

Datový vědec Finální projekt

Kurz Data Science

Kde se nacházíme?

Úvod	Programování v Pythonu	Matematika & Datová analýza	Klasické strojové učení	Umělé neuronové sítě	Finální projekt
	\rightarrow		}	\rightarrow	\rightarrow
1-3	4-6	7-10	11-17	18-21	22
Úvod do data science Nástroj GIT (video) Systémové nástroje, GIT správa verzí a projektový management	 ★ Základy v Pythonu ★ Python pro mírně pokročilé ★ Python v data science 	 ★ Datové pipeliny (samostudium) ★ Matematický základ pro data science ★ Zpracování dat & Explorativní datová analýza ★ Vizualizace dat 	 ★ Klasické strojové učení ★ Učení s učitelem: Regrese ★ Cvičení: Regrese (projekt) ★ Učení s učitelem: Klasifikace ★ Cvičení: Klasifikace (projekt) ★ Učení bez učitele ★ Cvičení: Učení bez učitele (projekt) 	neuronových sítí * TensorFlow knihovna & Keras API * Trénování hlubokých neuronových sítí	

Praktické projekty hrají klíčovou roli ve výuce ML (Machine Learning = strojové učení), protože poskytují praktickou zkušenost a pomáhají upevnit vaše porozumění teoretickým konceptům včetně jejich aplikace v kontextu reálného světa.

Nyní je před vámi poslední a největší projekt tohoto kurzu! V rámci projektu můžete prohloubit a upevnit získané znalosti a pochlubit se svými nově nabytými dovednostmi. Pojďte vytvořit další skvělý projekt pro své portfolio!

K vyřešení problému, který vás zajímá, můžete použít jakýkoli algoritmus ze scikit learn knihovny a/nebo architektury založené na neuronových sítích!

Stejně jako v minulosti prosím nezapomeňte

- poskytnout zdrojový kód v souboru s koncovkou .ipynb nebo.py
- nahrát svůj projekt na GitHub
- předvést projekt ve svém portfoliu nebo při pracovních pohovorech

1. týden (rozvrh)

- Rozdělení do skupin (maximálně 2-3 studenti)
- 1. den:
 - vybrat si projekt a stáhnout si data
 - ujasnit si požadavky
 - porozumění datům
 - předběžná analýza dat
- **SOUHRN 1. DNE:**
 - podrobný popis a prezentace hypotéz, které mají být testovány (jaké jsou sociální a obchodní aspekty?)
- 2. den:
 - exploratorní analýza dat
 - vizualizace dat
 - zpracování dat
 - úvodní testování algoritmů
 - první výsledky a hodnocení

2. týden (rozvrh)

- Rozdělení do skupin (maximálně 2-3 studenti)
- 3. den:
 - testování dalších modelů
 - ladění hyperparametrů modelu
 - diskuse o tom, co by se mělo zlepšit
- 4. den:
 - poslední úpravy
 - příprava prezentace (slide deck)
- SHRNUTÍ 2:
 - finální výsledky a závěrečná prezentace (pitch-deck)

ML v praxi:

Učení bez učitele(projekt)

Požadavky

Projekt lze dodat ve formě

- PowerPoint nebo Google Slides prezentace
- alternativně je možné projekt zpracovat také v Jupyter Notebooku nebo v Google Colab
- Python kód ve skriptech .ipynb nebo .py
- Projekt může být řešen
 - na lokálním zařízení (počítač/notebook),
 nejprve je nutné nainstalovat všechny potřebné balíčky pomocí příkazu pip
 - o pomocí Google Colab
- V určitém okamžiku by měl být kód refaktorován a vyčištěn, např. pomocí PyCharm nebo jiného IDE.
- Kód by měl být sdílen se všemi členy týmu prostřednictvím vzdáleného úložiště git, například na platformě GitHub.

Detailní popis

- 1. Rozdělení do pracovních skupin:
 - O rozdělení můžete rozhodnout vy sami nebo vás do skupin náhodně rozdělí trenér
- 2. Výsledkem této části by měla být krátká 1-2 stránková **úvodní analýza problému** z obchodního/obsahového hlediska:
 - seznámení se s vybraným souborem dat a popisem úkolu, který má být proveden
 - stažení požadovaných dat do počítače nebo na Google disk
 - · definice toho, co o daném tématu víme
 - načtení dat, seznámení se s jejich strukturou a základními informacemi

Dále uveďte popis toho, co se vaše skupina chystá s datasetem dělat a jaká jsou omezení, tzn. co nelze udělat kvůli nedostatku informací nebo příliš velkému počtu odlehlých nebo chybějících hodnot.

Detailní popis

- 3. Příprava dat, která zahrnuje
 - extrakci číselných a kategorických příznaků
 - čištění dat
 - škálování dat
- 4. Seznam algoritmů strojového učení, které se mají použít k řešení vašeho problému. Vaším hlavním úkolem může být učení s učitelem (klasifikace nebo regrese) nebo učení bez učitele (clustering nebo redukce dimenzionality).

Detailní popis

- 5. Vyvození závěrů z předchozích kroků a na 1–2 slidech vysvětlit, proč jste použili tento konkrétní model, přičemž mějte na paměti:
 - rozlišení lineárních a nelineárních problémů
 - vliv statistik jako je korelace
 - odlehlé hodnoty
 - hodnocení výkonu
 - prediktivní schopnost

Shrnutí

- 1. Identifikace obtíží při práci v týmu.
- 2. Identifikace části, která způsobila největší problémy.
- 3. Identifikace témat, která vyžadují opakování nebo obnovení.
- 4. Rozvíjí způsob realizace projektu účastníky a pomáhá jim lépe porozumět problémům, které se dříve naučili?
- 5. Může vám způsob realizace projektu pomoci s nějakými budoucími problémy?

- Kaggle projekty!
 - https://www.kaggle.com/datasets/fedesoriano/air-quality-data-set
 - https://www.kaggle.com/datasets/hasibalmuzdadid/global-air-pollution-dataset
 - https://www.kaggle.com/datasets/usdot/flight-delays
 - https://www.kaggle.com/datasets/saurabhshahane/twitter-sentiment-dataset
 - https://www.kaggle.com/datasets/sanidhyak/human-face-emotions
 - https://www.kaggle.com/datasets/trainingdatapro/cars-video-object-tracking
- datasety https://github.com/matzim95/ML-datasets

