

Worksheet 2 Simplifying Boolean expressions

Task 1

1. X, Y and Z are Boolean variables which can be either TRUE or FALSE, represented by 1 and 0.

Complete the following "rules" of Boolean algebra:

General rules

- 1. X ^ 0 =
- 2. X ^ 1 =
- 3. X ^ X =
- 4. X ¬X =
- 5. X * 0 =
- 6. X ^v 1 =
- 7. $X^{Y}X =$
- 8. $X \vee \neg X =$
- 9. ¬X =

Commutative rule

- 10. X 'Y =
- 11. $X^{Y}Y =$

Associative rule

- 12. $X^{(Y'Z)} =$
- 13. $X^{\vee}(Y^{\vee}Z) =$

Distributive rule

- 14. $X^{(Y)}Z) =$
- 15. (X Y) (W Z) =

Absorption rules

- 16. $X^{\vee}(X^{\wedge}Y) =$
- 17. $X^{(X Y)} =$

- 2. Write down de Morgan's first and second laws:
- 3. Use de Morgan's laws and the rules of Boolean algebra to simplify the following expressions, stating which rule you use at each step.

(a)
$$X ^ Y ^ X ^ (Y ^ Z)$$

(b)
$$(X \ ^{\vee} Y) \ ^{\wedge} (\neg X \ ^{\vee} \neg Y)$$

(c)
$$X(XY)$$

4. Complete the truth table to show that AAB=AB

Α	В	¬ A	¬ A ^ B	A ' ¬A ' B	A ^v B
0	0				
0	1				
1	0				
1	1				

Task 2

5. Simplify the expression A B A (B C)

Draw a logic circuit representing the simplified expression, using only 2 gates.

6. (a) Write the Boolean expression representing the logic circuit below.

(b) Complete the truth table to prove the Absorption rules:

$$X \vee (X \wedge Y) = X$$

$$X \wedge (X \vee Y) = X$$

X	Y	(X ^ Y)	(X [∨] Y)	X ^v (X [^] Y)	X ^ (X [∨] Y)
0	0				
0	1				
1	0				
1	1				

(c) Simplify the expression.

A A B $^{\vee}$ A $^{\neg}$ B $^{\vee}$ B $^{\neg}$ B (Tip: Use the Absorption rule)

(d) With reference to the above example, explain why de Morgan's Laws and the rules of Boolean algebra have a huge commercial significance in the manufacture of computers.