

JSS MAHAVIDYAPEETHA JSS SCIENCE AND TECHNOLOGY UNIVERSITY, MYSURU

VI Semester B.E Degree Examination
Department of Computer Science and Engineering

MACHINE LEARNING

Duration: 3Hrs

Max. Marks: 100

NOTE: 1. Part A is Compulsory.

2. Part B has internal choice

3. Use of Scientific calculator is allowed

PART - A

Q.NO	со	CD	PI	QUESTION	MARKS
1. (a)				Explain the concept of Machine Learning with a flow	
1 (b)	000	1.4	444	diagram indicating various phases of Machine Learning	5
1. (b)	CO2	L1	4.1.1	With a neat block diagram explain the term Reinforcement learning	3
1.(c)				List any four applications of Machine learning.	2
2. (a)				Box P has 2 red balls and 3 blue balls and box Q has 3 red balls and 1 blue ball. A ball is selected as follows:	4
	CO1	L3	1.1.2	(i) Select a box (ii) Choose a ball from the selected box such that each ball in the box is equally likely to be chosen. The probabilities of selecting boxes P and Q are (1/3) and (2/3), respectively. Given that a ball selected in the above process is a red ball, the probability that it came from the box P	
2.(b)				Derive the expression to find optimal decision boundary, if the densities are continuous and overlapping with relevant sketches	4
2.(c).				What is probability of error and how do you minimize it	2
3. (a)	CO3	L1	4.1.2	What is clustering and list any three applications of clustering.	3
3. (b)				Explain the different categories of clustering.	5

20CS610

USN							
0011						97	

3. (c)	-			Write the algorithm for agglomerative clustering	2
4. (a)				Explain the following terminologies :	4
				Feature Selection, Feature extraction.	
4. (b)	CO4	L1	4.1.2	With relevant expressions and plot explain the following concepts	
			2.4.1	Within class Scatter Matrix Between class scatter matrix	4
4.(c).				What are Eigen Vectors	2
5. (a)				With a neat diagram explain the functioning of a Mc Culloch-Pitts Neuron.	4
5. (b)	CO5	L3	4.2.1	How are OR, AND and NOT Functions realized using an artificial neuron? Indicate the decision boundaries for the same.	6

PART - B

Q.NO	СО	CD	PI	QUESTION	MARKS
6. (a)			1.1.2	A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women?	3
6. (b)	CO1	L3	2.4.1	With relevant formula and graph explain the following	
				a. Uniform Distribution	2
				b. Normal Distribution	5
				OR	
7. (a)			1.1.2	A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected if	3
	CO1	L3		the team has (i) no girls (ii) at least one boy and one girl (iii) at least three girls	
7. (b)		LS	2.4.1	With relevant expressions explain conditional probability and its use.	4
7. (c)				Explain the properties of normal distribution	3

USN	

11. (a)	CC	03 L	4 4.2.1	With illustrations, explain the working of Wards algorithm. Write the steps followed in divisive clustering algorithm	8
				OR	
				P5 0.80 0.46	
				P4 0.49 0.64	
				P3 0.66 0.89	
				P2 0.85 0.14	
	CO	3 L4	4.2.1	P1 0.07 0.83	
	000		4.2.1	Point	
(b)		1/4	Maria de la compansa	a b	
10.				Apply single linkage algorithm for the following data samples and show the clustering results	6
(a)			124	and initial centroids in partitional clustering	
10.				Write your observations on choosing the value of K	4
9.(c)				Briefly explain any three applications of KNN	3
0 / >			4.1.1	Write the advantages and disadvantages of KNN	3
9. (b)	CO2	L3	444	produced by Machine I are defective and 5% produced by Machine II are defective. An item is drawn at random. If the drawn item is defective, find the probability that it was produced by Machine II.	
). (a)			1.1.2	A factory has two machines I and II. Machine I produces 40% of items of the output and Machine II produces 60% of the items. Further 4% of items	4
				OR	
.(c)				do you calculate?	2
(b)	CO2	LI		Explain the properties of Kernel function What is the loss function in machine learning? How	3
(a)	000	1.1		Explain Kernel density estimate with a suitable example.	5

USN			

12. (a)				samples a	and obtain	the princip ntage of	al compor	entaining 4 nents, also aptured by	8		
	00.			Feature	Sample1	Sample2	Sample3	Sample4			
	CO4	L5	2.4.1	X1	4	8	13	7			
				X2	11	4	5	14			
12. (b)				How is L	DA differen	t from PCA	4		2		
					OR						
13. (a)	CO4	L4	2.4.1	A = 1 1 0 0	Find the singular values for the following Matrix A = 1 1 0 1 0 0 0 1 1 1 0 0				7		
13. (b)						Briefly E	xplain the c	concept of	SVD		3
14. (a)	CO5	L5	4.2.1	Trace impleme indicating	Trace and explain Perceptron Model for implementing OR function with at least one solution indicating the decision boundary.				7		
14. (b)				Summar	ize the limi	tations of p	perceptron		3		
					OF	2					
15	CO5	L2	4.2.1	With release	evant plots, n functions	explain ar	ny four com	nmonly used	10		

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VI SEMESTER B.E DEGREE - CIE-1/TEST-1 (Section - 'A', 'B' and 'C')

Branch: CS&E

Name of the Paper Setter: Dr. HCV and Prof. Rakshitha R

20CS610 - Machine Learning

Duration: 01 Hr. (7:30 AM to 8:30 AM)

Date: 17/04/2023

Max. Marks: 20 Day: Monday

STUDENT NAME:

Roll No:

	COURSE OUTCOMES	Blooms Cognitive Domains
	After completing this course, students should be able to:	1. Knowledge
CO-1	Estimating Parameters from Samples.	2. Comprehension
CO-2	Classify Patterns using Parametric and Non-Parametric Techniques.	3. Application
CO-3	Clustering of Samples using different Clustering Algorithms.	4. Analysis
CO-4	Apply various Dimensionality Reduction Techniques to reduce the Dimension,	 Synthesis Evaluation

Note: Answer any two questions

Q. No.	СО	Cognitiv e Domain	Questions	Marks
1(a) 1(b)	CO- 1	Knowledg e	Explain the various components of a typical Machine Learning Algorithm along with the flow diagram indicating the various activities of ML.	04
1(c)			What is Reinforcement learning. Illustrate the same with a suitable example.	03
			List and explain the different methods of obtaining probability estimates	03

2(a) 2(b)	1 CO-	Compreh ension Applicatio n	Consider two unfair coins A and B. A has $P(H) = 0.7$ and B has $P(T) = 0.4$ Flip the coin A, if the outcome is Head, flip coin B otherwise Flip coin A again. Write the outcome of sample space with the outcome distribution.	02
2(c)			If you draw three cards from a deck one at a time, what is the probability: (i) All the three cards are Red. (ii) you do not draw any spades. (iii) A Club, a Heart and a Diamond	06
	1		Are the events "Drawing an Ace" and " Drawing a Red card" independent.	02

3(a)	CO- 2	Applicati on	Define parametric decision making with the underlying assumptions and justify the use of term parametric decision.	02
3(b)			Write the Bayes expression and explain the various terms used in Bayes theorem	05
3(c)			A factory has two machines I and II. Machine I produces 40% of items of the output and Machine II produces 60% of the items. Further 4% of items produced by Machine I are defective and 5% produced by Machine II are defective. An item is drawn at random. If the drawn item is defective, find the probability that it was produced by Machine II.	03

JSS Mahavidyapeetha JSS Science And Technology University (Established Under JSS Science and Technology University Act No. 43 of 2013)

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VI SEMESTER B.E DEGREE - CIE-1/TEST-1 (Section - 'A', 'B' and 'C')

Branch: CS&E

Name of the Paper Setter: Dr. HCV and Prof. Rakshitha R

20CS610 - Machine Learning

Duration: 01 Hr. (9:30 AM to 10:30 AM)

Date: 25/05/2023

Max. Marks: 20 Day: Monday

STUDENT NAME:

Roll No

	KOII NO:		
COURSE OUTCOMES	Blooms Cognitive Domains		
After completing this course, students should be able to:	1 Vnouded-		
Estimating Parameters from Samples.	 Knowledge Comprehension 		
Classify Patterns using Parametric and Non-Parametric Techniques.	3. Application		
	4. Analysis		
	 Synthesis Evaluation 		
	After completing this course, students should be able to:		

Note: Question 1 is compulsory, Internal choice between Qn 2 and Qn 3

Q. No.	со	Cognitiv e Domain				Detween Qn 2			Marks
1(a)	CO- 2	Applicatio n		following stogram den stropy	nsity estim	ation			2+1+1
1(b)			c. In	formation G	ain				
1(c)			certain type no. The la	o a series of be of food, in ast column("in ss. Entropy an	questions n which th midwest?"	. Most questions e participant ans) is our target c	s are about swered (1) f column ind	Each entry has if people liked a for yes or (0) for icating True or , Potato_Salad	6
			name	age a	apple pie?	potato_salad?	sushi?	midwest?	
			Jeff) *	1		IIIIUWESCI	
						1 1	1'	1	
			Pete	25 1	1.	1	0	1	
			Pete Anne		1.	-		1	
				33 1		1	0-		
			Anne	33 1 26 0	1.	1	0.	1	
			Anne Natalie	33 1 26 0 30 1	1.	1 1 0	0° 0° 1°	1 1 0	
			Anne Natalie Stella	33 1 26 0 30 1	1. 1. 1.	1 1 0	0° 0° 1° 1°	1 1 0 1	
			Anne Natalie Stella Rob	33 1 26 0 30 1 25 1 42 1	1. 1. 1.	1 1 0 1 0	0° 0° 1° 1° 0° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	1 0 1 1	
			Anne Natalie Stella Rob Joe	33 1 26 0 30 1 25 1 42 1 38 1	1. 1. 1.	1 1 0 1 0	0° 0° 1° 1° 0° 0°	1 1 0 1 1 1	
			Anne Natalie Stella Rob Joe Jim	33 1 26 0 30 1 25 1 42 1 38 1 36 1	1° 1° 1° 1° 1°	1 1 0 1 0 1 1	0° 0° 1° 1° 0° 0° 0° 0° 0° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	1 1 0 1 1 1 1	
			Anne Natalie Stella Rob Joe Jim Lisa	33 1 26 0 30 1 25 1 42 1 38 1 36 1 29 1	1° 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	1 0 1 0 1 1 1 1	0° 0° 1° 1° 1° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°	1 1 0 1 1 1 1 0	
			Anne Natalie Stella Rob Joe Jim Lisa Sarah	33 1 26 0 30 1 25 1 42 1 38 3 36 1 29 1		1 1 0 1 0 1 1 1 1	0° 0° 1° 1° 0° 0° 0° 0° 0° 0° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	1 0 1 1 1 1 0 0	
			Anne Natalie Stella Rob Joe Jim Lisa Sarah David	33 1 26 0 0 30 3 25 1 38 3 36 29 1 35 28 1 3	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1 0 1 0 1 1 1 1 0 0	0° 1° 1° 1° 0° 0° 0° 0° 0° 0° 0°	1 1 0 1 1 1 1 1 0 0	
			Anne Natalie Stella Rob Joe Jim Lisa Sarah David Eric	33 1 26 0 30 1 25 1 42 1 38 3 36 1 29 1 35 1 28 1		1 1 0 1 0 1 1 1 1 0 0 1	0° 1° 1° 1° 0° 0° 0° 0° 0° 1° 0° 1° 0° 1° 1° 0° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	1 1 0 1 1 1 1 1 0 0	

2(a)	CO- 2	Applicatio n	Explain kernel density estimation steps for a triangular kernel with base = 3 for the sample points <x1,x2;x3> being <1,2,4></x1,x2;x3>	5
2(b)			Compute the density for the data samples <3, 4.5, 5.2, 6, 7.5, 8.2> using a bin width 2 and with the density plot sketch.	3
2(c)			What is Jaccard distance. Find jaccard_similarity between 2 strings ("Morning", "Daylight")	2

Or

3(a)	CO- 2	Applicati on		illustrations expacts classifications		concept of Majority Vote and how the	03
3(b)			How do you	determine the	alue of K i	n KNN algorithm, explain the steps.	03
3(c)			Apply KNN fo	or classifying th	e test data	in the last row with K =3 and 5	04
			Brightness	Saturation	Color		
			40	20	Red		
			50	50	Blue		
			60	90	Blue		
			10	25	Red		
			70	70	Blue		
			60	10	Red		
			25	80	Blue		
			30	40	?		

WISH YOU ALL THE VERY BEST

JSS Mahavidyapeetha JSS Science And Technology University (Extended Linder, 353 Science and Technology University Act No. 43 of 2013)

SRI JAYACHAMARAJENDRA COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VI SEMESTER B.E DEGREE - CIE-3/TEST-3 (Section - 'A', 'B' and 'C')

Branch: CS&E

STUDENT NAME:

Name of the Paper Setter: Dr. HCV and Prof. Rakshitha

20CS610 - Machine Learning

Duration: 01 Hr. (12.30pm to 1.30pm)

Max. Marks: 20 Day: Monsday

Date: 19/6/2023

, Epulcace Elevate Enlighte

Roll No:

	COURSE OUTCOMES	Blooms Cognitive
	After completing this course, students should be able to:	Domains
CO-1	Use the concepts of probability and combinatorics, statistics to solve the real world problems.	1. Knowledge
CO-2	Develop simple ML algorithms using Bayes theorem, decision tree, and KNN for classification of real life patterns.	Comprehension Application
CO-3	Use different types of clustering techniques to categorize data in any given dataset.	 Analysis Synthesis
CO-4	Use various dimensionality reduction techniques to select robust feature sets.	6. Evaluation
CO-5	Use MLP to perform digit, character and image classification	

Note: Answer any two questions. Question Number 1 is compulso

Q. No.	со	Cognitive Domain			19	Questions	Marks		
1a	CO-4 4	Comprehension & Application	Define	Define characteristic polynomial of a (3X3) matrix with a suitable example					
1b			- Tamp	,,,,			3		
	CO-3		Apply o	comp	lete li	nkage Algorithm on the following dataset			
			Data Points	X	Y		7		
			1	4	4				
			2	8	4				
			3	15	8				
			4	24	4				
			5	24	12				

2a	C03	Application	Apply single linkage and complete linkage algorithms and generate hierarchical clusters followed by cluster dendrogram for the following data points	6
			< 8, 12, 20, 26, 36, 42>	
2b			Write the algorithm for agglomerative clustering	2
2c			Define proximity matrix ith a suitable example	2

OR

3a	CO-	Comprehension & Application	Explain tSingular value decomposition concepts with a suitable example	4
3b			Find the singular values of the following matrix A = 0.1.1 √2.2.0 0.1.1	6