Конспект по теме «Типы распределений»

Случайная величина

Генеральная совокупность — это полный набор всех элементов, которые исследуют в рамках задачи.

Выборка — это отдельный набор элементов, отобранных из генеральной совокупности некоторым случайным процессом.

Случайная величина — это переменная, значение которой определяется случайными факторами и которая может принимать разные значения с определёнными вероятностями.

Вероятность события — это отношение числа случаев, когда событие произошло, к общему числу испытаний или наблюдений.

Функция вероятности определяет вероятность того, что случайная величина примет определённое значение. Обозначается как P(X=x).

Эмпирическая функция распределения определяет вероятность того, что случайная величина примет значение, меньшее или равное заданному. Считается как $\hat{F}(x) = P(X \leqslant x)$.

Формула	Вероятность	Описание
$\hat{F}(x)$	$P(X\leqslant x)$	Вероятность того, что случайная величина примет значение, меньшее или равное заданному.
$1-\hat{F}(x)$	P(X>x)	Вероятность того, что случайная величина примет значение больше заданного.
$\hat{F}(x_2) - \hat{F}(x_1)$	$P(x_1 < X \leqslant x_2)$	Вероятность того, что случайная величина примет значение в определённом диапазоне.

Равномерное распределение

Теоретические распределения — это математические модели, которые позволяют получить полное представление о данных.

Функция вероятности определяет вероятность того, что случайная величина примет определённое значение. Обозначается как P(X=x).

Функция распределения определяет вероятность того, что случайная величина примет значение меньше или равное заданному. Обозначается как $F(x) = P(X \leqslant x)$.

Математическое ожидание — это взвешенное среднее значение случайной величины, где веса представляют собой вероятности возможных значений этой случайной величины. Оно считается как $\mathrm{E}(X) = \sum_i x_i \cdot P(X=x_i)$.

Дисперсия случайной величины — это математическое ожидание квадрата отклонения случайной величины от её математического ожидания. Её формула выглядит так: ${
m Var}(X)={
m E}[(X-{
m E}(X))^2].$

Равномерное дискретное распределение — это тип вероятностного распределения, в котором каждое возможное значение случайной величины X имеет одинаковую вероятность и лежит в пределах от a до b, где a и b являются параметрами распределения, определяющими минимальное и максимальное возможные значения. Короткое обозначение: $X \sim \mathrm{U}(a,b)$.

Говорят, что дискретная случайная величина имеет равномерное распределение с параметрами a,b, если для каждого целого значения в интервале $a\leqslant x\leqslant b$, она описывается функцией вероятности: $P(X=x)=\frac{1}{n}$.

Функция распределения F(x) для всех целых значений из интервала $a\leqslant x\leqslant b$ в случае равномерного распределения будет иметь вид: $F(x)=\frac{x-a+1}{n}.$

Математическое ожидание случайной величины, имеющей равномерное распределение: $\mathrm{E}(X) = \frac{a+b}{2}.$

Дисперсия случайной величины, имеющей равномерное распределение:

$$\mathrm{Var}(X) = \frac{n^2-1}{12}.$$

Нормальное распределение

Дискретная случайная величина — это тип случайной величины, которая может принимать только определённые значения (обычно целые числа), например количество людей в очереди.

Непрерывная случайная величина — это тип случайной величины, которая может принимать любое значение внутри определённого интервала, например вес яйца.

Функция плотности вероятности — это функция, которая описывает вероятность того, что непрерывная случайная величина примет значение в определённом интервале. Она обозначается как $f_X(x)$.

Свойства функции плотности вероятности:

- Если взять всю площадь под графиком функции плотности вероятности, то получится 1.
- Значения функции плотности вероятности всегда больше или равны нулю.

Нормальное распределение — это тип теоретического распределения, в котором значения в основном сосредоточены вокруг среднего. Это распределение имеет форму колокола и описывается двумя параметрами: средним значением μ и дисперсией σ^2 .

Стандартное нормальное распределение — частный случай нормального распределения, когда $\mu=0,\,\sigma=1.$