Universität Regensburg Fakultät für Mathematik Prof. Dr. Cisinski, Dr. Hoang-Kim Nguyen, Sebastian Wolf

> Exercises for the course Higher Category Theory (return:17.11.20, 16:00)

Exercise 1 (4 points). Let X be a small set and \mathcal{F} be a family of subsets of X such that, for any $A, B \in \mathcal{F}$, the intersection $A \cap B$ is either empty, either an element of \mathcal{F} . Prove that that the union of all elements in \mathcal{F} is the colimit of the inclusion functor $\mathcal{F} \subset Set$:

$$\varinjlim_{A\in\mathcal{F}}A\cong\bigcup_{A\in\mathcal{F}}A\;.$$

Exercise 2 (4 points). Let A, B and C be categories. Prove that there is a canonical isomorphism of categories

$$Fun(A \times B, C) \cong Fun(A, Fun(B, C))$$
.

Exercise 3 (8 points). Let $u: A \to B$ be a functor. We consider the pullback functor

$$u^*: \widehat{B} \to \widehat{A} \quad X \mapsto \{a \mapsto X_{u(a)}\}\$$

with left adjoint $u_1: \widehat{A} \to \widehat{B}$.

- 1. Prove that, for each presheaf X on A, there is a unique map $\eta_X: X \to u^*u_!(X)$ corresponding to the identity of $u_!(X)$. Prove that this determines a natural transformation $\eta: 1_{\widehat{A}} \to u^*u_!$.
- 2. Prove that the class of presheaves X such that the induced map $\eta_X: X \to u^*u_!(\hat{X})$ is an isomorphism is closed under small colimits in \widehat{A} .
- 3. Prove that the functor u is fully faithful if and only if the induced map $\eta_X: X \to u^*u_!(X)$ is an isomorphism for any presheaf X.
- 4. Prove that the functor u is fully faithful if only if the functor u_1 is fully faithful.

Exercise 4 (6 points). Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be adjoint functors, with given bijections

$$\operatorname{Hom}_{\mathcal{D}}(F(X), Y) \cong \operatorname{Hom}_{\mathcal{C}}(X, D(Y))$$

functorially in each variable.

- 1. Prove that the functor *F* commutes with colimits.
- 2. Prove that the functor G commutes with limits.
- 3. Let Y be an object of \mathcal{D} . We form the category $\mathcal{C}_{/Y}$ as follows. The objects are pairs (X, u), where X is an object of \mathcal{C} and $u: F(X) \to Y$ a map in \mathcal{D} . A morphism from (X, u) to (X', u') is a morphism $a: X \to X'$ such that u'F(a) = u. Prove that the category $\mathcal{C}_{/Y}$ has a final object.