State Space Models for Longitudinal Neuropsychological Outcomes

Zach Baucom

Section 1

Recap of Project 1

The model

We wish to model the data according to a specific SSM, the Local Linear Trend Model (LLT),

$$y_{ij} = \alpha_{ij} + x_{ij}^T \beta + \varepsilon_{ij}$$
$$\alpha_{ij} = \alpha_{i(j-1)} + \eta_{ij}$$

Where $\alpha_0 \sim N(a_0, P_0)$, $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$, and $\eta_{ij} \sim N(0, \delta_{ij}\sigma_{\eta}^2)$.

- y_j is an $n \times 1$ observation vector where n indicates the number of subjects.
- α_i is an $n \times 1$ latent state vector.
 - Variation in α_j over time creates a dynamic moving average auto-correlation between observations y_i .
- X_i is an $n \times p$ matrix of time varying covariates.
- β is the linear effect of the columns in X_i .

Results

- The LLT models did a much better job at measuring linear effects than the commonly used linear mixed effect models.
- Among the LLTs, the Bayesian Estimation Process yielded the best results in terms of accuracy and computation time.
- Paper 1 is currently under review at the Annals of Applied Statistics.

Section 2

Project 2 Multivatiate Models

Aims of Project 2

- Cognitive tests, offered by the NACC, are administered to measure different underlying constructs of cognition.
 - e.g. memory, attention, executive, and language.
- Understanding how the tests are related to different constructs is vital for interpreting effects of interest.
- In order to create a model capable of accounting for inter-relatedness between tests, we propose a Multivariate Bayesian Local Linear Trend Model.

Aims

- With the Multivariate Bayesian Local Linear Trend Model we wish to:
 - Gain power by taking advantage of correlations between tests.
 - Get insight into relatedness of underlying cognition levels from each test.
 - Be able to compare linear effects across tests (i.e. does APOE have the same effect for test A and test B?)

The Model

$$\begin{bmatrix} y_{ij1} \\ y_{ij2} \\ \vdots \\ y_{ijK} \end{bmatrix} = \begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \vdots \\ \alpha_{ijK} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{ij} \boldsymbol{\beta}_{1} \\ \mathbf{x}_{ij} \boldsymbol{\beta}_{2} \\ \vdots \\ \mathbf{x}_{ij} \boldsymbol{\beta}_{K} \end{bmatrix} + \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \vdots \\ \varepsilon_{ijK} \end{bmatrix}, \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \vdots \\ \varepsilon_{ijK} \end{bmatrix} \sim N(0, \Sigma_{\varepsilon})$$

$$\begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \vdots \\ \alpha_{ijK} \end{bmatrix} = \begin{bmatrix} \alpha_{i(j-1)1} \\ \alpha_{i(j-1)2} \\ \vdots \\ \alpha_{i(j-1)K} \end{bmatrix} + \begin{bmatrix} \eta_{ij1} \\ \eta_{ij2} \\ \vdots \\ \eta_{ijK} \end{bmatrix}, \begin{bmatrix} \eta_{ij1} \\ \eta_{ij2} \\ \vdots \\ \eta_{ijK} \end{bmatrix} \sim N(0, \delta_{ij} \Sigma_{\eta})$$

Model 1: Correlation is in Measurement eq.

$$\boldsymbol{\Sigma}_{\varepsilon} = \begin{bmatrix} \sigma_{\varepsilon}^{2(1)} & \sigma_{\varepsilon}^{2(1,2)} & \cdots & \sigma_{\varepsilon}^{2(1,K)} \\ \sigma_{\varepsilon}^{2(1,2)} & \sigma_{\varepsilon}^{2(2)} & & \\ \vdots & & \ddots & \\ \sigma_{\varepsilon}^{2(1,K)} & & & \sigma_{\varepsilon}^{2(K)} \end{bmatrix}, \boldsymbol{\Sigma}_{\eta} = \begin{bmatrix} \sigma_{\eta}^{2(1)} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \sigma_{\eta}^{2(2)} & & \\ \vdots & & \ddots & \\ \boldsymbol{0} & & & \sigma_{\eta}^{2(K)} \end{bmatrix}$$

Model 2: Correlation is in State eq.

$$\boldsymbol{\Sigma}_{\varepsilon} = \begin{bmatrix} \sigma_{\varepsilon}^{2(1)} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \sigma_{\varepsilon}^{2(2)} & & \\ \vdots & & \ddots & \\ \boldsymbol{0} & & & \sigma_{\varepsilon}^{2(K)} \end{bmatrix}, \boldsymbol{\Sigma}_{\eta} = \begin{bmatrix} \sigma_{\eta}^{2(1)} & \sigma^{2(1,2)} & \cdots & \sigma_{\eta}^{2(1,K)} \\ \sigma_{\eta}^{2(1,2)} & \sigma_{\eta}^{2(2)} & & \\ \vdots & & \ddots & \\ \sigma_{\eta}^{2(1,K)} & & & \sigma_{\eta}^{2(K)} \end{bmatrix}$$

Model 3: Correlation is in both Measurement & State eq.

$$\boldsymbol{\Sigma}_{\varepsilon} = \begin{bmatrix} \sigma_{\varepsilon}^{2(1)} & \sigma_{\varepsilon}^{2(1,2)} & \cdots & \sigma_{\varepsilon}^{2(1,K)} \\ \sigma_{\varepsilon}^{2(1,2)} & \sigma_{\varepsilon}^{2(2)} & & \\ \vdots & & \ddots & \\ \sigma_{\varepsilon}^{2(1,K)} & & & \sigma_{\varepsilon}^{2(K)} \end{bmatrix}, \boldsymbol{\Sigma}_{\eta} = \begin{bmatrix} \sigma_{\eta}^{2(1)} & \sigma^{2(1,2)} & \cdots & \sigma_{\eta}^{2(1,K)} \\ \sigma_{\eta}^{2(1,2)} & \sigma_{\eta}^{2(2)} & & \\ \vdots & & \ddots & \\ \sigma_{\eta}^{2(1,K)} & & & \sigma_{\eta}^{2(K)} \end{bmatrix}$$

Kalman Filter

For j in 1, 2, ..., J:

- **1** Predicted state: $\alpha_{ij|i(j-1)} = \alpha_{i(j-1)|i(j-1)}$
- ② Predicted state variance: $P_{ij|i(j-1)} = P_{i(j-1)|i(j-1)} + \sigma_{\eta}^2$
- **3** Kalman Gain: $K_{ij} = P_{ij|i(j-1)}(P_{ij|i(j-1)} + \sigma_{\varepsilon}^2)^{-1}$
- **①** Updated state estimate: $\alpha_{ij|ij} = \alpha_{ij|i(j-1)} + \mathbf{K}_{ij}(\tilde{\mathbf{y}}_{ij} \alpha_{ij|i(j-1)})$
- Updated state covariance: $P_{ij|ij} = (1 K_{ij})P_{ij|i(j-1)}$

Kalman Smoother

For j^* in J, J-1, ..., 1:

Smoothed predicted state:

$$\alpha_{iJ|i(j^*-1)} = \alpha_{i(j^*-1)|i(j^*-1)} + \boldsymbol{L}_{i(j^*-1)}(\alpha_{ij^*|iJ} - \alpha_{ij^*|i(j^*-1)})$$

2 Smoothed predicted state variance:

$$P_{i(j^*-1)|iJ} = P_{i(j^*-1)|i(j^*-1)} - L_{i(j^*-1)}^2 (P_{ij^*|iJ} - P_{ij^*|i(j^*-1)})$$

Where
$$L_{i(j^*-1)} = P_{i(j^*-1)|i(j^*-1)} P_{ij^*|i(j^*-1)}^{-1}$$

Backward Sampler

Let
$$\psi = \{\Sigma_{\eta}, \Sigma_{\varepsilon}, \beta\}$$
,

$$P_{\psi}(\alpha_{i(0:J)}|\mathbf{y}_{i(1:J)}) = P_{\psi}(\alpha_{iJ}|\mathbf{y}_{i(1:J)})P_{\psi}(\alpha_{i(J-1)}|\alpha_{i(J)},\mathbf{y}_{1:(J-1)})...P_{\psi}(\alpha_{i0}|\alpha_{i1})$$

Therefore we need the following densities for j in 1, 2, ..., J-1 and i in 1, 2, ..., N:

$$P_{\psi}(\boldsymbol{\alpha}_{ij}|\boldsymbol{\alpha}_{i(j+1)},\boldsymbol{y}_{i(1:j)}) \propto P_{\psi}(\boldsymbol{\alpha}_{ij}|\boldsymbol{y}_{i(1:j)})P_{\psi}(\boldsymbol{\alpha}_{i(j+1)}|\boldsymbol{\alpha}_{ij})$$

Backward Sampler

- From the Kalman Filter we calculate $\alpha_{ij}|\boldsymbol{y}_{i(1:j)} \sim N_{\psi}(\alpha_{ij|ij}, \boldsymbol{P}_{ij|ij})$ and $\alpha_{i(j+1)}|\alpha_{ij} \sim N_{\psi}(\alpha_{ij}, \Sigma_{\eta})$.
- After combining the two densities

$$egin{aligned} m{m}_{ij} &= E_{\psi}(lpha_{ij}|lpha_{i(j+1)},m{y}_{i(1:j)}) = lpha_{ij|ij} + m{L}_{ij}(lpha_{i(j+1)} - lpha_{i(j+1)|ij}) ext{ and } \ m{R}_{ij} &= \mathsf{Var}_{\psi}(lpha_{ij}|lpha_{i(j+1)},m{y}_{i(1:j)}) = m{P}_{ij|ij} - m{L}_{ij}^2m{P}_{i(j+1)|ij}. \end{aligned}$$

• Because of normality, the posterior distribution for α_{ij} is $N(m_{ij}, R_{ij})$.

β Posterior

$$P(Y,\alpha,\Sigma_{\eta},\Sigma_{\varepsilon}|\beta) = P(\mathbf{y}_{1},...,\mathbf{y}_{J},\alpha_{1},...,\alpha_{J},\Sigma_{\eta},\Sigma_{\varepsilon}|\beta)$$

$$=P(\mathbf{y}_{J}|\mathbf{y}_{1},...,\mathbf{y}_{T-1},\alpha_{1},...,\alpha_{J},\Sigma_{\eta},\Sigma_{\varepsilon}\beta)$$

$$\times P(\mathbf{y}_{1},...,\mathbf{y}_{T-1},\alpha_{1},...,\alpha_{J},\Sigma_{\eta},\Sigma_{\varepsilon}|\beta)$$

$$=P(\mathbf{y}_{J}|\alpha_{J},\Sigma_{\varepsilon}\beta)P(\alpha_{T-1}|\mathbf{y}_{1},...,\mathbf{y}_{T-1},\alpha_{1},...,\alpha_{T-1},\Sigma_{\eta},\Sigma_{\varepsilon},\beta)$$

$$\times P(\mathbf{y}_{1},...,\mathbf{y}_{T-1},\alpha_{1},...,\alpha_{T-1},\Sigma_{\eta},\Sigma_{\varepsilon}|\beta)$$

$$=P(\mathbf{y}_{J}|\alpha_{J},\Sigma_{\varepsilon}\beta)P(\alpha_{T-1}|\alpha_{T-1},\Sigma_{\eta})$$

$$\times P(\mathbf{y}_{1},...,\mathbf{y}_{T-1},\alpha_{1},...,\alpha_{T-1},\Sigma_{\eta},\Sigma_{\varepsilon}|\beta)$$

$$=P(\Sigma_{\varepsilon})P(\Sigma_{\eta})\left(\prod_{k=0}^{J}P(\alpha_{k}|\alpha_{k-1},\Sigma_{\eta})\right)\prod_{j=1}^{J}P(\mathbf{y}_{j}|\alpha_{j},\Sigma_{\varepsilon},\beta)$$

$$\propto \prod_{i=1}^{J}P(\mathbf{y}_{j}|\alpha_{j},\Sigma_{\varepsilon},\beta)$$

Due to independence from subject to subject we can write the -2 log likelihood as,

$$-2logP(Y, \boldsymbol{lpha}, \Sigma_{\eta}, \Sigma_{arepsilon} | eta) \ \propto \sum_{i=1}^{N} \sum_{j=1}^{T} (oldsymbol{y}_{ij} - oldsymbol{lpha}_{ij} - \mathbb{X}_{ij}oldsymbol{eta})' \Sigma_{arepsilon}^{-1} (oldsymbol{y}_{ij} - oldsymbol{lpha}_{ij} - oldsymbol{eta})$$

where,

$$y_{j} = \begin{bmatrix} y_{ij1} \\ y_{ij2} \\ \vdots \\ y_{ijK} \end{bmatrix}, \alpha_{j} = \begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \vdots \\ \alpha_{ijK} \end{bmatrix}, \mathbb{X}_{ij} = \begin{bmatrix} \mathbf{x}_{ij} & 0 & \dots & 0 \\ 0 & \mathbf{x}_{ij} & & & \\ \vdots & & \ddots & & \\ 0 & & & \mathbf{x}_{ij} \end{bmatrix} \beta = \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{K} \end{bmatrix}$$

Next, we write the -2 log likelihood in terms of β ,

$$-2logP(Y, \alpha, \sigma_{\eta}^{2}, \sigma_{\varepsilon}^{2} | \beta)$$

$$\propto \beta'(\sum_{i=1}^{N} \sum_{j=1}^{T} \mathbb{X}'_{ij} \Sigma_{\varepsilon}^{-1} \mathbb{X}_{ij}) \beta - 2 \sum_{i=1}^{N} \sum_{j=1}^{T} (y_{ij} - \alpha_{ij})' \Sigma_{\varepsilon}^{-1} \mathbb{X}_{ij} \beta$$

Similarly, the prior can be written in a similar format,

$$-2 extit{log} P(eta) \propto (eta - heta)' \Sigma_eta^{-1} (eta - heta) \ \propto eta' \Sigma_eta^{-1} eta - 2 heta \Sigma_eta^{-1} eta$$

Combining the two we are able to get the proportionality of the posterior,

$$\beta'(\sum_{i=1}^{N}\sum_{j=1}^{T}\mathbb{X}'_{ij}\Sigma_{\varepsilon}^{-1}\mathbb{X}_{ij})\beta - 2\sum_{i=1}^{N}\sum_{j=1}^{T}(y_{ij} - \alpha_{ij})'\Sigma_{\varepsilon}^{-1}\mathbb{X}_{ij}\beta + \beta'\Sigma_{\beta}^{-1}\beta - 2\theta\Sigma_{\beta}^{-1}\beta$$

$$= \beta'(\sum_{i=1}^{N}\sum_{j=1}^{T}\mathbb{X}'_{ij}\Sigma_{\varepsilon}^{-1}\mathbb{X}_{ij} + \Sigma_{\beta}^{-1})\beta - 2(\sum_{i=1}^{N}\sum_{j=1}^{T}(y_{ij} - \alpha_{ij})'\Sigma_{\varepsilon}^{-1}\mathbb{X}_{ij} + \theta\Sigma_{\beta}^{-1})\beta$$

Which, after completing the square, has the form

$$(\beta - \mathbf{\Sigma}^{-1}B)'\mathbf{\Sigma}(\beta - \mathbf{\Sigma}^{-1}B)$$

Where,
$$B = \sum_{i=1}^{N} \sum_{j=1}^{T} (y_{ij} - \alpha_{ij})' \Sigma_{\varepsilon}^{-1} \mathbb{X}_{ij} + \theta \Sigma_{\beta}^{-1}$$
 and $\mathbf{\Sigma} = \sum_{i=1}^{N} \sum_{j=1}^{T} \mathbb{X}'_{ij} \Sigma_{\varepsilon}^{-1} \mathbb{X}_{ij} + \Sigma_{\beta}^{-1} p$.

Thus, the posterior for β has the following distribution,

$$\beta|... \sim N(\Sigma^{-1}B, \Sigma^{-1})$$

Σ_{ε} Posterior

For the posterior of Σ_{ε} , if we assume the matrix is non-diagnol as in Model 1, then we give Σ_{ε} an inverse-Wishart distribution.

$$\begin{split} & \Sigma_{\varepsilon} \sim \mathsf{Inv\text{-}Wishart}_{\nu_{\varepsilon}}(\Lambda_{\varepsilon}) \\ & P(\Sigma_{\varepsilon}) \propto & |\Sigma_{\varepsilon}|^{-(\nu_{\varepsilon}+p+1)/2} \mathsf{exp}(-tr(\Lambda_{\varepsilon}\Sigma_{\varepsilon}^{-1})) \end{split}$$

$$egin{aligned} P(Y, oldsymbol{lpha}, \Sigma_{\eta}, oldsymbol{eta} | \Sigma_{arepsilon}) & \propto \ |\Sigma_{arepsilon}|^{-(NJ)/2} \mathrm{exp}(-\sum_{i=1}^{N} \sum_{j=1}^{J} (oldsymbol{y}_{ij} - oldsymbol{lpha}_{ij} - \mathbb{X}_{ij}oldsymbol{eta})' \Sigma_{arepsilon}^{-1} (oldsymbol{y}_{ij} - oldsymbol{lpha}_{ij} - \mathbb{X}_{ij}oldsymbol{eta})/2 \end{aligned}$$

Σ_{ε} Posterior

$$egin{aligned} P(\Sigma_arepsilon|Y,oldsymbol{lpha},\Sigma_\eta,eta) &= P(Y,oldsymbol{lpha},\Sigma_\eta,eta|\Sigma_arepsilon)P(\Sigma_arepsilon) \ &\propto |\Sigma_arepsilon|^{-(NJ+
u_arepsilon+p+1)/2} ext{exp}(-tr(\Lambda_arepsilon+\sum_{i=1}^N\sum_{j=1}^J(oldsymbol{y}_{ij}-oldsymbol{lpha}_{ij}-\mathbb{X}_{ij}oldsymbol{eta})^2)\Sigma_arepsilon^{-1})} \ &\Sigma_arepsilon|... \sim ext{Inv-Wishart}_{
u_arepsilon+NJ}(\Lambda_arepsilon+\sum_{i=1}^N\sum_{j=1}^J(oldsymbol{y}_{ij}-oldsymbol{lpha}_{ij}-\mathbb{X}_{ij}oldsymbol{eta})^2) \end{aligned}$$

The posterior for the diagnol matrix Σ_{ε} can be calculated independently for each test as was previously shown [Paper1] using the inverse-gamma for each test.

Σ_{η} Posterior

Similarly, if Σ_{η} is non-diagonal:

$$\Sigma_{\eta} \sim \mathsf{Inv ext{-Wishart}}_{
u_{\eta}}(\Lambda_{\eta}) \ P(\Sigma_{\eta}) \propto |\Sigma_{\eta}|^{-(
u_{\eta}+p+1)/2} \mathsf{exp}(-\mathit{tr}(\Lambda_{\eta}\Sigma_{\eta}^{-1}))$$

$$\begin{split} P(Y, \boldsymbol{\alpha}, \boldsymbol{\Sigma}_{\eta}, \boldsymbol{\beta} | \boldsymbol{\Sigma}_{\eta}) &\propto \\ |\boldsymbol{\Sigma}_{\eta}|^{-(N(J-1))/2} & \exp(-\sum_{i=1}^{N} \sum_{j=2}^{J} (\boldsymbol{\alpha}_{ij} - \boldsymbol{\alpha}_{i(j-1)})' \boldsymbol{\Sigma}_{\eta}^{-1} (\boldsymbol{\alpha}_{ij} - \boldsymbol{\alpha}_{i(j-1)})/2 \end{split}$$

Σ_{η} Posterior

$$egin{aligned} P(\Sigma_{\eta}|Y,oldsymbol{lpha},\Sigma_{\eta},eta) &= P(Y,oldsymbol{lpha},\Sigma_{\eta},eta|\Sigma_{\eta})P(\Sigma_{\eta}) \ &\propto |\Sigma_{\eta}|^{-(N(J-1)+
u_{\eta}+p+1)/2} ext{exp}(-tr(\Lambda_{\eta}+\sum_{i=1}^{N}\sum_{j=2}^{J}(lpha_{ij}-lpha_{i(j-1)})^2)\Sigma_{\eta}^{-1}) \ &\Sigma_{\eta}|... \sim ext{Inv-Wishart}_{
u_{\eta}+N(J-1)}(\Lambda_{\eta}+\sum_{i=1}^{N}\sum_{j=2}^{J}(lpha_{ij}-lpha_{i(j-1)})^2) \end{aligned}$$

β Standardization

$$egin{aligned} oldsymbol{y}_{ij} &= oldsymbol{lpha}_{ij}^{(m)} + \mathbb{X}_{ij}eta^{(m)} + arepsilon_{ij} \ oldsymbol{y}_{ij} - oldsymbol{lpha}_{ij}^{(m)} &= \mathbb{X}_{ij}eta^{(m)} + arepsilon_{ij} \ oldsymbol{(y}_{ij} - oldsymbol{lpha}_{ij}^{(m)})(\Sigma^{(m)}_arepsilon)^{-1/2} &= \mathbb{X}_{ij}eta^{(m)}(\Sigma^{(m)}_arepsilon)^{-1/2} + arepsilon_{ij}(\Sigma^{(m)}_arepsilon)^{-1/2} \ oldsymbol{y}_{ij}^{(m)*} &= \mathbb{X}_{ij}eta^{(m)}(\Sigma^{(m)}_arepsilon)^{-1/2} + arepsilon_{ij}^* \end{aligned}$$

Now, $\text{var}(\varepsilon_{ij}^*) = I$. Each test is now independent and effect comparison can be made using $\beta^{*(m)} = \beta^{(m)}(\Sigma_{\varepsilon}^{(m)})^{-1/2}$.

Fully Simulated Data Analysis

We simulated 100 subjects with between 2-13 observations from the following model:

$$\begin{bmatrix} y_{ij1} \\ y_{ij2} \\ y_{ij3} \end{bmatrix} = \begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \alpha_{ij3} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{ij} \boldsymbol{\beta}_{1} \\ \mathbf{x}_{ij} \boldsymbol{\beta}_{2} \\ \mathbf{x}_{ij} \boldsymbol{\beta}_{3} \end{bmatrix} + \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \varepsilon_{ij3} \end{bmatrix}, \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \varepsilon_{ij3} \end{bmatrix} \sim N(0, \begin{bmatrix} 15 & 2.4 & 1 \\ 2.4 & 15 & 1 \\ 1 & 1 & 10 \end{bmatrix}) \\
\begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \alpha_{ij3} \end{bmatrix} = \begin{bmatrix} \alpha_{i(j-1)1} \\ \alpha_{i(j-1)2} \\ \alpha_{i(j-1)3} \end{bmatrix} + \begin{bmatrix} \eta_{ij1} \\ \eta_{ij2} \\ \eta_{ij3} \end{bmatrix}, \begin{bmatrix} \eta_{ij1} \\ \eta_{ij2} \\ \eta_{ij3} \end{bmatrix} \sim N(0, \delta_{ij} \begin{bmatrix} 5 & 3.7 & 0 \\ 3.7 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix})$$

Parameter coverage

Table 1: Linear effect coverage percentage.

Test	Variable	Beta	LLT	0	S	OS
Y1	X1	4	96.2%	94.8%	96.8%	96.1%
Y1	X2	2	94.6%	93.4%	95.5%	94.5%
Y1	X3	1	95.2%	94.1%	95.8%	95%
Y2	X1	-3	95%	94.4%	95.8%	95.7%
Y2	X2	0	94.5%	93.1%	95.9%	95.2%
Y2	X3	1	94.9%	94%	96.8%	96.4%
Y3	X1	0	95.7%	96.2%	96%	95.7%
Y3	X2	0	95%	94.7%	94.9%	95.2%
Y3	X3	0	94.5%	94.8%	94.9%	94.9%

Bias and Variability

Variance Coverage

	Parameter	True value	LLT	0	S	os
Obse	ervation Error					
	1,1	15	14.964 (94.4%)	15.752 (88.2%)	14.273 (86.7%)	15.075 (94.3%)
	1,2	2.4	=	4.976 (2.4%)	=	2.14 (91.7%)
	2,2	15	14.948 (94.1%)	15.733 (87.9%)	14.248 (85.1%)	15.066 (93.8%)
	1,3	1	-	0.997 (94.6%)	-	0.979 (94.2%)
	2,3	1	=	1.008 (94.8%)	=	0.997 (92.6%)
	3,3	10	10.021 (93.7%)	10.021 (93.5%)	9.988 (93.7%)	10.056 (93.1%)
State Process						
	1,1	5	4.835 (94%)	4.168 (78%)	5.776 (82.8%)	4.941 (94.2%)
	1,2	3.714	=	=	5.007 (44.7%)	3.891 (93.7%)
	2,2	5	4.849 (92.4%)	4.183 (78.9%)	5.8 (82%)	4.952 (92.7%)
	1,3	0	-	-	0.47 (71.9%)	-0.009 (93.8%)
	2,3	0	-	-	0.47 (73.8%)	-0.015 (93.9%)
	3,3	2	1.894 (92.6%)	1.943 (93.8%)	1.977 (93%)	1.939 (93%)

Real Data Simulation

Simulated Parameter Coverage

	LLT	0	S	OS
ANIMALS	94.1%	90.9%	93.9%	94.9%
BOSTON	93.5%	91.8%	92.1%	92.9%
DIGIB	94.1%	92.9%	93.9%	94.1%
DIGIF	94.3%	93.8%	95.5%	94.2%
LOGIMEM	96.1%	86.2%	97.1%	97%
MEMUNITS	96.5%	87.7%	97.9%	96.6%
TRAILA	93.9%	89.8%	93.8%	92.9%
TRAILB	95.2%	88.6%	93.2%	94.4%
WAIS	94.9%	90.3%	94.2%	95.1%

Simulated Parameter Bias and Variability

Covariance Matrices

Data Analysis

Dementia Transitioners

Dementia Observation State 0.06 0.05 0.01 0.03 0.02 0.06 0.01 0.01 0.79 0.7 0.86 0.74 0.77 0.73 0.83 0.69 ANIMAI S 0.44 0.09 0.1 0.01 0.02 n 0.05 0.12 0.01 0.55 0.83 0.5 0.49 0.44 0.55 0.69 BOSTON 0.02 0.05 0 0.03 0.03 0.01 0.12 0.01 0.53 0.47 0.86 0.95 0.82 0.77 0.55 0.83 TRAII B 0.05 0.07 0.03 0.02 0.02 0.01 0.05 0.06 0.31 0.32 0.68 0.7 0.75 0.77 0.44 0.73 TRAII A WAIS 0.05 0.08 0.03 0.02 0.02 0.03 0 0.02 0.47 0.41 0.76 0.9 0.75 0.82 0.49 0.77 DIGIB 0.01 0.05 0.12 0.02 0.02 0.03 0.02 0.03 0.49 0.47 0.76 0.9 0.7 0.95 0.5 0.74 0.03 0.01 0.12 0.03 0.03 0 0.01 0.01 0.55 0.42 0.76 0.76 0.68 0.86 0.83 0.86 DIGIE 0.47 0.01 0.05 0.08 0.07 0.05 0.1 0.05 0.97 0.42 0.47 0.41 0.32 0.47 0.44 0.7 MEMUNITS 0.47 0.03 0.01 0.05 0.05 0.02 0.09 0.06 0.97 0.55 0.47 0.31 0.53 0.55 0.79 LOGIMEM MEMUNITS MEMUNITS LOGIMEM DIGIF DIGIB WAS TRAILA TRAILB BOSTON ANIMALS LOGIMEM DIGIF DIGIB WAIS TRAILA TRAILB BOSTON ANIMAL

Non-Dementia Transitioners

0.00 0.25 0.50 0.75 1.00

Section 3

Project 3 Overview

Project 3 Aims

- We wish to better measure the underlying relatedness between cognition tests and how they load to certain domains.
- We propose the use of an LLT factor analysis.

Project 3

$$\begin{bmatrix} y_{ij1} \\ y_{ij2} \\ \vdots \\ y_{ijK} \end{bmatrix} = G \begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \vdots \\ \alpha_{ijq} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{ij} \boldsymbol{\beta}^{(1)} \\ \mathbf{x}_{ij} \boldsymbol{\beta}^{(2)} \\ \vdots \\ \mathbf{x}_{ij} \boldsymbol{\beta}^{(K)} \end{bmatrix} + \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \vdots \\ \varepsilon_{ijK} \end{bmatrix}, \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \vdots \\ \varepsilon_{ijK} \end{bmatrix} \sim N(0, \sigma_{\varepsilon}^{2} I)$$

$$\begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \vdots \\ \alpha_{ijq} \end{bmatrix} = \begin{bmatrix} \alpha_{i(j-1)1} \\ \alpha_{i(j-1)2} \\ \vdots \\ \alpha_{i(j-1)q} \end{bmatrix} + \begin{bmatrix} \eta_{ij1} \\ \eta_{ij2} \\ \vdots \\ \eta_{ijq} \end{bmatrix}, \begin{bmatrix} \eta_{ij1} \\ \eta_{ij2} \\ \vdots \\ \eta_{ijq} \end{bmatrix} \sim N(0, \delta_{ij} \sigma_{\eta}^{2} I)$$

Where $G \in R^{K \times q}$ is a factor loading matrix. We will again model this in the Bayesian context and give each entry of G a normal prior $(G_{s,t} \sim N(0,\sigma_G^2))$.

Project 3

$$\begin{bmatrix} y_{ij1} \\ y_{ij2} \\ \vdots \\ y_{ijK} \end{bmatrix} = G \begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \vdots \\ \alpha_{ijK} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{ij} \boldsymbol{\beta}^{(1)} \\ \mathbf{x}_{ij} \boldsymbol{\beta}^{(2)} \\ \vdots \\ \mathbf{x}_{ij} \boldsymbol{\beta}^{(K)} \end{bmatrix} + \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \vdots \\ \varepsilon_{ijK} \end{bmatrix}, \begin{bmatrix} \varepsilon_{ij1} \\ \varepsilon_{ij2} \\ \vdots \\ \varepsilon_{ijK} \end{bmatrix} \sim N(0, \sigma_{\varepsilon}^{2} I)$$

$$\begin{bmatrix} \alpha_{ij1} \\ \alpha_{ij2} \\ \vdots \\ \alpha_{ijK} \end{bmatrix} = \begin{bmatrix} \alpha_{i(j-1)1} \\ \alpha_{i(j-1)2} \\ \vdots \\ \alpha_{i(j-1)K} \end{bmatrix} + \begin{bmatrix} \eta_{ij1} \\ \eta_{ij2} \\ \vdots \\ \eta_{ijK} \end{bmatrix}, \begin{bmatrix} \eta_{ij1} \\ \eta_{ij2} \\ \vdots \\ \eta_{ijK} \end{bmatrix} \sim \tau N(0, \delta_{ij} \sigma_{\eta}^{2} I) + (1 - \tau) N(0, w)$$

\end{equation*}

Where G is now a $K \times K$ matrix and each chain of α has a spike and slab distribution. The vector τ is of length K and controls which chains of α will be set to 0. Using this spike and slab we are able to see how the underlying cognition levels naturally cluster together.

Timeline

- Project 1 is finished.
- Start coding project 3 immediately while finishing a write up for project 2 by the end of March.
- Finish project 3 in June/July.
- Defend September.

Thank you!

- Recommendations?
- Questions?