Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Реализация и исследование алгоритма генерации траекторий в динамической среде на основе OCTNet

Выполнил: Губа Дмитрий Анатольевич, гр. 5303

Руководитель: Заславский М.М., к.т.н.

Консультант: Жангиров Т.Р., ассистент каф. МОЭВМ

Цель и задачи

Актуальность: существующие алгоритмы генерации маршрутов

- строят не характерные маршруты для данной среды,
- не работают в динамических средах.

Цель: реализовать алгоритм, способный строить характерные для среды маршруты в динамической среде.

Задачи:

- 1. Провести сравнительный анализ аналогов
- 2. Реализовать алгоритм для статической среды
- 3. Сгенерировать динамические карты для обучения.
- 4. Реализовать алгоритм для динамической среды
- 5. Сравнить реализованный алгоритм с аналогами

Сравнительный анализ аналогов

Название	Универсальность	Динамичность	Схожесть	Параллельность	Память	Стабильность
A*	+	-	-	-	O(n)	1.0
GAN	+	+	+	+	O(n)	0.14
CVAE	+	+	+	+	O(n)	0.11
KTM	-	-	+	+	$O(n^2)$	0.78
OCTNet	+	+	+	+	O (n)	0.73

Реализация алгоритма для статической среды. Данные

Экземпляр данных из набора ОСС-Тгај120

Представление карты

Расстояние Хаусдорфа

$$\begin{bmatrix} \boldsymbol{\phi_1} \\ \vdots \\ \boldsymbol{\phi_N} \end{bmatrix} = \begin{bmatrix} S_H(\mathcal{M}_1, \mathcal{M}_1) & \dots & S_H(\mathcal{M}_1, \mathcal{M}_N) \\ \vdots & \ddots & \vdots \\ S_H(\mathcal{M}_N, \mathcal{M}_1), & \dots, & S_H(\mathcal{M}_N, \mathcal{M}_N). \end{bmatrix}$$

Представление траекторий

array([19.97, 20.26, 20.46, 20.78, 20.9 , 21.2 , 21.47, 21.72, 21.96, 22.61, 24.13, 25.42, 26.9 , 27.86, 29.16, 30.04, 30.03, 30.03, 30.04, 30.08, 30.08, 30.06, 29.58, 29.28, 27.31, 25.88, 24.05, 22.4 , 20.53, 18.58, 16.88, 15.27, 13.51, 11.99, 10.56, 9.18, 7.24, 5.61, 4.6]),

Веса для непрерывных траекторий

$$egin{aligned} oldsymbol{w}_x &= \Big(\lambda oldsymbol{I} + \sum_{t=1}^T oldsymbol{k} (au_t)^T oldsymbol{k} (au_t) \Big)^{-1} \Big(\sum_{t=1}^T x_t oldsymbol{k} (au_t) \Big), \ oldsymbol{w}_y &= \Big(\lambda oldsymbol{I} + \sum_{t=1}^T oldsymbol{k} (au_t)^T oldsymbol{k} (au_t) \Big)^{-1} \Big(\sum_{t=1}^T y_t oldsymbol{k} (au_t) \Big), \end{aligned}$$

Непрерывные траектории

$$x(\tau^*) = w_x^T k(\tau^*),$$

$$y(\tau^*) = w_y^T k(\tau^*),$$

Реализация алгоритма для статической среды. Дискретные и непрерывные траектории

непрерывных траекторий

Реализация алгоритма для статической среды. Модель

Input (n,400)							
Dense (n,500) ReLU activation							
Batch normalization							
Dense (n,500) ReLU activation							
Dropout(0.25)							
Dense (n,500) ReLU activation							
Dropout(0.25)							
Dense (n,500) ReLU activation							
Dropout(0.25)							
Dense (n,500) ReLU activation							
Dense (n,5) no activation		Dense (n,100) exp activation	Dense (n,100) softmax activation				
$\mathcal{L} = -\log \Big[\prod_{n=1}^{N}\prod_{p=1}^{P_n}\sum_{q=1}^{Q}lpha_q p_q(oldsymbol{w} oldsymbol{\phi})\Big],$							
$p_q(oldsymbol{w} oldsymbol{\phi}) = \prod_{m=1}^{2M} rac{1}{2b_{q,m}} \exp\Big\{-rac{ w_m - \mu_{q,m} }{b_{q,m}}\Big\},$							

Реализация алгоритма для статической среды. Результаты

Рисунок 7 а – Генерация 50 траекторий

Рисунок 7 б – Генерация 400 траекторий

Генерация динамических карт для обучения

Реализация алгоритма для динамической среды. Модель

Input (n,8000)							
Dense (n,10000) ReLU activation							
Batch normalization							
Dense (n,10000) ReLU activation							
Dropout(0.25)							
Dense (n,10000) ReLU activation							
Dropout(0.25)							
Dense (n,10000) ReLU activation							
Dropout(0.25)							
Dense (n,10000) ReLU activation							
Dense (n,2000) exp activation	Dense (n,2000) softmax activation						
$\begin{split} \mathcal{L} = -\frac{1}{F} \sum_{f=1}^{F} \sum_{n=1}^{N} \sum_{p=1}^{P_{n}} \log \left(\sum_{q=1}^{Q} e^{\left(\log \alpha_{f,q} + \sum_{m=1}^{2M} \log \frac{1}{2\beta_{f,q,m}} - \sum_{m=1}^{2M} \frac{ w_{f,p,m} - \mu_{f,q,m} }{\beta_{f,q,m}}} \right) \right) \\ p_{q}(\boldsymbol{w} \boldsymbol{\phi}) = \prod_{m=1}^{2M} \frac{1}{2b_{q,m}} \exp \left\{ -\frac{ w_{m} - \mu_{q,m} }{b_{q,m}} \right\}, \end{split}$							
	se (n,10000) ReLU activation se (n,10000) ReLU activation se (n,10000) ReLU activation Dropout(0.25) se (n,10000) ReLU activation Dropout(0.25) se (n,10000) ReLU activation Dropout(0.25) se (n,10000) ReLU activation $ \frac{1}{\log \left(\sum_{q=1}^{Q} e^{\left(\log \alpha_{f,q} + \sum_{m=1}^{2M} \log \frac{1}{2\beta_{f,q}}\right)}\right)} $						

Реализация алгоритма для динамической среды.

Результаты

Сравнение результатов с аналогами

Название подхода	Hausdorf	Frechet	Доля недопустимых траекторий
Алгоритм с моделью OCTNet в статической среде	1.86	2.00	0.24
Алгоритм с моделью GAN в статической среде	10.48	14.67	0.88
Алгоритм с моделью CVAE в статической среде	11.79	16.66	0.91
Алгоритм с моделью КТМ в статической среде	1.84	1.95	0.21
Алгоритм с моделью OCTNet в динамической среде	2.11	2.34	0.30
Алгоритм с моделью GAN в динамической среде	15.64	16.20	0.99
Алгоритм с моделью CVAE в динамической среде	15.88	17.01	0.99

Заключение

- Проделаный сравнительный анализ аналогов показал, что существующие аналоги не удовлетворяют требованиям динамичности, схожести и стабильности, что подтвердило необходимость разработки нового алгоритма для генерации траекторий.
- Реализован алгоритм для генерации траекторий в статической среде.
- Сгенерированы динамические карты для обучения
- Реализован алгоритм для генерации траекторий в динамической среде.
- Проведено сравнение метрик разработанного алгоритма с аналогами, были выявлены преимущества разработанного алгоритма.
- Дальнейшие направления исследований включают в себя доработку алгоритма для трехмерного пространства, создание базы близких к реальным динамических карт, сокращение объема потребляемой памяти.

Апробация работы

- «Реализация и исследование алгоритма генерации траекторий в динамической среде на основе ОСТNet?»// Научно-технический семинар МОЭВМ, 2021
- Репозиторий проекта
 https://github.com/Criptonite/diploma2021.