

# 05g. Recomendaciones para usar filtros

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia Sede Manizales

# Mejores prácticas para hacer filtrado

Las siguientes son recomendaciones para usar con conciencia los filtros que ofrece ParaView, las cuales aplican principalmente al filtrado de grandes cantidad de datos.

# Mejores prácticas para hacer filtrado

- La pérdida de acoplamiento del Pipeline lo dota de flexibilidad, por el otro lado, aumenta la huella de almacenamiento (*footprint memory*) al hacer una copia de cada nivel.
- Las copias superficiales hechas por ParaView no son suficientes si no se controlan bien los filtros.
- Al trabajar con mallas estructuradas, es necesario conocer cuáles filtros la transforman a no estructurada, ya que la topología sería ahora dada de forma explícita.
- Los filtros se pueden clasificar según:
  - El tipo de dato que devuelve en la salida
  - La calidad de los datos de salida
  - La dimensión de los datos de salida



Filtros que no deberían ser usados con datos estructurados o que de ser necesario debe hacerse con extremo cuidado:

- Append Datasets
- Append Geometry
- Clean
- Clean to Grid
- Connectivity
- D3
- Delaunay 2D/3D
- Extract Edges
- Linear Extrusion
- Loop Subdivision
- Reflect
- Rotational Extrusion
- Shrink

- Smooth
- Subdivide
- Tessellate
- Tetrahedralize
- Triangle Strips
- Triangulate

Ribbon y Tube no entran en esta clasificación ya que la salida es de menor dimensión que la entrada

- Filtros que trasforman el tipo de dato estructurado a no estructurado y la salida presenta una reducción mínima de tamaño:
  - Clip
  - Decimate
  - Extract Cells by Region
  - Extract Selection
  - Quadric Clustering
  - Threshold

Extract Subset devuelve
una malla estructurada o
no estructurada pero
reducidas, no tiene
problema



Filtros que entregan mallas no estructuradas pero que reducen la dimensión de los datos:

- Cell Centers
- Contour
- Extract CTH Fragments
- Extract CTH Parts
- Extract Surface
- Feature Edges
- Mask Points
- Outline (curvilinear)
- Slice
- Stream Tracer



Filtros que no cambian la conectividad de los datos pero que si agregan nuevos arreglos de información mediante una copia superficial:

- Block Scalars
- Calculator
- Cell Data to Point Data
- Curvature
- Elevation
- Generate Surface Normals
- Gradient
- Level Scalars
- Median
- Mesh Quality
- Octree Depth Limit

- Octree Depth Scalars
- Point Data to Cell Data
- Process Id Scalars
- Random Vectors
- Resample with dataset
- Surface Flow
- Surface Vectors
- Texture Map to...
- Transform
- Warp (scalar)
- Warp (vector)



Filtros que ni agregan información ni aumentan el tamaño de la salida con respecto a la entrada:

- Annotate Time
- Append Attributes
- Extract Block
- Extract Datasets
- Extract Level
- Glyph
- Group Datasets
- Histogram
- Integrate Variables
- Normal Glyphs

- Outline
- Outline Corners
- Plot Global Variables Over Time
- Plot Over Line
- Plot Selection Over Time
- Probe Location
- Temporal Shift Scale
- Temporal Snap-to-Time-Steps
- Temporal Statistics

- Filtros que son dependientes del tiempo:
  - Temporal Interpolator
  - Particle Tracer
  - Temporal Cache



# Descartar datos - Culling data

- Se recomienda hacer limpieza de información siempre que sea posible.
- Si se pasa de una dimensión mayor a una menor, eliminar los datos que el filtro ya no muestra. Usar primero estos filtros.
- Si se conoce de entrada la información, extraer los datos que se estudiarán y desechar los demás.
- Cuidado con *Clip*, *Threshold* y *Extratc Selection*: todos devuelven celdas un poco desbalanceadas y a excepción de *Extratc Selection*, se devuelven mallas no estructuradas.
- Cuando sea posible, emplear filtros que devuelven superficies 2D en lugar de geometrías 3D. Tener en cuenta que la interacción con otros filtros puede será diferente, pero útil.