The General Expression of Gain 负反馈放大电路增益的一般表达式

第8章 反馈放大电路

第2节 负反馈放大电路增益的一般表达式

模拟电子技术

Analog Electronic Technology

内容

Analog Electronic Technology

闭环增益的一般表达式

已知
$$A = \frac{x_0}{x_0}$$
 开环增益

$$F = \frac{x_{\rm f}}{x_{\rm o}}$$
 反馈系数

$$A_{\rm f} = \frac{x_{\rm o}}{x_{\rm i}}$$
 闭环增益

因为
$$x_{id} = x_i - x_f \implies x_i = x_{id} + x_f$$

FIU
$$A_{\rm f} = \frac{x_{\rm o}}{x_{\rm i}} = \frac{x_{\rm o}}{x_{\rm id} + x_{\rm f}} = \frac{x_{\rm o}}{x_{\rm o}/A + x_{\rm o}F} = \frac{A}{1 + AF}$$

 $A_{\rm f} = \frac{A}{1 + AF}$ 闭环增益的一般表达式

负反馈放大电路中各种信号量的含义

信 号 量 或 信号传递比	反馈组态			
	电压串联	电流并联	电压并联	电流串联
x_{o}	$v_{ m o}$	i_{o}	$v_{ m o}$	i_{o}
x_i , x_f , x_{id}	$v_{\rm i}$, $v_{\rm f}$, $v_{\rm id}$	$i_{\rm i}$, $i_{\rm f}$, $i_{ m id}$	$i_{\rm i}$, $i_{\rm f}$, $i_{\rm id}$	v_{i} , v_{f} , v_{id}
$A=x_{\rm o}/x_{\rm id}$	$A_v = v_{ m o}/v_{ m id}$	$A_i = i_0/i_{id}$	$A_r = v_o / i_{id}$	$A_g = i_o / v_{id}$
$F=x_{\rm f}/x_{\rm o}$	$F_v = v_{\mathbf{f}}/v_{\mathbf{o}}$	$F_i = i_{\mathrm{f}}/i_{\mathrm{o}}$	$F_g = i_{\rm f} / v_{\rm o}$	$F_r = v_{\rm f} / i_{\rm o}$
$A_{\rm f} = x_{\rm o}/x_{\rm i}$	$A_{vf} = v_o/v_i$	$A_{if} = i_{o} / i_{i}$	$A_{rf} = v_{o} / i_{i}$	$A_{gf} = i_{o} / v_{i}$
$=\frac{A}{1+AF}$	$=\frac{A_v}{1+A_vF_v}$	$=\frac{A_i}{1+A_i\mathbf{F}_i}$	$=\frac{A_r}{1+A_rF_g}$	$=\frac{A_g}{1+A_gF_r}$
功能	$v_{ m i}$ 控制 $v_{ m o}$,电 压放大	$i_{ m i}$ 控制 $i_{ m o}$,电 流放大	i _i 控制v _o ,电流 转换为电压	$v_{ m i}$ 控制 $i_{ m o}$,电压 转换为电流

模拟电子技术

Analog Electronic Technology

内容

反馈深度讨论

一般情况下, A 和F 都是频率的函数, 当考虑信号频率的影响时, A_{f} 、A和 F 分别用 \dot{A}_{f} 、 \dot{A} 和 \dot{F} 表示。

即
$$\dot{A}_{f} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$
 $(1 + \dot{A}\dot{F})$ 称为反馈深度

$$|1+\dot{A}\dot{F}|>1$$
 时, $|\dot{A}_{\rm f}|<|\dot{A}|$, 一般负反馈

(2)
$$\left|1+\dot{A}\dot{F}\right|>>1$$
 时, 深度负反馈

(3)
$$\left|1+\dot{A}\dot{F}\right|<1$$
 时, $\left|\dot{A}_{\mathrm{f}}\right|>\left|\dot{A}\right|$, 正反馈

$$|1+\dot{A}\dot{F}|=0$$
 时, $|\dot{A}_{\rm f}|\to\infty$,自激振荡

> 闭环增益的一般表达式

$$\dot{A}_{\mathbf{f}} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

> 反馈深度的讨论

(1+AF) 称为反馈深度

思考

$$\dot{A}_{\rm f} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

(1+AF) 称为反馈深度

> 引入负反馈之后,放大倍数是增大了还是减小了?

(减小了)

从一般式里怎么看出是负反馈呢?

(1+AF>1, 在中频段 A 和 F 同符号,而 A_f 也应与A、F同号)

> 深度负反馈指的是什么?

 $(1+AF >> 1, A_f \approx 1/F, X_i \approx X_f, X_{id} \approx 0)$