LibIAPWS

Sangwook Ryu*

Abstract

LibIAPWS is a C++ library to implement IAPWS [1] (International Association for the Properties of Water and Steam) formulation. It contains parametrization for thermodynamic properties, including enthalpy, entropy, heat capacities and latent heat, as functions of temperature, pressure and mass density of $\rm H_2O$. Coexisting phases among water vapor, liquid and ice are also computed and tabulated.

Contents

1	Library functions	2
	1.1 R1-76 (2014) - IAPWS::Lib76 class	-
	1.2 R6-95 (2018) - IAPWS::Lib95 class	
	1.3 R7-97 (2012) - IAPWS::Lib97 class	;
	1.4 R10-06 (2009) - IAPWS::Lib06 class	
	1.5 R12-08 (2008) - IAPWS::LibO8V class	
2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
3	Phase diagram from R6-95 and R10-06	
4	Consistency of the backward equations in R7-97	!
5	Comparison between R6-95 and R7-97	1

^{*}sangwook.ryu@mail.mcgill.ca

1 Library functions

1.1 R1-76 (2014) - IAPWS::Lib76 class

IAPWS R1-76 [2] release provides parametrization for the surface tension σ of the interface between water vapor and liquid. There is one function get_tension_surf, which takes temperature T as input and returns the surface tension.

function	input	output
get_tension_surf	temperature T (K)	surface tension σ (J/m ²)

Table 1: Library functions in IAPWS::Lib76 class

1.2 R6-95 (2018) - IAPWS::Lib95 class

IAPWS R6-95 [3] release provides parametrization for the specific Helmholtz free energy f and thermodynamic quantities of water vapor and liquid. The mass density ρ and temperature T are considered as independent variables. The parametrized functions for single-phase are listed in Table 2.

function	input	output
get_param_f		specific Helmholtz free energy f (J/kg)
get_param_g		specific Gibbs free energy g (J/kg)
<pre>get_param_pressure</pre>		pressure p (Pa = N/m ²)
get_param_dpress_drho		derivative of pressure $\frac{\partial p}{\partial \rho}\Big _T$ (m ² /sec ²)
get_param_erg_int	mass density ρ (kg/m ³)	specific internal energy u (J/kg)
get_param_entropy	temperature $T(K)$	specific entropy s (J/kg K)
get_param_enthalpy		specific enthalpy h (J/kg)
get_param_heat_c_v		specific isochoric heat capacity c_v (J/kg K)
get_param_heat_c_p		specific isobaric heat capacity c_p (J/kg K)
<pre>get_param_speed_sound</pre>		speed of sound w (m/sec)

Table 2: Library functions for single-phase thermodynamic quantities in IAPWS::Lib95 class

In addition, one can utilize the parametrized Helmholtz free energy to obtain coexisting phases (saturation curve) between water vapor and liquid. In IAPWS::Lib95 class, iterative root-finding algorithms are implemented to specify the saturation curve. (More details about the Maxwell construction can be found in the following sections.) Table 3 presents functions to handle the tabulated saturation curve. One can call make_tab_coex to produce a table for saturation curve by specifying number of temperature bins and maximum temperature. The minimum temperature for tabulation is set to be that of the triple point $T_{\rm trip} = 273.16 \, {\rm K}$.

It is possible to expedite calculations in make_tab_coex function, by providing a function pointer to better initial guess for the saturation pressure. One option is to use get_param4_sat_pressure function in IAPWS::Lib97 class and it is demonstrated in make_tab_IAPWS95.cpp source file. export_tab_coex and import_tab_coex functions can be used to write and read the tabulated saturation curve, respectively.

function	input	output
make_tab_coex	number of temperature bins (int) maximum temperature (K) function pointer to initial guess for the saturation pressure (double (*ptr)(double), default: NULL)	void
export_tab_coex	name of output file (char *)	void
import_tab_coex	name of input file (char *)	void

Table 3: Tabulation of coexisting phases (saturation curve between vapor and liquid) in IAPWS::Lib95 class

Once the tabulated saturation curve is produced or imported, one can call functions listed in Table 4 to obtain thermodynamic quantities on the saturation curve. The tabulated saturation curve is interpolated by means of natural cubic spline. All functions take temperature T (in K) as the input parameter.

function	input	output
get_coex_pressure		saturation pressure p_{coex} (Pa)
get_coex_mden_vap		mass density of vapor $\rho_{\rm vap}~({\rm kg/m^3})$
get_coex_mden_liq		mass density of liquid ρ_{liq} (kg/m ³)
<pre>get_coex_enthalpy_vap</pre>	temperature $T(K)$	specific enthalpy of vapor h_{vap} (J/kg)
<pre>get_coex_enthalpy_liq</pre>		specific enthalpy of liquid h_{liq} (J/kg)
<pre>get_coex_entropy_vap</pre>		specific entropy of vapor s_{vap} (J/kg K)
<pre>get_coex_entropy_liq</pre>		specific entropy of liquid s_{liq} (J/kg K)
get_coex_heat_latent		specific latent heat $h_{\text{latent;vap-liq}}$ (J/kg)

Table 4: Thermodynamic quantities for coexisting phases (saturation curve between vapor and liquid) in IAPWS::Lib95 and IAPWS::Lib97 classes

1.3 R7-97 (2012) - IAPWS::Lib97 class

IAPWS R7-97 (IF97) [4] release provides parametrization for the specific Gibbs free energy g and thermodynamic quantities of water vapor and liquid. In this release, the T-p plane (273.15 K $\leq T \leq$ 1073.15 K, $p \leq$ 100 MPa and 1073.15 K $< T \leq$ 2273.15 K, $p \leq$ 50 MPa) is split into a few regions and each region has its own parametrization for thermodynamic quantities.

One can use functions listed in Table 5 to obtain thermodynamic quantities for single-phase states for all regions. In IAPWS::Lib97 class, temperature T and pressure p are considered as independent variables. In addition, it is possible to specify whether one tries to obtain the metastable-vapor state. If a boolean value is not provided as input, this flag is set to be false by default. If it is set to be true, functions listed in Table 5 return thermodynamic quantities in the metastable-vapor region (bounding region 2).

Note that, due to the fact that the specific Helmholtz free energy is parametrized in region 3 as a function of mass density ρ and temperature T, iterative root-finding algorithms are employed in this region. It ensures the integrity with other regions such that one can obtain thermodynamic quantities as functions of T and p.

function	input	output
get_region		integer assigned to region in the <i>T-p</i> plane (int) (returns 0 if it is out of the validity range)
get_param_g		specific Gibbs free energy g (J/kg)
get_param_vol_spec		specific volume $v (\text{m}^3/\text{kg})$
get_param_mdensity	temperature $T(K)$	mass density ρ (kg/m ³)
get_param_erg_int	pressure p (Pa)	specific internal energy u (J/kg)
get_param_entropy	flag for metastable state	specific entropy s (J/kg K)
get_param_enthalpy	(bool, default : false)	specific enthalpy h (J/kg)
get_param_heat_c_p		specific isobaric heat capacity c_p (J/kg K)
get_param_heat_c_v		specific isochoric heat capacity c_v (J/kg K)
get_param_speed_sound		speed of sound w (m/sec)

Table 5: Library functions for single-phase thermodynamic quantities in IAPWS::Lib97 class

The saturation curve between $T=623.15\,\mathrm{K}$ and $T_{\mathrm{crit}}=647.096\,\mathrm{K}$ belongs to region 3 and thermodynamic quantities on this portion of the saturation curve must be found by implementing the Maxwell construction. Functions listed in Table 6 can be used to handle the tabulated saturation curve. The minimum and maximum temperature of tabulation are set to be 623.15 and 647.096 K, respectively. Once one write the table by calling export_tab_coex, the same file can be read by import_tab_coex function without generating the table from the scratch.

Once the tabulated saturation curve is produced or imported, one can call functions listed in Table 4 to obtain thermodynamic quantities on the saturation curve. For temperature $T \leq 623.15\,\mathrm{K}$, parametrization for region 1 and 2, along with get_param4_sat_pressure function, are used to calculate thermodynamic quantities. For higher

function	input	output
make_tab_coex	number of temperature bins (int)	void
export_tab_coex	name of output file (char *)	void
import_tab_coex	name of input file (char *)	void

Table 6: Tabulation of coexisting phases (saturation curve between vapor and liquid) in IAPWS::Lib97 class

temperature $623.15 \,\mathrm{K} < T \le 647.096 \,\mathrm{K}$, the tabulated saturation curve is interpolated by means of natural cubic spline. All functions take temperature T (in K) as the input parameter.

IF97 release, in conjunction with supplementary release SR3-03 [5], also provides parametrized backward equations for temperature. One can call functions listed in Table 7 to obtain temperature as functions of pressure, specific enthalpy or entropy. Note that get_param_temperature_ph and get_param_temperature_ps functions cover region 1, 2 and 3 (273.15 K $\leq T \leq 1073.15$ K, $p \leq 100$ MPa).

function	input	output
get_param_temperature_ph	pressure p (Pa) specific enthalpy h (J/kg)	temperature T (K)
get_param_temperature_ps	pressure p (Pa) specific entropy s (J/kg K)	

Table 7: Backward functions in IAPWS::Lib97 class

1.4 R10-06 (2009) - IAPWS::Lib06 class

IAPWS R10-06 [6] release provides parametrization for the specific Gibbs free energy and thermodynamic quantities of H_2O Ice Ih. Temperature T and pressure p are considered as independent variables. The parametrized functions for single-phase are listed in Table 8.

function	input	output
get_param_g		specific Gibbs free energy g (J/kg)
get_param_f		specific Helmholtz free energy f (J/kg)
get_param_mdensity		mass density ρ (kg/m ³)
<pre>get_param_entropy</pre>		specific entropy s (J/kg K)
<pre>get_param_heat_c_p</pre>		specific isobaric heat capacity c_p (J/kg K)
get_param_enthalpy	temperature $T(K)$	specific enthalpy h (J/kg)
get_param_erg_int	pressure p (Pa)	specific internal energy u (J/kg)
get_param_coeff_alpha		cubic expansion coefficient $\alpha = \frac{1}{v} \left. \frac{\partial v}{\partial T} \right _{p} (K^{-1})$
get_param_coeff_beta		pressure coefficient $\beta = \frac{\partial p}{\partial T}\Big _v$ (Pa/K)
get_param_comp_kappa_T		isothermal compressibility $\kappa_T = -\frac{1}{v} \left. \frac{\partial v}{\partial p} \right _T (\text{Pa}^{-1})$
get_param_comp_kappa_s		isentropic compressibility $\kappa_s = -\frac{1}{v} \left. \frac{\partial v}{\partial p} \right _s (\text{Pa}^{-1})$

Table 8: Library functions for single-phase thermodynamic quantities in IAPWS::Lib06 class

In addition, IAPWS::Lib06 class comes up with calculation functionalities regarding the sublimation curve (coexisting phases) between water vapor and ice. Table 9 presents functions to handle the tabulated sublimation curve. Specifying and tabulating the sublimation curve requires information on the specific Gibbs free energy of vapor, which is provided by IAPWS::Lib95 class. When one calls $make_tab_coex$ function to generate a table for the sublimation curve, it is necessary to provide a pointer to IAPWS::Lib95 object as an input. The maximum temperature for tabulation is set to be that of the triple point $T_{trip} = 273.16 \, \text{K}$. export_tab_coex and import_tab_coex functions can be used to write and read the tabulated sublimation curve, respectively.

function	input	output
make_tab_coex	pointer to IAPWS::Lib95 object (IAPWS::Lib95 *ptr) number of temperature bins (int) minimum temperature (K)	void
export_tab_coex	name of output file (char *)	void
import_tab_coex	name of input file (char *)	void

Table 9: Tabulation of coexisting phases (sublimation curve between vapor and ice) in IAPWS::LibO6 class

Once the tabulated sublimation curve is produced or imported, one can call functions listed in Table 10 to obtain thermodynamic quantities on the sublimation curve. The tabulated sublimation curve is interpolated by means of natural cubic spline. All functions take temperature T (in K) as the input parameter.

function	input	output
get_coex_pressure		sublimation pressure p_{coex} (Pa)
get_coex_mden_vap		mass density of vapor $\rho_{\rm vap}~({\rm kg/m^3})$
get_coex_mden_ice		mass density of ice $\rho_{\rm ice}$ (kg/m ³)
get_coex_enthalpy_vap	temperature $T(K)$	specific enthalpy of vapor h_{vap} (J/kg)
<pre>get_coex_enthalpy_ice</pre>		specific enthalpy of ice h_{ice} (J/kg)
get_coex_entropy_vap		specific entropy of vapor $s_{\text{vap}} (J/\text{kg K})$
get_coex_entropy_ice		specific entropy of ice s_{ice} (J/kg K)
get_coex_heat_latent		specific latent heat $h_{\text{latent;vap-ice}}$ (J/kg)

Table 10: Thermodynamic quantities for coexisting phases (sublimation curve between vapor and ice) in IAPWS::Lib06 class

Similarly, the melting curve (coexisting phases) between water liquid and ice is found and tabulated in IAPWS::Lib06 class. The relevant functions are listed in Tables 11 and 12. Note that the melting curve is tabulated and interpolated as function of pressure p, and the minimum pressure is that of the triple point $p_{\text{trip}} = 611.654771007894 \,\text{Pa}$.

function	input	output
make_tab_melt	pointer to IAPWS::Lib95 object (IAPWS::Lib95 *ptr) number of pressure bins (int) maximum pressure (Pa)	void
export_tab_melt	name of output file (char *)	void
import_tab_melt	name of input file (char *)	void

Table 11: Tabulation of coexisting phases (melting curve between liquid and ice) in IAPWS::Lib06 class

1.5 R12-08 (2008) - IAPWS::Lib08V class

IAPWS R12-08 [7] release provides parametrization for the shear viscosity μ as a function of the mass density ρ and temperature T. Functions to be used are listed in Table 13. Note that one also needs to have an instance of IAPWS::Lib95 class to implement the critical enhancement. There is a class (pointer) variable ptr_lib95_ to connect a IAPWS::Lib95 object and one can call set_ptr_lib95 function to set it up.

2 Derivation for thermodynamic quantities

2.1 From the Helmholtz free energy $f(\rho, T)$

If one has mass density ρ (equivalently specific volume $v = 1/\rho$) and temperature T as independent variables, thermodynamic quantities can be derived from the specific Helmholtz free energy f

$$\frac{f(\rho, T)}{RT} = \phi \left(\delta \equiv \frac{\rho}{\rho_*}, \tau \equiv \frac{T_*}{T} \right) \tag{1}$$

function	input	output
get_melt_temperature		melting temperature T_{melt} (K)
get_melt_mden_liq		mass density of liquid ρ_{liq} (kg/m ³)
get_melt_mden_ice		mass density of ice $\rho_{\rm ice}$ (kg/m ³)
<pre>get_melt_enthalpy_liq</pre>	pressure p (Pa)	specific enthalpy of liquid h_{liq} (J/kg)
<pre>get_melt_enthalpy_ice</pre>		specific enthalpy of ice h_{ice} (J/kg)
get_melt_entropy_liq		specific entropy of liquid s_{liq} (J/kg K)
get_melt_entropy_ice		specific entropy of ice s_{ice} (J/kg K)
<pre>get_melt_heat_latent</pre>		specific latent heat $h_{\text{latent;liq-ice}}$ (J/kg)

Table 12: Thermodynamic quantities for coexisting phases (melting curve between liquid and ice) in IAPWS::Lib06 class

function	input	output
set_ptr_lib95	pointer to an instance of Lib95 class (IAPWS::Lib95 *ptr)	void
get_param_viscosity	mass density ρ (kg/m ³) temperature T (K)	shear viscosity μ (Pa·sec)

Table 13: Library functions for the shear viscosity in IAPWS::Lib08V class

where R is the specific gas constant. In addition, dimensionless quantities δ and τ are introduced in terms of reference mass density ρ_* and temperature T_* , respectively. For instance, specific entropy s and pressure p can be given by first derivatives of the Helmholtz free energy.

$$s = -\frac{\partial f}{\partial T}\Big|_{\rho} = R(\tau\phi_{\tau} - \phi) \quad \text{where} \quad \phi_{\tau} \equiv \frac{\partial \phi}{\partial \tau}$$
 (2)

$$p = -\frac{\partial f}{\partial v}\Big|_{T} = \rho^{2} \frac{\partial f}{\partial \rho}\Big|_{T} = \rho RT \,\delta\phi_{\delta} \quad \text{where} \quad \phi_{\delta} \equiv \frac{\partial \phi}{\partial \delta}$$
 (3)

The specific internal energy u and enthalpy h can be subsequently obtained as

$$u = f + Ts = RT \tau \phi_{\tau} \tag{4}$$

$$h = u + pv = RT \left(\tau \phi_{\tau} + \delta \phi_{\delta}\right). \tag{5}$$

The isochoric heat capacity c_v is given by the partial derivative of u with respect to T.

$$c_v = \frac{\partial u}{\partial T}\Big|_{\rho} = -R \tau^2 \phi_{\tau\tau} \quad \text{where} \quad \phi_{\tau\tau} = \frac{\partial^2 \phi}{\partial \tau^2}$$
 (6)

The isobaric heat capacity c_p is defined as the partial derivative of h with respect to T, while the pressure is kept constant.

$$c_p = \frac{\partial h}{\partial T}\bigg|_{p} = \lim_{\Delta T \to 0} \frac{h(\rho + \Delta \rho, T + \Delta T) - h(\rho, T)}{\Delta T} \quad \text{where} \quad \frac{\partial p}{\partial \rho}\bigg|_{T} \Delta \rho + \frac{\partial p}{\partial T}\bigg|_{\rho} \Delta T = 0. \tag{7}$$

$$= \frac{\partial h}{\partial T}\Big|_{\rho} - \frac{\partial h}{\partial \rho}\Big|_{T} \frac{\partial p/\partial T|_{\rho}}{\partial p/\partial \rho|_{T}}$$

$$\tag{8}$$

$$= c_v + \frac{1}{\rho} \frac{\partial p}{\partial T} \Big|_{\rho} - \left(\frac{\partial u}{\partial \rho} \Big|_{T} + \frac{1}{\rho} \frac{\partial p}{\partial \rho} \Big|_{T} - \frac{p}{\rho^2} \right) \frac{\partial p/\partial T|_{\rho}}{\partial p/\partial \rho|_{T}} = c_v + \frac{1}{\rho} \left(\frac{p}{\rho} - \rho \frac{\partial u}{\partial \rho} \Big|_{T} \right) \frac{\partial p/\partial T|_{\rho}}{\partial p/\partial \rho|_{T}}$$
(9)

Derivatives of p and u can be written in terms of ϕ as following

$$\rho \left. \frac{\partial u}{\partial \rho} \right|_{T} = RT \, \delta \tau \phi_{\delta \tau} \quad \text{where} \quad \phi_{\delta \tau} = \frac{\partial^{2} \phi}{\partial \delta \, \partial \tau}$$

$$(10)$$

$$\frac{1}{\rho} \left. \frac{\partial p}{\partial T} \right|_{\rho} = R \left(\delta \phi_{\delta} - \delta \tau \phi_{\delta \tau} \right) \tag{11}$$

$$\frac{\partial p}{\partial \rho}\Big|_{T} = RT \left(2 \delta \phi_{\delta} + \delta^{2} \phi_{\delta \delta}\right) \text{ where } \phi_{\delta \delta} = \frac{\partial^{2} \phi}{\partial \delta^{2}}$$
 (12)

which lead one to obtain

$$c_p = c_v + R \frac{(\delta\phi_\delta - \delta\tau\phi_{\delta\tau})^2}{2\delta\phi_\delta + \delta^2\phi_{\delta\delta}}.$$
 (13)

The speed of sound w can be computed by taking derivative of p with respect to ρ , while the specific entropy is kept constant.

$$w^{2} = \frac{\partial p}{\partial \rho}\Big|_{s} = \lim_{\Delta \rho \to 0} \frac{p(\rho + \Delta \rho, T + \Delta T) - p(\rho, T)}{\Delta \rho} \quad \text{where} \quad \frac{\partial s}{\partial \rho}\Big|_{T} \Delta \rho + \frac{\partial s}{\partial T}\Big|_{\rho} \Delta T = 0 \tag{14}$$

$$= \frac{\partial p}{\partial \rho}\Big|_{T} - \frac{1}{\rho} \frac{\partial p}{\partial T}\Big|_{\rho} \frac{\rho \partial s/\partial \rho|_{T}}{\partial s/\partial T|_{\rho}} \tag{15}$$

Derivatives of s can be written in terms of ϕ as following.

$$\rho \left. \frac{\partial s}{\partial \rho} \right|_{T} = -R \left(\delta \phi_{\delta} - \delta \tau \phi_{\delta \tau} \right) \tag{16}$$

$$\left. \frac{\partial s}{\partial T} \right|_{\rho} = -\frac{R}{T} \tau^2 \phi_{\tau\tau} \tag{17}$$

which result in the following expression for w.

$$w^{2} = RT \left[2 \delta \phi_{\delta} + \delta^{2} \phi_{\delta \delta} - \frac{\left(\delta \phi_{\delta} - \delta \tau \phi_{\delta \tau} \right)^{2}}{\tau^{2} \phi_{\tau \tau}} \right]$$
(18)

2.2 From the Gibbs free energy g(T, p)

If one has pressure p and temperature T as independent variables, thermodynamic quantities can be derived from the specific Gibbs free energy g

$$\frac{g(T,p)}{RT} = \gamma \left(\tau \equiv \frac{T_*}{T}, \Pi \equiv \frac{p}{p_*} \right) \tag{19}$$

where we have a dimensionless quantity Π defined in terms of the reference pressure p_* . One can obtain the specific entropy s and specific volume v from first derivatives of the Gibbs free energy.

$$s = -\frac{\partial g}{\partial T}\Big|_{p} = R(\tau \gamma_{\tau} - \gamma) \quad \text{where} \quad \gamma_{\tau} \equiv \frac{\partial \gamma}{\partial \tau}$$
 (20)

$$v = \frac{\partial g}{\partial p}\Big|_{T} = \frac{RT}{p} \Pi \gamma_{\Pi} \text{ where } \gamma_{\Pi} \equiv \frac{\partial \gamma}{\partial \Pi}$$
 (21)

which lead to the following expressions for the specific enthalpy and internal energy.

$$h = g + Ts = RT \tau \gamma_{\tau} \tag{22}$$

$$u = h - pv = RT \left(\tau \gamma_{\tau} - \Pi \gamma_{\Pi}\right). \tag{23}$$

The isobaric heat capacity c_p is given by

$$c_p = \frac{\partial h}{\partial T}\Big|_p = -R \tau^2 \gamma_{\tau\tau} \quad \text{where} \quad \gamma_{\tau\tau} = \frac{\partial^2 \gamma}{\partial \tau^2} \,.$$
 (24)

The isochoric heat capacity c_v is given by the partial derivative of u with respect to T, while the specific volume is kept constant.

$$c_v = \frac{\partial u}{\partial T}\Big|_v = \lim_{\Delta T \to 0} \frac{u(T + \Delta T, p + \Delta p) - u(T, p)}{\Delta T} \quad \text{where} \quad \frac{\partial v}{\partial T}\Big|_p \Delta T + \frac{\partial v}{\partial p}\Big|_T \Delta p = 0.$$
 (25)

$$= \frac{\partial u}{\partial T}\Big|_{p} - \frac{\partial u}{\partial p}\Big|_{T} \frac{\partial v/\partial T|_{p}}{\partial v/\partial p|_{T}}$$

$$(26)$$

$$= c_p - p \left. \frac{\partial v}{\partial T} \right|_p - \left(\left. \frac{\partial h}{\partial p} \right|_T - p \left. \frac{\partial v}{\partial p} \right|_T - v \right) \frac{\partial v/\partial T|_p}{\partial v/\partial p|_T} = c_p + \left(pv - p \left. \frac{\partial h}{\partial p} \right|_T \right) \frac{\partial v/\partial T|_p}{p \left. \partial v/\partial p|_T}$$
(27)

Derivatives of h and v can be written in terms of γ as following.

$$p \left. \frac{\partial h}{\partial p} \right|_{T} = RT \, \Pi \tau \gamma_{\Pi \tau} \quad \text{where} \quad \gamma_{\Pi \tau} = \frac{\partial^{2} \gamma}{\partial \Pi \, \partial \tau}$$
 (28)

$$\left. \frac{\partial v}{\partial T} \right|_{r} = \left. \frac{R}{p} \Pi \left(\gamma_{\Pi} - \tau \gamma_{\Pi \tau} \right) \right. \tag{29}$$

$$p \left. \frac{\partial v}{\partial p} \right|_{T} = \frac{RT}{p} \Pi^2 \gamma_{\Pi\Pi} \quad \text{where} \quad \gamma_{\Pi\Pi} = \frac{\partial^2 \gamma}{\partial \Pi^2}$$
 (30)

which result in the following expression for c_v .

$$c_v = c_p + R \frac{(\gamma_{\Pi} - \tau \gamma_{\Pi\tau})^2}{\gamma_{\Pi\Pi}}$$
(31)

The speed of sound can be computed in a similar manner as one does with the Helmholtz free energy.

$$w^{2} = \frac{\partial p}{\partial \rho}\Big|_{s} = -v^{2} \left[\lim_{\Delta p \to 0} \frac{v(T + \Delta T, p + \Delta p) - v(T, p)}{\Delta p} \right]^{-1} \quad \text{where} \quad \frac{\partial s}{\partial T}\Big|_{p} \Delta T + \left. \frac{\partial s}{\partial p} \right|_{T} \Delta p = 0$$
 (32)

$$= -v^2 \left(\frac{\partial v}{\partial p} \Big|_T - \frac{\partial v}{\partial T} \Big|_p \frac{\partial s/\partial p|_T}{\partial s/\partial T|_p} \right)^{-1} = (pv)^2 \left(pT \frac{\partial v}{\partial T} \Big|_p \frac{p \partial s/\partial p|_T}{T \partial s/\partial T|_p} - p^2 \frac{\partial v}{\partial p} \Big|_T \right)^{-1}$$
(33)

Derivatives of s can be written in terms of γ as following.

$$p \left. \frac{\partial s}{\partial p} \right|_{T} = -R \Pi \left(\gamma_{\Pi} - \tau \gamma_{\Pi \tau} \right) \tag{34}$$

$$T \left. \frac{\partial s}{\partial T} \right|_{p} = -R \tau^{2} \gamma_{\tau\tau} \tag{35}$$

which lead to the following expression for the speed of sound.

$$w^{2} = RT \left[\frac{\gamma_{\Pi}^{2}}{(\gamma_{\Pi} - \tau \gamma_{\Pi\tau})^{2} / (\tau^{2} \gamma_{\tau\tau}) - \gamma_{\Pi\Pi}} \right]$$
(36)

3 Phase diagram from R6-95 and R10-06

IAPWS R6-95 [3] release provides parametrization for the specific Helmholtz free energy f of water vapor and liquid for wide range of temperature T and mass density ρ . Thermodynamic quantities, such as pressure, internal energy, enthalpy, entropy and heat capacity, can be obtained from derivatives of the Helmholtz free energy. When a system undergoes first-order phase transition between water vapor and liquid, the saturation pressure p_{coex} remains constant while the mass density changes between ρ_{vap} and ρ_{liq} . Such coexisting phase can be determined by applying the Maxwell construction.

$$p_{\text{coex}}(T) = p(\rho_{\text{vap}}, T) = p(\rho_{\text{liq}}, T)$$
 (37)

$$p(\rho, T) = -\frac{\partial f}{\partial v}\Big|_{T} = \rho^2 \frac{\partial f}{\partial \rho}\Big|_{T}$$
 (38)

$$f(\rho_{\text{liq}}, T) - f(\rho_{\text{vap}}, T) = p_{\text{coex}} (v_{\text{vap}} - v_{\text{liq}})$$

$$= p_{\text{coex}} \left(\frac{1}{\rho_{\text{vap}}} - \frac{1}{\rho_{\text{liq}}} \right) \text{ where specific volume } v = \frac{1}{\rho}.$$
(39)

The specific latent heat h_{latent} , which is amount of heat required to transform unit mass of liquid water into vapor in this case, is given by difference in specific enthalpy or entropy.

$$h_{\text{latent:vap-lig}}(T) = h(\rho_{\text{vap}}, T) - h(\rho_{\text{lig}}, T) = T \left[s(\rho_{\text{vap}}, T) - s(\rho_{\text{lig}}, T) \right]$$

$$\tag{40}$$

One can demonstrate that equation (40) is equivalent to what is given by the Clapeyron equation. Let us consider infinitesimally small deviations $\Delta \rho_{\text{vap}}$, $\Delta \rho_{\text{liq}}$ and ΔT in mass densities and temperature, respectively. Then left- and

right-hand sides (LHS and RHS) of equation (39) become

LHS =
$$f(\rho_{\text{liq}} + \Delta \rho_{\text{liq}}, T + \Delta T) - f(\rho_{\text{vap}} + \Delta \rho_{\text{vap}}, T + \Delta T)$$

= $f(\rho_{\text{liq}}, T) - f(\rho_{\text{vap}}, T)$
 $+\Delta T \left[\frac{\partial f}{\partial T} \Big|_{\rho} (\rho_{\text{liq}}, T) - \frac{\partial f}{\partial T} \Big|_{\rho} (\rho_{\text{vap}}, T) \right] + \Delta \rho_{\text{liq}} \frac{\partial f}{\partial \rho} \Big|_{T} (\rho_{\text{liq}}, T) - \Delta \rho_{\text{vap}} \frac{\partial f}{\partial \rho} \Big|_{T} (\rho_{\text{vap}}, T)$
= $f(\rho_{\text{liq}}, T) - f(\rho_{\text{vap}}, T) + \Delta T \left[s(\rho_{\text{vap}}, T) - s(\rho_{\text{liq}}, T) \right] - p_{\text{coex}} \left(\frac{\Delta \rho_{\text{vap}}}{\rho_{\text{vap}}^2} - \frac{\Delta \rho_{\text{liq}}}{\rho_{\text{liq}}^2} \right)$ (41)

RHS =
$$p_{\text{coex}} \left(\frac{1}{\rho_{\text{vap}}} - \frac{1}{\rho_{\text{liq}}} \right) + \Delta T \frac{dp_{\text{coex}}}{dT} \left(\frac{1}{\rho_{\text{vap}}} - \frac{1}{\rho_{\text{liq}}} \right) - p_{\text{coex}} \left(\frac{\Delta \rho_{\text{vap}}}{\rho_{\text{vap}}^2} - \frac{\Delta \rho_{\text{liq}}}{\rho_{\text{liq}}^2} \right)$$
 (42)

By equating LHS and RHS, one obtains the Clapeyron equation for the latent heat.

$$h_{\text{latent;vap-liq}}(T) = \left(\frac{1}{\rho_{\text{vap}}} - \frac{1}{\rho_{\text{liq}}}\right) T \frac{dp_{\text{coex}}}{dT}$$
(43)

Once LibIAPWS library is built, one can run make_tab_IAPWS95.exec executable to obtain the coexistence curve (saturation curve) between water vapor and liquid. It produces a text file tab_coex_IAPWS95.txt which contains the tabulated coexistence curve as functions of temperature.

The phase diagram can be extended to incorporate the ice phase, by implementing IAPWS R10-06 [6] release. The specific Gibbs free energy g is parametrized as function of temperature T and pressure p, and coexistence curve can be obtained from continuity condition of the Gibbs free energy. The specific Gibbs free energy g_{fluid} for fluid (vapor or liquid) can be obtained from the parametrization in R6-95 release and it must match to g_{ice} provided in R10-06 release.

$$g_{\text{ice}}(T, p_{\text{coex}}) = g_{\text{fluid}}(\rho_{\text{fluid}}, T)$$

$$= f_{\text{fluid}}(\rho_{\text{fluid}}, T) + \frac{p_{\text{coex}}}{\rho_{\text{fluid}}}$$
(44)

For given temperature and pressure, mass density ρ_{fluid} of fluid is found by equation (38) and used to compute g_{fluid} . The specific latent heat between fluid and ice can be found in a similar manner as equation (40).

$$h_{\text{latent:fluid-ice}}(T) = h_{\text{fluid}}(\rho_{\text{fluid}}, T) - h_{\text{ice}}(T, p_{\text{coex}}) = T \left[s_{\text{fluid}}(\rho_{\text{fluid}}, T) - s_{\text{ice}}(T, p_{\text{coex}}) \right]$$
 (45)

After running make_tab_IAPWS95.exec to tabulate the saturation curve, one can run make_tab_IAPWS06.exec executable to obtain the coexistence curve between water fluid and ice. It produces two text file tab_coex_IAPWS06.txt and tab_melt_IAPWS06.txt tab_coex_IAPWS06.txt provides the coexistence curve (sublimation curve) between water vapor and ice, while tab_melt_IAPWS06.txt contains the coexistence curve (melting curve) between water liquid and ice. The resulting phase diagram on the T-p plane is presented in Figure 1.

4 Consistency of the backward equations in R7-97

R7-97 [4] and SR3-03 [5] releases come up with parametrization for backward equations $T_{\text{bkwd},ph}(p,h)$ and $T_{\text{bkwd},ps}(p,s)$ for temperature as functions of pressure p, specific enthalpy h or entropy s. To ensure these functions are consistent with parametrized specific enthalpy and entropy, one can compare the original temperature with ones computed with backward equations. It is convenient to define relative deviations $\text{diff}_{97\text{-bkwd};(p,h)}T$ and $\text{diff}_{97\text{-bkwd};(p,s)}T$ as

$$\operatorname{diff}_{97\text{-bkwd};(p,h)}T \equiv \frac{T - T_{\text{bkwd},ph}(p,h)}{T + T_{\text{bkwd},ph}(p,h)} \quad \text{where} \quad h = h(T,p)$$
(46)

$$T + T_{\text{bkwd},ph}(p,h)$$

$$\text{diff}_{97\text{-bkwd};(p,s)} T \equiv \frac{T - T_{\text{bkwd},ps}(p,s)}{T + T_{\text{bkwd},ps}(p,s)} \quad \text{where} \quad s = s(T,p).$$

$$(47)$$

Figure 2 shows the relative deviations in temperature on the temperature-pressure (T-p) plane. It is demonstrated that, for the most part of region of validity, relative deviation between the original temperature and those obtained from the backward equations is less than 0.01%.

H₂O Phase Diagram

Figure 1: Phase diagram of H₂O derived from IAPWS R6-95 and R10-06 releases.

5 Comparison between R6-95 and R7-97

Provided that IAPWS R6-95 [3] and R7-97 [4] releases have significant overlap in the range of validity, it is worthwhile to have a closer look at difference between these two releases. One can compare thermodynamic quantities derived from R6-95 and R7-97 releases on the temperature-pressure (T-p) plane. Let us define relative deviation diff₉₇₋₉₅ in a thermodynamic quantity Q as

$$diff_{97-95} \mathcal{Q} \equiv \frac{\mathcal{Q}_{R7-97} - \mathcal{Q}_{R6-95}}{\mathcal{Q}_{R7-97} + \mathcal{Q}_{R6-95}}.$$
 (48)

Figure 3 shows relative deviations in the mass density ρ , specific enthalpy h and specific heat capacities. For the most of region, deviations in the mass density, specific energy and entropy are less than 0.05%. The specific heat capacities c_p and c_v exhibit larger deviation, but they are still less than 0.5%. Figure 4 presents relative deviations on the saturation curve (coexisting phases) between water vapor and liquid. For the most part of the curve, deviations in the saturation pressure, mass density and specific entropy are less than 0.05%. Even though deviations increase as one gets closer to the critical temperature, they are still less than 1%.

References

- [1] https://iapws.org
- [2] IAPWS, Revised Release on Surface Tension of Ordinary Water Substance (2014).
- [3] IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (2018).
- [4] IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2012).

Figure 2: Relative deviations $\text{diff}_{97\text{-bkwd};(p,h)}T$ and $\text{diff}_{97\text{-bkwd};(p,s)}T$ in temperature.

- [5] IAPWS, Revised Supplementary Release on Backward Equations for the Functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2014).
- [6] IAPWS, Revised Release on the Equation of State 2006 for H₂O Ice Ih (2009).
- [7] IAPWS, Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance (2008).

Figure 3: Relative deviations diff₉₇₋₉₅ in thermodynamic quantities — mass density (top left), specific enthalpy (top right) and specific heat capacities (c_p and c_v at bottom left and right, respectively) — between R06-95 and R07-97.

Figure 4: Relative deviations diff₉₇₋₉₅ in thermodynamic quantities — pressure, mass density and specific entropy — on the saturation curve (coexisting phases) between water vapor and liquid. The solid and dashed curves correspond to vapor and liquid, respectively.