Automi e Linguaggi Formali – A.A. 2016/17

Appello 5.9.17 Parte II

Esercizio 1. Descrivete in italiano il funzionamento della TM definita dalla seguente tabella di transizione:

	0	1	В
q_{0}	(q_1, B, R)	(q_5, B, R)	
q_1	$(q_1, 0, R)$	$(q_2, 1, R)$	
q_2	$(q_3, 1, L)$	$(q_2, 1, R)$	(q_4, B, L)
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_0, B, R)
q_4	$(q_4, 0, L)$	(q_4, B, L)	$(q_6, 0, R)$
q_5	(q_5, B, R)	(q_5, B, R)	(q_6, B, R)
$*q_6$			

Soluzione: La TM calcola l'operazione di sottrazione propria tra i due interi m e n, cioè m-n=max(m-n, 0). La macchina parte con un nastro in cui è presente la stringa di input $0^m 10^n$, dove m e n sono rappresentati dalla loro codifica unaria (usando il simbolo zero) e divisi dal simbolo 1. La macchina si arresta con 0^{m} .

Esercizio 2. (a) Definite una macchina di Turing M che accetta il linguaggio costituito dalle stringhe binarie palindrome, riportando δ sia come tabella che come grafo di transizione. (b) Scrivete tre esempi di stringhe accettate dalla TM M, e tre esempi di stringhe non accettate da M.

(a) Soluzione (una tra le possibili):

	0	1	В
$q_{\it 0}$	(q_1, B, R)	(q_2, B, R)	(q_6, B, R)
q_1	$(q_1, 0, R)$	$(q_1, 1, R)$	(q_3, B, L)
q_2	$(q_2, 0, R)$	$(q_2, 1, R)$	(q_4, B, L)
q_3	(q_5, B, L)		(q_6, B, R)
q_4		(q_5, B, L)	(q_6, B, R)
q_5	$(q_5, 0, L)$	$(q_5, 1, L)$	(q_0, B, R)
$*q_6$			

(b) Esempi di stringhe accettate sono 00, 101, 01010; esempi di stringhe non accettate sono 10, 001, 10011.

Esercizio 3. Indicate quali fra le seguenti istanze di PCP hanno soluzione. Ognuna è presentata sotto forma delle due liste A e B; le i-esime stringhe delle due liste sono corrispondenti per i=1, 2, etc.

- (a) A = (1, 10111, 10); B = (111, 10, 0)
- (b) A = (ab, aab, ba); B = (abb, ba, aa)
- (c) A = (11, 1010, 01); B = (101, 10, 10)

Soluzione: (a) Ha soluzione: 2,1,1,3. (b) Non ha soluzione. La prima scelta obbligata è i=1; dopo possiamo scegliere solo 3; successivamente, ognuno dei tre indici non rende possibile proseguire; (c) Non ha soluzione. Si crea un loop: 2,1,3,3,...

Esercizio 4. (a) Date la definizione delle classi di problemi P, NP e NP-completi. (b) Quando invece possiamo definire un problema come NP-arduo? (c) Date la definizione del problema CSAT ed indicate a quale classe appartiene.

Soluzione: (a) Un problema è nella classe P se è risolvibile da una TM deterministica in tempo polinomiale. Un problema è nella classe NP se è risolvibile da una TM non-deterministica in tempo polinomiale. Un linguaggio L si dice NP-completo se (1) è in NP, e (2) per ogni altro L' in NP esiste una riduzione polinomiale di L' a L.

- (b) Un problema si dice NP-arduo se è possibile dimostrare la sola condizione (2) della definizione di NP-completezza, mentre non si può dimostrare la (1). Di solito ci riferiamo a questa classe di problemi come "intrattabili".
- (c) CSAT è il problema di soddisfacibilità così definito: data una espressione booleana in forma CNF, dire se è soddisfacibile. CSAT (come SAT) è NP-completo.

Esercizio 5. Dite quali tra le seguenti affermazioni è corretta:

- (a) Ogni linguaggio accettato da una TM multinastro è ricorsivamente numerabile.
- (b) Il linguaggio di diagonalizzazione L_d è definito come l'insieme delle stringhe w_i tali che w_i non è in $L(M_i)$ (seguendo la codifica definita a lezione).
- (c) La trattazione dell'intrattabilità si basa sull'ipotesi (non dimostrata) che P=NP.
- (d) L'espressione (x $\land \neg y \land \neg z$) $\lor (\neg x \land \neg y \land z)$ è in 3-CNF.
- (e) Il linguaggio L_{ne} è ricorsivo ma non RE.

Soluzione: (a) corretta; (b) corretta; (c) non corretta (si basa sull'ipotesi, non dimostrata, che $P \neq NP$); (d) non corretta (AND e OR sono invertiti); (e) non corretta (è RE ma non ricorsivo).