Evolution of Convolutional Neural Networks

Alexander Polok

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2. 612 66 Brno - Královo Pole xpolok03@fit.vutbr.cz

No prior knowlege, let evolution handle it!

Figure: VGG16 architecture (1)

Figure: Inception v3 architecture (2)

MNIST vs. FashionMNIST

Figure: MNIST dataset SOTA accuracy \sim 99.9%, CNN with 2 layers \sim 98%

Figure: Fashion MNIST dataset SOTA accuracy ~ 96%, CNN with 2 layers ~ 83%

Hyperparameters

- Number of epochs¹
- Kernel size
- Number of output channels
- Genotype size
- Evolutionary alghorithm and it's parameters
- Set of primitive operations
- Architecture type

¹Adam optimizer (lr=0.001, betas=(0.9, 0.999))

Primitive operations

- None
- Identity
- Conv2d 1 × 1, BatchNorm2d, ReLU
- Conv2d 1 × 1, BatchNorm2d, ELU
- Conv2d C × C, BatchNorm2d, ReLU
- Conv2d $C \times C$, BatchNorm2d, ELU
- Dropout2d
- MaxPool2d C × C
- AvgPool2d C × C

All primitives are of stride one and the convolved feature maps are padded to preserve their spatial resolution.

Architecture representations

Figure: Flat representation (level 2 motif) - NN is constructed from set of primitive operations (level 1 motifs) (3).

Figure: Hierarchical representation - NN is construted recursively from lower level motifs (3).

Architecture representations

Figure: Variable lenght representation (4)

Experiments

- Flat 96 experiments
 - population size, number of generations 100×5 , 5×100^2
 - kernel size 3, 5
 - channels 2, 8, 16, 32
 - number of nodes 2, 4, 8
 - init mutations 0, 1000
- Hierarchical 40 experiments 100 x 5 (pop,gen)
 - channels 2, 8, 16, 32
 - kernel size 3, 5
 - number of nodes '2,2,2;2', '2,2,2;2,2,2;2', '3,3,3;3,3,3;3',
 '4,4,4;4', '3,3,3;6'
- Variable length 40 experiments, 50 × 10 (pop,gen)³
 - channels 2, 8, 16, 32
 - kernel size 3, 5
 - number of nodes '2,1', '3,2', '5,2', '7,2', '5,3'

Computational resources were supplied by the project "e-Infrastruktura CZ" (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic.

²7 000 individuals were evaluated in original paper (3).

³10 000 individuals were evaluated in original paper (4).

Flat - population size versus number of generations, kernel size, architecture

Flat - median fitness through epochs

Random sampling vs. Evolutionary search

Hierarchical representation

Variable length representation

Different architectures

References I

Max Ferguson, Ronay ak, Yung-Tsun Lee, and Kincho Law. Automatic localization of casting defects with convolutional neural networks.

pages 1726–1735, 12 2017.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision.

CoRR, abs/1512.00567, 2015.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu.

Hierarchical representations for efficient architecture search.

CoRR, abs/1711.00436, 2017.

References II

Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G. Yen. Evolving deep convolutional neural networks for image classification.

IEEE Transactions on Evolutionary Computation, 24(2):394–407, 2020.