

# **FCC Part 24E & 27 Measurement and Test Report**

## For

### E-matic

3435 Ocean Park Blvd#107 PMB\$444 Santa Monica CA 90405, Los Angeles,

CA 90405

FCC ID: XHWEGQ101

**FCC Rules:** FCC Part 24E, FCC Part 27

**Product Description:** 10.1inch phone tablet

**Tested Model:** EGQ101

Report No.: WTX19X12086090W

Sample Receipt Date: 2019-12-11

**Tested Date:** 2019-12-11 to 2019-12-17

**Issued Date:** 2019-12-17

**Tested By:** Jason Su / Engineer

Silin Chen / EMC Manager Reviewed By:

Jasa Su Fili-Chen Approved & Authorized By: Jandy So / PSQ Manager

**Prepared By:** 

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.



# TABLE OF CONTENTS

| 1. GENERAL INFORMATION                                                                                                                                                                                       | 4        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 1.2 TEST STANDARDS 1.3 TEST METHODOLOGY 1.4 TEST FACILITY 1.5 EUT SETUP AND TEST MODE 1.6 MEASUREMENT UNCERTAINTY 1.7 TEST EQUIPMENT LIST AND DETAILS |          |
| 2. SUMMARY OF TEST RESULTS                                                                                                                                                                                   | 11       |
| 3. RF EXPOSURE                                                                                                                                                                                               | 12       |
| 3.1 STANDARD APPLICABLE                                                                                                                                                                                      |          |
| 4. RF OUTPUT POWER                                                                                                                                                                                           | 13       |
| 4.1 STANDARD APPLICABLE                                                                                                                                                                                      | 13       |
| 5. PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER                                                                                                                                                                | 21       |
| 5.1 STANDARD APPLICABLE                                                                                                                                                                                      | 21       |
| 6. EMISSION BANDWIDTH                                                                                                                                                                                        |          |
| 6.1 Standard Applicable                                                                                                                                                                                      | 22<br>22 |
| 7. OUT OF BAND EMISSIONS AT ANTENNA TERMINAL                                                                                                                                                                 | 23       |
| 7.1 STANDARD APPLICABLE                                                                                                                                                                                      |          |
| 7.2 TEST PROCEDURE                                                                                                                                                                                           |          |
|                                                                                                                                                                                                              |          |
| 8. SPURIOUS RADIATED EMISSIONS                                                                                                                                                                               |          |
| 8.1 STANDARD APPLICABLE                                                                                                                                                                                      |          |
| 8.3 SUMMARY OF TEST RESULTS/PLOTS                                                                                                                                                                            |          |
| 9. FREQUENCY STABILITY                                                                                                                                                                                       | 36       |
| 9.1 Standard Applicable                                                                                                                                                                                      |          |
| 9.2 TEST PROCEDURE                                                                                                                                                                                           |          |
| 7.3 SUMMAKY OF TEST RESULTS/PLUTS                                                                                                                                                                            |          |



# **Report version**

| Version No. | Date of issue | Description |
|-------------|---------------|-------------|
| Rev.00      | 2019-12-17    | Original    |
| /           | /             | /           |





### 1. GENERAL INFORMATION

## 1.1 Product Description for Equipment Under Test (EUT)

**Client Information** 

Applicant: E-matic

Address of applicant: 3435 Ocean Park Blvd#107 PMB\$444 Santa Monica CA

90405, Los Angeles, CA 90405

Manufacturer: SHENZHEN NST INDUSTRY AND TRADE CO.LTD

Address of manufacturer: 3/F, Bldg 1, Hongbang Intelligent Technology Park, No.30

Cuibao Road, Baolong Street, Longgang District, Shenzhen,

China

Importer: Shaghal Ltd

Address of Importer: 10880 Wilshire Blvd #2250, Los Angeles, California, 90024

| <b>General Description of EU</b> | T:                                      |
|----------------------------------|-----------------------------------------|
| Product Name:                    | 10.1inch phone tablet                   |
| Brand Name:                      | Motile                                  |
| Model No.:                       | EGQ101                                  |
| Adding Madal/a).                 | EGQ101BL, EGQ101GL, EGQ101SL, EGQ101RD, |
| Adding Model(s):                 | EGQ101PR, EGQ101PN, EGQ101DG            |
| Rated Voltage:                   | DC 3.7V                                 |
| Battery:                         | 5000mAh                                 |
|                                  | K-T100502000U                           |
| Adapter Model:                   | Input: AC100-240V~50-60Hz, 0.35A, max;  |
|                                  | Output: DC5V, 2000mA                    |
| Software Version:                | S863-9863A/9832E-V1. 0 D3(221)190403    |
| Hardware Version:                | S8631e userdebug W19.24.6 20191119      |
| Device Category:                 | Portable Device                         |





| Technical Characteristics of EUT: Main board |                                   |  |  |  |
|----------------------------------------------|-----------------------------------|--|--|--|
| 4G                                           |                                   |  |  |  |
| Support Networks:                            | FDD-LTE                           |  |  |  |
| Support Band:                                | FDD-LTE Band 2, 4, 7, 17          |  |  |  |
|                                              | FDD-LTE Band 2: Tx: 1850-1910MHz, |  |  |  |
| Unlink Eroguanov                             | FDD-LTE Band 4: Tx: 1710-1755MHz, |  |  |  |
| Uplink Frequency:                            | FDD-LTE Band 7: Tx: 2500-2570MHz, |  |  |  |
|                                              | FDD-LTE Band 17: Tx: 704-716MHz   |  |  |  |
|                                              | FDD-LTE Band 2: Rx: 1930-1990MHz, |  |  |  |
| Downlink Fraguency:                          | FDD-LTE Band 4: Rx: 2110-2155MHz, |  |  |  |
| Downlink Frequency:                          | FDD-LTE Band 7: Rx: 2620-2690MHz, |  |  |  |
|                                              | FDD-LTE Band 17: Rx: 734-746MHz   |  |  |  |
|                                              | FDD-LTE Band 2: 24.09dBm,         |  |  |  |
| DE Output Dawer                              | FDD-LTE Band 4: 24.94dBm,         |  |  |  |
| RF Output Power:                             | FDD-LTE Band 7: 24.22dBm,         |  |  |  |
|                                              | FDD-LTE Band 17: 23.64dBm         |  |  |  |
|                                              | FDD-LTE Band 2: 17M9G7D, 17M9W7D  |  |  |  |
| Type of Emission                             | FDD-LTE Band 4: 17M9G7D, 17M9W7D  |  |  |  |
| Type of Emission:                            | FDD-LTE Band 7: 17M8G7D, 17M9W7D  |  |  |  |
|                                              | FDD-LTE Band 17: 8M98G7D, 8M98W7D |  |  |  |
| Type of Modulation:                          | QPSK, 16QAM                       |  |  |  |
| Antenna Type:                                | Integral Antenna                  |  |  |  |
|                                              | FDD-LTE Band 2: 0.72dBi,          |  |  |  |
| Automa Osini                                 | FDD-LTE Band 4: 0.55dBi,          |  |  |  |
| Antenna Gain:                                | FDD-LTE Band 7: 1.15dBi,          |  |  |  |
|                                              | FDD-LTE Band 17: -1.02dBi,        |  |  |  |



#### 1.2 Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 2</u>: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Rules Part 24: PUBLIC MOBILE SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

<u>TIA/EIA 603 E March 2016</u>: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

<u>ANSI C63.26-2015</u>: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

<u>KDB 971168 D01 Power Meas License Digital Systems v03r01</u>: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

**Maintenance of compliance** is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

#### 1.3 Test Methodology

All measurements contained in this report were conducted with TIA/EIA 603 E/ KDB 971168/ ANSI C63.26 The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

#### 1.4 Test Facility

#### Address of the test laboratory

Laboratory: Shenzhen SEM Test Technology Co., Ltd.

Address: 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C. (518101)

#### FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintain ed in our files. The Designation Number is CN5010, and Test Firm Registration Number is 125990.

#### Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

REPORT NO.: WTX19X12086090W PAGE 6 OF 36 FCC PART 24E&27



# 1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

| Test Mode List |                 |                            |  |  |  |
|----------------|-----------------|----------------------------|--|--|--|
| Test Mode      | Description     | Remark                     |  |  |  |
| TM1            | FDD-LTE Band 2  | Low, Middle, High Channels |  |  |  |
| TM2            | FDD-LTE Band 4  | Low, Middle, High Channels |  |  |  |
| TM3            | FDD-LTE Band 7  | Low, Middle, High Channels |  |  |  |
| TM4            | FDD-LTE Band 17 | Low, Middle, High Channels |  |  |  |

| Test Conditions    |           |  |  |
|--------------------|-----------|--|--|
| Temperature:       | 22~25 °C  |  |  |
| Relative Humidity: | 50~55 %.  |  |  |
| ATM Pressure:      | 1019 mbar |  |  |

| EUT Cable List and Details |            |                     |                        |  |  |
|----------------------------|------------|---------------------|------------------------|--|--|
| Cable Description          | Length (m) | Shielded/Unshielded | With / Without Ferrite |  |  |
| USB Cable                  | 0.8        | Unshielded          | Without Ferrite        |  |  |

| Special Cable List and Details                                          |   |   |   |  |  |
|-------------------------------------------------------------------------|---|---|---|--|--|
| Cable Description Length (m) Shielded/Unshielded With / Without Ferrite |   |   |   |  |  |
| /                                                                       | / | / | / |  |  |

| Auxiliary Equipment List and Details         |   |   |   |  |  |
|----------------------------------------------|---|---|---|--|--|
| Description Manufacturer Model Serial Number |   |   |   |  |  |
| /                                            | / | / | / |  |  |



# 1.6 Measurement Uncertainty

| Measurement uncertainty        |                              |                   |  |  |  |
|--------------------------------|------------------------------|-------------------|--|--|--|
| Parameter                      | Conditions                   | Uncertainty       |  |  |  |
| RF Output Power                | Conducted                    | ±0.42dB           |  |  |  |
| Occupied Bandwidth             | dwidth Conducted $\pm 1.5\%$ |                   |  |  |  |
| Frequency Stability            | Conducted                    | 2.3%              |  |  |  |
| Transmitter Spurious Emissions | Conducted                    | ±0.42dB           |  |  |  |
|                                |                              | 30-200MHz ±4.52dB |  |  |  |
| Transmitten Savriere Emissions | Radiated                     | 0.2-1GHz ±5.56dB  |  |  |  |
| Transmitter Spurious Emissions | Kadiated                     | 1-6GHz ±3.84dB    |  |  |  |
|                                |                              | 6-18GHz ±3.92dB   |  |  |  |





# 1.7 Test Equipment List and Details

| No.                    | Description            | Manufacturer   | Model                 | Serial No.       | Cal Date              | Due. Date  |
|------------------------|------------------------|----------------|-----------------------|------------------|-----------------------|------------|
| CEMT 1075              | Communication          | Rohde &        | CMW500                | 149650           | 2019-04-30            | 2020 04 20 |
| SEMT-1075              | Tester                 | Schwarz        | CMW500                | 148650           | 2019-04-30            | 2020-04-29 |
| SEMT-1063              | GSM Tester             | Rohde &        | CMU200                | 114403           | 2019-04-30            | 2020-04-29 |
| SEM11-1003             | GSWI Tester            | Schwarz        | CMO200                | 114403           | 2019-04-30            | 2020-04-29 |
| SEMT-1072              | Spectrum               | Agilent        | E4407B                | MY41440400       | 2019-04-30            | 2020-04-29 |
| SEN11-1072             | Analyzer               | Agnent         | E4407B                | W1141440400      | 2019-04-30            | 2020-04-29 |
| SEMT-1079              | Spectrum               | Agilent        | N9020A                | US47140102       | 2019-04-30            | 2020-04-29 |
| SENTI 1077             | Analyzer               | right          | 11702011              | 0517110102       | 2017 01 20            | 2020 01 29 |
| SEMT-1080              | Signal                 | Agilent        | 83752A                | 3610A01453       | 2019-04-30            | 2020-04-29 |
|                        | Generator              | 8 - 1          |                       |                  |                       |            |
| SEMT-1081              | Vector Signal          | Agilent        | N5182A                | MY47070202       | 2019-04-30            | 2020-04-29 |
|                        | Generator              |                |                       |                  |                       |            |
| SEMT-1028              | Power Divider          | Weinschel      | 1506A                 | PM204            | 2019-04-30            | 2020-04-29 |
| SEMT-1082              | Power Divider          | RF-Lambda      | RFLT4W5M18G           | 14110400027      | 2019-04-30            | 2020-04-29 |
| SEMT-1031              | Spectrum               | Rohde &        | FSP30                 | 836079/035       | 2019-04-30            | 2020-04-29 |
|                        | Analyzer               | Schwarz        |                       |                  |                       |            |
| SEMT-1007              | EMI Test               | Rohde &        | ESVB                  | 825471/005       | 2019-04-30            | 2020-04-29 |
| CENTE 1000             | Receiver               | Schwarz        | 0.4.475               | 2112 4 0 6 7 1 7 | 2010 04 20            | 2020 04 20 |
| SEMT-1008<br>SEMT-1043 | Amplifier              | Agilent<br>C&D | 8447F                 | 3113A06717       | 2019-04-30            | 2020-04-29 |
|                        | Amplifier              | Schwarz beck   | PAP-1G18<br>FMZB 1516 | 2002<br>9773     | 2019-04-30 2019-05-05 | 2020-04-29 |
| SEMT-1069              | Loop Antenna Broadband | Schwarz beck   | FMZB 1310             | 9773             | 2019-05-05            | 2021-05-04 |
| SEMT-1068              | Antenna                | Schwarz beck   | VULB9163              | 9163-333         | 2019-05-05            | 2021-05-04 |
| SEMT-1042              | Horn Antenna           | ETS            | 3117                  | 00086197         | 2019-05-05            | 2021-05-04 |
| SEMT-1121              | Horn Antenna           | Schwarzbeck    | BBHA 9170             | BBHA9170582      | 2019-05-05            | 2021-05-04 |
|                        |                        | Direction      |                       |                  |                       |            |
| SEMT-1168              | Pre-amplifier          | Systems Inc.   | PAP-0126              | 14141-12838      | 2019-04-30            | 2020-04-29 |
| GEN 677 44 60          | D 11.0                 | Direction      | D. D. 0.440           | 11115 11150      | 2010 01 20            | 2020 04 20 |
| SEMT-1169              | Pre-amplifier          | Systems Inc.   | PAP-2640              | 14145-14153      | 2019-04-30            | 2020-04-29 |
| SEMT-1163              | Spectrum               | Rohde &        | FSP40                 | 100612           | 2019-04-30            | 2020-04-29 |
| SEM11-1105             | Analyzer               | Schwarz        | r3r40                 | 100012           | 2019-04-30            | 2020-04-29 |
| SEMT-1170              | DRG Horn               | A.H.           | SAS-574               | 571              | 2019-05-05            | 2021-05-04 |
| SEMII-II/O             | Antenna                | SYSTEMS        | 3A3-374               | 3/1              | 2019-03-03            | 2021-03-04 |
| SEMT-1166              | Power Limiter          | Agilent        | N9356B                | MY45450376       | 2019-04-30            | 2020-04-29 |
| SEMT-1048              | RF Limiter             | ATTEN          | AT-BSF-2400~2500      | /                | 2019-04-30            | 2020-04-29 |
| SEMT-1055              | RF Limiter             | ATTEN          | AT-BSF-0820~0920      | /                | 2019-04-30            | 2020-04-29 |
| SEMT-1056              | RF Limiter             | ATTEN          | AT-BSF-1710~1910      | /                | 2019-04-30            | 2020-04-29 |
| SEMT-1076              | RF Switcher            | Top Precision  | RCS03-A2              | /                | 2019-04-30            | 2020-04-29 |
| SEMT-C001              | Cable                  | Zheng DI       | LL142-07-07-10M(A)    | /                | 2019-03-18            | 2020-03-17 |
| SEMT-C002              | Cable                  | Zheng DI       | ZT40-2.92J-2.92J-6M   | /                | 2019-03-18            | 2020-03-17 |



| SEMT-C003 | Cable | Zheng DI | ZT40-2.92J-2.92J-2.5M | / | 2019-03-18 | 2020-03-17 |
|-----------|-------|----------|-----------------------|---|------------|------------|
| SEMT-C004 | Cable | Zheng DI | 2M0RFC                | / | 2019-03-18 | 2020-03-17 |
| SEMT-C005 | Cable | Zheng DI | 1M0RFC                | / | 2019-03-18 | 2020-03-17 |
| SEMT-C006 | Cable | Zheng DI | 1M0RFC                | / | 2019-03-18 | 2020-03-17 |

| Software List                          |          |          |            |  |  |
|----------------------------------------|----------|----------|------------|--|--|
| Description Manufacturer Model Version |          |          |            |  |  |
| EMI Test Software                      | Farad    | EZ-EMC   | RA-03A1    |  |  |
| (Radiated Emission)*                   | rarau    | EZ-ENIC  | KA-U3A1    |  |  |
| EMI Test Software                      | Earna d  | EZ-EMC   | D A 02 A 1 |  |  |
| (Conducted Emission)*                  | Farad    | EZ-ENIC  | RA-03A1    |  |  |
| LTE Test System*                       | Tonscend | JS1120-1 | V2.5       |  |  |

<sup>\*</sup>Remark: indicates software version used in the compliance certification testing



# 2. SUMMARY OF TEST RESULTS

| FCC Rules                        | Description of Test Item                      | Result    |
|----------------------------------|-----------------------------------------------|-----------|
| §1.1307, §2.1093                 | RF Exposure                                   | Compliant |
| §24.232(c), §27.50(d)            | RF Output Power                               | Compliant |
| §24.51, §27.50                   | Peak-to-average Ratio (PAR) of<br>Transmitter | Compliant |
| §24.238(b), §27.53               | Emission Bandwidth                            | Compliant |
| §24.238(a), §27.53(h)            | Spurious Emissions at Antenna Terminal        | Compliant |
| §24.238(a), §27.53(h)            | Spurious Radiation Emissions                  | Compliant |
| §2.917(a), §24.238(a), §27.53(h) | Out of Band Emissions                         | Compliant |
| §24.235, §27.54                  | Frequency Stability                           | Compliant |



# 3. RF Exposure

## 3.1 Standard Applicable

According to §1.1307 and §2.1093, the portable transmitter must comply the RF exposure requirements.

### 3.2 Test Result

This product complied with the requirement of the RF exposure, please see the SAR report.



## 4. RF Output Power

## 4.1 Standard Applicable

According to §24.232(c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50(d)(4), fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

According to §27.50(c)(10), portable stations (hand-held devices) in the 698-746 MHz band are limited to 3 watts ERP.

#### **4.2 Test Procedure**

> Conducted output power test method:



- > Radiated power test method:
- 1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

#### 4.3 Summary of Test Results/Plots





## Max. Radiated Power:

FDD-LTE Band 2

| Modulation   Channel   Antenna Polar   E.i.r.p [dBm]   Climit (dBm)   Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FDD-LTE Band 2                                                                                            |         |                        |               |        |         |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------|------------------------|---------------|--------|---------|------|
| Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           | Cha     | annel Bandwidth: 1.4 M | 1Hz           |        |         |      |
| CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Modulation                                                                                                | Channel | Antenna Polar          | E.i.r.p [dBm] |        | Verdict |      |
| CCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           |         |                        | 7.0           | (dBm)  |         |      |
| Pass    |                                                                                                           | LCH     | V                      | 20.56         |        | PASS    |      |
| CPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |         |                        |               |        |         |      |
| HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QPSK                                                                                                      | MCH     | V                      |               | <33.00 | PASS    |      |
| HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           |         | Н                      | 14.59         |        |         |      |
| CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           | HCH     | V                      |               |        | PASS    |      |
| The color of the |                                                                                                           |         |                        |               |        |         |      |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           | LCH     | V                      | 20.14         |        | PASS    |      |
| HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           | 2011    | Н                      | 14.11         |        |         |      |
| HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16OAM                                                                                                     | MCH     | V                      | 20.29         | <33.00 | PASS    |      |
| HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100,1111                                                                                                  |         | Н                      | 14.35         | <55.00 |         |      |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           | HCH     | V                      | 20.39         |        | PASS    |      |
| Modulation   Channel   Antenna Polar   E.i.r.p [dBm]   Limit (dBm)   Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           | 11011   | Н                      | 14.42         |        | 17.00   |      |
| Channel   Antenna Polar   E.i.r.p [dBm]   (dBm)   Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           | Ch      | nannel Bandwidth: 3 Ml | -lz           |        |         |      |
| QPSK         LCH         H         13.98         PASS           QPSK         MCH         H         13.98         V         19.25         PASS           HCH         V         19.47         PASS           MCH         V         19.35         PASS           Modulation         Channel Bandwidth: 5 MHz           Modulation         Channel Bandwidth: 5 MHz           Modulation         Channel Bandwidth: 5 MHz           LCH         V         20.05         Limit (dBm)         Verdict           QPSK         MCH         V         20.05         PASS           PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Modulation                                                                                                | Channel | Antenna Polar          | E.i.r.p [dBm] |        | Verdict |      |
| MCH         H         13.98         V         19.25         C33.00         PASS           HCH         V         19.47         PASS           LCH         V         19.35         PASS           HCH         V         19.31         PASS           PASS           Channel Bandwidth: 5 MHz           Modulation         Channel Bandwidth: 5 MHz           Modulation         Channel Bandwidth: 5 MHz           Limit (dBm)         Verdict           UCH         V         20.05         PASS           QPSK         MCH         V         20.05         PASS           MCH         V         20.05         PASS           MCH         V         20.05         PASS           MCH         V         20.05         PASS           MCH         V <th colspa<="" td=""><td></td><td rowspan="2">LCH</td><td>V</td><td>19.58</td><td rowspan="6">&lt;33.00</td><td>DV66</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <td></td> <td rowspan="2">LCH</td> <td>V</td> <td>19.58</td> <td rowspan="6">&lt;33.00</td> <td>DV66</td> |         | LCH                    | V             | 19.58  | <33.00  | DV66 |
| MCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           | Н       |                        | 13.98         | PASS   |         |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ODEK                                                                                                      | МСН     | V                      | 19.25         | DASS   |         |      |
| HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QF3N                                                                                                      |         | Н                      | 14.03         | PASS   |         |      |
| CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           | ПОП     | V                      | 19.47         | DAGG   |         |      |
| 16QAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           | TIOH    | Н                      | 14.32         | 1 700  |         |      |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           | I CH    | V                      | 19.64         |        | DASS    |      |
| MCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           | LOTT    | Н                      | 14.11         |        | FASS    |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16OAM                                                                                                     | MCH     | V                      | 19.35         | ∠22 00 | DASS    |      |
| HCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOQAIVI                                                                                                   | WCTT    | Н                      | 14.27         | <33.00 | FASS    |      |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           | ПСП     | V                      | 19.31         |        | DASS    |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           | ПСП     | Н                      | 14.06         |        | PASS    |      |
| Channel   Antenna Polar   E.i.r.p [dBm]   (dBm)   Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           | Ch      | nannel Bandwidth: 5 Mi | -lz           |        |         |      |
| QPSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Modulation                                                                                                | Channel | Antenna Polar          | E.i.r.p [dBm] |        | Verdict |      |
| QPSK MCH $\frac{H}{V} = \frac{13.20}{20.13}$ <33.00 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           | 1011    | V                      | 20.05         |        | DAGG    |      |
| QPSK MCH H 14.16 <33.00 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           | LCH     | Н                      | 13.20         |        | PASS    |      |
| H 14.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0531                                                                                                      | Mari    | V                      | 20.13         | 22.00  | DAGG    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QPSK                                                                                                      | MCH     | Н                      | 14.16         | <33.00 | PASS    |      |
| V 20.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |         | V                      | 20.22         |        | DACC    |      |
| HCH H 14.52 PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | HCH     | Н                      | 14.52         |        | PASS    |      |





|                           |                                                | * 7                                                                                          | 20.25                                                                                                                              |                           |                                       |  |  |
|---------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|--|--|
|                           | LCH                                            | V                                                                                            | 20.35                                                                                                                              |                           | PASS                                  |  |  |
|                           |                                                | Н                                                                                            | 13.74                                                                                                                              |                           |                                       |  |  |
| 16QAM                     | MCH                                            | V                                                                                            | 20.36                                                                                                                              | <33.00                    | PASS                                  |  |  |
|                           |                                                | Н                                                                                            | 14.21                                                                                                                              |                           |                                       |  |  |
|                           | HCH                                            | V                                                                                            | 20.41                                                                                                                              |                           | PASS                                  |  |  |
|                           |                                                | Н                                                                                            | 13.72                                                                                                                              |                           |                                       |  |  |
|                           | Cha                                            | nnel Bandwidth: 10 M                                                                         | Hz<br>T                                                                                                                            |                           |                                       |  |  |
| Modulation                | Channel                                        | Antenna Polar                                                                                | E.i.r.p [dBm]                                                                                                                      | Limit<br>(dBm)            | Verdict                               |  |  |
|                           | LCH                                            | V                                                                                            | 20.47                                                                                                                              |                           | PASS                                  |  |  |
|                           | LOTT                                           | Н                                                                                            | 13.65                                                                                                                              |                           | 1 700                                 |  |  |
| QPSK                      | MCH                                            | V                                                                                            | 20.53                                                                                                                              | <33.00                    | PASS                                  |  |  |
| QF3K                      | IVICH                                          | Н                                                                                            | 13.41                                                                                                                              | <33.00                    | PASS                                  |  |  |
|                           | HCH                                            | V                                                                                            | 20.16                                                                                                                              |                           | PASS                                  |  |  |
|                           | псп                                            | Н                                                                                            | 14.22                                                                                                                              |                           | PASS                                  |  |  |
|                           | 1.011                                          | V                                                                                            | 20.37                                                                                                                              |                           | DACC                                  |  |  |
|                           | LCH                                            | Н                                                                                            | 14.32                                                                                                                              |                           | PASS                                  |  |  |
| 400 444                   | MCH                                            | V                                                                                            | 20.17                                                                                                                              | 22.00                     | PASS                                  |  |  |
| 16QAM                     |                                                | Н                                                                                            | 13.52                                                                                                                              | <33.00                    |                                       |  |  |
|                           | НСН                                            | V                                                                                            | 20.31                                                                                                                              |                           | 51.00                                 |  |  |
|                           |                                                | Н                                                                                            | 13.05                                                                                                                              |                           | PASS                                  |  |  |
| Channel Bandwidth: 15 MHz |                                                |                                                                                              |                                                                                                                                    |                           |                                       |  |  |
|                           | Cha                                            | nnel Bandwidth: 15 M                                                                         | Hz                                                                                                                                 |                           |                                       |  |  |
| Modulation                | Channel                                        | Antenna Polar                                                                                | Hz<br>E.i.r.p [dBm]                                                                                                                | Limit (dBm)               | Verdict                               |  |  |
| Modulation                | Channel                                        |                                                                                              |                                                                                                                                    |                           |                                       |  |  |
| Modulation                | ,                                              | Antenna Polar                                                                                | E.i.r.p [dBm]                                                                                                                      |                           | Verdict<br>PASS                       |  |  |
|                           | Channel                                        | Antenna Polar V H                                                                            | E.i.r.p [dBm]<br>20.23<br>13.52                                                                                                    | (dBm)                     | PASS                                  |  |  |
| Modulation                | Channel                                        | Antenna Polar  V  H  V                                                                       | E.i.r.p [dBm]<br>20.23<br>13.52<br>20.27                                                                                           |                           |                                       |  |  |
|                           | Channel  LCH  MCH                              | Antenna Polar V H                                                                            | E.i.r.p [dBm]<br>20.23<br>13.52<br>20.27<br>13.35                                                                                  | (dBm)                     | PASS<br>PASS                          |  |  |
|                           | Channel                                        | Antenna Polar  V H V H                                                                       | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18                                                                                   | (dBm)                     | PASS                                  |  |  |
|                           | Channel  LCH  MCH  HCH                         | Antenna Polar  V  H  V  H  V                                                                 | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36                                                                            | (dBm)                     | PASS PASS                             |  |  |
|                           | Channel  LCH  MCH                              | Antenna Polar  V H V H V H                                                                   | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18                                                                                   | (dBm)                     | PASS<br>PASS                          |  |  |
| QPSK                      | Channel  LCH  MCH  HCH  LCH                    | Antenna Polar  V H V H V H V                                                                 | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77                                                              | (dBm)<br><33.00           | PASS PASS PASS                        |  |  |
|                           | Channel  LCH  MCH  HCH                         | Antenna Polar  V H V H V H V H V V V V V V V V V V V                                         | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26                                                       | (dBm)                     | PASS PASS                             |  |  |
| QPSK                      | Channel  LCH  MCH  HCH  LCH  MCH               | Antenna Polar  V H V H V H V H H                                                             | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26  14.54                                                | (dBm)<br><33.00           | PASS PASS PASS PASS                   |  |  |
| QPSK                      | Channel  LCH  MCH  HCH  LCH                    | Antenna Polar  V H V H V H V H V H V H                                                       | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26  14.54  20.42                                         | (dBm)<br><33.00           | PASS PASS PASS                        |  |  |
| QPSK                      | Channel  LCH  MCH  HCH  MCH  HCH               | Antenna Polar  V H V H V H V H V H V V H V V V V V V                                         | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26  14.54  20.42  13.75                                  | (dBm)<br><33.00           | PASS PASS PASS PASS                   |  |  |
| QPSK                      | Channel  LCH  MCH  HCH  MCH  HCH               | Antenna Polar  V H V H V H V H V H V H V H V H H V                                           | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26  14.54  20.42  13.75                                  | (dBm)<br><33.00           | PASS PASS PASS PASS                   |  |  |
| QPSK<br>16QAM             | Channel  LCH  MCH  HCH  LCH  MCH  HCH  Channel | Antenna Polar  V H V H V H V H V H V H V H V H Nnnel Bandwidth: 20 M                         | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26  14.54  20.42  13.75                                  | <33.00 <33.00 Limit       | PASS PASS PASS PASS Verdict           |  |  |
| QPSK  16QAM  Modulation   | Channel  LCH  MCH  HCH  LCH  MCH  HCH  Cha     | Antenna Polar  V H V H V H V H V H V Antenna Polar                                           | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26  14.54  20.42  13.75  Hz  E.i.r.p [dBm]               | <33.00 <33.00 Limit (dBm) | PASS PASS PASS PASS PASS              |  |  |
| QPSK<br>16QAM             | Channel  LCH  MCH  HCH  MCH  HCH  Channel  LCH | Antenna Polar  V H V H V H V H V H V H V Antenna Polar V V V V V V V V V V V V V V V V V V V | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26  14.54  20.42  13.75  Hz  E.i.r.p [dBm]  20.68  14.35 | <33.00 <33.00 Limit       | PASS PASS PASS PASS PASS Verdict PASS |  |  |
| QPSK  16QAM  Modulation   | Channel  LCH  MCH  HCH  LCH  MCH  HCH  Channel | Antenna Polar  V H V H V H V H V H V H Antenna Polar V H N H N H N H N H N H N H N H N H N H | E.i.r.p [dBm]  20.23  13.52  20.27  13.35  20.18  14.36  20.19  13.77  20.26  14.54  20.42  13.75  Hz  E.i.r.p [dBm]               | <33.00 <33.00 Limit (dBm) | PASS PASS PASS PASS Verdict           |  |  |



|       | НСН - | V | 20.14 |        | PASS |
|-------|-------|---|-------|--------|------|
|       | ПСП   | Н | 13.59 |        | PASS |
| 16QAM | LCH   | V | 19.98 |        | PASS |
|       |       | Н | 14.11 |        |      |
|       | MCH   | V | 19.76 | -22.00 | PASS |
|       |       | Н | 14.39 | <33.00 | PASS |
|       | НСН   | V | 19.67 |        | DASS |
|       |       | Н | 14.75 |        | PASS |

#### FDD-LTE Band 4

| FDD-LTE Band 4 | Ch      | annel Bandwidth: 1.4 M | IU            |               |         |
|----------------|---------|------------------------|---------------|---------------|---------|
|                | Cna     | anner bandwidth: 1.4 M |               | Y             |         |
| Modulation     | Channel | Antenna Polar          | E.i.r.p [dBm] | Limit (dBm)   | Verdict |
|                | LCH     | V                      | 19.74         |               | DACC    |
|                | LON     | Н                      | 13.24         |               | PASS    |
| QPSK           | MCH     | V                      | 19.52         | <30.00        | PASS    |
| QFSN           | WCTT    | Н                      | 14.52         | <30.00        | FASS    |
|                | НСН     | V                      | 19.31         |               | PASS    |
|                | HOH     | Н                      | 13.08         |               | 1700    |
|                | LCH     | V                      | 20.47         |               | PASS    |
|                | LOTT    | Н                      | 13.26         |               | FASS    |
| 16QAM          | MCH     | V                      | 20.14         | <30.00        | PASS    |
| IOQAW          | WICH    | Н                      | 13.34         | <30.00        | 1700    |
|                | НСН     | V                      | 20.31         |               | PASS    |
|                |         | Н                      | 13.39         |               | 1700    |
|                | Ch      | nannel Bandwidth: 3 MI | Hz            |               |         |
| Modulation     | Channel | Antenna Polar          | E.i.r.p [dBm] | Limit (dBm)   | Verdict |
|                | LCH     | V                      | 20.41         |               | PASS    |
|                | LCH     | Н                      | 13.52         |               | PASS    |
| QPSK           | MCH     | V                      | 20.24         | <30.00        | PASS    |
| QFSN           | WCTT    | Н                      | 12.87         | <30.00        | FA33    |
|                | НСН     | V                      | 20.36         |               | PASS    |
|                | TIOH    | Н                      | 13.64         |               | PAGG    |
|                | LCH     | V                      | 20.09         |               | PASS    |
|                | LOIT    | Н                      | 13.47         |               | FAGG    |
| 16QAM          | MCH     | V                      | 20.07         | <30.00        | PASS    |
| IOQAW          | IVIOIT  | Н                      | 13.05         | <b>\30.00</b> | 1700    |
|                | НСН     | V                      | 20.15         |               | PASS    |
|                | 11011   | Н                      | 13.43         |               | 1 700   |
|                | Ch      | nannel Bandwidth: 5 Mb | Hz            |               |         |





| Modulation | Channel | Antenna Polar         | E.i.r.p [dBm] | Limit<br>(dBm) | Verdict |
|------------|---------|-----------------------|---------------|----------------|---------|
|            | LCH     | V                     | 20.31         |                | DACC    |
|            | LCH     | Н                     | 13.42         |                | PASS    |
| ODOK       | MOLL    | V                     | 20.41         | -20.00         | DACC    |
| QPSK       | MCH     | Н                     | 14.25         | <30.00         | PASS    |
|            |         | V                     | 20.25         |                | D4.00   |
|            | HCH     | Н                     | 13.79         |                | PASS    |
|            |         | V                     | 20.58         |                |         |
|            | LCH     | Н                     | 12.52         |                | PASS    |
|            |         | V                     | 20.47         | • • • • •      |         |
| 16QAM      | MCH     | Н                     | 13.64         | <30.00         | PASS    |
|            |         | V                     | 20.32         |                |         |
|            | HCH     | Н                     | 13.84         |                | PASS    |
|            | Cha     | annel Bandwidth: 10 M |               |                |         |
| Modulation | Channel | Antenna Polar         | E.i.r.p [dBm] | Limit (dBm)    | Verdict |
|            |         | V                     | 20.98         | , , ,          |         |
|            | LCH     | Н                     | 14.11         |                | PASS    |
|            | MCH     | V                     | 20.74         | <30.00         |         |
| QPSK       |         | Н                     | 13.38         |                | PASS    |
|            | НСН     | V                     | 20.22         |                |         |
|            |         | Н                     | 14.52         |                | PASS    |
|            |         | V                     | 20.87         |                |         |
|            | LCH     | Н                     | 13.64         | <30.00         | PASS    |
|            |         | V                     | 20.36         |                |         |
| 16QAM      | MCH     | Н                     | 13.32         |                | PASS    |
|            |         | V                     | 20.74         |                |         |
|            | HCH     | Н                     | 13.02         |                | PASS    |
|            | LChi    | annel Bandwidth: 15 M |               |                |         |
|            |         |                       |               | Limit          |         |
| Modulation | Channel | Antenna Polar         | E.i.r.p [dBm] | (dBm)          | Verdict |
|            |         | V                     | 20.15         | (uDIII)        |         |
|            | LCH     | Н                     | 14.28         |                | PASS    |
|            |         | V                     | 20.19         |                |         |
| QPSK       | MCH     | Н                     | 13.57         | <30.00         | PASS    |
|            |         | V                     | 20.36         |                |         |
|            | HCH     | Н                     | 13.69         |                | PASS    |
|            |         | V                     | 19.87         |                |         |
|            | LCH     | Н                     | 13.59         |                | PASS    |
| 16QAM      |         | V                     | 19.52         | <30.00         |         |
| IUQAW      | MCH     | H                     | 14.25         | \30.00         | PASS    |
|            | HCH     |                       |               |                | PASS    |
|            | псп     | V                     | 19.34         |                | PASS    |



|            |         | Н                    | 14.31         |                |         |
|------------|---------|----------------------|---------------|----------------|---------|
|            | Char    | nnel Bandwidth: 20 M | Hz            |                |         |
| Modulation | Channel | Antenna Polar        | E.i.r.p [dBm] | Limit<br>(dBm) | Verdict |
|            | LCH     | V                    | 19.68         |                | PASS    |
|            | LOH     | Н                    | 14.02         |                | PASS    |
| QPSK       | MCH     | V                    | 19.47         | <30.00         | PASS    |
| QF3K       | WICH    | Н                    | 14.36         |                | FAGG    |
|            | НСН     | V                    | 19.35         |                | PASS    |
|            |         | Н                    | 13.57         |                | FAGG    |
|            | LCH     | V                    | 19.52         |                | PASS    |
|            | LOTT    | Н                    | 14.01         |                | FAGG    |
| 16QAM      | MCH     | V                    | 19.05         | <30.00         | PASS    |
| ToQAIVI    | IVICH   | Н                    | 14.72         | <30.00         | FASS    |
|            | НСН     | V                    | 19.31         |                | PASS    |
|            | TIOH    | Н                    | 13.78         |                | FAGG    |

## FDD-LTE Band 7

|            | Channel Bandwidth: 5 MHz |                      |               |                |         |  |  |
|------------|--------------------------|----------------------|---------------|----------------|---------|--|--|
| Modulation | Channel                  | Antenna Polar        | E.i.r.p [dBm] | Limit<br>(dBm) | Verdict |  |  |
|            | LCH                      | V                    | 20.74         |                | PASS    |  |  |
|            | LCH                      | Н                    | 12.68         |                | PASS    |  |  |
| QPSK       | MCH                      | V                    | 20.35         | <33.00         | PASS    |  |  |
| QF3N       | IVICIT                   | Н                    | 13.52         | <33.00         | FAGG    |  |  |
|            | HCH                      | V                    | 20.14         |                | PASS    |  |  |
|            | HOH                      | Н                    | 12.41         |                | 1 700   |  |  |
|            | LCH                      | V                    | 20.87         |                | PASS    |  |  |
|            | LOTT                     | Н                    | 12.69         |                | 1700    |  |  |
| 16QAM      | MCH                      | V                    | 20.65         | <33.00         | PASS    |  |  |
| TOQAIVI    |                          | Н                    | 13.28         |                | 1700    |  |  |
|            | НСН                      | V                    | 20.17         |                | PASS    |  |  |
|            |                          | Н                    | 13.63         |                | 1 700   |  |  |
|            | Cha                      | nnel Bandwidth: 10 M | Hz            |                |         |  |  |
| Modulation | Channel                  | Antenna Polar        | E.i.r.p [dBm] | Limit (dBm)    | Verdict |  |  |
|            | LCH                      | V                    | 20.98         |                | PASS    |  |  |
|            | LON                      | Н                    | 14.20         |                | PASS    |  |  |
| QPSK       | MCH                      | V                    | 20.41         | <33.00         | PASS    |  |  |
| QF SIN     | IVICIT                   | Н                    | 14.22         | <33.00         | FAGG    |  |  |
|            | НСН                      | V                    | 20.65         |                | PASS    |  |  |
|            | TICH                     | Н                    | 14.01         |                | PASS    |  |  |
| 16QAM      | LCH                      | V                    | 20.23         | <33.00         | PASS    |  |  |



|            |         | Н                     | 14.37         |                |         |
|------------|---------|-----------------------|---------------|----------------|---------|
|            |         |                       |               |                |         |
|            | MCH     | V                     | 20.17         |                | PASS    |
|            |         | Н                     | 14.52         |                |         |
|            | нсн     | V                     | 20.98         |                | PASS    |
|            | -       | H                     | 13.97         |                |         |
|            | Ch      | annel Bandwidth: 15 M | Hz<br>I       |                | I       |
| Modulation | Channel | Antenna Polar         | E.i.r.p [dBm] | Limit<br>(dBm) | Verdict |
|            | LCH     | V                     | 20.25         |                | PASS    |
|            | LOTT    | Н                     | 13.24         |                | 1700    |
| QPSK       | MCH     | V                     | 20.41         | <33.00         | PASS    |
| QFSK       | WICH    | Н                     | 13.11         | <33.00         | FASS    |
|            | нен     | V                     | 20.28         |                | DACC    |
|            | HCH     | Н                     | 13.59         |                | PASS    |
|            | LCH     | V                     | 20.47         |                | PASS    |
|            | LON     | Н                     | 13.05         |                | PASS    |
| 4004M      | MCH     | V                     | 20.35         | <33.00         | DACC    |
| 16QAM      |         | Н                     | 13.35         |                | PASS    |
|            | HOLL    | V                     | 20.47         |                | DACC    |
|            | HCH     | Н                     | 13.57         |                | PASS    |
|            | Ch      | annel Bandwidth: 20 M | Hz            |                |         |
| Modulation | Channel | Antenna Polar         | E.i.r.p [dBm] | Limit (dBm)    | Verdict |
|            | LCH     | V                     | 19.38         |                | PASS    |
|            | LON     | Н                     | 12.41         |                | PASS    |
| QPSK       | MCH     | V                     | 19.77         | <33.00         | PASS    |
| QFSK       | IVICH   | Н                     | 12.32         | <33.00         | PASS    |
|            | HCH     | V                     | 19.25         |                | DACC    |
|            | псп     | Н                     | 12.47         |                | PASS    |
|            | 1.011   | V                     | 19.97         |                | DACC    |
|            | LCH     | Н                     | 12.54         | 1              | PASS    |
| 460 444    | MOLL    | V                     | 19.52         | .22.00         | DACC    |
| 16QAM      | MCH     | Н                     | 12.05         | <33.00         | PASS    |
|            | HOU     | V                     | 19.31         |                | DACC    |
|            | HCH -   | Н                     | 12.39         | 1              | PASS    |



### FDD-LTE Band 17

| TED LIE Build 17 | Cha     | nnel Bandwidth: 5 Mb | Нz          |             |         |
|------------------|---------|----------------------|-------------|-------------|---------|
| Modulation       | Channel | Antenna Polar        | E.r.p [dBm] | Limit (dBm) | Verdict |
|                  | LCH     | V                    | 20.36       |             | PASS    |
|                  | LOH     | Н                    | 13.52       |             | FASS    |
| QPSK             | MCH     | V                    | 20.28       | <34.77      | PASS    |
| QI SIX           | WCTT    | Н                    | 13.29       | V34.77      | 1 700   |
|                  | HCH     | V                    | 20.87       |             | PASS    |
|                  | 11011   | Н                    | 13.81       |             | 1700    |
|                  | LCH     | V                    | 19.36       |             | PASS    |
|                  | LOTT    | Н                    | 12.52       |             | 7       |
| 16QAM            | MCH     | V                    | 19.47       | <34.77      | PASS    |
| TOQAIVI          | IVICH   | Н                    | 12.63       | <34.77      | FAOO    |
|                  | НСН     | V                    | 19.87       |             | PASS    |
|                  |         | Н                    | 12.31       |             | PASS    |
|                  | Cha     | nnel Bandwidth: 10 M | Hz          |             |         |
| Modulation       | Channel | Antenna Polar        | E.r.p [dBm] | Limit (dBm) | Verdict |
|                  | LCH     | V                    | 19.65       |             | PASS    |
|                  | LON     | Н                    | 12.74       |             | PASS    |
| QPSK             | MCH     | V                    | 19.22       | -2477       | DACC    |
| QP5K             | MCH     | Н                    | 12.36       | <34.77      | PASS    |
|                  | HCH     | V                    | 19.77       |             | DACC    |
|                  | HCH     | Н                    | 12.52       |             | PASS    |
|                  | LCU     | V                    | 19.63       |             | PASS    |
|                  | LCH     | Н                    | 12.43       |             | PASS    |
| 16QAM            | MCH     | V                    | 19.87       | <34.77      | PASS    |
| IOQAIVI          | IVICT   | Н                    | 12.52       | <34.//      | rass    |
|                  | ПСП     | V                    | 19.79       |             | DV66    |
|                  | HCH     | Н                    | 12.05       |             | PASS    |

# **Max. Conducted Output Power**

Please refer to Appendix A: Average Power Output Data





## 5. Peak-to-average Ratio (PAR) of Transmitter

## 5.1 Standard Applicable

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51, in measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

According to §27.50(B), the peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

#### **5.2 Test Procedure**

According with KDB 971168

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Configuration for the emission bandwidth testing:



#### **5.3 Summary of Test Results**

Please refer to Appendix B: Peak-to-Average Ratio



#### 6. Emission Bandwidth

## **6.1 Standard Applicable**

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §24.238(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

According to §27.53, the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

#### **6.2 Test Procedure**

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Test Configuration for the emission bandwidth testing:



#### 6.3 Summary of Test Results/Plots

Please refer to Appendix C: 26dB Bandwidth and Occupied Bandwidth



#### 7. Out of Band Emissions at Antenna Terminal

#### 7.1 Standard Applicable

According to  $\S22.917(a)$ , the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ .

According to  $\S24.238(a)$ , the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) \, dB$ .

According to §27.53(h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

According to \$27.53(g), for operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB.

According to \$27.53(m)(4), for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

#### 7.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10<sup>th</sup> harmonic.

Test Configuration for the out of band emissions testing:







# 7.3 Summary of Test Results/Plots

Please refer to Appendix D & E: Band Edge & Conducted Spurious Emission



## 8. Spurious Radiated Emissions

## 8.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

According to  $\S24.238(a)$ , the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ .

According to  $\S27.53(h)$ , the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least  $43 + 10 \log 10$  (P) dB.

According to \$27.53(g) the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB.

#### **8.2 Test Procedure**

- 1. The setup of EUT is according with per ANSI/TIA-603-E and ANSI C63.4-2014 measurement procedure.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$  (power out in Watts)

#### 8.3 Summary of Test Results/Plots

Note: 1. this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

2. All test modes (different bandwidth and different modulation) are performed, but only the worst case is recorded in this report.



# > Spurious Emissions Below 1GHz

| Test Mode | FDD_LTE Band 2 | Polarity: | Horizontal |
|-----------|----------------|-----------|------------|
|-----------|----------------|-----------|------------|



| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   |        |
| 1   | 45.8553   | -74.93  | 0.52    | -74.41 | -13.00 | -61.41 | ERP    |
| 2   | 103.0800  | -76.43  | -1.33   | -77.76 | -13.00 | -64.76 | ERP    |
| 3   | 612.0642  | -75.84  | 7.73    | -68.11 | -13.00 | -55.11 | ERP    |









| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   |        |
| 1   | 49.1866   | -77.24  | 0.75    | -76.49 | -13.00 | -63.49 | ERP    |
| 2   | 100.5806  | -75.70  | -1.37   | -77.07 | -13.00 | -64.07 | ERP    |
| 3   | 656.5300  | -76.09  | 7.56    | -68.53 | -13.00 | -55.53 | ERP    |









| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   |        |
| 1   | 48.1626   | -77.03  | 0.68    | -76.35 | -13.00 | -63.35 | ERP    |
| 2   | 99.8777   | -76.89  | -1.41   | -78.30 | -13.00 | -65.30 | ERP    |
| 3   | 401.8385  | -75.60  | 4.21    | -71.39 | -13.00 | -58.39 | ERP    |









| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   |        |
| 1   | 46.6664   | -76.26  | 0.58    | -75.68 | -13.00 | -62.68 | ERP    |
| 2   | 96.4362   | -75.85  | -2.19   | -78.04 | -13.00 | -65.04 | ERP    |
| 3   | 605.6592  | -75.78  | 7.75    | -68.03 | -13.00 | -55.03 | ERP    |







| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   |        |
| 1   | 50.4089   | -75.76  | 0.72    | -75.04 | -25.00 | -50.04 | ERP    |
| 2   | 109.7960  | -76.59  | -1.22   | -77.81 | -25.00 | -52.81 | ERP    |
| 3   | 497.6765  | -75.56  | 5.59    | -69.97 | -25.00 | -44.97 | ERP    |









| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   |        |
| 1   | 41.4215   | -75.99  | -0.38   | -76.37 | -25.00 | -51.37 | ERP    |
| 2   | 100.2286  | -76.88  | -1.38   | -78.26 | -25.00 | -53.26 | ERP    |
| 3   | 425.0280  | -75.75  | 5.61    | -70.14 | -25.00 | -45.14 | ERP    |









| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   |        |
| 1   | 49.5328   | -75.96  | 0.78    | -75.18 | -13.00 | -62.18 | ERP    |
| 2   | 108.6470  | -76.77  | -1.23   | -78.00 | -13.00 | -65.00 | ERP    |
| 3   | 719.1995  | -76.38  | 8.60    | -67.78 | -13.00 | -54.78 | ERP    |









| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBm)   | dB      | (dBm)  | (dBm)  | (dB)   |        |
| 1   | 50.0566   | -77.23  | 0.80    | -76.43 | -13.00 | -63.43 | ERP    |
| 2   | 105.6415  | -77.06  | -1.28   | -78.34 | -13.00 | -65.34 | ERP    |
| 3   | 550.9480  | -76.83  | 6.34    | -70.49 | -13.00 | -57.49 | ERP    |

Note: Margin= (Reading+ Correct)- Limit



# > Spurious Emissions Above 1GHz

# For FDD\_LTE Band 2 Mode

| Frequency | Reading                 | Correct | Result            | Limit | Margin | Polar |  |  |  |  |  |
|-----------|-------------------------|---------|-------------------|-------|--------|-------|--|--|--|--|--|
| (MHz)     | (dBm)                   | dB      | (dBm)             | (dBm) | (dB)   | H/V   |  |  |  |  |  |
|           | Low Channel (1852.5MHz) |         |                   |       |        |       |  |  |  |  |  |
| 3705.00   | -41.51                  | 10.17   | -31.34            | -13   | -18.34 | Н     |  |  |  |  |  |
| 5557.50   | -48.3                   | 14.69   | -33.61            | -13   | -20.61 | Н     |  |  |  |  |  |
| 3705.00   | -39.96                  | 10.17   | -29.79            | -13   | -16.79 | V     |  |  |  |  |  |
| 5557.50   | -48.61                  | 14.69   | -33.92            | -13   | -20.92 | V     |  |  |  |  |  |
|           |                         | Middle  | e Channel (1880.0 | OMHz) |        |       |  |  |  |  |  |
| 3760.00   | -40.14                  | 10.26   | -29.88            | -13   | -16.88 | Н     |  |  |  |  |  |
| 5640.00   | -47.77                  | 14.78   | -32.99            | -13   | -19.99 | Н     |  |  |  |  |  |
| 3760.00   | -39.44                  | 10.26   | -29.18            | -13   | -16.18 | V     |  |  |  |  |  |
| 5640.00   | -48.36                  | 14.78   | -33.58            | -13   | -20.58 | V     |  |  |  |  |  |
|           |                         | High    | Channel (1907.5)  | MHz)  |        |       |  |  |  |  |  |
| 3815.00   | -42.69                  | 10.59   | -32.1             | -13   | -19.1  | Н     |  |  |  |  |  |
| 5722.50   | -49.55                  | 15.03   | -34.52            | -13   | -21.52 | Н     |  |  |  |  |  |
| 3815.00   | -42.79                  | 10.59   | -32.2             | -13   | -19.2  | V     |  |  |  |  |  |
| 5722.50   | -46.83                  | 15.03   | -31.8             | -13   | -18.8  | V     |  |  |  |  |  |

## For FDD\_LTE Band 4 Mode

| Frequency | Reading                 | Correct | Result           | Limit | Margin | Polar |  |  |  |  |  |
|-----------|-------------------------|---------|------------------|-------|--------|-------|--|--|--|--|--|
| (MHz)     | (dBm)                   | dB      | (dBm)            | (dBm) | (dB)   | H/V   |  |  |  |  |  |
|           | Low Channel (1712.5MHz) |         |                  |       |        |       |  |  |  |  |  |
| 3425.00   | -33.43                  | 8.65    | -24.78           | -13   | -11.78 | Н     |  |  |  |  |  |
| 5137.50   | -42.89                  | 12.03   | -30.86           | -13   | -17.86 | Н     |  |  |  |  |  |
| 3425.00   | -32.84                  | 8.65    | -24.19           | -13   | -11.19 | V     |  |  |  |  |  |
| 5137.50   | -40.67                  | 12.03   | -28.64           | -13   | -15.64 | V     |  |  |  |  |  |
|           |                         | Middle  | Channel (1732.   | 5MHz) |        |       |  |  |  |  |  |
| 3465.00   | -33.22                  | 8.91    | -24.31           | -13   | -11.31 | Н     |  |  |  |  |  |
| 5197.50   | -42.39                  | 12.29   | -30.1            | -13   | -17.10 | Н     |  |  |  |  |  |
| 3465.00   | -32.65                  | 8.91    | -23.74           | -13   | -10.74 | V     |  |  |  |  |  |
| 5197.50   | -39.11                  | 12.29   | -26.82           | -13   | -13.82 | V     |  |  |  |  |  |
|           |                         | High    | Channel (1752.5) | MHz)  |        |       |  |  |  |  |  |
| 3505.00   | -33.63                  | 9.11    | -24.52           | -13   | -11.52 | Н     |  |  |  |  |  |
| 5257.50   | -41.78                  | 12.56   | -29.22           | -13   | -16.22 | Н     |  |  |  |  |  |
| 3505.00   | -32.11                  | 9.11    | -23.00           | -13   | -10.00 | V     |  |  |  |  |  |
| 5257.50   | -40.10                  | 12.56   | -27.54           | -13   | -14.54 | V     |  |  |  |  |  |





For FDD\_LTE Band 7 Mode

| Frequency | Reading                 | Correct | Result           | Limit | Margin | Polar |  |  |  |  |  |
|-----------|-------------------------|---------|------------------|-------|--------|-------|--|--|--|--|--|
| (MHz)     | (dBm)                   | dB      | (dBm)            | (dBm) | (dB)   | H/V   |  |  |  |  |  |
|           | Low Channel (2502.5MHz) |         |                  |       |        |       |  |  |  |  |  |
| 5005.00   | -41.74                  | 11.66   | -30.08           | -25   | -5.08  | Н     |  |  |  |  |  |
| 7507.50   | -49.40                  | 15.09   | -34.31           | -25   | -9.31  | Н     |  |  |  |  |  |
| 5005.00   | -39.55                  | 11.66   | -27.89           | -25   | -2.89  | V     |  |  |  |  |  |
| 7507.50   | -47.23                  | 15.09   | -32.14           | -25   | -7.14  | V     |  |  |  |  |  |
|           |                         | Midd    | le Channel (2535 | MHz)  |        |       |  |  |  |  |  |
| 5070.00   | -40.69                  | 11.78   | -28.91           | -25   | -3.91  | Н     |  |  |  |  |  |
| 7605.00   | -47.86                  | 15.21   | -32.65           | -25   | -7.65  | Н     |  |  |  |  |  |
| 5070.00   | -42.94                  | 11.78   | -31.16           | -25   | -6.16  | V     |  |  |  |  |  |
| 7605.00   | -49.10                  | 15.21   | -33.89           | -25   | -8.89  | V     |  |  |  |  |  |
|           |                         | High    | Channel (2567.5) | MHz)  |        |       |  |  |  |  |  |
| 5135.00   | -40.89                  | 11.89   | -29.00           | -25   | -4.00  | Н     |  |  |  |  |  |
| 7702.50   | -47.11                  | 15.32   | -31.79           | -25   | -6.79  | Н     |  |  |  |  |  |
| 5135.00   | -41.6                   | 11.89   | -29.71           | -25   | -4.71  | V     |  |  |  |  |  |
| 7702.50   | -46.17                  | 15.32   | -30.85           | -25   | -5.85  | V     |  |  |  |  |  |

For FDD\_LTE Band 17 Mode

| Frequency | Reading                | Correct | Result           | Limit | Margin | Polar |  |  |  |  |  |
|-----------|------------------------|---------|------------------|-------|--------|-------|--|--|--|--|--|
| (MHz)     | (dBm)                  | dB      | (dBm)            | (dBm) | (dB)   | H/V   |  |  |  |  |  |
|           | Low Channel (706.5MHz) |         |                  |       |        |       |  |  |  |  |  |
| 1413.00   | -34.62                 | 4.22    | -30.4            | -13   | -17.4  | Н     |  |  |  |  |  |
| 2119.50   | -41.75                 | 7.42    | -34.33           | -13   | -21.33 | Н     |  |  |  |  |  |
| 1413.00   | -35.61                 | 4.22    | -31.39           | -13   | -18.39 | V     |  |  |  |  |  |
| 2119.50   | -43.25                 | 7.42    | -35.83           | -13   | -22.83 | V     |  |  |  |  |  |
|           |                        | Middl   | e Channel (710.0 | MHz)  |        |       |  |  |  |  |  |
| 1420.00   | -34.88                 | 4.58    | -30.3            | -13   | -17.3  | Н     |  |  |  |  |  |
| 2130.00   | -44.12                 | 7.69    | -36.43           | -13   | -23.43 | Н     |  |  |  |  |  |
| 1420.00   | -36.88                 | 4.58    | -32.3            | -13   | -19.3  | V     |  |  |  |  |  |
| 2130.00   | -42.34                 | 7.69    | -34.65           | -13   | -21.65 | V     |  |  |  |  |  |
|           |                        | High    | Channel (713.5N  | MHz)  |        |       |  |  |  |  |  |
| 1427.00   | -36.74                 | 4.69    | -32.05           | -13   | -19.05 | Н     |  |  |  |  |  |
| 2140.50   | -44.61                 | 7.87    | -36.74           | -13   | -23.74 | Н     |  |  |  |  |  |
| 1427.00   | -35.33                 | 4.69    | -30.64           | -13   | -17.64 | V     |  |  |  |  |  |
| 2140.50   | -44.03                 | 7.87    | -36.16           | -13   | -23.16 | V     |  |  |  |  |  |

Note: Result=Reading+ Correct, Margin= Result- Limit

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



# 9. Frequency Stability

## 9.1 Standard Applicable

According to \$24.235, \$27.54 the limit is 2.5ppm.

#### 9.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode

### 9.3 Summary of Test Results/Plots

Note: 1.Normal Voltage NV=DC3.7V; Low Voltage LV=DC3.33V; High Voltage HV=DC4.07V

Please refer to Appendix F: Frequency Stability

Test result: Pass

\*\*\*\*\* END OF REPORT \*\*\*\*\*