Design and Analysis of Algorithms

L28: Optimal Binary Search Dynamic Programming

Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 1: Levitin
 - Sec <u>8.3</u>
- RI: Introduction to Algorithms
 - Cormen et al.

Binary Search

- Binary search tree
 - Key value of left child is smaller than parent
 - Key value of right child is greater than the parent
- Balanced binary search tree- Height: O(log n)
 - Red Black tree faster insertion and deletion
 - Root is always black
 - Both children of Red node are black
 - Any path from any node to leaf descendant contains same number of **black** nodes.
 - For any node, height of one subtree is at most twice the height of other subtree
 - AVL (Adelson-Velskii and Landis)Tree: faster search
 - Difference of height of two subtree is at most 1
- For a random binary search tree, height is O(log n)
 - Worst case height can be O(n)

Optimal Binary Search Tree

• Use case 1:

- You need to translate a english document containing (n words) to Kannada.
- You have a dictionary providing kannada translation for each english word.
- Translation process:
 - Consider each word of english document, search in the english-kannada dictionary and use the same
 - Using a generic balanced binary search tree, average translation would take $O(n.log_2n)$ time.
- If we know the frequency of occurrence of each word in english document, can we do better?
 - How to optimally organize binary search tree?

Optimal Binary Search Tree

- Use case 2:
 - As an e-tailor, you are selling phones.
 - Total n types of brands/models etc.
 - Different customer will choose different brand/ models
 - You organize the product details (price etc) in a binary search tree.
 - In general, each search (n.log₂n) takes time.
 - If we know the purchase frequency of each brand/ model, can we improve upon the search time
 - How to optimally organize binary search tree?
- Objective: organize binary search tree in such a way to reduce average look up time.

Binary Search Tree

- Given n nodes, how many possible binary trees
 - Catalan number $C(n):2nC_n/(n+1)$

$$-C(2) = 4C_2/3 = 6/3 = 2$$

$$-C(3) = 6C_3/4 = 20/4 = 5$$

$$-C(4) = 8C_4/5 = 70/5 = 14$$

Binary Search Tree: 4 nodes...

DAA/Dynamic Programming

RPR/

Binary Search Tree: 4 nodes

Optimal Binary Search Tree

- Problem:
 - Given n keys $a_1 \le a_2 \le ... \le a_n$, with
 - Probabilities of occurrences p₁, p₂, ..., p_n
 - Find a Binary Search Tree (BST) with
 - Minimum average number of comparisons in successful search
- Brute force methods
 - Total number of BST: $C(n) = 2nC_n/(n+1)$ = $\Omega(4n/n^{1.5})$
 - Requires exponential number of searches
 - An impractical approach

Example: BSTs

- Consider 4 keys A, B, C, D with their probabilities as $-p_A=0.1$, $p_B=0.2$, $p_C=0.4$ and $p_D=0.3$
- Compute the average number of comparisons for BSTs given below

• Average number of comparisons = 0.1*3+0.2*2+0.4*1+0.3*2 = 1.7

• Average number of comparisons = 0.1*2+0.2*3+0.4*1+0.3*2 = 1.8

Finding Optimal BST

- For 4 nodes, possible BSTs: 14
 - Finding the optimal BST requires evalutaion of 14 trees
 - When probability values changes, need recomputation to find a new BST
 - With inreasing n, it becomes challenging
 - Requires exponential computing.
- Use of dynamic programming helps solve this issue in polynomial time.

Optimal BST: DP Approach

- Given n keys: $a_1 \le a_2 \le ... \le a_n$, with
 - Respective prob. of occurrences $p_1, p_2, ..., p_n$
- Let T_i^j is a tree consisting of keys $a_i \le a_{i+1} \le ... \le a_j$,
 - i, j are some integer indices $1 \le i \le j \le n$.
- Let C(i,j) denote the smallest number of average comparisons in a successful search for BST T_i^j .
- Thus, desired answer for our n keys would be C(1,n)
- Dynamic Programming approach:
 - Find smaller instances corresponding to C(i, j)
 - With the aim to solve C(1, n)

Optimal BST: DP Approach

- Solving C(i,j) for T_i^j , $a_i \le a_{i+1} \le ... \le a_j$, $1 \le i \le j \le n$
- Derive a recurrence for C(i, j).
 - Need to find the root a_k ($i \le k \le j$) for T_i^j ,
 - Consider all possible ways of choosing root a_k
 - a_k could be any node between a_i and a_j
 - To find an optimal BST with root a_k ,
 - Use principle of optimality
 - Left subtree will have keys $a_i \le ... \le a_{k-1}$ arranged optimally
 - Right subtree will have keys $a_{k+1} \le ... \le a_j$ arranged optimally.

- Trees T_i^{k-1} , and T_{k+1}^{j} , are 1 level below the root node a_k .
- Comparison with a_k require 1 operation, comparions of keys in two subtrees need to count this operation of comparison at root a_k

Recurrence for BST using DP

$$C(i,j) = \min_{i \le k \le j} \left\{ p_{k}.1 + \sum_{s=i}^{k-1} p_{s}.(level of \ a_{s} \in T_{i}^{k-1} + 1) + \sum_{s=k+1}^{j} p_{s}.(level of \ a_{s} \in T_{k+1}^{j} + 1) \right\}$$

$$= \min_{i \le k \le j} \left\{ p_{k} + \sum_{s=i}^{k-1} p_{s}.level \ of \ a_{s} \in T_{i}^{k-1} + \sum_{s=i}^{k-1} p_{s} + \sum_{s=k+1}^{j} p_{s}.level \ of \ a_{s} \in T_{k+1}^{j} + \sum_{s=k+1}^{j} p_{s} \right\}$$

$$= \min_{i \le k \le j} \left\{ \sum_{s=1}^{k-1} p_{s} + p_{k} + \sum_{s=k+1}^{j} p_{s} + \sum_{s=i}^{k-1} p_{s}.level \ of \ a_{s} \in T_{i}^{k-1} + \sum_{s=k+1}^{j} p_{s}.level \ of \ a_{s} \in T_{k+1}^{j} \right\}$$

$$= \min_{i \le k \le j} \left\{ \sum_{s=i}^{j} p_{s} + \sum_{s=i}^{k-1} p_{s}.level \ of \ a_{s} \in T_{i}^{k-1} + \sum_{s=k+1}^{j} p_{s}.level \ of \ a_{s} \in T_{k+1}^{j} \right\}$$

$$= \sum_{s=i}^{j} p_{s} + \min_{i \le k \le j} \left\{ C(i, k-1) + C(k+1, j) \right\}$$

$$(1)$$

DAA/Dynamic Programming

$$C(i,j) = \sum_{s=i}^{j} p_s + \min_{i \le k \le j} \left\{ C(i,k-1) + C(k+1,j) \right\}$$
 (1)

- Recurrence for BST using DP:
 - -C(i,i-1)=0 (number of comparisons in empty tree)
 - C (i,i) = $p_i*1=p_i$ since tree has only one key a_i
- Example: computation for C(2,4) using eqn (1)

```
C(2,4) = \Sigma_{2 \le s \le 4} p_s + \min\{C(2,1) + C(3,4), \\ C(2,2) + C(4,4), \\ C(2,3) + C(5,4)\}= \Sigma_{2 \le s \le 4} p_s + \min\{0 + C(3,4), p2 + p4, C(2,3) + 0\}
```

```
C(2,4) = \sum_{2 \le s \le 4} p_s + \min\{C(2,1) + C(3,4),
                               C(2,2)+C(4,4)
                                C(2,3)+C(5,4)
       =\Sigma_{2\leq s\leq 4} p_s+\min\{0+C(3,4), p2+p4, C(2,3)+0\}
           p_2 : C(2,3)  C(2,4)
           p_3 : C(3,4):
                           0 : p_4
                                 0
                                            RPR/
DAA/Dynamię Programming
```

$$C(i,j) = \sum_{s=i}^{j} p_s + \min_{i \le k \le j} \left\{ C(i,k-1) + C(k+1,j) \right\}$$
 (1)

• Contribution for C(i, j) is from

$$C(i, j-1) + C(j+1, j)$$

- Consider 4 keys: A(1), B(2), C(3), D(4) with their prob. as $-p_A=0.1$, $p_B=0.2$, $p_C=0.4$, $p_D=0.3$, $C(1,4) = \sum_{s=1}^{4} p_s + \min_{1 \le k \le 4} \left\{ C(1,k-1) + C(k+1,4) \right\}$
- Note: 0=C(1,0)=C(2,1)+C(3,2)=C(4,3)=C(5,4)

Table: Computation of C(i, j)1 : 0 : 0.1:

Table: Optimal k for C(i, j)

	0	1	2	3	4
1		1			
2			2		
3				3	
4					4
5					

```
 \begin{array}{l} \texttt{C}(1,2) = & \Sigma_{1 \leq s \leq 2} \texttt{p}_s + \texttt{min}\{\texttt{C}(1,0) + \texttt{C}(2,2) \,, \texttt{C}(1,1) + \texttt{C}(3,2) \,\} \\ = & 0.3 + \texttt{min}\{0 + 0.2 \,, 0.1 + 0) = 0.4 \,, \texttt{optimal} \  \, \texttt{k} = 2 \\ \texttt{C}(2,3) = & \Sigma_{2 \leq s \leq 3} \texttt{p}_s + \texttt{min}\{\texttt{C}(2,1) + \texttt{C}(3,3) \,, \texttt{C}(2,2) + \texttt{C}(4,3) \,\} \\ = & 0.6 + \texttt{min}\{0 + 0.4 \,, 0.2 + 0) = 0.8 \,, \texttt{optimal} \  \, \texttt{k} = 3 \\ \texttt{C}(3,4) = & \Sigma_{3 \leq s \leq 4} \texttt{p}_s + \texttt{min}\{\texttt{C}(3,2) + \texttt{C}(4,4) \,, \texttt{C}(3,3) + \texttt{C}(5,4) \,\} \\ = & 0.7 + \texttt{min}\{0 + 0.3 \,, 0.4 + 0) = 1.0 \,, \texttt{optimal} \  \, \texttt{k} = 3 \\ \end{array}
```

Table: Computation of C(i, j)

DAA/Dynamic Programming

Table: Optimal k for C(i, j)

	0	1	2	3	4
1		1	2		
2			2	3	
3				3	3
4					4
5					

RPR/

```
C(1,3) = \sum_{1 \le s \le 3} p_s + \min\{C(1,0) + C(2,3), \\ C(1,1) + C(3,3), C(1,2) + C(4,3) \\ = 0.7 + \min\{0 + 0.8, 0.1 + 0.4, 0.4 + 0\} = 1.1, \text{ opt } k = 3
C(2,4) = \sum_{2 \le s \le 4} p_s + \min\{C(2,1) + C(3,4), \\ C(2,2) + C(4,4), C(2,3) + C(5,4)\} \\ = 0.9 + \min\{0 + 1.0, 0.2 + 0.3, 0.8 + 0\} = 1.4, \text{ opt } k = 3
```

Table: Computation of C(i, j)

	0	1	2	3	4	•
1	0	0.1	0.4	1.1		
2		0	0.2	0.8	1.4	•
3			0	0.4	1.0	••
4				0	0.3	•
5					0	•

DAA/Dynamic Programming

Table: Optimal k for C(i, j)

	0	1	2	3	4
1		1	2	3	
2			2	3	3
3				3	3
4					4
5					

```
C(1,4) = \sum_{1 \le s \le 4} p_s + \min\{C(1,0) + C(2,4), \\ C(1,1) + C(3,4), \\ C(1,2) + C(4,4), \\ C(1,3) + C(5,4)\}= 1.0 + \min\{0 + 1.4, 0.1 + 1.0, 0.4 + 0.3, 1.1 + 0)= 1.7, \text{ optimal } k = 3
```

Ţ	able: C	omputa 1	ation of		- —	•
1	0	0.1	0.4	1.1	1.7	•
2		0	0.2	0.8	1.4	•
3			0	0.4	1.0	•
4				0	0.3	•
5					0	•

Table: Optima	k for	C(i,	j)
---------------	-------	------	----

	0	1	2	3	4
1		1	2	3	3
2			2	3	3
3				3	3
4					4
5					

Ex: Optimal BST Construction

Ta	ble: Co	omputat	ion of	,		Table:	Optin	nal k f	or C (i,j)		
• • • • •	0	1		_	4			0	1	2	3	4
1	_	0.1	0.4	1.1	1.7		1		1	2	3	3
2		0	0.2	0.8	1.4		2			2	3	3
3			0	0.4	1.0		3				3	3
4			••••••	0	0.3		4					4
5			••••••	• • • • • •	0	R(1,	4)=3=0		Ro	ot Tre	ee	
R(1,2)=2=B $R(4,4)=4=D$ B D												
	$ \begin{array}{c} $											

Algorithm

ALGORITHM OptimalBST(P[1..n])

```
//Finds an optimal binary search tree by dynamic programming
//Input: An array P[1..n] of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
            optimal BST and table R of subtrees' roots in the optimal BST
for i \leftarrow 1 to n do
     C[i, i-1] \leftarrow 0
     C[i,i] \leftarrow P[i]
     R[i, i] \leftarrow i
C[n+1, n] \leftarrow 0
for d \leftarrow 1 to n-1 do //diagonal count
     for i \leftarrow 1 to n - d do
          i \leftarrow i + d
          minval \leftarrow \infty
          for k \leftarrow i to j do
               if C[i, k-1] + C[k+1, j] < minval
                    minval \leftarrow C[i, k-1] + C[k+1, j]; kmin \leftarrow k
          R[i, j] \leftarrow kmin
          sum \leftarrow P[i]; for s \leftarrow i + 1 to j do sum \leftarrow sum + P[s]
          C[i, j] \leftarrow minval + sum
return C[1, n], R
```

Time Efficiency: Optimal BST

- From general analysis of algo,
 - 3 nested loops, each running n times
- Thus time efficiency: (n³)
 - Space Efficiency: (n²)
- Time Efficiency: Accounting time smartly.
 - Entries in root (2nd) table are always non-decreasing
 - Along each row and column
 - Value of root table entry R[i,j] is limited to the range R[i,j-1],..., R[i+1,j]
 - This reduces the time complexity to $O(n^2)$

Summary

- Binary search tree
- Optimal binary search tree
- Dynamic programming for BST
- Algo: DP for BST
- Evaluation of C(i, j) and Tree construction