대표적인 CNN 모델 분석

김준영

분석 모델

- AlexNet (ILSVRC2012)
- VGGNet (ILSVRC2014)
- GoogLeNet (ILSVRC2014)
- ResNet (ILSVRC2015)
- MobileNet (2017)
- ShuffleNet (2018)

모델의 발전 과정

- AlexNet -> GoogLeNet, VGG -> ResNet
 - 분류 정확도를 높이기 위해 모델을 대형화 하는 방향으로 연구
- MobileNet -> ShuffleNet
 - 충분한 정확도를 확보하면서도 연산 복잡도를 줄이는 방향으로 연구

AlexNet (1/6)

- ILSVRC2012에서 압도적인 성능으로 1위를 차지한 모델
 - Top-5 classification error
 - SuperVision(AlexNet): 15.3%
 - ISI: 26.1% / OXFORD_VGG: 26% / XRCE/INRIA: 27% / Univ. Amsterdam: 29.5%
- 대회 참가 팀 중 유일하게 CNN을 이용한 모델을 사용
- 뿐만 아니라 GPU를 연산에 활용한 유일한 모델

AlexNet (2/6)

- 5개의 Convolutional layer와 3개의 FC layer로 구성
 - 당시 GPU(GTX580)의 한계로 레이어의 채널을 둘로 나누어 연산

• Conv. 1 레이어와 Conv. 2 레이어에서 11x11, 5x5 라는 비교적 큰 커널을 사용해 컨볼루션 연산을 진행

AlexNet (3/6)

- AlexNet은 모델의 성능을 향상시키기 위해 여러 방법을 사용
 - ReLU activation function
 - Overrapped pooling
 - Local Response Normalization
 - Data augmentation
 - Dropout
 - Using GPU (GTX580 x2)

AlexNet (4/6)

■ 활성화 함수로 ReLU 함수를 사용

- 당시 보편화된 활성화 함수는 tanh 함수와 sigmoid 함수
- 두 함수 역시 잘 작동한다는 주장이 있었지만 이러한 주장은 대개 학습 속도보다는 overfitting 방지에 초점이 맞춰져 있음
- ReLU 함수는 기존 활성화함수보다 빠른 학습 속도를 보장
- 따라서 ReLU 함수를 사용하면 기존에는 불가능했던
 대형 데이터셋을 이용한 대형 모델을 학습하는 것을 가능하게 함

AlexNet (5/6)

Data augmentation

- Overfitting 문제를 해결하기 위한 대표적인 방법은 학습에 사용할 데이터의 양을 늘리는 것
- AlexNet은 이미지를 256x256 크기로 축소한 후, 무작위로 224x224 이미지를 추출
- 추출된 이미지를 상하 반전하거나 RGB 채널의 값을 변화시켜 한정된 이미지에서 다양한 데이터를 확보

AlexNet (6/6)

- 히든 레이어의 개수가 많으면 일반적으로 학습 능력이 좋아짐
- 그러나 망의 크기가 커지면 커질 수록 Overfitting에 빠질 가능성이 높아짐

Dropout

- 망의 크기가 커져 Overfitting에 빠지는 문제를 피하기 위해 무작위로 일부 뉴런을 생략한 후 학습을 수행
- 무작위로 뉴런이 생략되기 때문에 가중치가 큰 뉴런에 신경망이 받는 영향이 줄어 뉴런들이 동조화되는 경향을 피할 수 있음
- 이 과정을 무작위로 반복하면 여러 신경망을 통한 평균 효과를 얻을 수 있음

(a) Standard Neural Net

(b) After applying dropout.

VGG (1/4)

- ILSVRC2014에서는 AlexNet보다 더 깊어진 모델이 나타나기 시작
- GoogLeNet은 22개의 레이어 층으로, VGG는 19개의 레이어 층으로 구성
 - Error rate: GoogLeNet 6.65% / VGG19 7.32%
- CNN의 성능을 향상시키는 가장 직접적인 방법은 망의 크기를 키우는 것
 - 하지만 레이어의 수가 증가할 수록 파라미터의 수가 증가하게 되면서 Overfitting에 빠질 가능성이 높아짐
 - 또한 망의 크기가 커질 수록 연산량이 증가함
 - 8개의 레이어를 사용한 AlexNet도 학습에 일주일을 소모

VGG (2/4)

- VGG는 다른 모델들이 사용한 11x11, 7x7, 5x5와 같은 컨볼루션 연산 대신 3x3 컨볼루션 연산을 중첩해 이를 구현
 - 3x3 컨볼루션 연산 두 번은 5x5 영역에 컨볼루션을 한 것과 같은 효과
 - 3x3 컨볼루션 연산 세 번은 7x7 영역에 컨볼루션을 한 것과 같은 효과
- (3x3 Conv.)x2 : 5x5 Conv. = 18 : 25
- (3x3 Conv.)x3 : 7x7 Conv. = 27 : 49
- 3x3 컨볼루션의 중첩이
 큰 컨볼루션 연산 한 번보다 더 높은 효율을 얻음

VGG (3/4)

- VGG는 Conv. Layer에 패딩을 적용했고 max pooling을 이용해 feature map의 크기를 줄임
- VGG는 비교적 간단한 방식으로 깊은 신경망을 구성할 수 있지만
- 파라미터의 수가 매우 많은(144M) 문제가 있음

VGG16 VGG19

A	A-LRN	В	С	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers -	1ayers	layers	layers	layers
	i	nput (224 × 2	24 RGB imag	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096 4096		
		FC-	1000		
		soft-	-max		

VGG (4/4)

■ VGG는 입력 feature를 생성하기 위해 single-scale, 또는 multi-scale 기법을 이용

Multi-scale

- 이미지를 384x384로 축소시킨 후 224x224 영역을 추출하여 학습
- 256~512 범위 내에서 무작위로 축소시킨 이미지에서 feature를 추출해 fine tuning을 수행

GoogLeNet (1/6)

- AlexNet과 VGG는 단순한 레이어 구조로 구성
- GoogLeNet은 더 많은 레이어를 이용하기 위해 복잡한 모듈 구조로 구성
 - 망의 깊이는 훨씬 깊지만 파라미터의 수는 훨씬 적음
 - AlexNet (8 layers): 60M
 - VGG19 (19 layers): 144M
 - GoogLeNet (22 layers): 5M

GoogLeNet (2/6)

- GoogLeNet은 단순히 Conv. Layer를 이어 붙인 구조가 모델을 확장하기에 적합하지 않다는 가정을 세움
- 다양한 크기의 Conv. Layer가 병렬적으로 연결된 inception 모듈을 제작

• Min Lin 등이 발표한 Network in Network 구조를 발전시킨 형태

GoogLeNet (3/6)

NiN

- 컨볼루션 연산이 feature 추출 능력은 우수하지만
- 컨볼루션의 linear한 특성 때문에 non-linear한 성질을 갖는 feature까지 추출하기에는 어려움이 있음
- 그래서 micro neural network를 제안

(a) Linear convolution layer

(b) Mlpconv layer

- 컨볼루션 대신 MLP를 사용해 feature를 추출한 다음 1x1 컨볼루션을 이용해 channel 크기를 축소
- 또, 효과적으로 feature를 추출했기 때문에 fc layer 없이 global average pooling만으로도 분류를 할 수 있음

GoogLeNet (4/6)

Inception Module

- GoogLeNet은 MLP 대신 다양한 크기의 컨볼루션 연산을 병렬적으로 두어 다양한 feature를 추출하는 방법을 선택
- 이는 컨볼루션 연산의 막대한 비용 문제로 인해 신경망을 확장하기 힘듬
- 연산량을 줄이기 위해 1x1 컨볼루션 연산으로 feature map의 차원의 줄인 후
- 3x3, 5x5 컨볼루션 연산을 진행

(a) Inception module, naïve version

(b) Inception module with dimensionality reduction

GoogLeNet (5/6)

■ 효과적으로 feature를 추출하였기 때문에 별도의 fc layer 연산 없이 average pooling 후 이미지 분류

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1 M
softmax		1×1×1000	0								

GoogLeNet (6/6)

Auxiliary Classifier

- Vanishing gradient 문제를 해결하기 위해 두 개의 auxiliary classifier를 학습 과정에서 사용
- Auxiliary classifier와의 분기점에서는 auxiliary classifier와 최종 출력의 back-propagation 결과를 결합해 학습

ResNet (1/7)

- ResNet은 152개의 레이어로 구성
- Top-5 error rate 3.56%라는 높은 정확도 달성

ImageNet Classification top-5 error (%)

ResNet (2/7)

- 망이 깊어질 수록 모델의 정확도가 증가하는 것은 VGG와 GoogLeNet이 보여줌
- 하지만 망이 깊어지면 깊어질 수록 제대로 학습시키는 것은 어려움
 - 56개의 레이어를 이용한 모델의 정확도가 20개의 레이어를 이용한 모델보다 낮음

Vanishing/exploding gradient 문제가 발생함

ResNet (3/7)

- ResNet은 Residual learning 기법을 통해 이러한 문제를 해결
- 기존 CNN 모델은 입력 x가 레이어를 거치면서 H(x)를 얻어내는 방식
- Residual learning은 레이어를 거친 결과를 F(x)라고 하고 이에 입력 x를 더해 "H(x) = F(x) + x"를 얻어내는 방식으로 구조를 변경

Figure 2. Residual learning: a building block.

ResNet (4/7)

- 기존의 학습 과정이 H(x)를 얻는 과정이었다면 Residual learning의 학습 과정은 F(x) = H(x) - x 를 얻는 과정
- 최적의 경우 F(x) = 0이 되어야 하기 때문에
 학습 방향이 미리 결정되어 있는 상태에서 학습이 진행됨
- 입력과 출력의 잔차(residual)를 학습하고 나면, 입력 값의 작은 변화에도 민감하게 반응할 수 있음

Figure 2. Residual learning: a building block.

ResNet (5/7)

- ResNet은 연산 복잡도를 줄이기 위해
 fc layer와 dropout 등은 사용하지 않고 max pooling 또한 한 번만 사용
 - Feature map의 크기를 줄일 때는 stride를 2로 바꾼 컨볼루션 연산을 수행
- 덕분에 신경망이 깊어져도 기존 모델처럼 error가 증가하지 않음

ResNet (6/7)

 레이어가 깊어질 수록 학습 시간이 증가하는 문제를 해결하기 위해 50개 이상의 레이어를 사용하는 대형 모델을 구성할 때는 연산량을 줄이기 위해 1x1 컨볼루션을 이용

1x1 컨볼루션을 통해 차원을 축소하고
 3x3 컨볼루션을 수행한 후
 1x1 컨볼루션으로 차원을 증가시키는 방법을 사용

ResNet (7/7)

■ ResNet 레이어 구성

layer name	output size	18-layer	34-layer	50-layer	50-layer 101-layer					
conv1	112×112		7×7, 64, stride 2							
			3×3 max pool, stride 2							
conv2.x	56×56	\[\begin{array}{c} 3 \times 3, 64 \ 3 \times 3, 64 \end{array} \] \times 2	[3×3,64]×3	\[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \times 3	1×1, 64 3×3, 64 1×1, 256	1×1, 64 3×3, 64 1×1, 256				
conv3_x			3×3, 128 3×3, 128 ×4	[1×1,512]	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \] \times 4	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \times 8				
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	3×3, 256 3×3, 256 ×6	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 6	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 36				
conv5_x				F	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3				
	1×1		average pool, 1000-d fc, softmax							
FL	OPs	1.8×10 ⁹	3.6×10 ⁹	3.8×10^{9}	7.6×10^{9}	11.3×10 ⁹				

MobileNet (1/8)

- 지금까지 CNN 모델은 정확도 향상을 위해
 모델의 크기를 키우는 방향으로 연구가 진행됨
- 이러한 모델은 모바일 장치에서 사용할 수 없음
- 모바일 장치에서 사용하기 위한 모델은
 - 충분한 정확도를 확보하면서
 - 낮은 연산 복잡도와
 - 낮은 에너지 소모량을 만족시키는
 - 작은 모델이어야 함

MobileNet (2/8)

■ MobileNet은 작은 모델을 만들기 위해 Depthwise Separable Convolution 연산을 이용

Depthwise Separable Convolution

Depthwise Convolution + Pointwise Convolution(1x1 convolution)

MobileNet (3/8)

■ 기존 Convolution 연산은 Spatial한 부분과 depth 부분을 한 번에 처리

Standard Convolution

MobileNet (4/8)

■ Depthwise Separable Convolution 연산은 Spatial한 부분과 depth 부분을 나누어 처리함

Depthwise Separable Convolution

Depthwise Convolution + Pointwise Convolution(1x1 convolution)

MobileNet (5/8)

- 기존 Convolution 연산이 $"D_k \times D_k \times M \times N \times D_f \times D_f"$ 의 연산 복잡도를 갖는다면
- Depthwise Separable Convolution 연산은 " $D_k \times D_k \times D_k \times D_f \times$
- Depthwise Separable Convolution 연산이 동일한 영역을 처리하면서도 기존 연산의 $1/N + 1/(Dk^2)$ 만큼의 연산 복잡도를 가짐

MobileNet (6/8)

■ Depthwise Separable Convolution은 컨볼루션 연산 중간에 Batch normalization과 ReLU를 넣을 수 있음

MobileNet (7/8)

■ MobileNet 레이어 구성

Table 1. MobileNet Body Architecture

Table 1: Mobile Net Body 1 fremiteetale					
Type / Stride	Filter Shape	Input Size			
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$			
Conv dw / s1	$3 \times 3 \times 32$ dw	$112 \times 112 \times 32$			
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$			
Conv dw / s2	$3 \times 3 \times 64$ dw	$112 \times 112 \times 64$			
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$			
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$			
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$			
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$			
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$			
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$			
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$			
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$			
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$			
Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$			
Onv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$			
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$			
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$			
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$			
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$			
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$			
FC/s1	1024×1000	$1 \times 1 \times 1024$			
Softmax / s1	Classifier	$1 \times 1 \times 1000$			

MobileNet (8/8)

■ Depthwise Separable convolution 모델은 convolution 모델보다 정확도는 1% 떨어지지만 연산량은 8.5배, 파라미터의 수는 7배 감소함

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

MobileNet은 연산량과 파라미터의 수가 작은 모델이지만
 VGG, GoogLeNet과 비교해도 떨어지지 않는 정확도를 보여줌

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
1.0 MobileNet-224	70.6%	569	4.2	
GoogleNet	69.8%	1550	6.8	
VGG 16	71.5%	15300	138	

ShuffleNet (1/10)

- MobileNet은 Depthwise Separable Convolution을 이용해 연산량과 파라미터의 수를 대폭 줄임
- MobileNet을 분석해보면 1x1 컨볼루션이 연산량과 파라미터의 대부분을 차지함
 - 이를 줄이기 위한 연구가 시작

Table 2. Resource Per Layer Type

Туре	Mult-Adds	Parameters
Conv 1 × 1	94.86%	74.59%
Conv DW 3 × 3	3.06%	1.06%
Conv 3 × 3	1.19%	0.02%
Fully Connected	0.18%	24.33%

■ ShuffleNet은 1x1 컨볼루션의 부하를 줄이기 위해 Grouped Convolution 기법을 사용

ShuffleNet (2/10)

- Grouped Convolution은 AlexNet에서 처음 사용
 - AlexNet은 당시 GPU(GTX580) 성능의 한계로 인해 layer의 채널을 각 GPU가 절반씩 나누어 처리함

ShuffleNet (3/10)

■ 2016년 Yani Ioannou 등은 Grouped Convolution이 단순히 성능이 떨어지는 장치에서 대형 컨볼루션 연산을 진행하기 위한 Engineering Hack이 아님을 보여줌

(b) Convolution with filter groups.

ShuffleNet (4/10)

- Grouped Convolution을 적극적으로 이용한 모델로 ResNeXt가 있음
 - ResNet과 Inception을 조합해 모델을 만든 후, Grouped Convolution을 사용

ShuffleNet (5/10)

■ ResNeXt는 이를 통해 효율적으로 ResNet보다 높은 성능을 확보

ShuffleNet (6/10)

- ShuffleNet은 ResNeXt에 영감을 얻어 Grouped Convolution을 MobileNet에 적용
- 동시에 연산 중간에 Group된 채널을 섞어주어 각 Grouped Convolution이 줄어든 채널에 overfitting 되는 것을 방지

ShuffleNet (7/10)

■ Grouped Convolution 연산 구조

ShuffleNet (8/10)

■ ShuffleNet 레이어 구조

Layer	Output size	KSize	Stride	Repeat	Output channels (g groups))
					g=1	g = 2	g = 3	g = 4	g = 8
Image	224×224				3	3	3	3	3
Conv1	112×112	3×3	2	1	24	24	24	24	24
MaxPool	56×56	3×3	2						
Stage2	28×28		2	1	144	200	240	272	384
	28×28		1	3	144	200	240	272	384
Stage3	14×14		2	1	288	400	480	544	768
	14×14		1	7	288	400	480	544	768
Stage4	7 × 7		2	1	576	800	960	1088	1536
	7×7		1	3	576	800	960	1088	1536
GlobalPool	1×1	7×7							
FC					1000	1000	1000	1000	1000
Complexity					143M	140M	137M	133M	137M

ShuffleNet (9/10)

■ Channel Shuffle은 Grouped Convolution의 성능을 향상시킴

Model	Cls err. (%, no shuffle)	Cls err. (%, shuffle)	Δ err. (%)
ShuffleNet 1x $(g = 3)$	34.5	32.6	1.9
ShuffleNet 1x $(g = 8)$	37.6	32.4	5.2
ShuffleNet $0.5x (g = 3)$	45.7	43.2	2.5
ShuffleNet $0.5x (g = 8)$	48.1	42.3	5.8
ShuffleNet $0.25x (g = 3)$	56.3	55.0	1.3
ShuffleNet $0.25x$ ($g = 8$)	56.5	52.7	3.8

■ 동일한 연산 복잡도를 갖는 MobileNet보다 높은 정확도를 보임

Model	Complexity (MFLOPs)	Cls err. (%)	Δ err. (%)
1.0 MobileNet-224	569	29.4	-
ShuffleNet $2 \times (g = 3)$	524	26.3	3.1
ShuffleNet $2 \times$ (with $SE[13]$, $g = 3$)	527	24.7	4.7
0.75 MobileNet-224	325	31.6	-
ShuffleNet $1.5 \times (g = 3)$	292	28.5	3.1
0.5 MobileNet-224	149	36.3	-
ShuffleNet $1 \times (g = 8)$	140	32.4	3.9
0.25 MobileNet-224	41	49.4	-
ShuffleNet $0.5 \times (g = 4)$	38	41.6	7.8
ShuffleNet $0.5 \times$ (shallow, $g = 3$)	40	42.8	6.6

ShuffleNet (10/10)

- Snapdragon 820 싱글코어를 사용한 성능 비교
 - ShuffleNet이 더 적은 연산을 수행해 더 빠른 처리 속도를 보임

Model	Cls err. (%)	FLOPs	224×224	480×640	720×1280
ShuffleNet $0.5 \times (g = 3)$	43.2	38M	15.2ms	87.4ms	260.1ms
ShuffleNet $1 \times (g = 3)$	32.6	140M	37.8ms	222.2ms	684.5ms
ShuffleNet $2 \times (g = 3)$	26.3	524M	108.8ms	617.0ms	1857.6ms
AlexNet [22]	42.8	720M	184.0ms	1156.7ms	3633.9ms
1.0 MobileNet-224 [12]	29.4	569M	110.0ms	612.0ms	1879.2ms

결론

- 2012년 AlexNet의 등장 이후 CNN에 많은 발전이 일어남
- 성능을 높이기 위해 다양한 Convolution 연산과 다양한 모델 구조가 나타남
 - Inception module
 - Residual Learning
 - Depthwise Separable Convolution
 - Grouped Convolution
- 각 모델에 적합한 경량화, 분할 기법을 고민하고
 계속되는 모델의 변화에 대응할 수 있는 방법에 대해 생각해야 함

References (1/2)

- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.
- Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
- Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
- Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." *arXiv* preprint arXiv:1312.4400 (2013).
- He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

References (2/2)

- Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).
- Zhang, Xiangyu, et al. "Shufflenet: An extremely efficient convolutional neural network for mobile devices." *Proceedings of the IEEE Conference* on Computer Vision and Pattern Recognition. 2018.
- Ioannou, Yani, et al. "Deep roots: Improving cnn efficiency with hierarchical filter groups." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
- Xie, Saining, et al. "Aggregated residual transformations for deep neural networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

