Stat 571B Experimental Design

Topic 6: Post ANOVA comparisons of means

Montgomery: chapter 3

Prof. Lingling An University of Arizona

- Comparing treatment means
 - Linear combination of the treatments
 - Contrasts
 - Orthogonal contrasts
 - Simultaneous confidence intervals
- Sample size determination

Post- ANOVA Comparison of Means

- The analysis of variance tests the hypothesis of equal treatment means
- Assume that residual analysis is satisfactory
- If that hypothesis is rejected, we don't know which specific means are different
 - Determining which specific means differ following an ANOVA is called the multiple comparisons problem
- How about to test:

$$H_0: 2\mu_1 + \mu_2 = \mu_3$$
?

Graphical comparison of means

■ FIGURE 3.11 Etch rate averages from Example 3.1 in relation to a t distribution with scale factor $\sqrt{MS_E/n} = \sqrt{330.70/5} = 8.13$

Linear combinations of treatment means

ANOVA Model:

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}$$
 (τ_i : treatment effect)
= $\mu_i + \epsilon_{ij}$ (μ_i : treatment mean)

• Linear combination with given coefficients c_1, c_2, \ldots, c_a :

$$L = c_1 \mu_1 + c_2 \mu_2 + \ldots + c_a \mu_a = \sum_{i=1}^a c_i \mu_i,$$

- Want to test: $H_0: L = \sum c_i \mu_i = L_0$
- Examples:
- 1. Pairwise comparison: $\mu_i \mu_j = 0$ for all possible i and j.
- 2. Compare treatment vs control: $\mu_i \mu_1 = 0$ when treatment 1 is a control and i = 2, ..., a are new treatments.
- 3. General cases such as $\mu_1 2\mu_2 + \mu_3 = 0$, $\mu_1 + 3\mu_2 6\mu_3 = 0$, etc. 5

Estimate of L:

$$\hat{L} = \sum c_i \hat{\mu}_i = \sum c_i \bar{y}_i.$$

$$\mathrm{Var}(\hat{L}) = \sum c_i^2 \mathrm{Var}(\bar{y}_{i.}) = \sigma^2 \sum \frac{c_i^2}{n_i} \left(= \frac{\sigma^2}{n} \sum c_i^2 \right)$$

• Standard Error of \hat{L}

$$\mathrm{S.E.}_{\hat{L}} = \sqrt{\mathrm{MSE} \sum \frac{c_i^2}{n_i}}$$

Test statistic

$$t_0 = rac{(\hat{L} - L_0)}{S.E._{\hat{L}}} \sim t(N-a) ext{ under } H_0$$

Example: Lambs diet experiment

• there are three diets and their treatment means are denoted by μ_1 , μ_2 and μ_3 . Suppose one wants to consider

$$L = \mu_1 + 2\mu_2 + 3\mu_3 = 6\mu + \tau_1 + 2\tau_2 + 3\tau_3$$
 and test $H_0: L = 60$. data lambs; input diet wtgain@@; datalines; 1 8 1 13 1 9 2 12 2 16 2 21 2 17 2 18 3 11 3 10 3 17 3 6; run; proc glm; class diet; model wtgain=diet; means diet; estimate 'L1' intercept 6 diet 1 2 3; run;

Dependent Variable: wtgain

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	114.8666667	57.4333333	4.35	0.0476
Error	9	118.8000000	13.2000000		
Corrected Total	11	233.6666667			

Source	DF	Type III SS	Mean Square	F Value	Pr > F
diet	2	114.8666667	57.4333333	4.35	0.0476

Level of	N	wtgain	
diet		Mean	Std Dev
1	3	10.000000	2.64575131
2	5	16.8000000	3.27108545
3	4	11.000000	4.54606057

Dependent Variable: wtgain

Parameter	Estimate	Standard Error	t Value	Pr > t
L1	76.6000000	6.68281378	11.46	<.0001

$$H_0: L = 60$$

 $t_0 = (76.6 - 60) / 6.6828 = 2.484$

- P-value= $P(t \le -2.484 \text{ or } t \ge 2.484 | t_{(12-3)}) = 0.0348$
- Reject H_0 at α =0.05

Online p-value calculator: http://graphpad.com/quickcalcs/PValue1.cfm

Contrasts

• $\Gamma = \sum_{i=1}^a c_i \mu_i$ is a contrast if $\sum_{i=1}^a c_i = 0$. Equivalently, $\Gamma = \sum_{i=1}^a c_i \tau_i$.

Examples

1.
$$\Gamma_1=\mu_1-\mu_2=\mu_1-\mu_2+0\mu_3+0\mu_4,$$
 $c_1=1, c_2=-1, c_3=0, c_4=0$ Comparing μ_1 and μ_2 .

2.
$$\Gamma_2=\mu_1-0.5\mu_2-0.5\mu_3=\mu_1-0.5\mu_2-0.5\mu_3+0\mu_4$$
 $c_1=1, c_2=-0.5, c_3=-0.5, c_4=0$ Comparing μ_1 and the average of μ_2 and μ_3 .

• Estimate of Γ :

$$C = \sum_{i=1}^{a} c_i \bar{y}_{i.}$$

• Test: $H_0: \Gamma=0$

use
$$t_0 = \frac{C}{\mathrm{S.E.}_C} \sim t(N-a)$$

or $t_0^2 = \frac{(\sum c_i \bar{y}_{i.})^2}{\text{MSE} \sum \frac{c_i^2}{n_i}} = \frac{(\sum c_i \bar{y}_{i.})^2 / \sum c_i^2 / n_i}{\text{MSE}} = \frac{\text{SS}_C / 1}{\text{MSE}}$

Under H_0 , $t_0^2 \sim F_{1,N-a}$.

Where: Contrast Sum of Squares

$$\mathrm{SS}_C = \left(\sum c_i \overline{y}_{i.}\right)^2 / \sum \left(c_i^2 / n_i\right)$$

Example: tensile data

```
data one;
 infile "/folders/myshortcuts/MySAS folder/
tensile.dat";
 input percent strength time;
 run;
proc glm data=one;
class percent;
model strength=percent;
contrast 'C1' percent 0 0 0 1 -1;
contrast 'C2' percent 1 0 1 -1 -1;
contrast 'C3' percent 1 0 -1 0 0;
contrast 'C4' percent 1 -4 1 1 1;
run;
```

Dependent Variable: strength

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	475.7600000	118.9400000	14.76	<.0001
Error	20	161.2000000	8.0600000		
Corrected Total	24	636.9600000			

Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
C1	1	291.6000000	291.6000000	36.18	<.0001
C2	1	31.2500000	31.2500000	3.88	0.0630
C3	1	152.1000000	152.1000000	18.87	0.0003
C4	1	0.8100000	0.8100000	0.10	0.7545

Orthogonal contrasts

- A useful special case of the contrasts is orthogonal contrasts.
- Two contrasts $\{c_i\}$ and $\{d_i\}$ are **Orthogonal** if

$$\sum_{i=1}^{a} \frac{c_i d_i}{n_i} = 0 \quad (\sum_{i=1}^{a} c_i d_i = 0 \quad \text{for balanced experiments})$$

Example

$$\Gamma_1 = \mu_1 + \mu_2 - \mu_3 - \mu_4$$
, So $c_1 = 1, c_2 = 1, c_3 = -1, c_4 = -1$. $\Gamma_2 = \mu_1 - \mu_2 + \mu_3 - \mu_4$. So $d_1 = 1, d_2 = -1, d_3 = 1, d_4 = -1$ It is easy to verify that both Γ_1 and Γ_2 are contrasts. Furthermore,

$$c_1d_1+c_2d_2+c_3d_3+c_4d_4=1 \times 1+1\times (-1)+(-1)\times 1+(-1)\times (-1)=0.$$
 Hence, Γ_1 and Γ_2 are orthogonal to each other.

- Generally, the method of contrasts (or orthogonal contrasts) is useful for preplanned comparisons, which are specified prior to running the experiment and examining data.
 - If comparisons are selected after examining the data, most experimenters would construct tests that correspond to large observed differences in means
 - But these large differences could be the result of the real effect, or be the result of random error.
 - Read Example 3.6 on p90-91

Testing multiple contrasts (multiple comparisons) using Confidence Intervals

One contrast:

$$H_0: \Gamma = \sum c_i \mu_i = \Gamma_0 \text{ vs } H_1: \Gamma \neq \Gamma_0 \text{ at } \alpha$$

100(1- α) Confidence Interval (CI) for Γ :

CI:
$$\sum c_i \bar{y}_{i.} \pm t_{\alpha/2, N-a} \sqrt{MS_E \sum \frac{c_i^2}{n_i}}$$

$$P(CI \text{ not contain } L_0|H_0) = \alpha (= \text{type I error})$$

• Decision Rule: Reject H_0 if CI does not contain Γ_0 .

Multiple contrasts

$$H_0:\Gamma^1=\Gamma^1_0,\ldots\Gamma^m=\Gamma^m_0$$
 vs $H_1:$ at least one does not hold

If we construct Cl_1 , Cl_2 ,..., Cl_m , each with 100(1- α) level, then for each Cl_i ,

$$P(\operatorname{Cl}_i \operatorname{not contain}\Gamma_0^i \mid H_0) = \alpha, \text{ for } i = 1, \ldots, m$$

• But the **overall error rate** (probability of type I error for H_0 vs H_1) is inflated and much larger than α , that is,

$$P(\text{at least one CI}_i \text{ not contain } \Gamma_0^i \mid H_0) >> \alpha$$

 One way to achieve small overall error rate, we require much smaller error rate (α') of each individual CI_i.

Bonferroni Method for Testing Multiple Contrasts

Bonferroni Inequality

$$P(ext{ at least one CI}_i ext{ not contain } \Gamma_0^i \mid H_0)$$

$$= P(ext{CI}_1 ext{ not contain..oror CI}_m ext{ not contain } \mid H_0)$$

$$\leq P(ext{ CI}_1 ext{ not } \mid H_0) + \cdots + P(ext{ CI}_m ext{ not } \mid H_0) = m\alpha'$$

• In order to control overall error rate (or, overall confidence level), let

$$m\alpha' = \alpha$$
, we have, $\alpha' = \alpha/m$

Bonferroni Cls:

$$\operatorname{Cl}_i: \sum c_{ij} \bar{y}_{j.} \pm t_{\alpha/2m} (N-a) \sqrt{\operatorname{MS}_E \sum \frac{c_{ij}^2}{n_j}}$$

When m is large, Bonferroni Cls are too conservative

Scheffe's Method for Testing All Contrasts

- Consider all possible contrasts: $\Gamma = \sum c_i \mu_i$ Estimate: $C = \sum c_i \bar{y}_i$, St. Error: S.E. $C = \sqrt{\text{MS}_E \sum \frac{c_i^2}{n_i}}$
- Critical value: $\sqrt{(a-1)F_{\alpha,a-1,N-a}}$
- Scheffe's simultaneous CI: $C \pm \sqrt{(a-1)F_{\alpha,a-1,N-a}}$ S.E.
- ullet Overall confidence level and error rate for m contrasts

 $P({\rm Cls\ contain\ true\ parameter\ for\ any\ contrast}) \geq 1 - \alpha$

 $P(\text{at least one CI does not contain true parameter}) \leq \alpha$

Remark: Scheffe's method is also conservative, too conservative when m is small

Methods for Pairwise Comparisons

- There are a(a-1)/2 possible pairs: $\mu_i \mu_j$ (contrast for comparing μ_i and μ_j). We may be interested in m pairs or all pairs.
- Standard Procedure:
 - 1. Estimation: $\bar{y}_{i.} \bar{y}_{j.}$
 - 2. Compute a Critical Difference (CD) (based on the method employed)
 - 3. If

$$|\bar{y}_{i.} - \bar{y}_{j.}| > CD$$

or equivalently if the interval

$$(\bar{y}_{i.} - \bar{y}_{j.} - CD, \ \bar{y}_{i.} - \bar{y}_{j.} + CD)$$

does not contain zero, declare $\mu_i - \mu_j$ significant.

Least significant difference (LSD):

$$CD = t_{\alpha/2, N-a} \sqrt{MS_E(1/n_i + 1/n_j)}$$

not control overall error rate

Bonferroni method (for m pairs)

$$CD = t_{\alpha/2m, N-a} \sqrt{MS_E(1/n_i + 1/n_j)}$$

control overall error rate for the m comparisons.

Tukey's method (for all possible pairs)

$$CD = \frac{q_{\alpha}(a, N - a)}{\sqrt{2}} \sqrt{MS_E(1/n_i + 1/n_j)}$$

23

 $q_{\alpha}(a,N-a)$ from studentized range distribution (Table VII).

Control overall error rate (exact for balanced experiments). (Example 3.7).

Comparing treatments with control (Dunnett's method)

- 1. Assume μ_1 is a control, and μ_2, \ldots, μ_a are (new) treatments
- 2. Only interested in a-1 pairs: $\mu_2-\mu_1,\ldots,\mu_a-\mu_1$
- 3. Compare $\mid \bar{y}_{i.} \bar{y}_{1.} \mid$ to

$$CD = d_{\alpha}(a - 1, N - a)\sqrt{MS_{E}(1/n_{i} + 1/n_{1})}$$

where $d_{\alpha}(p, f)$ from Table VIII: critical values for Dunnett's test.

4. Remark: control overall error rate. Read Example 3-9

For the tensile data:

```
proc glm data=one;
class percent;
model strength=percent;
/* Construct CI for Treatment Means*/
means percent /alpha=.05 clm lsd;
means percent /alpha=.05 clm bon;
means percent /alpha=.05 clm scheffe;
/* Pairwise Comparison*/
means percent /alpha=.05 lines lsd;
means percent /alpha=.05 lines tukey;
means percent /alpha=.05 dunnett ('15');
run;
```

Individual C.I.

t Confidence Intervals for strength

percent	N	Mean	95% Confidence	ce Limits
30	5	21.600	18.952	24.248
25	5	17.600	14.952	20.248
20	5	15.400	12.752	18.048
35	5	10.800	8.152	13.448
15	5	9.800	7.152	12.448

Simultaneous C. I.s (Bonferrroni)

Bonferroni t Confidence Intervals for strength

Alpha	0.05
Error Degrees of Freedom	20
Error Mean Square	8.06
Critical Value of t	2.84534
Half Width of Confidence Interval	3.612573

percent	N	Mean	Simultaneous 9 Confidence Limits	95%
30	5	21.600	17.987	25.213
25	5	17.600	13.987	21.213
20	5	15.400	11.787	19.013
35	5	10.800	7.187	14.413
15	5	9.800	6.187	13.413

Simultaneous C. I.s (Scheffe)

Scheffe's Confidence Intervals for strength

Alpha	0.05
Error Degrees of Freedom	20
Error Mean Square	8.06
Critical Value of F	2.71089
Half Width of Confidence Interval	4.674374

percent	N	Mean	Simultaneo Confidence Limits		
30	5	21.600	16.926	26.274	
25	5	17.600	12.926	22.274	
20	5	15.400	10.726	20.074	
35	5	10.800	6.126	15.474	
15	5	9.800	5.126	14.474	,

28

Pairwise comparison (LSD)

t Tests (LSD) for strength

Note: This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	20
Error Mean Square	8.06
Critical Value of t	2.08596
Least Significant Difference	3.7455

Pairwise comparison (LSD) - 2

Means with the same letter are not significantly different.			
t Grouping	Mean	N	percent
Α	21.600	5	30
В	17.600	5	25
В			
В	15.400	5	20
С	10.800	5	35
С			
С	9.800	5	15

Pairwise comparison (Tukey)

Tukey's Studentized Range (HSD) Test for strength

Note: This test controls the Type I experimentwise error rate,

but it generally has a higher Type II error rate than

REGWQ.

Alpha	0.05
Error Degrees of Freedom	20
Error Mean Square	8.06
Critical Value of Studentized Range	4.23186
Minimum Significant Difference	5.373

Pairwise comparison (Tukey) -2

Means with the are not significant				
Tukey Groupi	ing	Mean	N	percent
	Α	21.600	5	30
	Α			
В	Α	17.600	5	25
В				
В	С	15.400	5	20
	С			
D	С	10.800	5	35
D				
D		9.800	5	15

Compared to control (Dunnett)

Dunnett's t Tests for strength

Note: This test controls the Type I experimentwise error for

comparisons of all treatments against a control.

Alpha	0.05
Error Degrees of Freedom	20
Error Mean Square	8.06
Critical Value of Dunnett's t	2.65103
Minimum Significant Difference	4.7601

Compared to control (Dunnett) - 2

Comparisons significant at the 0.05 level are indicated by ***.				
percent Comparison	Difference Between Means	Simultaneo Confidence Limits		
30 - 15	11.800	7.040	16.560	***
25 - 15	7.800	3.040	12.560	***
20 - 15	5.600	0.840	10.360	***
35 - 15	1.000	-3.760	5.760	

Which method should I use?

- Multiple comparisons (i.e., contrasts) but not pairwise comparisons
 - If m is very small, use Bonferroni method
 - If m is very large, use Scheffe method
- Pairwise comparison
 - Tukey method
- Comparing treatment means with a control
 - Dunnett method

Determining Sample Size (OC curve)

- More replicates required to detect small treatment effects
- ullet Operating Characteristic Curves for F tests
- Probability of type II error

$$\beta = P(\text{ accept } H_0 \mid H_0 \text{ is false})$$

$$=P(F_0 < F_{\alpha,a-1,N-a} \mid H_1 \text{ is correct })$$

• Under H_1 , F_0 follows a **noncentral** F distribution with noncentrality λ and degrees of freedom, a-1 and N-a. Let

$$\Phi^2 = \frac{n \sum_{i=1}^a \tau_i^2}{a\sigma^2}$$

- OC curves of β vs n and Φ are included in Chart V for various α and a.
- Read Example 3.10

Example 3.10: etching rate

What we know:

four treatment means: 575, 600, 650, 675

Standard deviation at each level: 25

Alpha=0.01

Power=0.9

n =?

n	$\mathbf{\Phi}^2$	Φ	a(n-1)	β	Power (1 − β)
3	7.5	2.74	8	0.25	0.75
4	10.0	3.16	12	0.04	0.96
5	12.5	3.54	16	< 0.01	>0.99

SAS code: sample size calculation for one way ANOVA

```
proc power ;
  onewayanova
  groupmeans = 575 | 600 | 650 | 675
  stddev = 25
  alpha = 0.01
  npergroup = .
  power = .9;
run;
```

The POWER Procedure Overall F Test for One-Way ANOVA

Fixed Scenario Elements			
Method	Exact		
Alpha	0.01		
Group Means	575 600 650 675		
Standard Deviation	25		
Nominal Power	0.9		

Computed N Per Group	
Actual Power	N Per Group
0.962	4

Determining Sample Size (Conf. Interval. approach)

- Assume experimenter wishes to express the final results in terms of C. I. and is willing to specify in advance how wide he/she wants these intervals to be.
- So Margin of error (=half width of C.I) is assumed and solve for n
 - e.g, accuracy of the confidence interval for the difference of two treatment means:

$$\pm t_{\alpha/2,N-a} \sqrt{2 \frac{MSE}{n}}$$

Or use simultaneous confidence interval

Last slide

• Read Sections: finish Ch3

