AENG21200: Structures & Materials 2

Example 03: Shear Stresses in Bending

Luiz F. Kawashita

(Notes by Bradley S. Cox)

Department of Aerospace Engineering

2018 - 2019

Learning objectives

Shear stress and shear flow

- ★ Stress induced by a shear force applied (i.e. a point load)
- K Similar to shear stress, but not the same

Shear centre

Find its position, all shear forces are applied through here to avoid twisting the beam

Principal axis method

Most intuitive method for deformations <u>and</u> stresses, especially when loading axis is unique, i.e. not along a structural axis.

Flanged semi-circular cross-section

- Requires an understanding of the integration to determine moments of area
- We Usually seems more difficult than it actually is !!

Shear flow of open section beams

Shear flow in an arbitrary open-section beam

- Open section beam supports shear loads S_x and S_y .
- There is no twisting or bending of the cross-section.
- Shear loads must both pass through the shear centre.

$$\frac{\partial q_s}{\partial s} + t \frac{\partial \sigma_z}{\partial z} = 0$$

Evaluate each term separately

We want to find the shear flow q_s induced by shear forces S_x and S_y .

$$\frac{\partial q_s}{\partial s} + t \frac{\partial \sigma_z}{\partial z} = 0$$

Let us first evaluate the second term, $\partial \sigma_z/\partial z$.

The shear forces S_x and S_y (generated by the point load P) create bending moments M_y and M_x , respectively.

$$S_x = \frac{\mathrm{d}M_y}{\mathrm{d}z}, \qquad S_y = \frac{\mathrm{d}M_x}{\mathrm{d}z}.$$

Evaluate second term, introduce bending stress equation

We also know that the equation for *general bending stress* is defined as,

$$\sigma_z = \left(\frac{M_y I_{xx} - M_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) x + \left(\frac{M_x I_{yy} - M_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) y$$

rearrange in terms of the bending moments

$$\sigma_z = \left(\frac{I_{yy}y - I_{xy}x}{I_{xx}I_{yy} - I_{xy}^2}\right)M_x + \left(\frac{I_{xx}x - I_{xy}y}{I_{xx}I_{yy} - I_{xy}^2}\right)M_y$$

If we have at least one line of symmetry across our cross-section, then $I_{xy}=0$ and this equation reduces to

$$\sigma_z = \frac{M_x}{I_{xx}}y + \frac{M_y}{I_{yy}}x$$

Differentiate bending stress equation w.r.t z

We need differentiate the equation for general bending stress with respect to z, i.e. the coordinate along the length of the beam. However, this is a lot easier than exptected, as the only variables that change along the length of the beam are the bending moments M_{y} and M_{x} ,

$$S_x = \frac{\mathrm{d}M_y}{\mathrm{d}z}, \qquad S_y = \frac{\mathrm{d}M_x}{\mathrm{d}z}.$$

Therefore,

$$\frac{\partial \sigma_z}{\partial z} = \left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) x + \left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) y$$

Substituting this back into our equilibrium equation,

$$\frac{\partial q_s}{\partial s} + t \frac{\partial \sigma_z}{\partial z} = 0$$

Substitute back into equilibrium equation

and rearrange for $\partial q/\partial s$,

$$\begin{split} &\frac{\partial q_s}{\partial s} + t \left[\left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) x + \left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) y \right] = 0 \\ &\frac{\partial q_s}{\partial s} = -t \left[\left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) x + \left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) y \right] \\ &\frac{\partial q_s}{\partial s} = -\left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) tx - \left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) ty \end{split}$$

We now need to get rid of the partial derivative $\partial q_s/\partial s$ to recover q_s .

Integrate, and introduce limits

$$\frac{\partial q_s}{\partial s} = -\left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) tx - \left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) ty$$

We integrate the above equation along the arc s between the limits 0 (at the top) and s (at the bottom), because we know at a free edge the shear stress is always zero.

$$q_s = \int_0^s \frac{\partial q}{\partial s} \, \mathrm{d}s$$

Therefore, our generalised shear flow equation

$$\int_0^s \frac{\partial q}{\partial s} \mathrm{d}s = q_s = - \left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) \int_0^s tx \ \mathrm{d}s - \left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) \int_0^s ty \ \mathrm{d}s$$

If symmetry exists

Most cases will involve at least one line of symmetry, $I_{xy}=0$, therefore

$$\int_0^s \frac{\partial q}{\partial s} \mathrm{d}s = q_s = - \left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) \int_0^s tx \; \mathrm{d}s - \left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2} \right) \int_0^s ty \; \mathrm{d}s$$

reduces to,

$$q_s = -\frac{S_x}{I_{yy}} \int_0^s tx \, \mathrm{d}s - \frac{S_y}{I_{xx}} \int_0^s ty \, \mathrm{d}s$$

or for a constant thickness,

$$q_s = -\frac{S_x t}{I_{yy}} \int_0^s x \, \mathrm{d}s - \frac{S_y t}{I_{xx}} \int_0^s y \, \mathrm{d}s$$

Shear flow and shear stress

Although similar, there is a distinct difference between *shear flow* and *shear stress*

Shear stress
$$= au = -rac{S_x}{I_{yy}t} \int_0^s x \, \mathrm{d}A$$
 Shear flow $= q = -rac{S_x t}{I_{yy}} \int_0^s x \, \mathrm{d}s$

however, note the domain at which the integration takes place, for shear stress we integrate over an area, whereas in shear flow we integrate over a length, but if we multiply our length ds by the thickness (another length) we obtain an area which results in,

Shear flow =
$$q = -\frac{S_x}{I_{yy}} \int_0^s x \, dA$$

now we can see a direct comparison between shear stress and shear flow, thus solidifying our understanding further as $q=\tau t$.

Problem definition, cantilever beam

1) Use "thin wall" assumption to evaluate the shear flow at each of the points A to G

2) Find the position of the shear centre.

Using the principal axes method

Equation for shear flow

Shear flow (Learn equation)

$$q_s = -\left(\frac{S_x I_{xx} - S_y I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) \int_0^s tx \; \mathrm{d}s - \left(\frac{S_y I_{yy} - S_x I_{xy}}{I_{xx} I_{yy} - I_{xy}^2}\right) \int_0^s ty \; \mathrm{d}s$$

Due to symmetry, $I_{XY} = 0$, this reduces to,

$$q_s = -\frac{S_x}{I_{yy}} \int_0^s tx \, \mathrm{d}s - \frac{S_y}{I_{xx}} \int_0^s ty \, \mathrm{d}s$$

As $S_X = 0$, this reduces further to,

$$q_s = -\frac{S_y}{I_{rr}} \int_0^s ty \, \mathrm{d}s$$

We therefore need to calculate the second moment of area I_{XX}

Example 3: Flanged semi-circular cross-section

Calculate second moment of area

We therefore need to calculate the second moment of area I_{XX}

$$\begin{split} I_{XX}^{AG-BF} &= \frac{2.5(2\times175)^3}{12} - \frac{2.5(2\times75)}{12} \\ &= \frac{2.5}{12} \left(350^3 - 150^3\right) \\ &= 8.229\times10^6 \; \mathrm{mm}^4 \end{split}$$

For the semi-circle,

For both flanges,

$$I_{XX}^{BF} = \frac{tr^3\pi}{2}$$

$$= \frac{2.5 \times 75^3 \times \pi}{2}$$

$$= 1.657 \times 10^6 \text{ mm}^4$$

Total second moment of area,

Total second moment of area,

$$\begin{split} I_{XX} &= I_{XX}^{^{AG-BF}} + I_{XX}^{^{BF}} \\ &= (8.229 + 1.657) \times 10^6 \\ &= 9.886 \times 10^6 \text{ mm}^4 \end{split}$$

Evaluate each flange individually, consider flange A-B

$$q_s = -\frac{S_y t}{I_{xx}} \int_0^s y \, ds$$
$$= -\frac{S_y t}{I_{xx}} \int_0^s (175 - s) \, ds$$

at point A,
$$s=0$$

$$= -\frac{S_y t}{I_{xx}} \left[175s - \frac{s^2}{2} \right]_{s=0}$$

$$q_s^A = 0 \text{ Nmm}^{-1}$$

Evaluate each flange individually, consider flange A-B

$$q_s = -\frac{S_y t}{I_{xx}} \int_0^s y \, ds$$
$$= -\frac{S_y t}{I_{xx}} \int_0^s (175 - s) \, ds$$

at point B, s = 100

$$= -\frac{S_y t}{I_{xx}} \left[175s - \frac{s^2}{2} \right]_0^{100}$$

$$q_s^B = -\frac{S_y t}{I_{xx}} \left[12,500 \right]$$

Evaluate each flange individually, consider semi-circular section,

$$q_s = -\frac{S_y t}{I_{xx}} \int_0^s y \, ds$$
$$= -\frac{S_y t}{I_{xx}} \int_0^s (r \cos \theta) \, ds$$

we can't integrate this with respect to $\mathrm{d}s$, but $\mathrm{d}s = r \; \mathrm{d}\theta$

$$= -\frac{S_y t}{I_{xx}} \int_0^{\phi} (r \cos \theta) r d\theta$$
$$= -\frac{S_y t}{I_{xx}} \int_0^{\phi} r^2 \cos \theta d\theta$$

At any point around the arc,

$$\begin{split} q_s^{\text{arc}} &= q_s^B - \quad \frac{S_y t}{I_{xx}} \int_0^\phi r^2 \cos\theta \, \mathrm{d}\theta \\ &= -\frac{S_y t}{I_{xx}} \left[12,500 + \int_0^\phi r^2 \cos\theta \, \mathrm{d}\theta \right] \\ &= -\frac{S_y t}{I_{xx}} \left[12,500 + r^2 \sin\phi \right] \end{split}$$

$$\mathsf{K}$$
 C, $\phi = \pi/4$

k D,
$$\phi = \pi/2$$
.

The shear flow at C=E and B=F due to symmetry.

Summary,

$$q_s^A = -\frac{S_y t}{I_{xx}} [0] = 0$$

$$q_s^B = -\frac{S_y t}{I_{xx}} [12,500] = -31.61$$

$$q_s^C = q_s^B - \frac{S_y t}{I_{xx}} [r^2 \sin(\pi/4)] = -41.67$$

$$q_s^D = q_s^B - \frac{S_y t}{I_{xx}} [r^2 \sin(\pi/2)] = -45.83$$

$$q_s^E = q_s^B - \frac{S_y t}{I_{xx}} [r^2 \sin(3\pi/4)] = -41.67$$

$$q_s^F = q_s^B - \frac{S_y t}{I_{xx}} [r^2 \sin(\pi/2)] = -31.61$$

$$q_s^G = -\frac{S_y t}{I_{xx}} [0] = 0$$

Example 3: Flanged semi-circular cross-section

Shear flow distribution,

To find the position of the shear centre, e, we need to balance the moments.

$$M = S_y e$$

Rearrange for e,

$$e = \frac{M}{S_2}$$

 \ldots but we don't know M.

... where do we take moments about?

Take moments about the origin and not the centroid,

- It is convenient to integrate around the arc from the origin and not the centroid
- k It reduces the moment arm of the flanges to zero, thus the moment produced by the two flanges =0.

How do we find this internal moment?

$$\mathsf{Moment} = \mathsf{Force} \times \mathsf{Distance}$$

We have our distance from the origin \longrightarrow radius. So we need the internal force?

Force = Stress
$$\times$$
 Area

We know our area, but we don't know our stress...

We can replace stress with shear flow,

$$q = \tau t$$

We can now calculate our moment by integrating around the arc,

$$M_o = \int \mathrm{d}M_o = \int au r \, \mathrm{d}A$$

As $dA = rt d\phi$,

$$M_o = \int_0^\phi au r^2 t \,\mathrm{d}\phi$$
 as $q = au t$, $= \int_0^\phi rac{q}{t} r^2 t \,\mathrm{d}\phi$ $= \int_0^\phi q r^2 \,\mathrm{d}\phi$

where q is the shear flow for the entire arch.

For the shear flow anywhere along the arch,

$$q_s^{\text{arc}} = -\frac{S_y t}{I_{xx}} \left[12,500 + r^2 \sin \phi \right]$$

Substituting back into the equation for moment,

$$M_o = \int_0^{\pi} qr^2 d\pi$$

$$= -\frac{S_y t}{I_{xx}} \int_0^{\pi} \left[12,500 + r^2 \sin \phi \right] r^2 d\phi$$

$$= -\frac{S_y t r^2}{I_{xx}} \int_0^{\pi} \left[12,500 + r^2 \sin \phi \right] d\phi$$

$$= -\frac{S_y t r^2}{I_{xx}} \left[12,500\pi - r^2 \cos \pi + r^2 \cos 0 \right]$$

The internal moment is therefore,

$$M_o = -\frac{S_y t r^2}{I_{xx}} \left[12,500\pi + 2 r^2 \right]$$

Substituting back into,

$$e = \frac{-\frac{S_y t r^2}{I_{xx}} [12, 500\pi + 2 r^2]}{S_y}$$

$$= -\frac{t r^2}{I_{xx}} [12, 500\pi + 2 r^2]$$

$$= -71.87 \text{ mm}$$

