CS 3430: SciComp with Py Coding Exam 2

Vladimir Kulyukin
Department of Computer Science
Utah State University

March 20, 2018

Introduction

- This exam has two problems. You can code your solutions either in Py2 or Py3 (assuming you have OpenCV configured for Py3 on your computer or latop). If you code on the raspberry pi, OpenCV is already installed and configured.
- The folder coding_exam_2/ in the zip archive contains the stub files satyamitra_numbers.py, img_ann.py, and img_ann_data.py you will code in and submit. If you code in Py2, save the stub files coding_exam_2/p2/, if in Py3, save them in coding_exam_2/p3/. Write your name and A-number at the beginning of each file before you submit your zip archive via Canvas.
- This exam is open books and open notes. If you use any online materials, please mention them in the comments at the beginning of the file where you used them.
- You may not collaborate with anyone on this exam orally, digitally, or in writing.
- You can code everything up on your laptop, desktop, or raspberry pi.
- You may use your homework solutions to solve the exam's problems. For problem 1, you must either write your own code to compute the determinant of a matrix or use your code from Assignment 6. You may not use the implementation of the determinant function from any third-party library. For problem 2, you may use your code from Assignment 7.
- Your solutions are due in Canvas by 11:59:59pm sharp today, Mar. 20, 2018. In other words, you have 9 hours to complete this exam.
- You are always better off submitting an incomplete solution for partial credit than a late complete solution for zero credit. To put it differently, don't email me your solutions after the Canvas submission closes. Canvas will close for submission at 11:59:59pm on Mar. 20, 2018.

Problem 1: 3 points

A proper factor of a whole number n is a whole number d that divides n with no remainder and is strictly less than n. For example, the proper factors of 8 are 1, 2, and 4. Implement the function proper_factors(n) that computes the list of all proper factors of an integer n. Here are a couple of examples.

```
>>> proper_factors(20)
[1, 2, 4, 5, 10]
>>> proper_factors(1000000)
[1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 160, 200, 250, 320, 400, 500, 625, 800, 1000, 1250, 1600, 2000, 2500, 3125, 4000, 5000, 6250, 8000, 10000, 12500, 15625, 20000, 25000, 31250, 40000, 50000, 62500, 100000, 125000, 250000, 500000]
```

Two integers x and y are called *satyamitra* numbers if the sum of the proper factors of x is equal to y and the sum of the proper factors of y is equal to x. For example, 10856 and 10744 are satyamitra numbers. We can quickly check it as follows.

```
>>> sum(proper_factors(10744))
10856
>>> sum(proper_factors(10856))
10744
```

As an interesting historical note, the Pythagoreans, the followers of Pythagoras of Samos (c.570 - c.495 BC), an Ionian Greek philosopher, believed that if two friends were amulets with two such numbers, they would fortify their friendship.

Implement the function satyamitra_numbers_in_range(lower, upper) that computes all pairs of satyamitra numbers in the range from lower to upper where both lower and upper are positive integers and lower \leq upper. More specifically, a call to this function returns a list of pairs (i.e., 2-tuples) $[(x_1, x_2), (x_3, x_4), ..., (x_{k-1}, x_k)]$, where, in each pair (x_i, x_j) , x_i and x_j are satyamitra numbers such that lower $\leq x_i \leq$ upper and lower $\leq x_j \leq$ upper.

Write the function satyamitra_matrix(sn_list) that takes a list of satyamitra number pairs that contains n numbers, where n is a perfect square. Recall that a perfect square is an integer that is the product of two equal integers, e.g., $4 = 2 \cdot 2$, $9 = 3 \cdot 3$, $16 = 4 \cdot 4$, etc. This function creates an $n \times n$ number matrix out of these pairs and computes its determinant.

For example, let $sn_list = [(x_1, x_2), (x_3, x_4)]$. Then $satyamitra_matrix(sn_list)$ creates this matrix

$$\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$

and then computes its determinant. Here is another example. Let

```
>>> sn_list = satyamitra_matrix(lower, upper)
```

Let's assume that sn_list contains 8 pairs of satyamitra numbers, i.e., a total of 16 numbers. In other words, $sn_list = [(x_1, x_2), ..., (x_{15}, x_{16})]$. Then $satyamitra_matrix$ creates the following matrix

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5 & x_6 & x_7 & x_8 \\ x_9 & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix}$$

and computes its determinant.

Use this function to compute the determinant of the satyamitra numbers in [1, 20000]. There are 16 numbers in this range, i.e., 8 2-tuples. Save your solutions in satyamitra_numbers.py. In your comments to this problem, state the list of the satyamitra numbers and the value of the determinant.

Problem 2: 7 points

In this problem, you will build and train a 5-layer ANN to classify small black and white images. The zip archive contains two directories img_black and img_white that contains 200 images each. The directory img_black contains 200 5×5 black images and the directory img_white contains 200 5×5 white images.

Let's create the training data for the ANN. Implement the function normalize_image(fp) that takes the path to an image fp, reads it in, and converts it into a 1D normalized numpy array. Normalization in this case simply means dividing each pixel value by 255, the highest possible pixel value. Thus, each normalized array will have the values in [0, 255]. For example,

Write the function create_data(img_dir, data_label) that takes the image directory img_dir and data_label and goes through all image files in img_dir to create the list DATA of 3-tuples where the first element of each 3-tuple is an image path, the second element is the normalized array returned by calling normalize_image on the image path, and the third element is the data_label. For the black images, the data_label is equal to np.array([0, 1]); for the white images, the data_label is equal to np.array([1, 0]). Make sure that the list DATA is randomly shuffled with np.random.shuffle. Change the directories accordingly. Here's how you can create the training data.

```
>>> create_data('/home/pi/img_black/', np.array([0, 1]))
>>> create_data('/home/pi/img_white/', np.array([1, 0]))
>>> np.random.shuffle(DATA)
```

```
>>> DATA[0]
('/home/pi/img_white/120.png',
 array([ 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1.,
                                    1.,
                                        1.,
                                           1.,
 array([1, 0]))
>>> DATA[1]
('/home/pi/img_black/120.png',
 0., 0.,
       0., 0., 0., 0., 0.,
                         0., 0., 0., 0., 0., 0.,
                                               0.]),
 array([0, 1]))
```

From the list DATA we need to create the numpy arrays X and y where X contains the training data that will be used to train your ANN and y contains the corresponding data labels, i.e., the ground truth. The function create_Xy(DATA) is provided for you in img_ann_data.py.

```
def create_Xy(DATA):
    global X, y
    for fp, img, yhat in DATA:
        X.append(img)
        y.append(yhat)
    X = np.array(X)
    y = np.array(y)
```

The elements of X are normalized arrays and the elements of y are the corresponding labels.

Now let's create the evaluation data with which you will evaluate your ANN after training it. Write the function create_eval_data(img_dir, data_label) that takes the image directory img_dir and data_label and goes through all images in img_dir to create the list EVAL_DATA of 3-tuples where the first element of each 3-tuple is an image path, the second element is the normalized array returned by calling normalize_image on the image path, and the third element is the data_label. For the black images, the data_label is equal to np.array([0, 1]); for the white images, the data_label is equal to np.array([1, 0]). Make sure that the list EVAL_DATA is randomly shuffled with np.random.shuffle. The zip archive contains two directories img_eval_black and img_eval_white that contain 200 images each that will be used in evaluating the trained ANN. Here's how you can create the evaluation data. Change the directories accordingly.

```
>>> create_eval_data('/home/pi/img_eval_black/', np.array([0, 1]))
>>> create_eval_data('/home/pi/img_eval_white/', np.array([1, 0]))
>>> np.random.shuffle(DATA)
>>> EVAL_DATA[0]
('img_eval_black/55.png',
 array([ 0.03921569, 0.03921569, 0.03921569, 0.03921569, 0.03921569,
       0.03921569, 0.03921569, 0.03921569, 0.03921569, 0.03921569,
       0.03921569, 0.03921569, 0.03921569, 0.03921569,
       0.03921569, 0.03921569, 0.03921569, 0.03921569, 0.03921569,
       0.03921569, 0.03921569, 0.03921569, 0.03921569]),
  array([0, 1]))
>>> EVAL_DATA[21]
('img_eval_white/134.png',
 array([ 0.98039216, 0.98039216, 0.98039216, 0.98039216, 0.98039216,
       0.98039216, 0.98039216, 0.98039216, 0.98039216, 0.98039216,
       0.98039216, 0.98039216, 0.98039216, 0.98039216, 0.98039216,
       0.98039216, 0.98039216, 0.98039216, 0.98039216, 0.98039216,
       0.98039216, 0.98039216, 0.98039216, 0.98039216, 0.98039216]),
 array([1, 0]))
```

From the EVAL_DATA list we can create the numpy arrays EX and ey where EX contains the training data that will be used to evaluate your ANN and ey contains the corresponding data labels, i.e., the ground truth. The function create_EXey(EVAL_DATA) is provided for you in img_ann_data.py.

```
def create_EXey(EVAL_DATA):
    global EX, ey
    for fp, img, yhat in EVAL_DATA:
        EX.append(img)
        ey.append(yhat)
    EX = np.array(EX)
    ey = np.array(ey)
```

The elements of EX are normalized arrays and the elements of ey are the corresponding labels.

```
>>> EX[0]
array([ 0.98039216,  0.98039216,  0.98039216,  0.98039216,
                                                          0.98039216,
       0.98039216, 0.98039216,
                                 0.98039216,
                                             0.98039216,
                                                          0.98039216,
       0.98039216, 0.98039216,
                               0.98039216,
                                             0.98039216,
                                                          0.98039216,
       0.98039216, 0.98039216, 0.98039216, 0.98039216,
                                                          0.98039216,
       0.98039216, 0.98039216, 0.98039216, 0.98039216, 0.98039216])
>>> ey[0]
array([1, 0])
>>> EX[19]
array([ 0.03921569,  0.03921569,  0.03921569,  0.03921569,
                                                          0.03921569,
       0.03921569, 0.03921569, 0.03921569, 0.03921569,
                                                          0.03921569,
       0.03921569, 0.03921569, 0.03921569, 0.03921569,
                                                          0.03921569,
       0.03921569, 0.03921569, 0.03921569, 0.03921569,
                                                          0.03921569,
       0.03921569, 0.03921569, 0.03921569, 0.03921569,
                                                          0.03921569])
>>> ey[19]
array([0, 1])
```

Now implement the function build_5_layer_nn(mat_dims) in img_ann.py that will build weight matrices for a 5 layer ANN. It is completely up to you to decide on the dimensions of the layers. The only two obvious restrictions are that your ANN must have 25 neurons in the input layer and 2 neurons in the output layer. For example, if you call this function as build_5_layer_nn((25, 100, 100, 50, 2)), then this function returns a tuple of 4 weight matrices of small random float numbers created with np.random.randn where the first matrix is 25×100 , the second matrix is 100×100 , the third matrix 100×50 , and the fourth matrix 50×2 . By the way, these dimensions are just an example. I did not use them when I trained my ANN for this problem.

Implement the function train_5_layer_nn(numIters, X, y, build) that numIters is the number of iterations that your 5-layer ANN will be trained, X is the training data created in img_ann_data.py, y is the ground truth for the training data also created in img_ann_data.py, and build is the function that builds your 5-layer ANN network.

The function fit_5_layer_nn(x, wmats, thresh=0.4, thresh_flag=False) that fits the input x and a 4-tuple of the weight matrices wmats of a trained 5-layer ANN, and classifies the input as np.array([1, 0]) or np.array([0, 1]) when thresh_flag=True and as two-element numpy arrays of floats if thresh_flag=False.

Use the following function eval_img_nn(fit_fun, wmats, Ex, ey) is implemented in img_ann.py to evaluate your ANN on the evaluation data.

This function takes the ANN fit function fit_fun such as fit_5_layer_nn, the weight matrices of the trained ANN wmats, the evaluation data EX, and the ground truth of the trained data ey and computes the evaluation accuracy. The file img_ann.py also contains find_best_nn that you can use to find your best trained ANN.

This function takes the lower and upper bounds for the number of iterations for training your ANN. The interval I used in my training is [1000, 200000]. The step is the increment step value that we use to move from the lower bound to the upper bound. I used a step value of 1000. The train_fn is an ANN training function such as trian_5_layer_nn, the fit_fun is an ANN fitting function such as fit_5_layer_nn, the eval_fun is an ANN evaluating function such as eval_fun, the bn is an ANN building function, and the X, and the y are the trained data and ground truth, respectively. Here is the call I used to train my ANN. The function bn1 is a function that builds an initial 5-layer ANN that is being trained.

This function call returns as soon as the network's accuracy is above 80%. As the above output shows, I managed to train an ANN with an accuracy of 100% after 87000 iterations. Another ANN that achieved this accuracy took considerably more iterations. You number of iterations will most likely be different, because the initial weights are randomly initialized.

In img_ann.py, write two functions pickle_nn(fp, wmats) and upickle_nn(fp). The first one takes the array of the weight matrices of the trained ANN returned by find_best_nn and pickles it in the file specified by the file path fp. The function unpickle_nn takes the file path fp where the pickled ANN weight matrices are saved and unpickles it. Here's how you can pickle, unpickle, and evaluate the unpickled ANN.

```
>>> pickle_nn('/home/pi/exam02_ann.pck', wmats)
>>> ann_wmats = unpickle_nn('/home/pi/exam02_ann.pck')
>>> eval_img_nn(fit_5_layer_nn, wmats, EX, ey)
1.0
```

What to Submit

If you code in Py2, zip and submit the following files on Canvas by 11:59:59pm sharp on Mar. 20, 2018.

```
    py2/satyamtra_numbers.py,
    py2/img_ann.py,
    py2/img_ann_data.py.
```

If you code in Py3, zip submit the following files on Canvas by 11:59:59pm sharp on Mar. 20, 2018.

```
    py3/satyamtra_numbers.py,
```

2. py3/img_ann.py,

py3/img_ann_data.py.

Your zip archive should also contain the pickled file of your best ANN's weight matrices saved as exam02_ann.pck. Do not include the images in your zip.

Happy Hacking!