Оглавление

O 1	Оглавление							
1	Код	Голея	2					
	1.1	Кодирование	2					
	1.2	Декодирование						
2	Зада	ача						
3	Приложения							
	3.1	Пример работы алгоритма	6					
	3.2	Входные вектора для кодирования						
	3.3	Входные вектора для декодирования						
	3.4	Умножение матриц	8					

Глава 1

Код Голея

Двоичный код Голея - один из связанных друг с другом исправляющих ошибки линейных кодов:

- совершенный двоичный код Голея с параметрами [27, 12, 7];
- расширенный двоичный код Голея, получаемый из совершенного добавлением бита четности, параметры: [24, 12, 8]

Мы будем использовать совершенный код Голея, так как в нашем случае он оптимальнее.

В этом случае 12 входных бит данных кодируются в 23 выходных бита.

Данный код позволяет исправлять любые три ошибки в слове.

1.1. Кодирование

Кодирование примитивное: умножение вектора на матрицу.

$$D_{enc} = D_{in} \times M_{cre}, \tag{1.1}$$

где $D_{in}[1:12]$ - входной вектор данных, $M_{cre}[12:23]$ - порождающая матрица, $D_{enc}[1:23]$ - выходной вектор.

Входной вектор D_{in} имеет вид $[D_1 \ D_2 \ ... \ D_{12}]$, где D_i - исходные двоичные данные.

Порождающая матрица M_{cre} выглядит следующим образом:

После кодирования получает вектор D_{enc} = $[D_1\ D_2\ ...\ D_{12}\ \alpha_1\ \alpha_2\ ...\ \alpha_{11}]$, где D_i - исходные биты данных, α_j - проверочные биты данных.

Вектор D_{enc} передаем по зашумленному каналу.

1.2. Декодирование

Декодирование Голея также сводится к умножению матриц с некоторыми усложнениями (формулы 1.2, 1.3).

$$S = D_{in} \times M_{ch} \tag{1.2}$$

$$D_{dec} = D_{in} \oplus Err[S], \tag{1.3}$$

где $D_{in}[1:23]$ - вектор входных данных (возможно с ошибками), $D_{dec}[1:12]$ - вектор декодированных данных, Err - таблица корректирующих кодов, $M_{ch}[23:11]$ - проверочная матрица, S[1:11] - вектор синдромов.

Произведение входного вектора данных на проверочную матрицу дает вектор синдромов размерностью [1:11] (формула 1.2). Вектор синдромов является бинарным представления индекса корректирующего кода в таблице Err. Таблица корректирующих кодов Err содержит 2048 записей длиной 12 бит каждая. Таблица ошибок Err известна и находится в приложенном файле errors.dat.

Проверочная матрица M_{ch} выглядит следующим образом:

Для завершения декодирования необходимо входной вектор сложить по модулю 2 с корректирующим (формула 1.3). Если ошибок менее трех, то исходный вектор D_{in} будет равен D_{dec} . При количестве ошибок 4 и более декодирование также будет произведено, но результат будет непредсказуем, так как совершенный код Голея позволяет исправлять до 3х ошибок, но не позволяет обнаруживать 4 и более ошибок.

Глава 2

Задача

Задача сводится к написанию кодера и декодера совершенного кода Голея по алгоритму, описанному в главе 1. Работа описаного алгоритма с промежуточными данными находится в разделе 3.1.

Проверка работы кодера будет осуществляться по известным входным векторам из раздела 3.2

Проверка работы декодера будет осущесвляться по известным векторам из раздела 3.3

Глава 3

Приложения

3.1. Пример работы алгоритма

Input:	0x00000571	(0b0000000000001011110001)
Encoded:	0x000AB571	(0b000010101011010101110001)
Errors:	0x00100008	(0b000100000000000000001000)
Received:	0x001AB579	(0b000110101011010101111001)
Syndrome:	0x0000063F	(0b00000000000011000111111)
Correction:	0x00100008	(0b000100000000000000001000)
Decoded:	0x00000571	(0b0000000000001011110001)
Result:	Ok	
Input:	0×00000319	(0b00000000000001100011001)

Input: (000000000000000001100011001)Encoded: 0x0074B319 (0b011101001011001100011001) Errors: 0x000000C (0b000000000000000000001100) Received: 0x0074B315 (0b011101001011001100010101) 0x00000AE (0b00000000000000001011110) Syndrome: Correction: 0x000000C (0b0000000000000000000001100) 0x00000319 (0b00000000000001100011001) Decoded:

Result: Ok

Input: 0x00000908 (0b00000000000100100001000) Encoded: 0x00303908 (0b001100000011100100001000) Errors: 0x000408C8 (0b000001000000100011001000) Received: 0x003431C0 (0b001101000011000111000000) Syndrome: 0x00000EF (0b00000000000000011101111) Correction: 0x0000C200 (0b0000000110000100000000) Decoded: 0x00003C0 (0b00000000000001111000000)

Result: Error

3.2. Входные вектора для кодирования

Двоичное представление входных векторов для кодирования:

Пример оформления результатов:

<pre>Input: Encoded:</pre>	(0b00000000000100100001000) (0b001100000011100100001000)
Input: Encoded:	(0b00000000000001100011001) (0b011101001011001100011001)

3.3. Входные вектора для декодирования

Двоичное представление векторов для декодирования:

Пример оформления результатов:

```
Received: 0x0074B315 (0b011101001011001100010101)
Syndrome: 0x00000AE (0b0000000000000000101110)
Correction: 0x000000C (0b0000000000000000001100)
```

Decoded: 0x00000319 (0b0000000000001100011001)

Received: 0x003431C0 (0b0011010000110000111000000)

Syndrome: 0x00000EF (0b0000000000000011101111)

Correction: 0x0000C200 (0b000000011000010000000)

Decoded: 0x00003C0 (0b0000000000001111000000)

3.4. Умножение матриц

Все представленные числа в матрицах, векторах являются двоичными. Таким образом вся истользуемая арифметика также является двоичной.

Двоичное умножение матриц отличается от арифметического тем, что вместо арифметической суммы берется сумма по модулю 2.