

SAI-77-001-AA January 1977 Je

DF LASER PROPAGATION ANALYSIS Final Report

by

D. R. Woods W. Flowers R. E. Meredith T. W. Tuer J. P. Walker

for

Naval Research Laboratory Washington, D. C.

Contract N00173-76-C-0102

COC FILE COPY

DISTRIBUTION STATEMENT A

Approved for public release;

Distribution Unlimited

SCIENCE APPLICATIONS, INC.
15 Research Dr., P. O. Box 328, Ann Arbor, MI 48107 (313) 662-3261

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

KLIOKI	DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FOR
I. REPORT NUMBER	2. GOVT ACCE	SSION NO. 3. RECIPIENT'S CATALOG NUMBER
DF Laser Propaga	ation Analysis •	Final Report 5 Jan 76 through 3 Dec
Final Report		24 SAI-77-001-AA
D. Woods, W. Flo T. Tuer and J. W	owers, R. Meredith,	N00173-76-C-0102
Science Application 15 Research Drive	ns, Inc.	10. PROGRAM ELEMENT, PROJECT, AREA & WORK UNIT NUMBERS
Ann Arbor, MI 48	1/	82 Pages
Naval Research La	AME AND ADDRESS	January 1977 January 1977 January 1977
	AME & ADDRESS(II dillerent from Controlling	The state of the s
		Unclassified
16. DISTRIBUTION STATEMEN		15a. DECLASSIFICATION/DOWNGRAD SCHEDULE 1/a
Unlimited Distribu		n/a
Unlimited Distribu	NT (of the abstract entered in Block 20, 11 di	n/a
Unlimited Distribu	NT (of the abstract entered in Block 20, 11 di	n/a
Unlimited Distribu	NT (of the abstract entered in Block 20, 11 di	n/a
Unlimited Distribu	NT (of the abstract entered in Block 20, If di	Ilerent from Report)
Unlimited Distribution STATEMENTS. DISTRIBUTION STATEMENTS. SUPPLEMENTARY NOTES	everse side II necessary and identily by bloc	Ilerent from Report)
Unlimited Distribution STATEMENTS. DISTRIBUTION STATEMENTS. SUPPLEMENTARY NOTES. 19. KEY WORDS (Continue on the Continue on t	everse side II necessary and identity by bloc	Ilerent from Report) k number) Model
Unlimited Distribution STATEMENTS. DISTRIBUTION STATEMENTS. SUPPLEMENTARY NOTES	everse side II necessary and identily by bloc	Ilerent from Report)

Investigations in support of the NRL effort to obtain a field verified model of the atmospheric absorption of DF laser radiation are reported. New absorption line parameters have been extracted from spectroscopic data in the DF laser region.

A simple analytic model has been developed for each DF laser line. The model allows the laser transmission to be simply calculated for any arbitrary $\neg \sigma$

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

temperature or humidity. The coefficients for this model are periodically updated by SAI, and the last set of coefficients is included in the report. Included also are plots of the functional dependence of DF laser transmission on temperature and humidity, and tables of the data used to obtain the coefficients.

The atmospheric molecular transmission has been calculated and plotted for all wavelengths in the DF laser region (3.57 - 4.03 μ m) and in the CO laser region (4.55 - 5.26 μ m).

Micrometers

Unclassified

DF LASER PROPAGATION ANALYSIS Final Report

by

D. R. Woods
W. Flowers
R. E. Meredith
T. W. Tuer
J. P. Walker

for

Naval Research Laboratory Washington, D. C.

Contract N00173-76-C-0102

SCIENCE APPLICATIONS, INC. 15 Research Dr., P.O. Box 328, Ann Arbor, MI 48103 (313)662-3261

TABLE OF CONTENTS

List	of I	Figur	es .		•	•	•		•			•	•		•		•					ii
List	of T	Fable	s.																			iv
1.0	Intr	roduc	tion																			1
2.0	Sim	plifi	ed DI	L	ase	r A	Abs	orı	otio	n N	/lod	lel										4
3.0	Abs	sorpt	ion Li	ne	Pai	ran	et	er :	Me	asu	rer	ner	nts									8
	3.1		cedur Width				ain	ing	Li	ne	Str	eng	gth	٠		•	•			•		8
	3.2	Ext	LINE: ractio n Mea	n o	f A	bso	rp									٠		٠		٠	٠	9
	3.3		cedur IDO I								ive	D	F I	Las	er	٠	٠	•			•	12
	3.4		ative e Wav					- H	DC) A	bsc	rpt	tion	١٠	٠	•	•	٠	•	•	٠	16
	3.5	HDC	Abs	orp	tion	ı L	ine	w	idtl	ns a	and	Str	ren	gth	s		•	•			•	16
4.0	Atm	osph	eric ?	Гrа	nsn	nis	sio	n (Cal	cula	itio	ns										28
	4.1	Phys	sics o	f S	YN	SP	С															28
	4.2	and	culate CO I (1900	ase	er I	Reg	rior	s (248	30 c	m -	on i	in to 2	he 800	DI) cr	r. n -1	i)	٠			•	30
Refe	renc	es ·											•									40
Appe	endix		DF L efficie and W	ents	as	a	Fu	nct	ion	of	Te	mp	era			•		•	•	٠	· I	A-1
Appe	ndix		Analy Laser						to	Cal	cul	late	d I	OF							. I	3-1

LIST OF FIGURES

1.	Absorption Vs. Water Vapor Pressure P ₁ (7) · ·		•		•		2
2.	Absorption Vs. Water Vapor Pressure $P_2(9)$.				•	•	3
3.	Measured and Calculated HDO Transmission. Before Line Parameter Analysis		•	٠			13
4.	Measured and Calculated HDO Transmission. Using Line Parameters Extracted with LINPRA	•	•		•		14
5.	FITLINES Fit to a Weak Noisy Line \cdot · · ·	•	•		•	•	15
6.	Atmospheric Molecular Line Transmission · · - No Continuum		•	•	•		32
7.	Calculated Atmospheric Molecular Line Transmission as it would be Observed with 0.1 cm ⁻¹ Resolution No Continuum		٠	•		•	33
8.	Atmospheric Molecular Line Absorption Co- · · efficient No Continuum				•	•	34
9.	Atmospheric Molecular Transmission as it would be Observed by NRL with Burch Continua	•	٠	•	•	•	35
10.	Atmospheric Molecular Transmission for a 16 km Path with Burch Continua		•		•	•	36
11.	Atmospheric Molecular Transmission for a 16 km Path as it would be Observed with 0.08 cm ⁻¹ Resolution with Burch Continua	٠		•	•	•	37
12.	Atmospheric Molecular Line Transmission in the CO Laser Region		٠	•	•	•	38
13.	Atmospheric Molecular Line Transmission in the CO Laser Region	•	•	•	•		39

LIST OF TABLES

1.	Coefficients of Least Squares Fit · · ·	•	•	•	•	•	•	•	5
2.	Modifications to AFCRL Line Parameters · Based on SAI Measurements	•		•	٠	•	٠	•	6
3.	HDO Absorption Line Positions Relative to- DF Laser Lines	•	•	٠		•	•	•	17
4	HDO Absorption Line Widths and Strengths.								24

DF Laser Propagation Analysis Final Report

1.0 INTRODUCTION

The objective of this work is to obtain a model of the atmospheric absorption in the DF laser region (3.6 - 4.0 μ m) which is verifiable by NRL field measurements. There have been four elements to the basic approach. First, measurements have been made of a large number of fundamental molecular parameters which affect the absorption of DF laser radiation. Second, the absorption of each laser line was calculated using these numerous parameters, and then fit with a simple analytic model containing only a few coefficients. These coefficients give the temperature and humidity dependence of the absorption. Third, NRL compared their measurements with this simple model to establish its validity. Fourth, SAI's computer codes have been rewritten to facilitate checks on the accuracy of the existing absorption coefficients at all the wavelengths between the DF laser lines. The new code, SYNSPC, has been used by NRL and SAI to calculate and plot the atmospheric absorption for comparison with both the NRL interferometer measurements in the field and the SAI laboratory measurements.

The improvements in the modeling of DF laser absorption can be seen in Figures 1 and 2. NRL measurements are compared to both the absorption calculated with the parameters from this study and the absorption calculated with the parameters available prior to this study. It is clear that the measurement of line parameters for which previous estimates were in error has completely eliminated the early discrepancies between the field measurements and calculations.

- FIT TO EXPERIMENT ABSORPTION VS WATER VAPOR PRESSURE CALCULATED WITH NEW PARAMETERS NRL/SAI 1976 -24 CALCULATED WITH OLD PARAMETERS AFCRL 1975 21 18 P1-7 15 TORR O ထ 3 0 o.12 80.0 0[.]0e I\KW ₽0.0 20.0 01,0

Figure 2 ABSORPTION VS WATER VAPOR PRESSURE

2. 0 SIMPLIFIED DF LASER ABSORPTION MODEL

A simplified model has been developed for calculating molecular absorption of DF laser radiation. A simple analytic function of atmospheric temperature and water vapor concentration was fit to calculated absorption coefficients for 27 DF laser lines. This provides a convenient procedure for predicting atmospheric absorption of DF laser radiation.

A least-squares fitting code was used to determine the coefficients a_0, a_1, \ldots, a_5 in the polynomial:

$$k = a_0 + a_1T + a_2p + a_3Tp + a_4p^2 + a_5Tp^2$$

where k is the molecular absorption coefficient (km^{-1}) , T and p are the atmospheric air temperature (^{0}F) and water vapor partial pressure (torr), respectively. The modeling coefficients $a_{0} \dots a_{5}$ are given in Table 1 for each DF laser line. The calculated molecular absorption coefficients used to derive the modeling coefficients are given in Appendix A. Appendix B gives the calculated points and the analytical curve fits for each DF laser line.

SAI's standard line-by-line computer code [1,2] was used to calculate the basis molecular absorption coefficients given in Appendix A. These calculations use empirical models of the water and nitrogen continuum based on Burch's measurements [3,4]. An SAI modified version of the 1975 AFGL line parameter compilation was used along with preliminary values of the DF laser wavenumbers [5]. The subsequent published wavenumbers [6] are slightly more accurate. The AFGL compilation was modified to include recent SAI line parameter measurements [7] for absorption lines near the $P_1(7)$, $P_1(8)$, $P_1(9)$, $P_2(7)$ and $P_2(9)$ DF laser lines (see Table 2). The calculations include the effects of self broadening for H_2O and HDO (broadened by H_2O). A nominal

Table 1.

COEFFICIENTS OF LEAST SQUARES FIT (K=AC+A1*T+A2*PH2O+A3*T*PH2O+A4*PH2O*PH2O+A5*T*PH2O*PH2O)

```
CP
                                              A3
 LINE
         7.707E-C2-5.399E-05 2.886E-03-1.475E-05 2.598E-05-1.142E-07
P3 (12)
         5.389E-C2-6.445E-05 2.642E-03-1.003E-05 2.219E-05-7.636E-08
£3(11)
         2.834E-C2-2.718E-05 2.251E-03-1.044E-C5 1.989E-05-7.822E-08
P3 (10)
         2.595E-02-2.35CE-05 2.196E-03-1.C76E-C5 1.948E-05-7.958E-08
22 (13)
         1.595E-02-9.720E-06 1.967E-03-9.469E-06 1.727E-05-6.788E-08
23 (9)
         1.444F-02-8.468E-06 1.928E-03-5.274E-06 1.675E-05-6.511E-08
P2 (12)
         3.311E-C2-3.1C5E-05 1.793E-03-7.846E-06 1.563E-05-5.616E-08
P3 (9)
         1.949E-02-2.579E-05 1.724E-03-7.675E-06 1.527E-05-5.855E-08
P2 (11)
         4.759E-(2-6.768E-05 1.746E-03-5.042E-06 1.483E-05-3.983E-08
P3 (7)
         4.904E-02-2.046E-05 1.706E-03-6.475E-06 1.446E-05-4.778E-08
P2 (16)
         5.252E-(3 9.C41E-06 1.852E-03-4.C95E-C6 1.488E-C5-3.660E-08 4.915E-C3-7.479E-06 3.512E-03-5.C63E-06 1.384E-05-4.999E-08
P3 (6)
22 (9)
         2.415E-C3-2.647E-07 1.781E-03-7.167E-C6 1.516E-05-5.045E-08
F3 (5)
         3.036E-C3-4.749E-07 2.211E-03-5.944E-C7 1.428E-05-7.332E-08
P2 (8)
         4.517E-04 3.383E-06 6.467E-03-3.74EE-06 3.136E-05-8.721E-09
P2 (7)
        1.625E-03 4.943E-06 2.902E-03-8.741E-06 2.145E-35-5.417E-38
P1 (10)
         2.426E-04 8.374E-07 4.481E-03-5.350E-06 2.857E-05-4.533E-08
P2 (6)
         6.694E-03 2.471E-05 3.106E-03-1.046E-05 2.449E-05-6.858E-08
P1 (9)
        -6.190E-07 2.522E-08 2.564E-03-9.855E-06 2.140E-05-7.297E-08
P2 (5)
        -2.753E-05 3.094E-07 8.200E-03 1.668E-05 3.569Z-05 1.020E-07
P1 (8)
         1.511E-04 7.37CE-08 4.075E-03-5.694E-06 2.815E-05-8.162E-78
P2 (4)
        2.462E-03-8.12CE-06 3.099E-03-1.382E-05 2.618E-05-1.411E-07 1.080E-(3-4.180E-07 3.622E-03-1.442E-05 2.811E-05-9.978E-08
P1 (7)
P2 (3)
         5.128E-C3-7.766E-07 6.394E-03-1.582E-C5 4.191E-05-9.394E-08
P1 (6)
         1.472E-03-3.903E-07 5.495E-03-1.588E-C5 3.929E-05-1.048E-07
P1 (5)
         4.246E-C3-5.801E-06 6.569E-03-2.773E-06 3.767E-05-1.464E-07
21 (4)
         1.402E-04 1.CC9E-05 5.353E-03-1-449E-C5 3.312E-05-1.586E-07
P1 (3)
```

Table 2. Modifications to AFCRL Line Parameters Based on SAI Measurements

			Absorption	Absorption Line Parameters	rameters		
DF Laser		Position (cm ⁻¹)	(cm ⁻¹)	Strength $\times 10^{21}$	110 ²¹ cm	Half Widt	Half Width (cm ⁻¹)
Line Affected	Specie	Meas.	AFCRL	Meas.	AFCRL**	Meas.	AFCRL
	НДО	*	2742.882	0.0472	1.4370	0.0990	0.1021
2742 007 cm-1	НДО	*	2743.576	0.3538	1.0000	0.1020	0.0826
117 CIII	НБО	*	2743.941	2.3030	3.1530	0.1325	0.0984
$r_{1}^{(i)}$	НДО	*	2744.147	0.3199	1.0070	0.0862	0.0802
	НДО	*	2744.288	0.4477	0.1337	0.1149	0.0956
-1	НДО	2717.460	2717.456	0.8547	0.2780	0.0983	0.0952
M2 CFC 7117	НДО	2717.750	2717.751	6.0850	5.9670	0.0560	0.0485 ***
$F_1^{(8)}$	НДО	2717.750	2717.751	6.0850	5.9670	0.0560	0.0485 ***
	НДО	2689.779	2689.785	16.740	14.000	0.1090	0.1039
11	HDO	2692.746	2692.750	23.340	20.500	0.1084	0.1059
100 CM	HDO	2693.495	2693,495	1.1000	1.8670	0.0943	0.0872
$r_{1(3)}$	HDO	2695.204	2695.208	16,600	14.600	0.1060	0.0989
	CH4	*	2691.590	0.2830	0.1080	*	0.0550
	CH4	*	2691.660	0.2140	0.0818	*	0.0550
1- me 1 50 2 3 2 9 2 3 2 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	НДО	2655.462	2655,459	24.440	19.500	0.0995	0.0956
(F) G	HDO	2655.748	2655.746	~0.270	0.5270	*	0.0879
F2(1)	НДО	2657.332	2657.330	16.690	13.000	0.0981	0.0913
2605, 806 cm ⁻¹	НДО	*	2605.183	5.5830	4.2330	0.0855	0.0855
$P_2(S)$	НДО		2606.311	11.900	8.3670	0.0926	0.0784
* AFCRL v	value used.						

AFCRL value used.

These strengths are per molecule of HDO while the strengths on the data tape are reduced by a nominal value of the HDO natural abundance to simplify calculations.

*** Two different lines with nearly identical parameters.

factor of 5 times the foreign broadening was used except for $P_1(7)$, $P_2(9)$ and $P_2(7)$ where a factor of 1 was used inadvertently. The factor of 1 may lead to 10% errors for high humidities and will be corrected in the next set of coefficients. The factor of 5 however, may itself lead to errors of 5% since it is just an arbitrary estimate. This is because adequate values for the broadening of HDO and H_2O are unavailable. The temperature dependence of the continua absorption [8], and of the vibrational partition function [9], were included.

3.0 ABSORPTION LINE PARAMETER MEASUREMENTS

The molecular absorption line strength, width, and center wavenumbers are the fundamental parameters required to model molecular
line absorption of laser radiation. They are used to obtain the absorption as a function of temperature, pressure (altitude), and concentration. They are also used to determine the coefficients for the simplified expressions (see Section 2) used to expedite the calculation of atmospheric molecular absorption for arbitrary temperatures and concentrations. The absorption line widths, strengths, and relative wavenumbers have been extracted from HDO data for the lines which affect
the absorption at important DF laser lines. The HDO data was obtained on a separate NRL contract.

3.1 Procedure for Obtaining Line Strength and Width Values

The basic spectroscopic data was provided on digital cassettes. A TI 733 ASR data terminal has been modified so that it is possible to replace the more expensive digital grade cassettes with two hour audio cassettes. The audio cassettes accept twice as much data allowing longer scans.

The first step in preprocessing is to read the cassette data into a disk file on the computer. The data is edited to remove semicolons inserted by transients during the spectrometer scan, to correct and complete the header information, and to correct data lost or scrambled during transmission to the computer. The data is then stored on a file save tape for future analysis.

The analysis begins with the measurement of about ten absorption line positions on each scan. The wavenumber calibration constants for each scan are determined by a least squares fit of the measured positions to the positions listed in the AFGL data tape [10]. The 100% transmission voltage is calibrated by specifying the transmission at a

few selected calibration points in each set of data (scan). All of this calibration data is added to the data file headings which already contain the calibration values for the sample cell fill and other scan conditions. The computer code SCALDATA is used to preprocess the data. The measured voltages are converted into calibrated transmission values at calibrated wavenumbers using the data from the file heading. Zero transmission calibration data are recorded at the beginning and end of each scan.

Next, the SYNSPC computer code (see Section 4.0) is used to generate calibrated plots of the measured spectrum and to calculate and plot the expected spectrum. These plots are used to select spectral regions containing twelve or fewer lines for extraction of the strength and width parameters. The program FITIN is used to obtain starting absorption line parameters from the AFGL data tape for the particular temperature, pressure, concentration and path length conditions of the scan. The starting parameter values for lines which are not on the data tape (usually D2O lines) can easily be estimated by inspection of the measured and calculated spectral plots. Using these starting parameters, the program FITLINES (see Section 3.2) is run to extract absorption line strengths and widths from the data.

3.2 FITLINES -- A Program for Automatic Extraction of Absorption Line Parameters from Measured Data

There are quite a number of different techniques which various authors have used to manually extract absorption line strengths and widths from spectroscopic measurements. These techniques are quite well suited to the manual extraction of line strengths and widths from measurements of isolated lines if accurate measurements are made of the 0% and 100% transmission base lines, and if the proper corrections are made for the spectrometer spectral response function and for the choice of the 100% transmission base line. However, these techniques are not at all suitable for the automatic extraction of line strengths

and widths from lines which lie near to, or are overlapped by, a number of other irregularly spaced lines. At this laboratory [7,11], the manual parametric fit of a synthetic spectrum to the measured spectrum was used previously to deal with this difficult parameter extraction problem. Unfortunately, for overlapped lines, the manual parametric fit requires a highly skilled person, and is very tedious and time consuming.

A new method is now being used to extract absorption line parameters from spectroscopic measurements. It works with isolated and overlapped lines. This method is semi-automatic and the computer codes can be operated by relatively unskilled personnel for the simple cases of overlapped lines. The cases of highly overlapped and multiple lines, however, require the judgment of personnel highly skilled and experienced in extracting absorption line strengths and widths from parametric fits of overlapped lines. The computer code which executes this method is called FITLINES.

With FITLINES, the estimated strengths, widths, and wavenumbers of individual molecular lines expected in the region are systematically varied to get the best least-squares fit to the measured data scan. The starting line parameter estimates are obtained from the latest AFGL data tape, and from the visual inspection of the spectra.

The current version of FITLINES allows the simultaneous fitting of up to 12 overlapped spectral lines. Any arbitrary spectrometer spectral response function can be specified. Convolution of the spectral response function is speeded by 5, 9 or 16 point Gaussian quadrature, depending on the complexity of the spectral response function. The program also corrects any errors in the 100% transmission base line. The code has been written to use efficiently a large number of fine interval (0.001 cm⁻¹) spectral data points, such as may typically be obtained with current data acquisition systems.

A detailed description of the sequence of steps performed by FIT-LINES follows:

- (1) The measured spectral transmission values, a measured spectrometer spectral response function, and starting estimates of the line strengths, widths and positions are read in by the code and stored.
- (2) The code selects a number of critical wavenumbers for each absorption line and for the regions in between the absorption lines. These points will be used for the first order, nonlinear, least-squares fit of the measured transmission.
- (3) The transmission value at the selected wavenumbers is determined from a second-order polynomial fit to the measured data in the \pm 0.3 γ region around the selected point. The user may specify other order polynomial fits. For the points chosen between the lines the polynomial fit is made over \pm 0.3 $\gamma_{\rm average}$ region.
- (4) The transmission values are calculated at the selected wavenumbers from the estimated starting line parameters or, on successive iterations, from the corrected parameters.
- (5) The residual error between the measured and calculated transmission values is computed. If the residual is less than a given level the computation has given a successful result.
- (6) If the agreement is not sufficiently accurate, the partial derivatives of the transmission at each wavenumber with respect to the various parameters are computed.
- (7) A linear algebraic system, derived from the partial derivatives and residuals, is solved for the corrections to the current parameter values.
- (8) The corrections are applied to the estimated parameter values and the sequence of steps (2) through (7) is repeated until an accurate fit is obtained or the specified number of iterations has been performed.

The performance of FITLINES is illustrated in Figures 3, 4 and 5. The solid curve in Figure 3 is the measured HDO and D2O transmission near the $P_1(7)$ DF laser line. The X's are the calculated transmission values based on the starting estimates of the line parameters. Figure 4 shows the result of three iterations. Here the X's are the transmission values calculated from the parameters determined by FITLINES. The fit converges quickly and gives an excellent representation of the measured spectrum. Figure 5 indicates how it is possible to obtain strength and width parameters of limited accuracy even when the line is weak and the spectrum noisy. The boxes on the top of the figure give the residuals calculated by FITLINES. The residuals are the differences between the transmission determined by a second order polynomial fit to the data around a selected point, and the transmission calculated at the point using the line parameters extracted by FITLINES. The scale is $\pm 2\%$. Thus it can be seen that the typical residual is only a few tenths of a percent.

A similar code has been developed by Chang [12]. It also uses a nonlinear, least-square fit technique to obtain the line parameters for two overlapped lines. A Gaussian instrument spectral response function is used. This allows a more analytical approach to the program. The input data for Chang's code is obtained by digitizing selected critical points from spectral charts.

3.3 Procedure for Obtaining Relative DF Laser -- HDO Line Wavenumbers

The HDO absorption lines and DF laser emission lines were simultaneously recorded on a two-pen chart recorder. Typically each absorption-line, laser-line combination was scanned four times. The relative positions were scaled graphically, and the results of the four measurements were averaged. The current accuracy of the relative position values is 0.015 cm⁻¹. However the contract for the measurements

*

Figure 3. Measured and Calculated HDO Transmission Before Line Parameter Analysis

Figure 4. Measured and Calculated HDO Transmission Using Line Parameters Extracted with LINPRA

Figure 5. FITLINES Fit of a Weak Noisy Line

which provided the raw data is still active. When the checks to eliminate the possibilities of systematic errors are completed, it should be possible to improve the accuracy to 0.005 cm^{-1} . This is a reasonable number since the purely statistical standard deviation of the measured values was 0.002 cm^{-1} , which leads to a statistical error of the mean of $(\sqrt{4} = 2)$ of 0.001 cm^{-1} .

3.4 Relative DF Laser -- HDO Absorption Line Wavenumbers

The relative wavenumbers of HDO absorption lines and DF laser lines have been determined from measured spectra. The results are given in Table 3. As discussed in Section 3.3, the current accuracy is 0.015 cm⁻¹. In most cases the separation between the laser line and the HDO line is such that this accuracy will have a negligible effect on the calculated laser absorption. However, for a few HDO lines [2727.260@P₂(4), 2704.080@P₂(5), 2594.233@P₃(6) and 2717.456@P₁(8)] this level of accuracy will lead to some uncertainty in the calculated absorption at the laser lines. The improvement in accuracy discussed in Section 3.3, should eliminate this problem.

3.5 HDO Absorption Line Widths and Strengths

HDO absorption line widths and strengths have been determined from measured spectra. The results are given in Table 4. Many of these parameters have been extracted from overlapped lines which were previously thought impossible to measure. Thus, while it is thought that the parameters are accurate to 10%, there is the possibility that in some cases parameters have been included for lines which were too badly overlapped to yield parameters to this accuracy. Only time and experience can provide assurance that reasonable accuracy estimates are given when this procedure is used. Comparisons with the AFGL values [10] have been postponed until the measurements contract final report. This will allow the latest version of the data tape to be used.

Table 3.

HDO Absorption Line Positions
Relative to DF Laser Lines

Lase	r Line	Wavenumber (cm ⁻¹)	Relative Wavenumber (cm ⁻¹)
		AFCRL	Absorption Line - Laser Line
1-0	P(4)	2816. 989	0. 6238
		2816.757	0. 3843
		2816. 219	- 0, 1547
		2815. 957	- 0. 4134
		2815. 712	- 0. 6613
		2815. 185	- 1, 1874
		2814. 993	- 1. 3785
1-0	P(5)	2792. 973	0. 5507
		2792. 595	0, 1725
		2791.759	-0.6674
		2791.390	- 1, 0302
		2790. 917	- 1, 5086
1-0	P(6)	2768. 634	0. 6771
		2767. 574	- 0. 3828
		2767. 277	- 0. 6847
		2766.506	- 1. 4519

Table 3 (Continued)
HDO Absorption Line Positions
Relative to DF Laser Lines

Lase	Line	Wavenumber (cm ⁻¹)	Relative Wavenumber (cm ⁻¹)
		AFCRL	Absorption Line - Laser Line
2-1	P(3)	2751. 342	1. 2595
		2750. 503	0. 4203
		2749. 920	-0. 1637
1-0	P(7)	2744. 288	1. 2972
		2744.147	1. 1596
		2743.941	0. 9516
		2743. 576	0.5885
		2742.366	-0.6235
2-1	P(4)	2728. 060	0. 7595
		2727.870	0. 5701
		2727. 528	0. 2290
		2727. 260	-0.0409
		2727. 092	-0. 2062
		2726.625	-0. 6750
		2726.161	-1.1377
		2725.682	-1.6176

Table 3 (Continued) HDO Absorption Line Positions Relative to DF Laser Lines

Laser Line	Wavenumber (cm ⁻¹)	Relative Wavenumber (cm ⁻¹)
	AFCRL	Absorption Line - Laser Line
1-0 P(8)	2719.116	1. 5825
	2718.774	1. 2406
	2718.549	1.0183
	2717.751	0. 2155
	2717. 456	-0.0763
	2717. 189	-0.3444
	2717. 136	-0. 3972
	2716.913	-0.6140
	2716.810	-0. 7225
	2716. 271	-1. 2574
-1 P(5)	2705.513	1. 5254
	2704.458	0.4686
	2704. 256	0. 2668
	2704. 080	0.0823
	2703. 329	-0.6621
	2703. 093	-0. 8931
-0 P(9)	2692.750	1. 1493

Table 3 (Continued)
HDO Absorption Line Positions
Relative to DF Laser Lines

Laser	Line	Wavenumber (cm^{-1})	Relative Wavenumber (cm ⁻¹)
		AFCRL	Absorption Line - Laser Line
2-1	P(6)	2681. 052	0. 8809
		2679. 215	-0. 9521
		2678. 702	-1.4633
l-0	P(10)	2666. 295	1.0878
		2664.799	-0. 4075
		2664.446	-0. 7598
2-1	P(7)	2657. 330	1. 4783
		2655.746	-0. 1106
		2755. 459	-0.3921
l - 0	P(11)	2639.660	1. 2675
		2638.728	0.3520
		2638.557	0. 1817
		2638. 153	-0. 2251
		2637. 743	-0. 6315
		2637. 554	-0.8230
		2637. 359	-1. 0155

Table 3 (Continued)
HDO Absorption Line Positions
Relative to DF Laser Lines

Lase	r Line	Wavenumber (cm ⁻¹)	Relative Wavenumber (cm ⁻¹)
		AFCRL	Absorption Line - Laser Line
2-1	P(8)	2632. 414	1. 3556
		2632. 125	1.0688
		2629.845	-1. 2113
		2629. 715	-1.3446
3-2	P(5)	2617. 726	0. 3505
2-1	P(9)	2607. 194	1.3970
		2606.935	1. 1372
		2606. 517	0.7145
		2606.311	0.5160
		2605.999	0. 2007
		2605.183	-0.6125
		2604.668	-1. 1279
		2604. 440	-1.3534
3-2	P(6)	2594.905	0. 7260
		2594. 223	0. 0307
		2593.980	-0. 2013
		2593.618	-0.5646
		2593. 261	-0. 9401
		2592.882	-1.3055

Table 3 (Continued)
HDO Absorption Line Positions
Relative to DF Laser Lines

Lase	r Line	Wavenumber (cm ⁻¹)	Relative Wavenumber (cm ⁻¹)
		AFCRL	Absorption Line - Laser Line
2-1	P(10)	2581. 046	0. 9618
		2579.837	-0. 2525
		2579.747	-0.3464
		2578. 807	-1. 2763
3-2	P(7)	2571. 440	0. 9280
		2571. 237	0. 7210
		2571. 162	0.6477
		2570.381	-0. 1363
		2570. 140	-0. 3704
		2569.961	-0. 5480
		2569.302	-1. 2070
2-1	P(11)	2553.110	-0.8330
		2552. 787	-1. 1553
3-2	P(8)	2546. 993	0. 6291
2-1	P(12)	2527. 189	-0. 1940
3-2	P(9)	2522. 407 2521. 006	0, 6500 -0, 7465

Table 3 (Continued) HDO Absorption Line Positions Relative to DF Laser Lines

Lase	r Line	Wavenumber (cm ⁻¹)	Relative Wavenumber (cm ⁻¹)
		AFCRL	Absorption Line - Laser Line
2-1	P(13)	2501.461	1. 0427
		2499. 768	-0.6495
3-2	P(10)	2497. 938	1. 2274
		2495.666	-1.0337

Table 4.

HDO Absorption Line Widths and Strengths

Laser Line (cm -1 um)	AFCRL HDO Line (cm ⁻¹)	$s\left(10^{-23} \frac{cm^{-1}}{mol. cm^2}\right)$	γ (cm ⁻¹)
P ₃ (11)	2453. 008	.0021 ± 25%	. 1049 ± 25%
2471. 2446	2460. 926	$.0022 \pm 100\%$	$.0415 \pm 100\%$
4. 0465	2467. 995	$.0014 \pm 25\%$	$.0813 \pm 25\%$
4.0405	2469.810	$.0058 \pm 30\%$	$.0560 \pm 30\%$
P ₃ (10) 2496. 7219			
4.0053	2497. 938	. 0025	. 0758
D (10)	2497. 263	.0042	. 0946
P ₂ (13)	2499.768	. 0054	. 0698
2500. 4297 3. 9993			
P ₃ (9)			
2521. 7692	2522. 407	. 0011	. 0721
3. 9655	2524. 464	. 0205	. 0886
P ₂ (12)			
2527. 3869 3. 9567	2527. 189	. 0014	. 0933
	2539. 273	. 0232	. 0750
	2544.668	. 0415	. 0866
D (8)	2546. 993	. 0567	. 0862
P ₃ (8)	2547. 822	. 0415	. 0727
2546. 3745	2548.663	. 0308	. 0479
3.9272	2548. 720	. 0472	. 0517
	2549. 907	. 0402	. 0678
	2550. 507	. 0245	. 0813
P ₂ (11)			
2553. 9539 3. 9155	2553. 110	. 0250	. 0771

Table 4 (Continued)

Laser Line	AFCRL HDO Line (cm ⁻¹)	$S\left(10^{-23} \frac{cm^{-1}}{mol. cm^2}\right)$	γ (cm ⁻¹)
P ₃ (7) 2570. 5231 3. 8903	2570. 140 2571. 440 2573. 520	. $0232 \pm 50\%$. $0232 \pm 50\%$. 0853	$.0907 \pm 50\%$ $.0509 \pm 50\%$ $.0845$
P ₂ (10) 2580. 1021 3. 8758	2576. 664 2578. 606 2578. 807 2581. 046 2582. 303 2585. 437	. 1498 . 1378 . 1410 . 1372 . 1896 . 1319	. 0890 . 0695 . 0698 . 0797 . 0915 . 0889
P ₃ (6) 2594. 2009 3. 8548	2590. 826 2591. 220 2593. 244 2593. 618 2596. 738	.1348 .2479 .2317 .2291 .2197	. 0847 . 0913 . 0767 . 0759 . 0849
P ₂ (9) 2605. 8080 3. 8376	2605. 183 2606. 311	. 1923 . 3733	. 0917 . 0927
P ₃ (5) 2617. 3888 3. 8206	2619.762 2621.733 2622.108 2622.860	.4171 .5202 .5575 .5069	. 0951 . 0852 . 0987 . 0887
P ₂ (8) 2631. 0667 3. 8007 P ₁ (11) 2638. 3943 3. 7902 P ₃ (4) 2640. 0749 3. 7877	2628. 459 2635. 600 2637. 359 2638. 557 2638. 728 2640. 019 2641. 994	. 4540 . 6658 ± 20% . 6654 ± 20% . 7121 ± 20% . 4964 ± 20% . 0117 . 2547	. 0965 . 0940 ± 20% . 0937 ± 20% . 0929 ± 20% . 0880 ± 20% . 0727 . 0868

Table 4 (Continued)

Laser Line	AFCRL HDO Line (cm ⁻¹)	$s(10^{-23} - cm^{-1})$	γ (cm ⁻¹)
		mol. cm ² /	
P ₂ (7)	2255 450	7711	. 1010
2655.8605	2655. 459 2657. 330	. 7711 . 5215	. 0989
3.7653	2007. 330	. 3213	. 0505
P (10)	2660. 518	. 5577	. 1053
P ₁ (10)	2663. 293	. 9089	. 1030
2665. 2172	2664. 799	$.0252 \pm 30\%$	$.1050 \pm 30\%$
3. 7520	2666. 295	. 8238	. 0980
D (0)			
P ₂ (6)			. 2207
2680. 1732	2680. 759	$.8344 \pm 20\%$	$.1060 \pm 30\%$
3.7311			
D (0)	2689. 785	. 4449	. 1056
P ₁ (9)	2692. 750	. 7516	. 1126
2691.6087	2693. 495	$.0293 \pm 25\%$	$.0788 \pm 25\%$
3.7153	2695. 208	. 4995	.1046
P ₂ (5)	2702, 157	. 0867	. 1028
2703, 9983	2703. 093	. 0299	. 1075
3. 6982			
	2725, 687	. 2556	. 1083
D (4)	2726. 161	. 5261	. 1038
P ₂ (4)	2727. 092	. 0043 + 30%	$0616 \pm 30\%$
2727. 3116	2727. 528	$.0045 \pm 30\%$	$0914 \pm 30\%$
3.6666	2727. 870	$.0074 \pm 30\%$. 0705 ± 30%
	2728. 060	. 0312	. 1095
	2.20.000		
P ₁ (7)	2738. 923	.4329 \pm 20\%	$.1135 \pm 20\%$
2742, 9994	2743. 576	$.0106 \pm 30\%$	$1008 \pm 30\%$
3. 6456	2743. 941	$.0918 \pm 30\%$	$.1186 \pm 30\%$
3. 0 100			

Table 4 (Continued)

Laser Line	AFCRL HDO Line (cm ⁻¹)	$S\left(10^{-23} \frac{cm^{-1}}{mol. cm^2}\right)$	$\gamma \text{ (cm}^{-1})$
P ₃ (3) 2750. 0962 3. 6362	2747. 412 2749. 920 2750. 503 2751. 342 2753. 545 2756. 558	. 1150 ± 50% . 0334 ± 50% . 0278 ± 50% . 5032 ± 50% . 7728 ± 50% . 5171 ± 50%	$.1125 \pm 50\%$ $.1137 \pm 50\%$ $.1070 \pm 50\%$ $.1072 \pm 50\%$ $.1121 \pm 50\%$ $.1080 \pm 50\%$
P ₁ (6) 2767. 9677 3. 6128	2764. 551 2767. 277 2768. 634 2769. 897	$.7902 \pm 25\%$ $.9160 \pm 25\%$ $.3951 \pm 25\%$ $.4237 \pm 25\%$	$.1024 \pm 25\%$ $.1052 \pm 25\%$ $.1015 \pm 25\%$ $.1066 \pm 25\%$
P ₂ (2) 2772. 342 3. 6071	2772. 259	.7660 ± 25%	.1062 ± 25%
P ₁ (5) 2792. 4362 3. 5811	2789. 593 2791. 759	$.8775 \pm 25\%$ $.8568 \pm 25\%$	$.0986 \pm 25\%$ $.1004 \pm 25\%$
P ₁ (4) 2816. 3794 3. 5507	2814. 993 2816. 989	. 5374 . 4069	. 1000 . 0956

These strengths are per molecule of ${\rm H_2O}$; that is, they are reduced by the nominal value of the HDO natural abundance (the same units as used on the data type).

4.0 ATMOSPHERIC TRANSMISSION CALCULATIONS

Fully resolved atmospheric molecular absorption has been calculated and plotted for all wavenumbers in the DF laser region (2480-2800 cm⁻¹) and the CO laser region (1900-2200 cm⁻¹). The calculations and plots were made using existing SAI computer codes which were rewritten and combined into a single program (SYNSPC). This reduced the size and cost of the codes, while simultaneously increasing the ease of operation. SYNSPC uses a modified version of the AFGL line parameter tape [10] and includes all the molecules available on the tape. It includes models of the water continuum, the nitrogen continuum, and the effect of water self broadening. The calculations can be performed for arbitrary values of temperature, pressure (altitude), humidity, concentration of absorbing atmospheric gasses, and aerosol extinction.

4.1 Physics of SYNSPC

The basic line-by-line approach has been used with some additional sophistication to increase the speed and accuracy of the calculations. The line-by-line calculations of the atmospheric transmission are made according to the following expressions.

$$k_{j}(\overline{\nu}) = \sum_{i} \frac{S_{i} \gamma_{i}}{\pi [(\overline{\nu} - \overline{\nu}_{i})^{2} + \gamma_{i}^{2}]}$$

$$T = e^{-\sum_{j} N_{j} k_{j}(\overline{\nu})} \times e^{-k_{s}} \times e^{-k(\overline{\nu})} cont$$

$$Q = Q_{r} Q_{v}$$

or

$$\frac{Q(296^{0}K)}{Q(T)} = \frac{Q_{r}(296^{0}K)Q_{v}(296^{0}K)}{Q_{r}(T)Q_{v}(T)}$$

where $\mathbf{Q_r}$ is the rotational partition function and $\mathbf{Q_v}$ is the vibrational partition function. The expressions used for the partition functions are:

$$\frac{Q_{r}(296^{O}K)}{Q_{r}(T)} = \left(\frac{296^{O}K}{T}\right)^{j} \text{ where } j = \begin{cases} 1 \text{ Linear Molecule} \\ 3/2 \text{ Nonlinear Molecule} \end{cases}$$

Linear Molecules: CO₂, N₂O, CO, O₂ Nonlinear Molecules: H₂O, HDO, O₃, CH₄

$$\frac{Q_{v}(296^{0}K)}{Q_{v}(T)} = \frac{\pi_{i} \left(1 - e^{-\omega_{i} \times 1.4388/296}\right)^{-d_{i}}}{\pi_{i} \left(1 - e^{-\omega_{i} \times 1.4388/T}\right)^{-d_{i}}}$$

where d_i and ω_i are the degeneracy and wavenumber of normal mode i.

The integrated molecular number densities along the path are calculated by:

$$N = \frac{6.02257 \times 10^{23}}{22.415} \times \frac{273.16}{T} P_t P_a L \times 10^{-4}$$

where

T = Temperature

 P_t = Total air pressure in atmospheres

Pa = Partial pressure of absorbing molecules in parts per million

L = Path length in kilometers

 $k_i(\overline{\nu})$ = Absorption coefficient for molecule j at wavenumber $\overline{\nu}$

T = Transmission

 $\overline{\nu}$ = Observation wavenumber

 $\overline{\nu}_i$ = Absorption line wavenumber for line i

 γ_i = Absorption line width for line i of molecule j

 S_{i} = Absorption line strength for line i of molecule j

N_j = Number of absorbing molecules per cm² in path for molecule j

k_s = Aerosol extinction coefficient entered by user

 $k(\overline{\nu})_{cont}$ = Nitrogen and H_2O continuum

Empirical models based on the Burch measurements [3,4,13] of the nitrogen and water continua are included in $k(\overline{\nu})_{cont}$. The water continuum covers the regions $(2400-2850~cm^{-1})[4]$, and $(800-1200~cm^{-1})[13]$. The nitrogen continuum covers the region $(2389-2648~cm^{-1})[3]$. A provision is made for the user to enter the aerosol extinction coefficient k_s .

The temperature dependence of the line strength is calculated using the Boltzman factor and the vibrational and rotational partitions functions. Thus:

$$S_{ij} = S_{ij}(296^{\circ}K) \times \frac{Q_{j}(296^{\circ}K)}{Q_{j}(T)} e^{1.4388E_{ij}^{"}} \frac{(T-296^{\circ}K)}{T(296^{\circ}K)}$$

where Q_j is the partition function, $E_{ij}^{!!}$ is the initial state energy, and T is the temperature. i represents the transition identification, and j represents the molecular species identification. The value of Q_j depends on the temperature and species of the molecule, while $E_{ij}^{!!}$ depends only on the particular molecule and transition involved.

4.2 Calculated Atmospheric Absorption in the DF and CO Laser Regions (2480 cm⁻¹ to 2800 cm⁻¹) and (1900 cm⁻¹ to 2200 cm⁻¹)

The atmospheric molecular absorption has been calculated for a number of different conditions in the DF laser region. The absorption has also been calculated in the CO laser region for a nominal set of conditions.

Figure 6 gives the monochromatic atmospheric molecular absorption line transmission, without the continuum, in the 2480 - 2800 cm⁻¹ region for a 5 kilometer path and midlatitude sea level conditions. Figure 7 is identical except a 0.1 cm⁻¹ trapezoidal instrument spectral response function is used to simulate the atmospheric transmission as it would be observed by an interferometer. Figure 8 gives the absorption coefficient for the previous conditions. Figure 9 includes the Burch water and nitrogen continua, the instrument spectral response function, and is done for conditions which correspond to one of the measurements made by NRL. The calculated atmospheric transmission for a 16 km path is given in Figure 10 for infinite resolution, and in Figure 11 for 0.08 cm⁻¹ resolution. In both cases the Burch continua are included.

The absorption calculated between 1900 and 2200 cm⁻¹ in the CO laser region is given in Figures 12 and 13. For these CO calculations, the parameters from the January 1976 AFCRL data tape were used without change. Recent measurements by Chang [11] give values for the H₂O line strengths in the CO region which are typically 10% to 20% stronger than the AFGL values. In individual cases the measured strengths are a factor of two stronger. Dr. Chang [12] indicates that the final calibration of his data may well eliminate the 10% to 20% differences. Thus it would appear that the strengths of most of the very strong lines on the data tape are accurate. However, these measurements were only made for a few of the very strong lines and do not include the many weak lines which are so important in the more transparent intervals.

Figure 6. Atmospheric Molecular Line Transmission -- No Continuum

Calculated Atmospheric Molecular Line Transmission as it would be Observed with 0.1 cm-1 Resolution -- No Continuum Figure 7.

Atmospheric Molecular Line Absorption Coefficient -- No Continuum Figure 8.

Atmospheric Molecular Transmission as it would be Observed by NRL -- with Burch Continua Figure 9.

Figure 10. Atmospheric Molecular Transmission for a 16 km Path -- with Burch Continua

Atmospheric Molecular Transmission for a 16 km Path as it would be Observed with 0.08 cm⁻¹ Resolution -- with Burch Continua Figure 11.

Figure 12. Atmospheric Molecular Line Transmission in the CO Laser Region

Figure 13. Atmospheric Molecular Line Transmission in the CO Laser Region

REFERENCES

- 1. R. E. Meredith, T. W. Tuer and D. R. Woods, <u>Investigation</u> of DF Laser Propagation, Atmospheric Sciences <u>Laboratory</u>, U. S. Army Electronics Command, White Sands Missile Range, New Mexico, ECOM 74-4, 1974.
- 2. T. W. Tuer, <u>Laser Absorption Coefficient Evaluation (LACE)</u>
 Code for <u>Line-by-Line Calculation</u>, SAI Memo to File, 12 November 1975.
- 3. D. E. Burch, D. A. Gryvnak and J. D. Pembrook, Investigation of Infrared Radiation by Atmospheric Gases, AFCRL-70-0373, 1970.
- 4. D. E. Burch, D. A. Gryvnak and J. D. Pembrook, <u>Investigation</u> of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, AFCRL-71-0124, 1971.
- 5. N. K. Rao, Private Communication, The Ohio State University, Columbus, Ohio, 1974.
- W. Heath, Ph. D. Dissertation, Ohio State University, 1976; K. N. Rao, Physical Chemistry Series, Vol. 3, Spectroscopy, Editor, D. A. Ramsay, Butterworth, Inc., 1976; W. Heath, W. B. Roh, K. N. Rao, F. S. Mills and R. K. Long, DF and HF Laser Spectra, Presented at the Thirtieth Symposium on Molecular Structure and Spectroscopy, Columbus, Ohio, June 16-20, 1975.
- 7. D. R. Woods and R. E. Meredith, Application of High Resolution Spectroscopy to DF Laser Propagation, Final Report, SAI-76-001-AA, January 1976.
- 8. T. W. Tuer, Modifications to Continuum Absorption Codes for High Temperature Effects, SAI Memo, 17 February 1975.
- 9. T. W. Tuer, Modifications to Subroutine TEMPER for High Temperature Effects, SAI Memo, 17 February 1975.
- 10. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman and J. S. Garing, <u>AFCRL Atmospheric Absorption Line Parameters Compilation</u>, Air Force Cambridge Research Laboratory, Technical Report AFCRL-TR-73-0096, January 1973.

REFERENCES (Continued)

- 11. R. E. Meredith, T. S. Chang, F. G. Smith and D. R. Woods, Investigations in Support of High Energy Laser Technology, Final Report, SAI-75-001-AA, February 1975.
- 12. Y. S. Chang, Line Intensities and Half Widths of the H2O ν_2 Band Near 2000 cm⁻¹ Obtained by Using a Least Squares Fit Method, Ph. D. Dissertation, Ohio State University, 1976.
- 13. Y. S. Chang, Private Communication, The Ohio State University, Columbus, Ohio, January 1977.
- 14. D. E. Burch, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases.

APPENDIX A

DF LASER ATMOSPHERIC ABSORPTION COEFFICIENTS

AS A FUNCTION OF TEMPERATURE

AND WATER VAPOR PARTIAL PRESSURE

CF ATMOSFREDIC AESOFFTION CONFFICIENTS (KM-1)
AS A FUNCTION OF TEMPERATURE & WATER VAPOR PARTIAL PRESSURE

LF	FEEQUENCY	TERF	FFESS	£2C	K 2	LINE	
LINE	(CH-1)	(F)	(1055)	CCNTINUUL	CCNTINUUM	TOTAL	TOTAL
21112	(02 .,	,	,,				
F1 (5)	2792.4338	50					
			0	6.6	0.0	1.452E-03	1.452E-03
			5	1.286E-C2	0.0	1.3322-02	2.588E-02
			8	2.1131-02	0.0	2.023E-02	4.136E-02
			12	3.2751-C2	0.0	3.016E-U2	6.255E-02
			15	4.203E-02	0.0	3.7832-02	7.985E-02
			26	5.832E-C2	0.0	5.105E-02	1.394E-01
		70					
			û	0.0	0.0	1.444E-03	1.444E-03
			5	1. CE4E-C2	0.0	1.318E-02	2.402E-62
			8	1.782E-C2	0.0	2.051E-02	3.833F-02
			12	2.77CE-C2	0.0	3.363E-02	5.83UE-02
			15	3.553E-C2	0.0	3.841E-02	7.394E-02
			20	4.537E-02	0.0	5.189E-02	1.013E-01
		50					
			0	0.0	0.0	1.439E-03	1.439E-03
			5	9.24EE-C3	0.0	1.333E-02	2.258E-02
			8	1.523E-02	0.0	2.077E-02	3.599E-02
			12	2.369E-C2	G.C	3.102E-02	5.471E-02
			15	3.C4 1E-C2	0.0	3.896E-02	6.937E-02
			20	4.232E-C2	C.0	5.268E-02	9.500E-02
P1 (4)	2816.3845	50					
			0	0.0	0.0	3.95BE-03	3.958E-03
			5	1.3891-02	C.0	2.307E-02	3.696E-02
			8	2.282E-C2	0.0	3.467E-02	5.749E-02
			12	3.542E-C2	0.0	5.030E-02	8.572E-02
			15	4.539E-C2	0.0	6.213E-02	1.075E-01
			20	€.300E-C2	0.0	8.207E-02	1.451E-01
		70					
			0	0.0	0.0	3.841E-03	3.841E-03
			5	1.166E-C2	0.0	2.455E-02	3.621E-02
			8	1.518E-C2	0.0	3.712E-02	5.6301-02
			12	2.581E-C2	0.0	5.403E-02	8.383E-02
			15	3.823E-C2	0.0	6.683E-02	1.051E-01
			20.	5.312E-02	0.0	8.837E-02	1.415E-01
		50				2 7225 63	2 726-6-
			0	C.C	0.0	3.729E-03	3.729E-03
			5	9.516E-C3	0.0	2.610E-02	3.602E-02 5.599E-02
			8	1.633E-02	0.0	3.966E-02 5.793E-02	8.331E-02
			12	2.540E-C2	0.0 0.C	7.170E-02	1.0432-01
			15	3.261E-C2 4.538E-G2	0.0	9.491E-02	1.4C3E-01
			20	4.5381-02	0.0	J. 43 1E-02	1.4032 01

IF ATMOSFIERIC ABSORPTION COEFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & WATER VAPOR PARTIAL FRESSURE

LF	PEEQUENCY	TEEP	FFESS	Б2С	N2	LINE	
LINE	(CH-1)		(1055)	CONTINUEZ	CCNIINUUM	TOTAL	TOTAL
n2 11. 1	2406 7510	50					
P3 (1u)	2496.7219	50		C.C	2.649E-02	5.083E-04	2.700E-02
			0 5	8. E42E-C3	2.649E-02	7.541E-J4	3.608E-02
			8	1.4531-02	2.649E-02	9.078E-04	4.1922-02
			12	2. 255E-C2	2.649E-02	1. 120E-03	5.016E-02
			15	2.890i-C2	2.645E-02	1.284E-03	5.6672-02
			20	4.C11E-02	2.649E-02	1.567E-03	6.816E-02
		70					
			0	O.C	2.587E-02	5.5072-04	2.642E-02
			<u> </u>	7.5581-63	2.587E-02	8.601Z-04	3.429E-02
			8	1.243E-02	2.587E-02	1.054E-03	3.936E-02
			12	1.932E-C2	2.587E-02	1.321E-03	4.651E-02
			15	2.478E-C2	2.567E-02	1.5291-63	5.218E-02
			26	3.443E-C2	2.587E-02	1.887E-03	6.219E-02
		SC	0	c.c	2.532E-02	5.9402-04	2.591E-02
			5	6.535E-03	2.532E-02 2.532E-02	9.773E-04	3.2832-02
			E	1.076E-02	2.532E-02	1.218E-03	3.729E-U2
			12	1.674E-02	2.532E-02	1.550E-03	4.361E-02
			15	2.145E-C2	2.532E-02	1.808E-03	4.861E-02
			20	2.590E-C2	2.532E-02	2.255E-03	5.747E-02
£2 (13)	2500.4297	50					
			C	0.0	2.434E-02	4.466E-04	2.479E-02
			5 8	8.692E-03	2.434E-02	4.784E-04	3.351E-02
				1.428E-C2	2.434E-02	4.983E-04	3.912E-02 4.703E-02
			12	2.217E-C2	2.4342-02	5.256E-04 5.467E-04	5.329E-02
			15 20	2.841E-C2 3.943E-C2	2.434E-02 2.434E-02	5.832E-04	6.435E-02
		70	20	3.3431-62	2.4342-02	J. 0321 04	0.4352 02
		,,	0	6.6	2.379E-02	4.978E-04	2.429E-02
			5	7.434E-03	2.375E-02	5.408E-04	3.177E-02
			8	1.223E-02	2.379E-02	5.676E-04	3.659E-02
			12	1.900E-02	2.379E-02	6.046E-04	4.340E-C2
			15	2.437E-C2	2.379E-02	6.333E-04	4.880E-02
			20	3.3871-C2	2.379E-02	6.828E-04	5.834E-02
		50					
			0 5 8	0.0	2.330E-02	5.507E-04	2.385E-02
			5	6.432E-C3	2.330E-02	6.083E-04	3.034E-02 3.453E-02
			12	1.0591-02	2.330E-02 2.330E-02	6.442E-04 6.939E-04	4.047E-02
			15	1.648E-02 2.115E-02	2.330E-02 2.330E-02	7.323E-04	4.518E-02
			20	2.943E-02	2.330E-02 2.330E-02	7.989E-04	5.353E-02
			20	2. 3432-02	2.3301 02		

IF ATROSFIERIC ALSORFTION COEFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & WATER VAPOR PARTIAL FRESSURE

LINA	FREQUENCY (CM-1)	TEMP (F)		H2C CONTINUUM	N2 CCNIINUUM	LINE	TOTAL
LINL	(Ch-1)	(1)	(IONA)	CONTINUOL.	CCHIIIIOU	10111	
F3 (9)	2521.7693	50					
E 2 (3)	2321.7633	-0	•	6.3	1.497E-02	4.979E-04	1.5472-02
			C			5.562z-04	2.332E-02
			5	7.7911-63	1.497E-02		
			8	1.2801-02	1.4571-02	5.925E-04	2.837E-02
			12	1.587E-C2	1.497E-02	6.426E-04	3.5493-02
			15	2.546E-02	1.497E-02	6.813E-04	4.112E-02
			20	3.534E-C2	1.497E-02	7.482E-04	5.106E-02
		70					
			0	0.0	1.471E-02	5.526Z-04	1.526E-02
			5	6.686E-C3	1.471E-02	6.246E-04	2.202E-02
			8	1. 16 CE-C2	1.471E-02	6.696E-04	2.637E-02
			12	1.709E-02	1.471E-02	7.316E-04	3.253E-02
			15	2.192E-C2	1.471E-02	7.796E-04	3.741E-G2
			20	3.646E-G2	1.471E-02	8.626E-34	4.603E-C2
		90					
			0	0.0	1.447E-02	6.133E-04	1.508E-02
			5	5. E031-C3	1.447E-02	7.011E-04	2.057E-02
			5	9.553E-C3	1.447E-02	7.560E-04	2.478E-02
			12	1.4671-02	1.447E-02	8.319E-04	3.016E-02
			15	1.9C8E-02	1.447E-02	8.907E-04	3.444E-02
			26	2.655E-C2	1.447E-02	9.924E-04	4.201E-02
			26	2. (332-62	1.4472 02	3.3242 04	4.20.2 02
P2 (12)	2527.3670	50	•				
			0	0.0	1.321E-02	8.104E-04	1.4C2E-02
			5	7.591E-C3	1.321E-02	9.043E-04	2.171E-02
			٤	1.247E-02	1.321E-02	9.623E-04	2.665E-02
			12	1.536E-C2	1.321E-02	1.041E-03	3.362E-02
			15	2.481E-C2	1.321E-02	1. 102E-03	3.913E-02
			20	3.443E-C2	1.321E-02	1.205E-03	4.685E-02
		70					
			0	0.0	1.300E-02	8.442E-04	1.384E-02
			5	6.520E-03	1.300E-02	9.455E-04	2.046 E-02
			ε	1.672E-C2	1.300E-02	1.0082-03	2.473E-02
			12	1.667E-02	1.3001-02	1.0942-03	3.076E-02
			15	2.138E-02	1.300E-02	1.160E-03	3.553E-02
			20	2.570E-02	1.300E-02	1.272E-03	4.397E-G2
		50	20				
		30	0	0.0	1.280E-02	8.753E-04	1.368E-02
			0	5.663E-03	1.2862-02	9.846E-J4	1.945E-02
			8	9.3241-03	1.280E-02	1.052E-03	2.318E-02
			12	1.45 1E-C2	1.28GE-02	1.145E-03	2.845E-02
			15	1.862E-02	1.280E-02	1.2162-03	3.264E-02
			20	2.591E-C2	1.28CE-02	1.338E-C3	4.005E-02
			20	2 311-02	ZUUE-UZ		

DE ATMOSPHERIC RESOFFTION COEFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & WATER VAPOR PARTIAL PRESSURE

E F	FREQUENCY	TEMP	FFESS	62C	N 2	LINE	
LINE	(CH-1)	(F)	(TORR)	CONTINUOR	CCNTINUUM	TOTAL	TOTAL
LIND	(0)						
F3 (12)	2445.3535	5 C					
			0	0.0	6.852E-02	5.913E-U3	7.443E-02
			5	1. 13 1E-C2	6.852E-02	5.920E-03	8.576E-C2 9.303E-02
			8	1.859E-02 2.885E-02	6.852E-02 6.852E-02	5.924E-03 5.93JE-03	1.6332-01
			12	3.657E-02	6.852E-02	5.935E-03	1.1142-01
			15 20	5.131E-C2	6.852E-02	5.943E-03	1.2582-01
		70	20		0.0.22	3.3432 03	112502 01
		,,	0	C.0	6.616E-02	7.002E-03	7.316E-02
			5	9.590E-C3	6.616E-02	7.013E-03	8.276E-02
			8	1.577E-C2	6.616E-02	7.0192-03	8.895E-02
			12	2.451E-C2	6.616E-02	7.028E-03	9.770E-02
			15	3.144E-C2	6.616E-02	7.035E-03	1.046E-01
			20	4.365E-02	6.616E-02	7.047E-03	1.1692-01
		50				0.0000	2 2225 62
			C	0.0	6.404E-02	8.244E-03	7.228E-02 8.052E-02
			5	8.230E-C3	6.404E-02	8.258E-03 8.268E-03	8.585E-02
				1.355E-02 2.108E-02	6.404E-G2 6.4C4E-02	8.281E-03	9.340E-02
			12 15	2.706E-C2	6.404E-02	8.29ÚE-Ú3	9.939E-02
			20	3.76EE-\$2	€.4041-02	8.308E-03	1.100E-01
			20	3.7002 41	00.00.202		
P3 (11)	2471.2446	50					
			0	U.C	4.527E-02	5.424E-03	5.0692-02
			5	9.562E-C3	4.527E-C2	6.672E-03	6.191E-02
			3	1.637E-C2	4.527E-02	7.442E-03	6.908E-02
			12	2.541E-C2	4.527E-02	8.491E-03 9.294E-03	7.917E-02 8.713E-02
			15	3.256E-02	4.527E-02 4.527E-02	1.066E-02	1.011E-01
		70	20	4.5152-02	4.527E-02	1.005E-02	1.0112-01
		70	0	0.0	4.397E-02	5.366E-03	4.934E-32
			5	8.481E-03	4.397E-02	6.888E-03	5.934E-02
			8	1.395E-02	4.397E-U2	7.829E-03	6.574E-02
			12	2.16EE-C2	4.397E-02	9.112E-03	7.476E-02
			15	2.78GE-02	4.397E-02	1.01JE-02	8.187E-02
			20	3.864E-02	4.397E-02	1.177E-02	9.438E-02
		90					
			0	0.0	4.275E-02	5.322E-03	4.811E-02
			5	7.306E-03	4.279E-02 4.279E-02	7.153E-03 8.287E-03	5.725E-02 6.310E-02
			8 12	1.203E-C2 1.872E-02	4.275E-02	9.836Z-03	7.134E-02
			15	2.463E-C2	4.275E-02	1. 103E-02	7.784E-02
			20	3.343E-02	4.275E-02	1.306E-02	8.9282-02
			20	2.2421 01			

CF AIMCSFHEBIC AESCFFTICN CCEFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & WATER VAROR PARTIAL PRESSURE

LF	PFEQUENCY	TIME	FFESS	F3C	K 2	LINE	
LINE	(CM-1)	(F)	(TORE)	CONTINUUE	CCNIINUUM	TOTAL	TOTAL
£3 (7)	2570.5227	50					
			C	C.C	5.183E-03	3.9042-52	4.422E-02
			5	6.556E-03	5.183E-C3	4.030E-02	5.204E-02
			8	1.077E-02	5.183E-03	4.109E-02	5.705E-02
			12	1.6721-02	5.1831-03	4.218E-02	6.4U8E-02
			15	2.143E-C2	5.183E-03	4.302E-02	6.9632-02
			20	2.574E-C2	5.183E-03	4.446E-02	7.938E-02
		70					
			0	0.C	5.149E-03	3.769E-02	4.284E-02
			-5	5.67CE-C3	5.149E-03	3.922E-02	5.004E-02
- *			8	9.326E-C3	5.149E-03	4.017E-C2	5.464E-62
	EFYLD		12	1.449E-C2	5.149E-03	4.148E-02	6.112E-02
			15	1.E59E-02	5.149E-03	4.249E-J2	6.623E-02
			20	2.5831-C2	5.149E-03	4.424E-02	7.522E-02
		50				2 (222 02	
			0	0.0	5.117E-03	3.639E-02	4.151E-02 4.829E-02
			5	4.956F-C3	5.117E-03	3.821E-02	5.262E-02
			3	6.16CE-C3	5.117E-C3	3.935E-02	5.872E-02
			12	1.27CE-02	5.117E-03	4.091E-02	6.354E-02
			15	1.63CE-C2	5.117E-03	4.212E-02	7.2COE-02
			20	2.268E-C2	5.117E-03	4.420E-02	7.200E-02
E2 (10)	2580.1021	50					
12 (10)	2.00.1021	30	٥	0.C	4.28EE-03	4.371E-02	4.800E-02
			5	6.446E-03	4.288E-03	4.450E-02	5.5242-02
			ě	1.0591-02	4.288E-03	4.500E-02	5.988E-02
			12	1.644E-02	4.288E-03	4.567E-02	6.640E-02
			15	2.107E-02	4.288E-03	4.619E-32	7.155E-U2
			20	2.524E-C2	4.288E-03	4.708E-02	8.060E-02
		70	20	2			
		,,	C .	0.0	4.265E-03	4.337E-02	4.764E-02
			5	5.583E-C3	4.269E-03	4.427E-02	5.412E-02
			8	9.183E-C3	4.265E-03	4.483E-02	.5.828E-02
			12	1.427E-C2	4.265E-03	4.559E-02	6.413E-02
			15	1. E3GE-C2	4.269E-U3	4.618E-02	6.875E-02
			2C	2.544E-02	4.269E-03	4.719E-02	7.6962-02
		50					
			0	G.C	4.251E-03	4.293E-02	4.718E-02
			5	4. E88E-C3	4.251E-03	4.394E-02	5.308E-02
			8	8.046E-03	4.251E-03	4.457E-02	5.687E-02
			12	1.252E-C2	4.251E-03	4.543E-02	6.220E-02
			15	1.607E-02	4.251E-03	4.609E-02	6.641E-02
			20	2.237E-C2	4.251E-03	4.723E-02	7.384E-02

OF ATROSPHERIC ASSOFFTION CONFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & WATER VAPOR PARTIAL PRESSURE

LF LINE	PREQUENCY (CM-1)	TEEF (F)	FFESS (TOBE)	E2C CCNINUDE	K2	LINE TOTAL	TOTAL
LINE	(01)	(1)	(1081)	CCATINUUL	CCMIINOUB	TOTAL	TOTAL
P3 (6)	2594.2005	50					
			0	0.0	3.270E-03	2.434E-03	5.704E-03
			5	6.363E-C3	3.27CE-03	4.665E-03	1.430E-02
			٤	1.045E-02	3.270E-03	6.046E-03	1.977E-02
			12	1.623E-02	3.27CE-03	7.936E-03	2.743E-62
			15	2.080E-02	3.270E-03	9.391E-03	3.346E-02
			2 0	2.8861-02	3.270E-03	1.188E-02	4.401E-02
		70	•		3 2455 02	2 (222 42	F 0007 03
			C	C.C	3.265E-03	2.623E-03	5.888E-03
			5 .	5.523E-C3	3.265E-03	5. 171E-03	1.396E-02
			8	9.6841-63	3.2652-03	6.749Z-03 8.910E-03	1.910E-02 2.629E-02
			12 15	1.412E-02	3.265E-03		3.195E-02
			20	1.811E-02 2.516E-02	3.265E-03 3.265E-03	1.057E-02 1.343E-J2	4.186E-02
		50	20	2.5102-02	3.2651-03	1.3431-02	4.1002-02
		30	0	0.0	3.261F-G3	2.8062-03	6.067Z-03
			5	4.845E-C3	3.261E-03	5.6982-03	1.380E-02
			8	7.577E-03	3.2612-03	7.490E-03	1.873E-02
			12	1.24 1E-C2	3.261E-03	9.944E-03	2.5622-02
			15	1.593E-02	3.261E-03	1. 183E-02	3.103E-02
			20	2.217F-C2	3.261E-03	1.507E-02	4.0512-02
22 (9)	2605.8081	50					
			0	0.0	2.769E-03	1.779E-03	4.548E-03
			5	6.418E-C3	2.769E-03	1.196E-02	2.114E-92 3.138E-92
			8	1.054E-02	2.769E-03	1.807E-02 2.621E-02	4.534E-02
			12	1.636E-02	2.7692-03	3. 232E-02	5.605E-02
			15	2.096E-02	2.769E-03 2.769E-03	4.250E-02	7.435E-02
			20	2.969E-02	2. 7632-03	4.2301 02	
		70	•	0.0	2.664E-03	1.7202-03	4.384E-03
			0 5	5.571E-03	2.664E-03	1.216E-92	2.039E-02
			8	9.160E-03	2.664E-03	1.842E-02	3.024E-02
			12	1.423E-02	2.664E-03	2.676E-02	4.366E-02
			15	1.825E-02	2.664E-03	3.303E-02	5.394E-02
			20	2.536Z-02	2.664E-03	4.345E-02	7.1495-02
		sc		2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			0	0.0	2.567E-03	1.679E-03	4.246E-03
			5	4.867E-03	2.567E-03	1.233E-02	1.9783-02
			8	8.042E-03	2.567E-03	1.872E-02	2.933E-02
			12	1.25 1E-02	2.567E-03	2.724E-02	4.232E-02
			15	1.606E-02	2.557E-03	3.3642-02	5.226E-02
			20	2.234E-C2	2.567E-03	4.429E-02	6.9205-02

IF ATECSIBLE ASSCRITION COEFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & WATER VAPOR PARTIAL PRESSURE

T.F	PEZQUENCY			H2C	N2	LINE	
LINE	(CH-1)	(F)	(HAOF)	CONTINCE	CCNIINUUM	TOTAL	TOTAL
P3 (5)	2617.3885	50					
(.,			C	C.C	2.139E-03	2.642E-04	2.4C3E-03
			5	6.656E-C3	2.139E-03	1.0261-03	9.861E-U3
			٤	1.100E-C2	2.139E-03	1.501E-03	1.464E-U2
			12	1.708E-02	2.139E-03	2.155E-03	2.137E-02
			15	2.189E-C2	2.139E-03	2.661E-03	2.669E-C2
			20	3. C37E-C2	2.139E-03	3.533E-03	3.604E-02
		70					
			0	0.C	2.139E-03	2.579E-04	2.397E-03
			5 ·	5.8C2E-C3	2.139E-03	1.084E-03	9.026E-03
			8	9.543E-03	2.139E-03	1.600E-03	1.328E-C2
			12	1.463E-C2	2.139E-03	2.312E-03	1.928E-02
			15	1.5C2E-02	2.139z-03	2.862E-33	2.4C2E-02
			20	2. £43E-C2	2.139E-C3	3.813E-03	3.239E-02
		50					
			0	0.0	2.139E-03	2.527E-04	2.392E-03
			5 .	5.081E-03	2.139E-03	1.145E-03	8.365E-03
			8 .	8.365E-03	2.135E-03	1.703E-03	1.221E-02
			12	1.3C2E-02	2.139E-03	2.473E-03	1.763E-02
			15	1.671E-C2	2.139E-03	3.070E-03	2.192E-02
			20	2.325E-02	2.139E-03	4.101E-03	2.9492-02
- 0 - 0 -	2004 2007	- 0					
F2 (8)	2631.0667	50		`	02	4 2272 42	7 0115-33
			0	0.0	1.674E-03	1.337Z-03	3.011E-03
			5	6.9571-03	1.674E-03	5.561E-03	1.423E-62 2.122E-02
	•		8	1.150F-C2	1.674E-03	8.047E-33	3.083E-02
			12	1.785E-C2	1.674E-03 1.674E-03	1. 131E-02 1. 372E-02	3.826E-02
			15 20	2.287E-02 3.174E-02	1.674E-03	1.767E-02	5.108E-02
		70	20	3.1741-02	1.0742-03	1.767E-02	J. 100E-02
		70	C	0.C	1.674E-03	1.328E-03	3.002E-03
			5	6.C5CE-C3	1.674E-03	6.264E-03	1.3992-02
			ē	9.5561-63	1.674E-03	9.170E-03	2.080E-02
			12	1.546I-02	1.674E-03	1.298E-02	3.012E-02
			15	1.983E-C2	1.674E-03	1.580E-02	3.7312-02
			20	2.7561-02	1.674E-03	2.042E-02	4.966E-02
		50	2.0	2.7502 02			
			0	0.0	1.674E-03	1.318E-03	2.992E-03
			0 5 8 12	5.287E-C3	1.674E-03	7.059E-03	1.402E-02
			3	8.704E-03	1.674E-03	1.044E-02	2.082E-02
			12	1.354E-C2	1.674E-03	1.488E-02	3.010E-02
			15	1.739E-C2	1.674E-03	1.816E-02	3.723E-02
			20	2.415E-C2	1.674E-03	2.355E-02	4.941E-G2

DE ATMOSPHEBIC DESCRIPTION CORFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & WATER VAROR PARTIAL PRESSURE

				1:20	N 2	TTNP	
LF	FFECUENCY			H2C	N 2	LINE	
LINE	(CH-1)	·(F)	(IORE)	CCVIIVUE	CCNIIKUUN	TOTAL	TOTAL
	2455 4464	50					
F2 (7)	2655.8€€6	50	_				6 3305-04
			0	0.C	0.0	6.339E-04	6.339E-04
			5	7. £17E-C3	0.0	2.519E-32	3.281E-02
			8	1.2525-62	0.0	4.036E-02	5.287E-02
			.12	1.543E-C2	0.0	6.107E-02	8.050E-02
			15	2.49CE-C2	0.0	7.697E-02	1.019E-01
			20	3.455E-C2	0.0	1.041E-01	1.387 =-01
		70					7
			0	0.0	0.0	7. GO 1E-04	7.C01E-04
			5 .	6.56CE-C3	0.0	2.585E-U2	3.241E-02
			8	1.075E-02	0.C	4.141E-02	5.220E-32
			12	1.677E-C2	0.0	6.267E-J2	7.944E-02
			15	2.151E-C2	U.C	7.9003-02	1.005E-01
			20	2.989E-C2	0.0	1.069E-01	1.368E-01
		50					
			0	C.0	0.0	7.6632-04	7.663E-04
			5	5.7121-C3	0.0	2.647E-02	3.218E-02
			9	9.404E-C3	0.0	4.2392-02	5.179E-02
			12	1.463E-C2	0.0	6.4162-02	7.879E-02
			15	1. 878E-C2	0.0	8.091E-02	9.959E-02
			20	2.614E-C2	0.0	1.096E-01	1.357E-01
	2665 2462	50					
F1 (10)	2665.2183	50				4 6725 62	4 0735-03
	^		0	0.0	0.0	1.673E-03	1.873E-03 1.470E-02
	*		5	7. E761-C3	0.0	6.819E-03 9.903E-03	2.284E-02
			8	1.294E-C2		1.415E-02	3.424E-02
			12	2.0CSE-C2	0.0	1.743E-02	4.318E-02
			15	2.574E-C2	0.0	2.310E-02	5.882E-02
			20	3.573E-C2	0.0	2.3102-02	J. 8621-02
		70	•	0.0	0.0	1.974E-03	1.9742-03
			ō		0.0	7.017Z-03	1.379E-02
			5	6.773E-C3	0.0	1.017E-02	2.131E-02
			8	1.114E-C2		1.451E-02	3.182E-02
			12	1.731E-C2	0.0	1.457E-02	4.007E-02
			15	2.221E-G2	0.0	2.367E-02	5.452E-02
			20	3.C86E-C2	0.0	2.3076-02	5.4521-02
		50	G	O.C	0.0	2.071E-03	2.071E-03
			5	5.89CE-C3	0.0	7.203E-03	1.309E-02
			8	9.696I-C3	0.0	1.0412-02	2.011E-02
			12	1.50 SE-02	0.0	1.484E-02	2.993E-02
			15	1.537E-C2	0.0	1.827E-02	3.764E-02
			20	2.6551-C2	0.0	2.421E-02	5.116E-02
			20	2.0.51 62			

IF AIMCSTHERIC AESCRITION CONFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & MATER VAPOR PARTIAL PRESSURE

LF	PREQUENCY			E 2C CCNIINUUE	12	LINE	2
LINE	(CH-1)	(F)	(10BB)	CCMIINUUE	CCNIINUUM	TOTAL	TOTAL
F2 (6)	2680.1731	50					
			. 0	0.0	0.0	2.9002-04	2.9001-04
			5	8.319F-C3	0.0	1.272E-02	2.1C4E-02
			8	1.3671-C2	0.0	2.047E-02	3.413E-C2
			12	2.122E-C2	0.0	3. 111z-C2	5.233E-02
			15	2.719E-C2	0.0	3.934E-02	6.653E-02
			20	3.773E-C2	0.0	5.350E-02	9.1232-02
		70					
			0 . 5 .	C.C 7.1371-03	0.C 0.C	3.058E-04	3.058E-04
			8	1.174E-C2	0.0	1.285E-02 2.067E-02	1.998E-02
			12	1. E24E-C2	0.0	3. 144E-02	3.241E-02 4.968E-02
			15	2.3401-C2	0.0	3.977E-02	6.317E-02
			20	3.252E-C2	0.0	5.412E-02	8.664E-02
		50				51 02	0.0012 02
			Ú	0.0	0.0	3.205E-04	3.205E-04
			5	6.192E-C3	0.0	1.297E-02	1.916E-02
			8	1.C19E-02	0.0	2.086E-02	3.106E-02
			12 .	1.586E-C2	0.0	3.175E-02	4.761E-02
			15	2.0361-02	0.0	4.018E-02	€.054E-02
			20	2. 834E-C2	0.0	5.473E-02	8.306E-02
P1 (9)	2691.6050	5C	0	0.0	0.0	7.928E-03	7.928E-03
			5	8.682E-C3	0.0	1.273E-02	2.141E-02
			8	1.427E-02	0.0	1.574E-02	3.001E-02
			12	2.214E-02	0.0	1.992E-02	4.2072-02
			15	2.838E-02	0.0	2.318E-02	5.155E-02
			20	3.938E-C2	0.0	2.882E-C2	6.82CE-02
		70				8.433E-03	8.433E-03
			0	0.0	0.0	1.3262-02	2.070E-02
			5	7.435E-03 1.223E-02	0.0	1.6332-02	2.853E-02
			8 12	1.900E-02	0.0	2.052E-02	3.953E-02
			15	2.437E-C2	0.0	2.381E-02	4.8182-02
			20	3.387E-02	0.0	2.951E-02	6.339E-02
		90					0.0465.03
			0	0.0	0.0	8.916E-33	8.916E-03 2.024E-02
			5	6.440E-03	0.0	1.380B-02	2.747E-02
			8	1.060E-02	0.0	1.687E-02 2.114E-02	3.764E-02
			12	1.650E-02	0.0	2.447E-02	4.565E-02
			15	2.118E-02	0.0	3.025E-02	5.972E-02
			20	2.947E-02	0.0	3.0232 32	

LE ALECSEHEBIC AESORFTICN (OFFFICIENTS (KM-1).
AS A FUNCTION OF TEMPERATURE & WATER VAFOR PARTIAL PRESSURE

LF	FEEQUENCY			ы2С	K2	LINE	mor 11
LINE	(CH-1)	(F)	(10kg)	CONTINUE	CCNIINUUM	LATOT	TOTAL
P2 (5)	2703,5583	50					
			۵	0.C	0.0	1.760E-06	1.76SE-06
			5	9.127E-C3	0.0	1.724E-03	1.0851-02
			8	1.50CE-C2	0.0	2.795E-03	1.7792-02
			12	2.328E-02	0.0	4.265E-03	2.754z-02
			15	2.583E-C2	0.0	5.399E-03	3.523 <u>z</u> -02
			. 20	4.14CE-C2	0.0	7.349E-03	4.875E-02
		70					
			0	0.0	0.0	1.801E-06	1.801z-06
			5	7.8C1E-C3	0.0	1.880E-03	9.681E-C3
			8	1.2E3E-C2	0.0	3.548E-C3	1.5881-02
			12	1.554E-C2	0.0	4.654E-03	2.459E-02
			15	2.55EI-C2	0.0	5.894E-03	3.147E-02
			26	3.554E-C2	0.0	8.028E-03	4.3571-02
		90					
			0	C.G	0.0	1.836E-06	1.8361-06
			5	6.745E-C3	0.0	2.064 E-U 3	8.809E-03
			8	1.110E-C2	0.0	3.349E-03	1.4451-02
			12	1.728E-C2	0.0	5.116E-03	2.239E-02
			15	2.2182-C2	0.0	6.482E-03	2.866E-02
			20	3.086E-C2	0.0	8.834E-03	3.970E-02
P1 (3)	2717.5427	50					
			0	0.0	0.0	2.097E-06	2.097E-06
			5	9.691E-03	0.0	3.6522-02	4.621E-02
	*		8	1.592E-02	0.0	5.9022-02	7.495E-02
			12	2.472E-02	0.0	8.9692-02	1.144E-01
			15	3.167E-02	0.0	1. 1325-01	1.449E-01
			20	4.396Z-C2	0.0	1.532E-01	1.9728-01
		70					
			0	0.0	0.0	2.110E-06	2.110E-06
			5	8.265E-03	0.0	3.952E-02	4.779E-02
			8	1.359E-02	0.0	6.391E-02	7.750E-02
			12	2.113E-02	0.0	9.7193-02	1.183E-01
			15	2.710E-02	0.0	1.227E-01	1.4982-01
			20	3.765E-02	0.0	1.663E-01	2.0403-01
		90					
			0	0.0	0.0	2.117E-06	2.1175-06
			5	7.132E-03	0.0	4.254E-02	4.967E-02
			8	1.174E-02	0.0		8.058E-02
			12	1. £27E-C2	0.0	1.048E-01	1.230E-01
			15	2.345E-02	0.0	1.324E-01	1.558E-01
			20	3.263E-02	0.0	1.7952-01	2.122E-01

LE ATECSPHERIC AESCRITION COEFFICIENTS (KM-1)
AS A FUNCTION OF TEMPERATURE & WATER VAPOR PARTIAL PRESSURE

C.F	FEEQUENCY	TIME	FFESS	H2C	N 2	LINE	
LINE	(CM-1)	(F)	(IORE)	CCNTINUUE	CCNTINUUM	TOTAL	TOTAL
22112							
F2 (4)	2727.3115	50					- ((1= 0)
			0	C.C	0.0	1.601E-04	1.601E-04 1.976E-02
			5	1.6101-02	0.0	9.6621-03	3.211E-02
			8	1.659E-C2	0.0	1.552E-02	4.925E-02
			12	2.5761-C2	0.0	2.3497-02	6.261E-02
			15	3.301E-C2	0.0	2.960E-02 4.002E-02	8.583E-02
			20	4.581E-C2	0.0	4.0022-02	B. 3631 02
		70			0 0	1.614E-04	1.614E-04
			0	0.0	0.0	1.037E-02	1.857E-02
•			5	8.6001-03	0.0	1.666E-02	3.061E-02
			. 8	1.414E-C2	0.0	2.5232-62	4.721E-02
			12	2.158E-02	0.0	3.179=-02	5.9981-02
			15	2.E19E-G2 3.S18E-G2	0.0	4.2962-02	8.2141-02
			20	3.5181-62	0.0	4.2701 02	0.2
		č C	•	G. 0	0.0	1.626E-04	1.626E-04
			C 5	7.4101-03	0.0	1. 113E-02	1.854E-02
			8	1.2201-02	0.0	1.788E-02	3.008E-02
			12	1.858F-C2	0.0	2.707E-02	4.605E-02
			15	2.4371-C2	0.0	3.410E-02	5.846E-02
			20	3.3912-02	0.0	4.637E-02	7.997E-02
			20	3.3312 02			
P1 (7)	2742.9875	50					
			0	0.0	C.0	2.059E-03	2.059E-03
			5	1.068E-02	0.0	3.939E-03	1.462E-02
			8	1.754E-02	0.0	5.068E-03	2.261F-G2
			12	2.723E-02	0.0	6.572E-03	3.380E-02
			15	3.489E-02	0.0	7.700E-03	4.259E-02
			20	4.841E-02	0.0	9.581E-03	5.799E-02
		70	C	0.0	0.0	1.888E-G3	1.888E-03
			5	9.072E-03	0.0	3.795E-C3	1.287E-02
			8	1.492E-02	0.0	4.939E-03	1.986E-02
			12	2.318E-02	0.0	6.464E-03	2.964E-02
			15	2.572E-C2	0.0	7.608E-03	3.733E-02
			20	4.130E-02	0.0	9.515E-03	5.081E-02
		90			•••	3.5.52 05	3400.2 02
			o	0.0	0.0	1.735E-03	1.735E-03
			5	7.799E-33	0.0	3.575E-03	1.137E-02
			8	1.284E-02	0.0	4.679E-03	1.7513-02
			12	1.957E-02	0.0	6.151E-03	2.612E-02
			15	2.563E-02	0.0	6.974E-03	3.260E-02
			20	3.566E-02	0.0	8.7212-03	4.438E-02

LF AIMCSFHERIC AESCFFTION COEFFICIENTS (KM-1)
AS A FUNCTION OF TEMPERATURE & WATER VAFOR PARTIAL PRESSURE

EF	PRECUENCY	TERE	FBESS	£2C	K 2	LINE	
LINE	(CH-1)	(F)	(TORE)	CONTINUE	CCETINUUM	TOTAL	TOTAL
F2 (3)	2750.0962	50					
			0	C.C	0.0	1.0612-03	1.061E-03
			5	1.106E-02	0.0	5.143E-G3	1.620E-02
			8	1. £ 17E-02	0.0	7.673E-03	2.584E-02
			12	2. £20E-02	0.0	1.115E-02	3.9355-02
			15	3.614E-C2	0.0	1.383E-02	4.997E-02
			2 C	5.C151-C2	0.0	1.843E-02	6.858E-02
		70					
			C	C.0	0.0	1.053E-03	1.u53E-03
			5	9.382E-C3	0.0	5.14JE-03	1.452E-02
			8 .	1.543E-C2	0.0	7.682E-03	2.311E-02
			12	2.39EE-C2	0.0	1.1172-02	3.515E-02
			15	3.076E-C2	0.0	1.387E-02	4.462E-02
			20	4.274E-C2	0.0	1.853Z-02	6.124E-02
		50					
			0	0.0	0.0	1.044E-03	1.044E-03
			5 8	8.0572-03	0.0	5.140E-03	1.320E-02
			8	1.326E-02	0.0	7.691E-03	2.095E-02
			12	2.CE4E-C2	0.0	1.120E-02	3.184E-02
			15	2.649E-C2	0.0	1.3912-62	4.040E-02
			26	3.667E-C2	0.0	1.857E-02	5.543E-02
P1 (6)	2767.5665	50					
			C .	0.0	0.0	5.089E-03	5.089E-03
			5	1.161E-C2	0.0	2.228E-02	3.410E-02
			ε	1.54 1E-C2	0.0	.3.299E-02	5.240E-02
			12	3.C13E-C2	0.0	4.771E-02	7.785E-02
			15	3. E6 1F-C2	0.0	5.909E-02	9.77CE-02
			. 20	5.3591-62	0.0	7.8682-02	1.323E-01
		70'					
			0	C.C	0.0	5.079E-03	5.0791-03
			5	9.995E-03	0.0	2.226E-02	3.226E-02
			8	1.644E-C2	0.0	3.298E-02	4.942E-02
			12	2.555E-C2	0.0	4.774E-02	7.328E-02
			15	3.277E-C2	0.0	5.915E-02	9.192E-02
			20	4.554E-G2	0.0	7.882E-02	1.244E-01
		5 C				E 0635 03	E 0635-03
			0	0.0	0.0	5.063E-03	5.063E-03
			5	8.561E-C3	0.0	2.224E-02	3.08CE-02
			8	1.409E-C2	0.0	3.297E-02	4.7C6E-02 6.968E-02
			12	2.153E-02	0.0	4.775E-02	8.735E-02
			15	2. £ 15E-C2	0.0	5.920Z-02 7.895E-02	1.181E-01
			20	3.517E-Ci	0.0	7.893E-02	1. 101E-01

DE AIMCOPHERIC RESOFFIION COEFFICIONIS (AM-1) AS A FUNCTION OF TEMPERATURE & WATER VAFOR PARTIAL PRESSURE

Li	FFEGUENCY	THEF	FFESS	hic	N2	LINE	
-1K-	(CH-1)	(F)		AUUATIACO	CCHTINUUM	TUTAL	TOTAL
212	(0 1)	,	,,,,,				
F 3 (8)	2546.3745	5 C					
			С	0.6	E.393E-03	2.3175-02	3.15cE-02
			5	7. (263-63	8.393E-03	2.3535-02	3.092E-02
			٤	1.1545-62	E.393E-03	2.3735-02	4.30+E-62
			12	1.752E-C2	E.393E-03	2.3995-02	5.03.1E-02
			15	2.256E-C2	6.393E-03	2.421E-02	5.550E-62
			26	3.1871-C2	6.3931-03	2.4582-02	6.485E-02
		70					
			0	0.6	8.2921-03	2.205=-02	3.3945-02
			5	6.0532-03	8.292E-03	2.334E-J2	3.738E-02
			ε	9.5551-63	E.292E-03	2.328E-J2	4.153E-12
			12	1.547E-C2	8.292E-03	2.362E-02	4.738I-62
			15	1.5E41-C2	6.292E-03	2.3682-22	5.2021-02
			20	2.75d1-L2	8.2921-63	2.4332-02	6.0201-02
		90					
			0	0.0	6.198E-U3	2.2125-02	3. U32E-C2
			5	5.272E-03	E.1981-03	2.253E-02	3.605E-02
			8	8.68CE-C3	E. 1982-03	2. 280 E-U 2	3.974E-02
			12	1.351E-C2	8.1982-03	2.326E-02	4.497E-UZ
			15	1.734E-C2	8.19EE-03	2.357E-J2	4.911E-02
			20	2.4133-02	E. 198E-03	2.4102-02	5.643E-J2
F2 (11)	2553.9539	50					
			С	6.C	7.1682-03	1.134E-32	1.821E-02
			5	6.E48E-03	7.1681-u3	1. 118 E-U 2	2.5201-02
			6	1.125E-C2	7.168E-03	1.1271-02	2.9695-32
			12	1.747E-02	7.1681-03	1. 14UE-02	3.603E-02
			15	2.2382-02	7.16EE-03	1.1493-02	4.104E-62
			20	3.106E-52	7.168E-03	1. 166E-62	4.9892-02
		70					
			0	U.C	7.093E-03	1.058E-J2	1.767E-62
			5	5.5L7E-C3	7.093E-03	1.U75E-J2	2.375E-02
			8	9.716E-C3	7.093E-03	1. 000 E-02	2.767E-02
			12	1.510E-02	7.0931-03	1. 100E-02	3.32c2-02
			15	1.937E-02	7.093E-03	1.1122-02	3.7581-02
			26	2.6912-02	7.6935-03	1.132E-C2	4.532E-U2
		S C					. 7161-63
			c	(.(7.C25E-C3	1.0152-02	1.7181-02
			5	5.151E-03	7.025E-03	1.036E-02	2.253E-U2 2.599E-U2
			8	8.481E-C3	7.625E-03	1.0482-02	3.088E-02
			12	1.320E-C2	7.025E-03	1.066E-02	3.476E-02
			15	1.6941-02	7.025E-03	1.1032-02	4.162E-U2
			2 C	2.357E-C2	7.6232-63	1. 1032-02	102E-02

LF AIMCSPEERIC AESOBPTION COEFFICIENTS (KM-1) AS A FUNCTION OF TEMPERATURE & WATER VAPOR PARTIAL PRESSURE

E F	PREQUENCY		FFESS	£2C	N 2	LINE	
LINE	(CH-1)	(F)	(TOEE)	CONTINUE	CCNIINUUM	TOTAL	TCTAL
P1 (3)	2839.7954	50					
			C	0.6	0.0	6.525E-04	6.525E-04
			0 5 8 12	1.450E-C2	0.0	9.6132-03	2.452E-02
			8	2.449E-C2	0.0	1.495E-02	3.944£-02
			12	3. EC 11-02	0.0	2.204E-62	6.006 E-02
			15	4. E71E-C2	0.0	2.733E-02	7.605E-U2
			20	6.76 1E-02	0.0	3.612E-02	1.037E-01
		70					
			o	0.0	0.0	8.363E-04	8.363E-04
			5 8 12	1.247E-C2	C.0	1.042E-02	2.289ī-J2
			8	2.C5CE-L2	0.0	1.614E-02	3.6641-02
			12	3.187E-C2	0.0	2.372E-02	5.55yE-02
			15	4. CE7E-C2	0.0	2.938E-U2	7.026E-02
			20	5.68CE-C2	0.0	3.879Z-02	9.559E-02
		50					
			0	O.G	0.0	1.050E-03	1.050E-03
			0 5 8	1.0571-02	0.0	1.130E-02	2.187E-02
				1.739E-02	0.0	1.741E-02	3.481E-02
			12	2.767E-02	0.0	2.552E-02	5.259i-02
	F		15	3.475E-C2	0.0	3.1582-02	6.632E-02
			20	4. £351-C2	0.0	4.163E-02	8.998E-02

APPENDIX B

ANALYTIC CURVE FITS TO
CALCULATED DF LASER ABSORPTION

