The Wave-Like Properties of Particles

Michael Brodskiy

Professor: Q. Yan

February 27, 2023

Contents

1	De Broglie's Hypothesis	3
2	Experimental Evidence for De Broglie Waves 2.1 Double-Slit Experiment	3
3	Heisenberg Uncertainty Relationships	4

1 De Broglie's Hypothesis

- After Einstein's theory, it was determined that light has dual particle-wave nature
- In 1924, Louis de Broglie proposes a hypothesis:
 - Any object moving with a momentum p is associated with a wave of wavelength λ , where:

$$\lambda = \frac{h}{p}$$

- $-\lambda$ refers to the "De Broglie" wavelength, h is the Planck constant, and p is the momentum
- For experimental measurement of the wave-like behavior of particles, the double and single-slit experiments were performed

2 Experimental Evidence for De Broglie Waves

- Particle Diffraction Experiment
 - For light of wavelength λ incident on a slit of width a, the diffraction pattern has a minimum at angles:

$$a\sin(\theta) = n\lambda, \quad n = 1, 2, 3, \cdots$$

- Each of the atoms acts as a scatter
- The scattered electron waves interfere
- The crystal serves as a diffraction grating
- The maxima occurs at angle:

$$d\sin(\phi) = n\lambda$$

- Where λ is the de Broglie wavelength

2.1 Double-Slit Experiment

- Question: Through which slit does the particle pass?
- Result: No diffraction pattern on the screen
- if we check which slit the particle passes through:
 - Particle behavior is measured

- We can not observe its wave nature simultaneously! (Principle of complementarity)
- Conclusion:
 - The electron will behave as a wave or a particle

3 Heisenberg Uncertainty Relationships

• Applying the uncertainty relationship to de Broglie waves:

$$p = \frac{h}{\lambda} \Rightarrow dp = -\frac{h}{\lambda^2} d\lambda \Rightarrow \Delta p = \frac{h}{\lambda^2} \Delta \lambda$$

• Finally, this yields:

$$\Delta x \Delta p \approx \varepsilon h$$

• From quantum mechanics:

$$\Delta x \Delta p \ge \frac{h}{4\pi}$$

$$\varepsilon = \frac{1}{4\pi}$$

$$\Delta x \Delta p \ge \frac{1}{2}\hbar$$

- Where $\hbar = \frac{h}{2\pi}$
- \bullet When a coin is flipped, or a dice is rolled:
 - $-\,$ No way to predict a single flip/roll
 - But, we can predict the distribution of the results from a large # of flips or rolls
 - Quantum Theory allows for the same behavior
- Wave Function
 - What is the amplitude of the de Broglie wave?
 - Checking classical waves:
 - * Waves in the ocean: Height of water level
 - * Sound wave: Volume density of molecules

- * Light waves: \overrightarrow{E} , \overrightarrow{B} field
- * de Broglie waves: The probability of finding a particle at a given (x,t)
 - · This is known as ψ , the wave function
 - · In *n*-dimensional space, it becomes $\psi(x_1, x_2, \cdots, x_n, t)$
 - · In classical physics, the intensity (I) of any wave is proportional to |A|
 - · For quantum mechanics, we have the probability of final particle $P \propto |\psi|^2$
- * The requirement for wave function ψ is that $|\psi|^2 \geq 0$
- * Any physical measurement is related to $P \propto |\psi|^2$
- * ψ are generally complex #'s
- * Properties of Complex Numbers
 - $\cdot \psi = Re(\psi) + iIm(\psi)$
 - · The complex conjugate is: $\psi^* = Re(\psi) iIm(\psi)$
- In the complex plane:
 - The phase factor is $z = |z|e^{i\theta}$
 - The wave function of a free particle is $Ae^{i(kx-\omega t)}$ or $A[\cos(kx-\omega t)+i]\sin(kx-\omega t)$