2018

Prova 2 – Turma 04 Matemática Discreta - Professora Karla

- 1. Prove usando as identidades que $A \cup (B \cap C) \cap ([A' \cup (B \cap C)] \cap (B \cap C)') = \emptyset$.
- 2. Quantos números, no mínimo, devem ser escolhidos do seguinte conjunto {5, 7, 9, 11, 13, 15, 17, 19} para garantir que para pelo menos um par deles some 24. Justifique sua resposta.
- 3. Encontre uma expressão para o número de arestas $K_{n,m}$ (grafo bipartido completo) e prove por indução no número de vértices que a expressão está correta
- 4. Enuncie o teorema de **Kuratowski** sobre grafos **não-planares** e use esse resultado para mostrar que o grafo abaixo não é planar

Identidades de Conjuntos Básicas

la.	$A \cup B = B \cup A$
2a.	$(A \cup B) \cup C =$
	$A \cup (B \cup C)$
3a.	$A \cup (B \cap C) =$
	$(A \cup B) \cap (A \cup C)$
4a.	$A \cup \emptyset = A$
5a.	$A \cup A' = S$

1b. $A \cap B = B \cap A$	(propriedades comutativas)
2b. $(A \cap B) \cap C =$	(propriedades associativas)
$A \cap (B \cap C)$	
3b. $A \cap (B \cup C) =$	(propriedades distributivas)
$(A \cap B) \cup (A \cap C)$	
4b. $A \cap S = A$	(propriedades de identidade)
5b. $A \cap A' = \emptyset$	(propriedades de complemento)

(Perceba que a propriedade 2a nos permite escrever $A \cup B \cup C$ sem a necessidade do uso de parênteses; 2b nos permite escrever $A \cap B \cap C$.)