Discrete Structure First Sessional

Solution

Section-A

Q1. Attempt all parts.

a. State pigeonhole principle with suitable example.

Ans: Pigeon hole principle state that If nk+1 objects are placed in n boxes, then one of the boxes must contain at least k+1 objects.

Examples

- In a class of 13 students, at least two must be born in the same month. Here, the 13 students are "pigeons" and the 12 months are "pigeonholes".
- b. Let $A = \{1,2,3\}$. Find the power set of A Ans: Total number of subset are = 2^3 = 8

Hence,
$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}$$

c. Write dual of $(U \cap A) \cup (B \cap A) = A$. Ans: $(\phi \cup A) \cap (B \cup A) = A$

(d. If
$$f(x) = x^2$$
 and $g(x) = 2x+1$. Find $fog(x)$.
Ans: $fog(x) = (2x+1)^2$

Section-B

Q2. Attempt all parts.

a. Let
$$A = \{a,b,c,d\}$$
 and $B = \{a,b,l,m\}$. Find $A \oplus B$

Ans: **Symmetric Difference of Sets:** The symmetric difference of two sets A and B is the set containing all the elements that are in A or B but not in both and is denoted by $A \oplus B$ i.e.

$$A \oplus B = (A \cup B) - (A \cap B)$$

Example:Let
$$A = \{a, b, c, d\} B = \{a, b, l, m\}$$
 $A \oplus B = \{c, d, l, m\}$

b. Find the Domain, Co-Domain, and Range of function.

Let
$$x=\{1,2,3,4\}$$

 $y=\{a,b,c,d,e\}$
 $f=\{(1,b),(2,a),(3,a),(4,c)$

Ans: Domain of function: {1, 2, 3, 4}

Range of function: {a, b, c, d}

Co-Domain of function: {a, b, c, d, e}

Q3. Answer any two of the following.

a. If a set $A = \{1, 2\}$. Determine all relations from A to A. Is relation AXA an equivalence relation?

Ans: There are 2^2 = 4 elements i.e., $\{(1, 1), (1, 2), (2, 1), (2, 2)\}$ in A x A. So, there are 2^4 = 16 relations from A to A. i.e.

Ø,

$$\{(1,1)\}, \{(1,2)\}, \{(2,1)\}, \{(2,2)\},$$

$$\{(1, 1), (1, 2)\}, \{(1, 1), (2, 1)\}, \{(1, 1), (2, 2)\},\$$

$$\{(1, 2), (2, 1)\}, \{(1, 2), (2, 2)\}, \{(2, 1), (2, 2)\}, \{(1, 1), (1, 2), (2, 1)\}, \{(1, 1), (1, 2), (2, 2)\},$$

$$\{(1, 1), (2, 1), (2, 2)\}, \{(1, 2), (2, 1), (2, 2)\},\$$

$$\{(1, 1), (1, 2), (2, 1), (2, 2)\}.$$

b. Let $X = \{4, 5, 6\}$, $Y = \{a, b, c\}$ and $Z = \{l, m, n\}$. Consider the relation R_1 from X to Y and R_2 from Y to Z. Find the composition of relation (i) R_1 o R_2 (ii) R_1 o R_1^{-1}

Ans: So let
$$R_1 = \{(4, a), (4, b), (5, c), (6, a), (6, c)\}$$

$$R_2 = \{(a, 1), (a, n), (b, 1), (b, m), (c, 1), (c, m), (c, n)\}$$

(i) The composition relation R₁ o R₂ as shown in fig:

$$\mathbf{R_1} \circ \mathbf{R_2} = \{(4, 1), (4, n), (4, m), (5, 1), (5, m), (5, n), (6, 1), (6, m), (6, n)\}$$

(ii) The composition relation $R_{10} R_{1}^{-1}$ as shown in fig:

$$\mathbf{R_{10} R_{1}^{-1}} = \{(4, 4), (5, 5), (5, 6), (6, 4), (6, 5), (4, 6), (6, 6)\}$$

Fig: R₁ o R₂

Fig: R₁ o R₁-1

```
Ans: i) Let P = (A \cup B)' and Q = A' \cap B' Let x be an arbitrary element of P then x \in A'
P \Rightarrow x \in (A \cup B)' \Rightarrow x \notin (A \cup B) \Rightarrow x \notin A \text{ and } x \notin B \Rightarrow x \in A' \text{ and } x \in B' \Rightarrow x \in A' \cap B' \Rightarrow x \in Q
Therefore, P \subseteq Q .....(i)
Again, let y be an arbitrary element of Q then y \in Q \Rightarrow y \in A' \cap B' \Rightarrow y \in A' and y \in B' \Rightarrow y \notin A and
y \notin B \Rightarrow y \notin (A \cup B) \Rightarrow y \in (A \cup B)' \Rightarrow y \in P
Therefore, Q \subset P .....(ii)
Now combine (i) and (ii) we get; P = Q i.e. (A \cup B)' = A' \cap B'
ii). Proof of De Morgan's law: (A \cap B)' = A' \cup B'
Let M = (A \cap B)' and N = A' \cup B'
Let x be an arbitrary element of M then x \in M \Rightarrow x \in (A \cap B)'
\Rightarrow x \notin (A \cap B)
\Rightarrow x \notin A or x \notin B
\Rightarrow x \in A' or x \in B'
\Rightarrow x \in A' U B'
\Rightarrow x \in N
Therefore, M \subset N ......(i)
Again, let y be an arbitrary element of N then y \in N \Rightarrow y \in A' \cup B'
\Rightarrow y \in A' or y \in B'
\Rightarrow y \notin A or y \notin B
\Rightarrow y \notin (A \cap B)
\Rightarrow y \in (A \cap B)'
\Rightarrow y \in M
Therefore, N \subset M ......(ii)
Now combine (i) and (ii) we get; M = N i.e. (A \cap B)' = A' \cup B'
O4
           A ans: Let us assume that \sqrt{2} is a rational number. So it can be expressed in the form p/q
where p, q are co-prime integers and q\neq 0
                    \sqrt{2} = p/q
                    Here p and q are coprime numbers and q \neq 0
                    Solving
```

 $\sqrt{2} = p/q$

On squaring both the sides we get,

$$=>2=(p/q)^2$$

$$\Rightarrow$$
 2q² = p².....(1)

$$p^2/2 = q^2$$

So 2 divides p and p is a multiple of 2.

$$\Rightarrow$$
 p = 2m

$$\Rightarrow p^2 = 4m^2 \dots (2)$$

From equations (1) and (2), we get,

$$2q^2 = 4m^2$$

$$\Rightarrow q^2 = 2m^2$$

 \Rightarrow q² is a multiple of 2

 \Rightarrow q is a multiple of 2

Hence, p, q have a common factor 2. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

 $\sqrt{2}$ is an irrational number.

4b: (I) $R \cup \Delta$ is the smallest relation having reflexive property, Hence $R = R \cup \Delta = \{(k, k), (k, l), (l, l), (l, m), (m, m), (m, k)\}$

(ii). For symmetric closure we know that RUR**-1

So here $R = \{(k,k),(k,l),(l,m),(m,k)\}$ and

$$R^{**}-1 = \{(k,k),(1,k),(m,1),(k,m)\}$$

Therefore $RUR^{**}-1 = \{(k,k),(k,l),(l,m),(m,k),((l,k),(m,l),(k,m)\}$

(iii) for transitive closure R*= RUR**2UR**3

$$R = \{ (k,k),(k,l),(l,m),(m,k) \}$$

$$R^{**2} = \{(k,k),(l,k),(m,k),(k,l),(m,l),(k,m)\}$$

$$R^{***3} = \{(k,k),(l,k),(m,k),(k,l),(l,l),(m,l),(k,m),(m,m)\}$$

So
$$R^* = R \cup R^{**} 2 \cup R^{**} 3$$

$$=\{(K,k),(k,l),(k,m),(l,k),(l,l),(l,m),(m,k),(m,l),(m,m)\}$$

Q5.

Solution

A)). : The characteristics equation is $s^2-4s+4=0$ or $(s-2)^2=0$ s = 2, 2 Therefore, the homogeneous solution of the equation is given by $a_{r(n)}=(C_1+C_2r).2^r$equation (i) Putting r = 0 and r = 1 in equation (i), we get a_0 =(C_1 +0). 2^0 = 1 :: C_1 =1 a_1 =(C_1 + C_2).2=6 :: C_1 + C_2 =3 \Rightarrow C_2 =2

Hence, the particular solution is $a_{r(P)}=(1+2r).2^{r}$.

B. Solution: Find its characteristic equation

$$r^3 + 3r^2 + 3r + 1 = 0$$

 $(r+1)^3 = 0$ then $r_1 = -1$

Then an = $(A + B n + Cn^2)(-1)^n$ is a solution.

Now we should find constants using initial conditions. And find the value of A, B and C A = 1 B = 3 C = -2

Then put the value of A, B and C in above equation

$$a_n = (1 + 3n - 2n^2) (-1)^n$$
 is a solution.