

Institut Supérieur d'Informatique de Modélisation et de leurs Applications

1 rue de la Chebarde TSA 60125 CS 60026 63178 Aubière CEDEX

Campus des Cézeaux 24 avenue des Landais BP 80 026 63 173 AUBIERE CEDEX

Rapport d'ingénieur

Projet de 2^e année Filière Calcul et Modélisation Scientifique

Écriture d'un code d'analyse des données d'un détecteur de rayons cosmiques et interfaçage avec une base de données

 $\it Étudiant$:

Josselin Massot

Tuteur:
Dr Richard Dallier
Tuteur ISIMA:
Gilles Leborgne

Projet de 5 mois 15 septembre 2015

Remerciements

Merci les gens

Liste des figures, tableaux, algorithmes et extraits de code								
Liste	des figures							
2.1	Exemple de figure	3						
Liste	des tableaux							
2.1	Représentation d'un tableau et du fichier csv associé	4						
Liste	des algorithmes							
2.1	Association à voisinage constant	4						
Liste	des extraits de code							
1	Lecture d'un fichier fits en <i>Python</i>	3						

Résumé – Abstract

Résumé

Résumé en français

Mots clés : Liste des mots clés

Abstract

English abstract

Keywords: List of keywords

Table des matières

Remerciements	Ì
Liste des figures, tableaux, algorithmes et extraits de code	ii
${f R}cute{{f e}}{f sum}{f e}-{f A}{f b}{f s}{f t}{f ract}$	iii
Table des matières	iv
${f Glossaire}$	v
1 Introduction	1
I Introduction de l'étude	2
${f 2}$ Étude	3
2.1 Sous-titre de l'étude	3
II Méthodes et résolution	5
3 Méthodes	6
3.1 Et résolutions	6
III Résultats et discussion	7
4 Résultats	8
4.1 Délivrables	8
5 Conclusion	9
Bibliographie & Webographie	a
IV Annexe	Ι
A Documentation des scripts et programmes réalisés	TT

Glossaire

Plop: Plop Et il se trouve que c'est c'que j'pense, qu'en dites-vous?

1 Introduction

Introduction

Première partie

Introduction de l'étude

2 Étude

2.1 Sous-titre de l'étude

 $Figure\ 2.1-Exemple\ de\ figure.\ Ici\ un\ {\it fan-art}\ de\ {\it Day}\ of\ the\ tentacle.$

Code 2.1 - Lecture d'un fichier fits en Python

```
1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 import pyfits
5
6 def readFits( fits )
7 # récupération des données du fichier fits
8 hduList = pyfits.open(fits)
9 data = hduList[1].data
```

id	Nom	Type	col3	i
25	Pikachu	elec	2,71	2.
42	Marvin	robot	3,14	4:
666	Diablo	terreur	1,41	6
1337	rms	copyleft	3.15.6	1

(a) Représentation des données

```
id; Nom; Type; col3
25; Pikachu; elec; 2, 71
42; Marvin; robot; 3, 14
666; Diablo; terreur; 1, 41
1337; rms; copyleft; 3.15.6
```

(b) Fichier csv associé

Tableau 2.1 – Exemple de la représentation d'un tableau de données et du fichier csv associé.

Algorithme 2.1 Association à voisinage constant

- 1: Pour tout Source SDSS Faire
- 2: Initialisation de listSDSS; \triangleright Liste des sources associées à la source SDSS courante
- 3: Pour tout Source Stack Faire
 - Si $Distance(SDSS; Stack) \leq \epsilon$ Alors
- 5: Ajout de la source Stack dans listSDSS; \triangleright listSDSS est triée par $|\Delta mag|$ croissant
- 6: Sinon

4:

- 7: Passer à l'élement suivant ;
- 8: Sélection du premier élément de *listSDSS* pour la source SDSS courante;
- 9: Vérification de l'unicité des choix de sources, gestion des erreurs ;

Deuxième partie

Méthodes et résolution

3 Méthodes

3.1 Et résolutions

Blabla

Troisième partie

Résultats et discussion

4 Résultats

4.1 Délivrables

C'est documenté tout beau tout propre.

5 Conclusion

Well, this is the end.

Bibliographie & Webographie

Quatrième partie

Annexe

A Documentation des scripts et programmes réalisés