

Zadanie 5

Rozważmy zmodyfikowany szyfr Cezara, w którym kluczem jest pewne słowo dowolnej długości, a proces szyfrowania wiadomości przebiega w następujący sposób. Dla wiadomości długości n, postaci $W=w_1w_2\dots w_n$ oraz klucza długości m, postaci $K=k_1k_2\dots k_m$, każdą literę wiadomości klucza zamieniamy na odpowiadający element w grupie multiplikatywnej ciała $GF(3^3)\cong \mathbb{Z}_3/x^3+2x^2+1$, czyli mamy $a\mapsto 1,\ b\mapsto 2,\ c\mapsto x,$ $\ldots z\mapsto 2x^2+2x+2$. Następnie każdy znak z wiadomości w_i mnożymy przez odpowiedni znak klucza $k_i \mod m$ otrzymując szyfrogram postaci: $w_1\cdot k_1, w_2\cdot k_2, \ldots w_n\cdot k_{n \mod m}$.

Przy pomocy powyższego szyfru grupa matematyków zaszyfrowała tajną wiadomość. Jednak została ona przechwycona przez agenta Bałwana, który odczytał szyfrogram o treści "mglvwgxgyweglqezf". Dodatkowo agent Bałwan dokonał podsłuchu przesyłu dwóch innych wiadomości wraz z ich szyfrogramami, jednak w wyniku zakłóceń z pierwszej wiadomości otrzymał jedynie początek "fish" z szyfrogramem "jfnv", a z drugiej tylko część znaków "h___y_o__op__kny_h_ma_" razem z wybrakowanym szyfrogramem "gg_wd_w_x__ufzfil__gey". Czy dasz radę odszyfrować tajną wiadomość matematyków oraz ich klucz?

Podpowiedzi:)

• Na pewno pomocna będzie poniższa tabela generatora grupy multiplikatywnej ciała $GF(3^3)$.

x^{i}	element grupy
x^1	x
x^2	x^2
x^3	$x^{2} + 2$
x^4	$x^2 + 2x + 2$
x^5	2x + 2
x^6	$2x^2 + 2x$
x^7	$x^2 + 1$
x^8	$x^2 + x + 2$
x^9	$2x^2 + 2x + 2$
x^{10}	$x^2 + 2x + 1$
x^{11}	x+2
x^{12}	$x^2 + 2x$
x^{13}	2
x^{14}	2x
x^{15}	$2x^2$
x^{16}	$2x^2 + 1$
x^{17}	$2x^2 + x + 1$
x^{18}	x+1
x^{19}	$x^2 + x$
x^{20}	$2x^2 + 2$
x^{21}	$2x^2 + 2x + 1$
x^{22}	$x^2 + x + 1$
x^{23}	$2x^2 + x + 2$
x^{24}	2x+1
x^{25}	$2x^2 + x$
x^0	1

Tabela 1: Tabela generatora grupy multiplikatywnej ciała $GF(3^3)$.

• W razie pojawienia się problemów z odnalezieniem klucza możesz spró-

bować wykorzystać socjotechniki w celu zdobycia informacji na temat jego długości.

 $\bullet\,$ Flaga jest w postaci "klucz_tajna wiadomość".