Section 1: Basics

O1 [Rizzoni Problem 4.37]

Assuming cosine as the reference, find the phasor form of the following functions:

a.
$$v(t) = 155\cos(377t - 25^{\circ}) \text{ V}$$

b.
$$v(t) = 5\sin(1000t - 40^{\circ}) \text{ V}$$

c.
$$i(t) = 10\cos(10t + 63^{\circ}) + 15\cos(10t - 42^{\circ})$$
 A

d.
$$i(t) = 460\cos(500\pi t - 25^{\circ}) - 220\sin(500\pi t + 15^{\circ})$$
 A

Q2 [Rizzoni Problem 4.38]

Convert the following complex numbers to polar form (i.e. phasor form):

a.
$$4 + i4$$

b.
$$-3 + j4$$

c.
$$j + 2 - j4 - 3$$

O3

Determine the current that flows through an 8Ω resistor connected if the voltage across the resistor is:

$$V_s = 110 \cos(377t) V$$

04

Determine the voltage across a 2 µF capacitor when the current through it is:

$$I = 4 \cos(10^6 t + 25^\circ) A$$

Q5

Determine the current through a 4mH inductor when the voltage across it is:

$$V = 60 \cos(500t - 65^{\circ}) V$$

Q6 [Rizzoni Problem 4.43]

If the current through and the voltage across a component in an electric circuit are

$$i(t) = 17\cos(\omega t - 15^{\circ}) \text{ mA}$$

$$v(t) = 3.5\cos(\omega t + 75^{\circ}) \text{ V}$$

Where $\omega = 628.3$ rad/s, determine

- a. Whether the component is a resistor, capacitor, or inductor (explain why).
- b. The value of the component in Ohms, Farads, or Henrys.

Q7

Copyright © The McGraw-Hill Companies

Derive the expressions for v_2 in terms of v_s and relevant component symbols (assume AC)

 L_1 (a) M

Copyright © The McGraw-Hill Co

Section 2: Complex impedance

Q8 [Rizzoni Problem 4.48]

Determine the equivalent impedance seen by v_s in the circuit shown in Figure P4.47:

$$v_s(t) = 636\cos\left(3,000t + \frac{\pi}{12}\right) V$$

Given: $R_1 = 3.3k\Omega$, $R_2 = 22k\Omega$, L = 1.90H, C = 6.8nF

Q9 [Problem 4.65]

For the circuit shown in the Figure P4.65

- a. Derive the impedance of the circuit (Z_{eq}) as a function of radian frequency ω
- b. Find the frequency that causes Z_{eq} to appear purely resistive (i.e. phase is zero).

Q10 [Problem 4.55]

Find the impedance across the current source in Fig P4.55. Then use this to find the voltage across it.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Numerical Answers

Q1

- a. 155∠-25° V
- b. Convert sine to cosine: $5\angle(-40^{\circ}-90^{\circ}) = 5\angle-130^{\circ} \text{ V}$
- c. $10\angle 63^{\circ} + 15\angle 42^{\circ} = 15.73\angle -4.12^{\circ}$ A
- d. $[460\angle -25^{\circ}] [220\angle (15^{\circ} 90^{\circ})] = 360.4\angle 2.88^{\circ}$ A

Q2

- a. 5.66∠45°
- b. 5∠126.9°
- c. $3.16\angle -108.4^{\circ}$

Q3

13.75 cos(377t) A

Q4

 $2\cos(10^6t-65^\circ) V$

Q5

 $30\cos(500t-155^{\circ})$ A

06

Inductor with value of 327.7mH

Q7

- a. $v_2 = \frac{L_2}{L_1 + L_2} v_s$
- b. $v_2 = \frac{C_1}{C_1 + C_2} v_s$

Q8

7.05∠ 53.81^{o} kΩ

Q9

 $Z = 15 + j0.001\omega - j10^6/\omega$

Z is purely resistive at $\omega = 31622.77 \text{ rad/s}$

Q10

 $v(t) = 16.64 \cos(2t - 0.983) V$