ECE 302: Probabilistic Methods in Electrical and Computer Engineering

Fall 2020

Homework 8

 $\begin{array}{c} \text{Fall 2020} \\ \text{(Due: Dec 4, 2020, Friday)} \end{array}$

Name:	Email:
Homework is due at 11:59pm (midnight) Eastern Tirand scan the solution. Submit your homework through	
Exercise 1. Let $Y(t) = X(t) - X(t - d)$.	
(a) Find $R_{X,Y}(\tau)$ and $S_{X,Y}(\omega)$.	
(b) Find $R_Y(\tau)$.	
(c) Find $S_Y(\omega)$.	

(-) Find 41-	o outcom-1	ation funct:	on D (-)			
		e autocorrela					
		e cross-corre		sion of $X(t)$) and $Y(t)$.		
(c)	i) Is Y(t)	WSS? Why?	?				

Exercise 2.

Exercise 3.

Consider the system

$$Y(t) = e^{-t} \int_{-\infty}^{t} e^{\tau} X(\tau) d\tau.$$

Assume that X(t) is zero mean white noise with power spectral density $S_X(\omega) = N_0/2$. Find

- (a) $S_{XY}(\omega)$
- (b) $R_{XY}(\tau)$
- (c) $S_Y(\omega)$
- (d) $R_Y(\tau)$

©~2020 Stanley Chan. All Rights Reserved.

Exercise 4.

Consider the random process

$$X(t) = 2A\cos(t) + (B-1)\sin(t),$$

where A and B are two independent random variables with $\mathbb{E}[A] = \mathbb{E}[B] = 0$, and $\mathbb{E}[A^2] = \mathbb{E}[B^2] = 1$.

- (a) Find $\mu_X(t)$
- (b) Find $R_X(t_1, t_2)$
- (c) Find $C_X(t_1, t_2)$

© 2020 Stanley Chan. All Rights Reserved.

Exercise 5.

Find the autocorrelation function $R_X(\tau)$ corresponding to each of the following power spectral densities:

- (a) $\delta(\omega \omega_0) + \delta(\omega + \omega_0)$
- (b) $e^{-\omega^2/2}$
- (c) $e^{-|\omega|}$

(c)	2020	Stanley	Chan.	All	Rights	Reserved	l.

A W	VSS process $X(t)$ with autocorrelation function $R_X(\tau) = e^{-\tau^2/(2\sigma_T^2)}$ is passed through an LTI system transfer function $H(\omega) = e^{-\omega^2/(2\sigma_H^2)}$. Denote the system output by $Y(t)$. Find
	$S_{XY}(\omega)$
(b)	$R_{XY}(au)$
(c)	$S_Y(\omega)$
(d)	$R_Y(au)$

Exercise 6.

Exercise 7.

A WSS process X(t) with autocorrelation function

$$R_X(\tau) = 1/(1+\tau^2)$$

is passed through an LTI system with impulse response

$$h(t) = 3\sin(\pi t)/(\pi t).$$

Let Y(t) be the system output. Find $S_Y(\omega)$. Sketch $S_Y(\omega)$

(c)	2020	Stanley	Chan.	All	Rights	Reserved	l.

Exercise 8.

Consider a WSS process X(t) with autocorrelation function

$$R_X(\tau) = \operatorname{sinc}(\pi \tau).$$

The process is sent to an LTI system, with input-output relationship

$$2\frac{d^2}{dt^2}Y(t) + 2\frac{d}{dt}Y(t) + 4Y(t) = 3\frac{d^2}{dt^2}X(t) - 3\frac{d}{dt}X(t) + 6X(t).$$

Find the autocorrelation function $R_Y(\tau)$.

Exercise 9.

Let X(t) be a WSS process with correlation function

$$R_X(\tau) = \begin{cases} 1 - |\tau|, & \text{if } -1 \le \tau \le 1\\ 0, & \text{otherwise.} \end{cases}$$
 (1)

It is known that when X(t) is input to a system with transfer function $H(\omega)$, the system output Y(t) has a correlation function

$$R_Y(\tau) = \frac{\sin \pi \tau}{\pi \tau}.$$
 (2)

Find the transfer function $H(\omega)$.

(\mathbf{c})	2020	Stanley	Chan.	All	Rights	Reserved	l.