Robotics

Suraj Borate 20310037

Why Robots?

D2R3

Dirty, Dangerous, Rapid, Repetitive, Right

Robotics: Interdisciplinary Nature

Agent vs Robot

Robots are physical agents that perform tasks by manipulating the physical world.

Key Challenges:

Continuous Space-time, Dynamic Constraints, Cost, Real-time operation, Uncertainty in modeling of robot and environment, uncertainty in sensing, disturbances from environment

How Intelligent Robots are today? When can robots takeover the world physically?

Few Hardware and Design choices, and their implication on Software Development :

Sensor: Active and Passive Sensor, Rate of sensor input, uncertainty in measurement.

Actuator: Linear Actuators, Motors, Wire driven, Pulley driven Introduces delays, backlash, limits on performance

Locomotion: Differential Drive, Car-like, Underwater, Fixed Wing, Quadrotors, Bio-inspired, Legged Robots, Manipulators (Arms) ---- size of configuration space and search space, Stability

Joints: Revolute (Hinge), Prismatic, Spherical etc---- constraints

Problems in Robotics: where AI is being used

Mathematical Modeling (state, input, output)

Simultaneous Localization and Mapping (SLAM)

Motion Planning

Task Planning

Machine Vision

Control

Coordination Cooperation Collaboration--- Multiagent Robotics

Mathematics: Linear Algebra, Probability + Differential Equations

SENSE PLAN ACT (Hierarchical, Reactive, Hybrid)

Cognitive Science:

Hierarchical: P-S-A See door, approach it, move through chairs, Shakey

Slow, closed world model, planning heavy, doesnot confirm with cognitive studies

Reactive: S-A Realtime, no plan, insect behaviour (stimulus-response), cheap robots, not for complex tasks (Potential Fields for motion planning)

Hybrid Deliberative 1990s: P, S-A... P loop slow, S-A fast, multiple S-A behaviours.

Subsumption Architecture: Rodney Brook 90s

 $\pi(s) := ext{argmax}_a \left\{ \sum_i P(s' \mid s, a) \left(R(s' \mid s, a) + \gamma V(s')
ight)
ight\}$

$$P_a(s,s') = ext{Pr}(s_{t+1} = s' \mid s_t = s, a_t = a)$$
 $a_t = \pi(s_t)$,

Motion Planning

Configuration Space

Free Space

Degrees of Freedom

Completeness

Probabilistic Completeness

Voronoi Graph

Visibility Graph

Probabilistic Roadmap

Bi-RRT

Particle Filter for localization (https://www.youtube.com/watch?v=aUkBa1zMKv4)

