

Seminarium Dyplomowe Semestr 7

Zajęcia nr 2

Analiza Zadania Dyplomowego

Mgr inż. Jerzy Stankiewicz

ZAJĘCIA NR 1 - ROZLICZENIE

- **Przygotować harmonogram prac** z wykorzystaniem MS Project (za okres październik 2018 : 30-03-2019r.)
- **Utworzyć dokument pracy dyplomowej** (nazwisko imię v1.docx) ze stroną tytułową, proponowanymi rozdziałami (z wygenerowanym spisem treści)
- Literatura (na końcu dokumentu) przedstawić propozycje literatury z dziedzin:
 - Projektowania systemów informatycznych
 - Modelowania systemów
 - Projektowania baz danych
 - Języków programowania
 - Dziedziny tematycznej pracy dyplomowej (normy prawne, dzienniki ustaw itp.)
 - Strony internetowe (ćwiczenia, opisy, przegląd produktów rynkowych o podobnej tematyce itp.)
- Opracować rozdział wstępny w zakresie: temat pracy, cel i zakres pracy, wprowadzenie do problemu (ogólne)

Zakres pracy (1)

• TREŚĆ ZADANIA DYPLOMOWEGO:

- Diagnoza stanu istniejącego i analiza potrzeb
- Studiowanie literatury przedmiotowej dotyczącej projektowania i implementacji aplikacji oraz systemów relacyjnych baz danych
- Wybór rozwiązania
- Opracowanie projektu bazy danych
- Opracowanie projektu systemu
- Realizacja bazy danych
- Implementacja systemu
- Wprowadzanie danych, testowanie i weryfikacja opracowanego oprogramowania
- Redagowanie i edycja pracy dyplomowej

Cel

- Cel to stan rzeczy, którego projekt tworzy się w umyśle człowieka i uzyskuje zdolność do sterowania jego czynnościami.
- Realizacja celu wymaga odpowiedniego zorganizowania czynności i skupienia energii, a to jest główną funkcją procesu motywacyjnego.
- Prakseologia wskazuje, jak dobierać środki do celów, jak precyzyjnie i skutecznie realizować je (stąd powstało pojęcie skuteczności jako stopień zgodności wyniku z celem).
- Cel definiuje się więc jako wyobrażony stan rzeczy, mogący być skutkiem naszego działania w określonym czasie.
- Działanie zmierza do uzyskania lub utrzymania tego stanu rzeczy, a sam cel wyznacza kierunek i strukturę jego działania. Działać celowo może: człowiek, organizacja społeczeństwo i robot.

Cel i misja organizacji

- Pierwszym zadaniem każdego z właścicieli organizacji czy też pracującego w niej menedżera w procesie planowania, jest określenie jej celu i misji.
- Jest to ustalenie co trzeba wykonać jakie potrzebne są do tego zasoby.
- W procesie planowania etap ustalenie **celów** jest pierwszym krokiem procedury planowania. Dalsze działania zależą od precyzji, ważności w ich ustaleniu.
- Funkcje celów są następujące :
 - Pozwalają wszystkim zrozumieć, dokąd organizacja zmierza i dlaczego osiągnięcie pewnego docelowego stanu jest takie ważne
 - Wpływają na proces planowania i to zarówno w obecnym jak i przyszłym horyzoncie czasu
 - Motywują pracowników organizacji. Cele sformułowane konkretnie, mogą motywować ludzi do ciężkiej pracy, zwłaszcza jeśli osiągnięcie celu może zostać nagrodzone
 - Pozwalają na skuteczny mechanizm oceny i kontroli. Oznacza to, że przyszłe wyniki będzie można ocenić na podstawie stopnia realizacji wytyczonych obecnie celów
- Misja organizacji natomiast są to szeroko sformułowane zamierzenia, które służą do określenia kierunku działań organizacji. jest to mówiąc w przenośni azymut nawigacyjny organizacji.
- Pełne określenie misji zawiera:
 - opis podstawowych wyrobów czy usług organizacji
 - funkcje, które będzie wypełniała
 - rynki klientów, których będzie obsługiwała

Cel

Prawidłowo postawiony cel powinien być określony przez następujący zestaw pytań:

- Co? ma być zrealizowane
- Gdzie? należy tego dokonać
- Kiedy? w jakim terminie cel ma być osiągnięty. Często należy odpowiedzieć na pytanie: Jakie? - środki będą potrzebne na realizację celu.
- Za ustalenie celów odpowiadają (chociaż w różny sposób) wszyscy menedżerowie organizacji.

Cel

- Najwyższe kierownictwo organizacji odpowiada za ustalanie <u>celów</u>
 <u>strategicznych</u>. Cele te dotyczą najbardziej ogólnych problemów i obejmują
 dłuższy horyzont czasu. Często pięć i więcej lat.
- Celem strategicznym firmy może być przykładowo 6% udział w rynku krajowym w dostawie usług Internetowych lub też uruchomienie nowej produkcji wózków przeznaczonych dla ludzi niepełnosprawnych.
- Średnie kierownictwo odpowiada za <u>realizację celów taktycznych</u>. Cele te powiązane są z celami strategicznymi i przedstawiają sposoby ich realizacji. Będzie to przykładowo: wybudowanie nowej fabryki pralek lub jej modernizacja połączona z rozbudową ewentualnie opracowanie dokumentacji dla systemu informatycznego dla ZUS-u.
- Kierownictwo pierwszej linii odpowiada z kolei za wykonanie <u>celów</u> <u>operacyjnych</u>. Dotyczą one krótkookresowych problemów związanych z realizacją celów taktycznych. Będzie to przykładowo: zamówienie materiałów do produkcji samochodów, wykonanie analizy ZUS-u dla opracowania projektu systemu informatycznego. W drugim przykładzie może to być analiza wymagań jakie powinien spełniać projektowany system informatyczny.

Cel

- Z podanych przykładów możemy wysunąć wniosek o hierarchii celów.
- Cele układają się tzw. drzewo celów.
- Problemem jest kto ma wyznaczać cele.
- Z celami strategicznymi sytuacja jest jasna. Oczywiście kierownictwo strategiczne.
- Natomiast cele taktyczne (operacyjne) wyznaczane zostają przez kierownictwo wyższych szczebli, a więc dla celów taktycznych przez szczebel strategiczny a dla celów operacyjnych przez szczebel taktyczny.
- Często jednak menedżerowie poszczególnych szczebli na podstawie znajomości celów menedżerów wyższego poziomu sami ustalają odpowiednie cele. Menedżerowie wyższych szczebli tylko wtedy zatwierdzają lub je korygują.
- Podstawowy problem przed którym stoją menedżerowie to <u>zarządzanie</u> wieloma celami. Cele jak już przedstawiono różnią się między sobą. Mają też różne znaczenie dla organizacji. Bardzo często mamy do czynienia z <u>niespójnością celów</u>.
- Oznacza to, że istnieją cele których realizacja może doprowadzić organizacje do poważnych kłopotów.

Projektowanie systemu celów obejmuje następujące etapy:

- formułowanie celów
- hierarchizację celów
- wybór celów
- klasyfikację celów

Formulowanie celów

- Możemy wyróżnić cele:
 - Ekonomiczne: które odnoszą się do efektywności działania
 - i Pozaekonomiczne: (np. organizacyjne, intelektualne, badawcze, ekologiczne, polityczne itp.).
- Powinny być one skierowane na zaspokajanie potrzeb, oczekiwań firmy oraz odbiorców.

Cele można formułować:

- przedmiotowo (np. osiągnięcie pożądanego stanu)
- lub czynnościowo (np. wytwarzanie produktów).
- Cele powinny być odpowiednie, kwantyfikowane (opatrywać informacje ilościowo), akceptowalne, rozsądne i określone w czasie.

- Hierarchizacja celów prowadzi do ustalenia ich wartości na poziomach:
- strategicznym
- taktycznym
- operacyjnym
- lub układzie systemu zarządzania
- Można je szeregować w trybie:
- powszechnym (na podstawie statystyk)
- bądź indywidualnym (ocena pojedynczego przedsiębiorstwa uwzględniająca wizję, misję oraz otoczenie zewnętrzne).

Hierarchizacja celów

Najważniejszą charakterystyką celu jest to, że wymaga podjęcia działania i posiada jakąś subiektywnie oczekiwaną użyteczność. Ścisłe określenie tej użyteczności jest bardzo pożyteczne, ale nie zawsze w pełni możliwe. Wynika to z istnienia trojakiego rodzaju hierarchii celów:

- czasowej,
- przestrzennej, zależnej od zakresu, w jakim rozpatrujemy działanie
- doniosłości, cenności dla jednostki działającej
- Układ czasowy hierarchii celów powstaje zawsze wtedy, gdy dla zrealizowania jakiegoś celu dalszego musimy najpierw zrealizować szereg celów bliższych. Powstaje w ten sposób tzw. łańcuch celów, składający się z hierarchii czasowej celów pośrednich. Chcąc osiągnąć cel końcowy Ck, należy konsekwentnie realizować kolejno cele pośrednie C1, C2, C3,..... itd.
- Uporządkowanie celów w zależności od zakresu, w jakim rozpatrujemy działanie, jest ich drugim kryterium hierarchii. Możemy więc mówić o: celach całej organizacji, celach poszczególnych zespołów, celach indywidualnych.
- Doniosłość celów to trzeci rodzaj hierarchii celów. Bardzo często działanie ma kilka celów równorzędnych, które są traktowane jako końcowe. Mogą one być: zgodne lub niezgodne, tzn. wykluczające się czy też realizowane są w różnych stopniach (im jeden cel w większym stopniu, tym drugi w mniejszym). Należy podkreślić, że występuje określona hierarchia celów w zależności od ich cenności dla działającego. Cel główny to taki cel, który stał się istotnym powodem podjęcia działania. Pozostałe cele mają charakter uboczny. Cel główny jest precyzowany przez cele szczegółowe i operacyjne. Cele mogą być też jakościowe i ilościowe.

Klasyfikacja celów:

- W wyniku klasyfikacji celów otrzymujemy drzewo celów, w którym wychodząc od celów ogólnych dochodzimy do celów cząstkowych
- Klasyfikacja ma:
 - porządkować cele i je uszczegóławiać,
 - ma kształtować strukturę organizacyjną.

Gdy cele są odniesione do poszczególnych jednostek organizacyjnych stają się one zadaniami

Wybór celów:

- Należy przyjąć kryteria wyboru celów. Mogą to być [Stabryła A. Zarządzanie strategiczne w teorii i praktyce firmy, PWN, 2002]:
 - –System wartości
 - Preferencje generalne, określone przez strategie podstawowe
 - -Sytuacje zewnętrzne i uwarunkowania wewnętrzne firmy
 - -Perspektywa czasowa
 - -Ryzyko
- W praktyce kryteria te muszą być uszczegółowione oraz stosowane łącznie. Pozwala to na uzyskanie wszechstronnej analizy systemu celów firmy, a co za tym idzie podjęcie prawidłowych decyzji.

METODYKA

Metodyka tworzenia systemu to zbiór zasad, reguł, sposobów, wytycznych, wskazówek, przepisów i algorytmów prawidłowego wykonania dzieła użytkowego, którym jest system informatyczny.

Metodyka tworzenia systemu spełnia następujące zadania:

- rozstrzyga podstawowe kwestie związane z filozofią" podejścia do problemu tworzenia systemu,
- wskazuje, w jakich (kolejnych) fazach, etapach i krokach system powinien być budowany,
- decyduje o organizacji procesów tworzenia systemu,
- rekomenduje techniki stosowane na poszczególnych etapach budowy systemu,
- określa sposoby weryfikacji przyjętych rozwiązań cząstkowych oraz weryfikacji całego systemu,
- narzuca sposób dokumentowania rezultatów prac na kolejnych etapach budowy systemu.

- Metodyka diagnostyczna zakłada, że podstawą tworzenia systemu informatycznego jest identyfikacja, tj. opis istniejącego systemu przetwarzania danych, a następnie analiza materiału zebranego w trakcie identyfikacji.
- Wnioski wypływające z analizy stają się z kolei podstawą do zaprojektowania nowego systemu (synteza).
- Cały proces kończy ocena opracowanego w ten sposób systemu i ewentualne uzupełnienie zauważonych braków i usunięcie usterek.
- Podejście diagnostyczne charakteryzuje się zatem triadą:
 - analiza -> synteza -> ocena

- Metodyka prognostyczna zakłada odmienne podejście do problemu budowy systemu, nakazując działania według triady:
 - synteza -> analiza -> ocena
- Oznacza to, że punktem wyjścia nie jest identyfikacja i analiza istniejącego systemu, lecz jest nim tworzenie wariantów systemu informatycznego, które w następnej kolejności są poddawane analizie, uwzględniającej m.in. warunki, w jakich system będzie działać.
- Pomiędzy elementami istnieją sprzężenia zwrotne umożliwiające zbudowanie systemu maksymalnie zbliżonego do systemu idealnego, technicznie wykonalnego.
- Metodyka prognostyczna jest metodyką efektywniejszą, prowadzi bowiem do rozwiązań bardziej nowatorskich niż metodyka diagnostyczna, której podstawową wadą jest tendencja do utrwalania rozwiązań już istniejących i nie zawsze najlepszych.

- Metodyka strukturalna nakazuje budowę systemu pod kątem jego podstawowych struktur: funkcjonalnej, informacyjnej, technicznej i przestrzennej. Metodyka ta jest obecnie powszechnie stosowana.
- Metodyka obiektowa zakłada, że zamiast oddzielać dane od algorytmów ich przetwarzania (co jest cechą metodyki strukturalnej), system należy podzielić na oddzielne jednostki (obiekty) oraz zdefiniować działania każdej z nich.
- Zaletami podejścia obiektowego są:
 - uproszczenie procesu projektowania systemu,
 - obniżenie kosztów opracowania oprogramowania,
 - ułatwienie konserwacji i rozbudowy systemu.

- Z punktu widzenia zakres komputerowego wspomagania procesu budowy systemu można wyróżnić:
 - metodyki tradycyjne, w których kolejne etapy prac są realizowane manualnie,
 - metodyki wspomagane, zakładające, że realizacja cząstkowych prac procesu budowy systemu jest wspomagana komputerem.
- Do celów wspomagania tworzenia systemów informatycznych stosuje się liczne programy narzędziowe typu CASE (Computer Aided Software Engineering) -wspomaganej komputerowo inżynierii oprogramowania.
- Są to najczęściej:
 - narzędzia specyfikacji i interpretacji opisu systemu,
 - generatory struktur baz danych,
 - generatory programów wykonawczych,
 - programy modyfikujące kolejne wersje systemu.

- Ostatnim elementem ogólnej charakterystyki metodycznych podejść do tworzenia systemu jest przyjęcie odpowiedniej strategii i taktyki budowy systemu, wpływających na ostateczny kształt stosowanej metodyki.
- Przez strategię budowy systemu informatycznego należy rozumieć zespół zasad i wskazówek mających wpływ na plan tworzenia systemu, najkorzystniejszy w określonych warunkach realizacyjnych.
- Wyróżnia się:
 - strategię deterministyczną, o liczbie etapów wykonawczych znanej z góry (i ich kolejności),
 - strategię indeterministyczną, w której nie jest z góry znana liczba etapów budowy systemu.
- Wybór strategii tworzenia systemu zależy od takich czynników, jak:
 - stopień złożoności systemu
 - poziom zawodowych kwalifikacji twórców systemu.

Analiza systemowa

- Wymaga bardzo zróżnicowanych umiejętności.
- Są potrzebne umiejętności:
 - komunikowania się z ludźmi,
 - a także umiejętności techniczne w stopniu wystarczającym do systematycznego rejestrowania wyników Twojej pracy.
- Musisz umieć porozumiewać się z różnymi ludźmi i patrzeć na system z różnych punktów widzenia, w szczególności z cudzego punktu widzenia.
- Najważniejsze jest to, żebyś umiał posługiwać się swoimi modelami do stawiania właściwych pytań i rejestrowania odpowiedzi.

Analiza

- Analiza pozwala określić czego potrzebujemy do wykonania pracy.
- Projektowanie jak wykonać tę pracę.
- Kodowanie to faktyczne wykonanie pracy.
- Testowanie weryfikacja poprawności.

Analiza - dokładny opis istniejącego systemu, mający na celu wychwycenie wszelkich problemów, wąskich gardeł, błędów itp. Analiza ma również wskazać na ewentualne kierunki zmian w istniejącym systemie.

Faza analizy ma przygotować odpowiedź na pytanie:

co informatyzować = co system ma robić aby zaspokoić żądania i oczekiwania użytkownika.

Faza analizy

Ma dać odpowiedź na następujące pytania:

- co robi dany system?
- jakie są wyjścia, wejścia i procedury?
- jakie są silne strony, słabości, wąskie gardła?
- w jaki sposób nowy system spełni wymagania użytkowników?

Metody zbierania danych:

- wyciąganie informacji od użytkowników,
- analiza danych,
- prototypowanie,
- porównanie z systemem wzorcowym.

Źródła informacji:

- istniejące dokumenty,
- obserwacje,
- ankiety,
- wywiady.

Etap analizy to etap ścisłej współpracy analityków systemu z jego przyszłymi użytkownikami.

Współpraca ta ma na celu sprawne ustalenie rzeczywistych potrzeb organizacji oraz zbadanie jej aktualnego stanu.

W jej ramach użytkownik powinien mieć możliwość bieżącego kontrolowania prowadzonych badań oraz ingerowania w tych sytuacjach, w których pominięcie istotnych szczegółów mogłoby wpłynąć na zagrożenie realizacji celów organizacji.

Analiza systemu

- Analiza systemu stanowi bardzo ważny etap w tworzeniu systemu informatycznego.
- · Pozwala ona na zdefiniowanie wymagań użytkownika.
- W wyniku analizy powstaje zbiór dokumentów określających zakres systemu.
- Obecnie do analizy systemów najczęściej wykorzystuje się metodę strukturalną oraz obiektową. Alternatywą dla analizy systemu jest podejście prototypowe, którego efektem jest powstanie programów symulujących funkcje, które system powinien posiadać.

Analiza systemu

- E.Yourdon i P. Coad definiują analizę jako "studium dziedziny problemu, prowadzącym do specyfikacji obserwowalnego zachowania systemu; kompletnym, spójnym i prawdopodobnym sformułowaniem potrzeb, podaniem zarówno ilościowych jak i funkcjonalnych charakterystyk operacyjnych (np. niezawodności, dostępności, wydajności)".
- Analiza zajmuje się określeniem co system ma robić, aby
 zaspokoić potrzeby użytkownika. Natomiast nie zajmuje się tym,
 w jaki sposób zadania systemu mają być zrealizowane jest to
 definiowane na etapie projektowania.
- W wyniku analizy powstaje dokument zawierający wymagania systemu. Dokument ten formalizuje potrzeby klienta oraz ustala listę zadań.

Uwarunkowania

- Od efektywności współdziałania analityków z użytkownikami zależy precyzyjne i szybkie zdefiniowanie kompletnego zestawu wymagań, umożliwiającego rozpatrzenie wielu alternatywnych rozwiązań na etapie projektowania.
- Aby zbudować system, należy go przedtem zrozumieć. Budowanie modeli pomaga w zrozumieniu systemu. Modelowanie przynosi sukces, ułatwia bowiem poprawne ustalenie wymagań.
- Dobrze zaprojektowany i zaimplementowany system jest piękny sam w sobie, jednak jeśli nie odpowiada użytkownikom, którzy nie chcą z niego korzystać, to cały projekt można uznać za stratę czasu, wysiłku i pieniędzy.
- Zadaniem zespołu analityczno-projektowego jest nie tylko przygotowanie sprawnie działającej aplikacji, lecz wyjście naprzeciw potrzebom osób używającej jej codziennie.

Podstawowe czynności w fazie analizy to:

- identyfikacja i charakterystyka problemów i celów,
- studium dziedziny problemu opis istniejącego systemu,
- studium wykonalności systemu informatycznego,
- definicja i ustalenie priorytetów zidentyfikowanych potrzeb użytkownika.

1 Przykład analizy – Warsztat samochodowy:

- 1. Istnieje (już funkcjonuje) warsztat samochodowy
- 2. Klient przyjeżdża samochodem z usterką lub usterkami
- 3. Samochód jest naprawiany przez mechanika lub mechaników
- 4. Po naprawie klient płaci za usługę

Czego nam w tym opisie brakuje?

•Analiza danych:

- kto to jest klient ?
- co to jest samochód?
- Co to jest usterka
- Kto to jest mechanik?
- Co to jest naprawa?
- Co to jest zapłata?
- Zależności między nimi? (jeden do wielu, wiele do wielu)
- Jakie informacje (wiedzę zapisaną w bazie) będziemy (potrzebujemy w przyszłości) analizować, raportować ?
- Uwaga: W analizie nie mówimy o tabelach?

2 Przykład analizy – Port jachtowy:

- 1. Istnieje port jachtowy na jeziorze X
- 2. Port posiada miejsca do cumowania jachtów
- 3. Port posiada kilka pomostów < pomost A, B, C...>, przy których są miejsca do cumowania <miejsce 1, 2, ... 10.. > (uwaga: przy jednym pomoście może być wiele miejsc), miejsce ma określoną długość < 10m, 15 m, 20 m>, potrzebna jest również wiedza czy miejsce jest aktualnie wolne czy zajęte, niedostępne bo awaria, naprawa
- 4. W porcie cumują jachty, potrzebna wiedza <nazwa jachtu, długość jachtu, właściciel jachtu>
- 5. Potrzeba wiedzy o właścicielu jachtu < imię, nazwisko, adres, kraj> (uwaga: właściciel może mieć wiele jachtów, jeden jacht <cumujący> ma jednego właściciela).
- 6. Zajęcie miejsca cumowania <parkowanie> to: jaki jacht, jaki właściciel, które zajął miejsce na przystani, data przypłynięcia, data odpłynięcia, łączna cena za cumowanie za dobę w tym miejscu.
- 7. Cumując można korzystać z pewnych (dodatkowo płatnych) usług <wymycie pokładu, doładowanie akumulatorów> jakie potrzebne informacje oprócz cennika?
- 8. Potrzeba ewidencjonowania tych usług, (uwaga jedno cumowanie może być wiele usług),
- 9. Cumując można odpłatnie pożyczyć na przystani narzędzia <młotek, siekiera, wiertarka> potrzeba ewidencjonowania tych płatnych pożyczek (uwaga jedno cumowanie może być wiele pożyczek sprzętu).

Wymagania do zajęć nr 2

 Opracować część analityczną pracy dyplomowej w zakresie: szczegółowy opis problemu

Seminarium Dyplomowe

