Model Validation

Recap

We have discussed

- Linear regression, polynomial regression, lasso regression,
- kNN, loess, spline regression
- Decision trees, boosting, random forests
- Hierarchical clustering, K-means
- PCA, tSNE

Today: How to choose the *best* model (or to tune the hyperparameters)?

Model validation

- Other names: model evaluation, model criticism
- Goal: evaluate how well a model describe a dataset
- Criteria (to convince others and ourselves our model makes sense)
 - Subjective criteria: domain knowledge, common practice, interpretability
 - Objective/quantitative criteria:
 numeric metrics
- Methods (to ensure the criteria are evaluated properly)
 - Validation with new data
 - Validation with existing data
 - Split-sample validation, cross-validation
 - Residual analysis (e.g., residual plots)

Evaluation metrics

We will take a brief glimpse at the metrics to use for

- Supervised learning with numeric output
- Supervised learning with categorical output
- Unsupervised learning with numeric output
- Unsupervised learning with categorical output

Supervised Learning with Numeric Output

Metric / loss	What it measures	When to use	Pros / Cons
MSE / RMSE	Quadratic loss; heavily penalises large errors	Default for least-squares, Gaussian noise	Smooth, different sensitive outliers
MAE	Mean Absolute error	Heavy-tailed noise, median regression	Robust t but grad constant for some optimise
R^2 / Adjusted R^2	Fraction of variance explained	Linear models, presentation	Intuitive; inflated I heterosk
Log- likelihood	Average log-density under predictive distribution	Probabilistic regression, Bayesian models	Proper s rule; nee predictiv

Metric / loss	What it measures	When to use	Pros / Cons
Rank- based metrics	Order rather than value	Recommenders, credit risk	Invariant monotor transforr

Supervised Learning with Categorical Output

Metric / loss	What it measures	When to use	Pı
Accuracy / Misclassicification rate	Proportion of correct classifications	Balanced classes, quick sanity check	lç ir p c
<u>Precision /</u> <u>Recall</u>	Confusion- matrix slices	Imbalanced classes, information retrieval	F p
Specificity, Sensitivity	True-neg / true-pos rates	Medical screening	C re
AUC-ROC	Ranking quality as threshold varies	Class- imbalance, ranking tasks	T fr
Likelihood ratio	Model comparison (nested GLMs)	Classic stats	L s

Confusion matrix

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Unsupervised Learning with Numeric Output

Metric	What / How	Typical use- case	Pros / Cons
Within-cluster SSE (Inertia)	Sum of squared errors	K-means elbow method	Fast; decrease monoton —needs elbow or statistic
Silhouette coefficient	internal vs. nearest- other- cluster distance	Any clustering with distance metric	Needs pairwise distance
Reconstruction error (MSE, MAE)	PCA, auto- encoder	Dim. reduction, anomaly detection	Compara to superv losses
Explained variance ratio	Variance captured by first d PCs	PCA	Easy to interpret

Metric	What / How	Typical use- case	Pros / Cons
Log-likelihood	Density fit of GMM, KDE, normalizing flows	Model selection	Penalises over-fit b param co

Unsupervised Learning with Categorical Output

Metric	What / How	Typical use- case	Pros / Cons
Purity & Entropy	For each cluster, majority-class proportion / entropy; average across clusters	Quick external check when ground- truth labels available	Simple; ignores cluster size balance
Adjusted Rand Index (ARI)	Pair-wise agreement corrected for chance	External cluster validation	Sensitive to the number of clusters
Normalized Mutual Information (NMI)	MI between cluster labels & truth	External validation (large K)	Symmetric; handles many classes

Thoughts?

- With so many metrics, should we consider evaluation measures of model evaluation measures?
- How do we evaluate complex output? (1) Code.
 (2) Image. (3) Text.
- ...

Validation Methods

Recall that

- Validation with new data
- Validation with existing data
 - Split-sample validation, crossvalidation
 - Residual analysis (e.g., residual plots)

Next: why do we need to employ proper validation methods?

Model Complexity

- Complexity of a model \approx number of parameters in the model
 - More parameters → more flexible to learn an unknown mechanism
- Too many paramters → the model learns the (noninformative, irreproducible, ungeneralizable) patterns of noise
- Numeric example with polynomial regression
- Illustration by MLU

Double Descent

- Occurs when model capacity grows beyond the point where it can exactly interpolate the training data
- Highly over-parameterised models (deep neural nets, large ensembles, high-degree kernels)
 often defies the U-shape curve
- Double-dip (hence double descent) phenomon
- Illustration by MLU

Validation Methods

- Observation: error on new dataset explodes when model is too complex Solution: penalize model complexity
- Information Criteria:
 - Akaike Information Criterion

$$ext{AIC} = -2\log(\hat{L}) + 2k$$

Bayesian Information Criterion

$$ext{BIC} = -2\log(\hat{L}) + 2k\log(n)$$

Validation Methods

- Observation: Validation with new data is the gold standard, but infeasible in practice
 Solution: create "new" data from existing data
- Validation with existing data using data spliting
 - Split-sample validation
 - Cross-validation (resampling method)
 - Bootstrap out-of-bag errors
 (resampling method, too)