1

NE-1081

- 23 -

What is claimed is:

1	 A network node for a communications network which
2	comprises a plurality of network nodes interconnected by communication
3	links, wherein said network node is one of said plurality of network nodes,
4	comprising:
5	a first module, having a plurality of input ports and a plurality of
6	output ports, for handling a group of channels between said input ports and
7	said output ports as a routing unit;
8	a second module, having an input port and an output port, for
9	handling a channel between the input port and the output port as said
10	routing unit;
11	a module state database for storing module cost data of said first and
12	second modules and module cost data of other network nodes;
13	a link state database for storing link cost data of said communication
14	links, and
15	a switching system for determining a route of minimum cost by using
16	said module state database and said link state database and establishing,
17	according to the determined route, a connection between one of a plurality of
18	incoming communication links and one of the input ports of said first and
19	second modules and establishing a connection between one of the output
20	ports of said first and second modules and one of a plurality of outgoing
21	communication links.

2. The network node of claim 1, wherein said switching system

- 24 -

2	determines said route of minimum cost by:
3	detecting available links along possible routes in said link state
4	database and detecting available first and second modules in said module
5	state database;
6	forming a plurality of candidate paths by using the available links and
7	the available first and second modules;
8	calculating costs of said candidate paths by using said module and link
9	state database; and
10	determining one of said candidate paths having a minimum value of
11	the calculated costs as said route of minimum cost.

- 3. The network node of claim 1, wherein the network node is an intermediate node between first and second network nodes, and wherein said link state database includes a first plurality of link entries for storing status of links to said first and second network nodes and a second plurality of link entries for storing status of forwarding adjacency links between said first and second network nodes, said second plurality of link entries containing a total cost of said links and said modules.
- 4. The network node of claim 1, wherein said switching system is
 an optical switching system, and said incoming and outgoing links are optical
 links and said channels are wavelength channels.
- 5. The network node of claim 4, wherein said first module
 comprises an optical switch module for simultaneously establishing a

- 25 -

- 3 plurality of connections between said plurality of input ports and said
- 4 plurality of output ports for carrying a plurality of said wavelength channels
- 5 and said second module comprises an optical switch module for establishing
- 6 a connection at a time between said input port and said output port for
- 7 carrying a wavelength channel.
- 1 6. The network node of claim 5, wherein said second module is
- 2 capable of converting the wavelength of said wavelength channel to a
- 3 different wavelength.
- 7. The network node of claim 4, wherein said first module
- 2 comprises an optical regenerator module for simultaneously performing an
- 3 optical regeneration process on a plurality of said wavelength channels.
- 1 8. The network node of claim 4, wherein said second module
- 2 comprises an optical regenerator module for performing an optical
- 3 regeneration process on a wavelength channel.
- 1 9. The network node of claim 4, wherein a plurality of
- 2 wavelengths are multiplexed on each of said incoming links and each of said
- 3 outgoing links, and wherein said first module simultaneously handles said
- 4 multiplexed wavelengths as said routing unit and said second module selects
- 5 one of the multiplexed wavelengths for handling the selected wavelength as
- 6 said routing unit.

- 26 -

1	10. The network node of claim 1, wherein the network node is an
2	intermediate node between first and second network nodes, and wherein said
3	link state database includes a plurality of physical link entries for storing
4	status of links to each of said first and second network nodes and a plurality
5	of virtual link entries for storing status of concatenated links between said
6	first and second network nodes, said virtual link entries containing a cost of
7	each of said virtual links.
1	11. The network node of claim 1, further comprising terminating
2	circuitry for transmitting a message to neighboring network nodes for
3	communicating the contents of said module and link state databases and
4	receiving a message from said neighboring network nodes for updating said
5	module and link state databases according to the received message.
1	12. A communications network comprising:
2	a plurality of network nodes interconnected by a plurality of incoming
3	communication links and a plurality of outgoing communication links,
4	each of said network nodes comprising:
5	a first module, having a plurality of input ports and a plurality
6	of output ports, for handling a group of channels between said input ports
7	and said output ports as a routing unit;
8	a second module, having an input port and an output port, for
9	handling a channel between the input port and the output port as said
10	routing unit;
11	a module state database for storing module cost data of said

- 27 **-**

12	first and second modules and module cost data of other network nodes;
13	a link state database for storing link cost of each of said
14	incoming links and each of said outgoing links,
15	a switching system for determining a route of minimum cost by
16	using said module state database and said link state database and
17	establishing, according to the determined route, a connection between one of
18	the incoming communication links and one of the input ports of said first and
19	second modules and establishing a connection between one of the output
20	ports of said first and second modules and one of said outgoing
21	communication links; and
22	terminating circuitry for transmitting a message to neighboring
23	network nodes for communicating the contents of said module state database
24	and receiving a message from said neighboring network nodes for updating
25	said module state database according to the received message.
1	13. The communications network of claim 12, wherein said
2	switching system determines said route of minimum cost by:
3	detecting available links along possible routes in said link state
4	database and detecting available first and second modules in said module
5	state database;
6	forming a plurality of candidate paths by using the available links and
7	the available first and second modules;
8	calculating costs of said candidate paths by using said module and link
9	state database; and
10	determining one of said candidate paths having a minimum value of

- 28 -

- 11 the calculated costs as said route of minimum cost.
- 1 14. The communications network of claim 12, wherein said each
- 2 network node is an intermediate node between first and second network
- 3 nodes, and wherein said link state database includes a plurality of link entries
- 4 for storing status of links to each of said first and second network nodes and
- 5 a plurality of channel entries for storing status of channels between said first
- 6 and second network nodes, said channel entries containing a total cost of said
- 7 channels and said modules.
- 1 15. The communications network of claim 12, wherein said
- 2 switching system is an optical switching system, and said incoming and
- 3 outgoing links are optical links and said channels are wavelength channels.
- 1 16. The communications network of claim 15, wherein said first
- 2 module comprises an optical switch module for simultaneously establishing a
- 3 plurality of connections between said plurality of input ports and said
- 4 plurality of output ports for carrying a plurality of said wavelength channels
- 5 and said second module comprises an optical switch module for establishing
- 6 a connection at a time between said input port and said output port for
- 7 carrying a wavelength channel.
- 1 The communications network of claim 16, wherein said second
- 2 module is capable of converting the wavelength of said wavelength channel
- 3 to a different wavelength.

1

NE-1081

- 29 -

- 1 18. The communications network of claim 16, wherein said first
 2 module comprises an optical regenerator module for simultaneously
 3 performing an optical regeneration process on a plurality of said wavelength
 4 channels.
- 1 19. The communications network of claim 16, wherein said second 2 module comprises an optical regenerator module for performing an optical 3 regeneration process on a wavelength channel.
- 1 20. The communications network of claim 16, wherein a plurality of 2 wavelengths are multiplexed on each of said incoming links and each of said 3 outgoing links, and wherein said first module simultaneously handles said 4 multiplexed wavelengths as said routing unit and said second module selects 5 one of the multiplexed wavelengths for handling the selected wavelength as 6 said routing unit.
- 1 21. The communications network of claim 12, wherein said each
 2 network node is an intermediate node between first and second network
 3 nodes, and wherein said link state database includes a first plurality of link
 4 entries for storing status of links to said first and second network nodes and a
 5 second plurality of link entries for storing status of forwarding adjacency
 6 links between said first and second network nodes, said second plurality of
 7 link entries containing a total cost of said links and said modules.
 - 22. A centralized network management system comprising:

- 30 -

2	a plurality of network nodes interconnected by communication links;
3	a management center connected to said network nodes via control
4	channels,
5	each of said network nodes comprising:
6	a first module, having a plurality of input ports and a plurality
7	of output ports, for handling a group of channels between said input ports
8	and said output ports as a routing unit;
9	a second module, having an input port and an output port, for
10	handling a channel between the input port and the output port as said
11	routing unit; and
12	a switching fabric having a plurality of incoming interfaces for
13	interfacing incoming links and a plurality of outgoing interfaces for
14	interfacing outgoing links; and
15	said management center comprising:
16	a module state database;
17	a link state database for storing link cost of each of said
18	incoming links and each of said outgoing links; and
19	a path controller for storing module cost data of said first and
20	second modules of each of said network nodes into said module state
21	database and determining a route of minimum cost by using said module
22	state database and said link state database and controlling said switching
23	fabric to establish a connection between one of the incoming interfaces and
24	one of the input ports of said first and second modules and establish a
25	connection between one of the output ports of said first and second modules
26	and one of said outgoing interfaces.

- 31 -

1	23. The centralized network management system of claim 22,
2	wherein said path controller determines said route of minimum cost by:
3	detecting available links along possible routes in said link state
4	database and detecting available first and second modules in said module
5	state database;
6	forming a plurality of candidate paths by using the available links and
7	the available first and second modules;
8	calculating costs of said candidate paths by using said module and link
9	state database; and
10	determining one of said candidate paths having a minimum value of
11	the calculated costs as said route of minimum cost.
1	24. The centralized network management system of claim 22,
2	wherein said each network node is an intermediate node between first and
3	second network nodes, and and wherein said link state database includes a
4	first plurality of link entries for storing status of links to said first and second
5	network nodes and a second plurality of link entries for storing status of
6	forwarding adjacency links between said first and second network nodes,
7	said second plurality of link entries containing a total cost of said links and
8	said modules.
1	25. The centralized network management system of claim 22,
2	wherein said switching fabric is an optical switching fabric, and said
3	incoming and outgoing links are optical links and said channels are
4	wavelength channels.

- 32 -

- The centralized network management system of claim 25,
 wherein said first module comprises an optical switch module for
 simultaneously establishing a plurality of connections between said plurality
 of input ports and said plurality of output ports for carrying a plurality of
 said wavelength channels and said second module comprises an optical
 switch module for establishing a connection at a time between said input port
 and said output port for carrying a wavelength channel.
- 27. The centralized network management system of claim 26,
 wherein said second module is capable of converting the wavelength of said
 wavelength channel to a different wavelength.
- 1 28. The centralized network management system of claim 25, 2 wherein said first module comprises an optical regenerator module for 3 simultaneously performing an optical regeneration process on a plurality of 4 said wavelength channels.
- 1 29. The centralized network management system of claim 26, 2 wherein said second module comprises an optical regenerator module for 3 performing an optical regeneration process on a wavelength channel.
- 1 30. The centralized network management system of claim 25,
 2 wherein a plurality of wavelengths are multiplexed on each of said incoming
 3 links and each of said outgoing links, and wherein said first module
 4 simultaneously handles said multiplexed wavelengths as said routing unit

- 33 -

- 5 and said second module selects one of the multiplexed wavelengths for
- 6 handling the selected wavelength as said routing unit.
- 1 31. The centralized network management system of claim 22,
- 2 wherein said each network node is an intermediate node between first and
- 3 second network nodes, and wherein said link state database includes a first
- 4 plurality of link entries for storing status of links to said first and second
- 5 network nodes and a second plurality of link entries for storing status of
- 6 forwarding adjacency links between said first and second network nodes,
- 7 said second plurality of link entries containing a total cost of said links and
- 8 said modules.
- 1 32. A routing method comprising the steps of:
- a) providing, in each of a plurality of network nodes
- 3 interconnected by communication links, a first module having a plurality of
- 4 input ports and a plurality of output ports, the first module handling a group
- 5 of channels between said input ports and said output ports as a routing unit;
- 6 b) providing, in each of a plurality of network nodes, a second
- 7 module having an input port and an output port, the second module
- 8 handling a channel between the input port and the output port as said
- 9 routing unit;
- 10 c) storing module cost data of said first and second modules of
- said plurality of network nodes in a module state database;
- 12 d) storing link cost of said communication links in a link state
- 13 database; and

11

NE-1081

- 34 -

14	e) determining a route of minimum cost by using said module
15	state database and said link state database.
1	33. The method of claim 32, wherein the step (e) comprises the
2	steps of:
3	detecting available links along possible routes in said link state
4	database and detecting available first and second modules in said module
5	state database;
6	forming a plurality of candidate paths by using the available links and
7	the available first and second modules;
8	calculating costs of said candidate paths by using said module and link
9	state database; and
10	determining one of said candidate paths having a minimum value of

the calculated costs as said route of minimum cost.