Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s

```
Manisha Caleb □¹,²,³,¹⁴ ⋈, Ian Heywood □⁴,⁵,⁶,¹⁴ ⋈, Kaustubh Rajwade □¹,², Mateusz Malenta¹, Benjamin Willem Stappers¹,¹⁴, Ewan Barr³, Weiwei Chen □³, Vincent Morello¹, Sotiris Sanidas □¹, Jakob van den Eijnden □⁴, Michael Kramer □¹,³, David Buckley □⁵,¹0,¹¹, Jaco Brink □⁵,¹, Sara Elisa Motta¹², Patrick Woudt □¹₀, Patrick Weltevrede □¹, Fabian Jankowski □¹, Mayuresh Surnis □¹, Sarah Buchner⁶, Mechiel Christiaan Bezuidenhout □¹, Laura Nicole Driessen □¹,¹³ and Rob Fender⁴
```

Nature Astronomy
2022/5/30 published

Reporter: 曹顺顺

2022.6

- I. Discovery and basic properties
- II. Series of discussions
 - (1) Single pulses' patterns
 - (2) Quasi-periodicity in sub-pulses
 - (3) About P-Pdot diagram
 - (4) X-ray observation and brightness variation
 - (5) Polarization
 - (6) Counterparts searching

Contents

I. Discovery and basic properties

2020/9/27 MeerKAT in South Africa
MeerTRAP and ThunderKAT projects, directed at HMXB Vela X-1
Image and time domain searches' data review (1.284MHz)

→ → Find weaker pulses with period 75.89±0.01s

https://www.engineeringnews.co.za/article/meerkat-telescope -takes-part-in-start-of-new-era-of-astronomy-2017-10-16

MeerKAT image: a point source and a shell-like structure, no pulsars in 2° nearby.

Follow up: 6 L-band (856-1712MHz) and 1 UHF band (544-1088MHz) observations during 2020/9-2021/5. Pulsar timing is made with 29 ToAs.

Orange points: original MeerTRAP detection

Red diamonds: single pulses (MeerKAT)

Light coloured: Parkes UWL observation

Table 2 MeerKAT observations of the PSR J0901-4046 field								
Date (ит, J2000)	Block ID	RA (J2000)	Dec (J2000)	Band	N_{ant}	T _{obs} (h)	T _{int} (s)	Origin
25 September 2020	1600995961	09 h 02 min 06.86 s	-40°33′16.9″	L	59	0.5	8	TKAT
27 September 2020	1601168939	09 h 02 min 06.86 s	-40°33′16.9″	L	61	0.5	8	TKAT
11 October 2020	1602387062	09 h 02 min 06.86 s	-40°33′16.9″	L	60	0.5	8	TKAT
1 February 2021	1612141271	09 h 01 min 29.35 s	-40°46′03.6″	L	64	1	2	DDT
2 February 2021	1612227667	09 h 01 min 29.35 s	-40°46′03.6″	L	61	1	2	DDT
10 February 2021	1612994791	09 h 01 min 29.35 s	-40°46′03.6″	L	62	1	2	DDT
3 March 2021	1614794470	09 h 01 min 29.35 s	-40°46′03.6″	L	63	1	2	DDT
2 April 2021	1617367872	09 h 01 min 29.35 s	-40°46′03.6″	L	63	1	2	DDT
2 April 2021	1617376889	09 h 01 min 29.35 s	-40°46′03.6″	UHF	62	1	2	DDT
6 May 2021	1620567645	09 h 01 min 29.35 s	-40°46′03.6″	L	62	1	2	DDT

The first three rows labelled TKAT are discovery observations targeting the Vela X-1 field, while the rest labelled DDT are follow-up observations. N_{ant} , T_{obs} and T_{int} represent the number of antennas, the total time spent on target, and the correlator integration time per visibility point.

L-band timing results are as follows

Variable	Value
Data and model fit quality	
Modified Julian date (MJD) range	59119.0 to 59343.6 (7.4 months)
Number of TOAs	29
Weighted r.m.s. timing residual	5.7 ms
Measured quantities	
Right ascension (J2000)	09 h 01 min 29.249 s ± 1.0"
Declination, δ (J2000)	-40° 46′ 02.984″ ±1.0″
Pulse frequency, ν	$0.013177739873 \pm 9.9 \times 10^{-12} \mathrm{s}^{-1}$
First derivative of pulse frequency, $\dot{\nu}$	$-3.9 \pm 0.2 \mathrm{s}^{-2}$
Pulse period, P	$75.88554711 \pm (6 \times 10^{-8})$ s
Period derivative, P	$(2.25 \pm 0.1) \times 10^{-13} \text{ s s}^{-1}$
Dispersion measure, DM	52 ± 1 pc cm ⁻³
Full-width at half-maximum, W_{50} (L band)	299±1ms
Full-width at half-maximum, W_{50} (UHF band)	296±4ms

Spectral index, α	-1.7 ± 0.9	
Rotation measure, RM	$-64 \pm 2 \text{rad m}^{-2}$	
Fractional linear polarization	12.2 ± 0.2%	
Fractional circular polarization	21.0 ± 1.9%	
Inferred quantities		
Distance (YMW16), d ₁	328 pc	
Distance (NE2001), d ₂	467 pc	
Characteristic age, c	5.3 Myr	
Surface dipole magnetic field strength, <i>B</i>	1.3×10 ¹⁴ G	
Spin-down luminosity, Ė	$2.0 \times 10^{28} \mathrm{erg}\mathrm{s}^{-1}$	
Period-averaged radio luminosity, $L_{1,400}$ at d_2	89 μJy kpc²	
X-ray Luminosity, $L_{\rm X}$ (0.5–10 keV) at $d_{\rm 2}$	$\lesssim 3.2 \times 10^{30} \mathrm{erg}\mathrm{s}^{-1}$	
Uncertainties in parentheses as 1σ errors on the last significant quoted digit		

Some comments in the article:

Full-width at half-maximum, W_{50} (L band)	299±1ms
Full-width at half-maximum, W_{50} (UHF band)	296±4ms

(i) No evidence for radius-to-frequency mapping

Pulse period, P	$75.88554711 \pm (6 \times 10^{-8})$ s
i dise period, i	/3.00334/11 <u>+</u> (0 × 10 /3

(ii) Long period —— large light cylinder, compact polar cap. $R_{\rm LC}=cP/2\pi=3.62\times10^6{
m km}$ Consistent with pulsars' W-P relation. $R_{\rm p}=\sqrt{2\pi R^3/cP}=16.62\,{
m m}$

Period derivative, P	$(2.25 \pm 0.1) \times 10^{-13} \mathrm{s}\mathrm{s}^{-1}$
Characteristic age, c	5.3 Myr
Surface dipole magnetic field strength, <i>B</i>	1.3×10 ¹⁴ G
Spin-down luminosity, Ė	$2.0 \times 10^{28} \mathrm{erg}\mathrm{s}^{-1}$

Period-averaged radio luminosity,

89 µJy kpc²

 $L_{1,400}$ at d_2

(iii) Pulse-averaged peak flux densities:

L band: $89.3 \pm 2.7 \,\mathrm{mJy\,beam^{-1}}$

UHF band: $169.3 \pm 14 \,\mathrm{mJy\,beam^{-1}}$

period-averaged flux density an L band: $408 \pm 5 \,\mu Jy \,beam^{-1}$

Dispersion measure, DM	$52 \pm 1 pc cm^{-3}$
Distance (YMW16), d ₁	328 pc
Distance (NE2001), d_2	467 pc

(iv) Distances calculated under different galactic electron density models.

More discussions in the following slides

II. Series of discussions (1) Single pulses' morphology Grouped into 7 different types:

Variable both inter-epoch and intra-epoch.

Energy distribution:

For quasi-periodic and partially nulling, 40% energy is lost in the dropouts/dips.

After modelling the pulse envelope, the energy distributions for different types look similar.

No overall increase in particle flow.

10

(2) Quasi-periodicity in sub-pulses $ACF(\tau) = \int_0^{\tau} f(t)f(t-\tau) dt$

$$ACF(\tau) = \int_0^{\tau} f(t)f(t-\tau) dt$$

Auto-correlation function

Off-pulse region:

Quasi-periods distribution:

Most common: ~76ms (P/1000)

The CHIME/FRB Collaboration et al. 2021

Levin et al. 2019

Boriakoff 1976

Quasi-periodic features (micro structures) in FRBs, magnetar and pulsar.

Origin of quasi-periodicity?

- ——Temporal/angular mechanism of beamlets?
 - (quasi-period scaling with period, beamlets making up sub-pulses)
- ——Sub-pulses' drifting?

Kramer et al. 2002

——Neutron star's magneto-elastic oscillation?

(produce Alfvén wave to the magnetosphere resulting in radio emission, an explanation for FRB) (but for this case (pulsar-like), repeated trigger and/or very long damping times are needed)

OR

(3) About P-Pdot diagram

J0901-4046 and magnetars?

Offset from the known magnetar population.

A ultra-long-period magnetar?

(ULPM, Beniamini et al. 2020) It's above the low-twisted death line. CLEAM-X J162759.5-523504.3 (Hurley-Walker et al. 2022) may be a ULPM.

An old magnetar?

——Characteristic soft X-ray emission, but no radio emission detected so far. (Yoneyama et al. 2019, Vigano et al. 2013)

J0901-4046 also differs from common magnetars in:

- ——No radical changes in P-dot observed.
- ——Spectral index:

Spectral index, α

 -1.7 ± 0.9

Magnetars' radio spectral is shallow, J0901-4046's spectral index is like pulsars.

——Small duty cycle.

J0901-4046 and death lines:

Beyond the vacuum gap curvature radiation death line
Above the space-charge-limited flow death line.

Space-charge-limited flow (Arons & Scharlemann 1979): Free flow of charges from pulsar surface, interacting with multipole field, pair cascade happens.....

——Multipolar magnetic field may play an important role on J0901-4046's surface.

J0901-4046 and B lines:

$$B_{\rm cr} = 4.413 \times 10^{13} \,\rm G$$

Above Bcr: "radio quiet" pulsar

Similar to many magnetars.

Surface dipole magnetic field strength, *B*

 $1.3 \times 10^{14} \,\mathrm{G}$

(4) X-ray observation and brightness variation

Magnetars with radio emission are usually emitting X-ray.

With Swift/XRT, the authors monitor J0901-4046 during MeerKAT's observation on 2021/2/1 and 2021/2/2

——But no detection.

They give an upper limit. X-ray Luminosity, L_X (0.5–10 keV) at $d_2 \lesssim 3.2 \times 10^{30}$ erg s⁻¹

Spin-down luminosity, \dot{E} 2.0 × 10²⁸ erg s⁻¹

Then: $L_{\rm X} \lesssim 10^2 \dot{E}$

For rotation-powered pulsars: $L_{
m X} pprox 10^{-3} \dot{E}~$ For magnetars: $L_{
m X} \gtrsim \dot{E}$

Single pulses' brightness Changing with time:

A radio-loud magnetar transitioning into quiescence?

(5) Polarization

V > L: Rare for radio loud pulsars/magnetars. S-shape PA curve: a rotating magnetic dipole?

Rotation measure, RM

$$-64 \pm 2 \, \text{rad m}^{-2}$$

RM: consistent with

- ——Smoothed galactic foreground
- —nearby pulsars' RM

Maybe no substantial intrinsic RM.

(6) Counterparts searching

Maybe a WD, would J0901-4046 be a WD too?

The authors did photometry and spectroscopic observation on a nearby (1" in RA, 3" in Dec) 17mag Gaia source, found it's an single A type star—ruled out optical counterpart.

Probably more multi-wavelength observations are needed.....

Thank you for your attention