

明細書

金属部品の冷却方法、金属部品の製造方法、及び金属部品の冷却装置 技術分野

[0001] 本発明は、加熱した金属部品を冷却液に浸漬して冷却する方法と、この冷却方法を用いた金属部品の製造方法及び金属部品の冷却装置に関する。

背景技術

[0002] 焼入れ処理や固溶化処理は、高温に加熱した金属部品を、鉱油(焼入れ油)、水、または水溶性冷却剤の水溶液等からなる冷却液に浸漬して急冷する熱処理である。これらの冷却液は冷却の安定性や経済性に優れているが、以下の点が問題点として挙げられる。すなわち、これらの冷却液は、高温に加熱した金属部品を浸漬した瞬間に金属部品との接触面で気化して、金属部品の表面に蒸気の膜(以下、「蒸気膜」と記す。)を生じさせる。そして、この蒸気膜は金属部品の冷却を遅延させるため、特に、金属部品の形状や冷却槽内での配置等により蒸気膜が部分的に安定すると、金属部品が均一に冷却されず、金属部品に変形や焼ムラ(硬度の差)が生じる。

[0003] この問題点を解決するため、従来は金属部品を浸漬した冷却液をできるだけ強く対流攪拌することで、蒸気膜と冷却液との接触面で積極的に熱交換させて、金属部品の表面の温度を下げるにより、蒸気膜を速やかに破壊することが行われている。

特許文献1(特開2003-286517号公報)では、金属部品を浸漬した冷却液を、振動と噴流によって攪拌して、冷却液に水平方向の流れと垂直方向の流れを生じさせることにより、蒸気膜を破壊し、且つ、破壊した蒸気膜から生じた気泡を冷却液内に拡散消失させる方法が提案されている。

[0004] しかしながら、上述した特許文献1に記載の方法では、蒸気膜を破壊する際に冷却液を攪拌するため、冷却液には強い流れが生じて蒸気膜の均一破壊が阻害され易い。よって、この特許文献1に記載の方法では、金属部品を均一に冷却するという点でさらなる改善の余地がある。

そこで、本発明は、上記事情に鑑みてなされたものであり、冷却液が金属部品の表面で気化して生じた蒸気膜を均一に破壊することにより、金属部品を均一に冷却でき

る方法を提供することを課題としている。

発明の開示

[0005] このような課題を解決するために、本発明者らは鋭意検討を重ねた結果、冷却液が金属部品の表面で気化して生じた蒸気膜は膜内部の圧力で安定に保たれており、この蒸気膜の安定性を壊すことで効果的に蒸気膜を破壊できることを見出した。

すなわち、本発明は、加熱した金属部品を冷却液に浸漬して冷却する方法において、前記冷却液が前記金属部品の表面で気化して生じた蒸気膜に対して繰り返し変動する圧力を加え、前記冷却液を攪拌せずに前記蒸気膜を破壊することを特徴とする金属部品の冷却方法を提供する。

[0006] この冷却方法によれば、蒸気膜は、繰り返し変動する圧力が加えられることにより膨張収縮を繰り返して揺らぎを起こし、この揺らぎにより膜厚が薄くなった部分を起点として破壊される。このとき、冷却液を攪拌せずに繰り返し変動する圧力を加えることにより、冷却液には自然対流のような弱い流れは生じるが、冷却液を攪拌した場合のような強い流れは生じないため、蒸気膜を均一に破壊できる。

[0007] 本発明の冷却方法において、前記蒸気膜に対して繰り返し変動する圧力を加える方法としては、冷却液に振動を加える方法、冷却液の液面の圧力を変化させる方法、およびこれらの方法を組み合わせて行う方法が挙げられる。また、前記蒸気膜に対して繰り返し変動する圧力を加える方法としては、金属部品を揺動させる方法も挙げられる。さらに、前記蒸気膜に加える圧力は、連続的に変動させてもよいし、パルス振動のように間欠的に変動させてもよい。

[0008] 本発明の冷却方法において、冷却液に振動を加える方法としては、冷却液に強い流れが生じない方法であれば特に限定されず、例えば、冷却槽内に振動板や回転体等の振動子を設置し、振動板を往復運動させたり、回転体を回転運動させる方法が挙げられる。また、冷却液に振動を加える方法としては、冷却槽内に複数の振動子を設置し、これらの振動子を振動させる方法も挙げられる。これによれば、冷却液に、複数の振動子の共振による振動を加えたり、冷却槽内で部分的に異なる振動を加えることができる。

[0009] また、本発明の冷却方法において、前記蒸気膜に対して繰り返し変動する圧力を

加える方法として、冷却液に振動を加える方法を採用する場合には、前記蒸気膜の厚さに応じて、前記振動の振幅および振動数の少なくとも一つを調整するようにしてもよい。

ここで、蒸気膜の厚さは、金属部品の大きさ、温度、および形状や、冷却液の種類、温度、および液体にかかる圧力などによって変化する。例えば、蒸気膜が厚い場合には振幅を大きくすることが好ましく、蒸気膜が薄い場合には振動数を大きくすることが好ましい。

[0010] さらに、本発明の冷却方法において、前記蒸気膜に対して繰り返し変動する圧力を加える方法として、冷却液に振動を加える方法を採用する場合には、前記冷却液の状態に応じて、前記振動の振幅および振動数の少なくとも一つを調節するようにしてもよい。

ここで、冷却液の状態は、(1) 金属部品の表面に蒸気膜が存在する蒸気膜段階、(2) この蒸気膜が破壊されて金属部品の表面から除去されることにより金属部品が露出し、この露出面と接触する冷却液が沸騰する沸騰段階、(3) 沸騰が終わり対流が起る対流段階、の順に変化する。例えば、蒸気膜が安定して存在する蒸気膜段階の前期では振幅を大きくし、蒸気膜が破壊し始める蒸気膜段階の後期から沸騰段階に移行する前までは振動数を大きくすることが好ましい。

[0011] 本発明の冷却方法において、冷却液に加える振動の振幅が小さすぎると蒸気膜の破壊効果が期待できず、一方、振幅を大きくしすぎると冷却液の液面が波打ち、場合によっては強い流れが生じる。この観点から、振動を振動板により加える場合には、その振動板の揺れ幅で示される振幅を、2mm以上とすることが好ましい。また、振動を圧力により加える場合には、その圧力の変化量で示される振幅を、振動を加えない状態で冷却液に加わっている圧力に対して1% (例えば、100Pa) 以上とすることが好ましい。

[0012] また、冷却液に加える振動数が小さすぎると圧力の変化が緩やかで蒸気膜に搖らぎが起こらないため、蒸気膜の破壊効果が期待できない。一方、冷却液に加える振動数が大きすぎると蒸気膜の搖らぎが細かくなりすぎるため、蒸気膜の破壊効果が期待できない。この観点から、ユーラステクノ株式会社製の振動モータ (商品名: ユーラ

ステクノバイブレータ)を備えた振動装置を用いた場合において、冷却液に加える振動の振動数は、5~80Hzとすることが好ましく、20~30Hzとすることがより好ましい。

[0013] さらに、冷却液に加える振動の振動数が小さく振幅が大きい場合には、冷却液の液面が波打つことを防ぐ必要があるため、冷却槽の構造が複雑になる。また、超音波のように振幅が小さく振動数が大きい振動を冷却液に加えると、蒸気膜の揺らぎが細かくなりすぎるため、蒸気膜の破壊効果が期待できない。

さらに、本発明の冷却方法においては、前記蒸気膜が破壊し始めた後に前記冷却液を攪拌して、前記蒸気膜の破壊により生じた気泡を前記冷却液内に拡散させることが好ましい。

[0014] これによれば、破壊された蒸気膜から生じた気泡を、冷却液内に均一に且つ迅速に拡散消失させることができるため、金属部品の冷却をさらに均一に且つ迅速に行うことができる。この冷却液の攪拌は、大量の金属部品を一度に冷却する際や体積の大きな金属部品を冷却する際等、気泡の迅速な拡散が必要とされる場合に、特に有効である。

ここで、冷却液を攪拌する方法としては、噴流攪拌等が挙げられ、冷却液に下方から上方に向けて均一な流れを形成する方法が好ましい。また、冷却液の攪拌を開始するタイミングは、蒸気膜が破壊し始める時点に合わせることが好ましい。

[0015] また、前記攪拌は、前記蒸気膜に変動する圧力を加えることを停止してから行ってもよいし、変動する圧力を継続して加えながら行ってもよい。いずれの方法を採用するかは、冷却する金属部品の大きさや種類、量に応じて選択する。

例えば、変形が生じ易い金属部品を冷却する場合には、冷却液の対流段階での冷却を緩やかにするために、前記攪拌を前記蒸気膜に変動する圧力の付与を停止してから行なうことが好ましい。すなわち、冷却液を攪拌している時は振動を加えないことが好ましい。一方、大量の金属部品を一度に冷却する際や体積の大きな金属部品を冷却する場合には、冷却液の対流段階でも強い冷却を行うために、前記攪拌を前記蒸気膜に変動する圧力を加えた状態で行なうことが好ましい。すなわち、冷却液を攪拌すると同時に振動も加えることが好ましい。

[0016] さらに、本発明の冷却方法においては、前記冷却液の状態および前記冷却液中の前記金属部品の状態に応じて、前記攪拌の強度および前記攪拌により生じる流れの方向のうち少なくとも一つを調整することが好ましい。

ここで、冷却液の沸騰段階では、壊れた蒸気膜から生じた気泡を均一に且つ速やかに冷却液内に拡散消失させることが好ましい。このため、蒸気膜が破壊し始める蒸気膜段階後期から対流段階に移行する前までは強い攪拌を行うことが好ましい。また、金属部品の長手方向を冷却液内で鉛直方向に向けて配置している場合には、攪拌により生じる流れの方向を鉛直方向にし、金属部品の長手方向を冷却液内で水平方向に向けて配置している場合には、攪拌により生じる流れの方向を水平方向にすることが好ましい。

[0017] なお、本発明の冷却方法は、金属部品の焼入れ処理や固溶化処理に好適に用いられることができる。

本発明はまた、金属部品の製造方法において、金属部品を加熱する工程と、加熱した後の前記金属部品を冷却液に浸漬して冷却する工程とを備え、前記冷却する工程では、前記冷却液が前記金属部品の表面で気化して生じた蒸気膜に対して繰り返し変動する圧力を加え、前記冷却液を攪拌せずに前記蒸気膜を破壊することを特徴とする金属部品の製造方法を提供する。

[0018] この製造方法によれば、金属部品の冷却の均一性が向上して、変形や焼ムラが生じ難くなるため、高精度且つ高品質の金属部品を得ることができる。

なお、本発明の製造方法において、前記蒸気膜に対して繰り返し変動する圧力を加える方法としては、上述した冷却方法と同様に、冷却液に振動を加える方法、冷却液の液面の圧力を変化させる方法、およびこれらの方法を組み合わせて行う方法や、金属部品を揺動させる方法が挙げられる。

[0019] また、冷却液に振動を加える方法としては、上述した冷却方法と同様に、一又は複数の振動子を振動させる方法が挙げられる。

さらに、本発明の製造方法において、前記蒸気膜に対して繰り返し変動する圧力を加える方法として、冷却液に振動を加える方法を採用する場合には、上述した冷却方法と同様に、前記蒸気膜の厚さや前記冷却液の状態に応じて、前記振動の振幅

および振動数の少なくとも一つを調整するようにしてもよい。

[0020] さらに、本発明の製造方法においては、上述した冷却方法と同様に、前記蒸気膜が破壊し始めた後に前記冷却液を攪拌して、前記蒸気膜の破壊により生じた気泡を前記冷却液内に拡散させることが好ましい。このとき、上述した冷却方法と同様に、前記前記冷却液の状態および前記冷却液中での前記金属部品の状態に応じて、前記攪拌の強度および前記攪拌により生じる流れの方向のうち少なくとも一つを調整することが好ましい。

[0021] 本発明はさらに、金属部品の冷却装置において、加熱した後の金属部品を冷却液に浸漬して冷却する手段を備え、前記冷却する手段は、前記冷却液が前記金属部品の表面で気化して生じた蒸気膜に対して繰り返し変動する圧力を加え、前記冷却液を攪拌せずに前記蒸気膜を破壊するようになっていることを特徴とする金属部品の冷却装置を提供する。

この冷却装置によれば、金属部品の冷却の均一性が向上して、変形や焼ムラが生じ難くなるため、高精度且つ高品質の金属部品を得ることができる。

[0022] なお、本発明の冷却装置において、前記蒸気膜に対して繰り返し変動する圧力を加える方法としては、上述した冷却方法と同様に、冷却液に振動を加える方法、冷却液の液面の圧力を変化させる方法、およびこれらの方法を組み合わせて行う方法や、金属部品を揺動させる方法が挙げられる。さらに、前記蒸気膜に加える圧力は、連続的に変動させてもよいし、パルス振動のように間欠的に変動させてもよい。

[0023] また、本発明の冷却装置において、冷却液に振動を加える方法としては、上述と同様に、一又は複数の振動子を振動させる方法が挙げられる。

さらに、本発明の冷却装置において、前記蒸気膜に対して繰り返し変動する圧力を加える方法として、冷却液に振動を加える方法を採用する場合には、上述と同様に、前記蒸気膜の厚さや前記冷却液の状態に応じて、前記振動の振幅および振動数の少なくとも一つを調節するようにしてもよい。

[0024] さらに、本発明の冷却装置において、前記冷却する手段は、前記蒸気膜が破壊し始めた後に前記冷却液を攪拌して、前記蒸気膜の破壊により生じた気泡を前記冷却液内に拡散させるようにすることが好ましい。このとき、前記前記冷却液の状態および

前記冷却液中での前記金属部品の状態に応じて、前記攪拌の強度および前記攪拌により生じる流れの方向のうち少なくとも一つを調整することが好ましい。

図面の簡単な説明

[0025] [図1]本発明に係る金属部品の冷却方法に用いられる冷却装置の一例を示す概略構成図である。

[図2]本実施形態の冷却装置において振動装置を作動させた場合に冷却液に生じる圧力変化を示す図である。

[図3]本実施形態の冷却装置において攪拌装置を作動させた場合に冷却液に生じる圧力変化を示す図である。

[図4]本発明に係る金属部品の冷却方法に用いられる冷却装置の他の例を示す概略構成図である。

[図5]No. 1～No. 4の冷却処理を施したステンレス製丸棒試験片の側面における冷却曲線を示す図である。

[図6]No. 5とNo. 6の冷却処理を施したステンレス製丸棒試験片の側面における冷却曲線を示す図である。

発明を実施するための最良の形態

[0026] 以下、本発明の実施形態を図面を参照しながら説明する。

本実施形態では、本発明に係る金属部品の冷却装置を用いて、金属部品を製造する場合について説明する。

図1は、本発明に係る金属部品の冷却方法に用いられる冷却装置の一例を示す概略構成図である。

[0027] この冷却装置は、図1に示すように、冷却液1が入った冷却槽2と、金属部品を収容する容器3と、二個の振動装置10と、攪拌装置20と、制御装置30と、を備えている。この冷却装置の上部には、金属部品を加熱する加熱装置40が配置されている。そして、この加熱装置40で加熱された金属部品を収容した容器3が、図示しないエレベータ装置により冷却槽2の中央部に浸漬されるようになっている。

[0028] 振動装置10は、一枚の振動板11と、この振動板11を所定の振幅および振動数で振動させる駆動装置12と、を備えている。振動板11は、冷却槽2内の容器3の側面

近傍に、容器3に板面を向けて鉛直に配置されている。この振動装置10を作動させることにより、振動板11が水平方向に往復運動して振動4が発生し、この振動4が冷却液1に加わる。ここで、二個の振動装置10の振動数および振幅を各々調節することにより、冷却液1に、二枚の振動板11の共振により生じた振動を加えたり、容器3の両側で異なる振動を加えることができる。

[0029] 搅拌装置20は、冷却槽2内の振動板11よりも側方に、軸を鉛直方向に向けて配設されたプロペラ21と、複数の整流板22と、プロペラ21の回転運動を制御する駆動装置23と、を備えている。この搅拌装置20を作動させることにより、プロペラ21が回転を行って冷却液1が搅拌され、冷却液1には整流板22に沿って容器3の下方から上方に向かう上昇流が生じる。

[0030] 制御装置30は、冷却槽2の外部に配設されており、振動装置10の駆動装置12および搅拌装置20の駆動装置23を作動するタイミングを制御するように構成されている。また、制御装置30は、蒸気膜の厚さや冷却液1の状態に応じて、振動装置10の駆動装置12を制御するとともに、冷却液1の状態や冷却液1中での金属部品の状態に応じて、搅拌装置20の駆動装置23を制御するように構成されている。

[0031] この冷却装置の冷却槽2内に、歪みゲージ圧力センサを設置して、振動装置10と搅拌装置20をそれぞれ単独で作動させた場合に冷却槽2内の冷却液1に生じた圧力変化を測定した。

図2は、振動装置の振動板を振動数40Hzの条件下で作動させた場合に冷却液に生じた圧力変化を示すグラフである。図3は、搅拌装置を冷却液に生じる上昇流が流量 $30\text{m}^3/\text{h}$ となる条件下で作動させた場合の、冷却液の圧力変化を示すグラフである。このグラフでは、縦軸のセンサー起電力の揺れ幅が圧力の変化量(相対値)を示し、センサー起電力の数値が冷却液に生じた流れの強さ(相対値)を示す。

[0032] 図2および図3に示すように、振動装置10の作動では、センサー起電力が0.02V程度となる圧力変化が繰り返し冷却液に生じていたが、搅拌装置20の作動では、冷却液に圧力の変化がほとんど生じていなかった。

また、振動装置10により冷却液1に生じた流れは、搅拌装置20に比べて弱い流れ

であった。これにより、振動装置10を作動させると、冷却液1に強い流れが生じることなく繰り返し変動する圧力が加わり、攪拌装置20を作動させると、冷却液1に強い流れが形成されるが、変動する圧力は加わらないことが確認できた。

[0033] 図4は、本発明の冷却方法に用いられる冷却装置の他の例を示す概略構成図である。

この冷却装置は、図4に示すように、冷却液1が入った冷却槽2と、冷却処理を行う金属部品を収容する容器3と、冷却槽2内にガスを導入するガス導入管5と、冷却槽2内からガスを排出するガス排出管6と、冷却槽2内の側方にプロペラ21が軸を鉛直方向に向けて配設された攪拌装置20と、冷却槽2の外部に配設された制御装置50と、を備えている。そして、上述した図1に示す冷却装置と同様の方法で、加熱装置40で加熱された金属部品を収容した容器3が、冷却槽2内の中央部に浸漬されるようになっている。なお、上述した図1に示す冷却装置と同一の部分には同一の符号をして説明を省略する。

[0034] ガス導入管5は、制御装置50に接続された電磁弁5aにより、冷却槽2内にガスを導入可能となっている。

ガス排出管6は、制御装置50に接続された電磁弁6aにより、冷却槽2内のガスを排出可能となっている。

制御装置50は、ガス導入管5の電磁弁5aを開いて冷却槽2内にガスを導入し続けるとともに、ガス排出管6の電磁弁6aの開閉を繰り返し行うように構成されている。これにより、冷却槽2内に入った冷却液1の液面の圧力を変化させることができる。また、制御装置50は、蒸気膜が破壊し始めた時点で攪拌装置20の作動を開始するように構成されている。

[0035] さらに、制御装置50は、蒸気膜や冷却液1の状態に応じて、ガス導入管5から導入するガス量や、ガス排出管6の電磁弁6aの開閉タイミングを制御するとともに、冷却液1や冷却液1中での金属部品の状態に応じて、攪拌装置20の駆動装置23を制御するように構成されている。

上記構成の冷却装置を用いて、本発明の実施例に相当する方法および従来例に相当する方法で、金属部品の冷却を行った。

[0036] 830°Cに加熱した直径12mmのステンレス製丸棒試験片(金属部品)を、70°Cの焼入れ油(冷却液)1に浸漬して、以下に示すNo. 1～6の方法で冷却した。なお、No. 1～3およびNo. 5, 6では、上述した図1に示す冷却装置(以下、「第1の冷却装置」と記す。)を用いて冷却を行い、No. 4では、上述した図4に示す冷却装置を用いて冷却を行った。また、第1の冷却装置で焼入れ油1に加える振動4の振幅は、振動板11の揺れ幅で示す。なお、各冷却方法は、制御装置30, 50に予め記憶させた演算処理が実行されることで、自動的に実施される。

[0037] No. 1では、まず、振動装置10を作動して、振動板11を振動数40Hz、振幅4mmで振動させて、この振動を焼入れ油1に2秒間加えた。次に、振動装置10を停止すると同時に攪拌装置20を作動して、流量 $30\text{m}^3/\text{h}$ の上昇流で焼入れ油1を噴流攪拌した。

No. 2では、振動装置10を作動して、振動板11を振動数40Hz、振幅4mmで振動させて、この振動を焼入れ油1に加えた。

[0038] No. 3では、振動装置10を作動して、振動板11を振動数40Hz、振幅4mmで振動させると同時に攪拌装置20を作動して、流量 $30\text{m}^3/\text{h}$ の上昇流で焼入れ油1を噴流攪拌した。

No. 4では、電磁弁5aを開いて、ガス導入管5から窒素ガスを冷却槽2内に導入し続けて、焼入れ油1の液面の圧力を0.12MPaとした状態で、ガス排出管6の電磁弁6aの開閉を1秒間に2回、15秒間行って、液面にかかる圧力を繰り返し変化させた。

[0039] No. 5では、焼入れ油1の自然対流に任せた。

No. 6では、攪拌装置20を作動して、流量 $30\text{m}^3/\text{h}$ の上昇流により焼入れ油1を噴流攪拌した。

そして、No. 1～6の冷却過程において、ステンレス製丸棒試験片の側面における温度を測定して、各試験片の冷却曲線を作成した。この結果は、図5および図6に示す。

[0040] 図5は、No. 1～4の条件で冷却したステンレス丸棒試験片の側面における冷却曲線を示す。図6は、No. 5とNo. 6の条件で冷却したステンレス丸棒試験片の側面に

おける冷却曲線を示す。

図5に示すように、焼入れ油1に振動を加えた後に焼入れ油1を噴流攪拌することで冷却したNo. 1では、試験片を焼入れ油1に浸漬してから1. 9秒後に、緩やかな冷却から急激な冷却に変化した。この変化点を「特性点」と称する。

[0041] また、焼入れ油1に振動を加えることで冷却したNo. 2と、焼入れ油1に振動を加えると同時に焼入れ油1を噴流攪拌することで冷却したNo. 3では、いずれも試験片を焼入れ油1に浸漬してから2. 7秒後に特性点が見られた。

さらに、焼入れ油1の液面の圧力を繰り返し変化させることで冷却したNo. 4では、試験片を焼入れ油1に浸漬してから2. 7秒後に特性点が見られた。

[0042] ここで、No. 2では、焼入れ油1に振動を加えた後に焼入れ油1を噴流攪拌していないため、蒸気膜の破壊により生じた気泡の拡散に時間がかかり、特性点が見られる時間がNo. 1よりも遅れたと考えられる。

また、No. 3では、焼入れ油1に振動を加えると同時に焼入れ油1を噴流攪拌することで冷却したため、冷却液に強い流れが生じて、蒸気膜の均一な破壊が阻害され、特性点が見られる時間がNo. 1よりも遅れたと考えられる。

[0043] さらに、No. 4では、焼入れ油1の液面の圧力を変化させた後に焼入れ油1を噴流攪拌していないため、蒸気膜の破壊により生じた気泡の拡散に時間がかかり、特性点が見られる時間がNo. 1よりも遅れたと考えられる。

一方、図6に示すように、焼入れ油1の自然対流により冷却したNo. 5では、試験片を焼入れ油に浸漬してから3. 8秒後に特性点が見られた。また、焼入れ油1を噴流攪拌することで冷却したNo. 6では、試験片を焼入れ油に浸漬してから3. 5秒後に特性点が見られた。

[0044] 以上の結果から、焼入れ油1を攪拌せずに蒸気膜を破壊し、蒸気膜が破壊し始めた後に焼入れ油1を攪拌することにより、金属部品を迅速に冷却できることが分かった。

また、No. 1の特性点は、No. 2～No. 4の特性点と比べて20℃程度高い温度であり、No. 5およびNo. 6の特性点と比べて50℃程度高い温度であった。この結果から、No. 1の条件で冷却を行った場合、蒸気膜の破壊は、金属部品の表面温度が

下がった結果起こるのではなく、蒸気膜の安定性を壊すことで起こることが確認できた。

[0045] 次いで、金属部品を浸炭処理し、その後の冷却を本発明の方法および従来の方法で行い、熱処理前後の金属部品の寸法変化を以下のようにして調べた。

まず、SCM420製のリング状素材(外径70mm, 内径55mm, 軸方向の長さ40mm)を用意した。次に、このリング状素材を、920°Cの、アルコール滴下で還元雰囲気とされた炉内に、軸方向を鉛直方向に合わせて配置した。次に、この還元雰囲気炉内にプロパンガスを添加しながら、雰囲気炭素濃度を0.8%に保って、60分間の浸炭処理を行った。次に、還元雰囲気炉内でリング状素材の温度を850°Cまで下げた。

[0046] 次に、このリング状素材を、図1の加熱装置40から冷却槽2に移動する。この冷却槽2には、70°Cの焼入れ油(冷却液)1が入れてあり、焼入れ油1の上方は無酸化雰囲気に保持されている。この焼入れ油1にリング状素材が浸漬される。そして、以下に示すNo. 10~15の条件で冷却した。

No. 10では、振動装置10を作動して、振動板11を振動数40Hz、振幅4mmで振動させて、この振動を焼入れ油1に60秒間加えた。

[0047] No. 11では、振動装置10を作動して、振動板11を振動数60Hz、振幅2mmで振動させて、この振動を焼入れ油1に60秒間加えた。

No. 12では、振動装置10を作動して、振動板11を振動数40Hz、振幅4mmで振動させると同時に攪拌装置20を作動して、流量 $30\text{m}^3/\text{h}$ の上昇流で焼入れ油1を60秒間噴流攪拌した。

[0048] No. 13では、まず、振動装置10を作動して、振動板11を振動数40Hz、振幅4mmで振動させて、この振動を焼入れ油1に2秒間加えた。次に、振動装置10を停止すると同時に攪拌装置20を作動して、流量 $30\text{m}^3/\text{h}$ の上昇流で焼入れ油1を60秒間噴流攪拌した。

No. 14では、攪拌装置20を作動して、流量 $30\text{m}^3/\text{h}$ の上昇流で焼入れ油1を60秒間噴流攪拌した。

[0049] No. 15では、自然対流に任せた焼入れ油1に、リング状素材を5分間浸漬した。

そして、冷却処理後の各リング状素材について、軸方向の両端部および中央部における外径寸法と真円度を測定し、熱処理前後の外径寸法の変化と真円度の変化を調べた。結果は、表1に示した。

なお、表1中、外径寸法で「+」がついた数値は熱処理を行う前に比べて寸法が大きくなったことを意味し、「-」がついた数値は熱処理を行う前に比べて寸法が小さくなったことを意味する。また、表1には、上端、中央、下端の間における寸法変化の最大差を算出した結果を併せて示した。この外径寸法の最大差が小さい程、熱処理後のリング状素材の軸方向での変形の差が小さいことを示す。

[0050] 表1に示すように、焼入れ油1に振動を加えることで冷却したNo. 10～13では、焼入れ油1を噴流攪拌することで冷却したNo. 14および焼入れ油1の自然対流により冷却したNo. 15に比べて、外径寸法の最大差が小さかった。

[0051] No. 10～13のうち、焼入れ油1に振動を加えた後に焼入れ油1を噴流攪拌することで冷却したNo. 13では、外径寸法の最大差が著しく小さかった。また、焼入れ油1に振動数が大きく且つ振幅が小さな振動を加えることで冷却したNo. 11では、振動による効果が小さく、No. 10, No. 12, No. 13と比べて、外径寸法の最大差が大きかった。

[0052] また、No. 10～13では、焼入れ油1を噴流攪拌することで冷却したNo. 14よりも真円度の変化が小さく、焼入れ油1の自然対流により冷却したNo. 15と同程度の真円度が得られた。

以上の結果から、焼入れ油を攪拌せずに蒸気膜を破壊し、蒸気膜が破壊し始めた後に焼入れ油を攪拌することにより、得られる金属部品の軸方向での変形の不均一性を改善できることが分かった。

[0053] [表1]

焼き入れ 処理方法 No	外径寸法の変化(μm)				真円度の変化(μm)			
	上端	中央	下端	差	上端	中央	下端	差
10	+9	+1	+34	33	37	26	41	35
11	-14	-3	+25	39	43	29	35	36
12	+6	+4	+36	32	41	33	40	38
13	+12	+8	+31	23	42	29	36	36
14	-28	-7	+32	60	53	34	45	44
15	-27	-10	+21	48	45	27	37	36

産業上の利用可能性

[0054] 本発明によれば、金属部品の表面に生じた蒸気膜に対して繰り返し変動する圧力を加え、冷却液を攪拌せずに蒸気膜を破壊することにより、冷却液に強い流れが生じないため、蒸気膜が均一に破壊され易くなる。よって、金属部品の冷却の均一性が向上して、変形や焼ムラが生じ難くなるため、高精度且つ高品質の金属部品を得ることができるようになる。

請求の範囲

- [1] 加熱した金属部品を冷却液に浸漬して冷却する方法において、前記冷却液が前記金属部品の表面で気化して生じた蒸気膜に対して繰り返し変動する圧力を加え、前記冷却液を攪拌せずに前記蒸気膜を破壊することを特徴とする金属部品の冷却方法。
- [2] 前記冷却液に振動を加えることにより、前記蒸気膜に対して繰り返し変動する圧力を加えることを特徴とする請求の範囲第1項に記載の金属部品の冷却方法。
- [3] 前記冷却液の液面の圧力を変化させることにより、前記蒸気膜に対して繰り返し変動する圧力を加えることを特徴とする請求の範囲第1項に記載の金属部品の冷却方法。
- [4] 前記冷却液に振動を加えることと、前記冷却液の液面の圧力を変化させることを組み合わせて、前記蒸気膜に対して繰り返し変動する圧力を加えることを特徴とする請求の範囲第1項に記載の金属部品の冷却方法。
- [5] 前記冷却液に加える振動を、複数の振動子により与えることを特徴とする請求の範囲第2項または第4項に記載の金属部品の冷却方法。
- [6] 前記蒸気膜の厚さに応じて、前記振動の振幅および振動数の少なくとも一つを調整することを特徴とする請求の範囲第2項、第4項、第5項のいずれか一項に記載の金属部品の冷却方法。
- [7] 前記冷却液の状態に応じて、前記振動の振幅および振動数の少なくとも一つを調節することを特徴とする請求の範囲第2項、第4項、第5項のいずれか一項に記載の金属部品の冷却方法。
- [8] 前記蒸気膜が破壊し始めた後に前記冷却液を攪拌して、前記蒸気膜の破壊により生じた気泡を前記冷却液内に拡散させることを特徴とする請求の範囲第1項から第7項のいずれか一項に記載の金属部品の冷却方法。
- [9] 前記冷却液の状態および前記冷却液中の前記金属部品の状態に応じて、前記攪拌の強度および前記攪拌により生じる流れの方向のうち少なくとも一つを調整することを特徴とする請求の範囲第8項に記載の金属部品の冷却方法。
- [10] 金属部品の製造方法において、

金属部品を加熱する工程と、加熱した後の前記金属部品を冷却液に浸漬して冷却する工程とを備え、

前記冷却する工程では、前記冷却液が前記金属部品の表面で気化して生じた蒸気膜に対して繰り返し変動する圧力を加え、前記冷却液を攪拌せずに前記蒸気膜を破壊することを特徴とする金属部品の製造方法。

[11] 金属部品の冷却装置において、

加熱した後の金属部品を冷却液に浸漬して冷却する手段を備え、

前記冷却する手段は、前記冷却液が前記金属部品の表面で気化して生じた蒸気膜に対して繰り返し変動する圧力を加え、前記冷却液を攪拌せずに前記蒸気膜を破壊するようになっていることを特徴とする金属部品の冷却装置。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/006872

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ C21D1/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ C21D1/00-1/00, C21D1/02-1/84Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005
Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI, ELSEVIER, JOIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2000-239738 A (Toyota Motor Corp.), 05 September, 2000 (05.09.00), Claims; Par. No. [0001]; Fig. 1 (Family: none)	1, 2, 5, 10, 11 1-11
Y	JP 2003-286517 A (Oriental Engineering Kabushiki Kaisha), 10 October, 2003 (10.10.03), Claims; Par. No. [0018]; Fig. 1 (Family: none)	1-11
Y	JP 5-17817 A (Koyo Rindobagu Kabushiki Kaisha), 26 January, 1993 (26.01.93), Claims; Par. Nos. [0001], [0014]; Fig. 1 (Family: none)	3, 4

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- A" document defining the general state of the art which is not considered to be of particular relevance
- E" earlier application or patent but published on or after the international filing date
- L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- O" document referring to an oral disclosure, use, exhibition or other means
- P" document published prior to the international filing date but later than the priority date claimed
- T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- &" document member of the same patent family

Date of the actual completion of the international search
26 May, 2005 (26.05.05)Date of mailing of the international search report
14 June, 2005 (14.06.05)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl.⁷ C21D1/18

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ C21D1/00-1/00
C21D1/02-1/84

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国実用新案登録公報	1996-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

WPI
ELSEVIER
JOIS

C. 関連すると認められる文献

引用文献の カテゴリーエ	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	JP 2000-239738 A (トヨタ自動車株式会社) 2000.09.05, 特許請求の範囲、段落 0001, 図 1 (ファミリーなし)	1, 2, 5, 10, 11 1-11
Y	JP 2003-286517 A (オリエンタルエンヂニアリング株式会社) 2003.10.10, 特許請求の範囲、段落 0018, 図 1 (ファミリーなし)	1-11
Y	JP 5-17817 A (光洋リンドバーグ株式会社) 1993.01.26, 特許請求の範囲、段落 0001, 0014, 図 1 (ファミリーなし)	3, 4

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

26. 05. 2005

国際調査報告の発送日

14. 6. 2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

米田 健志

4K 3557

電話番号 03-3581-1101 内線 3435