Assignment 1

Author: Shweta Sampath Kumar

Created: 1/15/2023

MScA 31010 Linear and Non Linear Models

```
In [1]: import pandas as pd
import numpy as np
import plotly.express as px
import math
```

----- QUESTION 1 -----

```
In [2]: econ = pd.read_csv("Economy_2020_to_2022.csv")
  econ.head()
```

Out[2]:		Year	Month	N_Week	PCEPI	CPIAUCSL	ICSA_Week1	ICSA_Week2	ICSA_Week3	ICSA_Week4	ICSA_Week5
	0	2020	1	4	110.944	258.682	217000	203000	211000	200000	NaN
	1	2020	2	5	111.070	259.007	191000	186000	190000	196000	190000.0
	2	2020	3	4	110.824	258.165	186000	221000	2914000	5946000	NaN
	3	2020	4	4	110.237	256.094	6137000	4869000	4201000	3446000	NaN
	4	2020	5	5	110.353	255.944	2796000	2335000	2176000	1921000	1639000.0

(a) Generate a matrix of scatter plot (SPLOM) of these seven features: PCEPI, CPIAUCSL, ICSA_Week1, ICSA_Week2, ICSA_Week3, ICSA_Week4, and ICSA_Week5. You mut properly label the axes and add grid lines to all the scatter plots.

(b) Calculate the Pearson correlations for each pair of the seven features. Display your result up to four decimal places appropriately as a matrix.

```
In [4]: cols = ['PCEPI', 'CPIAUCSL', 'ICSA_Week1', 'ICSA_Week2', 'ICSA_Week3', 'ICSA_Week4', 'IC
pearsoncorr = round(econ[cols].corr(method='pearson'), 4)
pearsoncorr
Out[4]: PCEPI CPIAUCSL ICSA_Week1 ICSA_Week2 ICSA_Week3 ICSA_Week4 ICSA_Week5
```

-0.5079

-0.5786

-0.4934

-0.6655

-0.4692

PCEPI

1.0000

0.9993

CPIAUCSL	0.9993	1.0000	-0.4669	-0.5056	-0.5720	-0.4853	-0.6669
ICSA_Week1	-0.4692	-0.4669	1.0000	0.9961	0.8436	0.4960	0.9710
ICSA_Week2	-0.5079	-0.5056	0.9961	1.0000	0.8483	0.5003	0.9854
ICSA_Week3	-0.5786	-0.5720	0.8436	0.8483	1.0000	0.8824	0.9907
ICSA_Week4	-0.4934	-0.4853	0.4960	0.5003	0.8824	1.0000	0.9952
ICSA_Week5	-0.6655	-0.6669	0.9710	0.9854	0.9907	0.9952	1.0000

(c) Calculate the Spearman rank-order correlations for each pair of the seven features. Display your result up to four decimal places appropriately as a matrix.

```
In [5]: spearman_corr = round(econ[cols].corr('spearman'), 4)
    spearman_corr
```

ut[5]:		PCEPI	CPIAUCSL	ICSA_Week1	ICSA_Week2	ICSA_Week3	ICSA_Week4	ICSA_Week5
	PCEPI	1.0000	0.9989	-0.5947	-0.6143	-0.7333	-0.7392	-0.5524
	CPIAUCSL	0.9989	1.0000	-0.6094	-0.6302	-0.7474	-0.7532	-0.5524
	ICSA_Week1	-0.5947	-0.6094	1.0000	0.9744	0.8412	0.8340	0.9860
	ICSA_Week2	-0.6143	-0.6302	0.9744	1.0000	0.8986	0.8892	0.9842
	ICSA_Week3	-0.7333	-0.7474	0.8412	0.8986	1.0000	0.9940	0.9860
	ICSA_Week4	-0.7392	-0.7532	0.8340	0.8892	0.9940	1.0000	0.9860
	ICSA_Week5	-0.5524	-0.5524	0.9860	0.9842	0.9860	0.9860	1.0000

(d) Calculate the Kendall's Tau-b correlations for each pair of the seven features. Display your result up to four decimal places appropriately as a matrix.

```
In [ ]: kendalls_corr = round(econ[cols].corr('kendall'), 4)
   kendalls_corr
```

Out[]:		PCEPI	CPIAUCSL	ICSA_Week1	ICSA_Week2	ICSA_Week3	ICSA_Week4	ICSA_Week5
	PCEPI	1.0000	0.9899	-0.5652	-0.5786	-0.6650	-0.6672	-0.5455
	CPIAUCSL	0.9899	1.0000	-0.5685	-0.5820	-0.6684	-0.6706	-0.5455
	ICSA_Week1	-0.5652	-0.5685	1.0000	0.8998	0.8226	0.8213	0.9394
	ICSA_Week2	-0.5786	-0.5820	0.8998	1.0000	0.8544	0.8403	0.9313
	ICSA_Week3	-0.6650	-0.6684	0.8226	0.8544	1.0000	0.9539	0.9394
	ICSA_Week4	-0.6672	-0.6706	0.8213	0.8403	0.9539	1.0000	0.9394
	ICSA_Week5	-0.5455	-0.5455	0.9394	0.9313	0.9394	0.9394	1.0000

(e) Calculate the Distance correlations for each pair of the seven features. Display your result up to four decimal places appropriately as a matrix.

```
In [ ]: def empirical_distance(M):
           m = []
            m mean = []
            for x in M:
               1 = []
               for i in M:
                   l.append(abs(x-i))
               m.append(1)
                m mean.append(sum(1)/len(1))
            m = np.matrix(m)
            m adjusted = []
            total mean = sum (m mean) /len (m mean)
            c = m.shape[1]
            s = 0
            for i in enumerate(m):
               1 = []
               for j in range(c):
                    x = m.item(i[0], j) - m mean[i[0]] - m mean[j] + total mean
                   s = s + (x*x)
                    l.append(x)
                m adjusted.append(1)
            vn = s/(c*c)
            return vn, np.matrix(m adjusted)
        def distance correlation(A, B):
           vn A, s1 = empirical distance(A)
           vn B, s2 = empirical distance(B)
            s = 0
            for i in enumerate(s1):
                for j in range(s1.shape[1]):
                    s = s + (s1.item(i[0], j) * s2.item(i[0], j))
            vn AB = s/(len(A) * len(B))
            R squared = vn AB/(math.sqrt(vn A * vn B))
            R = math.sqrt(R squared)
            return R
        cols = ['PCEPI', 'CPIAUCSL', 'ICSA Week1', 'ICSA Week2', 'ICSA Week3', 'ICSA Week4', 'IC
        d = []
        for x in cols:
            d row = []
            for y in cols:
               df = pd.concat([econ[x], econ[y]], axis = 1)
               df = df.dropna()
                distance corr = distance correlation(df.iloc[:,0], df.iloc[:,1])
                d row.append(round(distance corr, 4))
            d.append(d row)
        distancecorr = pd.DataFrame(np.matrix(d), columns = cols, index = cols, dtype = 'float32
        distancecorr
```

------ QUESTION 2 ------

(a) What is the first derivative of the function $f(x) = x^2 - a$ with respect of x?

$$f'(x) = 2x$$

(b) You will use the Newton-Raphson method to solve the equation $f(x) = x^2 - a = 0$. What is the formula for updating the estimate?

Formula to update the estimate:

$$x_{n+1}=x_n-f(x_n)/f'(x_n)$$

```
Solving for f(x)=x^2-a f(x)=x^2-a f'(x)=2x Let a=2, n=0 Thus, x_0=1 x_1=x_0-f(x_0)/f'(x_0)=1-((1)^2-2)/2(1)=1.5 x_2=x_1-f(x_1)/f'(x_1)=1.5-((1.5)^2-2)/2(1.5)=1.41666666666667 x_3=x_2-f(x_2)/f'(x_2)=1.41666666666667-((1.41666666666667)^2-2)/2(1.41666666666667)=1.41421568627451 x_4=x_3-f(x_3)/f'(x_3)=1.41421568627451-((1.41421568627451)^2-2)/2(1.41421568627451)=1.41421356237469 x_5=x_4-f(x_4)/f'(x_4)=1.41421356237469-((1.41421356237469)^2-2)/2(1.41421356237469)=1.414213562373095 x_6=x_5-f(x_5)/f'(x_5)=1.414213562373095-((1.414213562373095)^2-2)/2(1.414213562373095)=1.414213562373095
```

The root for this is 1.414213562373095

```
In [ ]: #Using Python to show the above
        def func (x, a):
          y = x * (x) - a
           return (y)
        def dfunc(x):
          dy = 2 * x
           return (dy)
        def newton raphson (init x, a, max iter, eps conv, q history):
           i iter = 0
          q continue = True
          reason = 0
          x curr = init x
           if (q history):
             history = []
           while (q continue):
              f curr = func(x curr, a)
```

```
dfunc curr = dfunc(x curr)
      if (q history):
        history.append([i_iter, x_curr, f curr, dfunc curr])
      if (f curr != 0.0):
        if (dfunc curr != 0.0):
           i iter = i iter + 1
           x next = x curr - f curr / dfunc curr
            if (abs(x_next - x_curr) <= eps_conv):</pre>
              q continue = False
              reason = 1
                                       # Successful convergence
            elif (i_iter >= max_iter):
              q continue = False
              reason = 2
                                        # Exceeded maximum number of iterations
             x curr = x next
           q continue = False
           reason = 3
                                        # Zero derivative
     else:
        q continue = False
        reason = 4
                                        # Zero function value
   if(q history):
      print(pd.DataFrame(history, columns = ['Iteration', 'Estimate', 'Function', 'Deriv')
   if reason == 1:
     r = "Successful convergance"
   elif reason == 2:
     r = "Exceeded maximum number of iterations"
   elif reason == 3:
     r = "Zero derivative"
   elif reason == 4:
     r = "Zero function value"
  return (x curr, r)
x_{\text{solution}}, reason = newton_raphson (init_x = 1, a = 2, max iter = 100, eps conv = 1e-14
print("\nThe root of this equation is: " + str(x solution) + "\nReason: " + reason)
```

(c) Suppose a=9 and the initial estimate is $x_0=1$. The iteration will converge if $|x_{k+1}-x_k|\leq 10^{-13}$. Please show the iteration history.

```
In [ ]: x_solution, reason = newton_raphson (init_x = 1, a = 9, max_iter = 100, eps_conv = 1e-13
print("\nThe root of this equation is: " + str(x_solution) + "\nReason: " + reason)
```

(d) Suppose a=9000 and the initial estimate is $x_0=1$. The iteration will converge if $|x_{k+1}-x_k|\leq 10^{-13}$. Please show the iteration history.

```
In [ ]: x_solution, reason = newton_raphson (init_x = 1, a = 9000, max_iter = 100, eps_conv = 1e
    print("\nThe root of this equation is: " + str(x_solution) + "\nReason: " + str(reason))
```

(e) Suppose a=0.0000009 and the initial estimate is $x_0=1$. The iteration will converge if $|x_{k+1}-x_k|\leq 10^{-13}$. Please show the iteration history.

```
In [ ]: x_solution, reason = newton_raphson (init_x = 1, a = 0.0000009, max_iter = 100, eps_conv
print("\nThe root of this equation is: " + str(x_solution) + "\nReason: " + str(reason))
```