3η Εργαστηριακή Ασκησης

Αναγνώριση Συναισθήματος στη Μουσική

Μάθημα: Αναγνώριση Προτύπων

Ροή Σ

Συνεργάτες :

- Βαβουλιώτης Γεώργιος (Α.Μ.: 03112083)
- Σταυρακάκης Δημήτριος (Α.Μ.: 03112017)

Σκοπός: Σκοπός της τρίτης εργαστηριακής άσκησης είναι η αυτόματη ταξινόμηση μουσικών αποσπασμάτων με βάση το συναίσθημα που δημιουργεί στον ακροατή. Πραγματοποιείται η εξαγωγή χαρακτηριστικών από από τα διαθέσιμα δεδομένα, δηλαδή τα μουσικά σήματα. Τα συναισθήματα των μουσικών σημάτων θα περιγραφούν με μια δισδιάστατη αναπαράσταση, η οποία έχει στον έναν άξονα το valence (χαρά/λύπη) και στον άλλο το activation (ενεργοποίηση/απενεργοποίηση). Το τελικό πακέτο χαρακτηριστικών θα περιλαμβάνει ένα συνδυασμό χαρακτηριστικών όπως χαρακτηριστικά εμπνευσμένα από τη μουσική και στατιστικά μεγέθη των Mel-Frequency Cepstral Coefficients (MFCCs). Τα βήματα 1-9 αγνοούνται διότι εξηγήθηκαν στην προπαρασκευή.

Εκτέλεση Άσκησης

Βήμα 10: Στο βήμα αυτό για το πρόβλημα της ταξινόμησης θα θεωρήσουμε τα εξής: Για την ταξινόμηση του valence τα δείγματα με valence > 3 αντιστοιχίζονται στην κλάση -1, τα δείγματα με valence = 3 αγνοούνται. Για την ταξινόμηση του activation τα δείγματα με activation > 3 αντιστοιχίζονται στην κλάση 1, τα δείγματα με activation <3 στην κλάση -1 και τα δείγματα με activation = 3 αγνοούνται. Με αυτό τον τρόπο έχουμε πλέον 359 και 355 δείγματα για τον valence και το activation αντίστοιχα.

Βήμα 11 : Στο βήμα αυτό γίνεται πειραματισμός για κάθε διάσταση ξεχωριστά στα παρακάτω σύνολα χαρακτηριστικών:

- 1. Χαρακτηριστικά από το βήμα 6. Το πλήθος αυτού του συνόλου είναι 10.
- 2. Χαρακτηριστικά από το βήμα 7. Το πλήθος αυτού του συνόλου είναι 156.
- 3. Χαρακτηριστικά από το βήμα 6 και βήμα 7. Το πλήθος αυτού του συνόλου είναι 166.

Για την εκπαίδευση των ταξινομητών τα δεδομένα χωρίζονται με τυχαίο τρόπο σε train (80%) και test (20%), υπολογίζονται τα ποσοστά επιτυχίας για το συγκεκριμένο διαχωρισμό και η διαδικασία αυτή επαναλαμβάνεται 3 φορές. Τα τελικά αποτελέσματα προκύπτουν ως ο μέσος όρος των επιμέρους αποτελεσμάτων.

Βήμα 12: Στο βήμα αυτό θα γίνει ταξινόμηση του 20% των δεδομένων, χρησιμοποιώντας στο 80% των δεδομένων με χρήση του αλγορίθμου NNR-1 και στη συνέχεια του αλγορίθμου NRR-k για k=3,5,7. Για να αξιολογήσουμε την επίδοση κάθε fold χρησιμοποιούνται οι παρακάτω μετρικές, όπως προτείνεται και στην εκφώνηση της άσκησης:

Accuracy =
$$\frac{TP + TN}{TP + FP + TN + FN}$$
 = $\frac{\text{Number of Correctly Classified Samples}}{\text{Total Number of Samples}}$

$$F_1 = \frac{\text{Pr} \, ecision \times \text{Re} \, call}{\text{Precision+Recall}}$$

Precision =
$$\frac{TP}{TP + FP}$$
 = $\frac{\text{Number of Samples Correctly Assigned to Class i}}{\text{Total Number of Samples Assigned to Class i}}$

Recall=
$$\frac{TP}{TP+FN} = \frac{\text{Number of Samples Correctly Assigned to Class i}}{\text{Total Number of Samples Belonging to Class i}}$$

Τα αποτελέσματα τα οποία πήραμε φαίνονται παρακάτω:

KNN Algorithm - Features' Set 1						
		Activation				
Number of Neighbours	Accuracy	Precision	Recall	F1-score		
1	0.666666666666666666666666666666666666	0.631559290382 820	0.613333333333 333	0.618139992053 036		
3	0.652582159624 413	0.615395021645 022	0.607619047619 048	0.605770963356 103		
5	0.610328638497 653	0.569932297889 287	0.533333333333 333	0.545486234195 912		
7	0.610328638497 653	0.569047619047 619	0.516190476190 476	0.538613587670 191		

	KNN Algorithm - Features' Set 2							
		Activation						
Number of Neighbours	Accuracy	Precision	Recall	F1-score				
1	0.544600938967	0.488719124013	0.521904761904	0.502596320887				
	136	242	762	175				
3	0.568075117370	0.515179265179	0.470476190476	0.488573715907				
	892	265	191	644				
5	0.577464788732	0.524389233954	0.464761904761	0.488407224958				
	394	451	905	949				
7	0.582159624413	0.530138204707	0.48000000000	0.495682960857				
	146	170	000	090				

	KNN Algorithm - Features' Set 3						
		Activation					
Number of Neighbours	Accuracy	Precision	Recall	F1-score			
1	0.652582159624 413	0.607215836526 181	0.605714285714 286	0.604186562872 009			
3	0.666666666666666666666666666666666666	0.642889784946 237	0.598095238095 238	0.610951621477 937			
5	0.610328638497 653	0.569932297889 287	0.533333333333 333	0.545486234195 912			
7	0.610328638497 653	0.569047619047 619	0.516190476190 476	0.538613587670 191			

	KNN Algorithm - Features' Set 1						
		Valence					
Number of Neighbours	Accuracy	Precision	Recall	F1-score			
1	0.610328638497	0.710357195139	0.684914361001	0.697184759684			
	653	804	317	760			
3	0.563380281690	0.659100073531	0.682516469038	0.670588235294			
	141	156	208	118			
5	0.577464788732	0.667136752136	0.715138339920	0.689245911130			
	394	752	949	410			
7	0.615023474178	0.682121872317	0.779934123847	0.726544082979			
	404	951	167	727			

KNN Algorithm - Features' Set 2						
		Valence				
Number of Neighbours	Accuracy	Precision	Recall	F1-score		
1	0.671361502347	0.782818113064	0.693399209486	0.734816369647		
	418	852	166	830		
3	0.633802816901	0.73333333333	0.701805006587	0.715249691045		
	409	333	615	950		
5	0.629107981220	0.726167471819	0.701554677206	0.712873362505		
	657	646	851	933		
7	0.671361502347	0.746004728132	0.760513833992	0.751878092667		
	418	388	095	566		

KNN Algorithm - Features' Set 3						
		Valence				
Number of Neighbours	Accuracy	Precision	Recall	F1-score		
1	0.586854460093	0.690382081686	0.670671936758	0.680116381203		
	897	430	893	338		
3	0.558685446009	0.654217762913	0.682187088274	0.667908960274		
	390	415	045	417		
5	0.586854460093	0.672975857009	0.721805006587	0.696105383734		
	897	471	615	250		
7	0.610328638497	0.679738562091	0.773267457180	0.722385667138		
	653	503	501	143		

Βήμα 13 : Στο βήμα αυτό για την ταξινόμηση των δεδομένων γίνεται χρήση του αλγορίθμου Naive Bayes, όπως αυτός υλοποιήθηκε στο πρώτο εργαστήριο. Τα αποτελέσματα τα οποία πήραμε φαίνονται παρακάτω :

BAYES Algorithm							
	Activation						
Features' set	Accuracy	Precision	Recall	F1-score			
1	0.525821596244	0.485802835937	0.939047619047	0.636165020569			
	132	409	619	945			
2	0.605633802816	0.544588744588	0.628571428571	0.582179845470			
	902	745	429	985			
3	0.530516431924	0.487512813138	0.939047619047	0.637930569598			
	883	352	619	921			

BAYES Algorithm							
	Valence						
Features' set	Accuracy	Precision	Recall	F1-score			
1	0.582159624413	0.662014730339	0.746192358366	0.697679845783			
	146	748	272	346			
2	0.652582159624	0.766018534311	0.681225296442	0.719708207877			
	413	217	688	408			
3	0.619718309859	0.683550428960	0.790158102766	0.730158730158			
	155	034	798	730			

Βήμα 14: Στο βήμα αυτό κάνουμε μείωση της διάστασης των χαρακτηριστικών με χρήση της τεχνικής της ανάλυσης κύριων συνιστωσών(Principal Component Analysis-PCA). Ακολουθούν τα αποτελέσματα για διαφορετικούς αριθμούς κύριων συνιστωσών και για τους 2 διαφορετικούς αλγορίθμους ταξινόμησης:

Activation							
PCA Components:	Algorithm→ Metrics↓	NNR-1	NNR-3	NNR-5	NNR-7	BAYES	
	Accuracy	0.58216	0.63380	0.56808	0.57277	0.5774	
10	Precision	0.53522	0.60577	0.52407	0.53625	0.51825	
10	Recall	0.55083	0.56190	0.49056	0.47981	0.92736	
	F1-score	0.54186	0.58148	0.50667	0.50561	0.66445	
	Accuracy	0.59624	0.65258	0.56338	0.55869	0.54930	
50	Precision	0.58004	0.65090	0.55556	0.55148	0.51680	
50	Recall	0.58676	0.58527	0.50061	0.49311	0.86759	
	F1-score	0.58245	0.61599	0.52381	0.51518	0.64605	
	Accuracy	0.59155	0.62441	0.55399	0.53521	0.57746	
100	Precision	0.60474	0.66657	0.58095	0.56098	0.55511	
100	Recall	0.60115	0.56403	0.51106	0.49440	0.85639	
	F1-score	0.60024	0.60674	0.54086	0.52174	0.67304	
	Accuracy	0.61033	0.63380	0.54460	0.57277	0.56338	
150	Precision	0.59700	0.64518	0.54391	0.58253	0.53512	
150	Recall	0.64762	0.58095	0.46667	0.47619	0.90476	
	F1-score	0.62121	0.61070	0.49962	0.52300	0.67111	

Σχολιασμός Αποτελεσμάτων: Όσο αφορά τα αποτελέσματα του activation μετά την μείωση της διάστασης των χαρακτηριστικών, παρατηρούμε οτι ο βέλτιστος αλγόριθμος είναι ο NNR-3 για πλήθος χαρακτηριστικών 50. Επίσης τα αποτελέσματα για κάθε αλγόριθμο είναι καλύτερα από αυτά που προέκυπταν πριν τη μείωση διαστάσεων.

Valence							
PCA Components:	Algorithm→ Metrics↓	NNR-1	NNR-3	NNR-5	NNR-7	BAYES	
	Accuracy	0.58216	0.52582	0.49765	0.54460	0.52582	
10	Precision	0.62478	0.57255	0.54921	0.57482	0.56937	
10	Recall	0.68045	0.69089	0.70677	0.78070	0.72682	
	F1-score	0.65137	0.62484	0.61687	0.66097	0.63305	
	Accuracy	0.64319	0.58216	0.54460	0.53521	0.58216	
50	Precision	0.68166	0.62346	0.59486	0.59089	0.61563	
50	Recall	0.78274	0.78274	0.77500	0.75149	0.83321	
	F1-score	0.72713	0.69365	0.67302	0.66153	0.70544	
	Accuracy	0.55869	0.56808	0.56338	0.55399	0.57746	
100	Precision	0.61879	0.62901	0.62302	0.61140	0.62016	
100	Recall	0.72170	0.71736	0.72511	0.74188	0.77432	
	F1-score	0.66533	0.66916	0.66911	0.66886	0.68742	
	Accuracy	0.59155	0.55869	0.53991	0.54930	0.52113	
150	Precision	0.62630	0.59389	0.57527	0.57842	0.55855	
150	Recall	0.72588	0.73837	0.75689	0.76938	0.78639	
	F1-score	0.66899	0.65620	0.65059	0.65783	0.65151	

Σχολιασμός Αποτελεσμάτων: Όσο αφορά τα αποτελέσματα του valence μετά την μείωση της διάστασης των χαρακτηριστικών, παρατηρούμε οτι ο βέλτιστος αλγόριθμος είναι ο NNR-1 για πλήθος χαρακτηριστικών 50. Επίσης τα αποτελέσματα για κάθε αλγόριθμο είναι καλύτερα από αυτά που προέκυπταν πριν τη μείωση διαστάσεων.

Απο τα παραπάνω αποτελέσματα έχω οτι η PCA βοηθάει στο να πάρουμε πιο γρήγορα αποτελέσματα, με καλύτερη απόδοση γεγονός το οποίο είναι πολύ σημαντικό για την διαδικασία της ταξινόμησης.

Βήμα 15: Στο βήμα αυτό γίνεται χρήση του εργαλείου WEKA. Για να εισαχθούν στο WEKA τα χαρακτηριστικά που υπολογίστηκαν στο Matlab μετατρέπονται σε format .arff, με χρήση του πακέτου matlab2weka το οποίο παρέχει 5 την συνάρτηση που κάνει αυτό που θέλουμε.

Βήμα 16: Οι αλγόριθμοι που δοκιμάζονται με χρήση του WEKA είναι οι Multilayer Perceptron με πειραματισμό στις τιμές των hidden layers και learning rate, Suppoct Vector Machines (SVM) και Random Forest. Τα δεδομένα χωρίζονται σε 5 ισοπληθή υποσύνολα και σε κάθε μία από τις 5 επαναλήψεις χρησιμοποιείται το 1 από τα 5 υποσύνολα ως validation set ενώ τα άλλα 4 ως train set. Τα αποτελέσματα φαίνονται παρακάτω:

	Activation - Fea	tures' Set 1						
Multilayer Perceptron								
Number of Hidden Layers:	Metrics→ Learning Ratio↓	Accuracy	Precision	Recall	F1-score			
	0.1	72.3944%	0.725	0.724	0.724			
4	0.4	72.9577%	0.730	0.730	0.730			
1	0.7	72.9577%	0.730	0.730	0.730			
	0.9	72.6761%	0.728	0.727	0.727			
	0.1	73.2394%	0.732	0.732	0.732			
2	0.4	74.0845%	0.740	0.741	0.740			
2	0.7	71.2676%	0.714	0.713	0.713			
	0.9	71.2676%	0.715	0.713	0.713			
	0.1	71.831%	0.718	0.718	0.718			
4	0.4	72.3944%	0.724	0.724	0.724			
4	0.7	71.831%	0.719	0.718	0.718			
	0.9	70.4225%	0.703	0.704	0.703			
	0.1	71.2676%	0.738	0.420	0.803			
,	0.4	73.5211%	0.755	0.467	0.803			
6	0.7	71.831%	0.735	0.435	0.784			
	0.9	71.2676%	0.745	0.418	0.782			
	0.1	72.6761%	0.726	0.727	0.726			
0	0.4	71.5493%	0.716	0.715	0.716			
8	0.7	71.831%	0.718	0.718	0.718			
	0.9	73.8028%	0.738	0.738	0.738			
	Support Vector M	achines(SVM)					
Accuracy	Precision	Recall F1-score		ore				
73.8028 %	0.739	0.738	0.738 0.738		8			
	Random F	orest						
Accuracy	Precision	Recall		F1-sco	ore			
74.9296 %	0.749	0.749		0.74	9			

Activation - Features' Set 2						
	Multilayer Pe	rceptron				
Number of Hidden Layers:	Metrics→ Learning Ratio↓	Accuracy	Precision	Recall	F1-score	
	0.1	71.5493%	0.718	0.715	0.716	
1	0.4	73.2394%	0.737	0.732	0.733	
	0.7	76.0563%	0.764	0.761	0.761	
	0.9	74.3662%	0.746	0.744	0.744	
	0.1	69.5775%	0.698	0.696	0.696	
2	0.4	71.831%	0.718	0.718	0.718	
Z	0.7	71.2676%	0.712	0.713	0.711	
	0.9	74.3662%	0.744	0.744	0.744	
	0.1	72.9577%	0.733	0.730	0.730	
4	0.4	69.5775%	0.696	0.696	0.696	
4	0.7	72.3944%	0.724	0.724	0.724	
	0.9	74.9296%	0.750	0.749	0.749	
	0.1	72.1127%	0.722	0.721	0.721	
6	0.4	71.831%	0.719	0.718	0.719	
0	0.7	73.8028%	0.738	0.738	0.738	
	0.9	71.831%	0.719	0.718	0.718	
	0.1	71.831%	0.721	0.718	0.719	
8	0.4	70.9859%	0.710	0.710	0.710	
0	0.7	72.1127%	0.722	0.721	0.721	
	0.9	69.5775%	0.696	0.696	0.696	
	Support Vector M	achines(SVM)			
Accuracy	Precision	Recall		F1-sco	ore	
75.7746 %	0.757	0.758		0.75	7	
	Random F	orest				
Accuracy	Precision	Recall		F1-sco	ore	
75.7746 %	0.757	0.758 0.757		7		

Activation - Features' Set 3						
Multilayer Perceptron						
Number of Hidden Layers:	Metrics→ Learning Ratio↓	Accuracy	Precision	Recall	F1-score	
	0.1	72.3944%	0.739	0.447	0.779	
4	0.4	72.3944%	0.743	0.445	0.787	
1	0.7	73.2394%	0.751	0.462	0.777	
	0.9	73.2394%	0.748	0.464	0.773	
	0.1	73.5211%	0.735	0.735	0.735	
2	0.4	73.5211%	0.736	0.735	0.735	
2	0.7	73.5211%	0.735	0.735	0.735	
	0.9	73.8028%	0.738	0.738	0.738	
	0.1	71.5493%	0.717	0.715	0.716	
4	0.4	71.5493%	0.716	0.715	0.716	
4	0.7	72.3944%	0.725	0.724	0.724	
	0.9	71.831%	0.718	0.718	0.718	
	0.1	71.831%	0.719	0.718	0.719	
	0.4	71.831%	0.719	0.718	0.718	
6	0.7	73.5211%	0.737	0.735	0.736	
	0.9	71.2676%	0.714	0.713	0.713	
	0.1	73.8028%	0.739	0.738	0.738	
0	0.4	73.8028%	0.738	0.738	0.738	
8	0.7	71.2676%	0.712	0.713	0.712	
	0.9	72.1127%	0.721	0.721	0.721	
Support Vector Machines(SVM)						
Accuracy	Precision	Recall		F1-score		
75.7746 %	0.758	0.758		0.758		
Random Forest						
Accuracy	Precision	Recall		F1-score		
79.1549 %	0.792	0.792		0.792		

Valence - Features' Set 1						
Multilayer Perceptron						
Number of Hidden Layers:	Metrics→ Learning Ratio↓	Accuracy	Precision	Recall	F1-score	
	0.1	73.8162%	0.735	0.738	0.736	
4	0.4	72.9805%	0.724	0.730	0.725	
1	0.7	72.9805%	0.726	0.730	0.727	
	0.9	73.2591%	0.732	0.733	0.732	
	0.1	74.0947%	0.736	0.741	0.736	
2	0.4	73.8162%	0.733	0.738	0.731	
2	0.7	73.5376%	0.730	0.735	0.729	
	0.9	73.8162%	0.733	0.738	0.733	
	0.1	75.2089%	0.749	0.752	0.750	
4	0.4	72.1448%	0.718	0.721	0.719	
	0.7	72.7019%	0.724	0.727	0.725	
	0.9	73.8162%	0.735	0.738	0.736	
	0.1	73.5376%	0.630	0.426	0.762	
6	0.4	71.8663%	0.601	0.386	0.732	
0	0.7	70.7521%	0.578	0.359	0.730	
	0.9	68.2451%	0.581	0.325	0.691	
	0.1	74.9304%	0.745	0.749	0.746	
8	0.4	68.8022%	0.685	0.688	0.687	
0	0.7	71.3092%	0.709	0.713	0.710	
	0.9	68.8022%	0.684	0.688	0.685	
Support Vector Machines(SVM)						
Accuracy	Precision	Recall		F1-score		
74.0947 %	0.742	0.741		0.724		
Random Forest						
Accuracy	Precision	Recall		F1-score		
71.5877 %	0.711	0.716		0.712		

Valence - Features' Set 2						
Multilayer Perceptron						
Number of Hidden Layers:	Metrics→ Learning Ratio↓	Accuracy	Precision	Recall	F1-score	
	0.1	77.4373%	0.775	0.774	0.775	
4	0.4	77.7159%	0.775	0.777	0.776	
1	0.7	77.7159%	0.777	0.777	0.777	
	0.9	78.273%	0.783	0.783	0.783	
	0.1	76.8802%	0.767	0.769	0.767	
2	0.4	77.4373%	0.771	0.774	0.772	
2	0.7	77.4373%	0.772	0.774	0.773	
	0.9	77.4373%	0.771	0.774	0.771	
	0.1	77.1588%	0.769	0.772	0.770	
4	0.4	77.7159%	0.774	0.777	0.775	
4	0.7	76.3231%	0.762	0.763	0.763	
	0.9	74.6518%	0.745	0.747	0.746	
	0.1	77.1588%	0.770	0.772	0.771	
	0.4	75.4875%	0.755	0.755	0.755	
6	0.7	75.4875%	0.754	0.755	0.754	
	0.9	75.766%	0.760	0.758	0.759	
	0.1	76.3231%	0.762	0.763	0.762	
8	0.4	77.9944%	0.779	0.780	0.779	
0	0.7	76.3231%	0.762	0.763	0.763	
	0.9	74.9304%	0.752	0.749	0.750	
Support Vector Machines(SVM)						
Accuracy	Precision	Recall		F1-score		
79.1086 %	0.789	0.791		0.789		
Random Forest						
Accuracy	Precision	Recall		F1-score		
77.7159 %	0.776	0.777		0.769		

Valence - Features' Set 3						
Multilayer Perceptron						
Number of Hidden Layers:	Metrics→ Learning Ratio↓	Accuracy	Precision	Recall	F1-score	
	0.1	77.1588%	0.689	0.509	0.822	
4	0.4	77.1588%	0.687	0.508	0.803	
1	0.7	78.5515%	0.714	0.542	0.796	
	0.9	79.9443%	0.739	0.577	0.820	
	0.1	77.4373%	0.772	0.774	0.773	
2	0.4	76.6017%	0.762	0.766	0.763	
2	0.7	75.766%	0.755	0.758	0.755	
	0.9	76.8802%	0.766	0.769	0.766	
	0.1	78.8301%	0.790	0.788	0.789	
4	0.4	76.8802%	0.768	0.769	0.768	
4	0.7	75.766%	0.758	0.758	0.758	
	0.9	76.0446%	0.759	0.760	0.760	
	0.1	77.7159%	0.778	0.777	0.777	
6	0.4	77.7159%	0.776	0.777	0.776	
O	0.7	77.9944%	0.778	0.780	0.779	
	0.9	76.6017%	0.764	0.766	0.764	
	0.1	77.9944%	0.780	0.780	0.780	
8	0.4	77.9944%	0.779	0.780	0.779	
0	0.7	78.273%	0.781	0.783	0.782	
	0.9	78.5515%	0.784	0.786	0.785	
Support Vector Machines(SVM)						
Accuracy	Precision	Recall		F1-score		
79.1086 %	0.789	0.791		0.790		
Random Forest						
Accuracy	Precision	Recall		F1-score		
75.2089 %	0.748	0.752		0.743		

Βήμα 17: Στο τελευταίο βήμα για να πετύχουμε καλύτερη επίδοση χρησιμοποιούμε την μέθοδο επιλογής χαρακτηριστικών(feature selection), μέσω του εργαλείου Weka. Για την επιλογή χαρακτηριστικών πραγματοποιούνται οι διαδικασίες Attribute Evaluation, Search. Για Attribute Evaluator επιλέγεται η Wrapper, κατά την οποία γίνεται αξιολόγηση των υποσυνόλων των χαρακτηριστικών και επιλογή ως τελικού συνόλου αυτού που διαχωρίζει καλύτερα τα δεδομένα. Για classifier επιλέχθηκαν τα SVMs. Για Search Method επιλέχθηκε η BestFirst ώστε να γίνει αναζήτηση σε όλα τα πιθανά υποσύνολα χαρακτηριστικών με αποδοτικό τρόπο. Τα αποτελέσματα φαίνονται παρακάτω:

Attributes selected for Activation: 3 10 11 20 51 54 70 92 107 109 134 142 (total 12)

```
Selected attributes: 3,10,11,20,51,54,70,92,107,109,134,142 : 12
feature3
feature10
feature11
feature20
feature51
feature54
feature70
feature92
feature107
feature107
feature109
feature134
feature142
```

Attributes selected for Valence: 10 20 22 62 91 128 131 143 152 (total 9)

```
Selected attributes: 10,20,22,62,91,128,131,143,152 : 9
feature10
feature20
feature22
feature62
feature91
feature128
feature131
feature143
feature152
```

Activation - Features' Set 3						
Multilayer Perceptron						
Number of Hidden Layers:	Metrics→ Learning Ratio↓	Accuracy	Precision	Recall	F1-score	
	0.1	76.6197%	0.766	0.766	0.766	
4	0.4	76.338%	0.763	0.763	0.763	
1	0.7	74.3662%	0.743	0.744	0.743	
	0.9	76.6197%	0.766	0.766	0.766	
	0.1	76.338%	0.767	0.763	0.764	
2	0.4	74.9296%	0.754	0.749	0.750	
2	0.7	73.5211%	0.741	0.735	0.736	
	0.9	73.5211%	0.740	0.735	0.736	
	0.1	54.3662%	0.296	0.544	0.383	
4	0.4	52.3944%	0.500	0.524	0.476	
4	0.7	52.3944%	0.500	0.524	0.476	
	0.9	52.3944%	0.500	0.524	0.476	
	0.1	54.3662%	0.296	0.544	0.383	
6	0.4	52.3944%	0.500	0.524	0.476	
O	0.7	52.3944%	0.500	0.524	0.476	
	0.9	52.3944%	0.500	0.524	0.476	
	0.1	54.3662%	0.296	0.544	0.383	
8	0.4	52.3944%	0.500	0.524	0.476	
0	0.7	52.3944%	0.500	0.524	0.476	
	0.9	52.3944%	0.500	0.524	0.476	
Support Vector Machines(SVM)						
Accuracy	Precision	Recall		F1-score		
84.507 %	0.845	0.845		0.84	0.845	
Random Forest						
Accuracy	Precision	Recall F1-scor		ore		
80.4648 %	0.801	0.804 0.80		1		

Πριν την επιλογή χαρακτηριστικών: Max Accuracy = 79,1549 % , Max F1 = 79,2% Μετά την επιλογή χαρακτηριστικών: Max Accuracy = 84,4648 % , Max F1 = 84,5% Παρατηρούμε ότι στην περίπτωσητου Activation τα αποτελέσματα βελτιώνονται αισθητά με την επιλογή χαρακτηριστικών.

Valence - Features' Set 3						
Multilayer Perceptron						
Number of Hidden Layers:	Metrics→ Learning Ratio↓	Accuracy	Precision	Recall	F1-score	
	0.1	82.4513%	0.823	0.825	0.823	
4	0.4	79.6657%	0.794	0.797	0.794	
1	0.7	77.9944%	0.777	0.780	0.777	
	0.9	79.6657%	0.795	0.797	0.795	
	0.1	82.1727%	0.820	0.822	0.820	
2	0.4	79.6657%	0.797	0.797	0.797	
2	0.7	81.0585%	0.811	0.811	0.811	
	0.9	81.0585%	0.809	0.811	0.809	
,	0.1	62.6741%	0.393	0.627	0.483	
	0.4	62.6741%	0.393	0.627	0.483	
4	0.7	62.6741%	0.393	0.627	0.483	
	0.9	62.6741%	0.393	0.627	0.483	
	0.1	62.6741%	0.393	0.627	0.483	
6	0.4	62.6741%	0.393	0.627	0.483	
O	0.7	62.6741%	0.393	0.627	0.483	
	0.9	62.6741%	0.393	0.627	0.483	
	0.1	62.6741%	0.393	0.627	0.483	
8	0.4	62.6741%	0.393	0.627	0.483	
0	0.7	62.6741%	0.393	0.627	0.483	
	0.9	62.6741%	0.393	0.627	0.483	
Support Vector Machines(SVM)						
Accuracy	Precision	Recall		F1-score		
84.9582 %	0.853	0.850 0.84		0.84	5	
Random Forest						
Accuracy	Precision	Recall F1-scor		ore		
79.3872 %	0.791	0.794 0.79		1		

Πριν την επιλογή χαρακτηριστικών: Max Accuracy = 79,9443% , Max F1 = 82% Μετά την επιλογή χαρακτηριστικών: Max Accuracy = 84,9582% , Max F1 = 84,5% Παρατηρούμε ότι στην περίπτωσητου Valence τα αποτελέσματα βελτιώνονται αισθητά με την επιλογή χαρακτηριστικών.