Statistics for Computing MA4413

Lecture 6

Random Variables, Expected Value and Variance

Kevin Burke

kevin.burke@ul.ie

Random Variables

In probability theory, a **random variable** is a *numerical* quantity whose value is determined by an *experiment*.

For example, consider the experiment of flipping two coins.

Now define a *random variable* X = "the number of heads" whose value will clearly be 0, 1 or 2 heads:

Outcome	НН	HT	TH	TT
Value assigned to X	2	1	1	0

Distribution of a Random Variable

The **probability distribution** of *X* is:

Х	0	1	2
Pr(X = x)	<u>1</u>	<u>1</u> 2	<u>1</u>

This describes how likely each of the values are, i.e., how the probability gets *distributed* to each possible value of *X*.

Note that upper case X denotes the random variable whereas lower case x represents a specific value.

 $\Pr(X = x)$ means "the probability that the random variable X attains the specific value x" where $x \in \{0, 1, 2\}$, e.g., $\Pr(X = 0) = \frac{1}{4}$.

Probability Function

Pr(X = x) is called the **probability function** - it maps each value of X to a probability value.

This is often shortened to p(x) - pronounced "p - of - x".

The probability values of this function *must* sum to one:

$$\sum p(x_i)=1$$

In the previous example, $p(0) = \frac{1}{4}$, $p(1) = \frac{1}{2}$ and $p(2) = \frac{1}{4}$. $\Rightarrow p(0) + p(1) + p(2) = 1$.

Random Variable Vs Event

Previously we encountered events - not the same as random variables.

For the sake of clarity consider:

- 1. The event A = "two heads showing".
 - An event which either occurs or does not occur following the experiment.
 - It refers to *one* specific event; we can calculate Pr(A).
- 2. The random variable X = "the number of heads".
 - A numeric variable whose value is assigned following the experiment.
 - Related to X are three events: X = 0, X = 1 and X = 2; we can calculate Pr(X = 0), Pr(X = 1) and Pr(X = 2).

Note: X = 2 is the event A.

Continuing the example of flipping two coins, we could define another random variable Y = "the number of unique faces showing".

Variance and Standard Deviation

The possible values for this random variable are 1 (if the faces are the same) or 2 (if the faces are different):

Outcome	НН	HT	TH	TT
Value assigned to Y	1	2	2	1

From the above we get the *probability distribution* of Y:

у	1	2
Pr(Y = y)	1/2	<u>1</u>

Random Variables

Expected Value

Just as we calculated the *mean* as a measure of centrality for a distribution of data, we can calculate the **expected value** for a *probability distribution*.

The expected value is:

$$E(X) = \sum x_i \, p(x_i)$$

In words: multiply each possible value of *X* by its probability value and then sum the results.

This is the value we would *expect* to get on average if we carried out the experiment a large number of times.

We will also need to calculate $E(X^2)$ which is called the *second* moment (E(X) is the first):

$$E(X^2) = \sum x_i^2 p(x_i).$$

Note that $E(X^2)$ is not directly of interest but is used to calculate the *variance* of X.

The random variable X = "the number of heads" has a probability distribution given by:

$$\begin{array}{|c|c|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline Pr(X=x) & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \hline \end{array}$$

$$\Rightarrow E(X) = \left(0 \times \frac{1}{4}\right) + \left(1 \times \frac{1}{2}\right) + \left(2 \times \frac{1}{4}\right) = \frac{1}{2} + \frac{2}{4}$$
$$= \frac{4}{4} = 1.$$

On average there will be one head showing.

We can also calculate:

$$\Rightarrow E(X^{2}) = \left(0^{2} \times \frac{1}{4}\right) + \left(1^{2} \times \frac{1}{2}\right) + \left(2^{2} \times \frac{1}{4}\right)$$

$$= \left(0 \times \frac{1}{4}\right) + \left(1 \times \frac{1}{2}\right) + \left(4 \times \frac{1}{4}\right)$$

$$= \frac{1}{2} + \frac{4}{4}$$

$$= 1.5.$$

This value will be used later to calculate the variance.

Question 1

We continue with the experiment of flipping two coins.

We had the random variable Y = "the number of unique faces".

- a) Calculate E(Y).
- b) Calculate $E(Y^2)$.

Expectation of Functions of *X*

It is sometimes of interest to calculate the expectation of various functions of X, for example, we have seen how to calculate $E(X^2)$.

Continuing with the previous example, let's say we wanted to know:

$$E(X^3) = \left(0^3 \times \frac{1}{4}\right) + \left(1^3 \times \frac{1}{2}\right) + \left(2^3 \times \frac{1}{4}\right) = \frac{1}{2} + \frac{8}{4}$$

= 2.5,

or

$$\begin{split} E(e^X) &= \left(e^0 \times \frac{1}{4}\right) + \left(e^1 \times \frac{1}{2}\right) + \left(e^2 \times \frac{1}{4}\right) &= \frac{1}{4} + \frac{e}{2} + \frac{e^2}{4} \\ &\approx 3.46. \end{split}$$

Entropy

Later in the course we will discuss entropy:

$$E[-\log_2 p(X)] = \sum [-\log_2 p(x_i)] p(x_i),$$

i.e., the expectation of the negative log (base 2) of the probability values.

Don't worry about this for now - just be aware of its existence.

Variance and Standard Deviation

Just as we calculated the *variance* of a set of data, we can calculate the **variance** for a *probability distribution*.

Recall that variance is the average squared distance from the mean:

$$\Rightarrow Var(X) = E[(X - E(X))^{2}] = \sum (x_{i} - E(X))^{2} p(x_{i}).$$

The above formula can be simplified to

$$Var(X) = E(X^2) - [E(X)]^2$$

The standard deviation is then

$$Sd(X) = \sqrt{Var(X)}$$

(reminder: variance is measured in units-squared and standard deviation is in units)

We continue the example of flipping two coins where X = "the number of heads".

We have calculated E(X) = 1 and $E(X^2) = 1.5$.

$$\Rightarrow Var(X) = E(X^2) - [E(X)]^2 = 1.5 - (1)^2 = 1.5 - 1 = 0.5 \text{ heads}^2$$

and the standard deviation is

$$Sd(X) = \sqrt{Var(X)} = \sqrt{0.5} \approx 0.707$$
 heads.

Question 2

We had the random variable Y = "the number of unique faces" based on flipping a coin twice.

- a) Calculate Var(Y).
- b) Calculate Sd(Y).

Question 3

Consider the experiment of rolling two dice. Define the random variable X = "the sum of the two numbers showing".

- a) Construct the probability distribution of X.
- b) Calculate E(X).
- c) Calculate $E(X^2)$.
- d) Calculate Sd(X).

Joint Distributions

We can also construct a **joint distribution** for two random variables.

From the two coin example we had X = "the number of heads" and Y = "the number of unique faces":

Outcome	НН	HT	TH	TT
X	2	1	1	0
Y	1	2	2	1

Clearly we have the following joint probabilities:

$$Pr(X = 2 \cap Y = 1) = \frac{1}{4}$$
, $Pr(X = 1 \cap Y = 2) = \frac{2}{4} = \frac{1}{2}$ and $Pr(X = 0 \cap Y = 1) = \frac{1}{4}$.

The remaining joint probabilities have the value zero.

Using the information from the previous slide we can construct the *joint distribution*:

Note that the above probabilities sum to one as we would expect.

Using the law of total probability we can calculate:

$$= \frac{1}{4} + 0 = \frac{1}{4},$$

$$Pr(Y = 1) = Pr(Y = 1 \cap X = 0) + Pr(Y = 1 \cap X = 1)$$

 $Pr(X = 0) = Pr(X = 0 \cap Y = 1) + Pr(X = 0 \cap Y = 2)$

$$=\frac{1}{4}+0+\frac{1}{4}=\frac{1}{2},$$

... etc.

 $+ \Pr(Y = 1 \cap X = 2)$

We can get these total probabilities by summing across each row and each column:

			Χ		
		0	1	2	p(y)
Y	1	<u>1</u>	0	<u>1</u>	<u>1</u>
•	2	0	<u>1</u>	0	1 1 2
	p(x)	<u>1</u>	<u>1</u> 2	<u>1</u>	1

Thus, if we have a joint distribution, we can calculate the distributions of X and Y by summing across rows/columns.

Checking Independence

Once we have these total probabilities we can check if the variables are *independent* since

$$Pr(X = x \cap Y = y) = p(x) \times p(y) \Rightarrow independent$$

From our example, if X and Y were independent then we would have

$$Pr(X = 0 \cap Y = 1) = p(0) \cdot p(1) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8},$$

$$Pr(X = 0 \cap Y = 2) = p(0) \cdot p(2) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8},$$

$$Pr(X = 1 \cap Y = 1) = p(1) \cdot p(1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},$$
... etc.

If X and Y were independent the joint distribution would be

			X		
		0	1	2	p(y)
Υ	1	<u>1</u> 8	<u>1</u>	<u>1</u> 8	<u>1</u>
•	2	<u>1</u> 8	<u>1</u>	1 8 1 8	1 1 2
	p(x)	<u>1</u>	<u>1</u> 2	<u>1</u>	1

Since the above does *not* match the real joint distribution (as calculated previously) we conclude that *X* and *Y* are *dependent*.

Let's assume that *X* and *Y* are two random variables with joint distribution:

	X			
		0	1	
V	0	0.4	0.2	
,	1	0.1	?	

- a) What is the value of $Pr(X = 1 \cap Y = 1)$?
- b) Construct the distribution of X and the distribution of Y.
- c) Are X and Y independent?
- d) Calculate Pr(X = 1 | Y = 0).
- e) Calculate E(X) and Sd(X).