MAT2440, Classwork37, Spring2025

ID:

1. Find all integers that are congruent to 3 modulo 5.

Sol:
$$Q = 3 \pmod{5} \Rightarrow Q = 5 \cdot N + 3$$

 $N = 0, \ Q = 5 \cdot 0 + 3 = 3$
 $N = 1, \ Q = 5 \cdot 1 + 3 = 8$
 $N = -2, \ Q = 5 \cdot 2 + 3 = 13$
 $N = 2, \ Q = 5 \cdot 2 + 3 = 13$
 $Q = \frac{1}{2} + \frac{$

2. Find the integer a such that $a \equiv 3 \pmod{12}$ and $11 \le a \le 22$.

Sol
$$Q \equiv 3 \pmod{12} \Rightarrow Q = 12 \cdot N + 3$$

if $11 \le Q \le 22$, then $11 \le 12 \cdot N + 3 \le 22$
 $\Rightarrow \theta \le 12N \le 19$
 $\Rightarrow \frac{\theta}{12} \le N \le \frac{19}{12} \Rightarrow 0 < N \le 1$
 $N = 1, Q = 12 \cdot 1 + 3 = 15$
 $(N = 0, Q = 12 \cdot 0 + 3 = 3)$ $Q = 15$.

3. Find all integers between -50 and 50 that are congruent to 6 modulo 11.

Sol: if
$$\alpha = 6 \pmod{11}$$
 and $-5 \times \alpha \leq 50$, we have

 $\alpha = 11 \cdot n + 6 = 50$
 $\Rightarrow -56 \leq 11 \cdot n + 6 \leq 50$
 $\Rightarrow -56 \leq 11 \cdot n \leq 44$
 $\Rightarrow -56 \leq 11 \cdot$

$$N = -4$$
, $Q = 11 \cdot (-4) + 6 = -38$
 $N = -3$ $Q = 11 \cdot (-3) + 6 = -2$
 $N = -2$, $Q = 11 \cdot (-2) + 6 = -16$
 $N = -1$, $Q = 11 \cdot (-1) + 6 = -5$

$$N=0$$
, $\alpha=11.0$ $+6$ $=6$) $+11$
 $N=1$, $\alpha=11.1$ $+6$ $=17$) $+11$
 $N=2$, $\alpha=11.2$ $+6$ $=26$) $+11$
 $N=3$, $\alpha=11.3$ $+6$ $=39$) $+11$
 $N=4$, $\alpha=11.4$ $+6$ $=50$

2. Decimal notation (base 10):

Acceptable digits: 0, 1, 2, 3, 4, 5, 6, 1, 8, 9.

For example, $2845 = (2845)_{10} = 2000 + 800 + 40 + 5$ $= 2 \times 10^{3} + 8 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{2}$

What is the decimal expansion of the number with binary expansion $(10101)_2$?

$$(10101)_{2} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 1 \times 16 + 0 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$$

$$= 2 (21)_{10}$$

4. Octal notation (base 8): Acceptable digits: 0, 1, 2, 3, 4, 5, 6, 1.

What is the decimal expansion of the number with octal expansion $(7016)_8$?

$$(7016)_{8} = \frac{7 \times 8^{3} + 0 \times 8^{2} + 1 \times 8 + 6 \times 8^{6}}{2 \times 5!^{2} + 0 \times 6! + 1 \times 8 + 6 \times 1}$$

$$= \frac{7 \times 5!^{2} + 0 \times 6! + 1 \times 8 + 6 \times 1}{2 \times 5!^{2} + 0 \times 6! + 1 \times 8 + 6 \times 1}$$

$$= \frac{3598}{12 \times 5!^{2} + 0 \times 6! + 1 \times 8 + 6 \times 1}$$

5. Hexadecimal notation (base 16):

Acceptable digits:

What is the decimal expansion of the number with hexadecimal expansion $(2AE0B)_{16}$?

$$(2AE0B)_{16} = \frac{2 \times [6^{4} + A \times 16^{3} + E \times 16^{2} + D \times 16^{4} + B \times 16^{6}]}{= 2 \times 16^{4} + 10 \times 16^{3} + 14 \times 16^{2} + D \times 16^{4} + 11 \times 1}$$
$$= \frac{2 \times 65536 + 10 \times 4696 + 14 \times 256 + D + 11}{2}$$

The above examples show the meaning of integer representation of different bases as well as how to convert them to decinal.