Chapitre 1: Groupes

I Loi de composition interne

Définition : Soit E un ensemble. Une **loi de composition interne** sur E est une application $*: E \times E \to E$ qui à tout couple $(x,y) \in E \times E$ associe un élément $x*y \in E$.

Propriété: Associativité

* est associative si $\forall x, y, z \in E, (x * y) * z = x * (y * z).$

Propriété : Elément neutre

On dit que $e \in E$ est un élément neutre si $\forall x \in E, e * x = x * e = x$.

1 Remarque : L'élément neutre est unique. La démonstration découle du fait que si on prend deux éléments neutres e et e', on a e*e'=e et e*e'=e', donc e=e'.

Propriété : Symétrique

Soient $a,b \in E$. On dit que b est symétrique (ou inverse, ou opposé) de a si a*b=b*a=e, où e est l'élément neutre.

Propriété: Commutativité

* est commutative si $\forall x, y \in E, x * y = y * x$.

 \bigcirc Vocabulaire: Notations typiques pour les lois de composition interne: $+, \times, \cdot, \circ$, etc.

II Notions de groupe

A Généralités

Définition : Soit G un ensemble muni d'une loi de composition interne *. On dit que (G,*) est un **groupe** si les trois propriétés suivantes sont vérifiées :

- * est associative.
- Il existe un élément neutre $e \in G$.
- Tout élément de G possède un symétrique dans G.

Si * est en plus commutative, on dit que (G,*) est un **groupe abélien**.

Exemple: Exemples de groupes :

- $(\mathbb{Z},+)$: l'ensemble des entiers avec l'addition.
- $(\mathbb{R}^*, \times), (\mathbb{Q}^*, \times), (\mathbb{C}^*, \times)$: l'ensemble des réels, rationnels et complexes non nuls avec la multiplication.
- $(\{\text{bijections }X \to X \mid X \text{ est un ensemble}\}, \circ)$: l'ensemble des bijections d'un ensemble X dans lui-même avec la composition.

Contre-exemples de groupes :

(N,+): l'ensemble des entiers naturels avec l'addition (pas d'élément neutre dans N).

Vocabulaire : Systèmes de notations pour les groupes :

- Système additif : on note le groupe (G,+), l'élément neutre est noté 0 et le symétrique de x est noté -x.
- Système multiplicatif : on note le groupe (G,\times) ou (G,\cdot) , l'élément neutre est noté 1 et le symétrique de x est noté x^{-1} .

Propriété: Produit de lois (admise)

Soient $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes. On définit une loi de composition interne sur $G_1 \times G_2$ par *:

$$(g_1, g_2) * (h_1, h_2) \mapsto (g_1 *_1 h_1, g_2 *_2 h_2)$$

pour tout $(x_1, y_1), (x_2, y_2) \in G_1 \times G_2$. Alors $(G_1 \times G_2, *)$ est un groupe.

Proposition: Produit cartésien

Soient $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes. On définit une loi de composition interne sur $G_1 \times G_2$ par * comme susdit. Alors l'ensemble $(G_1 \times G_2, *)$ est un groupe, appelé le **groupe produit** de $(G_1, *_1)$ et $(G_2, *_2)$.

Preuve:

• Associativité : Soient $(g_1, g_2), (h_1, h_2), (k_1, k_2) \in G_1 \times G_2$.

$$\begin{split} ((g_1,g_2)*(h_1,h_2))*(k_1,k_2) &= (g_1*_1h_1,g_2*_2h_2)*(k_1,k_2) \\ &= ((g_1*_1h_1)*_1k_1,(g_2*_2h_2)*_2k_2) \\ &= (g_1*_1(h_1*_1k_1),g_2*_2(h_2*_2k_2)) \quad \text{(par associativit\'e dans G_1 et G_2)} \\ &= (g_1,g_2)*(h_1*_1k_1,h_2*_2k_2) \\ &= (g_1,g_2)*((h_1,h_2)*(k_1,k_2)) \end{split}$$

- Élément neutre : Soient e_1 et e_2 les éléments neutres de G_1 et G_2 respectivement. Alors (e_1,e_2) est l'élément neutre de $G_1 \times G_2$ car pour tout $(g_1,g_2) \in G_1 \times G_2$, $(e_1,e_2)*(g_1,g_2) = (e_1*_1g_1,e_2*_2g_2) = (g_1,g_2)$ et $(g_1,g_2)*(e_1,e_2) = (g_1*_1e_1,g_2*_2e_2) = (g_1,g_2)$.
- Symétrique : Soit $(g_1,g_2) \in G_1 \times G_2$. Comme G_1 et G_2 sont des groupes, il existe $g_1^{-1} \in G_1$ et $g_2^{-1} \in G_2$ tels que $g_1 *_1 g_1^{-1} = e_1$ et $g_2 *_2 g_2^{-1} = e_2$. Alors le symétrique de (g_1,g_2) dans $G_1 \times G_2$ est (g_1^{-1},g_2^{-1}) car :

Propriété : Produit cartésien et commutativité (admise)

Si $(G_1, *_1)$ et $(G_2, *_2)$ sont des groupes abéliens, alors leur produit cartésien $(G_1 \times G_2, *)$ est aussi un groupe abélien.

🚯 Remarque : On pourrait prendre plus de deux groupes et faire le produit cartésien de plusieurs groupes.

B Sous-groupes

Définition : Soit (G,\cdot) un groupe *(on utilise la notation multiplicative, mais cela fonctionne aussi en notation additive).* Un **sous-groupe** de G est un sous-ensemble $H\subseteq G$ tel que (H,\cdot) est lui-même un groupe.

Propriété : Lien entre sous-groupe et groupe (admise)

Un sous-groupe est lui-même un groupe pour la même loi de composition interne que le groupe dont il est issu.

Example: (Z, +) est un sous-groupe de $(\mathbb{R}, +)$.

Proposition: Sous-groupe

Soit (H, \cdot) un sous-groupe de $(G, \cdot) \Leftrightarrow$

- *H* ≠ ∅ : 1
- $\forall h,h'\in H,h\cdot h'\in H$ (stabilité par la loi) : 2
- $\forall h \in H, \exists h^{-1} \in H$ (stabilité par l'inverse) : 3

Preuve:

- \Rightarrow / : Si H est un sous-groupe de G, alors par définition de groupe, H satisfait 1, 2 et 3.
- \Leftarrow /: Supposons que H vérifie les trois conditions. Nous devons montrer que (H, \cdot) est un groupe.
 - Associativité : La loi de composition interne sur H est la même que celle sur G, donc elle est associative.
 - Élément neutre : Soit e l'élément neutre de G. Comme H est non vide, $\exists h_0 \in H$ et par la condition 3, $h_0^{-1} \in H$. Par la définition de l'élément neutre dans G, on a $h_0 \cdot h_0^{-1} = e$. Donc $e \in H$.
 - Symétrique : Par la condition 3, pour tout $h \in H$, son inverse h^{-1} appartient à H.

Ainsi, toutes les propriétés d'un groupe sont satisfaites pour H, donc H est un sous-groupe de G.

© Exemple :

- (G,\cdot) est un sous-groupe de lui-même.
- $\{1\}$ est un sous-groupe de G.
- (Z,+) est un sous-groupe de $(\mathbb{R},+)$.

Proposition: Intersection

Soit $(H_i)_{i\in I}$ une famille de sous-groupes de (G,\cdot) . Alors l'intersection $H=\bigcap_{i\in I}H_i$ est un sous-groupe de G.

Preuve:

Corollaire : Sous-groupe engendré

Soit $X\subseteq G$. Considérons $H=\bigcap_{i\in I}H_i$. C'est un sous-groupe de G engendré par X.

Définition : Soit $g \in G$.

On a posé pour $n \in \mathbb{Z}, g^n = \underbrace{g \cdot g \cdot \ldots \cdot g}_{n \text{ fois}}$ si $n > 0, g^0 = e$ (élément neutre) et $g^n = \underbrace{g^{-1} \cdot g^{-1} \cdot \ldots \cdot g^{-1}}_{-n \text{ fois}}$ si n < 0.

On pose $g^{\mathbb{Z}} = \{g^n \mid n \in \mathbb{Z}\}$: c'est **l'ensemble des itérés** de G.

Proposition: Sous-groupe engendré

On a que $g^{\mathbb{Z}}$ est un sous-groupe de G engendré par g.

Preuve:

1 Remarque: En notation additive, l'ensemble des itérés de g est noté $\mathbb{Z}g = \{ng \mid n \in \mathbb{Z}\}.$

Définition : Si $G = g^{\mathbb{Z}}$, on dit que G est monogène et que g est un générateur de G.

- **©** Exemple : \mathbb{Z} est monogène et engendré par 1.
- Vocabulaire : Un groupe est cyclique s'il est fini et monogène.

Définition: Si le sous-groupe engendré par X est G, on dit que X est un système de générateurs de G.

C Sous-groupes de $(\mathbb{Z},+)$

Proposition: (admis)

Soit $k \in \mathbb{Z}$. On pose $k\mathbb{Z} = \{kn \mid n \in \mathbb{Z}\}$. On a que $k\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$ engendré par k.

1 Remarque : $k\mathbb{Z} = \langle k \rangle$ pour la loi +.

Théorème:

Soit (H,+) un sous-groupe de $(\mathbb{Z},+)$. Alors $\exists ! k \in \mathbb{N}$ tel que $H=k\mathbb{Z}$.

1 Remarque: Cela veut dire que tout sous-groupe de $(\mathbb{Z},+)$ est de la forme $k\mathbb{Z}$ pour un certain $k\in\mathbb{N}$.

Preuve:

III Relations d'équivalence et classes d'équivalence

Définition : Soit E un ensemble. Soit R (un sous-ensemble de $E \times E$) une relation. On pose $xRy \Leftrightarrow (x,y) \in R$ et on dit que x est en relation avec y par R.

Propriété : Relation d'équivalence (admise)

Soit R une relation sur E. On dit que R est une **relation d'équivalence** si :

- R est réflexive : $\forall x \in E, xRx$.
- R est symétrique : $\forall x, y \in E, xRy \Rightarrow yRx$.
- R est transitive : $\forall x, y, z \in E, (xRy \land yRz) \Rightarrow xRz$.

Définition : Soit R une relation d'équivalence sur E. Pour $x \in E$, on appelle **classe d'équivalence** de x et on note \overline{x} (ou $[x]_R$ ou $x + k\mathbb{Z}$) l'ensemble $\{y \in E \mid xRy\}$.

Proposition: (admis)

Si deux classes d'équivalence ont un élément en commun, alors elles sont égales.

Définition: Soit $(F_i)_{i \in I}$ une famille de parties de E. On dit que cette famille est une **partition** de E si :

- $E = \bigcup_{i \in I} F_i$ (la réunion des F_i est E).
- $\forall i, j \in I, i \neq j \Rightarrow F_i \cap F_j = \emptyset$ (les F_i sont deux à deux disjointes).

☑ Illustration : On peut reprendre l'idée intuitive d'un univers en probabilités :

Figure 1: Partition de Ω en A_1, A_2, A_3, A_4

Proposition:

Les classes d'équivalence d'une relation d'équivalence R forment une partition de E.

Preuve:

- · Les classes sont non vides.
- Deux classes différentes sont disjointes (elles n'ont pas d'élément en commun).
- L'union des classes est E. \square

Proposition:

Soit $(F_i)_{i \in I}$ une partition de E. On peut définir une relation d'équivalence R sur E par : $xRy \Leftrightarrow \exists i \in I : x,y \in F_i$. Alors R est d'équivalence.

Preuve:

- *Réflexivité* : Soit $x \in E$. Par définition de partition, $\exists i \in I$ tel que $x \in F_i$. Donc xRx.
- Symétrie : Soient $x, y \in E$ tels que xRy. Par définition de R, $\exists i \in I$ tel que $x, y \in F_i$. Donc $y, x \in F_i$ et ainsi yRx.
- Transitivité : Soient $x,y,z\in E$ tels que xRy et yRz. Par définition de R, $\exists i,j\in I$ tels que $x,y\in F_i$ et $y,z\in F_j$. Comme $y\in F_i$ et $y\in F_j$, on a $F_i\cap F_j\neq \emptyset$. Par définition de partition, on en déduit que i=j. Donc $x,z\in F_i$ et ainsi xRz. \square

Définition : Soit R une relation d'équivalence sur E.

On appelle **ensemble quotient** de E par R et on note E/R l'ensemble des classes d'équivalence de R. *i.e.* $E/R = \{\overline{x} \mid x \in E\}$.

Définition : Soit $f: E \to F$ une application.

On dit que f passe au quotient si $\forall x, y \in E$ avec $xRy \Rightarrow f(x) = f(y)$.

Définition : Soit $S \subseteq E$. On dit que S est un **système de représentants** pour R si pour toute classe C de R, il existe un unique élément dans $S \cap C$.

IV Congruences

A Rappels et généralités

Définition : Soit $k \in \mathbb{Z}$. On pose la relation $\equiv_k \operatorname{sur} \mathbb{Z}$ définie par : $x \equiv_k y \Leftrightarrow y - x \in k\mathbb{Z}$ (i.e. k divise y - x). On écrit aussi $x \equiv y[k]$. *i.e.* $\exists n \in \mathbb{Z}, y - x = kn$.

 \bigcirc Vocabulaire : \equiv_k est appelée congruence modulo k.

Proposition: Equivalence

 \equiv_k est une relation d'équivalence sur \mathbb{Z} .

Preuve:

Proposition: $\mathbb{Z}/k\mathbb{Z}$

On a que $\mathbb{Z}/\equiv_k=\{\overline{0},\overline{1},\overline{2},...,\overline{k-1}\}$ noté $\mathbb{Z}/k\mathbb{Z}$.

En particulier, $\{0, 1, 2, ..., k-1\}$ est un système de représentants pour \equiv_k .

Preuve:

Soit $x \in \mathbb{Z}$.

Par la division euclidienne, $\exists ! (q,r) \in \mathbb{Z} \times \{0,1,2,...,k-1\}$ tel que x=kq+r. Donc $x-r=kq \in k\mathbb{Z}$ et ainsi $x\equiv_k r$. Il reste à voir que $\bar{i} \neq \bar{j}$ si $i \neq j$ avec $i,j \in \{0,1,2,...,k-1\}$.

En effet, $i - j \in \{1 - k, 2 - k, ..., -1, 1, 2, ..., k - 1\}$ et $i - j \neq 0$.

Donc $i - j \notin k\mathbb{Z}$ et ainsi $i \not\equiv_k j$ donc $\bar{i} \neq \bar{j}$. \square

Lemme:

Soient $x, y \in \mathbb{Z}$.

Considérons $\overline{x+y} \in \mathbb{Z}/k\mathbb{Z}$. Alors $\overline{x+y}$ ne dépend que de \overline{x} et \overline{y} .

Autrement dit : $\mathbb{Z} \to \mathbb{Z}/k\mathbb{Z}, x \mapsto \overline{x+y}$ et $y \mapsto \overline{x+y}$ passent au quotient.

Preuve:

Théorème : $\mathbb{Z}/k\mathbb{Z}$

On a que $(\mathbb{Z}/k\mathbb{Z}, +)$ est un groupe abélien.

Preuve:

Proposition : $\mathbb{Z}/k\mathbb{Z}$

Le groupe $(\mathbb{Z}/k\mathbb{Z},+)$ est le groupe des entiers modulo k.

Proposition: $\mathbb{Z}/k\mathbb{Z}$

Le groupe $(\mathbb{Z}/k\mathbb{Z},+)$ est cyclique et engendré par $\overline{1}$.

Preuve:

Le sous-groupe engendré par $\overline{1}$ est $\{\overline{n}\mid n\in\mathbb{Z}\}=\{\overline{n\cdot 1}\mid n\in\mathbb{Z}\}=\mathbb{Z}/k\mathbb{Z}.$ \square