練習試卷 數學延伸單元 單元2 (代數與微積分) 試題-答題簿

限時: 1.5 小時

姓名:	 得分:	/	100
學校:			

規則

- 1. 此試卷必須使用中文回答。
- 2. 除特別指明外,需詳細列出所有算式。
- 3. 除特別指明外,數值答案必須用真確值表示。
- 4. 本試卷只作内部使用。
- 5. 所有試題取自AL/CE/DSE歷届試題,來源: https://www.dse.life/ppindex/m2/

1. 運用數學歸納法,證明對於所有正整數n,

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}.$$

$$(10\cancel{2})$$

$1 \times 2 + 2 \times 5 + \dots + n(3n-1) = n^2(n+1)$	
	(10分)

2. (2012-DSE-MATH-EP(M2) #03) 運用數學歸納法,證明對於所有正整數n,

- 3. (2004-CE-A MATH #02)
 - (a) 按x的升冪展開 $(1+2x)^n$ 至 x^3 項,其中n為正整數。
 - (b) 若展開式 $(x \frac{3}{x})^2 (1 + 2x)^n$ 的常數項為 210, 求n的值。

(12分)

(1990-CE-A MATH 2 #06(a)) 若 $\cos \theta + \sqrt{3} \sin \theta = r \cos(\theta - \alpha)$,其中 $r > 0$ 及0° $\leq \alpha \leq 90$ °。求 r 和 α 的值	(8分)

5.	(2003-CE-A MATH #10) 已知 $lpha$ 及 eta 為銳角。證明	
	$\frac{\sin\alpha + \sin\beta}{\cos\alpha + \cos\beta} = \tan\frac{\alpha + \beta}{2}$	
	$\frac{1}{\cos \alpha + \cos \beta} - \tan \frac{1}{2}$	
	若 $3\sin\alpha - 4\cos\alpha = 4\cos\beta - 3\sin\beta$ 求 $\tan\alpha + \beta$ 的值	(16分)

6.	(1996-CE-A MATH 1 #02) 從基本原理求導 $\frac{d}{dx}(x^2)$ 。	(8分)
7.	(2002-CE-A MATH #03) 設 $x \sin y = 2002$,求 $\frac{dy}{dx}$ 。	(8分)

- 8. (2015-DSE-MATH-EP(M2) #02) 設 $y = x \sin x + \cos x$ 。
 - (a) $\vec{x} \frac{dy}{dx} \not \! D \frac{d^2y}{dx^2}$.
 - (b) 設k為常數使得對於所有實數x,均有 $x\frac{d^2y}{dx^2} + k\frac{dy}{dx} + xy = 0$ 。求k的值。

(14分)

8	

J綫L的y軸截距為-16, 求L的方程。	(14