CMS Tracker Upgrade for High-Luminosity LHC

Current Readout Architecture

Current L1A rate ~ 100 kHz

Trigger (a.k.a. Level-1 Trigger, a.k.a. Level-1 Accept, a.k.a. L1A)

LHC broad schedule

New CMS phase-1 pixel detector

installed during extended winter shut-down

LHC broad schedule

Upgrade Readout Architecture

Upgrade L1A rate ~ 750 kHz

Current CMS Tracker

Upgraded Tracker Layout

Outer Tracker

Pixel detector

Outer tracker front-ends

Need to ship hits off detector

Ship all hits @ 40 MHz? No

- Bandwidth needed: off by 1 order of magnitude (order of 10 Gbps per module)
- Track reconstruction ~ impossible

Solution: ship only high-pT hits (stubs)

- Threshold of ~ 2 GeV
- Data reduction of one order of magnitude or more

Modules with pT discrimination ("pT modules")

Module design

Integration at the module level

Module design

Only two module types

2 Strip sensors

Strips: 5 cm × 90 µm Strips: 5 cm × 90 µm

P = 2.7 W

~ 92 cm² active area For r > 40 cm

Pixel + Strip sensors

Strips: 2.5 cm × 100 μm

MacroPixels: 1.5 mm × 100 μm

P = 5.0 W

~ 44 cm² active area

For **r** > 20 cm

Front-end interconnection

Flex hybrid:

- Technology leap
- Key element for 2-sensor design

Module prototypes

2xCBC functional module:

- 2 chips (instead of 8)
- Electrical readout (instead of optical)
- No data concentration
- Rigid hybrid
- + Stub-finding logic
- + Nominal noise and thresholds

8xCBC prototype:

- + 2x8 chips
- Electrical readout (instead of optical)
- No data concentration
- + Flex-hybrid
- + Stub-finding logic Just produced

Prototype readout format defined

Data concentrator will be produced later fitting both PS and 2S modules

Providing tracks for trigger

Level-1 "stubs" are processed in the back-end

Form Level-1 tracks, pT above ~ 2 GeV, contributing to CMS Level-1 trigger

- @ 40 MHz Bunch crossing
- @ 750 kHz CMS Level-1 trigger

Electrical System Block Diagram, 2S

FE BE

Electrical System Block Diagram, PS

Module readout architecture

Parts for emulation

- Gather information on band-widths, based on specs of CBC-3, MPA, SSA, CIC
- Evaluate possibility to implement in one GLIB or in more GLIBS in the same shelf, using back-plane communication
 - Not necessary to implement full-speed simulation @40MHz
- MPA: existing VERILOG code (by CERN PH-ESE)
- SSA VERILOG will follow (by CERN PH-ESE)
- CBC-3 will not be implemented in VERILOG (a Verilog simulation will suffice). Chip from Imperial College, London
- CIC detailed model will arrive breifly (by group in Lyon)