Estructuras de datos

- 1. Tipos abstractos de datos y algoritmia
- 2. Listas, pilas, colas y conjuntos
- 3. Árboles

4. Grafos

www.urjc.es

Grado en Ingeniería de Computadores

Curso 2020/2021

Prof. Dr. Carlos Grima Izquierdo

www.carlosgrima.com

Árboles y sus definiciones I

- Un árbol es (definición informal):
 - Una colección de elementos
 - Cada elemento se guarda en un nodo (como en las listas no contiguas)
 - Uno de los nodos es especial y se llama "raíz"
 - Los nodos están organizados entre ellos mediante una relación "de paternidad" que impone una estructura jerárquica entre ellos
 - Ej: un árbol genealógico

Árboles y sus definiciones II

Árboles y sus definiciones III

- Definición recursiva (formal) de árbol:
 - Ningún nodo es un árbol. Se llama árbol nulo (primer caso trivial)
 - Un solo nodo es un árbol. Ese nodo es la raíz del árbol (segundo caso trivial)
 - Si n es un nodo y A₁, A₂, ..., A_k son árboles con raíces n₁, n₂, ..., n_k respectivamente, se puede construir un nuevo árbol haciendo que n sea padre de n₁, n₂, ..., n_k
 - n es la raíz de ese nuevo árbol, y A₁, A₂, ..., A_k son subárboles de la raíz n, y n₁, n₂, ..., n_k son hijos directos de n

Árboles y sus definiciones IV

- Ejemplos: árboles genealógicos, directorios, expresiones matemáticas, árboles sintácticos, capítulos y secciones de un libro
- Si n₁, n₂,..., n_k es una sucesión de nodos de un árbol tal que n_i es el padre de n_{i+1} para 1 ≤ i < k, entonces la secuencia se denomina camino del nodo n₁ al nodo n_k. La longitud de un camino es el número de nodos en el camino menos 1. Hay un camino de longitud 0 de cada nodo a si mismo.
- Si existe un camino de a a b, entonces a es antecesor de b, y b es un descendiente de a. Un antecesor (o descendiente) de un nodo que no sea el mismo se denomina antecesor propio (o descendiente propio).

Árboles y sus definiciones V

- Una hoja es un nodo sin descendientes propios. Un subárbol de un árbol es un nodo junto con todos sus descendientes.
- La altura de un nodo en un árbol es la longitud del camino más largo de ese nodo a una hoja. La altura del árbol es la altura de la raíz. La profundidad de un nodo es la longitud del camino único desde la raíz a ese nodo.
- A menudo se ordenan los hijos de izquierda a derecha. Si éste orden no importa hablaremos de un árbol no ordenado.
- Si α y b son hermanos y α está a la izquierda de b, diremos que todos los descendientes de α están a la izquierda de todos los descendientes de b. Dados dos nodos de un árbol, o uno es antecedente del otro, o uno está a la izquierda del otro.

Implementación de árboles I

- Existen dos implementaciones eficientes:
 - De hijo a padre
 - Cada nodo sabe únicamente quién es su padre
 - Por ejemplo, que cada nodo tenga un puntero a su nodo padre
 - Recordemos que, en un árbol, cada nodo sólo tiene un padre (excepto la raíz, que no tiene ninguno y por lo tanto apuntaría a NULL)
 - De padre a hijos
 - Cada nodo sabe quiénes son todos sus hijos
 - También podemos tener una implementación mezcla de las dos:
 - Cada nodo conoce tanto a su padre como a sus hijos
 - Desperdiciamos algo más de memoria
 - Estamos guardando información redundante, pero a cambio aumentamos la eficiencia de algunos algoritmos de manipulación del árbol

Implementación de árboles II

- De hijo a padre, con un vector que empiece en la posición 1:
 - Cada nodo tiene a lo sumo un padre, por lo tanto podemos asociar a cada nodo esa información
 - Si numeramos los nodos desde 1 hasta MAX, podríamos utilizar un vector

Nodo	Padre
1	0
2	1
3	1
4	2
5	2
6	5
7	5
8	5
9	3
10	3

Implementación de árboles III

- Análisis temporal de la implementación de hijo a padre con un vector:
 - Obtener el padre de un nodo se puede realizar en O(1)
 - Sin embargo, averiguar todos los hijos de un nodo requiere recorrer todo el vector, por lo tanto es O(n), siendo n el número de nodos del árbol

Implementación de árboles IV

- Implementación de padre a hijos:
 - Por cada nodo tendremos una lista con punteros a todos sus hijos
 - O bien, por cada nodo, tendremos un puntero a su primer hijo y a su hermano derecho

Implementación de árboles V

 Ejemplo: cada nodo tiene una lista enlazada con todos sus hijos. Es decir, cada elemento de la lista enlazada apunta a un nodo hijo

Implementación de árboles VI

 Ejemplo: cada nodo apunta a su primer hijo (si tiene) y a su hermano derecho (si tiene)

	Hijolzq	HermanoDer
1	2	0
2	4	3
3	9	0
4	0	5
5	6	0
6	0	7
7	0	8
8	0	0
9	0	10
10	0	0
	- '	

Implementación de árboles VII

- Análisis de la implementación de padre a hijos:
 - Averiguar/recorrer los hijos es eficiente:
 O(hijos)
 - Pero ahora es difícil encontrar el padre
 - Lo solucionamos añadiendo también, en cada nodo, un puntero al padre
 - Para no desperdiciar memoria, podríamos aprovechar el puntero al hermano derecho de los nodos que no tienen hermano derecho para apuntar a su padre

Implementación de árboles VIII

Ejemplo de árbol en el cual el último hijo de un nodo apunta al padre:

 Practica ahora programando un árbol genealógico (<u>EjercicioGenealogico</u>).

Recorridos de árboles I

- Recorrer un árbol es transformarlo en una lista de nodos
 - Es decir, poner los nodos uno detrás de otro en un determinado orden
- Tipos de recorrido más habituales:
 - Preorden
 - Inorden
 - Postorden
 - En anchura

Recorridos de árboles II

- Definición recursiva de los recorridos:
 - Para el árbol nulo, la lista vacía es el listado de los nodos para los 3 recorridos
 - Para el árbol con un solo nodo, la lista con ese nodo es el listado para los 3 recorridos
 - En otro caso, tenemos un árbol con raíz n y subárboles A₁, A₂, ..., A_k
 - Preorden: ponemos n, ponemos A₁ en preorden, A₂ en preorden... y así sucesivamente hasta Ak en preorden
 - Este algoritmo también se llama "recorrido en profundidad". Consiste en ir profundizando por cada rama hasta que ya no podamos más, y a continuación elegir otra rama
 - Postorden: ponemos A₁ en postorden, A₂ en postorden... y así sucesivamente hasta A₂ en postorden. Finalmente ponemos n.
 - Inorden: ponemos A₁ en inorden, n, A₂ en inorden... y así sucesivamente hasta A₂ en inorden

Recorridos de árboles III

- Recorrido en anchura
 - Se trata de recorrer el árbol por niveles (y de izquierda a derecha cada nivel)
 - Ej: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
 - No es naturalmente recursivo.
 Se implementaría con una cola
 - Cuando se saca un elemento de la cola para ponerlo en la salida, se meten en la cola todos sus hijos directos
 - Iniciamos el algoritmo procesando la raíz del árbol y metiendo en la cola a todos sus hijos directos
 - El algoritmo acaba cuando la cola queda vacía

Definición de árbol binario

- Un árbol binario es:
 - Un árbol vacío
 - Un nodo (raíz) del que cuelgan dos subárboles binarios llamados subárbol izquierdo y subárbol derecho
- Dicho "informalmente": un árbol binario es un árbol en el cual cada nodo tiene 0, 1 ó 2 hijos

Tipos de árboles binarios I

- Árbol binario estricto: árbol binario en el que:
 - Los dos subárboles que cuelgan de la raíz son vacíos, o
 - Los dos subárboles que cuelgan de la raíz son binarios estrictos no vacíos
- Dicho de otra forma:
 - Un árbol binario estricto es un árbol binario no vacío en el cual cada nodo tiene 0 ó 2 hijos (pero no 1)

Tipos de árboles binarios II

- Árbol binario perfectamente equilibrado: árbol binario en el cual:
 - Los subárboles izquierdo y derecho tienen la misma altura, y
 - Los dos son vacíos o los dos son perfectamente equilibrados
- Dicho informalmente de otra manera: un árbol binario perfectamente equilibrado es un árbol binario estricto y "perfecto", con toda su estructura perfectamente simétrica

Tipos de árboles binarios III

- Un árbol binario perfectamente equilibrado tiene log₂(n+1) "pisos" o "niveles", siendo n el número de nodos
 - Los nodos del último nivel son los nodos del resto de niveles más 1
 - Ej: árbol binario perfectamente equilibrado de 5 niveles (altura 4) tiene 16 nodos en su nivel más bajo y 15 nodos en el conjunto del resto de niveles
- La altura de un árbol binario perfectamente equilibrado es pisos-1 = lg(n+1)-1
- Cuando n es muy grande, lg(n+1)-1 ∈ O(lgn) porque las constantes "+1" y "-1" se desprecian

N = 31 nodos

$$Pisos = Ig(n+1) = Ig32 = 5$$

Altura = pisos
$$-1 = \lg(n+1) - 1 = \lg 32 - 1 = 4$$

Tipos de árboles binarios IV

- Árbol binario completo: un árbol binario de profundidad d en el cual:
 - Las hojas sólo están en el nivel d y en el nivel d-1 (es decir, en los dos niveles más inferiores), y
 - Para todo nodo n con un descendiente "derecho" en el nivel d,
 - Todos los descendientes "izquierdos" de n que sean hojas también estarán en el nivel d
 - Todos los descendientes "izquierdos" de n que no sean hojas tendrán dos hijos

Árboles binarios completos I

- Dicho de otra manera: un árbol binario completo es uno binario en el que vamos añadiendo nodos por niveles, de izquierda a derecha
- Ejemplo:

Árboles binarios completos II

- Un árbol binario completo es "casi" un árbol binario perfectamente equilibrado
 - De hecho, lo será cada vez que completemos un nivel más y aún no hayamos puesto la siguiente hoja del siguiente nivel
- Numeración típica de los nodos en un árbol binario completo:
 - Raíz es 1
 - Hijo izquierdo: doble del padre
 - Hijo derecho: doble del padre más 1
 - Esta numeración por niveles se corresponde con lo que se llama un "recorrido en anchura" de un árbol (puede aplicarse a cualquier tipo de árbol, no sólo a binarios)

Árboles binarios completos III

- Implementación típica:
 - Con una lista contigua de nodos (vector)
 - Cada nodo está colocado en el lugar exacto del vector, según su numeración
 - Tener en cuenta que en C/C++ los vectores empiezan en 0, no en 1, por lo que habrá que restar uno a la posición en donde se guarda cada nodo
 - Añadir un nodo al final del árbol binario completo es simplemente insertarlo al final del vector (complejidad O(1))

Montículos I

- Montículo ("heap", en inglés): árbol binario completo en el cual la clave de cada nodo es menor que la de todos sus descendientes
- Definición recursiva: árbol binario completo en el cual se cumple lo siguiente:
 - El árbol vacío o de un solo nodo es un montículo
 - La raíz es menor que la de todos sus hijos directos
 - Cada subárbol que cuelga de la raíz es un montículo
- Tener cuidado con:
 - No confundir la clave de cada nodo con su numeración por niveles en el árbol binario completo
 - Si admitimos duplicados, sustituir "menor" por "menor o igual" en la definición
 - Se podría definir también sustituyendo "menor" por "mayor" o por "mayor o igual" (dependerá de aplicaciones)

Montículos II

- Aplicaciones de los montículos:
 - Como cola de prioridad
 - Al hacer pop() de un montículo, sacamos siempre su raíz, que es el nodo con menor clave (con mayor prioridad)
 - Para implementar un nuevo algoritmo de ordenación muy eficiente llamado "HeapSort" (ordenación por montículo)
 - O(nlgn) en el peor caso, como QuickSort
 - Aunque QuickSort sigue siendo más rápido en el caso promedio

Montículos III

- Insertar en un montículo:
 - Se coloca el nuevo elemento en el último lugar y, mientras tenga padre y la clave del padre sea mayor que la de él, se intercambian ambos
 - Obviamente, si el montículo estuviera dispuesto de mayor a menor (en vez de menor a mayor), la condición del intercambio sería la opuesta
 - Al acabar el algoritmo de insertar, el árbol final que quede tiene que seguir siendo un móntículo
 - Esto es lo que se llama una "postcondición" de un método (algo que exigimos que se cumpla al acabar el método)

Montículos IV

- Ejemplo de insertar:
 - Quiero insertar el 2
 en el siguiente
 montículo de
 ejemplo, en el cual
 cada nodo tiene una
 clave estrictamente
 menor que sus
 descendientes:

Montículos V

Ejemplo de insertar (cont.):

Montículos VI

- Análisis temporal de insertar:
 - El peor caso es cuando la hoja insertada tiene que ascender hasta la raíz
 - ¿Cuántos intercambios o ascensos se hacen? Tantos como altura tenga el árbol
 - Un árbol binario perfectamente equilibrado vimos que tiene una altura O(lgn)
 - Un árbol binario completo es "casi" un árbol binario perfectamente equilibrado, excepto en unas pocas hojas que le faltan para completar el nivel
 - Esas pocas hojas se desprecian en el infinito (no lo demostramos)
 - En cualquier caso, la hoja que insertamos siempre está en el nivel más inferior
 - Por lo tanto, la hoja insertada también asciende del orden de log₂n niveles en el peor caso
 - Por lo tanto, insertar es O(lgn)
- Practica ahora programando el método de insertar en un montículo (<u>EjercicioMonticulo1</u>)

Montículos VII

Eliminar

- Eliminamos siempre la raíz
- Ponemos el último nodo en el lugar de la raíz que teníamos antes
- Ahora todo el árbol es un montículo, con la posible excepción de la raíz
- Por lo tanto hay que "reestructurar" el montículo: ir bajando la raíz hasta que quede en el lugar correcto y el árbol entero vuelva a ser un montículo
 - Cada vez que la raíz no está en su sitio, la intercambiamos con su hijo de menor clave
 - Si el montículo estuviera definido al revés (cada nodo es mayor que sus descendientes), entonces el intercambio sería con su hijo de mayor clave
- Ej: vamos a eliminar la raíz (el 2) del siguiente montículo

Montículos VIII

Ejemplo de eliminar:

Montículos IX

- Análisis temporal de eliminar
 - Sacar la raíz y poner en su lugar el último elemento es O(1), porque estamos trabajando sobre una lista contigua
 - Reestructurar es bajar la raíz un cierto número de niveles
 - En el peor caso tendrá que bajar hasta el nivel más inferior, por lo tanto será O(Ign)
 - Por lo tanto eliminar es O(Ign)

HeapSort I

- El algoritmo "HeapSort" permite ordenar un vector, viéndolo como un montículo
- Conseguiremos una complejidad temporal de O(nlgn)
- La versión sencilla del algoritmo gasta memoria extra mientras dura el algoritmo

HeapSort II

- Pasos del algoritmo que gasta memoria extra:
 - Partimos de un vector desordenado, y lo queremos ordenar de menor a mayor
 - Creamos un montículo temporal vacío, en el cual cada elemento sea menor que todos sus descendientes
 - Tomamos cada elemento del vector y lo vamos insertando en el montículo
 - Una vez que el montículo tenga todos los elementos, vamos obteniendo elemento a elemento del montículo, y lo vamos poniendo en sucesivas posiciones del vector de origen, de la primera posición a la última
 - Nos queda el vector de origen, ordenado de menor a mayor.
 Podemos ahora destruir el montículo temporal.
 - Como vemos, necesitamos un montículo temporal de n elementos durante la ejecución del algoritmo (esa es la memoria extra de la que hablábamos)

HeapSort III

- Aproximación sencilla al análisis temporal de HeapSort en el peor caso:
 - La fase de construcción del Montículo (mediante inserciones sucesivas) es O(nlgn), porque insertamos n veces y cada inserción es O(lgn)
 - El proceso de extraer repetidamente los elementos es también O(nlgn), ya que obtenemos n elementos, y cada obtención es O(lgn)
 - Por lo tanto el algoritmo es O(nlgn) en el peor caso
 - En promedio, se comporta peor que el QuickSort
- Practica ahora programando un montículo completo, con todos sus métodos, y usándolo para ordenar un vector (<u>EjercicioMonticulo2</u>)

Definición de ABB I

- Recordemos que la operación más importante de una lista (o base de datos) es la búsqueda
 - Por lo tanto es muy importante optimizar todo lo que podamos el tiempo de las búsquedas
- Hasta ahora, las mejores búsquedas son:
 - Si tenemos una tabla hash: O(1)
 - Problema: a costa de desperdiciar mucha memoria para que la tabla esté poco cargada
 - Problema: como la tabla hash se implementa con una lista contigua, necesitamos encontrar un enorme bloque de memoria contigua
 - Si tenemos una lista contigua, O(Ign) con la búsqueda binaria
 - Problema: la lista tiene que estar ordenada
 - Problema: las listas contiguas requieren grandes bloques de memoria contigua
 - Problema: las eliminaciones/inserciones son costosas, sobre todo al principio de la lista
 - Si tenemos una lista enlazada, O(n) con la búsqueda secuencial

Definición de ABB II

- ¿Podríamos conseguir búsquedas más eficientes en las listas enlazadas?
 - Si al menos pudiéramos conseguir búsquedas en un tiempo O(lgn), igualaríamos el rendimiento de las listas contiguas, pero sin tener los problemas de memoria de una lista contigua
- Los árboles binarios de búsqueda (ABB, para abreviar) son estructuras de datos parecidas a las listas enlazadas, y en las cuales podemos buscar en O(lgn)
 - Además las inserciones/eliminaciones se harán en O(lgn) también

Definición de ABB III

- Un árbol binario de búsqueda es:
 - Un árbol vacío, o...
 - ... un árbol binario en el cual se cumple todo lo siguiente:
 - Cada elemento del subárbol izquierdo es menor que la raíz
 - Cada elemento del subárbol derecho es mayor que la raíz
 - Los subárboles izquierdo y derecho son también árboles binarios de búsqueda
- Si queremos admitir duplicados, modificar:
 - Menor por menor o igual, o
 - Mayor por mayor o igual
- El recorrido en inorden procesa los elementos en orden

Definición de ABB IV

 Ejemplos con ABB cuyos elementos son simplemente números enteros:

Implementación ABB

- Cada nodo apunta a sus dos hijos directos
 - También podemos añadir un puntero al padre para facilitar los algoritmos
- Es el mismo concepto que una lista enlazada, pero bidimensional en vez de unidimensional

Buscar en ABB I

- Algoritmo de búsqueda:
 - Se compara el elemento buscado con la raíz. Si es igual hemos encontrado el elemento y por lo tanto hemos terminado.
 - Si el elemento buscado es menor que la raíz, se busca (llamada recursiva) en el subárbol izquierdo.
 - Si el elemento buscado es mayor que la raíz, se busca (llamada recursiva) en el subárbol derecho

Buscar en ABB II

- Análisis temporal de buscar:
 - El peor caso es cuando tenemos que buscar en todos los niveles hasta encontrar el elemento buscado
 - En dicho peor caso, tardaremos más o menos según la topología del árbol binario de búsqueda:
 - Mejor caso en cuanto a topología: si el árbol binario de búsqueda es perfectamente equilibrado (primer ejemplo), el número de niveles es Ign, por lo tanto tardamos O(Ign)
 - Peor caso en cuanto a topología: si el árbol es totalmente lineal (segundo ejemplo), el número de niveles es n, por lo tanto tardamos O(n).
 - El árbol es como una lista enlazada
 - Caso medio en cuanto a topología: tardamos también O(lgn) (no lo demostramos), pero con constantes ocultas mayores que en el caso mejor en cuanto a la topología

Insertar en ABB I

- Se busca la posición donde debe de estar el elemento y ahí se inserta
- Observamos que siempre se insertan hojas
- Ej: queremos insertar el 2,5.
 - La búsqueda nos dice que tenemos que ponerlo como hijo izquierdo de 3
- Ej: queremos insertar el 5,5
 - La búsqueda nos dice que tenemos que ponerlo como hijo derecho de 5

Insertar en ABB II

- Análisis temporal en el peor caso, con la mejor o peor topología:
 - Primero hay que buscar el lugar en donde insertaremos
 - Mismo análisis y resultados que en buscar
 - O(lgn) con la mejor topología
 - O(n) con la peor topología
 - Una vez encontrado, insertar ahí una hoja es O(1)
 - Por lo tanto, mismas complejidades que en buscar
 - O(lgn) con la mejor topología
 - O(n) con la peor topología

Insertar en ABB III

- ¿Cuál es el análisis temporal de insertar en el peor caso, pero con una topología media?
 - Habría que calcular la profundidad media de un árbol binario de búsqueda
 - Para ello, primero habría que calcular el número medio de hijos de cada nodo (número entre 0 y 2)
 - Se demuestra que, en el caso medio en cuanto a topología, insertar tiene una complejidad temporal de O(lgn) también (como en la mejor topología)
 - Lógicamente, con constantes ocultas mucho más altas que si el árbol binario de búsqueda fuera perfectamente equilibrado
- Practica ahora programando un ABB que tenga las operaciones de insertar y buscar (<u>EjercicioABB1</u>)

Borrar en ABB I

- Buscamos el nodo a borrar
- Si es una hoja, se elimina sin más
- Si es un nodo interno (no es hoja, tiene hijos):
 - Se copia en dicho nodo el mayor de los nodos del subárbol izquierdo (si hay subárbol izquierdo), o...
 - ...o el menor de los nodos del subárbol derecho (si hay subárbol derecho)
 - Para buscar el máximo/mínimo de un ABB, se va avanzando por sus ramas derechas/izquierdas sucesivamente hasta no poder más
 - A continuación borramos el nodo desde donde hemos copiado (llamada recursiva)

Borrar en ABB II

Ejemplo: eliminar una hoja

Borrar en ABB III

Ejemplo: eliminar el nodo interno "1":

Borrar en ABB IV

 Ejemplo: eliminar el nodo interno "5", escogiendo el máximo de su subárbol izquierdo:

Borrar en ABB V

Ejemplo: eliminar el nodo interno "5", escogiendo el mínimo de su subárbol derecho:

Borrar en ABB VI

- Cómo borrar deteriorando lo mínimo posible la topología del ABB:
 - Si un nodo sólo tiene un subárbol hijo (izquierdo o derecho), no nos queda más remedio que tomar ese subárbol
 - En caso de que el nodo tenga los dos subárboles hijos, es conveniente ir alternando: unas veces la sustitución la hacemos del subárbol derecho y otras veces del izquierdo
 - De este modo minimizamos la probabilidad de que el árbol se vaya convirtiendo poco a poco en lineal (el peor caso para las búsquedas)
 - Lo ideal sería sustituir en el subárbol que tuviera más altura, pero para eso tendríamos que analizar cada subárbol y eso nos costaría tiempo

Borrar en ABB VII

- Análisis temporal de eliminar (peor caso) cuando el ABB es perfectamente equilibrado (la mejor topología):
 - Si el ABB es perfectamente equilibrado, la primera vez que busquemos el máximo/mínimo lo encontraremos en una hoja
 - Encontrar dicha hoja es O(Ign) porque está en el último nivel
 - Eliminar una hoja es O(1), y no es necesario volver a hacer una llamada recursiva
 - Por lo tanto, tendremos O(lgn)

Borrar en ABB VIII

- Análisis temporal de eliminar (peor caso) cuando el ABB tiene topología lineal (la peor topología):
 - Si el árbol es lineal, cada vez que busquemos el máximo/mínimo en un subárbol izquierdo/derecho lo encontraremos en su raíz
 - Por lo tanto la búsqueda tardará O(1) en vez de O(n)
 - Es necesario volver a hacer otra llamada recursiva, que tardará T(n-1)
 - Tenemos por lo tanto T(n) = 1 + T(n-1), lo cual, eliminando la recursión de la ecuación, nos da O(n)

Borrar en ABB IX

- Análisis temporal de eliminar (peor caso) cuando el ABB tiene una topología media:
 - Al igual que con insertar, habría que calcular la profundidad media de un árbol binario de búsqueda
 - Para ello, al igual que con insertar, primero habría que calcular el número medio de hijos de cada nodo (número entre 0 y 2)
 - Se demuestra que, en el caso medio en cuanto a topología, tanto insertar como eliminar tienen una complejidad temporal de O(lgn) también (como en la mejor topología)
 - Lógicamente, con constantes ocultas mucho más altas que si el árbol binario de búsqueda fuera perfectamente equilibrado
- Practica ahora programando un árbol binario de búsqueda con todas las operaciones descritas, incluyendo la de borrar (<u>EjercicioABB2</u>)

AVL I

- Como hemos visto, la mejor topología es cuando el árbol binario de búsqueda es un árbol perfectamente equilibrado
 - O, al menos, un árbol binario completo (que es casi lo mismo)
- ¿Podríamos modificar el algoritmo de insertar y eliminar para que el árbol se mantuviese siempre con esta topología?
 - De este modo buscar siempre sería O(Ign)
 - Además, nos gustaría que insertar y eliminar siguieran siendo O(Ign)

AVL II

- Ejemplo de lo que tendría que pasar al insertar un "1", para mantener el árbol con una buena topología:
 - ¡La organización del árbol ha cambiado completamente!

AVL III

- Los árboles AVL resuelven este problema
 - Sus siglas son las primeras letras de sus creadores (1962): Adelson-Velskii y Lands
- Definición: un árbol AVL es un árbol binario de búsqueda en el que para cada uno de sus nodos, las alturas de sus dos subárboles difieren como mucho en 1 en valor absoluto
 - Un AVL será "casi" un árbol binario perfectamente equilibrado
 - Ese "casi" es despreciable cuando el número de nodos es muy grande

AVL IV

- Asociaremos a cada nodo un factor de equilibrio F_E = H_D H_I, que será igual a la diferencia de las alturas del subárbol derecho (H_D) y del izquierdo (H_I)
- Por lo tanto, en un árbol AVL, cada nodo tendrá únicamente -1, 0 ó 1 como posibles valores para F_E
- Asumimos, para nuestros cálculos, que la altura del árbol vacío es -1
 - Recordemos además que la altura de un solo nodo es 0
- Ejercicio: ¿cuál es la altura y el factor de equilibrio de cada uno de los nodos del siguiente árbol?

AVL V

- Implementación de un AVL:
 - Ahora los nodos del AVL contendrán:
 - Contenido (como antes). Es el elemento.
 - Puntero al padre y a los dos hijos (como antes)
 - Altura actual del nodo
 - Factor de equilibrio del nodo

AVL VI

Inserción:

- Se inserta como en cualquier ABB. Recordemos que siempre se inserta una hoja en los ABB. Puede que el árbol deje de ser AVL en este momento.
- Ir ascendiendo por el árbol, desde la hoja insertada hasta la raíz
 - Por cada nodo por el que pasemos, primero actualizaremos su altura y su F_E
 - Ahora comprobaremos cuál es su F_E. Si es 2 ó -2, reequilibramos el subárbol que empieza en dicho nodo, realizando una "rotación". Habrá cuatro casos:
 - Rotación simple a la izquierda
 - Rotación simple a la derecha
 - Rotación compuesta derecha-izquierda
 - Rotación compuesta izquierda-derecha
 - Una vez reequilibrado, el F_E de ese nodo ha cambiado (se ha quedado en 0, 1 ó
 -1), y por lo tanto su altura puede que también
 - O Por lo tanto es posible que también cambie la altura y consecuentemente el F_E de sus ascendentes.
 - Por lo tanto tenemos que seguir ascendiendo hasta la raíz para ir actualizando la altura y el F_F de todos sus ascendentes
- Al insertar, se realizará una rotación como máximo (no lo demostramos)

AVL VII

Rotación simple a la izquierda

Cuando un nodo tiene factor de equilibrio de 2 y su hijo derecho 1

AVL VIII

Rotación simple a la derecha

Cuando un nodo tiene factor de equilibrio de -2 y su hijo izquierdo -1

AVL IX

Rotación compuesta derecha-izquierda

 Cuando el factor de equilibrio de un nodo es 2, y el de su hijo derecho -1

AVL X

Rotación compuesta izquierda-derecha

 Cuando el factor de equilibrio de un nodo es -2, y el de su hijo izquierdo 1

AVL XI

Análisis de insertar:

- Inicialmente insertamos como en cualquier ABB, por lo tanto este paso es O(lgn). Recordemos que siempre insertamos una hoja en un ABB.
- Ahora tenemos que ir ascendiendo hasta la raíz (O(Ign) niveles). Por cada nodo (cada nivel), hacemos una de las siguientes acciones:
 - Recalcular su altura (1 + el máximo de la altura de sus dos subárboles). Es O(1)
 - Recalcular su F_F (diferencia de las alturas de sus dos subárboles). Es O(1)
 - Reequilibrar si F_E es 2 ó -2. Para corregirlo, realizamos una de las rotaciones que hemos visto. Hacer una rotación es sólo cambiar un número limitado de punteros, por lo tanto es O(1)
- Por lo tanto, tenemos dos fases, y cada una es O(lgn). Por tanto, concluimos que el algoritmo entero es O(lgn)
 - Igual que en un árbol binario de búsqueda que sea perfectamente equilibrado
 - Pero obviamente con constantes ocultas más altas, pues tenemos que "bajar hasta abajo" (para insertar la hoja) y luego "subir hasta arriba" (para reequilibrar el árbol)

AVL XII

Eliminar:

- Se elimina como en cualquier árbol binario de búsqueda. Es posible que el árbol deje de ser AVL
- Al eliminar en un árbol binario de búsqueda, al final, después de todas las llamadas recursivas, recordemos que acabamos eliminando una hoja (caso trivial)
- Desde el padre de dicha hoja eliminada, vamos ascendiendo por el árbol y reequilibramos todos los nodos cuyo F_F = 2 ó -2
 - En insertar sólo hacíamos un reequilibrio como máximo, pero en eliminar podemos llegar a hacer varios (no lo demostramos)
- Ahora hay dos posibles casos más que en insertar. Los dos nuevos casos son:
 - Un nodo tiene $F_E = 2$ y su hijo derecho $F_E = 0$. Se arregla con una rotación simple a la izquierda
 - Un nodo tiene $F_E = -2$ y su hijo izquierdo $F_E = 0$. Se arregla con una rotación simple a la derecha

AVL XIII

- Análisis de eliminar:
 - Primero eliminamos el nodo como en cualquier ABB, por lo tanto O(lgn) en tiempo
 - El análisis del reequilibrado es parecido que en insertar: tenemos que ir ascendiendo hasta la raíz
 - Por lo tanto esta fase también será O(lgn)
 - Ahora podemos hacer varias rotaciones en vez de una, así pues las constantes ocultas aumentarán
 - Recordemos que cada rotación es O(1)
 - Por lo tanto, concluimos que el algoritmo "eliminar" entero es O(lgn)
- Practica ahora haciendo un AVL que permita insertar (<u>EjercicioAVL</u>). Recomendamos como ejercicio extra que también añadas la funcionalidad de eliminar.