The group G is isomorphic to the group labelled by [18, 1] in the Small Groups library. Ordinary character table of $G \cong D18$:

	1a	9a	2a	9b	9c	3a
χ_1	1	1	1	1	1	1
χ_2	1	1	-1	1	1	1
χ_3	2	-1	0	-1	-1	2
χ_4	2	$E(9)^2 + E(9)^7$	0	$E(9)^4 + E(9)^5$	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	-1
χ_5	2	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	0	$E(9)^2 + E(9)^7$	$E(9)^4 + E(9)^5$	-1
χ_6	2	$E(9)^4 + E(9)^5$	0	$-E(9)^2 - E(9)^4 - E(9)^5 - E(9)^7$	$E(9)^2 + E(9)^7$	-1

Trivial source character table of $G \cong D18$ at p = 3:

Normalisers N_i	N_1		N_2		N_3	
p-subgroups of G up to conjugacy in G	P_1		P_2		P_3	
Representatives $n_j \in N_i$	1a	2a	1a	2a	1a	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	1	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6$	9	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	1	3	1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	3	-1	3	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-1	1	-1	1	-1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1, 9, 4)(2, 12, 6)(3, 14, 8)(5, 16, 11)(7, 17, 13)(10, 18, 15)]) \cong C3$

 $P_3 = Group([(1, 13, 3, 9, 7, 14, 4, 17, 8)(2, 15, 5, 12, 10, 16, 6, 18, 11), (1, 9, 4)(2, 12, 6)(3, 14, 8)(5, 16, 11)(7, 17, 13)(10, 18, 15)]) \cong C9$

 $N_1 = Group([(1,2)(3,18)(4,12)(5,17)(6,9)(7,16)(8,15)(10,14)(11,13),(1,3,7,4,8,13,9,14,17)(2,5,10,6,11,15,12,16,18),(1,4,9)(2,6,12)(3,8,14)(5,11,16)(7,13,17)(10,15,18)]) \cong D18$ $N_2 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,2)(3,18)(4,12)(5,17)(6,9)(7,16)(8,15)(10,14)(11,13),(1,3,7,4,8,13,9,14,17)(2,5,10,6,11,15,12,16,18)]) \cong D18$ $N_3 = Group([(1,13,3,9,7,14,4,17,8)(2,15,5,12,10,16,6,18,11),(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,2)(3,18)(4,12)(5,17)(6,9)(7,16)(8,15)(10,14)(11,13)]) \cong D18$