View Factor for a Square Area – Case 1

Problem: Use Monte Carlo method to determine view factor F_{12} for dA_1 and A_2 as shown below.

Solution: Sample the polar and azimuthal angles for a pair of random variables.

$$R_{\theta} = \sin^2(\theta)$$
$$R_{\phi} = \frac{\phi}{2\pi}$$

Since the bundle lands at $z=D_z$, we can find the displacement vector (x',y') by converting from polar coordinates.

$$z = r\cos(\theta) = D_z \Rightarrow r = D_z \sec(\theta)$$

$$x' = r\sin(\theta)\cos(\phi) = D_z \tan(\theta)\cos(\phi)$$

$$y' = r\sin(\theta)\sin(\phi) = D_z \tan(\theta)\sin(\phi)$$

And add the vectors to get the final position (x_2, y_2) .

$$x_2 = x + D_z \tan(\theta) \cos(\phi)$$

$$y_2 = y + D_z \tan(\theta) \sin(\phi)$$

If $0 \le x_2 \le D_x$ and $0 \le y_2 \le D_y$, then the bundle hits A_2 .

To calculate the view factor F_{12} , launch N_1 bundles and count the number N_2 of them that land on A_2 .