3.4 Chemin des données

Nous allons à présent commencer l'intégration des différents éléments précédemment développés afin de concevoir une première version du processeur. Nous allons créer un chemin des données (présenté à l'illustration 6). Afin de vous guider dans la création de ce chemin des données, nous vous conseillons de procéder par étapes. Autrement dit, nous vous conseillons de commencer par créer un chemin de données prenant en compte uniquement une des instructions. Vous pourrez alors tester votre implémentation afin de corriger les erreurs éventuelles. Ensuite, vous pourrez intégrer une nouvelle instruction. Vous bouclerez ainsi tant qu'il reste des instructions à implémenter. La suite de cette section vous présente un exemple de démarche.

- 1 Nous commençons par implémenter l'instruction *AFC*. Cette instruction permet de copier une constante dans un registre destination. Sachant que la modification d'un registre ne doit être effectuée qu'au niveau de l'étage 5, l'identifiant du registre destination et la valeur à lui affecter doivent être propagées jusqu'à cet étage. Le chemin suivi par cette instruction est donc le suivant .
 - 1.1. Au niveau du premier étage, les différents champs constituant l'instruction sont placés dans le premier pipe-line (*LI/DI*) ;
 - 1.2. Au niveau du second étage, aucune sélection de valeur dans le banc de registres n'est nécessaire : le code de l'opération en cours, la valeur à copier et le registre destination sont simplement propagés dans le pipe-line (*DI/EX*) ;
 - 1.3. Au niveau du troisième étage, aucune exécution arithmétique n'est nécessaire pour la copie : le code de l'opération en cours, la valeur à copier et le registre destination sont simplement propagés dans le pipe-line (*EX/Mem*) ;
 - 1.4. Au niveau du quatrième étage, aucune modification de la mémoire n'est nécessaire pour la copie : le code de l'opération en cours, la valeur à copier et le registre destination sont simplement propagés dans le pipe-line (*Mem/RE*) ;
 - 1.5. Au niveau du cinquième étage, nous disposons de toutes les informations nécessaires pour mener à bien la copie : valeur à copier et registre destination. Cette modification se fait en utilisant l'entrée écriture du banc de registres.

Le schéma correspondant est donné en illustration 1. Dans cette illustration, *OP* représente le code d'opération et *A*, *B* et *C* les opérandes. Notons, au passage, que le chemin emprunté par cette opération nécessite, au niveau de l'étage 5, d'utiliser un composant situé schématiquement au niveau de l'étage 2. Mais, en aucune façon, le chemin en question ne passe deux fois par un même pipe-line.

- 2 Sur la base de ce schéma, l'instruction *COP* peut être ajoutée. La différence par rapport au schéma précédent est l'obligation, lors du passage à l'étage 2, de propager la valeur associée au registre source et non l'identifiant de ce registre. Pour effectuer ces modifications sans pour autant altérer le bon fonctionnement de l'instruction *AFC*, nous utilisons un multiplexeur. En fonction du code de l'opération, il propage le paramètre *B* ou la valeur contenue dans le registre pointé par le paramètre *B*. Le schéma obtenu est donné en illustration 2.
- 3 Remarquons que les illustrations précédentes incluent une unité arithmétique et logique sans les exploiter. Nous allons donc inclure les instructions arithmétiques pour rattacher cette UAL au chemin de données. En utilisant à nouveau des multiplexeurs pour déterminer les éléments à propager, nous obtenons l'illustration 3.
- 4 En procédant de la même manière pour l'implémentation des instructions *LOAD* et *STORE*, nous obtenons les illustrations 4 et 5.

Illustration 1: Instruction AFC

Illustration 2: Instructions AFC, COP

Illustration 3: Instructions AFC, COP, ADD, MUL, DIV, SOU

Illustration 4: Instructions AFC, COP, ADD, MUL, DIV, SOU, LOAD

Illustration 5: Instructions AFC, COP, ADD, MUL, DIV, SOU, LOAD, STORE

Illustration 6 : Chemin des données