Natural Language Processing with Deep Learning CS224N/Ling284

Christopher Manning

Lecture 3: Neural net learning: Gradients by hand (matrix calculus) and algorithmically (the backpropagation algorithm)

6. Deep Learning Classification: Named Entity Recognition (NER)

The task: find and classify names in text, by labeling word tokens, for example:

```
Last night , Paris Hilton wowed in a sequin gown .

PER PER

Samuel Quinn was arrested in the Hilton Hotel in Paris in April 1989 .

PER PER

LOC LOC DATE DATE

(PERSON)
```

- Possible uses:
 - Tracking mentions of particular entities in documents
 - For question answering, answers are usually named entities
 - Relating sentiment analysis to the entity under discussion
- Often followed by Entity Linking/Canonicalization into a Knowledge Base such as Wikidata

Simple NER: Window classification using binary logistic classifier

• Idea: classify each word in its context window of neighboring words

CONTEXT! PARIS CAN BE
BOTH A PER AND A LOC.

OF WORD VECTORS

WE NEED TO USE THE

- Train logistic classifier on hand-labeled data to classify center word {yes/no} for each class based on a concatenation of word vectors in a window
 - Really, we usually use multi-class softmax, but we're trying to keep it simple ©
- **Example:** Classify "Paris" as +/— location in context of sentence with window length 2:

- Resulting vector $x_{window} = x \in R^{5d}$
- To classify all words: run classifier for each class on the vector centered on each word in the sentence

Classification review and notation

Supervised learning: we have a training dataset consisting of samples

$$\{x_i, y_i\}_{i=1}^N$$

- x_i are inputs, e.g., words (indices or vectors!), sentences, documents, etc.
 - Dimension d
- y_i are labels (one of C classes) we try to predict, for example:
 - classes: sentiment (+/-), named entities, buy/sell decision
 - other words
 - later: multi-word sequences

Neural classification

- Typical ML/stats softmax classifier: $p(y|x) = \frac{\exp(w_y.x)}{\sum_{c=1}^{C} \exp(W_c.x)}$
- Learned parameters θ are just elements $\angle c=1$ $\stackrel{\frown}{\smile} C=1$ of W (not input representation x, which has sparse symbolic features)
- Classifier gives linear decision boundary, which can be limiting

- A neural network classifier differs in that:
 - We learn both W and (distributed!) representations for words
 - The word vectors x re-represent one-hot vectors, moving them around in an intermediate layer vector space, for easy classification with a (linear) softmax classifier
 - Conceptually, we have an embedding layer: x = Le
 - We use deep networks—more layers—that let us re-represent and compose our data multiple times, giving a non-linear classifier

But typically, it is linear relative to the pre-final layer representation

Softmax classifier

$$p(y|x) = \frac{\exp(W_y.x)}{\sum_{c=1}^{C} \exp(W_c.x)}$$

Again, we can tease apart the prediction function into three steps:

1. For each row y of W, calculate dot product with x:

$$W_{y} \cdot x = \sum_{i=1}^{d} W_{yi} x_i = f_y$$

2. Apply softmax function to get normalized probability:

$$p(y|x) = \frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)} = \operatorname{softmax}(f_y)$$

- 3. Choose the y with maximum probability
- For each training example (x,y), our objective is to maximize the probability of the correct class y or we can minimize the negative log probability of that class:

$$-\log p(y|x) = -\log \left(\frac{\exp(f_y)}{\sum_{c=1}^{C} \exp(f_c)}\right)$$

NER: Binary classification for center word being location

We do supervised training and want high score if it's a location

7. Neural computation

Non-linearities, old and new

logistic ("sigmoid")

$$f(z) = \frac{1}{1 + \exp(-z)}$$

tanh

$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

hard tanh

HardTanh(x) =
$$\begin{cases} -1 & \text{if } x < -1 \\ x & \text{if } -1 <= x <= 1 \\ 1 & \text{if } x > 1 \end{cases}$$

(Rectified Linear Unit)
ReLU

$$ReLU(z) = max(z, 0)$$

Leaky ReLU /
Parametric ReLU

tanh is just a rescaled and shifted sigmoid (2 × as steep, [-1,1]): tanh(z) = 2logistic(2z) - 1

Logistic and tanh are still used (e.g., logistic to get a probability)

However, now, for deep networks, the first thing to try is ReLU: it trains quickly and performs well due to good gradient backflow.

ReLU has a negative "dead zone" that recent proposals mitigate

GELU is frequently used with Transformers (BERT, RoBERTa, etc.)

Swish arXiv:1710.05941swish(x) = $x \cdot logistic(x)$

GELU <u>arXiv:1606.08415</u> GELU(*x*)

$$= x \cdot P(X \le x), X \sim N(0,1)$$

$$\approx x \cdot \log \operatorname{istic}(1.702x)$$

Non-linearities (i.e., "f" on previous slide): Why they're needed

- Neural networks do function approximation,
 e.g., regression or classification
 - Without non-linearities, deep neural networks can't do anything more than a linear transform
 - Extra layers could just be compiled down into a single linear transform: W_1 W_2 x = Wx
 - But, with more layers that include non-linearities, they can approximate any complex function!

Training with "cross entropy loss" – you use this in PyTorch!

- Until now, our objective was stated as to maximize the probability of the correct class y or equivalently we can minimize the negative log probability of that class
- Now restated in terms of cross entropy, a concept from information theory
- Let the true probability distribution be p; let our computed model probability be q
- The cross entropy is: $H(p,q) = -\sum_{c=1}^C p(c) \log q(c)$
- Assuming a ground truth (or true or gold or target) probability distribution that is 1 at the right class and 0 everywhere else, p = [0, ..., 0, 1, 0, ..., 0], then:
- Because of one-hot p, the only term left is the negative log probability of the true class y_i : $-\log p(y_i|x_i)$

Cross entropy can be used in other ways with a more interesting *p*, but for now just know that you'll want to use it as the loss in PyTorch

Remember: Stochastic Gradient Descent

Update equation:

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

 α = step size or learning rate

i.e., for each parameter:
$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial J(\theta)}{\partial \theta_j^{old}}$$

In deep learning, θ includes the data representation (e.g., word vectors) too!

How can we compute $\nabla_{\theta} J(\theta)$?

- 1. By hand
- 2. Algorithmically: the backpropagation algorithm

Lecture Plan

Lecture 4: Gradients by hand and algorithmically

- 1. Introduction (10 mins)
- 2. Matrix calculus (35 mins)
- 3. Backpropagation (35 mins)

Computing Gradients by Hand

- Matrix calculus: Fully vectorized gradients
 - "Multivariable calculus is just like single-variable calculus if you use matrices"
 - Much faster and more useful than non-vectorized gradients
 - But doing a non-vectorized gradient can be good for intuition; recall the first lecture for an example
 - Lecture notes and matrix calculus notes cover this material in more detail
 - You might also review Math 51, which has an online textbook: http://web.stanford.edu/class/math51/textbook.html

Gradients

Given a function with 1 output and 1 input

$$f(x) = x^3$$

It's gradient (slope) is its derivative

$$\frac{df}{dx} = 3x^2$$

"How much will the output change if we change the input a bit?"

At x = 1 it changes about 3 times as much: $1.01^3 = 1.03$

At x = 4 it changes about 48 times as much: $4.01^3 = 64.48$

Gradients

Given a function with 1 output and n inputs

$$f(\mathbf{x}) = f(x_1, x_2, ..., x_n)$$

 Its gradient is a vector of partial derivatives with respect to each input

$$\frac{\partial f}{\partial \boldsymbol{x}} = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n} \right]$$

Jacobian Matrix: Generalization of the Gradient

Given a function with *m* outputs and *n* inputs

$$f(x) = [f_1(x_1, x_2, ..., x_n), ..., f_m(x_1, x_2, ..., x_n)]$$

It's Jacobian is an m x n matrix of partial derivatives

$$\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \qquad \begin{bmatrix} \left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)_{ij} = \frac{\partial f_i}{\partial x_j} \end{bmatrix}$$

$$\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)_{ij} = \frac{\partial f_i}{\partial x_j}$$

Chain Rule

For composition of one-variable functions: multiply derivatives

$$z = 3y$$

$$y = x^{2}$$

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = (3)(2x) = 6x$$

For multiple variables functions: multiply Jacobians

$$egin{aligned} m{h} &= f(m{z}) \ m{z} &= m{W} m{x} + m{b} \ m{\partial h} &= m{\partial h} m{\partial z} \ m{\partial z} &= ... \end{aligned}$$

Example Jacobian: Elementwise activation Function

$$m{h} = f(m{z}), ext{ what is } rac{\partial m{h}}{\partial m{z}}? \qquad \qquad m{h}, m{z} \in \mathbb{R}^n \ h_i = f(z_i)$$

$$oldsymbol{h}, oldsymbol{z} \in \mathbb{R}^n$$

$$\left(\frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}}\right)_{ij} = \frac{\partial h_i}{\partial z_j} = \frac{\partial}{\partial z_j} f(z_i) \qquad \text{definition of Jacobian}$$

$$= \begin{cases} f'(z_i) & \text{if } i = j \\ 0 & \text{if otherwise} \end{cases} \qquad \text{regular 1-variable deri}$$

regular 1-variable derivative

$$rac{\partial m{h}}{\partial m{z}} = \left(egin{array}{ccc} f'(z_1) & & 0 \ & \ddots & & \\ 0 & f'(z_n) \end{array}
ight) = \mathrm{diag}(m{f}'(m{z}))$$

Other Jacobians

$$egin{align*} rac{\partial}{\partial oldsymbol{x}}(oldsymbol{W}oldsymbol{x}+oldsymbol{b}) &= oldsymbol{W} \ rac{\partial}{\partial oldsymbol{b}}(oldsymbol{W}oldsymbol{x}+oldsymbol{b}) &= oldsymbol{I} \ (ext{Identity matrix}) \ rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{h}) &= oldsymbol{h}^{oldsymbol{T}} \ rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{h}) &= oldsymbol{h}^T \ rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{u}^Toldsymbol{h}) &= oldsymbol{h}^T \ rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{u}^Toldsymbol{u}) &= oldsymbol{h}^T \ rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{u}^Toldsymbol{u}) &= oldsymbol{h}^T \ rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{u}^Toldsymbol{u}) &= oldsymbol{h}^T \ rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{u$$

Back to our Neural Net!

- Let's find $\frac{\partial s}{\partial \boldsymbol{b}}$
 - Really, we care about the gradient of the loss J_t but we will compute the gradient of the score for simplicity

1. Break up equations into simple pieces

$$s = \boldsymbol{u}^T \boldsymbol{h}$$
 $s = \boldsymbol{u}^T \boldsymbol{h}$ $h = f(\boldsymbol{x})$ $\boldsymbol{z} = \boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}$ \boldsymbol{x} (input) \boldsymbol{x} (input)

Carefully define your variables and keep track of their dimensionality!

3. Write out the Jacobians

$$s = u^{T}h$$
 $h = f(z)$
 $z = Wx + b$
 $mathbb{a}$
 $mathbb{a}$
 $mathbb{b}$
 $mathbb{a}$
 $mathbb{b}$
 $mathbb{a}$
 $mathbb{b}$
 $mathbb{b}$
 $mathbb{a}$
 $mathbb{b}$
 $mathbb{b}$
 $mathbb{c}$
 $mathbb{b}$
 $mathbb{d}$
 mat

Useful Jacobians from previous slide

$$egin{aligned} rac{\partial}{\partial oldsymbol{u}}(oldsymbol{u}^Toldsymbol{h}) &= oldsymbol{h}^T \ rac{\partial}{\partial oldsymbol{z}}(f(oldsymbol{z})) &= \mathrm{diag}(f'(oldsymbol{z})) \ rac{\partial}{\partial oldsymbol{b}}(oldsymbol{W}oldsymbol{x} + oldsymbol{b}) &= oldsymbol{I} \end{aligned}$$

= Hadamard product =
 element-wise multiplication
 of 2 vectors to give vector

 $= oldsymbol{u}^T \circ f'(oldsymbol{z})$

Re-using Computation

- Suppose we now want to compute $\frac{\partial s}{\partial \boldsymbol{W}}$
 - Using the chain rule again:

$$\frac{\partial s}{\partial \boldsymbol{W}} = \boldsymbol{\delta} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{W}}$$

$$\frac{\partial s}{\partial \boldsymbol{b}} = \boldsymbol{\delta} \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{b}} = \boldsymbol{\delta}$$

$$\boldsymbol{\delta} = \frac{\partial s}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{z}} = \boldsymbol{u}^T \circ f'(\boldsymbol{z})$$

 δ is the upstream gradient ("error signal")

Derivative with respect to Matrix: Output shape

- What does $\frac{\partial s}{\partial oldsymbol{W}}$ look like? $oldsymbol{W} \in \mathbb{R}^{n imes m}$
- 1 output, nm inputs: 1 by nm Jacobian?
- VERY LONG . Inconvenient to then do $\theta^{new}=\theta^{old}-\alpha\nabla_{\theta}J(\theta)$
 - Instead, we leave pure math and use the shape convention: the shape of the gradient is the shape of the parameters!

SAMQ SHAPE SO WE
$$\textbf{AN DO THE} \qquad \textbf{SO } \frac{\partial s}{\partial \boldsymbol{W}} \text{ is } n \text{ by } r$$
 Substruction

Same shape so we and do the so
$$\frac{\partial s}{\partial W}$$
 is n by m :
$$\begin{bmatrix} \frac{\partial s}{\partial W_{11}} & \dots & \frac{\partial s}{\partial W_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial s}{\partial W_{n1}} & \dots & \frac{\partial s}{\partial W_{nm}} \end{bmatrix}$$

Derivative with respect to Matrix

- What is $\frac{\partial s}{\partial oldsymbol{W}} = oldsymbol{\delta} \frac{\partial oldsymbol{z}}{\partial oldsymbol{W}}$
 - $oldsymbol{\delta}$ is going to be in our answer
 - The other term should be $oldsymbol{x}$ because $oldsymbol{z} = oldsymbol{W} oldsymbol{x} + oldsymbol{b}$
- Answer is: $\frac{\partial s}{\partial oldsymbol{W}} = oldsymbol{\delta}^T oldsymbol{x}^T$

 δ is upstream gradient ("error signal") at z x is local input signal

Why the Transposes?

$$\frac{\partial s}{\partial \boldsymbol{W}} = \boldsymbol{\delta}^T \quad \boldsymbol{x}^T \qquad \text{This is what we want to produce ultimatly} \\ [n \times m] \quad [n \times 1][1 \times m] \\ = \begin{bmatrix} \delta_1 \\ \vdots \\ \delta_n \end{bmatrix}[x_1, ..., x_m] = \begin{bmatrix} \delta_1 x_1 & ... & \delta_1 x_m \\ \vdots & \ddots & \vdots \\ \delta_n x_1 & ... & \delta_n x_m \end{bmatrix}$$

- Hacky answer: this makes the dimensions work out!
 - Useful trick for checking your work!
- Full explanation in the lecture notes
 - Each input goes to each output you want to get outer product

Deriving local input gradient in backprop

• For $\frac{\partial z}{\partial w}$ in our equation:

$$\frac{\partial S}{\partial W} = \delta \frac{\partial \mathbf{z}}{\partial W} = \delta \frac{\partial}{\partial W} (Wx + b)$$

- Let's consider the derivative of a single weight W_{ii}
- W_{ij} only contributes to z_i
 - For example: W_{23} is only used to compute z_2 not z_1

$$\frac{\partial z_i}{\partial W_{ij}} = \frac{\partial}{\partial W_{ij}} \boldsymbol{W}_{i.} \boldsymbol{x} + b_i$$
$$= \frac{\partial}{\partial W_{ij}} \sum_{k=1}^{d} W_{ik} x_k = x_j$$

What shape should derivatives be?

- Similarly, $\frac{\partial s}{\partial \boldsymbol{b}} = \boldsymbol{h}^T \circ f'(\boldsymbol{z})$ is a row vector
 - But shape convention says our gradient should be a column vector because b is a column vector ...
- Disagreement between Jacobian form (which makes the chain rule easy) and the shape convention (which makes implementing SGD easy)
 - We expect answers in the assignment to follow the shape convention
 - But Jacobian form is useful for computing the answers

What shape should derivatives be?

Two options for working through specific problems:

- 1. Use Jacobian form as much as possible, reshape to follow the shape convention at the end:
 - What we just did. But at the end transpose $\frac{\partial s}{\partial m{b}}$ to make the derivative a column vector, resulting in $m{\delta}^T$
- 2. Always follow the shape convention
 - Look at dimensions to figure out when to transpose and/or reorder terms
 - The error message δ that arrives at a hidden layer has the same dimensionality as that hidden layer

3. Backpropagation

We've almost shown you backpropagation

It's taking derivatives and using the (generalized, multivariate, or matrix) chain rule

Other trick:

We **re-use** derivatives computed for higher layers in computing derivatives for lower layers to minimize computation

Computation Graphs and Backpropagation

- Software represents our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

Computation Graphs and Backpropagation

- Software represents our neural net equations as a graph
 - Source nodes: inputs
 - Interior nodes: operations
 - Edges pass along result of the operation

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

Computation Graphs and Backpropagation

 Software represents our neural net equations as a graph

$$s = \boldsymbol{u}^T \boldsymbol{h}$$

"Forward Propagation" (t+b)

WHAT WE WANT TO DO?

h = f(2)

- l-we compute the Cocal pradient for each mode.
- we use the chain rule to calculate the downstream gradient.

To compute

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right) \left(\frac{\partial h}{\partial z}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right)$$

$$\frac{\partial S}{\partial z} = \left(\frac{\partial S}{\partial h}\right$$

Backpropagation: Single Node

- Each node has a local gradient
 - The gradient of its output with respect to its input

$$\boldsymbol{h} = f(\boldsymbol{z})$$

• [downstream gradient] = [upstream gradient] x [local gradient]

FOR MULTIPLE INPUTS?

WHAT WE WANT TO

DOWNSTREAM GRADIEMTS $S = M\bar{x}$

I can compute the local products and them apply the chaim rule.

$$\frac{\partial S}{\partial W} = \begin{bmatrix} \frac{\partial S}{\partial z} \\ \frac{\partial S}{\partial z} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial Z}{\partial W} \\ \frac{\partial S}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial S}{\partial z} \\ \frac{\partial S}{\partial z} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial Z}{\partial w} \\ \frac{\partial Z}{\partial x} \end{bmatrix}$$
LOCAL GNA DIEMT

UPSTREAM GRADIENT

57

Backpropagation: Single Node

• What about nodes with multiple inputs?

$$oldsymbol{z} = oldsymbol{W} oldsymbol{x}$$

Backpropagation: Single Node

Multiple inputs → multiple local gradients

$$z = Wx$$

An Example

$$f(x, y, z) = (x + y) \max(y, z)$$

 $x = 1, y = 2, z = 0$

Forward prop steps

An Example

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$
$$b = \max(y, z)$$
$$f = ab$$

Local gradients

$$\frac{\partial a}{\partial x} = 1 \quad \frac{\partial a}{\partial y} = 1$$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1$$
 $\frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$

$$\frac{\partial f}{\partial a} = b = 2$$
 $\frac{\partial f}{\partial b} = a = 3$

An Example

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

Forward prop steps

$$a = x + y$$

FICHANGE X IM the imput, I'll see the but put ax(y,z) changed by the slouble ab

changed by the slouble
$$ab$$

Local gradients

$$\frac{\partial a}{\partial x} = 1$$
 $\frac{\partial a}{\partial y} = 1$

$$\frac{\partial b}{\partial y} = \mathbf{1}(y > z) = 1$$
 $\frac{\partial b}{\partial z} = \mathbf{1}(z > y) = 0$

$$\frac{\partial f}{\partial a} = b = 2$$
 $\frac{\partial f}{\partial b} = a = 3$

Gradients sum at outward branches

$$= \frac{\partial f}{\partial b} \frac{\partial b}{\partial y} + \frac{\partial f}{\partial a} \frac{\partial a}{\partial y}$$

Node Intuitions

$$f(x, y, z) = (x + y) \max(y, z)$$
$$x = 1, y = 2, z = 0$$

- + "distributes" the upstream gradient
- max "routes" the upstream gradient
- * "switches" the upstream gradient

Efficiency: compute all gradients at once

- Incorrect way of doing backprop:
 - First compute $\frac{\partial s}{\partial b}$
 - Then independently compute $\frac{\partial s}{\partial W}$
 - Duplicated computation!

$$s = \boldsymbol{u}^T \boldsymbol{h}$$

$$h = f(z)$$

$$z = Wx + b$$

 \boldsymbol{x} (input)

Avois suplicate computations!

Efficiency: compute all gradients at once

- Correct way:
 - Compute all the gradients at once
 - Analogous to using δ when we computed gradients by hand

$$egin{aligned} s &= oldsymbol{u}^T oldsymbol{h} \ oldsymbol{h} &= f(oldsymbol{z}) \ oldsymbol{z} &= oldsymbol{W} oldsymbol{x} + oldsymbol{b} \ oldsymbol{x} & ext{(input)} \end{aligned}$$

Back-Prop in General Computation Graph

- 1. Fprop: visit nodes in topological sort order
 - Compute value of node given predecessors
- 2. Bprop:
 - initialize output gradient = 1
 - visit nodes in reverse order:

Compute gradient wrt each node using gradient wrt successors

$$\{y_1, y_2, \ldots y_n\}$$
 = successors of x

$$\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}$$

Done correctly, big O() complexity of fprop and bprop is **the same**

In general, our nets have regular layer-structure and so we can use matrices and Jacobians...

Automatic Differentiation

- The gradient computation can be automatically inferred from the symbolic expression of the fprop
- Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output
- Modern DL frameworks (Tensorflow, PyTorch, etc.) do backpropagation for you but mainly leave layer/node writer to hand-calculate the local derivative

Backprop Implementations

```
class ComputationalGraph(object):
   # . . .
    def forward(inputs):
       # 1. [pass inputs to input gates...]
       # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Implementation: forward/backward API

(x,y,z are scalars)

Implementation: forward/backward API

(x,y,z are scalars)

```
class MultiplyGate(object):
    def forward(x,y):
       z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
   def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
       dy = self.x * dz # [dz/dy * dL/dz]
       return [dx, dy]
```

Manual Gradient checking: Numeric Gradient

For small h (≈ 1e-4),

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

- Easy to implement correctly
- But approximate and very slow:
 - You have to recompute f for every parameter of our model
- Useful for checking your implementation
 - In the old days, we hand-wrote everything, doing this everywhere was the key test
 - Now much less needed; you can use it to check layers are correctly implemented

Summary

We've mastered the core technology of neural nets! 💥 💥 🎉

- **Backpropagation:** recursively (and hence efficiently) apply the chain rule along computation graph
 - [downstream gradient] = [upstream gradient] x [local gradient]
- Forward pass: compute results of operations and save intermediate values
- Backward pass: apply chain rule to compute gradients

Why learn all these details about gradients?

- Modern deep learning frameworks compute gradients for you!
 - Come to the PyTorch introduction this Friday!
- But why take a class on compilers or systems when they are implemented for you?
 - Understanding what is going on under the hood is useful!
- Backpropagation doesn't always work perfectly out of the box
 - Understanding why is crucial for debugging and improving models
 - See Karpathy article (in syllabus):
 - https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
 - Example in future lecture: exploding and vanishing gradients