7/13/24, 2:08 PM APXI

Algoritmi di approssimazione

Supponiamo di dover risolvere un problema di ottimizzazione NP-difficile. Cosa dovrei fare?

Sacrificare una delle tre seguenti caratteristiche:

- 1. Esecuzioni in tempo polinomiale
- 2. Risolvere istanze arbitrarie del problema
- 3. Trovare la soluzione ottima al problema

Algortimi di ρ -approssimazione

- 1. Esecuzioni in tempo polinomiale
- 2. Risolvere istanze arbitrarie del problema
- 3. Trovare la soluzione con un rapporto di approssimazione P rispetto all'ottimo

Dimostrare che il valore della soluzione è vicino all'ottimo senza conoscere il valore ottimo.

Un algoritmo di α -approssimazione per un problema di ottimizzazione è un algoritmo polinomiale che per tutte le istanze del problema produce una soluzione il cui valore è lontana al più un fattore α dal valore della soluzione ottima di quell'istanza.

Minimization

 $\circ \ a \geq 1$, per ogni soluzione x ritornata, $cost(x) \leq \alpha OPT(x)$

Maximization

 $\circ \ a \leq 1$, per ogni soluzione x ritornata, $cost(x) \geq \alpha OPT(x)$

Load Balancing

Input

m macchine identiche; $n \geq m$ jobs, job j ha un tempo di esecuzione t_i

Il lavoro j deve essere eseguito in modo contiguo su una macchina. Una macchina può elaborare al massimo un lavoro alla volta.

Sia S[i] il sottoinsieme dei jobs assegnati alla macchina i. Il **load** della macchina i è $L[i] = \sum_{j \in S[i]} t_j$.

Il **makespan** è il massimo load su qualsiasi macchina $L = max_i L[i]$

Assegna ogni job ad una macchina in modo da minimizzare il makespan

[!NOTE] Il load balancing è hard anche se m = 2 macchine PARTITION \leq_p LOAD BALACING

Algoritmo

Consideriamo n lavori in un ordine fisso.

Assegna il lavoro j alla macchina i il cui carico è finora il più piccolo.

7/13/24, 2:08 PM APXI

```
LIST-SCHEDULING (m, n, t_1, t_2, ..., t_n)

FOR i = 1 TO m

L[i] \leftarrow 0. \leftarrow load on machine i

S[i] \leftarrow \varnothing. \leftarrow jobs assigned to machine i

FOR j = 1 TO n

i \leftarrow argmin_k L[k]. \leftarrow machine i has smallest load

S[i] \leftarrow S[i] \cup \{j\}. \leftarrow assign job j to machine i

L[i] \leftarrow L[i] + t_j. \leftarrow update load of machine <math>i

RETURN S[1], S[2], ..., S[m].
```

Usando coda con priorità che mantenga i carichi $L[k] \ O(nlogm)$

Teorema

L'algoritmo greedy è un 2-approssimazione.

- Prima analisi del caso peggiore di un algoritmo di approssimazione.
- Necessità di confrontare la soluzione risultante con il makespan ottimale L^\prime

Generalmente, per valutare la soluzione approssimata, bisogna confrontarla con un certo valore che è un lowerbound della soluzione ottima.

Lemma

Per ogni k : il makespan ottimale $L' \geq t_k$.

dim

La soluzione ottima deve esse maggiore uguale del tempo di processamento di un qualsiasi job k

Lemma

II makespan ottimo $L' \geq \frac{1}{m} \sum_k t_k$

dim

Il tempo totale di processamento è $\sum_k t_k$

Una delle m macchine deve fare almeno una frazione $\frac{1}{m}$ del lavoro totale.

Analisi

Teorema

L'algoritmo greedy è un'approssimazione 2.

dim

Consideriamo il carico L[i] della macchina con collo di bottiglia i (macchina col carico maggiore, alla fine dell'algoritmo).

Sia j l'ultimo lavoro pianificato sulla macchina i.

Quando il lavoro j è stato assegnato alla macchina i, aveva il carico più piccolo.

7/13/24, 2:08 PM APX

Il suo carico prima dell'assegnazione è L[i]- t_j ; quindi L[i]- $tj \le L[k]$ per ogni $1 \le k \le m$. Somma le disuguaglianze su tutti i k e dividi per m:

$$L[i] - t_j \leq rac{1}{m} \sum_k L[k] = rac{1}{m} \sum_k t_k \leq L'$$
 (per il Lemma 2)

Now,
$$L=L[i]=\underbrace{(L[i]-t_j)}_{\leq L^*}+t_j\leq 2L^*$$
 .

Tempo di elaborazione più lungo (LPT).

Ordina n jobs in ordine decrescente di tempo di elaborazione; quindi eseguire l'algoritmo precedente.

Analisi

Lemma

Se ci sono più di m posti di lavoro, $L' \geq 2t_{m+1}$

dim

Considera il tempo di elaborazione dei primi m+1 jobs $t_1 \geq t_2 \geq \ldots \geq t_{m+1}$

Ciascuna richieda almeno t_{m+1} tempo.

Ci sono m+1 jobs e m macchine, quindi per il principio della piccionaia, almeno una macchina ottiene due jobs.

Teorema

La regola LPT è un algoritmo di $\frac{3}{2}$ -approssimazione.

dim

Considerare il carico L[i] della macchina con collo di bottiglia i.

Supponiamo che j sia l'ultimo job schedulato sulla macchina \$i

$$L = L[i] = (L[i] - t_j) + t_j \leq \frac{3}{2} L^*$$
 as before $\longrightarrow \le L^* \le \frac{1}{2} L^* \longleftarrow$ Lemma 3 (since $t_{m+1} \ge t_j$)

L'analisi non è stretta

Teorema

La regola LPT è un algoritmo di $\frac{4}{3}$ -approssimazione.