# 2024연세대학교 공학대학원 인공지능 전공 AI SHOWCASE

# 강화학습 Computer Vision 모델 압축

# 김장박이정

김병주 2023450017

장지선 2022451109

박병선 2024451022

이지아 2024451036

지도교수: 함범섭 교수님

## Introduction

Target Board 메모리 용량이 작은 경우 대용량의 고도화된 딥러닝 모델을 올릴 수 없음

## Hardware Issue





Real-time Issue (



연산량 감소로 inference time이 짧아짐

보다 나은 서비스 제공 가능

고도화된 모델은 파라미터 갯수가 많음

상대적으로 비싼 대용량의 메모리 필요



Cost Issue

load



**Environment Issue** 

GPU의 큰 전력소모로 다량의 화석에너지 사용

환경 이상기후 발생

60 GB



경량화

20 GB



**Optimized Model** 

Main Memory 32 GB



**Target Board** 

**Target Model** 

## **Previous work**

#### 기존 연구들

학습된 Network 통계를 이용한 pruning

■ 압축률을 정해놓고 압축하여 새로운 시도가 부족

채널 중요도를 이용해 학습한 pruning

Loss Function이 달라 Optimizer를 기존 네트워크와 다르게 사용해 반복적인 fine-tuning 필요



Architecture Search를 이용한 pruning

▶ 일반적인 딥러닝에 비해 연산 cost가 높음

#### DECORE 적용된 PRUNING 장접

Bernoulli Sampling을 이용해 학습 중 낮은 중요도를 갖더라도 Agent를 통해 랜덤하게 사용 채널로 선택 가능

학습을 통해 중요한 채널을 선택하여 기존 모델과 같은 Optimizer, Loss Function 사용으로 상대적으로 cost가 낮음

각 Agent에서 하나의 parameter를 학습해 빠르고 효율적

# DECORE(Deep Compression with RL)





#### DECORE 구조

- 1. 각 Conv Layer마다 Agent 배치하여 Channel 별 유지/제거
  - VGG: 연속된 Conv Layer 사이에 Agent 배치
  - Resnet: Residual Block 내 Conv Layer 사이에 Agent 배치
- 2. MDP 구조에 따라 State(ex. 6.9) 정보를 수집하여 Sigmoid로 확률값 변환
- 3. 확률값 기반으로 Bernoulli Sampling 통해 0(제거) 또는 1(유지) 결정
- 4. 정확도 하락 시 Lambda값에 따라 음의 Reward를 주어 성능과 압축률 균형 유지
- 5. Reward 체계를 Loss Function 활용해 Policy Gradient 방식으로 Agent 정책 업데이트



# DECORE(Deep Compression with RL)



VGG



#### Resnet



#### Unstructured Pruning 함계

DECORE는 Unstructured Pruning을 하기 때문에 전체적인 네트워크 구조는 유지되고 모델 기본 용량이 크게 감소하지 않아 실제 하드웨어의 메모리와 연산량의 실질적 감소 제한적

GPU/TPU 같은 병령 처리 장치에 Unstructured Pruning으로 인해 불규칙하게 분포된 가중치들이 연속적인 메모리 접근을 방해하고 캐시 효율성 저하시킴

## **Structured Pruning**







Resnet





# Quantizaion

#### 1. Weight Quantization



$$S = \frac{r_{max} - r_{min}}{2^n - 1}$$





Scale = 0.03098 (값의 범위를 n-bit 정수로 정규화)

Quantization:  $35 = round\left(\frac{2.3}{0.03098} - 39\right)$ 

Zero Point(z): -39 =  $round\left(\frac{\min(w)}{S}\right)$ 

Dequantization: 2.2925  $\approx$  (35-(-39)) x 0.03098

기대효과: 데이터 압축률 ↑ 고속연산 ↑ 데이터 손실률 ↓

# 2. The Impact of Weight Quantization on Model Size



#### 3. Weight Quantization Result







Resnet18이 Quantization 후모델크기, 정확도 측면에서 더 효율적

## **Test Result**

| Model                       | Size<br>(MB) | Top-1<br>Accuracy<br>(%) | Precision<br>(%) | Recall<br>(%) | Evaluation<br>Time<br>(sec) | Accuracy<br>Difference<br>(%) |
|-----------------------------|--------------|--------------------------|------------------|---------------|-----------------------------|-------------------------------|
| ResNet18                    | <b>42.94</b> | 92.53                    | 92.65            | 92.53         | 5.55                        | 0                             |
| Structured<br>ResNet18      | 6.89         | 92.42                    | 92.47            | 92.42         | 3.47                        | -0.11                         |
| Structured<br>ResNet18 INT8 | 2.46         | 92.43                    | 92.48            | 92.43         | 1.55                        | -0.1                          |
| VGG16                       | 128.74       | 92.39                    | 92.38            | 92.39         | 3.63                        | 0                             |
| Structured VGG16            | 67.48        | 90.55                    | 90.59            | 90.55         | 1.72                        | -1.84                         |
| Structured VGG16<br>INT8    | 17.63        | 90.31                    | 90.33            | 90.31         | 1.29                        | -2.08                         |



VGG16







■ Structured ResNet18 INT8



■ Structured VGG16 INT8

Structured VGG16



## 효율성 극대화

- 강화학습을 통해 모델 구조를 자동으로 탐색 및 최적화 가능
- 기존 휴리스틱 기반 압축 방법 대비 더 정교하고 효율적인 Pruning 전략 설계

## 성능-압축 균형 최적화

성능 저하를 최소화 하면서 경량화 모델 제공

## 새로운 AI 설계 패러다임

- 강화학습 활용으로 모델 설계 자동화를 넘어, AI 설계 지능화를 촉진
- 시간, 인적자원 절약 가능