Práctica 3

Sistema de Numeración en Punto Flotante

Objetivos de la práctica: que el alumno domine los tópicos de sistemas de numeración referidos a las representaciones en punto flotante, tales como:

- Representación e interpretación.
- Operaciones aritméticas.
- *IEEE 754*.

Bibliografía:

- "Organización y Arquitectura de Computadores" de W. Stalling, capítulo 8.
- Apunte de la Cátedra, "Sistemas de numeración: Punto flotante".
- 1. Considerando el sistema de Punto Flotante cuya mantisa es fraccionaria, con 6 bits, está expresada en BSS (en el inciso a) o BCS (en el inciso b) y su exponente en BCS con 4 bits, escriba el significado de las siguientes cadenas de bits (mantisa a la izquierda):

Cadena	a) Mantisa en BSS	b) Mantisa en BCS
0101110110		
0000010000		
0000111001		
1111111111		
0000000000		
0000001111		
1111110000		
1000000000		
0000011111		

2. Dado un sistema de Punto Flotante cuya mantisa es fraccionaria, está expresada en BCS con 5 bits y su exponente en BSS con 3 bits, interprete las siguientes cadenas del considerando que la mantisa esta sin normalizar, normalizada, o normalizada con bit implícito Identifique aquellas cadenas que no pueden ser interpretadas y mencione porqué.

Cadena	Sin normalizar	Normalizada	Normalizada con Bit Implícito
01000111			
11000011			
00000000			
11111111			

- 3. Calcule rango y resolución en extremos inferior negativo, superior negativo, inferior positivo y superior positivo para los siguientes sistemas de representación en punto flotante:
 - a. Mantisa fraccionaria en BSS de 8 bits y exponente en BSS 4 bits
 - b. Mantisa fraccionaria normalizada en BSS de 15 bits y exponente en CA1 10 bits
 - c. Mantisa fraccionaria normalizada con bit implícito en BCS de 15 bits y exponente en Exceso 5 bits
 - d. Mantisa fraccionaria normalizada con bit implícito en BCS de N bits y exponente en CA2 de M bits

Observe que:

- En las mantisas BSS no se puede expresar números negativos, con lo que aun con exponente negativo expresaremos un número positivo por un factor de escala menor a 1, pero también positivo. Ejemplo: $2 \times 2^{-4} = 0.125$.
- Las mantisas fraccionarias suponen el punto al principio de la mantisa.
- Los exponentes negativos indican factores de escala menores a 1 que mejoran la resolución.
- Mantisa normalizada implica que empieza con 1, o sea mantisa mínima 0,1 para la fraccionaria, igual a 0,5 en decimal. Esto hace que no se pueda representar el 0.
- Mantisa normalizada con bit implícito, significa agregar un 1 al principio de la misma al interpretarla. Ejemplo: 00000 se interpreta 0,100000, o 0,5 en base 10.
- 4. Dado un sistema de Punto Flotante cuya mantisa es fraccionaria, está expresada en BCS con 10 bits y su exponente en CA2 con 5 bits, obtenga la representación de los siguientes números, considerando que la mantisa esta sin normalizar, normalizada, o normalizada con bit implícito

Cadena	Sin normalizar	Normalizada	Normalizada con Bit Implícito
0			
1			
9			
-5,0625			
34000,5			
0,015625			
Nº máximo			
Nº mínimo			

Organización de Computadoras 2020

- 5. Diga como influyen las siguientes variantes en el rango y resolución:
 - a. Mantisa con signo y sin signo.
 - b. Exponente con signo y sin signo.
 - c. Tamaño de mantisa.
 - d. Tamaño de exponente.
 - e. Mantisa fraccionaria, fraccionaria normalizada y fraccionaria normalizada con bit implícito.
- 6. Efectúe las siguientes sumas para un sistema de punto flotante con mantisa BSS de 8 bits y exponente en BCS 8 bits.

```
00001111 \ 00000011 + 00001000 \ 00000010 = ; ? 01111111 \ 00000000 + 111111100 \ 100000001 = ; ? 00000001 \ 00000111 + 00011100 \ 000000000 = ; ?
```

Observe que los factores de escala deben ser los mismos, sino sumaríamos dos mantisas con pesos distintos (recordar que se puede correr los unos y sumar o restar este corrimiento al exponente para obtener una cadena equivalente).

- 7. Suponiendo que los números que no son representables se aproximan al más próximo, obtenga las representaciones o aproximaciones de los números 8,625; 0,4 y 2,5 en los sistemas:
 - a. Mantisa fraccionaria normalizada de 5 bits BSS exponente 4 bits CA2
 - b. Mantisa fraccionaria normalizada de 10 bits BCS exponente 3 bits CA2
- 8. Definimos Error Absoluto y Error Relativo de un número x en un sistema de la siguiente forma:

 EA(x) = | x' x | y ER(x) = EA(x) / x; donde x' es el número representable del sistema más próximo a x.

 Calcule los errores absolutos y relativos para los casos del ejercicio anterior.
- 9. Considerando que en los procesos de truncamiento o redondeo la elección se basa en la representación más cercana, estime el Error Absoluto Máximo cometido en las representaciones del ejercicio 1. Recuerde que la distancia entre 2 representaciones sucesivas se conoce como resolución (R), por lo que EAmáx ≤ R / 2.
- 10. Tome un sistema de punto flotante cualquiera y dibuje la forma del gráfico de cada tipo de error en función del número que se quiere representar.
- 11. Detalle las características del estándar IEEE 754 para simple precisión y doble precisión
- 12. ¿Qué valores están representados por las siguientes cadenas si responden al estándar IEEE 754?

 $0\ 11000100\ 0000000000000000000000000$

1 11111110 10100000000000000000000000

 $0\ 00000000\ 100110000000000000000000$

13. Hallar la representación en simple precisión del estándar IEEE 754 de los siguientes números

```
1; 13; 257; -40000; 0,0625
```

- 14. Calcule rango y resolución en extremos inferior negativo y superior positivo para los sistemas de simple precisión y doble precisión del estándar IEEE 754. ¿Cuál es el menor número positivo distinto de '0' que se puede representar?
- 15. Efectúe las siguientes sumas (las cadenas son representaciones en el estándar IEEE 754)

16. En el estándar IEEE 754, ¿para qué sirve, cuando el exponente es 0 y la mantisa no es nula, que la mantisa no esté normalizada?

Práctica 3 2/2