definitionhidealllines=true,leftline=true,linewidth=3pt,linecolor=primaryColor,frametitlerule=true,frametitlebackgroundcolor=primaryColor,backgroundcolor=gray!10, frametitleaboveskip=2mm, frametitlebelowskip=2mm, innertopmargin=3mm,

definitionsection

theoremhidealllines=true,leftline=true,linewidth=3pt,linecolor=secondaryColor,frametitlerule=true,frametitlebackgroundcolor=secondaryColor,backgroundcolor=gray!10, frametitleaboveskip=2mm, frametitlebelowskip=2mm, innertopmargin=3mm,

theoremsection

blueBoxhidealllines=true,leftline=true,backgroundcolor=cyan!10,linecolor=secondaryColor,linewidth=nertopmargin=.66em,innerbottommargin=.66em,

notehidealllines=true,leftline=true,backgroundcolor=yellow!10,linecolor=ternaryColor,linewidth=3pt, nertopmargin=.66em,innerbottommargin=.66em,

statementhidealllines=true,leftline=true,backgroundcolor=primaryColor!10,linecolor=primaryColor,linewidth=3pt,innertopmargin=.66em,innerbottommargin=.66em,singleextra=let 1=(P), 2=(O) in ((2,0)+0.5*(0,1)) node[rectangle, fill=primaryColor!10, draw=primaryColor, line width=2pt, overlay,] primaryColor!;

learnMoreTitle==Kitekintő calc,arrows,backgrounds excursus arrow/.style=line width=2pt, draw=secondaryColor, rounded corners=1ex, , excursus head/.style=font=, anchor=base west, text=secondaryColor, inner sep=1.5ex, inner ysep=1ex, ,

learnMoresingleextra=let 1=(P), 2=(O) in (2,1) coordinate (Q); let 1=(Q), 2=(O) in (1,2) coordinate (BL); let 1=(Q), 2=(P) in (2,1) coordinate (TR); [excursus head] (A) at ((Q) + (2.5em, 0)); [excursus arrow, line width=2pt] ((BL) + (1pt, 0)) |- ((Q) + (2em, 0)); [excursus arrow, line width=2pt, fill=gray!10, -to] ((Q) + (1em, 0)) -| (A.north west) -| (A.base east) - (TR); [excursus head] (A) at ((Q) + (2.5em, 0)); , backgroundcolor=gray!10, middlelinewidth=0, hidealllines=true,topline=true, innertopmargin=2.5ex, innerbottommargin=1.5ex, innerrightmargin=2ex, innerleftmargin=2ex, skipabove=0.5no-break=true,

examplehidealllines=true, leftline=true, backgroundcolor=magenta!10, linecolor=magenta!60!black, linewidth=3pt, innertopmargin=.66em, innerbottommargin=.66em,

Valós analízis BMETE94BG02 6

Matematika G2

Függvénysorozatok

Utoljára frissítve: 2025. május 04.

0.1 Elméleti Áttekintő

[style=definition, nobreak=true, frametitle= white **Definíció 1: Numerikus sor**] Legyen $(a_n): N \to \text{numerikus sorozat}$, amelyből képezzük az alábbi sorozatot:

$$s_n = a_1 + a_2 + \ldots + a_n = \sum_{i=1}^n a_i$$

Az így képzett (s_n) -t az (a_n) sorozatból képzett numerikus sornak mondjuk.

Azt mondjuk, hogy a $\sum a_n$ sor konvergens, ha az s_n sorozat konvergens, továbbá $\sum a_n$ sor divergens, ha s_n sorozat divergens.

Az s_n sorozat határértékét a $\sum a_n$ sor összegének hívjuk:

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{i=1}^n a_i = \sum_{i=1}^\infty a_i.$$

[style=blueBox, nobreak=true,] Numerikus sorozat konvergencia tesztek:

Majoráns kritérium:

ha $\sum a_n < \sum b_n$ és $\sum b_n$ konvergens, akkor $\sum a_n$ is konvergens.

Minoráns kritérium:

ha $\sum a_n > \sum b_n$ és $\sum b_n$ divergens, akkor $\sum a_n$ is divergens.

Hányadosteszt:

ha $\lim_{n\to\infty} |a_{n+1}a_n| = q$ és q < 1, akkor $\sum a_n$ konvergens.

2

Gyökteszt:

ha
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = q$$
 és $q < 1$, akkor $\sum a_n$ konvergens.

• Integrálkritérium: ha $x \ge 1$ esetén f(x) nemnegatív és csökkenő, akkor

$$\sum |f_n|$$
 konvergens, ha $\int_1^\infty f(x)x$ konvergens.

· Leibniz-sor:

 $\sum (-1)^n a_n$ konvergens, ha (a_n) monoton csökkenő nullsorozat.

[style=note, nobreak=true,] A $\sum a_n$ sorozat abszolút konvergens, ha $\sum |a_n|$ is konvergens.

A $\sum a_n$ sorozat feltételesen konvergens, ha $\sum a_n$ konvergens, de $\sum |a_n|$ divergens.

[style=definition, nobreak=true, frametitle= white **Definíció 2: Függvénysorozat**] Az $f_n: I \subset R \to R$ sorozatot függvénysorozatnak nevezzük.

[style=note, nobreak=true,] Egy függvénysor értelmezése tartománya azon halmaz, ahol az összes f_n tagfüggvény értelmezve van:

$$f = \bigcap_{n=0}^{\infty} f_n.$$

[style=definition, nobreak=true, frametitle= white **Definíció 3: Függvénysorozat pont-beli konvergenciája**] Ha az $x_0 \in I$ pontban az $(f_n(x_0))$ számsorozat konvergens, akkor azt mondjuk, hogy az (f_n) függvénysorozat konvergens az x_0 -ban. A konvergenciahalmaz:

$$K := \{ x \mid x \in I \land (f_n) konvergensaz x pontban \}.$$

[style=definition, nobreak=true, frametitle= white **Definíció 4: Függvénysorozat határ-függvénye**] Az f függvényt az (f_n) függvénysorozat határfüggvényének nevezzük:

$$f(x) := \lim_{n \to \infty} f_n(x), \quad x \in K.$$

Azt mondjuk, hogy az (f_n) függvénysorozat pontonként konvergál az f határfüggvényhez a K-n, ha $\forall \varepsilon > 0$ esetén $\exists N(\varepsilon; x)$, hogy $|f_n(x) - f(x)| < \varepsilon$, ha $n > N(\varepsilon; x)$.

[style=definition, nobreak=true, frametitle= white **Definíció 5: Függvénysorozat egyen-letes konvergenciája**] Az (f_n) egyenletesen konvergens az $E \subset H$ halmazon, ha $\forall \varepsilon > 0$ esetén létezik $N(\varepsilon)$ úgy, hogy $|f_n(x) - f(x)| < \varepsilon$, ha $n > N(\varepsilon)$ minden $x \in E$ esetén.

[style=blueBox, nobreak=true,] Ha az (f_n) függvénysorozat folytonos és egyenletesen konvergens, akkor

$$\lim_{n \to \infty} \int_a^b f_n(x)x = \int_a^b \lim_{n \to \infty} f_n(x)x.$$

[style=blueBox, nobreak=true,] Ha az (f_n) függvénysorozat folytonos és az (f'_n) fügvénysorozat is folytonos és egyenletesen konvergens, valamint az (f_n) függvénysorozat pontonként konvergens, akkor

$$\lim_{n \to \infty} f'_n(x) = \left(\lim_{n \to \infty} f_n(x)\right)'.$$

0.2 Feladatok

1. Konvergensek-e az alábbi numerikus sorok? 2

a)
$$\sum_{n=1}^{\infty} \frac{(\cos^n(\pi 2))^{4n}}{n^n + 1}$$

b)
$$\sum_{n=1}^{\infty} \frac{2n^2}{(2+1n)^n}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(1 - \frac{1}{n} \right)^n$$

d)
$$\sum_{n=0}^{\infty} \frac{n!}{2^n + 1}$$

e)
$$\sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{n^2 - 1}$$

f)
$$\sum_{n=1}^{\infty} \frac{n}{e^n}$$

2. Határozza meg az alábbi függvénysorozatok értelmezési tartományát, konvergencia tartományát és határfüggvényét! 2

a)
$$f_n(x) = x^n$$

b)
$$f_n(x) = \frac{x^{n+2} + 1}{x^n}$$

c)
$$f_n(x) = \frac{\sin nx}{n}$$

$$d) f_n(x) = (\ln x)^n$$

e)
$$f_n(x) = n \sin\left(\frac{x}{n}\right)$$

f)
$$f_n(x) = n \cos\left(\frac{x}{n}\right)$$

3. Egyenletesen konvergens-e az alábbi függvénysorozat a (2; 5) intervallumon?

$$f_n(x) = \frac{2x^3n^2}{x^2n^2 + 5}$$

4. Bizonyítsa be, hogy

$$\lim_{n \to \infty} \int_0^{2\pi} \frac{\sin(n^4 x^2 + 3)}{x^2 + n^3} x = 0$$

5

5. Létezik-e az alábbi függvénysorozat deriváltja?

$$f_n(x) = x^2 + \frac{1}{n}\sin\left[n\left(x + \frac{\pi}{2}\right)\right]$$

6. Adja meg az f_n függvénysorozat összegfüggvényét a [0;2] intervallumon! Egyenletesen konvergens-e az összegfüggvény a konvergencia-intervallumon?

$$f_n = \{ n^2 x, ha \mid 0 \le x \le 1n \land n \in N^+ 1x, ha \mid 1n \le x \le 2 \land n \in N^+ \}$$