

EAC

МЕХАНИЗМЫ ИСПОЛНИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ОДНООБОРОТНЫЕ ФЛАНЦЕВЫЕ

МЭО ГРУППЫ 6,3-25 МЭОФ ГРУППЫ 6,3-25

ООО «Поволжская электротехническая компания»

Почтовый адрес:

Российская Федерация, Чувашская Республика, 428000, г. Чебоксары, а/я 163

Тел./факс: (8352) 57-05-16, 57-05-19

E-mail: info@piek.ru *Caŭm:* www.piek.ru

Co	одержание	стр.
1.	Описание и работа механизмов	4
1.1	Назначение механизмов	4
	Технические характеристики	4
1.3	Состав, устройство и работа механизмов	6
	Описание и работа составных частей механизма	6
1.5	Маркировка	6
2.	Описание и работа блока концевых выключателей	7
	Состав, устройство и работа блока БКВ	7
2.2	Настройка микровыключателей	7
3.	Использование механизмов по назначению	7
3.1	Эксплуатационные ограничения	7
3.2	Подготовка механизмов к использованию	7
4	Использование механизма	9
4.1	Использование механизма и контроль работоспособности	9
4.2	Возможные неисправности и способы их устранения	9
4.3	Меры безопасности при использовании механизма	. 10
5	Техническое обслуживание механизма	10
5.1	Общие указания	10
5.2	Порядок технического обслуживания механизма	10
6	Текущий ремонт механизма	10
6.1	Общие указания	10
7	Хранение	11
8.	Транспортирование	11
Q	Vтипизация	11

Приложения:

- А- Общий вид, габаритные и присоединительные размеры механизмов группы МЭО- 6,3
- А1- Общий вид, габаритные и присоединительные размеры механизмов группы МЭОФ- 6,3
- Б- Схема электрическая принципиальная
- В- Общий вид блока датчика БКВ

Схемы электрические принципиальные БКВ

ВНИМАНИЮ ПОТРЕБИТЕЛЕЙ!

Предприятие непрерывно проводит работы по совершенствованию конструкции механизмов, поэтому некоторые конструктивные изменения в руководстве могут быть не отражены.

Руководство по эксплуатации предназначено для ознакомления потребителя с механизмами исполнительными электрическими однооборотными МЭО-6,3 и с механизмами электрическими однооборотными фланцевыми МЭОФ-6,3 (в дальнейшем механизмы) с целью обеспечения полного использования их технических возможностей.

Работы по монтажу, регулировке и пуску механизма разрешается выполнять лицам, имеющим специальную подготовку и допуск к эксплуатации электроустановок напряжением до 1000 V.

Руководство по эксплуатации распространяется на типы механизмов, указанные в таблице 1. Во избежание поражения электрическим током при эксплуатации механизма должны быть осуществлены меры безопасности, изложенные в разделе 1.6 «Указание мер безопасности».

Приступать к работе с механизмами только после ознакомления с настоящим руководством по эксплуатации!

1. ОПИСАНИЕ И РАБОТА МЕХАНИЗМОВ

1.1 Назначение механизмов

Механизмы предназначены для привода запорно-регулирующей арматуры (шаровых, дисковых затворов и т. д.) в системах автоматического регулирования технологическими процессами в соответствии с командными сигналами, поступающими от регулирующих и управляющих устройств. Механизмы соответствуют техническим условиям ТУ 4218-002-70235294-2004.

Механизмы могут применяться в различных отраслях народного хозяйства: в газовой, нефтяной, металлургической, пищевой промышленности, в жилищно-коммунальном хозяйстве и т.д.

Механизмы имеют одинаковую конструктивную базу и отличаются способом присоединения к регулирующему органу арматуры. Механизмы МЭО устанавливаются отдельно от регулирующего органа и соединяются с ним посредством соединительной тяги. Механизмы МЭОФ устанавливаются непосредственно на трубопроводной арматуре и соединяются со штоком регулирующего органа посредством втулки.

Механизмы серийно изготавливаются в следующих климатических условиях по ГОСТ 15150-69.

Климатическое исполнение «У», категория размещения «2»:

- температура окружающего воздуха от минус 40 до плюс 50^{0} C;
- относительная влажность окружающего воздуха до 95% при температуре 35^0 С и более низких температурах без конденсации влаги.

Климатическое исполнение «Т» (тропическое), категория размещения «2» :

- температура окружающего воздуха от минус 10 до плюс 50^{0} C;
- относительная влажность окружающего воздуха до 100% при температуре 35^{0} С и более низких температурах с конденсацией влаги.

Степень защиты механизма IP65 по ГОСТ 14254-96 обеспечивает работу механизма при наличии в окружающей среде пыли и струй воды.

Механизмы не предназначены для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов, и во взрывоопасных средах.

Механизмы устойчивы и прочны к воздействию синусоидальных вибраций по группе исполнения VI ГОСТ 12997-84.

1.2Технические характеристики

Исполнения механизмов и их основные технические данные приведены в таблице 1.

1.2.1 Электрическое питание электродвигателя механизма:

- МЭО-6,3 осуществляется от однофазной сети переменного тока с номинальным напряжением 220V частотой 50 Hz;
- МЭОФ-6,3 осуществляется от трехфазной сети переменного тока с номинальным напряжением 380V частотой 50 Hz и однофазной сети с номинальным напряжением 220V частотой 50 Hz ;

Допустимые отклонения:

- напряжение питания от минус 15 до плюс 10%;
- частоты питания от минус 2 до плюс 2%.

При этом отклонения частоты и напряжения не должны быть противоположными.

Таблина 1

Условное обозначение механизма	Номинальный крутящий момент на выходном валу, N.m	Номинальное время полного хода выходного вала, s	Номинальный полный ход выходного вала, г	Потребляемая мощность W, не более	электродвигателя	Масса, не более, кg
	Группа Л	ЛЭО-6,3 (p	ычажные)			
M9O-12,5/63-0,63-99	12,5	63	0,63			
M9O-6,3/12,5-0,25-99	6,3	12,5	0,25			
MЭO-12,5/25-0,25-99	12,5	25	0,25	40	ДСР70-0,1-375	4,1
M9O-16/25-0,25-99	16	25	0,25			
MЭO-16/30-0,25-99	16	30	0,25			
M9O-25/160-0,63-99	25	160	0,63			
	Группа М	ЭОФ-6,3 (ф	ланцевые	:)		
МЭОФ-6,3/12,5-0,25-99К	6,3	12,5	0,25			
МЭОФ-12/12-0,25-08 (К)	12	12	0,25			
МЭОФ-12,5/25-0,25-08К	12,5	25	0,25		ДСР70-0,1-375	3,9
МЭОФ-16/30-0,25-99К	16	30	0,25	35		
МЭОФ-25/63-0,25-99К	25	63	0,25			
МЭОФ-25/25-0,25-08К	25	25	0,25			
МЭОФ-63/25-0,25-99К	63	25	0,25	80	ДСР70-0,25-375	4,2

Индекс **(К)** обозначает, что данный механизм изготавливается в двух исполнениях: в однофазном или трехфазном

- **1.2.2** Пусковой крутящий момент механизма при номинальном напряжении питания превышает номинальный момент не менее, чем в 1,7 раза.
 - **1.2.3** Люфт выходного вала механизма не более 1^0 .
- **1.2.4** Выбег выходного вала механизма при номинальном напряжении питания без нагрузки не более:
 - 1 % полного хода выходного вала для механизма с временем полного хода 10 s;
 - 0,5 % полного хода выходного вала для механизма с временем полного хода 25 s;
 - 0,25 % полного хода выходного вала для механизма с временем полного хода 63 s и более.
- **1.2.5** Механизмы обеспечивают фиксацию положения выходного вала при отсутствии напряжения питания.
- **1.2.6** Действительное время полного хода выходного вала механизма при номинальной противодействующей нагрузке, номинальном напряжении питания и нормальных условиях окружающей среды не должно отличаться от значении указанных в таблице 1 более чем на 10%.
- **1.2.7** Отклонение времени полного хода выходного вала механизмов от действительного значения при изменении напряжения питания от 85 до 110 % номинального значения или изменении температуры окружающей среды от минимального до максимального значения не должно превышать 20%.
 - 1.2.8 Краткие технические характеристики синхронного электродвигателя ДСР70:
 - **-** номинальный момент, N.m 0,1;
 - частота вращения, min-¹ 375;
 - потребляемая мощность, W 40;
 - **-** номинальный ток, A 0,18.
- **1.2.9** Усилие на ручке ручного привода при номинальной нагрузке на выходном валу не превышает 50 N/
 - **1.2.10** Значение допустимого уровня шума не превышает 80 dB по ГОСТ 12.1.003-83.
 - 1.2.11 Средний срок службы механизма 15 лет.

- 1.2.12 Средняя наработка на отказ не менее 80000 ч.
- **1.2.13** Механизм является восстанавливаемым, ремонтируемым, однофункциональным изделием.

1.3 Состав, устройство и работа механизмов

- **1.3.1**Механизмы состоит из следующих основных узлов (приложение A, A1): червячного редуктора, электродвигателя, блока сигнализации положения, сальникового ввода, винта заземления, ручного привода, рычага. В состав механизма МЭОФ вместо рычага входит фланец.
- **1.3.2** Принцип работы механизма заключается в преобразовании электрического сигнала, поступающего от регулирующего или управляющего устройства, во вращательное перемещение выходного вала.
- 1.3.3 Режим работы механизмов по ГОСТ Р 52776-2007 повторно-кратковременный реверсивный с частными пусками S4 продолжительностью включений (ПВ) до 25% и номинальной частотой включений до 630 в час при нагрузке на выходном валу в пределах от номинальной противодействующей до 0,5 номинального значения сопутствующей. Наибольшая продолжительность непрерывной работы механизма в реверсивном режиме не должна превышать 3 min. Минимальная величина импульса включения до полного разгона механизма составляет 20 ms.

Механизмы допускают работу в повторно-кратковременном реверсивном режиме с максимальной частотой включений 1200 в час, с (ПВ) до 5% в течение одного часа со следующим повторением не менее, чем через час. При реверсировании интервал времени между включением и выключением на обратное направление должен быть не менее 50 ms.

1.4 Описание и работа составных частей механизма

Редуктор является основным узлом, к которому присоединяются все остальные узлы, входящие в механизм.

В качестве электропривода механизма применён низкооборотный синхронный однофазный электродвигатель ДСР 70.

Механизм изготовлен с блоком концевых выключателей (далее блок). БКВ содержит два микровыключателя.

Ручное перемещение выходного вала механизма осуществляется вращением ручки ручного привода, установленного на конце червячного вала. Подключение внешних электрических цепей к механизму осуществляется с помощью клеммной колодоки X2.

Электрическая принципиальная схема приведена в приложении Б, Б1.

Для заземления корпуса механизма предусмотрен наружный зажим заземления с требованиями по ГОСТ 21130-75.

1.5 Маркировка механизма

- **1.5.1** Маркировка механизма соответствует ТР ТС 010-2011, ГОСТ 18620-86.
- 1.5.2 Механизм имеет табличку, на которой нанесены следующие данные:
- товарный знак предприятия изготовителя;
- условное обозначение механизма;
- номинальное напряжение питания, V;
- частота напряжения питания, Нz;
- надпись «Сделано в России» на русском языке;
- номер механизма по системе нумерации предприятия изготовителя;
- год изготовления;
- изображение единого знака обращения продукции на рынке государств членов Таможенного союза.
 - 1.5.3 На корпусе механизма рядом с заземляющем зажимом нанесен знак заземления.

2. ОПИСАНИЕ И РАБОТА БЛОКА КОНЦЕВЫХ ВЫКЛЮЧАТЕЛЕЙ (БКВ)

2.1 Состав, устройство и работа блока БКВ

Блок состоит из следующих основных узлов (приложение В): корпуса, на котором размещены клеммная колодка X1 для подключения конечных микровыключателей SA1 и SA2 и клеммной колодки X2 для подключения внешнего кабеля питания.

К клеммной колодке припаяны вывода контактов микровыключателей.

Механический указатель положения 2 крепится к валу винтом 1.

На корпусе закреплены два микровыключателя SA1 и SA2 с контактами. Микровыключатели предназначены для ограничения крайних положений выходного вала исполнительного механизма.

На выходном валу при помощи винта закреплены кулачки 4-1 и 4-2. Кулачки при повороте вала нажимают на контакты микровыключателей, вызывая их срабатывание. Кулачки могут быть установлены на заданный поворот вала.

2.2 Настройка микровыключателей.

Для обеспечения срабатывания микровыключателей на заданном угле поворота вала установить рабочий орган механизма в положение «ЗАКРЫТО» (приложение В), ослабить винт крепления кулачка 3 (открутив на 1-2 оборота). Переместить кулачок 4-2 воздействующего на контакт микровыключателя SA1 по часовой стрелке до нажатия на наклонную часть плеча контакта, вызывая срабатывание микровыключателя SA1, в этом положении винт затягивают.

При вращении вала по часовой стрелке взаимодействуют:

- микровыключатель SA1 – кулачок 4-2.

Установить рабочий орган механизма в положение «ОТКРЫТО» (приложение В), винт крепления кулачка 3 (открутив на 1-2 оборота).

Переместив кулачок 4-1 воздействующего на контакт микровыключателя SA2 против часовой стрелки до нажатия на наклонную часть плеча контакта, вызывая срабатывание микровыключателя SA2, в этом положении винт затягивают.

При вращении вала против часовой стрелке взаимодействуют:

- микровыключатель SA2 - кулачок 4-1

По окончании настройки:

- убедиться, что при подачи питающего напряжения 220V для МЭО и 380V для МЭОФ на клеммы 1, 2 и 3 колодки X2 происходит остановка привода при срабатывании микровыключателя SA1 «ЗАКРЫТО»;
- убедиться, что при подачи питающего напряжения на на клеммы 1, 2, 3 колодки X2 происходит остановка привода при срабатывании микровыключателя SA2 «ОТКРЫТО»;
 - установить шкалу указателя положения и затянуть винт1.
- проверить правильность настройки микровыключателей и выходного сигнала, переместив рабочий орган из положения «ОТКРЫТО» в положение «ЗАКРЫТО».

3 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

3.1 Эксплуатационные ограничения

- **3.1.1** Требования к месту установки механизма и параметрам окружающей среды являются обязательными как относящиеся к требованиям безопасности.
- **3.1.2** Продолжительность включений и число включений в час не должны превышать значений, установленных указанным режимом работы механизма (п.1.2.5).

3.2 Подготовка механизма к использованию

3.2.1 Меры безопасности при подготовке к использованию механизма

Эксплуатацию механизма разрешается проводить лицам, имеющим допуск к эксплуатации электроустановок напряжением до 1000 V и ознакомленным с настоящим руководством по эксплуатации

При этом необходимо руководствоваться требованиями «Межрегиональные правила по охране труда (правил безопасности) при эксплуатации электроустановок ПОТОРМ-016-2001РД 153-34.0-03.150-00", «Правил техники безопасности при эксплуатации электроустановок потребителей» (ПТБЭ):

- все работы по ремонту, настройке и монтажу механизма производить при полностью снятом напряжении питания;
- на щите управления необходимо укрепить табличку с надписью « НЕ включать работают люди»;
- работы, связанные с наладкой, обслуживанием механизма производить только исправным инструментом;
- при удалении старой смазки и промывке деталей и узлов механизма необходимо применять индивидуальные средства защиты;
- корпус механизма должен быть заземлен медным проводом сечением не менее 4 мм², место подсоединения провода должно быть защищено от коррозии нанесением консервационной смазки;

Эксплуатация механизма должна осуществляться при наличии инструкции по технике безопасности, учитывающей специфику соответствующего производства и утвержденной главным инженером предприятия-потребителя.

Эксплуатация механизмов с поврежденными деталями и другими неисправностями категорически запрещается: детали заменить или все изделие отправить на ремонт.

3.2.2 Объем и последовательность внешнего осмотра механизма

Осмотреть механизм и убедиться в отсутствии внешних повреждений. Проверить комплектность поставки механизма в соответствии с паспортом.

Перед установкой механизма на объекте необходимо его проверить. С помощью ручки ручного привода повернуть выходной вал механизма на несколько градусов от первоначального положения. Выходной вал должен вращаться плавно.

Проверить работу механизма в режиме реверса от электродвигателя.

Заземляющий провод сечением не менее 4 mm² подсоединить к тщательно зачищенному винту, затем затянуть винт. Для предохранения от коррозии нанести слой консистентной смазки.

Подать на привод механизма МЭО однофазное напряжение питания на контакты 1, 2 клеммной колодки X2 (приложение Б), при этом выходной вал механизма должен прийти в движение. Перебросить провод с контакта 2 на контакт 3, при этом выходной вал должен прийти в движение в другую сторону.

Подать на привод механизма МЭОФ трехфазное напряжение питания на контакты 1, 2, 3 клеммной колодки X2 (приложение Б1), при этом выходной вал механизма должен прийти в движение. Поменять местами концы любых 2-х проводов, подключенных к контактам 1, 2, 3 при этом выходной вал должен прийти в движение в другую сторону

Механизм может устанавливаться на объекте с любым пространственным расположением выходного вала.

3.2.3 Монтаж и настройка механизма

При установке механизма необходимо предусмотреть свободное место для обслуживания механизма, обеспечить возможность доступа к блоку БКВ и ручному приводу.

Прежде чем приступить к установке механизма на арматуру необходимо руководствоваться мерами безопасностями изложенными в разделе 3.2.1 руководства.

3.2.3.1 Порядок монтажа механизмов МЭО

Закрепить на механизме монтажные детали. С помощью ручки ручного привода на механизме, вращая маховик против часовой стрелки, установить кран в положение «ОТКРЫТО». На блоке БКВ совместить указатель положения 2 (Приложение В) со смотровым стеклом на крышке в положение «ОТКРЫТО» (в прозрачных частях крышки на плоской поверхности надпись «ОТКРЫТО» расположена в секторе зеленого цвета) и закрепить винтом 1. При вращении маховика ручного привода по часовой стрелке устанавливаем кран в положении «ЗАКРЫТО».

На блоке БКВ указатель положения соответственно установится в положение «ЗАКРЫТО» (в прозрачных частях крышки на плоской поверхности надпись «ЗАКРЫТО» расположена в секторе красного цвета).

Для ввода механизма в действие на месте эксплуатации необходимо произвести его настройку и регулировку в следующей последовательности:

- снять упоры, отрегулировать длину тяги, перемещая ручным приводом рычаг механизма на рабочем угле;
 - установить упоры в крайних положениях рабочего угла поворота рычага;
 - произвести настройку блока сигнализации положения (БКВ);
 - пробным включением проверить работоспособность механизма.

3.2.3.2 Порядок монтажа механизмов МЭОФ

Закрепить на механизме монтажные детали т.е кран, задвижку. С помощью ручки ручного привода на механизме, вращая маховик против часовой стрелки, установить кран в положение «ОТКРЫТО». На блоке БКВ совместить указатель положения 2 (Приложение В) со смотровым стеклом на крышке в положение «ОТКРЫТО» (в прозрачных частях крышки на плоской поверхности надпись «ОТКРЫТО» расположена в секторе зеленого цвета) и закрепить винтом 1. При вращении маховика ручного привода по часовой стрелке устанавливаем кран в положении «ЗАКРЫТО»

На блоке БКВ указатель положения соответственно установится в положение «ЗАКРЫТО» (в прозрачных частях крышки на плоской поверхности надпись «ЗАКРЫТО» расположена в секторе красного цвета).

Произвести настройку блока БКВ в соответствии с разделом 2 руководства.

Произвести монтаж заземления как указано в 3.2.2 и нанести консервационную смазку на винт заземления.

3.2.4 Электрическое подключение

Подключение внешних электрических цепей к механизму осуществляется через сальниковый ввод (приложение А) многожильным круглым гибким кабелем диаметром от 4 до 8 мм и сечением проводников каждой жилы должно быть в пределах от 0,5 до 1,5 mm². При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.

Для этого необходимо открутить гайку сальникового ввода пропустить провод через цанговый зажим. Подсоединить провод к клеммной колодке. Закрутить гайку сальникового ввода.

Проверить мегаомметром сопротивление изоляции электрических цепей, значение которых должно быть не менее $20~\mathrm{M}\Omega$, и сопротивление заземляющего устройства, к которому подсоединен механизм, значении должно быть не более $10~\Omega$.

Пробным включением проверить работоспособность механизма в обоих направлениях и правильность настройки блока БКВ.

4 ИСПОЛЬЗОВАНИЕ МЕХАНИЗМА

4.1 Использование механизма и контроль работоспособности

Механизмы являются восстанавливаемыми, ремонтопригодными, однофункциональными изделиями способными нормально функционировать без технического обслуживания и ремонта в течение 15000 часов при соблюдении правил эксплуатации.

Порядок контроля работоспособности механизма, необходимость, подстройки и регулировки, методики выполнения измерений определяются эксплуатирующей организацией.

4.2 Возможные неисправности и рекомендации по их устранению

Возможные неисправности и рекомендации по их устранению приведены в таблице 2.

Таблица 2

Наименование неисправности	Вероятная причина	Способ устранения
При включении механизм не работает.	Нарушена	Проверить электрическую
	электрическая цепь.	цепь.
	Не работает	Заменить
	электродвигатель	электродвигатель
При работе механизма происходит	Сбилась настройка	Произвести настройку
срабатывание микровыключателей раньше или	микровыключателей	микровыключателей
после прохождения крайних положений		согласно руководства
рабочего регулирующего органа		
трубопроводной арматуры.		
При работе блока выходной сигнал не	Неисправность	Проверить электрическую
изменяется или не срабатывают	блока	цепь, устранить
микровыключатели		неисправность

4.3 Меры безопасности при использовании механизма

При эксплуатации механизма не требуется соблюдение дополнительных мер безопасности, кроме общих, изложенных в 3.2.1

5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ МЕХАНИЗМА

5.1 Общие указания

- **5.1.1** При эксплуатации механизма необходимо проводить планово-предупредительные осмотры (далее ППО), периодичность которых определяется эксплуатирующей организацией.
- **5.1.2** Средний срок службы механизма 15 лет. При этом необходимо проводить плановопредупредительные ремонты (далее ППР). Межремонтный период не более 4 лет.

5.2 Порядок технического обслуживания механизма

При эксплуатации механизма должны поддерживаться его работоспособное состояние и выполнять все мероприятия по технике безопасности в полном соответствии с документами, указанными в п. 3.2.1.

В процессе эксплуатации механизмы должны подвергаться внешнему осмотру, профилактике, ревизии и ремонту. Эксплуатации механизмов с поврежденными деталями и другими неисправностями запрещается.

Во время профилактических осмотров необходимо производить следующие работы:

- после отключения механизма от источника питания очистить наружные поверхности механизма от грязи и пыли;
- проверить затяжку всех крепежных болтов и гаек. Болты и гайки должны быть равномерно затянуты;
- проверить состояние заземляющего устройства, в случае необходимости (при наличии ржавчины) заземляющие элементы должны быть очищены и после затяжки винта заземления вновь покрыты консистентной смазкой;
- проверить уплотнение сальникового ввода. При легком подергивании кабель не должен выдергиваться и проворачиваться в узле уплотнения.
 - проверить настройку блока БКВ, в случае необходимости произвести его подрегулировку.

6 ТЕКУЩИЙ РЕМОНТ МЕХАНИЗМА

6.1 Общие указания

Рекомендуется следующая последовательность проведения текущего ремонта:

- отключить механизм от источника питания;
- отсоединить механизм от арматуры, снять с места установки и последующие работы проводить в мастерской;
 - отсоединить блок сигнализации положения;
 - отсоединить двигатель;
 - открутив болты, снять крышку;
- разобрать редуктор. Произвести диагностику состояния корпуса редуктора, крышек, шестерен, валов, подшипников, шпоночных, резьбовых соединений.

Поврежденные детали заменить. Промыть все детали и высушить.

Подшипники, зубья шестерен, червяка, червячного колеса и поверхности трения подвижных частей редуктора смазать консистентной смазкой ЦИАТИМ-203 ГОСТ 8773-73. Расход смазки на один механизм составляет 50g.

Внимание! Попадание смазки на элементы блока БКВ не допускается.

- собрать механизм в обратной последовательности;
- проверить надежность креплений БКВ, электродвигателя.

После сборки механизма произвести обкатку. Режим работы при обкатке 1.3.

Проверить при установке на объекте максимальное требуемое усилие на рабочем органе с целью выявления возможной перегрузки механизма

7 ХРАНЕНИЕ

- 7.1 Условия хранения механизмов в упаковке по группе 3 или 5 по ГОСТ 15150-69.
- **7.2** Срок хранения механизма в неповрежденной упаковке предприятия- изготовителя не более 24 месяцев с момента изготовления.

8 ТРАНСПОРТИРОВАНИЕ

8.1 Механизмы должны транспортироваться в упаковке предприятия - изготовителя в крытых вагонах, универсальных контейнерах, крытых машинах, в трюмах речных судов и авиационным транспортом (в герметизированных отапливаемых отсеках) при условии хранения 5 по ГОСТ 15150-69, но при атмосферном давлении не ниже 36,6 кПа и температуре не ниже минус 50°С, или условия хранения 3 при морских перевозках в трюмах. Время транспортирования - не более 45 суток.

Механизмы транспортируются в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта.

8.2 Во время погрузочно-разгрузочных работ и транспортирования, упакованные механизмы не должны подвергаться резким ударам и воздействию атмосферных осадков.

Способ укладки механизмов на транспортное средство должен исключить их самопроизвольное перемещение.

9 УТИЛИЗАЦИЯ

Механизм не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем механизм.

ПРИЛОЖЕНИЕ Б Схемы электрические принципиальные МЭО(Ф)

Рисунок Б.1 Схема трехфазного механизма

SA1 – конечный выключатель ЗАКРЫТИЯ SA2 – конечный выключатель ОТКРЫТИЯ

Диаграмма работы микровыключателей

			'	
микро	контакт		Положение арматуры	
выклю- чатель	соедини- теля X1	открыто	промежуточное	закрыто
SA1	1–3			
SAT	2–3			
SA2	4-6			
SAZ	5–6			

Обоз-	Наименование	примечание	
M1	Электродвигатель однофазный ДСОР-70	220 B	
М	Электродвигатель однофазный ДСОР-70	380 B	
С	Кондесатор К73-54- 4,7мкФ-250В		
SA1,SA2	Микропереключатели alco VMS15	15A 250 VAC 1A 125 VDC	
X1	Разъем датчика БКВ		
X2	Разъем питания МЭО		

Приложение В (обязательное) Общий вид блока датчика БКВ

1– винт, 2– указатель положения, 3–винт крепления кулачка,

4-1-кулачок для настройки положения "ОТКРЫТО",

4-2- кулачок длянастройки положения "ЗАКРЫТО",

6-микровыключатель SA1-3AKPЫTO,

7-микровыключатель SA2-OTKPЫTO,

X1 –контакты микровыключателей

Х2 -контакты двигателя.

Диаграмма работы микровыключателей

микро	контакт	Положение арматуры		
выклю- чатель	соедини- теля X1	открыто	промежуточное	закрыто
CAA	1–3			
SA1	2–3			
CAO	4-6			
SA2	5–6			

Приложение А (обязательное) Общий вид, габаритные и присоединительные размеры механизмов группы МЭОФ-6,3-98 и группы МЭОФ-25-08

Приложение А1 (обязатенльное) Общий вид, габаритные и присоединительные размеры механизмов группы МЭОФ 6,3–98 и группы МЭОФ–25–08 (с внутренним выходным квадратным валом)

