Aluno do Embarcatech_37 no IFMA

Nome: Manoel Felipe Costa Furtado

Matrícula: 20251RSE.MTC0086

Residência Profissional em FPGA – Turma DELTA - 2025.2

Atividade – Referente ao capítulo 01 da unidade 05

Tema do Capítulo – Linguagem VHDL: Registradores

Prazo dia 21/09/2025 as 23:59

Objetivo: Desenvolver a capacidade de projetar, modelar, simular e implementar circuitos digitais por meio da linguagem VHDL (VHSIC Hardware Description Language), promovendo a compreensão dos conceitos de lógica digital e sua aplicação prática no desenvolvimento de sistemas embarcados e dispositivos programáveis, como FPGAs.

Enunciado: Desenvolver e simular um registrador paralelo de 8 bits utilizando flip-flops tipo D, onde cada flip-flop possui apenas entrada D e entrada de clock. O registrador deve permitir o armazenamento de dados paralelos e a atualização simultânea de todos os bits a cada pulso ascendente de clock.

Instruções:

Ação	Função										
1	Implementar o registrador paralelo de 8 bits em um simmulador, suando flipo-										
	flop										
	tipo D, com os seguintes requisitos:										
	Cada flip-flop deve ter entrada D, entrada de clock e saída Q e Q'.										
	O registrador deve possuir uma entrada de clock comum para todos os flip-flops.										
	 Os dados de entrada devem ser carregados de forma paralela em cada pulso ascendente de clock. 										
	 Comprove o seu funcionamento e apresente o relatório da implementação 										
2	Implementar em VHDL um registrador paralelo de 8 bits utilizando flip-flops										
	tipo D do item 1.										
3	Desenvolver um testbench que simule o comportamento do registrador,										
	fornecendo diferentes valores de entrada e analisando as saídas. Relate a										
	simulação e anexe os códigos .vhdl do registrador e do testebench.										

Solução

- GitHub: <u>Segunda_Fase_FPGA/Unidade_05/Cap_01</u>
- Link do Vídeo: https://youtu.be/dbzM9yc8OsM
- Link do Código Completo: <u>Unid 05 Cap 01.zip</u>
- 1) Implementar o registrador paralelo de 8 bits. Simular e usando Flip-Flops tipo D

É fundamental entender a estrutura do circuito em um nível lógico. Um registrador paralelo de 8 bits é composto por 8 flip-flops tipo D, todos compartilhando o mesmo sinal de clock no pulso ascendente.

Componentes: 8 Flip-Flops (FF) do tipo D.

 Cada flip-flop possui uma entrada D (Dado), uma entrada CLK (Clock) e uma saída Q (Saída principal) e Q' (Saída invertida).

Irei usar a nomenclatura em vetores para facilitar D_IN [7:0] 8 bits de entrada, 0 a 7. E outro vetor Q_OUT [7:0] 8 bits de saída, 0 a 7.

Entradas do Registrador:

- D_IN [7:0]: Um barramento de dados de 8 bits que serve como a entrada paralela.
 Cada linha deste barramento (D_IN[0], D_IN[1], ..., D_IN[7]) se conecta à entrada
 D do flip-flop correspondente.
- CLK: Um único sinal de clock que é conectado à entrada CLK de todos os 8 flipflops simultaneamente. Isso garante que todos os bits sejam atualizados ao mesmo tempo.

Saídas do Registrador:

Q_OUT [7:0]: Um barramento de dados de 8 bits que representa a saída paralela.
 Cada linha deste barramento (Q_OUT[0], Q_OUT[1], ..., Q_OUT[7]) é conectada à saída Q do flip-flop correspondente.

Na imagem a seguir mostra um exemplo parar 3 bits, iremos construir em VHDL para 8 bits. Esses dados podem vir de circuitos combinacionais diversos ou de outros registradores. Tudo se movimenta de acordo com a frequência do Clock, no pulso ascendente.

Transferência Paralela de Dados

- Além do armazenamento em si, pode-se realizar a transferência paralela de dados de um registrador para outro;
- No diagrama à esquerda, a transferência dos dados seria realizada a cada borda de subida do sinal de clock ligado ao segundo registrador.

Esta operação síncrona é a base para o armazenamento de dados em sistemas digitais.

Comprovação de Funcionamento

O princípio de funcionamento é o seguinte:

- 1) O valor a ser armazenado é colocado no barramento de entrada D_IN.
- 2) Enquanto o sinal de CLK está em nível baixo ou alto (estável), o valor na saída Q_OUT permanece inalterado, mantendo o dado que foi armazenado no pulso de clock anterior.
- 3) No exato momento em que o CLK transita de nível baixo para nível alto (**borda de subida**), cada flip-flop "captura" o valor presente em sua entrada D e o transfere para sua saída Q.
- 4) Como todos os flip-flops recebem o mesmo sinal de clock, todos os 8 bits de D_IN são "fotografados" e armazenados simultaneamente, aparecendo na saída Q_OUT.

Exemplo de Simulação:

- Tempo t0: D_IN = 10101010, Q_OUT = 00000000 (estado inicial).
- Tempo t1 (ocorre uma borda de subida no CLK): O valor de D_IN (10101010) é carregado no registrador. A saída Q_OUT se torna 10101010.
- Tempo t2: O valor de D_IN muda para 11110000. A saída Q_OUT permanece 10101010, pois ainda não houve uma nova borda de subida no clock.
- Tempo t3 (ocorre a próxima borda de subida no CLK): O novo valor de D_IN (11110000) é carregado. A saída Q_OUT agora se torna 11110000.

2) Código em VHDL

Esse Registrador é do tipo PIPO (Parallel In / Parallel Out).

A justificativa é a seguinte:

- Parallel In (Entrada Paralela): O seu registrador possui a porta D: IN STD_LOGIC_VECTOR(7 DOWNTO 0). Isso significa que ele recebe todos os 8 bits de dados de uma só vez, em paralelo.
- Parallel Out (Saída Paralela): A porta de saída Q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) disponibiliza todos os 8 bits armazenados simultaneamente.

```
- Atividade: Unidade 05, Capítulo 01
-- Data: 21/09/2025
-- Arquivo: unid_05_cap_01.vhd
-- Versão:
-- A cláusula USE importa o pacote std logic 1164, que define os tipos
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
-- Define a interface pública do nosso componente, ou seja, suas portas de
ENTITY unid_05_cap_01 IS
       CLK : IN STD_LOGIC;
       D : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
       Q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
END ENTITY unid_05_cap_01;
-- ARQUITETURA (ARCHITECTURE)
 - definido na entidade 'unid_05_cap_01'.
ARCHITECTURE behavioral OF unid 05 cap 01 IS
```

```
BEGIN

-- PROCESSO (PROCESS) SÍNCRONO

-- Um processo é um bloco de código sequencial que é sensível a mudanças
-- nos sinais de sua lista de sensibilidade (neste caso, apenas 'CLK').
-- Por ser sensível apenas ao clock, ele modela um comportamento síncrono.
process(CLK)

BEGIN

-- Detecção de borda de subida do clock.
-- A função 'rising_edge()' retorna verdadeiro apenas no instante em
-- que o sinal CLK transita de '0' para '1'.
-- Esta é a condição que dispara o armazenamento de dados.

IF rising_edge(CLK) THEN
-- Atribuição síncrona.
-- O valor presente no barramento de entrada 'D' é amostrado e
-- atribuído ao barramento de saída 'Q'. Esta operação simula
-- o comportamento de 8 flip-flops tipo D operando em paralelo.
Q <= D;
END IF;
END PROCESS;
```

3) Código em VHDL para a Simulação, testbench

```
-- Atividade: Unidade 05, Capítulo 01
-- Autor: Manoel Felipe Costa Furtado
-- Data: 21/09/2025
-- Arquivo: unid_05_cap_01_tb.vhd
-- Versão: 1.0
-- Descrição: Testbench para o registrador paralelo de 8 bits (unid_05_cap_01).
-- Este código gera os sinais de clock e de dados para estimular
-- o componente sob teste e permitir a verificação de seu
-- funcionamento em um simulador.
-- Biblioteca padrão IEEE.
-- A cláusula USE importa o pacote std_logic_1164, que define os tipos
-- STD_LOGIC e STD_LOGIC_VECTOR, essenciais para a modelagem de hardware.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- A entidade de um testbench é tipicamente vazia, pois ele não possui
-- portas de entrada ou saída. Ele é o ambiente de simulação de mais alto nível.

ENTITY unid_05_cap_01_tb IS
END ENTITY unid_05_cap_01_tb;
```

```
Arquitetura de simulação para o testbench.
ARCHITECTURE simulation OF unid_05_cap_01_tb IS
   COMPONENT unid_05_cap_01
           Q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
   SIGNAL s_clk : STD_LOGIC := '0'; -- Sinal para gerar o clock
   SIGNAL s_d : STD_LOGIC_VECTOR(7 DOWNTO 0) := (OTHERS => '0'); -- Sinal para os dados de entrada (DUT)
   SIGNAL s_q : STD_LOGIC_VECTOR(7 DOWNTO 0); -- Sinal para observar a saída (DUT)
   CONSTANT CLK_PERIOD : TIME := 10 ns; -- Define o período do clock em 10 ns (Frequência = 100 MHz)
   -- Aqui, criamos uma instância do nosso registrador e conectamos suas portas
   dut_instance : unid_05_cap_01
          CLK => s_clk,
           D => s_d,
           Q => s_q
   clk_process : PROCESS
       s clk <= '0';
       WAIT FOR CLK_PERIOD / 2; -- Clock fica em nível baixo por 5 ns
       s_clk <= '1';
       WAIT FOR CLK_PERIOD / 2; -- Clock fica em nível alto por 5 ns
   END PROCESS clk_process;
    -- Este processo gera a sequência de valores de entrada para testar
   stimulus process : PROCESS
```

```
-- Aguarda 1 ns no início para não coincidir com o tempo 0.
   WAIT FOR 1 ns:
   s_d <= "111111111";
   WAIT UNTIL rising_edge(s_clk);
   s d <= "000000000";
   WAIT UNTIL rising_edge(s_clk);
   s_d <= "10101010";
   WAIT UNTIL rising_edge(s_clk);
   s_d <= "01010101";
   WAIT UNTIL rising_edge(s_clk);
   s_d <= "11110000";
   WAIT UNTIL rising_edge(s_clk);
   s_d <= "11001001";
   WAIT UNTIL rising_edge(s_clk);
   -- Aguarda a próxima borda de subida do clock (em t=60ns).
   -- Fim dos estímulos.
END PROCESS stimulus_process;
```

ND ARCHITECTURE simulation;

4) Compilação

```
# Arquivo: comandos.txt
# Descrição: Roteiro de comandos para análise, elaboração, execução e
            visualização da simulação do registrador de 8 bits.
# ETAPA 1: ANÁLISE (COMPILAÇÃO)
# O comando 'ghdl -a' (analisar) verifica a sintaxe dos arquivos VHDL e, se
# É necessário analisar primeiro as dependências (o design) e depois os arquivos
# que dependem delas (o testbench).
ghdl -a unid_05_cap_01.vhd
ghdl -a unid 05 cap 01 tb.vhd
# ETAPA 2: ELABORAÇÃO
# O comando 'ghdl -e' (elaborar) constrói o modelo de simulação. Ele pega a
# entidade de mais alto nível (nosso testbench, 'unid_05_cap_01_tb'), e a "conecta"
# com todas as suas instâncias de componentes (nosso registrador, 'unid_05_cap_01'),
ghdl -e unid_05_cap_01_tb
# ETAPA 3: EXECUÇÃO (SIMULAÇÃO)
# O comando 'ghdl -r' (rodar) executa a simulação.
# A linha abaixo está comentada com '#' porque ela rodaria a simulação por
# tempo indefinido, gerando um arquivo .vcd gigantesco.
# ghdl -r unid 05 cap 01 tb --vcd=waveform.vcd
# Esta é a linha correta. Ela executa a simulação e inclui dois argumentos importantes:
# --vcd=waveform.vcd : instrui o simulador a salvar todas as mudanças de
                      sinais em um arquivo chamado 'waveform.vcd'.
# --stop-time=100ns : instrui o simulador a parar automaticamente após
                       100 nanosegundos, evitando o loop infinito.
ghdl -r unid_05_cap_01_tb --vcd=waveform.vcd --stop-time=80ns
# ETAPA 4: VISUALIZAÇÃO
# O comando 'gtkwave' abre o programa de visualização de formas de onda,
# carregando o arquivo 'waveform.vcd' gerado na etapa anterior.
# Nele, você pode analisar graficamente o comportamento dos sinais ao longo do tempo.
gtkwave waveform.vcd
```

5) Simulação

O resultado esperado em uma visualização de formas de onda seria:

1. Geração de Clock: O sinal s_clk oscila continuamente entre '0' e '1' a cada 5 ns, criando um clock com período de 10 ns.

2. Estímulos e Respostas:

A simulação irá demonstrar o comportamento síncrono do registrador através de 6 testes distintos. A saída s_q só deve mudar de valor no exato instante da borda de subida do clock (rising_edge).

- Início (t=0ns): O sinal de entrada s_d é inicializado em "00000000". A saída s_q está em um estado indefinido (UUUUUUUU) ou zerado, pois nenhum pulso de clock ocorreu ainda.
- **t=1ns:** A entrada s_d muda para o primeiro valor de teste, "11111111". A saída s_q permanece inalterada.
- Na borda de subida em t=10ns: O registrador captura o valor de s_d. A saída s_q é atualizada para "11111111".
- Na borda de subida em t=20ns: O segundo valor de teste ("00000000") é carregado. A saída s_q é atualizada para "00000000".
- Na borda de subida em t=30ns: O terceiro valor de teste ("10101010") é carregado. A saída s_q é atualizada para "10101010".
- Na borda de subida em t=40ns: O quarto valor de teste ("01010101") é carregado. A saída s_q é atualizada para "01010101".
- Na borda de subida em t=50ns: O quinto valor de teste ("11110000") é carregado. A saída s_q é atualizada para "11110000".
- Na borda de subida em t=60ns: O sexto e último valor de teste ("11001001") é carregado. A saída s_q é atualizada para "11001001".
- De t=60ns a t=80ns (fim da simulação): Nenhum novo valor é aplicado a s_d.
 A saída s_q permanece estável em "11001001" pelos ciclos de clock restantes, demonstrando a capacidade de armazenamento do registrador.

Este comportamento, onde a saída s_q reflete a entrada s_d somente após uma borda de subida do clock, confirma que o registrador paralelo de 8 bits foi implementado e verificado corretamente, operando de forma síncrona como esperado.

Nas imagens a seguir podemos verificar que a simulação foi um sucesso.

Signals	Waves												
Time	-		ns	20	ns		30 ns	40	ns	50	ns		ns
clk=1													
d[7:0] =01010101	0+ 11111111	00000000		10101010		01010101		11110000		11001001			
d[7] =0													
d[6] =1													
d[5] =0													
d[4] =1													
d[3] =0													
d[2] =1													
d[1] =0													
d[0] =1													
q[7:0] =10101010	uuuuuuu	11111111		00000000		10101010		01010101		11110000		11001001	
q[7] =1	σ												
q[6] =0	υ												
q[5] =1	υ												
q[4]=0	U												
q[3] =1	υ												
q[2]=0	U												
q[1] =1	Ū												
d[0] =0	U												

Signals	Waves													
Time		10	ns	20 ns		30	ns		40 ns	50	ns	60	ns	
clk=1														
d[7:0] =11110000	0+11111111	00000000	10	101010	0.	1010101		11110000		11001001				
d[5] =1														
d[3] =0														
d[1] =0														
q[7:0] =01010101	uuuuuuuu	11111111	00	000000	1	101010		01010101		11110000		11001001		
	U													
q[6] =1	U													
q[5] =0	U													
q[4] =1	U													
	U													
q[2] =1	U													
	U													
q[0] =1	U													

Signals	Waves													
Time		10	ns	20	ns	30	ns	40	ns		50 ns		0 ns	
clk=1														
d[7:0] =11001001	0+ 11111111	00000000		10101010		01010101		11110000		11001001				
d[7] =1														
d[5] =0														
q[7:0] =11110000	uuuuuuuu	11111111		00000000		10101010		01010101		11110000		11001001		
	υ													
	υ													
	υ													
q[4]=1	υ													
	υ													
	σ													
	σ													
	U													

Signals	Waves													
Time		10 n	s	20 ns			ns	40	ns	50	ns		60 ns	
c1k=1														
d[7:0] =11001001	0+ 11111111	00000000		10101010	010	10101		11110000		11001001				
d[7] =1														
d[6] =1														
d[5] =0														
d[4] =0														
d[3] =1														
d[2] =0														
d[1] =0														
d[0] =1														
q[7:0] =11001001	uuuuuuu	11111111		00000000	101	01010		01010101		11110000		11001001		
q[7] =1	υ													
q[6]=1	U													
q[5] =0	υ													
q[4]=0	U													
q[3] =1	υ													
q[2] =0	υ													
q[1] =0	υ													
q[0] =1	υ													