

Неграфитизируемый углерод на основе микрокристаллической целлюлозы для натрий-ионных аккумуляторов

Неграфитизируемый углерод является наиболее вероятным анодным материалов для натрий-ионных аккумуляторов

Преимущества НИА:

- Натрий более распространенный элемент в земной коре
- Менее токсичные материалы
- Уже существует отработанная технология производства на ЛИА

Неграфитизируемый углерод

Преимущества неграфитизируемого углерода:

- Высокая удельная емкость и кулоновская эффективность
- Циклическая стабильность
- Широкий выбор источников
- Простота синтеза

Источники неграфитизируемого углерода

Углеводы

~ 300 мАч/г

Синтетические полимеры

~ 400 мАч/г

Биополимеры

~ 300 мАч/г

Биомасса

~ 250 мАч/г

Целлюлоза

Подсолнечная лузга

Подсолнечный жмых

Каталитическая графитизация

Лузга – перспективный источник для получения неграфитизируемого углерода прямой карбонизацией. Для улучшения электрохимических характеристик жмыха необходима модернизация синтеза.

Для образцов неграфитизируемого углерода характерна высокая степень разупорядоченности, которая с повышением температуры понижается.

Материалы на основе жмыха (в особенности материал Zh-1300) можно охарактеризовать как углеродный композитный материал с разной степенью упорядоченности.

Неграфитизируемый углерод на основе целлюлозы

МКЦ – перспективный источник для синтеза неграфитизируемого углерода.

Неграфитизируемый углерод на основе целлюлозы

Насыпная плотность:

0,4-0,5 г/мл 0,5-0,6 г/мл 0,8 г/мл

Процесс прессования позволяет значительно повысить плотность утряски материалов, полученных прямой карбонизацией.

Неграфитизируемый углерод на основе целлюлозы

Yamamoto H. et al. Synthesizing higher-capacity hard-carbons from cellulose for Na-and K-ion batteries //Journal of Materials Chemistry A. – 2018. – T. 6. – \mathbb{N}^2 . 35. – C. 16844-16848.

Электрохимические характеристики материалов на основе целлюлозы

Заключение

- 1. Разработана технология получения неграфитизируемого углерода из двух источников (подсолнечная лузга, микрокристаллическая целлюлоза).
- 2. Охарактеризованы источники.
- 3. Установлена взаимосвязь между условиями синтеза и электрохимическими характеристиками.

Спасибо за внимание!

Синтез неграфитизируемого углерода со стадией предварительной обработки

Воздушная предобработка:

Влияние предварительной обработки на электрохимические свойства неграфитизируемого углерода

Предварительная обработка до 200 °С положительно сказывается на электрохимических свойствах неграфитизируемого углерода

Влияние предварительной обработки на электрохимические свойства неграфитизируемого углерода

Кулоновские эффективности у материалов на основе отходов масложировой промышленности **не зависят от удельной площади**. Более вероятно, что они зависят от зольности образцов.

Сравнение электрохимических свойств неграфитизируемых образцов на основе разных источников

- Наилучшие электрохимические характеристики демонстрирует материал на основе микрокристаллической целлюлозы, полученный при 1200°C
- Материалы, полученные из подсолнечного жмыха необходимо предварительно обрабатывать:
 - воздушная предобработка при 175-200°C
 - промывка раствором соляной кислоты

Результаты спектроскопии комбинационного рассеяния для материалов на основе подсолнечного жмыха

Результаты спектроскопии комбинационного рассеяния

Для образцов неграфитизируемого углерода характерна высокая степень разупорядоченности, которая с повышением температуры понижается.

Материалы на основе жмыха (в особенности материал Zh-1300) можно охарактеризовать как углеродный композитный материал с разной степенью упорядоченности.

Доп слайды

