RAPPORT

Analyse BD SQL Hydro Soft

Introduction

Le Groupe Askida® fut choisi pour améliorer un produit de la compagnie Hydro Solutions. Ce document est un effort fait afin de mieux comprendre l'application existante. Son squelette est une BD Sql Server 2012© et utilise Great Plains©. Des coquilles existent, dans les grandes lignes, c'est due au manque de compartimentalisation. Tout réside dans le même schéma de Great Plains©, avec dédoublement et copie de tables, en plus des tables propres à l'application. Les agents externes causent beaucoup de transactions donc trop de pression sur la BD.

Serveur SQL 2012

L'analyse ne reflète pas la réalité, car nos test se font dans l'environnement de développement fait par HydroSoft. Il faudra répéter l'analyse de DB dans l'environnement de production pour avoir la surcharge réelle du programme.

Schéma de BD

Les nombreuses transactions entre les tables originales de Great Plains© et les tables HydroSoft (de l'application et en lien avec Great Plains©) causent la surutilisation de mémoire et d'espace disque. Il faudra découpler les nouveaux développements dans un autre Schéma de données (i.e. HydroSoft).

Base de Données (BD)

Espace de disque et mémoire

L'environnement de développement auquel nous avons accès, est assez léger car il consomme presque 900 Mo de mémoire mais prends 620 Go sur disque en plus de résider dans un fichier physique MDF, ceci n'est pas optimal.

Contraintes

Décompte du nombre de contraintes par table, les tables ayant plus de 7 contraintes par table appartiennent a Great Plains©, donc les tables de HydroSoft moins lourdes.

Utilisation d'objets

L'environnement de développement nous montre aussi que la BD est centrée sur des procédures stockées plus que sur des fonctions.

Nombre d'enregistrements pour chaque table

Il y a au-delà de 1000 tables qui n'ont pas d'enregistrements (non utilisées). On estime à 150 tables le nombre de tables de configuration ayant entre 1 et 10 enregistrements. Les

table ayant plus de 1000 enregistrements sont les plus utilisées tandis que celles ayant de 100 à 1000 sont les plus liées à la logique d'affaires.

Les fonctions

Plus de 300 fonctions sont présentes. La minorité sont "valuées" retournant un ensemble de données suite à une sélection. La plupart sont "scalaires" retournant une seule valeur. Les fonctions sont optimisées pour diminuer la quantité du flux de données.

Les paramètres des fonctions

Toutes les fonctions reçoivent des valeurs en paramètre.

Distribution du nombre de paramètres des fonctions

Dans la minorité des "valuées", la plupart ont 4 paramètres mais moins que 10, ce qui vans dans le sens de la norme. Par contre dans la majorité des "scalaires", la plupart ont 2, il faudrait investiguer les fonctions ayant de 10 à 20 paramètres pour des possibles optimisations.

Les procédures stockées

Le système comporte au delà de 17 000 procédures stockées, dont la plupart n'utilisent pas de paramètres.

Les paramètres des procédures stockées

Presque 8 000 procédures ont des paramètres.

Distribution du nombre de paramètres des procédures stockées

Il faudrait vérifier celles ayant plus de 50 paramètres ainsi que le groupe de procédures comprises dans le pic de 40 paramètres.

Les vues

Plus de 250 vues sont présentes. La moitié dédiée à Great Plains et l'autre moitié pour HydroSoft. La plupart sont "scalaires" retournant une seule valeur. Il faudrait profiler la charge de données sur les vues dans l'environnement de production pour connaître l'empreinte en mémoire et le ratio de lecture/ écriture sur disque.

Les indexes

Les tables ayant moins de 5 index par table doivent etre verifiees.

Les clefs principales

Il resterait à valider 20% des tables ayant moins de 2 clefs par table.

Les clefs étrangères

Il resterait à valider les tables n'ayant pas de 2 clefs vers les principales table.

Les tables

Ayant fait le survol des autres composantes, des indices clairs existent pour continuer l'exploration des tables et de les modifier. il faudra refaire l'exercice sur l'environnement en production pour la cueillette de données sur le comportement de la BD.

Il faut développer la nouvelle application dans un nouveau schéma, valider les contraintes, investiguer les tabler ayant de 100-1000 enregistrements, valider les accès disque des tables appelées le plus souvent par les procédures, par les fonctions et par les vues.

Il faudrait voir la possibilité d'indexer les colonnes les plus demandées, en priorité les tables avec peu de clefs principales Il va falloir aussi ajouter de clés étrangères pour alléger les vues, procédures et fonctions

Il faudrait commencer par les tables utilisées par le code et par les workflow des scénarios testés en novembre.

Annexes

Figure Analyse de BD-Contraintes

Liste de tables sensible, par table, du ratio nombre de contraintes par table

Figure Analyse de BD-Mémoire

Liste de consommation mémoire par BD

Figure Analyse de BD-Objets

Liste de l'utilisation d'objets, fonctions versus procédures.

Figure Analyse de BD-Enregistrements de Tables

Tri décroissant du nombre d'enregistrements par table

Figure Analyse de BD-Fonctions

Prédominance de fonctions scalaires

Figure Analyse de BD-Paramètres de Fonctions

Ratio de fonctions avec paramètres versus sans paramètres

Figure Analyse de BD-Distribution de paramètres de Fonctions

Le nombre de paramètres est dans la norme, peu d'optimisation à faire.

Figure Analyse de BD-Paramètres de procédures stockées

Ratio de 45/55 avec paramètres versus sans paramètres

Figure Analyse de BD-Distribution de paramètres de procédures stockées

Le nombre de paramètres dépasse 20 avec un pic à 40

Figure Analyse de BD-Indexes

Histogramme de distribution du nombre d'index par table

Figure Analyse de BD-Clefs Principales

Nombre de clefs principales par table, 20% ont moins de 3 clefs

Tableau Analyse de BD-Clefs Étrangères

TableName	ColumnName	ForeignKey	ForeignKeyID	ReferenceTableNam e	ReferenceColumnNa me
GMP_AUTO_SCRIPT	ScriptGroupId	FK_ScriptGroup	1513041538	HS_ScriptGroup	ID

GMP_ETAT_COMPTE _Detail	SID	FK_GMP_ETAT_CO_ SID_5472C43C	1416807484	GMP_ETAT_COMPTE _Sommaire	SID
HS_Client_HS_Portail Message	HS_PortailMessageID	FK_HS_Client_HS_Por tailMessage_HS_Port ailMessage	1912809251	HS_PortailMessage	ID
HS_Client_HS_Portail Questions	HS_PortailQuestionsl D	FK_HS_Client_HS_Por tailQuestions_HS_Po rtailQuestions	2008809593	HS_PortailQuestions	ID
HS_COMMUNICATIO N_USAGERS	UsagerID	FK_HS_COMMUNICA TION_USAGERS_USA GERS	347068593	GMP_USAGERS	UsagerID
HS_PortailModifLog	HS_PortailTypeModif ID	FK_HS_PortailModifL og_HS_PortailTypeM odif	1688808453	HS_PortailTypeModif	ID
RM00105	CPRCSTNM	RM_NationalAccount s_MSTR_FKC	1129053987	RM00101	CUSTNMBR

Notez bien qu'il y en a 7 clés uniquement.