Algorithmic and Theoretical Foundations of RL

More on Policy Optimization

Table of Contents

Natural Policy Gradient (NPG)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Deep Deterministic Policy Gradient (DDPG)

Entropy Regularization

Gradient Method for Optimization over Distributions

It is clear that policy optimization for RL is a special case of optimization over probability distributions:

$$\max_{\theta} J(\theta) = \mathbb{E}_{X \sim P_{\theta}} [f(X)].$$

The gradient ascent method for this problem is given by

$$\theta \leftarrow \theta + \underbrace{\alpha \cdot \nabla J(\theta)}_{\Delta \theta},$$

which can be interpreted as searching over the ℓ_2 -ball of the parameter space:

$$\Delta \theta = \underset{\|d\|_{2} < \alpha}{\operatorname{argmax}} \{ J(\theta) + \langle \nabla J(\theta), d \rangle \}.$$

Question: Is it more natural to search over the probability distribution space since $J(\theta)$ essentially relies on P_{θ} ? YES -> Natural gradient method.

Natural Gradient Method Optimization over Distributions

Natural gradient method conduct search based on KL divergence between probability distributions:

$$\begin{split} \Delta \theta &= \underset{\mathrm{KL}\left(P_{\theta} \parallel P_{\theta+d}\right) \leq \alpha}{\operatorname{argmax}} \{ J(\theta) + \langle \nabla J(\theta), d \rangle \} \\ &\approx \alpha \cdot F(\theta)^{-1} \nabla J(\theta), \end{split}$$

where $F(\theta)$ is the Fisher information matrix at θ , defined by

$$F(\theta) = \mathbb{E}_{X \sim P_{\theta}} \left[\nabla_{\theta} \log p_{\theta}(X) (\nabla_{\theta} \log p_{\theta}(X))^{\mathsf{T}} \right].$$

This yields the natural gradient method

$$\theta \leftarrow \theta + \alpha \cdot F(\theta)^{-1} \nabla J(\theta),$$

which can also be viewed as approximate Newton's method where $F(\theta)$ acts as a precondition matrix.

For simplicity, we assume $F(\theta)$ is invertible. If it is not the case we may consider using $F(\theta)+\varepsilon\cdot I$ or using $F(\theta)^{\dagger}\nabla J(\theta)$ which is minimal ℓ_2 -norm solution to $\min_x\|F(\theta)x-\nabla J(\theta)\|_2$. The natural gradient direction can be found by solving $F(\theta)d=\nabla J(\theta)$ via CG method.

Derivation of Natural Gradient Direction

First recall that given two probability distributions P and Q with pdf p(x) and q(x) respectively, the KL divergence is defined by

$$\mathrm{KL}(P||Q) = \mathbb{E}_P \left[\log \frac{dP}{dQ} \right] = \mathbb{E}_P \left[\log \frac{p(X)}{q(X)} \right].$$

It follows that

$$\begin{split} \mathrm{KL}(P_{\theta} \| P_{\theta+d}) &= \mathbb{E}_{P_{\theta}} \left[\log \frac{p_{\theta}(X)}{p_{\theta+d}(X)} \right] \\ &= -\mathbb{E}_{P_{\theta}} \left[\log p_{\theta+d}(X) - \log p_{\theta}(X) \right] \\ &\approx -d^{\mathsf{T}} \underbrace{\mathbb{E}_{P_{\theta}} \left[\frac{\nabla_{\theta} p_{\theta}(X)}{p_{\theta}(X)} \right]}_{I_{1} = \mathbb{E}_{P_{\theta}} [\nabla_{\theta} \log p_{\theta}(X)]} - \frac{1}{2} d^{\mathsf{T}} \underbrace{\mathbb{E}_{P_{\theta}} \left[\frac{\nabla_{\theta}^{2} p_{\theta}(X)}{p_{\theta}(X)} - \frac{\nabla_{\theta} p_{\theta}(X)(\nabla_{\theta} p_{\theta}(X))^{\mathsf{T}}}{p_{\theta}(X)^{2}} \right]}_{I_{2} = \mathbb{E}_{P_{\theta}} \left[\nabla_{\theta}^{2} \log p_{\theta}(X) \right]} d. \end{split}$$

Derivation of Natural Gradient Direction (Cont'd)

For I_1 , there holds

$$\mathbb{E}_{P_{\theta}}\left[\frac{\nabla_{\theta}p_{\theta}(X)}{p_{\theta}(X)}\right] = \int \nabla_{\theta}p_{\theta}(X)dx = 0.$$

For I_2 , there holds

$$\mathbb{E}_{P_{\theta}}\left[\frac{\nabla_{\theta}^{2}p_{\theta}(X)}{p_{\theta}(X)}\right] = \int \nabla_{\theta}^{2}p_{\theta}(X)dX = 0$$

and

$$\mathbb{E}_{P_{\theta}}\left[\frac{\nabla_{\theta}p_{\theta}(X)(\nabla_{\theta}p_{\theta}(X))^{T}}{p_{\theta}(X)^{2}}\right] = \mathbb{E}_{P_{\theta}}\left[\nabla_{\theta}\log p_{\theta}(X)(\nabla_{\theta}\log p_{\theta}(X))^{T}\right] = F(\theta).$$

It follows that

$$\begin{split} \Delta \theta &= \underset{\mathrm{KL}\left(P_{\theta} \parallel P_{\theta+d}\right) \leq \alpha}{\operatorname{argmax}} \{ J(\theta) + \langle \nabla J(\theta), d \rangle \} \\ &\approx \underset{d^{\mathsf{T}} F(\theta) d \leq \alpha}{\operatorname{argmax}} \{ J(\theta) + \langle \nabla J(\theta), d \rangle \} \\ &= \alpha \cdot F(\theta)^{-1} \nabla J(\theta). \end{split}$$

Natural Policy Gradient (NPG)

Natural policy gradient is the natural gradient method applied to the policy optimization problem:

$$J(\theta) = \mathbb{E}_{s_0 \sim \mu} \left[v_{\pi_{\theta}}(s_0) \right] = \mathbb{E}_{\tau \sim P_{\mu}^{\pi_{\theta}}} \left[r(\tau) \right],$$

where given $\tau = (s_t, a_t, r_t)_{t=0}^{\infty}$,

$$P_{\mu}^{\pi_{\theta}}(\tau) = \mu(s_0) \prod_{t=0}^{\infty} \pi_{\theta}(a_t|s_t) P(s_{t+1}|s_t,a_t) \quad \text{and} \quad r(\tau) = \sum_{t=0}^{\infty} \gamma^t r_t.$$

The natural gradient search direction can be incorporated into different policy based methods (including REINFORCE, actor-critic) after statistical estimation of $F(\theta)$ (e.g., using data from an episode). We only focus on expression for $F(\theta)$.

By the definition of $F(\theta)$ and expression for $P_{\mu}^{\pi_{\theta}}$, we have

$$F(\theta) = \mathbb{E}_{\tau \sim p_{\mu}^{\pi_{\theta}}} \left[\left(\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right)^{\mathsf{T}} \right]$$
$$= \mathbb{E}_{\tau \sim p_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) (\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}))^{\mathsf{T}} \right].$$

Two Common Expressions of $F(\theta)$ to Avoid Divergence

Average case:

$$F(\theta) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E}_{\tau \sim \rho_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \left(\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right)^{T} \right]$$
$$= \mathbb{E}_{s \sim d^{\pi_{\theta}}, a \sim \pi_{\theta}(\cdot|s)} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \left(\nabla_{\theta} \log \pi_{\theta}(a|s) \right)^{T} \right],$$

where $d^{\pi_{\theta}}(s) = \mathbb{E}_{s_0 \sim \mu} \left[\lim_{t \to \infty} P(s_t = s | s_0, \pi_{\theta}) \right]$ is state stationary distribution.

▶ Discounted case:

$$\begin{split} F(\theta) &= \mathbb{E}_{\tau \sim P_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{+\infty} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) (\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}))^{T} \right] \\ &= \mathbb{E}_{T \sim \operatorname{Geo}(1-\gamma)} \left[\mathbb{E}_{\tau \sim \rho(\cdot|\theta)} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) (\nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}))^{T} \middle| T \right] \right] \\ &= \mathbb{E}_{S \sim d_{\mu}^{\pi_{\theta}}, a \sim \pi_{\theta}(\cdot|s)} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) (\nabla_{\theta} \log \pi_{\theta}(a|s))^{T} \right], \end{split}$$

where $d_{\mu}^{\pi_{\theta}}(s) = \mathbb{E}_{s_0 \sim \mu}\left[(1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(s_t = s | s_0, \pi_{\theta})\right]$ is state visitation measure, and T obeys the geometric distribution with parameter $1 - \gamma$.

Table of Contents

Natural Policy Gradient (NPG)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Deep Deterministic Policy Gradient (DDPG

Entropy Regularization

Performance Difference Lemma (PDL)

Given two policies π and π' , recall from Lecture 2 that

$$V_{\pi'} - V_{\pi} = (I - \gamma P^{\pi'})^{-1} (\mathcal{T}_{\pi'} V_{\pi} - V_{\pi}).$$

Thus,

$$\begin{split} \mathbb{E}_{s \sim \mu} \left[v_{\pi'}(s) - v_{\pi}(s) \right] &= \left(\mathcal{T}_{\pi'} v_{\pi} - v_{\pi} \right)^{T} \left(I - \gamma \left(P^{\pi'} \right)^{T} \right)^{-1} \mu \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi'}} \left[\mathcal{T}_{\pi'} v_{\pi}(s) - v_{\pi}(s) \right] \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi'}} \mathbb{E}_{a \sim \pi'(\cdot \mid s)} \left[A_{\pi}(s, a) \right], \end{split}$$

where $A_{\pi}(s,a) = q_{\pi}(s,a) - v_{\pi}(s)$, where second equality follows from a lemma from Lecture 7.

Lemma 1. For two policies π and π' , their difference in terms of state values is

$$\mathbb{E}_{s \sim \mu} \left[v_{\pi'}(s) - v_{\pi}(s) \right] = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi'}} \mathbb{E}_{a \sim \pi'(\cdot | s)} \left[A_{\pi}(s, a) \right].$$

Trust Region Policy Optimization (TRPO)

Overall Idea

Based on PDL, given a policy $\pi_{\theta_{\text{old}}}$, we can rewrite $J(\theta)$ as

$$\max_{\boldsymbol{\theta}} \ J(\boldsymbol{\theta}) = J(\boldsymbol{\theta}_{\text{old}}) + \frac{1}{1-\gamma} \mathbb{E}_{\boldsymbol{s} \sim d_{\mu}^{\boldsymbol{\pi}_{\boldsymbol{\theta}}}} \mathbb{E}_{\boldsymbol{a} \sim \pi_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{s})} \left[A_{\pi_{\boldsymbol{\theta}_{\text{old}}}}(\boldsymbol{s}, \boldsymbol{a}) \right].$$

Since we do not have access to $d_{\mu}^{\pi_{\theta}}$, instead maximize the approximation:

$$\max_{\theta} \ L_{\theta_{\text{old}}}(\theta) = J(\theta_{\text{old}}) + \frac{1}{1 - \gamma} \underbrace{\mathbb{E}_{\mathbf{S} \sim d_{\mu}^{\mathbf{T}} \theta_{\text{old}}} \mathbb{E}_{a \sim \pi_{\theta}(\cdot | \mathbf{S})} \left[A_{\pi_{\theta_{\text{old}}}}(\mathbf{S}, a) \right]}_{\text{surrogate advantage function}}.$$

 \blacktriangleright $J(\theta)$ and $L_{\theta_{old}}(\theta)$ matches at θ_{old} up to first derivative.

Trust Region Policy Optimization (TRPO)

Overall Idea

It can be shown that $L_{\theta_{\text{old}}}(\theta)$ can be used to provide a lower bound for $J(\theta)$:

$$J(\theta) \ge L_{\theta_{\text{old}}}(\theta) - C_{\epsilon} \cdot \text{KL}_{\max}(\theta_{\text{old}} \| \theta),$$

 $\text{ where } \epsilon = \max_{\textbf{S}} |\mathbb{E}_{\textbf{a} \sim \pi_{\theta}}[\textbf{A}_{\pi_{\theta_{\text{old}}}}(\textbf{S}, \textbf{a})]|, \\ \text{KL}_{\max}(\theta_{\text{old}} || \theta) = \max_{\textbf{S}} \text{KL}(\pi_{\theta_{\text{old}}}(\cdot | \textbf{S}) || \pi_{\theta}(\cdot | \textbf{S})).$

Given an estimator θ_t , this inequality suggests that we may update it by solving

$$\max_{\theta} L_{\theta_t}(\theta)$$
 subject to $\mathrm{KL_{max}}(\theta_t \| \theta) \leq \delta$.

In practice, replace $\mathrm{KL_{max}}(heta_t \| heta)$ by the average version and instead solve

$$\max_{\theta} L_{\theta_t}(\theta) \quad \text{subject to} \quad \overline{\mathrm{KL}}(\theta_t \| \theta) \leq \delta,$$

where $\overline{\mathrm{KL}}(\theta_t \| \theta) = \mathbb{E}_{s \sim d_{it}^{\pi_{\theta_t}}} \left[\mathrm{KL}(\pi_{\theta_t}(\cdot | s) \| \pi_{\theta}(\cdot | s)) \right]$.

See "Trust region policy optimization" by Schulman et al. 2017 for details.

Trust Region Policy Optimization (TRPO)

TRPO is Approximately NPG Plus Line Search

After linear approximation to $L_{ heta_t}(heta)$ and quadratic approximation to KL at $heta_t$,

$$L_{\theta_t}(\theta) \approx \nabla_{\theta} J(\theta_t)^{\mathsf{T}}(\theta - \theta_t), \quad \overline{\mathrm{KL}}(\theta_t \| \theta) \approx \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} F(\theta_t) (\theta - \theta_t),$$

we arrive at the same problem as that for NPG,

$$\max_{\theta} \nabla_{\theta} J(\theta_t)^{\mathsf{T}} (\theta - \theta_t) \quad \text{subject to} \quad \frac{1}{2} (\theta - \theta_t)^{\mathsf{T}} F(\theta_t) (\theta - \theta_t) \leq \delta.$$

► TRPO is NPG with adaptive line search in implementations.

Table of Contents

Natural Policy Gradient (NPG)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Deep Deterministic Policy Gradient (DDPG

Entropy Regularization

Proximal Policy Optimization (PPO)

Recall from last section that (after omitting constant term $J(\theta_t)$)

$$\begin{split} L_{\theta_t}(\theta) &= \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \mathbb{E}_{a \sim \pi_{\theta}(\cdot \mid s)} \left[A^{\pi_{\theta_t}}(s, a) \right] \\ &= \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \mathbb{E}_{a \sim \pi_{\theta_t}(\cdot \mid s)} \left[\frac{\pi_{\theta}(a \mid s)}{\pi_{\theta_t}(a \mid s)} A^{\pi_{\theta_t}}(s, a) \right], \end{split}$$

which is surrogate function of true target in small region around θ_t in terms of KL. PPO keeps new policy close to old one by adopting two schemes:

- ► Adaptive KL penalty
- ► Clipped objective

See "Proximal policy optimization algorithms" by Schulman et al. 2017 for details.

PPO with Clipped Objective

PPO-Clip neither has a KL-divergence term in the objective nor has a constraint. Instead, it relies on specialized clipping of the objective function to remove incentives for the new policy to get far from the old one. Let $r(\theta) = \frac{\pi_{\theta}(a|s)}{\pi_{\theta_t}(a|s)}$. Then $r(\theta_t) = 1$. The clipped objective function is given by

$$L_{\theta_t}^{\text{CLIP}}(\theta) = \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta_t}}} \mathbb{E}_{a \sim \pi_{\theta_t}(\cdot \mid s)} \left[\min \left(r(\theta) A^{\pi_{\theta_t}}, \operatorname{clip} \left(r(\theta), 1 - \epsilon, 1 + \epsilon \right) A^{\pi_{\theta_t}} \right) \right],$$

where

$$\operatorname{clip}(r(\theta), 1 - \epsilon, 1 + \epsilon) = \begin{cases} 1 + \epsilon, & r(\theta) > 1 + \epsilon, \\ r(\theta), & r(\theta) \in [1 - \epsilon, 1 + \epsilon], \\ 1 - \epsilon, & r(\theta) < 1 - \epsilon. \end{cases}$$

- ▶ The min operation ensure $L_{\theta_t}^{\text{CLIP}}(\theta)$ provides a lower bound. Since a maximal point will be computed subsequently, min will not cancel the effect of clip.
- ▶ PPO policy update (in expectation): $\theta_{t+1} = \operatorname*{argmax}_{\theta} L_{\theta_t}^{\mathsf{CLIP}}(\theta)$.

Table of Contents

Natural Policy Gradient (NPG)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Deep Deterministic Policy Gradient (DDPG)

Entropy Regularization

Deterministic Policy and Parameterization

Consider the case where S and A are continuous state and action spaces, respectively. We use π to denote a deterministic policy: $a = \pi(s)$ is an action.

► State value and action value:

$$v_{\pi}(s) = q_{\pi}(s, \pi(s)) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s\right],$$

where $r_t = r(s_t, \pi(s_t), s_{t+1})$ and $s_{t+1} \sim P(\cdot | s_t, \pi(s_t))$.

▶ Given a parameterized policy π_{θ} , we have

$$\begin{split} J(\theta) &= \int_{\mathcal{S}} \mu(s_0) V_{\pi_{\theta}}(s_0) \mathrm{d}s_0 \\ &= \frac{1}{1 - \gamma} \int_{\mathcal{S}} d_{\mu}^{\pi_{\theta}}(s) \int_{\mathcal{S}} p(s'|s, \pi_{\theta}(s)) r(s, \pi_{\theta}(s), s') \mathrm{d}s' \mathrm{d}s \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\mu}^{\pi_{\theta}}} \mathbb{E}_{s' \sim P(\cdot|s, \pi_{\theta}(s))} \left[r(s, \pi_{\theta}(s), s') \right], \end{split}$$

where $d_{\mu}^{\pi_{\theta}}(s) = \mathbb{E}_{s_0 \sim \mu}\left[(1 - \gamma) \int_{\mathcal{S}} \sum_{t=0}^{\infty} \gamma^t P(s_t = s | s_0, \pi_{\theta}) \mathrm{d}s \right]$ is state visitation measure and μ is initial state distribution.

Deterministic Policy Gradient Theorem

Theorem 1. Suppose that $\nabla_{\theta}\pi_{\theta}(s)$ and $\nabla_{a}q_{\pi_{\theta}}(s,a)$ exist. Then,

$$\nabla_{\theta} J(\theta) = \frac{1}{1-\gamma} \mathbb{E}_{\mathbf{s} \sim d_{\mu}^{\pi_{\theta}}(\mathbf{s})} \left[\nabla_{\theta} \pi_{\theta}(\mathbf{s}) \nabla_{a} q_{\pi_{\theta}}(\mathbf{s}, a) |_{a=\pi_{\theta}(\mathbf{s})} \right].$$

Proof of Theorem 1

It suffices to consider $\nabla_{\theta} v_{\pi_{\theta}}(s_0)$, which can be rewritten as

$$v_{\pi_{\theta}}(s_0) = \sum_{t=0}^{\infty} \int \gamma^t r(s_t, \pi_{\theta}(s_t), s_{t+1}) \prod_{t=0}^{\infty} P(s_{k+1}|s_k, \pi_{\theta}(s_k)) \mathrm{d}\tau.$$

Thus,

$$\begin{split} \nabla_{\theta} \mathsf{v}_{\pi_{\theta}}(\mathsf{s}_{0}) &= \sum_{t=0}^{\infty} \int \gamma^{t} \nabla_{a} r(\mathsf{s}_{t}, \pi_{\theta}(\mathsf{s}_{t}), \mathsf{s}_{t+1}) \nabla_{\theta} \pi_{\theta}(\mathsf{s}_{t}) \prod_{k=0}^{\infty} P(\mathsf{s}_{k+1} | \mathsf{s}_{k}, \pi_{\theta}(\mathsf{s}_{k})) \mathrm{d}\tau \\ &+ \sum_{t=0}^{\infty} \int \gamma^{t} r(\mathsf{s}_{t}, \pi_{\theta}(\mathsf{s}_{t}), \mathsf{s}_{t+1}) \left(\sum_{k=0}^{\infty} \nabla_{a} \log P(\mathsf{s}_{k+1} | \mathsf{s}_{k}, \pi_{\theta}(\mathsf{s}_{k})) \nabla_{\theta} \pi_{\theta}(\mathsf{s}_{k}) \right) \prod_{k=0}^{\infty} P(\mathsf{s}_{k+1} | \mathsf{s}_{k}, \pi_{\theta}(\mathsf{s}_{k})) \mathrm{d}\tau \end{split}$$

$$= \sum_{t=0}^{\infty} \mathbb{E}_{\tau} \left[\gamma^t \nabla_{\sigma} r(s_t, \pi_{\theta}(s_t), s_{t+1}) \nabla_{\theta} \pi_{\theta}(s_t) \right]$$

$$\begin{split} &+ \sum_{t=0}^{\infty} \mathbb{E}_{\tau} \left[\nabla_{a} \log P(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \pi_{\theta}(\mathbf{s}_{t})) \nabla_{\theta} \pi_{\theta}(\mathbf{s}_{t}) \sum_{k=0}^{t-1} \gamma^{k} r(\mathbf{s}_{k}, \pi_{\theta}(\mathbf{s}_{k}), \mathbf{s}_{k+1}) \right] \\ &+ \sum_{t=0}^{\infty} \mathbb{E}_{\tau} \left[\nabla_{a} \log P(\mathbf{s}_{t+1} | \mathbf{s}_{t}, \pi_{\theta}(\mathbf{s}_{t})) \nabla_{\theta} \pi_{\theta}(\mathbf{s}_{t}) \sum_{k=0}^{\infty} \gamma^{k} r(\mathbf{s}_{k}, \pi_{\theta}(\mathbf{s}_{k}), \mathbf{s}_{k+1}) \right]. \end{split}$$

Proof of Theorem 1 (Cont'd)

Note that the second term is equal to 0 since

$$\mathbb{E}_{s_{t+1} \sim P(\cdot | s_t, \pi_{\theta}(s_t))} \left[\nabla_{\theta} \log P(s_{t+1} | s_t, \pi_{\theta}(s_t)) \right] = 0.$$

Moreover,

$$\mathbb{E}_{\tau} \left[\nabla_{a} \log P(s_{t+1}|s_{t}, \pi_{\theta}(s_{t})) \nabla_{\theta} \pi_{\theta}(s_{t}) \sum_{k=t}^{\infty} \gamma^{k} r(s_{k}, \pi_{\theta}(s_{k}), s_{k+1}) \right]$$

$$= \mathbb{E}_{\tau} \left[\gamma^{t} \nabla_{a} \log P(s_{t+1}|s_{t}, \pi_{\theta}(s_{t})) \nabla_{\theta} \pi_{\theta}(s_{t}) (r(s_{t}, \pi_{\theta}(s_{t}), s_{t+1}) + \gamma v_{\pi_{\theta}}(s_{t+1})) \right]$$

Further note that

$$\begin{split} &\mathbb{E}_{s_{t+1}}\left[\nabla_a q_{\pi_{\theta}}(s_t, a)\right] = \nabla_a \int (r(s_t, a, s) + \gamma v_{\pi_{\theta}}(s)) P(s|s_t, a) \mathrm{d}s \\ &= \int \nabla_a r(s_t, a, s) P(s|s_t, a) \mathrm{d}s + \int \nabla_a \log P(s|s_t, a) (r(s_t, a, s) + \gamma v_{\pi_{\theta}}(s)) P(s|s_t, a) \mathrm{d}s \\ &= \mathbb{E}_{s_{t+1}}\left[\nabla_a r(s_t, a, s_{t+1}) + \nabla_a \log P(s_{t+1}|s_t, a) (r(s_t, a, s_{t+1}) + \gamma v_{\pi_{\theta}}(s_{t+1}))\right]. \end{split}$$

Proof of Theorem 1 (Cont'd)

Submitting the last two results into the expressions for $abla_{ heta}v_{\pi_{ heta}}(s_0)$ yields that

$$\begin{split} \nabla_{\theta} \mathsf{v}_{\pi_{\theta}}(\mathsf{s}_0) &= \sum_{t=0}^{\infty} \gamma^t \nabla_{\theta} \pi_{\theta}(\mathsf{s}_t) \nabla_{a} q_{\pi_{\theta}}(\mathsf{s}_t, a) |_{a = \pi_{\theta}(\mathsf{s}_t)} \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{\mathsf{s} \sim d_{\mathsf{s}_0}^{\pi_{\theta}}(\mathsf{s})} \left[\nabla_{\theta} \pi_{\theta}(\mathsf{s}) \nabla_{a} q_{\pi_{\theta}}(\mathsf{s}, a) |_{a = \pi_{\theta}(\mathsf{s})} \right]. \end{split}$$

Averaging over all s_0 completes the proof of Theorem 1.

- ▶ DDPG is a policy gradient method which concurrently a deterministic policy π_{θ} and an action value function $q_{\omega}(s,a) \approx q_{\pi_{\theta}}(s,a)$. It is an actor-critic algorithm.
- ▶ Policy of DDPG is deterministic, need to add random noisy when collecting data; experience replay buffer is also used to break statistical dependence.
- lacktriangle Update of ω for action value function is overall the same to Fitted Q-learning.
 - ullet Note that the TD target for updating ω would be

$$r(s, a, s') + \gamma q_{\pi_{\theta}}(s', \pi_{\theta}(s')) \approx r(s, a, s') + \gamma q_{\omega}(s', \pi_{\theta}(s')),$$

which also relies on θ . Thus, two target networks for both ω and θ are used for stable training (Since we use $q_{\omega}(s,a)$ to approximate action values of different policies, θ should not vary too much during training).

See "Continuous control with deep reinforcement learning" by Lillicrap et al. 2016 for details.

Table of Contents

Natural Policy Gradient (NPG)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)

Deep Deterministic Policy Gradient (DDPG

Entropy Regularization

Motivation

Enhance exploration by adding entropy regularization

First consider a general policy π . Recalling definition of visitation measure d^{π}_{μ} , entropy regularized objective function is define by

$$\begin{split} J(\pi) &= \mathbb{E}_{s \sim d_{\mu}^{\pi}} \left(\mathbb{E}_{a \sim \pi(\cdot | s)} \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[r(s, a, s') \right] + \tau H(\pi(\cdot | s)) \right) \\ &= \mathbb{E}_{s \sim d_{\mu}^{\pi}} \mathbb{E}_{a \sim \pi(\cdot | s)} \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[r(s, a, s') - \tau \log \pi(a | s) \right], \end{split}$$

where $H(\pi(\cdot|s))$ denotes the entropy of the probability distribution $\pi(\cdot|s)$:

$$H(\pi(\cdot|s)) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[\log \frac{1}{\pi(a|s)} \right].$$

We can rewrite $J(\pi)$ in terms of state values based on a regularized reward

$$J(\pi) = \mathbb{E}_{S \sim \mu} \left[V_{\pi}^{\tau}(S) \right],$$

where
$$v_\pi^{ au}(s) = \mathbb{E}_\pi \left[\sum_{t=0}^\infty \gamma^t r_{ au}(s_t, a_t, s_{t+1}) | s_0 = s \right]$$
 with

$$r_{\tau}(s, a, s') = r(s, a, s') - \tau \log \pi(a|s).$$

Soft Bellman Equation

▶ Soft state value V_{π}^{τ} :

$$V_{\pi}^{\tau}(\mathsf{s}) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{\tau}(\mathsf{s}_{t}, a_{t}, \mathsf{s}_{t+1}) | \mathsf{s}_{0} = \mathsf{s} \right]$$

▶ Soft action value $q_{\pi}^{\tau}(s, a)$: [a_0 is chosen, thus entropy equal to 0]

$$q_{\pi}^{\tau}(s,a) = \mathbb{E}_{\pi}\left[r(s_0,a_0,s_1) + \sum_{t=1}^{\infty} \gamma^t r_{\tau}(s_t,a_t,s_{t+1}) | s_0 = s, a_0 = a\right]$$

▶ Relation between q_{π}^{τ} and v_{π}^{τ} :

$$V_{\pi}^{\tau}(\mathsf{S}) = \mathbb{E}_{a \sim \pi(\cdot|\mathsf{S})}[-\tau \log \pi(a|\mathsf{S}) + q_{\pi}^{\tau}(\mathsf{S},a)]$$

► Soft Bellman equation:

$$\begin{split} v^{\tau}_{\pi}(s) &= \mathbb{E}_{a \sim \pi(\cdot|s)} \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r_{\tau}(s,a,s') + \gamma v^{\tau}_{\pi}(s') \right] \\ q^{\tau}_{\pi}(s,a) &= \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r(s,a,s') + \gamma v^{\tau}_{\pi}(s') \right] \\ &= \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r(s,a,s') + \gamma \mathbb{E}_{a' \sim \pi(\cdot|s')} [q^{\tau}_{\pi}(s',a') - \tau \log \pi(a'|s')] \right] \end{split}$$

Soft Bellman Operator

lacktriangle For state value, soft Bellman operator $\mathcal{T}^{ au}_{\pi}$ under a policy π is defined by

$$[\mathcal{T}_{\pi}^{\tau} \mathbf{v}](\mathbf{s}) = \mathbb{E}_{a \sim \pi(\cdot | \mathbf{s})} \mathbb{E}_{\mathbf{s}' \sim P(\cdot | \mathbf{s}, a)} [r_{\tau}(\mathbf{s}, a, \mathbf{s}') + \gamma \mathbf{v}(\mathbf{s}')].$$

It can be shown that \mathcal{T}^{τ}_{π} is γ -contraction with respect to ℓ_{∞} -norm. Thus, v^{τ}_{π} is a unique fixed point of \mathcal{T}^{τ}_{π} .

 \blacktriangleright For action value, soft Bellman operator \mathcal{F}^{τ}_{π} under a policy π is given by

$$[\mathcal{F}_{\pi}^{\tau}q](s,a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r(s,a,s') + \gamma \mathbb{E}_{a' \sim \pi(\cdot|s)} \left[q(s',a') - \tau \log \pi(a'|s') \right] \right],$$

It can also be shown that \mathcal{F}^{τ}_{π} is γ -contraction with respect to ℓ_{∞} -norm. Thus, q^{τ}_{π} is a unique fixed point of \mathcal{F}^{τ}_{π} .

Soft Bellman Optimal Equation

For any $v \in \mathbb{R}^{|\mathcal{S}|}$, the soft Bellman optimality operator \mathcal{T}^{τ} is defined by

$$\begin{split} [\mathcal{T}^{\tau} v](s) &= \max_{\pi} \mathbb{E}_{a \sim \pi(\cdot \mid s)} \mathbb{E}_{s' \sim P(\cdot \mid s, a)} [r_{\tau}(s, a, s') + \gamma v(s')] \\ &= \max_{\pi} \mathbb{E}_{a \sim \pi(\cdot \mid s)} \left[\underbrace{\mathbb{E}_{s' \sim P(\cdot \mid s, a)} [r(s, a, s') + \gamma v(s')]}_{:=q(s, a)} - \tau \log \pi(a \mid s) \right] \\ &= \tau \log \left(\left\| \exp \left(q\left(s, \cdot \right) / \tau \right) \right\|_{1} \right), \end{split}$$

where the maximum value is attained iff $\pi(\cdot|s) \propto \exp(q(s,\cdot)/\tau)$.

- $ightharpoonup \mathcal{T}^{\tau}$ is γ -contraction with respect to ℓ_{∞} -norm.
- ▶ It is worth noting that

$$\max_{\pi} \mathbb{E}_{a \sim \pi(\cdot | s)} \left[q(s, a) - \tau \log \pi(a | s) \right] = \min_{\pi} KL \left(\pi(\cdot | s) \| \frac{\exp(q(s, a) / \tau)}{Z(s)} \right),$$

where $Z(s) = \|\exp(q(s,\cdot))/\tau\|_1$ is the normalization factor.

Soft Bellman Optimal Equation

For $q \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{A}|}$, the soft Bellman optimality operator $\mathcal{F}^{ au}$ is defined by

$$\begin{split} [\mathcal{F}^{\tau}q](s,a) &= \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\frac{r(s,a,s') + \gamma \max_{\pi} \mathbb{E}_{a' \sim \pi(\cdot|s')} \left[q(s',a') - \tau \log \pi(a'|s') \right] \right] \\ &= \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\frac{r(s,a,s') + \gamma \left[\tau \log \left(\left\| \exp \left(q\left(s',\cdot \right) / \tau \right) \right\|_{1} \right) \right] \right], \end{split}$$

where the maximum value is attained iff $\pi(\cdot|s) \propto \exp(q(s,\cdot)/\tau)$.

 $ightharpoonup \mathcal{F}^{ au}$ is γ -contraction with respect to ℓ_{∞} -norm.

Optimal Policy

Theorem 2. Let v_*^{τ} and q_*^{τ} be the fixed points of \mathcal{T}^{τ} and \mathcal{F}^{τ} , respectively. It is easy to see that $q_*^{\tau} = \mathbb{E}_{s' \sim P(\cdot|s,a)}[r(s,a,s') + \gamma v_*^{\tau}(s')]$. Then,

$$V_*^\tau(S) = \max_{\pi} V_\pi^\tau(S), \quad \forall S \in \mathcal{S},$$

and the equality is achieved by the optimal policy given by

$$\pi_*^{\tau}(a|s) = \frac{\exp(q_{\tau}^*(s,a)/\tau)}{\|\exp(q_{\tau}^*(s,\cdot)/\tau)\|_1}.$$

See "Bridging the gap between value and policy based reinforcement learning" by Nachum et al. 2017 for details.

Soft Policy Iteration

► Soft policy evaluation:

$$q_{\pi_k}^\tau = \mathcal{F}_\pi^\tau q_{\pi_k}^\tau$$

► Soft policy improvement:

$$\pi_{k+1} = \arg\min_{\pi' \in \Pi} KL\left(\pi'(\cdot|s)||\frac{\exp(q_{\pi_k}^{\tau}(s,\cdot)/\tau)}{Z_{\pi_k}(s)}\right),$$

where $Z_{\pi_b}(s)$ is the normalization factor.

Theorem 3 (Convergence of Soft Policy Iteration). Repeated application of soft policy evaluation and soft policy improvement from any $\pi \in \Pi$ converges to a policy π_*^{τ} such that $q_{\pi_*^{\tau}}^{\tau}(s,a) \geq q_{\pi}^{\tau}(s,a)$ for all $\pi \in \Pi$ and $(s,a) \in \mathcal{S} \times \mathcal{A}$.

See "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor" by Haarnoja et al. 2018 for details.

Soft Actor Critic (SAC)

SAC is a policy based or actor-critic method for solving

$$\max_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \mathbb{E}_{S \sim \mu} \left[V_{\pi_{\boldsymbol{\theta}}}^{\tau}(S) \right].$$

In addition to typical ways for updating value function and policy parameters,

- Reparametrizarion trick is used in the computation of policy gradient;
- ▶ Both state values and action values have been parametrized for stable training.

See "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor" by Haarnoja et al. 2018 for details.

