Capstone Project: The Battle of the Neighborhoods (Week 2)

Course 9: Applied Data Science Capstone by IBM/Coursera

Table of Contents

Introduction: Business Problem	3
Data	3
Neighborhood Data	3
London City Location	4
Restaurants Data	4
Methodology	5
Analysis	
All Restaurants Count	6
Italian Restaurants Count	8
Italian Restaurants Rating	10
Modeling	
Results and Discussion	
Conclusion	

Introduction: Business Problem

In this project, we will try to build a model to find the optimal neighborhood for opening a new business. As an example, we will specify the business type to be an **Italian restaurant**.

Since London is huge city with many restaurants, we will try to identify the optimal neighborhood to open a new Italian restaurant. We will try to identify the optimal neighborhood based on:

- Less number of high rating Italian restaurants.
- Less number of Italian restaurants.
- Less number of restaurants.

Data

Based on the description of the Business Problem, we will need to get data of:

- List of neighborhoods in London with their latitudes, longitudes and area.
- Number of restaurants (any type) in each neighborhood.
- Number of Italian restaurants in the neighborhood.
- Rating of each Italian restaurants in the neighborhood.

We will extract the required data as follows:

- We will get the list of neighborhoods in London and their geo-location from Wikipedia page.
- We will get the restaurants information for each neighborhood from Foursquare API.
- Also, for the map visualization we will get the location of London using geopy API.

Neighborhood Data

We will retrieve the list of London neighborhoods from Wikipedia page <u>List of London boroughs</u> which contains London neighborhoods and their Geo-Location information and other irrelevant information which will be excluded.

	Neighbourhood	Latitude	Longitude	Area	Area-Radius
0	Barking and Dagenham	51.5607	0.1557	36078700.0	3388.835625
1	Barnet	51.6252	-0.1517	86739100.0	5254.513588
2	Bexley	51.4549	0.1505	60554200.0	4390.330342
3	Brent	51.5588	-0.2817	43253000.0	3710.506368
4	Bromley	51.4039	0.0198	150142300.0	6913.159800

Each neighborhood in London has different area. We already consider/assume the Longitude and Latitude we got from Wikipedia to be the center of each neighborhood.

As we are going to provide the **radius** in our Foursquare APIs calls, we associated each neighborhood to a radius value of a circle whose area equals the neighborhood area.

London City Location

We will use **geopy API** to get the Latitude and Longitude of London City.

Coordinate of London, UK: [51.5073219, -0.1276474]

Now we can visualize the London maps and its neighborhood. Each neighborhood center will be surrounded with circles of radius proportional to its area.

Restaurants Data

Now we need to build a data set of restaurants in each neighborhood. Our focus will be in restaurants in general and especially Italian restaurants. For this purpose, we will use **Foursquare APIs**.

Restaurant_ID	Restaurant_Name	Category_ID	Category_Name	Restaurant_Latitude	Restaurant_Longitude	ls_ltalian	Rating
4bb9e6183db7b713faa0229a	Moby Dick	4bf58dd8d48988d1c4941735	Restaurant	51.580585	0.140618	False	0.0
4eb064fb775bbddde7b4f546	Cosmo	4bf58dd8d48988d1c4941735	Restaurant	51.575445	0.180456	False	0.0
50baf653183fee49a8b0b4cc	Lara Grill	4f04af1f2fb6e1c99f3db0bb	Turkish Restaurant	51.562445	0.147178	False	0.0
4e7a1f5414954a343fb58258	The Pipe Major	4bf58dd8d48988d1c4941735	Restaurant	51.545795	0.165834	False	0.0
4c3218fa3896e21e07f2e790	The Compasses (Harvester)	52e81612bcbc57f1066b7a05	English Restaurant	51.557806	0.209121	False	0.0

Now let's visualize the results on the map of London.

This concludes our Data Section.

Now we have the list of restaurants and their locations. Also, we know which restaurant is Italian or not.

Methodology

In this project we will try to detect neighborhoods in London with low number of restaurants especially with low number of Italian restaurants. Also, since London contains many restaurants, we will consider the rating of the Italian restaurants so we pick neighborhoods with low average rating of Italian restaurants.

In the first section of the report, we gathered the data that will be used in our report:

• List of neighborhoods of London.

- The restaurants in each neighborhood.
- The Italian restaurants in each neighborhood.
- The rating of each Italian restaurant.

In the second section of the report, we will perform some analysis on the data we gathered so we could have better understanding of the distribution of restaurants in London and -if needed- we will enrich the data with any extra information to provide better decision.

In the third section, we will use the *K-Means* clustering to split London neighborhoods into similar clusters based on the criteria defined above and accordingly, we can decide which neighborhood(s) best to opening a new Italian restaurant.

Analysis

Let's perform some basic analysis on the data.

All Restaurants Count

Let's check the total count of restaurants per neighborhood.

	Neighbourhood	count
6	City of London	27
16	Hillingdon	26
5	Camden	24
27	Southwark	23
19	Kensington and Chelsea	23
17	Hounslow	21
32	Westminster	21
29	Tower Hamlets	20
14	Harrow	20
21	Lambeth	20
24	Newham	19
31	Wandsworth	19
2	Bexley	19
18	Islington	19
8	Ealing	19
30	Waltham Forest	18
25	Redbridge	18
7	Croydon	17
9	Enfield	17
12	Hammersmith and Fulham	17
1	Barnet	17
4	Bromley	17
3	Brent	17
20	Kingston upon Thames	16
23	Merton	16
13	Haringey	16
22	Lewisham	15
10	Greenwich	15
26	Richmond upon Thames	14
28	Sutton	14
0	Barking and Dagenham	12
15	Havering	11
11	Hackney	11

Italian Restaurants Count

Let's check the Italian Restaurants in each neighborhood.

	Neighbourhood	count
19	Sutton	6
1	Bexley	5
3	City of London	4
20	Tower Hamlets	4
21	Waltham Forest	3
12	Islington	2
22	Wandsworth	2
18	Southwark	2
16	Newham	2
15	Lambeth	2
14	Kingston upon Thames	2
13	Kensington and Chelsea	2
23	Westminster	2
4	Enfield	2
2	Bromley	2
11	Hounslow	1
10	Hillingdon	1
9	Havering	1
8	Haringey	1
17	Richmond upon Thames	1
7	Hammersmith and Fulham	1
6	Hackney	1
5	Greenwich	1
0	Barnet	1

Italian Restaurants Rating

Let's check the average rating of the Italian restaurants in each neighborhood.

	Neighbourhood	Rating
18	Southwark	8.900000
23	Westminster	8.850000
13	Kensington and Chelsea	8.850000
3	City of London	8.500000
7	Hammersmith and Fulham	8.400000
8	Haringey	8.400000
0	Barnet	8.400000
22	Wandsworth	8.200000
6	Hackney	8.100000
12	Islington	8.100000
21	Waltham Forest	7.800000
15	Lambeth	7.650000
20	Tower Hamlets	7.425000
11	Hounslow	7.300000
4	Enfield	7.300000
17	Richmond upon Thames	7.300000
5	Greenwich	6.700000
9	Havering	6.700000
16	Newham	6.550000
19	Sutton	5.766667
1	Bexley	5.500000
14	Kingston upon Thames	3.650000
10	Hillingdon	0.000000
2	Bromley	0.000000

As we can see from the analysis and visualization, we can see that **City of London** is a hot place for restaurants. This is a typical for most of the cities.

Based on that, we can include calculate the distance to the **City of London** as an attribute to each neighborhood.

Restaurant_Name	Category_ID	Category_Name	Restaurant_Latitude	Restaurant_Longitude	ls_ltalian	Rating	count	Distance_To_Center
Moby Dick	4bf58dd8d48988d1c4941735	Restaurant	51.580585	0.140618	False	0.0	1	17920.030817
Cosmo	4bf58dd8d48988d1c4941735	Restaurant	51.575445	0.180456	False	0.0	1	17920.030817
Lara Grill	4f04af1f2fb6e1c99f3db0bb	Turkish Restaurant	51.562445	0.147178	False	0.0	1	17920.030817
The Pipe Major	4bf58dd8d48988d1c4941735	Restaurant	51.545795	0.165834	False	0.0	1	17920.030817
The Compasses (Harvester)	52e81612bcbc57f1066b7a05	English Restaurant	51.557806	0.209121	False	0.0	1	17920.030817

Now we will prepare the dataset that will be used for our modeling.

For each neighborhood, we will aggregate:

- 1. Count of ALL restaurants.
- 2. Count of Italian restaurants.
- 3. Average rating of Italian restaurants.
- 4. Also, we will include the distance to the City Center.

Modeling

We will use the *K-Means* algorithm to cluster our neighborhood into 5 clusters.

After clustering the dataset, we get the below result:

	Neighbourhood	Restaurant_Count	Distance_To_Center	Italian_Count	Average_Ratings	Labels
0	Barking and Dagenham	12	17920.030817	0.0	0.000000	0
22	Lewisham	15	9257.906442	0.0	0.000000	0
25	Redbridge	18	12512.433585	0.0	0.000000	0
3	Brent	17	14003.045824	0.0	0.000000	0
4	Bromley	17	14654.616692	2.0	0.000000	0
5	Camden	24	2756.412095	0.0	0.000000	0
7	Croydon	17	16036.658074	0.0	0.000000	0
8	Ealing	19	15045.632474	0.0	0.000000	0
23	Merton	16	14594.407020	0.0	0.000000	0
14	Harrow	20	18735.296447	0.0	0.000000	0
20	Kingston upon Thames	16	19061.098358	2.0	3.650000	1
26	Richmond upon Thames	14	17898.540544	1.0	7.300000	1
17	Hounslow	21	19686.870384	1.0	7.300000	1
31	Wandsworth	19	9481.306493	2.0	8.200000	1
15	Havering	11	20486.772699	1.0	6.700000	1
12	Hammersmith and Fulham	17	10160.583093	1.0	8.400000	1
11	Hackney	11	4162.847895	1.0	8.100000	1
10	Greenwich	15	11287.461679	1.0	6.700000	1
9	Enfield	17	15410.781065	2.0	7.300000	1
30	Waltham Forest	18	10002.976870	3.0	7.800000	1
1	Barnet	17	12883.465693	1.0	8.400000	1
13	Haringey	16	9500.135755	1.0	8.400000	1
24	Newham	19	9695.637179	2.0	6.550000	1
27	Southwark	23	1566.402203	2.0	8.900000	2
29	Tower Hamlets	20	6023.360469	4.0	7.425000	2
32	Westminster	21	3723.168447	2.0	8.850000	2
19	Kensington and Chelsea	23	7273.068499	2.0	8.850000	2
18	Islington	19	2985.616195	2.0	8.100000	2
6	City of London	27	0.000000	4.0	8.500000	2
21	Lambeth	20	6322.539825	2.0	7.650000	2
28	Sutton	14	18520.635266	6.0	5.766667	3
2	Bexley	19	18156.865207	5.0	5.500000	3
16	Hillingdon	26	26823.258913	1.0	0.000000	4

Results and Discussion

As we can see from the results of our Analysis, London neighborhoods of **Labels 0** are the most interesting neighborhoods to open new Italian restaurant because they have the least Italian restaurants with low rating.

Let's check the neighborhoods in **Cluster 0** and order the result based on the **Distance to the City Center**.

	Neighbourhood	Restaurant_Count	Distance_To_Center	Italian_Count	Average_Ratings	Labels
5	Camden	24	2756.412095	0.0	0.0	0
22	Lewisham	15	9257.906442	0.0	0.0	0
25	Redbridge	18	12512.433585	0.0	0.0	0
3	Brent	17	14003.045824	0.0	0.0	0
23	Merton	16	14594.407020	0.0	0.0	0
4	Bromley	17	14654.616692	2.0	0.0	0
8	Ealing	19	15045.632474	0.0	0.0	0
7	Croydon	17	16036.658074	0.0	0.0	0
0	Barking and Dagenham	12	17920.030817	0.0	0.0	0
14	Harrow	20	18735.296447	0.0	0.0	0

As we can see, neighborhood *Camden* is the nearest neighborhood to the City Center. However, it has many restaurants which might be a downside because of competition for other restaurants serving other cuisines.

Second in the list is neighborhood *Lewisham* which might be better option as it has a smaller number of restaurants despite being little far from the City Center compared to **Camden**.

Conclusion

The objective of this report is to identify the neighborhoods in London with least number of restaurants especially Italian restaurants and close to the city center. This should help the report's stakeholders to narrow down the neighborhoods to search for opening a new Italian restaurant.

In order to achieve this objective, we gathered geo-data of London neighborhoods and used Foursquare endpoints to gather information about the restaurants in each neighborhood. Also, we used maps visualization to help the user with the data exploration stage.

Based on the neighborhoods clustering we did, we provided 2 recommendations to the end-user to choose from.

For sure, there are many factors that might influence the end-user decision (i.e., other business in the area, easy access and transportation, etc.) which is out of the scope of this report.