Презентации по Лабораторной Работе №6

Задача об эпидемии - Вариант 51

Нзита Диатезилуа Катенди

Содержание

Цель работы

Целью данной работы является решение упражнения по эпидемиям на языке программирования julia

Задание

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=8 124) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=124, А число здоровых людей с иммунитетом к болезни R(0)=30. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)- R(0).

Постройте графики изменения числа особей в каждой из трех групп.

Рассмотрите, как будет протекать эпидемия в случае:

$$I(0) \le I(0) > I$$

Выполнение лабораторной работы

Придумайте свой пример задачи об эпидемии, задайте начальные условия и коэффициенты пропорциональности. Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

$$I(0) \le I(0) > I$$

Условие задачи

а = 0.01 # коэффициент заболеваемости b = 0.02 #коэффициент выздоровления N = 8124 # общая численность популяции I0 = 124 # количество инфицированных особей в начальный момент времени R0 = 30 #количество здоровых особей с иммунитетом в начальный момент времени S0 = N - I0 - R0 # количество восприимчивых к болезни особей в начальный момент времени

Решение

```
#Определение функции для дмфференциального уравнения системы SIR

function sir_model!(du, u, p, t)
    S, I, R = u
    a, b = p

du[1] = -a * S * I/N
    du[2] = a * S * I/N - b*I
    du[3] = b * I

end

# Временной прамежуток

tspan = (0.0, 200.0)
t = 0:0.1:200.0

#Решение системы SIR для случая I(0) <= I*
p1 = [a, b]
u0 = [S0, I0, R0]
```

Определение функций для дифференциального системы SIR(Julia)

```
prob1 = ODEProblem(sir_model!, u0, tspan, p1)
sol1 = solve(prob1)
#Προςπροεμμε εραφωκοβ
plot(sol1, label = ["S(t)" "I(t)" "R(t)"], xlabel = "Time", ylabel = "Population", title = "Epidemic Dinamics: I(0) <= I*")</pre>
```

Решение случвя i(0) <= I* (Julia)

Epideьic Dinamincs: I(0) <= I* (Julia)

```
: #Решение системы SIR для случая I(0) > I*

I@_hight = 500
S@_hight = N - I@_hight -R0
u@_hight = [S@_hight, I@_hight, R0]

prob2 = ODEProblem(sir_model!, u@_hight, tspan, p1)
sol2 = solve(prob2)

plot(sol2, label = ["S(t)" "I(t)" "R(t)"], xlabel = "Time", ylabel = "Population", title = "Epidemic Dinamics: I(0) > I*")
```

Решение случвя i(0) > I* (Julia)

Epideьic Dinamincs: I(O) > I* (Julia)

Выводы

Можно сделать вывод, что с помощью языка программирования Julia, мы решили задание об эпидемиями а также построили график показывающий динамику изменения чисенности людей в каждой трех групп в случае $I(0) <= I^*$ и $I(0) > I^*$.

Список литературы

1. Задача об эпидемии