Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

10 Lecture 10 May 23rd 2018

10.1 Normal Subgroup (Continued)

10.1.1 Cosets and Lagrange's Theorem (Continued)

Theorem 23 (Lagrange's Theorem)

Let H be a subgroup of a finite group G. Then

$$|H| \mid |G|$$
 and $[G:H] = \frac{|G|}{|H|}$

Proof

Since G is finite, there can only be finitely many cosets of H. Let k = [G:H] and $Ha_1, Ha_2, ..., Ha_k$ be the distinct right cosets of H in G. By Proposition 22, we have that these cosets partition G, i.e.

$$G = \bigcup_{i=1}^{k} Ha_i.$$

Note that by the definition of a right coset, the map

$$H \rightarrow Hb$$
 defined by $h \mapsto hb$

is a surjection from H to Hb. By Cancellation Laws, the map is injective, since if $hb_1 = hb_2$, then $b_1 = b_2$. Therefore, for i = 1, ..., k,

$$|H| = |Ha_i|$$
.

Then we have

$$|G| = k |H| \implies |H| \mid |G| \land [G:H] = k = \frac{|G|}{|H|}$$

Corollary 24

- 1. If G is a finite group and $g \in G$, then $o(g) \mid G$.
- 2. If G is a finite group and |G| = n, then $g^n = 1$.

Proof

- 1. Let $H = \langle g \rangle$. Then by Lagrange's Theorem 23, o(g) = |H| | |G|.
- 2. For some $g \in G$, let $o(g) = m \in \mathbb{Z} \setminus \{0\}$. Then by 1, $m \mid n$ and so $g^n = (g^m)^{\frac{n}{m}} = 1$.

Note

Let $n \in \mathbb{N} \setminus \{1\}$. Euler's Totient Function, or more generally written as Euler's ϕ -function is defined as

$$\phi(n) \equiv \Big| \big\{ k \in \{1, ..., n-1\} : \gcd(k, n) = 1 \big\} \Big|. \tag{10.1}$$

Note that the set \mathbb{Z}_n^* under multiplication has a similar definition to the set on the RHS, since the only numbers from 1 to n that has an inverse are those that are coprime with n. Thus $\phi(n) = |\mathbb{Z}_n^*|$.

With Corollary 24, we have Euler's Theorem that states that

$$\forall a \in \mathbb{Z} \ \gcd(a, n) = 1 \implies a^{\phi(n)} \equiv 1 \mod n.$$
 (10.2)

If n = p where p is some prime number, then Euler's Theorem implies Fermat's Little Theorem, i.e. $a^{p-1} \equiv 1 \mod p$.

Corollary 25

If p is prime, then every group G of order p is cyclic. In fact, $g = \langle g \rangle$ fpr $g \neq 1 \in G$. Hence, the only subgroup of G are $\{1\}$ and G itself.

Proof

Let $g \in G$ such that $g \neq 1$. By Corollary 24, $o(g) \mid p$. Since $g \neq 1$ and p is prime, by uniqueness of prime factorization, it must be that o(g) = p. Thus we can write $G = \langle g \rangle$. If H is a subgroup of G, then by Lagrange's Theorem, we have |H| | p. Since p is prime, we either have |H| = 1 or p. In other words, we either have that $H = \{1\}$ or H = G, respectively.

Corollary 26

Let H and K be finite subgroups of G. If gcd(|H|, |K|) = 1, then $H \cap$ $K = \{1\}.$

Proof

Since $H \cap K$ is a subgroup of H and of K, by Lagrange's Theorem 23, $|H \cap K|$ $|H| \wedge |H \cap K|$ |K|. By assumption that gcd(|H|, |K|) = 1, we have $|H \cap K| = 1$, and hence $|H \cap K| = \{1\}$.

 $|H \cap K|$ is a common divisor for |H|and |K|. But gcd(|H|, |K|) = 1

Normal Subgroup 10.1.2

We have seen that given H is a subgroup of a group G and $g \in G$, gHand *Hg* are generally not the same.

Definition 23 (Normal Subgroup)

Let H be a subgroup of a group G. If $\forall g \in G$, we have Hg = gH, then we say that H is a normal subgroup of G, and write

Example 10.1.1

 $\{1\} \triangleleft G \ and \ G \triangleleft G.$

Example 10.1.2

The center, Z(G), of a group G is an abelian group. By Definition 23,

$$Z(G) \triangleleft G$$
.

Example 10.1.3

If G is abelian, then every subgroup of G is normal in G.

Proposition (Normality Test)

Let H be a subgroup of G. The following are equivalent:

- 1. $H \triangleleft G$;
- 2. $\forall g \in G \quad gHg^{-1} \subseteq H$;
- 3. $\forall g \in G \quad gHg^{-1} = H^2$

² This means that

 $H \triangleleft G \iff H$ is the only conjugate of H