$L^{p(x)}(\Omega)$ 中关于 Luxemburg 范数和共轭 Orlicz 范数间的一个最佳不等式 **

范先令* 柳万民*

提要 令 $L^{p(x)}(\Omega)$ 为变指数 Lebesgue 空间,其中 $p:\Omega \to [1,\infty]$ 、 $\|\cdot\|_{p(x)}$ 和 $\|\cdot\|_{p(x)}^o$ 分别表示 $L^{p(x)}(\Omega)$ 中的 Luxemburg 范数和共轭 Orlicz 范数. 本文证明成立最佳不等式 $\|\cdot\|_{p(x)} \le \|\cdot\|_{p(x)}^o \le d_{(p_-,\ p_+)}\|\cdot\|_{p(x)}$,其中 $d_{(p_-,\ p_+)}$ 是一个依赖于 $p_-= \mathrm{ess\,inf}_\Omega\,p(x)$ 和 $p_+= \mathrm{ess\,sup}_\Omega\,p(x)$ 的常数. 当 $1 < p_- < p_+ < \infty$ 时,

$$\begin{split} d_{(p_-, p_+)} &= \left(\frac{(p_- - 1)^{p_- - 1}}{p_-^{p_-}}\right)^{\frac{p_+ - 1}{p_+ - p_-}} \left(\frac{p_+^{p_+}}{(p_+ - 1)^{p_+ - 1}}\right)^{\frac{p_- - 1}{p_+ - p_-}} \\ &+ \left(\frac{p_-^{p_-}}{(p_- - 1)^{p_- - 1}} \frac{(p_+ - 1)^{p_+ - 1}}{p_+^{p_+}}\right)^{\frac{1}{p_+ - p_-}}; \end{split}$$

当 $p_{-}=1$ 或 $p_{+}=\infty$ 时, $d_{(p_{-},p_{+})}$ 是相应的极限形式.

关键词 变指数 Lebesgue 空间, Luxemburg 范数, 共轭 Orlicz 范数, Amemiya 范数 MR (2000) 主題分类 46E30

中图法分类 O177.2, O178

文献标识码 A

文章编号 1000-8314(2006)02-0177-12

1 引 言

令 (Ω, Σ, μ) 为完备 σ - 有限测度空间, $p:\Omega \to [1,\infty]$ 是一个可测函数.已有很多关于变指数 Lebesgue 空间 $L^{p(x)}(\Omega)$ 的研究(见 [1-4,6-9]).用 $S(\Omega)$ 表示所有可测函数 $u:\Omega \to \mathbb{R}$ 所成之集合.令

$$\Omega_1 = \{x \in \Omega : p(x) = 1\}, \quad \Omega_+ = \{x \in \Omega : p(x) \in (1, \infty)\}, \quad \Omega_\infty = \{x \in \Omega : p(x) = \infty\}.$$

通常是在集合 $S(\Omega)$ 中引入一个凸模 ρ_p 来定义空间 $L^{p(x)}(\Omega)$ 和范数 $\|\cdot\|_{\rho_p}$ (见 [1, 6, 9]), 即令

$$\rho_p(u) = \int_{\Omega \setminus \Omega_{\infty}} |u(x)|^{p(x)} d\mu + \operatorname{ess\,sup}_{\Omega_{\infty}} |u(x)|, \tag{1.1}$$

$$L^{p(x)}(\Omega) = \{ u \in S(\Omega) : \exists \lambda > 0, \ \text{\'eta} \ \rho_p(u/\lambda) < \infty \}, \tag{1.2}$$

$$||u||_{\rho_p} = \inf\{\lambda > 0: \ \rho_p(u/\lambda) \le 1\}.$$
 (1.3)

这样 $(L^{p(x)}(\Omega), \|\cdot\|_{\rho_p})$ 是一个 Banach 空间. 对 $D \subset \Omega$, 记

$$p_{-}(D) = \operatorname{ess\,inf}_{D} p(x), \quad p_{+}(D) = \operatorname{ess\,sup}_{D} p(x).$$

本文 2005 年 8 月 17 日收到.

^{*}兰州大学数学与统计学院, 兰州 730000. E-mail: fanxl@lzu.edu.cn; wmliu00@st.lzu.edu.cn **国家自然科学基金 (No.10371052) 赞助的项目.

 $p_{-}(\Omega)$ 和 $p_{+}(\Omega)$ 分别简记为 p_{-} 和 p_{+} 用 $p^{o}(x)$ 表示 p(x) 的共轭函数,即

$$p^{o}(x) = \begin{cases} \frac{p(x)}{p(x) - 1}, & x \in \Omega_{+}, \\ \infty, & x \in \Omega_{1}, \\ 1, & x \in \Omega_{\infty}, \end{cases}$$

$$(1.4)$$

Kováčik 和 Rákosník 在文 [6] 中定义了一个等价范数 ||·||%:

$$||u||_{\rho_p}^o = \sup \Big\{ \Big| \int_{\Omega} u(x)v(x)dx \Big| : \ v \in L^{p^o(x)}(\Omega), \ \rho_{p^o}(v) \le 1 \Big\},$$

并且证明了如下不等式 (见 [6, 定理 2.3]):

$$c_{p(x)}^{-1} \|u\|_{\rho_{p}} \le \|u\|_{\rho_{p}}^{o} \le r_{p(x)} \|u\|_{\rho_{p}} , \qquad (1.5)$$

其中

$$c_{p(x)} = \|\chi_{\Omega_1}\|_{\infty} + \|\chi_{\Omega_+}\|_{\infty} + \|\chi_{\Omega_{\infty}}\|_{\infty},$$

$$r_{p(x)} = c_{p(x)} + \frac{1}{p_{-}(\Omega_+)} - \frac{1}{p_{+}(\Omega_+)},$$

这里约定 $\frac{1}{\infty}=0$. 特别地,当 $\Omega_1=\Omega_\infty=\emptyset$ 时,可以得到 $c_{p(x)}=1$ 和 $r_{p(x)}=1+\frac{1}{p_-}-\frac{1}{p_+}$. 此时不等式 (1.5) 变为

$$||u||_{\rho_p} \le ||u||_{\rho_p}^o \le \left(1 + \frac{1}{\nu_-} - \frac{1}{p_+}\right) ||u||_{\rho_p}.$$
 (1.6)

我们指出,作为从 $(L^{p(x)}(\Omega), \|\cdot\|_{\rho_p}) \hookrightarrow (L^{p(x)}(\Omega), \|\cdot\|_{\rho_p}^o)$ 的嵌入常数 $r_{p(x)}$ 不是最佳的. 本文找到了最佳嵌入常数 $d_{p(x)} = d_{(p_-, p_+)}$, 它只依赖于 p_- 和 p_+ . 当 $1 < p_- < p_+ < \infty$ 时,

$$d_{(p_{-}, p_{+})} = \left(\frac{(p_{-}-1)^{p_{-}-1}}{p_{-}^{p_{-}}}\right)^{\frac{p_{+}-1}{p_{+}-p_{-}}} \left(\frac{p_{+}^{p_{+}}}{(p_{+}-1)^{p_{+}-1}}\right)^{\frac{p_{-}-1}{p_{+}-p_{-}}} + \left(\frac{p_{-}^{p_{-}}}{(p_{-}-1)^{p_{-}-1}} \frac{(p_{+}-1)^{p_{+}-1}}{p_{+}^{p_{+}}}\right)^{\frac{1}{p_{+}-p_{-}}}.$$

$$(1.7)$$

此时,可以验证 $d_{(p_-,\,p_+)}<1+\frac{1}{p_-}-\frac{1}{p_+}=r_{p(x)}$ (见下面的注 3.1). 此外,当 $\Omega_\infty\neq\emptyset$ 时,由 (1.1) 定义的凸模 ρ_p 并不是由一个 Orlicz 函数 $\Phi(x,\cdot)$ 的积分生成的,所以空间 $(L^{p(x)}(\Omega),\,\|\cdot\|_{\rho_p})$ 并不是文 [7] 意义下的广义 Orlicz 空间,而是一个 Musielak-Nakano 空间. 本文将在 $L^{p(x)}(\Omega)$ 定义一个范数 $\|\cdot\|_{p(x)}$,使得 $(L^{p(x)}(\Omega),\,\|\cdot\|_{p(x)})$ 成为广义 Orlicz 空间。定义函数

$$\Phi(x,t) = t^{p(x)}, \quad \forall t \ge 0, \ \forall x \in \Omega,$$

约定

$$t^{\infty} = \begin{cases} 0, & 0 \le t \le 1, \\ \infty, & t > 1. \end{cases}$$
 (1.8)

则对任给 $x\in\Omega$, $\Phi(x,\cdot)$ 是一个 Orlicz 函数 (即一个非负下半连续凸函数,在 t=0 时取 0, 但在 $(0,\infty)$ 上不恒为 0 或 ∞). 在 $L^{p(x)}(\Omega)$ 中定义 Luxemburg 范数:

$$||u||_{p(x)} = \inf\left\{\lambda > 0, \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{p(x)} d\mu \le 1\right\}.$$

$$(1.9)$$

易知两个范数 $\|u\|_{p(x)}$ 和 $\|u\|_{p_p}$ 是等价的、特别地、当 $\Omega_\infty=\emptyset$ 时,它们相同,而且也易知当 $\Omega=\Omega_\infty$ 时,范数 $\|u\|_{p(x)}$ 恰为通常意义的 L^∞ - 范数 $\|u\|_\infty=\cos\sup_\Omega |u(x)|$. 在 $L^{p(x)}(\Omega)$ 中定义共轭 Orlicz 范数 $\|u\|_{p(x)}^o$:

$$||u||_{p(x)}^{o} = \sup \left\{ \left| \int_{\Omega} u(x)v(x) \ d\mu \right| : \ v \in L^{p^{o}(x)}(\Omega), \ \int_{\Omega} |v(x)|^{p^{o}(x)} d\mu \le 1 \right\}. \tag{1.10}$$

显然, 当 $\Omega_1 = \Omega_\infty = \emptyset$ 时, $\|u\|_{p(x)}^o = \|u\|_{\rho_n}^o$.

当 $1 < p_- < p_+ < \infty$ 时,常数 $d_{p(x)} = d_{(p_-, p_+)}$ 由 (1.7) 定义. 当 $p_- = 1$ 或 $p_+ = \infty$ 时, $d_{p(x)}$ 可被定义为 (1.7) 相应的极限形式,即

$$d_{p(x)} = \begin{cases} d_{(p_{-}, p_{+})} & \text{if } (1.7) \not \Xi \not X, \\ d_{(1, p_{+})} = \lim_{p_{-} \to 1+} d_{(p_{-}, p_{+})} = 1 + \left(\frac{(p_{+} - 1)^{p_{+} - 1}}{p_{+}^{p_{+}}}\right)^{\frac{1}{p_{+} - 1}}, & 1 = p_{-} < p_{+} < \infty, \\ d_{(p_{-}, \infty)} = \lim_{p_{+} \to \infty} d_{(p_{-}, p_{+})} = \frac{(p_{-} - 1)^{p_{-} - 1}}{p_{-}^{p_{-}}} + 1, & 1 < p_{-} < p_{+} = \infty, \\ d_{(1, \infty)} = \lim_{p_{+} \to \infty} d_{(p_{-}, p_{+})} = 2, & 1 = p_{-} \not \exists. p_{+} = \infty, \\ \lim_{q \to p_{-}} d_{(p_{-}, q)} = \lim_{r \to p_{+}} d_{(r, p_{+})} = 1, & p_{-} = p_{+}. \end{cases}$$

$$(1.11)$$

本文的主要结果是下面的定理:

定理 1.1 不等式

$$||u||_{p(x)} \le ||u||_{p(x)}^o \le d_{p(x)}||u||_{p(x)}, \quad \forall \ u \in L^{p(x)}(\Omega), \tag{1.12}$$

成立并且是最佳的. 换言之、有

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}}{\|u\|_{p(x)}^o} = 1, \tag{1.13}$$

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}^{o}}{\|u\|_{p(x)}} = d_{p(x)}.$$
(1.14)

注 1.1 当 $p_- = p_+$ 时,即 $p(x) \equiv p \in [1, \infty]$ a.e., $(L^{p(x)}(\Omega), ||u||_{p(x)})$ 就是通常的 Lebesgue 空间 $(L^p(\Omega), ||u||_p)$. 此时,显然有 $||u||_p = ||u||_p^o$. 这是定理 1.1 的特殊形式.为了证明定理 1.1, 只需要考虑 $p_- < p_+$.

注 1.2 不等式 (1.5) 中, $c_{p(x)}=1$, 2 或 3. 常数 $c_{p(x)}$ 和 $r_{p(x)}$ 并不关于 (p_-, p_+) 连续. 而在我们的不等式 (1.12) 中, $d_{p(x)}=d_{(p_-, p_+)}$ 关于 (p_-, p_+) 连续. 这也反映了在约定 (1.8) 下用 (1.9) 定义范数 $\|u\|_{p(x)}$ 的合理性.

本文的结构如下: 在第 2 节中证明结论 (1.13), 在第 3 节中证明 $\|u\|_{p(x)}^o \le d_{p(x)}\|u\|_{p(x)}$, 在第 4 节中证明 $d_{p(x)}$ 的最佳性.

2 不等式 $||u||_{p(x)} \le ||u||_{p(x)}^o$ 及其最佳性

本节的目的是证明 (1.13). 先证下面的引理:

引理 2.1

$$||u||_{p(x)} \le ||u||_{p(x)}^{o}, \quad \forall u \in L^{p(x)}(\Omega).$$
 (2.1)

证 设 $u \in L^{p(x)}(\Omega)$, 由范数的正齐次性,不妨假定 $\|u\|_{p(x)} = 1$. 又由于 u(x) 和 |u(x)| 的范数相等,还可假定对 $x \in \Omega$,有 $u(x) \geq 0$. 令 $c = \|u\|_{L^{\infty}(\Omega_{\infty})}$ (当 $\Omega_{\infty} = \emptyset$ 时,约定 c = 0). 利用 $\|u\|_{p(x)}$ 的定义 (1.9), 得到 $c \leq 1$.

情形 i c < 1.

此时有
$$\int_{\Omega} |u(x)|^{p(x)} d\mu = \int_{\Omega \setminus \Omega_{\infty}} |u(x)|^{p(x)} d\mu = 1.$$
 令
$$v(x) = \begin{cases} |u(x)|^{p(x)-1}, & x \in \Omega \setminus \Omega_{\infty}. \\ 0, & x \in \Omega_{\infty}, \end{cases}$$

则

$$\int_{\Omega} |v(x)|^{p^o(x)} d\mu = \int_{\Omega \backslash \Omega_{\infty}} |u(x)|^{p(x)} d\mu = 1.$$

由 $||u||_{p(x)}^{o}$ 的定义 (1.10), 有

$$||u||_{p(x)}^{o} \ge \int_{\Omega} u(x)v(x)d\mu = \int_{\Omega\setminus\Omega_{\infty}} |u(x)|^{p(x)}d\mu = 1 = ||u||_{p(x)}.$$

情形 ii c=1.

任给 $\varepsilon>0$, 则存在 $D\subset\Omega_{\infty}$, 使得 $\mu(D)>0$ 并且对 $x\in D$ 有 $u(x)\geq 1-\varepsilon$. 令

$$v(x) = \begin{cases} \frac{1}{\mu(D)}, & x \in D, \\ 0, & x \in \Omega \backslash D, \end{cases}$$

则

$$\int_{\Omega} |v(x)|^{p^{o}(x)} d\mu = \int_{D} \frac{1}{\mu(D)} d\mu = 1,$$

有

$$||u||_{p(x)}^{o} \geq \int_{\Omega} u(x)v(x)d\mu = \int_{D} u(x)\frac{1}{\mu(D)}d\mu \geq 1 - \varepsilon.$$

因为 $\varepsilon > 0$ 是任意的, 得到

$$||u||_{p(x)}^{o} \ge 1 = ||u||_{p(x)}.$$

引理 2.1 证毕.

下证 (1.13). 不等式 (2.1) 表明

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}}{\|u\|_{p(x)}^o} \le 1.$$

为证 (1.13), 只需证明

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}}{\|u\|_{p(x)}^{o}} \ge 1. \tag{2.2}$$

当 $\Omega_1 \neq \emptyset$ 或 $\Omega_\infty \neq \emptyset$ 时,由注 1.1 易知,存在 $u \in L^{p(x)}(\Omega)$,使得 $\|u\|_{p(x)} = \|u\|_{p(x)}^o = 1$.因此 (2.2) 成立. 下面假设 $\Omega_1 = \Omega_\infty = \emptyset$,即 $\Omega = \Omega_+$.任给 $\varepsilon > 0$,可以找到 $D \subset \Omega_+$,使得 $\mu(D) > 0$ 并且 $p_+(D) - p_-(D)$ 充分小,满足

$$\frac{1}{\bar{p}} + \frac{1}{\bar{q}} \le 1 + \varepsilon, \quad \forall \ \bar{p} \in [p_{-}(D), \ p_{+}(D)], \ \forall \ \bar{q} \in [(p^{o})_{-}(D), \ (p^{o})_{+}(D)].$$

取 $u \in L^{p(x)}(\Omega)$ 满足 $||u||_{p(x)} = 1$ 和 $\mathrm{supp}\, u \subset D$, 则

$$\int_D |u(x)|^{p(x)} d\mu = 1.$$

对任给的 $v \in L^{p^{\circ}(x)}(\Omega)$, 并且 $\int_{\Omega} |v(x)|^{p^{\circ}(x)} d\mu \leq 1$, 则成立

$$\begin{split} \Big| \int_{\Omega} u(x) v(x) d\mu \Big| &= \Big| \int_{D} u(x) v(x) d\mu \Big| \leq \int_{D} \Big(\frac{1}{p(x)} |u(x)|^{p(x)} + \frac{1}{p^{o}(x)} |v(x)|^{p^{o}(x)} \Big) d\mu \\ &= \frac{1}{\bar{p}} \int_{D} |u(x)|^{p(x)} d\mu + \frac{1}{\bar{q}} \int_{D} |v(x)|^{p^{o}(x)} d\mu \\ &\leq \frac{1}{\bar{p}} + \frac{1}{\bar{q}} \leq 1 + \varepsilon, \end{split}$$

这里 \bar{p} 和 \bar{q} 分别是 $[p_-(D), p_+(D)]$ 和 $[(p^o)_-(D), (p^o)_+(D)]$ 中的某个常数. 这表明 $\|u\|_{p(x)}^o \le 1 + \varepsilon$, 所以

$$\frac{\|u\|_{p(x)}}{\|u\|_{p(x)}^o} \ge \frac{1}{1+\varepsilon}.$$

从而不等式 (2.2) 成立. 这证明了 (1.13).

3 不等式 $\|u\|_{p(x)}^o \leq d_{p(x)} \|u\|_{p(x)}$ 的证明

本节将证明

$$||u||_{p(x)}^{o} \le d_{p(x)}||u||_{p(x)}, \quad \forall \ u \in L^{p(x)}(\Omega). \tag{3.1}$$

首先作一些预备. 记

$$\Phi(x,t) = \frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} t^{p(x)}, \quad \forall x \in \Omega, \quad \forall t \ge 0,$$
(3.2)

这里约定

$$\begin{split} &\Phi(x,t)=t, \qquad x\in\Omega_1\ ,\\ &\Phi(x,t)=0, \qquad x\in\Omega_\infty\ \hbox{$\underline{\rm H}$}\ 0\le t\le 1,\\ &\Phi(x,t)=\infty, \quad x\in\Omega_\infty\ \hbox{$\underline{\rm H}$}\ t>1. \end{split}$$

记 $\Phi^*(x,\cdot)$ 为 $\Phi(x,\cdot)$ 的补函数, 即

$$\Phi^*(x,s) = \sup_{t \ge 0} \{ ts - \Phi(x,t) \}, \quad \forall x \in \Omega, \ \forall s \ge 0.$$
 (3.3)

易算得

$$\Phi^*(x,s) = s^{p^o(x)}, \quad \forall x \in \Omega, \ \forall s \ge 0.$$
 (3.4)

令

$$L^\Phi(\Omega) = \Big\{ u \in S(\Omega) : \exists \lambda > 0, \ \ \textbf{\'e} \, \hbox{\it if} \, \int_\Omega \Phi\Big(x. \, \Big|\frac{u(x)}{\lambda}\Big|\Big) \, \, d\mu < \infty \Big\}.$$

在 $L^{\Phi}(\Omega)$ 中, Luxemburg 范数 $\|\cdot\|_{\Phi}$,Orlicz 范数 $\|\cdot\|_{\Phi}^{c}$ 和 Amemiya 范数 $\|\cdot\|_{\Phi}^{A}$ 分别被定义为 (见 [7])

$$||u||_{\Phi} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi(x, |u(x)/\lambda|) d\mu \le 1 \right\}, \tag{3.5}$$

$$||u||_{\Phi}^{o} = \sup \left\{ \left| \int_{\Omega} u(x)v(x) \ d\mu \right| : v \in L^{\Phi^{*}}(\Omega), \int_{\Omega} \Phi^{*}(x, |v(x)|) d\mu \le 1 \right\}, \tag{3.6}$$

$$||u||_{\Phi}^{A} = \inf \left\{ \frac{1}{k} \left(\int_{\Omega} \Phi(x, |ku(x)|) d\mu + 1 \right) : k > 0 \right\}.$$
 (3.7)

由于 $\frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} \le 1$, 可以得到 $L^{p(x)}(\Omega) \subset L^{\Phi}(\Omega)$. 对任给的 $u \in L^{p(x)}(\Omega)$, 从 (3.4), (3.6) 和 (1.10) 可知

$$||u||_{p(x)}^o = ||u||_{\Phi}^o. \tag{3.8}$$

由文 [3], 知道

$$||u||_{\Phi}^{o} = ||u||_{\Phi}^{A}. \tag{3.9}$$

(当 $\Phi(x,t) = \Phi(t)$ 是一个通常的 Orlicz 函数时,等式 (3.9) 已经被 Hudzik 和 Maligranda 在文 [5] 中证明.) 为了证明不等式 (3.1), 只需证明

$$||u||_{\Phi}^{A} \le d_{p(x)}||u||_{p(x)}, \quad \forall \ u \in L^{p(x)}(\Omega).$$
 (3.10)

以引理的形式分步证明 (3.10). 由注 1.1, 下文假设 $p_- < p_+$.

引理 3.1 当 $1 < p_- < p_+ < \infty$ 时, (3.10) 成立.

证 此时,显然有 $\Omega = \Omega_+$. 设 $u \in L^{p(x)}(\Omega)$ 并且 $||u||_{p(x)} = 1$. 只需证明

$$||u||_{\Phi}^{A} \le d_{p(x)} = d_{(p_{-}, p_{+})}. \tag{3.11}$$

对 k > 0, 令

$$G(k) = \frac{1}{k} \left(\int_{\Omega} \frac{(p(x) - 1)^{p(x) - 1}}{p(x)^{p(x)}} k^{p(x)} |u(x)|^{p(x)} d\mu + 1 \right).$$
 (3.12)

由 $\|u\|_{\Phi}^{A}$ 的定义 (3.7), 有 $\|u\|_{\Phi}^{A} = \inf_{k>0} G(k)$. 对任给 k>0, 定义 $f_{k}:[p_{-},p_{+}] \to \mathbb{R}$:

$$f_k(p) = \frac{(p-1)^{p-1}}{p^p} k^p, \quad p \in [p_-, p_+].$$
 (3.13)

通过对其导数的分析可以得到

$$\sup_{p_{-} \le p \le p_{+}} f_{k}(p) = \max\{f_{k}(p_{-}), f_{k}(p_{+})\} \triangleq f_{k}(p_{*}), \tag{3.14}$$

其中 $p_* = p_-$ 或 $p_* = p_+$ 如下述. 记

$$\bar{k} = \left(\frac{(p_{-}-1)^{p_{-}-1}}{p^{p_{-}}} \frac{p_{+}^{p_{+}}}{(p_{+}-1)^{p_{+}-1}}\right)^{\frac{1}{p_{+}-p_{-}}}.$$
(3.15)

从 (3.15) 可得

$$\frac{p_+}{p_+ - 1} < \bar{k} < \frac{p_-}{p_- - 1}. \tag{3.16}$$

易知, 当 $0 < k < \bar{k}$ 时, 有 $f_k(p_-) > f_k(p_+)$, 从而 $p_* = p_-$; 当 $k > \bar{k}$ 时, 有 $f_k(p_-) < f_k(p_+)$, 从而 $p_* = p_+$; 当 $k = \bar{k}$ 时, 有 $f_k(p_-) = f_k(p_+)$, 此时 $p_* = p_-$ 或 p_+ . 因此可得

$$G(k) \le \frac{1}{k} (f_k(p_*) + 1),$$
 (3.17)

并且有

范先令

2期

$$||u||_{\Phi}^{A} = \inf_{k>0} G(k) \le \inf_{k>0} \frac{1}{k} \left(f_k(p_*) + 1 \right). \tag{3.18}$$

对每个固定的 $p_* > 1$, 考虑 k 的函数

柳万民

$$g_{p_{\star}}(k) = \frac{1}{k}(f_k(p_{\star}) + 1) = \frac{1}{k} \left(\frac{(p_{\star} - 1)^{p_{\star} - 1}}{p_{\star}^{p_{\star}}} k^{p_{\star}} + 1 \right), \quad \forall \ k > 0.$$
 (3.19)

记 $k^* = \frac{p_*}{p_*-1}$, 则 $g'_{p_*}(k^*) = 0$. 可知 $g_{p_*}(k)$ 在 $(0, k^*]$ 是减函数而在 $[k^*, \infty)$ 是增函数. 当 $k \in (0, \bar{k}]$ 时,有 $p_* = p_-$,此时 $k^* = \frac{p_-}{p_--1} > \bar{k}$,故 $g_{p_-}(k)$ 在 $(0, \bar{k}]$ 是减函数. 因此

$$\inf_{0 \le k \le \bar{k}} \frac{1}{k} (f_k(p_*) + 1) = \inf_{0 \le k \le \bar{k}} g_{p_-}(k) = g_{p_-}(\bar{k}) = d_{(p_-, p_+)}. \tag{3.20}$$

当 $k \in [\bar{k}, \infty)$ 时,有 $p_* = p_+$,此时 $k^* = \frac{p_+}{p_+ - 1} < \bar{k}$,故有 $g_{p_+}(k)$ 在 $[\bar{k}, \infty)$ 是增函数. 因此

$$\inf_{k \ge \bar{k}} \frac{1}{k} (f_k(p_*) + 1) = \inf_{k \ge \bar{k}} g_{p_+}(k) = g_{p_+}(\bar{k}) = d_{(p_-, p_+)}. \tag{3.21}$$

由 (3.20), (3.21) 和 (3.18) 得到

$$||u||_{\Phi}^A = \inf_{k>0} G(k) \le d_{(p_-, p_+)}.$$

引理 3.1 证毕.

注 3.1 由引理 3.1 的证明,可以得到 $d_{(p_-, p_+)} = g_{p_-}(\bar{k}) = g_{p_+}(k)$,其中 \bar{k} 由 (3.15) 定义, $g_{p_+}(k)$ 由 (3.19) 定义.因为 $g_{p_-}(k)$ 在 $(0, \bar{k}]$ 递减而由 (3.16) 知, $\frac{p_+}{p_+-1} < \bar{k}$,得到

$$\begin{split} d_{(p_{-}, p_{+})} &= g_{p_{-}}(\bar{k}) < g_{p_{-}}\left(\frac{p_{+}}{p_{+} - 1}\right) \\ &= 1 + \frac{1}{p_{-}}\left(\frac{p_{-} - 1}{p_{-}} \frac{p_{+}}{p_{+} - 1}\right)^{p_{-} - 1} - \frac{1}{p_{+}} \\ &< 1 + \frac{1}{p_{-}} - \frac{1}{p_{+}} = r_{p(x)}. \end{split}$$

引理 3.2 当 $\Omega_{\infty} = \emptyset$ 时, (3.10) 成立.

证 事实上,引理 3.1 的证明对情形 $1 = p_- < p_+ < \infty$ 依然成立. 这里仅指出当 $p_- = 1$ 时,有

$$\frac{(p_{-}-1)^{p_{-}-1}}{p_{-}^{p_{-}}}=1, \quad \bar{k}=\left(\frac{p_{+}^{p_{+}}}{(p_{+}-1)^{p_{+}-1}}\right)^{\frac{1}{p_{+}-1}}$$

且有 $d_{p(x)}=d_{(1,\ p_+)}$. 当 $\Omega_\infty=\emptyset$ 而且 $p_+(\Omega_+)=\infty$ 时,仍沿用引理 3.1 中的记号,有

$$f_k(p) = \frac{(p-1)^{p-1}}{p^p} k^p, \quad \forall p \in [p_-, \infty).$$

有

$$\sup_{p \in [p_-, \infty)} f_k(p) = \begin{cases} \infty, & k > 1, \\ f_k(p_-), & k \le 1. \end{cases}$$

则对 $u \in L^{p(x)}(\Omega)$ 并且 $||u||_{p(x)} = 1$, 有

$$||u||_{\Phi}^{A} = \inf_{k>0} G(k) \le \inf_{k>0} \frac{1}{k} \Big(\sup_{p \in [p_{-}, \infty)} f_{k}(p) + 1 \Big)$$

$$= \inf_{0 < k \le 1} \frac{1}{k} (f_{k}(p_{-}) + 1) = \inf_{0 < k \le 1} g_{p_{-}}(k) = g_{p_{-}}(1)$$

$$= f_{1}(p_{-}) + 1 = \frac{(p_{-} - 1)^{p_{-} - 1}}{p_{-}^{p_{-}}} + 1 = d_{(p_{-}, \infty)}.$$

引理 3.2 证毕.

引理 3.3 当 $\Omega_{\infty} \neq \emptyset$ 时, (3.10) 成立.

证 设 $u \in L^{p(x)}(\Omega)$ 并且 $||u||_{p(x)} = 1$. 此时, $||u||_{L^{\infty}(\Omega_{\infty})} \le 1$ 且有

$$\int_{\Omega} |u(x)|^{p(x)} d\mu = \int_{\Omega \setminus \Omega_{\infty}} |u(x)|^{p(x)} d\mu \le 1.$$

进一步

$$||u||_{\Phi}^{A} = \inf_{k>0} \frac{1}{k} \left(\int_{\Omega} \Phi(x, |ku(x)|) d\mu + 1 \right)$$

$$\leq \inf_{0 < k \le 1} \frac{1}{k} \left(\int_{\Omega \setminus \Omega_{\infty}} \frac{(p(x) - 1)^{p(x) - 1}}{p(x)^{p(x)}} |k^{p(x)}| u(x)|^{p(x)} d\mu + 1 \right)$$

$$\leq \inf_{0 < k \le 1} \frac{1}{k} \left(\frac{(p_{-} - 1)^{p_{-} - 1}}{p_{-}^{p_{-}}} |k^{p_{-}} + 1 \right)$$

$$= \frac{(p_{-} - 1)^{p_{-} - 1}}{p_{-}^{p_{-}}} + 1 = d_{(p_{-}, \infty)}.$$
(3.22)

引理 3.3 证毕.

由以上引理, (3.1)成立.

$d_{p(x)}$ 的最佳性

这一节中, 将证明 (1.14). 不等式 (3.1) 表明

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}^o}{\|u\|_{p(x)}} \le d_{p(x)}.$$

为证 (1.14), 只需证明

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}^{o}}{\|u\|_{p(x)}} \ge d_{p(x)}.$$
(4.1)

用如下引理完成证明:

引理 4.1 当 $1 < p_- < p_+ < \infty$ 时, (4.1) 成立.

证令 k如 (3.15). 记

$$a = \left(\frac{p_- - 1}{p_-} \ \bar{k}\right)^{p_-}, \quad b = \left(\frac{p_+ - 1}{p_+} \ \bar{k}\right)^{p_+}.$$

则有 a < 1 和 b > 1. 记

$$\lambda_1 = \frac{b-1}{b-a}, \quad \lambda_2 = \frac{1-a}{b-a},$$

则有

$$\lambda_1, \ \lambda_2 > 0, \quad \lambda_1 + \lambda_2 = 1, \quad \lambda_1 a + \lambda_2 b = 1.$$
 (4.2)

取 $k_0 > k$ 充分大, 使得

$$\frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} k_0^{p(x)} > \frac{2}{\lambda_2}, \quad \forall x \in \Omega.$$
 (4.3)

任给 $\varepsilon > 0$, 可以找到 $A_- \subset \Omega$ 和 $A_+ \subset \Omega$ 满足 $\mu(A_-) > 0$, $\mu(A_+) > 0$, $A_- \cap A_+ = \emptyset$,

$$\left| \frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} k^{p(x)} - \frac{(p_--1)^{p_--1}}{p_-^{p_-}} k^{p_-} \right| < \frac{\varepsilon}{2}, \quad \forall x \in A_-, \ \forall \frac{1}{2} \le k \le k_0, \tag{4.4}$$

$$\left| \frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} k^{p(x)} - \frac{(p_{+}-1)^{p_{+}-1}}{p_{+}^{p_{+}}} k^{p_{+}} \right| < \frac{\varepsilon}{2}. \quad \forall x \in A_{+}, \ \forall \frac{1}{2} \le k \le k_{0}. \tag{4.5}$$

取 $u \in L^{p(x)}(\Omega)$, 使得 $\mathrm{supp}\, u \subset (A_- \cup A_+)$ 并且

$$\int_{A_{-}} |u(x)|^{p(x)} d\mu = \lambda_{1}, \quad \int_{A_{+}} |u(x)|^{p(x)} d\mu = \lambda_{2}, \tag{4.6}$$

有

$$\int_{\Omega} |u(x)|^{p(x)} d\mu = \lambda_1 + \lambda_2 = 1 , \quad ||u||_{p(x)} = 1.$$

从第3节已知

$$||u||_{p(x)}^{o} = \inf_{k>0} G(k) = \inf_{k>0} \frac{1}{k} \Big(\int_{\Omega} \frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} |k^{p(x)}| |u(x)|^{p(x)} d\mu + 1 \Big),$$

因为 $||u||_{p(x)}^{o} \le d_{(p_{-}, p_{+})} \le 2$, 而当 $k \in (0, \frac{1}{2}) \cup (k_{0}, \infty)$ 时, G(k) > 2,故有

$$||u||_{p(x)}^o = \inf_{\frac{1}{2} \le k \le k_0} G(k).$$

由 (4.4) 和 (4.5) 可得

$$||u||_{p(x)}^{o} = \inf_{\frac{1}{2} \le k \le k_{0}} \frac{1}{k} \left(\int_{\Omega} \frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} k^{p(x)} |u(x)|^{p(x)} d\mu + 1 \right)$$

$$= \inf_{\frac{1}{2} \le k \le k_{0}} \frac{1}{k} \left\{ \int_{A_{-}} \left[\frac{(p_{-}-1)^{p_{-}-1}}{p_{-}^{p_{-}}} k^{p_{-}} + \left(\frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} k^{p(x)} - \frac{(p_{-}-1)^{p_{-}-1}}{p_{-}^{p_{-}}} k^{p_{-}} \right) \right] |u(x)|^{p(x)} d\mu + \int_{A_{+}} \left[\frac{(p_{+}-1)^{p_{+}-1}}{p_{+}^{p_{+}}} k^{p_{+}} + \left(\frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}} k^{p(x)} - \frac{(p_{+}-1)^{p_{+}-1}}{p_{+}^{p_{+}}} k^{p_{+}} \right) \right] |u(x)|^{p(x)} d\mu + 1 \right\}$$

$$\geq \inf_{\frac{1}{2} \le k \le k_{0}} \frac{1}{k} \left(\frac{(p_{-}-1)^{p_{-}-1}}{p_{-}^{p_{-}}} k^{p_{-}} \lambda_{1} + \frac{(p_{+}-1)^{p_{+}-1}}{p_{+}^{p_{+}}} k^{p_{+}} \lambda_{2} + 1 - \frac{\varepsilon}{2} \right)$$

$$\geq \inf_{\frac{1}{2} \le k \le k_{0}} \frac{1}{k} \left(\frac{(p_{-}-1)^{p_{-}-1}}{p_{-}^{p_{-}}} k^{p_{-}} \lambda_{1} + \frac{(p_{+}-1)^{p_{+}-1}}{p_{+}^{p_{+}}} k^{p_{+}} \lambda_{2} + 1 \right) - \varepsilon. \tag{4.7}$$

定义

$$H(k) = \frac{1}{k} \Big(\frac{(p_{+} - 1)^{(p_{-} - 1)}}{p_{+}^{p_{+}}} \ k^{p_{-}} \lambda_{1} + \frac{(p_{+} - 1)^{(p_{+} - 1)}}{p_{+}^{p_{+}}} \ k^{p_{+}} \lambda_{2} + 1 \Big), \quad \forall \ k \in \Big[\frac{1}{2}, \ k_{0} \Big].$$

容易验证 \bar{k} 是 H(k) 在 $\left[\frac{1}{5}, k_0\right]$ 中的极小值点,而且

$$\inf_{\frac{1}{2} \le k \le k_{0}} H(k) = H(\bar{k})$$

$$= \lambda_{1} \frac{1}{\bar{k}} \left(\frac{(p_{-} - 1)^{p_{-} - 1}}{p_{-}^{p_{-}}} \bar{k}^{p_{-}} + 1 \right) + \lambda_{2} \frac{1}{\bar{k}} \left(\frac{(p_{+} - 1)^{p_{+} - 1}}{p_{+}^{p_{+}}} \bar{k}^{p_{+}} + 1 \right)$$

$$= \lambda_{1} d_{(p_{-}, p_{+})} + \lambda_{2} d_{(p_{-}, p_{+})} = d_{(p_{-}, p_{+})}.$$
(4.8)

再由 (4.7) 和 (4.8) 得到

$$||u||_{p(x)}^o \ge \inf_{\frac{1}{2} \le k \le k_0} H(k) - \varepsilon \ge d_{(p_-, p_+)} - \varepsilon.$$

这表明

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}^o}{\|u\|_{p(x)}} \ge d_{(p_-, p_+)} - \varepsilon \ .$$

由 $\varepsilon > 0$ 的任意性, (4.1) 成立.

引理 4.2 当 $1 = p_- < p_+ < \infty$ 时, (4.1) 成立.

证 证明和引理 4.1 的证明类似. 也请参看引理 3.2 的证明. 注意到此时 a=0.

引理 4.3 当 $\Omega_{\infty} = \emptyset$ 并且 $p_{+}(\Omega_{+}) = \infty$ 时, (4.1) 成立.

证 $\forall \varepsilon > 0$, 对每个自然数 n, 记

$$\Omega^{(n)} = \{ x \in \Omega : \ p(x) \le n \}.$$

则在 $\Omega^{(n)}$ 中有 $p_+(\Omega^{(n)}) \le n < \infty$. 对 $L^{p(x)}(\Omega^{(n)})$, 由引理 4.1, 存在某个 $u \in L^{p(x)}(\Omega^{(n)})$, 使得 $\int_{\Omega^{(n)}} |u(x)|^{p(x)} d\mu = 1$ 并且 $||u||^o_{p(x)|\Omega^{(n)}} \ge d_{(p_-,\; p_+)} - \varepsilon$. 令

$$\widetilde{u}(x) = \begin{cases} u(x), & x \in \Omega^{(n)}, \\ 0, & x \in \Omega \setminus \Omega^{(n)}, \end{cases}$$

则 $\widetilde{u}(x) \in L^{p(x)}(\Omega)$ 且有 $\int_{\Omega} |\widetilde{u}(x)|^{p(x)} d\mu = 1$. 因此 $\|\widetilde{u}(x)\|_{p(x)} = 1$. 显然,

$$\|u\|_{p(x)|\Omega^{(n)}}^o = \|\widetilde{u}(x)\|_{p(x)}.$$

这表明

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}^{\circ}}{\|u\|_{p(x)}} \ge d_{(p_{-}, n)} - \varepsilon .$$

由 $\epsilon > 0$ 的任意性,得到

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}^o}{\|u\|_{p(x)}} \ge d_{(p_-, n)}, \quad \forall \ n.$$

因此

$$\sup_{u \in L^{p(x)}(\Omega) \setminus \{0\}} \frac{\|u\|_{p(x)}^o}{\|u\|_{p(x)}} \ge \lim_{n \to \infty} d_{(p_-, n)} = d_{(p_-, \infty)}.$$

引理 4.3 证毕.

引理 4.4 当 $\Omega_{\infty} \neq \emptyset$ 时,(4.1) 成立.

证 若 $\Omega=\Omega_\infty$, (4.1) 显然成立 (见注 1.1). 故设 $\Omega\backslash\Omega_\infty\neq\emptyset$. 任给 $\varepsilon>0$, 取 $A_-\subset\Omega\backslash\Omega_\infty$, 使得 $\mu(A_-)>0$ 并且

$$\Big|\frac{(p(x)-1)^{p(x)-1}}{p(x)^{p(x)}}\;k^{p(x)}-\frac{(p_--1)^{p_--1}}{p_-^{p_--}}\;k^{p_-}\Big|\leq \frac{\varepsilon}{2},\quad\forall\,x\in A_-,\;\forall\,k\in[\frac{1}{2},\;1].$$

令

$$u(x) = \begin{cases} 1, & x \in \Omega_{\infty}, \\ a, & x \in A_{-}, \\ 0, & x \in \Omega \setminus (A_{-} \cup \Omega_{\infty}), \end{cases}$$

其中正常数 a 满足 $\int_A a^{p(x)} d\mu = 1$. 则有 $||u||_{p(x)} = 1$ 和

$$||u||_{p(x)}^{o} = \inf_{k>0} \frac{1}{k} \left(\int_{\Omega \setminus \Omega_{\infty}} \Phi(x, |ku(x)|) d\mu + \int_{\Omega_{\infty}} \Phi(x, |ku(x)|) d\mu + 1 \right)$$

$$= \inf_{\frac{1}{2} \le k \le 1} \frac{1}{k} \left(\int_{A_{-}} \frac{(p(x) - 1)^{p(x) - 1}}{p(x)^{p(x)}} |k^{p(x)}| u(x)|^{p(x)} d\mu + 1 \right)$$

$$\geq \inf_{\frac{1}{2} \le k \le 1} \frac{1}{k} \left(\frac{(p_{-} - 1)^{p_{-} - 1}}{p_{-}^{p_{-}}} |k^{p_{-}} + 1 - \frac{\varepsilon}{2} \right)$$

$$\geq \inf_{\frac{1}{2} \le k \le 1} \frac{1}{k} \left(\frac{(p_{-} - 1)^{p_{-} - 1}}{p_{-}^{p_{-}}} |k^{p_{-}} + 1 \right) - \varepsilon$$

$$\geq \frac{(p_{-} - 1)^{p_{-} - 1}}{p_{-}^{p_{-}}} + 1 - \varepsilon = d_{(p_{-}, \infty)} - \varepsilon. \tag{4.9}$$

因此 (4.1) 成立.

参考文献

- [1] Diening L., Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ [J], Math. Inequal. Appl., 2004, 7(2):245–253.
- [2] Edmunds D. E., Lang J. and Nekvinda A., On $L^{p(x)}$ norms [J], Proc. Roy. Soc. London Ser. A, 1999, 455:219–225.
- [3] Fan X. L., Amemiya norm equals Orlicz norm in $L^{p(x)}(\Omega)$ [DB/OL], China Sciencepaper Online, 200405-86(2004), http://www.paper.edu.cn/process/download.jsp?file = 200405-86.
- [4] Harjulehto P. and Hästö P., An overview of variable exponent Lebesgue and Sobolev spaces [A], Future Trends in Geometric Function Theory [C], Herron, D.(ed.), RNC Workshop, Jyväskylä, 2003, 85–94.
- [5] Hudzik H. and Maligranda L., Amemiya norm equals Orlicz norm in genaral [J], Indag. Math. N.S., 2000, 11(4):573-585.
- [6] Kováčik O. and Rákosník J., On spaces $L^{p(x)}$ and $W^{k,p(x)}$ [J], Czechoslovak Math. J., 1991, 41(116):592–618.

- [7] Musiclak J., Orlicz Spaces and Modular Spaces [M], Lecture Notes in Math., Vol.1034, Berlin: Springer-Verlag, 1983.
- [8] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory [M], Lecture Notes in Math., Vol. 1748. Berlin: Springer-Verlag, 2000.
- [9] Samko S. G., Convolution type operators in $L^{p(x)}$ [J], Integr. Transform. and Special Funct., 1998, 7(1-2):123-144.

An Exact Inequality Involving Luxemburg Norm and Conjugate-Orlicz Norm in $L^{p(x)}(\Omega)$

FAN Xianling* LIU Wanmin*

*Department of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China. E-mail: fanxl@lzu.edu.cn; wmliu00@st.lzu.edu.cn

Abstract Let $L^{p(x)}(\Omega)$ be the variable exponent Lebesgue space where $p:\Omega\to [1,\infty]$. Denote by $\|\cdot\|_{p(x)}$ and $\|\cdot\|_{p(x)}^o$ the Luxemburg norm and the conjugate-Orlicz norm in $L^{p(x)}(\Omega)$ respectively. In this paper it is proved that there holds an exact inequality $\|\cdot\|_{p(x)} \le \|\cdot\|_{p(x)}^o \le d_{(p_-, p_+)}\|\cdot\|_{p(x)}$ where $d_{(p_-, p_+)}$ is a constant dependent on $p_- = \operatorname{ess\,inf}_{\Omega} p(x)$ and $p_+ = \operatorname{ess\,sup}_{\Omega} p(x)$. When $1 < p_- < p_+ < \infty$,

$$d_{(p_{-}, p_{+})} = \left(\frac{(p_{-}-1)^{p_{-}-1}}{p_{-}^{p_{-}}}\right)^{\frac{p_{+}-1}{p_{+}-p_{-}}} \left(\frac{p_{+}^{p_{+}}}{(p_{+}-1)^{p_{+}-1}}\right)^{\frac{p_{-}-1}{p_{+}-p_{-}}} + \left(\frac{p_{-}^{p_{-}}}{(p_{-}-1)^{p_{-}-1}} \frac{(p_{+}-1)^{p_{+}-1}}{p_{+}^{p_{+}}}\right)^{\frac{1}{p_{+}-p_{-}}};$$

when $p_{-}=1$ or $p_{+}=\infty$, $d_{(p_{-},p_{+})}$ is the corresponding limit.

Keywords Variable exponent Lebesgue space, Luxemburg norm, Conjugate-Orlicz norm, Amemiya norm

2000 MR Subject Classification 46E30

The English translation of this paper will be published in Chinese Journal of Contemporary Mathematics, Vol.27 No.2, 2006 by ALLERTON PRESS, INC. NEW YORK, USA