I. PHASE I AND PHASE II RESULTS IDAHO (ID)

A. Plots of Predictors vs. HPI (non-simple return)

Original HPI Series

Building Permits

Foreclosures

ID Time Series Plot

Population Size

ID Time Series Plot

Unemployment Rate

ID Time Series Plot

Mortgage Originations

ID Time Series Plot

30-Year Commitment Rate

Median Income

B. Scatterplots (simple return)

HPI vs. HPI

HPI vs. Building Permits

HPI vs. Foreclosures

HPI vs. Population Size

HPI vs. Unemployment Rate

Scatterplot of unemp_rate Series with ID 0.020 0 0.015 0.010 dependent 0.005 0.000 -0.02 0.00 0.02 0.04 0.06 test.data.vector[, i]

HPI vs. Mortgage Originations

HPI vs. 30-Year Commitment Rate

HPI vs. Median Income

C. Exhaustive Stepwise Regression

D. Final RLM Model

Coefficients:

	Value	Std. Error	t-value	
median_income-Lag-8	0.031	0.128	0.240	
median_income-Lag-7	-0.034	0.165	-0.209	
median_income-Lag-6	0.165	0.320	0.516	
median_income-Lag-5	-0.108	0.417	-0.258	
median_income-Lag-4	-0.326	0.299	-1.093	
unemp_rate-Lag-5	-0.051	0.033	-1.534	
unemp_rate-Lag-4	-0.050	0.035	-1.422	
pop_size-Lag-6	3.880	2.263	1.715	
pop_size-Lag-5	-1.655	3.452	-0.479	
pop_size-Lag-4	-0.712	3.614	-0.197	
pop_size-Lag-3	3.450	2.278	1.514	
foreclosures-Lag-12	-0.002	0.002	-1.173	
foreclosures-Lag-11	-0.002	0.001	-1.928	
foreclosures-Lag-10	-0.005	0.001	-3.567	*
foreclosures-Lag-9	-0.005	0.001	-3.803	*
foreclosures-Lag-8	-0.003	0.001	-2.362	*
foreclosures-Lag-7	-0.003	0.001	-2.004	*
foreclosures-Lag-6	-0.002	0.001	-1.343	
ty_cr-Lag2	-0.007	0.012	-0.549	
ty_cr-Lag3	-0.001	0.011	-0.119	
ty_cr-Lag4	-0.008	0.012	-0.609	
mort_orig-Lag1	-0.003	0.001	-2.650 ³	*
mort_orig-Lag2	-0.004	0.001	-3.009	*
mort_orig-Lag3	-0.004	0.001	-3.128	*
mort_orig-Lag4	-0.003	0.001	-2.467	*
building_permits-Lag10	0.000	0.002	-0.037	
building_permits-Lag11	-0.002	0.003	-0.885	
building_permits-Lag12	0.000	0.003	-0.064	
building_permits-Lag13	-0.001	0.002	-0.344	
building_permits-Lag14	0.002	0.002	0.937	
building_permits-Lag15	0.000	0.002	0.017	
building_permits-Lag16	0.001	0.002	0.546	

1. Phase I

ACF of Residuals

ACF of Sq-Residuals

PACF and ADF Test

PACF of Differenced Residuals

> adf.test(y\$residuals, k = 3)
Augmented Dickey-Fuller Test
data: y\$residuals
Dickey-Fuller = -3.6903, Lag order = 3, p-value = 0.02902

2. Phase II

ARIMA(1,0,0) with zero mean Call: arima(x = resid.data, order = c(1, 0, 0), include.mean = FALSE)Coefficients:

ar1

0.7702
s.e. 0.0629
sigma^2 estimated as 6.112e-06: log likelihood = 444.17
AIC = -884.33 AICc = -884.2 BIC = -879.18

Box-Ljung Test

- > Box.Ljung.test(arima.fit\$resid,lag = 12, adj.DF = 12-params)
 Q(12) P-value df
 7.384673 0.7671 11
 > Box.Ljung.test(arima.fit\$resid^2,lag = 12, adj.DF = 12)
- > Box.Ljung.test(arima.fit\$resid^2,lag = 12, adj.DF = 12) Q(12) P-value df 25.26165 0.0136 12

	Estimate	Std. Error	t value	Pr(> t)
ar1	0.7550	0.0716	10.55	<2e-16 ***
omega	1.644E-06	0.0000	1.03	0.304
alpha1	0.0649	0.0652	1.00	0.320
beta1	0.6636	0.2942	2.26	0.024 *

ACF of Residuals

ACF of Standardized Residuals

ACF of Sq-Standardized Residuals

Box-Ljung Test

 $\label{eq:bounds} $$ > Box.Ljung.test(sresi, lag = 12, adj.DF = 12-meanParams)$ $Q(12)$ P-value df $$ 7.3162 0.7729 11 $$ > Box.Ljung.test(sresi^2, lag = 12, adj.DF = 12-volParams) $$ Q(12)$ P-value df $$ 17.41181 0.0657 10 $$$

CALIFORNIA (CA)

900

200

A. Plots of Predictors vs. HPI (non-simple return)

Original HPI Series

900

200

CA Time Series Plot

Building Permits

CA Time Series Plot

Foreclosures

CA Time Series Plot

Population Size

CA Time Series Plot

Unemployment Rate

CA Time Series Plot

Mortgage Originations

CA Time Series Plot

30-Year Commitment Rate

CA Time Series Plot

Median Income

CA Time Series Plot

B. Scatterplots (simple return)

HPI vs. HPI

Scatterplot of CA Series with CA

HPI vs. Building Permits

Scatterplot of building_permits Series with CA

HPI vs. Foreclosures

Scatterplot of foreclosures Series with CA

HPI vs. Population Size

Scatterplot of pop_size Series with CA

HPI vs. Unemployment Rate

Scatterplot of unemp_rate Series with CA

HPI vs. Mortgage Originations

Scatterplot of mort_orig Series with CA

HPI vs. 30-Year Commitment Rate

Scatterplot of ty_cr Series with CA

HPI vs. Median Income

Scatterplot of median_income Series with CA

C. Exhaustive Stepwise Regression

Stepwise BIC Regression of CA

E. Final RLM Model

Coefficients				
	Value	Std. Error	t-value	
median_income-Lag-15	0.4799	0.3456	1.3888	
median_income-Lag-14	-0.0537	0.4965	-0.1083	
median_income-Lag-13	0.105	0.4816	0.2181	
median_income-Lag-12	-0.1179	0.3923	-0.3005	
ty_cr-Lag4	0.0271	0.0174	1.5552	
ty_cr-Lag5	0.003	0.0167	0.1812	
ty_cr-Lag6	-0.0142	0.0168	-0.8429	
ty_cr-Lag7	-0.0177	0.0164	-1.0781	
mort_orig-Lag4	-0.0037	0.0018	-2.0486	,
mort_orig-Lag5	-0.007	0.0022	-3.2181	,
mort_orig-Lag6	-0.004	0.0018	-2.2392	,
unemp_rate-Lag1	-0.1261	0.0514	-2.4554	2
unemp_rate-Lag2	-0.0759	0.0502	-1.5111	
unemp_rate-Lag3	-0.0311	0.0504	-0.6156	
unemp_rate-Lag4	-0.0354	0.0482	-0.7356	
unemp_rate-Lag5	-0.0304	0.0478	-0.6358	
unemp_rate-Lag6	0.0301	0.0493	0.61	
pop_size-Lag2	6.0132	5.0598	1.1884	
pop_size-Lag3	-4.2653	7.2838	-0.5856	
pop_size-Lag4	1.6781	7.358	0.2281	
pop_size-Lag5	3.9044	7.558	0.5166	
pop_size-Lag6	1.5299	7.5535	0.2025	
pop_size-Lag7	-6.2109	7.5069	-0.8274	
pop_size-Lag8	9.5897	5.2106	1.8404	
foreclosures-Lag9	-0.0018	0.001	-1.8421	
foreclosures-Lag10	-0.0022	0.0009	-2.3617	3
foreclosures-Lag11	-0.0025	0.0009	-2.7381	•
foreclosures-Lag12	-0.0024	0.0009	-2.5308	•
building_permits-Lag6	-0.0018	0.005	-0.3537	
building_permits-Lag7	0.0009	0.0053	0.1741	
building_permits-Lag8	0.005	0.0052	0.952	
building_permits-Lag9	0.007	0.0051	1.3639	
building_permits-Lag10	0.0005	0.0051	0.0993	
building_permits-Lag11	-0.0038	0.0049	-0.7675	
building_permits-Lag12	-0.0059	0.0051	-1.1608	

1. Phase 1

ACF of Residuals

ACF of Residuals

ACF of Sq-Residuals

PACF and ADF Test

PACF of Differenced Residuals

> adf.test(y\$residuals, k = 2) Augmented Dickey-Fuller Test data: y\$residuals

Dickey-Fuller = -3.5496, Lag order = 2, p-value = 0.04141

Box-Ljung Test

```
> Box.test(y$residuals, lag = 12, type = c("Ljung-Box"))
    Box-Ljung test
X-squared = 115.341, df = 12, p-value < 2.2e-16
```

2. Phase II

```
ARIMA(1,0,0) with zero mean
Call: auto.arima(x = resid.data, stationary = TRUE)
Coefficients:
     ar1
   0.7238
s.e. 0.0710
sigma^2 estimated as 1.539e-05: log likelihood = 403.57
AIC = -803.14 AICc = -803.02 BIC = -797.97
```

Box-Ljung Test

```
> Box.Ljung.test(arima.fit$resid,lag = 12, adj.DF = 12-params)
     Box-Ljung test
X-squared = 6.2959, df = 11, p-value = 0.8529
> Box.Ljung.test(arima.fit\$resid^2, lag = 12, adj.DF = \ 12)
     Box-Ljung test
X-squared = 17.9114, df = 12, p-value = 0.1184
```

FL Time Series Plot

FLORIDA (CA)

3.5 4.0 4.5 ^y 5.0 5.5 Lunemployment_rate___t__ 4.5 y 300 250 3.5 200

0 20

0.0

350

FL Time Series Plot

40

60

Date

80

100

FL Time Series Plot

Date

Plots of lagged predictor variables and FL HPI:

Based on these time series of the data, we picked the following lags to test:

Predictor Variable	Lag(s)
Median income	0
30yr commitment rate	0
Mortgage originations	0
Unemployment rate	-4, -3, 1, 3
Population size	-6, 3
Foreclosures	-3,-1
Building permits	0

Stepwise BIC values for Regression of Lagged Predictor Variables with Florida

Stepwise BIC Regression of FL

Fitted Robust Linear Model with all lagged variables

Call: rlm(x = shifted.multivar.test.data.vector[, 1: (n - 1)], y = shifted.multivar.test.data.vector[, n1)

Residuals:

Min 1Q Median 30 Max -0.0159690 -0.0020288 0.0008338 0.0045595 0.0295564

Coefficients:

	Value	Std. Error	t value
unemployment_rate-Lag-4	-0.0712	0.0162	-4.3983
unemployment_rate-Lag-3	-0.0836	0.0165	-5.0723
population_size-Lag-6	1.3061	0.4229	3.0884
foreclosures-Lag-3	-0.0026	0.0016	-1.6460
foreclosures-Lag-2	-0.0026	0.0015	-1.6699
foreclosures-Lag-1	-0.0026	0.0015	-1.7549
median_income-Lag0	-0.2167	0.2059	-1.0522
thirty_year_commitment_rate-Lag0	0.0009	0.0024	0.3597
mortgage_originations-Lag0	-0.0002	0.0010	-0.2033
building_permits-Lag0	0.0017	0.0045	0.3742
unemployment_rate-Lag1	-0.0285	0.0176	-1.6213
unemployment_rate-Lag3	-0.0237	0.0160	-1.4781
population_size-Lag3	2.9363	0.4187	7.0134

Residual standard error: 0.005344 on 103 degrees of freedom

Fitted Robust Linear Model with unlagged variables

Call: rlm(x = test.data.vector[, 1:(length(test.data.vector)1)],

y = test.data.vector[, length(test.data.vector)]) Residuals:

Min 1Q Median 3Q Max -0.013701 -0.002252 0.001575 0.006133 0.047483

Coefficients:

	value	Sta. Error	t value
median_income	0.2237	0.1666	1.3423
thirty_year_commitment_rate	0.0002	0.0030	0.0686
mortgage_originations	0.0002	0.0011	0.2014
unemployment_rate	-0.1259	0.0219	-5.7532
population_size	2.9903	0.3543	8.4397
foreclosures	-0.0009	0.0017	-0.5132
building permits	0 0040	0.0051	0 7731

Residual standard error: 0.007476 on 118 degrees of freedom

Lagged Regression Residuals Analysis:

Unlagged Regression Residuals Analysis:

The PACF shows a lag of 2 to use in the ADF test for stationarity.

Augmented Dickey-Fuller Test data: y\$residuals Dickey-Fuller = -3.5887, Lag order = 2, p-value = 0.03735alternative hypothesis: stationary

Residuals are stationary so phase 1 complete. Continue to Phase 2.

First, check Box-Ljung.

Box-Ljung test data: y\$residuals X-squared = 220.422, df = 12, p-value < 2.2e-16

Box-Ljung fails. Implies residuals are autocorrelated. So we will now model the residuals as time series.

EACF shows that we should try to fit ARMA(1,0).

Fit ARMA:

Series: y\$residuals ARIMA(1,0,0) with non-zero mean

Call: arima(x = y\$residuals, order = c(1, 0, 0))

Coefficients:

arl intercept 0.7356 0.0011 s.e. 0.0624 0.0015

sigma^2 estimated as 1.921e-05: log likelihood = 464.91 AIC = -923.82AICc = -923.61 BIC = -915.56

Check adequacy of ARMA

> Box.Ljung.test(arima.fit\$residuals,lag = 12, adj.DF = 12-params)

Box-Ljung test

X-squared = 12.6459, df = 11, p-value = 0.3171

The mean equation passes.

> Box.Ljung.test(arima.fit\$residuals^2,lag = 12, adj.DF = 12)

Box-Ljung test

X-squared = 24.6408, df = 12, p-value = 0.01662

Residuals^2 fails. GARCH modeling needed.

FIT GARCH: Garch estimates

ar1 omega alpha1 beta1 4.111261e-04 3.241833e-01 3.089253e-06 1.000000e+00 2.568742e-01

Check adequacy of GARCH model (using standardized residuals)

> sresi=garch.fit@residuals/garch.fit@sigma.t > Box.Ljung.test(sresi, lag = 12, adj.DF = 12meanParams)

Box-Ljung test

data: data

X-squared = 10.337, df = 11, p-value = 0.5004

> Box.Ljung.test(sresi^2, lag = 12, adj.DF = 12volParams)

Box-Ljung test

data: data

X-squared = 5.7986, df = 10, p-value = 0.8319

Both Box-Ljung tests for the standardized residuals and squared standardized residuals of the ARMA(1,0) + GARCH(1,1) model pass.

The final fitted models are as follows.

Phase 1 Regression: Drift Modeling

 $y_t = \sum \beta_i x_{t,i} + res_t$ where rest are the residuals

Variable	$\beta_{i,}$
unemployment_rate-Lag-4	-0.0712
unemployment_rate-Lag-3	-0.0836
population_size-Lag-6	1.3061
foreclosures-Lag-3	-0.0026
foreclosures-Lag-2	-0.0026
foreclosures-Lag-1	-0.0026
median_income-Lag0	-0.2167
thirty_year_commitment_rate-	
Lag0	0.0009
mortgage_originations-Lag0	-0.0002
building_permits-Lag0	0.0017
unemployment_rate-Lag1	-0.0285
unemployment_rate-Lag3	-0.0237
population_size-Lag3	2.9363

Phase 2 Time Series: Volatility Modeling

 $(1-\phi_1 B)res_t = \phi_0 + a_t$

$${\sigma_t}^2 \!=\! \! \alpha {a_{t\text{-}1}}^2 \! + \; \beta {\sigma_{t\text{-}1}}^2$$

 $a_t = \varepsilon_t \sigma_t$

 $\varepsilon_t \sim N(0,1)$

Coefficient	Estimate
φ ₀	0.0011
φ ₁	0.7356
α	1.00
β	0.26