PHYSICS

YEAR 11

FORMULAE AND DATA

Copyright

© School Curriculum and Standards Authority, 2014

This document – apart from any third party copyright material contained in it – may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that it is not changed and that the School Curriculum and Standards Authority is acknowledged as the copyright owner.

Copying or communication for any other purpose can be done only within the terms of the Copyright Act or with prior written permission of the Authority. Copying or communication of any third party copyright material can be done only within the terms of the Copyright Act or with permission of the copyright owners.

Linear motion and force

Mean velocity $v_{av} = \frac{s}{t} = \frac{v + u}{2}$

Equations of motion $a = \frac{v - u}{t}$; $s = ut + \frac{1}{2}at^2$; $v^2 = u^2 + 2as$; v = u + at

Force F = maWeight force F = mg

Momentum p = mv; $\Sigma p_{\text{before}} = \Sigma p_{\text{after}}$

Change in momentum (impulse) $\Delta p = F\Delta t = mv - mu$

Kinetic energy $E_{\rm k} = \frac{1}{2} \ mv^2$ Gravitational potential energy $E_{\rm p} = mg\Delta h$ Work done $W = F_S = \Delta E$ Power $P = \frac{W}{t} = \frac{\Delta E}{t} = Fv_{\rm av}$

Note: the variable t refers to the 'time taken' sometimes referred to as the 'change in time' or Δt .

lonising radiation and nuclear reactions

Activity $A = \frac{\Delta N}{t}$

Half-life $N = N_0 \left(\frac{1}{2}\right)^n$

Absorbed radiation dose absorbed dose = $\frac{E}{m}$

Dose equivalent dose equivalent = absorbed dose × quality factor

Mass-energy relationship $\Delta E = \Delta mc^2$

Heating processes

Change of temperature $Q = mc\Delta T$

Change of state Q = mL

Efficiency $\eta = \frac{\text{energy output}}{\text{energy input}} \times \frac{100}{1} \%$

Electrical circuits

Electric current $I = \frac{q}{t}$

Work and energy $V = \frac{W}{q}$

Ohm's law $R = \frac{V}{I}$

Resistances in series $R_{\rm T} = R_1 + R_2 + \dots$

Resistances in parallel $\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm 1}} + \frac{1}{R_{\rm 2}} + \dots$

Power $P = \frac{W}{t} = VI$

Waves

Wave velocity $v = f\lambda$

Period $T = \frac{1}{f}$

Strings and open pipes $\lambda = \frac{2\ell}{n}$

Closed pipes $\lambda = \frac{4\ell}{(2n-1)}$

Intensity $I \alpha \frac{1}{r^2}$

Prefixes of the metric system

Factor	Prefix	Symbol	Factor	Prefix	Symbol
1012	tera	Т	10-3	milli	m
10 ⁹	giga	G	10-6	micro	μ
106	mega	M	10-9	nano	n
10 ³	kilo	k	10 ⁻¹²	pico	р

Physical constants

Speed of light in vacuum or air	$= 3.00 \times 10^8 \mathrm{m \ s^{-1}}$
Electron chargee	$= -1.60 \times 10^{-19} \text{ C}$
Electron volt	$' = 1.60 \times 10^{-19} \mathrm{J}$
Unified atomic mass unit1 u	$= 1.66 \times 10^{-27} \text{ kg}$
Rest mass of electron	$= 9.11 \times 10^{-31} \text{ kg}$
Rest mass of proton	$= 1.67 \times 10^{-27} \text{ kg}$
Rest mass of neutron m_n	$= 1.67 \times 10^{-27} \text{ kg}$
Rest mass of alpha particle m_{α}	$= 6.64 \times 10^{-27} \text{ kg}$
Mass-energy equivalent1 u	= 931 MeV
Tonne	$= 10^3 \text{ kg} = 10^6 \text{ g}$
Absolute zero0 K	= −273 °C

Physical data

Quality factors

Approximate quality factor for alpha radiation $QF_{\alpha}=20$ Approximate quality factor for beta radiation $QF_{\beta}=1$ Approximate quality factor for gamma radiation ... $QF_{\gamma}=1$ Approximate quality factor for slow neutrons $QF_{\rm sn}=3$ Approximate quality factor for fast neutrons $QF_{\rm fn}=10$

ıts
e
em
<u>e</u>
the
of
0
<u>е</u>
table o
lic table o
odic table
dic table

ω Φες	0 - 0 - 8 - - 50	► 500 Φ 5 °?	
2 T	Ne neon 20.18 18 AT argon 39.95	36 X krypt krypt 83.8 83.8 83.8 131	ogane.
17	19.00 17.00 chlorine chlorine 35.45	35 Br bromine 79.90 53 I iodine 126.9	85 At astatine 117 Ts tennessine
9	oxygen 16.00 16.00 Sulfur 32.06	34 Selenium 78.97 52 E tellurium 127.6	Po polonium 116 LV
5	7 nitrogen 14.01 15 Phosphorus 30.97	33 AS arsenic 74.92 51 Sb antimony 121.8	Bismuth 209.0 115 MC moscovium
4	6 carbon 12.01 14 14 Silicon 28.09	32 Ge germanium 72.63 50 Sn tin 118.7	82 Pb lead 207.2 114 Fe
5	5 boron 10.81 13 A aluminium 26.98	31 gallium 69.72 49 Infium indium	113 National Information
12		30 Zine 65.38 65.38 Gd cadmium 112.4	### ### ### ### ######################
=		29 Cu copper 63.55 47 Ag silver 107.9	Au gold 197.0 111 Rg roentgenium
10		28 Nickel 58.69 46 Pd palladium 106.4	Pt platinum 195.1 110 Ds darmstadtium
O		Cochait 58.93 45 Hodium 102.9	Ir iridium 192.2 109 Mt meitherium
∞		26 Fe iron 55.85 44 Pt Tuthenium 101.1	76 osmium 190.2 HS hassium
>		Mn manganese 54.94 43 Tc technetium	75 Re rhenium 186.2 107 Bh bohrium
9		24 Chromium 52.00 42 Mo molybdenum 95.95	74 tungsten 183.8
2		23 Vanadium 50.94 41 ND niobium 92.91	73 Ta tantalum 180.9 105 Ub dubnium
4		22 titanium 47.87 40 Zr zirconium 91.22	72 Hf hafnium 178.5 104 Rf rutherfordium
ო		21 Scandium 44.96 39 Yttrium 88.91	57–71 lathanoids 89–103 actinoids
0	Be beryllium 9.012 12 Mg magnesium 24.31	Ca calcium 40.08 38 Sr. estrontium 87.62	56 barium 137.3 88 Radium
1 008	11 (6.94 Sodium sodium sodium 22.99	Potassium 39.10 37 Rb rubidium 85.47	55 CS Caesium 132.9 87 Fr francium
	1	1	

	atomic weignt
--	---------------

Key:

71 Lu lutetium 175.0	103 Lr
70 Yb ytterbium 173.0	102 No nobelium
69 Tm thulium 168.9	101 Md mendelevium
68 Er erbium 167.3	100 Fm fermium
67 Ho holmium 164.9	99 ES einsteinium
66 Dy dysprosium 162.5	98 Californium
65 Tb terbium 158.9	97 BK berkelium
64 Gd gadolinium 157.3	96 Cm curium
63 EU europium 152.0	95 Am americium
62 Sm samarium 150.4	94 Pu plutonium
Pm promethium	93 Np neptunium
60 Nd neodymium 144.2	92 Uranium 238.0
59 Pr praseodymium 140.9	Pa protactinium 231.0
58 Ce cerium 140.1	90 Th thorium 232.0
57 La lanthanum 138.9	AC actinium

[Data source: The International Union of Pure and Applied Chemistry (2018). IUPAC periodic table of the elements Retrieved from https://iupac.org/what-we-do/periodic-table-of-elements/]