Projective and Affine Planes:

Definition 2.5.2. A projective plane is an incidence structure satisfying the following three axioms.

- (P1) For any two distinct points x and y, there is a unique line incident with both x and y.
- (P2) For any two distinct lines P and Q, there is a unique point incident with both P and Q.
- (P3) There exist four points, no three of which are collinear.

Example 2.5.3. The Euclidean plane \mathbb{R}^2 is not a projective plane because it has parallel lines, and so does not satisfy axiom P2. However a projective plane \mathcal{P} can be constructed from \mathbb{R}^2 as follows.

- Each point of \mathbb{R}^2 is a point in \mathcal{P} .
- For each $m \in \mathbb{R} \cup \{\infty\}$, there is a point ∞_m in \mathcal{P} (these are the "points at infinity").
- For each $m \in \mathbb{R} \cup \{\infty\}$ and for each line L of gradient m in \mathbb{R}^2 , the points of $L \cup \{\infty_m\}$ form a line of \mathcal{P} (the parallel lines of gradient m "meet at infinity", namely at the point ∞_m).
- The line $\{\infty_m : m \in \mathbb{R} \cup \{\infty\}\}\$ is in \mathcal{P} (this is the "the line at infinity").

It is easy to verify that \mathcal{P} is a projective plane – the real projective plane.

The real projective plane can also be constructed as follows. Let V be the vector space of dimension 3 over \mathbb{R} . The 1-dimensional subspaces of V are the points of \mathcal{P} , and the 2-dimensional subspaces of V are the lines \mathcal{P} . By this, we mean that for each 2-dimensional subspace U of V, there is a line in \mathcal{P} whose points are the 1-dimensional subspaces of U.

We now turn our attention to finite projective planes.

Example 2.5.4. Let $P = \mathbb{Z}_2^3 \setminus \{0\}$ and let $L = \{x, y, z \in P : x + y + z = 0\}$. Then (P, L) is a projective plane, called the **Fano plane**.

Theorem 2.5.5. If \mathcal{P} is a finite projective plane, then there is a constant $n \geq 2$ such that there are exactly n+1 points on each line of \mathcal{P} , there are exactly n+1 lines through each point of \mathcal{P} , the number of points in \mathcal{P} is n^2+n+1 , and the number of lines in \mathcal{P} is n^2+n+1 .

Line P not through x has k points.
(PI and P2)

Every line not through w, including P, Q, R, has k points.

R Any point not on P has k lines.

Any point not on Q has k lines.

Any point not on R has k lines.

Every point has k lines.

Every line has k points.

Suppose ke lines through w.

Let n=k-1. (k 23 -> n 22).

Every point has n+1 lines. Every line has n+1 points.

There are $N(N+1)+1=N^2+N+1$ points.

 \leq number lines through point xc points = $(h^2 + h + 1)(h + 1)$

This counts each line n+1 times

$$\Rightarrow$$
 Number of lines = $\frac{(n^2+n+1)(n+1)}{n+1} = n^2+n+1$.

Projective plane of order n.

- n2+n+1 points

- h2+n+1 lines

- h+1 points per line

- h+1 lines per point

- two points -> unique line

- two lines -> unique points.

Definition 2.5.6. An **affine plane** is an incidence structure satisfying the following three axioms.

- (A1) For any two distinct points x and y, there is a unique line incident with both x and y.
- (A2) For any line P and any point x that is not on P, there is a unique line that is incident with x and incident with no point of P.
- (A3) There exist four points, no three of which are collinear.

Examples: R2

Theorem 2.5.8. If \mathcal{A} is a finite affine plane, then there is a constant $n \geq 2$ such that there are exactly n points on each line of \mathcal{A} , there are exactly n+1 lines through each point of \mathcal{A} , the number of points in \mathcal{A} is n^2 , and the number of lines in \mathcal{A} is n^2+n .

Theorem 2.5.9. The lines of an affine plane of order n can be partitioned into n+1 parallel classes, where each parallel class consists of a set of n pairwise parallel lines which collectively contain all the points.

Proof Let P be a line and suppose there are distinct lines Q and Q' which are both parallel to P. By Axiom A2, Q and Q' must be parallel to each other. Now, since there are n points on P and n+1 lines through each point of P, there are n^2+1 lines, including P itself, which intersect P. This leaves n-1 lines which are parallel to P, and we have already noted that these are pairwise parallel. The result follows.

Theorem 2.5.10. There exists a projective plane of order n if and only if there exists an affine plane

$$Vb(3) \longrightarrow bb(3)$$

10 11 12 13

Theorem 2.5.11. If q is a power of a prime, then there exist projective and affine planes of order q.

$$\mathbb{F}_q \longrightarrow PP(q)$$
 and $AP(q)$

Theorem 2.5.12. If there exists a projective plane of order n with $n \equiv 1, 2 \pmod{4}$ then for each prime $p \equiv 3 \pmod{4}$ the largest α for which p^{α} divides n is even.

$$\frac{1}{3}, \frac{3}{4}, \frac{5}{5}, \frac{6}{7}, \frac{7}{8}, \frac{9}{9}, \frac{10}{10}, \frac{11}{12}, \frac{13}{13}, \frac{14}{15}, \frac{13}{15}, \frac{13}{15},$$

N	# (((N)
2,3,4,5, 7,8	
6, 14,21,22,	0
9	4
16	≥ 22
11,13,17,19,	> 1
15,18,18,20,	≥0