Матричные игры

Виктор Васильевич Лепин

• Матричная игра это конечная антагонистич. игра,

- Матричная игра это конечная антагонистич. игра,
- а антагонистическая игра это игра 2-х лиц с нулевой суммой.

- Матричная игра это конечная антагонистич. игра,
- а антагонистическая игра это игра 2-х лиц с нулевой суммой.
- Матричная игра задается матрицей A размера $m \times n$ выигрышей игрока 1.

- Матричная игра это конечная антагонистич. игра,
- а антагонистическая игра это игра 2-х лиц с нулевой суммой.
- Матричная игра задается матрицей A размера $m \times n$ выигрышей игрока 1.
- В этой игре игрок 1 выбирает строку $i \in S_1 \stackrel{def}{=} \{1,\dots,m\},$

- Матричная игра это конечная антагонистич. игра,
- а антагонистическая игра это игра 2-х лиц с нулевой суммой.
- Матричная игра задается матрицей A размера $m \times n$ выигрышей игрока 1.
- В этой игре игрок 1 выбирает строку $i \in S_1 \stackrel{def}{=} \{1, \dots, m\},$
- ullet а игрок 2- столбец $j\in S_2\stackrel{def}{=}\{1,\ldots,n\}.$

- Матричная игра это конечная антагонистич. игра,
- а антагонистическая игра это игра 2-х лиц с нулевой суммой.
- Матричная игра задается матрицей A размера $m \times n$ выигрышей игрока 1.
- В этой игре игрок 1 выбирает строку $i \in S_1 \stackrel{def}{=} \{1, \dots, m\},$
- ullet а игрок 2- столбец $j\in S_2\stackrel{def}{=}\{1,\ldots,n\}.$
- В сложившейся ситуации (i,j) игрок 1 выигрывает сумму $\phi_1(i,j) \stackrel{def}{=} a_{ij}$,

- Матричная игра это конечная антагонистич. игра,
- а антагонистическая игра это игра 2-х лиц с нулевой суммой.
- Матричная игра задается матрицей A размера $m \times n$ выигрышей игрока 1.
- В этой игре игрок 1 выбирает строку $i \in S_1 \stackrel{def}{=} \{1, \dots, m\},$
- ullet а игрок 2- столбец $j\in S_2\stackrel{def}{=}\{1,\ldots,n\}.$
- В сложившейся ситуации (i, j) игрок 1 выигрывает сумму $\phi_1(i, j) \stackrel{def}{=} a_{ij}$,
- а игрок 2 проигрывает сумму a_{ij} , или, что то же самое, выигрывает $\phi_2(i,j) \stackrel{def}{=} -a_{ij}$.

- Матричная игра это конечная антагонистич. игра,
- а антагонистическая игра это игра 2-х лиц с нулевой суммой.
- Матричная игра задается матрицей A размера $m \times n$ выигрышей игрока 1.
- В этой игре игрок 1 выбирает строку $i \in S_1 \stackrel{def}{=} \{1, \dots, m\},$
- а игрок 2 столбец $j \in S_2 \stackrel{def}{=} \{1, \dots, n\}.$
- В сложившейся ситуации (i,j) игрок 1 выигрывает CVMMV $\phi_1(i, j) \stackrel{def}{=} a_{ii}$.
- а игрок 2 проигрывает сумму a_{ij} , или, что то же самое, выигрывает $\phi_2(i,j) \stackrel{def}{=} -a_{ii}$.
- \bullet Можно сказать, что A это матрица выигрышей игрока 1 и одновременно матрица проигрышей игрока 2.

• К матричной игре сводится любая конечная игра $(\{1,2\},\{S_1,S_2\},\{\phi_1,\phi_2\})$ двух лиц с постоянной суммой,

- К матричной игре сводится любая конечная игра $(\{1,2\},\{S_1,S_2\},\{\phi_1,\phi_2\})$ двух лиц с постоянной суммой,
- в которой $\phi_1(i,j) + \phi_2(i,j) = a$ для всех ситуаций $(i,j) \in S_1 \times S_2$, где a это некоторая константа.

- К матричной игре сводится любая конечная игра $(\{1,2\},\{S_1,S_2\},\{\phi_1,\phi_2\})$ двух лиц с постоянной суммой,
- в которой $\phi_1(i,j) + \phi_2(i,j) = a$ для всех ситуаций $(i,j) \in S_1 \times S_2$, где a это некоторая константа.
- Если мы переопределим функции выигрышей игроков по правилу

$$\bar{\phi}_k(i,j) \stackrel{def}{=} \phi_k(i,j) - a/2, k = 1, 2,$$

- К матричной игре сводится любая конечная игра $(\{1,2\},\{S_1,S_2\},\{\phi_1,\phi_2\})$ двух лиц с постоянной суммой,
- в которой $\phi_1(i,j) + \phi_2(i,j) = a$ для всех ситуаций $(i,j) \in S_1 \times S_2$, где a это некоторая константа.
- Если мы переопределим функции выигрышей игроков по правилу

$$\bar{\phi}_k(i,j) \stackrel{def}{=} \phi_k(i,j) - a/2, \ k = 1, 2,$$

• то получим эквивалентную игру с нулевой суммой: $\bar{\phi}_1(i,j) + \bar{\phi}_2(i,j) = 0.$

● В так называемых «играх с природой», в которых только один участник, стремящийся максимизировать свою прибыль, которая зависит от того, какой будет погода, или от того, каким будет состояние рынка.

- В так называемых «играх с природой», в которых только один участник, стремящийся максимизировать свою прибыль, которая зависит от того, какой будет погода, или от того, каким будет состояние рынка.
 - Если этот единственный участник принял решение оптимально спланировать свою хозяйственную деятельность при самых неблагоприятных погодных или рыночных условиях,

- В так называемых «играх с природой», в которых только один участник, стремящийся максимизировать свою прибыль, которая зависит от того, какой будет погода, или от того, каким будет состояние рынка.
 - Если этот единственный участник принял решение оптимально спланировать свою хозяйственную деятельность при самых неблагоприятных погодных или рыночных условиях,
 - то он может считать природу или рынок активным антагонистическим субъектом, целью которого является создание погодных или рыночных условий, при которых ожидаемый доход будет наименьшим.

- В так называемых «играх с природой», в которых только один участник, стремящийся максимизировать свою прибыль, которая зависит от того, какой будет погода, или от того, каким будет состояние рынка.
 - Если этот единственный участник принял решение оптимально спланировать свою хозяйственную деятельность при самых неблагоприятных погодных или рыночных условиях,
 - то он может считать природу или рынок активным антагонистическим субъектом, целью которого является создание погодных или рыночных условий, при которых ожидаемый доход будет наименьшим.
- В играх с постоянной суммой, в которых две фирмы конкурируют на одном рынке, и прибыль каждой из фирм пропорциональна ее доле на рынке.

- В так называемых «играх с природой», в которых только один участник, стремящийся максимизировать свою прибыль, которая зависит от того, какой будет погода, или от того, каким будет состояние рынка.
 - Если этот единственный участник принял решение оптимально спланировать свою хозяйственную деятельность при самых неблагоприятных погодных или рыночных условиях,
 - то он может считать природу или рынок активным антагонистическим субъектом, целью которого является создание погодных или рыночных условий, при которых ожидаемый доход будет наименьшим.
- В играх с постоянной суммой, в которых две фирмы конкурируют на одном рынке, и прибыль каждой из фирм пропорциональна ее доле на рынке.

В экономике антагонистические конфликты ВСТРЕЧАЮТСЯ

- В так называемых «играх с природой», в которых только один участник, стремящийся максимизировать свою прибыль, которая зависит от того, какой будет погода, или от того, каким будет состояние рынка.
 - Если этот единственный участник принял решение оптимально спланировать свою хозяйственную деятельность при самых неблагоприятных погодных или рыночных условиях,
 - то он может считать природу или рынок активным антагонистическим субъектом, целью которого является создание погодных или рыночных условий, при которых ожидаемый доход будет наименьшим.
- 2 В играх с постоянной суммой, в которых две фирмы конкурируют на одном рынке, и прибыль каждой из фирм пропорциональна ее доле на рынке.

Решение многих более сложных игровых моделей сводится к решению одной или нескольких матричных игр.

• Решением матричной игры в чистых стратегиях называется пара чистых стратегий (i_0, j_0) первого и второго игроков, которые образуют седловую точку матрицы A:

$$a_{ij_0} \le a_{i_0j_0} \le a_{i_0j}, i = 1, \dots, m, j = 1, \dots, n.$$
 (*)

• Решением матричной игры в чистых стратегиях называется пара чистых стратегий (i_0, j_0) первого и второго игроков, которые образуют седловую точку матрицы A:

$$a_{ij_0} \le a_{i_0j_0} \le a_{i_0j}, i = 1, \dots, m, j = 1, \dots, n.$$
 (*)

• Стратегии i_0 , j_0 в этом случае называются оптимальными чистыми стратегиями.

• Решением матричной игры в чистых стратегиях называется пара чистых стратегий (i_0, j_0) первого и второго игроков, которые образуют седловую точку матрицы A:

$$a_{ij_0} \le a_{i_0j_0} \le a_{i_0j}, i = 1, \dots, m, j = 1, \dots, n.$$
 (*)

- Стратегии i_0 , j_0 в этом случае называются оптимальными чистыми стратегиями.
- Из (*) следует, что ни одному из игроков в отдельности невыгодно отходить от своей оптимальной стратегии.

• Решением матричной игры в чистых стратегиях называется пара чистых стратегий (i_0, j_0) первого и второго игроков, которые образуют седловую точку матрицы A:

$$a_{ij_0} \le a_{i_0j_0} \le a_{i_0j}, i = 1, \dots, m, j = 1, \dots, n.$$
 (*)

- Стратегии i_0 , j_0 в этом случае называются оптимальными чистыми стратегиями.
- Из (*) следует, что ни одному из игроков в отдельности невыгодно отходить от своей оптимальной стратегии.
- Поэтому ситуация (i_0, j_0) есть ситуация равновесия в бескоалиционной игре $\gamma = (\{1, 2\}, \{S_1, S_2\}, \{\phi_1, \phi_2\})$, где $\phi_1(i, j) \stackrel{def}{=} a_{ij}$ и $\phi_2(i, j) \stackrel{def}{=} -a_{ij}$.

• По теореме о совпадении максимина и минимакса (если $X = \{1, \ldots, m\}, Y = \{1, \ldots, n\}, f(i, j) = a_{ij}$) матричная игра с матрицей игры A имеет решение в чистых стратегиях тогда и только тогда,

- По теореме о совпадении максимина и минимакса (если $X = \{1, \ldots, m\}, Y = \{1, \ldots, n\}, f(i, j) = a_{ij}$) матричная игра с матрицей игры A имеет решение в чистых стратегиях тогда и только тогда,
- ullet когда нижняя чистая цена игры $lpha(A) \stackrel{def}{=} \max_{1 \leq i \leq n} \min_{1 \leq j \leq n} a_{ij}$

- По теореме о совпадении максимина и минимакса (если $X = \{1, \ldots, m\}, Y = \{1, \ldots, n\}, f(i, j) = a_{ij}$) матричная игра с матрицей игры A имеет решение в чистых стратегиях тогда и только тогда,
- когда нижняя чистая цена игры $\alpha(A) \stackrel{def}{=} \max_{1 \leq i \leq n} \min_{1 \leq j \leq n} a_{ij}$
- ullet равна верхней чистой цене игры $eta(A) \stackrel{def}{=} \min_{1 \leq j \leq n} \max_{1 \leq i \leq n} a_{ij}.$

- По теореме о совпадении максимина и минимакса (если $X = \{1, \ldots, m\}, Y = \{1, \ldots, n\}, f(i, j) = a_{ij}$) матричная игра с матрицей игры A имеет решение в чистых стратегиях тогда и только тогда,
- когда нижняя чистая цена игры $\alpha(A) \stackrel{def}{=} \max_{1 \leq i \leq n} \min_{1 \leq j \leq n} a_{ij}$
- равна верхней чистой цене игры $\beta(A) \stackrel{def}{=} \min_{1 \leq j \leq n} \max_{1 \leq i \leq n} a_{ij}.$
- В таком случае число $\alpha(A)=\beta(A)$ называется чистой ценой игры.

• Чтобы вычислить $\alpha(A)$ нужно

- Чтобы вычислить $\alpha(A)$ нужно
 - ullet в каждой строке матрицы A найти минимальный элемент,

- Чтобы вычислить $\alpha(A)$ нужно
 - ullet в каждой строке матрицы A найти минимальный элемент,
 - а затем среди этих минимальных элементов выбрать максимальный.

- Чтобы вычислить $\alpha(A)$ нужно
 - в каждой строке матрицы A найти минимальный элемент,
 - а затем среди этих минимальных элементов выбрать максимальный.
- \bullet Чтобы вычислить $\beta(A)$ нужно

- Чтобы вычислить $\alpha(A)$ нужно
 - ullet в каждой строке матрицы A найти минимальный элемент,
 - а затем среди этих минимальных элементов выбрать максимальный.
- Чтобы вычислить $\beta(A)$ нужно
 - в каждом столбце матрицы A найти максимальный элемент,

- Чтобы вычислить $\alpha(A)$ нужно
 - ullet в каждой строке матрицы A найти минимальный элемент,
 - а затем среди этих минимальных элементов выбрать максимальный.
- Чтобы вычислить $\beta(A)$ нужно
 - ullet в каждом столбце матрицы A найти максимальный элемент,
 - а затем среди этих максимальных элементов выбрать минимальный.

- Чтобы вычислить $\alpha(A)$ нужно
 - ullet в каждой строке матрицы A найти минимальный элемент,
 - а затем среди этих минимальных элементов выбрать максимальный.
- Чтобы вычислить $\beta(A)$ нужно
 - \bullet в каждом столбце матрицы A найти максимальный элемент,
 - а затем среди этих максимальных элементов выбрать минимальный.
- Если $\alpha(A) = \beta(A)$, то отметьте те строки, в которых минимальный элемент равен $\alpha(A)$,

- Чтобы вычислить $\alpha(A)$ нужно
 - ullet в каждой строке матрицы A найти минимальный элемент,
 - а затем среди этих минимальных элементов выбрать максимальный.
- Чтобы вычислить $\beta(A)$ нужно
 - \bullet в каждом столбце матрицы A найти максимальный элемент,
 - а затем среди этих максимальных элементов выбрать минимальный.
- Если $\alpha(A) = \beta(A)$, то отметьте те строки, в которых минимальный элемент равен $\alpha(A)$,
- ullet и те столбцы, в которых максим. элемент равен eta(A).

- Чтобы вычислить $\alpha(A)$ нужно
 - ullet в каждой строке матрицы A найти минимальный элемент,
 - а затем среди этих минимальных элементов выбрать максимальный.
- ullet Чтобы вычислить eta(A) нужно
 - ullet в каждом столбце матрицы A найти максимальный элемент,
 - а затем среди этих максимальных элементов выбрать минимальный.
- Если $\alpha(A) = \beta(A)$, то отметьте те строки, в которых минимальный элемент равен $\alpha(A)$,
- ullet и те столбцы, в которых максим. элемент равен eta(A).
- ullet Элементы, находящиеся на пересечении отмеченных строк и столбцов, это все седловые точки матрицы A.

 \bullet В матричной игре с $m\times n$ -матрицей A выигрышей игрока 1

- в матричной игре с $m \times n$ -матрицей A выигрышей игрока 1
- смешанная стратегия игрока 1 есть вектор $p = (p_1, ..., p_m)^T$,

- В матричной игре с $m \times n$ -матрицей A выигрышей игрока 1
- смешанная стратегия игрока 1 есть вектор $p = (p_1, \dots, p_m)^T$,
- а смешанная стратегия игрока 2 вектор $q = (q_1, \dots, q_n)^T$.

- В матричной игре с $m \times n$ -матрицей A выигрышей игрока 1
- смешанная стратегия игрока 1 есть вектор $p = (p_1, \dots, p_m)^T$,
- а смешанная стратегия игрока 2 вектор $q = (q_1, \dots, q_n)^T$.
- В смешанной ситуации $(p,q) \in \Sigma_m \times \Sigma_n$ выигрыш игрока 1 определяется как математическое ожидание его выигрша:

$$E_A(p,q) \stackrel{def}{=} \sum_{i=1}^m \sum_{j=1}^n a_{ij} p_i q_j = p^T A q.$$

- В матричной игре с $m \times n$ -матрицей A выигрышей игрока 1
- смешанная стратегия игрока 1 есть вектор $p = (p_1, \dots, p_m)^T$,
- а смешанная стратегия игрока 2 вектор $q = (q_1, \dots, q_n)^T$.
- В смешанной ситуации $(p,q) \in \Sigma_m \times \Sigma_n$ выигрыш игрока 1 определяется как математическое ожидание его выигрша:

$$E_A(p,q) \stackrel{def}{=} \sum_{i=1}^m \sum_{j=1}^n a_{ij} p_i q_j = p^T A q.$$

• Понятно, что в ситуации (p,q) средний выигрыш игрока 2 равен $-E_A(p,q)$.

- Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) ,
- которая образует седловую точку функции $E_A(p,q)$, т. е. $E_A(p,q^0) \le E_A(p^0,q^0) \le E_A(p^0,q)$, $p \in \Sigma_m$, $q \in \Sigma_n$. (*)

- Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) ,
- которая образует седловую точку функции $E_A(p,q)$, т. е. $E_A(p,q^0) \le E_A(p^0,q^0) \le E_A(p^0,q)$, $p \in \Sigma_m$, $q \in \Sigma_n$. (*)
- Левые нер-ва в (*) означают, что игрок 1 не увеличит выигрыш, меняя стратегию p^0 на другую стратегию,

- Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) ,
- которая образует седловую точку функции $E_A(p,q)$, т. е. $E_A(p,q^0) \le E_A(p^0,q^0) \le E_A(p^0,q)$, $p \in \Sigma_m$, $q \in \Sigma_n$. (*)
- Левые нер-ва в (*) означают, что игрок 1 не увеличит выигрыш, меняя стратегию p^0 на другую стратегию,
- ullet а правые нер-ва означают, что игрок 2 не уменьшит свой проигрыш, переходя от страт. q^0 к другой стратегии.

- Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) ,
- которая образует седловую точку функции $E_A(p,q)$, т. е. $E_A(p,q^0) \le E_A(p^0,q^0) \le E_A(p^0,q)$, $p \in \Sigma_m$, $q \in \Sigma_n$. (*)
- Левые нер-ва в (*) означают, что игрок 1 не увеличит выигрыш, меняя стратегию p^0 на другую стратегию,
- ullet а правые нер-ва означают, что игрок 2 не уменьшит свой проигрыш, переходя от страт. q^0 к другой стратегии.
- ullet Поэтому седловые точки функции $E_A(p,q)$ ситуации равновесия в смешанных стратегиях.

- Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) ,
- которая образует седловую точку функции $E_A(p,q)$, т. е. $E_A(p,q^0) \le E_A(p^0,q^0) \le E_A(p^0,q)$, $p \in \Sigma_m$, $q \in \Sigma_n$. (*)
- Левые нер-ва в (*) означают, что игрок 1 не увеличит выигрыш, меняя стратегию p^0 на другую стратегию,
- ullet а правые нер-ва означают, что игрок 2 не уменьшит свой проигрыш, переходя от страт. q^0 к другой стратегии.
- Поэтому седловые точки функции $E_A(p,q)$ ситуации равновесия в смешанных стратегиях.
- Матричная игра это конечная бескоал. игра, то она имеет решение в смешанных стратегиях.

- Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) ,
- которая образует седловую точку функции $E_A(p,q)$, т. е. $E_A(p,q^0) \le E_A(p^0,q^0) \le E_A(p^0,q)$, $p \in \Sigma_m$, $q \in \Sigma_n$. (*)
- Левые нер-ва в (*) означают, что игрок 1 не увеличит выигрыш, меняя стратегию p^0 на другую стратегию,
- ullet а правые нер-ва означают, что игрок 2 не уменьшит свой проигрыш, переходя от страт. q^0 к другой стратегии.
- Поэтому седловые точки функции $E_A(p,q)$ ситуации равновесия в смешанных стратегиях.
- Матричная игра это конечная бескоал. игра, то она имеет решение в смешанных стратегиях.
- ullet Если (p^0,q^0) есть решение матр. игры в смеш. страт., то

- Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) ,
- которая образует седловую точку функции $E_A(p,q)$, т. е. $E_A(p,q^0) \le E_A(p^0,q^0) \le E_A(p^0,q)$, $p \in \Sigma_m$, $q \in \Sigma_n$. (*)
- Левые нер-ва в (*) означают, что игрок 1 не увеличит выигрыш, меняя стратегию p^0 на другую стратегию,
- ullet а правые нер-ва означают, что игрок 2 не уменьшит свой проигрыш, переходя от страт. q^0 к другой стратегии.
- Поэтому седловые точки функции $E_A(p,q)$ ситуации равновесия в смешанных стратегиях.
- Матричная игра это конечная бескоал. игра, то она имеет решение в смешанных стратегиях.
- ullet Если (p^0,q^0) есть решение матр. игры в смеш. страт., то
- ullet $p^0,\,q^0$ называют оптим. смешанными стратегиями,

- Решением матричной игры в смешанных стратегиях называют пару смешанных стратегий (p_0, q_0) ,
- которая образует седловую точку функции $E_A(p,q)$, т. е. $E_A(p,q^0) \le E_A(p^0,q^0) \le E_A(p^0,q)$, $p \in \Sigma_m$, $q \in \Sigma_n$. (*)
- Левые нер-ва в (*) означают, что игрок 1 не увеличит выигрыш, меняя стратегию p^0 на другую стратегию,
- ullet а правые нер-ва означают, что игрок 2 не уменьшит свой проигрыш, переходя от страт. q^0 к другой стратегии.
- Поэтому седловые точки функции $E_A(p,q)$ ситуации равновесия в смешанных стратегиях.
- Матричная игра это конечная бескоал. игра, то она имеет решение в смешанных стратегиях.
- ullet Если (p^0,q^0) есть решение матр. игры в смеш. страт., то
- ullet $p^0,\,q^0$ называют *оптим. смешанными стратегиями*,
- ullet а число $u(A)\stackrel{def}{=} E_A(p^0,q^0)$ ценой матричной игры.

Следующая теорема является фундаментальной в теории матричных игр.

Теорема (фон Неймана)

 \bullet Пусть A есть $m \times n$ матрица.

Следующая теорема является фундаментальной в теории матричных игр.

Теорема (фон Неймана)

- Пусть A есть $m \times n$ матрица.
- Имеет место равенство

$$\nu(A) = \max_{p \in \Sigma_m} \min_{1 \le j \le n} p^T A e_j = \min_{q \in \Sigma_n} \max_{1 \le i \le m} e_i^T A q.$$

Следующая теорема является фундаментальной в теории матричных игр.

Теорема (фон Неймана)

- Пусть A есть $m \times n$ матрица.
- Имеет место равенство

$$\nu(A) = \max_{p \in \Sigma_m} \min_{1 \le j \le n} p^T A e_j = \min_{q \in \Sigma_n} \max_{1 \le i \le m} e_i^T A q.$$

• Для любых $p^0 \in \arg\max_{p \in \Sigma_m} \min_{1 \le j \le n} p^T A e_j$, $q^0 \in \arg\min_{q \in \Sigma_n} \max_{1 \le i \le m} e_i^T A q$,

Следующая теорема является фундаментальной в теории матричных игр.

Теорема (фон Неймана)

- Пусть A есть $m \times n$ матрица.
- Имеет место равенство

$$\nu(A) = \max_{p \in \Sigma_m} \min_{1 \le j \le n} p^T A e_j = \min_{q \in \Sigma_n} \max_{1 \le i \le m} e_i^T A q.$$

- Для любых $p^0 \in \arg\max_{p \in \Sigma_m} \min_{1 \le j \le n} p^T A e_j$, $q^0 \in \arg\min_{q \in \Sigma_n} \max_{1 \le i \le m} e_i^T A q$,
- пара (p^0, q^0) является решением в смешанных стратегиях матричной игры, заданной матрицей A.

ФУНКЦИИ ВЫИГРЫШЕЙ И ПРОИГРЫШЕЙ

$$f(p) = \min_{1 \le j \le n} p^t A e_j = \min_{1 \le j \le n} \sum_{i=1}^m a_{ij} p_i, \qquad p \in \Sigma_m,$$

$$g(q) = \max_{1 \le i \le m} e_i^T A q = \max_{1 \le i \le m} \sum_{j=1}^n a_{ij} q_j, \qquad q \in \Sigma_n.$$

• Определим функцию $f: \Sigma_m \to \mathbb{R}$ выигрышей игрока 1 и функцию $g: \Sigma_n \to \mathbb{R}$ проигрышей игрока 2 по правилам:

$$f(p) = \min_{1 \le j \le n} p^t A e_j = \min_{1 \le j \le n} \sum_{i=1}^m a_{ij} p_i, \qquad p \in \Sigma_m,$$

$$g(q) = \max_{1 \le i \le m} e_i^T A q = \max_{1 \le i \le m} \sum_{j=1}^n a_{ij} q_j, \qquad q \in \Sigma_n.$$

ullet f — кусочно-линейная вогнутая функция,

$$f(p) = \min_{1 \le j \le n} p^t A e_j = \min_{1 \le j \le n} \sum_{i=1}^m a_{ij} p_i, \qquad p \in \Sigma_m,$$

$$g(q) = \max_{1 \le i \le m} e_i^T A q = \max_{1 \le i \le m} \sum_{j=1}^n a_{ij} q_j, \qquad q \in \Sigma_n.$$

- ullet f кусочно-линейная вогнутая функция,
- ullet g кусочно-линейная выпуклая функция.

$$f(p) = \min_{1 \le j \le n} p^t A e_j = \min_{1 \le j \le n} \sum_{i=1}^m a_{ij} p_i, \qquad p \in \Sigma_m,$$

$$g(q) = \max_{1 \le i \le m} e_i^T A q = \max_{1 \le i \le m} \sum_{j=1}^n a_{ij} q_j, \qquad q \in \Sigma_n.$$

- \bullet f кусочно-линейная вогнутая функция,
- g кусочно-линейная выпуклая функция.
- Из теоремы фон Неймана следует, что игрок 1 найдет свою оптимальную стратегию, решая задачу $\max\{f(p): p \in \Sigma_m\},$

$$f(p) = \min_{1 \le j \le n} p^t A e_j = \min_{1 \le j \le n} \sum_{i=1}^m a_{ij} p_i, \qquad p \in \Sigma_m,$$

$$g(q) = \max_{1 \le i \le m} e_i^T A q = \max_{1 \le i \le m} \sum_{j=1}^n a_{ij} q_j, \qquad q \in \Sigma_n.$$

- ullet f кусочно-линейная вогнутая функция,
- g кусочно-линейная выпуклая функция.
- Из теоремы фон Неймана следует, что игрок 1 найдет свою оптимальную стратегию, решая задачу $\max\{f(p): p \in \Sigma_m\},$
- а игрок 2 найдет свою опт. стратегию, решая задачу $\min\{g(q): q \in \Sigma_n\}.$

Решим игру
$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix}$$
 $p^0 = (?,?,?,?),$ $q^0 = (?,?),$ $\nu(A) = ?.$

Решим игру
$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix}$$
 $p^0 = (?,?,?,?),$ $q^0 = (?,?),$ $\nu(A) = ?.$

• Предположим, что игрок 2 использует свою смешанную стратегию $q=(q_1,q_2)^T=(x,1-x)^T,$

Решим игру
$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix}$$

$$p^0 = (?,?,?,?),$$

$$q^0 = (?,?),$$

$$\nu(A) =?.$$

- Предположим, что игрок 2 использует свою смешанную стратегию $q=(q_1,q_2)^T=(x,1-x)^T,$
- ullet а игрок 1 использует свою чистую стратегию i.

Решим игру
$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix}$$

$$p^0 = (?,?,?,?),$$

$$q^0 = (?,?),$$

$$\nu(A) = ?.$$

- Предположим, что игрок 2 использует свою смешанную стратегию $q = (q_1, q_2)^T = (x, 1-x)^T$,
- ullet а игрок 1 использует свою чистую стратегию i.
- Тогда средний проигрыш игрока 2 (выигрыш игрока 1) равен: $g_i(x) = xa_{i1} + (1-x)a_{i2}$.

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

Чтобы нарисовать графики функций $y = g_i(x)$ на координатной плоскости (x,y) удобно провести две вертикальных координатных оси, проходящие через точки x=0 и x=1.

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

$$y = g_1(x) = 2x + 4(1-x);$$

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

$$9 y = g_3(x) = 4x + 2(1-x);$$

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

$$y = g_2(x) = (-1)x + 5(1-x);$$

$$9 y = g_3(x) = 4x + 2(1-x);$$

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$p^{0} = (?, ?, ?, ?),$$

 $q^{0} = (?, ?),$

$$v(A) = ?$$
.

- Функция $g(x) \stackrel{def}{=} \max_{i \in \{1,2,3,4\}} g_i(x)$ есть функция проигрышей игрока 2.
- ullet Рисуем график y = g(x) этой функции, который есть верхняя огибающая семейства прямых $y = g_i(x)$.

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$
$$p^{0} = (?, ?, ?, ?),$$

$$p^{0} = (?,?,?,?)$$

 $q^{0} = (?,?),$

$$v(A) = ?$$

- Функция $g(x) \stackrel{def}{=} \max_{i \in \{1,2,3,4\}} g_i(x)$ есть функция проигрышей игрока 2.
- Рисуем график y = g(x) этой функции, который есть верхняя огибающая семейства прямых $y = g_i(x)$.

Решим игру

v(A) = ?.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

- Функция $g(x) \stackrel{def}{=} \max_{i \in \{1,2,3,4\}} g_i(x)$ есть функция проигрышей игрока 2.
- Рисуем график y = g(x) этой функции, который есть верхняя огибающая семейства прямых $y = g_i(x)$.

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

- Стремясь минимизировать свой проигрыш, игрок 2 должен найти точку x^0 минимума функции g(x).
- Тогда $(x^0, 1-x^0)$ есть оптимальная смешанная стратегия игрока 2,
- а $g(x^0)$ есть цена игры $\nu(A)$.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

- Чтобы точно вычислить точку минимума x^0 , нужно выделить две активных стратегии игрока 1.
- Эти стратегии определяются по линиям 1 и 3, пересекающимся в точке x^0 .

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$
$$p^{0} = (?, ?, ?, ?),$$

$$p^{0} = (?,?,?,?)$$

 $q^{0} = (?,?),$
 $v(A) = ?.$

- Чтобы точно вычислить точку минимума x^0 , нужно выделить две активных стратегии игрока 1.
- Эти стратегии определяются по линиям 1 и 3, пересекающимся в точке x^0 .

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (?, ?),$$

$$v(A) = ?.$$

- Следовательно, x^0 есть решение уравнения $g_1(x) = g_3(x) : 2x + 4(1-x) = 4x + 2(1-x) \Rightarrow x^0 = 1/2.$
- Откуда, $q^0 = (1/2, 1/2)^T$ есть оптимальная смешанная стратегия игрока 2.
- Вычислим цену игры как значение $g_1(x^0)$ (или $g_3(x^0)$) в точке $x^0: \nu(A) = g_1(x^0) = 2(1/2) + 4(1/2) = 3$.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (1/2, 1/2),$$

$$v(A) = ?.$$

- Следовательно, x^0 есть решение уравнения $g_1(x) = g_3(x) : 2x + 4(1-x) = 4x + 2(1-x) \Rightarrow x^0 = 1/2.$
- Откуда, $q^0 = (1/2, 1/2)^T$ есть оптимальная смешанная стратегия игрока 2.
- Вычислим цену игры как значение $g_1(x^0)$ (или $g_3(x^0)$) в точке $x^0: \nu(A) = g_1(x^0) = 2(1/2) + 4(1/2) = 3$.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (1/2, 1/2),$$

$$v(A) = 3.$$

- Следовательно, x^0 есть решение уравнения $g_1(x) = g_3(x) : 2x + 4(1-x) = 4x + 2(1-x) \Rightarrow x^0 = 1/2.$
- Откуда, $q^0 = (1/2, 1/2)^T$ есть оптимальная смешанная стратегия игрока 2.
- Вычислим цену игры как значение $g_1(x^0)$ (или $g_3(x^0)$) в точке $x^0: \nu(A) = g_1(x^0) = 2(1/2) + 4(1/2) = 3$.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (1/2, 1/2),$$

$$v(A) = 3.$$

- Использование неактивных стратегий не может увеличить выигрыш игрока 1 (проигрыш игрока 2).
- Если игрок 1 откажется от любой своей неактивной стратегии, то функция проигрышей игрока 2 может измениться, но минимум новой функции будет достигаться в той же самой точке x^0 .

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (1/2, 1/2),$$

$$v(A) = 3.$$

- Например, если игрок 1 не будет использовать стратегию 2, то функция проигрышей игрока 2 примет вид как на рисунке справа.
- Следовательно, можно считать, что игрок 1 применяет свои неактивные стратегии с нулевой вероятностью.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (1/2, 1/2),$$

$$v(A) = 3.$$

- Например, если игрок 1 не будет использовать стратегию 2, то функция проигрышей игрока 2 примет вид как на рисунке справа.
- Следовательно, можно считать, что игрок 1 применяет свои неактивные стратегии с нулевой вероятностью.

Решим игру

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (1/2, 1/2),$$

$$v(A) = 3.$$

- $p_2^0 = p_4^0 = 0 \Rightarrow p_3^0 = 1 p_1^0$.
- Мы найдем p^0 , решив игру с усеченной матрицей $A' = \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$, которая получается из исходной матрицы A после удаления строк 2 и A соответствующих

A после удаления строк 2 и 4, соответствующих неактивным стратегиям.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (?, ?, ?, ?),$$

$$q^{0} = (1/2, 1/2),$$

$$v(A) = 3.$$

$$\bullet \ A' = \left[\begin{array}{cc} 2 & 4 \\ 4 & 2 \end{array} \right],$$

- Мы можем найти p_1^0 из уравнения (обоснуйте это!): $2p_1^0 + 4(1-p_1^0) = 3 = \nu(A)$.
- Откуда, $p_1^0 = 1/2$ и $p^0 = (1/2, 0, 1/2, 0)^T$ есть оптимальная стратегия игрока 1.

$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \\ 4 & 2 \\ 6 & -2 \end{bmatrix},$$

$$p^{0} = (1/2, 0, 1/2, 0),$$

$$q^{0} = (1/2, 1/2),$$

$$v(A) = 3.$$

$$\bullet \ A' = \left[\begin{array}{cc} 2 & 4 \\ 4 & 2 \end{array} \right],$$

- Мы можем найти p_1^0 из уравнения (обоснуйте это!): $2p_1^0 + 4(1-p_1^0) = 3 = \nu(A)$.
- Откуда, $p_1^0 = 1/2$ и $p^0 = (1/2, 0, 1/2, 0)^T$ есть оптимальная стратегия игрока 1.

• Сначала ищем опт. стратегию $p^0 = (x^0, 1 - x^0)$ игрока 1.

- Сначала ищем опт. стратегию $p^0 = (x^0, 1 x^0)$ игрока 1.
- На координатной плоскости для каждого из n столбцов рисуем линию:

- ullet Сначала ищем опт. стратегию $p^0 = (x^0, 1-x^0)$ игрока 1.
- На координатной плоскости для каждого из n столбцов рисуем линию:
 - на первой оси (x=0) откладываем число из второй строки матрицы игры,

- Сначала ищем опт. стратегию $p^0 = (x^0, 1 x^0)$ игрока 1.
- На координатной плоскости для каждого из n столбцов рисуем линию:
 - на первой оси (x=0) откладываем число из второй строки матрицы игры,
 - ullet а на второй оси (x=1) число из первой строки.

- ullet Сначала ищем опт. стратегию $p^0 = (x^0, 1-x^0)$ игрока 1.
- На координатной плоскости для каждого из n столбцов рисуем линию:
 - на первой оси (x=0) откладываем число из второй строки матрицы игры,
 - ullet а на второй оси (x=1) число из первой строки.
- Строим график функции f(x) выигрышей игрока 1 как нижнюю огибающую построенного семейства прямых.

- ullet Сначала ищем опт. стратегию $p^0 = (x^0, 1-x^0)$ игрока 1.
- На координатной плоскости для каждого из n столбцов рисуем линию:
 - на первой оси (x=0) откладываем число из второй строки матрицы игры,
 - ullet а на второй оси (x=1) число из первой строки.
- Строим график функции f(x) выигрышей игрока 1 как нижнюю огибающую построенного семейства прямых.
- Находим точку x^0 максимума функции f(x) и вычисляем цену игры $\nu(A) = f(x^0)$.

- Сначала ищем опт. стратегию $p^0 = (x^0, 1 x^0)$ игрока 1.
- На координатной плоскости для каждого из n столбцов рисуем линию:
 - на первой оси (x=0) откладываем число из второй строки матрицы игры,
 - ullet а на второй оси (x=1) число из первой строки.
- Строим график функции f(x) выигрышей игрока 1 как нижнюю огибающую построенного семейства прямых.
- Находим точку x^0 максимума функции f(x) и вычисляем цену игры $\nu(A) = f(x^0)$.
- Выберем любые две непараллельные линии, которые пересекаются в т-ке x^0 , и удалим соотв. им столбцы из матрицы игры.

- Сначала ищем опт. стратегию $p^0 = (x^0, 1 x^0)$ игрока 1.
- На координатной плоскости для каждого из n столбцов рисуем линию:
 - на первой оси (x=0) откладываем число из второй строки матрицы игры,
 - ullet а на второй оси (x=1) число из первой строки.
- Строим график функции f(x) выигрышей игрока 1 как нижнюю огибающую построенного семейства прямых.
- Находим точку x^0 максимума функции f(x) и вычисляем цену игры $\nu(A) = f(x^0)$.
- Выберем любые две непараллельные линии, которые пересекаются в т-ке x^0 , и удалим соотв. им столбцы из матрицы игры.
- \bullet Решая усеченную игру размера 2 × 2, определим ненулевые компоненты оптимальной стратегии игрока 2.

ullet В одном из n лесных массивов потерялся человек.

- ullet В одном из n лесных массивов потерялся человек.
- ullet Для поиска этого человека выделено k вертолетов.

- ullet В одном из n лесных массивов потерялся человек.
- ullet Для поиска этого человека выделено k вертолетов.
- Вероятность обнаружения человека в j-м лесном массиве одним вертолетом равна w_j .

- \bullet В одном из n лесных массивов потерялся человек.
- ullet Для поиска этого человека выделено k вертолетов.
- Вероятность обнаружения человека в j-м лесном массиве одним вертолетом равна w_j .
- Поэтому хотя бы один из r вертолетов обнаружит человека в j-м районе (при условии, что он там находится) с вероятностью $u_j(r) = 1 (1 w_j)^r$.

- ullet В одном из n лесных массивов потерялся человек.
- ullet Для поиска этого человека выделено k вертолетов.
- Вероятность обнаружения человека в j-м лесном массиве одним вертолетом равна w_j .
- Поэтому хотя бы один из r вертолетов обнаружит человека в j-м районе (при условии, что он там находится) с вероятностью $u_j(r) = 1 (1 w_j)^r$.
- Каким образом нужно распределить вертолеты по лесным массивам, чтобы вероятность обнарудения человека была максимальной.

• Здесь у нас нет конфликтной ситуации.

- Здесь у нас нет конфликтной ситуации.
- Но мы можем планировать поисковую операцию, расчитывая на худшее, когда «злой рок» направил потерявшегося человека в то место, где обнаружить его труднее всего.

- Здесь у нас нет конфликтной ситуации.
- Но мы можем планировать поисковую операцию, расчитывая на худшее, когда «злой рок» направил потерявшегося человека в то место, где обнаружить его труднее всего.
- В таком случае мы можем рассматривать задачу планирования поисковых усилий как матричную игру, в которой

- Здесь у нас нет конфликтной ситуации.
- Но мы можем планировать поисковую операцию, расчитывая на худшее, когда «злой рок» направил потерявшегося человека в то место, где обнаружить его труднее всего.
- В таком случае мы можем рассматривать задачу планирования поисковых усилий как матричную игру, в которой
- \bullet игрок 1 это лицо (или группа лиц), планирующее операцию,

- Здесь у нас нет конфликтной ситуации.
- Но мы можем планировать поисковую операцию, расчитывая на худшее, когда «злой рок» направил потерявшегося человека в то место, где обнаружить его труднее всего.
- В таком случае мы можем рассматривать задачу планирования поисковых усилий как матричную игру, в которой
- игрок 1 это лицо (или группа лиц), планирующее операцию,
- а игрок 2 это «злой рок».

- Здесь у нас нет конфликтной ситуации.
- Но мы можем планировать поисковую операцию, расчитывая на худшее, когда «злой рок» направил потерявшегося человека в то место, где обнаружить его труднее всего.
- В таком случае мы можем рассматривать задачу планирования поисковых усилий как матричную игру, в которой
- игрок 1 это лицо (или группа лиц), планирующее операцию,
- а игрок 2 это «злой рок».
- Игрок 2 имеет n стратегий, где стратегия $j=1,\ldots,n$ означает, что человек потерялся в районе j.

- Здесь у нас нет конфликтной ситуации.
- Но мы можем планировать поисковую операцию, расчитывая на худшее, когда «злой рок» направил потерявшегося человека в то место, где обнаружить его труднее всего.
- В таком случае мы можем рассматривать задачу планирования поисковых усилий как матричную игру, в которой
- игрок 1 это лицо (или группа лиц), планирующее операцию,
- ullet а игрок 2 это «злой рок».
- Игрок 2 имеет n стратегий, где стратегия $j = 1, \ldots, n$ означает, что человек потерялся в районе j.
- Стратегии игрока 1 представим как разбиения (s_1, \ldots, s_n) числа k, где $\sum_{j=1}^n s_j = k$ и s_j есть количество вертолетов, посланных в район j.

У игрока 1 три стратегии:

• (2,0) — направить оба вертолета в район 1;

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

У игрока 1 три стратегии:

- \bullet (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

У игрока 2 две стратегии:

У игрока 1 три стратегии:

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

У игрока 2 две стратегии:

• 1) направить человека в район 1;

У игрока 1 три стратегии:

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

У игрока 2 две стратегии:

- 1) направить человека в район 1;
- 2) направить человека в район 2.

У игрока 1 три стратегии:

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

У игрока 2 две стратегии:

- 1) направить человека в район 1;
- 2) направить человека в район 2.

У игрока 1 три стратегии:

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

У игрока 2 две стратегии:

- 1) направить человека в район 1;
- 2) направить человека в район 2.

Матрица игры: $a_{11} = 1 - (1 - 0.6)^2 = 0.84$

		Район 1	Район 2	
	(2,0)	0.84		
A =			0.4	0.4
	(0,2)			
		0.84	0.64	

У игрока 1 три стратегии:

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

У игрока 2 две стратегии:

- 1) направить человека в район 1;
- 2) направить человека в район 2.

Матрица игры: $a_{22} = 1 - (1 - 0.6)^2 = 0.64$

		Район 1	Район 2	
	(2,0)	0.84	0	0
A =	(1,1)	0.6	0.4	0.4
	(0,2)	0	0.64	0
		0.84	0.64	

У игрока 1 три стратегии:

- (2,0) направить оба вертолета в район 1;
- (1,1) направить один вертолет в район 1, а другой в район 2;
- (0,2) направить оба вертолета в район 2.

У игрока 2 две стратегии:

- 1) направить человека в район 1;
- 2) направить человека в район 2.

Матрица игры:

		Район 1	Район 2	
	(2,0)	0.84	0	0
A =	(1,1)	0.6	0.4	0.4
	(0,2)	0	0.64	0
		0.84	0.64	

$$A = \begin{bmatrix} 0.84 & 0\\ 0.6 & 0.4\\ 0 & 0.64 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.84 & 0\\ 0.6 & 0.4\\ 0 & 0.64 \end{bmatrix}$$

• Активные стратегии игрока 1: (1, 1) и (0, 2),

$$A = \begin{bmatrix} 0.84 & 0\\ 0.6 & 0.4\\ 0 & 0.64 \end{bmatrix}$$

- Активные стратегии игрока 1: (1, 1) и (0, 2),
- ullet его опт. стратегия имеет вид $p^0 = (0, y^0, 1 y^0)$.

$$A = \begin{bmatrix} 0.84 & 0\\ 0.6 & 0.4\\ 0 & 0.64 \end{bmatrix}$$

- Активные стратегии игрока 1: (1, 1) и (0, 2),
- ullet его опт. стратегия имеет вид $p^0 = (0, y^0, 1 y^0)$.
- Найдем y^0 из уравнения $0.6y + 0(1-y) = 0.4y + 0.64(1-y) \Rightarrow y^0 = 16/21.$

$$A = \begin{bmatrix} 0.84 & 0 \\ 0.6 & 0.4 \\ 0 & 0.64 \end{bmatrix}$$

- Активные стратегии игрока 1: (1, 1) и (0, 2),
- ullet его опт. стратегия имеет вид $p^0=(0,y^0,1-y^0).$
- Найдем y^0 из уравнения $0.6y + 0(1-y) = 0.4y + 0.64(1-y) \Rightarrow y^0 = 16/21.$
- Откуда $p^0=(0,16/21,5/21)$ и $\nu(A)=0.84\cdot 0+0.6\cdot (16/21)+0\cdot (5/21)=16/35,$

• Стратегию $p^0 = (0, 16/21, 5/21)$ можно реализовать следующим образом:

$$A = \begin{bmatrix} 0.84 & 0 \\ 0.6 & 0.4 \\ 0 & 0.64 \end{bmatrix}$$

- Стратегию $p^0 = (0, 16/21, 5/21)$ можно реализовать следующим образом:
- \bullet каждый день 16/21 времени поиска в каждом из районов находится по одному вертолету,

- Стратегию $p^0 = (0, 16/21, 5/21)$ можно реализовать следующим образом:
- \bullet каждый день 16/21 времени поиска в каждом из районов находится по одному вертолету,
- а в остальное время два вертолета должны находится во втором районе.

Сведение матричной игры к задаче ЛП

Игрок 1 найдет свою оптим. стратегию p^0 , решая задачу

$$\max \left\{ f(p) = \min_{1 \le j \le n} \sum_{i=1}^{m} a_{ij} p_i : p \in \Sigma_m \right\},\,$$

Игрок 1 найдет свою оптим. стратегию p^0 , решая задачу

$$\max \left\{ f(p) = \min_{1 \le j \le n} \sum_{i=1}^{m} a_{ij} p_i : p \in \Sigma_m \right\},\,$$

эквивалентную задаче ЛП, $\nu \to \max$,

$$u \to \max,$$
 $\sum_{i=1}^{m} a_{ij}p_i - \nu \ge 0, \quad j = 1, \dots, n,$
 $\sum_{i=1}^{m} p_i = 1,$
 $p_i \ge 0, \quad i = 1, \dots, m.$
в которой в подграфике функции
 $f(p)$ ищется точка (p^0, v^0) с максим.
координатой $v^0 = f(p^0)$.

Игрок 2 найдет свою оптим. стратегию q^0 , решая задачу

$$\min \left\{ g(q) = \max_{1 \le i \le m} \sum_{j=1}^{n} a_{ij} q_j : q \in \Sigma_n \right\},\,$$

Игрок 2 найдет свою оптим. стратегию q^0 , решая задачу

$$\min \left\{ g(q) = \max_{1 \le i \le m} \sum_{j=1}^{n} a_{ij} q_j : q \in \Sigma_n \right\},\,$$

эквивалентную задаче ЛП, $\nu \to \min$,

$$\sum_{\substack{j=1\\n}}^{n} a_{ij}q_{j} - \nu \ge 0, \quad i = 1, \dots, m,$$

$$\sum_{\substack{j=1\\q_{i} \ge 0, \quad j = 1, \dots, n}}^{n} q_{j} = 1,$$

в которой в надграфике функции g(q) ищется точка (q^0, ν^0) с минимальной координатой $\nu^0 = g(q^0)$.

Переход к игре с положительной ценой

ЛЕММА

Пусть матрица A^a получена добавлением к кажслому элементу матрицы A числа a. Тогда $E_{A^a}(p,q) = E_A(p,q) + a$ для любых смешанных стратегий $p \in \Sigma_m$ и $q \in \Sigma_n$.

Переход к игре с положительной ценой

ЛЕММА

Пусть матрица A^a получена добавлением к кажлому элементу матрицы A числа a. Тогда $E_{A^a}(p,q) = E_A(p,q) + a$ для любых смешанных стратегий $p \in \Sigma_m$ и $q \in \Sigma_n$.

Следствие

Матричные игры c матрицами A и A^a эквивалентны в том смысле, что они имеют одинаковые оптимальные стратегии.

Переход к игре с положительной ценой

ЛЕММА

Пусть матрица A^a получена добавлением к кажлому элементу матрицы A числа a. Тогда $E_{A^a}(p,q)=E_A(p,q)+a$ для любых смешанных стратегий $p\in \Sigma_m$ и $q\in \Sigma_n$.

Следствие

Матричные игры с матрицами A и A^a эквивалентны в том смысле, что они имеют одинаковые оптимальные стратегии.

В дальнейшем, без ограничения общности, будем считать, что

нижняя чистая цена игры положительна, т. е. $\alpha(A) > 0$.

Сведение матр. игры к решению пары ДВОЙСТВ. З-Ч ЛП

Так как $\alpha(A) > 0$, то в задачах

$$\begin{bmatrix}
v \to \max, \\
\sum_{i=1}^{m} a_{ij}p_i - v \ge 0, & j = 1, \dots, n, \\
\sum_{i=1}^{m} p_i = 1, \\
p_i \ge 0, & i = 1, \dots, m,
\end{bmatrix}
\begin{bmatrix}
v \to \min, \\
\sum_{j=1}^{n} a_{ij}q_j - v \ge 0, & i = 1, \dots, m, \\
\sum_{j=1}^{n} q_j = 1, \\
q_j \ge 0, & j = 1, \dots, n
\end{bmatrix}$$

$$\begin{array}{c}
v \to \min, \\
\sum_{j=1}^{n} a_{ij}q_j - v \ge 0, \quad i = 1, \dots, m, \\
\sum_{j=1}^{n} q_j = 1, \\
q_j \ge 0, \quad j = 1, \dots, n
\end{array}$$

переменная ν — также положительна. Сделаем следующую

замену переменных:
$$y_i = \frac{p_i}{\nu}, \ i = 1, \dots, m; \quad \ x_j = \frac{q_j}{\nu}, \ j = 1, \dots, n.$$

Сведение матр. игры к решению пары ДВОЙСТВ. З-Ч ЛП

Так как $\alpha(A) > 0$, то в задачах

$$\sum_{i=1}^{m} a_{ij}p_i - v \ge 0, \quad j = 1, \dots, n,
\sum_{i=1}^{m} p_i = 1,
p_i \ge 0, \quad i = 1, \dots, m,$$

$$\begin{vmatrix}
v \to \min, \\
\sum_{j=1}^{n} a_{ij}q_j - v \ge 0, & i = 1, \dots, m, \\
\sum_{j=1}^{n} q_j = 1, \\
q_j \ge 0, & j = 1, \dots, n
\end{vmatrix}$$

$$\begin{array}{l}
v \to \min, \\
\sum_{j=1}^{n} a_{ij}q_{j} - v \ge 0, \quad i = 1, \dots, m, \\
\sum_{j=1}^{n} q_{j} = 1, \\
q_{j} \ge 0, \quad j = 1, \dots, n
\end{array}$$

переменная ν — также положительна. Сделаем следующую замену переменных:

$$y_i = \frac{p_i}{\nu}, i = 1, \dots, m; \quad x_j = \frac{q_j}{\nu}, j = 1, \dots, n.$$

Так как $\frac{1}{n} = \sum_{i=1}^m y_i = \sum_{j=1}^n x_j$, то наши задачи ЛП

преобразуются в пару двойственных задач.

Сведение матр. игры к решению пары двойств. з-ч ЛП

$$\sum_{i=1}^{m} y_i \to \min,$$

$$\sum_{i=1}^{m} a_{ij} y_i \ge 1, \quad j = 1, \dots, n,$$

$$y_i \ge 0, \quad i = 1, \dots, m,$$

$$\sum_{i=1}^{m} y_i \to \min,
\sum_{i=1}^{m} a_{ij} y_i \ge 1, \quad j = 1, \dots, n,
y_i \ge 0, \quad i = 1, \dots, m,$$

$$\sum_{j=1}^{n} x_j \to \max,
\sum_{j=1}^{n} a_{ij} x_j \le 1, \quad i = 1, \dots, m,
x_j \ge 0, \quad j = 1, \dots, n.$$

Сведение матр. игры к решению пары двойств. 3-ч $\Pi\Pi$

$$\sum_{i=1}^{m} y_i \to \min,$$

$$\sum_{i=1}^{m} a_{ij} y_i \ge 1, \quad j = 1, \dots, n,$$

$$y_i \ge 0, \quad i = 1, \dots, m,$$

$$\sum_{j=1}^{n} x_j \to \max,$$

$$\sum_{j=1}^{n} a_{ij}x_j \le 1, \quad i = 1, \dots, m,$$

$$x_j \ge 0, \quad j = 1, \dots, n.$$

Теорема

Решение матричной игры эквивалентно решению пары двойственных задач ЛП.

 \blacksquare Вычисляем нижнюю $\alpha(A)$ и верхнюю $\beta(A)$ чистую цену игры.

- lacktriangled Вычисляем нижнюю lpha(A) и верхнюю eta(A) чистую цену игры.
 - Если $\alpha(A) = \beta(A)$, то записываем все ситуации равновесия в чистых стратегиях и заканчиваем.

- lacktriangled Вычисляем нижнюю lpha(A) и верхнюю eta(A) чистую цену игры.
 - Если $\alpha(A) = \beta(A)$, то записываем все ситуации равновесия в чистых стратегиях и заканчиваем.
 - В противном случае $(\alpha(A) < \beta(A))$ переходим к поиску ситуации равновесия в смешанных стратегиях.

- lacktriangled Вычисляем нижнюю lpha(A) и верхнюю eta(A) чистую цену игры.
 - Если $\alpha(A) = \beta(A)$, то записываем все ситуации равновесия в чистых стратегиях и заканчиваем.
 - В противном случае $(\alpha(A) < \beta(A))$ переходим к поиску ситуации равновесия в смешанных стратегиях.
- **②** Если $\alpha(A) \leq 0$, то полагаем $a = -\alpha(A) + 1$, в противном случае полагаем a = 0.

- lacktriangled Вычисляем нижнюю lpha(A) и верхнюю eta(A) чистую цену игры.
 - Если $\alpha(A) = \beta(A)$, то записываем все ситуации равновесия в чистых стратегиях и заканчиваем.
 - В противном случае $(\alpha(A) < \beta(A))$ переходим к поиску ситуации равновесия в смешанных стратегиях.
- **2** Если $\alpha(A) \leq 0$, то полагаем $a = -\alpha(A) + 1$, в противном случае полагаем a = 0.
- f a Прибавляем a ко всем элементам матрицы A.

- lacktriangled Вычисляем нижнюю lpha(A) и верхнюю eta(A) чистую цену игры.
 - Если $\alpha(A) = \beta(A)$, то записываем все ситуации равновесия в чистых стратегиях и заканчиваем.
 - В противном случае $(\alpha(A) < \beta(A))$ переходим к поиску ситуации равновесия в смешанных стратегиях.
- **②** Если $\alpha(A) \leq 0$, то полагаем $a = -\alpha(A) + 1$, в противном случае полагаем a = 0.
- **8** Прибавляем a ко всем элементам матрицы A.
- Решаем любую из пары двойств. задач ЛП и находим их оптимальные решения x^* и y^* .

- lacktriangled Вычисляем нижнюю lpha(A) и верхнюю eta(A) чистую цену игры.
 - Если $\alpha(A) = \beta(A)$, то записываем все ситуации равновесия в чистых стратегиях и заканчиваем.
 - В противном случае $(\alpha(A) < \beta(A))$ переходим к поиску ситуации равновесия в смешанных стратегиях.
- **②** Если $\alpha(A) \leq 0$, то полагаем $a = -\alpha(A) + 1$, в противном случае полагаем a = 0.
- **8** Прибавляем a ко всем элементам матрицы A.
- **①** Решаем любую из пары двойств. задач ЛП и находим их оптимальные решения x^* и y^* .
- $m{\bullet}$ Вычисляем $ar{
 u}=1/\sum_{j=1}^n x_j^*=1/\sum_{i=1}^m y_i^*$ и цену исходной игры $u(A)=ar{
 u}-a,$

- lacktriangled Вычисляем нижнюю lpha(A) и верхнюю eta(A) чистую цену игры.
 - Если $\alpha(A) = \beta(A)$, то записываем все ситуации равновесия в чистых стратегиях и заканчиваем.
 - В противном случае $(\alpha(A) < \beta(A))$ переходим к поиску ситуации равновесия в смешанных стратегиях.
- **②** Если $\alpha(A) \leq 0$, то полагаем $a = -\alpha(A) + 1$, в противном случае полагаем a = 0.
- lacktriangledown Прибавляем a ко всем элементам матрицы A.
- Решаем любую из пары двойств. задач ЛП и находим их оптимальные решения x^* и y^* .
- ullet Вычисляем $ar{
 u}=1/\sum_{j=1}^n x_j^*=1/\sum_{i=1}^m y_i^*$ и цену исходной игры $u(A)=ar{
 u}-a,$
- lacktriangleda а затем определяем оптимальные стратегии игроков $p^0 = \bar{\nu} y^*$ и $q^0 = \bar{\nu} x^*.$

• Фермеру необходимо определить, в каких пропорциях засеять свое поле тремя культурами,

- Фермеру необходимо определить, в каких пропорциях засеять свое поле тремя культурами,
- если урожайность этих культур, а, значит, и прибыль, зависят от того, каким будет лето: прохладным и дождливым, нормальным, или жарким и сухим.

- Фермеру необходимо определить, в каких пропорциях засеять свое поле тремя культурами,
- если урожайность этих культур, а, значит, и прибыль, зависят от того, каким будет лето: прохладным и дождливым, нормальным, или жарким и сухим.
- Фермер подсчитал чистую прибыль с 1 га от разных культур в зависимости от погоды:

	прохладное и дождливое	нормальное	жаркое и сухое
Культура 1	0	2	5
Культура 2	2	3	1
Культура 3	4	3	-1

- Фермеру необходимо определить, в каких пропорциях засеять свое поле тремя культурами,
- если урожайность этих культур, а, значит, и прибыль, зависят от того, каким будет лето: прохладным и дождливым, нормальным, или жарким и сухим.
- Фермер подсчитал чистую прибыль с 1 га от разных культур в зависимости от погоды:

	прохладное и дождливое	нормальное	жаркое и сухое	
Культура 1	0	2	5	0
Культура 2	2	3	1	<u>1</u>
Культура 3	4	3	-1	-1
	4	<u>3</u>	5	

• Здесь у фермера нет реального противника.

- Здесь у фермера нет реального противника.
- Но, если фермер планирует свою деятельность в расчете на наихудшие погодные условия,

- Здесь у фермера нет реального противника.
- Но, если фермер планирует свою деятельность в расчете на наихудшие погодные условия,
- то можно считать Природу активным субъектом, который пытается создать наихудшую (с точки зрения фермера) погоду.

- Здесь у фермера нет реального противника.
- Но, если фермер планирует свою деятельность в расчете на наихудшие погодные условия,
- то можно считать Природу активным субъектом, который пытается создать наихудшую (с точки зрения фермера) погоду.
- В таком случае, мы можем смоделировать задачу фермера как матричную игру,

- Здесь у фермера нет реального противника.
- Но, если фермер планирует свою деятельность в расчете на наихудшие погодные условия,
- то можно считать Природу активным субъектом, который пытается создать наихудшую (с точки зрения фермера) погоду.
- В таком случае, мы можем смоделировать задачу фермера как матричную игру,
- в которой фермер является игроком 1, а Природа игроком 2.

- Здесь у фермера нет реального противника.
- Но, если фермер планирует свою деятельность в расчете на наихудшие погодные условия,
- то можно считать Природу активным субъектом, который пытается создать наихудшую (с точки зрения фермера) погоду.
- В таком случае, мы можем смоделировать задачу фермера как матричную игру,
- в которой фермер является игроком 1, а Природа игроком 2.
- Матрица A выигрышей в данной игре это таблица доходов фермера.

• Так как $\alpha(A) = 1 < 3 = \beta(A)$, то игра не имеет решения в чистых стратегиях.

- Так как $\alpha(A) = 1 < 3 = \beta(A)$, то игра не имеет решения в чистых стратегиях.
- Решим игру в смешанных стратегиях. Поскольку $\alpha(A) = 1 > 0$, то матрицу A не нужно модифицировать.

- Так как $\alpha(A) = 1 < 3 = \beta(A)$, то игра не имеет решения в чистых стратегиях.
- Решим игру в смешанных стратегиях. Поскольку $\alpha(A) = 1 > 0,$ то матрицу A не нужно модифицировать.
- Сразу запишем задачу ЛП:

$$\begin{aligned} x_1 + x_2 + x_3 &\rightarrow \max \\ 2x_2 + 5x_3 &\leq 1, \\ 2x_1 + 3x_2 + 1x_3 &\leq 1, \\ 4x_1 + 3x_2 - 1x_3 &\leq 1, \\ x_1, x_2, x_3 &\geq 0. \end{aligned}$$

- Так как $\alpha(A) = 1 < 3 = \beta(A)$, то игра не имеет решения в чистых стратегиях.
- Решим игру в смешанных стратегиях. Поскольку $\alpha(A) = 1 > 0$, то матрицу A не нужно модифицировать.
- Сразу запишем задачу ЛП:

$$\begin{aligned} x_1 + x_2 + x_3 &\rightarrow \max \\ 2x_2 + 5x_3 &\leq 1, \\ 2x_1 + 3x_2 + 1x_3 &\leq 1, \\ 4x_1 + 3x_2 - 1x_3 &\leq 1, \\ x_1, x_2, x_3 &\geq 0. \end{aligned}$$

• Оптимальное решение этой и двойственной к ней задач следующие: $x^0 = (3/10,0,1/5)^T$ и $y^0 = (1/4,0,1/4)^T$.

- Так как $\alpha(A) = 1 < 3 = \beta(A)$, то игра не имеет решения в чистых стратегиях.
- Решим игру в смешанных стратегиях. Поскольку $\alpha(A) = 1 > 0$, то матрицу A не нужно модифицировать.
- Сразу запишем задачу ЛП:

$$\begin{aligned} x_1 + x_2 + x_3 &\rightarrow \max \\ 2x_2 + 5x_3 &\leq 1, \\ 2x_1 + 3x_2 + 1x_3 &\leq 1, \\ 4x_1 + 3x_2 - 1x_3 &\leq 1, \\ x_1, x_2, x_3 &\geq 0. \end{aligned}$$

- Оптимальное решение этой и двойственной к ней задач следующие: $x^0 = (3/10, 0, 1/5)^T$ и $y^0 = (1/4, 0, 1/4)^T$.
- Найдем цену игры: $\nu(A) = \frac{1}{y_1^0 + y_2^0 + y_3^0} = \frac{1}{1/4 + 1/4} = 2.$

- Так как $\alpha(A) = 1 < 3 = \beta(A)$, то игра не имеет решения в чистых стратегиях.
- Решим игру в смешанных стратегиях. Поскольку $\alpha(A) = 1 > 0,$ то матрицу A не нужно модифицировать.
- Сразу запишем задачу ЛП:

$$\begin{array}{l} x_1+x_2+x_3 \to \max \\ 2x_2+5x_3 \le 1, \\ 2x_1+3x_2+1x_3 \le 1, \\ 4x_1+3x_2-1x_3 \le 1, \\ x_1,x_2,x_3 \ge 0. \end{array}$$

- Оптимальное решение этой и двойственной к ней задач следующие: $x^0 = (3/10, 0, 1/5)^T$ и $y^0 = (1/4, 0, 1/4)^T$.
- Найдем цену игры: $\nu(A) = \frac{1}{y_1^0 + y_2^0 + y_3^0} = \frac{1}{1/4 + 1/4} = 2.$
- Опт. стратегия игрока 1: $p^0 = \nu(A)y^0 = (1/2, 0, 1/2)^T$.

• Здесь смешанная стратегия $p^0 = (1/2, 0, 1/2)^T$ допускает иную, более естественную, интерпретацию.

- Здесь смешанная стратегия $p^0 = (1/2, 0, 1/2)^T$ допускает иную, более естественную, интерпретацию.
- Она рекомендует фермеру засеять половину своего поля культурой 1,

- Здесь смешанная стратегия $p^0 = (1/2, 0, 1/2)^T$ допускает иную, более естественную, интерпретацию.
- Она рекомендует фермеру засеять половину своего поля культурой 1,
- а другую половину культурой 3.

- Здесь смешанная стратегия $p^0 = (1/2, 0, 1/2)^T$ допускает иную, более естественную, интерпретацию.
- Она рекомендует фермеру засеять половину своего поля культурой 1,
- а другую половину культурой 3.
- При любой погоде доход фермера не будет меньшим цены $\nu(A)=2$ данной игры.

О СОВПАДЕНИИ МАКСИМИНА И МИНИМАКСА

Теорема

Пусть для действительной функции $f(x,y), x \in X, y \in Y$ существуют

$$\alpha \stackrel{def}{=} \max_{x \in X} \min_{y \in Y} f(x,y) \quad \text{if} \quad \beta \stackrel{def}{=} \min_{y \in Y} \max_{x \in X} f(x,y).$$

 $Tor \partial a \ \alpha \leq \beta.$

1 $\alpha = \beta$ тогда и только тогда, когда функция f(x, y) имеет седловую точку (x^0, y^0) : $f(x, y^0) \le f(x^0, y^0) \le f(x^0, y), \quad x \in X, \ y \in Y.$

О СОВПАДЕНИИ МАКСИМИНА И МИНИМАКСА

ТЕОРЕМА

Пусть для действительной функции $f(x,y), x \in X, y \in Y$ существуют

$$\alpha \stackrel{def}{=} \max_{x \in X} \min_{y \in Y} f(x, y)$$
 и $\beta \stackrel{def}{=} \min_{y \in Y} \max_{x \in X} f(x, y).$

Тогда $\alpha \leq \beta$.

- **1** $\alpha = \beta$ тогда и только тогда, когда функция f(x, y) имеет седловую точку (x^0, y^0) : $f(x, y^0) \le f(x^0, y^0) \le f(x^0, y), \quad x \in X, \ y \in Y.$
- **2** $Ecnu(x^0, y^0) cednoвая точка функции <math>f(x, y)$, то $f(x^0, y^0) = \alpha = \beta$.

Решение примера в АМРL

```
reset:
set I;
set J;
param M {I,J}; # матрица игры
var X{J} >= 0; # оптимальная смешанная стратегия игрока 1
var v:
maximize game: v;
subject to constraints {i in I}:
       v - sum {j in J} M[j,i]*X[j] <=0;</pre>
subject to probability:
       sum {j in J} X[j]=1;
data:
set I := 1 2 3 ;
set J := 1 2 3;
param M:
   1 2 3 := #
1 0 2 5 #А[i,j] матрица игры
 2 2 3 1
 3 4 3 -1;
option solver cplex;
solve;
print 'цена игры';
display v;
print 'оптимальная смешанная стратегия игрока 1';
display X;
```

Решение примера в AMPL. Ответ

```
цена игры v=2 оптимальная смешанная стратегия игрока 1 X\ [^*]:=1\ 0.5 2 0 3 0.5 :
```