"代数式化简求值"例题解析

代数式化简求值是初中数学教学的一个重点和难点内容。学生在解题时如果找不准解 决问题的切入点、方法选取不当,往往事倍功半。如何提高学习效率,顺利渡过难关, 笔者就这一问题,进行了归类总结并探讨其解法,供同学们参考。

一. 已知条件不化简, 所给代数式化简

例1. (2004年山西省) 先化简, 再求值:

$$(\frac{a-2}{a^2+2a} - \frac{a-1}{a^2+4a+4}) \div \frac{a-4}{a+2}, \quad \text{其中a满足:} \quad a^2+2a-1=0$$
解:
$$(\frac{a-2}{a^2+2a} - \frac{a-1}{a^2+4a+4}) \div \frac{a-4}{a+2}$$

$$= [\frac{a-2}{(a+2)a} - \frac{a-1}{(a+2)^2}] \div \frac{a-4}{a+2}$$

$$= [\frac{a^2-4}{(a+2)^2a} - \frac{a(a-1)}{(a+2)^2a}] \div \frac{a-4}{a+2}$$

$$= \frac{-4+a}{a(a+2)^2} \times \frac{a+2}{a-4}$$

$$= \frac{1}{a(a+2)}$$
由己知 $a^2+2a-1=0$
可得 $a^2+2a=1$,把它代入原式:
$$= \frac{1}{a^2+2a}$$
所以原式
$$= \frac{1}{a^2+2a} = 1$$

评析:本题把所给代数式化成最简分式后,若利用 $\alpha^2 + 2\alpha - 1 = 0$,求出a的值,再代入化简后的分式中,运算过程相当繁琐,并且易错。

$$\begin{aligned}
&\text{fill:} \quad \left(\frac{y}{\sqrt{xy} + y} + \frac{x}{\sqrt{xy} - x}\right) \div \frac{xy}{\sqrt{x} + \sqrt{y}} \cdot \frac{x - y}{\sqrt{x} + \sqrt{y}} \\
&= \left(\frac{\sqrt{y}}{\sqrt{x} + \sqrt{y}} + \frac{\sqrt{x}}{\sqrt{y} - \sqrt{x}}\right) \times \frac{\sqrt{x} + \sqrt{y}}{xy} \cdot \frac{x - y}{\sqrt{x} + \sqrt{y}} \\
&= \frac{y - \sqrt{xy} + x + \sqrt{xy}}{y - x} \cdot \frac{x - y}{xy} \\
&= -\frac{y + x}{xy}
\end{aligned}$$

当
$$x = 2 + \sqrt{2}$$
, $y = 2 - \sqrt{2}$ 时
原式 = $-\frac{2 + \sqrt{2} + 2 - \sqrt{2}}{(2 + \sqrt{2})(2 - \sqrt{2})} = -2$

评注:本题属于二次根式混合运算中难度较大的题目。在把所给代数式化简时,首先要弄清运算顺序,其次要正确使用二次根式的性质。

二. 已知条件化简, 所给代数式不化简

例3. 已知
$$a$$
、 b 、 c 为实数,且 $a+b=\frac{1}{3}$, $\frac{bc}{b+c}=\frac{1}{4}$, $\frac{ac}{a+c}=\frac{1}{5}$, 试求代数式 $\frac{abc}{abc}$

解:由
$$\frac{ab}{a+b} = \frac{1}{3}, \frac{bc}{b+c} = \frac{1}{4}, \frac{ac}{a+c} = \frac{1}{5},$$
 可得:
$$\frac{1}{a} + \frac{1}{b} = 3, \frac{1}{b} + \frac{1}{c} = 4, \frac{1}{a} + \frac{1}{c} = 5$$
所以 $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 6$
所以 $\frac{ab+bc+ac}{abc} = 6$
所以 $\frac{abc}{ab+bc+ac} = \frac{1}{6}$

评注:本题是一道技巧性很强的题目,观察所给已知条件的特点,从已知条件入手, 找准解决问题的突破口,化难为易,使解题过程简捷清晰。

三. 己知条件和所给代数式都要化简

例4. (2005年潍坊) 若
$$x + \frac{1}{x} = 3$$
, 则 $\frac{x^2}{x^4 + x^2 + 1}$ 的值是 () A. $\frac{1}{8}$ B. $\frac{1}{10}$ C. $\frac{1}{2}$ D. $\frac{1}{4}$ 解: 因为 $x + \frac{1}{x} = 3$ 所以 $(x + \frac{1}{x})^2 = 9$ 所以 $x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 9$ 所以 $x^2 + \frac{1}{x^2} = 7$ 所以 $\frac{x^2}{x^4 + x^2 + 1} = \frac{1}{x^2 + 1 + \frac{1}{x^2}} = \frac{1}{8}$ 所以

 $x + \frac{1}{x} = 3$ 评注: 若有 $x + \frac{1}{x} = 3$,求出x再代入求 $\frac{x^2}{x^4 + x^2 + 1}$ 的值将会非常麻烦,但本题运用整体代入的方法,就简单易行。

例5. 已知
$$a+b<0$$
,且满足 $a^2+2ab+b^2-a-b=2$,求 $\frac{a^3+b^3}{1-3ab}$ 的值。解:因为 $a^2+2ab+b^2-a-b=2$
所以 $(a+b)^2-(a+b)-2=0$
所以 $(a+b-2)(a+b+1)=0$
所以 $a+b=2$ 或 $a+b=-1$
由 $a+b<0$
故有 $a+b=-1$

$$\frac{a^3+b^3}{1-3ab}=\frac{(a+b)(a^2-ab+b^2)}{1-3ab}$$

$$=\frac{-1\times(a^2-ab+b^2)}{1-3ab}$$

$$=\frac{a^2-ab+b^2}{3ab-1}$$

$$=\frac{(a+b)^2-3ab}{3ab-1}$$

$$=\frac{(-1)^2-3ab}{3ab-1}$$

$$=\frac{1-3ab}{3ab-1}$$

评注:本题应先对已知条件 $a^2+2ab+b^2-a-b=2$ 进行变换和因式分解,并由a+b<0确定出a+b=-1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。