

Chapter 7

Analog to Digital conversion

Part 4 of 4

• For speech signal usually there is a relatively smooth change from one speech sample to the next, i.e. that is, there is considerable correlation between adjacent samples.

- The difference between adjacent samples will have a <u>smaller variance and range</u> than the speech samples themselves.
- DPCM is designed specifically to take advantage of this.

In DPCM, the difference in samples are quantised and encoded instead of quantising and encoding the samples.

- Fewer bits are needed to encode difference samples since the range of sample differences is less than the range of individual amplitude samples
- DPCM system has lower bit rate than comparable PCM as the sampling rate is often the same as comparable PCM system.

Industry standard: DPCM 32 kb/s

PCM 64 kb/s

At the same bit rate, DPCM provides better speech quality than PCM.

- As in PCM systems, the quantiser used can be uniform or companded and step size can be varied to suit the signal power - Adaptive Differential Pulse Code Modulation (ADPCM).
- http://datasheets.maxim-ic.com/en/ds/DS2164Q.pdf

Example 7.9

A DPCM modulator is shown below. Assume that the input $x(nT_s)$ is given in Table 7.1.

- a) Complete the remaining boxes in the table
- b) What is the output bit stream?

$$V_{o} = 1.5 \ V : 1 \ V < V_{i} \le \infty$$
 $0.5 \ V : 0 \ V < V_{i} \le 1 \ V$ $-0.5 \ V : -1 \ V < V_{i} \le 0 \ V$ $-1.5 \ V : -\infty < V_{i} \le -1 \ V$

 $E(nT_s) = x(nT_s) - \hat{x}(nT_s)$

(a)

 $X_{q}(nT_{s}) = \hat{x}(nT_{s}) + E_{q}(nT_{s})$

Current sample

Previous sample

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5				
T _s	2.2					
2T _s	1.8					

(a)

Current sample

Previous sample

$$E(nT_s) = x(nT_s) - \hat{x}(nT_s)$$

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8			
T _s	2.2					
2T _s	1.8					

(a)

$$V_o = 1.5 \ V : 1 \ V < V_i \le \infty$$
 $0.5 \ V : 0 \ V < V_i \le 1 \ V$
 $-0.5 \ V : -1 \ V < V_i \le 0 \ V$
 $-1.5 \ V : -\infty < V_i \le -1 \ V$

Quantiser Rule

Current sample

Previous sample

Quantiser output

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5		1 0
T _s	2.2					
2T _s	1.8					

(a)

$$V_o = 1.5 \ V : 1 \ V < V_i \le \infty$$
 $0.5 \ V : 0 \ V < V_i \le 1 \ V$
 $-0.5 \ V : -1 \ V < V_i \le 0 \ V$
 $-1.5 \ V : -\infty < V_i \le -1 \ V$

Quantiser Rule

Current sample

Previous sample

$$X_{q}(nT_{s}) = \hat{x}(nT_{s}) + E_{q}(nT_{s})$$

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2					
2T _s	1.8					

(a)

Current sample

Previous sample

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1 ~-				
2T _s	1.8					

(a)

Current sample

Previous sample

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1				
2T _s	1.8					

(a)

	Current sample	Previous sample	$E(nT_s)$	$= x(nT_s) -$	$\hat{x}(nT_s)$	
Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s)$ V	x _q (nT _s) V	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1	1.2			
2T _s	1.8					

(a)

1.5

11

 $V_o = 1.5 \ V : 1 \ V < V_i \le \infty$

 $0.5 \ V: \ 0 \ V < V_i \le 1 \ V$

 $-0.5 V: -1 V < V_i \le 0 V$

 $-1.5 \ V: -\infty < V_i \le -1 \ V$

Quantiser Rule

Current	
sample	

Previous sample

Quantiser output

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1	1.2	1.5		11
2T _s	1.8					

$$V_o = 1.5 \ V : 1 \ V < V_i \le \infty$$

 $0.5 \ V: \quad 0 \ V < V_i \le 1 \ V$

 $-0.5 V: -1 V < V_i \le 0 V$

 $-1.5 \ V: -\infty < V_i \le -1 \ V$

Quantiser Rule

Current sample

Previous sample

Quantiser output

$$X_{q}(nT_{s}) = \hat{x}(nT_{s}) + E_{q}(nT_{s})$$

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1	1.2	1.5	2.5	11
2T _s	1.8					

(a)

 $V_o = 1.5 \ V : 1 \ V < V_i \le \infty$ $0.5 \ V : 0 \ V < V_i \le 1 \ V$ $-0.5 \ V : -1 \ V < V_i \le 0 \ V$ $-1.5 \ V : -\infty < V_i \le -1 \ V$

Quantiser Rule

Current sample

Previous sample

Quantiser output

Time	x(nT _s) V	$\widehat{x}(nT_s) V$	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1	1.2	1.5	2.5	11
2T _s	1.8	2.5 -				

(a)

Current sample

Previous sample

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1	1.2	1.5	2.5	11
2T _s	1.8	2.5				

(a)

	Current sample	Previous sample	$E(nT_s)$	$E(nT_s) = x(nT_s) - \hat{x}(nT_s)$			
Time	x(nT _s) V	$\widehat{x}(nT_s) V$	E(nT _s) V	$E_q(nT_s)$ V	$x_q(nT_s) V$	Codeword	
0	1.3	0.5	0.8	0.5	1	1 0	
T _s	2.2	1	1.2	1.5	2.5	11	
2T _s	1.8	2.5	- 0.7				

(a)

$$\begin{split} V_o &= 1.5 \; V : \quad 1 \; V < V_i \leq \infty \\ &= 0.5 \; V : \quad 0 \; V < V_i \leq 1 \; V \\ &= -0.5 \; V : \quad -1 \; V < V_i \leq 0 \; V \\ &= -1.5 \; V : \quad -\infty < V_i \leq -1 \; V \end{split}$$

Quantiser Rule

Current
sample

Previous sample

Quantiser output

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s)$ V	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1	1.2	1.5	2.5	11
2T _s	1.8	2.5	- 0.7	- 0.5		0 1

$$\begin{split} V_o &= 1.5 \ V : & 1 \ V < V_i \le \infty \\ & 0.5 \ V : & 0 \ V < V_i \le 1 \ V \\ & -0.5 \ V : & -1 \ V < V_i \le 0 \ V \\ & -1.5 \ V : & -\infty < V_i \le -1 \ V \end{split}$$

Quantiser Rule

	Current sample	Previous sample		Quantiser output	$X_q(nT_s)$	$) = \hat{x}(nT_s) +$	$E_q(nT_s)$
Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s) V$	$x_q(nT_s) V$	Codeword	
0	1.3	0.5	0.8	0.5	1	1 0	
T _s	2.2	1	1.2	1.5	2.5	11	
2T _s	1.8	2.5	- 0.7	- 0.5	2	0 1	Table 7.

(b)

Time	x(nT _s) V	$\widehat{x}(nT_s)$ V	E(nT _s) V	$E_q(nT_s)$ V	$x_q(nT_s) V$	Codeword
0	1.3	0.5	0.8	0.5	1	1 0
T _s	2.2	1	1.2	1.5	2.5	11
2T _s	1.8	2.5	-0.7	- 0.5	2	0 1

Output bit stream:

10 11 01

30-channel PCM-TDM system

- Implemented in telephone networks round the world e.g. SingTel network.
- Complies with ITU-T G.711 standard.
- In the 30 channel PCM, there are actually 32 channels 30 speech channels + 2 extra channels for signalling and synchronization.

30-channel PCM Equipment

Basic system parameters of the 30-channel PCM

- 3 important basic parameters are
 - (I) Sampling rate
 - (ii) Companding and encoding schemes
 - (iii) Total output bit rate

Basic system parameters of the 30-channel PCM

- (i) Sampling rate
 - Voice signal over telephone varies from 0.3 3.4 kHz.
 As 3.4 kHz is the highest frequency to be sampled thus the sampling freq ≥ 6800 times/sec
 - In practice due to imperfect conditions sampling frequency of 8 kHz is used i.e. 8000 samples/sec.
 - The 30-channel PCM system uses the sampling frequency of 8 kHz.
 Sampling takes place every 125 μs (= 1/8000).

Basic system parameters of the 30-channel PCM

- (ii) Companding and Encoding schemes
 - Uses the A-law companding scheme.
 - Has 256 quantisation levels (128 +ve and 128 -ve).
 - Each quantisation level is represented by a 8-bit codeword where 7 bits represent the amplitude of the sample and the other 1 bit to represent the sign.

Basic system parameters of the 30-channel PCM

- (iii) Total Output bit rate The output bit rate of 30 channel system.
 - In a 125 μs time frame there are 32 channels.

: each channel occupies
$$\frac{125 \mu s}{32}$$
 = 3.9 μs.

Each signal sample is represented by 8 bits.

∴ each bit occupies
$$\frac{3.9 \,\mu\text{s}}{8}$$
 = 0.488 μ s.

2 Mbits system

Hence, the multiplex link bit rate = 1/(0.488 μs) = 2.048 Mbits/S.

Higher order pulse code modulation (HOPCM)

- To fully utilize the high bandwidth available on trunk links it is necessary to transmit at a high bit rate. Done by multiplexing multiple 30-channel PCM systems to form a higher speed group.
- In Singapore a <u>2-8-34-140 Mbit/s hierarchy</u> is used.

Higher order pulse code modulation (HOPCM)

Four 30-channel PCM groups are multiplexed to form a single high speed link of 4 x 2.048 = 8.192 Mbits/s

CD Recording System

- Music bandwidth is 15 kHz. Sampling should be at least 30 kHz. Actual rate is 44.1 kHz due to non-ideal filters.
- Each sample is quantised and converted to 16 bits i.e. no. of levels is 2¹⁶ = 65,536 levels.
- Total bit rate for 2 stereo channels is 44.1 kHz x 16 bits x 2 = 1.41 Mbps
- For a typical 4-min song the storage is 1.41 Mbps x 4 x 60 = 338.4 Mbits or 40.3 Mbytes.

END

CHAPTER 7

(Part 4 of 4)

