【化学】选必一: 电化学——电解池

基本概念

能量转化

将电能转变为化学能的装置。

电解、电镀和充电都发生在电解池上。

工作原理

- 阴极:发生还原反应,得电子,与外电源负极相接。口诀:降得还原氧化剂。
- 阳极:发生氧化反应,失电子,与外电源正极相接。
- 离子移动: 阴离子向阳极移动, 阳离子向阴极移动。 (阴阳相吸)

电解池是非自发反应,需要接**外接电源/原电池**,而原电池是自发反应,不需要接外接电源。

电解规律

阴极产物的判断

考虑谁「得电子」

阳离子或水中的 H^+ 。注意: H_2O 是在水溶液中需要考虑的, 其他状态 (例如熔融态) 不需要考虑。

得电子的顺序 (氧化性顺序)

 $Ag^+>Fe^{3+}>Cu^{2+}>H^+(\mathop{\not{i}\!\!\!/})>Fe^{2+}>Zn^{2+}>H^+(H_2O)>K^+,Ca^{2+},Na^+,Mg^{2+},Al$

例如:同时含有 ${\rm Fe^{2+},H^+}$ 和 ${\rm Cu^{2+}}$ 的溶液中,先得电子的是 ${\rm Cu^{2+}}$,再是 ${\rm H^+}$,最后是 ${\rm Fe^{2+}}$ 。

对于 Fe^{3+} , 在溶液中得电子会先还原为 Fe^{2+} , Fe^{2+} 再还原成 Fe。

对于 $H^+(\mathfrak{P}) > H^+(H_2O)$ 的理解(拿 Fe^{2+} 作为中间离子举例):

- 对于 H_2SO_4 和 $FeSO_4$ 的混合溶液,此时 H^+ 浓度较大,**酸**中的 H^+ 会先得电子, Fe^{2+} 再得电子。
- 对于 ${\rm FeSO_4}$ 水溶液,溶液中虽然有极少量**水**电离出的 ${\rm H^+}$,但依然是 ${\rm Fe^{2+}}$ 先得电子,水中的 ${\rm H^+}$ 再得电子。

若是电解水溶液中的 ${
m K^+/Ca^{2+}/Na^+/Mg^{2+}/Al^{3+}}$,等同电解水(即其中水的 ${
m H^+}$ 得电子最多,其他可忽略不计)。

此时的电极方程式为:

$$2 \, \mathrm{H_2O} + 2 \, \mathrm{e^-} = \mathrm{H_2} \uparrow \, + 2 \, \mathrm{OH^-}$$

这就是「放氢生碱」的化学方程式。

阳极产物的判断

考虑谁「失电子」

阴离子或水中的 OH^- 或**电极材料**。

原则:一般情况下,优先考虑电极材料。

若是活性电极 (除 Pt, Au 和石墨外):则金属单质失电子。

若是**惰性**电极 (Pt, Au 和石墨): 电极材料只导电, 不反应。

失电子顺序 (还原性顺序)

主要是对于惰性电极而言。

$$S^{2-} > I^{-} > Fe^{2+} > Br^{-} > Cl^{-} > H_2O(OH-) >$$
 最高价含氧酸根 $(NO_3^-, SO_4^{2-}, ClO_4^-)$

口诀: 留(硫)点(碘)铁生锈长氯锰(毛)。 电解池中一般不考虑锰离子。

若是电解**最高价含氧酸根** $(NO_3^-, SO_4^{2-}, ClO_4^-, PO_4^{3-}, MnO_4^-$ 等) , 等同电解水。

此时的电极方程式为:

$$2\,{
m H}_2{
m O} - 4\,{
m e}^- = {
m O}_2 \uparrow \, + 4\,{
m H}^+$$

这就是「放氧生酸」的方程式。

有关电解水:

阳极是「放氧生酸」, 方程式:

$$2 H_2 O - 4 e^- = O_2 \uparrow + 4 H^+$$

阴极是「放氢生碱」,方程式:

$$2 H_2 O + 2 e^- = H_2 \uparrow + 2 O H^-$$

口诀:「负氢正氧」或「阴氢阳氧」。理解:负极电解水生成氧气,阴极电解水生成氢气。

惰性电极电解电解质溶液的四大类型

电解水型

总的电解反应式都是电解水方程式的类型。

H₂SO₄ 溶液

阴极可以得电子的有酸电离的 ${
m H}^+$ 和水电离的 ${
m H}^+$,根据优先顺序可知,此处以酸电离出的 ${
m H}^+$ 得电子为主。

阴极反应式:

$$2 \, \mathrm{H^+} + 2 \, \mathrm{e^-} = \mathrm{H_2} \uparrow$$

阳极可以失电子的有阴离子 SO_4 一和水电离的 OH ,由于 SO_4 2 属于**最高价含氧酸根**,所以其失电子可忽略不计。所以整体上相当于以水电离出的 OH 失电子为主。

阳极反应式:

$$4 \, \mathrm{H_2O} - 4 \, \mathrm{e}^- = \mathrm{O_2} \uparrow \, + 4 \, \mathrm{H}^+$$

将阴阳极反应式合并得到电解方程式:

$$2\,\mathrm{H}_2\mathrm{O} \stackrel{\mathrm{\tiny ext{ iny H}}}{=\!\!\!=\!\!\!=} 2\,\mathrm{H}_2 \uparrow + \mathrm{O}_2 \uparrow$$

NaOH 溶液

阴极可以得电子的有阳离子 Na^+ 和水电离的 H^+ ,由于电解 Na^+ 等同电解水,所以相当于水电离的 H^+ 得电子。

阴极反应式:

$$2\,H_2O + 2\,e^- = H_2 \uparrow + OH^-$$

阳极可以失电子的有 $\rm NaOH$ 电离的 $\rm OH^-$ 和水电离的 $\rm OH^-$,水电离的 $\rm OH^-$ 很少,所以主要以 $\rm NaOH$ 电离的 $\rm OH^-$ 失电子为主。

阳极反应式:

$$4\,\mathrm{OH^-} - 4\,\mathrm{e^-} = \mathrm{O_2} + 2\,\mathrm{H_2O}$$

将阴阳极反应式合并得到电解方程式:

$$2\,\mathrm{H}_2\mathrm{O} \, \stackrel{\mathrm{leff}}{=\!\!\!=\!\!\!=} \, 2\,\mathrm{H}_2 \uparrow + \mathrm{O}_2 \uparrow$$

KNO3溶液

阴极可以得电子的有阳离子 ${
m K}^+$ 和水电离的 ${
m H}^+$,由于电离 ${
m K}^+$ 等同电解水,所以相当于水电离的 ${
m H}^+$ 得电子。

阴极反应式:

$$2 \, \mathrm{H_2O} + 2 \, \mathrm{e^-} = \mathrm{H_2} \uparrow \, + 2 \, \mathrm{OH^-}$$

阳极可以失电子的有阴离子 ${
m NO_3}^{2-}$ 和水电离的 ${
m OH^-}$,由于 ${
m NO_3}^{2-}$ 属于**最高价含氧酸根**,所以其失电子可忽略不计。所以整体上相当于以水电离出的 ${
m OH^-}$ 失电子为主。

阳极反应式:

$$2 \, \mathrm{H_2O} - 4 \, \mathrm{e}^- = \mathrm{O_2} \, \uparrow \, + 4 \, \mathrm{H}^+$$

将阴阳极反应式合并得到电解方程式:

$$2\,\mathrm{H}_2\mathrm{O} \stackrel{\mathrm{leff}}{=\!\!\!=\!\!\!=} 2\,\mathrm{H}_2 \uparrow + \mathrm{O}_2 \uparrow$$

总结

电解带有最高价含氧酸根的酸,其总的电解方程式等价于电解水。

电解大部分强酸, 其总的电解方程式也等价于电解水。

电解对象

水。

浓度变化

电解水使得水的含量减少, 电解质溶液中溶质浓度增大。

pH **变化**

电解质是酸性, 电解后 pH 减小。

电解质是碱性, 电解后 pH 增大。

电解质是中性, 电解后 pH 不变。

恢复电解质溶液所加物质

由于水被电解, 所以应该加水。

电解电解质型

电解质本身被消耗的类型。

HCl 溶液

同理 H_2SO_4 溶液可知,阴极反应式为:

$$2 \, \mathrm{H^+} + 2 \, \mathrm{e^-} = \mathrm{H_2} \uparrow$$

阳极可以失电子的有阴离子 Cl^- 和 $\mathrm{H}_2\mathrm{O}$ 电离的 OH^- ,主要以 Cl^- 失电子为主。

阳极反应式:

$$2 \operatorname{Cl}^- - 2 \operatorname{e}^- = \operatorname{Cl}_2 \uparrow$$

将阴阳极反应式合并得到电解方程式:

$$2\,\mathrm{HCl} \stackrel{\mathrm{\'e}\mathrm{ff}}{=\!\!\!=\!\!\!=} \,\mathrm{H}_2 \uparrow + \mathrm{Cl}_2 \uparrow$$

CuBr₂ 溶液

阴极可以得电子的有阳离子 Cu^{2+} 和水电离的 H^+ ,主要以 Cu^{2+} 得电子为主。

阴极反应式:

$$Cu^{2+} + 2e^{-} = Cu$$

同理 HCl 溶液可知, 阳极反应式为:

$$2 \, \mathrm{Br}^- + 2 \, \mathrm{e}^- = \mathrm{Br}_2$$

将阴阳极反应式合并得到电解方程式:

$$\mathrm{CuBr}_2 \stackrel{\text{\tiny \'eff}}{=\!\!\!=\!\!\!=} \mathrm{Cu} + \mathrm{Br}_2$$

电解对象

对应电解质。

浓度变化

对应电解质浓度降低。

pH **变化**

酸性电解质溶液 pH 升高。

碱性电解质溶液 pH 降低。

中性电解质溶液 pH 不变。

恢复电解质溶液所加物质

对应电解质。

*放氢生碱型

NaCl 溶液

同理 NaOH 溶液可知, 阴极反应式:

$$2 \, \mathrm{H_2O} + 2 \, \mathrm{e^-} = \mathrm{H_2} \uparrow \, + 2 \, \mathrm{OH^-}$$

同理 HCl 溶液可知, 阳极反应式:

$$2\operatorname{Cl}^- - 2\operatorname{e}^- = \operatorname{Cl}_2\uparrow$$

电解方程式:

$$2\,\mathrm{NaCl} + 2\,\mathrm{H}_2\mathrm{O} \, \stackrel{\text{\tiny \textit{\textbf{e}fff}}}{=\!\!=\!\!=\!\!=} \, \mathrm{Cl}_2 \uparrow \, + \mathrm{H}_2 \uparrow \, + 2\,\mathrm{NaOH}$$

电解对象: NaCl 和 H_2O 。更加严谨的说,应该是 NaCl 中的 Cl^- 和 H_2O 电离的 H^+ 。

浓度变化: c(NaOH) 增加。

pH变化: pH增大。

恢复电解质溶液所加物质:根据电解方程式,相当于 $\mathbf{H}: \mathbf{Cl}$ 按照 $\mathbf{1}: \mathbf{1}$ 离开溶液,所以应该加入 \mathbf{HCl} 恢复电解质溶液。

*放氧生酸型

CuSO₄ 溶液

同理 $CuBr_2$ 溶液可知,阴极方程式为:

$$Cu^{2+} + 2e^{-} = Cu$$

同理 H_2SO_4 溶液可知,阳极方程式为:

$$4 \, \mathrm{H}_2 \mathrm{O} - 4 \, \mathrm{e}^- = \mathrm{O}_2 \, \uparrow \, + 4 \, \mathrm{H}^+$$

电解方程式:

$$2\,\mathrm{CuSO_4} + 2\,\mathrm{H_2O} \stackrel{\mathrm{e}_{\mathrm{H}\mathrm{F}}}{=\!=\!=\!=} 2\,\mathrm{Cu} + \mathrm{O_2} \uparrow \, + 2\,\mathrm{H_2SO_4}$$

电解对象: $CuSO_4$ 和 H_2O 。更严谨的说,应该 $CuSO_4$ 中的 Cu^{2+} 和 H_2O 电离出的 H^+ 。

浓度变化: $c(H_2SO_4)$ 增加。

pH变化: pH降低。

恢复电解质溶液所加物质:

根据电解方程式,相当于 Cu: O 两种原子按照 1:1 离开溶液,所以应该加入 CuO 恢复电解质溶液。

注意:

- 加入 $CuCO_3$ 是可以的,其可以拆解成 CuO 和 CO_2 ,遇到酸会直接反应生成 CO_2 离开溶液。
- 不能加入 $Cu(OH)_2$, 会多引入氢原子和氧原子。

电解的应用

*氯碱工业

前置知识——粗盐提纯:

在含有 MgCl₂ 和 CaCl₂ 的粗盐中提纯 NaCl:

先加入过量 NaOH,使得 Mg^{2+} 沉淀;再加入过量 $BaCl_2$ 使得 SO_4^{2-} 沉淀;最后加入过量 Na_2CO_3 使得 Ca^{2+} 沉淀。最后加入适量盐酸,除去过量的 NaOH 和 Na_2CO_3 。最后可以得 到精致饱和 NaCl 溶液。

注意 BaCl₂ 必须在 Na₂CO₃ 之前加入。

精制饱和 NaCl 溶液 H₂O(含少量 NaOH) 离子交换膜为阳离子交换膜

阳极反应式:

$$2 \operatorname{Cl}^- - 2 \operatorname{e}^- = \operatorname{Cl}_2 \uparrow$$

阴极反应式:

$$2\,\mathrm{H}_2\mathrm{O} + 2\,\mathrm{e}^- = \mathrm{H}_2 \uparrow \, + 2\,\mathrm{OH}^-$$

注意:虽然水溶液中含有少量 NaOH ,但由于其碱含量不足,所以失电子的主要还是水电离的 OH^- 。 总电解方程式:

$$2\,\mathrm{NaCl} + 2\,\mathrm{H}_2\mathrm{O} \, \stackrel{\text{\tiny \textit{leff}}}{=\!\!\!=\!\!\!=} \, \mathrm{H}_2 \uparrow \, + \, \mathrm{Cl}_2 \uparrow \, + \, 2\,\mathrm{NaOH}$$

注意:这里的「离子交换膜」只能用阳离子交换膜,即只能让 Na^+ 向阴极移动。不能用阴离子交换膜,如果使用阴离子交换膜,会使得 OH^- 向阳极移动, Cl^- 会直接跟 OH^- 发生歧化反应, Cl^- 就不能失电子产生 Cl_2 了。如果需要得到 HClO 可以使用阴离子交换膜。

所以「离子交换膜」的类型与装置的目的有关。

电镀

以用铁做「待镀金属」,铜做「镀层金属」为例。

【阴阳极】

待镀金属作阴极,镀层金属作阳极,用含镀层金属离子的电解质溶液作电镀液。

口诀: 阳镀阴被镀。

【特点】

一增: 阴极质量增加。

一碱: 阳极质量减少。

一不变: 电解质溶液浓度不变 (不考虑水的挥发)。

且阴极增加的质量与阳极减少的质量相等。

电解精炼铜

【目的】提纯粗铜。

【电极材料】阳极为粗铜,阴极为纯铜。口诀:阴纯阳粗。

【电解质溶液】含 $\mathrm{Cu^{2+}}$ 的盐溶液,如 $\mathrm{CuSO_{4}}$ 。

【阴阳极反应】

阳极:

第一阶段:

$${
m Zn} - 2\,{
m e}^- = {
m Zn}^{2+}$$

 ${
m Fe} - 2\,{
m e}^- = {
m Fe}^{2+}$
 ${
m Ni} - 2\,{
m e}^- = {
m Ni}^{2+}$

第二阶段:

$${
m Cu} - 2\,{
m e}^- = {
m Cu}^{2+}$$

注意:

- 阳极减少的质量,不是只有 Cu,还有 Zn, Fe等。
- 阳极的铜溶解之后,比铜更不活泼的 Ag, Au 等金属就会再阳极形成沉积,我们称它为「阳极泥」。

阴极:

$$Cu^{2+} + 2e^{-} = Cu$$

电冶金

	阴极	阳极	总反应	
冶炼钠	$2{ m Na^+} + 2{ m e^-} = 2{ m Na}$	$2\mathrm{Cl}^ 2\mathrm{e}^- = \mathrm{Cl}_2 \uparrow$	2 NaCl(熔融) = 2 Na + Cl ₂ ↑	
冶炼镁	${ m Mg^{2+}} + 2{ m e^-} = { m Mg}$	$2\mathrm{Cl}^ 2\mathrm{e}^- = \mathrm{Cl}_2 \uparrow$	$\mathrm{MgCl}_2($ 熔融 $) \stackrel{ ext{eff}}{=\!\!\!=\!\!\!=\!\!\!=} \mathrm{Mg} + \mathrm{Cl}_2 \uparrow$	
冶炼铝	${ m Al}^{3+} + 3{ m e}^- = { m Al}$	$2{ m O}^{2-} - 4{ m e}^- = { m O}_2 \uparrow$	2 Al ₂ O ₃ (熔融) = es 	

注意:

- 冶炼钠和冶炼镁必须是熔融状态下的 NaCl 和 $MgCl_2$,如果是水溶液, Na^+ 无法在水中得电子得到钠单质。
- 不能通过熔融状态下的 AlCl₃ 来冶炼铝, 因为共价化合物熔融态不导电。
- 主要选择氯化物来冶炼金属是因为氯化物成本较低。
- 冰晶石的化学式是 Na₃AlFe₆。

电解池电极判断

	与外接电源的接法	电极反应	电子流向	离子移向
阳极	与外接电源正极相连	氧化反应	流出	阴离子移向
阴极	与外接电源负极相连	还原反应	流入	阳离子移向

口诀: 「阴阳相吸」, 即阴离子移向阳极, 阳离子移向阴极。

判断技巧:

- 1. 阴极的电极反应与阴极的电极材料无关,但**阳极的电极反应必须优先考虑电极材料**,若为活性电极,则金属电极本身失去电子;若为惰性电极(如 Pt, Au 和石墨等),则电极只导电,不反应。书写电解池的电极反应式时,一定要优先看阳极的电极材料。
- 2. 若题目已经给出反应物与生成物信息,则按照「阳极、氧化、化合价升高,阴极、还原、化合价降低」确定阴阳极的放电物质。
- 3. 电解水溶液中的 $K^+, Ca^{2+}, Na^+, Mg^{2+}, Al^{3+}$ 等,阴极的电极反应等同于电解水:

$$2\,H_2O + 2\,e^- = H_2 \uparrow \, + 2\,OH^-$$

即「放氢生碱」, 化学计量数: 2212。

若用惰性电极电解水溶液中的 ${\rm SO_4}^{2-}, {\rm NO_3}^-, {\rm ClO_4}^-$ 等最高价含氧酸根离子,阳极的电极反应等同于电解水:

$$2 \, \mathrm{H_2O} - 4 \, \mathrm{e}^- = \mathrm{O_2} \, \uparrow \, + 4 \, \mathrm{H}^+$$

即「放氧生酸」, 化学计量数: 2414。

电解池电极反应式书写

第一步

根据题目信息写出电极反应式「架构」。

阳极:

$$A - n e^- \longrightarrow B$$

阴极:

$$\mathrm{C} + n\,\mathrm{e}^- \longrightarrow \mathrm{D}$$

通过化合价变化确认得失电子数,并且需要先搞定「变价元素的原子守恒」。

第二步

调平电荷:

酸性溶液用 ${
m H}^+$ 、碱性溶液用 ${
m OH}^-$ 、熔融碳酸盐用 ${
m CO_3}^{2-}$ 、氧化物电解质用 ${
m O}^{2-}$ 、锂离子用 ${
m Li}^+$ 等,按照题目灵活调整。

第三步

配平:

水溶液电解质:看 $H \rightarrow H_2O$,用O检查;

熔融碳酸盐:看C补 CO_2 .

按照题目灵活调整。

示例

以熔融电解池捕获二氧化碳的装置为例。

由于 ${\rm CO_3}^{2-}$ 失电子变成 ${\rm C}$, ${\rm C_2O_5}^{2-}$ 得电子变成 ${\rm CO_2}$, 所以电极 a 是阳极,电极 b 是阴极。 阴极反应式:

$$CO_3^{2-} + 4e^- = C + 3O^{2-}$$

阳极反应式:

$$2 C_2 O_5^{2-} - 4 e^- = 4 CO_2 \uparrow + O_2 \uparrow$$

例题

用惰性电极电解硝酸工业的尾气 NO 可制备 NH_4NO_3 ,其工作原理如图所示。 为使电解产物全部转化为 NH_4NO_3 ,需向电解产物中补充适量 NH_3 。

当实际参加反应的 NO 为 8 mol 时,要将电解产生的硝酸全部转化为硝酸铵,还应至少通入多少 mol NH_3 ?

分析:

一般此类计算题需要通过总的电解反应方程式配合「关系式关系量」求解。

阴极反应式:

$${\rm NO} + 5\,{\rm e}^- + 6\,{\rm H}^+ = 3\,{\rm NH_4}^+ + 3\,{\rm H_2O}$$

阳极反应式:

$${\rm NO} - 3\,{\rm e}^- + 2\,{\rm H}_2{\rm O} = {\rm NO}_3{}^- + 4\,{\rm H}^+$$

合并得到总电解方程式为:

$$8\,\mathrm{NO} + 7\,\mathrm{H}_2\mathrm{O} \, \stackrel{\text{\tiny \textit{\tiny \tiny \#}\#}}{=\!=\!=\!=} \, 3\,\mathrm{NH}_4\mathrm{NO}_3 + 2\,\mathrm{HNO}_3$$

根据 $8\,\mathrm{NO}\,\sim 2\,\mathrm{HNO_3}\,\sim 2\,\mathrm{NH_3}$ 可知,需要通入 $2\,\mathrm{mol}\,\,\mathrm{NH_3}$ 。

电解池题型强化

解题技巧

- 1. 一般题目中有外接电源就说明是电解池,「通入一定电流」等字眼说明要从电解池角度考虑。
- 2. 海水中主要含有的离子: Na^+ 、 Cl^- 、 Mg^{2+} 等。
- 3. 涉及到有关电解过程中某离子量的变化问题(包含 pH 变化问题),可以考虑根据等物质的量电子的转移时,阴阳极对应离子量的变化来判断。
- 4. 有机反应中,加 H 或去 O 发生还原反应。
- 5. 求电解过程中产生某气体的**体积**,必须知道**温度压强**。只有在标况下, $1 \bmod$ 气体的体积才是 22.4 L。
- 6. 涉及到离子交换膜通过离子的问题,需要考虑电解池的目的,通过电解目的分析反应。
- 7. 去离子水发生电解等同于电解水。
- 8. 有关离子交换膜的问题,可以结合**装置目的**和题目条件等信息来判断。例如装置目的需要环境保持酸性,那么离子交换膜必须保证 H^+ 能移动到对应环境中。
- 9. 涉及到某电极溶液质量减少的问题,除了要考虑反应得到的沉淀和气体不计入溶液质量之外,还要 考虑离子交换膜导致的离子扩散也不能计入溶液质量。

例题

例 1(2022 广东):以熔融盐为电解液,以含 Cu、Mg 和 Si 等的铝合金废料为阳极进行电解,实现 Al 的再生。该过程中()

- A. 阴极发生的反应为 $\mathrm{Mg}-2\,\mathrm{e}^-=\mathrm{Mg}^{2+}$
- B. 阴极上 Al 被氧化
- C. 在电解槽底部产生含 Cu 的阳极泥
- D. 阳极和阴极的质量变化相等

分析:

首先考虑整个流程,阳极含有 Cu、Mg 等各种杂质,由于单质还原性:

离子还原性:

$${\rm Mg^{2+}} < {\rm Al^{3+}} < {\rm Cu^{2+}}$$

所以 ${
m Mg}$ 会优先于 ${
m Al}^{3+}$ 在阳极溶解,但由于氧化性 ${
m Mg}^{2+}<{
m Al}^{3+}$ 所以可以控制电解环境,使得 ${
m Al}^{3+}$ 被还原,但 ${
m Mg}^{2+}$ 不还原。

 Cu^{2+} 氧化性高于 Al^{3+} ,所以溶液中的 Cu^{2+} 会优先于 Al^{3+} 在阴极还原,为了只让 Al^{3+} 还原,应该控制电解环境使得 Cu 在阳极始终不溶解。

- A 选项:只有阳极才会失电子, A 错误。
- B选项: 阴极上 Al 被还原, B错误。
- C 选项:由于 Cu 在阳极上始终没有溶解,所以最后在电解槽底部会产生含 Cu 的阳极泥,C 正确。

• D 选项:由于阳极上 Mg 和 Al 都溶解,但阴极上只有 Al^{3+} 被还原为 Al ,所以阴阳极质量变化不相等,D 错误。

例 2 (2021 全国乙)沿海电厂采用海水为冷却水,但在排水管中生物的附着和滋生会阻碍冷却水排放并降低冷却效率。为解决这一问题,通常在管道口设置一对惰性电极(如图所示),通入一定的电流。下列叙述错误的是()

- A. 阳极发生将海水中的 Cl^- 氧化生成 Cl_2 的反应
- B. 管道中可以生成氧化灭杀附着生物的 NaClO
- C. 阴极生成的 H_2 应及时通风稀释安全地排入大气
- D. 阳极表面形成的 $Mg(OH)_2$ 等积垢需要定期清理

分析:

海水中主要的离子有 Cl^- 、 Na^+ 、 Mg^{2+} ,具体分析如下:

生成的 Cl_2 与 OH^- 反应:

$$Cl_2 + 2OH^- = Cl^- + ClO^- + H_2O$$

也可以视为:

$$Cl_2 + 2 NaOH = NaCl + NaClO + H_2O$$

- A 选项:根据上图可以看出 A 正确。
- B 选项:根据上述方程可知 B 正确。
- C 选项: 该装置是密闭装置, 氢气过量会爆炸, 所以 C 选项正确。
- D 选项: 阴极产生的 $\mathrm{OH^-}$ 与海水中的 $\mathrm{Mg^{2+}}$ 结合生成 $\mathrm{Mg(OH)_2}$, 不是阳极,所以 D 错误。

例 3(2021 辽宁)利用有机物 Q 和 QH_2 电解转化法从烟气中分离 CO_2 的原理如图,已知气体可选择通过膜电极,溶液不能通过,下列说法错误的是()

- A.a 为电源负极
- B. 溶液中 Q 的物质的量保持不变。
- $C. CO_2$ 在 M 极被还原
- D. 分离出的 CO_2 从出口 2 排除。

其 他选项容易判断,这里只分析 CD 中涉及 CO_2 的分离过程。

有下图分析:

当含有 CO_2 的烟气从右侧入口进入时,会通过膜电极,与阴极的 OH^- 反应,生成 HCO_3^- ,根据「阴阳相吸」, HCO_3^- 离子向右移动会与阳极的 H^+ 反应,生成 CO_2 和 H_2O ,所以 CO_2 没有被还原,对应分离出的 CO_2 会从出口 2 排出。

例 4(2022 浙江 6 月选考)通过电解废旧锂电池中的 ${\rm LiMn_2O_4}$ 可获得难溶性的 ${\rm Li_2CO_3}$ 和 ${\rm MnO_2}$,电解示意图如下(其中滤布的作用时阻挡固体颗粒,但离子可自由通过。电解过程中溶液的体积变化 忽略不计)。下列说法不正确的是()

A. 电极 A 为阴极,发生还原反应

B. 电极 B 的电极反应: $2 \, \mathrm{H_2O} + \mathrm{Mn^{2+}} - 2 \, \mathrm{e^-} = \mathrm{MnO_2} + 4 \, \mathrm{H^+}$

C. 电解一段时间后溶液中 Mn^{2+} 浓度保持不变

D. 电解结束,可通过调节 pH 除去 Mn^{2+} ,再加入 $\mathrm{Na_2CO_3}$ 溶液以获得 $\mathrm{Li_2CO_3}$ 。

分析:

根据对应离子前后价态变化可知: 电极 A 为阴极, 电极 B 为阳极。

阳极反应式:

$${\rm Mn^{2+}} - 2\,{\rm e^-} + 2\,{\rm H_2O} = {\rm MnO_2} \downarrow \, + 4\,{\rm H^+}$$

由于在 $\mathrm{H}_2\mathrm{SO}_4$ 溶液中,所以阳极反应式应该用 H^+ 调平电荷。这里的沉淀符号可以不写。

阴极反应式:

$$LiMn_2O_4 + 3e^- + 8H^+ = 2Mn^{2+} + Li^+ + 4H_2O$$

由于 ${\rm Mn}({\rm OH})_2$ 是白色沉淀,所以 ${\rm Mn}^{2+}$ 不能与 ${\rm OH}^-$ 在溶液中大量共存,所以应该用 ${\rm H}^+$ 调平电 荷。

这里反应物中 H^+ 是从阳极反应生成经过滤布 (离子交换膜) 到阴极的。

- A 选项:根据上述分析可知 A 正确。
- B 选项:根据上述分析可知 B 正确。
- C选项: 阴极生成 $2\,\mathrm{Mn^{2+}}$ 转移 $3\,\mathrm{e^-}$,阳极消耗 $\mathrm{Mn^{2+}}$ 转移 $2\,\mathrm{e^-}$,所以转移等量电子, $\mathrm{Mn^{2+}}$ 离子的量增加,C 错误。
- D 选项:可通过增加溶液中的 $c(H^+)$ 使得 Mn^{2+} 沉淀为 $Mn(OH)_2$; 再加入 Na_2CO_3 就可以使得 Li^+ 变为 Li_2CO_3 沉淀,D 正确。

例 5(2021 湖北) $Na_2Cr_2O_7$ 的酸性水溶液随着 H^+ 浓度的增大会转化为 CrO_3 。电解法制备 CrO_3 的原理如图所示。下列说法错误的是()

A. 电解时只允许 H+ 通过离子交换膜

B. 生成 O_2 和 H_2 的质量比是 8:1

C. 电解一段时间后阴极区溶液 OH^- 的浓度增大

D. CrO_3 的生成反应为 $Cr_2O_7^{2-} + 2H^+ = 2CrO_3 + H_2O$

分析:

由于 ${
m NaOH}$ 和 ${
m Na_2Cr_2O_7}$ 水溶液的电解反应相当于电解水,且根据「负氢正氧」可知,左边是阳极,右边是阴极。

所以阴极的电解反应式是「放氢生碱」,阳极的电解反应式是「放氧生酸」。

- A 选项:根据题意可知,阳极会生成 ${
 m H}^+$,从而使得阳极水溶液 $c({
 m H}^+)$ 增大转化为 ${
 m CrO_3}$ 。根据「阴阳相吸」,若 ${
 m H}^+$ 通过离子交换膜,会达到阴极,从而使得阳极水溶液 $c({
 m H}^+)$ 减小,不能达到目的,A 错误。
- B 选项:电解池总的电解方程式为 $2\,\mathrm{H}_2\mathrm{O}\stackrel{\mathrm{elf}}{=\!=\!=\!=}2\,\mathrm{H}_2\uparrow + \mathrm{O}_2\uparrow$,所以生成的 $n(\mathrm{O}_2):n(\mathrm{H}_2)=8:1$,所以 $m(\mathrm{O}_2):m(\mathrm{H}_2)=1 imes32:2 imes2=8:1$,B 正确。
- C选项:由于阴极「放氢生碱」,所以C正确。
- D 选项:根据上述分析写出方程式调平电荷可知, D 正确。

例 6 (2019 全国 II) 环戊二烯 ()是重要的有机化工材料,广泛用于农药、橡胶、塑料等生产。环

戊二烯可用于制备二茂铁[$\mathrm{Fe}(\mathrm{C}_5\mathrm{H}_5)_2$,结构简式为

Fe], 后者广泛应用于航天, 化工等领域中。二

茂铁的电化学制备原理如图所示,其中电解液为溶解有溴化钠(电解质)和环戊二烯的 DMF 溶液(DMF 为惰性有机溶剂)。

该电解池的阳极是什么, 总反应是什么?

电解制备需要在无水条件下进行,原因是什么?

分析:

根据图示可知,Ni 电极溶液的 Na^+ 会得电子变成 Na,然后进入环戊二烯的 DMF 溶液中,间接氧化为 Na^+ ,使得环戊二烯还原为负一价离子。同时 Fe 在阳极氧化成 Fe^{2+} 与环戊二烯形成的负一价离子反应生成二茂铁。

整体上相当于 ${\rm Fe}^{2+}$ 失去电子,将电子移向 ${\rm Ni}$ 使得 ${\rm Na}^+$ 得电子,再在溶液中氧化,间接还原环戊二烯。即铁丢电子最终给了环戊二烯。

根据分析可知, 阳极为 Fe, 总反应为:

$$\mathrm{Fe} + 2$$
 $\stackrel{ ext{term}}{=}$ $\stackrel{\mathrm{term}}{\mathsf{Fe}}$ $+ \mathrm{H}_2 \uparrow$

如果在**有水**条件下进行反应,间接转移电子的 Na^+ 就会与水反应,从而阻碍中间产物 Na 的生成。同时在水中 Fe^{2+} 会水解产生 $Fe(OH)_2$,消耗 Fe^{2+} ,导致二茂铁的产量大幅降低。

所以原因有两点:

- 有水会使得 Na+ 直接与水反应, 阻碍中间产物 Na 的产生;
- Fe²⁺ 会与水反应被消耗,使得二茂铁的产量降低。