Derbook

Integrice - 1

Sent took

directed groopin.

Strongly connected

other vertices.

Dissected ocyclic goods (DAGI)

It 98 a digraph with no eyele.

Topological coldesing

It you can assung an the modes with pointer only pointing toomand it is alled Topological ordering

Representation of undisposed

- 1 Adjacency matrix
- 2 Adjacency dist
 - 3 compact dist

Adjacency matsin

2 + 2 = 2

|v|=n=5 |E|=e=7

Cost adjacency matrix

	1	2	3	4	5
1	0	9	4	6	0
2	9	0	5	0	00
3/	4	5	0	8	7
4	6	0	8	C	2
5	0	0	7	2	20

Cost adjacency produst

Verifices 1 2 3

$$|V| + 2|E|$$
 $n + 2e$
 $n + 2n = 3n = O(n)$

Grouphs

BFS: 4,5,1,3,7,6;2

1. Visiting

BFS: 1,2,3,4,5,6,7

2. Exprossing

Quere: X, X, X, X, b, 6, X

BEST DE DE DE DE

an)

Elme comprexity

1: 1,4,3,2,15,7,6

2. 5,7,3,6,4,2,1

3. 2/3/1/5/4/7/6

```
Void BFS ("nt")

"nt u;

point ("%d;");

visited ["] = 1;

enquere (q,");

while ("isompty(a))

{

bos (v=1; v(=n; v++))

{

ib (Aculev] == 1 & visited[v] == 0)

{

point ("%d," v);

visited[v] = 1;

enquere (q,v);

Jime complexity -> O(n2)
```

Depth figist Seasich

It Uses Stack data Structure.

DFS :- 1,2,3,5,7,6

OFS Spanning Tolee

Time complexity o(n)

- 1. 1,3,5,4,7,6,2
- 2 1,213,4,5,6,7
- 3. 1,4,5,7,3,2,6
- 4. 4/1/3/5/6/7/2

Spanning tree

- 1 . Spanning bue
 - 2 Polims MST
 - 3. Kowskal MST

I single which acce not valid stanning the

Minimum cost spanning

Spanning > Take will be connected and it will not have cycles.

5+18+12+10+9+6=60

If we use heap took finding minimum edge,

(1VI-1) 10g IEI O(n10gn)

kouskal's

Always solete the minimum edge but moke succe it does not boom a cycle

COS+ = 5 + 18 + 12 + 10 + 9 + 6 = GO

$$(|V|-1)|E|$$
 $ne = nn = n^2 = o(n^2)$

By using heap

O(nlogn)

If you have the Intersection there is no common element among them.

Two operations


```
Union ( Phe U, Int V)
   of (307 < 3 [v])
         S[v] = S[v] + 8[v];
     1 3 EV] = U',
     ese
        SEVJ= SEVJ+SEV]
    SEVI = VIIII
int find (intu)
3
   int w = U
    we go on taking value lill we Icach a
    negative numbers.
    while (SEN] >0)
    3 R = 3[N];
```