# Introduction

The GP9 GPS-Aided AHRS combines MEMS inertial sensors and embedded GPS with an Extended Kalman Filter to produce attitude estimates that are immune to long-term angular drift and sustained acceleration. Unlike attitude sensors that rely on inertial data alone, the GP9 produces reliable attitude estimates even during sustained-G maneuvers like long turns on ground vehicles or aircraft.

The GP9 makes IMU, position/velocity, and attitude/heading data available over a 3.3V UART at user-configurable rates. All data is time-synchronized with the embedded GPS.



# **Specifications**

| op comoditions                                           |                                               |
|----------------------------------------------------------|-----------------------------------------------|
| Attitude and Heading Specifications                      |                                               |
| Update Rate                                              | 500 Hz                                        |
| Static Pitch/Roll                                        | +/- 2 degrees typical                         |
| Accuracy                                                 |                                               |
| Dynamic Pitch/Roll                                       | +/- 1 degree typical                          |
| Accuracy                                                 |                                               |
| Static Yaw Accuracy                                      | +/- 5 degrees, with magnetometer              |
| Dynamic Yaw                                              | +/- 1 degree typical                          |
| Accuracy                                                 |                                               |
| Repeatability                                            | 0.5 degrees                                   |
| Resolution                                               | < 0.01 degrees                                |
| Data Output Rate                                         | 0 Hz to 255 Hz, selectable data               |
| Output Data Acceleration, angular rates, magnetic field, |                                               |
|                                                          | barometric pressure, pressure-based altitude, |
|                                                          | GPS altitude, position, velocity, attitude    |
|                                                          | (quaternion, Euler Angles)                    |

Table 1 - GP9 Attitude and Heading Specifications

| Gyro Specifications                |                 |
|------------------------------------|-----------------|
| Sensitivity change vs. temperature | +/- 2%          |
| Rate noise density                 | 0.03 deg/s/rtHz |
| Non-linearity                      | 0.2 % FS        |
| Dynamic Range                      | +/- 2000 deg/s  |

Table 2 - GP9 Rate Gyro Specifications

| GPS Specifications |                                          |  |
|--------------------|------------------------------------------|--|
| Typical Position   | <b>Typical Position</b> 2.5 meters CEP   |  |
| Accuracy           |                                          |  |
| Typical Velocity   | 0.1m/s                                   |  |
| Accuracy           |                                          |  |
| Timing Accuracy    | 60ns                                     |  |
| Max GPS dynamics   | < 4G                                     |  |
| Operational Limits | Altitude < 18,000 m, Velocity < 515 m/s  |  |
| Open Sky TTFF      | 29 second cold start, 1 second hot start |  |

Table 3 - GP9 GPS Specifications

| Other                                                       |                                         |  |
|-------------------------------------------------------------|-----------------------------------------|--|
| Vin                                                         | 5.0V nominal                            |  |
| Communication                                               | 3.3V UART                               |  |
| <b>Baud Rates</b> 9600, 14400, 19200, 38400, 57600, 115200, |                                         |  |
| Supported                                                   | 128000, 153600, 230400, 256000, 460800, |  |
|                                                             | 921600                                  |  |
| <b>Power Consumption</b> < 150mA at 5.0V during GPS seek,   |                                         |  |
|                                                             | < 100mA at 5.0V with GPS lock           |  |
| Operating -20C to +60C                                      |                                         |  |
| Temperature                                                 |                                         |  |
| Accelerometer                                               | +/- 8 g                                 |  |
| Range                                                       |                                         |  |
| Dimensions                                                  | 1.5" x 1.3" x 0.5"                      |  |
| Weight                                                      | 0.4 oz (11 grams)                       |  |

Table 4 - GP9 Misc Specifications



# Table of Contents

| Introduction                      | 1  |
|-----------------------------------|----|
| Specifications                    | 1  |
| Revision History                  | 8  |
| Disclaimer and Liability          | 9  |
| Absolute Maximum Ratings          | 10 |
| Electrical Characteristics        |    |
| Mechanical Drawing                | 11 |
| Pinout                            | 12 |
| Functional Description            | 13 |
| Attitude Estimates                |    |
| Position and Velocity Estimates   | 14 |
| Calibration                       |    |
| Theory of Operation               | 15 |
| GPS Measurement Updates           |    |
| Magnetometer Measurement Updates  | 16 |
| Accelerometer Measurement Updates | 17 |
| Bias Estimator                    | 17 |
| Firmware Upgrades                 | 18 |
| Status Indicator LEDs             | 18 |
| Master JTAG Header                | 19 |
| Serial Communication              | 19 |
| Binary Packet Structure           | 19 |
| Read Operations                   | 21 |
| Write Operations                  | 21 |
| Command Operations                | 21 |
| Register Overview                 | 22 |
| Configuration Registers           | 23 |
| Data Registers                    | 24 |
| Commands                          | 26 |
| Configuration Registers           | 27 |
| CREG_COM_SETTINGS - 0x00 (0)      | 27 |
| CREG COM RATES1 – 0x01 (1)        | 28 |

|   | CREG_COM_RATES2 – 0x02 (2)                                  | . 29 |
|---|-------------------------------------------------------------|------|
|   | CREG_COM_RATES3 - 0x03 (3)                                  | .30  |
|   | CREG_COM_RATES4 – 0x04 (4)                                  | .31  |
|   | CREG_COM_RATES5 – 0x05 (5)                                  | .32  |
|   | CREG_COM_RATES6 – 0x06 (6)                                  | .33  |
|   | CREG_COM_RATES7 – 0X07 (7)                                  | . 35 |
|   | CREG_FILTER_SETTINGS – 0x08 (8)                             | .37  |
|   | CREG_HOME_NORTH – 0x09 (9)                                  |      |
|   | CREG_HOME_EAST – 0x0A (10)                                  |      |
|   | CREG_HOME_UP - 0x0B (11)                                    | .38  |
|   | CREG_ZERO_PRESSURE – 0x0C (12)                              |      |
|   | RESERVED – 0x0D (13)                                        | .38  |
|   | CREG_GYRO_TRIM_X - 0x0E (14)                                |      |
|   | CREG_GYRO_TRIM_Y - 0x0F (15)                                | .39  |
|   | CREG_GYRO_TRIM_Z - 0x10 (16)                                | . 39 |
|   | RESERVED – 0x11 – 0x41 (17 – 65)                            | . 39 |
|   | CREG_MAG_CAL1_1 to CREG_MAG_CAL3_3 - 0x42 (66) to 0x4A (74) | . 39 |
|   | CREG_MAG_BIAS_X – 0x4B (75)                                 | . 40 |
|   | CREG_MAG_BIAS_Y - 0x4C (76)                                 |      |
|   | CREG_MAG_BIAS_Z – 0x4D (77)                                 | . 40 |
| D | ata Registers                                               | .41  |
|   | DREG_HEALTH – 0x55 (85)                                     | .41  |
|   | DREG_GYRO_RAW_XY - 0x56 (86)                                | . 42 |
|   | DREG_GYRO_RAW_Z - 0x57 (87)                                 | .42  |
|   | DREG_GYRO_RAW_TIME - 0x58 (88)                              | .42  |
|   | DREG_ACCEL_RAW_XY - 0x59 (89)                               | .42  |
|   | DREG_ACCEL_RAW_Z - 0x5A (90)                                | .43  |
|   | DREG_ACCEL_RAW_TIME - 0x5B (91)                             | .43  |
|   | DREG_MAG_RAW_XY - 0x5C (92)                                 | .43  |
|   | DREG_MAG_RAW_Z - 0x5D (93)                                  | . 43 |
|   | DREG_MAG_RAW_TIME – 0x5E (94)                               | .44  |
|   | DREG_PRESSURE_RAW – 0x5F (95)                               | .44  |
|   | DREG_PRESSURE_TIME - 0x60 (96)                              | .44  |

| DREG_TEMPERATURE_RAW1 - 0x61 (97)       | 44 |
|-----------------------------------------|----|
| DREG_TEMPERATURE_RAW2 – 0x62 (98)       | 45 |
| DREG_TEMPERATURE_TIME - 0x63 (99)       | 45 |
| DREG_GYRO_PROC_X - 0x64 (100)           | 45 |
| DREG_GYRO_PROC_Y - 0x65 (101)           | 45 |
| DREG_GYRO_PROC_Z - 0x66 (102)           | 46 |
| DREG_GYRO_PROC_TIME - 0x67 (103)        | 46 |
| DREG_ACCEL_PROC_X - 0x68 (104)          | 46 |
| DREG_ACCEL_PROC_Y - 0x69 (105)          | 46 |
| DREG_ACCEL_PROC_Z - 0x6A (106)          | 47 |
| DREG_ACCEL_PROC_TIME - 0x6B (107)       | 47 |
| DREG_MAG_PROC_X - 0x6C (108)            | 47 |
| DREG_MAG_PROC_Y - 0x6D (109)            |    |
| DREG_MAG_PROC_Z - 0x6E (110)            | 48 |
| DREG_MAG_PROC_TIME - 0x6F (111)         | 48 |
| DREG_PRESSURE_PROC - 0x70 (112)         |    |
| DREG_PRESSURE_PROC_TIME - 0x71 (113)    | 48 |
| DREG_TEMPERATURE_PROC1 - 0x72 (114)     | 49 |
| DREG_TEMPERATURE_PROC2 - 0x73 (115)     | 49 |
| DREG_TEMPERATURE_PROC_TIME - 0x74 (116) | 49 |
| DREG_QUAT_AB - 0x75 (117)               | 49 |
| DREG_QUAT_CD - 0x76 (118)               | 50 |
| DREG_QUAT_TIME - 0x77 (119)             | 50 |
| DREG_EULER_PHI_THETA - 0x78 (120)       | 50 |
| DREG_EULER_PSI – 0x79 (121)             | 51 |
| DREG_EULER_TIME – 0x7A (122)            | 51 |
| DREG_POSITION_N - 0x7B (123)            | 51 |
| DREG_POSITION_E - 0x7C (124)            | 52 |
| DREG_POSITION_UP - 0x7D (125)           | 52 |
| DREG_POSITION_TIME - 0x7E (126)         | 52 |
| DREG_VELOCITY_N - 0x7F (127)            | 52 |
| DREG_VELOCITY_E - 0x80 (128)            | 53 |
| DREG_VELOCITY_UP - 0x81 (129)           | 53 |

|   | RESERVED – 0x82 (130)              | 53 |
|---|------------------------------------|----|
|   | DREG_VELOCITY_TIME - 0x83 (131)    | 53 |
|   | DREG_GPS_LATITUDE – 0x84 (132)     | 53 |
|   | DREG_GPS_LONGITUDE – 0x85 (133)    | 54 |
|   | DREG_GPS_ALTITUDE – 0x86 (134)     | 54 |
|   | DREG_GPS_COURSE – 0x87 (135)       | 54 |
|   | DREG_GPS_SPEED - 0x88 (136)        |    |
|   | DREG_GPS_TIME - 0x89 (137)         | 55 |
|   | DREG_GPS_DATE - 0x8A (138)         | 55 |
|   | DREG_GPS_SAT_1_2 - 0x8B (139)      | 55 |
|   | DREG_GPS_SAT_3_4 - 0x8C (140)      | 55 |
|   | DREG_GPS_SAT_5_6 - 0x8D (141)      | 56 |
|   | DREG_GPS_SAT_7_8 - 0x8E (142)      | 56 |
|   | DREG_GPS_SAT_9_10 - 0x8F (143)     | 57 |
|   | DREG_GPS_SAT_11_12 - 0x90 (144)    |    |
|   | DREG_GYRO_BIAS_X - 0x91 (145)      | 57 |
|   | DREG_GYRO_BIAS_Y - 0x92 (146)      | 58 |
|   | DREG_GYRO_BIAS_Z - 0x93 (147)      | 58 |
|   | DREG_ BIAS_X_VARIANCE - 0x94 (148) |    |
|   | DREG_ BIAS_Y_VARIANCE - 0x95 (149) |    |
|   | DREG_ BIAS_Z_VARIANCE - 0x96 (150) | 59 |
|   | DREG_ QUAT_A_VARIANCE – 0x97 (151) | 59 |
|   | DREG_ QUAT_B_VARIANCE – 0x98 (152) | 59 |
|   | DREG_ QUAT_C_VARIANCE – 0x99 (153) | 59 |
|   | DREG_ QUAT_D_VARIANCE – 0x9A (154) | 60 |
| C | ommands                            | 61 |
|   | GET_FW_REVISION – 0xAA (170)       | 61 |
|   | FLASH_COMMIT – 0xAB (171)          | 61 |
|   | RESET_TO_FACTORY – 0xAC (172)      | 61 |
|   | ZERO_GYROS – 0xAD (173)            | 61 |
|   | SET_HOME_POSITION – 0xAE (174)     | 61 |
|   | RESET EKE - Ovr3 (179)             | 61 |





# **Revision History**

Rev. 1.0 - Initial Release

- Rev. 1.1 Corrected details in Absolute Maximum Ratings section. Added dimensioned drawing, pin description tables, and sections on LED indicators, calibration, and the JTAG header.
- Rev. 1.2 Corrected numbering on CREG\_MAG\_BIAS registers and DREG registers.
- Rev. 1.3 Corrected missing data registers in Data Registers section.





# Disclaimer and Liability

This document is provided as a reference only. Typical device specifications must be evaluated by the end-user. CH Robotics reserves the right to modify this document and the products it describes without notice.

CH Robotics products are not intended for use in weapons systems, aircraft, life-saving or life-sustaining systems, automobiles, or any other application where failure could result in injury, death, property damage, or environmental damage. CH Robotics products used in any of the aforementioned applications must not be critical for the correct or safe operation of the application. CH Robotics makes no warranties, express or implied, about the suitability of CH Robotics products for any application.

In no event shall CH Robotics be liable for any direct, indirect, punitive, incidental, special consequential damages, to property, environment, or life, whatsoever arising out of or connected with the use or misuse of our products.



# Absolute Maximum Ratings

| Maximum M                   | echanical Ratings |
|-----------------------------|-------------------|
| Max Acceleration            | 3000g for 0.5 ms  |
|                             | 10000 g for 0.1ms |
| Operating Temperature Range | -20C to +60 C     |
| Storage Temperature Range   | -40C to +125 C    |

| Maximum E                    | Electrical Ratings |  |
|------------------------------|--------------------|--|
| Supply Voltage               | -0.3 V to +6.5 V   |  |
| Minimum Vin                  | 6.1V               |  |
| Maximum voltage on any input | 3.5V               |  |

# **Electrical Characteristics**

|                | Electrical Characteristics |
|----------------|----------------------------|
| Supply Voltage | 4.0V to 6.0V               |
| Supply Current | <150mA during GPS seek     |
|                | <100mA after GPS lock      |

# Mechanical Drawing

# Dimensions are in inches



Figure 1 - GP9 Mechanical Drawing

.805 —⊸ — 1.278

.170

# Pinout



| GP9 6-Pin Main IO Header Pins |                                                           |
|-------------------------------|-----------------------------------------------------------|
| +5.0V In                      | Main supply input. 5V nominal, 4V to 6V accepted.         |
| +3.3V Out                     | Regulated 3.3V output, 100mA capacity                     |
| GND                           | Supply ground                                             |
| <b>GPS PPS Out</b>            | GPS PPS output. On GPS lock, pulses high once per second. |
| TX (Out)                      | 3.3V UART TX output, 115200 baud default                  |
| RX (In)                       | 3.3V UART RX input, 115200 baud default                   |

Table 5 - Pinout for GP9 Main IO Header

| GP9 3-Pin Peri                                  | GP9 3-Pin Peripheral Header                                                |  |  |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| +3.3V Out Regulated 3.3V output, 100mA capacity |                                                                            |  |  |  |  |  |  |  |
| GND                                             | GND Supply ground                                                          |  |  |  |  |  |  |  |
| BOOT                                            | BOOT Boot mode select. Float for normal operation. Pull low to start FLASH |  |  |  |  |  |  |  |
|                                                 | programming mode for firmware updates.                                     |  |  |  |  |  |  |  |

Table 6 - Pinout for GP9 Peripheral Header



## **Functional Description**

The GP9 is a GPS-Aided Attitude and Heading Reference System (AHRS). Its primary function is to provide a robust attitude solution on dynamic platforms.

The GP9 uses an Extended Kalman Filter to combine data from accelerometers, rate gyros, a magnetometer (optional), barometric pressure, and GPS to produce attitude and heading estimates that are reliable even during aggressive dynamic maneuvers.

Unlike other comparably-priced sensors on the market, the GP9 actually performs *better* on platforms that experience aggressive acceleration and deceleration. The GP9 is also capable of measuring yaw without relying on unpredictable magnetic field measurements.

#### **Attitude Estimates**

To avoid issues with gimbal lock, the GP9 attitude estimator uses a quaternion attitude representation. The attitude quaternion represents rotation of the inertial frame to the sensor body frame. The GP9's quaternion attitude is converted internally to Euler Angles as well for applications where Euler Angles are preferred. The Euler Angle attitude is constructed using first yaw rotation, then pitch rotation, and then roll rotation.

The inertial-frame used by the GP9 is a standard right-handed aeronautical inertial frame, with the x-axis pointing north, the y-axis pointing east, and the z-axis pointing down. The sensor body-frame is shown in Figure 3.

The quaternion output of the GP9 is a four-element vector, where the first element (a) is the scalar part, and the last three elements (b, c, and d) are the vector parts. In keeping with standard aeronautical convention, the quaternion rotation and the equivalent Euler Angle rotation represents rotation of the inertial frame to the body-frame (i.e. the coordinate frame itself is being rotated). This is in contrast to conventions in, for example, computer graphics, where applying a rotation rotates a vector, not the underlying coordinate frame. If you use the quaternion output of the GP9 in a computer graphics application, you may need to conjugate the attitude quaternion to have it behave as expected in your rendering environment.

More details about coordinate frames, quaternions, and Euler Angles are available at www.chrobotics.com/library



Figure 3 - GP9 Body-Frame Coordinate Axes

## Position and Velocity Estimates

The GP9 reads GPS position and velocity at 25 Hz from the onboard GPS. GPS data is used to correct attitude estimates, but position and velocity are *not* computed as states in the filter. Position and velocity are available at the GPS update rate of 25 Hz, but are not smoothed by inertial sensor measurements.

While position and velocity are not states, the GP9 does processes the GPS data to convert it to positions and velocities in meters relative to a configurable home latitude/longitude/altitude. On startup, if GPS home latitude and longitude are not set, then the GP9 will use the first measured latitude and longitude as position zero. All future positions will be referenced to that point. The home location can be set to the current position by issuing a SET\_HOME\_POSITION command, or any home position can be set by writing to the CREG\_HOME\_NORTH, CREG\_HOME\_EAST, and CREG\_HOME\_UP registers. Once the home position has been set, it can be made permanent by issuing a WRITE\_TO\_FLASH command.

Raw GPS positions/velocities are available (in degrees lat/lon) in additional to positions and velocities referenced to the GPS home position (in meters and meters/s).

## Calibration

The rate gyros and accelerometers on the GP9 are calibrated to compensate for cross-axis alignment, scale factor, and bias errors.

The GP9 is available with two different calibration options, single-point and extended. Single-point calibration is performed near room-temperature and tend to be valid to within +/- 10 degrees (roughly 15 C to 35 C). The closer the temperature remains to the nominal 25C calibration temperature, the better and more consistent the performance. Many cost-sensitive applications can benefit from the lower cost of single-point calibration without sacrificing significant performance.

For best performance, the GP9 can be factory-calibrated over an extended temperature range from 0C to 50C. Temperature-based compensation applies a third-order fit to biases and scale factors just beyond the rated temperature range (the 0C to 50C calibration coefficients are computed from data ranging from -5C to 55C, for example). This ensures that the calibration remains reliable all the way to the extremes of the rated temperatures.

The GP9 comes mounted on CNC-machined mounting brackets. The brackets, with holes for precision alignment dowel pins, can be used to help mount the GP9 in its exact calibration orientation. The brackets can also be removed to save space and weight if needed.

## Theory of Operation

The GP9 estimator can be divided into two main components:

- 1) An INS filter that estimates attitude, heading, and changes in inertial-frame velocity, and
- 2) An error and bias estimator that compares GPS inertial-frame velocities to INS velocity estimates

Error in the INS velocity estimates are tightly coupled to errors in its attitude estimate. For example, if the yaw angle estimate is off by 90 degrees, actual acceleration in the north direction will "feel" to the INS like acceleration in the east direction. Because INS velocity measurement errors are so closely related to attitude errors, it is possible to use GPS velocity measurements to make attitude corrections.



Figure 4 - GP9 Functional Block Diagram

The accelerometers used by the INS measure both physical acceleration and normal forces that prevent the GP9 from accelerating toward the center of the Earth. In order to estimate inertial-frame velocities (the velocities that will be measured by the GPS), the INS uses its attitude estimate to remove normal forces from the accelerometer measurement. Errors in the attitude estimate cause the INS to



erroneously misinterpret normal forces as physical acceleration of the sensor. While this may sound like a problem, it actually helps the GP9 correct its attitude estimates even when the sensor isn't accelerating.

The GP9 corrects pitch and roll angle errors at all times, but yaw can only be corrected when the sensor is accelerating. Table 7 summarizes the estimation capabilities of the GP9 given different motion types.

The GP9's onboard bias estimator helps it maintain accurate angle estimates even during long periods of unaccelerated motion.

| GP9 Attitude Estimation Capabilities – with and without acceleration |                                                                                                    |                                                      |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|--|--|--|
| Motion Type Observable states Unobservable States                    |                                                                                                    |                                                      |  |  |  |  |  |  |  |
| Constant Velocity (no acceleration)                                  | <ul><li>Pitch error</li><li>Roll error</li><li>X-axis gyro bias</li><li>Y-axis gyro bias</li></ul> | <ul><li>Yaw error</li><li>Z-axis gyro bias</li></ul> |  |  |  |  |  |  |  |
| Dynamic Velocity (accelerated motion)                                | - All angles and biases                                                                            | - None                                               |  |  |  |  |  |  |  |

Table 7 - GP9 Attitude Estimation Capabilities

The implications of the preceding discussion is that the GP9 produces the best estimates when it is accelerating. This is particularly true of the yaw angle estimates. "Acceleration" applies to any change in velocity, which could indicate a change in speed, a change in direction, or both.

So, for example, a car traveling in a straight line on a freeway for a long time might cause the GP9's yaw angle to drift while pitch and roll remain accurate. In contrast, a car driving circles in a roundabout would produce yaw, pitch, and roll estimates that never drift. A platform can be deliberately controlled to change velocity more often so that the yaw estimates remain reliable.

## **GPS Measurement Updates**

Because the GP9 relies on GPS measurements to correct attitude, it is important that the GPS operate in an environment where it can maintain a high-quality lock. If the GPS lock is lost or the quality degrades, the GP9 will stop using it to make attitude corrections.

Significant GPS multipath can negatively affect attitude estimates. For example, driving a car through a narrow urban canyon or under an overpass might cause noticeable yaw angle errors, and (typically) smaller pitch and roll angle errors. Usually, significantly degraded GPS signals are detected and ignored by the GP9 to avoid substantial degradation of the attitude estimates.

The GP9 can be tuned to further reduce the impact of velocity measurements errors. The tradeoff is that the bias estimator can then take longer to converge, and errors in the attitude estimates can take longer to be corrected by the filter. Contact CH Robotics for details about tuning the filter for your specific application.

#### Magnetometer Measurement Updates

If the GP9 is to be used on a platform that isn't expected to experience consistent dynamic motion, then the magnetometer must be used to prevent the yaw angle estimate from drifting. Magnetometer updates can be enabled on the GP9 by writing to the FILTER\_SETTINGS register manually or by using the



CHR Serial Interface to make the configuration change graphically. The CHR Serial Interface can also be used to calibrate the magnetometer to correct soft and hard-iron distortions that would affect the accuracy of the yaw angle estimate.

Whenever possibly, it is best to avoid using the magnetometer. Unpredictable distortions in the Earth's magnetic field can cause arbitrarily large errors in the GP9's yaw angle estimate. Table 8 provides a summary of different platforms and whether the magnetometer would usually be required to maintain consistent yaw angle estimates.

| GP9 Magnetometer Requirer | nents for Yaw Estimation      |
|---------------------------|-------------------------------|
| Platform                  | Magnetometer required?        |
| Car                       | City driving: No              |
|                           | Freeway driving: Probably     |
| Aircraft                  | RC airplane: No               |
|                           | RC rotorcraft: No             |
|                           | Small UAV: No                 |
|                           | Commercial Airliner: Probably |
| Indoor mobile robot       | Yes                           |
| Outdoor mobile robot      | Slow-moving: Probably         |
|                           | Fast (>= 3 m/s): No           |
| Stationary antenna gimbal | Yes                           |
| Fast boat/USV             | No                            |

Table 8 - Yaw Requirements on Various Platforms

## Accelerometer Measurement Updates

If GPS isn't available, the GP9 can be configured to use the accelerometers to make pitch and roll attitude corrections. In this use case, the GP9 becomes sensitive to physical acceleration: dynamic motion causes the attitude estimates to degrade instead of improve. For slow-moving platforms, or indoor operation, the amount of error is minimal. If GPS lock is expected to come and go periodically (say, on a submarine that surfaces and submerges repeatedly), the GP9 can automatically begin using accelerometers when GPS lock is lost, and resume using GPS measurements when lock is reacquired (see the FILTER\_SETTINGS register for more details).

When the GP9 is configured to use accelerometers for attitude correction instead of GPS, magnetometer updates must be enabled for the yaw estimate to be reliable.

It is worth noting that when it is not using GPS, the GP9 estimator is effectively equivalent to the estimator on the lower-cost UM7, but with the addition of a gyro bias estimator for improved performance.

#### **Bias Estimator**

Even on calibrated rate gyros, imperfect bias repeatability can cause the rate gyros to report erroneous angular rates on the order of tenths of degrees per second. If uncorrected, these bias errors can cause pitch and roll estimate errors on the order of 5 to 10 degrees and, without dynamic motion or magnetometer correction, unbounded errors in the yaw estimate.



The GP9's gyro bias estimator removes these systematic errors in the attitude estimates. On startup, the GP9's bias estimates start at zero and gradually converge to actual rate gyro biases. Before the bias estimator converges, you might observe pitch and roll angles pulled off by 5 to 10 degrees, and then gradually return to their correct values as the bias estimator converges. The intuitive way to think of this behavior is that GPS-based corrections are slowly "pulling" the angle estimates to their correct values, while gyro bias errors pull them away. The magnitude of the angle error depends on how much the rate gyros are trusted by the filter in comparison to the GPS velocity measurements.

This short-term deviation in angle estimates can be avoided by issuing a ZERO\_RATE\_GYROS command to the GP9 shortly after startup, and while the GP9 is not moving or rotating. The computed gyro trim will bring the estimates close to zero. Issuing a WRITE\_TO\_FLASH command after zeroing the rate gyros often removes the need to re-zero the gyros when you next cycle power to the GP9.

If the GP9 remains powered, the bias estimator will continually update the gyro bias estimates. As the biases slowly change, the estimator will follow. It is therefore unnecessary to issue additional ZERO\_RATE\_GYROS commands during normal operation.

If the application makes it impossible to issue a ZERO\_RATE\_GYROS command to the GP9 on startup, and the temporary angle error is unacceptable, the GP9 can be tuned to minimize the impact of unmeasured gyro biases on startup. The tradeoff is that GPS multipath errors can then have a larger impact on angle estimates. Depending on the specific application, there are also other ways to minimize startup angle errors. Contact CH Robotics for more details about how to tune the filter for your specific application (support@chrobotics.com).

#### Firmware Upgrades

The GP9 firmware can be upgraded as new releases are published. To upgrade the firmware, the GP9 bootloader must be started in FLASH programming mode. The CHR Serial Interface (available from <a href="https://www.chrobotics.com">www.chrobotics.com</a>) can then be used to write the new firmware to the device.

To start the GP9 bootloader in program mode, the BOOT pin on the 3-pin header should be shorted to ground before power is applied. If the bootloader starts in program mode, the status LED will flash three times on startup and then remain solid until the programming process begins.

If programming mode is entered accidentally, simply ensure that the BOOT pin is not shorted to ground and cycle the power.

After programming is complete, disconnect the BOOT pin from ground and cycle power to begin.

#### Status Indicator LEDs

The GP9 is fitted with two indicator LEDs to show its status (see Figure 2 for locations of the indicators).

The "power-on" LED turns on whenever the device is powered.

During normal operation, the "status" LED will turn on and remain on continuously while the internal GPS acquires a lock. Once the GPS is locked, the LED will toggle once every second.

If the BOOT pin is pulled low before applying power, the GP9 bootloader will start in FLASH programming mode and the status LED will flash three times before turning solid. Once FLASH programming begins, the status LED will turn off.

#### Master JTAG Header

The JTAG header is used in-factory to program the bootloader and isn't used during normal operation.

## **Serial Communication**

The GP9 UART operates at a 3.3V logic level with 8 data bits, 1 stop bit, and no parity.

The TTL UART output of the GP9 is NOT compatible with the RS-232 serial port commonly found on desktop computers. To interface the GP9 with a computer, it is necessary to utilize a voltage translator or USB-TLL converter to prevent damage to the device. We recommend using our USB Expansion Board for easily connecting the GP9 to a computer.

By default, the serial baud rate of the GP9 is set at 115200, but the baud rate can be changed by the end user if desired.

All data and settings on the GP9 are accessible via a set of addressed registers. Configuration registers store settings that control the operation of the GP9. Data registers make sensor data and estimator outputs available. Command registers instruct the GP9 to execute various commands. With the exception of command registers, any register can be read or modified over the UART using a binary serial communication protocol.

# Binary Packet Structure

Data transmitted and received by the GP9 is formatted into packets containing:

- 1. The three character start sequence 's', 'n', 'p' to indicate the start of a new packet (i.e. **s**tart **n**ew **p**acket)
- 2. A "packet type" (PT) byte describing the function and length of the packet
- 3. An address byte indicating the address of the register or command
- 4. A sequence of data bytes, the length of which is specified in the PT byte
- 5. A two-byte checksum for error-detection

#### Table 9 - UART Serial Packet Structure

|  | 's' | 'n' | 'p' | packet type (PT) | Address | Data Bytes (D0DN-1) | Checksum 1 | Checksum 0 |
|--|-----|-----|-----|------------------|---------|---------------------|------------|------------|
|--|-----|-----|-----|------------------|---------|---------------------|------------|------------|

All packets sent and received by the GP9 must conform to the format given in Table 9.

The PT byte specifies whether the packet is a read or a write operation, whether it is a batch operation, and the length of the batch operation (when applicable). The PT byte is also used by the GP9 to respond to commands. The specific meaning of each bit in the PT byte is given in Table 10.

#### Table 10 - Packet Type (PT) byte

| 7        | 6        | 6 5 4 |     | 5 4 3 2 |     |        |    | 1 | 1 |
|----------|----------|-------|-----|---------|-----|--------|----|---|---|
| Has Data | Is Batch | BL3   | BL2 | BL1     | BLO | Hidden | CF |   |   |

Table 11 - Packet Type (PT) Bit Descriptions

|        | · denot i ypo (i i / zit zooonipitono                                                                                                                                                                                                                                                                                              |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit(s) | Description                                                                                                                                                                                                                                                                                                                        |
| 7      | Has Data: If the packet contains data, this bit is set (1). If not, this bit is cleared (0).                                                                                                                                                                                                                                       |
| 6      | Is Batch: If the packet is a batch operation, this bit is set (1). If not, this bit is cleared (0)                                                                                                                                                                                                                                 |
| 5:2    | Batch Length (BL): Four bits specifying the length of the batch operation. Unused if bit 7 is cleared. The maximum batch length is 2 <sup>4</sup> = 16 registers                                                                                                                                                                   |
|        | cleared. The maximum patch length is 2.14 – 16 registers                                                                                                                                                                                                                                                                           |
| 1      | Hidden: If set, then the packet address specified in the "Address" field is a "hidden" address. Hidden registers are used to store factory calibration and filter tuning coefficients that do not typically need to be viewed or modified by the user. This bit should always be set to 0 to avoid altering factory configuration. |
| 0      | Command Failed (CF): Used by the GP9 to report when a command has failed. Must be set to zero for all packets written to the GP9.                                                                                                                                                                                                  |

The address byte specifies which register will be involved in the operation. During a read operation (Has Data = 0), the address specifies which register to read. During a write operation (Has Data = 1), the address specifies where to place the data contained in the data section of the packet. For a batch read/write operation, the address byte specifies the starting address of the operation.

The "Data Bytes" section of the packet contains data to be written to one or more registers. There is no byte in the packet that explicitly states how many bytes are in this section because it is possible to determine the number of data bytes that should be in the packet by evaluating the PT byte.

If the Has Data bit in the PT byte is cleared (Has Data = 0), then there are no data bytes in the packet and the Checksum immediately follows the address. If, on the other hand, the Has Data bit is set (Has Data = 1) then the number of bytes in the data section depends on the value of the Is Batch and Batch Length portions of the PT byte.

For a batch operation (Is Batch = 1), the length of the packet data section is equal to 4\*(Batch Length). Note that the batch length refers to the number of registers in the batch, NOT the number of bytes. Registers are 4 bytes long.

For a non-batch operation (Is Batch = 0), the length of the data section is equal to 4 bytes (one register). The data section lengths and total packet lengths for different PT configurations are shown below.

**Table 12 - Packet Length Summary** 

| Has Data | Is Batch | Data Section Length (bytes) | Total Packet Length (bytes) |
|----------|----------|-----------------------------|-----------------------------|
| 0        | NA       | 0                           | 7                           |
| 1        | 0        | 4                           | 11                          |
| 1        | 1        | 4*(Batch Length)            | 7 + 4*(Batch Length)        |

Note that if a packet is a batch operation, the batch length must be greater than zero.

The two checksum bytes consist of the unsigned 16-bit sum of all preceding bytes in the packet, including the packet header. A batch packet with batch length = 1 is equivalent to a non-batch packet.



#### **Read Operations**

To initiate a serial read of one or more registers aboard the sensor, a packet should be sent with the "Has Data" bit cleared. This tells the device that this will be a read operation from the address specified in the packet's "Address" byte. If the "Is Batch" bit is set, then the packet will trigger a batch read in which the "Address" byte specifies the address of the first register to be read.

In response to a read packet, the GP9 will send a packet in which the "Has Data" bit is set, and the "Is Batch" and "Batch Length" bits are equivalent to those of the packet that triggered the read operation. The register data will be contained in the "Data Bytes" section of the packet.

#### Write Operations

To initiate a serial write into one or more registers aboard the sensor, a packet should be sent to the GP9 with the "Has Data" bit set. This tells the device that the incoming packet contains data that should be written to the register specified by the packet's "Address" byte. If a batch write operation is to be performed, the "Is Batch" bit should be set, and the "Batch Length" bits should indicate the number of registers that are to be written to.

In response to a write packet, the GP9 will update the contents of the specified register(s) with the contents of the data section of the packet. It will then transmit a COMMAND\_COMPLETE packet to indicate that the write operation succeeded. A COMMAND\_COMPLETE packet is a packet with PT = 0 (no data, no batch) and with an address matching the address of the register to which the write operation was made, or the start address of the write operation if this was a batch write.

Note that the COMMAND\_COMPLETE packet is equivalent to a packet that would cause the GP9 to initiate a read operation on the address to which data was just written. Since the packet is going from the sensor to the host, however, its meaning is different (it would not make sense for the GP9 to request the contents of one of its registers from an external host).

#### **Command Operations**

There are a variety of register address that do not correspond with actual physical registers aboard the GP9. These "command" addresses are used to cause the sensor to execute specific commands (there are commands for executing calibration operations, resetting the onboard filters, etc. See the Register Overview in this document for more details).

To initiate a command, simply send a packet to the GP9 with the command's address in the packet "Address" byte. The PT byte should be set to zero for a command operation.

If the GP9 successfully completes the specified command, then a COMMAND\_COMPLETE packet is returned with the command address in the "Address" byte of the response packet. If the command fails, the device responds by sending a COMMAND\_FAILED packet. The COMMAND\_FAILED packet is equivalent to the COMMAND\_COMPLETE packet except that the "Command Failed" bit in the PT byte is set (CF = 1).

In some cases, a command will cause specific packets to be sent other than the COMMAND\_COMPLETE packet. A GET\_FW\_VERSION command will, for example, return a packet containing the version of the firmware installed on the GP9. In this and similar cases, the COMMAND\_COMPLETE packet is not sent.



## **Register Overview**

There are three types of registers onboard the GP9: configuration registers, data registers, and command registers.

Configuration registers begin at address 0x00 and are used to configure GP9's filter settings and communication behavior. Configuration register contents can be written to onboard flash to allow settings to be maintained when the device is powered down.

Data registers begin at address 0x55 (85), and store raw and processed data from the sensors along with estimated states. Unlike configuration registers, data register contents cannot be written to flash.

Command registers technically aren't registers at all, but they provide a convenient way to send commands to the GP9 when those commands do not require additional data beyond the command itself. For example, a command to run an onboard gyro bias calibration routine is triggered by querying the ZERO\_GYROS command register. By using a unique register address for each command, the same communication architecture used to read from and write to data and configuration registers can be used to send commands to the GP9. Command registers begin at address 0xAA.





# Configuration Registers

| Corniguration   |                            |                                                    |
|-----------------|----------------------------|----------------------------------------------------|
| Address         | Register Name              | Register Description                               |
| HEX (dec)       |                            |                                                    |
| 0x00 (0)        | CREG_COM_SETTINGS          | General communication settings                     |
| 0x01 (1)        | CREG_COM_RATES1            | Broadcast rate settings                            |
| 0x02 (2)        | CREG_COM_RATES2            | Broadcast rate settings                            |
| 0x03 (3)        | CREG_COM_RATES3            | Broadcast rate settings                            |
| 0x04 (4)        | CREG_COM_RATES4            | Broadcast rate settings                            |
| 0x05 (5)        | CREG_COM_RATES5            | Broadcast rate settings                            |
| 0x06 (6)        | CREG_COM_RATES6            | Broadcast rate settings                            |
| 0x07 (7)        | CREG_COM_RATES7            | Broadcast rate settings                            |
| 0x08 (8)        | CREG_FILTER_SETTINGS       | Misc. filter settings                              |
| 0x09 (9)        | CREG_HOME_NORTH            | GPS north position to consider position 0          |
| 0x0A (10)       | CREG_HOME_EAST             | GPS east position to consider position 0           |
| 0x0B (11)       | CREG_HOME_UP               | GPS altitude to consider position 0                |
| 0x0C (12)       | CREG_ZERO_PRESSURE         | Pressure at altitude 0                             |
| 0x0D (13)       | RESERVED                   | This register address is reserved for future use   |
| 0x0E (14)       | CREG_GYRO_TRIM_X           | Bias trim for x-axis rate gyro                     |
| 0x0F (15)       | CREG_GYRO_TRIM_Y           | Bias trim for y-axis rate gyro                     |
| 0x10 (16)       | CREG_GYRO_TRIM_Z           | Bias trim for z-axis rate gyro                     |
| 0x11 - 0x41     | RESERVED                   | These registers are reserved for future use        |
| (17 – 65)       |                            |                                                    |
| 0x42 (66)       | CREG_MAG_CAL1_1            | Row 1, Column 1 of magnetometer calibration matrix |
| 0x43 (67)       | CREG_MAG_CAL1_2            | Row 1, Column 2 of magnetometer calibration matrix |
| 0x44 (68)       | CREG_MAG_CAL1_3            | Row 1, Column 3 of magnetometer calibration matrix |
| 0x45 (69)       | CREG_MAG_CAL2_1            | Row 2, Column 1 of magnetometer calibration matrix |
| 0x46 (70)       | CREG_MAG_CAL2_2            | Row 2, Column 2 of magnetometer calibration matrix |
| 0x47 (71)       | CREG_MAG_CAL2_3            | Row 2, Column 3 of magnetometer calibration matrix |
| 0x48 (72)       | CREG_MAG_CAL3_1            | Row 3, Column 1 of magnetometer calibration matrix |
| 0x49 (73)       | CREG_MAG_CAL3_2            | Row 3, Column 2 of magnetometer calibration matrix |
| 0x4A (74)       | CREG_MAG_CAL3_3            | Row 3, Column 3 of magnetometer calibration matrix |
| 0x4B (75)       | CREG_MAG_BIAS_X            | Magnetometer X-axis bias                           |
| 0x4C (76)       | CREG_MAG_BIAS_Y            | Magnetometer Y-axis bias                           |
| 0x4D (77)       | CREG_MAG_BIAS_Z            | Magnetometer Z-axis bias                           |
| Table 40   1:a4 | of CD0 Configuration Pagis | •                                                  |

Table 13 - List of GP9 Configuration Registers



# Data Registers

| A LI       |                            |                                                             |
|------------|----------------------------|-------------------------------------------------------------|
| Address    | Register Name              | Register Description                                        |
| 0x55 (85)  | DREG_HEALTH                | Contains information about the health and status of the GP9 |
| 0x56 (86)  | DREG_GYRO_RAW_XY           | Raw X and Y rate gyro data                                  |
| 0x57 (87)  | DREG_GYRO_RAW_Z            | Raw Z rate gyro data                                        |
| 0x58 (88)  | DREG_GYRO_TIME             | Time at which rate gyro data was acquired                   |
| 0x59 (89)  | DREG_ACCEL_RAW_XY          | Raw X and Y accelerometer data                              |
| 0x5A (90)  | DREG_ACCEL_RAW_Z           | Raw Z accelerometer data                                    |
| 0x5B (91)  | DREG_ACCEL_TIME            | Time at which accelerometer data was acquired               |
| 0x5C (92)  | DREG_MAG_RAW_XY            | Raw X and Y magnetometer data                               |
| 0x5D (93)  | DREG MAG RAW Z             | Raw Z magnetometer data                                     |
| 0x5E (94)  | DREG_MAG_RAW_TIME          | Time at which magnetometer data was acquired                |
| 0x5F (95)  | DREG_PRESSURE_RAW          | Raw absolute pressure data                                  |
| 0x60 (96)  | DREG_PRESSURE_TIME         | Time at which absolute pressure data was acquired           |
| 0x61 (97)  | DREG_TEMPERATURE_RAW1      | Raw temperature data register                               |
| 0x62 (98)  | DREG_TEMPERATURE_RAW2      | Raw temperature data register                               |
| 0x63 (99)  | DREG_TEMPERATURE_TIME      | Time at which temperature data was acquired                 |
| 0x64 (100) | DREG_GYRO_PROC_X           | Processed x-axis rate gyro data                             |
| 0x65 (101) | DREG_GYRO_PROC_Y           | Processed y-axis rate gyro data                             |
| 0x66 (102) | DREG_GYRO_PROC_Z           | Processed z-axis rate gyro data                             |
| 0x67 (103) | DREG_GYRO_PROC_TIME        | Time at which rate gyro data was acquired                   |
| 0x68 (104) | DREG_ACCEL_PROC_X          | Processed x-axis accel data                                 |
| 0x69 (105) | DREG_ACCEL_PROC_Y          | Processed y-axis accel data                                 |
| 0x6A (106) | DREG ACCEL PROC Z          | Processed z-axis accel data                                 |
| 0x6B (107) | DREG_ACCEL_PROC_TIME       | Time at which accelerometer data was acquired               |
| 0x6C (108) | DREG_MAG_PROC_X            | Processed x-axis magnetometer data                          |
| 0x6D (109) | DREG_MAG_PROC_Y            | Processed y-axis magnetometer data                          |
| 0x6E (110) | DREG_MAG_PROC_Z            | Processed z-axis magnetometer data                          |
| 0x6F (111) | DREG_MAG_PROC_TIME         | Time at which magnetometer data was acquired                |
| 0x70 (112) | DREG_PRESSURE_PROC         | Processed absolute pressure data                            |
| 0x71 (113) | DREG_PRESSURE_PROC_TIME    | Time at which absolute pressure data was acquired           |
| 0x72 (114) | DREG_TEMPERATURE_PROC1     | Processed temperature data                                  |
| 0x73 (115) | DREG_TEMPERATURE_PROC2     | Processed temperature data                                  |
| 0x74 (116) | DREG_TEMPERATURE_PROC_TIME | Time at which temperature data was acquired                 |
|            |                            | 4044                                                        |
| 0x75 (117) | DREG_QUAT_AB               | Quaternion elements A and B                                 |



| 0x77 (119) | DREG_QUAT_TIME       | Time at which the sensor was at the      |
|------------|----------------------|------------------------------------------|
|            |                      | specified quaternion rotation            |
| 0x78 (120) | DREG_EULER_PHI_THETA | Roll and pitch angles                    |
| 0x79 (121) | DREG_EULER_PSI       | Yaw angle                                |
| 0x7A (122) | DREG_EULER_TIME      | Time of computed Euler attitude          |
| 0x7B (123) | DREG_POSITION_NORTH  | North position in meters                 |
| 0x7C (124) | DREG_POSITION_EAST   | East position in meters                  |
| 0x7D (125) | DREG_POSITION_UP     | Altitude in meters                       |
| 0x7E (126) | DREG_POSITION_TIME   | Time of estimated position               |
| 0x7F (127) | DREG_VELOCITY_NORTH  | North velocity                           |
| 0x80 (128) | DREG_VELOCITY_EAST   | East velocity                            |
| 0x81 (129) | DREG_VELOCITY_UP     | Altitude velocity                        |
| 0x82 (130) | RESERVED             | This register is reserved for future use |
| 0x83 (131) | DREG_VELOCITY_TIME   | Time of velocity estimate                |
| 0x84 (132) | DREG_GPS_LATITUDE    | GPS latitude                             |
| 0x85 (133) | DREG_GPS_LONGITUDE   | GPS longitude                            |
| 0x86 (134) | DREG_GPS_ALTITUDE    | GPS altitude                             |
| 0x87 (135) | DREG_GPS_COURSE      | GPS course                               |
| 0x88 (136) | DREG_GPS_SPEED       | GPS speed                                |
| 0x89 (137) | DREG_GPS_TIME        | GPS time                                 |
| 0x8A (138) | DREG_GPS_DATE        | GPS date register                        |
| 0x8B (139) | DREG_GPS_SAT_1_2     | GPS satellite information                |
| 0x8C (140) | DREG_GPS_SAT_3_4     | GPS satellite information                |
| 0x8D (141) | DREG_GPS_SAT_5_6     | GPS satellite information                |
| 0x8E (142) | DREG_GPS_SAT_7_8     | GPS satellite information                |
| 0x8F (143) | DREG_GPS_SAT_9_10    | GPS satellite information                |
| 0x90 (144) | DREG_GPS_SAT_11_12   | GPS satellite information                |
| 0x91 (145) | DREG_GYRO_BIAS_X     | X-axis gyro bias estimate                |
| 0x92 (146) | DREG_GYRO_BIAS_Y     | Y-axis gyro bias estimate                |
| 0x93 (147) | DREG_GYRO_BIAS_Z     | Z-axis gyro bias estimate                |
| 0x94 (148) | DREG_BIAS_X_VARIANCE | Variance of gyro x-axis bias estimate    |
| 0x95 (149) | DREG_BIAS_Y_VARIANCE | Variance of gyro y-axis bias estimate    |
| 0x96 (150) | DREG_BIAS_Z_VARIANCE | Variance of gyro z-axis bias estimate    |
| 0x97 (151) | DREG_QUAT_A_VARIANCE | Variance of quaternion element a         |
| 0x98 (152) | DREG_QUAT_B_VARIANCE | Variance of quaternion element b         |
| 0x99 (153) | DREG_QUAT_C_VARIANCE | Variance of quaternion element c         |
| 0x9A (154) | DREG_QUAT_D_VARIANCE | Variance of quaternion element d         |
|            |                      |                                          |

Table 14 - List of GP9 Data Registers

## Commands

| Address    | Name              | Description                                     |
|------------|-------------------|-------------------------------------------------|
| 0xAA (170) | GET_FW_REVISION   | Causes the GP9 to respond with a packet         |
|            |                   | containing the current firmware revision.       |
| 0xAB (171) | FLASH_COMMIT      | Writes all current configuration settings to    |
|            |                   | flash                                           |
| 0xAC (172) | RESET_TO_FACTORY  | Reset all settings to factory defaults          |
| 0xAD (173) | ZERO_GYROS        | Causes the rate gyro biases to be calibrated.   |
| 0xAE (174) | SET_HOME_POSITION | Sets the current GPS location as position (0,0) |
| 0xAF (175) | RESERVED          | RESERVED                                        |
| 0xB0 (176) | RESERVED          | RESERVED                                        |
| 0xB1 (177) | RESERVED          | RESERVED                                        |
| 0xB2 (178) | RESERVED          | RESERVED                                        |
| 0xB3 (179) | RESET_EKF         | Resets the EKF                                  |

Table 15 - List of GP9 Commands



# Configuration Registers

A set of 32-bit configuration registers allows the GP9's behavior to be customized for specific applications. In general, settings are most easily configured using the CHR Serial Interface, which allows the contents of each configuration register to be set without understanding the register contents at the bit/byte level.

This section outlines in detail the contents and functionality of each register.

## CREG COM SETTINGS - 0x00 (0)

## **Summary**

The CREG\_COM\_SETTINGS register is used to set the GP9's serial port baud rate and to enable or disable the automatic transmission of sensor data and estimated states (telemetry).

|           | B3 |    |    |    |                   |      |      |  | В  | 2  |    |    |    |    |    |
|-----------|----|----|----|----|-------------------|------|------|--|----|----|----|----|----|----|----|
| 31        | 30 | 29 | 28 | 27 | 11   16   15   11 |      |      |  | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| BAUD_RATE |    |    |    |    |                   | Rese | rved |  |    |    |    |    |    |    |    |

|    |    |    | В      | 1  |    |   |     |   |        |   | В   | 0 |      |      |   |
|----|----|----|--------|----|----|---|-----|---|--------|---|-----|---|------|------|---|
| 15 | 14 | 13 | 12     | 11 | 10 | 9 | 8   | 7 | 6      | 5 | 4   | 3 | 2    | 1    | 0 |
|    |    | R  | eserve | d  |    |   | GPS | R | eserve | d | SAT |   | Rese | rved |   |

| Bits  | Name      | Description                                                               |
|-------|-----------|---------------------------------------------------------------------------|
| 31:28 | BAUD_RATE | Sets the baud rate of the GP9 serial port.                                |
|       |           | 0.000                                                                     |
|       |           | 0 = 9600                                                                  |
|       |           | 1 = 14400                                                                 |
|       |           | 2 = 19200                                                                 |
|       |           | 3 = 38400                                                                 |
|       |           | 4 = 57600                                                                 |
|       |           | 5 = 115200                                                                |
|       |           | 6 = 128000*                                                               |
|       |           | 7 = 153600*                                                               |
|       |           | 8 = 230400*                                                               |
|       |           | 9 = 256000*                                                               |
|       |           | 10 = 460800*                                                              |
|       |           | 11 = 921600*                                                              |
|       |           | 12:15 = reserved                                                          |
|       |           |                                                                           |
|       |           | * Most PC serial ports do not support baud-rates above 115200             |
| 27:9  | Reserved  | These bits are reserved for future use                                    |
| 8     | GPS       | If set, this bit causes GPS data to be transmitted automatically whenever |
|       |           | new GPS data is received. GPS data is stored in registers 131 to 136.     |
|       |           | These registers will be transmitted in a batch packet starting at address |
|       |           | 131.                                                                      |
| 7:5   | Reserved  | These bits are reserved for future use                                    |
| 4     | SAT       | If set, this bit causes satellite details to be transmitted whenever they |
|       |           | are provided by the GPS. Satellite information is stored in registers 137 |
|       |           | to 142. These registers will be transmitted in a batch packet beginning   |
|       |           | at address 137.                                                           |
| 3:0   | Reserved  | These bits are reserved for future use                                    |
|       |           |                                                                           |

# CREG\_COM\_RATES1 - 0x01 (1)

## Summary

The CREG\_COM\_RATES1 register sets desired telemetry transmission rates in Hz for raw accelerometer, gyro, magnetometer, and pressure data. If the specified rate is 0, then no data is transmitted.

| В3             | B2            | B1           | ВО                |
|----------------|---------------|--------------|-------------------|
| RAW_ACCEL_RATE | RAW_GYRO_RATE | RAW_MAG_RATE | RAW_PRESSURE_RATE |

| Bits  | Name              | Description                                                                                                                                            |
|-------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | RAW_ACCEL_RATE    | Specifies the desired raw accelerometer data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. |
| 23:16 | RAW_GYRO_RATE     | Specifies the desired raw gyro data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.          |
| 15:8  | RAW_MAG_RATE      | Specifies the desired raw magnetometer data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.  |
| 7:0   | RAW_PRESSURE_RATE | Specifies the desired raw pressure data broadcast rate in Hz. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.      |

Raw accelerometer data is stored in registers 89 to 91. When the raw accel rate is greater than 0, the accelerometer data is transmitted in a batch packet of length 3 with start address 89.

Raw rate gyro data is stored in registers 86 to 88. When the raw gyro rate is greater than 0, the rate gyro data is transmitted in a batch packet of length 3 with start address 86.

Raw magnetometer data is stored in registers 92 to 94. When the raw magnetometer rate is greater than 0, the magnetometer data is transmitted in a batch packet of length 3 with start address 92.

Raw pressure data is stored in registers 95 to 96. When the raw pressure rate is greater than 0, the pressure data is transmitted in a batch packet of length 2 with start address 95.

If the "all raw data rate" in CREG\_COM\_RATES2 is greater than 0, then all gyro, accelerometer, magnetometer, and pressure data will be transmitted together. The rates in CREG\_COM\_RATES1 are then not used.

CREG COM RATES2 - 0x02 (2)

#### Summary

The CREG\_COM\_RATES2 register sets desired telemetry transmission rates for all raw data and temperature. If the specified rate is 0, then no data is transmitted.

| В3            | B2  | B1  | В0           |
|---------------|-----|-----|--------------|
| RAW_TEMP_RATE | RES | RES | ALL_RAW_RATE |

| Bits  | Name          | Description                                                           |
|-------|---------------|-----------------------------------------------------------------------|
| 31:24 | RAW_TEMP_RATE | Specifies the desired broadcast rate for raw temperature data.        |
|       |               | The data is stored as an unsigned 8-bit integer, yielding a           |
|       |               | maximum rate of 255 Hz.                                               |
| 23:16 | RES           | These bits are reserved for future use                                |
| 15:8  | RES           | These bits are reserved for future use                                |
| 7:0   | ALL_RAW_RATE  | Specifies the desired broadcast rate for all raw sensor data. If set, |
|       |               | this overrides the broadcast rate setting for individual raw data     |
|       |               | broadcast rates. The data is stored as an unsigned 8-bit integer,     |
|       |               | yielding a maximum rate of 255 Hz.                                    |

Raw sensor data occupies registers 86 through 99. If the raw data broadcast rate is greater than 0, then all raw data is sent in one batch packet of length 14, with start address 86.

Raw temperature data is stored in registers 97 through 99. If the raw temperature broadcast rate is greater than 0, then raw temperature data will be sent in a batch packet of length 3 with start address 97. If all raw data is being transmitted (as specified by byte 3 of this register), then the temperature data will be transmitted as part of the raw batch packet at "all raw rate" instead of the raw temperature rate.

CREG\_COM\_RATES3 - 0x03 (3)

#### Summary

The CREG\_COM\_RATES3 register sets desired telemetry transmission rates for processed sensor data. If the specified rate is 0, then no data is transmitted.

| В3              | B2             | B1            | В0              |
|-----------------|----------------|---------------|-----------------|
| PROC_ACCEL_RATE | PROC_GYRO_RATE | PROC_MAG_RATE | PROC_PRESS_RATE |

| Bits  | Name            | Description                                                                                                                                                |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | PROC_ACCEL_RATE | Specifies the desired broadcast rate for processed accelerometer data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. |
| 23:16 | PROC_GYRO_RATE  | Specifies the desired broadcast rate for processed rate gyro data.  The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.    |
| 15:8  | PROC_MAG_RATE   | Specifies the desired broadcast rate for processed magnetometer data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.  |
| 7:0   | PROC_PRESS_RATE | Specifies the desired broadcast rate for processed pressure data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.      |

Processed accelerometer data is stored in registers 104 to 107. If the specified broadcast rate is greater than 0, then the data will be transmitted in a batch packet of length 4 and start address 104.

Processed rate gyro data is stored in registers 100 to 103. If the specified broadcast rate is greater than 0, then the data will be transmitted in a batch packet of length 4 and start address 100.

Processed magnetometer data is stored in registers 108 to 111. If the specified broadcast rate is greater than 0, then the data will be transmitted in a batch packet of length 4 and start address 108.

Processed accelerometer data is stored in registers 112 to 113. If the specified broadcast rate is greater than 0, then the data will be transmitted in a batch packet of length 2 and start address 112.

If the "all processed data broadcast rate" setting in register CREG\_COM\_RATES4 is not zero, then the rates specified in the CREG\_COM\_RATES3 register are overridden.

## CREG COM RATES4 - 0x04 (4)

#### Summary

The CREG\_COM\_RATES4 register sets desired telemetry transmission rates for all processed data and temperature. If the specified rate is 0, then no data is transmitted.

| В3             | B2  | B1  | В0            |
|----------------|-----|-----|---------------|
| PROC_TEMP_RATE | RES | RES | ALL_PROC_RATE |

| Bits  | Name           | Description                                                         |
|-------|----------------|---------------------------------------------------------------------|
| 31:24 | PROC_TEMP_RATE | Specifies the desired broadcast rate for processed temperature      |
|       |                | data. The data is stored as an unsigned 8-bit integer, yielding a   |
|       |                | maximum rate of 255 Hz.                                             |
| 23:16 | RES            | These bits are reserved for future use                              |
| 15:8  | RES            | These bits are reserved for future use                              |
| 7:0   | ALL_PROC_RATE  | Specifies the desired broadcast rate for raw all processed data. If |
|       |                | set, this overrides the broadcast rate setting for individual       |
|       |                | processed data broadcast rates. The data is stored as an            |
|       |                | unsigned 8-bit integer, yielding a maximum rate of 255 Hz.          |

Processed temperature is stored in registers 114 to 116. If the rate setting is greater than 0, then processed temperature data is transmitted in a batch packet with length 3 and start address 114.

All processed data comprises registers 100 through 116 (a total of 17 registers). Because 17 registers is greater than the maximum batch length, all processed data is sent in TWO packets instead of one. If the rate settings is greater than 0, then the first packet is a batch with length 8 and start address 114. The second packet is a batch with length 9 and start address 108.

## CREG COM RATES5 – 0x05 (5)

#### Summary

The CREG\_COM\_RATES5 register sets desired telemetry transmission rates for quaternions, Euler Angles, position, and velocity estimates. If the specified rate is 0, then no data is transmitted.

## **Register Contents**

| B3        | B2         | B1            | В0            |
|-----------|------------|---------------|---------------|
| QUAT_RATE | EULER_RATE | POSITION_RATE | VELOCITY_RATE |

## Description

| Bits  | Name          | Description                                                                                                                                    |
|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | QUAT_RATE     | Specifies the desired broadcast rate for quaternion data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.  |
| 23:16 | EULER_RATE    | Specifies the desired broadcast rate for Euler Angle data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz. |
| 15:8  | POSITION_RATE | Specifies the desired broadcast rate position. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.             |
| 7:0   | VELOCITY_RATE | Specifies the desired broadcast rate for velocity. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.         |



Quaternion data is stored in registers 117 to 119. If the specified broadcast rate is greater than 0, then the data will be transmitted in a batch packet with length 3 and start address 117.

Euler Angle data is stored in registers 120 to 122. If the specified broadcast rate is greater than 0, then the data will be transmitted in a batch packet of length 3 and start address 120.

Position data is stored in registers 123 to 126. If the specified broadcast rate is greater than 0, then the data will be transmitted in a batch packet of length 4 and start address 123.

Velocity data is stored in registers 127 to 130. If the specified broadcast rate is greater than 0, then the data will be transmitted in a batch packet of length 4 and start address 127.

If the "pose broadcast rate" setting in register CREG\_COM\_RATES6 is not zero, then the rates specified by EULER\_RATE and POSITION\_RATE are overridden.

## CREG\_COM\_RATES6 - 0x06 (6)

## Summary

The CREG\_COM\_RATES6 register sets desired telemetry transmission rates for pose (Euler/position packet) and health. If the specified rate is 0, then no data is transmitted.

|           |    |    | В  | 3  |    |      |      |    |    |        | В      | 2  |    |    |    |
|-----------|----|----|----|----|----|------|------|----|----|--------|--------|----|----|----|----|
| 31        | 30 | 29 | 28 | 27 | 26 | 25   | 24   | 23 | 22 | 21     | 20     | 19 | 18 | 17 | 16 |
| POSE_RATE |    |    |    |    |    | RESE | RVED |    | ŀ  | HEALTH | H_RATI | =  |    |    |    |

|               |    |    | В  | 1  |    |   |   |    |        |       | В  | 0 |   |   |   |
|---------------|----|----|----|----|----|---|---|----|--------|-------|----|---|---|---|---|
| 15            | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6      | 5     | 4  | 3 | 2 | 1 | 0 |
| VARIANCE_RATE |    |    |    |    |    |   |   | G۱ | /RO_BI | AS_RA | TE |   |   |   |   |

| Bits  | Name           | Description                                                                                                                                                                      |
|-------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24 | POSE_RATE      | Specifies the desired broadcast rate for pose (Euler Angle and position) data. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.               |
| 23:20 | RESERVED       | These bits are reserved for future use.                                                                                                                                          |
| 19:16 | HEALTH_RATE    | Specifies the desired broadcast rate for the sensor health packet.  0 = off 1 = 0.125 Hz 2 = 0.25 Hz 3 = 0.5 Hz 4 = 1 Hz 5 = 2 Hz 6 = 4 Hz 7:15 = Unused*  * Will default to 1Hz |
| 15:8  | VARIANCE_RATE  | Specifies the desired broadcast rate for state variances. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.                                    |
| 7:0   | GYRO_BIAS_RATE | Specifies the desired broadcast rate for estimated gyro biases. The data is stored as an unsigned 8-bit integer, yielding a maximum rate of 255 Hz.                              |

Pose data (Euler Angles and position) is stored in registers 120 to 126. If the pose rate is greater than 0, then pose data will be transmitted in a batch packet with length 7 and start address 120.

Health data is stored in register address 85. If the health rate is not 0, then health data will be transmitted as a non-batch packet with address 85.

Variance data is stored in registers 148 to 154. If the variance transmission rate is greater than 0, then variance data will be transmitted in a batch packet with length 7 and start address 148.

Gyro bias data is stored in registers 145 to 147. If the bias transmission rate is greater than 0, then estimated gyro biases will be transmitted in a batch packet with length 3 and start address 145.

# CREG\_COM\_RATES7 - 0X07 (7)

## Summary

The CREG\_COM\_RATES7 register sets desired transmission rates for CHR NMEA-style packets.

# **Register Contents**

|    |                       |    | В  | 3  |                           |    |    |    |    |    | В  | 2  |    |    |    |
|----|-----------------------|----|----|----|---------------------------|----|----|----|----|----|----|----|----|----|----|
| 31 | 30                    | 29 | 28 | 27 | 26                        | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| ١  | HEALTH_RATE POSE_RATE |    |    |    | ATTITUDE_RATE SENSOR_RATE |    |    |    |    |    | E  |    |    |    |    |

|    |    |    | В  |    |    |   |      |      |   |   | В | 0 |   |   |   |
|----|----|----|----|----|----|---|------|------|---|---|---|---|---|---|---|
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8    | 7    | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|    |    |    |    |    |    |   | RESE | RVED |   |   |   |   |   |   |   |

# Description

| Bits  | Name        | Description                                                                                                                                                                                                        |
|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:28 | HEALTH_RATE | Specifies the desired broadcast rate for CHR NMEA-style health packet.  0 = off 1 = 0.125 Hz 2 = 0.25 Hz 3 = 0.5 Hz 4 = 1 Hz 5 = 2 Hz 6 = 4 Hz 7 = 8 Hz 8:15 = Unused*                                             |
| 27:24 | POSE_RATE   | * Will default to 1Hz  Specifies the desired broadcast rate for CHR NMEA-style pose (Euler Angle/position) packet.  0 = off 1 = 0.125 Hz 2 = 0.25 Hz 3 = 0.5 Hz 4 = 1 Hz 5 = 2 Hz 6 = 4 Hz 7 = 8 Hz 8:15 = Unused* |

|       |               | * Will default to 1Hz           |
|-------|---------------|---------------------------------|
| 23:20 | ATTITUDE_RATE | Specifies the desired broadcas  |
|       |               | rate for CHR NMEA-style         |
|       |               | attitude packet.                |
|       |               | 0 = off                         |
|       |               | 1 = 0.125 Hz                    |
|       |               | 2 = 0.25 Hz                     |
|       |               | 3 = 0.5 Hz                      |
|       |               | 4 = 1 Hz                        |
|       |               | 5 = 2 Hz                        |
|       |               | 6 = 4 Hz                        |
|       |               | 7 = 8 Hz                        |
|       |               | 8:15 = Unused*                  |
|       |               |                                 |
|       |               | * Will default to 1Hz           |
| 19:16 | SENSOR_RATE   | Specifies the desired broadcast |
|       |               | rate for CHR NMEA-style senso   |
|       |               | data packet                     |
|       |               | 0 = off                         |
|       |               | 1 = 0.125 Hz                    |
|       |               | 2 = 0.25 Hz                     |
|       |               | 3 = 0.5 Hz                      |
|       |               | 4 = 1 Hz                        |
|       |               | 5 = 2 Hz                        |
|       |               | 6 = 4 Hz                        |
|       |               | 7 = 8 Hz                        |
|       |               | 8:15 = Unused*                  |
|       |               | * Will default to 1Hz           |
| 15:0  | RESERVED      | These bits are reserved for     |
|       |               | future use.                     |

# CREG\_FILTER\_SETTINGS - 0x08 (8)

### **Summary**

This register contains settings used to configure high-level behavior of the filter.

# **Register Contents**

| B3  |     |     |     |    |  |  | В |  |      |      |  |  |  |  |
|-----|-----|-----|-----|----|--|--|---|--|------|------|--|--|--|--|
| 31  | 30  | 29  | 28  | 27 |  |  |   |  | 16   |      |  |  |  |  |
| RES | GPS | MAG | ACC |    |  |  |   |  | RESE | RVED |  |  |  |  |

| B1 |          |    |    |    |    |   | В | 0               |  |  |  |   |
|----|----------|----|----|----|----|---|---|-----------------|--|--|--|---|
| 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8 | 7 6 5 4 3 2 1 0 |  |  |  | 0 |
|    | RESERVED |    |    |    |    |   |   |                 |  |  |  |   |

## Description

| Bits | Name     | Description                                                                                                         |
|------|----------|---------------------------------------------------------------------------------------------------------------------|
| 31   | RESERVED | This bit is reserved for future use                                                                                 |
| 30   | GPS      | If set, GPS will be used to update attitude estimates Default = 1                                                   |
| 29   | MAG      | If set, the magnetometer will be used to update attitude estimates.  Default = 0                                    |
| 28   | ACC      | If set, the accelerometer will be used to update attitude estimates whenever GPS lock isn't available.  Default = 1 |
| 27:0 | RESERVED | These bits are reserved for future use                                                                              |

# CREG\_HOME\_NORTH - 0x09 (9)

### **Summary**

This register sets the north home latitude in degrees, used to convert GPS coordinates to position in meters from home.

| В3 | B2               | B1               | В0 |
|----|------------------|------------------|----|
|    | 32-bit IEEE Floa | ting Point Value |    |

## CREG HOME EAST -0x0A(10)

### Summary

This register sets the east home longitude in degrees, used to convert GPS coordinates to position in meters from home.

### **Register Contents**

| В3 | B2               | B1               | В0 |
|----|------------------|------------------|----|
|    | 32-bit IEEE Floa | ting Point Value |    |

## CREG HOME UP -0x0B(11)

### Summary

This register sets the home altitude in meters. Used to convert GPS coordinates to position in meters from home.

#### **Register Contents**

| В3 | B2               | B1               | В0 |
|----|------------------|------------------|----|
|    | 32-bit IEEE Floa | ting Point Value |    |

## CREG\_ZERO\_PRESSURE - 0x0C (12)

### **Summary**

This register sets the expected barometric pressure reading at zero altitude. Used to compensate for varying pressure with weather.

### **Register Contents**

| В3 | B2               | B1                | ВО |
|----|------------------|-------------------|----|
|    | 32-bit IEEE Floa | nting Point Value |    |

## RESERVED - 0x0D (13)

### **Summary**

This register is reserved for future use.

| В3 | B2                | B1               | В0 |
|----|-------------------|------------------|----|
|    | 32-bit IEEE Float | ting Point Value |    |

CREG GYRO TRIM 
$$X - 0x0E(14)$$

#### **Summary**

This register sets the x-axis rate gyro trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO\_GYRO\_BIAS command.

### **Register Contents**

| В3 | B2               | B1               | В0 |
|----|------------------|------------------|----|
|    | 32-bit IEEE Floa | ting Point Value |    |

## CREG GYRO TRIM Y - 0x0F(15)

#### **Summary**

This register sets the y-axis rate gyro trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO\_GYRO\_BIAS command.

#### **Register Contents**

| В3 | B2               | B1               | ВО |
|----|------------------|------------------|----|
|    | 32-bit IEEE Floa | ting Point Value |    |

## CREG GYRO TRIM Z - 0x10 (16)

#### Summary

This register sets the z-axis rate gyro trim, which is used to add additional bias compensation for the rate gyros during calls to the ZERO\_GYRO\_BIAS command.

### **Register Contents**



### RESERVED -0x11 - 0x41 (17 - 65)

These registers are reserved for future use.

## CREG MAG CAL1 1 to CREG MAG CAL3 3 - 0x42 (66) to 0x4A (74)

#### **Summary**

These registers store the 9 entries into a 3x3 matrix that is used to perform soft-iron calibration of the magnetometer on the device. These terms can be computed by performing magnetometer calibration with the CHR Serial Interface. Terms are stored in row-major order.



## $CREG\_MAG\_BIAS\_X - 0x4B$ (75)

### **Summary**

This registers stores a bias term for the magnetometer x-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the CHR Serial Interface.

### **Register Contents**

| В3 | B2               | B1               | В0 |
|----|------------------|------------------|----|
|    | 32-bit IEEE Floa | ting Point Value |    |

## $CREG\_MAG\_BIAS\_Y - 0x4C$ (76)

#### **Summary**

This registers stores a bias term for the magnetometer y-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the CHR Serial Interface.

### **Register Contents**

| В3 | B2               | B1               | ВО |
|----|------------------|------------------|----|
|    | 32-bit IEEE Floa | ting Point Value |    |

# CREG\_MAG\_BIAS\_Z - 0x4D (77)

### **Summary**

This registers stores a bias term for the magnetometer z-axis for hard-iron calibration. This term can be computed by performing magnetometer calibration with the CHR Serial Interface.

| В3 | B2               | B1                | В0 |
|----|------------------|-------------------|----|
|    | 32-bit IEEE Floa | iting Point Value |    |



# Data Registers

 $DREG_HEALTH - 0x55 (85)$ 

## **Summary**

The health register reports the current status of the GPS module and the other sensors on the GP9. Monitoring the health register is the easiest way to monitor the quality of the GPS lock and to watch for other problems that could affect the behavior of the GP9.

## **Register Contents**

| B3        |    |    |    |    |    |    | В                             |    |  |  |
|-----------|----|----|----|----|----|----|-------------------------------|----|--|--|
| 31        | 30 | 29 | 28 | 27 | 26 | 25 | 25 24 23 22 21 20 19 18 17 16 |    |  |  |
| SATS_USED |    |    |    |    |    |    | HD                            | ОР |  |  |

|                  |    |    |    | B1 |     |     |       | ВО    |      |     |     |   |   |   |   |
|------------------|----|----|----|----|-----|-----|-------|-------|------|-----|-----|---|---|---|---|
| 15               | 14 | 13 | 12 | 11 | 10  | 9   | 8     | 7     | 6    | 5   | 4   | 3 | 2 | 1 | 0 |
| SATS_IN_VIEW OVF |    |    | RE | S  | GPS | _ST | PRESS | ACCEL | GYRO | MAG | GPS |   |   |   |   |

## Description

| Bits  | Name         | Description                                                                                                                                                                                                    |
|-------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:26 | SATS_USED    | Reports the number of satellites used in the position solution.                                                                                                                                                |
| 25:16 | HDOP         | Reports the horizontal dilution of precision (HDOP) reported by the GPS. The actual HDOP value is equal to the contents of the HDOP bits divided by 10.                                                        |
| 15:10 | SATS_IN_VIEW | Reports the number of satellites in view.                                                                                                                                                                      |
| 9     | OVF          | Overflow bit. This bit is set if the GP9 is attempting to transmit data over the serial port faster than is allowed given the baudrate. If this bit is set, reduce broadcast rates in the COM_RATES registers. |
| 8:7   | RES          | These bits are reserved.                                                                                                                                                                                       |
| 6:5   | GPS_ST       | GPS Status. Reports how GPS data is being used in the filter.  1 = No GPS lock  2 = Low-quality lock, GPS unused  3 = Good                                                                                     |
| 4     | PRESS        | This bit will be set if the pressure sensor fails to initialize on startup.                                                                                                                                    |
| 3     | ACCEL        | This bit will be set if the accelerometer fails to initialize on startup.                                                                                                                                      |
| 2     | GYRO         | This bit will be set if the rate gyro fails to initialize on startup.                                                                                                                                          |
| 1     | MAG          | This bit will be set if the magnetometer fails to initialize on startup.                                                                                                                                       |
| 0     | GPS          | This bit is set if the GPS fails to send a packet for more than two seconds. If a GPS packet is ever received, this bit is cleared.                                                                            |

## DREG GYRO RAW XY - 0x56 (86)

### **Summary**

Contains raw X and Y axis rate gyro data

## **Register Contents**

| В3                  | B2                   | B1                  | В0                   |
|---------------------|----------------------|---------------------|----------------------|
| Gyro X (2's compler | ment 16-bit integer) | Gyro Y (2's compler | nent 16-bit integer) |

# DREG\_GYRO\_RAW\_Z - 0x57 (87)

### Summary

Contains raw Z axis rate gyro data

### **Register Contents**

| В3                  | B2                   | B1 | ВО   |
|---------------------|----------------------|----|------|
| Gyro Z (2's complen | nent 16-bit integer) | RE | ES . |

# DREG\_GYRO\_RAW\_TIME - 0x58 (88)

### Summary

Contains time at which the last rate gyro data was acquired.

## **Register Contents**

| В3 | B2              | B1                | ВО |
|----|-----------------|-------------------|----|
|    | Gyro Time (IEEI | E Floating Point) |    |

# DREG\_ACCEL\_RAW\_XY - 0x59 (89)

## **Summary**

Contains raw X and Y axis accelerometer data.

| В3                  | B2                   | B1                   | В0                   |
|---------------------|----------------------|----------------------|----------------------|
| Accel X (2's comple | ment 16-bit integer) | Accel Y (2's compler | ment 16-bit integer) |

# DREG\_ACCEL\_RAW\_Z - 0x5A (90)

### **Summary**

Contains raw Z axis accelerometer data

### **Register Contents**

| В3                  | B2                   | B1 | В0   |
|---------------------|----------------------|----|------|
| Accel Z (2's comple | ment 16-bit integer) | RE | ES . |

# DREG\_ACCEL\_RAW\_TIME - 0x5B (91)

### Summary

Contains time at which the last accelerometer data was acquired.

### **Register Contents**

| В3 | B2               | B1                | ВО |
|----|------------------|-------------------|----|
|    | Accel Time (IEEI | E Floating Point) |    |

# DREG\_MAG\_RAW\_XY - 0x5C (92)

### Summary

Contains raw X and Y axis magnetometer data.

## **Register Contents**

| В3                 | B2                   | B1                 | В0                   |
|--------------------|----------------------|--------------------|----------------------|
| Mag X (2's complen | nent 16-bit integer) | Mag Y (2's complen | nent 16-bit integer) |

# DREG MAG RAW Z - 0x5D (93)

## **Summary**

Contains raw Z axis magnetometer data

| В3                 | B2                   | B1 | В0 |
|--------------------|----------------------|----|----|
| Mag Z (2's compler | nent 16-bit integer) | RI | ES |

## DREG MAG RAW TIME – 0x5E (94)

### **Summary**

Contains time at which the last magnetometer data was acquired.

## **Register Contents**

| В3 | B2                             | B1 | В0 |  |  |
|----|--------------------------------|----|----|--|--|
|    | Mag Time (IEEE Floating Point) |    |    |  |  |

# DREG\_PRESSURE\_RAW - 0x5F (95)

#### Summary

Contains raw absolute pressure data.

### **Register Contents**

| В3 | B2                        | B1                      | ВО |
|----|---------------------------|-------------------------|----|
|    | Absolute pressure (32-bit | 2's complement integer) |    |

# DREG\_PRESSURE\_TIME - 0x60 (96)

### Summary

Contains time at which the last absolute pressure data was acquired.

## **Register Contents**

| В3 | B2                | B1                  | В0 |
|----|-------------------|---------------------|----|
|    | Pressure Time (IE | EEE Floating Point) |    |

# DREG TEMPERATURE RAW1 – 0x61 (97)

## **Summary**

Contains raw temperature output from the accelerometer, magnetometer, and rate gyro IC

| В3                                | B2 | B1 | В0 |  |
|-----------------------------------|----|----|----|--|
| Temperature (IEEE Floating Point) |    |    |    |  |

## DREG TEMPERATURE RAW2 - 0x62 (98)

### **Summary**

Contains raw temperature from the absolute pressure IC.

### **Register Contents**

| В3 | B2                                | B1 | ВО |  |  |
|----|-----------------------------------|----|----|--|--|
|    | Temperature (IEEE Floating Point) |    |    |  |  |

# DREG\_TEMPERATURE\_TIME - 0x63 (99)

#### Summary

Contains time at which the last temperature was acquired.

### **Register Contents**

| В3                                     | B2 | B1 | В0 |  |
|----------------------------------------|----|----|----|--|
| Temperature time (IEEE Floating Point) |    |    |    |  |

## DREG\_GYRO\_PROC\_X - 0x64 (100)

### Summary

Contains the actual measured angular rate in degrees/s after calibration has been applied.

## **Register Contents**

| В3 | B2             | B1             | ВО |
|----|----------------|----------------|----|
|    | Gyro X (IEEE F | loating Point) |    |

## DREG GYRO PROC Y - 0x65 (101)

## **Summary**

Contains the actual measured angular rate in degrees/s after calibration has been applied.

| В3 | B2             | B1             | В0 |
|----|----------------|----------------|----|
|    | Gyro Y (IEEE F | loating Point) |    |

# DREG\_GYRO\_PROC\_Z - 0x66 (102)

### Summary

Contains the actual measured angular rate in degrees/s after calibration has been applied.

### **Register Contents**

| В3 | B2             | B1             | В0 |
|----|----------------|----------------|----|
|    | Gyro Z (IEEE F | loating Point) |    |

## DREG\_GYRO\_PROC\_TIME - 0x67 (103)

#### Summary

Contains the time at which the last rate gyro data was measured.

### **Register Contents**

| В3                              | B2 | B1 | ВО |  |
|---------------------------------|----|----|----|--|
| Gyro Time (IEEE Floating Point) |    |    |    |  |

## DREG ACCEL PROC X - 0x68 (104)

### Summary

Contains the actual measured acceleration in m/s/s after calibration has been applied.

### **Register Contents**

| В3 | B2            | B1              | ВО |
|----|---------------|-----------------|----|
|    | Accel X (IEEE | Floating Point) |    |

# DREG ACCEL PROC Y - 0x69 (105)

### **Summary**

Contains the actual measured acceleration in m/s/s after calibration has been applied.

| В3 | B2                            | B1 | В0 |  |  |
|----|-------------------------------|----|----|--|--|
|    | Accel Y (IEEE Floating Point) |    |    |  |  |

## DREG ACCEL PROC Z – 0x6A (106)

### Summary

Contains the actual measured acceleration in m/s/s after calibration has been applied.

### **Register Contents**

| В3 | B2                            | B1 | В0 |  |  |
|----|-------------------------------|----|----|--|--|
|    | Accel Z (IEEE Floating Point) |    |    |  |  |

## DREG\_ACCEL\_PROC\_TIME - 0x6B (107)

#### Summary

Contains the time at which the acceleration was measured.

### **Register Contents**

| В3 | B2              | B1              | ВО |
|----|-----------------|-----------------|----|
|    | Accel Time (IEE | Floating Point) |    |

# DREG\_MAG\_PROC\_X - 0x6C (108)

### Summary

Contains the actual measured magnetic field after calibration has been applied.

## **Register Contents**

| В3 | B2            | B1             | ВО |
|----|---------------|----------------|----|
|    | Mag X (IEEE F | loating Point) |    |

# $DREG\_MAG\_PROC\_Y - 0x6D (109)$

## **Summary**

Contains the actual measured magnetic field after calibration has been applied.

| В3 | B2            | B1             | ВО |
|----|---------------|----------------|----|
|    | Mag Y (IEEE F | loating Point) |    |

# DREG\_MAG\_PROC\_Z - 0x6E (110)

### Summary

Contains the actual measured magnetic field after calibration has been applied.

### **Register Contents**

| В3 | B2            | B1             | В0 |
|----|---------------|----------------|----|
|    | Mag Z (IEEE F | loating Point) |    |

## DREG\_MAG\_PROC\_TIME - 0x6F (111)

#### Summary

Contains the time at which magnetometer data was acquired.

### **Register Contents**

| В3 | B2             | B1              | В0 |
|----|----------------|-----------------|----|
|    | Mag Time (IEEE | Floating Point) |    |

## DREG PRESSURE PROC - 0x70 (112)

### Summary

Contains the altitude in meters as measured by the absolute pressure sensor after calibration has been applied.

## **Register Contents**

| В3 | B2                  | B1                   | В0 |
|----|---------------------|----------------------|----|
|    | Pressure Altitude ( | IEEE Floating Point) |    |

# DREG\_PRESSURE\_PROC\_TIME - 0x71 (113)

### **Summary**

Contains the time at which the absolute pressure sensor was sampled.

| В3 | B2                | B1                 | В0 |
|----|-------------------|--------------------|----|
|    | Pressure Time (IE | EE Floating Point) |    |

## DREG TEMPERATURE PROC1 – 0x72 (114)

### **Summary**

Contains the actual temperature as reported by the gyro, accel, mag IC.

### **Register Contents**

| В3 | B2               | B1                 | ВО |
|----|------------------|--------------------|----|
|    | Temperature (IEI | EE Floating Point) |    |

# DREG\_TEMPERATURE\_PROC2 - 0x73 (115)

#### Summary

Contains the actual temperature from the pressure sensor.

### **Register Contents**

| В3                                | B2 | B1 | В0 |  |
|-----------------------------------|----|----|----|--|
| Temperature (IEEE Floating Point) |    |    |    |  |

# DREG\_TEMPERATURE\_PROC\_TIME - 0x74 (116)

### Summary

Contains the time at which the last temperature data was acquired.

### **Register Contents**

| В3 | B2               | B1                    | ВО |
|----|------------------|-----------------------|----|
|    | Temperature Time | (IEEE Floating Point) |    |

## DREG QUAT AB - 0x75 (117)

### Summary

Contains the first two components of the estimated quaternion attitude.

# **Register Contents**

| В3  | B2   | B1  | В0   |
|-----|------|-----|------|
| Qua | at A | Qua | at B |

## Description

| Bits  | Name   | Description                                                                                                     |
|-------|--------|-----------------------------------------------------------------------------------------------------------------|
| 31:16 | Quat A | First quaternion component. Stored as a 16-bit signed integer.  To get the actual value, divide by 29789.09091. |
| 15:0  | Quat B | Second quaternion component. Stored as a 16-bit signed integer. To get the actual value, divide by 29789.09091. |

# DREG\_QUAT\_CD - 0x76 (118)

## Summary

Contains the second two components of the estimated quaternion attitude.

## **Register Contents**

| В3 | B2     | B1 | В0   |
|----|--------|----|------|
| Qu | Quat C |    | at D |

## Description

| Bits  | Name   | Description                                                     |  |
|-------|--------|-----------------------------------------------------------------|--|
| 31:16 | Quat C | Third quaternion component. Stored as a 16-bit signed integer.  |  |
|       |        | To get the actual value, divide by 29789.09091.                 |  |
| 15:0  | Quat D | Fourth quaternion component. Stored as a 16-bit signed integer. |  |
|       |        | To get the actual value, divide by 29789.09091.                 |  |

# DREG\_QUAT\_TIME -0x77 (119)

## Summary

Contains the time that the quaternion attitude was measured

# **Register Contents**

| В3 | B2                                    | B1 | В0 |  |  |  |
|----|---------------------------------------|----|----|--|--|--|
|    | Quaternion Time (IEEE Floating Point) |    |    |  |  |  |

# DREG\_EULER\_PHI\_THETA - 0x78 (120)

### Summary

Contains the pitch and roll angle estimates.

## **Register Contents**

| В3         | B2 | B1            | В0 |
|------------|----|---------------|----|
| Phi (roll) |    | Theta (Pitch) |    |

### Description

| Bits  | Name          | Description                                                                                    |
|-------|---------------|------------------------------------------------------------------------------------------------|
| 31:16 | Phi (roll)    | Roll angle. Stored as a 16-bit signed integer. To get the actual value, divide by 5215.18917.  |
| 15:0  | Theta (pitch) | Pitch angle. Stored as a 16-bit signed integer. To get the actual value, divide by 5215.18917. |

# DREG EULER PSI – 0x79 (121)

### Summary

Contains the yaw angle estimate.

## **Register Contents**

| В3        | B2 | B1  | В0   |
|-----------|----|-----|------|
| Psi (yaw) |    | Unu | ısed |

## Description

| Bits  | Name      | Description                                                     |  |
|-------|-----------|-----------------------------------------------------------------|--|
| 31:16 | Psi (yaw) | Yaw angle. Stored as a 16-bit signed integer. To get the actual |  |
|       |           | value, divide by 5215.18917.                                    |  |
| 15:0  | Unused    | These bits are unused                                           |  |

# DREG\_EULER\_TIME - 0x7A (122)

### **Summary**

Contains the time that the Euler Angles were measured.

# **Register Contents**

| В3                               | B2 | B1 | ВО |  |  |
|----------------------------------|----|----|----|--|--|
| Euler Time (IEEE Floating Point) |    |    |    |  |  |

# DREG\_POSITION\_N - 0x7B (123)

### Summary

Contains the measured north position in meters from the latitude specified in CREG\_HOME\_NORTH.

| В3                                   | B2 | B1 | В0 |  |
|--------------------------------------|----|----|----|--|
| North Position (IEEE Floating Point) |    |    |    |  |

## DREG POSITION E - 0x7C (124)

### **Summary**

Contains the measured east position in meters from the longitude specified in CREG\_HOME\_EAST.

## **Register Contents**

| В3                                  | B2 | B1 | В0 |  |
|-------------------------------------|----|----|----|--|
| East Position (IEEE Floating Point) |    |    |    |  |

# DREG\_POSITION\_UP - 0x7D (125)

#### Summary

Contains the measured altitude in meters from the altitude specified in CREG\_HOME\_UP.

### **Register Contents**

| В3                             | B2 | B1 | ВО |  |
|--------------------------------|----|----|----|--|
| Altitude (IEEE Floating Point) |    |    |    |  |

# DREG\_POSITION\_TIME - 0x7E (126)

### Summary

Contains the time at which the position was acquired.

## **Register Contents**

| В3                                  | B2 | B1 | В0 |  |  |
|-------------------------------------|----|----|----|--|--|
| Position Time (IEEE Floating Point) |    |    |    |  |  |

# DREG\_VELOCITY\_N - 0x7F (127)

## **Summary**

Contains the measured north velocity in m/s.

| В3                                   | B2 | B1 | В0 |  |  |
|--------------------------------------|----|----|----|--|--|
| North Velocity (IEEE Floating Point) |    |    |    |  |  |

## DREG VELOCITY E - 0x80 (128)

### **Summary**

Contains the measured east velocity in m/s.

## **Register Contents**

| В3                                  | B2 | B1 | ВО |  |
|-------------------------------------|----|----|----|--|
| East Velocity (IEEE Floating Point) |    |    |    |  |

# DREG\_VELOCITY\_UP - 0x81 (129)

#### Summary

Contains the measured altitude velocity in m/s.

### **Register Contents**

| В3                                      | B2 | B1 | ВО |  |
|-----------------------------------------|----|----|----|--|
| Altitude Velocity (IEEE Floating Point) |    |    |    |  |

# RESERVED -0x82 (130)

This register is reserved for future use.

# DREG\_VELOCITY\_TIME - 0x83 (131)

## Summary

Contains the time at which the velocity was measured.

## **Register Contents**

| B3                                  | B2 | B1 | В0 |  |
|-------------------------------------|----|----|----|--|
| Velocity Time (IEEE Floating Point) |    |    |    |  |

# DREG\_GPS\_LATITUDE - 0x84 (132)

## **Summary**

Contains the GPS-reported latitude in degrees.

| В3                                 | B2 | B1 | В0 |  |
|------------------------------------|----|----|----|--|
| GPS Latitude (IEEE Floating Point) |    |    |    |  |

# DREG\_GPS\_LONGITUDE - 0x85 (133)

### **Summary**

Contains the GPS-reported longitude in degrees.

## **Register Contents**

| В3 | B2                                  | B1 | ВО |  |  |
|----|-------------------------------------|----|----|--|--|
|    | GPS Longitude (IEEE Floating Point) |    |    |  |  |

# DREG\_GPS\_ALTITUDE - 0x86 (134)

### Summary

Contains the GPS-reported altitude in meters.

### **Register Contents**

| В3                                 | B2 | B1 | ВО |  |
|------------------------------------|----|----|----|--|
| GPS Altitude (IEEE Floating Point) |    |    |    |  |

# DREG\_GPS\_COURSE - 0x87 (135)

### Summary

Contains the GPS-reported course in degrees.

## **Register Contents**

| В3 | B2              | B1                | ВО |
|----|-----------------|-------------------|----|
|    | GPS Course (IEE | E Floating Point) |    |

# DREG\_GPS\_SPEED - 0x88 (136)

## **Summary**

Contains the GPS-reported speed in m/s.

| В3 | B2                              | B1 | В0 |  |  |  |
|----|---------------------------------|----|----|--|--|--|
|    | GPS Speed (IEEE Floating Point) |    |    |  |  |  |

# DREG\_GPS\_TIME - 0x89 (137)

### **Summary**

Contains the GPS-reported time in seconds from the last epoch.

## **Register Contents**

| В3 | B2             | B1              | ВО |
|----|----------------|-----------------|----|
|    | GPS Time (IEEE | Floating Point) |    |

# DREG\_GPS\_DATE - 0x8A (138)

### Summary

Contains the GPS-reported date.

### **Register Contents**

| В3  | B2   | B1    | В0  |
|-----|------|-------|-----|
| RES | Year | Month | Day |

# DREG\_GPS\_SAT\_1\_2 - 0x8B (139)

### Summary

Contains satellite ID and SNR for satellites 1 and 2.

## **Register Contents**

| В3      | B2       | B1      | ВО       |
|---------|----------|---------|----------|
| Sat1 ID | Sat1 SNR | Sat2 ID | Sat2 SNR |

# Description

| Bits  | Name     | Description                                                    |
|-------|----------|----------------------------------------------------------------|
| 31:24 | Sat1 ID  | ID of satellite                                                |
| 23:16 | Sat1 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |
| 15:8  | Sat2 ID  | ID of satellite                                                |
| 7:0   | Sat2 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |

# DREG\_GPS\_SAT\_3\_4 - 0x8C (140)

## Summary

Contains satellite ID and SNR for satellites 3 and 4.

| В3      | B2       | B1      | В0       |
|---------|----------|---------|----------|
| Sat3 ID | Sat3 SNR | Sat4 ID | Sat4 SNR |

## Description

| Bits  | Name     | Description                                                    |
|-------|----------|----------------------------------------------------------------|
| 31:24 | Sat3 ID  | ID of satellite                                                |
| 23:16 | Sat3 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |
| 15:8  | Sat4 ID  | ID of satellite                                                |
| 7:0   | Sat5 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |

# DREG\_GPS\_SAT\_5\_6 - 0x8D (141)

## **Summary**

Contains satellite ID and SNR for satellites 5 and 6.

## **Register Contents**

| В3      | B2       | B1      | В0       |
|---------|----------|---------|----------|
| Sat5 ID | Sat5 SNR | Sat6 ID | Sat6 SNR |

## Description

| Bits  | Name     | Description                                                    |
|-------|----------|----------------------------------------------------------------|
| 31:24 | Sat5 ID  | ID of satellite                                                |
| 23:16 | Sat5 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |
| 15:8  | Sat6 ID  | ID of satellite                                                |
| 7:0   | Sat6 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |

# DREG\_GPS\_SAT\_7\_8 - 0x8E (142)

## Summary

Contains satellite ID and SNR for satellites 7 and 8.

# **Register Contents**

| В3      | B2       | B1      | В0       |
|---------|----------|---------|----------|
| Sat7 ID | Sat7 SNR | Sat8 ID | Sat8 SNR |

## **Description**

| Bits  | Name     | Description                                                    |
|-------|----------|----------------------------------------------------------------|
| 31:24 | Sat7 ID  | ID of satellite                                                |
| 23:16 | Sat7 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |
| 15:8  | Sat8 ID  | ID of satellite                                                |
| 7:0   | Sat8 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |

# DREG\_GPS\_SAT\_9\_10 - 0x8F (143)

## **Summary**

Contains satellite ID and SNR for satellites 9 and 10.

## **Register Contents**

| В3      | B2       | B1       | В0        |
|---------|----------|----------|-----------|
| Sat9 ID | Sat9 SNR | Sat10 ID | Sat10 SNR |

## Description

| Bits  | Name      | Description                                                    |
|-------|-----------|----------------------------------------------------------------|
| 31:24 | Sat9 ID   | ID of satellite                                                |
| 23:16 | Sat9 SNR  | Signal-to-Noise Ratio of satellite as reported by GPS receiver |
| 15:8  | Sat10 ID  | ID of satellite                                                |
| 7:0   | Sat10 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |

# DREG\_GPS\_SAT\_11\_12 - 0x90 (144)

## Summary

Contains satellite ID and SNR for satellites 11 and 12.

# **Register Contents**

| B3       | B2        | B1       | В0        |
|----------|-----------|----------|-----------|
| Sat11 ID | Sat11 SNR | Sat12 ID | Sat12 SNR |

## **Description**

| Bits  | Name      | Description                                                    |
|-------|-----------|----------------------------------------------------------------|
| 31:24 | Sat11 ID  | ID of satellite                                                |
| 23:16 | Sat11 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |
| 15:8  | Sat12 ID  | ID of satellite                                                |
| 7:0   | Sat12 SNR | Signal-to-Noise Ratio of satellite as reported by GPS receiver |

# $DREG_GYRO_BIAS_X - 0x91 (145)$

## Summary

Contains the estimated x-axis gyro bias

| В3                                         | B2 | B1 | В0 |  |
|--------------------------------------------|----|----|----|--|
| Gyro X Bias Estimate (IEEE Floating Point) |    |    |    |  |

# DREG\_GYRO\_BIAS\_Y - 0x92 (146)

### **Summary**

Contains the estimated y-axis gyro bias

## **Register Contents**

| В3                                         | B2 | B1 | ВО |  |
|--------------------------------------------|----|----|----|--|
| Gyro Y Bias Estimate (IEEE Floating Point) |    |    |    |  |

# DREG\_GYRO\_BIAS\_Z - 0x93 (147)

## **Summary**

Contains the estimated z-axis gyro bias

## **Register Contents**

| В3                                         | B2 | B1 | ВО |  |
|--------------------------------------------|----|----|----|--|
| Gyro Z Bias Estimate (IEEE Floating Point) |    |    |    |  |

# DREG\_BIAS\_X\_VARIANCE - 0x94 (148)

### Summary

Contains the filter variance for the x-axis gyro bias estimate.

### **Register Contents**

| В3                                                  | B2 | B1 | ВО |  |
|-----------------------------------------------------|----|----|----|--|
| Gyro X Bias Estimate Variance (IEEE Floating Point) |    |    |    |  |

# DREG\_BIAS\_Y\_VARIANCE - 0x95 (149)

## Summary

Contains the filter variance for the y-axis gyro bias estimate.

| В3                                                  | B2 | B1 | ВО |  |
|-----------------------------------------------------|----|----|----|--|
| Gyro Y Bias Estimate Variance (IEEE Floating Point) |    |    |    |  |

# DREG\_BIAS\_Z\_VARIANCE - 0x96 (150)

### Summary

Contains the filter variance for the z-axis gyro bias estimate.

### **Register Contents**

| В3                                                  | B2 | B1 | В0 |  |
|-----------------------------------------------------|----|----|----|--|
| Gyro Z Bias Estimate Variance (IEEE Floating Point) |    |    |    |  |

## DREG\_QUAT\_A\_VARIANCE - 0x97 (151)

### **Summary**

Contains the filter variance for the quaternion 'a' element.

## **Register Contents**

| B3                                          | B2 | B1 | ВО |  |
|---------------------------------------------|----|----|----|--|
| Quaternion a Variance (IEEE Floating Point) |    |    |    |  |

## DREG\_QUAT\_B\_VARIANCE - 0x98 (152)

### Summary

Contains the filter variance for the quaternion 'b' element.

## **Register Contents**

| В3                                          | B2 | B1 | В0 |  |
|---------------------------------------------|----|----|----|--|
| Quaternion b Variance (IEEE Floating Point) |    |    |    |  |

# DREG\_QUAT\_C\_VARIANCE - 0x99 (153)

### **Summary**

Contains the filter variance for the quaternion 'c' element.

| В3                                          | B2 | B1 | ВО |  |
|---------------------------------------------|----|----|----|--|
| Quaternion c Variance (IEEE Floating Point) |    |    |    |  |



# DREG\_QUAT\_D\_VARIANCE - 0x9A (154)

# Summary

Contains the filter variance for the quaternion 'd' element.

| В3                                          | B2 | B1 | ВО |  |
|---------------------------------------------|----|----|----|--|
| Quaternion d Variance (IEEE Floating Point) |    |    |    |  |



## Commands

# GET\_FW\_REVISION - 0xAA (170)

Causes the GP9 to transmit a packet containing the firmware revision string. The firmware revision is a four-byte character sequence. The first firmware release version for the GP9, for example, was "OR1A".

The address of the packet will be 0xAA. The data section of the packet will contain four bytes.

## FLASH COMMIT – 0xAB (171)

Causes the GP9 to write all configuration settings to FLASH so that they will remain when the power is cycled.

## RESET TO FACTORY – 0xAC (172)

Causes the GP9 to load default factory settings.

### ZERO\_GYROS – 0xAD (173)

Causes the GP9 to measure the gyro outputs and set the output trim registers to compensate for any non-zero bias. The GP9 should be kept stationary while the zero operation is underway.

## SET\_HOME\_POSITION - 0xAE (174)

Sets the current GPS latitude, longitude, and altitude as the home position. All future positions will be referenced to the current GPS position.

RESET\_EKF - 0xB3 (179)

Resets the filter.