Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2(1+i)-i(2-i)=2+2i-2i+i^2=$	3 p
	=2-1=1	2p
2.	$f(2a) = a \Leftrightarrow 6a + 10 = a$	3p
	a = -2	2p
3.	$2x^2 + 2 = 4x^2$, de unde obținem $x^2 - 1 = 0$	2p
	x = -1, care nu convine; $x = 1$, care convine	3p
4.	Cifra unităților se poate alege în două moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor se poate alege în 5 moduri și, pentru fiecare alegere a cifrei unităților și a cifrei zecilor, cifra sutelor se poate alege în 4 moduri, deci se pot forma $2 \cdot 5 \cdot 4 = 40$ de numere	3 p
5.	$\frac{a}{1} = \frac{a-1}{2}$	3p
	a = -1	2p
6.	$AC = 12$; $\angle ACD = \frac{\pi}{6}$	3 p
	$\frac{AC}{CD} = \cos\frac{\pi}{6}$, de unde obţinem $CD = 8\sqrt{3}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	2 -1 1	
	$\det(A(1)) = \begin{vmatrix} 2 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{vmatrix} = 2 \cdot 1 \cdot 2 + (-1) \cdot 0 \cdot 1 + 0 \cdot (-1) \cdot 1 - 1 \cdot 1 \cdot 1 - (-1) \cdot 0 \cdot 2 - 0 \cdot (-1) \cdot 2 =$	3 p
	$\begin{vmatrix} 1 & -1 & 2 \end{vmatrix}$	
	=4+0+0-1-0-0=3	2p
b)	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} x+2 & -x-2 & x+2 \end{pmatrix}$	
	$A(0) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}, A(0) \cdot A(x) = \begin{pmatrix} x+2 & -x-2 & x+2 \\ 0 & 0 & 0 \\ x+2 & -x-2 & x+2 \end{pmatrix}, \text{ pentru orice număr real } x$	3р
	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} x+2 & -x-2 & x+2 \end{pmatrix}$	_
	x = -1	2p
c)	$ (A(1))^{-1} = aA(1) + bI_3 \Leftrightarrow aA(1) \cdot A(1) + bA(1) = I_3 \text{si} A(1) \cdot A(1) = \begin{pmatrix} 5 & -4 & 4 \\ 0 & 1 & 0 \\ 4 & -4 & 5 \end{pmatrix}, \text{ de unde} $ $ \text{obținem} \begin{pmatrix} 5a + 2b & -4a - b & 4a + b \\ 0 & a + b & 0 \\ 4a + b & -4a - b & 5a + 2b \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	3р
	$a = -\frac{1}{3} \text{ si } b = \frac{4}{3}$	2p
	$\frac{u-3}{3} = \frac{3}{3} = \frac{5}{3}$	2p

2.a)	$1*2=1\cdot 2+1+2-1+2^{1\cdot 2}=$	3p
	=4+4=8	2p
b)	$x*0=x\cdot 0+x+0-1+2^{x\cdot 0}=x$, pentru orice număr real x	2p
	$0*x=0\cdot x+0+x-1+2^{0\cdot x}=x$, pentru orice număr real x , deci $e=0$ este elementul neutru al legii de compoziție ,,*"	3p
c)	$n*\left(-\frac{1}{n}\right) = \frac{2n^2 - 3n - 2}{2n}$, pentru orice număr natural nenul n	2p
	$\frac{2n^2 - 3n - 2}{2n} = 0 \Rightarrow 2n^2 - 3n - 2 = 0 \text{ si, cum } n \text{ este număr natural nenul, obținem } n = 2$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{\left(2 + \frac{1}{x}\right) \cdot x - \left(2x + 1 + \ln x\right)}{x^2} =$	3 p
	$= \frac{2x+1-2x-1-\ln x}{x^2} = -\frac{\ln x}{x^2}, \ x \in (0,+\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x + 1 + \ln x}{x} = \lim_{x \to +\infty} \left(2 + \frac{1}{x}\right) = 2$	3 p
	Ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f este $y=2$	2p
c)	$f'(x) < 0$, pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict descrescătoare pe $(1, +\infty)$	2p
	$1 < x < y \Rightarrow f(x) > f(y)$, deci $\frac{\ln y}{y} - \frac{\ln x}{x} < \frac{1}{x} - \frac{1}{y}$, pentru orice $x, y \in (1, +\infty)$ cu $x < y$	3 p
2.a)	$\int_{3}^{5} \left(f(x) - x^{3} \right) dx = \int_{3}^{5} x dx = \frac{x^{2}}{2} \Big _{3}^{5} =$	3 p
	$=\frac{25}{2}-\frac{9}{2}=8$	2p
b)	$\int_{0}^{2} \frac{x^{2}}{f(x) - x + 2} dx = \int_{0}^{2} \frac{x^{2}}{x^{3} + 2} dx = \frac{1}{3} \int_{0}^{2} \frac{\left(x^{3} + 2\right)'}{x^{3} + 2} dx = \frac{1}{3} \ln\left(x^{3} + 2\right) \Big _{0}^{2} =$	3 p
	$=\frac{\ln 10}{3} - \frac{\ln 2}{3} = \frac{\ln 5}{3}$	2p
c)	$g(x) = (x^2 + 1)e^{-x}$ și $G'(x) = g(x)$, pentru orice $x \in (0, +\infty)$, deci $G''(x) = (-x^2 + 2x - 1)e^{-x}$	3p
	$G''(x) = -(x-1)^2 e^{-x} \le 0$, pentru orice $x \in (0,+\infty)$, deci funcția G este concavă	2p