Wykład IX

Zadanie 1.

Zmienne losowe X_1 , X_2 ,...., X_{192} są niezależne o jednakowym rozkładzie jednostajnym U[1,3]. Oblicz przybliżone prawdopodobieństwo $P(364 < S_{192} < 400)$.

jednostajnym U[1,3]. Oblicz przybliżone prawdopodobieństwo
$$P(364 < S_{192} < 400)$$
. A. rozlit jednostajny U[1;3]

 $X_1, X_2, \dots X_{ng2}$ - zanienne micrależnie

 $P(364 < S_{ng2} < 400) = 1$
 $P(364 < S_{ng2} < 5$
 $P(364 < S_{ng2} <$

Zadanie 2.

Zmienne losowe $X_1,\ X_2,\ldots,\ X_{100}$ są niezależne o jednakowym rozkładzie Poissona o parametrze 4. Oblicz przybliżone prawdopodobieństwo $P(S_{100} < 440)$.

2.
$$\times_{A1} \times_{2}$$
, ... \times_{A00} zmienne nierależne, rozkład Boissona.

 $\lambda = 4$
 $P(S_{100} < 440) = ?$
 X_{i} - wartość i-tej zmiennej lasowej z ciągu $X_{A}, X_{Z}, ... \times_{A00}$
 $M = A00 \ge 25$, w związku z crym można zastosować cestralne twierotzenie graniczne

 $M = E(X_{i}) = \lambda = 4$
 M

Zadanie 3.

Zmienne losowe $X_1, X_2, \ldots, X_{135}$ są niezależne o jednakowym rozkładzie zadanym gęstością $f(x) = \begin{cases} \frac{3}{2}x^2 & dla & x \in [-1,1] \\ 0 & w \text{ przeciwnym przypadku.} \end{cases}$

Oblicz przybliżone prawdopodobieństwo $P(S_{135} > -11)$.

$$M=135$$

$$f(x) = \begin{cases} \frac{3}{2} x^2 & \text{dla } x \in \langle -1; 1 \rangle \\ 0 & \text{w porzeciwny produce} \end{cases}$$

$$P(S_{135}) - M) = 7$$

 X_i - wartość i-tej zmiennej losowej z ciargn
 $M = E(X_i) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x^3 dx = \frac{3}{8} x^4 / 1 = 0$

$$E(X_{1}^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{-\infty}^{\infty} \frac{3}{2} x^{4} dx = \frac{3}{10} x^{5} / \frac{1}{2} = 0.6$$

m>25 -> mormo zastosować Centralne Twiendzenie Graniczne:

rozlitad S_{136} jest blishi rozlitadowi $N(135.0, \sqrt{135.96})$, + j N(0,9)Zatem $P(S_{135}>-11)=P\left(\frac{S_{135}-0}{9}>\frac{-11-0}{9}\right) \approx P(Z)-\frac{11}{9}=$

=
$$1 - P(Z < -\frac{1}{3}) = 1 - \overline{E}(-\frac{1}{3}) = 1 - [1 - \overline{E}(\frac{1}{3})] = 1 - 1 + \overline{E}(\frac{1}{3}) = \overline{E}(\frac{1}{3}) \approx \overline{E}(\frac{1}{3}) = 0,8888 - z + ablic.$$

Odp. P(5,35>-11) wymosi w przybliżenin 0,8888.

Zadanie 4.

Zmienne losowe $X_1,\,X_2,\ldots,\,X_{176}$ są niezależne o jednakowym rozkładzie danym tabelką:

X	0	1	2
p(x)	0,5	0,4	0,1

Oblicz przybliżone prawdopodobieństwo $P(S_{176} < 100)$.

4.
$$X_1, X_2, \dots X_{176}$$
 - mieralerne unieune bosowe $\frac{\times |O|}{Q(x)} \frac{1}{Q(5)} \frac{2}{Q(4)}$

X; - wantość przyjęto przez i-ta, zmienna, z ciągu

$$M = 176$$
), 25-mozma slosewal constant $M = 176$), 25-mozma slosewal constant $M = 176$), 25-mozma slosewal constant $M = 176$), $M = 176$), $M = 176$, $M = 176$,

z CTG wynika, że S176 ma rozkład zbliżony do N(176.96; N76.50,44).

rozkład X; jest dyskretny, a zwieme moga przyjmować jedynie wartości catkowite-należy zastosować poprawką w przybliżeniu mormalnym:

$$P(\frac{5176^{-105/6}}{8,8} < \frac{100,5-105/6}{8,8}) \approx P(Z < -\frac{5.1}{8,8}) \approx \\ \approx P(Z < -0.58) = \overline{I}(-0.58) = 1-\overline{I}(0.58) = 1-0.7130 = 0.281$$

wykonał Sławomir Jabłoński, s14736