

# UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC

PRÓ-REITORIA DE GRADUAÇÃO – PROGRAD DEPATARMENTO DE CIÊNCIAS EXATAS - DCET COLEGIADO DE CIENCIAS DA COMPUTAÇÃO - COLCIC

## PROGRAMA DE DISCIPLINA

| CÓDIGO  | DISCIPLINA           | PRÉ-REQUISITOS                                  |
|---------|----------------------|-------------------------------------------------|
| CET 106 | Dinâmica de Sistemas | CET 079 – Análise dos Sistemas de<br>Informação |

| C/HORÁRIA | CRÉDITOS | PROFESSOR(A)    |
|-----------|----------|-----------------|
| 45H       | 3        |                 |
| 30H       | 1        | RICARDO SGRILLO |
| 75H       | 4        |                 |

#### **EMENTA**

Características e propriedades dos sistemas. Interações e propriedades emergentes. Sistemas ecológicos, econômicos, sociais, agrícola, comerciais e industriais. Representação dos sistemas. Diagrama de causalidades e diagrama de Forrester. Categorias de modelos. Modelos matemáticos determinísticos. Solução analítica e numérica. Equações a diferenças finitas. Metodologia de desenvolvimento: objetivos, hipóteses, formulação, codificação, simulação, verificação, calibração, sensitividade e validação. Ferramentas de desenvolvimento. Aplicações

### **OBJETIVOS**

Ensinar os princípios da dinâmica de sistema e do enfoque sistêmico, assim como as metodologias para desenvolver e utilizar modelos matemáticos para simulação de sistemas.

#### **METODOLOGIA**

Aulas teóricas e praticas, com utilização de ferramentas de desenvolvimento de modelos disponíveis. Trabalhos práticos de desenvolvimento de modelos matemáticos. Revisão bibliográfica e seminários

# **AVALIAÇÃO**

Duas provas teóricas, duas provas práticas, avaliação de seminários e de trabalhos práticos. Em todas as provas será permitida a consulta a qualquer material bibliográfico e utilização do computador

### CONTEÚDO PROGRAMÁTICO

- 1. Sistemas Dinâmicos
  - 1.2 Definição
  - 1.3 Tipos
  - 1.4 Características
  - 1.5 Propriedades
- 2. Descrição do Sistema
  - 2.1 Linguagens
  - 2.2 Diagrama de causalidades
  - 2.3 Diagrama de Forrester
- 3. Modelos de Sistemas
  - 3.1 Solução analítica e numérica
  - 3.2 Equações a diferenças finitas
  - 3.3 Integração numérica
  - 3.4 Erros de integração
- 4. Desenvolvimento de modelos
  - 4.1 Objetivos
  - 4.2 Hipóteses
  - 4.3 Formulação
  - 4.4 Codificação
  - 4.5 Simulação
  - 4.6 Estimativa dos parâmetros
- 5. Analise do Modelo
  - 5.1 Verificação
  - 5.2 Calibração
  - 5.3 Sensitividade
  - 5.4 Validação
- 6. Estruturas do Sistema
  - 6.1 Crescimento exponencial
  - 6.2 Estruturas de Controle
  - 6.3 Retroalimentação positiva (positive feedback)
  - 6.4 Retroalimentação negativa (negative feedback)
  - 6.5 Atrasos temporais (delays)
- 7. Ferramentas de desenvolvimento
  - 7.1 Linguagens tradicionais
  - 7.2 SIMILE
  - 7.3 VENSIM
    - 7.2.1 Compartimentos e Fluxos
    - 7.2.2 Variáveis Auxiliares
    - 7.2.3 Vaiáveis Tabela (Lookup)
    - 7.2.4 Fluxos de informação
    - 7.2.5 Funções matemáticas
    - 7.2.6 Gráficos

- 8. Aplicações
  - 8.1 Previsão
  - 8.2 Otimização
  - 8.3 Compreensão
  - 8.4 Aplicações Típicas
  - 8.5 Dinâmica de populações
    - 8.5.1 Sistemas ecológicos (meio ambiente)
    - 8.5.2 Sistemas agrícolas
    - 8.5.3 Sistemas econômicos
    - 8.5.4 Sistemas sociais
    - 8.5.5 Sistemas comerciais
    - 8.5.6 Sistemas Industriais

## REFERÊNCIA BIBLIOGRÁFICA

Adrion, W.R.; Branstad, M.<sup>a</sup> and Cherniavsky, J.C. 1982. Validation, verification and testing of computer software. Computing Surveys 14(2): 159-192.

Dent, J. B. and Blackie, M. J. Systems Simulation in Agriculture. (London: Applied Science), 1979.

De Witt, C. et al. Simulation of Ecological Processes Simulation monographs, Centre for Agricultural Publishing and Documentation, Wageningen. The Netherlands. Pudoc; ISBN: 9022004961.1983

Forrester, J.W. 1976. Principles of Systems. 2a. Edição. Cambridge, Massachusetts. 270p.

Goodman, M. 1974. Study notes in system dynamics. Cambridge, Ma.Wright-Allen Press. 388p

Odum, H. T., Odum, E. C. and Odum, E. C. Modeling for all Scales: An Introduction to System Simulation. Academic Press; ISBN: 0125241704, 2000.

Sgrillo, R.B. & Araújo, K.R.P.Modelaje y Simulación de sistemas epizoóticos. in: Microrganismos patógenos empleados em el control microbiano de insectos plaga. Lecuona, R.E. Editor. Capitulo 26.pp: 293-311.

Zusman, F.S. 1985. Establishing simulation credibility by validation and calibration. In: Summer Computer Simulation Conference, Chicago, II, 1985. Proceedings. San Diego, Ca. Society for Computer Simulation. pp. 156-159.