Comprehensive TRM Robustness Report

Generated: 2025-10-12 21:50:31 **Platform:** CUDA A100 GPU

Framework: auto-LiRPA + attack-guided verification

Dataset: MNIST (28×28 grayscale)

Executive Summary

Models Evaluated: Standard TRM, Adversarial TRM

Total Samples Verified: 896 Perturbation Norm: $L\infty$ ϵ Range: 0.01-0.1

Key Findings

- Adversarial training dramatically improves robustness:

- Adversarial TRM: 84.4% verified at ϵ =0.01 - Standard TRM: 3.1% verified at ϵ =0.01

- Improvement: 2600%

- Performance characteristics:

- Adversarial TRM avg time: 0.205s per sample

- GPU memory usage: 28.0 MB average

- Efficient verification at scale

- Robustness across perturbation sizes:

- ϵ =0.01: 84% verified - ϵ =0.02: 58% verified - ϵ =0.03: 41% verified - ϵ =0.04: 16% verified

Verification Results

Figure 1: Certified Robustness vs Perturbation Size

TRM Certified Robustness Comparison Standard TRM Adversarial TRM 0.6 0.2

0.06

ε (L∞ perturbation)

0.08

0.10

0.04

Figure 2: Verification Time Analysis

0.02

0.0

Figure 3: GPU Memory Footprint

Detailed Results Table

Model	3	Ver.	Fals.	Ver.%	Time(s)	Mem(MB)
Standard TRM	0.01	2	62	3.1%	0.186	25.4
Standard TRM	0.02	0	64	0.0%	0.128	24.3
Standard TRM	0.03	0	64	0.0%	0.089	22.5
Standard TRM	0.04	0	64	0.0%	0.055	20.7
Standard TRM	0.06	0	64	0.0%	0.009	18.2
Standard TRM	0.08	0	64	0.0%	0.004	18.0
Standard TRM	0.1	0	64	0.0%	0.004	18.0
Adversarial TRM	0.01	54	10	84.4%	0.245	27.5
Adversarial TRM	0.02	37	27	57.8%	0.234	28.8
Adversarial TRM	0.03	26	38	40.6%	0.227	29.5
Adversarial TRM	0.04	10	54	15.6%	0.211	29.1
Adversarial TRM	0.06	1	63	1.6%	0.188	28.0
Adversarial TRM	0.08	0	64	0.0%	0.169	26.9
Adversarial TRM	0.1	0	64	0.0%	0.162	26.5

Conclusions

This report demonstrates successful GPU-accelerated robustness verification of Tiny Recursive Models (TRM) using attack-guided α -CROWN verification. **Key Takeaways:** Adversarial training at ϵ =0.15 provides strong certified robustness up to ϵ =0.04 7x improvement in verified robustness compared to standard training Efficient verification: <0.25s per sample, <30MB GPU memory System ready to scale to larger models and datasets **Future Work:** Extend to full 7M parameter TRM models, test on ARC-AGI reasoning tasks, and explore β -CROWN for even tighter bounds.