2/9/1

DIALOG(R)File 351:Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

010306455 **Image available** WPI Acc No: 1995-207713/199528

XRPX Acc No: N95-162714

Oxygen@ measurement sensor - has pump cell mounted on solid electrolyte which is conducting for oxygen ions and with inner pump electrode in

diffusion channel

Patent Assignee: BOSCH GMBH ROBERT (BOSC)

Inventor: GRUENWALD W

Number of Countries: 019 Number of Patents: 007

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

DE 4340875 A1 19950608 DE 4340875 A 19931201 199528 B WO 9515490 A1 19950608 WO 94DE1383 A 19941124 199528 EP 731911 A1 19960918 WO 94DE1383 A 19941124 199642

EP 95900656 A 19941124 JP 9505892 W 19970610 WO 94DE1383 A 19941124 199733

JP 95515326 A 19941124

EP 731911 B1 19980204 WO 94DE1383 A 19941124 199810 EP 95900656 A 19941124

DE 59405241 G 19980312 DE 505241 A 19941124 199816 WO 94DE1383 A 19941124

EP 95900656 A 19941124

US 6214209 B1 20010410 US 97986708 A 19971208 200122

Priority Applications (No Type Date): DE 4340875 A 19931201

Cited Patents: DE 3728618; DE 3744206; EP 144057; EP 188900; US 4657659

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

DE 4340875 A1 6 G01N-027/419

WO 9515490 A1

Designated States (National): JP KR US

Designated States (Regional): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

EP 731911 A1 G 6 G01N-027/419 Based on patent WO 9515490

Designated States (Regional): DE FR GB IT

JP 9505892 W 12 G01N-027/41 Based on patent WO 9515490

EP 731911 B1 G 8 G01N-027/419 Based on patent WO 9515490

Designated States (Regional): DE FR GB IT

DE 59405241 G G01N-027/419 Based on patent EP 731911

Based on patent WO 9515490

US 6214209 B1 G01N-027/41

Abstract (Basic): DE 4340875 A

The sensor has a pump cell mounted on a solid electrolyte which is conducting for oxygen ions and which has an outer and an inner pump electrode, of which the inner pump electrode is exposed to the measurement gas in a diffusion channel (15).

A partial oxygen press. corresp. at least approximately to lambda = 1 is set up by the pump cell (20) at a further electrode (18) arranged

in the diffusion channel after the inner pump electrode (17). The partial press. at the diffusion end of the inner pump electrode at least approximately corresp. to that at the further electrode.

USE/ADVANTAGE - E.g. for use with internal combustion engine exhaust gas. The sensor signal linearity is maintained even for high oxygen conc.

Dwg.1/3

Abstract (Equivalent): EP 731911 B

The sensor has a pump cell mounted on a solid electrolyte which is conducting for oxygen ions and which has an outer and an inner pump electrode, of which the inner pump electrode is exposed to the measurement gas in a diffusion channel (15).

A partial oxygen press. corresp. at least approximately to lambda = 1 is set up by the pump cell (20) at a further electrode (18) arranged in the diffusion channel after the inner pump electrode (17). The partial press. at the diffusion end of the inner pump electrode at least approximately corresp. to that at the further electrode.

USE/ADVANTAGE - E.g. for use with internal combustion engine exhaust gas. The sensor signal linearity is maintained even for high oxygen conc.

Dwg.1/3

Title Terms: OXYGEN; MEASURE; SENSE; PUMP; CELL; MOUNT; SOLID; ELECTROLYTIC ; CONDUCTING; OXYGEN; ION; INNER; PUMP; ELECTRODE; DIFFUSION; CHANNEL

Derwent Class: S02; S03; X22

International Patent Class (Main): G01N-027/41; G01N-027/419

File Segment: EPI

Manual Codes (EPI/S-X): S02-J01A; S03-E03; X22-A05B

?

S PN=EP 552174

S3 1 PN=EP 552174

?

T S3/9/1

3/9/1

DIALOG(R)File 351:Derwent WPI

(c) 2003 Thomson Derwent. All rts. reserv.

009005870 **Image available**
WPI Acc No: 1992-133170/199217
XRPX Acc No: N92-099338

Solid electrolyte sensor element for engine exhaust gases - has inner and outer pump electrodes screen printed on opposite sides of electrolyte foil

Patent Assignee: BOSCH GMBH ROBERT (BOSC)

Inventor: FRIESE K H; GRUENWALD W; WIEDEMANN H M; FRIESE K; WIEDENMANN H;

GRUNWALD W; WIEDENMANN H M

Number of Countries: 015 Number of Patents: 009

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

DE 4032436 A 19920416 DE 4032436 A 19901012 199217 B WO 9207252 A1 19920430 WO 91DE752 A 19910921 199220

EP 552174 A1 19930728 EP 91916308 A 19910921 199330

WO 91DE752 A 19910921

JP 6502015 W 19940303 JP 91515439 A 19910921 199414

19 BUNDESREPUBLIK

[®] Offenlegungsschrift

DE 43 40 875 A 1

(51) Int. Cl.⁶: G 01 N 27/419

DEUTSCHLAND

PATENTAMT

DEUTSCHES

•

21) Aktenzeichen:

P 43 40 875.3

2 Anmeldetag:

1. 12. 93

43) Offenlegungstag:

8. 6.95

ZGM/ZGE 09. JUNI 1995 Eingang

71) Anmelder:

Robert Bosch GmbH, 70469 Stuttgart, DE

(72) Erfinder:

Gruenwald, Werner, Dipl.-Phys. Dr., 70839 Gerlingen, DE

(54) Sauerstoffmeßfühler

57 Es wird ein Sauerstoffmeßfühler vorgeschlagen mit einer Pumpzelle (20) mit auf einem sauerstoffionenleitenden Festelektrolyt (11) angeordneten äußeren und inneren Pumpelektroden (17, 19), von denen die innere Pumpelektrode (17) in einem Diffusionskanal (15) dem Meßgas ausgesetzt ist. Im Diffusionskanal (15) ist in Diffusionsrichtung hinter der inneren Pumpelektrode (17) eine weitere Elektrode (18) einer Meßzelle angeordnet, an welcher mittels der Pumpzelle (20) ein Sauerstoffpartialdruck einstellbar ist, der zumindest in Nähe von λ = 1 liegt, so daß die Pumpzelle (20) außerhalb des Grenzstrombereiches der Strom/Spannungs-Kennlinie arbeitet.

Beschreibung

Stand der Technik

5

30

45

55

Die Erfindung geht aus von einem Sauerstoffmeßfühler nach der Gattung des Hauptanspruchs. Die gattungsgemäßen Sauerstoffmeßfühler arbeiten nach dem Diffusionsgrenzstromprinzip, wobei der Grenzstrom bei einer konstanten, an den beiden Elektroden des Sensorelements anliegenden Spannung, gemessen wird. Dieser Strom ist in einem bei Verbrennungsmotoren entstehenden Abgas von der Sauerstoffkonzentration so lange abhängig, wie die Diffusion des Gases zur Pumpelektrode die Geschwindigkeit der ablaufenden Reaktion bestimmt. Es ist bekannt, zum Beispiel aus der DE-PS 37 28 618, derartige nach dem polarographischen Meßprinzip arbeitende Sensoren in der Weise aufzubauen, daß sowohl Anode als auch Kathode dem zu messenden Gasgemisch ausgesetzt sind, wobei die Kathode eine Diffusionsbarriere aufweist, um ein Arbeiten im Diffusionsgrenzstrombereich zu ermöglichen. Derartige Grenzstromsensoren eignen sich zur Bestimmung des Lambda-Wertes in Gasgemischen mit Sauerstoffüberschuß, d. h. in mageren Gasgemischen.

An die Elektroden der Pumpzelle wird ein elektrisches Potential ausreichender Größe angelegt, um den zwischen Pumpelektrode und Festelektrolyt vorhandenen Sauerstoff so abzureichen, daß der gemessene Strom eine Funktion des durch die Poren der Pumpelektrode hindurchdiffundierenden Sauerstoffs ist. Entsprechend den Strom/Spannungs-Kennlinien von Grenzstromsonden ist der Strom unabhängig von der anliegenden Spannung und wird nur noch vom Konzentrationsgradienten vor der Pumpelektrode, d. h. von der Sauerstoffkonzentration im Gasgemisch, bestimmt. Die Strom/Spannungs-Kennlinien beginnen zunächst mit einem relativ steilen Anstieg, der vorwiegend durch den ohmschen Widerstand der Sonde bestimmt wird. Der sich anschließende waagerechte Teil der Kurve ist der Grenzstrombereich, der bei guten Sonden möglichst parallel zur Abszisse verlaufen muß. Insbesondere bei höheren Sauerstoff-Konzentrationen kommt es zu Abweichungen vom parallelen Verlauf der Kurve, bei dem dann keine strenge Linearität mehr zwischen Strom und Konzentration vorhanden ist. Es hängt von der Größe des Diffusionswiderstandes und von der Belastbarkeit der Pumpelektroden ab, bis zu welchen Konzentrationen eine ausreichende Linearität vorhanden ist.

Vorteile der Erfindung

Der erfindungsgemäße Sauerstoffmeßfühler mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß ein linearer Verlauf des Sondensignals über der Sauerstoffkonzentration im Gasgemisch selbst bei hohen Sauerstoffkonzentrationen vorliegt. Dies führt zu einer verbesserten Arbeitsgenauigkeit des Sauerstoffmeßfühlers über den gesamten Bereich der zu messenden Konzentrationen in einem mageren Abgas. Darüber hinaus wird die Ansprechbarkeit bei dynamischem Druckwechselverhalten deutlich verbessert, worauf später noch eingegangen wird.

Mit den in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen des erfindungsgemäßen Sauerstoffmeßfühlers möglich. Das Meßsignal auch bei hohen Sauerstoffkonzentrationen aus dem den ohmschen Gesetz folgenden Teil der Strom/Spannungs-Kennlinie abzunehmen, ist dadurch erreichbar, daß sich die innere Pumpelektrode im Diffusionskanal entlang der Diffusionsrichtung erstreckt. Durch das Zusammenlegen der Anoden der Pumpzelle und der Meßzelle ist die Anzahl der Elektrodenanschlüsse reduzierbar. Der Betrieb des Sauerstoffmeßfühlers im ohmschen Bereich der Strom/Spannungs-Kennlinie macht es außerdem möglich, daß zur Kalibrierung des Sauerstoffmeßfühlers lediglich ein Trimmwiderstand ausreicht.

Zeichnung

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen

Fig. 1 einen Längsschnitt durch einen meßgasseitigen Teil des erfindungsgemäßen Sauerstoffmeßfühlers, Fig. 2 den Verlauf der Sauerstoffkonzentration entlang des Diffusionskanals des Sauerstoffmeßfühlers gemäß Fig. 1 und Fig. 3 die Strom/Spannungs-Kennlinie einer Grenzstromsonde.

Ausführungsbeispiel

Der Sauerstoffmeßfühler 10 hat gemäß Fig. 1 einen Festelektrolytträger 11 mit einem Diffusionskanal 15, welcher eine Diffusionsöffnung 16 zum Gasgemisch hin aufweist. Der Festlelektrolytträger 11 ist beispielsweise aus drei übereinander angeordneten Festelektrolytfolien 12, 13 und 14 aufgebaut. Der Diffusionskanal 15 ist in Diffusionsrichtung abgestuft aufgebaut und besitzt eine Diffusionsstrecke D mit einer Diffusionsstreckenhöhe h₁, eine Pumpstrecke E mit einer Pumpstreckenhöhe h₂ und einen Testraum T mit einer Testraumhöhe h₃, wobei die Diffusionsstreckenhöhe h₁ größer ist als die Pumpstreckenhöhe h₂ und die Pumpstreckenhöhe h₂ wiederum größer als die Testraumhohe h₃. Es sind jedoch auch Ausführungsformen möglich, bei denen die Diffusionsstrekkenhöhe h₁ und die Pumpstreckenhöhe h₂ oder alle drei Hohen h₁, h₂ und h₃ gleich groß sind. Es ist ebenfalls denkbar, auf die Diffusionsstrecke D zu verzichten.

Im Diffusionskanal 15 ist im Bereich der Pumpstrecke E eine als Kathode geschaltete innere Pumpelektrode 17 angeordnet. In Diffusionsrichtung hinter der inneren Pumpelektrode 17 ist im Testraum T eine Testelektrode 18 positioniert. Außerhalb des Diffusionskanals 15 ist der Pumpelektrode 17 und der Testelektrode 18 gegenüberliegend auf dem Festelektrolytträger 11 eine ebenfalls dem Gasgemisch ausgesetzte, als Anode geschaltete äußere Pumpelektrode 19 vorgesehen. Zwischen den Festelektrolytfolien 12, 13 und 14 liegen jeweils Leiterbah-

nen 17', 18' und 19', die zu den jeweiligen Elektroden 17, 18 und 19 und zu nicht dargestellten üblichen Anschlüssen geführt sind. Die Leiterbahnen 17', 18' und 19' sind zweckmäßigerweise mit nicht dargestellten Isolationsschichten gegenüber den Festelektrolytfolien 12, 13, 14 elektrisch isoliert.

Die innere Pumpelektrode 17 und die äußere Pumpelektrode 19 bilden eine Pumpzelle 20 und die Testelektrode 18 mit der äußeren Pumpelektrode 19 eine Meßzelle 21. Es ist aber genauso denkbar, die zweite Elektrode der Meßzelle 21 getrennt von der Pumpelektrode 19 anzuordnen. Bei dieser Ausführungsform ist es außerdem denkbar, diese zweite Elektrode in einem zusätzlichen Referenzkanal anzuordnen und einem Referenzgas auszusetzen. In diesem Fall ist ein Sauerstoffmeßfühler realisierbar, der zur Messung der Sauerstoffkonzentration vom mageren bis ins fette Abgas geeignet ist.

Aus Fig. 3 gehen die Strom/Spannungs-Kennlinien eines nach dem Grenzstromprinzip arbeitenden Sauerstoffmeßfühlers bei verschiedenen Sauerstoffkonzentrationen hervor. Der bei niedrigen Spannungswerten Up vorliegende relativ steile Verlauf wird vorwiegend durch den ohmschen Widerstand und die Polarisation der Elektroden des Sauerstoffmeßfühlers bestimmt. Der sich daran anschließende, gestrichelt dargestellte Teil der Kurven ist der Grenzstrombereich, der, wie bereits eingangs erwähnt, insbesondere bei höheren Konzentrationen nicht mehr parallel zur Abszisse verläuft und damit keine strenge Linearität zwischen Strom Ip und Konzentration vorhanden ist. Der dem Ohmschen Gesetz gehorchende Teil der Kennlinien bei niedrigen Spannungswerten Up hingegen verläuft linear. Der erfindungsgemäße Sauerstoffmeßfühler nutzt diesen ohmschen Bereich der Kennlinie zur Detektierung eines Meßsignals, wobei vorteilhafterweise ebenfalls der Pumpstrom Ip als Meßsignal herangezogen wird. Es ist aber gleichfalls denkbar, aufgrund des Ohmschen Gesetzes, die Pumpspannung Up als Meßsignal zu verwenden.

Über die sich in Diffusionsrichtung flächenhaft erstreckende innere Pumpelektrode 17 wird der Sauerstoff aufgrund der an sich bekannten katalytischen Reaktion über eine Sauerstoffionenleitung durch den Festelektrolytträger 11 zur äußeren Pumpelektrode 19 gepumpt und dort in das Gasgemisch wieder freigesetzt. Dabei wird der Pumpstrom Ip der Pumpzelle 20 so eingestellt, daß im Testraum T an der Testelektrode 18 ein Sauerstoffpartialdruck von 10^{-10} bis 10^{-12} bar herrscht, welcher $\lambda = 1$ entspricht. Wird beispielsweise die Meßzelle 21 als zweite Pumpzelle geschaltet, wird der einstellbare Konzentrationsbereich bei $\lambda=1$ dadurch erfaßt, daß der Pumpstrom in diesem Bereich zwischen der Elektrode 18 und der äußeren Pumpelektrode 19 null ist.

20

50

55

60

Bei der bereits angesprochenen Ausführungsform, bei der die Meßzelle 21 als Nernstzelle mit einer einem Referenzgas ausgesetzten Referenzelektroden geschaltet ist, wird als Signal für den Bereich $\lambda = 1$ die EMK von beispielsweise 450 mV aufgenommen. Mit dieser Ausführungsform ist es möglich, den Sauerstoffmeßfühler als Breitbandsensor auszulegen, wobei bei jedem Erreichen von $\lambda=1$ eine Umpolung der Pumpzelle 20 erfolgt, so daß entweder bei magerem Abgas Sauerstoff aus dem Diffusionskanal 15, wie beschrieben, heraus oder bei einem fetten Abgas Sauerstoff in den Diffusionskanal 15 hineingepumpt wird. Bei letzterer Pumprichtung wird als Sensorsignal ein anodischer Pumpstrom gemessen, der ebenfalls im ohmschen Bereich angesiedelt ist.

Der Verlauf der Sauerstoffkonzentration C über dem Diffusionsweg X im Diffusionskanal 15 geht aus Fig. 2 hervor. Danach nimmt die Sauerstoff-Konzentration Co an der Diffusionskanalöffnung 16 bis hin zum Beginn der Pumpstrecke E bis auf die Konzentration CD linear ab. Der Beginn der Pumpstrecke E ist mit dem Diffusionsweg XD bezeichnet. Innerhalb der Pumpstrecke E verläuft die Sauerstoffkonzentration C parabelförmig bis ans Ende der Pumpstrecke E, das mit X_E bezeichnet ist. An der Stelle X_E hat die Sauerstoffkonzentration \tilde{C} den Bereich von $\lambda=1$ mit einem Sauerstoffpartialdruck von 10^{-10} bis 10^{-12} bar erreicht. Der gleiche Sauerstoffpartialdruck liegt somit im Testraum T an der Testelektrode 18 vor.

Der Verlauf der Konzentration in der Pumpstrecke E kann durch folgende Funktion beschrieben werden:

$$C(x) = \frac{j}{z \cdot F \cdot D \cdot h_2} \left(\frac{x^2}{2} - X \cdot X_E + \frac{X_E^2}{2} \right)$$
 (1)

mit z = 4 (Valenz des Sauerstoffs gemäß der kathodischen Reaktion)

$$4e + 0_2 \rightarrow 20^{2-}$$
 (2)

F = Faradayzahl = 96 400 A s/mol

D = Diffusionskoeffizient

j = Pumpstromdichte = i/(b · e) mit Gesamtpumpstrom i, b = Breite der Pumpstrecke, e = Länge der Pumpstrecke.

Für die Sauerstoffkonzentration C im Gasgemisch mit dem Pumpstrom Ip im geregelten Zustand ergibt sich der Zusammenhang:

$$C = \frac{1}{z \cdot F \cdot D \cdot b} \left(\frac{E}{-\frac{D}{2h_2}} - \frac{D}{-\frac{h_1}{2h_2}} \right)$$
 (3)

DE 43 40 875 A1

Bei Gleichung (3) muß betont werden, daß die Pumpelektrode 17 nicht im Grenzstrombereich arbeitet und damit für Ip das Ohmsche Gesetz

$$l_P = U_P/R$$
 (4)

gilt, mit

õ

15

20

U_P = angelegte Pumpspannung,

Ip = Pumpstrom der Pumpzelle 20.

R = Widerstand des Pumpkreises, der sich aus dem Widerstand R; der Pumpzelle und einem äußeren Trimmwiderstand Ra zusammensetzt:

$$R = R_i + R_a$$

Aus Gleichung (3) wird damit:

$$C = \frac{U_{p}}{2h_{2}} - \frac{D}{h_{1}}$$

$$R_{i} + R_{a} \qquad z \cdot F \cdot D \cdot b$$
(5)

Aus Gleichung (5) wird deutlich, daß sich zwischen der Sauerstoffkonzentration C und der sich einstellenden Pumpspannung UP ein exakter linearer Zusammenhang einstellt. Der Proportionalitätsfaktor enthält die geometrischen Größen (XE/2h2 — D/h1)/b sowie Ri, die entsprechenden Fertigungsschwankungen unterworfen sind. Zum Kalibrieren des Sauerstoffmeßfühlers ist der in einem Ersatzschaltbild in Fig. 2 dargestellte Trimmwiderstand Ra vorgesehen, der den Proportionalitätsfaktor auf einen konstanten Wert einstellt. Der lineare Zusammenhang zwischen Sauerstoffkonzentration C und Pumpspannung Up gemäß Gleichung (5) bedeutet gleichzeitig einen linearen Zusammenhang zwischen Sauerstoffkonzentration C und Pumpstrom Ip.

Beim Betreiben des Sauerstoffmeßfühlers wird nun von einer nicht dargestellten Regelungsschaltung das Erreichen der Sauerstoffkonzentration bei $\lambda=1$ von der Testelektrode 18 erfaßt. Mit dem Erreichen von $\lambda=1$ wird von der Regelungsschaltung der über die Pumpzelle 20 fließende Pumpstrom Ip gemessen und entsprechend ausgewertet. Es wird dabei nicht, wie bei den üblichen Grenzstromsonden, die Pumpspannung Up derart weiter erhöht, bis die Pumpzelle 20 in den Grenzstrombereich kommt, der in Fig. 3 als gestrichelte Linie dargestellt ist. Wenn die Testelektrode 18 auf einen Sauerstoffpartialdruck für $\lambda=1$ eingestellt ist, liegt auch das Ende X_E der flächenhaften Pumpelektrode 17 zumindest in der Nähe dieser Konzentration. Zur Diffusionsöffnung 16 hin steigt die Konzentration gemäß Fig. 2 weiter an. Dadurch liegen an der Pumpelektrode 17 im äußersten Fall lediglich am Ende X_E der Pumpelektrode 17 Grenzstrombedingungen vor. Der über die gesamte Elektrodenfläche der Pumpelektrode 17 gemessene Pumpstrom Ip hingegen erreicht nicht den Grenzstrombereich und bleibt somit im ohmschen Bereich der Kennlinie gemäß Fig. 3. Wird der Sauerstoffmeßfühler im fetten Abgas eingesetzt, gilt der Konzentrationsverlauf gemäß Fig. 2 für die oxidierbaren Gasbestandteile, wie beispielsweise CO und NO_x .

Patentansprüche

- 1. Sauerstoffmeßfühler mit einer auf einem sauerstoffionenleitenden Festelektrolyt angeordneten Pumpzelle mit einer äußeren und einer inneren Pumpelektrode, von denen die innere Pumpelektrode in einem Diffusionskanal dem Meßgas ausgesetzt ist, dadurch gekennzeichnet, daß im Diffusionskanal (15) in Diffusionsrichtung hinter der inneren Pumpelektrode (17) eine weitere Elektrode (18) angeordnet ist, an welcher mittels der Pumpzelle (20) ein Sauerstoffpartialdruck einstellbar ist, der zumindest annähernd $\lambda = 1$ entspricht.
- 2. Sauerstoffmeßfühler nach Anspruch 1, dadurch gekennzeichnet, daß sich die innere Pumpelektrode (17) im Diffusionskanal (15) entlang der Diffusionsrichtung flächenhaft erstreckt, so daß an dem in Diffusionsrichtung liegenden Ende (X_E) der Pumpelektrode (17) zumindest annähernd der an der Elektrode (18) sich einstellende Sauerstoffpartialdruck anliegt.
- 3. Sauerstoffmeßfühler nach Anspruch 1, dadurch gekennzeichnet, daß der Diffusionskanal (15) eine Pumpstrecke (E) mit einer Pumpstreckenhöhe (h₂) und einen Testraum (T) mit einer Testraumhohe (h₃) aufweist, wobei die Pumpstreckenhöhe (h₂) größer ist als die Testraumhöhe (h₃).
- 4. Sauerstoffmeßfühler nach Anspruch 3, dadurch gekennzeichnet, daß im Diffusionskanal (15) der Pumpstrecke (E) eine Diffusionsstrecke (D) mit einer Diffusionshöhe (h₁) meßgasseitig vorgeschaltet ist.
- 5. Sauerstoffmeßfühler nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpelektrode (17) einen Trimmwiderstand (Ra) aufweist, mit dem der Gesamtwiderstand der Pumpzelle (20) einstellbar ist.

Hierzu 2 Seite(n) Zeichnungen

65

60

15

50

55

()

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 43 40 875 A1 G 01 N 27/419**8. Juni 1995

Fig.3

Nummer: Int. Cl.⁶: Offenlegungstag: DE 43 40 875 A1 G 01 N 27/419 8. Juni 1995

