PyGMT: Accessing the Generic Mapping Tools from Python

Leonardo Uieda^{1,2} and Paul Wessel² ¹Department of Earth, Ocean and Ecological Sciences, University of Liverpool ²Department of Earth Sciences, SOEST, University of Hawai'i at Mānoa

Overview

The Generic Mapping Tools (GMT) have provided the Earth, Ocean, and Planetary Sciences with an open-source toolbox for processing and visualizing spatial data. GMT 5 introduced a C Application Programming Interface (API) for accessing its core functionality. Now with GMT 6, users have access to *modern mode*, which greatly simplifies usage. We are using the GMT C API and *modern mode* to develop PyGMT, an opensource library that brings the power of GMT to Python. PyGMT is designed to integrate with the scientific Python ecosystem (numpy, pandas, xarray, and the Jupyter notebook). The following are examples of PyGMT usage, current developments, future directions, and opportunities for getting involved in the project.

The pygmt.Figure

```
import pygmt
# The Figure controls all plotting
fig = pygmt.Figure()
fig.basemap(region=[-100, -50, 5, 25], frame=True,
           projection="M20c")
fig.coast(shorelines=True)
# savefig is the same as matplotlib
fig.savefig("central-america.png")
# Display the figure
fig.show()
```


Coastlines

```
oahu = [-158.3, -157.6, 21.2, 21.8]
fig = pygmt.Figure()
for r in ["c", "l", "i", "h", "f"]:
    fig.coast(region=oahu, resolution=r, land="grey",
              shorelines="2p", projection="M10c")
    fig.shift_origin(xshift="10c")
fig.show()
```


Plotting points

```
# Load GMT example data to a pandas.DataFrame
data = pygmt.datasets.load_japan_quakes()
region = [115, 170, 32, 51]
fig = pygmt.Figure()
fig.coast(region=region, projection="M20c",
          frame="afg", land="black")
fig.plot(x=data.longitude, y=data.latitude,
        color="red", sizes=0.02*2**data.magnitude,
        pen="1p,white", style="cc")
fig.show()
```


Grids and Earth relief data

```
# Load GMT Earth relief data in a xarray.DataArray
topo = pygmt.datasets.load_earth_relief("10m")
fig = pygmt.Figure()
fig.basemap(region="g", projection="N20c", frame="a")
fig.grdimage(topo, cmap="geo")
fig.colorbar(position="JCR+v",
             frame=["x2000", "y+lm"])
fig.show()
```


What we're working on

Projection classes (projection=Robinson() instead of projection="N"). Windows support (difficult to debug crashes compiling with Python libs). Better display mechanism and integration with the Jupyter notebook. Refactoring the low-level wrapper code and argument parsing.

How you can help

Join the community: forum.generic-mapping-tools.org Try it out and let us know what fails: www.pygmt.org Help with development: github.com/GenericMappingTools/pygmt

Huge thanks to our contributors: Dongdong Tian, Wei Ji, Liam Toney, Andrey Shmakov, Philipp Loose, Malte Ziebarth, Claudio Satriano, Brook Tozer, Mark Wieczorek, Josh Sixsmith

Feel free to photograph or share this poster.

