|                           | Ulledh                              |
|---------------------------|-------------------------------------|
| Name:                     |                                     |
| Roll No.:                 | To Daniely Exercising and Excitored |
| Invigilator's Signature : |                                     |

### **DIGITAL IMAGE PROCESSING**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

### **GROUP - A**

### (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following:  $10 \times 1 = 10$ 
  - i) Which one of the following transform coding systems ( usually ) does not decompose the input image into several sub-images before transform?
    - a) Discrete Fourier transform coding
    - b) Walse-Hadamard transform coding
    - c) Discrete Cosine Transform coding
    - d) Wavelet Transform coding.
  - ii) Huffman coding approach reduces
    - a) coding redundancy only
    - b) inter-pixel redundancy only
    - c) coding & inter-pixel redundancy
    - d) psycho-visual redundancy only.

8216 [ Turn over



- a) a total white image of size  $M \times N$
- b) a total black image of size  $M \times N$
- c) a white dot in a centre of black image of  $M \times N$
- d) a black dot in a centre of white image of  $M \times N$ .
- iv) Which one of the following coding approaches attacks both the coding and inter-pixel redundancy?
  - a) Huffman coding
- b) LZW coding
- c)  $B_2$  coding
- d) All of these.
- v) The relation of intensity ( I ) and R, G & B in RGB colour model is
  - a) I = 0.6R + 0.25G + 0.15B
  - b)  $I = \frac{(R + G + B)}{3}$
  - c)  $I = \frac{\left(R + 2 G + B\right)}{4}$
  - d) I = 0.5R + 0.25G + 0.25B.
- vi) If the image is degraded by motion blur and added noise then ...... gives the best result
  - a) median filter
  - b) inverse filter
  - c) Wiener filter
  - d) constraint least square filter.



vii) Diagonal edge can be detected by using which of the following masks?

| a) | 0 | 1   | 0 |
|----|---|-----|---|
|    | 1 | - 4 | 1 |
|    | 0 | 1   | 0 |

| b) | 1 | 1 | 1 |
|----|---|---|---|
|    | 1 | 1 | 1 |
|    | 1 | 1 | 1 |

| c) | 0   | 1   | 2 |  |
|----|-----|-----|---|--|
|    | - 1 | 0   | 1 |  |
|    | - 2 | - 1 | 0 |  |

d) 
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

### viii) Faulty switching introduces

- a) Gaussian noise
- b) Rayleigh noise
- c) Gamma noise
- d) Impulse noise.

### ix) Poor illumination introduces

- a) Gaussian noise
- b) Rayleigh noise
- c) Exponential noise
- d) Impulse noise.





b) 
$$S = L - 1 - r$$

c) 
$$S = Cr^k$$

d) 
$$S_k = \sum_{j=0}^k \frac{n_j}{n}, k = 0, 1, 2, 3, ...(L-1).$$

xi) Erosion

- a) sharps a region
- b) blurs a region
- c) increases a region
- d) decreases a region.
- xii) Euclidian distance of two points ( x, y ) and ( s, t ) of a two-dimensional space is

a) 
$$\left[ (x-s)^2 + (y-t)^2 \right]^{\frac{1}{2}}$$

b) 
$$|x-s| + |y-t|$$

- c) Max(|x-s|, |y-t|)
- d) none of these.

#### **GROUP - B**

### (Short Answer Type Questions)

Answer any *three* of the following.  $3 \times 5 = 15$ 

- 2. Prove that imaginary part of a Fourier transform of an even function is zero.
- 3. Show that the Fourier transform of the auto-correlation function of f(x) is the power spectrum  $|\tau(u)|^2$ .

8216



- 4. Suppose a digital image is subjected to histogram equalization. Show that a second pass of histogram will produce exactly the same result as the first pass?
- 5. Discuss the limiting effect of repeatedly applying a  $3 \times 3$  spatial filter to a digital image. Ignore the border effects.
- 6. Develop a procedure for computing the median of an  $n \times n$  neighbourhood. Propose a technique for updating the median as the centre of neighbourhood if moved from pixel to pixel.
- 7. What is pixel? Explain 4-neighbour and 8-neighbour of a pixel. Explain m-adjacency. 1+2+2
- 8. Explain image sensing and acquisition ( using single sensor, sensor strip and sensor arrays ).

#### **GROUP - C**

### (Long Answer Type Questions)

Answer any *three* of the following.  $3 \times 15 = 45$ 

- 9. a) What effect would, setting to zero the lower order bit planes, have on the histogram of an image, in general?
  - b) What would be observed on the histogram if higher order bit planes are set to '0'?
- c) Obtain the Haar Transform matrix for N=8. 3+3+9 8216 5 [ Turn over



- b) Show that a high-pass filtered image in frequency domain can be obtained by using the method of subtracting a low-pass filtered image from the original.
- c) An image is blurred by uniform acceleration in x direction. If the image is at rest at time t=0 and accelerate with an acceleration  $X_0(t) = \frac{at^2}{2}$  for a time T. Find the transfer function H(u,v) to reconstruct the image. 3+7+5
- 11. a) Can variable length coding procedure be used to compress a histogram equalized image with two gray levels?
  - b) Can such an image contain inter-pixel redundancies that could be exploited for data compression?
  - c) Find a set of code words and word length using Huffman coding scheme for a set of input gray levels with probabilities as given below:

| Symbol:       | S1   | S2   | S3   | S4   | S5   | S6  | S7  | S8  |
|---------------|------|------|------|------|------|-----|-----|-----|
| Probability : | 0.02 | 0.15 | 0.03 | 0.15 | 0.05 | 0.2 | 0.1 | 0.3 |



d) Image blurring caused by long term exposure to atmospheric turbulence can be modelled by the transfer function  $H(u,v) = \frac{\exp\left(-\left(u^2+v^2\right)\right)}{2\sigma^2}$ . Assume negligible noise.

What is the equation of Wiener filter to be used to reconstruct an image blurred by this type of degradation? 3+2+5+5

- 12. a) Construct the entire 4 bit gray code.
  - b) Create a general procedure for converting a gray code number to its equivalent binary and use it to decode 0111010100111.
  - c) The arithmetic decoding process is the reverse of the encoding process. Decode the message 0.23355 using the given coding model. Consider '!' as the terminating symbol.

| Symbol:      | A   | Е   | I   | О   | U   | !   |
|--------------|-----|-----|-----|-----|-----|-----|
| Probability: | 0.2 | 0.3 | 0.1 | 0.2 | 0.1 | 0.1 |

4 + 3 + 8

- 13. a) Briefly describe any three colour models.
  - b) Write the conversion rules for converting RGB colour model to HSI colour model and from HSI to RGB.
  - c) How a colour image can be converted into a gray scale image? 6+6+3
- 14. a) Explain the chain code.
  - b) What is boundary descriptor?
  - c) Explain Fourier descriptor.

8 + 2 + 5

- 15. a) Describe LZW coding with example.
  - b) What is transform coding ? Give some examples of transform coding. 10 + 5

8216 8