Apprentissage avec erreurs

Schéma TFHE (clé secrète)

- q>p des puissances de deux et $\Delta=q/p$
- χ une distribution Gaussienne centrée sur \mathbb{Z}_q
- $Gen(1^n) = s \stackrel{R}{\leftarrow} \{0,1\}^n$
- Avec $a \overset{R}{\leftarrow} \mathbb{Z}_q^n$ appelé le masque et l'erreur $e \overset{\chi}{\leftarrow} \mathbb{Z}_q$

$$Enc_s \colon \mathbb{Z}_p \to (\mathbb{Z}_q^n \times \mathbb{Z}_q) \qquad Dec_s \colon (\mathbb{Z}_q^n \times \mathbb{Z}_q) \to \mathbb{Z}_p$$

$$Enc_s(m) = (a, a \cdot s + \Delta m + e) \quad Dec_s(a, b) = (b - a \cdot s)/\Delta$$

Apprentissage avec erreurs

Schéma de Regev (clé publique)

- Clé privée: $sk = s \stackrel{R}{\leftarrow} \mathbb{Z}_q^n$
- Clé publique: $pk = (a_i, b_i = (a_i \cdot s)/q + e_i)_{i=1}^m \in (\mathbb{Z}_q^n \times \mathbb{T})^m$
 - Avec $a_1, ..., a_m \stackrel{R}{\leftarrow} \mathbb{Z}_q^n$ et $e_1, ..., e_m \stackrel{\chi}{\leftarrow} \mathbb{T}$
- Chiffrement: pour un $S \subseteq [m]$ aléatoire, $x \in \{0,1\}$

$$Enc_{pk} \colon \{0,1\} \to (\mathbb{Z}_q^n \times \mathbb{T}) \qquad Dec_{sk} \colon (\mathbb{Z}_q^n \times \mathbb{T}) \to \{0,1\}$$

$$Enc_{pk}(x) = \left(\sum_{i \in S} a_i, \frac{x}{2} + \sum_{i \in S} b_i\right) \qquad Dec_{sk}(a,b) = \begin{cases} 0 \text{ si } \lfloor b - as \rceil_{\frac{1}{2}} = 0 \\ 1 \text{ sinon} \end{cases}$$

