Lecture given at the

WCS Workshop on Land Change Modeling for REDD

October 25–29, 2010

Wildlife Conservation Society - Bronx Zoo Bronx, New York, USA

Hosted by

Clark Labs and the Wildlife Conservation Society

This workshop was generously supported by the American people through the United States Agency for International Development (USAID), under the terms of the TransLinks Cooperative Agreement No.EPP-A-00-06-00014-00 to the Wildlife Conservation Society (WCS). TransLinks is a partnership of WCS, The Earth Institute, Enterprise Works/VITA, Forest Trends and the Land Tenure Center. The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States government.

LCM Change Analysis Tab

In this section you will learn:

- •Cross-tabulation
- Visualizing Land Cover Change
- •Steps in LCM

Cross-tabulation

- •Cell by cell combination of two or more data layers with the same resolution and extent
- •Restricted to NOMINAL data, where the numbers refer to categorical variables

Cross-tabulation

Visualizing Land Cover Change

• Requires two prior landuse maps

Lowland Bolivia Land Cover 1992

Lowland Bolivia Land Cover 2001

Visualizing Land Cover Change

Ideally a third landuse map is used for validation of model

Lowland Bolivia Land Cover 2004

Land Cover Change

Land Cover Change (km²)

Forest
Lowland Shrub
Tropical Savannah
Disturbed

<u>1992</u> <u>2004</u> <u>Change</u>

484875 461087 -23788 (5%) 75822 73097 -2725 (4%)

59877 58138 -1739 (3%)

27804 56773 **+28969 (104%)**

LCM – Approach to Land Use Change Modeling

• Cross-tabulation between T1 and T2 to understand past exchange among landuse classes

Cross-tabulation - 1992 - 2001

CLARK LAB

LAKK UNIVERSITY

Cross-tabulation - 2001 - 2004

Prediction of Future Quantity

LCM – Approach to Land Use Change Modeling

- Explanatory variables Drivers
 - Static variable is a variable that does not change over time

Variable - DEM

Variable - Slopes

LCM – Approach to Land Use Change Modeling

- Explanatory variables Drivers
 - Dynamic variables is a variable that changes over time

Variable – Cost Distance from Brazil

Variable – Cost Distance from Argentina

CLARK University

Variable – Cost Distance from Santa Cruz

Variable – Cost Distance from Disturbance

Variable – Distance from Paved Roads

CLARK

LCM – Approach to Land Use Change Modeling

- Explanatory variables Drivers
 - Qualitative variables empirical likelihood

Variable – Empirical Likelihood - Soils

Variable – Empirical Likelihood – 92/01

LCM – Approach to Land Use Change Modeling

• Aggregation of variables – MLP - Transition probability image

MLP – Training Samples

MLP – Transition Potential

LCM – Approach to Land Use Change Modeling

• Amount of change into the future – Markovian process

Modeled – 2004

CLARK LABS

Truth – 2004

Modeled Soft – 2004

Cross-tabulation – 2001 | 2004 | 2004 Modeled

1 | 1 | 1 Right: Persistence Non Disturb
1 | 2 | 1 Wrong: Misses
1 | 1 | 2 Wrong: False ALarms
1 | 2 | 2 Right: Hits

2 | 2 | 2 Right: Persistence of Disturb

LCM – Approach to Land Use Change Modeling

- Change allocation process
 - Apply infrastructure changes
 - Zoning Constraints/Incentives

Prediction of Future Quantity

Modeled – 2004 to 2015

Modeled Soft – 2004 to 2015

LCM Change Analysis Tab

You have learned:

- •Cross-tabulation
- Visualizing Land Cover Change
- •Steps in LCM

