

数学(下)

主讲教师: 汪任 (目前由张神星代课)

办公室: 翡翠科教楼 B1810 东

Email: zhangshenxing@hfut.edu.cn

课件地址: https://zhangshenxing.gitee.io

第二章 极限和连续

1 数列的极限

第一节 数列的极限

- ■极限的引入
- ■极限的定义
- ■极限的定义
- 收敛数列的性质

在数学中, 很多时候我们需要描述一个无限过程的变化行为.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

• 双曲线 xy = 1 的图像的渐近线是

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

• 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题, 我们需要明确"渐近线"的含义.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题,我们需要明确"渐近线"的含义。朴素地讲,渐近线是指:若曲线 C 上一点 M 沿曲线<mark>越来越无限接近无穷远</mark>时,它到一条直线 l 的距离无限接近零,则称直线 l 为曲线 C 的渐近线.

在数学中, 很多时候我们需要描述一个无限过程的变化行为. 为了严格地描述并研究它们, 我们需要引入极限的概念.

例

- 双曲线 xy = 1 的图像的渐近线是 x = 0, y = 0.
- 指数函数 $y = a^x (a > 0, a \neq 1)$ 的图像的渐近线是 y = 0.
- 函数 $y = x + \frac{1}{x}$ 的图像的渐近线是什么呢?

为了回答这个问题,我们需要明确"渐近线"的含义. 朴素地讲,渐近线是指: 若曲线 C 上一点 M 沿曲线<mark>越来越无限接近无穷远</mark>时,它到一条直线 l 的距离无限接近零,则称直线 l 为曲线 C 的渐近线. 而想要严格地描述"越来越无限接近"的含义,就需要引入极限的概念.

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s}=(s_1,s_2,s_3)$, 其中 s_1,s_2,s_3 都是时间 t 的函数.

数学 (下) ▶ 第二章 极限和连续 ▶1 数列的极限 ▶ A 极限的引入 田■□田□田□□□□□□□□□□□

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s}=(s_1,s_2,s_3)$, 其中 s_1,s_2,s_3 都是时间 t 的函数. 它在时间段 [t,t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

•

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s}=(s_1,s_2,s_3)$, 其中 s_1,s_2,s_3 都是时间 t 的函数. 它在时间段 [t,t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

当 t' 越来越无限接近 t 时, 平均速度会无限接近它在时刻 t 的瞬时速度.

一个物体在空间中移动, 它的位置坐标是 $\mathbf{s}=(s_1,s_2,s_3)$, 其中 s_1,s_2,s_3 都是时间 t 的函数. 它在时间段 [t,t'] 内的平均速度定义为矢量

$$\mathbf{v} = (v_1, v_2, v_3), \qquad v_i = \frac{s_i(t') - s_i(t)}{t' - t}.$$

当 t' <mark>越来越无限接近 t 时,平均速度会无限接近</mark>它在时刻 t 的瞬时速度. 同样,我们需要利用极限来准确地描述它.

例

我国古代数学家刘徽为了计算圆周率 π ,采用无限逼近的思想建立了割圆法.

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \dots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

那么必定有 $A_n < \pi < B_n$.

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \dots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

n	A_n	B_n

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3\cdot 2^n=6,12,24,48,\ldots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

n	A_n	B_n
2	3.00000000	3 .21539031

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

\overline{n}	A_n	B_n
2	3.00000000	3 .21539031
3	3.10582854	3.1 5965994

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

\overline{n}	A_n	B_n
2	3.00000000	3 .21539031
3	3.10582854	3.1 5965994
4	3.1 3262861	3.14608622

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

\overline{n}	A_n	B_n
2	3.00000000	3 .21539031
3	3.10582854	3.15965994
4	3.1 3262861	3.14608622
12	3.14159251	3.14159272

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

\overline{n}	A_n	B_n
2	3.00000000	3 .21539031
3	3.10582854	3 . 1 5965994
4	3.1 3262861	3.14608622
12	3.14159251	3.14159272
13	3.14159262	3.14159267

我国古代数学家刘徽为了计算圆周率 π , 采用无限逼近的思想建立了割圆法. 依次计算单位圆的内接和外切正 $3 \cdot 2^n = 6, 12, 24, 48, \ldots$ 边形的面积

$$A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}, \qquad B_n = 3 \cdot 2^n \tan \frac{\pi}{3 \cdot 2^n},$$

那么必定有 $A_n < \pi < B_n$. 这个数列的递推关系可以由半角公式推得:

\overline{n}	A_n	B_n
2	3.00000000	3 .21539031
3	3.10582854	3 . 1 5965994
4	3.1 3262861	3.14608622
12	3.14159251	3.14159272
13	3.14159262	3.14159267

为什么这样下去会越来越趋近于 π 呢? 这也需要用到极限的概念.

极限的朴素定义

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时, y 无限接近某个值 A, 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to \cancel{x} \to x} f(x) = A$ 或 $y \to A(x \to \cancel{x} \to x)$.

极限的朴素定义

极限过程: $x \to$ 某个状态

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时。y 无限接近某个值 A, 则 A 就是 y=f(x) 关于这个极限过程的极限,记为 $\lim_{x\to \mbox{\em x}\to \mbox{\$

数列极限的定义

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

A, 则 A 就是 y = f(x)x 越来越无限接近于 $\lim_{x \to \mbox{$\downarrow$} r \to \mbox{$\downarrow$} r$

关于这个极限过程的极限. 记为

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时 y 无限接近某个值 A 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to \pm \wedge y \to x} f(x) = A$ 或 $y \to A(x \to \pm \wedge y \to x)$.

我们来将该表述严格化.

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

A, 则 A 就是 y = f(x)x 越来越无限接近于某

 $\lim_{x \to \mbox{$\downarrow$} r \to \mbox{$\downarrow$} r$ 关于这个极限过程的极限. 记为

我们来将该表述严格化. 先考虑数列的情形.

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时|y| 无限接近某个值 A, 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to \mathbb{R} \wedge \mathsf{t} \times \mathbb{R}} f(x) = A$ 或 $y \to A(x \to \mathbb{R} \wedge \mathsf{t} \times \mathbb{R})$.

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的无穷多个数

$$a_1, a_2, \ldots, a_n, \ldots,$$

记为 $\{a_n\}_{n\geqslant 1}$.

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

当 x 越来越无限接近于某个状态时 y 无限接近某个值 A 则 A 就是 y = f(x) 关于这个极限过程的极限, 记为 $\lim_{x \to \mathbb{R}^n \to \mathbb{R}^n} f(x) = A$ 或 $y \to A(x \to \mathbb{R}^n \to \mathbb{R}^n)$.

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的无穷多个数

$$a_1, a_2, \ldots, a_n, \ldots,$$

记为 $\{a_n\}_{n\geq 1}$. 其中 a_n 被称为它的第 n 项, 用于描述所有项的式子 $a_n=f(n)$ 被称为它的通项.

极限可以按如下方式理解:

极限的朴素定义

极限过程: $x \to$ 某个状态

记为 $y \to A$

给定一个函数 y = f(x).

<u>当</u> x 越来越无限接近于某个状态时 y 无限接近某个值 A 则 A 就是 y=f(x) 关于这个极限过程的极限,记为 $\lim_{x\to {\mathbb R}^n \to {\mathbb R}^n} f(x)=A$ 或 $y\to A(x\to {\mathbb R}^n \to {\mathbb R}^n)$.

我们来将该表述严格化. 先考虑数列的情形. 所谓的(无穷) 数列是指依次排列的无穷多个数

$$a_1, a_2, \ldots, a_n, \ldots,$$

记为 $\{a_n\}_{n\geqslant 1}$. 其中 a_n 被称为它的第 n 项, 用于描述所有项的式子 $a_n=f(n)$ 被称为它的通项. 不难看出, 一个数列和一个定义域是全体正整数的函数

$$f:\{1,2,3,\dots\}\to\mathbb{R}$$

是一回事.

•
$$\left\{\frac{1}{2^n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \cdots$$
 递减地 $\to 0$;

- $\left\{\frac{1}{2^n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \cdots$ 递减地 $\to 0$;
- {n}:1,2,3,4,5,··· 无限增大;

- $\left\{\frac{1}{2^n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \cdots$ 递减地 $\to 0$;
- {n}:1,2,3,4,5,··· 无限增大;
- $\left\{A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}\right\}$ 递增地 $\to \pi$;

- $\left\{\frac{1}{2^n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \cdots$ 递减地 $\rightarrow 0$;
- {n}:1,2,3,4,5,··· 无限增大;
- $\left\{A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}\right\}$ 递增地 $\to \pi$;
- $\left\{ (-1)^n + \frac{1}{n} \right\}$ 奇数项和偶数项分别交错地越来越接近 1 和 -1;

•
$$\left\{\frac{1}{2^n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \cdots$$
 递减地 $\rightarrow 0$;

- {n}:1,2,3,4,5,··· 无限增大;
- $\left\{A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}\right\}$ 递增地 $\to \pi$;
- $\left\{(-1)^n + \frac{1}{n}\right\}$ 奇数项和偶数项分别交错地越来越接近 1 和 -1;
- $\left\{1 + \frac{(-1)^n}{n}\right\}$ 交错地 $\to 1$.

- $\left\{\frac{1}{2^n}\right\}: \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \cdots$ 递减地 $\rightarrow 0$;
- {n}:1,2,3,4,5,··· 无限增大;
- $\left\{A_n = 3 \cdot 2^{n-1} \sin \frac{\pi}{3 \cdot 2^{n-1}}\right\}$ 递增地 $\to \pi$;
- $\left\{ (-1)^n + \frac{1}{n} \right\}$ 奇数项和偶数项分别交错地越来越接近 1 和 -1;
- $\left\{1 + \frac{(-1)^n}{n}\right\}$ 交错地 $\to 1$.

所谓"越来越无限接近",是指"比任何正实数"都要接近.

所谓"越来越无限接近",是指"比任何正实数"都要接近. 换言之, 对任意的正实数 $\varepsilon>0$, $|a_n-a|$ 最终是要小于 ε 的.

所谓"越来越无限接近",是指"比任何正实数"都要接近. 换言之, 对任意的正实数 $\varepsilon>0$, $|a_n-a|$ 最终是要小于 ε 的. 即存在 $N=N_\varepsilon$ 使得当 n>N 时, $|a_n-a|<\varepsilon$.

定义

设有数列 $\{a_n\}$ 和常数 a. 如果

 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$,

则称 a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n \to \infty} a_n = a \not a a_n \to a(n \to \infty).$$

定义

设有数列 $\{a_n\}$ 和常数 a. 如果

$$\forall \varepsilon > 0, \exists N$$
 使得当 $n > N$ 时, 有 $|a_n - a| < \varepsilon$,

则称 a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n \to \infty} a_n = a \not a a_n \to a(n \to \infty).$$

此时称该数列收敛.

定义

设有数列 $\{a_n\}$ 和常数 a. 如果

$$\forall \varepsilon > 0, \exists N$$
 使得当 $n > N$ 时, 有 $|a_n - a| < \varepsilon$,

则称 a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a_n \to a(n\to\infty).$$

此时称该数列收敛,

如果不存在这样的常数 a, 则称该数列发散(没有极限, 不收敛).

定义

设有数列 $\{a_n\}$ 和常数 a. 如果

$$orall arphi arepsilon > 0, \exists N$$
 使得当 $n > N$ 时, 有 $|a_n - a| < arepsilon,$ $arepsilon$ 语言

则称 a 为 a_n 当 $n \to \infty$ 时的极限, 记为

$$\lim_{n\to\infty} a_n = a \not a_n \to a(n\to\infty).$$

此时称该数列收敛,

如果不存在这样的常数 a, 则称该数列发散(没有极限, 不收敛).

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$.

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形.

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形. 同理, 我们可以只考虑例如 $n \geqslant 100$ 的情形.

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形. 同理, 我们可以只考虑例如 $n \geqslant 100$ 的情形.

例

单选题: "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是" $\forall \varepsilon>0$,()".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \geqslant \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \geqslant \varepsilon$

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形. 同理, 我们可以只考虑例如 $n \geqslant 100$ 的情形.

例

单选题: "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是 " $\forall \varepsilon>0$,()".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \geqslant \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \varepsilon > 0$, 存在正整数 N 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形. 同理, 我们可以只考虑例如 $n \geqslant 100$ 的情形.

例

单选题: "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是" $\forall \varepsilon>0$,($^{\mathbf{C}}$)".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \geqslant \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \varepsilon>0$, 存在正整数 N 使得当 n>N 时, 有 $|a_n-a|<\varepsilon$. 这等价于至多只有有限项 a_1,\ldots,a_N 满足 $|a_n-a|\geqslant\varepsilon$. 故选 C, 而 BD 均不正确.

注意并不是 $\exists N, \forall \varepsilon$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$.

注意到当 $\varepsilon' > \varepsilon$ 时, 我们可以取 $N_{\varepsilon'} = N_{\varepsilon}$. 所以在证明极限的问题中, 可以只考虑例如 $\varepsilon < 1$ 的情形. 同理, 我们可以只考虑例如 $n \ge 100$ 的情形.

例

单选题: "极限 $\lim_{n\to\infty}a_n=a$ 存在"的充要条件是 " $\forall \varepsilon>0$,(${\color{red} {\sf C}}$)".

- (A) 必有无穷多项 a_n 满足 $|a_n a| < \varepsilon$
- (B) 所有项 a_n 满足 $|a_n a| < \varepsilon$
- (C) 只有有限项 a_n 满足 $|a_n a| \geqslant \varepsilon$
- (D) 可能有无穷多项 a_n 满足 $|a_n a| \ge \varepsilon$

解

 $\forall \varepsilon > 0$, 存在正整数 N 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 这等价于至多只有有限项 a_1, \ldots, a_N 满足 $|a_n - a| \geqslant \varepsilon$. 故选 C, 而 BD 均不正确. 对于 A , 反例 $a_n = (-1)^n, a = 1$.

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

• 估计 $|a_n - a|$, 得到它和 n 的不等式关系, 从而求得 $N = N_{\varepsilon}$. 这个过程中可以进行适当的放缩.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n-a|$, 得到它和 n 的不等式关系, 从而求得 $N=N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n - 0| = |q|^n < \varepsilon$ 解得 $n > \log_{|q|} \varepsilon$.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n a|$, 得到它和 n 的不等式关系, 从而求得 $N = N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n - 0| = |q|^n < \varepsilon$ 解得 $n > \log_{|q|} \varepsilon$.

证明

 $\forall \varepsilon > 0, \ \diamondsuit \ N = \log_{|q|} \varepsilon.$

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n a|$, 得到它和 n 的不等式关系, 从而求得 $N = N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n - 0| = |q|^n < \varepsilon$ 解得 $n > \log_{|q|} \varepsilon$.

证明

 $\forall \varepsilon > 0$, $\diamondsuit N = \log_{|q|} \varepsilon$. $\exists n > N \text{ th}$, $f(q^n - 0) = |q|^n < \varepsilon$.

例

证明当 |q| < 1 时, $\lim_{n \to \infty} q^n = 0$.

分析

分为两步:

- 估计 $|a_n a|$, 得到它和 n 的不等式关系, 从而求得 $N = N_{\varepsilon}$. 这个过程中可以进行适当的放缩.
- 将上述 N 代入极限的定义中.

对于本题, 从 $|q^n - 0| = |q|^n < \varepsilon$ 解得 $n > \log_{|q|} \varepsilon$.

证明

 $\forall \varepsilon > 0$, 令 $N = \log_{|q|} \varepsilon$. 当 n > N 时,有 $|q^n - 0| = |q|^n < \varepsilon$. 所以 $\lim_{n \to \infty} q^n = 0$.

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

例

证明
$$\lim_{n\to\infty} \frac{\sin n}{n} = 0.$$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}$$
.

例

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

我们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}. \ \forall \varepsilon > 0, \ \diamondsuit \ N = \frac{1}{\varepsilon}.$$

例

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

或们有
$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}$$
. $\forall \varepsilon > 0$, $\Leftrightarrow N = \frac{1}{\varepsilon}$. $\exists n > N$ 时, 有 $\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n} < \varepsilon$.

例

证明
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

$$\left| \frac{\sin n}{n} - 0 \right| \leqslant \frac{1}{n}. \ \forall \varepsilon > 0, \ \diamondsuit \ N = \frac{1}{\varepsilon}. \ \ \exists \ n > N \ \ \text{时,} \ \ \uparrow$$

$$\left|\frac{\sin n}{n} - 0\right| \leqslant \frac{1}{n} < \varepsilon.$$

所以
$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

证明
$$\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

例

证明
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}.$$

例

证明
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$.

例

证明
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}$$
. 若 $n \geqslant 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \leqslant \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, $\diamondsuit N = \max \left\{ 1 + \frac{3}{\varepsilon}, 12 \right\}$.

例

证明
$$\lim_{n \to \infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, 令 $N = \max\left\{ 1 + \frac{3}{\varepsilon}, 12 \right\}$. 当 $n > N$ 时,有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| \le \frac{3}{n - 1} < \varepsilon.$$

例

证明
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 2.$$

我们有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| = \frac{2n + 12}{n^2 - 8}$$
. 若 $n \ge 12$, 则 $\left| \frac{2n + 12}{n^2 - 8} \right| \le \frac{3n}{n^2 - n} = \frac{3}{n - 1}$. $\forall \varepsilon > 0$, 令 $N = \max\left\{1 + \frac{3}{\varepsilon}, 12\right\}$. 当 $n > N$ 时,有
$$\left| \frac{2n^2 + 2n - 4}{n^2 - 8} - 2 \right| \le \frac{3}{n - 1} < \varepsilon.$$

所以
$$\lim_{n\to\infty} \frac{2n^2 + 2n - 4}{n^2 - 8} = 0.$$

数列极限的唯一性

定理 (唯一性)

收敛数列的极限是唯一的.

收敛数列的极限是唯一的.

证明

设a和b都是 $\{a_n\}$ 的极限.

收敛数列的极限是唯一的.

证明

设 $a \rightarrow b$ 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

收敛数列的极限是唯一的.

证明

设 $a \rightarrow b$ 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \leq |a-a_n| + |a_n-b| < 2\varepsilon.$$

收敛数列的极限是唯一的.

证明

设 $a \rightarrow b$ 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \le |a-a_n| + |a_n-b| < 2\varepsilon.$$

若
$$a \neq b$$
, 则可取 $\varepsilon = \left| \frac{a-b}{2} \right| > 0$ 代入得到 $2\varepsilon < 2\varepsilon$, 矛盾!

收敛数列的极限是唯一的.

证明

设 $a \rightarrow b$ 都是 $\{a_n\}$ 的极限. $\forall \varepsilon > 0, \exists N, M > 0$ 使得

当
$$n > N$$
 时, $|a_n - a| < \varepsilon$; 当 $n > M$ 时, $|a_n - b| < \varepsilon$.

对于 $n > \max\{N, M\}$, 由三角不等式有

$$|a-b| \le |a-a_n| + |a_n-b| < 2\varepsilon.$$

若
$$a \neq b$$
, 则可取 $\varepsilon = \left| \frac{a-b}{2} \right| > 0$ 代入得到 $2\varepsilon < 2\varepsilon$, 矛盾! 因此 $a = b$.

数列极限的有界性

定理 (有界性)

收敛数列是有界数列.

数列极限的有界性

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

数列极限的有界性

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于

$$M = \max\{|a_1|, \dots, |a_N|, |a|+1\},\$$

有 $|a_n| \leq M$.

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于

$$M = \max\{|a_1|, \dots, |a_N|, |a|+1\},\$$

有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数列.

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于

$$M = \max\{|a_1|, \dots, |a_N|, |a|+1\},\$$

有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数列.

收敛数列一定有界, 但反之未必.

定理 (有界性)

收敛数列是有界数列.

证明

设数列 $\{a_n\}$ 收敛到 a, 则对于 $\varepsilon=1$, 存在正整数 N 使得当 n>N 时

$$|a_n - a| < \varepsilon = 1,$$
 $|a_n| \le |a| + |a_n - a| < |a| + 1.$

因此对于

$$M = \max\{|a_1|, \dots, |a_N|, |a|+1\},\$$

有 $|a_n| \leq M$. 这说明 $\{a_n\}$ 是有界数列.

收敛数列一定有界,但反之未必.

例

对于数列 $\{a_n\} = (-1)^n$, 该数列是有界的但是不收敛.

定理 (保号性)

定理 (保号性)

(1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} \overline{a_n = a} > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

(1) 对于 $\varepsilon = \frac{a}{2} > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon = \frac{a}{2}$,

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

(1) 对于
$$\varepsilon = \frac{a}{2} > 0$$
, $\exists N$ 使得当 $n > N$ 时, 有 $|a_n - a| < \varepsilon = \frac{a}{2}$, 从而

$$a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n \to \infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

(1) 对于 $\varepsilon = \frac{a}{2} > 0$, $\exists N$ 使得当 n > N 时, $f(a_n - a) < \varepsilon = \frac{a}{2}$, 从而

$$a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

(1) 对于 $\varepsilon = \frac{a}{2} > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon = \frac{a}{2}$, 从而

$$a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

注意这里 > 0 不能换成 ≥ 0 , < 0 也不能换成 ≤ 0 .

定理 (保号性)

- (1) 若 $\lim_{n\to\infty} a_n = a > 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n > 0$.
- (2) 若 $\lim_{n\to\infty} a_n = a < 0$, 则 $\exists N$ 使得当 n > N 时, 有 $a_n < 0$.

证明

(1) 对于 $\varepsilon = \frac{a}{2} > 0$, $\exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon = \frac{a}{2}$, 从而

$$a_n > a - \frac{a}{2} = \frac{a}{2} > 0.$$

(2) 同理可得.

注意这里 > 0 不能换成 ≥ 0 , < 0 也不能换成 ≤ 0 . 因为极限为 0 的数列符号可以无限次变化,例如 $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$.

推论 (逆否命题)

推论 (逆否命题)

(1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 , 则它的极限 ≥ 0 .

推论 (逆否命题)

- $\overline{(1)}$ 如果收敛数列 $\overline{\{a_n\}}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

推论 (逆否命题)

- (1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

同理, 这里 \geq 也不能换成 > (这很容易记错!), 例如 $\lim_{n\to\infty}\frac{1}{n}=0$.

推论 (逆否命题)

- (1) 如果收敛数列 $\{a_n\}$ 从某项起 ≥ 0 ,则它的极限 ≥ 0 .
- (2) 如果收敛数列 $\{a_n\}$ 从某项起 ≤ 0 ,则它的极限 ≤ 0 .

同理, 这里 \geq 也不能换成 > (这很容易记错!), 例如 $\lim_{n\to\infty}\frac{1}{n}=0$.

推论

如果收敛数列 $\{a_n\},\{b_n\}$ 满足从某项起 $a_n\geqslant b_n$, 则 $\lim_{n\to\infty}a_n\geqslant \lim_{n\to\infty}b_n$.

对于正整数集的一个无限子集合 $S \subseteq \mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

对于正整数集的一个无限子集合 $S \subseteq \mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

则它对应了数列 $\{a_n\}$ 的一个子数列

$$\{a_{k_n}\}_{n\geqslant 1}: a_{k_1}, a_{k_2}, \ldots, a_{k_n}, \ldots$$

对于正整数集的一个无限子集合 $S \subseteq \mathbb{N}_+$,将其中元素从小到大排成一列

$$S = \{k_1, k_2, \dots, k_n, \dots\},\$$

则它对应了数列 $\{a_n\}$ 的一个子数列

$$\{a_{k_n}\}_{n\geqslant 1}: a_{k_1}, a_{k_2}, \ldots, a_{k_n}, \ldots$$

特别地, 当 S 为全体正奇数时, 称 $\{a_{2n-1}\}_{n\geqslant 1}$ 为奇子数列; 当 S 为全体正偶数时, 称 $\{a_{2n}\}_{n\geqslant 1}$ 为偶子数列.

数列与子数列的极限关系

定理

 $\{\overline{a_n}\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty}a_n=a$, 则 $\forall \varepsilon>0, \exists N$ 使得当 n>N 时, 有 $|a_n-a|<\varepsilon$.

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow): 如果 $\lim_{n\to\infty}a_n=a$, 则 $\forall \varepsilon>0,\exists N$ 使得当 n>N 时, 有 $|a_n-a|<\varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow): 如果 $\lim_{n\to\infty}a_n=a$, 则 $\forall \varepsilon>0,\exists N$ 使得当 n>N 时, 有 $|a_n-a|<\varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

数列与子数列的极限关系

定理

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow) : 如果 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

充分性 (\Leftarrow): 如果 $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = a$, 则 $\forall \varepsilon > 0$, $\exists N, M$ 使得

当
$$n > N$$
 时, $|a_{2n-1} - a| < \varepsilon$; 当 $n > M$ 时, $|a_{2n} - a| < \varepsilon$.

 $\{a_n\}$ 收敛于 a 当且仅当 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

证明

必要性 (\Rightarrow): 如果 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N$ 使得当 n > N 时, 有 $|a_n - a| < \varepsilon$. 因此

$$|a_{2n-1}-a|<\varepsilon, \qquad |a_{2n}-a|<\varepsilon.$$

从而 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 均收敛于 a.

充分性 (
$$\Leftarrow$$
): 如果 $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = a$, 则 $\forall \varepsilon > 0$, $\exists N, M$ 使得

当
$$n > N$$
 时, $|a_{2n-1} - a| < \varepsilon$; 当 $n > M$ 时, $|a_{2n} - a| < \varepsilon$.

所以当 $n > \max\{2N-1, 2M\}$ 时,有 $|a_n-a| < \varepsilon$. 故数列 $\{a_n\}$ 收敛到 a.

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

那么 $\{a_n\}$ 收敛于 $a \iff$ 每个 S_i 对应子数列均收敛于 a.

 $\{a_n\}$ 收敛于 a 当且仅当它的所有子数列均收敛于 a.

设 $S_1, \ldots, S_m \subseteq \mathbb{N}_+$ 均是无限集合, 且

$$S_1 \cup \cdots \cup S_m = \mathbb{N}_+.$$

那么 $\{a_n\}$ 收敛于 $a \iff$ 每个 S_i 对应子数列均收敛于 a.

这是因为 $\forall \varepsilon > 0$, 每个 S_i 中至多只有有限多项满足 $|a_n - a| \geqslant \varepsilon$, 从而一共也只有有限多项满足这个不等式. 于是对充分大的 n, $|a_n - a| < \varepsilon$.

然而对于无穷多个 S_i , 这是不对的.

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$,

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0.

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0, 但是 $\{a_n\}$ 本身却不收敛.

然而对于无穷多个 S_i , 这是不对的. 下图中红色连线形成一个数列 $\{a_n\}$, 蓝色连线对应的子数列均收敛到 0, 但是 $\{a_n\}$ 本身却不收敛.

在数学中,常常有这种在有限情形成立,无限情形不成立的结论.因此遇到涉及无限的情形要小心.