zenc

24.1

 $164 ext{ fu(x)} = 14 ext{ 5 cos ux}$

Paroue Coacholly that (An) Converger
Uniformly to 0 on IR

201~

 $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{1+2\cos^2nx}{5n}$

= lim fr + 2 lim cos2nx

= 0 +0

=) fn -> 0 Pointwire on IR

megina.

maximum of fn(x)

=)
$$\frac{ds}{ds}$$
 (01 ns = 2 (05 ns -- 2 in ns · N

$$4^{3}(0) = 1+5(0)_{2}0 = \frac{2^{3}}{3}$$

lim SOP (fn(x) - f(x) $= \lim_{n\to\infty} \frac{3}{5n} = 0$ 1-lence on iformly on IR fox x ∈ (0,00) > (6+ fu(x) = x (a) find f(x)= limfn(x) lim fr(x)= lim x n-200 n-20 n -x dim L = 0 f (x)=0 =) $f_n(x)$

no 92iatriol O(

6	Defermine whether In - I uniform
	on Coil
2 <u>01</u> ,	for >((011)
	In(N) has mariemen at
	$200 \left f(x) - f(x) \right = 1$
	lim 1 =0
	$=) lim 200 fn(x) - f(x) = 0$ $n - i \infty x \in [0,1]$
	$=1$ $f_n(x)$ —) O onitormly on $coill$
(2)	Deformine Whether form of Uniformly on Color)
	xe(010) xe(010)

$$=$$
 $\int_{\Omega} d\sigma not$ Converge uniformly

$$\frac{24.3}{4n(x)=\frac{1}{1+x}n}$$

for
$$|x|$$
? $|x| = +00$ or -80

for
$$(x/x)$$

Lim $x^n = 0$

Now -1

Now -1

for
$$\chi = 1$$

lim $\frac{1}{1+\chi^n}$ is not defined

$$= \frac{1}{2} \frac{$$

=> fn(x) does not converse

	@ Deformine whether full oniformly
	$(0, \emptyset)$
	Ans:
	In in Continuous function
	m (o,d)
	$\mathcal{O}(\mathcal{O}, \mathcal{O})$
	to evourition) 216 in 7
	$\chi = 1$
	=> of does not converge uniformly
24.0	1) Ne pead for $f(x) = \frac{1+x^n}{x^n}$
	(a) foor 12/21
	1im x"= 0 ~~~~~
	2 N. 24 V
	$= \frac{1+3n}{2\sqrt{n}} = 0$
	$\mathcal{N}_{\mathcal{A}_{\mathcal{D}}}$
	for X=1
	Jim 34xn = 3
	Nego 24XN _ S

2021 X 21 lim x = +0 $= \int_{-\infty}^{\infty} \frac{1}{2} x = 1$ $= \int_{-\infty}^{\infty} \frac{1}{2} x = 1$ $= \int_{-\infty}^{\infty} \frac{1}{2} x = 1$ f à discontinuous even though fu's on continuous =) f does not Converse Oniformly

24.5) Reveal for $f_n(x) = x^n$ to21 O(2(<) lim xn = 0 $\lim_{n \to \infty} \frac{1}{n} = 0$ 1051 x=1

1 = 0

1051 SC>1

2000 = 1 2000 = 1

$$f(x) = \begin{cases} 0 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1] \\ 1 & x \in [0,1] \end{cases}$$

$$f(x) = \begin{cases} 1 & x \in [0,1]$$

(C) fox XE (D10)

Lucontinoous

=> f do not converge unitormly

(54.8) [64 $4^{\nu}(x) = (x-1)_{\nu}$ for $x \in [0,1]$

(a) Pointwise?

 $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} (x - \frac{1}{n})$

 $= \lim_{n \to \infty} \left(x_5 + \frac{1}{7} - 5x \right)$

= 25

Lim fo(x)= x2 Yes, it

Conver's Point wise

This is
$$\frac{2\pi}{3\pi} - \frac{2\pi}{3\pi} = 0$$

This is $\frac{2\pi}{3\pi} - \frac{2\pi}{3\pi} = 0$

The second $\frac{2\pi}{3\pi} - \frac{2\pi}{3\pi} = 0$

The second

$$t^{2}(x) = (x - \frac{1}{2})^{2}$$
 consigning consequent

$$f_n(x) = x - x^n \qquad x \in [0,1]$$

a
$$\lim_{n\to\infty} 4n(x) = \lim_{n\to\infty} x - x^n$$

$$= 2 \times - \lim_{n \to \infty} x^n = x \times - 1$$

$$f(x) = \begin{cases} x-1 & \text{for } x=1 \\ x & \text{for } x=1 \end{cases}$$

$$\frac{1}{500}$$

$$\frac{1}{4}(x)^{2} = \frac{x}{4} + \frac{1}{4}x^{4} + \frac{x}{4} + \frac{x}{4}$$

$$\lim_{N\to\infty} f_N(N) = \sum_{N\to\infty} x^N = \frac{1}{1-N}$$

f(21)= 1-2(1x/<1

(B) on xe [0,1]

208 / fn(x) - f(x)/

24.9)
$$f_n(x) = n x^n (i-x) f_{ox} x \in [0,1]$$

a) f_{ind} $f_{(x)} = \lim_{n \to \infty} f_{n}(x)$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n}(x) = \lim_{n \to \infty} f_{n}(x)$$

$$= \lim_{n \to \infty} f_{n$$

Does from t uniformly on (0.17? $|f(x)| = \int_{0.01}^{0.00} |f(x)| = \int_{0.01}^{0.00} |f(x)|$ $= \int_{0.01}^{0.00} |f(x)| = \int_{0.01}^{0.00} |f(x)| =$

20,10 a Porove that if front uniforms erne li bono, 2 tos a m Uniformly on sets, then fra In -) fas uniformly on set S, 2017 I be no dimedina t (-- nt 2 ter no elmodino e (-) ne -) (im Sup | fn(x) - f(x) = 0 n-100 xes O= $\int (x)B-(x)mB$ | 402 mile 2-3x 46-m $lin SOP | f_n(x) - f + g_n(x) - g|$ $n-10 x \in S$ ther

OE now SCP (fn(x)-f) =0 + lim SUP (3n(x)-3)=0 2000 2005 =) fn+9n --- 1+9 uniformly