Universidade do Minho Departamento de Matemática Lic. em Ciências da Computação 9 de novembro de 2022

Teste de Álgebra Linear CC

duração: 2 horas

Nome do aluno:	 Número:	

Grupo I

Relativamente às questões deste grupo, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

V F
1. Para quaisquer n ∈ N e A, B ∈ M_{n×n}(R), se A + B é uma matriz triangular superior, então A e B são matrizes triangulares superiores.
2. Existem n ∈ N e A, B ∈ M_{n×n}(R) tais que (2AB)² ≠ 4A²B².
3. Para quaisquer n ∈ N e A, B ∈ M_{n×n}(R), se A e B são simétricas, então AB – BA é antissimétrica.
4. Para quaisquer n ∈ N e A, B ∈ M_{n×n}(R), se car(A) + car(B) = 2n, então A e B são invertíveis.
5. Para quaisquer n ∈ N e A ∈ M_{n×n}(R), det(A) + det(-A) = 0.
6. Para quaisquer n ∈ N e A ∈ M_{n×n}(R), se A² é invertível, então A³ é invertível.
7. Seja Ax = b um sistema de 5 equações lineares em 4 incógnitas e coeficientes em R. Se car([A|b]) = 5, então o sistema Ax = b é possível.
8. Seja Ax = 0 um sistema de 4 equações lineares em 4 incógnitas e coeficientes em R. Se |A| ≠ 0, então o sistema Ax = b é possível, para todo b ∈ M_{4×1}(R).

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

1. Sejam

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -2 \\ -2 & 3 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

e $C = [c_{ij}]$ a matriz real do tipo 2×3 tal que, para quaisquer $i \in \{1, 2\}$ e $j \in \{1, 2, 3\}$,

$$c_{ij} = \begin{cases} 1 & \text{se } i+j \text{ \'e par} \\ 0 & \text{caso contr\'ario} \end{cases}.$$

- (a) Determine a matrix $X \in \mathcal{M}_{2\times 2}(\mathbb{R})$ tal que $X + I_2 = 2(X BC^T)$.
- (b) Calcule det(A) utilizando o Teorema de Laplace.
- (c) Justifique que a matriz A é invertível e determine a sua inversa utilizando o método de Gauss-Jordan.

- 2. Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R}), n \in \mathbb{N}$. Mostre que se A e AB são matrizes ortogonais, então B é ortogonal.
- 3. Para cada $\alpha \in \mathbb{R}$ e cada $\beta \in \mathbb{R}$, considere o sistema de equações lineares de coeficientes reais correspondente à equação matricial $A_{\alpha}x = b_{\beta}$, onde

$$A_{\alpha} = \begin{bmatrix} 1 & -2 & 1 \\ -1 & 2 & \alpha^2 - 2 \\ -1 & 3 & \alpha \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \text{e} \quad b_{\beta} = \begin{bmatrix} 1 \\ \beta - 2 \\ -1 \end{bmatrix}.$$

- (a) Discuta o sistema $A_{\alpha}x = b_{\beta}$ em função dos parâmetros $\alpha \in \beta$.
- (b) Resolva o sistema $A_{\alpha}x = 0$ para $\alpha = 1$.
- (c) Verifique que (1,0,0) é solução do sistema correspondente a $A_1x = b_1$ e, sem efetuar cálculos, indique o conjunto de soluções deste sistema. Justifique.
- 4. Sejam $A, B \in \mathcal{M}_{3\times 3}(\mathbb{R})$ matrizes tais que $\det(A) = 7$, $\det(B) = 3$ e $C = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$. Seja $D = \begin{bmatrix} \times & 2 \\ \times & 1 \end{bmatrix}$ uma matriz real quadrada de ordem 2 cuja primeira coluna é desconhecida e tal quadrada de ordem 2 cuja primeira coluna é desconhecida

- (a) Calcule $\det(2A^{-1}B^T)$.
- (b) Sabendo que |C|=5, calcule $\begin{vmatrix} 3a+c & c & b-c \\ 6d+2f & 2f & 2e-2f \\ 3g+i & i & h-i \end{vmatrix}.$
- (c) Justifique que D é invertível. Para toda a matriz D nas condições indicadas, determine a primeira linha da matriz D^{-1} , isto é, determine os elementos $(D^{-1})_{11}$ e $(D^{-1})_{12}$.