Chapter 1

Disjoint set

Hlavným cieľom tejto kapitoly je vysvetliť, čo to disjoint set je, kde je možné túto datovú štruktúru použiť a akými spôsobmi ju možno implementovať.

1.1 Úvod

Set je datová štruktúra, ktorá združuje množinu vzájomne rozdielnych (disjunktných) dát. Rozdiel medzi setom a Disjoint setom (taktiež nazývaná Union-Find alebo Merge-find set) je ten, že Disjoint set rozdeľuje tieto prvky do podmnožin. Na počiatku máme množinu všetkých prvkov, ktoré sa nachádzajú v Disjoint sete a každý tento prvok tvorí samostatnú podmnožinu. Táto datová štruktúra definuje 3 operácie:

- MakeSet (\mathbf{x}) pridanie prvku x do množiny a jeho označenie ako samostatnej podmnožiny,
- \bullet Find (x) zistí identifikátor množiny, v ktorej sa prvok x nachádza,
- \bullet Union (x, y) zjednotenie množin, ktoré obsahujú prvky x a y.

Jednotlivé operácie tejto datovej štruktury možno implementovať rôznym spôsobom – o týchto spôsoboch implementácie je možné sa dočítať nižšie.

1.2 Implementácia datovej štruktury

Táto datová štruktúra je implementovaná ako les, kde každý strom reprezentuje jednu podmnožinu prvkov. Tieto stromy sa následne môžu zjednocovať a tvoriť tak novú podmnožinu.

Čo je to teda ten les a strom?

Pre definovanie lesu je potrebné najprv definovať čo je to strom, graf a ďaľšie pojmy z teórie grafov:

- (Neorientovaný) graf je usporiadaná dvojica (V, E), kde:
 - V je neprázdna množina vrcholov,
 - E je množina hran (neusporiadaná dvojica vrcholov, značíme ju u,v),
- Sled je sekvencia $v_0, e_1, v_1, e_2, v_2, ..., e_k, v_k$, kde $e_i = \{v_{i-1}, v_i\}$ a $e_i \in E(G), \forall i \in 1, ..., k$.
- Cesta je sled, v ktorom sa neopakujú vrcholy.
- **Súvislý graf** Graf G nazveme súvislým práve vtedy, keď pre každé 2 vrcholy u a v existuje u-v-cesta,
- Kružnica Majme n>=3, Kružnicou dĺžky n (kružnica pozostávajúca z n vrcholov) je graf $(\{1,...,n\},\{\{i,i+1\}|i\in\{1,...,n-1\}\}\cup\{\{1,n\}\}),$
- **Podgraf** Graf H je podgrafom grafu G práve vtedy, keď $V(H) \subseteq V(G)$
- Acyklický graf Graf nazveme acyklický práve vtedy, keď neobsahuje ako podgraf kružnicu.
- Strom Graf G nazveme stromom práve vtedy, keď je súvislý a zároveň acyklický,
- Les Graf G nazveme lesom práve vtedy, keď je acyklický.

1.3 Použitie

Keďže už vieme, čo to ten Disjoint set je, bolo by dobré vedieť k čomu nám takáto datová štruktúra je a kde všade je možné ju použiť. Možné použitia:

- Udržovanie informácií o súvislých komponentách,
- Hľadanie minimálnej kostry na základe Kruskalovho algoritmu,
- Detekcia cyklu.