SINGAPORE POLYTECHNIC

ET0930

Page 1 of 6

SAMPLE MID SEMESTER TEST

Diploma in Electrical & Electronic Engineering (DEEE) 3rd Year FT

PRINCIPLES OF COMMUNICATION

Time Allowed: 1.5 Hours

Instructions to Candidates

- 1. The examination rules set out on the last page of the answer booklet are to be complied with.
- 2. This paper consist of **TWO** sections:

Section A - 10 Multiple Choice Questions (30 marks).

Section B - 5 Short Questions (70 marks)

- 3. ALL questions are COMPULSORY.
- 4. All questions are to be answered in the answer booklet. Start each question in Section B on a new page.
- 5. This paper consists of 6 pages, including 1 page of Formula List.

MST Sample Paper

SINGAPORE POLYTECHNIC

ET0930

SECTION A

MULTIPLE CHOICE QUESTIONS (3 Marks each)

- 1. Please write your answers in the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- 1. For the rectangular signal shown below, the fifth harmonic is
 - a) 50 kHz.
 - b) 500 kHz.
 - c) 90 kHz.
 - d) 900 kHz.

- 2. 100W is the same as _____.
 - a) 10 dBW
 - b) 20 dBm
 - c) 20 dBW
 - d) none of the above
- 3. Which one of the following signals does not have continuous spectrum?
 - a) Sine wave
 - b) Speech
 - c) Music
 - d) Video
- 4. A 2 kHz sawtooth signal is input to a BPF with a passband from 3 kHz to
 - 11 kHz. The resulting components present at the filter output will be
 - a) $\pm 6 \text{ kHz}, \pm 10 \text{ kHz}.$
 - b) $\pm 4 \text{ kHz}, \pm 6 \text{ kHz}, \pm 8 \text{ kHz}, \pm 10 \text{ kHz}.$
 - c) $\pm 4 \text{ kHz}, \pm 8 \text{ kHz}.$
 - d) ± 3 kHz, ± 5 kHz, ± 7 kHz, ± 9 kHz, ± 11 kHz.

SINGAPORE POLYTECHNIC

ET0930

- 5. A filter only allows signals from dc to 10 kHz to pass through. Name the filter.
 - a) LPF
 - b) BPF
 - c) HPF
 - d) BSF
- 6. At a particular point in a circuit, a 1 W signal is corrupted by 1 μW of noise.

What is the Signal to Noise ratio at this point?

- a) 30 dB
- b) 60 dB
- c) 40 dB
- d) 1000 dB
- 7. Which one of the following is an external noise?
 - a) flicker noise
 - b) shot noise
 - c) cosmic noise
 - d) thermal noise
- 8. Frequencies between 3 kHz and 300 GHz are called
 - a) Audio frequency.
 - b) Modulating frequency.
 - c) Radio frequency.
 - d) Voice frequency.
- 9. Amplitude Modulation is named such because
 - a) the *amplitude* of the carrier is changed according to the *amplitude* of the modulating signal.
 - b) the *frequency* of the carrier is changed according to the *amplitude* of the modulating signal.
 - c) the *amplitude* of the carrier is changed according to the *frequency* of the modulating signal.
 - b) the *frequency* of the carrier is changed according to the *frequency* of the modulating signal.
- 10. The modulating signal of a DSBSC modulator is $v_s(t) = 2\cos 100t + 3\sin 200t$.

How many frequency components does the output of the DSBSC modulator have on the double-sided amplitude spectrum?

- a) 2 frequency components
- b) 4 pairs of frequency components
- c) 8 pairs of frequency components
- d) 16 pairs of frequency components

SINGAPORE POLYTECHNIC

ET0930

SECTION B [14 marks each]

B1.

- (a) Draw a well-labelled block diagram of an electronic communication system. (6 marks)
- (b) Define analog signals. Give two examples of analog signals. (4 marks)
- (c) Briefly describe the difference between analog communication systems and digital communication systems? (4 marks)

B2.

- (a) Define periodic and non-periodic signals. Give one example for each. (4 marks)
- (b) The Fourier series of a signal is given by

$$v(t) = \frac{1}{4} + \frac{1}{2\pi}\cos(4000\pi t) + \frac{1}{4\pi}\cos(8000\pi t) + \frac{1}{6\pi}\cos(12000\pi t) + \frac{1}{8\pi}\cos(12000\pi t) + \dots$$

- (i) Determine frequency and the peak voltage of the 2nd harmonic. (2 marks)
- (ii) Sketch the double-sided amplitude spectrum of the signal up to the 3th harmonic showing the frequency of each component and its peak amplitude.

 (8 marks)

B3.

- (a) Sketch the power spectrum density of the thermal noise generated by a 2 k Ω resistor at 27°C. Indicate the density value on the spectrum. (4 marks)
- (b) Find the thermal noise power and rms noise voltage generated by the above resistor over the frequency band from 300 Hz to 3.4 kHz. (4 marks)
- (c) The input signal and noise power of the amplifier shown in Figure B3 are 2mW and 0.1mW, respectively. The amplifier has a power gain (G) of 10. Given that $N_1 = kT_0B$, determine the Noise Factor if the noise power at the output of the amplifier is 1.2mW. (4 marks)

(d) State the two ways in which noise can spread.

n noise can spread. (2 marks)

Figure B3

SINGAPORE POLYTECHNIC

ET0930

B4.

- (a) State three reasons for the need of modulation. (3 marks)
- (b) Determine the minimum transmitter antenna length for efficient transmission of signals from 88 MHz to 108 MHz. (4 marks)
- (c) What is baseband signal? Briefly describe the difference between baseband signal transmission and passband signal transmission. (4 marks)
- (d) Name three digital modulation techniques. (3 marks)
- **B5.** Figure B5 shows an AM waveform.
 - (a) Write an equation for the waveform. (6 marks)
 - (b) Draw double-sided amplitude spectrum of AM signal. (6 marks)
 - (c) Determine the bandwidth of the AM signal. (2 marks)

Figure B5

**** End of the Paper ****

SINGAPORE POLYTECHNIC

ET0930

Formula Sheet:

$$P_n = kTB$$
 $E_n = \sqrt{4kTBR}$

Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J/K}$

Room Temperature, $T_0 = 290 \text{ K}$

$$F_{t} = F_{1} + \frac{F_{2} - 1}{G_{1}} + \frac{F_{3} - 1}{G_{1}G_{2}} + \frac{F_{4} - 1}{G_{1}G_{2}G_{3}} + \dots + \frac{F_{n} - 1}{G_{1}G_{2}G_{3} \dots G_{(n-1)}}$$

Velocity of light in free space, $c = 3 \times 10^8 \text{ m/s}$

 $\cos A \cos B = \frac{1}{2} \cos \left(A + B\right) + \frac{1}{2} \cos \left(A - B\right)$

Positive envelope =
$$\left[V_c + v_s(t)\right]$$

Positive envelope =
$$[V_c + v_s(t)]$$
 Negative envelope = $-[V_c + v_s(t)]$

$$m = \frac{A - B}{A + B}$$

$$B_{FM} = 2(m_f + 1)f_s$$
, for integer values of m_f.