Lecture hours 24-26

Definitions and Theorems

Definition (Transpose of a matrix Matrix).

The transpose of a matrix A is A^T , and it has columns the rows of A (same order).

Definition (Perpendicular complement).

Let V be a subspace of \mathbb{R}^n , then W is called the "perpendicular complement" of V and denoted V^{\perp} (pronounced "V perp", symbol \perp is a superscript) if W contains all vector in \mathbb{R}^n that are perpendicular to all vectors in V.

Definition (Fundamental subspaces of linear algebra).

For any m by n matrix A we have

$$(\ker A)^{\perp} = \operatorname{im}(A^T), \qquad (\operatorname{im} A)^{\perp} = \ker(A^T).$$

Problem 43 (Fundamental subspaces of linear algebra). Consider the matrix

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \\ 0 & 0 \end{bmatrix}.$$

Find $\ker(A)$, $\operatorname{im}(A)$, $\ker(A^T)$, and $\operatorname{im}(A^T)$. For each of these subspaces, determine the value of n for which they are a subspace of \mathbb{R}^n .

Problem 44 (Transpose of a matrix). Let A be an invertible $n \times n$ matrix.

- a) Explain why A^T is invertible.
- b) Explain why $(A^T)^{-1} = (A^{-1})^T$. (Hint: $I^T = I$.)

Problem 45 (Least squares - Normal Equations). You are given data points (x,y) = (1,1), (2,3), (-1,3). Use a least squares line of best fit to predict the y-value when x=7.