Let $\mathbb{X} \subseteq \mathbb{R}$, \mathbb{M} a σ -algebra, and μ is a measure on (\mathbb{X}, \mathbb{M}) . Prove the following:

- 1. If $E, F \in \mathcal{M}$, and $E \subseteq F$, then $\mu(E) \leq \mu(F)$.
- 2. If $\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{M}$, then $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) \leq \sum_{j=1}^{\infty} \mu(E_j)$

3. If
$$\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{M}$$
 and $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$, then $\mu\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$

4. If
$$\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{M}$$
 and $E_1 \supseteq E_2 \supseteq E_3 \supseteq \cdots$, then $\mu\left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} \mu(E_j)$

Proof:

- 1. Note that $\mu(F) = \mu(E \cup E^c) = \mu(E) + \mu(E^c) \ge \mu(E)$.
- 2. It suffices to show the property holds with E_1 and E_2 . Note that, $E_1 \cap E_2 \subseteq E_1 \cup E_2$, so $\mu(E_1 \cap E_2) \leq \mu(E_1 \cup E_2)$

Note that,
$$\mu(E_1 \cup E_2)$$

$$= \mu(E_1 \setminus \{E_1 \cap E_2\}) + \mu(E_2 \setminus \{E_1 \cap E_2\}) + \mu(E_1 \cap E_2)$$

$$\leq \mu(E_1 \setminus \{E_1 \cap E_2\}) + \mu(E_2 \setminus \{E_1 \cap E_2\}) + \mu(\{E_1 \cup E_2\})$$

$$\leq \mu(E_1) + \mu(E_2).$$

3. Let $A = \lim_{j \to \infty} \mu(E_j)$. Then $\forall \epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $A - \mu(E_n) < \epsilon$.

Since, for all
$$i \geq 1$$
, $E_i \subseteq E_{i+1}$, $\mu(E_n) = \mu(\bigcup_{i=1}^n E_i)$.

Also, by similar reason, $\mu(\bigcup_{i=1}^{\infty} E_i) \ge \mu(\bigcup_{i=1}^{n} E_i)$.

Finally,
$$\epsilon > A - \mu(E_n) = A - \mu(\bigcup_{i=1}^n E_i) \ge \mu(\bigcup_{i=1}^\infty E_i)$$
, so $A = \mu(\bigcup_{i=1}^\infty E_i)$.

4. From part 3, for each i, let F_i such that $E_i^c = F_i$.

Then
$$F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots$$
, and

$$\mu(\bigcap_{j=1}^{\infty} F_j) = \mu(\mathbb{X}) - \mu((\bigcap_{j=1}^{\infty} F_j)^c)$$

$$= \mu(\mathbb{X}) - \mu(\bigcup_{j=1}^{\infty} E_j)$$

$$= \mu(\mathbb{X}) - \lim_{j \to \infty} \mu(E_j)$$

$$= \lim_{j \to \infty} \mu(E_j^c)$$

$$= \lim_{j \to \infty} \mu(F_j). \square$$