Stereo

Lecture 16

Shape From X

• Recovery of 3D (shape) from one or two (2D images).

Shape From X

- Stereo
- Motion
- Shading
- Photometric Stereo
- Texture
- Contours
- Silhouettes
- Defocus

Shape from Stereo

(a)

(b)

(c)

Stereo

$$\frac{Z+f}{Z} = \frac{x_1 + x_2 + B}{B},$$
 $Z = \frac{fB}{x_1 + x_2},$

$$Z = \frac{fB}{x_1 + x_2},$$

B=Baseline f=focal length C1 and C2=Camera Centers X1, X2=Image location in left and right cameras

$$x_1 + x_2 = \text{disparity} = d$$

Stereo Pairs and Depth Maps (from Szeliski's book)

Rectification

Correspondence using Search

Correlation Based Stereo Methods

• Disparity map can be constructed based on a correlation measure

$$SSD = \sum \sum (I_{left} - I_{right})^2$$
 Sum of squares difference

$$NC = \frac{\sum \sum (I_{left}.I_{right})}{\sqrt{\sum \sum I_{left}.I_{right}}}$$

$$AD = \sum \sum |(I_{left} - I_{right})|$$
 Absolute difference

$$CC = \sum \sum I_{left} I_{right}$$
 Cross correlation

$$MC = \frac{1}{64\sigma_{left}\sigma_{right}} \sum \sum \left(I_{left} - \mu_{left1}\right) \left(I_{right} - \mu_{right}\right)$$

Mutual Correlation

Mean

Alper Yilmaz, Mubarak shah, Fall 2011 UCF

Standard Deviation

Correlation

- Similarity/Dissimilarity Measures
 - Sum of Squares Difference (SSD)
 - Normalized Correlation
 - Mutual Correlation
 - Mutual information $I(x, y) = \sum \sum p(x, y) \log \frac{p(x, y)}{p_1(x)p_2(y)}$
- Use
 - Gray levels
 - Laplacian of Gaussian
 - Gradient magnitude

Block Matching

left

right

- Can be used for
 - Computing MPEG motion vectors
 - Optical flow
 - Stereo (displacement limited to only x-axis)
 - Image matching

Block Matching

- For each 8X8 block, centered around pixel (x,y) in right image, B_k
 - Obtain 16X16 block in left, centered around (x,y), B_{k-1}
 - Compute Sum of Squares Differences (SSD) between 8X8 block, B_{k} , and all possible 8X8 blocks in B_{k-1}
 - The 8X8 block in B_{k-1} centered around (x',y'), which gives the least SSD is the match
 - The displacement vector (disparity, optical flow) is given by u=x-x; v=y-y

Sum of Squares Differences (SSD)

$$(u(x,y),v(x,y)) = \operatorname{argmin}_{u,v=-4...4} \sum_{i=0}^{-7} \sum_{j=0}^{-7} (f_k(x+i,y+j) - f_{k-1}(x+i+u,y+j+v))^2$$

Minimum Absolute Difference (MAD)

$$(u(x,y),v(x,y)) = \arg\min_{u,v=-4...4} \sum_{i=0}^{-7} \sum_{j=0}^{-7} \left| \left(f_k(x+i,y+j) - f_{k-1}(x+i+u,y+j+v) \right) \right|$$

Maximum Matching Pixel Count (MPC)

$$T(x, y; u, v) = \begin{cases} 1 & \text{if } |f_k(x, y) - f_{k-1}(x + u, y + v)| \le t \\ 0 & \text{otherwise} \end{cases}$$

$$(u(x,y),v(x,y)) = \operatorname{arg\,max}_{u,v=-4...4} \sum_{i=0}^{-7} \sum_{j=0}^{-7} T(x+i,y+j;u,v)$$

Cross Correlation

$$(u(x, y), v(x, y)) = \arg\max_{u, v = -4...4} \sum_{i=0}^{-7} \sum_{j=0}^{-7} \left(f_k(x+i, y+j) \cdot f_{k-1}(x+i+u, y+j+v) \right)$$

Normalized Correlation

$$(u,v) = \arg\max_{u,v=-4...4} \frac{\sum_{i=0}^{-7} \sum_{j=0}^{-7} \left((f_k(x+i,y+j) - \mu_1) \cdot (f_{k-1}(x+i+u,y+j+v) - \mu_2) \right)}{\sqrt{\left(\sum_{i=0}^{-7} \sum_{j=0}^{-7} (f_k(x+i,y+j) - \mu_1)^2 \left(\sum_{i=0}^{-7} \sum_{j=0}^{-7} (f_{k-1}(x+i+u,y+j+v) - \mu_2)^2 \right)\right)}}$$

and μ_2 are the means of patch-1 and patch-2 respectively.

Mutual Correlation

$$(u(x,y),v(x,y)) = \arg\max_{u,v=-4...4} \frac{1}{64\sigma_1\sigma_2} \sum_{i=0}^{-7} \sum_{j=0}^{-7} \left(f_k(x+i,y+j) - \mu_1 \right) \cdot f_{k-1}(x+i+u,y+j+v) - \mu_2 \right)$$

Sigma and mu are standard deviation and mean of patch-1 and patch-2 respectively

Barnard's Stereo Method

- Similar intensity
 - Similar to brightness constraint
- Smoothness of disparity

$$E = \sum_{i=-1}^{1} \sum_{j=-1}^{1} \left\| I_{left}(x+i, y+j) - I_{right}(x+i+D_{x}(x, y), y+j) \right\| + \lambda \left\| \nabla D(x, y) \right\|$$

$$\nabla D(x, y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} |D(x+i, y+j) - D(x, y)|$$

Barnard's Stereo Method

- Energy can be minimized using brute force search
 - Let max allowed disparity is 10 pixels
 - For 128x128 image for 10 possible levels of disparity
 - There 10¹⁶³⁸⁴ possible disparity values
 - We can select any minimization technique
 - Barnard choose simulated annealing

Simulated Annealing

- Select a random state S (disparities)
- Select a high temperature
 - Select random S'
 - Compute $\Delta E = E(S') E(S)$
 - If $(\Delta E < 0) S \leftarrow S'$
 - Else
 - $P \leftarrow exp(-\Delta E/T)$
 - $X \leftarrow random(0,1)$
 - If X<P then S←S'
 - If no decrease in several iterations lower T

Examples

Left Image

Right Image

Depth Map

Stereo results

Data from University of Tsukuba

Scene Ground truth

Results with window correlation

Window-based matching (best window size)

Ground truth

Results with better method

State of the art method

Ground truth

Boykov et al., <u>Fast Approximate Energy Minimization via Graph Cuts</u>, International Conference on Computer Vision, September 1999.

Applications of Stereo (from Szeliski's book)

(a) input image, (b) computed depth map, and (c)new view generation (d) view morphing between two images (e-f) 3D face modeling (g) Virtual reality (h-j) building 3D surface models

Reading Material

- Fundamental of Computer Vision
 - 6.2.1, 6.2.4 and 6.2.5
- Computer Vision: Algorithms and Applications, Richard Szeliski
 - Chapter 11