Measurement of Power in R-L-C series circuit

CIRCUIT DIAGRAM:

1-Phase 230V / 50 Hz Mains

OBSERVATION TABLE:

Sr. No.	Vs(V)	Is(A)	$V_R(V)$	V _{coil} (V)	V _C (V)	Active Power (P) (Watts)
1	230.1V	1.54A	229.7V	6.23V	24.86V	353.4W
2	230.1V	3.05A	224.7V	12.7V	48.8V	693.3W
3	230.1V	3.81A	223.2	15.69V	60.8V	858.3W

CALCULATIONS:

Useful formulae:

Apparent power $S = V_S * I_S$

Power Factor=P/S

Total circuit impedance Z_S=V_S/I_S

Coil impedance Z_{coil}=V_{coil}/I_S

Resistance of Lamp load R=V_R/I_S

Capacitive reactance $X_C=V_C/I_S$

The parameters of the circuit can be obtained by solving following two equations:

$$Z_{S}{}^{2}\!\!=\!\!(R\!+\!r)^{2}\!\!+\!\!(X_{L}\!\!-\!\!X_{C})^{2}$$
 and $Z_{coil}{}^{2}\!\!=\!\!r^{2}\!\!+\!\!X_{L}{}^{2}$

Impedance Triangle (For XL>XC)

Sem II

Page

NAME: Pranay Singhvi EXPERIMENT No: 5 DATE: 5/7/ 2022

Measurement of power in R-L-C series circuit

AIM: 1) To obtain different types of power in R-L-C series circuit.

2) To verify the parameters used in the circuit with the help of the readings taken and vector diagram.

APPARATUS AND COMPONENTS REQIRED:

Single phase auto-transformer (10A), Ammeter (0-10A), Wattmeter (10A/300V), Voltmeter (0-300V), Lamp-load, Inductors (12mH/10A), Capacitors (200 μ F), connecting wires.

THEORY: Write theory related with following questions:

1) Explain the behavior of series R-L-C circuit when single phase ac supplied is passed through it. Draw vector diagram for the same.

ANS: The series RLC circuit above has a single loop with the instantaneous current flowing through the loop being the same for each circuit element. Since the inductive and capacitive reactance's X_L and X_C are a function of the supply frequency, the sinusoidal response of a series RLC circuit will therefore vary with frequency, f. Then the individual voltage drops across each circuit element of R, L and C element will be "out-of-phase" with each other as defined by:

- $i_{(t)} = I_{max} \sin(\omega t)$
- \bullet The instantaneous voltage across a pure resistor, V_R is "in-phase" with current
- \bullet $\;\;$ The instantaneous voltage across a pure inductor, V_L "leads" the current by 90°
- The instantaneous voltage across a pure capacitor, V_C "lags" the current by 90°
- Therefore, V_L and V_C are 180° "out-of-phase" and in opposition to each other.

For the series RLC circuit above, this can be shown as:

- 2) What is true, imaginary, and apparent power? Explain its significance.
- ANS: 1. TRUE POWER: The actual amount of power being used, or dissipated, in a circuit is called *true power*, and it is measured in watts (symbolized by the capital letter P, as always).
- 2. IMAGINARY POWER: It is the part of complex power that corresponds to storage and retrieval of
- energy rather than consumption. Imaginary power provides the important function of regulating voltage.
- 3. APPARENT POWER: Apparent power is a measure of alternating current (AC) power that is computed by multiplying the root-mean-square (rms) current by the root-mean-square voltage. It is the apparent power seen to be consumed by the circuit.

PROCEDURE:

- 1) Connect the circuit as shown in the circuit diagram.
- 2) Adjust V_S=230 V using auto transformer. Note down readings of ammeter (I_S) and wattmeter (P). Also measure V_R, V_L and V_C using multimeter.
- 3) Calculate apparent power S.
- 4) Obtain power factor from S and P.
- 5) Calculate resistance of lamp load R, resistance of coil r, reactance X_L and X_C.
- 6) Obtain L and C from X_L and X_C respectively.
- 7) Vary the load (Change the number of on bulbs).
- 8) Repeat steps 3) to 6).
- 9) Draw phasor diagram.

RESULT:

Parameter	R	r	L	C	P	Q	S	Power
								Factor
Is= <u>1.54</u> A	149.155ohm	0.238	12.8	197.2	353.4	25.984	354.354	0.997
		ohm	millihenry	microfarad	W	VAR	VA	
$I_S = 3.05A$	73.67 ohm	0.322	12.9	198.9	673.3	197.983	701.805	0.98
		ohm	millihenry	microfarad	W	VAR	VA	
$I_s = 3.81 A$	58.582 ohm	0.233	12.9	199.46	858.3	178.579	876.681	0.979
		ohm	millihenry	microfarad	W	VAR	VA	

CONCLUSION:

