In [87]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import re
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
```

In [88]:

a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\madrid_2002.csv")
a

Out[88]:

date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PI
2002- 04-01 :00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.990
2002- 04-01 :00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.980
2002- 04-01 :00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.440
2002- 04-01 :00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.180
2002- 04-01 :00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.330
2002- 11-01 :00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.750
2002- 11-01 :00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.389
2002- 11-01 :00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640
2002- 11-01 :00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	1
2002- 11-01 :00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.240

217296 rows × 16 columns

4

In [89]:

a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217296 entries, 0 to 217295
Data columns (total 16 columns):
    Column
             Non-Null Count
                             Dtype
    -----
---
             -----
                             ----
             217296 non-null object
0
    date
    BEN
1
             66747 non-null
                             float64
2
    CO
             216637 non-null float64
3
    EBE
             58547 non-null float64
4
             41255 non-null
                           float64
    MXY
5
             87045 non-null
    NMHC
                             float64
             216439 non-null float64
6
    NO_2
             216439 non-null float64
7
    NOx
8
    0XY
             41314 non-null float64
             216726 non-null float64
    0 3
9
             209113 non-null float64
10 PM10
11 PXY
             41256 non-null float64
             216507 non-null float64
12
    S0_2
13
    TCH
             87115 non-null float64
14 TOL
             66619 non-null float64
15 station 217296 non-null int64
dtypes: float64(14), int64(1), object(1)
memory usage: 26.5+ MB
```

In [90]:

```
b=a.fillna(value=104)
b
```

Out[90]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	2002- 04-01 01:00:00	104.00	1.39	104.00	104.00	104.00	145.100006	352.100006	104.00	6.54
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85
2	2002- 04-01 01:00:00	104.00	0.80	104.00	104.00	104.00	103.699997	134.000000	104.00	13.01
3	2002- 04-01 01:00:00	104.00	1.61	104.00	104.00	104.00	97.599998	268.000000	104.00	5.12
4	2002- 04-01 01:00:00	104.00	1.90	104.00	104.00	104.00	92.089996	237.199997	104.00	7.28
217291	2002- 11-01 00:00:00	4.16	1.14	104.00	104.00	104.00	81.080002	265.700012	104.00	7.21
217292	2002- 11-01 00:00:00	3.67	1.73	2.89	104.00	0.38	113.900002	373.100006	104.00	5.66
217293	2002- 11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11
217294	2002- 11-01 00:00:00	4.51	0.91	4.83	10.99	104.00	149.800003	202.199997	1.00	5.75
217295	2002- 11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38

217296 rows × 16 columns

In [91]:

```
b.columns
```

Out[91]:

In [92]:

c=b.head(10)
c

Out[92]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2002- 04-01 01:00:00	104.00	1.39	104.00	104.00	104.00	145.100006	352.100006	104.00	6.540000	_
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.850000	
2	2002- 04-01 01:00:00	104.00	0.80	104.00	104.00	104.00	103.699997	134.000000	104.00	13.010000	
3	2002- 04-01 01:00:00	104.00	1.61	104.00	104.00	104.00	97.599998	268.000000	104.00	5.120000	,
4	2002- 04-01 01:00:00	104.00	1.90	104.00	104.00	104.00	92.089996	237.199997	104.00	7.280000	
5	2002- 04-01 01:00:00	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.370000	÷
6	2002- 04-01 01:00:00	104.00	0.78	104.00	104.00	0.09	101.000000	119.300003	104.00	20.549999	:
7	2002- 04-01 01:00:00	104.00	1.06	104.00	104.00	104.00	127.300003	204.100006	104.00	3.150000	•
8	2002- 04-01 01:00:00	104.00	1.21	104.00	104.00	104.00	106.300003	126.599998	104.00	22.389999	
9	2002- 04-01 01:00:00	104.00	0.61	104.00	104.00	0.14	95.540001	110.699997	104.00	27.770000	
4 (

In [93]:

```
d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
    'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
d
```

Out[93]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM10
0	104.00	1.39	104.00	104.00	104.00	145.100006	352.100006	104.00	6.540000	41.990002
1	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.850000	20.980000
2	104.00	0.80	104.00	104.00	104.00	103.699997	134.000000	104.00	13.010000	28.440001
3	104.00	1.61	104.00	104.00	104.00	97.599998	268.000000	104.00	5.120000	42.180000
4	104.00	1.90	104.00	104.00	104.00	92.089996	237.199997	104.00	7.280000	76.330002
5	3.19	0.72	3.23	7.65	0.11	113.699997	187.000000	3.53	12.370000	27.450001
6	104.00	0.78	104.00	104.00	0.09	101.000000	119.300003	104.00	20.549999	23.950001
7	104.00	1.06	104.00	104.00	104.00	127.300003	204.100006	104.00	3.150000	49.639999
8	104.00	1.21	104.00	104.00	104.00	106.300003	126.599998	104.00	22.389999	32.090000
9	104.00	0.61	104.00	104.00	0.14	95.540001	110.699997	104.00	27.770000	24.610001
4 (•

In [94]:

```
d.plot.line()
```

Out[94]:

<AxesSubplot:>

In [95]:

sns.pairplot(d)

Out[95]:

<seaborn.axisgrid.PairGrid at 0x117cacc1af0>

In [96]:

```
x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
y=d['TCH']
```

In [97]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [98]:
```

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[98]:

LinearRegression()

In [99]:

```
print(lr.intercept_)
```

1.7271590735801041

In [100]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[100]:

Co-efficient

	OO-CITICICITE
BEN	-0.000077
со	-0.001505
EBE	-0.000077
MXY	-0.000073
NMHC	0.983742
NO_2	-0.000031
NOx	0.000003
OXY	-0.000076

```
In [101]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[101]:

<matplotlib.collections.PathCollection at 0x117ca8e7790>

In [102]:

```
print(lr.score(x_test,y_test))
```

0.9999996394512323

In [103]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [104]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[104]:

Ridge(alpha=10)

In [105]:

```
rr.score(x_test,y_test)
```

Out[105]:

0.999991844283914

In [106]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[106]:

Lasso(alpha=10)

In [107]:

la.score(x_test,y_test)

Out[107]:

0.999982587410832

In [108]:

a1=b.head(7000)

Out[108]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_
0	2002- 04-01 01:00:00	104.00	1.39	104.00	104.00	104.00	145.100006	352.100006	104.00	6.54000
1	2002- 04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85000
2	2002- 04-01 01:00:00	104.00	0.80	104.00	104.00	104.00	103.699997	134.000000	104.00	13.01000
3	2002- 04-01 01:00:00	104.00	1.61	104.00	104.00	104.00	97.599998	268.000000	104.00	5.12000
4	2002- 04-01 01:00:00	104.00	1.90	104.00	104.00	104.00	92.089996	237.199997	104.00	7.28000
6995	2002- 04-12 16:00:00	2.58	0.79	104.00	104.00	104.00	81.639999	146.500000	104.00	25.57000
6996	2002- 04-12 16:00:00	1.73	0.71	1.31	104.00	0.13	59.470001	108.500000	104.00	32.32000
6997	2002- 04-12 16:00:00	0.81	0.57	0.66	1.27	0.12	31.200001	36.630001	0.69	45.16000
6998	2002- 04-12 16:00:00	1.62	0.58	1.62	3.69	104.00	64.000000	150.100006	1.13	26.11000
6999	2002- 04-12 16:00:00	2.19	0.95	2.21	6.75	0.15	65.169998	117.099998	2.96	33.27999

7000 rows × 16 columns

```
In [109]:
e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
In [110]:
f=e.iloc[:,0:14]
g=e.iloc[:,-1]
In [111]:
h=StandardScaler().fit_transform(f)
In [112]:
logr=LogisticRegression(max_iter=10000)
logr.fit(h,g)
Out[112]:
LogisticRegression(max_iter=10000)
In [113]:
from sklearn.model_selection import train_test_split
h_train,h_test,g_train,g_test=train_test_split(h,g,test_size=0.3)
In [114]:
i=[[10,20,30,40,50,60,11,22,33,44,55,54,21,78]]
In [115]:
prediction=logr.predict(i)
print(prediction)
[28079003]
In [116]:
logr.classes_
Out[116]:
array([28079001, 28079003, 28079004, 28079006, 28079007, 28079009,
       28079011, 28079012, 28079014, 28079015, 28079016, 28079017,
       28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
       28079025, 28079035, 28079036, 28079038, 28079039, 28079040,
       28079099], dtype=int64)
In [117]:
logr.predict_proba(i)[0][0]
Out[117]:
1.4508531683134893e-58
```

```
In [118]:
logr.predict_proba(i)[0][1]
Out[118]:
0.9410614351603439
In [119]:
logr.score(h_test,g_test)
Out[119]:
0.5671428571428572
In [120]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[120]:
ElasticNet()
In [121]:
print(en.coef_)
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
9.83178447e-01 0.00000000e+00 1.58156823e-04 0.00000000e+00]
In [122]:
print(en.intercept_)
1.7007615561073877
In [123]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
0.9999994884228944
In [124]:
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(h_train,g_train)
Out[124]:
RandomForestClassifier()
```

```
In [125]:
```

```
parameters={'max_depth':[1,2,3,4,5],
    'min_samples_leaf':[5,10,15,20,25],
    'n_estimators':[10,20,30,40,50]
}
```

In [126]:

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(h_train,g_train)
```

Out[126]:

In [127]:

```
grid_search.best_score_
```

Out[127]:

0.5681632653061224

In [128]:

```
rfc_best=grid_search.best_estimator_
```

In [129]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,50))
plot_tree(rfc_best.estimators_[2],filled=True)
```

Out[129]:

```
[Text(2143.22727272725, 2491.5, 'X[10] <= -0.631\ngini = 0.96\nsamples
= 3104\nvalue = [179, 188, 179, 212, 174, 202, 221, 215, 198, 182\n168, 1
93, 207, 206, 197, 208, 190, 180, 207, 185\n215, 204, 192, 184, 214]'),
   Text(887.7272727272727, 2038.5, 'X[7] <= -2.041 \setminus gini = 0.799 \setminus
607\nvalue = [0, 0, 0, 210, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 174, 2
07, 185, 0, 0, 0, 0, 214]'),
   Text(507.272727272725, 1585.5, 'X[12] <= -0.205\ngini = 0.673\nsamples
= 277\nvalue = [0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 155, 1
94, 63, 0, 0, 0, 0, 34]'),
   Text(405.8181818181818, 1132.5, 'X[12] \leftarrow -1.235 \text{ ngini} = 0.562 \text{ nsamples}
= 165\nvalue = [0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 155,
0, 63, 0, 0, 0, 0, 34]'),
   Text(202.9090909090909, 679.5, 'X[11] \leftarrow -0.451 \text{ ngini} = 0.216 \text{ nsamples} = 0.216 \text{ nsamples}
36\nvalue = [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 52,
0, 0, 0, 0, 3]'),
   Text(101.45454545454545, 226.5, 'gini = 0.455\nsamples = 15\nvalue = [0,
0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 17, 0, 0, 0,
31').
```

In []:		