COMP3131/9102: Programming Languages and Compilers

Week 8 Tutorial Solutions Attribute Grammars

(a)

Production			Semantic Rules
based-num	\rightarrow	num base-char	based- $num.val = num.val$
			num.base = base-char.base
base-char	\rightarrow	0	base-char.base=8
base-char	\longrightarrow	d	base-char.base=10
num_1	\rightarrow	$num_2 \ digit$	$num_1.val =$
			if $(num_2.val == error digit.val == error)$
			then error
			else $num_2.val * num_1.base + digit.val$
			$num_2.base = num_1.base$
			$digit.base = num_1.base$
\overline{num}	\rightarrow	digit	num.val = digit.val
			digit.base = num.base
digit	\rightarrow	0	digit.val = 0
digit	\rightarrow	1	digit.val = 1
		•	•
digit	\longrightarrow	7	digit.val = 7
digit	\rightarrow	8	digit.val = if (digit.base == 8) then error else 8
digit	\rightarrow	9	digit.val = if (digit.base == 8) then error else 9

(b)

- (c) The attribute grammar is not L-attributed because in the first production, *num.base* depends on *base-char.base*, where the nonterminal *base-char* is on the right of the nonterminal *num*.
- (d) No. The grammar is not L-attributed. The value of a number cannot be computed unless the base is known. But the base is not known until after the number has been parsed.

(e)

```
void EvalNum (AST N) {
  if (N is a based-number node) {
    EvalNum (right child of N);
   Assign base of right child of N to base of left child of N;
   EvalNum (left child of N);
    Assign val of left child of N to N.val
 } else if (N is a num node) {
    Assign N.base to base of left child of N;
   EvalNum (left child of N);
    if (right child of N exists) /* num -> num digit */
      Assign N.base to base of right child of N;
      EvalNum (right child of N);
      if (vals of both left and right children of N are not error)
        N.val = (val of left child of N) * N.base + (val of right child of N)
      else
        error
    else /* num -> digit */
    N.val = val of left child
 }
}
```