Géométrie Différentielle, TD 2 du 15 février 2019

Dans ce TD, les notions de variétés, sous variétés, submersions, plongements, etc. sont à considérer par défaut comme étant de classe C^{∞} . La plupart du temps, on peut facilement formuler un énoncé analogue pour la régularité C^k , et adapter la preuve en régularité C^{∞} pour le démontrer.

1. Exemples et contre-exemples de sous-variétés - A FAIRE AVANT LE TD

Les dessins suivants représentent des parties de \mathbb{R}^2 (première ligne) ou de \mathbb{R}^3 (deuxième ligne). Dire, sans justification rigoureuse, lesquelles sont des sous-variétés C^{∞} .

Solution:

Les parties de \mathbb{R}^2 sont toutes des sous-variétés C^{∞} à l'exception de la seconde, de la quatrième, de la sixième et de la septième de la première ligne, qui présentent des recoupements.

Pour les parties de \mathbb{R}^3 , la troisième et la sixième de la deuxième ligne ne sont pas des sous-variétés C^{∞} , car elles ont des coins. Pour les autres, la réponse dépend ou non de l'inclusion du bord dans ces parties : si on n'inclut pas le bord, ce sont bien des sous-variétés C^{∞} , tandis que si on inclut le bord, ce ne sont pas des sous-variétés C^{∞} .

2. Espace hyperbolique - A FAIRE AVANT LE TD

Soit $n \ge 1$. Montrer que l'espace hyperbolique S d'équation $x_1^2 + \cdots + x_{n-1}^2 - x_n^2 = 1$ est une sous-variété de \mathbb{R}^n .

Solution:

1– Posons $F(x_1,\ldots,x_n)=x_1^2+\cdots-x_n^2-1$, de sorte que S est $F^{-1}(\{0\})$. Il suffit de vérifier que F est une submersion au voisinage de S. On calcule $dF_{(x_1,\ldots,x_n)}(h_1,\ldots,h_n)=$

 $2(x_1h_1 + \cdots + x_{n-1}h_{n-1} - x_nh_n)$ de sorte que dF est nulle seulement en l'origine. En particulier, dF est non nulle, donc surjective en tout point de S.

3. Questions diverses

- 1- Soit $X \subseteq \mathbb{R}^n$ une sous-variété, $x \in X$. Vérifier que l'ensemble $\{c'(0), c:] 1, 1[\to \mathbb{R}^n$ chemin C^1 à valeurs dans X tel que $c(0) = x\}$ est un sous espace vectoriel de \mathbb{R}^n qui s'identifie à $T_x X$.
- 2- Soit X, Y des variétés et $p: X \to Y$ une fonction C^1 . Montrer que l'ensemble des points $x \in X$ tels que $T_x f: T_x X \to T_{f(x)} Y$ est surjective est un ouvert de X. L'ensemble des valeurs régulières de f est il nécessairement ouvert dans Y?
- 3- Soit X, Y, Z des variétés, $p: X \to Y$ une submersion surjective, $f: Y \to Z$ une fonction (ensembliste). Montrer que f est C^k si et seulement si $f \circ p$ est C^k .
- 4- Soit X une variété, $Y \subseteq X$ une partie de X. Montrer que Y est une sous-variété si et seulement si pour tout $y \in Y$, il existe $U \subseteq X$ un voisinage ouvert de y dans X, $p \in \mathbb{N}$, et $\psi : U \to \mathbb{R}^p$ une submersion tels qu'on ait l'expression locale :

$$Y \cap U = \{\psi = 0\}$$

Solution:

- 1- Notons E l'ensemble en question. Soit $d \in \mathbb{N}$ la dimension de X, (U, φ) une carte en x telle que $\varphi(x) = 0$. Pour $v_1, v_2 \in E$, On se donne des chemins $c_1, c_2 :]-1, 1[\to X$ de classe C^1 tels que $c_1(0) = c_2(0) = x$ et $c'_1(0) = v_1, c'_2(0) = v_2$. On peut supposer c_1, c_2 à valeurs dans U. On pose $c_3 := \varphi^{-1}(\varphi \circ c_1 + \varphi \circ c_2)$ chemin C^1 à valeurs dans X défini au voisinage de 0. Quitte à bien choisir c_1, c_2 , on peut supposer c_3 défini sur]-1, 1[. De plus, on a $c'_3(0) = v_1 + v_2$. Ainsi E est stable par somme. On a l'homogénéité par reparamétrisation et E est donc un sous-espace vectoriel. On définit $i: T_x X \to E, [c] \to c'(0)$. On vérifie que cette application est bien définie, bijective. Pour vérifier que c'est un isomorphisme vectoriel, on remarque que $i \circ \varphi_{\star}^{-1} : \mathbb{R}^d \to \mathbb{R}^n, v \to d\varphi_0^{-1}v$ est linéaire, donc que $i = i \circ \varphi_{\star}^{-1} \circ \varphi_{\star}$ aussi.
- 2- Pour montrer que l'ensemble des points où il y a submersion est ouvert, il suffit de se placer en coordonnées locales autour d'un tel point et de remarquer que si une matrice $A \in M_{p,q}(\mathbb{R})$ est de rang maximal (i.e. de rang q dans notre cas), alors c'est aussi le cas des matrices A' proches de A. L'ensemble des valeurs régulières n'est pas toujours ouvert. Par exemple on peut considérer l'application $f: \mathbb{R}_{>0} \times \{0\}$ II $\mathbb{R}^2 \to \mathbb{R}^2$ coïcidant sur chaque composante $\mathbb{R}_{>0} \times \{0\}$, \mathbb{R}^2 avec l'inclusion. Alors $\{0\}$ est une valeur régulière mais tous ses voisinages rencontrent les valeurs critiques $\mathbb{R}_{>0} \times \{0\}$. On peut bricoler cette idée et obtenir un contrexemple où le domaine de définition de f est connexe.

- 3- Il s'agit de prouver la réciproque. Soit $y \in Y$, $x \in X$ tel que p(x) = y. On se donne des cartes $(U, \varphi), (V, \psi)$ en x et y telles que $p(U) \subseteq V$ et p lue dans les cartes est de la forme $\psi \circ p \circ \varphi^{-1} : (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_r)$. On a alors $f \circ p \circ \varphi^{-1} = \varphi(U) \to Z, (x_1, \ldots, x_n) \mapsto f \circ \psi^{-1}(x_1, \ldots, x_r)$ de classe C^k par hypothèse. On en déduit que $f \circ \psi^{-1}$ est C^k sur $\psi(p(U))$ ouvert de $\psi(U)$ contenant $\psi(y)$ puis que f est C^k sur p(U) vosinage ouvert de p dans p(U)
- 4- Le sens réciproque est fait en cours. On prouve le sens direct. On suppose donc que Y est sous variété de dimension k de X, variété de dimension n. Soit $y \in Y$. Il existe une carte (U, φ) de X en y telle que $\varphi(U \cap Y) = \varphi(U) \cap \mathbb{R}^k \times \{0\}^{n-k}$. On pose $\psi: U \to \mathbb{R}^{n-k}, x \mapsto \operatorname{proj}_{\mathbb{R}^{n-k}}(\varphi(x))$. On a $\{\psi = 0\} = U \cap Y$.

4. Fibration de Hopf, premiers pas

Soit $n \in \mathbb{N}^*$. Montrer que la projection

$$\begin{array}{ccc} \mathbb{S}^n & \to & \mathbb{RP}^n \\ (x_0, \dots, x_n) & \mapsto & [x_0 : \dots : x_n] \end{array}$$

est un C^{∞} -difféomorphisme local surjectif.

Solution:

La surjectivité est immédiate.

Considérons l'application $p: \mathbb{R}^{n+1} - \{0\} \to \mathbb{RP}^n$, $(x_0, \dots, x_n) \mapsto [x_0: \dots: x_n]$. Admettons provisoirement que p est une submersion C^{∞} et que pour tout $x \in \mathbb{R}^{n+1} - \{0\}$, on a ker $T_x p = \mathbb{R} x$. Cela implique que la restriction de p à la sous-variété est \mathbb{S}^n est C^{∞} , et que pour $x \in \mathbb{S}^n$, on a ker $T_x(p_{|\mathbb{S}^n}) = \ker(T_x p)_{|\mathbb{S}^n} = (\ker T_x p) \cap T_x \mathbb{S}^n = \mathbb{R} x \cap x^{\perp} = \{0\}$. Par égalité des dimensions, on en déduit que la différentielle de $p_{|\mathbb{S}^n}$ est inversible en tout point, donc que $p_{|\mathbb{S}^n}$ est C^{∞} -difféomorphisme local.

Il reste à prouver le résultat sur p. C'est un résultat local. Soit $x \in \mathbb{R}^{n+1} - \{0\}$. Il existe $i \in \{0, \dots, n\}$ tel que $x_i \neq 0$. On note $U_i := \{[x_0 : \dots : x_n] \in \mathbb{RP}^n, x_i \neq 0\}$, $\varphi_i : U_i \to \mathbb{R}^n, [x_0 : \dots : x_n] \to (\frac{x_0}{x_i}, \dots, \frac{\widehat{x_i}}{x_i}, \dots, \frac{x_n}{x_i})$. Le couple (U_i, φ_i) est ainsi une carte locale en x. On a $\varphi_i \circ p(x_0, \dots, x_n) = (\frac{x_0}{x_i}, \dots, \frac{\widehat{x_i}}{x_i}, \dots, \frac{x_n}{x_i})$. Si on note (e_0, \dots, e_n) la base standard de \mathbb{R}^{n+1} , on a donc $T_x(\varphi_i \circ p)(e_j) = (0, \dots, 0, 1/x_i, 0, \dots, 0)$ où la position du terme non nul est j si $j \leq i-1$, j-1 si $j \geq i+1$. En particulier, l'application tangente $T_x(\varphi_i \circ p)$ est surjective. Son noyau est donc de dimension 1. Comme p est constante sur $\mathbb{R}x - \{0\}$, il contient la droite $\mathbb{R}x$, donc $\ker T_x p = \mathbb{R}x$.

5. Un angle n'est pas une sous-variété

- 1– Montrer que l'ensemble $A=\{(x,y)\in\mathbb{R}^2\mid x=0\ \text{et}\ y\geqslant 0,\ \text{ou}\ x\geqslant 0\ \text{et}\ y=0\}$ n'est pas une sous-variété C^∞ de $\mathbb{R}^2.$
- 2– Donner cependant un exemple d'application C^{∞} injective de \mathbb{R} dans \mathbb{R}^2 d'image A.

Solution:

1– Supposons par l'absurde que A soit une sous-variété de \mathbb{R}^2 . Comme A n'est pas un ouvert et n'est pas constitué de points isolés, c'est nécessairement une sous-variété de dimension 1.

Méthode 1 : paramétrisation et vecteur vitesse

Dans un voisinage U de l'origine, on a $A = \{\varphi(t) \mid t \in]-\varepsilon, \varepsilon[\}$ où $\varphi:]-\varepsilon, \varepsilon[\to \mathbb{R}^2$ est un plongement. Soit $(t_n)_{n\geqslant 0}$ telle que $\varphi(t_n) = (0, \frac{1}{n})$ (bien défini pour n assez grand).

Alors $\varphi'(0) = \lim_{n \to \infty} (0, \frac{1}{n}) \in \mathbb{R} \times \{0\}$ (le vecteur vitesse en 0 est horizontal). De même, en considérant $(t'_n)_{n \geqslant 0}$ telle que $\varphi(t'_n) = (\frac{1}{n}, 0)$, on obtient $\varphi'(0) \in \{0\} \times \mathbb{R}$ (le vecteur vitesse en 0 est vertical). Alors $\varphi'(0) = 0$: absurde.

Méthode 1 : équation et fonctions implicites

Dans un voisinage U de l'origine, on peut écrire $A=\{F=0\}$ où $F:U\to\mathbb{R}$ est une submersion. Comme dF_0 est non nulle, $\frac{\partial F}{\partial x}(0,0)$ et $\frac{\partial F}{\partial y}(0,0)$ ne peuvent être tous deux nuls. On peut supposer, par symétrie, que $\frac{\partial F}{\partial y}\neq 0$. On peut alors appliquer le théorème des fonctions implicites. Celui-ci montre en particulier que, quitte à restreindre U, la projection de $U\cap A$ sur l'axe des abscisses est injective.

C'est absurde car les points $(0,\varepsilon)$ pour $\varepsilon \geqslant 0$ ont tous même image par cette projection

2– Soit $f: \mathbb{R} \to \mathbb{R}^2$ donnée par $f(x) = (xe^{-1/x}, 0)$ si x > 0 et $f(x) = (0, -xe^{1/x})$ si x < 0 (Le facteur x est juste là pour faire tendre la fonction vers l'infini et décrire A globalement). On montre aisément que cette application est \mathcal{C}^{∞} injective, et d'image A, comme voulu.

6. Intersection de sous-variétés

Soit M_0 une variété de dimension d, et M et N deux sous-variétés de M_0 de dimensions respectives m et n.

1- Montrer que si, pour tout $x \in M \cap N$, $T_xM + T_xN = T_xM_0$, alors $M \cap N$ est une sous-variété \mathcal{C}^{∞} de M_0 . Préciser sa dimension et son espace tangent en x. On dit alors que M et N sont **transverses**. La réciproque est-elle vraie?

Solution:

1- Soit $x \in M \cap N$. Par définition des sous-variétés à l'aide de submersions, on peut trouver un voisinage U de x dans \mathbb{R}^d et des submersions $F: U \to \mathbb{R}^{d-m}$ et $G: U \to \mathbb{R}^{d-n}$ telles que $U \cap M = \{F = 0\}$ et $U \cap N = \{G = 0\}$. Ainsi, $U \cap M \cap N$ est le lieu des zéros de $(F, G): U \to \mathbb{R}^{2d-m-n}$.

Montrons que (F, G) est une submersion en x. Pour cela, on calcule, utilisant l'hypothèse de transversalité pour la dernière égalité :

$$\dim \operatorname{Ker} d_x(F,G) = \dim (\operatorname{Ker} d_x F \cap \operatorname{Ker} d_x G) = \dim (T_x M \cap T_x N) = m + n - d.$$

Ainsi, dim Im $d_x(F,G) = d - (m+n-d) = 2d - m - n$. Par dimension, $d_x(F,G)$ est bien surjective. On en déduit d'une part que $M \cap N$ est une sous-variété au voisinage de x, d'autre part que sa dimension est d - (2d - m - n) = m + n - d, et enfin que son espace tangent en x est $\{T_xF = T_xG = 0\} = T_xM \cap T_xN$.

La réciproque est fausse : considérer l'intersection d'une sous-variété avec elle-même ! Ou bien l'intersection, dans \mathbb{R}^4 de deux plans se coupant le long d'une droite.

7. Théorème de d'Alembert-Gauss

Soit $P = \sum a_k z^k$ un polynôme à coefficients complexes de degré $n \geqslant 1$. On montre que l'application polynomiale $P : \mathbb{C} \to \mathbb{C}$ est surjective.

On note \mathbb{CP}^1 l'ensemble des droites vectorielles complexes de \mathbb{C}^2 , $U_0 := \{[x_0 : x_1] \in \mathbb{CP}^1, x_0 \neq 0\}$, $U_1 := \{[x_0 : x_1] \in \mathbb{CP}^1, x_1 \neq 0\}$, $\varphi_0 : U_0 \to \mathbb{C}, [x_0 : x_1] \to x_1/x_0$, $\varphi_1 : U_1 \to \mathbb{C}, [x_0 : x_1] \to x_0/x_1$. Les couples $(U_0, \varphi_0), (U_1, \varphi_1)$ induisent une structure de variété compacte sur \mathbb{CP}^1 (de dimension réelle 2). On identifie $\mathbb{C} \equiv U_0 \subseteq \mathbb{CP}^1$ via φ_0^{-1} et on note $\infty := [0:1]$. Ainsi $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$.

- 1– Montrer que l'application polynomiale $P:\mathbb{C}\to\mathbb{C}$ s'étend en une application lisse $f:\mathbb{CP}^1\to\mathbb{CP}^1$.
- 2- Montrer que f a un nombre fini de points critiques. Quand le point à l'infini est-il un point critique?
- 3– On note R l'ensemble des valeurs régulières de f, et $a:R\to\{0,1\}$ la fonction qui à x associe 0 si x n'a pas d'antécédant par f, et 1 sinon. Montrer que a est localement constante et conclure.

Solution:

- 1- On pose $f(\infty) = \infty$. Il s'agit alors de vérifier que f est lisse au voisinage de ∞ . Par définition de la structure de variété différentielle sur \mathbb{CP}^1 , il suffit de montrer que l'application $z \mapsto P(z^{-1})^{-1}$ bien définie sur un voisinage épointé de 0 s'étend en 0 en une application lisse (s'annulant en 0). On calcule $P(z^{-1})^{-1} = \frac{z^n}{\sum a_k z^{n-k}}$. Comme $a_n \neq 0$, le résultat est clair.
- 2- Un point $z \neq \infty$ est critique si, et seulement si, P'(z) = 0. En effet, la différentielle d'une application polynomiale de \mathbb{C} dans \mathbb{C} s'identifie à sa dérivée formelle, nombre complexe vu comme application linéaire de \mathbb{R}^2 dans \mathbb{R}^2 . Donc, il y a un nombre fini de points critiques dans \mathbb{C} , et donc un nombre fini de points critiques pour f (au pire, on ajoute le pôle Nord). L'expression précédente de f dans des cartes au voisinage de l'infini montre que ∞ est un point critique si, et seulement si, $n \geq 2$.

3- Soit $x \in R$. L'image de f est fermée comme image continue de \mathbb{CP}^1 qui est compact. On a donc que si a(x) = 0 alors a(x') = 0 pour x' assez proche de x. Si a(x) = 1, alors il existe $y \in \mathbb{CP}^1$ tel que f(y) = x. Comme x est une valeur régulière, on a f submersive en y donc ouverte au voisinage de y. En particulier, un voisinage de x est atteint par f. Ainsi a est localement constante. Or l'ensemble R est égale à \mathbb{CP}^1 privé d'un nombre fini de points. Comme \mathbb{CP}^1 est connexe et de dimension ≥ 2 , on a donc que R est connexe. Comme P est non constant, son image n'est pas réduite à l'ensemble fini de ses valeurs critiques, donc a prend la valeur 1, puis est constante, égale à 1. Ainsi f atteint tous les points de R. Toute valeur critique est également atteinte par f (par définition), on a donc prouvé la surjectivité.

8. Sous-variétés de matrices

Montrer que det : $A \mapsto \det(A)$ est C^{∞} sur $M_n(\mathbb{R})$, et caractériser les matrices en lesquelles la différentielle de det est non nulle. En déduire que l'ensemble des matrices de rang n-1 forme une sous-variété de $M_n(\mathbb{R})$.

Solution:

L'application det est polynomiale, donc C^{∞} .

Notons a_1, \ldots, a_n les colonnes de la matrice A. En utilisant la multilinéarité du déterminant, on vérifie que

$$\det(A+H) = \det(a_1, \dots, a_n) + \sum_{k=1}^n \det(a_1, \dots, a_{k-1}, h_k, a_{k+1}, \dots, a_n) + O(\|H\|^2).$$

Ainsi, la différentielle du déterminant est donnée par

$$d(\det)_A(H) = \sum_{k=1}^n \det(a_1, \dots, a_{k-1}, h_k, a_{k+1}, \dots, a_n).$$

Supposons que $d(\det)_A = 0$. Choisissons pour H une matrice élémentaire $E_{k,l}$ avec des 0 partout sauf un 1 en position (k,l). L'équation $d(\det)_A(H) = 0$ montre que le mineur de taille n-1 de A obtenu en supprimant la $k^{\text{ème}}$ ligne et la $l^{\text{ème}}$ colonne de A est nul. Ainsi, $d(\det)_A = 0$ si et seulement si tous les mineurs de taille n-1 de A sont nuls, i.e., si et seulement si le rang de A est < n-1.

Soit X l'ensemble des matrices de rang n-1. La fonction $\Phi:A\mapsto \det(A)$ est une submersion en tout point de X. De plus, si $A\in X$, il existe un voisinage U de A tel que $X\cap U=\{\Phi^{-1}(0)\}\cap U$ (cela découle de la semi-continuité du rang d'une matrice). La caractérisation des sous-variétés comme surfaces de niveau locales de submersions montre donc que X est une sous-variété de $M_n(\mathbb{R})$