Image Filtering

Dr. Tushar Sandhan

Input

Input

Input

Histeq

Input

Histeq

Input Histeq Noise

Input Histeq Noise

Linearity

- Operations
 - linear
 - additivity

$$\mathcal{T}[a \cdot f_1(x, y) + b \cdot f_2(x, y)] = \mathcal{T}[a \cdot f_1(x, y)] + \mathcal{T}[b \cdot f_2(x, y)]$$

homogeneity

$$\mathcal{T}[a \cdot f_1(x, y)] = a \cdot \mathcal{T}[f_1(x, y)]$$

- o non-linear
 - not satisfying above

Linearity

- Operations
 - linear
 - additivity

$$\mathcal{T}[a \cdot f_1(x, y) + b \cdot f_2(x, y)] = \mathcal{T}[a \cdot f_1(x, y)] + \mathcal{T}[b \cdot f_2(x, y)]$$

homogeneity

$$\mathcal{T}[a \cdot f_1(x, y)] = a \cdot \mathcal{T}[f_1(x, y)]$$

- o non-linear
 - not satisfying above
- Examples
 - linear
 - negatives
 - o non-linear
 - gammas

Correlation

- measures similarity between the two signals
- windowed signal (kernel) is not reversed
- sliding vectors dot product
- o orthogonal signals are uncorrelated

Correlation

- measures similarity between the two signals
- windowed signal (kernel) is not reversed
- sliding vectors dot product
- o orthogonal signals are uncorrelated

Convolution

- measure the effect of one signal on the another
- windowed signal (kernel) is reversed
 - for symmetric kernels convolution = correlation

Correlation

Convolution

Correlation

$$R(x) = f(x) * g(x)$$

$$R(x) = \int_{-\infty}^{\infty} f(z)g(x+z)dz$$

Convolution

Correlation

$$R(x) = f(x) * g(x)$$

$$R(x) = \int_{-\infty}^{\infty} f(z)g(x+z)dz$$

Convolution

Correlation

$$R(x) = f(x) * g(x)$$

$$R(x) = \int_{-\infty}^{\infty} f(z)g(x+z)dz$$

Convolution

Correlation

$$R(x) = f(x) * g(x)$$

$$R(x) = \int_{-\infty}^{\infty} f(z)g(x+z)dz$$

Convolution

$$G(x) = f(x) * g(x)$$

$$G(x) = \int_{-\infty}^{\infty} f(z)g(x-z)dz$$

Correlation

$$R(x) = f(x) * g(x)$$

$$R(x) = \int_{-\infty}^{\infty} f(z)g(x+z)dz$$

Convolution

$$G(x) = f(x) \star g(x)$$

$$G(x) = \int_{-\infty}^{\infty} f(z)g(x-z)dz$$

Correlation

$$R(x) = f(x) * g(x)$$

$$R(x) = \int_{-\infty}^{\infty} f(z)g(x+z)dz$$

Convolution

$$G(x) = f(x) * g(x)$$

$$G(x) = \int_{-\infty}^{\infty} f(z)g(x-z)dz$$

- 2D correlation
 - cross-correlation
 - o filtering algos internally use it
 - w need to be appropriately reflected before filtering

$$(w \stackrel{\wedge}{\approx} f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

- 2D correlation
 - cross-correlation
 - o filtering algos internally use it
 - w need to be appropriately reflected before filtering

$$(w \stackrel{\wedge}{\approx} f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

- 2D correlation
 - o cross-correlation
 - o filtering algos internally use it
 - w need to be appropriately reflected before filtering

2D convolution

$$\circ w \rightarrow m \times n$$

$$a = \frac{m-1}{2}, b = \frac{n-1}{2}$$

- a, b are assumed to be odd integers
- note the kernels do not depend on (x, y)

$$(w \stackrel{\wedge}{\approx} f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

$$(w \star f)(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

$$(w \approx f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t) \qquad (w \star f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

Property	Correlation	Convolution
Commutative	_	$f \star g = g \star f$
Associative		$f \star (g \star h) = (f \star g) \star h$
Distributive	$f \Leftrightarrow (g+h) = (f \Leftrightarrow g) + (f \Leftrightarrow h)$	$f \star (g + h) = (f \star g) + (f \star h)$

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

Input

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

Filter-2

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

Filter-2

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

$$g(x,y) = w_3 \star w_2 \star w_1 \star f(x,y)$$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

Filter-1

Input

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

$$g(x,y) = w_3 \star w_2 \star w_1 \star f(x,y)$$

 $(w_3 \star w_2 \star w_1) \star f(x, y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

$$g(x,y) = w_3 \star w_2 \star w_1 \star f(x,y)$$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Image filtering
 - spatial filtering
 - o convolving a kernel with an image
 - o filtering: $g(x,y) = (w \star f)(x,y)$

- Multistage filtering
 - o filtering the filtered
 - use properties
 - · commutative & associative

- Filter
 - o kernel, mask, window, template
 - ow(i,j) or k(i,j) ∀ $i,j ∈ N_K$, K-kernel size
 - *K* : determine neighbourhood of operation
 - w(i,j): filter coefficients determine nature of the filter

- Filter
 - o kernel, mask, window, template
 - o w(i,j) or k(i,j) ∀ $i,j ∈ N_K$, K- kernel size
 - *K* : determine neighbourhood of operation
 - w(i,j): filter coefficients determine nature of the filter

- Nature of a filter
 - neighbour interactions
 - o filter coefficients define severity of interaction
 - smoothing
 - sharpening
 - noise handling capacity

- Paddings
 - zero
 - mirror
 - replicate

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $ow = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$

$$w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - outer product of vectors is same as their 2D conv

$$w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- Separable kernels
 - a kernel in a matrix form can be represented as outer product of two vectors
 - $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - outer product of vectors is same as their 2D conv

$$w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{c} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \qquad \mathbf{r} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- Separable kernels
 - a kernel in a matrix form can be represented as outer product of two vectors
 - $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - outer product of vectors is same as their 2D conv

$$w = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{c} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \qquad \mathbf{r} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{c} \, \mathbf{r}^T = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \mathbf{w}$$

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$

$$w = w_1 \star w_2$$

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - outer product of vectors is same as their 2D conv
 - image: $M \times N$

$$w = w_1 \star w_2$$

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - outer product of vectors is same as their 2D conv
 - image: $M \times N$

$$w = w_1 \star w_2$$

$$w \star f = (w_1 \star w_2) \star f$$

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - · outer product of vectors is same as their 2D conv
 - image: $M \times N$

$$w = w_1 \star w_2$$

$$w \star f = (w_1 \star w_2) \star f$$

$$=(w_2 \star w_1) \star f$$

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - outer product of vectors is same as their 2D conv
 - image: $M \times N$

$$w = w_1 \star w_2$$

$$w \star f = (w_1 \star w_2) \star f$$

$$=(w_2 \star w_1) \star f$$

$$= w_2 \star (w_1 \star f)$$

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - outer product of vectors is same as their 2D conv
 - image: $M \times N$

.

$$w = w_1 \star w_2$$

$$w \star f = (w_1 \star w_2) \star f$$

$$=(w_2 \star w_1) \star f$$

$$= w_2 \star (w_1 \star f)$$

$$=(w_1\star f)\star w_2$$

Separable kernels

- a kernel in a matrix form can be represented as outer product of two vectors
- $\circ w = uv^T$
 - $u \in m \times 1$
 - $v \in n \times 1$
 - sq. kernels $w = uu^T$, $w \in m \times m$
- Advantage: separable kernels
 - computationally fast
 - outer product of vectors is same as their 2D conv
 - image: $M \times N$
 - advantage factor = $\frac{mn}{m+n}$

$$w = w_1 \star w_2$$

$$w \star f = (w_1 \star w_2) \star f$$

$$=(w_2 \star w_1) \star f$$

$$= w_2 \star (w_1 \star f)$$

$$= (w_1 \star f) \star w_2$$

- Box filter
 - smoothing filter
 - lowpass filter
 - averaging filter

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

- Box filter
 - smoothing filter
 - lowpass filter
 - averaging filter
- Use cases
 - o random noise reduction
 - reducing sharp transitions in intensity
 - favours blurring along perpendicular directions
 - reduce aliasing
 - smoothing prior to resampling
 - o reduce quantization noise
 - o reduce false contours of intensities
 - o essential in composite filtering
 - multistage filters

	1	1	1
$\frac{1}{9} \times$	1	1	1
	1	1	1

- Box filter
 - smoothing filter
 - lowpass filter
 - averaging filter
- Use cases
 - o random noise reduction
 - reducing sharp transitions in intensity
 - favours blurring along perpendicular directions
 - reduce aliasing
 - smoothing prior to resampling
 - o reduce quantization noise
 - reduce false contours of intensities
 - o essential in composite filtering
 - multistage filters

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

- Box filter
 - smoothing filter
 - lowpass filter
 - averaging filter

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

- Box filter
 - smoothing filter
 - lowpass filter
 - averaging filter

input

- Box filter
 - smoothing filter
 - lowpass filter
 - averaging filter

input

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

EE604: IMAGE PROCESSING

m=3

- Box filter
 - smoothing filter
 - lowpass filter
 - averaging filter

m=3

m=11

- Box filter
 - smoothing filter
 - lowpass filter
 - averaging filter

input

m=3

m=11

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

$$w(s,t) = G(s,t) = Ke^{-\frac{s^2+t^2}{2\sigma^2}}$$

$\frac{1}{4.8976} \times$	0.3679	0.6065	0.3679
	0.6065	1.0000	0.6065
	0.3679	0.6065	0.3679

- Gaussian filter
 - smoothing filter
 - o defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

	$s^2 + t^2$
$w(s,t) = G(s,t) = Ke^{-s}$	$2\sigma^2$

	0.3679	0.6065	0.3679
<	0.6065	1.0000	0.6065
	0.3679	0.6065	0.3679

G(s,t)	
1	
s	

- Gaussian filter
 - smoothing filter
 - o defocused lens approximators
 - o isotropic
 - response is independent of orientation
 - circularly symmetric

$\frac{1}{4.8976} \times$	0.3679	0.6065	0.3679
	0.6065	1.0000	0.6065
	0.3679	0.6065	0.3679

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

input

m=21 σ =3.5 Gauss

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

input

m=21 box

m=21 σ =3.5 Gauss

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

$\frac{1}{4.8976} \times$	0.3679	0.6065	0.3679
	0.6065	1.0000	0.6065
	0.3679	0.6065	0.3679

$$m=21 box$$

m=43 σ =7 Gauss

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

$\frac{1}{4.8976} \times$	0.3679	0.6065	0.3679
	0.6065	1.0000	0.6065
	0.3679	0.6065	0.3679

$$m=21 box$$

m=21 σ =3.5 Gauss

m=43 σ =7 Gauss

m=21 box

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

$\frac{1}{4.8976} \times$	0.3679	0.6065	0.3679
	0.6065	1.0000	0.6065
	0.3679	0.6065	0.3679

m=43 σ =7 Gauss

m=21 box

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - circularly symmetric

m=85 σ =7 Gauss

m=43 σ =7 Gauss

m=21 box

- Gaussian filter
 - smoothing filter
 - defocused lens approximators
 - isotropic
 - response is independent of orientation
 - · circularly symmetric

difference $m_{85} - m_{43}$

m=85 σ =7 Gauss

m=43 σ =7 Gauss

m=21 box

- Box vs Gaussian
 - o blur profile
 - o blurred rects having same shape

- Box vs Gaussian
 - o blur profile
 - o blurred rects having same shape

- Box vs Gaussian
 - o blur profile
 - o blurred rects having same shape

Padding effects

m=187 σ =31 Gauss

image 1024x1024

Padding effects

m=187 σ =31 Gauss

image 1024x1024

Padding effects

m=187
$$\sigma$$
=31 Gauss

image 1024x1024

Relative size effect

m=187 σ =31 Gauss

image 4096x4096

Padding effects

m=187 σ =31 Gauss image 1024x1024

Relative size effect

m=187 σ =31 Gauss

image 4096x4096

Padding effects

m=187 σ =31 Gauss image 1024x1024

Relative size effect

m=187 σ =31 Gauss

image 4096x4096

m=745 σ =124 Gauss

Padding effects

m=187
$$\sigma$$
=31 Gauss image 1024x1024

Relative size effect

m=187 σ =31 Gauss image 4096x4096

 $m=745 \sigma=124 Gauss$

Relevant region extraction

Relevant region extraction

Relevant region extraction

Relevant region extraction

thresholding

Shifting

Shifting

filter output

Shifting

filter

output

Shading correction

Shading correction

Shading correction

Shading correction

Conclusion

- Filtering
 - Separable kernels
 - Correlation Vs Convolution
 - Filter properties
 - Smoothing filters

