Fareyevo zaporedje in Riemannova hipoteza

Tjaša Vrhovnik

Mentor: izr. prof. dr. Aleš Vavpetič Univerza v Ljubljani Fakulteta za matematiko in fiziko Oddelek za matematiko

8. maj 2019

Trditev

Obstajajo 3003 racionalna števila $\frac{p}{q}$, za katera velja $0<\frac{p}{q}<1$ ter je $q\leq 100$.

1751, R. Flitcon

Definicija

Fareyevo zaporedje reda n oz. n-to Fareyevo zaporedje je množica racionalnih števil $\frac{p}{q}$ urejenih po velikosti, kjer sta p in q tuji si števili, ter velja $0 \le p \le q \le n$. Označimo ga z F_n . Ekvivalentno, F_n vsebuje vse okrajšane ulomke med 0 in 1 z imenovalci, kvečjemu enakimi n.

Definicija

Fareyevo zaporedje reda n oz. n-to Fareyevo zaporedje je množica racionalnih števil $\frac{p}{q}$ urejenih po velikosti, kjer sta p in q tuji si števili, ter velja $0 \le p \le q \le n$. Označimo ga z F_n . Ekvivalentno, F_n vsebuje vse okrajšane ulomke med 0 in 1 z imenovalci, kvečjemu enakimi n.

Definicija

Sosednja člena v Fareyevem zaporedju imenujemo Fareyeva soseda.

Definicija

Naj bosta $\frac{a}{b}$ in $\frac{c}{d}$ sosednja člena nekega Fareyevega zaporedja. Člen

$$\frac{a+c}{b+d}$$

imenujemo medianta.

Definicija

Naj bosta $\frac{a}{b}$ in $\frac{c}{d}$ sosednja člena nekega Fareyevega zaporedja. Člen

$$\frac{a+c}{b+d}$$

imenujemo medianta.

Trditev

Za medianto okrajšanih ulomkov $\frac{a}{b} < \frac{c}{d}$ velja $\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$.

Definicija

Naj bosta $\frac{a}{b}$ in $\frac{c}{d}$ sosednja člena nekega Fareyevega zaporedja. Člen

$$\frac{a+c}{b+d}$$

imenujemo medianta.

Trditev

Za medianto okrajšanih ulomkov $\frac{a}{b}<\frac{c}{d}$ velja $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$.

Trditev

Naj velja $0 \le \frac{a}{b} < \frac{c}{d} \le 1$. Ulomka $\frac{a}{b}$ in $\frac{c}{d}$ sta Fareyeva soseda v nekem Fareyevem zaporedju natanko tedaj, ko velja bc - ad = 1.

Definicija

Preslikava $\varphi \colon \mathbb{N} \to \mathbb{N}$, ki za vsako naravno število n prešteje števila, manjša od n, ki so n tuja, se imenuje Eulerjeva funkcija φ .

Definicija

Preslikava $\varphi \colon \mathbb{N} \to \mathbb{N}$, ki za vsako naravno število n prešteje števila, manjša od n, ki so n tuja, se imenuje Eulerjeva funkcija φ .

Trditev

Naj bo φ Eulerjeva funkcija. Dolžina Fareyevega zaporedja reda n je

$$|F_n| = |F_{n-1}| + \varphi(n).$$

Definicija

Preslikava $\varphi \colon \mathbb{N} \to \mathbb{N}$, ki za vsako naravno število n prešteje števila, manjša od n, ki so n tuja, se imenuje Eulerjeva funkcija φ .

Trditev

Naj bo φ Eulerjeva funkcija. Dolžina Fareyevega zaporedja reda n je

$$|F_n| = |F_{n-1}| + \varphi(n).$$

Trditev

Asimptotično se dolžina Fareyevega zaporedja obnaša kot

$$|F_n| \sim \frac{3n^2}{\pi^2}.$$

Definicija

Naj bosta p in q tuji si števili v množici celih števil. Fordov krog $C(\frac{p}{q})$ je krog v zgornji polravnini, ki se abscisne osi dotika v točki $\frac{p}{q}$, njegov polmer pa meri $\frac{1}{2q^2}$.

Trditev

Fordova kroga, ki pripadata različnima okrajšanima ulomkoma, sta bodisi tangentna bodisi disjunktna.

Trditev

Fordova kroga, ki pripadata različnima okrajšanima ulomkoma, sta bodisi tangentna bodisi disjunktna.

Trditev

Fordova kroga $C(\frac{a}{b})$ in $C(\frac{c}{d})$ sta tangentna natanko tedaj, ko velja |bc-ad|=1.

Definicija

Tangentna Fordova kroga imenujemo Fordova soseda.

Definicija

Tangentna Fordova kroga imenujemo Fordova soseda.

Izrek

Naj bosta kroga $C(\frac{P}{q})$ in $C(\frac{P}{Q})$ Fordova soseda. Vse Fordove sosede Fordovega kroga $C(\frac{P}{q})$ lahko zapišemo v obliki $C(\frac{P_n}{Q_n})$, kjer je $\frac{P_n}{Q_n} = \frac{P+np}{Q+nq}$ in n preteče vsa cela števila.

• praštevila (Evklid, Euler)

- praštevila (Evklid, Euler)
- $\zeta(n) = \sum_{r=1}^{\infty} \frac{1}{r^n}$; $n \in \mathbb{R}$

- praštevila (Evklid, Euler)
- $\zeta(n) = \sum_{r=1}^{\infty} \frac{1}{r^n}; n \in \mathbb{R}$

Eulerjeva produktna formula

$$\sum_{n} \frac{1}{n^{s}} = \prod_{p} \frac{1}{1 - p^{-s}}; n \in \mathbb{N}, p \in \mathbb{P}$$

Dokaz I. 1737. Variae observationes circa series infinitas

- Bernhard Riemann (1826 1866)
- I. 1859 razširi Eulerjevo definicijo

Definicija

Riemannova funkcija zeta je za $s \in \mathbb{C} \backslash \{1\}$ definirana kot

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Riemannova hipoteza

Vse netrivialne ničle Riemannove funkcije zeta ležijo na premici $s=\frac{1}{2}+it$.

Definicija

Naj bo $k \in \mathbb{N}$. Möbiusova funkcija je definirana kot

$$\mu(k) = \begin{cases} 0 \;\; ; \;\; k \; vsebuje \; kvadrat \; praštevila \\ (-1)^p \;\; ; \;\; k \; je \; produkt \; p \; različnih \; praštevil. \end{cases}$$

Definicija

Naj bo $k \in \mathbb{N}$. Möbiusova funkcija je definirana kot

$$\mu(k) = \left\{ egin{array}{ll} 0 & ; & k \ vsebuje \ kvadrat \ praštevila \ (-1)^p & ; & k \ je \ produkt \ p \ različnih \ praštevil. \end{array}
ight.$$

Definicija

 $Za \ n \in \mathbb{N}$ je Mertensova funkcija definirana kot

$$M(n) = \sum_{k \le n} \mu(k).$$

Definicija

Naj bo $k \in \mathbb{N}$. Möbiusova funkcija je definirana kot

$$\mu(k) = \left\{ egin{array}{ll} 0 & ; & k \ vsebuje \ kvadrat \ praštevila \ (-1)^p & ; & k \ je \ produkt \ p \ različnih \ praštevil. \end{array}
ight.$$

Definicija

 $Za \ n \in \mathbb{N}$ je Mertensova funkcija definirana kot

$$M(n) = \sum_{k \le n} \mu(k).$$

$$\forall \epsilon > 0. \ M(n) = o(n^{1/2+\epsilon}) \iff \text{Riemannova hipoteza}$$

Definicija

Naj bosta L(n) dolžina Fareyevega zaporedja F_n in r_v njegov v-ti element. Definiramo razliko

$$\delta_{v}=r_{v}-v/L(n).$$

Definicija

Naj bosta L(n) dolžina Fareyevega zaporedja F_n in r_v njegov v-ti element. Definiramo razliko

$$\delta_{v}=r_{v}-v/L(n).$$

Franel-Landau (1924):

$$\forall \epsilon > 0. \ \sum_{\nu=1}^{L(n)} |\delta_{\nu}| = o(n^{1/2+\varepsilon}) \iff \text{Riemannova hipoteza}$$

Za vsak
$$\varepsilon > 0$$

$$\sum_{\nu=1}^{L(n)} |\delta_{\nu}| = o(n^{1/2+\varepsilon}) \iff M(n) = o(n^{1/2+\varepsilon}).$$