Assignment ~ 02

Submitted by: TASNIM RAHMAN MOUMITA

ID: 22301689

Course Title: Computer Graphics

Courcse Code: CSE423

Section: 14

Date of submission: 23.07.2025

com. to the g. NO-01(a)

Given,

starting point $\Rightarrow A (-5,2)$

ending point > B (25,40)

Now,

the parcametric equation,

$$P(t) = (x(t), y(t)) = x_0 + t (x_1 - x_0), y_0 + t (y_1 - y_0)$$

$$\mathcal{L}(t) = -5 + t(25 - 5) = -5 + 30t$$

$$\mathcal{L}(t) = 2 + t(40 - 2) = 2 + 38t$$

· parametric equation will be,

$$P(t) = (-5+30t, 2+38t), t \in [0,1]$$

And,

Coordinates at
$$t = \frac{2}{3}$$
:

$$2(2/3) = -5+30.2/3$$

and
$$y(^{2}/3) = 2 + 38.^{2}/3$$

$$\therefore P\left(\frac{2}{3}\right) = \left(15, \frac{82}{3}\right)$$

$$\approx \left(15, 27.33\right)$$
Again,

when t = 5,

It is not imide the segment.

· start point in range -> 0 end point in range -1

: t=5 is lying outside the line segment.

(Ams)

evenuation equation will be.

· P(t) = A Stracts 2+35+), telo

Coardinates at the 18213:

7 . OF 16 - - (8/2) 7.

Am. to the g. NO - 01(b)

Role of parcametric equation in the cyrcus-Beck algoriethm:

- 1) Repræsentation of line as P(t) = Po+t (P1-P0)
- 2) The value of t: determines entry and exit points of the line with respect to the convex polygon.
 - 3) Allows calculating interesections with edges using dot products and normal vectors.
 - 4) -> Clipping is done by finding valid value of t in the range [tmax, tmin] where the line is inside the clipping window.

(2,00 = 1)

1=(00,5)10

(DCI 14 8 - 12)

Tenger Cas Edge Agreed Verlepho) Deposition.

TLIDA

dispire and the nichely

lace in the

man de fair estadi

in marind assult (1-0)

(Ams)

P. T.O.

Am. to the g. NO - 01 (c)

Givens

lêne segment
$$\rightarrow \rho_0 = (20, 30)$$

 $\rho_1 = (90, 80)$

According to parametric equation using given values: $P(t) = (x(t), y(t)) = (x_0 + t(x_1 - x_0), y_0 + t(y_1 - y_0))$ $\Rightarrow P(t) = (20 + 70t, 30 + 50t), t \in [0,1]$

Now:

4 edges of the window and their $x_1 = 90$ normal vectors: $y_0 = 30$ $y_1 = 80$

Edge	Point on edge	Normal Vector (n)	Dépection.
left	2=(-15,5)to (-15,120)	(-1,0)	Faces left to right
Right	(x = 60,5) to $(60,120)$	(1,0)	Faces reight-to- left
Bottom	y = (50,5) to	(0,-1)	Faces bottom-top
Top	(15,120) to (60,120)	(0,1)	Faces top-botton

. We Know,

$$\pm = \frac{(n \cdot (P_e - P_o))}{n \cdot D}$$

$$D.n_{L} = (70,50) \cdot (-1,0)$$

$$= -70$$

Herre,
$$\rho_0 = (20, 30)$$

Direction vectors,

$$D = (90-20),(80-30)$$

 $=(70,50)$

$$-(\rho_o - \rho_e) \cdot \eta_L = -((20, 30) - (-15.0) \cdot (-1.0)$$

$$= 35$$

$$t_L = \frac{35}{-70} = -0.5$$
 [potential exet]

TP. T.O.Y

For right edge:
$$(\chi = 60)$$
 $P_e = (60.0)$
 $n_g = (1.0)$
 $D.n = (70.50) \cdot (1.0) = 70$ (exit)

 $-(P_o - P_e) \cdot n_g = -((20.36) - (60.0)) \cdot (1.0)$
 $= 40$
 $t_R = \frac{40}{70} = \frac{4}{7} \approx 0.5714$
 $t_{enten} = 0$
 $t_{exit} = min_{enter}(1, \frac{4}{7}) = \frac{4}{7}$

For bottom edge: $(y = 5)$
 $P_e = (0.5)$
 $n_b = (0.1)$
 $D.n_b = (70.50) \cdot (0.1) = -50$ (entry)

 $-(P_o - P_e) \cdot n_b = -((20.30) - (0.5)) \cdot (0.1)$
 $t_{enter} = max(0.00) = 0.00$
 $t_{exit} = \frac{4}{7}$

$$P_{e} = (0, 120)$$

$$n_{\uparrow} = (0,1)$$

$$D \cdot n_1 = (70, 50) \cdot (0, 1) = 50$$
 (exit)

$$-(P_0 - P_e) \cdot n_{\pi} = -((20, 30) - (0, 120)) \cdot (0, 1)$$
= 90

$$t_T = \frac{90}{50} = 1.8$$

· the line is not rejected.

The cyrcus - Beck algorathm fundamentally finds the segment of the line $(P_1 + 1 \cdot D)$ lies within convex polygon.

We get,

$$t_L = -0.5$$
 (exit left - before P_1)

 $t_D = -0.5$ (exit bottom - before P_1)

 $t_T = 1.8$ (enters top - after P_2) [P.T.O.]

the only intersection point within [0,1].

where the line is exiting the window is at

t = 4/7 [with right boundary].

- :. the dipped segment $\Rightarrow P(0)$ to P(4/7)
 - .: the line segment from (20,30) to (90,86) needs to be clipped.

The dipped line's endpoints:

the line is not rejected.

① second emploint : P(4/4) $\Rightarrow \alpha = 20 + 70 \cdot (4/7) = 60$ $\Rightarrow y = 30 + 50 \cdot (4/7) \approx 58 \cdot 57$ $\therefore (\alpha, y) = (60, 58 \cdot 57)$

: The clipped line segment \Rightarrow (20,30) to (60,58.57)

(Am:)

Am. to the g. NO - 02 (a)

Scenarios where Cohen - Suthercland fails:

- This calgorithm fails, becomes inefficient for architrary polygonal clip regions.
- → (ii) Inefficient for lines that require multiple clipping steps.
- → (iii) In floating point arithmetic, precision errors may cause incorrect values of endpoints.

* Drawbacks:

- (i) Only supports rectangular dépping regions.
- (ii) Repeatitive calculation. for pardial segments, especially in complexe scenarios.
- (iii) It may clip annecessarally, even when the line is travially accepted / rajected.

Am. to the g. NO - 02(b)

the architected to Haust one

Given,

Clip region:
$$2 \text{ min} = -40$$
, $9 \text{ min} = -20$, $2 \text{ max} = 20$, $9 \text{ max} = 30$

Line segment:
$$P_1 = (-10, -50)$$

 $P_2 = (15, 25)$

Now,

Region	Condition	
Top	y> ymax (30)	
Bottom	9 < 9 min (-20)	
Right	x > 2 max (20)	
left	2 (2min (-40)	

here,

$$2 = -10$$
, \rightarrow within \times range \rightarrow Right = 0

 $y = -50 < -20 \rightarrow$ Cottom = 1

And Top = 0

ABRL \rightarrow 0100 \rightarrow (4-bit code) \rightarrow P1

for P2 (15.25);

 $x = 15$ [within \times range]
 $y = 25$ [within y range]

 \therefore ABRL \rightarrow 0000 [4-bit code] \rightarrow P2

Now, P1 \rightarrow 0100

P2 \rightarrow 0000

(AND) \rightarrow 0000

(AND) \rightarrow 0000

ABRL \rightarrow 0100

P1 \rightarrow 0100

P2 \rightarrow 0000

(AND) \rightarrow 0000

(AND) \rightarrow 0000

P3 \rightarrow 0100

P4 \rightarrow 0100

P5 \rightarrow 0000

(AND) \rightarrow 0000

Nows

$$P_1 = (-10, -15)$$
 is outside the bottom.

bottom edge
$$\rightarrow$$
 $(y = -20)$

the interesections:

We Know,

$$\chi = \chi_1 + (\chi_2 - \chi_1) + \chi_2 + (\chi_2 - \chi_1) + \chi_3 + (\chi_2 - \chi_1) + \chi_4$$

And dop = 0

from:

$$y = y_1 + (y_2 - y_1) \pm$$

$$\Rightarrow -20 = -50 + 675 \pm$$

$$\Rightarrow t = 0.4$$

Now,

New line segment: P1'(0,-20) to P2 (15,25)

$$\chi_1' = 0$$
 [between $\chi_{min} \& \chi_{max}$]
 $\chi_1' = -20$ [on χ_{min}]

: P1' is inside the window.

Now, Outcode (P_1') AND Outcode (P_2) (0000) AND (0000) = 0000

.: the line segment is fully accepted.

final clipped line segment (0,-20) to (15,25)