

数据模型

北京理工大学

- ◆模型
- ◆数据模型(data model)是现实世界数据特征的 抽象
- ◆数据模型不仅要反应数据本身,还要反应出数据之间的关系
- ◆数据模型的要求
 - ◆真实
 - →易于理解
 - ◆易于通过计算机实现

数据模型的两种类型

- ◆根据模型的不同应用目的
 - ◆概念模型(信息模型)
 - ◆用户角度,用于数据库设计
 - ◆数据模型
 - ◆计算机系统的角度,用于DBMS实现
 - ◆网状模型
 - ◆层次模型
 - ◆关系模型

数据模型的组成要素

- ◆数据结构
- ◆数据操作
- ◆完整性约束

数据结构

- ◆是所研究对象类型的集合
 - ◆数据内容
 - ◆数据和数据之间的联系
- ◆是数据库的静态描述

数据操作

- ◆是对数据库中各个对象允许执行操作的集 合以及相关操作的规则
- ◆插入,删除,修改

- ◆约束条件是一组完整性规则的集合
- ◆给定数据模型中数据及其联系具有的制约 和依存规则

概念模型

- ◆是现实世界到信息世界的第一层抽象
- ◆数据库设计人员进行数据库设计的工具

一些基本概念

- ◆实体(Entity)-可以相互区别的事物
- ◆属性 (attribute) 实体的某一方面特性
- ◆码(key)唯一标识实体的属性集
- ◆域(domain)属性的取值范围
- ◆实体型(entity type)用实体名和属性名集合来描述同类实体,称为实体型
- ◆实体集(entity set)同型实体的集合
- ◆关系(relationship)实体内部或者实体之间的 关系

联系

- ♦1:1(一对一)
 - ◆实体集A中每一个实体在实体集B中至多有1个实体与 之联系,反之亦然
- ♦1: n (一对多)
 - ◆实体集A中每一个实体在实体集B中至有n个实体与之 联系,反之是1:1关系
- ♦M: n (多对多)
 - ◆实体集A中每一个实体在实体集B中至有n个实体与之 联系,反之亦然

概念模型的表示方法

- ◆P.P.S.chen 1976年提出的实体一联系方法
- ◆E-R模型 反应实体型 属性和联系
 - ◆实体型 矩形 内部写实体名
 - ◆属性 椭圆 用无向边和对应的实体联系起来
 - ◆联系 菱形 内写联系名 无向边标识联系类型

E-R模型实例

图 2-5 学生选课的 E-R 图

常用的数据模型

- ◆层次模型
- ◆网状模型
- ◆关系模型
- ◆面向对象模型

非关系模型

◆基本层次联系 指两个记录以及它们之间 的联系

层次模型

- ◆用树型结构表示实体和实体之间的联系
- ◆有且只有一个节点没有双亲节点,根节点
- ◆其他节点有且仅有一个双亲节点
- ◆有相同双亲节点的节点称为兄弟节点
- ◆没有子女节点的节点称为叶节点
- ◆每个节点是一个数据类型
- ◆每个节点由若干个字段构成

图 2-12 层次模型结构

Е

- ◆冗余节点法
 - ◆结构清晰允许节点改变存储位置
 - ◆有数据冗余,存在潜在不一致性
- ◆虚拟节点法
 - ◆减少存储空间
 - ◆但可能需要移动指针的操作

- ◆没有双亲不能进行插入操作
- ◆删除双亲则子女节点也同时删除
- ◆修改需要修改所有相应的记录

- ◆邻接法
 - ◆通过存储的顺序相互关系
- ◆链接法
 - ◆通过指针链接

网状模型

- ◆允许1个以上的节点无双亲
- ◆一个节点可以有多于一个双亲

网状模型的数据操作和完整性 约束

- ◆支持记录码的概念,不允许出现重复值
- ◆保证一个联系中,双亲记录和子女记录之间是1对多的关系
- ◆支持双亲记录和子女记录之间的约束条件

网状模型的存储结构

- ◆链接法
 - ◆单向链接
 - ◆双向链接
 - **◆环状链接**
 - ◆向首链接

- ◆优点
 - ◆很好的表示多对多的关系
 - ◆性能较高
- ◆缺点
 - ◆结构复杂
 - ◆DDL DML语言复杂

- ◆目前最重要的数据库数据模型,关系型数据库采用关系模型做为数据的组织形式
- ◆1970年由E.F.Codd首次提出,因此获得 1981年图灵奖
- ◆本课程重点也是关系型数据库

◆建立在严格关系运算基础上的,在关系数据库中数据的逻辑结构是一张二维表

*	4	-	23	-
7	±	豆	TC.	X.

41. (d	LL A	7E N	ME 201	* A	ee 20
学 号_	姓名	年龄	性别	系 名	年級
95004	王小明	19	女	社会学 9:	
95006	黄大鹏	20	男	商品学	95
95008	张文斌	18	女	法律学	95
				•••	

关系数据库的基本概念

- ◆关系(relation) 对应一张二维表
- ◆元组(tuple)表中的一行称为一个元组
- ◆属性(attribute)表中的一列称为一个属性,属性的名称叫属性名
- ◆主码(key)某个属性组,可以唯一的确定一个 元组
- ◆域 (domain) 属性的取值范围
- ♦分量:元组的一个属性值
- ◆关系模式:对关系的描述 关系名(属性1,属性2,属性3)

- ◆在关系模型中实体和实体联系的表示方法 也是用关系来表示的:
- ◆学生(学号,姓名,年龄。。。)
- ◆课程(课程号,课程名,学分)
- ◆选课(学号,课程号,成绩)

◆关系中的每个分量不可再分,即不允许表 中还包含表

实发	扣除		工费					829 92000
	水电	房稅	职务	工台	基本	职称	姓名	灰工号
803	12	50	50	20	805	神师	陈平	86051
1	. :	:		!	1	. 1	ı	ŧ

关系模型的操纵和完整性约束

- ◆关系模型中数据操纵包括:查询,插入,删除,和修改,所有的操纵是针对关系表进行
- ◆关系的完整性主要包含以下三个方面
 - ◆实体完整性
 - ◆参照完整性
 - ◆用户定义完整性

关系模型的存储结构

- ◆在物理存储中,数据以表格的形式存在
 - ◆实体
 - ◆实体和实体之间的联系

♦ 优点

- ◆理论基础完善
- ◆模型单一,无论实体和实体关系统一用表的形式表示
- ◆一体化的数据子语言
- ◆存取方式对用户透明,具有更好的数据独立性
- ◆面向集合的存取
- ◆有利于应用的扩展

♦缺点

- ◆查询效率较低
- ◆需要用户对查询进行优化

- ◆数据库技术和OOP OOA技术结合产物
- ◆数据单元可以是自己定义的具有复杂结构 的对象
- ◆数据与在数据上的操作封装在一起
- ◆支持数据之间的继承关系