CS3331 - Assignment 2 - 2018

Context-Free Languages

Due: 9 am Friday, Oct 26, 2018 (Latest to submit: 9 am Monday, Oct 29)

- 1. (30pt) Let $L = \{ w \in \{A-Z, \neg, \wedge, \vee, \rightarrow, (,)\}^* : w \text{ is a syntactically legal Boolean expression} \}$.
 - (a) Write an unambiguous context-free grammar that generates L. The grammar should both:
 - use the following precedence levels to the operators (from highest to lowest): \neg, \wedge, \vee , and \rightarrow ;
 - associate left given operators of equal precedence (if an operator \sim is left-associative, then $A \sim B \sim C$ is interpreted as $(A \sim B) \sim C$).
 - (b) Show the parse tree that your grammar will produce for the string

$$\neg A \rightarrow B \rightarrow (\neg A \rightarrow \neg B \rightarrow A)$$

- 2. (40pt) For each of the following languages L, prove whether L is regular, context-free but not regular, or not context-free:
 - (a) $L = \{ w^R x w : w \in \{ a, b \}^* \text{ and } x \in \{ a, b \}^+ \}.$
 - (b) $L = \{wx : 2|w| = 3|x| \text{ and } w, x \in 0^+1^+\}.$
 - (c) $L = \{wxx : |w| = 2|x| \text{ and } w \in \{a, b\}^* \text{ and } x \in \{c\}^*\}.$
- 3. (30pt) Show that the following problem is decidable: Given a FSM M and a PDA P, is $L(M) \cap L(P)$ infinite?

Note well: You may submit your assignment in one of two ways:

- Ideally, submit your solution as a pdf file on OWL (scanned written assignments are fine).
- Otherwise **staple your assignment** and hand in solutions in class or to the 3331 dropbox (locker #306, across from the elevator on the 3rd floor of Middlesex College).

Assignments will not be accepted after 9:00 am Oct 29.