中国计量大学 2019 - 2020 学年第 1 学期

《概率论与数理统计 A》课程考试试卷 (A)

开课二级学院:	理学院	,考试时间:	年	月	日	时
---------	-----	--------	---	---	---	---

考生姓名:	学号:	专业:	班级:	

题序		=	三	四	总分
得分					
评卷人					

装

- 一、填空题(共30分)
- 1、三个事件 A,B,C 至少有一个发生,用事件的运算关系可表示为______

2、设
$$D(X)$$
 = 1, $D(Y)$ = 4, 相关系数 ρ_{XY} = 0.12,则协方差 $Cov(X,Y)$ = ______

3、
$$P(A) = P(B) = P(C) = \frac{1}{4}$$
, $P(AB) = 0$, $P(AC) = P(BC) = \frac{1}{12}$, 则 A, B, C 中恰好有一个事件发生的概率为

4、设随机变量 $X \sim N(2, \sigma^2)$,若 $P\{0 < X < 4\} = 0.3$,则 $P\{X < 0\} =$ _____

订

5、已知随机变量 X 的密度函数为:
$$f(x) = \begin{cases} Ae^x, & x < 0 \\ 1/4, & 0 \le x < 2, \text{ 则常数 A=} \\ 0, & x \ge 2 \end{cases}$$

6、设随机变量(X,Y)的分布律为

Y	1	2	3
1	0. 12	0. 10	0. 28
2	0. 18	0	0. 12
3	0	0. 15	0. 05

线

则条件概率 $P\{X=3 | Y=2\} =$ ______

7、设
$$X \sim B(n, p)$$
,且 $E(X) = 12, D(X) = 8$,则 $n =$ ______

- 8、设 $X \sim \chi^2(2), Y \sim \chi^2(3)$,且X、Y相互独立,则 $X + Y \sim$ _____
- 10、若从正态总体中抽取一个样本,样本容量为 n,其均值 μ 的 95%的置信区间为 (a,b),则其样本均值为_____
- 二、计算题(共58分)
- 1、(本小题 10 分) 设连续型随机变量 X 的密度函数为 $f(x) = \begin{cases} C & (1 \frac{1}{x^2}), 1 < x < 2 \\ 0, 其它 \end{cases}$

求: (1) 常数 C; (2) 求分布函数 F(x); (3) $P(1.5 < X \le 2.5)$; (4) 期望 E(X).

中国计量大学 2019~ 2020 学年第1 学期《概率论与数理统计 A》课程试卷 (A) 第2页 共 6 页

2、(本小题 10 分) 设随机变量(X, Y)的概率密度为 $f(x, y) = \begin{cases} 3e^{-(x+3y)}, & x > 0, y > 0 \\ 0 & , 其它 \end{cases}$

求: (1) X 的密度函数 $f_X(x)$; (2) 判断 X,Y 的独立性; (3) $P\{X < Y\}$; (4) 联合分布函数 F(x,y)

3、(本小题 10 分) 某保险公司把被保险人分为三类:"谨慎的"、"一般的"、"冒失的"。统计资料表明,上述三种人在一年内发生事故的概率依次为 0.05, 0.15, 0.30, 如果"谨慎的"被保险人占 20%, "一般的"占 50%, "冒失的"占 30%, 求:

- 1) 某保险人在一年内事故的概率是多少;
- 2) 某保险人在一年内出了事故,则他是"谨慎的"概率是多少?

4、(本小题 10 分)设二维离散型随机变量(X, Y)的联合概率分布为

求: (1) X 的概率分布;

- (2) 相关系数 ρ_{XY} ;
- (3) 判定 X, Y 是否独立?

Y	-1	0	1
0	0	1/3	0
1	1/3	0	1/3

5、(本小题 6 分) 设随机变量
$$X$$
 的概率密度为
$$f_X(x) = \begin{cases} 2xe^{-x^2}, x > 0 \\ 0, x \le 0 \end{cases}$$

求 $Y = X^2$ 的密度函数 $f_Y(y)$?

6、(本小题 6 分) 设总体 X 的概率密度函数为 $f(x;\theta) = (1+\theta)x^{\theta}, 0 < x < 1$,其中未知参数 $\theta > -1$, $x_1, x_2, \cdots x_n$ 是来自总体 X 的一个样本,试求参数 θ 的最大似然估计. 7、(本小题 6 分) 已知随机变量 $X \sim N(1, 25), Y \sim N(2, 36)$, $\rho_{XY} = 0.4$, 求: U = 3X + 2Y 与V = X - 3Y的协方差.

三、应用题(每小题6分,共12分)

1、假设一部机器在一天内发生故障的概率是 0.2, 一周工作 5 日。若一周 5 个工作日内无故障则可获 10 万元; 若仅有 1 天故障则仍可获利 5 万元; 若仅有两天发生故障可获利 0 万元; 若有 3 天或 3 天以上出现故障将亏损 2 万元, 求一周的期望利润。

2、设某产品的指标 X 服从正态分布 $N(\mu,150^2)$,其中参数 μ 未知,现随机抽取了一个容量 为 n=25 的样本,观测得样本均值 $\bar{x}=1637$. 试问在显著性水平 $\alpha=0.05$ 下,能否认为这批产品的期望值 μ 为 1600?

【附常用数据:

 $z_{0.05} = 1.645; z_{0.025} = 1.96; t_{0.05}(25) = 1.708; t_{0.05}(24) = 1.711; t_{0.025}(25) = 2.06; t_{0.025}(24) = 2.064;$

1