for
$$Nsd = 2$$

$$e_1 = \left\{ \begin{smallmatrix} i \\ 0 \end{smallmatrix} \right\}$$
, $e_2 = \left\{ \begin{smallmatrix} 0 \\ i \end{smallmatrix} \right\}$

$$B_{A} e_{1} = \begin{bmatrix} N_{A,1} & 0 \\ 0 & N_{A,2} \\ N_{A,2} & N_{A,1} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} N_{A,1} \\ 0 \\ N_{A,2} \end{bmatrix}$$

$$B_{A}C_{2} = \begin{cases} O \\ N_{A,2} \\ N_{A,1} \end{cases}$$

from (2.7.21):
$$\vec{\epsilon}(\vec{u}) = \begin{cases} -u_{1,1} \\ u_{2,2} \\ u_{1,2} + u_{2,1} \end{cases}$$

$$N_A e_i = N_A \left\{ \begin{smallmatrix} i \\ 0 \end{smallmatrix} \right\} = \left\{ \begin{smallmatrix} N_A \\ 0 \end{smallmatrix} \right\}$$

$$\vec{\epsilon}$$
 (NACI) = $\begin{cases} NA.1 \\ O \\ NA.2 \end{cases} = BACI$

$$\vec{\varepsilon}(\vec{u}) = \begin{cases} u_{1,1} \\ u_{2,2} \\ u_{3,3} \\ u_{4,3} + u_{3,1} \\ u_{4,12} + u_{2,1} \end{cases}$$

$$e_1 = \begin{cases} 0 \\ 0 \\ 0 \end{cases}, e_2 = \begin{cases} 0 \\ 1 \\ 0 \end{cases}, e_3 = \begin{cases} 0 \\ 0 \\ 1 \end{cases}$$

$$\vec{\varepsilon}(N_A e_1) = \vec{\varepsilon}(\begin{cases} N_A \\ 0 \\ 0 \end{cases}) = \begin{cases} N_{A,1} \\ 0 \\ 0 \end{cases}$$

$$N_{A,3}$$

$$N_{A,3}$$

$$B_{A} \mathcal{E}_{1} = \begin{bmatrix} N_{A,1} & 0 & 0 \\ 0 & N_{A,2} & 0 \\ 0 & 0 & N_{A,3} \\ 0 & N_{A,3} & N_{A,2} \\ N_{A,3} & 0 & N_{A,1} \\ N_{A,2} & N_{A,1} & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ N_{A,3} \\ N_{A,2} \end{bmatrix} = \frac{1}{E}(N_{A}e_{1})$$

Similarly, $BA e_2 = \vec{\epsilon} (NA e_2)$, $BA e_3 = \vec{\epsilon} (NA e_3)$ $\vec{\epsilon} (NA \vec{e}_i) = B_A \vec{e}_i$

Exercise 1 on Page 91

Proof:

$$n_{sd} = 2$$
 . $B_a = \begin{bmatrix} N_{a_{11}} & 0 \\ 0 & N_{a_{12}} \\ N_{a_{12}} & N_{a_{13}} \end{bmatrix}$

$$B_a d_a^e = \begin{bmatrix} N_{a_{11}} & 0 \\ 0 & N_{a_{12}} \\ N_{a_{12}} & N_{a_{13}} \end{bmatrix} \begin{bmatrix} d_{1a}^e \\ d_{2a}^e \end{bmatrix} = \begin{bmatrix} N_{a_{11}} d_{1a}^e \\ N_{a_{12}} d_{2a}^e \\ N_{a_{12}} d_{2a}^e \end{bmatrix}$$

$$A_{a_{12}} = \begin{bmatrix} A_{a_{11}} & A_{a_{11}} & A_{a_{12}} \\ A_{a_{12}} & A_{a_{13}} & A_{a_{14}} \\ A_{a_{12}} & A_{a_{13}} & A_{a_{14}} \end{bmatrix} = B d^e$$

$$A_{a_{12}} = \begin{bmatrix} A_{a_{12}} & A_{a_{13}} & A_{a_{14}} \\ A_{a_{12}} & A_{a_{13}} & A_{a_{14}} \\ A_{a_{14}} & A_{a_{14}} & A_{a_{14}} \\$$

$$R_{sd} = 3$$

$$R_{ada}^{e} = \begin{bmatrix} N_{a,1} & 0 & 0 \\ 0 & N_{a,2} & 0 \\ 0 & 0 & N_{a,3} \\ 0 & N_{a,3} & N_{a,2} \\ N_{a,3} & 0 & N_{a,1} \\ N_{a,2} & N_{a,1} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} N_{a,1} & d_{1a} \\ N_{a,2} & d_{2a} \\ N_{a,3} & d_{2a} \\ N_{a,3} & d_{2a} \\ N_{a,3} & d_{2a} \\ N_{a,3} & d_{2a} \\ N_{a,2} & d_{1a} \\ N_{a,2} & d_{1a} \end{bmatrix} + N_{a,1} & d_{2a}^{e}$$

$$\begin{bmatrix} W_{1,1} & W_{1,2} & W_{1,2} \\ W_{1,2} & W_{2,1} & W_{2,1} \end{bmatrix} = \mathcal{E}(U)$$

$$\Rightarrow S = D \mathcal{E} = D \mathcal{B} d^{e} = D \mathcal{E}_{a=1} \mathcal{E}_{ada}$$

E S. II ID	ution	se 1	on Pag	e 98						
1	1	2	3	4	5	6	7	8	$n_{np}=3$	
1	1	3	0	5	7	9	0	12		
2	2	4	0	6	8	10	14	13		
Nuf=2		4	. 3						neq = 13	
IE	N:	1	2							
3 013	1	2		3	4		nei	=4		
1	1	1	1		8					
2	2	3	5	3	6					
3	8	4	ţ	5	5					
4	7	2	6	,	7					
Nen = 4										
LM:										
				11	1	2		3	4	ne1 = 4
1		. /	1	1	1977	1		5	12	
2		15	2	2		2		6	13	
3		1	1	5		0		0	9	
4		2{	2	3 4		0		0		
<i>E</i>						U		0	10	
5		3{	1	12		5		7	7	
7		1	2			6		8	8	
8		, 5	1 2	0		3		9	0	
8		71	2	11		4		10	11	
0			1							

Nee = 8

Piecewise linears:
$$\hat{N}_{1} = \frac{1}{2}(1-g)$$

$$\hat{N}_{2} = \frac{1}{2}(1+g)$$

$$m_{ab}^{e} = \int_{\Omega e} Na \, l \, N_{b} \, d\Omega$$

$$= \int_{\Lambda_{1}^{e}}^{\Lambda_{2}^{e}} Na \, l \, N_{b} \, d\Omega$$

$$= \rho \int_{\Lambda_{1}^{e}}^{\Lambda_{2}^{e}} Na \, l \, N_{b} \, d\Omega$$

$$= \rho \int_{\Lambda_{1}^{e}}^{\Lambda_{2}^{e}} Na \, l \, d\Omega$$

$$= \rho \int_{\Lambda_{1}^{e}}^{\Lambda_{2}^{e}} Na \, l \, d\Omega$$

$$= \rho \int_{g_{1}}^{\Lambda_{2}^{e}} Na \, l \, d\Omega$$

$$= \rho \int_{g_{1}}^{g_{2}} Na \, l \, d\Omega$$

$$= \rho \int_{g_{1}}^{g_{2}} Na \, l \, d\Omega$$

$$= \rho \int_{-1}^{g_{2}} \frac{1}{2} (1 + \frac{g_{2}^{e}}{2a}) \cdot \frac{1}{2} (1 + \frac{g_{2}^{e}}{2a}) \cdot \frac{h}{2} \, d\beta$$

$$= \frac{\rho h}{4} \left(1 + \frac{1}{3} \frac{3}{3} \frac{g_{3}^{e}}{a} \right)$$

$$\Rightarrow m^{e} = \frac{\rho h}{4} \left[\frac{4}{3} \frac{2}{3} \right]$$

$$= \frac{\rho h}{6} \left[2 \quad 1 \right]$$

$$= \frac{\rho h}{6} \left[2 \quad 1 \right]$$

Precense quadratics
$$\hat{N}_{1} = \frac{3^{2} - 3}{2}$$

$$\hat{N}_{2} = 1 - g^{2}$$

$$2 - 2g range polynomic
$$\hat{N}_{3} = \frac{8^{2} + \frac{9}{2}}{2}$$

$$\int_{-1}^{1} \hat{N}_{1} \hat{N}_{2} d^{2} = \int_{-1}^{1} \frac{g^{2} - \frac{9}{2}}{2} \cdot (1 - g^{2}) dg = \frac{2}{15}$$

$$\int_{-1}^{1} \hat{N}_{1} \hat{N}_{2} d^{2} = \int_{-1}^{1} \frac{g^{2} - \frac{9}{2}}{2} \cdot \frac{g^{2} + \frac{9}{2}}{2} d^{2} = \frac{1}{15}$$

$$\int_{-1}^{1} \hat{N}_{1} \hat{N}_{3} d^{2} = \int_{-1}^{1} \frac{g^{2} - \frac{9}{2}}{2} \cdot \frac{g^{2} + \frac{9}{2}}{2} d^{2} = -\frac{1}{15}$$

$$\int_{-1}^{1} \hat{N}_{2} \hat{N}_{3} d^{2} = \int_{-1}^{1} (1 - \frac{9}{2})^{2} d^{2} = \frac{16}{15}$$

$$\int_{-1}^{1} \hat{N}_{3} \hat{N}_{3} d^{2} = \int_{-1}^{1} (1 - \frac{9}{2})^{2} d^{2} = \frac{16}{15}$$

$$\int_{-1}^{1} \hat{N}_{3} \hat{N}_{3} d^{2} = \int_{-1}^{1} (\frac{g^{2} + \frac{9}{2}}{2})^{2} d^{2} = \frac{1}{15}$$

$$\int_{-1}^{1} \hat{N}_{3} \hat{N}_{3} d^{2} = \int_{-1}^{1} (\frac{g^{2} + \frac{9}{2}}{2})^{2} d^{2} = \frac{1}{15}$$

$$\hat{N}_{1}(\hat{S}) = \hat{N}_{1} \hat{N}_{1}(\hat{S}) + \hat{N}_{2} \hat{N}_{2}(\hat{S}) + \hat{N}_{3} \hat{N}_{3}(\hat{S})$$

$$\hat{N}_{2}(\hat{S}) = \hat{N}_{1} \hat{N}_{1}(\hat{S}) + \hat{N}_{2} \hat{N}_{2}(\hat{S}) + \hat{N}_{3} \hat{N}_{3}(\hat{S})$$

$$\hat{N}_{3}(\hat{S}) = \hat{N}_{1} \hat{N}_{1}(\hat{S}) + \hat{N}_{2} \hat{N}_{2}(\hat{S}) + \hat{N}_{3} \hat{N}_{3}(\hat{S})$$

$$\hat{N}_{4}(\hat{S}), \hat{S} = \hat{N}_{1} \hat{N}_{1}(\hat{S}) + \hat{N}_{2} \hat{N}_{2}(\hat{S}) + \hat{N}_{3} \hat{N}_{3}(\hat{S})$$

$$= g(-\frac{1}{h_{1}} + \frac{1}{3} \cdot h_{2} + \frac{1}{2} \cdot (\hat{N}_{3} \hat{S} - \hat{N}_{2} \hat{S} + \frac{1}{2} \hat{N}_{3}^{2})$$

$$= \frac{1}{2} \cdot h$$

$$\hat{N}_{4} \hat{N}_{5} \hat{N}_{5$$$$

Exercise 1 on Page 492

Solution eliminated.

(9.1.4): Man+ + C(Un+1) + Kdn+1 = Fn+1

(9.1.9): dn+1 = dn+1 + B Dt 2. an+1 -

(9.1.10): Un+ = Vn+ + T Atan+

 $Q_{n+1} = (d_{n+1} - \tilde{d}_{n+1}) / \beta \Delta t^2$

Man+ +c. (Vn+1+rat. an+1) + Kdn+1 = Fn+1

(M+ crat) an+1 + c. Vn+1 + Kdn+1 = Fn+1

 $(M+C+\Delta t)\cdot (dn+1-dn+1)+C\cdot \beta \Delta t^2\cdot \tilde{V}_{n+1}+\beta \Delta t^2\cdot kdn+1=\beta \Delta t^2\cdot \tilde{F}_{n+1}$

Contains due = du + 2 . [- [Martin + -] (Martin)

Mar Vart 2 (Cla + Class) W

- List of the fall of the

Exercise 2, on Page 445

eliminated anti and Vnti

Exercise 3 on Page 4-95

$$Ma_{8+1} + CV_{n+1} + kd_{n+1} = F_{n+1}$$

$$\begin{cases} d_{n+1} = d_n + \Delta t V_n + \frac{\Delta t^2}{2} \cdot \left(\frac{1}{2} a_n + \frac{1}{2} a_{n+1}\right) & \beta = 1/4 \\ V_{n+1} = V_n + \Delta t \left(\frac{1}{2} a_n + \frac{1}{2} a_{n+1}\right) & \gamma = 1/2 \end{cases} \qquad (9.1.5)$$

$$\begin{cases} d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left[V_n + \frac{V_n + \frac{\Delta t}{2}}{2} \cdot (a_n + a_{n+1})\right] = d_n + \frac{\Delta t}{2} \cdot \left(V_n + V_{n+1}\right) & (1) \\ V_{n+1} = V_n + \frac{\Delta t}{2} \cdot \left(2n + 2n + 1\right) & (9.1.27) \end{cases}$$

$$\begin{cases} y_{n+1} = \begin{cases} d_{n+1} \\ d_{n+1} \end{cases}, & y_n = \begin{cases} d_n \\ d_n \end{cases} \end{cases}$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(2n + 2n + 1\right) = d_n + \frac{\Delta t}{2} \cdot \left[\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right] \end{cases}$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(2n + 2n + 1\right) = d_n + \frac{\Delta t}{2} \cdot \left[\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right]$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(V_n + V_{n+1}\right) = d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(V_n + V_{n+1}\right) = d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_{n+1} = d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_{n+1}, t_{n+1})}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_n, t_n)}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_n, t_n)}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_n, t_n)}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_n, t_n)}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_n, t_n)}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_n, t_n)}{4}\right)$$

$$\Rightarrow d_n + \frac{\Delta t}{2} \cdot \left(\frac{f(y_n, t_n)}{4} + \frac{f(y_n$$