

Capability Architecture

Metadata &

Governance

Catalog data objects

Define scope &

implement Data Quality/Profiling

provenance

Manage &

(PaaS - tbc)

Delivery

Natural Language

Data Visualisation

Data Mashup/Discovery

Data Science Tooling

Modern Data Platform

Semantic Layer & Data Virtualization

Abstract above data structures

Drill paths, metrics, KPIs

Collate heterogenous data sources

Caching & In Memory

Real Time Analytics

Analyse event streams/rolling time window

Anomaly detection

Relational Analytics

"Traditional" Data Warehousing

SQL on Relational data (star schemas, OLAP)

Big Data Analytics

Scale out processing

Semi & unstructured data

AI/Machine Learning

Machine Learning

Deep Learning

Vision, Speech & Text

Deployment at Scale

Data Lineage

Data Movement

Orchestrate batch & real time data sets

Manage data transforms

Curated Data

Cleansed Data

Raw Data

Land data in raw form

Cleanse & transform in higher level tiers

Present integrated, curated data and all layers below

Data Lake

(PaaS - tbc)

Modern Data Platform – wants & needs

On Demand Scalability.....

- Wide range of scale on demand services
- Sandpit capability, scale as needed
- Adapt to peaks and troughs as needed

...and availability

Data Factory

- Data Movement as a Service Varehousing on Azure
- Host SSIS packages in pipelines
- **Visual Tooling**

Power BI

- Data discovery for everyone cientists
- Class leading Data Shaping

Metadata &

Governance

Chatbot Delivery

Azure Analysis Services

- Enterprise wide semantic layer
- Stunning response times
- Scale up/Scale out

Data Services

Data Visualisation

di.

Data Mashup/Discovery

- S Catalog Enterprise
 - **GDPR** initiatives

Semantic Laver & Data Virtualization

Analytics

- Scalable
- Lambda (Hot, Warm, Cool data)

Data Warehouse

DW as a Service

AI/Machine

Cognitive Services

ML Containers & APIS

Real Time Analytics

Stream/Log **Analytics**

Storm

Relational Analytics

SQL DB

Warehouse

Big Data Analytics

HDInsight

HDInsight

Hadoop as a Service

DataBricks

Data Movement

Azure DataBricks

- 1st class service
- 1 click set up
- Integration with Azure

Curated Data

Cleansed Data

Raw Data

Data Lake Store

- No limit on object size/storage
- Optimised for parallel workloads at scale

Cosmos DB

- Mongo, Cassandra, Graph, Key value
- Global scale

An OSS viewpoint

consumers

- Web browser
- · Mobile apps
- downstream systems
- 3rd party apps

Apache Atlas

Comos DB replaces several of the OSS APIs in a single, fully managed, planet scale offering.

Azure Data Lake Storage and Blob stoage should even be considered in - An OSS architecture. It is pointless to use node attached storage.

Our job

Modern Data Platform (commoditized patterns)

Azure Database Platform – Microsoft & OSS redefined

Products not covered

- Streaming (i.e. lot Hub, Event Hub, Azure Stream Analytics)
- · On-prem products (i.e. APS)
- · Open source (i.e. Kafka, PostgreSQL, MySQL, MariaDB, Storm, Spark, Hbase, Redis)
- · Machine learning/Al tools (i.e. Azure ML, Machine Learning Services, Cognitive Services)
- · Reporting tools (i.e. Power BI)
- · 3rd-party products (i.e. Informatica, Profisee)
- · Competitor products (AWS, Google)
- Snowflake
- Azure Data Catalog (ADC) Gen2
- · Azure Data Explorer
- Azure Database Migration Service
- · Data Box, Data Box Disk
- Azure Search / Cognitive Search / Knowledge Mining
- Master Data Services (MDS)
- · Azure Functions (for Prep) / Azure Logic Apps (for Ingest)
- · OSS !!

Modern Data Platform (possible products by four areas)

Modern Data Platform (commoditized patterns)

Ingest – Data Orchestration and Monitoring

Product: Azure Data Factory (ADF)

Overview:

With Mapping Data Flow, can now transform data, so ETL/ELT tool. Copy Data tool to easily copy from source to destination.

Use cases:

Any new usecase for data movement and curation. SSIS packages migration.

How to use:

PaaS based service – *Hybrid configuration, Hybrid operation*

Area also used for:

Preparation of data (as part of a pipeline)

Modern Data Platform (commoditized patterns)

Store – Data Lake / Big Data

Product: Azure Data Lake Storage Gen2 (ADLS Gen2)

Overview:

Combines features of blob storage and ADLS Gen1. ADLS Gen2 adds a high performance HDFS Endpoint to Azure Blob Storage and inherits the rich feature set of Azure Blob Storage

Use cases:

Any new project. Convert Blob and Gen1 over time

How to use:

PaaS

Area also used for:

n/a

Store – Blob / Big Data

Product: Blob Storage

Overview:

Original storage, foundational to Azure

Use cases:

non-analytical use cases that only need object storage rather than hierarchical storage (i.e. video, images, backup files).

ADLS Gen2 – no need to use if current data does not need features of ADLS Gen2

How to use:

PaaS

Area also used for:

n/a

Modern Data Platform (commoditized patterns)

Prep – Big Data

Product: Azure Databricks

Overview:

Tool for curating and processing massive amounts of data and developing, training and deploying models on that data, and managing the whole workflow process throughout the project. SPARK.

Use cases:

Comfortable with Spark and notebooks, integration with ADLS, SQL DW, PBI, etc, need auto-scaling and auto-termination, need fast Spark

How to use:

PaaS

Area also used for:

ETL/ELT - Ingest, Model & Serve

Modern Data Platform (commoditized patterns)

Serve - Big Data

Product: Cosmos DB

Overview:

A globally distributed, multi-model (key-value, graph, and document) database service. It fits into the NoSQL camp by having a non-relational model (supporting schema-on-read and JSON documents)

Use cases:

Works really well for large-scale OLTP solutions. Spark to Cosmos DB connector for DW aggregations. Use for data lake to have one datastore for both operational and analytical queries

How to use:

PaaS

Area also used for:

Store, Prep

A globally distributed, fully managed, massively scalable, multi-model database service

Ok, but why?

The Data Estate

Data as a Service - Theoretical

Data as a Service - Reality

Data Science / Analytics as a Service

Demos: Straight Through Processing (the real world)

Real World – Pattern 1

Real World – Pattern 2

Real World – Pattern 3

Appendices

Ability to query across multiple entity types with a single network request.

For example, we have two types of documents: cat and person.

Ability to query across multiple entity types with a single network request.

For example, we have two types of documents: cat and person.

We can query both types of documents without needing a JOIN simply by running a query without a filter on type:

SELECT * FROM c WHERE c.familyId = "Liu"

Ability to query across multiple entity types with a single network request.

For example, we have two types of documents: cat and person.

If we wanted to filter on type = "Person", we can simply add a filter on type to our query:

SELECT * FROM c WHERE c.familyId = "Liu" AND c.type = "Person"

sqlbits

sqlbits

Lower latency, higher availability, better read scalability

Consistency Level	Guarantees
Strong	Linearizability (once operation is complete, it will be visible to all)
Bounded Staleness	Consistent Prefix. Reads lag behind writes by at most k prefixes or t interval Similar properties to strong consistency (except within staleness window), while preserving 99.99% availability and low latency.
Session	Consistent Prefix. Within a session: monotonic reads, monotonic writes, read-your-writes, write-follows-reads Predictable consistency for a session, high read throughput + low latency
Consistent Prefix	Reads will never see out of order writes (no gaps).
Eventual	Potential for out of order reads. Lowest cost for reads of all consistency levels.

Event Sourcing for Microservices

Materializing Views

Replicating Data

Secondary Datastore (e.g. archive)

sqlbits

Common architectures

Modern DW for big data

Modern DW for big data continued

Advanced analytics on big data

Real-time analytics

Real-time analytics continued

Real time analytics

