Mathématiques I

Introduction

Dr. Mucyo Karemera

Ce document a été préparé avec l'aide de Prof. Stéphane Guerrier

Assistants: G. Blanc, B. Poilane & H. Voegeli

Modélisation mathématique

Pourquoi encore un cours de Math??

Modélisation mathématique

Pourquoi encore un cours de Math??

Modélisation mathématique

Pourquoi encore un cours de Math??

Pour transformer des problèmes en solutions!

La langue mathématique??

Deux outils/langues mathématiques permettent de passer de 🥯 à 👻.

Chacune de ces langues à ses avantages et inconvénients. En général,

- la langue visuelle est intuitive et est très utile pour l'étape de modélisation, mais ne permet pas toujours d'obtenir des résultat précis,
- la langue symbolique est (beaucoup) moins intuitive mais permet d'obtenir des résultats exacts et donc de résoudre les problèmes.

Exemple fondamental: optimisation sous contrainte

On cherche la stratégie maximisant les profits dans la situation suivante:

Supposons qu'une société automobile produise des voitures selon le modèle suivant: on note p l'unité de production et on a

$$p = 100x^{3/4}y^{1/4},$$

où x représente le nombre d'heures de travail et y représente le nombre de machines à disposition. Supposons de plus qu'une heure de travail coûte 150chf et qu'une machine coûte 250chf. Combien d'heures de travail et de machine faut-il prévoir pour obtenir une production maximale de voitures pour un budget total de 50'000chf?

Dr. Mucyo Karemera Introduction 6/10

Exemple fondamental: optimisation sous contrainte

Ce problème revient à trouver le plus haut point sur une courbe comme illustré ci-dessous

Exemple fondamental: systèmes linéaires

On cherche la stratégie permettant d'atteindre les objectifs suivants :

Supposons que l'économie d'une région est composée de trois industries: la pêche, le bois et les constructions navales.

Supposons que

- 1) produire 1 tonnes de poissons requiert les services de 3 bateaux de pêche,
- 2) produire 1 tonnes de bois requiert 0.3 tonnes de poissons, en tant que nourriture supplémentaire pour les travailleurs forestiers,
- 3) produire 1 bateau de pêche requiert 0.7 tonnes de bois.

Quelles sont les quantités de poissons, de bois et de bateaux à produire si l'on souhaite disposer de 2 tonnes de poissons pour nourrir la population ainsi que 3 tonnes de bois pour construire des maisons.

Dr. Mucyo Karemera Introduction 8/10

Exemple fondamental: systèmes linéaires

Ce problème revient à déterminer l'intersection des plusieurs plans comme illustré ci-dessous

Plan du cours

La **première partie** permettra de donner les outils mathématiques nécessaire à résoudre le premier exemple:

1) Analyse:

- (I) suites et séries, fonctions continues, fonctions dérivables, série de Taylor, optimisation, intégration,
- (II) fonctions de deux variables, définition et représentations graphiques, dérivée partielle, optimisation, **optimisation sous contrainte**.

La deuxième partie permettra de donner les outils mathématiques nécessaire à résoudre le deuxième exemple:

2) Algèbre :

(III) espaces vectoriels, définitions et opérations élémentaires, indépendance linéaire, matrices, déterminant et rang, **systèmes d'équations linéaires**.

Dr. Mucyo Karemera Introduction 10 / 10