# 1.

### i.

我設計的 Neural network 共為三層, input layer、hidden layer、output layer, input layer 與 output layer 固定為 784 個 neurons 與 10 個 neurons, 調整中間的 hidden layer 的 neurons 數,分別記錄下 20、40、80、160、320的 neurons 數結果。

Weight 初始值為 Random initialization 讓每一層的 weight 都是用常態分佈 Bias 初始值為 0

超參數設定 batch size = 10、number of epochs = 500、learning rate = 0.001

當 neural network layer 架構為[784 20 10]:

===== Epoch: 500/500 ======

train error rate: 0.0567 test error rate: 0.0756







當 neural network layer 架構為[784 40 10]

===== Epoch: 500/500 ======

train error rate: 0.0472 test error rate: 0.0659







當 neural network layer 架構為[784 80 10]

===== Epoch: 500/500 ======

train error rate: 0.0457 test error rate: 0.0633



當 neural network layer 架構為[784 160 10]

===== Epoch: 500/500 =====

train error rate: 0.0444 test error rate: 0.0631





當 neural network layer 架構為[784 320 10]

===== Epoch: 220/500 ======

train error rate: 0.0317 test error rate: 0.0581

===== Epoch: 500/500 ======

train error rate: 0.0433 test error rate: 0.0635



# 討論

模型越是複雜中間 hidden layer neurons 數量越多, 模型練訓的 training error rate 與 testing error rate 下降得就越快,但各模型最後都只會快速下降到某些值後,就呈現極度緩慢下降的 error rate,從實驗結果也發現最複雜的模型[784 320 10]中,最後訓練出的結果反而不是最佳解答,而是在 Epoch: 220/500 時有最低的training error rate 與 testing error rate,之後更新參數的模型反而越是 overfitting,由此可知調整超參數對於深度學習是非常重要的一環,不同模型因複雜程度的不同、餵入的資料的不同,應調整適合的參數,才可得到最佳的模型。

## ii.

上題實驗結果為 weights 設置為 random initializations, 本題測試調整 weights 為  $\mathbf{0}$  。

Weight 初始值為 0 Bias 初始值為 0

超參數設定 batch size = 10、number of epochs = 500、learning rate = 0.001

neural network layer 架構為[784 20 10]

#### 實驗結果:





# 討論

以基礎公式為主的討論:

當 weight 初始值是 0 時,在做 forward 的結果,不管你訓練資料怎麼丟進模型中都會是 0 (W1 = W2 = 0)。

$$\hat{y} = w_1 x_1 + w_2 x_2 = 0$$

神經網路的 weight 是利用 Stochastic Gradient Descent 更新。

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

由上可知 Gradient Descent 不管怎麼做都是 0, weight 的 更新不管更新幾次結果都一樣,如實驗結果 training error rate 與 testing error rate 都沒有變化。

# iii.

超參數設定 batch size = 10、number of epochs = 500、learning rate = 0.001

Weight 初始值為 Random initialization 讓每一層的 weight 都是用常態分佈 Bias 初始值為 0

這題我使用的 neural network layer 架構為[784 40 2 10]並取出第二層 hidden layer(兩個 neurons)的值,當作平面 x,y 兩座標繪圖,並記錄 10、20、40、80、160、320、500 epochs 時的狀態。







# 討論

前面提到模型在訓練初期時,training error rate 與testing error rate 會快速下降,我們也可以從圖上發現epoch 在 10~160 的圖中,圖上的 10 種點快速變化,各值間明顯的分類出來,而 160~500 後的圖形,變化較不明顯,training error rate 與 testing error rate 下降的幅度變小。

另外也可以發現圖上各個群聚的點代表如 2、3 有部分可視 的點重疊率很高,可以從講義上提供的藏文數值上

2 3

9 9

發現兩值手寫確實蠻相似的,所以特徵值上有些許接近,

越接近的兩類群,在肉眼視手寫值上,也確實有部分筆畫 特徵相似



# iv.

分別記錄下不同 neural network 架構的模型,對 train data 與 test data 的 crosstab

當 neural network layer 架構為[784 20 10]:

train error rate: 0.0567 test error rate: 0.0756

| ==== te           | st dat      | a cros      | stab =                |                            |             |         |          |         |                                       |                   |
|-------------------|-------------|-------------|-----------------------|----------------------------|-------------|---------|----------|---------|---------------------------------------|-------------------|
| predict           | 0           | 1           | 2                     | 3 4                        | 5           | 6       | 7        | 8       | 9                                     |                   |
| labels            | 642         | 16          | A                     | 0 0                        | 0           | 1       | 0        | 0       | 0                                     |                   |
| 0.0               | 643<br>4    | 652         |                       | 0 0                        | 0           | 1       | 0        | Ö       | 3                                     |                   |
| 1.0<br>2.0        | 7           | 18 5        | 116 4                 |                            | ŏ           | ŏ       | ŏ        | ŏ       | ő                                     |                   |
| 3.ŏ               |             | ŤŠ Ť        | 42 52                 | 6 2                        | 3<br>1      | Ž       | š        | 11      | Ŏ                                     |                   |
| 3.0<br>4.0<br>5.0 | 1<br>1<br>0 | 0           | 42 52<br>0            |                            | 1           | 15      | 3<br>1   | 35      | 21                                    |                   |
| 5.0               |             | 0           | 0                     | 5 2                        | 382         | 3       | 10       | 3       | 2                                     |                   |
| 6.0               | 0<br>2<br>0 | 0           | Ŏ                     | 1 4<br>2 8<br>4 17         | 10          | 474     | 9        | 3 3 3   | 1<br>3<br>0                           |                   |
| 7.0<br>8.0        | 2           | 0           | 0                     | Z 8                        | 9           | 13<br>1 | 409<br>6 | 541     | <u>خ</u><br>0                         |                   |
| 9.0               | Ö           | 3           | 0<br>0<br>0<br>0<br>0 | 5 43                       | 9<br>3<br>3 | 4       | 3        | 3       | 613                                   |                   |
| tr                |             | tacro       |                       |                            | ,           | 7       |          | ,       | 013                                   |                   |
| predict           | o o         | 1           | 2                     | 3                          | 4           | 5       | 6        | 7       | 8                                     | 9                 |
| labels            |             |             |                       |                            |             |         |          |         |                                       | -                 |
| 0.0               | 1291        | 35          | 6<br>3                | 0                          | 0           | 0       | Ŏ        | 0       | Õ                                     | 0                 |
| 1.0               | 6           | 1460        | 1105                  | - l                        | 0           | 0       | 0        | 0       | 0                                     | 3                 |
| 2.0               | 10          | 28<br>4     | 1185<br>47            | 63<br>1123                 | 0<br>5      | 0       | 0<br>1   | 1<br>16 | 0<br>17                               | 0<br>3<br>1<br>1  |
| 3.0<br>4.0        | 0<br>1<br>0 | 0           | 0                     |                            | 1213        | 2       | 11       | 10      | 48                                    |                   |
| 5.ŏ               | Ô           | ŏ           |                       | š                          | 7           | 88Ŏ     | 21       | 16      | , , , , , , , , , , , , , , , , , , , | 77                |
| 6.0               | Ŏ           | Ŏ           | 0<br>0<br>2<br>0<br>1 | 0<br>3<br>2<br>5<br>9<br>7 | 11          | 20      | 1061     | ii      | 9<br>7<br>3                           | 42<br>7<br>4<br>7 |
| 7.0               |             | 0           | 2                     | 5                          | 12          | 7       | 23       | 794     | 3                                     |                   |
| 8.0               | 0<br>0<br>0 | 0<br>1<br>2 | 0                     | 9                          | 28          | 4       | 3        | 10      | 1015                                  | 0                 |
| 9.0               | 0           | 2           | 1                     | 7                          | 67          | 4       | 3        | 6       | 5                                     | 1298              |

當 neural network layer 架構為[784 40 10]:

train error rate: 0.0472 test error rate: 0.0659

| ==== te                  | st dat      | a cros      | sstab = |                                                  |             |                  |             |              |             |                        |  |
|--------------------------|-------------|-------------|---------|--------------------------------------------------|-------------|------------------|-------------|--------------|-------------|------------------------|--|
| predict                  | 0           | 1           | 2       | 3 4                                              | 5           | 6                | 7           | 8            | 9           |                        |  |
| labels                   |             |             |         |                                                  |             |                  |             |              |             |                        |  |
| 0.0                      | 644         | 16          |         | 0 0                                              | 0           | 2                | 0           | 0            | 0           |                        |  |
| 1.0                      | 2           | 655         | 2       | 0 0                                              | 0           | 0                | 0           | 0            | 2           |                        |  |
| 2.0                      | 7           | 13          | 529 3   | 5 0                                              | 0           | 0<br>2           | 0<br>5<br>0 | 0<br>9       | 0<br>0      |                        |  |
| 3.0                      | 1           | 4           | 37 53   | 9 2                                              | 1<br>0      | 2                | 5           | 9            | 0           |                        |  |
| 4.0                      | 1           | 0           | 1<br>0  | 1 585                                            |             | 12               | 0           | 28           | 23          |                        |  |
| 2.0<br>3.0<br>4.0<br>5.0 | 0           | 0           | 0       | 1 585<br>3 2<br>2 2                              | 386         | 1                | 11<br>7     | 3            | 1           |                        |  |
| 6.0<br>7.0               | 0<br>2<br>0 | 0           | 0       | 5 0<br>9 2<br>1 585<br>3 2<br>2 2<br>0 8<br>6 17 | 8           | 481              | 7           |              | 1           |                        |  |
| 7.0                      | 2           | 0           | 1       | 0 8                                              | 9<br>3<br>2 | 8<br>2<br>3      | 415         | 4            | 2           |                        |  |
| 8.0                      |             | 0           |         | 6 17                                             | 3           | 2                | 4 2         | 540          | 0           |                        |  |
| 9.0                      | 0           | 4           | 4       | 4 43                                             | 2           | 3                | 2           | 2            | 614         |                        |  |
| ===== tr                 |             |             | osstab  |                                                  |             |                  |             |              |             |                        |  |
| predict                  | 0           | 1           | 2       | 3                                                | 4           | 5                | 6           | 7            | 8           | 9                      |  |
| labels                   |             |             |         |                                                  |             |                  |             |              |             |                        |  |
| 0.0                      | 1297        | 30          | 3       | Ō                                                | 0           | 0                | 1           | 0            | 0           | 1                      |  |
| 1.0                      | 5           | 1461        |         | _1                                               | 0           | 0                | 0           | 0<br>2<br>16 | 0           | 3                      |  |
| 2.0                      | 4           | 25          | 1207    | 50                                               | 0           | 0                | 0           | _2           | 0           | 0                      |  |
| 2.0<br>3.0<br>4.0        | 0           | 3           | 45      | 1134                                             | . 0         | 0                | 1<br>4      | 16           | 15          | 1<br>3<br>0<br>2<br>39 |  |
| 4.0                      | 1           | 0           | 0       | 0                                                | 1229        | 0                |             | 1            | 42          | 39                     |  |
| 5.0                      | 0           | 0           | 0       | 4                                                | 4           | 894              | 13          | 14           | 8           | 6                      |  |
| 6.0                      | 0           | 0           | 0       | 2                                                | 4           | 9                | 1083        | 11           | 8<br>5<br>3 | 6<br>2<br>4            |  |
| 7.0                      | 0           | 0<br>1<br>1 | 1       | 4<br>2<br>4<br>7                                 | 29          | 9<br>8<br>3<br>1 | 12          | 812          | 3           |                        |  |
| 8.0                      | 0           | 1           | 0       | 7                                                | 29          | 3                | 4           | 9            | 1017        | 0                      |  |
| 9.0                      | 0           | 2           | 0       | 6                                                | 73          | 1                | 5           | 3            | 3           | 1300                   |  |
|                          |             |             |         |                                                  |             |                  |             |              |             |                        |  |

當 neural network layer 架構為[784 80 10]:

train error rate: 0.0457 test error rate: 0.0633

| ==== te    |                       | a cros |         |                           | regard)     |             |                       |             | V-2-1    |        |
|------------|-----------------------|--------|---------|---------------------------|-------------|-------------|-----------------------|-------------|----------|--------|
| predict    | 0                     | 1      | 2       | 3 4                       | 5           | 6           | 7                     | 8           | 9        |        |
| labels     | 642                   | 19     | 1       | 0 0                       | 0           | 2           | 0                     | 0           | 0        |        |
| 0.0<br>1.0 | 042                   | 654    |         | 0 0                       | ő           | 2<br>0      | ŏ                     | ŏ           | 2        |        |
| 2.0        | 2<br>7                |        | 531 3   | š ŏ                       | ŏ           | ŏ           |                       | ŏ           | ő        |        |
| 3.ŏ        | i                     | 4      | 35 53   | 9 3                       | ľ           | 0<br>5      | ž                     | 1Ŏ          | Ŏ        |        |
| 3.0<br>4.0 | 1                     | 0<br>0 | 1       | 0 588                     | 0           | 11          | 0                     | 28          | 22       |        |
| 5.0        | 0                     | 0      | 0       | 2 2                       | 390         | 1           | 0<br>2<br>0<br>9<br>6 | 3<br>2<br>3 | 0        |        |
| 6.0        | ŏ                     | 0      | 0       | 0 2                       | 7           | 484         |                       | 2           | 1<br>3   |        |
| 7.0<br>8.0 | 1<br>0<br>0<br>2<br>0 | 0      | 1       | 2 2<br>0 2<br>1 6<br>5 17 | 9           | ŏ           | 416                   | 543         | 0        |        |
| o.u<br>9.0 | 0                     | 3      | 3       | 4 42                      | 9<br>1<br>3 | 8<br>3<br>2 | 3                     | 2           | 616      |        |
|            |                       | ta cro |         | <del>- 4</del> 2          | ,           | 2           | ,                     | 4           | 010      |        |
| predict    | ŭ                     | 1      | 2       | 3                         | 4           | 5           | 6                     | 7           | 8        | 9      |
| labels     |                       |        |         |                           |             |             |                       |             |          |        |
| 0.0        | 1298                  | 30     | 4       | 0                         | 0           | 0           | 0                     | 0           | 0        | 0      |
| 1.0        | 5<br>6                | 1461   | 4       | 1                         | Ŏ           | Ŏ           | 0                     | 0           | Ŏ        | 2      |
| 2.0<br>3.0 | b                     | 26     | 1207    | 46                        | 0           | 0           | 2<br>1                | 16          | 0        | 0      |
| 4.0        | 0                     | 4<br>0 | 37<br>0 | 1143                      | 1233        | Ö           | 6                     | 16<br>0     | 14<br>40 | 37     |
| 5.0        | 0                     | ŏ      | ŏ       | š                         | 4           | 897         | 17                    | 11          | 75       | 6      |
| 6.0        | ŏ                     | ŏ      | ŏ       | 0<br>3<br>2<br>3<br>6     | 5           | 10          | 1081                  | 10          | 5<br>6   | ž      |
| 7.0        | 0                     | 1      | 0<br>3  | 3                         | 9           | 7           | 14                    | 808         | 2        | 2<br>6 |
| 8.0        | 0                     | 1      | 0       | 6                         | 31          | 1           | 4 3                   | 7           | 1020     | 0      |
| 9.0        | 0                     | 1      | 0       | 4                         | 71          | 1           | 3                     | 6           | 3        | 1304   |

當 neural network layer 架構為[784 160 10]:

train error rate: 0.0444 test error rate: 0.0631

| ==== te:                               | st dat           | a cro  | sstab =     |                    | 1.72             | 6                |             |                   | -       |             |
|----------------------------------------|------------------|--------|-------------|--------------------|------------------|------------------|-------------|-------------------|---------|-------------|
| predict                                | 0                | 1      | 2           | 3 4                | 5                | 6                | 7           | 8                 | 9       |             |
| labels                                 |                  |        |             |                    |                  |                  |             |                   |         |             |
| 0.0                                    | 643              | 17     | 2           | 0 0                | Ŏ                | 2                | 0           | Ŏ                 | 0       |             |
| 1.0                                    | 2                | 655    | - 2         | 0 0                | Ŏ                | Ŏ                | Ŏ           | Ŏ                 | 2       |             |
| 2.0                                    | 7                |        | 530 [3      | 34 0               | 0                | ñ                | 0<br>3<br>0 | Ŏ                 | Ŏ       |             |
| 3.0                                    | ļ                | 3<br>0 | 36 54       | 1 500              | 1                | Š                | 3           | ٥,                | 0<br>23 |             |
| 4.0                                    | 1                | V      | 1<br>0      | 0 588              | 0                | 0<br>5<br>9<br>1 |             | 29                | 23      |             |
| 1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0 | ň                | 0<br>0 | ň           | 3 2<br>1 2         | 388              | 480              | 9<br>7      | 2                 | 1       |             |
| 7.0                                    | 0<br>0<br>2<br>0 | ň      | 0<br>2<br>0 | 1 2<br>2 6<br>4 18 | 8<br>9<br>2<br>2 | 400              | 415         | 8<br>29<br>3<br>3 | i _     |             |
| 8.0                                    | ń                | 0<br>0 | ń           | 4 18               | 5                | 4                | 415         | 540               | ó       |             |
| 9.Ŏ                                    | ŏ                | š      | ď.          | 3 36               | 2                | 2                | 4<br>3      | ž                 | 623     |             |
|                                        |                  |        | osstab      |                    | _                |                  | _           | _                 |         |             |
| predict                                | 0                | 1      | 2           | 3                  | 4                | 5                | 6           | 7                 | 8       | 9           |
| labels                                 |                  |        |             |                    |                  |                  |             |                   |         |             |
| 0.0                                    | 1301             | 26     | 4           | 0                  | 0                | 0                | 0           | 0                 | 0       | 1           |
| 1.0<br>2.0                             | 5                | 1463   | 2           | .1                 | 0                | 0                | 0           | 0<br>1            | 0       | 2<br>0      |
| 2.0                                    | 6                | 23     | 1210        | 47                 | 0                | 0                | ļ           | 1                 | .0      | 0           |
| 3.0                                    | 0                | 3<br>0 | 39          | 1148               | 0                | 0                | 1           | 13                | 11      | 1           |
| 4.0<br>5.0                             | 0                | Ŏ      | 1           | 0                  | 1231             | 0                | .5          | .0                | 41<br>6 | 38          |
| 5.0                                    | Ň                | 0      | 0           | 4                  | 4                | 894              | 14          | 15                | þ       | b           |
| 6.0<br>7.0                             | 0<br>0<br>0      | 0      | Ü           | 4                  | 5<br>9           | 12               | 1078        | 11<br>810         | 6<br>2  | 6<br>2<br>5 |
| 7.0<br>8.0                             | Ů                | 0      | 0<br>2<br>0 | 4<br>2<br>4<br>7   | 28               | 5<br>2           | 16          | 7                 | 1020    | 0           |
| 0.0<br>9.0                             | Ö                | 1      | Ŏ           | 4                  | 20<br>64         | 1                | 5<br>3      | ś                 | 3       | 1312        |
| 9.0                                    | U                | 1      | V           | 4                  | 04               | 1                | ر           |                   | 5       | 1312        |

當 neural network layer 架構為[784 320 10]:

train error rate: 0.0433 test error rate: 0.0635

| ==== te                                                     | st dat      | a cros      | sstab =     |                           |                  |     |             |             |           |             |
|-------------------------------------------------------------|-------------|-------------|-------------|---------------------------|------------------|-----|-------------|-------------|-----------|-------------|
| predict                                                     | 0           | 1           | 2           | 3 4                       | 5                | 6   | 7           | 8           | 9         |             |
| labels                                                      |             |             |             |                           |                  |     |             |             |           |             |
| 0.0                                                         | 643         | 18          |             | 0 0                       | 0                | 2   | 0           | 0           | 0         |             |
| 1.0                                                         | 2           | 654         |             | 0 0                       | 0                | 0   | 0           | 0           | 2         |             |
| 2.0                                                         | 6           | 12          |             | 7 0<br>1 3                | 0                | 0   | 0           | 0           | 0         |             |
| 3.0                                                         | 1           | 2<br>0      | 36 54       | 1 3                       | 1                | 4   | 0<br>3<br>0 | 8           | 1         |             |
| 4.0                                                         | ĺ           | 0           | 1           | 0 587                     | . 0              | 10  |             | 29          | 23        |             |
| 1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0 | 0           | 0<br>0      | 0<br>0<br>1 | 2 2<br>1 2<br>1 8<br>5 17 | 389              | 1   | 9<br>6      | 4<br>2<br>2 | 0         |             |
| 6.0                                                         | 0<br>2<br>0 | 0           | Q.          | 1 2                       | 8<br>9<br>2<br>2 | 482 |             | 2           | 1         |             |
| 7.0                                                         | 2           | 0<br>0<br>3 | 1           | 1 8                       | 9                | 9   | 416         |             | 1         |             |
| 8.0                                                         |             | 0           |             | 5 17                      | 2                | 4 2 | 4<br>3      | 540         | 0         |             |
|                                                             | . 0.        |             | 4           | 4 37                      | 2                | 2   | 3           | 2           | 621       |             |
| ==== tr                                                     |             | ita cro     | osstab      | =                         |                  | -   | ,           |             |           | _           |
| predict                                                     | 0           | 1           | 2           | 3                         | 4                | 5   | 6           | 7           | 8         | 9           |
| labels                                                      | 1200        | 0.0         |             | _                         | ^                | ^   |             | ^           | ^         |             |
| 0.0                                                         | 1300        | 26          | 4           | Ō.                        | Ŏ                | Ŏ   | 1           | Ŏ           | Ŏ         | 1           |
| 1.0<br>2.0                                                  | 4           | 1464        | 2           | 1                         | Ŏ                | Ŏ   | 0           | 0           | 0         | 2<br>0      |
| 2.0                                                         | 6           | 22          | 1210        | 48                        | Ŏ                | Ŏ   | Ţ           | 1.4         | .0        | Ų           |
| 3.0<br>4.0<br>5.0                                           | 0           | 3           | 40          | 1146                      | 1025             | 0   | 1<br>4      | 14          | 11        | 1           |
| 4.0                                                         | 1           | 0           | 0           | 0                         | 1235             | 0   |             | 0           | 40        | 36          |
| 5.0                                                         | 0           | 0           | 0           | 3                         | 3                | 900 | 13          | 12          | 6         | 0           |
| 6.0                                                         | 0           | 0           | 0<br>2<br>0 | 3<br>2<br>4<br>7<br>5     | 3<br>5<br>9      | 9   | 1082        | 10          | 6         | 6<br>2<br>4 |
| 7.0                                                         | 0           | 0<br>1      | 2           | 4 7                       | 22               | 6   | 15          | 811         | 2<br>1022 | 0           |
| 8.0                                                         | 0           | 2           | U           |                           | 27<br>63         | 1   | 5<br>3      | 7<br>5      | 1022      | 1310        |
| 9.0                                                         | U           | 2           | 1           | 2                         | 03               | 1   | د           | )           | 3         | 1510        |

## 討論

實驗數據發現,模型在辨識 2、3 時的出錯率較高,由上一題的繪圖座標也能發現 2、3 有較相近的特徵值,部分的點也有些重疊。

|   | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 659 | 2   | 1   | 0   | 0   | 0   | 2   | 0   | 0   | 0   |
| 1 | 2   | 657 | 2   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 2 | 2   | 8   | 548 | 26  | 0   | 0   | 0   | 0   | 0   | 0   |
| 3 | 2   | 1   | 33  | 550 | 2   | 1   | 4   | 4   | 3   | 0   |
| 4 | 1   | 0   | 1   | 2   | 611 | 0   | 6   | 0   | 9   | 21  |
| 5 | 0   | 0   | 0   | 2   | 1   | 398 | 2   | 4   | 0   | 0   |
| 6 | 1   | 0   | 0   | 1   | 1   | 3   | 489 | 6   | 1   | 0   |
| 7 | 2   | 0   | 0   | 1   | 4   | 5   | 2   | 431 | 1   | 3   |
| 8 | 0   | 0   | 0   | 1   | 7   | 1   | 3   | 0   | 560 | 0   |
| 9 | 0   | 2   | 1   | 0   | 18  | 3   | 1   | 3   | 1   | 649 |

跟講義上的 crosstab 表比對後,我模型生成的 crosstab 在辨識結果出錯較多的也和講義上差不多。

2與3,4與9的預測上,出錯最高

## 2 與 3:



## 4與9



兩組值,也確實在部分特徵筆畫上有些相似。

i. 首先根據 train. csv 與 test. csv 檔案中各張圖片的臉部座標去裁減 image 中的各張臉,由於每張裁減的臉部圖片大小不一樣,所以需要做 resize 把圖片大小統一,我統一的大小為 64\*64,我使用的工具為 python cv2。根據 csv 檔的標籤(good, bad, none),給各張圖一個label,接著再做 Convolutional。



Input image 64\*64 經過 3x3 filter 後,形成 62\*62 的 feature maps,再做 pooling (每 2\*2 中,選出最大值),成 31\*31 的 Pooling feature maps 再 reshape 成 1\*961 對神經網路做全連結,因為圖片有 rgb 性質,所以第一層的 Neural network 有 961\*3 = 2883 個 nodes。

# ii.

Weight 初始值為 Random initialization 讓每一層的 weight 都是用常態分佈 Bias 初始值為  $\mathbf{0}$ 

超參數設定 batch size = 5、number of epochs = 50、learning rate = 0.001

#### Filter:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

#### neural network layer 架構為[2883 160 3]:





===== Epoch: 1/50 =====

Loss: 22.668

train accuracy rate: 0.8599 test accuracy rate: 0.8071 ===== Epoch: 10/50 ======

Loss: 19.966

train accuracy rate: 0.9230 test accuracy rate: 0.8832 ===== Epoch: 20/50 ======

Loss: 17.342

train accuracy rate: 0.9244 test accuracy rate: 0.8756 ===== Epoch: 30/50 ======

Loss: 15.064

train accuracy rate: 0.9366 test accuracy rate: 0.8756 ===== Epoch: 40/50 ======

Loss: 13.085

train accuracy rate: 0.9480 test accuracy rate: 0.8756 ===== Epoch: 50/50 =====

Loss: 11.366

train accuracy rate: 0.9554 test accuracy rate: 0.8756

#### neural network layer 架構為[2883 240 3]:





===== Epoch: 1/50 =====

Loss: 34.093

train accuracy rate: 0.8727 test accuracy rate: 0.8173 ===== Epoch: 10/50 ======

Loss: 30.030

train accuracy rate: 0.9290 test accuracy rate: 0.8756 ===== Epoch: 20/50 =====

Loss: 26.084

train accuracy rate: 0.9043 test accuracy rate: 0.8426 ===== Epoch: 30/50 ======

Loss: 22.657

train accuracy rate: 0.9287 test accuracy rate: 0.8680 ===== Epoch: 40/50 =====

Loss: 19.681

train accuracy rate: 0.9491 test accuracy rate: 0.8731 ===== Epoch: 50/50 ======

Loss: 17.096

train accuracy rate: 0.9526 test accuracy rate: 0.8756

Weight 初始值為 Random initialization 讓每一層的 weight 都是用常態分佈 Bias 初始值為 0

超參數設定 batch size = 5、number of epochs = 50、learning rate = 0.001

Filter:

$$\left[ egin{array}{cccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array} 
ight]$$

neural network layer 架構為[2883 160 3]:





===== Epoch: 1/50 =====

Loss: 22.748

train accuracy rate: 0.8142 test accuracy rate: 0.7284 ===== Epoch: 10/50 =====

Loss: 20.034

train accuracy rate: 0.8952 test accuracy rate: 0.8173 ===== Epoch: 20/50 ======

Loss: 17.401

train accuracy rate: 0.9193 test accuracy rate: 0.8325 ===== Epoch: 30/50 ======

Loss: 15.116

train accuracy rate: 0.9202 test accuracy rate: 0.8350 ===== Epoch: 40/50 ======

Loss: 13.131

train accuracy rate: 0.9281 test accuracy rate: 0.8376 ===== Epoch: 50/50 ======

Loss: 11.407

train accuracy rate: 0.9293 test accuracy rate: 0.8274

## 討論

本題我嘗試使用兩種不同 filter 與調整 hidden layer 的 nodes 數量觀察結果,使用 sharpen 的 filter

$$\left[ egin{array}{ccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array} 
ight]$$

訓練結果較使用

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

來的差,我想是因為銳化後的圖片,特徵的保留較原圖來 得少,使得訓練結果較差。

這次的模型,沒有因為 epochs 數量的增加使 accuracy rate 增加,應該是我的圖片前處理沒有找到最佳的方式,讓特徵更好的表現出來。

## iii.

Weight 初始值為 Random initialization 讓每一層的 weight 都是用常態分佈 Bias 初始值為 0

超參數設定 batch size = 5、number of epochs = 50、learning rate = 0.001

Filter:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

neural network layer 架構為[2883 160 3]:

===== Epoch: 1/50 =====

train accuracy of good: 93.08%

train accuracy of bad: 64.71%

train accuracy of none: 3.85%

test accuracy of good: 91.87%

test accuracy of bad: 65.17%

test accuracy of none: 0.00%

===== Epoch: 10/50 =====

train accuracy of good: 94.73%

train accuracy of bad: 92.04%

train accuracy of none: 20.19%

test accuracy of good: 94.70%

test accuracy of bad: 87.64%

test accuracy of none: 9.09%

test decuracy of florie. 5.0570

===== Epoch: 30/50 =====

train accuracy of good: 94.98%

train accuracy of bad: 94.81%

train accuracy of none: 44.23%

test accuracy of good: 93.29%

test accuracy of bad: 85.39%

test accuracy of none: 22.73%

===== Epoch: 50/50 =====

train accuracy of good: 97.12%

train accuracy of bad: 92.04%

train accuracy of none: 64.42%

test accuracy of good: 93.29%

test accuracy of bad: 82.02%

test accuracy of none: 36.36%

test decardey of horie. 30.307

#### neural network layer 架構為[2883 240 3]:

===== Epoch: 1/50 =====

train accuracy of good: 95.22%

train accuracy of bad: 61.76%

train accuracy of none: 4.81%

test accuracy of good: 93.29%

test accuracy of bad: 61.80%

test accuracy of none: 13.64%

===== Epoch: 10/50 =====

train accuracy of good: 95.92%

train accuracy of bad: 89.27%

train accuracy of none: 23.08% test accuracy of good: 93.99% test accuracy of bad: 83.15% test accuracy of none: 22.73% ===== Epoch: 30/50 ===== train accuracy of good: 95.01% train accuracy of bad: 85.29% train accuracy of none: 69.23% test accuracy of good: 91.17% test accuracy of bad: 83.15% test accuracy of none: 45.45% ===== Epoch: 50/50 ===== train accuracy of good: 96.13% train accuracy of bad: 96.02% train accuracy of none: 59.62% test accuracy of good: 91.52% test accuracy of bad: 91.01% test accuracy of none: 22.73%

Weight 初始值為 Random initialization 讓每一層的 weight 都是用常態分佈 Bias 初始值為 0

超參數設定 batch size = 5、number of epochs = 50、learning rate = 0.001

#### Filter:

$$\left[ egin{array}{ccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array} 
ight]$$

neural network layer 架構為[2883 160 3]:

===== Epoch: 1/50 =====

train accuracy of good: 95.75% train accuracy of bad: 23.70% train accuracy of none: 3.85% test accuracy of good: 96.11%

test accuracy of bad: 14.61% test accuracy of none: 9.09% ===== Epoch: 10/50 ===== train accuracy of good: 92.94% train accuracy of bad: 81.14% train accuracy of none: 35.58% test accuracy of good: 88.69% test accuracy of bad: 74.16% test accuracy of none: 22.73% ===== Epoch: 30/50 ===== train accuracy of good: 94.45% train accuracy of bad: 86.51% train accuracy of none: 49.04% test accuracy of good: 89.75% test accuracy of bad: 77.53% test accuracy of none: 27.27% ===== Epoch: 50/50 ===== train accuracy of good: 94.38% train accuracy of bad: 93.94% train accuracy of none: 40.38% test accuracy of good: 88.69% test accuracy of bad: 83.15%

test accuracy of none: 4.55%

### (1)

根據數據, train accuracy of none 的辨識正確率最差, 我想可能原因有 none 的 train data 本身比較少,無法訓 練出好的模型。

根據圖片分析, none 是沒將口罩戴好的樣本,這樣的樣本 特徵部位較小,使再做前處理時,更容易把特徵縮小,最 後可能辨識成 bad(沒口罩)。

- 1. 增加 train data 數量
- 2. 選擇出更好的 filter 與 pooling 方式
- 3. 可嘗試更深層的 Neural network

(3)

這次模型訓練結果 overfitting 比第一題(藏文辨識)的結果更加嚴重, test accuracy rate 都比 train accuracy rate 來得低,我想是因為圖片轉換後為 3 維矩陣,高維的數據會增加模型訓練的難度,須更顧及前處裡與 neural network 的調整,