síncronas → Desempenho: MEF

assinalamento não causa Área: redução de literais de funcionamento (corrida crítica), mas pode afetar o desempenho

Número de assinalamentos:

$$N = 2^{Nb}! / (2^{Nb} - Ns)!$$

Onde:

Ns: número de estados

Nb: número de bits (variáveis de estado – função inteira)

Potência: redução do

chaveamento nas variáveis de estado (tecnologia CMOS

efeito capacitivo)

Exemplo:

de Engenharia Eletrônica do ITA

Ns=4 estados, Nb=2 bits

Prof. Duarte L. Oliveira - Divisão
$$(2^2 - 4)! = 4!/0! = 24$$

Exemplo:

X				
Estados	0	1	Y1 Y2 Y3	Y1 Y2 Y3
Α	C/1	B/1	000	101
В	G/0	H/0	0 0 1	110
С	F/0	A / 0	010	010
D	D/0	B/0	011	000
E	C/0	B/0	100	100
F	D/1	E/1	101	0 0 1
G	F/1	A / 1	110	011
н	G / 1	H/1	111	111

Assinalamento:

Ns=8 e Nb=3

 $N= 2^3! / (2^3-8)!=8!$

N=40320 combinações de código.

Sintetizar a MEFS para os dois assinalamentos

Assinalamento-1:

Assinalamento-2

Assinalamento-1

Assinalamento-2

$$D1 = y2y3'x' + y3x + y1y2y3 + y1'y2'y3$$
 $D1 = X$

$$D2=y3x' + y1y2y3 + y1'y2'y3 + y2'x'$$
 $D2=y1$

Análise de custo:

Ass-1: Literais=48; portas=22; maior-fan-in=6

Algoritmos: problema de complexidade NP-difícil.

Técnicas:

- Teoria de particionamento.
- Algoritmo genético
- Regras de assinalamento
- Outras

Código de distância de Hamming

(distância=1 - adjacente)

Ex: código de Gray

Regras de particionamento

R3) Estados com a mesma saída Devem ser adjacentes