Kurs Bio144: Datenanalyse in der Biologie

Stefanie Muff & Owen L. Petchey

Lecture 8: Interpretation, causality, cautionary notes 26./27. April 2018

Overview

- P-values: Interpretation and (mis-)use
- Statistical significance vs biological relevance
- Relative importance of regression terms
- Causality vs correlation
- Bradford-Hill criteria for causal inference
- Experimental vs observational studies

Course material covered today

The lecture material of today is based on the following literature:

• Literature and articles that you will have to read in the second self-study week (second week of May).

Recap of previous lecture

- Model selection is difficult.
- Information criteria: AIC, AIC, and BIC
 - ightarrow model fit vs model complexity
- Predictive vs explanatory models.
- Automatic model selection is inappropriate for explanatory models!
- Caveats of *p*-values: biological relevance vs statistical significance

P-values

Recap:

P-values are often used for *statistical testing*, e.g. by checking if p < 0.05.

Examples:

- T-test for a difference between two samples.
- χ^2 -test for independence of two discrete distributions.
- Test if a regression coefficient $\beta_x \neq 0$ in a regression model.

Such tests are useful whenever a **decision** needs to be made (e.g., in clinical trials, intervention actions in ecology etc.).

P-values in regression models

In regression modeling, the p-value is often used as an indicator of covariate importance. Remember the mercury example:

	Coefficent	95%-confidence interval	<i>p</i> -value
Intercept	-0.68	from -0.88 to -0.47	< 0.0001
log10(Hg_soil)	0.033	from -0.05 to 0.11	0.42
vegetables	0.07	from -0.03 to 0.17	0.18
migration	-0.036	from -0.19 to 0.12	0.65
smoking	0.27	from 0.06 to 0.48	0.012
sqrt(amalgam)	0.33	from 0.24 to 0.42	< 0.0001
age	-0.042	from -0.06 to -0.02	0.0004
mother	-1.03	from -1.70 to -0.35	0.003
sqrt(fish)	0.079	from 0.03 to 0.13	0.004
last_fish	0.30	from 0.15 to 0.45	< 0.0001
age:mother	0.055	from 0.03 to 0.08	0.0002

A common practice is to look only at the p-value and use p < 0.05 to decide whether a variable has an influence or not ("is significant or not").

P-values criticism

P-value **criticism** is as **old** as statistical significance testing (1920s!). Issues:

- The sharp line p < 0.05 is arbitrary and significance testing according to it may lead to *mindless statistics* (Gigerenzer, 2004).
- P-hacking / data dredging: Search until you find a result with p < 0.05.
- Publication bias: Studies with p < 0.05 are more likely to be published than "non-significant" results.
- Recent articles in Science, Nature or a statement by the American Statistical Associaton (ASA) in March 2016 show that the debate still continues (Goodman, 2016; Wasserstein and Lazar, 2016).
- Model selection using p-values may lead to a model selection bias (see last week).

P-values even made it into NZZ (April 2016)

Note: R.A. Fisher, the "inventor" of the p-value (1920s) didn't mean the p-value to be used in the way it is used today (which is: doing a single experiment and use p < 0.05 for a conclusion)!

From Goodman (2016):

Fisher used "significance" merely to indicate that an observation was worth following up, with refutation of the null hypothesis justified only if further experiments "rarely failed" to achieve significance. This is in stark contrast to the modern practice of making claims based on a single demonstration of statistical significance.

The misuse of p-values has led to a reproducibility crisis in science!

Why Most Published Research Findings Are False

John P. A. Joannidis

Summary

factors that influence this problem and

Modeling the Framework for False Positive Findings

Several methodologists have pointed out [9–11] that the high rate of nonreplication (lack of confirmation) of research discoveries is a consequence of the convenient, yet ill-founded strategy of claiming conclusive research findings solely on the basis of a single study assessed by formal statistical significance, typically for a p-value less than 0.05. Research is not most appropriately represented and summarized by p-values, but, unfortunately, there is a widespread notion that medical research articles.

It can be proven that most claimed research findings are false.

should be interpreted based only on pvalues. Research findings are defined here as any relationship reaching formal statistical significance, e.g., effective interventions, informative predictors, risk factors, or associations.

is characteristic of the field and can vary a lot depending on whether the field targets highly likely relationships or searches for only one or a few true relationships among thousands and millions of hypotheses that may be postulated. Let us also consider, for computational simplicity, circumscribed fields where either there is only one true relationship (among many that can be hypothesized) or the power is similar to find any of the several existing true relationships. The pre-study probability of a relationship being true is R/(R+1). The probability of a study finding a true relationship reflects the power 1 - B (one minus the Type II error rate). The probability of claiming a relationship when none truly exists reflects the Type I error rate, \alpha. Assuming that c relationships are being probed in the field, the expected values of the 2 × 2 table are given in Table 1. After a research finding has been claimed based on achieving formal statistical significance, the post-study probability that it is true is the positive predictive value, PPV. The PPV is also the complementary probability of what Wacholder et al. have called the false positive report probability [10]. According to the 9

(Ioannidis, 2005)

What is the problem with the *p*-value?

Many applied researchers do not really understand what the p-value actually is.

The **formal definition of** *p***-value** is the probability to observe a data summary (e.g., an average) that is at least as extreme as the one observed, given that the Null Hypothesis is correct.

Test yourself: Klicker-Exercise

▶ Klicker-Exercise

http://www.klicker.uzh.ch/bkx

+ Discussion of the results!

What is the problem with the *p*-value? II

- The *p*-value is often used to classify results into "significant" and "non-significant". Typically: p < 0.05 vs $p \ge 0.05$.
- However, this is often too crude!
- It is much better to have a more gradual interpretation of the *p*-value (see slide 18).

Probably the most important point to remember:

The p-value is **not** the probability that the Null Hypothesis is true!!!

Quote from ASA statement:

In February, 2014, George Cobb, Professor Emeritus of Mathematics and Statistics at Mount Holyoke College, posed these questions to an ASA discussion forum:

Q: Why do so many colleges and grad schools teach p = .05?

A: Because that's still what the scientific community and journal editors use.

Q: Why do so many people still use p = 0.05?

A: Because that's what they were taught in college or grad school.

Significance vs relevance

In regression models:

- A low p-value does not automatically imply that a variable is "important".
- "Is there an effect?" v.s. "How much of an effect is there?".

In addition:

A large p-value (e.g., p>0.05) does not automatically imply that a variable is "unimportant".

Absence of evidence is not evidence of absence (Altman and Bland, 1995).

In other words:

One cannot prove the Null Hypothesis!!

Several reasons may lead to large p-values:

- Low sample size (\rightarrow low power).
- The truth is not "far" from the null hypothesis.
 Example: Small effect sizes in regression models.
- Collinear covariates.

Shall we abolish *p***-values?**

No: *p*-values are not "good" or "bad". They contain important information, and they have **strengths** and **weaknesses**.

Suggestions:

- ① Use *p*-values, but don't over-interpret them, use them properly.
- 2 Look at effect sizes and confidence intervals.
- Sook at relative importances of covariates.
- On't use p-values for model selection.

Suggestion 1: Proper interpretation of *p***-values**

Rather than a black-and-white decision (p < 0.05), Martin Bland suggests to regard p-values as continuous measures for statistical evidence (Introduction to Medical Statistics, 4th edition, Oxford University Press):

p > 0.1	little or	no evidence	against	the null	hypothocic
$\rho > 0.1$	iittie Oi	no evidence	agamsı	the nun	пуротпезіз

$$0.1 > p > 0.05$$
 weak evidence

$$0.05 > p > 0.01$$
 moderate evidence

$$0.01 > p > 0.001$$
 strong evidence

$$p < 0.001$$
 very strong evidence

But: The level of significance must also depend on the context!

The most recent suggestion by 72 authors in the field:

Redefine statistical significance

We propose to change the default *P*-value threshold for statistical significance from 0.05 to 0.005 for claims of new discoveries.

(Benjamin et al., 2017, Nature Human Behaviour)

Their suggestion: replace p < 0.05 by p < 0.005. More precisely:

- Use p < 0.005 for statistical significance.
- Use 0.005 as suggestive evidence.

In the Hg example:

	Coefficent	95%-confidence interval	<i>p</i> -value
Intercept	-0.68	from -0.88 to -0.47	< 0.0001
log10(Hg_soil)	0.033	from -0.05 to 0.11	0.42
vegetables	0.07	from -0.03 to 0.17	0.18
migration	-0.036	from -0.19 to 0.12	0.65
smoking	0.27	from 0.06 to 0.48	0.012
sqrt(amalgam)	0.33	from 0.24 to 0.42	< 0.0001
age	-0.042	from -0.06 to -0.02	0.0004
mother	-1.03	from -1.70 to -0.35	0.003
sqrt(fish)	0.079	from 0.03 to 0.13	0.004
last_fish	0.30	from 0.15 to 0.45	< 0.0001
age:mother	0.055	from 0.03 to 0.08	0.0002

• Little or no evidence: Hg soil, vegetables from garden, migration background

• Moderate evidence: Smoking

• Strong evidence: Mother, monthly fish consumption

• Very strong evidence: Amalgam, age, last fish (> or < 3 days), interaction of age and mother

Suggestion 2: Report effect sizes....

Ask: Is the effect size relevant?

Example

WHO recommendation concerning smoking and the consumption of processed meat. Both, smoking and meat consumption, appear to be carcinogenic.

- 50g processed meat per day increases the risk for colon cancer by a factor of $1.18 \ (+18\%)$.
- Smoking increases the risk for cancer by a factor of 3.6 (+260%).

Thus: Although both, meat consumption and smoking, are carcinogenic ("significant"), their effect sizes are vastly different!

Paul D. Ellis writes in his book *The Essential Guide to Effect Sizes* (2010, chapter 2):

Indeed, statistical significance, which partly reflects sample size, may say nothing at all about the practical significance of a result. [....] To extract meaning from their results [...] scientists need to look beyond p values and effect sizes and make informed judgments about what they see.

...and 95% CIs

Ask: Which range of true effects is statistically consistent with the observed data?

Example

Body fat example, slide 39 of lecture 2.

The effect estimate for the effect of BMI on body fat is given as $\hat{\beta}_{BMI} = 1.82, 95\%$ CI from 1.61 to 2.03.

Interpretation: for an increase in the bmi by one index point, roughly 1.82% percentage points more bodyfat are expected, and all true values for β_{BMI} between 1.61 and 2.03 are **compatible with the observed data**.

However...

• The choice of the 95% is again somewhat arbitrary. We could also go for 90% or 99% or any other interval, but 95% has established as a commonly accepted range.

 The 95% CI should not be misused for simple hypothesis testing in the sense of

"Is 0 in the confidence interval or not?"

Because this boils down to checking whether p < 0.05 ...

Suggestion 3: Look at relative importances of covariates

- Ultimately, the popularity of p-values in regression models is based on the wish to judge which covariates are relevant in a model, particularly in observational studies
- The problem with this: Low *p*-values do not automatically imply high relevance (Cox, 1982).
- Alternative: relative importances of explanatory variables that measure the proportion (%) of the responses' variability explained by each variable.

Relative importance: Decomposing R^2

Remember: R^2 indicates the proportion of variance explained by **all** covariates in a model

$$y_i = \beta_0 + \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)} + \ldots + \beta_2 x_i^{(m)} + e_i$$
.

The aim of relative importance is to decompose R^2 such that

- each variable $x^{(j)}$ is attributed a fair share r_i .
- the sum of all importances sums up to R, that is, $\sum_{i=1}^{m} r_i = R^2$.

Further, it is required that

• all shares are ≥ 0 .

Question: How would you define/calculate relative importance?

• Idea 1: Fit simple models including only one covariate at the time, i.e.:

$$y_i = \beta_0 + \beta_j x_i^{(j)} + e_i$$

for each variable $x^{(j)}$ and use the respective R^2 as r_i .

• **Idea 2:** Fit the linear model twice, once with and once without the covariate of interest, and then take the increase of R^2 as r_i .

Problem: In practice, regressors $x^{(j)}$ are always correlated, thus both ideas lead to $\sum_i r_j \neq R^2$!

To understand the problem of ideas 1 and 2, let us fit three models for $log(\textit{Hg}_{urine})$ with

- $x^{(1)} = \sqrt{\text{Number of monthly fish meals}}$
- $x^{(2)} = \text{binary indicator if last fish meal was less than 3 days ago.}$

These two variables are correlated (people who consume a lot of fish are more likely to have it consumed within the last 3 days).

$$y_i = \beta_0 + \beta_1 x_i^{(1)} + +e_i \qquad R^2 = 0.12$$
 (1)

$$y_i = \beta_0 + \beta_2 x_i^{(2)} + +e_i$$
 $R^2 = 0.08$ (2)

$$y_i = \beta_0 + \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)} + e_i$$
 $R^2 = 0.14$ (3)

Note: The R^2 of model (3) with both covariates is much less than the sum of the R^2 from models (1) and (2)!

 \Rightarrow The increase of R^2 upon inclusion of a covariate depends on the covariates that are already in the model!

A better way to calculate relative importance?

Various proposals to calculate relative importance (R^2 decomposition) have been proposed. The (currently) most useful is given by the following idea, called **LMG** (Lindemann, Merenda and Gold 1980):

- Fit the model for all possible orderings of the covariates.
- Record the incrase in R^2 each time a variable is included.
- Average over all orderings of the covariates.

Luckily, the R-package relaimpo (Groemping 2006) contains the function calc.relimp() that does this for us!

Hg results

Which proportion (%) of variance in $log(Hg_{urine})$ is explained by each covariate? Interpret the table below:

- > library(relaimpo)
- > lmg.hg <- calc.relimp(r.lm.hg)\$lmg

Variable	Rel. imp. (%)	<i>p</i> -value
$log(Hg_{soil})$	0.10	0.42
Vegetable	0.46	0.18
Migration	0.43	0.65
Smoking	1.21	0.012
Amalgam	19.69	< 0.0001
Age	1.25	0.0004
Mother	1.08	0.0031
Fish	7.26	0.0042
Last fish	7.34	< 0.0001
Age:mother	6.56	0.0002

Several variables have very low *p*-values, but their relative importance differs clearly.

 \Rightarrow Relative importance gives intuitive complementary information to p-values, effect sizes and confidence intervals!

Does relative importance solve all the problems?

Unfortunately not...

Relative importance should be understood as a complement to standard statistical output.

There are several limitations to it:

- Rel.imp. of a variable may heavily depend on the other variables included in the model, especially when there are strongly correlated variables (see slide 33).
- Hard to generalize to other, non-linear regression models.

Example

Compare the estimated relative importance for the variable fish (monthly fish meals) for two cases:

Model 1

Original Hg model.

Model 2

Model without the indicator variable last_fish.

- Case 1: Relative importance of fish: 7.26% (see slide 30).
- Case 2: Relative importance of fish: 10.75%.

Interpretation: If one of two correlated variables is removed, the other absorbs some of the importance from it.

Causality vs correlation

In **explanatory models** the ultimate goal usually is to reveal causal relationships between the covariates and the response.

Examples:

- Does Hg in the soil influence Hg-levels in humans?
- Does inbreeding negatively affect population growth of Swiss Alpine ibex (Steinbock)?
- Does exposure to Asbest lead to illness or death?
- ...

However: Regression models actually only reveal associations, that is, correlations between **x** and **y**!

Example: Breakfast eating and teen obesity

Please read the following article and answer the questions below:

http://www.webmd.com/diet/news/20080303/eating-breakfast-may-beat-teen-obesity

Questions:

- Does the cited study show that teens that eat breakfast are generally less obese?
- Does this automatically imply that eating breakfast leads to less obesity among teens?

Look at a regression model including covariate x and response y. If the coefficient β_x is "significant", there are several possible reasons for this:

 $\textbf{0} \ \, \textbf{x} \ \, \text{is a } \textbf{cause} \ \, \text{for} \ \, \textbf{y}. \ \, \text{Write:} \ \, \textbf{x} \rightarrow \textbf{y}$

Example: \mathbf{x} is fish consumption and \mathbf{y} is mercury concentration in the urine.

This is the desired situation!

② y (partially) causes x, that is y \rightarrow x.

Example: \mathbf{x} is IQ and \mathbf{y} is school education.

In that case, the model is not correctly specified!

There is another covariate z that both influences x and y

$$\mathbf{z} \to \mathbf{x}$$
 and $\mathbf{z} \to \mathbf{y}$.

 \rightarrow x and y covary, but do not cause each other.

In the teen obesity example, all three reasons are possible – perhaps even at the same time!

Ideas:

- No breakfast $(x) \rightarrow Obesity (y)$
- Obesity $(y) \rightarrow No breakfast (x)$
- Large dinner $(z) \to \mathsf{Obesity}\ (y)$ and

Large dinner $(z) \rightarrow No$ breakfast (x)

Many other ideas are possible...

In fact, see a recent article in NZZ am Sonntag (temporarily available from OpenEdX):

Der Mythos vom Kaiser-Frühstück

Morgens frühstücken hilft nicht beim Abnehmen, könnte aber den Stoffwechsel günstig beeinflussen.

von Felicitas Witte / 16.3.2017

Ein gesundes Frühstück kann die Lust auf Snacks reduzieren. (Bild: Getty Images/Westend61)

On the following website you find many "spurious correlations", where the causality is very obviously missing:

http://www.tylervigen.com/spurious-correlations

(More about it in the BC material of this unit!)

Bradford-Hill-Criteria for causal inference I

In 1965 the Epidemiologist Bradford Hill presented a list of criteria to assess whether there is some causality or not. However, he wrote "None of my nine viewpoints can bring indisputable evidence for or against the cause-and-effect hypothesis and none can be required sina qua non."

Bradford-Hill Criteria:

- Strength: A causal relationship is likely when the observed association is strong.
- Consistency: A causal relationship is likely if mutiple independent studies show similar associations.
- Specificity: A causal relationship is likely when a covariate x is associated only with one potential outcome y and not with other outcomes.
- **Temporality:** The effect has to occur after the cause.

Bradford-Hill-Criteria for causal inference II

- Biological gradient: Greater exposure should generally lead to greater incidence of the effect.
- Opening is plausible of the plausible
- Coherence: Coherence between findings in the lab and in the field / population increases the likelihood of an effect.
- Malogy: Similar factors have a similar effect.
- Experiment: Evidence from an experiment is valuable.

Experimental vs observational studies

Experimental studies are relevant in biology and even more so in medicine, e.g., in the context of clinical trials where novel drugs are tested.

The teen obesity study was an observational study:

- All study participants only had to report their behaviour.
- None of them was assigned to a treatment group.
- There was no intervention.

An observed effect is more likely to be *causal* if participants were *randomly* assigned to a group, here: breakfast eating yes/no.

Observational study ("Erhebung"): Experimental study:

- Observation of subjects / objects in a real-world (existing) situation.
- Variables are usually correlated.
- Often more variables than can be included in the model.
- Examples: Influence of pollutans (mercury) on humans, studies of wild animal populations, epidemiological studies....

- Observation of subjects / objects in a constructed (experimental) situation.
- Variables are controlled and uncorrelated (given a good study design!).
- Usually all variables enter the model, no model selection.
- Examples: Field experiments; clinical studies; psychological or pedagogical experiments,...

	Observational study	Experiment
Situation	Existing, cannot be influenced	Artificial, designed
Analysis	Difficult (see model selection issues)	Simple no model selection
Interpretation	Difficult, especially w.r.t. causality	Clear, "proofs" causal relationship

Causality considerations for model selection

It is **widely unknown** that a model can be broken by the inclusion of a "wrong" covariate, which is causally associated in the wrong direction:

Remember: Avoid to include covariates in your model that are caused by the outcome!

Example: ...

Some further reading on a very recent case of a food researcher that conducted "questionable" science:

http://www.timyanderzee.com/the-wansink-dossier-an-overview/

From D. Randall & C. Welser (2018). "The irreproducibility crisis of modern science", NAS report

Summary

- Try to understand the definition and the meaning of *p*-values.
- Correct understanding, use and interpretation of p-values: Do not use the "mindless" p < 0.05 criterion!!
- Statistical significance vs biological relevance: Ask for the effect size
 and confidence interval, and reflect what it means, instead of only
 reporting p-values alone.
- The p-value is not "bad", it contains useful information, but it has to be used properly.
 - \rightarrow 3 suggestions or alternatives (gradual interpretation of *p*-values, effect sizes and Cls, relative importances).
- Correlation should not be mistaken for causality.
- Experimental studies are better suited to reveal causality than observational studies!

References:

- Altman, D. G. and J. M. Bland (1995). Absence of evidence is not evidence of absence. *British Medical Journal 311*, 485.
- Cox, D. R. (1982). Statistical significance tests. *British Journal of Clinical Pharmacology* 14, 325–331.
- Gigerenzer, G. (2004). Mindless statistics. The Journal of Socio-Economics 33, 587–606.
- Goodman, S. N. (2016). Aligning statistical and scientific reasoning. *Science* 352. 1180–1182.
- loannidis, J. P. A. (2005). Why most published research findings are false. *PLoS Medicine 2*, e124.
- Wasserstein, R. L. and N. A. Lazar (2016). The ASA's statement on p-values: context, process, and purpose. *The American Statistician*.