Algebra - Lista 15

Zadanie 1 Udowodnij, że każdy wielomian f nad pewnym ciałem K da się przedstawić jednoznacznie (z dokładnością do kolejności czynników) w postaci $f = c \cdot f_1 \cdot f_2 \cdots f_k$, gdzie c jest stałą, a każde f_i unormowanym (o współczynniku wiodącym równym 1) wielomianem nierozkładalnym.

Wskazówka: Twierdzenia dowodzi się podobnie jak analogicznego twierdzenia o liczbach całkowitych.

Zadanie 2 Oblicz wartości podanych wielomianów w odpowiednich pierścieniach:

$$x^4 + 3x^2 - 2x + 1 \le 2$$
, w \mathbb{Z}_7 ; $2x^3 - x^2 + x - 2 \le 1$, w \mathbb{Z}_3 ; $3x^4 - 3x^3 + 4x - 5 \le 2$, w \mathbb{Z}_6

Zadanie 3 Wyznacz największy wspólny dzielnik par wielomianów (o ile nie jest napisane inaczej: w $\mathbb{R}[X]$)

- $x^4 + 2x^3 13x^2 14x + 24$ oraz $x^4 + 10x^3 + 35x^2 + 50x + 24$;
- $x^4 + 2x^3 + 2x^2 + x + 4$ oraz $x^4 + 4$ (w $\mathbb{Z}_5[X]$); $x^4 2x^3 19x^2 + 8x + 60$ oraz $x^4 + 5x^3 + 5x^2 5x 6$; $x^4 + x^3 + 2x^2 + 2x$ oraz $x^4 + 2x^3 + 2x^2 + x$ (w $\mathbb{Z}_3[X]$).

W którymś z przykładów wyraź gcd jako kombinację podanych wielomianów.

Zadanie 4 Wyznacz f + g, $f \cdot g$ dla podanych wielomianów f, g. Podziel też podane pary wielomianów. (O ile nie jest napisane inaczej: w $\mathbb{R}[X]$):

- $f = x^4 + 4x^3 x^2 16x 10$, $g = x^2 4$; $f = x^4 + 4x^3 x^2 15x 11$, $g = x^2 4x + 3$;
- $f = x^4 + 1$, $g = x^2 + 3x + 2$ (w $\mathbb{Z}_5[X]$); $f = x^2 + 1$, g = x + 1 (w $\mathbb{Z}_2[X]$);
- $f = x^p + 1$, g = x + 1 (w $\mathbb{Z}_p[X]$ dla p—pierwszego).

Wskazówka: Do ostatniego: policz, ile wynosi $(x+1)^p \le \mathbb{Z}_p$