Comprehensive Analysis of $B \to K^* \ell^+ \ell^-$ and further $|\Delta B| = |\Delta S| = 1$ Decays

Danny van Dyk in collaboration with Frederik Beaujean and Christoph Bobeth

> UK Flavour Workshop 2013 Durham University / IPPP

Theor. Physik 1

Effective Field Theory for $b \to s\ell^+\ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- ullet expand amplitudes in $G_{
 m F}\sim 1/M_W^2$ (OPE)
- operators (matrix elem. below $\mu_b \simeq m_b$)

$$\mathcal{O}_i \equiv \left[\bar{s} \Gamma_i b \right] \left[\bar{\ell} \Gamma_i' \ell \right]$$

• Wilson coefficients (above $\mu_b \simeq m_b$)

$$C_i \equiv C_i(M_W, M_Z, m_t, \dots)$$

• use $C_i = C_i(\mu_b = 4.2 \text{GeV})$

Effective Hamiltonian

$$\mathcal{H} = -\frac{4G_{\mathrm{F}}}{\sqrt{2}}\frac{\alpha_{e}}{4\pi}\Big[V_{tb}V_{ts}^{*}\sum_{i}\overset{\textcolor{red}{\mathcal{C}_{i}}\mathcal{O}_{i}}{\mathcal{O}_{i}} + O\left(V_{ub}V_{us}^{*}\right)\Big] + \mathrm{h.c.}$$

Effective Field Theory for $b \to s \ell^+ \ell^-$ FCNCs

Flavor Changing Neutral Current (FCNC)

- ullet expand amplitudes in $G_{
 m F}\sim 1/M_W^2$ (OPE)
- ullet operators (matrix elem. below $\mu_b \simeq m_b$)

$$\mathcal{O}_i \equiv \left[\overline{s} \Gamma_i b \right] \left[\overline{\ell} \Gamma_i' \ell \right]$$

• Wilson coefficients (above $\mu_b \simeq m_b$)

$$C_i \equiv C_i(M_W, M_Z, m_t, \dots)$$

• use $C_i = C_i(\mu_b = 4.2 \text{GeV})$

Decay Modes

$$B o K^* \ell^+ \ell^-$$

$$B_s o \mu^+ \mu^-$$

$$B \to K\ell^+\ell^-$$

$$B \to K^* \gamma$$

$$B \to X_{\epsilon} \ell^+ \ell^-$$

$$B \to X_s \gamma$$

Model Independent Framework

Basis of Operators \mathcal{O}_i

- include as many \mathcal{O}_i beyond SM as needed/as few as possible
- balancing act, test statistically if choice of basis describes data well!

Wilson Coefficients C_i

- treat C_i as uncorrelated, generalized couplings
- constrain their values from data
- · confront new physics models with constraints

Model Independent Framework

Operators/Wilson Cofficients

SM:

$$\mathcal{O}_{7} = \frac{m_{b}}{e} [\bar{s} \sigma_{\mu\nu} P_{R} b] F^{\mu\nu} \qquad \qquad \mathcal{O}_{9(10)} = [\bar{s} \gamma_{\mu} P_{L} b] [\bar{\ell} \gamma^{\mu} (\gamma_{5}) \ell]$$

chirality flipped (beyond SM)

$$\mathcal{O}_{7'} = rac{m_b}{e} [ar{s} \sigma_{\mu
u} { extstyle P_L} b] F^{\mu
u} \qquad \qquad \mathcal{O}_{9'(10')} = [ar{s} \gamma_\mu { extstyle P_R} b] [ar{\ell} \gamma^\mu (\gamma_5) \ell]$$

Model Independent Framework

Operators/Wilson Cofficients

SM:

fit

$$\mathcal{O}_{7} = \frac{m_{b}}{\epsilon} [\bar{s} \sigma_{\mu\nu} P_{R} b] F^{\mu\nu} \qquad \qquad \mathcal{O}_{9(10)} = [\bar{s} \gamma_{\mu} P_{L} b] [\bar{\ell} \gamma^{\mu} (\gamma_{5}) \ell]$$

chirality flipped (beyond SM)

$$\mathcal{O}_{7'} = \frac{m_b}{e} [\bar{s} \sigma_{\mu\nu} P_L b] F^{\mu\nu} \qquad \mathcal{O}_{9'(10')}$$

Scenario only real-valued SM-like
$$C_i \Rightarrow$$
 no BSM CPV

hadronic parameters

 $\mathcal{C}_7,\,\mathcal{C}_9,\,\mathcal{C}_{10}$ and • CKM Wolfenstein parameters

 $\mathcal{C}_1, \dots \mathcal{C}_6, \mathcal{C}_8$ as in the SM • quark masses

Sensitivity to Fit Parameters

Wilson Coefficients

	\mathcal{C}_7	C_9	C_{10}	
$B_s o \mu^+ \mu^-$	_	_	√	
$B o X_s \gamma$	✓	_	_	
$B \to X_s \ell^+ \ell^-$	✓	✓	√	
$B o K^* \gamma$	✓	_	_	
$B o K^* \ell^+ \ell^-$	✓	✓	√	12 CP-avg. angular observables
$B o K\ell^+\ell^-$	√	√	✓	3 CP-avg. angular observables

Form Factors

- interplay between $B \to X_s \{ \gamma, \ell^+ \ell^- \}$ and $B \to K^* \{ \gamma, \ell^+ \ell^- \}$
- ullet some $B o K^*\ell^+\ell^-$ obs. form-factor insensitive by construction
- some $B \to K^* \ell^+ \ell^-$ obs. dominantly sensitive to form factor ratios

Measurements Entering Analysis

$$B o K^* \ell^+ \ell^- \quad q^2 \in [1, 6] \text{GeV}^2, \ q^2 \ge M_{\psi'}^2$$
• $\mathcal{B}, \ A_{\text{FB}}, \ F_{\text{L}}, \ A_{\text{T}}^2 \ (S_3)$

- new: $A_{\rm T}^{\rm re}$, P_4' , P_5' , P_6'
- ATLAS, BaBar, Belle, CDF, CMS, LHCb

$$B o \mathcal{K}\ell^+\ell^ q^2\in [1,6]$$
GeV 2 , $q^2\geq M_{gl/r}^2$

- B
- BaBar, Belle, CDF, LHCb

$$B_s \rightarrow \mu^+ \mu^-$$

- time-int. \mathcal{B}
- CMS. LHCb

$$B \to K^* \gamma$$

- \mathcal{B} , $S_{K^*\gamma}$, $C_{K^*\gamma}$
- BaBar, Belle, CLEO

$$B \to X_s \gamma$$
• B

- **B**
- BaBar, Belle, CLEO

$$B \to X_s \ell^+ \ell^-$$
• B

BaBar, Belle

D. van Dyk (U. Siegen)

 $E_{\min}^{\gamma} = 1.8 \, \text{GeV}$

 $q^2 \in [1, 6] \text{GeV}^2$

(Angular) Observables in $B \to K^* \ell^+ \ell^-$

- kinematics
 - ▶ dilepton mass squared q²
 - three angles
- complicated diff. decay width
 - ▶ 12(+) angular observables J_n
 - \triangleright compose observ. from \int_{n} with specific benefits
 - \triangleright express observables through \int_{n}

Definitions

$$\Gamma \sim 3J_{1c} + 6J_{1s}J_{2c}2J_{2s} \qquad A_{\rm FB} \sim \frac{J_{6s}}{\Gamma}$$
 $P'_4 \sim \frac{+J_4}{\sqrt{-J_{2s}J_{2c}}} \qquad \qquad P'_5 \sim \frac{J_{6s}}{2\sqrt{-J_{2s}J_{2c}}}$

$$A_{\mathrm{FB}}\sim rac{J_{6s}}{\Gamma}$$

$$egin{align*} A_{\mathrm{FB}} &\sim rac{J_{6s}}{\Gamma} & F_L &\sim rac{3J_{1c}-J_{2c}}{\Gamma} \ P_5' &\sim rac{+J_5}{2\sqrt{-J_{2s}J_{2c}}} & P_6' &\sim rac{-J_7}{2\sqrt{-J_{2s}J_{2c}}} \ \end{pmatrix}$$

$$F_L \sim \frac{3J_{1c}-J_{2c}}{\Gamma}$$

$$P_6' \sim \frac{-J_7}{2\sqrt{-J_{2s}J_2}}$$

Further Theory Constraints

Form Factors from Lattice QCD (LQCD)

[HPQCD arxiv:1306.2384]

- B → K form factors available from LQCD
 - ▶ data only at high q^2 : 17 23 GeV²
 - ▶ no data points given
- reproduce 3 data points from z-parametrization
 - $ightharpoonup q^2 = 17 \, \text{GeV}^2, \, 20 \, \text{GeV}^2, \, 23 \, \text{GeV}^2$
 - use as constraint, incl. covariance matrix

$B \to K^*$ Form Factor (FF) Relation at $q^2 = 0$

- ullet FF $V,A_1\propto \xi_{\perp}+\dots$ [Charles et al. hep-ph/9901378]
 - lacktriangledown no $lpha_{
 m s}$ corrections [Burdmann/Hiller hep-ph/0011266, Beneke/Feldmann hep-ph/0008255]
 - ▶ Large Energy Limit: $V(0) = (1.33 \pm 0.4) \times A_1(0)$
- LCSR constraint: $\xi_{\parallel}(0) = 0.10^{+0.03}_{-0.02}$, to avoid $\xi_{\parallel}(q^2) \propto A_0(q^2) < 0$.
- see also FF fits by [Hambrock/Hiller/Schacht/Zwicky 1308.4379]

Results (SM Basis)

early 2012

- figure from [1205.1838]
- no $B \to X_s \{ \gamma, \ell^+ \ell^- \}$
- only LHCb bound on $B_s \to \mu^+ \mu^-$
- $B \to K^{(*)}\ell^+\ell^-$: $\mathcal{B}, A_{FB}, F_L, A_T^{(2)}, S_3$
- $B \to K^* \gamma$: $\mathcal{B}, S_{K^* \gamma}, C_{K^* \gamma}$

♦: Standard Model

The $B \to K^* \ell^+ \ell^-$ "Anomaly"

 deviation from SM prediction in form factor-free obs. P'₅ (LHCb)
 [LHCb 1308.1707]

LHCb uses one SM prediction (DGHMV)
 [Descotes-Genon/Hurth/Matias/Virto 1303.5794]

 however: further SM prediction exist much larger uncertainty (JC)

[Jäger/Camalich 1212.2263]

our take on SM prediction for P'_{4,5,6}
 (BBvD, see also following slide)

difference: treatment of unknown power corrections (form factor corrections, $\bar{c}c$ resonances)

Standard Model Predictions for $P'_{4.5.6}$

- toy Monte Carlo using priors + theory constraints (FFs)
- calculate observable for 10⁵ samples
- find minimal 68% CL intervals

	q^2 [GeV ²]	$\langle P_4' \rangle$		$\langle P_5' angle$		$10^2 imes \langle P_6' angle$	
۵	[1, 6]	+0.46	$^{+0.12}_{-0.11}$	-0.335	$+0.085 \\ -0.075$	-6.4	±1.7
BBvD	[2, 4.3]	+0.48	$^{+0.11}_{-0.10}$	-0.315	$^{+0.074}_{-0.090}$	-7.2	$^{+1.5}_{-2.2}$
†d∑	[1, 6]	+0.58	$^{+0.33}{-0.36}$	+0.21	$^{+0.20}_{-0.21}$	+18	±21
LHCb [†]	[2, 4.3]	+0.74	$^{+0.11}_{-0.53}$	+0.29	$^{+0.40}_{-0.39}$	+15	+38 -36

^{†: [}LHCb 1308.1707], adjusted to theory convention

Results (SM Basis) Preliminary!

♦: Standard Model, (light-) red: 68% CL (95% CL) for early 2012 solid (dashed): 68% CL (95% CL) for post HEP'13 (selection)

post HEP'13 (selection)

- with $B \to X_s \{ \gamma, \ell^+ \ell^- \}$
- $B_s \to \mu^+ \mu^-$ from LHCb and CMS
- same data as

[Descotes-Genon/Matias/Virto 1307.5683] exclusive decays limited:

- ightharpoonup only $B o K^* \ell^+ \ell^-!$
- ▶ only LHCb data!
- ▶ only $q^2 \in [1, 6] \text{GeV}^2$
- best-fit point similar to

[Descotes-Genon et al. 1307.5683]

- ▶ less tension, only $\lesssim 2\sigma$
- ho $C_{q} C_{q}^{\rm SM} \simeq -1.2$

Results (SM Basis) Preliminary!

♦: Standard Model, (light-) red: 68% CL (95% CL) for early 2012 solid (dashed): 68% CL (95% CL) for post HEP'13 (all data)

post HEP'13 (all data)

- SM-like uncertainty reduced by \sim 2 compared to 2012
- ullet SM at the border of 1σ
- ullet flipped-sign barely allowed at 1σ
- good agreement with SM $(\simeq 1\sigma)$
- cannot confirm NP findings
 - $\blacktriangleright \text{ in } (\mathcal{C}_7, \mathcal{C}_9)$

[Descotes-Genon et al. 1307.5683]

▶ in $(C_9, C_{9'})$

[Altmannshofer/Straub 1308.1501]

Effects of the Power Corrections

- tension diluted by parameters for unknown power corrections
- effects in parameters for $B \to K^* \ell^+ \ell^-$ power corr. @ large recoil
 - ▶ shift by -20% for amplitude A_{\perp}^{L}
 - ▶ shift by 7% for amplitude A_{\perp}^{R}
- improvement in treating power corrections desirable

dashed: prior, solid: posterior, green: 68% CL, yellow: 95% CL

Goodness of Fit

Pull Values at Best-Fit Point

- largest pulls
 - -3.4σ F_L , [1, 6], BaBar 2012 $+2.5\sigma$ \mathcal{B} , [16,19.21], Belle 2009
 - -2.6σ F_L , [1, 6], ATLAS 2013 $+2.2\sigma$ A_{FB} , [16,19], ATLAS 2013
 - -2.4σ P'_4 , [14.18,16], LHCb 2013
- rest below 2σ , including the anomaly

$$+1.4\sigma \ \langle P_5' \rangle$$
, [1, 6], LHCb 2013

p Values

- pull-based p value at SM-like mode decreased
 - ▶ p value early 2012: 0.75
 - ▶ p value post HEP'13 (all): 0.15
- still a decent fit
- p value for $C_{7.9.10} = C_{7.9.10}^{SM}$: 0.16

Numeric Results Preliminary

		\mathcal{C}_7	\mathcal{C}_{9}	\mathcal{C}_{10}
	68 %	$[-0.34, -0.23] \cup [0.35, 0.45]$	$[-5.2, -4.0] \cup [3.1, 4.4]$	$[-4.4, -3.4] \cup [3.3, 4.3]$
2012	95 %	$[-0.41, -0.19] \cup [0.31, 0.52]$	$[-5.9, -3.5] \cup [2.6, 5.2]$	$[-4.8, -2.8] \cup [2.7, 4.7]$
	modes	$\{-0.28\} \cup \{0.40\}$	$\{-4.56\} \cup \{3.64\}$	$\{-3.92\} \cup \{3.86\}$
'13	68 %	$[-0.38, -0.32] \cup \emptyset^{\dagger}$	$\emptyset^{\dagger} \cup [3.5, 4.6]$	$[-5.1,-4.1]\cup\emptyset$
HEP	95 %	$[-0.40, -0.30] \cup [0.47, 0.55]$	$[-5.7, -4.5] \cup [3.3, 4.9]$	$[-5.2, -3.9] \cup [4.0, 5.0]$
post	modes	$\{-0.350\} \cup \{0.513\}$	$\{-4.99\} \cup \{4.01\}$	$\{-4.61\} \cup \{4.52\}$
SM	central	{−0.327} ∪ ∅	∅ ∪ {4.28}	{−4.15} ∪ ∅

 $\dagger:$ the marginalized 1D distributions barely exclude the flipped-sign solutions @ 68%CL.

post HEP'13

- flipped-sign solution drastically smaller than in previous analysis
- posterior mass ratios SM-like : flipped-sign solutions 77% : 23%

Model Comparison

- full fit with free floating $C_{7,9,10}$: posterior $P(C_{7,9,10}, \nu|D)$
- ullet repeat fit with $\mathcal{C}_{7,9,10}$ set to SM values: posterior $P(\mathcal{C}_{7,9,10}^{\mathrm{SM}},
 u|D)$
- ν: nuisance parameter (CKM, quark masses, hadronic quantities)
- Bayes factor B compares models
 - ratio of posterior masses

$$B = \frac{P(D|\mathcal{C}_{7,9,10}^{\mathrm{SM}}, \nu)}{P(D|\mathcal{C}_{7,9,10}, \nu)} = \frac{(2.04 \pm 0.005)}{(7.04 \pm 0.01)} \times 10^5 = 2.76 \times 10^4$$

- ▶ specific prior volume: $P(C_{7,9,10}) = 3.6 \times 10^3$
- \triangleright B/P($\mathcal{C}_{7.9.10}$) = 27.6/3.6 = 7.67
- ▶ Occam's Razor: SM explains data more economically than $C_{7,9,10} \neq C_{7,9,10}^{\rm SM}$ by one order of magnitude

- more precise than prior
- $B \rightarrow K^*$: ξ_{\perp} from
 - \triangleright $B \rightarrow X_s \gamma$
 - $ightharpoonup B o K^* \gamma$
 - \triangleright $B \rightarrow K^* \ell^+ \ell^-$
 - theory input
- results @ 68% CL
 - $V(0) = 0.37^{+0.03}_{-0.02}$

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945]

solid: posterior, green: 68% CL, yellow: 95% CL

- more precise than prior
- $B \rightarrow K^*$: ξ_{\perp} from
 - $ightharpoonup B o X_s \gamma$
 - ▶ $B \rightarrow K^* \gamma$
 - \triangleright $B \rightarrow K^* \ell^+ \ell^-$
 - theory input
- results @ 68% CL
 - $V(0) = 0.37^{+0.03}_{-0.02}$
 - $A_1(0) = 0.24 \pm 0.03$

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945]

solid: posterior, green: 68% CL, yellow: 95% CL

 $dashed:\ prior\ [Khodjamirian/Mannel/Pivovarov/Wang\ 1006.4945]$

solid: posterior, green: 68% CL, yellow: 95% CL

- more precise than prior
- $B \rightarrow K^*$: ξ_{\perp} from
 - $ightharpoonup B o X_s \gamma$
 - $ightharpoonup B o K^* \gamma$
 - \triangleright $B \rightarrow K^* \ell^+ \ell^-$
 - theory input
- results @ 68% CL
 - $V(0) = 0.37^{+0.03}_{-0.02}$
 - $A_1(0) = 0.24 \pm 0.03$
 - $A_2(0) = 0.22 \pm 0.04$

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945]

solid: posterior, green: 68% CL, yellow: 95% CL

- more precise than prior
- $B \rightarrow K^*$: ξ_{\perp} from
 - $ightharpoonup B o X_s \gamma$
 - ▶ $B \rightarrow K^* \gamma$
 - $ightharpoonup B o K^*\ell^+\ell^-$
 - theory input
- results @ 68% CL
 - ▶ ratio of central values

$$V(0)/A_1(0)\simeq 1.5$$

$$A_2(0)/A_1(0) \simeq 0.9$$

agree w/ (SE2 full)

[Hambrock/Hiller/Schacht/Zwicky 1308.4379]

Results for $B \rightarrow K$ Form Factors

- more precise than prior B → K:
- - \triangleright $B \rightarrow K\ell^+\ell^-$
 - ▶ Lattice
- results @ 68% CL
 - $f_{+}(0) = 0.30 \pm 0.02$

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945], modified to accomodate [Ball/Zwicky hep-ph/0406232]

solid: posterior,

green: 68% CL, yellow: 95% CL

Results for $B \rightarrow K$ Form Factors

- B → K:
 - $\rightarrow B \rightarrow K\ell^+\ell^-$
 - ▶ Lattice
 - results @ 68% CL
 - $f_{+}(0) = 0.30 \pm 0.02$

more precise than prior

 $b_1^+ = -2.5 \pm 0.4$

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945],

solid: posterior,

green: 68% CL, yellow: 95% CL

dashed: prior [Khodjamirian/Mannel/Pivovarov/Wang 1006.4945],

solid: posterior, green: 68% CL, yellow: 95% CL

- more precise than prior
- B → K:
 - \triangleright $B \rightarrow K\ell^+\ell^-$
 - ▶ Lattice
- results @ 68% CL
 - $f_+(0) = 0.30 \pm 0.02$
 - $b_1^+ = -2.5 \pm 0.4$
- small tension
 - ▶ LHCb lo q^2 : -1.4σ
 - ▶ LHCb hi q^2 : $+1.1\sigma$
 - ▶ Lattice: $+0.5\sigma$

Conclusion

Summary

- ullet global analyses of all available $b o s\{\gamma,\,\ell^+\ell^-\}$ data
- preliminary SM basis with all data
 - ▶ SM-like solution preferred over flipped signs with 77%
 - ▶ p-value 0.15
- $B \to K^*$ "anomaly"
 - vanishing effect in fit due to theory uncertainty (power corrections)
- new physics signal only with (limited!) subset of data
 - ▶ less tension ($\leq 2\sigma$) than Descotes-Genon, Matias, Virto (3.2 σ)
 - lacktriangleright reduced $(<1\sigma)$ by data beyond LHCb and $B o K\ell^+\ell^-$ data
- data also allows inference of hadronic quantities (FF, power corr.)

Conclusion

Outlook

- SM' basis work in progress
- looking forward to further LHC analyses (LHCb 3fb⁻¹) and the prospects of Belle-II

Backup Slides

Priors and Parametrizations (I)

Form Factors [Khodjamirian et al. 1006.4945]

- values @ $q^2 = 0$ and slope: two parameters per FF
- z-parametrization
- asymmetric priors, use LogGamma function

CKM [update of hep-ph/0012308]

- Wolfenstein parametrization
- UTfit pre-Moriond2013, tree-level data only

Quark Masses [PDG]

Priors and Parametrizations (I) - Subleading

parametrize unknown subleading contributions

$$B \rightarrow K^* \ell^+ \ell^-$$

- lo q^2 : 6 parameters, one scaling factor per amplitude
- hi q^2 : 3 parameters

$$B \rightarrow K\ell^+\ell^-$$

- lo q^2 : 1 parameter
- hi q^2 : 1 parameter

for all: Gaussian with mode at $\Lambda_{\rm QCD}/m_b \simeq 0.15$

Results (SM Basis) Preliminary!

♦: Standard Model, (light-) red: 68% CL (95% CL) for early 2012 solid (dashed): 68% CL (95% CL) for post HEP'13 (selection)

Results (SM Basis) Preliminary!

♦: Standard Model, (light-) red: 68% CL (95% CL) for early 2012 solid (dashed): 68% CL (95% CL) for post HEP'13 (all data)

A Note on p Values

- ullet test statistic: function of data and model (parameters) $\chi^2=\chi^2(D,ec{ heta})$
- ullet only one data set observed $D_{obs} \Rightarrow \chi^2_{obs}$
- $p \equiv P(\chi^2 > \chi^2_{obs})$

But how to fix $\vec{\theta}$?

- 1. this work $\vec{\theta} = (\vec{C}, \vec{\nu})$ at (local) mode of posterior, $\chi^2 \sim \frac{(x-\mu)^2}{\sigma_{x-1}^2}$
- 2. Descotes-Genon et al. [1307.5683] $\vec{\theta} = \vec{\mathcal{C}}$ at (local) mode of likelihood, $\chi^2 \sim \frac{(x-\mu)^2}{\sigma_{\rm exp}^2 + \sigma_{\rm theo}^2}$

Kinematics of $\bar{B} \to \bar{K}\pi\ell^+\ell^-$

Kinematic Variables

$$4m_{\ell}^{2} \le q^{2} \le (M_{B} - M_{K^{*}})^{2}$$

$$-1 \le \cos \theta_{\ell} \le 1$$

$$-1 \le \cos \theta_{K^{*}} \le 1$$

$$0 \le \phi \le 2\pi$$

$$[(M_{K} + M_{\pi})^{2} \le k^{2} \le (M_{B} - \sqrt{q^{2}})^{2}]$$

On-shell and S-Wave

- one usually assumes on-shell decay of P-wave K^* ($\sim \sin \theta_{K^*}, \cos \theta_{K^*}$)
- for high precision: consider width of K^* , and J=0 (S-wave) ($\sim \theta_{K^*}$) $K\pi$ -final-state from K_0^* and non-resonant background

Kinematics of $\bar{B} \to \bar{K}\pi\ell^+\ell^-$

Kinematic Variables

$$4m_{\ell}^{2} \le q^{2} \le (M_{B} - M_{K^{*}})^{2}$$

$$-1 \le \cos \theta_{\ell} \le 1$$

$$-1 \le \cos \theta_{K^{*}} \le 1$$

$$0 \le \phi \le 2\pi$$

$$[(M_{K} + M_{\pi})^{2} < k^{2} < (M_{B} - \sqrt{q^{2}})^{2}]$$

Large vs. Low Recoil (for illustration)

D. van Dyk (U. Siegen)

Differential Decay Rate for pure P-wave state

$$\begin{split} \frac{\mathrm{d}^{41}}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{\ell}\mathrm{d}\cos\theta_{K^{*}}\mathrm{d}\phi} &\sim J_{1s}\sin^{2}\theta_{K^{*}} + J_{1c}\cos^{2}\theta_{K^{*}} \\ &+ \left(J_{2s}\sin^{2}\theta_{K^{*}} + J_{2c}\cos^{2}\theta_{K^{*}} \right. \\ &+ \left(J_{3}\cos2\phi + J_{9}\sin2\phi\right)\sin^{2}\theta_{K^{*}}\sin^{2}\theta_{\ell} \\ &+ \left(J_{4}\sin2\theta_{K^{*}} \right. \right)\sin2\theta_{\ell}\cos\phi \\ &+ \left(J_{5}\sin2\theta_{K^{*}} \right. \right)\sin\theta_{\ell}\cos\phi \\ &+ \left(J_{6s}\sin^{2}\theta_{K^{*}} + J_{6c}\cos^{2}\theta_{K^{*}}\right)\cos\theta_{\ell} \\ &+ \left(J_{7}\sin2\theta_{K^{*}} \right. \right)\sin\theta_{\ell}\sin\phi \\ &+ \left(J_{8}\sin2\theta_{K^{*}} \right. \right)\sin2\theta_{\ell}\sin\phi \,, \end{split}$$

$$J_i \equiv J_i(q^2)$$
: 12 angular observables

Differential Decay Rate for mixed P- and S-wave state

$$\begin{split} \frac{\text{d}^4 \Gamma}{\text{d} q^2 \text{d} \cos \theta_\ell \text{d} \cos \theta_{K^*} \text{d} \phi} &\sim J_{1s} \sin^2 \theta_{K^*} + J_{1c} \cos^2 \theta_{K^*} + J_{1i} \cos \theta_{K^*} \\ &+ \left(J_{2s} \sin^2 \theta_{K^*} + J_{2c} \cos^2 \theta_{K^*} + J_{2i} \cos \theta_{K^*} \right) \cos 2\theta_\ell \\ &+ \left(J_3 \cos 2\phi + J_9 \sin 2\phi \right) \sin^2 \theta_{K^*} \sin^2 \theta_\ell \\ &+ \left(J_4 \sin 2\theta_{K^*} + J_{4i} \cos \theta_{K^*} \right) \sin 2\theta_\ell \cos \phi \\ &+ \left(J_5 \sin 2\theta_{K^*} + J_{5i} \cos \theta_{K^*} \right) \sin \theta_\ell \cos \phi \\ &+ \left(J_6 \sin^2 \theta_{K^*} + J_{6c} \cos^2 \theta_{K^*} \right) \cos \theta_\ell \\ &+ \left(J_7 \sin 2\theta_{K^*} + J_{7i} \cos \theta_{K^*} \right) \sin \theta_\ell \sin \phi \\ &+ \left(J_8 \sin 2\theta_{K^*} + J_{8i} \cos \theta_{K^*} \right) \sin 2\theta_\ell \sin \phi \,, \end{split}$$

 $J_i \equiv J_i(q^2, k^2)$: 12 angular observables, no further needed [Bobeth/Hiller/DvD '12]

Conclusion: remove S-wave in exp. analysis

- angular analysis [Egede/Blake/Shires '12]
- side-band analysis (for $J_{1s,1c,2s,2c}$) [Bobeth/Hiller/DvD '12]

Building Blocks of the Angular Observables (I)

Form Factors (P-Wave)

• hadronic matrix elements $\langle \bar{K^*}|\bar{s}\Gamma b|\bar{B}\rangle$ parametrized through 7 form factors:

$$\langle \bar{K}^*|\bar{s}\gamma^\mu b|\bar{B}
angle \sim V \quad \langle \bar{K}^*|\bar{s}\gamma^\mu \gamma_5 b|\bar{B}
angle \sim A_{0,1,2} \quad \langle \bar{K}^*|\bar{s}\sigma^{\mu\nu} b|\bar{B}
angle \sim T_{1,2,3}$$

- form factors largest source of theory uncertainty amplitude $\sim 10\%-15\% \Rightarrow$ observables: $\sim 20\%-50\%$
 - ▶ available from Light Cone Sum Rules [Ball/Zwicky '04, Khodjamirian et al. '11]
 - ► Lattice QCD: work in progress [e.g. Liu et al. '11, Wingate '11]
 - extract ratios from low recoil data

[Hambrock/Hiller '12, Beaujean/Bobeth/DvD/Wacker '12]

blue band:

form factor uncertainty

Building Blocks of the Angular Observables (II)

Transversity amplitudes A_i

- SM-like + chirality flipped: essentially four amplitudes $A_{\perp,\parallel,0,t}$ [Krüger/Matias '05]
- $\mathcal{O}_{S(')}$ give rise to A_S , $\mathcal{O}_{P(')}$ absorbed by A_t [Altmannshofer et al. '08]
- $\mathcal{O}_{T(5)}$ give rise to 6 new amplitudes A_{ab} , $(ab)=(0t),(\|\perp),(0\perp),(t\perp),(0\|),(t\|)$ [Bobeth/Hiller/DvD '12]
- altogether: 11 complex-valued amplitudes

Angular Observables

D. van Dyk (U. Siegen)

• J_i functionals of A_S , A_a , A_{ab} , $a, b = t, 0, \parallel, \perp$ e.g.

$$J_3(q^2) = rac{3eta_\ell}{4}ig[|A_\perp|^2 - |A_\parallel|^2 + 16ig(|A_{t\parallel}|^2 + |A_{0\parallel}|^2 - |A_{t\perp}|^2 - |A_{0\perp}|^2ig)ig]$$

 $m_{\ell}^2/q^2 \rightarrow 0 \Rightarrow \beta_{\ell} \rightarrow 1$ β_{ℓ} : lepton velocity in dilepton rest frame $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

06.09.2013

28 / 19

"Standard" Observables

considerable theory uncertainty due to form factors

Batch #1, to be extracted from CP average

$$\langle \Gamma \rangle = \langle 2J_{1s} + J_{1c} - \frac{2}{3}J_{2s} - \frac{1}{3}J_{2c} \rangle \qquad \langle A_{\text{FB}} \rangle = \frac{\langle 2J_{6s} + J_{6c} \rangle}{2\langle \Gamma \rangle}$$
$$\langle F_L \rangle = \frac{\langle 3J_{1c} - J_{2c} \rangle}{\langle 3\Gamma \rangle} \qquad \langle F_T \rangle = \frac{\langle 6J_{1s} - 2J_{2s} \rangle}{\langle 3\Gamma \rangle}$$

 Γ : decay width A_{FB} : forward-backward asymm. $F_L=1-F_T$: long./trans. pol.

Batch #2, CP (a)symmetries [Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

$$\langle A_i \rangle \sim rac{\langle J_i - \overline{J_i}
angle}{\langle \Gamma + \overline{\Gamma}
angle} \hspace{1cm} \langle S_i
angle \sim rac{\langle J_i + \overline{J_i}
angle}{\langle \Gamma + \overline{\Gamma}
angle}$$

overline: CP conjugated mode, also: mixing-induced CP asymm in $B_s o \phi \ell^+ \ell^-$

Pollution due to Charm Resonances

Narrow Resonances: J/ψ and $\psi(2s)$

- ullet experiments veto q^2 -region of narrow charmonia J/ψ and $\psi(2s)$
- however: resonance affects observables outside the veto!

Approach by Theorists: Divide and Conquer

- ullet treat region below J/ψ (aka large recoil) differently than above $\psi(2s)$
- design combinations of J_i which have reduced theory uncertainty in only one kinematic region

Large Recoil (I)

QCD Factorization (QCDF) + Soft Collinear Effective Theory (SCET)

- calculate $\bar{q}q$ loops perturbatively, expand in $1/m_b$, $1/E_{K^*}$
- relate matrix elements to universal hadronic quantities:
 - ► Light Cone Distribution Amplitudes (LCDAs)
 - form factors
 - decay constants

[Beneke/Feldmann '00, Beneke/Feldmann/Seidel '01 & '04]

Light Cone Sum Rules (LCSR)

- calculate $\langle \bar{c}c \rangle$, $\langle \bar{c}cG \rangle$ on the light cone for $q^2 \ll 4m_c^2$
- achieves resummation of soft gluon effects
- ullet use analycity of amplitude to relate results to $q^2 < M_{\psi'}^2$
- uses many of the same inputs as QCDF+SCET
- includes parts of QCDF+SCET results

Large Recoil (I)

QCD Factorization (QCDF) + Soft Collinear Effective Theory (SCET)

- calculate $\bar{q}q$ loops perturbatively, expand in $1/m_b$, $1/E_{K^*}$
- relate matrix elements to universal hadronic quantities:
 - ► Light Cone Distribution Amplitudes (LCDAs)
 - ▶ form factors
 - decay constants

[Beneke/Feldmann '00, Beneke/Feldmann/Seidel '01 & '04]

Combination of QCDF+SCET and LCSR Results

- not yet!
 - ▶ no studies yet to find impact on optimized observables at large recoil!
 - ▶ LCSR results are not included in following discussion

Large Recoil (II)

SM + chirality flipped

transversity amplitudes factorize up to power supressed terms

$$A_{\perp}^{L,R} \sim X_{\perp}^{L,R} imes \xi_{\perp} \qquad A_{\parallel}^{L,R} \sim X_{\parallel}^{L,R} imes \xi_{\perp} \qquad A_{0}^{L,R} \sim X_{0}^{L,R} imes \xi_{\parallel}$$

 $X_i^{L,R}$: combinations of Wilson coefficients $\xi_{\perp,\parallel}$: soft form factors [Beneke/Feldmann/Seidel '01 & '04, Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

Optimized Observables

enhanced sensitivity to right-handed currents, reduced form factor dependence

[Krüger/Matias '05, Egede et al. '08 & '10]

$$A_T^{(2)} = \frac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2} \sim J_3 \qquad A_T^{(3)} = \frac{|A_0^L A_\parallel^{L*} + A_0^{R*} A_\parallel^{R}|}{\sqrt{|A_0|^2 |A_\parallel|^2}} \sim J_4, J_7$$

$$A_T^{(4)} = \frac{|A_0^L A_\perp^{L*} - A_0^{R*} A_\perp^{R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_\perp^L A_\parallel^{R*} + A_\perp^{R*} A_\parallel^{L}|}{|A_\perp|^2 + |A_\parallel|^2}$$
It van Dyk (U. Siegen)
$$A_T^{(4)} = \frac{|A_0^L A_\parallel^{L*} - A_0^{R*} A_\perp^{R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_\perp^L A_\parallel^{R*} + A_\perp^{R*} A_\parallel^{L}|}{|A_\perp|^2 + |A_\parallel|^2}$$
It van Dyk (U. Siegen)
$$A_T^{(4)} = \frac{|A_0^L A_\perp^{L*} - A_0^{R*} A_\perp^{R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_0^L A_\parallel^{L*} + A_0^{R*} A_\parallel^{R}|}{|A_\perp|^2 + |A_\parallel|^2}$$

$$A_T^{(4)} = \frac{|A_0^L A_\perp^{L*} - A_0^{R*} A_\perp^{R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_\perp^L A_\parallel^{R*} + A_\perp^{R*} A_\parallel^{L}|}{|A_\perp|^2 + |A_\parallel|^2}$$

$$A_T^{(4)} = \frac{|A_0^L A_\perp^{L*} - A_0^{R*} A_\perp^{R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_1^L A_\parallel^{R*} + A_1^{R*} A_\parallel^{R}|}{|A_\perp|^2 + |A_\parallel|^2}$$

$$A_T^{(4)} = \frac{|A_0^L A_\perp^{L*} - A_0^{R*} A_\perp^{R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_1^L A_\parallel^{R*} + A_1^{R*} A_\parallel^{R}|}{|A_\perp|^2 + |A_\parallel|^2}$$

$$A_T^{(4)} = \frac{|A_0^L A_\perp^{L*} - A_0^{R*} A_\perp^{R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_1^L A_\parallel^{R*} + A_1^{R*} A_\parallel^{R}|}{|A_\perp|^2 + |A_\parallel|^2}$$

$$A_T^{(4)} = \frac{|A_0^L A_\perp^{R*} - A_0^{R*} A_\parallel^{R}|}{\sqrt{|A_0|^2 |A_\perp|^2}} \sim J_5, J_8 \quad A_T^{(5)} = \frac{|A_1^L A_\parallel^{R*} + A_0^{R*} A_\parallel^{R}|}{|A_\perp|^2 + |A_\parallel|^2}$$

D. van Dyk (U. Siegen)

06.09.2013

Large Recoil (II)

SM + chirality flipped

transversity amplitudes factorize up to power supressed terms

$$A_{\perp}^{L,R} \sim X_{\perp}^{L,R} \times \xi_{\perp} \qquad A_{\parallel}^{L,R} \sim X_{\parallel}^{L,R} \times \xi_{\perp} \qquad A_{0}^{L,R} \sim X_{0}^{L,R} \times \xi_{\parallel}$$

 $\xi_{\perp,\parallel}$: soft form factors $X_i^{L,R}$: combinations of Wilson coefficients

[Beneke/Feldmann/Seidel '01 & '04, Bobeth/Hiller/Piranishvili '08, Altmannshofer et al. '08]

Further Optimized Observables

enhanced sensitivity to right-handed currents, reduced form factor dependence

[Becirevic/Schneider '11]

$$A_T^{
m (re)} \propto rac{J_{6s}}{J_{2s}}$$

$$A_T^{
m (im)} \propto \frac{J_9}{J_{26}}$$

Low Recoil

SM basis [Bobeth/Hiller/DvD '10] + chirality flipped [Bobeth/Hiller/DvD '12]

transversity amplitudes factorize

$$A_{\perp,\parallel,0}^{L,R} \sim C_{\pm}^{L,R} \times f_{\perp,\parallel,0} + O\left(\frac{\alpha_s \Lambda}{m_b}, \frac{C_7 \Lambda}{C_9 m_b}\right)$$
 SM: $C_+^{L,R} = C_-^{L,R}$

f_i: helicity form factors

 $C_{\pm}^{L,R}$: combinations of Wilson coeff.

• 4 combinations of Wilson coefficients enter observables:

$$\begin{split} \rho_1^\pm &\sim |\textit{\textit{C}}_\pm^{\textit{R}}|^2 + |\textit{\textit{C}}_\pm^{\textit{L}}|^2 \\ \text{Re}\left(\rho_2\right) &\sim \text{Re}\left(\textit{\textit{C}}_+^{\textit{R}}\textit{\textit{C}}_-^{\textit{R*}} - \textit{\textit{C}}_-^{\textit{L}}\textit{\textit{C}}_+^{\textit{L*}}\right) \quad \text{and} \; \text{Re}\left(\cdot\right) \leftrightarrow \text{Im}\left(\cdot\right) \end{split}$$

Tensor operators [Bobeth/Hiller/DvD '12]

• 6 new transversity amplitudes, still factorize!

$$A_{ab} \sim \mathcal{C}_{T(T5)} imes f_{\perp,\parallel,0} + O\left(\frac{\Lambda}{m_b}\right)$$

 $|\Delta B| = |\Delta S| = 1$ Wilson Coefficients

• 3 new combinations of Wilson coefficients

q^2 Spectrum of the Branching Ratio $\mathcal{B}= au_B\Gamma$

$\bar{q}q$ Pollution

- 4-quark operators like $\mathcal{O}_{1c,2c}$ induce $b o sar{c}c(o \ell^+\ell^-)$ via loops
- hadronically $B o K^* J/\psi(o \ell^+ \ell^-)$ or higher charmonia
- ullet experiment: cut narrow resonances $J/\psi \equiv \psi(1S)$ and $\psi' = \psi(2S)$
- theory: handle non-resonant quark loops/broad resonances > 2S

q^2 Spectrum of the Branching Ratio $\mathcal{B}= au_B\Gamma$

Large Recoil $E_{K^*} \sim m_b$ QCDF,SCET

- expand in $1/m_b$, $1/E_{K^*}$, α_s
- symmetry: $7 \rightarrow 2$ form factors

[Beneke/Feldmann/Seidel '01 & '04]

[Egede et al. '08 & '10]

Low Recoil $q^2 \sim m_b^2$ OPE,HQET

- expand in $1/m_b$, $1/\sqrt{q^2}$, α_s
- ullet symmetry: 7 o 4 form factors

[Grinstein/Pirjol '04], [Beylich/Buchalla/Feldmann '11]

 $[\mathsf{Bobeth/Hiller/DvD}\ '10\ \&\ '11]$