The Shape Space of Discrete Orthogonal Geodesic Nets SIGGRAPH ASIA 2018

Michael Rabinovich, ETH Zurich, Switzerland Tim Hoffmann, TU Munich Olga Sorkine-Hornung, ETH Zurich, Switzerland

Xianzhong Fang

October 15, 2018

Contents

- Developable surfaces
- Explicit Representation: Ruling
- 3 Curvature Line Parameterization
- 4 Discrete Orthogonal Geodesic Nets
- Optimization
- 6 Results

Developable surfaces

Isometric deformation: no stretch and tear.

Developable surfaces

Isometric deformation: no stretch and tear.

Explicit Representation: Ruling

Explicit Representation: Ruling

Explicit Representation: Ruling

Structure is very different: not easy for editing and modeling

Curvature Line Parameterization

Curvature Line Parameterization

• Corollary: A smooth surface is developable if and only if it can be locally parameterized by orthogonal geodesics.

Geodesic: as straight as possible on surface

$$\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4$$
, $\alpha_1 + \alpha_4 = \alpha_2 + \alpha_3$

Geodesic: as straight as possible on surface $\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4$, $\alpha_1 + \alpha_4 = \alpha_2 + \alpha_3$

Orthogonal Geodesic $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4$

Geodesic: as straight as possible on surface $\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4$, $\alpha_1 + \alpha_4 = \alpha_2 + \alpha_3$

Orthogonal Geodesic
$$\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4$$

Geodesic: as straight as possible on surface $\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4$, $\alpha_1 + \alpha_4 = \alpha_2 + \alpha_3$

Orthogonal Geodesic $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4$

$$\phi_1(\mathbf{F}) := \cos(\alpha_1) - \cos(\alpha_2) = 0,$$

 $\phi_2(\mathbf{F}) := \cos(\alpha_2) - \cos(\alpha_3) = 0,$
 $\phi_3(\mathbf{F}) := \cos(\alpha_3) - \cos(\alpha_4) = 0.$

Shape Space: DOG flow

- The Shape Space: $\mathcal{M} = \{ \mathbf{F} \in C \mid \varphi_i(\mathbf{F}) = 0, \ \forall i = 1, 2, 3..., m \}.$
- DOG Flow: $\mathcal{F}(t) \in \mathcal{M}, \mathcal{F}(0) = F^0$.
- Tangent space of \mathcal{M} $(T\mathcal{M})$: $\frac{\partial \varphi}{\partial \mathbf{F}} = J_{F^0}, J_{F^0}x = 0.$

- The net: **F**.
- Objective energy: $E(\mathbf{F})$.

- The net: **F**.
- Objective energy: $E(\mathbf{F})$.
- Gradient: $\nabla_M E(\mathbf{F}) = M^{-1} \nabla \mathbf{F}$.

- The net: **F**.
- Objective energy: $E(\mathbf{F})$.
- Gradient: $\nabla_M E(\mathbf{F}) = M^{-1} \nabla \mathbf{F}$.
- Projection: $\overline{\nabla}_M E(\mathbf{F}) := \operatorname{argmin}_{\mathbf{t}} \|\nabla_M E(\mathbf{F}) \mathbf{t}\|_M, \ \mathbf{t} \in T\mathcal{M}$

- The net: **F**.
- Objective energy: $E(\mathbf{F})$.
- Gradient: $\nabla_M E(\mathbf{F}) = M^{-1} \nabla \mathbf{F}$.
- Projection: $\overline{\nabla}_M E(\mathbf{F}) := \operatorname{argmin}_{\mathbf{t}} ||\nabla_M E(\mathbf{F}) \mathbf{t}||_M, \ \mathbf{t} \in T\mathcal{M}$
- KKT system:

$$K\begin{pmatrix} \overline{\nabla}_M E(\mathbf{F}) \\ \lambda \end{pmatrix} = \mathbf{b}$$

$$K = \begin{pmatrix} M & J^{\mathsf{T}} \\ J & 0 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} \nabla E(\mathbf{F}) \\ \mathbf{0} \end{pmatrix}$$

• Bending minimization:

$$E_H(\mathbf{F}) = \sum_{
u_i \in \mathbf{F}} A_i H_i^2$$

• Isometry term:

$$E_{iso}(\mathbf{F}) = \sum_{e \in \mathbf{F}} (\ell_e - \ell_e^0)^2$$

• Positional constraints:

$$\sum_{i \in C} ||F(i) - C(i)||^2$$

Results

Results

Limitations

- Timecost is high: restricted to rather coarse models for interactive editing.
- No support for intricate crease patterns: here each crease curve is simple and starts and ends at a mesh boundary.

Thanks!