385 Copy RM L58D09

Supersidul by
7140-893

NACA

RESEARCH MEMORANDUM

PRESSURE LOADS PRODUCED ON A FLAT-PLATE WING BY ROCKET

JETS EXHAUSTING IN A SPANWISE DIRECTION BELOW THE

WING AND PERPENDICULAR TO A FREE-STREAM

FLOW OF MACH NUMBER 2.0

By Ralph A. Falanga and Joseph J. Janos

Langley Aeronautical Laboratory Langley Field, Va.

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the mean of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

June 5, 1958

CONFIDENTIAL

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRESSURE LOADS PRODUCED ON A FLAT-PLATE WING BY ROCKET

JETS EXHAUSTING IN A SPANWISE DIRECTION BELOW THE

WING AND PERPENDICULAR TO A FREE-STREAM

FLOW OF MACH NUMBER 2.0

By Ralph A. Falanga and Joseph J. Janos

SUMMARY

An investigation at a Reynolds number per foot of 14.4×10^6 was made to determine the pressure loads produced on a flat-plate wing by rocket jets exhausting in a spanwise direction beneath the wing and perpendicular to a free-stream flow of Mach number 2.0. The ranges of the variables involved were (1) nozzle types - one sonic (jet Mach number of 1.00), two supersonic (jet Mach numbers of 1.74 and 3.04), and one two-dimensional supersonic (jet Mach number of 1.71); (2) vertical nozzle positions beneath the wing of 4, 8, and 12 nozzle-throat diameters; and (3) ratios of rocket-chamber total pressure to free-stream static pressure from 0 to 130.

The incremental normal force due to jet interference on the wing varied from one to two times the rocket thrust and generally decreased as the pressure ratio increased. The chordwise coordinate of the incremental-normal-force center of pressure remained upstream of the nozzle center line for the nozzle positions and pressure ratios of the investigation. The chordwise coordinate approached zero as the jet vertical distance beneath the wing increased. In the spanwise direction there was little change due to varying rocket-jet position and pressure ratio. Some boundary-layer flow separation on the wing was observed for the rocket jets close to the wing and at the higher pressure ratios. The magnitude of the chordwise and spanwise pressure distributions due to jet interference was greatest for rocket jets close to the wing and decreased as the jet was displaced farther from the wing.

The design procedure for the rockets used is given in the appendix.

INTRODUCTION

It has been shown in reference 1 that jets exhausting laterally into supersonic streams from bodies of revolution produce some side force due to jet-interference effects. Data obtained in the Langley Pilotless Aircraft Research Division showed that rockets mounted below the wing on a free-flight model to produce a yawing disturbance also created a very large pitching disturbance and some rolling when fired. This induced lift may be used as a controlling force for high-speed missiles. The application of such a technique would simplify and lighten control systems for the missiles.

The purpose of this investigation, which is a phase of a current program to study various aspects of jet interference, was to determine the pressure loads produced on a flat-plate wing by rocket jets exhausting in the spanwise direction below the wing and perpendicular to a supersonic free stream. The variables involved were nozzle type, nozzle vertical position beneath the flat-plate wing, and the ratio of rocket-chamber pressure to free-stream static pressure. The types of nozzles used were one axially symmetric sonic nozzle (jet Mach number of 1.00), two axially symmetric supersonic nozzles (jet Mach numbers of 1.74 and 3.04), and one two-dimensional supersonic nozzle (jet Mach number of 1.71). The three vertical positions investigated were 4, 8, and 12 nozzle-throat diameters from the plate. The range of the ratio of rocket-chamber pressure to free-stream static pressure was from 0 to 130.

The tests were conducted in the 27- by 27-inch preflight jet facility of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. at a free-stream Mach number of 2.0 and a free-stream Reynolds number per foot of 14.4×10^6 .

SYMBOLS

c_p	pressure coefficient, p - p_{∞}/q_{∞}
D .	diameter
F	force, lb
M	Mach number
р	static pressure, lb/sq ft

pt total pressure, lb/sq ft

q dynamic pressure, lb/sq ft

 x/D_T ratio of chordwise distance along flat-plate wing to rocket nozzle-throat diameter, positive when measured from leading edge of vertical strut rearward

 y/D_T ratio of spanwise distance across flat-plate wing to rocket nozzle-throat diameter, positive when measured from leading edge of vertical strut towards center of tunnel

 $\Delta \bar{x}/D_T$ ratio of incremental chordwise distance that center of pressure is from rocket-nozzle center line to rocket nozzle-throat diameter, positive when measured downstream of center line

 \bar{y}/D_T ratio of spanwise location of center of pressure to nozzle-throat diameter, positive when measured from nozzle exit

 γ ratio of specific heats of rocket exhaust gases

z/D_T ratio of vertical distance below flat-plate wing to rocket nozzle-throat diameter, positive when measured from lower surface of wing downward

 $\Delta C_{\rm p}$ — incremental pressure coefficient, $C_{\rm p_{\rm on}}$ - $C_{\rm p_{\rm off}}$

 ΔF_{N} incremental normal force, $\left(\iint\!\!\!\Delta C_{\mathrm{p}}\ \mathrm{d}x\ \mathrm{d}y\right)q_{_{\infty}}$

Subscripts:

c rocket chamber

j jet-exit station

N normal

T nozzle-throat station

∞ free stream

on rocket operating

off rocket not operating

APPARATUS

Preflight Jet Facility

The tests were conducted in the preflight-jet facility of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. A description of this facility is given in reference 2. A Mach number 2.0, 27-inch-square nozzle was used for all tests. A photograph of the test setup is shown as figure 1.

Wing

A steel flat plate, 1/2 inch thick, was used to simulate a two-dimensional wing and this plate was made to span the exit (27-inch) nozzle. The wing was welded to supports that were bolted to the exit flange of the preflight-jet nozzle. The leading edge of the wing had an 8° bevel on the upper surface and protruded approximately 3 inches upstream into the preflight-jet nozzle exit. The wing had a rectangular plan form and a chord of $16\frac{3}{8}$ inches. Static-pressure orifices were installed on the wing lower surface and their positions are shown in figure 2.

Vertical Strut

The vertical plate which was bolted to the wing was fabricated from 1/2-inch-thick steel plate. The leading edge was beveled to 18° and was located 1.5 inches upstream of the exit plane of the preflight-jet nozzle exit. The strut was located 3 inches from the side wall of the jet. This was done to keep the strut free of the boundary-layer buildup present along the tunnel nozzle wall. The strut had a chord of 15 inches and included provisions for mounting rocket motors in three positions: A, B, and C. These positions were located at x/D_T of 2^4 , 17.5, and 10.5 downstream of the strut and z/D_T of 4, 8, and 12 beneath the flatplate wing. The rocket-nozzle exits were faired with the inner surface of the vertical strut, and located downstream of these nozzle exits were a total of nine static-pressure orifices. Figure 2 illustrates the arrangement of the flat-plate wing, vertical strut, and rocket-nozzle locations. This figure also shows the locations of the strut orifices.

Rockets

Figure 3 is a detailed drawing of the rocket nozzles used in the investigation. The throat areas were the same for all the rocket

CONFIDENTIAL

nozzles; thus, the two-dimensional nozzle has an equivalent throat diameter equal to the throat diameter of the axisymmetric nozzles. The rectangular exit of the two-dimensional nozzle was oriented such that the long side of the rectangular section was vertical. All distances from nozzle exits are expressed in terms of nozzle-throat diameters or equivalent throat diameter.

Specially designed solid-propellant rockets generated the hot exhaust gases (γ = 1.25). These rockets were designed to give a triangular chamber-pressure impulse and to operate within a range of 0 to 1,800 pounds per square inch in a time interval of 0.8 second. (See fig. 4.) The range of chamber pressure varied some from rocket to rocket because of variations in burning characteristics of the solid propellants and, also, because of different amounts of nozzle losses. A detailed description of the design, performance, and components of the rockets is given in the appendix.

INSTRUMENTATION

The pressures at the head end of the rocket chamber were measured for all tests. The pressure distributions on the flat-plate wing were measured by Statham pressure gages and by two 6-cell pressure units. These gages and cells were connected to 0.06-inch-diameter wing orifices by 1/8-inch copper tubing. The chordwise and spanwise locations of these wing static-pressure orifices are shown in figure 2.

Nine static-pressure orifices 0.06 inch in diameter supplied some static-pressure data on the inner surface of the vertical strut. The locations for these orifices are also shown in figure 2. The free-stream total and static pressures of the preflight-jet nozzle exit were measured for all tests so that free-stream dynamic pressure and pressure coefficients could be computed. Four oscillograph recorders and two 6-cell pressure recorders were used to register all the data obtained for this investigation.

ACCURACY

The accuracy of the measurements, based on instrument accuracy and errors in reading and plotting the data, was estimated to vary within the following limits:

M_{∞}																													
$p_{t,c/p_{\infty}}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	±0.500
$\Delta C_{ m p}$	•			•	• .	•	•	•	•	•	•	•	•	•			•	•	•.	•					•		. •		±0.013
F,	•	•			:	•		•	•	•	•	•	÷	•	•	•	•	•	•	•	•	•	•	•	•	•		•	±0. 500

One test was repeated and the results obtained agreed favorably with a comparable one and were within the tolerances just presented.

Any transient effects which may have been inherent in the system appeared to be negligible, since an examination of plots of ΔC_p as a function of increasing and decreasing pressure ratio revealed no appreciable discrepancies.

The alinement of the flat-plate wing, vertical strut, and rocket-nozzle center lines is believed to be within ±10.

TEST PROCEDURE

The main measurements made during each test were: wing static pressures, strut static pressures, preflight-jet total and static pressures, and rocket-chamber pressures.

Static tests of four rockets were made in the Langley Pilotless Aircraft Research Division rocket test area. Each rocket tested used one of the four nozzle types incorporated in this investigation. rocket thrust and chamber pressure were measured during each static test, and from these measurements calibration curves of jet static pressure as a function of rocket-chamber pressure for each nozzle type were obtained. A description of how these calibration curves were obtained is included in the appendix. Each nozzle type was tested in the three positions (A, B, and C) beneath the flat-plate wing, and pressure-distribution data on wing and strut were obtained. Complete pressure-distribution data on the flat-plate wing for the sonic $(M_j = 1.00)$ and supersonic $(M_j = 1.74)$ nozzles in positions A, B, and C have been presented; whereas, only data on the wing for the rockets with supersonic nozzle $(M_j = 3.04)$ in positions A and C and with twodimensional supersonic nozzle $(M_j = 1.71)$ in positions A and B have been presented herein. Because of rocket misfires the data for positions B and C were not obtained for the supersonic and two-dimensional supersonic nozzles, respectively.

All the pressure measurements taken on the wing and strut were within the Mach diamond of the preflight-jet nozzle.

METHOD OF ANALYSIS

The interference pressures due to the presence of the jet were obtained by subtracting the jet-off pressure measurements from the jet-on pressure measurements. Although the wing was a flat plate, warpage in the plate resulted in small pressure coefficients at zero lift.

The incremental normal force on the flat-plate wing was obtained by integrating graphically the incremental pressure coefficients over the wing surface.

The center of pressure for the incremental pressure loads for the sonic nozzle in positions A, B, and C and for several pressure ratios was obtained graphically by integrating the chordwise and spanwise moments over the wing. The total moments were then divided by the incremental normal force to obtain chordwise and spanwise coordinates of the center of pressure. Since the chordwise coordinates for the positions A, B, and C also varied, the center-of-pressure results are presented in terms of $\Delta \bar{\mathbf{x}}$. These coordinates have been referenced to the nozzle-throat diameter.

The presence of flow separation was determined by the criterion of double peak in the chordwise pressure distribution as in references 3 and 4. The roughness Reynolds number was 4,625 calculated for the first spanwise row of wing orifices, and according to reference 5 this value was well above the transition Reynolds number. Hence, the analysis that follows assumes a turbulent boundary layer along the wing.

FLOW PHENOMENA

A brief description of the flow field existing about a jet issuing perpendicular to an external supersonic stream and the nomenclature used herein may be helpful in discussing the plots that follow. Figure 5 illustrates diagrammatically a chordwise section of the flow field existing around such a jet with the parts of the jet and flow field labeled. When the jet-exit static pressure is greater than the external-flow static pressure, the jet will expand as it leaves the nozzle. This expanding jet is initially perpendicular to the external flow and immediately upon leaving the nozzle exit begins to turn in the direction of the supersonic flow. A primary shock wave forms in the region just upstream of the issuing jet boundary. In the plan-form view the primary shock wave varies from normal (maximum shock strength) just upstream of

the jet exit to oblique in the spanwise direction. This shock pattern exhibits the same characteristics in the vertical plane. The region between the primary shock wave and jet boundary will experience positive pressures and the magnitude of these positive pressures will diminish as the primary shock-wave angle decreases with respect to the stream direction. The pressure reaches a positive peak at the primary shock and then an expansion of the flow causes negative pressures. Then, a recompression brings the negative values to slightly below free-stream conditions. This recompression may be due to a wake shock (considering the jet as a solid body), a jet shock originating within the jet, or a combination of both. Schileren photographs of some actual flow fields existing about side jets exhausting into supersonic main streams are shown in reference 1.

RESULTS AND DISCUSSION

Wing pressure data are presented in tables 1 to 10 as incremental pressure coefficients for the following variables: nozzle geometry, nozzle position, and pressure ratio. The effects of these variables on wing pressure distributions (as a result of shock location and boundary-layer separation), loads, and centers of pressure are discussed in the following sections. Because of insufficient pressure data on the strut, no discussion of the incremental vertical-strut pressures is made; only the tabulated data (tables 11 to 14) are presented.

Incremental Wing Pressures

Since the rocket-chamber pressures varied during each test, values of ΔC_p for $p_{t,c}/p_{\infty}$ in increments of 10 have been given in tables 1 to 10. The variations of chordwise and spanwise ΔC_p are presented for a value of $p_{t,c}/p_{\infty}$ of 58 in figures 6 to 9 and for a value of $p_{t,c}/p_{\infty}$ of 120 in figure 10. In general, these plots show the same characteristics: namely, in the chordwise direction the pressure rises to maximum values, then a rapid expansion of the flow causes negative coefficients, and a recompression brings the negative values to near free-stream conditions. In the spanwise direction ΔC_p diminishes in magnitude from a maximum near the nozzle exit to near free-stream conditions at distances greater than 30 nozzle throat diameters from the exit.

These plots also indicate that the effects on pressure distributions due to nozzle geometries were small; whereas, the effects on induced wing pressures due to nozzle position and pressure ratio appear to be more pronounced. The induced pressures were the greatest when the rocket jets were located at position A and were the least at position C. As the pressure ratio was increased, the magnitude of the

induced wing pressures also increased. These results were due mainly to the angle the primary shock makes with the wing at the intersection point. For the rocket jets close to the wing (position A), the angle was the greatest and, hence, the magnitude of the induced pressures was the greatest. Increasing the pressure ratio increased the shock angle and thus caused even greater induced pressures on the wing. (See figs. 7 and 10 for a comparison of pressure distributions for nozzle position A at values of $p_{\mbox{t.c}}/p_{\mbox{\tiny ∞}}$ of 58 and 120.)

The fact that the more intense portion of the primary shock intersected the wing for positions A and B rather than for position C for all nozzle types caused the boundary-layer flow to separate in some regions forward of the primary shock for positions A and B. This is evident from the initial shape of the chordwise pressure-distribution curves, as reported in references 3 and 4 for turbulent separated flow, since the initial portions of the pressure-distribution curves have a double peak. The chordwise pressure variations (up to the maximum peak point) obtained at y/DT of 2.5 for the sonic nozzle in positions A and B were similar to that observed about a forward-facing step with separated boundary layer in reference 3. An incremental pressure coefficient of approximately 0.35 measured for the first pressure peaks from distributions for positions A and B agreed favorably with the turbulent-boundary-layer value (0.335) measured on a flat plate from the step technique of reference 3 at a free-stream Mach number of 2.0.

Integrated Loads

The incremental force obtained was divided by the rocket thrust and this force ratio is plotted as a function of pressure ratio in figure 11. The force ratio varied approximately between 1 and 2 and generally decreased with increasing pressure ratio. Figure 11(a) shows that, generally, at any pressure ratio the force ratio decreases as the sonic nozzle is moved away from the wing. This is the same result that was obtained in reference 6 for jets exhausting downstream. Figure 11(b) shows that the two-dimensional supersonic nozzle (M $_{\rm j}$ = 1.71) induced loads that were about half as large as those induced by the M $_{\rm j}$ = 1.0 and 1.74 nozzles; whereas, the M $_{\rm j}$ = 3.04 nozzle induced loads that were about 70 percent as large.

Center of Pressure

The variation of incremental normal-force center of pressure for chordwise and spanwise directions is illustrated in figure 12 for only one case, that of the sonic nozzle operating at $p_{t,c}/p_{\infty}$ of 50, 75, and 100.

Figure 12(a) shows that the spanwise location of center of pressure varies little as the vertical distance of the jet from the wing is varied. In general, the \bar{y}/D_T moves closer to the nozzle exit as $p_{t,c}/p_{\infty}$ is increased to 100. The decrease of \bar{y}/D_T as total pressure ratio is increased appears plausible, since at the higher pressure ratios the jet expands more and has more resistance to bending. This causes a more intense portion of the primary shock wave to intersect the wing in the region near the nozzle exits.

Figure 12(b) shows the effect on chordwise location of the center of pressure as vertical distance and pressure ratio are varied. The chordwise location $\Delta\bar{x}/D_T$ remains forward of the nozzle center line for the range of vertical distance and total pressure ratio covered. The chordwise location $\Delta\bar{x}/D_T$ moves toward the nozzle center line with increase in nozzle vertical distance from the wing and it moved upstream as $p_{t,c}/p_{\infty}$ was increased. The chordwise location came closest to the nozzle center line $(\Delta\bar{x}/D_T=-1.17)$ for a value of z/D_T of 12 and $p_{t,c}/p$ of 50.

SUMMARY OF RESULTS

An experimental investigation was conducted to determine the pressure loads produced on a flat-plate wing by rocket jets exhausting in a spanwise direction beneath the wing and perpendicular to a supersonic free stream. The tunnel free-stream Mach number at the test section was 2.0 and the free-stream Reynolds number per foot was 14.4×10^6 . The results of varying the nozzle type, nozzle position, and pressure ratio may be summarized as follows:

- 1. The incremental normal force due to jet interference on the wing varied from one to two times the rocket thrust and generally decreased as the pressure ratio increased.
- 2. Although the magnitude of the incremental pressures decreased as the jet was displaced farther away from the wing, the incremental normal force decreased only slightly.
- 3. The supersonic nozzle (jet Mach number M_j of 3.04) induced loads that were about 70 percent as large as those induced by the sonic nozzle (M_j = 1.00) and the supersonic nozzle (M_j = 1.74); whereas, the two-dimensional supersonic nozzle (M_j = 1.71) induced loads that were about half as large.
- 4. The spanwise ordinate of the interference center of pressure indicated small movement as the nozzle position was varied.

CONFIDENTIAL

- 5. The chordwise ordinate of the center of pressure remained upstream of the rocket-nozzle center line for the range of vertical position and pressure ratios covered. As the vertical distance of the jet was increased, the center of pressure moved closer to the rocket-nozzle center line and as the pressure ratio was increased, the center of pressure moved farther upstream from the rocket-nozzle center line.
- 6. Boundary-layer separation was observed for the jets in the close positions to the wing and for higher pressure ratios.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 21, 1958.

APPENDIX

DESIGN PROCEDURE FOR ROCKETS EMPLOYED

In order to illustrate the design procedure, the actual rocket parameters which were required for this investigation are used herein and are presented as follows:

Range of $p_{t,c}/p_{\infty}$ from 0 to 130 Relative symmetric time-history variation of $p_{t,c}/p_{\infty}$ Rocket operating time of 0.6 to 0.8 second Back pressure p_{∞} of 14.7 pounds per square inch absolute

Internal Ballistics Relationships

For the rocket operating at equilibrium conditions, the mass rate of gases generated by combustion of the solid propellant must be equal to the mass rate of gases discharged through the rocket nozzle - namely,

$$m_{g} = m_{d} \tag{1}$$

The mass rate of gases generated is a function of the solidpropellant density, the exposed propellant area, and the linear burning rate of the propellant, which can be written as

$$m_{g} = \rho Sb \tag{2}$$

where the linear burning rate is defined as

$$b = Cp_{t,c}^{n}$$
 (3)

Substituting equation (3) into equation (2) gives

$$m_g = \rho SCp_{t,c}^n$$
 (4)

where

C coefficient in equation (3) which is a function of propellant

p_{t.c} rocket-chamber total pressure, lb/sq in.

n function of propellant

ρ density of solid propellant, lb/cu in.

S exposed solid-propellant area to combustion flame, sq in.

From equation (1), the mass rate of gases discharged can be written as a function of a discharge coefficient, rocket nozzle-throat area, and rocket-chamber total pressure:

$$m_{d} = C_{D}A_{t}P_{t,c}$$
 (5)

where C_D , the discharge coefficient, is defined as the mass rate of flow possible when a given powder composition is burned in a rocket motor having a unit throat area and a unit chamber pressure. The discharge coefficient C_D remains relatively constant throughout the combustion process. Thus, the burning surface of the solid propellant must vary according to the following equations:

$$S = \frac{C_D A_t p_{t,c}}{\rho b}$$
 (6a)

or

$$S = \frac{C_D A_t}{\rho C} (p_{t,c})^{1-n}$$
 (6b)

Propellant Design

In order to cover the desired pressure-ratio range for this investigation, the combustion-chamber pressure was varied as shown in the following diagram:

The other important parameters necessary in designing the propellant have been fixed at the following values:

$$C_{\rm D} = 0.0073$$

 $A_{t} = 0.0314 \text{ sq in.}$

 $\rho = 0.057 \text{ lb/cu in.}$

 $p_m = 14.7 \text{ lb/sq in. abs}$

b (See fig. 13 for these values), in./sec

A Cordite SU/K solid-propellant rocket grain was chosen as the propellant and was modified to meet the requirements. The Cordite grain is easily machined and its burning-rate curve (fig. 13) fitted the requirements. The initial length and maximum diameter of the grain were fixed by the size of the rocket. By using equations (6) with the given data, a time history of the exposed burning area was obtained. From these data the thickness and external shape of the grain were easily arrived at. The resulting shape of the grain used was a right circular cylinder with an initial hole through the center whose diameter was dictated by the initial exposed burning area. On

the external surface the grain had tapered end sections which were dictated by the requirement that the time history of the pressure ratio be symmetrical about its peak value. Thus, the condition that it burn radially - from center outward - was imposed on the grain. The control of the exposed burning area was achieved by bonding an inhibitor (nonburning material) to all external surfaces of the grain. The grain shape and its dimensions are shown in the following sketch:

Rocket Components

A photograph of the rocket components used in the investigation is presented as figure 14. The rocket components consisted of a nozzle, director tube and grid, igniter holder, chamber-pressure tube, and pressure fittings for sealing off igniter holder. The nozzles were made interchangeable with the rocket cases, so that any one of the four nozzle types tested could be used with any of the rocket cases. All the parts were made from low-carbon steel except the rocket cases, which were made from AISI 4130 steel, and the pressure fittings, which were made of brass. The rocket cases were heat-treated to withstand pressures up to 100,000 pounds per square inch.

Tests

Four grains were machined according to the dimensions shown in sketch 1 and the external surfaces including the ends were coated with an inhibitor composed of cellulose acetate and epoxy resin cement. These grains were fitted to rocket cases and were statically tested to obtain the rocket performance for each nozzle type used in the investigation. The rocket-chamber pressure agreed favorably with the design

values, and for comparison the actual results for two of the firings have been superposed upon the design curve which is shown in figure 15.

Calibration Curves

The rocket thrust and chamber pressure were measured during each static firing, and calibration curves of rocket-chamber pressure as a function of jet-exit static pressure for each nozzle type has been obtained. These curves are shown in figure 16. The jet-exit static pressure was obtained from the thrust equation:

$$F_{\mathbf{j}} = p_{\mathbf{j}}A_{\mathbf{j}}(\gamma M_{\mathbf{j}}^2 + 1) - p_{\infty}A_{\mathbf{j}}$$
 (7)

by solving for pj

$$p_{j} = \frac{F_{j} + p_{\infty}A_{j}}{A_{j}(\gamma M_{j}^{2} + 1)}$$
(8)

where

A_j jet-exit area, sq in.

 γ ratio of specific heats for the propellant ($\gamma = 1.25$)

M_i Mach number at jet exit

 p_{∞} free-stream static pressure, lb/sq in. abs

p_j jet-exit static pressure, lb/sq in. abs

Since the rocket-chamber pressures were measured during each tunnel run, the thrust of the rockets was obtained by choosing values of p_j from the calibration curves and computing by use of equation (7) the thrust for the existing back pressure.

REFERENCES

- 1. Morkovin, M. U., Pierce, C. A., Jr., and Craven, C. E.: Interaction of a Side Jet With a Supersonic Main Stream. Bull. No. 35, Eng. Res. Inst., Univ. of Michigan, Sept. 1952.
- 2. Faget, Maxime A., Watson, Raymond S., and Bartlett, Walter A., Jr.: Free-Jet Tests of a 6.5-Inch-Diameter Ram-Jet Engine at Mach Numbers of 1.81 and 2.00. NACA RM L50L06, 1951.
- 3. Lange, Roy H.: Present Status of Information Relative to the Prediction of Shock-Induced Boundary-Layer Separation. NACA TN 3065, 1954.
- 4. Chapman, Dean R., Kuehn, Donald M., and Larson, Howard K.: Preliminary Report on a Study of Separated Flows in Supersonic and Subsonic Streams. NACA RM A55L14, 1956.
- 5. Braslow, Albert L.: Effect of Distributed Granular-Type Roughness on Boundary-Layer Transition at Supersonic Speeds With and Without Surface Cooling. NACA RM L58A17, 1958.
- 6. Leiss, Abraham, and Bressette, Walter E.: Pressure Distribution Induced on a Flat Plate by a Supersonic and Sonic Jet Exhaust at a Free-Stream Mach Number of 1.80. NACA RM L56106, 1957.

TABLE 1.- WING PRESSURES FOR SONIC NOZZLE AT POSITION A

	fice nates				Incre	emental v	wing pre	ssure co	efficien	ts for	P _{t,c} /P _∞	of -		
x/D _T	y/D _T	10	20	30 <u>.</u>	40	50	60	70	80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 44.0 49.0	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5					0 0, .165 .307 .500 .410 082 250 042 023	0 0 .220 .347 .580 .300 120 045 024	0 .267 .379 .635 .200 147 255 050 025	0 0 .305 .400 .770 .138 155 265 058 030	0 .005 .335 .405 .805 .092 155 275 068 036	0 .033 .348 .420 .900 .079 153 280 092 045	0 .035 .350 .437 .875 .075 150 283 112 056		
64.0 11.5 14.0 19.0 21.5 24.0 26.5 31.5 46.5 51.5 61.5	2.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7					015 0 0 .075 .200 .235 .240 .100 080 120 015 025	015 0 0 .130 .225 .247 .262 .100 112 140 020 027 027	012 0 0 .185 .247 .250 .325 .087 130 159 023 030 027	015 0 .230 .269 .230 .420 .070 141 162 031 034 031	015 0 0 .257 .285 .250 .515 .060 150 165 038 028	018 0 .001 .275 .290 .285 .050 155 167 046 034 028	020 0 .010 .285 .269 .329 .725 .041 160 169 057 036 028		
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 59.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5					0 .010 .150 .157 .130 .089 0 060 020	.011 .168 .165 .125 .095 0 080	0 .060 .187 .161 .119 .106 0 097 021	.122 .194 .142 .114 .125 001 110 022	.165 .197 .120 .114 .135 008 115 025	.190 .190 .110 .124 .140 016 120	0 .195 .174 .107 .137 .142 028 125 030		
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5					0 .013 .092 .092 .075 .018 016	0 .080 .122 .110 .063 .018 020	0 .122 .136 .107 .053 .018	.013 .143 .142 .095 .050 .020	.062 .153 .140 .073 .050 .025 029	.125 .155 .139 .053 .053 .030	.172 .152 .136 .035 .058 .035	·	
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0		:			.070 .005 015	.072 .005 018	.075 .005 020	.073 .005 023	.066 0 025	.057 012 027	.046 015 030		
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0					.048 005	.050 005	.065 005	.068 005	.058 005	.042 006	.038		

TABLE 2.- WING PRESSURES FOR SONIC NOZZLE AT POSITION B

Orifi ordina					Increm	ental wi	ng press	ure coef	ficients	for p _t	,c/p _∞ o	f		
x/D _T	y/D _T	10	20	30	40	50	60	70	80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 54.0	2.5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,			0.001 0 .210 .250 .148 .037 041 066 011 	0.004 0.276 .296 .170 .045 049 096 030 017 	0.006 0 .422 .301 .168 .045 056 115 040 019 	0.006 .035 .428 .312 .168 .044 061 045 016 014 013	0.009 .062 .375 .322 .168 .038 064 136 060 016 	0.016 .082 .365 .330 .167 .035 068 142 070 021	0.030 .091 .373 .332 .167 .030 072 146 074 035 	0.054 .091 .390 .340 .168 .028 077 147 075 037			
11.5 14.0 19.0 21.5 24.0 26.5 31.5 36.5 41.5 41.5 51.5 51.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5			0 0 .102 .198 .185 .042 030 050 025 015 006	0 0 .175 .248 .195 .045 038 070 042 016 008 010	0 0 .229 .271 .205 .045 045 092 065 014 009 011	0 0 .268 .283 .212 .046 050 100 012 011 012	0 .020 .301 .300 .227 .047 057 104 090 015 013	0 .055 .331 .318 .240 .048 062 108 100 017 012 014	0 .091 .356 .335 .246 .047 070 115 111 022 012	0 .143 .374 .353 .254 .045 075 117 115 029 016			
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 59.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5			0 0 0 .035 .137 .154 .100 0 050 018 007	0 0 0 .108 .192 .179 .115 0 057 025	0 0 .037 .169 .217 .185 .115 011 065 031 010	0 0 .095 .200 .232 .194 .115 017 072 040 011	0 .010 .160 .230 .247 .195 .111 -023 079 050	0 .045 .196 .250 .258 .200 .111 -028 083 062 012	0 .094 .220 .266 .272 .204 .110 031 089 075 010	0 .141 .255 .275 .281 .209 .110036085007			
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5 17.5			0 .005 .055 .110 .056 012 006	0 .039 .113 .122 .059 019	0 .088 .145 .125 .052 024 010	0 .117 .158 .126 .050 029 010	.021 .138 .165 .128 .046 031	.050 .150 .177 .132 .042 036	.081 .157 .183 .133 .040 037	.085 .165 .190 .135 .040 036 010			
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0			.083 015 036	.090 018 043	.090 020 045	.090 022 049	.090 023 050	.090 025 050	.092 026 051	.095 027 052			
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0			.065 015	.065	.065	.065 018	.066 .019	.067 020	.067	.065 020			

TABLE 3.- WING PRESSURES FOR SONIC NOZZLE AT POSITION C

	fice nates			I	ncrement	al wing p	pressure	coeffici	lents for	P _{t,c} /I	of -			
x/D _T	у/ФТ	10	20	30	40	50	60	70	80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 44.0 54.0	2.5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0 .005 .056 .103 .078 .031 005 037 020 011 010 0	0 .010 .128 .148 .092 .033010055028017013 0	0 .016 .203 .171 .095 .031020077033021005 0	0 .022 .243 .180 .095 .030021087033024005 0	0 .058 .275 .180 .095 .029 021 095 031 025 016	0.005 .133 .287 .180 .094 .027 025 100 032 032 020 007 0	0.023 .211 .297 .175 .091 .025 026 105 033 045 022 007 0	0.062 .275 .295 .170 .087 .023 030 108 037 050 025 010	0.115 .327 .292 .162 .086 .021 030 110 060 046 022 010	0.170 .358 .275 .150 .084 .018 032 112 095 043 020 012			
11.5 14.0 19.0 21.5 24.0 26.5 31.5 36.5 41.5 551.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0 0 .038 .069 .110 .020 025 040 016 015 010	.003 0 .110 .162 .132 .025 030 060 021 024 014	.005 .002 .184 .193 .130 .026 035 070 021 028 012	.005 .005 .238 .205 .128 .025 036 080 023 028 009	.005 .005 .268 .210 .128 .024 038 087 026 025 011	.005 .027 .285 .215 .125 .022 044 092 030 027 012	.005 .110 .295 .217 .124 .020 046 096 043 040 015	.006 .187 .305 .217 .123 .019 053 100 070 045 014	.019 .242 .311 .218 .122 .016 058 103 090 045 013	.036 .272 .315 .220 .122 .016 064 102 100 035 012			
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 59.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	0 .005 .027 .056 .092 .078 005 050 0	0 0 .013 .081 .141 .130 .072 015 057 005	0 0 .035 .143 .178 .131 .065 020 060 010	0 0 .075 .186 .191 .130 .063 023 065 015	0 0 .127 .215 .193 .128 .061 024 067 021	0 .022 .180 .236 .191 .125 .058 030 070 022 010	0 .090 .220 .253 .195 .124 .055 034 073 024 011	0 .143 .248 .266 .197 .122 .052 .038 076 031	0 .173 .266 .278 .199 .120 .049 042 080 045 015	0 .183 .283 .288 .200 .118 .046 045 083 062 017			
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5 17.5	.003 .003 .020 .072 .038 020	.005 .023 .073 .102 .030 030	.007 .062 .118 .104 .025 032 002	.008 .095 .142 .105 .023 032 004	.010 .122 .150 .104 .021 033 005	.031 .140 .159 .102 .017 035 006	.073 .156 .166 .099 .013 040 007	.102 .173 .175 .094 .010 045 008	.120 .190 .183 .089 .005 047 009	.131 .206 .191 .087 0 055 011			
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0	.016 .041 022 010 010	.035 .074 030 015 017	.051 .075 027 015 020	.063 .075 025 018 024	.073 .074 026 027 027	.080 .072 033 042 031	.085 .070 038 047 035	.088 .070 040 047 035	.090 .070 041 046 035	.090 .070 041 046 036			
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0	.031 .035 008 015	.050 .052 010 023	.061 .054 012 027	.066 .055 015 030	.070 .052 015 031	.070 .050 015 032	.068 .047 015 032	.067 .047 015 032	.065 .046 013 032	.063 .045 013 031			

TABLE 4.- WING PRESSURES FOR SUPERSONIC NOZZLE (Mj = 1.74) AT POSITION A

ı	fice nates				Increm	ental wi	ng press	ure coef	ficients	for p _t	,c/p _∞ °	f -		
x/D _T	y/D _T	10	20	: 30	40	50	60	70	. 80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 44.0 54.0	2.5,5 2.5,5 2.5,5 2.5,5 2.5,5 2.5,5 2.5,5 2.5,5 2.5,5 2.5,5			0.007 0 .105 .580 .270 041 120 045 030 008	0.007 0 .025 .134 .585 .306 053 170 053 034 008	0.008 0 .051 .340 .541 .280 085 188 060 040 027 015 009	0.010 0 .082 .490 .532 .244 -110 -190 068 043 040 017 010	0.010 0 .125 .525 .528 .211 127 204 086 047 045 020 012	0.010 0 .189 .514 .525 .190 140 198 105 051 045 023 013	0.011 .002 .262 .480 .525 .176 150 190 120 056 045 025 015	0.013 .012 .310 .454 .523 .168 158 135 062 048 025	0.015 .025 .339 .440 .519 .163 186 147 068 050 027 017	0.015 .049 .362 .442 .518 .160 168 184 155 075 052 029 018	0.015 .088 .378 .448 .514 .159 170 192 155 085 052 030 019
11.5 14.0 19.0 21.5 24.0 26.5 31.5 41.5 51.5 61.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5			.005 .008 .012 .095 .233 .084 .035 055 060 018 025	.005 .008 .020 .178 .276 .090 .050 065 083 016 025 017	.005 .008 .070 .234 .310 .104 .074 068 100 020 025 018	.005 .008 .134 .273 .339 .125 .100 077 116 028 021	.005 .008 .195 .307 .366 .161 .107 088 124 048 022	.005 .010 .236 .334 .393 .215 .074 105 125 077 025	.006 .010 .268 .354 .434 .264 .069 115 100 097 027	.008 .015 .295 .367 .504 .250 005 130 073 106 031 025	.009 .025 .317 .375 .596 .195 048 143 065 110 035 026	.010 .040 .337 .377 .671 .168 080 148 068 106 036	.010 .065 .356 .375 .675 .138 100 150 078 100
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 59.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5			0 0 0 .005 .070 .140 .147 .066 015 033	0 0 0 .005 .110 .164 .157 .070 015	0 0 0 .047 .177 .194 .170 .070 017 043	0 0 0 .115 .213 .210 .180 .065 023 062 019	0 .015 .170 .231 .220 .185 .061 030 088	0 .055 .210 .254 .220 .180 .061 032 037 030	0 .107 .242 .280 .219 .177 .065 036 094	0 .011 .165 .269 .296 .211 .175 .069 039 090	0 .027 .210 .295 .300 .201 .174 .073 042 090 043	0 .037 .242 .320 .283 .203 .195 .080 045 090	0 .110 .268 .339 .250 .210 .240 .075 049 091
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5 17.5			0 .005 .025 .090 .093 .025 037	0 .005 .031 .116 .097 .029 041	0 .019 .085 .133 .099 .030	0 .052 .126 .144 .098 .025	0 .094 .152 .149 .092 .017 053	0 .130 .169 .152 .082 .010	.009 .160 .189 .147 .070 .007	.032 .183 .206 .130 .063 .005 067	.067 .198 .218 .100 .060 .005 068	.105 .210 .225 .081 .060 .005 072	.138 .220 .222 .069 .065 .005 075
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0			.005 .036 .012 008 026	.008 .070 .015 005 027	.020 .090 .018 009 035	.040 .100 .014 016 042	.066 .106 .006 023 048	.085 .107 002 025 050	.095 .107 006 026 055	.103 .105 005 029 056	.107 .104 006 030 057	.110 .100 006 030 057	.110 .090 006 030 054
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0			.025 .050 .035 .008	.020 .063 .035 .013	.038 .073 .046 .015	.055 .078 .055 .015	.067 .078 .055 .009	.074 .078 .055 .004	.075 .078 .050 0	.075 .078 .049 004	.075 .076 .043 005	.071 .075 .035 006	.066 .073 .025 006

TABLE 5.- WING PRESSURES FOR SUPERSONIC NOZZLE (M $_{\rm j}$ = 1.74) AT POSITION B

	fice nates		·		Increm	ental wi	ng press	ure coef	ficients	for p _t	, _c /p _∞ o	f -		
x/D _T	у/Дт	10	20	30	40	50	60	70	80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 54.0	2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55			0 .006 .160 .285 .195 .090005115015015015	0 .010 .215 .300 .194 .079010118039018015	0 .013 .272 .320 .196 .078011124039028015015	0 .022 .324 .337 .200 .076 013 137 040 026 016 018	0 .048 .358 .344 .202 .075 015 142 049 020 017	0.002 .092 .382 .350 .204 .075 015 145 055 023 018	0.007 .145 .400 .359 .205 .075 015 149 067 029 019	0.015 .199 .414 .368 .205 .074 015 150 082 034 020 020	0.028 .241 .425 .370 .205 .073 015 015 035 020 021	0.040 .267 .435 .370 .205 .073 015 153 119 039 020 021	
11.5 14.0 19.0 21.5 24.0 26.5 31.5 36.5 41.5 46.5 51.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5			0 0 .150 .185 .250 .071 022 105 028 018 004 013	0 0 .160 .220 .260 .072 030 107 025 018 009 014	0 0 .188 .257 .285 .072 035 108 029 019 010 014	0 0 .218 .300 .310 .072 040 115 046 020 011 015	0 0 .248 .341 .325 .072 046 121 073 020 010 015	0 .015 .277 .381 .331 .072 051 126 100 021 010	0 .045 .307 .420 .339 .071 057 131 118 022 007 015	0 .096 .335 .455 .345 .069 061 137 125 023 005 015	0 .139 .369 .485 .349 .065 066 143 125 030 003 016	0 .166 .392 .509 .350 .060 066 125 045 0	
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 59.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5			0 0 .040 .137 .095 .118 .100 .031 060 015	0 0 .020 .170 .110 .145 .120 .025 062 017 005	0 0 .064 .200 .122 .168 .135 .021 065 019 007	0 .007 .110 .217 .136 .190 .145 .017 067 023 006	0 .035 .145 .220 .153 .212 .153 .012 070 032 005	0 .080 .167 .218 .173 .235 .157 .005 -079 050	0 .123 .175 .217 .200 .258 .159 086 065 005	0 .150 .176 .225 .232 .279 .160 009 080 080	0 .172 .170 .247 .272 .295 .159 014 096 092 003	0 .187 .160 .280 .335 .310 .155 017 100 102	
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5			.002 .058 .092 .093 .042 003	.003 .069 .100 .095 .047 005	.005 .097 .115 .098 .054 008	.008 .123 .120 .100 .059 010	.034 .133 .120 .107 .062 014 013	.090 .135 .117 .115 .064 017	.141 .132 .115 .128 .065 020	.171 .125 .120 .140 .065 025	.190 .113 .126 .150 .065 029	.202 .100 .145 .175 .063 032	
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0			.075 .066 025 045 022	.080 .073 024 040 020	.094 .075 020 034 021	.099 .075 019 041 024	.116 .075 027 049 027	.120 .074 035 050 035	.123 .070 035 052 038	.125 .065 036 054 .042	.125 .060 036 055 045	.126 .055 035 056 045	
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0			.088 .056 .030 033	.083 .055 .031 034	.080 .055 .030 030	.085 .056 .029 025	.092 .058 .025 024	.094 .059 .026 028	.094 .055 .021 030	.091 .054 .019 034	.090 .059 .019 035	.090 .080 .018 035	

TABLE 6.- WING PRESSURES FOR SUPERSONIC NOZZLE (Mj = 1.74) AT POSITION C

	fice nates			Inc	remental	wing pr	essure o	coefficie	nts for	P _{t,c} /P _∞	of -	,		<u> </u>
x/D _T	y/D _T	10	.20	30	40	50	60	70	80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 44.0	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	0.005 0 .159 .140 .080 .010 033 068 025 020	0.005 0 .240 .150 .084 .011 035 073 025 019	0.005 0 .255 .154 .085 .013 036 078 025 018	0.006 .025 .265 .160 .085 .013 037 082 024 017	0.008 .085 .269 .165 .088 .010 040 093 029	0.020 .125 .275 .163 .085 .007 044 100 042 029	0.050 .170 .280 .160 .081 .004 047 103 080 030	0.090 .255 .277 .155 .075 .001 050 108 107	0.116 .310 .275 .150 .073 001 052 108 125 035	0.145 .345 .273 .151 .071 002 053 110 142 038			
54.0 64.0	2.5 2.5	007 005	006 005	005 005	005 005	005 005	005 005	005 005	008 005	007	007 005			
11.5 14.0 19.0 21.5 24.0 26.5 31.5 41.5 46.5 51.5 61.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0 .105 .123 .116 .025 036 054 020 014 010 007	0 .160 .183 .122 .025 039 .057 020 015 010	0 0 .202 .197 .122 .025 041 061 020 015 010 006	0 0 .231 .202 .122 .025 044 072 022 015 010 005	0 .013 .262 .207 .124 .025 047 075 043 018	.002 .060 .274 .209 .124 .023 055 088 071 025 019	.005 .128 .287 .214 .127 .021 062 092 091 027 019	.007 .191 .289 .217 .120 .019 066 095 106 026 019 007	.020 .235 .301 .217 .122 .017 070 099 100 023 015 007	.057 .271 .307 .219 .127 .016 071 102 104 025 015 007			
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 59.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	0 0 0 .079 .098 .110 .070 016 035 003	0 0 0 .126 .153 .129 .067 019 044 005	0 .005 .164 .181 .120 .062 020 050 050	0 .055 .198 .193 .127 .065 026 060 007	0 0 .154 .195 .124 .060 032 069 015 012	0 .045 .195 .249 .197 .119 .057 040 075 025 013	0 .105 .225 .260 .195 .117 .051 045 078 043	0 .155 .255 .265 .193 .113 .045 050 085 067 016	0 .180 .280 .279 .193 .110 .045 055 086 081	0 .205 .297 .289 .197 .109 .042 056 089 090 013			
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5 17.5	0 .020 .053 .079 .026 035 005	0 .040 .096 .094 .023 036 007	0 .070 .125 .094 .021 035	0 .101 .142 .098 .021 039	.017 .136 .155 .096 .015 045 012	.044 .150 .160 .094 .014 050	.080 .165 .167 .089 .007 053	.105 .175 .174 .084 0 057 015	.119 .190 .180 .082 005 062 016	.130 .209 .189 .080 007 065 016			
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0 25.0	.053 043 045	.068 040 043	.069 031 040	.074 027 035	.074 030 041	.070 044 050	.068 049 050	.065 050 051	.065 050 052	.066 050 052	ļ		
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0	.045 	.050	.048	.045	.045	.046	.045	.045 036	.045	.045 			

TABLE 7.- WING PRESSURES FOR SUPERSONIC NOZZLE ($M_{\mbox{\scriptsize J}}$ = 3.04) AT POSITION A

	fice nates			Inc	remental	wing pro	essure c	oefficie	nts for	p _{t,c} /p _∞	of -			
x/D _T	y/D _T	10	20	30	40 .	50	60	70	80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 44.0 49.0 54.0	2.5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0 0 .005 .003 .115 .211 0 050 003 007 005 002	0 .015 .023 .277 .439 0 097 012 012 007 002	0 0 .001 .043 .435 .385 0 137 025 018 	0 .015 .071 .586 .325 027 168 040 026 	0 0 .042 .156 .525 .287 065 193 059 038 	0 .061 .383 .506 .257 085 077 055 	0 0 .074 .459 .495 .240 100 220 095 070	0 0 .106 .488 .494 .210 115 230 112 083 	0 .160 .488 .490 .195 130 245 127 090 	0 0 .246 .471 .500 .190 140 254 140 095 025 010			-
11.5 14.0 19.0 21.5 24.0 26.5 31.5 36.5 41.5 46.5 51.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0 .004 0 .007 .036 .040 .007 025 020 012 011 005	0 .004 .003 .020 .126 .070 .022 045 042 017 017	0 .004 .005 .066 .206 .085 .042 065 016 019	0 .004 .009 .141 .265 .095 .069 070 087 018 019	0 001 .043 .204 .300 .107 .112 077 110 026 020	0 006 .098 .247 .323 .129 .160 084 128 039 025 019	0 006 .150 .277 .348 .155 .165 100 146 050 026	0 006 .195 .299 .371 .200 .075 130 162 059 026 - 020	0 006 .230 .324 .393 .244 020 172 075 062	0 006 .252 .348 .416 .265 100 225 182 065 022			
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	0 0 0 0 .012 .015 .034 .050 .018 017	0 0 0 0 .020 .056 .090 .076 .005 030	0 0 0 0 .033 .118 .134 .075 009 040	0 0 0 .005 .095 .164 .157 .074 015	0 0 .030 .165 .192 .170 .075 019 064 016	0 0 0 .092 .198 .213 .179 .075 022 084	0 0 0 .142 .220 .228 .185 .077 025 102	0 .025 .184 .242 .239 .190 .085 026 114 026	0 .064 .216 .261 .246 .192 .099 028 122 030	0 0 .112 .242 .280 .253 .195 .115 030 128 035		-	
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5 17.5	0 0 0 .006 .022 .012 007	0 0 .004 .035 .059 .025	0 .004 .005 .077 .085 .024 015	0 .005 .025 .111 .095 .021 020	0 .010 .076 .130 .095 .020 023	0 .034 .118 .144 .095 .018	0 .074 .147 .150 .094 .015 031	0 .114 .170 .152 .091 .010	0 .147 .185 .155 .088 .009 039	.010 .162 .196 .155 .085 .008			
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0	.005 .007 006	.020 .012 012	.043 .015 015	.065 .015 018	.085 .014 020	.095 .011 023	.103 .009 025	.105 .004 026	.108 0 027	.108 005 030			
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0	.028	.045	.055 .015	.060 .015	.072	.078 .009	.083	084	.086 o	.086			

Table 8.- Wing pressures for supersonic nozzle (M $_{\mbox{\scriptsize J}}$ = 3.04) at position c

	fice nates		.]	Increment	al wing	pressure	e coeffic	elents fo	or Pt,c	/p _∞ of -	•	•	-
x/D _T	y/D _T	10	20	30	40	50	60	70	80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 54.0 64.0	2.5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0 0 .057 .100 .090 .058 .011 040 016 014 010 009	0 0 .116 .147 .107 .060 .013 064 018 020 013 010	0 .175 .178 .115 .060 .007 077 024 024 017 012	.005 .005 .228 .200 .115 .055 001 085 027 024 020 012	.005 .016 .268 .207 .115 .054 007 087 047 025 025 010	.005 .042 .287 .205 .115 .050 010 090 098 026 027 010	.005 .110 .301 .205 .113 .048 015 094 115 030 030	.011 .175 .315 .205 .111 .045 017 095 126 033 033 008	.028 .229 .324 .205 .109 .040 020 097 135 035 035 007	.066 .280 .328 .204 .106 .035 025 100 143 040 035 010	.116 .325 .327 .199 .101 .033 027 098 146 048 048	.158 .370 .325 .194 .100 .030 030 100 149 057 058 017 005	188 (410 .320 .191 .100 .027 035 100 150 068 040 020
11.5 14.0 19.0 21.5 24.0 26.5 31.5 36.5 41.5 46.5 51.5 61.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	.005 .004 .038 .068 .112 .026 010 055 014 011 004	.007 .006 .076 .150 .148 .030 017 066 015 015 015	.007 .007 .133 .200 .155 .032 021 072 017 018 013 004	.007 .007 .220 .227 .159 .032 025 083 019 022 013 004	.007 .006 .273 .238 .160 .032 027 090 042 024 013	.007 .005 .300 .241 .160 .030 031 096 087 025 014 004	.007 .032 .315 .245 .155 .029 035 100 105 025 014 004	.007 .090 .326 .245 .154 .026 040 105 111 026 015 004	.007 .162 .337 .247 .150 .025 044 118 036 015 004	.006 .210 .345 .247 .146 .020 048 110 124 063 015 004	.022 .250 .350 .245 .143 .019 054 113 125 090 016	.052 .285 .356 .245 .138 .016 057 115 125 109 018 004	.113 .315 .357 .245 .015 .015 060 116 125 125 020 004
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 59.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	0 0 0 .028 .070 .097 .085 .011 044 005	0 0 .002 .050 .132 .143 .090 .005 051 007	0 .003 .087 .182 .154 .087 001 055 010	0 .013 .162 .207 .155 .083 005 011 005	0 .094 .218 .220 .152 .077 010 064 012	0 .005 .165 .248 .226 .153 .073 016 067 020	0 .041 .209 .270 .231 .150 .068 020 072 050	0 .102 .255 .289 .235 .145 .064 025 075 074 - 005	0 .148 .262 .303 .235 .143 .060 029 078 089	0 .176 .289 .316 .236 .140 .059 033 081 103	0 .198 .316 .325 .235 .136 .056 056 036 084 115 005	0 .220 .343 .336 .235 .132 .055 086 123 005	0 / .240 .370 .346 .234 .128 .051 045 089 125 005
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5 17.5	0 .002 .022 .065 .045 023 004	0 .007 .052 .100 .040 030	0 .015 .092 .106 .035 037 005	.002 .080 .138 .109 .030 044 005	.004 .125 .154 .109 .025 050 006	.025 .146 .167 .108 .020 055 007	.062 .162 .180 .105 .015 056 010	.094 .181 .191 .103 .012 060	.116 .200 .205 .100 .009 063 016	.132 .221 .214 .098 .005 065 025	.142 .243 .221 .094 .003 069	.150 .265 .227 .090 0 071 040	.155 .287 .231 .086 004 075 050
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0 25.0	.025 .045 015 010 014	.025 .072 024 021 016	.030 .080 030 030 015	.058 .078 035 042 017	.098 .079 039 049 020	.110 .077 042 055 024	.106 .076 045 058 031	.109 .075 050 060 040	.120 .075 055 060 045	.125 .075 058 060 047	.130 .075 059 060 049	.131 .075 060 060 050	.133 .075 060 060 050
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0	.025 .050 .015 024	.035 .052 .015 025	.056 .052 .014 029	.074 .052 .017 033	.075 .050 .020 035	075 .050 .017 040	075 .050 .013 045	.074 .049 .010 046	.071 .048 .005 047	.070 .046 .004 049	.070 .045 0 050	.070 .045 0 050	.070 .044 0 050

TABLE 9.- WING PRESSURES FOR TWO-DIMENSIONAL SUPERSONIC NOZZLE (Mj = 1.71) AT POSITION A

Orif ordin				Inc	remental	wing pres	sure coef	ficien	ts for	Pt,c	/p _∞ of	-		114
x/D _T	y/D _T	10	20	30	40	50	60	70	80	90	100	-110	120	130
11.5 14.0 19.5 24.0 26.5 29.0 34.0 39.0 49.0 54.0	555555555555555555555555555555555555555	0 0 .008 .058 .175 .220 .025 082 036 024 023 016 005	0 0 .035 .145 .303 .300 .020 130 045 031 030 020	0 0 .075 .207 .390 .330 066 160 047 030 034 020 009	0 0 .120 .261 .412 .328 040 - 186 050 034 037 025 013	0 0 .162 .310 .525 .326 075 243 055 043 040 033 015	0 0 .208 .355 .588 .325 114 260 056 055 040 036							,
11.5 14.0 19.0 21.5 24.0 26.5 31.5 36.5 41.5 51.5 61.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	005 010 014 010 .052 .013 .088 080 055 018 025 010	006 010 013 .022 .140 .054 .088 085 075 023 030	006 010 010 .088 .186 .076 .090 085 087 021 030	005 010 .011 .150 .202 .090 .105 082 104 019 035 024	005 010 .065 .192 .250 .105 .121 094 130 025 039 039	005 010 .141 .227 .279 .128 .115 112 171 036 042 035							
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0 59.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	0 0 0 0 .002 .050 .086 .082 .020 028	0 0 0 0 .025 .106 .121 .087 .013 046	0 0 0 0 .068 .127 .125 .084 .011 052 015	0 0 0 .021 .123 .142 .125 .091 .010 055 020	0 0 0 .086 .158 .154 .125 .105 -012 065	0 0 .015 .156 .184 .163 .125 .122 .015 080 030							
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5 17.5	0 0 0 .018 .040 0 007	0 0 0 .060 .068 0	0 0 .024 .093 .071 0 017	0 .010 .070 .105 .066 0 020	.05 ¹ 4 .109 .102 .060 0	0 .118 .138 .099 .050 0							
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0	0 .009 .005 010 015	.002 .037 .008 015 023	.005 .052 .009 017 027	.025 .065 .007 020 031	.076 .070 .005 021 035	.016 .075 .002 023 035							
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0	.010 .027 .030 .003	.022 .044 .035 .005	.035 .050 .042 .005	.056 .060 .044 .003	.074 .065 .043 002	.086 .066 .039 006							

TABLE 10.- WING PRESSURES FOR TWO-DIMENSIONAL SUPERSONIC NOZZLE (M $_{
m J}$ = 1.71) AT POSITION B

Orif ordin				Inc	remental	wing pres	sure coef	ficien	ts for	p _{t,c}	∕P _∞ of	• •		r ·
x/D _T	y/D _T	10	20	30	40	50	60	70	80	90	100	110	120	130
11.5 14.0 19.0 21.5 24.0 26.5 29.0 34.0 39.0 44.0 54.0 64.0	2.5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0 0 0 .065 .114 .050 003 021 014 012 011 006	0 0 .082 .160 .142 .050 022 055 030 018 013 0	0 0 .182 .325 .148 .038 034 085 035 020 014 008 009	0 .015 .280 .306 .153 .032041021015011010	0 .044 .355 .280 .156 .024050125046021015010012	0 .080 .420 .295 .015 056 137 040 018 016 006							
11.5 14.0 19.0 21.5 24.5 31.5 36.5 41.5 46.5 51.5 61.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	0 0 0 .018 .062 .034 0 033 007 0	0 0 .017 .120 .166 .047 006 076 020 011 0	0 0 .115 .224 .230 .048 024 105 026 021 0	0 0 .203 .279 .244 .049 039 107 026 001 012	0 0 .260 .314 .249 .049 049 110 041 029 005 013	0 0 .306 .338 .251 .045 056 126 051 030 006 015							
9.0 16.5 19.0 21.5 24.0 26.5 29.0 34.0 39.0 49.0	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	0 0 0 0 0 0 .050 .041 023 0	0 0 0 0 .077 .125 .108 .028 040 015 014	0 0 0 .056 .163 .185 .130 .016 051 025 015	0 0 .003 .135 .210 .204 .133 .007 054 030	0 0 .060 .197 .240 .217 .135 002 059 040 014	0 0 .137 .230 .259 .223 .135 013 055 055							
19.0 24.0 26.5 31.5 36.5 41.5 61.5	17.5 17.5 17.5 17.5 17.5 17.5	0 0 0 .020 .055 .023	0 .007 .095 .069 .011 007	0 .010 .077 .125 .066 0 015	0 .054 .132 .133 .062 003 017	0 .111 .156 .140 .060 010 020	.005 .136 .169 .145 .056 018				:			
31.5 39.0 54.0 59.0 64.0	25.0 25.0 25.0 25.0 25.0 25.0	.007 .005 .017 011 025	.015 .053 .018 026 034	.025 .082 .010 035 030	.047 .087 007 040 025	.073 .090 019 045 025	.090 .092 021 050 033							
41.5 46.5 51.5 61.5	30.0 30.0 30.0 30.0	.060 .028 .023 .009	.070 .048 .029 .002	.070 .059 .030 003	.070 .065 .032 007	.075 .067 .030 009	.080 .070 .019 015							

TABLE 11.- VERTICAL-STRUT PRESSURES FOR SONIC NOZZLE

	130				•								
	120												
	01.1		-0.317 063 032	.204 208 065	0 .150 020	(b) Position B		 					
of -	100		-0.295 068 028	.188	0 .166 021		-0.127 065 032	270 .052 032	.185		-0.075 070 017	140 .010 030	245 .025 .015
Pt,c/Pm	8		-0.260 082 026	080	0 .189 024		-0.127 067 022		.187		-0.070 061 015	134 .015 050	336 .010. 710.
icients for	80		-0.240 102 027	.175 -167 -075	0 .185 025		-0.125 060 019	250 .045 035	.206 214 .029		-0.066 058 014	133 .020 028	328 007 .020
Incremental vertical strut pressure coefficients for	70	A	-0.223	.195	0 .160 025		-0.120 051 017	244 .043 030	.219 207 .024	٥	-0.058 057 011	120 .023 025	318 027 .020
l strut pre	99	Position A	-0.218 093 030	.213 141 066	0 .146 025		-0.110	245 .048 031	.190 190	(c) Position C	-0.036 050 010	097 023	305
tal vertica	50	(a)	-0.216 050 030	.126	0 .152 025		-0.086 041 015	252 024 026	.204 142 .012	၁)	-0.020 047 008	057 025 020	300
Incremen	04						-0.042 040 015	234 .029 023	.176 110		-0.017 047 005	045 025	302 010 025
	8					0.03	.150	.153.		-0.01 740	037 .025 17	290 015	
	83										-0.001 -0.044 003	030 .025 015	015
	91										0.014 032 001	017 023 012	441 010 017
Orifice ordinates	z/D _T		444 66.00	0.0.0	ឧឧឧ	-	444 20.00	0.00	ផ់ដូង		4 4 4 50.50	888	ងងង
Orti	×/D _T		28 39 40 40	22.25 42.25 52.25	15.5 25.5 35.5		28 29 4 49	22.25 32.25 42.25	15.5 25.5 35.5		65 64 69 64	22.25 52.25 52.25	73.85 7.7.7.

TABLE 12.- VERTICAL-STRUT PRESSURES FOR SUPERSONIC NOZZIE (M = 1.74)

	130		-0.306 090 040	286	005 .182 045								
	120		-0.305	.265 205 027	005 .150 040		-0.128 097 035	270 .130 014	.220 210 .074				
	110		-0.298 070 023	220	005	-0.127	268	.212. 207 064					
of -	100		-0.287 062 018	.195	005 .105 034		-0.125 083 030	020	.225		-0.065	030	295 .013 .020
or Pt,c/P.	8		-0.268 056 015	157	05	(b) Position B	-0.122 077 029	2½0 022	232 200 054		-0.065 057 024	152 .012 026	295 .010
ficients fo	80		-0.250 055 012	.151	005		-0.118 072 027	228 086	.226 191		-0.063 055 022	.0150	292 .005 .016
Incremental vertical strut pressure coefficients for	70	Αι	-0.236 055 010	.175	005 .135 029		-0.114 066 026	025	.215 185 .039	D u	-0.057 055 020	148 .015	283 008 .012
sal strut p	99	(a) Position A	-0.231 049 010	.200 140 022	005 .141 028		-0.104 061 025	240. 020.	.198 178 .038	(c) Position C	-0.049 052 020	135 .018 020	270 015
ental verti	50		-0.226 036 008	.205	005 .138 027		-0.063	213 037 025	.178 165 040		-0.035 045 020		
Increme	01		-0.213	030 030	005 027		-0.030	505 .045 027	.159 .040		-0.012 035 018	020	252 030 .015
	ዴ		-0.189 -0.040 -0.040 -0.040 -0.040 -0.040	026		-0.010 046 020	183 .048 027	.150 .251		0.000 030 015	072 .020 015	244 035 012	
	82										0.005	065 .020 015	236 035 016
	9										0.005 030 014	050 410. 010	195 .028 .016
Lce	z/D _T		2 4 4	000	222		4 4 4 50.4 50.5	000	ឧឧឧ		255	0.00	ឧឧឧ
Orifice	т̂q/ж .		80 K 4	22.25 32.25 12.25	15.5 25.5 35.5		9864	8 8 3 8 8 3 8 8 8	15.5 2.5.5 2.5.5		62 65	22.23 22.03 23.03	23.85 2.2.2.

TABLE 13.- VERTICAL-STRUT PRESSURES FOR SUPERSONIC NOZZLE (M = 3.04)

										
	130						-0.069 077 050	130 040	275 048 020	
	120	(a) Position A					-0.067 073 044	126 .018 035	270 016 .020	
	011			,			-0.065 067 036	125 .022 032	263	
/p _∞ of -	00T		-0.213 065 020	.190	.123		-0.065	.030	256 024 .018	
or P _{t,c} /P _∞	96		-0.200 080 022	.176	005		-0.060	117 .050 025	250	
Incremental strut pressure coefficients for	80		-0.190 080 025	.173	004 .142 021		-0.059 053 015	115 .030 024	244 014 020	
e coeff1	0,2		-0.187 045 025	.181. -147 027	003 .140 020	on C	-0.055 048 015	.035	237 011	
pressur	9		-0.175 023 025	.205 139 029	002 .140 022	(b) Position C	-0.048 044 015	107 035 018	229 018 .023	
al strut	50		в)	-0.157 040 025	.205 124 035	002 .135 021	(a)	-0.038 040 015	100 .035 016	220
ncrement	047		-0.120 044 020	.170	002 .124 017		-0.025 037 012	086 035 016	205 016 .023	
H	30			-0.070 022 017	.060	002 .090 014		-0.010 035 010	.028	187
	20		-0.035 001 013	030	010 040 008	•	0.000	.050	163 014 .026	
	10		-0.010 000 007	010	010		0.010 025 008	030 .020 017	010 010	
tce	z/D _T		4 4 4 50.05 70.05	000	222		4 4 4 25 20 20 20	0.00	222	
Orifice ordinates	×/PT		98 98 94	22.25 32.25 12.25	15.5 25.5 35.5		29 39 49	22.25 32.25 42.25	15.5 25.5 35.5	

TABLE 14.- VERTICAL-STRUT PRESSURES FOR TWO-DIMENSIONAL SUPERSONIC NOZZLE (M = 1.71)

	130										
						. }			•		
	120					Ì					
	110										
- Jo	100										
1	90										
Pt,c/Pm	8										
its for	70										
coefficien	09	(a) Position A	-0.240 075 030	.135	010	-	-0.112 060 01	262 .032 032	.158		
Incremental strut pressure coefficients for	50		-0.227 065 025	.148 011	010 097	Position B	-0.085 055 010	235 .035 025	.170 211		
ental strut	04		(a)	(a)	-0.198 052 024	065	007 018	(q)	-0.052 045 008	.035	.160
Increme	8		-0.140 040 020	.170 025	005		-0.015 038 005	172 .028 017	.076		
	8		-0.105 028 017	030	005 .070 .001		0.008 027 00 [‡]	125 .035 010	050		
	01		-0.070 018 015	008 008	002 420.		0.015	080	0.0. 0.0. 0.00.		
1ce ates	z/D _T		4 4 4 7.05 7.05	8 8 8 0 0 0	ងងង		4.05 4.05 4.05	0.0.0.	21 22 21		
Orifice	x/D _T		88 88 94 94	22.25 32.25 12.25	25.5 25.5 25.5		8 K 4	22.23 42.23 12.23	15.5 25.5 35.5		

Figure 1.- Typical test setup.

Figure 2.- Three-dimensional drawing of arrangement of flat-plate wing and vertical strut with wing and strut static-pressure orifices and rocket-nozzle position indicated.

Figure 3.- Nozzle geometries and parameters used in the investigation. $\gamma = 1.25$ for rocket gases. (All dimensions are in inches.)

Figure 4.- Rocket-chamber-pressure design curve.

(a) Flow field and nomenclature.

(b) Section A-A of flow field.

Figure 5.- Drawing and nomenclature of the flow field about a jet exhausting normal to free stream.

Figure 6.- Variation of chordwise and spanwise incremental pressure coefficient with nozzle posi-Dashed portions of curves indicate tion for sonic jet $(M_j = 1.0)$ and pressure ratio of 58. omission of pressure measurements.

Figure 7.- Variation of chordwise and spanwise incremental pressure coefficient with nozzle posi-Dashed portions of curves tion for supersonic jet $(M_j = 1.74)$ and pressure ratio of 58. indicate omission of pressure measurements.

Figure 8.- Variation of chordwise and spanwise incremental pressure coefficient with nozzle position for supersonic jet (M_j = 3.04) and pressure ratio of 58. Dashed portions of curves indicate omission of pressure measurements.

Figure 9.- Variation of chordwise and spanwise incremental pressure coefficient with nozzle position for two-dimensional supersonic jet $\left(\text{M}_{\text{j}}=1.71\right)$ and pressure ratio of 58. Dashed portions of curves indicate omission of pressure measurements.

Figure 10.- Chordwise and spanwise incremental pressure coefficient for supersonic nozzle $(M_1=1.74)$ in position A and for pressure ratio of 120. Dashed portions of curves indicate omission of pressure measurements.

Figure 11.- Ratio of incremental normal force to rocket thrust as a function of pressure ratio for various nozzle positions and nozzle types.

(a) Spanwise variation.

(b) Chordwise variation.

Figure 12.- Variation of center of pressure with vertical nozzle position for three pressure ratios for sonic nozzle.

Figure 13.- Burning rate as a function of combustion-chamber pressure.

L-57-3208.1 Figure 14.- Rocket components used in the investigation.

Figure 15.- Comparison between design and test values of time histories of rocket-chamber total pressure.

Figure 16. - Calibration curves of jet-exit static pressure as a function of rocket-chamber total pressure for the nozzle types used.

CONFIDENTIAL