Pregunta 5 Sean $T_1 = (E_1, V)$ y $T_2 = (E_2, V)$ dos torneos sobre el mismo conjunto de vértices V. Demuestra la existencia de un vértice desde el cual se puede llegar a todos los demás en un arco de T_1 , o un arco de T_2 , o un arco de T_1 seguido de uno en T_2 .

Llamemos rey doble, a un vértice que cumple la condición descrita y para $u, v, u \neq v \in V$ denotaremos:

```
u \to_1 v \text{ si } (u, v) \in E_1

u \to_2 v \text{ si } (u, v) \in E_2

u \Rightarrow v \text{ si } (u \to_1 v) \land (u \to_2 v) \land (\exists x \in V | u \to_1 x \land x \to_2 v)
```

Inducción Para el caso de los torneos de Tamaño 1, el único vértice es el rey, tanto en T_1 como en T_2 .

Supongamos que es cierto que para todo torneo de tamaño n existe un rey doble Por demostrar, existe un rey noble en todo par de torneos sobre el mismo conjunto de n+1 vértices V.

sea j un vértice cualquiera en V, en las gráfica inducida V_{-j} por los 2 Torneos T_1 y T_2 al retirar j por hipotesis de inducción hay un rey doble r en V_{-j} .

Caso 1: $r \to j$ en T_1 o en T_2 por lo tanto r es un rey

Caso 2: $j \to t$ tanto en T_1 como en T_2 , considere $\delta_{T_1}(r)$ que es la exvecindad de r en T_1 , si $\exists v \in V | v \to j \in T_2$ entonces r es rey doble, en caso contrario $j \to u$ en T_2 a todo vértice en $\delta_{T_1}(r)$ pero como $j \to t$ en T_1 y $j \Rightarrow \delta_{T_1}(r)$ luego $j \Rightarrow \delta_{T_2}(r)$ puesto que $j \to t$ en T_1 y también $j \Rightarrow \delta_{T_2}(\delta_{T_1}(r))$ puesto que $j \to \delta_{T_1}(r)$ en T_1 , pero por r ser rey doble $r \cup \delta_{T_1}(r) \cup \delta_{T_2}(r) \cup \delta_{T_2}(\delta_{T_1}(r)) = V_{-j}$ j es rey doble en $V \blacksquare$