

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA MECÂNICA

ES664 - Laboratório de Eletrônica para Automação Industrial

Relatório - Experimento 4 Acionamento de motor DC

Nome:
Daniel Dello Russo Oliveira
Marcelli Tiemi Kian

RA101918
117892

1 Objetivos

O experimento tem como objetivo implementar o acionamento de um motor DC através de um retificador controlado e um chopper. Além disso, queremos avaliar o controle de velocidade do motor em malha aberta.

2 Experimento

2.1 Retificador Monofásico Controlado

Utilizamos um transformador para rebaixar a tensão de 220 V para 24 V, fazendo a ligação da tensão de linha (protegida pelos fusíveis) no primário, obtendo como saída 25.54 V. No secundário, ligamos o circuito na entrada do conversor. Alimentamos e configuramos o cartão de disparos, permitindo configurar α por meio de um potenciômetro. O esquemático do sistema pode ser visto na figura 1.

Figura 1: Retificador monofásico controlado de onda completa utilizado para acionar motor DC. (roteiro)

Prosseguimos o experimento com a medição da resistência de armadura do motor:

$$R_a = 7.9 \ \Omega \tag{1}$$

e com a resistência de medição

$$R_R = 3.8 \ \Omega \tag{2}$$

sendo este último valor diferente do sugerido no roteiro (0.2Ω) .

Ligamos o circuito e capturamos a forma de onda da tensão de armadura v_a para $\alpha = 90^{\circ}$, conforme figura 2. Variando os valores de α , obtivemos os valores da tabela 1. Por um erro de medição, essa tensão medida é na realidade a soma da tensão aplicada sobre a armadura do circuito e sobre o resistor de medição.

Medimos também a tensão no resistor de medição R_R , para cálculo da corrente de armadura, conforme figura 3 e equação abaixo. Conforme orientado pelo professor, descontinuamos o experimento sem fazer a medição da corrente para outros valores de α .

$$i_a = \frac{v_R}{R_R} \tag{3}$$

Calculamos o torque no motor a fazendo a substituição nos valores da equação abaixo, em que igualamos a potência mecânica com a potência elétrica (descontando a potência dissipada na armadura), e isolamos a variável de torque.

$$T_m = \frac{v_a * i_a - R_a i_a^2}{\omega_m} \tag{4}$$

Sabemos que:

$$T_m = k_t i_a \tag{5}$$

$$V_e = k_e \omega_m \tag{6}$$

$$V_a = R_a i_a + L_a \frac{di_a}{dt} + V_e \tag{7}$$

Considerando que estamos trabalhando com valores médios e em regime permanente e que a tensão medida incluí a tensão sobre o resistor de medição, podemos escrever as equações acima como:

$$i_a = \frac{V_a - k_e \omega_m}{R_a + R_R} \tag{8}$$

$$T_m = k_t i_a \tag{9}$$

Encontramos, para $\alpha=90^{\circ},\,k_t=0,0536Nm/A$ e $k_e=0,0536Vs/rad.$ Sabemos

que k_t e k_e deveriam apresentar o mesmo valor quando escritos no SI então nossos valores fazem sentido. Utilizando as equações 8 e 9 e os valores de k_t e k_e calculados (supondo que eles não variam) encontramos a corrente e o torque para cada ângulo de disparo, apresentados na tabela 1.

Figura 2: Tensão de armadura do motor DC com retificador controlado para $\alpha=90^{\circ}$

Figura 3: Corrente no resistor de medição para $\alpha=90^\circ$

Tabela 1: Tensão de armadura v_a , velocidade angular ω_m , corrente de armadura i_a e torque T_m do motor DC para diferentes ângulos de disparo α

α	$v_a(V)$	$\omega_m(rpm)$	$i_a(A)$	$T_m(N \cdot m)$
60°	4.81	340	0.248	0.0133
70°	5.9	470	0.279	0.0149
80°	7.12	650	0.297	0.0159
90°	8.5	900	0.295	0.0158
100°	9.8	1150	0.286	0.0153
110°	10.6	1350	0.258	0.0138
120°	11.6	1510	0.267	0.0143

Notamos que a variação da tensão na armadura é abrupta, e que chega a ficar abaixo dos $0\ V$, efeito introduzido pelo fator indutivo da carga, em alguns momentos. A corrente aplicada no motor chega a zerar em alguns momentos, o que não é desejado no acionamento do motor DC.

Variando o valor de α , podemos observar que ocorre um aumento na tensão de armadura, e consequentemente, aumento na velocidade angular ω_m .

Se desconsiderarmos o atrito de coulomb, temos que:

$$T_m = J\frac{d\omega_m}{dt} + B\omega_m + T_{wl} \tag{10}$$

Sabemos que a carga acoplada também é da forma:

$$T_{wl} = J_{wl} \frac{d\omega_m}{dt} + B_{wl}\omega_m \tag{11}$$

Considerando que estamos trabalhando em regime permanente, podemos escrever:

$$T_m = (B + B_{wl})\omega_m \tag{12}$$

Encontramos então que (para $\alpha = 70^{\circ}$)

$$B + B_{wl} = 0.0003N \cdot m \cdot s/rad \tag{13}$$

Simulamos então um sistema com $R_a = R_a + R_R$ e $B = B + B_{wl}$ e $k_t = k_e = 0,0536$ (considerando valores de indutância de armadura e inércia do motor bem baixos pois só nos interessamos no regime permanente) e encontramos a velocidade do motor em função do ângulo de disparo para simulação. Comparamos esse resultado com a curva que aproxima a velocidade do motor em função do ângulo de disparo calculada a partir dos dados apresentados na tabela 1 e

representada na equação 14. Os resultados são apresentados na figura 4.

$$\omega_m[rad/s] = 289, 5 - 2, 158\alpha[^{\circ}] \tag{14}$$

Figura 4: Velocidade em função de α para retificador medido e simulado

Como podemos ver, nosso modelo medido e simulado difere razoavelmente. Acreditamos que isso acontece pois adotamos uma série de simplificações no cálculo dos parâmetros do motor, além das imprecisões de medidas e diversos outros fatores. A curva linearizada da velocidade em função do ângulo de disparo ainda assim parece ser uma aproximação boa o suficiente dado que nos mantenhamos em um intervalo de valores para α apropriado.

2.2 Conversor Step-Down

Para o experimento com o conversor step-down, configuramos as tensões da fonte DC e pulsos do gerador de sinal. Ligamos o lado alto do conversor em $12\ V$, e o lado baixo na armadura do motor em série com o resistor de medição.

Alimentamos o circuito de acionamento do conversor com 15 V e ligamos o gerador de sinal nos cabos indicados por "BUCK" e "GND".

Utilizamos o mesmo motor do caso anterior, mas outra resistência de medição:

$$R_S = 5.3 \ \Omega \tag{15}$$

Ligamos o circuito e capturamos a forma de onda da tensão de armadura v_a para D=50%, conforme figura 5. Variando os valores de D, obtivemos os valores da tabela 2. Prosseguimos o experimento registrando os valores de tensão na resistência de medição. A forma de onda para a corrente i_a é mostrada na figura 6, para realizar o cálculo de i_a , utilizamos equação a seguir.

$$i_a = \frac{v_R}{R_S} \tag{16}$$

Para cálculo do torque, utilizamos a equação 4, levando em consideração apenas a conservação de energia e que os termos indutivos da carga seriam anulados uma vez que estamos trabalhando com valores médios e em regime permanente.

Figura 5: Tensão de armadura do motor DC com chopper em step-down para D=50%

Figura 6: Corrente no resistor de medição para D=50%

Tabela 2: Tensão de armadura v_a , velocidade angular ω_m , corrente de armadura i_a e torque T_m do motor DC para diferentes duty-cycles D

D	$v_a(V)$	$\omega_m(rpm)$	$i_a(A)$	$T_m(N \cdot m)$
20%	ı	_	-	_
30%	2.18	102	0.117	0.0137
40%	3.08	234	0.143	0.0114
50%	4.32	390	0.170	0.0124
60%	5.4	574	0.192	0.0124

Como podemos ver a tensão e a corrente aplicada sobre o motor se mantém praticamente constantes, fator altamente desejável no controle desses dispositivos pois assim nossa velocidade e torque apresentarão menos variações.