

Sucesiones Empezando a entender el concepto de límite

Unidad 2

Al asignar signa un número de orden a cada elemento del conjunto que está ordenando tenemos en general:

Número de orden \rightarrow 1 2 3 4 n (dominio) \downarrow \downarrow \downarrow \downarrow \downarrow \cdots \downarrow

Qué hay en cada \rightarrow a(1) a(2) a(3) a(4) a(n) lugar del orden (imagen)

Definición:

Se define como **sucesión** de números reales a una **función** con dominio en el conjunto de los números naturales e imagen en algún subconjunto de los números reales:

$$a: N \to R$$
 $n \to a(n)$

Ejemplo

 $a(n) = n^2$ Función que a cada número natural le asigna su cuadrado

Número de orden ightarrow 1 2 3 4 ... n $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ Qué hay en cada ightarrow 1 4 9 16 n^2

¿En qué se diferencia $a(n) = n^2$ de esta función? $f(x) = x^2$

Análisis del comportamiento de algunas sucesiones

Graficar las siguientes sucesiones, analizar las características (tendencias) de las gráficas y agruparlas según algún criterio elegido

$$a(n) = n^2$$

$$b(n) = (-1)^n n$$

$$a(n) = n^2$$
 $b(n) = (-1)^n n^2$ $c(n) = \frac{2n-2}{n+1}$

$$d(n) = -2n + 6$$

$$e(n) = (-1)^r$$

$$d(n) = -2n + 6$$
 $e(n) = (-1)^n$ $f(n) = \left(\frac{-1}{2}\right)^n$

$$g(n) = sen \, n \frac{\pi}{4}$$

$$h(n) = 4 + \frac{1}{n}$$

$$g(n) = \operatorname{sen} n \frac{\pi}{4} \qquad h(n) = 4 + \frac{1}{n} \qquad i(n) = \begin{cases} 20 \sin n \operatorname{es par} \\ n^2 \sin n \operatorname{es impar} \end{cases}$$

¿Cómo hacemos esto?

Sucesiones Usando Excel para graficar

$$a(n) = n^{2} = A2^{2}$$

$$b(n) = (-1)^{n}n^{2} = ((-1)^{n}A2)^{*}A2^{2}$$

$$C(n) = \frac{2n-2}{n+1} = (2^{*}A2-2)/(A2+1)$$

$$C(n) = (-1)^{n} = (-2)^{*}A2+6$$

$$C(n) = (-1)^{n} = (-1)^{n}A2$$

$$C(n) = (-1)^{n$$

n	n ²	$(-1)^n n^2$	$\frac{2n-2}{n+1}$	-2 <i>n</i> + 6	$(-1)^n$	$\left(\frac{-1}{2}\right)^n$	$sen\left(n\frac{\pi}{4}\right)$	$4 + \frac{1}{n}$	$\begin{cases} 20 \ n \ par \\ n^2 \ n \ imp \end{cases}$
1	1	-1	0	4	-1	-0,5	0,707	5	1
2	4	4	0,67	2	1	0,25	1	4,5	20
3	9	-9	1	0	-1	-0,125	0,7071	4,333	9
4	16	16	1,2	-2	1	0,0625	0	4,25	20
5	25	-25	1,33	-4	-1	-0,031	-0,7071	4,2	25
6	36	36	1,43	-6	1	0,015	-1	4,167	20
7	49	-49	1,5	-8	-1	-0,008	-0,7071	4,14	49
8	64	64	1,56	-10	1	0,004	0	4,125	20
9	81	-81	1,6	-12	-1	-0,002	0,7071	4,11	81
10	100	100	1,64	-14	1	0,001	1	4,1	20

Sucesiones convergentes

Distancia= 2 u

En cada paso el punto verde se acerca hacia el punto rojo la mitad de la distancia que lo separa de punto medio

Paso 1
Distancia= 1,5 u
Paso 2
Distancia= 1,25 u
Paso 3
Distancia= 1,125u
Paso 4
Distancia= 1,0625u

El punto verde ¿está a una distancia cada vez menor del punto rojo?
¿Es eso lo que queremos decir? con "cada vez más cerca?

 $c(n) = \frac{2n-2}{n+1}$ Se acerca cada vez más a... L = 2

Nos interesa ver qué le pasa a la distancia |c(n) – 2|

 $f(n) = \left(\frac{-1}{2}\right)^n$ Se acerca cada vez más a... L = 0

Nos interesa ver qué le pasa a la distancia |f(n) - 0|

 $h(n) = 4 + \frac{1}{n}$ Se acerca cada vez más a... L = 4

Nos interesa ver qué le pasa a la distancia |h(n) – 4|

n	2n - 2		<i>(</i>)	$=\frac{2n-1}{n+1}$	- 2		Se ace	erca	cada v	ez má	s a	
"	n+1	C	(n)	$={n+}$	1				L = 3	2		
1	0			-								
2	0,67		n	$\left(\frac{-1}{2}\right)^n$								
3	1				f(n) =	$=\left(\frac{-1}{2}\right)^{-1}$) ⁿ		n	$4 + \frac{1}{n}$	
4	1,2		1	-0,5	`		(2)	,				
5	1,33		2	0,25	Se a	cer	ca cad	la		1	5	
6			3	-0,125	vez	má	s a			2	4,5	
7	1,43		4	0,0625			= 0			3	4,333	
•	1,5		5	-0,031		L	- 0			7	4,14	
8	1,56		6	0,015				1		8	4,125	
9	1,6		7		h((n)	= 4 +	_		9	4,11	1
10	1,64		/	-0,008		` '		n		-		
			8	0,004	(د م:	cerca	rada		10	4,1	
50	1,921		9	-0,002			más a			50	4.02	
100	1,96		10	0,001						100	4.01	
1000	1,996	1	100	8. 10-31			L =	O		1000	4,001	
												1

 $c(n) = \frac{2n-2}{n+1}$ |c(n) - 2| 0,6667 1,2 1,333333333 ,66666666 1,96039604 1,960784314 1,961165049 1.961538462 0.038461538 104 1,961904762 105 1,962264151 1000 1,996003996 1001 1,996007984 1002 1,996011964 1004 1,9960199 1005 1,996023857 10002 1,99960012 10003 1,99960016 10004 1,9996002 0,0003998 10005 1,99960024 0,00039976

$$c(n) = \frac{2n-2}{n+1}$$

Se acerca cada vez más a L = 2

La distancia entre la imagen de cada número n y el número 2 es cada vez más cercana a 0

|c(n) - 2 | tiende a 0

 $|c(n)-2| \rightarrow 0$

ī	n	$f(n) = \left(\frac{-1}{2}\right)^n$	f(n) - 0
	1	-0.5	0.5
	2	0,25	0,25
	3	-0,125	0,125
	4	0,0625	0,0625
	5	-0,03125	0,03125
	100	7,88861E-31	7,88861E-31
	101	-3,9443E-31	3,9443E-31
	102	1,97215E-31	1,97215E-31
	103	-9,8607E-32	9,86076E-32
	104	4,93038E-32	4,93038E-32
	105	-2,4651E-32	2,46519E-32
	1000	9,3326E-302	9,3326E-302
	1001	-4,666E-302	4,6663E-302
	1002	2,3332E-302	2,3332E-302
	1003	-1,166E-302	1,1666E-302
	1004	5,8329E-303	5,8329E-303
	1005	-2,916E-303	2,9164E-303
	10001	0	0
	10002	0	0
	10003	0	0
	10004	0	0
	10005	0	0

En resumen...

Para cada distancia que elijamos $\epsilon > 0$ tiene que ser posible determinar un número del dominio de la función tal que, con tal de tomar n mayor que ese número se verifica que:

la distancia entre las imágenes y el número $m{L}$ es menor que ϵ

Para cada $\epsilon>0$, tiene que ser posible determinar un número N_ϵ tal que, si $n>N_\epsilon$ se verifica | a(n)-L | $<\epsilon$

En este caso, la sucesión se dice **CONVERGENTE**

DE LA CARACTERIZACIÓN A LA DEFINICIÓN

La idea...

"Una sucesión a(n) es convergente si a medida que la variable (n) crece, la imagen se acerca cada vez más a un valor determinado, L"

La definición

"Una sucesión a(n) converge a L si para todo ε > 0 es posible encontrar un valor $N_{\varepsilon} \in \mathbb{N}$ de manera que para todo n > N_{ε} , la distancia entre el valor de la sucesión evaluada en n y el número L es menor que ε . Esto es $\lim_{n \to \infty} a(n) = L$.

O, simbólicamente,

 $\lim_{n\to\infty}a(n)=L \iff \forall \varepsilon>0, \exists\ N_\varepsilon\in N\ /n>N_\varepsilon \Rightarrow |a(n)-L|<\varepsilon$

Sucesiones convergentes

Desmenuzando la definición

Sucesiones divergentes

Criterios de agrupación

- Caso 1: "A medida que n aumenta las imágenes son cada vez más grandes"
- Caso 2: "A medida que n aumenta las imágenes son cada vez "más grandes" pero negativas"
- Caso 3: "A medida que n aumenta las imágenes son cada vez "más grandes" alternando positivas y negativas"
- Caso 2 = Caso 1 = Caso 3 si se consideran en valor absoluto

¿Qué significa más precisamente "crecen infinitamente"?

n	$c(n) = \frac{2n-2}{n+1}$
	$c(n) = \frac{2n-2}{n+1}$
1	U
2	0,6667
3	1
4	1,2
5	1,333333333
100	1,96039604
101	1,960784314
102	1,961165049
103	1,961538462
104	1,961904762
105	1,962264151
1000	1,996003996
1001	1,996007984
1002	1,996011964
1003	1,996015936
1004	1,9960199
1005	1,996023857
10001	1,99960008
10002	1,99960012
10003	1,99960016
10004	1,9996002
10005	1,99960024

$$c(n) = \frac{2n-2}{n+1}$$

¿Las imágenes cada vez más grandes...?

iiSI!!

¿Eso es lo que queremos decir? (recordar que esta sucesión es convergente)

Tener imágenes cada vez más grandes no significa "Crecer infinitamente"

n	$a(n) = n^2$	
1	1	$a(n) = n^2$
2	4	w()
3	9	
4	16	Puede hacerse a(n) > 2500?
5	25	1 dede 11dee13e d(11) > 2500:
50	2500	
51	2601	Basta con tomar n > 50
52	2704	basia con tomai n > 30
53	2809	
54	2916	Puede hacerse a(n) > 10000
55	3025	()
100	10000	
101	10201	Basta con tomar n > 100
102	10404	
103	10609	
104	10816	Puede hacerse c(n) > cualquier cosa, por
105	11025	. ,
1000	1000000	grande que sea?
1001	1002001	
1002	1004004	Dark and town a confident and a
1003	1006009	Basta con tomar n suficientemente grande
1004	1008016	

DE LA CARACTERIZACIÓN A LA DEFINICIÓN

La idea...

"Una sucesión a(n) es divergente si a medida que la variable (n) crece, la imagen crece, en valor absoluto, infinitamente "

La definición

"Una sucesión a(n) diverge si para todo $\mathit{K} > 0$ es posible encontrar un valor $\mathit{N}_{\mathit{K}} \in N$ de manera que para todo $\mathit{n} > \mathit{N}_{\mathit{K}}$, las imágenes de la sucesión superan en valor absoluto a K

O, simbólicamente,

$$\lim_{\mathsf{n}\to\infty}\mathsf{a}(\mathsf{n})\ =\infty\ \Leftrightarrow \forall K>0, \exists\ N_k\in N\ /\ n>N\Rightarrow |a(n)|>K$$

RESUMIENDO....

Convergentes

acotadas

a medida que la variable crece las imágenes se aproximan infinitamente a un número L

$$\underset{n\to\infty}{\text{Lim a(n)}} = L$$

Para todo ε > 0 es posible encontrar un valor $\mathbf{N}_{\varepsilon} \in N$ tal que para todo \mathbf{n} > \mathbf{N}_{ε} , $|a(\mathbf{n}) - \mathbf{L}| < \varepsilon$

Divergentes

no acotadas

a medida que la variable crece las imágenes se alejan infinitamente del 0

$$\underset{n\to\infty}{\text{Lim a(n)}} = \infty$$

Para todo K > 0 es posible encontrar un valor $N_K \in \mathbb{N}$ tal que para todo $n > N_K$, |a(n)| > K