

Evolutionary Programming

PGS.TS Huỳnh Thị Thanh Bình

Email: binhht@soict.hust.edu.vn

Nội dung

- Tổng quan Evolutionary Programming (EP)
- Các toán tử của EP
- Ví dụ minh họa

Tổng quan về Evolutionary Programming

- Evolutionary Programming (Lập trình tiến hóa EP) về cơ bản khác GA và GP:
 - Lấy cảm hứng từ việc mô phỏng các hành vi trong quá trình tiến hóa
 - GP tìm một tập hành vi tối ưu trong tập không gian hành vi quan sát được
 - GP không sử dụng toán tử lai ghép, chỉ sử dụng toán tử đột biến để sinh ra quần thể con mới

Sơ đồ thuật toán EP

- Bước 1: Khởi tạo một quần thể P(0) có N cá thể, t = 0
- Bước 2: Đánh giá độ thích của các cá thể trong P(t)
- Bước 3: Đột biến mỗi các thể trong P(t) để sinh ra một quần thể con O(t)
- Bước 4: Đánh giá các cá thể trong O(t)
- Bước 5 : Chọn lọc P(t+1) từ P(t) và O(t)
- Bước 6: t = t+1 và lặp lại bước 2,3,4,5 cho đến khi thỏa mã DK dừng

Các toán tử của GP

- Biểu diễn cá thể
- Đột biến và chọn lọc sinh tồn <- Khác biệt</p>
- Đánh giá độ thích nghi

Đột biến và chọn lọc sinh tồn

- Phép đột biến được thực hiện trên mỗi cá thể trong quần thể
- Cá thể con sinh ra sẽ cạnh tranh với cá thể cha để sinh tồn trong thế hệ tiếp theo
- Quá trình chọn lọc được diễn ra theo các cách sau:
 - Trên tất cả các cá thể: Cá thể cha và con có cơ hội được lựa chọn như nhau. Có thể dung các toán tử chọn lọc sinh tồn trong GA như tournament(giao đấu)..
 - Elitist: gọi S = N1 cá thể tốt nhất trong P(t)
 - P(t+1) = $S \cup \{N-N1 \text{ cá thể tốt nhất trong } (P(t)\S) \text{ và } O(t) \}$

Ví dụ minh họa

Vi dụ 1: EP tiến hóa máy trạng thái

Ví dụ 2: EP tối ưu hàm số f(x)

Ví dụ 1- EP tiến hóa máy trạng thái

- Máy trạng thái hữu hạn (Finite-state machine FSM) là gì?
 - Là một chuuwong trình máy tính biểu diễn các hành ddoogj cần thực thi
 - Các hành động phụ thuộc vào trạng thái hiện tại của máy và tham số đầu vào
 - FSM được định nghĩa như sau:
 - Với S: tập hữu hạn các trạng thái
 - I : Tập hữu hạn các kí hiệu đầu vào
 - O: Tập hữu hạn các kí hiệu đầu ra
 - : hàm trạng thái tiếp thoe

$Present\ state$	C	В	\mathbf{C}	A	A	В
$Input\ symbol$	0	1	1	1	0	0
$Next\ state$	В	\mathbf{C}	A	Α	В	\mathbf{C}
$Output\ symbol$	β	α	γ	β	β	γ

Figure 11.1: Finite-state machine

- Biểu diễn cá thể: Chuỗi nhị phân 6 bit
 - Bit 1:
 - 1: trạng thái đang hoạt động,
 - 0: không hoạt động
 - Bit 2: Biểu diễn kí hiệu đầu vào (do chỉ có 0,1 nên dung 1 bít)
 - Bit 3,4: Biểu diễn trạng thái tiếp theo của máy (do có 3 trạng thái)
 - Bit 5,6: Biểu diễn trạng kí hiệu đầu ra tiếp theo (Do có 3 kí hiệu đầu ra có thể)

- Độ thích nghi:
 - Độ thích nghi của các cá thể được đo bằng khả năng dự đoán đúng kí hiệu đầu ra
- Đột biến: Có thể áp dụng các phương pháp sau:
 - Thay đổi trạng thái ban đầu
 - Xóa trạng thái
 - 3. Thêm một trạng thái
 - 4. Thay đổi một dịch chuyển trạng thái
 - 5. Thay đổi kí hiệu đầu ra với trạng thái hiện tại và đầu vào không đổi
- Các toán tử có thể áp dụng như sau

- Các toán tử đột biến có thể áp dụng theo các cách như sau
 - Chọn ngâu nhiên đều 1 trong 5 phương pháp đầu tiên và áp dụng với xác xuất đột biến pm
 - Sinh một số theo phân phối Possion với trung bình . Lựa chọn ngẫu nhiên đều toán tử đột biến và áp dụng theo thứ tự

Ví dụ 2- EP tôi ưu hàm số f(x)

Ví dụ 2- EP tối ưu hàm f(x)

- Giả sử cần tối thiểu hàm số f(x) trong đoạn [0,2]
- Mỗi cá thể được biểu diễn bằng một vector số thực chỉ chứa 1 phần tử
- Mỗi cá thể được khởi tạo ngẫu nhiên đều trong đoạn [0,2]
- Độ thích nghi: Cá teher nào cho giá trị f(x) càng nhỏ thì có độ thích nghi càng cao
- Đột biến: Sử dụng đột biến Gauss: Cộng thêm một lượng giá trị nhỏ vào cá thể P(i) như sau:

Ví dụ 2- EP tối ưu hàm f(x)

- có thể được lựa chọn theo các cách như sau:
 - Không đổi, và giá trị nhỏ
 - Ban đầu lớn và giảm dần qua các thế hệ: Tăng khả năng khám phá của thuật toán ở giai đoạn ban đầu và khả năng khai thác ở các giai đoạn sau để thuật toán tội tụ
 - bằng độ lệch chuẩn của quần thể bố mẹ
 - Tự thích nghi....

Thanks for your attention