O różniczkowaniach algebr i ich klasyfikacji

Marcin Ból

Politechnika Krakowska ul. Warszawska 24, Kraków

26-27 listopada 2022

Algebra nad ciałem

Definicja

Niech A będzie przestrzenią wektorową nad ciałem \mathbb{F} . Jeżeli na przestrzeni A określono działanie mnożenia wektorów

 $*: A \times A \longrightarrow A$ spełniające warunki

•
$$\forall v, w, u \in A$$

$$v*(w+u)=v*w+v*u,$$

•
$$\forall v, w, u \in A$$

$$(w+u)*v=w*v+u*v,$$

•
$$\forall v, w \in A, \ \forall \lambda \in \mathbb{F}$$

$$\lambda(v*w) = (\lambda v)*w = v*(\lambda w),$$

to A nazywamy algebrą nad ciałem \mathbb{F} (\mathbb{F} -algebrą).

Przykłady algebr nad ciałem

 \bullet \mathbb{R}^3 z iloczynem wektorowym (algebra niełączna nad $\mathbb{R})$,

Przykłady algebr nad ciałem

- ullet z iloczynem wektorowym (algebra niełączna nad $\mathbb R$),
- C[0,1] z działaniem punktowego mnożenia funkcji,

Przykłady algebr nad ciałem

- \mathbb{R}^3 z iloczynem wektorowym (algebra niełączna nad \mathbb{R}),
- ullet C[0,1] z działaniem punktowego mnożenia funkcji,
- Algebra $M_n(\mathbb{F})$ wszystkich macierzy kwadratowych stopnia n o współczynnikach z ciała \mathbb{F} .

Definicja

Niech A,B będą \mathbb{F} -algebrami. Odwzorowanie $\phi:A\longrightarrow B$ nazywamy homomorfizmem \mathbb{F} -algebr, jeżeli ϕ jest multiplikatywnym odwzorowaniem liniowym, czyli odwzorowaniem liniowym spełniającym warunek $\phi(x*y)=\phi(x)*\phi(y)$, dla dowolnych $x,y\in A$.

Homomorfizmy algebr

Definicja

Niech A,B będą \mathbb{F} -algebrami. Odwzorowanie $\phi:A\longrightarrow B$ nazywamy homomorfizmem \mathbb{F} -algebr, jeżeli ϕ jest multiplikatywnym odwzorowaniem liniowym, czyli odwzorowaniem liniowym spełniającym warunek $\phi(x*y)=\phi(x)*\phi(y)$, dla dowolnych $x,y\in A$.

Definicja

Endomorfizmem F-algebry nazywamy jej homomorfizm w siebie.

Homomorfizmy algebr

Definicja

Niech A,B będą \mathbb{F} -algebrami. Odwzorowanie $\phi:A\longrightarrow B$ nazywamy homomorfizmem \mathbb{F} -algebr, jeżeli ϕ jest multiplikatywnym odwzorowaniem liniowym, czyli odwzorowaniem liniowym spełniającym warunek $\phi(x*y)=\phi(x)*\phi(y)$, dla dowolnych $x,y\in A$.

Definicja

Endomorfizmem \mathbb{F} -algebry nazywamy jej homomorfizm w siebie. Automofizmem \mathbb{F} -algebry nazywamy jej bijektywny endomorfizm.

Definicja

Niech A będzie \mathbb{F} -algebrą. Ideałem obustronnym algebry A nazywamy taką podprzestrzeń liniową B tej algebry, że

$$\forall x \in A \forall y \in B \quad x * y \in B \quad \text{oraz} \quad y * x \in B.$$

Definicja

Niech A będzie \mathbb{F} -algebrą. Ideałem obustronnym algebry A nazywamy taką podprzestrzeń liniową B tej algebry, że

$$\forall x \in A \forall y \in B \quad x * y \in B \quad \text{oraz} \quad y * x \in B.$$

Definicja

Łączną \mathbb{F} -algebrę A z jedynką nazywamy centralną algebrą prostą, jeżeli A nie posiada właściwych nietrywialnych ideałów obustronnych oraz $\mathrm{Z}(A)=\mathbb{F}.$

Twierdzenie Skolema-Noether

Twierdzenie Skolema-Noether

Niech B będzie centralną algebrą prostą nad ciałem $\mathbb F$ oraz niech A będzie $\mathbb F$ -algebrą prostą. Załóżmy ponadto, że obie algebry są skończenie wymiarowe. Wtedy dla dowolnych homomorfizmów $\mathbb F$ -algebr

$$f,g:A\longrightarrow B$$

istnieje element odwracalny $b \in B$ taki, że dla każdego $a \in A$

$$g(a) = b * f(a) * b^{-1}.$$

W szczególności każdy automorfizm centralnej algebry prostej jest automorfizmem wewnętrznym.

Różniczkowania pierścieni i algebr

Definicja

Odwzorowanie $\delta:A\longrightarrow A$ nazywamy różniczkowaniem pierścienia A, jeśli jest ono addytywne i spełnia tożsamość Leibniza. Innymi słowy, jeśli dla dowolnych $a,b\in A$ spełnione są warunki

$$\delta(a+b)=\delta(a)+\delta(b)$$

oraz

$$\delta(ab) = \delta(a)b + a\delta(b).$$

Jeśli A jest \mathbb{F} -algebrą oraz różniczkowanie $\delta:A\longrightarrow A$ jest odwzorowaniem \mathbb{F} -liniowym, to nazywamy je \mathbb{F} -różniczkowaniem.

Różniczkowania pierścieni i algebr

Szczególnym typem różniczkowań są różniczkowania wewnętrzne.

Definicja

Niech A będzie pierścieniem. Różniczkowanie $\delta:A\longrightarrow A$ nazywamy różniczkowaniem wewnętrzym, jeśli istnieje taki element $a\in A$, że

$$\delta(x) = [a, x]$$

dla każdego $x \in A$, przy czym wyrażenie [a,x]:=ax-xa nazywamy komutatorem elementów a i x. W tym przypadku różniczkowanie δ oznaczamy symbolem ∂_a .

Przykładowymi obszarami zastosowań różniczkowań są

 geometria różniczkowa i geometria algebraiczna (definicja wektorów stycznych),

Przykładowymi obszarami zastosowań różniczkowań są

- geometria różniczkowa i geometria algebraiczna (definicja wektorów stycznych),
- teoria algebr Liego (badanie algebr Liego przez różniczkowania),

Przykładowymi obszarami zastosowań różniczkowań są

- geometria różniczkowa i geometria algebraiczna (definicja wektorów stycznych),
- teoria algebr Liego (badanie algebr Liego przez różniczkowania),
- różniczkowa teoria Galois (badanie rozwiązalności równań różniczkowych),

Klasyfikacja różniczkowań

Przykładowymi obszarami zastosowań różniczkowań są

- geometria różniczkowa i geometria algebraiczna (definicja wektorów stycznych),
- teoria algebr Liego (badanie algebr Liego przez różniczkowania),
- różniczkowa teoria Galois (badanie rozwiązalności równań różniczkowych),
- kryteria przemienności pierścieni (jeżeli różniczkowanie danego pierścienia spełnia pewien warunek, to pierścień ten jest przemienny).

Gwóźdź programu

Twierdzenie

Każde \(\mathbb{F}\)-różniczkowanie skończenie wymiarowej prostej \(\mathbb{F}\)-algebry centralnej jest różniczkowaniem wewnętrznym.

Gwóźdź programu

Twierdzenie

Każde \mathbb{F} -różniczkowanie skończenie wymiarowej prostej \mathbb{F} -algebry centralnej jest różniczkowaniem wewnętrznym.

W dowodzie powyższego twierdzenia potrzebny nam będzie następujący fakt.

Twierdzenie

Jeśli A jest skończenie wymiarową prostą \mathbb{F} -algebrą centralną, to $M_n(A)$ również jest skończenie wymiarowa prostą \mathbb{F} -algebra centralna.

Niech $\delta:A\longrightarrow A$ będzie \mathbb{F} -różniczkowaniem \mathbb{F} -algebry A. Zdefiniujmy odwzorowanie $f:A\longrightarrow \mathrm{M}_2(A)$ wzorem

$$f(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}$$

dla każdego $a \in A$.

Niech $\delta:A\longrightarrow A$ będzie \mathbb{F} -różniczkowaniem \mathbb{F} -algebry A. Zdefiniujmy odwzorowanie $f:A\longrightarrow \mathrm{M}_2(A)$ wzorem

$$f(a) = \begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix}$$

dla każdego $a\in A$. Odwzorowanie f jest \mathbb{F} -liniowe oraz przeprowadza jedynkę algebry A na macierz jednostkową. Ponadto, dla dowolnych $a,a'\in A$ zachodzi równość

$$f(a)f(a') = \begin{bmatrix} aa' & \delta(a)a' + a\delta(a') \\ 0 & aa' \end{bmatrix} = \begin{bmatrix} aa' & \delta(aa') \\ 0 & aa' \end{bmatrix} = f(aa').$$

Wynika stąd, że f jest homomorfizmem skończenie wymiarowych prostych \mathbb{F} -algebr centralnych.

W konsekwencji, z twierdzenia Skolema–Noether wynika, że istnieje macierz odwracalna $U\in \mathrm{M}_2(A)$ taka, że

$$f(a) = U \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} U^{-1}$$

dla każdego $a \in A$.

W konsekwencji, z twierdzenia Skolema–Noether wynika, że istnieje macierz odwracalna $U\in\mathrm{M}_2(A)$ taka, że

$$f(a) = U \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} U^{-1}$$

dla każdego $a\in A$. Skoro $U\in \mathrm{M}_2(A)$, to istnieją elementy $x,y,z,t\in A$ takie, że $U=\begin{bmatrix}x&y\\z&t\end{bmatrix}$.

W konsekwencji, z twierdzenia Skolema–Noether wynika, że istnieje macierz odwracalna $U\in\mathrm{M}_2(A)$ taka, że

$$f(a) = U \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} U^{-1}$$

dla każdego $a \in A$. Skoro $U \in M_2(A)$, to istnieją elementy

$$x, y, z, t \in A$$
 takie, że $U = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$.

Otrzymana wcześniej tożsamość jest równoważna równaniu f(a)U=Ua. Jest ono następującej postaci

$$\begin{bmatrix} a & \delta(a) \\ 0 & a \end{bmatrix} \begin{bmatrix} x & y \\ z & t \end{bmatrix} = \begin{bmatrix} x & y \\ z & t \end{bmatrix} a.$$

Równanie to jest równoważne układowi równań

$$\begin{cases} ax + \delta(a)z = xa \\ ay + \delta(a)t = ya \\ az = za \\ at = ta \end{cases}$$
 (1)

Ponieważ równania powyższego układu są spełnione dla dowolnego $a \in A$, z dwóch ostatnich równań otrzymujemy, że $z,t \in \mathrm{Z}(A) = \mathbb{F}.$

Równanie to jest równoważne układowi równań

$$\begin{cases} ax + \delta(a)z = xa \\ ay + \delta(a)t = ya \\ az = za \\ at = ta \end{cases}$$
 (1)

Ponieważ równania powyższego układu są spełnione dla dowolnego $a \in A$, z dwóch ostatnich równań otrzymujemy, że $z,t \in \mathrm{Z}(A) = \mathbb{F}$. Zauważmy, że nie może zachodzić równość z=t=0, gdyż macierz U nie byłaby wtedy odwracalna. A zatem z lub t musi być elementem odwracalnym, ponieważ jest niezerowym elementem ciała \mathbb{F} .

Bez straty ogólności załóżmy, że z jest odwracalny. Z pierwszego równania w układzie (1) oraz tego, że $z^{-1} \in Z(A)$, otrzymujemy, że

$$\delta(a) = (xz^{-1})a - a(xz^{-1})$$

dla każdego $a \in A$, a zatem δ jest różniczkowaniem wewnętrznym.

Bibliografia

- G. Berhuy, F. Oggier, An Introduction to Central Simple Algebras and Their Applications to Wireless Communication, American Mathematical Society, 2013.
- I. N. Herstein, A note on derivations, Canad. Math. Bull. 21: 369–370 (1978).
- Y. Sharifi, Derivations of central simple algebras (https://ysharifi.wordpress.com/2011/02/02/derivations-of-central-simple-algebras/).