AAAI2019読み会 「特徴量選択を教師付き学習する!」 Human-in-the-Loop Feature Selection Alvaro Correia, Freddy Lecue

読み手: Hisashi Kashima (KU/AIP)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

論文の概要: 特徴量選択を学習する問題を考えた

- 背景:予測モデルに用いる特徴量の選択は、学習効率・精度の向上だけでなく、モデルや予測の解釈にも有効
- 貢献:新たな問題設定
 - 訓練データにおいて、入力(特徴量)と出力(ラベル)に加えて、どの特徴量が重要かという補助情報が与えられている
 - 出力を予測するだけでなく、特徴量を選択するモデルを学習する

予測タスクの例:

各地区の不動産価格(数値)の予測

ボストンの各地区における不動産の平均価格データ

犯罪率	酸化窒素濃度	部屋数	1940年以前築	高速へのアクセス	固定資産税率	教師数と生徒数の比	有色人種の率	社会的地位の低い	価格
0.00632	0.538	6.575	65.2	1	296	15.3	396.9	4.98	24
0.02731	0.469	6.421	78.9	2	242	17.8	396.9	9.14	21.6
0.02729	0.469	7.185	61.1	2	242	17.8	392.83	4.03	34.7
0.03237	0.458	6.998	45.8	3	222	18.7	394.63	2.94	33.4
0.06905	0.458	7.147	54.2	3	222	18.7	396.9	5.33	36.2
0.02985	0.458	6.43	58.7	3	222	18.7	394.12	5.21	28.7
0.08829	0.524	6.012	66.6	5	311	15.2	395.6	12.43	22.9
0.14455	0.524	6.172	96.1	5	311	15.2	396.9	19.15	27.1
0.21124	0.524	5.631	100	5	311	15.2	386.63	29.93	16.5
				•••					

出力 3

- -犯罪率や部屋数など9個の変数から価格を予測したい
- 特徴選択の問題:価格に影響する変数は何か?
 - -特に特徴量が多い(xの次元が高い)と大変

問題設定:

訓練データの各事例において、重要な特徴も教示される

- 入力:訓練データ集合 {(x_i, q_i, y_i)}_i (通常は{(x_i, q_i, y_i)}_i)
 - $-\mathbf{x}_i \in \mathbb{R}^D: i$ 番目の例の入力特徴ベクトル \bigcirc ここまでは
 - $y_i \in \{0,1\}$: i番目の例の出力ラベル 「いつもと同じ
- - $\mathbf{q}_i \in \{0,1\}^D : i$ 番目の例で、どの特徴が重要かを表すベクトル
 - 各次元の値は1だと重要な特徴、0だと不要を意味する

- 出力:予測モデル $f: \mathbb{R}^D \to \{0,1\}$
 - こちらは通常と同じ

モデル:

特徴を選択するモデル+選択された特徴で予測するモデル

■ *h*: 特徴選択するニューラルネットワークモデル (NN)

2種類の教師信号: 正解出力ラベルと併せて使用すべき特徴も与えられる

技術的な問題: 特徴選択が確率的な閾値処理なので誤差逆伝播困難

実際には特徴選択確率にもとづくサンプリングでマスクが決まる

- 問題点:訓練時の誤差逆伝播で微分が意味をもたない (閾値的な処理なので)
- 解決法(2案):
 - 1.即時報酬強化学習(REINFORCE):特徴選択の報酬を最大化
 - 2. 滑らかにする (Gumbel softmax)

解決案①: 即時報酬強化学習にする

- 即時報酬強化学習(REINFORCE)として考える
- 特徴選択を行動として損失関数(報酬)を最小化(最大化)

※ 予測器と特徴選択器を並列に学習するのかend-to-endでやるのかはちょっとわかんなかった(前者の気がする)

解決案②: 滑らかにして誤差逆伝播(微分)できるようにする

- Gumbel Softmaxで滑らか近似
 - 離散分布のサンプルの微分可能な近似表現(極限で一致)
- 誤差逆伝播できるようになる

Gumbel softmaxに置き換える

数值例①:

特徴の教示によって特徴選択効果が

■ 手書き文字データセット(MNIST)で実験

特徴の教示を入れると、より鮮明に特徴選択されるようになる

数值例②:

予測精度では強化学習ベースのほうがよさそう

全体的には強化学習ベースのほうが予測精度は高そう

特徴教示	文字詞	忍識デーク	タ	プロジェクトリスク予測データ			
なし	Table 1: Estimat	ors Impact o	n Accuracy (%).	Table 4: Accuracy (%) on PRC Test Set with Each Estimator.			
(40)	Feedback / Estimator	SF	PD	Feedback / Estimator	SF	PD	
#+/# ! \!	Before Feedback	85.35	85.70	Before Feedback	29.53	29.99	
特徴選択の」	Cosine Feedback	92.30	88.40	Cosine Feedback	82.49	77.51	
損失関数	MSE Feedback	91.16	89.61	MSE Feedback	80.11	78.44	
(cos or MSE)				<u> </u>			
(603 01 14132)	<u>強</u>	上学習_	Gumbel	J			

- では、Gumbel softmaxは要らない??
 - 特徴の教示が{0,1}でなくより細かいレベル({0,1,..., K})に分かれている場合にも自然に拡張可能

論文の概要: 特徴量選択を学習する問題を考えた

- 背景:予測モデルに用いる特徴量の選択は、学習効率・精度の向上だけでなく、モデルや予測の解釈にも有効
- 貢献:新たな問題設定
 - 訓練データにおいて、入力(特徴量)と出力(ラベル)に加えて、どの特徴量が重要かという補助情報が与えられている
 - 出力を予測するだけでなく、特徴量を選択するモデルを学習する