Reel Vektör Uzayları

Tanım 2.1 Üzerinde \oplus ve \odot işlemleri tanımlı olan bir V kümesi aşağıdaki özellikleri sağlıyorsa V'ye bir gerçel (reel) vektör uzayı denir.

- (a) $\alpha, \beta \in V$ iken $\alpha \oplus \beta \in V$ dir. (Yani V, \oplus işlemine göre kapalıdır.)
 - (1) $\forall \alpha, \beta \in V \text{ için } \alpha \oplus \beta = \beta \oplus \alpha$
 - (2) $\forall \alpha, \beta, \gamma \in V \text{ için } \alpha \oplus (\beta \oplus \gamma) = (\alpha \oplus \beta) \oplus \gamma$
 - (3) $\forall \alpha \in V$ için $\alpha \oplus \theta = \theta \oplus \alpha = \alpha$ şartını sağlayan bir tek $\theta \in V$ vardır.
 - (4) $\forall \alpha \in V$ için $\alpha \oplus \beta = \beta \oplus \alpha = \theta$ şartını sağlayan bir tek $\beta \in V$ vardır. Bu elemana α' nın negatifi denir ve $-\alpha$ ile gösterilir.
 - (b) Her $\alpha \in V$ ve $c \in \mathbb{R}$ için $c \odot \alpha \in V$ dir.

(5)
$$c \odot (\alpha \oplus \beta) = (c \odot \alpha) \oplus (c \odot \beta) \quad (\forall \alpha, \beta \in V \text{ ve } c \in \mathbb{R} \text{ için})$$

(6)
$$(c+d) \odot \alpha = (c \odot \alpha) \oplus (d \odot \alpha) \quad (\forall \alpha \in V \text{ ve } c, d \in \mathbb{R} \text{ için})$$

(7)
$$c \odot (d \odot \alpha) = (cd) \odot \alpha \quad (\forall \alpha \in V \text{ ve } c, d \in \mathbb{R} \text{ için})$$

(8)
$$1 \odot \alpha = \alpha \quad (\forall \alpha \in V \text{ için})$$

Altuzaylar

Tanım 2.12 V bir vektör uzayı ve $W\subseteq V$ olsun. Eğer W,V deki işlemlerle birlikte bir vektör uzayı oluyorsa W ya V nin bir alt uzayı denir.

Örnek 2.13 Her vektör uzayının en az iki alt uzayı vardır: kendisi ve $\{\theta\}$ (yani toplamanın birim elemanı). Bu uzaylara trivial (aşikâr) alt uzaylar denir.

Örnek 2.14 $P_2=\{$ derecesi $\leqslant 2$ olan polinomlar $\}$ olsun. $P_2\subseteq P$ dir. Ayrıca P_2,P nin alt uzayıdır. Genelde $P_n=\{$ derecesi $\leqslant n$ olan polinomlar $\}$ kümesi P nin alt uzayıdır.

Örnek 2.15 $V=\{$ derecesi 2 olan polinomlar $\}$ olsun. $V\subseteq P$ dir. Fakat V,P nin alt uzayı değildir. Çünkü $2t^2+3t+1\in V$ ve $-2t^2+t+2\in V$ polinomlarının toplamı $4t+3\notin V$ dir.

Teorem 2.16 V, \oplus ve \odot işlemleri ile bir vektör uzayı ve $\emptyset \neq W \subseteq V$ olsun. W nun V nin alt uzayı olması için gerek ve yeter şart aşağıdakilerin sağlanmasıdır: (Her $\alpha, \beta \in W$; $c \in \mathbb{R}$ için)

(a)
$$\alpha, \beta \in W \Longrightarrow \alpha \oplus \beta \in W$$

(b)
$$c \in \mathbb{R}$$
 ve $\alpha \in W \Longrightarrow c \odot \alpha \in W$

İspat: $(\Longrightarrow)\ W\subseteq V$ bir alt vektör uzayı olsun. W bir vektör uzayı olduğu için $\alpha,\beta\in W$ ise $\alpha\oplus\beta\in W$ ve $c\odot\alpha\in W$ olduğu açıktır.

İspat: (\Leftarrow) (a) ve (b) sağlansın. (b)'den dolayı $(-1) \odot \alpha \in W$ dır (her $\alpha \in W$ için). (a)'dan dolayı $\alpha \oplus (-1) \odot \alpha \in W$ dir; fakat $\alpha \oplus (-1) \odot \alpha = \alpha \oplus (-\alpha) = \theta$ olduğundan $\theta \in W$ olur. O zaman $\alpha \oplus \theta = \alpha$ dır. Her $\alpha \in V$ için $(-1) \odot \alpha = -\alpha \in V$ olur ((b)den dolayı). $W \subseteq V$ olduğundan 1, 2, 5, 6, 7 ve 8 özellikleri sağlanır. O halde W, V nin bir alt uzayıdır.

Örnek 2.17

$$W = \left\{ \left[egin{array}{c} a \ b \ a+b \end{array}
ight] : a,b \in \mathbb{R}
ight\} \subseteq \mathbb{R}^3$$
olsun.

 W, \mathbb{R}^3 ün alt uzayı mıdır?

$$\alpha = \begin{bmatrix} a_1 \\ b_1 \\ a_1 + b_1 \end{bmatrix} \text{ ve } \beta = \begin{bmatrix} a_2 \\ b_2 \\ a_2 + b_2 \end{bmatrix} \text{ olsun. } \alpha \oplus \beta = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \\ (a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2). \end{bmatrix} \in W \text{ dur; }$$
çünkü $(a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2).$

$$c\in\mathbb{R}$$
 ise $c\odot\alpha=\left[egin{array}{c}ca_1\\cb_1\\c(a_1+b_1)\end{array}
ight]\in W$ dur; çünkü $ca_1+cb_1=c(a_1+b_1)$. Teorem (2.16) dan

Tanım 2.20 V bir vektör uzayı ve $S = \{\alpha_1, \alpha_2, \ldots, \alpha_k\} \subseteq V$ ise

$$Span(S) = \{a_1 \alpha_1 + \dots + a_k \alpha_k : a_i \in \mathbb{R}\}\$$

kümesi V nin bir alt uzayıdır. Bu uzaya S nin <u>gerdiği</u> (<u>doğurduğu, ürettiği</u>) <u>uzay</u> denir. Tanım 2.20 V bir vektör uzayı ve $S=\{\alpha_1,\alpha_2,\ldots,\alpha_k\}\subseteq V$ ise

$$\mathrm{Span}(S) = \{a_1 \alpha_1 + \dots + a_k \alpha_k : a_i \in \mathbb{R}\}\$$

kümesi V nin bir alt uzayıdır. Bu uzaya S nin gerdiği (doğurduğu, ürettiği) uzay denir.

2.2 Lineer Bağımsızlık

Eleman sayısı sonlu olan tek vektör uzayı $\{\theta\}$ uzayıdır. Çünkü V bir vektör uzayı $\theta \neq \alpha \in V$ ise her $c \in \mathbb{R}$ için $c\alpha \in V$ olacağından V sonsuz elemanlı olur.

Tanım 2.23 V bir vektör uzayı ve $S=\{\alpha_1,\alpha_2,\ldots,\alpha_k\}\subseteq V$ olsun. Eğer bir $\alpha\in V$ vektörü $a_1,a_2,\ldots,a_k\in\mathbb{R}$ olmak üzere

$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_k \alpha_k$$

şeklinde yazılabiliyorsa α ya S deki vektörlerin bir lineer kombinasyonu (doğrusal birleşimi) denir.

Örnek 2.24
$$\mathbb{R}^3$$
 de $\alpha=\begin{bmatrix}2\\1\\5\end{bmatrix}$ vektörü $\alpha_1=\begin{bmatrix}1\\2\\1\end{bmatrix}$, $\alpha_2=\begin{bmatrix}1\\0\\2\end{bmatrix}$ ve $\alpha_3=\begin{bmatrix}1\\1\\0\end{bmatrix}$

vektörlerinin bir lineer kombinasyonudur. Gösterelim.

$$\alpha = a_1 \alpha_1 + a_2 \alpha_2 + a_3 \alpha_3 \Longrightarrow a_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$

Buradan $\left\{\begin{array}{lll} a_1+a_2+a_3&=&2\\ 2a_1+a_3&=&1\\ a_1+2a_2&=&5 \end{array}\right\}$ denklem sistemi çözülürse $a_1=1,a_2=2,a_3=-1$ bulunur.

Örnek 2.25
$$\mathbb{R}^3$$
 de $\alpha_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ ve $\alpha_4 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ olsun. $\alpha = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix}$

vektörünün Span $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ kümesinde olup olmadığını inceleyiniz

Çözüm: $\alpha = a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + a_4\alpha_4$ olacak şekilde a_1, a_2, a_3, a_4 sayıları bulunursa $\alpha \in \text{Span}\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ olur.

$$a_1 \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + a_3 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + a_4 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 4 \end{bmatrix} \Longrightarrow \begin{cases} 2a_1 + a_2 + 2a_3 + a_4 & = 0 \\ a_1 + a_3 & = -2 \\ 2a_1 + a_2 - a_4 & = 4 \end{cases}$$

Ek matrisi satır eşelon forma getirirsek:

$$\begin{bmatrix} 1 & \frac{1}{2} & 1 & \frac{1}{2} & \vdots & 0 \\ 0 & 1 & 0 & 4 & \vdots & 4 \\ 0 & 0 & 1 & 1 & \vdots & -2 \end{bmatrix}$$
, buradan $a_1 = a_4$, $a_2 = 4 - a_4$, $a_3 = -2 - a_4$, $a_4 =$ bir reel sayı.

Yani $\alpha \in \operatorname{Span}\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ olur. (Sonsuz miktarda a_1, a_2, a_3, a_4 bulunur.)

Tanım 2.26 V bir vektör uzayı $S = \{\alpha_1, \alpha_2, \ldots, \alpha_k\} \subseteq V$ olsun. Eğer V deki her vektör Sdeki vektörlerin bir lineer kombinasyonu ise S, V yi doğurur (gerer, üretir) veya V, S tarafından doğurulur (gerilir, üretilir) denir.

Örnek 2.27
$$V=\mathbb{R}^3$$
 olsun. $\alpha_1=\begin{bmatrix}1\\2\\1\end{bmatrix}, \alpha_2=\begin{bmatrix}1\\0\\2\end{bmatrix}, \alpha_3=\begin{bmatrix}1\\1\\0\end{bmatrix}$ olsun. $S=\{\alpha_1,\alpha_2,\alpha_3\}$

kümesi V'yi gerer mi?

Çözüm: $\alpha=\begin{bmatrix}a\\b\\c\end{bmatrix}\in V$ olsun. (a,b,c herhangi 3 reel sayı) $\alpha=a_1\alpha_1+a_2\alpha_2+a_3\alpha_3$ denklarısını i

leminin çözümüne bakalım. (yani her a, b, c için a_1, a_2, a_3 bulunabileceğini göstermeye çalışalım.)

$$a_1 + a_2 + a_3 = a$$
 $2a_1 + a_3 = b$
 $a_1 + 2a_2 = c$
 $\begin{cases}
congrues a_1 = \frac{-2a + 2b + c}{3}; a_2 = \frac{a - b + c}{3}; a_3 = \frac{4a - b - 2c}{3} \text{ bulunur.} \end{cases}$

Görüldüğü gibi, her a, b, c için a_1, a_2, a_3 vardır. O halde $Span\{\alpha_1, \alpha_2, \alpha_3\} = V$ dir. Örnek 2.28 $V=P_2$ olsun. $\alpha_1=t^2+2t+1$ ve $\alpha_2=t^2+2$ ise Span $\{\alpha_1,\alpha_2\}=V$ midir? Çözüm: a,b,c reel sayılar olmak üzere $\alpha=at^2+bt+c\in V$ alalım. $\alpha=a_1\alpha_1+a_2\alpha_2$ olacak şekilde a_1, a_2 sabitleri bulmalıyız.

$$at^{2} + bt + c = a_{1}(t^{2} + 2t + 1) + a_{2}(t^{2} + 2) = (a_{1} + a_{2})t^{2} + (2a_{1})t + (a_{1} + 2a_{2})t^{2}$$

 $at^2+bt+c=a_1(t^2+2t+1)+a_2(t^2+2)=(a_1+a_2)t^2+(2a_1)t+(a_1+2a_2)$ eşitliğinden $\left\{\begin{array}{ll} a_1+a_2&=&a\\ 2a_1&=&b\\ a_1+2a_2&=&c \end{array}\right\}$ sistemi elde edilir. Ek matrisi yazıp indirgenmiş forma getirirsek:

$$\begin{bmatrix} 1 & 0 & \vdots & 2a - c \\ 0 & 1 & \vdots & c - a \\ 0 & 0 & \vdots & b - 4a + 2c \end{bmatrix}$$

bulunur. Eğer $b-4a+2c\neq 0$ ise çözüm yoktur (bu eşitsizliği sağlayan a,b,c vardır.) Yani $\{\alpha_1, \alpha_2\}, V$ yi doğurmaz.

Tanım 2.29 V bir vektör uzayı $S = \{\alpha_1, \alpha_2, \dots, \alpha_k\} \subseteq V$ olsun. Eğer

$$a_1\alpha_1 + a_2\alpha_2 + \dots + a_k\alpha_k = \theta_V$$

olacak şekilde, hepsi birden sıfır olmayan a_1, a_2, \ldots, a_k sabitleri varsa S kümesine lineer bağımlıdır denir. Aksi halde (yani a_i lerin hepsinin 0 olması zorunlu ise) S ye lineer bağımsızdır denir.

Örnek 2.30 $V=\mathbb{R}_4$ olsun. $\alpha_1=[\ 1\ 0\ 1\ 2\], \alpha_2=[\ 0\ 1\ 1\ 2\]$ ve $\alpha_3=[\ 1\ 1\ 1\ 3\]$ ve $S=\{\alpha_1,\alpha_2,\alpha_3\}$ olsun. $a_1\alpha_1+a_2\alpha_2+a_3\alpha_3=\theta$ diyelim. a_1,a_2 ve a_3 'ü bulalım

$$a_1+a_3=0$$
 $a_2+a_3=0$ $a_1+a_2+a_3=0$ $a_1+a_2+a_3=0$ $a_1+a_2+a_3=0$ $a_1+a_2+a_3=0$ $a_1+a_2+a_3=0$ $a_1+a_2+a_3=0$

Örnek 2.31
$$\mathbb{R}^3$$
 de $\alpha_1=\begin{bmatrix}1\\2\\-1\end{bmatrix}, \alpha_2=\begin{bmatrix}1\\-2\\1\end{bmatrix}, \alpha_3=\begin{bmatrix}-3\\2\\-1\end{bmatrix}$ ve $\alpha_4=\begin{bmatrix}2\\0\\0\end{bmatrix}$ olsun. $S=$

 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ kümesi lineer bağımlı mıdır?

Çözüm: $a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + a_4\alpha_4 = \theta$ eşitliğinden

$$\begin{vmatrix}
a_1 + a_2 - 3a_3 + 2a_4 & = & 0 \\
2a_1 - 2a_2 + 2a_3 & = & 0 \\
-a_1 + a_2 - a_3 & = & 0
\end{vmatrix}$$

denklem sistemi elde edilir. m < n olduğundan Teorem (1.68)'den dolayı bir trivial olmayan çözüm vardır. Örneğin $a_1=1, a_2=2, a_3=1, a_4=0$ bir çözümdür. Yani S lineer bağımlıdır.

Teorem 2.34 S_1 ve S_2 bir vektör uzayının sonlu alt kümeleri ve $S_1\subseteq S_2$ olsun.

- (a) S_1 lineer bağımlı ise S_2 de lineer bağımlıdır.
- (b) S_2 lineer bağımsız ise S_1 de lineer bağımsızdır.

İspat: (a) $S_1 = \{\alpha_1, \alpha_2, \dots, \alpha_k\}$ ve $S_2 = \{\alpha_1, \alpha_2, \dots, \alpha_k, \alpha_{k+1}, \dots, \alpha_m\}$ olsun. S_1 lineer bağımlı olduğundan hepsi birden sıfır olmayan a_1, \dots, a_k sayıları için $a_1\alpha_1 + \dots + a_k\alpha_k = \theta$ dır. O zaman

$$a_1\alpha_2 + \dots + a_k\alpha_k + 0\alpha_{k+1} + 0\alpha_{k+2} + \dots + 0\alpha_m = \theta$$

olur. Yukardaki toplamın sol tarafındaki katsayıların hepsi birden sıfır olmadığından S_2 lineer bağımlıdır.

İspat: (b) S_2 lineer bağımsız olsun. Bir an için S_1 'in lineer bağımlı olduğunu kabul edelim. O zaman, (a) dan dolayı S_2 lineer bağımlı olur. Bu da bir çelişkidir. O halde S_1 lineer bağımsızdır.

Not 2.36 \mathbb{R}^2 ve \mathbb{R}^3 de lineer bağımlı olmanın anlamı nedir? $\{\alpha_1, \alpha_2\}$, \mathbb{R}^2 de lineer bağımlı olsun. Yani a_1, a_2 ikisi birden sıfır olmayan sayılar olmak üzere $a_1\alpha_1 + a_2\alpha_2 = 0$ dır.

$$a_1 \neq 0 \Longrightarrow \alpha_1 = -\left(\frac{a_2}{a_1}\right)\alpha_2$$
, veya
$$a_2 \neq 0 \Longrightarrow \alpha_2 = -\left(\frac{a_1}{a_2}\right)\alpha_1$$

dir. Yani biri diğerinin bir katıdır. Tersine, vektörlerden biri diğerinin bir katı olsun. Mesela $\alpha_1=a\alpha_2 \implies 1\alpha_1-a\alpha_2=0$ olup $\{\alpha_1,\alpha_2\}$ kümesi lineer bağımlıdır. (Bkz. Şekil 2.6) Özetleyecek olursak

 $\{\alpha_1,\alpha_2\}$ lineer bağımlı \iff Biri diğerinin katı \iff Merkezden geçen aynı doğru üzerindeler.

Teorem 2.37 V bir vektör uzayı, $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq V$ sıfır olmayan vektörlerin bir kümesi olsun. S nin lineer bağımlı olması için gerek ve yeter şart bir α_j vektörünün kendinden önce gelen vektörlerin bir lineer kombinasyonu olmasıdır.

2.3 Baz ve Boyut

Tanım 2.42 V bir vektör uzayı, $S = \{\alpha_1, \alpha_2, \dots, \alpha_k\} \subseteq V$ olsun. Eğer S lineer bağımsız ise ve $\mathrm{Span}(S) = V$ ise S ye V nin bir bazı (tabanı) denir.

Örnek 2.44 $S=\{t^2+1,t-1,2t+2\}$ kümesinin P_2 nin bir bazı olduğunu gösteriniz. Çözüm: $\mathrm{Span}(S)=P_2$ ve S nin lineer bağımsız olduğunu göstermeliyiz. $at^2+bt+c\in P_2$ alalım. $at^2+bt+c=a_1(t^2)+a_2(t-1)+a_3(2t+2)$ olacak şekilde $a_1,a_2,a_3\in\mathbb{R}$ bulmalıyız. Buradan:

$$\begin{vmatrix} a_1 = a \\ a_2 + 2a_3 = b \\ a_1 - a_2 + 2a_3 = c \end{vmatrix} \Longrightarrow a_1 = a, a_2 = \frac{a + b - c}{2}, a_3 = \frac{c + b - a}{4}$$

bulunur. Her a, b, c için a_1, a_2, a_3 bulunabildiğinden $\mathrm{Span}(S) = P_2$ dir.

Şimdi de S nin lineer bağımsız olduğunu gösterelim. $a_1(t^2+1)+a_2(t-1)+a_3(2t+2)=0$ dersek buradan $a_1=a_2=a_3=0$ olması gerektiği görülür. (Ödev). Sonuç: S,P_2 için bir bazdır.

Örnek 2.45 $\alpha_1 = [1 \ 0 \ 1 \ 0], \alpha_2 = [0 \ 1 \ -1 \ 2], \alpha_3 = [0 \ 2 \ 2 \ 1]$ ve $\alpha_4 = [1 \ 0 \ 0 \ 1]$ olsun. $S = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ kümesinin \mathbb{R}_4 için bir baz olduğunu gösterin. (Ödev)

$oldsymbol{V}$ yi geren bir $oldsymbol{S}$ kümesinden $oldsymbol{T}$ bazı şöyle elde edilir:

<u>Adım.1.</u> $a_1\alpha_1 + a_2\alpha_2 + \cdots + a_n\alpha_n = \theta$ eşitliği oluşturulur.

<u>Adım.2.</u> Buradan ek matris oluşturulur ve bu matris indirgenmiş satır eşelon forma getirilir. (Not: Satır eşelon forma getirmek de yeterlidir.)

 $\underline{\text{Adım.3.}}$ Baş eleman olan 1 sayısını bulunduran kolona ait vektörler $V = \operatorname{Span}(S)$ uzayı için bir baz olusturur.

Örnek 2.48 $V=\mathbb{R}_3$ olsun. $\alpha_1=[1\ 0\ 1], \alpha_2=[0\ 1\ 1], \alpha_3=[1\ 1\ 2], \alpha_4=[1\ 2\ 1], \alpha_5=[-1\ 1\ -2]$ olsun. $S=\{\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5\}$ kümesi V yi gerer. (Kontrol ediniz.) Şimdi S nin alt kümesi olan ve V nin bazı olan T kümesini bulalım.

Adım.1.

$$a_1[1\ 0\ 1] + a_2[0\ 1\ 1] + a_3[1\ 1\ 2] + a_4[1\ 2\ 1] + a_5[-1\ 1\ -2] = [0\ 0\ 0]$$

Adım.2.

$$\begin{vmatrix} a_1 + a_3 + a_4 - a_5 = 0 \\ a_2 + a_3 + 2a_4 + a_5 = 0 \\ a_1 + a_2 + 2a_3 + a_4 - 2a_5 = 0 \end{vmatrix} \Longrightarrow \begin{cases} \text{Ek matris:} \\ \text{(ind. satur eşelon formu)} \end{aligned} \begin{bmatrix} \textcircled{1} & 0 & 1 & 0 & -2 & \vdots & 0 \\ 0 & \textcircled{1} & 1 & 0 & -1 & \vdots & 0 \\ 0 & 0 & 0 & \textcircled{1} & 1 & \vdots & 0 \end{bmatrix}$$

Adım.3. Baş elemanlar 1., 2. ve 4. kolonlardadır. Yani $T = \{\alpha_1, \alpha_2, \alpha_4\}$ kümesi \mathbb{R}_3 için bir bazdır.

Not: S nin yazılışında vektörlerin sırası değiştirilirse V nin başka bir bazı elde edilebilir. Örneğin $\beta_1=\alpha_5, \beta_2=\alpha_4, \beta_3=\alpha_3, \beta_4=\alpha_2, \beta_5=\alpha_1$ yazılırsa $S=\{\beta_1,\beta_2,\beta_3,\beta_4,\beta_5\}$ kümesinden $\{\beta_1,\beta_2,\beta_3\}=\{\alpha_5,\alpha_4,\alpha_3\}$ bazı elde edilir.

Tanım 2.51 Bir V vektör uzayının bir bazındaki eleman sayısına (sonlu ise) V nin boyutu denir ve boy(V) ile gösterilir. $V = \{\theta\}$ ise boy(V) = 0 olarak tanımlanır.

Örnek 2.52 $S=\{t^2,t,1\}$ kümesi P_2 için bir baz olup $\mathrm{boy}(P_2)=3$ dür.

Örnek 2.53 $\alpha_1=[0\ 1\ 1], \alpha_2=[1\ 0\ 1], \alpha_3=[1\ 1\ 2]$ ve $S=\{\alpha_1,\alpha_2,\alpha_3\}$ olsun. $V=\mathrm{Span}(S),\mathbb{R}_3$ ün alt uzayı olsun. V deki her vektör $a_1\alpha_1+a_2\alpha_2+a_3\alpha_3$ şeklindedir. $\alpha_3=\alpha_1+\alpha_2$ olduğundan S lineer bağımlıdır. $S_1=\{\alpha_1,\alpha_2\}$ dersek $\mathrm{Span}(S_1)=V$ olur. S_1 lineer bağımsız olduğundan (kontrol edin) S_1,V nin bir bazıdır. Yani boy(V)=2 dir.

Örnek 2.58 $\text{boy}(\mathbb{R}^3)=3$, $\text{boy}(\mathbb{R}_2)=2$, $\text{boy}(\mathbb{R}^n)=n$, $\text{boy}(\mathbb{R}_n)=n$ dir. $\text{boy}(P_3)=4$ dür; çünkü $\{t^3,t^2,t,1\}$ bir bazdır. Genelde $\text{boy}(P_n)=n+1$ dir.

Örnek 2.62 \mathbb{R}_3 de $\alpha = [1 \ 0 \ 1]$ vektörünü içeren bir baz bulunuz.

Çözüm: $\varepsilon_1=[1\ 0\ 0], \varepsilon_2=[0\ 1\ 0], \varepsilon_3=[0\ 0\ 1]$ olmak üzere $\{\varepsilon_1,\varepsilon_2,\varepsilon_3\}, \mathbb{R}_3$ 'ün doğal bazıdır. $S_1=\{\ \alpha,\varepsilon_1,\varepsilon_2,\varepsilon_3\}$ olsun. ε_1 α' nın lineer kombinasyonu olmadığından ε_1 'i tutarız. ε_2 vektörü α ve ε_1 in lineer kombinasyonu mudur? Cevap hayır olduğu için ε_2 'yi de tutarız. ε_3 vektörü α,ε_1 ve ε_2 nin lineer kombinasyonu olduğundan (kontrol edin) ε_3 'ü sileriz. İstenen baz $\{\alpha,\varepsilon_1,\varepsilon_2\}$ dir.

Örnek 2.64 Aşağıdaki homojen sistemin çözüm uzayı V için bir baz bulunuz.

$$\begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 2 & 3 & 0 & 3 & 1 \\ 1 & 1 & 2 & 2 & 1 \\ 3 & 5 & 0 & 6 & 2 \\ 2 & 3 & 2 & 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Çözüm: Gauss-Jordan yöntemiyle aşağıdaki sistem elde edilir.

$$X = s \begin{bmatrix} 3 \\ -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix}$$
 şeklinde yazılabilir. $\begin{cases} s = 1 \\ t = 0 \end{cases}$ ve $\begin{cases} s = 0 \\ t = 1 \end{cases}$ verilirse

$$X_1 = \begin{bmatrix} 3 \\ -3 \\ -1 \\ 1 \\ 0 \end{bmatrix} \text{ ve } X_2 = \begin{bmatrix} 1 \\ -1 \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix}$$

çözümleri bulunur. $\mathrm{Span}(\{X_1,X_2\})=V$ olduğu açıktır. Ayrıca $\{X_1,X_2\}$ lineer bağımsız olduğu için (biri diğerinin katı olmadığından) çözüm uzayı için bir bazdır. Yani $\mathrm{boy}(V)=2$ bulunur.