19-11-2024

Projects

- Can be done in a group (max two students)
- Be careful about your project partner!
- If he is auditing the course then you will be in trouble!
- Define your own project
- Submit a one page project proposal- within fixed time (first four weeks)?
- Finished the work within the time-line
- Report submission
 - ► Submission deadline: seven days before the final exam date, is strict and you can adjust your assignment buffer days here 24-11-2024
 - We will consider 11:59PM as our day end
- Final presentation
 - 20 min (divided into group members)
 - Five days before the final exam date 26-11-2024 & 27-11-2024

Auto-encoder

- Dimensionality reduction:
 - Classical method (linear): PCA
 - ▶ Data matrix: $X \in \mathbb{R}^{d \times N}$
 - ▶ Projection matrix: $W \in \mathbb{R}^{d \times d_1}$

- Reconstruction: $\bar{X} = [WW^T]^{-1}WZ$
- In general $-f: \mathbb{R}^d \to \mathbb{R}^{d_1}; g: \mathbb{R}^{d_1} \to \mathbb{R}^d$
- ► LDR: Z = f(X)
- Reconstruction: $\bar{X} = g(Z) = g[f(X)]$
- Non-linear dimensionality reduction

- Issues in Auto-encoder $f: \mathbb{R}^d \to \mathbb{R}^{d_1}; g: \mathbb{R}^{d_1} \to \mathbb{R}^d$
 - Overfitting
 - What about the size of the latent dims. (d_1) ?
 - $-d < d_1$
 - $-d = d_1$
 - $d > d_1$
 - $-d_1 = 1$
 - Bias-variance tradeoff
 - We want the architecture of the auto-encoder to be able to reconstruct the input well
 - We want the low representation to generalise to a meaningful one
 - Solution:
 - Sparse Auto-encoder; Denoising Auto-encoder; ...

- Denoising Auto-encoder:
 - Add small noise to the input data
 - What about the random noise ?

$$-\tilde{X} = X + \epsilon; \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$- C_{\sigma}(\tilde{X} | X) = \mathcal{N}(X, \sigma^{2}I)$$

$$- C_p(\tilde{X}|X) = \beta \odot X; \beta \sim Ber(p)$$

- Demo:
 - https://cs.stanford.edu/~karpathy/convnetjs/demo/autoencoder.html

- Take-home on Auto-encoder
 - Non-linear dimensionality reduction
 - Useful for unsupervised feature learning

Variational auto-encoder

$$log p_{\theta}(x) = E_{z}[p_{\theta}(x | z)] - KL[q_{\phi}(z | x) || p_{\theta}(z)] + KL[q_{\phi}(z | x) || p_{\theta}(z | x)]$$

$$= E_{z}[p_{\theta}(x | z)] - KL[q_{\phi}(z | x) || p_{\theta}(z)]$$

$$\stackrel{\geq 0}{=} E_{z}[p_{\theta}(x | z)] - KL[q_{\phi}(z | x) || p_{\theta}(z)]$$

Variational auto-encoder

Latent space

```
44666666600000
          6666666
7777788888885555600
9 7 7 7 8 8 8 8 8 8 8 8 8 5 5 5 5 6 6
   111111111111111
```

Molecule representation in continuous space

Generative model for new molecule generation: Variational Autoencoder

Results

- ZINC15: 2D Drug-Like, clean and in-stock (6,202,415 substances)
- Data partition: randomly partition the dataset into train-50% (3,101,207), validation-20% (1,240,483) and test-30% (1,860,725)

Data partition	#Samples	#Valid reconstructed samples	Accuracy(%)
Train	3,101,207	2,984,669	96.24
Validation	1,240,483	1,180,189	95.13
Test	1,860,725	1,771,064	95.18

Reconstructed molecules on test dataset

ouro	000	acho.	000	4000	2000	Q p	Q HO	Lond	rond
mol_id_0_original	mol_id_0_reconstructed	mol_id_1_original	mol_id_1_reconstructed	mol_id_2_original	mol_id_2_reconstructed	mol_id_3_original	mol_id_3_reconstructed	mol_id_4_original	mol_id_4_reconstructed
ou	oth	مون	ago	2000	300	074p	250	50	d'o
mol_id_5_original	mol_id_5_reconstructed	mol_id_6_original	mol_id_6_reconstructed	mol_id_7_original	mol_id_7_reconstructed	mol_id_8_original	mol_id_8_reconstructed	mol_id_9_original	mol_id_9_reconstructed
monoro	ممررمر	, \$°00	100	Q T	457	9010	924	T'A	919
mol_id_10_original	mol_id_10_reconstructed	mol_id_11_original	mol_id_11_reconstructed	mol_id_12_original	mol_id_12_reconstructed	mol_id_13_original	mol_id_13_reconstructed	mol_id_14_original	mol_id_14_reconstructed
0.000	0.000	<u>₹</u> ~8	<u> </u>	org	org	Sto.	A CA	550	500
mol_id_15_original	mol_id_15_reconstructed	mol_id_16_original	mol_id_16_reconstructed	mol_id_17_original	mol_id_17_reconstructed	mol_id_18_original	mol_id_18_reconstructed	mol_id_19_original	mol_id_19_reconstructed
		00	00	Ly Ly	Lyly.	203	~0°3	po	pròq
mol_id_20_original	mol_id_20_reconstructed	mol_id_21_original	mol_id_21_reconstructed	mol_id_22_original	mol_id_22_reconstructed	mol_id_23_original	mol_id_23_reconstructed	mol_id_24_original	mol_id_24_reconstructed

Sampling molecules from the latent space

Output

Nearest neighbour sampling for a test data

Nearest neighbour search

Latent dimension evaluation

