Universidad de Cádiz

PROGRAMACIÓN LINEAL

Antonio J. Arriaza Gómez Manuel Muñoz Márquez Francisco J. Navarro Izquierdo Inmaculada Espejo Miranda J. Carlos García Ortega

Índice general

1.	Intro	ducción	5
2.	Prog	ramación lineal	7
	2.1.	Objetivo de la programación lineal e interpretación en \mathbb{R}^3	7
	2.2.	Definiciones	8
		2.2.1. Forma matricial y conversión de formato	9
		2.2.2. Resolución gráfica de un P.P.L	12
		2.2.3. Tipos de P.P.L. según las soluciones	12
	2.3.	Geometría de conjuntos convexos	13
	2.4.	Teorema Fundamental de la P.L	15
		2.4.1. Hipótesis de partida	15
3.	Méto	odo Simplex	27
4.	Prob	lema dual de la programación lineal	29
5.	Anál	isis de post-optimalidad	31
6.	Prob	lemas de transportes	33

Introducción

Programación lineal

2.1. Objetivo de la programación lineal e interpretación en \mathbb{R}^3

El objetivo de la programación lineal es resolver el problema de minimizar o maximizar una función $f:\mathbb{R}^n \to \mathbb{R}$ restringida a un dominio $D\subset \mathbb{R}^n$ de manera que tanto f como D cumplan ciertas condiciones.

(a) Una aplicación f lineal (b) Una D región dada por res- (c) La aplicación lineal f restricciones tringida a D

A la función $f:\mathbb{R}^n\to\mathbb{R}$ se le pide que sea lineal y a D que sea un conjunto definido por desigualdades lineales.

2.2. Definiciones

Definición 1: Problema de programación lineal

Un problema de programación lineal (PPL) es un problema matemático que se puede expresar de la siguiente forma:

Hallar el máximo / mínimo de una función lineal, $f(x) = c_1x_1 + c_2 + x_2 + ... + c_nx_n$ sujeto a una serie de restricciones que podemos expresar como:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1 \\ \dots \\ a_{s1}x_1 + a_{s2}x_2 + \dots + a_{sn}x_n \leq b_s \\ \dots \\ a_{t1}x_1 + a_{t2}x_2 + \dots + a_{tn}x_n \leq b_t \\ \dots \\ a_{t+1,1}x_1 + a_{t+1,2}x_2 + \dots + a_{t+1,n}x_n = b_{t+1} \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Donde $x_i, a_{ij}, b_j \in \mathbb{R}$ para todo $1 \le i \le n$, $1 \le j \le m$.

Nótese que lo que expresa entre llaves corresponde a una restricción que puede ser hecha a través de desigualdades o igualdades.

Se supone sin pérdida de generalidad que $b_j \ge 0$ con $1 \le j \le m$ (de no ser así bastaría con multiplicar por (-1)).

Definición 2: Formato Estándar de un P.P.L

Un P.P.L está en formato estándar si está expresado de la siguiente forma:

$$\begin{aligned} & \min \big/ \max \quad c_1 x_1 + c_2 x_2 + \dots + c_n x_n \\ & \\ \text{S.a} & \begin{cases} a_{11} x_1 & + & a_{12} x_2 & + & \dots & + & a_{1n} x_n & = & b_1 \\ a_{21} x_1 & + & a_{22} x_2 & + & \dots & + & a_{2n} x_n & = & b_2 \\ \vdots & & \vdots & & \vdots & & \vdots & \vdots \\ a_{m1} x_1 & + & a_{m2} x_2 & + & \dots & + & a_{mn} x_n & = & b_m \end{cases}$$

 $\operatorname{con} x_i \geq 0 \operatorname{para} 1 \leq i \leq n \operatorname{y} b_j \geq 0 \operatorname{para} 1 \leq j \leq m.$

2.2.1. Forma matricial y conversión de formato

El problema de programación lineal puede expresarse de forma matricial como:

$$\min / \max c^t x$$

s.a
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

con $b \ge 0$. De esta forma se tiene que

- $c^t x := \text{función objetivo}$
- = x := variables de decisión
- c := vector de costos
- lacksquare A:= matriz de coeficientes tecnológicos
- $c^t x := \text{vector de recursos}$

Dado cualquier P.P.L siempre es posible transformarlo en otro P.P.L equivalente (con las mismas soluciones) en formato estándar.

Conversión de variables

- En el caso de que una variable sea $x_i \leq 0$ se transforma creando una nueva variable $x_i^* = -x_i \geq 0$. De esta forma siempre que aparezca x_i la sustituiremos por $-x_i^*$.
- En el caso de que x_i sea libre se expresa como la diferencia de dos nuevas variables la correspondiente a la parte positiva y a la negativa $(x_i^+$ y x_i^- respectivamente) quedando $x_i = x_i^+ x_i^-$ con $x_i^+, x_i^- \geq 0$. Como ocurría en el caso anterior, se sustituye la variable en cuestión por $x_i^+ x_i^-$.

Conversión de restricciones

■ Si nos encontramos con una restricción del tipo ≥,

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n \le b_j,$$

se añade una nueva variable $s_j \geq 0$ y se suma al primer miembro de la desigualdad de modo que esta quedaría de la forma

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n + s_i = b_i$$
.

■ Si nos encontramos con una restricción del tipo ≤

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

vuelve a introducirse una variable $s_j \geq 0$, pero en este caso se resta al primer miembro de la desigualdad de modo que la esta quedaría de la forma

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n - s_j = b_j.$$

A las variables s_j se las denominan variables de holgura.

Conversión del vector de recursos

Si $b_j < 0$ entonces multiplicamos por (-1) la restricción j-ésima o lo que es equivalente, la fila j-ésima de la matriz A y del vector de recursos b.

Ejemplo 1

Pasar a formato estándar el siguiente problema

s.a
$$\begin{cases} x_1 - x_2 + 4x_3 & \leq 17 \\ x_1 + x_2 + x_3 + x_4 & = 100 \\ 3x_1 + 2x_2 + 9x_3 - 8x_4 & \geq 5 \\ -x_1 + x_2 - x_3 - 4x_4 & \geq -3 \end{cases}$$

con $x_1 \le 0$, $x_2 \ge 0$, x_3 libre y $x_4 \ge 0$.

Esto es, los problemas

$$\text{s.a} \left\{ \begin{array}{lll} a_{11}x_1 & +a_{12}x_2 & \text{máx} & c_1x_1+c_2x_2+0s_1+0s_2 \\ a_{21}x_1 & +a_{22}x_2 & \leq & b_2 \\ & x_1,x_2 & \geq & 0 \end{array} \right. = \left\{ \begin{array}{lll} a_{11}x_1 & +a_{12}x_2 & +s_1 & = & b_1 \\ a_{21}x_1 & +a_{22}x_2 & +s_2 & = & b_2 \\ & x_1,x_2,s_1,s_2 & \geq & 0 \end{array} \right.$$

son equivalentes, siendo sus soluciones $x=(x_1,x_2)$ y $x'=(x_1,x_2,s_1,s_2)$ respectivamente.

Para empezar, el dominio que define el problema (II) coincide con el que define el problema (I) cuando se tienen en cuenta sólo las variables x_1 , x_2 . Es decir, cuando se re... en ese subespacio. Además, las variables s_1 y s_2 no están presentes en la función objetivo, por lo que los valores de la f.o. en ambos problemas debe coincidir.

Sea x la solución factible de $[P_1]$. Entonces $x=(x_1,x_2)$ verifica que

$$a_{11}x_1 + a_{12}x_2 \le b_1$$

$$a_{21}x_1 + a_{22}x_2 \le b_2$$

$$x_1, x_2 \ge 0$$

por lo que tomando

$$s_1 = b_1 - a_{11}x_1 - a_{12}x_2 \le 0$$

$$s_2 = b_2 - a_{21}x_1 - a_{22}x_2 \le 0$$

entonces el vector $x'=(x_1,x_2,s_1,s_2)$ es solución de $[P_2]$. De la misma forma se prueba que $[P_2]$ tiene las mismas soluciones que $[P_1]$.

Definición 3: Solución factible

Dado un P.P.L [P]

$$[P] \quad \min_{\text{s.a}} \begin{cases} Ax &= b \\ x & \geq 0 \end{cases}$$

se dice que x_0 es solución factible para [P] si cumple que $Ax_0 = b$ y $x_0 \ge 0$.

Definición 4: Región factible

El conjunto formado por todos los puntos factibles se denomina región factible y se denotará por ${\cal R}.$

Definición 5: Solución óptima

Se dice que $x_0 \in \mathbb{R}^n$ es solución óptima de [P] si es factible y cumple que $c^t x \geq c^t x_0$ para todo $x \in R$.

2.2.2. Resolución gráfica de un P.P.L.

Ejemplo 2

Una fábrica de dos tipos de juguetes: **soldados** y **trenes**. Cada soldado se vende por 27 u.m. y se gastan 10 u.m. en materia prima para su fabricación. Cada tren se vende por 21 u.m. y se necesitan para su fabricación 9 u.m. de materia prima. Cada tren eleva el coste de producción en 10 u.m. y cada soldado en 14 u.m. Ambos juguetes necesitan un ensamblado y un acabado, siendo necesarias 1 h. para el acabado y 1 h para el ensamblado de cada tren y 1 h. de ensamblado y 2h. de acabado para cada soldado.

Se disponen de 100 h. de acabados y 80 h. de ensamblado semanales. Además, en esta franja de tiempo sólo pueden venderse 40 soldados como máximo.

¿Cuántos soldados y trenes debemos producir por semana para obtener el máximo beneficio?

- (a) Todas las restricciones
- (b) Intersección restricciones
- (c) Dirección soluciones

Definición 6: Restricción activa

Dado un P.P.L [P] se dice que una restricción está activa en x_0 si se cumple por igualdad en x_0 .

En el ejemplo 2.2.2, la restricción $s+t \le 80$ está activa en $x_0 = (20,60)$ pues 20+60 = 80.

2.2.3. Tipos de P.P.L. según las soluciones

Podemos clasificar todos los P.P.L:

• Si $R = \emptyset$ entonces diremos que el problema es infactible, no tiene solución.

- Si $R \neq \emptyset$ entonces el problema puede:
 - 1. Tener solución óptima, única o múltiple (infinitas soluciones).
 - 2. Ser no acotado, es decir, se encuentran soluciones que minimizan(maximizan) la función objetivo tanto como se quiere.

A continuación se ilustran los diferentes casos de forma gráfica.

METE GRÁFICOS

2.3. Geometría de conjuntos convexos

Definición 7: Conjunto convexo

Un conjunto $S\subseteq\mathbb{R}^n$ se dice convexo si dados $x,y\in S$ se tiene que $\lambda x+(1-\lambda)y\in S$ para cualquier $\lambda\in(0,1)$.

Proposición 1

La intersección finita de conjuntos convexos es convexa.

Demostración. Sean S_1, S_2, \ldots, S_k conjuntos convexos de \mathbb{R}^n con $k \in \mathbb{N}$ y denotemos

$$S = \bigcap_{i=1}^{k} S_i.$$

Dados $x,y\in S$ entonces $x,y\in S_i$ para todo $i=1,\ldots,k$. Como cada S_i es convexo, dado $\lambda\in(0,1)$ se tiene que $\lambda x+(1-\lambda)y\in S_i$ para cada $i=1,\ldots,k$ y por tanto $\lambda x+(1-\lambda)y\in S$.

Luego S es convexo.

Definición 8

Sea $a \in \mathbb{R}^n$ con $a \neq 0$ y $b \in \mathbb{R}^n$, se define como:

- 1. Hiperplano de \mathbb{R}^n al conjunto $H = \{x \in \mathbb{R}^n : a^t x = b\}$.
- 2. Semiespacio cerrado positivo a $H^+ = \{x \in \mathbb{R}^n : a^t x \geq b\}$.
- 3. Semiespacio cerrado negativo a $H^- = \{x \in \mathbb{R}^n : a^t x \leq b\}$.

Definición 9

Un polítopo es un conjunto definido por un número finito de intersecciones de semiespacios o hiperplanos. Si un polítopo es acotado entonces se denomina poliedro.

Observemos, que en un P.P.L la región factible es un polítopo.

Proposición 2

Los polítopos son conjuntos convexos.

Demostración. Teniendo en cuenta la definición 2.3 y la proposición 2.3 basta con demostrar que los semiespacios e hiperplanos son conjuntos convexos.

Sean $x,y\in H^-=\{x\in\mathbb{R}^n:a^tx\leq b\}$ y $\lambda\in(0,1).$ Entonces $a^tx,a^tx\leq b$ y como $\lambda>0$ entonces

$$\lambda(a^t x) \leq \lambda b \tag{2.1}$$

$$(1-\lambda)(a^t y) \leq (1-\lambda)b. \tag{2.2}$$

Sumando las ecuaciones (2.1) y (2.2) se tiene que

$$a^{t}[\lambda x + (1 - \lambda)y] = a^{t}(\lambda x) + a^{t}[(1 - \lambda)y]$$
$$= \lambda(a^{t}x) + (1 - \lambda)(a^{t}y)$$
$$\leq \lambda b + (1 - \lambda)b = b.$$

Luego $\lambda x + (1-\lambda)y \in H^-$ y por tanto es convexo. Para los conjuntos H^+ y H se demuestra de forma similar. \qed

Definición 10: Punto extremo

Dado $S\subseteq\mathbb{R}^n$ convexo, se dice que $e\in S$ es un punto extremo de S si no existen $x,y\in S$ de forma que se puede expresar como $e=\lambda x+(1-\lambda)y$ para algún $\lambda\in(0,1)$.

INCLUIR REP GRAFICA

Definición 11: Dirección de ilimitación (d.d.i.)

Dado $S\subseteq\mathbb{R}^n$ convexo se dice que $d\in\mathbb{R}^n$ es dirección de ilimitación de S si dado $\lambda\geq 0$ entonces $x_0+\lambda d\in S$ para todo $x_0\in S$.

METE GRÁFICOS

Definición 12: Dirección de ilimitación extrema

Dado $S\subseteq\mathbb{R}^n$ convexo se dice que $d\in\mathbb{R}^n$ es d.d.i. extrema de S si no existen $d_1,d_2\in S$ con $d_1\neq d_2$ tal que $d=\lambda_1d_1+\lambda_2d_2$ con $\lambda_1,\lambda_2>0$.

Proposición 3

Sea R la región factible de un P.P.L. entonces d es dirección de ilimitación de R si y sólo si Ad=0 y $d\geq 0$.

Demostración. \implies Si d es d.d.i. entonces para todo $x_0 \in R = \{x \in \mathbb{R} : Ax = b\}$ y $\lambda \geq 0$ se tiene que $x_0 + \lambda d \in R$, es decir

$$A(x_0 + \lambda d) = b$$

$$Ax_0 + \lambda Ad = b$$

$$b + \lambda Ad = b$$

$$\lambda Ad = 0$$

Luego Ad = 0.

 \iff Si Ad=0 entonces dados $x_0\in R$ y $\lambda\geq 0$ se tiene que

$$A(x_0 + \lambda d) = Ax_0 + \lambda Ad = b$$

y por tanto que $x_0 + \lambda d \in R$.

2.4. Teorema Fundamental de la P.L.

2.4.1. Hipótesis de partida

Antes de seguir con los P.P.L. debemos fijar dos hipótesis que son razonables. Dado un problema en formato estándar

$$\min \quad f(x_1, \dots, x_n)$$
 s.a
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

siendo A una matriz de dimensiones $m \times n$ entonces

1. La matriz tenga rango máximo (rg(A) = m) ya que, en caso contrario y como veremos más adelante, alguna de las m restricciones sería innecesaria o el problema sería infactible. A esta hipótesis se la conoce como Hipótesis de rango completo.

2. El número de restricciones será menor que el de incógnitas ($m \le n$). Esta hipótesis se deduce de la anterior.

Es importante resaltar que la matriz A es aquella que resulta de añadir las variables homogéneas, lo que se está pidiendo es que A sea de la forma

$$\begin{bmatrix} & & & \\ &$$

La hipótesis de rango completo asume que todas las filas de A son linealmente independientes. de no ser así podría ocurrir dos cosas:

1. Si la fila i es linealmente dependiente de la fila j en la matriz A pero linealmente independiente en la matriz ampliada $[A \mid b]$ entonces el problema es infactible ya que hay dos restricciones contradictorias.

$$\begin{array}{rclrcl} 2x & + & y & = & 10 \\ 4x & + & 2y & = & 10 \end{array}$$

El sistema no tiene solución, por lo que el problema es infactible.

2. Si la fila i es linealmente dependiente de la fila j en $[A \mid b]$ entonces estamos ante dos restricciones equivalentes y por tanto podemos eliminar una de ellas.

De aquí, se deduce que m no puede ser mayor que n pues si fuese n < m entonces el rango máximo de A sería n y eso significaría que existen filas de A linealmente dependientes dandose así alguno de los casos anteriores. Por tanto podemos suponer sin ningún problema que $m \leq n$.

Dado un P.P.L. en formato estándar

$$\max \quad c^t x$$

$$\mathrm{s.a} \, \left\{ \begin{array}{rcl} Ax & = & b \\ x & \geq & 0 \end{array} \right.$$

siendo

$$\begin{bmatrix} a_1 & \cdots & a_m & \cdots & a_n \end{bmatrix}_{n \times m} \begin{bmatrix} x & & & b \\ & & & & \\ & & & & \end{bmatrix}_{n \times 1} = \begin{bmatrix} b & & \\ & & & \\ & & & \\ & & & \end{bmatrix}_{m \times 1}$$

Como rg(A) = rg(A|b) = m < n entonces el sistema es compatible indeterminado (existen infinitas soluciones).

Nota: El caso m=n es trivial ya que implica que hay solución única y por tanto esa debe ser la óptima.

Las columnas de A deben ser linealmente dependientes y por tanto existe m columnas linealmente independientes. Formemos pues una nueva submatriz B con m columnas de A linealmente independientes. Sin pérdida de generalidad, podemos suponer que tomamos las m primeras. Entonces el sistema se descompone como sigue:

$$\left[\begin{array}{cc} \mathsf{B} & \mathsf{N} \end{array}\right] \left[\begin{array}{c} x_B \\ x_N \end{array}\right] = \left[\begin{array}{c} \mathsf{b} \end{array}\right]. \tag{2.3}$$

El subsistema formado por $Bx_B=b$ tiene solución única pues B es cuadrada con $|B|\neq 0$, lo que significa que si tomamos $x_N=0$ obtenemos una solución para el sistema original

$$Bx_B + N \cdot 0 = b.$$

Definición 13: Solución básica

Dado un P.P.L. en formato estándar, a la solución única x_B procedente de la descomposición (2.3) se la denomina solución básica, y existen como máximo

$$\left(\begin{array}{c} n \\ m \end{array} \right)$$
 posibles soluciones.

Ejemplo 3

Consideremos el problema

s.a
$$\begin{cases} 1x_1 & +4x_2 & -s_1 & = & 17 \\ 0x_1 & +7x_2 & +s_2 & = & 10 \\ x_1 & x_2 & s_1 & s_2 & > & 0 \end{cases}$$

Entonces se tiene que

$$\left(\begin{array}{ccc} 1 & 4 & -1 & 0 \\ 0 & 7 & 0 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ s_1 \\ s_2 \end{array}\right) = \left(\begin{array}{c} 17 \\ 10 \end{array}\right),$$

y por tanto que una descomposición del tipo (2.3) es:

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad x_B = \begin{pmatrix} x_1 \\ s_2 \end{pmatrix}.$$

Quedando que
$$Bx_B=b$$
 y por tanto $x_B=\left(egin{array}{c}17\\10\end{array}\right)$. Luego $x^t=(17,0,0,10)$.

Nota: Existen soluciones básicas no factibles, es decir, no toda solución básica sirve, sólo las soluciones básicas factibles.

Definición 14

En las mismas condiciones de antes, las variables x_i que se corresponden con las columnas de la base B se las denominan Variables básicas.

Al resto se las denominan variables no básicas (y siempre se igualan a cero).

Definición 15

Dada una solución básica, si alguno de sus componentes básicos es cero entonces se lo denomina Solución básica degenerada.

Definición 16: Soluciones básicas adyacentes

Dos soluciones básicas se dicen adyacentes si sus bases son iguales excepto en una columna.

Nota: El siguiente teorema nos da una interpretación geométrica de qué es una solución básica.

Teorema 1

Sea $A_{m \times n} \operatorname{con} rg(A) = m < n$. Sea $R = \{x : Ab = b, \ x \ge 0\}$. Entonces se tiene que x_0 es solución básica factible si y sólo si $x_0 \in R$ y es punto extremo de R.

Demostración. \implies Si x_0 es solución básica factible y por tanto, por ser factible, $x_0 \in R$. Veamos por reducción al absurdo que x_0 es punto extremo de R.

Supongamos pues que x_0 no es punto extremo de R. Entonces existen $x,y\in R$ con $x\neq y$ y $\lambda\in(0,1)$ tal que $x_0=\lambda x+(1-\lambda)y$.

Al ser x_0 solución básica, se puede expresar sin pérdida de generalidad como:

$$x_0 = \begin{pmatrix} x_{01} \\ \vdots \\ x_{0p} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ donde } p \le m.$$

Observemos que se está teniendo en cuenta que x_0 sea una solución básica degenerada. Además, en el caso de que $x_0 = \overline{0}$, este punto es punto extremo de R pues:

$$x_0 = \overline{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + (1 - \lambda) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix},$$

pero $\lambda x_i + (1-\lambda)y_i = 0$ se verifica si y sólo si $x_i = y_i = 0$. Luego $\overline{0}$ es un punto extremo.

Consideremos entonces que $x_{0i} > 0$ para $1 \le i \le p$. Como x_0 es solución básica, se verifica que las primeras p variables o columnas de A son linealmente independientes.

Además, x e y deben tener la siguiente expresión por el mismo argumento de antes:

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_p \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \mathbf{e} \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_p \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Como $x,y\in R$ entonces Ax=Ay=b y por tanto A(x-y)=0. Esto es

$$\left(\begin{array}{cccc} a_1 & \cdots & a_p & \cdots & a_n \end{array}\right) \left(\begin{array}{c} x_1 - y_1 \\ \vdots \\ x_p - y_p \\ 0 \\ \vdots \\ 0 \end{array}\right) = \left(\begin{array}{c} 0 \\ \vdots \\ 0 \end{array}\right),$$

esto es
$$a_1(x_1 - y_1) + a_2(x_2 - y_2) + \dots + a_p(x_p - y_p) = \overline{0}$$
.

Como cada A_i son linealmente independientes entonces $x_i-y_i=0$ para $1\leq i\leq p$. Es decir x=y llegando así a una contradicción. Luego x_0 es un punto extremo de R.

 \iff Sea $x_0 \in R$ con x_0 punto extremo de R. Como $x_0 \in R$ entonces $Ax_0 = b$ y $x_0 \ge 0$. Veamos que x_0 es solución básica. En primer lugar, escribiremos

$$x_0 = \left(\begin{array}{c} x_{01} \\ \vdots \\ x_{0p} \\ 0 \\ \vdots \\ 0 \end{array}\right) \text{ donde } p \leq m.$$

Podemos suponer que $p \leq m$ sin problemas, pues en el caso de que $m se cumple que <math>a_1, a_2, \ldots, a_p$ son columnas de A linealmente dependientes puesto que rg(A) = m por lo que existen unos escalares no todos nulos tales que

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_p a_p = 0.$$

Tomemos $\lambda=(\lambda_1,\ldots,\lambda_m,\ldots,\lambda_p,\ldots,\lambda_n)$, entonces existe $\epsilon>0$ suficientemente pequeño tal que

$$\begin{cases} x_0^+ = x_0 + \epsilon \lambda \in R \\ x_0^- = x_0 - \epsilon \lambda \in R \end{cases}$$

y por construcción $x_0=\frac{1}{2}x_0^++\frac{1}{2}x_0^-\cos x_0^+\neq x_0^-$, por lo que x_0 no sería punto extremo de R.

Supongamos entonces que $p \le m$. Se tiene que si a_1, a_2, \ldots, a_p son columnas linealmente independientes de A entonces x_0 sería solución básica.

Observemos que esto es cierto ya que en el caso de que a_1,a_2,\ldots,a_p fuesen linealmente dependientes, por el mismo razonamiento de antes existirían $x_0^+,x_0^-\in R$ con $x_0^+\neq x_0^-$ tal que $x_0=\frac{1}{2}x_0^++\frac{1}{2}x_0^-$ contradiciendo de esta forma que x_0 sea punto extremo

Por tanto a_1, \ldots, a_p son linealmente independientes y por tanto x_0 es solución básica factible.

¿Qué ocurre si x_0 proviene de columnas linealmente dependientes donde hay un vector linealmente independiente?

$$egin{bmatrix} igcup a_1 & a_2 & a_m & a_{m+1} & a_n \end{bmatrix}$$

Supongamos que $a_{m+1} = a_{m+2} = \cdots = a_n$.

Ejemplo 4

s.a
$$\begin{cases} x_1 & +x_2 & +x_3 & +x_4 & = & 1 \\ 2x_1 & +2x_2 & +2x_3 & & +x_5 & = & 2 \\ & & x_i \geq 0 & 1 \leq i \leq 5 \end{cases}$$

Solución : Sea
$$x_0=\begin{pmatrix}1\\1\\1\\1\end{pmatrix}\in R$$
, como todas las componentes son positivas veamos si

las columnas correspondientes, a_1 , a_2 , a_3 , a_4 son linealmente independientes:

$$\lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3 + \lambda_4 a_4 = 0$$

$$-1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} = 0.$$

$$\operatorname{Sea} \lambda = \begin{pmatrix} -1 \\ -2 \\ -3 \\ 1 \end{pmatrix} \operatorname{y} x_0^+ = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + \epsilon \begin{pmatrix} -1 \\ -2 \\ -3 \\ 1 \end{pmatrix} \operatorname{con} \epsilon \geq 0.$$

Para que $x_0^+\in R$ ha de cumplirse $\left\{ egin{array}{l} Ax_0^+=0 \\ x_0^+\geq 0 \end{array}
ight.$. En primer lugar tenemos que

$$ax_0^+ = A(x_0 + \epsilon \lambda) = Ax_0 + \epsilon \underbrace{A\lambda}_{=0} = Ax_0 = b.$$

En segundo lugar, para que se cumpla $x_0^+ \geq 0$, podemos calcular el mínimo $\epsilon \geq 0$ de manera que se anule sólo una componente de x_0^+ .

$$x_0^+ = \left(\begin{array}{c} 1 - \epsilon \\ 1 - 2\epsilon \\ 1 - 3\epsilon \\ 1 + \epsilon \end{array} \right) \geq 0 \text{, es decir} \quad \begin{array}{c} 1 - \epsilon = 0 & \Longleftrightarrow \quad \epsilon = 1 \\ 1 - 2\epsilon = 0 & \Longleftrightarrow \quad \epsilon = 1/2 \\ 1 - 3\epsilon = 0 & \Longleftrightarrow \quad \epsilon = 1/3 \end{array}$$

por lo que tomando $\epsilon=1/3$ se tiene que $x_0^+=\begin{pmatrix}2/3\\1/3\\0\\4/3\end{pmatrix}\in R$ y ahora las columnas de las .

que proviene x_0^+ son linealmente independientes:

$$a_1, a_2$$
 y $a_3 \equiv \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

Antes de proseguir con el Teorema fundamental de la Programacion lineal (teorema 2.4.1) sería conveniente desarrollar un ejemplo donde mostrar el método cosntructivo que demuestra el teorema.

Ejemplo 5

s.a
$$\begin{cases} x_1 & +x_4 = 2 \\ x_2 & +2x_4 = 3 \\ x_3 & +3x_4 = 4 \end{cases}$$

Solución : Sea
$$x_0=\begin{pmatrix}1/3\\1/3\\1/3\\0\\0\end{pmatrix}\in R$$
, se tiene que una solución básica proviene de resolver

$$\frac{1}{3}a_1 + \frac{1}{3}a_2 + \frac{1}{3}a_3 = b,$$

pero a_1 , a_2 , a_3 son linealmente dependientes, luego existen $\lambda_1=1, \lambda_2=-1, \lambda_3=0 \in \mathbb{R}$ tal que

$$1\left(\begin{array}{c}1\\2\end{array}\right)-1\left(\begin{array}{c}1\\2\end{array}\right)+0\left(\begin{array}{c}1\\2\end{array}\right)=\left(\begin{array}{c}0\\0\end{array}\right).$$

$$\operatorname{Sea} \lambda = \left(\begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} \right) \operatorname{entonces} x_0^+ = \left(\begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \\ 0 \\ 0 \end{array} \right) + \epsilon \left(\begin{array}{c} 1 \\ -1 \\ 0 \\ 0 \\ 0 \end{array} \right) \operatorname{tomando} \epsilon = \frac{1}{3} \operatorname{se \ obtione}$$

$$x_0^+ = \begin{pmatrix} 2/3 \\ 0 \\ 1/3 \\ 0 \\ 0 \end{pmatrix},$$

que es solución factible y proviene de a_1 y a_2 que son linealmente dependientes por lo que debemos repetir el proceso.

$$\operatorname{Sea} \lambda' = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix} \operatorname{entonces} x_0^{++} = \begin{pmatrix} 2/3 \\ 0 \\ 1/3 \\ 0 \\ 0 \end{pmatrix} + \epsilon \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{pmatrix} \operatorname{tomando} \epsilon = \frac{1}{3},$$

$$x_0^+ = \left(egin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}
ight) \in R, \quad ext{por construcción}.$$

Además se tiene que a_1 es linealmente independiente. ¿Pero se puede decir que x_0^{++} es solución básica? Pues sí, en concreto es básica degenerada, porque podemos encontrar m-1 vectores de A que sean linealmente independientes y de manera que forman una base junto con a_1 , sólo tomando que las componentes de dichas columnas sean ceros ya que se tendría que el vector x_0^{++} proviene de una base.

$$\underbrace{a_1 \mid a_1' \quad a_2 \quad \cdots \quad a_{m-1}}_{m \text{ columnas I. indep.}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix},$$

luego el x_0^{++} procede de una base y es solución básica.

De la misma forma si el x_0 original hubiese tenido dos vectores linealmente independientes bastaria con añadir columnas linealmente independientes hasta completar la base y considerar dichas variables basicas nulas obteniendo asi soluciones basicas degeneradas.

Teorema 2: Teorema Fundamental de la Programación Lineal

Dado un P.P.L.

$$\min / \max c^t$$

s.a
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

- 1. Si existe x_0 solución factible de [P] entonces existe x^* solución básica factible óptima de [P].
- 2. Si existe x_0 solución factible óptima de [P] entonces existe x^* solución básica factible óptima de [P].

Demostración. 1. Sea x_0 una solución factible de [P] entonces x_0 se puede escribir co-

mo

$$x_0 = \left(\begin{array}{c} x_{01} \\ \vdots \\ x_{0p} \\ 0 \\ \vdots \\ 0 \end{array}\right) \ \mathrm{donde} \ 0 \leq p \leq n.$$

Para el caso p=0 entonces $x_0=\overline{0}$ es punto extremo y por tanto solución básica(degenerada). Supongamos entonces que $x_{0i}>0$ para $1\leq i\leq p$ con $1\leq p\leq n$.

Basta con demostrar que las columnas de a a_1, a_2, \ldots, a_p asociadas a esos componentes son linealmente independientes para probar que x_0 es solución básica.

Si a_1, a_2, \ldots, a_p fuesen linealmente dependientes entonces existen $\lambda_1, \lambda_2, \ldots, \lambda_p$ escalares no todos nulos tales que

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_p a_p = 0.$$

Definimos $\lambda=(\lambda_1,\ldots,\lambda_p,0,\ldots,0)\in\mathbb{R}^n$ y tomamos

$$x_0^+ = x_0 + \epsilon \lambda = \begin{pmatrix} x_{01} \\ \vdots \\ x_{0p} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \epsilon \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_p \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} x_{01} + \epsilon \lambda_1 \\ \vdots \\ x_{0p} + \epsilon \lambda_p \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

lacksquare Si existe un $\lambda_1 < 0$ (o varios) tomamos

$$\epsilon = \min\left\{ -\frac{-x_{oi}}{\lambda_i} : \lambda_i < 0 \right\}$$

de esa manera obtendríamos un nuevo vector x_0^+ con una componente menos, es decir, ahora tiene p-1 componentes mayores estrictas que cero pero aun así $x_0^+ \in R$ ya que

$$Ax_0^+ = A(x_0 + \epsilon \lambda) = Ax_0 + \epsilon \lambda = b.$$

Como rg(A)=m se tendrá que repitiendo el procedimiento p-m veces obtendremos m componentes linealmente independientes, siendo por tanto x_0 solución básica.

• Si todos los $\lambda_i>0$ tomamos el vector $x_0^-=x_0-\epsilon\lambda$ y por el mismo razonamiento anterior, llegaríamos a un vector en menos componentes estrictamente positivos y sus columnas asociadas linealmente independientes (ver ejemplo 2.4.1).

2. Si existe una solución factible óptima de [P], llamémosla $x_0 \in R$, entonces

$$x_0 = \left(\begin{array}{c} x_0^1 \\ \vdots \\ x_0^p \\ 0 \\ \vdots \\ 0 \end{array}\right) \ \mathsf{con} \ x_0^i > 0 \ \mathsf{para} \ 1 \le i \le p.$$

- lacksquare Si a_1,a_2,\ldots,a_p son columnas de A linealmente independientes entonces x_0 es
- lacksquare Si $a_1,a_2\ldots,a_p$ son columnas de A linealmente dependientes entonces existen $\lambda_1,\dots,\lambda_p$ escalares no todos nulos tales que $\lambda_1a_1+\dots+a_p=0.$ Sea $\lambda^t = (\lambda_1, \dots, \lambda_p, 0, \dots, 0) \in \mathbb{R}^n$ y definamos

$$x_{\epsilon}^+ = x_0 + \epsilon \lambda$$
 y $x_{\epsilon}^- = x_0 - \epsilon \lambda$.

Se puede elegir $\epsilon_0>0$ tal que $x^+_{\epsilon_0},x^-_{\epsilon_0}\in R$. Esto es, $Ax^+_{\epsilon_0}=Ax^-_{\epsilon_0}=b$ y $x_{\epsilon_0}^+, x_{\epsilon_0}^- \leq 0$. Ahora bien,

• Si $c^t \lambda > 0$ entonces

$$c^t x_{\epsilon_0}^+ = c^t x_0 + \epsilon c^t \lambda > c^t x_0 \tag{2.4}$$

$$c^{t}x_{\epsilon_{0}}^{+} = c^{t}x_{0} + \epsilon c^{t}\lambda > c^{t}x_{0}$$

$$c^{t}x_{\epsilon_{0}}^{-} = c^{t}x_{0} - \epsilon c^{t}\lambda < c^{t}x_{0}$$
(2.4)
(2.5)

así pues, las ecuaciones (2.4) y (2.5) si [P] es de maximizar o de minimizar respectivamente, contradicen que x_0 sea la solución óptima.

• Si $c^t \lambda < 0$ entonces

$$c^t x_{\epsilon_0}^- = c^t x_0 - \epsilon c^t \lambda > c^t x_0 \tag{2.6}$$

$$c^{t}x_{\epsilon_{0}}^{-} = c^{t}x_{0} - \epsilon c^{t}\lambda > c^{t}x_{0}$$

$$c^{t}x_{\epsilon_{0}}^{+} = c^{t}x_{0} + \epsilon c^{t}\lambda < c^{t}x_{0}$$

$$(2.6)$$

$$(2.7)$$

así pues, las ecuaciones (2.6) y (2.7) si [P] es de maximizar o de minimizar respectivamente, contradicen que x_0 sea la solución óptima.

• Si $c^t\lambda=0$ entonces $c^tx_0=c^tx_0^+=c^tx_0^-$ por lo que x_0^+ y x_0^- son soluciones con el mismo valor de la función objetivo y con una componente menos estrictamente positiva, por lo que repitiendo el proceso de forma iterativa se llegaria a un $x_{\epsilon}^* = x_0^* \pm \lambda \epsilon$ donde x_{ϵ}^* sea básica y $c^t x_{\epsilon}^* = c^t x_0$.

Corolario 1

Si un polítopo es no vacío entonces el conjunto de puntos extremos es no vacío.

Corolario 2

Si existe solución óptima finita entonces existe una solución óptima finita que es un punto extremo.

Corolario 3

El conjunto de puntos extremos de un polítopo es finito a lo sumo

$$\begin{pmatrix} n \\ m \end{pmatrix}$$
.

Ejemplo 6

Si consideramos n=100 variables y m=30 restricciones y cada sistema básico tarda en resolverse 1 milisegundo, se tiene que:

$$\left(\begin{array}{c} 100 \\ 30 \end{array}\right) = \frac{100!}{70! \cdot 30!} = 29 \cdot 10^{24} = 9195 \text{ billones de años}.$$

El método SIMPLEX, el cual veremos en el próximo capítulo busca la solución óptima entre las soluciones básicas pero sin calcularlas todas.

Método Simplex

Problema dual de la programación lineal

Análisis de post-optimalidad

Problemas de transportes