Analysis 1 – Tutorium 8 robin.mader@campus.lmu.de 8.1.2021

Aufgabe 1 (Gleichmäßige Konvergenz). (a) Aktivierungselement 3.62: Gegeben seien $(a_{n,m})_{(n,m)\in\mathbb{N}_0\times\mathbb{N}_0}\in\mathbb{C}^{\mathbb{N}_0\times\mathbb{N}_0},\ (a_{n,\infty})_{n\in\mathbb{N}_0}\in\mathbb{C}^{\mathbb{N}_0},\ (a_{\infty,m})_{m\in\mathbb{N}_0}\in\mathbb{C}^{\mathbb{N}_0},\ \mathrm{und}\ \mathrm{es}\ \mathrm{gelte}$

$$\forall n \in \mathbb{N}_0 : a_{n,m} \xrightarrow{m \to \infty} a_{n,\infty}, \quad \text{und}$$
 (1)

$$\forall n \in \mathbb{N}_0 : a_{n,m} \xrightarrow{m \to \infty} a_{n,\infty}, \text{ und}$$

$$(a_{n,m})_{m \in \mathbb{N}_0} \xrightarrow[\text{gleichmäßig}]{n \to \infty} (a_{\infty,m})_{m \in \mathbb{N}_0}.$$

$$(2)$$

Zeige:

1. Es existiert $a_{\infty,\infty} \in \mathbb{C}$, sodass

$$(a_{\infty,m})_{m\in\mathbb{N}_0} \xrightarrow{m\to\infty} a_{\infty,\infty} \quad \text{und} \quad ((a_{n,m})_{m\in\mathbb{N}_0\cup\{\infty\}} \xrightarrow{n\to\infty} (a_{\infty,m})_{m\in\mathbb{N}_0\cup\{\infty\}}.$$

2. Es gilt $\lim_{m\to\infty} \lim_{n\to\infty} a_{n,m} = a_{\infty,\infty} = \lim_{n\to\infty} \lim_{m\to\infty} a_{n,m}$ und, etwas schärfer:

$$\forall \varepsilon > 0 \,\exists n_0 \in \mathbb{N}_0 \,\exists m_0 \in \mathbb{N}_0 \cup \{\infty\} \,\forall m \in \mathbb{N}_0 \cup \{\infty\} :$$

$$(n > n_0 \land m > m_0 \Rightarrow |a_{n,m} - a_{\infty,\infty}| < \varepsilon).$$

(b) Gleichmäßige Konvergenz als Konvergenz in der Supremumsnorm-Topologie: Sei $U \subseteq \mathbb{C}$ offen. Für eine beschränkte Funktion $f: U \to \mathbb{C}$ setzen wir

$$||f||_{\infty} := \sup_{u \in U} |f(u)|.$$

Zeige: Die Folge beschränkter Funktionen $(f_n)_{n\in\mathbb{N}}\in(\mathbb{C}^U)^{\mathbb{N}}$ konvergiert genau dann gleichmäßig gegen die beschränkte Funktion $f \in \mathbb{C}^U$, wenn $\lim_{n \to \infty} ||f_n - f||_{\infty} = 0$.

(c) Die Folge von Funktionen $(f_n)_{n\in\mathbb{N}}$, gegeben durch

$$f_n: [0,1] \to [0,1], \quad x \mapsto x^n,$$

konvergiert für $n \to \infty$ punktweise, aber nicht gleichmäßig.

Aufgabe 2. Beweise ohne Verwendung der Differentialrechnung:

(a)
$$\frac{1}{1+x} = 1 - x + x^2 + O(x^3)$$
, für $x \to 0$, $x \in \mathbb{C}$,

(c)
$$\frac{1}{2}(e^x - e^{-x}) = x + \frac{1}{6}x^3 + o(x^3)$$
, für $x \to 0$, $x \in \mathbb{C}$,

(b)
$$\sqrt{1+x} = 1 + \frac{x}{2} + o(x)$$
, für $x \to 0, x \in \mathbb{R}$.

Aufgabe 3. Seien $X \subseteq \mathbb{C}$ und $f, g: X \to \mathbb{C}$ stetig. Angenommen, f und g stimmen auf einer dichten Menge $U \subseteq X$ überein: $f|_U = g|_U$. Zeige: f = g.

Aufgabe 4. Betrachte die Funktion

$$f: ([0,1]\cap \mathbb{Q})\cup (]2,3[\backslash \mathbb{Q})\rightarrow [0,1], \quad x\mapsto \begin{cases} x & \text{falls } x\in [0,1]\cap \mathbb{Q}\\ x-2 & \text{falls } x\in]2,3[\backslash \mathbb{Q}. \end{cases}$$

Zeige: f ist bijektiv und stetig, aber f^{-1} ist nirgendwo stetig.

Aufgabe 5. Seien $a, b \in \mathbb{R}$, a < b, und $f:]a, b[\to \mathbb{R}$ stetig. Zeige: f ist gleichmäßig stetig genau dann, wenn f eine stetige Fortsetzung auf das abgeschlossene Intervall [a, b] hat.

Aufgabe 6. (a) Seien $U \subseteq \mathbb{R}$ und $f: U \to \mathbb{R}$ Lipschitz-stetig. Zeige: f ist gleichmäßig stetig.

(b) Zeige: $[0,1] \to \mathbb{R}, x \mapsto \sqrt{x}$ ist gleichmäßig stetig, aber nicht Lipschitz-stetig.