Name: Rachel Collier

Total score: 100

Class PARTICIPATION on Lecture 6.doc ANSWER SHEET (Out of 100 points. Please record your own total score!) (Attach as score.doc!)

1. (20 points) Draw and Calculate the reflection vector \mathbf{r} when $\mathbf{l} = (-1,1)$ and $\mathbf{n} = (0,1)$

$$r = 2 (1 \bullet n) n - 1$$

ANSWER:

$$r = 2 (-1,1) * (0,1) - (-1,1) = 2 1 (0,1) - (-1,1) = (0,2) - (-1,1) = (1,1)$$

 $r = (1,1)$

2. (20 points) Write the normal **n** to a plane defined by 3 points **P1**, **P2**, **P3** (same as normal **n** to a plane defined by two vectors **a** and **b**)

ANSWER:

$$n = (p2=p1) \times (p3-p1)$$

3. (20 points) Express the normal n to a triangle both as a dot product \bullet and as cross product X.

ANSWER:

$$n * (p-p0) = 0$$

 $n = (p2-p0) \times (p1-p0)$

4. (20 points) Normalize n to n

ANSWER: n^ <- n/ |n|

5. (20 points) Create Lecture6 Empty Project:

Download SphereShading.c from CANVAS.

Build and run the project.

(Take print screen and insert here)

Please rename document to score.doc (example 100.doc) Warning: if your score is not honest you will get a zero.

