Projet 9: Réaliser un traitement dans un environnement Big Data sur le Cloud

Maodo FALL

OpenClassrooms

Soutenance du projet 25 avril 2025

- Problématique et jeu de données
 - Problématique
 - Jeu de données
- Processus de création de l'environnement Big Data
- Chaîne de traitement d'image
- Démonstration sur le cloud
- Conclusion

- Problématique et jeu de données
 - Problématique
 - Jeu de données
- Chaîne de traitement d'image

Start-up Fruits

Objectifs

Je suis Data Scientist au sein de la très jeune start-up de l'AgriTech, nommée "Fruits!", qui cherche à proposer des solutions innovantes pour la récolte des fruits.

Objectif court terme:

 Créer une application mobile grand public de reconnaissance de fruits par photographie pour sensibiliser à la biodiversité des fruits.

Objectif long terme:

- Moteur de classification des images de fruits
- Développer des robots cueilleurs intelligents

Missions

Le développement de l'application mobile permettra de construire une première version de l'architecture Big Data nécessaire.

Je reprends le travail à l'aide d'un document, formalisé par un alternant qui vient de quitter l'entreprise.

Missions:

- préparer la chaîne de traitement en local (mise à jour du script PySpark avec une étape de réduction de dimension PCA)
- migrer la chaîne de traitement dans le cloud

Présentation du jeu de données

Le jeu de données provient de Kaggle et est constité de plus de 90000 images de fruits et légumes dont 22688 sont dans le sous-dossier Test composé de 131 sous-dossiers(classes) d'images.

- Les 131 classes/variétés de fruits sont, entre autres, Apple Braeburn, Banana, Kiwi, Watermelon etc...
- Les images sont de dimension 100 * 100 pixels.
- Le volume de données va rapidement augmenter après la livraison du projet

Sommaire

- Problématique et jeu de données
 - Problématique
 - Jeu de données
- Processus de création de l'environnement Big Data
- Chaîne de traitement d'image
- Démonstration sur le cloud
- Conclusion

Architecture Big Data

- Le volume de données va rapidement augmenter après la livraison du projet :
 - Nécessité donc d'un passage à l'échelle pour garder de bonnes performances
- Par nature, le Big Data implique de gérer des volumes massifs de données. Donc pour les traiter efficacement :
 - On doit distribuer le stockage et le calcul (ex : Hadoop, Spark).
 - Il faut des architectures scalables

Définitions

Calculs distribués

Désigne un modèle d'exécution dans lequel une tâche informatique est répartie entre plusieurs ordinateurs (nœuds) qui collaborent pour résoudre un problème commun.

Apach Spark

Moteur de traitement distribué open-source pour le traitement rapide de grands volumes de données. Il repose sur le paradigme de calcul en mémoire (in-memory computing), ce qui lui permet d'être plus rapide que les systèmes traditionnels comme Hadoop MapReduce, notamment pour les tâches itératives comme en machine learning.

Choix du prestataire Cloud

Amazon Web Service (AWS):

- Prestataire le plus connu, offre la plus large en cloud computing
- Location de la puissance de calcul à la demande
- Adaptable à notre volume de données croissant (scalable)
- Diminution des coûts par rapport à une location de serveur complet sur une durée fixe

Configuration de l'environnement

- Choix du service de calcul EMR
 - Solution de type Plateforme As A Service (PAAS)
 - Location d'instances EC2 avec applications pré-installées
 - Intégration native avec S3
 - Facilité de gestion
- Choix du service de stockage S3
 - Stockage illimité et élastique
 - Séparation du stockage et du calcul
 - Accès rapide et simple aux données
 - Coût optimisé
- Service IAM (Identity and Access Management):
 Gère de manière sécurisée les identités, les rôles et les permissions pour contrôler qui peut accéder à quelles ressources AWS et avec quels droits.

Mon bucket S3 "p9-data-maodo"

Figure – Applications et groupes d'instances

Figure – Actions d'amorçage - Bootstrap

Figure – Paramètres logiciel

```
Rôle Identity and Access Management (IAM) - requis

Fonction du service
EMR_DefaultRole [2]

Profil d'instance
EMR_EC2_DefaultRole [2]
```

Figure – rôles IAM

Figure - clés EC2 SSH

Figure - Connexion à l'EMR

Figure – Paramétrage de FoxyProxy

Sommaire

- Problématique et jeu de données
 - Problématique
 - Jeu de données
- Processus de création de l'environnement Big Data
- Chaîne de traitement d'image
- Démonstration sur le cloud
- Conclusion

JupyterHub

elles-ci nécessitent l'activation du tunneling SSH.	URL de l'interface utilisateur [1]
Septionnaire de ressources	Th http://ec2-51-44-218-161.co-west-3.compute.amazonaws.com/8088/
hpyterHub	To https://ec2-51-44-218-161.eu-west-3.compute.amazonaws.com/9443/
Livy	To http://ec2-51-44-219-161.eu-west-3.compute.amazonaws.com/8998/
Som du nœud HDFS	₱ http://ec2-51-44-218-161.eu-west-3.compute.amazonaws.com/9870/
Serveur d'historique Spark	To http://ec2-51-44-218-161.eu-west-3.compute.amazonaws.com/19090/
	Sign in
	Sign in
	Username:
	Username: ovyen
	Username: Joyan Password:
	Username: ovyen

Interfaces utilisateur d'application sur le nœud primaire

Figure – Accès à Jupyterhub

■ Applications + closer_bited_fru X
○ Home Page - Select or condex X
■ K2 | eurospi 1
X
■ pf claim recolor - Comparison X
+

Jupyterhub

Files Running Clusters
Steles Steles to perform actions on them.

☐ # 75 Nebbook Linux EMR, PySpeek VII Cycled Synb

listed New V

Chargement des images

Figure – Chargement des images

Figure – extraction des labels

·-----

Extraction de features et PCA

- Redimensionnement et prétraitement des images
- MobileNetV2 : CNN pré-entraîné sur la base ImageNet pour la détection de features et la classification d'images
- Transfer Learning : MobileNetV2 pré-entraîné (rapide, faible dimensionnalité sortie)
- Chargement du modèle sur le driver et diffusion des poids sur les workers(broadcast)
- Réduction de dimension : PCA
- Stockage des résultats au format parquet dans le bucket s3

Résultats

Figure – Extraction features

Figure – Features ACP

Historique Spark

Sommaire

- - Problématique
 - Jeu de données
- Chaîne de traitement d'image
- Démonstration sur le cloud

Sommaire

- Problématique et jeu de données
 - Problématique
 - Jeu de données
- Processus de création de l'environnement Big Data
- Chaîne de traitement d'image
- Démonstration sur le cloud
- Conclusion

Conclusion

- Mise en place d'une chaîne complète de traitement d'images dans un environnement Big Data sur AWS
- Utilisation de :
 - Amazon S3 pour le stockage illimité et accessible
 - Amazon EMR pour le calcul distribué avec Apache Spark
 - JupyterHub pour le développement et le pilotage des notebooks
- Intégration d'un modèle pré-entraîné (MobileNetV2) pour l'extraction des features
- Réduction de dimension par PCA et stockage des résultats au format Parquet dans S3
- Architecture conçue pour être scalable et évolutive
- Base technique solide pour un futur moteur de reconnaissance de fruits

MERCI BEAUCOUP!