Data Visualization and Pre-processing ASSIGNMENT 2

DATE	26 SEPTEMBER 2022.
TEAM ID	PNT2022TMID38677
PROJECT NAME	Fertilizers Recommendation System for Disease Prediction.
NAME	K.Saraswathi

1.Download the dataset

2.Load the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plot
import seaborn as ans
data-pd.read_csv('Churn_Modelling.csv')
```

3. perform below visualization

- Univarient
- Bi-varient
- Multi-varient

4.Perform the descriptive statistics on the datase

5. Handle the missing values

6. Find the outliers and replace the outliers

7. Check the categorical columns and perform encoding

8. Split the dataset into ipdendent and dependent variables.

```
    x = deta.iloc[1,010]
    y = deta.iloc[1,10]

print(x.shepe)
print(y.shepe)

(7667, 10)
```

9. Scale the independent variable

10. Split the data into training and testing.

```
from sklearn.model_malection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,test_mire=0.25,readom_malection)
print(*x_train.shape: ',x_train.shape)
print(*x_train.shape: ',x_train.shape)
print(*y_train.shape: ',x_test.shape)
print(*y_test.shape: ',x_test.shape)

x_train.shape: (9780, 2990)
y_train.shape: (9807, 2990)
y_train.shape: (1907, 2990)
y_test.shape: (1907, 2990)
y_test.shape: (1907, 2990)
```