdadeiras os falsas, provando suas afirmações:
 - (a) $A B \subset A^c$
 - (b) $A \cup B = A \cup C \Rightarrow B = C$
 - (c) $A B \subset A \cup B$.
 - (d) $A^c \cap A = \emptyset$.
- (6) Sejam A um conjunto com 8 elementos e B um conjunto tal que $A \cup B$ contenha 12 elementos. Determine o número de elementos de P(B-A).

(7)	Prove	que
-----	-------	-----

- (a) Se $A \subset A'$, $B \subset B'$, então $A \times B \subset A' \times B'$.
- (b) Se $A \subset B$ então $P(A) \subset P(B)$
- (c) $(A \cap B)^c = A^c \cap B^c$
- (8) (Fuvest-1994) Sendo $A=\{2,3,5,6,9,13\}$ e $B=\{a^b;a\in A,\,b\in A\,e\,a\neq b\}$. O número de elementos de B que são números pares é:
 - a) 5 b) 8 c) 10 d) 12 e) 13
- (9) (Vunesp-2000 adaptada) Um estudo de grupos sanguíneos humanos realizado com 1000 pessoas (sendo 600 homens e 400 mulheres) constatou que 470 pessoas tinham o antígeno A, 230 pessoas tinham o antígeno B e 450 pessoas não tinham nenhum dos dois. Determine o número de pessoas que têm os antígenos A e B simultaneamente.
- (10) (CPCAR-2003) Numa turma de 31 alunos da EPCAR, foi aplicada uma Prova de Matemática valendo 10 pontos no dia em que 2 alunos estavam ausentes. Na prova, constavam questões subjetivas: a primeira, sobre conjuntos; a segunda, sobre funções e a terceira, sobre geometria plana. Sabe-se que dos alunos presentes
 - nenhum tirou zero;
 - 11 acertaram a segunda e a terceira questões;
 - 15 acertaram a questão sobre conjuntos;
 - 1 aluno acertou somente a parte de geometria plana,
 - e 7 alunos acertaram apenas a questão sobre funções.

É correto afirmar que o número de alunos com grau máximo igual a 10 foi

- a) 4 b) 5 c) 6 d) 7
- (11) (UFRJ-1999) Uma amostra de 100 caixas de pílulas anticoncepcionais fabricadas pela Nascebem S.A. foi enviada para a fiscalização sanitária.

No teste de qualidade, 60 foram aprovadas e 40 reprovadas, por conterem pílulas de farinha. No teste de quantidade, 74 foram aprovadas e 26 reprovadas, por conterem um número menor de pílulas que o especificado.

O resultado dos dois testes mostrou que 14 caixas foram reprovadas em ambos os testes. Quantas caixas foram aprovadas em ambos os testes?

GABARITO

(1)

(a) V	(e) V
(b) F	(f) V
(c) V	(g) V
(d) F	(h) F

- (2) Demonstração
- (3)
- (a) [5,6)
- (b) (1,2]
- (c) (2,5)
- (4) Demonstração
- (5) Demonstração
- (6) 16
- (7) Demonstração
- (8) (c)
- (9) 150
- (10) (b)
- (11) 48

- (d) (1,6)
- (e) $(-\infty, 1] \cup [6, +\infty)$
- (f) $(-\infty, 2] \cup [5, +\infty)$