G. Jolly Jumpers

Given an array a containing $0 < n \le 3000$ integers. Check if $|a_i - a_{i+1}|$ takes on all values between 1 and n-1.

Solution

- Store (count) all values $|a_i a_{i+1}|$ $(1 \le i \le n-1)$ into a map structure. Then, you check for all keys between 1 and n-1 if they are non-empty. If there is an empty key, then it means that the sequence is not a jolly jumper.
- This can be achieved by either using std::vector or std::map since $n \leq 3000$.

```
if n <= 1 then
    print JOLLY and return
for i = 1 to n-1 do
    diff = abs(a[i]-a[i+1]) // Note: diff can be greater than n-1!!
    cnt[diff] += 1
for d = 1 to n-1 do
    if cnt[d] <= 0 then
        print NOT JOLLY and return
print JOLLY</pre>
```

• Time Complexity: O(n).

H. Good Sequence

A sequence b is a good sequence if: For each element x in b, x has to occur exactly x times in b. Given an array a containing N integers, find the minimum number of elements that need to be removed in order to make a a good sequence.

Solution

- If an element x occurs less than x times in a, we cannot add more x's in there. Then, the best move is to remove all occurrences of x.
- If an element x occurs y times such that $y \ge x$. Then, we should remove y x occurrences.
- Let cnt_x be the number of x's in a. If $cnt_x < x$ then $ans := ans + cnt_x$. Otherwise, $ans := ans + (cnt_x x)$.

```
for x = 1 to 1e9 do // Note: TLE => How can you optimize this?
  if cnt[x] < x then ans += cnt[x]
  else then ans += (cnt[x]-x)
print ans and return</pre>
```

• Time Complexity: O(n)

I. Two Sets

Divide all the numbers 1, 2, 3, ..., n into two sets of equal sum or state that it is impossible.

Solution

- If the sum of all elements is odd, then it is obviously IMPOSSIBLE. Recall that the sum can be computed using the formula $S_n = \frac{n(n+1)}{2}$
- Suppose we divide the numbers into two sets set_1 and set_2 respectively. The sum of all the elements in set_1 is equal to set_2 , which is also equal to $\frac{S_n}{2}$. Then, if we could construct the first set set_1 such that the sum of its elements is equal to $\frac{S_n}{2}$, then the remaining elements in the original sequence can be used to construct the set_2 .
- We can start by adding elements one-by-one into set_1 , starting with the largest elements first, while keeping track of the sum sum_1 . Consider an element x in the original set, if $sum_1 + x > \frac{S_n}{2}$, then we add x to set_2 . Otherwise, we add x to set_1 . If at any point $sum_1 = \frac{S_n}{2}$, we stop. The rest of the elements are added then to set_2 .

```
total_sum = n*(n+1)/2
if total_sum is odd then
    print NO and return
half_sum = total_sum / 2
for x = N to 1 do
    if current_sum + x <= half_sum then
        add x to set_1
    else then
        add x to set_2</pre>
```

• Time Complexity: O(n)

Extra. If you start by adding elements from 1 to n instead of the other way around, you would notice that the solution no longer works. Can you prove why this is the case?