

DISPOSITIVOS SEMICONDUCTORES Evaluación Final 28 de julio de 2022

1) Un bloque semiconductor de largo $L=3\,\mu\mathrm{m}$ tiene masas efectivas similares al silicio pero distinta energia de gap dando como resultado una concentración intrínseca de portadores a temperatura ambiente $n_i = 2 \times 10^9 \, \mathrm{cm}^{-3}$. El bloque es dopado con impurezas aceptoras con densidad $N = 3 \times 10^{12} \, \mathrm{cm}^{-3}$ y las movilidades de los electrones y los huecos son $\mu_n=1800\,\mathrm{cm}^2/(\mathrm{Vs});\,\mu_p=600\,\mathrm{cm}^2/(\mathrm{Vs}).$ Entregando energía al material se logra generar un exceso de portadores mayoritarios tal que

$$\Delta M(x) = 3 \times 10^{11} \, {\rm cm}^{-3} \, \exp \left(-\frac{x}{0.6 \, \mu {\rm m}} \right)$$

Además en el semiconductor existe un campo eléctrico $E=30\,\mathrm{V/cm}$ en dirección -x. ¿Cuál es la densidad de corriente neta de mayoritarios (expresada en A/cm² con signo indicando su sentido) en $x = 0.3 \,\mu\text{m}$?

Para el circuito de la figura fabricado en un proceso de fabriación CMOS con parámetros $V_{T,n}=0.8\,\mathrm{V};~V_{T,p}=-1.0\,\mathrm{V};~\mu_n~C'_{ox}=$ 200 μ A V⁻²; μ_p $C'_{ox} = 50 \,\mu$ A V⁻² y $\lambda = 0$, se diseñaron los transistores con las siguientes dimensiones $\left(\frac{W}{L}\right)_1 = 5$; $\left(\frac{W}{L}\right)_2 = 20$; $\left(\frac{W}{L}\right)_3 = 10$; $\left(\frac{W}{L}\right)_4=30$. El circuito se alimenta con $V_{DD}=3.4\,\mathrm{V}$ y la corriente de referencia tiene un valor $I_{REF}=10\,\mu\mathrm{A}$ Calcular el valor máximo de R_L para que el circuito funcione como fuente de corriente.

- 3) Un transistor TBJ NPN está polarizado a temperatura ambiente. Se conoce la concentración de minoritarios en distintos puntos del dispositivo según las referencias de la figura:
 - $p(-W_E x_{BE}) = 1 \times 10^3 \, \text{cm}^{-3}$;
 - $p(-x_{BE}) = 3.51 \times 10^{10} \, \text{cm}^{-3}$;
 - $n(0) = 7.03 \times 10^{11} \text{ cm}^{-3}$
 - $n(W_B) = 8.26 \times 10^{-5} \,\mathrm{cm}^{-3}$
 - $p(W_B + x_{BC}) = 4.13 \times 10^{-4} \,\mathrm{cm}^{-3}$;
 - $p(W_B + x_{BC} + W_C) = 1.01 \times 10^5 \, \text{cm}^{-3}$.

	$\mu_n \ (\text{cm}^2/(\text{Vs}))$	$\mu_p (\text{cm}^2/(\text{Vs}))$
Emisor	900	300
Base	1400	450
Colector	1450	480

También se conocen las dimensiones del dispositivo ($W_B = 0.4 \, \mu \text{m}$; $W_B = 0.2 \, \mu \text{m}$; $W_C = 2.0 \, \mu \text{m}$) así como las movilidades en cada una de las regiones (ver tabla).

Determinar el valor de β .

- 4) Se debe diseñar un amplificador emisor común sin realimentación con un transistor NPN con parámetros $I_S = 100 \, \mathrm{fA}$, $\beta = 250 \, \mathrm{y} \, V_A \to \infty$. La tensión de alimentación es $V_{CC} = 5 \, \mathrm{V}$, y el transistor está polarizado con una única resistencia de base R_B y una única resistencia de colector R_C . A la entrada del amplificador se conecta una señal senoidal (v_s) de tension pico $20\,\mathrm{mV}$ y resistencia serie $R_s=1\,\mathrm{k}\Omega$ a través de un capacitor de desacople. Hallar los valores de polarización del transistor (ICQ;VCEQ) para que la tensión de salida sea $v_{out}=750\,\mathrm{mV}$ y la ganancia propia del amplificador sea $A_{vo}=-150.$ Considerar una temperatura tal que kT/q = 26 in V. La respuesta se considera correcta si todos los valores están bien calculados. Considerar todas las aproximaciones que considere apropiadas.
- 5} MOSFET de potencia: ¿Qué consideraciones constructivas se tienen en cuenta al fabricar un MOSFET de potencia?
 - A) El dopaje del terminal de Drain debe ser alto para soportar mayores tensiones V_{DS} .
 - B) El espesor del óxido de Gate debe ser grando para soportar mayores tensiones V_{GS} .
 - C) El ancho de canal (W) debe ser pequeño para disminuir la resistencia del canal de conducción.
 - D) El area de Gate debe ser grande para aumentar C_{gs} y mejorar su tiempo de respuesta.
 - E) Cerca de los contactos metálicos, el dopaje debe disminuir para reducir su conductividad.