DP Unlearning

daniel khen

November 2024

1 Introduction

2 Definitions

2.1 Differential privacy

Let $\varepsilon, \delta \in \mathbb{R}_+$ and let \mathcal{A} be a randomized algorithm that takes a dataset as input. The algorithm \mathcal{A} is said to provide (ε, δ) -differential privacy if, for all datasets \mathcal{D} and \mathcal{D}' that differ on a single element and all subsets $\mathcal{R} \in \operatorname{Im} \mathcal{A}$:

$$\Pr[\mathcal{A}(\mathcal{D}) \in \mathcal{R}] \le e^{\varepsilon} \Pr[\mathcal{A}(\mathcal{D}') \in \mathcal{R}] + \delta$$

2.2 Group privacy

Let $\varepsilon, \delta \in \mathbb{R}_+$ and $n \in \mathbb{N}$, let \mathcal{A} be a randomized algorithm that takes a dataset as input. We say algorithm \mathcal{A} provides (ε, δ, n) -group privacy if, for all datasets \mathcal{D} and \mathcal{D}' that differ on n elements and all subsets $\mathcal{R} \in \text{Im } \mathcal{A}$:

$$\Pr[\mathcal{A}(\mathcal{D}) \in \mathcal{R}] \le e^{\varepsilon} \Pr[\mathcal{A}(\mathcal{D}') \in \mathcal{R}] + \delta$$

2.2.1 Differential privacy versus group privacy

Group privacy will be more helpful with unlearning as unlearning is mostly performed on large forget sets rather then a single datapoint. Thus it will be helpful find a relationship between differential privacy and group privacy. A good intuition is to fine this relation is a series of datasets \mathcal{D}_n such that for every $n \in \mathbb{N}$, \mathcal{D}_n and \mathcal{D}_{n+1} differ by one element. Assuming \mathcal{A} provides (ε, δ) -differential we get a Recurrence relation for $a_n = \Pr[\mathcal{A}(\mathcal{D}_n) \in R]$.

$$\textbf{2.2.2} \quad (\varepsilon,\delta) \text{-differential privacy} \, \rightarrow \, (n\varepsilon,\delta\frac{e^{n\varepsilon}-1}{e^{\varepsilon}-1},n) \text{-group privacy}$$

Proof is by induction, base case where $n=1, (\varepsilon, \delta, 1)$ -group privacy is the same as (ε, δ) -differential privacy. For the n-th case assuming \mathcal{A} provides (ε, δ) -differential privacy and $(n\varepsilon, \delta \frac{e^{n\varepsilon}-1}{e^{\varepsilon}-1}, n)$ -group privacy. lets take three databases

 $\mathcal{D}, \mathcal{D}', \mathcal{D}''$ such that $\mathcal{D}, \mathcal{D}'$ differ by n elements and $\mathcal{D}', \mathcal{D}''$ differ by one element (and $\mathcal{D}, \mathcal{D}''$ differ by n+1 elements), then by group privacy:

$$\Pr[\mathcal{A}(\mathcal{D}) \in \mathcal{R}] \le e^{n\varepsilon} \Pr[\mathcal{A}(\mathcal{D}') \in \mathcal{R}] + \delta \frac{e^{n\varepsilon} - 1}{e^{\varepsilon} - 1}$$

And by differential privacy:

$$\Pr[\mathcal{A}(\mathcal{D}') \in \mathcal{R}] \le e^{\varepsilon} \Pr[\mathcal{A}(\mathcal{D}'') \in \mathcal{R}] + \delta$$

Which combines to:

$$\Pr[\mathcal{A}(\mathcal{D}) \in \mathcal{R}] \le e^{n\varepsilon} (e^{\varepsilon} \Pr[\mathcal{A}(\mathcal{D}'') \in \mathcal{R}] + \delta) + \delta \frac{e^{n\varepsilon} - 1}{e^{\varepsilon} - 1}$$
$$= e^{(n+1)\varepsilon} \Pr[\mathcal{A}(\mathcal{D}') \in \mathcal{R}] + \delta \frac{e^{(n+1)\varepsilon} - 1}{e^{\varepsilon} - 1}$$

Thus \mathcal{D} provides $((n+1)\varepsilon, \delta \frac{e^{(n+1)\varepsilon}-1}{e^{\varepsilon}-1}, n+1)$ -group privacy.

More interestingly, to achieve (ε, δ, n) -group privacy we want \mathcal{A} to provide $(\frac{\varepsilon}{n}, \delta \frac{e^{\varepsilon} - 1}{e^{n\varepsilon} - 1})$ -differential privacy.

2.3 Unlearning

Let $\varepsilon, \delta \in \mathbb{R}_+$, let \mathcal{A} be a randomized learning algorithm that takes a dataset as input and let \mathcal{U} be a randomized unlearning algorithm that takes a model, a dataset and a forget set as input. The algorithm \mathcal{U} is said to provide (ε, δ) -unlearning with respect to the learning algorithm \mathcal{A} , the dataset \mathcal{D} , and the forget set $\mathcal{S} \subseteq \mathcal{D}$ if, for all $\mathcal{R} \in \operatorname{Im} \mathcal{A}$:

$$\Pr[\mathcal{A}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}] \le e^{\varepsilon} \Pr[\mathcal{U}(\mathcal{A}(\mathcal{D}), \mathcal{D}, \mathcal{S}) \in \mathcal{R}] + \delta$$

$$\Pr[\mathcal{U}(\mathcal{A}(\mathcal{D}), \mathcal{D}, \mathcal{S}) \in \mathcal{R}] \le e^{\varepsilon} \Pr[\mathcal{A}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}] + \delta$$

2.3.1 Unlearning for fine-tuning

Now let $\mathcal{A}(\mathcal{M}, \mathcal{D})$ be a randomized fine-tuning algorithm that takes both a model and dataset as inputs (i.e. it starts training on a predefined model and weights), we will mark $\mathcal{A}_{\mathcal{M}}(\mathcal{D}) = \mathcal{A}(\mathcal{M}, \mathcal{D})$ a randomized learning algorithm and let U be a randomized unlearning algorithm that takes a model. The algorithm \mathcal{U} is said to provide (ε, δ) -unlearning with respect to $(\mathcal{A}, \mathcal{D}, \mathcal{S})$ if for every model \mathcal{M} , \mathcal{U} provides (ε, δ) -unlearning with respect to $(\mathcal{A}_{\mathcal{M}}, \mathcal{D}, \mathcal{S})$.

2.3.2 Unlearning using differntial privacy

Let \mathcal{B} be a randomized learning algorithm that provides (ε, δ, n) -group privacy and let \mathcal{U} be a randomized unlearning algorithm that provides (ε', δ') -unlearning with respect to $(\mathcal{A}, \mathcal{D}, \mathcal{S})$, where \mathcal{B} is a randomized fine-tuning algorithm and $\mathcal{S} \subseteq \mathcal{D}$ is a forget set such that $|\mathcal{S}| \leq n$. Then \mathcal{U} provides $(\varepsilon + \varepsilon', \min(e^{\varepsilon}\delta' + \delta, e^{\varepsilon'}\delta + \delta'))$ -unlearning with respect to $(\mathcal{C}, \mathcal{D}, \mathcal{S})$, where \mathcal{C} is a randomized learning algorithm given by $\mathcal{C}(\mathcal{D}) = \mathcal{A}(\mathcal{B}(\mathcal{D}), \mathcal{D})$.

$$\Pr[\mathcal{C}(\mathcal{D}\setminus\mathcal{S})\in\mathcal{R}] = \Pr[\mathcal{A}(\mathcal{B}(\mathcal{D}\setminus\mathcal{S}),\mathcal{D}\setminus\mathcal{S})\in\mathcal{R}]$$

Lets mark $\mathcal{R}' = \{ \mathcal{M} | \mathcal{A}(\mathcal{M}, \mathcal{D} \setminus \mathcal{S}) \in \mathcal{R} \}$, then because of group privacy:

$$\Pr[\mathcal{C}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}] = \Pr[\mathcal{B}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}'] \le e^{\varepsilon} \Pr[\mathcal{B}(\mathcal{D}) \in \mathcal{R}'] + \delta$$
$$\Pr[\mathcal{B}(\mathcal{D}) \in \mathcal{R}'] \le e^{\varepsilon} \Pr[\mathcal{C}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}] + \delta$$

Also:

$$\Pr[\mathcal{B}(\mathcal{D}) \in \mathcal{R}'] = \Pr[\mathcal{A}(\mathcal{B}(\mathcal{D}), (\mathcal{D} \setminus \mathcal{S})) \in \mathcal{R}] = \Pr[\mathcal{A}_{\mathcal{B}(\mathcal{D})}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}]$$

And since for every model \mathcal{M} , \mathcal{U} provides (ε, δ) -unlearning with respect to $(\mathcal{A}_{\mathcal{M}}, \mathcal{D}, \mathcal{S})$:

$$\Pr[\mathcal{B}(\mathcal{D}) \in \mathcal{R}'] = \Pr[\mathcal{A}_{\mathcal{B}(\mathcal{D})}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}] \le e^{\varepsilon'} \Pr[\mathcal{U}(\mathcal{A}_{\mathcal{B}(\mathcal{D})}(\mathcal{D}), \mathcal{D}, \mathcal{S}) \in \mathcal{R}] + \delta'$$

$$\Pr[\mathcal{U}(\mathcal{C}(\mathcal{D}), \mathcal{D}, \mathcal{S}) \in \mathcal{R}] = \Pr[\mathcal{U}(\mathcal{A}_{\mathcal{B}(\mathcal{D})}(\mathcal{D}), \mathcal{D}, \mathcal{S}) \in \mathcal{R}] \le e^{\varepsilon'} \Pr[\mathcal{B}(\mathcal{D}) \in \mathcal{R}'] + \delta'$$

Finally we get:

$$\Pr[\mathcal{C}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}] \le e^{\varepsilon + \varepsilon'} \Pr[\mathcal{U}(\mathcal{C}(\mathcal{D}), \mathcal{D}, \mathcal{S}) \in \mathcal{R}] + e^{\varepsilon} \delta' + \delta$$

$$\Pr[\mathcal{U}(\mathcal{C}(\mathcal{D}), \mathcal{D}, \mathcal{S}) \in \mathcal{R}] \leq e^{\varepsilon + \varepsilon'} \Pr[\mathcal{C}(\mathcal{D} \setminus \mathcal{S}) \in \mathcal{R}] + e^{\varepsilon'} \delta + \delta'$$