

## **MR-PET**

A new module for the EduGATE Project part one: particle sources

### Mirjam Lenz, Uwe Pietrzyk

Institute of Neurosciences and Medicine (INM) Research Center Juelich, Germany

Department of Mathematics and Natural Sciences University of Wuppertal, Germany

Contact: u.pietrzyk@fz-juelich.de or uwe.pietrzyk@uni-wuppertal.de

### **Basic Paper**

"Zeitschrift für Medizinische Physik" (Z. Med. Phys. 23 (2013) 65-70)





- Long is the way of theory,

short and effective by examples -

(Lucius Annaeus <u>Seneca</u> (the Younger), Epistulae morales)





### **MR-PET**

- Introduces to the basic physical effects in MR-PET hybrid imaging
  - Provides with GATE-macros
- Provides programme code for ROOT to visualize basic behaviour of charged particles in the magnetic field of a MR System



### general setup of the MR-PET module

- source emits charged particles or photons of defined energy
- particles interact with surounding medium (impact ionisation, compton scattering,...)
- annihilation of positrons can be enabled (by default disabled)
- additional deviation due to magnetic field (B<sub>0</sub>)
- detection of particles in surrounding medium



### exemplary setup of the MR-PET module

- electrons (80 keV) are emitted isotropically from a point source (positioned at the origin)
- electrons interact with the medium(air), annihilation turned off
- trajectories of electrons are plotted as red lines
- no additional magnetic field





### exemplary setup of the MR-PET module

- electrons (80 keV) are emitted from an isotropic source (positioned at the origin)
- electrons interact with the medium (air), annihilation turned off
- trajectories of electrons are plotted as red lines
- magnetic field in z direction: B<sub>0</sub> = 0.5 T







### orientation of the coordinate system





point-like source at center (x = y = z = 0)





### particle sources

- choose from three different particle sources: electron, positron or gamma\*) source
- specify the type of particle propagation (isotropic or beam source)

<sup>\*)</sup> use the gamma source to investigate effects of secondary electrons





### particle sources



beam direction: +y



isotropic





### shapes of surounding medium



cube

particles interact immediately within medium



cylinder

initial deviation due to magnetic field visible (if enabled), followed by interaction within medium



### Please note:

- Within GATE ,crystal' denomiates the volume in which particles are detected
- it does not have to be a crystal (like a scintillator) but consists of air, water or lung tissue, etc.
- to prevent misunderstanding the 'crystal' is called ,medium' in this macro



- type
   "./config\_starter\_mac\_70.csh"
   in a terminal window
- specify parameters like source energy, source activity, medium etc.
- choose point of view if visualisation is enabled
- generate configuration and start simulation







 take a look at the scene under different angles by changing (ϑ,φ)



| ○ ○ ○ EduGate MR_PET Configuration   |            |
|--------------------------------------|------------|
| Visualisation                        | disabled   |
| ViewPointThetaPhi                    | 0 90       |
| particle                             | e          |
| Annihilation                         | disabled ▼ |
| SourceEnergy                         | 160        |
| SourceActivity                       | 100        |
| Camera_Type                          | cube       |
| Source_Type                          | beam_x     |
| Medium                               | Air ▼      |
| B0_x                                 | 0.0        |
| В0_у                                 | 0.0        |
| B0_z                                 | 0.0        |
| Generate configuration.mac and Start |            |



### selection presets can be modified in "MR\_PET.txt"

```
Visualisation: disabled; enabled;
ViewPointThetaPhi: 0 90; 30 30; 90 0; -90 0; 89 90; 15 30; 30 30; 45 45; 60 60;
particle: e-; e+; gamma;
Annihilation: disabled; enabled;
SourceEnergy: 10; 30; 50; 80; 90; 100; 120; 140; 160; 200; 240; 400; 600; 800; 1000; 1600;
SourceActivity: 100; 1000; 10000; 100000;
Camera Type: cube; cylinder;
Source Type: beam x; beam y; beam z; iso;
Medium: Air; Water; Lung; Liver;
B0 x: 0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 1.0; 3.0; 7.0; 9.4; 12.0; 15.0; 20.0;
B0 y: 0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 1.0; 3.0; 7.0; 9.4; 12.0; 15.0; 20.0;
B0 z: 0.0; 0.1; 0.2; 0.3; 0.4; 0.5; 1.0; 3.0; 7.0; 9.4; 12.0; 15.0; 20.0;
```



- use "MR\_PET.C" to evaluate a specific .root file (file browser opens automatically after simulation)
- further information in terminal window

# der Helmholtz-Gemeinschaft

### analysis with "MR\_PET.C"











source energy: 160 keVsource activity: 100 Bq

- source type: beam (y)

- B : 0.0 T - B<sup>0,x</sup>: 0.0 T - B<sup>0,y</sup>: 0.0 T









### no magnetic field











- medium: Air

- source energy: 160 keV - source activity: 100 Bq - source type: beam (y)

- B<sub>0,x</sub>: 0.0 T - B<sub>0,y</sub>: 0.0 T - B<sub>0,z</sub>: 0.0 T









### magnetic field in x direction









- particle: e-

- camera type: cube

- medium: Air

- source energy: 160 keV - source activity: 100 Bq - source type: beam (y)

- B<sub>0,x</sub>: 0.5 T - B<sub>0,y</sub>: 0.0 T - B<sub>0,z</sub>: 0.0 T









### magnetic field in z direction











- camera type: cube

- medium: Air

source energy: 160 keV
source activity: 100 Bq
source type: beam (y)

- B<sub>0,x</sub>: 0.0 T - B<sub>0,y</sub>: 0.0 T - B<sub>0,z</sub>: 0.5 T









### magnetic field in y direction











- camera type: cube

- medium: Air

- source energy: 160 keV - source activity: 100 Bq

- source type: beam (y)

- B<sub>0,x</sub>: 0.0 T - B<sub>0,y</sub>: 0.5 T - B<sub>0,z</sub>: 0.0 T









### electron source in lung tissue











- camera type: cube

- medium: Lung

- source energy: 600 keV - source activity: 100 Bq - source type: isotropic

- B<sub>0,x</sub>: 0.0 T - B<sub>0,y</sub>: 0.0 T - B<sub>0,z</sub>: 0.0 T







### magnetic field in z direction









- particle: e-

- camera type: cube

- medium: Lung

source energy: 600 keV
source activity: 100 Bq
source type: isotropic

- B<sub>0,x</sub>: 0.0 T - B<sub>0,y</sub>: 0.0 T - B<sub>0,z</sub>: 3.0 T









### magnetic field in z direction









- particle: e-

- camera type: cube

- medium: Lung

- source energy: 600 keV - source activity: 100 Bq - source type: isotropic

- B<sub>0,x</sub>: 0.0 T - B<sub>0,y</sub>: 0.0 T - B<sub>0,z</sub>: 7.0 T







### positron source in water









- particle: e+ - camera type: cube - medium: Water

- source energy: 1000 keV - source activity: 100 Bq - source type: isotropic

- B : 0.0 T - B<sup>0,x</sup>: 0.0 T - B<sup>0,y</sup>: 0.0 T - positron annihilation: disabled







### magnetic field in z direction









particle: e+camera type: cube

- medium: Water

source energy: 1000 keVsource activity: 100 Bqsource type: isotropic

- B : 0.0 T - B<sup>0,x</sup>: 0.0 T - B<sup>0,y</sup>: 3.0 T

- B<sub>0,z</sub>: 3.0 T - positron annihilation: disabled







## d der Helmholtz-Gemeinschaft

### magnetic field in z direction











camera type: cubemedium: Water

source energy: 1000 keVsource activity: 100 Bqsource type: isotropic

- B : 0.0 T - B<sup>0,x</sup>: 0.0 T - B<sup>0,y</sup>: 7.0 T

- B<sub>0,z</sub>: 7.0 T - positron annihilation: disabled









## magnetic field in z direction











- source energy: 1000 keV - source activity: 100 Bq - source type: isotropic

- B : 0.0 T - B $_{0,x}^{0,x}$ : 0.0 T - B $_{0,z}^{0,y}$ : 9.4 T - positron annihilation: disabled









### troubleshooting



Error: illegal pointer to class object hi\_energy 0x0 157 MR\_PET.C:172

The leaves of the branch you are investigating seem to have no content.

Check your simulation settings: can particles be stopped within the medium or can they leave the medium without being detected?





Example: electron source (100 keV) within a cylindrical medium (Air), magnetic field in z direction (0.3 T). The electrons can't even enter the medium due to deviation caused by presence of magentic field.