MDI220, Statistique Cours 2: Estimation ponctuelle

Anne Sabourin

19 Septembre 2017

- 1. M- et Z- estimation : exemple et cadre général
- 2. Maximum de vraisemblance
- 3. Méthode des moindres carrés
- 4. Méthode des moments

Cadre de l'estimation

- $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ un modèle statistique sur l'espace d'obervations $(\mathcal{X}, \mathcal{B}(\mathcal{X}))$.
- **X** : les données, $\mathbf{X} = (X_1, \dots, X_n) \stackrel{\text{i.i.d.}}{\sim} P_{\theta}$
- But : estimer $g(\theta) \in \mathcal{A}$ une quantité d'intérêt.
- Estimateur (Rappel) : une fonction $\mathcal{X}^n \to \mathcal{A}$, *i.e.* une statistique.

- 1. M- et Z- estimation : exemple et cadre général
- 2. Maximum de vraisemblance
- 3. Méthode des moindres carrés
- 4. Méthode des moments

Idée directrice

- M-estimateur : construit en Minimisant (par rapport à θ) une fonction qui dépend de θ et de X.
 - $ightarrow \widehat{ heta}$ est un arg max
- Z-estimateur : construit en annulant (*i.e.* en trouvant d'un **Z**éro) une fonction dépendant de θ et de **X**, en faisant varier θ .
 - $\rightarrow \widehat{\theta}$ est une racine.

Exemple type de M-estimateur

- Modèle dominé (par la mesure de Lebesgue) sur \mathbb{R} : P_{θ} a une densité $p_{\theta}(x)$.
- à $x=(x_1,\ldots,x_n)$ fixé, $t\mapsto p_t(x)$ est la fonction de vraisemblance
- But : estimer $g(\theta) = \theta$. (donc $A = \Theta$).
- Supposons que $\forall x \in \mathcal{X}^n$, $\exists ! \widehat{\theta}(x)$ tel que

$$\forall t \in \Theta, p_t(x) \leq p_{\widehat{\theta}}(x).$$

• On pose $M(x, t) = -\log p(x, t)$, $t \in \Theta$

$$\widehat{\theta}(x) = \operatorname*{argmin}_{t \in \Theta} M(x, t),$$

M est appelée 'fonction de contraste' ou 'contraste'.

• ex : modèle gaussien $\mathcal{N}(\theta, \sigma^2)$, σ^2 connu. $-\log p_t(x) = ?$ $\widehat{\theta}(x) = ?$

Max de vraisemblance : justification heuristique.

Simulation : $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta = 1, 1), \ 1 \leq i \leq n = 20.$

 X_i plus fréquents où $p_{\theta}(x)$ grande $p_{\theta}(x) \mathrm{d} x pprox \mathbb{P}_{\theta}(X_i \in \mathrm{d} x)$

heta plus vraisemblable si $p_{ heta}(X_{1:n})$ grand

Définition : M-estimateur

Soit $M: \mathcal{X}^n \times \mathcal{A} \to \mathbb{R}^+ \cup \{+\infty\}$ un contraste et

$$\operatorname*{argmin}_{t \in \mathcal{A}} \textit{M}(x,t) = \Big\{ t \in \mathcal{A} : \forall t', \textit{M}(x,t') \geq \textit{M}(x,t) \Big\}.$$

Un M-estimateur est une statistique $\widehat{g}(X)$ telle que

$$\widehat{g}(X) = \underset{t \in A}{\operatorname{argmin}} M(X, t),$$

pour un contraste M admettant un unique minimiseur en t.

- Notations: pour f: A → R,
 argmin_A f = argmin_{t∈A} f(t) = {t ∈ A : ∀t' ∈ A, f(t') ≥ f(t)}.
 Lorsque argmin f = {t₀}, on écrit pour simplifier argmin f = t₀.
- La définition suppose l'existence et l'unicité du minimum.
- C'est le cas Si M est strictement convexe en t.

Z-estimateur

Si ĝ(X) est un M-estimateur et si le contraste M est différentiable p.r.à. t, on a ∇_tM(X, ĝ(X)) = 0.
 → ĝ(X) est un Zéro de ∇_tM(X, ·).

définition : Z-estimateur

Soit $\Psi: \mathcal{X}^n \times \mathcal{A} \to \mathbb{R}^d$ telle que

 $\forall x \in \mathcal{X}^n, \exists ! \widehat{g}(x) \text{ tel que } \Psi(x, \widehat{g}(x)) = 0.$

La satistique $\widehat{g}(X)$ est alors appelée Z-estimateur.

Question

Définitions d'un M- et d'un Z- estimateurs très générales, les propriétés de \widehat{g} dépendent du choix de M ou Ψ .

Comment choisir M ou Ψ pour 'bien' estimer $g(\theta)$?

- Dans ce cours : pas de réponse absolue.
- On donne des exemples de construction et on vérifiera qu'elles ont de bonnes propriétés pour le coût quadratique, à taille d'échantillon n fixé.
- Propriétés asymptotiques : cf. le cours de statistiques asymptotiques (MACS 203, P2)

- 1. M- et Z- estimation : exemple et cadre général
- 2. Maximum de vraisemblance
- 3. Méthode des moindres carrés
- 4. Méthode des moments

justification II (heuristique) de l'estimateur de max de vraisemblance

- $M(x,t) = -\log p_{\theta}(x)$. Si $\widehat{\theta}_{MV}(X) = \operatorname{argmin}_{t \in \Theta} M(X,t)$ est unique, $\widehat{\theta}$ est l'estimateur du maximum de vraisemblance pour le paramètre θ .
- raison du bon comportement de $\widehat{\theta}_{MV}$: Si $X_{1:n} \overset{\text{i.i.d.}}{\sim} P_{\theta_0}$,

$$\widehat{\theta}(X_{1:n}) = \underset{t}{\operatorname{argmin}} \sum_{i=1}^{n} -\log p_{t}(X_{i}) = \underset{t}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{\theta_{0}}(X_{i})}{p_{t}(X_{i})}$$

$$\approx_{n \to \infty} \underset{t}{\operatorname{argmin}} \mathbb{E}_{\theta_{0}} \log \frac{p_{\theta_{0}}(X_{1})}{p_{t}(X_{1})} = \underbrace{\int_{\mathcal{X}} p_{\theta_{0}}(x) \log \frac{p_{\theta_{0}}(X_{1})}{p_{t}(X_{1})} dx}_{KL(P_{\theta_{0}}, P_{t})}$$

- $KL(P_{\theta_0}, P_t) \ge 0$ mesure la divergence entre P_{θ_0} et P_t .
- cas d'égalité : $P_t = P_{\theta_0}$ i.e.(si modèle identifiable) $t = \theta_0$.
- Justification du ' $\approx_{n\to\infty}$ ' : cours de stats asymptotiques.

Max de vraisemblance : Exemple II

- $X_{1:n} \overset{\text{i.i.d.}}{\sim} \mathcal{P} oiss(\theta), \ \theta \in \Theta = \mathbb{R}_+^*$.
- Pour t > 0, $-\log p_t(X_{1:n}) = \dots$

au tableau

- Résultat : $\widehat{\theta}_{MV}(X_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Pourquoi est-ce rassurant?

Limites de l'estimateur de maximum de vraisemblance

- Souvent pas d'expression explicite pour $\widehat{ heta}_{MV}$
- Alors : recours obligatoire à des méthodes d'optimisation numérique
- → Coûteux en temps de calcul et pas exact.

- 1. M- et Z- estimation : exemple et cadre général
- Maximum de vraisemblance
- 3. Méthode des moindres carrés
- 4. Méthode des moments

Cadre de la régression

• Observations : $X_i = (Y_i, z_i), Y_i \in \mathbb{R}$ (aléatoire), $z_i \in \mathbb{R}^d$ (donnée du problème, non aléatoire), telles que

$$Y_i = \varphi(\theta, z_i) + \epsilon_i, \qquad \epsilon_{1:n} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2) \text{ (bruit)} \qquad \theta \text{ à estimer}$$

• Cas fréquent : régression linéaire, $\varphi(\theta, z_i) = \langle \theta, \Phi(z_i) \rangle = \sum_{j=1}^d \theta_j \Phi(z_i)_j$.

Estimateur des moindres carrés

Méthode très ancienne (Gauss).

• Contraste : erreur quadratique entre les Y_i et leur meilleur prédiction $\varphi(z_i,t)$:

$$M(X_{1:n},t) = \sum_{i=1} (\varphi(z_i,t) - Y_i)^2$$
 $\widehat{\theta}_{MC}(X) = \operatorname*{argmin}_{t \in \Theta} M(X_{1:n},t).$

- 1. M- et Z- estimation : exemple et cadre général
- 2. Maximum de vraisemblance
- 3. Méthode des moindres carrés
- 4. Méthode des moments

Méthode des moments : principe de substitution

But : estimer θ . Supposons que

- on dispose d'une fonction $h=(h_1,\ldots,h_p):\mathcal{X}^n\to\mathbb{R}^p$ telle que $\Phi(\theta):=\mathbb{E}_{\theta}\Big[h(X)\Big]$ soit calculable (en fonction de θ)
- on peut retrouver θ à partir de $\Phi(\theta)$, *i.e.* $\theta \mapsto \Phi(\theta)$ est injective. Alors $\exists \Phi^{-1} : \operatorname{Im}(\Phi) \subset \mathbb{R}^p \to \Theta$.

principe de substitution

Remplacer $\Phi(\theta) = \mathbb{E}_{\theta}(h(X))$ (inconnu car θ inconnu) par

$$\Phi_n(X_{1:n}) := \frac{1}{n} \sum_{i=1}^n h(X_i)$$

- (si $\Phi_n(X) \in \operatorname{Im}(\Phi)$), on pose $\widehat{\theta}(X_{1:n}) = \Phi^{-1} \circ \Phi_n(X_{1:n})$
- cas général : on minimise le contraste $M(X_{1:n},t) = \|\Phi_n(X_{1:n}) \Phi(t)\|$

Principe de substitution et minimisation de contraste

• On définit le contraste

$$M(X_{1:n}, t) = \|\Phi_n(X_{1:n}) - \Phi(t)\|$$

Si ∃! minimiseur, l'estimateur par la méthode des moments est

$$\widehat{\theta}(X_{1:n}) = \underset{t}{\operatorname{argmin}} M(X_{1:n}, t).$$

Lemme : Condition suffisante pour que ∃! minimiseur

Sous l'hypothèse d'injectivité de $\theta \mapsto \Phi(\theta)$, s'il existe t^* tel que $M(X_{1:n}, t^*) = 0$, alors t^* est l'unique minimiseur de M

• Sous l'hypothèse d'injectivité, si $\Phi_n(X_{1:n}) \in \operatorname{Im}(\Phi)$, le lemme s'applique

Exemple I : paramètre d'une loi Gamma

- $\theta = (\alpha, \lambda) := (\theta_1, \theta_2), \alpha > 0, \lambda > 0.$
- $X_{1:n} \overset{\text{i.i.d.}}{\sim} P_{\theta} = \mathcal{G}amma(\alpha, \lambda).$
- Modèle dominé par la mesure de Lebesgue, densité

$$p_{(\alpha,\lambda)}(x) = \mathbb{1}_{x>0} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$$

- On choisit $h(X) = (X, X^2)$ (méthode des moments)
- On montre que $\Phi(heta):=\mathbb{E}_{ heta}(h(X))=(rac{ heta_1}{ heta_2},rac{ heta_1(1+ heta_1)}{ heta_2^2}):=(m_1,m_2)$
- sur $\operatorname{Im}(\Phi) = \{(m_1, m_2) : m_1 > 0, m_2 > m_1^2\},$

$$\Phi^{-1}(m) = \left(\frac{m_1^2}{m_2 - m_1^2}, \frac{m_1}{m_2 - m_1^2}\right).$$

Exemple I : paramètre d'une loi Gamma (suite)

• Contraste : $M(X_{1:n}, \alpha, \lambda) = \|\Phi_n(X_{1:n}) - \Phi(\alpha, \lambda)\|$ avec

$$\Phi_n(X_{1:n}) = \left(\frac{1}{n}\sum_i X_i, \frac{1}{n}\sum_i X_i^2\right)$$

- on montre que $\Phi_n(X_{1:n}) \in \operatorname{Im}(\Phi) \to \text{le lemme s'applique}$
- on obtient

$$\widehat{\theta}_M(X_{1:n}) = \Phi^{-1}(\Phi_n(X_{1:n})) = \left(\frac{\overline{X_n}^2}{\widehat{\sigma}_n^2}, \frac{\overline{X_n}}{\widehat{\sigma}_n^2}\right)$$

avec
$$\overline{X_n} = \frac{1}{n} \sum_i X_i$$
, $\widehat{\sigma}_n^2 = \frac{1}{n} \sum_i X_i - \overline{X_n}^2$.

Exemple II : paramètres d'une loi normale

- $\theta = (\mu, \sigma^2), X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- on choisit $h(X) = (X, X^2)$. On a immmédiatement

$$\Phi(\theta) = \mathbb{E}_{\theta}(h(X)) = (\mu, \mu^2 + \sigma^2); \quad \operatorname{Im}(\Phi = \{(m_1, m_2) : m_2 > m_1^2\}$$

$$\Phi^{-1}(m) = (m_1, m_2 - m_1^2)$$

- On vérifie que $\Phi_n(X_{1:n}) = \left(\frac{1}{n} \sum_i X_i, \frac{1}{n} \sum_i X_i^2\right) \in \operatorname{Im}(\Phi)$ (comme précédemment)
- On peut poser $\widehat{\theta}_M(X_{1:n}) = \Phi^{-1}(\Phi_n(X))$;

$$\widehat{\theta}_{M}(X_{1:n}) = (\widehat{\mu}_{M}, \widehat{\sigma^{2}}_{M}) = \left(\frac{1}{n} \sum_{i} X_{i}, \frac{1}{n} \sum_{i} X_{i}^{2} - (\frac{1}{n} \sum_{i} X_{i})^{2}\right)$$

(moyenne et variance empiriques)