Вопросы на зачет

Дискретная математика 1 64

КАФЕДРА ВМ / ИНСТИТУТ ИКБПС

Задачи.

Задача 1. На множестве $A \times B$, где $A = \{11, 12, 13, 14\}$, $B = \{21, 22, 23\}$, задано

отношение с помощью матрицы $R_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, а на множестве $B \times C$, где $C = \{31, 32, 33, 34\}$, задано отношение $R_2 = \{(21, 32), (22, 34), (23, 33)\}$. Определить

композицию отношений R_1 и R_2 .

Решение. По матрице отношения R_1 найдем элементы отношения R_1 : $\{(11,22),(12,22),\}$. Для отношения $(11,22) \in R_1$ существует элемент $22 \in B$ такой, что $(22,34) \in R_2$, следовательно, $(11,34) \in R_1 \circ R_2$. Для элемента $(12,22) \in R_1$ — $(12,34) \in$ $R_1 \circ R_2$. Откуда следует, что $R_1 \circ R_2 = \{(11, 34), (22, 34)\}.$ *Ombem*: $R_1 \circ R_2 = \{(11, 34), (22, 34)\}.$

Задача 2. Сколько четырехзначных чисел можно составить из цифр 0, 1, 3, 5, если каждая цифра входит в изображение числа только один раз?

Решение. На первое место можем поставить только три цифры так как первая цифра 0 не образует четырехзначного числа. На второе место можем поставить только три цифры (включая 0 и отбросив цифру первого места). На третье место — 2 цифры, а на четвертое место, оставшуюся одну цифру. Всего будет $3 \cdot 3 \cdot 2 \cdot 1 = 18$.

Ответ: 18.

Задача 3. Определить общее целочисленное решение уравнение 6x + 5y = 3. Решение. HOД(6,5) = 1 и 3 делится на 1, следовательно, данное уравнение имеет целочисленное решение. В этом случае частное целочисленное решение задается формулами $x_0 = \frac{uc}{\text{HOД}(a,b)}$, $y_0 = \frac{vc}{\text{HOД}(a,b)}$, где целые числа u и v берутся из представления au + bv = HOД(a, b). Для нашего уравнения имеем $x_0 = 3u$, $y_0 = 3v$, где u и v берутся из представления 6u + 5v = 1. Полагая v = -1, находим u = 1. Итак, u = 1, v = -1. Тогда, частное решение равно $x_0 = 3 \cdot 1 = 3$, $y_0 = 3 \cdot (-1) = -3$. Общее целочисленное решение уравнения ax + by = c задается формулой $\begin{cases} x = x_0 + \frac{bt}{\text{НОД}(a,b)}, \\ y = y_0 - \frac{at}{\text{НОД}(a,b)}, \end{cases}$ где t — произвольное целое

число. Откуда получаем общее целочисленное решение исходного уравнения.

$$\begin{cases} x = 3 + 5t, \\ y = -3 - 6t. \end{cases}$$

 $\begin{cases} x = 3 + 5t, \\ y = -3 - 6t. \end{cases}$ Ответ: $\begin{cases} x = 3 + 5t, \\ y = -3 - 6t, \end{cases}$ где t — произвольное целое число.

Задача 4. Найти решение сравнения $54x \equiv 6 \pmod{4}$.

Решение. НОД(54, 4) = 2. 6 делится на 2, то исходное сравнение имеет решение. Число таких решений два. Подберем решение уравнения 54x + 4y = 6. В уравнении 54x + 4y = 6 обе части уравнения можно сократить на 2. Тогда 27x + 2y = 3. Так как нас устроит любое решение уравнения 27x + 2y = 3, то положим y = -12. Тогда 27x - 24 = 3. Отсюда $x_0 = 1$. Решения сравнения $54x \equiv 6 \pmod{4}$ задаются формулой $x_0 + tm/\text{HOД}(a,m) \pmod{m} = 1 + 4t/2 = 1 + 2t \pmod{4}, t = 1, 2$.

При t=1 получаем одно решение $x\equiv 3\ (mod\ 4)$. При t=2 получаем другое решение $x\equiv 5\equiv 1\ (mod\ 4)$.

Omsem: $x \equiv 3 \pmod{4}$, $x \equiv 1 \pmod{4}$.

Задача 5. Решить систему сравнений
$$\begin{cases} x \equiv 1 \ (mod \ 2), \\ x \equiv 3 \ (mod \ 5), \\ x \equiv 2 \ (mod \ 7). \end{cases}$$

Peшение. Числа 2, 5, 7 — попарно взаимно простые числа. Пусть $M=2\cdot 5\cdot 7=70,$ тогда $M_1=35, M_2=14, M_3=10.$

Найдем решение сравнения $35z_1 \equiv 1 \pmod{2}$. Представим сравнение в виде $(34+1)z_1 \equiv 1 \pmod{2}$, откуда следует, что $z_1 \equiv 1 \pmod{2}$, которое и является решением.

Решим сравнение $14z_2 \equiv 3 \pmod{5}$. Эквивалентным ему сравнением является сравнение $4z_2 \equiv 3 \pmod{5}$ или $4z_2 \equiv 8 \pmod{5}$. Так как 4 и 5 взаимно простые числа, то из последнего сравнения следует решение исходного сравнения: $z_2 \equiv 2 \pmod{5}$.

И, наконец, решим третье сравнение $10z_3 \equiv 2 \pmod{7}$. Это сравнение эквивалентно сравнению $3z_3 \equiv 2 \pmod{7}$ или $3z_3 \equiv 9 \pmod{7}$, откуда $z_3 \equiv 3 \pmod{7}$ является решением третьего сравнения.

 $M_1z_1+M_2z_2+M_3z_3\equiv 35\cdot 1+14\cdot 2+10\cdot 3\equiv 93\equiv 23\ (mod\ 70)$. Из китайской теоремы об остатках следует, что сравнение

$$x \equiv 23 \pmod{70}$$

является решением заданной системы сравнений.

Omeem: $x \equiv 23 \pmod{70}$.

Примечание. В задачах 4, 5 необходимо представлять ответ в виде $x \equiv r \pmod{m}$, где $0 \le r < m$.

Задача 6. В таблице указаны частоты букв. Построить по этим данным код Хаффмана. Кодировать в сообщении слово «истина».

Буква	a	Н	0	c	m	u
Частота	14	9	28	25	8	15

Расположим буквы в порядке убывания частот.

Буква	0	С	и	а	Н	m
Частота	28	25	15	14	9	8

Объединим две буквы с наименьшими частотами (H, m) в один составной знак (H, m). Этому знаку припишем частоту, равную сумме частот букв (H, m) (9+8=17). После этого расположим все знаки в порядке убывания частот.

Буква	0	С	нт	и	а
Частота	28	25	17	15	14

Объединим две буквы с наименьшими частотами (u, a) в один составной знак (u a). Этому знаку припишем частоту, равную сумме частот букв (a), (a),

Буква	иа	0	c	нт
Частота	29	28	25	17

На третьем шаге будет получена следующая таблица.

Буква	с(нт)	иа	0
Частота	42	29	28

На 4-м шаге будет получена следующая таблица.

Буква	(ua)(o)	с(нт)
Частота	57	42

На последнем шаге получаем ((ua)(o))(c(нm)).

После этого строим *дерево кодирования*. Припишем первой компоненте последнего объединения символ 0, а второй компоненте — символ 1. Продолжаем этот процесс до тех пор, пока все исходные знаки не будут закодированы.

Получаем таблицу кодирования.

Буква	u	а	0	С	Н	m
Код	000	001	01	10	110	111

Так как по таблице кодирования u=000, c=10, m=111, a=001, то слово «истина» кодируется последовательностью 00010111000110001.

Ответ: 00010111000110001

<u>Примечание к задаче 6.</u> Строго следите за объединением символов. Если в таблице частот символ находится слева, то он в объединении находится слева. В противном случае вы получите другую таблицу кодирования и не совпадет с таблицей кодирования автора задачи 5.

Задача 7. Найти маршрут минимальной длины от пункта 1 к пункту 8.

Где длины ребер: $l_1=2$, $l_3=l_4=l_6=1$, $l_2=2$, $l_5=3$, $l_7=3$, $l_8=4$, $l_9=2$, $l_{10}=4$, $l_{11}=1$, $l_{12}=3$, $l_{13}=5$. В ответе укажите длину искомого маршрута. Выберите **один** верный вариант ответа:

Решение. Припишем вершине 8 число 0.

8 вершина соединена с вершинами 5, 6 и 7, но с вершин 5, 6 и 7 в вершину 8 можно попасть и другими путями (по направлению к 8). Тогда находим min(0 + 4, 0 + 5, 0 + 1) = 1 и вершине 7 приписываем число 1, а ребро (7, 8) изобразим двумя чертами со стрелкой.

По числам 7 и 8 вершин определяем число 6 вершины: min(1+3, 0+5) = 4. Ребро (6,7) изобразим двумя чертами со стрелкой.

По числам 7 и 8 вершин найдем число 5 вершины: min(1+2, 0+4) = 3. Ребро (5,7) изобразим двумя чертами со стрелкой.

По числам 5, 6 и 7 вершин найдем число 3 вершины: min(3 + 1, 1 + 4, 4 + 3) = 4. Ребро (3, 5) изобразим двумя чертами со стрелкой.

По числу 5 вершины найдем число 2 вершины: 5 + 2 = 7. Ребро (2, 5) изобразим двумя чертами со стрелкой.

По числу 6 вершины найдем число 4 вершины: 4 + 1 = 5. Ребро (4, 6) изобразим двумя чертами со стрелкой.

По числам 2, 3 и 4 вершин найдем число 1 вершины: min(7 + 2, 4 + 1, 5 + 3) = 5. Ребро (1, 3) изобразим двумя чертами со стрелкой.

Двигаясь из начальной вершины 1 к конечной вершине 8 по ребрам со стрелкой, получаем кратчайший путь 1-3-5-7-8. Его длина равна 5 (это число вершины 1). *Ответ*: минимальная длина маршрута 5, путь 1-3-5-7-8.

Рис. к задаче 7.

Вопросы.

- 1. Определение декартового произведения двух множеств.
- 2. Определение отношения.
- 3. Композиция двух отношений.
- 4. Построение матрицы отношений.
- 5. Нахождение отношения по матрице отношений.
- 6. Определение перестановок. Формула числа перестановок.
- 7. Размещение. Число размещений.
- 8. Перестановки с повторениями.
- 9. Размещения с повторениями.
- 10. Понятие графа. Определение.
- 11. Метод присвоения меток.
- 12. Алгоритм нахождения кратчайшего пути между двумя пунктами.
- 13. Деление с остатком.
- 14. Алгоритм Евклида.
- 15. Наибольший общий делитель.
- 16. Наименьшее общее кратное.
- 17. Классы вычетов по модулю.
- 18. Решение сравнений.
- 19. Китайская теорема об остатках.
- 20. Код с проверкой четности.
- 21. Код с тройным повторением.
- 22. Код Хаффмана.