SYZYGY Pod

Standard Breakout

General Description

The SYZYGY Standard Breakout is an addon board for carriers following the SYZYGY FPGA standard.

The POD features the SYZYGY Stardard connector that enables 32 single ended I/O or 10 differential pairs. It also features a small ATTiny44 microcontroller, that can be used to implement SYZYGY-DNA features.

All SYZYGY I/O signals are routed into a 0.1" labeled dual-row header, From here connections can be made directly or jumped over onto the prototyping area on the PCB. Breakouts are also offered for the ATTiny ICSP interface, and voltages from the carrier.

Key features:

- Compact Size
- All I/O broken out
- Universial prototyping area

Specifications:

- All 32 SYZYGY-STD I/O broken out
- All power rail broken out
- Multiple power configurations
- SYZYGY-DNA I2C bus accessable
- Lots of prototyping space
- Open source KiCad Design
- Dimensions: 45.0mm x 70.0mm (1.8" x 2.8")

Product Variants

Part Number	Description
SYZYGY-STD-R1D0	Populated PCBA, unprogrammed.
SYZYGY-STD-R1D0-BARE	Bare PCB

Licence

Hardware: CERN-OHL-P-2.0Documentation: CC-BY-SA-4.0

Revision History

Revision	Date	Description
r1d0	2021-12-12	Initial Release

Table of Contents

neral Description
oduct Variants1
ence
vision History
ages3
out
ZYGY DNA5
ototyping area.

Images

Figure 1. Top of PCB

Figure 2. Bottom Of PCB

Pinout

Pin	Signal Name	Pin	Signal Name
1	S0 D0p	2	S1 D1p
3	S2 D0n	4	S3 D1n
5	S4 D2p	6	S5 D3p
7	S6 D2n	8	S7 D3n
9	S8 D4p	10	S9 D5p
11	S10 D4n	12	S11 D5n
13	S12 D6p	14	S13 D7p
15	S14 D6n	16	S15 D7n
17	S16	18	S17
19	S18	20	S19
21	S20	22	S21
23	S22	24	S23
25	S24	26	S25
27	S26	28	S27
29	P2C CLKp	30	C2P CLKp
31	P2C CLKn	32	C2P CLKn

Table 1. Signal Descriptions

Signal Name	Direction	Description
D[0,2,4,6]{P N}	Input	Differential I/O
D[1,3,5,7]{P N}	Output	Differential I/O
S[27:0]	BIDIR	Single-ended I/O
P2C_CLK{P N}	P2C	Differential clock pair provided by pod to carrier. Where possible, these signals should connect to a dedicated clock input on the host.
C2P_CLK{P N}	C2P	Differential clock pair provided by carrier to pod

SYZYGY DNA

The embedded ATTiny44a can be used to implement the SYZYGY-DNA feature of the specification. A through hole footprint is provided to facilitate programming and debug.

Table 2. SYZYGY-DNA program/debug connector

Pin	Signal Name	Pin	Signal Name
1	CIPO	2	3v3
3	CLK / SCL	4	COPI / SDA
5	nRST	6	GND

Prototyping area

Prototyping areas is connected together in an arrangement much like a typical breadboard, a sharp exacto/scapel can be used to cut connection from the back of the PCB

