Homework 2

Haukur Páll Jónsson NLP 2017

November 21, 2017

Question 1. Chomsky Normal Form (CNF)

Answer a): The converted grammar is:

 $S \rightarrow NP \ VP$

 $S \to I \ VP \ PP$. We make the rule binary

 $I VP \rightarrow IVP$

 $I \to i$. When we make terminal symbols we do not make non-terminal symbols

 $NP \rightarrow Det N$

 $VP \rightarrow V$ NP. We use the fact that $V \rightarrow ate$ instead of creating a new rule which does exactly the same

 $VP \rightarrow ate$. We eliminate unit rules

 $PP \rightarrow Pre NP$

 $V \rightarrow ate$

 $Det \rightarrow the \mid a$

 $N \rightarrow fork \mid salad$

 $Pre \rightarrow with$

Question 2. PCFGs and the CYK algorithm

Answer a): For any given parse, we compute the probability of that parse by; p(rule) *

 $p(element \ of \ rule) * p(element \ of \ rule)$ Lets start with the cell marked B:

 $VP \to VObjObj$, we get: 0.3*0.6*0.2*0.175=0.0063

 $VP \rightarrow VObj$, we get: 0.5*0.6*0.175=0.0525 $VP \rightarrow Vsmall$, we get: 0.2*0.6*0.08=0.0096

For the cell marked A we essentially get all of the probabilities of B times 0.3:

 $S \to Subj VP$, we get: 1.0*0.3*0.0063=0,00189

 $S \to Subj VP$, we get: 1.0*0.3*0.0525=0,01575

 $S \to Subj VP$, we get: 1.0*0.3*0.0096=0.00288

Answer b): The most probable parse:

Question 3. Dependency parsing /MST

Answer a): CLE

Answer b): Final step

Question 4. Dependency parsing / Transistion based

Answer a): Arc-standard system