Cálculo Multivariable - Clases y apuntes de clase

David Gabriel Corzo Mcmath

2020-01-06

Índice general

1.	Clase - 2020-01-07 1.1. 12.1 Sistema tridimensional de coordenadas	5
2.	Clase - 2020-01-23 2.1. 12.4 Producto Cruz 2.2. Producto Cruz	1(1(
3.	Clase - 2020-01-28	13
	3.1. 12.5 Rectas y planos	14
	3.2. Rectas paralelas	15 15
	3.3. La ecuación de un plano	16 16 17
		18
4.	4.1. Resolución de corto	20 20 20 20
5.	Clase - 2020-02-04	25
	5.1. 13.1 Funciones vectoriales y curvas en el espacio 5.1.1. Ejercicios 5.2. Limites y continuidad 5.2.1. Ejercicios 5.3. Curvas en el espacio	26 26 27 27 28 28
6.		31
	6.1.1. Derivadas	$\frac{32}{32}$
	v .	32 33 33
7.	Clase - 2020-02-11	35
	7.1. 13.2 Cálculo de funciones vectoriales 7.2. Ejercicios de integración	36 37 37

Índice general

		13.3 Longitud de arco	
8.	Clas	se - 2020-02-11	41
	8.1.	Resolución de corto	42
	8.2.	14.1 Funciones de varias variables	42
	8.3.	Ejercicios	43
		8.3.1. Gráfica de $z = f(x, y)$	44
	8.4.	Curva de nivel o traza horizontal	44

Clase - 2020-01-07

1.1. 12.1 Sistema tridimensional de coordenadas

- Para localizar un punto en un plano, se necesitan dos números.
- Los ejes de coordenadas son perpendiculares entre sí.
- En el sistema tridimensional de coordenadas rectangulares, cada punto en el espacio es una terna ordenada.

Espacio:
$$\mathbb{IR}^3$$
 { (x, y, z) Talque $x, y, z \in \mathbb{IR}$.

&

$$\mathbb{IR}^3 = \mathbb{IR}^2 \times \mathbb{IR}$$

 \blacksquare Sistema 2-D vs. 3-D:

Figura 1.1:

Las líneas punteadas se usan para simbolizar las partes debajo, izquierda y detrás.

Figura 1.2:

Clase - 2020-01-23

2.1. 12.4 Producto Cruz

- Definición de "Determinantes": Matriz (arreglo rectangular de números).
- Definición de "Cuadrada": Mismo número de filas y columnas.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Determinante de orden 2. Matriz de 2x2

■ pie:

$$\begin{vmatrix} 3 & 4 \\ -1 & 2 \end{vmatrix} = 6 - (-1)(4) = 6 + 4 = 10$$

■ Determinante de orden 3: Matriz 3x3 suma de tres determinantes de orden 2:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} + a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

3 matrices de 2x2.

■ p.e.

$$\begin{vmatrix} 2 & 0 & 2 \\ 1 & 3 & 0 \\ 1 & -1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 3 & 0 \\ -1 & 2 \end{vmatrix} - 0 \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} + 2 \begin{vmatrix} 1 & 3 \\ 1 & -1 \end{vmatrix}$$
$$2(6-0) - 0 + 2(-1-3) = 12 - 8 = 4$$

2.2. Producto Cruz

■ Dados dos vectores :

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

 $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$

• Nos preguntamos: ¿Cómo se encuentra un vector \vec{c} que es perpendicular a \vec{a} y a \vec{b} ?

$$\vec{c} \cdot \vec{a} = 0$$

$$\vec{c} \cdot \vec{b} = 0$$

■ Resuelva para c_1, c_2, c_3 :

$$c_1 a_1 + c_2 a_2 + c_3 a_3 = 0$$
$$c_1 b_1 + c_2 b_2 + c_3 b_3 = 0$$

• El producto cruz $\vec{c} = \vec{a} \times \vec{b} = 0$ es un vector perpendicular a ambos vectores $\vec{a} \& \vec{b}$.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \hat{i}(a_2b_3 - a_3b_2) - \hat{j}(a_1b_3 - a_3b_1) + \hat{k}(a_1b_2 - a_2b_1)$$

- Observaciones:
 - El producto cruz es un vector, mientras que el producto es un número o escalar.
 - El producto cruz **no** es conmutativo $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$.

$$\vec{b} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \end{vmatrix} = \hat{i}(b_2a_3 - a_2b_3) + \hat{j}(a_1b_3 - a_3b_1) + \hat{k}(a_2b_1 - a_1b_2)$$

■ Por ejemplo:

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 0 \\ 1 & 0 & 5 \end{vmatrix} = \hat{i} \begin{vmatrix} 3 & 0 \\ 0 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 0 \\ 1 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 1 & 0 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = 15\hat{i} - 10\hat{j} - 3\hat{k}$$

• Verifique $\vec{a} \times \vec{b}$ es ortogonal a \vec{a} & a \vec{b} .

$$(\vec{a} \times \vec{b}) \cdot \vec{a} = \langle 15, -10, -3 \rangle \cdot \langle 2, 3, 0 \rangle = 30 - 30 + 0 = 0$$
: son ortogonales $(\vec{a} \times \vec{b}) \cdot \vec{b} = \langle 15, -10, -3 \rangle \cdot \langle 1, 0, 5 \rangle = 15 + 0 - 15 = 0$: son ortogonales

$$\vec{a} \times \vec{b} \perp a_1 b$$

- Aclaración: en dos dimensiones $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} \\ a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$ No es posible evaluarlo.
- Existen en tres dimensiones pero si se intenta evaluar en cuatro dimensiones la siguiente matriz no es posible:

En 3-D:
$$\exists$$
 En 4-D: \exists

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} & \hat{l} \\ 1 & 0 & 2 & 3 \\ 4 & 1 & 5 & -2 \end{vmatrix}$$

No es posible evaluarlo.

■ Ejemplo:

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 5 \\ 2 & 3 & 0 \end{vmatrix} = \hat{i} \begin{vmatrix} 0 & 5 \\ 3 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 5 \\ 2 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 0 \\ 2 & 3 \end{vmatrix}$$
$$= 15\hat{i} + 10\hat{j} + 3\hat{k}$$

Entonces... en general:

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$$

Clase - 2020-01-28

3.1. 12.5 Rectas y planos

- Ecuación de una recta
- Vector posición $\vec{r}_0 = \langle x_0, y, z_0 \rangle$
- Vector dirección $\vec{v}_0 = \langle a, b, c \rangle$
- Ecuación vectorial: $\vec{r} = \vec{r}_0 + t\vec{v}$ donde t es el parámetro.
- Ecuaciónes paramétricas:

$$x = x_0 + at$$
$$y = y_0 + at$$
$$z = z_0 + at$$

 \blacksquare Resuelva para t en las tres ecuaciones:

$$t = \frac{x - x_0}{a}t = \frac{y - y_0}{b}t = \frac{z - z_0}{c}$$

Estas son las ecuaciónes simétricas de la recta donde $a, b, c \neq 0$.

• Vector dirección $\vec{v} = \langle a, 0, c \rangle$ las ecuaciones en la recta cambian:

$$\vec{r} = \vec{r_0} + t\vec{v}$$

$$Vectorial$$

$$x = x_0 + at$$

$$y = y_0$$

$$z = z_0 + ct$$
Entonces queda así:
$$\frac{x - x_0}{a} = \frac{z - z_0}{c}$$

$$y = y_0$$
Simétrica

- 3.1.1. Ejercicio 3: Encuentre las ecs. simétricas de la recta que pasa por los puntos dados. Encuentre en qué punto la recta interseca al plano xz. pg.41
 - P(2,8,-2) & Q(2,6,4)

■ Nos preguntamos: ¿Cual es la intersección con el plano xz?

Use, y=0x = 2,
$$\frac{-8}{-2} = \frac{z+2}{6}$$

= $6 \cdot 4 = z + 2 \implies z = 22$

■ La intersección con el plano xz es el punto (1,0,22):

$$\vec{r}_0 = \langle 4,6,10 \rangle$$

$$\vec{v} = \overrightarrow{PQ} = \langle 2,0,0 \rangle$$
 Vectorial: $\vec{r} = \langle 4,6,10 \rangle + t \langle 2,0,0 \rangle$ Paramétricas: $x = 4 + 2t, y = 6, z = 10$ Simétricas: $t = \frac{x-4}{2}, y = 6, z = 10$

■ Nos preguntamos: ¿Cual es el punto de instersección con el plano xz?

Use:
$$y=0$$

Explicación: por la recta y = 6 siempre será 6, nunca podrá ser 0, no puede intersecar con el plano xz, No hay.

3.2. Rectas paralelas

Dos rectas $\vec{r}_1 = \vec{r}_{01} + t\vec{v} \& \vec{r}_2 = \vec{r}_{02} + t\vec{v}_2$ son paralelas si y solo si sus vectores de dirección \vec{v}_1 y \vec{v}_2 son paralelas.

Figura 3.1:

Entones en el espacio tenemos 3 tipos de rectas:

- 1. Rectas paralelas
- 2. Rectas intersecan en un punto
- 3. Rectas Ublicuas (no paralelas & no intersecan)

3.2.1. Ejercicio 4: Determine si los siguientes pares de rectas son paralelas, oblicuas o se intersecan.

$$\frac{x-2}{8} = \frac{y-3}{24} = \frac{z-2}{16}, \frac{x-10}{-2} = \frac{y+15}{-6} = \frac{z+24}{-4}$$

$$\vec{v}_1 = \langle 8, 24, 16 \rangle, \vec{v}_2 = \langle -2, -6, -4 \rangle$$
Entoces..., $\left\langle \frac{8}{-2}, \frac{24}{-6}, \frac{16}{-4} \right\rangle$

$$\langle -4, -4, -4 \rangle, \therefore \text{ Son paralelas}$$

El vector dirección está en el denominador.

 $L_1: x = 3 - 4t, y = 6 - 2t, z = 2 + 0t, t \in IR$ $L_2: x = 3 + 8s, y = -2s, z = 8 + 2s, s \in IR$

Utilize una variable parámetro para cada recta $v_1 = \langle -4, -2, 0 \rangle, v_2 = \langle 8, -2, 2 \rangle$ No son paralelas

Analice si las rectas se intersecan

$$x = x \rightarrow 5 - 4t = 3 + 8s$$

$$y = y \to 6 - 2t = -2s$$

$$z=z\rightarrow 2=8+2s\rightarrow s=-3$$

$$5-4 = -22 \rightarrow 4t = -27 \rightarrow -4t = -27 \rightarrow = \frac{27}{4}$$

 $6-2t = 6 \rightarrow 2t = 0 \rightarrow t = 0$

$$6 - 2t = 6 \rightarrow 2t = 0 \rightarrow t = 0$$

 \therefore Como no hay una t única (no es posible $0 \neq \frac{27}{4}$), las dos retas no se intersecan.

 $L_1 \& L_2$ Son oblicuas Eliminación Gausiana

3.3. La ecuación de un plano

Previamente en 12.1 ax + by + cz = 0. Para encontrar la ec. de un plano se necesita:

Figura 3.2:

- 1. Un punuto sobre el plano $P: \vec{r_0} = \overrightarrow{OP}$
- 2. Un vector normal u ortognoal al plano: $\hat{n}_0 \langle a, b, c \rangle$

3.3.1. Derivación de la e. plano

$$P(\boldsymbol{x}_0, y_0, z_0), Q(\boldsymbol{x}_1, y_1, z_1)$$
 Son dos puntos sobre el plano

$$\vec{r_0} == \overrightarrow{0P} = \langle x_0, y_0, z_0 \rangle$$

$$\vec{r} = \overrightarrow{0Q} = \langle x, y, z \rangle$$

El vector $\vec{RP} = \vec{r} + \vec{r} = 0$ está sobre el plano, por lo que tiene que ser ortogonal a \hat{n} .

$$\hat{n} \perp \vec{r} - \vec{r_0} \rightarrow \underbrace{\hat{n} \cdot (\vec{r} - \vec{r_0})}_{\text{Ec. vectorial de un plano}}$$
 Se puede reescribir como:
$$\underbrace{\langle a,b,c \rangle \cdot \langle x + x_0, y - y_0, z - z_0 \rangle + c(z - z_0) = 0}_{\text{Ecuación escalar de un plano}}$$

$$ax + by + cz = \underbrace{ax_0 + by_0 + cz_0}_{0}$$

Para encontrar la ec. de un plano se necesita 3 puntos P,Q,R: hay infinitas respuestas equivalentes $\hat{n} = \vec{\times}$.

$$\overrightarrow{r_0} = \overrightarrow{OP}, \overrightarrow{0Q}, \overrightarrow{0R}$$

$$\underline{\hat{n}} = \overrightarrow{PQ} \times \overrightarrow{PR}$$
 Tienen que empezar en el mismo punto

Hat infinitas respuestas:

$$\hat{n} = \overrightarrow{PR} \times \overrightarrow{PQ}$$

3.3.2. Ejercicio 1: pg45 Encuentre la ec. del plano que pasa por los 3 puntos dados.

1.
$$P(3,-1,3), Q(8,2,4), R(1,2,5)$$

Ecuación del plano : ,
$$\hat{n}\cdot(\vec{r}-\vec{r_0})=0$$

Ecuaciónn de la recta : , $\vec{r}=\vec{r_0}+t\vec{v}$

$$\vec{r_0}=\langle 8,2,4\rangle$$

Encuentre dos vectores que están sobre el plano y que comiencen en el mismo punto.

$$\vec{u} = \overrightarrow{PQ} = \langle 5,3,1 \rangle \,, \vec{v} = \overrightarrow{PR} = \langle -2,3,2 \rangle$$

$$\text{ii } \hat{n} \text{ es ortogonal a ambos vectores }!!$$

$$\hat{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 3 & 1 \\ -2 & 3 & 2 \end{vmatrix} = 3\hat{i} - 12\hat{j} - +21\hat{k}$$
 Ec. Plano $, \hat{n} \cdot (\vec{r} - \vec{r_0}) = 0$ Ec. Vectorial $, \langle 3, -12, 21 \rangle \cdot \langle x - 8, y - 2, z - 4 \rangle = 0$ Escalar $, 3(x - 8) -$

2. P(0,0,0), Q(1,0,2), y R(0,2,3)

$$\begin{aligned} \text{Vector posición: } \vec{r_0} &= \langle 0, 0, 0 \rangle \\ \text{dos vectoes sobre el plano: } \vec{PQ} &= \langle 1, 0, 2 \rangle \\ \vec{PR} &= \langle 0, 2, 3 \rangle \\ \text{Vector normal: } \hat{n} &= \overrightarrow{PQ} \times \overrightarrow{PR} \\ &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \text{terminar} \end{vmatrix} \end{aligned}$$

3. Ecuación del plano:

$$-4x - 3y + 2z = 0$$

3.4. Rectas paralelas v_1 y v_2 son paralelos

Dos planos $\hat{n_1} \cdot (\vec{r} - \vec{r_1}) = 0$ y $\hat{n_2} \cdot (\vec{r} - \vec{r_2}) = 0$ son paralelas sí y sólo si $\hat{n_1}$ y $\hat{n_2}$ son paralelas. En caso que no sean paralelas, se puede encontrar el ángulos de intersección entre dos planos.

Clase - 2020-01-30

4.1. Resolución de corto

■ Determine el área del triángulo entre los puntos P(), Q(), R():

$$\vec{a} = \overrightarrow{PQ} = \langle 4, 3, -2 \rangle$$

$$\vec{b} = \overrightarrow{PR} = \langle 5, 5, 1 \rangle$$

$$\text{Área} = \frac{1}{2} \left| \vec{a} \times \vec{b} \right|$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & -2 \\ 3 & 5 & 1 \end{vmatrix} = 13\hat{i} - 14\hat{j} + 5\hat{k}$$

$$\text{Área} = \frac{1}{2} \checkmark$$

4.2. Rectas y planos

• Ecs. Rectas: $\vec{r} = \vec{r_0} + t\vec{v}$

si
$$a \neq b \neq c \neq 0$$
 $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$

■ Paramétricas:

$$x = x_0 + at$$
$$y = y_0 + bt$$
$$z = z_0 + ct$$

■ Ecuación de plano:

$$\hat{n} = \vec{r} - \vec{r_0}$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$\hat{n} = \vec{a} \times \vec{b}$$

4.2.1. Ejercicios

- 1. Considere los planos x + y = 0 & x + 2y + z = 1.
 - a) Determine si los planos son paralelos so no lo son encuentre el ángulo entr ellos:

$$\hat{n_1} = \langle 1, 1, 0 \rangle$$

$$\hat{n_2} = \langle 1, 2, 1 \rangle$$

.. Los dos planos no son paralelos

■ El $\hat{n_1}$ & $\hat{n_2}$ no son necesariamente ortogonales.

$$\cos \theta = \frac{\hat{n_1} \cdot \hat{n_2}}{|\hat{n_1}| |\hat{n_2}|} = \frac{3}{\sqrt{2}}$$
$$\cos \theta = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \qquad \theta = \frac{\pi}{2}$$

2. Encuentre la ec. de la recta que interseca a ambos planos x+y=0 & x+2y+z=1:

$$r = \vec{r_0} + t\vec{v}$$

Dos puntos sobre la recta

Como la recta esta en ambos planos, se debe resolver el sig. sistema de ecuaciones

$$x + y = 0 \implies x = -y$$

$$x + 2y + z = 1 \implies y = z - 1$$

z tiene cualquier valor, ahora encontrar escogiendo cualquier punto sobre la recta, en este caso 0

Primer punto
$$z = 0$$

$$y = 1$$

$$x = -1$$

$$\therefore \langle -1, 1, 0 \rangle$$

Segundo punto z = 1

$$y = 0$$

$$x = 0$$

$$\therefore \langle 0, 0, 1 \rangle$$

3. Encuentre la ecuación de la recta que pasa por P(-1,1,0) y Q $\underbrace{(0,0,1)}$:

$$\vec{r_0} = \langle 0, 0, 1 \rangle \langle -1, 1, 0 \rangle$$

$$\vec{v} = \overrightarrow{QP}0 \langle -1, 1, -1 \rangle$$

Ecuaciones paramétricas de la recta:

$$x = 0 - t$$
 $y = 0 + t$ $z = 1 - t$

4. Solución alterna:

$$x=-y$$
 $y=1-z$ Más incognitas que ecuaciones.
 x,y ó z pueden tener cualquier valor $z=t$
$$x=-1+t$$

$$y=1-t$$
 $\therefore v_2=\langle 1,-1,1\rangle$ $\vec{r_0}=\langle -1,1-0\rangle$

- 5. Solución geométrica:
 - Encuentre un punto en ambos planos (0,0,1).
 - L arecta está en el plano I, entonces la recta es perpendicular al vector normal del plano I.
 - Está en el plano z, entonces también es perpendicular al segundo vector normal.
 - ∴ la recta es perpendicular a ambos $\hat{n_1}$ & $\hat{n_2}$

$$\vec{v} = \hat{n_1} \times \hat{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - \hat{j} + \hat{k}$$

Ecuación de la recta: $r = \langle 0, 0, 1 \rangle + t \langle 1, -1, 0 \rangle$

6. Ejercicio 3: Encuentre el punto en el que la línea recta x=1+2t, y=4t, z=5t interseca al plano. x-y+2z=17.

$$x = 1 + 2t$$

$$y = 4t$$

$$z = 5t$$
Plano
$$x - y + 2z = 17 \quad 1 + 2t - 4t + 10t = 17$$

$$8t = 16 \implies \therefore t = 2$$

El punto de intersección es (5,8,10).

- 7. Ejercicio 4: Encuentre una ec. del plano que contiene la recta x=1+t, y=2-t, z=4-3t y es paralela a plano 5x+2y+z=1.
 - Cualquier punto sobre la recta que también esté sobre el plano, t= 0.

Evaluemos en t=0
$$x = 1, y = 2, z = 4$$

 $\vec{r_0} = \langle 1, 2, 4 \rangle$

- Nos preguntamos: ¿Cómo se encuentra \hat{n} ?
- El vectos de dirección de la recta $v = \langle 1, -1, -2 \rangle$ es paralelo al plano.

- Como es paralelo al seguno plano, entonces tiene que ser perpendicular $\hat{n}_2 = \langle 5, 2, 1 \rangle$
- Lo que ocurre entonces es:

$$\vec{r_0}=\langle 1,2,4\rangle \quad \hat{n}=\langle 5,2,1\rangle$$
 Ec. Plano: $\implies 5(x-1)+2(y-2)+1(z-4)=0$

- 8. Ejercicio 5: Encuentre los números directores para la recta de intersección entre los planos x+y+z=1 & x+2y+3z=1.
 - Definición de "numeros directores": a,b,c del vector de dirección $\langle a,b,c \rangle$
 - La recta es ortogonal a ambos vectores normales:

$$\begin{split} \hat{n_1} &= \langle 1,1,1 \rangle \quad text \& \hat{n_2} = \langle 1,2,3 \rangle \quad \text{ de ambos planos} \\ \vec{v} &= \hat{n_1} \times \hat{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - 2\hat{j} + \hat{k} \end{split}$$
 Los números directores: $a = 1, b = 2, c = 1$

9. Ejercicio 6: Encuentre las ecs. aparamétricas de la recta que pasa por el punto (0,1,2), que es paralelo al plano x+y+z=2 y es perpendicular a la recta $r=\langle -2t,0,3t\rangle$.

$$L_1 r = \vec{r_0} + t\vec{v}$$
 $r_0 = \langle 0, 1, 2 \rangle$

- lacktriangle Aclaraciones: L_1 es la incógnita que tenemos que encontrar.
- Nos preguntamos: ¿Cómo se encuentra r?
- Plano I: $\hat{n} = \langle 1, 1, 1 \rangle$ es perpendicular al plano, es paralelo a L_1 .
- Recta II: $\hat{v}_2 = \langle -2, 0, 3 \rangle$ es perpendicular a L_1
- \blacksquare La recta es perpendiculae a \hat{n} y a $\vec{v_2}$

$$v = \hat{n} \times \vec{v_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ -2 & 0 & 3 \end{vmatrix} = 3\hat{i} - 5\hat{j} + 2\hat{k}$$

$$r_0 = \langle 0, 1, 2 \rangle$$

 $v = \hat{v_2} \times \hat{n}$ Ecuaciones paramétricas:

$$x = 0 - 3t$$
$$y = 1 - 5t$$
$$z = 2 + 2t$$

Clase - 2020-02-04

5.1. 13.1 Funciones vectoriales y curvas en el espacio

• Una función vectorial $\vec{r}:R \implies V_3:$

$$\vec{r}(t) = \langle f(t), g(t), z(t) \rangle$$

La variable t es un parámetro.

■ Dominio: Números reales, Rango: vector 3D:

$$\vec{r}$$
IR $\Longrightarrow V_3$ $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ t es un parámetro $\vec{r} = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$

■ Ejemplo de una función vectorial:

$$\begin{split} \vec{r} &= \langle a,b,c \rangle + t \, \langle d,e,f \rangle \\ \vec{r} &= \langle a+td,b+et,c+tf \rangle \\ x &= f(t), \quad y = g(t), \quad z = h(t) \end{split}$$

- Ecs. Paramétricas de una función vectorial:
- Dominio de ina función vectorial: encuentre el dominio de cada función componente. El dominio de \vec{r} es la intersección de los dominios de cada función componente.

5.1.1. Ejercicios

1. Encuentre el dominio:

$$r(t) = \left\langle \sqrt{r^2 - 9}, e^{5ln(t)}, ln(t+5) \right\rangle$$
 Evadir raíces negativas, y ln(0)
$$\sqrt{t^2 - 9} \implies \text{Definida} \quad t^2 \ge 9$$

$$e^{\sin(t)} \quad \text{siempore definida}$$

$$ln(t+5) \quad \text{Definida cuando} \quad t+5 > 0 \quad (-5, \infty)$$

$$\therefore \text{ El dominio es de} \quad (-5, \infty) \cup (-5, -3) \cup (-3, 3) \cup [3, \infty)$$

Recordar: [a,b] el numero si es parte del dominio a,b son partes del dominio. (a,b) los puntos a,b no son parte del dominio.

$$\vec{s}(t) = \left\langle \sin^3(t^2), \cosh(\frac{t}{t^2 + 1}), \frac{1}{e^t + 4} \right\rangle$$

$$sin^3(t^2), ID_{f(t)} = IR$$

$$\cosh(\frac{t}{t^2 + 1}), ID_{g(t)} = IR$$

$$\frac{1}{e^t + 4}, ID_{h(t)} = IR$$

$$\therefore \text{ Dominio de } \vec{s}(t) = (-\infty, \infty)$$

$$e^+ 4 \neq 0 \implies e^t = -4 \implies t = \underbrace{ln(-4)}_{\text{indefinido}}$$

5.2. Limites y continuidad

$$\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

- Evalúe el límite de cada función componente.
- \blacksquare Si no existe por lo menos un límite de una función componente, entonces lím $_{t\to a}\,\vec{r}(t)$ no existe.
- f(t) está definida en t=a

$$\lim_{t \to a} f(t) = f(a)$$

 \blacksquare Si se indefine y tiene forma de $\frac{0}{0},\,\frac{\infty}{\infty}$ usar L'Hôpital.

$$\lim_{t \to a} \frac{f(t)}{g(t)} \underbrace{=}_{\underline{0}} \lim_{t \to a} \frac{f'(t)}{g'(t)} \quad \text{L'Hopital}$$

- \bullet Contínua en t=a si $\lim_{t\to a} \vec{r}(t) = \vec{r}(a)$
- Evite asíntotas verticales, saltos y agujeros. Ejemplo:

$$\lim_{t \to a} \frac{\sin(x)}{x} = \lim_{t \to a} \frac{\cos(x)}{1} = 1$$

5.2.1. Ejercicios

- Sea $\vec{r}(t) = \left\langle \frac{\tan(\pi t)}{t}, e^{t-2}, \frac{\ln(t-1)}{t^2-1} \right\rangle$.
- Analice si la función $\vec{r}(t)$ es contínua en t=2.

$$\vec{r}(t) = \left\langle \frac{\tan 2\pi}{2}, e^0, \frac{\ln(1)}{3} \right\rangle$$

$$\lim_{t \to 2} \underbrace{\frac{\tan \pi t}{t}}_{0} = 0$$

$$\lim_{t \to 2} e^{t-2} = 1$$

$$\lim_{t \to 2} \frac{\ln(t-1)}{t^2-1} = 0$$

$$\lim_{t \to 2} \frac{\ln(t-1)}{t^2-1} = 0$$

 \vec{r} si es contínua en t=2 $\lim_{t\to 1} \vec{r}(t) = \vec{r}(2)$

■ Encuentre $\lim_{t\to 1} \vec{r}(t)$ analice el límite de cada función componente por separado.

$$f: \lim_{t \to 1} \frac{\tan 2\pi}{2} = \frac{0}{1}$$
$$g: \lim_{t \to 1} e^{t-2} = e^{-1}$$

 $h: \lim_{t \to 1} \frac{\ln(t-1)}{t^2-1} = \ \ \text{No existe, por } \ln(0) \text{ estar indefinido.}$

■ Analice si $\vec{r}(t)$ es contínua e t=1.

$$\lim_{t\to 1} \vec{r}(t) = \vec{r}(1)$$
 No es contínua en t=1, r(1) está indefinida

■ Agujero $\vec{s}(t) = \left\langle \frac{\tan \pi t}{t-1}, e^{t-2}, \frac{\ln(2t-1)}{t^2-1} \right\rangle$ No es contínua en t=1, pero su límite existe.

$$\lim_{t \to 1} \frac{\tan \pi t}{t - 1} \underbrace{= \lim_{t \to 1} \frac{\pi \sec^2 \pi t}{1}}_{LH} = \frac{\pi}{(\cos \pi)^2} = \pi$$

$$\lim_{t \to 1} e^{t - 2} = e^{-1} = \frac{1}{e}$$

$$\lim_{t \to 1} \frac{\ln(2t - 1)}{t^2 - 1} \underbrace{= \lim_{0 \to 1} \frac{\frac{2}{2t - 1}}{2t}}_{= \lim_{t \to 1} \frac{2}{2t(2t - 1)}} = \frac{1}{1(2 - 1)} = 1$$

$$\therefore \lim_{t \to 1} \left\langle \pi, \frac{1}{e}, 1 \right\rangle \quad \text{es un agujero } \vec{s}(1) \text{ está indefinido}$$

5.3. Curvas en el espacio

$$x = f(t)$$
$$y = g(t)$$
$$z = h(t)$$

Figura 5.1: Curvas paramétricas en el espacio

5.3.1. Espirales

• Grafique la curva $\vec{r}(t)$:

$$\vec{r}(t) = \underbrace{2\hat{i}\sin(t)}_{x} + \underbrace{2\hat{j}\cos(t)}_{y} + \underbrace{\hat{k}\frac{t}{\pi}}_{z}$$

$$t \quad x \quad y \quad z$$

$$0 \quad 0 \quad 2 \quad 0,5$$

$$\frac{\pi}{2} \quad 2 \quad 0 \quad 0,5$$

$$\pi \quad 0 \quad -2 \quad 1$$

$$\frac{3\pi}{2} \quad 2 \quad 0 \quad 1,5$$

$$2\pi \quad 0 \quad 2 \quad 2$$

Figura 5.2: Curva paramétrica

■ Grafique:

$$\vec{r}(t) = \langle \sin \pi t, t, \cos \pi t \rangle$$
 Graficar la circumferencia $x^2 + z^2 = 1, y = 0$
$$\vec{r}(0) = \langle 0, 0, 1 \rangle \quad \text{El vector que nos servirá para delimitar la gráfica del espiral}$$
 Por ejemplo: $\vec{s}(t) = \langle \sin t, t^2, \cos t \rangle$

Clase - 2020-02-06

6.1. 13.2 Cálculo con funciones vectoriales, pg.55

Derivadas:

$$\vec{r}'(t)$$
 Respecto a t

■ Integrales:

$$\int \vec{r}'(t)dt$$
 Respecto a t

6.1.1. Derivadas

$$\vec{r}'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h}$$

ullet Como la fucnión $\vec{r}(t)$ está definida por tres funciones componentes se puede hacer:

$$\vec{r}'(t) = \lim_{h \to 0} \left\langle \underbrace{\lim_{h \to 0} \frac{f(t+h) - f(t)}{h}}_{f'(t)}, \underbrace{\lim_{h \to 0} \frac{g(t+h) - g(t)}{h}}_{g'(t)}, \underbrace{\lim_{h \to 0} \frac{h(t+h) - h(t)}{h}}_{h('t)} \right\rangle$$

■ Derivada entonces es :

$$\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

6.1.2. Integrales

■ Integral:

$$\int \vec{r}(t)dt = \int (f\hat{i} + g\hat{j} + h\hat{k})dt$$
$$\hat{i} \int fdt + \hat{j} \int gdt + \hat{k} \int hdt$$

Integrar la función componente.

6.2. Ejercicios

1. Encuentre la 1era y segunda derivada de las siguientes funciones:

$$\vec{r}(t) = \left\langle \sin(4t), t^2, \ln(\sin(t)) \right\rangle$$
$$\vec{r}'(t) = \left\langle 4\cos(4t), 2t, \frac{\cos(t)}{\sin(t)} \right\rangle$$
$$\vec{r}'(t) = \left\langle 4\cos(4t), 2t, \cot(t) \right\rangle$$

$$\vec{r}''(t) = \langle f''(t), g''(t), h''(t) \rangle$$

$$\vec{r}''(t) = \langle -16\sin(4t), 2, -\csc^2(t) \rangle$$

2. Derive: $\vec{s}(t) = \hat{i} \tan(4t) + hat j \ln(4t+1) + \hat{k}(5-2t)^{\frac{1}{2}}$

$$\vec{s}''(t) = 4\hat{i}(\sec(4t))^2 + \hat{j}4(4t+1)^{-1} - \hat{k}(5-2t)^{-\frac{1}{2}}$$

$$\vec{s}'''(t) = 8\hat{i} \times \sec(4t) \times \sec(4t) \times \tan(4t) \times 4 - 16\hat{j}(4t-1)^{-2} - \frac{\hat{k}}{2}(5-2t)^{-\frac{3}{2}} \times (-2)$$

$$\vec{s}'''(t) = 32\hat{i} \times \sec^2(4t) \times \tan(4t) - 16\hat{j}(4t-1)^{-2} - \frac{\hat{k}}{2}(5-2t)^{-\frac{3}{2}} \times (-2)$$

6.3. Recordatorios & rectas tangentes de funciones vectoriales

- Recordar lo siguiente: f'(a) es igual a la pendiente de la drecta tangeente a f(x) en x = a.
- Recordar lo siguiente: La recta tangente.

$$L_1: y = f(a) + f'(a)(x - a)$$
 Ec. Recta Tangente

■ Con una función vectorial:

$$\vec{r}=\langle f,g,h\rangle\,, \qquad x=f(t),\,y=g(t),\,z=h(t)$$
 Hay ecuaciones paramétricas para cada variable:
$$\vec{r}'(a)=\langle f'(a),g'(a),h'(a)\rangle$$

Vector de pendientes de rectas tangentes a la curva $\vec{r}(t)$.

- La derivada de una función vectorial se le da elnombre de "vector tangente" $\vec{r}(t) : \vec{r}'(a)$.
- Recta tangente: es ahora una función vectorial.

$$\vec{r}(t) = \vec{r}(a) + \vec{r}'(a)t$$

■ Ecs. Paramétricas:

$$x = f(a) + f'(a)t$$

$$y = g(a) + g'(a)t$$

$$z = h(a) + h'(t)t$$

- Vector tangente: r'(a) en t = a
- \blacksquare Vector tangente unitario: $\frac{r'(a)}{|r'(a)|} = \vec{T}(a)$

6.4. Ejercicios

■ Encuentre las ecs. paramétricas de la recta tangente a la curva : $s(t) = \langle 2\cos(t), 2\sin(t), 4\cos(2t) \rangle$ en el punto $(\sqrt{3}, 1, 2)$:

Recta tangente:
$$\vec{r}_T(t) = \vec{r}(a) + t\vec{r}'(a)$$

$$\vec{r}_T(a) = \left\langle \sqrt{3}, 1, 2 \right\rangle$$
Derivada: $\vec{r}'(t) = \langle -2\sin(t), 2\cos(t), -8\sin(2t) \rangle$

Nos preguntamos: ¿Cómo encuentro "a" ? igualamos $r(t) = \left\langle \sqrt{3}, 1, 2 \right\rangle$

$$2\cos(t) = \sqrt{3} \implies \cos(t) = \frac{\sqrt{3}}{2} \implies t = \frac{\pi}{6}$$

$$2\sin(t) = 1 \implies 2\sin(\frac{\pi}{6}) = 2 \times \frac{1}{2} = 1$$

$$4\cos(2t) = 2 \implies 4\cos(\frac{\pi}{3}) = 4 \times \frac{1}{2} = 2$$
Vector tangente: $\vec{r}'(\frac{\pi}{6}) = \left\langle -2\sin(\frac{\pi}{6}), 2\cos(\frac{\pi}{6}), -8\sin(\frac{\pi}{3}) \right\rangle$

$$\vec{r}_T(t) = \left\langle \sqrt{3}, 1, 2 \right\rangle + t \left\langle -1, \sqrt{3}, -4\sqrt{3} \right\rangle$$

$$\therefore$$

$$x = \sqrt{3} - 1t$$

$$y = 1 + \sqrt{3}t$$

$$z = 2 - 4\sqrt{3}t$$

Clase - 2020-02-11

7.1. 13.2 Cálculo de funciones vectoriales

■ Derivadas:

$$\vec{r}^{\,\prime}(t) = \langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t) \rangle$$

■ Vector Tangente:

$$\vec{r}'(t)$$

■ Tangente unitario:

$$\vec{T}(t) = \frac{r'(t)}{|r'(t)|}$$

■ Integrales indefinidas:

$$\int \langle f, g, h \rangle dt = \langle F + C_1, G + C_2, H + C_3 \rangle$$

$$\int \vec{r}(t) dt = \vec{R}(t) + \vec{C}$$

$$\vec{R} \quad \text{vector de Antiderivadas}$$

$$\vec{C} \quad \text{Vector de constantes}$$

■ Integrales definidas:

$$\int_a^b \vec{r}(t)dt = \hat{i} \int_a^b f(t)dt + \hat{j} \int_a^b g(t)dt + \hat{k} \int_a^b h(t)dt$$

7.2. Ejercicios de integración

1.
$$\int_0^1 \left[\frac{4}{1+t^2} \hat{i} + sec^2(\frac{\pi t}{4}) \right] dt$$
:

$$4\hat{i} \times \tan^{-1}(t) \Big|_{0}^{1} + \hat{k} \times \tan(\frac{\pi t}{4}) \Big|_{0}^{1}$$
$$I_{i} = 4\hat{i}\frac{\pi}{4} + \hat{k}\frac{4}{\pi} = pi\hat{i} + \hat{k}\frac{4}{\pi} = \left\langle \pi, 0, \frac{4}{\pi} \right\rangle$$

2.
$$\int \left\langle te^{t^2}, te^t, \frac{q}{\sqrt{1-t^2}} \right\rangle dt$$
:

$$x: \int e^{t^2} t \, dt = \frac{1}{2} \int e^u du = \frac{1}{2} e^{t^2} + C_1$$

$$u = t^2$$

$$du = 2t dt$$

$$y: \int t e^t dt = t e^t - \int t e^t - e^t + C_2$$

$$u = t \quad dv = e^t dt : \int \frac{1}{1 - t^2} dt = \frac{\cos(\theta)}{\sin(\theta)} d\theta = \int d\theta = \underbrace{\theta + C_3}_{\sin^{-1}(t) + C_3} = \sin^{-1}(t) + C_3$$

$$\therefore \int \left\langle t e^{t^2}, t e^t, \frac{1}{\sqrt{1 - t^2}} \right\rangle dt = \frac{1}{2} e^{t^2} + C_1, t e^t - e^t + C_2, \sin^1(t) + C_3$$

7.3. Movimiento en el espacio

Dado el vector posición $\vec{r}(t)$ de un objeto:

Vector velocidad:

$$\vec{c}(t) = \vec{r}'(t)$$

■ Vector aceleración:

$$\vec{a}(t) = \vec{v}(t) = \vec{r}''(t)$$

■ Rapidez:

$$|\vec{v}(t)|$$

■ Distancia:

$$|\vec{r}(t)|$$

Dado el vector de aceleración $\vec{a}(t)$:

• Velocidad:

$$\vec{v}(t) = \int \vec{a}(t)dt + \vec{C}_1$$

Desplazamiento o posición:

$$\vec{r}(t) = \int \vec{v}(t)dt + C_2$$

7.3.1. Ejercicios

1. Encuentre la velocidad, aceleración y rapidez dada la posición del objeto:

$$\vec{r}(t) = \hat{i}t + 2\hat{j}\cosh(4t) + 3\hat{k}\sinh(3t)$$
 Encontramos velocidad:
$$\vec{r}'(t) = \vec{v}(t) = \hat{i} + 8\hat{j}\sinh(4t) + 9\hat{k}\cosh(3t)$$
 Encontramos la aceleración:
$$\vec{r}''(a) = \vec{a}(t) + 32\hat{j}\cosh(4t) + 27\hat{k}\sinh(3t)$$
 Encontramos la rapidez:
$$|\vec{v}(t)| = \sqrt{1 + 64\sinh(4t) + 81\sinh^2(3t)}$$
 Encontramos la distancia:
$$|\vec{r}(t)| = \sqrt{t^2 + 4\cosh^2(4t) + 9\sinh^2(3t)}$$

- # Tarea # 6: Integrales func. vectoriales 14.1 Funciones en varias variables.
- # Tarea opcional consolidado: 12,13,14.1
- 2. Encuentre la velocidad y posición del objeto dada $\vec{a}(t)$ y las condiciones iniciales:

$$\vec{a}(t) = 6t\hat{i} + \hat{j}\cos(t) - \hat{k}\sin(2t), \quad \vec{v}(0) = \frac{\hat{i} + \hat{k}}{\vec{r}(0)} = 2\hat{j} - \hat{k}$$

$$\text{Velocidad:} \quad \int \vec{a}(t)dt$$

$$\vec{v}(t) = \left\langle 3t^2 + C_1, \sin(t) + C_2, \frac{1}{2}\cos(2t) + C_3 \right\rangle$$

$$\text{Encuentro} \quad \vec{v}(0) = \left\langle C_1, C_2, \frac{1}{2} + C_3 \right\rangle = \langle 1, 0, 1 \rangle$$

$$C_1 = 1,$$

$$C_2 = 0,$$

$$\frac{1}{2} + C_3 = 1 \implies C_3 = \frac{1}{2}$$

$$\text{Posición:} \quad \int \vec{v}(t)dt$$

$$\vec{r}(t) \left\langle t^3 + t + d_1, -\cos(t) + d_2, \frac{1}{4}\sin(2t) + \frac{t}{2} + d_3 \right\rangle$$

$$\vec{r}(0) = \left\langle \underbrace{d_1, -1 + d_2, d_3}_{d_1 = 0} \right\rangle$$

$$-1 + d_2 = 2 \implies d_2 = 3$$

$$d_3 = -1$$

$$\text{Posición:} \quad \vec{r}(t) = \left\langle t^3 + t, 3 - \cos(t), \frac{1}{4}\sin(2t) + \frac{t}{2} - 1 \right\rangle$$

3. $\vec{a}(t) = 8t\hat{i} + \sinh(t)\hat{j} - \hat{k}e^{\frac{t}{2}}$:

$$\underbrace{\vec{v}(0) = \vec{0}}_{\text{Está en reposo}} \quad \vec{s}(0) = 2\hat{i} + \hat{j} - 3\hat{k}$$
Velocidad:
$$\vec{v}(t) = \left\langle 4t^2 + C_1, \cosh(t) + C_2, -2e^{\frac{t}{2}} + C_3 \right\rangle$$

$$\vec{v}(0) = \left\langle \underbrace{C_1, 1 + C_2, -2 + C_3}_{C_1 = 0,} \right\rangle = \left\langle 0, 0, 0 \right\rangle$$

$$\underbrace{C_1 = 0,}_{C_2 = -1} \\
C_3 = 2$$

$$\vec{v}(t) = \left\langle 4t^2, \cosh(t) - 1, -2e^{\frac{t}{2} + 2} \right\rangle$$
Posición:
$$\vec{r}(t) = \left\langle \frac{4}{3}t^3 + C_1, \sinh(t) - t + C_2, -4e^{\frac{t}{2}} + 2t + C_3 \right\rangle$$

$$\vec{r}(0) = \left\langle C_1, C_2, -4 + C_3 \right\rangle = \underbrace{\left\langle 2, 1, -3 \right\rangle}_{C_2 = 1}$$

$$C_3 = -3 + 4 = 1$$

$$\vec{r}(t) = \left\langle \frac{4}{3}t^3 + 2, \sinh(t) - t + 1, -4e^{\frac{t}{2}} + 2t + 1 \right\rangle$$

Se evalúa el vector en 0 por que se quiere saber el valor de las constantes cuando están en reposo.

Por defecto siempre evaluar en 0 para encontrar $C_1, C_2 \& C_3$.

7.4. 13.3 Longitud de arco

10.4 Ecs. Paramétricas de una curva en el plano de dos dimensiones era:

$$x = f(t)$$
$$y = g(t)$$

■ La longitud de arco:

$$L = \int_{a}^{b} \sqrt{(x')^{2} + (y')^{2} + (z')^{2}} dt$$

■ Función vectorial:

$$\vec{r} = \langle f, g, h \rangle = \langle x, y, z \rangle$$

■ Derivada de función vectorial:

$$\vec{r}' = \langle x', y', z' \rangle$$

■ Magnitud:

$$|\vec{r}'| = \sqrt{(x')^2 + (y')^2 + (z')^2}$$

■ En general:

$$L = \int_a^b = |\vec{r}'(t)| dt$$

7.5. Ejercicios

Encuentre la longitud de las siguientes curvas:

1.
$$\vec{r}(t) = \langle \cos(t), \sin(t), \ln(\cos) \rangle$$
 en $0 \le t \le \frac{\pi}{4}$

$$L = \int_0^{\frac{\pi}{4}} |\vec{r}'(t)| dt$$

$$\vec{r}'(t) = \langle -\sin(t), \cos(t), \tan^2(t) \rangle$$

$$|\vec{r}'(t)| = \sqrt{\sin^2(t) + \cos^2(t) + \tan^2(t)} = \sqrt{1 + \tan^2(t)} = \sec^2(t) = \sec^2(t)$$

$$L = \int_0^{\frac{\pi}{4}} \sec(t) dt = \ln|\sec(t) + \tan(t)| \Big|_0^{\frac{\pi}{4}} = \ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)|$$

$$L = \ln\left|\frac{2}{\sqrt{2}} + 1\right| - \ln|1| = \ln\left|\sqrt{2} + 1\right|$$

2.
$$\vec{r}(t) = \left\langle 12t, 8t^{\frac{3}{2}}, 3t^2 \right\rangle$$
 en $0 \le t \le 1$:

$$\vec{r}'(t) = \left\langle 12, 12t^{\frac{1}{2}}, 6t \right\rangle = 6 \left\langle 2, 2t^{\frac{1}{2}}, t \right\rangle$$
$$|\vec{r}'(t)| = 6\sqrt{4 + 4t + t^2} = 6\sqrt{(t+2)^2} = 6(t+2)$$
$$L = \int_0^1 (6t + 12)dt = 3t^2 + 12t \Big|_0^1 = 3 + 12 = 15$$

Clase - 2020-02-11

8.1. Resolución de corto

1. Analice la función $r = \langle 3e^{-t}, ln(2t^2 - 1), tan(2\pi) \rangle$ en t = 1:

$$\lim_{t \to 1} \vec{r}(t) = \left\langle \lim_{t \to 1} 3e^{-t}, \lim_{t \to 1} \ln(2t^2 - 1), \lim_{t \to 1} \tan(2\pi) \right\rangle$$
$$\vec{r} = \left\langle 3e^{-1}, \ln(1), \tan(2\pi) \right\rangle = \left\langle 3e^{-1}, 0, 0 \right\rangle$$
$$\therefore \quad \text{r es contínua en } t = 1$$

Si la pregunta hubiese sido en cuándo se indefine, se saca el dominio de cada función.

2. Encuentre la ec. de la recta tatente a $r(t) = \langle te^{t-1}, \frac{8}{\pi} \arctan(t), 2 \ln(t) \rangle$ en t = 1.

$$\vec{r}(0) = \left\langle 1 \times e^0, \frac{8}{\pi} \arctan(1), 2ln(0) \right\rangle = \langle 1, 2, 0 \rangle$$

Terminar de copiar

8.2. 14.1 Funciones de varias variables

- Cuando teníamos sólo una función de una variable no había tanta complicación, las gráficas eran curvas en el plano. Cuando empezaba y terminaba la curva en x nos daba el dominio. Había una variable independiente x y la variable dependiente y, los dominios eran intervalos, y cada x sólo podía tener un sólo valor de y.
- En funciones de 2 variables se va a describir como:

$$z = f(x, y)$$
 Dos variables independientes x,y
Variable dependiente z

• Entonces f es una regla que asigna a cada punto (x, y) a lo sumo un valor de z.

$$f: \underbrace{\mathbb{R}^2}_{\text{Dominio}} \to \underbrace{\mathbb{R}}_{\text{Rango}}$$

- Estamos pasando de una región por medio de una función z llego a tener f(x, y) en la dimensión correspondiente.
- Los dominios en estas funciones se vuelven superficies.
- El dominio de una función de dos variables: un conjunto que consiste de todos los puntos o pares ordenados (x,y) para los cuales f(x,y) para los cuales f(x,y) está definida.

 $\mathbb D$: En una dimensión: Todos los números x para los cuales $\mathbf f(\mathbf x)$ está definida

- Evite la división por cero.
- Raíces pares de números negativos.
- Logaritmos de números negativos o cero.
- \blacksquare El dominio de f en una función de dos variables es una región:
 - Las regiones que estén sombreadas son partes del dominio.
 - # Para graficar funciones de dos variables son más fáciles de graficar que de una sola variable.

8.3. Ejercicios

Encuentre y bosqueje el dominio de las sigs. funciones.

Sombree la región d
que es parte del $\mathbb D$ y utilice líneas discontínuas para de
notar a curvas que no son parte del $\mathbb D$

1.
$$c(x,y) = 10x + 20y$$
:

Nunca se indefine.

$$\mathbb{D}: \underbrace{(-\infty, \infty)}_{x} \underset{\text{Producto cartesiano}}{\times} \underbrace{(-\infty, \infty)}_{y} = \mathbb{R}^{2}$$

- # Producto cartesiano denota todas las combinaciones posibles en un conjunto de n elementos.
- # Explicaciones de productos cartesianos:

$$\mathbb{R} \cup \mathbb{R} = \mathbb{R} \quad \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$

Definición de producto cartesiano:

$$x \times y = \{(x, y) \text{ tal que } x \in X, y \in Y\}$$

Producto cartesiano vs. unión:

$$x \times y = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}\$$

 $x \cup y = \{(1), (2), (3)\}\$

2.
$$z = \frac{8}{x^2 - y^2}$$
:

Definida si
$$x^2 \neq y^2$$

$$\mathbb{R}^2 - \{x^2 \neq y^2\}$$

$$y \neq \sqrt{x^2}$$

$$y \neq \pm x$$

3.
$$R(x,y) = \sqrt{9 - x^2 - y^2}$$
:

$$\begin{array}{ll} 9-x^2-y^2 \geq 0 \\ \text{Definida} & 9 \geq x^2+y^2 \\ \mathbb{D}: x^2+y^2 \neq 9 \end{array}$$

Círculo de radio 3 centrado en el orígen

$$\mathbb{D} = \{(x, y) \text{ tal que } x^2 + y^2 \le 9\}$$

4.
$$Q(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 9}}$$
:

$$\mathbb{D}: \begin{array}{l} x^2 + y^2 > 0 \\ x^2 + y^2 > 9 \end{array}$$

 \therefore Afuera del círculo o disco de radio 3

5.
$$z = \frac{(x+4)}{(y-2)(x-4)(y+2)}$$
:

Definida si :
$$y \neq \pm 2, x \neq 4$$

 \mathbb{D} : $\mathbb{R}^2 - \{y \neq \pm 2, x \neq 4\}$

6.
$$h(x,y) = \ln(2 - yx)$$
:

8.3.1. Gráfica de z = f(x, y)

• Gráfica de z = f(x, y): Son superficies y consisten de todas las triplas ordenadas (x, y, z) donde z.

8.4. Curva de nivel o traza horizontal

 \blacksquare En f(x,y)=k k es una constante, rebane la superficie con los planos horizontales z=k y grafique cada curva en el plano.