TD 7 – Séries de fonctions

1. À TRAVAILLER EN CLASSE

Exercice 1 (convergence uniforme d'une suite de fonctions). On considère, pour tout entier $n \ge 0$, la fonction $f_n : [0,1] \to \mathbb{R}$ définie par $f_n(x) = nx^n \ln(x)$ si $x \in]0,1]$ et $f_n(0) = 0$.

- 1. Démontrer que la suite $(f_n)_{n\geq 0}$ converge simplement sur [0,1] vers une fonction f que l'on précisera. On définit $g_n = f f_n$ pour tout entier $n \geq 0$.
- 2. Etudier les variations de g_n .
- 3. En déduire que la convergence de $(f_n)_{n>0}$ vers f n'est pas uniforme sur [0,1].
- 4. Soit $a \in]0,1[$. En remarquant qu'il existe $n_0 \in \mathbb{N}$ tel que $e^{-1/n} \ge a$ pour tout $n \ge n_0$, démontrer que la suite $(f_n)_{n\ge 0}$ converge uniformément vers f sur [0,a].

Exercice 2 (convergence uniforme d'une suite de fonctions). Étudier la convergence simple et la convergence uniforme des suites de fonctions $(f_n)_{n\geq 0}$ dans les cas suivants :

- 1. $f_n(x) = e^{-nx} \sin(2nx)$ sur \mathbb{R}^+ puis sur $[a, +\infty[$, avec a > 0.
- 2. $f_n(x) = \frac{1}{(1+x^2)^n}$ sur \mathbb{R} , puis sur $[a, +\infty[$, avec a > 0.

Exercice 3 (convergence de séries de fonctions). Étudier les convergences simple, uniforme et normale de la série de fonctions $\sum f_n$ dans chacun des cas suivants :

a)
$$f_n(x) = nx^2 e^{-x\sqrt{n}} \text{ sur } \mathbb{R}^+$$
 b) $f_n(x) = \frac{1}{n+n^3x^2} \text{ sur } \mathbb{R}^*_+$ c) $f_n(x) = (-1)^n \frac{x}{(1+x^2)^n} \text{ sur } \mathbb{R}$
d) $f_n(x) = \frac{\sin(n^3x^2)}{1+3nx^2+2n^2} \text{ pour } x \in \mathbb{R}$ e) $f_n(x) = nx \exp(-nx) \text{ pour } x \in [0, +\infty[$

Exercice 4. Soit $a \in]-1,1[$. Pour $n \in \mathbb{N}$ et $t \in [0,\pi/2]$, on pose :

$$u_n(t) = a^n \cos^n(t)$$
.

- 1. Montrer que la série de fonctions $\sum u_n$ converge uniformément sur $[0, \pi/2]$. Déterminer la somme de cette série.
- 2. En déduire l'égalité suivante :

$$\int_0^{\pi/2} \frac{dt}{1 - a\cos t} = \sum_{n=0}^{\infty} \left(\int_0^{\pi/2} \cos^n(t) dt \right) a^n.$$

Exercice 5 (convergence normale locale de la série des dérivées). Pour tout entier $n \geq 1$, soit $f_n : \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$f_n(x) = \frac{1}{n^2 + x^2}.$$

- 1. Montrer que la série $\sum f_n$ converge simplement sur \mathbb{R} . On note s la somme de cette série.
- 2. Montrer que s est continue sur \mathbb{R} .
- 3. Montrer que pour tout réel a > 0, la série $\sum f'_n$ converge normalement sur [-a, a].
- 4. Montrer que s est dérivable sur \mathbb{R} .

Exercice 6. Pour tout entier n > 0 et tout réel x on pose :

$$f_n(x) = \frac{\arctan(nx)}{n^2} \,,$$

et on considère $f(x) = \sum_{n>1} f_n(x)$.

- 1. Déterminer le domaine de définition de f et sa parité éventuelle.
- 2. Étudier la convergence normale de f sur \mathbb{R} , préciser si f est continue et quelles sont ses limites en $+\infty$ et en $-\infty$.
- 3. Montrer que f est de classe C^1 sur \mathbb{R}^* . Montrer que f' est décroissante sur $]0, +\infty[$.
- 4. Montrer que f n'est pas dérivable en 0.

Exercice 7. Soit $f:]-1,1[\to \mathbb{R}$ la fonction définie par :

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n \sin(nx)}{n}.$$

- 1. Montrer que f est de classe C^1 sur]-1,1[.
- 2. Calculer f'(x) et en déduire que :

$$f(x) = \arctan\left(\frac{x\sin x}{1 - x\cos x}\right).$$

Exercice 8. Pour tout entier n et $z \in \mathbb{C}$ on pose $f_n(z) = e^z(z-1-i)^n$.

- 1. Déterminer le plus grand disque ouvert U du plan complexe tel que $\sum f_n$ converge normalement sur tout disque fermé inclus dans U.
- 2. En déduire que $\sum f_n$ est continue sur U.

Exercice 9. Soit $p \in \mathbb{N} \setminus \{0\}$. Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$ on pose

$$f_n(x) = \frac{\sin(px)\sin(nx)}{\ln(n+2)}.$$

Montrer que la série $\sum f_n$ converge uniformément sur $[0,\pi]$.

Exercice 10 (écriture de log 2 comme somme d'une série alternée).

1. Pour $x \in [0,1[$, montrer l'égalité

$$\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n.$$

2. En déduire l'égalité

$$\forall x \in [0, 1[, \ln(1+x)] = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^n}{n}$$

3. Montrer que $\ln(2) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$. (Indication : on prolongera l'égalité obtenue dans la question 2 par continuité puis on montrera que l'on peut utiliser un théorème d'interversion de limites).

Exercice 11 (la fonction ζ de Riemann). Pour tout entier $n \geq 1$, soit $f_n : [0, +\infty[\to \mathbb{R} \text{ la fonction définie par } f_n(x) = n^{-x}$.

1. Étudier la convergence simple de la série de fonction $\sum f_n$ sur $[0, +\infty[$.

On note I le plus grand intervalle de $[0, +\infty[$ sur lequel la série $\sum f_n$ converge simplement, et on note ζ la somme de cette série définie sur I.

- 2. Montrer que la fonction ζ est continue et décroissante sur I. Montrer que la fonction ζ admet une limite en $+\infty$ et calculer cette limite.
- 3. Montrer l'encadrement suivant :

$$\forall x \in I \quad 1 + \frac{1}{2^{x-1}(x-1)} \le \zeta(x) \le \frac{x}{x-1}.$$

Indication: on pensera à comparer la série à une intégrale.

- 4. En déduire un équivalent de $\zeta(x)$ lorsque x tend vers 1 par valeurs supérieures.
 - 2. À TRAVAILLER CHEZ SOI : APPLICATIONS DIRECTES DES DÉFINITIONS

Exercice 12. Pour $n \in \mathbb{N}$ et $x \in [0,1]$, on pose $f_n(x) = x^n(1-x)$ et $g_n(x) = x^n \sin(\pi x)$.

- 1. Montrer que $(f_n)_{n\geq 0}$ converge uniformément vers 0 sur [0,1].
- 2. En déduire la convergence uniforme de $(g_n)_{n>0}$ vers 0 sur [0,1].

Exercice 13. Soit $f: [0,1] \to \mathbb{R}$ la fonction définie par :

$$f(x) = \frac{(1-x)^n}{n+1}.$$

- 1. Pour $0 \le \alpha < 1$, exprimer ce que signifie que la série $\sum f_n$ converge uniformément sur l'intervalle $[\alpha, 1]$.
- 2. Pour quelles valeurs de α a-t-on convergence uniforme?
 - 3. À TRAVAILLER CHEZ SOI : EXERCICES D'ENTRAÎNEMENT

Exercice 14. Étudier la convergence simple et uniforme des suites de fonctions définies par :

1)
$$f_n(x) = \frac{x}{1+nx} \text{ sur } [0,1]$$
 2) $f_n(x) = \frac{1}{1+nx} \text{ sur } [0,1]$ 3) $f_n(x) = \frac{\ln(1+nx)}{1+nx} \text{ sur } \mathbb{R}^+$
4) $f_n(x) = e^{-nx} \text{ sur } [0,\pi]$ 5) $f_n(x) = nx^2 e^{-nx} \text{ sur } [0,\pi]$ 6) $f_n(x) = (1-x)x^n \text{ sur } [0,1]$

Exercice 15 (convergence de séries de fonctions). Pour chacun des exemples suivants, étudier la convergence simple puis normale de la série $\sum f_n$ sur l'intervalle proposé.

$$f_n(x) = x^n \text{ pour } x \in [0, 1]$$
 $f_n(x) = \frac{1}{1 + n^2 x} \text{ pour } x \in [0, +\infty[$

Exercice 16. Soit $f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{\ln(nx)}$.

- 1. Déterminer le domaine de définition de f puis étudier f sur $]1, +\infty[$.
- 2. Étudier la continuité de f et les limites de f en 1 et $+\infty$.
- 3. Montrer que f est de classe C^1 sur $]1,+\infty[$ et dresser son tableau de variation.

Exercice 17. Pour tout $x \in \mathbb{R}_+$ et tout $n \in \mathbb{N}$ on pose $f_n(x) = nxe^{-nx}$.

- 1. Montrer que la série de fonctions $(\sum f_n)$ est simplement convergente sur \mathbb{R}_+ .
- 2. On fixe $n \in \mathbb{N}$ et on pose $u_n = \sup \{|f_n(x)|, x \in \mathbb{R}_+\}$. Calculer u_n .
- 3. Montrer que la série de fonctions $(\sum f_n)$ n'est pas normalement convergente sur \mathbb{R}_+ .
- 4. Pour tout $\varepsilon > 0$, montrer que la série de fonctions $(\sum f_n)$ est normalement convergente sur $[\varepsilon, +\infty[$.

Exercice 18 (limite d'une somme). Pour tout entier $n \ge 1$, soit $f_n : [0, +\infty[\to \mathbb{R} \text{ la fonction définie par } f_n(x) = \frac{x}{n(x+n)}$.

- 1. Montrer que la série $\sum f_n$ est simplement convergente sur $[0, +\infty[$. On note s sa somme.
- 2. Montrer que s est une fonction croissante et dérivable sur $[0, +\infty[$.
- 3. Calculer s(p) pour tout entier p. Montrer que : $\lim_{x \to +\infty} s(x) = +\infty$.
- 4. Montrer que : $\lim_{x \to +\infty} \frac{s(x)}{x} = 0$.

Exercice 19. Pour tout entier $n \geq 1$ et tout $x \in \mathbb{R}$, posons

$$f_n(x) = x^2 e^{-nx}$$
 et $F_n(x) = \int_0^x f_n(t) dt$.

- 1. Étude de la série de fonctions $\sum f_n$.
 - (a) Montrer que la série de fonctions $\sum f_n$ converge normalement sur \mathbb{R}_+ . On pose $f(t) = \sum_{n=1}^{\infty} f_n(t)$ pour tout $t \in \mathbb{R}_+$.
 - (b) Montrer que f est continue sur \mathbb{R}_+ .
 - (c) Calculer f(t) pour tout $t \in \mathbb{R}_+$.
- 2. Etude de la série de fonctions $(\sum F_n)$.
 - (a) Soit $x \in \mathbb{R}_+^*$. A l'aide de deux intégrations par parties, calculer $F_n(x)$.
 - (b) Montrer que la série de fonctions $\sum F_n$ est normalement convergente sur \mathbb{R}_+ . On pose $F(x) = \sum_{n=1}^{\infty} F_n(x)$ pour tout $x \in \mathbb{R}_+$.
 - (c) Exprimer $\lim_{x\to +\infty} F(x)$ sous forme d'une somme de série.
- 3. Montrer que $F(x) = \int_0^x f(t) dt$, pour tout $x \in \mathbb{R}_+$.
- 4. En déduire l'identité suivante :

$$\int_0^\infty \frac{t^2}{e^t - 1} \, \mathrm{d}t = 2 \sum_{n=1}^\infty \frac{1}{n^3}.$$

Exercice 20. Pour tout $n \ge 1$ et pour tout $x \in \mathbb{R}$, on pose $f_n(x) = \frac{1}{n} \arctan(\frac{x}{n})$.

- 1. Montrer que la série de fonctions $(\sum f_n)$ est simplement convergente sur \mathbb{R} . Est-elle normalement convergente sur \mathbb{R} ? On appelle f la fonction somme de la série $(\sum f_n)$.
- 2. Soit a un réel strictement positif. Montrer que la série de fonction $(\sum f_n)$ est normalement convergente sur l'intervalle [-a, a].
- 3. En déduire que f est continue sur \mathbb{R} .
- 4. Montrer que f est de classe C^1 sur \mathbb{R} et que $\lim_{x\to +\infty} f'(x) = 0$.

4. À TRAVAILLER CHEZ SOI : EXERCICES D'APPROFONDISSEMENT

Exercice 21 (série alternée de fonctions positives). Soit I un intervalle de \mathbb{R} et soit $(f_n)_{n\geq 0}$ une suite de fonctions définies sur I et à valeurs dans \mathbb{R} . On suppose que $(f_n)_{n\geq 0}$ converge uniformément vers la fonction nulle et que :

$$\forall x \in I \quad \forall n \in \mathbb{N} \quad 0 \le f_{n+1}(x) \le f_n(x).$$

- 1. Montrer que la série de fonctions $\sum (-1)^n f_n$ converge uniformément sur I. Indication : on pensera à utiliser une conséquence du critère des séries alternées.
- 2. Pour $x \in [0, +\infty[$, on pose $f_0(x) = 1$ et $f_n(x) = 1/(x+n)$ pour $n \ge 1$. Montrer que la serie $\sum (-1)^n f_n$ converge uniformément mais non normalement sur $[0, +\infty[$.

Exercice 22 (un développement en série de la fonction cotangente). On se propose de démontrer que pour $x \notin \mathbb{Z}$:

$$\pi \cot(\pi x) = \frac{1}{x} - \sum_{n=1}^{\infty} \frac{2x}{n^2 - x^2}.$$

Posons pour tout x ne prenant pas de valeur entière :

$$f(x) = \pi \cot \pi x$$
 $g(x) = \frac{1}{x} + \sum_{n=1}^{\infty} \frac{2x}{n^2 - x^2}.$

- 1. Justifier que g est bien définie.
- 2. Montrer que f et g sont toutes deux 1-périodiques et impaires.
- 3. On définit h = f g et on pose h(x) = 0 pour $x \in \mathbb{Z}$. Montrer que h est continue sur \mathbb{R} .
- 4. Montrer que que f et g satisfont l'équation fonctionnelle :

$$F\left(\frac{x}{2}\right) + F\left(\frac{x+1}{2}\right) = 2F(x).$$

Conclure que h = 0 en introduisant le maximum de h.

Exercice 23 (un calcul de série). On se propose de calculer la valeur de

$$S = \sum_{n=1}^{\infty} \frac{1}{n^2 2^n}.$$

On considère pour cela la série de fonctions de terme général

$$f_n: x \mapsto \frac{(1+x)^n + (1-x)^n}{n^2 2^n}.$$

- 1. Démontrer que la série de terme général f_n converge normalement sur l'intervalle [-1,1]. On note s sa somme
- 2. Démontrer que s est dérivable sur]-1,1[et calculer sa dérivée.
- 3. Donner une expression explicite de s. On pourra admettre que $\sum_{n\geq 1}\frac{1}{n^2}$ vaut $\frac{\pi^2}{6}$.
- 4. En déduire la valeur de la somme S.