7/20/22, 11:05 AM MINIPROJECT.ipynb - Colaboratory

- IMPORT LIBRARIES

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import sklearn
import seaborn as sns

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

- IMPORT DATASET

df = pd.read_csv('/content/drive/MyDrive/data science/miniproject/collegePlace (1).csv')

Stream Internships CGPA Hostel HistoryOfBacklogs PlacedOrNot 🥻 Age Gender **0** 22 Male Electronics And Communication 1 8 1 21 Female Computer Science **2** 22 Female Information Technology 1 6 **3** 21 Male Information Technology 0 8 **4** 22 0 8 Mechanical **2961** 23 Information Technology **2962** 23 Mechanical 1 7 **2963** 22 Information Technology **2964** 22 1 7 Computer Science **2965** 23 Male Civil 0 8 0

- TOTAL NUMBER OF FEATURES AND ATTRIBUTES IN DATASET

df.shape

(2966, 8)

2966 rows × 8 columns

22720

df.size

df.head()

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot	
0	22	Male	Electronics And Communication	1	8	1	1	1	
1	21	Female	Computer Science	0	7	1	1	1	
2	22	Female	Information Technology	1	6	0	0	1	
3	21	Male	Information Technology	0	8	0	1	1	
4	22	Male	Mechanical	0	8	1	0	1	

df.tail()

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot	1
2961	23	Male	Information Technology	0	7	0	0	0	
2962	23	Male	Mechanical	1	7	1	0	0	
2963	22	Male	Information Technology	1	7	0	0	0	
2964	22	Male	Computer Science	1	7	0	0	0	
2965	23	Male	Civil	0	8	0	0	1	

- HOW DATA LOOKS

df.describe()

	Age	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
count	2966.000000	2966.000000	2966.000000	2966.000000	2966.000000	2966.000000
mean	21.485840	0.703641	7.073837	0.269049	0.192178	0.552596
std	1.324933	0.740197	0.967748	0.443540	0.394079	0.497310
min	19.000000	0.000000	5.000000	0.000000	0.000000	0.000000
25%	21.000000	0.000000	6.000000	0.000000	0.000000	0.000000
50%	21.000000	1.000000	7.000000	0.000000	0.000000	1.000000
75%	22.000000	1.000000	8.000000	1.000000	0.000000	1.000000
max	30.000000	3.000000	9.000000	1.000000	1.000000	1.000000

MINIPROJECT.ipynb - Colaboratory 7/20/22, 11:05 AM

- SHOWS THE TYPE OF DATA

df.info()

Column

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2966 entries, 0 to 2965 Data columns (total 8 columns):

2966 non-null int64 0 Age 1 Gender 2966 non-null object 2966 non-null object 2 Stream 3 Internships 2966 non-null int64 4 CGPA 2966 non-null int64 2966 non-null int64 5 Hostel 6 HistoryOfBacklogs 2966 non-null int64 2966 non-null int64

Non-Null Count Dtype -----

7 PlacedOrNot dtypes: int64(6), object(2)

memory usage: 185.5+ KB

df.corr()

	Age	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
Age	1.000000	0.006552	-0.119787	0.003042	-0.042586	0.046943
Internships	0.006552	1.000000	0.023496	0.004617	-0.015118	0.179334
CGPA	-0.119787	0.023496	1.000000	0.014991	0.002576	0.588648
Hostel	0.003042	0.004617	0.014991	1.000000	0.103506	-0.038182
HistoryOfBacklogs	-0.042586	-0.015118	0.002576	0.103506	1.000000	-0.022337
PlacedOrNot	0.046943	0.179334	0.588648	-0.038182	-0.022337	1.000000

→ GRAPHS

plt.xticks(rotation = 90) sns.barplot(x = df.Stream, y = df.PlacedOrNot)

plt.figure(figsize = (10,5)) sns.countplot(x = df.Age)

sns.barplot(x = df.Internships, y = df.PlacedOrNot)

sns.barplot(x = df.CGPA, y = df.PlacedOrNot)

https://colab.research.google.com/drive/18 BroiEC8w3Vw0raWhQHHHTPgTVsRLdjR#scrollTo=m3zPBmrB3jT1&printMode=truewards and the street of the s

7/20/22, 11:05 AM MINIPROJECT.ipynb - Colaboratory

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f1232d01450>
```

sns.barplot(x = df.Gender, y = df.PlacedOrNot)

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f1232c794d0>

0.6
0.5
0.4
0.2
0.1
0.0
Male
Gender

Female

Female
```

df.Stream.unique()

→ PRE-PROCESSING

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
```

df.Gender = le.fit_transform(df.Gender)
df.Stream = le.fit_transform(df.Stream)

df.head()

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot	2
0	22	1	3	1	8	1	1	1	,
1	21	0	1	0	7	1	1	1	
2	22	0	4	1	6	0	0	1	
3	21	1	4	0	8	0	1	1	
	00	4	_	0	0	4	0	4	

df.tail()

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	PlacedOrNot
2961	23	1	4	0	7	0	0	0
2962	23	1	5	1	7	1	0	0
2963	22	1	4	1	7	0	0	0
2964	22	1	1	1	7	0	0	0
2965	23	1	0	0	8	0	0	1

from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.model_selection import cross_val_score

Define variable

```
x = df.drop(['PlacedOrNot'], axis = 1)
```

y = df.PlacedOrNot

```
cross_val_score(SVC(), x, y, cv = 3)
array([0.73609707, 0.76238625, 0.84817814])
```

cross_val_score(DecisionTreeClassifier(), x, y, cv = 3)

```
array([0.84428716, 0.84327604, 0.90789474])
```

cross_val_score(LogisticRegression(), x, y, cv = 3)

cross_val_score(RandomForestClassifier(n_estimators=50), x, y, cv = 3)

array([0.84327604, 0.85338726, 0.90789474])

array([0.71991911, 0.74823054, 0.83704453])

https://colab.research.google.com/drive/18BroiEC8w3Vw0raWhQHHHTPgTVsRLdjR#scrollTo=m3zPBmrB3jT1&printMode=true

7/20/22, 11:05 AM MINIPROJECT.ipynb - Colaboratory

```
cross_val_score(KNeighborsClassifier(),x, y ,cv = 3)
array([0.83013145, 0.81496461, 0.87246964])
```

TRAING AND TESTING

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
```

X_train

	Age	Gender	Stream	Internships	CGPA	Hostel	HistoryOfBacklogs	
1405	22	1	0	0	8	1	1	
2479	19	1	0	0	6	1	0	
1210	21	1	4	0	9	0	0	
1971	20	1	4	1	8	1	0	
593	22	1	1	1	6	0	0	
1463	22	1	4	0	7	0	0	
2272	22	1	5	0	8	0	0	
688	22	1	5	0	8	1	0	
324	21	1	5	1	6	1	0	
2695	20	1	4	2	8	0	0	
2372 rc	ws × 7	7 columns						

X_test

```
        Age
        Gender
        Stream
        Internships
        CGPA
        Hostel
        HistoryOfBacklogs

        1247
        22
        0
        1
        0
        8
        1
        0

        2806
        23
        1
        1
        0
        6
        0
        0

        1889
        22
        0
        5
        1
        6
        1
        0

        233
        22
        1
        4
        1
        7
        0
        0

        1808
        20
        0
        5
        1
        6
        1
        0

        ...
        ...
        ...
        ...
        ...
        ...
        ...

        1203
        21
        1
        3
        0
        8
        0
        0

        2531
        20
        1
        1
        0
        8
        0
        0

        1827
        22
        1
        3
        1
        8
        0
        0

        115
        23
        1
        2
        0
        6
        0
        0
```

594 rows × 7 columns

y_test

MODEL BUILDING using RANDOMFOREST Algorithm

https://colab.research.google.com/drive/18 BroiEC8 w 3 V w 0 raWhQHHHTPgTVsRLdjR#scrollTo=m 3 z PBmrB3jT1 & print Mode=true to the first of the print Mode of the first of the print Mode of t

```
0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0,
1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1,
1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0,
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1,
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1,
0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1,
1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0,
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,
1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0])
```

```
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
print(cm)
accuracy_score(y_test, y_pred)

[[260 23]
      [37 274]]
0.89898989898999
```

▼ MODEL BUILDING using DECISIONTREE Algorithm

```
model1 = DecisionTreeClassifier()
model1.fit(X_train, y_train)
     DecisionTreeClassifier()
y_pred = model1.predict(X_test)
y_pred
     array([1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1,
           1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0,
           1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0,
           1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0,
           0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0,
           1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0,
           0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
           0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
           0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0,
           1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0,
           0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
           0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0,
           1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1,
           0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0,
           0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,
           1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1,
           0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
           0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1,
            0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1,
           1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0,
           1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
           1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0,
           0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
           1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
           1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0])
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
print(cm)
accuracy_score(y_test, y_pred)
     [[272 11]
```

For this problem **DecisionTree** is the best model.

[38 273]]

0.9175084175084175