

CZ3005 Artificial Intelligence

Neural Networks Learning

Asst/P Mahardhika Pratama

Email: mpratama@ntu.edu.sg

Office: N4-02a-08

Outline

- □Cost Function
- **□**Summary
- □ Back Propagation Algorithm
- □Intuition of Back Propagation Algorithm
- □ Implementation Notes

- Let's consider classification problem
 - Training set is $\{(x^1, y^1), (x^2, y^2), (x^3, y^3) \dots (x^n, y^m)\}$
 - L = number of layers in the network
 - In our example below L = 4
 - s_I = number of units (not counting bias unit) in layer I
- So here
 - L = 4
 - $s_1 = 3$
 - $s_2 = 5$
 - $s_3 = 5$
 - $s_4 = 4$

 $h_{\Theta}(x) \in \mathbb{R}^4$

- Two types of classification
- Binary classification
 - 1 output (0 or 1)
 - So single output node value is going to be a real number
 - k = 1
 - $s_L = 1$
- Multi-class classification
 - k distinct classifications
 - Typically k is greater than or equal to three
 - If only two just go for binary
 - $s_L = k$
 - So y is a k-dimensional vector of real numbers

$$y \in \mathbb{R}^K$$
 E.g. $\left[\begin{smallmatrix} 1 \\ 0 \\ 0 \\ 0 \end{smallmatrix} \right]$, $\left[\begin{smallmatrix} 0 \\ 1 \\ 0 \\ 0 \end{smallmatrix} \right]$, $\left[\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \end{smallmatrix} \right]$, $\left[\begin{smallmatrix} 0 \\ 0 \\ 1 \\ 0 \end{smallmatrix} \right]$, $\left[\begin{smallmatrix} 0 \\ 0 \\ 0 \\ 1 \end{smallmatrix} \right]$ pedestrian car motorcycle truck

Logistic Regression cost function is as follows:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

We generalize this cost function for k output case

$$h_{\Theta}(x) \in \mathbb{R}^K \quad (h_{\Theta}(x))_i = i^{th} \text{ output}$$

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{K-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

- this cost function outputs a k dimensional vector
- $-h_{\Theta}(x)_i$ refers to the ith value in that vector

First Half

$$-\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right]$$

- This is just saying
 - For each training data example (i.e. 1 to m the first summation)
 - Sum for each position in the output vector
- This is an average sum of logistic regression

Second Half

$$\frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

- This is also called a **weight decay** term
- As before, the lambda value determines the importance of regularization term
- The regularization term is similar to that in logistic regression

Summary

- Forward Propagation
 - takes your neural network and the initial input into that network and pushes the input through the network
 - leads to the generation of an output hypothesis
- **Back Propagation**
 - ✓ takes the output you got from your network, compares it to the real value (y) and calculates. how wrong the network was
 - using the error you've just calculated, back-calculates the error associated with each unit from the preceding layer
 - ✓ These "error" measurements for each unit can be used to calculate the partial derivatives
 - ✓ We use the partial derivatives with gradient descent to try minimize the cost function and update all the Θ values
 - ✓ This repeats until gradient descent reports convergence

is used to minimize the cost function

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(h_{\Theta}(x^{(i)}))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{K} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$$

- Find parameters Θ that minimize $J(\Theta)$
- To minimize the cost function, we can write codes as follows:
 - J(Θ)
 - Partial derivative terms
 - This is not trivial! O is indexed in three dimensions because we
 have separate parameter values for each node in each layer going to each node in the
 following layer
 - i here represents the unit in layer I+1 you're mapping to (destination node)
 - j is the unit in layer I you're mapping from (origin node)
 - I is the layer your mapping from (to layer I+1) (origin layer)

- Gradient Computation
 - Forward Computation
 - Layer 1
 - $a^1 = x$
 - $z^2 = \Theta^1 a^1$
 - Layer 2
 - $a^2 = g(z^2)$ (add a_0^2)
 - $z^3 = \Theta^2 a^2$
 - Layer 3
 - $a^3 = g(z^3) \text{ (add } a_0^3)$
 - $z^4 = \Theta^3 a^3$
 - Output
 - $a^4 = h_{\Theta}(x) = g(z^4)$

$$a^{(1)} = x$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)}) \text{ (add } a_0^{(2)})$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$a^{(3)} = g(z^{(3)}) \text{ (add } a_0^{(3)})$$

$$z^{(4)} = \Theta^{(3)}a^{(3)}$$
$$a^{(4)} = h_{\Theta}(x) = g(z^{(4)})$$

- For each node we can calculate (δ_i^l) this is **the error of node j in layer l**
 - \checkmark a_i is the activation of node j in layer I
 - $\checkmark \quad \delta_j^4 = a_j^4 y_j$
 - [Activation of the unit] [the actual value observed in the training example]
 - ✓ Instead of focussing on each node, let's think about this as a vectorized problem $\delta^4 = a^4 v$
 - So here δ^4 is the vector of errors for the 4th layer

$$\delta^{(3)} = (\Theta^{(3)})^T \delta^{(4)} \cdot *g'(z^{(3)})$$

a⁴ is the vector of activation values for the 4th layer

$$\delta^{(2)} = (\Theta^{(2)})^T \delta^{(3)} \cdot * g'(z^{(2)})$$

- • O³ is the vector of parameters for the 3->4 layer mapping
- δ^4 is (as calculated) the error vector for the 4th layer
- g'(z³) is the first derivative of the activation function g evaluated by the input values given by z³
- You can do the calculus if you want (...), but when you calculate this derivative you get

$$> g'(z^3) = a^3 \cdot * (1 - a^3)$$

$$\frac{\partial}{\partial \Theta_{i,i}^{(l)}} J(\Theta) = a_{j}^{l} \delta_{i}^{(l+1)}$$

- · So, more easily
- \triangleright $\delta^3 = (\Theta^3)^T \delta^4 \cdot *(a^3 \cdot * (1 a^3))$
- you can use δ to get the partial derivative of Θ with respect to individual parameters (if you ignore regularization, or regularization is 0

Training set
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$

First, set the delta values

- Set equal to 0 for all values Set $\triangle_{ij}^{(l)} = 0$ (for all l, i, j)
- Will be used as accumulators for computing the partial derivatives

Next, loop through the training set

For i=1 to m

- Set a¹ (activation of input layer) = xⁱ
- Perform forward propagation to compute a for each layer (I = 1,2, ... L)

 $\triangle_{ij}^{(l)} := \triangle_{ij}^{(l)} + a_i^{(l)} \delta_i^{(l+1)}$

- **Then**, use the output label for the specific example we're looking at to calculate δ^L where $\delta^L = a^L y^i$
 - using back propagation we move back through the network from layer L-1 down
- Finally, use Δ to accumulate the partial derivative terms

I = layer

j = node in that layer

i = the error of the affected node in the target layer

You can vectorize the Δ expression too

$$\Delta^{(\lambda)} := \Delta^{(\lambda)} + \delta^{(\lambda+1)} \left(\alpha^{(\lambda)} \right)^{T}.$$

Finally,

 After executing the body of the loop, exit the for loop and compute

$$D_{ij}^{(l)} := \frac{1}{m} \triangle_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} \text{ if } j \neq 0$$

$$D_{ij}^{(l)} := \frac{1}{m} \triangle_{ij}^{(l)} \qquad \text{if } j = 0$$

We can show that each D is equal to the following

$$\frac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta) = D_{ij}^{(l)}$$

We have calculated the partial derivative for each parameter

Intuition of Back Propagation

- Back Propagation is as with forward propagation but done backward
- $\text{Cost Function:} \quad J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^m y^{(i)} \log(h_\Theta(x^{(i)})) + (1-y^{(i)}) \log(1-(h_\Theta(x^{(i)}))) \right] \\ + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (\Theta_{ji}^{(l)})^2$
- Cost function for a single sample:

$$cost(i) = y^{(i)} \log h_{\Theta}(x^{(i)}) + (1 - y^{(i)}) \log h_{\Theta}(x^{(i)})$$

- δ term on a unit as the "error" of cost for the activation value associated with a unit:
- Back propagation calculates the δ, and those δ values are the weighted sum of the next layer's delta values, weighted by the parameter associated with the links

$$\delta_j^{(l)} = \frac{\partial}{\partial z_j^{(l)}} \cos(i)$$

Intuition of Back Propagation

Implementation Notes – Gradient Checking

- it looks like J(Θ) is decreasing, but in reality it may not be decreasing by as much as it should
- Gradient checking helps make sure an implementation is working correctly

Example Have an function $J(\Theta)$ Estimate derivative of function at point Θ (where Θ is a real number) How?

- Compute Θ + ε
- Compute Θ ε
- Join them by a straight line
- Use the slope of that line as an approximation to the derivative

Usually, epsilon is pretty small (0.0001)

If epsilon becomes REALLY small then the term BECOMES the slopes derivative

Implementation Notes – Gradient Checking

- Implementation note
 - Implement back propagation to compute DVec
 - Implement numerical gradient checking to compute gradApprox
 - Check they're basically the same (up to a few decimal places)

Implementation Notes – Random Initialization

- Pick random small initial values for all the theta values
 - If you start them on zero (which does work for linear regression) then the algorithm fails all activation values for each layer are the same
- So chose random values!
 - Between o and 1, then scale by epsilon (where epsilon is a constant)

1) - pick a network architecture

- Number of
 - **Input units** number of dimensions x (dimensions of feature vector)
 - Output units number of classes in classification problem
 - **Hidden units**
 - Default might be
 - 1 hidden layer
 - Should probably have
 - Same number of units in each layer
 - Or 1.5-2 x number of input features
 - Normally
 - More hidden units is better
 - But more is more computational expensive
 - We'll discuss architecture more later

2) - Training a neural network

- **2.1)** Randomly initialize the weights Small values near 0
- **2.2)** Implement forward propagation to get $h_{\Theta}(x)^{i}$
- **2.3)** Implement code to compute the cost functio
- 2.4) Implement back propagation to compute the
 - Notes on implementation
 - Usually done with a for loop over trainin
 - Can be done without a for loop, but this
 - Be careful
- 2.5) Use gradient checking to compare the partial derivative gradient of J(Θ)
 - Disable the gradient checking code for when y
- 2.6) Use gradient descent or an advanced optimization me parameters O
 - Here $J(\Theta)$ is non-convex
 - Can be susceptible to local minimum
 - In practice this is not usually a huge problem
 - Can't quarantee programs with find global optimum should find good local optimum at least

