Feuille d'exercice n° 06 : Fonctions usuelles

Exercice 1 ()

- 1) Montrer que la composée de deux applications monotones de même sens (resp. de sens contraires) est croissante (resp. décroissante).
- 2) Montrer que la somme de deux applications croissantes est croissante.
- 3) La somme de deux applications monotones est-elle nécessairement monotone?
- 4) Le produit de deux applications croissantes est-il nécessairement une application croissante?

Soit $f: \mathbb{R} \to \mathbb{R}$ telle que $f \circ f$ est croissante tandis que $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.

Résoudre dans \mathbb{R}^2 le système $\begin{cases} 2^{3x+2y} = 5 \\ 4^{2x} = 2^{2y+3} \end{cases}$. Exercice 3

Résoudre l'équation $\ln \frac{x+3}{4} = \frac{1}{2}(\ln x + \ln 3)$. Exercice 4

Exercice 5 ($^{\circ}$) Tracer les courbes représentatives des fonctions suivantes.

1) $f: x \mapsto \sin(\operatorname{Arcsin} x)$

2) $q: x \mapsto \operatorname{Arcsin}(\sin x)$

Exercice 6 () Simplifier les expressions suivantes.

1) $\operatorname{Arccos}\left(\cos\left(-\frac{\sqrt{3}}{2}\right)\right)$ 3) $\operatorname{Arccos}\left(\cos\left(-\frac{2\pi}{3}\right)\right)$ 5) $\operatorname{Arctan}\left(\tan\frac{3\pi}{4}\right)$ 7) $\sin\left(\operatorname{Arccos}x\right)$ 2) $\operatorname{Arccos}\left(\cos\frac{2\pi}{3}\right)$ 4) $\operatorname{Arccos}\left(\cos4\pi\right)$ 6) $\tan\left(\operatorname{Arcsin}x\right)$ 8) $\cos\left(\operatorname{Arctan}x\right)$

8) $\cos(\arctan x)$

Exercice 7 (Démontrer les inégalités suivantes.

- 1) Pour tout $a \in]0,1[$, $Arcsin a < \frac{a}{\sqrt{1-a^2}}$.
- 2) Pour tout $a \in \mathbb{R}_+^*$, Arctan $a > \frac{a}{1+a^2}$.

Exercice 8

- 1) Soit $x \in [0, \pi/8[$. Exprimer $\tan(4x)$ en fonction de $\tan(x)$.
- 2) En déduire la formule de Machin : $\frac{\pi}{4} = 4 \operatorname{Arctan} \frac{1}{5} \operatorname{Arctan} \frac{1}{239}$.

Remarque : John Machin a pu calculer 100 décimales de π à la main en 1706 grâce à cette relation.

Exercice 9

Figure 1 – La statue

Une statue de hauteur s est placée sur un piédestal de hauteur p. À quelle distance du pied de la statue un observateur (dont la taille est supposée négligeable) doit-il se placer pour la voir sous un angle maximal (*i.e.* pour avoir θ maximal, avec les notations de la figure 1) ?

Exercice 10 (\circlearrowleft) Sur quelle partie de \mathbb{R} est définie l'équation $\operatorname{Arccos} x = \operatorname{Arcsin}(1-x)$? La résoudre.

Exercice 11 On définit les deux fonctions f et g par $f: x \mapsto \operatorname{Arctan}\left(\frac{1}{2x^2}\right)$ et $g: x \mapsto \operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right)$.

- 1) Déterminer leurs ensembles de définition.
- 2) Calculer, lorsque cela est possible, leurs dérivées.
- 3) Que peut-on en déduire concernant f(x) et g(x)? Donner le maximum de précisions.
- 4) Tracer les courbes représentatives de f et de g (sur un même schéma).

Exercice 12 ($^{\circ}$) Calculer Arctan $\frac{1}{2}$ + Arctan $\frac{1}{5}$ + Arctan $\frac{1}{8}$.

Exercice 13 (Résoudre : Arcsin $2x = Arcsin x + Arcsin (x\sqrt{2})$.

Exercice 14 Soit la fonction
$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}$$

$$x \longmapsto \ln\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right)$$
Montron que f est bien définie et que l'en e les relations quirantes, pour

Montrer que f est bien définie et que l'on a les relations suivantes, pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

1)
$$\operatorname{th}\left(\frac{f(x)}{2}\right) = \operatorname{tan}\left(\frac{x}{2}\right)$$

3)
$$ch(f(x)) = \frac{1}{cos(x)}$$

$$2) \ \operatorname{th}(f(x)) = \sin(x)$$

4)
$$sh(f(x)) = tan(x)$$
.

Exercice 15 Soit
$$(a,b) \in \mathbb{R}^2$$
 et $n \in \mathbb{N}^*$. Calculer $C = \sum_{k=0}^{n-1} \operatorname{ch}(a+kb)$ et $S = \sum_{k=0}^{n-1} \operatorname{sh}(a+kb)$.

Exercice 16 Soit $(a, b) \in \mathbb{R}^2$. Résoudre l'équation $a \operatorname{ch} x + b \operatorname{sh} x = 0$.

