```
In [53]: from sklearn.cluster import KMeans
          import pandas as pd
          from sklearn.preprocessing import MinMaxScaler
          from sklearn.preprocessing import StandardScaler
          from matplotlib import pyplot as plt
          %matplotlib inline
In [104... df=pd.read excel(r'DataFinal17-20.xlsx',sheet name='2020')
          df1=df.drop(['Total'], axis=1)
          df1=df1.iloc[:,2:15].values
          #scaler = MinMaxScaler()
          scaler= StandardScaler()
          # transform data
          df1 = scaler.fit_transform(df1)
In [105... | from sklearn.cluster import KMeans
          #create a list for the wcss parameter
          WCSS = []
          #test with 14 clusters
          for i in range(1, 15):
              kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state =0)
              kmeans.fit(df1)
              wcss.append(kmeans.inertia )
In [106... wcss
Out[106]: [455.0,
           183.15163902707062,
           121.00520284639019,
           77.72527132804296,
           57.19196898334107,
           43.204549529150555,
           33.50410783186294,
           27.826870740722036,
           22.576706877494622,
           19.703831936011067,
           16.477641547770467,
           13.851069756261886,
           11.69651925828969,
           9.585075372115798]
In [107... plt.plot(range(1, 15), wcss)
          plt.title('The Elbow Method')
          plt.xlabel('Number of clusters')
          plt.ylabel('WCSS')
          plt.show()
```


Out[110]:		S. No	State/UT/District	Homicide/Murder(3,4,15,16)	Causing death by negligence(5 to 12)	Hurt(20,26)	Assault on woman(35)	Kidn
								abducti
	0	1	Ahmednagar	254	620	1826	543	
	1	2	Akola	114	116	1345	245	
	2	3	Amravati	201	354	2133	461	
	3	4	Aurangbad	139	386	1869	335	
	4	5	Beed	206	308	1233	248	

5 rows × 23 columns

```
In [111... #plt.scatter(df['SrNo'],df['cluster'])
```

```
#for col in df.columns:
    # print(col)
plt.scatter(df1[y_kmeans == 0, 0], df1[y_kmeans == 0, 1], s = 100, c = 'red', label =
plt.scatter(df1[y_kmeans == 1, 0], df1[y_kmeans == 1, 1], s = 100, c = 'blue', label =
plt.scatter(df1[y_kmeans == 2, 0], df1[y_kmeans == 2, 1], s = 100, c = 'green', label
plt.scatter(df1[y_kmeans == 3, 0], df1[y_kmeans == 3, 1], s = 100, c = 'cyan', label =
#plt.scatter(df1[y_kmeans == 4, 0], df1[y_kmeans == 4, 1], s = 100, c = 'magenta', label
#plt.scatter(df1[y_kmeans == 5, 0], df1[y_kmeans == 5, 1], s = 100, c = 'black', label
#plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c
plt.title('Clusters of Districts')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

Clusters of Districts

