SPECYFIKACJA FUNKCJONALNA "WireWorld" DLA JĘZYKA PROGRAMOWANIA JAVA

SPIS TREŚCI SPIS TREŚCI

Spis treści

1	Opis Ogólny		
	1.1	Nazwa programu	2
	1.2	Poruszany problem	2
2	Opis funkcjonalności		
	2.1	Możliwości programu	4
	2.2	Jak korzystać z programu?	5
	2.3	Uruchomienie programu	5
3	Format danych i struktura katalogów		
	3.1	Struktura katalogów	6
	3.2	Dane wejściowe	6
	3.3	Wyjściowe	7
4	Scenariusz działania programu.		
	4.1	Scenariusz ogólny	8
	4.2	Ekran programu	8
5	Tes	towanie	10

1 Opis Ogólny

1.1 Nazwa programu

Nazwa programu: wireworld

1.2 Poruszany problem

Zbudowanie programu "WireWorld" autorstwa Briana Silvermana w języku Java.

"WireWorld" składa się z czterech stanów komórek:

- 1. Pusta czarny kolor.
- 2. Głowa elektronu niebieski kolor.
- 3. Ogon elektronu czerwony kolor.
- 4. Przewodnik żółty kolor.

Zestaw zasad przy tworzeniu nowej generacji jest następujący:

- komórka pozostaje Pusta, jeśli była Pusta.
- komórka staje się Ogonem elektronu, jeśli była Głową elektronu.
- komórka staje się Przewodnikiem, jeśli była Ogonem elektronu.
- komórka staje się Głową elektronu tylko wtedy, gdy dokładnie 1 lub 2 sąsiadujące komórki są Głowami Elektronu.
- Komórka staje się Przewodnikiem w każdym innym wypadku.

Są dwa rodzaje sąsiedztw Moore'a i von Neumanna. W sąsiedztwie Moore'a mamy 8 przylegających komórek (znajdujących się: na południu, na południowym-zachodzie, na zachodzie, na północnym-zachodzie, na północnym-wschodzie, na wschodzie i na południowym-wschodzie) oraz w sąsiedztwie von Neumanna 4 przylegających komórek (na południu, zachodzie, północy i wschodzie).

W "WireWorld" stosuje się sąsiedztwo Moore'a.

2 Opis funkcjonalności

Funkcjonalnością programu "WireWorld" jest wyświetlanie animacji złożonej z kolejnych plansz podanego układu elektronicznego, oraz zapisanie aktualnego stanu planszy do pliku, który może potem zostać wczytany, by kontynuować pracę.

2.1 Możliwości programu

Program będzie zawierał następujące możliwości:

- Odczytywanie pliku tekstowego TXT za pomocą Upload interfejsu graficznego (GUI).
- 2. Zapisywanie do plików tekstowych TXT za pomocą interfejsu graficznego (GUI).
- 3. Wystartowanie pliku wejściowego dla kolejnych generacji za pomocą przyciska PLAY (GUI).
- 4. Zatrzymanie działania programu za pomocą przyciska STOP (GUI).
- 5. Użytkownik ma możliwość zacząć wszystko od nowa za pomocą przyciska New Game (GUI).
- 6. Użytkownik ma możliwość regulować prędkość symulacji kolejnych generacji za pomocą pola Guzika (GUI).
- 7. Użytkownik ma możliwość regulować symulacji kolejnych generacji za pomocą przyciska STEP (GUI).

- 8. Użytkownik ma możliwość wprowadzić komórki do planszy w trybie online.
- 9. Obsługa różnych błędnych danych.

2.2 Jak korzystać z programu?

Program posiada interfejs graficzny (GUI). Z tego powodu użytkownik ma możliwość w łatwy sposób uruchomić program.

Lista postępowań do wywołania programu:

- Poprawna ścieżka do pliku z danymi opisującymi pierwszą generację.
 Program wczytuje format: *.txt.
- 2. Prędkość symulowanych generacji.

2.3 Uruchomienie programu

Przykład wywołania programu:

Krok 1: Upload

Krok 2: Play

Krok 3: Save

3 Format danych i struktura katalogów

3.1 Struktura katalogów

Program "WireWorld" będzie zawierała kilka katalogów, w katalogie głównym będzie plik wywołania programu.

Podkatalog "test" będzie zawierał testy jednostkowe.

Podkatalog ''src'' będzie zawierał kolejne katalogi, w których znajduję się kod źródłowy:

- 1. "GUI"
- 2. "FileIO"
- 3. "WireWorld"
- 4. "Front"

3.2 Dane wejściowe

Program "WireWorld" otrzymuje dane wejściowe. Plik tekstowy *.txt lub tryb online. Plik tekstowy składa się:

Przykład:

- ElectronTail: 24, 6;
- Field: 24, 7;
- ElectronHead: 24, 8;
- ElectronTail: 24, 9;

3.3 Wyjściowe 3 FORMAT DANYCH I STRUKTURA KATALOGÓW

• Field: 24, 10;

• ElectronHead: 24, 11;

• ElectronTail: 24, 12;

• Field: 24, 13;

Tryb online składa sie:

- kliknięcie **lewą** muszką 1 raz przewodnik (żółty kolor)
- kliknięcie **lewą** muszką 2 razy usunięcie przewodnika (czarny kolor)
- kliknięcie **prawą** muszką 1 raz ogon elektronu (czerwony kolor)
- kliknięcie **prawą** muszką 2 razy głowa elektronu (niebieski kolor)

3.3 Wyjściowe

W wyniku działania programu jest możliwość zapisywania za pomocą przyciska Upload do pliku tekstowego. Wynik będzie zapisany w postaci przykładu danych wejściowych.

4 Scenariusz działania programu.

4.1 Scenariusz ogólny

Główne kroki działania programu:

- uruchomienie
- sprawdzanie, żeby przewodnik nie wyszedł za przedziału planszy.
- wykonanie symulacji
- zakończenie działania programu

4.2 Ekran programu

Program posiada interfejs graficzny (GUI).

- Step lewy górny róg.
- Guzik lewy górny róg po Step.
- Play centrum po Guzik.
- New Game prawy górny róg po Play.
- Płansza centrum.
- Save dolny centrum.
- Upload dolny centrum po Save.

Poniżej jest przedstawiony rysunek ekranu działania programu:

Rysunek 1: ekran programu

5 Testowanie

Do przetestowania kodu będzie używany kompilator javac razem z Java Development Kit. W programie będą prowadzone testy jednostkowe z wykorzystaniem biblioteki AssertJ, a GUI będzie przetestowany ręcznie podczas tworzenia aplikacji