Combinatorial Auctions and Rail Track Scheduling Ralf Borndörfer

Hanoi Spring School on

Mathematical Optimization and Public
Transportation
February 29, 2012

Ralf Borndörfer

- DFG-Forschungszentrum MATHEON "Mathematics for key technologies"
- Zuse Institute Berlin (ZIB)

Outline

- Auctions
- Rail Track Scheduling
- Rail Track Auctioning
- The Optimal Track Allocation Problem
- Experiments

Auctions

Commodities/Bids

- Independent commodities (classical autcion)/ commodity bundles (combinatorial auction)
- Combinatorial bids (and/or/xor)

Bidders

- Cooperation forbidden/ cooperation allowed
- Payment
 - First price/second price (Vickrey) auction

Information

- Private Values/Common Values (winner's curse)
- Sealed Bid/Open Bid

Mechanism

- English auction/dutch auction
- Increment/number of rounds
- Activity rules/taking bids back
- Direct bidding/clock/proxy auction

Examples

In ancient times ...

- Auctions are known since 500 b.c.
- March 28, 193 a.d.: The pretorians auction the Roman Emperor's throne to Marcus Didius Severus Iulianus, who ruled as Iulianus I. for 66 days

The Story of Didius Iulianus

(http://www.roman-emperors.org/didjul.htm)

[193 A.D., March 28] When the emperor **Pertinax** was killed trying to quell a mutiny, no accepted successor was at hand. **Pertinax's** father-in-law and urban prefect, Flavius Sulpicianus, entered the praetorian camp and tried to get the troops to proclaim him emperor, but he met with little enthusiasm. Other soldiers scoured the city seeking an alternative, but most senators shut themselves in their homes to wait out the crisis. **Didius Julianus**, however, allowed himself to be taken to the camp, where one of the most notorious events in Roman history was about to take place. **Didius Julianus** was prevented from entering the camp, but he began to make promises to the soldiers from outside the wall. Soon the scene became that of an auction, with Flavius Sulpicianus and **Didius Julianus** outbidding each other in the size of their donatives to the troops. The Roman empire was for sale to the highest bidder. When Flavius Sulpicianus reached the figure of 20,000 sesterces per soldier, **Didius Julianus** upped the bid by a whopping 5,000 sesterces, displaying his outstretched hand to indicate the amount. The empire was sold, **Didius Julianus** was allowed into the camp and proclaimed emperor.

Ralf Borndörfer

Examples

In ancient times ...

- Auctions are known since 500 b.c.
- March 28, 193 a.d.: The pretorians auction the Roman Emperor's throne to Marcus Didius Severus Iulianus, who ruled as Iulianus I. for 66 days

In modern times ...

- Traditional auctions (antiques, flowers, stamps, etc.)
- Stock market
- eBay etc.
- Oil drilling rights, energy spot market, etc.
- Procurement
- Sears, Roebuck & Co.
- Frequency auctions in mobile telecommunication
- Regional monopolies (franchising) at British Rail

Arguments for Auctions

Auctions can ...

- resolve user conflicts in such a way that the bidder with the highest willigness to pay receives the commodity (efficient allocation, wellfare maximization)
- maximize the auctioneer's earnings
- reveal the bidders' willigness to pay
- reveal bottlenecks and the added value if they are removed

Economists argue ...

 that a "working auctioning system" is usually superior to alternative methods such as bargaining, fixed prices, etc.

Sears, Roebuck & Co.

- 3-year contracts for transports on dedicated routes
- First auction in 1994 with 854 contracts
- Combinatorial auction
 - "And-" and "or-" bids allowed
 - 2^{854} ($\approx 10^{257}$) theoretically possible combinations
 - Sequential auction (5 rounds, 1 month between rounds)

Results

- 13% cost reduction
- Extension to 1.400 contracts (14% cost reduction)

Frequency Auctions

(Cramton 2001, Spectrum Auctions, Handbook of Telecommunications Economics)

- Prices for mobile telecommunication frequencies (2x10 MHz+5MHz)
- Low earnings are not per se inefficient
- Only min. prices => insufficient cost recovery

Basic Auctions

Revenue Equivalence Theorem (Vickrey):

- Risk neutral bidders i=1,..,n
- Private values v_i∈[l,u] i.i.d. with strictly monotonously increasing distribution function F(v) = P(v_i≤v)
- Every auction mechanism in which
 - the object is given to the bidder w.t. highest bid
 - a bidder with the lowest possible bid I expects no profit results in the same revenue.
- Bids $b(v) = v \int_{l}^{u} F^{n-1}(x) dx / F^{n-1}(v)$

Game Theory

- Game (N,S,a)
 - N={1,...,n} player
 - $S=\{(s_1,...,s_n)\}$ strategies
 - a:S \rightarrow Rⁿ payoff
- Non-cooperative games
 - Dominance
 - (Nash-)Equilibrium ŝ
 a(ŝ₁,..,s_i,..,ŝ_n)≤a(ŝ₁,.., ŝ_n) ∀i
 (i.g. no existence/uniqueness)
 - Matrix games: saddle point, minimax

- Theorem (Nash): Every finite non-cooperative n-person game has at least one equilibrium of mixed strategies.
- Theorem (Nikaido, Isoda):
 Generalization to auction
 frameworks.
- Cooperative games
 - Imputation (payoff to coalition)
 - Concepts such as core, stable set, bargaining set, kernel, nucleolus, etc.

Combinatorial Auction

- Combinatorial Auction Problem (CAP)
 - M objects, N bidders, b^j(S) bid by j for S⊆M
 - y(S,j) 0/1-variable for giving S to j

$$\max \sum_{S \subseteq M} \sum_{j \in N} b^{j}(S) y(S, j)$$

$$\sum_{S \ni i} \sum_{j \in N} y(S, j) \leq 1 \quad \forall i \in M$$

$$y(S, j) \in \{0,1\} \quad \forall S \subseteq M, j \in N$$

- Set Packing Problem
- Auction framework

Simultaneous Ascending Auction

Rules

- Multiple heterogeneous objects
- Combinatorial auction, but only individual bids
- First price sealed bid
- N rounds, minimum increment
- Activity rule #objects
- Fee for taking back
- Empirical efficiency 67%
- High revenues, partly due to losses for bidders

Equilibrium

	A	В	AB
1	4	6	9
2	4	5	7
P	4	6	

Exposure problem

	A	В	AB
1	2	2	7
2	4	4	6
P	?	?	

Efficiency

$$\sum v_i(\overline{y}_i) / \sum v_i(y_i^*)$$

Simultaneous Ascending Auction

- Auction #1 (USA 1994)
 - 10 licenses
 - 3 national bandwidths
 - Paging/messaging services
 - ≤3 licenses/bidder
 - Increment 2%
 - 47 rounds (1 week)
 - 617 Mio. USD
 (50 Mio. USD expected)

- Auction #4 (USA 1994)
 - 99 licenses
 - 2 bandwidths, 51 MTAs
 - Mobile telephone services
 - Increment 5%
 - 112 rounds (3 months)
 - 7.000 Mio. USD

Adaptive User Selection Mechanism

Rules

- Several heterogeneous objects
- Combinatorial bids
- First price open bid
- Continuos bidding
- No activity rule
- Auctioneer determines end
- Empirical efficiency 94%
- Complexity with bidders, lower revenues than SAA

Threshold problem

	Α	В	AB
1	7	2	8
2	2	7	8
3	4	4	10
P	?	?	10

Proposal: Standbye Q

	A	В	AB
1	7	2	8
2	2	7	8
3	4	4	10
Р	6	?	10

Free rider problem

Vickrey Auction

(Nobel price in Economics 1996)

Combinatorial auction

$$E(N,b) := \max \sum_{S \subseteq M} \sum_{j \in N} b^{j}(S) y(S,j)$$
$$\sum_{S \ni i} \sum_{j \in N} y(S,j) \le 1 \quad \forall i \in M$$
$$y(S,j) \in \{0,1\} \quad \forall S \subseteq M, j \in N$$

- Mechanism
 - Bids $b_j = v_j$
 - Payments $z_{j} = E(N \setminus j, v) E(N, v) \mid N \setminus j$

Vickrey-Clarke-Groves-Mechanism

Combinatorial auction

$$E(N,b) := \max \sum_{S \subseteq M} \sum_{j \in N} b^{j}(S) y(S,j)$$
$$\sum_{S \ni i} \sum_{j \in N} y(S,j) \le 1 \quad \forall i \in M$$
$$y(S,j) \in \{0,1\} \quad \forall S \subseteq M, j \in N$$

- Private values v_i
- Mechanism
 - Bids $b_i = v_i$
 - Payments $z_j = E(N \mid j, v) E(N, v) \mid N \mid j$

Example

	A	В	AB
1	10	5	15
2	1	6	12
P	6	5	

Collusion

	A	В	С	ABC
1				2
2	1			
3		1		
4			1	
P	0	0	0	

Fraud by auctioneer

Proxy-Auction

- Combinatorial first price sealed bid auction
- Bids by proxy-agent (program)
- Theorem (Ausubel, Milgrom): A proxy-auction, interpreted as a cooperative game, terminates in the core.
- Theorem (Ausubel, Milgrom): A proxy-auction, interpreted as a non-cooperative games, terminates under certain conditions in a Nash-equilibrium, in particular, if a corresponding Vickrey-Clarke-Groves-auction terminates in a Nash-equilibrium.
- Combinations with other auctions, e.g., clock-proxy, to simplify programming of the agent.

Outline

- Auctions
- Rail Track Scheduling
- Rail Track Auctioning
- The Optimal Track Allocation Problem
- Experiments

Rail Track Scheduling

^{*}Besondere Daten, z. B. fahrdynamische Daten von Triebfahrzeugen, müssen 14 Tage vor der Trassenanmeldung abgegeben werden.

Neue Inhalte

Geschäfte mit der Bahn | Reisen | Logistik | Unternehmen

Startseite | Kontakt | Sitemap | FAQ | Hilfe

Suche

Starten

Geschäfte → Infrastruktur & Energie → Fahrweg → Trassen

⇒ Einkauf & Verkauf

- → Fahrzeuge Straße/Schiene
- → Immobilien
- → Infrastruktur & Energie
- → Energie

→ Trassen

- → Leistungen
- → Trassen Güterverkehr
- → Trassen Personenverkehr
- Trassenpreise
- → Trassenpreisauskunft
- → Besonderheiten & Fristen
- → Formulare

- → Internationale Verkehre
- → Baustelleninformationen
- → NetzNachrichten
- → Station
- → IT/TK Infrastruktur
- → Personaldienstleistungen
- → Weitere Serviceleistungen

Trassennutzung für den Personen- und Güterverkehr

Hier finden Sie detaillierte Angebote und Preisinformationen zur Nutzung von Trassen der DB Netz AG für den Personen- und Gütertransport. Die zusätzlich angebotene Software unterstützt Sie bei der Kalkulation der Preise für Ihre gewünschte Trasse.

Leistungen

Leistungsangebot der DB Netz AG zur Bereitstellung von Bahninfrastruktur

Aufgabe der DB Netz ist es leistungsfähige Eisenbahninfrastrukturen. sowie technische Anlagen und Einrichtungen marktgerecht zur Verfügung zu stellen. Das Leistungsangebot setzt sich aus den Produktfeldern Trassen, Anlagen und Infrastrukturanschlüsse zusammen.

mehr 🔁

Trassen Güterverkehr

Trassen für den Güterverkehr

Als Kunde im Güterverkehr haben Sie die Wahl zwischen mehreren. Produkten. Je nach Nutzung wird zwischen Güterverkehrs-Express-Trassen, Güterverkehr-Standard-Trassen, Güterverkehr-Zubringer-Trassen und Güterverkehrs-LZ-Trassen unterschieden.

mehr 🗪

Trassen Personenverkehr

Trassen für den Personenverkehr

Die Personenverkehrs-Trassen lassen sich in vier verschiedene Kategorien einteilen. Als Kunde haben Sie die Wahl zwischen Personenverkehrs-Express-Trassen, Personenverkehrs-Takt-Trassen, Personenverkehrs-Economy-Trassen und Personenverkehrs-LZ-Trassen.

mehr 🗪

Trassenpreise

Gültige Preise ab dem 12.12.2004 und 11.12.2005

Hier finden Sie das seit dem 12.12.2004 gültige und ab dem 11.12.2005 geltende Trassenpreissystem mit seinen Anlagen sowie Streckenkategoriekarten als PDF-Dateien zum Download.

Besonderheiten & Fristen

Grundsätzliches zur Trassen-Anmeldung

Bei der Anmeldung von Trassen gibt es Besonderheiten und Fristen, die Sie unbedingt beachten müssen. Alle Informationen zu diesem Thema finden Sie hier.

mehr 🔁

Formulare

Formulare als PDF-Download

Wenn Sie als Eisenbahnverkehrsunternehmen. Trassen anmelden möchten, müssen Sie für Ihre Anmeldung bestimmte Formulare verwenden. Diese Formulare nebst Erläuterung finden Sie hier.

mehr 🗪

rassenann	eldun	g 🗆 / 1	rassen	studie			hnung 🗖 / e ankreuzen)	Preis	anfrag	e □ /	Fahr	planan	passun	g 🗆
ür Güterzı	ıgtras	sen			,									
ugart Zugnum	mer	Nutzung	sdauer	beslehend	e Vergleichstr	rasse Ink	erne Bearbeitung:	s-D Kiin	de Kii	nden-Nr	4 [
unde, Bevollmäch	tigter laut	ABN	1	elefon		Fax	E-M	lail			4	Einga	ng der Anme	eldung
Sewünso	htes	Tras	senpi	rodul	ct									
Express-Tr	rasse		1—	andard-T	rasse temtrasse:		-	oringer-	Trasse	- 1			asse gehö	
/erkehrs	zeitra	aum												
Betrieblic	•	gattung chnis	•	szeitraum Angal	ben (Zu	 Zusatztage ugchai			usfalltage	 I	ı	Konst	ruktionsspiel	raum
		\dashv	_											
b Ort V max	Tíz	1 Ti	fz 2 5	Schiebel.	gekuppeit	Last	Bremsstellung	BrH	Länge	EBuLá	Besc	nderheiten	, LÜ, KLV, G	Gefahrgut
rassenz	eiten	ı												
			К	undena	nmeldun	g				$\neg \Gamma$	Kon	. 1	nsergeb I I	nisse 2
Ort	Gleis	Ank	Hat	Art	Abf	Vorgabenia	/ Änderungen der	Zugcha	rakteristik		Ank	Abf	Ank	Abf
				-	-					┦┞				_

22

EINSTEIN Foundation.de

Ralf Borndörfer

23	Fahrplar		Best	Bestellung EVU Angebr				Netz	11	
	Abk	Bahnhof	an	Min	ab	an	ab	Bemerkungen		
	9000		- Charles	halt					911 Jack	
						100				
		129 60 Min nach Ankunft 84079 in RLB					A COLUMN			
		Zwischen Lu BASF und Lu-Oggersheim			Service I				See Section	
		nächstmögliche Trasse rd 3 Std nach Ankunft 84979. We 14:01:2001			100					
	PLB	Ludwigshefen BASF				-	16,42			
	FLB	Ludwigshafen BASF				100000	14,47			
	FLO	Eu-hefen Oggersheim				46.53		Köpfmachen		
	FLO	Lu-hafen Oggershelm	N CONTRACTOR					Kopfmachen		
	FWOR	Worms-Hbl				14330		We 14.01.2002		
	FWOR	Worms Hbi		5.5				We 06.02.02	Jo T	: 54050 Sc)
	FMZ	Mainz Hof	1	Marie 2			18:28			. 34000 00
	Biblis					15.45.6	15,47	Ra 07.02.02		
	FKBWO	Kalserbrücke-Ost		177.50				Fla. 17.01.02		
	RICEWAD	Kalserbrücke Ost	N TOTAL CO.				District of			
		Gberlahnstein Gbf					20.02		90 900	
3	KDLG	Oberlahnstein Gbf				The same of				
		Linz (Rh)				THE S	20.35	Ho 17.01.02		4-12-
	KLI	Linz (Rh)		Hart C		61.03				per la la casa de la c
EINSTEIN Foundation.de				THE REAL PROPERTY.		in the				
Foundation.de	FMB	16.56/17.12			- 117	Sign of a		and the state of	110	
	FKOS	Abzw Kostheim					17.20			
	KOL G	Oberlahnstein Gbf					18,57	MESSAGE SE		
	KLI	Line (Rh)					19.35	He 11.02,02		
	KUN	Unicel			1712	+19,42	10.48			
	KG-G	Gremberg Gnf		E E		The same of	20.27	An-19.2.02		tiph desired
	Eliter.	Approximate and the second			Sec.					
	KDO	Dormagen	19:00							
					May 1511		4 4			
					U., I	A Company	Ligi	STATE OF THE PARTY OF		
	Bernerki	ungen Kunde BR 185 mit 5.6 M	AW							4
Ralf				Value of the second						P. Water
Borndörfer	-	Preisgünstigster	Weg ger	wünsch	1000		Sec. 20			BUSH SHE

Outline

- Auctions
- Rail Track Scheduling
- Rail Track Auctioning
- The Optimal Track Allocation Problem
- Experiments

Rail Track Auctioning

- Goals
 - More traffic at lower cost
 - Better service
- How do you measure?
 - Possible answer: in terms of willingness to pay
- What is the "commodity" of this market?
 - Possible answer: timetabled track
 - = dedicated, timetabled track section
- How does the market work?
 - Possible answer: by auctioning timetabled tracks
- Auctions can be in-company auctions

Rail Track Auction

Ralf

Rail Track Auction Results

Rail Track Auction Results

(14,439 Variables, 13,408 Constraints, 48 Minutes)

Ralf

Rail Track Auctioning Modules

Outline

- Auctions
- Rail Track Scheduling
- Rail Track Auctioning
- The Optimal Track Allocation Problem
- Experiments

Macroscopic Graph Model

Ralf Borndörfer

Blocks & Standardized Dynamics

- State (i,T,t,v)
 - Directed block i
 - Train type T
 - Starting time t, velocity v

Standard Train Types

train type	V max [km/h]	train length [m]	Security technology	•••
ICE	250	410	LZB	
IC	200	400	LZB	
RE	160	225	signal	
RB	120	100	signal	
SB	140	125	signal	
ICG	100	600	signal	

Example

(travel times in mins)

EINSTEIN

Bids for Timetabled Tracks

- Train number(s) and type(s)
- Starting station, earliest starting time
- Final station, latest arrival time
- Bid = Basic Bid
 - + Departure/Arrival Bonus
 - + Travel Time Bonus

- Intermediate stops (Station, min. stopping time, arrival interval)
- Connections
- Combinatorial bids (and/or)

Bid Generator

EINSTEIN Foundation.de

Ralf Borndörfer

Bid Generator

(Reuter 2005)

Method	Input	Output	Goal			
Minimum spanning tree	Distances	Tracks on a tree	Regional coverage			
Maximum spanning tree	OD-Matrix	Tracks on a tree	Demand coverage			
Greedy	OD-Matrix	Set of tracks	"Good tracks"			
Point-To-Point	Stations	Single track	Direct connections			

Gesellschaft für Informationslogistik mbH

PROSA/prosimExpreß : A line-planning tool for Deutsche Bahn

N. Ascheuer, Ch. Küttner, M. Proksch

J. Dupont, R. Firla, A. Huck, K. Kuchenbecker, M. Sievers, F. Wagner

Block Conflicts

Optimal Track Allocation Problem

- OPTRA
- Input
 - Set of bids for timetabled tracks
 - Available infrastructure (space and time)

- Output
 - Conflict free track assignments for the chosen bids
 - Track assignment that maximizes total earnings

Multicommodity Flow Model

 $\max c^{T}x$

$$x^{r}(\delta^{+}(z)) - x^{r}(\delta^{-}(z)) = b_{z}^{r}$$

$$X_a^r + X_b^s$$

 $\forall r, z$

$$\mathbf{X}_{\mathbf{a}}^{\mathbf{r}}$$

$$\in$$

$$\{0,1\}$$

 $\forall r, a$

- Space-time graph G=(V,A)
 - Nodes z=(i,T,t,v) ∈ V
 - Arcs a=(z1,z2) ∈ A
- Block conflicts on arcs

- Timetabled track
 - ≅ path in G
- Timetable
 ≅ set of compatible
 timetabled tracks

Outline

- Auctions
- Rail Track Scheduling
- Rail Track Auctioning
- The Optimal Track Allocation Problem
- Experiments

Test Network

Criteria

- Important characteristics ("Hildesheimer Kurve")
- Important subnet
- Used in earlier studies

Data

- 45 sections = 1176 km
- 31 nodes
- 6 train types

Auction Experiments

(Reuter 2005, Rounds 8 and 9)

Round	Earnings	Round	Earnings			
1	44563	9	46575			
2	44563	10	47051			
3	44598	11	48096			
4	44799	12	48253			
5	44799	13	48337			
6	44972	14	48391			
7	45551	15	48513			
8	46375					

Auction Experiments

(Reuter 2005)

		I	CE	j	TC	F	RE	R	RB		5	ICG	#
	# Trains/Type	ind	sync	ind									
	Timetable	27	0	27	0	38	19	87	23	0	61	28	_
	+24 IC/ICE ind	30	0	29	0	38	19	85	23	0	61	25	18
	+24 IC/ICE sync	24	9	27	9	36	19	83	19	0	58	26	22
EINSTEIN Foundation.de	+27 R*/S ind	27	0	25	0	44	19	89	23	5	58	27	20
	+27 R*/S sync	27	0	27	0	36	19	83	32	0	62	27	30
	+15 ICG	27	0	27	0	38	19	87	23	0	61	42	19
Ralf	+66 *	28	0	25	3	38	25	85	29	2	55	31	29
Borndörfer													

EINSTEI

Auction Experiments

(Reuter 2005)

		I	CE	1	C	F	RE	F	RB		5	ICG	${\it \Sigma}$
	€/km	ind	sync	ind	€								
	Timetable												
7	+24 IC/ICE ind	2.04		1.78		1.24	1.07	0.93	0.90		0.98	1.12	34421
	+24 IC/ICE sync	1.89	1.94	1.45	3.27	1.14	1.10	0.89	0.83		0.90	1.10	36031
EIN	+27 R*/S ind	1.74		1.41		1.23	1.08	0.91	0.90	1.15	1.10	1.14	31180
	+27 R*/S sync	2.31		1.34		1.02	1.04	0.88	1.41		1.06	0.98	33663
	+15 ICG	1.45		1.44		1.08	1.08	0.87	0.90		0.88	1.03	32994
	+66 *	2.21		1.88	2.87	1.03	1.10	0.89	1.11	1.53	1.47	1.60	41263
lörfer													

Tripling Experiment

	variation	cpu time	earnings	trains			
		(CPLEX)	(% Status Quo)	(% Status Quo)			
	0 mins	6 secs	52.066 (+ 84%)	420 (+ 47%)			
	1 mins	8 secs	60.612 (+114%)	496 (+ 74%)			
	4 mins 1 days 5 mins 3+ days		67.069 (+137%)	617 (+117%)			
			67.975 (+140%)	737 (+159%)			

Status quo

 284 tracks through 6 hours in the Hannover—Braunschweig— Fulda network, (hypothetical) total income of 28,255 €

Scenario

triple requests to 946 bids
 (~15 minutes alteration, identical willingness to pay)

Thank you for your attention.

