Merge Sort

© 2004 Goodrich, Tamassia

© 2004 Goodrich, Tamassia

Merge Sort

1

Divide-and-Conquer (§ 10.1.1)

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It uses a comparator
 - It has $O(n \log n)$ running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a seguential manner (suitable to sort data on a disk)

© 2004 Goodrich, Tamassia

Merge Sort

2

Merge-Sort (§ 10.1)

- Merge-sort on an input sequence S with nelements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: recursively sort S₁ and S_2
 - Conquer: merge S₁ and S_2 into a unique sorted sequence

Algorithm mergeSort(S, C)

Input sequence S with nelements, comparator C

Output sequence S sorted according to C

if S.size() > 1

 $(S_1, S_2) \leftarrow partition(S, n/2)$

 $mergeSort(S_1, C)$ $mergeSort(S_2, C)$

 $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of meraina two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

Algorithm merge(A, B)

Input sequences A and B with n/2 elements each

Output sorted sequence of $A \cup B$

 $S \leftarrow$ empty sequence

while $\neg A.empty() \land \neg B.empty()$

if A.front() < B.front()

S.addBack(A.front()); A.eraseFront();

else

S.addBack(B.front()); B.eraseFront();

while $\neg A.empty()$

S.addBack(A.front()); A.eraseFront();

while $\neg B.empty()$

S.addBack(B.front()); B.eraseFront();

return S

Merge Sort

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

© 2004 Goodrich, Tamassia

Merge Sort

Execution Example Partition 2 9 4 3 8 6 1 Merge Sort © 2004 Goodrich, Tamassia

Execution Example (cont.)

Recursive call, partition

Execution Example (cont.)

Recursive call, partition

Merge Sort © 2004 Goodrich, Tamassia © 2004 Goodrich, Tamassia

Merge Sort

© 2004 Goodrich, Tamassia

12

Execution Example (cont.)

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- lacktriangle The overall amount or work done at the nodes of depth i is O(n)

Merge Sort

14

- we partition and merge 2^i sequences of size $n/2^i$
- we make 2ⁱ⁺¹ recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

Merge Sort15© 2004 Goodrich, TamassiaMerge Sort16

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	$O(n \log n)$	fastin-placefor large data sets (1K — 1M)
merge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)

Merge Sort

© 2004 Goodrich, Tamassia

17