Latent Variables

- A system with observed data X
 - may be far easier to understand in terms of additional variables **Z** corresponding to **X**,
 - but they are not observed (latent).
- For example, in a mixture of Gaussians,
 - For a single sample x, the latent variable z specifies which Gaussian generated the sample x.
 - The *responsibility* is the **posterior** p(z|x).

Latent Variables

- A system with observed variables X
 - may be easier to understand with latent variables Z, but they are not observed (latent).

Notations:

- We denote the set of all observed data by X, in which the n^{th} row represents x_n^T
- Similarly we denote the set of all latent variables by \mathbf{Z} , with a corresponding row $\mathbf{z}_{n}^{\mathsf{T}}$.
- Note: we use lowercase symbol for single sample (x),
 matrix symbol for all data (X).

Learning a Latent Variable Model

- We find model parameters by maximizing the log-likelihood of observed data $\log p(\mathbf{X} \mid \theta)$.
- If we had complete data $\{X, Z\}$, we could easily maximize the *complete* data likelihood $p(X, Z \mid \theta)$.
- Unfortunately, with incomplete data (X only), we must marginalize over Z, so

$$\log p(\mathbf{X} \mid \theta) = \log \left[\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \theta) \right]$$

(the sum inside the log makes it hard.)

The EM Algorithm in General

- Expectation-Maximization (EM) is a general recipe for finding the parameters that maximize the (log-) likelihood of *latent* variable models
- To find a parameter θ that maximizes the likelihood $p(\mathbf{X} \mid \theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \theta)$, the EM algorithm first introduces a new (variable) distribution $q(\mathbf{Z})$ over the latent variables.
- A lower bound $\mathcal{L}(q, \theta)$ for the log-likelihood $\log p(\mathbf{X} \mid \theta)$ is established based on q and θ .
- Then, $q(\mathbf{Z})$ and θ are alternatingly updated (keeping the other fixed) so that $\mathcal{L}(q,\theta)$ is maximized (similar to coordinate ascent) until convergence.

The EM Algorithm in General

- Our goal is to maximize $p(\mathbf{X} \mid \theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \theta)$
- For *any distribution* $q(\mathbf{Z})$ over latent variables:

$$\log p(\mathbf{X} \mid \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X} \mid \theta)$$

$$= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{p(\mathbf{Z} \mid \mathbf{X}, \theta)}$$

$$= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})} \frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \theta)}$$

$$= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})} + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \theta)}$$

$$= \mathcal{L}(q, \theta) + KL(q(\mathbf{Z}) || p(\mathbf{Z} || \mathbf{X}, \theta))$$

$$\geq \mathcal{L}(q, \theta)$$

Note: KL Divergence

Let p and q be probability distributions of a random variable Z.

$$KL(q \parallel p) = \mathbb{E}_{z \sim q(z)} \left[\log \frac{q(z)}{p(z)} \right] = \sum_{z} q(z) \log \frac{q(z)}{p(z)}$$
$$= -\sum_{z} q(z) \log p(z) + \sum_{z} q(z) \log q(z)$$

This is one way to measure the **dissimilarity** of two probability distributions.

Remarks: (note: the first can be proved using Jensen's inequality)

- $KL(q || p) \ge 0$, with equality iff p = q.
- $KL(q \parallel p) \neq KL(p \parallel q)$ in general

Background note: Jensen's Inequality

• If f is convex, then for any θ_i s.t. $0 \le \theta_i \le 1 \ (\forall i),$ $\theta_1 + \theta_2 + \dots + \theta_k = 1$ $f(\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$

 It can be seen as a generalization of the definition of convex function:

$$f$$
 is convex $\iff f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$ for all $0 \le \theta \le 1$

• Jensen's inequality can be written in expectation form (think of θ_i as probability mass for different outcome values x_i)

$$f(\mathbb{E}[x]) \le \mathbb{E}[f(x)]$$

Background note: Jensen's Inequality

- If f is convex, then for any θ_i s.t. $0 \le \theta_i \le 1 \ (\forall i),$ $\theta_1 + \theta_2 + \dots + \theta_k = 1$ $f(\theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k)$
- Jensen's inequality can be written in expectation form

$$f(\mathbb{E}[x]) \le \mathbb{E}[f(x)]$$

• To show $KL(q \parallel p)$ is non-negative for any p,q, plug in $f(...) = -\log (...)$ and the following:

$$\theta_i = q(z), x_i = \frac{p(z)}{q(z)}$$

Non-negativity of KL divergence

• Jensen's inequality can be written in expectation form for a convex function f $-\log(\mathbb{E}[x]) \leq \mathbb{E}[-\log(x)]$ $f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$ -log() is convex

• To show
$$KL(q \parallel p)$$
 is non-negative for any p,q , plug in $f(...) = -\log$ (...) and the following: $\theta_i = q(z), x_i = \frac{p(z)}{q(z)}$

$$KL(q||p) = \sum_{z} q(z) \log(\frac{q(z)}{p(z)})$$

$$= \sum_{z} q(z) \left(-\log(\frac{p(z)}{q(z)})\right)$$

$$\geq -\log\left(\underbrace{\sum_{z} q(z) \frac{p(z)}{q(z)}}_{=\sum p(z)=1}\right)$$

Jensen's inequality for -log(): $-\log(\mathbb{E}[x]) \leq \mathbb{E}[-\log(x)]$

i.e., plugin

$$-\log(\sum_{i}\theta_{i}x_{i}) \leq \sum_{i}\theta_{i}\left(-\log(x_{i})\right)$$
 with $\theta_{i} = q(z), x_{i} = \frac{p(z)}{q(z)}$

The EM Algorithm in a nutshell

We have shown that: [variational lower bound]

$$\begin{split} \log p(\mathbf{X} \mid \theta) &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})} + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \theta)} \\ &= \mathcal{L}(q, \theta) + KL(q(\mathbf{Z}) \parallel p(\mathbf{Z} | \mathbf{X}, \theta)) \\ &\geq \mathcal{L}(q, \theta) \quad \text{Evidence Lower bound (ELBO) or variational lower bound} \end{split}$$

with equality holding if and only if $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta)$

EM algorithm:

* E: expectation

* M: maximization

Repeat alternating optimization until convergence:

- E-step: for fixed θ , find q that maximizes $\mathcal{L}(q,\theta)$
- M-step: for fixed q, find θ that maximizes $\mathcal{L}(q,\theta)$

The EM Algorithm: E-step

We have shown that: [variational lower bound]

$$\begin{split} \log p(\mathbf{X} \mid \theta) &= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})} + \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{q(\mathbf{Z})}{p(\mathbf{Z} \mid \mathbf{X}, \theta)} \\ &= \mathcal{L}(q, \theta) + KL(q(\mathbf{Z}) \parallel p(\mathbf{Z} | \mathbf{X}, \theta)) \\ &\geq \mathcal{L}(q, \theta) \quad \text{Evidence Lower bound (ELBO) or variational lower bound} \end{split}$$

with equality holding if and only if $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X},\theta)$

- **(E-step)** For a fixed θ , which q maximizes $\mathcal{L}(q,\theta)$?
- \Rightarrow $p(\mathbf{Z}|\mathbf{X}, \theta)$, because all other q would make $\mathcal{L}(q, \theta)$ strictly less than $\log p(\mathbf{X} \mid \theta)$

The EM Algorithm: M-step

• We also note that for a fixed q, the $\mathcal{L}(q,\theta)$ term can be decomposed into two terms:

$$\mathcal{L}(q, \theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \frac{p(\mathbf{X}, \mathbf{Z} \mid \theta)}{q(\mathbf{Z})}$$
$$= \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z} \mid \theta) - \sum_{\mathbf{Z}} q(\mathbf{Z}) \log q(\mathbf{Z})$$

- (1) A weighted sum of log $p(\mathbf{X}, \mathbf{Z} | \theta)$. This is tractable and can be optimized w.r.t θ
- (2) Entropy of $q(\mathbf{Z})$ which is independent of θ since q is fixed.
- (M-step) Thus, when q is fixed, we can find θ that maximizes $\mathcal{L}(q,\theta)$.

The EM Algorithm: summary

- Initialize parameters θ randomly
- Repeat until convergence: (optimize $\mathcal{L}(q,\theta)$ w.r.t. q and θ alternatingly.)
 - "E-step": Set $q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \theta)$ compute posterior \rightarrow optimal q(Z)!
 - "M-step": Update θ via the following maximization

$$\operatorname{argmax}_{\theta} \mathcal{L}(q, \theta) = \operatorname{argmax}_{\theta} \sum_{\mathbf{Z}} q(\mathbf{Z}) \log p(\mathbf{X}, \mathbf{Z} | \theta)$$

use q(Z) as (factional) pseudo-counts and maximize the "data completion" log-likelihood

• Note we have assumed that $p(\mathbf{Z} \mid \mathbf{X}, \theta)$ is tractable (i.e., find exact posterior $p(\mathbf{Z} \mid \mathbf{X}, \theta)$). Q. What if it is not?

Visualize the Decomposition

- Note: $KL(q||p) \ge 0$
 - with equality only when q=p.
- Thus, $\mathcal{L}(q, \theta)$ is a lower bound on $\log p(\mathbf{X} \mid \theta)$

which EM tries to maximize.

Visualize the E-Step

• E-step: for fixed θ , find q that maximizes $\mathcal{L}(q, \theta)$

• E-Step changes $q(\mathbf{Z})$ to maximize $\mathcal{L}(q, \theta)$

• So maximized when KL(q||p) = 0 $q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \theta)$

Visualize the M-Step

• M-step: for fixed q, find θ that maximizes $\mathcal{L}(q, \theta)$

- Holding $q(\mathbf{Z})$ constant; increase $\mathcal{L}(q, \theta)$
- Updating θ will make $\log p(\mathbf{X} \mid \theta)$ increase!
 - $\ln p(\mathbf{X}|\theta^{\text{new}}) \ge \ln p(\mathbf{X}|\theta^{\text{old}})$
- But now $p \neq q$
- so KL(q||p) > 0

The EM Algorithm: Multiple data-points

Variational lower bound for a single example x:

$$\log p(\mathbf{x}|\theta) = \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}|\theta)}{q(\mathbf{z})} + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$
$$\geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}|\theta)}{q(\mathbf{z})}$$

• Lower bound on the log-likelihood of the *entire* training data $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$:

$$\log p(\mathcal{D}|\theta) = \sum_{n} \log p(\mathbf{x}^{(n)}|\theta) = \sum_{n} \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}^{(n)}|\theta)}{q^{(n)}(\mathbf{z})} + \sum_{n} KL(q^{(n)}(\mathbf{z})||p(\mathbf{z}|\mathbf{x}^{(n)}, \theta))$$

$$\geq \sum_{n} \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}^{(n)}|\theta)}{q^{(n)}(\mathbf{z})}$$

The EM Algorithm: Multiple data-points

$$\log p(\mathcal{D}|\theta) = \sum_{n} \log p(\mathbf{x}^{(n)}|\theta) = \sum_{n} \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}^{(n)}|\theta)}{q^{(n)}(\mathbf{z})} + \sum_{n} KL(q^{(n)}(\mathbf{z})||p(\mathbf{z}|\mathbf{x}^{(n)}, \theta))$$

$$\geq \sum_{n} \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log \frac{p(\mathbf{z}, \mathbf{x}^{(n)}|\theta)}{q^{(n)}(\mathbf{z})}$$

- Initialize random parameters θ
- Repeat until convergence:
 - "E-step": Set $q^{(n)}(\mathbf{z}) = p(\mathbf{z} \mid \mathbf{x}^{(n)}, \theta)$, for each training sample n.
 - "M-step": Update θ via the following maximization:

$$\operatorname{arg\,max}_{\theta} \sum_{n} \sum_{\mathbf{z}} q^{(n)}(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x}^{(n)} \mid \theta)$$