Life Expectancy Data: Analysis and Evaluation

Harsh Panwar, Carlos Bonilla, Talha Choudhry, Nishtha Dandriyal CS301

Data Introduction + Pre-processing

- Kaggle sourced from World Health Organization
- 22 features
 - 20 Numerical
 - 2 Categorical
- One hot encoding for categorical features
- Dropped rows with any null values prior to training

Dataset Analysis

Important Features	Significance
Adult Mortality	Probability of dying between 15 and 60 years per 1000 population
Alcohol	Alcohol, recorded per capita (15+) consumption (in litres of pure alcohol)
ВМІ	Average Body Mass Index of the entire population
HIV/AIDS	Deaths per 1,000 live births HIV/AIDS (0-4 years)
GDP	Gross Domestic Product per capita (in USD)
Income	Average amount of money earned
Schooling	Sum of the age specific enrollment rates for levels of education
Development status	Developed or developing?
Thinness	Prevalence of thinness among children and adolescents for Age 10 to 19 (%)

Training Models

- Multiple Linear Regression
 - o Optimization: Gradient Descent
 - Cost Function: Mean Square Error
- Decision Tree
 - Max Depth = 4
 - Optimization: CART
 - Cost Function: Mean Square Error

Model Evaluation

- Multiple Linear Regression
 - **Evaluation Metrics:**
 - Mean Absolute Frror: 3 1173210283190875
 - Mean Squared Error: 18.682813144063324
 - Root Mean Squared Error: 4.322361986699324
 - R-squared: 0.8166738752230451
- **Decision Tree**

samples = 638

guared error = 6,29

samples = 498

value = 73.908

- **Evaluation Metrics:**
 - Mean Absolute Error: 2.58380725154973
 - Mean Squared Error: 13.366842793673236
 - Root Mean Squared Error: 3.656069309199873

ome composition of resources <= 0

squared_error = 33.252

squared_error = 12.26

squared error = 4,461

value = 75.738

guared error = 91.544

guared error = 14.854

samples = 125

value = 59.899

HIV/AIDS <= 2.45

squared_error = 53.452

come composition of resources <= 0.53

squared_error = 50.429

samples = 198 value = 61.961

squared_error = 13.034

samples = 61

squared error = 4.97

samples = 41

squared_error = 31.359

squared error = 15,866

camples - 12

value = 45.567

samples = 137

R-squared: 0.8688371247428789

squared error = 20.58 samples = 884 value = 71.179

Schooling <= 10.35

samples = 246

squared error = 8 301

value = 68.428

squared error = 11.785

samples = 90

value = 63,403

Actual vs. Predicted Values in Multiple Linear Regression

Actual Values (y test)

Comparison and Conclusion

- Overall, decision tree had better evaluation scores
- All metrics (RMSE, MAE, MSE,R^2) were smaller in Decision Tree
- Important note:
 - Decision Tree will be restricted to the data within this range
 - To predict values outside of the range, MLR will be a better choice

Model + Dataset

Model:

https://colab.research.google.com/drive/1nUCQD8mjUMs-TKhQU4J8cs2tPx_UDE AA?usp=sharing

Dataset:

https://drive.google.com/file/d/1clYx7i3dMytWbhYU--g1TUilO9aklHHg/view?usp=sharing