samplesizelogisticcasecontrol Package

September 20, 2016

> library(samplesizelogisticcasecontrol)

Random data generation functions

Let X_1 and X_2 be two variables with a bivariate normal ditribution with mean (0, 0) and covariance [1, 0.5; 0.5, 2]. X_2 corresponds to the exposure of interest. Let $X_3 = X_1X_2$ and define functions for generating random data from the distribution of (X_1, X_2) and (X_1, X_2, X_3) .

```
> mymvn <- function(n) {</pre>
          <-c(0, 0)
    mu
    sigma \leftarrow matrix(c(1, 0.5, 0.5, 2), byrow=TRUE, nrow=2, ncol=2)
          <- rmvnorm(n, mean=mu, sigma=sigma)
    dat
+ }
> myF <- function(n) {
    dat <- mymvn(n)</pre>
    dat <- cbind(dat, dat[, 1]*dat[, 2])</pre>
+ }
  Generate some data
> data <- myF(200)</pre>
> colnames(data) <- paste("X", 1:3, sep="")</pre>
> data[1:5, ]
               Х1
                           X2
[1,] -0.03175259 -0.7062623 0.02242566
[2,] 0.57595297 -0.5576887 -0.32120245
[3,] -1.15885939  0.4438503  -0.51436007
[4,] -0.97295536 -1.3392027
                              1.30298446
[5,] -0.67407391 -0.2216138 0.14938408
```

Examples of univariate calculations

We have the logistic model $logit = \mu + \beta X$ and are testing $\beta = 0$. Suppose the disease prevalence is 0.01, the log-odds ratio for the exposure X is 0.26 and that the exposure follows a Bernoulli(p) distribution with p = 0.15.

```
> prev <- 0.01
> logOR <- 0.26
> p <- 0.15
   Compute the sample sizes
> sampleSize_binary(prev, logOR, probXeq1=p)
$ss.wald.1
[1] 4725
$ss.wald.2
[1] 4498
$ss.score.1
[1] 4230
$ss.score.2
[1] 4441
   The same result can be obtained assuming X is ordinal and passing in the
2 probabilities P(X = 0) and P(X = 1).
> sampleSize_ordinal(prev, logOR, probX=c(1-p, p))
$ss.wald.1
[1] 4725
$ss.wald.2
[1] 4498
$ss.score.1
[1] 4230
$ss.score.2
[1] 4440
   Let X be ordinal with 3 levels. The vector being passed into the probX
argument below is (P(X=0), P(X=1), P(X=2)).
> sampleSize_ordinal(prev, logOR, probX=c(0.4, 0.35, 0.25))
$ss.wald.1
[1] 989
$ss.wald.2
[1] 985
$ss.score.1
[1] 959
$ss.score.2
[1] 963
```

```
Now let the exposure X be N(0,1).

> sampleSize_continuous(prev, logOR)

$ss.wald.1
[1] 631

$ss.wald.2
[1] 644

$ss.score.1
[1] 615

$ss.score.2
[1] 602
```

For the univariate case with continuous exposure, we can specify the probability density function of X in different ways. Consider X to have a chi-squared distribution with 1 degree of freedom. Note that the domain of a chi-squared pdf is from 0 to infinity, and that the $\operatorname{var}(X) = 2$.

```
> sampleSize_continuous(prev, logOR, distF="dchisq(x, 1)",
                        distF.support=c(0,Inf), distF.var=2)
$ss.wald.1
[1] 283
$ss.wald.2
[1] 242
$ss.score.1
[1] 98
$ss.score.2
[1] 113
> f <- function(x) {dchisq(x, 1)}</pre>
> sampleSize_continuous(prev, logOR, distF=f, distF.support=c(0, Inf),
                         distF.var=2)
$ss.wald.1
[1] 283
$ss.wald.2
[1] 242
$ss.score.1
[1] 98
$ss.score.2
[1] 113
```

If we do not set distF.var, then the variance of X will be approximated by numerical integration and could yield slightly different results.

```
> sampleSize_continuous(prev, logOR, distF="dchisq(x, 1)", distF.support=c(0,Inf))
$ss.wald.1
[1] 276
$ss.wald.2
[1] 242
$ss.score.1
[1] 100
$ss.score.2
[1] 113
  Let X have the distribution defined by column X_1 in data.
> sampleSize_data(prev, logOR, data[, "X1", drop=FALSE])
$ss.wald.1
[1] 735
$ss.wald.2
[1] 754
$ss.score.1
[1] 732
$ss.score.2
[1] 714
```

Examples with confounders

We have the logit model $logit = \mu + \beta_1 X_1 + \beta_2 X_2$ and are interested in testing $\beta_2 = 0$. Here we must have log-odds ratios for X_1 and X_2 , and we will use the distribution function mymvn defined above to generate 200 random samples. Note that logOR[1] corresponds to X_1 and logOR[2] corresponds to X_2 .

```
> logOR <- c(0.1, 0.13)
> sampleSize_data(prev, logOR, mymvn(200))
$ss.wald.1
[1] 1149
$ss.wald.2
[1] 1167
$ss.score.1
[1] 1145
```

```
$ss.score.2
[1] 1128
```

Now we would like to perform a test of interaction, $\beta_3 = 0$, where $logit = \mu + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$ and $X_3 = X_1 X_2$. The vector of log-odds ratios must be of length 3 and in the same order as (X_1, X_2, X_3) .

```
> logOR <- c(0.1, 0.15, 0.11)
> sampleSize_data(prev, logOR, myF(1000))
$ss.wald.1
[1] 1583
$ss.wald.2
[1] 1633
$ss.score.1
[1] 1579
$ss.score.2
[1] 1530
```

Pilot data from a file

Suppose we want to compute sample sizes for a case-control study where we have pilot data from a previous study. The pilot data is stored in the file:

```
> file <- system.file("sampleData", "data.txt", package="samplesizelogisticcasecontrol")
> file
```

[1] "/tmp/Rtmpz1YxMa/Rinst5d577cb4ab6a/samplesizelogisticcasecontrol/sampleData/data.txt"

Here the exposure variable is "Treatment", and "Gender_Male" is a dummy variable for the confounder gender. We will use the data from only the controls and define a new variable of interest which is the interaction of gender and treatment. In our model, both gender and treatment will be confounders. First, read in the data.

```
> data <- read.table(file, header=1, sep="\t")</pre>
```

Create the interaction variable

```
> data[, "Interaction"] <- data[, "Gender_Male"]*data[, "Treatment"]
> data[1:5, ]
```

	Casecontrol	Gender_Male	Treatment	Interaction
1	0	0	0	0
2	1	1	0	0
3	0	0	0	0
4	1	1	1	1
5	1	1	0	0

Now subset the data to use only the controls

```
> temp <- data[, "Casecontrol"] %in% 0
> data <- data[temp, ]</pre>
```

The data that gets passed in should only contain the columns that will be used in the analysis with the variable of interest being the last column.

```
> vars <- c("Gender_Male", "Treatment", "Interaction")
> data <- data[, vars]</pre>
```

Define the log-odds ratios for gender, treatment, and the interaction of gender and treatment. The order of these log-odds ratios must match the order of the columns in the data.

```
> logOR <- c(0.1, 0.13, 0.27)
    Compute the sample sizes
> sampleSize_data(prev, logOR, data)
$ss.wald.1
[1] 9402
$ss.wald.2
[1] 9404
$ss.score.1
[1] 9403
$ss.score.2
[1] 9400
```

Note that the same results can be obtained by not reading in the data and creating a new interaction variable, but by setting the input argument of data to be of type file.list.

Session Information

> sessionInfo()

R version 3.3.0 (2016-05-03)

Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS release 6.6 (Final)

locale:

[1] LC_CTYPE=en_US LC_NUMERIC=C
[3] LC_TIME=C LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] samplesizelogisticcasecontrol_0.0.5 mvtnorm_1.0-5

loaded via a namespace (and not attached):

[1] tools_3.3.0