Robust Method for Causal Inference: Penalized Spline of Propensity Methods for Treatment Comparison (PENCOMP)

Tingting Zhou ¹

¹University of Michigan

April 2, 2018

Objectives

Confounding by indication in two-time point treatment

- Standard regression methods fail when there are time dependent confounders
 - Mediators of earlier treatments and confounders of future treatments.

Outline

- Introduction
 - Setup, Notations and Assumptions
 - Existing approaches: IPTW, AIPTW, G-Computation
- Our proposed method (PENCOMP) to deal with time dependent confounders
 - Relation to missing data
 - Estimation and Inference
- Simulation Studies
- Application to an AIDS dataset
- Discussion and Extensions

Introduction

Confounding by indication in two-time point treatment

- Treatments are applied over time and treatment decisions driven by intermediate outcomes
- Intermediate outcomes are simultaneously mediators and confounders

Setup and Notations

- ullet Assume n subjects and T+1 discrete time points by $t=1,\cdots,T+1$
- ullet $ar{X}_t$ observed covariate history up to and including time point t
- ullet $ar{Z}_t$ observed treatment history up to and including time point t
- ullet Y final outcome of interest measured at time point T+1
- ullet $Y^{ar{\mathcal{Z}}_T}$ and $X^{ar{\mathcal{Z}}_{t-1}}_t$ denote the potential final and intermediate outcomes
 - ullet Observed if assigned to treatment history $ar{\mathcal{Z}}_{\mathcal{T}}$ and $ar{\mathcal{Z}}_{t-1}$ respectively
- Focus for illustration on two-time point treatments
 - Assume $Z_t \in (0,1)$ at each t
 - $(Y^{00}, Y^{01}, Y^{10}, Y^{11})$ and (X_2^1, X_2^0)

Assumptions

- The stable unit treatment value assumption (SUTVA) (Angrist, Imbens and Rubin 1996)
 - a) Consistency
 - b) No interference between subjects
- ullet The positivity assumption: $0<\Pr(Z_t=z_t|ar{X}_{t-1},ar{Z}_{t-1})<1$
- Sequential ignorable treatment assumption states that

$$(Y^{\bar{Z}_T},X_{t+1}^{\bar{Z}_t}) \underline{\!\!\perp\!\!\!\!\perp} Z_t | (\bar{Z}_{t-1},\bar{X}_t)$$

 At each time t, treatment assignment Z_t is as if randomized conditional on all the past history

IPTW and AIPTW

- Inverse Probability of Treatment Weighting (IPTW)
 - Weights subjects by the inverse of the probability of receiving the observed treatment sequence
 - Consistent if the propensity model is correct
- Augmented Inverse Probability of Treatment Weighting (AIPTW)
 - Doubly robust
 - Consistent if the propensity models are correct
 - Consistent if all the conditional distributions relating outcomes to covariates are correctly specified (Scharfstein, Rotnitzky, and Robins, 1999)

G Computation

• Fix treatment regime $\bar{z}_T = (z_1, \cdots, z_T)$

$$E(Y^{\bar{z}_T}) = \sum_{X_1, \dots, X_T} E(Y|\bar{X}_T, \bar{Z}_T = \bar{z}_T) \times P(X_1) \times P(X_2|X_1, Z_1 = z_1)$$

$$\cdots \times P(X_T|\bar{X}_{T-1},\bar{Z}_{T-1}=\bar{z}_{T-1})$$

- Simulate potential outcomes under each treatment sequence based on conditional distribution of covariates and outcomes estimated from the data (Robins, 1987)
- Consistent if all conditional distributions are correctly specified

PENCOMP

- An alternative approach: a multiple-imputation based approach called Penalized Spline of Propensity Methods for Treatment Comparison (PENCOMP)
 - Only one potential outcome is observed for each subject
 - The idea behind PENCOMP: impute the missing potential outcomes
 - Use the propensity as a predictor
 - Conceptually simple: relies on regression models for prediction of potential outcomes

PENCOMP: Two-Time Point Treatment

Observed and missing intermediate and final outcomes for treatment at two-time point treatment

Subjects	X_1	Z_1	X_2^0	X_2^1	Z_2	Y ⁰⁰	Y^{01}	Y ¹⁰	Y^{11}
1		0		?	0		?	?	?
		0		?	0		?	?	?
n ₀₀		0		?	0		?	?	?
$n_{00} + 1$		0		?	1	?		?	?
		0		?	1	?		?	?
$n_0 = n_{00} + n_{01}$		0		?	1	?		?	?
$n_0 + 1$		1	?		0	?	?		?
		1	?		0	?	?		?
$n_0 + n_{10}$		1	?		0	?	?		?
$n_0 + n_{10} + 1$		1	?		1	?	?	?	
• • •		1	?		1	?	?	?	
$n = n_0 + n_{10} + n_{11}$		1	?		1	?	?	?	

Step 1: Imputing Missing Potential Outcomes X₂

How to build a robust imputation model for intermediate outcome X_2 ?

Result 1

$$(X_2^1, X_2^0) \perp \!\!\! \perp Z_1 | X_1 \Longrightarrow (X_2^1, X_2^0) \perp \!\!\! \perp Z_1 | P_{z_1}(X_1)$$

• where $P_{z_1}(X_1) = Pr(Z_1 = z_1|X_1)$ is the probability of being assigned z_1 (Rosenbaum and Rubin 1983)

$$E(X_2^1 - X_2^0) = E[E(X_2|X_1, Z_1 = 1)] - E[E(X_2|X_1, Z_1 = 0)]$$

= $E[E(X_2|P_{z_1}(X_1), Z_1 = 1)] - E[E(X_2|P_{z_1}(X_1), Z_1 = 0)]$

ullet Conditioning on the covariates X_1 or on the propensity scores

Imputation Model for X_2

• PENCOMP imputes the missing potential outcomes $\hat{X}_2^{z_1}$ from the mean model

$$E(X_2^{z_1}|X_1,Z_1=z_1,\theta_{z_1},\beta_{z_1})=s(\hat{P}_{z_1}^*|\theta_{z_1})+g_{z_1}(X_1;\beta_{z_1})$$

- $\hat{P}_{z_1}^* = \log[\hat{P}_{z_1}(X_1)/(1-\hat{P}_{z_1}(X_1))]$
- $g_{z_1}()$ denotes parametric function; improves efficiency by including predictors of outcome

Penalized Spline

- $s(\hat{P}_{z_1}^*|\theta_{z_1}) = \theta_{1_{z_1}}\hat{P}_{z_1}^* + \sum_{k=1}^K \theta_{1k_{z_1}}(\hat{P}_{z_1}^* K_k)_+$, with truncated linear basis
 - K_1, \dots, K_K are fixed knots
 - $(\hat{P}_{z_1}^* K_k)_+ = (\hat{P}_{z_1}^* K_k)$ if $\hat{P}_{z_1}^* > K_k$; and = 0 if $\hat{P}_{z_1}^* \le K_k$.

Reformulation as a Mixed Model

$$E(X_2^{z_1}|X_1,Z_1=z_1,\theta_{z_1},\beta_{z_1})=s(\hat{P}_{z_1}^*|\theta_{z_1})+g_{z_1}(X_1;\beta_{z_1})$$
(1)

Reformulate (1) as a mixed model (Wand, 2003)

$$E(X_2^{z_1}|X_1, Z_1 = z_1, \theta_{z_1}, \beta_{z_1}) = C_1\beta_{z_1} + C_2\theta_{z_1}$$
$$\theta_{z_1} \sim N(0, \sigma_{\theta_{z_1}}^2 I)$$

- $C_1 = [1, X_1, \hat{P}_{z_1}^*], C_2 = [(\hat{P}_{z_1}^* K_1)_+, \cdots, (\hat{P}_{z_1}^* K_K)_+]$
- \bullet Fixed effects: $\beta_{\mathbf{z}_1} = \left(\beta_{\mathbf{0}_{\mathbf{z}_1}}, \beta_{\mathbf{1}_{\mathbf{z}_1}}, \theta_{\mathbf{1}_{\mathbf{z}_1}}\right)$
- ullet Random basis coefficients: $heta_{z_1} = (heta_{11_{z_1}}, \cdots, heta_{1K_{z_1}})$

Estimation

- Parameters estimated using REML
- Easily fitted in statistical software, such as PROC MIXED in SAS or lme in R
- The fitted values of X_2 are $\hat{X}_2 = C(C^TC + \hat{\lambda}D)^{-1}C^TX_2$, where $\hat{\lambda} = \hat{\sigma}_{\epsilon}^2/\hat{\sigma}_{\theta}^2$ is the REML estimator of λ and, $C = [C_1, C_2]$

$$D = \left(\begin{array}{cc} 0_{3\times3} & 0\\ 0 & I_{K\times K} \end{array}\right)$$

Consistency

- The marginal mean of the imputed values $\hat{X}_2^{z_1}$ from our imputation model is consistent (Little and An, 2004; Zhang and Little, 2009) if:
 - a) $g_{z_1}(X_1; \beta_{z_1})$ correctly specified
 - b) $P_{z_1}(X_1)$ and $s(\hat{P}_{z_1}^*|\theta_{z_1})$ correctly specified. The latter assumption is relatively weak, since the spline does not impose strong parametric assumptions

PENCOMP: Two-Time Point Treatment

After imputing intermediate outcomes X_2^0 and X_2^1 with draws

Subjects	X ₁	Z_1	X_2^0	X_2^1	Z_2	Y ⁰⁰	Y^{01}	Y ¹⁰	Y ¹¹
1		0			0		?	?	?
		0			0		?	?	?
n ₀₀		0			0		?	?	?
$n_{00} + 1$		0			1	?		?	?
		0			1	?		?	?
$n_0 = n_{00} + n_{01}$		0			1	?		?	?
$n_0 + 1$		1			0	?	?		?
		1			0	?	?		?
$n_0 + n_{10}$		1			0	?	?		?
$n_0 + n_{10} + 1$		1			1	?	?	?	
		1			1	?	?	?	
$n = n_0 + n_{10} + n_{11}$		1			1	?	?	?	

Step 2: Imputing Missing Potential Outcomes Y

How to build a robust imputation model for final outcome *Y*?

Result 2

$$Y^{\bar{z}_2} \perp \!\!\! \perp \!\!\! I(\bar{Z}_2 = \bar{z}_2) \left| P_{\bar{z}_2} \right|$$

- where $P_{\bar{z}_2} = \prod_{k=1}^2 P(Z_k = z_k | \bar{Z}_{k-1} = \bar{z}_{k-1}, \bar{X}_k)$ is the propensity of being assigned treatment regime \bar{z}_2
- Treatment regime \bar{Z}_2 is independent of potential outcomes $Y^{\bar{z}_2}$ given the propensity of receiving that treatment regime \bar{Z}_2 , for all t=1,2

Result 2

$$E(Y^{11}) = E[E(Y^{11}|\bar{X}_2)]$$

$$= E[E(Y|\bar{X}_2, Z_1 = 1, Z_2 = 1)]$$

$$= E[E(Y|P_{\bar{z}_2 = (11)}, Z_1 = 1, Z_2 = 1)]$$

- Conditioning on covariates or the propensity scores
- Similar derivations hold by Y^{10} , Y^{01} , and Y^{00}

Imputation Model for Y^{Z_2}

$$E(Y^{\bar{z}_2}|\bar{X}_2, Z_1 = z_1, Z_2 = z_2, \theta_{\bar{z}_2}, \beta_{\bar{z}_2})$$

$$= s(\hat{P}^*_{\bar{z}_2}|\theta_{\bar{z}_2}) + g_{\bar{z}_2}(\bar{X}_2, \bar{Z}_2; \beta_{\bar{z}_2})$$

- $\hat{P}_{\bar{z}_2}^* = \log[\hat{P}_{\bar{z}_2}/(1-\hat{P}_{\bar{z}_2})]$
- $s(\hat{P}_{ar{z}_2}^*| heta_{ar{z}_2})$ is a penalized spline with fixed knots as described before
- \bullet $g_{\overline{z}_2}()$ improves efficiency by including predictors of the outcome

Consistency

- The marginal mean from the imputation model for Y is consistent if:
 - 1) $g_{\bar{z}_t}$: All the prediction models for the intermediate and final outcomes are correctly specified
 - OR 2) The propensity models and the relationship between X_{t+1} and $\hat{P}^*_{\bar{z}_t}$ are correctly specified at each time point. Again this assumption can be weakened by assuming only a smooth functional form, such as a penalized spline as in PENCOMP

PENCOMP: Two-Time Point Treatment

After imputing all the missing potential outcomes with draws

Subjects	<i>X</i> ₁	Z_1	X_2^0	X_2^1	Z_2	Y ⁰⁰	Y ⁰¹	Y ¹⁰	Y ¹¹
1		0			0				
		0			0				
n ₀₀		0			0				
$n_{00} + 1$		0			1				
		0			1				
$n_0 = n_{00} + n_{01}$		0			1				
$n_0 + 1$		1			0				
• • • •		1			0				
$n_0 + n_{10}$		1			0				
$n_0 + n_{10} + 1$		1			1				
		1			1				
$n = n_0 + n_{10} + n_{11}$		1			1				

PENCOMP: Inference

- Combine the imputed and observed outcomes using Rubin's Combining Rules:
- Estimate of the causal effect $\Delta_{jk} = E(Y^{jk} Y^{00})$ is then $\bar{\Delta}_{jkD} = \sum_{d=1}^{D} \hat{\Delta}_{jk}^{(d)}$ over D complete data sets.
- ullet Estimate of the variance of $ar{\Delta}_{jkD}$ is $T_{\mathsf{D}} = ar{W}_{jkD} + (1+1/D)B_{jkD}$
 - Between imputation variance: $\bar{W}_{jkD} = \sum_{d=1}^{D} W_{jk}^{(d)}/D$
 - Within imputation variance: $B_{jkD}=\sum_{d=1}^D\left(\hat{\Delta}_{jk}^{(d)}-\bar{\Delta}_{jkD}\right)^2/(D-1)$ (Rubin 1987)

Simulation Setup

- Each simulated data set contains X_{1a} , X_{1b} , Z_1 , X_{2a} , X_{2b} , Z_2 , and Y
- Two baseline covariates: $X_{1a} \sim N(0.2,1)$ and $X_{1b} \sim N(0.2,1)$
- The intermediate outcomes X_{2a} and X_{2b} , and final outcome Y are normally distributed with residual variance of 1
- Interested in inference about Δ_{11} , Δ_{10} , and Δ_{01} , where $\Delta_{\bar{z}_2}=E(Y^{\bar{Z}_2}-Y^{00})$
- The linear outcome model $(\Delta_{11}, \Delta_{10}, \Delta_{01}) = (22.35, 11.17, 10.45)$
- \bullet The nonlinear outcome model $(\Delta_{11},\Delta_{10},\Delta_{01})=(25.31,12.69,10.57)$

Simulation Setup 2

	Intercept	X_{1a}	X_{1b}	X_{2a}	X_{2b}	$X_{2a}X_{2b}$			
Treatment Assignment at $t=1$									
	-0.01	γ_{11}	-0.3						
Treatme	Treatment Assignment at $t=2$								
$Z_1 = 0$	-0.01	$-\gamma_{21}$	0.1	γ_{21}	-0.1				
$Z_1 = 1$	-0.01	$-\gamma_{21}-\gamma_{22}$	$0.1-\gamma_{24}$	$\gamma_{21} + \gamma_{22}$	$-0.1+\gamma_{24}$				
$X_{2a}^{z_1=0}$		1	0.5						
$X_{2a}^{z_1=1}$	0.5	1.5	0.5						
$X_{2b}^{z_1=0}$		1	0.3						
$X_{2a}^{z_1=1} \\ X_{2b}^{z_1=0} \\ X_{2b}^{z_1=1}$		1	0.4						
Y_{11}	25	2	1.5	2	1.5	1.6*			
Y_{10}	15	2	1.5	1	1	1*			
Y_{01}	15	1	1	2	1.5	0.8*			
Y_{00}	15	1	1	1	1	0.7*			

 $(\gamma_{11},\overline{\gamma_{21},\gamma_{22},\gamma_{24}}) = (-0.5,-0.1,0.2,0.2) \text{ for high, } (-0.8,-0.1,0.6,0.6) \text{ for moderate, and } (-0.8,-0.5,1.1,1.1) \text{ for low confounding.}$

Nonlinear outcome model (*) includes interactions $X_{2a}X_{2b}$

Simulation Setup 3

- Three Cases considered:
 - A) Both propensity score and prediction models correctly specified
 - B) The prediction model misspecified
 - C) The propensity score model misspecified
- The propensity score model was misspecified as $logit(P(Z_2 = 1 | \bar{X}_2, Z_1, \lambda)) = \lambda_0 + \lambda_1 X_{1a} + \lambda_2 X_{2a} + \lambda_3 X_{1b}$
- The prediction model was misspecified by dropping terms involving X_{2a} and X_{2b}
- Logistic regression models were assumed to model treatment assignment
- Assess the finite sample performance of PENCOMP, compared with g-computation, IPTW and AIPTW
- Here show results for sample size of 500 based on 1,000 simulated data sets

Relative RMSE in Linear Outcome

95% Noncoverage Rate in Linear Outcome

Relative RMSE in Nonlinear Outcome

95% Noncoverage Rate in Nonlinear Outcome

Application: AIDS Cohort Study

- We applied our method to the Multicenter AIDS Cohort study (MACS) to analyze the effect of antiretroviral treatment on CD4 counts for HIV+
- CD4 count is an intermediate outcome of past treatments and confounds the next treatment
- Restrict our analyses to the period between visit 7 and 21, when zidovudine was approved and available for use and before the advent of highly active antiretroviral therapy (HAART)
- ullet We estimate the short-term (1 year) effects of using antiretroviral treatment for HIV+ subjects during this period
- For each of the three-visit moving windows $1, \cdots, 15$

Covariate Balance Checking

Balance of covariates between subjects with observed treatment sequence (1,1) and everybody else before and after adjusting for propensity scores. ** significant at 0.005 level. d is standardized mean difference.

	Before A	Adjusting	After Adjusting		
Covariate	d	T Stats	d	T stats	
RBC CD4 WBC CD8 PLATE CD4 at t = 2	1.83 1.11 0.59 0.0012 0.10 1.12	25.23** 15.28** 8.11** 0.017 1.37 15.28**	0.016 0.0048 0.028 0.032 0.044 0.017	0.22 0.067 0.39 0.44 0.61 0.23	

Results

Discussion

- The performance of PENCOMP is similar to that of AIPTW estimator when the confounding is low
- But PENCOMP tends to outperform AIPTW in RMSE, coverage probability and efficiency, when the confounding is moderate or high
- Our simulation studies suggest that our new straightforward method-PENCOMP is a viable alternative to IPTW and AIPTW estimators

Extensions

- A fully Bayesian version of PENCOMP: has attractive small-sample properties
- Address lack or limited overlap in the covariate distributions between treatment groups
 - Strategies for diagnosing and identifying common support region
 - Defining alternative estimands
- Model selection
 - Variables to include in the propensity and prediction models
 - Accounting for model uncertainty

Thank You!

References

- Eilers, P. H. C. and Marx, B. D. (1996). Flexible Smoothing with b-splines and Penalties. Statistical Science 11, 89-121.
- Little, R. J. A. and An, H. (2004). Robust Likelihood-Based Analysis of Multivariate Data with Missing Values. Statistica Sinica 14, 949-968.
- Ngo, L. and Wand, M. P. (2004). Smoothing with Mixed Model Software. Journal of Statistical Software 9, 1-54.
- Rosenbaum, P. R. and Rubin, D. B. (1983). The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 70, 41-55.

References

- Rubin, D. B. (1976). Inference and Missing Data. Biometrika 63, 581-592.
- Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: Wiley.
- Scharfstein, D., Rotnitzky, A., and Robins, J. M. (1999). Adjusting for Non-ignorable Drop-Out Using Semi-parametric Nonresponse Models. Journal of the American Statistical Association, 1096-1120.
- Yu, Z. and van der Laan, M. J. (2006). "Double Robust Estimation in Longitudinal Marginal Structural Models." Journal of Statistical Planning and Inference 136, 1061-1089.
- Zhang, G. and Little, R. J. A. (2009). Extensions of the Penalized Spline of Propensity Prediction Method of Imputation. Biometrics 65, 911-918.