Stąd widać, że f^{-1} jest ciągła.

Pozostaje jedynie dowieść, że f^{-1} jest różniczkowalna. Niech $\mu = Df(x)$. Pokażemy, że f^{-1} jest różniczkowalna w y = f(x) i ma pochodną μ^{-1} . Tak jak w dowodzie twierdzenia 2.2 dla $x_1 \in V$ mamy

$$f(x_1)=f(x)+\mu(x_1-x)+\varphi(x_1-x),$$

gdzie

$$\lim_{x_1\to x}\frac{|\varphi(x_1-x)|}{|x_1-x|}=0.$$

Dlatego

$$\mu^{-1}(f(x_1)-f(x))=x_1-x+\mu^{-1}(\varphi(x_1-x)).$$

Ponieważ każdy $y_1 \in W$ jest postaci $f(x_1)$ dla pewnego $x_1 \in V$, więc można to zapisać następująco:

$$f^{-1}(y_1) = f^{-1}(y) + \mu^{-1}(y_1 - y) - \mu^{-1}(\varphi [f^{-1}(y_1) - f^{-1}(y)]).$$

i dlatego wystarczy pokazać, że

$$\lim_{y_1 \to y} \frac{\left| \mu^{-1} (\varphi [f^{-1}(y_1) - f^{-1}(y)]) \right|}{|y_1 - y|} = 0.$$

W tym celu (zadanie 1.10) wystarczy pokazać, że

$$\lim_{y_1 \to y} \frac{\left| \phi \left(f^{-1}(y_1) - f^{-1}(y) \right) \right|}{\left| y_1 - y \right|} = 0.$$

Ale

$$\frac{\left| \varphi(f^{-1}(y_1) - f^{-1}(y)) \right|}{\left| y_1 - y \right|} = \frac{\left| \varphi(f^{-1}(y_1) - f^{-1}(y)) \right|}{\left| f^{-1}(y_1) - f^{-1}(y) \right|} \cdot \frac{\left| f^{-1}(y_1) - f^{-1}(y) \right|}{\left| y_1 - y \right|}.$$

Ponieważ f^{-1} jest ciągła, więc $f^{-1}(y_1) \rightarrow f^{-1}(y)$, gdy $y_1 \rightarrow y$. Dlatego pierwszy czynnik dąży do 0. Ponieważ, na mocy (6), drugi czynnik jest mniejszy niż 2, więc ich iloczyn także dąży do 0.

Zauważmy, że ze wzoru na pochodną funkcji f^{-1} wynika, że pochodna ta jest w istocie ciągła (i jeśli f jest klasy C^{∞} to f^{-1} też jest klasy C^{∞}). Rzeczywiście, wystarczy zauważyć, że wyrazy macierzy odwrotnej do macierzy A to funkcje klasy C^{∞} zmiennych, będących wyrazami macierzy A.

Wynika to ze wzorów Cramera: $(A^{-1})_{ji} = (\det A^{ij})/(\det A)$, gdzie A^{ij} jest macierzą otrzymaną z A przez usunięcie i-tego wiersza i j-tej kolumny.

Warto też zauważyć, że funkcja odwrotna f^{-1} może istnieć nawet jeśli det f'(a)=0. Na przykład, jeżeli $f\colon R\to R$ jest określona jako $f(x)=x^3$, to f'(0)=0, ale f ma funkcję odwrotną $f^{-1}(x)=\sqrt[3]{x}$. Niemniej jedno jest pewne: jeśli det f'(a)=0, to f^{-1} nie może być różniczkowalna w f(a). Aby tego dowieść, zauważmy, że $(f\circ f^{-1})(x)=x$. Gdyby f^{-1} była różniczkowalna w f(a), to zasada różniczkowania funkcji złożonej dawałaby $f'(a)\cdot (f^{-1})'(f(a))=I$, skąd mielibyśmy det $f'(a)\cdot \det (f^{-1})'(f(a))=1$, co zaprzecza temu, że det f'(a)=0.

Zadania

2.36*. Niech $A \subset R^n$ będzie zbiorem otwartym i $f: A \to R^n$ funkcją 1-1 mającą ciągłą pochodną taką, że de^t $f'(x) \neq 0$ dla wszystkich x. Pokazać, że f(A) jest zbiorem otwartym i $f^{-1}: f(A) \to A$ jest różniczkowalna. Pokazać także, że f(B) jest otwarty dla każdego zbioru otwartego $B \subset A$.

2.37. (a) Niech funkcja $f: \mathbb{R}^2 \to \mathbb{R}$ ma ciągłą pochodną. Pokazać, że nie jest 1-1.

Wskazówka. Jeżeli na przykład $D_1 f(x, y) \neq 0$ dla wszystkich (x, y) z pewnego zbioru otwartego A, to rozważmy $g: A \rightarrow \mathbb{R}^2$ określoną jako g(x, y) = (f(x, y), y).

(b) Uogólnić ten wynik na przypadek funkcji mającej ciągłą pochodną $f \colon \mathbf{R}^n \to \mathbf{R}^m$, gdzie m < n.

2.38. (a) Pokazać, że jeżeli $f: R \rightarrow R$ spełnia $f'(a) \neq 0$ dla wszystkich $a \in R$, to f jest 1-1 (na całej R).

(b) Określmy $f: \mathbb{R}^2 \to \mathbb{R}^2$ wzorem $f(x, y) = (e^x \cos y, e^x \sin y)$. Pokazać, że $\det f'(x, y) \neq 0$ dla wszystkich (x, y), $\det f'(x, y) \neq 0$.

2.39. Wykorzystać funkcję $f: R \rightarrow R$ określoną wzorem

$$f(x) = \begin{cases} \frac{1}{2x + x^2 \sin \frac{1}{x}}, & \text{gdy} & x \neq 0, \\ 0, & \text{gdy} & x = 0, \end{cases}$$

by pokazać, ze z założeń twierdzenia 2.11 nie można wyeliminować ciągłości pochodnej.