ahmedrahmoune.umbb@gmail.com
Année universitaire 2021-2022
Umbb/FS/Dépt Maths/Stat.MSS1/Analyse des Données
Dec2021

Notion d'Inertie et Théorème de Huygens.

Décompositon en valeurs singulières (SVD)

Analyse en composantes principales (ACP)

Feuilles de Travaux Dirigés n° 2

Exercice 1

Appliquer le principe de reconstitution des données pour les tableaux suivants avec la métrique usuelle (distance euclédienne) et les points non pondérés(points matériels) méthode SVD

$$X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} \qquad Y = \begin{bmatrix} 2 & -3 & -5 \\ -2 & 2 & 0 \\ 0 & 4 & 2 \\ 4 & 0 & 2 \\ 2 & -2 & 0 \\ -6 & -1 & 1 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

Exercice 2

Questions de cours

Donner la définition des notions suivantes

- (i) Le nuage des points lignes ou nuage des individus $\mathcal{N}(I)$. Centre de gravité du nuage des individus N(I) noté g
- (ii) L'inertie du nuage par rapport à un point $x \in \mathbb{R}^p$ noté I_x et l'inertie de $\mathcal{N}(I)$ contenant n points.
 - (iii) Enoncer le Théorème de Huygens.
 - (iv) Indiquer le point où I_x atteint son minimum
 - (v) Que signifie I_G
 - (vi) Quelle relation existe entre I_G et V (Matrice variance covariance)
 - (vii) L'axe principal, Plan principal
 - (viii) Taux d'inertie.

Exercice 3

variables X^1, X^2

- (i) Représenter géométriquement le nuage $N(X_i, i = 1, ..., 9)$ des individus dans l'espaces \mathbb{R}^2 muni de la base canonique usuelle.
 - (ii) Calculer le centre de gravité g de $N(X_i)$, représenter le graphiquement.
- (iii) Calculer I_0 l'inertie du nuage $N(X_i)$ par rapport à l'origine de \mathbb{R}^2 , muni de la métrique usuelle en appliquant la définition (donner la définition théorique et appliquer)
- (iv)Déterminer XC la matrice des donnés centrées, représenter graphiquement le nuage des individus centrés $N(X_i^c)$ Quel est son centre de gravité?
 - (v)Déterminer V la matrice variance covariance de $X_{n,p}$ en déduire tr(V).
- (vi) Déterminer I_g en appliquant le théorème de Huyghens.Comparer I_g et tr(V).Généraliser le résultat lorsque \mathbb{R}^2 est muni d'une métrique euclédienne M quelconque.
 - (vii) Donner le spectre de V (valeurs propres et vecteurs propres)
 - (viii) Donner Les facteurs principaux F_1, F_2

Exercice n°4

Soit le corpus statistique suivant: Deux variables \mathbf{X}^1, X^2 décrivant 10 individus de même poids.

Les résultats sont résumés ci-dessous: $X_1 \quad X_2 \\ 0.5 \quad 0 \\ -0.1 \quad 1.2 \\ -0.5 \quad 0.5 \\ -0.3 \quad 0.1 \\ 0 \quad 2.5 \\ 1.6 \quad -0.7 \\ 2.0 \quad 2.0 \\ 2.4 \quad 1.2 \\ 0.5 \quad 3.5 \\ 2.7 \quad 0.0 \\ \end{array}$

- 1: Représenter graphiquement le nuage des individus dans le plan (Chaque individu est plongé dans l'espace \mathbb{R}^2)
 - 2. Calculer le centre de gravité $g^t = (\overline{X_1}, \overline{X_2})$ et figurer le dans le même graphe.
 - 3. Centrer les données (Trouver Y=X-1
g t où 1
est un vecteur de 10 lignes avec la valeur 1

sur chaque composante)

- 4. Déterminer V la matrice variance-covariance de X en fonction de Y. et déterminer son spectre (valeurs propres et vecteurs propres associées)
 - 5. Soit une nouvelle variable F (combinaison linéaire de \mathbf{X}^1, X^2)

$$F = \alpha_1 X^1 + \alpha_2 X^2$$

Trouver les coefficients α_1, α_2 telle que var (F) soit maximale avec la contrainte $\alpha_1^2 + \alpha_2^2 = 1(var(f))$ désigne la variance de la variable F)

Indication: Utiliser la question 4 et un résultat concernant la -Maximisation d'une forme quadratique sous contrainte qudratique (On ne demande pas la démonstration du théorème)

- 6. Comment peut-on représenter graphiquement F à l'aide d'une droite passant par g?
- 7. Dire en quoi le nuage des points -des individus- projeté sur F est la meilleure représentation linéaire à une dimension du nuage initial?

Exercice n°5

Reprendre les mêms questions de l'exercice précédent 4 avec 3 variables X^1, X^2, X^3 sinci $F = a_1 X^1 + a_2 X^2 + a_3 X^3$

$$X_{5,3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix}$$

Exercice 6

Soit X la matrice des rangs (classements) de 9 étudiants dans 3 matières différentes.

$$X = \begin{bmatrix} 1 & 2 & 9 \\ 2 & 3 & 7 \\ 3 & 5 & 8 \\ 4 & 9 & 6 \\ 5 & 6 & 5 \\ 6 & 7 & 4 \\ 7 & 4 & 3 \\ 8 & 1 & 2 \\ 9 & 8 & 1 \end{bmatrix}$$

(i) Donner g le centre de gravité de $\mathcal{N}(\mathcal{I})$. Donner g en générale pour le classement de n étudiants dans p matières.

- (ii) Donner $Var(X^j)$ pour j=1,2,3. généraliser pour n étudiants avec p matières.
- (iii) Donner XC la matrice centrée.
- (iv) Donner V la matrice variance covariance.

Exercice 7

Soit $X_{n,\underline{p}}$ le tableau des données croisant n=8 individus et p=4 variables.

$$\mathbf{X}_{n,p} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
(i) Engaposidonat los indicators des descriptions of the constitution of the

- (i) En considérant les individus de même poids, calculer l'individu moyen G.
- (ii)Déduire la matrice X* des données centrées.
- (iii) \mathbb{R}^4 étant munis de la métrique euclédienne usuelle , calculer V (Matrice variance covariance)
 - (iv) Montrer que le polynôme caractéristique de V est : $p(\lambda) = \lambda^2 (\frac{1}{2} \lambda)^2$

(v) En déduire les valeurs propres λ de V avec leurs multiplicités.
et calculer Trace(V)

(vi) Montrer que les vecteurs
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$
 et $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$ sont des vecteurs propres de V

associées à la même valeur propre à déterminer..

(vii) Déterminer
$$\mathbf{u'}_1 = \frac{u_1}{\|u_1\|}$$
 et $\mathbf{u'}_2 = \frac{u_2}{\|u_2\|}$ Calculer $\mathbf{c}_{n,1} = \mathbf{X}^*$ $\mathbf{u'}_1$ et $\mathbf{c}_{n,2} = \mathbf{X}^*$ $\mathbf{u'}_2$

(viii) Faite la représentation sur les axes et sur le plan principal (relatif à l'origine, X^*a pris la place de X) en mentionant les taux d'inerties.

Exercice n°8

Le but de cet exercice: Analyse d'opinions.

Méthode utilisée: ACP
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$

résumant les réponses codées comme suit: $\begin{cases} 1: \text{ Pour} \\ 0: \text{Pas d'opinion} \\ -1: \text{ Contre} \end{cases}$

de n=10 individus concernant p=3 avis X^1, X^2, X^3 .

(i) En considérant les individus de même poids, calculer g l'individu moyen ainsi que la matrice R*matrice des données centrées.

6

(ii) \mathbb{R}^3 étant muni de la métrique euclédienne usuelle, calculer V matrice variance covriance.

- (iii) a) Vérifier que $\lambda_1=\frac{19}{25}$ est une valeur propre de V de vecteur propre $v_1\begin{bmatrix}0\\1\\0\end{bmatrix}$ b) Quelle est la valeur propre λ_2 correspondant au vecteur propre $v_2\begin{bmatrix}-1\\0\\1\end{bmatrix}$ c) Quel est le vecteur propre v_3 correspondant à la valeur propre $\lambda_2=0$
- (iv)Calculer l'inertie totale du nuage des individus, normaliser les vecteurs propres v₁ et v₂.
- (v) En déduire les composantes principales des deux premiers axes (Axes d'inerties maximales)
- (vi) Faite la représentation dans cet espace en mentionnant le taux d'inertie de chaque axe. Interpréter le résultat.