QGIS 2D-2.5D Geovisualization Practical exercices

https://www.qgis.org/en/site/forusers/download.html

- Latest 3.22.2 "Białowieża"
- Most Stable: 3.16.15 "Hannover"
- Dataset: http://piece-jointe-carto.developpement-durable.gouv.fr/NAT002/QGIS/formations/data/Data-foad_qgis.zip

• Tutorial:

https://docs.qgis.org/3.16/en/docs/user_manual/index.html

Vector map design

- ROUTE PRIMAIRE.SHP
- ROUTE_SECONDAIRE.SHP
- ▼ The D_HYDROGRAPHIE

A_RESEAU_ROUTIER

ROUTE.SHP

BD TOPO

- HYDRONYME,SHP
- POINT EAU.SHP
- RESERVOIR EAU.SHP
- SURFACE_EAU.SHP
- TRONCON_COURS_EAU.SHP
- ▼ 🛅 E_BATI
 - BATI INDIFFERENCIE.SHP
 - BATI INDUSTRIEL.SHP
 - BATI_REMARQUABLE.SHP
 - CIMETIERE.SHP
 - CONSTRUCTION_LEGERE.SHP
 - CONSTRUCTION_LINEAIRE.SHP
 - construction_ponctuelle.shp 4.
 - PISTE AERODROME,SHP
 - RESERVOIR.SHP
 - TERRAIN_SPORT.SHP
- ▶ ➡ F VEGETATION
- H ADMINISTRATIF
- I_ZONE_ACTIVITE

- 1. Open vector data in BD_TOPO
- 2. Order layers properly
- 3. Make a (nice and efficient) topographic data representation

Make a map!

https://docs.qgis.org/3.16/en/docs/user_manual/working_with_vector/index.html

https://docs.qgis.org/3.16/en/docs/user_manual/style_library/index.html

DTM & relief perception

- 1. Open DTM 25m in BD_ALTI.
- MNT_100M_asc.asc

 2. Manage Pseudo-colors representation. MNT_25M_asc.asc

 MNT_50M_asc.asc
- 3. Add Extension Value Tool for rasters.
- 4. Calculate: Hillshade, Slope, Aspect, Contour lines.
- 5. Overlay hillshade or contour lines & SCAN25 (extrait_72_Topo.tif)
- 6. With Style panel, explore Hillshade properties (azimuth) and observe Hillshade result.
- 7. Create a map!

3D Cartographic View

- With the current scene, open a new 3D cartographic view to explore the DTM.
- Configure Terrain properties
- Add buildings -> Symbology -> 2.5D with HEIGHT
- Export your image or video animation.

Push 2D data into 3D vis (extrusion)

Install QGIS2ThreeJS plugin

https://docs.qgis.org/3.16/en/docs/user_manual/plugins/plugins.html#the-not-installed-tab

 Display DTM 25m + Extrude buildings (BATI_INDIFFERENCIE) according to HEIGHT

Create Vegetation to visualize in 3D

- Create 1 point layer « tree_canopy » and capture some points representing tree locations.
- Copy this first layer into another and rename it « tree_trunk »

Qgis2threejs Template file 3DViewer(dat-gui).html World Object type Cylinder Controls DFM Z coordinate ■ Additional DEM Mode Relative to DE → Height 0 □ Point X arbres1 X arbres2 Style □ Line Color Feature style -Polygon Transparency Feature style -▼ Value 1 Radius Fixed value Height Fixed value ▼ Value 5 Feature All features Features that intersect with map canvas extent Output HTML file path [Temporary file] Browse... Run Close Help

Use « tree_canopy » to the tree tops, as: spheres of 3m of radius, at 5m from the ground

Use « tree_trunk » to design trunks: cylinders of 1m radius and 5m height.

QGIS2ThreeJS Exporter -> HTML page

https://qgis2threejs.readthedocs.io/en/docs/Exporter.html