A First Study in Causal Formal Concept Analysis

Zachary Assoumani

Mardi 27 septembre 2022

Réalisé par : Zachary Assoumani

Cadre du stage

Encadrante Mines: Fabienne Buffet-Thomarat

Encadrants I ORIA · Alexandre BAZIN Miguel Couceiro Amedeo Napoli Cadre du stage

Stage de recherche

- 1^{er} mars au 31 août
- Campus des Aiguillettes
- 29 équipes

Stage de recherche

Équipe Orpailleur

« Découverte et représentation de connaissances »

Base de données

Motifs et représentations

Un générateur de données synthétiques pour la causalité

Présentation du sujet : Une étude de la causalité en analyse formelle de concepts

Inférence causale

Que signifie « X cause Y »?

Un générateur de données synthétiques pour la causalité

Notions

- **Relation causale entre** X et Y: le comportement de X affecte celui de Y
- Inférence causale : étude des relations causales

(ex : réservoir vidé \rightarrow arrêt de la voiture)

Sujet : Inférence causale

Caractéristiques

Une relation de causalité vérifie :

1 une variation conjointe entre cause et effet } corrélation : $P(A \cap B) \neq P(A) \cdot P(B)$

Un générateur de données synthétiques pour la causalité

- la cause qui **précède** l'effet
- 3 l'élimination d'autres causes plausibles.

(Shaughnessy, Zechmeister & Zechmeister in "Research Methods in Psychology") (2000)

Inférence causale

Cadre du stage

Un exemple

exercice holestérol

Un exemple

Diagramme causal

Cadre du stage

Représenter les relations causales

Figure – Exemple de diagramme causal

Conclusions

Définition

Graphe acylique et orienté

Construire le diagramme causal

- Mettre en place la structure du graphe
- Trouver l'orientation des arêtes : $x \rightarrow y$ ou $y \rightarrow x$?

Approches:

- probabiliste : maximum de vraisemblance
- \blacksquare algorithmiques : Y = f(X) + N
- analyse formelle de concepts

Analyse de concepts formels (FCA)

Contexte formel

Cadre du stage

Planets		Size		Distanc	Moon(s)		
	small	medium	large	near	far	yes	no
Jupiter			×		×	×	
Mars	×			×		×	
Mercury	×			×			×
Neptune		×			×	×	
Pluto	×				×	×	
Saturn			×		×	×	
Earth	×			×		×	
Uranus		×			×	×	
Venus	×			×			×

Treillis de concepts

- Règles d'association : "small \longrightarrow near" (confiance 4/5).
- Implications: "no \Longrightarrow near" and "near \Longrightarrow small" (confiance 1).

Les concepts du treillis sont les rectangles maximaux du contexte.

Problématique initiale

Cadre du stage

Analyse formelle de concepts	Inférence causale
Implication	Causalité
Attributs	Variables

⇒ S'inspirer de la FCA pour l'analyse causale

Source : Bazin, Couceiro, Devignes, Napoli in "Steps Towards Causal Formal Concept Analysis" (International Journal of Approximate Reasoning, 2022)

Travail bibliographique

Cadre du stage

Dans un premier temps

- Bibliographie, ouvrages clés sur la causalité ou sur FCA
- Familiarisation avec *l'état de l'art*
- Discussions avec les encadrants
- Intégration dans le projet MIRRORS

Cadre du stage

Collaboration entre le LORIA et l'INRAE :

- Données agronomiques sur des plantations de colza
- 174 plantations de 2011 à 2020
- Trouver des relations de causalité entre température et rendement

Avec Lethicia Magno, doctorante à l'INRAE, et son encadrante Sophie Brunel-Muguet.

Pré-traitement

Tri des données

174 rows (objects)

17 columns (attributes) = 2 qualitatives + 10 climatic + 5 plant performances

indiv	ref	local	genotype	Ptot_25	Ptot_30	P300_25	P300_30	P600_25	P600_30	P1000_25	
	1 LR11	LR	Aviso	6	2	0	() 1)	1
	2 LR11	LR	Aviso	6	- 2	0) 1			2
	3 LR11	LR	Aviso	6	2	0) 1)	2
	4 LR11	LR	Montego	6		0		1)	2
	5 LR11	LR	Montego	6	2	0) 1)	2
	6 LR11	LR	Montego	6	2	0) 1)	2
	7 MD11	MD	Aviso	17	1	. 4) ()	11
	8 MD11	MD	Aviso	17	1	4) ()	11
	9 MD11	MD	Aviso	17	- 1	4) ()	11
	10 MD11	MD	Aviso	17		4) ()	11
	11 MD11	MD	Aviso	17	1	4) ()	11
	12 MD11	MD	Aviso	17	1	. 4) ()	11
	13 MD11	MD	Montego	17	1	. 4) ()	9
	14 MD11	MD	Montego	17	1	4) (9
	15 MD11	MD	Montego	17	1	- 4) ()	9
	16 MD11	MD	Montego	17	1	4) ()	9
	17 MD11	MD	Montego	17	1	. 4) ()	9
	18 MD11	MD	Montego	17	1	4) ()	9
	19 LR12	LR	Aviso	4		0		1)	2
	20 LR12	LR	Aviso	4		0) 1)	2
	21 LR12	LR	Aviso	4		0		1)	2
	22 LR12	LR	Aviso	4		0) 1)	2
	23 LR12	LR	Aviso	4		0) 1)	2
	24 LR12	LR	Avisu	4) 1)	2
	25 LR12	LR	Aviso	4		0) 1)	2

Objectif

Cadre du stage

Deux types d'indicateurs

- climat : $P_{t,a}$ = nombre de périodes avant t au-dessus de la température a
- plante : nombre de grains, teneur en protéines, lipides. . .

Projet MIRRORS

Extraire des règles de causalité $X \rightarrow Y$ avec X ensemble d'indicateurs climat et Y ensemble d'indicateurs plante

```
exemple: \{P_{300,25}, P_{1000,30}\} \rightarrow \{nb \text{ grains, lipides}\}
```

Ma démarche

Cadre du stage

Protocole

- Rechercher des règles d'association ou des implications "candidates"
- 2 Sélectionner les règles ou les implications cohérentes
- 3 Vérifier la direction de causalité

Pour cela, on utilise trois approches :

- recherche d'implications par FCA
- recherche de règles d'association
- recherche de biclusters

FCA

Cadre du stage

Implications

a
ightarrow b valide \Leftrightarrow tous les objets ayant les attributs a possèdent les attributs b

Dériver des implications

$$\left. egin{array}{c} \mathsf{a}
ightarrow b \ \mathsf{b}
ightarrow c \end{array}
ight.
ight. \left. \mathsf{a}
ightarrow c
ight.$$

Projet Mirrors

FCA et règles d'association

Planets		Size		Distanc	Moon(s)		
	small	medium	large	near	far	yes	no
Jupiter			×		×	×	
Mars	×			×		×	ı
Mercury	×			×			×
Neptune		×			×	×	
Pluto	×				×	×	ı
Saturn			×		×	×	ı
Earth	×			×		×	ı
Uranus	105050	×		-	×	×	ı
Venus	×			×			×

- Sur les 5 planètes lointaines, 2 sont de taille movenne \rightarrow confiance = 2/5
- Sur les 5 planètes sans lune, toutes sont proches du Soleil confiance = 1

Objectif

Cadre du stage

Rechercher les règles avec les plus hauts degrés de confiance

Règles d'association

Cadre du stage

Pré-traitement : scaling des données vers le binaire

- Catégoriel : {variété} ~~ {variété 1, variété 2, variété 3...}
- Numérique : {lipides} → {lipides bas, lipides haut}

	Climat	Variété	$P_{tot,25}$
Plante 1	océanique	Aviso	4
Plante 2	méditerannéen	Montego	16

	océanique	méditerranéen	Montego	Aviso	P _{tot,25} bas	P _{tot,25} haut
Plante 1	×			×	×	
Plante 2		X	X			X

Règles d'association

Extraction

Cadre du stage

■ Seuil de confiance minimum : réglé à 50%

Outil utilisé : CORON

(http://coron.loria.fr/)

```
\coron-0.8>sh core02_assrulexMODIF.sh rapsodynCoron_v1.rcf 50% 50% -alg:close -rule:closed

module fichier d'entrée seuil de de minage support confiance -rule:closed type de règles extraites
```

Conclusions

FCA et biclustering

Cadre du stage

Lien avec FCA

Biclustering :

méthode de data mining **généralisant la FCA**, en recherchant des rectangles maximaux dans des données tabulaires où *toutes les valeurs ne sont pas nécessairement égales*.

Biclustering

Définition

Sous-matrices cohérentes

- à valeurs constantes (a)
- à lignes ou colonnes identiques (b)
- à cohérence additive (c)

2	2	2	2	2
2	2	2	2	2
2	2	2	2	2
2	2	2	2	2
2	2	2	2	2

1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5

9 6 6

(a)

Biclustering

4. UN VOTES IN 1969-1970*

	EASE		HUNG		CHINA			KOREA			SO	AF
State	1	2	3	4	5	6	7	В	9	10	11	12
USR	1	1	1	1	3	1	2	3	1	3	[2	2
BGA	1	i	1	1	3	1	1	3	1	3	2	_ 2
YUG	1	3	3	3	3	1	1	3	1	2	3	1
SYR	1	2	2	2	3	1	1	3	1	2	3	1
UAR	1	3	3	3	3	1	1	3	2	2	3	1
KEN	1	3	3	3	3	1	1	3	2	5	3	1
TAN	1	2	2	2	3	1	1	3	5	5	3	1
SEN	1	3	3	3	1	2	2	2	2	1	3	1
HAC	1	3	3	3	1	3	1	3	5	1	3	1
USA	1	3	3	3	1	3	3	1	3	1	1	3
UNK	1	3	3	3	1	1	3	2	3	1	1	3

[J. A. Hartigan in "Direct Clustering of a Data Matrix" (Journal of the American Statistical Association. 1971)]

Exemple : votes au conseil de l'ONU

- Colonnes : mesures proposées
- Lignes : pays votants
- Valeur: vote (1=pour, 2=abstention, 3=contre, 5=absent)
- ⇒ Long rectangle en colonnes 11 et 12 : les votes sur ces mesures sont souvent identiques

Cadre du stage

Logiciel BICPAMS

Résultats : les lignes et colonnes décrivant chaque bicluster.

On obtient des ensembles d'attributs, (ex : [climate, P300 25, P1000 30, PMG]).

(Henriques, Ferreira, Madeira in "BicPAMS: software for biological data analysis with pattern-based biclustering" (BMC

Cadre du stage

Résultats partiels

- 70 implications inférées par FCA
- 1 022 263 règles d'association (beaucoup de redondance)
- 755 règles inférées par biclustering additif
- 48 règles inférées par biclustering à colonnes constantes

Projet Mirrors

De la forme suivante : $\{x_1,\ldots,x_n\} \rightarrow \{y_1,\ldots,y_m\}$

Cadre du stage

Règles cohérentes

$$\begin{array}{c} \text{climat} \leftarrow \text{plante} \\ \text{climat} \rightarrow \text{plante} \end{array}$$

⇒ Retirer les règles ayant un attribut plante en cause

Projet Mirrors

- ⇒ Retirer les attributs climat de l'effet
- ex : $\{climate, P_{300,25}\} \rightarrow \{lipides, nb \ graines\}$ est valide, mais {climate, $P_{300.25}$, nb graines} \rightarrow {lipides} ne l'est pas.

Tri des règles

Cadre du stage

Vérification de la direction

Algorithmes d'inférence de direction :

- Prend en entrée deux ensembles X et Y
- Infère le sens : $X \rightarrow Y$ ou $Y \rightarrow X$?

[Vreeken in "Causal Inference by Direction of Information" (SIAM International Conference on Data Mining, 2015)]

⇒ Ne garder que les règles dont le sens est correctement inféré.

Tri des règles

Cadre du stage

Résultats finaux

- 2 implications inférées par FCA
- 105 règles d'association
- 86 règles inférées par biclustering additif
- 1 règle inférée par biclustering à colonnes constantes

Projet Mirrors

⇒ Lesquelles sont communes à plusieurs approches?

Règles communes à plusieurs approches

■ "P300 25, P1000 30 -> nb graines" (bicluster de taille 25)

Projet MIRRORS

■ "P300 25, P1000 30, harvest 25 -> poids 1000 grains" (bicluster de taille 24)

sont inférés par biclustering additif et à colonnes constantes.

- **"P300 25, P600 25 -> recolte grains"** (de support 53, et de confiance 67.09%)
- "Ptot 20-25, P1000 >20, P1000 >30 -> nb grains" (de support 51, et de confiance 64.56%)

sont inférés par biclustering additif et par règle d'association.

Bilan collaboratif

Du côté de Lethicia

- apport des données de terrain
- explications du contexte
- choix des indicateurs

De mon côté

- protocole de sélection des règles
- pré-traitement et post-traitement
- mise en place de l'architecture

Cadre du stage

Un générateur de données synthétiques pour la causalité

•0000

Cadre du stage

Générateur de causalité : motivation

Deux types de données d'expérimentation

- Données de terrain (base de données médicales, sociologiques...)
- Données synthétiques (créées artificiellement)

Modèle ANM (Additive Noise Model) :

$$Y = f(X) + N$$

(Hoyer et al. in "Nonlinear causal discovery with additive noise models" (2008))

Générateur de causalité : présentation

A partir du graphe...

Cadre du stage

 $x_{n,3}$ Couche 1 Couche 2 Couche N

...on génère une matrice numérique.

- Couche 1 : $x_{1,1}$ et $x_{1,2}$ initialisés
- Couche 2: $x_{2,1} = f(x_{1,1}, x_{1,2}) + n_{2,1}$ $x_{2,3} = f(x_{1,2}) + n_{2,3}$

00000

Les attributs de la couche n sont fonction de la couche n-1

Protocole d'évaluation

(*Mian et al. in "Discovering Fully Oriented Causal Networks" (2021))

⇒ Parmi les arêtes du graphe initial, quelle proportion est retrouvée dans le graphe final?

Générateur de causalité : évaluation

Résultats

Cadre du stage

⇒ Plus il y a d'objets observés, plus la matrice générée est adéquate.

Possibles améliorations :

00000

- Y = f(X) + N avec différents polvnômes
- Combiner plusieurs valeurs
- Probabilité d'apparition d'une arête

Conclusions

Missions accomplies

- Collaboration dans un projet avec l'INRAE
 - Partage de résultats
 - Travail sur un générateur de données

Mise en perspective

- Travail interdisciplinaire
 - Sujet évolutif
- Échanges avec des chercheurs & doctorants