THIS HOMEWORK IS ON FOUR PAGES. PAGE 1-2: THE FIRST THREE MATH EXERCISES. PAGE 3: THE NO COLLABORATION PROBLEM. PAGE 4: PYTHON EXERCISES.

Math exercises. Relevant Gerstner et al sections: 7.1-7.5, 8.1, 8.4, 10.1, 10.2; & probability primer

1. **Population codes.** In this problem, you will explore optimizing a downstream decoder 'neuron' to determine a stimulus value from two noisy neurons' firing rates. Note the mean of a zero-centered normal random variable $n \sim \mathcal{N}(0, \sigma^2)$ is $\langle n \rangle = 0$ and the variance $\text{Var}[n] = \langle n^2 \rangle - \langle n \rangle^2 = \sigma^2$, and means sum linearly and variances of independent random variables sum but have quadratic scaling:

$$\langle c_1 n_1 + c_2 n_2 \rangle = c_1 \langle n_1 \rangle + c_2 \langle n_2 \rangle,$$

 $\text{Var}[c_1 n_1 + c_2 n_2] = c_1^2 \text{Var}[n_1] + c_2^2 \text{Var}[n_2].$

(a) Scalar tuning curves. Consider two neurons whose firing rates r_1 and r_2 encode a stimulus value x according to a linear function plus noise:

$$r_1 = a_1x + b_1 + n_1, \quad r_2 = a_2x + b_2 + n_2,$$

where $a_1, b_1, a_2, b_2 > 0$ are scalars and $n_1 \sim \mathcal{N}(0, \sigma^2)$ and $n_2 \sim \mathcal{N}(0, \sigma^2)$ are uncorrelated, zero-centered, normal random variables. Now consider a downstream 'neuron' whose output \hat{x} linearly decodes the stimulus value x by weighing and shifting the rates r_1 and r_2 :

$$\hat{x} = w_1 r_1 + w_2 r_2 - c.$$

- Determine relationships between w_1 , w_2 , and c that ensure the estimator is *unbiased* (that $\langle \hat{x} \rangle = x$, averaging over the noise). You should only have two equations but three unknowns, so your solution should be a line of points.
- Then, identify the specific w_1 , w_2 , and c values within this set that minimize the variance $\langle (\hat{x} x)^2 \rangle$. Determine this minimal variance, and explain how it depends on a_1 and a_2 .
- (b) High/low response functions. Now consider neurons whose rates r_1 and r_2 encode a stimulus value according to some high or low response plus noise:

$$r_1 = H(x) + n_1, \quad r_2 = H(x) + n_2,$$

where H(x) is the Heaviside step function (H(x) = 1 for $x \ge 0$, 0 otherwise) and $n_1 \sim \mathcal{N}(0, \sigma^2)$ and $n_2 \sim \mathcal{N}(0, \sigma^2)$. Consider again a shifted linearly decoding neuron response:

$$\hat{x} = w_1 r_1 + w_2 r_2 - c.$$

Assume x=1 and x=-1 are the most common inputs, and find the relationship between w_1 , w_2 , and c that ensures an unbiased estimate at each of these x values. Then, find the specific values of w_1 and w_2 in this set that minimize the variance when x=-1. What is the mean squared error $MSE = \langle (\hat{x}-x)^2 \rangle$ for any $-1 \le x \le 1$? Of these values, for what x will the MSE be highest? Why might estimation be worse in this case than in part (a)?

- 2. **Competitive neural networks.** In this problem, you will analyze two-dimensional systems representing competitive neural networks, often used to model decision making and short term memory.
 - (a) Consider the following linear system of differential equations representing a competitive network:

$$u'_1 = -u_1 - wu_2 + 1 + I_1(t),$$

$$u'_2 = -u_2 - wu_1 + 1 + I_2(t),$$

where u_1 and u_2 represent the mean firing rate of each population, w > 0 is the strength of competitive inhibition between them and $I_1(t)$ and $I_2(t)$ are the inputs to each population. Consider the case in which $I_1(t) \equiv I_2(t) \equiv 0$ to start and find a formula for the equilibrium of this system as it depends on w and determine its linear stability. For what value of $w = w_c$ is there a line of fixed points (a line attractor)? What is its linear stability? Provide a neurobiological interpretation of your findings.

- (b) Show that in the case of a line attractor, $w=w_c$ in (a), the network can remember past inputs. To do so, consider the case in which $u_1(0)=u_2(0)=1/2$ initially and $I_1(t)=I_0$ for 0< t< 1 and then $I_1(t)=0$ thereafter (while $I_2(t)\equiv 0$). Compute the long term value of neural population rates $\lim_{t\to\infty}u_1(t)$ and $\lim_{t\to\infty}u_2(t)$. How do these depend on I_0 ? Explain your result.
- (c) Lastly, we consider a nonlinear competitive network given by the system

$$u_1' = -u_1 + \frac{1}{1 + e^{-\gamma(1 - 2u_2)}},\tag{1a}$$

$$u_2' = -u_2 + \frac{1}{1 + e^{-\gamma(1 - 2u_1)}},\tag{1b}$$

where $\gamma>0$ is the *gain* of the firing rate function. Show there is a symmetric fixed point at $\bar{u}_1=\bar{u}_2=1/2$. Show it is the only one by demonstrating the functions f(u)=u and $g(u)=\frac{1}{1+e^{-\gamma(1-2u)}}$ can only intersect once. Then, determine the linear stability of this fixed point. For $\gamma>0$ small enough, show the fixed point is stable. Determine the critical value γ_c at which the fixed point becomes unstable and the network becomes competitive.

3. Winner-take-all model of working memory. An extension of the competitive neural network in Ex. 2c is a model of N competitive neural populations where only a single population can remain active. To study this in some detail, we consider a model with firing rate functions in the high gain limit ($\gamma \to \infty$), so the sigmoids become Heaviside step functions:

$$u'_{j} = -u_{j} + H\left[I_{j}(t) + u_{j} - w \sum_{k=1, k \neq j}^{N} u_{k}\right], \quad j = 1, ..., N,$$

where H[x] = 1 for $x \ge 0$ and zero otherwise, w > 0 is the strength of competitive inhibition, and the sum is over k = 1, 2, ..., j - 1, j + 1, ..., N (all neural populations except j).

- (a) Consider the N=3 case where $I_1(t)\equiv I_2(t)\equiv I_3(t)\equiv 0$ and w=0, show $u_1\equiv u_2\equiv u_3\equiv 1$ is the only fixed point. Call this the *fully active* state.
- (b) Now, show if w > 0, there is a critical value w_c above which $(w > w_c)$ the only fixed points are of the form $u_a = 1$ (for some a = 1, 2, 3) and $u_j = 0$ for all $j \neq a$. Call this the winner-take-all state. Why is this a better regime for storing information than the case w = 0?
- (c) Lastly, if $w=2>w_c$ (from (b)), show that if $u_1(0)=1$ and $u_2(0)=u_3(0)=0$, and $I_2(t)=3$ while $I_1(t)\equiv I_3(t)\equiv 0$ for all t>0, then as $t\to\infty$, $u_1\to 0$, $u_2\to 1$, and $u_3\to 0$. Then find a finite time t_1 at which $I_2(t)$ could be switched back to $I_2(t)\equiv 0$ and still have this occur. Hint: This will be the time at which $u_1(t)< u_2(t)$ (u_2 becomes the *winner*). Interpret this finding in terms of the winner-take-all network being a computational model of memory.

python exercise. You will write your own code for the following problem.

- 4. Visualizing attractors in competitive neural networks. Here you will test the theory developed in Ex. 2.
 - (a) You showed in Ex. 2b that the system

$$u_1' = 1 - u_1 - u_2 + I_1(t), (2a)$$

$$u_2' = 1 - u_1 - u_2 + I_2(t), (2b)$$

contains a line attractor, so we expect it to integrate and store inputs $I_1(t)$ and $I_2(t)$. Validate your result from 2b by writing a code to solve Eq. (2) when $u_1(0) = u_2(0) = 1/2$, $I_1(t) = 1 - H(t-1)$, and $I_2(t) = 0$ for all t. Use Euler's method (or your favorite numerical ODE solving scheme). It will be helpful to use the function np.heaviside(). Plot the trajectories $u_1(t)$ and $u_2(t)$ in the phase plane along with the line attractor $u_2 = 1 - u_1$ to show that the trajectory relaxes to the line. What is the long term value of $(u_1(t), u_2(t))$? Does it match your prediction from 2b?

- (b) Now consider the case in which $I_1(t) = 1 H(t-1)$ and $I_2(t) = 1 H(t-1)$. Again plot the result in the phase plane. What happens in the long time limit? Why do you get such qualitatively different behavior than the case studied in (a).
- (c) Finally, consider the system, Eq. (1), you studied in 2c. First, numerically simulate the case where $\gamma=1$ and $u_1(0)=1$ and $u_2(0)=0$ and plot the result in the phase plane. Then simulate the case where $\gamma=3$ and $u_1(0)=3/5$ and $u_2(0)=2/5$. Finally, simulate the case where $\gamma=3$ and $u_1(0)=2/5$ and $u_2(0)=3/5$. Explain your findings in the context of your analysis in 2c. Is this consistent with what you predicted in terms of having a competitive neural network for γ sufficiently large?