

Assignment ON EE4478 Digital video processing Tutorial 2-12

Xiong ChenYu(U1521516C) EEE

Apr. 8, 2018

Contents

1	Assignment 2 Halffman Code	2
	1.1 Question 1	2
	1.2 Question 2	4
2	Assignment 3 Arithmetic Coding	6
3	Assignment 4 Discrete Cosine Transform (DCT)	8
4	Assignment 5 Discrete Cosine Transform (DCT)	8
5	Assignment 6 Zig-Zag Scan	9
	5.1 Question a	9
	5.2 Question b	9
	5.3 Question c	9
6	Assignment 7 Run-Level Coding (RLC)	9
	6.1 Question a	9
	6.2 Question b	10
7	Assignment 8 JPEG / MPEG Intra frame encoding	10
8	Assignment 9 Motion estimation	14
	8.1 Apply quantization error on MC prediction error	14
	8.2 Question a	14
	8.3 Question b	14
	8.4 Question c	14
9	Assignment 10	14
10	Assignment 11 Stereo Imaging	14

List of Listings

1 Assignment 2 Halffman Code

1.1 Question 1

To generate halfman code first is to sort combile the 2 items with lowest possibilites and resort. Until the table only have 2 items left.

 Table 1: 1st round of sort

 Symbol
 Probability

 C
 0.05

 A
 0.1

 F
 0.12

 D
 0.18

 B
 0.2

 E
 0.35

Table 2: combile & 2nd round of sort

Symbol	Probalility	
F	0.12	
AC	0.15	
D	0.18	
В	0.2	
Е	0.35	

Table 3: combile & 3rd round of sort

Symbol	Probalility	
D	0.18	
В	0.2	
ACF	0.27	
E	0.35	

Then I can use the table above to generate halfman tree, I will use the 0 for the low probalities. And 1 for the high probalities.

After generate the halfman tree, I can generate the halfman code by go through the path

Table 4: combile & 4th round of sort Symbol Probalility

Symbol	Probability
ACF	0.27
E	0.35
BD	0.38

Table 5: combile & 5th round of sort

Symbol	Probalility
BD	0.38
ACFE	0.62

Figure 1: Tutorial 2.1

Table 6: Halfman code table

Symbol	Code
C	1010
A	1011
F	100
D	00
В	01
E	11

1.2 Question 2

To generate halfman code first is to sort combile the 2 items with lowest possibilites and resort. Until the table only have 2 items left.

Table 7: 1st round of sort Symbol Probability A 0.04 В 0.1 \mathbf{C} 0.11 D 0.15 G 0.180.2 E F 0.22

Table 8: combile & 2nd round of sort

Symbol	Probalility
С	0.11
AB	0.14
D	0.15
G	0.18
E	0.2
F	0.22

Table 9: combile & 3rd round of sort

Symbol	Probability
D	0.15
G	0.18
E	0.2
F	0.22
ABC	0.25

Then I can use the table above to generate halfman tree, I will use the 0 for the low probalities. And 1 for the high probalities.

After generate the halfman tree, I can generate the halfman code by go through the path

Table 10: combile & 4th round of sort

Symbol	Probability
Е	0.2
F	0.22
ABC	0.25
DG	0.33

Table 11: combile & 5th round of sort

Symbol	Probalility
ABC	0.25
DG	0.33
EF	0.42

Table 12: combile & 6th round of sort

Symbol	Probalility
EF	0.42
ABCDG	0.58

Figure 2: Tutorial 2.2

Table 13: Halfman code table

	Symbol	Code	
_	A	1010	
	В	1011	
	C	100	
	D	110	
	G	111	
	E	00	
	F	01	

2 Assignment 3 Arithmetic Coding

My matric card is shown below in Figure 3 So my matric number is U1521516C my last 8 character is 1521561C.

Figure 3: Matriculation Card

Symbol	Frequet Number
1	3
2	1
5	2
6	1
C	1

SO each range will be $\frac{1}{8} = 0.125$, So we can gererate arthmetic table

Symbol	Probability	Interval Low	Interval High	Interval
1	3/8	0	0.375	0.375
2	$\frac{1}{8}$	0.375	0.5	0.125
5	$\frac{1}{4}$	0.5	0.75	0.25
6	$\frac{1}{8}$	0.75	0.875	0.125
C	$\frac{1}{8}$	0.875	1	0.125

New Char	Low Value	High Value
1	0	0.375
5	$0 + (0.375 - 0) \times 0.5 = 0.1875$	$0 + (0.375 - 0) \times 0.75 = 0.2813$
2	$0.1875 + (0.2813 - 0.1875) \times 0.375 = 0.2227$	$0.1875 + (0.2813 - 0.1875) \times 0.5 = 0.2344$
1	$0.2227 + (0.2344 - 0.2227) \times 0 = 0.2227$	$0.2227 + (0.2344 - 0.2227) \times 0.375 = 0.2271$
5	$0.2227 + (0.2271 - 0.2227) \times 0.5 = 0.2249$	$0.2227 + (0.2271 - 0.2227) \times 0.75 = 0.2260$
1	$0.2249 + (0.2260 - 0.2249) \times 0 = 0.2249$	$0.2249 + (0.2260 - 0.2249) \times 0.375 = 0.2253$
6	$0.2249 + (0.2253 - 0.2249) \times 0.75 = 0.2252$	$0.2249 + (0.2253 - 0.2249) \times 0.875 = 0.22525$
C	$0.2252 + (0.22525 - 0.2252) \times 0.875 = 0.22524375$	$0.2252 + (0.22525 - 0.2252) \times 1 = 0.22525$

Decoded Number	Output Symbol	Low	High	Interval
0.22524375	1	0	0.375	0.375
0.60065	5	0.5	0.75	0.25
0.4022	2	0.375	0.5	0.125
0.2177	1	0	0.375	0.375
0.5806	5	0.5	0.75	0.25
0.3223	1	0	0.375	0.375
0.8594	6	0.75	0.875	0.125
0.8750	C	0.875	1	0.125

3 Assignment 4 Discrete Cosine Transform (DCT)

$$A = \begin{cases} \frac{1}{2}cos(0) & \frac{1}{2}cos(0) & \frac{1}{2}cos(0) \\ \sqrt{\frac{1}{2}}cos(\frac{\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{3\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{5\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{7\pi}{8}) \\ \sqrt{\frac{1}{2}}cos(\frac{2\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{6\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{10\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{14\pi}{8}) \\ \sqrt{\frac{1}{2}}cos(\frac{3\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{9\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{15\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{21\pi}{8}) \\ X = \begin{cases} 5 & 5 & 10 & 10 \\ 5 & 10 & 10 & 10 \\ 1 & 10 & 10 & 10 \\ 1 & 1 & 5 & 10 \end{cases} \\ \frac{1}{2}cos(0) & \sqrt{\frac{1}{2}}cos(\frac{3\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{2\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{9\pi}{8}) \\ \frac{1}{2}cos(0) & \sqrt{\frac{1}{2}}cos(\frac{5\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{10\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{15\pi}{8}) \\ \frac{1}{2}cos(0) & \sqrt{\frac{1}{2}}cos(\frac{5\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{10\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{15\pi}{8}) \\ \frac{1}{2}cos(0) & \sqrt{\frac{1}{2}}cos(\frac{7\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{14\pi}{8}) & \sqrt{\frac{1}{2}}cos(\frac{21\pi}{8}) \end{cases} \end{cases}$$

$$Y' = A \times X = \begin{cases} 6 & 13 & 17.5 & 20 \\ 3.6955 & 2.6131 & 3.2664 & 0 \\ 0 & -7 & -2.5 & 0 \\ -1.5307 & 1.0823 & 1.325 & 0 \end{cases}$$

$$Y = Y' \times X = \begin{cases} 28.25 & -10.36 & -2.25 & -0.8486 \\ 4.7875 & 2.22374 & -1.092 & 1.4268 \\ -4.75 & -1.2177 & 4.75 & 2.9398 \\ 0.45 & -1.073 & -1.983 & -0.237 \end{cases}$$

4 Assignment 5 Discrete Cosine Transform (DCT)

The output shown in below and I find that the higher the quant level the quality of the imgae will drop and more color appear in error.

5 Assignment 6 Zig-Zag Scan

5.1 Question a

My name is xiongchenyu so the matric will be

$$in = \begin{cases} x & i & o & n \\ g & c & h & e \\ n & y & u & x \\ i & o & n & g \end{cases}$$

The input matric in matlab will be [120 105 111 110;103 99 104 101;110 121 117 120;105 111 110 103]

out =

120 105 103 110 99 111 110 104 121 105 111 117 101 120 110 103

5.2 Question b

```
in = [4 -1 0 0; 1 0 0 0 ; -1 0 1 0; 0 0 0 0]
out = 4 -1 1 -1 0 0 0 0 0 0 1 0 0 0 0
```

5.3 Question c

I just change the input to 8*8 I think the origin code will support artitury shape to do the zigzag.

6 Assignment 7 Run-Level Coding (RLC)

6.1 Question a

x =
Columns 1 through 21
0 0 0 0 0 7 28 0 0 0 0 0 5 9 0 0 0 0 0 0 0
Columns 22 through 40
0 0 30 5 0 30 18 0 35 32 0 0 0 0 14 0 0 0 0

6.2 Question b

y =

7 Assignment 8 JPEG / MPEG Intra frame encoding

Figure 4: Orgion

Type	Value
Oscale	9
PSNR	31.61dB
SNR(Cb)	34.99dB
PSNR(Cr)	34.24dB

type	value
oscale	0.83
psnr	45.41db
snr(cb)	50.49db
psnr(cr)	50.25db

Value
0.332
49.43dB
54.69dB
54.64dB

8 Assignment 9 Motion estimation

- 8.1 Apply quantization error on MC prediction error
- 8.2 Question a
- 8.3 Question b
- 8.4 Question c

9 Assignment 10

- 1. Uncomment % A=transpose(A); line 26
- 2. Uncomment % B=transpose(B); line 63
- 3. The image size normalization is incorrect.

```
change to 8 as line 23
```

- 1. change inFile1='table_{40.raw}'; to 'table_{39.raw}' line 23
- 2. change F = int16(41:43); to F = int16(40:43); line 50
- 3. change legend('MC','No MC', 0) to legend('MC','No MC', 'best') line 114
- 4. change legend('MC','No MC', 0) to legend('MC','No MC', 'best') line 118

10 Assignment 11 Stereo Imaging

Original : D = round(Y2{nf}/2); %adjust depth factor '2' Modify To : D = round(Y2{nf}/5);