Nội dung

- 1. Đường cong Elliptic (Elliptic Curve, EC)
- 2. Bài toán Logarit rời rạc trên EC
- 3. Giao thức trao đổi khoá Diffie-Hellman trên EC

Đường cong Elliptic

Vấn đề: Tìm hệ mật với tham số ngắn hơn

80 bit 128 bit 192 bit 256 bit	192 bit	128 bit	tid 08	AES, 3DES	Symmetric-key
160 bit 256 bit 384 bit 512 bit	384 bit	256 bit	160 bit	ECDH, ECDSA	Elliptic curves
15360 bit	7680 bit	3072 bit	1024 bit	DH, DSA, Elgamal 1024 bit 3072 bit 7680 bit 15360 bit	Discrete logarithm
1024 bit 3072 bit 7680 bit 15360 bit	7680 bit	3072 bit	1024 bit	RSA	Integer factorization RSA
256	192	128	80		
	Security Level (bit)	Security]		Cryptosystems	Algorithm Family Cryptosystems

Kích thước theo bit của các hệ mật mã khoá công khai ở mức an toàn khác nhau

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Phép toán nhóm trên EC

- Ký hiệu phép toán nhóm bởi ký hiệu cộng "+".
- Cho hai điểm $P = (x_1, y_1)$ và $Q = (x_2, y_2)$
- Ta phải tính toạ độ của điểm thứ ba R thoả mãn: P + Q = R

$$(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$$

- Phép cộng điểm P + Q: Trường hợp R = P + Q và P ≠ Q
- Nhân đôi điểm P + P: Trường hợp P + Q nhưng P = Q.

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG :

Đường cong $y^2 = x^3 + 2x + 2$ trên Z_{17}

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG —

Phép toán cộng và nhân đôi các điểm

$$x_3 = s^2 - x_1 - x_2 \mod p$$

 $y_3 = s(x_1 - x_3) - y_1 \mod p$

√<u>ó</u>:

$$s = \begin{cases} (y_2 - y_1)/(x_2 - x_1) \mod p & \text{if } P \neq Q \\ (3x_1^2 + a)/(2y_1) \mod p & \text{if } P = Q \end{cases}$$

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

Tính toán với Sagemath

```
SOICT VIỆN CONG NGHỆ THONG TIN VÀ TRUYÊN THONG
                                                   sage: E.is_on_curve(6,3)
                                                                                                         sage: print Q
                                                                                                                                     sage: Q = P + P
                                                                                                                                                             sage: P = E(5,1)
                                                                                (6:3:1)
                                                                                                                                                                                              Finite Field of size 17
                                                                                                                                                                                                                          Elliptic Curve defined by y^2 = x^3 + 2*x + 2 over
                                                                                                                                                                                                                                                                              sage: E = EllipticCurve(GF(17),[2,2])
```

Ví dụ

Xét đường cong

E:
$$y^2 = x^3 + 2x + 2 \mod 17$$

Ta muốn nhân đôi điểm P=(5,1).

$$2P = P + P = (5,1) + (5,1) = (x_3, y_3).$$

$$s = (3x_1^2 + a)/(2y_1) = (2 \cdot 1)^{-1}(3 \cdot 5^2 + 2) = 2^{-1} \cdot 9 = 13 \mod 17$$

$$x_3 = s^2 - x_1 - x_2 = 13^2 - 5 - 5 = 6 \mod 17.$$

$$x_3 = s^2 - x_1 - x_2 = 13^2 - 5 - 5 = 6 \mod 17.$$

 $y_3 = s(x_1 - x_3) - y_1 = 13(5 - 6) - 1 = -14 = 3 \mod 17.$

 y_3

Kiểm tra các tính chất với Sagemath

$$1.\mathcal{O} + \mathcal{O} = \mathcal{O}$$
. sage: $0 = P + -P$
 $2.\mathcal{O} + (x_2, y_2) = (x_2, y_2)$. $(\theta : 1 : \theta)$
 $3.(x_1, y_1) + \mathcal{O} = (x_1, y_1)$. sage: $0 + 0 == 0$
 $4.(x_1, y_1) + (x_1, -y_1) = \mathcal{O}$
 $4.(x_1, y_1) + (x_1, y_1) + (x_1, y_1) = \mathcal{O}$
 $4.(x_1, y_1) + (x_1, y_1) + (x_1, y_1) = \mathcal{O}$
 $4.(x_1, y_1) + (x_1, y_1) + (x_1, y_1) + (x_1, y_1) = \mathcal{O}$
 $4.(x_1, y_1) + (x_1, y_1) + (x_1,$

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

True

Luật cộng đầy đủ cho EC

$$1.\mathcal{O}+\mathcal{O}=\mathcal{O}.$$

$$2.\mathcal{O} + (x_2, y_2) = (x_2, y_2).$$

$$3.(x_1, y_1) + \mathcal{O} = (x_1, y_1).$$

$$4.(x_1, y_1) + (x_1, -y_1) = 0.$$

$$5. \text{cho } y_1 \neq 0, (x_1, y_1) + (x_1, y_1) = (s^2 - 2)$$

5.cho
$$y_1 \neq 0$$
, $(x_1, y_1) + (x_1, y_1) = (s^2 - 2x_1, s(x_1 - x_3) - y_1)$
với $s = (3x_1^2 + a)/2y_1$.
6.cho $x_1 \neq x_2$, $(x_1, y_1) + (x_2, y_2) = (s^2 - x_1 - x_2, s(x_1 - x_3) - y_1)$

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Lợi ích của hệ toạ độ chiếu

- Tính toán phép "+" hiệu quả hơn do tránh được phép nghịch đảo trên trường hữu hạn
- Phép toán cơ bản k P trở nên dễ dàng

(x', y') = 2(x, y)

$$S = \frac{3x^{2} + a}{2y}$$

$$x' = S^{2} - 2x$$

$$y' = S(x - x') - y$$

$$(X':Y':Z') = 2(X:Y:Z)$$

$$X' = 2YZ ((3X^2 + aZ^2)^2 - 8Y^2XZ)$$

 $Y' = (3X^2 + aZ^2)(12Y^2XZ - (3X^2 + aZ^2)^2) - 8Y^4Z^2$
 $Z' = 8Y^3Z^3$

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG :

Hệ toạ độ chiếu

- Điểm chiếu $(X:Y:Z), Z \neq 0$ tương ứng với điểm trên Affine (X/Z,Y/Z).
- Phương trình chiếu của EC là $Y^2Z = X^3 + aXZ^2 + bZ^3.$
- Điểm tại vô cực $\mathcal O$ tương ứng với $\ (0:1:0)$, và phần tử nghịch đảo của $\ (X:Y:Z)$ là $\ (X:-Y:Z)$.

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Tính toán với Sagemath

```
sage: E = EllipticCurve(GF(17),[2,2])
sage: E
Elliptic Curve defined by
y^2 = x^3 + 2*x + 2
over Finite Field of size 17
sage: for P in E:
    print P
....:
    print P
(0 : 1 : 0)
(0 : 6 : 1)
(0 : 11 : 1)
(0 : 11 : 1)
(0 : 11 : 1)
(13 : 7 : 1)
(15 : 1)
(16 : 4 : 1)
(16 : 4 : 1)
(17 : 11 : 1)
(18 : 10 : 1)
(19 : 10 : 1)
(19 : 10 : 1)
(10 : 10 : 1)
(10 : 10 : 1)
(11 : 1)
(12 : 10 : 1)
(13 : 10 : 1)
(14 : 13 : 1)
(15 : 13 : 1)
```


SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

Ví dụ trên Sagemath

```
def point_doubling(x, y, z, a):
    x_ = 2*y*z*((3*x^2 + a*z^2)^2 - 8*y^2*x*z)
    y_ = (3*x^2 + a*z^2)*(12*y^2*x*z
    y_ = (3*x^2 + a*z^2)*(12*y^2*x*z
    - (3*x^2 + a*z^2)^2) - 8*y^4*z^2
    z_ = 8*y^3*z^3
    return (x_,y_,z_)

F = GF(17)
    x,y,z,a = F(13),F(7),F(1),F(2)
    print (point_doubling(x,y,z,a))

E = EllipticCurve(GF(17),[2,2])
    p = E(13,7)
    print (P+P)
```


SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG ---

Nhóm con vòng (cyclic)

Định lý.

nhóm con vòng. Các điểm trên đường cong Elliptic cùng với điểm ${\cal O}$ có

nhóm vòng. Dưới một số điều kiện các điểm trên EC lập thành một

0	Z
U.	
2)	
100	reache.
<u>י</u>	

9P = (7,6)10P = (7,11)15P = (3,16)14P = (9,1)

5P = (9, 16)

3P = (10,6)4P = (3,1)

8P = (13,7)

6P = (16, 13)7P = (0,6)

2P = (6,3)P = (5,1)

13P = (16,4)11P = (13, 10)12P = (0,11)17P = (6,14)16P = (10,11)

18P = (5,16)19P = O

 $y^2 = x^3 + 2x + 2 \mod 17$

Ü

/IỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Bài toán logarit rời rạc trên EC (ECDLP)

điểm khác T. ${f DN}.$ Cho đường cong elliptic E. Ta xét một điểm P và

Bài toán DL nhằm tìm số nguyên \boldsymbol{d} thoả mãn

$$\underbrace{P + P + \dots + P}_{d \text{ times}} = dP = T.$$

d times

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Nội dung

1. Đường cong Elliptic (Elliptic Curve, EC)

2. Bài toán Logarit rời rạc trên EC

3. Giao thức trao đổi khoá Diffie-Hellman trên EC

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

4P = (3,1)5P = (9,16)9P = (7,6)8P = (13,7)6P = (16,13)P = (5,1)7P = (0,6)3P = (10,6)2P = (6,3)10P = (7,11)Tính log_P(Q) với P = (5,1) và Q = (10,11) $y^2 = x^3 + 2x + 2 \mod 17$ 11P = (13, 10)12P = (0, 11)17P = (6,14)18P = (5,16)16P = (10, 11)14P = (9,1)13P = (16,4)15P = (3,16)

Số điểm của EC

Hass's Theorem:

Cho đường cong E modun p, số điểm trên đường cong ký hiệu bởi #E và bị chặn bởi:

$$p+1-\sqrt{p} \le \#E \le p+1+2\sqrt{p}$$

- #E ₩
- ₀nguyên tố cỡ 160 bit Nếu ta cần một đường cong với số điểm 2^{160} ta phải sử dụng số

Bài tập

Xét đường cong
E:
$$y^2 = x^3 + 2x + 2 \mod 17$$

Ta đã tính các "mũ" của P.

$$P = (5,1)$$
 $6P = (16,13)$ $11P = (13,10)$ $16P = (10,11)$
 $2P = (6,3)$ $7P = (0,6)$ $12P = (0,11)$ $17P = (6,14)$
 $3P = (10,6)$ $8P = (13,7)$ $13P = (16,4)$ $18P = (5,16)$

$$3P = (10,6)$$
 $8P = (13,7)$

$$8P = (13,7)$$
 $13P = (16,4)$
 $9P = (7,6)$ $14P = (9,1)$
 $10P = (7,11)$ $15P = (3,16)$

$$8P = (13,7)$$
 13P

5)
$$8P = (13,7)$$

 $9P = (7.6)$

)
$$8P = (13,7)$$

 $9P = (7,6)$

$$9P = (7,6)$$

$$,1)$$
 9P = $(7,6)$

1)
$$9P = (7,6)$$

$$9P = (7,6)$$

1)
$$9P = (7,6)$$

$$9P = (7,6)$$

$$9P = (7,6)$$

$$9P = (7,6)$$

$$4P = (3,1)$$
 $9P = (7,6)$
 $5P = (9,16)$ $10P = (7,6)$

$$(0,1)$$
 $9P = (7,0)$
 $(0,16)$ $10P = (7,11)$

)
$$9P = (7,6)$$

$$9P = (7,6)$$

$$8P = (13, 1)$$

 $9P = (7.6)$

$$0 = (16, 15)$$
 11

$$(16,13)$$
 $11P$

$$(16,13)$$
 11P

$$7P = (0,6)$$

$$8P = (13,7)$$

$$7P = (0,6)$$

$$8P = (13,7)$$

$$8P = (13,7)$$

$$8P = (13,7)$$

$$9P = (7,6)$$

$$3,1) 9P = (7,6)$$

)
$$9P = (7,6)$$

19P = 0

$$(9,16)$$
 $10P = (7,11)$

 $\mathbb{P}/\acute{o}_{1}\mathbb{P}=(5,1)$ và T = (16,4), hãy tìm số nguyên d sao cho P = T. SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Nội dung

- 1. Đường cong Elliptic (Elliptic Curve, EC)
- 2. Bài toán Logarit rời rạc trên EC
- 3. Giao thức trao đối khoá Diffie-Hellman trên EC

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Tính an toàn

- Mọi giao thức EC dựa trên tính khó giải của bài toán ECDLP
- Nếu EC được chọn cẩn thận, thuật toán tốt nhất để tính ECDLP cần $\approx \sqrt{p}$ bước.
- VD: $p \approx 2^{160}$

tấn công cần $\approx \sqrt{2^{160}} = 2^{80}$ bước

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Pha 2: Trao đổi khoá

Alice

Chọn **a** ∈{2,..., #E -1}

Chọn $\mathbf{b} \in \{1,...,\text{\#E -1}\}$

$$A = a P$$

$$a\mathbf{B} = a(bP) =$$

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

$$k_{AB} = abP$$

$$bA = b(aP)$$

Pha 1: Tham số miền cho ECDH

1. Chọn một số nguyên tố p và đường cong

$$E: \quad y^2 = x^3 + ax + b \mod p$$

2. Chọn điểm $P = (x_p, y_p)$ trên đường cong

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

giao thức trao đối khoá Diffie Hellman Tính an toàn của

- Kẻ tấn công nhìn thấy giá trị aP và bP
- Và phải tính giá trị $K_{ab} = abP$
- Khó khăn của tính toán được dẫn từ hai bài toán được tin là khó

Bài toán quyết định (DDH):

• Cho (P, aP, bP, cP), hãy kiểm tra liệu ab == c.

Bài toán tính toán Diffie Hellman (CDH):

Phép nhân với hằng số

def scalarmult(n,P):
 if n == 0: return 0

if n == 1: return P
R = scalarmult(n//2,P)

if n % 2: R = R + P return R

Thời gian CPU bị chặn bởi

log2 (n)

5 phép nhân đôi; 2 phép cộng.

Trường hợp trung bình: 35P = 2(2(2(2(2P))) + P) + P.

4 phép nhân đôi; 4 phép cộng.

Trường hợp tồi nhất: 31P = 2(2(2(2P + P) + P) + P) + P.

lần nhân đôi điểm

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Giả sử tính toán Diffie Hellman

Giả sử tính toán DH đúng trong E nếu: P, aP, bP \Rightarrow abP

với mọi thuật toán hiệu quả A:

 $Pr[A(P, aP, bP) = abP] < rat{at nho}$

<u>Q</u>. $P \leftarrow \{ph\ an t \dot{u} sinh c \dot{u} a E\}, \quad a, b \leftarrow Z_n$

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

DLP **\P** DH

Quyết định Diffie Hellman (DDH):

Cho (P, aP, bP, cP), kiểm tra liệu ab == c

Tính toán Diffie Hellman (CDH):

Cho (P, aP, bP), hãy tính abP.

Nhiều người tin là "đúng"

Bài toán logarit rời rạc (DLP)

Cho (P, aP), hãy tính a

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

P256 trên Sagemath

```
sage: P256.order()
                                                                                                                                                                                                                                                                 9559645253501865577261459496814587248748736692591040757213546036286

sage: P256 = EllipticCurve(GF(p), [-3,b])
                                                                                                                                                                                                                                                                                                                                                                                                    sage: b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            sage: is_prime(p)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       sage: p = 2^256 - 2^24 + 2^192 + 2^96 -1
5520086247573023097393606373907129377872093705027768026391600457848619693219 : 1)
                                          (44003593087052944491133812927777446441384567907740211507216944250174958576726 :
                                                                                                                               sage: P= P256.random_element()
```


SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Đường cong P256

Đường cong có dạng

 $y^2 = x^3 - 3x + b \mod p$

- Số nguyên tố $p = 2^{256} 2^{224} + 2^{192} + 2^{96} 1$
- và b ở hexa là:

b := 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e

- Số nguyên tố gần bằng 2²⁵⁶, số điểm gần bằng 2²⁵⁶
- Tính logarit rời rạc mất khoảng 2¹²⁸ bước
- Tham số b trong P256 được chọn thế nào?
- P256 được dùng rộng rãi trong thực tế

Bài tập

Xét đường cong

$$y^2 = x^3 + 2x + 2 \mod 17$$

- E: $y^2 = x^3 + 2x + 2 \mod 17$ Và hai điểm P = (5,1) và Q=(10,6) trên E.
- Hãy tìm số nguyên d mà $1 \le d \le \#E$, thoả mãn: dQ = P?
- 1. d =1 2. d = 13 3. d = 17

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG :

Bài tập

- Điểm R = P + Q là gì?
- 1. R = (15, 7) 2. R = (3,1) 3. R = \mathcal{O}

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG :