An Example Contribution for EuroCG 2020*

Antonio Example¹ and Sylvia Veryknown²

- 1 Important University aexample@cs.important.de
- 2 Department of Mathematics and Computer Science, University of Somewhere sveryknown@math.somewhere.nl

Abstract -

- 2 This example file was adapted from Wolfang Mulzer's example file for EuroCG 2018, which in
- 3 turn was adapted from Bettina Speckmann's example file for EuroCG 2005. The current style
- 4 uses two style-files, eurocg20.cls and eurocg20-submission.cls. The former was adapted
- 5 from the LIPIcs-style, with kind permission from Dagstuhl publishing. The latter file provides
- $_{6}$ proper line numbering and is adapted from the style file developed for SoCG 2019 by Michael
- Hoffmann. Thanks again to all of these people.
- 8 Here you should probably write a concise, informative, and exciting abstract for your paper.

Lines 0

Introduction

10	tabul	ar c c c						
11	1	happy	line					
12 13	$\overline{}$	happy	line					
		rry						

1.1 Problem Statement and Solution

6 1.1.1 Problem Setup

- We consider only the two-dimensional setting. We assume . . .
- Precise Problem Formulation. Describe your problem as clearly as possibly, instead of the usual ...
- **Conjecture 1.1.** Could it really be like this?
- **Description 1.2.** Probably not . . .

22 1.2 Basic Definitions

▶ **Definition 1.3.** Some things are just not definable . . .

1.3 Related Results from the Literature

- We improve upon the following well-known algorithm of Grace of Florence [?] in the following way: ...
 - * Supported by our friends.

36th European Workshop on Computational Geometry, Würzburg, Germany, March 16–18, 2020. This is an extended abstract of a presentation given at EuroCG'20. It has been made public for the benefit of the community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

2 The New Algorithm

3 Complexity Analysis

▶ **Theorem 3.1.** This is the most important theorem.

Proof. It even comes with a proof ...

We would like to remind you how cute the logo of the Canadian Conference on Computational Geometry 2003 was, see Figure 1.

Figure 1 This was the logo of CCCG 2003.

There should be some more text explaining research results in some additional sections, but since this is only an example file \dots

An enumeration:

37 **a**

36

45

46

_ 0

39 = 1

10 = b

▶ **Lemma 3.2.** The following formula holds for all integers n > 0:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{1}$$

Proof. (Not entirely convincing) Let $T(n) := \frac{n(n-1)}{2}$ denote the claimed formula.

$$T(n) - T(n-1) = \frac{n(n+1)}{2} - \frac{(n-1)n}{2}$$

$$= \frac{n(n+1) - (n-1)n}{2}$$

$$= \frac{n^2 + n - (n^2 + n)}{2} = \frac{2n}{2} = n$$
(2)

The induction basis $T(0) = \frac{0.1}{2} = 0$, together with (2), establishes (1).

▶ Lemma 3.3. And then we also found this lemma, which we state without proof. ◀

4 Conclusion

What we did is amazing and improves everything that was there before, in particular when compared to [?].

 $_{\rm 52}$ $\,$ Acknowledgments. We thank the organizers for the tasty cookies.