Crowd Buzz Scalable Audio Communication for MMVEs using Latency Optimized Hypercube Gossiping

Philipp Berndt <philipp.berndt@tu-berlin.de>
Matthias Hovestadt, Odej Kao
Complex and Distributed IT-Systems
Technische Universität Berlin

OVERVIEW: Outline of the presentation

- . Auditory Virtual Environments
- II. Communication Topologies
- III. Hypercube Gossiping
- IV. Evaluation
- V. Future Research
- VI. Summary and Discussion

AUDITORY VIRTUAL ENVIRONMENTS Multi-Group Communication in VEs

AUDIO COMMUNICATION IN VEs:

The General Problem

Virtual locations

SERVER CENTRIC TOPOLOGY:

Easy on the client, hard on the server

Topology: Central Server

FULL MESH TOPOLOGY: Too much traffic

Topology: Full Mesh

HYPERCUBE TOPOLOGY: Communication Scheme

HYPERCUBE TOPOLOGY: Lower resource usage

Topology: Symmetric Distributed Processing

HYPERCUBE TOPOLOGY: Mixing with coefficients

Dim. 3

CLUSTERING: How users are assigned their network positions

CLUSTERING: Evaluation

PARTITIONING: Hexagonal Grid

NODE ARCHITECTURE: Three Layers

THE DELFOI MODEL: One Way End-to-End Latency

$$delay(H_1, H_2, l_P, S) := \sum \dots$$

- 1. $\frac{\text{queuelevel}(S_{H_1,up}) + l_P}{bandwidth_{H_1,up}}$
- **2.** wiredelay $_{H_1,up}$
- 3. $\sqrt{\sum_{i=1}^{D} (c_{H_1,i} c_{H_2,i})^2}$

4. rlnorm $(\mu_{H_1,H_2},\sigma_{H_1,H_2})$

5.
$$\frac{\text{queuelevel}(S_{H_2,down}) + l_P}{bandwidth_{H_2,down}}$$

6. $wiredelay_{H_2,down}$

THE DELFOI MODEL: Simulation with OMNeT++

EVALUATION: Simulated Mouth to Ear Latency

DETAIL 64: Available Bandwidth

DETAIL 64: Latency Distribution

FUTURE WORK: What is missing

- •Improve user clustering algorithm
- Work out node dynamics
- Verify simulation results with prototypes and field tests

CONCLUSION: Summary & Discussion

- •MMVEs provide a new form of communication & entertainment
- Scaling Audio Communications for MMVEs without P2P is expensive
- Hypercube Gossiping scales well with respect to latency and bandwidth requirements
- •Intelligent Stable Clustering is required to map avatar positions to network positions

DISCUSSION