```
In [3]: import pandas as pd
    from matplotlib import pyplot as plt
    %matplotlib inline
```

In [4]: df=pd.read_csv(r"C:\Users\Jayadeep\Downloads\Income.csv")
 df

Out[4]:

Gender	Age	Income(\$)
Male	19	15
Male	21	15
Female	20	16
Female	23	16
Female	31	17
Female	35	120
Female	45	126
Male	32	126
Male	32	137
Male	30	137
	Male Male Female Female Female Female Female Male Male	Male 19 Male 21 Female 20 Female 31 Female 35 Female 45 Male 32 Male 32

200 rows × 3 columns

In [5]: df.head()

Out[5]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17

```
In [6]: plt.scatter(df["Age"],df["Income($)"])
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[6]: Text(0, 0.5, 'Income(\$)')


```
In [7]: from sklearn.cluster import KMeans
In [8]: km=KMeans()
```

Out[8]: KMeans()

km

```
In [10]: y predicted=km.fit predict(df[["Age","Income($)"]])
       y predicted
6, 2, 6, 2, 6, 2, 6, 2, 6, 5, 6, 5, 6, 5, 5, 5, 6, 5, 6, 5,
             6, 5, 6, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 0, 5, 6, 0, 5, 0, 6, 0, 5,
             6, 0, 5, 5, 0, 6, 0, 0, 0, 5, 1, 1, 5, 1, 0, 1, 0, 1, 5, 1, 0, 5,
             1, 1, 0, 7, 1, 1, 7, 7, 1, 7, 1, 7, 1, 0, 7, 1, 7, 0, 1, 0, 0,
             0, 7, 1, 7, 7, 7, 0, 1, 1, 1, 7, 1, 1, 7, 7, 1, 1, 1, 1, 1, 1,
             7, 7, 7, 7, 1, 7, 7, 1, 7, 7, 7, 7, 7, 7, 1, 7, 7, 1, 7, 1, 7,
             1, 7, 7, 7, 7, 7, 1, 7, 7, 7, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
             4, 41)
In [11]: df["cluster"]=y predicted
In [12]: df.head()
Out[12]:
```

	Gender	Age	Income(\$)	cluster
0	Male	19	15	2
1	Male	21	15	2
2	Female	20	16	2
3	Female	23	16	2
4	Female	31	17	2

```
In [22]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[22]: Text(0, 0.5, 'Income(\$)')


```
In [23]: from sklearn.preprocessing import MinMaxScaler
In [24]: Scaler=MinMaxScaler()
In [25]: Scaler.fit(df[["Income($)"]])
         df["Income($)"]=Scaler.transform(df[["Income($)"]])
         df.head()
Out[25]:
             Gender Age Income($) cluster
                     19
                         0.000000
                                      2
               Male
                         0.000000
               Male
                     21
                                      2
          2 Female
                     20
                        0.008197
                                      2
                     23 0.008197
            Female
                                      2
                     31 0.016393
          4 Female
In [26]: km=KMeans()
In [27]: y predicted=km.fit predict(df[["Age","Income($)"]])
         y predicted
Out[27]: array([5, 5, 5, 2, 7, 5, 0, 2, 3, 7, 3, 0, 1, 2, 0, 5, 0, 5, 4, 0, 0, 2,
                4, 7, 1, 7, 6, 0, 6, 2, 1, 5, 1, 5, 4, 5, 6, 7, 0, 5, 3, 2, 4, 7,
                4, 2, 4, 2, 7, 7, 4, 7, 7, 1, 4, 4, 4, 3, 2, 1, 3, 5, 3, 1, 3, 5,
                6, 3, 5, 7, 3, 4, 1, 1, 1, 2, 6, 6, 2, 4, 1, 0, 3, 4, 5, 4, 1, 5,
                0, 4, 3, 5, 4, 6, 7, 2, 4, 2, 4, 5, 2, 4, 3, 2, 4, 5, 3, 1, 3, 3,
                3, 5, 0, 5, 5, 5, 3, 4, 4, 4, 2, 0, 6, 0, 2, 7, 6, 6, 1, 0, 4, 0,
                2, 7, 5, 7, 6, 7, 5, 0, 1, 7, 2, 7, 2, 2, 4, 7, 0, 0, 6, 0, 6, 0,
                4, 2, 0, 7, 0, 7, 1, 7, 5, 7, 4, 0, 6, 7, 0, 7, 6, 2, 0, 0, 4, 7,
                1, 2, 1, 0, 0, 7, 4, 7, 6, 7, 1, 2, 6, 0, 0, 7, 7, 0, 4, 0, 6, 7,
                7, 71)
```

```
In [28]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[28]: Text(0, 0.5, 'Income(\$)')


```
In [30]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[30]: Text(0, 0.5, 'Income(\$)')


```
In [32]: k_rng=range(1,10)
         sse=[]
         for k in k_rng:
             km=KMeans(n clusters=k)
             km.fit(df[["Age","Income($)"]])
             sse.append(km.inertia )
         sse
         C:\Users\Jayadeep\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:1036: UserWarning: KMeans is known to have
         a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting th
         e environment variable OMP_NUM_THREADS=1.
           warnings.warn(
Out[32]: [38840.72314431605,
          10558.82532963463,
          5678.436799754746,
          2521.859262993656,
          1628.957209547009,
          1031.7292698285246,
          786.4533149505711,
          604.885525249197,
          474.9095178891467]
```

```
In [33]: plt.plot(k_rng,sse)
    plt.xlabel("k")
    plt.ylabel("sum of squared error")
```

Out[33]: Text(0, 0.5, 'sum of squared error')

