Linear Algebra (EMAT102L)

Lecture No 2: Linear Algebra (EMAT102L)

Dr. Najnin Islam

Assistant Professor

Department of Mathematics

School of Engineering and Applied Sciences (Bennett University)

Contact No-9476469100

Email- najnin.islam@bennett.edu.in

Topics cover in Lecture 2

- Invertible matrix
- Cramers rule
- Elementary Row operation

Row Equivalence

Two $m \times n$ matrices A and B are said to be row equivalent if B can be obtained from A by a finite sequence of elementary row operations.

If A_{mn} and B_{mn} are row equivalent, we write $A_{mn} \cong B_{mn}$

Note: If A and B are row-equivalent $m \times n$ matrices, then the homogeneous system of linear equation AX=0 and BX=0 have exactly the same solution.

Row-reduced matrix

An $m \times n$ matrix A is called row-reduced matrix if

- the first non-zero element in each non-zero row is 1 (called the leading 1)
- in each column containing the leading 1 of same row, the leading 1 is the only non-zero element.

Examples:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Row-reduced echelon matrix

An $m \times n$ matrix A is called row-reduced echelon matrix if

- A is row-reduced.
- All zero rows, if any, belongs at the bottom of the matrix.
- Every leading 1 is to the right of the one above it

Examples:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Note: a matrix A can be now equivalent to a row reduced echelon matrix B by elementary row operations.

Rank of a Matrix

If a matrix $A_{m \times n}$ is equivalent to row reduced echelon matrix $B_{m \times n}$, then number of non-zero rows in a row-reduced echelon matrix $B_{m \times n}$ is the rank of matrix $A_{m \times n}$.

Rank of $A_{m \times n} \leq \min(m, n)$

nant