Assignment 2: Due 23 Aug 2023 before midnight

- 1. The compression factor, Z, is the ratio of the measured molar volume of a gas, $V_m = \frac{V}{n}$, to the molar volume of a perfect gas, V_m° , at the same pressure (p) and temperature (T); V = volume of n moles of gas.
 - (a) Show that $pV_m = RTZ$.
 - (b) Most ordinary gases have Z > 1 at very high pressures. At intermediate pressures, most gases have Z < 1, and at very low pressures, $Z \approx 1$. Explain why.
 - (c) For a real gas, a general equation of state is $pV_m = RT \left(1 + B'p + C'p^2 + \cdots\right)$. Find $\frac{dZ}{dp}$ at very low pressures $(p \to 0)$.
 - (d) The temperature (> 0) at which $Z \to 1$ is called the Boyle temperature, T_B . For helium, $T_B = 22.64$ K; Compare the state of helium gas at temperatures 20K, 22.64 K and 25K.
 - (e) The second virial coefficient of methane can be approximated by the empirical equation $B(T)=a+be^{-\frac{c}{T^2}}$, where a=-0.1993 bar $^{-1}$, b=0.2002 bar $^{-1}$, and $c=1131\mathrm{K}^2$ with 300 K < T<600 K. What is the Boyle temperature of methane?
 - (f) Show that the van der Waals equation leads to values of Z < 1 and Z > 1, and identify the conditions for which these values are obtained.
- 2. Derive the critical constants for a van der Waals gas in terms of the a and b coefficients.
- 3. Obtain the equation for a van der Waals gas in terms of the reduced variables $\frac{X}{X_C}$, where $X \in \{p, V, T\}$ and X_C is the corresponding critical value.