MAT-206: Inferencia Estadística Certamen 3. Diciembre 22, 2021

Tiempo: 70 minutos

Nombre: _____

Profesor: Felipe Osorio

Ayudantes: Nicolás Alfaro, Fabián Ramírez

1. Sea $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$ vectores aleatorios IID desde la densidad

$$f(x, y; \boldsymbol{\theta}) = \frac{1}{\theta_1^2 \theta_2 y} \exp\left\{-\left(\frac{x}{\theta_1 y} + \frac{y}{\theta_1 \theta_2}\right)\right\}, \quad x, y > 0.$$

a. (25 pts) Determine una región de confianza asintótica del $100(1-\alpha)\%$ para $\boldsymbol{\theta} = (\theta_1, \theta_2)^{\top}$.

b. (25 pts) Obtenga el test de razón de verosimilitudes para probar la hipótesis

$$H_0: \boldsymbol{\theta} = \boldsymbol{\theta}^0, \quad \text{contra} \quad H_1: \boldsymbol{\theta} \neq \boldsymbol{\theta}^0,$$

donde $\boldsymbol{\theta}^0 = (\theta_1^0, \theta_2^0)^{\top}$.

2. Suponga que $X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z_1, \ldots, Z_n$ son independientes con $X_i \sim \mathsf{Poi}(\theta_1), Y_i \sim \mathsf{Poi}(\theta_2)$ y $Z_i \sim \mathsf{Poi}(\theta_3)$ para $i = 1, \ldots, n$. Es decir, considere $(X_1, Y_1, Z_1), \ldots, (X_n, Y_n, Z_n)$ muestra aleatoria desde la densidad

$$f(x, y, z; \boldsymbol{\theta}) = \frac{\theta_1^x \theta_2^y \theta_3^z}{x! y! z!} e^{-\theta_1 - \theta_2 - \theta_3}.$$

a. (25 pts) Determine un intervalo de confianza asintótico del $100(1-\alpha)\%$ para $\delta = \theta_1 + \theta_2 - \theta_3$.

b. (25 pts) Obtenga el test score para probar $H_0: \theta_1 + \theta_2 = \theta_3$ versus $H_1: \theta_1 + \theta_2 \neq \theta_3$.