It is important that you be able to identify the different graphs you have met so far by their equations. Study the review table below and then attempt the following exercise.

Graphs

- From the list of equations given on the right, choose those that represent:
 - a a straight line
 - b a circle
 - c a parabola
 - d a hyperbola
 - e an exponential curve
 - f a cubic curve

A $x^2 + y^2 = 16$	B. $y = 6 - x - x^2$
$C y = 3x^3$	$D^{-}y = 2^{-x}$
E $y = x^2 - 2$	$F \cdot xy = -4$
G $y = 3^x$	$H \cdot x^2 + y^2 = 1$
$1 y = \frac{5}{x}$	$\int 2x + 4y = 3$
K y = 3	L $y = \frac{1}{3} x^3 - 1$

Sketch the graphs of the following equations, showing where each one cuts the coordinate axes. x = 2x - 1 x = 6 x + 3y = 6

-	$a \ y = 2x - 1$	b y = 6 - x	c	x + 3y = 6
	d x = -1	e $y = 3$	f	x = 5
	$y = x^2 + 2$	h $y = x^2 - 4$	i	$y = (x - 1)^2$
	y = (x+1)(x-3)	$k y = x^2 + 4x - 5$	1	$y = x^2 + 4x$
	$m y = 1 - x^2$	$y = -(x+1)^2$	0	y = 5 - 4x -
	$p x^2 + y^2 = 4$	$q x^2 + y^2 = 100$	r	$x^2 + y^2 = 2$
	$s = \frac{3}{2}$	t xv = 4		$y = -\frac{3}{2}$

- 3 Match each graph with its equation from the given list.

