

EP 0 408 572 B1

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: **0 408 572 B1**

(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag der Patentschrift: **02.06.93** (51) Int. Cl. 5: **H01L 35/08**

(21) Anmeldenummer: **89902514.2**

(22) Anmeldetag: **18.02.89**

(86) Internationale Anmeldenummer:
PCT/EP89/00152

(87) Internationale Veröffentlichungsnummer:
WO 89/07836 (24.08.89 89/20)

(54) THERMOGENERATOR.

(30) Priorität: **22.02.88 CH 646/88**
01.07.88 CH 2511/88

(43) Veröffentlichungstag der Anmeldung:
23.01.91 Patentblatt 91/04

(45) Bekanntmachung des Hinweises auf die
Patenterteilung:
02.06.93 Patentblatt 93/22

(84) Benannte Vertragsstaaten:
DE FR GB IT SE

(56) Entgegenhaltungen:
GB-A- 1 381 001
US-A- 3 554 815
US-A- 3 648 470
US-A- 4 677 416

Patent Abstracts of Japan, Vol. 11, No. 110
(E-496)(2557) 07 April 1987, & JP,A,61259580

(73) Patentinhaber: **Migowski, Friedrich-Karl**
Klosterhof 11
W-7260 Calw-Hirsau(DE)

(72) Erfinder: **Migowski, Friedrich-Karl**
Klosterhof 11
W-7260 Calw-Hirsau(DE)

(74) Vertreter: **Hubbuch, Helmut, Dipl.-Ing et al**
Patentanwälte Dr. Rudolf Bauer Dipl.-Ing.
Helmut Hubbuch Dipl.-Phys. Ulrich Twemel-
er Westliche Karl-Friedrich-Strasse 29-31
W-7530 Pforzheim (DE)

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingeleitet, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

Die Erfindung betrifft einen Thermogenerator mit p und n Elementen für eine Uhr, einen Sensor, ein Stromspeisegerät oder dgl., der zwischen einer warmen und kalten Temperaturquelle angeordnet ist, wobei die Thermoelemente mit einer Dünnschicht- oder Dickfilmtechnik auf ein Substrat aufgetragen sind und die Form der n und p Elementen so gewählt ist, dass sie sich untereinander überschneiden.

Ein bekannter Thermogenerator ist in der CH-PS 604249 beschrieben. Dieser ist aus diskreten Bauteilen zusammengesetzt, indem thermoelektrisches Material in Stäbchen geschnitten wird, um dann zu Blöcken zusammengesetzt zu werden. Dadurch können in einer Uhr nur einige hundert von thermoelektrischen Elementen in Serie geschaltet werden.

Die Ausgangsspannung ist zu klein um eine Batterie mit Strom zu versorgen. Dieser muss noch durch eine aufwendige Elektronik und durch einen Transformer auf ein Niveau gebracht werden, um eine Batterie laden zu können.

In der PS GB-A-1 381001 ist die Herstellung eines Dünnschichtthermogenerators auf eine Aluminium und Aluminiumoxydunterlage beschrieben. Diese Herstellung eignet sich nur eine sehr kleine Anzahl von Thermoelementen. Zudem ist die Herstellung des Substrats sehr aufwendig.

In der PS US-A-3648470 ist ein Peltier Element beschrieben zur Heizung oder Kühlung eines Teiles. Dabei überlappen die p und n Elemente sich gegeneinander und zwischen der Überlappung ist ein Material vorgesehen, das elektrisch gut, jedoch thermisch nicht leitet.

Bei der Herstellung von Dünnschichten ist es jedoch wichtig ein Material, das die p und n Elemente verbindet, so zu wählen, dass es metallurgisch eine Verbindung hervoribt, die eine gute Haftbarkeit, kleinen elektrischen Widerstand und eine gute Wärmeleitfähigkeit ergibt.

Die in den PS JP-A-61 259 580 und US-A-4 677 416 beschriebenen mit einer Dünnschicht- oder Dickfilmtechnik aufgetragene Schichten, überlappen sich gegenseitig. Da es sich dabei immer nur um wenige Paare handelt, ist die Grösse des elektrischen Gesamtwiderstandes kein Problem. Eine solche Ausführung ist jedoch bei einer Serieschaltung von mehreren Tausend Elementenpaaren nicht denkbar, da der elektrische Widerstand viel zu hoch wäre. Auch wurden die intermetallischen Probleme bei den Metallübergängen nicht berücksichtigt.

Die PS US-A-3 554 815 beschreibt eine Lösung, in der die p-Schicht auf der einen Seite und die n-Schicht auf der anderen Seite eines Substrats aufgebracht werden. Dies wäre bei einer Serienherstellung viel zu kostspielig. Auch ist das im Patent-

anspruch angegebene Verhältnis von 5 : 1 zwischen der Schichtdicke und der Substratdicke bei Dünnschichten nicht ausführbar. Dieses Verhältnis ist eher 1 : 1 für Anwendungen die nachher beschrieben werden.

Es ist daher Aufgabe der Erfindung einen Thermogenerator herzustellen, der mit einfachen Mitteln, kostengünstig und in grossen Serien herstellbar ist.

5 Dies wird nach den kennzeichnenden Teilen der Patentansprüche 1 und 4 erreicht.

Die Herstellung des Thermogenerators benötigt nur eine Maske, die nach der Herstellung von z.B. der p Elementen um 180° gedreht wird um dann die n Elemente aufzutragen.

Dabei entstehen automatisch Überlappungen von n und p Materialien. Damit der elektrische Widerstand reduziert werden kann, ist eine zusätzliche Schicht eines Materials aufzutragen, das sich mit dem n und p Material der Thermoelemente metallisch verbindet. Dadurch wird die thermoelektrische Spannung des Generators nicht beeinflusst, jedoch der Wirkungsgrad deutlich verbessert, durch diese Reduktion des elektrischen Widerstands.

20 Gleichzeitig werden mit dem gleichen Arbeitsgang und mit den gleichen Materialien Kontaktflächen aufgetragen, damit das erste und letzte Element des Thermogenerators mit einer Schaltung verbunden werden können. Ein anderes Problem ist die Wärmeübertragung von den Wärmequellen auf das Substrat. Durch das Auftragen einer zusätzlichen Schicht ist es möglich durch die Anwendung einer entsprechenden Wärmeleitpaste oder dgl. eine optimale Wärmeübertragung herzustellen.

25 35 Da die Verluste der Wärmeübertragung durch das Substrat, die Befestigung und durch die Luft nicht unbedeutend sind, ist diese Lösung der Aufgabe von grosser Bedeutung.

30 Die Schicht zur Verbesserung der Wärmeübertragung kann vorteilhafterweise aus dem gleichen Material hergestellt werden, wie dasjenige das für die Kontaktflächen oder für die zusätzlichen leitenden Schichten verwendet wird.

35 40 Einer der wichtigsten Verlustquellen bei der Wärmeübertragung ist gegeben durch den Abstand beider Quellen. Die Luft überträgt die Wärme relativ gut und das Volumen zwischen den Quellen kann gross sein. Um diesen Verlust zu reduzieren, ist es von Vorteil, Plastikfolien auf die Flächen aufzubringen, die mit der Luft im Kontakt sind, um die Wärmeübertragung zwischen den Quellen und der Luft zu vermindern.

45 50 Besonders in einer Uhr, wo die Temperaturdifferenz zwischen den beiden Temperaturquellen gering ist, z.B. 3-5 °C sind die vorgeschlagenen Lösungen sehr wirkungsvoll.

55 Bei der Anwendung eines Thermogenerators in einer Uhr ist es so, dass das Uhrwerk meistens

Es ist auch denkbar, dass die Thermoelemente in einem Uhrenarmband untergebracht sein könnten, das eine mit dem Arm thermisch isolierte Oberfläche aufweist. Der Thermogenerator ist dann mit elektrischen Leitern mit dem Kondensator oder dem Akkumulator der Uhr verbunden. Anstelle einer Uhr könnte man sich ein tragbares Instrument vorstellen, wie ein Pulsmesser, Blutdruckmessgerät, elektronisches Höhenmessgerät, Thermometer, elektronischen Kompass usw.

Fig. 3 stellt einen Thermogenerator 5 dar, der zwischen den beiden Temperaturquellen 7 angeordnet ist. Um die Wärmeübertragung zu optimieren, wird ein Material 6 zwischen den Temperaturquellen 7 und dem Thermogenerator 5 aufgetragen. Dieses Material muss die Wärme möglichst gut leiten, um die Wärmeübertragung von den Quellen 7 auf den Thermogenerator 5 zu fördern. Dieses Material kann ein Elastomer sein in einem weichen oder ausgehärteten Zustand und kann eine relativ grosse Anteil Pulver enthalten, das die Wärme leitet.

Bei einem Thermogenerator sollte möglichst viel Wärme durch die Thermoelemente 1,2 fließen. Um dies zu erreichen, sollten die Verluste durch parallele Wärmebrücken möglichst reduziert werden. Dabei spielt der Wärmeverlust durch die Luft eine wichtige Rolle. Dieser Wärmeverlust kann reduziert werden durch das aufbringen von zusätzlichen Folien 8 auf eine oder beide Temperaturquellen 7.

Fig. 4 stellt ein Substrat 10 dar, auf dem Thermoelemente 1,2 aufgetragen wurden. Zusätzlich wurde noch eine Schicht 9 aufgetragen, die die Thermoelemente 1,2 nicht berühren.

Diese Schicht 9 kann aus Metall sein oder aus dem gleichen Material, wie die Verbindungsschichten 3 sein. Diese Schicht 9 hat den Vorteil, dass die Wärmeübertragung von den Quellen 7 verbessert wird, zwischen denen schon das Wärmeübertragungsmaterial 6 vorhanden ist.

Patentansprüche

1. Thermogenerator mir p und n Elementen für eine Uhr, einen Sensor, ein Stromspeisegerät, der zwischen einer warmen und einer kalten Temperaturquelle (7) angeordnet ist, wobei die Thermoelemente (1,2) mit einer Dünn- oder Dickfilmtechnik auf ein Substrat (10) aufgetragen sind und die Form der n und p Elemente (1,2) so gewählt ist, dass sie sich untereinander überschneiden und das erste und das letzte in Serie geschaltete Element mit einer Kontaktfläche (4) verbunden ist, dadurch gekennzeichnet, dass eine zusätzlich elektrisch leitende Schicht (3) auf die Kontaktfläche der p und n Elemente (1,2) aufgetragen ist, um den elek-

trischen Widerstand des Thermogenerators zu reduzieren.

2. Thermogenerator nach Anspruch 1, dadurch gekennzeichnet, dass die leitende Schicht (3) und/oder die Kontaktfläche (4) aus einem Metall oder einer Legierung besteht, die mit dem Material der Elemente (1,2) metallisch löslich ist.
3. Thermogenerator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Substrat (10) beidseitig mit Thermoelementen beschichtet ist.
4. Thermogenerator nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der Wärmefluss zwischen den beiden Quellen (7) mindestens teilweise über zusätzliche Wärmebrücken (6,9), die zwischen den Quellen (7) und den Thermoelementen (1,2) liegen, geführt ist (Fig. 4).
5. Thermogenerator nach Anspruch 4, dadurch gekennzeichnet, dass die Wärmebrücke (6) aus einem thermisch leitenden, elektrisch isolierenden Material, wie ein Elastomer, dem ein thermisch leitendes Pulver zugemischt worden ist, zwischen den Quellen (7) und den Substrat (10) aufgebracht ist und/oder aus einem Metall (9), das parallel zu der Längsrichtung des Substrats (10) auf letzteres aufgebracht ist, um die Wärmeübertragung zwischen den Quellen (7) und den Thermoelementen (1,2) zu verbessern.
6. Thermogenerator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Isolationsfolien (8) auf die Quellen (7) aufgebracht sind, um den Wärmeverlust durch die Luft zu reduzieren.
7. Uhr mit einem Thermogenerator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein oder mehrere Thermogeneratoren (5) um das Uhrwerk angeordnet sind oder dass mehrere Thermogeneratoren (5) verteilt und untereinander elektrisch verbunden um das Uhrwerk angeordnet sind.
8. Uhr nach Anspruch 7, dadurch gekennzeichnet; dass der oder die Thermogeneratoren (5) aufgerollt sind.
9. Uhr nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass sie mit einem Kondensator ausgerüstet ist, der durch den Thermogenerator aufladbar ist und das Uhrwerk mit Strom ver-

sorgt.

10. Sensor mit einem Thermogenerator nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Integator vorgesehen ist, um eine Wärmemenge zu messen.

Claims

1. A thermogenerator having p and n elements for a clock, a sensor, a current feeding apparatus arranged between a hot and a cold temperature source (7), the thermoelements (1,2) being applied on the substrate (10) by a thin-film or a thick-film process and the shape of the n and p elements (1,2) being selected in such a way that they overlap each other, and the first and the last series-connected elements being connected to a contact surface (4) characterized in that an additional electrically conductive layer (3) is applied on the contact surface of the p and n elements (1,2) in order to reduce the electric resistance of the thermogenerator.
2. A thermogenerator according to claim 1, characterized in that the said conductive layer (3) and/or the said contact surface (4) consists of a metal or of an alloy which is metallically soluble with the material of the elements (1,2).
3. A thermogenerator according to claim 1 or 2, characterized in that the said substrate (10) is coated with thermoelements on both sides.
4. A thermogenerator according to any of claims 1 to 2, characterized in that the heat flow between the two sources (7) is conducted, at least partly, across additional heat bridges (6,9) arranged between the said sources (7) and the said thermoelements (1,2) (Fig. 4).
5. A thermogenerator according to claim 4, characterized in that the said heat bridge (6) consists of a thermally conductive, electrically insulating material, such as an elastomer, which contains an admixture of a thermally conductive powder and has been applied between the said sources (7) and the said substrate (10), and/or of a metal (9) which has been applied on the said substrate (10) in parallel to the latter's longitudinal direction, in order to improve the heat transmission between the said sources (7) and the said thermoelements (1,2).
6. A thermogenerator according to any of claims 1 to 5, characterized in that insulating films (8) are applied on the said sources (7) for the

purpose of reducing heat losses through the air.

- 5 7. A clock comprising a thermogenerator according to any of claims 1 to 6, characterized in that one or more thermogenerators (5) are arranged around the clock or that a plurality of thermogenerators (5), which are electrically interconnected, are arranged around the clock.
- 10 8. A clock according to claim 7, characterized in that the said one or more thermogenerators (5) are rolled up.
- 15 9. A clock according to claim 7 or 8, characterized in that the said clock is provided with a capacitor which is arranged for being charged by the said thermogenerator and for supplying the clockwork with current.
- 20 10. A sensor comprising a thermogenerator according to any of claims 1 to 6, characterized in that there is provided an integrator for measuring an amount of heat.

Revendications

- 25 1. Générateur thermoélectrique à éléments p et n pour une horloge, un capteur, un appareil d'alimentation en courant, disposé entre des sources de température chaude et froide (7), les thermoéléments (1,2) étant appliqués sur un substrat par une technique en couche mince ou en couche épaisse et la forme des éléments p et n (1,2) étant choisie de telle sorte qu'ils se chevauchent mutuellement et que le premier et le dernier éléments raccordés en série sont reliés à une surface de contact (4), caractérisé en ce qu'une couche électriquement conductrice additionnelle (3) est appliquée sur la surface de contact des éléments p et n (1,2) pour réduire la résistance électrique du générateur thermoélectrique.
- 30 2. Générateur thermoélectrique selon la revendication 1, caractérisé en ce que la couche conductrice (3) et/ou la surface de contact (4) est en un métal ou un alliage qui forme une solution métallique avec le matériau des éléments (1,2).
- 35 40 3. Générateur thermoélectrique selon l'une des revendications 1 et 2, caractérisé en ce que le substrat (10) est recouvert de thermoéléments sur ses deux faces.
- 45 50 55 4. Générateur thermoélectrique selon l'une des revendications 1 à 2, caractérisé en ce que le

flux de chaleur entre les deux sources (7) est conduit au moins partiellement par des ponts thermiques additionnels (6,9) situés entre les sources (7) et les thermoéléments (1,2) (fig. 4).

- 5 5. Générateur thermoélectrique selon la revendication 4, caractérisé en ce que le pont thermique (6) est introduit entre les sources (7) et le substrat (10), en un matériau thermiquement conducteur et électriquement isolant, tel qu'un élastomère, auquel on a mélangé une poudre thermiquement conductrice, et/ou en un métal (9) qui est étendu sur le substrat (10), parallèlement à la direction longitudinale de ce dernier, pour améliorer le transfert de chaleur entre les sources (7) et les thermoéléments (1,2).
- 10 6. Générateur thermoélectrique selon l'une des revendications 1 à 5, caractérisé en ce que des feuilles isolantes (8) sont étendues sur les sources (7) pour réduire les pertes thermiques par l'air.
- 15 7. Horloge comprenant un générateur thermoélectrique selon l'une des revendications 1 à 6, caractérisée en ce qu'un ou plusieurs générateurs thermoélectriques (5) sont disposés autour du mécanisme d'horloge ou que plusieurs générateurs thermoélectriques (5) sont répartis autour du mécanisme d'horloge et reliés électriquement les uns aux autres.
- 20 8. Horloge selon la revendication 7, caractérisée en ce que le ou les générateurs thermoélectriques (5) sont enroulés.
- 25 9. Horloge selon l'une des revendications 7 et 8, caractérisée en ce qu'elle est équipée d'un condensateur qui peut être chargé par le générateur thermoélectrique et alimente l'horloge en courant.
- 30 10. Capteur comprenant un générateur thermoélectrique selon l'une des revendications 1 à 6, caractérisé en ce qu'il est prévu un intégrateur pour mesurer une quantité de chaleur.

Fig 1a

Fig 1b

Fig 2

Fig 3

Fig 4