ExtreMe Matter Institute Rapid Reaction Task Force Symposium The space-time structure of jet quenching: theory and experiment GSI, Darmstadt, Germany, August 14, 2019

Dynamical core-corona initialization and its application to jet physics

Tetsufumi Hirano & Yuuka Kanakubo Sophia Univ.

Setting

```
Input model: PYTHIA ver.8.230, heavy ion mode
Output model: (+ dynamical core-corona initialization)
System:
   Pb+Pb 5.02 TeV, parton level or hadron level
   # of events: 3K (Pb+Pb)
   p+p 7 TeV, parton level or hadron level
   # of events: 6.5K (p+p)
Mode: p_{thatmin} = 300 \text{ GeV}
Jet finding: Anti-kT algorithm via FASTJET
De-clustering: Cambridge-Aachen algorithm via FASTJET
Observables: Lund plane, EMMI plane
```

Lund

Lund: Pb+Pb 5.02 TeV, parton level

Lund: Pb+Pb 5.02 TeV, hadron level

Lund: p+p 7 TeV, parton level

Lund: p+p 7 TeV, hadron level

Comparison btw p+p and Pb+Pb, parton level

Comparison btw p+p and Pb+Pb, hadron level

Lund: Multiplicity dependence

Comparison btw high and low multiplicity, parton level

Comparison btw high and low multiplicity, parton level

EMMI

EMMI: p+p7 TeV, ptjet = 350 GeV, parton level

EMMI: p+p 7 TeV, ptjet = 350 GeV, hadron level

