Report _ OpenMP Тан Цзычэнь 604 edu-cmc-skmodel24-604-04 31/10/2024

1. Математическая постановка задачи

В области $D \subset \mathbb{R}^2$, ограниченной контуром γ , рассматривается дифференциальное уравнение Пуассона:

$$-\Delta u = f(x, y) \quad (1)$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

функция f(x,y) считается известной. Для выделения единственного решения уравнение дополняется граничными условием Дирихле (см. [1]):

$$u(x,y) = 0, (x,y) \in \gamma \tag{2}$$

Требуется найти функцию u(x, y), удовлетворяющую уравнению (1) в области D и краевому условию (2) на ее границе.

Требуется приближенно найти решение задачи (1),(2) для случая, когда f(x,y)=1 при всех $(x,y)\in D$. Конкретное задание определяется геометрией области D.

5. трапеция с вершинами в точках A(-3,0), B(3,0), C(2,3), D(-2,3);

$$\Pi = \{(x, y) : A_1 < x < B_1, A_2 < y < B_2\}.$$

$$\hat{D} = \Pi \setminus \bar{D}$$

Выберем и зафиксируем малое $\varepsilon>0$.(Выполняя расчеты, считать константу ε метода фиктивных областей равной h^2 , где $h=\max(h_1,h_2)$ - наибольший шаг сетки $\bar{\omega}_h$.)

$$-\frac{\partial}{\partial x}\left(k(x,y)\frac{\partial v}{\partial x}\right) - \frac{\partial}{\partial y}\left(k(x,y)\frac{\partial v}{\partial y}\right) = F(x,y), (x,y) \in D$$

$$v(x,y) = 0, \text{ when } (x,y) \text{ on the boundary of the trapezoid}$$
(3)

$$k(x,y) = \begin{bmatrix} 1, & (x,y) \in D, \\ \frac{1}{\varepsilon}, & (x,y) \in \hat{D} \end{bmatrix}$$
 (4)

$$F(x,y) = \begin{bmatrix} f(x,y), & (x,y) \in D \\ 0, & (x,y) \in \hat{D}. \end{bmatrix}$$
 (5)

Последнее означает, что в каждой точке $(x_0, y_0) \in \gamma \cap \Pi$ должно выполняться равенство:

$$\lim_{(x,y)\to(x_0,y_0),(x,y)\in D} \left(W(x,y),n(x_0,y_0)\right) = \lim_{(x,y)\to(x_0,y_0),(x,y)\in \hat{D}} \left(W(x,y),n(x_0,y_0)\right) \tag{6}$$

где n(x,y) - вектор единичной нормали к границе γ в точке (x,y), определенный всюду или почти всюду на кривой.

Известно [2], что функция v(x,y) равномерно приближает решение u(x,y) задачи (1),(2) в области D, а именно,

$$\max_{p \in \bar{D}} |v(x, y) - u(x, y)| < C\varepsilon, C > 0$$
 (7)

2. Разностная схема решения задачи.

Краевые задачу (3),(6) предлагается решать численно методом конечных разностей [3 В замыкании прямоугольника $\bar{\Pi}$ определяется равномерная прямоугольная сетка $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$, где

$$\bar{\omega}_1 = \{x_i = A_1 + ih_1, i = \overline{0, M}\}, \bar{\omega}_2 = \{y_i = A_2 + jh_2, j = \overline{0, N}\}.$$

Здесь $h_1 = (B_1 - A_1)/M$, $h_2 = (B_2 - A_2)/N$.

$$(u,v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij}, \| u \|_E = \sqrt{(u,u)}$$
 (8)

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида

$$Aw = B$$
. (9)

Дифференциальное уравнение задачи (3) во всех внутренних точках сетки аппроксимируется разностным уравнением:

$$-\frac{1}{h_1} \left(a_{i+1j} \frac{w_{i+1j} - w_{ij}}{h_1} - a_{ij} \frac{w_{ij} - w_{i-1j}}{h_1} \right) - \frac{1}{h_2} \left(b_{ij+1} \frac{w_{ij+1} - w_{ij}}{h_2} - b_{ij} \frac{w_{ij} - w_{ij-1}}{h_2} \right) = F_{ij},$$

$$i = \overline{1, M-1}, j = \overline{1, N-1}$$
(10)

в котором коэффициенты:

$$a_{ij} = \frac{1}{h_2} \int_{y_{i-1/2}}^{y_{j+1/2}} k(x_{i-1/2}, t) dt, \ b_{ij} = \frac{1}{h_1} \int_{x_{i-1/2}}^{x_{i+1/2}} k(t, y_{j-1/2}) dt$$
 (11)

при всех $i=\overline{1,M}, j=\overline{1,N}$. Здесь полуцелые узлы

$$x_{i\pm 1/2} = x_i \pm 0.5h_1, \ y_{j\pm 1/2} = y_j \pm 0.5h_2$$

Правая часть разностного уравнения

$$F_{ij} = \frac{1}{h_1 h_2} \iint_{\Pi_{ij}} F(x, y) dx dy, \ \Pi_{ij} = \left\{ (x, y) : x_{i-1/2} \leqslant x \leqslant x_{i+1/2}, y_{j-1/2} \leqslant y \leqslant y_{j+1/2} \right\}$$
 (12)

при всех $i = \overline{1, M-1}, j = \overline{1, N-1}$.

Введем обозначения правой и левой разностных производных по переменным x, yсоответственно:

$$w_{x,ij} = \frac{w_{i+1j} - w_{ij}}{h_1}, \quad w_{\bar{x},ij} = w_{x,i-1j} = \frac{w_{ij} - w_{i-1j}}{h_1}$$
$$w_{y,ij} = \frac{w_{ij+1} - w_{ij}}{h_2}, \quad w_{\bar{y},ij} = w_{y,ij-1} = \frac{w_{ij} - w_{ij-1}}{h_2}$$

С учетом принятых обозначений разностное уравнение (10) можно представить в более компактном и удобном виде::

$$-(aw_{\bar{x}})_{x,ij} - (bw_{\bar{y}})_{y,ij} = F_{ij}, \ i = \overline{1,M-1}, j = \overline{1,N-1}$$
 (13)

Краевые условия Дирихле задачи (3),(6) аппроксимируются точно равенством:

$$w_{ij} = w(x_i, y_j) = 0, (x_i, y_j) \in \Gamma$$
(14)

3. Метод решения системы линейных алгебраических уравнений.

Приближенное решение системы уравнений (2) для сформулированных выше краевых задач может быть получено итерационным методом наименьших невязок. Этот метод позволяет получить последовательность сеточных функций $w^{(k)} \in H, k = 1, 2, ...,$ сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$\|w - w^{(k)}\|_{E} \to 0, \quad k \to +\infty$$

Начальное приближение $w^{(0)}$ можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки.

. Метод является одношаговым. Итерация $w^{(k+1)}$ вычисляется по итерации $w^{(k)}$ согласно равенствам:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}$$

где невязка $r^{(k)} = Aw^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{\left[Ar^{(k)}, \ r^{(k)}\right]}{\left\|Ar^{(k)}\right\|_{E}^{2}}$$

В качестве условия остановки итерационного процесса следует использовать неравенство $\left\|w^{(k+1)}-w^{(k)}\right\|_{E}<\varepsilon$

$$\left\| w^{(k+1)} - w^{(k)} \right\|_{F} < \varepsilon$$

 ε - положительное число, определяющее точность итерационного метода. Оценку точности приближенного решения сеточных уравнений (2) можно проводить в других нормах пространства сеточных функций, например, в максимум норме

$$||w||_c = \max_{x \in \overline{W}_b} |w(x)|$$

 $\|w\|_c = \max_{x \in \overline{w}_h} |w(x)|$ Константу ε для данной задачи предлагается взять равной 10^{-6} .

4. краткое описание проделанной работы по созданию ОрепМР-программы.

Размер матрицы A в уравнении (2) равен $((M-1)\times(N-1))\times((M-1)\times(N-1))$.

Описание переменных:

MatrA_index - индекс столбца элемента в матрице, который не равен 0.

MatrA_val - Значение элемента в матрице, который не равен 0.

Matr_map - матрица результатов.

VecB - вектор *B*.

VecRes - результирующий вектор.

struct CSR - разреженная матрица

const double A1 = -3, B1 = 3; // x const double A2 = 0, B2 = 3; // y

Описание функции:

Функция $func_k$ возвращает значение функции k(x,y)

 Φ ункция func_F возвращает значение ϕ ункции F(x,y)

Функция calculate_aij вспомогательная функция для расчета a_ij

Функция calculate_bij вспомогательная функция для расчета b_ij

Функция calculate_Fij вспомогательная функция для расчета F_ij

 Φ ункция $Filling_MatrA_VecB()$ заполняет матрицу A и вектор B по формуле из главы 2.

 Φ ункция $Change_Matr_to_CSR()$ преобразует $MatrA_index$ и $MatrA_val$ в разреженную матрицу CSR.

Функция SpMV() вычисляет произведение разреженных матриц и векторов.

Функция Ахру() представляет собой линейное вычисление вектора.

Функция Vcopy() скопировает вектор.

Функция Vdiff() вычисляет разность двух векторов.

Функция Dot() вычисляет скалярное произведение.

Функция Norm_Vec() вычисляет норму вектора.

Функция Slove_SOLE_sequential() использует метод наименьших невязок для решения уравнения.

Функция Get map() переводит результирующий вектор в плоскость.

Для последовательного программного кода я использую вышеуказанные функции, подробности см. в «trymain seq.c».

log	sequential	MN	iteration	time/s	initial_value	eps
log10_seq	try.1184839	10 10	390	0.000000s	1.44	0.000005
log20_seq	try.1184860	20 20	6020	0.340000s	1.44	0.000005
log40_seq	try.1184749	40 40	73862	17.350000s	1.44	0.000005

try.1184916	80 90	906554	1008.18	1.44	0.000005
My_PC	160 180	6111612	5234.344	1.44	0.000005

< task1_omp.c>

Реализация программы с использованием OpenMP:

OpenMP	thread	queue	MN	iteration time/s
omp_t.1185684	1	normal	40 40	73862 3.7082599
omp_t.1185678	2	normal	40 40	73862 3.0599988
omp_t.1185678	4	normal	40 40	73862 2.3397169
omp_t.1185678	16	normal	40 40	73862 2.7295569

ускорение = T(sequential) / T(Parallel)

OpenMP	thread	queue	M N	iteration	time/s	ускорение
1 omp_t.1185637	2	normal	80 90	906554	98.12027	10.2749411513034
2 omp_t.1185637	4	normal	80 90	906554	60.845934	16.5693898297296
3 omp_t.1185637	8	normal	80 90	906554	69.160344	14.5774289381788
4 omp_t.1185637	16	normal	80 90	906554	59.281774	17.0065760852568
1 run.1192366.ou	it 4	normal	160 180	6111612	1959.452865	2.67132937642774
2 run.1192365.ou	ıt 8	normal	160 180	6111612	1368.503513	3.8248670538853
3 run.1192001.ou	ıt 16	normal	160 180	6111612	1464.608227	3.57388679341346
4 run.1191991.ou	ıt 32	normal	160 180	6111612	1558.893566	3.35773019670029

Get the Solution image using Python : Result_file in Polus : edu-cmc-skmodel24-604-04@polus.hpc.cs.msu.ru:/home_edu/edu-cmc-skmodel24-604/edu-cmc-skmodel24-604/

< MN40x40_omp_n8.out >< MN80x90_omp_n16.out > < Big_omp_n16.out>

