UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

CONCURSUL PENTRU ADMITEREA ÎN CICLUL LICENȚĂ, IULIE 2014

DISCIPLINA: Fizică F

VARIANTA: **D**

- 1. Dacă legea de mișcare a unui corp cu masa de 5 kg este $x(t) = 3 3t + 0.2t^2$, atunci forța care acționează asupra corpului are valoarea: (5 pct.)
 - a) 5 N; b) 2,5 N; c) 3 N; d) 1 N; e) 2 N; f) 0,5 N.

Rezolvare. Comparând ecuația de mișcare dată cu $x(t) = x_0 + v_{0x}t + (1/2)a_xt^2$, obținem $a_x = 0.4 \,\mathrm{m/s^2}$. Proiecția vectorului forță pe axa Ox este $F_x = ma_x$, în care $m = 5 \,\mathrm{kg}$. $F_x = 5 \,\mathrm{kg} \cdot 0.4 \,\mathrm{m/s^2} = 2 \,\mathrm{N}$.

- 2. Într-o transformare izobară variația energiei interne a unui gaz ideal $(C_V = (3/2)R)$ este 30 kJ. Lucrul mecanic efectuat de gaz în această transformare este: (5 pct.)
 - a) 40 kJ; b) 20 J; c) 15 J; d) 1 kJ; e) 100 J; f) 20 kJ.

Rezolvare. Folosim notațiile uzuale. Variația energiei interne a gazului este $\Delta U = \nu C_V \Delta T$. Lucrul mecanic în transformarea izobară este $L = p\Delta V = \nu R\Delta T$, la al doilea pas fiind folosită ecuația termică de stare. Rezultă $L/\Delta U = R/C_V$, de unde $L = (R/C_V)\Delta U = (2/3)30\,\mathrm{kJ} = 20\,\mathrm{kJ}$.

- 3. Un corp pleacă din repaus și urcă fără frecare pe un plan înclinat cu unghiul de 30° față de orizontală, împins de o forță paralelă cu planul, egală în modul cu greutatea corpului. După un timp τ acțiunea forței încetează. Știind că distanța totală parcursă de corp la urcare este de 28,8 m și considerând $g=10\,\mathrm{m/s}^2$, timpul τ are valoarea: (5 pct.)
 - a) $2\sqrt{3}$ s; b) 5,76 s; c) $2\sqrt{2}$ s; d) 2 s; e) 2,4 s; f) 1,86 s.

Rezolvare. Notații: $\alpha=30^\circ;\ d=28,8\,\mathrm{m};\ m$ - masa corpului; \vec{F} - forța de tracțiune; \vec{N} - forța de reacțiune normală.

În cazul acțiunii forței de tracțiune, ecuația lui Newton se scrie

$$\vec{F} + m\vec{g} + \vec{N} = m\vec{a}_1,$$

în care \vec{a}_1 este accelerația acestei mișcări. Proiectăm această ecuație după o axă în lungul planului orientată în sus:

$$mg - mg\sin\alpha = ma_1$$
,

de unde proiecția accelerației este $a_1 = g(1 - \sin \alpha)$. Distanța parcursă în intervalul de timp τ este

$$d_1 = \frac{1}{2}a_1\tau^2 = \frac{1}{2}g\tau^2(1 - \sin\alpha).$$

Viteza corpului după intervalul de timp τ este

$$v_1 = a_1 \tau = q \tau (1 - \sin \alpha).$$

Când acțiunea forței \vec{F} încetează, ecuația lui Newton se scrie

$$m\vec{g} + \vec{N} = m\vec{a}_2$$

și proiecția accelerației după axa în lungul planului orientată în sus este $a_2 = -g \sin \alpha$. Distanța d_2 parcursă de corp în mișcarea încetinită până la oprire se determină cu ajutorul ecuației lui Galilei:

$$d_2 = -\frac{v_1^2}{2a_2} = \frac{1}{2} \frac{(1 - \sin \alpha)^2}{\sin \alpha} g\tau^2.$$

Distanța totală parcursă de corp la urcare este

$$d = d_1 + d_2 = \frac{1}{2} \frac{1 - \sin \alpha}{\sin \alpha} g \tau^2,$$

de unde

$$\tau = \sqrt{\frac{2\sin\alpha}{1 - \sin\alpha} \frac{d}{g}} = 2.4 \,\mathrm{s}.$$

4. În cursul unui proces în care volumul variază invers proporțional cu pătratul presiunii, presiunea unui gaz ideal crește de două ori. În acest proces temperatura gazului: (5 pct.)

a) crește de $\sqrt{2}$ ori; b) rămâne constantă; c) crește de 2 ori; d) scade de 2 ori; e) scade de 4 ori; f) crește de 4 ori.

Rezolvare. Folosim indicele 1 pentru starea inițială și indicele 2 pentru starea finală. Temperatura inițială a gazului este

$$T_1 = \frac{p_1 V_1}{\nu R}.$$

În procesul considerat avem $p_2 = 2p_1$ și $V_2 = (1/2^2)V_1 = (1/4)V_1$.

$$T_2 = \frac{p_2 V_2}{\nu R} = \frac{1}{2} \frac{p_1 V_1}{\nu R} = \frac{1}{2} T_1.$$

5. Un recipient conține un gaz ideal la temperatura de 29 °C. Dacă presiunea gazului crește izocor de două ori, temperatura finală a gazului este: (5 pct.)

a) 151 K; b) 14,5 °C; c) 58 °C; d) 604 K; e) 400 K; f) 0 °C.

Rezolvare. Temperatura termodinamică inițială a gazului este $T_1 = (273 + 29) \,\mathrm{K} = 302 \,\mathrm{K}$. Într-o transformare izocoră, temperatura unui gaz ideal variază direct proporțional cu presiunea. Pentru o dublare a presiunii, temperatura se dublează: $T_2 = 2T_1 = 604 \,\mathrm{K}$.

6. Relația dintre unghiul de frecare φ și coeficientul de frecare μ este: (5 pct.)

a)
$$\mu = \cos \varphi$$
; b) $\mu = \operatorname{tg}^2 \varphi$; c) $\mu = \sin \varphi$; d) $\mu = \operatorname{tg}(\varphi/2)$; e) $\mu = 1/\operatorname{tg} \varphi$; f) $\mu = \operatorname{tg} \varphi$.

Rezolvare. $\mu = tg\varphi$.

7. În cazul transferului maxim de putere într-un circuit simplu, randamentul transmisiei puterii este: (5 pct.)

a) 50 %; b) 25 %; c) 75 %; d) 100 %; e) 10 %; f) 90 %.

Rezolvare. Cu notațiile din manualele de fizică, randamentul este

$$\eta = \frac{R}{R+r}.$$

Transferul maxim de putere are loc pentru R=r. Rezultă $\eta=0.5=50\,\%$.

- 8. Două rezistoare cu rezistențele $R_1 = 8\Omega$ și $R_2 = 2\Omega$ se leagă succesiv la bornele unei baterii. Știind că puterile dezvoltate în cele două rezistoare sunt egale, rezistența internă a bateriei este: (5 pct.)
 - a) 1Ω ; b) 2Ω ; c) 0.1Ω ; d) 20Ω ; e) 100Ω ; f) 4Ω .

Rezolvare. Cu notațiile din manualele de fizică, puterea dezvoltată în rezistorul R este

$$P = I^{2}R = \left(\frac{E}{R+r}\right)^{2}R = \frac{E^{2}R}{(R+r)^{2}}.$$

Impunând condiția ca aceeași putere să fie dezvoltată în rezistoarele R_1 și R_2 ,

$$\frac{E^2 R_1}{(R_1 + r)^2} = \frac{E^2 R_2}{(R_2 + r)^2},$$

obţinem $r = \sqrt{R_1 R_2} = 4 \Omega$.

- 9. Printr-un conductor străbătut de un curent electric cu intensitatea de 0,32 A trec întrun minut un număr de electroni egal cu $(e = 1,6 \cdot 10^{-19} \,\mathrm{C})$: (5 pct.)
 - a) $3 \cdot 10^{20}$; b) $1 \cdot 10^{8}$; c) $4 \cdot 10^{19}$; d) $5 \cdot 10^{20}$; e) $1, 2 \cdot 10^{20}$; f) $1, 2 \cdot 10^{25}$.

Rezolvare. La trecerea curentului $I=0.32\,\mathrm{A}$ în intervalul de timp $\Delta t=1\,\mathrm{min}=60\,\mathrm{s},$ numărul de electroni care trec printr-o secțiune a conductorului este

$$\frac{I\Delta t}{e} = 1.2 \cdot 10^{20}.$$

- 10. Două rezistoare identice având fiecare rezistența de $12\,\Omega$, sunt montate întâi în serie, apoi în paralel. Grupările se conectează succesiv la bornele unei baterii de rezistență internă neglijabilă având t.e.m. de $12\,\mathrm{V}$. Raportul intensităților curenților în cele două cazuri este: (5 pct.)
 - a) 4,25 A; b) 0,50; c) 4,25; d) 0,75; e) 0,25; f) 0,8.

Rezolvare. Notăm E - t.e.m. a bateriei și R - rezistența unui rezistor. În cazul montajului serie al rezisoarelor, curentul în circuit este

$$I_{\rm s} = \frac{E}{2R}.$$

Când rezistoarele sunt grupate în paralel, curentul prin latura principală este

$$I_{\rm p} = \frac{E}{R/2}.$$

Rezultă $I_{\rm s}/I_{\rm p}=0.25$.

11. Se realizează circuitul din figură format dintr-un cerc de rază 1 m și două diametre perpendiculare, alimentat de patru generatoare identice, fiecare cu t.e.m. de 1 V și rezistența internă neglijabilă. Firele de legătură au rezistența pe unitatea de lungime $0.1\,\Omega/\mathrm{m}$. În punctele $A,\,B,\,C,\,D,\,O$ există contacte electrice. Intensitatea curentului I_{DO} este: (5 pct.)

a)
$$\frac{40}{4+\pi}$$
 A; b) $\frac{40}{\pi}$ A; c) 10π A; d) $\frac{\pi+2}{\pi+4}$ A; e) $\frac{40}{2+\pi}$ A; f) $\frac{20}{2+\pi}$ A.

Rezolvare. Notăm R rezistența electrică a unui fir conductor de lungime egală cu raza cercului.

$$R = 0.1 \frac{\Omega}{\mathrm{m}} \cdot 1 \,\mathrm{m} = 0.1 \,\Omega.$$

Să observăm că circuitul electric este simetric în raport cu diametrul CD. În baza acestei proprietăți, prin laturile OA și OB trec curenți egali, ambii intrând în O sau ambii ieșind din O. Conform primei teoreme a lui Kirchhoff aplicată nodului O, prin latura OC trece un curent egal cu I_{DO} , de la O la C. În C, din motive de simetrie, acest curent se desparte în părți egale, $I_{DO}/2$ care circulă de la C la A, respectiv de la C la B. Considerând nodul D, justificăm similar trecerea unui curent $I_{DO}/2$ de la A la D și de la B la D. Aplicăm acum prima teoremă a lui Kirchhoff nodurilor A și B obținând că prin laturile OA și OB nu trece curent electric. Laturile OA și OB pot fi scoase din circuit fără a afecta comportarea electrică a acestuia. Schema electrică echivalentă este prezentată mai jos.

Fiecare semicerc se comportă ca o sursă cu t.e.m. 2E şi rezistența internă πR . Montajul paralel al acestor surse identice este echivalent cu o singură sursă cu t.e.m. 2E şi rezistența internă $\pi R/2$. Această sursă echivalentă alimentează consumatorul cu rezistența electrică 2R a diametrului CD.

$$I_{DO} = \frac{2E}{2R + \pi R/2} = \frac{4}{4 + \pi} \frac{E}{R} = \frac{4}{4 + \pi} \frac{1 \text{ V}}{0.1 \Omega} = \frac{40}{4 + \pi} \text{ A}.$$

- 12. Două rezistoare cu rezistențele $R_1 = 0.5 \Omega$ și $R_2 = 0.75 \Omega$ sunt montate în serie, iar gruparea este conectată la o sursă cu t.e.m. de $5.4 \mathrm{V}$ și rezistența internă de 0.1Ω . Puterea disipată pe rezistorul R_1 este: (5 pct.)
 - a) 2,25 W; b) 2 W; c) 16 W; d) 8 W; e) 2,25 W; f) 4 W.

Rezolvare. Notăm $E=5,4\,\mathrm{V}$ și $r=0,1\,\Omega$. Curentul în circuit este $I=E/(R_1+R_2+r)$, iar puterea disipată pe rezistorul R_1 este

$$I^2 R_1 = \frac{E^2 R_1}{(R_1 + R_2 + r)^2} = 8 \,\text{W}.$$

- 13. Considerând ciclurile termodinamice Carnot, Otto și Diesel, două transformări izocore apar în: (5 pct.)
 - a) în toate trei; b) ciclul Diesel; c) ciclul Carnot; d) în niciunul; e) în ciclurile Carnot și Diesel; f) ciclul Otto.

Rezolvare. Ciclul Otto.

- 14. Un mobil pleacă din repaus și în primele n secunde parcurge rectiliniu uniform accelerat un spațiu egal cu $2n^2$ metri. Accelerația mobilului este egală cu: (5 pct.)
 - a) 2 m/s^2 ; b) 4 m/s^2 ; c) 2.25 m/s^2 ; d) 8 m/s^2 ; e) 10 m/s^2 ; f) 1 m/s^2 .

Rezolvare. Notăm t = ns și $d = 2n^2$ m. Din ecuația de mișcare

$$d = \frac{1}{2}at^2,$$

accelerația mișcării este

$$a = \frac{2d}{t^2} = 4 \,\mathrm{m/s}^2.$$

- 15. Sub acțiunea unei forțe orizontale de 50 N, un corp se deplasează orizontal timp de 2 min cu viteza constantă de 5 m/s. Lucrul mecanic efectuat de forță este: (5 pct.)
 - a) $2500\,\mathrm{J};\,\mathrm{b})\ 180\,\mathrm{N\cdot m};\,\mathrm{c})\ 30\,\mathrm{J};\,\mathrm{d})\ 8\,\mathrm{kJ};\,\mathrm{e})\ 30\,\mathrm{kJ};\,\mathrm{f})\ 1000\,\mathrm{J}.$

Rezolvare. Notăm $F=50\,\mathrm{N},\ \Delta t=2\,\mathrm{min}=120\,\mathrm{s}$ și $v=5\,\mathrm{m/s}.$ Distanța străbătută de corp este $d=v\Delta t$. Lucrul mecanic efectuat de forță este $Fd=Fv\Delta t=30000\,\mathrm{J}=30\,\mathrm{kJ}.$

- 16. Impulsul unui corp este 4 kg·m/s, iar energia sa cinetică este 16 J. Masa corpului este: (5 pct.)
 - a) 2 kg; b) 0.5 kg; c) 1.5 kg; d) 0.1 kg; e) 0.75 kg; f) 1 kg.

Rezolvare. Notăm $p=4\,\mathrm{kg\cdot m/s},\,E_\mathrm{c}=16\,\mathrm{J},\,m$ - masa corpului și v- viteza acestuia. Între relațiile de definiție p=mv și $E_\mathrm{c}=(1/2)mv^2$ eliminăm v. Se obține

$$m = \frac{p^2}{2E_c} = 0.5 \,\mathrm{kg}.$$

- 17. Un volum de 30 litri dintr-un gaz ideal aflat la presiunea de $16,62 \cdot 10^5 \,\mathrm{N/m^2}$ și temperatura de 300 K ($R = 8,31 \,\mathrm{J/mol\,K}$) conține un număr de moli egal cu: (5 pct.)
 - a) 20; b) 1; c) 15; d) 14; e) 30; f) 2.

Rezolvare. Notăm $V=30\,\mathrm{L}=3\cdot10^{-2}\,\mathrm{m}^3,\,p=16,62\cdot10^5\,\mathrm{N/m}^2,\,T=300\,\mathrm{K}$ și ν - cantitatea de gaz. Din ecuația termică de stare a gazului ideal $pV=\nu RT$ rezultă

$$\nu = \frac{pV}{RT} = 20 \,\text{mol}.$$

- 18. În Arctica iarna, temperatura aerului atinge -37,36 °C, în timp ce temperatura apei sub gheață este +1 °C (0 °C = 273 K). O mașină bitermă ideală care lucrează între aceste temperaturi are randamentul: (5 pct.)
 - a) 30%; b) 5%; c) 14%; d) 50%; e) 10%; f) 1%.

Rezolvare. Temperatura sursei calde este $T_1=(273+1)\,\mathrm{K}=274\,\mathrm{K}$ și temperatura sursei reci este $T_2=(273-37,36)\,\mathrm{K}=235,64\,\mathrm{K}$. Randamentul mașinii termice este

$$\eta = \frac{T_1 - T_2}{T_1} = 0.14 = 14 \%.$$