ELEC 341: Systems and Control

Lecture 14

Root locus: Lead-lag compensator design

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- **Transient**
 - Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Controller design by root locus

- Place closed-loop poles at desired locations
 - by tuning the gain C(s) = K. (for time domain specs)
- If root locus does not pass through the desired location, then reshape the root locus
 - by adding poles/zeros to *C*(*s*). How?

Compensation

General effect of addition of poles

- Pulling root locus to the RIGHT
 - Less stable
 - Slow down the settling

General effect of addition of zeros

Example 1

A feedback system

- Design specifications
 - 2% settling time at most 2 seconds
 - Overshoot at most 4.32%
 - Steady state error
 - Zero for unit step r(t) = u(t)
 - At most 0.05 for unit ramp r(t) = tu(t)

• Root locus for gain controller C(s) = K > 0

We cannot achieve the design specs with the gain feedback controller!

Example 1: Step responses for gain controllers UBC C(s) = K > 0

 We reshape the root locus so that it passes through the allowable region.

Lead and lag compensators

Lead compensator

Lag compensator

The reason why these are called "lead" and "lag" will be explained in frequency response approach (later in this course).

Reshaping root locus by lead compensators

 Lead compensators move the intersection of asymptotes (the centroid) to the left.

With plant only

$$\frac{\sum \mathsf{pole} - \sum \mathsf{zero}}{r}$$

With plant and lead

Reshaping root locus by lag compensators

 Lag compensators move the intersection asymptotes (the centroid) to the right.

With plant only

$$\frac{\sum \mathsf{pole} - \sum \mathsf{zero}}{r}$$

Roles of lead & lag compensators

- Lead compensator
 - Improves transient response
 - Improves stability

$$C_{Lead}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}}$$

- Lag compensator
 - Reduces steady state error

$$C_{Lag}(s) = \frac{s + z_{Lag}}{s + p_{Lag}}$$

- Lead-lag compensator
 - Takes into account both transient and steady state.

$$C_{LL}(s) = C_{Lead}(s)C_{Lag}(s)$$

Analytical lead compensator design

1. Select a desired pole in the allowable region. We aim at reshaping RL to pass through this pole.

Analytical lead compensator design

2. Select pole/zero in
$$C_{Lead}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}}$$
 as

Angle and magnitude conditions

For an open-loop transfer function L(s),

- A point s to be on root locus ←→ it satisfies
 - Angle condition

Odd number
$$\angle L(s) = 180^{o} \times (2k+1), \ k = 0, \pm 1, \pm 2, ...$$

- For a point on root locus, gain K is obtained by
 - Magnitude condition

$$|L(s)| = \frac{1}{K}$$

Example 2

Lead compensator design

Consider a system

$$G(s) = \frac{4}{s(s+2)}$$

Performance specification

- Damping ratio ζ=0.5
- Undamped natural freq. ωn=4 rad/s

Lead compensator design (cont'd)

Evaluate G(s) at the desired pole.

$$s_d = -\zeta \omega_n + j\omega_n \sqrt{1 - \zeta^2}$$

$$G(-2+2\sqrt{3}j) = \frac{4}{(-2+2\sqrt{3}j)2\sqrt{3}j}$$

$$\angle G^*(s_d) = \angle 4 - \angle \left(-2 + 2\sqrt{3}j\right) - \angle 2\sqrt{3}j$$

$$= 0^{\circ} - \left(\tan^{-1}\left(\frac{2\sqrt{3}}{-2}\right)\right) - 90^{\circ}$$

$$= -(+120^{\circ}) - 90^{\circ} = -210^{\circ} \rightarrow$$

$$\angle G^*(s_d) = -210^{\circ}$$

Convert "-210°" to an angle from +Re-axis:

$$360^{\circ} - 210^{\circ} = +150^{\circ} \rightarrow \angle G(s_d) = = +150^{\circ}$$

Now, use the **angle deficiency formula** to calculate ϕ :

$$\phi = 180^{\circ} - \angle G(s_d) \rightarrow \phi = 180^{\circ} - 150^{\circ} \rightarrow \phi = +30^{\circ}$$

Lead compensator design (cont'd)

To compensate angle deficiency, design a lead compensator C(s)

$$C(s) = K \frac{s+z}{s+p}$$

satisfying

$$\angle C(-2 + 2\sqrt{3}j) = 30 = \phi$$

There are many ways to design such C(s)!

How to select pole and zero?

- Draw horizontal line PA
- Draw line PO
- Draw bisector PB

$$\angle APB = \angle BPO = \frac{1}{2} \angle APO$$

Draw PC and PD

$$\angle CPB = \angle BPD = \frac{\phi}{2}$$

Pole and zero of C(s) are shown in the figure.

Comparison of root locus

Improved stability!

How to design the gain K?

$$C(s) = K \frac{s + 2.9}{s + 5.4}$$

Open loop transfer function

$$G(s)C(s) = K \frac{4(s+2.9)}{s(s+2)(s+5.4)}$$

Magnitude condition

$$K \left| \frac{4(s+2.9)}{s(s+2)(s+5.4)} \right|_{s=-2+2\sqrt{3}j} = 1 \implies K = 4.675$$

Comparison of step responses

Error constants

$$G(s)C(s) = \frac{4}{s(s+2)} \cdot \frac{4.675(s+2.9)}{s+5.4}$$

Step-error constant

$$K_p = \lim_{s \to 0} G(s)C(s) = \infty$$

Ramp-error constant

$$K_v = \lim_{s \to 0} sG(s)C(s) = 5.02$$

Lag compensator can be used to reduce steady-state error.

This will be shown soon.

Example 3

Design a lead compensator controller by using the given desired pole in the allowable region.

We aim at reshaping RL to pass through the desired pole.

a place of mind

Example 3: One possible C_{Lead}

$$\angle G^*(s_d) = \angle \frac{1}{s_d(s_d+2)} = -245.3^\circ \longrightarrow 360^\circ - 245.3^\circ = 114.7^\circ$$

$$\longrightarrow \angle G(s_d) = 114.7^\circ$$

-2.5

$$\phi = 180^{\circ} - \angle G(s_d) = 180^{\circ} - 114.7^{\circ}$$

$$\phi = 65.3^{\circ}$$

$$C_{Lead}(s) = K \frac{s + 2.5}{s + 6.86}$$

m

$$s_d = -2.5 + 2j$$

Re

$$G(s) = \frac{1}{s(s+2)}$$

Example 3: Design of pole/zero in C_{Lead}

Lead compensator

$$C_{Lead}(s) = K \frac{s + 2.5}{s + 6.86}$$

Open-loop transfer function

$$G(s)C_{Lead}(s) = K \frac{s + 2.5}{\underbrace{s(s+2)(s+6.86)}_{L_0(s)}}$$

Gain computation

$$K = -\frac{1}{L_0(s)}\Big|_{s=s_d} = \dots = 15.84$$

$$G(s)C_{Lead}(s) = 15.84 \frac{s + 2.5}{s(s+2)(s+6.86)}$$

Example 3: Step response with C_{Lead}

Example 3: Steady state error for r(t) = tu(t)

Roles of lead & lag compensators

- Lead compensator
 - Improves transient response
 - Improves stability

$$C_{Lead}(s) = K \frac{s + z_{Lead}}{s + p_{Lead}}$$

- Lag compensator
 - Reduces steady state error

$$C_{Lag}(s) = \frac{s + z_{Lag}}{s + p_{Lag}}$$

- Lead-lag compensator
 - Takes into account both transient and steady state.

$$C_{LL}(s) = C_{Lead}(s)C_{Lag}(s)$$

Example 4 (restated)

A feedback system

- Design specifications
 - 2% settling time at most 2 seconds
 - Overshoot at most 4.32%
 - Steady state error
 - Zero for unit step r(t) = u(t)
 - At most 0.05 for unit ramp r(t) = tu(t) \longrightarrow $K_v > 20$

Example 4: After C_{Lead} design

- For a designed C_{Lead} , design C_{Lag} so that
 - Steady state error for unit ramp r(t) is reduced (e_{ss} should be less than 0.02).
 - Transient is maintained. That is, we do not want to lose the satisfactory transient property achieved by the lead compensator.

Example 4: Design of $C_{Lag}(s) = \frac{s + z_{Lag}}{s + p_{Lag}}$

 We would like to reduce the steady state error, i.e., to increase ramp-error constant

to increase ramp-error constant
$$K_v = \lim_{s \to 0} sG(s)C_{Lead}(s)C_{Lag}(s) = 2.89 \times \frac{z_{Lag}}{p_{Lag}} > 20$$

Take, for example,
$$z_{Lag} = 10p_{Lag}$$

$$\frac{z_{Lag}}{p_{Lag}}$$
 > 6.92

Also, we want to maintain the transient property,

$$|p_{Lag}|$$
 : small

• We still want our RL to pass through s_d , despite modifying our L(s).

$$\left.\begin{array}{c}
1 + G(s_d)C_{Lead}(s_d) = 0 \\
C_{Lag}(s_d) \approx 1
\end{array}\right\} \longrightarrow 1 + G(s_d)C_{Lead}(s_d)C_{Lag}(s_d) \approx 0$$

Why should p_{Lag} be small?

Example 4: C_{Lag} design

• In design projects, we assume a small p_{Lag} and use trial-and-error! Here, p_{Lag} will be given to you.

$$p_{Lag} = 0.005 \implies z_{Lag} = 0.05$$

$$C_{Lag}(s) = \frac{s + 0.05}{s + 0.005}$$

$$C_{LL}(s) = \underbrace{\frac{15.84(s+2.5)}{s+6.86}}_{C_{Lead}(s)} \times \underbrace{\frac{s+0.05}{s+0.005}}_{C_{Lag}(s)}$$

Example 4: Root locus

With lead compensator

With lead-lag compensator

Example 4: Comparison of step responses

Example 4: Comparison of ramp responses

a place of mind

If we only use a lead compensator.

Error constants

$$\frac{4.675(s+2.9)}{s+5.4}$$

Step-error constant

$$K_p = \lim_{s \to 0} G(s)C(s) = \infty$$

Ramp-error constant

$$K_v = \lim_{s \to 0} sG(s)C(s) = 5.02$$

Lag compensator can be used to reduce steady-state error.

How to design lag compensator

- Lag compensator $C_{Lag}(s) = \frac{s+z}{s+p}$ $e_{5s} < 0.02; \ e_{ss} = \frac{R}{K_v}$ We want to increase ramp-error constant $\frac{1}{K_v} < 0.02 \rightarrow K_v > 50$

$$\frac{1}{K_v} < 0.02 \rightarrow K_v > 50$$

$$K_v = \lim_{s \to 0} sG(s)C_{Lead}(s)C_{Lag}(s) = 5.02 \cdot \frac{z}{p} > 50$$

$$\frac{z_{Lag}}{p_{Lag}} > 9.96 \rightarrow z_{Lag} = 10p_{Lag}$$

• We still want our RL to pass through s_d , despite modifying our L(s).

$$1 + G(s_d)C_{Lead}(s_d) = 0$$

$$C_{Lag}(s_d) \approx 1$$

$$\longrightarrow 1 + G(s_d)C_{Lead}(s_d)C_{Lag}(s_d) \approx 0$$

• For the desired CL pole $s_d = -2 + 2\sqrt{3}j$

$$C_{Lag}(s_d) pprox 1 \iff \left| rac{s_d + 10p}{s_d + p}
ight| pprox 1 \quad \angle \left(rac{s_d + 10p}{s_d + p}
ight) pprox 0$$

• Let us say p_{Laa} is given as 0.025:

$$z_{Lag} = 10p_{Lag}$$

= (10)(0.025) = 0.25 $\left| \frac{s_d + 10p}{s_d + p} \right| = 0.97 \ \angle \left(\frac{s_d + 10p}{s_d + p} \right) \approx -2.88^o$

Lead-lag controller

$$C_{LL}(s) = 4.675 \frac{s+2.9}{s+5.4} \cdot \frac{s+0.25}{s+0.025}$$

Root locus

Comparison of step responses

Example 2 (revisited) Comparison of ramp responses

Remarks on controller design

- Existence of a satisfactory controller is generally unknown before the design.
- When a satisfactory controller exists, such controller is not unique.
- Controller design methods are not unique either.
 - Different references explain controller design in a different way.
 - Different control engineers design controllers in a different way.

Summary

- Controller design based on root locus
 - Lead compensator to improve transient response.
 - Lag compensator to improve steady state error.
 - Lead-lag compensator to improve both transient and steady state responses.
- Next
 - Lead-lag compensator in Matlab and PID Controller design