Guided Calculation Exercise

Recurrent Mutation Modeling Practice

Worksheet Instructions

This worksheet provides guided practice problems for modeling recurrent one-way mutation. For each problem:

- Read the problem carefully
- Use the provided workspace to show your calculations
- · Refer to the formula reference sheet if needed
- Check your work against the solution guide
- Spend approximately 10-15 minutes per problem

Stimated Time: 60 minutes total

Formula Reference Sheet

$$p_1 = p_0 (1 - \mu)$$
 $\Delta p = -\mu p_0$ $p_t = p_0 (1 - \mu)^t$

Problem 1: Basic Frequency Calculation

Scenario: A population of flowers has a gene for petal color. Allele A (red petals) mutates to allele a (white petals) at a rate of $\mu = 0.0002$ per generation. Initially, the frequency of A is $p_0 = 0.90$.

Calculate: What is the frequency of A after one generation (p_1) ?

Step-by-Step Guide:

- 1. Identify the known values: $p_0 = ?$, $\mu = ?$
- 2. Choose the correct formula
- 3. Substitute the values
- 4. Calculate the result

Your Work:

Known values: $p_0 = \underline{\hspace{1cm}}, \mu = \underline{\hspace{1cm}}$

Formula: $p_1 = p_0(1 - \mu)$

Calculation: p₁ = _____ × (1 - _____) = ____

Final answer: $p_1 =$

Solution:

$$p_1 = 0.90 \times (1 - 0.0002) = 0.90 \times 0.9998 = 0.89982$$

Problem 2: Multiple Generations

Scenario: In a population of bacteria, a gene for antibiotic sensitivity mutates from sensitive (A) to resistant (a) at $\mu = 1 \times 10^{-5}$ per generation. The population starts with only sensitive alleles (p₀ = 1.0).

Calculate: What is the frequency of sensitive alleles after 1000 generations?

Step-by-Step Guide:

- 1. Identify p_0 , μ , and t
- 2. Use the multiple generation formula
- 3. Calculate $(1 \mu)^t$
- 4. Multiply by p₀

Your Work:

Known values: $p_0 = \underline{\hspace{1cm}}, \mu = \underline{\hspace{1cm}}, t = \underline{\hspace{1cm}}$

Formula: $p_t = p_0(1 - \mu)^t$

Calculation: p₁₀₀₀ = _____ × (1 - ____)—— = ____

Final answer: $p_{1000} =$ _____

 $\mathbb {V}$ **Hint:** For small μ and large t, you can use the approximation (1 - $\mu)^t \approx e^{-\mu t}$

Solution:

 $p_{1000} = 1.0 \times (1 - 0.00001)^{1000} = (0.99999)^{1000} \approx 0.99005$ Using approximation: $e^{-(0.00001 \times 1000)} = e^{-0.01} \approx 0.99005$

Problem 3: Time Calculation

Scenario: A geneticist is studying a neutral mutation in fruit flies. The mutation rate is $\mu = 5 \times 10^{-6}$. The current frequency of the original allele is p = 0.75.

Calculate: How many generations will it take for the frequency to drop to p = 0.50?

Step-by-Step Guide:

- 1. Start with $p_t = p_0(1 \mu)^t$
- 2. Take natural logarithms of both sides
- 3. Solve for t
- 4. Use the formula: $t = ln(p_t/p_0) / ln(1 \mu)$

Your Work:

Known values: $p_0 = \underline{\hspace{1cm}}, p_t = \underline{\hspace{1cm}}, \mu = \underline{\hspace{1cm}}$

Formula: t = ln(_____/ ____) / ln(1 - ____)

Calculation: t = In(_____) / In(_____) = ____

Final answer: t = _____ generations

 ∇ **Hint:** For small μ , $\ln(1 - \mu) \approx -\mu$, so t $\approx -\ln(p_t/p_0) / \mu$

Solution:

 $t = \ln(0.50/0.75) / \ln(1 - 0.000005)$

t = ln(0.6667) / ln(0.999995)

t \approx -0.4055 / -0.000005 \approx 81,100 generations

Using approximation: t \approx -ln(0.6667) / 0.000005 \approx 0.4055 / 0.000005 \approx 81,100 generations

Problem 4: Change in Frequency

Scenario: In a population of 10,000 individuals, allele A has frequency p = 0.60. The mutation rate from A \rightarrow a is $\mu = 0.0001$.

Calculate: What is Δp , the change in frequency of A after one generation?

Step-by-Step Guide:

- 1. Use the Δp formula directly
- 2. Note that population size doesn't affect the calculation
- 3. The answer should be negative (frequency decreases)

Your Work:

Known values: $p_0 = \underline{\hspace{1cm}}$, $\mu = \underline{\hspace{1cm}}$

Formula: $\Delta p = -\mu p_0$

Calculation: Δp = -____ × ____ = ____

Final answer: $\Delta p =$

Hint: The negative sign indicates that A is decreasing in frequency due to mutation pressure.

Solution:

 $\Delta p = -0.0001 \times 0.60 = -0.00006$

Problem 5: Real-World Application

Scenario: Human chromosome 16 has a region where the mutation rate is estimated at 2×10^{-8} per base pair per generation. A particular SNP starts with frequency p = 0.95 in a population.

Calculate: What will be the frequency of this SNP after 100,000 generations? (Assume human generation time \sim 25 years)

Your Work:

Known values: $p_0 = \underline{\hspace{1cm}}$, $\mu = \underline{\hspace{1cm}}$, $t = \underline{\hspace{1cm}}$

Formula: $p_t = p_0(1 - \mu)^t$

Calculation: p_t = _____ × (1 - ____)— = ____

Final answer: $p_t =$

Time in years: $\underline{}$ × 25 = $\underline{}$ years

∀ Hint: 100,000 generations at 25 years per generation equals 2.5 million years - enough time for significant evolutionary change!

Solution:

 $p_t = 0.95 \times (1 - 0.00000002)^{100000}$

 $p_t \approx 0.95 \times e^{-(0.00000002 \times 100000)}$

 $p_t \approx 0.95 \times e^{-0.002} \approx 0.95 \times 0.998 \approx 0.9481$

Time: $100,000 \times 25 = 2,500,000$ years

Learning Reflection

After completing these problems, consider:

- Which concepts were most challenging?
- How does the time scale of mutation compare to other evolutionary forces?
- What real-world factors might make actual mutation dynamics more complex?

• How comfortable are you with the mathematical modeling approach?

Next Steps: Review any problems you found challenging and practice with additional scenarios from the practice problems PDF.

 ${\tt BGEN}~55$ - Advanced Genetics II | Guided Calculation Exercise Worksheet

Developed by CAE Cadorna © 2025