Grundlagen von LATEX, TikZ und Co.

Walter Stieben 4stieben@inf Hauke Stieler 4stieler@inf

12.01.2016

000000

- Was ist TFX und LATFX
- Theorie in LATEX
 - Textsatz
- 3 Grundlagen mit LATEX
 - Textsatz-Grundlagen
 - Mathematischer Textsatz
 - Mathematischer Textsatz
 - Mathematischer Textsatz
 - Mathematischer Textsatz
- 4 LATEXAdvanced
 - Referenzieren
 - Richtig Zitieren
 - Präsentationen

4 D > 4 AB > 4 B > 4 B >

Was ist LATEX

LATEX and LEX:

- TEX ist ein Textsatzsystem von Donald E. Knuth
- LATEX ist ein Satz von Makros für TEX
- WYSIWYT (What You See Is What You Type)

Vorteile von LATEX:

- Ergebnis sieht hübsch aus
- LATEX kümmert sich um die Formatierung
- Der Quelltext lässt sich Versionsverwalten
- Für mathematische Formeln sehr gut
- "Ich möchte X mit LATEX machen" → Suchmaschine: "latex X" eingeben → Ergebnis in den Quelltext kopieren

PTEX installieren

LATEX-Distribution:

GNU/Linux Nutzt den Paketmanager eurer Distribution.

Debian/Ubuntu: apt-get install texlive

Windows MiKTeX herunterladen und installieren.

http://miktex.org/

Mac OS MacTex herunterladen und installieren.

http://tug.org/mactex/

LATEX-Editoren:

Kile Guter Editor für GNU/Linux (KDE).

Gummi Editor für GNU/Linux (GTK) mit Live-Preview

AUCTeX für Emacs-Benutzer

Texmaker Editor für alle Betriebssysteme

und viele mehr . . .

Verschiedene LATEX-Compiler

Es gibt verschiedenen Compiler für LATEX. Heute: **pdflatex** Vorteile von pdflatex:

- Direktes erzeugen einer PDF
- Viele PDF-Features nutzbar
- Finfach zu verwenden

Nachteile von pdflatex:

- Kein pstricks nutzbar.
- Postscript-Dateien nicht direkt einbindbar
- Keine vollständige Unicode-Unterstützung (wie XelATFX)

Detexify - LATEX-Symbolerkennung

Detexify² - LaTeX symbol classifier

http://detexify.kirelabs.org/

Anmerkungen

Achtung:

TEX ist eine Programmiersprache! Lasst nur vertrauenswürdige Menschen TEX/ETEX-Code auf eurem Rechner/Server ausführen.

Anmerkung:

Wenn du dir diese Folien anschaust, ist das System nicht mehr online. Es war nur zum Ausprobieren während des KunterBuntenSeminars gedacht.

Textsatz

Dokumentenklassen

- Die Dokumentenklasse beschreibt wie ein Dokument aussieht
- Ihr beschreibt was ihr schreibt (z. B. was eine Überschrift ist)
- ETEX formatiert euer Dokument mit Hilfe der Dokumentenklasse, nicht ihr!

Beispiele für Dokumentenklassen:

Scrartcl/article: Artikel im Umfang von mehreren Seiten

Scrllr2/letter: Briefe

Scrreprt/report: Reports, Umfang mehr als 15 Seiten

Scrbook/book: Bücher

Textsatz

Syntax - Befehle und Umgebungen

Befehle:

- Beginnen mit einem Backslash (\...)
- Parameter in geschweiften Klammern ($\{...\}$)
- Optionale Parameter in eckigen ([...])
- Manchmal auch als *-Variante (leicht verändertes Verhalten;
 s. align und align* Umgebung später)

Umgebungen:

- Beginnen mit dem \begin{name} Befehl
- und enden mit dem \end{name} Befehl
- Formatieren ganze Textblöcke

Textsatz

Aufbau des Dokumentes

Dokument:

- Dokumentenklasse wählen
- 2 Pakete laden
- 3 Einstellungen vornehmen, Styles ändern, Befehle definieren, et.
- 4 Dokument öffnen
- 5 Zeugs schreiben
- 6 Dokument schließen

Mein erstes Dokument

```
\documentclass[a4paper,10pt]{scrartcl}
\usepackage[utf8] {inputenc}
\usepackage[T1]{fontenc}
\usepackage [ngerman] {babel}
\usepackage{lmodern}
\author{Max Mustermann}
\title{Mein erstes Dokument}
                                  Mein erstes Dokument
\begin{document}
                                       Max Mustermann
    \maketitle{}
                                        9 Januar 2016
    Hello World!
```

Hello World!

\end{document}

Mein erstes Dokument

```
\documentclass[a4paper,10pt]{article}
\usepackage[utf8] {inputenc}
\usepackage[T1]{fontenc}
\usepackage [ngerman] {babel}
\usepackage{lmodern}
\author{Max Mustermann}
\title{Mein erstes Dokument}
                                     Mein erstes Dokument
\begin{document}
                                         Max Mustermann
    \maketitle{}
                                          9. Januar 2016
    Hello World!
\end{document}
                            Hello World!
```

Was ist TFX und LATFX

Gliederung des Dokumentes

LATEX-Code:

\section{Finden von maximalen Cliquen in Graphen}
Maximale Cliquen haben viele reale Anwendungsfälle.

```
\subsection{NP-Vollständigkeit}
Das Problem ist NP-vollständig.
```

Ergebnis:

1 Finden von maximalen Cliquen

Maximale Cliquen haben viele reale Anwendungsfälle.

1.1 NP-Vollständigkeit

Das Problem ist NP-vollständig.

Einfache Textformatierung

LATEX-Code:

Dieser Text besitzt einen\\Zeilenumbruch.

Dieser Text\newline auch

Dies ist ein Absatz

Ergebnis:

Dieser Text besitzt einen Zeilenumbruch Dieser Text auch

Dies ist ein Absatz

Einfache Textformatierung

LATEX-Code:

Dies ist \textbf{fett} oder \texttt{typewriter}
oder \textit{kursiv}. Oder einfach nur
\emph{hervorgehoben}.

Ergebnis:

Dies ist **fett** oder typewriter oder *kursiv*. Oder einfach nur *hervorgehoben*.

(Nummerierte) Auflistungen

LATEX-Code:

```
\begin{itemize}
    \item Kartoffeln
    \item Butter
    \item Milch
\end{itemize}
```

Ergebnis:

- Kartoffeln
- Butter
- Milch

LATEX-Code:

```
\begin{enumerate}
    \item Kartoffeln
    \item Butter
    \item Milch
\end{enumerate}
```

- Kartoffeln
- 2 Butter
- 3 Milch

(Nummerierte) Auflistungen

LATEX-Code:

```
\begin{itemize}
   \item Kartoffeln
   \begin{itemize}
     \item Festkochend
     \item Mehligkochend
   \end{itemize}
   \item Butter
   \item Milch
\end{itemize}
```

- Kartoffeln
 - Festkochend
 - Mehligkochend
- Butter
- Milch

Definitionslisten

LATEX-Code:

```
\begin{description}
    \item[Kile] Guter Editor für GNU/Linux (KDE).
    \item[AUCTeX] für Emacs-Benutzer
    \item[Texmaker] Editor für alle Betriebssysteme
\end{description}
```

Ergebnis:

```
Kile Einfacher Editor für GNU/Linux (KDE).
```

AUCTeX für Emacs-Benutzer

Texmaker Editor für alle Betriebssysteme

Tabellen

Was ist TFX und LATFX

LATEX-Code:

```
\begin{tabular}{1||c|r}
   Händler & Produkt & Preis\\
    \hline
    \hline
   Ohbi & Fliesen & 17,95\\
   Porsche & Motor & 270,15\\
    \hline
   Farber & Stift & 2,99
\end{tabular}
```

	•		
	Händler	Produkt	Preis
	Ohbi	Fliesen	17,95
	Porsche	Motor	270,15
	Farber	Stift	2,99

Probleme mit Tabellen

- LATEX handhabt tabular als Buchstaben
- Kein automatischer Umbruch bei Seitenumbruch. Keine Tabelle länger als eine Seite.
- Bei 1/r/c keine automatische Spaltenbereite

Effekt:

Spalte 1	Spalte 2
Foo	Lorem ipsum dolor sit amet, consectetur adipiscing elit. Done
Bar	Lorem ipsum dolor sit amet, consectetur adipiscing elit. Done

Tabellen mit longtable

LATEX-Code:

```
\begin{tabular}{l|p{8cm}}
Spalte 1 & Spalte 2 \\
\hline
Foo & Lorem ipsum dolor sit amet [...] \\
Bar & Lorem ipsum [...]
\end{tabular}
```

Spalte 1	Spalte 2	
Foo	Lorem ipsum dolor sit amet, consectetur adipis-	
	cing elit. Donec sit amet nunc condimentum augue	
	hendrerit rutrum.	
Bar	Lorem ipsum []	

Grafiken einbinden

LATEX-Code:

\usepackage{graphicx}
\includegraphics[width=3cm]{images/gnu}

Was ist TFX und LATFX

ams-Pakete der American Mathematical Society

Für komplexere mathematische Darstellungen müssen die ams-Pakete der American Mathematical Society eingebunden werden.

LATEX-Code:

```
%% Im Header
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
```

Grundlagen mit LATEX

Mathematischer Textsatz

Mathe-Umgebung

Es gibt verschiedene Mathe-Umgebungen:

- Die \$...\$ Umgebung
 - Mathe innerhalb von Text (stammt nicht aus LaTeX, sondern aus TeX)
- Die \(...\) Umgebung
 - Mathe innerhalb von Text (stammt aus LATEX und funktioniert besser mit den Mathe-Paketen)
- Die \[...\] Umgebung
 - Einzeilige Matheumgebung für eine Formel/Gleichung

Mathe-Umgebung

LATEX-Code:

Wir können im Text Wurzeln, wie z.\,B. \(\sqrt{2}\) verwenden. Oder auch Matheformeln als ganzen Block: $\lceil \sum_{k=1}^n k = \frac{n(n+1)}{2} \rceil$

Grundlagen mit LATEX

Ergebnis:

Wir können im Text Wurzeln, wie z.B. $\sqrt{2}$ verwenden. Oder auch Matheformeln als ganzen Block:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Merke:

Das \$-Symbol für Mathemodus ist aus TEX und nicht aus LATEX. Die LATEX-Variante geht besser mit ams-Macros und Fehlern um. 4 D > 4 P > 4 P > 4 P >

Mathe-Umgebung

LATEX-Code:

Neben Summen (\$\sum\$) gibt es auch Integrale: \[\int a^b f(x) \mathrm{d}x \]

Ergebnis:

Neben Summen (\sum) gibt es auch Integrale:

$$\int_a^b f(x) \mathrm{d}x$$

Grundlagen mit LATEX

Mathe-Umgebung

LATEX-Code:

Die Probleminstanz \(\mathfrak{B}\\) sei gegeben Durch die Menge $\(\mathbb{N} \)$ und einer Zahl $\(\mathbb{N} \)$, sowie der Eingabe \(\mathcal{A}\).

Ergebnis:

Die Probleminstanz \mathfrak{B} sei gegeben Durch die Menge \mathbb{N} und einer Zahl n, sowie der Eingabe A.

Mathebeispiele: Matrizen

```
LATEX-Code:
```

$$\begin{pmatrix}
\cos(\alpha) & \sin(\alpha) & 0 & 0 \\
-\sin(\alpha) & \cos(\alpha) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Mathebeispiele: Matrizen

LATEX-Code:

```
\begin{bmatrix}
\cos(\alpha) & \sin(\alpha) & 0 & 0 \\
-\sin(\alpha) & \cos(\alpha) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
```

\end{bmatrix}

$$\begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0 & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Mathebeispiele: Matrizen

LATEX-Code:

```
\begin{Bmatrix}
\cos(\alpha) & \sin(\alpha) & 0 & 0 \\
-\sin(\alpha) & \cos(\alpha) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
```

\end{Bmatrix}

$$\begin{cases}
\cos(\alpha) & \sin(\alpha) & 0 & 0 \\
-\sin(\alpha) & \cos(\alpha) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{cases}$$

Mathebeispiele: Gleichungssysteme

LATEX-Code:

```
\begin{align}
  \sin^2(\alpha) + \cos^2(\alpha) & = 1 \\
  \tan(\alpha) & = \frac{\sin(\alpha)}{\cos(\alpha)}
\end{align}
```

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{2}$$

Mathebeispiele: Gleichungssysteme

LATEX-Code:

```
\begin{align*}
  \sin^2(\alpha) + \cos^2(\alpha) & = 1 \\
  \tan(\alpha) & = \frac{\sin(\alpha)}{\cos(\alpha)}
\end{align*}
```

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$
$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$

Mathebeispiele: Fallunterscheidung

LATEX-Code:

$$fib(n) = \begin{cases} 0 & \text{wenn } n = 0 \\ 1 & \text{wenn } n = 1 \\ fib(n-1) + fib(n-2) & \text{sonst} \end{cases}$$

Referenzieren

Was ist TFX und LATFX

Referenzieren (Abschnitte)

LATEX-Code:

```
\subsection{Cliquen in bipartiten Graphen}
\label{sec:cliques}
```

%% Irgendwo anders

Im Abschnitt \ref{sec:cliques} auf Seite \pageref{sec:cliques} wurde das Finden von Cliquen in bipartiten Graphen beschrieben.

Ergebnis:

Im Abschnitt 3.2 auf Seite 7 wurde das Finden von Cliquen in bipartiten Graphen beschrieben.

Referenzieren

Was ist TFX und LATFX

Referenzieren (Figures)

```
LATEX-Code:
```

```
\begin{figure}[t]
    \includegraphics[width=7cm]{images/lichtstrahl}
    \caption{Brechung eines Lichtstrahls beim Wechsel des I
    \label{fig:lichtbrechung}
\end{figure}
```

%% Irgendwo anders

Der Lichtstrahl wird gebrochen, wie Abbildung \ref{fig:lichtbrechung} zeigt.

Ergebnis:

Der Lichtstrahl wird gebrochen, wie Abbildung 3 zeigt.

BibTEX

- Man verwaltet eine BibTEX-Datei (*.bib) mit Literaturangaben
- Mit \cite[Seite X] {Referenz} referenziert man eine solche Angabe, mit optionaler Seitenangabe.
- Vor pdflatex wirft man bibtex an

BibTEX

LATEX-Code:

```
%% Im Header
\bibliographystyle{alpha}
```

```
%% Beim Zitat
```

Für die Lösung des Travelling-Salesman-Problems wurde ein heuristischer Algorithmus \cite{lin19973} gewählt.

%% An der Stelle des Literaturverzeichnis
\bibliography{literatur}

BibT_EX-Eintrag

```
BibT<sub>F</sub>X-Eintrag:
(aus "literatur.bib")
@article{lin1973,
    author = {Shen Lin and Brian W. Kernighan},
    title
             = {An Effective Heuristic Algorithm for the
                Travelling-Salesman Problem,
    journal = {Operations Research},
             = \{21\}.
    volume
             = \{1973\}.
    year
             = \{498 - -516\}.
    pages
```

Was ist TFX und LATFX

BibT_EX-Ergebnis

Ergebnis:

Für die Lösung des Travelling-Salesman-Problems wurde ein heuristischer Algorithmus [LK73] gewählt.

Literatur

[LK73] Shen Lin and Brian W. Kernighan. An effective heuristic algorithm for the travelling-salesman problem. *Operations Research*, 21:498–516, 1973.

Präsentationen

Was ist TFX und LATFX

LATEX-Beamer

LEX-Code:

```
\documentclass{beamer}
\% Normaler Header mit inputenc, fontenc, babel etc.
\begin{document}
    \section{Erster Unterpunkt}
    \begin{frame}{Hallo Welt}
        \begin{itemize}
            \item Erster Punkt
            \item Zweiter Punkt
        \end{itemize}
    \end{frame}
\end{document}
```

Präsentationen

Was ist TFX und LATFX

Themes bei Präsentationen

LATEX-Code:

```
\usetheme[compress]{Berlin}
\setbeamerfont{headline}{size=\large}
\setbeamerfont*{section in head/foot}{size=\tiny}
\setbeamertemplate{toc}{circle}
\setbeamertemplate{itemize subitem}[triangle]
\setbeamercovered{transparent}
\definecolor{myBlue}{rgb}{0,0.55,0.8}
\usecolortheme[named=myBlue]{structure}
```

Ergebnis:

Siehe diese Präsentation :-)

