

Ekspektasi: Teori dan Fakta

Konsep Dasar Hukum Bilangan Besar

1.1 Ekspektasi: Teori dan Kenyataannya

Misalkan X menyatakan banyaknya mata dadu 1 yang muncul dari pelemparan enam dadu. Secara teori, kita tahu bahwa $X \sim \text{Bin}(6, \frac{1}{6})$ dengan ekspektasi E[X] = 1. Bagaimana dengan kenyataanya?

- Lakukan simulasi pada link: https://www.random.org/dice/?num=6.
- Lengkapi https://bit.ly/SimulasiDaduRekap dengan hasil simulasi dadu.

Kita akan melihat kaitan antara teori peluang dan statistika sebagai gambaran besar mata kuliah ini.

1.2 Hukum Bilangan Besar

Teorema. Misalkan X variabel acak dengan nilai ekspektasi atau rata-rata _____. Misalkan pula diberi data empiris X_1, X_2, \ldots, X_n adalah hasil ______ dari variabel acak X yang dilakukan secara ______ (identically & independently distributed):

- identik artinya $X_1 \sim X, X_2 \sim X, \dots, X_n \sim X$,
- saling bebas artinya X_i tidak mempengaruhi X_i untuk setiap $i \neq j$.

Maka, nilai rata-rata empiris $\bar{X}_n=rac{1}{n}(X_1+X_2+\ldots+X_n) o \mu_X$ saat $n o\infty$.

Misalkan X variabel acak yang menyatakan banyak sisi 1 dari pelemparan enam buah dadu.

Teori	Kenyataan
$\mu_X = \underline{\hspace{1cm}}$	• $ar{X}_{10} =$ • $ar{X}_{100} =$ • $ar{X}_{1000} =$

1.3 Populasi dan Sampel

Secara rata-rata, dalam satu minggu, berapa kali orang indonesia pergi keluar rumah?

- Misalkan X variabel acak banyaknya orang yang pergi keluar rumah dalam 1 minggu.
- μ_X sebagai rata-rata dari X, yakni $\frac{1}{N}(X_1+X_2+\ldots+X_N).$
- Populasi yang menjadi fokus perhatian adalah WNI, namun ini tidak mudah jika dilakukan untuk $N=|{\sf Populasi}|\approx 250$ juta orang. Oleh karena itu, kita perlu mengambil $k=|{\sf Sampel}|\ll N$.
- Nilai statistik dari _____ biasanya lebih sulit untuk dihitung nilainya.
- Nilai statistik dari _____ biasanya lebih mudah untuk dihitung nilainya. Nilai statistik ini dapat digunakan untuk memberikan gambaran atau estimasi nilai statistik _____.

Definisi. Misalkan suatu populasi memiliki rata-rata . Misalkan pula diambil buah sampel dari populasi yang diambil secara ______ dan _____ dan _____ dengan hasil realisasi x_1, x_2, \ldots, x_N . Maka, rata-rata dari sampel, yakni $\bar{x}_N = \frac{1}{N}(x_1 + x_2 + \ldots + x_N),$ disebut sebagai ______ bagi μ_X .

Kalimat " \bar{x}_N adalah estimator titik bagi μ_X " memiliki beberapa intepretasi.

- Nilai persis dari tidak diketahui, sedangkan nilai dari dapat diketahui atau dihitung.
- Berdasarkan _____, nilai _____ ketika _____.
- Semakin banyak sampel yang diambil, maka semakin akurat untuk mengestiamasi .

Konsep Populasi dan Sampel

Teorema Limit Pusat dan Estimasi Rataan

1.4 Teorema Limit Pusat

Sebagai ilustrasi, beberapa masalah dalam kehidupan sehari-hari yang memiliki distribusi beragam:

- data tinggi badan mahasiswa CIT,
- data harga saham harian,
- data persentase warga setuju suatu kebijakan pemerintah,
- data banyakanya mahasiswa per angkatan,
- data hasil pelemparan dadu,
- data pendapatan harian pengemudi ojek online.

Bagaimana kita mengetahui seberapa \bar{x}_N dekat atau jauh dari μ_X ?

Teorema. Misalkan suatu populasi atau variabel acak _____ memiliki rata-rata ____ dan variansi _____. Misalkan pula _____ data sampel diambil dari populasi secara _____, yakni $x_1, x_2, \ldots, x_N \sim X$. Jika _____ adalah rata-rata dari sampel, maka $Z = \frac{\bar{x}_N - \mu_X}{\sigma_X/\sqrt{N}} \sim \mathcal{N}(0,1),$ ketika $N \to \infty$. Biasanya, kita gunakan $N \geq 30$ sebagai kondisi 'tak hingga' ini. Lebih jauh, konvergensi ini berlaku tanpa mempedulikan dari variabel acak X.

1. **Estimasi rataan sampel dari populasi.** Waktu tempuh MRT dari stasiun Lebak Bulus ke stasiun Bundaran HI diketahui secara umum memiliki rata-rata 32 menit dengan standar deviasi 5 menit. Dalam suatu hari, diketahui MRT beroperasi bolak-balik dalam jalur ini sebanyak 50 kali. Dalam satu hari ini, berapa peluang rata-rata lama perjalanannya lebih dari 35 menit?

- 2. **Estimasi rataan populasi dari sampel.** Waktu proses pembuatan KTP bervariasi secara acak tanpa diketahui nilai rata-ratanya. Namun, diketahui bahwa variansinya adalah 1 hari. Anda mengumpulkan data dari 50 teman Anda mengenai lama pembuatan KTP dari pengalaman mereka. Setelah dirata-rata, diperoleh nilai 4,5 hari.
 - (a) Seberapa mungkin bahwa rata-rata lama proses pembuatan KTP berkisar antara 4-5 hari?

(b) Tentukan nilai k terkecil sehingga Anda dapat yakin dengan tingkat kepercayaan 95% bahwa secara umum, rata-rata pembuatan KTP tidak melebihi k hari. Jelaskan.

