Architecture des Ordinateurs

Mounir T. El Araki

mounir.elarakitantaoui@uic.ac.ma

CPI

Plan du cours

- Historique
- Présentation de l'architecture des ordinateurs
- Représentation interne des informations
- Encodage/décodage de l'information
- Circuits logiques
- Mémoires
- Unité centrale de traitement

Objectif

- Maîtriser les bases de l'algèbre booléenne.
- Synthétiser et analyser un circuit combinatoire .
- Connaître les circuits logiques les plus importants.
- Comprendre les principes des circuits séquentiels et des bascules.

Circuit logique

- Les circuits des machines électroniques modernes ont 2 états d'équilibre 0 et 1 (i.e., 2 niveaux de tension)) signal logique
- Une variable binaire est une variable qui ne peut prendre que deux états.

Circuit logique

Représentation d'un circuit électronique. Exécute des opérations sur des variables logiques, transporte et traite des signaux logiques.

Circuit combinatoire

- circuit idéalisé
- pas de prise en compte du temps de propagation des signaux
- signaux de sortie ne dépendent que des signaux en entrée

Circuit séquentiel

- tiens compte du temps de propagation
- mémoire
- signaux de sortie dépendent également des signaux en entrée antérieurs

Algèbre de Boole

- Mathématicien britannique (1815-1864). Un des promoteurs de la logique mathématiques contemporaine
- George Boole a défini une algèbre qui s'applique a des fonctions logiques de variables logiques (variables booléennes).
 - Toute fonction logique peut être réalisée à partir de fonctions logiques de base.
 - Les opérations arithmétiques peuvent être réalisées à l'aide d'opérations logiques de base.
- Shannon découvrit que l'algèbre des classes de Boole était un outil puissant, qui permettait d'analyser et de représenter les circuits complexes, basés sur un fonctionnement à deux états.

Algèbre de Boole

Fonction logique

- Fonction définie par une table de vérité (i.e., tableau de correspondance entre les états d'entrée et les états de sortie)
- Toutes les combinaisons possibles des variables d'entrées.
- Représentée sous forme de diagramme ou d'expressions algébrique.
- Trois operateurs de base : NON, ET, OU

▶ Table de vérité

- La table de vérité d'une fonction de n variables a autant de ligne que d'états d'entrée, soit 2ⁿ. Comme pour chacun de ces états d'entrées, on peut avoir deux valeurs de sorties (0 et 1), cela nous donne 2^{2pui(n)} fonctions possibles a n variables.
- pour I variable, 4 fonctions pour 2 variables, 16 fonctions
- pour 3 variables, 256 fonctions pour 4 variables, 65536 fonctions

Fonctions d'une variable

Entrée a	Z ₀	Z ₁	Z ₂	Z ₃
0	0	0	1	1
1	0	1	0	1

$$Z_0 = 0$$
 constante

$$Z_1 = a$$
 constante

$$Z_2 = \overline{a}$$
 constante

$$Z_3 = I$$
 constante

Operateur NON

La seule fonction logique a une variable non triviale est la fonction de complémentation (Z₂) réalisée par l'opérateur logique NON (ou inverseur)

Table de vérité

Entrée a	NONa
0	1
1	0

Fonctions à 2 variables

Il existe 16 fonctions logiques a 2 variables. Les deux non triviales les plus importantes sont les fonctions de produit logique (intersection) et somme logique (réunion) réalisées par les operateurs ET et OU, notés respectivement a.b et a + b.

Entrée		ET
a	Ь	a.b
0	0	0
0	1	0
1	0	0
1	1	1

Ent	Entrée		
а	b	a+b	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Fonctions à 2 variables

Ent	rée	NOR
a	b	a+b
0	0	1
0	1	0
1	0	0
1	1	0

Entrée		NAND
a	b	a.b
0	0	1
0	1	1
1	0	1
1	1	0

Entrée		XOR
a	b	a xor b
0	0	0
0	1	1
1	0	1
1	1	0

Fonctions à 2 variables

Il y a 16 fonctions possibles de deux variables a,b

- 00 01 10 11 ab
- \bullet 0 0 0 $F_0 = 0$ Constante 0
- 0 0 I 0 $F_2 = a.b$
- $0 0 I I F_3 = a$
- $0 \quad I \quad 0 \quad 0 \quad F_4 = \overline{a}.b$
- $0 \quad I \quad 0 \quad I \quad F_5 = b$
- 0 I I 0 $F_6 = a \oplus b$ Fonction XOR
- 0 I I $F_7 = a+b$ Fonction OU

Relations particulières

Représentation électrique	Equation	Représentation électrique	Equation
Ta → W	a + 0 = a		a + a = a
F- <u>å</u> 0°0⊗H	a_0=0	⊢	$\mathbf{a} \cdot \mathbf{a} = \mathbf{a}$
Ta. S	a + 1= 1	a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\mathbf{a} + \overline{\mathbf{a}} = 1$
<u>-</u> a-d-⊗+	a ₋ 1= a	<u></u> ,	$\mathbf{a}_{-}\overline{\mathbf{a}} = 0$

Opérateurs complets

- ▶ En pratique, [ET, OU, NON] permet bien d'exprimer tous les operateurs, mais il n'est pas minimal.
 - On peut réaliser la fonction ET avec des OU et des NON et la fonction OU avec des ET et des NON.
- Deux autres operateurs important du point de vue théorique dans l'algèbre de Boole :
 - les operateurs NAND (non et) et NOR (non ou).
 - Ces fonctions forment un ensemble complet ou minimal, c'est a dire qu'ils peuvent exprimer tous les operateurs.

Symboles des opérateurs logiques

Construire la table de vérité

f(a,b,c) = a + b.c

а	Ь	С	b.c	f(a,b,c)
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

Théorème fondamentaux de l'algèbre de Boole

▶ Théorème des constantes

$$a + 0 = a$$
 et $a.0 = 0$

$$a + 1 = 1$$
 et a. $1 = a$

Idempotence

$$\rightarrow$$
 a + a = a

$$\rightarrow$$
 a.a = a

Complémentation

$$\rightarrow$$
 a + \overline{a} = I

$$a.a = 0$$

Commutativité

$$a + b = b + a$$

$$\rightarrow$$
 a.b = b.a

Distributivité

$$a + (bc) = (a + b)(a + c)$$

$$a(b + c) = (ab) + (ac)$$

Associativité

$$a + (b + c) = (a + b) + c = a + b + c$$

$$a(bc) = (ab)c = abc$$

Théorème fondamentaux de l'algèbre de Boole

▶ Théorème de De Morgan

$$b = a + b$$

$$a + b = a.b$$

Autres relations

Propriétés du XOR

- $a \oplus b = \overline{ab} + \overline{ab}$
- $\overline{a \oplus b} = ab + \overline{a} \overline{b}$
- \rightarrow a \oplus 0 = a
- \rightarrow a \oplus a = 0
- \rightarrow a \oplus I = a
- $a \oplus \overline{a} = I$
- \rightarrow a \oplus b = b \oplus a
- $(a \oplus b) \oplus c = a \oplus (b \oplus c)$

Exemple l'opérateur XOR

- On veut exprimer la fonction XOR (ou exclusif) en n'utilisant que les fonctions ET, OU, NON:
- avec la méthode des minterms : (prochain slide)

$$a \oplus b = \overline{a}b + \overline{ab}$$

avec la méthode des maxterms : (prochain slide)

$$a \oplus b = (a + b)(\overline{a} + \overline{b})$$

entrées		XOR
a	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

Méthode des minterms et des maxterms

- A l'aide des théorèmes précédents, il est possible d'exprimer toute fonction logique a l'aide des operateurs NON, ET, OU.
- Méthodes des minterms (i.e., somme logique des produits logiques)
 - La fonction peut être exprimée comme étant la <u>somme logique</u> des **minterms** correspondant a chaque sortie valant I dans la table de vérité. Chaque variable d'entrée est prise telle quelle si elle a la valeur I, sinon elle est remplacée par son complément.
- Méthodes des maxterms (i.e., produit logique des sommes logiques)
 - La fonction peut être exprimée comme étant le <u>produit logique</u> des maxterms correspondant a chaque sortie valant 0 dans la table de vérité. Chaque variable d'entrée est prise telle quelle si elle a la valeur 0, sinon elle est remplacée par son complément.
- L'expression algébrique obtenu est dite forme normale (ou canonique).

Exemple des minterms

 minterm = produit logique de toutes les variables d'entrées correspondant a une sortie a 1.

a	b	c	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$$f(a, b, c) = \overline{abc} + \overline{abc} + \overline{abc}$$

Exemple des maxterms

 maxterm = somme logique de toutes les variables d'entrées correspondant a une sortie a 0.

a	b	c	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

f (a, b, c)=
$$(a + b + c)(a + \overline{b} + c)$$

 $(a + b + \overline{c})(\overline{a} + \overline{b} + c)(\overline{a} + \overline{b} + \overline{c})$

Simplification de fonction logique: méthode algébrique

- On utilise les théorèmes de l'algèbre de Boole vu précédemment pour simplifier l'expression algébrique.
- Exemple utilisant la distributivité et la complémentation

Simplification de fonction logique : Table de Karnaugh

- Basée sur l'inspection visuelle de tables judicieusement construites (table de vérité a 2 dimensions).
 - On attribue la valeur I aux cases correspondantes aux états d'entrée ou la fonction est vraie, sinon on attribue 0.
 - Regroupement par blocs rectangulaires de 2, 4 ou 8, 2ⁿ variables, des cases a l adjacentes.
 - Attention la table se referme sur elle-même.
 - ▶ Une case a I peut appartenir a plusieurs blocs.
 - ▶ Blocs les plus gros possibles (on utilise un bloc une seule fois).
 - Pour chaque bloc :
 - ▶ Si une variable prend comme valeur 0 et 1, on ne la prend pas en compte.
 - ▶ On garde les variables dont la valeur ne varie pas.
 - Operateur = ET.
 - OU de tous les termes de tous les blocs. (on somme tous les termes des blocs)

Table de Karnaugh à 2 variables

▶ Table de vérité :

- Expression algébrique canonique (minterms) :
- $f(a,b) = \overline{a}b + a\overline{b} + ab$

a	b	f(a,b)
0	0	0
0	1	1
1	0	1
1	1	1

$$f(a,b) = a + b$$

Table de Karnaugh à 3 variables

▶ Table de vérité :

- Expression algébrique canonique (minterms) :
- f(a,b) = abc+abc+abc+abc+abc

a	b	C	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	\circ	1
1	1	1	1

ab c	00	01	11	10
0	0	0	1	1
1	1	0	1	1

$$f(a, b) = a + bc$$

Table de Karnaugh à 4 variables

- ▶ Table de vérité :
- Expression algébrique canonique (minterms) :

ab cd	00	01	11	10
00	1	0	0	1
01	0	1	1	1
11	0	0	0	1
10	1	0	0	1

$$f(a, b) = a\overline{b} + \overline{b}\overline{d} + b\overline{c}d$$

Autres exemples

Synthèse d'un circuit combinatoire

Méthode de synthèse

- A partir d'une fonction logique, déterminer un circuit logique réalisant cette fonction et obtenir le meilleur (i.e., le plus simple en nombre de portes, de connexions) :
 - 1. construire la table de vérité de la fonction logique ;
 - dériver une expression algébrique (par exemple par la méthode des minterms) ;
 - simplifier cette expression (méthode algébrique ou tables de Karnaugh);
 - 4. réaliser la fonction logique a l'aide d'operateurs divers (NON, ET, OU, XOR, NAND, NOR, etc.) pour obtenir un logigramme.

Analyse d'un circuit combinatoire

L'analyse est l'opération inverse de la synthèse.

Méthode de d'analyse

- Retrouver la fonction d'un circuit dont on connaît uniquement le logigramme :
 - En procédant des entrées vers les sorties, donner, pour chaque operateur l'expression de sa sortie en fonction de ses entrées, jusqu'à obtention d'une expression pour chaque fonction réalisée par le circuit;
 - 2. Donner la table de vérité correspondante ;
 - 3. En déduire le rôle du circuit.

Exemple d'analyse

$$f(a, b, c) = (a + b)(a + \overline{c})$$

Circuits logiques les plus importants

- Demi-additionneur (addition sans gestion de la retenue) et additionneur complet (addition avec gestion de la retenue);
- Multiplexeur (plusieurs signaux en entrées, l seule sortie) et démultiplexeur (un seul signal en entrée et plusieurs sorties);
- Décodeur, codeur et transcodeur (e.g., conversion de base).

Synthèse d'un demi additionneur

Circuit logique capable de faire la somme de 2 nombres binaires mais qui ne tient pas compte de la retenue éventuelle provenant d'une opération précédente.

a	b	Sortie S	Retenue R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Expression algébrique canonique (minterms) :

$$S = a\overline{b} + \overline{a}\overline{b} = a \oplus b$$

 $R = ab$

Synthèse d'un étage additionneur

Circuit logique capable de faire la somme de 2 nombres binaires et d'une retenue provenant d'une opération précédente.

а	b	RO	Sortie S	R1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Expression algébrique canonique (minterms):
$$S = \overline{ab}R_0 + \overline{ab} \overline{R_0} + a\overline{b}R_0 + abR_0$$

$$= R_0(\overline{ab} + ab) + \overline{R_0}(\overline{ab} + a\overline{b})$$

$$= R_0(\overline{a} \oplus b) + \overline{R_0}(a \oplus b)$$

$$= R_0 \oplus (a \oplus b)$$

$$R_1 = \overline{ab}R_0 + a\overline{b}R_0 + ab\overline{R_0} + abR_0$$

$$= R_0(\overline{ab} + a\overline{b}) + ab(R_0 + \overline{R_0})$$

$$= R_0(\overline{ab} + a\overline{b}) + ab$$

Logigramme d'un étage additionneur

Additionneur binaire complet

L'étage d'additionneur est compose de 2 demi-additionneurs et d'un OU. Il fait la somme de 2 bits en tenant compte d'une éventuelle retenue.

L'additionneur complet est obtenu en utilisant en parallèle plusieurs étages additionneurs (il faut autant d'étages que de bits composants les nombre binaires a additionner).

Démultiplexeur

- ▶ I entrée, n variables, 2ⁿ sorties
- Une des sorties prend la valeur de l'entrée (K) selon la valeur des n variables : la variable K est aiguillée sur l'une des 4 sorties.
- Utile pour choisir la source d'un signal

Multiplexeur

Multiplexeur 2 bits ou 2 vers 1

$$z = \overline{S.a} + S.b$$

multiplexeur

- ▶ 2ⁿ entrées, n variables, I sortie
- La sortie (K) prend la valeur d'une des entrées selon la valeur des n variables : une des 4 entrées est aiguillée sur la sortie K.
- Utile pour choisir la source d'un signal

Application de multiplexeurs

- Fonction universelle (i.e., un multiplexeur a n variables peut réaliser les 2^{2puis(n)} fonctions logiques a n variables ;
- Multiplexage (i.e., concentrer plusieurs lignes en une seule ou faire l'opération inverse);
- Codage, décodage, transcodage.

Décodeur

▶ Fait correspondre a un code en entrée (sur n lignes) une seule sortie active (i.e., a 1) parmi les 2ⁿ sorties possibles.

Le décodeur peut être utilise pour convertir un nombre binaire en nombre décimal ou pour adresser une mémoire.

Décodeur

Codeur

Fait correspondre a une entrée active, parmi les 2ⁿ entrées, un code sur n lignes en sortie.

Un transcodeur fait correspondre une entrée sur n lignes correspondant a un certain codage, une sortie sur m lignes correspondant a un autre codage.