Package 'TestingSimilarity'

October 12, 2022

Type Package

Title Bootstrap Test for the Similarity of Dose Response Curves Concerning the Maximum Absolute Deviation
Version 1.1
Author Kathrin Moellenhoff
Maintainer Kathrin Moellenhoff <kathrin.moellenhoff@rub.de></kathrin.moellenhoff@rub.de>
Description Provides a bootstrap test which decides whether two dose response curves can be assumed as equal concerning their maximum absolute deviation. A plenty of choices for the model types are available, which can be found in the 'DoseFinding' package, which is used for the fitting of the models. See <doi:10.1080 01621459.2017.1281813=""> for details.</doi:10.1080>
License GPL-3
Depends lattice, DoseFinding, alabama
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-09-11 13:50:02 UTC
R topics documented:
betaMod bootstrap_test dff emax exponential linear linlog logistic quadratic
sigEmax

2 bootstrap_test

Index 8

betaMod

Implementation of Beta models

Description

Beta model:

$$m(d,\beta) = E_0 + E_{max}B(\delta_1, \delta_2)(d/scal)^{\delta_1}(1 - d/scal)^{\delta_2}$$

with

$$B(\delta_1, \delta_2) = (\delta_1 + \delta_2)^{\delta_1 + \delta_2} / (\delta_1^{\delta_1} \delta_2^{\delta_2})$$

and scal is a fixed dose scaling parameter.

Usage

```
betaMod(d, e, scal)
```

Arguments

d real-valued argument to the function (dose variable)

e model parameter

scal fixed dose scaling parameter

Value

Response value.

bootstrap_test

Bootstrap test for the equivalence of dose response curves via the maximum absolute deviation

Description

Function for testing whether two dose response curves can be assumed as equal concerning the hypotheses

$$H_0: \max_{d \in \mathcal{D}} |m_1(d, \beta_1) - m_2(d, \beta_2)| \ge \epsilon \ vs. \ H_1: \max_{d \in \mathcal{D}} |m_1(d, \beta_1) - m_2(d, \beta_2)| < \epsilon,$$

where

 \mathcal{D}

denotes the dose range. See https://doi.org/10.1080/01621459.2017.1281813 for details.

Usage

```
bootstrap_test(data1, data2, m1, m2, epsilon, B = 2000, bnds1 = NULL,
bnds2 = NULL, plot = FALSE, scal = NULL, off = NULL)
```

dff 3

Arguments

data1, data2	data frame for each of the two groups containing the variables referenced in dose and resp
m1, m2	model types. Built-in models are "linlog", "linear", "quadratic", "emax", "exponential", "sigEmax", "betaMod" and "logistic"
epsilon	positive argument specifying the hypotheses of the test
В	number of bootstrap replications. If missing, default value of B is 5000
bnds1, bnds2	bounds for the non-linear model parameters. If not specified, they will be generated automatically
plot	if TRUE, a plot of the absolute difference curve of the two estimated models will be given
scal, off	fixed dose scaling/offset parameter for the Beta/ Linear in log model. If not specified, they are 1.2*max(dose) and 1 respectively

Value

A list containing the p.value, the maximum absolute difference of the models, the estimated model parameters and the number of bootstrap replications. Furthermore plots of the two models are given.

References

```
https://doi.org/10.1080/01621459.2017.1281813
```

Examples

```
data(IBScovars)
male<-IBScovars[1:118,]
female<-IBScovars[119:369,]
bootstrap_test(male,female,"linear","emax",epsilon=0.35,B=300)</pre>
```

dff

Implementation of absolute difference function

Description

Function calculating the absolute difference of two dose response models:

$$df f(d, \beta_1, \beta_2) = |m_1(d, \beta_1) - m_2(d, \beta_2)|$$

Usage

```
dff(d, beta1, beta2, m1, m2)
```

4 exponential

Arguments

d real-valued argument to the function (dose variable)

beta1, beta2 model parameters (real vectors)

m1, m2 model types. Built-in models are "linlog", "linear", "quadratic", "emax", "expo-

nential", "sigEmax", "betaMod" and "logistic"

Value

Response value for the absolute difference of two models.

emax

Implementation of EMAX models

Description

Emax model:

$$m(d,\beta) = E_0 + E_{max} \frac{d}{ED_{50} + d}$$

Usage

emax(d, e)

Arguments

d real-valued argument to the function (dose variable)

e model parameter

Value

Response value.

exponential

Implementation of exponential models

Description

Exponential model:

$$m(d, \beta) = E_0 + E_1(exp(d/\delta) - 1)$$

Usage

exponential(d, e)

linear 5

Arguments

d real-valued argument to the function (dose variable)

e model parameter

Value

Response value.

linear

Implementation of linear models

Description

Linear model:

$$m(d,\beta) = E_0 + \delta d$$

Usage

linear(d, e)

Arguments

d real-valued argument to the function (dose variable)

e model parameter

Value

Response value.

linlog

Implementation of linear in log models

Description

Linear in log Model model:

$$m(d, \beta) = E_0 + \delta \log(d + off)$$

and off is a fixed offset parameter.

Usage

6 quadratic

Arguments

d real-valued argument to the function (dose variable)

e model parameter

off fixed offset parameter

Value

Response value.

logistic

Implementation of logistic models

Description

Logistic model:

$$m(d, \beta) = E_0 + \frac{E_{max}}{1 + exp[(ED_{50} - d)/\delta]}$$

Usage

logistic(d, e)

Arguments

d real-valued argument to the function (dose variable)

e model parameter

Value

Response value.

quadratic

Implementation of quadratic models

Description

Quadratic model:

$$m(d,\beta) = E_0 + \beta_1 d + \beta_2 d^2$$

Usage

quadratic(d, e)

sigEmax 7

Arguments

d real-valued argument to the function (dose variable)

e model parameter

Value

Response value.

sigEmax

Implementation of Sigmoid Emax models

Description

Sigmoid Emax Model model:

$$m(d,\beta) = E_0 + E_{max} \frac{d^h}{ED_{50}^h + d^h}$$

Usage

sigEmax(d, e)

Arguments

d real-valued argument to the function (dose variable)

e model parameter

Value

Response value

Index

```
betaMod, 2
bootstrap_test, 2
dff, 3
emax, 4
exponential, 4
linear, 5
linlog, 5
logistic, 6
quadratic, 6
sigEmax, 7
```