Домашнее задание 1

Чудова Маргарита

- 1. Проверим по определению. F является σ -алгеброй, если:
 - (a) $\Omega \in F$
 - (b) $A \in F \Rightarrow \bar{A} \in F$
 - (c) $A_1...A_n.. \in F \Rightarrow \bigcup_i A_i \in F$

Пункт 1:

- (а) очевидно
- (b) дополнением $A_1 = \{OOO, OPO, OOP, OPP\}$ является $A_2 = \{POO, PPO, POP, PPP\}$, которое тоже содержится в F. Для Ω, \varnothing очевидно.
- (c) Объединения с Ω, \varnothing либо дадут Ω , либо ничего не изменят. Рассмотрим объединение A_1 и A_2 оно даст Ω .

По определению F - σ - алгебра.

Пункт 2:

- (а) очевидно
- (b) дополнением $B_1 = \{OOO, OPO, POP, PPP\}$ является $C_1 = \{PPO, OPP, POO, OOP\}$, а дополнением $B_2 = \{POO, PPO, POP, POP\}$ является $C_2 = \{OOO, OPO, OPP, OOP\}$. Оба дополнения не содержатся в $F \Rightarrow$ противоречие!

Чтобы получить σ - алгебру, добавим дополнения C_1, C_2 и все возможные пересечения и их объединения и дополнения, $\Omega = \{ \text{OOO, OPO, POP, PPP, POO, PPO} \}$. Получим 16 элементов:

 $\Omega, \emptyset, \{000, 0P0, P0P, PPP\}, \{PP0, 0PP, P00, 00P\}, \{P00, PP0, P0P, PPP\}, \{000, 0P0, P00, PP0\}, \{00P, 0PP, P0P, PPP\}, \{000, 0P0, 0PP, 00P\}, \{000, 0P0, 0P0, P0P, P00, P0P, P00, 0P0, P0P, P00, 0P0, P0P, P00, 0P0, P0P, 0PP, 0PP,$

2. Необходимо задать (Ω, F, P) .

 Ω сосотоит из всевозможных исходов вида $\{a_1a_2a_3\}$, где $a_1,a_2,a_3\in 1..6$ ($\{111\},\{112\},...$). σ -алгебра F состоит из Ω,\varnothing , исходов $\{a_1a_2a_3\}$, и всевозможных объединений исходов из Ω вида:

- $\{a_1a_2a_3, b_1b_2b_3\}$; $a_1, a_2, a_3 \in 1..6$; $a_1a_2a_3 \neq b_1b_2b_3$
- $\{a_1a_2a_3, ..., s_1s_2s_3\}$; $a_1, a_2, a_3, ...s_1, s_2, s_3 \in 1..6$; $a_1a_2a_3 \neq ... \neq s_1s_2s_3$

Тогда в F включены все объединения и дополнения его элементов.

Зададим P: исходы в Ω равновероятны, $P(\omega) = \frac{1}{6^3} = \frac{1}{216}$

Случайная величина: $\xi(\omega) = a_1 + a_2 + a_3$ для $\omega = \{a_1 a_2 a_3\}$

- 3. (a) П.э.с состоит из элементов вида {POO..O}, {OPO..O}, ..., {O..OP} (всевозможные события, где на одном месте из 666 решка, на остальных орел) и элемента {OOO..O} 666 орлов. Всего элементов 667.
 - (b) Пусть студент знает билеты под номерами от 1 до 54, а от 55 до 60 не знает. П.э.с состоит из событий типа $\{a_i\}$, $a_i \in 1..54$; $\{a_ib_i\}$, $a_i \in 55..60$, $b_i \in 1..54$. Всего элементов 54 + 59 * 6 = 408
 - (c) П.э.с состоит из всевозможных перестановок карточек, если две карточки с одинаковыми буквами поменяли между собой это одно и то же элементарое событие. Всего элементов $\frac{9!}{2!\cdot 3!} = 30240$.
- 4. (а) Приведем контрпример: пусть Ω состоит из элементов 1 и -1. Пусть σ -алгебра $F = \{\varnothing, \{-1,1\}\}, \ \xi(x) = \mathrm{sgn}(x), \ \eta(x) = \mathrm{sgn}^2(x).$ Пусть $A = \{-1,1\}$. Понятно, что $\eta(A) = 1 \Rightarrow \eta^{-1}(1) = A$. При этом $\xi^{-1}(1) = 1$, а такого элемента в нашей σ -алгебре нет. Противоречие! Не с.в
 - (b) По условию η случайная величина, значит

$$orall$$
 t $\{\omega:\eta(\omega)< t\}$ измерима
$$\forall~t~\{\omega:e^{\xi(\omega)}< t\}$$
 измерима
$$\forall~z=\ln t~\{\omega:\xi(\omega)< z=\ln t\}$$
 измерима

z может принимать любые значения, т.о ξ случайная величина.

- (c) Решение полностью аналогично пункту (a), только $\xi(x)=\mathrm{sgn}(x),\ \eta(x)=|\mathrm{sgn}(x)|.$ $\eta^{-1}(1)=A,$ но $\xi^{-1}(1)=1,$ а такого элемента в нашей σ -алгебре нет. Противоречие! Не с.в
- 5. (а) 1. Возьмем самый большой полуинтервал: $[0,\frac{1}{2})$, получим к нему дополнение: $(-\infty,0) \cup [\frac{1}{2},\infty)$.
 - 2. Начнем пересекать полуинтервалы вида $[0, 2^{-n})$ попарно, будем получать что-то вида $[2^{-n_1}, 2^{-n_2})$. Удобно взять интервалы вида $[2^{-n-1}, 2^{-n})$ для дальнейших рассуждений, из их объединения все получается.
 - 3. $\{0\}$ тоже можно получить из исходных полуинтервалов : $\bigcap_{n=1}^{\infty} [0, 2^{-n}) = \{0\}$ В итоге сигма-алгебра будет состоять из всевозможных объединений (счетного числа) всех множеств, описанных в пунктах 1, 2, 3. Тут есть вся вещественная ось Ω , все дополнения можно получить счетным количеством объединений.
 - (b) Рассмотрим $\eta(x) = C$, где C некоторая константа. Хотим:

$$\forall t \{\omega : \eta(\omega) < t\}$$
 измерима

Но получается, что при t>C условие выполнено для всего $\Omega,\,t\leq C$ - для \varnothing . Таким образом, $\eta(x)$ действительно измерима.