Lecture 4 (Scalar and Vector Multiplication)

Physics 160-01 Fall 2012 Douglas Fields

Register your clickers!

Last Name	First Name	Last Name	First Name
Abeyta	Jonathon	Habbit	Nicole
Arirom	Chanida	Hansen	Jameson
Avina	Isaac	Harty	Casey
Baker	Brandon	Hernandez	Michael
Banteah	Reyna	Herrera	Jonathan
Becenti	Adam	Illescas	Michael
Bergman	Camren	Jane	Rebecca
Bjarke	Nels	Jarvis	Nathaniel
Black	Jared	Jimenez	Richard
Brandenburg	Marshall	Keller	Michael
Brandt	Teo	Konetzni	Forrest
Brown	Michael	Livermore	Cameron
Bruce	Alden	Locklin	Matthew
Carbajal	Fabian	Lujan	Stephen
Castellanos_Rosales	Edith	Morgan	Jonathan
Chaves	Frances	Patterson	Andrew
Cheshire	Jayd	Ray	Brandon
Coleman	Nathan	Richardson	Maxwell
Decker	Jarrett	Sanchez	Cassandra
Demsey	Robert	Sandoval	Gerald
Difino	Justin	Stevens	Taylor
Donnafield	Urbin	Thomas	Nicole
Douglas	Daniel	Thompson	Lindsay
Duran	Omar	VanDenAvyle	Meghan
Duran-Lippman	Mark	Villa	Jose
Erickson	Mathew	Villagomez	Eduardo
Ficklin	Robert	Wagner	Nicholas
Geusz	Eric	Walker	James
Gordon	Ashley	Yoo	Jae Hwun
Gray	Kasey	Zhou	Cailin

Multiplication of Vectors

- OK, adding and subtracting vectors seemed fairly straightforward, but how would one multiply vectors?
- There are two ways to multiply vectors and they give different answers...
 - Dot (or Scalar) Product
 - Cross (or Vector) Product
- You use the two ways for different purposes which will become clearer as you use them.

- The dot product of two vectors is written as: $\vec{A} \cdot \vec{B}$.
- The result of a dot product is a scalar (no direction).
- There are two ways to find the dot product:

$$-\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta_{AB} \equiv AB \cos \theta$$

$$- \text{ or,}$$

$$-\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$$

 But what IS the dot product – I mean what does it MEAN???

- The dot product of two vectors $\vec{A} \cdot \vec{B}$ gives the length of \vec{A} in the direction of \vec{B} (projection of \vec{A} onto \vec{B}) times the length of \vec{B} .
- Example:

$$\vec{A} \cdot \hat{i} = |\vec{A}| |\hat{i}| \cos \theta_{A\hat{i}} \equiv A \times 1 \cos \theta = A \cos \theta$$

$$\vec{A} \cdot \hat{j} = |\vec{A}| |\hat{j}| \cos \theta_{A\hat{j}} \equiv A \times 1 \cos (90 - \theta) = A \sin \theta$$

$$\vec{A} = A_x \hat{i} + A_y \hat{j}$$

$$\vec{A} = |\vec{A}| \cos \theta$$

$$\vec{A} = |\vec{A}| \cos \theta$$

$$\vec{A} = |\vec{A}| \cos \theta$$

$$\vec{A} = |\vec{A}| \sin \theta$$

- The dot product of two vectors $\vec{A} \cdot \vec{B}$ gives the length of \vec{A} in the direction of \vec{B} times the length of \vec{B} .
- Using the other method:

$$\vec{A} \cdot \hat{i} = A_x \cdot 1 + A_y \cdot 0 + A_z \cdot 0 = A_x$$

$$\vec{A} \cdot \hat{j} = A_x \cdot 0 + A_y \cdot 1 + A_z \cdot 0 = A_y$$

$$\vec{A} \cdot \hat{k} = A_x \cdot 0 + A_y \cdot 0 + A_z \cdot 1 = A_z$$

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

- The dot product of two vectors $\vec{A} \cdot \vec{B}$ gives the length of \vec{A} in the direction of \vec{B} times the length of \vec{B} .
- Another Example:

$$\vec{A} \cdot \vec{B} = \left| \vec{A} \right| \left| \vec{B} \right| \cos \theta_{AB} \equiv \left(A \cos \theta \right) B = A_B B \Rightarrow$$

$$\vec{A} \cdot \vec{B} = \left| \vec{A} \right| \left| \vec{B} \right| ; \quad B_A = \frac{\vec{A} \cdot \vec{B}}{\left| \vec{A} \right|}$$

- Physics Example:
- Work force acting over a distance.

$$W = \vec{F} \cdot \vec{D}$$

CPS Question 3-1

• Which of the dot products $\vec{A} \cdot \vec{B}$ has the greatest *absolute* magnitude?

 Commutative and Distributive Laws are obeyed by the dot product:

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

This explains the second method then:

$$\vec{A} \cdot \vec{B} = \left(A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \right) \cdot \left(B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \right)$$

$$= A_x \hat{i} \cdot B_x \hat{i} + A_x \hat{i} \cdot B_y \hat{j} + A_x \hat{i} \cdot B_z \hat{k}$$

$$+ A_y \hat{j} \cdot B_x \hat{i} + A_y \hat{j} \cdot B_y \hat{j} + A_y \hat{j} \cdot B_z \hat{k}$$

$$+ A_z \hat{k} \cdot B_x \hat{i} + A_z \hat{k} \cdot B_y \hat{j} + A_z \hat{k} \cdot B_z \hat{k}$$

$$= A_x B_x + A_y B_y + A_z B_z$$

Usefulness of combining the two methods:

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z = |\vec{A}| |\vec{B}| \cos \theta_{AB} \implies$$

$$\cos \theta_{AB} = \frac{A_x B_x + A_y B_y + A_z B_z}{|\vec{A}| |\vec{B}|}$$

- The cross product of two vectors is written as: $\vec{A} \times \vec{B}$.
- The result of a vector product is a vector (has direction).
- To find the magnitude of a cross product:

$$- |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta_{AB} \equiv AB \sin \theta$$

— Its direction is perpendicular to both \vec{A} and \vec{B} , and given by the Right-Hand-Rule:

- Another way of finding $\vec{A} \times \vec{B}$:
 - $\vec{A} \times \vec{B} = (A_y B_z A_z B_y)\hat{i} + (A_z B_x A_x B_z)\hat{j} + (A_x B_y A_y B_x)\hat{k}$
 - Good way to remember using determinant:

Commutative law is NOT obeyed by the cross product:

$$- \vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$$

Distributive law is obeyed:

$$- \vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$$

Let's use this to get the second method:

$$- \vec{A} \times \vec{B} = \left(A_x \hat{i} + A_y \hat{j} + A_z \hat{k} \right) \times \left(B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \right)$$

$$= A_x \hat{i} \times B_x \hat{i} + A_x \hat{i} \times B_y \hat{j} + A_x \hat{i} \times B_z \hat{k}$$

$$+ A_y \hat{j} \times B_x \hat{i} + A_y \hat{j} \times B_y \hat{j} + A_y \hat{j} \times B_z \hat{k}$$

$$+ A_z \hat{k} \times B_x \hat{i} + A_z \hat{k} \times B_y \hat{j} + A_z \hat{k} \times B_z \hat{k}$$

- with
$$\hat{i} \times \hat{j} = \hat{k}$$
; $\hat{j} \times \hat{k} = \hat{i}$; $\hat{k} \times \hat{i} = \hat{j}$

- then

$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y)\hat{i} + (A_z B_x - A_x B_z)\hat{j} + (A_x B_y - A_y B_x)\hat{k}$$

- But what IS the vector product I mean what does it MEAN???
- It gives a sense of the perpendicularity and length of two vectors.

- Physics Example:
- Torque what does it take to turn a sticky bolt?

$$\vec{\tau} = \vec{r} \times \vec{F}$$

CPS Question 4-1

• $\vec{A} \times \vec{B} = ?$, \vec{A} , \vec{B} in the x-y plane

- A. 0
- $\mathsf{B.} \ |\vec{A}| |\vec{B}| \sin 45^\circ$
- C. $|\vec{A}||\vec{B}|$ in the positive z-direction
- D. $|\vec{A}||\vec{B}|$ in the negative z-direction
- E. $|\vec{A}| |\vec{B}| \sin 45^{\circ}$ in the negative z-direction

CPS Question 4-2

• What is $\vec{A} \cdot (\vec{A} \times \vec{B}) = ?$, \vec{A} , \vec{B} in the x-y plane

- A. 0
- $\mathsf{B.} \left| \vec{A} \right|^2 \left| \vec{B} \right| \sin 45^\circ$
- $C. |\vec{A}|^2 |\vec{B}|$ in the positive z-direction
- $D. |\vec{A}|^2 |\vec{B}|$ in the negative z-direction
- E. not enough information