PSI 3442 - Projeto de Sistemas Embarcados

Objetivos das aulas práticas

Exemplificar a definição e projeto de sistemas ciberfísicos complexos.

Objeto de estudo: UAV (Unmanned aerial vehicle) / Drone

Por que?

- Complexo
- Aplicações diversas

Objetivos das aulas práticas

Eixos temáticos

- A Entender um sistema embarcado complexo
- B Simulação de sistemas embarcados
- C Traduzir requisitos de desempenho em algoritmos de controle para sistemas
- D Integrar Software + Hardware

Objetivos das aulas práticas

- Problema de Engenharia
 - Solução e requisitos
- Dimensionamento do drone

- Simulações
 - PX4+Gazebo+ROS+Controle

Drone Físico

Na aula de hoje

- Sistema Embarcado
- Sistema Ciber-físico
- Exemplo: Drone
 - Complexidade
 - Estados (Graus de Liberdade)
 - Movimentação
 - Estimação de estados
 - Hardware
 - Software/Controle
 - Aplicações

Aula 1: Sistema Embarcado

- É um Sistema Computacional
- Processador, memória, entrada/saída de periféricos
- Função específica em sistema Físico (ex: Mecatrônico)
- Tipicamente usado em controle de sistemas físicos
 - Computação de tempo real
 - Restrições de consumo energético
 - Computação intensiva
 - Tamanho reduzido

Aula 1: Sistema Ciber-físico

Sistema Ciber-físico: "Cyber-physical system (CPS)" é uma integração de computação com processos físicos cujo comportamento somente pode ser definido pelo conjunto integrado das partes cibernéticas e físicas do sistema.

Aula 1:Exemplo de Sistema Ciber-físico

Hardware

Drone

Software

```
import rospy
from maybase.MAV import MAV
import numpy as np
def go():
    rospy.init node("mav test")
    mav = MAV("1")
    takeoff alt = 10
    goal x = 5
    goal y = 5
    altitude = 2
    mav.takeoff(takeoff alt)
```

Aula 1: Sistema Ciber-físico

Esquemáticos de sistemas ciber-físicos

Aula 1: Exemplo de sistema embarcado complexo

Drone Quadrotor

- Multivariável
 - Estimação do estado
 - Múltiplos sensores
- Equilíbrio instável
 - Controle constante
- Múltiplos graus de liberdade
 - 6DOF (Degrees of freedom)
 - Múltiplos atuadores

Aula 1: Exemplo de sistema embarcado complexo

Drone Quadrotor: Movimentação

- Rotação
 - Roll
 - Pitch
 - Yaw
- Translação
 - X
 - Y
 - 7

Aula 1: Exemplo de sistema embarcado complexo

Drone Quadrotor: Estimação de estados (DOF)

Sensores

- Acelerômetro* [x,y,z]
- Giroscópio* [roll,pitch,yaw]
- Magnetômetro* [yaw]
- Barômetro, LIDAR [z]
- GPS [x,y,z]
- Câmera (SLAM) [x,y,z]

Observador de
Estados + Filtro
(EKF**)

Vetor de estados

 $\mathbf{x} = [\mathbf{x}, \mathbf{y}, \mathbf{z},$

roll,pitch,yaw]

Aula 1: Hardware

- Sensores
 - o IMU
 - o GPS
 - Barômetro
 - o Câmera
- Controlador
- Atuadores
- Comunicadores
 - Telemetria
 - Rádio
 - Bateria

Aula 1: Middleware/Firmware/Software

- Middleware
 - ROS (Robotic Operating System)
- Sistema Operacional
 - NuttX (RTOS pixhawk)
 - Linux
- Firmware
 - o PX4
 - Ardupilot
- Software Simulação
 - Gazebo
- Linguagens de programação
 - Python/C++

Aula 1: Por que desenvolver sistemas ciber-físicos?

Aula 1: Software

- Implementação computacional de um algoritmo
- Algoritmo: Sequências de instruções que quando seguidas geram um produto/resultado desejado

```
def go():
    rospy.init node("may test")
   mav = MAV("1")
    takeoff alt = 10
    goal x = 5
   goal y = 5
    altitude = 2
    mav.takeoff(takeoff alt)
    mav.rate.sleep()
    actual x = mav.drone pose.pose.position.x
    actual y = mav.drone pose.pose.position.y
    actual_dist = np.sqrt((goal_x - actual_x)**2 + (goal_y - actual_y)**2)
    rospy.loginfo("Setting position to (%s, %s)" %(str(goal x), str(goal y)))
```


Aula 1: Controle

 Uma lei de controle é um algoritmo cuja finalidade é alterar a dinâmica natural de um sistema de modo que sua nova dinâmica atenda a

requisitos de controle desejado e de modo que o sistema resultante seja estável e robusto à perturbações e incertezas de projeto.

Recapitulando

- Sistema Embarcado
- O que é um Sistema Ciber-físico?
- Exemplo: Drone
 - Por que um drone é complexo?
 - Estados
 - Como funciona a movimentação?
 - Como se faz a estimação de estados?
 - Quais os componentes de Hardware de um drone?
 - Quais elementos de software vamos usar?
 - Quem sabe outra aplicação de drones?

Fim

Extra: Hardware

Extra: Hardware

Explicação de alguns componentes

- Ubec: regulador de tensão
- Telemetria: Informações de status do drone
- Gimbal: Orientação da câmera
- Buzzer: Sirene

MOTORES

