



# Recent progress on multimorbidity clustering research

# Yajng Zhu

MRC Biostatistics Unit December 9, 2019

### Outline

Summary of current work
 (doi: https://doi.org/10.1101/19000422)
 Characteristics, service use and mortality of multimorbidity patients across the age spectrum
 Joint work: Dr. Duncan Edwards, Prof. Jonathan Mant, Dr. Rupert Payne, Dr. Steven Kiddle

 (Work in progress) methodological work
 Impact of local dependence on mixture models: relating clusters to later outcomes
 Joint work: Dr. Robert Goudie, Prof. Irini Moustaki, (Dr. Brian Tom), Dr. Steven Kiddle

## Multimorbidity clusters: RQ

### Across the age spectrum

- Which diseases often co-occur (i.e. multimorbidity clusters)?
- Epidemiological profiles associated with each cluster?
- Service use (# GP consultations, # hospital consultations, polypharmacy), 2-year and 5-year mortality?

### Multimorbidity clusters: Data

Linked routine primary care data (CPRD-GOLD) 38 chronic conditions (Cambridge codelist, also used in Barnett et al., 2012, Lancet)



# Multimorbidity clusters: Previous work vs our contribution

### Limitation of previous work

- Focused on 65+ populations & limited inclusion of long-term conditions (<20)</li>
- Mostly focused on grouping conditions, not patients
- Factor analysis (EFA, PCA), hierarchical clustering: factor rotation / subjective choices of "distance measures"
- Lack of validation of solutions

#### Our solutions

- 1. Age-stratified analysis (18-44, 45-64, 65-84, 85+)
- Patient-centred and model-based clustering approach: latent class analysis (LCA)
- Develop clusters using 80% of sample, check cluster stability on 20% of sample
- Three indirect validation schemes

## Multimorbidity clusters: modelling strategy



## Multimorbidity clusters: validation strategy

### Across the training and test set, we checked

- 1. Consistency between disease probabilistic profiles: can clusters in the test set (fewer clusters, due to fewer patterns) be matched to a cluster in the training set (more clusters, used comprehensive patterns)?
  - Jensen-Shannon divergence measure (divergence between profiles)
  - Bivariate Pearson's correlation coefficient (the degree to which two disease profiles are associated)
- 2. Similar associations (in terms of size, direction and statistical significance) between clusters and patient demographics?
- Between cluster and outcomes (service use, mortality)?

### Multimorbidity clusters: examples of full results

#### 18-44 year olds



### 85+ year olds



### Multimorbidity clusters: 18-44 year olds

### 5-year mortality of non-multimorbid peers: 0.2%

| Lead condition    | Multimorbid patients | Greater deprivation | Current smokers | 5-year mortality |
|-------------------|----------------------|---------------------|-----------------|------------------|
| (%)               | (%)                  | (%)                 | (%)             | (%)              |
| Depression (100%) | 32                   | 50                  | 46              | 1.8              |
| Pain (36%)        | 23                   | 46                  | 27              | 2.7              |
| Asthma (100%)     | 20                   | 41                  | 29              | 0.6              |
| IBS (100%)        | 18                   | 37                  | 28              | 0.4              |
| PSM (75%)         | 7                    | 63                  | 76              | 3.9              |



### Multimorbidity clusters: 85+ year olds

### 5-year mortality of non-multimorbid peers: 36%

| Lead condition     | Multimorbid patients | Greater deprivation | Current smokers | 5-year mortality |
|--------------------|----------------------|---------------------|-----------------|------------------|
| (%)                | (%)                  | (%)                 | (%)             | (%)              |
| Hypertension (72%) | 58                   | 30                  | 5               | 49.5             |
| Pain (64%)         | 23                   | 30                  | 5               | 62.9             |
| CHD (61%)          | 11                   | 30                  | 4               | 70.8             |
| Asthma (48%)       | 8                    | 30                  | 8               | 56.5             |



## Multimorbidity clusters: Policy implications

- Supports the push for parity of physical and mental health within the healthcare system
- Unmet need to improve outcomes of younger multimorbid patients with psychoactive substance misuse given that risk factors (drug use, smoking, deprivation) are amenable to intervention
- The majority of 85+ year old multimorbid patients have relatively low service use and mortality
- Pain features in 13/20 clusters treatment of pain should be put in the context of multimorbidity

## Relating clusters to later outcomes

Common approach: modal-class approach

- Develop cluster models for patients
- Assign patients to most likely clusters
- Compare profiles of risk factors and outcomes

Accurate clustering  $\neq$  accurate prediction of outcomes

# Impact of local dependence on mixture models: relating clusters to later outcomes

Notation: vector of measurements ( $\mathbf{U} = \{U_1, U_2, ..., U_p\}$ ), patient cluster(C), baseline covariate set ( $\mathbf{X}$ ), outcome ( $\mathbf{Y}$ , e.g. death), cluster-specific outcome ( $\mathbf{Y}|\mathbf{U}$ ,  $\mathbf{X}$ ).

### **Problem**

- **U**  $\perp \!\!\! \perp Y | C$  rarely holds in real data  $\rightarrow$  Misclassification/biased coefficients/poor prediction.
- Inference (Y|C & C) & prediction goals (Y) are often mixed
- Ambiguity in the definition of clusters:
  - What is a "subpopulation", does it really exist?
  - How do we want to use the derived clusters? (just a proxy for population heterogeneity/carry clinical meaning?)

# Relating clusters to later outcomes: simplification of the real world

### Data-generating mechanism



### Assumptions on the framework

- C exists in the true world
- We want *C* to reduce heterogeneity in disease patterns (i.e. measurements), not in "people"
- There is a temporal order between quantities

## Relating clusters to later outcomes: RQs (1)

## All these questions are consistent with the data-generating mechanism

- 1. (Inference) Recover true C @ T0 and correct Y|C. C @ T0 should not be influenced by later outcomes
  - C = baseline frailty, allows for target-treat each homogeneous group at baseline
  - C = actual state of a condition (e.g. depression), not easily defined using a single measurement
  - Once baseline C is correctly recovered, policy wants to target on demographic factors in the associated Xs
  - C = clusters of co-occuring diseases that share common biological pathways, improve understanding of disease development

Modal-class, bias-corrected 3-step approaches

## Relating clusters to later outcomes: RQs (2)

- (Inference) Recover "a type of patient cluster" based on how they respond to treatment (outcome-guided clustering). Patients share within-cluster-homogeneity in terms of risk factors for Y.
  - C = "prone-to-death" or "low-risk" groups for targeted treatments1-step approach
- 3. (Prediction) Do not care about *C* even when it exists, only cares about *Y*.
  - 1-step approach, regression
- (Inference & Prediction) Care about both the correctness of C, Y|C and Y
  - 1-step/bias-corrected 3-step/modal class approaches

# Relating clusters to later outcomes: summary of methods

- 1-step approach (RQ2,RQ3, RQ4)
  - $ightharpoonup C \sim f(\mathbf{U}, Y)$
- Modal class approach (RQ1, RQ4)
  - $ightharpoonup C \sim f(\mathbf{U})$ , assign to class  $W, Y \sim W$
- Bias-corrected 3-step (RQ1,RQ4)
  - $ightharpoonup C \sim f(\mathbf{U})$ , assign to class W
  - Y ∼ C; weight observations by inverse of classification error

$$\log L_{BCH} = \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{s=1}^{K} \omega_{is} d_{sk} \log P(C_i = k, Y = y_i),$$

$$\omega_{is} = P(W_i = s | \mathbf{U}_i = \mathbf{u}_i),$$

$$d_{sk} = [P(W = s | C = k)]_{KxK}^{-1}$$

- Regression (RQ3)
  - $ightharpoonup Y \sim f(\mathbf{U})$

# Relating clusters to later outcomes: simulation study

• Entropy (distinguishablility of the cluster)  $\rightarrow \mathbf{U}|C$ 

$$\begin{split} E_k &= 1 - \frac{\sum_1^N \sum_{k=1}^K [-\hat{p}_{ik} log(\hat{p}_{ik})]}{N log K}, \\ \hat{p}_{ik} &= p(C_i = k | \mathbf{U}_i) \end{split}$$

- Cluster distribution (2-class): 60/40 vs 95/5
- CIA holds vs mild violation:  $(U_5, Y) \sim f(C, \eta)$

#### Scenarios

- N=10,000, high (0.9)/low (0.5) entropy, balanced/imbalanced cluster = 4 settings
- Set A: binary Us, CIA holds
- Set B: binary Us, CIA does not hold
- Set C: mixed types of Us, CIA does not hold

# Relating clusters to later outcomes: consequence of local dependence (1)

#### Performance metrics

- (Inference)  $\hat{\beta}_1$ ,  $\hat{\beta}_2$ , classification accuracy
- (Prediction) AUC, sensitivity, specificity, precision, youden's threshold

# Relating clusters to later outcomes: consequence of local dependence (2)

## Mixed-type Us, low entropy, balanced *C*, CIA fails



## Mixed-type Us, low entropy, imbalanced *C*, CIA fails



# Relating clusters to later outcomes: consequence of local dependence (3)

### **Findings**

- Across all scenarios, 1-step gives best predictive performance
- Across all scenarios, bias-corrected 3-step gives best inference (mostly unbiased, good coverage probability)
- What if we want both inference/predictive goals? Local dependence correction!

# Relating clusters to later outcomes: correction of local dependence (1)

### General approaches

Uniform association model (categorical Y only)

$$\begin{split} P(U_1 = a_1, & U_2 = a_2, ... Y = a_{p+1} | C = k) = \\ & \exp(\sum_i \tau_{i, a_i, k} + \sum_{i < j} \beta_{ij, k} a_i a_j) \\ & \frac{\sum_{a_1, a_2, ..., a_{p+1}} \exp(\sum_i \tau_{i, a_i, k} + \sum_{i < j} \beta_{ij, k} a_i a_j)}{} \end{split}$$

Latent variable approach (flexible, integration)

$$P(U_1 = a_1, U_2 = a_2, ... Y = a_{p+1} | C = k, \eta)$$

# Relating clusters to later outcomes: correction of local dependence (2)

## Mixed-type Us, low entropy, balanced *C*, CIA fails



## Mixed-type Us, low entropy, imbalanced *C*, CIA fails



# Relating clusters to later outcomes: correction of local dependence (3)

### **Findings**

- Educated (restricted) correction works best
  - 1-step C ~ f(U, Y)
  - Categorical Y: check pairwise bivariate residuals & correct for "naughty pairs"

$$\frac{(O-E)}{\sqrt{E(1-E/O)}}$$

- Continuous Y: fit non-restricted latent variable model, LRT, fit restricted model.
- After correction: minor sacrifice on prediction, substantial gain on inference.

### Final recommendations

Stop using modal class approach for either inference/prediction goals! As CIA is likely to fail:

- RQ1: to recover baseline C and correct Y|C
  - bias-corrected 3-step, check for local dependence (needs future developments)
- RQ2,4: to recover outcome-guided cluster/good inference & prediction
  - ► 1-step with restricted correction
- RQ3: only interested in accurate Y
  - 1-step approach/regression

### Next steps

- 1. Application: multimorbidity (under RQ1-4)
- 2. Hanging question: what if C does not exist?
  - Philosophical understanding of the world
  - ▶ What is the clinical goal?

#### References:

- Bias-correction stepwise approaches: Vermunt (2010);
   Asparouhov & Muthen & Bakk (2013, 2014, 2015,2016,2018)
- Residual association: Goodman (1979); Hagennars (1988), Madison & Vermunt (2004); Asparouhov & Muthen (2014)

### Thanks for listening!







yajing.zhu@mrc-bsu.cam.ac.uk

www.mrc-bsu.cam.ac.uk