

OSS-DBS: Quick Start

By Konstantin Butenko kbutenko@bwh.harvard.edu

Why OSS-DBS

- Advanced E-field modeling:
 - o tissue dispersiveness and capacitance
 - conductivity tensors
 - adaptive mesh refinement
- Cable equations
- Supports pathway activation modeling
- For the theory, refer to https://doi.org/10.1371/journal.pcbi.1008023
- Example of use https://doi.org/10.1016/j.nicl.2022.103185

- Computationally demanding (do not run on your old laptop)
- Advanced simulations require understanding of model parameters

— Overview

- Installation
- Setting up in Lead-DBS
 - VTA approximation
 - Pathway activation modeling (PAM)
 - Multiple protocols
- OSS-DBS GUI
- OSS-DBS terminal

Installation

OSS-DBS is distributed as an external library in Lead-DBS

And runs within *Docker* (can be thought as a virtual environment)

- Install Docker
 - Windows and macOS users should install Docker Desktop and provide corresponding permissions
 - Linux users are referred to https://docs.docker.com/desktop/install/linux-install/,
 make sure you install the appropriate version
- Enable development environment in *Preferences File*
- In MATLAB command line, run ea_checkOSSDBSInstall
 - Follow prompted suggestions, you might need to update pip

197 198 - % environment
prefs.env.dev=1;

Installation

Without Lead-DBS installation routines (for confident Linux users)

- Install Docker following https://docs.docker.com/desktop/install/linux-install/
- Install/update pip, run python3 -m pip install PyQt5 and python3 -m pip install h5py
 - I had to re-install some PyQt5 dependencies on Ubuntu 22.04
- Create a docker group, add your user and reboot
 - o sudo groupadd docker
 - sudo usermod -aG docker <USERNAME>
- Pull the docker image sudo docker pull ningfei/oss-dbs:latest
- Open a terminal in leaddbs/.../ext_libs/OSS-DBS/ and run the following to allow non sudo execution of docker container
 - docker build --build-arg UID=\$(id -u) --build-arg GID=\$(id -g) -t ningfei/oss-dbs:custom -f custom.Dockerfile .
- Run OSS-DBS with the following command
 - o docker run --name OSS_docker --volume <OSS-DBS path>:/opt/OSS-DBS --volume <patient stim folder
 path>:/opt/Patient --cap-add=SYS_PTRACE -it --rm <docker image>
 - E.g. for a test patient pBK: docker run --name OSS_docker --volume ~/Documents/leaddbs/ext_libs/OSS-DBS:/opt/OSS-DBS
 --volume ~/Documents/Data/pBK:/opt/Patient --cap-add=SYS PTRACE -it --rm ningfei/oss-dbs:custom

> Basal Ganglia Pathwa...tlas (Petersen 2019)

DBS Tractography At...(Middlebrooks 2020)

connectomes

dMRI_MultiTract

Petersen Pathways

Additional files

- Lead-DBS data folder (templates/...) contains tensor data for MNI space
 (IITMeanTensor.nii.gz & IITMeanTensor_NormMapping.nii.gz)
- Advance users can use custom DTI data
- Fiber atlases are stored as 'lead-dbs-folder'/connectomes/dMRI/'atlas_name'/data.mat
- Pathway atlases are stored as 'lead-dbs-folder'/connectomes/dMRI_MultiTract/'connectome_name'/'pathway_name.mat'
- Example of a fiber atlas:

https://github.com/SFB-ELAINE/OSS-DBS/blob/67a30ac26b300e7517b5c302912d7130c 126db45/OSS platform/Example fibers.mat

Contact us for connectomes, we have plenty!

Setting up in Lead-DBS

Required minimum for non-experts

- Template or native space (the latter is preferred)
- Source settings either in Lead-DBS or OSS-DBS (the latter is easier)
- Use settings to specify the simulation setup

GUI will be used

Setting up in Lead-DBS: VTA approximation

Standard approach of VTA approximation by |E|-threshold is supported

- VTA is seeded with MRI resolution
- Maximum |E| during the pulse
- Rattay's function upon request
- Directional VTA in development

Activation of 'realistic' axons

Choose a connectome/pathway

If one pathway, settings here

- The same morphology within one pathway
- When modeling one pathway, store a file with fibers as 'lead-dbs-folder'/connectomes/dMRI/'pathway_name'/data.mat
- When modeling multiple pathways, store them as
 .../dMRI_MultiTract/'connectome_name'/'pathway_name.mat'
 - o **IMPORTANT:** Review 'Setting' when modeling multiple pathways!
- Fibers are pre-filtered using intentionally exaggerated Kuncel VTA

Activation of 'realistic' axons

- Axons are seeded around active contacts
- Axon length: limit for long fibers to reduce computational costs
- Fiber diameter: educated guess
- Axon model: McIntyre's mammalian axon (or classic McNeal's model upon request)

Activation of 'realistic' axons

Show fiber/axon status

Add Objects Figures Fibertracking

Open Tract
Open ROI
Show tracts weighted by activation map
Show fiber activation result from OSS-DBS

Show fiber activation result from OSS-DBS

- Purple damaged, red activated (i.e. AP in response to the DBS pulse)
- Damaged due to the intersection with the electrode, encapsulation and CSF
- Activation is also stored in Network_state.h5
 file (dataset for each projection)
- Fiber activation is displayed automatically in electrode-scene

Activation of 'realistic' axons

- Purple damaged, red activated (i.e. AP in response to the DBS pulse)
- Damaged due to the intersection with the electrode, encapsulation and CSF
- Activation is also stored in Network_state.h5
 file (dataset for each projection)
- Fiber activation is displayed automatically

Setting up in Lead-DBS: Multiple protocols

Field superposition instead of recalculations

- Linearity of Laplace's equation allows to 'combine' and scale solutions (el. potential distribution) for each active contact
- Straight-forward for constant current mode
- StimSet input in mA(!)
- Use case grounding

$$\nabla \cdot \left[\left(\sigma(\mathbf{r}, \omega) + j\omega \epsilon(\mathbf{r}, \omega) \right) \nabla \phi \right] = 0$$

Setting up in Lead-DBS: Multiple protocols

Field superposition instead of recalculations

- Linearity of Laplace's equation allows to 'combine' and scale solutions (el. potential distribution) for each active contact
- Straight-forward for constant current mode
- StimSet input in mA(!)
- Use case grounding

Allows to access more modeling parameters

Lead-DBS input

OSS-DBS setting											
Settings for OSS-l Butenko et al., 20											
Calculate Axon A	Activatio	n									
Multi-Tract: Peters	•										
Axon Length:		10	mm	Setting							
Fiber Diameter:		5.7	mm	Octung							
E-Field Threshold	l Presets	:		•							
E-Field Threshold:		0.323	V/mm								
Use tensor data:	Use tensor data: IITmean_										
Interactive mode	Э										
		Save									

Deeper understanding of the model

•••	OSS-DBS v0.3 for Lead-DBS				•	• •	OSS-DBS v0.3 for Lead-DBS		
Simulation State	MRI and DTI Data				_ [Simulation State			
	Geometries	ates from ea_reconstruction	.mat		_		MRI Data ready	□ ②	
Simulation Setup	Electrode Type	Boston_Scientific_Vercise_Cartesia >		@	۱ I	Simulation Setup	DTI Data ready	□ ②	Skipping ste
Visualization			_			Visualization	Initial Neuron Array ready	□ ②	if interrupte
	Implantation Coordinate X		_	Q		VISUALIZATION	Geometry and Initial Mesh ready		
	Implantation Coordinate Y	-13.2106		Q			,		
Advanced Simulation Parameters	Implantation Coordinate Z	-9.6288	mm	@			Adjusted Neuron Array ready		
****	2nd point on lead X	12.5273	mm	@		Advanced Simulation Parameters	Signal Generation done	□ ②	
	2nd point on lead Y	-10.2542	mm	@	ا		CSF Refinement done	□ ②	
	2nd point on lead Z	-3.7323	mm	@			Adaptive Refinement done	□ ②	
	Turn around lead's axis	7.57	deg	@			Computations in Spectrum done		
							Continue Interrupted Computations		
So Ope							Scaling and IFFT done	□ ②	
	Current-Controlled Mode	☑				S A)
OSS-08S vs.3	Signal Vector	[-0.003,None,None							
	Solver Type	GMRES • Q				OSS-0BS v0.3			
DBS Elaine									
electrically active implants 55'8 1270						DBS Elaine			
	Icons by Adioma	Load Save As Reset	✓ Run			electrically active implants SFB 1270	Icons by Adioma Load As	ave As	Reset

Deeper understanding of the model

Deeper understanding of the model

• Input configuration is stored as a python dictionary GUI_inp_dict.py in stim folder of the patient

OSS-DBS outputs

Behind the scene

- Various outputs and intermediate files are stored in patient folders
- Can be rather large (depending on the neuron array)
- What is interesting: Tensors/, Images/, Field_solutions/
- Status files: success_rh, skip_rh, fail_rh (same with_lh)

OSS-DBS terminal

Behind the scenes

- Shows the simulation flow (but concisely)
- Closes automatically if everything is fine
- Log files are available in stim. Folders use them to report errors

```
[2022-04-14 19:20:00,858]:Processed frequencies:
[2022-04-14 19:20:00,858]:0.0 130.0 221.92388155425118
[2022-04-14 19:20:34,656]:313.84776310850236 497.69552621700467 865.3910524340093
[2022-04-14 19:21:09,605]:1600.7821048680187 3071.5642097360374 6013.128419472075
[2022-04-14 19:21:45,272]:11896.25683894415 23662.5136778883 47195.0273557766
[2022-04-14 19:22:18,300]:94260.0547115532 188390.1094231064 376650.2188462128
[2022-04-14 19:22:18,627]:--- Sorting the obtained solution
[2022-04-14 19:22:19,626]:Saved sorted solution in Field solutions/
[2022-04-14 19:22:19,626]:----- Parallel calculations took 4 min 4 sec -----
[2022-04-14 19:22:19,626]:---- Conducting signal scaling and IFFT -----
[2022-04-14 19:22:55,980]:25% of neuron models were processed
[2022-04-14 19:23:27,081]:51% of neuron models were processed
[2022-04-14 19:24:01,817]:75% of neuron models were processed
[2022-04-14 19:24:33,769]:----- Signal scaling and IFFT took 2 min 14 sec -----
[2022-04-14 19:24:33,769]:---- Calculating impedance -----
[2022-04-14 19:24:33,792]:Max impedance: 1531.155924348973
[2022-04-14 19:24:36,867]:---- Estimating neuron activity -----
[2022-04-14 19:25:15,613]:0 models were activated
[2022-04-14 19:25:15,616]:0.0% activation (including damaged neurons)
[2022-04-14 19:25:15.622]:---- NEURON calculations took 0 min 38 sec -----
[2022-04-14 19:25:15,622]:---- Simulation run took 9 min 13 sec ----
```


OSS-DBS support

- Do not hesitate to contact us (kbutenko@bwh.harvard.edu)
- The software is rather new, not all features are implemented
- Cluster solution is available upon request