

upcomillas

upcomillas

FINANCIAL AND COST ANALYSIS

Time Value of Money

PV Present Value

FV_t **Future Value**: Amount to which an investment will grow after earning interest

$$FV_1 = PV \cdot (1+r) = 100 \cdot (1+7\%) = 100 \cdot (1+0.07) = 107$$

$$FV_2 = PV \cdot (1+r \cdot 2) = 100 \cdot (1+0.07 \cdot 2) = 114$$

$$FV_3 = PV \cdot (1+r \cdot 3) = 100 \cdot (1+0.07 \cdot 3) = 121$$

$$FV_4 = PV \cdot (1+r \cdot 4) = 100 \cdot (1+0.07 \cdot 4) = 128$$

$$FV_5 = PV \cdot (1+r \cdot 5) = 100 \cdot (1+0.07 \cdot 5) = 135$$

Let **r** = annual interest rate Let **t** = number of periods

Outline

Interest and future value
Future value

Interest: simple vs. compound

Present value

Discount rates and present values

Multiple cash flows

Level cash flows: perpetuities and

annuities

Annuities due

Effective annual interest rates

Inflation and the time value of money

Simple Interest

 FV_{Simple} = Initial investment × $(1+r \times t)$

PV Present Value

FV_t **Future Value**: Amount to which an investment will grow after earning interest

$$FV_1 = PV \cdot (1+r) = 100 \cdot (1+7\%) = 100 \cdot (1+0.07) = 107$$

$$FV_2 = 107 \cdot (1+0.07) = 100 \cdot (1+0.07)^2 = 114.49$$

$$FV_3 = 114.49 \cdot (1+0.07) = 100 \cdot (1+0.07)^3 = 122.50$$

$$FV_4 = 122.50 \cdot (1+0.07) = 100 \cdot (1+0.07)^4 = 131.08$$

$$FV_5 = 131.08 \cdot (1+0.07) = 100 \cdot (1+0.07)^5 = 140.26$$

$$FV_5 = PV \cdot (1+r)^5$$

Let **r** = annual interest rate Let **t** = number of periods

Outline

Interest and future value

Future value

Interest: simple vs. compound

Present value

Discount rates and present values

Multiple cash flows

Level cash flows: perpetuities and

annuities

Annuities due

Effective annual interest rates

Inflation and the time value of money

Simple Interest

$$FV_{Simple} = Initial investment \times (1 + r \times t)$$

Compound Interest

$$FV_{Compound} = Initial investment \times (1+r)^t$$

Interest earned at a rate of 7% for the first forty years on the \$100 invested using simple and compound interest

Let **r** = annual interest rate Let **t** = number of periods

Outline

Interest and future value

Future value

Interest: simple vs. compound

Present value

Discount rates and present values

Multiple cash flows

Level cash flows: perpetuities and

annuities

Annuities due

Effective annual interest rates

Inflation and the time value of money

Simple Interest

 $FV_{Simple} = Initial investment \times (1 + r \times t)$

Compound Interest

 $FV_{Compound} = Initial investment \times (1+r)^{t}$

PV Present Value: Value today of a future cash flow

$$\frac{FV_t}{(1+r)^t} = PV$$

The PV formula has many applications. Given any variables in the equation, you can solve for the remaining variable

Let
$$r$$
 = annual interest rate = **discount rate**

Let t = number of periods

$$\frac{1}{(1+r)^t}$$

FV_t

$$\frac{FV_t}{(1+r)^t}$$

Outline

Interest and future value

Future value

Interest: simple vs. compound

Present value

Discount rates and present values

Multiple cash flows

Level cash flows: perpetuities and

annuities

Annuities due

Effective annual interest rates

PV Present Value: Value today of a future cash flow Changing Discount Rates The present value of \$100 to be received in 1 to 20 years at varying discount rates:

0% discount rate

Outline

Interest and future value

Future value

Interest: simple vs. compound

Present value

Discount rates and present values

Multiple cash flows

Level cash flows: perpetuities and

annuities

Annuities due

Effective annual interest rates

Inflation and the time value of money

$$FV_{20} = $100$$

120

Outline

Interest and future value

Future value

Interest: simple vs. compound

Present value

Discount rates and present values

Multiple cash flows

Level cash flows: perpetuities and annuities

Annuities due

Effective annual interest rates

Inflation and the time value of money

PV of Multiple Cash Flows: The present value of multiple cash flows can be calculated:

$$\mathsf{PV} = \mathsf{PV}_1 + \mathsf{PV}_2 + \dots + \mathsf{PV}_t = \frac{\mathsf{C}_1}{(1 + \mathsf{r})} + \frac{\mathsf{C}_2}{(1 + \mathsf{r})^2} + \dots + \frac{\mathsf{C}_t}{(1 + \mathsf{r})^t} = \sum_{\mathsf{i} = 1}^t \frac{\mathsf{C}_i}{(1 + \mathsf{r})^i}$$

where

 C_1 is the cash flow in year 1

C₂ is the cash flow in year 2

 C_{t} is the cash flow in year t (with any number of cash flows in between)

Outline

Interest and future value

Future value

Interest: simple vs. compound

Present value

Discount rates and present values Multiple cash flows

Level cash flows: perpetuities and annuities

. ...

Annuities due

Effective annual interest rates

Inflation and the time value of money

Annuities

What are they? Annuities are equally-spaced, level streams of cash flows lasting for a limited period of time

PMT = yearly cash payment
t = number of years the payment is received

$$PV=PMT \cdot \left[\frac{1 - \frac{1}{(1+r)^t}}{r} \right]$$

$$\mathsf{FV=PMT} \cdot \left[\frac{(1+\mathsf{r})^\mathsf{t} - 1}{\mathsf{r}} \right]$$

The terms within the brackets are collectively called the "annuity factor"

Outline

Interest and future value Future value Interest: simple vs. compound

Present value

Discount rates and present values Multiple cash flows Level cash flows: perpetuities and annuities

Annuities due

Effective annual interest rates

Inflation and the time value of money

Annuities

What are they? Annuities are equally-spaced, level streams of cash flows lasting for a limited period of time

Annuity due

What is it? An annuity whose payment is to be made immediately, rather than at the end of the period

How does it differ from an ordinary annuity?

$$PV_{Annuity\ Due} = PV_{Annuity} \cdot (1+r)$$

How does the future value differ from an ordinary annuity?

$$FV_{Annuity\ Due} = FV_{Annuity} \cdot (1+r)$$

Used in situations that do not use yearly time periods

Semiannual bond payments Quarterly stock dividends Consumer loans – monthly payments :

Effect of Compounding Frequency

Assumptions

\$100 deposit today 12% annual interest rate Bank compounds interest at six months instead of end of year Interest is earned on interest $$112.36 = $106 \cdot (1+0.06)$

Outline

Interest and future value Future value Interest: simple vs. compound

Present value

Discount rates and present values Multiple cash flows Level cash flows: perpetuities and annuities Annuities due

Effective annual interest rates

Assumptions

Borrow \$100 today 12% annual interest rate

APR: Loan compounds *annually*; you pay 12.00% EARS: Loan compounds *monthly*; you pay 12.68%

$$EAR = \left(1 + \frac{0.12}{12}\right)^{12} - 1$$

APR Quoted, or nominal rate called annual percentage rate

EAR Rate that incorporates compounding called effective annual rate

Relationship between APR and EAR:

$$PV \cdot (1 + EAR)^{1} = PV \cdot \left(1 + \frac{APR}{m}\right)^{m} \qquad EAR = \left(1 + \frac{APR}{m}\right)^{m} - 1$$

m = compound frequency

ONE year Outline

Interest and future value Future value

Interest: simple vs. compound

Present value

Discount rates and present values Multiple cash flows Level cash flows: perpetuities and annuities

Annuities due

Effective annual interest rates

Annual U.S. Inflation Rates from 1900 - 2010

Source: Bureau of Labor Statistics.

Outline

Interest and future value

Future value

Interest: simple vs. compound

Present value

Discount rates and present values

Multiple cash flows

Level cash flows: perpetuities and

annuities

Annuities due

Effective annual interest rates