9. mďž″Rďž″S

Elektronspin-rezonancia

JEGYZĎŻ~KĎŻ~NYV

Katona Dďż″vid Nagy Dďż″niel Szigeti Balďż″zs

Fizika BSc 4. fďż″lďż″v Szerda dďż″lelďż″tti csoport

> Mďż″rďż″s ideje: 2017. mďż″rcius 23.

MODERN FIZIKA LABORATďż "RIUM

1. A mďż "rďż "s cďż "lja

A mďż″rďż″sďż″nk a cďż″lja, hogy Cr³+, valamint Mn²+ ionokat tartalmazďż″ minta elektronspin-rezonancia (ESR) spektrumďż″nak mďż″rďż″sďż″vel meghatďż″rozzuk a Mn²+ ion giromďż″gneses-faktorďż″t, illetve a mintďż″ban lďż″vďż″ atomok szďż″mďż″t, valamint Mn²+ ďż″s Cr³+ hiperfinom-kďż″lcsďż″nhatďż″si egyďż″tthatďż″jďż″t.

2. Mďž″rďž″sleďž″rďž″s

2.1. Elmďž″leti hďž″ttďž″r

Az ESR mďż″rďż″s alapja, hogy Zeeman-felhadďż″st hozunk lďż″tre sztatikus mďż″gneses tďż″r segďż″tsďż″gdż″vel. Ekkor a lďż″trejďż″tt Zeeman-alnďż″vďż″k kďż″zďż″tt elektromďż″gneses gerjesztďż″s segďż″tsďż″gďż″vel ďż″tmeneteket hozunk lďż″tre. Az rezonancia feltďż″tele:

$$h\nu = g\mu_B B_0 + Am_I \tag{1}$$

Ahol h a Planck-ďż″llandďż″, g az ďż″n. g-faktor, μ_B a Bohr-magneton, ν a gerjesztďż″si elektromďż″gneses hullďż″m frekvenciďż″ja, A az ďż″n. finomszerkezeti ďż″llandďż″, ďż″s m_I a magspin B_0 irďż″nyďż″ vetďż″lete. Ez utďż″bbi $\pm I$ kďż″zt vďż″ltozhat, tehďż″t 2I+1 ďż″rtďż″ket vehet fel. A hiperfinom kďż″lcsďż″nhatďż″s eredmďż″nyekďż″pp az elektronok energiaszintje is ennyi nďż″vďż″ra hasad. Mivel a kivďż″lasztďż″si szabďż″ly szerint csak a $\Delta m_S = \pm 1$ ďż″tmenetek engedďż″lyezettek, ezďż″rt az ESR spektrumban is ennyi csďż″csot mďż″rďż″nk adott mag esetďż″n. A kďż″pet ďż″rnyalja, hogy az adott mintďż″ban egy elem tďż″bbfďż″le izotďż″pja is szerepelhet, ďż″gy ezek ďż″sszegďż″t mďż″rjďż″k, ahol a gďż″rbe alatti terďż″let az adott I-jďż″ atomok szďż″mďż″val arďż″nyos. A mďż″rďż″s sorďż″n B_0 ďż″rtďż″kďż″t vďż″ltoztattuk ďż″s annak a fďż″ggvďż″nyďż″ben mďż″rtďż″k az abszorpciďż″t.

A mďż rďż s sorďż na B_0 sztatikus mďż gneses tďż r mellett alkalmazunk egy ďż llandďż frekvenciďż jďż gerjesztďż st, amellyel az ďż tmeneteket hozunk lďż tre. A mďż rďż snďż la jobb jel/zaj arďż ny ďż rdekďż ben, lock in technikďż t alkalmaztunk, amelynek a lďż nyege, hogy a mďż rďż si alatti mďż gneses tďż ret modulďż ljuk 100kHz-ces periďż dkus jellel ďż s ennek segďż tsďż gďż vel kiszďž rjďż k a pontosan ugyanďż gy vďż ltozďž komponenst. A lock in technika kďż vetkeztďž ben az ESR-jel derivďž ltjďž t kapjuk, azaz ideďž lis esetben

Lorentz-gďż″rbďż″k derivďż″ljait regisztrďż″ljuk.

2.2. Mďž rďž si eszkďž zďž k

- Elektronspinrezonancia-spektroszkďż "p
- Szďż″mďż″tďż″gďż″p
- $\mathrm{Mn^{2+}}$ ďż"s $\mathrm{Cr^{3+}}$ mintďż"k

3. Adatok d'z "s kid'z "rtd'z "keld'z "s

3.1. Krďż″m(III) ESR-spektruma

A termďż″szetben krďż″mnak hďż″rom stabil I=0 magspinďż″ izotďż″pja fordul elďż″ (50 Cr, 52 Cr, illetve 54 Cr), amelyek az atomok 90.50%-t adjďż″k. Ezen felďż″l az I=3/2 magspinďż″ 53 Cr adja az atomok 9.50%-ďż″t. A mintďż″rďż″l kis lďż″ptetďż″ssel felvettďż″k az ESR-spektrumot. Az elmďż″letnek megfelelďż″en egy fďż″ csďż″cs jelent meg, mellette 4 gyengďż″n lďż″thatďż″ kisebb csďż″csal (1. ďż″bra). A fďż″csďż″csra Lorentz-gďż″rbe derivďż″ltjďż″t illesztettďż″k. A Lorentz-gďż″rbe a kďż″vetkezďż″ alakďż″:

$$f(x) = \frac{a}{(1 + s(x - x_0)^2)} \tag{2}$$

tehďž″t a derivďž″ltja:

$$\frac{df}{dx} = \frac{-2as(x - x_0)}{(1 + s(x - x_0)^2)^2} \tag{3}$$

Az illesztett gďż″rbe adatait az 1. tďż″blďż″zat tartalmazza (egy c offsetet is beledefiniďż″lva a fenti kďż″pletbe).

a (0.5 mV)	$s \text{ (Gauss}^{-2})$	x_0 (Gauss)	c (0.5 mV)
17524 ± 455.7	0.610 ± 0.024	3438.50 ± 0.0497	100 ± 22.55

1. táblázat. A $\rm Cr^{3+}$ -minta esetď
ż "ben mďż "rt $\rm ESR$ jelre illesztett gďż "rbe paramďż "tere
i

1. ábra. A mďż″rďż″si adatok, ďż″s az illesztett derivďż″l
t Lorentz-gďż″rbe $\rm Cr^{3+}$ minta esetďż″n

A Cr³+ g-faktorďż″nak ismeretďż″ben (4) kiszďż″molhatďż″ a gerjesztďż″si frekvencia (5. egyenlet).

$$g_{Cr} = 1.98 \pm 0.0001 \tag{4}$$

$$\nu = \frac{g_{Cr}\mu_B B_0}{h} = 9.529 \ GHz, \ \delta\nu = 6 \times 10^{-4}$$
 (5)

A Cr-mintďż″ban lďż″vďż″ atomok szďż″mďż″t ismerjďż″k: $N_{Cr} = 8, 3 \times 10^{13}$. Ezt, valamint a Cr³+-minta csďż″csok alatti terďż″letďż″t felhasznďż″ljuk a Mn²+ mennyisďż″gďż″nek meghatďż″rozďż″sďż″hoz. A Lorentz-gďż″rbe alatti terďż″letet a 6. egyenlet adja meg.

$$T = \int_{-\infty}^{\infty} dx \frac{a}{(1 + s(x - x_0)^2)} = \frac{\pi a}{\sqrt{s}}$$
 (6)

Ezek alapjďż″n a fďż″csďż″cs alatti terďż″let (7):

$$T_{Cr,I=0} = (35244 \pm 1610)mV \times Gauss$$
 (7)

Ez alapjďż"n a teljes mintďż"ra (8):

$$T_{Cr} = T_{Cr,I=0}/0.9050 = (38943 \pm 1780) mV \times Gauss$$
 (8)

ďż gy az iononkď ž nti terď ž let (9):

$$Z := T_{Cr}/N_{Cr} = (4.692 \pm 0.215) \times 10^{-10} mV \times Gauss$$
(9)

A kis jel/zaj arďż″ny miatt a 4 kisebb csďż″cs helye csak hozzďż″vetďż″legesen hatďż″rozhatďż″k meg, gďż″rbe nem illeszthetďż″ rďż″juk. A nďż″gy csďż″cs helye: $B_1=3411$ Gauss, $B_2=3428$ Gauss, $B_3=3446$ Gauss, $B_4=3464$ Gauss, a hibďż″jukat 2 Gaussnak becsďż″ltem (2. ďż″bra) . A pontokra egyenest illesztve $\Delta B=17.7\pm0.17$ Gauss. Ezek alapjďż″n a hiperfinom felhasadďż″si ďż″llandďż″:

$$A_{Cr} = g_{Cr}\mu_B \Delta B = (3.25 \pm 0.03) \times 10^{-26} J \tag{10}$$

2. ábra. Cr
 minta I=3/2magspinďż" csďż"csai ďż"s az illesztett egyenes

3.2. Mangd'ż "n(II) ESR-spektruma

A mintďż″ban egyfďż″le ion, a $^{55}Mn^{+2}$ spektrumďż″t regisztrďż″ltuk (3. ďż″bra). A spektrum az I=5/2 magspinnek megfelelďż″en 6 csďż″csot mutat. Az egye csďż″csokrďż″l nagyobb felbontďż″ssal kďż″szďż″tettďż″nk regisztrďż″tumokat, melyekre Lorentz-gďż″rbďż″ket illesztettďż″nk (l. fďż″ggelďż″k 5-10. ďż″bra). Ezek adatait a 2. tďż″blďż″zat tartalmazza.

m_I	a (2mV)	$s \text{ (Gauss)}^{-2}$	x_0 (Gauss)	c (2mV)
-2.5	12930 ± 432.3	0.812 ± 0.023	3225.00 ± 0.0634	-50 ± 16.25
-1.5	12930 ± 443.4	0.889 ± 0.025	3290.40 ± 0.0578	-154 ± 31.28
-0.5	11930 ± 426.2	0.989 ± 0.027	3357.20 ± 0.0582	-284 ± 45.12
0.5	13050 ± 456.1	0.783 ± 0.024	3425.36 ± 0.0332	-284 ± 45.7
1.5	11924 ± 439.1	1.005 ± 0.022	3495.02 ± 0.0435	-104 ± 25.67
2.5	11524 ± 447.2	0.910 ± 0.027	3565.82 ± 0.0523	-554 ± 132.85

2. táblázat. A Mn2+-minta esetďż″ben mďż″rt ESR jelre illesztett gďż″rbe paramďż″terei

3. ábra. $\rm Mn^{2+}$ minta teljes spektruma nagy lďż″ptďż″kkel

A m_I fďż″ggvďż″nyďż″ben ďż″brďż″zolva a Mn²+ spektrumďż″ban megjelenďż″ csďż″csok helyeit, akkor egy egyenest kapunk (11. egyenlet).

$$B_0 = -\frac{A}{g_{Mn}\mu_B}m_I + \frac{h\nu}{g_{Mn}\mu_B} \tag{11}$$

4. ábra. $B(m_I)$ pontokra illesztett egyenes (y=mx+b). Paramďż″terei: $m_{egyenes}=-68.24\pm0.55,\,b=3392.7\pm0.8$

Az illesztett egyenes paramďż″tereibďż″l meghatďż″rozhatďż″ a g_{Mn} ďż″s az A hiperfinom kďż″lcsďż″nhatďż″si tďż″nyezďż″ (12, 13).

$$g_{M_n} = \frac{h\nu}{\mu_B b} = 2.007 \pm 0.002 \tag{12}$$

$$A_{Mn} = -m_{egyenes}g_{M_n}\mu_B = (1.27 \pm 0.01) \times 10^{-25}J$$
 (13)

3.2.1. Mn(II)-ionok szďż″mďż″nak meghatďż″rozďż″sa

mďż″rďż″s	$T (2mV \times Gauss)$
1	$(4.5079 \pm 0.02) \cdot 10^4$
2	$(4.3082 \pm 0.02) \cdot 10^4$
3	$(3.7687 \pm 0.02) \cdot 10^4$
4	$(4.6332 \pm 0.02) \cdot 10^4$
5	$(3.7367 \pm 0.02) \cdot 10^4$
6	$(3.7941 \pm 0.02) \cdot 10^4$

3. táblázat. A Mn²⁺-minta esetďż″ben a Lorentz-gďż″rbe alatti terďż″letek

A csďż "csok alatti terďż "leteket mutatja a 3. tďż "blďż "zat. Ezek ďż "sszege (14):

$$T_{Mn} = (4.950 \pm 0.24) \times 10^5 mV \times Gauss$$
 (14)

Ebbďż″l becsďż″lhetďż″ a Mn²+ ionok szďż″ma, felhasznďż″lva a Cr³+nďż″l mďż″rteket (15):

$$N_{Mn} = T_{Mn}/Z = (1.05 \pm 0.10) \times 10^{15} \tag{15}$$

4. Diszkusszid'ż"

A gyakorlat sorďż″n megmďż″rtďż″k Cr^{3+} illetve Mn^{2+} ionok ESR-spektrumďż″t. A Cr^{3+} -minta 90.50% I=0 spinďż″ magot (^{50}Cr , ^{52}Cr , ^{54}Cr), mďż″g 9.50%-ban I=3/2 spinďż″ magot (^{53}Cr) tartalmaz. Ennek megfelelďż″en a spektrumban egy jďż″l lďż″thatďż″ csďż″cs jelent meg. Az I=3/2 magspin hatďż″sďż″ra a hiperfinom-felhasadďż″s kďż″vetkeztďż″ben megjelenďż″ 4 kisebb csďż″cs ďż″pphogy lďż″thatďż″an jelenik csak meg (a magok jďż″val kisebb szďż″ma ďż″s a nďż″gyfelďż″ hasadďż″s kďż″vetkeztďż″ben), amely alapjďż″n becsďż″lhetďż″ volt a Cr^{3+} -ra jellemzďż″ hiperfinom kďż″lcsďż″nhatďż″si ďż″llandďż″ $A_{Cr}=(3.3\pm0.2)\times10^{-26}J$. A Mn^{2+} -minta ESR spektrumďż″m 6, egymďż″stďż″l azonos tďż″volsďż″gďż″ csďż″csot figyeltďż″nk meg, amely megfelel annak, hogy a minta csupďż″n 55 Mn magot tartalmaz, amelyre I=5/2. A Cr^{3+} -minta mďż″rďż″sďż″bďż″l meghatďż″rozott frekvencia birtokďż″ban a

 ${\rm Mn^{2+}}$ -ra a giromďż″gneses faktor $g=2.007\pm0.002$ -nak adďż″dott. A hat csďż″cs helyďż″re egyenest illsztve pedig a finom kďż″lcsďż″nhatďż″si ďż″llandďż″t kaptuk meg, melyre $A_{Mn}=(1.27\pm0.01)\times10^{-25}J$ adďż″dott.

5. Fď \dot{z} "ggelď \dot{z} "k

5. ábra. A mďż″rďż″si adatok, ďż″s az illesztett derivďż″lt Lorentz-gďż″rbe Mn minta esetďż″n, $m_I=5/2$

6. ábra. A mďż″rďż″si adatok, ďż″s az illesztett derivďż″lt Lorentz-gďż″rbe Mn minta esetďż″n, $m_I=3/2$

7. ábra. A mďż″rďż″si adatok, ďż″s az illesztett derivďż″lt Lorentz-gďż″rbe Mn minta esetďż″n, $m_I=1/2$

8. ábra. A mďż″rďż″si adatok, ďż″s az illesztett derivďż″lt Lorentz-gďż″rbe Mn minta esetďż″n $m_I=-1/2$

9. ábra. A mďż″rďż″si adatok, ďż″s az illesztett derivďż″lt Lorentz-gďż″rbe Mn minta esetďż″n, $m_I=-3/2$

10. ábra. A mďż″rďż″si adatok, ďż″s az illesztett derivďż″lt Lorentz-gďż″rbe Mn minta esetďż″n, $m_I=-5/2$