3. série

Měsíční kvantum informací

Lucie Lávodná

III.U1 Tenkrát v Irsku, 1843

Nalezněnte taková čísla (popř. jiné matematické objekty) a a b, pro která platí:

$$ab = -ba$$
 $a = i$
 $|a^2| = |b^2| = 1$

pouze jednu libovolnou dvojici.

 $ab = -ba$
 $a = i$
 $b = -ba$
 $a = i$
 $ab = -ba$
 $ab = -ba$

Ačkoliv jich existuje mnoho, stačí uvést pouze jednu libovolnou dvojici.

III.U2 Znásilněná matematika

ne ale faks 12 = (-1)2 to meco urcité Inamena

Jaký je součet všech přirozených čísel? Svou odpověď zdůvodněte.

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + \dots = S$$
a) ∞ To dava'
$$A = 1 - 1 + 1 - 1 + \dots$$

$$S - B = 1 + 2 + 3 + 4 + 5 + \dots = A$$

$$-(1 - 2 + 3 - 4 - 5 + \dots) = A - 1 - 1 + 1 - 1 + \dots = A$$

$$S - B = 1 + 2 + 3 + 4 + 5 + \dots = A$$

$$-(1 - 2 + 3 - 4 - 5 + \dots) = A - 1 + 1 - 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + 1 + \dots = A - 1 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + 1 + \dots = A - 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + 1 + \dots = A - 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + 1 + \dots = A - 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + 1 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + 1 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S - B = 4 + \dots = A$$

$$S$$

III.U3 Fyzici jsou úplně cáklí!

Ke každému fyzikovi a matematikovi přiřaď te jednu poruchu či zvláštnost, která u něj pravděpodobně převažovala.

Jména

Nikola Tesla, Paul Dirac, Albert Einstein, Erwin Schrödinger, Bernhard Riemann, William Rowan Hamilton, Isaac Newton, Alan Turing, Emmy Noether

Zvláštnosti

pedofilie, zoofilie, homosexualita, Aspergerův syndrom, ženská identita, extrémní stydlivost, vegetariánství, celoživotní panictví, alkoholismus

III.A Houstone, máme problém!

Myrimmon sous Gras 1

ausorem problému stil Se les je

Isaac New Son

III.K Diracovo moře

Popisovaným jevem je anihilace (pozisromu s elektronem).

III.B Weyl vs. Majorana: boj o neutrino

Během dvacátých a třicátých let 20. století vznikla spousta kvantově mechanických rovnic na popis různých typů fermionů. Mezi ně patří i tzv. Weylova a Majoranova rovnice, které dříve byly kandidáty na popis částice jménem neutrino. Pojďme se podívat, jak vypadají!

Pozn.: ve vzorcích níže je použita Einsteinova sumační konvence, Feynmanova "slash", notace $\phi = \gamma^{\mu}\partial_{\mu}$ a standardní volba jednotek $\hbar = c = 1$. Dice nevím, co to ma znamenat, že \hbar i c jsou 1

1. Odvoď te Weylovu rovnici (rovnice), popisující nehmotné (Weylovy) fermiony, ve slavném tvaru

$$\sigma^{\mu}\partial_{\mu}\psi_{R} = 0$$
$$\bar{\sigma}^{\mu}\partial_{\mu}\psi_{L} = 0.$$

 ψ_L značí levoruký a ψ_R pravoruký Weylův spinor a vektory σ^{μ} a $\bar{\sigma}^{\mu}$ jsou definované jako

$$\sigma^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, -\sigma^{1}, -\sigma^{2}, -\sigma^{3}\right),$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma^{2}, \sigma^{3}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right) = \left(I_{2}, \sigma^{2}, \sigma^{3}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)$$

$$\bar{\sigma}^{\mu} = \left(\sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right)$$

Kde první komponent $\sigma^0 = I_2$ je jednotková matice tvpu 2×2 a zbylé složky obsahují Pauliho spinové matice (σ^i , $i \in \{1, 2, 3\}$).

2. Matematicky dokažte, že rovnice

Matematicky dokažte, že rovnice
$$i\partial\psi^c - m\psi = 0 \qquad i\partial\psi - m\psi = 0 \qquad \text{miżh. Nict. Ne}$$
 je ekvivalentní s Majoranovu rovnicí, která bývá psána jako \Rightarrow $i\partial\psi - m\psi = 0$ $jc \ tam \ \psi''$ $i\partial\psi - m\psi^c = 0$, \Rightarrow $i\partial - m = i\partial - m$

kde m označuje hmotnost popisovaného fermionu a ψ jeho vlnovou funkci. Horní index cznačí nábojové sdružení. co to vůbec je ?