Linear Recurrence Equation (kth order)

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + c_3 a_{n-3} + \dots + c_k a_{n-k} + f(n)$$

If f(n) = 0 Homogeneous Linear Recurrence equation

If $f(n) \neq 0$ Non-Homogeneous Linear Recurrence equation

General solution $a_n = a_n^{(h)} + a_n^{(p)}$

Process to find solution:

$$a_n - c_1 a_{n-1} - c_2 a_{n-2} - c_3 a_{n-3} - \dots - c_k a_{n-k} = f(n)$$
(1)

For homogeneous solution $a_n^{(h)}$

Consider homogenous equation

$$a_n - c_1 a_{n-1} - c_2 a_{n-2} - c_3 a_{n-3} - \dots - c_k a_{n-k} = 0$$

Let
$$a_n^{(h)} = \alpha^n$$

$$\alpha^{n} - c_{1}\alpha^{n-1} - c_{2}\alpha^{n-2} - c_{3}\alpha^{n-3} - \dots - c_{k}\alpha^{n-k} = 0$$

Divvied by α^{n-k} (in such way that power of α should be positive)

$$\alpha^{k} - c_{1}\alpha^{k-1} - c_{2}\alpha^{k-2} - c_{3}\alpha^{k-3} - \dots - c_{k} = 0$$

Solve equation and find solution let it be $~\alpha_1$, $~\alpha_2$

Non-repeated :
$$a_n^{(h)} = c_1(\alpha_1)^n - c_2(\alpha_2)^n$$

Repeated:
$$a_n^{(h)} = (c_1 + c_2 n)(\alpha_1)^n$$

Where c_1, c_2 are arbitrary constant.

For particular solution $a_n^{(p)}$

Check format of f(n)

1.
$$f(n) = constant$$

If
$$f(n) = c$$
 then $a_n^{(p)} = \begin{cases} A & \alpha \neq 1 \\ An^m & \alpha = 1 \end{cases}$ with m time

2. f(n) = polynomial function (exculding constant)

If
$$f(n) = an + b$$
 then $a_n^{(p)} = An + B$

If
$$f(n) = an^2 + bn + c$$
 then $a_n^{(p)} = An^2 + Bn + C$

3. f(n) = exponential

If
$$f(n) = ab^n$$
 then $a_n^{(p)} = Ab^n$

4. f(n) = linear polynomial . exponential

If
$$f(n) = (an + b) c^n$$
 then $a_n^{(p)} = (An + B) c^n$

Put $\,a_n^{(p)}\,$ in equation-1 and find constant A, B, C

$$\therefore$$
 General solution $a_n = a_n^{(h)} + a_n^{(p)}$

Now find arbitrary constant using initial condition $a_0=$.. , $a_1=$..

Note: If
$$f(n) = 0$$
 then $a_n^{(p)} = 0$

Self-Practice Problems

Type-1

1. Solve the recurrence relation $a_n = 4a_{n-1} + 5a_{n-2}$ with the conditions $a_1 = 2$, $a_2 = 6$ **Solution:**

$$a_n - 4a_{n-1} - 5a_{n-2} = 0$$

Let
$$a_n^{(h)} = \alpha^n$$

$$\alpha^n - 4\alpha^{n-1} - 5\alpha^{n-2} = 0$$

Divided by α^{n-2}

$$\alpha^2 - 4\alpha - 5 = 0 \qquad \therefore \quad \alpha = -1, 5$$

$$a_n^{(h)} = c_1(-1)^n + c_2(5)^n$$

$$\ddot{f}(n) = 0 \qquad \dot{a}_n^{(p)} = \mathbf{0}$$

$$\therefore$$
 General solution $a_n = a_n^{(h)} + a_n^{(p)}$

$$a_n = c_1(-1)^n + c_2(5)^n$$
(1)

Given
$$a_1 = 2$$
 : $c_1(-1) + c_2(5) = 2$ (2)

$$a_2 = 6$$
 : $c_1(1) + c_2(25) = 6$ (3)

Solve equation-2 & 3 simultaneously $c_1 = -\frac{2}{3}$ & $c_2 =$

$$a_n = -\frac{2}{3}(-1)^n + \frac{4}{15}(5)^n$$
Ans

2. Solve $a_{r+2} + 2a_{r+1} - 3a_r = 0$ that satisfies $a_0 = 1$, $a_1 = 2$

Solution:

$$a_{r+2} + 2a_{r+1} - 3a_r = 0$$

Let
$$a_n^{(h)} = \alpha^n$$

$$\alpha^{n+2} + 2\alpha^{n+1} - 3\alpha^n = 0$$

Divided by
$$\alpha^n$$

$$\alpha^2 + 2\alpha - 3 = 0 \qquad \therefore \quad \alpha = 1, -3$$

$$a_n^{(h)} = c_1(1)^n + c_2(-3)^n = c_1 + c_2(-3)^n$$

$$\ddot{f}(n) = 0 \qquad \dot{a}_n^{(p)} = \mathbf{0}$$

$$\therefore$$
 General solution $a_n = a_n^{(h)} + a_n^{(p)}$

$$a_n = c_1 + c_2(-3)^n$$
(1)

Given
$$a_0 = 1$$
 \therefore $c_1 + c_2 = 1$ (2)

$$a_1 = 2$$
 : $c_1 + c_2(-3) = 2$ (3)

Solve equation-2 & 3 simultaneously $c_1 = \frac{5}{4}$ & $c_2 = \frac{-1}{4}$

$$a_n = \frac{5}{4} - \frac{1}{4}(-3)^n$$
Ans

3. Solve $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ with the conditions $a_0 = 2$, $a_1 = 5$, $a_2 = 15$ Solution:

$$a_n - 6a_{n-1} + 11a_{n-2} - 6a_{n-3} = 0$$

Let $a_n^{(h)} = \alpha^n$

$$\alpha^n - 6\alpha^{n-1} + 11\alpha^{n-2} - 6\alpha^{n-3} = 0$$

Divided by α^{n-3}

$$\alpha^3 - 6\alpha^2 + 11\alpha - 6 = 0$$
 ... $\alpha = 1, 2, 3$

$$a_n^{(h)} = c_1(1)^n + c_2(2)^n + c_3(3)^n$$

$$\ddot{\cdot} f(n) = 0 \qquad \dot{\cdot} a_n^{(p)} = \mathbf{0}$$

$$\therefore$$
 General solution $a_n = a_n^{(h)} + a_n^{(p)}$

$$a_n = c_1 + c_2(2)^n + c_3(3)^n$$
(1)

Given
$$a_0 = 2$$
 $\therefore c_1 + c_2 + c_3 = 2$ (2)

$$a_1 = 5$$
 \therefore $c_1 + c_2(2) + c_3(3) = 5$ (3)

$$a_2 = 15$$
 : $c_1 + c_2(4) + c_3(9) = 15$ (3)

Solve equation-2 & 3 simultaneously $\quad c_1=1$, $\ c_2=-1$ & $\ c_3=2$

$$a_n = 1 - (2)^n + 2(3^n)$$
 Ans

4. Solve the recurrence relation $\,a_n=4a_{n-1}-4a_{n-2}\,\,$ subject to the conditions $\,a_0=1=a_1\,$

Solution:

$$a_n - 4a_{n-1} + 4a_{n-2} = 0$$

Let
$$a_n^{(h)} = \alpha^n$$

$$\alpha^n - 4\alpha^{n-1} + 4\alpha^{n-2} = 0$$

Divided by α^{n-2}

$$\alpha^2 - 4\alpha + 4 = 0 \qquad \therefore \quad \alpha = 2, 2$$

$$a_n^{(h)} = (c_1 n + c_2)(2)^n$$

$$\ddot{f}(n) = 0 \qquad \dot{a}_n^{(p)} = \mathbf{0}$$

$$\therefore$$
 General solution $a_n = a_n^{(h)} + a_n^{(p)}$

$$a_n = (c_1 n + c_2)(2)^n$$
(1)

Given
$$a_0 = 1$$
 $\therefore c_2 = 1$ (2)

$$a_1 = 1$$
 \therefore $(c_1 + c_2)(2) = 1$ \implies $c_1 + 1 = \frac{1}{2}$ \implies $c_1 = \frac{-1}{2}$

$$a_n = \left(1 - \frac{n}{2}\right)(2)^n$$
Ans

5. Solve the recurrence relation $a_n=-3(a_{n-1}+a_{n-2})-a_{n-3}$ with $a_0=5$, $a_1=-9$, $a_2=15$

Ans:
$$a_n = (n^2 + 3n + 5)(-1)^n$$

Type-2

Solve the recurrence relation $a_{r+2} - a_{r+1} - 6a_r = 4$

Ans: $a_n = c_1(-2)^n + c_2(3)^n - \frac{2}{3}$

Solution:

$$a_{r+2} - a_{r+1} - 6a_r = 4$$
(1)

For
$$a_n^{(h)}$$
: $a_{r+2} - a_{r+1} - 6a_r = 0$

Let
$$a_n^{(h)} = \alpha^n$$

$$\alpha^{n+2} - \alpha^{n+1} - 6\alpha^n = 0$$

Divided by α^n

$$\alpha^2 - \alpha - 6 = 0$$
 $\therefore \alpha = -2.3$

$$a_n^{(h)} = c_1(-2)^n + c_2(3)^n$$
(2)

For
$$a_n^{(h)}$$
: : $f(n) = 4$: $a_n^{(p)} = A$

Put in equation-1

$$A - A - 6A = 4$$
 $\therefore A = \frac{-2}{3}$ $\therefore a_n^{(p)} = \frac{-2}{3}$

... General solution
$$a_n = a_n^{(h)} + a_n^{(p)}$$
 $a_n = c_1(-2)^n + c_2(3)^n - \frac{2}{3}$

Solve the recurrence relation $a_n - 2a_{n-1} + a_{n-2} = 6$

Ans:
$$a_n = c_1 + c_2 n + 3n^2$$

Solution:

$$a_n - 2a_{n-1} + a_{n-2} = 6$$
(1)

For
$$a_n^{(h)}$$
: $a_n - 2a_{n-1} + a_{n-2} = 0$

Let
$$a_n^{(h)} = \alpha^n$$

$$\alpha^n - 2\alpha^{n-1} + \alpha^{n-2} = 0$$

Divided by
$$\alpha^{n-2}$$

$$\alpha^2 - 2\alpha + 1 = 0 \qquad \therefore \ \alpha = 1, 1$$

$$a_n^{(h)} = (c_1 + c_2 n)(1)^n = c_1 + c_2 n$$
(2)

For
$$a_n^{(h)}$$
: : $f(n) = 6$ and $\alpha = 1$ & $m = 2$: $a_n^{(p)} = An^2$

Put in equation-1

$$An^2 - 2A(n-1)^2 + A(n-2)^2 = 6$$

$$An^2 - 2A(n^2 - 2n + 1) + A(n^2 - 4n + 4) = 6$$

$$An^2 - 2An^2 + 4An - 2A + An^2 - 4An + 4A = 6$$

$$2A = 6$$
 : $A = 3$: $a_n^{(p)} = 3n^2$

$$\therefore$$
 General solution $a_n = a_n^{(h)} + a_n^{(p)}$

$$a_n = c_1 + c_2 n + 3n^2 \qquad {}_{Ans}$$

Solve the recurrence relation $a_n - 7a_{n-1} + 10a_{n-2} = 6 + 8n$ with $a_0 = 13$, $a_1 = 29$

Solution:

$$a_n - 7a_{n-1} + 10a_{n-2} = 8n + 6$$
(1)

For
$$a_n^{(h)}$$
: $a_n - 7a_{n-1} + 10a_{n-2} = 0$

Let
$$a_n^{(h)} = \alpha^n$$

$$\alpha^n - 7\alpha^{n-1} + 10\alpha^{n-2} = 0$$

Divided by α^{n-2}

$$\alpha^2 - 7\alpha + 10 = 0 \qquad \therefore \quad \alpha = 2,5$$

$$a_n^{(h)} = c_1(2)^n + c_2(5)^n$$
(2)

For
$$a_n^{(h)}$$
: : $f(n) = 8n + 6$: $a_n^{(p)} = An + B$

Put in equation-1

$$An + B - 7[A(n-1) + B] + 10[A(n-2) + B] = 8n + 6$$

$$An + B - 7An + 7A - 7B + 10An - 20A + 10B = 8n + 6$$

$$4An - 13A + 4B = 8n + 6$$

Compare
$$4A = 8$$
 & $-13A + 4B = 6$

$$\& -13A + 4B = 6$$

$$A = 2$$
 & $-26 + 4B = 6$ $A = 8$

$$a_n^{(p)} = 2n + 8$$

$$\therefore \ \, \text{General solution} \quad a_n = a_n^{(h)} + a_n^{(p)}$$

$$a_n = c_1(2)^n + c_2(5)^n + 2n + 8$$

Given

$$a_0 = 13, \quad \therefore c_1 + c_2 + 8 = 13 \qquad \implies c_1$$

$$a_1 = 29$$
 $\therefore c_1(2) + c_2(5) + 2 + 8 = 29$ $\Rightarrow c_1(2) + c_2(5) = 19$

Solve equations simultaneously $c_1 = 2 \& c_2 = 3$

$$a_n = 2(2)^n + 3(5)^n + 2n + 8$$
 Ans

9. Solve the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2} + 7^n$

Solution:

$$a_n - 5a_{n-1} + 6a_{n-2} = 7^n$$
 (1)

For
$$a_n^{(h)}$$
: $a_n - 5a_{n-1} + 6a_{n-2} = 0$

Let
$$a_n^{(h)} = \alpha^n$$

$$\alpha^n - 5\alpha^{n-1} + 6\alpha^{n-2} = 0$$

Divided by α^{n-2}

$$\alpha^2 - 5\alpha + 6 = 0$$
 $\therefore \alpha = 2,3$

$$a_n^{(h)} = c_1(2)^n + c_2(3)^n$$
(2)

For
$$a_n^{(h)}$$
: : $f(n) = 7^n$: $a_n^{(p)} = A7^n$

Put in equation-1

$$A7^{n} - 5A7^{n-1} + 6A7^{n-2} = 7^{n}$$

$$\left(1 - \frac{5}{7} + \frac{6}{49}\right)A7^{n} = 7^{n}$$

$$\frac{20}{49}A = 1 \qquad \Rightarrow \quad A = \frac{49}{20} \qquad \therefore \quad \boldsymbol{a}_{n}^{(p)} = \left(\frac{49}{20}\right)7^{n}$$

 \therefore General solution $a_n = a_n^{(h)} + a_n^{(p)}$

$$a_n = c_1(2)^n + c_2(3)^n + \left(\frac{49}{20}\right)7^n$$
Ans

10. Solve the equation $a_r + a_{r+1} = 3r \cdot 2^r$ with $a_0 = 11/3$.

Ans:
$$a_n = 3(-1)^n + \left(2n + \frac{2}{3}\right)(2)^n$$