PCT/KR 0 3 / 0 2 7 7 5

RO/KR 07. 01. 2004

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호:

10-2003-0000645

Application Number

출 원 년 월 일

2003년 01월 06일 JAN 06, 2003

Date of Application

출 원 인: 로체 시스템즈(주)

Applicant(s) RORZE SYSTEMS CORPORATION

THE WAY

2004 년 01 월 02 일

F '

청

COMMISSIONER

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Available Copy

출력 일자: 2004/1/5

【서지사항】

【서류명】 명세서 등 보정서

【수신처】 특허청장

【제출일자】 2003.12.17

【제출인】

【명칭】 로체 시스템즈(주)

[출원인코드] 1-2000-033483-7

【사건과의 관계】 출원인

【대리인】

【성명】 회의남

[대리인코드] 9-1998-000610-1

【포괄위임등록번호】 2002-065690-8

【사건의 표시】

[출원번호] 10-2003-0000645

【출원일자】2003.01.06【심사청구일자】2003.01.06

【발명의 명칭】 유리판절단장치

【제출원인】

【접수번호】 1-1-2003-0003691-39

【접수일자】2003.01.06【보정할 서류】명세서등

【보정할 사항】

[보정대상항목] 별지와 같음

【보정방법】 별지와 같음

【보정내용】 별지와 같음

【취지】 특허법시행규칙 제13조·실용신안법시행규칙 제8조의 규

정에의하여 위와 같 이 제출합니다. 대리인

황이남 (인)

【수수료】

【보정료】 0 원

【추가심사청구료】 0 원

【기타 수수료】 0 원

[합계] 0 원

[첨부서류]

1. 보정내용을 증명하는 서류_1통

출력 일자: 2004/1/5

【보정대상항목】 식별번호 128

【보정방법】 정정

【보정내용】

Coherent(코히어런트) 社製 Nd:YV04 레이저 발진기로 제4고주파(266 μm, 10kb, 1.8 ₩)를 볼록 렌즈로 집광하여, 그 초점을 유리판의 절단 예정선의 첫단에 약 0.3 mm 조사해 초기 크랙을 발생시켰다.

【보정대상항목】 식별번호 129

【보정방법】 정정

【보정내용】

제1 탄산가스 레이저빔은, 10 kb로 평균 출력 250 W필스 발진기의 필스폭을 필스 중심간거리의 40%(이하 "작동조건"이라고 한다. 최대는 60%)로 조정하여 조사했다.

【보정대상항목】 식별번호 130

【보정방법】 정정

【보정내용】

면적 142. 6 mi는, 도 3에 나타내는 타원의 장경a, 단경 b를 측정해 타원으로서 계산했다.

【보정대상항목】 싀별번호 134

【보정방법】 정정

【보정내용】

실시예 1에 있어서 작동조건을 13%로, 제1탄산가스 레이저빔의 조사 면적도 59.2mm 로 좁혔더니, 문제가 없는 스크라이브가 발생했다.

【보정대상항목】 식별번호 136

【보정방법】 정정

【보정내용】

실시예 1에 있어서, 작동조건을 52%, 또 조사 면적도 162.9 때로 증가시켜, 평면 조사 밀도를 0.442joule/때로 유지했더니, 문제가 없는 스크라이브가 발생했다.

【보정대상항목】 싀별번호 138

【보정방법】 정정

【보정내용】

실시예 1에 있어서, 이송속도를 100 mm/초로 감속하여, 작동조건을 20%로, 또조사 타원의 단경도 작게 하여 평면 조사 밀도를 0.758joule/mm로 증가시켜, 냉매도물 단체(單體)로 바꾸었다.

【보정대상항목】 식별번호 139

【보정방법】 정정

【보정내용】

결과는 스크라이브 깊이가 200µm 증가해, 양호한 스크라이브가 발생했다. 냉매를 물 단체로 하면, 스크라이브 깊이가 커지는 경향이 있는 것을 알았다.

【보정대상항목】 식별번호 141

【보정방법】 정정

【보정내용】

실시예 4에 있어서, 이송속도를 300 m/초로 올리고 작동조건도 40%로 올려서 평면 조사 밀도를 0.393joule/md로 유지했더니, 문제가 없는 스크라이브가 발생했다.

【보정대상항목】 식별번호 143

【보정방법】 정정

【보정내용】

실시예 5에 있어서, 작동조건을 32%로 내려 평면 조사 밀도를 0.226joule/때으로 유지했더니, 문제가 없는 스크라이브가 발생했다.

【보정대상항목】 식별번호 145

【보정방법】 정정

【보정내용】

실시예 5에 있어서, 이송속도를 450 mm/초로 한층 더 올리고 작동조건을 26%로 내리며 평면 조사 밀도를 0.18joule/mm'로 했더니, 이 경우도 문제가 없는 스크라이브 가 발생했다.

【보정대상항목】 식별번호 147

【보정방법】 정정

【보정내용】

실시예 5에 있어서, 이송속도를 750 m/초로 한층 더 올리고 작동조건을 26%로 내리며 평면 조사 밀도를 0.041joule/때로 했더니, 스크라이브라인은 발생하지 않았다

【보정대상항목】 식별번호 148

【보정방법】 정정

【보정내용】

즉, 평면 조사 밀도가 0.05joule/때를 밑돌면, 유리판을 절단할 수 없는 것을 알았다.

출력 일자: 2004/1/5

【보정대상항목】 식별번호 152

【보정방법】 정정

【보정내용】

그 후, 인력으로 기계적인 방법으로 절단하여, 스크라이브단면을 보고 헤아렸다. 결과는, 문제는 전혀 없고, 깊이 170㎞의 양질인 스크라이브라인이 생성됐다.

【보정대상항목】 식별번호 154

【보정방법】 정정

【보정내용】

실시예 8에 있어서, 이송속도를 떨어뜨려, 출력율을 올리고 냉매를 물로 바꾸어서, 스크라이브 깊이의 향상을 목표로 평면 조사 밀도를 1.747joule/때까지 주었지만, 깊이는 1904m였다.

【보정대상항목】 식별번호 155

【보정방법】 정정

【보정내용】

또, 스크라이브라인은 직선 모양이어서 실용상 문제는 없지만, 스크라이브면에 큰 파형이 발생하여 한계에 가까우므로 에너지 밀도의 부가는 2 joule/㎡ 이하가 바람 직하다는 것을 알았다.

【보정대상항목】 식별번호 157

【보정방법】 정정

【보정내용】

실시예 8에 있어서, 출력율을 올리고, 스크라이브 깊이의 향상을 목적으로, 평면 조사 밀도를 0.993joule/㎡까지 주었지만, 깊이는 190㎞에 머물렀고, 양질인 스크라이브라인이 생성됐다.

【보정대상항목】 식별번호 159

【보정방법】 정정

【보정내용】

실시예 6의 조건으로 정상적인 스크라이브라인을 발생시킨 후, 재차 같은 300 mm/초의 속도로 제2의 탄산가스 레이저빔을 조사해 0.7 mm 두께의 유리판을 일정 갭으로 접착시키는 액정 표시 패널을 절단한다.

【보정대상항목】 식별번호 160

【보정방법】 정정

【보정내용】

여기에서는 발진원을 2개 가지는 500 W필스형 탄산가스 레이저 발진기의 빔을, 동작조건 36%로 조정하여 후부가 날카로워져서 실질적으로 5 각형모양으로 조사했다.

출력 일자: 2004/1/5

【보정대상항목】 식별번호 162

【보정방법】 정정

【보정내용】

절단은 그 두께 방향에 행해지는 것이기 때문에, 조사 에너지는 유리의 단위 체적당으로 환산한 체적 조사 밀도를 계산해서, 그 값 0.125joule/때를 얻었다.

【보정대상항목】 식별번호 163

【보정방법】 정정

【보정내용】

결과는, 첫단으로부터 50 mm의 부분까지 핵클마크라고 부르는 다소 요철이 형성된 절단면이 나타났지만, 이것은 실용상 문제 없는 것으로, 그 이후는 평활한 절단면이 나타났다.

【보정대상항목】 식별번호 167

【보정방법】 정정

【보정내용】

실시예 11에 있어서, 이송속도를 150 mm/초로 떨어뜨리고, 동작조건을 23%로 저하 시켰더니, 초기 핵클마크는 나타나지 않고, 그 이후도 문제없었다.

출력 일자: 2004/1/5

【보정대상항목】 식별번호 170

【보정방법】 정정

【보정내용】

실시예 13의 결과를 고속 이송으로 확인하기 위해서, 이송속도를 300 mm/초로하고, 동작조건도 50%로 주어 체적 조사 밀도를 0.158joule/때로 했더니, 전혀 문제는 없었다.

【보정대상항목】 식별번호 172

【보정방법】 정정

【보정내용】

실시예 14에 있어, 0.7 mm 두께 대신 1.2 mm 두께의 유리판으로 된 액정 표시 패널로 바꾸었지만, 조사 면적을 59.6 mm로 작게 하여, 체적 조사 밀도를 0.14joule/ 때로 했더니, 전혀 문제는 없었다.

【보정대상항목】 식별번호 174

【보정방법】 정정

【보정내용】

실시예 15의 결과에서, 유리판을 3 mm 두께의 단판(單板)으로 바꾸어 실시했다.

【보정대상항목】 식별번호 175

【보정방법】 정정

【보정내용】

조사 면적을 50.3 때로 좁히고, 이송속도를 늦추어 100 mm/초로 하며, 동작조건도 60%로 주어 체적 조사 밀도를 0.196joule/때로 올렸더니, 큰 파형의 절단면이 되었지만, 실용상은 완전히 문제없는 절단면에서 만났다.

【보정대상항목】 식별번호 178

【보정방법】 정정

【보정내용】

실시예 11에 있어서, 조사 면적을 115㎡로 크게 했더니, 결과는 변하지 않았다. 【보정대상항목】 식별번호 180

【보정방법】 정정

【보정내용】

실시예 17보다 조사 면적을 한층 더 크게 331.5㎡로 했더니, 결과는 실시예 11 과 다르지 않았다.

【보정대상항목】 식별번호 182

【보정방법】 정정

【보정내용】

실시예 11에 있어서, 동작조건을 60%로 주고 이송속도를 100 mm/초로 떨어뜨리며, 조사 면적을 56 mm로 좁히고, 체적 조사 밀도를 0.638joule/mm로 올렸더니, 절단예정선으로부터 크게 옆으로 어긋나 버렸다.

【보정대상항목】 식별번호 184

【보정방법】 정정

【보정내용】

실시예 11에 있어서, 동작조건을 60%로 올렸지만, 조사 면적을 450㎡로 넓게 했더니, 체적 조사 밀도가 0.638joule/때로 작아져서, 에너지 부족 때문에 유리판은 전혀 절단되지 않았다.

【보정대상항목】 식별번호 186

【보정방법】 정정

【보정내용】

실시예 11에 있어서, 제2의 탄산가스 레이저를, 펼스형 레이저 발진기 대신, 연속 범형 240W 탄산가스 레이저 발진기를 사용하여, B렌즈로부터 조사된 범을 원형으로 조사하였더니, 0.7 mm두께의 유리판으로 된 액정 표시 패널을 절단했다.

출력 일자: 2004/1/5

【보정대상항목】 식별번호 187

【보정방법】 정정

【보정내용】

출력율은 40%로, 실시예 11의 결과와 동일한 정도였다.

【보정대상항목】 식별번호 191

【보정방법】 정정

【보정내용】

실시예 19에 있어서, 출력율을 20%로 저하시키자, 체적 조사 밀도는 0.044joule/때로 적게 되고, 전혀 절단되지 않았다.

【보정대상항목】 식별번호 192

【보정방법】 정정

【보정내용】

즉, 실시예 18과 함께 고려하여 볼 때, 체적 조사 밀도가 0.5joule/때 미만에서 는 에너지 부족으로 절단할 수 없는 것을 알았다.

【서지사항】

【서류명】 명세서 등 보정서

【수신처】 특허청장

【제출일자】 2003.12.16

【제출인】

【명칭】 로체 시스템즈(주)

【출원인코드】 1-2000-033483-7

【사건과의 관계】 출원인

【대리인】

【성명】 황이남

【대리인코드】9-1998-000610-1【포괄위임등록번호】2002-065690-8

【사건의 표시】

【출원번호】 10-2003-0000645

【출원일자】2003.01.06【심사청구일자】2003.01.06

【발명의 명칭】 유리판절단장치

【제출원인】

[접수번호] 1-1-2003-0003691-39

【접수일자】2003.01.06【보정할 서류】명세서등

【보정할 사항】

【보정대상항목】별지와 같음【보정방법】별지와 같음

【보정내용】 별지와 같음

【취지】 특허법시행규칙 제13조·실용신안법시행규칙 제8조의 규

정에의하여 위와 같 이 제출합니다. 대리인

황이남 (인)

【수수료】

【보정료】 0 원

【추가심사청구료】 0 원

【기타 수수료】 0 원

[합계] 0 원

【첨부서류】

1. 보정내용을 증명하는 서류_1통

출력 일자: 2004/1/5

【보정대상항목】 식별번호 50

【보정방법】 정정

【보정내용】

 $K = P \times \epsilon \times L \div v$

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0002

【제출일자】 2003.01.06

【국제특허분류】 C03B

【발명의 명칭】 유리판절단장치

【발명의 영문명칭】 Glass-plate cutting machine

【출원인】

【명칭】 로체 시스템즈(주)

【출원인코드】 1-2000-033483-7

【대리인】

【성명】 황이남

 【대리인코드】
 9-1998-000610-1

【포괄위임등록번호】 2002-065690-8

【발명자】

【성명의 국문표기】 유기룡

【성명의 영문표기】 YOU,Ki Yong

【주민등록번호】 631020-1249920

【우편번호】 442-706

【주소】 경기도 수원시 팔달구 망포동 686번지 동수원엘지빌리지

109-1504

【국적】 KR

【발명자】

【성명의 국문표기】 김춘택

【성명의 영문표기】 KIM,Choon Taek

【주민등록번호】 681106-1634329

【우편번호】 442-819

【주소】 경기도 수원시 팔달구 우만1동 498 풍림아파트 1/305호

【국적】 KR

【발명자】

【성명의 국문표기】 안민영

【성명의 영문표기】 AN,Min Young

【주민등록번호】 760628-1543516

【우편번호】 560-784

【주소】 전라북도 전주시 완산구 삼천동 1가 삼천주공아파트 605동 1205

호

【국적】 KR

【발명자】

【성명의 국문표기】 김미지

【성명의 영문표기】 KIM,Mi Jee

【주민등록번호】 760723-2647912

【우편번호】 449-903

【주소】 경기도 용인시 기흥읍 구갈리 275-1번지 205호

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

황이남 (인)

【수수료】

【기본출원료】 20 면 29,000 원

【가산출원료】 12 면 12,000 원

【우선권주장료】 0 건 0 원

【심사청구료】 11 항 461,000 원

【합계】 502,000 원

【감면사유】 중소기업

【감면후 수수료】 251,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통 2.중소기업기본법시행령 제2조에의

한 중소기업에 해당함을 증명하는 서류_1통

【요약서】

【요약】

본 발명은 유리판을 레이저빔으로 절단하는 장치에 관한 것으로, 레이저빔에 의한 유리절단면의 복잡 요철화, 횡절단 등의 문제점에 의해 안정된 절단을 할 수 없다.

상기의 문제점을 극복하기 위해, 절단예정선방향으로 길고, 면적 20~200㎡의 타원형상에, 0.05~2 joule/㎡의 탄산가스 레이저빔을 조사해, 즉시 물 등으로 냉각해 스크라이브라인을 발생시키고, 상기 스크라이브라인상에 다른 탄산가스 레이저빔을 면적 20~200 ㎡로, 0.1~0.5 joule/㎡ 조사해 절단하면 양질의 절단면을 얻을 수 있다.

【대표도】

도 1

【색인어】

레이저커팅장치

【명세서】

【발명의 명칭】

유리판절단장치{Glass-plate cutting machine}

【도면의 간단한 설명】

도 1은 본 발명의 실시장치 1의 개념도.

도 2는 본 발명의 실시장치 1에 의한 작업상태도.

도 3은 본 발명의 실시장치 2의 개념도.

도 4는 본 발명의 실시장치 2에 의한 작업상태도.

<도면의 주요부분에 대한 부호의 설명>

2: 레이저 발진기

3: 집광렌즈

4: 레이저빔

5: 레이저빔

6: 반사경

7: 렌즈

8: 스크라이브빔 조사형태

9: 켄처물질 유출구

10: 켄처물질 공급구

11: 흡입장치

12: 흡입관

13: 레이저빔

14: 반사경

15: 렌즈

16: 브레이킹빔 조사형태

17: 스크라이브라인

19: 절단 예정선

20: 비금속판

21: 초기 크랙

22: 절단부

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

전 보 발명은 유리판을 레이저빔으로 절단하는 장치에 관한 것으로, 특히 액정이나 플라즈마, 필드에미션에 의한 표시 패널의 제조 공정에 있어서의 유리 기판을 레이저빔으로 절단하는 장치와 이 절단 장치를 이용해 제조된 표시 패널에 관한 것이다.

조래에는 유리판의 절단은 다이아몬드 등의 초경 재료에 의해 스크라이브라인 을 생성한후, 기계적 응력을 가하여 절단하는 절단 방법이 대부분이다.

1969년, Lumley가 Ceramic Bulletin지 제 48권 9호에 레이저빔에 의한 유리판의 절단 방법을 발표한 이래, 많은 연구가 되어 많은 특허가 출원되어 왔다.

19> Lumley의 연구는, 유리재료를 용융절단하는 것이 아니라, 얕은 균열(이하, 스크라이브라 인이라고 부른다.)을 레이저빔으로 과열 팽창에 의해 발생시켜, 이것을 진전시켜 유리를 절단하는 방법을 제안한 것이었다.

고 후, 미국 특허 제 3932726호에는 무한 길이에 제조되고 있는 유리판을 소정의 길이로 절단하는 방법, 미국 특허 제 6112967호에는 대상이 되는 면에 U자 모양에 넓힌 레이저빔조사후에 냉각해 얕은 스크라이브라인을 발생시키는 방법, 미국 특허 제5609284호에는 미리 유리판을 가열하는 것으로써 스크라이브라인을 깊게 하는 방법이 제안되고 있다.

- 21> 더욱이, 스크라이브라인 발생을 위한 레이저빔조사에 앞서, 유리판 절단 첫단에 기계적으로 미소 크랙을 생성하는 방법(미국 특허 제 6252197호)이나, 펄스 레이저빔에 의해 흠을 내는 방법(미국 특허 제 6211488호)이 유효한 것도 알려져 있다.
- 22> 또한 최근에는 반도체 재료인 단결정 실리콘 웨이퍼를 레이저에 의해 절단하려고 하는 시도도 실시되고 있다.
- 23> 그러나, 상기의 레이저빔 절단방법은 스트라이브라인의 생성을 레이저빔에 의하고 브레이킹작업은 기계적응력을 가하는 방법이어서, 신뢰성은 그다지 높지 않으며, 기계적응력에 의한 브레이킹으로 인해 연마공정이 요구될 수 있다.
- 따라서, 상기의 문제점을 해결하기 위하여 제안된 유리판의 레이저 커팅에 관한 발명(한 국특허출원번호 제10-2000-0042313호)의 구성은, 비금속 재료의 절단이 시작되는 곳에 절 단을 원하는 방향으로 초기 크랙을 형성하고, 절단하려고 하는 선을 따라 제1차가열 빔을 조사하여 비금속 재료를 가열하고, 1차빔에 의하여 가열된 부분에 1차켄칭 (quenching)을 하여 크랙을 발생시키고, 상기 크랙이 발생된 부분에 제2차가열빔을 조 사하여 비금속 재료를 가열하고, 상기 제2차가열빔에 의하여 가열된 부분에 제2차켄칭 을 하는 것을 특징으로 하는 비금속 재료 절단방법이다.
- 5> 즉, 초기크랙과 스크라이빙공정 뿐만 아니라 브레이킹작업을 레이저빔에 의해 실현시키고 있다.
- ▷ 상기의 발명을 통해 유리판의 절단효율을 95%이상으로 끌어올릴 수 있었다.

- 고러나, 절단 시작 부분의 단면에 핵클마크(hackle mark)라 불리는 크기와 모양이 불규칙적인 크랙(crack)이 절단된 전구간의 10%정도에 형성되어 기판의 단면에 심한 굴곡을 형성시키고·제품의 품질을 저하시켰다.
- 28> 절단초기에는 핵클마크가 나타나나, 절단초기를 지나면 어느 정도 절단면이 매끄러워지는 것을 알 수 있다.
- ^{29>} 이로 인해, 절단이 시작되는 영역에서 절단선의 직진성이 저하되고, 기판의 완전분리의 실패를 야기한다.
- 30> 또한, 절단된 기판 단면의 평탄도를 저하시켜 제품의 외관과 품질을 해치며, 기판이 분 리되면서 부스러기를 발생시킨다.
- ^{31>} 상기의 문제점을 개선하기 위하여 등속도로 절단하는 경우, 레이저 출력의 조건에 따라서 기판 단면에 형성되는 핵클마크의 크기와 발생횟수를 감소시킬 수는 있지만 이를 완전히 제거할 수는 없었다.

【발명이 이루고자 하는 기술적 과제】

상기의 문제점을 극복하기 위하여 본 발명의 출원인이 한국특허출원 제10-2002-65542호를 출원하였으나, 유리판의 절단을 최적화할 수 있는 조건의 부여가 미흡한 실정이어서, 이에 본 발명의 목적은 레이저빔을 통한 유리판의 절단시 절단면의 품질을 극대화시킬 수 있는 장치 및 그 조건을 제공함에 있다.

【발명의 구성 및 작용】

- ^{33>} 본 발명에서, 여러 가지 실시예 및 비교예를 통해 스크라이브 조건, 브레이킹조건에 있 어서의 최적 조건의 유무에 대해서 상세하게 검토한 결과, 아래와 같은 특정 조건을 재현하면, 전술과 같은 불편은 발생하지 않고, 안정되어 절단할 수 있는 것을 찾아냈다.
- 34> 즉, 본 발명에서는 유리판의 절단개시점에 미소한 크랙을 부여하는 크래킹수단과, 적어 도 하나의 유리재료에 흡수되는 레이저빔에 의한 조사가열수단과, 적어도 하나의 레이저빔조사후의 냉각유체에 의한 냉각수단과, 브레이킹수단을 포함하는 유리판절단장치에 있어서, 상기레이저빔이 제1탄산가스 레이저빔인 조사수단과, 그 조사면적20~200㎡에 평면조사밀도가 0.05~2joule/㎡의 범위로 제어하는 제1제어수단과, 상기 제1탄산가스 레이저빔 조사수단 뒤에 설치되는 상기 냉각유체에 의한 제1냉각수단을 배치하여 스크라이브라인(scribe line)을 생성시킨후, 브레이킹하는 것을 특징으로 하는 유리판절단장치를 개발했다.
- 본 발명의 또 다른 특징은 상기 브레이킹수단으로서, 상기 제1냉각수단 뒤에 설치하는 제2 탄산가스 레이저빔 조사수단과, 그 조사면적 20~200㎡에 체적조사밀도가 0.1~0.5joule/ 때의 범위로 제어하는 제2제어수단에 의해 브레이킹하는 것이다.
- ^{5>} 이하, 본 발명을 상세히 설명한다.
- 상기에서 유리판의 절단 개시점에 미소 크랙을 부여하는 크래킹수단으로서는, 다이아몬 드, 석영, 경화유리 등의 초경도재료로 형성된 노칭크래커, 또는 Nd:YV04인 필스 레이저를 집 광장치에 의해 집광해 조사하는 공지기술을 이용한다.
- 상기의 미소 크랙의 길이는 0.5~5 mm 면 충분하다.

- ^{39>} 또, 제1의 레이저빔조사 수단으로서 탄산가스 레이저를 이용해 그 후, 유체에 의한 냉각을 실시해, 스크라이브를 발생시킨다.
- 40> 여기서 유체는, 종래의 냉각 질소 등의 기체뿐만이 아니고, 물미립자를 포함한 공기 또는 액체상의 물이 바람직하다.
- 41> 상기의 물로는 액정 표시 패널의 TFT 등 반도체는 불순물이 없어야 하므로 순수한 물이 바람직하다.
- ^{12>} 냉각수가 유리판 상에 남는 경우는 진공 흡인 수단을 마련해 제거해도 좋다.
- (3> 상기의 제1의 탄산가스 레이저빔에 의한 조사는, 초점은 아니고 절단예정선방향으로 긴 타원형인 것이 바람직하다.
- 이 타원의 단위면적 및 단위시간 당, 상기의 본 특정 조사 강도로 함으로써 매끄럽고 깊
 은 정상 스크라이브라인을 생성시킬 수가 있다.
- 5 본 발명에서는, 제1의 탄산가스 레이저빔의 조사를 면적 20~200 때에 평면 조사 밀도가 0.05~2 joule/때의 범위로 제어한다.
- > 조사량이 평면 조사 밀도가 0.05joule/패를 밑돌면, 에너지 부족으로 스크라이브라인은 발생하지 않는다.
- ' 또한, 조사량이 커지면 스크라이브의 깊이는 커지지만, 평면 조사 밀도가 2 joule/jii를 넘으면 스크라이브라인이 지그재그 상이 되어, 브레이킹작업에 불편이 발생해 바람직하지 않다
- 한충 더 안정되어 정상적인 스크라이브라인을 생성시키는 경우는 상기의 평면 조사 밀도를 0.1~1 joule/때로 하는 것이 바람직하다.

- 49> 더욱이, 스크라이브라인 생성을 위한 레이저빔조사량(K)은,
- 51> 여기서, P = 레이저 발진기의 출력(watt)
- 52> ε = 레이저 발진기의 출력율
- 53> v = 조사부의 이송속도(mm/sec)
- ^{54>} 이고, 평면 조사 밀도(φ)의 산출 방법은,
- $\Phi = P \times \varepsilon \times L \div (v \times A)$
- 56> 여기서, P = 레이저 발진기의 출력(watt)
- ^{57>} ε = 레이저 발진기의 출력율
- ^{38>} L = 조사부의 이송길이(Ⅲ)
- i9> v = 조사부의 이송속도(mm/sec)
- ³⁰ A = 조사면적(<u>m</u>²)
- ^{31>} 이다.
- ^{i2>} 상기에서 조사량의 단위는 joule, 평면 조사 밀도의 단위는 joule/빼가 된다.
- (3) 즉, 유리판의 절단에 있어서는, 용용 절단과 같이 레이저빔을 모아 초점 조사하는 것이 아니라, 소정의 조사 면적으로, 타원형으로 분산시켜 조사해 절단예정선상을 융점 이하의 고온 으로 하는 것이 바람직하다.
- 그 때문에, 발진기로부터의 레이저 광속(光束)을 1개 이상 렌즈로 조합해, 타원형으로
 개광 시키는 것이 바람직하다.

^{65>} 본 발명에서는 상기의 냉각 수단의 뒤에 마련하는 제2의 탄산가스 레이저빔조사 수단과 조사 면적 20~200 때에 체적 조사 밀도 0.05~0.5joule/때의 범위에 제어하기 위한 제 2의 제어 수단을 마련해 목적의 유리판을 절단 할 수가 있다.

56> 상기의 절단공정에서의 레이저 조사 강도는, 유리판 전체를 분단하는 것이기 때문에 그 체적을 고려한 에너지량이어야 한다.

'67' 즉, 체적조사밀도(δ)는

 $\delta = P \times \varepsilon \times L \div (v \times A \times t)$

69> 여기서, P = 레이저 발진기의 출력(watt)

70> ε = 레이저 발진기의 출력율

71> L = 조사부의 이송길이(m)

72> v = 조사부의 이송속도(mm/sec)

73> A = 조사면적(**때**)

74> t = 유리판의 두께(mm)

^{75>} 의 식으로부터 요구하며, 단위는 joule/때가 된다.

76> 체적 조사 밀도가 0.05joule/때를 밑돌면 스크라이브라인을 정상적으로 할 수 있어도, 에너지 부족으로 유리판은 절단되지 않는다.

77> 0.5joule/때를 넘으면 스크라이브라인이 동일하게 정상적으로 할 수 있어도, 비율 단면에 불규칙한 요철이 발생하거나, 또는 절단능선이 날카로운 지그재그 상이 되어, 손을 베일 위험이 발생하며, 극단적인 경우는 절단예정선을 크게 일탈해 갈라져 버리는 것이다.

- 78> 바람직하기는 0.1~0.3joule/때의 범위에 제어하면, 안정된 브레이킹작업을 실시할 수가 있다.
- 79> 제1의 레이저빔조사 면적이 20 때미만에서는, 스크라이브 발생에 필요한 에너지가 좁은 면적에 집중하기 위해, 유리판 표면 및 내부의 온도 분포가 급격히 변하여, 매끄러운 스크라이브라인이 되지 않고 섬세한 지그재그 상이 되는, 스크라이브면은 패곡(貝穀)상 모양 등 요철이심한 단면이 된다.
- 30> 이러한 지그재그선이 되면, 다음의 브레이킹공정에서 돌아 갈라져 버리는 등, 문제점의 원인이 된다.
- ^{31>} 또한, 레이저빔조사 면적이 200 페를 넘으면 넓은 면적이 가열되어 스크라이브라인이 지 그재그 상으로 형성되는 등의 문제점이 발생한다.
- ^{12>} 상기와 같은 이유로, 제1의 레이저빔조사면의 평면 형상은, 절단예정선상에 긴 타원형으로 하는 것이 바람직하다.
- 3> 마찬가지로, 브레이킹공정에 있어서의 제2의 레이저빔조사 면적에 대해서도, 20 때 미만에서는 스크라이브면의 양측에서의 온도 분포의 대칭화가 곤란해 단면이 요철이 되는 등의 문제점이 발생한다. 또, 200 때를 넘으면 다른 한쪽에 크게 젖혀져 갈라지는 문제점을 야기한다.
- 상기의 스크라이브 공정 및 브레이킹공정으로 레이저 조사량을 제어하는 방법은, 레이저 발진기의 출력율, 이송속도, 조사면적의 3가지 파라미터 중 적어도 하나 이상을 제어하는 것 이다.
- 특히, 첫단부분에 발생하는 비율 단면의 핵클마크라고 부르는 다소 요철이 된 절단면이 나타났지만, 이것은 실용상 문제없는 것이지만, 이것을 일으키게 하지 않기 위해. 초기의 레이

저 이송속도를 늦게 하고 점차 속도를 올리던가, 계단 상으로 이송속도를 올려 가는 방법을 취하는 것이 가장 효과적이다.

- 86> 절단작업의 초기에 이송속도를 줄이는 것은 레이저빔을 유리판에 조사하기 시작할 때, 유리기판의 초기단부는 유리기판의 내부부분과 달리, 공기층과 단부가 접해있어 레이저빔에 의 한 빛이 굴절 등의 원인으로 열로 변해 비금속판에 제대로 흡수하기 어렵다.
- 또한, 열전달에 있어서도 레이저빔에 의해 발생된 열이 비금속판 안측 뿐 아니라 공기와 도 열전달이 이루어져 절단조건이 비금속판의 초기부분 이후와는 다르게 된다.
- 따라서, 비금속판의 초기부분 이후와 유사한 절단조건을 갖추게 하기 위해서는 비금속판이 레이저에 의해 방사되는 열을 흡수할 수 있는 시간적 여유를 부여하여야만 한다.
- 9> 그러나, 레이저의 출력을 동일하게 하고 이송속도를 감소시키면 단위시간당 비금속판이 받는 열량이 커져 오히려 비금속판이 용용되거나, 예정선에 직각방향으로 갈라지는 스코칭 (scorching), 또는 비금속판의 표면이 벗겨지거나 이탈되는 필링(peeling)이 발생할 수 있다.
- 상기와 같은 이유로 이송속도를 감소시킴과 동시에 레이저의 출력 또한 감소시킬 것이 요구된다.
- b 한편, 상기와 같이 감소된 이송속도와 레이저의 출력으로 비금속판을 끝까지 절단하면 생산성에서도 문제가 된다.
- 또한, 절단초기부분 이후에 감소된 이송속도와 레이저의 출력을 유지시키면, 절단초기부분이후의 최적조건보다 오히려 절단면의 품질이 저하된다.
- 이는 절단초기와 절단초기이후의 열전달조건 및 레이저빔의 흡수조건이 상이하기 때문이다.

- 94> 따라서, 절단초기부분에 감소된 이송속도와 레이저의 출력을 원래의 최적조건까지 끌어 올려야 한다.
- 95> 이 때, 이송속도의 변화율과 레이저 출력의 변화율을 일치시킬 필요가 있다.
- 96> 그렇지 않으면, 이송속도와 레이저 출력의 상호관계가 깨져, 비금속판이 용용되거나, 전 혀 절단되지 않게 되기 때문이다.
- 97> 상기와 같은 이유로 레이저출력을 이송속도의 변화에 맞추어 동기하는 공정이 필요하게 된다.
- 98> 해클마크를 줄이는 또 다른 방법은 이송속도는 일정하게 해 두어, 절단개시부분이나 이 미 형성된 절단선을 넘어서 절단하는 경우는, 본 발명의 범위 내에서 체적 조사 밀도를 높게 해, 절단이 안정되어 오면, 연속적이게 또는 1단 이상의 스텝으로 이것을 내려도 괜찮다.
- 》 상기의 방법에 의해서 이송속도 또는 출력율을 변화시켜 해클마크를 줄이는 방법을 행하는 경우, 구체적으로 상기 제2제어수단이 절단초기에 있어서의 브레이킹수단의 체적조사밀도를 개시점에서부터 10~150mm의 사이에, 10~60%로 감소시키는 것이 바람직하다.
- 특히, 상기와 같이 제2제어수단이 절단초기에 브레이킹수단의 조사강도를 감소시켜서 10~60%로 할 때, 절단초기와 절단초기이후의 조사강도를 연속곡선적으로 또는 2단이상의 스텝 을 취하도록 제어한다.
- 본 발명에 있어서 사용하는 레이저빔발진기는, 연속 빔 발진기, 펼스 발진기 중 어느 하나를 스크라이브 공정 및 브레이킹공정에 사용할 수가 있다.
- 이 중 연속 빔 발진기가 열충격이 적어서, 본 발명의 수단으로서 바람직하다.

- 103> 유리판에 레이저빔을 조사 이송하는 것에 대응하여, 유리판을 고정해 레이저빔을 이동시켜도 괜찮고, 또는, 레이저빔을 고정해 유리판을 XY테이블상에 설치해 이 테이블을 이동시켜도 괜찮다. 또, 액정 표시 패널이나 플라즈마 디스플레이 등, 큰 2매의 유리판을 일정한 갭으로 접착한 후, 각 셀을 절단 할 수도 있다.
- l04> 이 때, 표리(表裏)의 한편을 절단 한 후 뒤집어 한편을 자르거나, 또는 그대로 뒤편으로 부터 레이저빔을 조사해 절단 해도 괜찮다.
- 105> 이하 상기의 발명의 실시예를 위한 실험장치를 도면을 통해 설명한다.
- 106> 크래캉수단은 다이아몬드, 줄, 석영 유리 등의 초경도재료로 형성된 노칭크래커를 사용할 수 있다.
- 107> 또한, 크래커는 탄산가스 레이저나 YAG 펄스 레이저를 재료가 흡수하는 고에너지선을 렌으로 집광해 그 초점을 조사하는 등 공지의 방법을 이용한다.
- 108> 크래커에 의한 미소 크랙의 길이는 0.5~5 mm 면 충분하다.
- LO9> 본 실시예의 경우 Nd:YVO4 펄스 레이저를 사용하였으며, 발진기(2)와 렌즈(3)가 구비된다.
- 110> 발진기(2)로부터 나온 레이저빔은 렌즈(3)에 의해 집광되어 소재에 조사되어 노칭(21)을 낸다.
- 111> 상기의 조사수단은 유리판에 레이저빔을 조사하여 가열하는 제1탄산가스레이저를 이 용하며, 조사된 레이저빔은 타원형을 이루게 하였다.

- 12> 제1냉각수단으로 상기 탄산가스레이저에 의하여 가열된 부분에 켄칭(quenching)을 하여 크랙을 발생시키는 켄처를 설치하고, 켄처의 바로 뒤에는 제1흡입장치를 마련한다.
- 13> 레이저빔에 의해 가열된 부분을 냉각시키는 켄처물질은 유체로써, 종래의 냉각 질소등의 기체 뿐만이 아니고, 물미립자를 포함한 공기 또는 액체상의 물이 바람직하다.
- 14> 켄처물질주입구(10)로 켄처물질이 주입되어 켄처물질유출구(9)로 배출되어 소재를 냉각시킨다.
- 15> 켄처물질이 비금속판상에 남는 경우는 흡입장치를 이용해 제거하여야 차후의 공정에 악 영향을 끼치지 않는다.
- 16> 제1흡입장치는 흡입구(9)와 흡입관(12)로 구성되었다.
- 17> 상기 타원의 단위면적 및 단위시간 당, 상기의 본 특정 조사 강도로 함으로써 매끄럽고 깊은 스크라이브라인을 생성시킬 수가 있다.
- 18> 상기 가열광학기구에는 출력조절기(도시생략)가 내장되어 외부의 입력에 의해 레이저빔의 출력을 조절할 수 있도록 한다.
- 19> 브레이킹수단은 제2탄산가스레이저를 이용하며, 조사된 레이저빔은 원형, 반원형 또는 튜브상으로 하여 열량을 집중시킨다.
- 20> 제2탄산가스레이저의 구조는 제1탄산가스레이저와 실질적으로 유사하다.
- 21> 가열광학기구에 의하여 가열된 부분에 켄칭(quenching)을 하는 켄처를 더 포함하는 것도 가능하다.
- 22> 도 1 및 도 2는 실시예 1로써 브레이커가 가열광학기구만으로 이루어지는 경우이며, 도 3 및 도4는 실시예 2로써 브레이커가 가열광학기구와 켄처로 이루어지는 경우이다.

- 23> 물론 실시예 2와 같이 켄처를 더 포함시키는 것이 절단면을 매끄럽게 하고 절단효율을 높이는데 유리하며, 절단면이 용용하는 것을 막아 치수오차를 줄일 수 있다.
- ^{24>} 이송장치(도시생략)는 이송속도를 제어하는 이송컨트롤러(310)와 연결되어 원하는 이송 속도로 장치를 이송시키는 것이 가능하다.
- ^{25>} 추가적으로, 이송속도와 레이저빔의 출력을 동기시키기 위한 동기장치를 더 포함시킴에 의해 이송속도의 변화하여도 재료가 받는 열량을 조절할 수 있게 된다.

^{26>} [실시예 1]

- 가 레이저 헤드의 이송 속도는 250 mm/초로 했다.
- ^{28>} Coherent(코히어런트) 社製 Nd:YV04 레이저 발진기로 제4고주파(266 μm, 10kb, 1.8 W)를 볼록 렌즈로 집광 해, 그 초점을 유리판의 절단 예정선의 첫단에 약 0.3 ㎜조사해 초기 크랙을 발생시켰다.
- 9> 제1 탄산가스 레이저빔은, 10 kb로 평균 출력 250 W펄스 발진기의 펄스폭을 펄스 중심간 거리의 40%(이하 "작동조건"라고 한다. 최대는 60%)에 조정해 조사했다.
- 면적 142. 6 mm2는, 도 3에 나타내는 타원의 장경a, 단경 b를 측정해 타원으로서 계산했다.
- ▷ 다음에 공기를 3 kg/cm²로 물에 가압하여 안개 상태로 내뿜어 스크라이브를 발생시켰다.
- 상기 타원 내에의 평면 조사 밀도는 0.386joule/때와 계산되어 스크라이브 깊이는 170㎞이고, 스크라이브면을 현미경 관찰하면, 아무 모양도 없고 우량품질이었다.

33> [실시예 2]

34> 실시예 1에 있어서 작동조건을 13%에, 또, 제1탄산가스 레이저빔의 조사 면적도 59.2mm 에 좁혔더니, 문제가 없는 스크라이브가 발생했다.

35> [실시예 3]

36> 실시예 1에 있어서, 작동조건을 52%에, 또 조사 면적도 162.9 때에 증가시켜, 평면 조사 밀도를 0.442joule/때에 유지했더니, 문제가 없는 스크라이브가 발생했다.

37> [실시예 4]

38> 실시예 1에 있어서, 이송속도를 100 mm/초로 감속하여, 작동조건을 20%에, 또 조사 타원의 단경도 작게 해 평면 조사 밀도를 0.758joule/mm'에 증가시켜, 냉매도 물 단체(單體)로 바꾸었다.

39> 결과는 스크라이브 깊이가 200µm에 증가해, 양호한 스크라이브가 발생했다. 냉매로서 물단체로 하면, 스크라이브 깊이가 커지는 경향에 있는 것을 알았다.

40> [실시예 5]

실시예 4에 있어서, 이송속도를 300 m/초에 올려 작동조건도 40%에 올려 평면 조사 밀도를 0.393joule/때에 유지했더니, 문제가 없는 스크라이브가 발생했다.

12> [실시예 6]

43> 실시예 5에 있어서, 작동조건을 32%에 내려 평면 조사 밀도를 0.226joule/때에 유지했더 니, 문제가 없는 스크라이브가 발생했다.

.44> [실시예 7]

45> 실시예 5에 있어서, 이송속도를 450 m/초에 한층 더 올려 작동조건을 26%로 내려 평면 조사 밀도를 0.18joule/mi로 했더니, 이 경우도 문제가 없는 스크라이브가 발생했다.

46> [비교예 1]

- 47> 실시예 5에 있어서, 이송속도를 750 mm/초에 한층 더 올려 작동조건을 26%로 내려 평면 조사 밀도를 0.041joule/mm'로 했더니, 스크라이브라인은 발생하지 않았다.
- 48> 즉, 평면 조사 밀도를 0.05joule/mi를 밑돌면, 유리판의 절단은 할 수 없는 것을 알았다

49> [실시예 8]

- 50> 실시예 1에 있어서, 제1의 탄산가스 레이저로서 필스형 레이저 발진기로 바꾸어 연속 빔 형 240W 탄산가스 레이저 발진기를 사용해 스크라이브를 발생시켰다.
- 51> 출력율은 발진기의 출력 조정 기능을 이용하며, 거울, 렌즈계는 같은 것이다. 따라서, 조사 형상은 타원형으로 면적은 68.1㎡, 평면 조사 밀도는 0. 496joule/㎡였다.
- 52> 그 후, 인력으로 기계적으로 절단해, 스크라이브단면을 보고 헤아렸다. 결과는, 문제는 전혀 없고, 깊이 170µm의 양질인 스크라이브라인이 생성했다.

.53> [실시예 9]

실시예 8에 있어서, 이송속도를 떨어뜨려, 출력율을 올려 냉매를 물로 바꾸어, 스크라이 브 깊이의 향상을 목표로, 평면 조사 밀도를 1.747joule/때까지 주었지만, 190µm였다.

또, 스크라이브라인은 직선 모양이어서 실용상 문제는 없지만, 스크라이브면이 큰 파형이 발생해 한계에 가깝게 에너지 밀도의 부가는 2 joule/㎡를 이하가 바람직하다는 것을 알았다.

56> [실시예 10]

57> 실시예 8에 있어서, 출력율을 올려 스크라이브 깊이의 향상을 목적으로, 평면 조사 밀도를 0.993joule/㎡까지 주었지만, 이것은 190㎞에 머물렀지만, 양질인 스크라이브라인이 생성했다.

ॐ [실시예 11]

실시예 6의 조건으로 정상적인 스크라이브라인을 발생시킨 후, 다음에 재차 같은 300
 ㎜/초의 속도로 제2의 탄산가스 레이저빔을 조사해 0.7 ㎜ 두께의 유리판을 일정 갭으로 접착시킬 수 있었던 액정 표시 패널을 절단한다.

36%에 조정해 후부가 날카로워진 실질적으로 5 각형모양에 조사했다.

- '61' 그 면적(79.8㎡)는 도 2에 나타내는 c, d, e부분을 측정해, 레이저 빔의 조사면적을 사 각형과 삼각형의 합으로 근사하게 계산한 것이다.
- .62> 절단은 그 두께 방향에 행해지는 것이기 때문에, 조사 에너지는 유리의 단위 체적당으로 환산해, 체적 조사 밀도를 계산해서, 그 값 0.125joule/때를 얻었다.
- .63> 결과는, 첫단으로부터 50 mm의 부분까지 핵클마크라고 부르는 다소 요철이 된 절단면이 나타났지만, 이것은 실용상 문제 없는 것으로, 그 이후는 평활한 절단면이 나타났다.

.64> [실시예 12]

65> 실시예 11에 있어서, 제2의 레이저빔의 동작조건을 28%로 저하 시켰더니, 역시 절단초기에 핵클마크가 나타났지만, 그 외의 단면은 실용상 큰 문제는 없었다.

66> [실시예 13]

- 67> 실시예 11에 있어서, 이송속도를 150 mm/초에 떨어뜨려, 동작조건을 23%에 저하 시켰더니, 초기 핵클마크는 나타나지 않고, 그 이후도 문제없었다.
- 68> 상기의 결과는 체적 조사 밀도가 0.133joule/때와 10%가깝게 상승했기 때문이라고 볼 수 있다.

69> [실시예 14]

70> 실시예 13의 결과를 고속 이송으로 확인하기 위해서, 이송속도를 300 mm/초에 있어, 동 작조건도 50%로 주어 체적 조사 밀도를 0.158joule/때로 했더니, 전혀 문제는 없었다.

71> [실시예 15]

/▷ 실시예 14에 두어, 0.7 mm 두께로부터 1.2 mm 두께의 유리판으로부터 되는 액정 표시 패 널로 바꾸었지만, 조사 면적을 59.6 mi로 작게 하여, 체적 조사 밀도를 0.14joule/mi로 했더니, 전혀 문제는 없었다.

73> [실시예 16]

- 74> 실시예 15의 결과보다, 유리판을 3 mm 두께의 단판(單板)으로 바꾸어 실시했다.
- 75> 조사 면적을 50.3 때에 좁혀, 이송속도를 늦게 해 100 mm/초로 해 동작조건도 60%로 주어 체적 조사 밀도를 0.196joule/때로 올렸더니, 큰 파형의 절단면이 되었지만, 실용상은 완전히 문제없는 절단면에서 만났다.
- 76> 그러나, 조사 면적을 상당히 작게 하면, 스크라이브라인의 한가운데에 위치하면서 이송 조사하는 것이 곤란해지므로, 조사 면적은 거의 직경 5 mm의 원, 즉 20mm 이상이 바람직하다.

77> [실시예 17]

78> 실시예 11에 있어서, 조사 면적을 115㎡와 크게 했더니, 결과는 변하지 않았다.

79> [실시예 18]

80> 실시예 17보다 조사 면적을 한층 더 크게 해 331.5㎡로 했더니, 결과는 실시예 11과 다르지 않았다.

81> [비교예 2]

일 실시예 11에 있어서, 동작조건을 60%로 주어 이송속도를 100 mm/초 떨어뜨려, 조사 면적을 56 mm로 좁혀, 체적 조사 밀도를 0.638joule/mm에 올렸더니, 절단예정선으로부터 크게 옆으로 어긋나 버렸다.

83> [비교예 3]

34> 실시예 11에 있어서, 동작조건을 60%로 올렸지만, 조사 면적을 450㎡에 넓게 했더니, 체적 조사 밀도가 0.638joule/때로 작아져, 에너지 부족 때문에 유리판은 전혀 절단되지 않았다.

35> [실시예 19]

실시예 11에 두어, 제2의 탄산가스 레이저로서 필스형 레이저 발진기로 바꾸어 연속 빔형 240W 탄산가스 레이저 발진기를 사용해, B렌즈로부터 조사된 빔은 원형인 채 조사해, 0.7 mm두께의 유리로부터 되는 액정 표시 패널을 절단했다.

·7> 출력율 40%로, 실시예 11의 결과와 동일한 정도였다.

^{8>} [실시예 20]

9> 실시예 19에 있어서, 출력율 100%로 증가시키자, 핵클마크도 없고 양호한 비율 단면이되었다.

90> [비교예 4]

- 91> 실시예 19에 있어서, 출력율 20%로 저하시키자, 체적 조사 밀도는 0.044joule/때로 적고, 전혀 절단되지 않았다.
- 92> 즉, 실시예 18과 함께 고려하여 볼 때, 체적 조사 밀도가 0.5joule/때 미만에서는 에너지 부족해 절단 할 수 없는 것을 알았다.
- 이상 실시예 1으로부터 실시예 10의 스크라이브 공정에 있어서의 레이저 이송속도와 실시예 11으로부터 실시예 20의 절단공정에 있어서의 레이저 이송속도를 일치하는 조건을 선택하면, 도 1에 나타내듯이, 초기 크랙 부여 수단, 제1의 탄산가스 레이저 조사 수단, 냉각 수단, 제2의 모든 탄산가스 레이저 조사 수단의 모든 수단을 하나의 레이저 헤드에 수납할 수가 있다
- ∜ 상기의 실시예 및 비교예를 표로 정리하면 다음과 같다.

5> 【丑 1】

<u>스크라이브공정: 펄스형250W발진기(100pulse/sec, 작동조건 최대60%)</u> 작동 조사 냉각유체 크라이 스크라이 비교 브깊이 조 속도 량 면적 사밀도 브품질 努 mm/s joule mm joule/m /4m Ex.1 40 167 250 55 82 2.2 141.6 0.386 170 Air/Water 0 Ex.2 54 250 13 13 1.3 59.2 58 0,212 124 Air/Water 0 Ex.3 217 250 52 $\overline{72}$ 83 2.5 162.9 0.442165 Air/Water 0 Ex.4 20 183 100 71 85 1.4 93.4 0.758 200 Water 0 Ex.5 40 167 300 46 82 1.8 115.9 0.393 180 Water 0 Ex.6 32 133 300 0.226 38 85 2.5 166.8 160 Water 0 26 Ex.7 108 20 1.7 | 112.1 |450 84 0.180 120 Water 2.6 177.6 Re.1 15 63 750 7 87 0.041 Water 발생안됨

.96> ◎: 매우 양호, ○: 양호, × 불량

97> 【班 2】

스크라이브공정: 연속빔형240W발진기

		<u> </u>						_				
	작동 조건	줄리	이송 속도	조사량	а	b	조사 면	평면조 사밀도	스크라이 브깊이	냉각유체	스크라이 브품질	비고
	%	W	mm/s	joule	mm	mm	益	joule/mm	μm			
Ex.8	50	120	220	34	62	1.4	68.1	0.496	170	Air/Water	0	
Ex.9	80	192	100	119	62	1.4	68.1	1.747	190	Water	0	큰파형
Ex.10	100	240	220	68	62	1.4	68.1	0.993	130	Water	0	

38> 【班 3】

브레이킹공정: 필스형250W발진기(100pulse/sec, 작동조건 최대60%)

	작동 조건	출력	<u>속</u>	조사 량	С	d	е	조사면 적	유리판 두께	체적조사 밀도	절단면 품질	비立
	%	W	mīr/s	joule	mm	mm	mm	mn*	mm	joule/mm		
Ex.11	36	300	250	7.0	8.1	8.1	11.6	79.8	0.7	0.125	0	초기핵클
Ex.12	28	233	250	5.5	7.1	8	11.7	70.3	0.7	0.111	0	초기핵클
Ex.14	23	192	150	7.4	8.1	8	11.6	79.8	0.7	0.133	0	
Ex.15	50	417	300	8.1	7.4	8.1	11.7	73.3	0.7	0.158	0	
Ex.16	60	500	300	10.0	5.9	8	12	59.6	1.2	0.140	0	
Ex.17	60	500	100	29.5	5	8	11.8	50.3	3.0	0.196	0	
Ex.18	36	300	250	8.4	10	9	14	115.0	0.7	0.104	0	초기핵클
Ex.19	40	333	250	11.3	14	13	17	210.0	0.7	0.077	0	초기핵클
Ex.20	60	500	250	22.0	17	17	22	331.5	0.7	0.095	0	초기핵클
Re.2	60	500	100	25.0	7	6	10	56.0	0.7	0.638	×	스크래칭
Re.3	60	500	250	25.0	20	20	25	450.0	0.7	0.079	_	절단안됨

99> 【丑 4】

브레이킹	공정:	연속법	형240	V발진기			_			
	작동	출력	이송	조사	빔의	조사	유리판	체적조사	절단면	비고
	조건		속도	량	직경	면적	두께	밀도	품질	
	%	W	mm/s	joule	mm	шď	mm	joule/ш		
Ex. 21	40	96	250	3.2	8.3	54.1	0.7	0.084	0	초기핵클
Ex. 22	100	240	250	8.2	8.5	56.7	0.7	0.206	0	
Re. 4	20	48	250	1.5	8.0	50.2	0.7	0.044		절단안됨

【발명의 효과】

00> 본 발명이 찾아낸 제1 및 제2의 레이저빔의 조사 조건을 특정 범위로 한정하는 것으로, 지그재그장의 스크라이브선, 절단면의 요철화, 횡절단 등 수많은 불편을 해소할 수가 있었다.

01> 이것에 의해, 유리판 단체뿐만 아니라, 액정 표시 패널이나 플라즈마 디스플레이 등의 2 매의 유리판을 접착시킨 상태로 안정적으로 절단 할 수가 있게 되어, 절단 공정에서의 제품비 율(원료에 대한 제품의 비율)을 향상시킬 수가 있었다.

'02> 또, 최근, 0.5 mm이하로 박판화(薄板化)가 진보한 액정 표시 패널용 유리판의 절단도, 본 발명의 레이저 조사 조건을 적용해 안정에 실시하게 되었다.

【특허청구범위】

【청구항 1】

유리판의 절단개시점에 미소한 크랙을 부여하는 크래킹수단과,

적어도 하나의 유리재료에 흡수되는 레이저빔에 의한 조사가열수단과,

적어도 하나의 레이저빔조사후의 냉각유체에 의한 냉각수단과,

브레이킹수단을 포함하는 유리판절단장치에 있어서,

상기 레이저빔이 제1탄산가스 레이저빔인 조사수단과, 그 조사면적20~200㎡에 평면조사 밀도가 0.05~2joule/㎡의 범위로 제어하는 제1제어수단과,

상기 제1탄산가스 레이저빔 조사수단 뒤에 설치되는 상기 냉각유체에 의한 제1냉각수단을 배치하여 스크라이브라인을 생성시킨 후, 브레이킹하는 것을 특징으로 하는 유리판절단장치.

【청구항 2】

제1항에 있어서, 상기 브레이킹수단으로서, 상기 제1냉각수단 뒤에 설치하는 제2 탄산가 스 레이저빔 조사수단과,

그 조사면적 20~200㎡에 체적조사밀도가 0.1~0.5joule/때의 범위로 제어하는 제2제어 수단에 의해 브레이킹하는 것을 특징으로 하는 유리판절단장치.

【청구항 3】

제2항에 있어서, 제2탄산가스 레이저빔 조사수단 뒤에 설치되는 냉각유체에 의한 제2냉 각수단을 배치하여 브레이킹하는 것을 특징으로 하는 유리판절단장치.

【청구항 4】

제1항 내지 제3항 중 어느 한 항에 있어서, 상기 제2제어수단이 절단초기에 있어서의 브레이킹수단의 체적조사밀도를 개시점에서부터 10~150mm의 사이에, 10~60%로 감소시키는 제어수단인 것을 특징으로 하는 유리판절단장치.

【청구항 5】

제4항에 있어서, 제2제어수단이 절단초기에 브레이킹수단의 조사강도를 감소시켜서.
10~60%로 할 때, 절단초기와 절단초기이후의 조사강도를 연속곡선적으로 또는 2단이상의 스텝을 취하도록 제어하는 제어수단인 것을 특징으로 하는 유리판절단장치.

【청구항 6】

제1항 내지 제5항 중 어느 한 항에 있어서, 평면조사밀도 또는 체적조사밀도의 제어는 조사수단의 출력, 조사수단의 조사면적, 조사수단의 이송속도 중 적어도 하나이상을 제어함에 의해 실현됨을 특징으로 하는 유리판절단장치.

【청구항 7】

제6항에 있어서, 조사수단의 출력의 제어 및 조사수단의 이송속도의 제어는 조사수단의 이송속도에 비례하여 조사수단의 출력을 변화시키는 동기수단을 더 포함시켜 실현됨을 특징으 로 하는 유리판절단장치.

【청구항 8】

제1항 내지 제5항 중 어느 한 항에 있어서, 상기 냉각수단에 있어서의 유체가 물인 것을 특징으로 하는 유리판절단장치.

【청구항 9】

제1항 내지 제5항 중 어느 한 항에 있어서, 상기 냉각수단의 바로 뒤에 유체의 진공흡입 수단을 더 설치하는 것을 특징으로 하는 유리판절단장치.

【청구항 10】

제1항 내지 제5항 중 어느 한 항에 있어서, 크래킹수단은 초경도재료로 형성된 노칭크래커, 또는 Nd:YVO4인 Pulse Laser를 집광장치에 의해 집광해 조사하는 레이저크래커인 것을 특징으로 하는 유리판절단장치.

【청구항 11】

제1항 내지 제5항 중 어느 한 항에 기재된 유리판절단장치를 사용하여 유리기판을 절단하여 제조하는 것을 특징으로 하는 표시패널.

【도면】

[도 1]

[도 2]

[도 3]

[도 4]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS	
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
SKEWED/SLANTED IMAGES	
COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.