1 09-04-2018

We will learn about: Basics of functions of several variables. In this lecture:

A sequence in the Euclidean space and its application 1.1

Using these notation:

- \mathbb{N} : set of natural number ($\mathbb{N} = \{1, 2, 3, \dots\}$)
- \mathbb{Z} : set of integers $(\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\})$
- \mathbb{Q} : set of rational number $(\mathbb{Q} = \{0, \pm 1, \pm 2, \frac{2}{3}, \dots\})$
- \mathbb{R} : set of real number
- \mathbb{C} : set of complex number

Definition 1. A sequence $(x_n)_{n=1}^{\infty}$ is an assignment of (real) number $x_n \in \mathbb{R}$ to natural number $n \in \mathbb{N}$ $(x_n \in \mathbb{R})$. Example : $x_n = \frac{1}{n}$. $x_1 = 1, x_2 = \frac{1}{2}, \dots$

Definition 2. A subsequence of a sequence $(x_n)_{n=1}^{\infty}$ is a sequence $(y_j)_{j=1}^{\infty}$ defined by $y_j = x_{n_j}$ for some sequence

Definition 2. A subsequence of a sequence $(n_n)_{j=1}^{\infty}$ in \mathbb{N} such that $n_j < n_{j+1}$ (j = 1, 2, ...).

Example: sequence $(x_n)_{n=1}^{\infty} = 1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{100}$, takes $n_1 = 1, n_2 = 3, n_3 = 5, n_4 = 100$ subsequence $(x_{n_j})_{j=1}^{\infty} = x_{n_1}, x_{n_2}, x_{n_3}, x_{n_4} = 1, \frac{1}{3}, \frac{1}{5}, \frac{1}{100}$.

Definition 3. Let $(x_n)_{n=1}^{\infty}$ be a sequence converges to $\alpha \in \mathbb{R}$ if for any $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that $n > N, |x_n - \alpha| < \epsilon.$

In the mathematical symbol $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } n > N, |x_n - \alpha| < \epsilon \text{ for } n > N.$ In this case we write, $\lim_{n\to\infty}$ or $x_n\to\alpha$ $(n\to\infty)$

Example 1.

Theorem 1. $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}$ is sequence. Suppose $x_n \to \alpha$ and $y_n \to \beta$ as $n \to \infty$.

- 1. $x_n \pm y_n \to \alpha \pm \beta$, $(n \to \infty)$
- 2. $x_n \cdot y_n \to \alpha \cdot \beta$, $(n \to \infty)$
- 3. if $\beta \neq 0$, $\frac{x_n}{u_n} \to \frac{\alpha}{\beta}$, $(n \to \infty)$

Remark 1. On 3, $\frac{x_n}{y_n}$ is not defined for all $n \in \mathbb{N}$ because $y_n = 0$ possibly for some $n \in \mathbb{N}$. But, since $y_n \to \beta \neq 0$, $y_n \to 0$ eventually is not 0. Hence $\frac{x_n}{y_n}$ is defined eventually.

Theorem 2. $(x_n)_{n=1}^{\infty}$ a sequence. If $(x_n)_{n=1}^{\infty}$ converges to $\alpha \in \mathbb{R}$, any subsequence of (x_n)

$\mathbf{2}$ 16-04-2018

n-dimensional space

 $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \{(x_1, \dots, x_n) | x_i \in \mathbb{R}\}.$ Takes n = 2, $\mathbb{R}^2 \Leftrightarrow \text{plane}$, we have P(a, b). For n = 3, we have P(a, b, c).

Definition 4. $P_m = (x_1^m, \dots, x_n^m) \in \mathbb{R}^n$, and $\{P_m\}_{m=1}^{\infty}$: a sequence in \mathbb{R}^n . $\{P_m\}$ converges to $A=(a_1,\ldots,a_n)\in\mathbb{R}^n$, if $\forall k=1,\ldots,n,\ x_k^m\to a_k$ as $n\to\infty$.

Definition 5. Inner product and norm.

 $\mathbf{x}=(x_1,\ldots,x_n), \mathbf{y}=(y_1,\ldots,y_n)\in\mathbb{R}^n$. We can define:

 $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + \dots + x_n y_n$; inner product

 $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$; norm

Example 2. $\mathbf{x} \cdot \mathbf{y} = 0 \Leftrightarrow \mathbf{x}$ is perpendicular to \mathbf{y} Takes n = 0 then

$$x_1y_1 + x_2y_2 = 0$$

$$x_1y_1 = -x_2y_2$$

$$\frac{y_1}{y_2} = -\frac{x_2}{x_1}$$

$$then (x_1, x_2) = c \cdot (-y_2, y_1)$$

pict:

Example 3. $\|\mathbf{x}\| = 0 \Leftrightarrow x = 0$ $(\Rightarrow) \ 0 = \|x\|^2 = x_1^2 + \dots + x_n^2$, then $x_1^2 = 0 \ (\forall i = 1, \dots, n)$ and finally $x_1 = 0$.

Notes 1. ||x|| is the distance between $\mathbf{0} = (0, \dots, 0) \in \mathbb{R}^n$ and $\mathbf{x} = (x_1, \dots, x_n)$. For notation, we will use $P, Q \in \mathbb{R}^n$ as points and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ as vectors. We also use $||x - y|| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$ as distance between \mathbf{x} and \mathbf{y} . ||P - Q|| is distance between P and Q.

$$\mathbf{x} \pm \mathbf{y} = (x_1 \pm y_1, \dots, x_n \pm y_n)$$

$$P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n), \text{ then } P + Q = (p_1 + q_1, \dots, p_n + q_n)$$

$$\alpha \in \mathbb{R}, \ \alpha \mathbf{x} = (\alpha x_1, \dots, \alpha x_n), \alpha P = (\alpha p_1, \dots, \alpha p_n)$$

$$\{P_m\}_{m=1}^{\infty} : \text{a sequence in } \mathbb{R}^n, \ P_m \to A \Leftrightarrow \|P_m - A\| \to 0$$

Theorem 3. Cauchy-Schwarz inequality. For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$|\mathbf{x} \cdot \mathbf{y}| \le ||x|| ||y||$$

"=" $\Rightarrow a\mathbf{y} = b\mathbf{x} \text{ for some } a, b \in \mathbb{R}.$ $\therefore \text{ We may assume } \mathbf{x} \neq \emptyset, \ \forall t \in \mathbb{R}.$

$$0 \le ||t\mathbf{x} + \mathbf{y}|| = (t\mathbf{x} + \mathbf{y})(t\mathbf{x} + \mathbf{y}) = t^2 ||\mathbf{x}||^2 + 2t(\mathbf{x} \cdot \mathbf{y}) + ||\mathbf{y}||^2$$
$$D/4 < 0$$

Theorem 4. Bolzano=Weierstrass. Let $(P_m)_{m=1}^{\infty} \subset \mathbb{R}^n$ be a sequence. Suppose that $(P_m)_{m=1}^{\infty}$ is bounded. In the sense that $||P_m|| \leq M(m \in \mathbb{N})$ for some $M \geq 0$. Then $(P_m)_{m=1}^{\infty}$ contains a convergent subsequence.

Definition 6. Ball. $A \in \mathbb{R}^n, R > 0$

$$\mathbf{B}(A,R) = \{ P \in \mathbb{R}^n | \|P - A\| < R \}; \text{ open ball of center } A \text{ with radius } R$$
$$\overline{\mathbf{B}}(A,R) = \{ P \in \mathbb{R}^n | \|P - A\| \le R \}; \text{ closed ball }$$

Definition 7. 1. $E \subset \mathbb{R}^n$ is said to be **an open set** if $E = \emptyset$ or $\forall A \in E, \exists R > 0$ such that $\mathbf{B}(A, R) \subset E$.

2. $E \subset \mathbb{R}^n$ is said to be **a closed set** if $E^c \in \mathbb{R}^n$ E is an open set. E: open, then neighbor in any point

Definition 8. Accumulation point. $E \subset \mathbb{R}^n$; a set. $A \in \mathbb{R}^n$ is called an accumulation point of E if $\forall R > 0$, $(\mathbf{B}(A,R) - \{A\}) \cap E \neq \emptyset$.

Notes 2. $E \subset \mathbb{R}^n$ is closed if and only if E contains any accumulation point of E. Homework report, prove this

Notes 3. 1. Both \emptyset and \mathbb{R}^n are open and closed

- 2. $\{E_{\lambda}\lambda \in A\}$; a collection of open sets \Rightarrow union $\lambda \in AE_{\lambda}$ is also open
- 3. $\{E_{\lambda}\}_{\lambda=1}^{N}$, a finite collection of open sets \Rightarrow irisan $_{lamda=1}^{N}E_{\lambda}$ is also open.
- 4. Rephrase of Bolzano Weierstrass theorem. $E \subset \mathbb{R}^n$; a bounded closed set $\Leftrightarrow E$ is a closed set such that $E \subset \mathbf{B}(\mathbf{0},R)$ for some R>0. E; a bounded closed set then any sequence of E contains a convergent subsequence whose limit is in E.

Definition 9. A bounded closed set in \mathbb{R}^n is called **compact**.

Example 4. $\overline{\mathbf{B}}(A,R)$ is compact. Report! prove this

2.2 Continuity and differentiability of a function

2.2.1 Continuity

E: a set in \mathbb{R}^n and f: is a function of E (real valued function). i.e. f is an assignment a (real) number to a point in E.

Definition 10. 1. f is continuous at $A \in E$ if $\forall (P_m)_{m=1}^{\infty} \subset E$: sequence with $P_m \to A$ $(m \to \infty)$

$$f(P_m) \to f(A) \ (m \to \infty)$$

2. f is continuous on E if f is continuous at any point of E.

2.2.2 Basic of continuous function on an interval in $\mathbb R$

Theorem 5. Intermediate value theorem. f: function on a closed interval $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$. Suppose that $f(a) \le f(b)$. Then, $\forall \gamma$ with $f(a) \le \gamma \le f(b)$, $\exists c \in [a,b]$ with $f(c) = \gamma$.

Theorem 6. Extreme value theorem. f is a continuous function

Name: Afifah Maya Iknaningrum (1715011053)

REPORT 1

- 1. $E \subset \mathbb{R}^n$ is closed if and only if E contains any accumulation point of E
- 2. $\overline{\mathbf{B}}(A, R)$ is compact.

Proof:

1. (\Rightarrow) if E is closed then E contains all of its accumulation point. Let x accumulation point of E, $x \in E$ and E is closed then E^c is open .

Let $x \in E^c$ and $R > 0 \Rightarrow \forall x \in E^c$, $\exists B(x, R)$ such that $\forall y \in B(x, R) \Rightarrow y \in E^c$. Suppose x is accumulation point of E that is not in E. Then, $\forall e \in B(x, R), \exists y \neq x \text{ with } y \in e \cap E$. $y \in e \cap E \Rightarrow y \notin E^c$ contradiction.

 (\Leftarrow) E contains all of its accumulation point then E is closed.

Suppose E contains all of its accumulation point. Suppose E^c is not open. $\exists x \in E^c$ such that $\forall e \in B(x,R), R > 0, \exists y \in e$ that also in E. Its contradict the premise, because x is accumulation point.

2. Suppose $x \notin \overline{B}(A, R) \Rightarrow ||x - A|| > R$. So let $||x - A|| - R = \epsilon > 0$. Consider $y \in B(x, \epsilon/2)$,

$$\begin{array}{rcl} \|y - A\| & \geq & \|x - A\| - \|y - x\| \\ \|y - A\| & \geq & R + \epsilon - (\epsilon/2) \\ \|y - A\| & \geq & R + (\epsilon/2) \\ \|y - A\| & > & R \end{array}$$

shows that $y \in \overline{B}(A, R)$. Hence $B(x, \epsilon/2)$ subset of $\overline{B}(A, R)^c$. Because $\overline{B}(A, R)^c$ hence $\overline{B}(A, R)$ is closed.

By definition, $\overline{B}(A,R)=\{x\in\mathbb{R}^n|\|x-A\|\leq R\}$ Then $\forall x\in\overline{B}(A,R)$ we can find

$$||x - A|| \le R$$

$$-R \le |x - A| \le R.$$
(1)

shows that $\overline{B}(A,R)$ is bounded.

Because closed and bounded, $\overline{B}(A, R)$ is compact.