Particle spectrograph

Wave operator and propagator

									$\sigma^{\#1}_{0^+}$				$ au_{0}^{\#1}$				$ au_{0}^{\#2}$	$\sigma_{0}^{\#1}$												
$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	$\sigma_{0}^{\#1}$ $\tau_{0}^{\#1}$ $\tau_{0}^{\#1}$	$\sigma_{0+}^{\#1} \dagger \frac{8 \beta_{1}}{\alpha_{0}^{2} - 4 \alpha_{0} \beta_{1} + 8 \alpha_{6} \beta_{1} k^{2}}$					$-\frac{i\sqrt{2}(\alpha_0-4\beta_1)}{\alpha_0(\alpha_0-4\beta_1)k+8\alpha_6\beta_1}$ $-\frac{\alpha_0-4\beta_1+2\alpha_6k^2}{k^2(\alpha_0^2-4\alpha_0\beta_1+8\alpha_6\beta_1)}$ 0				0 0	$ \omega_0^*$	[‡] ‡†	$\omega_{0}^{\#1} = \frac{\alpha_0}{2} - 2 \beta_1 + \alpha_6 k^2$			$f_{0}^{\#} - \frac{i(\alpha_{0}-4)}{\sqrt{2}}$		f ₀ ^{#2}	$\omega_{0}^{#_{1}}$			
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0	_	$\sigma_{0}^{#1}$ † 0					0				$\frac{2}{\alpha_0 - 4 \beta_1}$	$f_0^{\#}$	‡ 1 †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$			$-4 \beta_1 k^2$		0	0			
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$	$f_{1^{-}\alpha}^{#2}$	0	0	0	$i(\alpha_0-4\beta_1)k$	0	0	0	ors			$f_0^{\#}$ $\omega_0^{\#}$	^{‡2} † † † † † † † † † † † † † † † † † † †		0 0 × _×		0		0	$\frac{1}{2} (\alpha_0 - 4)$	$(1 \beta_1)$		
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4 i k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)}$	$\omega_{1}^{\#2}{}_{lpha}$ $f_{1}^{\#1}{}_{lpha}$	0 0	0 0	0	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}} 0 -\frac{1}{2}\vec{l}$	0 0	0 0	0 0	ʻgauge generators		0 3	м	0 3	10	$f_{2}^{\#1}$ $\omega_{2}^{\#1}$ a_{eta}	$\frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}} \qquad 0$	$2\beta_1 k^2$ 0	$0 - \frac{\alpha_0}{4} + 1$	$ au_2^{\#1}_{+}$ $\sigma_2^{\#1}_{-}$ $aeta_\chi$		$\frac{2}{\alpha_0 k^2}$ 0	$0 \frac{\frac{\alpha}{4} + \beta_1}{\frac{\alpha}{4} + \beta_1}$	
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0	$\omega_{1^{-}\alpha}^{\#1}$ (0	0	0	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right) -\frac{1}{4}$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$\frac{1}{2}$ \vec{l} (α_0 - 4 β_1) k	ce constra irreps	$2ik \sigma_{1}^{\#2\alpha} ==$	0 == 2	$^{\alpha\beta} + ik \sigma_1^{\#2} ^{\alpha\beta} = $	Total constraints:	$\omega_2^{\#1}$	$-\frac{\alpha_0}{4}+\beta_1$	$t^{\alpha\beta} \frac{\frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}}}{0}$		$\sigma_{2}^{\#1}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0 χ <i>γ</i> χ		
$\sigma_{1}^{\#2}_{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0	$f_{1}^{\#1}$	$\frac{1\beta_1}{2} \frac{i(\alpha_0 - 4\beta_1)k}{2\sqrt{2}}$		0	0	0 0	0 0	0 0	Ç		atic (fr	(ee) ac $\frac{\tau_1^{*1}\alpha}{1} = \frac{1}{1}$				$\omega_2^{#1} + \alpha^{\beta}$	$f_2^{#1} + ^{\alpha \beta}$	$\omega_{2}^{#1} +^{\alpha eta \chi}$		$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{*1} + \alpha \beta \chi$	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)} \left -\right $	$-\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1)(1 + k^2)}$	0	0	0	0	$\omega_{1}^{\#1}$ $\omega_{1}^{\#2}$	$\frac{1}{4} \left(\alpha_0 - 4 \beta_1 \right) \left \frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}} \right $	$\frac{\alpha_0-4\beta_1}{2\sqrt{2}}\qquad 0$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}} \qquad 0$	0 0	$ \iiint \left(-\frac{1}{2} (\alpha_0 - 4 \beta_1) \omega_{\alpha}^{\alpha\beta} \omega_{\beta}^{X} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha}^{X} + f^{\alpha\beta} \partial_{\beta} \omega_{\alpha}^{X} + \alpha_0 \partial_{\beta} \omega_{\alpha}^{\alpha\beta} + 4 \beta_1 \omega_{\beta}^{X} \partial^{\beta} f^{\alpha}_{\alpha} - 2 \beta_1 \partial_{\beta} \partial_{\beta} \omega_{\alpha}^{X} + 4 \beta_1 \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\chi} f_{\beta}^{X} + \alpha_0 f^{\alpha\beta} \partial_{\chi} \omega_{\alpha}^{X}_{\beta} - \alpha_0 f^{\alpha}_{\alpha} \partial_{\beta}^{X} \partial_{\beta}^{X} + \alpha_0 f^{\alpha\beta} \partial_{\chi} \omega_{\alpha}^{X}_{\beta} - \alpha_0 f^{\alpha}_{\alpha} \partial_{\beta}^{X} \partial_{\beta}^{X}$												$\beta_1 \partial_{\beta} f$ $\delta^{\alpha}_{ \alpha} \partial_{\beta}$	$\int_{X}^{X} \partial^{\beta}$	f^{α}_{α} -2 β	$\partial_{\alpha} f_{\beta \chi} \partial^{\alpha}$	$^{\chi}f^{lphaeta}$ -	
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$\tau_{1}^{\#1} + ^{lphaeta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$	•	$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} \uparrow^{lpha}$			$(f_{\chi\beta}\partial^{\chi}f^{\alpha})$ $(4 \beta_1) \omega$												

Massive and massless spectra

Unitarity conditions

 $\alpha_0 > 0 \&\& \alpha_6 > 0 \&\& \beta_1 < 0 \mid |\beta_1 > \frac{\alpha_0}{4}$