LECTURE 8 FUZZY C-MEANS K HIERA RCHICAL CLUSTERING 41/41/2024

FUZZY C-HEANS

z'-s cluster number of point i m' = (0,0,1,...)

zi position

Me E R → Fuzzy C-means E mi = 1

$$L(\mu): \sum_{k=1}^{k} \sum_{i=1}^{k} (\mu_{i}^{i})^{m} \|x^{i} - C^{e}\|^{2}$$

Fuzzy C. means

usually m=2

Fuzzy c-means algorithm

- normalized to 1 = \(\mu \mu_i = 1 \)
- © compute the centers for our clusters

 confute the centers for our clusters

 E (m'e) "

 X (m'e) "
- 3 Update of ui

$$\mu_{R}^{i} = \frac{1}{\sum_{n=1}^{K} \left(\frac{\|X^{i} - C^{n}\|}{\|X^{i} - C^{n}\|} \right)^{2/m-1}}$$

(4) max mi, < 5 change to gnall number no.001

$$\mu_{R}^{i} = \frac{\frac{1}{x^{i} - c^{n} 11}}{\frac{1}{x^{i} - c^{n} 11}}^{2/2}$$

$$-x^{i}:(0.1,0.5,0.3)$$

$$x^{i}$$
: (0.5, 0.2, 6.1)

$$\cdot c^4 = (0.5, 0.3, 0.2)$$

$$\frac{\left(\frac{1|x^{i}-c^{i}|}{||x^{i}-c^{i}||}\right)^{2}+\left(\frac{\left(|x^{i}-c^{i}||}{||x^{i}-c^{i}||}\right)^{2}}{\left(\frac{1|x^{i}-c^{i}|}{||x^{i}-c^{i}||}\right)^{2}}$$

Lo Manifold learning Som. Red. Dim. L> Density estimation { KDE L) Clustering (Fuzzy c-new)
Hierarchical

Hierarchical Clustering

Divisive Clustering

all our points a single cluster and divide until each data point belongs to a different duster DIANA

Agglomeratine Clustering

· Start considering each deta point a cluster and you stop once all the data points belong to the same cluster

2 -1 possible divisions

- Agglomerative clustering algorithm

 (1) Compute the distance matrix between all your clusters
 - 2 Repeat:

2.00) Merge the two closes & chisters

- 2. b) Upolate the distance matrix
- 3) Finish when all the points belong to a single cluster

Complete Linkage

daß = max [dij; ieA, jeB]

Advantages:

→ noise unsensitive

→ It tends to generate

balanced clusters

Disad von tages:

structure

· Group-Arerage linkage

dAB =

| A | | E | | E |

| IA| | B| | JEB | c | = number of points

· Centroid linkage

distance between centoids _ dAB = 1 (CA - CB)

word's method

Adv: Not sensitive to noise Tends to generate balanced clusters

Disadrantage: Biased towards convex clusters

It can be thought as hierarch: al version of K-means

Noise ? F Ward's method Use the fested method DIANA 2^{N-1}-1 possible partitions Distance Malrix Dissimilarities

1) Compute the average distance from each element to the others

c 6.75

b 6.0

c 5.0

d 6.5

e 6.25

a	6.75	(2	.) Choose	the cle	ment with
Ь	b.D		highest	are rage	distance new cluste
C	5.0		tonuck	eate a	new cluste
d	6.5				
e	6.25				
3		AN	ÄΨ		P - AN
	Ь	2	7.33	5.33	
	C	6	4.66	-1.33	
	d	10	5.33	-4.63	
	e	9	5.33	-3.67	
(4)			lements of the		positive u ter
	{ a	b, b)	{ c, d, e)	
(5) Repeat steps (3) and (4) lutil no positive Δ is found					
	_		A P	٨	
		•	۷.۶	- [
	<u> </u>		3.5	ک-	
	e 8	.5	4.0 -	-4.5	
		10	, b } {c	del	
(a		2 ,b	, , , (-	,	
c d e	1-6	يركم,و			

- 6 Consider the cluster with highest pair dissimilarity for the next partition (Repeat points 2,3,4 & 5 in this cluster)
- F) Stop when each data point belongs to a different cluster

Clustering -> k-means

-> Thezy c-means

-> Hierarchical clustering
-> Asslomerative (SL, Ward's)

- DINJING (DIANA)