

Robotics 2

Iterative Learning for Gravity Compensation

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Control goal

- regulation of arbitrary equilibrium configurations in the presence of gravity
 - without explicit knowledge of robot dynamic coefficients (nor of the structure of the gravity term)
 - without the need of "high" position gain
 - without complex conditions on the control gains
- based on an iterative control scheme that uses
 - 1. PD control on joint position error + constant feedforward term
 - iterative update of the feedforward term at successive steadystate conditions
- derive sufficient conditions for the global convergence of the iterative scheme with zero final error

Preliminaries

robot dynamic model

$$M(q)\ddot{q} + c(q, \dot{q}) + g(q) = u$$

available bound on the gradient of the gravity term

$$\left\| \frac{\partial g(q)}{\partial q} \right\| \le \alpha$$

 regulation attempted with a joint-based PD law (without gravity cancellation nor compensation)

$$u = K_P(q_d - q) - K_D \dot{q}$$
 $K_P > 0, K_D > 0$

at steady state, there is a non-zero error left

$$q = \overline{q}, \dot{q} = 0$$
 $g(\overline{q}) = K_P(q_d - \overline{q})$ $\overline{e} = q_d - \overline{q} \neq 0$

Iterative control scheme

• control law at the *i*-th iteration (for i = 1, 2, ...)

$$u = \gamma K_P (q_d - q) - K_D \dot{q} + u_{i-1} \qquad \gamma > 0$$

with a constant compensation term u_{i-1} (feedforward)

- $K_P > 0$, $K_D > 0$ are chosen diagonal for simplicity
- ullet q_0 is the initial robot configuration
- $u_0 = 0$ is the 'easiest' initialization of the feedforward term
- at the steady state of the *i*-th iteration $(q = q_i, \dot{q} = 0)$, one has

$$g(q_i) = \gamma K_P(q_d - q_i) + u_{i-1}$$

update law of the compensation term (for next iteration)

$$u_i = \gamma K_P(q_d - q_i) + u_{i-1}$$
 [= $g(q_i)$]

 \leftarrow for implementation \rightarrow [for analysis]

Convergence analysis

Theorem

- (a) $\lambda_{\min}(K_P) > \alpha$
- (b) $\gamma \geq 2$

guarantee that the sequence $\{q_0, q_1, q_2, ...\}$ converges to q_d (and $\dot{q}=0$) from any initial value q_0 (and \dot{q}_0), i.e., globally

 condition (a) is sufficient for the global asymptotic stability of the desired equilibrium state when using

$$u = K_P(q_d - q) - K_D \dot{q} + g(q_d)$$

with a known gravity term and diagonal gain matrices

 the additional sufficient condition (b) guarantees the convergence of the iterative scheme, yielding

$$\lim_{i\to\infty}||u_i||=g(q_d)$$

Proof

• let $e_i = q_d - q_i$ be the error at the end of the *i*-th iteration; based on the update law, it is $u_i = g(q_i)$ and thus

$$||u_i - u_{i-1}|| = ||g(q_i) - g(q_{i-1})|| \le \alpha ||q_i - q_{i-1}||$$

$$\le \alpha (||e_i|| + ||e_{i-1}||)$$

on the other hand, from the update law it is

$$||u_i - u_{i-1}|| = \gamma ||K_P e_i||$$

combining the two above relations under (a), we have

$$\gamma \alpha \|e_i\| < \gamma \lambda_{\min}(K_P) \|e_i\| \le \gamma \|K_P e_i\| \le \alpha (\|e_i\| + \|e_{i-1}\|)$$

or
$$||e_i|| < \frac{1}{\gamma} (||e_i|| + ||e_{i-1}||)$$

Proof (cont)

• condition (b) guarantees that the error sequence $\{e_0, e_1, e_2, ...\}$

$$||e_i|| < \frac{\frac{1}{\gamma}}{1 - \frac{1}{\gamma}} ||e_{i-1}|| = \frac{1}{\gamma - 1} ||e_{i-1}||$$

is a contraction mapping, so that

$$\lim_{i\to\infty} ||e_i|| = 0$$

with asymptotic convergence from any initial state

- ⇒ the robot progressively approaches the desired configuration through successive steady-state conditions
 - K_P and K_D affect each transient phase
 - coefficient γ drives the convergence rate of intermediate steady states to the final one

Remarks

 combining (a) and (b), the sufficient condition only requires the doubling of the proportional gain w.r.t. the known gravity case

$$\widehat{K}_P = \gamma K_P \longrightarrow \lambda_{\min}(\widehat{K}_P) > 2\alpha$$

- for a diagonal \widehat{K}_P , this condition implies a (positive) lower bound on the single diagonal elements of the matrix
- again, it is only a sufficient condition
 - the scheme may converge even if this condition is violated ...
- the scheme can be interpreted as using an integral term
 - updated only in correspondence of a discrete sequence of time instants
 - with guaranteed global convergence (and implicit stability)

Numerical results

3R robot with uniform links, moving in the vertical plane

$$l_1 = l_2 = l_3 = 0.5 \text{ [m]}$$

 $m_1 = 30, m_2 = 20, m_3 = 10 \text{ [kg]} \longrightarrow \alpha \cong 400$

with saturations of the actuating torques

$$U_{1,\text{max}} = 800, U_{2,\text{max}} = 400, U_{3,\text{max}} = 200 \text{ [Nm]}$$

• three cases, from the downward position $q_0 = (0, 0, 0)$

I:
$$q_d = (\pi/2, 0, 0)$$
 $\left\{ \begin{array}{l} \widehat{K}_P = \text{diag}\{1000, 600, 280\} \\ K_D = \text{diag}\{200, 100, 20\} \end{array} \right\}$
III: $q_d = (3\pi/4, 0, 0)$ $\left\{ \begin{array}{l} \widehat{K}_P = \text{diag}\{500, 500, 500\} \\ K_D = \text{as before} \end{array} \right\}$

Case I: $q_d = (\pi/2, 0, 0)$

joint position errors (zero after 3 updates)

control torques

Case II: $q_d = (3\pi/4, 0, 0)$

joint position errors (zero after 5 updates)

control torques

Case III: $q_d = (3\pi/4, 0, 0)$, reduced gains

joint position errors (limit cycles, no convergence!)

control torques

Final comments

- only few iterations are needed for obtaining convergence, learning the correct gravity compensation at the desired q_d
- sufficiency of the condition on the P gain
 - even if violated, convergence can still be obtained (first two cases);
 otherwise, a limit motion cycle takes place between two equilibrium configurations that are both incorrect (as in the third case)
 - this shows how 'distant' is sufficiency from necessity
- analysis can be refined to get lower bounds on the K_{P_i} (diagonal case) that are smaller, but still sufficient for convergence
 - intuitively, lower values for K_{Pi} should be sufficient for distal joints
- in practice, update of the feedforward term occurs when the robot is close enough to a steady state (joint velocities and position variations are below suitable thresholds)

Control experiments with flexible robots

without gravity

video

rest-to-rest maneuver in given motion time for a single flexible link (PD + feedforward)

video

end-effector trajectory tracking for FlexArm—a planar 2R robot with flexible forearm

- the same iterative learning control approach has been extended to position regulation in robots with flexible joints and/or links under gravity
 - at the motor/joint level
 - at the Cartesian level (end-effector tip position, beyond flexibility), using a double iterative scheme
- experimentally validated on the Two-link FlexArm @ DIS (now DIAG!)

with supporting base tilted by approx $\Delta = 6^{\circ}$ (inclusion of gravity)

Experimental results for tip regulation

