(முழுப் பதிப்புரிமையுடையது / All Rights Reserved)

ந்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் சங்கம் வவுலியா மாவட்டர் அனைத்துப் பல்கலைக்கழக மாணவர் அபிவிருத்திச் சங்கம் வவுலியாரு மல்கலைக்கழக மாணவர் அபிவிரு Association Audional Control of Association Audional Control of Association Audional Control of Association Audional Control of Association Advanced மாணவர் அபிவிரு மக்கலக் கழக மாணவர் அபில் மக்கலக் கழக மாணவர் அபிவிருந்திச் சங்கம் வவுலியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மாணவர் அபி

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Pilot Examination, 2024

இரசாயனவியல் I Chemistry I

02 T I

இரண்டு மணித்தியாலயம் Two hours

்கவனிக்க :

- * இவ்வினாத்தாள் 08 பக்கங்களைக் கொண்டது.
- * எல்லா வினாக்களுக்கும் விடை அளிக்குக.
- * ஆவர்த்தன அட்டவணை வழங்கப்பட்டுள்ளது.
- * கணிப்பானைப் பயன்படுத்தக்கூடாது.
- * விடைத்தாளில் தரப்பட்டுள்ள இடத்தில் உமது சுட்டெண்ணை எழுதுக.
- * 1 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (1),(2),(3),(4),(5) என இலக்கமிடப்பட்ட விடைகளில் **சரியான** அல்லது **மிகப்பொருத்தமான** விடையைத் தெரிந்தெடுத்து, **அதனைக் குறித்து நிற்கும் இலக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய** விடைத்தாளில் **புள்ளடி (×)** இடுக.

அகில வாயு மாறிலி $R=8.314\,J\,K^{-1}\,mol^{-1}$ அவகாதிரோ மாறிலி $N_A=6.022\times 10^{23}\,mol^{-1}$ பிளாங்கின் மாறிலி $h=6.626\times 10^{-34}\,J\,s$ ஒளியின் வேகம் $c=3\times 10^8\,m\,s^{-1}$

- 1. ஐதரசன் காலல் நிறமாலையில் நீலநிற ஒளியுடன் தொடர்புடைய ஒரு போட்டோனின் சக்தி 4.5×10⁻¹⁹J ஆகும். இந்நீல நிற ஒளியின் அலைநீளம்.
 - (1) 4.42×10^{-7} nm
- (2) 400 nm
- (3) 442 nm
- (4) 560 nm
- $(5) 4.42 \times 10^{-7} \, \text{nm}$
- 2. Cl அணுவிலுள்ள 3s ஒழுக்கிற்குரிய இலத்திரன் ஒன்று அதிக பட்சம் ஒத்திருப்பதும், அதிகபட்சம் வேறுபடுவதுமான சக்திச் சொட்டெண்களின் எண்ணிக்கைகள் முறையே
 - (1) 3.1
- (2) 2,3
- (3) 3.2
- (4) 2,2
- (5) 3,3

Q ÇOOH 3. **H-C-CH=CH- Ç-CH**₂ **-CH**₃ சேர்வை X இன் IUPAC பெயர் யாது? [X] **NH**₂

- (1) 3- amino-2-formylhex-4-en-3-oic acid
- (2) 4-formyl-2-amino-2-ethylpent-3-enoic acid
- (3) 2-amino-2-ethyl-4-formylbut-3-enoic acid
- (4) 2-amino-2-ethyl-5-oxopent-3-enoic acid
- (5) 2-ammine-2-ethyl-5-oxopent-3-eniocacid
- 4. Sc இன் மிக உறுதியான அயனின் வெளியோட்டு இலத்திரனொன்றிற்கு சாத்தியமல்லாத சக்திச்சொட்டெண் தொடை பின்வருவனவற்றுள் எது?
 - (1) (3,2,-1,+1/2)
- (2) (3,0,0,+1/2)

(3) (3,1,0,-1/2)

- (4) (3,1,-1,+1/2)
- (5) (3,0,0,-1/2)

- 5. சில சேர்வைகளின் மைய அணுவின் மின்னெதிரியல்பு வேறுபாடு தொடர்பான பின்வரும் சரியானது எது? கூற்றுக்களில்
 - $(1)\ NO_2$ ், NO_3 ் இல் N அணுவின் மின்னெதிரியல்பு வேறுபாட்டை N அணுவிலுள்ள ஏற்றமே பிரதானமாக தீர்மானிக்கின்றது.
 - $(2) CO_2, CO_3^{2-}$ இல் C அணுவின் மின்னெதிரியல்பு வேறுபாட்டை C அணுவின் கலப்பு நிலை வேறுபாடே பிரதானமாக தீர்மானிக்கின்றது.
 - (3) CF₄, CCl₄, CBr₄ இல் C அணுவின் மின்னெதிரியல்பு வேறுபாட்டை C அணுவின் ஒட்சியேற்றநிலை வேறுபாடே பிரதானமாக தீர்மானிக்கின்றது.
 - $(4) ClO_3^-, ClO_4^-$ இல் Cl அணுவின் மின்னெதிரியல்பு வேறுபாட்டை Cl அணுவின் கலப்பு நிலை வேறுபாடே பிரதானமாக தீர்மானிக்கின்றது.
 - $(5) \, {
 m NH_2}^+, {
 m NH_3}, {
 m NH_4}^+$ இல் ${
 m N}$ அணுவின் மின்னெதிரியல்பு வேறுபாட்டை ${
 m N}$ அணுவின் கலப்பு நிலை வேறுபாடே பிரதானமாக தீர்மானிக்கின்றது.
- 6. Li_3PO_4 ஆனது நீரில் அரிதிற்கரையும் ஒரு உப்பாகும். 25^0C இல் அகன் கரைகிறன் q moldm^{-3} ஆகும். கரைதிறன்பெருக்கம் K_{sp} ஆகும். பின்வரும் கோவைகளில் சரியானது?

 - (1) $K_{SP} = 9q^4$ (2) $K_{SP} = 27q^4$ (3) $K_{SP} = 3q^4$ (4) $K_{SP} = 81q^3$ (5) $K_{SP} = 27q^3$
- 7. ${\rm Fe^{2+}}$ ஐக் கொண்ட ஒரு கரைசலின் $50{\rm cm^3}$ மாதிரியானது அமில ஊடகத்தில் $0.02~{\rm moldm^{-3}}$ $K_2Cr_2O_7$ உடன் நியமிப்புச் செய்யப்பட்ட போது எல்லா Fe^{2+} உடனும் தாக்கம் புரியத் தேவைப்பட்ட $m K_2Cr_2O_7$ இன் கனவளவு $25cm^3$ ஆகும். இந்நியமிப்பு $0.02~moldm^{-3}~K_2Cr_2O_7$ இந்கு பதிலாக $x \mod m^{-3}$ $KMnO_4$ இனை பயன்படுத்தும் போது தேவைப்பட்ட கனவளவு $30 cm^3$ எனின் xஇன் பெறுமானம்?
 - (1) 2
- (2) 0.2
- (3) 0.04
- (4) 0.01
- (5) 0.02
- 8. மூன்றாம் ஆவர்த்தன மூலகங்கள், அவை உருவாக்கும் சேர்வைகள் தொடர்பான பின்வரும் கூற்றுக்களில் எது **தவறானது?**
 - (1) இவை உருவாக்கும் அதியுயர் ஒட்சியேற்ற நிலைக்குரிய ஒட்சைட்டுக்களின் அமிலச் சிறப்பியல்பு இடமிருந்து வலமாக ஆவர்த்தனத்தின் வழியே அதிகரிக்கிறது.
 - (2) P,S,Cl என்பன உருவாக்கும் ஒட்சியமிங்களில் அம்மூலகவணுக்கள் ${
 m sp}^3$ கலப்புநிலையில் காணப்படுகிறது.
 - (3) இம்மூலகங்களின் பங்கீட்டு வலுச்சேர்வைகளை உருவாக்கும் தன்மை ஆவர்த்தனம் வழியே இடமிருந்து வலமாக அதிகரிக்கிறது.
 - (4) இவற்றின் உறுதியான அயன்களைக் கருதுமிடத்து மிகக்குறைந்த, மிகக்கூடிய ஆரையை முறையே Al,Si என்பன கொண்டிருக்கும்.
 - (5) Na,Mg,Al ஆகியவற்றின் அயன்கள், குறித்தவொரு அன்னயன்களின் இலத்திரன் முகிலை முனைவாக்குவதற்கான திறன் Na,Mg,Al எனும் போக்கில் அதிகரிக்கிறது.
- 9. (A) C₆H₅OH B) CH₃CH₂OH C) CH₃COOH D) CH₃OH E) H₂O எனும் சேர்வைகளில் $\mathbf{O} - \mathbf{H}$ கூட்டத்திலுள்ள \mathbf{O} அணுவின் மின்னெதிரியல்பு அதிகரிக்கும் சரியான வரிசை?
 - (1) B < D < E < A < C
- (2) D<B<E<A<C

(3) B<D<A<E<C

- (4) E < D < B < A < C
- (5) A<B<D<E<C
- 10. பிணைப்புக்கோணங்கள் தொடர்பாக பின்வரும் ஒப்பீடுகளில் **சரியானது?**
 - (1) $NO_3^- > NO_4^{3^-}$
- (2) $PH_3 > NH_3$ (3) $BF_4 > NH_4^+$ (4) $ClO_3 > ClO_4$
- (5) $NO_2 < NO_2^-$

11. பீசமானமற்ற ஒரு தாக்க சமன்பாடு A+B+C → X+Y ஆகும். இது 3 படிகளில் நடைபெறுகின்றது.

ыр: $A+B \stackrel{\text{айвла}}{\longleftarrow} Z$ சமநிலைமாநிலி- K_1

 $\sqcup \sqcup : C+Z \rightleftharpoons Y$ சமநிலைமாறிலி- K_3

எனின் தாக்கவீத சமன்பாடாக அமைய பொருத்தமானது?

- (1) $R = k[A][B]^2$
- (2) $R=k[A][B]^2[C]$
- (3) R = K[B]

- (4) R = k[B][C]
- (5) R=k[C]
- 12. நைதரசன்(N) பற்றிய பின்வரும் கூற்றுகளில் எது **பொய்யானது?**
 - (1) நைதரசன் உருவாக்கும் சேர்வைகளில் அதன் வலுவளவோட்டில் இருக்கக் கூடிய உயர் இலத்திரன்களின் எண்ணிக்கை 8 ஆகும்.
 - (2) N இன் வலுவளவோட்டில் நான்கு ஓபிற்றல்கள் மாத்திரம் காணப்படுகிறது.
 - (3) இரண்டாம் ஆவர்த்தன மூலகங்களில் உயர் வலுவளவைக் காட்டுவது நைதரசன் ஆகும்.
 - (4) N ஆனது கார உலோகங்களில் Li தவிர்ந்த ஏனைய உலோகங்களுடன் தாக்கமடையாது.
 - (5) பௌலிங்கின் அளவுத்திட்டத்தின்படி நைதரசனின் மின்னெதிர்த்தன்மை குளோரினை விட குறைவானதாகும்.
- 13. வெப்பநிலை அதிகரிப்புடன் பின்வரும் இரசாயனத் தாக்கங்களில் எதன் தாக்க சாத்தியத்தன்மை குறைகின்றது?
 - (1) $(NH_4)_2Cr_2O_{7(S)} \longrightarrow 2NH_{3(g)} + Cr_2O_{3(S)} + H_2O_{(g)}$
 - (2) BaSO_{4 (S)} \longrightarrow Ba²⁺(aq) + SO₄²⁻(aq)
 - (3) $2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$
 - (4) $4HNO_{3(1)} \longrightarrow 2NO_{2(g)} + o_{2(g)} + 2H_2O_{(g)}$
 - (5) $CaO_{(S)} + 2NH_4Cl_{(aq)} \longrightarrow 2NH_{3(g)} + H_2O_{(l)} + CaCl_{2(aq)}$
- $14.~X_{(g)}+Y_{(g)}$ $\Longrightarrow 2M_{(g)}$ எனும் சமநிலை தாக்கத்தை கருதுக. ஒரு மூடிய $1 dm^3$ கெள்கலத்தில் $X_{(g)}$ இன் a மூல்கள், $Y_{
 m (g)}$ இன் b மூல்கள் எடுக்கப்பட்டு தாக்கமடைய அனுமதிக்கப்பட்டது. வெப்பநிலை T இல் சமநிலைக் கலவையில் $M_{(g)}$ இன் c மூல்கள் காணப்பட்டது. வெப்பநிலை Tஇல் இத்தாக்கத்தின் சமநிலை மாறிலி K_c இற்கான சரியான கோவை?
 - (1) $K_c = c^2/(a-c)$
- (2) $K_c = c^2/(a-c)(b-c)$
- (3) $K_c = c^2/(a-c/2)(b-c/2)$

- (4) $K_c = c^2/(a-c)^2$
- (5) $K_c = c^2/(a-c/2)$
- 15. ஒரு மூடிய பாத்திரமொன்றில் குறித்தளவு மூல்கள் $A_{(g)}$ ஆனது P_0 அமுக்கத்தில் எடுக்கப்பட்டு பின்வரும் தாக்க சமநிலை மாறா வெப்ப நிலையில் பெறப்பட்டது.

$$2A_{(g)} \stackrel{\smile}{\smile} B_{(g)} + C_{(g)}$$

இத்தாக்கத்திற்குரிய முற்தாக்க, பிற்தாக்க வீத மாநிலிகள் முறையே K_1,K_2 எனின் சமநிலையில் ${
m A}_{
m (g)}$ இன் பகுதி அமுக்கத்தை சரியாக தருவது?

- $(1) \frac{P_0}{\sqrt{\frac{K_1}{K_2}} + 2} \qquad (2) \frac{P_0}{\sqrt{\frac{K_2}{K_1}} + 2} \qquad (3) \frac{2P_0}{\sqrt{\frac{K_2}{K_1}} + 2K_1} \qquad (4) P_0 \frac{2P_0}{\sqrt{\frac{K_2}{K_1}} + 2} \qquad (5) 2P_0 \frac{P_0}{\sqrt{\frac{K_1}{K_2}} + 2}$

 $16. \ \mathrm{Cu}_{(\mathrm{s})} \ | \ \mathrm{Cu}^{2+}_{(\mathrm{aq})} \$ மின்வாயையும் $\ \mathrm{Ag}_{(\mathrm{s})}, \mathrm{AgCl}_{(\mathrm{s})} \ | \ \mathrm{Cl}^{-}_{(\mathrm{aq})} \$ மின்வாயையும் இணைப்பதன் மூலம் மின்கலம் ஒன்று வடிவமைக்கப்பட்டது.

$$E^{\theta} (Cu^{2+}_{(aq)}/Cu_{(s)}) = 0.34 \text{ V}$$

$$E^{\theta}\,_{(AgCl_{(s)},Ag_{(s)}\!/Cl^{\text{-}}_{(aq)})}=~0.22~V$$

மேற்படி மின்கலம் தொடர்பான பின்வரும் கூற்றுக்களில் **சரியானது?**

- (1) இக்கலத்தின் மின் இயக்கவிசை 0.56 V ஆகும்.
- (2) இக்கலத்தின் Cu எதிர்மின்வாயாக தொழிற்படுகிறது.
- (3) இக்கலத்தின் கலத்தாக்கம் $2Ag_{(s)} + CuCl_{2(ag)}$ \rightarrow 2AgCl_(s) + Cu_(s)
- (4) மின்னோட்டம் $Ag_{(s)}, AgCl_{(s)} | Cl_{(aq)}^-$ மின்வாயிலிருந்து $Cu_{(s)} | Cu_{(aq)}^{2+}$ மின்வாயை நோக்கி பாய்கிறது.
- (5) மின்வாய்களுக்கிடையிலான தூரத்தை குறைக்கும் போது மின்னோட்டத்தில் மாற்றம் ஏற்படாது.
- $17.\ 8.4$ g காபன் கிரபைற்று திண்மம் முற்றாக $O_{2\,(\mathrm{g})}$ இல் தகனமடைந்தது. இதன்போது $CO,\,CO_2$ வாயுக்கள் உருவாகின. $C_{(\mathrm{gr,s})}, CO_{(\mathrm{g})}$ போன்றவற்றின் தகன வெப்பவுள்ளுறை மாற்றங்கள் முறையே -400 kJmol^{-1} , -300 kJmol^{-1} ஆகும். தகனத்தின் போது வெளிவிடப்பட்ட வெப்பம் 100 kJ எனின் உருவாகிய CO(g) இன் மூல் அளவு யாதாகும்?
- (1) 0.2 mol
- (2) 0.3 mol
- (3) 0.4 mol
- (4) 0.5 mol
- (5) 0.6 mol

C தொடர்பான மிகச்சரியான கட்டமைப்பு யாதாகும்?

$$(1) \qquad \begin{array}{c} O \\ -C - CH_2 - C \end{array}$$

(2)
$$CH_2$$
 CH_3 (3) CH_3 CH_3

(3)
$$CH_3$$
 C C CH_2

(5)
$$CH_2$$
 CH_3

- $19.\ 25^{0}\mathrm{C}$ யில் வெற்றிடக் குடுவையிலுள்ள $900\mathrm{cm}^{3}$ நீரினுள் $4\ \mathrm{mol}$ ஆவிப்பறப்பற்ற கரையம் சேர்க்கப்பட்டு மூடிய தொகுதியாக வைக்கப்பட்டது. சமநிலை அமுக்கம் 2.7 kPa எனின், ஆவியிலுள்ள நீராவியின் திணிவு யாதாகும்?
 - (1) 180 g
- (2) 252 g
- (3) 270 g
- (4) 450 g
- (5) 540 g
- 20. நீரின் $100\mathrm{cm}^3$ இனுள் X என்ற திண்மத்தின் $1\,\mathrm{g}$ கரைக்கப்பட்டுள்ளது. நீரில் கரையாத சேதனத்திரவம் A யின் $10~{
 m cm}^3$ வீதம் குலுக்கி சமநிலை அடையவிடப்பட்டு மூன்று தடவைகள் பிரித்தெடுப்பு மேற்கொள்ளப்பட்டன. இறுதியில் நீரில் எஞ்சியுள்ள X இன் திணிவு யாதாகும். $[A,\,$ நீர் என்பவற்றுக்கிடையிலான X இன் பங்கீட்டுக்குணகம் 10 ஆகும்.]
 - (1) 25 mg
- (2) 125 mg
- (3) 250 mg
- (4) 300 mg
- (5) 400 mg

21. சேர்வை A ஆனது தொலனின் சோதனை பொருளுக்கு வெள்ளியாடியைக் கொடுக்கும். A இனை (i) $LiAlH_4$ (ii) H^+/H_2O என்னும் தாக்க நிபந்தனைக்கு உட்படுத்திய போது கிடைக்கும் சேர்வை B ஆனது சம மூல் Br_2 உடன் தாக்கம் புரியும். B ஆனது Na உடன் தாக்கம் புரியக்கூடியது. சேதனச் சேர்வை A இற்கு பொருத்தமான கட்டமைப்பு எது?

(4)
$$C - CH_2C \equiv CH$$
 (5) $CH_2 = CH - CH_2C \equiv CH$

- 22. ஒரு மூல மென்னமிலம் ஒன்றை (K_a = $4\times10^{-7}\ moldm^{-3}$) ஓரமில வன்மூலம் ஒன்றுடன் கலந்து தாங்கல் கரைசல் ஒன்றைத் தயாரித்துக்கொள்ள முடியும். pH=6 ஆன தாங்கற் கரைசல் ஒன்றைத் தயாரித்த பின்னர் கரைசலில் எஞ்சிக் காணப்படும் அமிலம், உப்பு என்பவற்றின் செறிவுகளுக்கு இடையிலான விகிதம் யாது?
 - (1) 1:1
- (2) 2:1
- (3) 2:5
- (4) 5:1
- (5) 5:2

23.
$$2NO_{2(g)} \rightleftharpoons N_2O_{4(g)}$$
; $H < 0$

தூய NO_2 வாயு ஒரு மூடிய விறைப்பான குடுவையில் எடுக்கப்படுகின்றது. தொகுதியின் வெப்பநிலை T K இல் இருந்து 2T K இற்கு மாற்றப்படுகின்றது. T K இல் ஏற்பட்ட சமநிலையிலிருந்து 2T K இற்கு மாற்றப்படும் போது ஏற்படும் புதிய சமநிலையில்

- (1) தாக்கத்திற்கான K_P அதிகரிக்கும்.
- (2) NO₂ இனது செறிவு அதிகரிக்கும்.
- (3) N₂O₄ இனது செறிவு அதிகரிக்கும்.
- (4) தொகுதியில் மொத்த மூல் அளவு குறைந்திருக்கும்.
- (5) தொகுதியில் மொத்த அமுக்கம் குறைந்திருக்கும்.
- 24. 3d தாண்டல் மூலகங்கள் மற்றும் அவற்றின் சேர்வைகள் தொடர்பான பின்வரும் கூற்றுகளில் **தவறானது?**
- (1) Ti இலிருந்து Cr வரையிலான மூலகங்களின் அதி உயர் வலுவளவு அவற்றின் தரைநிலை சோடியற்ற இலத்திரன்களின் எண்ணிக்கைக்கு சமனாகும்.
- (2) Ti, Cr, V, Mn என்பன ஈரொட்சைட்டுக்களைத் தோற்றுவிக்கக்கூடியவை.
- (3) Mn, Fe, Co உலோகங்களின் இருவலுவளவுள்ள ஐதரொட்சைட்டுக்கள் வளிமண்டலத்தில் இலகுவில் ஒட்சியேற்றப்படக்கூடியவை.
- (4) V, Cr, Mn என்பன மூல, ஈரியல்பு, அமில ஒட்சைட்டுக்களை தோற்றுவிக்கக்கூடியவை.
- (5) Ni, Fe, Cu ஆகியவற்றின் உறுதியான உயர் வலுவளவு நீரற்ற திண்ம குளோரைட்டுக்கள் மஞ்சள் நிறமுடையவை.

25. MgCl₂ ஐயும் CaCl₂ ஐயும் கொண்ட சமமூலர்க் கரைசலொன்றின் Cl⁻அயன் செறிவு 142 ppm ஆகும். அக்கரைசலில் அடங்கியுள்ள \mathbf{Mg}^{2+} அயன் செறிவு ppm இல் எவ்வளவாகும்?

(Mg = 24, Ca = 40, Cl = 35.5)

- (1) 71ppm
- (2) 142 ppm (3) 24 ppm (4) 48 ppm (5) 96 ppm

26. மூல ஊடகத்தில் ${
m MnO_4}^{\scriptscriptstyle -}$ இனால் ${
m M}^{2\scriptscriptstyle +}$ அயன்கள் ${
m MO}^{
m n\scriptscriptstyle +}$ வரையில் ஒட்சியேற்றப்படும். ${
m NaOH}$ முன்னிலையில் $1.2 \text{moldm}^{-3} \text{ M}^{2+}$ கரைசல் 25cm^3 உடன் முழுமையாக தாக்கம் புரிவதற்கு $1.25 \, \text{moldm}^{-3} \, \text{KMnO}_4$ கரைசலின் $40 \, \text{cm}^3$ தேவைப்பட்டது. n இனது பெறுமானம் யாது?

- (1) 1
- (2) 2
- (3)
- (4) 4
- (5) 5

27. பின்வரும் கூற்றுகளில் தவறான கூற்று எதுவாகும்

- மழை நீரில் SO_2O_2 என்பவை நீருடன் ஒன்றாகத் தாக்கமுற்று H_2SO_4 தோற்றுவிக்கப்படுகின்றது.
- 2. UV கதிர்ப்புக்கள் $O_{2(g)}$, $O_{3(g)}$ போன்றவற்றை பிரிகைக்கு உற்படுத்துவதால் O_3 படை தேய்வடைகின்றது.
- 3. சூழலுக்கு CO_2 அதிகளவில் விடப்படுவதால் பூகோள வெப்பமடைதல் ஏற்படுகின்றது.
- 4. சுண்ணாம்புக் கல்லினால் ஆன நினைவுச்சின்னங்கள், ஸ்தூபிகள், கட்டடங்கள் அமில மழையால் பாதிப்படைகின்றது.
- 5. PAN காரணமாக கண் எரிவு, கண் உறுத்தல் போன்றவை ஏற்படும்.
- 28. $aA_{(g)} + bB_{(g)} \rightleftharpoons C_{(g)}$

 27° C இல் மேலே தரப்பட்ட தாக்கத்தின் சமநிலை நிலையில், சக்தி வரைபு கீழே தரப்பட்டுள்ளது.

 $E_{af} = 50 \text{ kJmol}^{-1}$ $E_{ab} = 200 \text{ kJmol}^{-1}$

பின்வருவனவந்றுள் மேலே தரப்பட்ட தாக்கத்தின் $\Delta H, \Delta S$ ஆகியவந்றின் பெறுமானங்கள் முறையே

- (1) 150 kJmol⁻¹, 500 JK⁻¹mol⁻¹
- (2) -150 kJmol⁻¹, 500 JK⁻¹mol⁻¹
- (3) 150 kJmol⁻¹, -500 JK⁻¹mol⁻¹
- (4) -150 kJmol⁻¹, -500 JK⁻¹mol⁻¹
- (5) தரப்பட்ட தரவு கணித்தலிற்கு போதுமானதன்று.

 $29. \ SO_2$ வாயுவானது $KMnO_4$ நீர்க்கரைசலினூடாக மாநாவீதத்தில் செலுத்தப்பட்டபோது MnO_4 ் அயன்கள் Mn^{2+} ஆகத் தாழ்த்தப்படுவதுடன் SO_2 ஆனது SO_4^{2-} ஆகவும் ஒட்சியேற்றப்படுகிறது. இத்தாக்கத்தில் நேரத்துடன் கரைசலின் pH மாறுபடும் விதத்தை எது கூடியளவு சரியாக காட்டுகிறது?

- 30. பின்வரும் கூற்றுகளில் தவறான கூற்று எதுவாகும்.
 - (1) இயற்கை இறப்பரின் நிறையின் 25% 35% கந்தகத்துடன் வெப்பமேற்றி எபனைற்று தயாரிக்கப்படுகின்றது.
 - (2) இயற்கை இறப்பரின் நிறையின் 10% 20% கந்தகத்துடன் வெப்பமேற்றுதல் வல்கனைசுப்படுத்தல் எனப்படும்.
 - (3) ஒருபகுதியங்கள் இணையும் போது H₂O, NH₃, HCl போன்ற எளிய மூலக்கூறுகள் வெளியேற்றப்படுவதன் மூலம் ஒடுக்கல் பல்பகுதியங்கள் உருவாகின்றன.
 - (4) நைலோன் ஒரு பொலி ஏமைட் ஆகும்.
 - (5) தெரிலீன் ஒரு பொலி எசுத்தராகும்.
- 30 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a),(b),(c),(d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்ப்பட்டவை திருத்தமானவை

(1)	(2)	(3)	(4)	(5)
(a),(b) ஆகியன மாத்திரம் திருத்தமானவை	(b),(c) ஆகியன மாத்திரம் திருத்தமானவை	(c),(d) ஆகியன மாத்திரம் திருத்தமானவை	(a),(d) ஆகியன மாத்திரம் திருத்தமானவை	வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவை

- 31. நைதரசனின் ஒட்சி அமிலங்களாகிய HNO_3 , HNO_2 என்பன தொடர்பான பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை.
 - (a) HNO₃ இன் ஒளிப்பிரிகை ஓர் இருவழிவிகாரத் தாக்கம் ஆகும்.
 - (b) N அணுவின் மின்னெதிர்த்தன்மை HNO_3 ஐ விட HNO_2 இற்கு குறைவாகும்.
 - (c) HNO₂ இருவழி விகாரத்தாக்கத்தின் மூலம் HNO₃, NO ஆகிய விளைவுகளை உருவாக்குகின்றது.
 - (d) ஐதான HNO₃ ஆல் காபன், கந்தகம் போன்ற அலோக மூலகங்கள் அவற்றின் உயர் ஒட்சியேற்றநிலைக்கு ஒட்சியேற்றப்படுகின்றன.

- (a) எல்லா காபன் அணுக்களும் ${
 m sp}^2$ ஒபிற்றல் கலப்படைந்தவையாகும்.
- (b) பென்சீனிலிருந்து இம் மூலக்கூறினை வேறுபடுத்தி இனங்காண Br_2/CCl_4 பயன்படுத்தலாம்.
- (c) இம் மூலக்கூறிலிருந்து வெப்பமிறுக்கும் கூட்டல், நேர்கோட்டுப் பலபகுதியம் உருவாக்கலாம்.
- (d) உலர் HBr/H₂O₂ சேர்த்து ஒளியியல் சமபகுதியங்களை பெறலாம்.
- $33.\ T_1,\ T_2,\ T_3$ வெப்பநிலைகளிலும் மாறா அமுக்கத்திலும் $P_{(g)}$ $Q_{(g)}$ தாக்க அளவுடன் தாக்கத்தின் நியம கிப்ஸ் சக்தி மாறல் உருவில் காட்டப்பட்டுள்ளது.

 $T_1 \! < T_2 \! < T_3$ எனின் இத்தாக்கம் பற்றிய சரியான கூற்றுக்கள் எவையாகும்?

- (a) T₁ இல் பிற்தாக்கம் சாத்தியமாகும்.
- (b) T_2 இல் $\Delta G = 0$ ஆகும்.
- (c) T₃ இல் ΔG < 0 ஆகும்.
- (d) இத்தாக்கத்திற்கான $\Delta H > 0, \Delta S < 0$ ஆகும்.
- 34. 2A _(g) →▶2B _(g) + C _(g) என்ற தாக்கத் தொகுதி விறைப்பான குடுவையில் குறிப்பிட்ட வெப்பநிலையில் இயக்கச் சமநிலையிலுள்ளது. இத்தொகுதியிலிருந்து சிறிதளவு A இனை அகற்றும் போது பெறப்படும் இரண்டாவது சமநிலையில் நடைபெறக்கூடிய மாற்றங்கள் எவையாகும்?
 - (a) K_c குறைவடையும்.
 - (b) B யின் திணிவு குறைவடையும்.
 - (c) பிற்தாக்க வேகம் குறைவடையும்.
 - (d) முற்தாக்க வீதம் அதிகரிக்கும்.

மேலே தரப்பட்ட தாக்கத்திட்டத்தைப் பற்றிய பின்வரும் கூற்றுகளில் எது/ எவை சரியானது / சரியானவை.?

- (a) A ஆனது மிகை நைத்திரேற்றக் கலவையுடன் வன்மையாக நைத்திரேற்றப்படின் C ஐத் தருகின்றது.
- (b) A ஐ B ஆக மாற்றும் போது நைதரசனே தாழ்த்தலடைகின்றது.
- (c) B இன் NaNO₂, dil HCl உடனான தாக்கத்தில் D ஐத் தரும்.
- (d) A, B, C, D நான்கும் அறைவெப்பநிலையில் நீரில் கரைய முடியாதவை.

- 36. ஓளி இரசாயன புகார் தொடர்பான பின்வரும் கூற்றுகளில் எது/ எவை சரியானது / சரியானவை.?
 - (a) சூரிய ஒளி உள்ள போது வாகன நெரிசல் உள்ள சந்தர்ப்பத்தில் ஏற்படுகிறது.
 - (b) வெற்றுக்கண்ணுக்கு புலனாகும் ஒரேயொரு வளிமாசடைதல் இதுவாகும்.
 - (c) வாகனக்காலல்களிலிருந்து வெளியேறும் ஐதரோக்காபன்கள் தாழ் வளிமண்டலத்தில் ஓசோன் உருவாதலுக்கு காரணமாக அமைகின்றன.
 - (d) இங்கு உருவாக்கப்படும் ஓசோன் நச்சுத்தன்மையற்ற ஒரு வாயுவாகும்.
- 37. CoCl₂ நீர்க்கரைசலுக்கு செறிந்த HCl ஐ சேர்க்கும் போது பெறப்படும் நிறத்தை அண்ணளவாக ஒத்த நிறத்தை உடையது/உடையவை?
 - (a) NiCl₂ நீர்க்கரைசலுக்கு செறிந்த HCl ஐ சேர்க்கும் போது பெறப்படும் நிறம்.
 - (b) CuSO₄ நீர்க்கரைசலுக்கு NaOH ஐ சேர்க்கும் போது பெறப்படும் நிறம்.
 - (c) $FeCl_3$ நீர்க்கரைசலுக்கு $K_4[Fe(CN)_6]$ ஐ சேர்க்கும் போது பெறப்படும் நிறம்.
 - $(d)\ FeCl_3$ நீர்க்கரைசலுக்கு $K_3[Fe(CN)_6]$ ஐ சேர்க்கும் போது பெறப்படும் நிறம்.
- $38.\ A,\ B$ ஆகிய திரவங்களை உடைய துவித இலட்சிய கரைசலின் ஆவியமுக்க கட்டமைப்பு வரைபில் குறிக்கப்பட்டுள்ள புள்ளிகள் தொடர்பாக பின்வரும் எக்கூற்று/எக்கூற்றுகள் உண்மையானது/உண்மையானவை? இங்கு $P^0_A > P^0_B$ ஆவதோடு X_A என்பது திரவ அவத்தையில் A இனது மூல் பின்னமாகும்.

- (a) OM நேர்கோட்டினால் A இனது பகுதி ஆவியமுக்கம் குறிக்கப்படும்.
- (b) A,B ஆகியவற்றை கொண்ட எந்தவொரு கரைசலிலும் அதன் நிரம்பலாவியமுக்கம், அவ் வெப்பநிலையில் P^0_A இலும் சிறியது.
- (c) மாநா வெப்பநிலையில் மொத்த ஆவியமுக்கமானது L இந்கும் M இந்கும் இடையேயான ஒரு நேர்கோட்டிலேயே இருத்தல் வேண்டும்.
- (d) ஆவி அவத்தையில் மொத்த அமுக்கம் திரவ அவத்தையின் A இன் மூல் பின்னத்துடன் நேர்கோடாக மாற்றமடைய மாட்டாது.
- 39. மென்சவ்வுக் கலத்தை பயன்படுத்தி மேற்கொள்ளப்படும் NaOH உற்பத்தியுடன் தொடர்பான கூற்றுக்களில் உண்மையானது/ உண்மையானவை?
 - (a) மொத்தத்தாக்கம் 2NaCl_(aq) + 2H₂O_(l) → 2NaOH_(aq) +H_{2 (g)} + Cl_{2 (g)}
 - (b) இம்முறையின் மூலம் தூய NaOH இனை பெறலாம்.
 - (c) Ni அனோட்டில் O_2 வாயுவும் Ti கதோட்டில் H_2 வாயுவும் பெறப்படுகின்றன.
 - (d) அனோட்டு அறையினுள் ஐதான NaCl நீர்க்கரைசலும் கதோட்டு அறையினுள் நீரும் செலுத்தப்படுகின்றன.
- 40. கறியுப்பு தயாரிப்பின் பின்பு வெளியேற்றிய தாய்த்திரவத்திலிருந்து Mg இனை பிரித்தெடுக்கும் முறை தொடர்பான சரியான கூற்றுக்கள் எது/எவை?
 - (a) தாய்த்திரவத்திற்கு மிகை NaOH கரைசல் சேர்க்கப்பட்டு வீழ்படிவாகும் $Mg(OH)_2$ ஆனது பிரித்தெடுக்கப்படும்.
 - (b) $Mg(OH)_2$ வீழ்படிவானது உலர் HCl ஆவி முன்னிலையில் $MgCl_2$ திண்மமாக்கப்படும்.
 - (c) உருகிய MgCl_2 ஆனது கிரபைற்று அனோட்டு, உருக்கு கதோட்டு கொண்டு மின்பகுக்கப்படும்.
 - (d) கதோட்டுத்தாக்கம் $Mg^{2+}_{(g)}+2e$ \longrightarrow $Mg_{(s)}$, அனோட்டுத்தாக்கம் $2Cl_{(l)}$ \longrightarrow $Cl_{2(g)}+2e$

• **41** தொடக்கம் **50** வரையான வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுகள் தரப்பட்டுள்ளன. அட்டவணையிலுள்ள (1), (2), (3), (4), (5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள இரு கூற்றுகளுக்கும் மிகவும் **சிறப்பாகப்** பொருந்தும் தெரிவை தெரிந்து விடைத்தாளில் குறிப்பிடுக.

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று
(1)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தை தருவது.
(2)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு திருத்தமான விளக்கத்தை தராதது.
(3)	உண்மை	பொய்
(4)	பொய்	<u>உ</u> ண்மை
(5)	பொய்	பொய்

41.	வளிமண்டல அமுக்கத்தில் NaCl கரைசலின் கொதிநிலையானது அதே நிபந்தனையில் தூய நீரின் கொதிநிலையிலும் உயர்வானது.	NaCl கரைசலில் அயன் - இருமுனைவுக் கவர்ச்சி விசையானது காணப்படுகின்றது.
42.	சல்பூரிக்கமில உற்பத்தியில் கந்தக உலையினுள் திரவ கந்தகமும் வளிமண்டல வளியும் முரணோட்ட முறையில் மிகப் பெரிய துளிகளாக பம்பப்படும்.	கந்தக திரவத்தின் தகனவெப்பம் புறவெப்பமாகும்.
43.	O சேர்வையின் நீர்க்கரைசலினுள் CCl4 திரவத்தை சேர்த்து பின்பு குளோரின் வாயுவைக் குமிழிகளாகச் செலுத்தும் போது கபில நிறம் தோன்றும்.	எனும் சேர்வையின் Br O அணுவானது காபனுடன் பங்கீட்டு வலுப்பிணைப்பினால் பிணைந்துள்ளது.
44.	பீனோல் , எதீன் போன்றவை Br_2 நீருடன் இலகுவாகத் தாக்கம் புரிகின்றன.	பீனோல் , எதீன் போன்றவற்றுடன் Br^+ ஆனது இலத்திரன் நாடியாக தாக்கமுற்று கூட்டல் விளைவுகளை ஏற்படுத்துகின்றது.
45.	ஏபர் முறை அமோனியா தயாரிப்பில் $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ எனும் தாக்கத்தில் Q_c ஆனது K_c ஐ விடச்சிறியதாக அமையுமாறு பேணப்படுகிறது.	ஏபர் முறை அமோனியா தயாரிப்பில் விளைவை அகற்றுவதன் மூலம் முற்தாக்கவீதம் அதிகரிக்கப்படுவதுடன் பிற்தாக்கவீதம் குறைக்கப்படுகிறது.
46.	பென்சீன் ஈரசோனியம் குளோரைட்டு ஆனது H ₃ PO ₄ உடன் சூடாக்கும் போது பென்சீனை விளைவாகத் தரும்.	பென்சீன் ஈரசோனியம் குளோரைட்டு பீனோலுடன் ஐதான NaOH முன்னிலையில் செம்மஞ்சள் சாயத்தை தரும்.
47.	பினொப்தலின் காட்டி சில துளிகளை இட்டு சடத்துவ மின்வாய்களைப் பயன்படுத்தி Na ₂ SO ₄ நீர்க்கரைசலொன்றை மின்பகுக்க அனோட்டின் அருகே இளஞ்சிவப்பு நிறம் தோன்றும்	மின்பகுப்பின் போது அன்னயன் அனோட்டை நோக்கி கவரப்படும்.
48.	குளோரினின் ஒட்சி அமிலங்கள் அமில இயல்பு HOCl < HOCl ₂ < HOCl ₃ < HOCl ₄ என்றவாறு அமையும்.	Cl இன் மின்னெதிர்த்தன்மை HOCl < HOCl ₂ < HOCl ₃ < HOCl ₄ என்றவாறு அமையும்

AL/2024/02-T-I

49.	Mg(OH) _{2 (S)} இனது HCl(aq) இல் கரைதிறனானது அதே வெப்ப நிலையில் உள்ள Mg(OH) _{2(S)} இனது நீரில் கரையும் திறனை விடக் குறைவானது	பொது அயனொன்று காணப்படும் நீர்க்கரைசலொன்றில் அயன் சேர்வையொன்றின் கரைதிறனானது அவ் வெப்பநிலையில் அவ்வயன் சேர்வையின் நீரில் கரைதிறனை விட எப்பொழுதும் சிறியதாகும்.
50.	உயர் அமுக்கங்களில் CH4 இலட்சிய வாயுவாக நடந்து கொள்வதில்லை.	உயர் அமுக்கங்களில் வாயு மூலக்கூறுகள் ஒன்றையொன்று அணுகும் அதேவேளை வாயுவின் கனவளவு கொள்கலத்தின் கனவளவின் கணிசமான அளவு சதவீதமாகும்.

(முழுப் பதிப்பரிமையுடையது / All Rights Reserved)

nent Association Vayuniya District All University Students' Development Association Vayuniya District All University Students' Development Association Vayuniya District All University Students' Development Association All University

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Pilot Examination, 2024

இரசாயனவியல் II Chemistry II 02 T II

முன்று மணித்தியாலயங்கள் Three hours

சுட்டெண் :

மேலதிகவாசிப்பு நேரம் : 10 நிமிடங்கள்

Additional reading time: 10 minutes

அறிவுறுத்தல்கள்

- * கணிப்பானைப் பயன்படுத்தக்கூடாது.
- st அகில வாயு மாறிலி $R = 8.314\,J\,K^{-1}\,mol^{-1}$
- * அவகாதிரோ மாநிலி $N_A = 6.022 imes 10^{23} \ mol^{-1}$
- * இவ்வினாத்தாளிற்கு விடை எழுதும் போது அற்கைற் கூட்டங்களை சுருக்கமான விதத்தில் காட்டலாம்.

■ பகுதி A — அமைப்புக் கட்டுரை

- * எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக.
- * ஒவ்வொரு வினாவிற்கு கீழும் விடப்பட்ட இடத்தில் உமது விடைகளை எழுதுக.
- கொடுக்கப்பட்ட இடம் விடைகளை எழுதுவதற்கு போதுமானது என்பதையும் விரிவான விடைகள் அவசியமில்லை என்பதையும் கவனிக்க.

■ பகுதி B யும் பகுதி C யும் — கட்டுரை

- * ஒவ்வொரு பகுதியிலிருந்தும் இரண்டு வினாக்களைத் தெரிவு செய்து எல்லாமாக நான்கு வினாக்களுக்கு விடை எழுதுக.
- * இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி A மேலே இருக்குமாறு A, B, C ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாக சேர்த்துக் கட்டிய பின் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- st வினாத்தாளின் B,C ஆகிய பகுதிகள் மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகரின் உபயோகத்திற்கு மட்டும்.

பகுதி	മിனா இல.	புளளிகள
	01	
A	02	
7 1	03	
	04	
	05	
В	06	
	07	
	08	
C	09	
	10	
மொத்தம்		
சதவீதம்		
	1	

இறுதிப் புள்ளிகள்

இலக்கத்தில்	
சொற்களில்	

குறியீட்டெண்கள்

விடைத்தாள் பரீட்சகர்	
புள்ளிகளைப் 1	
பரிசீலித்தவர் 2	
மேற்பார்வை	

பகுதி A - அமைப்புக் கட்டுரை

அனைத்து வினாக்களுக்கும் விடையளிக்குக.

01. (a) பின்வருவனவற்றை அடைப்புக்குள் குறிப்பிட்ட இயல்பு குறைந்து செல்லும் வரிசைக்கேற்ப ஒழுங்குபடுத்துக.

(1) Na, Be, B, O (முதலாம் அயனாக்கற் சக்தி)

.....>....>.....>

(2) O, S, F, Cl (முதலாம் இலத்திரன் நாட்டம்)

.....>....>.....>

(3) H₂O, CH₄, H₂S, NH₃ (பிணைப்புக் கோணம்)

.....>....>.....>

 $(4) NH_3, NO_2, NO_2^+, N (N அணுவின் மின்னெதிர்த்தன்மை)$

.....>....>.....>.....>

(5) BeO, CaO, MgO, Al₂O₃ (உருகுநிலை)

.....>....>.....>

(6) NH₂OH , NO, NOCl , NO₂F (N-O பிணைப்பு நீளம்)

.....>.....>.....>.....

(b) **N - methyl - N - nitro ethenyl amine** என்னும் சேர்வையின் அடிப்படைக் கட்டமைப்பு கீழே தரப்பட்டுள்ளது.

(1) மேற்படி மூலக்கூறுக்கான ஏற்றுக்கொள்ளத்தக்க லூயி குற்றுக் - கோட்டுக் கட்டமைப்பை வரைக.

(2) இம் மூலக்கூறுக்கான மேலும் மூன்று பரிவுக் கட்டமைப்புக்களை வரைந்து அவற்றின் உறுதிநிலைகளை தரப்பட்டுள்ள கட்டமைப்பு தொடர்பாக குறிப்பிடுவதற்கு அக்கட்டமைப்புக்களின் கீழ் **உறுதியானது** அல்லது **குறைந்த உறுதியானது** அல்லது **உறுதியற்றது** என எழுதி காரணங்களை தருக.

பின்வரும் குறியீடப்பட்ட அடிப்படைக் கட்டமைப்பை அடிப்படையாக கொண்டு தரப்பட்டுள்ள அட்டவணையைப் பூரணப்படுத்துக.

(3)
$$H \longrightarrow \begin{matrix} H & H \\ I & I \\ C_1 & C_2 & N_3 & N_4 & O \\ H \longrightarrow \begin{matrix} C_5 & -H \\ I \\ H \end{matrix}$$

	C ₁	C ₂	C ₅	N ₃	N ₄
இலத்திரன் சோடிக் கேத்திரகணிதவடிவம்					
வடிவம்					
கலப்பாக்கம்					

(4) மேற்படி மூலக்கூறுக்கான கட்டமைப்பை பருமட்டாக வரைந்து, பிணைப்புக் கோணங்களைக் குறித்துக் காட்டுக.

- (5) மேலே (3) இல் வரைந்த கட்டமைப்பில் σ பிணைப்புக்களின் உருவாக்கத்துடன் சம்பந்தப்பட்ட அணு / கலப்பின ஒபிற்றல்களை இனங்காண்க.
 - i) $C_1 \longrightarrow C_2 \quad C_1 \dots \qquad C_2 \dots$

 - iii) $N_3 \longrightarrow N_4 N_3 \dots N_4 \dots N$
 - iv) N₄ O N₄..... O.....

AL/2024/02-T-II

தெரிவுக்க (1) கூட்டத்	பட்ட கூற்றுக்கள் உண்மையானை	வபா பொப்பானவைபா எனக் க	ாலிப்பிட்டு பெகப ்
(1) கூட்டத்	rar recarios ricore	52.62.1	ற்றப்பட்டு உம்து
Oloco	ான காரணத்தைத் தருக. ந்தின் வழி மேலிருந்து கீழாக கார ன்களின் தாக்குதிறன் கூட்டத்தின்		திகரிக்கும். எனினும்
	ற் II சல்பேற்றுக்களின் கரைதிறன் வடையும்.	கூட்டத்தின் வழியே மேலிருந்து	கீழ்நோக்கிக்
J ,	·		
02 (a) A		anogario A a ^g ari di antiquo 14	dia Daim
	ஆனது மூன்றாம் ஆவர்த்தன மூல லையும் , C என்ற A இன் கூட்ட (
	தனத்தைச் சேர்ந்த உயர் ஒட்சியே வப்பநிலையில் தாக்கி F,G எனும்		
BaCl _{2(a}	_{aq)} தனித்தனியே சேர்த்தபோது கன	ரசல் F வீழ்படிவு H ஐயும், கரை	சல் G வீழ்படிவு I ஐயும்
	. இவ்வீழ்படிவுகளிற்கு ஐதான HN g கரைசலைக் கொடுத்தது.	O ₃ ஐச சேரத்த போது H மாத்	நிரம கரைநது தெளிவான
i)	A,B,C,D,E,F,G,H,I ஆகியவற்றை	இனங்காண்க.	
	A	В	C
			C
	D		F
	D		F
ii)		E	F
ii)	G மேற்படி செயன்முறைகளுடன் சம் சமன்பாடுகளைத் தருக.	E	F
ii)	G மேற்படி செயன்முறைகளுடன் சம் சமன்பாடுகளைத் தருக.	E H ம்பந்தப்படும் இரசாயனத் தாக்கங்	F
ii)	Gமற்படி செயன்முறைகளுடன் சம் சமன்பாடுகளைத் தருக.	E H ம்பந்தப்படும் இரசாயனத் தாக்கங்	F
ii)	G	E H ம்பந்தப்படும் இரசாயனத் தாக்கங்	F
ii)	G	E H ம்பந்தப்படும் இரசாயனத் தாக்கங்	F
ii)	G	E H ம்பந்தப்படும் இரசாயனத் தாக்கங்	F
ii)	G	E H ம்பந்தப்படும் இரசாயனத் தாக்கங்	F
ii)	G	E H ம்பந்தப்படும் இரசாயனத் தாக்கங்	Fகளிற்கான சமன்செய்த

(b)	(b) dil $HCl_{(aq)}$ கபில நிறமுடைய வாயு	'R'
Ţ	நிறமற்ற திண்மம் (A) NaOH _(aq) நிறமற்ற மூல வாயு (C)	(D)
	வெப்பமேற்றல் சடத்துவ ஈரணு வாயு (D	
)
A ധെ	யை தொடர்ச்சியாக வெப்பமேற்றும் போது திண்ம மீதி எஞ்சவில்லை	
i) A, B	A, B, C, D ஆகியவற்றை இனம்காண்க.	
A	B	
C	D	
ii) A @	A இலிருந்து B, C, D ஆகியன பெறப்படுவதற்கான சமப்படுத்திய இரக	
ii) வாயு	வாயு B ஆனது ஈரணு வாயு (M ₂) உடனும் நீருடனும் தாக்கம் புரிய	விட்ட போது L தோன்றியது.
	செறிவாக்கப்பட்ட $\hat{\mathbf{L}}$ ஆனது பாகுத்தன்மையான திரவமாக காணப்படுப்	
1.	$1. \ \ M_2 , L$ ஆகியவற்றை இனங்காண்க.	
	M ₂ L	
2.	2. L இன் மேற்படி உருவாக்கத்துடன் சம்பந்தப்பட்ட சமன் செய்த	இரசாயனச் சமன்பாட்டைத் தருக.
3.		
	தருக.	
4.	4. L ஆனது காபன், கந்தகத்தை ஒட்சியேற்றுவதற்கான சமன் செய் பொருத்தமான நிபந்தனைகளுடன் தருக.	 பத இரசாயனச் சமன்பாடுகளை
5.	5. L மூலமாகச் செயற்படும் தாக்கம் ஒன்றிற்கான சமன் செய்த இர	சாயனச் சமன்பாட்டைத் தருக.
6.	 L ஆனது அதனிலும் உறுதி குறைந்த சேர்வை Q இலிருந்து ே இயல்பாகவே உருவாக்கப்படலாம். i. Q ஐ இனங்கான்க. 	வறு தாக்குபொருட்கள் இல்லாமல்

ii.	Q இலிருந்து L உருவாகும் தாக்கத்தைத் தருக.
iii.	Q இலிருந்து L உருவாகும் தாக்கத்தின் வகையைக் குறிப்பிடுக.

03. (a) 127°C இல் வாயு P இன் 0.020 மூல்கள் வெற்றிடமாக்கப்பட்ட 1.0 dm³ மூடிய விறைத்த கொள்கலமொன்றில் சிறிதளவு திண்ம ஊக்கி முன்னிலையில் இடப்பட்ட போது கீழ்க்காட்டப்பட்ட சமன்பாட்டிற்கேற்ப பிரிகையடைந்தது.

 $P_{(g)}$ \longrightarrow $2Q_{(g)}$ நேரத்துடன் $Q_{(g)}$ இன் செறிவு அளவிடப்பட்டு பெறுபேறுகள் அட்டவணைப்படுத்தப்பட்டன.

நேரம் / s	[Q] / mol dm ⁻³
0.0	0.000
50.0	0.008
100.0	0.016
150.0	0.024
200.0	0.032
250.0	0.040

i) மேலுள்ள அட்டவணையில் குறிப்பிடப்பட்ட நேரங்களிற்குரிய $[P_{(g)}]$ இற்குரிய பெறுமானங்களைக் கணிக்க.

நேரம் / s	$[\mathbf{P}_{(\mathrm{g})}]$ / $\mathbf{mol}\ \mathbf{dm}^{-3}$
0.0	
50.0	
100.0	
150.0	
200.0	
250.0	

ii) நேரத்துடன் $P_{(g)}$ இன் செறிவு மாற்றமடைவதை பின்வரும் வரைபில் காட்டுக.

iii) தாக்குதிறன் வரிசை, வீத மாறிலி ஆகியவற்றை முறையே n,K எனக்கொண்டு மேற்படி தாக்கத்துக்கான வீத விதியை எழுதுக.

.....

iv) மேலுள்ள வரைபைப் பயன்படுத்தி காரணங்களைத் தந்து n இன் பெறுமானத்தைத் துணிக.
v) 127°C இல் வீதமாநிலி K ஐக் கணிக்க.
vi) 127°C இல் $P_{(g)}$ இன் தொடக்க அளவின் 75% ஆனது $Q_{(g)}$ ஆகப் பிரிகையடைந்த நிலையில் கொள்கலத்தினுள் உள்ள அமுக்கத்தைக் கணிக்க. (ஊக்கியின் கனவளவைப் புறக்கணிக்கலாம்)
(b) நீரின் அவத்தை வரிப்படம் கீழே தரப்பட்டுள்ளது.
அமுக்கம் (atm) •
D A A B A D A D A D A D A D A D A D A D
127°C இல் வீதமாறில் K ஐக் கணிக்க. 127°C இல் P _② இன் தொடக்க அளவின் 75% ஆனது Q _② ஆகப் பிரிகையடைந்த நிலையில் தொள்கவத்தினுள் உள்ள அழுக்கத்தைக் கணிக்க. ஊக்கியின் கனவளவைப் புறக்கணிக்கலாம்) ப அவத்தை வழிப்படம் கீழே துரப்பட்டுள்ளது. அழுக்கம் (atm) தமுக்கம் (atm) தற்ன அவதிவெப்பநிலை என்பதனால் யாது விளங்குகிறீர்? நீரின் அவதிவெப்பநிலை, அரவநிலை, ஆவிநிலைகளுக்குரிய பிரதேசங்களை முறையே X, Y, Z என மலே நரப்பட்ட அவத்தை வரைபடத்தில் குழித்துக்காட்டுக. நீரின் மூன்று பௌத்க நிலைகளும் ஒருங்கே சமநிலையில் காணப்படுவதற்கான வெப்பநிலை, முறக்கம் என்பவற்றைக் குறிப்பிடுக.
ii) நீரின் திண்மநிலை, திரவநிலை, ஆவிநிலைகளுக்குரிய பிரதேசங்களை முறையே X, Y, Z என மேலே தரப்பட்ட அவத்தை வரைபடத்தில் குறித்துக்காட்டுக.
iii) நீரின் மூன்று பௌதீக நிலைகளும் ஒருங்கே சமநிலையில் காணப்படுவதந்கான வெப்பநிலை, அமுக்கம் என்பவற்றைக் குறிப்பிடுக.
வெப்பநிலை
அமுக்கம்

		லயில் ஏந்படும் மாற்றத்தைக் குறிப்பி
வெப்பநிலைகளை மு	<u> </u>	இடைவெட்டும் சந்தர்ப்பத்தின் போத
BA		
(a)		
இச்சேர்வைகள் யாவும் பிரா சேர்வை A ஒளியியல் தொ நீரகந்நலுக்கு உட்படுத்திய ோர்வெளிமய சமபகுதிய தன் செய்து PCC இனால் ஒட்சி நீரேந்நலுக்கு உட்படுத்திய மே	டியின் சோதனைப் பொருளுடன் ழிற்பாடுடையது. சேர்வைகள் A, பாது முறையே F,G,H எனும் மையைக் கொண்டது. H இசை பேற்றும் போது சேர்வை D பெற போது I எனும் ஒரே விளைவு செ ல உருவாக்கக்கூடியது. சேர்வை	மூலக்கூற்றுச் சூத்திரத்தை உடைய செம்மஞ்சள் நிறத்தை தரக்கூடிய B,C ஐ NaBH4 இனால் தாழ்த்தி விளைவுகள் பெறப்பட்டன. H ஆ ன ஐதான H ₂ SO ₄ உடன் தொழிற் ப்பட்டது. F,G ஐ ஐதான H ₂ SO ₄ உ பறப்பட்டது. I ஆனது நீரற்ற ZnCl ₂ / E ஆனது ஐதான NaOH கரைச
i) A,B,C,D,E,F,G,H,I	ஆகியவந்நின் கட்டமைப்புகளை	கீழே தரப்பட்ட பெட்டிகளில் வரைக
i) A,B,C,D,E,F,G,H,I	ஆகியவற்றின் கட்டமைப்புகளை	கீழே தரப்பட்ட பெட்டிகளில் வரைக.
A	В	C

ii)

iii)

Н	இன்	ஈர்ெ	வளிப	DULI	சமப	குதிய	ங்களை	ா கீழே	தரப்ப	ĹL	பெட்டிக	ரில்	வரைக.	
							1					1		
சே	ர்வை	கள்	F,H	恕	அவ	ற்றின்	உறுத	ி தன்ன	ാഥ அള	நிகரி	க்கும் வ	ரிசை	சயில் <u>த</u> ருக.	

(b) 1 தொடக்கம் 6 வரையான தாக்கங்கள் ஒவ்வொன்நிலும் உள்ள தாக்கியும் சோதனைப்பொருளும் கீழே உள்ள அட்டவணையில் தரப்பட்டுள்ளன. ஓவ்வொரு தாக்கத்திற்குரிய வகைகளையும் [கருநாட்ட கூட்டல் (A_N) , மின் நாட்ட கூட்டல் (A_E) , கருநாட்ட பிரதியீடு (S_N) , மின் நாட்ட பிரதியீடு (S_E) , நீக்கல் (E)] மற்றும் பிரதான விளைபொருளையும் உரிய பெட்டிகளில் எழுதுக.

				<u>் பெட்கிலால் எடு்த</u> ில்.
	தாக்கி	சோதனைப்பொருள்	தாக்க வகை	பிரதான விளைபொருள்
1	CH ₂ I	H−C≡ C⁻Na⁺		
2	O CH ₃ - C - CH ₃	HCN/KCN		
3	(CH ₃) ₂ CHCHBrCH ₃	C ₂ H ₅ OH/KOH		
4	O'Na ⁺	CH₃COCl		
5	O—cn	FeCl ₃ / Cl ₂		
6		Br ₂ /CCl ₄		

i) மேற்படி த	நாக்கப்பொறிமுறை	வகையைக் குறி	ப்பிடுக.	
ii) மே <u>ல</u> ுள்ள	தாக்கத்திற்கான (பொரிமுரையை எ	((ழதுக.	
,		,		

(முழுப் பதிப்புரிமையுடையது / All Rights Reserved)

> கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப் பரீட்சை, 2024 General Certificate of Education (Adv. Level) Pilot Examination, 2024

இரசாயனவியல் II Chemistry II

02 T II

அகில வாயு மாறிலி $R=8.314\,J\,K^{-1}\,mol^{-1}$ அவகாதிரோ மாறிலி $N_A=6.022 imes10^{23}\,mol^{-1}$

பகுதி B — கட்டுரை

இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் 150 புள்ளிகள் வழங்கப்படும்)

- 05. a) i) **'நியம சாலக வெப்பவுள்ளுறை**' ஐ வரையறுக்குக.
 - ii) பல்வேறு வெப்ப இரசாயன தரவுகள் கீழே தரப்பட்டுள்ளன.
 - $\mathrm{Ba}_{(\mathrm{g})}$ இன் நியம தோன்றல் வெப்பவுள்ளுறை = 180 kJ mol^{-1}
 - $I_{2(s)}$ இன் நியம அணுவாதல் வெப்பவுள்ளுறை = 106 kJmol^{-1}
 - $Ba_{(g)}$ இன் 1^{i} , 2^{i} அயனாக்கற் சக்திகளின் கூட்டுத்தொகை = 1145 kJ mol^{-1}
 - $Ba^{2+}_{(g)}$ இன் நியம நீரேற்றல் வெப்பவுள்ளுறை = -1309 kJ mol^{-1}
 - $I_{(g)}$ இன் நியம நீரேற்றல வெப்பவுள்ளுறை = -308 kJmol $^{-1}$
 - ullet $I_{(g)}$ இன் நியம $1^{\dot{v}}$ இலத்திரனேற்றல் வெப்பவுள்ளுறை = -295 kJmol $^{-1}$
 - $BaI_{2(s)}$ இன் நியம கரைசலாதல் வெப்பவுள்ளுறை = +252 $kJmol^{-1}$
 - (1) மேற்படி தரவுகளுக்கான சமன்பாடுகளை எழுதுக.
 - (2) மேற்படி தரவுகளை பயன்படுத்தி $BaI_{2(s)}$ இற்கான நியம தோன்றல் வெப்பவுள்ளுறையை கணிக்குக.
 - iii) Ba(OH)_{2(s)} இன் நியம கரைசலாதல் வெப்பவுள்ளுறை (-28) kJmol⁻¹ ஒரு வன்மூலத்திற்கும் ஒரு வன்னமிலத்திற்குமிடையிலான தாக்கத்தினால் பிறப்பிக்கப்படும் 1mol H₂O_(l) இன் தோன்றல் வெப்பவுள்ளுறை (-57) kJmol⁻¹ BaSO_{4(s)} இன் நியம வீழ்படிவாக்கல் வெப்பவுள்ளுறை (-18) kJmol⁻¹
 - 17.1g Ba(OH)_{2(s)} ஆனது 500 cm³, 1 moldm⁻³ H₂SO_{4(aq)} கரைசல் இல் கரையும் போது ஏற்படும் வெப்பவுள்ளுரை மாற்றம் யாது ?
 - b) ஒரு குறித்த பூவிலுள்ள 'N' எனும் சேர்வை பல்வேறு மருத்துவப் பொருட்களின் தயாரிப்புக்காக பயன்படுத்தப்படுகிறது. 40 °C இற்கு கூடிய வெப்பநிலைகளில் 'N' இன் இரசாயன இயல்புகள் அழிக்கப்படுவதால், கொதிநீராவி காய்ச்சி வடித்தல் மற்றும் ஏனைய வெப்பத்தை பயன்படுத்தும் முறைகள் இதன் பிரித்தெடுப்பிற்கு உகந்ததல்ல எனவே,அமுக்கத்தின் கீழ் திரவமாக்கப்பட்ட CO₂ ஐ பயன்படுத்தி 'N' ஐ பிரித்தெடுப்பதற்கு பரிசோதனைகளை மேற்கொண்டனர்.

இதற்காக, அப்பூவின் பகுதிகள் எடுத்து அரைக்கப்பட்டு நீருடன் கலந்து 'N' இன் ஒரு கரைசல் தயாரிக்கப்பட்டது. பின்னர், இக்கரைசலின் $100 \, \mathrm{cm}^3$ ஆனது திரவ CO_2 இன் $100 \, \mathrm{cm}^3$ உடன் கலக்கப்பட்டு சிறிது நேரம் வைக்கப்பட்டது. நீரும் $CO_{2(l)}$ உம் இரு படைகளாக பிரிவடைந்தது அவதானிக்கப்பட்டது. இங்கு சேர்வை 'N' இன் 75% கரைசலிலிருந்து திரவ $CO_{2(l)}$ படையிற்கு சென்றது. இறுதியாக $CO_{2(l)}$ படை வேறாக்கப்பட்டு, CO_2 வாயுவை விடுவிப்பதற்காக உஞற்றப்பட்ட அமுக்கம் அகற்றப்பட்டபோது தூய 'N' இன் $1.5 \, \mathrm{g}$ எஞ்சியிருந்தது.

 $(N \ \text{இன் மூலர் திணிவு} = 64 \ \text{gmol}^{-1}$, பரிசோதனை $25 \ ^{0}\text{C} \ \text{இல் முன்னெடுக்கப்பட்டது.})$

- i) பங்கீட்டுக்குணகம் பிரயோகிக்கப்படக்கூடிய இரு நிபந்தனைகளை குறிப்பிடுக.
- ii) ஆரம்ப நீர்க்கரைசலில் 'N' இன் செறிவை காண்க.
- iii) CO₂ இந்கும் நீருக்கும் இடையிலான 'N' இந்கான K_D ஐ கணிக்க.
- iv) மேற்படி செயன்முறையானது ஆரம்ப கரைசலின் அரைமடங்கு செறிவுள்ள 'N' கரைசலின் $50~{\rm cm}^3$ இற்கு, ஒவ்வொரு முறையும் $25~{\rm cm}^3$ கனவளவுள்ள ${\rm CO}_2$ ஐ பயன்படுத்தி இரண்டு தடவை மீளச்செய்யப்பட்டால் கரைசலில் எஞ்சியிருக்கும் 'N' இன் மூல் எண்ணிக்கையை கணிக்க.
- 06. a) i) -20⁰C இல் காணப்படும் பனிக்கட்டியின் 90 kg இனை 0 ⁰C இல் காணப்படும் நீராக மாற்ற தேவையான வெப்பத்தினை காண்க.
 பனிக்கட்டியின் தன் வெப்பக்கொள்ளளவு S = 2.09 Jg^{-1 0}C⁻¹
 0⁰C யில் பனிக்கட்டியின் உறைதல் வெப்பவுள்ளுறை 6 kJmol⁻¹ ஆகும்.
 - ii) A, B என்பன சேர்ந்து இலட்சியக் கரைசல் ஒன்றினை உருவாக்கியது. 298K இல் திரவ அவத்தையில் 2mol A, 3mol B என்பன காணப்படுகையில் கரைசலின் மொத்த ஆவியமுக்கம் 6.4×10⁴ Pa ஆகும். இவ்வெப்பநிலையில் A இன் தூய நிரம்பலாவியமுக்கம் 0.5×10⁴ Pa ஆகும்.
 - (1) **298**K வெப்பநிலையில் B இன் தூய நிரம்பலாவியமுக்கம் யாது?
 - (2) **298**K இல் காணப்படும் மேலுள்ள கரைசலுடன் சமநிலையில் காணப்படும் ஆவி அவத்தையில் காணப்படும் A, B என்பவற்றின் மூல் பின்னங்களினை துணிக.
 - (3) மேலுள்ள தொகுதிக்கான ஆவி அமுக்க வளையியின் பரும்படி படத்தினை வரைக. (வாயுவின் மொத்த அமுக்கம் P_{AB}, A, B இன் பகுதியமுக்கம் P_A, P_B ஆகும்.)
 - b) i) ஓர் நீர்க்கரைசலில் HCl மற்றும் H_2S ஆகிய ஒவ்வொன்றினதும் 0.1 moldm⁻³ சேர்க்கப்பட்டது. இக்கரைசலில் HS^- மற்றும் S^{2-} இன் செறிவை கணிக்க.
 - ii) M(NO₃)₂ மற்றும் X(NO₃)₂ ஆகிய திண்ம உப்புக்களின் 0.01 மூல்கள் மேற்படி கரைசலிற்கு வெவ்வேறாக சேர்க்கப்பட்டு நன்றாக குலுக்கப்பட்டது. கணிப்புகளின் உதவியுடன் MS மற்றும் XS வீழ்படிவாகுமா இல்லையா என காட்டுக.

$$\begin{array}{lll} \text{H}_2S_{(aq)} & & \text{H}^+_{(aq)} & + \text{HS}^-_{(aq)} & \text{Ka}_1 = 9\times 10^{-8} \text{ moldm}^{-3} \\ \text{HS}^-_{(aq)} & & \text{H}^+_{(aq)} & + \text{S}^{2-}_{(aq)} & \text{Ka}_2 = 1\times 10^{-19} \text{ moldm}^{-3} \\ \text{K}_{sp}(\text{MS}) = 1.6\times 10^{-29} \text{ mol}^2\text{dm}^{-6} & \text{K}_{sp}(\text{XS}) = 6\times 10^{-16} \text{ mol}^2\text{dm}^{-6} \end{array}$$

- c) $CaF_{2(S)}$ இன் ஒரு குறித்தளவு 0.5M~HCl கரைசலின் $500~cm^3$ இற்கு சேற்கப்பட்டது. நன்றாக கலக்கப்பட்டபோது திண்மத்தின் ஒரு பகுதி கரைந்தது. எஞ்சியிருந்த $CaF_{2(S)}$ வடிகட்டலின் மூலம் அகற்றப்பட்டது. வடிதிரவம் HCl எதனையும் கொண்டிருக்கவில்லை. வடிதிரவத்தின் pH=4 ஆக காணப்பட்டது. $K_a(HF)=1\times10^{-15}~moldm^{-3}$
 - i) வடிதிரவத்திலுள்ள F இன் செறிவை காண்க.
 - ii) $CaF_{2(s)}$ இன் K_{sp} இனை காண்க.
 - iii) கரைந்த $CaF_{2(s)}$ இன் திணிவை காண்க.

- 07. a) i) ஒரு நியம வெள்ளி வெள்ளி குளோரைட்டு மின்வாயை வரைந்து பெயரிடுக. இதில் நடைபெறும் தாக்கத்தையும் எழுதுக.
 - ii) (1) ஒரு நியம குளோரின் மின்வாயும் ஒரு நியம கலோமல் மின்வாயும் இணைக்கப்பட்டு உருவாக்கப்பட்ட கலத்தின் கலக்குறியீட்டை தருக.
 - (2) மேற்படி கலத்தின் மின் இயக்க விசையை காண்க.

$$E^{\theta}_{(CCl_{2(g)}/Cl_{(aq)})} = +1.36V$$

 $E^{\theta}_{(Hg_{()}/Hg_{2}Cl_{2(aq)})} = +0.27V$

- iii) (1) மின்பகுப்பிற்கான பரடேயின் விதிகளை குறிப்பிடுக.
 - (2) ஒரு மின்பகுகலத்திற்கும் மின்னிரசாயன கலமொன்றிற்குமான வேறுபாடுகள் மூன்றினை குறிப்பிடுக.
- iv) CuSO₄ இன் ஐதான கரைசலொன்று சடத்துவ மின்வாய்களை பயன்படுத்தி மின்பகுக்கப்பட்டது.
 - (1) அனோட்டுத்தாக்கம்,
 - (2) கதோட்டுத்தாக்கம்,
 - (3) ஒட்டுமொத்த கலத்தாக்கம் என்பவற்றை எழுதுக.
 - (4) மேற்படி கரைசலினூடாக 2A மின்னோட்டம் தொடர்ச்சியாக 5 மணித்தியாலங்களிற்கு பாய விடப்பட்டபோது, அனோட் மற்றும் கதோட் இற்கு அருகே சேகரிக்கப்பட்ட வாயுக்களின் கனவளவை காண்க.
 - $(0\ ^{0}\dot{\mathrm{C}}\$ வெப்பநிலை, $1\ \mathrm{atm}\$ இலுள்ள வாயுவின் மூலர்கனவளவு $24.4\ \mathrm{dm^{3}})$
- b) Na_2X எனும் சேர்வையானது $Ba(NO_3)_2$ உடன் A எனும் வெண்ணிற வீழ்படிவை கொடுக்கின்றது. $Ba(NO_3)_2$ இற்கு Na_2X ஐ மிகையாகச் சேர்க்க B எனும் சிக்கலயன் தோன்றுகிறது. இதன் வடிவம் நான்முகியாகும். Na_2X இற்கு ஐதான HCl சேர்க்க Y எனும் வீழ்படிவும் Z எனும் வாயுவும் பெறப்பட்டது.

Z ஆனது H_2Y எனும் வாயுவுடன் தாக்கமுற்று மீண்டும் Y ஐ கொடுக்கின்றது. $1 \ mol \ Ba^{2+}$ உடன் $1 \ mol \ இணையியானது இணையும்போது இரு ஈதற் பிணைப்பை உருவாக்குகின்றது எனக் கருதுக.$

- i) சிக்கலயனின் சூத்திரத்தை உய்த்தறிக.
- ii) சிக்கலயனின் கட்டமைப்பை வரைக.
- iii) A,Y,Z ஐ இனங்காண்க.
- iv) $AgNO_3$ இந்கு Na_2X ஐ சேர்க்கும்போது பெறப்படும் அவதானத்தை/அவதானங்களை குறிப்பிடுக.

பகுதி C - கட்டுரை

- 08. a) கீழ்தரப்பட்டுள்ள மாற்றீடுகளை நான்கிற்கு மேற்படாத படிகளை பயன்படுத்தி நிறைவேற்றுக.
 - i) CH₃COOH → CH₃CH₂COOH
 - ii) CH₃CH₃ → CH3CH2CH2NHCH₂CH₃
 - b) P_1 - P_4 மற்றும் R_1-R_5 வரையான சேர்வைகளை பெயரிடுக.

Zn/Hg, PCl₅, K₂Cr₂O₇, செறி HNO₃, செறி H₂SO₄, நீரற்ற AlCl₃, செறி HCl, C₂H₅OH, H₂O, உலர் C₂H₅OC₂H₅

- c) i) அற்ககோல்களை விட அமீன்கள் மூலவலிமை கூடியவை. விளக்குக.
 - ii) CH₃COCl CH₃NH₂ ► CH₃CONHCH₃ இத்தாக்கத்தின் வகையை குறிப்பிட்டு அதற்கான பொறிமுறையை தருக.
- d) CH_3CH_2CHO எனும் மூலக்கூறு அல்டொல் ஒடுக்கத்திற்கு உட்படின் பெறப்படும் விளைபொருளைத் தருக.

- b) i) (1) யூரியா உடனும்
 - (2) அமோனியம் சல்பேற்றுடனும் நீர் NaOH இனது தாக்கங்களின் சமப்படுத்தப்பட்ட இரசாயன சமன்பாடுகளை எழுதுக.
 - ii) பசளைக்கரைசலொன்று யூரியாவையும், அமோனியம் சல்பேற்றையும் கொண்டுள்ளது. அவற்றினுடைய செறிவுகளை துணிவதற்கு பின்வரும் செயன்முறை பயன்படுத்தப்பட்டது. பசளைக்கரைசலின் இரு 50 cm³ பகுதிகள் ஒவ்வொன்றும் 2 moldm⁻³ NaOH கரைசலின் 35 cm³ (மிகையானது) உடன் வெவ்வேறாக, NH₃ இனது வெளியேற்றம் முடிவுறும் வரை கொதிக்க வைக்கப்பட்டன. இப்பகுதிகளில் ஒன்றை பினோப்தலீனைக் காட்டியாக பயன்படுத்தி நியமித்தபோது 1 moldm⁻³ HCl இன் 30 cm³ தேவைப்பட்டது. மறுபகுதியை மெதைல் செம்மஞ்சளைக் காட்டியாக பயன்படுத்தி நியமித்தபோது 1 moldm⁻³ HCl இன் 50 cm³ தேவைப்பட்டது.

பசளைக்கரைசலிலுள்ள யூரியாவினதும் அமோனியம் சல்பேற்றினதும் **செறிவுகளைக்** கணிக்க.

10. a) இவ்வினாவானது மென்சவ்வுக் கலத்தைப் பயன்படுத்தி எரிசோடா உற்பத்தி செய்தலுடன் தொடர்பானது. இதற்குப் பயன்படுத்தப்படும் உபகரண அமைப்பின் வரிப்படம் கீழே தரப்பட்டுள்ளது.

- i) மின்வாய்கள் A,B என்பவற்றைப் பெயரிடுவதுடன் (அனோட், கதோட்) அவற்றுக்குப் பொதுவாகப் பயன்படுத்தப்படும் உலோகங்களைக் குறிப்பிடுக.
- ii) கலம் தொழிற்படும் போது A,B இல் இடம்பெறும் அரைக் கலத்தாக்கங்களை எழுதுவதுடன் வெளியேறும் வாயுக்கள் C,D என்பவற்றையும் இனம் காண்க.
- iii) நிகர கலத்தாக்கம் யாது?
- iv) P,Q,R,S என்பவற்றை குறிப்பிடுக.
- v) E இன் பெயரைக் குறிப்பிட்டு கலத்தொழிற்பாட்டில் அதன் முக்கியத்துவத்தைக் குறிப்பிடுக.
- vi) P இனால் குறிப்பிடப்படும் மூலவளம் யாது?
- vii) பகுதி (vi) இல் குறிப்பிட்ட மூல வளத்திலிருந்து P பெறப்படுகையில் சுத்திகரிப்புச் செயன்முறையின் போது அகற்றப்பட வேண்டிய அயன்கள் 3 குறிப்பிடுக.
- (viii) இக்கலத்திலிருந்து பெறப்படும் பிரதான விளைபொருள், பக்க விளைபொருள்கள் ஒவ்வொன்றினதும் பயன்பாடுகள் ஒவ்வொன்று வீதம் தருக.

- b) i) ஓசோன் படலத்தில் காணப்படும் சமநிலைக்குரிய சமன்பாட்டைத் தருக.
 - ii) ஓசோன் படல வறிதாக்கலில் செல்வாக்குச் செலுத்தும் இயற்கை மற்றும் மனித செயற்பாட்டின் காரணிகள் இரண்டு வீதம் தருக.
 - iii) CFC ஓசோன் படல வறிதாக்கலில் ஈடுபடும் செயன்முறையை தாக்கங்களுடன் குறிப்பிடுக.
 - iv) ஓசோன் படல வறிதாக்கலினால் ஏற்படும் விரும்பத்தகாத விளைவுகள் 3 தருக.
 - v) CFC க்கு மாற்றீடாகப் பயன்படுத்தக்கூடியதும் பூகோள வெப்பமாதலில் பங்களிப்புச் செய்யாததுமான சேர்வை எது?
- c) சூழலுக்கு நேயமான மீள் பிறப்பிக்கக்கூடிய எரிபொருளாக உயிரியல் டீசல் (Bio Diesel) பயன்படுத்தப்படுகின்றது.
 - i) உயிரியல் டீசல் உற்பத்தியின் மூலப்பொருட்கள் யாவை?
 - ii) உயிரியல் டீசல் உற்பத்தியின் அடிப்படையான படிமுறைகள் 5 தருக.
 - iii) உயிரியல் டீசல் உற்பத்திக்கான தாக்க சமன்பாட்டைத் தருக.
 - iv) சவர்க்கார உற்பத்தியிலிருந்து வினா (iii) இல் நீர் குறிப்பிட்ட தாக்கம் எங்கனம் வேறுபடுகின்றது என குறிப்பிடுக?
 - v) செயற்கைப் பசளைப் பாவனையிலும் பார்க்க இயற்கைப் பசளைப் பாவனை சிறந்ததெனக் குறிப்பிட்டு இயற்கைப் பசளையில் எமது நாடு அதிக கவனம் செலுத்துகின்றது. ஒரு இரசாயனவியல் மாணவன் என்ற வகையில் செயற்கைப் பசளைப் பாவனையிலுள்ள பிரதிகூலங்களைக் குறிப்பிடுக?

வவர்க்கள் அட்டவணை

	1 H																	2 He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	N
	11	12											13	14	15	16	17	11
1	Na	Mg								11-11			Al	Si	P	S	CI	A
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	3
F.	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	5
	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	X
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	84
	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	R
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	11
	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	0
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	