Sarthak Singhal (20171091)

PQR-1

4th April 2020

Questions

- A. Design a zero-knowledge proof for the Discrete-Logarithm Problem (DLP), that is, given prime p, generator g and the element $y = g^x mod p$, how does a prover claiming to know x, convince the verifier, without revealing x?
- B. Moreover, using hash-functions (and assuming them to be random oracles) show how to build a digital signature scheme based on your above zero-knowledge proof and the hardness of DLP?
- C. Also, show how you would design collision-resistant hash functions based on the hardness of DLP.

Answers

ANS-1

Definition of ZKP

In cryptography, a zero-knowledge proof or zero-knowledge protocol is a method by which one party (the prover) can prove to another party (the verifier) that they know a value x, without conveying any information apart from the fact that they know the value x. The essence of zero-knowledge proofs is that it is trivial to prove that one possesses knowledge of certain

information by simply revealing it; the challenge is to prove such possession without revealing the information itself or any additional information.(WIKI)

Construction

Let P be prover and V be verifier.

Let $y = g^x mod p$ be the DLP.

Let P wants to show to V that it knows x, without revealing x or any other information about x.

Given information:

- g,p and y are public
- x is the private key of P (not known to anyone else)

Step1 (P's computation)

- Chose any random number r from the group Zp*
- Construct $t = g^r mod p$
- Send this t to V

Step2 (V's computation)

- Chose any random number c from the group Zp*
- Send this to P

Step3 (P's computation)

- Construct z = c * x + r
- Send this z to V

Step4 (V's computation)

- Check if $g^z mod p = (y^c * t) mod p$
- If true, then V verifies that P knows x else not

Verification Proof

Given

- $y = g^x modp$
- $t = g^r mod p$

$$RHS = (y^c * t) mod p$$

$$= ((g^{c*x}modp)*t)modp$$

$$= ((g^{c*x}modp) * (g^rmodp))modp$$

$$= g^{c*x+r} modp$$

$$= g^z mod p$$

$$= LHS$$

Thus V will verify if $g^z mod p = (y^c * t) mod p$.

Completeness Proof

From above calculations, it is clear that RHS = LHS only when

$$c*x^o+r=c*x^p+r$$
, where x^o is original x and x^p is x with prover.

If P knows x then $x^o = x^p$ and thus V will verify and hence the proof is complete.

Soundness Proof

If P doesn't know x then probability of $x^o = x^p$ is negligible (1/P) and thus probability of acceptance by V is also negligible. Thus the proof is sound.

Zero Knowledge

P sends z and t to V. Since t is DLP, no information about x can be revealed by revealing t. z = c * x + r where c and r are random numbers so z is also random and no information about x is revealed. Thus P doesn't reveal any information about x by sharing z and t and thus the proof is ZKP.

ANS-2

- The above method cannot be used as digital signature as it is interactive, meaning information flows from both P and V to each other.
- If we can construct a non-interactive ZKP, we can use it as a digital signature.
- Only information that flows from V to P is of c which is a random number.
- Thus if P can send c to V the proof would become non-interactive and can be used as a digital signature.
- P would also need to prove to V that c is truly a random number.
- To ensure this, we can take c = H(p, g, y) and send it to V.
- As H(x, y, z) is a random oracle, c is truly a random number and thus our problem of proving c random is solved.

Using this, above algorithm can be modified as:

Step1 (P's computation) [Signing]

- Chose any random number r from the group Zp*
- Construct $t = g^r mod p$
- Take c = H(p, g, y) [Step 2 removed]
- Construct z = c * x + r [Step 3 removed]
- Send t & z to V

Step2 (V's computation) [Verifying]

- Take c = H(p, g, y)
- Check if $g^z mod p = (y^c * t) mod p$
- If true, then V verifies that P knows x else not

Note that steps 2 & 3 are omitted.

Thus based on the above ZKP and hardness of DLP, we have constructed a digital signature using H as a random oracle.

ANS-3

- Now to construct a random oracle H() we can use H as a CRH as it satisfies properties of a random oracle.
- To design a CRH, we can use the Merkle-Damgard Transform which is a way of extending a fixed-length CRH function into a general one that receives inputs of any length.

Construction

Let <Genh,h> be a fixed-length CRH with input length 2L and output length L. Construct a variable-length CRH <Gen,H> as follows:

$$Gen(1^n)$$
:

Upon input 1^n , run the key-generation algorithm Genh of the fixed-length CRH and output the key. Let it be s.

$H^{s}(M)$:

- Let the message be M of length x (x<2^L) and key be s.
- Pad M with zeroes so that its length is exactly a multiple of L.
- Now divide M into B blocks each of size L.

- Now M= $(m_1||m_2||...||m_B)$.
- Define $Z_0 = 0^L$ (initialization vector)
- For every i in (1,...,B), compute $Z_i = h^s(Z_{i-1} || m_i)$
- Output $Z=h^s(Z_B || x)$

Note: $x<2^L$ is just to ensure that x fits in one block. This is not a hard requirement.

Claim is that if h is CRH, constructed H is also a CRH.

Proof

- We will prove that if there is a collision in H, there will also be a collision in h.
- This would imply that h is not a CRH.
- This would be a contradiction as h is a CRH.
- Hence our assumption of getting a collision in H would be wrong which would prove H to be a CRH.

Let $M = (m_1 \parallel m_2 \parallel m_B)$ with length x and $M' = (m'_1 \parallel m'_2 \parallel m'_{B'})$ with length x'.

Let there be a collision in H.

Case-1 ($x \neq x^{\prime}$):

- Since $H(x) = H(x') => h^s(Z_B || x) = h^s(Z'_{B/} || x')$.
- Since $x \neq x^{/}$ => collision in h^s.
- Hence contradiction.

Case-2 ($x = x^{/}$)

- Let Z and Z' be intermediate hash values of M and M' during the computation of H.
- Since $M \neq M'$ and they are of same length, \exists at least one index i ($1 \leq i \leq B$) such that $m_i \neq m'_i$.

- Let i* be the highest index for which it holds that $Z_{i^*-1} \parallel m_{i^*} \neq Z'_{i^*-1} \parallel m'_{i^*}$
- If $i^* = B$, then $(Z_{i^*-1} || m_{i^*})$ and $(Z_{i^*-1}' || m_{i^*})$ constitute a collision because we know that H of both the messages is same along with length implying $Z_B = Z_B'$ (if $Z_B \neq Z_B'$ there is already a collision).
- If i*<B, then maximality of i* implies $Z_{i*} = Z_{i*}^{\prime}$
 - \circ Because $\forall i > i^*$, $Z_{i-1} \parallel m_i = Z'_{i-1} \parallel m'_i$
 - \circ Let $i = i^* + 1$
 - $\circ => Z_{i^*} || m_{i^*} = Z'_{i^*} || m'_{i^*}$
 - $\circ => Z_{i^*} = Z'_{i^*} \text{ and } m_{i^*} = m'_{i^*}$
- This again implies collision in $(Z_{i^*-1} \parallel m_{i^*})$ and $(Z_{i^*-1} \parallel m_{i^*})$
- Thus in all cases we get a collision in h^s which is a contradiction.

Hence constructed H^s is truly a CRH if we have h^s.

Constructing h^s

We can construct h^s based on the hardness DLP as follows:

$$h(x, y) = (g^x * z^y) modp where z = g^k modp$$

Claim: If someone finds collision in h, then he can solve DLP (i.e. He can find k given z,g,p)

Proof

Let there be a collision in h.

$$h(x1, y1) = h(x2, y2)$$

Since $x1y1 \neq x2y2$, WLOG lets take $y1 \neq y2$

$$h(x1, y1) = (g^{x1} * z^{y1}) modp$$

$$h(x^2, y^2) = (g^{x^2} * z^{y^2}) modp$$

$$=> g^{x1}z^{y1} \equiv g^{x2}z^{y2}$$

=>
$$g^{x_1-x_2} \equiv z^{y_2-y_1}$$

=> $g^{x_1-x_2} \equiv g^{k(y_2-y_1)}$
=> $(g^{x_1-x_2})^{(y_2-y_1)^{-1}} \equiv (g^{k(y_2-y_1)})^{(y_2-y_1)^{-1}} \equiv g^k$
=> $k = (x_1 - x_2)/(y_2 - y_1)$

Thus if we find collision in our hash function, we can compute k efficiently and thus can solve DLP, which is not possible.

Hence h is a CRH.