#### Model Parallelism

А в чём проблема?















• 
$$M = O\left(\frac{n}{k}\right) + O(k)$$

• 
$$k = \sqrt{n}$$

• 
$$T = O\left(\frac{n}{\sqrt{n}}\right) + O(\sqrt{n}) = O(2\sqrt{n}) = O(\sqrt{n})$$

# Всё равно не лезет?

Model Parallelism



#### Data Parallelism



# Всё равно не лезет?



#### Пайплайнинг



## Оптимальное разбиение



## Профилирование

#### Обозначения:

- l номер слоя, m число машинок
- $T_l$  время, потраченное на слой l (forward + backward pass)
- $a_l$  размер выходов слоя l
- $w_l$  размер весов слоя l
- $C_l$  время, потраченное на передачу следующему слою (выводится на основе  $a_l$  и скорости сети)
- $W_l^m$  время, необходимое для синхронизации весов при использовании сервера параметров (тоже вычисляется)

## Начинаем разбивать

Задача: разбить всю нашу модельку на стадии, выделив каждой сколько-то машинок

Заметка: эта задача аналогична ускорению самой медленной стадии (потому что гоняем параллельно)

### Начинаем разбивать

#### Обозначения:

- A(j,m) время самой медленной стадии в пайплайне между 1 и ј слоями на m машинках
- $T(i \to j, m)$  время стадии с і по ј слой на m машинках
- $T(i \rightarrow j, m) = \frac{1}{m} \max \left( \sum_{l=i}^{j} T_l, \sum_{l=i}^{j} W_l^m \right)$

#### Оптимальное разбиение

1. 
$$A(j,m) = T(1 \to j,m)$$

2. 
$$A(j,m) = min_{1 \le i \le j} min_{1 \le m' \le m} max \begin{cases} A(i,m-m') \\ 2 \cdot C_i \\ T(i+1 \to j,m') \end{cases}$$

## Время работы

- Время, необходимое для решения каждой подзадачи равно O(NM)
- Всего у нас NM подзадач, поэтому итоговое время такого анализа будет  $O(N^2M^2)$
- N общее число слоёв
- М общее число располагаемых нами машин

#### NOAM

- На основе полученного разбиения можно найти оптимальное число батчей, которые надо вкинуть в систему для достижения стабильного состояния: сеіі(число машин всего / число машин в 1 стадии)
- NOAM = NUM\_OPT\_ACTIVE\_MINIBATCHES

## Распределение работы



#### Чем плох пайплайнинг?



**Top:** The naive model parallelism strategy leads to severe underutilization due to the sequential nature of the network. Only one accelerator is active at a time. **Bottom:** GPipe divides the input mini-batch into smaller micro-batches, enabling different accelerators to work on separate micro-batches at the same time.

## Transformers, roll out!



Figure 1: The Transformer - model architecture.

## Параллелим MLP



# Параллелим MLP



#### Параллелим MLP

$$X = [X_1, X_2], A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$
  
 $GeLU(X_1A_1 + X_2A_2) \neq GeLU(X_1A_1) + GeLU(X_2A_2)$ 

$$X = X, A = [A_1 A_2]$$
$$[Y_1 Y_2] = [GeLU(XA_1) GeLU(XA_2)]$$

## Параллелим Self-Attention



(b) Self-Attention

#### Параллелим Эмбеддинги

- $E_{H \times v}$ , где H скрытая размерность, v размер словаря
- $[Y_1Y_2] = [XE_1, XE_2]$
- $Y_{b \times s \times v}$ , где b размер батча, s размер последовательности

#### Источники

- Training Deep Nets with Sublinear Memory Cost: <a href="https://arxiv.org/pdf/1604.06174.pdf">https://arxiv.org/pdf/1604.06174.pdf</a>
- Репа на гитхабе про чекпоинтинг: <a href="https://github.com/cybertronai/gradient-checkpointing">https://github.com/cybertronai/gradient-checkpointing</a>
- PipeDream: Fast and Efficient Pipeline Parallel DNN Training: <a href="https://arxiv.org/pdf/1806.03377.pdf">https://arxiv.org/pdf/1806.03377.pdf</a>
- Статья про Model Parallelism: <a href="https://huggingface.co/docs/transformers/parallelism">https://huggingface.co/docs/transformers/parallelism</a>
- Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism: <a href="https://arxiv.org/pdf/1909.08053.pdf">https://arxiv.org/pdf/1909.08053.pdf</a>
- Статья про трансформеры: <a href="https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04">https://medium.com/inside-machine-learning/what-is-a-transformer-d07dd1fbec04</a>
- FlexFlow: <a href="https://arxiv.org/pdf/1807.05358.pdf">https://arxiv.org/pdf/1807.05358.pdf</a>
- Mesh-TensorFlow: <a href="https://arxiv.org/pdf/1811.02084.pdf">https://arxiv.org/pdf/1811.02084.pdf</a>