Московский физико-технический институт

Лабораторная работа

Петля гистерезиса (статический метод)

группа Б01-303 Балдин Виктор

1 Цель работы

Исследование кривых намагничивания ферромагнетиков с помощью баллистического гальванометра

2 В работе используются:

- генератор тока с блоком питания
- тороид
- соленоид
- баллистический гальванометр с осветителем и шкалой
- амперметры
- магазин сопротивлений
- лабораторный автотрансформатор
- разделительный трансформатор

3 Теоретические положения

Магнитная индукция **B** и напряжённость магнитного поля **H** в ферромагнетике неоднозначно связаны между собой: индукция зависит не только от напряжённости, но и от предыстории образца. В эксперименте будет исследоваться основная кривая намагничивания OACD и предельная петля гистерезиса DEFD'E'F'D (см. рис. 1).

С помощью баллистического гальванометра и амперметра будем косвенно измерять зависимость индукции магнитного поля от его напряжённости. Напряжённость магнитного поля H в тороиде зависит от тока, текущего в намагничивающей обмотке:

$$H = \frac{N_{T_0}}{\pi D} I,\tag{1}$$

где D - средний диаметр тора, N_{T_0} - количество витков.

Изменение поля приводит к изменению потока магнитной индукции Φ в сердечнике, в измерительной обмотке возникает ЭДС индукции, через гальва-

Рис. 1: Петля гистерезиса ферромагнетика

нометр, в свою очередь, протекает импульс тока, изменяется положение рамки и, следовательно, зайчика. Окончательно (определив также баллистическую постоянную гальванометра, проведя измерения с соленоидом) для изменения магнитной индукции в сердечнике тороида получаем:

$$\Delta B = \mu_0 (\frac{d_C}{d_T})^2 \frac{R}{R_1} \frac{N_{C_0}}{N_{T_1}} \frac{N_{C_1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}, \tag{2}$$

где R - полное сопротивление измерительной цепи тороида, d_C, d_T - диаметр поперечного сечения соленоида и тороида соответственно, N_{C_0} - число витков пустотелого соленоида, N_{C_1} - число витков короткой измерительной катушки l_C - длина соленоида, $\triangle x_1$ - отклонение зайчика при работе с соленоидом, $\triangle x$ - отклонение зайчика в эксперименте.

4 Экспериментальная установка

Рис. 2: Схема установки для исследования петли гистерезиса

После снятия петли гистерезиса необходимо размагнитить сердечник, подключив его к цепи переменного тока, постепенно снижая его амплитуду. Только затем следует приступать к снятию основной кривой намагничивания.

Рис. 3: Схема установки для калибровки гальванометра

5 Ход работы

1. Подготовив к работе экспериментальную установку, снимем зависимость величины скачка Δx от величины силы тока в цепи I. Пройдём по всей петле гистерезиса, результаты занесём в таблицу 1.

I, mA	$\Delta I, \mathrm{mA}$	Δx , у.ед	I, mA	$\Delta I, \mathrm{mA}$	Δx , у.ед
1462	3	0	-1460	3	0
515	1	-130	-515	1	137
250.2	0.5	-112	-249.9	0.5	111
157.0	0.3	-69	-156.9	0.3	88
94.69	0.19	-59	-94.66	0.19	58
66.50	0.13	-34	-66.51	0.13	34
55.81	0.11	-18	-55.82	0.11	16
44.47	0.09	-17	-44.47	0.09	16
39.15	0.08	-7	-39.19	0.08	11
28.09	0.06	-16	-28.10	0.06	16
15.36	0.03	-21	-15.37	0.03	20
0.11	0.01	-37	-0.14	0.01	37
-15.38	0.03	-55	15.38	0.03	57
-28.11	0.06	-68	28.11	0.06	70
-39.12	0.08	-162	39.15	0.08	170
-44.45	0.09	-114	44.46	0.09	122
-55.81	0.11	-190	55.81	0.11	206
-66.45	0.13	-96	66.50	0.13	100
-94.56	0.19	-174	94.63	0.19	183
-156.8	0.3	-172	156.8	0.3	187
-249.9	0.5	-118	249.8	0.5	127
-514	1	-147	514	1	161
-1458	3	-130	1458	3	144

$$\Delta(\Delta x) = 3$$
 у.ед

Погрешность I взята как 0.2%I, опираясь на даташит миллиамперметра.

2. Для калибровки соберем установку на рис.5, уменьшим $R_{\rm M}$ на $R_{\rm C}$ и измерим отклонение гальванометра при изменении тока на I_{max} , разомкнув П1. Получаются отклонения:

$$\Delta x_1$$
, у.ед | 80 | 81 | 80 | 80 | 81

$$\Delta(\Delta x_1) = 0.5$$
 у.ед,

Что в среднем дает $\Delta x_1 = 80.4 \pm 0.7$ уд.ед. (тут погрешность как корень суммы квадратов статистической и приборной погрешности).

3. Измерим кривую намагничивания, размагнитив тороид в установке ЛАТР, после чего повторим 5 пункт, меняя ток от 0 до I_{max} :

I, mA	ΔI , mA	Δx , mm
0	0	0
15.38	0.03	23
28.11	0.06	43
39.14	0.08	102
44.45	0.09	50
55.80	0.11	94
66.47	0.13	58
94.62	0.19	128
156.8	0.3	157
249.8	0.5	126
514	1	168
1457	3	150

$$\Delta(\Delta x) = 3$$
 у.ед

- 4. Запишем данные установки: $N_{\rm T0}=1750,~N_{\rm T1}=300,~R_{\rm C}=60~{\rm Om},~l_{\rm C}=80~{\rm cm},~d_{\rm C}=7~{\rm cm},~N_{\rm C1}=435,~N_{\rm C0}=825,~D=10~{\rm cm},~d_{\rm T}=1~{\rm cm}.$
- 5. Используя формулы пересчета, найдем H и ΔB . Проверим суммы Δx на подьеме и спуске по петле. Они равны с точностью до 6% (2071 у.ед и 1946 у.ед).

$$H = \frac{N_{T0}}{\pi D}I$$

$$\Delta B = \mu_0 \left(\frac{d_c}{d_T}\right)^2 \frac{N_{C0}}{N_{T1}} \frac{N_{C1}}{l_C} \Delta I_1 \frac{\Delta x}{\Delta x_1}$$

Относительная погрешность H равна относительной погрешности I, поскольку D нам дано без погрешности.

По аналогичным причинам относительная погрешность ΔB равна сумме относительных погрешностей $\Delta I, \ \Delta x_1 \$ и $\Delta x.$

Пересчет петли:

H, A/M	ΔH , A/M	ΔB , Тл	$\Delta(\Delta B)$, Тл	H, A/M	$\Delta H,\mathrm{A/M}$	ΔB , Тл	$\Delta(\Delta B)$, Тл
8143	16	0	0	-8133	16	0	0
2867	6	-0.220	0.006	-2867	6	0.232	0.006
1393	3	-0.189	0.005	-1392	3	0.188	0.005
874.7	1.7	-0.116	0.005	-873.9	1.7	0.149	0.005
527.5	1.1	-0.099	0.004	-527.2	1.1	0.098	0.004
370.4	0.7	-0.057	0.004	-370.4	0.7	0.058	0.004
310.9	0.6	-0.030	0.004	-310.9	0.6	0.027	0.004
247.7	0.5	-0.028	0.004	-247.7	0.5	0.027	0.004
218.1	0.4	-0.011	0.004	-218.3	0.4	0.019	0.004
156.5	0.3	-0.027	0.004	-156.5	0.3	0.027	0.004
85.56	0.17	-0.035	0.004	-85.61	0.17	0.034	0.004
0.61	0.01	-0.062	0.004	-0.78	0.01	0.063	0.004
-85.67	0.17	-0.093	0.004	85.67	0.17	0.097	0.004
-156.5	0.3	-0.115	0.005	156.6	0.3	0.119	0.005
-217.9	0.4	-0.274	0.006	218.1	0.4	0.288	0.006
-247.6	0.5	-0.193	0.005	247.7	0.5	0.207	0.006
-310.8	0.6	-0.321	0.007	310.9	0.6	0.349	0.007
-370.1	0.7	-0.162	0.005	370.4	0.7	0.169	0.005
-526.7	1.1	-0.294	0.007	527.1	1.1	0.310	0.007
-873.7	1.7	-0.291	0.007	873.6	1.7	0.317	0.007
-1392	3	-0.199	0.006	1391	3	0.215	0.006
-2862	6	-0.249	0.006	2862	6	0.273	0.006
-8125	16	-0.220	0.006	8122	16	0.244	0.006

Пересчет кривой намагничивания:

H, A/M	ΔH , A/M	ΔB , Тл	$\Delta(\Delta B)$, Тл
0	0	0	0
85.67	0.17	0.039	0.004
156.6	0.3	0.073	0.004
218.0	0.4	0.173	0.005
247.6	0.5	0.085	0.004
310.8	0.6	0.159	0.005
370.3	0.7	0.098	0.004
527.1	1.1	0.217	0.006
873.4	1.7	0.266	0.006
1391	3	0.214	0.006
2862	6	0.285	0.006
8117	16	0.254	0.006

Теперь посчитаем B через ΔB обычным суммированием:

$$B_{i+1} = B_i + \Delta B_{i+1}, \Delta_{\boldsymbol{\Pi}} B_{i+1} = \Delta_{\boldsymbol{\Pi}} B_i + \Delta_{\boldsymbol{\Pi}} \Delta B_{i+1},$$

где Δ_{π} – погрешность (чтобы не путать $\Delta_{\pi}B$ и ΔB). При этом за B_0 возьмем половину средней (по двум направлениям) высоты B петли. Она равна:

$$B_0 = -0.5 \frac{3.29 + 3.51}{2} \,\text{T}\pi = -1.70 \,\text{T}\pi.$$

Пересчет B петли:

H, A/M	ΔH , A/M	B, Тл	ΔB , Тл	H, A/M	ΔH , A/M	В, Тл	ΔB , Тл
8143	16	1.60	0.11	-8133	16	-1.7	0
2867	6	1.4	0.1	-2867	6	-1.467	0.006
1393	3	1.2	0.1	-1392	3	-1.279	0.011
874.7	1.7	1.07	0.09	-873.9	1.7	-1.130	0.016
527.5	1.1	0.97	0.09	-527.2	1.1	-1.03	0.02
370.4	0.7	0.91	0.09	-370.4	0.7	-0.97	0.02
310.9	0.6	0.88	0.08	-310.9	0.6	-0.94	0.03
247.7	0.5	0.85	0.08	-247.7	0.5	-0.92	0.03
218.1	0.4	0.84	0.07	-218.3	0.4	-0.90	0.04
156.5	0.3	0.81	0.07	-156.5	0.3	-0.87	0.04
85.56	0.17	0.78	0.07	-85.61	0.17	-0.84	0.04
0.61	0.01	0.72	0.06	-0.78	0.01	-0.77	0.05
-85.67	0.17	0.62	0.06	85.67	0.17	-0.68	0.05
-156.5	0.3	0.51	0.05	156.6	0.3	-0.56	0.06
-217.9	0.4	0.23	0.05	218.1	0.4	-0.27	0.06
-247.6	0.5	0.04	0.04	247.7	0.5	-0.06	0.07
-310.8	0.6	-0.28	0.04	310.9	0.6	0.28	0.08
-370.1	0.7	-0.44	0.03	370.4	0.7	0.45	0.08
-526.7	1.1	-0.73	0.02	527.1	1.1	0.76	0.09
-873.7	1.7	-1.030	0.017	873.6	1.7	1.08	0.09
-1392	3	-1.230	0.012	1391	3	1.3	0.1
-2862	6	-1.479	0.006	2862	6	1.57	0.11
-8125	16	-1.7	0	8122	16	1.81	0.11

Пересчет B кривой намагничивания:

H, A/M	ΔH , A/M	B, Тл	ΔB , Тл
0	0	0	0
85.67	0.17	0.039	0.004
156.6	0.3	0.073	0.008
218.0	0.4	0.173	0.013
247.6	0.5	0.085	0.018
310.8	0.6	0.16	0.02
370.3	0.7	0.10	0.03
527.1	1.1	0.22	0.03
873.4	1.7	0.27	0.04
1391	3	0.21	0.04
2862	6	0.28	0.05
8117	16	0.25	0.06

Из графиков:

Коэрцитивная сила $H_c=500*\frac{143\pm2}{275\pm2}$ А/м = 260 ± 6 А/м. (погрешность из толщины линии) Индукция насыщения $B_s=(1.70\pm0.16)$ Тл (погрешность как корень суммы квадратов погрешности ΔB (0.11 Тл) и половины разности между B_s для разных направлений (0.11 Тл)).

Для того, чтобы посчитать $\mu_{\text{диф}}$ я распечатал график, провел касательную и отсканировал график. Используя пропорции по пикселям я нашел :

$$\begin{split} \frac{dB}{dH} &= \frac{1391 - 403 \pm 8}{2323 - 1856 \pm 8} \frac{3256 - 458 \pm 8}{1868 - 357 \pm 8} \frac{3 \, \mathrm{Tm}}{3000 \, \mathrm{A/m}} = (3.91 \pm 0.13) \frac{\mathrm{mm} \, \mathrm{Tm}}{\mathrm{A}}. \\ \mu_{\mathrm{дн}\Phi} &= \frac{dB}{\mu_0 dH} = 3100 \pm 100 \end{split}$$

График для демонстрации того, что я сделал, его почти полная копия выше.

	Эксперимент	таблица
$\mu_{\rm диф}$	3100 ± 100	5000
B_s , Тл	1.70 ± 0.16	2.15
$H_c A/M$	260 ± 6	80

6 Вывод

Мы промерили петлю и кривую намагничивания у магнитного гистерезиса с помощью статического метода и получили значения индукции насыщения и дифференциальной магнитной проницаемости с отклонением от табличного значения менее чем на 30% и 60% соответственно, а также выяснили коэрцитивную силу менее, чем в 4 раза превышающей табличное значение. Полученные отклонения я могу объяснить уникальностью характеристик установки, из-за чего реальные параметры могут сильно отличаться от табличных.