#### **DES** algorithm

#### Aim

To implement DES encryption and decryption

### **Description to Implement**

The general structure of the DES consists of key schedule, round function, Initial and final permutation.



Step1: Plaintext is broken into blocks of length 64 bits.

Step2: The 64-bit block undergoes an initial permutation (IP) using initial permutation IP table, IP(M).

Step3: The 64-bit permuted input is divided into two 32-bit blocks: left (L) and right (R). The initial values of the left and right blocks are denoted  $L_0$  and  $R_0$ .

Step4: There are 16 rounds of operations on the L and R blocks. During each round, the following formula is applied:

$$\begin{split} L_n &= R_{n\text{-}1} \\ R_n &= L_{n\text{-}1} \text{ XOR } F(R_{n\text{-}1},\!K_n) \end{split}$$

Step5: The function F(.) represents the heart of the DES algorithm. This function implements the following operations:

1. Expansion 2. Key mixing 3. Substitution 4. Permutation

- 1-Expansion: The right 32-bit half-block is expanded to 48 bits using the expansion permutation (E) table,  $E(R_{n-1})$ .
- 2-Key mixing: The expanded result is combined with a subkey using an XOR operation. Sixteen 48-bit subkeys (one for each round) are derived from the main key using the key schedule,  $K_n + E(R_{n-1})$ .
- 3-Substitution: After mixing in the subkeys, the block is divided into eight 6-bit pieces and fed into the substitution boxes (S-boxes), which implements nonlinear transformation. Each 6-bit piece uses as an address in the S-boxes where the first and last bits are used to address the i<sup>th</sup> row and the middle four bits to address the j<sup>th</sup> column in the S-boxes. The output of each S-box is 4-bit length piece. The output of all eight S-boxes is then combined into 32 bit section.

 $K_n + E(R_{n-1}) = B_1B_2B_3B_4B_5B_6B_7B_8$ 

 $S(Kn+E(Rn-1))=S1(B_1)S2(B_2)S3(B_3)S4(B_4)S5(B_5)S6(B_6)S7(B_7)S8(B_8)$ 

4-Permutation: The 32 bits outputs from the S-boxes are rearranged using the P-box,  $F=P(S(K_n+E(R_{n-1})))$ 

Step6: The results from the final DES round (i.e.,  $L_{16}$  and  $R_{16}$ ) are recombined into a 64-bit value and rearranged using an inverse initial permutation (IP<sup>-1</sup>) table. The output from IP<sup>-1</sup> is the 64-bit ciphertext block.

#### **PC1 Table**

| 57 | 49 | 41 | 33 | 25 | 17 | 9  |
|----|----|----|----|----|----|----|
| 1  | 58 | 50 | 42 | 34 | 26 | 18 |
| 10 | 2  | 59 | 51 | 43 | 35 | 27 |
| 19 | 11 | 3  | 60 | 52 | 44 | 36 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 |
| 7  | 62 | 54 | 46 | 38 | 30 | 22 |
| 14 | 6  | 61 | 53 | 45 | 37 | 29 |
| 21 | 13 | 5  | 28 | 20 | 21 | 4  |

#### Schedule of left shifts

| Iter | No. of left shifts |
|------|--------------------|
| 1    | 1                  |
| 2    | 1                  |

| 3  | 2 |
|----|---|
| 4  | 2 |
| 5  | 2 |
| 6  | 2 |
| 7  | 2 |
| 8  | 2 |
| 9  | 1 |
| 10 | 2 |
| 11 | 2 |
| 12 | 2 |
| 13 | 2 |
| 14 | 2 |
| 15 | 2 |
| 16 | 1 |
|    |   |

## **PC2 Table**

| 14 | 17 | 11 | 24 | 1  | 5  |
|----|----|----|----|----|----|
| 3  | 28 | 15 | 6  | 21 | 10 |
| 23 | 19 | 12 | 4  | 26 | 8  |
| 16 | 7  | 27 | 20 | 13 | 2  |
| 41 | 52 | 31 | 37 | 47 | 55 |
| 30 | 40 | 51 | 45 | 33 | 48 |
| 44 | 49 | 39 | 56 | 34 | 53 |
| 46 | 42 | 50 | 36 | 29 | 32 |

### IP Table

| 58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 |
|----|----|----|----|----|----|----|---|
| 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
| 62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 |
| 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
| 57 | 49 | 41 | 33 | 25 | 17 | 9  | 1 |
| 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
| 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 |
| 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |

### E-bit selection Table

| 32 | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 4  | 5  | 6  | 7  | 8  | 9  |
| 8  | 9  | 10 | 11 | 12 | 13 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 16 | 17 | 18 | 19 | 20 | 21 |

| 20 | 21 | 22 | 23 | 24 | 25 |
|----|----|----|----|----|----|
| 24 | 25 | 26 | 27 | 28 | 29 |
| 28 | 29 | 30 | 31 | 32 | 1  |

### S1-Box

S1

|     |         |           | _        |
|-----|---------|-----------|----------|
| C-1 | 11mm    | NT        | <b>L</b> |
|     | i i imm | PA 1 1 HD | F 160 T  |

| No. | 0  | 1  | 2  | 3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|-----|----|----|----|---|----|----|----|----|----|----|----|----|----|----|----|----|
| 0   | 14 | 4  | 13 | 1 | 2  | 15 | 11 | 8  | 3  | 10 | 6  | 12 | 5  | 9  | 0  | 7  |
| 1   | 0  | 15 | 7  | 4 | 14 | 2  | 13 | 1  | 10 | 6  | 12 | 11 | 9  | 5  | 3  | 8  |
| 2   | 4  | 1  | 14 | 8 | 13 | 6  | 2  | 11 | 15 | 12 | 9  | 7  | 3  | 10 | 5  | 0  |
| 3   | 15 | 12 | 8  | 2 | 4  | 9  | 1  | 7  | 5  | 11 | 3  | 14 | 10 | 0  | 6  | 13 |

# Final stage of permutation table

| 16 | 7  | 20 | 21 |
|----|----|----|----|
| 29 | 12 | 28 | 17 |
| 1  | 15 | 23 | 26 |
| 5  | 18 | 31 | 10 |
| 2  | 8  | 24 | 14 |
| 32 | 27 | 3  | 9  |
| 19 | 13 | 30 | 6  |
| 22 | 11 | 4  | 25 |

## Table IP-1

| 40 | 8 | 48 | 16 | 56 | 24 | 64 | 32 |
|----|---|----|----|----|----|----|----|
| 39 | 7 | 47 | 15 | 55 | 23 | 63 | 31 |
| 38 | 6 | 46 | 14 | 54 | 22 | 62 | 30 |
| 37 | 5 | 45 | 13 | 53 | 21 | 61 | 29 |
| 36 | 4 | 44 | 12 | 52 | 20 | 60 | 28 |
| 35 | 3 | 43 | 11 | 51 | 19 | 59 | 27 |
| 34 | 2 | 42 | 10 | 50 | 18 | 58 | 26 |
| 33 | 1 | 41 | 9  | 49 | 17 | 57 | 25 |