Unit 6: Combinations of Functions

6.1 Sum and Difference of functions

Throughout grade 11 and 12, we have expressed functions using function notation.

Ex)
$$f(x) = 2x + 1$$

$$g(x) = 2x^2 - 7x - 4$$

$$g(x) = 2x^2 - 7x - 4$$
 $h(x) = 2\sin(3x)\cos(2x)$

Functions are made of terms separated by arithmetic operators $(+, -, \times, \div)$. Because terms can be added, subtracted, multiplied, and divided and functions are made of terms, functions may be added, subtracted, multiplied, and divided.

- a) Whenever arithmetic operations are applied to functions, a new function may be created.
 - The new function is called a combined function.

Function Notation: f(x) + g(x) is often represented as (f + g)(x)f(x) - g(x) is often represented as (f - g)(x)

$$D_{f\pm g}=$$

The Superposition Principal

If f(x) and g(x) are functions then the sum of the two functions h(x) = f(x) + g(x) can be found by adding the y-coordinates at each point along the x-axis. The difference of the two functions (f-g)(x)can be found by subtracting the y-coordinates at each point along the x-axis.

Ex 1) Given the following graphs, find the graph of (f+g)(x) and (f-g)(x).

×	f(x)	g(x)	(f+g)(x)	(f-g)(x)
-8				
-7				
-4				
0				
3				
7				
9				

Ex 2) Given the following graphs, find the graph of h(x) = f(x) + g(x)

×	f(x)	g(x)	(f+g)(x)

Ex 3) Given
$$f = \{(-2,6), (-1,8), (0,5), (1,0), (2,-2)\}$$
 and $g = \{(-2,2), (-1,4), (0,-6)\}$

a) State the domain of f

b) State the domain of ${\it g}$

c) State the domain of f+g

d) State the domain of f-g

e) List f + g

f) List f - g

Ex 4) If
$$f(x) = 2x^2 - 12x + 8$$
 and $g(x) = x^2 - 5x + 12$

a) find the value(s) of x for which (f + g)(x) = 0

b) Find the optimal value of (f-g)(x)

Ex 5) If $f(x) = \frac{x}{x-1}$ and $g(x) = \frac{3}{x^2-1}$, find the value of x for which (f+g)(x) = 1

Practice: Addition and Subtraction of Functions of the Same Family

- 1. Given $f(x) = \frac{1}{4}x^2 4$ and $g(x) = -\frac{1}{2}(x-3)^2 + 8$.

 a) Graph the functions on the same set of axes with a graphing calculator and sketch the functions on the given axes with a different colour.
 - b) Complete the table below
 - c) Determine h(x) = f(x) + g(x)
 - d) Determine k(x) = f(x) g(x)

x	$f(x) = \frac{1}{4}x^2 - 4$	$g(x) = -\frac{1}{2}(x-3)^2 + 8$	h(x) = f(x) + g(x)	k(x) = f(x) - g(x)

- 2. Given $f(x) = \log_2(x+4)$ and $g(x) = \sin(x)$.
 - a) Complete the table below
 - b) Sketch h(x) = f(x) + g(x) on the grid to the left
 - c) Sketch k(x) = f(x) g(x) on the grid to the right

x	$f(x) = \log_2(x - 4)$	$g(x) = \sin(x)$	h(x) = f(x) + g(x)	k(x) = f(x) - g(x)

- 3. Given $f(x) = \frac{1}{4}x^2 4$ and $g(x) = -\frac{1}{2}(x-3)^2 + 8$. a) Complete the table below

 - b) Determine h(x) = f(x) + g(x)
 - c) Determine k(x) = f(x) g(x)

x	$f(x) = \frac{1}{4}x^2 - 4$	$g(x) = -\frac{1}{2}(x-3)^2 + 8$	h(x) = f(x) + g(x)	k(x) = f(x) - g(x)

Warm Up

1. Determine the graph of h(x) = f(x) + g(x), given the graphs of $f(x) = x^2 + x - 6$ and

 $g(x) = \sqrt{x+6}$ by creating a table of values

g(x) - v	$g(x) = \sqrt{x} + 6$ by creating a table of values				
x	f(x)	g(x)	h(x)		
-6					
-5					
-4					
-3					
-2					
-1					
0					
1					
2					
3					

- h(x) in un-simplified form: Domain of h(x):
- 2. Let $f(x) = mx^2 + 2x + 5$ and $g(x) = 2x^2 nx 2$. The functions are combined to form the new function h(x) = (f g)(x). Points (1,10) and (-1,16) satisfy the new function. Determine the values of m and n. [m=8, n=-5]

6.2 Product and Quotient of two functions

If you are given the functions f(x) and g(x)

- \succ the product of two functions is defined as f(x)g(x) or (fg)(x)
- > the quotient of two functions is defined as $\frac{f(x)}{g(x)}$ or $\left(\frac{f}{g}\right)(x)$

Similarly, the product of two functions can be found by multiplying the y-coordinates with the same x-coordinates. I.e.)(x, f(x)g(x))

 \succ The Domain of fg=

To find the quotient of two functions, we need to divide the y-coordinates with the same x-coordinates.

For the functions f and g, $\frac{f}{g}$ is defined by $\frac{f}{g} = \left\{ \left(x, \frac{f(x)}{g(x)} \right) \middle| \frac{f(x)}{g(x)} \text{ is defined} \right\}$

Note: The quotient of two functions may not be a function due to possible Holes and V.A.(s)

 \succ The Domain of $\frac{f}{g}$ =

Note: The product of two functions will remain a function!

Ex 1) Given
$$f = \{(-3,7), (-2,5), (-1,-4), (2,8)\}$$
 and $g = \{(-4,6), (-2,3), (-1,0), (1,5), (2,-4)\}$
Find

a) $f + g$

b) $f - g$

c)
$$fg$$

e)
$$\frac{g}{f}$$

Ex 2) Let
$$f(x) = \sqrt{x+6}$$
 and $g(x) = x^2 + x - 6$

- a) Determine the equation of h(x) = f(x)g(x)
- b) Determine the equation of $k(x) = \frac{g(x)}{f(x)}$
- c) Sketch the graphs of the combined functions
- d) State the domain and range of h(x) and k(x).

x	f(x)	g(x)	h(x)	k(x)

Ex 3) Consider the following table illustrating the product of functions f(x) and g(x). Let the product be defined as h(x) = f(x)g(x) and the quotient be defined as $k(x) = \frac{f(x)}{g(x)}$. Determine if h(x) and k(x) are even or odd in the following scenarios.

f(x)	g(x)	f(x)g(x)	$\frac{f(x)}{g(x)}$
Even	Even		
Even	Odd		
Odd	Even		
Odd	Odd		

Ex 4) For each of the following pairs of functions, write the equation of $h(x) = \left(\frac{f}{g}\right)(x)$ and state the domain of h(x)

1.
$$f(x) = 10, g(x) = x$$

2.
$$f(x) = 4x, g(x) = 3x - 2$$

3.
$$f(x) = 4x^2$$
, $g(x) = x^2 - 4$

4.
$$f(x) = x^2 - x - 12$$
, $g(x) = x^2 + 2x - 3$

Practice: Product and Quotient of Functions of Different Families

Given $f(x) = \log_2(x+4)$ and $g(x) = \sin(x)$.

- a) Complete the table below
- b) Sketch h(x) = f(x)g(x) on the grid to the left

Note: The grid to the right illustrates $k(x) = \frac{f(x)}{g(x)}$

x	$f(x) = \log_2(x+4)$	$g(x) = \sin(x)$	h(x) = f(x)g(x)	$k(x) = \frac{f(x)}{g(x)}$

Warm Up

3. Determine the graph of h(x) = f(x)g(x), given the graphs of $f(x) = x^2 + x - 6$ and

 $g(x) = \sqrt{x+6}$ by creating a table of values

x	f(x)	g(x)	h(x)
-6			
-5			
-4			
-3			
-2			
-1			
0			
1			
2			
3			

- h(x) in un-simplified form:______ Domain of h(x):_____
- 4. Let $f(x) = mx^2 + 2x + 5$ and $g(x) = 2x^2 nx 2$. The functions are combined to form the new function h(x) = (fg)(x). Points (1, -40) and (-1, 24) satisfy the new function. Determine the values of m and n. [m=3, n=4]

6.3 More Practice with the Quotient of Two Functions

To find the quotient of two functions, we need to divide the y-coordinates with the same x-coordinates.

For the functions f and g, $\frac{f}{g}$ is defined by $\frac{f}{g} = \left\{ \left(x, \frac{f(x)}{g(x)} \right) \middle| \frac{f(x)}{g(x)} \text{ is defined} \right\}$

Note: The quotient of two functions may not be a function due to possible Holes and V.A.(s)

- > The Domain of $\frac{f}{g}$ = Domain of $f\cap D$ omain of g, for which $g(x)\neq 0$ = $\left\{x\epsilon R\big|x\epsilon D_f\cap D_g,g(x)\neq 0\right\}$
- Ex 1) Given $f = \{(-5,1), (-3,1), (0,1), (1,1), (2,1), (4,1)\}$ and $g = \{(-5,6), (-4,5), (-3,4), (0,1), (1,0), (3,-2), (4,-3)\}$
- a) Find the domain of f + g

b) Find the domain of f-g

c) Find the domain of fg

d) Find the domain of $\frac{f}{g}$

- e) List $\frac{f}{g}$
- Ex 2) Let f(x) = x + 2 and $g(x) = x^2 3x 10$.
 - a) Determine the equation of $h(x) = \frac{f(x)}{g(x)}$
 - b) Sketch a graph of the combined function
- c) State the domain and range of h(x)

Ex 3) Let $f(x) = x^3 - 7x - 6$ and $g(x) = x^2 + 3x + 2$. a) Determine the quotient function $\left(\frac{f}{g}\right)(x)$

- b) Determine the domain of the quotient function
- c) Make a sketch of the quotient function

Practice: Quotient of Functions of Different Families

Given $f(x) = \sin(x)$ and $g(x) = \cos(x)$.

- a) Complete the table below
- b) Graph the functions on the same set of axes. Be as accurate as possible!
- c) Sketch $h(x) = \frac{f(x)}{g(x)}$ on the grid below. Be as accurate as possible!

x	$f(x) = \sin(x)$	$g(x) = \cos(x)$	$h(x) = \frac{f(x)}{g(x)}$

Warm Up

1. Given the graphs of f and g, graph fg and $\frac{f}{g}$ using different colours on the grid to the right.

Label any V.A. if needed.					
x	fg(x)	$\frac{f}{g}(x)$			
-10		J			
-8					
-6					
-4					
-2					
0					
2					
4					
6					
8					
10					

- 2. Using the signs (+ or -) of f and g, determine when:
 - a. (fg)(x) > 0
 - b. (fg)(x) < 0
 - $c. \quad (\frac{f}{g})(x) > 0$
 - $d. \quad (\frac{f}{g})(x) < 0$

6.4 Compositions of Functions

Let f(x) and g(x) represent two functions. We have learned how to

- **Add** two functions (f + g)(x)
- **Subtract** two functions (f g)(x)
- **Multiply** two functions (fg)(x)
- **Divide** two functions $\frac{f}{g}(x)$
- Find the **Inverse** of a function $f^{-1}(x)$

Now, we need to learn how to put a function into another function. Say we want to put g(x) into f(x).

This is written as f(g(x)) or $(f \circ g)(x)$. f(g(x)) is an example of a **Composite Function**

Always remember to put the inner function in the outer function.

• If we want to put f(x) into g(x) the composition function is written as _____

Example. Let $f(x) = 4 + \sqrt{x^2 + 4x}$ and g(x) = x - 1. Determine the equation for each composition Function.

a)
$$f(g(x))$$

b)
$$g(f(x))$$

c)
$$g(g(x))$$

Find
$$g^{-1}(x)$$

d)
$$g(g^{-1}(x))$$

e)
$$g^{-1}(g(x))$$

Method for obtaining inverses

This method utilizes the fact that

$$f(f^{-1}(x)) = x, x \in D_{f^{-1}}$$

 $f^{-1}(f(x)) = x, x \in D_f$

This may seem confusing, but it is a result of the most basic principles of function inverses. Think of a function as some sort of process that we put x through, and it outputs some term. A functions inverse is simply the reverse process. So if we put x through a process, f, then put it through the reverse process, f^{-1} , we end up with just x again.

The methodical approach can be summarized in the following steps:

1. Replace x with $f^{-1}(x)$ on both sides of the equation.

At this point, you should have a $f(f^{-1}(x))$ on one side of your equation and then a function of $f^{-1}(x)$ on the other.

2. Substitute in $f(f^{-1}(x)) = x$.

If we take the inverse of a function on the output of the function, f(x), we are left with the input. Therefore, if we take $f(f^{-1}(x))$, we are left with the original input, which is x. Therefore we know $f(f^{-1}(x)) = x$. Remember that, since the two expressions are equal, we can just replace $f(f^{-1}(x))$ with x.

3. Solve for $f^{-1}(x)$ in terms of x.

At this point, we have an x on one side of the equation, and then a function of $f^{-1}(x)$ on the other side. Try to solve for $f^{-1}(x)$ by getting it by itself on one side of the equation. This will tell you what the inverse function is.

Examples: Find the inverses for the following functions.

a)
$$f(x) = x + 4$$

b)
$$f(x) = (x + 4)^2 - 5$$

Example. If $(f \circ g)(x) = 8x^2 - 10x + 15$ and f(x) - 2x + 9 find g(x).

Example. Use the graphs of y = f(x) and y = g(x) to find each of the following compositions.

c.
$$f(g(0))$$

d.
$$g(f(0))$$

e.
$$g(g(3))$$

Domain of Composite Function Diagram

Let $(a,b)\epsilon g$ and $(b,c)\epsilon f$. Determine f(g(a))

NOTE: To define (fg)(x),

$$D_f \cap R_g \neq \emptyset$$

Then

$$D_{fog} = \left\{ x \in D_g, g(x) \in D_f \right\}$$

Example . Given that $f = \{(0,1), (1,3), (2,5), (3,7), (4,9)\}$ and $g = \{(0,0), (1,2), (2,4), (3,6), (4,8)\}$. Determine

- a) $(f \circ g)(x)$
- b) $(f \circ g)^{-1}(x)$
- c) g(f(x))
- d) $f^{-1}(x)$
- e) $(g \circ f^{-1})(x)$

Example. Given the following graph of f(x) and g(x). Graph $(f \circ g)(x)$.

x	g(x)	f(g(x))										0	У									
										\setminus		΄.										
												8 -										
											\setminus											
											1	6 -										
												4	┢							\Box		
													┖		_						f(x)
												2-	1	/						\vdash		
				+-				_				-	-	\leftarrow								X
			 -	+ -	<u> </u>	-	_	Н	\mathbf{L}	-	_	\vdash	⊁	1	\vdash	H	┞		\vdash	1	-+	$\boldsymbol{\dashv}$
			10	 -	8	-	6_	_	4∖		2	,	-		\leftarrow	_ 4	1—	6	—	8		_10
				-						-	-	1			+							
				-			-			\		/_	┝		_					\vdash		
										\rightarrow	/	4 -	┡			\				\vdash		
				-						_\	_	<u> </u>	-							\vdash		
			1								_	6 -	<u> </u>				\			\Box		
				_								Ľ.										
			1 🖳								_	8 -	L_					/				
												٥.							g	(x)		
			1 L_								L.	_										
												0										

Example. Given the graph of y = f(x) on the right and the functions g(x) = 2x + 1, h(x) = -x + 3, and $k(x) = (g \circ f \circ h)(x)$,

- (a) evaluate k(2)
- (b) graph $(g \circ h \circ f)(x)$.

Х	(g o h of)(x)

Example. Express h as the composition of two functions f and g, such that h(x) = f(g(x)).

a.
$$h(x) = 3^{2x^2-1}$$

b.
$$h(x) = x^4 + 5x^2 + 6$$

c.
$$h(x) = \frac{2x^2 - 1}{x^2}$$

$$d. \quad h(x) = \frac{1}{x-4}$$

Composite Functions

Exercise 6.4

Part A

1. Given $f(x) = \sqrt{x}$ and $g(x) = x^2 - 1$, find the following:

a.
$$f(g(1))$$

b.
$$g(f(1))$$

c.
$$g(f(0))$$

d.
$$f(g(-4))$$

e.
$$f(g(x))$$

f.
$$g(f(x))$$

2. For each of the following pairs of functions, find the composite functions $f \circ g$ and $g \circ f$. What is the domain of each composite function? Are the composite functions equal?

a.
$$f(x) = x^2$$

b.
$$f(x) = \frac{1}{x}$$

c.
$$f(x) = \frac{1}{r}$$

$$g(x) = \sqrt{x}$$

$$g(x) = x^2 + 1$$

b.
$$f(x) = \frac{1}{x}$$
 c. $f(x) = \frac{1}{x}$ $g(x) = x^2 + 1$ $g(x) = \sqrt{x+2}$

Part B

3. Use the functions f(x) = 3x + 1, $g(x) = x^3$, $h(x) = \frac{1}{x+1}$, and $u(x) = \sqrt{x}$ to find expressions for the indicated composite function.

a.
$$f \circ u$$

c.
$$g \circ f$$

$$f. f \circ g$$

g.
$$h \circ (f \circ u)$$

h.
$$(f \circ g) \circ u$$

i.
$$g \circ (h \circ u)$$

4. Express h as the composition of two functions f and g, such that h(x) = f(g(x)).

a.
$$h(x) = (2x^2 - 1)^4$$

b.
$$h(x) = \sqrt{5x - 1}$$

$$c. \ h(x) = \frac{1}{x-4}$$

d.
$$h(x) = (2 - 3x)^{\frac{5}{2}}$$

e.
$$h(x) = x^4 + 5x^2 + 6$$

f.
$$h(x) = (x + 1)^2 - 9(x + 1)$$

5. If $f(x) = \sqrt{2 - x}$ and $f(g(x)) = \sqrt{2 - x^3}$, then what is g(x)?

6. If $g(x) = \sqrt{x}$ and $f(g(x)) = (\sqrt{x} + 7)^2$, then what is f(x)?

7. Let g(x) = x - 3. Find a function f so that $f(g(x)) = x^2$.

8. Let $f(x) = x^2$. Find a function g so that $f(g(x)) = x^2 + 8x + 16$.

9. Let f(x) = x + 4 and $g(x) = (x - 2)^2$. Find a function u so that $f(g(u(x))) = 4x^2 - 8x + 8$.

10. If $f(x) = \frac{1}{1-x}$ and g(x) = 1-x, determine b. f(g(x))

11. If f(x) = 3x + 5 and $g(x) = x^2 + 2x - 3$, determine x such that f(g(x)) = g(f(x)).

12. If f(x) = 2x - 7 and g(x) = 5 - 2x.

a. determine $f \circ f^{-1}$ and $f^{-1} \circ f$.

b. show that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$.

1. a. 0 b. 0 c. -1 d. $\sqrt{15}$ e. $\sqrt{x^2-1}$ f. x-1

2. a.
$$f(g(x)) = x, x \ge 0$$
; $g(f(x)) = |x|, x \in R$; $f \circ g \ne g \circ f$

2. a.
$$f(g(x)) = x, x \ge 0$$
; $g(f(x)) = |x|, x \in R$; $f \circ g \ne g \circ f$
b. $f(g(x)) = \frac{1}{x^2 + 1}, x \in R$; $g(f(x)) = \frac{1}{x^2} + 1, x \ne 0$; $f \circ g \ne g \circ f$

c.
$$f(g(x)) = \frac{1}{\sqrt{x+2}}, x > -2; g(f(x)) = \sqrt{\frac{1+2x}{x}}, x < -\frac{1}{2} \text{ or } x > 0; f \circ g \neq g \circ f$$

3. a. $3\sqrt{x} + 1$ **b.** $\frac{1}{\sqrt{x+1}}$ **c.** $(3x+1)^3$

d.
$$\sqrt{x^3}$$
 e. $\frac{1}{\sqrt{x}+1}$ **f.** $3x^3+1$ **g.** $\frac{1}{3\sqrt{x}+2}$ **h.** $3x\sqrt{x}+1$

i.
$$\frac{1}{(\sqrt{x}+1)^3}$$

4. a. $f(x) = x^4$, $g(x) = 2x^2 - 1$ b. $f(x) = \sqrt{x}$, g(x) = 5x - 1

c.
$$f(x) = \frac{1}{x}$$
, $g(x) = x - 4$ d. $f(x) = x^{\frac{5}{2}}$, $g(x) = 2 - 3x$

e. $f(x) = x(x + 1), g(x) = x^2 + 2$

f.
$$f(x) = x^2 - 9x$$
, $g(x) = x + 1$

5.
$$g(x) = x^3$$

6.
$$f(x) = (x + 7)^2$$

7.
$$f(x) = (x + 3)^2$$

8.
$$g(x) = x + 4$$
 or $g(x) = -x - 4$

9.
$$u(x) = 2x$$
 or $u(x) = -2x + 4$

10. a.
$$\frac{x}{x-1}$$
 b. $\frac{1}{x}$ 11. -2, -3 12. a. x

1. Given the following functions, determine the following in simplest **exact** form.

$$f(x) = \{(1,2), (2,3), (3,5), (5,7)\} \qquad g(x) = \{(1,4)\}$$

$$h(x) = -2\cos(2x + \pi) + 1 \qquad m(x) = x^2 + 1$$
a.
$$(f^{-1} + g)(x)$$

$$f(x) = \{(1,2),(2,3),(3,5),(5,7)\}$$
 $g(x) = \{(1,4),(3,7),(5,9),(9,2)\}$

$$h(x) = -2\cos(2x + \pi) + 1$$

$$m(x) = x^2 + 1$$

a.
$$(f^{-1}+g)(x$$

b.
$$(f \times g)(3)$$

c.
$$(g \circ h)(\pi)$$

d.
$$\left(\frac{f}{m}\right)(x)$$

- 2. Given the graph of y = f(x) on the right and the functions g(x) = 2x + 1, h(x) = -x + 3, and $k(x) = (g \circ f \circ h)(x)$
- evaluate k(2)(a)

graph $(g \circ h \circ f)(x)$. (b)

x	$(g \circ h \circ f)(x)$

3. Given the graph y = k(x) below and the functions $g(x) = 2^{x-1}$, $h(x) = \log_2(x^2 + 1)$, $m(x) = \sqrt{16 - x^2}$, graph of y = f(x) below, $k(x) = \frac{(g \circ f \circ h)(x)}{h(x)}$ and $n(x) = (f \circ m \circ f)(x)$ determine the following:

6.5 Solving Inequalities of Combined Functions

Recall: An inequality is a mathematical statement that contains one of the following symbols:

There are two main strategies used to solve an inequality involving f(x) and g(x)

- 1. Inequality related to **Zeros**
 - > The chart method
 - \circ Used whenever you can factor f(x) g(x) or g(x) f(x)
- 2. Inequality related to Points of Intersection
 - > The graphing method
 - \circ Used whenever you cannot factor the above but you can still graph f(x) and g(x)

Ex.1: Given
$$f(x) = x^3 - 2x^2 + 5x + 20$$
 and $g(x) = 2x^2 + 14x - 16$. Solve $f(x) \ge g(x)$.

Ex.2: Given $f(x) = \cos(x)$ and g(x) = x. Determine all values of x such that f(x) > g(x).

Ex.3: Given $f(x) = \frac{3x}{x+8}$ and $g(x) = \frac{x}{x-6}$, determine all values of x such that f(x) < g(x).

Ex.4: Given $f(x) = x^2 + 4x - 5$ and g(x) = x + 1. Determine all values of x such that f(x) > g(x).

Ex.5: Given $f(x) = \log_2(x^2)$ and $g(x) = \frac{1}{x^2}$ determine all values of x such that f(x) > g(x).

Ex.6: Given $f(x) = \sqrt{2-x}$ and $g(x) = 2\sqrt{x}-1$, sketch the graphs of f and g on the same set of axes. Using the graphs of these functions, solve f(x) > g(x).

Group work

Multiple Choice: Write the CAPITAL LETTER corresponding to the most correct answer on the line provided.

- 1. If $\left(\frac{m}{n}\right)(x) = \frac{x+3}{2x+1}$ and $n(x) = 2x^2 5x 3$, the function that defines m(x) is:
 - A) $m(x) = x^2 + 6x 9$ B) m(x) = x + 3 C) $m(x) = x^2 9$ D) m(x) = x 3 E) None of the above

- 2. If $D_f = \{x \mid x \in \mathbb{R}\}$ and $D_g = \{x \mid x \ge 0, x \in \mathbb{R}\}$, then which of the following is correct?
 - $A) \quad D_{f+g} = \{x \mid x \in \mathbb{R}\}$
- B) $D_{f+g} = \{x \mid x \ge 0, x \in \mathbb{R}\}$ C) $D_{fg} = \{x \mid x \ge 0, x \in \mathbb{R}\}$ D)
- $D_{f-g} = \{ x \mid x \in \mathbb{R} \}$
- E) Both B and C
- 3. If f(x)=2x-2, g(x)=x+4 and h(x)=f(x)-g(x) then which of the following statements is true?

- The y-intercept of h(x) is 2
- B) f(x), g(x) and h(x) all intersect at the same point.
- C) $h(x) = f(f^{-1}(x)) g(-10)$ D) h(3) = -3 E) Both C and D
- 4. Given $f(x) = 3x^2$ and $g(x) = 3x^4 x^2 5$, which of the following statements are true?

- A) $\left(\frac{g}{f}\right)(x)$ is quadratic
- B) (f g)(x) is quadratic
- C) (f+g)(x) is cubic

- D) (fog)(x) is an even function
- E) (f g)(x) is an odd function

Short Answer

- 5. Given $f(x) = 11x^5$ and $g(x) = 22x^2 \log(x)$ determine:
 - a) the domain of $\left(\frac{f}{\sigma}\right)(x)$

- b) equation of $\left(\frac{f}{g}\right)(x)$
- Given the following functions, determine the following in simplest form:

$$f(x) = \{(1,2), (2,3), (3,5), (9,7)\}$$

$$g(x) = \{(1,4), (3,7), (5,9), (9,2)\}$$

$$h(x) = \sqrt{x - 4}$$

$$m(x) = \sqrt{x-3}$$

a)
$$(f+g)(x)$$

b) (fg)(3)

c) D_{h+m}

d) $D_{\underline{h}}$

- 7. Given the functions $f(x) = 2x^2 4x + 3$ and $g(x) = 3x^2 6x 4$ then determine the range of (f g)(x).
- 8. Determine two functions, f and g, whose product would result in $(fg)(x) = 8\sin^3 x + 27$.
- 9. Given $f(x) = 9x^4 + 6x^3 + 270$ and $g(x) = 9x^4 + 51x^2 + 57x$ solve $f(x) \ge g(x)$.
- 10. Given the graphs below, sketch each of the following on the same set of axes provided.

a.
$$(f+g)(x)$$

b.
$$\left(\frac{g}{f}\right)(x)$$

- 11. If f(x) = 2x + 3 and $k(x) = 2x^2 + 6x + 9$, find g(x) so that $(f \circ g)(x) = k(x)$.
- 12. Complete the table below.

Point on f(x)	Point on g(x)	Point on $(f \circ g)(x)$
	(3,4)	(3,1)
(1,5)	(2,1)	
(0,-1)	(1,)	
(,5)	(,1)	(0,)
(3,)		(-1,3)

13. Using the functions listed below sketch the graph of $R(x) = \left(\frac{f}{g} \cdot h \cdot P\right)(x)$.

$$f(x) = x^2 + 3x - 40$$

$$f(x) = x^2 + 3x - 40$$
 $g(x) = -3x^2 + 12x + 15$
 $h(x) = 3x^3 + 3x^2$ $K(x) = 2x$

$$h(x) = 3x^3 + 3x^2$$

$$K(x) = 2x$$

$$M(x) = 4x + 4$$

$$M(x) = 4x + 4 P(x) = (M \circ K)(x)$$

14. Given the information below determine the range of (f + g)(x).

$$f(x) = 2(x+7)^2 - 4$$
 $D_f = \{x | x \le -9, x \in \mathbb{R}\}$

$$D_f = \{ x | x \le -9, x \in \mathbb{R} \}$$

$$g(x) = x + 5$$

$$g(x) = x + 5 D_g = \{x | x \ge -12, x \in \mathbb{Z}\}$$

Unit 6 Review

1. Given that

$$f(x) = x^2 + 2x - 8 \qquad g(x) = x^2 - 3x + 2 \qquad h(x) = x^3 + 3x^2 - x - 3$$

$$l(x) = \{(-5, -3), (-2, -4), (-1, 2), (0, 4), (3, 5)\} \qquad m(x) = \{(-3, 5), (-2, -1), (-1, 3), (5, 0)\}$$

Find

a.
$$f(x) + h(x)$$

b. $f(x) - g(x)$

c.
$$f^{-1}(x)$$

d.
$$\frac{h(x)}{g(x)}$$

$$e. \quad (f \circ g)(x)$$

h.
$$(l \circ m)^{-1}(x)$$

i.
$$l^{-1}(m(x))$$

2. Given f(x) = 2x - 7, $h(x) = \{(-1,3), (0,4), (1,7), (2,5), (3,-2)\}$, and k(x) = $\{(-4,1),(-3,5),(-2,3),(1,6)\}$

Find

a.
$$(h \circ k)(x)$$
 b. $(k \circ h)(x)$ c. $(f \circ h)(x)$ d. $(k \circ f)(x)$

b.
$$(k \circ h)(x)$$

c.
$$(f \circ h)(x)$$

d.
$$(k \circ f)(x)$$

3. If D_f : $x \in (-\infty, -3) \cup (2, 5) \cup (7, \infty)$, $x \in R$ and D_g : $x \in (-8, -2) \cup [0, 3] \cup [5, 15]$, $x \in R$ then determine D_{f+g} .

4. Given f(x) and g(x) below, graph (fg)(x) using points. Also, determine the equation of (fg)(x).

5. Given f(x) and g(x) below, graph $\frac{f(x)}{g(x)}$ by determining its equation.

Using the graph

- a) How would you determine the location of the VA(s) of $\frac{f(x)}{g(x)}$.
- b) How would you determine the location of the Hole(s) of $\frac{f(x)}{g(x)}$

- 6. Solve $\frac{x+1}{x-3} \ge \frac{4x+9}{x^2-2x-3}$ by method of zeros (by completing a chart). $[x\epsilon(-\infty,-2] \cup (-1,3) \cup [4,\infty), x\epsilon R]$
- 7. Solve $\frac{2}{x-4} \ge x-3$ by method of points of intersection (by graphing). $[x \in (-\infty, 2] \cup (4, 5], x \in R]$

Points of Intersection Work:

- 8. Find the domain of f(g(x)) if $f(x) = \frac{3x-4}{2x-6}$ and $g(x) = x^2 6x + 8$. $[\{x \in R | x \neq 1, 5\}]$
- 9. Find g(x) if f(g(x)) = h(x) where $f(x) = x^2 6x + 2$ and $h(x) = 9x^2 24x + 9$. [g(x) = 3x 1 or g(x) = -3x + 7]