Evaluating the behaviour of the Kolm-Pollak EDE to changes in the aversion parameter. How the cities' equally-distributed equivalent varies with the aversion parameter (β).

Tab 2. A selection of percentiles of the distribution to nearest supermarket. E.g., 10% of Chicago's residents are within 0.35km of their nearest supermarket.

		10	50	75	90	95	100%
	chicago	0.35	0.87	1.29	1.74	2.10	5.22
tland	seattle	0.36	0.95	1.39	1.95	2.33	10.76
	portland	0.39	1.00	1.49	2.18	2.98	9.20
	denver	0.47	1.17	1.67	2.27	2.82	4.64
	miama	0.47	1.25	1.80	2.68	3.11	7.21
	detroit	0.68	1.61	2.27	2.81	3.14	5.18
	baltimore	0.56	1.50	2.17	3.07	3.66	9.37
ıver	atlanta	0.69	1.92	3.33	4.78	5.55	8.39
	new orleans	0.52	1.49	2.75	5.54	6.98	21.51
	houston	0.74	1.98	3.24	5.23	6.51	22.47

Fig 4A. When $\beta \rightarrow 0$ the EDE tends to the mean of the distribution. When $\beta \rightarrow \infty$ the EDE tends to the maximum value.