微分と積分

2023.07.10

微分公式の確認

べき関数の微分

課題 203-1 次の関数 y を微分せよ

$$[1] \ y = x^4$$

[2]
$$y = x^{-1}$$

三角関数の微分1

課題 203-2 次の関数 y を微分せよ

$$[1] y = \sin x$$

$$[1] y = \sin x \qquad [2] y = \cos x$$

三角関数の微分2

課題 203-3 次の関数yを微分せよ

[1]
$$y = \tan x$$
 [2] $y = \sin(2x + 3)$

• $\cos^2 x \, \mathbf{c} \cos(2, \mathbf{x}) \, \mathbf{s} \, \mathbf{c} \, \mathbf{d} \cos(\mathbf{x})^{\hat{}}(2) \, \mathbf{c} \, \mathbf{m} \, \mathbf{c}$

ネイピア数

課題 203-4 ネイピア数 $e=2.7abcd\cdots$

- [1] 小数第 2 位の数 a [2] 小数第 3 位の数 b
- [3] 小数第4位の数c [4] 小数第5位の数d

$$y=e^x$$
の微分

課題
$$203$$
-5 $y=e^x$ を微分せよ $[](e^x)'=$

自然対数 $y = \log x$ の微分

課題
$$203$$
-6 $y = \log x$ を微分せよ $[](\log x)' =$

不定積分

微分と積分

- 関数の特徴を調べる
- 微分:各点での値の変化を見る
- 積分:個別の値より全体の値 (合計) を見る

• x=2 での傾きと全体の面積は?

定積分と不定積分

- 定積分:全体の面積それ自体は微分と無関係
- 不定積分:微分の逆計算 微分と密接な関係
- 微分と定積分は関係なさそうだが 実は密接に関係する(17世紀に発見)

f(x) の不定積分

- ullet 微分したら f(x) になる関数
- ullet F'(x)=f(x) となる関数 F(x) のこと
- ullet f(x) の不定積分F(x) を $\int f(x)\,dx$ と書く

例)
$$(rac{1}{2}x^2)'=x$$
 より $\int x\,dx=rac{1}{2}x^2$

ullet C が定数のとき $(rac{1}{2}x^2+C)'=x$

したがって,
$$\int x\,dx=rac{1}{2}x^2+C$$
でもある.

不定積分の書き方

- ◆ 不定積分には +C の任意性がある.
- この C を積分定数という.
- ullet f(x) の不定積分を求めるには
 - (1) 微分して f(x) になる関数を求める.
 - (2) それに+Cをつけて \int で表せばよい.

不定積分の例と課題

例
$$\int 1\,dx$$
 微分して 1 になる関数 $(x)'=1$ したがって $\int 1\,dx=x+C$ 例 $\int x\,dx=rac{1}{2}x^2+C$

課題 203-7 $\int x^2 dx$ はどうなるか.

不定積分の公式 (べき関数)

$$ullet \int 1 \, dx = x + C$$

$$\bullet \int x \, dx = \frac{1}{2}x^2 + C$$

$$\bullet \int x^2 \, dx = \frac{1}{3} x^3 + C$$

$$ullet \int x^3\,dx = \boxed{rac{1}{4}x^4 + C}$$

$$ullet \int x^n\,dx = \boxed{rac{1}{n+1}x^{n+1}+C}$$

不定積分の性質

$$ullet \int ig(f(x) + g(x)ig) \, dx = \int f(x) \, dx + \int g(x) \, dx$$

$$ullet \int ig(f(x)-g(x)ig)\,dx = \int f(x)\,dx - \int g(x)\,dx$$

•
$$\int cf(x) \, dx = c \int f(x) \, dx$$
 (cは定数)

注) 定数の違いがあっても, = と考える

不定積分の計算例

例
$$1\int (3x^2+2x+1)\,dx$$

$$=\int 3x^2\,dx+\int 2x\,dx+\int 1\,dx$$

$$=x^3+x^2+x+C\,\,(C\,\,$$
は積分定数)
例 $2\int x(x-2)\,dx$

$$=\int (x^2-2x)\,dx$$

$$=\frac{1}{3}x^3-x^2+C\,\,(C\,\,$$
は積分定数)

不定積分の計算 (課題)

課題 203-8 次の不定積分を求めよ (積分定数 C). TextP19

$$egin{aligned} [1] \int (x^3-5x^2+1)\,dx & [2] \int (1-x-x^2)\,dx \ [3] \int (3x^2)\,dx \end{aligned}$$

課題 203-9 次の不定積分を求めよ (積分定数 C). TextP19

$$[1] \int (-3x^2 + 2x + 3) dx \quad [2] \int (4x^3 - 8x + 3) dx$$
$$[3] \int (2x^3 + 4x - 3) dx$$

不定積分の公式 (三角関数)

不定積分の計算 (三角関数)

例 1)
$$\int (\sin 3x + \cos 4x) \, dx = -\frac{1}{3} \cos 3x + \frac{1}{4} \sin 4x + C$$

例2)
$$\int an^2 x \, dx = \int rac{\sin^2 x}{\cos^2 x} \, dx = \int rac{1 - \cos^2 x}{\cos^2 x} \, dx$$
 $= \int \left(rac{1}{\cos^2 x} - 1
ight) dx = an x - x + C$

課題 203-10 次の不定積分を求めよ.

$$[1] \int (3\sin x + \cos 3x) \, dx$$

$$[2] \int (1 + \frac{1}{\cos x})(1 - \frac{1}{\cos x}) dx$$

 $||\triangleright||| 12/12$

不定積分の公式(指数対数)

•
$$\int e^x \, dx = \boxed{e^x + C}$$
 $(e^x)' = e^x$
• $\int e^{ax} \, dx = \boxed{\frac{1}{a}e^{ax} + C}$ $(e^{ax})' = \boxed{ae^{ax}}$
• $\int \frac{1}{x} \, dx = \boxed{\log x + C}$ $(\log x)' = \frac{1}{x}$
注) $x < 0$ のとき $\int \frac{1}{x} \, dx = \log(-x) + C$ $(\log(ax))' = \frac{1}{x}$ 合わせて $\int \frac{1}{x} \, dx = \log|x| + C$

不定積分の計算(指数対数)

例 1)
$$\int (e^{2x} + e^{-x}) dx = \frac{1}{2}e^{2x} - e^{-x} + C$$

例
$$2)\int (x+rac{1}{x})\,dx=rac{1}{2}x^2+\log|x|+C\;(x<0$$
も含む)

例 3)
$$\int (e^x + e^{-x})^2 dx = \int ((e^x)^2 + 2e^x e^{-x} + (e^{-x})^2) dx$$
 $= \int (e^{2x} + 2 + e^{-2x}) dx = \frac{1}{2}e^{2x} - \frac{1}{2}e^{-2x} + C$

課題 203-11 次の不定積分を求めよ.

$$[1] \int (2e^x + rac{3}{x}) \, dx \qquad [2] \int (e^x + 1)^2 \, dx$$