

Inteligência Artificial

Busca: Resolução de problemas por meio de busca

Prof. Dr^a. Andreza Sartori <u>asartori@furb.br</u>

Documentos Consultados/Recomendados

- KLEIN, Dan; ABBEEL, Pieter. Intro to AI. UC Berkeley. Disponível em: http://ai.berkeley.edu
- LIMA, Edirlei Soares. Inteligência Artificial. PUC-Rio, 2015.
- RUSSELL, Stuart J. (Stuart Jonathan); NORVIG, Peter.
 Inteligência artificial. Rio de Janeiro: Campus, 2013.
 1021 p, il.
- VIERIU, Radu-Laurenţiu. Artificial Intelligence. Università degli Studi di Trento, 2016.

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas Baseados em Conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

Unidade 5: Tópicos Especiais

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas Baseados em Conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

Unidade 5: Tópicos Especiais

Conteúdo Programático

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

2.1. Resolução de Problemas por meio de busca

- 2.2. Busca Cega ou Exaustiva
- 2.3. Busca Heurística
- 2.4. Algoritmos Genéticos

Agentes Inteligentes

Observam o ambiente e agem de forma autônoma com o objetivo de maximizar sua medida de desempenho.

Tipos básicos de agentes

- Cinco tipos básicos, do mais simples ao mais geral
 - Agentes reativos simples
 - Agentes reativos baseados em modelos

- 3. Agentes baseados em objetivos
- 4. Agentes baseados na utilidade

Agentes com aprendizagem

Problema de Busca

Problema de Busca

- Objetivo: conjunto de estados do mundo em que o objetivo é satisfeito.
- Tarefa do agente: descobrir a sequência de ações o levará do estado atual até um estado objetivo.
 - Quais ações devem ser consideradas?
 - Quais estados devem ser considerados?

Problema de Busca

Busca

- Um agente com várias opções imediatas pode decidir o que fazer examinando diferentes sequências de ações possíveis e então escolher a melhor sequência.
- O processo de procurar pela melhor sequência de ações é chamado de busca.
- Encontrada a solução, o agente pode executar a sequência de ações para chegar no objetivo.

Formular objetivo → Buscar → Executar sequência de ações

Exemplo: Agente de Férias na Romênia

- Atualmente em Arad.
- Vôo sai amanhã de Bucareste.
- Formular objetivo:
 - Estar em Bucareste
- Formular problema:
 - Estados: cidades
 - Ações: dirigir de uma cidade para outra
- Encontrar solução:
 - Sequência de cidades
 - Exemplo: Arad → Sibiu → Fagaras → Bucareste.

Formular objetivo → Buscar → Executar sequência de ações

Definição do Problema

Definição do Problema

 É a primeira e mais importante etapa do processo de resolução de problemas de IA por meio de Buscas.

 Analisa o espaço de possibilidades de resolução do problema e encontra sequências de ações que levam a um objetivo desejado.

Definição de um Problema

- Estado Inicial: Estado inicial do agente.
 - Ex: Em(Arad)

- Estado Objetivo (Estado Final): Estado buscado pelo agente.
 - Ex: Em(Bucharest)
- Ações Possíveis (Função Sucessor): Conjunto de ações que o agente pode executar.
 - Ex: Ir(Cidade, PróximaCidade)
- Espaço de Estados: Conjunto de estados que podem ser atingidos a partir do estado inicial.
 - Ex: Mapa da Romênia.
- Custo de Caminho: Custo numérico de cada caminho.
 - Ex: Distância em KM entre as cidades.

Solução para um Problema

- A solução para um problema é um caminho desde o estado inicial até o estado objetivo (estado final).
- A qualidade da solução é medida pela função de custo de caminho, isto é, a solução que tiver menor custo de caminho entre todas as soluções.

Considerações em Relação ao Ambiente

Observável:

• É necessário que o estado inicial do ambiente seja conhecido previamente.

Estático:

 O Ambiente não pode mudar enquanto o agente está realizando a resolução do problema.

Discreto:

Existe um conjunto finito de estados que ambiente pode assumir.

Determinístico:

 O próximo estado do agente deve ser determinado pelo estado atual + ação. A execução da ação não pode falhar.

Exemplo: O mundo do aspirador de pó

- Percepções: local (A ou B) e conteúdo (limpo ou sujo)
 - Exemplo: [A, sujo]
- Ações: Esquerda, Direita, Aspirar, NoOp

Exemplo: Aspirador de Pó

- Espaço de Estados: 8 estados possíveis (figura ao lado);
- Estado Inicial: Qualquer estado;
- Estado Objetivo (Estado Final):
 Estado 7 ou 8 (ambos quadrados limpos);
- Função Sucessor (Ações Possíveis):
 Mover para direita, mover para esquerda e limpar;
- Custo de caminho: Cada passo custa 1, assim o custo do caminho é definido pelo número de passos;

Exemplo: Aspirador de Pó

Exemplo: Quebra-Cabeça de 8 Peças

- Espaço de Estados: 181.440 possíveis estados
- Estado Inicial: Qualquer estado
- Estado Objetivo (Estado Final): Figura ao lado
- Ações Possíveis: Mover o quadrado vazio para direita, para esquerda, para cima ou para baixo
- Custo de Caminho: Cada passo tem o custo 1, assim o custo do caminho é definido pelo número de passos
- 15-puzzle (4x4) 1.3 trilhões estados possíveis.
- 24-puzzle (5x5) 10²⁵ estados possíveis.

Difícil de resolver de forma ótima com máquinas e algorítmos atuais.

Estado Inicial

Ações Possíveis

Estado Objetivo

Dan Klein and Pieter Abbeel ai.berkeley.edu

Exemplo: 8 Rainhas

- Posicionar 8 rainhas em um tabuleiro de xadrez de tal forma que nenhuma rainha ataque a outra.
- Uma rainha ataca qualquer peça situada:
 - Na mesma linha,
 - Na mesma coluna,
 - Na diagonal.

Dan Klein and Pieter Abbeel ai.berkeley.edu

Exemplo: 8 Rainhas (Formulação Incremental)

- Espaço de Estados: Qualquer disposição de 0 a 8 rainhas no tabuleiro
 - $(64x63x...57 = 3x10^{14} \text{ possíveis estados});$
- Estado Inicial: Nenhuma rainha no tabuleiro;
- Estado Objetivo (Estado Final): Qualquer estado onde as 8 rainhas estão no tabuleiro e nenhuma está sendo atacada;
- Ações Possíveis: Colocar uma rainha em um quadrado vazio do tabuleiro;
- Custo de Caminho: N\u00e3o importa nesse caso. Apenas o estado final \u00e9 importante.

LIMA, Edirlei S. Inteligência Artificial. PUC-Rio, 2015.

Exemplo: 8 Rainhas (Estados Completos)

- **Espaço de Estados:** Tabuleiro com *n* rainhas, uma por coluna, nas *n* colunas mais a esquerda sem que nenhuma rainha ataque outra.
 - 2057 possíveis estados.
- Estado Inicial: Todas as rainhas no tabuleiro;
- Estado Objetivo (Estado Final): Qualquer estado onde as 8 rainhas estão no tabuleiro e nenhuma esta sendo atacada;
- Ações Possíveis: Adicionar uma rainha em qualquer casa na coluna vazia mais à esquerda de forma que não possa ser atacada;
- Custo de Caminho: Não importa nesse caso.
 Apenas o estado final é importante.

LIMA, Edirlei S. Inteligência Artificial. PUC-Rio. 2015.

Aplicações em Problemas do Mundo Real

Cálculo de Rotas:

- Encontrar a melhor rota de um ponto a outro
 - Planejamento de rotas de aviões;
 - Sistemas de planejamento de viagens;
 - Caixeiro viajante;
 - visitar cada cidade exatamente uma vez
 - encontrar o caminho mais curto
 - Rotas em redes de computadores;
 - Jogos de computadores (rotas dos personagens).

Aplicações em Problemas do Mundo Real

Circuitos Eletrônicos:

- Posicionamento de componentes;
- Rotas de circuitos.

Robótica:

- Navegação e busca de rotas em ambientes reais;
- Montagem de objetos por robôs.

Ok, formulamos alguns problemas, mas como resolvê-los?

Como Resolver?

- Quando temos o problema bem formulado, o estado final (objetivo) deve ser "buscado" no espaço de estados.
- Busca é representada em uma árvore de busca, onde:
 - Raiz: corresponde ao estado inicial;
 - Expande-se o estado atual, gerando um novo conjunto de estados;
 - Escolhe-se o próximo estado a expandir seguindo uma estratégia de busca;
 - Prossegue-se até chegar ao estado final (solução)
 - Se falhar na busca pela solução, volta e escolhe outras opções, então, testa e expande até ser encontrada uma solução ou até não existirem estados a serem expandidos.

Busca de Soluções

Exemplo: Ir de Arad para Bucharest

A escolha de qual estado espandir é determinada pela estratégia de busca.

Busca de Soluções

A <u>árvore de buscas</u> é diferente do <u>espaço de estados</u>.

Exemplo:

- Há 20 estados no espaço de estados no mapa da Romênia.
 - Um para cada cidade.
- Porém há um número infinito de caminhos.
- Portanto, a Árvore de Busca tem infinitos nós;
- Caminho infinito:
 - Arad-Sibiu; Arad-Sibiu-Arad-...

Medida de Desempenho do Algoritmo de Busca

- Uma estratégia de busca é definida pela escolha da ordem da expansão de nós
- Estratégias são avaliadas de acordo com os seguintes critérios:
 - Completeza: o algoritmo sempre encontra a solução se ela existe?
 - Otimização (Custo de Caminho): a estratégia encontra a solução ótima? - Qualidade da solução
 - Complexidade de Tempo (Custo de Busca): quanto tempo ele leva para encontrar a solução? - Número de nós gerados
 - Complexidade de Espaço (Custo de Busca): quanta memória é necessária para executar a busca? - Número máximo de nós na memória.

Custo Total

Custo do Caminho + Custo de Busca.

Métodos de Busca

Busca Cega ou Exaustiva:

 Não tem nenhuma informação adicional sobre os estados, isto é, não sabe qual o melhor nó da fronteira a ser expandido. Apenas distingue o estado objetivo dos não objetivos.

Busca Heurística:

 Ou busca com informação, estima qual o melhor nó da fronteira a ser expandido baseado em funções heurísticas.

Algorítmos Genéticos:

 Variante de Busca Local em que é mantida uma grande população de estados. Novos estados são gerados por mutação e por crossover, que combina pares de estados da população.