Asymptotic Growth Rate

Slides and figures have been collected from various publicly available Internet sources for preparing the lecture slides of IT2001 course. I acknowledge and thank all the original authors for their contribution to prepare the content.

Growth Functions

- The running time of an algorithm as input size approaches infinity is called the asymptotic running time
- We shall study different notations for asymptotic efficiency.
- In particular, we shall study tight bounds, upper bounds and lower bounds.

The functions

Let f(n) and g(n) be asymptotically nonnegative functions whose domains are the set of natural numbers N={0,1,2,...}.

☐ A function g(n) is asymptotically nonnegative, if $g(n) \ge 0$ for all $n \ge n_0$ where $n_0 \in \mathbb{N}$

Asymptotic Upper Bound: O

Definition:

Let f(n) and g(n) be asymptotically non-negative functions. We say f(n) is in O(g(n)) if there is a real positive constant c and a positive integer n_0 such that for every $n \ge n_0$

$$0 \le f(n) \le c * g(n).$$

Or using more mathematical notation

```
O(g(n)) =
{ f(n)/ there exist positive constant c and a positive integer n_0 such that 0 \le f(n) \le c * g(n) for all n \ge n_0 }
```

Asymptotic Upper Bound: big O

$$n^2 + 10 n = O(n^2)$$
 Why?

take c = 2

$$n_0$$
 = 10
 $2n^2 > n^2 + 10 n$ for all $n > 10$

Does 5n+2 = O(n)?

Proof: From the definition of Big Oh, there must exist c>0 and integer n_0 >0 such that $0 \le 5n+2 \le cn$ for all $n \ge n_0$.

Dividing both sides of the inequality by n>0 we get:

$$0 \le 5 + 2/n \le c$$
.

 $2/n \le 2$, 2/n > 0 becomes smaller when n increases

There are many choices here for c and n_0 .

If we choose n_0 =1 then $c \ge 5+2/1=7$.

If we choose *c*=6, then $0 \le 5+2/n \le 6$. So $n_0 \ge 2$.

In either case (we only need one!) we have a c>0 and $n_0>0$ such that $0 \le 5n+2 \le cn$ for all $n \ge n_0$. So the definition is satisfied and 5n+2 = O(n)

Does $n^2 = O(n)$? No.

We will prove by contradiction that the definition cannot be satisfied. Assume that $n^2=O(n)$.

From the definition of Big Oh, there must exist c>0 and integer n_0 >0 such that $0 \le n^2 \le cn$ for all $n \ge n_0$.

Dividing the inequality by n>0, we get $0 \le n \le c$ for all $n \ge n_0$.

 $n \le c$ cannot be true for any $n > \max\{c, n_0\}$, contradicting our assumption So, there is no constant c > 0 such that $n \le c$ is satisfied for all $n \ge n_0$, and $n^2 = O(n)$

```
O(g(n)) =
{ f(n)/ there exist positive constant c
and positive integer n_0 such that
0 \le f(n) \le c * g(n) \text{ for all } n \ge n_0 }
```

- 1. 1,000,000 $n^2 = O(n^2)$ why/why not?
- 2. $(n-1)n/2 = O(n^2)$ why /why not?
- 3. $n/2 = O(n^2)$ why /why not?
- 4. $\lg(n^2) = O(\lg n)$ why /why not?
- 5. $n^2 = O(n)$ why /why not?

Asymptotic Lower Bound: Ω

Definition:

Let f(n) and g(n) be asymptotically non-negative functions. We say f(n) is $\Omega(g(n))$ if there is a positive constant c and a positive integer n_0 such that for every $n \ge n_0$ $0 \le c * g(n) \le f(n)$.

Or using more mathematical notation

```
\Omega ( g ( n )) = { f (n) | there exist positive constant c and a positive integer n_0 such that 0 \le c * g(n) \le f(n) for all n \ge n_0 }
```

Asymptotic Lower Bound, Omega: Ω

Is $5n-20 = \Omega(n)$?

Proof: From the definition of Omega, there must exist c>0 and integer n_0 >0 such that $0 \le cn \le 5n$ -20 for all $n \ge n_0$

Dividing the inequality by n>0 we get: $0 \le c \le 5-20/n$ for all $n \ge n_0$. $20/n \le 20$, and 20/n becomes smaller as n grows.

There are many choices here for c and n_0 .

Since c > 0, 5 - 20/n > 0 and $n_0 > 4$ For example, if we choose c=4, then $5 - 20/n \ge 4$ and $n_0 \ge 20$

In this case we have a c>o and n_0 >0 such that $0 \le cn \le 5$ n-20 for all $n \ge n_0$. So, the definition is satisfied and 5n-20 = Ω (n)

$$\Omega (g(n)) =$$
{ $f(n)$ | there exist positive constant c and a positive integer n_0 such that
$$0 \le c * g(n) \le f(n) \text{ for all } n \ge n_0$$
}

- 1. 1,000,000 $n^2 = \Omega(n^2)$ why/why not?
- 2. $(n-1)n/2 = \Omega(n^2)$ why/why not?
- 3. $n / 2 = \Omega(n^2)$ why /why not?
- 4. $\lg (n^2) = \Omega (\lg n)$ why/why not?
- 5. $n^2 = \Omega(n)$ why/why not?

Asymptotic Bound Theta: Θ

Definition:

- \square Let f(n) and g(n) be asymptotically non-negative functions.
- □ We say f(n) is Θ(g(n)) if there are positive constants c, d and a positive integer n_0 such that for every $n \ge n_0$

$$0 \le c * g(n) \le f(n) \le d * g(n).$$

Or using more mathematical notation

$$\Theta$$
 (g (n)) = { $f(n)$ | there exist positive constants c , d and a positive integer n_0 such that

$$0 \le c * g(n) \le f(n) \le d * g(n)$$
. for all $n \ge n_0$

More on Θ

• We will use this definition:

$$\Theta\left(g\left(n\right)\right)=O\left(\left.g\left(n\right)\right.\right)\cap\Omega\left(\left.g\left(n\right)\right.\right)$$

Does
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$
?

We show:

$$\frac{1}{2}n^2 - 3n = O(n^2)$$

$$\frac{1}{2}n^2 - 3n = \Omega(n^2)$$

Does
$$\frac{1}{2}n^2 - 3n = O(n^2)$$
?

From the definition there must exist c > 0, and $n_0 > 0$ such that

$$0 \le \frac{1}{2}n^2 - 3n \le cn^2 \text{ for all } n \ge n_0.$$

Dividing the inequality by $n^2 > 0$ we get:

$$0 \le \frac{1}{2} - \frac{3}{n} \le c$$
 for all $n \ge n_0$.

Since 3/n > 0 for finite n, c < 1/2.

Choose c = 1/4.

So
$$\frac{1}{2} - \frac{3}{n} \le \frac{1}{4}$$
, and $n_0 \ge 12$

Does
$$\frac{1}{2}n^2 - 3n = \Omega(n^2)$$
?

There must exist c > 0 and $n_0 > 0$ such that

$$0 \le cn^2 \le \frac{1}{2}n^2 - 3n \text{ for all } n \ge n_0$$

Dividing by $n^2 > 0$ we get

$$0 \le c \le \frac{1}{2} - \frac{3}{n}.$$

Since c > 0, $0 < \frac{1}{2} - \frac{3}{n}$ and $n_0 > 6$.

Since 3/n > 0 for finite n, c < 1/2. Choose c = 1/4.

$$\frac{1}{4} \le \frac{1}{2} - \frac{3}{n}$$
 for all $n_0 \ge 12$.

So c = 1/4 and $n_0 = 12$.

More ⊕

- 1. 1,000,000 $n^2 = \Theta(n^2)$ why/why not?
- 2. $(n-1)n / 2 = \Theta(n^2)$ why /why not?
- 3. $n/2 = \Theta(n^2)$ why/why not?
- 4. $\lg (n^2) = \Theta (\lg n)$ why/why not?
- 5. $n^2 = \Theta(n)$ why /why not?

Limits can be used to determine Order

if
$$\lim_{n\to\infty} f(n)/g(n) = \begin{cases} c>0 \text{ then } f(n) = \Theta(g(n)) \\ 0 \text{ or } c>0 \text{ then } f(n) = O(g(n)) \\ \infty \text{ or } c>0 \text{ then } f(n) = \Omega(g(n)) \end{cases}$$

The limit must exist

$$5n^{3} + 3n = \Omega(n^{2}) \text{ since},$$

$$\lim_{n \to \infty} \frac{5n^{3} + 3n}{n^{2}} = \lim_{n \to \infty} \frac{5n^{3}}{n^{2}} + \lim_{n \to \infty} \frac{3n}{n^{2}} = \infty$$

L'Hopital's Rule

If f(x) and g(x) are both differentiable with derivatives f'(x) and g'(x), respectively, and if

$$\lim_{x\to\infty} g(x) = \lim_{x\to\infty} f(x) = \infty \text{ then }$$

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}$$

whenever the limit on the right exists

$$10n^{3} - 3n = \Theta(n^{3}) \text{ since,}$$

$$\lim_{n \to \infty} \frac{10n^{3} - 3n}{n^{3}} = \lim_{n \to \infty} \frac{10n^{3}}{n^{3}} - \lim_{n \to \infty} \frac{3n}{n^{3}} = 10$$

$$n \log_e n \in O(n^2)$$
 since,

$$\lim_{n\to\infty} \frac{n\log_e n}{n^2} = \lim_{n\to\infty} \frac{\log_e n}{n} = ? \text{ Use L'Hopital's Rule :}$$

$$\lim_{n\to\infty} \frac{(\log_e n)'}{(n)'} = \lim_{n\to\infty} \frac{1/n}{1} = 0$$

$$\lg n = O(n)$$

$$\lg n = \frac{\ln n}{\ln 2} \quad (\lg n)' = \left(\frac{\ln n}{\ln 2}\right)' = \frac{1}{n \ln 2}$$

$$\lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \frac{(\lg n)'}{n'} = \lim_{n \to \infty} \frac{1}{n \ln 2} = 0$$

$$n^{k} = O(2^{n})$$

where k is a positive integer.
 $2^{n} = e^{n \ln 2}$
 $(2^{n})' = (e^{n \ln 2})' = \ln 2 e^{n \ln 2} = 2^{n} \ln 2$
 $\lim_{n \to \infty} \frac{n^{k}}{2^{n}} = \lim_{n \to \infty} \frac{kn^{k-1}}{2^{n} \ln 2} =$
 $= \lim_{n \to \infty} \frac{k(k-1)n^{k-2}}{2^{n} \ln^{2} 2} = ... = \lim_{n \to \infty} \frac{k!}{2^{n} \ln^{k} 2} = 0$

Another upper bound "little oh": o

Definition:

Let f(n) and g(n) be asymptotically non-negative functions. We say f(n) is O(g(n))

if for every positive real constant c there exists a positive integer n_0 such that for all $n \ge n_0$

$$0 \le f(n) < c * g(n).$$

$$O(g(n)) = \{f(n): \text{ for any positive constant } c > 0, \text{ there exists a positive integer } n_0 > 0 \text{ such that } 0 \le f(n) < c * g(n) \text{ for all } n \ge n_0 \}$$

"little omega" can also be defined

Main difference between O and o

```
O(g(n)) = \{ f(n) \mid \text{there exist positive constant } c \text{ and a positive integer } n_0 \text{ such that } 0 \le f(n) \le c * g(n) \text{ for all } n \ge n_0 \}
O(g(n)) = \{ f(n) \mid \text{ for any positive constant } c > 0, \text{ there exists a positive integer } n_0 \text{ such that } 0 \le f(n) < c * g(n) \text{ for all } n \ge n_0 \}
```

For 'o' the inequality holds for all positive constants.

Whereas for 'O' the inequality holds for SOME positive constants.

Lower-order terms and constants

- Lower order terms of a function do not matter since lowerorder terms are dominated by the higher order term.
- Constants (multiplied by highest order term) do not matter, since they do not affect the asymptotic growth rate
- All logarithms with base b >1 belong to Θ(lg n) since

$$\log_b n = \frac{\lg n}{\lg b} = c \lg n$$

Asymptotic notation in equations

What does

$$n^2 + 2n + 99 = n^2 + \Theta(n)$$

mean?

$$n^2 + 2n + 99 = n^2 + f(n)$$

Where the function f(n) is from the set $\Theta(n)$.

In fact
$$f(n) = 2n + 99$$
.

Using notation in this manner can help to eliminate non-affecting details and clutter in an equation.

$$2n^2 + 5n + 21 = 2n^2 + \Theta(n) = \Theta(n^2)$$

Transitivity:

If
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ then $f(n) = \Theta(h(n))$.

If
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$ then $f(n) = O(h(n))$.

If
$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n))$ then $f(n) = \Omega(h(n))$.

If
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$ then $f(n) = O(h(n))$.

If
$$f(n) = \omega(g(n))$$
 and $g(n) = \omega(h(n))$ then $f(n) = \omega(h(n))$

Reflexivity:

$$f(n) = \Theta(f(n)).$$

$$f(n) = O(f(n)).$$

$$f(n) = \Omega(f(n)).$$

"o" is not reflexive

Symmetry and Transpose symmetry:

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

• Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$.
 $f(n) = O(g(n))$ if and only if $g(n) = \omega(f(n))$.

Analogy between asymptotic comparison of functions and comparison of real numbers.

$$f(n) = O(g(n)) \approx a \le b$$
 $f(n) = \Omega(g(n)) \approx a \ge b$
 $f(n) = \Theta(g(n)) \approx a = b$
 $f(n) = o(g(n)) \approx a < b$
 $f(n) = \omega(g(n)) \approx a > b$

Not All Functions are Comparable

The following functions are not asymptotically comparable:

$$f(n) = \begin{cases} n \text{ for even } n \\ 1 \text{ for odd } n \end{cases} \qquad g(n) = \begin{cases} 1 \text{ for even } n \\ n \text{ for odd } n \end{cases}$$

$$f(n) \neq O(g(n))$$
, and $f(n) \neq \Omega(g(n))$,

Is
$$O(g(n)) = \Theta(g(n)) \cup o(g(n))$$
?

We show a counter example:

The functions are:

and
$$g(n) = n$$

$$f(n) = \begin{cases} n & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$$

f(n) = O(n) but $f(n) \neq O(n)$ and $f(n) \neq O(n)$

Conclusion:

$$\mathbf{O}(g(n)) \neq \Theta(g(n)) \cup \mathbf{o}(g(n))$$

General Rules

- We say a function f(n) is polynomially bounded if $f(n) = O(n^k)$ for some positive constant k
- We say a function f(n) is polylogarithmic bounded if $f(n) = O(\lg^k n)$ for some positive constant k
- Exponential functions
 - grow faster than positive polynomial functions
 - grow faster than polylogarithmic functions