Лабораторная работа №3. Численное интегрирование

Цель работы: найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

№ варианта определяется как номер в списке группы согласно ИСУ. Лабораторная работа состоит из двух частей: вычислительной и программной.

Обязательное задание (до 80 баллов)

Исходные данные:

- 1. Пользователь выбирает функцию, интеграл которой требуется вычислить (3-5 функций), из тех, которые предлагает программа.
- 2. Пределы интегрирования задаются пользователем.
- 3. Точность вычисления задается пользователем.
- 4. Начальное значение числа разбиения интервала интегрирования: n=4.
- 5. Ввод исходных данных осуществляется с клавиатуры.

Программная реализация задачи:

- 1. Реализовать в программе методы по выбору пользователя:
 - Метод прямоугольников (3 модификации: левые, правые, средние)
 - Метод трапеций
 - Метод Симпсона
- 2. Методы должны быть оформлены в виде отдельной(ого) функции/класса.
- 3. Вычисление значений функции оформить в виде отдельной(ого) функции/класса.
- 4. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
- 5. Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности.

Вычислительная реализация задачи:

- 1. Вычислить интеграл, приведенный в таблице 1, точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при n = 6.
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=10 .
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений для каждого метода.
- 6. В отчете отразить последовательные вычисления.

Необязательное задание (до 20 баллов)

- 1. Установить сходимость рассматриваемых несобственных интегралов 2 рода (2-3 функции). Если интеграл расходящийся, выводить сообщение: «Интеграл не существует».
- 2. Если интеграл сходящийся, реализовать в программе вычисление несобственных интегралов 2 рода (заданными численными методами).
- 3. Рассмотреть случаи, когда подынтегральная функция терпит бесконечный разрыв: 1) в точке а, 2) в точке b, 3) на отрезке интегрирования

Оформить отчет, который должен содержать:

- 1. Титульный лист.
- 2. Цель лабораторной работы.
- 3. Порядок выполнения работы.
- 4. Рабочие формулы методов.
- 5. Листинг программы.
- 6. Результаты выполнения программы.
- 7. Вычисление заданного интеграла.
- 8. Выводы

Таблица 1 Интеграл для вычислительной части лабораторной работы

Вариант	Интеграл	Вари-	Интеграл
Бариапт	для вычислений в отчете	ант	для вычислений в отчете
1	$\int_{0}^{2} (-x^3 - x^2 - 2x + 1) dx$	15	$\int_{1}^{2} (5x^3 - 2x^2 + 3x - 15)dx$
2	$\int_{-3}^{-1} (-3x^3 - 5x^2 + 4x - 2)dx$	16	$\int_{2}^{4} (3x^3 - 4x^2 + 5x - 16) dx$
3	$\int_{0}^{2} (-x^3 - x^2 + x + 3) dx$	17	$\int_{1}^{2} (3x^3 - 4x^2 + 7x - 17) dx$
4	$\int_{-3}^{-1} (-2x^3 - 4x^2 + 8x - 4) dx$	18	$\int_{2}^{4} (x^3 - 5x^2 + 3x - 16)dx$
5	$\int_{2}^{4} (-2x^3 - 3x^2 + x + 5) dx$	19	$\int_{2}^{4} (x^3 - 3x^2 + 6x - 19) dx$
6	$\int_{1}^{2} (3x^3 + 5x^2 + 3x - 6)dx$	20	$\int_{2}^{4} (4x^3 - 3x^2 + 5x - 20)dx$
7	$\int_{0}^{2} (4x^3 - 5x^2 + 6x - 7) dx$	21	$\int_{0}^{2} (2x^3 - 5x^2 - 3x + 21) dx$
8	$\int_{2}^{3} (3x^3 - 2x^2 - 7x - 8) dx$	22	$\int_{3}^{5} (2x^3 - 3x^2 + 4x - 22) dx$
9	$\int_{1}^{2} (2x^3 - 3x^2 + 5x - 9) dx$	23	$\int_{2}^{4} (-x^3 - 2x^2 + 3x + 23) dx$
10	$\int_{2}^{4} (x^3 - 3x^2 + 7x - 10) dx$	24	$\int_{3}^{5} (x^3 - 2x^2 - 5x + 24) dx$
11	$\int_{1}^{3} (2x^3 - 9x^2 - 7x + 11) dx$	25	$\int_{0}^{2} (2x^3 - 4x^2 + 6x - 25) dx$
12	$\int_{1}^{2} (x^3 + 2x^2 - 3x - 12) dx$	26	$\int_{2}^{4} (3x^3 - 2x^2 + 7x + 26)dx$
13	$\int_{1}^{3} (-2x^3 - 5x^2 + 7x - 13) dx$	27	$\int_{3}^{5} (2x^3 - 3x^2 - 5x + 27) dx$
14	$\int_{2}^{4} (2x^3 - 2x^2 + 7x - 14) dx$	28	$\int_{0}^{2} (x^3 - 3x^2 + 6x - 28) dx$

Контрольные вопросы

- 1. В каких случаях применяется численное интегрирование?
- 2. На чем основано численное интегрирование?
- 3. Что такое квадратурные формулы?
- 4. Каким образом связана задача численного интегрирования и интерполяция?
 - 5. Как оценивается погрешность квадратурной формулы?
 - 6. Какие частные случаи формулы Ньютона-Котеса Вы знаете?
- 7. Как называется метод численного интегрирования, в котором подынтегральная функция заменяется полиномом нулевой степени?
- 8. В каком методе численного интегрирования подынтегральная функция заменяется квадратичным полиномом?
 - 9. Чем отличается метод трапеций от метода Симпсона?
 - 10. В чем суть метода средних прямоугольников?
- 11. Что представляет собой формула для вычисления интеграла методом трапеции?
- 12. Как определить число разбиений интервала интегрирования, используя неравенство для оценки абсолютной погрешности для метода трапеций?
 - 13. Что такое правило Рунге?
- 14. Каким образом можно уменьшить погрешность решения при численном интегрировании?
 - 15. Когда удобнее пользоваться квадратурной формулой Гаусса?