L2 HAX305X

Analyse numérique élémentaire

TP4: Intégration numérique

Rappel sur les méthodes de Newton-Cotes sur $[x_i, x_{i+1}]$:

Méthode des rectangles :

à gauche
$$I_i(f) = h_i f(x_i)$$

à droite
$$I_i(f) = h_i f(x_{i+1})$$

Méthode du point milieu : $I_i(f) = h_i f\left(\frac{x_i + x_{i+1}}{2}\right)$.

Méthode des trapèzes : $I_i(f) = \frac{h_i}{2}(f(x_i) + f(x_{i+1}))$

Méthode de Simpson : $I_i(f) = \frac{h_i}{6} \left(f(x_i) + f(x_{i+1}) + 4f\left(\frac{x_i + x_{i+1}}{2}\right) \right)$

Exercice 1 Calculer $\int_1^3 \frac{(sinx)^2}{x} dx$ en utilisant successivement

- la méthode des rectangles sur 5 sous-intervalles,
- la méthode des trapèzes sur 5 sous-intervalles,
- la méthode de Simpson sur 5 sous-intervalles,
- la méthode de Gauss à 3 points

Comparer les résultats.

Opérateur	Description
np.sum(x)	somme toutes les composantes du vecteur x
np.random.rand(n, m)	retourne une matrice (n,m) contenant des nombres aleatoires
	de loi uniforme compris entre 0 et 1
np.mean(x)	retourne la moyenne pour un vecteur x

Exercice 2 1. L'orbite décrite par une planète autour du soleil est une ellipse. La longueur de cette trajectoire est $l=\int_0^{2\pi}\sqrt{r_1^2sin^2(t)+r_2^2cos^2(t)}dt$. Calculer l'approximation de l'intégrale I par la méthode de Monte Carlo avec 10000 variables et déterminer la longueur de l'orbite de Mercure avec les données numériques : $r_1=57,9\cdot 10^6{\rm km}$ et $r_2=56,7\cdot 10^6{\rm km}$.

2. Comparer le résultat avec la méthode des rectangles à gauche.

Exercice 3 Programmer la méthode des rectangles à droite pour l'approximation de

$$I = \int_0^1 x^{-3/4} (1 + x^2) dx = \frac{40}{9}$$

Reprendre les mêmes calculs avec l'intégrale obtenue après changement de variable $x=u^4$:

$$I = 4 \int_0^1 (1 + u^8) du$$

Comparer les ordres de convergence avec $N=[100\ 200\ 400\ 800\ 1600]$, le nombre de sous intervalles en traçant un graphe loglog de l'erreur pour chaque formule en fonction de N.