NBA Betting Prediction

Raj Gosain, Angela Hu, Alan Zheng, Kuleen Sasse

Introduction

- Booming multibillion sports betting industry taking off
- Predicting the outcome of a game gives an edge to bettors
- Use Machine Learning for this task

Betting Odds

12/18/2024

Data Preprocessing

- Combined two datasets
 - Betting dataset (odds from each game)
 - Basketball stats per game
 - Individual Player (average and max over team)
 - Overall team stats
- Ended up with all games from 2016-2022
- Around 6539 games

Data Preprocessing (contd.)

- Problem
 - o Temporal aspect of data: stats from end of game
- Solution
 - o Running average up to that but not including that game

Training

- Supervised Binary Classification Task
- Used 2016-2021 as training/validation data
- Five models tested:
 - o Logistic Regression
 - o Decision Tree
 - Random Forest
 - o SVM
 - o MLP

Training (contd.)

- Two step pipeline
 - o Feature selection
 - 136 features in the dataset
 - Too many features to efficiently run models on our hardware
 - Used cross validated forward feature selection
 - Hyperparameter optimization
 - Further fine tune the performance of our models
 - Use cross validated grid search across a couple select parameters
 - Take the parameters with best average accuracy across all folds

Evaluation

- Measured the out of sample performance in two ways
- Used games from 2022 as test set
- Accuracy
- Backtesting system
 - o Give the model 1000\$ to start
 - Model creates a bet based on predicted probabilities and external betting data

Results

- No features were selected by all 5 models; max plus-minus, opponent max offensive rating, usage percentage selected by 4
- Random Forest and SVM took the longest to run out of money, ≈20 games
- Accuracy not correlated with betting success

Model Type	Accuracy
Baseline (Home Team Win%)	57%
Logistic Regression	58%
Random Forest	56%
Decision Tree	60%
Support Vector Machine	59%
Multi-Layer Perceptron	61%

Table 1: Model Accuracies on Test Data

Logistic Regression

Random Forest

Decision Tree

12/18/2024

Future Work

- Scrape additional data
- Incorporate ELO or ranking data to capture the temporal dynamics of rankings
- Model the impact of individual players, considering factors like trades and injuries
- Integrate detailed shooting statistics, such as floor location data, to refine player-specific performance metrics
- Leverage sports media sources through NLP and sentiment analysis, including pre-game predictions and expert commentary
- Explore more powerful models, such as deeper neural networks