CMP 334 (2/13/19)

Review Quiz 1 (base conversion)

Unsigned binary subtraction (example)

High Level Language program compilation

TOY assembly language (introduction)

TOY AL program execution

Representing numbers in circuits

N < 4 circuit

Circuit → formula → truth table → circuit

Combinational circuit design process

Quiz 1 Review

1. Convert 0x8D39 to binary.

1000 1101 0011 1001

2. Convert 0x14A to decimal.

0x14A represents

$$1 \cdot 16^{2} + 4 \cdot 16^{1} + 10 \cdot 16^{0} = 256 + 4 \cdot 16 + 10$$

= $256 + 64 + 10$
= 330

Quiz 1 Review (continued)

2. Convert **187**₁₀ to binary. $187 \cdot 2^0 = 93 \cdot 2^1 + 1 \cdot 2^0$ $93 \cdot 2^1 = 46 \cdot 2^2 + 1 \cdot 2^1$ $46 \cdot 2^2 = 23 \cdot 2^3 + 0 \cdot 2^2$ $23 \cdot 2^3 = 11 \cdot 2^4 + 1 \cdot 2^3$ $11 \cdot 2^4 = 5 \cdot 2^5 + 1 \cdot 2^4$ $5 \cdot 2^5 = 2 \cdot 2^6 + 1 \cdot 2^5$ $2 \cdot 2^6 = 1 \cdot 2^7 + 0 \cdot 2^6$ $1 \cdot 2^7 = 0 \cdot 2^8 + 1 \cdot 2^7$ $187_{10} = 1 \cdot 2^{7} + 0 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$ = 10111011,

Immediate values

s8 8-bit signed immediate

— 4-bit unsigned immediate u4

- 4-bit condition code CC

Register File 16 16-bit "registers"

15 real registers: \$1 ... \$F

1 pseudo-register: \$0 [\$0] = 0

Main Memory 65536 16-bit words

 $M[n] - n^{th}$ memory address ^M[n] - content of M[n]

Instructions[®]

\$T ← [\$A]+[\$B]¹ add

\$T ← [\$A]&[\$B]¹ and

PC ← [PC] + S8 ## CC bc

bcl \$L ← [PC], PC ← [\$A]¹ # CC

 $T \leftarrow M[[$A] + [$B]]^1$

lwr \$T ← ^M[[\$A]+[\$B]]1 set rsvn

lih $T_{15} R \leftarrow I8^1$

\$T ← I8¹ (sign extended) lis

\$T ← [\$A]|[\$B]¹ nor

\$T ← [\$A] << U41 sl

\$T ← [\$A]>>U41 srs

\$T ← [\$A]>>>U4¹ sru

 $M[[$A]+[$B]] \leftarrow [$S]$ st

system call sys

 $M[[$A]+[$B]] \leftarrow [$S]^4 # rsvn$ stc $T \leftarrow [A] - [B]^{1.2}$ sub

Arithmetic / Logical

1111 add ŜТ \$A ŚΒ 1110 sub \$T \$A \$B

1101 and \$Т \$A \$B

ŜТ \$B 1100 nor \$A

Load /Store 1011 1 \$Т \$A \$B 1010 lwr \$T \$A \$B

st \$S \$A \$B 1001 1000 stc \$S \$A \$B

Shift / Branch & Link 0111 sru \$Т \$A **U4** \$Т \$A U40110 srs 0101 bcl CC \$A \$L 0100 sl \$Т \$A **U4**

Immediate								
0011	lih	\$Т	S8					
0010	lis	\$Т	S8					
0001	bc	CC	S8					
0000	sys	\$X	S8					

Condition Codes							
1111	znv + nv	SGT					
1110	٧	OVF					
1101	n v + n v	SLT					
1100	n	NEG					
1011	ZC	UGT					
1010	Z	NE					
1001	C	ULT					
1000	0	NOP					
0111	$z + n\overline{v} + \overline{n}v$	SLE					
0110	V	NVF					
0101	nv + nv	SGE					
0100	n	POS					
0011	z + c	ULE					
0010	Z	EQ					
0001	С	UGE					
0000	1	ALL					

Notes

⁶ PC ← PC+1 *before* instruction execution

^{1 \$0} not changed

² Determines flags: z, n, c, v

⁴ Determines flag: v

Assignment Compilation

TOY Processor & RAM

The TOY Computer (fetch

The TOY Computer (execute)

The TOY Computer (fetch

The TOY Computer (execute)

The TOY Computer (fetch

The TOY Computer (execute)

The TOY Computer (fetch

The TOY Computer (execute)

The TOY Computer (fetch

HW 7: W = X + Y + Z

Assignment: Write a **TOY** assembly language program to add the values of 3 variables, **X**, **Y**, and **Z**, in memory and store the sum in a fourth, **W**.

<u>Details</u>: The variables occupy consecutive words of memory starting with **W**. The address of **W** is in register \$3. Register \$4 contains the constant 1. *Do not change* the values in registers \$0 through \$4. You can use registers \$5 through \$F as you please. Your program should consist entirely of addition (add), load (1), and store (st) instructions.

<u>Hint</u>: You will need to construct the addresses of variables **X**, **Y**, and **Z** in a register or in registers. There are various ways to accomplish this.

$$7 + B = ?$$

	0	1	1	1
+	1	0	1	1
				0

$$7 + B \neq 2$$

$$7 - B = ?$$

$$7 - B = ?$$

-	0 1	1 0	1 1	1 1
				1

$$7 - B = ?$$

0	1	1	1
			1

$$7 - B \neq C$$

$$7 - B = C - 2^4 = -4$$

A - C + 3 = A + 3 - C

$$A - C + 3$$
 $A + 3 - C$
= 1010 - 1100 + 0011 = 1010 + 0011 - 1100
= 1010 + 0100 + 0011 = 1101 - 1100
= 1110 + 0011 = 1101 + 0100
= 0001

Circuit Design Example: *n* > 4

Construct a circuit with Boolean inputs \mathbf{n}_2 , \mathbf{n}_1 , and \mathbf{n}_0 that is 1 if, and only if, $\mathbf{n} \equiv \mathbf{n}_2 \cdot 2^2 + \mathbf{n}_1 \cdot 2^1 + \mathbf{n}_0 \cdot 2^0 > 4$.

n ₂	n ₁	n _o	n	n > 4
0	0	0	0	0
0	0	1	1	0
0	1	0	2	0
0	1	1	3	0
1	0	0	4	0
1	0	1	5	1
1	1	0	6	1
1	1	1	7	1

Circuit Design Example: *n* > 4

Construct a circuit with Boolean inputs \mathbf{n}_2 , \mathbf{n}_1 , and \mathbf{n}_0 that is 1 if, and only if, $\mathbf{n} \equiv \mathbf{n}_2 \cdot 2^2 + \mathbf{n}_1 \cdot 2^1 + \mathbf{n}_0 \cdot 2^0 > 4$.

n ₂	n ₁	n _o	n	n > 4
0	0	0	0	0
0	0	1	1	0
0	1	0	2	0
0	1	1	3	0
1	0	0	4	0
1	0	1	5	1
1	1	0	6	1
1	1	1	7	1

$$n_{2}\overline{n}_{1}n_{0} + n_{2}n_{1}\overline{n}_{0} + n_{2}n_{1}n_{0}$$

Circuit Design Example: *n* > 4

Construct a circuit with Boolean inputs \mathbf{n}_2 , \mathbf{n}_1 , and \mathbf{n}_0 that is 1 if, and only if, $\mathbf{n} \equiv \mathbf{n}_2 \cdot 2^2 + \mathbf{n}_1 \cdot 2^1 + \mathbf{n}_0 \cdot 2^0 > 4$.

n ₂	n ₁	n _o	n	n > 4
0	0	0	0	0
0	0	1	1	0
0	1	0	2	0
0	1	1	3	0
1	0	0	4	0
1	0	1	5	1
1	1	0	6	1
1	1	1	7	1

$$n_2 \overline{n_1} n_0 + n_2 n_1 \overline{n_0} + n_2 n_1 n_0$$

Combinational Circuit → Boolean Formula

Assign a Variable for each Gate

Circuit → Formula

```
s = x + y
x = uc
y = tv
```


Circuit → Formula

```
s = x + y
x = uc
y = tv
u = t - c
t = p + q
p = ag
q = hb
g = h
g = b - a
```


Circuit → Formula

```
s = x + y
x = uc
y = tv
t = p + q
p = ag
q = hb
g = \overline{b}

h = \overline{a}
t = a\overline{b} + \overline{a}b
s = t\overline{c} + \overline{t}c
      = a\overline{bc} + \overline{a}b\overline{c} + \overline{t}c
      = a\overline{bc} + \overline{abc} +
           \sim (a\overline{b} + \overline{a}b)·c
```


$$s = a\overline{b}\overline{c} + \overline{a}b\overline{c} + \sim (a\overline{b} + \overline{a}b) \cdot c$$

$$a\overline{bc} + \overline{a}b\overline{c} + \sim (a\overline{b} + \overline{a}b) \cdot c \longrightarrow \mathfrak{g}$$

$$s = a\overline{b}\overline{c} + \overline{a}b\overline{c} + \sim (a\overline{b} + \overline{a}b) \cdot c$$

$$s = a\overline{b}\overline{c} + \overline{a}b\overline{c} + \sim (a\overline{b} + \overline{a}b) \cdot c$$

$$s = a\overline{b}\overline{c} + \overline{a}b\overline{c} + \sim (a\overline{b} + \overline{a}b) \cdot c$$

$$s = a\overline{b}\overline{c} + \overline{a}b\overline{c} + \sim (a\overline{b} + \overline{a}b) \cdot c$$

$$\begin{array}{c} a \\ b \\ c \\ \hline \\ a\overline{b} \\ \hline \\ ab \\ \end{array}$$

 $s = a\overline{b}\overline{c} + \overline{a}b\overline{c} + \sim (a\overline{b} + \overline{a}b) \cdot c$

Boolean Formula \rightarrow Truth Table s = $a\overline{b}\overline{c}$ + $\overline{a}b\overline{c}$ + \sim ($a\overline{b}$ + $\overline{a}b$)·c

a	b	C	ā	b	c	abc	ābc	а Б	āb	+	~	·c	S
0	0	0	1	1	1	0	0	0	0	0	1	0	0
0	0	1	1	1	0	0	0	0	0	0	1	1	1
0	1	0	1	0	1	0	1	0	1	1	0	0	1
0	1	1	1	0	0	0	0	0	1	1	0	0	0
1	0	0	0	1	1	1	0	1	0	1	0	0	1
1	0	1	0	1	0	0	0	1	0	1	0	0	0
1	1	0	0	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	0	1	1	1

Formula Simplification

```
s = x + y
x = uc
t = p + q
p = ag
          hb
g = \overline{b}
t = a\overline{b} + \overline{a}b
s = t\overline{c} + \overline{t}c
     = a\overline{bc} + \overline{a}b\overline{c} + \overline{t}c
     = a\overline{bc} + \overline{abc} +
           \sim (a\overline{b} + \overline{a}b)·c
```


Formula Simplification

```
s = x + y
x = uc
y = tv
t = p + q
p = ag
q = hb
g = \overline{b}

h = \overline{a}
t = a\overline{b} + \overline{a}b
s = t\overline{c} + \overline{t}c
     = a\overline{bc} + \overline{abc} + \overline{tc}
     = a\overline{bc} + \overline{abc} +
```


Truth Table → Boolean Formula

$$s = abc + abc + abc + abc$$

a	b	C	ā	b	c	abc	abc	а Б	āb	+	~	·c	S
0	0	0	1	1	1	0	0	0	0	0	1	0	0
0	0	1	1	1	0	0	0	0	0	0	1	1	1
0	1	0	1	0	1	0	1	0	1	1	0	0	1
0	1	1	1	0	0	0	0	0	1	1	0	0	0
1	0	0	0	1	1	1	0	1	0	1	0	0	1
1	0	1	0	1	0	0	0	1	0	1	0	0	0
1	1	0	0	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	0	1	1	1

Boolean Formula Parse Tree

