Relational Product of BDDs in External Memory

Steffan Christ Sølvsten, Jaco van de Pol

????? 202?

 $Next(S_{\vec{x}}, T_{\vec{x}, \vec{x}'}) \equiv (\exists \vec{x}. S_{\vec{x}} \land T_{\vec{x}, \vec{x}'}) [\vec{x}'/\vec{x}]$

 $Next(S_{\vec{x}}, T_{\vec{x}, \vec{x}'}) \equiv (\exists \vec{x}. S_{\vec{x}} \land T_{\vec{x}, \vec{x}'}) [\vec{x}'/\vec{x}]$

[TACAS 22]

[TACAS 22]

[TACAS 22]

$$[ext{TACAS 22}] \ | \ Next(S_{ec{x}},\,T_{ec{x},ec{x}'}) \equiv (egin{array}{c} \exists ec{x}.\ S_{ec{x}} \ \land T_{ec{x},ec{x}'} \) [ec{x}'/ec{x}] \end{array}$$

[TACAS 25]

[TACAS 25]

$$[ext{TACAS 22}] \ | \ Next(S_{ec{x}},\,T_{ec{x},ec{x}'}) \equiv (\;\exists ec{x}.\;S_{ec{x}} \wedge T_{ec{x},ec{x}'}\;) [ec{x}'/ec{x}] \ | \ | \ |$$

[TACAS 25]

$$[TACAS 22]$$

$$|$$

$$Next(S_{\vec{x}}, T_{\vec{x}, \vec{x}'}) \equiv (\exists \vec{x}. S_{\vec{x}} \land T_{\vec{x}, \vec{x}'})[\vec{x}'/\vec{x}']$$

$$|$$

$$|$$

$$[TACAS 25]$$

$$[SPIN 25]$$

Replace

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

Lemma

If π is monotonic, then the BDD $f(\vec{x})$ is isomorphic to $f(\pi(\vec{x}))$.

Replace

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

Lemma

If π is monotonic, then the BDD $f(\vec{x})$ is isomorphic to $f(\pi(\vec{x}))$.

■ One can apply π in a single linear scan.

 $\mathcal{O}(N)$ time, $2 \cdot \text{scan}(N)$ I/Os, and N external space.

Replace

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

Lemma

If π is monotonic, then the BDD $f(\vec{x})$ is isomorphic to $f(\pi(\vec{x}))$.

- One can apply π in a single linear scan. $\mathcal{O}(N)$ time, $2 \cdot \text{scan}(N)$ I/Os, and N external space.
- One can incorporate π into a (succeeding) top-down Apply sweep. $\mathcal{O}(N)$ time, 0 I/Os, and 0 external space.
- One can incorporate π into a (preceeding) bottom-up Reduce sweep. $\mathcal{O}(n)$ time, 0 I/Os, and 0 external space.

Observation

The I/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

4

Observation

The I/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

4

Observation

The I/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

■ The outer accumulating Reduce sweep of the Exists can do double-duty as the Reduce sweep of the preceeding And operation.

This saves $\Theta(\operatorname{sort}(N))$ time and I/Os.

4

Observation

The I/O-efficient And [TACAS 22] and Exists [TACAS 25] operations can be merged:

■ The outer accumulating Reduce sweep of the Exists can do double-duty as the Reduce sweep of the preceeding And operation.

This saves $\Theta(\operatorname{sort}(N))$ time and I/Os

This saves $\Theta(\operatorname{sort}(N))$ time and I/Os.

■ The And operation can prune subtrees that trivially will become redundant during the succeeding Exists.

This can save up to $\mathcal{O}(\operatorname{sort}(N^{2^{n-1}}))$ time and I/Os.

In practice, this only saves up to $\mathcal{O}(\operatorname{sort}(N))$ time and I/Os.

Experiment: Next($S_{\vec{x}}, T_{\vec{x}, \vec{x}'}$)

Relational Product for MCC models with a 2^{25} state space BDD. Timeouts are marked as stars.

Experiment: Next($S_{\vec{x}}, T_{\vec{x}, \vec{x}'}$) & Prev($S_{\vec{x}}, T_{\vec{x}, \vec{x}'}$)

Relational Product for MCC models, 384 GiB of memory, and $2^{22}, \dots, 2^{25}$ state space BDDs.

Experiment: Reachability

Experiment: Deadlock Detection

16 Petri Nets [MCC 21-23] and 59 Boolean Networks [AEON, PyBoolNet] with 384 GiB RAM.

Experiment: SCC Decomposition

16 Petri Nets [MCC 21-23] and 59 Boolean Networks [AEON, PyBoolNet] with 384 GiB RAM.

- To improve the I/O-efficient $Next(S_{\vec{x}}, T_{\vec{x}, \vec{x'}})$, focus on AndExists.
 - Factor of $\sim 2 \times$ by using a AndExists instead of And and Exists for conventional depth-first implementations [1]. This may explain the sudden performance gap.
 - For larger instances, less than $\frac{1}{10}$ th of the time is spent on the And.

^[1] Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)

^[2] Van Dijk: Sylvan – Multi-core Decision Diagrams. (2016)

^[3] Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

^[4] Brand et al.: A Decision Diagram Operation for Reachability. (2023).

^[5] Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).

- To improve the I/O-efficient $Next(S_{\vec{x}}, T_{\vec{x}, \vec{x'}})$, focus on AndExists.
 - Factor of $\sim 2 \times$ by using a AndExists instead of And and Exists for conventional depth-first implementations [1]. This may explain the sudden performance gap.
 - For larger instances, less than $\frac{1}{10}$ th of the time is spent on the And.
- Deal with small BDDs using Depth-first Recursion.

igl[1igr] Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)

^[2] Van Dijk: Sylvan – Multi-core Decision Diagrams. (2016)

^[3] Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

^[4] Brand et al.: A Decision Diagram Operation for Reachability. (2023).

^[5] Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).

- To improve the I/O-efficient $Next(S_{\vec{x}}, T_{\vec{x}, \vec{x'}})$, focus on AndExists.
 - Factor of $\sim 2 \times$ by using a AndExists instead of And and Exists for conventional depth-first implementations [1]. This may explain the sudden performance gap.
 - For larger instances, less than $\frac{1}{10}$ th of the time is spent on the And.
- Deal with small BDDs using Depth-first Recursion.
- Apply ideas from recent and more advanced BDD algorithms.

For example the ones in [2], [3], [4], and [5] .

^[1] Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)

^[2] Van Dijk: Sylvan – Multi-core Decision Diagrams. (2016)

^[3] Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

^[4] Brand et al.: A Decision Diagram Operation for Reachability. (2023).

^[5] Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).

- To improve the I/O-efficient $Next(S_{\vec{x}}, T_{\vec{x}, \vec{x'}})$, focus on AndExists.
 - Factor of $\sim 2 \times$ by using a AndExists instead of And and Exists for conventional depth-first implementations [1]. This may explain the sudden performance gap.
 - For larger instances, less than $\frac{1}{10}$ th of the time is spent on the And.
- Deal with small BDDs using Depth-first Recursion.
- Apply ideas from recent and more advanced BDD algorithms. For example the ones in [2], [3], [4], and [5].
- Design a $Replace(\pi)$ for Non-monotone Variable Substitutions.

igl[1igr] Van Dijk et al.: A Comparative Study of BDD packages for Probabilistic Symbolic Model Checking. (2015)

^{2]} Van Dijk: Sylvan – Multi-core Decision Diagrams. (2016)

^[3] Van Dijk et al.: Multi-core on-the-fly saturation. (2019)

^[4] Brand et al.: A Decision Diagram Operation for Reachability. (2023).

^[5] Marmorstein & Siminiceanu: The Saturation algorithm for Symbolic State-space Exploration. (2006).

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

Adiar

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

