Infinite-dimensional α -divergence minimisation for Variational Inference

Kamélia Daudel

Télécom Paris, Institut Polytechnique de Paris kamelia.daudel@telecom-paris.fr

Variational Inference Seminar 24/11/2020

Joint work with Randal Douc and François Portier

Introduction

Goal: build an iterative scheme

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^* ,$$

- which extends the commonly-used variational approximating family (Infinite-dimensional Variational Inference),
- such that one iteration leads to a systematic decrease of a certain criterion (α -divergence).

Introduction

Goal: build an iterative scheme

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^{\star} ,$$

- which extends the commonly-used variational approximating family (Infinite-dimensional Variational Inference),
- such that one iteration leads to a systematic decrease of a certain criterion (α -divergence).

Introduction

Goal: build an iterative scheme

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^* ,$$

- which extends the commonly-used variational approximating family (Infinite-dimensional Variational Inference),
- such that one iteration leads to a systematic decrease of a certain criterion (α -divergence).

Outline

- 1 Background
- **2** The (α, Γ) -descent
- 3 Numerical Experiments
- 4 Take-away message
- **5** Proof of the systematic decrease

Outline

- 1 Background
- **2** The (α, Γ) -descent
- 3 Numerical Experiments
- 4 Take-away message
- **5** Proof of the systematic decrease

Variational Inference in a nutshell

• Bayesian statistics : compute / sample from the posterior density of the latent variables y given the data \mathcal{D}

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

Problem : for many important models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.

- → Variational Inference : inference is seen as an optimisation problem
 - **1** Posit a variational family q, where $q \in \mathcal{Q}$.
 - f 2 Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{g \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P})$$

where D is the a divergence (e.g the Kullback-Leibler).

Variational Inference in a nutshell

 Bayesian statistics: compute / sample from the posterior density of the latent variables y given the data D

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

Problem : for many important models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a variational family q, where $q \in \mathcal{Q}$.
 - \mathbf{Q} Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}) ,$$

where D is the a divergence (e.g the Kullback-Leibler).

Variational Inference within the α -divergence family (1)

 $(\mathsf{Y},\mathcal{Y},\nu)$: measured space, ν is a σ -finite measure on (Y,\mathcal{Y}) . \mathbb{Q} and $\mathbb{P}:\mathbb{Q}\preceq\nu$, $\mathbb{P}\preceq\nu$ with $\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu}=q$, $\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu}=p(\cdot|\mathscr{D})$.

lpha-divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y|\mathscr{D})} \right) p(y|\mathscr{D}) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL)}, \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL)}. \end{cases}$$

Variational Inference within the α -divergence family (1)

 (Y, \mathcal{Y}, ν) : measured space, ν is a σ -finite measure on (Y, \mathcal{Y}) . \mathbb{Q} and $\mathbb{P}: \mathbb{Q} \preceq \nu$, $\mathbb{P} \preceq \nu$ with $\frac{d\mathbb{Q}}{d\nu} = q$, $\frac{d\mathbb{P}}{d\nu} = p(\cdot|\mathscr{D})$.

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbb{Y}} f_{\alpha} \left(\frac{q(y)}{p(y|\mathscr{D})} \right) p(y|\mathscr{D}) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL),} \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

A flexible family of divergences...

Figure: The Gaussian q which minimizes α -divergence to p (a mixture of two Gaussian), for varying α

[Adapted from T. Minka (2005) Divergence Measures and Message Passing. Technical Report MSR-TR-2005-173]

Variational Inference within the α -divergence family (2)

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL)}, \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL)}. \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...
- \rightarrow We can get rid of $p(\mathcal{D})$ in the optimisation!

$$\begin{split} q^\star &= \mathrm{arginf}_{q \in \mathcal{Q}} D_\alpha(\mathbb{Q}||\mathbb{P}) \\ &= \mathrm{arginf}_{q \in \mathcal{Q}} \int_{\mathbb{Y}} f_\alpha\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \quad \text{with } p(y) = p(y, \mathcal{D}) \;. \end{split}$$

- [J. Hernandez-Lobato, Y. Li, M. Rowland, T. Bui, D. Hernandez-Lobato, and R. E Turner. (2016) Black-box alpha divergence minimization. ICML]
- [Y. Li and R. E Turner. (2016) Rényi divergence variational inference. NeurIPS
- [A. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei. (2017) Variational inference via χ -upper bound minimization. NeurlPSI

Variational Inference within the α -divergence family (2)

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL),} \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...
- \rightarrow We can get rid of $p(\mathcal{D})$ in the optimisation!

$$\begin{split} q^\star &= \mathrm{arginf}_{q \in \mathcal{Q}} D_\alpha(\mathbb{Q} || \mathbb{P}) \\ &= \mathrm{arginf}_{q \in \mathcal{Q}} \int_{\mathbb{Y}} f_\alpha\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d} y) \quad \text{with } p(y) = p(y, \mathscr{D}) \;. \end{split}$$

[J. Hernandez-Lobato, Y. Li, M. Rowland, T. Bui, D. Hernandez-Lobato, and R. E Turner. (2016) Black-box alpha divergence minimization. ICML]

[Y. Li and R. E Turner. (2016) Rényi divergence variational inference. NeurIPS

[A. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei. (2017) Variational inference via χ -upper bound minimization. NeurlPS]

Variational Inference within the α -divergence family (2)

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL),} \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...
- \rightarrow We can get rid of $p(\mathcal{D})$ in the optimisation!

$$\begin{split} q^\star &= \mathrm{arginf}_{q \in \mathcal{Q}} D_\alpha(\mathbb{Q} || \mathbb{P}) \\ &= \mathrm{arginf}_{q \in \mathcal{Q}} \int_{\mathsf{Y}} f_\alpha\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d} y) \quad \text{with } p(y) = p(y, \mathscr{D}) \;. \end{split}$$

[J. Hernandez-Lobato, Y. Li, M. Rowland, T. Bui, D. Hernandez-Lobato, and R. E Turner. (2016) Black-box alpha divergence minimization. ICML]

[Y. Li and R. E Turner. (2016) Rényi divergence variational inference. NeurIPS]

[A. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei. (2017) Variational inference via χ -upper bound minimization. NeurlPS]

Variational Inference within the α -divergence family (3)

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y)\;,$$
 where
$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1)\right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\;,\\ 1 - u + u \log(u), & \text{if } \alpha = 1 \; \text{(Forward KL)},\\ u - 1 - \log(u), & \text{if } \alpha = 0 \; \text{(Reverse KL)}. \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \quad \text{with } p(y) = p(y, \mathscr{D}) \; .$$

3 ...with good convexity properties $! \to f_{\alpha}$ is convex

[D. Wang, H. Liu Q. Liu (2018). Variational Inference with Tail-adaptive f-Divergence. NeurIPS

Variational Inference within the α -divergence family (3)

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y)\;,$$
 where
$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1)\right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,,\\ 1 - u + u \log(u), & \text{if } \alpha = 1 \; \text{(Forward KL)},\\ u - 1 - \log(u), & \text{if } \alpha = 0 \; \text{(Reverse KL)}. \end{cases}$$

- 1 A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$q^\star = \operatorname{arginf}_{q \in \mathcal{Q}} \int_{\mathbf{Y}} f_\alpha \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \quad \text{with } p(y) = p(y, \mathscr{D}) \;.$$

3 ...with good convexity properties $! \to f_{\alpha}$ is convex

[D. Wang, H. Liu Q. Liu (2018). Variational Inference with Tail-adaptive f-Divergence. NeurIPS]

Variational Inference within the α -divergence family (3)

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL),} \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- 1 A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$q^\star = \operatorname{arginf}_{q \in \mathcal{Q}} \int_{\mathbf{Y}} f_\alpha \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \quad \text{with } p(y) = p(y, \mathscr{D}) \;.$$

- 3 ...with good convexity properties $! \to f_{\alpha}$ is convex
- [D. Wang, H. Liu Q. Liu (2018). Variational Inference with Tail-adaptive f-Divergence. NeurIPS]

Approximating family Q

• Usually in Variational Inference : parametric family

$$\{y \mapsto k_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Recently: Hierarchical Variational Inference!
 [R. Ranganath, D. Tran, and D. Blei. (2016) Hierarchical variational models. ICML
 [M. Yin and M. Zhou (2018). Semi-Implicit Variational Inference. ICML

$$\left\{ y \mapsto \int_{\mathsf{T}} q_{\phi}(\theta) k_{\theta}(y) d\theta : \phi \in \mathsf{A} \right\}$$

• What if... we consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) : \mu \in \mathsf{M} \right\} ,$$

M : subset of $M_1(T)$, the set of probability measures on (T, T) ?

 \rightsquigarrow Mixture models : $\mu = \sum_{i=1}^{J} \lambda_i \delta_{\theta_i}$

Approximating family Q

• Usually in Variational Inference : parametric family

$$\{y \mapsto k_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Recently: Hierarchical Variational Inference!
 [R. Ranganath, D. Tran, and D. Blei. (2016) Hierarchical variational models. ICML]
 [M. Yin and M. Zhou (2018). Semi-Implicit Variational Inference. ICML]

$$\left\{ y \mapsto \int_{\mathsf{T}} q_{\phi}(\theta) k_{\theta}(y) \mathrm{d}\theta : \phi \in \mathsf{A} \right\} .$$

• What if... we consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) : \mu \in \mathsf{M} \right\} ,$$

M : subset of $\mathrm{M}_1(\mathsf{T})$, the set of probability measures on (T,\mathcal{T}) ?

 \rightsquigarrow Mixture models : $\mu = \sum_{i=1}^{J} \lambda_i \delta_{\theta_i}$

Approximating family $\mathcal Q$

• Usually in Variational Inference : parametric family

$$\{y \mapsto k_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Recently: Hierarchical Variational Inference!
 [R. Ranganath, D. Tran, and D. Blei. (2016) Hierarchical variational models. ICML]
 [M. Yin and M. Zhou (2018). Semi-Implicit Variational Inference. ICML]

$$\left\{ y \mapsto \int_{\mathsf{T}} q_{\phi}(\theta) k_{\theta}(y) \mathrm{d}\theta : \phi \in \mathsf{A} \right\} .$$

• What if... we consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) : \mu \in \mathsf{M} \right\} ,$$

M : subset of $\mathrm{M}_1(\mathsf{T})$, the set of probability measures on (T,\mathcal{T}) ?

$$\rightsquigarrow$$
 Mixture models : $\mu = \sum_{i=1}^{J} \lambda_i \delta_{\theta_i}$

Approximating family Q

• Usually in Variational Inference : parametric family

$$\{y \mapsto k_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Recently: Hierarchical Variational Inference!
 [R. Ranganath, D. Tran, and D. Blei. (2016) Hierarchical variational models. ICML]
 [M. Yin and M. Zhou (2018). Semi-Implicit Variational Inference. ICML]

$$\left\{ y \mapsto \int_{\mathsf{T}} q_{\phi}(\theta) k_{\theta}(y) \mathrm{d}\theta : \phi \in \mathsf{A} \right\} .$$

• What if... we consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) : \mu \in \mathsf{M} \right\} ,$$

M : subset of $\mathrm{M}_1(\mathsf{T})$, the set of probability measures on (T,\mathcal{T}) ?

$$\rightarrow$$
 Mixture models : $\mu = \sum_{i=1}^{J} \lambda_i \delta_{\theta_i}$

Approximating family Q

• Usually in Variational Inference : parametric family

$$\{y \mapsto k_{\theta}(y) : \theta \in \mathsf{T}\}$$
.

Recently: Hierarchical Variational Inference!
 [R. Ranganath, D. Tran, and D. Blei. (2016) Hierarchical variational models. ICML]
 [M. Yin and M. Zhou (2018). Semi-Implicit Variational Inference. ICML]

$$\left\{ y \mapsto \int_{\mathsf{T}} q_{\phi}(\theta) k_{\theta}(y) \mathrm{d}\theta : \phi \in \mathsf{A} \right\} .$$

• What if... we consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) : \mu \in \mathsf{M} \right\} ,$$

M : subset of $\mathrm{M}_1(\mathsf{T})$, the set of probability measures on (T,\mathcal{T}) ?

$$\rightarrow$$
 Mixture models : $\mu = \sum_{i=1}^{J} \lambda_i \delta_{\theta_i}$.

Our approach

• Let us consider the approximating family...

$$\left\{ y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) \ : \ \mu \in \mathsf{M} \right\} \ ,$$

• and minimise the α -divergence w.r.t μ !

Optimisation problem

- $\mu k(y) = \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta,y)$, where $K : (\theta,A) \mapsto \int_A k(\theta,y) \nu(\mathrm{d}y)$ is a Markov transition kernel on $\mathbb{T} \times \mathcal{V}$ with kernel density k
- p: measurable positive function on (Y, \mathcal{Y})

$$\underset{\boldsymbol{\mathrm{arginf}}_{\mu \in \mathsf{M}}}{\operatorname{arginf}} \underbrace{\int_{\mathsf{Y}} f_{\alpha} \left(\frac{\mu k(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y)}_{\boldsymbol{\mathrm{:=}} \Psi_{\alpha}(\mu)}$$

Our approach

• Let us consider the approximating family...

$$\left\{ y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) \ : \ \mu \in \mathsf{M} \right\} \ ,$$

• and minimise the α -divergence w.r.t μ !

Optimisation problem

- $\mu k(y) = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y)$, where $K: (\theta,A) \mapsto \int_A k(\theta,y) \nu(\mathrm{d}y)$ is a Markov transition kernel on $\mathsf{T} \times \mathcal{Y}$ with kernel density k
- p: measurable positive function on (Y, \mathcal{Y})

$$\operatorname{arginf}_{\mu \in \mathsf{M}} \underbrace{\int_{\mathsf{Y}} f_{\alpha} \left(\frac{\mu k(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y)}_{:=\Psi_{\alpha}(\mu)}$$

Outline

- 1 Background
- **2** The (α, Γ) -descent
- 3 Numerical Experiments
- 4 Take-away message
- **5** Proof of the systematic decrease

The (α, Γ) -descent

Optimisation problem

$$\operatorname{arginf}_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu) \quad \text{with} \quad \Psi_{\alpha}(\mu) := \int_{\mathsf{Y}} f_{\alpha} \left(\frac{\mu k(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y)$$

Algorithm

Let $\mu_1 \in M_1(T)$ such that $\Psi_{\alpha}(\mu_1) < \infty$. We define the sequence of probability measures $(\mu_n)_{n \in \mathbb{N}^*}$ iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^{\star} .$$
 (1)

Algorithm 1: Exact (α, Γ) -descent one-step transition

(A1) For all $(\theta,y)\in \mathsf{T}\times\mathsf{Y},\ k(\theta,y)>0,\ p(y)>0$ and $\int_{\mathsf{Y}}p(y)\nu(\mathrm{d}y)<\infty.$

(A2) The function $\Gamma: \mathrm{Dom}_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem 1

- **1** We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) \leqslant \Psi_{\alpha}(\mu)$.
- ② We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) = \Psi_{\alpha}(\mu)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$.

(A1) For all $(\theta,y)\in \mathsf{T}\times\mathsf{Y},\ k(\theta,y)>0,\ p(y)>0$ and $\int_{\mathsf{Y}}p(y)\nu(\mathrm{d}y)<\infty.$

(A2) The function $\Gamma: \mathrm{Dom}_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem :

- **1** We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) \leqslant \Psi_{\alpha}(\mu)$.
- **2** We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) = \Psi_{\alpha}(\mu)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$.

(A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.

(A2) The function $\Gamma: \mathrm{Dom}_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem 1

- **1** We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) \leqslant \Psi_{\alpha}(\mu)$.
- **2** We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) = \Psi_{\alpha}(\mu)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$.

(A1) For all $(\theta,y)\in \mathsf{T}\times\mathsf{Y},\ k(\theta,y)>0,\ p(y)>0$ and $\int_{\mathsf{Y}}p(y)\nu(\mathrm{d}y)<\infty.$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem 1

- $\bullet \text{ We have } \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) \leqslant \Psi_{\alpha}(\mu).$ proof later !
- **2** We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) = \Psi_{\alpha}(\mu)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$.

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

 $\textbf{1} \ \, \mathsf{Entropic} \ \, \mathsf{MD} : \eta \in (0,1], \, \kappa \in \mathbb{R} \, \, \mathsf{and} \, \, \alpha = 1 \,$

$$\Gamma(v) = e^{-\eta v} .$$

2 Power descent : $\eta \in (0,1]$, $(\alpha - 1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

 $\textbf{1} \ \, \mathsf{Entropic} \ \, \mathsf{MD} : \eta \in (0,1] \mathsf{,} \ \, \kappa \in \mathbb{R} \ \, \mathsf{and} \ \, \alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$
.

2 Power descent : $\eta \in (0,1]$, $(\alpha - 1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

 $\mbox{\bf 1}$ Entropic MD : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$
.

2 Power descent : $\eta \in (0,1]$, $(\alpha - 1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}.$$

Limiting behavior

Table 1: Examples of allowed (Γ, κ) in the (α, Γ) -descent

Divergence considered	Possible choice of (Γ, κ)	
Forward KL ($\alpha = 1$)	$\Gamma(v) = e^{-\eta v}, \eta \in (0, 1)$	any κ
α -divergence with $\alpha \in \mathbb{R} \setminus \{1\}$	$\Gamma(v) = e^{-\eta v}, \eta \in \left(0, \frac{1}{ \alpha - 1 b _{\infty,\alpha} + 1}\right)$	any κ
	$\alpha > 1, \ \Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}, \ \eta \in (0, 1]$	$\kappa > 0$
	$\alpha < 1, \Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}, \eta \in (0, 1]$	$\kappa \leqslant 0$

- \rightarrow Convergence towards the optimum value at a O(1/N) rate
- → Convergence towards the optimum value

Limiting behavior

Table 1: Examples of allowed (Γ, κ) in the (α, Γ) -descent

Divergence considered	Possible choice of (Γ, κ)	
Forward KL ($\alpha = 1$)	$\Gamma(v) = e^{-\eta v}, \eta \in (0, 1)$	any κ
α -divergence with $\alpha \in \mathbb{R} \setminus \{1\}$	$\Gamma(v) = e^{-\eta v}, \eta \in \left(0, \frac{1}{ \alpha - 1 b _{\infty,\alpha} + 1}\right)$	any κ
	$\alpha > 1, \ \Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}, \ \eta \in (0, 1]$	$\kappa > 0$
	$\alpha < 1, \Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}, \eta \in (0, 1]$	$\kappa \leqslant 0$

- \rightarrow Convergence towards the optimum value at a O(1/N) rate
- → Convergence towards the optimum value

Mixture models and (α, Γ) -descent

$$\begin{split} S_J &= \Big\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \Big\}. \\ \text{Let } \theta_1,...,\theta_J \in \mathsf{T} \text{ be fixed and denote} \end{split}$$

$$\mu_{\pmb{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{\theta_j}$$
 with $\pmb{\lambda} \in \mathcal{S}_J$.

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \lambda_1 = \lambda \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}$$
 (2)

• In practice, we will use

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n}$ drawn independently from $\mu_n k$

• Exploitation step which requires no information on the distribution of $\{\theta_1, ..., \theta_J\}$ (as opposed to Importance Sampling)

Mixture models and (α, Γ) -descent

$$\begin{split} S_J &= \Big\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \Big\}. \\ \text{Let } \theta_1,...,\theta_J \in \mathsf{T} \text{ be fixed and denote} \end{split}$$

$$\mu_{oldsymbol{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{ heta_j} \quad ext{with} \quad oldsymbol{\lambda} \in \mathcal{S}_J \;.$$

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\pmb{\lambda}})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \lambda_1 = \lambda \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}$$
 (2)

• In practice, we will use

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j,Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n}$ drawn independently from $\mu_n k$.

• Exploitation step which requires no information on the distribution of $\{\theta_1, ..., \theta_J\}$ (as opposed to Importance Sampling)

Mixture models and (α, Γ) -descent

$$\begin{split} S_J &= \Big\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \Big\}. \\ \text{Let } \theta_1,...,\theta_J \in \mathsf{T} \text{ be fixed and denote} \end{split}$$

$$\mu_{oldsymbol{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{ heta_j} \quad \text{with} \quad oldsymbol{\lambda} \in \mathcal{S}_J \;.$$

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \lambda_1 = \lambda \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}$$
 (2)

• In practice, we will use

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j,Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n}$ drawn independently from $\mu_n k$.

• Exploitation step which requires no information on the distribution of $\{\theta_1,...,\theta_J\}$ (as opposed to Importance Sampling)

Outline

- 1 Background
- **2** The (α, Γ) -descent
- 3 Numerical Experiments
- 4 Take-away message
- **5** Proof of the systematic decrease

Framework

Kernel: Gaussian transition kernel k_h with bandwidth h.

$$\left\{ y \mapsto \mu_{\lambda} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, (\theta_j)_{1 \leqslant j \leqslant J} \in \mathsf{T}^J \right\} .$$

At time t.

- **1** Exploitation step Optimise λ using the (α, Γ) -descent.
- **2** Exploration step Sample $(\theta_{j,t+1})_{1\leqslant j\leqslant J_{t+1}}$ according to $\mu_{\lambda}k_{h_t}$, with $h_t \propto J_t^{-1/(4+d)}$, where d is the dimension of the latent space.
- Toy example

$$p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})], Z = 2, s = 2$$

Bayesian Logistic Regression
 Covertype dataset (581,012 data points and 54 features

Framework

Kernel: Gaussian transition kernel k_h with bandwidth h.

$$\left\{ y \mapsto \mu_{\lambda} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, (\theta_j)_{1 \leqslant j \leqslant J} \in \mathsf{T}^J \right\} .$$

At time t.

- **①** Exploitation step Optimise λ using the (α, Γ) -descent.
- **2** Exploration step Sample $(\theta_{j,t+1})_{1\leqslant j\leqslant J_{t+1}}$ according to $\mu_{\lambda}k_{h_t}$, with $h_t \propto J_t^{-1/(4+d)}$, where d is the dimension of the latent space.
- Toy example

$$p(y) = Z \times [0.5\mathcal{N}(y; -su_d, I_d) + 0.5\mathcal{N}(y; su_d, I_d)], Z = 2, s = 2$$

Bayesian Logistic Regression
 Covertype dataset (581, 012 data points and 54 features)

Framework

Kernel: Gaussian transition kernel k_h with bandwidth h.

$$\left\{ y \mapsto \mu_{\lambda} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, (\theta_j)_{1 \leqslant j \leqslant J} \in \mathsf{T}^J \right\} .$$

At time t.

- **1** Exploitation step Optimise λ using the (α, Γ) -descent.
- **②** Exploration step Sample $(\theta_{j,t+1})_{1\leqslant j\leqslant J_{t+1}}$ according to $\mu_{\pmb{\lambda}} k_{h_t}$, with $h_t \propto J_t^{-1/(4+d)}$, where d is the dimension of the latent space.
- Toy example $p(u) = Z \times [0.5\mathcal{N}(u; -su_d, I_d) + 0.5\mathcal{N}(u; su_d, I_d)], Z = 2, s = 0.5\mathcal{N}(u; su_d, I_d)$
- Bayesian Logistic Regression
 Covertype dataset (581,012 data points and 54 features)

Framework

Kernel: Gaussian transition kernel k_h with bandwidth h.

$$\left\{ y \mapsto \mu_{\lambda} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, (\theta_j)_{1 \leqslant j \leqslant J} \in \mathsf{T}^J \right\} .$$

At time t.

- **1** Exploitation step Optimise λ using the (α, Γ) -descent.
- **②** Exploration step Sample $(\theta_{j,t+1})_{1\leqslant j\leqslant J_{t+1}}$ according to $\mu_{\pmb{\lambda}} k_{h_t}$, with $h_t \propto J_t^{-1/(4+d)}$, where d is the dimension of the latent space.
- Toy example

$$p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})], \ Z = 2, \ s = 2$$

Bayesian Logistic Regression
 Covertype dataset (581,012 data points and 54 features

Framework

Kernel: Gaussian transition kernel k_h with bandwidth h.

$$\left\{ y \mapsto \mu_{\lambda} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, (\theta_j)_{1 \leqslant j \leqslant J} \in \mathsf{T}^J \right\} .$$

At time t.

- **1** Exploitation step Optimise λ using the (α, Γ) -descent.
- **②** Exploration step Sample $(\theta_{j,t+1})_{1\leqslant j\leqslant J_{t+1}}$ according to $\mu_{\pmb{\lambda}} k_{h_t}$, with $h_t \propto J_t^{-1/(4+d)}$, where d is the dimension of the latent space.
- Toy example

$$p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})], \ Z = 2, \ s = 2$$

• Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

We compare:

- <u>0.5-Mirror descent</u>: $\Gamma(v) = e^{-\eta v}$ with $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

J = M = 100, initial weights: [1/J, ..., 1/J], N = 10, T = 20.

We compare:

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1) v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

$$J=M=100$$
, initial weights: $[1/J,...,1/J]$, $N=10$, $T=20$.

We compare:

- <u>0.5-Mirror descent</u>: $\Gamma(v) = e^{-\eta v}$ with $\alpha = 0.5$,
- $\underline{0.5\text{-Power descent}}$: $\Gamma(v) = [(\alpha-1)\,v+1]^{\eta/(1-\alpha)}$ with $\alpha=0.5$.

$$J=M=100$$
, initial weights: $[1/J,...,1/J]$, $N=10$, $T=20$.

We compare:

- <u>0.5-Mirror descent</u>: $\Gamma(v) = e^{-\eta v}$ with $\alpha = 0.5$,
- $\underline{0.5\text{-Power descent}}$: $\Gamma(v) = [(\alpha-1)\,v+1]^{\eta/(1-\alpha)}$ with $\alpha=0.5$.

$$J=M=100$$
, initial weights: $[1/J,...,1/J]$, $N=10$, $T=20$.

We compare:

- <u>0.5-Mirror descent</u>: $\Gamma(v) = e^{-\eta v}$ with $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

$$J=M=100$$
, initial weights: $[1/J,...,1/J]$, $N=10$, $T=20$.

Toy Example : $\alpha = 1$

We compare:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

Toy Example : $\alpha = 1$

We compare:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

Figure: Plotted is the average Log-likelihood for 0.5-Power and 1-Mirror descent in dimension $d=\{8,16,32\}$ computed over 100 replicates with $\eta_0=0.5$.

Toy Example : $\alpha = 1$

We compare:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

Figure: Plotted is the average Log-likelihood for 0.5-Power and 1-Mirror descent in dimension $d=\{8,16,32\}$ computed over 100 replicates with $\eta_0=0.5$.

Outline

- 1 Background
- **2** The (α, Γ) -descent
- 3 Numerical Experiments
- 4 Take-away message
- **5** Proof of the systematic decrease

Take-away message

The (α, Γ) -descent

- performs an update of probability measures
 - sufficient conditions on (α, Γ) leading to a systematic decrease
 - includes Entropic Mirror Descent
 - convergence to an optimum and O(1/N) convergence rates,
- can be applied to density approximation
 - handles the case of Mixture Models for any kernel K
 - requires no information on the distribution of $\{\theta_1,...,\theta_J\}$
 - empirical benefit of using the Power descent.

[Kamélia Daudel, Randal Douc and François Portier (2020). Infinite-dimensional gradient-based descent for alpha-divergence minimisation. To be published in the Annals of Statistics. https://arxiv.org/abs/2005.10618]

Take-away message

The (α, Γ) -descent

- performs an update of probability measures
 - sufficient conditions on (α, Γ) leading to a systematic decrease
 - includes Entropic Mirror Descent
 - convergence to an optimum and O(1/N) convergence rates,
- can be applied to density approximation
 - handles the case of Mixture Models for any kernel K
 - requires no information on the distribution of $\{\theta_1,...,\theta_J\}$
 - empirical benefit of using the Power descent.

[Kamélia Daudel, Randal Douc and François Portier (2020). Infinite-dimensional gradient-based descent for alpha-divergence minimisation. To be published in the Annals of Statistics. https://arxiv.org/abs/2005.10618]

Take-away message

The (α, Γ) -descent

- performs an update of probability measures
 - sufficient conditions on (α, Γ) leading to a systematic decrease
 - includes Entropic Mirror Descent
 - convergence to an optimum and O(1/N) convergence rates,
- can be applied to density approximation
 - handles the case of Mixture Models for any kernel K
 - requires no information on the distribution of $\{\theta_1,...,\theta_J\}$
 - empirical benefit of using the Power descent.

[Kamélia Daudel, Randal Douc and François Portier (2020). Infinite-dimensional gradient-based descent for alpha-divergence minimisation. To be published in the Annals of Statistics. https://arxiv.org/abs/2005.10618]

Outline

- 1 Background
- **2** The (α, Γ) -descent
- 3 Numerical Experiments
- 4 Take-away message
- **5** Proof of the systematic decrease

The result we want to prove

- (A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y)\nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem 1

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then, the two following assertions hold.

- We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) \leqslant \Psi_{\alpha}(\mu)$.
- **2** We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) = \Psi_{\alpha}(\mu)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$.

$$\begin{split} \text{Recall that}: \qquad & \Psi_{\alpha}(\mu) = \int_{\Upsilon} f_{\alpha} \left(\frac{\mu k(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \\ & b_{\mu,\alpha}(\theta) = \int_{\Upsilon} k(\theta,y) f_{\alpha}' \left(\frac{\mu k(y)}{p(y)} \right) \nu(\mathrm{d}y) \\ & \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \end{split}$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Equality holds iif $\zeta = \mu$.

- \to By definition $\Psi_{\alpha}(\mu) = \int_{\mathcal{F}} f_{\alpha}\left(\frac{\mu k(y)}{\nu(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex
- ightarrow By convexity of f_{lpha}

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1 - g(\theta)].$$

ightarrow Now integrating first w.r.t to $rac{\mu(\mathrm{d} heta)k(heta,y)}{\mu k(y)}$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1 - g(\theta)] f_{\alpha}'(\theta) f_{\alpha}$$

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta) k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta) \mu k(y)}{p(y)}\right) + A_{\alpha}(y) \left(\frac{g(\theta) \mu k(y)}{p(y)}\right)$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Equality holds iif $\zeta = \mu$.

$$ightarrow$$
 By definition $\Psi_{lpha}(\mu)=\int_{\mathcal{N}}f_{lpha}\left(rac{\mu k(y)}{p(y)}
ight)p(y)
u(\mathrm{d}y)$ with f_{lpha} convex.

ightarrow By convexity of f_lpha

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1 - g(\theta)].$$

ightarrow Now integrating first w.r.t to $rac{\mu(\mathrm{d} heta)k(heta,y)}{\mu k(y)}$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)k(\theta)k(\theta,y)] f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) = \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) = \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) = \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) = \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac$$

$$\Psi_{\alpha}(\mu) \geqslant \int_{Y} p(y)\nu(\mathrm{d}y) \int_{T} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{c}$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Equality holds iif $\zeta = \mu$.

- \to By definition $\Psi_{\alpha}(\mu)=\int_{\Sigma}f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$ with f_{α} convex.
- ightarrow By convexity of f_{lpha} ,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{\mu k(y)}{p(y)}[1-g(\theta)] \; .$$

ightarrow Now integrating first w.r.t to $rac{\mu(\mathrm{d} heta)k(heta,y)}{\mu k(y)}$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)k(\theta)k(\theta,y)] f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) = \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) = \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) = \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) = \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) f_{\alpha}'\left(\frac$$

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathsf{Y}} p(y)\nu(\mathrm{d}y) \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\epsilon}(y) + A_{\epsilon}(y) + A_{\epsilon}(y)$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Equality holds iif $\zeta = \mu$.

- \to By definition $\Psi_{\alpha}(\mu)=\int_{\Sigma}f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$ with f_{α} convex.
- ightarrow By convexity of f_{lpha} ,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1-g(\theta)] \; .$$

ightarrow Now integrating first w.r.t to $rac{\mu(\mathrm{d} heta)k(heta,y)}{\mu k(y)}$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1 - g(\theta)] f_{\alpha}'(\theta) f_{\alpha}$$

$$\Psi_{\alpha}(\mu) \geqslant \int_{Y} p(y)\nu(\mathrm{d}y) \int_{T} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}(\mu)$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Equality holds iif $\zeta = \mu$.

- \to By definition $\Psi_{\alpha}(\mu)=\int_{\Sigma}f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$ with f_{α} convex.
- ightarrow By convexity of f_{lpha} ,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1-g(\theta)] \; .$$

 \rightarrow Now integrating first w.r.t to $\frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)}$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} \left[1 - g(\theta)\right] f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right] f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} \left[1 - g(\theta)\right] f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right] f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} f_{\alpha}'\left(\frac{$$

$$\Psi_{\alpha}(\mu) \geqslant \int_{Y} p(y)\nu(\mathrm{d}y) \int_{T} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}(\mu)$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Equality holds iif $\zeta = \mu$.

- \rightarrow By definition $\Psi_{\alpha}(\mu) = \int_{\Sigma} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.
- ightarrow By convexity of f_{lpha} ,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1-g(\theta)] \; .$$

ightarrow Now integrating first w.r.t to $rac{\mu(\mathrm{d} heta)k(heta,y)}{\mu k(y)}$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)]$$

$$\Psi_{\alpha}(\mu) \geqslant \int_{Y} p(y)\nu(\mathrm{d}y) \int_{T} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}(\mu)$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Equality holds iif $\zeta = \mu$.

- \to By definition $\Psi_{\alpha}(\mu) = \int_{\Sigma} f_{\alpha}\left(\frac{\mu k(y)}{\eta(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.
- ightarrow By convexity of f_{lpha} ,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1-g(\theta)] \; .$$

ightarrow Now integrating first w.r.t to $rac{\mu(\mathrm{d} heta)k(heta,y)}{\mu k(y)}$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)]$$

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathbb{Y}} p(y)\nu(\mathrm{d}y) \int_{\mathbb{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) \left[1 - g(\theta) \right] \; .$$

Equality holds iif $\zeta = \mu$.

At this stage,

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathbf{T}} p(y) \nu(\mathrm{d}y) \int_{\mathbf{T}} \frac{\mu(\mathrm{d}\theta) k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta) \mu k(y)}{p(y)}\right) + A_{\alpha}$$

Finally, applying Jensen's inequality to the convex function f_0

$$\Psi_{\alpha}(\mu) \geqslant \int_{Y} p(y)\nu(\mathrm{d}y)f_{\alpha}\left(\int_{\mathbb{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} \frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}$$

$$\Psi_{\alpha}(\mu) \geqslant \Psi_{\alpha}(\zeta) + A_{\alpha}$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) \left[1 - g(\theta) \right] \; .$$

Equality holds iif $\zeta = \mu$.

At this stage,

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathbf{T}} p(y) \nu(\mathrm{d}y) \int_{\mathbf{T}} \frac{\mu(\mathrm{d}\theta) k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta) \mu k(y)}{p(y)}\right) + A_{\alpha}$$

Finally, applying Jensen's inequality to the convex function f_{α}

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathsf{Y}} p(y)\nu(\mathrm{d}y)f_{\alpha}\left(\int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} \frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}$$

$$\Psi_{\alpha}(\mu) \geqslant \Psi_{\alpha}(\zeta) + A_{\alpha}$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) \left[1 - g(\theta) \right] \; .$$

Equality holds iif $\zeta = \mu$.

At this stage,

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathbf{Y}} p(y)\nu(\mathrm{d}y) \int_{\mathbf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}$$

Finally, applying Jensen's inequality to the convex function f_0

$$\Psi_{\alpha}(\mu) \geqslant \int_{Y} p(y)\nu(\mathrm{d}y)f_{\alpha}\left(\int_{\mathbb{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} \frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}$$

$$\Psi_{\alpha}(\mu) \geqslant \Psi_{\alpha}(\zeta) + A_{\alpha}$$

Let $\mu, \zeta \in M_1(T)$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) \left[1 - g(\theta) \right] \; .$$

Equality holds iif $\zeta = \mu$.

At this stage,

$$\Psi_{\alpha}(\mu) \geqslant \int_{Y} p(y)\nu(\mathrm{d}y) \int_{T} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}$$

Finally, applying Jensen's inequality to the convex function f_{α}

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathsf{T}} p(y)\nu(\mathrm{d}y)f_{\alpha}\left(\int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} \frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}$$

that ic

$$\Psi_{\alpha}(\mu) \geqslant \Psi_{\alpha}(\zeta) + A_{\alpha}$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu) < \infty$. Denote by g the density of ζ w.r.t μ .

We have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha}(\zeta)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) \left[1 - g(\theta) \right] \; .$$

Equality holds iif $\zeta = \mu$.

At this stage,

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathsf{T}} p(y) \nu(\mathrm{d}y) \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta) k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta) \mu k(y)}{p(y)}\right) + A_{\alpha}$$

Finally, applying Jensen's inequality to the convex function f_{α}

$$\Psi_{\alpha}(\mu) \geqslant \int_{\mathsf{T}} p(y)\nu(\mathrm{d}y)f_{\alpha}\left(\int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} \frac{g(\theta)\mu k(y)}{p(y)}\right) + A_{\alpha}$$

$$\Psi_{\alpha}(\mu) \geqslant \Psi_{\alpha}(\zeta) + A_{\alpha}$$

Step 2 : take $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$ and show that $A_{\alpha} \geqslant 0$ (1)

$$\begin{split} \text{Recall that}: \qquad b_{\mu,\alpha}(\theta) &= \int_{\mathbf{Y}} k(\theta,y) f_{\alpha}' \left(\frac{\mu k(y)}{p(y)} \right) \nu(\mathrm{d}y) \\ \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) &= \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \end{split}$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$

where
$$A_{\alpha} := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_{\alpha}' \left(\frac{g(\theta)\mu k(y)}{p(y)} \right) [1 - g(\theta)]$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$

o We treat the case $lpha\in\mathbb{R}\setminus\{1\}$. In this case $f'_lpha(u)=rac{1}{lpha-1}[u^{lpha-1}-1]$ and

$$b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y)$$

$$A_{\alpha} = \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)]$$

Step 2 : take $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$ and show that $A_{\alpha} \geqslant 0$ (1)

$$\begin{split} \text{Recall that}: \qquad b_{\mu,\alpha}(\theta) &= \int_{\mathbf{Y}} k(\theta,y) f_{\alpha}' \left(\frac{\mu k(y)}{p(y)} \right) \nu(\mathrm{d}y) \\ \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) &= \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \end{split}$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) [1-g(\theta)] \ .$$

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

 \to We treat the case $\alpha \in \mathbb{R} \setminus \{1\}$. In this case $f'_{\alpha}(u) = \frac{1}{\alpha - 1}[u^{\alpha - 1} - 1]$ and

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \end{split}$$

Step 2 : take $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$ and show that $A_{\alpha} \geqslant 0$ (1)

Recall that :
$$b_{\mu,\alpha}(\theta) = \int_{\mathbf{Y}} k(\theta,y) f_{\alpha}' \left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))}$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$

$$\text{where} \quad A_\alpha := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) [1-g(\theta)] \ .$$

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

o We treat the case $lpha\in\mathbb{R}\setminus\{1\}.$ In this case $f'_lpha(u)=rac{1}{lpha-1}[u^{lpha-1}-1]$ and

$$b_{\mu,\alpha}(\theta) = \int_{\mathbf{Y}} k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y)$$

$$A_{\alpha} = \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)]$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathbf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathbf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} g(\theta)^{\alpha - 1} - 1 \right) [1 - g(\theta)] \\ &= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathbf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathbf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} g(\theta)^{\alpha - 1} - 1 \right) [1 - g(\theta)] \\ &= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathbf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathbf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} g(\theta)^{\alpha - 1} - 1 \right) [1 - g(\theta)] \\ &= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} g(\theta)^{\alpha - 1} - 1 \right) [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} g(\theta)^{\alpha - 1} - 1 \right) [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$ Set $\tilde{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\tilde{\Gamma}(V)]=0$ and

$$A_{\alpha} = \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right)$$
$$= \mathbb{C}\text{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right)$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$. Set $\tilde{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\Gamma(V)]=0$ and

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\text{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \end{split}$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \ge 0$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$. Set $\check{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\check{\Gamma}(V)]=0$ and

$$A_{\alpha} = \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right)$$
$$= \mathbb{C}\text{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right)$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$. Set $\tilde{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\tilde{\Gamma}(V)]=0$ and

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \end{split}$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$. Set $\tilde{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\tilde{\Gamma}(V)]=0$ and

$$A_{\alpha} = \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right] \tilde{\Gamma}^{\alpha - 1}(V) \left[1 - \tilde{\Gamma}(V)\right]\right)$$
$$= \mathbb{C}\text{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right] \tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right)$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$. Set $\tilde{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\tilde{\Gamma}(V)]=0$ and

$$A_{\alpha} = \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right] \tilde{\Gamma}^{\alpha - 1}(V) \left[1 - \tilde{\Gamma}(V)\right]\right)$$
$$= \mathbb{C}\text{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right] \tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right)$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$. Set $\tilde{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\tilde{\Gamma}(V)]=0$ and

$$A_{\alpha} = \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right] \tilde{\Gamma}^{\alpha - 1}(V) \left[1 - \tilde{\Gamma}(V)\right]\right)$$
$$= \mathbb{C}\text{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right] \tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right)$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Conclusion: $A_{\alpha} \geqslant 0$!

29 / 30

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$. Set $\tilde{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\tilde{\Gamma}(V)]=0$ and

$$A_{\alpha} = \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right] \tilde{\Gamma}^{\alpha - 1}(V) \left[1 - \tilde{\Gamma}(V)\right]\right)$$
$$= \mathbb{C}\text{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right] \tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right)$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

For $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu)$$
.

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

At this stage,

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

On the probability space $(\mathsf{T},\mathcal{T},\mu)$, we let V be the random variable $V(\theta)=b_{\mu,\alpha}(\theta)+\kappa$. Set $\tilde{\Gamma}(v)=\Gamma(v)/\mu(\Gamma(b_{\mu,\alpha}+\kappa))$ for all $v\in\mathrm{Dom}_{\alpha}$. Then, $\mathbb{E}[1-\tilde{\Gamma}(V)]=0$ and

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\text{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \end{split}$$

Time to recall (A2)! The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Thank you!