CSCE 463/612 Networks and Distributed Processing Fall 2020

Data-link Layer II

Dmitri Loguinov Texas A&M University

November 19, 2020

Original slides copyright © 1996-2004 J.F Kurose and K.W. Ross

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3 Multiple access protocols
- 5.4 Link-Layer Addressing
- 5.5 Ethernet
- 5.6 Hubs and switches

Network Addresses Revisited

- Transport-layer address:
 - 16-bit port number
 - Find correct application within a host
- Network-layer address:
 - 32-bit (IPv4) or 128-bit (IPv6)
 - Find correct subnet & host on the Internet
- MAC (or LAN, or physical, or Ethernet) address:
 - 48 bit number burned in the adapter ROM
 - Find correct interface within a subnet

LAN Addresses

Each adapter in a LAN must have a unique LAN address

LAN Addresses

- MAC address allocation administered by IEEE
 - \$660 for 36-bit prefix, \$1595 for 28-bit; \$2655 for 24-bit
- Manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- Flat MAC addresses achieve portability
 - Can move NIC from one LAN to another
- Hierarchical IP addresses NOT portable
 - IP depends on subnet to which node is attached

ARP: Address Resolution Protocol (1984)

Question: how to determine MAC address of a host knowing its IP address?

- Each IP node (host, router) on LAN has an ARP table
 - Contains IP/MAC address mappings for known LAN nodes
 - < IP address; MAC address; TTL>
- TTL (Time To Live):
 time after which
 address mapping will
 be forgotten (typically
 20 min)

ARP Protocol: Same LAN/Subnet

- X wants to send datagram to Y, but doesn't know Y's MAC address yet
 - X broadcasts ARP query packet, containing Y's IP address
 - All machines on LAN process ARP query
- Y receives ARP packet, replies to X with its MAC address
 - Frame sent to X's MAC address (unicast)

- X caches (saves) IP-to-MAC address pair in its ARP table until this information becomes outdated
 - Soft state: information times out (goes away) unless refreshed
- ARP is "plug-and-play"
 - Nodes create their ARP tables without intervention from net administrator

Routing to Another LAN

- Walkthrough: send datagram from X to Y via R
 - Suppose 1) X knows Y's IP address; and 2) X knows its default router R (111.111.111.110)

ARP Example

C:\>arp -a

Interface: 128.194.135.66

Internet Address	Physical Address	Type
128.194.135.65	00-0c-f1-ad-9b-d9	dynamic
128.194.135.72	00-0c-f1-ad-9b-d9	dynamic
128.194.135.73	00-e0-18-91-68-9c	dynamic
128.194.135.74	00-08-74-ce-97-60	dynamic
128.194.135.76	00-04-23-ab-be-50	dynamic
128.194.135.81	00-04-23-ab-bc-7a	dynamic
128.194.135.92	00-0c-f1-ad-9b-d9	dynamic

- Why do 3 hosts in bold have the same MAC?
- Which hosts have NICs from the same manufacturer?

<u>DHCP</u>

- DHCP (Dynamic Host Configuration Protocol, 1993)
 - Assigns IP address, netmask, DNS server, default router, and other parameters to end-hosts
- DHCP runs over UDP (ports 67-68), using MAC-layer broadcasts to find available servers
 - Discovery→Offer→Request→Lease (4 packets exchanged)
 - Client may receive multiple offers, must choose one
 - Leased IPs carry some TTL (expiration time)
 - Routers and switches may implement DHCP
- Routers may be configured to forward broadcast DHCP packets between subnets
 - One DHCP server may cover multiple LANs

DHCP Example

```
C:\> ipconfig /all
Ethernet adapter Wireless Network Connection 6:
Connection-specific DNS Suffix . : tamu.edu
Description . . . . . . . . . . . . . . . . . DWL-G650M Super G MIMO
 Wireless Adapter #4
 Dhcp Enabled. . . . . . . . . . . Yes
 Autoconfiguration Enabled . . . . : Yes
 128.194.254.2
                        128,194,254,1
 Lease Obtained. . . . . . . . . . . Tuesday, November 21, 2006
 3:22:13 PM
 Lease Expires . . . . . . . . . . . . Tuesday, November 21, 2006
 4:22:13 PM
```

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3 Multiple access protocols
- 5.4 Link-Layer Addressing
- 5.5 Ethernet
- 5.6 Hubs and switches

Ethernet

- Dominant wired LAN technology
 - Inspired by ALOHAnet, based on Robert Metcalfe's PhD thesis in 1973
 - Xerox patented in 1976, first standardized in 1980
 - In the early 1980s, competed with Token Ring (IBM) and Token Bus (GM), eventually overpowering both
- Ethernet data rates
 - Experimental: 2.94 Mbps (1973)
 - 10Base5 thick coax [IEEE 802.3]: 10 Mbps (1983)
 - Fast Ethernet [IEEE 802.3u]: 100 Mbps (1995)
 - Gigabit Ethernet (GE) [IEEE 802.3ab]: 1 Gbps (1999)
 - 10 GE [802.3ae]: 10 Gbps (2003 fiber, 2006 twisted pair)
 - 40/100 GE [IEEE 802.3ba]: 2010-2015

Ethernet Frame Structure

 Sending adapter encapsulates IP datagram (or other network-layer protocol packet) in Ethernet frame

preamble dest MAC src MAC type data CRC gap

- 8-byte preamble (physical layer):
 - 7 bytes 10101010 followed by one byte 10101011, synchronizes receiver-sender clock rates
- 6-byte MAC addresses:
 - If adapter receives frame with a matching or broadcast address, it passes data to the network layer
 - Otherwise, adapter discards frame

Ethernet Frame Structure

preamble dest MAC src MAC type data CRC gap

- 2-byte protocol type:
 - Indicates the higher-layer protocol
 - Examples are IPv4 (0x800), IPv6 (0x86DD), ARP (0x806),
 Wake-On-LAN (0x842), AppleTalk, Novell IPX, MPLS
- 32-bit CRC checksum:
 - Checked at receiver, if error is detected, frame is dropped
- Minimum payload 46 bytes, inter-frame gap 12 bytes
 - Frames shorter than minimum are interpreted as collisions
 - Resulting smallest frame time is 8+14+46+4+12 = 84 bytes
 - 1 Gbps max rate is 1.488M pps (packets per second)

Ethernet CSMA/CD

- No slots
- Adapter doesn't transmit if it senses that some other adapter is transmitting, that is, carrier sense (CS)
- Transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection (CD)

- Before attempting a retransmission, adapter waits a random time, that is, random access
- Connectionless: no handshaking between sending and receiving adapter
- Unreliable: receiving adapter doesn't send ACKs or NAKs to sending adapter

Ethernet's CSMA/CD

- Bit time = 1 / speed
 - 100 nanosec for 10 Mbps Ethernet
 - 1 nanosec for GE
 - 100 picosec for 10 GE

TCP's exponential timer backoff during congestion is similar

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated load
 - Heavy load: random wait should be longer
- After m-th collision in a row
 - Choose integer D ∈ [0, 2^m-1]; then wait 512·D bit times before retx
- Example:
 - After second collision: choose
 D from {0, 1, 2, 3}
 - After ten collisions, choose D
 from {0, 1, 2, 3, 4, ..., 1023}

Ethernet Efficiency

- d = max propagation delay between any two nodes in LAN
- T = time to transmit frame

efficiency =
$$\frac{1}{1 + 5\frac{d}{T}}$$

- Efficiency goes to 1 as d goes to 0 (less collision probability)
- It also goes to 1 as T goes to infinity (less frequent switching between hosts)
- 1GE with 10m link and 1500 byte MTU: 98.6% utilization
 - Much better than slotted ALOHA (where efficiency is 37%), but still decentralized, simple, and cheap

Ethernet Technology

- Notation: [speed]Base[medium]
- Examples
 - 10base5 (thick coax 500m), 10base2 (thin coax 200m), 10baseT (twisted-pair/copper CAT3 with 8 wires and RJ45 connectors 100m), 1000BaseSX (short-range fiber 550m), 1000BaseLX (long-range fiber 5km)
- Now: 10GBaseT over CAT6 (55m), CAT6a (100m)
- Coax networks were daisy-chained, while copper and fiber run the star topology

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3 Multiple access protocols
- 5.4 Link-Layer Addressing
- 5.5 Ethernet
- 5.6 Hubs and switches

<u>Hubs</u>

- Hubs were physical-layer repeaters:
 - Bits coming from one link went out all other links
- No frame buffering
 - No CSMA/CD at hub: host adapters must detect collisions
- Backbone hubs interconnected other hubs
 - Increased max distance between nodes
 - But individual collision domains became one large collision domain
- Additional limitations
 - No management functionality
 - All ports had to be same speed
- Similar to daisy-chaining, but with all connections in one place

Switches

Link layer device

- Stores and forwards Ethernet frames
- Examines frame header and selectively forwards frame based on MAC dest address
- When frame is to be forwarded on segment, uses CSMA/CD to access segment
- Transparent
 - Hosts are unaware of presence of switches
- Plug-and-play, self-learning
 - Switches can function without manual configuration

<u>Forwarding</u>

- How to determine onto which LAN segment to forward frame?
 - Looks like a routing problem...
- Most LAN networks are trees and flooding is permitted, which makes the problem much simpler!

Self Learning

- A switch has a switch table
- Entry in switch table:
 - (MAC Address, Interface, TTL)
 - Stale entries in table dropped (TTL can be 60 min)
- Switch *learns* which hosts can be reached through which interfaces
 - When frame received, switch "learns" location of sender: incoming LAN segment
 - Records sender/location pair in switch table

Filtering/Forwarding

When switch receives a frame:

```
index switch table using destination MAC address
if entry found for destination then {
    if dest on segment from which frame arrived
        then drop the frame
    else forward the frame on interface indicated
}
else flood
Forward on all but the interface
```

on which the frame arrived

Switch Example

Suppose C sends a frame to D

- Switch receives frame from C
 - Notes in its table that C is on interface 1
 - Because D is not in table, switch forwards frame into interfaces 2 and 3
- Frame received by D

Switch Example

Suppose D replies back with frame to C

- Switch receives frame from D
 - Notes in the table that D is on interface 2
 - Because C is in table, switch forwards only to interface 1
- Frame received by C

Switches: Dedicated Access

- Dedicated: hosts have direct connection to switch
 - No collisions; full duplex
- Switching: A-to-D and B-to-E simultaneous, no collisions
- Buffering: A-to-D and C-to-D simultaneous, no collisions
- Combinations of shared/dedicated and diverse (10/100/1000 Mbps) interfaces are possible

Switches vs. Routers

- Both store-and-forward devices
 - Routers: network-layer devices
 - Switches: link-layer devices

- Modern switches can perform some IP functionality
 - This violates the end-to-end principle, but makes network administration easier