FENÔMENOS DE TRANSPORTE

FENÔMENOS DE TRANSPORTE

CARACTERIZAÇÃO DE FLUIDOS

Caracterização de Fluidos

O que é um fluido?

- Fluido é uma substância que se deforma continuamente, isto é, sob a ação de uma força tangencial, por menor que ela seja." (definição mais aceita em meios científicos)
- Fluido é uma substância que não tem forma própria, assumindo a forma do recipiente que o contém."

Caracterização - atribuir características, no caso, dos fluidos.

MASSA ESPECÍFICA: razão entre a massa do fluido e o volume que contém essa massa, pode também ser denominada de densidade absoluta. Normalmente a massa específica dos líquidos é pouco sensível as variações de pressão e temperatura, o que geralmente não ocorre para gases.

$$\rho = \frac{m}{V} \left[\frac{kg}{m^3} \right]$$

Variação da massa específica da água com a temperatura:

$$\rho_{H_2O} = 1000 - \frac{(T-4)^2}{180} \qquad \rho_{H_2O}(0^{\circ}C) < \rho_{H_2O}(4^{\circ}C)$$

Temperatura (°C)	Densidade (g/cm³)				
100	0,9584				
80	0,9718				
60	0,9832				
40	0,9922				
30	0,9956502				
25	0,9970479				
22	0,9977735				
20	0,9982071				
15	0,9991026				
10	0,9997026				
4	0,9999720				
0	0,9998395				

$$\rho_{H_2O} = 1000 - \frac{(T-4)^2}{180}$$

$$\rho_{H_2O}(0^{\circ}C) < \rho_{H_2O}(4^{\circ}C)$$

Massas específicas de alguns fluidos

Fluido	ρ (kg/m³)	
Água destilada a 4 °C	1000	
Água do mar a 15 °C	1022 a 1030	
Ar atmosférico à pressão atmosférica e 0 °C	1,29	
Ar atmosférico à pressão atmosférica e 15,6 °C	1,22	
Mercúrio	13590 a 13650	
Petróleo	880	

VOLUME ESPECÍFICO: É o inverso da massa específica, ou seja, a quantidade de volume por unidade de massa.

$$\nu = \frac{1}{\rho} \left[\frac{m^3}{kg} \right]$$

PESO ESPECÍFICO: razão entre peso (força) de um dado fluido e o volume que o contém, sendo assim, de forma análoga à massa específica, é a quantidade de peso por unidade de volume.

$$\gamma = \frac{Peso}{V} = \frac{mg}{V} = \rho g \qquad \qquad \gamma \left[\frac{N}{m^3} \right]$$

DENSIDADE RELATIVA: relação entre a massa específica da substância que está sendo analisada e uma outra tomada como referência

$$\mathcal{S} = \frac{\rho_{\mathit{fluido}}}{\rho_{\mathit{referencia}}} = \frac{\gamma_{\mathit{fluido}}}{\gamma_{\mathit{referencia}}}$$

$$\rho_{referencia} = \rho_0$$

Para líquidos a referência adotada é água a 4°C

$$\rho_0 = 1000 kg / m^3$$

Para gases a referência é o ar atmosférico a 0°C $ho_0 = 1,29kg / m^3$

$$\rho_0 = 1,29kg / m^3$$

1 – Um reservatório contém uma massa de óleo de 825 kg em um volume de 0,917 m³. Sendo assim, determine a massa específica, peso específico e densidade do óleo.

$$\rho = \frac{m}{V} \qquad \rho = \frac{825kg}{0.917m^3} = 899,67 \frac{kg}{m^3}$$

$$\gamma = \rho g$$
 $\gamma = 899,67 \frac{kg}{m^3}.9,81 \frac{m}{s^2}$ $\gamma = 8825,76 \frac{kg}{m^2 s^2} = 8825,76 \frac{N}{m^3}$

$$\delta = \frac{\rho}{\rho_0} = \frac{899,67 \frac{kg}{m^3}}{1000,0 \frac{kg}{m^3}} = 0,899$$

2 – Determine a massa, em kg, de um bloco de ferro maciço em forma de cubo cuja aresta mede 10 cm. Suponha que a massa específica do ferro seja igual a 7,8 g/cm³.

3 – Suponhamos que você possua 60 g de massa de uma substância cujo volume por ela ocupado é de 5 cm³. Calcule a massa específica dessa substância nas unidades g/cm³ e kg/m³.

4 – Se 6,0 m³ de óleo pesam 47 kN, determine o peso específico, massa específica e a densidade do fluido.

$$\rho = \frac{m}{V} \qquad Peso = mg \qquad \rho = \frac{P}{gV} = \frac{47000N}{9,81 \frac{m}{s^2}.6,0m^3} = 798,50 \frac{kg}{m^3}$$

$$\gamma = \rho g$$
 $\gamma = 798, 5 \frac{kg}{m^3}.9, 81 \frac{m}{s^2} = 7833, 28 \frac{N}{m^3}$

$$\delta = \frac{\rho}{\rho_0} = \frac{798, 5 \frac{kg}{m^3}}{1000, 0 \frac{kg}{m^3}} = 0,7985$$

MÓDULO DE ELASTICIDADE: Propriedade que indica a variação do volume com a pressão aplicada, ou seja

$$k = -\frac{dp}{\left(\frac{dV}{V}\right)} = \frac{dp}{\left(\frac{d\rho}{\rho}\right)}$$

Em que, dP é a variação da diferencial de pressão necessária para provocar uma variação diferencial de volume dV, em um volume V. Quanto maior o valor de K, menos compressível é o fluido.

MÓDULO DE COMPRESSIBILIDADE: é uma variação infinitesimal do baixo volume por unidade de variação. Em termos mais simples, é a propriedade que a matéria apresenta quando sofre a ação de forças adequadamente distribuídas, tendo seu volume diminuído. Pode ser definido como o inverso do módulo de elasticidade, ou seja:

$$\beta = \frac{1}{k}$$

$$k = -\frac{dp}{\left(\frac{dV}{V}\right)} = \frac{dp}{\left(\frac{d\rho}{\rho}\right)}$$

$$k = -\frac{dp}{\left(\frac{dV}{V}\right)} = \frac{dp}{\left(\frac{d\rho}{\rho}\right)}$$

$$k = -\frac{P_f - P_i}{\frac{V_i - V_f}{V_i}}$$

$$k = -\frac{dp}{\left(\frac{dV}{V}\right)} = \frac{dp}{\left(\frac{d\rho}{\rho}\right)}$$

$$k = -\frac{P_f - P_i}{\frac{V_i - V_f}{V_i}}$$

$$k = -\frac{50662, 5 - 0}{0,029 - 0,027} = 734.239, 13KPa$$

$$0,029$$

B. PROPRIEDADES DOS FLUIDOS

TABELA B.1 Propriedades da água

Temperatura T (°C)	Massa específica ρ (kg/m³)	Viscosidade μ (N·s/m²)	Viscosidade cinemática v (m²/s)	Tensão superficial σ (N/m)	Pressão de vapor p, (kPa)	Módulo de viscosidade B (Pa)
0	999,9	$1,792 \times 10^{-3}$	1,792 × 10 ⁻⁶	0,0762	0,610	204×10^{7}
5	1000,0	1,519	1,519	0,0754	0,872	206
10	999,7	1,308	1,308	0,0748	1,13	211
15	999,1	1,140	1,141	0,0741	1,60	214
20	998,2	1,005	1,007	0,0736	2,34	220
30	995,7	0,801	0,804	0,0718	4,24	223
40	992,2	0,656	0,661	0,0701	3,38	227
50	988,1	0,549	0,556	0,0682	12,3	230
60	983,2	0,469	0,477	0,0668	19,9	228
70	977,8	0,406	0,415	0,0650	31,2	225
80	971,8	0,357	0,367	0,0630	47,3	221
90	965,3	0,317	0,328	0,0612	70,1	216
100	958,4	$0,284 \times 10^{-3}$	$0,296 \times 10^{-6}$	0,0594	101,3	207×10^{7}

Propriedades: Característica de uma substância que se mantém invariante para um dado estado.

Propriedade Extensivas (dependem da massa do corpo, tamanho do sistema)

Ex.: peso, energia, entalpia.

Propriedade Intensivas: independe do tamanho, (massa do sistema)

Ex.: viscosidade, densidade, temperatura, pressão.

HIPÓTESE DO CONTÍNUO

Teoria completa para o movimento de fluidos – consideração da estrutura molecular Equações básicas para o movimento de cada molécula – número infinito de equações.

Para condições normais de temperatura de pressão, existe uma formulação simplificada que produz excelentes resultados: MODELO DE FLUIDO COMO UM MEIO CONTÍNUO.

O comportamento dos fluidos é explicado por sua estrutura molecular:

- Os fluidos são compostos por moléculas coesas pela atração molecular, o que permite mobilidade das moléculas umas em relação às outras;
- Essa mesma estrutura molecular demonstra uma matéria descontínua, isto é, constituída por moléculas e espaços vazios entre elas;

Assim, propriedade local do fluido permanece inalterada, não importando o tamanho da amostra examinada. Por menor que seja uma divisão de um fluido (dm, dx, dv etc.) esta parte isolada deverá apresentar as mesmas propriedades que a matéria como um todo. Assim, os fluidos são um meio contínuo; não existem vazios no interior do fluido; despreza-se a mobilidade das moléculas e os espaços intermoleculares;.

A hipótese de contínuo admite a matéria contínua nas condições normais de engenharia; Permite a utilização das ferramentas do cálculo diferencial e integral na análise dos sistemas fluidos;

$$\rho = \frac{dm}{dV}$$

Voltando ao exemplo da massa específica:

- Pode ser feito em um ponto qualquer do fluido, para volumes elementares,
 pelo conceito de derivada, definida pela relação abaixo:
- Essa hipótese permite obter resultados úteis para a engenharia, mas não deve ser usada em aplicações cujo meio for constituído por gases rarefeitos.

Pressão pode ser definida como a razão entre uma forma e a área sobre a qual esta força atua (tensão normal).

$$P = \frac{F}{A} \left[\frac{N}{m^2} \right]$$

No SI, a pressão é medida em Pa. Outras unidades importantes: bar, atm, kgf/cm², mmHg, psi .

Pressão absoluta: Escala de medida, no qual o "zero" é obtido em vácuo ideal. Pode ser obtida pela soma da pressão manométrica com a pressão atmosférica local.

$$P_{absoluta} = P_{atmosf\'erica} + P_{manom\'etrica}$$

Pressão atmosférica: Pressão obtida pela coluna atmosférica acima do ponto em questão. Também conhecida como Pressão barométrica.

Pressão manométrica ou relativa: Diferença entre a pressão de um fluido e a pressão atmosférica local. Pressão que o fluido exerce sobre as paredes de um objeto.

Zero absoluto (vácuo absoluto)

SASHCROFT

160 LIST SEASON

100 Del

10

Pressão absoluta: barômetro

Pressão manométrica ou relativa: manômetro.

Vácuo: Vacuômetro – pressão abaixo da atmosférica.

https://www.youtube.com/watch?v=0SVFB9m7sTY

https://www.youtube.com/watch?v=hEYkVbx7cmY

4 - Um aluno recém formado, ao observar um medidor de pressão eletrônico que estava ligado, notou que este está acoplado a uma linha (tubulação) mas que nada estava sendo bombeado e que o aparelho marcava zero PSI. O medidor de pressão estava marcando pressão absoluta ou relativa? Justifique.

$$P_{absoluta} = P_{atmosf\'erica} + P_{manom\'etrica}$$

4 - Um aluno recém formado, ao observar um medidor de pressão eletrônico que estava ligado, notou que este está acoplado a uma linha (tubulação) mas que nada estava sendo bombeado e que o aparelho marcava zero PSI. O medidor de pressão estava marcando pressão absoluta ou relativa? Justifique.

Marcava pressão relativa. O aparelho não estava medindo nenhuma pressão exercida pelo produto da linha. A pressão absoluta neste caso seria a própria pressão atmosférica.

$$P_{absoluta} = P_{atmosf\'erica} + P_{manom\'etrica}$$

5 - Ao nível do mar, qual a quantidade (kg) de ar existente em um m²?

$$1 \text{ atm} = 101000 \text{ Pa} = 101000 \text{ N/m}^2$$

$$101000 N = m_{ar} x g$$

$$g = 9.81 \,\text{m/s}^2$$

 $m_{ar} = 10295 \text{ kg de ar em um metro quadrado}$

REOLOGIA

- A reologia (do Grego ἡέω rhéō, "fluxo" e -λογία, -logia, "estudo do") é o ramo da ciência que estuda as deformações e escoamentos da matéria.
- A viscosidade é a propriedade reológica mais conhecida, e a única que caracteriza os fluidos newtonianos

VISCOSIDADE

- É definida como a resistência do fluido ao fluxo;
- Maior a viscosidade, maior é a resistência ao movimento e menor é sua capacidade de escoar (fluir);
- Resistência ao cisalhamento;
- Um corpo sólido pode ser considerado um fluido com viscosidade infinita. Um fluido ideal é um fluido imaginário em que a viscosidade é nula.

Taxa de cisalhamento (1/s)

Fluidos newtonianos

Viscosidade é constante para diferentes taxas de cisalhamento (forças) e não variam com o tempo. Exemplos: água, soluções de sacarose, maioria dos gases (ar).

Taxa de cisalhamento (1/s)

Fluidos não newtonianos:

Fluido cuja viscosidade varia proporcionalmente à energia cinética que se imprime a esse mesmo fluido.

Possuem um comportamento mais complexo e não linear. Exemplos: emulsões, géis, sangue, o ketchup, asfalto, suspensões de amido, diversas tintas e o petróleo.

Taxa de cisalhamento (1/s)

Plástico de Bingham:

Estes fluidos requerem a aplicação de uma tensão, τ_0 , para que haja escoamento (com comportamento de fluido newtoniano). Quando submetidos a baixas tensões, $\tau < \tau_0$, se comportam como sólidos, ou seja, apresentam viscosidade infinita.

Tensão de cisalhamento, τ (Pa.s)

Taxa de cisalhamento (1/s)

Dilatante: A viscosidade aparente aumenta conforme o aumento da tensão.

Ex.: suspensão de água com maisena.

https://www.youtube.com/watch?v=2mYHGn_Pd5M

https://www.youtube.com/watch?v=JJfppydyGHw

Taxa de cisalhamento (1/s)

Pseudoplástico: A viscosidade aparente diminui conforme o aumento da tensão.

Ex.: Tintas à base de látex.

CONCEITO DE VISCOSIDADE

Viscosidade dependente do tempo Viscosidade independente do tempo	Reopéxico	A viscosidade aparente aumenta conforme a duração da tensão	Alguns lubrificantes
	Tixotrópico	A viscosidade aparente diminui conforme a duração da tensão	Várias tintas
	Dilatante	A viscosidade aparente aumenta conforme o aumento da tensão	Água com maisena
	Pseudoplástico	A viscosidade aparente diminui conforme o aumento da tensão	Tintas a base de latex e areia movediça

$$\tau = \frac{F_{\tau}}{A}$$

Análise dimensional:

$$[\tau] = FL^{-2}$$

 $\tau \alpha \frac{dV}{dy}$

Placa Fixa

Análise dimensional:
$$\left[\frac{dV}{dy}\right] = T^{-1}$$

Perfil linear

$$\tau = \mu \times \frac{V}{y}$$

Lei de Newton da Viscosidade – Fluidos Newtonianos

$$\frac{du}{dy} \rightarrow \tau = \mu \frac{du}{dy}$$

Lei de **Newton** da Viscosidade para escoamentos unidimensionais

Onde τ é a taxa de deformação angular do fluido, enquanto que a constante μ é o coeficiente de viscosidade ou viscosidade absoluta

Observação

$$\nu \left[\frac{m^2}{s} \right] = \frac{\mu}{\rho}$$

$$\mu \Rightarrow \left| \frac{N.s}{m^2} \right| ou[Pa.s]$$

O perfil de velocidade do escoamento de um óleo numa superfície é dada por $u(y) = 2y^2$. Onde u(y) é o perfil de velocidade em m/s e y é o afastamento da superfície em metros. O óleo apresenta **viscosidade absoluta de 0,002 Pa.s**. Determine a tensão de cisalhamento a 20 cm da superfície sólida.

São dadas 2 placas planas paralelas à distância de 2 mm. A placa superior move-se com velocidade de 4 m/s, enquanto a inferior é fixa. Se o espaço entre as duas placas for preenchido com óleo ($\nu=0,1{\rm cm^2/s}$ e $\rho=830{\rm kg/m^3}$), qual será a tensão de cisalhamento que atuará no óleo?

Existem diversas configurações de reômetros (ou viscosímetros), na mediação da viscosidade dos mais diversos tipos de fluidos.

https://www.youtube.com/watch?v=KScjG4PZdHs

https://www.youtube.com/watch?v=HUrVmJi70kc

Líquidos: Com o aumento da temperatura, a energia cinética média das moléculas se torna maior e consequentemente o intervalo de tempo médio no qual as moléculas passam próximas umas das outras torna-se menor. Assim, as forças intermoleculares se tornam menos efetivas e a viscosidade diminui com aumento da temperatura.

Gases: A viscosidade de um gás é produzida pela da transferência de *momentum*, ou seja, da transferência de quantidade de movimento entre camadas adjacentes que se movam com velocidades de módulos diferentes. Por este motivo, a viscosidade de um gás aumenta com sua temperatura, pois as velocidade médias das partículas do gás aumentam com sua temperatura, diminuindo o tempo de interação entre uma molécula e outra, tornando a transmissão de energia cada vez mais difícil.

Quanto maior a temperatura, maior será o número de moléculas de gás atiradas de uma camada para a outra

FIGURA B.1 Viscosidade como função da temperatura. (De R. W. Fox e T. A. McDonald, *Introduction to Fluid Mechanics*, 2^a ed., John Wiley & Sons, Inc., Nova York, 1978.)

Sob certas condições, a massa específica de um gás está relacionada com a pressão e a temperatura através da seguinte expressão:

$$PV = nRT$$

Em que P é a pressão absoluta, T é a temperatura absoluta [K] e R é a constante do gás, R = 8,31 J/kmol

$$PV = nRT$$
 $nR = \frac{PV}{T}$ $\frac{P_iV_i}{T_i} = \frac{P_fV_f}{T_f}$

Sob certas condições, a massa específica de um gás está relacionada com a pressão e a temperatura através da seguinte expressão:

$$PV = nRT$$

$$PV = nRT$$

$$nR = \frac{PV}{T}$$

$$nR = \frac{PV}{T} \qquad \frac{P_i V_i}{T_i} = \frac{P_f V_f}{T_f}$$

$$n = \frac{m}{M}$$

$$PV = mRT$$

$$R = [J/kg.K]$$

Um tanque de ar comprimido contém 6,0 kg de ar a 80°C. A pressão relativa do tanque é igual a 300 kPa. Determine o volume do tanque. A constante do gás para o ar é R = 287 (J/kg.k) e a pressão atmosférica vale 101,33 kPa.

$$PV = mRT$$

$$P_{abs} = P_{man} + P_{atm}$$

$$P_{abs} = 300kPa + 101, 3kPa = 401, 3kPa$$

$$T(K) = T(^{\circ}C) + 273 = 80 + 273 = 353K$$

$$401,33.V = 6,0 \times 287 \times 353$$

$$V = 1,51m^3$$

Um cilindro contém 0,500 m³ de ar a 200°C e a pressão absoluta igual a 2,8 kgf/cm². O ar é comprimido até o volume de 0,1 m³, em condições isotérmicas. Calcule a pressão do

novo volume de ar e o módulo de elasticidade volumétrico. Considerar, constante do gás

para o ar R = 287 J/kg K.

$$P_1 = 2.8 \frac{Kg_f}{cm^2} \cdot \frac{101325Pa}{1,03323 \frac{Kg_f}{cm^2}} = 274,59kPa$$

$$\frac{P_iV_i}{T_i} = \frac{P_fV_f}{T_f}$$

$$274,58kPa \times 0,5 = 0,1 \times P_2$$

$$P_2 = 1372,93kPa$$

Um volume de 10 L de um gás perfeito teve sua pressão aumentada de 1 para 2 atm e sua temperatura aumentada de -73 °C para +127 °C. Qual o volume final, em litros, alcançado pelo gás?

Um tanque de ar comprimido apresenta um volume igual a 2,38x10-2m³. Determine a massa específica e o peso do ar contido no tanque quando a pressão relativa do ar no tanque for igual a 340kPa. Admita que a temperatura do ar no tanque é 21ºC e que a pressão atmosférica vale 101,3kPa. A constante do gás para o ar é R=287 (J/kg K)

$$P_{abs} = P_{man} + P_{atm}$$

 $P_{abs} = 340kPa + 101, 3kPa = 441, 3kPa$

$$T(K) = T(^{\circ}C) + 273 = 21 + 273 = 294K$$

$$\rho = \frac{P}{RT} \qquad \rho = \frac{441300}{287 \times 294} = 5,23 \frac{kg}{m^3}$$

$$Peso = \rho gV = 5,23 \times 9,81 \times 2,38.10^{-2} = 1,22N$$

$$PV = mRT$$

O pistão de um cilindro contendo ar tem massa igual a 5 kg e diâmetro igual a 10 cm. A pressão atmosférica local é de 105 kPa. Considerando que todo o conjunto está à temperatura de 27°C e a massa do gás é 0,2 kg, determine o volume ocupado. Considerar, constante do gás para o ar R = 287 J/kg K.

$$P_{man} = \frac{F}{A} = \frac{m_p g}{\pi D^2} = \frac{5 \times 9,81}{\pi 0,1^2}$$

$$P_{absoluta} = P_{atmosf\'erica} + P_{manom\'etrica}$$
 $V = 0,1548 \text{ m}^3$ $P_{absoluta} = 105000 + 6245$ $PV = mRT$ $P_{absoluta} = 111245$ $111245 \times V = 0,2 \times 287 \times 300$

ESTÁTICA DOS FLUIDOS

Abordagem dos fluidos em repouso ou movimento uniforme (movimento de corpo sólido). Em um fluido em repouso não existem tensões de cisalhamento: a viscosidade não intervém no problema.

FLUIDOS INCOMPRESSÍVEIS:

Fluidos cuja densidade sempre permanece constante com o tempo.

COMPRESSÃO:

Alteração de volume de um fluido quando submetido a uma pressão exterior. Exemplo já visto: da seringa com água e com ar;.

A pressão aplicada sobre um fluido em equilíbrio estático é distribuída igualmente e sem perdas para todas as suas partes, inclusive para as paredes do recipiente em que está contido

https://www.youtube.com/watch?v=bfL5vrj4jh8

https://www.youtube.com/watch?v=vZLUzu6_xmc

Funcionamento de uma macaco hidráulico

https://www.youtube.com/watch?v=j6zo9-pg_vo

Exercício: Uma prensa hidráulica possui êmbolos de áreas A e 2A. Se um objeto de 1000 N for colocado sobre o êmbolo maior, qual deverá ser a força aplicada sobre o êmbolo menor para elevar o objeto?

$$P_1 = P_2$$

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

$$P_1 = P_2$$
 $\frac{F_1}{A_1} = \frac{F_2}{A_2}$ $\frac{F_1}{A_1} = \frac{1000N}{2A_1}$

$$F_1 = 500N$$

Exercício: Um bloco de massa m = 9000kg é colocado sobre um elevador hidráulico como mostra a figura. A razão entre o diâmetro do pistão (d_P) que segura a base do elevador e o diâmetro (d_F) onde deve-se aplicar a força F é de d_P / d_F = 30. Encontre a força necessária equilibrar o sistema.

$$P_1 = P_2$$
 $\frac{F_1}{A_1} = \frac{F_2}{A_2}$

$$F_1 = mg$$

$$F_1 = mg \qquad \frac{d_P}{d_F} = 30$$

$$P_1 = \frac{9000.9,81}{\frac{\pi d_p^2}{4}} = \frac{F_2}{\frac{\pi d_f^2}{4}}$$

$$P_1 = \frac{88290}{d_p^2} = \frac{F_2}{d_f^2}$$

Princípio de Pascal

Uniube

Exercício: Um bloco de massa m = 9000 kg é colocado sobre um elevador hidráulico como mostra a figura. A razão entre o diâmetro do pistão (d_P) que segura a base do elevador e o diâmetro (d_F) onde deve-se aplicar a força F é de d_P / d_F = 30. Encontre a força necessária equilibrar o sistema.

$$P_1 = \frac{88290}{d_p^2} = \frac{F_2}{d_f^2}$$

$$88290 = F_2 \left(\frac{d_p}{d_f}\right)^2$$

$$88290 = F_2 \cdot (30)^2$$

$$88290 = F_2 \cdot 900$$

$$F_2 = 98,1N$$

EXERCÍCIO 8

O elevador hidráulico consta de dois recipientes providos de êmbolos, cujas seções têm áreas diferentes e se intercomunicam por um fluido. Imaginando-se que o diâmetro do cilindro maior é 5 vezes o diâmetro do cilindro menor e a massa do veículo é igual a 2998 kg, qual deverá ser a força F₁ para equilibrar o sistema?

$$P_1 = P_2$$
 $\frac{F_1}{A_1} = \frac{F_2}{A_2}$

$$\frac{2998 \times 9,81}{\pi D_2^2} = \frac{F_1}{\pi D_1^2}$$

$$\frac{2998 \times 9,81}{\pi (5D_1)^2} = \frac{F_1}{\pi D_1^2}$$

$$F_1 = 1176 \text{ N}$$

EXERCÍCIO 9

A figura a seguir mostra, de forma simplificada, o sistema de freios a disco de um automóvel. Ao pressionar o pedal do freio, este empurra o êmbolo de um primeiro pistão, que, por sua vez, por meio 💂 do óleo do circuito hidráulico, empurra um segundo pistão. O segundo pistão pressiona uma pastilha de freio contra um disco metálico preso à roda, fazendo com que ela diminua sua velocidade angular. Considerando o diâmetro d_2 do segundo pistão duas vezes maior que o diâmetro d_1 do primeiro, qual a razão entre a força aplicada ao pedal de freio pelo pé do motorista e a força aplicada à pastilha de freio?

$$P_{1} = P_{2} \qquad \frac{F_{1}}{A_{1}} = \frac{F_{2}}{A_{2}} \qquad \frac{F_{1}}{F_{2}} = \frac{A_{1}}{A_{2}} \qquad \frac{F_{1}}{F_{2}} = \frac{\frac{\pi d_{1}^{2}}{4}}{\frac{\pi d_{2}^{2}}{4}} = \frac{d_{1}^{2}}{d_{2}^{2}} \qquad \frac{F_{1}}{F_{2}} = \frac{d_{1}^{2}}{\left(2d_{1}\right)^{2}} = \frac{1}{4}$$

$$\frac{F_1}{F_2} = \frac{d_1^2}{\left(2d_1\right)^2} = \frac{1}{4}$$