5.1 Multiple-Choice and Bimodal Questions

1) Calculate the kinetic energy in J of an electron
moving at $6.00 \times 10^6 $ m/s . The mass of an electron
is 9.11×10^{-28} g.

- A) 4.98×10^{-48}
- B) 3.28×10^{-14}
- C) 1.64×10^{-17}
- D) 2.49×10^{-48}
- E) 6.56×10^{-14}
- 2) Calculate the kinetic energy in joules of an automobile weighing 2135 lb and traveling at 55 mph. (1 mile = 1.6093 km, 1lb = 453.59 g).
- A) 1.2×10^4
- B) 2.9×10^{5}
- C) 5.9×10^5
- D) 3.2×10^6
- E) 3.2×10^{-6}
- 3) The kinetic energy of a 7.3 kg steel ball traveling at 18.0 m/s is ______ J.
- A) 1.2×10^3
- B) 66
- C) 2.4×10^3
- D) 1.3×10^2
- E) 7.3
- 4) Calculate the kinetic energy in joules of a 150 lb jogger (68.1 kg) traveling at 12.0 mile/hr (5.36 m/s).
- A) 1.96×10^3
- B) 365
- C) 978
- D) 183
- E) 68.1
- 5) Calculate the kinetic energy in joules of an 80.0 g bullet traveling at 300.0 m/s.

- A) 3.60×10^6
- B) 1.20×10^4
- C) 3.60×10^3
- D) 12.0
- E) 80.0
- 6) The kinetic energy of a 23.2-g object moving at a speed of 81.9 m/s is ______ J.
- A) 145
- B) 0.95
- C) 77.8
- D) 77,800
- E) 1900
- 7) The kinetic energy of a 23.2-g object moving at a speed of 81.9 km/hr is ______ J.
- A) 1900
- B) 77.8
- C) 145
- D) 1.43×10^{-3}
- E) 6.00
- 8) The kinetic energy of a 23.2-g object moving at a speed of 81.9 km/hr is _____ kcal.
- A) 1.43×10^{-3}
- B) 6.00
- C) 1900
- D) 454
- E) 0.0251
- 9) A 100-watt electric incandescent light bulb consumes _____ J of energy in 24 hours. [1 Watt (W) = 1 J/sec]
- A) 2.40×10^3
- B) 8.64×10^3
- C) 4.17
- D) 2.10×10^3
- E) 8.64×10^6
- 10) The ΔE of a system that releases 12.4 J of heat and does 4.2 J of work on the surroundings is

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 5: Thermochemistry	
J.	D) 10,155
	E) 5,155
A) 16.6	
B) 12.4	15) The value of ΔH° for the reaction below is -72
C) 4.2	kJ kJ of heat are released when 1.0
D) -16.6	mol of HBr is formed in this reaction.
E) -8.2	$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$
11) The value of ΔE for a system that performs 213	A) 144
kJ of work on its surroundings and loses 79 kJ of heat	B) 72
is kJ.	C) 0.44
15 KJ.	D) 36
A) +292	E) -72
B) -292	16) The value of ΔH° for the reaction below is -126
C) $+134$	kJ kj are released when 2.00 mol of
D) -134	NaOH is formed in the reaction?
E) -213	$2Na_2O_2(s) + 2H_2O(l) \rightarrow 4NaOH(s) + O_2(g)$
12) Calculate the value of ΔE in joules for a system	A \ 252
that loses 50 J of heat and has 150 J of work	A) 252 B) 63
performed on it by the surroundings.	C) 3.9
	D) 7.8
A) 50	E) -126
B) 100	2) 120
C) -100	17) The value of ΔH° for the reaction below is -126
D) -200 E) -200	kJ. The amount of heat that is released by the
E) $+200$	reaction of 25.0 g of Na ₂ O ₂ with water is
13) The change in the internal energy of a system	kJ.
that absorbs 2,500 J of heat and that does 7,655 J of work on the surroundings is J.	$2\text{Na}_2\text{O}_2(s) + 2\text{H}_2\text{O}(l) \rightarrow 4\text{NaOH}(s) + \text{O}_2(g)$
	A) 20.2
A) 10,155	B) 40.4
B) 5,155	C) 67.5
C) -5,155	D) 80.8
D) -10,155	E) -126
E) 1.91×10^7	19) The value of AIIO for the recetion below in 700
14) The change in the internal energy of a system	18) The value of ΔH° for the reaction below is -790
that releases 2,500 J of heat and that does 7,655 J of	kJ. The enthalpy change accompanying the reaction
work on the surroundings is J.	of 0.95 g of S is kJ.
work on the surroundings isJ.	$2S(s)+3O_2(g) \rightarrow 2SO_3(g)$
A) -10,155	() () () () () () () () () ()
B) -5,155	A) 23
C) -1.91×10^7	B) -23
	, -

- C) -12
- D) 12
- E) -790

19) The value of ΔH° for the reaction below is -6535 kJ. _____ kJ of heat are released in the combustion of 16.0 g of $C_6H_6(1)$?

$$2C_6H_6(l)+15O_2(g) \rightarrow 12CO_2(g)+6H_2O(l)$$

- A) 1.34×10^3
- B) 5.23×10^4
- C) 669
- D) 2.68×10^3
- E) -6535
- 20) The value of ΔH° for the reaction below is -482 kJ. Calculate the heat (kJ) released to the surroundings when 12.0 g of CO (g) reacts completely.

$$2CO(g)+O_2(g) \rightarrow 2CO_2(g)$$

- A) 2.89×10^3
- B) 207
- C) 103
- D) 65.7
- E) -482
- 21) The value of ΔH° for the reaction below is -336 kJ. Calculate the heat (kJ) released to the surroundings when 23.0 g of HCl is formed.

$$CH_4(g)+3Cl_2(g) \rightarrow CHCl_3(l)+3HCl(g)$$

- A) 177
- B) 2.57×10^3
- C) 70.7
- D) 211
- E) -336
- 22) The value of ΔH° for the reaction below is -186 kJ. Calculate the heat (kJ) released from the reaction of 25 g of Cl₂.

$$H_2(g) + Cl_2 \rightarrow 2HCl(g)$$

- A) 66
- B) 5.3×10^{2}

- C) 33
- D) 47
- E) 186
- 23) The enthalpy change for the following reaction is -483.6 kJ:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

Therefore, the enthalpy change for the following reaction is _____ kJ:

$$4H_2(g) + 2O_2(g) \rightarrow 4H_2O(g)$$

- A) -483.6
- B) -967.2
- C) 2.34×10^5
- D) 483.6
- E) 967.2
- 24) The value of ΔH° for the reaction below is +128.1 kJ:

$$CH_3OH(1) \rightarrow CO(g) + 2H_2(g)$$

How many kJ of heat are consumed when 15.5 g of CH₃OH(l) decomposes as shown in the equation?

- A) 0.48
- B) 62.0
- C) 1.3×10^2
- D) 32
- E) 8.3
- 25) The value of ΔH° for the reaction below is +128.1 kJ:

$$CH_3OH(1) \rightarrow CO(g) + 2H_2(g)$$

How many kJ of heat are consumed when 5.10 g of $H_2(g)$ is formed as shown in the equation?

- A) 162
- B) 62.0
- C) 128
- D) 653
- E) 326

26) The value of ΔH° for the reaction below is +128.1 kJ:

$$CH_3OH(1) \rightarrow CO(g) + 2H_2(g)$$

How many kJ of heat are consumed when 5.10 g of CO(g) is formed as shown in the equation?

- A) 0.182
- B) 162
- C) 8.31
- D) 23.3
- E) 62.0
- 27) The value of ΔH° for the reaction below is +128.1 kJ:

$$CH_3OH(1) \rightarrow CO(g) + 2H_2(g)$$

How many kJ of heat are consumed when 5.75 g of CO(g) is formed as shown in the equation?

- A) 23.3
- B) 62.0
- C) 26.3
- D) 162
- E) 8.3
- 28) The value of ΔH° for the reaction below is -1107 kJ:

$$2Ba(s) + O_{2}(g) \rightarrow 2BaO(s)$$

How many kJ of heat are released when 5.75 g of Ba(s) reacts completely with oxygen to form BaO(s)?

- A) 96.3
- B) 26.3
- C) 46.4
- D) 23.2
- E) 193
- 29) The value of ΔH° for the reaction below is -1107 kJ:

$$2Ba(s) + O_2(g) \rightarrow 2BaO(s)$$

How many kJ of heat are released when 5.75 g of

BaO(s) is produced?

- A) 56.9
- B) 23.2
- C) 20.8
- D) 193
- E) 96.3

30) The value of ΔH° for the reaction below is -1107 kJ:

$$2Ba(s) + O_2(g) \rightarrow 2BaO(s)$$

How many kJ of heat are released when 15.75 g of Ba(s) reacts completely with oxygen to form BaO(s)?

- A) 20.8
- B) 63.5
- C) 114
- D) 70.3
- E) 35.1

31) The molar heat capacity of a compound with the formula C_2H_6SO is 88.0 J/mol-K. The specific heat of this substance is ______ J/g-K.

- A) 88.0
- B) 1.13
- C) 4.89
- D) 6.88×10^3
- E) -88.0

32) A sample of aluminum metal absorbs 9.86 J of heat, upon which the temperature of the sample increases from 23.2 °C to 30.5 °C. Since the specific heat capacity of aluminum is 0.90 J/g-K, the mass of the sample is ______ g.

- A) 72
- B) 1.5
- C) 65
- D) 8.1
- E) 6.6

33) The specific heat capacity of lead is 0.13 J/g-K. How much heat (in J) is required to raise the temperature of 15g of lead from 22 °C to 37 °C?

- A) 2.0
- B) -0.13
- C) 5.8×10^{-4}
- D) 29
- E) 0.13
- 34) The temperature of a 15-g sample of lead metal increases from 22 °C to 37 °C upon the addition of 29.0 J of heat. The specific heat capacity of the lead is ______ J/g-K.
- A) 7.8
- B) 1.9
- C) 29
- D) 0.13
- E) -29
- 35) The specific heat of bromine liquid is 0.226 J/g · K. The molar heat capacity (in J/mol-K) of bromine liquid is _____.
- A) 707
- B) 36.1
- C) 18.1
- D) 9.05
- E) 0.226
- 36) The specific heat of liquid bromine is 0.226 J/g-K. How much heat (J) is required to raise the temperature of 10.0 mL of bromine from 25.00 °C to 27.30 °C? The density of liquid bromine: 3.12 g/mL.
- A) 5.20
- B) 16.2
- C) 300
- D) 32.4
- E) 10.4
- 37) The ΔH for the solution process when solid sodium hydroxide dissolves in water is 44.4 kJ/mol. When a 13.9-g sample of NaOH dissolves in 250.0 g of water in a coffee-cup calorimeter, the temperature increases from 23.0 °C to ______ °C. Assume that the solution has the same specific heat as liquid water, i.e., 4.18 J/g-K.

- A) 35.2 °C
- B) 24.0 °C
- C) 37.8 °C
- D) 37.0 °C
- E) 40.2 °C
- 38) ΔH for the reaction

$$IF_5(g) \rightarrow IF_3(g) + F_2(g)$$

is _____ kJ, give the data below.

$$IF(g) + F_2(g) \rightarrow IF_3(g)$$
 $\Delta H = -390 \text{ kJ}$

$$IF(g) + 2F_2(g) \rightarrow IF_5(g)$$
 $\Delta H = -745 \text{ kJ}$

- A) +355
- B) -1135
- C) + 1135
- D) +35
- E) -35
- 39) Given the following reactions

$$Fe_2O_3(s) + 3CO(s) \rightarrow 2Fe(s) + 3CO_2(g)$$

$$\Delta H = -28.0 \text{ kJ}$$

$$3\text{Fe}(s) + 4\text{CO}_2(s) \rightarrow 4\text{CO}_2(g) + \text{Fe}_3\text{O}_4(s)$$

$$\Delta H = +12.5 \text{ kJ}$$

the enthalpy of the reaction of Fe₂O₃ with CO

$$3Fe_2O_3(s) + CO(g) \rightarrow CO_2(g) + 2Fe_3O_4(s)$$
 is _____ kJ.

A) -59.0

- B) 40.5
- C) -15.5
- D) -109
- E) +109
- 40) Given the following reactions

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$$

$$\Delta H = 66.4 \text{ kJ}$$

$$2NO(g) + O_{\gamma}(g) \rightarrow 2NO_{\gamma}(g)$$

$$\Delta H = -114.2 \text{ kJ}$$

the enthalpy of the reaction of the nitrogen to produce nitric oxide

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$
 is _____ kJ.

- A) 180.6
- B) -47.8
- C) 47.8
- D) 90.3
- E) -180.6
- 41) Given the following reactions
 - $(1) 2NO \rightarrow N_2 + O_2$

$$\Delta H = -180 \text{ kJ}$$

 $(2) 2NO + O_2 \rightarrow 2NO_2$

 $\Delta H = -112 \text{ kJ}$

the enthalpy of the reaction of nitrogen with oxygen to produce nitrogen dioxide

$$N_2 + 2O_2 \rightarrow 2NO_2$$

is _____ kJ.

- A) 68
- B) -68
- C) -292
- D) 292
- E) 146
- 42) Given the following reactions:

$$2S(s) + 3O_2(g) \rightarrow 2SO_3(g)$$

$$\Delta H = -790 \text{ kJ}$$

$$S(s) + O_{\gamma}(g) \rightarrow SO_{\gamma}(g)$$

$$\Delta H = -297 \text{ kJ}$$

the enthalpy of the reaction in which sulfur dioxide is oxidized to sulfur trioxide

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

is _____ kJ.

- A) 196
- B) -196
- C) 1087
- D) -1384
- E) -543
- 43) Given the following reactions

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$
 $\Delta H = 178.1 \text{ kJ}$

C(s, graphite) + $O_2(g) \rightarrow CO_2(g)$ $\Delta H = -393.5 \text{ kJ}$

the enthalpy of the reaction

$$CaCO_3(s) \rightarrow CaO(s) + C(s, graphite) + O_2(g)$$

is _____ kJ.

- A) 215.4
- B) 571.6
- C) -215.4
- D) -571.6
- E) 7.01×10^4
- 44) Given the following reactions

$$H_2O(1) \rightarrow H_2O(g)$$

$$\Delta H = 44.01 \text{ kJ}$$

$$2H_2(g)+O_2(g) \rightarrow 2H_2O(g)$$

$$\Delta H = -483.64 \text{ kJ}$$

the enthalpy for the decomposition of liquid water into gaseous hydrogen and oxygen

$$2H_2O(1) \rightarrow 2H_2(g)+O_2(g)$$

is _____ kJ.

- A) -395.62
- B) -527.65
- C) 439.63
- D) 571.66
- E) 527.65
- 45) Given the following reactions

$$N_{\gamma}(g) + O_{\gamma}(g) \rightarrow 2NO(g)$$

$$\Delta H = +180.7 \text{ kJ}$$

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

$$\Delta H = -113.1 \text{ kJ}$$

the enthalpy for the decomposition of nitrogen dioxide into molecular nitrogen and oxygen

$$2NO_2(g) \rightarrow N_2(g) + 2O_2(g)$$

is _____ kJ.

- A) 67.6
- B) -67.6
- C) 293.8
- D) -293.8
- E) 45.5
- 46) Given the following reactions

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

$$\Delta H = +180.7 \text{ kJ}$$

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H = -113.1 \text{ kJ}$ the enthalpy of reaction for

$$4NO(g) \rightarrow 2NO_2(g) + N_2(g)$$

is _____ kJ.

- A) 67.6
- B) 45.5
- C) -293.8
- D) -45.5
- E) 293.8
- 47) Given the following reactions

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

$$\Delta H = +180.7 \text{ kJ}$$

$$2N_2O(g) \rightarrow O_2(g) + 2N_2(g)$$

$$\Delta H = -163.2 \text{ kJ}$$

the enthalpy of reaction for

$$2N_2O(g) \rightarrow 2NO(g) + N_2(g)$$

is _____ kJ.

- A) 145.7
- B) 343.9
- C) -343.9
- D) 17.5
- E) -145.7
- 48) The value of ΔH° for the reaction below is -186 kJ.

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

The value of ΔH_f° for HCl (g) is _____kJ/mol.

- A) -3.72×10^2
- B) -1.27×10^2
- C) -93.0
- D) -186
- E) + 186
- 49) The value of ΔH° for the following reaction is -3351 kJ:

$$2Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$

The value of ΔH_f° for $Al_2O_3(s)$ is _____ kJ.

- A) -3351
- B) -1676

D) -16.43

E)
$$+3351$$

50) Given the data in the table below, ΔH°_{rxn} for the reaction

$$\label{eq:caOH} \begin{split} &Ca(OH)_2 + 2H_3AsO_4 \rightarrow Ca(H_2AsO_4)_2 + 2H_2O \\ is &____ kJ. \end{split}$$

Substance	$\Delta H_{\mathbf{f}^o}$ (kJ/mol)
Ca(OH) ₂	-986.6
H3AsO4	-900.4
Ca(H ₂ AsO ₄) ₂	-2346.0
H ₂ O	-285.9

- A) -744.9
- B) -4519
- C) -4219
- D) -130.4
- E) -76.4
- 51) Given the data in the table below, ΔH°_{rxn} for the reaction

$$4NH3(g) + 5O2(g) \rightarrow 4NO(g) + 6H2O(l)$$
 is _____ kJ.

Substance	$\Delta H_{\mathbf{f}}^{o}$ (kJ/mol)
H ₂ O (l)	-286
NO (g)	90
NO ₂ (g)	34
HNO3 (aq)	-207
NH3 (g)	-46

- A) -1172
- B) -150
- C) -1540
- D) -1892
- E) The ΔH_f° of $O_2(g)$ is needed for the calculation.
- 52) Given the data in the table below, ΔH°_{rxn} for the reaction

$$\label{eq:c2} \begin{split} C_2H_5OH(l)+O_2(g) &\to CH_3CO_2H(l)+H_2O(l) \\ is &____kJ. \end{split}$$

Substance	$\Delta H_{\mathbf{f}^o}$ (kJ/mol)
C ₂ H ₄ (g)	523
C ₂ H ₅ OH (1)	-277.7
CH3CO2H (1)	-484.5
H ₂ O (l)	-285.8

- A) -79.0
- B) -1048.0
- C) -476.4
- D) -492.6
- E) The value of ΔH_f° of $O_2(g)$ is required for the calculation.
- 53) Given the data in the table below, ΔH°_{rxn} for the reaction

$$is \underline{\hspace{1cm} \begin{array}{c|c} 3NO_2 + H_2O(l) \rightarrow 2HNO_3(aq) + NO(g) \\ kJ. \\ \underline{\hspace{1cm} \begin{array}{c|c} Substance & \triangle H_f^o \ (kJ/mol) \\ \hline H_2O \ (l) & -286 \end{array}}$$

Substance	$\Delta H_{f''}(kJ/mol)$
H ₂ O (l)	-286
NO (g)	90
NO ₂ (g)	34
HNO3 (aq)	-207
NH3 (g)	-46

- A) 64
- B) 140
- C) -140
- D) -508
- E) -64
- 54) Given the data in the table below, ΔH°_{rxn} for the reaction

$$IF_{\scriptscriptstyle 5}(g) + F_{\scriptscriptstyle 2}(g) \to IF_{\scriptscriptstyle 7}(g)$$
 is _____ kJ.

Substance	ΔH_{f}^{o} (kJ/mol)
IF (g)	-95
IF ₅ (g)	-840
IF ₇ (g)	-941

- A) 1801
- B) -1801
- C) 121
- D) -121
- E) -101
- 55) Given the data in the table below, ΔH° for the reaction

$$2\mathrm{CO}(\mathrm{g}) + \mathrm{O_2}(\mathrm{g}) \to 2\mathrm{CO_2}(\mathrm{g})$$
 is _____ kJ.

Substance	ΔH _f ° (kJ/mol)
CO (g)	-110.5
CO ₂ (g)	-393.7
CaCO3 (s)	-1207.0

- A) -566.4
- B) -283.2
- C) 283.2
- D) -677.0
- E) The ΔH_{f}° of $O_{2}(g)$ is needed for the calculation.
- 56) The value of ΔH° for the following reaction is 177.8 kJ. The value of ΔH°_{f} for

CaO(s) is _____kJ/mol.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Substance	ΔH_{f}^{o} (kJ/mol)
CO (g)	-110.5
CO ₂ (g)	-393.7
CaCO3 (s)	-1207.0

- A) -1600
- B) -813.4
- C) -635.5
- D) 813.4
- E) 177.8

57) Given the data in the table below, ΔH°_{rxn} for the reaction

$$2Ag_2S(s) + O_2(g) \rightarrow 2Ag_2O(s) + 2S(s)$$
 is _____ kJ.

Substance	ΔH _f ° (kJ/mol)
Ag ₂ O (s)	-31.0
$Ag_2S(s)$	-326
H ₂ S (g)	-20.6
H ₂ O(l)	-286

- A) -1.6
- B) +1.6
- C) -3.2
- D) +3.2
- E) The ΔH_{f}° of S(s) and of $O_{2}(g)$ are needed for the calculation.
- 58) Given the data in the table below, ΔH°_{rxn} for the reaction

$$Ag_2O(s) + H_2S(g) \rightarrow Ag_2S(s) + H_2O(l)$$
is ______ kJ.
$$Substance |\Delta H_f^{\circ}(kJ/mol)|$$

$$Ag_2O(s) = -31.0$$

$$Ag_2S(s) = -32.6$$

$$H_2S(g) = -20.6$$

H₂O(l)

- A) -267
- B) -370
- C) -202
- D) -308
- E) More data are needed to complete the calculation.

-286

59) Given the data in the table below ΔH°_{rxn} for the reaction

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$
 is _____ kJ.

Substance	$\Delta H_{\mathbf{f}}^{o}$ (kJ/mol)
SO ₂ (g)	-297
SO ₃ (g)	-396
SO ₂ Cl ₂ (g)	-364
H ₂ SO ₄ (1)	-814
H ₂ O (1)	-286

- A) -99
- B) 99
- C) 198
- D) 198
- E) The ΔH_{f}° of $O_{2}(g)$ is needed for the calculation.
- 60) Given the data in the table below ΔH°_{rxn} for the reaction

is ______ SO₃(g) + H₂O(l)
$$\rightarrow$$
 H₂SO₄(l)
is ______ kJ.
Substance $|\Delta$ H_f° (kJ/mol)
SO₂(g) -297
SO₃(g) -396
SO₂Cl₂(g) -364
H₂SO₄(l) -814
H₂O(l) -286

- A) -132
- B) 1496
- C) 704
- D) -704
- E) -2.16×10^3
- 61) Given the data in the table below, ΔH°_{rxn} for the reaction

$$3Cl2(g) + PH3(g) \rightarrow PCl3(g) + 3HCl(g)$$
 is _____ kJ.

ΔH_{f}^{o} (kJ/mol)
-288.07
-9230
5.40

- A) -385.77
- B) -570.37

- C) 570.37
- D) 385.77
- E) The ΔH_{f}° of $Cl_{2}(g)$ is needed for the calculation.
- 62) Given the data in the table below, ΔH°_{rxn} for the reaction

$$\begin{array}{c|c} & PCl_{3}(g) + 3HCl(g) \rightarrow 3Cl_{2}(g) + PH_{3}(g) \\ is \underline{\hspace{2cm}} & kJ. \\ & \underline{\hspace{2cm}} & \underline{\hspace{2cm$$

- A) -570.37
- B) -385.77
- C) 570.37
- D) 385.77
- E) The ΔH_{f}° of $Cl_{2}(g)$ is needed for the calculation.
- 63) Given the data in the table below and ΔH°_{rxn} for the reaction

$$SO_2Cl_2(g) + 2H_2O(l) \rightarrow H_2SO_4(l) + 2HCL(g)$$

 $\Delta H^{\circ} = -62 \text{ kJ}$

 ΔH_{f}° of HCl(g) is _____ kJ/mol.

Substance	ΔH _f ° (kJ/mol)
50 ₂ (g)	-297
SO ₃ (g)	-396
SO ₂ Cl ₂ (g)	-364
H ₂ SO ₄ (1)	-814
H ₂ O(l)	-286

- A) -184
- B) 60
- C) -92
- D) 30
- E) Insufficient data are given.
- 64) A 5-ounce cup of raspberry yogurt contains 6.0 g of protein, 2.0 g of fat, and 26.9 g of carbohydrate. The fuel values for protein, fat, and carbohydrate are

- 17, 38, and 17 kJ/g, respectively. The fuel value of this cup of yogurt is _____ kJ.
- A) 640
- B) 830
- C) 600
- D) 720
- E) 72
- 65) A 25.5-g piece of cheddar cheese contains 37% fat, 28% protein, and 4% carbohydrate. The respective fuel values for protein, fat, and carbohydrate are 17, 38, and 17 kJ/g, respectively. The fuel value for this piece of cheese is _____kJ.
- A) 450
- B) 330
- C) 790
- D) 99
- E) 260
- 66) The average fuel value of sugars is 17 kJ/g. A 2.0 L pitcher of sweetened Kool-Aid contains 400 g of sugar. What is the fuel value (in kJ) of a 500 mL serving of Kool-Aid? (Assume that the sugar is the only fuel source.)
- A) 4.2×10^4
- B) 1.7×10^3
- C) 1.7×10^6
- D) 1.7×10^2
- E) 17

5.2 Multiple Choice Questions

- 1) At what velocity (m/s) must a 20.0 g object be moving in order to possess a kinetic energy of 1.00 J?
- A) 1.00
- B) 100×10^2
- C) 10.0
- D) 1.00×10^3
- E) 50.0

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 5: Thermochemistry	
2) Objects can possess energy as	E) None of the above is correct.
(a) endothermic energy	6) The value of ΔE for a system that performs 111 kJ
(b) potential energy	of work on its surroundings and gains 89 kJ of heat is
(c) kinetic energy	kJ.
A) a only	A) -111
B) b only	B) -200
C) c only	C) 200
D) a and c	D) -22
E) b and c	E) 22
3) The internal energy of a system is always increased by	7) The value of ΔE for a system that performs 13 kJ of work on its surroundings and loses 9 kJ of heat is
·	kJ.
A) adding heat to the systemB) having the system do work on the surroundings	A) 22
C) withdrawing heat from the system	B) -22
D) adding heat to the system and having the system	C) -4
do work on the surroundings	D) 4
E) a volume compression	E) -13
	_, -:
4) The internal energy of a system	8) When a system, ΔE is <u>always</u>
A) is the sum of the kinetic energy of all of its	negative.
A) is the sum of the kinetic energy of all of its	A) absorbs heat and does work
components B) is the sum of the rotational, vibrational, and	B) gives off heat and does work
translational energies of all of its components	C) absorbs heat and has work done on it
C) refers only to the energies of the nuclei of the	D) gives off heat and has work done on it
atoms of the component molecules	E) none of the above is <u>always</u> negative.
D) is the sum of the potential and kinetic energies of	D) none of the doore is <u>arways</u> negative.
the components	9) Which one of the following is an endothermic
E) none of the above	process?
5) Which one of the following conditions would	A) ice melting
always result in an increase in the internal energy of	B) water freezing
a system?	C) boiling soup
	D) Hydrochloric acid and barium hydroxide are
A) The system loses heat and does work on the	mixed at 25 °C: the temperature increases.
surroundings.	E) Both A and C
B) The system gains heat and does work on the	
surroundings.	10) Which one of the following is an exothermic
C) The system loses heat and has work done on it by the surroundings.	process?
D) The system gains heat and has work done on it by	A) ice melting
the surroundings.	B) water evaporating
	, 1

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 5: Thermochemistry	
C) boiling soup	D) zero, exothermic
D) condensation of water vapor	E) zero, endothermic
E) Ammonium thiocyanate and barium hydroxide	
are mixed at 25 °C: the temperature drops.	15) A $_$ ΔH corresponds to an
	process.
11) Of the following, which one is a state function?	
	A) negative, endothermic
A) H	B) positive, exothermic
B) q	C) positive, endothermic
C) w	D) zero, exothermic
D) heat	E) zero, endothermic
E) none of the above	
	16) ΔH for an endothermic process is
12) Which of the following is a statement of the first law of thermodynamics?	while ΔH for an exothermic process is
	A) zero, positive
A) $E_k = \frac{1}{2} mv^2$	B) zero, negative
A) $E_k = \frac{1}{2} \text{mV}$	C) positive, zero
B) A negative ΔH corresponds to an exothermic	D) negative, positive
process.	E) positive, negative
C) $\Delta E = E_{\text{final}} - E_{\text{initial}}$	
	17) For a given process at constant pressure, ΔH is
D) Energy lost by the system must be gained by the surroundings.	negative. This means that the process is
E) 1 cal = 4.184 J (exactly)	 '
	A) endothermic
13) The internal energy can be increased by	B) equithermic
	C) exothermic
	D) a state function
(a) transferring heat from the surroundings to	E) energy
the system	2) chergy
(b) transferring heat from the system to the	18) Which one of the following statements is true?
surroundings	10) Which one of the following statements is true.
(c) doing work on the system	A) Enthalpy is an intensive property.
•	B) The enthalpy change for a reaction is independent
A) a only	of the state of the reactants and products.
B) b only	C) Enthalpy is a state function.
C) c only	D) H is the value of q measured under conditions of
D) a and c	constant volume.
E) b and c	E) The enthalpy change of a reaction is the reciprocal
	of the ΔH of the reverse reaction.
14) A ΔH corresponds to an	
process.	19) Which of the following statements is false?
A) negative, endothermic	A) Internal energy is a state function.
B) negative, exothermic	B) Enthalpy is an intensive property.
C) positive, exothermic	=, Zmanapj is an interior, o property.

Chapter 5: Thermochemistry	
C) The enthalpy change for a reaction is equal in	C) J/g-K or J/g- °C
magnitude, but opposite in sign, to the enthalpy	D) J/mol
change for the reverse reaction.	E) g-K/J or g- °C/J
D) The enthalpy change for a reaction depends on	
the state of the reactants and products.	24) The units of specific heat are
E) The enthalpy of a reaction is equal to the heat of	24) The units of specific heat are
the reaction.	A) K/J or °C/J
the reaction.	
20) A shaming larger that shapping heat from the	B) J/K or J/°C
20) A chemical reaction that absorbs heat from the	C) J/g-K or J/g-°C
surroundings is said to be and has a	D) J/mol
ΔH at constant pressure.	E) g-K/J or g-°C/J
A) endothermic, positive	25) The British thermal unit (Btu) is commonly used
B) endothermic, negative	in engineering applications. A Btu is defined as the
C) exothermic, negative	amount of heat required to raise the temperature of 1
D) exothermic, positive	lb of water by 1 °F. There are joules in
E) exothermic, neutral	one Btu. 1 lb = 453.59 g; °C = $(5/9)(°F - 32°)$;
2) exotierine, neutra	specific heat of H ₂ O (l) = 4.184 J/g-K .
21) The reaction	specific field of $\Pi_{ZO}(i) = 1.10 + 3/g$ K.
4Al(s) + $3O_2(g) \rightarrow 2Al_2O_3(s)$ $\Delta H^\circ = -3351 \text{ kJ}$	A) 3415
- ·	B) 60.29
is, and therefore heat is by	C) 1054
the reaction.	•
	D) 5.120×10^{-3}
A) endothermic, released	E) Additional information is needed to complete the
B) endothermic, absorbed	calculation.
C) exothermic, released	
D) exothermic, absorbed	26) A sample of calcium carbonate $\left[\text{CaCO}_3(s)\right]$
E) thermoneutral, neither released nor absorbed	absorbs 45.5 J of heat, upon which the temperature
	of the sample increases from 21.1 °C to 28.5 °C. If
22) Under what condition(s) is the enthalpy change	the specific heat of calcium carbonate is 0.82 J/g-K,
of a process equal to the amount of heat transferred	what is the mass (in grams) of the sample?
into or out of the system?	what is the mass (in grams) of the sample.
(a) temperature is constant	A) 3.7
(b) pressure is constant	B) 5.0
(c) volume is constant	C) 7.5
	D) 410
A) a only	
B) b only	E) 5.0×10^3
C) c only	27) 4 0 20 1 6 1 1
D) a and b	27) An 8.29 g sample of calcium carbonate
E) b and c	$[CaCO_3(s)]$ absorbs 50.3 J of heat, upon which the
	temperature of the sample increases from 21.1 °C to
23) The units of of heat capacity are	28.5 °C. What is the specific heat of calcium
· · · · · · · · · · · · · · · · · · ·	carbonate?
A) K/J or °C/J	
B) J/K or J/ $^{\circ}$ C	A) .63
,	,

Chemistry, 11e (Brown/LeMay/Bursten/Murphy)

- B) .82
- C) 1.1
- D) 2.2
- E) 4.2
- 28) A sample of iron absorbs 67.5 J of heat, upon which the temperature of the sample increases from $21.5~^{\circ}\text{C}$ to $28.5~^{\circ}\text{C}$. If the specific heat of iron is 0.450~J/g-K, what is the mass (in grams) of the sample?
- A) 4.3
- B) 11
- C) 21
- D) 1100
- E) 1.1×10^3
- 29) A 22.44 g sample of iron absorbs 180.8 J of heat, upon which the temperature of the sample increases from 21.1 °C to 39.0 °C. What is the specific heat of iron?
- A) 0.140
- B) 0.450
- C) 0.820
- D) 0.840
- E) 0.900
- 30) Which of the following is a statement of Hess's law?
- A) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the sum of the enthalpy changes for the individual steps.
- B) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the product of the enthalpy changes for the individual steps.
- C) The ΔH for a process in the forward direction is equal in magnitude and opposite in sign to the ΔH for the process in the reverse direction.
- D) The ΔH for a process in the forward direction is equal to the ΔH for the process in the reverse direction.
- E) The ΔH of a reaction depends on the physical states of the reactants and products.

- 31) For which one of the following reactions is ΔH°_{rxn} equal to the heat of formation of the product?
- A) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
- B) $(1/2)N_2(g) + O_2(g) \rightarrow NO_2(g)$
- C) $6C(s) + 6H(g) \rightarrow C_6H_6(l)$
- D) $P(g) + 4H(g) + Br(g) \rightarrow PH_4Br(l)$
- E) $12C(g) + 11H_2(g) + 11O(g) \rightarrow C_6H_{22}O_{11}(g)$
- 32) Of the following, ΔH_f° is <u>not</u> zero for

A) $O_2(g)$

- B) C (graphite)
- C) $N_2(g)$
- D) $F_2(s)$
- E) $Cl_2(g)$
- 33) Consider the following two reactions:

$$A \rightarrow 2B$$

 $\Delta H^{\circ}_{rxn} = 456.7 \text{ kJ/mol}$
 $A \rightarrow C$
 $\Delta H^{\circ}_{rxn} = -22.1 \text{kJ/mol}$

Determine the enthalpy change for the process:

$$2B \rightarrow C$$

- A) -478.8 kJ/mol
- B) -434.6 kJ/mol
- C) 434.6 kJ/mol
- D) 478.8 kJ/mol
- E) More information is needed to solve the problem.
- 34) In the reaction below, $\Delta H_{_{\rm f}}{}^{\circ}$ is zero for

$$Ni(s) + 2CO(g) + 2PF_3(g) \rightarrow Ni(CO)_2(PF_3)_2(l)$$

- A) Ni(s)
- B) CO(g)
- C) $PF_3(g)$
- D) Ni(CO)₂(PF₃)₂(l)
- E) both CO(s) and $PF_3(g)$
- 35) For the species in the reaction below, ΔH_f° is zero for _____.

$$2\text{Co(s)} + \text{H}_{2}(g) + 8\text{PF}_{3}(g) \rightarrow 2\text{HCo(PF}_{3})_{4}(l)$$

- A) Co(s)
- B) $H_2(g)$
- C) $PF_3(g)$
- D) $HCo(PF_3)_4$ (1)
- E) both CO(s) and $H_2(g)$
- 36) For which one of the following equations is ΔH°_{rxn} equal to ΔH_{f}° for the product?
- A) $Xe(g) + 2F_2(g) \rightarrow XeF_4(g)$
- B) $CH_4(g) + 2Cl_2(g) \rightarrow CH_2Cl_2(l) + 2HCl(g)$
- C) $N_2(g) + O_3(g) \to N_2O_3(g)$
- D) $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$
- E) C (diamond) + $O_2(g) \rightarrow CO_2(g)$
- 37) For which one of the following reactions is the value of ΔH°_{rxn} equal to ΔH_{f}° for the product?
- A) $2Ca(s) + O_2(g) \rightarrow 2CaO(s)$
- B) $C_2H_2(g) + H_2(g) \rightarrow C_2H_4(g)$
- C) 2C (graphite) + $O_2(g) \rightarrow 2CO(g)$
- D) $3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$
- E) C (diamond) + $O_2(g) \rightarrow CO_2(g)$
- 38) For which one of the following reactions is the value of ΔH°_{rxn} equal to ΔH°_{f} for the product?

- A) 2C (s, graphite) + $2H_2(g) \rightarrow C_2H_4(g)$
- B) $N_2(g) + O_2(g) \rightarrow 2NO(g)$
- C) $2H_2(g) + O_2(g) \rightarrow 2H_2O(1)$
- D) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- E) $H_2O(1) + 1/2O_2(g) \rightarrow H_2O_2(1)$
- 39) For which one of the following reactions is the value of ΔH°_{rxn} equal to ΔH°_{f} for the product?
- A) $H_2O(1) + 1/2O_2(g) \rightarrow H_2O_2(1)$
- B) $N_2(g) + O_2(g) \rightarrow 2NO(g)$
- C) $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$
- D) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- E) none of the above
- 40) For which one of the following reactions is the value of ΔH°_{rxn} equal to ΔH°_{f} for the product?
- A) $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(l)$
- B) $H_2(g) + O_2(g) \rightarrow H_2O_2(l)$
- C) 2C (s, graphite) + $2H_2(g) \rightarrow C_2H_4(g)$
- D) $1/2N_2(g) + O_2(g) \to NO_2(g)$
- E) all of the above
- 41) With reference to enthalpy changes, the term standard conditions means ______.
 - (a) P = 1 atm
 - (b) some common temperature, usually 298

K

(c)
$$V = 1 L$$

- A) a only
- B) b only
- C) c only
- D) a and c
- E) a and b
- 42) The energy released by combustion of 1 g of a substance is called the ______ of the substance.

1) is defined as the energy used to move	5.4 True/False Questions
5.3 Short Answer Questions	
D) uranium E) hydrogen	8) Coal contains hydrocarbons of high molecular weight as well as compounds containing, oxygen, or nitrogen.
A) natural gas B) petroleum C) coal	7) Syngas is produced by treating with superheated steam.
46) The most abundant fossil fuel is	enthalpy change when all reactants and products are at pressure and a specific temperature.
D) hydrogen E) petroleum	6) The standard enthalpy change of a reaction is the
C) natural gas	kJ.
,	(CH ₄) are burned in an excess amount of oxygen is
A) anthracite coal B) crude oil	The heat liberated when 34.78 grams of methane
45) Which one of the choices below is <u>not</u> considered a fossil fuel?	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + H_2O(l)$ $\Delta H = -890$ kJ
E) wood	5) Given the equation:
D) hydrogen	
C) natural gas	specific heat of water is 4.18 J/g-°C.)
A) charcoal B) bituminous coal	heat absorbed by the water is J. (The
44) Of the substances below, the highest fuel value is obtained from	4) When 0.800 grams of NaOH is dissolved in 100.0 grams of water, the temperature of the solution increases from 25.00 °C to 27.06 °C. The amount of
E) C_6H_6	Calculate the heat required to convert 3.00 grams of liquid water at 100 °C to vapor.
D) CH ₄	
C) C_2H_2	$H_2O(1) \rightarrow H_2O(g)$ $\Delta H_{rxn} = 40.7 \text{ kJ at } 100 ^{\circ}\text{C}$
B) C_2H_4	•
A) C_2H_6	3) Given the equation
43) Fuel values of hydrocarbons increase as the H/C atomic ratio increases. Which of the following compounds has the highest fuel value?	Calculate the mass of liquid water (in grams) at 100 °C that can converted to vapor by absorbing 2.400 kJ of heat.
E) enthalpy	$H_2O(1) \rightarrow H_2O(g)$ $\Delta H_{rxn} = 40.7 \text{ kJ at } 100 ^{\circ}\text{C}$
D) heat capacity	, 1
C) nutritional calorie content	2) Given the equation
A) specific heat B) fuel value	an object against a force.
Chapter 5: Thermochemistry	
Chemistry, 11e (Brown/LeMay/Bursten/Murphy)	

- 1) Work equals force times distance.
- 2) One joule equals 1 kg m^2/s^2 .
- 3) Units of energy include newtons, joules, and calories.
- 4) The primary component of natural gas is propane.
- 5) Renewable energy sources are essentially inexhaustible.
- 6) Petroleum is a liquid composed of hundreds of compounds.

5.5 Algorithmic Questions

1) In the presence of excess oxygen, methane gas burns in a constant-pressure system to yield carbon dioxide and water:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + H_2O(l)$$

 $\Delta H = -890.0 \text{ kJ}$

Calculate the value of q (kJ) in this exothermic reaction when 1.70 g of methane is combusted at constant pressure.

- A) -94.6
- B) 0.0306
- C) -0.0106
- D) 32.7
- E) -9.46×10^4

2) Hydrogen peroxide decomposes to water and oxygen at constant pressure by the following reaction:

$$2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$$

 $\Delta H = -196 \text{ kJ}$

Calculate the value of q (kJ) in this exothermic reaction when 4.00 g of hydrogen peroxide decomposes at constant pressure?

A) -23.1

- B) -11.5
- C) -0.0217
- D) 1.44
- E) -2.31×10^4

3) The combustion of titanium with oxygen produces titanium dioxide:

$$Ti(s) + O_{\gamma}(g) \rightarrow TiO_{\gamma}(s)$$

When 2.060 g of titanium is combusted in a bomb calorimeter, the temperature of the calorimeter increases from 25.00 °C to 91.60 °C. In a separate experiment, the heat capacity of the calorimeter is measured to be 9.84 kJ/K. The heat of reaction for the combustion of a mole of Ti in this calorimeter is _____ kJ/mol.

- A) 14.3
- B) 19.6
- C) -311
- D) -0.154
- E) -1.52×10^4
- 4) The specific heat capacity of liquid water is 4.18 J/g-K. How many joules of heat are needed to raise the temperature of 5.00 g of water from 25.1 °C to 65.3 °C?
- A) 48.1
- B) 840
- C) 1.89×10^3
- D) 2.80×10^{-2}
- E) 54.4
- 5) The specific heat capacity of methane gas is 2.20 J/g-K. How many joules of heat are needed to raise the temperature of 5.00 g of methane from 36.0 $^{\circ}$ C to 75.0 $^{\circ}$ C?
- A) 88.6
- B) 429
- C) 1221
- D) 0.0113
- E) 22.9

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 5: Thermochemistry 6) The specific heat capacity of liquid mercury is 0.14 J/g-K. How many joules of heat are needed to raise the temperature of 5.00 g of mercury from 15.0 °C to 36.5 °C? A) 7.7×10^2 B) 15 C) 36 D) 0.0013 E) 1.7 7) The specific heat capacity of solid copper metal is 0.385 J/g-K. How many joules of heat are needed to raise the temperature of a 1.55-kg block of copper from 33.0 °C to 77.5 °C? A) 1.79×10^5 B) 26.6 C) 2.66×10^4 D) 5.58×10^{-6} E) 0.00558 8) A 5.00-g sample of liquid water at 25.0 C is heated by the addition of 84.0 J of energy. The final temperature of the water is _____ °C. The specific heat capacity of liquid water is 4.18 J/g-K A) 95.2 B) 25.2 C) -21.0D) 29.0 E) 4.02 9) A 50.0-g sample of liquid water at 25.0 C is mixed with 29.0 g of water at 45.0 °C. The final temperature of the water is _____. A) 102 B) 27.6 C) 35.0 D) 142

10) A 6.50-g sample of copper metal at 25.0 °C is heated by the addition of 84.0 J of energy. The final temperature of the copper is _____ °C. The

E) 32.3

specific heat capacity of copper is 0.38 J/g-K

- A) 29.9
- B) 25.0
- C) 9.0
- D) 59.0
- E) 34.0
- 11) What is the enthalpy change (in kJ) of a chemical reaction that raises the temperature of 250.0 ml of solution having a density of 1.25 g/ml by 7.80 °C? (The specific heat of the solution is 3.74 joules/gram-K.)
- A) -7.43
- B) -12.51
- C) 8.20
- D) -9.12
- E) 6.51