Lista 2

Zadanie 1. Na wykładzie pokazaliśmy, że: U jest zbiorem liniowo zależnym wtedy i tylko wtedy, gdy istnieje w nim wektor $\vec{u} \in U$, taki że

$$LIN(U) = LIN(U \setminus \{\vec{u}\}).$$

Pokaż też, że jeśli U nie zawiera wektora zerowego $\vec{0}$, to są przynajmniej dwa takie wektory \vec{u} .

Zadanie 2. Pokaż równoważność następujących warunków (dla $B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\} \subseteq \mathbb{V}$):

- 1. Układ B jest liniowo niezależny.
- 2. Wektor $\vec{0}$ ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- 3. Pewien wektor z LIN(B) ma dokładnie jedno przedstawienie w postaci kombinacji liniowej wektorów ze zbioru B.
- 4. Każdy wektor z LIN(B) ma najwyżej jedno przedstawienie w postaci kombinacji liniowej wektorów z B.

Zaneguj powyższe warunki, aby uzyskać charakteryzację zbiorów liniowo zależnych.

Zadanie 3. Rozważamy przestrzenie nad \mathbb{R} . Niech $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ będą liniowo niezależne. Dla jakich wartości $\alpha \in \mathbb{R}$ układy wektorów

- $\{\alpha \vec{v}_1 + \vec{v}_2, \vec{v}_1 + \alpha \vec{v}_2\}$
- $\{\vec{v}_1 + \vec{v}_2, \vec{v}_2 + \vec{v}_3, \vec{v}_3 + \vec{v}_4, \dots, \vec{v}_{n-1} + \vec{v}_n, \vec{v}_n + \alpha \vec{v}_1\}$

są liniowo niezależne?

Zadanie 4. Czy następujące układy wektorów są liniowo niezależne (nad \mathbb{R})? Rozszerz ich (dowolny) maksymalny podzbiór niezależny do bazy.

- 1. (1,1,0),(0,1,1),(1,1,1),(1,0,1);
- 2. (0,1,2), (1,1,1), (1,1,1);
- 3. (1,0,1,0), (1,2,0,1), (0,2,1,1), (0,0,1,1);
- 4. (1,0,1,0), (0,2,0,2), (1,1,0,0), (0,0,2,1).

Zadanie 5. Uzasadnij, że poniższe zbiory wektorów są liniowo niezależne (w odpowiednim \mathbb{R}^n), rozszerz je do bazy (odpowiedniego) \mathbb{R}^n :

- (2,2,7,-1),(3,-1,2,4),(1,1,3,1);
- (2,3,-4,-1),(1,-2,1,3);
- (2,3,5,-4,1),(1,-1,2,3,5).

Zadanie 6. Niech M będzie zbiorem skończonym. Na zbiorze jego podzbiorów 2^M określamy operacje:

$$U + U' := U \triangle U', \quad 1 \cdot U = U, \quad 0 \cdot U = \emptyset,$$

gdzie \triangle oznacza różnicę symetryczną, tj. $U\triangle U'=(U\setminus U')\cup (U'\setminus U)$. Pokaż, że tak określony zbiór jest przestrzenią liniową nad \mathbb{Z}_2 .

Niech $U_1, U_2, \ldots, U_k \subseteq M$ są takie, że dla każdego i zbiór U_i nie jest podzbiorem sumy pozostałych zbiorów, tj. $U_i \not\subseteq \bigcup_{j \neq i} U_j$. Pokaż, że U_1, U_2, \ldots, U_k są liniowo niezależne.

Podaj (naturalną) bazę tej przestrzeni liniowej. Czy potrafisz naturalnie zinterpretować izomorfizm zadany przez wyrażanie w tej bazie?

Zadanie 7. Niech $\mathbb{U}, \mathbb{W}, \mathbb{W}' \leq \mathbb{V}$. Udowodnij zawieranie:

$$(\mathbb{U}\cap\mathbb{W})+(\mathbb{U}\cap\mathbb{W}')\leq\mathbb{U}\cap(\mathbb{W}+\mathbb{W}')$$

Pokaż, że jeśli $\mathbb{W} \leq \mathbb{U}$ to w zachodzi równość obu stron powyższego zawierania.

Zadanie 8. Niech $\varphi: \mathbb{V} \to \mathbb{V}'$ będzie izomorfizmem przestrzeni liniowych. Pokaż, że $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{V}$ jest liniowo niezależny/jest liniowo zależny/jest bazą wtedy i tylko wtedy, gdy $\varphi(\vec{v}_1), \ldots, \varphi(\vec{v}_k) \in \mathbb{V}'$ jest liniowo niezależny/jest liniowo zależny/jest bazą.

Zadanie 9. Niech V będzie przestrzenią skończenie wymiarową. Pokaż, że:

- Każdy niezależny układ wektorów $A\subseteq \mathbb{V}$ można rozszerzyć do bazy $\mathbb{V}.$
- Z każdego układu wektorów $A\subseteq \mathbb{V}$ można wybrać bazę przestrzeni LIN(A).

Zalecane jest skorzystanie z Lematu Steinitza.

Zadanie 10. Wyraź w bazie $B = \{(1,2,3); (0,1,2); (0,0,1)\}$ wektory

- (1,0,0)
- (0,1,0)
- (0,0,1)
- (7,3,2)

Zadanie 11 (* Nie liczy się do podstawy.). *Uwaga:* w tym zadaniu nie można korzystać z twierdzenia o równoliczności baz ani z lematu o wymianie.

Używając eliminacji Gaußa udowodnij następujące twierdzenie:

Jeśli $B = \{\vec{b}_1, \dots, \vec{b}_k\}$ jest bazą przestrzeni liniowej \mathbb{V} , to zbiór liczący k+1 wektorów jest liniowo zależny. W tym celu wyraź wektory $\vec{v}_1, \dots, \vec{v}_{k+1}$ w bazie B i przeprowadź na tej reprezentacji eliminację Gaußa. Wywnioskuj z tego twierdzenia, że każde dwie bazy przestrzeni skończenie wymiarowej są równoliczne.