

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC108 Prática em Sistemas Digitais GE4Bio – Grupo de Estudos em Sinais Biológicos

Projeto CPU - 03

Prof.Dr. Danilo Spatti

São Carlos

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
RgTO		RgIN		JMP		ULA		Disponível			Operando				

- **RgTO**: Registrador de destino (4 bits)
- **RgIN**: Registrador de origem (4 bits)
- JMP: uma das 4 opções abaixo:
 - 00: Operação de ULA;
 - 01: Reinicia Registradores;
 - 10: Reinicia o contador de memória (reset PC);
 - 11: Jump para posição de memória do Operando;

- 00: **RgTO** ← **RgIN** + **Operando**;
- 01: RgTO \leftarrow Operando * 2;
- 10: RgTO ← RgIN Operando;
- 11: RgTO \leftarrow Operando / 2;
- Disponível: Disponível para melhorar a CPU caso queiram
- Operando: 4 bits diretamente da memória na ULA

SSC108

Projeto CPU – Memória 1 (Gabarito)

CLK

Count	Memória				R1	R2	Instrução			
0	6	0	0	5	5	0	$R1 \leftarrow R2 + 5$			
1	9	1	0	1	5	2	$R2 \leftarrow 1 \times 2$			
2	6	2	0	2	0	2	$R1 \leftarrow R2 - 2$			
3	6	3	0	4	2	2	$R1 \leftarrow 4 \div 2$			
4	0	С	0	8	2	2	<i>Jump</i> #8			
8	0	4	0	0	0	0	<i>CLR R1 e R2</i>			
9	6	0	0	1	1	0	$R1 \leftarrow R2 + 1$			
10	9	0	0	1	1	2	$R2 \leftarrow R1 + 1$			
11	9	0	0	2	1	3	$R2 \leftarrow R1 + 2$			
12	6	3	0	2	1	3	$R2 \leftarrow 1 \times 2$			
13	6	1	0	2	4	3	$R1 \leftarrow 2 \times 2$			
14	9	3	0	2	4	1	$R2 \leftarrow 2 \div 2$			
15	6	2	0	0	1	1	$R1 \leftarrow R2 - 0$			
16	6	0	0	1	2	1	$R1 \leftarrow R2 + 1$			
17	0	8	0	0	2	1	CLR contador			

SSC108

Projeto CPU – Memória 2 (Gabarito)

Count	١	/len	nóri	a	R1	R2	Instrução
0	6	0	0	4	4	0	$R1 \leftarrow R2 + 4$
1	9	1	0	2	4	4	$R2 \leftarrow 2 \times 2$
2	6	2	0	1	3	4	$R1 \leftarrow R2 - 1$
3	6	3	0	5	2	4	$R1 \leftarrow 5 \div 2$
4	9	0	0	2	2	4	$R2 \leftarrow R1 + 2$
5	6	0	0	2	6	4	$R1 \leftarrow R2 + 2$
6	9	0	0	3	6	9	$R2 \leftarrow R1 + 3$
7	0	4	0	0	0	0	<i>CLR R1 e R2</i>
8	0	С	0	d	0	0	Jump #d
13	9	0	0	2	0	2	$R2 \leftarrow R1 + 2$
14	6	3	0	2	1	2	$R1 \leftarrow 2 \div 2$
15	6	1	0	1	2	2	$R1 \leftarrow 1 \times 2$
16	9	3	0	2	2	1	$R2 \leftarrow 2 \div 2$
17	6	2	0	0	1	1	$R1 \leftarrow R2 - 0$
18	6	0	0	3	4	1	$R1 \leftarrow R2 + 3$
19	0	8	0	0	4	1	CLR contador

- 00: Operação de ULA;
- 01: Reinicia Registradores:
- 10: Reinicia o contador de memória (reset PC);
- 11: Jump para posição de memória do Operando;
- ULA: uma das 4 operações abaixo:
 - 00: RgTO ← RgIN + Operando;
 - 01: **RgTO** ← **Operando** * 2;
 - 10: RgTO ← RgIN Operando;
 - 11: RgTO ← Operando / 2;
- Disponível: Disponível para melhorar a CPU caso queiram
- Operando: 4 bits diretamente da memória na ULA

- Faça as adaptações necessárias para que os resultados da ULA sejam armazenados no registrador.
- Atentar para o fato de que a saída da ULA, entrada e saída dos registradores são de 4 bits.
- Realize simulações utilizando o osciloscópio na saída da ULA, entrada do registrador e saída do registrador.
- Integre o circuito da ULA com os registradores à Máscara da DE0-CV.

8

spatti@icmc.usp.br

