Efficient NIZK for NP without Knowledge Assumptions

Alonso González¹

Mi casita

Abstract. Insert abstract here.

1 Introduction

In this work we construct a NIZK proof system for the language

$$\mathsf{CircuitSat} := \left\{ C : \exists \boldsymbol{x} \in \mathbb{Z}_p^m \text{ s.t. } C \text{ is an algebraic circuit and } C(\boldsymbol{x}) = 1 \right\},$$

with proof size $\kappa + \Theta(\operatorname{depth}(C))$ elements of a bilinear group, where κ is the size of a proof of knowledge of \boldsymbol{x} . In the case of binary circuits, i.e. p=2, we have that $\kappa=2|\boldsymbol{x}|+O(1)$ using the techniques of [?]. In general, κ sould be independent from the circuit.

We organize the circuit gates by level, where level ℓ is formed by the gates at distance ℓ from the output gate. For example, the d-th level, where $d := \operatorname{depth}(C)$, contain the gates whose inputs are only elements from the circuit input \boldsymbol{x} and the 0-th level contains the unique gate whose output is the output of the circuit.

To each gate we might associate a vector of degree 2 polynomials $\boldsymbol{p}_{\ell} \in \mathbb{Z}_q^{n_{\ell}}[W_1,\ldots,W_{m_{\ell}}]$, where $m_{\ell} \in \mathbb{N}$ is the number of inputs of level ℓ and $n_{\ell} \in \mathbb{N}$ is the number of outputs (or, equivalently the number of gates) of level ℓ . Note that it must hold that $\sum_{i<\ell} n_i \geq m_{\ell} \geq n_{\ell-1}$ (TODO: Check this). It must hold that for every $\boldsymbol{x} \in \mathbb{Z}_p^m$

$$C(\mathbf{x}) = (\mathbf{p}_d \circ \mathbf{p}_{d-1} \circ \ldots \circ \mathbf{p}_0)(\mathbf{x})$$
 TODO: I need to add id gates

We work on asymmetric bilinear groups and our construction is built from the following primitives:

- 1. A commitment scheme for vectors in \mathbb{Z}_q^m for wich we can construct a NIZK argument of knowledge of the opening.
- 2. A commitment scheme for vectors in \mathbb{Z}_q^m with constant-size commitments in \mathbb{G}_s^k , s=1,2, for which we can construct a NIZK argument for the following language

$$\mathcal{L}_{\mathsf{prod},ck_1,ck_2} = \left\{ [oldsymbol{a}]_1, [oldsymbol{b}]_2, [oldsymbol{c}]_1 : egin{align*} [oldsymbol{a}]_1 = \mathsf{Com}_{ck_1}(oldsymbol{x}) & \mathrm{and} \ [oldsymbol{b}]_2 = \mathsf{Com}_{ck_2}(oldsymbol{y}) \ & \Longrightarrow [oldsymbol{c}]_1 = \mathsf{Com}_{ck_3}(oldsymbol{x} \otimes oldsymbol{y}) \end{pmatrix},$$

where $\boldsymbol{x} \in \mathbb{Z}_q^m, \boldsymbol{y} \in \mathbb{Z}_q^n, \boldsymbol{x} \otimes \boldsymbol{y} \in \mathbb{Z}_q^{mn}$, $ck_3 = ck_1 \otimes ck_2$, and \otimes denote the kroenecker product.

3. A QA-NIZK argument for the language

$$\mathcal{L} = \left\{ [m{c}]_1, [m{c}']_1 : egin{array}{l} ext{knowledge of } m{x} ext{ s.t. } [m{c}]_1 = \mathsf{Com}_{ck_1 \otimes ck_2}(m{x}) \Longrightarrow \\ [m{c}']_1 = \mathsf{Com}_{ck'}(m{x}) \end{array}
ight\},$$

4. A QA-NIZK argument for the language

$$\mathcal{L} = \left\{ [\boldsymbol{c}]_1, [\boldsymbol{a}']_1, [\boldsymbol{b}']_2 : \begin{array}{l} \text{knowledge of } \boldsymbol{x} \text{ s.t. } [\boldsymbol{c}]_1 = \mathsf{Com}_{ck}(\boldsymbol{x}) \\ \Longrightarrow [\boldsymbol{a}']_1 = \mathsf{Com}_{ck_1}(\boldsymbol{\Gamma}_1 \boldsymbol{x}) \text{ and } [\boldsymbol{b}']_2 = \mathsf{Com}_{ck_2}(\boldsymbol{\Gamma}_2 \boldsymbol{x}) \end{array} \right\},$$

Constant-Size Multiplicative Homomorphic Commitments. Both Groth-Sahai and Pedersen commitments are special cases of the following general commitment scheme

$$ck := [\mathbf{G}]_s = [\mathbf{G}_0|\mathbf{G}_1] \in \mathbb{G}_s^{k \times (n+r)}, \quad \mathsf{Com}_{ck}(\mathbf{x}; \boldsymbol{\rho}) = [\mathbf{G}_0]_s \mathbf{x} + [\mathbf{G}_1]_s \boldsymbol{\rho}.$$

Groth-Sahai commitments correspond to the case k=n+r, which defines perfectly binding commitments if \mathbf{G} is invertible, and Pedersen commitments correspond to the case k=1, which defines perfectly hiding commitments. We will consider the case k>1 which has been called *somewhere statiscally binding* commitments and is a mixture between Groth-Sahai and Pedersen commitments.

With this formulation is easy to derive commitments to $x \otimes y$ from commitments to $x \in \mathbb{Z}_q^m$ and $y \in \mathbb{Z}_q^n$, as follows

$$\mathsf{Com}_{ck_2}(\boldsymbol{x}\otimes\boldsymbol{y};\boldsymbol{\rho}_3) := \mathsf{Com}_{ck_1}(\boldsymbol{x};\boldsymbol{\rho}_1) \otimes \mathsf{Com}_{ck_2}(\boldsymbol{y};\boldsymbol{\rho}_2),$$

where $ck_2 := [\mathbf{H}_0|\mathbf{H}_2]_1, ck_3 = [\mathbf{G} \otimes \mathbf{H}]_T$ and

$$oldsymbol{
ho}_3 = egin{pmatrix} oldsymbol{0}_m \ oldsymbol{
ho}_1 \end{pmatrix} \otimes egin{pmatrix} oldsymbol{y} \ rac{1}{2}oldsymbol{
ho}_2 \end{pmatrix} + egin{pmatrix} oldsymbol{x} \ rac{1}{2}oldsymbol{
ho}_1 \end{pmatrix} \otimes egin{pmatrix} oldsymbol{0}_n \ oldsymbol{
ho}_2 \end{pmatrix}$$

(ρ_3 has a different form?).

This approach has the disadvantage that once we compute $[c]_T = \mathsf{Com}_{ck_3}(x \otimes y)$ we are stucked in the target group and no more multiplications are possible. But one can still bootstrap commitment $[c]_T$ (in some analogy with FHE techniques, when one bootstraps for diminishing the error) by bringing it to one of the base groups \mathbb{G}_s and requiring the verifier to check that

$$e([\mathbf{a}]_1, [\mathbf{b}]_2) = e([\mathbf{c}]_s, [\mathbf{I}]_{2-s+1}).$$

Going a step forward, we will have to give two shares of $[c]_s$, $[c']_1$ and $[d']_2$, such that c = c' + d'. We omit the "primes" in the shares and now the verifier checks that

$$e([\mathbf{a}]_1, [\mathbf{b}]_2) = e([\mathbf{c}]_1, [\mathbf{I}]_2) + e([\mathbf{I}]_1, [\mathbf{d}]_2).$$

The first share is computed using commitment key $ck_{3,1} := [\mathbf{G} \otimes \mathbf{H} - \mathbf{Z}]_1$ and the second share is computed using commitment key $ck_{3,1} := [\mathbf{Z}]_2$, for $\mathbf{Z} \leftarrow \mathbb{Z}_q^{k_1 k_2 \times mn}$.

Arguments of Equal Opening. Given $[c]_1 = \mathsf{Com}_{ck}(x; \rho)$, where $ck = ck_1 \otimes ck_2$, we want to show that $[c']_1$ can be also oppened to x but ck' is a random commitment key.

To do so we will give a QA-NIZK argument that c/c' is in the linear span of

$$\mathbf{J} := \begin{pmatrix} \mathbf{G}_0 \otimes \mathbf{H}_0 \ \mathbf{G}_0 \otimes \mathbf{H}_1 \ \mathbf{G}_1 \otimes \mathbf{H}_0 \ \mathbf{G}_1 \otimes \mathbf{H}_1 \ \mathbf{0} \\ \mathbf{G}_0' \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{G}_0' \end{pmatrix}$$

However, the QA-NIZK argument only shows the existence of some \boldsymbol{w} such that $\boldsymbol{c}/\boldsymbol{c}' = \mathbf{J}\boldsymbol{w}$ but it might be the case that \boldsymbol{c}' still can't be oppened to \boldsymbol{x} — i.e. \boldsymbol{w} can't be \boldsymbol{x} appended with some other vector. We will show that this is not the case.

Assume that $[c]_1 = \mathsf{Com}_{ck}(x; \rho)$ but $[c']_1 \neq \mathsf{Com}_{ck'}(x; \rho')$ for any ρ' , and assume also that the adversary provides a valid proof $[\pi]_1$ for $[c]/[c']_1$. Define $[c^{\dagger}]_1 := \mathsf{Com}_{ck'}(x; \mathbf{0})$ and note that c/c^{\dagger} is in the immage of \mathbf{J} and thus we can compute a proof $[\pi^{\dagger}]_1$ for $[c]/[c^{\dagger}]_1$. By the properties of the QA-NIZK arguments for linear spaces, we get that $[\pi - \pi^{\dagger}]_1$ is a proof for $[0]_1/[d]_1$, where $d = c - c^{\dagger} \neq \mathbf{0}$. We will show that $\mathbf{0}/d$ is not in the immage of \mathbf{J}' , such that $[\mathbf{J}']_1$ is computationally indistinguishable from $[\mathbf{J}]_1$.

Let $u_0, u_1, v_0, v_1, u'_0, u'_1$ randomly chosen from \mathbb{Z}_q^k . We compute \mathbf{J}' in the same way that \mathbf{J} is computed, but now ck_1, ck_2 and ck' are computed as follows

$$ck_1 = [\mathbf{G}_0|\mathbf{G}_1]_1 = [\boldsymbol{u}_0\mathbf{A}_0|\boldsymbol{u}_1\mathbf{A}_1]_1$$

$$ck_2 = [\mathbf{H}_0|\mathbf{H}_1]_2 = [\boldsymbol{v}_0\mathbf{B}_0|\boldsymbol{v}_1\mathbf{B}_1]_2$$

$$ck' = [\mathbf{G}_0'|\mathbf{G}_1']_1 = [\boldsymbol{u}_0'\mathbf{A}_0 \otimes \mathbf{B}_0 + \boldsymbol{u}_1\mathbf{C}_0|\boldsymbol{u}_1\mathbf{C}_1]_1$$
(1)

since $[u]_s \mu$, $\mu \leftarrow \mathbb{Z}_q$ is indistinguishable from a random element in \mathbb{G}_s^k as long as the DDH assumption is hard in \mathbb{G}_s , it follows that the new commitment keys are indistinguishable from the original ones.

There is still a technical problem when using the DDH assumption and computing $[\mathbf{J}]_1$: when using the DDH assumption in \mathbb{G}_2 to change the distribution of ck_2 we can only compute $[\mathbf{J}]_2$. This problem has already arised and solved in [?] and we use a similar solution in our final proof system. For the sake of clarity, for this intuitive explanation we just assume that ck_1, ck_2 and ck' are sampled from (1) in the real game (although this will make impossible to prove zero-knowledge).

Going back to the problem of whether 0/d is in the immage of **J**, we get that now this is not the case. Indeed,