编译原理复习题及答案

一、	选择题	
1.	一个正规语言只能对应(B)	
	A 一个正规文法	B 一个最小有限状态自动机
2.	文法 G[A]: A→ε A→aB B→Ab B→a σ	是(A)
	A 正规文法	B 二型文法
3.	下面说法正确的是(A)	
	A 一个 SLR (1) 文法一定也是 LALR (1) 文	大法
	B 一个 LR (1) 文法一定也是 LALR (1) 文	法
4.	一个上下文无关文法消除了左递归,提取了	左公共因子后是满足 LL(1)文法的(A)
	A 必要条件	B 充分必要条件
5.	下面说法正确的是(B)	
	A 一个正规式只能对应一个确定的有限状态的	自动机
	B 一个正规语言可能对应多个正规文法	
6.	算符优先分析与规范归约相比的优点是(A)
	A 归约速度快	B 对文法限制少
7.	一个 LR(1)文法合并同心集后若不是 LAL	R(1) 文法(B)
	A 则可能存在移进/归约冲突	
	B 则可能存在归约/归约冲突	
	C 则可能存在移进/归约冲突和归约/归约冲突	
8.	下面说法正确的是(A)	
	A Lex 是一个词法分析器的生成器	B Yacc 是一个语法分析器
9.	下面说法正确的是(A)	
	A 一个正规文法也一定是二型文法	
	B 一个二型文法也一定能有一个等价的正规式	艾法
10.	编译原理是对(C)。	
	A、机器语言的执行	B、汇编语言的翻译 B. 京都语言积序的解释执行
	C、高级语言的翻译	D、高级语言程序的解释执行

11. 用高级语言编写的程序经编译后产生的程序叫(B)

	A. 源程序	B. 目标程序	C. 连接程序	D. 解释程序
12.	(C)不是编译程序的约	且成部分。		
	A.词法分析程序	B.代码生成程序	C.设备管理程序	D.语法分析程序
13.	通常一个编译程序中	, 不仅包含词法分析,	语法分析, 语义分析,	中间代码生成,代码优化,
	目标代码生成等六个部	邓分,还应包括(C)。		
	A. 模拟执行器	B. 解释器	C. 表格处理和出错	处理 D. 符号执行器
14.	源程序是句子的集合	, (B)可以较好地反映句	 可子的结构。	
	A. 线性表	B. 树	C. 完全图	D. 堆栈
15.	词法分析器的输出结	F果是(D)。		
	A、单词自身值		B、单词在符号表中的	的位置
	C、单词的种别编码		D、单词的种别编码和	和自身值
16.	词法分析器不能(D)			
	A. 识别出数值常量		B. 过滤源程序中的注	释
	C. 扫描源程序并识别	 记号	D. 发现括号不匹配	
17.	文法: G: S→xSx y	y 所识别的语言是(D)。		
	A, xyx	$B \cdot (xyx)^*$	$C \cdot x^*yx^*$	$D_{x} x^{n}yx^{n} (n \ge 0)$
18.	如果文法G是无二义	义的,则它的任何句子 (α (A)	
	A. 最左推导和最右持	准导对应的语法树必定构	相同	
		作导对应的语法树可能 ²	不同	
	C. 最左推导和最右打		计序的连注数担同	
10		司的最左推导,但它们》	对应的后在物作问	
19.	正则文法(A)二义性的		C · · · · · · · · · · · · · · · · · · ·	
•		B. 一定不是		74 + V - A +
20.		之们能被确定的有穷自动。 P. 不有在		
		B. 不存在		<u>:</u>
21.	·	,为该文法句子的是(C		D 1
	A. bba	B. cab		
22.		S1 S0 Sa Sc a b c,下列行		
	A. ab0		C. a0b0a	D. bc10
23.	描述一个语言的文法	• •	~ - 7 / \	
		B. 不唯一的	C. 可能唯一	
24.	一个文法所描述的语		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	A. 唯一的	B. 不唯一的	C. 可能唯一	

25.	采用自上而下分析,	必须(A)。		
	A、消除回溯		B、消除左递归	
	C、消除右递归		D、提取公共左因子	
26.	编译过程中,语法分	↑析器的任务是(A)		
	① 分析单词的构成			
	② 分析单词串如何构	向成语句		
	③ 分析语句是如何构	内成程序		
	④ 分析程序的结构			
	A. 23	B. ④	C. 1234	D. 234
27.	词法分析器的输入是	ξ(A) _°		
	A. 符号串	B. 源程序	C. 语法单位	D. 目标程序
28.	两个有穷自动机等的	产是指它们的(C)。		
	A. 状态数相等		B. 有向弧数相等	
	C. 所识别的语言相邻	等	D. 状态数和有向弧势	数相等
29.	若状态 k 含有项目'	'A→α · ",且仅当新	俞入符号 a∈FOLLOW(A)时,才用规则"A → α "
	归约的语法分析方法是	$\frac{1}{2}$ (D).		
	A. LALR 分析法	B. LR(0)分析法	C. LR(1)分析法	D. SLR(1)分析法
30.	若 a 为终结符,则 A	ム→α·aβ为(B)项目。		
	A. 归约	B. 移进	C. 接受	D. 待约
31.	在使用高级语言编程	时,首先可通过编译程序	序发现源程序的全部和	部分(A)错误。
	A. 语法	B. 语义	C. 语用	D. 运行
32.	乔姆斯基(Chomsky)	把文法分为四种类型,!	即 0 型、1 型、2 型、3	型。其中3型文法是(B)
	A. 非限制文法	B. 正则文法	C. 上下文有关文法	D. 上下文无关文法
33.	一个上下文无关文法	G 包括四个组成部分,	它们是一组非终结符	号,一组终结符号,一个开
	始符号,以及一组(B)			
	A. 句子	B. 产生式	C. 单词	D. 句型
34.	词法分析器用于识别	J(C)		
	A. 句子	B. 产生式	C. 单词	D. 句型
35.	编译程序是一种(B)			
	A. 汇编程序	B. 翻译程序	C. 解释程序	D. 目标程序
36.		程序第三步工作是(A)		
	A. 语义分析	B. 词法分析	C. 语法分析	D. 代码生成

37.	在语法分析处理中,	FIRST 集合、FOLLOW	W 集合均是(B)	
	A. 非终结符集	B.终结符集	C. 字母表	D. 状态集
38.	编译程序中语法分析	F器接收以(A)为单位的转	俞入 。	
	A. 单词	B. 表达式	C. 产生式	D. 句子
39.	编译过程中,语法分	析器的任务就是(B)		
	A. 分析单词是怎样构	的成的	B. 分析单词串是如何	可构成语句和说明的
	C. 分析语句和说明是	是如何构成程序的	D. 分析程序的结构	
40.	若一个文法是递归的	J,则它所产生的语言的	J句子(A)。	
	A.是无穷多个	B.是有穷多个	C.是可枚举的	D.个数是常量
41.	识别上下文无关语言	的自动机是(C)		
	A. 下推自动机	B. NFA	C. DFA	D. 图灵机
42.	编译原理各阶段工作	部涉及(B)		
	A.词法分析	B.表格管理	C.语法分析	D.语义分析
43.	正则表达式 R1 和 R2	2等价是指(C)		
		义在一个字母表上的正	则表达式	
	B. R1 和 R2 中使用			
	C. R1 和 R2 代表同D. R1 和 R2 代表不			
44.		1, A→A1 S0 0。与 G	等价的正规式具(C)	
44.		B. 1* 0*1		D 1(10 01)*0
45.	与(a b)*(a b)等价的』	·	0.0(1/10) 1	2.1(10 01)
15.	A.a* b*		C. (a b)(a b)*	D.(a b)*
46.	(D)文法不是 LL(1)的			
		B . 右递归	C. 2 型	D.含有公共左因子的
47.	给定文法 A→bA cc,	则符号串①cc ②bcbc	3bcbcc 4bccbcc 5b	bbcc 中,是该文法句子的
	是(D)			
	A. (1)	B. 345	C. 24	D. ①⑤
48.	LR(1)文法都是()			
	A. 无二义性且无左旋	趋归	B. 可能有二义性但无	左递归
	C. 无二义性但可能是	是左递归	D. 可以既有二义性又	有左递归
49.	文法 E→E+E E*E i 自	内句子 i*i+i*i 有(C)棵不	同的语法树。	
	A. 1	B. 3	C. 5	D.7
50.	文法 S→aaS abc 定	义的语言是(C)。		

 $A.\{a2kbc|k>0\} \qquad B.\{akbc|k>0\}$

 $C.\{a2k-1bc|k>0\}$

 $D.\{akakbc|k>0\}$

51. 若 B 为非终结符,则 A→α.Bβ 为(D)。

A.移进项目

B.归约项目

C.接受项目

D.待约项目

52. 同心集合并可能会产生新的(D)冲突。

A.二义

B.移进/移进

C.移进/归约

D.归约/归约

53. 就文法的描述能力来说,有(C)

A. $SLR(1) \subset LR(0)$ B. $LR(1) \subset LR(0)$ C. $SLR(1) \subset LR(1)$

D. 无二义文法 ⊂ LR(1)

54. 如图所示自动机 M,请问下列哪个字符串不是 M 所能识别的(D)。

A. bbaa

B. abba

C. abab

D. aabb

55. 有限状态自动机能识别(C)

A.上下文无关语言 B.上下文有关语言 C.正规语言

D.0 型文法定义的语言

56. 己知文法 G 是无二义的,则对 G 的任意句型 α (A)

A.最左推导和最右推导对应的语法树必定相同

B.最左推导和最右推导对应的语法树可能相同

C.最左推导和最右推导必定相同

D.可能存在两个不同的最左推导,但他们对应的语法树相同

57. (B)不是 DFA 的成分

A.有穷字母表 B.多个初始状态的集合 C.多个终态的集合 D.转换函数

58. 与逆波兰式(后缀表达式)ab+c*d+对应的中缀表达式是(B)

A. a+b+c*d

B. (a+b)*c+d

C. (a+b)*(c+d)

D. a+b*c+d

59. 后缀式 abc-+-d+可用表达式(B)来表示。

A. (-(a+b)-c)+d

B. -(a+(b-c))+d C. -(a-(b+c))+d

D. (a-(-b+c))+d

60. 表达式 A*(B-C*(C/D))的后缀式为(B)。

A. ABC-CD/**

B. ABCCD/*-* C. ABC-*CD/*

D. 以上都不对

61. (D)不是 NFA 的成分。

A. 有穷字母表 B. 初始状态集合 C. 终止状态集合

D. 有限状态集合

二、问答题

1. 将文法 G[S] 改写为等价的 G'[S],使 G'[S]不含左递归和左公共因子。

G[S]:
$$S \rightarrow bSAe \mid bA$$

$$A \rightarrow Ab \mid d$$

答:

文法 G[S] 改写为等价的不含左递归和左公共因子的 G[S]为:

 $S \rightarrow bB$

 $B \rightarrow SAe \mid A$

 $A \rightarrow dA'$

 $A' \rightarrow bA' \mid \epsilon$

2. 将文法 G[S] 改写为等价的 G'[S], 使 G'[S]不含左递归和左公共因子。

G[S]:
$$S \rightarrow SAe|Ae$$

$$A \rightarrow dAbA|dA|d$$

答:

文法 G[S] 改写为等价的不含左递归和左公共因子的 G[S]为:

 $S \rightarrow AeS'$

 $S' \rightarrow AeS'|\epsilon$

 $A \rightarrow dA'$

 $A' \to\!\! AB|\epsilon$

 $B \rightarrow bA \mid \epsilon$

3. 将文法 G[S] 改写为等价的 G'[S], 使 G'[S]不含左递归和左公共因子。

G[S]:
$$S \rightarrow [A]$$

 $A \rightarrow B]|AS$

 $B \rightarrow aB|a$

答:

文法 G[S] 改写为等价的不含左递归和左公共因子的 G[S]为:

$$S \rightarrow [A$$

$$A \rightarrow B]A'$$

$$A' {\rightarrow} SA' | \epsilon$$

$$B\!\to\!\!aB'$$

$$B' {\to} B|\epsilon$$

4. 判断下面文法是否为 LL(1)文法, 若是,请构造相应的 LL(1)分析表。

 $S \rightarrow aH$

 $H\rightarrow aMd \mid d$

 $M \rightarrow Ab \mid \epsilon$

 $A \rightarrow aM \mid e$

答:

首先计算文法的 FIRST 集和 FOLLOW 集如下表。

文法的 FIRST 集和 FOLLOW 集

非终结符	FIRST 集	FOLLOW 集
S	{a}	{#}
Н	{a , d}	{#}
M	{a , e , ε}	{d , b}
A	{a , e}	{b}

由于 predict $(H\rightarrow aMd)$ \cap predict $(H\rightarrow d) = \{a\} \cap \{d\} = \emptyset$

predict
$$(M \rightarrow Ab) \cap predict (M \rightarrow \epsilon) = \{a, e\} \cap \{d, b\} = \emptyset$$

$$predict (A \rightarrow aM) \cap predict (A \rightarrow e) = \{a\} \cap \{e\} = \emptyset$$

所以该文法是 LL(1)文法, LL(1)分析表如下表。

	a	d	b	e	#
S	→aH				
Н	→aMd	→d			
M	→Ab	→ε	→ε	→Ab	
A	→aM			→e	

5. 判断下面文法是否为 LL(1)文法, 若是, 请构造相应的 LL(1)分析表。

 $S \rightarrow aD$

 $D{\to}STe|\epsilon$

 $T {\rightarrow} bH|H$

 $H{\rightarrow}d|\epsilon$

答:

首先计算文法的 FIRST 集和 FOLLOW 集如下表。

非终结符	FIRST 集	FOLLOW 集
S	{a}	{#, b, d, e}
D	{a, ε}	{#, b, d, e}
T	{b, d, ε}	{e}
Н	{d, ε}	{e}

由于 predict (D \rightarrow STe) \cap predict (D \rightarrow e) ={a} \cap {# , b , d , e }=Ø

predict $(T \rightarrow bH) \cap predict (T \rightarrow H) = \{b\} \cap \{e\} = \emptyset$

predict $(H \rightarrow d) \cap \text{predict } (H \rightarrow \epsilon) = \{d\} \cap \{e\} = \emptyset$

所以该文法是 LL(1)文法, LL(1)分析表如下表:

	a	e	b	d	#
S	→aD				
D	→STe	⇒ ε	→ε	⇒ ε	→ε
T		→Н	→bH	→H	
Н		→ε		→d	

6. 判断下面文法是否为 LL(1)文法, 若是, 请构造相应的 LL(1)分析表。

 $S\rightarrow aD$

 $D{\to}STe|\epsilon$

 $T\rightarrow bM$

 $M\rightarrow bH$

$H{\to}M|\epsilon$

答:

文法的 FIRST 集和 FOLLOW 集

非终结符	FIRST 集	FOLLOW 集
S	{a}	{# , b}
D	{a , ε}	{# , b}
T	{b}	{e}
M	{b}	{e}
Н	{b , ε}	{e}

由于 predict (D \rightarrow STe) \cap predict (D \rightarrow e) ={a} \cap {# , b}=Ø

predict $(H\rightarrow M) \cap predict (H\rightarrow \epsilon) = \{b\} \cap \{e\} = \emptyset$

所以该文法是 LL(1)文法, LL(1)分析表如下表:

	a	e	b	#
S	→aD			
D	→STe		→ε	→ε
Т			→bM	
M			→bН	
Н		→ε	→M	

7. 某语言的拓广文法 **G'**为:

- $(0) S' \rightarrow S$
- (1) $S \rightarrow Db|B$
- (2) $D \to d | \epsilon$
- (3) $B \to Ba|\epsilon$

证明 G 不是 LR(0)文法而是 SLR(1)文法,请给出 SLR(1)分析表。

拓广文法 G',增加产生式 S'→S

在项目集 I₀中:

有移进项目 D→·d

归约项目 D \rightarrow ·和 B \rightarrow ·

存在移进-归约和归约-归约冲突,所以 G 不是 LR(0)文法。

若产生式排序为:

- (0) $S' \rightarrow S$
- (1) $S \rightarrow Db$
- $(2) S \rightarrow B$
- (3) $D \rightarrow d$
- (4) D $\rightarrow \epsilon$
- (5) $B \rightarrow Ba$
- (6) B →ε

G'的 LR(0)项目集族及识别活前缀的 DFA 如下图:

由产生式知

 $Follow(S)=\{\#\}$

 $Follow(D) = \{b\}$

Follow(B)= $\{a,\#\}$

在 I₀中:

 $Follow(D) \cap \{d\} = \{b\} \cap \{d\} = \emptyset$

 $Follow(B) \cap \{d\} = \{ a,\# \} \cap \{d\} = \emptyset$

 $Follow(D) \cap Follow(B) = \{b\} \cap \{a,\#\} = \emptyset$

在 I3 中:

 $Follow(S) \cap \{a\} = \{\#\} \cap \{a\} = \varnothing$

所以在 I_0 , I_3 中的移进-归约和归约-归约冲突可以由 Follow 集解决,所以 G 是 SLR(1) 文法,

构造的 SLR(1)分析表如下表:

状态		ACTION			GOTO		
1八心	b	d	a	#	S	D	В
0	r4	S4	r6	r6	1	2	3
1				acc			
2	S5						
3			S6	r2			
4	r3						
5				r1			
6			r5	r5			

8. 给出与正规式 R=(ab)*(a|b*) ba 等价的 NFA。

答:

与正规式 R 等价的 NFA 如下图

9. 给出与正规式 R=((ab)*|b)*(a|(ba)*)a 等价的 NFA。

与正规式 R 等价的 NFA 如下图

10. 给出与正规式 **R=** (**aba**) * ((**ba**)*|**b**) **b** 等价的 **NFA**。

答:

与正规式 R 等价的 NFA 如下图

11. 将下图的 NFA 确定化为 DFA。

答:

用子集法确定化如下表

I	Ia	Ib	状态
{X,1,2}	{1,2}	{1,2,3}	X
{1,2}	{1,2}	{1,2,3}	1
{1,2,3}	{1,2,Y}	{1,2,3}	2
{1,2,Y}	{1,2}	{1,2,3}	3

确定化后如下图:

12. 将下图的 NFA 确定化为 DFA。

答: 用子集法确定化如下表

I	I _a	I_b	状态
{X,0,1,3}	{0,1,3}	{2,3,Y}	X
{0,1,3}	{0,1,3}	{2,3,Y}	1
{2,3,Y}	{1,3}	{Y}	2
{1,3}	Ø	{2,Y}	3
{2,Y}	{1,3}	{Y}	4
{Y}	Ø	Ø	Y

确定化后如下图

- 13. 某语言的拓广文法 G'为:
 - (0) $S' \rightarrow T$
 - (1) $T \rightarrow aBd|\epsilon$
 - (2) $B \rightarrow Tb|\epsilon$

证明 G 不是 LR(0)文法而是 SLR(1)文法,请给出 SLR(1)分析表。

答:

拓广文法 G',增加产生式 $S' \rightarrow T$

在项目集 I₀中:

有移进项目 T→aBd 和归约项目 T→·

存在移进-归约冲突, 所以 G 不是 LR(0) 文法。

若产生式排序为:

- (0) S' \rightarrow T
- (1) $T \rightarrow aBd$
- (2) T $\rightarrow \epsilon$
- (3) $B \rightarrow Tb$
- (4) $B \rightarrow \epsilon$

G'的 LR(0)项目集族及识别活前缀的 DFA 如下图所示:

识别 G'活前缀的 DFA

Io:

T → • aBd

由产生式知:

 $Follow(T) = \{\#,b\}$

 $Follow(B) = \{d\}$

在 I₀中:

 $Follow(T) \cap \{a\} = \{\#\ ,\ b\} \cap \{a\} = \varnothing$

在 I₂中:

 $Follow(B) \cap \{a\} = \{d\} \cap \{a\} = \emptyset$

 $Follow(T) \cap \{a\} = \{\# , b\} \cap \{a\} = \emptyset$

 $Follow(B) \cap Follow(T) = \{d\} \cap \{\#, b\} = \emptyset$

所以在 I_0 , I_2 , 中的移进-归约和归约-归约冲突可以由 Follow 集解决,所以 G 是 SLR(1) 文法。构造的 SLR(1)分析表如下表。

SLR(1)分析表

nomo		AC	GOTO			
name	a	b	d	#	Т	В
0	S2	r2		r2	1	
1				acc		
2	S2	r2	r4	r2	4	3
3			S5			
4		S6				
5		r1		r1		
6			r3			

14. 某语言的文法 G 为: $E \rightarrow aTd|\epsilon$

 $T \to Eb|a$

证明 G 不是 LR(0)文法而是 SLR(1)文法,请给出该文法的 SLR(1)分析表。

答:

拓广文法 G',增加产生式 $S' \rightarrow E$

在项目集 I_0 中:

有移进项目 E →·aTd

和归约项目 E→·

存在移进-归约冲突, 所以 G 不是 LR(0) 文法。

Io: s' →•E E →•aTd E→•

若产生式排序为:

- (0) $S' \rightarrow E$
- (1) $E \rightarrow aTd$
- (2) $E \rightarrow \epsilon$
- (3) $T \rightarrow Eb$
- (4) $T \rightarrow a$

G'的 LR(0)项目集族及识别活前缀的 DFA 如下图:

由产生式知:

 $Follow(E) = \{ \#, b \}$

 $Follow(T) = \{d\}$

在 I₀ , I₂中:

 $Follow(E) \cap \{a\} = \{\#, b\} \cap \{a\} = \emptyset$

在 I5 中:

 $Follow(E) \cap \{a\} = \{\# \ , \ b\} \cap \{a\} = \varnothing$

 $Follow(T) \cap \{a\} = \{d\} \cap \{a\} = \emptyset$

 $Follow(T) \cap Follow(E) = \{d\} \cap \{\#, b\} = \emptyset$

所以在 I_0 , I_2 , I_5 中的移进-归约和归约-归约冲突可以由 Follow 集解决,所以 G'是 SLR(1)文法。构造的 SLR(1)分析表如下表:

nama		AC	GOTO			
name	a	b	d	#	Е	Т
0	S2	r2		r2	1	
1				acc		
2	S5	r2		r2	4	3
3			S6			
4		S7				
5	S5	r2	r4	r2	4	3
6		r1		r1		
7			r3			

15. 给出文法 G[S]的 LR(1)项目集规范族中 I_0 项目集的全体项目。

G[S]为: $S \rightarrow BD|D$

 $B \rightarrow aD|b$

 $\mathbf{D} \rightarrow \mathbf{B}$

$$I_0$$
: $S' \rightarrow \cdot S$, #
 $S \rightarrow \cdot BD$,#
 $S \rightarrow \cdot D$,#
 $B \rightarrow \cdot aD$,#/a/b
 $B \rightarrow \cdot b$, #/a/b
 $D \rightarrow \cdot B$,#

16. 给出文法 G[S]的 LR(1)项目集规范族中 IO 项目集的全体项目。

$$G[S]$$
为: $S \rightarrow D; D|D$

$$D \rightarrow DB|B$$

$$B \rightarrow a|b$$
 $I_0: S' \rightarrow \cdot S, \#$

答:

I₀:
$$S' \rightarrow \cdot S$$
, # $S \rightarrow \cdot D; D$, # $S \rightarrow \cdot D$, # $D \rightarrow \cdot DB$, #/;/a/b $D \rightarrow \cdot B$, #/;/a/b $D \rightarrow \cdot B$, #/;/a/b $D \rightarrow \cdot B$, #/;/a/b

17. 文法 G[M]及其 LR 分析表如下,请给出对串 dbba#的分析过程。

$G[M]: 1) M \rightarrow VbA$

- 2) $V \rightarrow d$
- 3) V →ε
- 4) A →a
- **5)** A → Aba
- 6) A →ε

nomo	ACTION	GOTO
name	ACTION	0010

	b	d	a	#	M	A	V
0	r3	S 3			1		2
1				acc			
2	S4						
3	r2						
4	r6		S5	r6		6	
5	r4			r4			
6	S7			r1			
7			S8				
8	r5			r5			

答:

对串 dbba#的分析过程如下表

步骤	状态栈	文法符号栈	剩余输入符号	动作
1	0	#	dbba#	移进
2	03	#d	bba#	用 V →d 归约
3	02	#V	bba#	移进
4	024	#Vb	ba#	用 A →ε 归约
5	0246	#VbA	ba#	移进
6	02467	#VbAb	a#	移进
7	024678	#VbAba	#	用 A →Aba 归约
8	0246	#VbA	#	用 M →VbA 归约
9	01	#M	#	接受

18. 文法 G[S]及其 LR 分析表如下,请给出对输入串 da;aoa#的分析过程。

G[S]: 0) S' \rightarrow S

- 1) S→dSoS
- 2) $S \rightarrow dS$
- 3) S →S;S
- 4) S →a

			GOTO			
name	d	a	;	a	#	S
0	S2	S 3		S 3		1
1			S4		acc	
2	S2			S 3		5
3		r4	r4		r4	
4	S2			S 3		6
5		S7	S4		r2	
6		r3	r3		r3	
7	S2			S 3		8
8		r1	S4		r1	

答:

输入串 da;aoa#的分析过程如下表:

步骤	状态栈	文法符号栈	剩余输入符号	动作
1	0	#	da;aoa#	移进
2	02	#d	a;aoa#	移进
3	023	#da	;aoa#	用 S→a 归约
4	025	#dS	;aoa#	移进
5	0254	#dS;	aoa#	移进
6	02543	#dS;a	oa #	用 S→a 归约
7	02546	#dS;S	oa#	用 S→S;S 归约
8	025	#dS	oa #	移进
9	0257	#dSo	a #	移进
10	02573	#dSoa	#	用 S→a 归约
11	02578	#dSoS	#	用 S→dSoS 归约
12	01	#S	#	接受

19. 文法 G[M]及其 LR 分析表如下,请给出对串 dada#的分析过程。

 $G[M]: 1) S \rightarrow VdB$

- 2) V →e
- 3) V →ε
- **4) B** →**a**
- **5)** B →Bda
- 6) B →ε

状态	ACTION					GOTO		
1人心	d	e	a	#	S	В	V	
0	r3	S3			1		2	
1				acc				
2	S4							
3	r2							
4	r6		S5	r6		6		
5	r4			r4				
6	S7			r1				
7			S8					
8	r5			r5				

答:

对串 dada#的分析过程如下表

步骤	状态栈	文法符号栈	剩余输入符号	动作
1	0	#	dada#	用 V →ε 归约
2	02	#V	dada#	移进
3	024	#Vd	ada#	移进
4	0245	#Vda	da#	用 B →a 归约
5	0246	#VdB	da#	移进
6	02467	#VdBd	a#	移进
7	024678	#VdBda	#	用 B→Bda 归约
8	0246	#VdB	#	用 S→VdB 归约
9	01	#S	#	接受

- 20. 按指定类型给出下列语言的文法。 (1) **L**₁={ **a**ⁿ**b**^m **c**| **n≥0**, **m>0** } 用正规文法。 (2) $L_2={a0}^n1^nbd^m|n>0$,m>0} 用二型文法。 答: (1) 描述 L₁语言的正规文法如下: $S \rightarrow aS|A$ $A \rightarrow bA|bB$ $\mathbf{B} \rightarrow \mathbf{c}$ (2) 描述 L₂语言的二型文法如下: $S \rightarrow AB$ $A \rightarrow aT$ $T \rightarrow 0T1|01$ $B\!\to\!\!bD$ $D \rightarrow dD|d$ 21. 下列语言或文法确切属于按乔姆斯基(Chomsky)分类的哪种类型,请填在()内。 (1) L1={ $a0^n1^nbd^m | n>0, m>0$ } () (2) L2={ $a^nb^nc^nb^m | n \ge 0, m > 0 } ()$ (3) L3={ $a^nb^mc | n \ge 0, m \ge 0$ } () (4) $G[A]:A \rightarrow aB|\epsilon B \rightarrow Ab|a$ () (5) $G[E]:E\rightarrow E+E|E*E|(E)|i()$ 答: (1) L1={ $a0^n1^nbd^m | n>0, m>0$ } (2 型) (2) L2={ $a^nb^nc^nb^m | n \ge 0, m > 0 } (1 型)$ (3) L3={ $a^nb^mc | n \ge 0, m > 0$ } (3型) (4) $G[A]:A \rightarrow aB|\epsilon B \rightarrow Ab|a (2型)$
- 22. 按指定类型给出下列语言的文法。

(5) $G[E]:E\rightarrow E+E|E*E|(E)|i(2型)$

25. 将下面的条件语句表示成四元式序列:

if a>b then x:=a+b*c else x:=b-a;

答:

- (1) (j>, a, b, (3))
- (2)(j,,,(7))
- (3) (*, b, c, T1)
- (4) (+, a, T1, T2)
- (5) (:=, T2, , x)
- (6)(j,,,(9))
- (7) (-, b, a, T3)
- (8) (:=, T3, , x)
- (9) (... ...)
- 26. 翻译成四元式序列。

While $a>0 \ \forall b<0$ do

Begin

X: = X + 1;

if a>0 then a:=a-1

else b: =b+1

End;

- (1) (j>, a, 0, 5)
- (2) (j, -, -, 3)
- (5) $(+, \times, 1, T1)$
- (6) (: =, T1, -, \times)
- (7) $(j \ge , a, 0, 9)$
- (8) (j, -, -, 12)
- (9) (-, a, 1, T2)
- (10) (: =, T2, -, a)
- (11) (j, -, -, 1)
- (12) (+, b, 1, T3)

(13) (: =, T3,
$$-$$
, b)

(15)

27. 己知文法 G(S):

$$S\rightarrow a | \wedge | (T)$$

$$T\rightarrow T$$
, $S|S$

写出句子((a, a), a)的规范归约过程及每一步的句柄。

句型	归约规则	句柄
((a, a), a)	S→a	a
((S, a), a)	T→S	S
((T, a), a)	S→a	a
((T, S), a)	T→T, S	T, S
((S), a)	T→S	S
((T), a)	$S \rightarrow S(T)$	(T)
(S, a)	T→S	S
(T, a)	S→a	a
(T, S)	T→T, S	T, S
(T)	$S \rightarrow (T)$	(T)
S		