MATH 315 Assignment 1

Instructor: Dr. Thomas Bitoun Name: Yifeng Pan UCID: 30063828

Winter 2020

- 1 Let $(G, *), (G_1, *_1), (G_2, *_2)$ be groups. Show the following.
- 1.1 $(G_1 \times G_2, \star)$ with $(g_1, g_2) \star (h_1, h_2) = (g_1 *_1 h_1, g_2 *_2 h_2)$ is a group.

Let $(a_1, a_2), (b_1, b_2), (c_1, c_2), \in G_1 \times G_2$.

$$\begin{split} ((a_1,a_2)\star(b_1,b_2))\star(c_1,c_2) &= (a_1*_1b_1,a_2*_2b_2)\star(c_1,c_2) \\ &= ((a_1*_1b_1)*_1c_1,(a_2*_2b_2)*_2c_2) \\ &= (a_1*_1(b_1*_1c_1),a_2*_2(b_2*_2c_2)) \\ &= (a_1,a_2)\star(b_1*_1c_1,b_2*_2c_2) \\ &= (a_1,a_2)\star((b_1,b_2)\star(c_1,c_2)). \end{split}$$

Therefore \star is associative.

Let e_1 be the identity of $(G_1, *_1)$, and e_2 be the identity of $(G_2, *_2)$.

$$(e_1, e_2) \star (a_1, a_2) = (e_1 *_1 a_1, e_2 *_2 a_2)$$

= $(a_1, a_2) = (a_1 *_1 e_1, a_2 *_2 e_2)$
= $(a_1, a_2) \star (e_1, e_2).$

Therefore $(e_1, e_2) \in G_1 \times G_2$ is an identity.

Let a_1^{-1} be the inverse of a_1 for the $(G_1, *_1)$ group, and a_2^{-1} be the inverse of a_2 for the $(G_2, *_2)$ group.

$$(a_1, a_2) \star (a_1^{-1}, a_2^{-1}) = (a_1 *_1 a_1^{-1}, a_2 *_2 a_2^{-1})$$

= $(e_1, e_2) = (a_1^{-1} *_1 a_1, a_2^{-1} *_2 a_2)$
= $(a_1^{-1}, a_2^{-1}) \star (a_1, a_2).$

Therefore $\forall (a_1, a_2) \in G_1 \times G_2, \exists$ an inverse (a_1^{-1}, a_2^{-1}) .

Now, $(a_1, a_2) \star (b_1, b_2) = (a_1 *_1 b_1, a_2 *_2 b_2)$, where $a_1 *_1 b_1 \in G_1, a_2 *_2 b_2 \in G_2$; Therefore \star is a closed binary operation on $G_1 \times G_2$.

Therefore $(G_1 \times G_2, \star)$ is a group.

1.2 The center of $(G_1 \times G_2, \star)$ is $Z(G_1) \times Z(G_2)$, where $Z(G_i)$ is the center of G_i , for $i \in \{1, 2\}$.

Suppose $(z_1, z_2) \in Z(G_1 \times G_2)$. So $\forall (a_1, a_2) \in G_1 \times G_2$,

$$\begin{split} &(z_1,z_2)\star(a_1,a_2)=(a_1,a_2)\star(z_1,z_2)\\ &\Rightarrow (z_1*_1a_1,z_2*_2a_2)=(a_1*_1z_1,a_2*_2z_2)\\ &\Rightarrow z_1*_1a_1=a_1*_1z_1 \text{ and } z_2*_2a_2=a_2*_2z_2\\ &\Rightarrow z_1\in Z(G_1) \text{ and } z_2\in Z(G_2)\\ &\Rightarrow (z_1,z_2)\in Z(G_1)\times Z(G_2) \end{split}$$

Suppose $z_1 \in Z(G_1)$ and $z_2 \in Z(G_2)$, where $(z_1, z_2) \in Z(G_1) \times Z(G_2)$. So $\forall a_1 \in G_1$ and $\forall a_2 \in G_2$.

$$\begin{aligned} z_1 *_1 a_1 &= a_1 *_1 z_1 \text{ and } z_2 *_2 a_2 &= a_2 *_2 z_2 \\ \Rightarrow & (z_1 *_1 a_1, z_2 *_2 a_2) = (a_1 *_1 z_1, a_2 *_2 z_2) \\ \Rightarrow & (z_1, z_2) \star (a_1, a_2) = (a_1, a_2) \star (z_1, z_2) \\ \Rightarrow & (z_1, z_2) \in Z(G_1 \times G_2) \end{aligned}$$

Therefore $Z(G_1 \times G_2) \subseteq Z(G_1) \times Z(G_2)$, and $Z(G_1) \times Z(G_2) \subseteq Z(G_1 \times G_2)$.

Yifeng Pan UCID: 30063828

1.3 A non-empty subset S of G is a subgroup if and only if $\forall s_1, s_2 \in S, s_1 * s_2^{-1} \in S$.

Suppose S is a subgroup of G. Let $s_1, s_2 \in S$. Since S is a group, s_2 has an inverse s_2^{-1} . Since * is closed on S, $s_1 * s_2^{-1} \in S$.

Suppose $S \subseteq G$ is non-empty, and $\forall s_1, s_2 \in S, s_1 * s_2^{-1} \in S$.

Since $S \neq \emptyset$, let $s_1 = s_2 = s, e = s * s^{-1} \in S$. Therefore S contains the identity e.

Now, let $s_1 = e$. So $\forall s_2 \in S, e * s_2^{-1} = s_2^{-1} \in S$. Therefore every element in S is invertible.

(S,*) inherits associativity from (G,*).

Let $a, b \in S$. Since b has an inverse in S, let $s_1 = a, s_2 = b^{-1}$. So $a * b = s_1 * b^{-1} = s_1 * s_2^{-1} \in S$. Therefore * is closed on S.

Therefore S is a group. Since $S \subseteq G$, S is a subgroup of G.

2 Let S_4 be the symmetric group of degree 4, i.e. $S_4 = S_{\{1,2,3,4\}}$.

2.1 Using the cycle notation, list all elements of order 2 of S_4 .

$$\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$$

2.2 Show that the subset $H = \{ \sigma \in S_4 | \sigma(1) = 1 \}$ is a subgroup.

Since $\sigma(1) = 1$ holds true for the identity, H contains the identity. H inherits associativity from S_4 .

All elements of H has the form $\begin{bmatrix} 1 & 0 & 0 & 0 \\ \hline 0 & & \\ 0 & & \tau \\ \hline 0 & & \end{bmatrix}$ for some $\tau \in S_3$. when written as permutation matrices. Since

the transpose of a permutation matrix is its inverse, every element of H has an inverse. Since the transpose has the same form, the inverse is in H.

The block matrix form of H retains its form after matrix multiplication with any two elements of H. Therefore H is closed.

Therefore H is a group. Since $H \subseteq S_4$, it is a subgroup of S_4 .

2.3 Assuming (2.2), show that $gHg^{-1} = \{g \circ h \circ g^{-1} | h \in H\}$ is a subgroup of S_4 , for all $g \in S_4$.

Let e be the identity, which is $\in H$. So $e = gg^{-1} = (ge)g^{-1} = geg^{-1} \in gHg^{-1}$. gHg^{-1} inherits associativity.

Let $gag^{-1} \in gHg^{-1}$, where $a \in H$. We know $\exists a^{-1} \in H$, so $ga^{-1}g^{-1} \in gHg^{-1}$. Now,

$$gag^{-1}ga^{-1}g^{-1} = gaea^{-1}g^{-1}$$

$$= gaa^{-1}g^{-1}$$

$$= geg^{-1}$$

$$= gg^{-1}$$

$$= e = ga^{-1}ag^{-1}$$

$$= ga^{-1}eag^{-1}$$

$$= ga^{-1}gag^{-1}$$

Therefore every element of gHg^{-1} has an inverse in gHg^{-1} .

Let $gag^{-1}, gbg^{-1} \in gHg^{-1}$, where $a,b \in H$. So $gag^{-1}gbg^{-1} = gabg^{-1}$. Since $ab \in H$, $gabg^{-1} \in gHg^{-1}$. Therefore gHg^{-1} is closed.

Therefore gHg^{-1} is a group. Since $gHg^{-1} \subseteq S_4$, it is a subgroup.

- 3 Let n be the natural number $\in \{1, 2, 3, \ldots\}$. An nth root of unity is a complex number z such that $z^n = 1$.
- 3.1 Prove that the nth roots of unity form a cyclic subgroup H_n of \mathbb{C}^{\times} of order n. (Recall that $\mathbb{C}^{\times} = \mathbb{C} \{0\}$, with the complex multiplication.)

Let $n \in \{1, 2, 3, \ldots\} = \mathbb{N}$. Let $Z_n = \{z | z \in \mathbb{C} \land z^n = 1\}$. Let the group H_n be Z_n under complex multiplication. Since there are n solution to $z \in \mathbb{C}$, $z^n = 1$, the order of H_n is n.

 H_n inherits associativity from \mathbb{C}^{\times} .

 H_n contains the identity 1, as $1^n = 1, \forall n \in \mathbb{N}$.

Let $a, b \in H_n$. Now, $(ab)^n = a^n b^n = 1 \times 1 = 1$. Therefore $ab \in H_n$, and H_n is closed.

Let $a \in H_n$. a^{n-1} is the inverse, as $aa^{n-1} = a^{n-1}a = a^n = 1$. Now, $\left(a^{n-1}\right)^n = \left(a^n\right)^{n-1} = 1^{n-1} = 1$. Therefore every element of H_n has an inverse in H_n .

Therefore H_n is a subgroup of $\mathbb{C}^{\times}, \forall n \in \mathbb{N}$.

Now, since all elements of H_n are on the unit circle on the complex plane centered at (0,0), all elements of H_n can be written in the form $\exp(ix)$. (Assume reduced form where $x=x \mod 2\pi$.)

Let $n \ge 2$. (n = 1 is the trivial case.)

Let $m = \exp(ix) | (x \neq 0 \land \exp(ix) \in H_n) \land \forall \exp(iy) \in H_n, x \leq y$. (If m is not unique, then H_n is not a set. Therefore m is unique.)

Let Y_n be the cyclic subgroup generated from $m \in \mathbb{C}^{\times}$.

Let $y \in Y_n$. So $y = m^z$ for some $z \in \mathbb{Z}$. Now, since $m \in H_n$, $y^n = m^{z^n} = m^{z^n} = 1^z = 1$. Therefore $y \in H_n$.

Now we find the order of $Y_n = \left| \{m^0, m^1, m^{-1}, m^2, m^{-2}, \ldots\} \right|$. Let $z \in Z$. Let $z = qn + r | q \in \mathbb{Z}, r \in [0, n) \cap \mathbb{Z}$. (The solution to q, r is unique.)

Now $m^z = m^{qn}m^r = 1^q m^r = m^r$. Therefore $Y_n = \{m^0, m^1, m^2, \dots, m^{n-1}\} = \{m^r\}$.

Now we prove m^0, \dots, m^{n-1} are distinct. Due to the cancellation law derived from the inverse property of groups, it is sufficient to prove that $m^0 \neq m^k, \forall 0 < k < n, k \in \mathbb{N}$.

By contradiction: Suppose $\exists k \in (0,n) \cap \mathbb{N}$, where $m^k = 1$. Since $\exp(i\frac{xk}{n})^n = \exp(\frac{ixkn}{n}) = \exp(ixk) = m^k = 1$, therefore $\exp(i\frac{xk}{n}) \in H_n$. Since $\frac{k}{n} < 1$, $x > \frac{xk}{n}$. This is a contradiction from the construction of x. Therefore there exists no such m^k .

Therefore m^0, \ldots, m^{n-1} are distinct, and $|Y_n| = n$.

Therefore Y_n and H_n have the same order, and since $Y_n \subseteq H_n, Y_n = H_n$.

Therefore H_n is a cyclic subgroup of \mathbb{C}^{\times} .

3.2 Determine the product of all the nth roots of unity.

-1 if n is even, 1 if n is odd.

Let $a \in H_n$. If a and a^{-1} are distinct elements, then they cancel out to the identity. The only cases where $a = a^{-1}$ is $a \in \{1, -1\}$. We can ignore the identity. And $-1 \in H_n \leftrightarrow n$ is even.

3.3 Show that if the only subgroups of H_n are the trivial subgroups $\{1\}$ and H_n , then n=1 or n is a prime number.

We prove the contrapositive. Suppose $n \neq 1$ and n is not prime. So $\exists a,b \in \mathbb{N}$ such that $ab = n \geq 4, a > 1, b > 1$. (The following two paragraphs are a repeat of (3.1):)

Now, since all elements of H_n are on the unit circle on the complex plane centered at (0,0), all elements of H_n can be written in the form $\exp(ix)$. (Assume reduced form where $x=x \mod 2\pi$.)

Let $m = \exp(ix) | (x \neq 0 \land \exp(ix) \in H_n) \land \forall \exp(iy) \in H_n, x \leq y$. (If m is not unique, then H_n is not a set. Therefore m is unique.)

Let Y_n be the cyclic subgroup generated from $m^a \in \mathbb{C}^{\times}$.

We've proven in (3.1) that $m^a \neq m^0 = 1$. Therefore $Y_n \neq \{1\}$.

Now we prove $m \not\in Y_n$ by contradiction (Note: Y_n is generated from m^a .): Suppose $m \in Y_n$. So $\exists z \in \mathbb{Z}, m^1 = m^{az}$. Therefore $az \equiv 1 \pmod n$, or az = kn + 1 for some $k \in Z$. So az = kab + 1 and a(z - kb) = 1. Therefore $a \in \{-1, 1\}$, which is a contradiction as a > 1 by construct. Therefore $m \notin Y_n$. Since $m \in H_n$, $Y_n \neq H_n$.

Therefore if $n \neq 1$ and n is a non-prime, then we can construct Y_n to be a non-trivial subgroup of H_n .

- 4 Recall the group $GL_2(\mathbb{R})=\left\{egin{bmatrix} a & b \ c & d \end{bmatrix} \middle| a,b,c,d\in\mathbb{R} \text{ and } ad-bc\neq 0 \right\}$, with matrix multiplication.
- **4.1** Show that the subset $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a,b,c,d \in \mathbb{Z} \text{ and } ad-bc \neq 0 \right\}$ is not a subgroup.

Let H be the above subset. Let $a=\begin{bmatrix}2&0\\0&2\end{bmatrix}, a\in H$. So $a^{-1}=\begin{bmatrix}\frac12&0\\0&\frac12\end{bmatrix}, a^{-1}\not\in H$. Therefore H is not a group, and therefore not a subgroup.

4.2 Show that the subset $SL_2(\mathbb{Z})$ of invertible matrices with integer coefficients and determinant 1, i.e.

$$\left\{\begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a,b,c,d \in \mathbb{Z} \text{ and } ad-bc=1 \right\}$$

is a subgroup.

We know $I_2 \in SL_2(\mathbb{Z}) \subseteq GL_2(\mathbb{R})$ and matrix multiplication is associative.

Let $A, B \in SL_2(\mathbb{Z})$. Now, $\det(AB) = \det(A)\det(B) = 1 \times 1 = 1$. Since AB is an integer matrix, $AB \in SL_2(\mathbb{Z})$. Therefore $SL_2(\mathbb{Z})$ is closed.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$$
. We know $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, which is an integer matrix with $\det(A^{-1}) = da - (-c)(-b) = ad - bc = 1$. Therefore A^{-1} exists and is in $SL_2(\mathbb{Z})$.

Therefore $SL_2(\mathbb{Z})$ is a group and a subgroup of $GL_2(\mathbb{R})$.

4.3 Let $SL_2(\mathbb{Z}/3\mathbb{Z})$ be $SL_2(\mathbb{Z})$ with the matrix entries interpreted modulo 3. It is a group. What is the order of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in SL_2(\mathbb{Z}/3\mathbb{Z})$?

$$\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}^1 = \begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix} \neq I_2 \text{ and } \begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}^2 = \begin{bmatrix}1 & 2 \\ 0 & 1\end{bmatrix} \neq I_2 \text{ and } \begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}^3 = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = I_2 \text{ under } SL_2(\mathbb{Z}/3\mathbb{Z}).$$

Therefore the peroid of $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in SL_2(\mathbb{Z}/3\mathbb{Z})$ is 3, as 3 is the smallest positive integer with this property. \square

Citations

"Algebra" by Michael Artin (ISBN 13: 9780132413770).

Proofread by Devin Kwok (UCID: 10016484).