Mathematik 1 für Informatik

Kleingruppenübung

Blatt 06

Kampmann/Meyer HS Osnabrück, Fakultät I.u.I.

Erinnern Sie sich an folgende Begriffe, Sachverhalte und Sätze: Vektorrechnung, Skalarprodukt, Vektorprodukt, lineares Gleichungssystem, linear abhängig/unabhängig, Erzeugendensystem, Basis, Matrizenrechnung.

- 2. Aufgabe: Berechnen Sie die Lösungsmenge des folgenden linearen Gleichungssystems $2x_1-x_2+x_3+3x_4=-3\\-x_1+2x_2+4x_3+x_4=1\\2x_1+2x_2+10x_3+8x_4=-4$
- 3. Aufgabe: Gegeben sind $\underline{\underline{A}} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 1 & 4 \\ -1 & -1 & 1 \end{pmatrix}, \, \vec{b} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}, \, \vec{c} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix}$ und $\underline{\underline{B}} = \begin{pmatrix} 2 & 0 & -1 & 1 \\ 3 & 4 & -2 & -1 \\ 1 & 1 & 0 & -1 \end{pmatrix}$.

Berechnen Sie (falls diese Terme definiert sind):

- 1) $\underline{A} \cdot \vec{b}$ und $\underline{A} \cdot \vec{c}$
- 2) $\underline{B} \cdot \vec{b}$ und $\underline{B} \cdot \vec{c}$
 - 3) $\underline{\underline{A}} \cdot \underline{\underline{B}} \text{ und } \underline{\underline{B}} \cdot \underline{\underline{A}}$
- <u>4. Aufgabe:</u> Gegeben sind die Vektoren $\vec{a} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$ und $\vec{b} = \begin{pmatrix} s \\ 1 \\ 2-s \end{pmatrix} \in \mathbb{R}^3$.
 - a) Berechnen Sie das **Skalarprodukt** $<\vec{a},\vec{b}>=\vec{a}\cdot\vec{b}$ und das **Vektorprodukt** $\vec{a}\times\vec{b}$
 - b) Berechnen Sie $s \in \mathbb{R}$ so, dass \vec{a} orthogonal (senkrecht stehend) zu \vec{b} ist.

- c) Berechnen Sie die **Einheitsvektoren** $\vec{e_a} = \frac{\vec{a}}{|\vec{a}|}$ und $\vec{e_b} = \frac{\vec{b}}{|\vec{b}|}$
- <u>5. Aufgabe:</u> Gegeben sind die Vektoren $\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 6 \end{pmatrix} \in \mathbb{R}^3$ und $\vec{b} = \begin{pmatrix} -2 \\ 5 \\ -7 \end{pmatrix} \in \mathbb{R}^3$
 - (1) Berechnen Sie $\vec{c} = 2 \cdot \vec{a} + 3 \cdot \vec{b}$ und $\vec{d} = \frac{1}{2} \cdot \vec{a} + \frac{2}{3} \cdot \vec{b}$.
 - (2) Lösen Sie die Gleichung $3 \cdot \vec{a} \frac{1}{3} \cdot (\vec{x} 2 \cdot \vec{b}) = \vec{b} \frac{1}{2} \cdot \vec{x}$.
 - (3) Berechnen Sie die **Projektionen** $\vec{p}_{\vec{a}}(\vec{b}) = \frac{\langle \vec{a}, \vec{b} \rangle}{|\vec{a}|^2} \cdot \vec{a}$ und $\vec{p}_{\vec{b}}(\vec{a}) = \frac{\langle \vec{b}, \vec{a} \rangle}{|\vec{b}|^2} \cdot \vec{b}$
- 6. Aufgabe: a) Gegeben sind die Vektoren $\vec{a} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \in \mathbb{R}^3$, $\vec{b} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$, $\vec{c} = \vec{a} \times \vec{b} \in \mathbb{R}^3$ und $\vec{d} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$.

Zeigen Sie durch Berechnung der Koeffizienten $\alpha, \beta, \gamma \in \mathbb{R}$, dass \vec{d} eine Linearkombination der Vektoren $\vec{a}, \vec{b}, \vec{c}$ ist, d.h. berechnen Sie $\alpha, \beta, \gamma \in \mathbb{R}$ mit $\vec{d} = \alpha \cdot \vec{a} + \beta \cdot \vec{b} + \gamma \cdot \vec{c}$.

- b) Gegeben sind die Vektoren $\vec{a} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \in \mathbb{R}^3$, $\vec{b} = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} \in \mathbb{R}^3$ und $\vec{c} = \begin{pmatrix} \alpha \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$. Für welches $\alpha \in \mathbb{R}$ sind diese Vektoren **linear abhängig**?
- c) Nehmen Sie die Vektoren \vec{a} , \vec{b} und \vec{c} mit $\alpha = 1$ aus b) und zeigen Sie, dass \vec{a} , \vec{b} , \vec{c} eine **Basis** des \mathbb{R}^3 bilden.