Soft Lepton Tagger

Bennett Austin

LBL+Nikhef Charm Tagging

4/27/21

Introduction

- Soft-lepton variables study
 - Soft electron and muon variables
 - Input into the DL1 algorithm
 - Improve b-jet and c-jet identification
- Data samples used:
 - WpH->cc for charm and light jets
 - WpH->bb for bottom jets
- Cuts used:
 - Jet pt > 20 GeV
 - |Jet eta| < 2.5

c-quark fragmentation [%]

D^+	26.39 ± 1.39
D^0	57.72 ± 2.41
D_s^+	6.91 ± 0.45
Λ_c^+	5.26 ± 0.31

D-meson inclusive decay modes

Species	Inclusive decay mode	Fraction [%]
	$\rightarrow e^+$ semileptonic	(16.07 ± 0.30)
D^+	$\rightarrow \mu^+$ anything	(17.6 ± 3.2)
	$\to K^-$ anything	(25.7 ± 1.4)
	$\rightarrow \bar{K^0}$ or K^0 anything	(61 ± 5)
	$\rightarrow \bar{K}^*(892)^0$ anything	(23 ± 5)
D^0	$\rightarrow e^+$ semileptonic	(6.49 ± 0.11)
	$\rightarrow \mu^+$ anything	(6.7 ± 0.6)
	$\rightarrow K^-$ anything	(54.7 ± 2.8)
	$\rightarrow \bar{K^0}$ or K^0 anything	(47 ± 4)
	$\rightarrow K^*(892)^-$ anything	(15 ± 9)

Marko Stamenkovic

Introduction

- Higgs->cc invariant mass
- Highest jet pt pairs
- Blue: truth c-jets
- Red: truth c-jets correctly tagged as c-jets by DL1
- c-tag efficiency is low

DL1 Score and efficiencies

- c-jet efficiency: 19.8%
- b-jet c-tagged efficiency: 6.4%
- Light-jet c-tagged efficiency: 0.8%
- pc, pu, pb probability of jets from training
- f is fraction of b-jets in background
 - \circ f = 0.08
- Requirements for c-tag:
 - o DL1 >= 1.3
 - MV2c10 <= 0.83

$$DL_1 = \ln \frac{p_c}{fp_b + (1 - f)p_u}$$

Green: I-jets, red: b-jets, blue: c-jets. Normalized with sum of weights

Lepton Variables

Lepton tracks per jet

- Truth leptons matched to a track
- More electrons than muons

Lepton Track Pt

Lepton track d0

Track d0: transverse impact parameter;
 distance of closest approach of the track to
 the primary vertex in the transverse direction

Lepton dR

 Delta R: delta R between the lepton track and the jet axis

Heavy Flavor Decays

The following variables were plotted by selecting lepton tracks coming from charm and bottom mesons and baryons

Lepton Track Pt

- The b-hadron decay seems to have larger track pt for both types of leptons.
- c-hadron decay is roughly the same for both types of jets.

Lepton dR

 Delta R: delta R between the lepton track and the jet axis

Lepton Track d0

• b-jets have a slightly larger spread in track d0, especially when comparing the c-hadron decays

Lepton Track PtRel

PtRel: track pt relative to jet axis;
 track momentum perpendicular to jet axis

Electron identification

 Photons identified as electrons

Lots of fake hadrons

Ptvarcone30

- PtvarconeXX: computed by summing the transverse momentum of the selected tracks within a cone centered around the electron track
 - XX is the size of the cone: dR = XX/100

All electrons (including fakes)

Electrons with meson origin

Electrons with fake electron origin

Ptvarcone30

Hadrons identified as electrons

Photons identified as electrons

Truth matched electrons

DL1 Trainings

Preliminary DL1 Trainings

- Default configuration: standard training variables (JF, SV1, etc.)
- Default+Electron configuration: added soft electron pt, pTrel, dR, eta, phi, d0, and z0,
- Default+Muon configuration: added soft muon pt, pTrel, dR, eta, phi, IP3D d0, and IP3D z0.
- Default and default+electron configurations:
 - Ran training for 300 epochs
 - Learning rate: 0.01
 - ROC Model evaluation epoch: 280
- Default+muon configuration
 - Ran training for 270 epochs
 - Learning rate: 0.005
 - o ROC Model evaluation epoch: 250
- DNN Parameters used in all configurations:
 - o Batch size: 15,000
 - Activation functions: relu
 - Layers and nodes: [256, 128, 60, 48, 36, 24, 12, 6]
 - o 5,000,000 b-jets

Rejection (ttbar)

Default

Default+electron

Default+muon

c-rej vs b-eff

Default

Default+electron

Default+muon

u-rej vs b-eff

Default

Default+electron

Default+muon

Further Trainings for the Muon Configuration

 Default+Muon configuration: added soft muon pt, pTrel, dR, eta, phi, IP3D d0, and IP3D z0.

 The next set of slides show the training results for the muon setting with various hyperparameter changes.

- Parameters that stayed constant:
 - Batch size = 15,000
 - Activation functions: relu
 - 5,000,000 b-jets

Hyperparameter Investigation

Learning rate	Layers and nodes	c-rej	u-rej	accuracy	loss
0.01	[512, 256, 128, 60, 48, 36, 24, 12, 6]	6.8	180	0.705	0.64
0.005	[256, 128, 60, 48, 36, 24, 12, 6]	6.5	210	0.70	0.65
0.005	[512, 256, 128, 60, 48, 36, 24, 12, 6]	6.7	185	0.705	0.64
0.1	[512, 256, 128, 60, 48, 36, 24, 12, 6]	6.75	205	0.695	0.65
0.0025	[256, 128, 60, 48, 36, 24, 12, 6]	6.6	210	0.695	0.64

Hyperparameter Investigation (cont.)

Learning rate	Layers and nodes	c-rej	u-rej	accuracy	loss
0.01	[256, 60, 48, 36, 24, 12, 6]	6.55	225	0.70	0.65
0.0025	[256, 60, 48, 36, 24, 12, 6]	6.65	210	0.70	0.65
0.0025	[512, 256, 128, 60, 48, 36, 24, 12, 6]	6.9	185	0.70	0.64
0.15	[256, 128, 60, 48, 36, 24, 12, 6]	6.4	200	0.7	0.65
0.01	[256, 128, 60, 48, 36, 24, 12, 6]	6.5	190	0.7	0.65

Rejection plots (ttbar)

Ir = $0.0\overline{1}$ Added a layer with 512 nodes Ir = 0.0025 Added a layer with 512 nodes

Rejection plots (ttbar)

Ir = 0.01
Removed a layer with 128 nodes

Ir = 0.0025
Removed layer a with 128 nodes

c-rej vs. b-eff (at epoch 250)

u-rej vs. b-eff (at epoch 250)

Conclusion

- For c-rejection, muons outperformed electrons, which outperformed the default setting
- For u-rejection, muons outperformed both electrons and the default setting;
 electrons produced lower u-rejection than the default configuration
- Trade-off between c-rej and u-rej
 - Largest c-rej. from muons: 6.9
 - o Largest u-rej. from muons: 225
 - These were achieved with different hyperparameter settings
- Electron identification
 - Lots of hadrons (pions, kaons, etc.) and some photons identified as electrons
 - Need more work for electron identification in jets.
 - Affects performance of the soft electron tagger in DL1
 - Still need further training for electron variables with hyperparameter optimization