Cours de Statistiques Inférentielles

CQLS: cqls@upmf-grenoble.fr

14 mars 2014

Plan

Intervalle de confiance

Motivation

• Quelle confiance accordez-vous à deux estimations obtenues à partir de 2 echantillons de tailles respectives n = 5 et n = 1000?

Motivation

- Quelle confiance accordez-vous à deux estimations obtenues à partir de 2 echantillons de tailles respectives n = 5 et n = 1000?
- 2 Plus généralement, quelle confiance doit-on accorder à une estimation $\widehat{\theta}^{\bullet}(\mathbf{y})$ le **jour J** selon son erreur standard $\widehat{\sigma_{\widehat{\theta}^{\bullet}}}(\mathbf{y})$ plus ou moins grande.

Motivation

- Quelle confiance accordez-vous à deux estimations obtenues à partir de 2 echantillons de tailles respectives n = 5 et n = 1000?
- **2** Plus généralement, quelle confiance doit-on accorder à une estimation $\widehat{\theta}^{\bullet}(\mathbf{y})$ le **jour J** selon son erreur standard $\widehat{\sigma_{\widehat{\theta}^{\bullet}}}(\mathbf{y})$ plus ou moins grande.
- ① Interprétation des résultats d'un sondage avant le premier tour des élections présidentielles 2002 : Votre attitude aurait-elle été influencée si à la place d'une estimation $\widehat{p^J}(\mathbf{y})$ (autour de 17%) pour le candidat Jospin, on vous avait fourni une "fourchette" [14.67%, 19.33%]. Il paraît que cette information ne nous est pas fourni car les Français ne sauraient pas interpréter ce type de résultats. Qu'en pensez-vous?

Un Futur échantillon Y!

Une future estimation $\widehat{\theta}^{\bullet}(\mathbf{Y})$

Sa future erreur standard $\widehat{\sigma_{\widehat{\theta^{\bullet}}}}(\mathbf{Y})$

Une future estimation $\widehat{\theta}^{\bullet}(\mathbf{Y}) \overset{approx.}{\leadsto} \mathcal{N}(\theta^{\bullet}, \sigma_{\widehat{\theta}^{\bullet}})$ inconnue Sa future erreur standard $\widehat{\sigma_{\widehat{\theta}^{\bullet}}}(\mathbf{Y}) \overset{approx.}{\leadsto} \mathcal{N}(\sigma_{\widehat{\theta}^{\bullet}}, \sigma_{\widehat{\sigma}_{\widehat{\theta}^{\bullet}}})$ inconnue

Future mesure d'écart standardisée :

$$\delta_{\widehat{\boldsymbol{\theta}^{\bullet}},\boldsymbol{\theta^{\bullet}}}(\mathbf{Y}) = \frac{\widehat{\boldsymbol{\theta}^{\bullet}}(\mathbf{Y}) - \boldsymbol{\theta^{\bullet}}}{\widehat{\sigma_{\widehat{\boldsymbol{\theta}^{\bullet}}}}(\mathbf{Y})}$$

4 / 7

Future mesure d'écart standardisée :

$$\delta_{\widehat{\boldsymbol{\theta}^{\bullet}},\boldsymbol{\theta^{\bullet}}}(\mathbf{Y}) = \frac{\widehat{\boldsymbol{\theta}^{\bullet}}(\mathbf{Y}) - \boldsymbol{\theta^{\bullet}}}{\widehat{\sigma_{\widehat{\boldsymbol{\theta}^{\bullet}}}}(\mathbf{Y})}$$

Future mesure d'écart standardisée :

$$\delta_{\widehat{\boldsymbol{\theta}^{\bullet}},\boldsymbol{\theta^{\bullet}}}(\mathbf{Y}) = \frac{\widehat{\boldsymbol{\theta^{\bullet}}}(\mathbf{Y}) - \boldsymbol{\theta^{\bullet}}}{\widehat{\sigma_{\widehat{\boldsymbol{\theta}^{\bullet}}}}(\mathbf{Y})}$$

Future mesure d'écart standardisée :

$$\delta_{\widehat{\theta^{\bullet}},\theta^{\bullet}}(\mathbf{Y}) = \frac{\widehat{\theta^{\bullet}}(\mathbf{Y}) - \theta^{\bullet}}{\widehat{\sigma_{\widehat{a\bullet}}}(\mathbf{Y})} \overset{approx.}{\leadsto} \mathcal{N}(0,1) \text{ connue}!$$

Future mesure d'écart standardisée :

$$\delta_{\widehat{\theta^{\bullet}},\theta^{\bullet}}(\mathbf{Y}) = \frac{\widehat{\theta^{\bullet}}(\mathbf{Y}) - \theta^{\bullet}}{\widehat{\sigma_{\widehat{\theta^{\bullet}}}}(\mathbf{Y})} \stackrel{approx.}{\leadsto} \mathcal{N}(0,1) \text{ connue!}$$

 \rightarrow détermination de $[\widetilde{\theta}^{\bullet}_{inf}(\mathbf{Y}), \widetilde{\theta}^{\bullet}_{sup}(\mathbf{Y})]$?

$$1-\alpha \simeq \mathbb{P}\left(-\delta^+_{\underset{\pmb{lim},\frac{\alpha}{2}}{\underline{\alpha}}} \leq \delta_{\widehat{\boldsymbol{\theta^{\bullet}}},\boldsymbol{\theta^{\bullet}}}(\mathbf{Y}) \leq \delta^+_{\underset{\pmb{lim},\frac{\alpha}{2}}{\underline{\alpha}}}\right) \text{ avec } \delta^+_{\underset{\pmb{lim},\frac{\alpha}{2}}{\underline{\alpha}}}\left\{\begin{array}{l} = q_{1-\frac{\alpha}{2}}(\mathcal{N}(0,1)) \\ \simeq 1.96 \text{ si } \alpha = 5\% \end{array}\right.$$

$$1 - \alpha \simeq \mathbb{P}\left(-\delta_{\mathit{lim},\frac{\alpha}{2}}^{+} \leq \frac{\widehat{\theta^{\bullet}}\left(\mathbf{Y}\right) - \underline{\theta^{\bullet}}}{\widehat{\sigma_{\widehat{\theta^{\bullet}}}}\left(\mathbf{Y}\right)} \leq \delta_{\mathit{lim},\frac{\alpha}{2}}^{+}\right)$$

$$1 - \alpha \simeq \mathbb{P}\left(-\delta_{\lim,\frac{\alpha}{2}}^{+} \times \widehat{\sigma_{\widehat{\theta^{\bullet}}}}\left(\mathbf{Y}\right) \leq \widehat{\theta^{\bullet}}\left(\mathbf{Y}\right) - \underline{\theta^{\bullet}} \leq \delta_{\lim,\frac{\alpha}{2}}^{+} \times \widehat{\sigma_{\widehat{\theta^{\bullet}}}}\left(\mathbf{Y}\right)\right)$$

$$1 - \alpha \simeq \mathbb{P}\left(-\delta_{\lim,\frac{\alpha}{2}}^{+} \times \widehat{\sigma_{\widehat{\theta^{\bullet}}}}\left(\mathbf{Y}\right) \leq \underline{\theta^{\bullet}} - \widehat{\theta^{\bullet}}\left(\mathbf{Y}\right) \leq \delta_{\lim,\frac{\alpha}{2}}^{+} \times \widehat{\sigma_{\widehat{\theta^{\bullet}}}}\left(\mathbf{Y}\right)\right)$$

$$1 - \alpha \simeq \mathbb{P}\bigg(\underbrace{\widehat{\theta^{\bullet}}\left(\mathbf{Y}\right) - \delta_{\lim,\frac{\alpha}{2}}^{+} \times \widehat{\sigma_{\widehat{\theta^{\bullet}}}}\left(\mathbf{Y}\right)}_{\widehat{\theta^{\bullet}}_{\inf}\left(\mathbf{Y}\right)} \leq \underbrace{\widehat{\theta^{\bullet}}\left(\mathbf{Y}\right) + \delta_{\lim,\frac{\alpha}{2}}^{+} \times \widehat{\sigma_{\widehat{\theta^{\bullet}}}}\left(\mathbf{Y}\right)}_{\widehat{\theta^{\bullet}}_{\sup}\left(\mathbf{Y}\right)}\bigg)$$

Construisons un premier échantillon y_[1]!

L'intervalle de confiance calculé à partir de $\mathbf{y}_{[1]}$ est "bon" dans sa mission ssi

$$\boxed{\theta^{\bullet} \in \left[\widetilde{\theta^{\bullet}}_{\inf}\left(\mathbf{y_{[1]}}\right), \widetilde{\theta^{\bullet}}_{\sup}\left(\mathbf{y_{[1]}}\right)\right]} \Leftrightarrow \boxed{\delta_{\widehat{\theta^{\bullet}}, \theta^{\bullet}}(\mathbf{y_{[1]}}) \in \left[-\delta^{+}_{\lim, \frac{\alpha}{2}}, \delta^{+}_{\lim, \frac{\alpha}{2}}\right]}$$

Construisons un deuxième échantillon $y_{[2]}$!

L'intervalle de confiance calculé à partir de $\mathbf{y}_{[2]}$ est "bon" dans sa mission ssi

$$\boxed{\theta^{\bullet} \in \left[\widetilde{\theta^{\bullet}}_{\inf}\left(\mathbf{y_{[2]}}\right), \widetilde{\theta^{\bullet}}_{\sup}\left(\mathbf{y_{[2]}}\right)\right]} \Leftrightarrow \boxed{\delta_{\widehat{\theta^{\bullet}}, \theta^{\bullet}}(\mathbf{y_{[2]}}) \in \left[-\delta^{+}_{\lim, \frac{\alpha}{2}}, \delta^{+}_{\lim, \frac{\alpha}{2}}\right]}$$

Construisons un m^{eme} échantillon $y_{[m]}$!

L'intervalle de confiance calculé à partir de $\mathbf{y}_{[m]}$ est "bon" dans sa mission ssi

$$\boxed{\boldsymbol{\theta^{\bullet}} \in [\widetilde{\boldsymbol{\theta^{\bullet}}}_{\inf}\left(\mathbf{y_{[m]}}\right), \widetilde{\boldsymbol{\theta^{\bullet}}}_{\sup}\left(\mathbf{y_{[m]}}\right)]} \Leftrightarrow \boxed{\boldsymbol{\delta_{\widehat{\boldsymbol{\theta^{\bullet}}}}, \boldsymbol{\theta^{\bullet}}}(\mathbf{y_{[m]}}) \in [-\delta_{\lim,\frac{\alpha}{2}}^{+}, \delta_{\lim,\frac{\alpha}{2}}^{+}]}$$

Interprétation par l'A.E.P. : nous imaginons disposer d'une infinité d'intervalles de confiance dont une proportion (\simeq) $1-\alpha$ (i.e. niveau de confiance) sont "bons", i.e. contiennent le paramètre θ^{\bullet} inconnu. Obtention de $[\widetilde{\theta^{\bullet}}_{inf}(\mathbf{y}),\widetilde{\theta^{\bullet}}_{sup}(\mathbf{y})]$ le jour \mathbf{J} : équivalent à un choix au hasard d'un unique intervalle de confiance parmi cette infinité!!!

- **1** niveau de confiance $1 \alpha = 100\%$:
 - $n = 10 : [?,?], [?,?], [?,?], \cdots$
 - $n = 100 : [?,?], [?,?], [?,?], \cdots$
 - $n = 1000 : [?,?], [?,?], [?,?], \cdots$

- **1** niveau de confiance $1 \alpha = 100\%$:
 - $n = 10 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots$
 - $n = 100 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots$
 - $n = 1000 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots$

```
1 niveau de confiance 1 - \alpha = 100\%:
          n = 10 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots
         n = 100 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots
          n = 1000 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots
2 niveau de confiance 1 - \alpha = 95\%:
          n = 10 : [-0.118, 0.718], [-0.096, 0.296], [-0.199, 0.999], \cdots
          n = 100 : [0.129, 0.311], [0.077, 0.263], [0.101, 0.319], \cdots
         n = 1000 : [0.197, 0.263], [0.185, 0.247], [0.162, 0.222], \cdots
3 niveau de confiance 1 - \alpha = 50\%:
         n = 10 : [0.156, 0.444], [0.033, 0.167], [0.194, 0.606], \cdots
          n = 100 : [0.189, 0.251], [0.138, 0.202], [0.173, 0.247], \cdots
          n = 1000 : [0.219, 0.241], [0.205, 0.227], [0.182, 0.202], \cdots
4 niveau de confiance 1 - \alpha = 10\%:
          n = 10 : [0.273, 0.327], [0.087, 0.113], [0.362, 0.438], \cdots
          n = 100 : [0.214, 0.226], [0.164, 0.176], [0.203, 0.217], \cdots
          n = 1000 : [0.228, 0.232], [0.214, 0.218], [0.19, 0.194], \cdots
```

```
1 niveau de confiance 1 - \alpha = 100\%:
          n = 10 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots
         n = 100 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots
          n = 1000 : [0, +\infty], [0, +\infty], [0, +\infty], \cdots
2 niveau de confiance 1 - \alpha = 95\%:
          n = 10 : [-0.118, 0.718], [-0.096, 0.296], [-0.199, 0.999], \cdots
          n = 100 : [0.129, 0.311], [0.077, 0.263], [0.101, 0.319], \cdots
         n = 1000 : [0.197, 0.263], [0.185, 0.247], [0.162, 0.222], \cdots
3 niveau de confiance 1 - \alpha = 50\%:
         n = 10 : [0.156, 0.444], [0.033, 0.167], [0.194, 0.606], \cdots
          n = 100 : [0.189, 0.251], [0.138, 0.202], [0.173, 0.247], \cdots
          n = 1000 : [0.219, 0.241], [0.205, 0.227], [0.182, 0.202], \cdots
4 niveau de confiance 1 - \alpha = 10\%:
          n = 10 : [0.273, 0.327], [0.087, 0.113], [0.362, 0.438], \cdots
          n = 100 : [0.214, 0.226], [0.164, 0.176], [0.203, 0.217], \cdots
          n = 1000 : [0.228, 0.232], [0.214, 0.218], [0.19, 0.194], \cdots
```

Ech	antillons ge	énérés avec μ	noins inconnu du statisticien)	
j	$\widehat{\mu^ullet}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}} ight)$	$\mu^{\bullet} \in [\widetilde{\mu^{\bullet}}_{inf}(\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup}(\mathbf{y_{[j]}})]?$
:	:	:	:	:
7	0.22	0.187	0.253	1
8	0.222	0.19	0.254	1
9	0.186	0.157	0.215	1
10	0.216	0.184	0.248	1
11	0.198	0.168	0.228	1
12	0.228	0.195	0.261	1
13	0.198	0.168	0.228	1
	:	:	:	:
$\mathbb{P}\left(\mu\right)$	$ullet \in [\widetilde{\mu^ullet}_{inf}(Y)$	$\overline{,\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{Y}\right)]} \simeq T$	95.14%	

Echan	tillons géne	érés avec μ^{ullet} :	oins inconnu du statisticien)	
j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}} ight)$	$\mu^{\bullet} \in \widetilde{\mu^{\bullet}}_{inf} (\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup} (\mathbf{y_{[j]}})]?$
:	:	:	:	:
7231	0.235	0.2	0.27	0
7232	0.194	0.165	0.223	1
7233	0.192	0.165	0.219	1
7234	0.195	0.165	0.225	1
7235	0.18	0.151	0.209	1
7236	0.181	0.153	0.209	1
7237	0.191	0.161	0.221	1
:	:	:	:	:
$\mathbb{P}\left(\mu^{\bullet}\in\right)$	$\widetilde{[\widetilde{\mu^{ullet}}_{inf}(\mathbf{Y}),\widetilde{\mu^{c}}}$	(\mathbf{Y}) \simeq Tau	95.14%	

Echan	Echantillons générés avec $\mu^{ullet}=0.2$ [(néanmoins inconnu du statisticien)					
j	$\widehat{\mu^ullet}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}} ight)$	$\mu^{\bullet} \in [\widetilde{\mu^{\bullet}}_{inf}(\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup}(\mathbf{y_{[j]}})]?$		
:	:	:	:	:		
1284	0.197	0.165	0.229	1		
1285	0.224	0.191	0.257	1		
1286	0.155	0.128	0.182	0		
1287	0.203	0.172	0.234	1		
1288	0.218	0.188	0.248	1		
1289	0.206	0.175	0.237	1		
1290	0.178	0.152	0.204	1		
:	÷	:	i i	:		
$\boxed{\mathbb{P}\left(\mu^{\bullet}\in\right.}$	$\widetilde{[\widetilde{\mu^{ullet}}_{inf}(\mathbf{Y}),\widetilde{\mu^{ullet}}]}$	(\mathbf{Y}) \simeq Tau	x de succès=	95.14%		

Question : $\mathbb{P}(\mu^{\bullet} \in [0.172, 0.234]) = ?$

4 D > 4 D > 4 E > 4 E > E 9 Q C

Echan	Echantillons générés avec $\mu^{ullet}=0.2$ [(néanmoins inconnu du statisticien)					
j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}} ight)$	$\mu^{\bullet} \in [\widetilde{\mu^{\bullet}}_{inf}(\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup}(\mathbf{y_{[j]}})]?$		
1 :	:	:	:	:		
1284	0.197	0.165	0.229	1		
1285	0.224	0.191	0.257	1		
1286	0.155	0.128	0.182	0		
1287	0.203	0.172	0.234	1		
1288	0.218	0.188	0.248	1		
1289	0.206	0.175	0.237	1		
1290	0.178	0.152	0.204	1		
:	:	:	÷	:		
$\mathbb{P}\left(\mu^{\bullet}\in\right)$	$= [\widetilde{\mu^{ullet}}_{inf}(\mathbf{Y}), \widetilde{\mu^{c}}_{inf})$	(\mathbf{Y}) $\simeq Tau$	x de succès=	95.14%		

Question : $\mathbb{P}(\mu^{\bullet} \in [0.172, 0.234]) = 95\%$?

Echantillons générés avec $\mu^{ullet}=0.2$ [(néanmoins inconnu du statistic					
j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}}\right)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}}\right)$	$\mu^{\bullet} \in [\widetilde{\mu^{\bullet}}_{inf}(\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup}(\mathbf{y_{[j]}})]?$	
:	:	:	:	:	
1284	0.197	0.165	0.229	1	
1285	0.224	0.191	0.257	1	
1286	0.155	0.128	0.182	0	
1287	0.203	0.172	0.234	1	
1288	0.218	0.188	0.248	1	
1289	0.206	0.175	0.237	1	
1290	0.178	0.152	0.204	1	
:	:	:	:	i:	
$\boxed{\mathbb{P}\left(\mu^{\bullet}\in\right.}$	$\widetilde{[\mu^{ullet}_{inf}(\mathbf{Y}),\widehat{\mu^{ullet}}]}$	$\bullet_{sup}(\mathbf{Y})] \simeq Tau$	95.14%		

$$\text{Réponse}: \mathbb{P}\Big(\mu^{\bullet} \in [\underbrace{\widetilde{\mu^{\bullet}}_{\text{inf}}\left(\mathbf{y_{[1287]}}, \underbrace{\widetilde{\mu^{\bullet}}_{\text{sup}}\left(\mathbf{y_{[1287]}}\right)}_{0.234}]}] = 100\%$$

Echan	Echantillons générés avec $\mu^{ullet}=0.2$ [(néanmoins inconnu du statisticien)					
j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}} ight)$	$\mu^{\bullet} \in [\widetilde{\mu^{\bullet}}_{inf}(\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup}(\mathbf{y_{[j]}})]?$		
:	:	:	:	:		
1284	0.197	0.165	0.229	1		
1285	0.224	0.191	0.257	1		
1286	0.155	0.128	0.182	0		
1287	0.203	0.172	0.234	1		
1288	0.218	0.188	0.248	1		
1289	0.206	0.175	0.237	1		
1290	0.178	0.152	0.204	1		
:	:	:	:	:		
$\mathbb{P}\left(\mu^{\bullet}\in\right)$	$= [\widetilde{\mu^{ullet}}_{inf}(\mathbf{Y}), \widetilde{\mu^{c}}_{inf})$	$\left[\mathbf{Y}_{sup}\left(\mathbf{Y}\right) \right] \simeq Tau$	95.14%			

 $\mathsf{Question}: \mathbb{P}\Big(\mu^{\bullet} \in \widetilde{\mu^{\bullet}}_{\mathsf{inf}}\left(\mathsf{y}\right), \widecheck{\mu^{\bullet}}_{\mathsf{sup}}\left(\mathsf{y}\right)]\Big) = \ ?$

4日 > 4日 > 4目 > 4目 > 目 り9(で)

Echan	Echantillons générés avec $\mu^{ullet}=0.2$ [(néanmoins inconnu du statisticien)					
j	$\widehat{\mu^ullet}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}} ight)$	$\mu^{\bullet} \in [\widetilde{\mu^{\bullet}}_{inf}(\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup}(\mathbf{y_{[j]}})]?$		
:	:	:	:	:		
1284	0.197	0.165	0.229	1		
1285	0.224	0.191	0.257	1		
1286	0.155	0.128	0.182	0		
1287	0.203	0.172	0.234	1		
1288	0.218	0.188	0.248	1		
1289	0.206	0.175	0.237	1		
1290	0.178	0.152	0.204	1		
:	:	:	:	:		
$\mathbb{P}\left(\mu^{\bullet} \in \mathbb{R}^{n}\right)$	$\widetilde{\left[\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{Y} ight),\widetilde{\mu^{ullet}} ight]}$	$\bullet_{sup}(\mathbf{Y})] \simeq Tau$	95.14%			

Réponse : $\mathbb{P}\left(\mu^{\bullet} \in \widetilde{\mu^{\bullet}}_{\mathsf{inf}}\left(\mathbf{y}\right), \widetilde{\mu^{\bullet}}_{\mathsf{sup}}\left(\mathbf{y}\right)\right]\right) = 0\%$ ou 100%

Echan	Echantillons générés avec $\mu^{ullet}=0.2$ [(néanmoins inconnu du statisticien)					
j	$\widehat{\mu^ullet}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}} ight)$	$\mu^{\bullet} \in [\widetilde{\mu^{\bullet}}_{inf}(\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup}(\mathbf{y_{[j]}})]?$		
:	:	:	:	:		
1284	0.197	0.165	0.229	1		
1285	0.224	0.191	0.257	1		
1286	0.155	0.128	0.182	0		
1287	0.203	0.172	0.234	1		
1288	0.218	0.188	0.248	1		
1289	0.206	0.175	0.237	1		
1290	0.178	0.152	0.204	1		
:	:	:	:	:		
$\mathbb{P}\left(\mu^{\bullet} \in \mathbb{R}^{n}\right)$	$\widetilde{\left[\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{Y} ight),\widetilde{\mu^{ullet}} ight]}$	$\bullet_{sup}(\mathbf{Y})] \simeq Tau$	95.14%			

 $\mathsf{Question}: \mathbb{P}\Big(\mu^{\bullet} \in \widetilde{[\mu^{\bullet}}_{\mathsf{inf}}(\mathsf{Y}), \widetilde{\mu^{\bullet}}_{\mathsf{sup}}(\mathsf{Y})\!]\Big) = \ ?$

Echan	Echantillons générés avec $\mu^{ullet}=0.2$ [(néanmoins inconnu du statisticien)					
j	$\widehat{\mu^{ullet}}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{inf}\left(\mathbf{y_{[j]}} ight)$	$\widetilde{\mu^{ullet}}_{sup}\left(\mathbf{y_{[j]}} ight)$	$\mu^{\bullet} \in [\widetilde{\mu^{\bullet}}_{inf}(\mathbf{y_{[j]}}), \widetilde{\mu^{\bullet}}_{sup}(\mathbf{y_{[j]}})]?$		
:	:	:	:	:		
1284	0.197	0.165	0.229	1		
1285	0.224	0.191	0.257	1		
1286	0.155	0.128	0.182	0		
1287	0.203	0.172	0.234	1		
1288	0.218	0.188	0.248	1		
1289	0.206	0.175	0.237	1		
1290	0.178	0.152	0.204	1		
:	:	:	:	:		
$\mathbb{P}\left(\mu^{\bullet}\in\right)$	$= [\widetilde{\mu^{ullet}}_{inf}(\mathbf{Y}), \widetilde{\mu^{c}}_{inf})$	$\left[\mathbf{Y}_{sup}\left(\mathbf{Y}\right) \right] \simeq Tau$	95.14%			

Réponse : $\mathbb{P}\left(\mu^{\bullet} \in \widetilde{\mu^{\bullet}}_{\inf}(\mathbf{Y}), \widetilde{\mu^{\bullet}}_{\sup}(\mathbf{Y})\right) = 95\%$

Application: Salaire Juste

Considérons (le **jour J**) disposer d'un échantillon **y** des Salaires Justes de n individus du Pays. Ce jeu de données est noté yJ en R. Les formules des intervalles de confiance à 95% pour μ^J et σ_J^2 s'obtiennent très facilement :

Application: Salaire Juste

Considérons (le **jour J**) disposer d'un échantillon **y** des Salaires Justes de n individus du Pays. Ce jeu de données est noté yJ en R. Les formules des intervalles de confiance à 95% pour μ^J et σ_J^2 s'obtiennent très facilement :

$$\begin{cases} \widehat{\mu^{J}}_{\text{inf}}(\mathbf{y}) \\ \widehat{\mu^{J}}_{\text{sup}}(\mathbf{y}) \end{cases} = \widehat{\mu^{J}}(\mathbf{y}) + \begin{cases} -1 \\ 1 \end{cases} \times \delta^{+}_{\lim,\alpha/2} \widehat{\sigma_{\widehat{\mu}^{J}}}(\mathbf{y}) \\ \stackrel{\mathbb{R}}{=} \max(\mathbf{yJ}) + \mathbf{c}(-1,1) * \operatorname{qnorm}(.975) * \operatorname{seMean}(\mathbf{yJ}) \\ \simeq [100.06, 101.36] \end{cases}$$

Application : Salaire Juste

Considérons (le **jour J**) disposer d'un échantillon **y** des Salaires Justes de n individus du Pays. Ce jeu de données est noté yJ en R. Les formules des intervalles de confiance à 95% pour μ^J et σ_J^2 s'obtiennent très facilement :

$$\begin{cases} \widehat{\sigma_{J\inf}^{2}(\mathbf{y})} & = \widehat{\sigma_{J}^{2}}(\mathbf{y}) + \begin{Bmatrix} -1 \\ 1 \end{Bmatrix} \times \delta_{\lim,\alpha/2}^{+} \widehat{\sigma_{\sigma_{J}^{2}}^{2}}(\mathbf{y}) \\ & \stackrel{\mathbb{R}}{=} \operatorname{var}(\mathbf{yJ}) + \operatorname{c}(-1,1) * \operatorname{qnorm}(.975) * \operatorname{seVar}(\mathbf{yJ}) \\ & \simeq [86.53, 134.06] \end{cases}$$