II. Balancing Chemical Equations

Balance each of the following chemical equations:

- 1. $SiO_2(s) + C(s) \rightarrow Si(l) + CO$
- 2. $CaC_2(s) + H_2O(l) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$
- 3. $C\ell_2(g) + KI(aq) \rightarrow KC\ell + I_2(s)$
- 4. $Ag(s) + H_2S(g) \rightarrow Ag_2S(s) + H_2(g)$
- 5. BaO(s) + A ℓ (s) \rightarrow A ℓ ₂O₃(s) + Ba(s)
- 6. $Na_2O_2(s) + H_2O(g) + CO_2(g) \rightarrow NaHCO_3(s) + O_2(g)$
- 7. $K_2CO_3(s) \rightarrow K_2O(s) + CO_2(g)$
- 8. $KBr(s) + H_3PO_4(aq) \rightarrow K_3PO_4(aq) + HBr$
- 9. $CaH_2(s) + H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g)$
- 10. $PI_3(s) + H_2O(I) \rightarrow H_3PO_3(aq) + HI(g)$
- 11. $A\ell(s) + F_2(g) \rightarrow A\ell F_3(s)$
- 12. $CaO(s) + SO_3(g) \rightarrow CaSO_4(s)$
- 13. $FeCO_3(s) + H_2CO_3(aq) \rightarrow Fe(HCO_3)_2(aq)$
- 14. $CaO(s) + C(s) \rightarrow CaC_2(s) + CO_2(g)$
- 15. $PC\ell_5(I) + H_2O(I) \rightarrow H_3PO_4(aq) + HC\ell(g)$
- 16. $Fe_2O_3(s) + HNO_3(aq) \rightarrow Fe(NO_3)_3(aq) + H_2O(I)$
- 17. $CuSO_4(aq) + KI(s) \rightarrow CuI(s) + I_2(s) + K_2SO_4(aq)$

- 18. $CaO(s) + H_2SO_4(aq) \rightarrow CaSO_4(s) + H_2O(g)$
- 19. $BaO_2(s) + H_2SO_4(aq) \rightarrow BaSO_4(s) + H_2O_2(aq)$
- 20. $PbCl_2(aq) + K_2SO_4(aq) \rightarrow PbSO_4(s) + KCl(aq)$
- 21. $O_2(g) \rightarrow O_3(g)$
- 22. $NH_3(g) + F_2(g) \rightarrow NH_4F(s) + NF_3(g)$
- 23. $MnO_2(s) + A\ell(s) \rightarrow A\ell_2O_3(s) + 3Mn(s)$
- 24. $SiC\ell_4(I) + Mg(s) \rightarrow Si(s) + MgC\ell_2(s)$
- 25. $PbC\ell_2(aq) + K_2CrO_4(aq) \rightarrow PbCrO_4(s) + KC\ell(aq)$
- 26. $H_2O(I) + Br_2(I) \rightarrow HBr(aq) + HOBr(aq)$
- 27. $Mn(s) + S(s) \rightarrow MnS_2(s)$
- 28. $ZnCl_2(aq) + Na_2CO_3(aq) \rightarrow ZnCO_3(s) + NaCl(aq)$
- 29. $C_2H_6(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
- 30. $SO_{2}(g) + O_{2}(g) \rightarrow SO_{3}(g)$
- 31. $A\ell(s) + H_2SO_4(aq) \rightarrow A\ell_2(SO_4)_3(aq) + H_2(g)$
- 32. $C\ell_2(g) + KBr(aq) \rightarrow Br_2(I) + KC\ell(aq)$
- 33. $Cr(s) + O_2(g) \rightarrow Cr_2O_3(s)$
- 34. $MnS_2(s) + O_2(g) \rightarrow MnO_2(s) + SO_2(g)$

II.

- 1. $SiO_2(s) + 2C(s) \rightarrow Si(s) + 2CO(g)$
- 2. $CaC_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(s) + C_2H_2(g)$
- 3. $C\ell_2(g) + 2KI(aq) \rightarrow 2KC\ell(aq) + I_2(s)$
- 4. $2Ag(s) + H_2S(g) \rightarrow Ag_2S(s) + H_2(g)$
- 5. $3BaO(s) + 2A\ell(s) \rightarrow A\ell_2O_3(s) + 3Ba(s)$
- 6. $4CO_{2}(g) + 2Na_{2}O_{2}(s) + 2H_{2}O(l) \rightarrow 4NaHCO_{2}(s) + O_{2}$
- 7. Balanced
- 8. $3KBr(s) + H_3PO_4(aq) \rightarrow K_3PO_4(aq) + 3HBr(aq)$
- 9. $CaH_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + 2H_2(q)$
- 10. $PI_3(s) + 3H_2O(l) \rightarrow H_3PO_3(aq) + 3HI(g)$
- 11. $2A\ell(s) + 3F_2(g) \rightarrow 2A\ell F_3$
- 12. Balanced
- 13. Balanced
- 14. $2CaO(s) + 5C(s) \rightarrow 2CaC_2(s) + CO_2(g)$
- 15. $PC\ell_5(s) + 4H_2O(l) \rightarrow H_3PO_4(aq) + 5HC\ell$
- 16. $Fe_2O_3(s) + 6HNO_3(aq) \rightarrow 2Fe(NO_2)_2(aq) + 3H_2O(l)$
- 17. $2CuSO_4(aq) + 4KI(s) \rightarrow 2CuI(s) + I_2(s) + 2K_2SO_4(aq)$
- 18. $CaO(s) + H_2SO_4(aq) \rightarrow CaSO_4(aq) + H_2O(l)$
- 19. Balanced
- 20. $PbCl_2(aq) + K_2SO_4(aq) \rightarrow PbSO_4(s) + 2KCl(aq)$
- 21. $3O_2(g) \rightarrow 2O_3(g)$
- 22. $2NH_2(g) + F_2(g) \rightarrow NH_4F(s) + NH_2F$
- 23. $3MnO_2(s) + 4A\ell(s) \rightarrow 2A\ell_2O_2(s) + 3Mn(s)$
- 24. $SiCl_4(l) + 2Mg(s) \rightarrow Si(s) + 2MgCl_2(s)$
- 25. $PbCl_{3}(aq) + K_{2}CrO_{4}(aq) \rightarrow PbCrO_{4}(s) + 2KCl(aq)$
- 26. Balanced
- 27. $Mn(s) + 2S(s) \rightarrow MnS_2(s)$
- 28. $ZnCl_3(aq) + Na_2CO_3(aq) \rightarrow ZnCO_3(s) + 2NaCl(aq)$
- 29. $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$
- 30. $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$
- 31. $2A\ell(s) + 3H_sSO_s(aq) \rightarrow A\ell_s(SO_s)_s(aq) + 3H_s(q)$
- 32. $C\ell_2(g) + 2KBr(aq) \rightarrow Br_2(l) + 2KC\ell(aq)$
- 33. $4Cr(s) + 3O_2(g) \rightarrow 2Cr_2O_3(s)$
- 34. $MnS_2(s) + 3O_2(g) \rightarrow MnO_2(s) + 2SO_2(g)$

Multiple Choice Questions

1. d, 2. c, 3. b, 4. c, 5. c, 6. b, 7. d, 8. c, 9. d. 10. d

Chapter 6. Electron Confi

Electron Configuration and the Periodic Table

1. Valence electrons are found in the outermost shells. They determine the valence of the elements and hence, their chemical behaviour.

- 2. Similar types of shells are filled in the same way. Chemical properties of the members of a group are similar. They have the same number of electrons in their outermost shell.
- 3. a) 1
- b) 3
- c) 8

- d) 2
- 4. They may be located in the 5th shell or energy level. They have lower energy than the electrons in the other energy levels or shells.
- 5. a) 5

b) 7

c) 1

d) 3

6. a) S

- b) Cl
- c) Ca
- d) Li

7. a) F

b) N

- c) S
- d) Na
- 8. Metals lose electrons and become electropositive ions. Non-metals gain electrons and become electronegative ions.
- 9. Elements on the left of the Periodic Table lose electrons easily as they are generally metals and have a tendency to lose electrons to keep a stable outer shell.

10.

- a. They all exist as diatomic molecules.
- *b)* They are all non-metals.
- c) They have relatively high electronegativity.
- *d)* They form negative ions in combining with metals.
- 11. The number of valence electrons increases.
- 12. a) Sodium
- b) Fluorine
- 13. F, N, Be, Li
- 14. Ga, Mg, Ca, K
- 15. N (2, 5); P (2, 8, 5). Nitrogen will be more electronegative because its atoms have a small size due to which the attraction of its nucleus for the electron is greater.

16.

- a) Chemical activity first decreases and then increases.
- b) The oxides are metallic and basic at first and then the basic nature decreases. Then the oxides become non-metallic and the acidic nature increases.