Department of Physics, IIT-Kanpur

Instructor: Tarun Kanti KGhosh Math Methods-I (PHY421) AY 2025-26, SEM-I Homework-3

1. Consider a classical harmonic oscillator described by the Hamiltonian $H = \frac{p^2(t)}{2m} + \frac{1}{2}m\omega^2 x^2(t)$. Construct a dimensionless complex variable z as $z(t) = \sqrt{\frac{m\omega}{2\hbar}}x(t) + i\frac{p(t)}{\sqrt{2m\hbar\omega}}$. Find an equatin of motion in the complex variable z(t). Solve the equation of motion and extract x(t) and p(t).

Note: The system is one dimensional but we are using momentum as a second dimension and constructing a complex variable. While solving harmonic oscillator quantum mechanically, we use bosonic ladder operators. The form of the ladder operators is exactly same as z(t). In quantum case, we treat x and p as operators.

2. Show that

(a)

 $S_N = \sum_{n=0}^{N-1} e^{in\theta} = \frac{\sin(N\theta/2)}{\sin(\theta/2)} e^{i(N-1)\theta/2}.$ Plot $|S_N|^2$ vs θ for N = 10, 100 and 1000. $S_p = \sum_{n=0}^{\infty} p^n e^{in\theta} = \frac{1 - pe^{-i\theta}}{1 - 2p\cos\theta + p^2},$ where |n| < 1. Plot $|S_N|^2 = \frac{1}{1 - 2p\cos\theta + p^2}$ (b)

where |p| < 1. Plot $|S_p|^2$ vs θ for p = 0.01, 0.5 and 0.99. These results are very useful in optics. $S_p = \sum_{n=-\infty}^{\infty} p^{|n|} e^{in\theta} = \frac{1-p^2}{1-2p\cos\theta+p^2} = \text{Re}\left[\frac{1+pe^{i\theta}}{1-pe^{i\theta}}\right],$ (c)

where $0 \le |p| < 1$. This is known as Poisson kernel for the unit disc.

3. Determine number of branches, branch points and their order of the following complex functions:

 $(i)z^{1/2}(z-1)^{1/3}$, $(ii)(z^2+1)^{1/3}$, $(iii)\sqrt{z(z-1)}$, $(iv)\log(z^2-1)(v)(z+1)^{1/2}+(z-1)^{1/2}$.

Draw all possible branch cuts and domains where the function is single-valued.

- 4. Is $\log(i^2) = 2\log(i)$ for all branches?
- 5. Show that $f(z) = \cos^{-1} z$ is an infinitely many-valued function. Find the branch points.
- 6. Consider a function

$$f(x,y) = \frac{x^2y}{x^4 + y^2}, \quad z \neq 0$$

= 0, $z = 0.$

Is this function continuous at z = 0?

[Hints: Along all the straight lines y = mx, it seems to be continuous. Consider a set of parabolic paths $y = ax^2$ and see what happens.]

1

- 7. (a) Is $f(z) = z^m e^{-|z|^2/4}$ an analytic function?
 - (b) Consider f(z) = u(x,y) + iv(x,y) is an analytic function. Check whether F(x,y) = u(x,y)v(x,y) is a solution of the Laplace equation or not.
 - (c) Consider the real part of an analytic function is given by $u(x,y) = -2xy + y/(x^2 + y^2)$. Calculate its harmonic conjugate function v(x,y).
- 8. Consider the following matrix-differential operator

$$H = \boldsymbol{\sigma} \cdot \boldsymbol{\nabla},$$

where $\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y}$. Note that x and y are dimensionless here.

(a) Show that the components of the operator ∇ can be expressed in terms of complex conjugate coordinates as

$$\frac{\partial}{\partial x} = \left[\frac{\partial}{\partial z} + \frac{\partial}{\partial z^*} \right]$$

and

$$\frac{\partial x}{\partial y} = i \left[\frac{\partial}{\partial z} - \frac{\partial}{\partial z^*} \right].$$
blex coordinates.

- (b) Express the operator H in complex coordinates.
- (c) Find the eigenvector $|\psi\rangle$ which satisfies $H|\psi\rangle=0$.
- 9. The quantum mechanical Hamiltonian of a two-dimensional isotropic harmonic oscillator is given by

$$H = -\frac{\hbar^2}{2M} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right] + \frac{1}{2} M \omega^2 (x^2 + y^2).$$

Here M is the mass of the particle and ω is the oscillator frequency.

Note: The energy spectrum is

$$E_{n_r,m} = \hbar\omega(2n_r + |m| + 1) = \hbar\omega(n+1),$$

where $n=2n_r+|m|$ with $n_r=0,1,2...$ and $m=0,\pm 1,\pm 2,...$ For a given n, there are (n+1) degenerate states.

(a) Obtain the Hamiltonian H in complex coordinates as given below:

$$H = \hbar\omega \left[-2\frac{\partial^2}{\partial z \partial z^*} + \frac{zz^*}{2} \right].$$

Note that here z is a dimensionless variable: $z = (x + iy)/a_0$ with the oscillator length $a_0 = \sqrt{\hbar/(M\omega)}$. Note that $H = H^*$ since the system is invariant under time-reversal operation.

(b) Show that the complex function $\psi_l(z)$ (normalized to one)

$$\psi_l(z, z^*) = \frac{1}{\sqrt{\pi a_0^2 n!}} z^l e^{-|z|^2/2}, \qquad l = 0, 1, 2, \dots$$

and its conjugate $\psi_l^*(z)$ are the eigenfunctions of H with the same eigenvalues $E_l = \hbar\omega(l+1)$.

Note: The eigenvalues $E_l = \hbar\omega(l+1)$ are for $n_r = 0$ and l correspond to m.

(c) Show that the **angular momentum** operator in terms of the complex coordinates can be expressed as

$$L_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) = \hbar \left[z \frac{\partial}{\partial z} - z^* \frac{\partial}{\partial z^*} \right].$$

(d) Show that

$$L_z \psi_l(z, z^*) = l\hbar \psi_l(z, z^*), \quad L_z \psi_l^*(z, z^*) = -l\hbar \psi_l^*(z, z^*).$$

(e) Show that

$$\sum_{l=0}^{\infty} |\psi_l(z)|^2 = \frac{1}{\pi a_0^2}.$$

10. You have already derived the following Hamiltonian for a charge (q > 0) particle in presence of the magnetic field $\mathbf{B} = B\hat{z}$ in the symmetric gauge:

$$H = -\frac{\hbar^2}{2M}\nabla^2 - \frac{qB}{2M}(xp_y - yp_x) + \frac{q^2B^2}{8M}(x^2 + y^2).$$

Introducing **dimensionless** and **independent** complex conjugate variables $z = (x + iy)/l_0$ and $z^* = (x - iy)/l_0$, where $l_0 = \sqrt{\hbar/(qB)}$ is the magnetic length scale.

(a) Show that the components of the canonical momentum operator can be expressed in terms of complex conjugate coordinates as

$$p_x = -i\hbar \frac{\partial}{\partial x} = -\frac{i\hbar}{l_0} \left[\frac{\partial}{\partial z} + \frac{\partial}{\partial z^*} \right]$$
$$p_y = -i\hbar \frac{\partial}{\partial y} = \frac{\hbar}{l_0} \left[\frac{\partial}{\partial z} - \frac{\partial}{\partial z^*} \right].$$

and

$$p_y = -i\hbar \frac{\partial}{\partial y} = \frac{\hbar}{l_0} \left[\frac{\partial}{\partial z} - \frac{\partial}{\partial z^*} \right]$$

(b) You have already derived canonical angular momentum operator in terms of the complex coordinates in the previous problem:

$$L_z = (\mathbf{r} \times \mathbf{p})_z = +\hbar \left[z \frac{\partial}{\partial z} - z^* \frac{\partial}{\partial z^*} \right].$$

The mechanical angular momentum operator is given by $L_z^{\mathrm{mech}} = (\mathbf{r} \times \mathbf{\Pi})_z =$ $(x\Pi_y - y\Pi_x)$. Show that the mechanical angular momentum L_z^{mech} can be written in terms of the complex coordinates as

$$L_z^{\rm mech} = + \hbar \left[z \frac{\partial}{\partial z} - z^* \frac{\partial}{\partial z^*} - \frac{|z|^2}{2} \right]$$

(c) Show that the above Hamiltonian H can be re-written as

$$H = \hbar\omega_c \left[-2\frac{\partial^2}{\partial z \partial z^*} - \frac{1}{2} \left(z \frac{\partial}{\partial z} - z^* \frac{\partial}{\partial z^*} \right) + \frac{zz^*}{8} \right].$$

Here, $\omega_c = qB/M$ is the cyclotron frequency.

(d) You have already derived the commutator $[\Pi_x, \Pi_y] = i\hbar q B$, which is similar to $[x, p_x] =$ $i\hbar$. We know that two ladder operators (or, raising and lowering operators) in terms of x and p_x are constructed in order to quantize the Hamiltonian of a quantum mechanical harmonic oscillator.

Similarly, constructing the following ladder operators:

$$a = \frac{i}{\sqrt{2\hbar qB}} [\Pi_x + i\Pi_y], \quad a^{\dagger} = \frac{-i}{\sqrt{2\hbar qB}} [\Pi_x - i\Pi_y].$$

Show that the ladder operators can be expressed in complex coordinates as

$$a = \frac{1}{\sqrt{2}} \left[\frac{z}{2} + 2 \frac{\partial}{\partial z^*} \right], \quad a^{\dagger} = \frac{1}{\sqrt{2}} \left[\frac{z^*}{2} - 2 \frac{\partial}{\partial z} \right].$$

Show that $[a, a^{\dagger}] = 1$.

(e) Show that

$$a^{\dagger}a + \frac{1}{2} = \left[-2\frac{\partial^2}{\partial z \partial z^*} - \frac{1}{2} \left(z \frac{\partial}{\partial z} - z^* \frac{\partial}{\partial z^*} \right) + \frac{|z|^2}{8} \right].$$

Therefore, the Hamiltonian can be re-written as

$$H=\hbar\omega_c\left(a^\dagger a+rac{1}{2}
ight).$$

Here, $\hat{N} = a^{\dagger}a$ is the number operator.

[This is the Hamiltonian of a simple harmonic oscillator with the quantized energy levels $E_n = (n + 1/2)\hbar\omega_c$ with n = 0, 1, 2... Each discrete energy is called Landau level. level.

(f) Show that

$$a^{\dagger}a\psi_m(z,z^*) = 0$$

 $a^\dagger a \psi_m(z,z^*) = 0,$ where $\psi_m(z,z^*) = \phi_m(z) e^{-\frac{|z|^2}{4}}$. Here $\phi_m(z)$ is a set of analytic functions given as $\phi_m(z) = \frac{1}{\sqrt{2\pi l_0^2 2^m m!}} z^m,$

$$\phi_m(z) = \frac{1}{\sqrt{2\pi l_0^2 2^m m!}} z^m$$

with m = 0, 1, 2....

(g) Show that

$$\sum_{m=0}^{\infty} |\psi_m(z, z^*)|^2 = \frac{qB}{2\pi\hbar} = \frac{1}{2\pi l_0^2}.$$

(h) Show that

$$L_z \psi_m(z, z^*) = m\hbar \ \psi_m(z, z^*).$$

Show that

$$\langle \psi_m(z, z^*) | L_z^{\text{mech}} | \psi_m(z, z^*) \rangle = -\hbar.$$

Note that $\psi_m(z,z^*)$ are eigenfunctions of L_z , but not the eigenfunctions of L_z^{mech} .

11. Consider a set of analytic functions

$$\phi_m(z) = \frac{1}{\sqrt{2\pi 2^m m!}} z^m,$$

where m=0,1,2.... One can use $\phi_m(z)$ as basis states with the measure or weight factor $\mu[z,z^*]=e^{-|z|^2/2}$ to construct an infinite dimensional complex space with finite norm. Defining an inner product as

$$\langle \phi_n | \phi_m \rangle = \int \phi_n^*(z) \phi_m(z) \ \mu[z, z^*] \ dx dy.$$

- (a) Prove that $\langle \phi_n | \phi_m \rangle = \delta_{mn}$.
- (b) Show that $b^{\dagger} = \frac{z}{\sqrt{2}}$ and $b = \sqrt{2} \frac{d}{dz}$ act like raising and lowering operators, respectively, in this infinite dimensional complex space.
- (c) Check that b^{\dagger} and b satisfy the bosonic commutation relation: $[b,b^{\dagger}]=1.$