The Network Layer

Routing in the Internet

School of Software Engineering
South China University of Technology
Dr. Chunhua Chen

chunhuachen@scut.edu.cn
2020 Spring

Hierarchical Routing

- Scale
 - hundreds of millions of routers
- Administrative autonomy: AS

Intra-AS Routing in the Internet

- An intra-AS routing protocol is used to determine how routing is performed within an autonomous system (AS).
- In the Internet (extensively used)
 - Routing Information Protocol (RIP)
 - distance-vector based
 - Open Shortest Path First (OSPF)
 - link-state based

- Cost metric: each link has a cost of 1.
- Cost of a path:
 - from source router to a destination subnet;
 - hop, which is the number of subnets traversed along the shortest path from source router to destination subnet, including the destination subnet.
- The maximum cost of a path is limited to 15, thus limiting the use of RIP to autonomous systems that are fewer than 15 hops in diameter.

Destination	Hops
u	1
V	2
W	2
x	3
У	3
z	2

• RIP advertisements/RIP response message

- Neighboring routers exchange distance vectors with each other
- Approximately every 30 seconds
- the sender's distance to each of a list of up to 25 destination subnets

Figure 4.35 • A portion of an autonomous system

Destination Subnet	Next Router	Number of Hops to Destination
W	Α	2
у	В	2
Z	В	7
Х	-	1
10110	* * * *	

Figure 4.36 ◆ Routing table in router D before receiving advertisement from router A

$$d_x(y) = \min_{v} \{c(x, v) + d_v(y)\}$$

Destination Subnet	Next Router	Number of Hops to Destination
W	A	2
Ÿ	В	2
Z	В	7
X	 .	1
\$25,50.5	* * *	20. N. S. S.

Destination Subnet	Next Router	Number of Hops to Destination
ı	C	4
W	1-1	
X	\$ <u></u> \$	T
****	× * * *	(× (* *)

Figure 4.36 ◆ Routing table in router D before receiving advertisement from router A

Destination Subnet	Next Router	Number of Hops to Destination
W	A	2
У	В	2
7	Α	5
(20)	congr	000 4 To 100

Figure 4.37 • Advertisement from router A

$$C(D, A) = 1$$

Figure 4.38 • Routing table in router D after receiving advertisement from router A

Open Shortest Path First (OSPF)

- Individual link costs are configured by the network administrator
 - set all link costs to 1, or
 - set the link weights to be inversely proportional to link capacity in order to discourage traffic from using low-bandwidth links.
- By flooding of link-state information, a router constructs a complete topological map (that is, a graph) of the entire autonomous system.
 - a change in a link's state, or every 30 minutes
- The router then locally runs Dijkstra's shortest-path algorithm to determine a shortest-path tree to all *subnets*, with itself as the root node.

Inter-AS Routing: BGP

- The **Border Gateway Protocol** version 4 is the *de facto* standard inter-AS routing protocol in today's Internet. It is commonly referred to as BGP4 or simply as **BGP**.
 - Obtain subnet reachability information from neighboring ASs.
 - Propagate the reachability information to all routers internal to the AS.
 - Determine "good" routes to subnets based on the reachability information and on AS policy.
- BGP is extremely complex, not cored here, but you are required to read the chapter in the text book
 - AS-PATH, NEXT-HOP, Routing Policy