Linear Algebra II - Jordan Canonical Form

Ming-Hsuan Kang

March 16, 2020

Nilpotent Linear Transformations

In the last lecture, we have shown that for the linear transform T on V, when $f_T(x)$ splits, V can be decomposed as a direct sum of generalized eigenspaces. Since each generalized eigenspace is T-invariant, it remains to find a nice matrix representation of T restricted on each generalized eigenspace.

Therefore, we may assume that V is equal to a single generalized eigenspace $E_{\infty}(\lambda)$. On the other hand, we can also replace T by $T - \lambda I$ so that we can further assume that $\lambda = 0$ and $V = E_{\infty}(0) = \ker_{\infty}(T)$.

Definition A linear transform T is nilpotent if $T^k \equiv 0$ for some positive integer k.

The following are equivalent definitions of nilpotency and its proof is left to readers as exercise.

Theorem 1. The following are equivalent.

- 1. T is nilpotent.
- 2. $T^n \equiv 0$ where $n = \dim V$.
- 3. $T^k \equiv 0$ for some positive integer k.

Now suppose that T is nilpotent. Let \vec{v} be a nonzero vector. Let $\alpha = {\vec{v}, T(\vec{v}), \cdots, T^{m-1}(\vec{v})}$ is the basis of the cyclic subspace W generated by \vec{v} . Then we have

$$T^{m}(\vec{v}) = a_0 \vec{v} + \dots + a_{m-1} T^{m-1}(\vec{v})$$

for some a_0, \dots, a_{m-1} in F such that

$$f_{T|_{W}}(x) = x^{m} - a_{m-1}x^{m-1} - \dots - a_{0},$$

the characteristic polynomial of T restricted on W. On the other hand, $f_{T|_W}(x)$ divides $f_T(x) = x^n$, which means $f_{T|_W}(x) = x^m$ and $T^m(\vec{v}) = \vec{0}$. In this case, we have

$$\operatorname{Rep}_{\alpha}(T|_{W}) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & \ddots & \ddots & 0 \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

Besides, it is convenient to express the action of T on W by the diagram

$$\vec{0} \leftarrow T^{m-1}(\vec{v}) \leftarrow \cdots \leftarrow T(\vec{v}) \leftarrow \vec{v}.$$

The goal of this lecture is the following theorem.

Theorem 2. For a nilpotent linear transformation T on V, V can be decomposed as a direct sum of cyclic subspaces of T.

Proof. Let us prove the theorem by induction on n = dimV. If n = 1, then V itself is the cyclic subspace of any nonzero vector. Suppose theorem holds for cases of dimension < n.

Case a): Suppose $\ker(T) \not\subseteq \operatorname{Im}(T)$, then there exists some $\vec{v} \in \ker(T)$ with $\vec{v} \not\in \operatorname{Im}(T)$. We will decompose V as a direct sum of two nonzero T-invariant subspaces, then by induction, each of them can be decomposed as a directed sum of cyclic subspaces and so is V.

Note that

$$F\vec{v} + \operatorname{Im}(T) = F\vec{v} \oplus \operatorname{Im}(T),$$

so we can decompose V as

$$V = F\vec{v} \oplus \operatorname{Im}(T) \oplus W$$

for some subspace W. Since

$$T(F\vec{v}) = \{\vec{0}\}$$
 and $T\left(\operatorname{Im}(T) \oplus W\right) \subseteq T(V) = \operatorname{Im}(T),$

 $F\vec{v}$ and $\text{Im}(T) \oplus W$ are both T-invariant.

Case b): Suppose $\ker(T) \subseteq \operatorname{Im}(T)$. Since 0 is always an eigenvalue of T, $\ker(T)$ is nonzero and the dimension of $\operatorname{Im}(T)$ is smaller then the dimension of V. By induction,

$$\operatorname{Im}(T) = \bigoplus_{i=1}^{k} \operatorname{cyclic}(\tilde{\mathbf{v}}_{i}).$$

for some nonzero $\vec{v}_1, \dots, \vec{v}_k \in V$. From the above decomposition, it is easy to see that dim $\ker(T) = k$ and

$$\operatorname{Im}(T) = \left(\bigoplus_{i=1}^{k} F \vec{v}_i\right) \bigoplus \operatorname{Im}(T^2).$$

Since $\vec{v}_1, \dots, \vec{v}_2$ all lie in Im(T), for each i, we can find $\vec{u}_i \in V$ such that $T(\vec{u}_i) = \vec{v}_i$. To complete the proof, we shall show that $V = \bigoplus_{i=1}^k \text{cyclic}(\vec{u}_i)$, or equivalent

$$V = \left(\bigoplus_{i=1}^{k} F\vec{w_i}\right) \bigoplus \operatorname{Im}(T).$$

First, by the dimension formula,

$$\dim V = \dim \ker(T) + \dim \operatorname{Im}(T) = k + \dim \operatorname{Im}(T).$$

It remains to show $\left(\sum_{i=1}^k F\vec{w_i}\right) + \operatorname{Im}(T)$ is a direct sum. Suppose $\sum_{i=1}^k a_i\vec{w_i} + \vec{v} = \vec{0}$ for some $a_i \in F$ and $\vec{v} \in \operatorname{Im}(T)$. Applying T to this equation, we obtain

$$\vec{0} = T\left(\sum_{i=1}^k a_i \vec{w}_i + \vec{v}\right) = \sum_{i=1}^k a_i \vec{v}_i + T(\vec{v}) \in \left(\bigoplus_{i=1}^k F \vec{v}_i\right) \bigoplus \operatorname{Im}(T^2).$$

We conclude that $a_1 = \cdots = a_k = 0$ and hence $\vec{v} = \vec{0}$. Thus, $\left(\sum_{i=1}^k F \vec{w}_i\right) + \operatorname{Im}(T)$ is a direct sum.

Next, let us discuss the uniqueness of cyclic subspace decomposition. Consider the following example. Suppose

$$V = \operatorname{cyclic}(\vec{v}_1) \oplus \operatorname{cyclic}(\vec{v}_2) \oplus \operatorname{cyclic}(\vec{v}_3) \oplus \operatorname{cyclic}(\vec{v}_4)$$

and the action of T can be characterized by

From the above diagram, the red parts form the basis of ker(T).

Similarly, the blue parts form the basis of $ker(T^2)$.

Remark. If we only need care about the sizes of cyclic subspaces then it is common to use "the dot diagram" as

Let d_i be the dimension of $\operatorname{cyclic}(\vec{v_i})$. We conclude that

$$\dim \ker(T) = \#\{i | d_i \ge 1\}.$$

and

$$\dim \ker(T^2) = \#\{i|d_i \ge 1\} + \#\{j|d_j \ge 2\}.$$

In general, suppose $V = \bigoplus_{i=1}^k \operatorname{cyclic}(\vec{v_i})$. Let $d_i = \dim \operatorname{cyclic}(\vec{v_i})$. We have

$$\dim \ker(T) = \#\{i|d_i \ge 1\}$$

$$\dim \ker(T^2) - \dim \ker(T) = \#\{i|d_i \ge 2\}$$

$$\vdots$$

$$\dim \ker(T^r) - \dim \ker(T^{r-1}) = \#\{i|d_i \ge r\}.$$

Corollary 3 (Uniqueness of cyclic decomposition). For a nilpotent linear transformation T on V, let $V = \bigoplus_{i=1}^k W_i = \bigoplus_{j=1}^r U_j$ be two cyclic subspace decompositions. If none of subspace is the zero subspace, then r = k. Moreover, if $\dim W_i \geq \dim W_j$ and $\dim U_i \geq \dim U_j$ for all i > j, then $\dim W_i = \dim U_i$ for all i.

Explicit Cyclic Subspace Decomposition

The basis principle to compute cyclic subspace decompositions is to find the highest dimensional cyclic subspaces first.

Example Let

$$A = \left(\begin{array}{rrr} 3 & 12 & -9 \\ -1 & -6 & 6 \\ -1 & -4 & 3 \end{array}\right).$$

By direct computation, we have

$$\dim \ker(A) = 1, \dim \ker(A^2) = 2, \text{ and } \dim \ker(A^3) = 3$$

which implies that the dot diagram is

In this case, V admits a basis of the form

$$\vec{0} \leftarrow A^2(\vec{v}_1) \leftarrow A(\vec{v}_1) \leftarrow \vec{v}_1$$

To find \vec{v}_1 , note that

$$\operatorname{Im}(A^{2}) = \operatorname{Im}\left(\begin{pmatrix} 6 & 0 & 18 \\ -3 & 0 & -9 \\ -2 & 0 & -6 \end{pmatrix}\right) = \operatorname{span}\{A^{2}(\vec{v}_{1})\}.$$

Therefore, we can choose $A^2(\vec{v}_1)=\begin{pmatrix}6\\-3\\-2\end{pmatrix}$ and $\vec{v}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$. Finally let $\alpha=\{\vec{v}_1,A(\vec{v}_1),A^2(\vec{v}_1)\}$ and $P=\begin{pmatrix}1&3&6\\0&-1&-3\\0&-1&-2\end{pmatrix}$ be the matrix of change basis. Then

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Example Let

$$A = \left(\begin{array}{rrr} 3 & 6 & -3 \\ -2 & -4 & 2 \\ -1 & -2 & 1 \end{array}\right).$$

By direct computation, we have

$$\dim \ker(A) = 2$$
 and $\dim \ker(A^2) = 3$

which implies that the dot diagram is

In this case, V admits a basis of the form

First, let us find \vec{v}_1 . Note that

$$Im(A) = span\{A(\vec{v}_1)\}.$$

Therefore, we can choose $A(\vec{v}_1) = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$ and $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. To find \vec{v}_2 , note that

$$\operatorname{span}\{A(\vec{v}_1),\vec{v}_2\} = \ker(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\-1\\0 \end{pmatrix} \right\}.$$

Therefore, we can choose $v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Finally let $\alpha = \{\vec{v}_1, A(\vec{v}_1), \vec{v}_2\}$ and $P = \begin{pmatrix} 1 & 3 & 1 \\ 0 & -2 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ be the matrix of change basis. Then

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}.$$