Краткое вступление

В.Ф. Турчин (1931–2010)

- Функциональный язык Рефал
- Суперкомпиляция
- ...

- Семинары МЕТА: 2008–2016 в Переславле-Залесском
- Приглашённые докладчики: Neil D. Jones, Simon Peyton-Jones

Образовательный семинар МЕТА

ИПС им. А.К. Айламазяна РАН, 1 июля, 2025

Абстрактная алгебра в проектировании распознавателей

Распознаватели для формальных языков

Проблема слова

Пусть \mathscr{L} — формальный язык над алфавитом T, ω — терм в алфавите T. Проверить, верно ли, что $\omega \in \mathscr{L}.$

- Автоматы-распознаватели:
 - + Естественная реализация, эффективность
 - Неявные ограничения на свойства языка, слабая модифицируемость
- Алгебраические методы:
 - + Расширяемость (правила переписывания), семантика база алгоритма
 - Неочевидная реализация, необходимость оптимизаций

Алгебраический язык как опора проектирования

Простейшие аналогии:

- ассоциативность операции возможность асинхронного разбора
- коммутативность операции возможность сортировки
- ACI (ассоциативность, коммутативность, идемпотентность)
 возможность представления в форме множества

Регулярные языки

Академические регулярные выражения

- Альтернатива (сложение, объединение) | ассоциативна, коммутативна, идемпотентна.
- Конкатенация (умножение) ассоциативна.
- Унарная операция итерации *.
- Нет нетривиальных соотношений для нуля (\varnothing).
- ullet Нетривиальные соотношения для единицы (arepsilon):

 $\varepsilon \in x^*$, даже если $\varepsilon \notin x$.

Регулярные языки и их распознаватели

Регекс

Экспоненциален относительно состояний ДКА

Устранение состояний

ДКА

Экспоненциален относительно длины регекса

(Conway & Krob)

Устранение состояний сохраняет регекс по модулю правил:

- $\bullet \ x(yx)^* = (xy)^*x$
- $x^*(yx^*)^* = (x \mid y)^*$
- $\varepsilon \mid xx^* = x^*, \varepsilon \mid x^*x = x^*$
- $\bullet \ x(y \mid z) = xy \mid xz, (y \mid z)x = yx \mid zx$

Расширенные регексы — приоритеты и якори

Альтернатива и конкатенация ассоциативны — условно, при переходе к именованным группам захвата.

Альтернатива коммутативна — неверно:

Регекс $(() \mid a)(a \mid b)^*$ не эквивалентен $(a \mid ())(a \mid b)^*$ из-за групп захвата.

- ε аа группы 1 и 2 примут значение ε , группа примет ε значение а (последнее захваченное регексом а b значение).
- а а группы 1 и 2 примут значение а, группа примет (a|()) значение а.

Нет нетривиальных соотношений для нуля (\varnothing) — **неверно**: Регекс а \land А эквивалентен \varnothing : \land А может лишь начинать выражение.

Производные Бржозовски

Множество $a^{-1}U = \{\omega \mid a\omega \in U\}$ называется производным Бржозовски множества U относительно a. Если $\varepsilon \in a^{-1}U$, тогда a распознаётся выражением U.

 Λ_E положим равным $\{\varepsilon\},$ если $\varepsilon\in E,$ и пустым множеством иначе.

- $a^{-1}\varepsilon = \varnothing, a^{-1}\varnothing = \varnothing;$
- $\bullet \ a^{-1}a = \{\varepsilon\}, a^{-1}b = \varnothing;$
- $a^{-1}(\Phi \mid \Psi) = a^{-1}(\Phi) \cup a^{-1}(\Psi);$
- $a^{-1}(\Phi \Psi) = a^{-1}(\Phi)\Psi \cup \Lambda_{\Phi}a^{-1}(\Psi);$
- $a^{-1}(\Phi^*) = a^{-1}(\Phi)\Phi^*$.

С помощью последовательного взятия производных можно свести задачу $\omega \in \mathcal{L}(R)$ к задаче $\varepsilon \in \omega^{-1}R$. Используя

ACI-эквивалентности, можно построить ДКА, помеченный производными языками, выполняющий такое распознавание.

Расширенные производные Бржозовски

Движок .NET:

- Отказ от перехода к автомату, производные используются непосредственно для разбора.
- Дополнительные условия для отслеживания единицы (синтаксически корректные якори слов).
- Дополнительные условия для отслеживания нуля (синтаксически некорректные якори слов).

Итог: алгоритм распознавания ω , линейный по длине ω .

• Возможные расширения на опережающие проверки.

D.Moseley et al: *Derivative Based Nonbacktracking Real-World Regex Matching with Backtracking Semantics*, Proceedings of the ACM on Programming Languages, Volume 7, Issue PLDI, Article No.: 148, pp. 1026–1049, 2023.

Расширенные регексы — обратные ссылки

Только регексы с именованными группами захвата.

```
Васкгеf-регексы (слова со ссылками, Shmid): \begin{cases} [_k\tau]_k & \text{(захват в память)} \\ \&_k & \text{(чтение памяти)} \end{cases} Пример: [_1\mathbf{a}^*]_1\mathbf{a}^+\mathbf{b}\&1 определяет язык \{a^mba^n\mid m>n\}
```

- ε -семантика (Shmid) неинициализированная ссылка распознаёт $\{\varepsilon\}$;
- Ø-семантика (практические реализации) неинициализированная ссылка распознаёт Ø.

Выбор не влияет на язык.

Проблема: циклическая память

 Выразительная сила и сложность анализа возрастает по сравнению с практическими регулярными выражениями.

Среди 3000 расширенных регексов со StackOverflow не нашлось ни одного циклического.

- Неочевидное синтаксическое свойство:
 - слово $([_1\&2]_1[_2a\&1]_2[_1a^*]_1)^*$ циклическое,
 - слово $([_1\&2]_1[_1a^*]_1[_2a\&1]_2)^*$ нециклическое.

Семантически корректная переименовка

	$[_{1}a^{*}]_{1}$ $\mapsto [_{3}a^{*}]_{3}$	$[_1\&2]_1 \\ \mapsto [_3\&2]_3$	Циклы после подст.
$ \begin{pmatrix} ([_{1}\&2]_{1}[_{2}a\&1]_{2}[_{1}a^{*}]_{1})^{*} \\ ([_{1}\&2]_{1}[_{1}a^{*}]_{1}[_{2}a\&1]_{2})^{*} \end{pmatrix} $	✓ X	×	×

Класс ACREG

Ациклические регексы

- Ограниченная переинициализация зависимых ячеек памяти
- Скобки групп захвата операции над памятью
- Могут быть корректно переименованы в регексы без переинициализаций

ACREG — идемпотентное полукольцо, удовлетворяющее теоремам Конвея – Кроба

Автоматы с памятью

Конечный автомат с памятью

Пятерка $\langle Q, \Sigma, \delta, q_0, F \rangle$:

- Q множество состояний автомата;
- Σ входной (терминальный) алфавит автомата;
- δ множество правил перехода. Переходы помечаются действиями над памятью: o открытие ячейки, c закрытие ячейки, r сброс до ε ;
- $q_0 \in Q$ начальное состояние, $F \subseteq Q$ множество конечных состояний.

Операция сброса не применяется в оригинальной статье Шмида и необходима, чтобы сделать алгебру действий над памятью композиционно замкнутой.

MFA: состояния памяти

- текущее состояние;
- содержимое памяти;
- конфигурации ячеек:

$$\begin{cases} O & \text{(open)} \\ C & \text{(closed)} \end{cases}$$

- Начальная конфигурация памяти: $(q_0, w, (\varepsilon, C), \dots, (\varepsilon, C))$.
- Действия над ячейками памяти происходят до чтения с ленты.

Необходимость откатов и пустые действия

Расширенное регулярное выражение: $a^*[a^*]:1^*\&_1$

Без сбросов памяти необходимо возникают циклы по пустому слову.

Необходимость откатов и пустые действия

Расширенное регулярное выражение: $a^*[a^*]: 1^*\&_1$

Без переходов по пустому слову с операцией сброса распознавание эффективно.

