# Randomization (Design-based) Inference for Experiments

Ryan T. Moore

American University

2024 - 08 - 20

#### Table of contents I

An Exercise

Overview of Randomization Inference

Counting Principles

Examples

#### An Exercise

The task: select the 2 folders with messages

▶ What is our baseline expectation/model for this process?

- ▶ What is our baseline expectation/model for this process?
  - No x-ray vision. No ESP. Effect of messages on choice = 0."

- ▶ What is our baseline expectation/model for this process?
  - ➤ "No x-ray vision. No ESP. Effect of messages on choice = 0."
- ▶ What is an alternative?

- ▶ What is our baseline expectation/model for this process?
  - No x-ray vision. No ESP. Effect of messages on choice = 0."
- ▶ What is an alternative?
  - $\triangleright$  "Some way to detect messages. Message location  $\rightarrow$  choice."

- ▶ What is our baseline expectation/model for this process?
  - No x-ray vision. No ESP. Effect of messages on choice = 0."
- ▶ What is an alternative?
  - $\triangleright$  "Some way to detect messages. Message location  $\rightarrow$  choice."

The task: select the 2 folders with messages

- ▶ What is our baseline expectation/model for this process?
  - ► "No x-ray vision. No ESP. Effect of messages on choice = 0."
- ▶ What is an alternative?
  - $\triangleright$  "Some way to detect messages. Message location  $\rightarrow$  choice."

#### Select!



The possible choices:



 $\blacktriangleright$  You chose \_\_\_\_ and \_\_\_. Let X= number found.



- You chose \_\_\_\_ and \_\_\_. Let X = number found.
- What was  $P(X \ge 2 | \text{no ESP})$ ?



- You chose  $\underline{\hspace{1cm}}$  and  $\underline{\hspace{1cm}}$ . Let X = number found.
- What was  $P(X \ge 2 | \text{no ESP})$ ?  $\frac{1}{10} = 0.1$



- You chose  $\underline{\hspace{1cm}}$  and  $\underline{\hspace{1cm}}$ . Let X = number found.
- ▶ What was  $P(X \ge 2 | \text{no ESP})$ ?  $\frac{1}{10} = 0.1$
- What was  $P(X \ge 1 | \text{no ESP})$ ?



- You chose  $\_\_$  and  $\_\_$ . Let X = number found.
- ▶ What was  $P(X \ge 2 | \text{no ESP})$ ?  $\frac{1}{10} = 0.1$
- What was  $P(X \ge 1 | \text{no ESP})$ ?  $\frac{7}{10} = 0.7$



- You chose  $\underline{\hspace{1cm}}$  and  $\underline{\hspace{1cm}}$ . Let X = number found.
- What was  $P(X \ge 2 | \text{no ESP})$ ?  $\frac{1}{10} = 0.1$
- What was  $P(X \ge 1 | \text{no ESP})$ ?  $\frac{7}{10} = 0.7$
- ▶ What is "prob result at least this extreme, given model of no effect"?



- You chose  $\underline{\hspace{1cm}}$  and  $\underline{\hspace{1cm}}$ . Let X = number found.
- ▶ What was  $P(X \ge 2 | \text{no ESP})$ ?  $\frac{1}{10} = 0.1$
- What was  $P(X \ge 1 | \text{no ESP})$ ?  $\frac{7}{10} = 0.7$
- ▶ What is "prob result at least this extreme, given model of no effect"?
- $\triangleright$  Definition of p-value!



- You chose  $\underline{\hspace{1cm}}$  and  $\underline{\hspace{1cm}}$ . Let X = number found.
- ▶ What was  $P(X \ge 2 | \text{no ESP})$ ?  $\frac{1}{10} = 0.1$
- What was  $P(X \ge 1 | \text{no ESP})$ ?  $\frac{7}{10} = 0.7$
- What is "prob result at least this extreme, given model of no effect"?
- $\triangleright$  Definition of p-value!
- $\triangleright$  Valid, exact, with no distributional assumption, no large n.



- You chose  $\underline{\hspace{1cm}}$  and  $\underline{\hspace{1cm}}$ . Let X = number found.
- What was  $P(X \ge 2 | \text{no ESP})$ ?  $\frac{1}{10} = 0.1$
- ▶ What was  $P(X \ge 1 | \text{no ESP})$ ?  $\frac{7}{10} = 0.7$
- ▶ What is "prob result at least this extreme, given model of no effect"?
- $\triangleright$  Definition of p-value!
- $\triangleright$  Valid, exact, with no distributional assumption, no large n.
- ▶ Randomization creates dist'n of possible numbers correct

#### The Randomization Distribution of X



#### The Randomization Distribution of X



#### The Randomization Distribution of X



### Parametric Null Hypothesis Significance Testing

- $\triangleright$  Specify and assume  $H_0$
- $\blacktriangleright$  Define  $H_A$
- Examine reference dist'n  $(t, \chi^2, ...)$  under  $H_0$
- Calculate p-value
- Compare to some  $\alpha$ ; reject  $H_0$  if  $p < \alpha$

#### Overview of Randomization Inference

Specify and assume  $H_0$  (sharp null of no treatment effect)

- Specify and assume  $H_0$  (sharp null of no treatment effect)
- $\blacktriangleright$  Define  $H_A$

- Specify and assume  $H_0$  (sharp null of no treatment effect)
- $\blacktriangleright$  Define  $H_A$
- Create reference dist'n from all possible values of X under  $H_0$  (or at least a big sample of them)

- Specify and assume  $H_0$  (sharp null of no treatment effect)
- $\blacktriangleright$  Define  $H_A$
- Create reference dist'n from all possible values of X under  $H_0$  (or at least a big sample of them)
- ▶ What prop. of possible values are "at least as extreme as" observed?

 $\rightsquigarrow p$ -value!

- Specify and assume  $H_0$  (sharp null of no treatment effect)
- $\blacktriangleright$  Define  $H_A$
- Create reference dist'n from all possible values of X under  $H_0$

(or at least a big sample of them)

- ▶ What prop. of possible values are "at least as extreme as" observed?
  - $\rightsquigarrow p$ -value!
- Compare to some  $\alpha$ ; reject  $H_0$  if  $p < \alpha$

- Specify and assume  $H_0$  (sharp null of no treatment effect)
- $\blacktriangleright$  Define  $H_A$
- Create reference dist'n from all possible values of X under  $H_0$ 
  - (or at least a big sample of them)
- ▶ What prop. of possible values are "at least as extreme as" observed?
  - $\rightsquigarrow p$ -value!
- Compare to some  $\alpha$ ; reject  $H_0$  if  $p < \alpha$
- ➤ CA ballot ordering effects (JASA 2006)

The RI p-value is

$$p = \frac{\# \text{ outcomes } \ge \text{as extreme as obs}}{\text{total } \# \text{ outcomes}}$$

The RI 
$$p$$
-value is 
$$p = \frac{\# \text{ outcomes } \ge \text{ as extreme as obs}}{\text{total } \# \text{ outcomes}}$$
 or

$$p = \frac{\# \text{ randomizations producing extreme } \widehat{ATE}}{\text{total } \# \text{ randomizations}}$$

The RI 
$$p$$
-value is 
$$p = \frac{\# \text{ outcomes } \ge \text{ as extreme as obs}}{\text{total } \# \text{ outcomes}}$$
 or

$$p = \frac{\# \text{ randomizations producing extreme } \widehat{ATE}}{\text{total } \# \text{ randomizations}}$$

How many randomizations are there?

### Counting Principles

How many ways to **select** k things from a set of n things?

$${}_nC_k=\binom{n}{k}=\frac{{}_nP_k}{k!}=\frac{n!}{k!(n-k)!}$$

How many ways to **select** k things from a set of n things?

$${}_nC_k=\binom{n}{k}=\frac{{}_nP_k}{k!}=\frac{n!}{k!(n-k)!}$$

Suppose 5 units, A, B, C, D, E.

▶ How many ways to order?  ${}_{n}P_{k}$ : ABCDE, ABCED, ...=  $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5! = 120$ 

How many ways to **select** k things from a set of n things?

$${}_nC_k = \binom{n}{k} = \frac{{}_nP_k}{k!} = \frac{n!}{k!(n-k)!}$$

Suppose 5 units, A, B, C, D, E.

- ► How many ways to order?  ${}_{n}P_{k}$ : ABCDE, ABCED, ...=  $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5! = 120$
- If only want 3 of 5? Divide by 2! = (n k)! (removing permutations from last 2 slots)

How many ways to **select** k things from a set of n things?

$${}_nC_k = \binom{n}{k} = \frac{{}_nP_k}{k!} = \frac{n!}{k!(n-k)!}$$

Suppose 5 units, A, B, C, D, E.

- ► How many ways to order?  ${}_{n}P_{k}$ : ABCDE, ABCED, ...=  $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5! = 120$
- If only want 3 of 5? Divide by 2! = (n k)! (removing permutations from last 2 slots)
- What if order doesn't matter? Divide by 3! = k! (6 permutations for ABC, but only one combination)

How many ways to choose 5 villages of 10 for treatment?

How many ways to choose 5 villages of 10 for treatment?

$$_{10}C_5 = \binom{10}{5} = \frac{10!}{5!(10-5)!}$$

How many ways to choose 5 villages of 10 for treatment?

$$_{10}C_5 = \binom{10}{5} = \frac{10!}{5!(10-5)!}$$

$$\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 252$$

# Common Assumptions, Null Hypotheses

Constant effect:

$$\tau_i = Y_{i1} - Y_{i0} = \tau \quad \forall i$$

Null hypothesis of no average effect:

$$ATE = \overline{\tau} = 0$$

▶ Sharp null hypothesis of no effect:

$$\tau_i = 0$$

# Examples

### An Assignment Mechanism: Perfect Doctor

Calculate RI p-value for Perfect Doctor, under sharp null.

| Patient | Y(0) | Y(1) | au   | Т |
|---------|------|------|------|---|
| 1       | (1)  | 6    | (5)  | 1 |
| 2       | (3)  | 12   | (9)  | 1 |
| 3       | 9    | (8)  | (-1) | 0 |
| 4       | 11   | (10) | (-1) | 0 |
|         |      |      |      |   |
| Mean    | 10   | 9    | (3)  |   |
|         |      |      |      |   |

### An Assignment Mechanism: Perfect Doctor

Calculate RI p-value for Perfect Doctor, under sharp null.

| Patient | Y(0) | Y(1) | au   | Т |
|---------|------|------|------|---|
| 1       | (1)  | 6    | (5)  | 1 |
| 2       | (3)  | 12   | (9)  | 1 |
| 3       | 9    | (8)  | (-1) | 0 |
| 4       | 11   | (10) | (-1) | 0 |
|         |      |      |      |   |
| Mean    | 10   | 9    | (3)  |   |
|         |      |      |      |   |

(See 01-ri-perfect-dr.R)

#### RI versus the t-test

#### Perfect Doctor:

- ▶ RI: p = 1
- $\blacktriangleright$  t.test():  $p \approx 0.8$
- If no tr effect, then this result typical"

#### RI versus the t-test

#### Perfect Doctor:

- ▶ RI: p = 1
- $\blacktriangleright$  t.test():  $p \approx 0.8$
- If no tr effect, then this result typical"

(Odd logic of NHST: "assume false thing, how strange is data?")

#### Assumed table of potential outcomes:

| Village | T | % if Female  | % if Male    | $	au_i$ |
|---------|---|--------------|--------------|---------|
|         |   | Head, $Y(1)$ | Head, $Y(0)$ |         |
| 1       |   | 15           | 10           | 5       |
| 2       | _ | 15           | 15           | 0       |
| 3       | _ | 30           | 20           | 10      |
| 4       | _ | 15           | 20           | -5      |
| 5       | _ | 20           | 10           | 10      |
| 6       | _ | 15           | 15           | 0       |
| 7       | _ | 30           | 15           | 15      |
| Average |   | 20           | 15           | 5       |

Suppose we randomly select 2 villages to have female-headed councils, and observe

| Village | T            | % if Female  | % if Male    | $	au_i$ |
|---------|--------------|--------------|--------------|---------|
|         |              | Head, $Y(1)$ | Head, $Y(0)$ |         |
| 1       | F            | 15           |              |         |
| 2       | M            |              | 15           |         |
| 3       | M            |              | 20           |         |
| 4       | M            |              | 20           |         |
| 5       | M            |              | 10           |         |
| 6       | $\mathbf{M}$ |              | 15           |         |
| 7       | $\mathbf{F}$ | 30           |              |         |
| Average |              | 22.5         | 16           | 6.5     |

We assume the *sharp null* hypothesis (assumed values in red):

| Village | T            | % if Female  | % if Male    | $	au_i$ |
|---------|--------------|--------------|--------------|---------|
|         |              | Head, $Y(1)$ | Head, $Y(0)$ |         |
| 1       | F            | 15           | 15           | 0       |
| 2       | Μ            | 15           | 15           | 0       |
| 3       | $\mathbf{M}$ | 20           | 20           | 0       |
| 4       | Μ            | 20           | 20           | 0       |
| 5       | Μ            | 10           | 10           | 0       |
| 6       | Μ            | 15           | 15           | 0       |
| 7       | $\mathbf{F}$ | 30           | 30           | 0       |
| Average |              |              |              | 0       |

Then we estimate what the observed ATE would be for all the possible random assignments.

First,

| Village | T            | % if Female  | % if Male    | $	au_i$ |
|---------|--------------|--------------|--------------|---------|
|         |              | Head, $Y(1)$ | Head, $Y(0)$ |         |
| 1       | F            | 15           |              |         |
| 2       | Μ            |              | 15           |         |
| 3       | Μ            |              | 20           |         |
| 4       | Μ            |              | 20           |         |
| 5       | Μ            |              | 10           |         |
| 6       | $\mathbf{F}$ | 15           |              |         |
| 7       | $\mathbf{M}$ |              | 30           |         |
| Average |              | 15           | 19           | -4      |

Second,

| Village | T            | % if Female  | % if Male    | $	au_i$ |
|---------|--------------|--------------|--------------|---------|
|         |              | Head, $Y(1)$ | Head, $Y(0)$ |         |
| 1       | F            | 15           |              |         |
| 2       | M            |              | 15           |         |
| 3       | M            |              | 20           |         |
| 4       | M            |              | 20           |         |
| 5       | $\mathbf{F}$ | 10           |              |         |
| 6       | M            |              | 15           |         |
| 7       | $\mathbf{M}$ |              | 30           |         |
| Average |              | 12.5         | 20           | -7.5    |

...,

..., and all the others. The full set of  $\frac{7!}{2!5!} = 21$  differences in means:

|       | Estimate | Frequency |
|-------|----------|-----------|
|       | -7.5     | 3         |
|       | -4       | 5         |
|       | -0.5     | 6         |
|       | 3        | 2         |
|       | 6.5      | 3         |
|       | 10       | 2         |
| Total |          | 21        |

..., and all the others. The full set of  $\frac{7!}{2!5!} = 21$  differences in means:

|       | Estimate | Frequency |
|-------|----------|-----------|
|       | -7.5     | 3         |
|       | -4       | 5         |
|       | -0.5     | 6         |
|       | 3        | 2         |
|       | 6.5      | 3         |
|       | 10       | 2         |
| Total |          | 21        |

How many are at least as extreme as my 6.5?

..., and all the others. The full set of  $\frac{7!}{2!5!} = 21$  differences in means:

|       | Estimate | Frequency |
|-------|----------|-----------|
|       | -7.5     | 3         |
|       | -4       | 5         |
|       | -0.5     | 6         |
|       | 3        | 2         |
|       | 6.5      | 3         |
|       | 10       | 2         |
| Total |          | 21        |

How many are at least as extreme as my 6.5?

Two-sided ("women's %  $\neq$  men's"):  $p = \frac{8}{21} \approx 0.38$ 

..., and all the others. The full set of  $\frac{7!}{2!5!} = 21$  differences in means:

|       | Estimate | Frequency |
|-------|----------|-----------|
|       | -7.5     | 3         |
|       | -4       | 5         |
|       | -0.5     | 6         |
|       | 3        | 2         |
|       | 6.5      | 3         |
|       | 10       | 2         |
| Total |          | 21        |

How many are at least as extreme as my 6.5?

Two-sided ("women's %  $\neq$  men's"):  $p = \frac{8}{21} \approx 0.38$ 

One-sided ("women's % > men's"):  $p = \frac{5}{21} \approx 0.24$ 

These p-values

▶ are exact, not approximate

- ▶ are exact, not approximate
- $\blacktriangleright$  do not require asymptotic large  $N \to \infty$

- ▶ are exact, not approximate
- $\blacktriangleright$  do not require asymptotic large  $N \to \infty$
- ightharpoonup need no distrib assump (normal as  $N \to \infty$ )

- are exact, not approximate
- $\blacktriangleright$  do not require asymptotic large  $N \to \infty$
- ▶ need no distrib assump (normal as  $N \to \infty$ )
- ▶ do not require calculating standard error (SE)

- ▶ are exact, not approximate
- $\blacktriangleright$  do not require asymptotic large  $N \to \infty$
- ightharpoonup need no distrib assump (normal as  $N \to \infty$ )
- ▶ do not require calculating standard error (SE)
- ► Randomization creates distribution of possible numbers correct/treatment effects

- ▶ are exact, not approximate
- $\blacktriangleright$  do not require asymptotic large  $N \to \infty$
- ▶ need no distrib assump (normal as  $N \to \infty$ )
- ▶ do not require calculating standard error (SE)
- ► Randomization creates distribution of possible numbers correct/treatment effects
- can be approximated by sampling

- ▶ are exact, not approximate
- $\blacktriangleright$  do not require asymptotic large  $N \to \infty$
- ▶ need no distrib assump (normal as  $N \to \infty$ )
- ▶ do not require calculating standard error (SE)
- ► Randomization creates distribution of possible numbers correct/treatment effects
- can be approximated by sampling
  - Assigning 500 of 1000 respondents to treatment? Randomly generate 10,000 assignments from  $2.7 \times 10^{299}$  possible ...

- ▶ are exact, not approximate
- $\blacktriangleright$  do not require asymptotic large  $N \to \infty$
- ▶ need no distrib assump (normal as  $N \to \infty$ )
- ▶ do not require calculating standard error (SE)
- ► Randomization creates distribution of possible numbers correct/treatment effects
- can be approximated by sampling
  - Assigning 500 of 1000 respondents to treatment? Randomly generate 10,000 assignments from  $2.7 \times 10^{299}$  possible ...
- can be computationally intensive

Resume audit study, Bertrand and Mullainathan (2004)

|                | 0            | 1          |
|----------------|--------------|------------|
| black<br>white | 2278<br>2200 | 157<br>235 |
|                |              |            |

Resume audit study, Bertrand and Mullainathan (2004)

|       | 0    | 1   |
|-------|------|-----|
| black | 2278 | 157 |
| white | 2200 | 235 |

▶ Only possible values:  $\tau_i \in \{-1, 0, 1\}$ 

Resume audit study, Bertrand and Mullainathan (2004)

|       | 0    | 1   |
|-------|------|-----|
| black | 2278 | 157 |
| white | 2200 | 235 |

▶ Only possible values:  $\tau_i \in \{-1, 0, 1\}$ 

Assume the sharp null  $\tau_i = 0$  for every employer.

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $\blacktriangleright H_0: \mu_{\mathrm{black\ name}} = \mu_{\mathrm{white\ name}}$

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $\blacktriangleright H_0: \mu_{\mathrm{black\ name}} = \mu_{\mathrm{white\ name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $\blacktriangleright H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- Create reference dist'n of all possible assignments

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $\blacktriangleright H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- Create reference dist'n of all possible assignments

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \binom{4870}{2435} = \frac{4870 \cdot 4869 \cdot \dots \cdot 2436}{2435!}$$

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \binom{4870}{2435} = \frac{4870 \cdot 4869 \cdot \ldots \cdot 2436}{2435!}$$

$$\approx 1.1 \times 10^{1464}$$

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \binom{4870}{2435} = \frac{4870 \cdot 4869 \cdot \ldots \cdot 2436}{2435!}$$

$$\approx 1.1 \times 10^{1464}$$

(There are  $\approx 10^{86}$  fundamental particles in the universe.)

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \binom{4870}{2435} = \frac{4870 \cdot 4869 \cdot \dots \cdot 2436}{2435!}$$

$$\approx 1.1 \times 10^{1464}$$

(There are  $\approx 10^{86}$  fundamental particles in the universe.)

Let's do 1000, or 100,000 – something reasonable

- Assume the sharp null  $\tau_i = 0$  for every employer.
- $H_0: \mu_{\text{black name}} = \mu_{\text{white name}}$
- $\blacktriangleright H_A: \mu_{\text{black name}} \neq \mu_{\text{white name}}$
- Create reference dist'n of all possible assignments

$$_{4870}C_{2435} = \binom{4870}{2435} = \frac{4870 \cdot 4869 \cdot \dots \cdot 2436}{2435!}$$

$$\approx 1.1 \times 10^{1464}$$

(There are  $\approx 10^{86}$  fundamental particles in the universe.)

- Let's do 1000, or 100,000 something reasonable
- ▶ See 01-ri-resume-donate.R





#### Randomization Inference

- ➤ Gerber and Green (2012) donations example, p. 65
- ightharpoonup Possible values  $\tau_i \in (-\infty, \infty)$
- $\triangleright Y_1, Y_0, \tau$  likely very skewed
- ▶ See 01-ri-resume-donate.R





Recall that

"reject  $H_0$  at  $\alpha=0.05"\equiv$  " $H_0$  falls outside 95% CI"

Recall that

"reject 
$$H_0$$
 at  $\alpha=0.05$ "  $\equiv$  " $H_0$  falls outside 95% CI"

$$\blacktriangleright \ \, \text{Posit} \,\, H_0: \tau = \tau^* \in \{ \dots, -2, -1, 0, 1, 2, \dots \}$$

Recall that

"reject 
$$H_0$$
 at  $\alpha=0.05$ "  $\equiv$  " $H_0$  falls outside 95% CI"

- Posit  $H_0: \tau = \tau^* \in \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $\blacktriangleright$  RI test whether to reject  $H_0$

#### Recall that

"reject 
$$H_0$$
 at  $\alpha=0.05"\equiv "H_0$  falls outside 95% CI"

- Posit  $H_0: \tau = \tau^* \in \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $\triangleright$  RI test whether to reject  $H_0$
- lacktriangleright If not, then  $\tau^*$  is in CI

#### Recall that

"reject  $H_0$  at  $\alpha=0.05$ "  $\equiv$  " $H_0$  falls outside 95% CI"

- Posit  $H_0: \tau = \tau^* \in \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $\triangleright$  RI test whether to reject  $H_0$
- lacktriangleright If not, then  $\tau^*$  is in CI
- $\triangleright$  CI consists of set of  $\tau^*$  not unusual, given data

#### Recall that

"reject  $H_0$  at  $\alpha=0.05"\equiv "H_0$  falls outside 95% CI"

- Posit  $H_0: \tau = \tau^* \in \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $\triangleright$  RI test whether to reject  $H_0$
- lacktriangleright If not, then  $\tau^*$  is in CI
- $\triangleright$  CI consists of set of  $\tau^*$  not unusual, given data
- See 01-ri-resume-donate.R

▶ Difference in variances

- ▶ Difference in variances
- ► Regression coefficient

- ▶ Difference in variances
- ► Regression coefficient
- ➤ Sum of two regression coefficients

- ▶ Difference in variances
- ► Regression coefficient
- ➤ Sum of two regression coefficients
- Ratio of skewnesses

- ▶ Difference in variances
- Regression coefficient
- ➤ Sum of two regression coefficients
- Ratio of skewnesses
- ...(any crazy thing!)

- ▶ Difference in variances
- ► Regression coefficient
- ➤ Sum of two regression coefficients
- ► Ratio of skewnesses
- ...(any crazy thing!)

- ▶ Difference in variances
- ▶ Regression coefficient
- ➤ Sum of two regression coefficients
- ► Ratio of skewnesses
- ...(any crazy thing!)

No need to derive the correct asymptotic standard error (SE).

"There is only one test."

"There is only one test."

- Allen Downey, posit::conf(2024)

# Next:

Covariates in Experiments

Bertrand, Marianne, and Sendhil Mullainathan. 2004. "Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination." *American Economic Review* 94 (4): 991–1013.

Gerber, Alan S., and Donald P. Green. 2012. Field Experiments: Design, Analysis, and Interpretation. New York, NY: WW Norton.