Title Subtitle

Rebecca Wei

Northwestern University

 $\mathsf{Date}/\mathsf{Event}$

Fix an algebra, A. Define a dg category, Hoch(A):

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_fA_g), {}_f\delta_g)$

$$f \delta_{g}(\phi)(a_{1} \otimes \ldots \otimes a_{n}) = \epsilon_{\phi} \left(f(a_{1}) \cdot \phi(a_{2}, \ldots, a_{n}) + \sum_{1 \leq i \leq n-1} (-1)^{i} \phi(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}) + \right.$$

$$\left. + (-1)^{n} \phi(a_{1}, \ldots, a_{n-1}) \cdot g(a_{n}) \right)$$

$$\left. \epsilon_{\phi} = (-1)^{|\phi|+1} \right.$$

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Composition: cup product on cochains

Fix an algebra, A.

Define a dg category, Hoch(A):

Objects: algebra maps $f: A \rightarrow A$

Morphisms: $Hoch(A)(f,g) = (C^{\bullet}(A, {}_{f}A_{g}), {}_{f}\delta_{g})$

Composition: cup product on cochains

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

A morphism from f_0 to f_n in Bar(Hoch(A))

Fix an algebra, A. Define a dg category, Hoch(A):

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

Fix an algebra, A. Define a dg category, Hoch(A):

In this context, braces give multilinear maps:

Then, $(Bar(Hoch(A)), \bullet)$ is an algebra in DGCocats.

Fix an algebra, A. Define a dg category, Hoch(A):

In this context, braces give multilinear maps:

$$Bar(Hoch(A)) \otimes Bar(Hoch(A)) \xrightarrow{\bullet} Hoch(A)$$

$$Bar(Hoch(A)) \otimes Bar(Hoch(A))$$

Then, $(Bar(Hoch(A)), \bullet)$ is an algebra in DGCocats. But we have more...

```
Fix algebras, A_0, A_1, ..., A_n.
Define a dg cocategory B(A_0 \rightarrow A_1 \rightarrow ... \rightarrow A_n \rightarrow A_0) where, for n=0, B(A_0 \rightarrow A_0) := Bar(Hoch(A_0)).
```

A sheafy-cyclic object in DGCocat

Fact: We have a functor