Package 'ssofqrm'

March 22, 2025
Title Spatial Function-on-Function Quantile Regression Model
Version 1.0
Maintainer Muge Mutis <muge.mutis@yildiz.edu.tr></muge.mutis@yildiz.edu.tr>
Description Functions for implementing methods for spatial scalar-on-function quantile regression model.
License GPL-3
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2
Depends R (>= 3.5)
Imports fda, fda.usc, quantreg, expm
LazyData true
LazyDataCompression xz
Contents
ssofqrm-package air_data chernozhukov_fun dgp
fqrm

7

8

9

getPCA

1

Index

2 air_data

ssofqrm-package

Spatial Scalar-on-Function Quantile Regression Model

Description

Functions for implementing spatial scalar-on-function quantile regression model.

Author(s)

```
Muge Mutis (<muge.mutis@yildiz.edu.tr>) aut, cre, cph
Ufuk Beyaztas aut
Filiz Karaman aut
Han Lin Shang aut
```

See Also

```
fqrm, dgp, getPCA, etc.
```

air_data

Air Quality Data Example

Description

A dataset containing air quality metrics used in the spatial quantile regression models.

Usage

```
data(air_data)
```

Format

A list including three elements.

```
data_2023 Data for the year 2023.data_2024 Data for the year 2024.wie_mat Spatial weight matrix.
```

Source

https://cran.r-project.org/web/packages/ARPALData/index.html

chernozhukov_fun 3

Examples

```
## Not run:
data(air_data)
yy <- matrix(air_data$data_2023$PM2.5_mean, ncol = 365, byrow = T)
y <- apply(yy, 1, mean)
x <- matrix(air_data$data_2023$0zone_max_8h, ncol = 365, byrow = T)
yy_test <- matrix(air_data$data_2024$PM2.5_mean, ncol = 366, byrow = T)[,1:365]
y_test <- apply(yy_test, 1, mean)
x_test <- matrix(air_data$data_2024$0zone_max_8h, ncol = 366, byrow = T)[,1:365]
wei_mat <- air_data$wei_mat
fit_kim <- fqrm(y=y, x=x, w=wei_mat, tau=0.5, method = "KM")
fit_ch <- fqrm(y=y, x=x, w=wei_mat, tau=0.5, method = "Ch")
predict_kim <- predict_fqrm(object = fit_kim, xnew = x_test, wnew = wei_mat)
predict_ch <- predict_fqrm(object = fit_ch, xnew = x_test, wnew = wei_mat)
## End(Not run)</pre>
```

chernozhukov_fun

Chernozhukov Estimator for Spatial Quantile Regression

Description

Implements the Chernozhukov and Hansen (2006) estimation method for spatial quantile regression with instrumental variable correction and a grid search over possible spatial autocorrelation values.

Usage

```
chernozhukov_fun(y, x, w, tau)
```

Arguments

У	Numeric vector. Response variable of length n.	
X	Numeric matrix of size n x p. Predictor variables.	
W	Numeric matrix of size n x n. Spatial weight matrix.	
tau	Numeric. Quantile level (between 0 and 1).	

Value

A list with the following components:

b0 Estimated intercept.

rho Estimated spatial autoregressive parameter.

b Estimated regression coefficients (excluding intercept).

dgp

dgp

Data Generating Process for Spatial Scalar-on-Function Model

Description

Generates synthetic data from a spatial scalar-on-function regression model.

Usage

```
dgp(n, rho, out.p = 0)
```

Arguments

n Integer. Sample size.

rho Numeric. Spatial autoregressive parameter.

out.p Numeric. Proportion of outliers to introduce (default is 0).

Value

A list with the following elements:

- y Response vector of length n.
- x Matrix of functional predictor values.
- w Spatial weight matrix of size n x n.

tcoefs True coefficient function used to generate the data.

out.index Indices of outlier observations, if any.

Examples

```
## Not run:
sim_data <- dgp(n = 250, rho=0.5)
y <- sim_data$y
x <- sim_data$x
w <- sim_data$w
tcoef <- sim_data$tcoefs
## End(Not run)</pre>
```

fqrm 5

_			
T	a	r	m

Functional Quantile Regression Model with Spatial Autocorrelation

Description

Fits a spatial scalar-on-function quantile regression model using either the Kim and Muller (2004) or Chernozhukov and Hansen (2006) method.

Usage

```
fqrm(y, x, w, tau, argvals = NULL, nbasis = NULL, method = c("KM", "Ch"))
```

Arguments

У	Numeric vector of length n. Response variable.
X	Numeric matrix of size n x p. Functional predictor observed on a common grid.
W	Numeric matrix of size n x n. Spatial weight matrix.
tau	Numeric. Quantile level to estimate (between 0 and 1).
argvals	Numeric vector of length p. Grid of argument values for the functional predictor. If NULL, defaults to a regular grid on 0, 1.
nbasis	Integer. Number of basis functions to use in FPCA. If NULL, defaults to $min(10, p/4)$.
method	Character string. Estimation method to use. One of "KM" (Kim et al.) or "Ch" (Chernozhukov et al.).

Value

A list containing:

b Estimated coefficient vector in FPCA space.

b0 Estimated intercept.

bhat Estimated coefficient function in the original function space.

rho Estimated spatial autoregressive parameter.

fitted.values Fitted values from the model.

residuals Residuals from the model.

tau Quantile level used.

fpca Output from getPCA, including FPCA scores and basis functions.

Examples

```
## Not run:
sim_data <- dgp(n = 250, rho=0.5)
y <- sim_data$y
x <- sim_data$x
w <- sim_data$w
fit_kim <- fqrm(y=y, x=x, w=w, tau=0.5, method = "KM")
fit_ch <- fqrm(y=y, x=x, w=w, tau=0.5, method = "Ch")
## End(Not run)</pre>
```

getPCA_test

getPCA	Functional Principal Component Analysis with B-spline Basis	

Usage

```
getPCA(data, nbasis, gp)
```

Arguments

data Numeric matrix of size n x p. Functional data observed over grid points in rows.

nbasis Integer. Number of B-spline basis functions.

gp Numeric vector of length p. Grid points corresponding to functional observa-

tions

Value

A list with the following components:

PCAcoef An fd object representing estimated eigenfunctions.

PCAscore Matrix of principal component scores.

meanScore fd object for the mean function.

ncomp Number of components explaining more than 95\ \itembs_basisB-spline basis used. \itemperate mevalbaseEvaluation of basis functions at grid points. \itempgThe original grid points used.

Performs FPCA (Functional Principal Component Analysis) using a B-spline basis.

getPCA_test	Project Test Data onto FPCA Basis	

Description

Computes principal component scores for new functional test data using an existing FPCA model.

Usage

```
getPCA_test(object, data)
```

Arguments

object A list object returned from getPCA containing FPCA model components (e.g.,

basis, eigenfunctions, mean function, grid points).

data Numeric matrix of size n x p. Test data observed on the same grid used in train-

ing.

Value

A matrix of principal component scores for the test data.

kim_fun 7

kim_fun	Kim and Muller (2004) Estimator for Spatial Quantile Regression
	$oldsymbol{z}$

Description

Estimates spatial quantile regression parameters using the two-stage approach proposed by Kim et al.

Usage

```
kim_fun(y, x, w, tau)
```

Arguments

У	Numeric vector. Response variable of length n.
x	Numeric matrix of size n x p. Predictor variables.
W	Numeric matrix of size n x n. Spatial weight matrix.
tau	Numeric. Quantile level (between 0 and 1).

Value

A list with the following components:

b0 Estimated intercept.

rho Estimated spatial autoregressive parameter.

b Estimated regression coefficients (excluding intercept and rho).

norm_wei Row-Normalize a Spatial Weight Matrix	
--	--

Description

Checks whether a spatial weight matrix is row-normalized. If not, it normalizes the matrix by dividing each row by its sum.

Usage

```
norm_wei(W, tol = 1e-08)
```

Arguments

W Numeric matrix. Spatial weight matrix of size n x n.

tol Numeric. Tolerance for checking whether rows sum to 1. Default is 1e-8.

Value

A row-normalized version of the input matrix W.

8 predict_fqrm

predict_fqrm	Predict Method for Functional Quantile Regression with Spatial Effects
--------------	--

Description

Makes predictions for new observations using a fitted spatial functional quantile regression model.

Usage

```
predict_fqrm(object, xnew, wnew)
```

Arguments

object A fitted model object returned by fqrm.

xnew Numeric matrix of size n x p. New functional predictor data (on the same grid

used in training).

wnew Numeric matrix of size n x n. Spatial weight matrix for the new observations.

Value

A numeric vector of predicted values of length n.

Examples

```
## Not run:
sim_data <- dgp(n = 250, rho=0.5)
y <- sim_data$y
x <- sim_data$x
w <- sim_data$x
w <- sim_data$w
fit_kim <- fqrm(y=y, x=x, w=w, tau=0.5, method = "KM")
fit_ch <- fqrm(y=y, x=x, w=w, tau=0.5, method = "Ch")
sim_test <- dgp(n = 1000, rho=0.5)
y_test <- sim_test$y
x_test <- sim_test$x
w_test <- sim_test$x
w_test <- sim_test$w
predict_kim <- predict_fqrm(object = fit_kim, xnew = x_test, wnew = w_test)
predict_ch <- predict_fqrm(object = fit_ch, xnew = x_test, wnew = w_test)
## End(Not run)</pre>
```

Index

```
* datasets
     air_data, 2
0, 1, <u>5</u>
\operatorname{air\_data}, 2
aut, 2
aut, cre, cph,2
chernozhukov\_fun, \\ 3
dgp, 2, 4
fqrm, 2, 5, 8
getPCA, 2, 6, 6
\mathtt{getPCA\_test}, \textcolor{red}{6}
kim_fun, 7
norm_wei, 7
predict_fqrm, 8
ssofqrm(ssofqrm-package), 2
ssofqrm-package, 2
```