BFRSS-DEPRESSION CLASSIFIER REPORT

Table of Contents

Introduction	3
Data Mining Tools	4
Classification Algorithms	
Data Mining Procedure	
Data Pre-Processing:	6
Data Cleaning	
Data Reduction	
Zero covariance	
Correlation Analysis	
Split the Pre-processed dataset:	13
Data Balancing	
Attribute Selection Methods:	15
Classification Algorithms	18
Data Mining Result and Evaluation	
Parameters of the Best Model Selected	33
Discussion and Conclusion	35

Introduction

This data mining project embarks on an exploratory and predictive journey through a meticulously curated dataset, where each tuple represents an individual, encapsulating a variety of attributes pertinent to their experiences, behaviours, and characteristics. At the heart of this exploration is the 'Class' attribute, a binary marker distinguishing individuals based on their encounter with depressive disorders: 'Y' signifies those who have experienced a depressive disorder, while 'N' denotes those who have not. The primary objective of this endeavour is to harness the potential of this dataset to develop, evaluate, and compare multiple classification models. Through rigorous analysis and model assessment, the project aims to identify the most effective model capable of predicting the likelihood of a person experiencing a depressive disorder. This initiative not only seeks to push the boundaries of predictive analytics in mental health but also aims to contribute valuable insights into the identification and understanding of depressive disorders, thereby offering a foundation for informed decision-making and targeted interventions.

For the Data Mining project, the data given is provided from 2020 Behavioural Risk Factor Surveillance System (BRFSS) Survey Data.

The dataset contains 5000 tuples and 276 attributes. To accomplish the goal of the project is to build multiple classification models, which would predict a person with a depressive disorder, compare their performance, and select the "best" model, the main task will be to perform data cleaning and preprocessing.

Data Mining Tools

- Caret (Classification And Regression Training): This package provides a unified interface for training and tuning machine learning models. It supports numerous predictive modelling techniques and automates many tasks like model selection, performance evaluation, and parameter tuning.
- Random Forest: Implements the random forest algorithm for classification and regression. It's a powerful tool for predictive modelling, capable of handling large datasets and providing estimates of variable importance.
- e1071: This package contains functions for statistical learning, including support vector machines (SVM), short-time Fourier transform, fuzzy clustering, and more. It's widely used for classification and regression tasks.
- **xgboost**: An efficient implementation of the gradient boosting framework, **xgboost** is a powerful library for building predictive models, especially in competitions and practical applications due to its speed and performance.
- **pROC:** The pROC package in R is a versatile tool for visualizing and analyzing the performance of classification algorithms through Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) metrics. It provides an easy-to-use interface for creating ROC curves, calculating AUC values, and comparing the performance of different models.
- **rsample:** The rsample package in R is designed to assist in the process of resampling and cross-validation for model evaluation and selection. It provides a suite of tools to create and manage different types of resampling procedures, such as bootstrapping, k-fold cross-validation, and leave-one-out cross-validation.
- **Boruta:** The Boruta package in R is designed for feature selection, aiming to identify all relevant features in a dataset for building robust and accurate predictive models. It is based on a random forest classification method but extends it by creating a shadow feature set from the original features by random permutation.
- **kknn:** The kknn package in R is used for k-nearest neighbors (k-NN) classification and regression. K-nearest neighbors is a simple, instance-based learning algorithm where the response of an observation is determined by the majority vote (in classification) or average (in regression) of the k closest training examples.

Classification Algorithms

Classification algorithms are used in machine learning to categorize data into predefined classes or categories. They work by learning patterns from labelled training data and then applying this learning to classify new, unseen data points into the appropriate classes.

Logistic Regression: It's a linear model used for binary classification, estimating probabilities using a logistic function and making predictions based on a threshold.

Random Forest: A collection of decision trees that aggregate predictions, reducing overfitting and improving accuracy through ensemble learning.

Support Vector Machines (SVM): This algorithm finds the best hyperplane that separates classes in a high-dimensional space, maximizing the margin between data points of different classes.

Naive Bayes: Based on Bayes' theorem, it assumes independence between features and calculates the probability of each class given the input data, often used for text classification tasks.

K-Nearest Neighbours (KNN): It classifies data points based on the majority class among their k nearest neighbours, making it simple but sensitive to noisy data and the choice of k.

XGBoost (**XGBoost**): XGBoost (Extreme Gradient Boosting) is a powerful machine learning algorithm widely used for structured data classification and regression tasks, renowned for its performance and speed in handling large datasets. It employs an ensemble of decision trees, optimized using gradient boosting techniques, to deliver highly accurate models, making it a popular choice in data science competitions and industry applications.

Data Mining Procedure

Data Pre-Processing:-

Data preprocessing is a crucial step in data analysis and machine learning, serving as the foundation for generating reliable, accurate results. It involves cleaning, transforming, and organizing raw data into a suitable format for analysis, which is essential for several reasons. Firstly, it helps in handling missing values, outliers, and noise in the data, which can significantly distort the outcomes of the analysis if not addressed properly. Secondly, it allows for feature extraction and selection, helping to identify the most relevant information and reduce the dimensionality of the data, which in turn improves computational efficiency and model accuracy.

Using the dataset given, we followed the below given steps:

- <u>Data Cleaning</u>: Data cleaning involves the process of detecting and correcting (or removing) corrupt or inaccurate records from a dataset, enhancing its quality. This step may include handling missing values, correcting errors, and removing duplicates, ensuring the data is consistent and suitable for analysis.
- <u>Data reduction</u>: It aims to decrease the volume of data, making it easier to analyse without significantly losing important information. Techniques such as dimensionality reduction, aggregation, and feature selection help to simplify the data, focusing on relevant information while reducing storage and processing requirements.
 - 1. Correlation Analysis
 - 2. Zero covariance

Data Cleaning:

The data cleaning is the process of finding out missing values and to remove duplicates. Using R programming language, this is the summary of data:

Number of tuples: 5000 Number of attributes: 276

Number of missing values in whole dataset: 639886

Attributes	Count	Status of the attributes
Attributes with no values	7	Drop
Attributes with no missing values	79	Analysis not Required
Attributes with missing values	190	Analysis Required

Attributes with missing values	Count	Status of Attributes
Attributes with >= 40% of missing values	64	Drop
Attributes unrelated to "Class"	4	Drop
Attributes with <= 40% of missing values	122	Analysis Required

Let us understand in detail for each condition of attributes:

Attributes with no values:

Dropping columns with no values from a dataset is often justified because such columns do not contribute any information that can be used for analysis or modelling. These columns represent features that, across all observations, have no data, meaning they offer no variance or insight that could improve the understanding of the dataset's underlying patterns or the performance of predictive models. The total number of attributes which have no values in the dataset is 7 and they are:

Attributes - "COLGHOUS" "COLGSEX" "X" "TOLDCFS" "HAVECFS" "WORKCFS" "MEDSHEPB"

In total 7 attributes are dropped from the given dataset and stored in a new data frame "df". The data frame now consists of 269 attributes.

Attributes with no missing values:

Columns with no missing values are highly valuable in data analysis and modelling for several reasons. Firstly, they ensure the integrity and completeness of the dataset, allowing for more straightforward and robust statistical analyses and modelling. When every observation in a column is available, it eliminates the need for imputation techniques or the handling of missing data, which can sometimes introduce bias or inaccuracies. Secondly, columns with no missing values can contribute to more reliable and consistent results since they provide a complete set of data points for analysis.

As per the given dataset, there are 79 attributes which contain no missing values and does not require any further analysis which can be used for modelling.

Attributes with missing values:

Dealing with attributes that have missing values is a critical aspect of the data pre-processing phase in data analysis and machine learning projects. Missing data can arise due to various reasons, such as errors in data collection,

non-responses in surveys, or system faults. Several strategies can be employed to manage missing data, including deleting records or features with missing values, imputing missing values using statistical methods (mean, median, mode imputation for numerical data, or the most frequent category for categorical data), and model-based methods (like using k-nearest neighbours or regression models for imputation).

Analysing the data, it is visible that there are 190 attributes which contain missing values.

• Attributes with >= 40 % missing values :

Considering attributes which have more than or equal to 40% of missing values for each attribute, a total of 68 are dropped from the dataset.

Reason: Dropping attributes with 40% or more missing values is a pragmatic approach to data cleaning, often adopted in the pre-processing phase of data analysis and machine learning projects. This threshold-based rule is applied because attributes with such a high level of missingness can introduce significant uncertainty and bias into the analysis or predictive modelling.

Moreover, retaining these attributes might not add meaningful information due to the sparse nature of the data and could unnecessarily increase the complexity of the analysis or model. By removing these attributes early in the data pre-processing stage, analysts can focus on more reliable predictors, ensuring the robustness and validity of their findings.

• Attributes with <=40% missing values:

A total number of 122 attributes contain 40% or less missing values.

For attributes with 40% or less missing values, conducting a thorough analysis to understand the nature of the missing data and deciding on an appropriate method for handling these missing values is crucial. This threshold suggests that a significant portion of the data is present, potentially carrying valuable information that could influence the analysis or model outcomes. Retaining and properly imputing these attributes can enhance the dataset's integrity, allowing for a more comprehensive analysis. Various imputation methods can be applied, depending on the attribute's type and the missingness pattern. Common techniques include mean or median imputation for numerical attributes, mode imputation for categorical attributes, or more sophisticated approaches like using

regression models, k-nearest neighbours (KNN), or multiple imputation methods that consider correlations between attributes.

The next step is to deal with the attributes which have missing values and to decide which method to use to handle the missing values.

Demonstrating three attributes to understand which method is used and why the specific method is used for the particular attribute. The remaining number of attributes(including the below three) and the methods used are shown in the R file.

Attribute 1 : SMOKE100

Description (from Codebook): Smoked at Least 100 Cigarettes

Method : Mode R snippet :

```
> #SMOKE100
> sum(is.na(df$SMOKE100))
[1] 221
> df$SMOKE100[is.na(df$SMOKE100)]=mfv(df$SMOKE100[!is.na(df$SMOKE100)])
> sum(is.na(df$SMOKE100))
[1] 0
```

Reason: The values are labelled as 1, 2, 7 and 9. There are around 221 missing values, using mode the missing values are replaced by the most frequent value in the whole attribute for all 5000 tuples.

Analysis:

Before the imputation – Missing values is 221 After the imputation – Missing values is 0

Attribute 2 : CHILDREN

Description (from Codebook): Number of Children in Household

Method: Median

R snippet:

```
> #CHILDREN
> #Data Distribution: If the variable 'CHILDREN' is skewed or has a non-normal
> #distribution, median imputation might be preferred over mean imputation to avoid introducing bias.
> sum(is.na(df$CHILDREN))
[1] 53
> #CHILDREN
> #Data Distribution: If the variable 'CHILDREN' is skewed or has a non-normal
> #distribution, median imputation might be preferred over mean imputation to avoid introducing bias.
> sum(is.na(df$CHILDREN))
[1] 53
> summary(df$CHILDREN)
  Min. 1st Qu. Median
                         Mean 3rd Qu.
                                         Max.
                                                  NA's
         3.00 88.00 64.45 88.00 99.00
                                                    53
> # Boxplot to inspect for outliers
> boxplot(df$CHILDREN, main = "Boxplot of Number of Children")
> df$CHILDREN[is.na(df$CHILDREN)]=median(!is.na(df$CHILDREN))
> sum(is.na(df$CHILDREN))
[1] 0
```

Reason: Median imputation might be preferred over mean imputation to avoid introducing bias. A box plot analysis is also performed to check for outliers for this particular attribute.

Analysis:

Before the imputation – Missing values is 53 After the imputation – Missing values is 0

Boxplot for CHILDREN:

Boxplot of Number of Children

Attribute 3: HEIGHT3

Description (from Codebook): Reported Height in Feet and Inches

Method : Mean R snippet :

Reason: The HEIGHT3 mentioned in the data contains values of different magnitudes (inches and feet). In order to convert all the HEIGHT3 values to inches and use it for further analysis is a crucial step.

Data Reduction:

Data reduction is a crucial process in data pre-processing that involves reducing the volume of data or the dimensionality of the feature space to make the data set more manageable for analysis. This process is required for several reasons. Firstly, it helps in significantly reducing storage requirements and computational costs, making data processing and analysis more efficient, especially for large datasets. Secondly, data reduction enhances the performance of machine learning models by eliminating redundant, irrelevant, or highly correlated features, thereby improving the model's accuracy and reducing the risk of overfitting.

Let's perform below steps for the given dataset:

• <u>Zero covariance</u>: Zero covariance between two variables indicates that there is no linear relationship between them. Covariance measures how two variables change together; it can be positive, negative, or zero.

• <u>Correlation Analysis:</u> Perform correlation analysis to identify highly correlated features. Highly correlated features with the target variable are good candidates for inclusion, while features highly correlated with each other but not with the target may be redundant.

	row	col
X_STATE	1	1
X_STSTR	59	1
FMONTH	2	2
IDATE	3	3
IMONTH	4	3
IDATE	3	4
IMONTH	4	4
IDAY	5	5
DISPCODE	6	6
SEQNO	7	7
X_PSU	8	7
SEQNO	7	8
X_PSU	8	8
CELLSEX	9	9
LANDLINE	10	10
HHADULT	11	11
SEXVAR	12	12
X_SEX	86	12
GENHLTH	13	13
PHYSHLTH	14	14
HLTHPLN1	15	15
PERSDOC2	16	16
MEDCOST	17	17

Zero covariance:

Zero covariance between two variables indicates that there is no linear relationship between them. Covariance measures how two variables change together; it can be positive, negative, or zero.

- Positive covariance means that as one variable increases, the other variable also tends to increase, indicating a positive linear relationship.
- Negative covariance means that as one variable increases, the other tends to decrease, indicating a negative linear relationship.
- Zero covariance means that there is no discernible linear trend between the variables. If the covariance is zero, changes in one variable do not predict changes in the other variable in a linear sense.

Correlation Analysis:

Performed Correlation Analysis for all the 122 attributes where "Class" attribute is the target variable and all other attributes are dependent variables. After performing Correlation Analysis, these were the insights which we got:

Considering a threshold for significance to be 0.8, the first few correlation pairs is shown in the image right

Next step is to remove the self-correlation and NA values from the data frame. Creating a data frame for significant pairs and finding out the highly correlated pairs. The image on the right shows the first few of high correlated pairs above 0.8 threshold.

Filtering out constant columns before performing a correlation analysis is essential because a column with a constant value does not vary and, therefore, has no linear relationship with other variables.

Split the Pre-processed dataset:-

Splitting a pre-processed dataset into training and testing sets is a fundamental practice in machine learning to evaluate the performance of a model.

The primary reason for this split is to ensure that the model can generalize well to unseen data, not just fit well to the data it was trained on.

Flowchart:

> high_cor_df

	Variable1	Variable2	Correlation
1	X_STSTR	X_STATE	0.9999956
2	IMONTH	IDATE	0.9996994
3	IDATE	IMONTH	0.9996994
4	X_PSU	SEQNO	1.0000000
5	SEQNO	X_PSU	1.0000000
6	X_SEX	SEXVAR	0.9991947
7	X_TOTINDA	EXERANY2	0.9926109
8	X_DRDXAR2	HAVARTH4	0.8340959
9	X_EDUCAG	EDUCA	0.9818362
10	X_DRNKDRV	ALCDAY5	0.8483267

Code Snippet:

```
##Splitting the dataset into test and train 66% training and 34% testing
set.seed(7)
split = initial_split(df,prop = 0.66,strata = "Class")
train = training(split)
test = testing(split)
write.csv(test,"initial_test.csv",row.names = FALSE)
write.csv(train,"initial_train.csv",row.names = FALSE)
```

We have split the preprocessed dataset into train and test dataset (66% training and 34% testing). Two csv files are generated after executing the commands in R by splitting the pre-processed dataset into train and test datasets and written as initial test.csv and initial train.csv which will be used for further analysis.

Data Balancing:

Data balancing refers to the process of adjusting the distribution of classes in a dataset to prevent biases in machine learning models. In an imbalanced dataset, one or more classes significantly outnumber the others, which can lead to a model that performs well on the majority class but poorly on the minority class.

Data balancing techniques, such as oversampling the minority class and under sampling the majority class are used to create a more balanced class distribution. This helps ensure that the model learns to recognize patterns associated with all classes, not just the dominant one. By balancing the dataset, we promote a more equitable representation of all classes, enabling the model to learn a more general and robust representation of the data.

We have performed oversampling and undersampling for the pre-processed dataset obtained after performing pre-processing techniques as mentioned above. In R, we have used "srswor" (Simple Random Sampling Without Replacement) for under sampling and "srswr" (Simple Random Sampling Without Replacement) for over sampling.

Flowchart:

Code Snippet:

```
#undersampling using simple random sampling without replacement
srswor=sample(index_0s,number_1,replace = FALSE)
undersample_index=c(srswor,index_1s)
undersample_index
undersample=train[undersample_index,]
prop.table(table(undersample$Class))
#oversampling using simple random sampling with replacement
set.seed(7)
srswr=sample(index_1s,number_0,replace = TRUE)
oversample_index=c(srswr,index_0s)
oversample_index
oversample=train[oversample_index,]
prop.table(table(oversample$Class))
#saving the underbalanced and overbalanced data sets
#saving the underbalanced dataset
write.csv(undersample, "underbalanced.csv", row.names=FALSE)
#saving the overbalanced dataset
write.csv(oversample, "overbalanced.csv", row.names=FALSE)
```

Two csv files are generated after executing the commands in R by implementing oversampling and undersampling code to the train dataset and saved as overbalanced.csv and underbalanced.csv which will be used for further analysis.

Attribute Selection Methods:-

Attribute selection, also known as feature selection, is a process used in machine learning to identify and select a subset of relevant features (attributes) for use in model construction. The goal of attribute selection is to improve model performance by eliminating redundant, irrelevant, or noisy data, thus simplifying the model, reducing training times, and enhancing generalization by reducing overfitting.

The three methods we used for our project are listed below:

Boruta: Boruta is a feature selection algorithm that identifies all relevant features in a dataset for predictive modelling. It is based on a random forest approach and operates by creating shadow features (random copies of original

features) and then iteratively comparing the importance of actual features with these shadows.

Below are the codes for underbalanced and overbalanced using Boruta method:

```
#boruta
set.seed(1001)
underbalanced.boruta=Boruta(Class~.,data=underbalanced)
underbalanced.boruta
features.boruta.underbalanced= getSelectedAttributes(underbalanced.boruta, withTentative = FALSE)
underbalanced_boruta= underbalanced[,c(features.boruta.underbalanced,"Class")]
write.csv(underbalanced_boruta,"underbalanced_boruta.csv",row.names = FALSE)
test_underbalanced_boruta= test[,c(features.boruta.underbalanced,"Class")]
write.csv(test_underbalanced_boruta,"test_underbalanced_boruta.csv",row.names = FALSE)
#boruta
set.seed(1001)
overbalanced.boruta=Boruta(Class~.,data=overbalanced)
overbalanced.boruta
features.boruta.overbalanced= getSelectedAttributes(overbalanced.boruta, withTentative = FALSE)
overbalanced_boruta= overbalanced[,c(features.boruta.overbalanced,"Class")]
write.csv(overbalanced_boruta,"overbalanced_boruta.csv",row.names = FALSE)
test_overbalanced_boruta= test[,c(features.boruta.overbalanced,"Class")]
write.csv(test_overbalanced_boruta,"test_overbalanced_boruta.csv",row.names = FALSE)
```

Information Gain (InfoGain): Information Gain is a feature selection method used primarily in the context of decision tree algorithms. It measures the reduction in entropy or surprise from transforming a dataset in some way. In feature selection, it evaluates the worth of an attribute by calculating the difference between the entropy of the dataset before and after a split on that attribute.

Below are the codes for underbalanced and overbalanced using InfoGain method:

```
#information gain
underbalanced.infogain=information.gain(Class~.,data=underbalanced)
underbalanced.infogain=cbind(rownames(underbalanced.infogain),data.frame(underbalanced.infogain,row.names = NULL))
names(underbalanced.infogain)=c("Attribute","Info Gain")
sorted.underbalanced.infogain=underbalanced.infogain[order(-underbalanced.infogain$`Info Gain`),]
sorted.underbalanced.infogain$Attribute[1:5]

features.infogain.underbalanced=c(sorted.underbalanced.infogain$Attribute[1:5])
underbalanced_infogain=underbalanced[,c(features.infogain.underbalanced,"Class")]
write.csv(underbalanced_infogain,"underbalanced_infogain.csv",row.names = FALSE)

test_underbalanced_infogain=test[,c(features.infogain.underbalanced,"Class")]
write.csv(test_underbalanced_infogain,"test_underbalanced_infogain.csv",row.names = FALSE)
```

```
#information gain

overbalanced.infogain=information.gain(Class~.,data=overbalanced)
overbalanced.infogain=cbind(rownames(overbalanced.infogain),data.frame(overbalanced.infogain,row.names = NULL))
names(overbalanced.infogain)=c("Attribute","Info Gain")
sorted.overbalanced.infogain=overbalanced.infogain[order(-overbalanced.infogain$\frac{1:5}{\text{sorted.overbalanced.infogain}}\]
features.infogain.overbalanced=c(sorted.overbalanced.infogain$Attribute[1:5])
overbalanced_infogain=overbalanced[,c(features.infogain.overbalanced,"Class")]
write.csv(overbalanced_infogain=test[,c(features.infogain.overbalanced,"Class")]
write.csv(test_overbalanced_infogain,"test_overbalanced_infogain.csv",row.names = FALSE)
```

Correlation-based Feature Selection (CFS): Correlation-based Feature Selection (CFS) is a heuristic method for feature selection that evaluates the usefulness of individual features and subsets of features based on their correlation with the target variable and the absence of correlation with each other.

Below are the codes for underbalanced and overbalanced using CFS method:

```
#CFS
underbalanced.cfs=cfs(Class~.,data=underbalanced)
underbalanced.cfs
underbalanced_cfs=underbalanced[,c(underbalanced.cfs,"Class")]
write.csv(underbalanced_cfs,"underbalanced_cfs.csv",row.names = FALSE)

#CFS
overbalanced.cfs=cfs(Class~.,data=overbalanced)
overbalanced.cfs
overbalanced.cfs
overbalanced_cfs=overbalanced[,c(overbalanced.cfs,"Class")]
write.csv(overbalanced_boruta,"overbalanced_cfs.csv",row.names = FALSE)
```

We have created 6 datasets based on the three attribute selection methods using overbalanced and underbalanced datasets created after data balancing.

Flowchart

Classification Algorithms:

Classification algorithms used are mentioned below:

Logistic Regression: The logistic regression model is used in all 6 dataset that was created and saved after doing the preprocessing, initial splitting, balancing and feature selection. Since logistic regression model does not have any parameters that can be tuned we didn't do parameter tuning

Random Forest: The Random forest model which is an ensemble model is used on all the 6 dataset as mentioned above. The random forest model was tuned for its parameter using tune grid and train control.

Support Vector Machines (SVM): The SVM model was also run for all 6 datasets that were saved as mentioned above. This model was run using only base parameters.

Naive Bayes: Since this model is based on Bayes' theorem, it assumes independence between features and calculates the probability of each class given the input data, often used for classification tasks. This model was tuned using its parameters such as Train Control and Tune Grid.

K-Nearest Neighbours (KNN): Since it classifies data points based on the majority class among their k nearest neighbours. This model was also used to

run the 6 datasets that were saved as mentioned above. This model was tuned for the K value and also the distance metric using Tune Grid and Train Control

XGBoost (**XGBoost**): XGBoost (Extreme Gradient Boosting) is a powerful machine learning algorithm widely used for structured data classification and regression tasks, renowned for its performance and speed in handling large datasets. It employs an ensemble of decision trees, optimized using gradient boosting techniques, to deliver highly accurate models, making it a popular choice in data science competitions and industry applications.

Data Mining Result and Evaluation

1).LOGISTIC REGRESSION :

Confusion matrix:

Table 1: Underbalanced Boruta

Prediction \ Reference	N	Y
N	931	118
Y	446	206

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.6358 025	0.3238 925	0.31595 09	0.6358 025	0.4221311	0.69 97	0.2519 168	0.2248 691
Class N	0.6761 075	0.3641 975	0.88751 19	0.6761 075	0.7675185	0.69 97	0.2519 168	0.2248 691
Wt.Average	0.6559 55	0.3440 45	0.60173 14	0.6559 55	0.5948248	0.69 970 62	0.2519 168	0.2248 691

Table 2: Underbalanced_Cfs

Prediction \ Reference	N	Y
N	935	125
Y	442	119

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.6141 975	0.3209 877	0.31045 24	0.6141 975	0.4124352	0.69	0.2375 944	0.2133 844
Class N	0.6790 123	0.3858 025	0.88207 55	0.6790 123	0.7673369	0.69	0.2375 944	0.2133 844
Wt.Average	0.6466 049	0.3533 951	0.59626 39	0.6466 049	0.5898861	0.69 196 43	0.2375 944	0.2133 844

Table 3: Underbalanced Infogain

Prediction \ Reference	N	Y
N	968	143
Y	409	181

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5586 42	0.2970 225	0.30677 97	0.5586 42	0.3960613	0.67 2	0.2158 373	0.1991 157
Class N	0.7029 775	0.4413 58	0.87128 71	0.7029 775	0.778135	0.67	0.2158 373	0.1991 157
Wt.Average	0.6308 097	0.3691 903	0.58903 34	0.6308 097	0.5870982	0.67 203 37	0.2158 373	0.1991 157

Table 4: Overbalanced Boruta

Prediction \ Reference	N	Y
N	984	115
Y	383	209

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.6450 617	0.2854 031	0.34717 61	0.6450 617	0.4514039	0.72 34	0.2953 472	0.2708 134
Class N	0.7145 969	0.3549 383	0.89535 94	0.7145 969	0.7948304	0.72 34	0.2953 472	0.2708 134
Wt.Averag e	0.6798 293	0.3201 707	0.62126 77	0.6798 293	0.6231171	0.72 335 64	0.2953 472	0.2708 134

Table 5: Overbalanced Infogain

Prediction \ Reference	N	Y
N	960	133
Y	417	191

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5895 062	0.3028 322	0.31414 47	0.5895 062	0.4098712	0.69 65	0.2348 907	0.2147 131
Class N	0.6971 678	0.4104 938	0.87831 66	0.6971 678	0.7773279	0.69 65	0.2348 907	0.2147 131
Wt.Average	0.6433 37	0.3566 63	0.59623 06	0.6433 37	0.5935996	0.69 650 54	0.2348 907	0.2147 131

Table 6: Overbalanced Cfs

Prediction \ Reference	N	Y
N	974	136
Y	403	188

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5802 469	0.2926 652	0.31810 49	0.5802 469	0.410929	0.67 5	0.2371 622	0.2186 788
Class N	0.7073 348	0.4197 531	0.87747 75	0.7073 348	0.783273	0.67 5	0.2371 622	0.2186 788
Wt.Average	0.6437 908	0.3562 092	0.59779 12	0.6437 908	0.597101	0.67 502 82	0.2371 622	0.2186 788

2).NAIVE BAYES:

Table 1: Overbalanced Boruta

Prediction \ Reference	N	Y
N	1137	186
Y	240	138

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4259 259	0.1742 919	0.36507 94	0.4259 259	0.3931624	0.67 37	0.2376 747	0.2365 591
Class N	0.8257 081	0.5740 741	0.85941 04	0.8257 081	0.8422222	0.67 36	0.2376 747	0.2365 591
Wt.Average	0.6258 17	0.3741 83	0.61224 49	0.6258 17	0.6176923	0.67 364 47	0.2376 747	0.2365 591

Table 2: Overbalanced Cfs

Prediction \ Reference	N	Y
N	1168	183
Y	209	141

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4351 852	0.1517 792	0.40285 71	0.4351 852	0.4183976	0.69 13	0.2752 877	0.2749 692
Class N	0.8482 208	0.5648 148	0.86454 48	0.8482 208	0.856305	0.69 13	0.2752 877	0.2749 692
Wt.Average	0.6417 03	0.3582 97	0.63370	0.6417 03	0.6373513	0.69 126	0.2752 877	0.2749 692
						39		

Table 3: Overbalanced Infogain

Prediction \ Reference	N	Y
N	1194	202
Y	183	122

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.3765 432	0.1328 976	0.4	0.3765 432	0.3879173	0.68 9	0.2494 052	0.2492 339
Class N	0.8671 024	0.6234 568	0.85530 09	0.8671 024	0.8611612	0.68 9	0.2494 052	0.2492 339
Wt.Average	0.6218 228	0.3781 772	0.62765 04	0.6218 228	0.6245393	0.68 900 23	0.2494 052	0.2492 339

Table 4: Underbalanced Boruta

Prediction \ Reference	N	Y
N	1137	184
Y	240	140

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4320 988	0.1742 919	0.36842 11	0.4320 988	0.3977273	0.69 95	0.2430 472	0.2418 256
Class N	0.8257 081	0.5679 012	0.86071 16	0.8257 081	0.8428466	0.69 94	0.2430 472	0.2418 256
Wt.Average	0.6289 034	0.3710 966	0.61456 63	0.6289 034	0.6202869	0.69 943 83	0.2430 472	0.2418 256

Table 5: Underbalanced Cfs

Prediction \ Reference	N	Y
N	1126	162
Y	251	162

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5	0.1822 803	0.39225 18	0.5	0.4396201	0.70 68	0.2909 716	0.2875 216
Class N	0.8177 197	0.5	0.87422 36	0.8177 197	0.8450281	0.70 68	0.2909 716	0.2875 216
Wt.Average	0.6588 598	0.3411 402	0.63323 77	0.6588 598	0.6423241	0.70 682 32	0.2909 716	0.2875 216

Table 6: Underbalanced Infogain

Prediction \ Reference	N	Y
N	1175	186
Y	202	138

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4259 259	0.1466 957	0.40588 24	0.4259 259	0.4156627	0.69	0.2741 785	0.2740 556
Class N	0.8533 043	0.5740 741	0.86333 58	0.8533 043	0.8582907	0.69	0.2741 785	0.2740 556
Wt.Average	0.6396 151	0.3603 849	0.63460 91	0.6396 151	0.6369767	0.69 200	0.2741 785	0.2740 556
	101		71	101		02	, 55	

3).RANDOM FOREST:

Table 1: Overbalanced Boruta

Prediction \ Reference	N	Y
N	1323	238
Y	54	86

TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
		n			C		
0.2932	0.0464	0.59748	0.2932	0.3933747	0.71	0.3328	0.3063
099	7785	43	099		66	314	916
0.9535	0.7067	0.85149	0.9535	0.8996232	0.71	0.3328	0.3063
221	901	16	221		66	314	916
0.6233	0.3766	0.72448	0.6233	0.6464989	0.71	0.3328	0.3063
66	34	79	66		661	314	916
	0.2932 099 0.9535 221 0.6233	0.2932 0.0464 099 7785 0.9535 0.7067 221 901 0.6233 0.3766	n n 0.2932 0.0464 0.59748 099 7785 43 0.9535 0.7067 0.85149 221 901 16 0.6233 0.3766 0.72448	n n 0.2932 0.0464 0.59748 0.2932 099 7785 43 099 0.9535 0.7067 0.85149 0.9535 221 901 16 221 0.6233 0.3766 0.72448 0.6233	n n 0.2932 0.0464 0.59748 0.2932 0.3933747 099 7785 43 099 0.9535 0.85149 0.9535 0.8996232 221 901 16 221 0.6233 0.6464989	n C 0.2932 0.0464 0.59748 0.2932 0.3933747 0.71 099 7785 43 099 66 0.9535 0.7067 0.85149 0.9535 0.8996232 0.71 221 901 16 221 66 0.6233 0.3766 0.72448 0.6233 0.6464989 0.71	n C 0.2932 0.0464 0.59748 0.2932 0.3933747 0.71 0.3328 099 7785 43 099 66 314 0.9535 0.7067 0.85149 0.9535 0.8996232 0.71 0.3328 221 901 16 221 66 314 0.6233 0.3766 0.72448 0.6233 0.6464989 0.71 0.3328 66 34 79 66 661 314

Table 2: Overbalanced Cfs

Prediction \ Reference	N	Y
N	1163	213
Y	214	111

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.3487 654	0.1633 987	0.33431 95	0.3487 654	0.3413897	0.66 49	0.1824 169	0.1823 54
Class N	0.8366 013	0.6512 346	0.84519 44	0.8366 013	0.8408759	0.66 49	0.1824 169	0.1823 54
Wt.Average	0.5926 834	0.4073 166	0.58975 7	0.5926 834	0.5911328	0.66 491 39	0.1824 169	0.1823 54

Table 3: Overbalanced Infogain

Prediction \ Reference	N	Y
N	1072	154
Y	305	170

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5308 642	0.2214 96	0.36058 7	0.5308 642	0.4294632	0.68 36	0.2704 365	0.2620 531
Class N	0.7785 04	0.4691 358	0.87581 7	0.7785 04	0.8242983	0.68 36	0.2704 365	0.2620 531
Wt.Average	0.6546 841	0.3453 159	0.61820 2	0.6546 841	0.6268808	0.68 363 3	0.2704 365	0.2620 531

Table 4: Underbalanced Boruta

Prediction \ Reference	N	Y
N	963	134
Y	414	190

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5925 926	0.3093 682	0.31067 96	0.5925 926	0.4076433	0.70 45	0.2312 393	0.2102 709
Class N	0.6906 318	0.4074 074	0.87811 63	0.6906 318	0.7731707	0.70 45	0.2312 393	0.2102 709
Wt.Average	0.6416 122	0.3583 878	0.59439 8	0.6416 122	0.590407	0.70 454 98	0.2312 393	0.2102 709

Table 5: Underbalanced Cfs

Prediction \ Reference	N	Y
N	998	137
Y	379	187

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5895 062	0.2788 671	0.33217 39	0.5895 062	0.4249166	0.70 05	0.2578 65	0.2396 526
Class N	0.7211 329	0.4104 938	0.88188 28	0.7211 329	0.7934479	0.70 05	0.2578 65	0.2396 526
Wt.Average	0.6553 195	0.3446 805	0.60702 83	0.6553 195	0.6091822	0.70 046 37	0.2578 65	0.2396 526

Table 6: Underbalanced Infogain

Prediction \ Reference	N	Y
N	1042	146
Y	335	178

	TPR	FP	Precisio	Recall	F-measure	RO	MCC	Kappa
		R	n			C		
Class Y	0.546296	0.2	0.34980	0.5462	0.426506	0.68	0.2640	0.2530
	3	389	24	963		12	239	265
		252						
Class N	0.761074	0.4	0.87698	0.7610	0.81493	0.68	0.2640	0.2530
	8	537	74	748		12	239	265
		037						
Wt.Average	0.653685	0.3	0.61339	0.6536	0.620718	0.68	0.2640	0.2530
	5	463	49	855		118	239	265
		145				09		

4).XGBoost:

Table 1: Overbalanced Boruta

Prediction \ Reference	N	Y
N	1237	219
Y	140	105

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.3240 741	0.1016 703	0.42857 14	0.3240 741	0.3690685	0.69 77	0.2487 241	0.2452 698
Class N	0.8983 297	0.6759 259	0.84958 79	0.8983 297	0.8732792	0.69 77	0.2487 241	0.2452 698
Wt.Average	0.6112 019	0.3887 981	0.63907 97	0.6112 019	0.6211739	0.69 770 79	0.2487 241	0.2452 698

Table 2: Overbalanced Infogain

Prediction \ Reference	N	Y
N	1113	177
Y	264	147

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4537 037	0.1917 211	0.35766 42	0.4537 037	0.4	0.64 83	0.2403 234	0.2375 895
Class N	0.8082 789	0.5462 963	0.86279 07	0.8082 789	0.8346457	0.64 83	0.2403 234	0.2375 895
Wt.Average	0.6309 913	0.3690 087	0.61022 75	0.6309 913	0.6173228	0.64 832 19	0.2403 234	0.2375 895

Table 3: Overbalanced Cfs

Prediction \ Reference	N	Y
N	1157	201
Y	220	123

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.3796 296	0.1597 676	0.35860 06	0.3796 296	0.3688156	0.62 36	0.2151 755	0.2150 404
Class N	0.8402 324	0.6203 704	0.85198 82	0.8402 324	0.8460695	0.62 36	0.2151 755	0.2150 404
Wt.Average	0.6099 31	0.3900 69	0.60529 44	0.6099 31	0.6074425	0.62 360 25	0.2151 755	0.2150 404

Table 4: Underbalanced Boruta

Prediction \ Reference	N	Y
N	975	134
Y	402	190

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5864 198	0.2919 39	0.32094 59	0.5864 198	0.4148472	0.71 62	0.2427 559	0.2237 241
Class N	0.7080 61	0.4135 802	0.87917 04	0.7080 61	0.7843926	0.71 62	0.2427 559	0.2237 241
Wt.Average	0.6472 404	0.3527 596	0.60005 82	0.6472 404	0.5996199	0.71 616 15	0.2427 559	0.2237 241

Table 5: Underbalanced Infogain

Prediction \ Reference	N	Y
N	1015	139
Y	362	185

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5709 877	0.2628 903	0.33820 84	0.5709 877	0.4247991	0.69	0.2590 185	0.2439 095
Class N	0.7371 097	0.4290 123	0.87954 94	0.7371 097	0.8020545	0.69	0.2590 185	0.2439 095
Wt.Average	0.6540 487	0.3459 513	0.60887 89	0.6540 487	0.6134268	0.69 198 45	0.2590 185	0.2439 095

Table 6: Underbalanced Cfs

Prediction \ Reference	N	Y
N	973	132
Y	404	192

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.2439 095	0.2933 914	0.32214 77	0.5925 926	0.4173913	0.69 79	0.2462 626	0.2264 981
Class N	0.7066 086	0.4074 074	0.88054 3	0.7066 086	0.7840451	0.69 79	0.2462 626	0.2264 981
Wt.Average	0.6496 006	0.3503 994	0.60134 53	0.6496 006	0.6007182	0.69 786 48	0.2462 626	0.2264 981

5).SVM:

Table 1: Overbalanced Boruta

Prediction \ Reference	N	Y
N	1152	161
Y	225	163

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5030 864	0.1633 987	0.42010 31	0.5030 864	0.4578652	0.72 85	0.3178 858	0.3158 339
Class N	0.8366 013	0.4969 136	0.87738	0.8366 013	0.8565056	0.72 85	0.3178 858	0.3158 339
Wt.Average	0.6698 439	0.3301 561	0.64874 16	0.6698 439	0.6571854	0.72 845 78	0.3178 858	0.3158 339

Table 2: Overbalanced Infogain

Prediction \ Reference	N	Y
N	1026	166
Y	351	158

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4876 543	0.2549 02	0.31041 26	0.4876 543	0.3793517	0.66 08	0.1995 89	0.1910 439
Class N	0.7450 98	0.5123 457	0.86073 83	0.7450 98	0.7987544	0.66 08	0.1995 89	0.1910 439
Wt.Average	0.6163 762	0.3836 238	0.58557 54	0.6163 762	0.5890531	0.66 077 74	0.1995 89	0.1910 439

Table 3: Overbalanced Cfs

Prediction \ Reference	N	Y
N	953	133
Y	424	191

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5895 062	0.3079 158	0.31056 91	0.5895 062	0.4068158	0.68 99	0.2301 468	0.2096 088
Class N	0.6920 842	0.4104 938	0.87753 22	0.6920 842	0.773853	0.68 99	0.2301 468	0.2096 088
Wt.Average	0.6407 952	0.3592 048	0.59405 07	0.6407 952	0.5903344	0.68 994 26	0.2301 468	0.2096 088

Table 4: Underbalanced Boruta

Prediction \ Reference	N	Y
N	924	131
Y	453	193

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5956 79	0.3289 76	0.29876 16	0.5956 79	0.3979381	0.68 79	0.2157 868	0.1932 64
Class N	0.6710 24	0.4043 21	0.87582 94	0.6710 24	0.7598684	0.68 79	0.2157 868	0.1932 64
Wt.Average	0.6333 515	0.3666 485	0.58729 55	0.6333 515	0.5789033	0.68 787 82	0.2157 868	0.1932 64

Table 5: Underbalanced Infogain

Prediction \ Reference	N	Y
N	1026	166
Y	351	158

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4876 543	0.2549 02	0.31041 26	0.4876 543	0.3793517	0.65 64	0.1995 89	0.1910 439
Class N	0.7450 98	0.5123 457	0.86073 83	0.7450 98	0.7987544	0.65 64	0.1995 89	0.1910 439
Wt.Average	0.6163 762	0.3836 238	0.58557 54	0.6163 762	0.5890531	0.65 637 52	0.1995 89	0.1910 439

Table 6: Underbalanced Cfs

Prediction \ Reference	N	Y
N	949	136
Y	428	188

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5802 469	0.3108 206	0.30519 48	0.5802 469	0.4	0.67 92	0.2201 275	0.2003 781
Class N	0.6891 794	0.4197 531	0.87465 44	0.6891 794	0.770918	0.67 92	0.2201 275	0.2003 781
Wt.Average	0.6347 131	0.3652 869	0.58992 46	0.6347 131	0.585459	0.67 917 48	0.2201 275	0.2003 781

6).KNN:

Table 1: Overbalanced Boruta

Prediction \ Reference	N	Y
N	1207	242
Y	170	82

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.2530 864	0.1234 568	0.32539 68	0.2530 864	0.2847222	0.56 48	0.1432 878	0.1416 667
Class N	0.8765 432	0.7469 136	0.83298 83	0.8765 432	0.8542109	0.56 48	0.1432 878	0.1416 667
Wt.Average	0.5648 148	0.4351 852	0.57919 25	0.5648 148	0.5694666	0.56 481 48	0.1432 878	0.1416 667

Table 2: Overbalanced Infogain

Prediction \ Reference	N	Y
N	88	33
Y	1289	291

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.8981 481	0.9360 93	0.18417 72	0.8981 481	0.3056723	0.48 1	0.0579 6564	0.0152 8672
Class N	0.0639 0704	0.1018 519	0.72727 27	0.0639 0704	0.11749	0.48 1	0.0579 6564	0.0152 8672
Wt.Average	0.4810	0.5189	0.45572	0.4810	0.2115811	0.48	0.0579	0.0152
	276	724	5	276		102	6564	8672
						76		

Table 3: Overbalanced Cfs

Prediction \ Reference	N	Y
N	857	188
Y	520	136

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4197 531	0.3776 325	0.20731 71	0.4197 531	0.277551	0.52 11	0.0339 8001	0.0302 635
Class N	0.6223 675	0.5802 469	0.82009 57	0.6223 675	0.7076796	0.52 11	0.0339 8001	0.0302 635
Wt.Average	0.5210 603	0.4789 397	0.51370 64	0.5210 603	0.4926153	0.52 106 03	0.0339 8001	0.0302 635

Table 4: Underbalanced Boruta

Prediction \ Reference	N	Y
N	1017	149
Y	360	175

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.5401 235	0.2614 379	0.32710 28	0.5401 235	0.4074505	0.68 51	0.2356 827	0.2231 267
Class N	0.7385 621	0.4598 765	0.87221 27	0.7385 621	0.7998427	0.68 51	0.2356 827	0.2231 267
Wt.Average	0.6393 428	0.3606 572	0.59965 77	0.6393 428	0.6036466	0.68 514 48	0.2356 827	0.2231 267

Table 5: Underbalanced Infogain

Prediction \ Reference	N	Y
N	1154	190
Y	223	134

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4135 802	0.1619 463	0.37535 01	0.4135 802	0.3935389	0.68 15	0.2426 471	0.2422 018
Class N	0.8380 537	0.5864 198	0.85863 1	0.8380 537	0.8482176	0.68 15	0.2426 471	0.2422 018
Wt.Average	0.6258 17	0.3741 83	0.61699 05	0.6258 17	0.6208782	0.68 146	0.2426 471	0.2422 018
						11		

Table 6: Underbalanced Cfs

Prediction \ Reference	N	Y
N	1148	180
Y	229	144

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.4444 444	0.1663 036	0.38605 9	0.4444 444	0.4131994	0.69 81	0.2639 677	0.2629 366
Class N	0.8336 964	0.5555 556	0.86445 78	0.8336 964	0.8487985	0.69 81	0.2639 677	0.2629 366
Wt.Average	0.6390 704	0.3609 296	0.62525 84	0.6390 704	0.630999	0.69 811 81	0.2639 677	0.2629 366

Parameters of the Best Model Selected

Classification Model: Logistic Regression

The best model which we are getting is Logistic Regression. This combination satisfies the minimum criteria .Logistic Regression , one of the popular Machine Learning algorithms, which is a type of supervised machine learning model. The combination of the model which we are getting is for Overbalanced and Boruta.

Combination: Overbalanced Boruta

Overbalanced Boruta is a combination of the overbalanced dataset which is using the oversampling method to balance it and using the Boruta method to obtain attribute selection for the overbalanced dataset.

1. Overbalancing:

Simple Random Sampling with replacement was used to over-balance the class variable that had a lesser number of values compared to the other. The indexed of class 'Y' had lesser proportion than the class 'N' variable hence the indexes of class 'Y' variable was oversampled with replacement. The data was then saved as "Overbalanced.csv" which had 5342 rows which had equal proportion of Y and N classes .

2. Boruta:

After balancing the data with the help of oversampling using the function "srswr" Simple Random Sampling With Replacement. We had a dataset that had 5342 rows and 64 columns. The 64 columns had 1 Class column which would be used for the classification task, Hence there were 63 columns or features. Now the 'overbalanced.csv' dataset was then used on the 'boruta' function to calculate the most important features.

Which turned out to be that all 63 feature columns were important.

> overbalanced.boruta

Boruta performed 13 iterations in 29.47609 secs.

63 attributes confirmed important: ASTHMA3, BLDSTOL1, BLIND, CELLSEX, CHCCOPD2 and 58 more; No attributes deemed unimportant.

Performance Metrics Of The Best Model

Confusion matrix:

Prediction \ Reference	N	Y
N	984	115
Y	383	209

Performance Measures

	TPR	FPR	Precisio	Recall	F-measure	RO	MCC	Kappa
			n			C		
Class Y	0.6450 617	0.2854 031	0.34717 61	0.6450 617	0.4514039	0.72 34	0.2953 472	0.2708 134
Class N	0.7145 969	0.3549 383	0.89535 94	0.7145 969	0.7948304	0.72 34	0.2953 472	0.2708 134
Wt.Averag e	0.6798 293	0.3201 707	0.62126 77	0.6798 293	0.6231171	0.72 335 64	0.2953 472	0.2708 134

The model exhibits higher performance rates as compared to other models & combinations. The performance metrics are mentioned above in the table.

Discussion and Conclusion

The project aims to predict depressive disorders using classification algorithms on a given dataset initially containing 5000 tuples and 276 attributes. Pre-processing addressed missing values and reduced the attributes to 66, ensuring data quality. The dataset was then split into training (66%) and testing (34%) sets to facilitate model learning and evaluation. To tackle class imbalance, undersampling and oversampling were performed, resulting in balanced training data. Attribute selection using Boruta, Information Gain, and CFS methods further refined the essential features for model training.

Six classification algorithms, including Logistic Regression, Naive Bayes, SVM, KNN, XGBoost, and Random Forest, were evaluated across 36 model-training combinations, with parameter tuning tailored to each algorithm. The Overbalanced Boruta approach, combined with Logistic Regression, emerged as the most effective, demonstrating superior performance metrics. This combination, notable for its robust feature selection and balancing techniques, proved to be a comprehensive and interpretable solution for predicting depressive disorders, highlighting the effectiveness of meticulous data preparation and strategic model selection in achieving accurate and reliable classification outcomes.