Razonamiento y planificación automática Nerea Luis Mingueza

Tema 2: Representación del conocimiento y razonamiento

Índice de la clase

Tema 2

- Representación
- Razonamiento
- Ejemplos

Problema del conocimiento

- Ni humanos ni máquinas trabajan pueden acceder a la realidad directamente.
- ▶ En todos los casos se genera una representación (una imagen, quizá no exacta) interna de la realidad, con la que trabajar.
- Esta representación puede ser: completa/incompleta, precisa/ambigua, correcta/incorrecta, relevante/irrelevante.
- Aunque la realidad no cambie, la representación sí puede modificarse
- ▶ Podemos representar las situaciones (estados) pero también los procesos (por ejemplo usando reglas)

Completa/Precisa/Correcta/Relevante

El juego consiste en pasar todos los discos al eje C, con restricciones

Objetos: discos, ejes, mesa

Discos: tamaño, posición

Posición: eje, altura

Ejes: capacidad

¿Son relevantes el color, la mesa y la posición de los ejes?

Restricción 1: sólo se puede mover el disco superior

Restricción 2: un disco siempre sobre mesa u otro mayor

¿Es precisa la restricción?

Requisitos de la representación en IA

- ► Formal: sin ambigüedades
- **Expresiva**: suficientemente rica para capturar los aspectos relevantes
- Natural: análoga a las formas naturales de expresión del conocimiento (esto no ocurre en Machine Learning)
- ► Tratable: se debe poder manipular para reflejar los procesos de razonamiento y generar respuestas

Formas de representación usadas en IA

Marcos: que son representaciones estereotipadas de situaciones, conceptos, ideas u objetos. Los procesos de inferencia se realizan por medio de la jerarquía u ordenación de los mismos.

Lógica: representación e inferencia basada en modelos lógicos formales.

Reglas: por medio del encadenamiento hacia adelante se produce la inferencia de sentencias condicionales basadas en estructuras de la forma SI-ENTONCES.

Restricciones: interrelaciones entre variables por medio de un dominio de valores posibles. La inferencia se realiza a través de técnicas de propagación de restricciones o consistencia de arco.

Red bayesiana: red causal basada en valoraciones cuantitativas probabilistas de la influencia o relaciones entre antecedentes y consecuentes.

Lógica difusa: valoraciones semánticas experienciales que nos identifican valores de pertenencia a conjuntos de características borrosas. El proceso de inferencia se realiza por medio de modelos matemáticos de lógica especializada para estos entornos.

Figura 1. Técnicas de representación.

Formal/Expresiva/Natural/Tratable

¿Y si los discos pudieran estar en cualquier orden, y no siempre los pequeños sobre los grandes?

Representación	Formal	Expresiva	Natural	Tratable
Hay unos discos de distintos diámetros insertados en tres ejes.	No	Sí	Sí	No
Disco1En1, Disco2En2,	Sí	No	Sí	Sí
Ejes=[[1,2,3,4,5], [], []]	Sí	Sí	Sí	Sí
	No	Sí	Sí	No
Disco1 Disco2 Disco3 Disco4 Disco5 Eje1 X X X X X X Eje2 Eje3	Sí	Nó	No	Sí

Un mundo, múltiples representaciones

Relaciones

	Disco1	Disco2	Disco3	Disco4	Disco5
Eje1	Х				Х
Eje2		Χ	Χ		
Eje3				Χ	

Objeto-Atributo-Valor

Disco5	Tam	año	5
Disco5	Eje	Α	

¿Y si en el juego sólo se pudiese desplazar discos a un eje adyacente?

Red semántica / Ontología (incompleto.)

Razonamiento lógico deductivo

▶ **Deductivo**: Las definiciones se refieren al razonamiento deductivo

Contenido o significado: La lógica representa un hecho del mundo (o una creencia). A este significado la podremos asignar el valor de verdad que se cumpla en la situación representada (valor de Verdadero o Falso).

Forma: en lógica la forma determina si un razonamiento es válido o inválido:

"Si A implica B, y no se da B, entonces seguro que no se da A" (Modus Tollens, o Tollendo Tollens)

Los razonamientos son válidos o inválidos independientemente del significado de sus elementos.

Deducción: si el valor de todas las premisas es Verdadero, sabemos con certeza que el de las conclusiones válidas es también Verdadero

Razonamiento lógico inductivo

- ▶ Inductivo: Las observaciones particulares se pueden generalizar a veces en leyes. Suele entenderse que se usa un criterio probabilístico.
- Contraejemplo: la existencia de un solo contraejemplo invalida la hipótesis

Falsabilidad (Popper, 1934): las hipótesis falsificables (sobre las cuales podemos diseñar un experimento que pueda derivar en un contrajemplo) son preferibles

Razonamiento lógico abductivo

- ▶ Hay cierto debate sobre si es un tipo de inductivo
- Hipótesis razonada: ante unos hechos, se busca la hipótesis que mejor los explica

Criterio de evaluación: ¿navaja de Occam?

Ver: https://dyingwords.net/using-occams-razor-without-cutting-your-own-throat/

Ejercicios de representación

¿Cómo representar cada posible solución a este problema?

http://linoit.com/users/acervant/canvases/Ejemplos%20de%20representaci%C3%B3n

Ejercicios de representación

¿Cómo representar cada posible solución a este problema?

Fuente: An example grid that shows multiple solutions to a path planning problem. Source: C.J. Taylor, University of Pennsylvania

http://linoit.com/users/acervant/canvases/Ejemplos%20de%20representaci%C3%B3n

Lógica proposicional

Lógica matemática: Lenguaje formal con una gramática y sintaxis

- Proposición simple: P, Q, Ilueve
- ▶ Proposición compuesta: combinación de simples con conectivas
 - · Condicional (Implicación):
 - Si A entonces B = $A \rightarrow B$
 - Solo A si B = $A \rightarrow B$
 - Equivalencia: A si y solo si B A ↔ B

Nota: El condicional está en la base del concepto de REGLA

	Prio-ri dad	Nombre	Ejemplo
7	1	NO, NOT	No tengo ganas de ir: ¬ p
٨	2	Y, AND	Llueve y hace frío: I ∧ f
٧	2	O, OR	Como carne o como pescado: c V p
\rightarrow	3	IMPLICA	Si voy, tendré problemas: v → p
\leftrightarrow	4	EQUIVA LE A	Iré si y solo sí tú vienes: y ↔ t

Lógica de predicados

Extiende la lógica de proposiciones

```
Términos: constantes (Pepe, a, 2), variables (X,T) (mayúsculas)

Dominio: conjunto al que pertenecen los términos (personas, cosas..)

Predicado: nombre, seguido de 1 a N términos

Funciones: nombre, seguido de 1 a N términos, aplica sobre otro

término

nombrePredicado(términos)

verde(semáforo1)

padre(Juan,María)

nombreFunción(términos) = término

suma(1,2) = 3
```

	Prioridad	Nombre	Ejemplos
\forall	1	Cuantificador universal, "para todo"	Todos los estudiantes sacan buena nota: ▼X (estudiantes(X) → buenaNota(X))
3	1	Cuantificador existencial "existe"	Algunos estudiantes destacan: ∃T (estudiante(T) ∧ destaca(T)) Toda persona tiene algún progenitor: ∀X (persona(X) → ∃Y progenitor(X,Y))

Representación en lógica de predicados

Objetos:

términos constantes d1,d2,d3,d4,d5 (discos) ejeA, ejeB, ejeC (ejes) mesa

Predicados.

propiedades y relaciones en (Eje,Disco), tam (Eje,Número) sobre (X,Disco) (X: Disco o mesa)

¿Completa?

¿Precisa?

¿Correcta?

¿Relevante?

¿Falta algo? Ojo, no para este problema, sino para esta familia de problemas

¿Hay ambigüedad?

¿Hay errores o permite inconsistencias?

¿Sobra algo?

Situación de la figura:

en(ejeA,d1), en(ejeA,d2), en(ejeA,d3),en(ejeA,d4), en(ejeA,d5), tam(d1,1),tam(d2,2), tam(d3,3),tam(d4,4), tam(d5,5), sobre(d2,d1),sobre(d3,d2), sobre(d4,d3),sobre(d5,d4), sobre(mesa,d5)

Expresividad

Autoevaluación

La representación de la información: ¿por qué es necesaria?, ¿cómo se puede simbolizar un entorno o mundo? ¿Cómo evaluamos si una representación es la adecuada para un problema? ¿Por qué nos pueden interesar formas de representación más o menos expresivas? ☐ ¿Cuáles son los tipos de razonamiento y cómo distinguirlos? ¿Por qué nos pueden interesar formas de representación más o menos expresivas?

Procurar que los colores sean lo más similares a estos. Cuando se traten de gráficos, o imagenes sacadas de internet. Que predomine el azul, o gama de azules si es posible.

Formas de representación usadas en IA

PROLOG online: https://swish.swi-prolog.org/

Ejemplo PROLOG: https://www.cs.us.es/~fsancho/?e=73

