Introdução às EDO – BCN 0405 3° quad. 2022 – Noturno – São Bernardo do Campo Prof. Vinicius Cifú Lopes

Primeira Prova - 26/10/2022

Nome			RA
Resolução e qu	entração	•	

Instruções:

- Esta prova tem duração de 1h 30min.
- Não se esqueça de escrever seus dados acima; use caneta azul ou preta.
- Somente vire esta folha e inicie a prova quando autorizado.
- Não remova ou substitua o grampo das folhas.
- Use caneta azul ou preta para responder as questões. Não use lápis.
- Não rasure e não use borracha, corretivo ou "branquinho". Se errar, risque e escreva a versão nova em sequência.
- Nada fora dos quadros de resposta ou em folha avulsa será considerado na correção. Cada quadro deve conter todo o trabalho pedido referente a sua questão.
- Quando solicitado, indique apenas a resposta final dentro do quadro. Caso contrário, apresente raciocínio e dedução completos.
- Utilize somente os métodos requeridos nos enunciados e vistos em aula.
- Quando solicitado, realize a demonstração abstratamente e em geral, sem recurso a exemplos numéricos ou hipóteses adicionais.
- Apresente letra legível e redação organizada.
- Para rascunho, use somente os versos das folhas deste caderno ou solicite folhas avulsas e devolva-as ao final da prova. Não utilize outro material.
- Não use tinta vermelha.
- Não é permitido consultar materiais, dispositivos ou pessoas.
- Nenhuma pergunta será respondida durante a prova.
- Sobre a mesa, tenha somente caneta azul ou preta e documento original e com foto. Arrume seus pertences sob a cadeira e fechados na bolsa.
- Não cole, nem permita cópia! Proteja seu trabalho.
- Esta prova contém 3 (três) folhas, incluindo esta, e 4 (quatro) questões. Verifique se este caderno está completo ao iniciar a prova.

Boa Prova!

(1) Resolva as equações e os problemas de valor inicial, apresentando apenas as soluções finais. A primeira equação está resolvida como exemplo. (4pts)

Ex.:
$$y' = -5y$$
. $y(x) = Ce^{-5x}$

(b)
$$-yy' = \sin x$$
,
 $y(0) = -2$.
 $y(x) = -\sqrt{2 \cos x + 2}$

(c)
$$y' = 2y - \ln(3x)$$

(atenção: deixe a primitiva indicada).

 $y(x) = \begin{cases} y(x) = (2x) & (-2x) & (3x) & (3x)$

(d)
$$xy' + 2y = x^2 - x + 1$$
, $y(x) = \frac{x^2}{4} - \frac{x}{3} + \frac{1}{2} + \frac{1}{12x^2}$ (14)

(Sugestão: confira seus resultados por substituição!)

a)
$$8 dy + xy dx = 0 \Rightarrow \frac{dy}{y} = -\frac{xdx}{8} \Rightarrow \ln |y| = -\frac{x^2}{16} + C_1 \Rightarrow y = Cexp(-x^2/16)$$
.

b) (Liste 1, ex. 5c) $-y dy = \sec x dx \Rightarrow -\frac{y^2}{2} = -\cos x + C_1 \Rightarrow y = \pm \sqrt{2}\cos x + C'$
 $\Rightarrow -2 = \pm \sqrt{2.1 + C'} \Rightarrow H = 2 + C \Rightarrow C = 2 \Rightarrow y = -\sqrt{2}\cos x + 2$.

c) Porte homogenee: $y' = 2y \Rightarrow dy = 2 dx \Rightarrow \ln |y| = 2x + C_1 \Rightarrow y = Ce^{2x}$.

Vorracció do constate: $C'e^{2x} + C.e^{2x}.2 = 2Ce^{2x} - \ln(3x) \Rightarrow C' = -e^{2x} \ln(3x)$
 $\Rightarrow C = -\int e^{-2x} \ln(3x) dx + D$. Voltando: $y = Ce^{2x} = De^{2x} - e^{2x} \int e^{-2x} \ln(3x) dx$.

d) (Liste 1, ex. 7b) Porte homogenee: $xy' + 2y = 0 \Rightarrow dy = -\frac{2dx}{x} \Rightarrow \ln |y| = -2\ln |x| + C_1 \Rightarrow y = Cx^{-2}$. Variação de constant: $x(C'x^{-2} + C.(-2)x^{-3}) + 2Cx^{2} = x^{2} - x + 1 \Rightarrow C' = x^{3} - x^{2} + x \Rightarrow C = \frac{x^{4}}{4} - \frac{x^{3}}{3} + \frac{x^{2}}{2} + D$. Voltando: $y = Cx^{-2} = \frac{x^{2}}{4} - \frac{x^{3}}{3} + \frac{1}{2} + D$. Voltando: $y = Cx^{-2} = \frac{x^{2}}{4} - \frac{x^{3}}{3} + \frac{1}{2} + D$. Voltando: $y = Cx^{-2} = \frac{x^{2}}{4} - \frac{x^{3}}{3} + \frac{1}{2} + D$. Voltando: $y = Cx^{-2} = \frac{x^{2}}{4} - \frac{x^{3}}{3} + \frac{1}{2} + D$. Voltando: $y = Cx^{-2} = \frac{x^{2}}{4} - \frac{x^{3}}{3} + \frac{1}{2} + D$. Voltando: $y = Cx^{-2} = \frac{x^{2}}{4} - \frac{x^{3}}{3} + \frac{1}{2} + D$. Voltando: $y = Cx^{-2} = \frac{x^{2}}{4} - \frac{x^{2}}{3} + \frac{1}{2} + D$.

(2) Um tanque esvaziou em 28 minutos conforme a equação $h' = -M\sqrt{h}/(2h - h^2)$, sendo h(t) o nível da água acima do ralo, em função do tempo, e M uma constante. O nível inicial da água era 1 m. Determine quando o nível chegou a (1/4) m. (3pts)

I)
$$\frac{dL}{dt} = \frac{-M}{2L^{3/2}-L^{3/2}} \Rightarrow (2L^{1/2}-L^{3/2})dL = -Mdt \Rightarrow \frac{4}{3}L^{3/2} - \frac{2}{5}L^{5/2} = C-Mt$$

II) $L(28) = 0 \Rightarrow 0 = C-M \cdot 28 \Rightarrow M = \frac{C}{28}$
 $L(0) = 1 \Rightarrow \frac{11}{3} - \frac{2}{5} = C - 0 \Rightarrow C = \frac{111}{15} \Rightarrow M = \frac{1}{30}$
 $L(0) = \frac{1}{3} \Rightarrow \frac{11}{3} \cdot \frac{1}{8} - \frac{2}{5} \cdot \frac{11}{32} = \frac{111}{15} - \frac{1}{30} \Rightarrow \frac{1}{30} = \frac{111}{15} - \frac{1}{6} + \frac{1}{80} \Rightarrow \frac{1}{30} \Rightarrow \frac{1}{30} = \frac{11}{30} \Rightarrow \frac{1}{30} \Rightarrow \frac{1}{30}$

(3) Determine e classifique os equilíbrios de $y' = y^3 - 4y$, sem a resolver. (2pts)

(4) Mostre que a equação $y' = 40 \operatorname{sen} x + 2yx^{-1} - 8y^2(\operatorname{sen} x)/5x^4$ torna-se linear, com incógnita z, por meio da substituição $y = 5x^2 + z^{-1}$. (Não a resolva.) (1pto)

$$y = 5x^{2} + \xi^{-1} \Rightarrow y' = bx - \xi^{-2} \cdot 2$$
 (regre de coduia).
.: $box - \xi^{-2} \cdot 2 = 40 \sin x + 2 (5x^{2} + \xi^{-1})x^{-1} - 8 (5x^{2} + \xi^{-1})^{2} (\sin x) / 5x^{4}$
 $\Rightarrow box - \xi^{-2} \cdot 2^{1} = 40 \cos x + box + 2x^{-1} \cdot \xi^{-1} - 40 \cos x - 16x^{-2} \cdot \xi^{-1} \sin x - \frac{8}{5}x^{-4} \cdot \xi^{-2}$
 $\Rightarrow -\xi^{-2} \cdot 2 = 2x^{-1} \cdot \xi^{-1} - 16x^{-2} \cdot \xi^{-1} \sin x - \frac{8}{5}x^{-4} \cdot \xi^{-2} \sin x$ (sinx)
 $\Rightarrow 2^{1} = (-2x^{-1} + 16x^{-2} \sin x) \cdot \xi + (\frac{8}{5}x^{-4} \sin x)$ (linear) (1pto)
(Equação de Riccatii)