Algunos resultados de Topología I

Rafael López

Departamento de Geometría y Topología Universidad de Granada

Índice general

1 Espacios topológicos		acios topológicos	5
	1.1	Definición, bases de topología y de entornos	5
	1.2	Espacios métricos. La topología de \mathbb{R}^n	10
	1.3	Operaciones con subconjuntos	12
2	Apl	icaciones entre espacios topológicos	17
	2.1	Continuidad y caracterizaciones	17
	2.2	Aplicaciones abiertas y cerradas. Homeomorfismos	19
	2.3	Topología producto	22
	2.4	Topología cociente	24
3	Cor	nexión y compacidad	27
	3.1	Conexión y propiedades. Componentes conexas	27
	3.2	Compacidad y propiedades	20

4 ÍNDICE GENERAL

Capítulo 1

Espacios topológicos

1.1 Definición, bases de topología y de entornos

Definición 1.1.1 Un espacio topológico es un par (X, τ) , donde X es un conjunto $y \tau$ es una familia de subconjuntos de X con las siguientes propiedades:

- 1. Los conjuntos \emptyset y X pertenecen a τ .
- 2. Si $\{O_i; i \in I\} \subset \tau$, entonces $\bigcup_{i \in I} O_i \in \tau$.
- 3. Si $O_1, O_2 \in \tau$, entonces $O_1 \cap O_2 \in \tau$.

A τ se llama la topología de (X,τ) . Los elementos de τ se llaman conjuntos abiertos de (X,τ) o simplemente abiertos.

Definición 1.1.2 Sea (X, τ) un espacio topológico y $F \subset X$. Se dice que F es un conjunto cerrado si $X - F \in \tau$. Se denota por \mathcal{F} el conjunto de todos los cerrados de un espacio topológico.

Proposición 1.1.3 1. Los conjuntos \emptyset y X son cerrados.

- 2. Si $\{F_i\}_{i\in I} \subset \mathcal{F}$, entonces $\bigcap_{i\in I} F_i \in \mathcal{F}$.
- 3. Si $F_1, F_2 \in \mathcal{F}$, entonces $F_1 \cup F_2 \in \mathcal{F}$.

Teorema 1.1.4 Sea un conjunto X y C una familia de subconjuntos de X con las siguientes propiedades:

- 1. $\emptyset, X \in \mathcal{C}$.
- 2. Si $\{F_i\}_{i\in I}\subset \mathcal{C}$, entonces $\bigcap_{i\in I}F_i\in \mathcal{C}$.
- 3. Si F_1 , $F_2 \in \mathcal{C}$, entonces $F_1 \cup F_2 \in \mathcal{C}$.

Entonces existe una única topología τ en X de forma que $\mathcal{F} = \mathcal{C}$.

Definición 1.1.5 Sea X un conjunto $y \tau_1 y \tau_2$ dos topologías en X. Se dice que τ_1 es más fina que τ_2 si $\tau_1 \supset \tau_2$. Se dirá también que τ_2 es menos fina que τ_1 .

Definición 1.1.6 Una base de la topología (o base de abiertos) de (X, τ) es un subconjunto $\beta \subset \tau$ tal que todo conjunto abierto es unión de elementos de β : para cada $O \in \tau$ existe un conjunto de índices I, tal que

$$O = \bigcup_{i \in I} B_i, \quad B_i \in \beta.$$

La definición es equivalente a la siguiente

Definición 1.1.7 Una familia β de subconjuntos de X es base si

- 1. $\beta \subset \tau$.
- 2. Para cada abierto O y para cada $x \in O$ existe $B \in \beta$ tal que $x \in B \subset O$.

Proposición 1.1.8 Sea β una base de un espacio (X, τ) . Entonces

- 1. Sea $A \subset (X, \tau)$. Entonces $A \in \tau$ sii para cada $x \in A$ existe $B \in \beta$ tal que $x \in B \subset A$.
- 2. Si β es una base y $O \in \tau$, entonces $\beta' = \{B; B \in \beta\} \cup \{O\}$ es una base de τ .
- 3. $X = \bigcup_{B \in \beta} B$.
- 4. Si B_1 , $B_2 \in \beta$ y $x \in B_1 \cap B_2$, entonces existe $B_3 \in \beta$ tal que $x \in B_3 \subset B_1 \cap B_2$.

Teorema 1.1.9 Se considera un conjunto X y una familia β de subconjuntos de X que satisface las dos siguientes propiedades:

1.
$$X = \bigcup_{B \in \beta} B$$
.

2. Si B_1 , $B_2 \in \beta$ $y x \in B_1 \cap B_2$, entonces existe $B_3 \in \beta$ tal que $x \in B_3 \subset B_1 \cap B_2$.

Entonces existe una única topología τ que tiene como base a β . Se dirá que la topología τ está generada por β y se escribirá $\tau(\beta)$.

Proposición 1.1.10 Sea un conjunto X con dos topologías τ y τ' . Supongamos que β es base de τ tal que $\beta \subset \tau'$. Entonces $\tau \subset \tau'$.

Definición 1.1.11 Sean dos bases β_1 , β_2 para topologías τ_1 y τ_2 respectivamente. Se dice que las bases β_1 y β_2 son equivalentes si $\tau_1 = \tau_2$.

Teorema 1.1.12 (Criterio de Hausdorff) Dadas dos bases β_1 y β_2 para sendas topologías τ_1 y τ_2 en un conjunto X, son equivalentes los dos siguientes enunciados:

- 1. $\tau_1 = \tau_2$.
- 2. Para todo $B_1 \in \beta_1$, $x \in B_1$ existe $B_2 \in \beta_2$ tal que $x \in B_2 \subset B_1$. $(\Rightarrow \tau_1 \subset \tau_2)$.
 - Para todo $B_2 \in \beta_2$ y $x \in B_2$ existe $B_1 \in \beta_1$ tal que $x \in B_1 \subset B_2$. $(\Rightarrow \tau_2 \subset \tau_1)$.

Definición 1.1.13 Una familia de subconjuntos S de X se dice que es una subbase de τ si

$$\beta(S) = \{\text{intersecciones finitas de elementos de } S\}$$

es una base de τ .

Proposición 1.1.14 Sea un conjunto X y una familia de subconjuntos S de X. Entonces S es una subbase para una cierta topología τ .

Definición 1.1.15 Sea un espacio topológico (X, τ) y $x \in X$. Un conjunto $U \subset X$ se llama entorno de x si existe $O \in \tau$ tal que $x \in O \subset U$. Al conjunto de todos los entornos de x se llama sistema de entornos y se denota por \mathcal{U}_x .

Proposición 1.1.16 Sea un espacio topológico (X, τ) y $A \subset X$. Entonces A es un conjunto abierto si y sólamente si A es entorno de todos sus puntos.

Proposición 1.1.17 1. Si $U_1, U_2 \in \mathcal{U}_x$, entonces $U_1 \cap U_2 \in \mathcal{U}_x$.

- 2. Si $U \in \mathcal{U}_x$ y $V \supset U$, entonces $V \in \mathcal{U}_x$.
- 3. Sea $U \in \mathcal{U}_x$. Existe $W \in \mathcal{U}_x$ tal que $U \in \mathcal{U}_y$ para todo $y \in W$.

Teorema 1.1.18 Sea X un conjunto y para cada $x \in X$ se tiene asignada una familia \mathcal{V}_x de subconjuntos de X con las siguientes propiedades:

- 1. $x \in V$ para cada $V \in \mathcal{V}_x$.
- 2. Si $V_1, V_2 \in \mathcal{V}_x$, entonces $V_1 \cap V_2 \in \mathcal{V}_x$.
- 3. Si $U \in \mathcal{V}_x$ y $V \supset U$, entonces $V \in \mathcal{V}_x$.
- 4. Para cada $U \in \mathcal{V}_x$, existe $W \in \mathcal{V}_x$ tal que $U \in \mathcal{V}_y \ \forall y \in W$.

Entonces existe una única topología en X cuyo sistema de entornos \mathcal{U}_x coincide con \mathcal{V}_x .

Definición 1.1.19 Sea un espacio topológico (X, τ) . Un subconjunto β_x de \mathcal{U}_x es base de entornos de x si para cada $U \in \mathcal{U}_x$ existe $V \in \beta_x$ tal que $V \subset U$.

Proposición 1.1.20 Propiedades de base de entornos:

- 1. $x \in V$ para cualquier $V \in \beta_x$.
- 2. Si $V_1, V_2 \in \beta_x$, existe $V_3 \in \beta_x$ tal que $V_3 \subset V_1 \cap V_2$.
- 3. Si $V \in \beta_x$, existe $V_0 \in \beta_x$ tal que para cada $y \in V_0$ existe $V_y \in \beta_y$ con $y \in V_y \subset V$.

Teorema 1.1.21 Sea un conjunto X tal que para cada $x \in X$ existe una familia γ_x de subconjuntos de X con las siguientes propiedades:

- 1. $x \in V$ para cualquier $V \in \gamma_x$.
- 2. Si V_1 , $V_2 \in \gamma_x$, existe $V_3 \in \gamma_x$ tal que $V_3 \subset V_1 \cap V_2$.
- 3. Si $V \in \gamma_x$, existe $V_0 \in \gamma_x$ tal que para cada $y \in V_0$, existe $V_y \in \gamma_y$ con $y \in V_y \subset V$.

Entonces existe una única topología en X de forma que γ_x es una base de entornos para cada $x \in X$.

Teorema 1.1.22 (Criterio de Hausdorff) Sea un conjunto X y para cada $x \in X$ sean β_x^1 , β_x^2 dos bases de entornos para sendas topologías τ_1 y τ_2 . Entonces son equivalentes los siguientes enunciados:

- 1. La topología τ_1 coincide con τ_2 .
- 2. Para cada $x \in X$ y $V_1 \in \beta_x^1$, existe $V_2 \in \beta_x^2$ tal que $V_2 \subset V_1$.
 - Para cada $x \in X$ y $V_2 \in \beta_x^2$, existe $V_1 \in \beta_x^1$ tal que $V_1 \subset V_2$.

Proposición 1.1.23 Dado $A \subset X$, son equivalentes los siguientes enunciados:

- 1. El conjunto A es abierto.
- 2. Para cada $x \in A$, $A \in \mathcal{U}_x$.
- 3. Para cada $x \in A$, existe $U \in \mathcal{U}_x$ tal que $U \subset A$.
- 4. Para cada $x \in A$, existe $V \in \beta_x$ tal que $V \subset A$.

Definición 1.1.24 Un espacio (X, τ) se llama Hausdorff si para cada $x \neq y$ existen sendos entornos U y V tales que $U \cap V = \emptyset$.

Definición 1.1.25 Sea un espacio topológico (X, τ) y A un subconjunto suyo. Se llama topología relativa o inducida en A por τ a la familia

$$\tau_{|A} = \{O \cap A; O \in \tau\}.$$

Se dirá que $(A, \tau_{|A})$ es un subespacio topológico de (X, τ) . Se denotará al conjunto de todos los cerrados por $\mathcal{F}_{|A}$ y a la familia de entornos de un punto a por \mathcal{U}_a^A .

Proposición 1.1.26 Sea un espacio topológico (X, τ) y A, B subconjuntos de X tales que $B \subset A$. Entonces

$$\tau_{|B} = (\tau_{|A})_{|B}.$$

Teorema 1.1.27 1. $\mathcal{F}_{|A} = \{F \cap A; F \in \mathcal{F}\}.$

- 2. Si β es una base de la topología τ , entonces $\beta_A = \{B \cap A; B \in \beta\}$ es una base de la topología $\tau_{|A}$.
- 3. Si $a \in A$, los entornos de a en $(A, \tau_{|A})$ son $\mathcal{U}_a^A = \{U \cap A; U \in \mathcal{U}_a\}$.

4. Si β_a es una base de entornos de $a \in A$ para la topología τ , entonces $\beta_a^A = \{B \cap A; B \in \beta\}$ es una base de entornos de a en $\tau_{|A}$.

Proposición 1.1.28 Sea un espacio topológico (X, τ) y $A \subset X$.

- 1. Sea $O \subset A$. Si $O \in \tau$ (resp. $O \in \mathcal{F}$), entonces $O \in \tau_{|A}$ (resp. $O \in \mathcal{F}_{|A}$).
- 2. Sea $A \in \tau$ (resp. $\in \mathcal{F}$) $y O \in \tau_{|A}$ (resp. $O \in \mathcal{F}_{|A}$). Entonces $O \in \tau$ (resp. $O \in \mathcal{F}$).

1.2 Espacios métricos. La topología de \mathbb{R}^n

Definición 1.2.1 Una distancia en un conjunto X es una aplicación $d: X \times X \to \mathbb{R}$ que posee las siguientes propiedades:

- 1. $d(x,y) \ge 0, \forall x,y \in X \ y \ d(x,y) = 0 \ si \ y \ s\'olamente \ si \ x = y$.
- 2. $d(x,y) = d(y,x), \ \forall x,y \in X \ (propiedad \ simétrica).$
- 3. $d(x,y) \le d(x,z) + d(z,y), \ \forall x,y,z \in X \ (designal dad \ triangular).$

Al par (X,d) se llama espacio métrico y d es su distancia o su métrica.

Definición 1.2.2 Una bola de centro $x \in X$ y radio r > 0 es $B_r(x) = \{y \in X; d(x,y) < r\}$.

Teorema 1.2.3 En un espacio métrico (X, d), el conjunto

$$\beta = \{B_r(x); r > 0, x \in X\}$$

es una base para una cierta topología τ . A esta topología la se llamará la topología inducida por la distancia d.

Una base de entornos de x es $\beta_x = \{B_r(x); r > 0\}.$

Definición 1.2.4 Sea X un conjunto y d y d' dos distancias. Se dicen que d y d' son equivalentes si las topologías que generan son las mismas.

Corolario 1.2.5 Sea un conjunto X con dos distancias d_1 y d_2 . Para cada punto $x \in X$ se considera $\beta_x^1 = \{B_r^1(x); r > 0\}$ y $\beta_x^2 = \{B_r^2(x); r > 0\}$. Entonces las distancias son equivalentes sii para cada $x \in X$ y

- para cada $B_r^1(x) \in \beta_x^1$, existe s > 0 tal que $B_s^2(x) \subset B_r^1(x)$.
- para cada $B_r^2(x) \in \beta_x^2$, existe s > 0 tal que $B_s^1(x) \subset B_r^2(x)$.

Corolario 1.2.6 Sean dos distancias d_1 , d_2 en un conjunto X. Supongamos que existen constantes k, l > 0 tale que $kd_1 \leq d_2$ y $ld_2 \leq d_1$. Entonces d_1 y d_2 son distancias equivalentes.

Proposición 1.2.7 Sea un espacio métrico (X,d) y τ su topología. Sea $A \subset X$, d_A la distancia inducida en A y τ_{d_A} la topología determinada por d_A . Entonces

$$\tau_{|A} = \tau_{d_A}$$
.

Definición 1.2.8 Una sucesión $\{x_n\}_{n\in\mathbb{N}}$ en un espacio métrico (X,d) es convergente $a \ x \in X$ si

$$\forall \epsilon > 0 \ \exists \nu \in \mathbb{N} \ tal \ que \ si \ n \geq \nu, d(x_n, x) < \epsilon.$$

Escribiremos en tal caso, $\lim_{n\to\infty} \{x_n\}_{n\in\mathbb{N}} = x$, o $\{x_n\}_{n\in\mathbb{N}} \to x$. A x se llama límite de la sucesión.

Proposición 1.2.9 Sea un espacio métrico (X, d), una sucesión $\{x_n\}_{n\in\mathbb{N}}$ y $x \in X$. Son equivalentes los siguientes enunciados:

- 1. La sucesión es convergente a x.
- 2. Para cada $O \in \tau$ con $x \in O$, existe $\nu \in \mathbb{N}$ tal que $x_n \in O$, $\forall n \geq \nu$.
- 3. Para cada $B \in \beta$ con $x \in B$, existe $\nu \in \mathbb{N}$ tal que $x_n \in B$, $\forall n \geq \nu$.
- 4. Para cada $U \in \mathcal{U}_x$, existe $\nu \in \mathbb{N}$ tal que $x_n \in U$, $\forall n \geq \nu$.
- 5. Para cada $V \in \beta_x$, existe $\nu \in \mathbb{N}$ tal que $x_n \in V$, $\forall n \geq \nu$.

Proposición 1.2.10 En un espacio métrico, el límite de una sucesión es único.

Definición 1.2.11 La distancia usual en \mathbb{R}^n es

$$d((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}.$$

La topología asociada se llama la topología usual de \mathbb{R}^n , o topología euclídea. Esta distancia es equivalente a las siguientes dos:

$$d_1((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \sum_{i=1}^n |x_i-y_i|.$$

$$d_2((x_1,\ldots,x_n),(y_1,\ldots,y_n)) = \max\{|x_i-y_i|; 1 \le i \le n\}.$$

Proposición 1.2.12 Sea una sucesión $\{a_n\}_{n\in\mathbb{N}}$ en \mathbb{R}^m y $a\in\mathbb{R}^m$. Supongamos que $a_n=(a_1^n,\ldots,a_m^n)$ y $a=(a_1,\ldots,a_m)$. Son equivalentes:

- 1. La sucesión $\{a_n\}_{n\in\mathbb{N}}$ converge a a.
- 2. Para cada i = 1, ..., m, $\{a_i^n\}_{n \in \mathbb{N}}$ converge a a_i .

1.3 Operaciones con subconjuntos

Definición 1.3.1 Sea un espacio topológico (X, τ) y $A \subset X$ y $x \in X$. Se dice que

- 1. x es un punto interior de A si existe un entorno U de x tal que $U \subset A$.
- 2. x es un punto exterior de A si existe un entorno U de x tal que $U \subset X A$.
- 3. x es un punto frontera de A si para todo entorno U de x, $U \cap A \neq \emptyset$ y $U \cap (X A) \neq \emptyset$.
- 1. El interior de A es $int(A) = \stackrel{\circ}{A} = \{x \in X; x \text{ es interior de } A\}.$
- 2. El exterior de A es $ext(A) = \{x \in X; x \text{ es exterior de } A \}.$
- 3. La frontera de A es $Fr(A) = \{x \in X; x \text{ es frontera de } A \}$.

Proposición 1.3.2 1. $X = \overset{\circ}{A} \cup ext(A) \cup Fr(A)$ y es una unión disjunta.

2.
$$\stackrel{\circ}{A} = ext(X - A)$$
.

3.
$$ext(A) = int(X - A)$$
.

4.
$$Fr(A) = Fr(X - A)$$
.

Proposición 1.3.3 Sea un espacio topológico (X, τ) , $A \subset X$ y $x \in X$. Entonces $x \in A$ sii se da alguna de las siguientes propiedades:

- 1. existe $O \in \tau$ tal que $x \in O \subset A$.
- 2. existe $B \in \beta$ tal que $x \in B \subset A$.
- 3. existe $V \in \beta_x$ tal que $V \subset A$.

Proposición 1.3.4 1. $\overset{\circ}{X} = X, \overset{\circ}{\emptyset} = \emptyset.$

- 2. Si $A \subset B$, $\overset{\circ}{A} \subset \overset{\circ}{B}$.
- 3. $int(A \cap B) = \overset{\circ}{A} \cap \overset{\circ}{B}$.
- 4. $\overset{\circ}{A} \cup \overset{\circ}{B} \subset int(A \cup B)$.
- 5. $int(\mathring{A}) = \mathring{A}$.

Proposición 1.3.5 Sea (X, τ) un espacio topológico y $A \subset X$. Entonces:

- 1. $\stackrel{\circ}{A} = \bigcup \{ O \in \tau; O \subset A \}.$
- 2. $\stackrel{\circ}{A}$ es el mayor conjunto abierto contenido en A.

Definición 1.3.6 Sea un espacio topológico (X, τ) , $A \subset X$ y $x \in X$. Se dice que x es un punto adherente de A si para todo entorno $U \in \mathcal{U}_x$, $U \cap A \neq \emptyset$. El conjunto de X formado por todos los puntos adherentes de A se llama adherencia de A o la clausura de A y se denotará por \overline{A} .

Proposición 1.3.7 Sea un espacio topológico (X, τ) , $A \subset X$ y $x \in X$. Entonces $x \in \overline{A}$ si y sólamente se da alguna de las siguientes propiedades:

1. para cada $O \in \tau$ tal que $x \in O$ se tiene $O \cap A \neq \emptyset$.

- 2. para cada $B \in \beta$ tal que $x \in B$, se tiene $B \cap A \neq \emptyset$.
- 3. para cada $V \in \beta_x$, se tiene $V \cap A \neq \emptyset$.

Proposición 1.3.8 Sea un espacio topológico (X, τ) y $A, B \subset X$. Entonces:

1.
$$\overline{A} = \overset{\circ}{A} \cup Fr(A) = A \cup Fr(A)$$
.

2.
$$Fr(A) = \overline{A} \cap \overline{X - A}$$
.

3.
$$X - \stackrel{\circ}{A} = \overline{X - A}$$
.

4.
$$X - \overline{A} = int(X - A)$$
.

5.
$$\overline{\emptyset} = \emptyset$$
, $\overline{X} = X$.

6. Si
$$B \subset A$$
, entonces $\overline{B}^A = \overline{B} \cap A$.

7. Si
$$A \subset B$$
, entonces $\overline{A} \subset \overline{B}$.

8.
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
.

9.
$$\overline{A \cap B} \subset \overline{A} \cap \overline{B}$$
.

10.
$$\overline{\overline{A}} = \overline{A}$$
.

Proposición 1.3.9 Sea A un subconjunto de un espacio topológico (X,τ) .

1.
$$\overline{A} = \bigcap \{ F \in \mathcal{F}; A \subset F \}.$$

2. \overline{A} es el menor conjunto cerrado que contiene a A.

Proposición 1.3.10 Sea $A \subset (X, \tau)$.

1.
$$A \in \tau \ sii \ int(A) = A$$
.

2.
$$A \in \mathcal{F} \ sii \ \overline{A} = A$$
.

Proposición 1.3.11 Sea un espacio métrico (X, d), $A \subset X$ y $x \in X$.

1.
$$x \in A$$
 si existe $r > 0$ tal que $B_r(x) \subset A$.

 $2. \in \overline{A} \text{ si para todo } r > 0, B_r(x) \cap A \neq \emptyset.$

Teorema 1.3.12 1. $x \in \overset{\circ}{A}$ sii para cualquier sucesión $\{x_n\}_{n \in \mathbb{N}} \to x$, existe $\nu \in \mathbb{N}$ tal que si $n \geq \nu$, $x_n \in A$.

2. $x \in \overline{A}$ sii existe una sucesión $\{a_n\}_{n \in \mathbb{N}} \subset A$ tal que $\lim_{n \to \infty} \{a_n\} = x$.

Proposición 1.3.13 Sea un espacio métrico (X,d), $A \subset X$ y $x \in X$. Definimos la distancia de x al conjunto A mediante

$$d(x, A) = \inf\{d(x, a); a \in A\}.$$

Entonces $\overline{A} = \{x \in X; d(x, A) = 0\}.$

Capítulo 2

Aplicaciones entre espacios topológicos

2.1 Continuidad y caracterizaciones

Definición 2.1.1 Una aplicación $f:(X,\tau)\to (Y,\tau')$ es continua en $x\in X$ si para cada $V'\in \mathcal{U}'_{f(x)}$, existe $U\in \mathcal{U}_x$ tal que $f(U)\subset V'$. Si f es continua en todo punto de X, se dice que f es continua en X.

Proposición 2.1.2 Sea considera una aplicación $f:(X,\tau)\to (Y,\tau')$. Son equivalentes:

- 1. La aplicación f es continua en el punto x.
- 2. Para todo $V' \in \beta'_{f(x)}$ existe $U \in \beta_x$ tal que $f(U) \subset V'$.
- 3. Para cada $B' \in \beta'$ tal que $f(x) \in B'$, existe $B \in \beta$ con $x \in B$ tal que $f(B) \subset B'$.

Proposición 2.1.3 Una aplicación $f:(X,\tau)\to (Y,\tau')$ es continua sii para cada $O'\in \tau',\ f^{-1}(O')\in \tau.$

Teorema 2.1.4 Sea una aplicación $f:(X,\tau)\to (Y,\tau')$ entre dos espacios topológicos. Son equivalentes los siguientes enunciados:

1. La aplicación f es continua en X.

- 2. $f^{-1}(O') \in \tau'$ para cada $O' \in \tau'$.
- 3. $f^{-1}(F') \in \mathcal{F}'$ para cada $F' \in \mathcal{F}'$.
- 4. $f(\overline{A}) \subset \overline{f(A)}$ para cada $A \subset X$.
- 5. Si β es una base de τ' , entonces para cada $B' \in \beta'$, $f^{-1}(B') \in \tau$.

Proposición 2.1.5 Sea una aplicación $f:(X,\tau)\to (Y,\tau')$ y $x\in X$. Son equivalentes los siguientes enunciados:

- 1. f es continua en x.
- 2. Para cada $U \in \mathcal{U}_x$, $f: (U, \tau_{|U}) \to (Y, \tau')$ es continua en x.
- 3. Existe $U \in \mathcal{U}_x$ tal que $f: (U, \tau_{|U}) \to (Y, \tau')$ es continua en x.
- 4. Existe un abierto O, con $x \in O$, tal que $f:(O,\tau_{|O}) \to (Y,\tau')$ es continua en x.

Proposición 2.1.6 Más propiedades de aplicaciones continuas.

- 1. Las aplicaciones constantes son continuas.
- 2. La aplicación identidad $1_X:(X,\tau)\to (X,\tau)$ es continua.
- 3. Si $f: X \to Y$ y $f: Y \to Z$ son dos aplicaciones continuas, entonces $g \circ f: X \to Z$ es continua.
- 4. La aplicación inclusión $i:(A,\tau_{|A})\to (X,\tau)$ es continua.

Teorema 2.1.7 Sean espacios topológicos (X, τ) , (Y, τ') y $A \subset X$ y $B \subset Y$. Consideramos una aplicación $f: (X, \tau) \to (Y, \tau')$. Entonces

- 1. Si f es una aplicación continua, entonces la restricción de f a A, $f_{|A}$: $(A, \tau_{|A}) \rightarrow (Y, \tau')$, es continua.
- 2. Supongamos que $Im(f) \subset B$. Entonces $f: (X, \tau) \to (B, \tau'_{|B})$ es continua.
- 3. Si f es continua, entonces $f_{|A}:(A,\tau_{|A})\to (f(A),\tau'_{|f(A)})$ es continua.

4. Si f es continua en todo punto de A, entonces $f_{|A}$ es continua.

Teorema 2.1.8 Sea una aplicación $f:(X,\tau)\to (Y,\tau')$ y supongamos que $X=A\cup B$, donde $A,B\in \tau$ (resp. $A,B\in \mathcal{F}$). Supongamos además que $f_{|A}$ y $f_{|B}$ son aplicaciones continuas. Entonces f es una aplicación continua.

Proposición 2.1.9 Sean $f, g: (X, \tau) \to \mathbb{R}$ dos aplicaciones continuas. Entonces:

- 1. f + g y fg son continuas.
- 2. λf es continua con $\lambda \in \mathbb{R}$.
- 3. f/g es continua en todos los puntos $x \in X$ tales que $g(x) \neq 0$.

Teorema 2.1.10 Una aplicación $f:(X,d) \to (Y,d')$ entre espacios métricos es continua en x sii "Si $\{x_n\}_{n\in\mathbb{N}}$ es una sucesión convergente a x, entonces la sucesión $\{f(x_n)\}_{n\in\mathbb{N}}$ es convergente a f(x)".

Definición 2.1.11 Una sucesión $\{x_n\}_{n\in\mathbb{N}}$ en un espacio topológico (X,τ) . Se dice que $\{x_n\}_{n\in\mathbb{N}}$ converge a $x\in X$, y escribiremos $\{x_n\}_{n\in\mathbb{N}}\to x$ si para todo $U\in\mathcal{U}_x$, existe $\nu\in\mathbb{N}$ tal que $x_n\in U$ para $n\geq\nu$.

Proposición 2.1.12 Sea una aplicación $f:(X,\tau)\to (Y,\tau')$ y $x\in X$. Si f es continua en x, entonces para cualquier sucesión $\{x_n\}_{n\in\mathbb{N}}$ convergente a x se tiene que $\{f(x_n)\}_{n\in\mathbb{N}}$ converge as f(x).

2.2 Aplicaciones abiertas y cerradas. Homeomorfismos

Definición 2.2.1 Una aplicación $f:(X,\tau)\to (Y,\tau')$ entre dos espacios topológicos se llama homeomorfismo si es una aplicación biyectiva y tanto f como su inversa f^{-1} son continuas. Se escribirá $(X,\tau)\cong (Y,\tau')$.

Se dice que un espacio topológico (X,τ) es homeomorfo a otro espacio (Y,τ') si existe un homeomorfismo entre (X,τ) e (Y,τ') .

Proposición 2.2.2 1. La aplicación identidad es un homeomofismo.

- 2. La aplicación inversa de un homeomorfismo es un homeomorfismo.
- 3. La composición de dos homeomorfismos es un homeomorfismo.

Teorema 2.2.3 Se considera una aplicación biyectiva $f:(X,\tau)\to (Y,\tau')$. Son equivalentes:

- 1. f es homeomorfismo.
- 2. f es continua y $f(O) \in \tau'$ para cualquier $O \in \tau$.
- 3. f es continua y $f(F) \in \mathcal{F}'$ para cualquier $F \in \mathcal{F}$.
- 4. $f(\overline{A}) = \overline{f(A)}$ para cualquier subconjunto A de X.
- 5. f es continua y f(U) es entorno de f(x) para cualquier entorno U de $x \in X$.

Corolario 2.2.4 Sea una aplicación biyectiva $f:(X,\tau)\to (Y,\tau')$ entre espacios topológicos. Entonces son equivalentes:

- 1. f es homeomorfismo.
- 2. $\tau' = \{ f(O); O \in \tau \}.$
- 3. $\mathcal{F}' = \{ f(F); F \in \mathcal{F} \}.$
- 4. Si β es una base de τ , entonces $f(\beta)$ es base de τ' .
- 5. Si β_x se base de entornos de $x \in X$, entonces $f(\beta_x)$ es una base de entornos de f(x) para cada $x \in X$.
- 6. $\mathcal{U}'_{f(x)} = \{ f(U); U \in \mathcal{U}_x \}.$

Proposición 2.2.5 Sea $f:(X,\tau)\to\mathbb{R}^n$. Para cada $x\in X$, se considera $f(x)=(f_1(x),\ldots,f_n(x))$, donde $f_i=p_i\circ f$, con $p_i:\mathbb{R}^n\to\mathbb{R}$ la i-ésima proyección. Entonces la aplicación f es continua sii las aplicaciones f_i son continuas $\forall i$.

Proposición 2.2.6 Sea un homeomorfismo $f(X,\tau) \to (Y,\tau')$ y $A \subset X$. Entonces $f_{|A}: (A,\tau_{|A}) \to (f(A),\tau'_{f(A)})$ es homeomorfismo.

Definición 2.2.7 Una propiedad topológica o un invariante topológico es una propiedad \mathcal{P} de forma que si un espacio topológico (X,τ) satisface \mathcal{P} , entonces todos los espacios topológicos homeomorfos a X también la satisface.

Definición 2.2.8 Un embebimiento es una aplicación $f:(X,\tau)\to (Y,\tau')$ entre dos espacios topológicos tal que

$$f:(X,\tau)\to (f(X),\tau'_{|f(X)})$$

es un homeomorfismo. Se dirá entonces que X está embebido en Y mediante f.

Proposición 2.2.9 Se considera un embebimiento $f:(X,\tau)\to (Y,\tau')$ y un homeomorfismo $g:(Y,\tau')\to (Z,\tau'')$. Entonces $g\circ f$ es un embebimiento.

Proposición 2.2.10 Sea un espacio topológico (X, τ) y A un subconjunto suyo con una topología τ' . Entonces la aplicación inclusión $i: (A, \tau') \to (X, \tau)$ es un embebimiento sii $\tau' = \tau_{|A}$.

Definición 2.2.11 Una aplicación $f(X,\tau) \to (Y,\tau')$ se llama abierta (resp. cerrada) si $f(O) \in \tau' \ \forall O \in \tau \ (resp. \ \forall F \in \mathcal{F})$.

Proposición 2.2.12 Sea una aplicación abierta $f:(X,\tau)\to (Y,\tau')$ y $x\in X$. Entonces para cada $U\in\mathcal{U}_x,\ f(U)\in\mathcal{U}_{f(x)}'$.

Teorema 2.2.13 Sea una aplicación $f:(X,\tau)\to (Y,\tau')$. Son equivalentes:

- 1. f es una aplicación abierta.
- 2. $f(\mathring{A}) \subset int(f(A))$, para cualquier $A \subset X$.
- 3. Si β es una base de τ , entonces $f(B) \in \tau'$, para cada $B \in \beta$.
- 4. Para cada $x \in X$ y $U \in \mathcal{U}_x$, existe $V \in \mathcal{U}'_{f(x)}$ tal que $V \subset f(U)$.
- 5. Para cada $x \in X$ y $U \in \mathcal{U}_x$, f(U) es entorno de f(x).

Corolario 2.2.14 Sea una aplicación biyectiva $f:(X,\tau)\to (Y,\tau')$. Entonces f es homeomorfismo si y sólamente si para todo $A\subset X$ se tiene $f(\stackrel{\circ}{A})=int\ (f(A).$

Teorema 2.2.15 Sea una aplicación $f:(X,\tau)\to (Y,\tau')$. Entonces f es cerrada sii $\overline{f(A)}\subset f(\overline{A})$, para cualquier $A\subset X$.

Proposición 2.2.16 Sean las aplicaciones proyecciones $p_i : \mathbb{R}^n \to \mathbb{R}, 1 \le i \le n$,

$$p_i(x_1,\ldots,x_n)=x_i.$$

Entonces p_i es una aplicación abierta pero no es cerrada.

Proposición 2.2.17 Se considera $f: X \to Y$ y $g: Y \to Z$ aplicaciones entre tres espacios topológicos.

- 1. Si f y g son aplicaciones abiertas (resp. cerradas), entonces $g \circ f$ es abierta (resp. cerrada).
- 2. Si gof es una aplicación abierta (resp. cerrada) y f es sobreyectiva y continua, entonces g es abierta (resp. cerrada).
- 3. Si $g \circ f$ es una aplicación abierta (resp. cerrada) y g es inyectiva y continua, entonces f es abierta (resp. cerrada).

2.3 Topología producto

Proposición 2.3.1 Sean dos espacios topológicos (X_1, τ_1) y (X_2, τ_2) y consideremos la familia de subconjuntos de $X_1 \times X_2$ formada por

$$\tau_1 \times \tau_2 = \{ O_1 \times O_2; O_1 \in \tau_1, O_2 \in \tau_2 \}.$$

Entonces $\tau_1 \times \tau_2$ es base de una topología en el conjunto $X_1 \times X_2$. La topología en $X_1 \times X_2$ que tiene por base $\tau_1 \times \tau_2$ se llama topología producto de τ_1 y τ_2 y se notará de nuevo por $\tau_1 \times \tau_2$.

Proposición 2.3.2 1. Si β_1 y β_2 son bases de τ_1 y τ_2 respectivamente, entonces $\beta_1 \times \beta_2$ es una base de la topología $\tau_1 \times \tau_2$.

- 2. Sean $x_1 \in X_1$, $x_2 \in X_2$ y $\mathcal{U}_{x_1}^1$, $\mathcal{U}_{x_2}^2$ los respectivos sistemas de entornos. Entonces $\mathcal{U}_{x_1}^1 \times \mathcal{U}_{x_2}^2$ es base de entornos del punto (x_1, x_2) en la topología $\tau_1 \times \tau_2$.
- 3. Sean bases de entornos $\beta_{x_1}^1$, $\beta_{x_2}^2$ de x_1 e x_2 respectivamente. Entonces $\beta_{x_1}^1 \times \beta_{x_2}^2$ es una base de entornos del punto (x_1, x_2) en la topología $\tau_1 \times \tau_2$.

Proposición 2.3.3 Sean dos espacios topológicos (X_1, τ_1) y (X_2, τ_2) y $A \subset X_1$, $B \subset X_2$. Entonces:

2.3. TOPOLOGÍA PRODUCTO

23

- 1. $int(A \times B) = \overset{\circ}{A} \times \overset{\circ}{B}$.
- 2. $Fr(A \times B) = (Fr(A) \times \overline{B}) \cup (\overline{A} \times Fr(B)).$
- 3. $\overline{A \times B} = \overline{A} \times \overline{B}$.
- 4. $\tau_{1|A} \times \tau_{2|B} = (\tau_1 \times \tau_2)_{|A \times B}$.

Teorema 2.3.4 Se consideran los espacios euclídeos (\mathbb{R}^n, τ_u^n) y (\mathbb{R}^m, τ_u^m) con sus topologías usuales. Si denotamos por τ_u^{n+m} la topología usual de \mathbb{R}^{n+m} , entonces

$$\tau_u^n \times \tau_u^m = \tau_u^{n+m}$$
.

(estamos identificando $\mathbb{R}^n \times \mathbb{R}^m$ y \mathbb{R}^{n+m} como conjuntos).

Proposición 2.3.5 Sean dos espacios métricos (X_1, d_1) y (X_2, d_2) . En el conjunto $X_1 \times X_2$ se define la distancia producto d mediante

$$d((x_1, y_1), (x_2, y_2)) = d_1(x_1, x_2) + d_2(y_1, y_2).$$

Entonces la topología producto de dos espacios métricos (X_1, d_1) y (X_2, d_2) es la topología inducida por la distancia producto.

Definición 2.3.6 Se definen las aplicaciones proyecciones como las aplicaciones $p_i: X_1 \times X_2 \to X_i, i = 1, 2, dadas por$

$$p_i(x_1, x_2) = x_i.$$

Entonces las aplicaciones proyecciones son continuas y abiertas.

Teorema 2.3.7 La aplicación $f: X \to X_1 \times X_2$ es continua sii $p_i \circ f$, i = 1, 2, son continuas.

Corolario 2.3.8 Sean dos aplicaciones $f_i: X \to X_i$, i = 1, 2. Definimos la evaluación de f_1 y f_2 como la aplicación $e(f_1, f_2): X \to X_1 \times X_2$ dada por

$$e(f_1, f_2)(x) = (f_1(x), f_2(x)).$$

Si las aplicaciones f_1, f_2 son continuas, entonces $e(f_1, f_2)$ es continua.

Teorema 2.3.9 Sean (X_i, τ_i) , (Y_i, τ_i') i=1,2 cuatro espacios topológicos y $f_i: X_i \to Y_i$, i=1,2 dos aplicaciones. Se define la aplicación producto $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ como

$$(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2)).$$

- 1. $f_1 \times f_2$ es continua sii f_1 y f_2 son continuas
- 2. $f_1 \times f_2$ es homeomorfismo sii f_1 y f_2 son homeomorfismos.

Corolario 2.3.10 Sean dos espacios topológicos $(X_1, \tau_1), (X_2, \tau_2)$. Entonces tanto X_1 como X_2 se pueden embeber en $X_1 \times X_2$.

Corolario 2.3.11 Sea una aplicación continua $f:(X,\tau)\to (Y,\tau')$. Entonces X se embebe en $X\times Y$ como el grafo de la aplicación f.

Corolario 2.3.12 Sea un espacio topológico (X, τ) . Entonces X se embebe en $X \times X$ como el conjunto $\Delta = \{(x, x) \in X \times X; x \in X\}$.

2.4 Topología cociente

Consideramos una relación de equivalencia R en un conjunto X. Denotamos por X/R el conjunto cociente y a la clase de $x \in X$ por [x]. Sea $p: X \to X/R$ la aplicación proyección sobre el conjunto cociente, es decir, p(x) = [x].

Definición 2.4.1 Dado un espacio topológico (X, τ) y una relación de equivalencia R en X, se define la topología cociente en X/R como

$$\tau/R = \{ \bar{O} \subset X/R; p^{-1}(\bar{O}) \in \tau \}.$$

La R-saturación de A de un subconjunto $A\subset X$ es $R[A]=p^{-1}p(A)$, es decir,

$$R[A] = \{ x \in X; \exists y \in A, \ xRy \}.$$

El conjunto A se llama R-saturado si A = R[A]. Entonces

$$\tau/R = \{p(O); O \in \tau, \ R[O] = O\}.$$

ÍA COCIENTE 25

Proposición 2.4.2 1. La aplicación proyección $p:(X,\tau)\to (X/R,\tau/R)$ es continua.

- 2. La topología τ/R es la topología más fina que existe en X/R que hace que la aplicación p sea continua.
- 3. Una aplicación $f:(X/R,\tau/R)\to (Y,\tau')$ es continua sii $f\circ p$ es continua.

Definición 2.4.3 Sea una aplicación sobreyectiva $f:(X,\tau)\to Y$. Se llama topología final en Y determinada por f a la familia

$$\tau(f) = \{\bar{O} \subset Y; f^{-1}(\bar{O}) \in \tau\}.$$

Definición 2.4.4 Una identificación $f:(X,\tau)\to (Y,\tau')$ es una aplicación sobreyectiva tal que $\tau'=\tau(f)$.

Proposición 2.4.5 1. Sea una identificación $f:(X,\tau)\to (Y,\tau(f))$. Entonces $\tau(f)$ es la topología más fina en Y que hace continua a la aplicación f.

- 2. Sea una identificación $f:(X,\tau)\to (Y,\tau(f))$ y $g:(Y,\tau(f))\to (Z,\tau')$ una aplicación. Entonces g es continua sii $g\circ f$ es continua.
- 3. La composición de identificaciones es una identificación.
- 4. Sea una identificación $f:(X,\tau)\to (Y,\tau(f))$ y $g:(Y,\tau(f))\to (Z,\tau'')$ una aplicación de forma que $g\circ f$ es una identificación. Entonces g es una identificación.
- 5. Sea una aplicación inyectiva $f:(X,\tau)\to (Y,\tau')$. Entonces f es una identificación sii si f es un homeomorfimo.

Proposición 2.4.6 Sea una aplicación continua $f:(X,\tau)\to (Y,\tau')$. En cualquiera de los siguientes casos, f es una identificación:

- 1. f es sobreyectiva y abierta.
- 2. f es sobreyectiva y cerrada.
- 3. Existe una aplicación continua $s: Y \to X$ tal que $f \circ s = 1_Y$.

Corolario 2.4.7 Una aplicación continua y sobreyectiva de un espacio compacto en un espacio Hausdorff es una identificación.

Proposición 2.4.8 Sea $f: X \to Y$ una aplicación entre conjuntos.

- 1. La relación " xR_fx' si f(x) = f(x')" es una relación de equivalencia.
- 2. La aplicación $\bar{f}: X/R_f \to Im(f)$ dada por $\bar{f}([x]) = f(x)$ es biyectiva.
- 3. Se tiene $f = i \circ \bar{f} \circ p$, donde $i : Im(f) \hookrightarrow Y$.

Teorema 2.4.9 Sea una aplicación $f:(X,\tau)\to (Y,\tau')$ y $\overline{f}:(X/R_f,\tau/R_f)\to (Y,\tau')$, dada por $\overline{f}([x])=f(x)$. Entonces \overline{f} es un homeomorfismo sii f es una identificación.

Corolario 2.4.10 Sea una aplicación continua y sobreyectiva $f:(X,\tau)\to (Y,\tau')$, donde (X,τ) es un espacio compacto e (Y,τ') es un espacio Hausdorff. Entonces X/R_f es homeomorfo a Y.

Teorema 2.4.11 Sean dos espacios topológicos (X, τ) e (Y, τ') con sendas relaciones de equivalencias R y R'. Sea una aplicación $f: X \to Y$ con la siguiente propiedad:

si
$$x_1Rx_2$$
 entonces $f(x_1)R'f(x_2)$.

Sea la aplicación $\overline{f}: (X/R, \tau/R) \to (Y/R', \tau'/R')$ tal que $p' \circ f = \overline{f} \circ p$. Entonces:

- 1. Si f es continua, \overline{f} es continua.
- 2. Si f es identificación, \overline{f} es una identificación.

Corolario 2.4.12 Sean espacios topológicos $(X, \tau), (Y, \tau')$ con respectivas relaciones de equivalencia R y R' y una aplicación continua $f: X \to Y$ que satisface

$$x_1Rx_2 \iff f(x_1)R'f(x_2).$$

Entonces si f es una identificación, \overline{f} es un homeomorfismo entre X/R e Y/R'.

Capítulo 3

Conexión y compacidad

3.1 Conexión y propiedades. Componentes conexas

Definición 3.1.1 Un espacio topológico (X,τ) se llama conexo si la única partición por conjuntos abiertos de X es la partición trivial, es decir, si existen conjuntos abiertos A y B tales que $X = A \cup B$ y $A \cap B = \emptyset$, entonces $A, B \in \{\emptyset, X\}$. Un subconjunto A de un espacio topológico (X,τ) se llama conexo si $(A,\tau_{|A})$ es un espacio topológico conexo.

Proposición 3.1.2 La conexión se mantiene por aplicaciones continuas. En particular, es una propiedad topológica.

Proposición 3.1.3 Son equivalentes los siguientes enunciados:

- 1. (X, τ) es conexo.
- 2. Los únicos subconjuntos de (X, τ) que son a la vez abiertos y cerrados son \emptyset y X.
- 3. Toda aplicación continua de (X, τ) en un espacio topológico discreto es constante.
- 4. No existen aplicaciones continuas y sobreyectivas de (X,τ) en $\{0,1\}$.

Teorema 3.1.4 Los únicos subconjuntos conexos de \mathbb{R} son los intervalos. Y los conjuntos conexos de $A \subset \mathbb{R}$ son los intervalos contenidos en A.

Teorema 3.1.5 (del valor intermedio) Sea (X, τ) un espacio topológico conexo $y \ f : X \to \mathbb{R}$ una aplicación continua. Si f toma dos valores distintos, entonces toma todos los valores intermedios.

Teorema 3.1.6 (del punto fijo) Sea una aplicación continua $f:[0,1] \to [0,1]$. Entonces existe $x_0 \in [0,1]$ tal que $f(x_0) = x_0$.

Teorema 3.1.7 Sea un espacio topológico (X, τ) . Si se satisface algunas de las siquientes condiciones, el espacio es conexo:

- 1. Existe una familia $\{A_i\}_{i\in I}$ de subconjuntos conexos de X, tales que $X = \bigcup_{i\in I} A_i \ y \bigcap_{i\in I} A_i \neq \emptyset$.
- 2. Para cualesquiera puntos $x, y \in X$, existe un subconjunto conexo A_{xy} que contiene a $x \in y$.
- 3. Existe $x_0 \in X$ tal que para cada $x \in X$, existe un subconjunto conexo A_x tal que $x, x_0 \in A_x$.
- 4. Existe una familia $\{A_n\}_{n\in\mathbb{N}}$ de subconjuntos conexos de X, tal que $X=\bigcup_{n\in\mathbb{N}}A_n\ y\ A_n\cap A_{n+1}\neq\emptyset$, para cada $n\in\mathbb{N}$.

Teorema 3.1.8 Sean dos espacios topológicos (X, τ) e (Y, τ') . Entonces $(X \times Y, \tau \times \tau')$ es conexo sii (X, τ) e (Y, τ') son conexos.

Proposición 3.1.9 Sea un espacio topológico (X, τ) y $A \subset B \subset \overline{A}$. Si A es conexo, entonces B es conexo. En particular, \overline{A} es conexo.

Teorema 3.1.10 (Borsuk-Ulam) Sea una aplicación continua $f: \mathbb{S}^n \to \mathbb{R}$. Entonces existe $p \in \mathbb{S}^n$ tal que f(p) = f(-p).

Definición 3.1.11 Dado $x \in (X, \tau)$, se llama componente conexa del punto x a la unión de todos los subconjuntos conexos que contienen a x. Se denota por C_x .

Proposición 3.1.12 1. El conjunto C_x es conexo y es el mayor conexo que contiene al punto x.

- 2. El espacio X es conexo si y sólo si hay una única componente conexa.
- 3. Las componentes conexas determinan una partición de X.

4. Las componentes conexas son conjuntos cerrados.

Proposición 3.1.13 Sea un espacio topológico (X, τ) y una partición suya por subconjuntos conexos y abiertos $\{A_i; i \in I\}$. Entonces dicha familia de subconjuntos constituyen la partición de componentes conexas.

Proposición 3.1.14 Sean dos espacios topológicos (X, τ) e (Y, τ') y un punto $(x, y) \in X \times Y$. Entonces $C_{(x,y)} = C_x \times C_y'$.

Proposición 3.1.15 Sea $f:(X,\tau)\to (Y,\tau')$ una aplicación continua.

- 1. $f(C_x) \subset C'_{f(x)}$.
- 2. Si f es homeomorfismo, $f(C_x) = C'_{f(x)}$.

Corolario 3.1.16 El número de componentes conexas es un invariante topológico.

3.2 Compacidad y propiedades

Definición 3.2.1 Un recubrimiento por abiertos de un espacio (X, τ) es una familia $\{O_i; i \in I\}$ de abiertos tal que $X = \bigcup_{i \in I} O_i$. Un subrecubrimiento de un recubrimiento es un subconjunto del recubrimiento que a su vez también es un recubrimiento.

Definición 3.2.2 Un espacio (X, τ) es compacto si todo recubrimiento por conjuntos abiertos de X tiene un subrecubrimiento finito, es decir,

Si
$$X = \bigcup_{i \in I} O_i$$
, $O_i \in \tau$, entonces existe $n \in \mathbb{N}$ tal que $X = O_{i_1} \cup \ldots \cup O_{i_n}$.

Un subconjunto A de (X, τ) se dice que es compacto si $(A, \tau_{|A})$ es compacto.

Proposición 3.2.3 Sea $A \subset X$. Entonces A es compacto sii para cualquier familia de abiertos de X, $\{O_i; i \in I\}$, con $A \subset \bigcup_{i \in I} O_i$, existe $n \in \mathbb{N}$ tal que $A \subset O_{i_1} \cup \ldots \cup O_{i_n}$.

Teorema 3.2.4 El intervalo [0,1] es compacto.

Teorema 3.2.5 Son equivalentes:

- 1. El espacio (X, τ) es compacto.
- 2. Para cualquier familia de cerrados $\{F_i; i \in I\} \subset \mathcal{F}$ tal que $\bigcap_{i \in I} F_i = \emptyset$, existe $n \in \mathbb{N}$ tal que $\bigcap_{i=1}^n F_{i_i} = \emptyset$.
- 3. Sea β una base de abiertos. Entonces de todo recubrimiento de X por elementos de β , existe un subrecubrimiento finito.

Corolario 3.2.6 La compacidad se mantiene por aplicaciones continuas. En particular, es una propiedad topológica.

Proposición 3.2.7 Si (X, τ) es compacto y $F \in \mathcal{F}$, entonces F es compacto.

Proposición 3.2.8 Si (X, τ) es Hausdorff y $A \subset X$ es compacto, entonces $A \in \mathcal{F}$.

Corolario 3.2.9 En un espacio métrico, todo subconjunto compacto es cerrado y acotado.

Corolario 3.2.10 En un espacio topológico Hausdorff, la intersección de dos subconjuntos compactos es compacto.

Teorema 3.2.11 Sea $f: X \to Y$ una aplicación continua, X compacto e Y Hausdorff. Entonces:

- 1. La aplicación f es cerrada.
- 2. Si f es una aplicación biyectiva, entonces es un homeomorfismo.
- 3. Si f es una aplicación inyectiva, entonces es un embebimiento.

Teorema 3.2.12 Sean dos espacios topológicos (X, τ) , (Y, τ') . Entonces X e Y son compactos sii $X \times Y$ es compacto.

Teorema 3.2.13 (Heine-Borel) Los subconjuntos compactos de \mathbb{R}^n son los conjuntos cerrados y acotados.

Corolario 3.2.14 Sea $f: X \to \mathbb{R}$ una aplicación continua y X compacto. Entonces la aplicación f está acotada y alcanza un máximo y un mínimo

Corolario 3.2.15 Sea un espacio métrico (X, d), $x \in X$ y A un subconjunto compacto. Entonces existe $a \in A$ tal que d(x, A) = d(x, a).

Proposición 3.2.16 (Bolzano-Weiertrass) Sea un espacio compacto (X, τ) . Entonces todo subconjunto infinito de X posee un punto de acumulación.

Corolario 3.2.17 Todo subconjunto infinito y acotado de \mathbb{R}^n tiene un punto de acumulación.

Corolario 3.2.18 Si un espacio topológico es conexo (resp. compacto), cualquier cociente suyo también es conexo (resp. compacto).

Corolario 3.2.19 Sea una aplicación sobreyectiva $f:(X,\tau)\to (Y,\tau')$, donde (X,τ) es un espacio compacto $e(Y,\tau')$ es un espacio Hausdorff. Entonces X/R_f es homeomorfo a Y.