ELMFIRE Verification Suite — Master Report

Verification Team

September 16, 2025

Contents

H	ow to	o Read This Report	3
1	igni	tion_mask_bp_convergence	4
	1.1	Assumptions	4
	1.2	Simulation Setup	4
		1.2.1 Parameter Table	4
		1.2.2 Method (MATLAB Reference)	4
		1.2.3 Input Data	5
		1.2.4 Numerical Controls	5
	1.3	Expected Results and Reasoning	5
	1.4	Verification Plan with ELMFIRE Ensembles	5
	1.5	Acceptance Criteria	5
	1.6	Results (Mask-Implied Reference)	6
	1.7	Results (ELMFIRE Ensembles)	6
	1.8	Discussion	6
	1.9	Discussion	6
2	wue	e_transient_heatflux	7
	2.1	Methods	7
		2.1.1 Theory	7
		2.1.2 Assumptions	9
		2.1.3 Simulation Setup	9
		2.1.4 Input Data	9
		2.1.5 Numerical Controls	9
	2.2	Expected Results and Reasoning	10
	2.3	•	10
	2.4	Results	10
	2.5	Discussion	11

How to Read This Report

Each section includes a full PDF of a verification case report. Cases are ordered by directory name in cases/. To add or remove a case from the master report, run the automation script tools/build_all.sh.

1 ignition_mask_bp_convergence

Case Summary

Case ID: ignition_mask_bp_convergence

Objective: Justify the Monte Carlo (MC) method used by ELMFIRE for ignition sampling by deriving the expected time-of-arrival (ToA) statistics at a target pixel when ignition is drawn uniformly from a specified mask (square or circle). We compare the empirical ToA distribution from ensembles to the mask-implied expectation, and quantify how many ensembles are needed for convergence.

1.1 Assumptions

- Flat terrain: slope = 0, aspect arbitrary but unused for SLP = 0.
- Homogeneous fuel: IFBFM = 102, fixed moisture: $M_1 = 0.03$, $M_{10} = 0.04$, $M_{100} = 0.05$, $M_{lh} = 0.30$, $M_{lw} = 0.60$.
- Steady wind: direction WD20 = 180° (blowing to the north), speed WS20 = 15 mph; canopy terms set to zero (CC = CH = 0).
- No spotting/suppression; acceleration factor = 1; length/width cap $LOW_{max} = 8$.
- Coordinates are meters; the ToA along a ray from source to target uses the directional ROS returned by the ellipse kinematics.
- Ignition location X is uniformly distributed on the mask region Ω (square or circle).

1.2 Simulation Setup

1.2.1 Parameter Table

IFBFM	102
M_1, M_{10}, M_{100}	0.03, 0.04, 0.05
$M_{ m lh}, M_{ m lw}$	0.30, 0.60
(WD20, WS20)	$(180^{\circ}, 15 \text{ mph})$
(SLP, ASP)	$(0^\circ,0^\circ)$
(ADJ, ACCEL)	(1,1)
LOW_{max}	8
\mathbf{y}	(50, 200)
Ω_{\square}	$[0, 100] \times [0, 100]$
Ω_{\circ}	center $(50, 50)$, radius $R = 20$
	M_1, M_{10}, M_{100} $M_{ m lh}, M_{ m lw}$ (WD20, WS20) (SLP, ASP) ($ADJ, ACCEL$) LOW $_{ m max}$ \mathbf{y}

1.2.2 Method (MATLAB Reference)

For a source $\mathbf{x} \in \Omega$, we compute a direction angle $\theta = \operatorname{atan2}(y_y - x_y, y_x - x_x)$, set the fireline normal to $(\cos \theta, \sin \theta)$, update ellipse kinematics via UX_AND_UY_ELLIPTICAL, and obtain the directional rate of spread (ROS) magnitude $v(\mathbf{x})$ (ft/min). The straight-line source-to-target distance is $d(\mathbf{x}) = \|\mathbf{y} - \mathbf{x}\|$. Time of arrival is

$$T(\mathbf{x}) = \begin{cases} \frac{d(\mathbf{x})}{v(\mathbf{x}) \cdot \frac{0.3048}{60}}, & \text{if coordinates in meters} \\ \frac{d(\mathbf{x})}{v(\mathbf{x})}, & \text{if coordinates in feet.} \end{cases}$$
(1)

The MATLAB driver (provided) evaluates $T(\mathbf{x})$ for all grid points inside the mask (uniform discrete sampling) and produces histograms and sample moments (mean/min/max).

1.2.3 Input Data

Describe input rasters, constants, initial conditions.

1.2.4 Numerical Controls

Mesh resolution, Time step(CFL), level-set solver options, etc.

1.3 Expected Results and Reasoning

Let $X \sim \text{Unif}(\Omega)$ be the ignition location and T = T(X) the induced ToA random variable. The mask-implied expected value and CDF are

$$\mathbb{E}[T] = \frac{1}{|\Omega|} \int_{\Omega} \frac{d(\mathbf{x})}{\tilde{v}(\mathbf{x})} d\mathbf{x}, \quad \tilde{v}(\mathbf{x}) = v(\mathbf{x}) \cdot \frac{0.3048}{60} \quad (\text{m/min}), \tag{2}$$

$$F_T(t) = \mathbb{P}\left(\frac{d(\mathbf{x})}{\tilde{v}(\mathbf{x})} \le t\right) = \frac{1}{|\Omega|} \int_{\{\mathbf{x} \in \Omega: d(\mathbf{x}) \le t \, \tilde{v}(\mathbf{x})\}} d\mathbf{x}.$$
 (3)

In special cases:

- If $v(\mathbf{x}) \equiv v_0$ (isotropic ROS), then $T(\mathbf{x}) = d(\mathbf{x})/v_0$ and the ToA distribution is the distance distribution over Ω scaled by $1/v_0$.
- With an anisotropic ellipse (wind-aligned), $v(\mathbf{x})$ varies only through the direction from \mathbf{x} to \mathbf{y} ; the expectation remains an area integral, efficiently approximated by uniform quadrature on the same grid the script uses.

Thus, the MATLAB "all-points-in-mask" evaluation is a numerical quadrature for $\mathbb{E}[T]$ and the full F_T , which we treat as the *expected* mask-implied reference.

1.4 Verification Plan with ELMFIRE Ensembles

ELMFIRE ensembles will use identical physics and environmental settings, but ignition locations will be drawn randomly from Ω with equal probability. For an ensemble size N, define the empirical CDF $\hat{F}_T^{(N)}$ and moments (mean $\hat{\mu}_N$, variance $\hat{\sigma}_N^2$). Convergence is assessed against the mask-implied reference (F_T, μ, σ^2) via:

- 1. Mean Relative Error (MRE): $MRE = |\hat{\mu}_N \mu|/\mu$.
- 2. RMSE of histogram/bin means over a fixed partition of t.
- 3. Kolmogorov–Smirnov (KS) distance: $D_N = \sup_t |\hat{F}_T^{(N)}(t) F_T(t)|$.

A practical sample-size target for the mean uses the CLT:

$$N \gtrsim \left(\frac{z_{1-\alpha/2}\,\sigma}{\varepsilon\,\mu}\right)^2,\tag{4}$$

where ε is the desired relative error tolerance and $z_{1-\alpha/2}$ the normal quantile. We estimate σ from either the mask quadrature or pilot ensembles.

1.5 Acceptance Criteria

- Mean: MRE $\leq 5\%$.
- **Distribution:** KS distance $D_N \leq 0.05$ (typical); and visual agreement of PDF/CDF.
- Stability: Increasing N by a factor of two changes $\hat{\mu}_N$ by $\leq 2\%$ and D_N by ≤ 0.01 .

1.6 Results (Mask-Implied Reference)

This section presents the direct evaluation from the MATLAB loop over all source points inside the mask:

- Histogram/PDF of ToA for the square mask (uniform over $[0, 100]^2$).
- Histogram/PDF of ToA for the *circle* mask (center (50, 50), R = 20).
- Empirical CDFs and summary moments (mean/min/max) for each mask.

1.7 Results (ELMFIRE Ensembles)

After running N-member ELMFIRE ensembles with random ignition draws on the same mask(s):

- 1. Compare ensemble histograms/CDFs vs. mask-implied reference.
- 2. Report $\hat{\mu}_N$, $\hat{\sigma}_N$, MRE, RMSE (bins), and KS D_N .
- 3. Increase N until criteria in § 5 are satisfied; record the smallest N meeting tolerance.

1.8 Discussion

- Interpret any persistent bias (e.g., due to anisotropic ellipse interacting with mask geometry).
- Note sensitivity to wind speed, fuel model, and target placement.
- Document computational cost vs. accuracy trade-offs for ensemble sizing.

Reproducibility

- MATLAB script commit: <hash> (code in repo appendix or link).
- ELMFIRE build: <compiler/flags>, binary: <path>.
- Command(s): ./run_case.sh; environment: <modules/conda env>.
- Logs available under cases/ignition_mask_bp_convergence/logs/.

1.9 Discussion

2 wue_transient_heatflux

Case Summary

Case ID: wue_transient_heatflux

Objective: Verify the WU–E (urban structure) heat-flux prototype that couples a wind-aligned anisotropic fire ellipse (Hamada-style regression) with a piecewise transient design-fire curve for HRRPUA. We check that (i) geometric transformations, (ii) ellipse reach/coverage, (iii) per-cell HRR normalization, and (iv) heat-flux partitions (direct flame contact vs. radiation) reproduce expected behavior and conserve energy consistently.

2.1 Methods

2.1.1 Theory

Coordinate Transformations

Geometric angle from source to target cell:

$$\theta = \arctan(j, i) \quad (rad). \tag{5}$$

Wind-aligned major-axis angle (radians) from the 20-ft met direction (blowing from):

$$\theta_{\text{wind}} = \frac{\pi}{180} \left(270 - WD_{20ft} \right). \tag{6}$$

Relative angle for ellipse formulas:

$$\theta_f = \theta - \theta_{\text{wind}}, \qquad R = \sqrt{(i\,\Delta)^2 + (j\,\Delta)^2}.$$
 (7)

Wind-Aligned Ellipse (Hamada-Style)

Convert wind speed to m/s:

$$V = 0.447 \,\text{WS}_{20 \,ft}. \tag{8}$$

Downwind (D_{\downarrow}) , upwind (D_{\uparrow}) , and sidewind (D_{\perp}) distances (m) are piecewise functions of V with coefficients depending on (A, D) and scaled by W_n :

Low wind
$$(V < 10)$$
: $D_{\downarrow} = W_p (D_1 V + D_2), D_{\perp} = W_p (S_1 V + S_2), D_{\uparrow} = W_p (U_1 V + U_2),$
(9)

High wind
$$(V > 17.3)$$
: $D_{\downarrow} = W_p (D_1 V + D_2), D_{\perp} = W_p (S_1 V + S_2), D_{\uparrow} = W_p (U_1 V + U_2),$
(10)

Moderate (10
$$\leq V \leq$$
 17.3): $D_{\downarrow} = W_p (D_1 V^2 + D_2 V + D_3),$
 $D_{\perp} = W_p (S_1 V^2 + S_2 V + S_3),$
 $D_{\uparrow} = W_p (U_1 V^2 + U_2 V + U_3).$

Ellipse parameters:

$$a = \frac{D_{\downarrow} + D_{\uparrow}}{2},$$
 $\varepsilon = \min\left(\frac{a}{2}, a - D_{\uparrow}\right),$ $E_{b2} = 1 - \left(\frac{\varepsilon}{a}\right)^2,$ (11)

$$b = \begin{cases} \frac{D_{\perp}}{\sqrt{E_{b2}}}, & E_{b2} > 0, \\ 0, & E_{b2} \le 0. \end{cases}$$
 (12)

State vector:

$$\mathbf{E} = \begin{bmatrix} a, b, \varepsilon, D_{\downarrow} \end{bmatrix}^{\mathsf{T}}.$$

Ellipse Reach and Coverage

Maximum reach (scalar):

$$R_{\text{max}} = 0.3 \, D_{\downarrow} \, \frac{a - \varepsilon}{b^2}.\tag{13}$$

Directional reach along θ_f :

$$R_{\rm ell}(\theta_f) = \frac{R_{\rm max} b^2}{a - \varepsilon \cos \theta_f}.$$
 (14)

DFC coverage fraction (cell-centered, clipped to [0, 1]):

$$C_{\text{DFC}} = \max \left\{ \min \left(\frac{R_{\text{ell}}(\theta_f) + \frac{1}{2}\Delta - R}{\Delta}, 1 \right), 0 \right\}.$$
 (15)

Radiation annulus outside DFC, bounded by cutoff:

$$R_{\text{rad limit}}(\theta_f) = R_{\text{ell}}(\theta_f) + R_{\text{rad}},$$
 (16)

$$\Delta_{\text{rad}} = \max \left\{ \min \left(\frac{R_{\text{rad limit}}(\theta_f) + \frac{1}{2}\Delta - R}{\Delta}, 0 \right), 1 \right\}, \tag{17}$$

$$F_{\rm rad} = \Delta_{\rm rad} (1 - C_{\rm DFC}). \tag{18}$$

Per-Cell HRR Normalization

To conserve total HRRPUA over the ellipse footprint, use the adjuster

$$C_{\text{HRR}} = \frac{\Delta^2}{\pi (b/a) a b} = \frac{\Delta^2}{\pi b^2}.$$
 (19)

Transient HRRPUA

For burning time τ and parameters ($t_{\text{early}}, t_{\text{dev}}, t_{\text{decay}}, \text{HRRPUA}_{\text{peak}}$):

$$\label{eq:HRRPUA} \text{HRRPUA}_{\text{peak}} \frac{1}{t_{\text{early}}} \tau, \qquad 0 \leq \tau \leq t_{\text{early}}, \\ \text{HRRPUA}_{\text{peak}}, \qquad t_{\text{early}} < \tau \leq t_{\text{dev}}, \\ \frac{1}{t_{\text{dev}} - t_{\text{decay}}} (\tau - t_{\text{decay}}), \quad t_{\text{decay}} < \tau, \\ 0, \qquad \text{otherwise}, \\ \end{pmatrix}$$

Per-Cell Heat Fluxes

Let $C_{\text{burn}} = 1 - \text{NONBURNABLE_FRAC}$. Then

$$q_{\rm DFC}'' = C_{\rm burn} C_{\rm DFC} \, \text{HRRPUA}(\tau) \, C_{\rm HRR}, \tag{21}$$

$$q_{\rm rad}'' = \frac{0.3 \, C_{\rm burn} \, \alpha \, F_{\rm rad} \, C_{\rm HRR} \, \text{HRRPUA}(\tau) \, \Delta^2}{4\pi \, R_{\rm eff}^2}, \qquad R_{\rm eff} = \begin{cases} \Delta \, (1 - C_{\rm DFC}), & 0 < C_{\rm DFC} < 1, \\ R - R_{\rm ell}(\theta_f), & \text{otherwise.} \end{cases}$$
(22)

Algorithm (Per Time Step)

- 1. Set $\tau = t t_0$ and compute HRRPUA(τ).
- 2. From (WS_{20ft}, A, D, W_p) compute $\mathbf{E} = [a, b, \varepsilon, D_{\downarrow}].$
- 3. For each cell (i, j) with center $(i \Delta, j \Delta)$:
 - 3.1. Compute R, θ, θ_f and $R_{\text{ell}}(\theta_f)$.
 - 3.2. Compute C_{DFC} , F_{rad} , R_{eff} .
 - 3.3. Evaluate q''_{DFC} and q''_{rad} .

2.1.2 Assumptions

- Urban array represented on a uniform analysis grid of square cells of size Δ (m).
- Structures have a non-burnable fraction NONBURNABLE_FRAC; the remainder contributes to heat release/flux.
- HRRPUA follows a piecewise transient curve with early growth, plateau, and decay; negative segments are clipped to zero.
- Wind-aligned ellipse is derived from 20-ft wind inputs (WD_{20ft}, WS_{20ft}) and geometric parameters (A, D) with a proportionality W_p .
- Radiation is applied outside the ellipse up to a cutoff radius $R_{\rm rad}$; convective/design-fire contact (DFC) acts within the ellipse footprint.
- Units: distances in meters; heat flux in kW/m².

2.1.3 Simulation Setup

Parameter Table (defaults)

Properties	Symbols	Values
Absorptivity	α	0.89
Radiation cutoff (m)	$R_{ m rad}$	100
Analysis cell size (m)	Δ	20
Wind direction (deg, from)	WD_{20ft}	0
Wind speed (mph)	${ m WS}_{20ft}$	40
Footprint dim. (m)	A	10
Separation (m)	D	10
Wind proportionality	W_p	1
Non-burnable fraction	NONBURNABLE_FRAC	0
Early, dev., decay times (s)	$(t_{\rm early}, t_{ m dev}, t_{ m decay})$	(300, 3900, 4200)
Peak HRRPUA (kW/m ²)	$HRRPUA_{peak}$	400

Grid and Indices

Cells are indexed by $i, j \in \{-5, ..., 5\}$ with centers $(x, y) = (i \Delta, j \Delta)$ relative to the burning structure at (0, 0).

2.1.4 Input Data

Describe input rasters, constants, initial conditions.

2.1.5 Numerical Controls

Mesh resolution, Time step(CFL), level-set solver options, etc.

2.2 Expected Results and Reasoning

- Geometric consistency: As V increases, D_{\downarrow} grows faster than D_{\perp} and D_{\uparrow} , increasing a and eccentricity (smaller b/a); $R_{\text{ell}}(\theta_f)$ elongates downwind.
- Coverage partition: Cells inside the ellipse $(C_{\rm DFC}>0)$ receive $q''_{\rm DFC}$ proportional to HRRPUA and $C_{\rm HRR}$; outer annulus receives $q''_{\rm rad}$ diminishing with $R_{\rm eff}^{-2}$.
- Conservation: With C_{HRR} , summing q''_{DFC} over the footprint tracks the design HRRPUA(τ) (up to discretization error).
- **Limits:** For $V \to 0$, the ellipse tends toward isotropic $(D_{\downarrow} \approx D_{\perp} \approx D_{\uparrow})$; for very large V, footprint becomes highly elongated downwind; $q''_{\rm rad}$ shifts outward.

2.3 Acceptance Criteria

- Energy consistency: $\sum_{\text{cells}} |Q_{simulation} Q_{analytical}| / Q_{analytical} \le 0.5\%$, Q will be HRRPUA, transient DFC and radiative heat fluxes.
- Partition sanity: $q''_{\rm rad} \to 0$ as $R_{\rm eff} \to \infty$ and vanishes inside pure DFC cells when $F_{\rm rad} = 0$.
- **Directional response**: Downwind flux peak > side > upwind for V in moderate/high ranges.

2.4 Results

Metric	Value
HRR mean relative error	0.000314
DFC mean relative error	1.8e-05
RAD mean relative error	0.000288

Table 1: Comparison errors (analytic vs simulation).

Figure 1: Transient HRR (analytic vs. simulation).

Figure 2: Analytic DFC heat flux at selected times.

Figure 3: Simulated DFC heat flux at selected times.

2.5 Discussion

- Clarify parameter sensitivities (e.g., A, D, W_p) and wind-direction convention: $\theta_{\text{wind}} = \frac{\pi}{180}(270 \text{WD}_{20ft})$ points the major axis toward +x when $WD_{20ft} = 0^{\circ}$.
- Document any discretization effects at coarse Δ and how C_{HRR} compensates for footprint changes.
- Note corner cases: $E_{b2} \leq 0$ (degenerate b), transition regions in the piecewise wind regression, and clipping of coverage fractions.

Reproducibility

- MATLAB functions: ellipse_ucb, hrr_transient, heat_flux_calc.
- Command(s): ./run_case.sh; environment: <modules/conda env>.
- Logs under cases/wue_transient_heatflux/logs/; figures in cases/wue_transient_heatflux/figures/.

Figure 4: Analytic radiative heat flux at selected times.

Figure 5: Simulated radiative heat flux at selected times.

Figure 6: Radiative heat flux time history at (x, y) = (0, -30) m.

Figure 7: DFC heat flux time history at (x, y) = (0, -20) m.