LTE PHY description Link Level Simulator

Erika Almeida Lilian Freitas

Summary

- Physical layer documents
- from TS 36.201

TS 36.212 – Multiplexing and Channel Coding

Multiplexing and Channel Coding

Transport block processing (downlink)

Figure 5.3.2-1: Transport block processing for DL-SCH, PCH and MCH.

CRC Calculation

- Input bits a_0, a_1, \dots, a_{A-1} , where A is the size of input sequence
- Parity bits $p_0, p_1, ..., p_{L-1}$, where L is the number of parity bits
- The parity bits are generated by one of the following cyclic generator polynomials:

$$-\operatorname{gcRc24A}(D) = [D^{24} + D^{23} + D^{18} + D^{17} + D^{14} + D^{11} + D^{10} + D^{7} + D^{6} + D^{5} + D^{4} + D^{3} + D + 1] \text{ and};$$

- $g_{CRC24B}(D) = [D^{24} + D^{23} + D^6 + D^5 + D + 1]$ for a CRC length L = 24 and;
- $g_{CRC16}(D) = [D^{16} + D^{12} + D^5 + 1]$ for a CRC length L = 16.
- $g_{CRCS}(D) = [D^8 + D^7 + D^4 + D^3 + D + 1]$ for a CRC length of L = 8.
- The use of one polynomial or another depends on the type of channel. In this simulator we will simulate only PDSCH.

CRC Calculation - PDSCH

- Input bits $a_0, a_1, ..., a_{A-1}$, where A is the size of input sequence
- Parity bits $p_0, p_1, ..., p_{L-1}$, where L is the number of parity bits
- The encoding is performed in a systematic form (the input data is embedded in the output data):

$$a_0 D^{A+23} + a_1 D^{A+22} + \dots + a_{A-1} D^{24} + p_0 D^{23} + p_1 D^{22} + \dots + p_{22} D^1 + p_{23}$$

- The bits after CRC attachment are denoted by: b_0, b_1, \dots, b_{B-1} , where B = A + L. The relationship between a_k and b_k is:
- $b_k = a_k$, for k = 0, 1, 2, ..., A 1
- $b_k = p_k$, for k = A, A + 1, ..., A + L 1

Transport block processing (downlink)

Figure 5.3.2-1: Transport block processing for DL-SCH, PCH and MCH.

Code block segmentation and code block CRC attachment

- The maximum code block size is: Z = 6144
- If $B \ge Z$, segmentation is performed and an additional CRC sequence of L = 24 is attached to each code block. Generator polynomial $g_{CRC24B}(D)$ is used in this case.

Figure 11.11. An example of codeblock segmentation.

- Segmentation is described in clause 5.1.2 of TS 36.212
- A very nice description is shown on this link.

- The bits output from code block segmentation are denoted by:

$$c_{r0}, c_{r1}, \dots, c_r(k_r) - 1$$

- r is the code block number
- K_r is the number of bits for the code block r.

Transport block processing (downlink)

Figure 5.3.2-1: Transport block processing for DL-SCH, PCH and MCH.

Channel Coding (general information) (INDT

- Channel coding can be divided in two methods:
 - Backward error correction (BEC): provides only error detection
 - Forward error correction (FEC): provides error detection and correction \downarrow retransmissions.
- Codes can be:
 - Systematic: the input bits appear on the output
 - Nonsystematic: the input bits do not appear on the output
- Important feature:
 - Code weight: number of "non-zero" symbols in the code word high weight code words can be distinguished easier.

Turbo Coding (5.1.3.2)

Channel Coding (5.1.3)

- Bits on the encoder input: $c_0, c_1, ..., c_{K-1}$
- Bits at the encoder output: $d_0^i, d_1^i, ..., d_{D-1}^i$, where D is the number of encoded bits per output stream and i is the encoder output stream index.
- Two coding schemes are applied on LTE

Tail biting convolutional encoding

On Link Simulations, we are interested on the channel that

Turbo Coding

carriers data			
TrCH	Coding scheme	Coding rate	
UL-SCH		1/3	
DL-SCH	Turbo coding		
PCH	Turbo coding		
MCH			
ВСН	Tail biting convolutional coding	1/3	

carriers data

TS 36.211 - Physical Channels and modulation

Physical Channels and Modulation

Frame structure – Type 1 (FDD)

- Simpler
- More suitable for Link level simulations

Frame structure – Type 2 (TDD)

 There are special subframes used for switching between downlink and uplink transmissions

Frame structure – Type 2 (TDD)

 Frame configuration doesn't allow DL only or UL only simulations.

Uplink-downlink	Downlink-to-Uplink	Subframe number									
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Downlink Description – Resource Elements

- Each element in the resource grid, identified by the index (k,l)
- $k = 0, ..., N_{RB}^{DL} N_{SC}^{RB} 1$
- $= 0, \dots, N_{symb}^{DL} 1$

Downlink Description – Resource Blocks

- Physical Resource block pair:
 - 2 physical RBs in one subframe having the same resource-block number

This was agreed to be on the first version of implemented PHY

Configurat	$N_{ m sc}^{ m RB}$	$N_{ m symb}^{ m DL}$	
Normal cyclic prefix	$\Delta f = 15 \mathrm{kHz}$	12	7
Extended cyclic prefix	$\Delta f = 15 \mathrm{kHz}$	12	6
	$\Delta f = 7.5 \mathrm{kHz}$	24	3

Downlink Description – General structure

Downlink Description – Scrambling

For each codeword q, the block of bits $b^q(0), ..., b^q(M_{bit}^q - 1)$ shall be scrambled prior to modulation, according to (Section 6.3.1):

$$\widetilde{b}^{(q)}(i) = (b^{(q)}(i) + c^{(q)}(i)) \mod 2$$

$$c_{\text{init}} = \begin{cases} n_{\text{RNTI}} \cdot 2^{14} + q \cdot 2^{13} \cdot \frac{N_c}{2} = 1600 \\ n_{\text{S}} / 2 \cdot 2^9 + N_{\text{ID}}^{\text{MBSFN}} \end{cases}$$
 for PDSCH for PMCH

$$c(n) = (x_1(n+N_C) + x_2(n+N_C)) \bmod 2$$

$$x_1(n+31) = (x_1(n+3) + x_1(n)) \bmod 2$$

$$x_2(n+31) = (x_2(n+3) + x_2(n+2) + x_2(n+1) + x_2(n)) \bmod 2$$

$$N_C = 1600$$

• Where n_{RNTI} corresponds to the RNTI associated with the PDSCH described in clause 7.1 in TS 36.213

Downlink Description – Modulation

For each codeword q, the block of scrambled bits $\tilde{b}^q(0), \dots, \tilde{b}^q(M_{bit}^q-1)$ shall be modulated (TS 36.2011 – clause 7.1) 16 OAM

BI	2S	K
----	----	---

b(i)	I	Q
0	$1/\sqrt{2}$	$1/\sqrt{2}$
1	$-1/\sqrt{2}$	$-1/\sqrt{2}$

- 64 QAM is described onTable 7.1.4-1
- 256 QAM is described on Table 7.1.4-2

b(i), b(i+1), b(i+2), b(i+3)	1	Q
0000	1/√10	1/√10
0001	1/√10	3/√10
0010	3/√10	1/√10
0011	3/√10	3/√10
0100	1/√10	$-1/\sqrt{10}$
0101	1/√10	$-3/\sqrt{10}$
0110	3/√10	$-1/\sqrt{10}$
0111	3/√10	$-3/\sqrt{10}$
1000	$-1/\sqrt{10}$	1/√10
1001	$-1/\sqrt{10}$	3/√10
1010	$-3/\sqrt{10}$	1/√10
1011	$-3/\sqrt{10}$	3/√10
1100	$-1/\sqrt{10}$	$-1/\sqrt{10}$
1101	$-1/\sqrt{10}$	$-3/\sqrt{10}$
1110	$-3/\sqrt{10}$	$-1/\sqrt{10}$
1111	$-3/\sqrt{10}$	$-3/\sqrt{10}$

QPSK

b(i), b(i+1)	1	Q
00	$1/\sqrt{2}$	$1/\sqrt{2}$
01	$1/\sqrt{2}$	$-1/\sqrt{2}$
10	$-1/\sqrt{2}$	$1/\sqrt{2}$
11	$-1/\sqrt{2}$	$-1/\sqrt{2}$

Downlink Description – Layer Mapper

- Complex-valued modulation symbols for each of the codewords should be mapped on 1 or several layers.
 - v is the number of layers, M_{symbol}^{layer} is the number of modulation symbols per layer
 - $x(i) = [x^0(i) \dots x^{v-1}(i)], i = 0,1,\dots,M_{symbol}^{layer} 1$
- Single Antenna port

$$x^0(i) = d^0(i)$$

Downlink Description – Layer Mapper

- v is the number of layers, M_{symbol}^{layer} is the number of modulation symbols per layer
- P is the number of antenna ports
- Multiple Antenna Ports
 - Spatial Multiplexing

$$\checkmark v \le P$$

✓ Codeword to layer mapping defined on Table 6.3.3.2-1

Transmit Diversity

$$\checkmark v = P$$

✓ Codeword to layer mapping defined on Table 6.3.3.3-1

Downlink Description – Precoding

Falta fazer essa parte!!!!

THANK YOU

www.indt.org

communications@indt.org.br

