Metodi Matematici per la Fisica Teorica

Sessione Primaverile, Giovedì 09/04/2015

Compito scritto

1) Si calcoli

$$I = \int_0^\infty \frac{\ln x}{(x+a)\sqrt{x}} dx \,,$$

per a reale positivo.

2) Data l'espressione

$$I(x,N) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} \left(\frac{1+z}{2z^x}\right)^N \frac{dz}{1-z},$$

con $x \in (0,1)$, si valuti il termine dominante della sua espansione asintotica per $N \to \infty$.

3) Si determini un isomorfismo di algebre di Lie complesse fra $\mathfrak{so}(4,\mathbb{C})$ e

$$\mathfrak{so}(4,\mathbb{C};f) = \{X \in M_4(\mathbb{C}), f(u,Xv) + f(Xu,v) = 0, \ \forall u,v \in \mathbb{C}^4\},$$

dove $f(u,v)=u^tgv$ e $g\in M_4(\mathbb{C})$ è la matrice a blocchi

$$g = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) .$$

[Si raccomanda di lavorare con matrici a blocchi.]

4) Si scelga una subalgebra di Cartan per $\mathfrak{so}(4,\mathbb{C})$; si determinino le radici e le radici semplici.

[Si utilizzi l'algebra isomorfa $\mathfrak{so}(4,\mathbb{C};f)$ discussa nell'Esercizio 3, determinando la forma generica di $X \in \mathfrak{so}(4,\mathbb{C};f)$ e scegliendo come subalgebra di Cartan la subalgebra delle matrici diagonali.]