Tianjin International Engineering Institute

Formal Languages and Automata

Lesson 2: Formal Languages

Marc Gaetano Edition 2018

Alphabets and strings

- A common way to talk about words, number, pairs of words, etc. is by representing them as strings
- To define strings, we start with an alphabet

An alphabet is a finite set of symbols

Examples

```
\Sigma_1 = \{a, b, c, d, ..., z\}: the set of letters in English \Sigma_2 = \{0, 1, ..., 9\}: the set of (base I0) digits \Sigma_3 = \{a, b, ..., z, \#\}: the set of letters plus the special symbol \# \Sigma_4 = \{(,)\}: the set of open and closed brackets
```

Strings

A string over alphabet Σ is a finite sequence of symbols in Σ

- The empty string will be denoted by ε
- Examples

```
abfbz is a string over \Sigma_1 = \{a, b, c, d, ..., z\} 9021 is a string over \Sigma_2 = \{0, 1, ..., 9\} ab#bc is a string over \Sigma_3 = \{a, b, ..., z, \#\} ))()(() is a string over \Sigma_4 = \{(,)\}
```

Languages

A language is a set of strings over an alphabetC

- Languages can be used to describe problems with "yes/no" answers, for example:
 - $L_1 =$ The set of all strings over Σ_1 that contain the substring "fool"
 - $L_2 =$ The set of all strings over Σ_2 that are divisible by 7 = $\{7, 14, 21, ...\}$
 - $L_3 =$ The set of all strings of the form s#s where s is any string over $\{a, b, ..., z\}$
 - $L_4 =$ The set of all strings over Σ_4 where every (can be matched with a subsequent)

Set membership

Computation is translated to set membership

Example computation problem:

Is number x prime?

Equivalent set membership problem:

$$x \in PRIMES = \{2,3,5,7,11,13,17,\dots\}$$
?

String Operations

$$w = a_1 a_2 \cdots a_n$$

$$v = b_1 b_2 \cdots b_m$$

bbbaaa

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

String Operations

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

String Operations

$$w = a_1 a_2 \cdots a_n$$

abba

aa

a

$$|abba| = 4$$

$$|aa| = 2$$

$$|a| = 1$$

|w| = n

Length and Concatenation

$$|uv| = |u| + |v|$$

Example:

$$u = aab, \quad |u| = 3$$

$$v = abaab, \quad |v| = 5$$

$$|uv| = |aababaab| = 8$$

$$|uv| = |u| + |v| = 3 + 5 = 8$$

Empty String

A string with no letters is denoted: ε Acts as a neutral element Observations:

$$\begin{aligned} \left| \varepsilon \right| &= 0 \\ \varepsilon w &= w \, \varepsilon = w \end{aligned}$$

$$\varepsilon abba = abba \, \varepsilon = ab \, \varepsilon ba = abba$$

Substring

Substring of string:

a subsequence of consecutive characters

String	Substring
<u>abb</u> ab	ab
<u>abbab</u>	abba
ab <u>ba</u> b	b
abbab_	bbab

Prefix and Suffix

string abbab

Prefixes Suffixes

 ε abbab

a bbab

ab bab

abb ab

abba b

abbab arepsilon

Exponent Operation

$$w^n = \underbrace{ww \cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \varepsilon \quad (abba)^0 = \varepsilon$$

The * Operation

 \sum^* is the set of all possible strings from alphabet Σ

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, \dots\}$$

The + Operation

 Σ^+ is the set of all possible strings from alphabet Σ^- except ε^-

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

$$\Sigma^+ = \Sigma^* - \varepsilon$$

$$\Sigma^+ = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

Language

Any language over alphabet Σ is a subset of Σ

```
\Sigma = \{a, b\}
Example:
                  \Sigma^* = \{ \varepsilon, a, b, aa, ab, ba, bb, aaa, \dots \}
                     \{{m \varepsilon}\}
Languages:
                     \{a, aa, aab\}
                     \{\varepsilon, abba, baba, aa, ab, aaaaaa\}
```

Language Example

$$\Sigma = \{a, b\}$$
 $L = \{a^n b^n : n \ge 0\}$

An infinite language

Two special languages

Empty language

Language with empty string

$$\{ \} \text{ or } \emptyset$$

$$\{\,\mathcal{E}\,\}$$

Size of a language (number of elements):

$$|\{\}| = 0$$

$$|\{\varepsilon\}| = 1$$

$$|\{a, aa, ab\}| = 3$$

$$|\{\varepsilon, aa, bb, abba, baba\}| = 5$$

Two special languages

$$\emptyset = \{ \} \neq \{ \mathcal{E} \}$$

$$\left|\left\{ \right.\right.\right.\right|=\left|\varnothing\right.\right|=0$$

$$|\{\varepsilon\}| = 1$$

$$\left| \varepsilon \right| = 0$$

Operations on Languages

The usual set operations:

$$\{a\,,ab\,,aaaa\,\} \cup \{bb\,,ab\,\} = \{a\,,ab\,,bb\,,aaaa\,\}$$
 union
$$\{a\,,ab\,,aaaa\,\} \cap \{bb\,,ab\,\} = \{ab\,\}$$
 intersecti on
$$\{a\,,ab\,,aaaa\,\} - \{bb\,,ab\,\} = \{a\,,aaaa\,\}$$
 difference

Complement:
$$\overline{L} = \Sigma^* - L$$

$$\overline{\{a,ba\}} = \{\varepsilon,b,aa,ab,bb,aaa,...\}$$

Reverse

Definition:

$$L^R = \{ w^R : w \in L \}$$

Examples:

$$\left\{ab,aab,baba\right\}^{R}=\left\{ba,baa,abab\right\}$$

$$L=\left\{a^{n}b^{n}:n\geq0\right\}$$

$$L^{R}=\left\{b^{n}a^{n}:n\geq0\right\}$$

Concatenation

Definition:

$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example:

Power operation

Definition:

$$L^n = LL \cdots L$$

Exemple:

$${a,b}^3 = {a,b}{a,b}{a,b} =$$
 ${aaa,ab,aba,abb,baa,bab,bba,bbb}$

Special case:

$$L^0 = \{\varepsilon\}$$

Star-Closure (Kleene *)

Definition:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$$

Example:

Example:
$$\{a,bb\}^* = \begin{cases} \mathcal{E}, & L^0 \\ a,bb, & L^1 \\ aa,abb,bba,bbb, & L^2 \\ aaa,abb,abba,abba,abbb, & L^3 \end{cases}$$

Positive closure (+)

Definition:

$$L^{^+} = L^{^1} \cup L^{^2} \cup L^{^3} \cup \cdots$$

Example:
$$L^{+} = L^{1} \cup L^{2} \cup L^{3} \cup \cdots$$

$$\left\{a,bb\right\}^{+} = \left\{a,bb\right\}, \\ aa,abb,bba,bbb, \\ aaa,abb,abba,abbb, \\ L^{2}$$

Note that:
$$L^* = L^0 \cup L^+$$