Chariot élévateur de bateaux ★★

C2-09

Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

Question 2 En appliquant le théorème de l'énergie-puissance et en admettant que l'angle α est petit, montrer que $\alpha(t)$ et p(t) sont liés par l'équation différentielle suivante : $J_{\rm eq}\ddot{\alpha}(t) + \mu\dot{\alpha}(t) = \frac{Sp(t)}{k} + m_{S_2}gx_{G_{S_2}}$. Exprimer $J_{\rm eq}$.

On isole l'ensemble $E=\{S2;T2,\}$. On applique le théorème de l'énergie cinétique à l'ensemble en mouvement dans le référentiel terrestre galiléen : $\mathcal{P}_{\rm int}(E)+\mathcal{P}\left(\overline{E}\to E/R_g\right)=\frac{\mathrm{d}\mathscr{E}_c\left(E/R_g\right)}{\mathrm{d}t}$.

Calcul des puissances externes

$$\mathcal{P}\left(\text{pes} \to 2/R_g\right) =$$

Calcul des puissances internes $\mathcal{P}_{int}(E) = 0$ car pas de frottement dans la liaison pivot.

