

REACTION SCHEME 2

FIGURE 1

REACTION SCHEME 3

Where FM represents 9-fluorenyl., and m is an integer of 1-20

FIGURE 2

REACTION SCHEME 4

where X is a linker of formula:

in which m and n are independently integers of 1-20.

FIGURE 3

REACTION SCHEME 5

in which m is an integer of 1-20, and FM is 9-fluorenyl.

FIGURE 4

REACTION SCHEME 6

Formula I

where R is a protecting group, such as an ester, m and n are as defined above, and FM is 9-fluorenyl

FIGURE 5

REACTION SCHEME 7

FIGURE 6

REACTION SCHEME 8

Formula I

FIGURE 7

REACTION SCHEME 9

FIGURE 8

REACTION SCHEME 10

Formula I

FIGURE 9

REACTION SCHEME II

FIGURE 10

REACTION SCHEME 12

FIGURE 11

Examples of dimeric display

FIGURE 12

Examples of trimeric display

FIGURE 13

Examples of tetrameric display

FIGURE 14

Examples of higher order polyvalent display

FIGURE 15

C3 SUBSTITUENT

SUMATRIPTAN

ZOLMITRIPTAN

C5 SUBSTITUENT

SUMATRIPTAN

ZOLMITRIPTAN

FIGURE 16

SUMATRIPTAN BUILDING BLOCKS

C3PharmacophoricBuilding Blocks

C5PharmacophoricBuilding Blocks

Pharmacophoric Building Blocks that contain a Spacer

FIGURE 17

MULTIVALOMERS OF SUMATRIPTAN

1. The Indole Core

2. C3 Substituent

3. C5 Substituent

FIGURE 18

C3 ELECTROPHILE TO PROVIDE MULTIVALOMERS

C3 NUCLEOPHILE TO PROVIDE MULTIVALOMERS

$X = -\text{CH}_2\text{Br}$

(a) DCM, pyridine

$X = -\text{CHO}$

(a) DCM, $\text{NaBH}(\text{OAc})_3$, AcOH

$X = -\text{CO}_2\text{H}$

(a) DIC, DIPEA, DMF

FIGURE 19

C5 FUNCTIONALIZATION OF SUMATRIPTAN

Electrophilic Pharmacophoric Monovalomer

Nucleophilic Pharmacophoric Monovalomer

FIGURE 20

SUMATRIPTAN SPECIFICS

C3 Multivalomers

C5 Multivalomers

FIGURE 21

SUMATRIPTAN SPACERS

C3 Acid Spacer

C5 Acid Spacer

FIGURE 22

Introduction of Spacer To Faciliate Multivalomer Formation

C3 Sumatriptan Series

C5 Sumatriptan Series

(a) DIPEA, DCM, $\text{BrCH}_2\text{CO}_2\text{Et}$ (b) LiOH, THF, H_2O . (c) DIC, DIPEA, DMF

FIGURE 23

MUSCARINIC ANTAGONISTS USED IN AIRWAY DISEASE

IPRATROPIUM BROMIDE

OXITROPIUM BROMIDE

i) Airway disease

REVATROPADE

TIOTROPIUM BROMIDE

FIGURE 24

SITES FOR DIMERIZATION

Nitrogen Atom of Tropane Core

Aromatic Ring

Primary Hydroxyl

Suitable Pharmacophoric Building Blocks

Nitrogen Atom of Tropane Core

Acid Series

Amine Series

FIGURE 25

Ipratropium Multivalomers 1-Different Points of Attachment

n defines the valency of the multivalomer
 ○ defines the framework core
 → distinguishes the differing points of attachment of ipratropium

FIGURE 26

Ipratropium Multivalomers 2-Alternative Framework Cores

1. Alkyl Series

2. Aromatic Series

3. H-bond donor

4. H bond acceptor

5. Basic

6. Acidic

FIGURE 27

Ipratropium Multivalomers 3-Alternative Framework Valency

Dimeric Series

Trimeric Series

Tetrameric Series

FIGURE 28

Ipratropium Multivalomers 4-Relative Pharmacophore Orientation

FIGURE 29

1. Alkylation/Quaternization

IPRATROPIUM 1-N-Linked Multivalomers

(a) DIC, DMAP, DMF (b) CHCl_3 (c) Pd/C , H_2 , EtOAc .

FIGURE 30

IPRATROPIUM 2-N-1-linked Multivalomers

1. Reductive Amination/Quaternization

(a) DIC, DMF (b) $\text{Pd/C}, \text{H}_2, \text{EtOAc}$ (c) $\text{NaBH}(\text{OAc})_3, \text{CHCl}_3, \text{AcOH}$ (d) $\text{MeBr}, \text{CHCl}_3$ (e) $\text{TBAF}, \text{CHCl}_3, \text{THF}$

FIGURE 31

IPRATROPIUM 3-O-Linked Multivalomers

(a) NaH , THF (b) MeBr , CHCl_3 , reflux

FIGURE 32

FIGURE 33

AT1 RECEPTOR ANTAGONISTS

LOSARTAN (Cozaar)
(Dupont Merck)

VALSARTAN (Diovan)
(Novartis)

FIGURE 34

IRBESARTAN
(Sanofi)

CANDESARTAN (Atacand)
(Takeda)

EPROSARTAN (Tevatan)
(Smith Kline Beecham)

TASOSARTAN (Verdia)
(Wyeth-Ayerst)

FIGURE 35

TELMISARTAN
(Boehringer Ingelheim)

Phase III

RIPISARTAN
(Bristol Myers Squibb)

Phase II

Phase II

CS-866 Sankyo

DA-727 Daiichi

KRH-594 Wakunga

LR-B/081 Lusofarmaco

TAK-536 Takeda

YM-358 Yamanouchi

FIGURE 36

1. Tetrazole

2. Biaryl Motif

3. Imidazole Substituents

FIGURE 37

Losartan Multivalomers 1-Differing Points of Attachment

1. Aryl Linked Multivalomers

2. Butyl Linked Multivalomers

FIGURE 38

Losartan Multivalomers 1-Differing Points of Attachment

1. Tetrazole Linked Multivalomers

2. Aryl Linked Multivalomers

FIGURE 39

Lorsartan Multivalomers 2-Differing Valency of Multivalomer

FIGURE 40

Lorsartan Multivalomers 3-Differing Framework Building Blocks

1. Alkyl Series

2. Aromatic Series

3. H-bond donor

4. H bond acceptor

5. Basic

6. Acidic

FIGURE 41

Losartan Multivalomers 4-Different Relative Connectivity

FIGURE 42

Losartan Multivalomers 5-Heterovalomers

LOSARTAN (Cozaar)

VALSARTAN (Diovan)

Heterovalomers

Losartan/Valsartan

FIGURE 43

Losartan Multivalomer Synthesis 1-Hydroxyl Linked Multivalomer

(a) NaH, DMF (b) $\text{nBu}_4\text{NF}, \text{THF}$ (c) $\text{NaH}, \text{DMF}, \text{BrCH}_2\text{C}_6\text{H}_4\text{CH}_2\text{Br}$ (d) HCl, MeOH .

FIGURE 44

Losartan Multivalomer Synthesis 2-Hydroxy Linked Multivalomer

(a) NaOMe, MeOH, DMF (b) NaH, Bu_3SnN_3 , xylene, reflux

FIGURE 45

Losartan Multivalomer Synthesis 3-Tetrazole Linked Multivalomers

Strategy-Sselective tetrazole alkylation in the presence of the primary hydroxyl

(a) Bu_3SnN_3 , xylene, 24 hr reflux (b) NaOH , THF

For precedent see Carini, D. J., *J. Med. Chem.*, 1991, 34, 2525-2547

FIGURE 46

β_2 Adrenergic Drugs

1. Rapid Onset Inhaled Drugs

Albuterol
(GlaxoWellcome)

Terbutaline

2. Prolonged Duration of Action Inhaled Drugs

Salmeterol
(GlaxoWellcome)

Formoterol
(Novartis)

Notes-1. These drugs are racemates. Multivalomers will produce diastereomers.

FIGURE 47

Albuterol Multivalomers

1. N atom

Ethanamine function

3. Phenyl Ring

New Substitution

Phenolic Group

Benzyl Alcohol

M represents a site for the attachment of the monovalomer to the framework core

FIGURE 48

1. Valency of Framework Building Block

2. Relative Orientation of Monovalomeric Building Blocks.

3. Mixed Multivalomers Derived from Different β_2 -agonists

FIGURE 49

Albuterol Multivalomers 1-Different Points of Attachment

n

defines the valency of the multivalomer

defines the framework core

distinguishes the differing points of attachment of albuterol

Generic Examples

Specific Example

Series 1

Series 2

Series 3

Series 4

FIGURE 50

Albuterol Multivalomers 2-Alternative Framework Cores

2-alternative framework cores

1. Alkyl Series

2. Aromatic Series

3. H-bond donor

5. Basic

6. Acidic

FIGURE 51

Albuterol Multivalomers 3-Alternative Framework Valency

3,000,000
Dimeric Series

Trimeric Series

Tetrameric Series

FIGURE 52

Albuterol Multivalomers 4-Relative Pharmacophore Orientation

Pharmacophore Orientation

FIGURE 53

Albuterol Multivalomers 5-Mixed β_2 Adrenergic Heterovalomers

Heterovalomers

Albuterol/Formeterol

Albuterol/Formeterol

Albuterol/Clenbuterol

FIGURE 54

reagents and conditions: i) HOBr, PyBOP, DIPEA, DMF, rt, 24 h;
ii) LiAlH₄, THF, 0°C to 80°C; iii) H₂ (1 atm), 10% Pd/C, EtOH, rt, 24 h

FIGURE 55

reagents and conditions: i) HOBr, PyBOP, DIPEA, DMF, rt, 24 h;
ii) LiAlH_4 , THF, 0°C to 80°C ; iii) H_2 (1 atm), 10% Pd/C , EtOH, rt, 24 h

FIGURE 56

reagents and conditions: i) 1,6-hexanedioic acid, DIPEA, HOBT, PyBOP, DMF, rt;
ii) TFA/CH₂Cl₂, 0°C

FIGURE 57

reagents and conditions: i) terphthalic acid, DIPEA, HOBT, PyBOP, DMF, rt;
ii) TFA/ CH_2Cl_2 , 0°C; iii) LiAlH₄, THF, 80°C

FIGURE 58