Sequence Bioinformatics

Optimal pairwise sequence alignment

Dec 05, 2023

Stefanie Hartmann

Wintersemester 2023/ 2024 Universität Potsdam

Today's topics

reading

 HB Nicholas, Jr, DW Deerfield, and AJ Ropelewski. Strategies for searching sequence databases. Biotechniques, 28(6):1174–1191, 2000. (Introduction, Search Algorithm, Similarity Matrices, Scoring insertions and deletions)

Homology & similarity

homologs

- morphological structures, sequences, domains, alignment positions....
- derived from a common ancestor
- all-or-nothing condition

similarity / identity

a quantitative measure

존나게 중요한 개념 Homology & similarity

homologs, orthologs, paralogs, etc.

- very very important concepts!
 - clear descriptions, transfer of annotations, evolutionary & functional genomics, ... 동일한 조상에서 유래했다는 정의 근데 우리는 타임머신이 없기때문(

기때문에 직접적으로 확인할 수 없다.

· evolutionary definition, requires phylogenetic inference, gene & species tree

প্ৰন আক্ৰিছ্ৰ কা homology를 판별할 수 있다.
• cannot be observed or known, just inferred

similarity

- can be observed & measured & evaluated
- can be used to infer homology, orthology, paralogy?

^{*}will be covered later

Comparative sequence analysis

starting with... 두 시퀀스를 비교하는 방식으로 homology를 판별할것임.

similarity / homology? compute (optimal) alignment

find database sequences that are similar (homologous) to the query sequence

compute a multiple sequence alignment

model the alignment, find additional family members

Pairwise sequence comparison

starting with...

similarity / homology? compute optimal alignment

즉, functional domain같은 특정 부위의 유사성만 가지나? 아니면 전체적인 유전자가 global하게 으유사성을 가지나?

graphical overview: dotplot

 genes: (where) are they similar? are they locally or globally similar?

genomes: syntenic regions? rearrangements?

유전자 수준뿐만 아니라 아미누산 단위에서도 비슷한가?

alignment

sea A

- how to evaluate different alignments?
- how to compute optimal local & global alignments?

Dotplots

	Α	С	T	T	G	С	Α	С	T	Α
С		X				X		X		
С		X				X		X		
Α	X						X			X
С		X				X		X		
T			X	X					X	
G					X					
Α	X						X			X
T			X	X					X	
Α	X						X			X
Α	X						X			X

연속적으로 동일한人 시퀀스는 더 높은 점수를 가진다.

Dotplots

- individual positions (nt, aa) usually not readable/given
- signal
 - identity, similarity
 - length of consecutive signals

• compare two sequences, or compare one sequence against itself 많은 노이즈가 나타난다.

seg. bioinf. WS23 · lect7 · S.Hartmann

Dotplots in practice

이렇게 매칭된 구역이 실제 gene이 아닐 수 있다... 그러나, non coding region이라도, 정확하게 우리가 예상하는 evolutionaly distance를 가진다면, 충분히 의미를 가질 수 있다.

this week:

- organellar genomes
- MUMmer

next week:

- protein sequences
- EMBOSS

위의 라인 매칭에서, 아래의 alignment로 변환 혹은 반대방향: 과정이 가능하도록 연습. `

Pairwise sequence alignment (genes):

similarity가 발견이 된다면, alignment를 시작 할 수 있다.

the comparison & arranging of two sequences by

- searching for pairwise matches and "good mismatches" between their characters
- possibly inserting gaps in each sequence

Scoring an alignment

- matches
- mismatches

gaps

우리의 alignment가 실제로맞을지, scoring을 통해 점수를 매기고 "better maching"을 찾을 수 있다.

- a scoring matrix is used for matches and mismatches
- gap penalties are used for opening & extending gaps
- alignment score: sum of scores at each alignment position, $S = \sum s_{ij}$
- chosen scoring scheme affects the result!

Scoring an alignment

= া প্রকৃত্র নার্থ কি মুনে:

→ chosen scoring scheme affects the result!

How to obtain a scoring matrix?

- observe trusted alignments of related proteins
 - which residues are paired?(i.e., which substitutions have occurred?)
- different values for sequences of different evolutionary divergence! matrix가 변화할 수 있다.
 - different scoring matrices!

PAM & BLOSUM matrices

이미 스코어링 매트릭스는 완성이 되었따.

PAM matrices

- Point Accepted Mutation, compiled by Margaret Dayhoff and her colleagues in the 1970s
- based on observed amino acid substitutions in families of evolutionarily related proteins
- PAM1 implies 1 substitution per 100 amino acids কুইকাট
- extrapolation of values for more distantly related proteins:
 PAM250 = (PAM1)²⁵⁰
- guidelines:

•	use	PAM250 for proteins of	20% identity
		PAM120	40%
		PAM60	60%

BLOSUM matrices

- BLOcks amino acid <u>SUbstitution Matrices</u>
- based on local alignments of divergent sequences
- different BLOSUM matrices are not extrapolated but based on observed alignments
 - BLOSUM50 matrix is derived from alignments of sequences that are 50% identical
- guideline: a BLOSUM matrix index should approximately match the percent identity of the sequences to be aligned
 - BLOSUM50 matrix is best used for sequences that are 50% identical

	Α	R	N	D	С	Q	Е	G	Н	ı	L	K	M	F	Р	S	Т	W	Υ	٧
Α	4																			
R	-1	5																		
N	-2	0	6																	
D C Q E G H	-2	-2	1	6																
С	0	-3	-3	-3	9															
Q	-1	1	0	0	-3	5	_													
E	-1	0	0	-1	-4	2	5													
G	0	-2	0		-3	-2	-2	6												
H	-2	-3	0 1 -3	-1	-3	0	0 -3	-2	8											
!	-1		-3	-3	-1	-3	-3	-4	-3	4										
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	_								
K	-1	2 -1	0 -2	-1	-3	1	1	-2	-1	-3	-2	5	_							
M F	-1 -2	-1 -3	-2 -3	-3 -3	-1 -2	0 -3	-2 -3	-3 -3	-2 -1	0	2	-1	5 0	6						
	-2 -1	-3 -2	-s -2	-ა -1	-2 -3	-3 -1	-ა -1	-3 -2	-1 -2	-3	0 -3	-3 -1	-2	-4	7					
P S T	1	-2 -1	1	0	-3 -1	0	0	0	-2 -1	-3 -2	-3 -2	0	-2 -1	-2	-1	1				
S T		-1	0	-1	-1	-1	-1	-2	-2	-2 -1	-1	-1	-1 -1	-2 -2	-1	4	5			
w	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
Y	-3 -2	-2	-2	-3	-2	-2 -1	-2	-3		-3 -1	-1	-2	-1	3	-3	-2	-2		7	
v	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
•	U	-0	-0	-0	-1	-2	-2	-0	-0	<u> </u>		-2		-1	-2	-2	U	-0	-1	-

가능한 모든 alignment 가능성에 대해 점수를 더한다음, 점수가 가장 나은것을 선택

Substitution matrices

➡ which amino acids occur together in the alignment columns more often than expected by chance?

homologous sequences

$$s(a,b) = \log\left(\frac{p_{ab}}{q_a q_b}\right)$$

observed frequency of residues a and b aligned p_{ab}:

qa, qb: frequencies of residues a and b
자주 나타나는 pair또한 존재하고, 이런 페어는 일반 M,L따로있는것보다 더 점수가 높을 수도 있다. 아니면 추가점수를 받을 수도 있음/.

М: 0.01

1: 0.1

$$s(M, L) = log(\frac{0.002}{0.01*0.1}) = +1$$

0.002 ML:

Substitution matrices

proteins

- all-purpose matrices from & for sequences with a range of evolutionary divergence (PAM, BLOSUM, WAG, ...)
 - empirical: "counting" or probabilistic approaches
- matrices for specialized types of proteins (e.g., transmembrane) or taxonomic lineages
- matrices based on the constraints on protein structure (folding, site-site interactions, etc)

DNA

- · different matrices exist
- I'll cover some of them later (phylogenetics!)

Gap penalties

linear score 모든 갭이 같은 panalties를 가진다

each gap position receives independent penalty of p

affine gap penalties 앱의 크기에따라, 즉 열림-확장에 따라 다른 패널티를 부여

- score depends on the length of the contiguous gap
- larger gap opening penalty: d 생물학적으로 더 말이 되는 이유: 보통 아무리 큰 갭이라고 하더라도, 한번의 insertion이라는 심글 이벤트이기 때문.
- smaller gap extension penalty: e

CTTGAT	ATAG-GCT
CTTATGAC	AT-GTGCC
p + p	p + p
d + e	d + d

What is an "optimal" alignment? 뭐가 optimal일지는 나의 관점, 목적에 따라 완전히 다르다!

- functionally correct (optimal) alignment
 - aligned residues have the same function
- structurally correct (optimal) alignment
 - aligned residues play a similar role / are in corresponding positions in the 3D structure
- evolutionarily correct (optimal) alignment
 - aligned residues are homologous, i.e. share a common ancestry
- algorithmically correct (optimal) alignment
 - the highest-scoring alignment for a given

substitution model and gap penalties 위 세그개는 보통 우리가 얻을 수 없다.. 우리가 얻을 수 있는 optimal은 오직 algorithmically correct 뿐이다. alignment는 결국 우리의 substitution matrix에 따라 결정된다. 알고리즘적 최적은 올바른 선택을 통해 이루어 질 수 있고, 이게 실제로 위 세개의 최적과 맞을지는.. 기도메타뿐이다.

Pairwise alignments

GOAL:

· optimal (highest-scoring) pairwise alignment

PROBLEM:

 constructing and scoring all possible alignments and picking the best one is not an option!

number of possible global alignments:
$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} pprox \frac{2^{2n}}{\sqrt{(\pi n)}}$$

	length of two sequences	number of possible alignments
	5	56
	10	252
COLUTION.	20	15,504
SOLUTION:	50	658,008
	100	2,535,650,040
dynamic programming	250	255,244,687,600

Dynamic programming

J. Mol. Biol. (1970) 48, 443-453

A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins

SAUL B. NEEDLEMAN AND CHRISTIAN D. WUNSCH

Dynamic programming

- used for optimization problems
- problems are broken into smaller, nested subproblems
- solutions to subproblems are computed and stored
 - these are used to construct solutions to larger and larger portions of the original problem
- alignment problem:
 - build up the best alignment by using optimal alignments of smaller subsequences

Pairwise alignments

Pairwise alignments

DP: optimal pairwise alignment

1. initialization of the score matrix

2. matrix fill (calculate alignment score)

각각 next step의 score를 모두 기입한다.

3. traceback and deduction of alignment

DP: initialization

match: +1 mismatch: -1 gap: -2

		С	L	S	L	V	T
	0	→ -2	→ -4	→ -6	→ -8	→ -10	→ -12
С	↓ -2	+1	-1	-1	-1	7-	-1
L	↓ -4	-1	+1	7	+1	7-	-1
Y	↓ -6	-1	-1	-1	-1	-1	-1
٧	↓ -8	-1	-1	-1	-1	+1	-1
Т	↓ -10	-1	-1	-1	-1	-1	+1

매 스텝마다, 어느 방향으로 움직이는것이 가장 좋을지 선택해서 남겨둔다. 만약 두 스텝이 점수가 같다면, 두개 다 남긴다.

내가 선택한, 가장 좋은 선택지만 기억하고 나머지는 잊어버린다.

DP: scoring

$$S_{i,j} = \max \begin{cases} S_{i-1,j-1} + s(x_i, y_i) & x_i, y_j \text{(mis)match} \\ S_{i-1,j} + \delta & x_i \text{ aligned to gap in } y & \downarrow \\ S_{i,j-1} + \delta & y_j \text{ aligned to gap in } x & \longrightarrow \end{cases}$$

 $s(x_i, y_i)$: substitution score for residues i, j

(example: match = 1, mismatch = -1)

δ: gap penalty (example: gap = -2)

DP: traceback

		С	L	S	L	V	T
	0	→ -2	→ -4	→ -6	→ -8	→ -10	→ -12
С	↓ -2	∖ 1	→ -1	→ -3	→ -5	→ -7	→ -9
L	↓ -4	↓ -1	√ 2	→ 0	→ -2	→ -4	→ -6
Y	↓ -6	↓ -3	↓ 0	∖ 1	` → -1	` → -3	→ -5
V	↓ -8	↓ -5	↓ -2	` ↓ -1	√ 0	√ 0	→ -2
Т	↓ -10	↓ -7	↓ -4	` → -3	→ -2	∖ -1	∖ 1

DP: traceback

		С	L	S	L	V	Т
	0	→ -2	→ -4	→ -6	→ -8	→ -10	→ -12
С	↓ -2		→ -1	→ -3	→ -5	→ -7	→ -9
L	↓ -4	↓ -1		→ 0	→ -2	→ -4	→ -6
Y	↓ -6	↓ -3	↓ 0		₹	` → -3	→ -5
V	↓ -8	↓ -5	↓ -2	` ↓ -1	√ 0		→ -2
T	↓ -10	↓ -7	↓ -4	` → -3	→ -2	√ -1	

CLSLVT CLSLVT CLY-VT

Smith-Waterman algorithm

local pairwise alignment

- cells with negative scores are set to zero
- traceback starts at the highest scoring cell stops when 0 is encountered

$$M_{i,j} = \max \begin{cases} M_{i-1,j-1} + s(x_i,y_i) & x_i,y_j \text{(mis)match} \\ M_{i-1,j} + \delta & x_i \text{ aligned to gap in } y \\ M_{i,j-1} + \delta & y_j \text{ aligned to gap in } x \\ 0 & \text{if score} \leq 0 \end{cases}$$

Smith-Waterman

		С	L	S	L	V	T
	0	0	0	0	0	0	0
С	0	∖ 1	0	0	0	0	0
L	0	0	` 2	→ 0	1	0	0
Y	0	0	↑ 0	`\ 1	0	0	0
٧	0	0	0	0	√ 0	∖ 1	0
Т	0	0	0	0	0	0	√ 2

Affine gap penalties

- score depends on the length of the contiguous gap
- gap opening penalty: d
- gap extension penalty: e

$$\gamma(g) = -d - (g - 1)e$$

 consequence for dynamic programming implementation: now we have to keep track of three scores and pointers at each cell

Scoring an alignment

chosen scoring scheme affects the result!

Review questions / topics

- homology, similarity
- dotplots: generation, interpretation, application
- gap penalties
- substitution matrices: PAM, BLOSUM
 - origin, differences, applications
- dynamic programming
 - principle
 - initialization, scoring, traceback
 - global vs. local
- optimal alignments

Next quiz

- today ~2PM to tomorrow 9AM
 - does not cover today's material
 - one page, PDF format
 - please include your name on the page