Lecture 2 Threat Modeling

Dr. Lotfi ben Othmane

23 October 2015

Agenda

1. Vulnerabilities in the news: Adobe flash player vulnerability by Manjiri Birajdar

2. SSD Labs by Lisa

3. Lecture by Sven Türpe and Andreas Poller from Fraunhofer SIT

Survey

Thanks to the students who took the survey (even incomplete).

SVN

- ➤ The SVN for the course is now available https://repository.st.informatik.tu-darmstadt.de/sse/secdev/2015/
- Accessible from the TU network
 - VPN information: http://www.hrz.tu-darmstadt.de/netz/netz_datennetz_internet_1/netz_datennetz_internet_vpn_1/netz_vpn_downloads_1/index.de.jsp

Labs

- ➤ Only the groups who have registered through the **form** (not the spreadsheet) will be registered for the labs
- > The registered groups are considered final
- Group numbers will be communicated via the students' TU emails
- > Groups with at least one member not registered in TUCaN will **not** be registered
- Groups not submitting on time will not be graded

- ➤ When finding vulnerabilities:
 - No disclosure
 - Limited disclosure
 - Full disclosure
 - Responsible disclosure
- > Balance between
 - Informing the public
 - Giving the vendor's time to respond properly

➤ It is tempting to gloat ...

Look at me! I did it!

The vulnerability in the powerplant's control system is right here!

> ... but it is also dangerous to the public ...

> ... and to yourself

➤ What is responsible disclosure?

Keep silent Inform vendors Wait Gloat moderately

- Short term anonymous buzz

+ Long lasting reputation

- > Responsible disclosure
 - Is encouraged, and sometimes rewarded

- > Responsible disclosure
 - Is encouraged, and sometimes rewarded

- > Responsible disclosure
 - Is encouraged, and sometimes rewarded

Examples of Responsible Disclosure

- > 769 Google Security Reward recipients between 2010 and 2015
- > 519 people additionally reported confirmed vulnerabilities
- ➤ 155 GitHub bounty hunters since June 2013
- > And many more, especially in research groups

https://www.google.com/about/appsecurity/ https://bounty.github.com/

Example of Irresponsible Disclosure

- ➤ Why is this an irresponsible disclosure?
- ➤ What should the bug finder have done?

- ➤ We encourage you to find flaws
- > BUT do it ethically.
- > From now on in this course:
 - Responsible disclosure will be rewarded
 - Irresponsible disclosure will be sanctioned

Lab 1

- > Students will choose one of two subjects:
 - Set-UID
 - Web same-origin policy
- > Available on TUCAN and the course's webpage
- > Due: Thursday, Nov 5th, 23:59

Secure Software Development Course

Threat Modeling

Sven Türpe, Andreas Poller

Introduction to Threat Modeling

Lets talk about threats!

What is a threat?

Definition...

- "A threat is an intent to inflict damage on a system." (Landwehr 2001)
- "A threat consists of an adverse action performed by a threat agent on an asset." (Common Criteria)
- "Who might attack against what assets, using what resources, with what goal in mind, when/where/why, and with what probability." (Johnston 2010)
- "Threats remain ideas until practical examples have been demonstrated." (Schäfer 2009)
- "A threat is a potential cause of an unwanted incident." (Lund 2011)

What is a threat?

More definitions...

- "A threat is an entity that wants to do harm to you or something you care about"
 (http://www.bitsmasherpress.com/?p=67)
- "intended cause" (Pieters 2011)
- "A potential for harm of an asset." (Yoshioka 2008)
- "Threats are the likelihood of, or potential for, hazardous events occurring." (Schumacher 2006)
- "A threat is the potential for abuse of an asset that will cause harm in the context of the problem" (Haley 2004)
- "Threat is a general condition, situation, or state ([...]) that may result in one or more related attacks" (Firesmith 2004)

The concept of "threats" is

- ... ambiguous
- ... approached from various perspectives
- ... subjective dependent on who talks about threats
- ... often used inappropriately (e.g. as synonym for vulnerabilities)
- ... but crucial to understand security problem at hand.

Components of a Security Problem

Threats

Petty criminals
Organized crime
Law enforcement

No encryption Software defects Mobile gadget

Vulnerabilities

Secrets
System integrity
Hardware value

Assets

(all going after assets..)

Components of a Security Problem

Threats

Petty criminals
Organized crime
Law enforcement

No encryption Software defects Mobile gadget

Vulnerabilities

Secrets
System integrity
Hardware value

Assets

Approaches to **Threat Modeling**

Threat Modeling as a Development Activity

Threat Modeling in Software **Development**

Threat Modeling Techniques

MS SDL Threat Modeling

- 2. Create checklist
- 3. Assess impact and find countermeasures for each item

STRIDE, Data Flow Diagrams

DFD entity	S	Т	R	1	D	Е
External Entity	X		X			
Data Flow		X		Χ	X	
Data Store		Χ	(X)	Χ	X	
Process	X	X	X	X	X	Χ

Demo: MS Threat Modeling Tool

Example: The famous web shop

□ Database

Spoofing Tampering Repudiation

InformationDisclosure

ElevationOfPrivilege

DenialOfService

	ID	Element Name	Element Type	Element Diagram References	Threat Type
<u> </u>	3	HTTP Requests (User to	DataFlow	Context	Tampering
	4	HTTP Requests (User to	DataFlow	Context	InformationDisclosure
	5	HTTP Requests (User to	DataFlow	Context	DenialOfService
	6	HTTP Responses (Web	DataFlow	Context	Tampering
	7	HTTP Responses (Web	DataFlow	Context	InformationDisclosure
	8	HTTP Responses (Web	DataFlow	Context	DenialOfService
	40	Read (Data Store to Dat	DataFlow	Context	Tampering
	41	Read (Data Store to Dat	DataFlow	Context	InformationDisclosure
	42	Read (Data Store to Dat	DataFlow	Context	DenialOfService
	34	Responses (Database to	DataFlow	Context	Tampering
	35	Responses (Database to	DataFlow	Context	InformationDisclosure
	36	Responses (Database to	DataFlow	Context	DenialOfService
	31	SQL Commands (Web	DataFlow	Context	Tampering
	32	SQL Commands (Web	DataFlow	Context	InformationDisclosure
	33	SQL Commands (Web	DataFlow	Context	DenialOfService
	37	Write (Database to Data	DataFlow	Context	Tampering
	38	Write (Database to Data	DataFlow	Context	InformationDisclosure
	39	Write (Database to Data	DataFlow	Context	DenialOfService
	21	Data Store	DataStore	Context	Tampering
	22	Data Store	DataStore	Context	Repudiation
	23	Data Store	DataStore	Context	InformationDisclosure
	24	Data Store	DataStore	Context	DenialOfService
	1	User	Interactor	Context	Spoofing
	2	User	Interactor	Context	Repudiation

Summary: Challenges for Using MS SDL Threat Modeling

When Three Engineers Interpret a Threat Model ...

SDL Threat Modeling in the Wild: Research Setting

Social Scientist

Computer Scientist

Staff

Wrap-up

Where Is the Sweet Spot?

- Little empirical evidence
- Moving targets security designs evolve
- Tacit knowledge documentation is always outdated

Tools

Problem:

Identify security concerns

Developer Team Process Organization

Back to Laptop Scenario

When is HDD Encryption required?

When is HDD Encryption *not* required?

Is there a reasonable threat for this bug?

Issue 538: Truecrypt 7 Derived Code/Windows: Drive Letter Symbolic Link Creation EoP

3 people starred this issue and may be notified of changes.

Back to list

Status: Fixed

Owner: fors...@google.com

Closed: Oct 3

Cc: project-...@google.com

Vendor-IDRIX
Product-Veracrypt
Severity-High
Finder-forshaw
Reported-2015-Sep-18
CCProjectZeroMembers
Deadline-90
CVE-2015-7358

Sign in to add a comment

Project Member Reported by fors...@google.com, Sep 18, 2015

Truecrypt 7 Derived Code/Windows: Drive Letter Symbolic Link Creation EoP

Platform: Windows

Class: Local Elevation of Privilege

Tested on: VeraCrypt 1.13 x86 on Windows 10

Summary:

The Windows driver used by projects derived from Truecrypt 7 (verified in Veracrypt and CipherShed) are vulnerable to a local elevation of privilege attack by abusing the drive letter symbolic link creation facilities to remap the main system drive. With the system drive remapped it's trivial to get a new process running under the local system account.

Description:

Any user on the system can connect to the Truecrypt device object and mount a new encrypted volume. As part of this process the driver will try and create the requested drive letter by calling IoCreateSymbolicLink. To prevent redefining an existing drive letter a call is made to IsDriveLetterAvailable which attempts to open the link "\DosDevices\X:" for reading, returning FALSE if it was successfully opened. The specific code in src\Driver \Ntdriver.c is:

```
if (NT_SUCCESS (ZwOpenSymbolicLinkObject (&handle, GENERIC_READ, &objectAttributes)))
```


http://testlab.sit.fraunhofer.de

andreas.poller @ sit.fraunhofer.de sven.tuerpe @ sit.fraunhofer.de