MANIFOLDS, BRAIDS, AND HYPERGEOMETRIC FUNCTIONS

ALEX ELZENAAR

MAX-PLANCK-INSTITUT FÜR MATHEMATIK IN DEN NATURWISSENSCHAFTEN

REGIOMONTANUS PHD SEMINAR UNIVERSITÄT LEIPZIG

V I Coil of rope

 M. u. K. 1, 3.
 Cairo 20393. 20562, d, in the title lawy-r Int; cf. too a title Int discussed JEA. 9, 15, n. 2.
 Urs. V. 200. 15.

CONTEXT

- We will present an interesting family of polynomials which arise in the study of certain hyperbolic 3-manifolds and associated arithmetic groups.
- One can also approach all of this from a purely combinatorial point of view; see the 2021 talk The Farey polynomials in slide form on my website.
- We will spend most of our time looking at knots and braids and will only very briefly mention the Farey polynomials at the end.

KNOTS

GAUSS, AGE 17

J. C. Thurner and P. v.d.Griend (eds.), History and science of knots, p. x.

KNOTS AND LINKS

Definition

A knot is an embedding $S^1 \rightarrow S^3$. A link is an embedding $S^1 \sqcup \cdots \sqcup S^1 \rightarrow S^3$.

KNOTS AND LINKS

Definition

Two knots are equivalent if there is an ambient isotopy of S^3 which transforms one to the other.

C. Adams, The knot book, p. 2.

DISTINGUISHING KNOTS

Exercise

How do you know these three knots are different?

C. Adams, The knot book, p. 2.

KNOT COMPLEMENTS

Theorem (Gordon-Luecke (1989))

Knots¹ are determined² by their complements.³

Hence if k is a knot, $\pi_1(S^3 \setminus k)$ is a knot invariant. A presentation can be computed mechanically from a diagram of the knot.

¹which are tame

²modulo ambient isotopy

³in S³ moduli orientation-preserving homeomorphisms

KNOT COMPLEMENTS

It is a nontrivial computational problem to check that these groups are not isomorphic.

GEOMETRIC INVARIANTS

If k is a knot or link, then $S^3 \setminus k$ is a smooth oriented 3-manifold.

Theorem (William Thurston (1970s))

Most 3-manifolds are hyperbolic. More precisely, they are a quotient \mathbb{H}^3/G where G is a discrete group of hyperbolic isometries.

That is, locally most 3-manifolds look like a polyhedron (maybe not finitely sided) in \mathbb{H}^3 with faces glued.

HYPERBOLIC 3-SPACE TILED BY DODECAHEDRA

Pierre Berger, https://www.espaces-imaginaires.fr/works/ExpoEspacesImaginaires2.html

THE FIGURE 8 KNOT

Theorem (Robert Riley (c.1974); William P. Thurston (c.1975))

The figure 8 knot complement admits a hyperbolic geometry.

Matsuzaki and Taniguchi, Hyperbolic manifolds and Kleinian groups, p.34.

VOLUME AS AN INVARIANT

Theorem (Gromov-Jørgensen-Thurston)

The set of volumes of hyperbolic manifolds is a well-ordered subset of \mathbb{R} . The set of manifolds with any given volume is finite.

Hyperbolic volume of the complement turns out to be a very good link invariant. It can be computed algorithmically.

Example

The volume of the figure eight knot complement is

$$-6 \int_0^{\pi/3} \log|2\sin\theta| \, d\theta = 2.02988...$$

BRAIDS

WHAT IS ... A BRAID?

Fig. 7. The (7P, 5B) regular flat braid, with Two Pass Headhunter's coding. Figs. 6 and 7 demonstrate two different braids with the same whole string run

J. C. Thurner and P. v.d.Griend (eds.), History and science of knots, p. 284.

BRAIDS AND CONFIGURATIONS OF POINTS ON THE SPHERE

Instead of braiding strings glued onto two planes, braid strings glued on two 2-spheres in S^3 (mod ambient isotopy of S^3).

Theorem

Every braid with ends glued on spheres admits a unique completion to a knot/link which cannot be simplified by 'untwisting'.

RATIONAL TANGLES

We will care only about braids with four strands, completed at one end. We will call these objects **rational tangles**.

J. Purcell, Hyperbolic knot theory, p. 208.

Every rational tangle is given by a sequence of integers, this one is [4, -2, -2, 3].

TWO-BRIDGE KNOTS

A two-bridge knot (or link) is the knot obtained by completing a rational tangle.

Theorem (Schubert (1956), Conway (1970))

Rational tangles and two-bridge links are indexed by $\mathbb{Q} \cup \{\infty\}$:

$$[a_n,a_{n-1},\dots,a_1] \leftrightarrow a_n + \frac{1}{a_{n-1} + \frac{1}{\mathbb{Z}_+\frac{1}{a_1}}}$$

We write k(p/q) for the link indexed by $p/q \in \mathbb{Q}$.

RILEY REPRESENTATION

Theorem (Riley (1972))

Every two-bridge link k(p/q) has a fundamental group on two generators and one relation

$$\langle X, Y : W_{p/q}X = YW_{p/q} \rangle$$

where $W_{p/q}$ is some word in X and Y depending only on p/q. This group admits a faithful representation into PSL(2, \mathbb{C}) given by

$$X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}; \qquad Y_{\rho} = \begin{bmatrix} 1 & 0 \\ \rho & 1 \end{bmatrix}$$

where $\rho \in \mathbb{C}$ depends only on p/q.⁴

⁴Different authors use p/q or q/p for different corresponding objects.

RILEY REPRESENTATION

Example

The figure eight knot has rational form 1 + 1/(1 + 1/2) = 5/3. The fundamental group is

$$\left\langle \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -e^{2\pi i/3} & 1 \end{bmatrix} \right\rangle.$$

The corresponding word is $W_{5/3} = Y^{-1}X^{-1}YXYX^{-1}Y^{-1}XYX$.

FAREY POLYNOMIALS

The manifold obtained by taking the complement of the rational tangle t (i.e. $S^3 \setminus B^3 \cup t$) does not have a unique hyperbolic structure. The space of all possible hyperbolic structures is one dimensional over \mathbb{R} , and the set of all hyperbolic structures is indexed by the component of the set

$$\{\rho \in \mathbb{C} : \operatorname{tr} W_{p/q}(\rho) \in (-\infty, -2)\}$$

with asymptotic angle $\pi p/q$.

THE RECURSION

Theorem (E.-Martin-Schillewart (2022))

$$|f \begin{vmatrix} p & r \\ q & s \end{vmatrix} = \pm 1, then$$

$$\operatorname{tr} W_{p/q} \operatorname{tr} W_{r/s} + \operatorname{tr} W_{(p+r)/(q+s)} + \operatorname{tr} W_{|p-r|/|q-s|} = 8$$

as a polynomial in ρ .

Really, this is a recursion down the tree of continued fractions. Doing a horizontal twist corresponds to 'adding' 0/1, and doing a vertical twist corresponds to 'adding' 1/0.

EXAMPLE POLYNOMIALS

```
0/1
          2-z
   1/1
          2+7
          2+7^{2}
   1/2
  2/3
          2-7-27^2-7^3
          2+7+27^2+37^3+27^4+7^5
  3/5
          2+4z^4+8z^5+8z^6+4z^7+z^8
   5/8
          2-7-27^2-57^3-127^4-227^5-327^6-447^7-547^8-537^9-387^{10}-197^{11}-67^{12}-7^{13}
 8/13
           2+z+2z^2+7z^3+14z^4+31z^5+64z^6+124z^7+214z^8+339z^9+498z^{10}+699z^{11}+936z^{12}
13/21
            +1148z^{13}+1216z^{14}+1064z^{15}+746z^{16}+409z^{17}+170z^{18}+51z^{19}+10z^{20}+z^{21}
          2+z^2+8z^4+24z^5+68z^6+192z^7+516z^8+1256z^9+2834z^{10}+5912z^{11}+11460z^{12}
21/34
            +20816z^{13}+35598z^{14}+57248z^{15}+86446z^{16}+122560z^{17}+163199z^{18}
            +203952z^{19}+238564z^{20}+259704z^{21}+260686z^{22}+238320z^{23}+195694z^{24}
            +1423287^{25} + 904517^{26} + 495527^{27} + 230587^{28} + 89527^{29} + 28317^{30} + 7047^{31}
            +130z^{32}+16z^{33}+z^{34}
```

ADVERTISEMENT: MINICOURSE ON KNOT THEORY AND GEOMETRY

- When? Two lectures every week of July.
- Where? Dept. of Mathematics, The University of Auckland.
 - **What?** Classical knot theory. Geometric knot theory and hyperbolic invariants. Braids and mapping classes. Knot polynomials (Alexander, Conway, Jones, HOMFLY-PT).
- **Prereqs?** Basic topology (what is π_1). Passing familiarity with classical hyperbolic geometry in 2 or 3 dimensions.
 - Email aelz176@aucklanduni.ac.nz

BEDTIME READING

- A.J.E., Gaven Martin, and Jeroen Schillewaert, "Concrete one complex dimensional moduli spaces of hyperbolic manifolds and orbifolds". In: 2021-22 MATRIX annals. Springer, to appear.
- —, "The combinatorics of the Farey words and their traces". arXiv:2204.08076 [math.GT], 2022.
- William P. Thurston, "Three dimensional manifolds, Kleinian groups and hyperbolic geometry". In: *Bulletin (NS) of the AMS* **6**(3) pp.357–381, 1982.
- Benson Farb and Dan Margalit, A primer on mapping class groups. Princeton, 2012.
- Jessica Purcell, Hyperbolic knot theory. AMS, 2021.
- Title picture: A. Gardiner, *Egyptian grammar*. Griffith Institute, 1957.