

INSTITUT TEKNOLOGI DEL

UJIAN TENGAH SEMESTER

Semester Ganjil 2024/2025

Hari/Tanggal Ujian	Kamis / 17 Oktober 2024
Kode/ Nama Mata Kuliah	4143101 / Algoritma Lanjut
Jenis Ujian	PRAKTIKUM
Sifat Ujian	Open Source Code (Hanya Pada Source Code Latihan
	Kelas, Dilarang Browsing kecuali 30 menit terakhir)
Waktu Pengerjaan	180 menit
	(150 menit : waktu pengerjaan soal dan 3 0 menit : waktu
	pengumpulan dengan ketentuan yang sudah diberikan)
Pengajar	TAP
	Indah

PETUNJUK

Sebelum mengerjakan soal ujian, Anda harus membaca petunjuk pengerjaan berikut:

- 1. Bekerja sendiri, tidak diperkenankan bekerja sama dengan cara apa pun. Kegagalan memenuhi aturan ini akan memperoleh sanksi akademik.
- 2. Anda diizinkan membuka segala sumber dari laptop/PC anda sendiri dan tidak diperkenankan untuk mengakses jaringan selama ujian berlangsung.
- 3. Bacalah setiap soal dengan rinci sebelum mulai menjawab. Kesempatan bertanya diperbolehkan pada 15 menit pertama ujian.
- 4. Anda diwajibkan membuat video berupa demo pekerjaan Anda [tanpa suara tidak apa] kemudian kompress keseluruhan *file* anda baik video dan kode program dengan penamaan sebagai berikut NIM_ uts_D3TI.zip cth. 11323323_uts_D3TI.zip kemudian upload di google drive masing-masing dan WAJIB beri akses ke email arifintegar12@gmail.com dan link nya di kumpulkan pada google form pada link berikut: https://bit.ly/Pengumpulan UTS ALU D4TRPL del 2024
- 5. Pada ecourse kumpulkan versi .pdf , jadi anda di **WAJIB** kan membuat laporan atau summary kode program yang anda buat beserta penjelasannya [**WAJIB** dijelaskan] serta **WAJIB** ditunjukkan/Screenshot Outputnya Juga dan buat di word save ektensi .pdf dengan filename **NIM_Nama_UTS_ALU** dan kumpulkan pada link berikut: https://ecourse.del.ac.id/mod/assign/view.php?id=49316
- 6. Jumlah halaman 3 termasuk sampul.

Soal-soal berikut dibebaskan dikerjakan menggunakan bahasa pemrograman apa saja namun disarankan menggunakan python atau C#. Soal-soal berikut juga dibebaskan input dan outputnya namun diberikan contoh input dan outputnya.

- 1. Kompleksitas Waktu dan Rekursi: Buatlah dua fungsi untuk menghitung bilangan Fibonacci ke-n:
 - Fungsi pertama menggunakan pendekatan rekursif sederhana.
 - Fungsi kedua menggunakan teknik optimisasi (misalnya dynamic programming) untuk memperbaiki kompleksitas waktu.

Jelaskan kompleksitas waktu dari kedua metode yang kamu buat.

Contoh hasil:

Input: Bilangan bulat $n (0 \le n \le 50)$

Output: Bilangan Fibonacci ke-n

2. Divide and Conquer: Diberikan sebuah array A berisi n bilangan bulat, temukan subarray dengan jumlah elemen terbesar menggunakan algoritma divide and conquer.

Contoh hasil:

Input: Array *A* dengan *n* elemen $(-1000 \le A[i] \le 1000, 1 \le n \le 1000)$

Output: Jumlah maksimum dari subarray terbesar

3. Algoritma Greedy: Aktivitas Terbanyak Diberikan sejumlah aktivitas dengan waktu mulai dan waktu selesai, kamu diminta memilih aktivitas yang bisa dilakukan sebanyak mungkin, tanpa tumpang tindih waktu.

Contoh hasil:

Input: Array berisi pasangan waktu mulai dan selesai dari n aktivitas $(1 \le n \le 100)$

Output: Jumlah maksimum aktivitas yang bisa dilakukan

4. Algoritma Backtracking: Permutasi yang Unik Diberikan sebuah array berisi angka-angka (mungkin terdapat angka yang sama), buatlah semua permutasi yang unik menggunakan pendekatan backtracking.

Contoh hasil:

Input: Array berisi n bilangan bulat $(1 \le n \le 8)$

Output: Semua permutasi unik yang mungkin

5. Dynamic Programming: Diberikan sebuah ransel dengan kapasitas tertentu dan beberapa barang dengan berat dan keuntungan masing-masing, tentukan keuntungan maksimum yang bisa diperoleh tanpa melebihi kapasitas ransel menggunakan dynamic programming.

Contoh hasil:

Input:

Kapasitas ransel $W(1 \le W \le 1000)$

Berat dan keuntungan dari n barang $(1 \le n \le 100, 1 \le \text{berat[i]}, \text{keuntungan[i]} \le 1000)$

Output: Keuntungan maksimum yang dapat diperoleh

Buatlah web sederhana yang mengintegrasikan jawaban dari soal-soal di atas. Web ini harus memenuhi kriteria berikut:

- Memiliki halaman input untuk setiap soal (dengan form input sederhana).
- Menampilkan hasil dari setiap soal di halaman hasil setelah proses dijalankan.
- Web ini boleh dibuat menggunakan framework sederhana seperti Flask atau Node.js atau yang lain sesuai kemampuan Anda.
- Deploy web di platform gratis seperti Heroku atau Vercel [Bonus jika sempat di 30 menit terakhir bisa pakai internet]

Catatan:

- Solusi setiap soal dapat dijalankan di server-side dan hasilnya dikirimkan kembali ke client-side.
- Untuk setiap soal, tampilkan waktu eksekusi (dalam milidetik) di halaman hasil untuk menunjukkan kompleksitas waktu.

[Bonus Besar] Jika memiliki waktu, tambahkan fitur untuk menghitung performa dan visualisasi perbandingan waktu eksekusi dari beberapa algoritma yang digunakan, misalnya perbandingan antara rekursi Fibonacci dan Fibonacci dengan dynamic programming.