This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(5) Int · Cl². C 08 F 10/02 C 08 F 4/64

② 日本分類 26(3) B 111.1 26(3) C 111 26(3) A 272.12 13(9) G 421.1

(B)日本国特許庁

特

①特許出願公告

昭50-30102

昭和50年(1975)9 月 29日 40公告

庁内整理番号 6556-45

公

報

発明の数 1

(全 5 頁)

のポリエチレンの製造方法

願 昭48-353 ②特

昭47(1972)12月22日 22出

開 昭49-86483 公

④昭49(1974)8月19日

72発 明 松浦一堆

川崎市中原区小杉町2の235

黒田信行 百

横浜市保土ケ谷区岩井町 3 3 8

三好光治 同

> 神奈川県中郡二宮町百合ガ丘2の 23010

人 日本石油株式会社 ②出 願

東京都港区西新橋1の3の12

人 弁理士 石井先正 13代 理

の特許請求の範囲

1 不活性エーテル化合物を溶媒として金属マグ シウム化合物を合成し、ついでTi:Mg(モル比) が3:1以上になるように該有機マグネシウム化 合物のエーテル溶液と―般式Ti(OR)n×4- n (Rはアルキル、アリル、アリールおよび/また はアラルキル基、×はハロゲン原子であり、 0 < n ≤ 4) で表わされるチタン化合物とを100 ℃以上の温度で反応させて得られる反応生成物と 有機アルミニウム化合物とからなる触媒系により エチレンの単独重合またはエチレンと他のαーオ リエチレンの製造方法。

発明の詳細な説明

本発明は、改良されたエチレン重合用触媒の製 造方法に関する。さらに詳しくは、本発明は不活 ムとハロゲン化炭化水素とから有機マグネシウム 化合物を合成し、ついでTi:Mg(モル比)が、

3:1以上になるように一般式Ti(OR)n×4-- n (Rはアルキル、アリル、アリール、および/ま たはアラルキル基、×はハロゲン原子であり、

2

 $0 < n \le 4$)で表わされるチタン化合物と該有機 5 マグネシウム化合物をエーテル化合物および/ま たは該チタン化合物存在下に100℃以上の温度 で反応させて得られる反応生成物と有機アルミニ ウム化合物とからなる触媒系によりエチレン、ま たはエチレンと他のオレフインを重合または共重 10 合する方法に関するものである。

チグラーにより有機金属化合物と遷移金属化合 物とからなる触媒系がすぐれたオレフイン重合用 の触媒となりうることが発見されて以来(日本特 許公告昭32-1545,32-1546他)数 15 多くの改良されたオレフイン重合用触媒が提案さ れてきた。

しかしながらポリオレフイン製造上明らかに触 媒活性はできるだけ高いことが望ましく、とくに 触媒除去工程が省略できる程度に高活性の触媒の オシウムとハロゲン化炭化水素とから有機マグネ 20 開発が近年強く要求されつつある。上記の改良さ れたチグラー触媒のほとんどはかかる目的の達成 のためにはまだ触媒活性が低く満足できる状態に はなかつた。

有機マグネシウム化合物と遷移金属化合物とか 25らなる触媒系は公知であり、さらにこれに有機ア ルミニウム化合物を併用した触媒系がかなりの高 活性なオレフィン重合用触媒となることも日本特 許公告昭35-495、英国特許第1030770 号より公知である。しかしながら、上記のいずれ レフインとの共重合を行なうことを特徴とするポ 30 の方法においても生成される触媒の活性はまだ十 分高いとはいえなかつた。

またベルギー特許第744,470号では炭素数 8~12程度の比較的長いアルキル基を有する有 機マグネシウム化合物と四塩化チタンとを比較的 性エーテル化合物を溶媒として、金属マグネシウ 35 低温で反応させて得られる触媒がオレフインの重 合に髙活性を示すことを記載している。しかしな がら一般に長いアルキル基を有する有機マグネシ

ウム化合物はより高価でもあり、また、有機マグ ネシウム化合物と四塩化チタンとの反応は発熱的 に反応するので、これを低温で行なうことは経済 的に有利とはいえない。

されている有機マグネシウム化合物を一成分とし て含む触媒系の合成法について鋭意研究の結果、 エーテル化合物の存在下で Ti:Mg (モル比)が 3: 1より過剰のTi(OR)_n×₄ _ n とグリニヤ化 る固体の反応生成物が有機アルミニウム化合物と 組み合わせて用いるときすぐれたオレフィンの重 合触媒となることを見出したものである。本発明 の方法によれば、エーテル化合物を溶媒として、 アリル、アリール)とを反応させ、常法にしたが い極めて容易に合成されたグリニャ化合物をその まま使用することができ、かつグリニャ化合物は エーテル化合物の存在下では高濃度の溶液として たグリニヤ試薬を何ら支障なく使用することがで きることが特徴である。

すでに述べたように、本発明においては、

Ti(OR)n×4-nとグリニヤ化合物の反応をエ るが、このとき、グリニヤ化合物のエーテル溶液 中の濃度には特に制限はない。しかしながら、余 りに低濃度の溶液を用いることは経済的でないの で支障のない限りなるべく高濃度の溶液を用いる ほうが有利である。

また、本発明の方法では、グリニャ化合物のマ グネシウム原子に結合した炭化水素残基は広く選 ぶことができるが、とくに、一般にグリニャ化合 物の合成において容易に合成可能な炭素数1~8 でも十分効果的に用いることができ、さらに好ま しくは炭素数 1~4の低級アルキル基を有するグ リニヤ化合物でも好ましく用いることができるこ とが特徴である。かかる低級アルキル基を有する グリニヤ化合物は一般にきわめて低廉であり、か 40 のが便利である。反応終了後、未反応の つ高収率で合成可能でもあるので、これらの化合 物を使用可能であることは経済的にきわめて有利 である。さらに、前記の英国特許第 1030770 号およびベルギー特許第144470号において

も、有機マグネシウム化合物と四塩化チタンとの 反応はエーテルの不存在下で行なうことを提案し ており、とくに過剰のエーテル化合物の存在は好 ましくないとしている。しかるに、本発明の方法 しかるに本発明者らは通常グリニヤ化合物と称 5 によればエーテルを溶媒として合成した有機マグ ネシウム化合物でもそのままの形で用いることが できるためにきわめて有利である。

すなわち、本発明の方法によれば従来より、有 効でないとされていた方法できわめて容易に十分 合物を100℃以上の加熱下に反応させて得られ 10 高活性な分散性のよい触媒が合成できたことは驚 くべきことといわねばならない。

本発明に用いられるグリニャ化合物は上記の如 く容易に合成できるが、ハロゲン化アルキル(ま たはアリル、アリール)と金属マグネシウムとの 金属マグネシウムとハロゲン化アルキル(または 15 反応を促進するためヨウ素などの活性化剤を加え る場合もある。グリニヤ化合物とTi(OR) n×4-n との反応はTi:Mg(モル比)を3:1以上とす ることが必要であり、さらに好ましくは5:1な いし100:1にすることが望ましい。モル比が 容易に合成可能であるが、このようにして合成し 20 3:1以下では後記比較例で示したように活性が かなり悪く良好な結果は得られない。グリニヤ化 合物と、 $Ti(OR)_n \times_{4-n}$ との反応における両化 合物の添加順序には特に制限はなく、グリニヤ化 合物に対して $Ti(OR)_n \times_{4-n}$ を加えても、また ーテル化合物の存在下で実施することを必須とす 25 Ti(OR)n×4-nに対してグリニヤ化合物を加え てもよい。また、反応温度は100℃以上好まし くは130℃ないし300℃である。室温程度の 温度では反応物は小塊状ないし大塊状の黒褐色固 体となり、これをそのまま触媒成分として用いて 30 も良好な結果は得られないが、これを加熱するこ とにより高活性の微粒状の分散性のよい固体触媒 が生成する。ただし、加熱下に両者を反応させた ときも、Ti:Mg(モル比)が3:1以下の

Ti(OR)n×4-n量が少ない場合には反応物は小 程度の低級炭化水素残基を有するグリニャ化合物 35 塊状であり微分散しにくいので重合触媒として使 用するのに不適当である。本発明の方法における グリニヤ化合物とTi (OR)n×4—nとの反応は無 溶媒下で行なつてもよいがグリニヤ化合物を合成 したときと同じエーテル化合物の存在下で行なう

> Ti(OR)n×4-nエーテル化合物等はそのまま蒸 留によつて留去するか、また濾過して除去するか またはペンタン、ヘキサン、ヘプタン等の不活性 炭化水素を加えて沈澱を沈降させたのち、液相を

分離し、かかる操作を数回くり返すことにより洗 浄して用いることができる。いずれの方法を用い ても遊離のTi(OR)n×₄-nは分離除去すること が望ましい。得られた微粒子状固体触媒はそのま ま、または、さらに磨砕したのち使用することが 5 チタンモノメトキシトリクロリト、チタンシメト できる。

本発明で使用可能のグリニヤ化合物としては、 一般式R₁MgX・OR₂R₃(ここでXはハロゲン原 子、R₁は炭素数 1~8のアルキル、アリル、アリ のアルキル、アリル、アリールまたはアラルキル 基であり、R2とR3は同一でもまた異なつていて もよい)で表わされる有機マグネシウム化合物で あり RMgXに対するエーテルの配位数は通常は2 合物の構造は非常に複雑であり確定されていない がここでは、エーテル化合物の存在で合成された ものはすべて含むものとする。その代表的なもの としてはメチルマグネシウムクロリド、メチルマ ダイド、エチルマグネシウムクロリド、エチルマ グネシウムブロミド、エチルマグネシウムアイオ ダイド、nープロピルマグネシウムクロリド、n ープロピルマグネシウムブロミド、ロープロピル ウムクロリド、nープチルマグネシウムブロミド、 nーブチルマグホシウムアイオダイド、イソブチ ルマグネシウムクロリド、イソブチルマグネシウ ムブロミド、イソブチルマグネシウムアイオダイ グオシウムブロミド、ヘキシルマグホシウムアイ オダイド、オクチルマグネシウムクロリド、オク チルマグネシウムブロミド、フエニルマグネシウ ムクロリド、フエニルマグネシウムブロミド等の グリニヤ化合物と錯合体をつくつているエーテル 化合物としてはジメチルエーテル、ジエチルエー テル、ジイソプロピルエーテル、ジブチルエーテ ル、メチルエチルエーテル、ジアリルエーテル、 のエーテルをあげることができる。これらのエー テルはグリニヤ化合物合成のさいの溶媒としても 使用できる。

本発明に使用される一般式Ti(OR)n×4-nで

表わされるハロゲン化チタンアルコキシドは四ハ ロゲン化チタンTi×、と所望の反応比のアルコー ル類またはフエノール類とを混合加熱するだけで 極めて容易に合成できるものであり、たとえば、 キシシクロリド、チタントリメトキシモノクロリ ド、テタンテトラメトキシド、チタンモノエトキ シトリブロミド、チタンモノエトキシトリクロリ ド、チタンジエトキシジクロリド、チタントリエ ールまたはアラルキル基、 R_2R_3 は炭素数 $1\sim 8$ 10トキシモノクロリド、チタンテトラエトキシド、 チタンジエトキシジブロミド、チタンモノブトキ シトリクロリド、チタンジブトキンジクロリド、 チタントリプトキシモノクロリド、チタンテトラ ブトキシド、チタンジブトキシジブロミド、テタ であるが、条件によつて変化しうる。グリニヤ化 15ンモノエトキシモノブトキシジクロリド、チタン ジエトキシジブトキシド、チタンモノペントキシ トリクロリド、チタンモノフエノキシトリクロリ ド、チタンジフエノキシジクロリド、チタントリ フエノキシモノクロリド、チタンテトラフエノキ グネシウムブロミド、メチルマグネシウムアイオ 20シド、チタンジプエノキシジブロミド、チタンモ ノエトキシモノフエノキシジクロリド等が挙げら れる。

本発明の方法では、上記のようにグリニャ化合 物とTi(OR)n×4-nとの反応生成物をさらに有 マグネシウムアイオダイド、nーブチルマグネシ 25機金属化合物と組み合わせて用いるが、このとき の有機金属化合物としては通常チーグラー触媒の 有機金属化合物として用いる周期律表第Ⅰ~Ⅲ族 の有機金属化合物を用いることができるがとくに 有機アルミニウム化合物が最適である。有機アル ド、ヘキシルマグネシウムクロリド、ヘキシルマ 30ミニウム化合物としてはチーグラー触媒の--成分 として知られている一般式 $R_3A\ell$, $R_2A\ell$ -X, $R_3 A \ell_2 X_3$ の有機アルミニウム化合物(ただし、 Rはアルキル基またはアリール基、Xはハロゲン 化合物のエーテル錯合体をあげることができる。 35 原子を示す)であり、代表的なものとしてはトリ メチルアルミニウム、トリエチルアルミニウム、 トリインブチルアルミニウム、トリヘキシルアル ミニウム、ジエチルアルミニウムモノクロリド、 エチルアルミニウムセスキクロリド、およびこれ テトラヒドロフラン、ジオキサン、アニソール等 40 らの混合物等があげられる。これらの有機金属化 合物は前記のグリニヤ化合物とTi(OR)n×4-n との反応生成物に対して0.1~1000モル倍使 用することができる。

本発明の触媒を使用してのオレフインの重合反

応は通常のチーグラー型触媒によるオレフイン重 合反応と同様にして行なわれる。すなわち、反応 はすべて実質的に酸素、水などを絶つた状態で気 相もしくは適当な不活性溶剤中での懸濁あるいは 溶液状態で行なわれる。溶媒または分散剤として 5 は炭素数3~20程度の不活性炭化水素を用いる ことができ、たとえばペンタン、ヘキサン、ヘブ タン、n ーパラフィンなどをあげることができる。 オレフィンの重合条件は温度は20ないし300 ℃、好ましくは50ないし200℃であり、圧力 10 は常圧ないし100Kg/cml、好ましくは2ないし 60 kg/cmである。分子量の調節は重合温度、触 媒のモル比などの重合条件を変えることによつて もある程度調節できるが重合系中に水素を添加す ることにより効果的に行なわれる。

本発明による触媒はチグラー触媒で重合できる すべてのオレフインを重合させることができるが、 とくにエチレンの重合において効果的に使用でき る。もちろん、エチレンとプロピレン、エチレン 類との共重合にも好適に使用される。

次に実施例をあげて本発明の内容をさらに詳細 に説明するが、本発明はこれらの実施例のみに限 定されるものではない。

実施例 1

a) 触媒の製造

500mℓの攪拌機付のフラスコを窒素置換 $UTiC\ell_{2}(oEt)_{2}948(0.45\pi \mu)$ をとり、 これに EtMgBr のシエチルエーテル溶液(3 トにより30分間で滴下した。(Ti:Mg(モ ル比)は5:1)。最初に黒色の小塊状のもの が生成するがこれを130℃で3時間反応させ たところ小塊は消失し、全体が紫色の微粒子と た。ついで大量のヘキサンを加えて分散してい る徴粒子を沈霞させた。上澄液をデカンテージ ヨンにより除去し新しくヘキサンを加え微粒子 状固体を洗浄した。かかる操作を遊離のTi 化。 を留去して紫色の微粒子状の固体を得た。

b) 2ℓのステンレス製誘導攪拌機付オートクレ ーブを窒素置換し、ヘキサン 1,0 0 0 mℓを入 れ、トリエチルアルミニウム5ミリモル、およ

び前記の紫色固体146個を加え攪拌しながら 90℃に昇温した。ヘキサンの蒸気圧で系は、 2 Kg/cmになるが水素を全圧が 4.4 Kg/cmにな るまで張り込み、ついでエチレンを全圧が、 10 Kg/cmになるまで張り込んで重合を開始し た。全圧が10 kg/cmになるようにエチレンを 連続的に導入し10分間重合した。重合終了後 重合体スラリーをピーカーに移し、ヘキサンを 滅圧除去し、メルトインデツクス 0.2 1の白色 ポリエチレン1989を得た。触媒活性は 1 1,500 g ポリエチレン/g Ti.hr.CoHa 圧、1,451gポリエチレン/g固体・hr・ C₂H₄圧でありきわめて高活性であつた。

比較例 1

15 実施例1においてTiCℓ2(oEt)2とEtMgBr のジエチルエーテル溶液との反応を25℃で行な うことを除いては実施例1と同様の方法で触媒を 合成したが、生成した触媒は小塊状の固体を多く 含んだ黒色のもので130℃で反応させたものと と 1 - ブテンなど、エチレンと他の αオレフイン 20 は明らかに異なつていた。これを 2 5 0 M9用いて 実施例1と同様に30分間重合を行なつたが活性 は900gポリエチレン/gTi·hr·CoHa圧、 1029ポリエチレン/9固体・hr・C2H4であ り実施例1に比較して著しく劣つていた。

25 比較例 2

実施例 1 において T i Cℓ2 (oEt)2とEtMgBr のジエチルエーテル溶液との反応をTi:Mg(モ ル比)が2:1の条件で反応させることを除いて は実施例1と同様の方法で触媒を合成したが、生 モル/ ℓ)30m ℓ (0.0 $9モル)を滴下ロー <math>\it 30$ 成物は小塊状の黒色固体を多く含んでおりこれを 用いて重合したがきわめて低活性であった。

実施例 2

 $TiC\ell_2(oEt)_2$ のかわりに $TiC\ell_2(O-C_6H_5)_2$ 137g(0.45モル)を使うことを除いては実 なつた。生成物の分散性はきわめて良好であつ 35 施例と同様の操作で触媒を合成した。得られた触 媒を71째用いた以外は実施例1と同様の方法で 10分間重合を行ない、メルトインデックス0.19 の白色ポリエチレン1249を得た。触媒活性は 15,400gポリエチレン/gTi·hr·C2H4圧、 合物がなくなるまでくり返したのち、ヘキサン 40 1.8 7 0 g ポリエチレン/g固体・ $h_r \cdot C_0 H_a$ 圧 であり活性は著しく高かつた。

実施例 3

 $TiC\ell_2(oEt)_2$ のかわりに $TiC\ell_3(On-Bu)$ 2048(0.9モル)を使うことを除いては実施

10

9

例1と同様の操作で触媒を合成した。得られた触 媒を143零用いた以外は実施例1と同様の方法 で10分間重合を行ないメルトインデツクス0.09 の白色ポリエチレン166gを得た。 触媒活性は 10.500 g ポリエチレン/gTi·hr· C_2 H4 圧、5 らプロピレンを2モル%含有するエチレンープロピレ 1.2 4 0 g ポリエチレン/g 固体・h r · C₂H₄ 圧 であり、きわめて高活性であつた。 実施例 4

EtMgBr のかわりに BuMgCℓ を使うことを 除いては実施例1と同様の操作で触媒を合成した。10り共重合体であることを確認した。触媒活性は 得られた触媒を156層用いた以外は実施例1と 同様の方法で10分間重合を行ない、メルトイン デツクス 0.1 4の白色ポリエチレン 1 9 7 8 を得 た。触媒活性は 96 5 0 gポリエチレン/g T i · h r ·

 C_2H_4 圧、1,350 g ポリエチレン/g 固体・h r · 15 69引用文献 C_2H_4 圧であり、活性は著しく高かつた。

実施例 5

実施例1で合成した触媒96*™*9、トリエチルア ルミニウム 5 ミリモル、およびヘキサン 1,0 0 0 mℓを使用し、水素を1.5 Kg/cmlまで圧入してか ン混合ガスを80℃で供給しオートクレーブの圧力 を 7 Kg/cmlに保持するようにして15分間重合を行 なつた。その結果 1209の白色のエチレンープロピ レン共重合体を得た。生成物は赤外スベクトルによ 7650 gポリマー/gTi・hr・C₂H₄圧、890 gポ リマー/g固体・hr·C₂H₄圧であつた。

特公 昭46-8768