Lecture 12: Normal Means & Multiple Testing

Merlise Clyde

October 18

Suppose we have normal data with

$$Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2)$$

Suppose we have normal data with

$$Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2)$$

lacktriangle Means Model $\mu_i \stackrel{iid}{\sim} g$, "random effects" distribution

Suppose we have normal data with

$$Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2)$$

lacktriangle Means Model $\mu_i \stackrel{iid}{\sim} g$, "random effects" distribution

Multiple Testing

 $lacksquare H_{0i}: \mu_i = 0 ext{ Versus } H_{1i}: \mu_i
eq 0$

Suppose we have normal data with

$$Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2)$$

lacktriangle Means Model $\mu_i \stackrel{iid}{\sim} g$, "random effects" distribution

Multiple Testing

- $lacksquare H_{0i}: \mu_i = 0 ext{ Versus } H_{1i}: \mu_i
 eq 0$
- n hypotheses that may potentially be closely related, e.g. H_{01} no difference in expression gene i between cases and controls, for n genes

• p-value, p_i , or testing H_{0i} versus H_{1i} for each i

- p-value, p_i , or testing H_{0i} versus H_{1i} for each i
- $p_i < \alpha$ implies reject H_{0i} in favor of H_{1i} , e.g $\alpha = 0.05$

- p-value, p_i , or testing H_{0i} versus H_{1i} for each i
- $p_i < \alpha$ implies reject H_{0i} in favor of H_{1i} , e.g $\alpha = 0.05$

Limitations?

- p-value, p_i , or testing H_{0i} versus H_{1i} for each i
- $p_i < \alpha$ implies reject H_{0i} in favor of H_{1i} , e.g $\alpha = 0.05$

Limitations?

overall lots of type I errors potentially in testing over and over again

- p-value, p_i , or testing H_{0i} versus H_{1i} for each i
- $p_i < \alpha$ implies reject H_{0i} in favor of H_{1i} , e.g $\alpha = 0.05$

Limitations?

- overall lots of type I errors potentially in testing over and over again
- α is the probability of making a type I error in an individual test, but not the probability of the family-wise type 1 error, e.g the probability of making at least one type 1 error in the n tests)

Power

 very low power (high type II error rate) because we have a single observation per hypothesis

Power

 very low power (high type II error rate) because we have a single observation per hypothesis

 low power unless we have good separation between the two distributions (large difference relative to noise)

Power

 very low power (high type II error rate) because we have a single observation per hypothesis

- low power unless we have good separation between the two distributions (large difference relative to noise)
- low power may actually lead to very few type I errors even in multiple testing but often still lots of type I and type II errors

Strategy Ib

Adjust the level of each test to reflect how many tests you are conducting

Strategy Ib

Adjust the level of each test to reflect how many tests you are conducting

Probability of at least one Type I error if tests are independent

$$1 - \Pr(0 \text{ Type I errors in } n \text{ tests}) = 1 - (1 - \alpha)^n$$

• to control the increase in Type I errors with n we may need to decrease the α threshold with n

• control the family-wise error rate. Assuming independence across tests (reality?) replace α with α/n

• control the family-wise error rate. Assuming independence across tests (reality?) replace α with α/n

Bonferroni correction: keeps overall family wise error at α

• control the family-wise error rate. Assuming independence across tests (reality?) replace α with α/n

Bonferroni correction: keeps overall family wise error at α

• if we have 10,000 tests $\alpha_{\mathsf{Bon}} = 0.05/10000$ very small

• control the family-wise error rate. Assuming independence across tests (reality?) replace α with α/n

Bonferroni correction: keeps overall family wise error at α

- if we have 10,000 tests $\alpha_{\mathsf{Bon}} = 0.05/10000$ very small
- in the extremely low power setting, probably very few tests exceed the new threshhold (conservative)

■ FDR threshhold α_{FDR}

- FDR threshhold α_{FDR}
- if $p_i < \alpha_{\sf FDR}$, call this is a "discovery"

- FDR threshhold α_{FDR}
- if $p_i < \alpha_{\sf FDR}$, call this is a "discovery"
- collect all of our discoveries, say 100 out of 10,000 genes

- FDR threshhold α_{FDR}
- if $p_i < \alpha_{\sf FDR}$, call this is a "discovery"
- collect all of our discoveries, say 100 out of 10,000 genes
- we want that the proportion of discoveries that are false (i.e H_0 was actually true) to be small

- FDR threshhold α_{FDR}
- if $p_i < \alpha_{\sf FDR}$, call this is a "discovery"
- collect all of our discoveries, say 100 out of 10,000 genes
- we want that the proportion of discoveries that are false (i.e H_0 was actually true) to be small
- control the proportion of false discoveries at level α instead of individual p-values

- FDR threshhold α_{FDR}
- if $p_i < \alpha_{\sf FDR}$, call this is a "discovery"
- collect all of our discoveries, say 100 out of 10,000 genes
- we want that the proportion of discoveries that are false (i.e H_0 was actually true) to be small
- control the proportion of false discoveries at level α instead of individual p-values
- Benjamini & Hochberg (BH) (1995 JRSS-B) propose a simple choice for α_{FDR} based on n and assuming n independent tests

- FDR threshhold α_{FDR}
- if $p_i < \alpha_{\sf FDR}$, call this is a "discovery"
- collect all of our discoveries, say 100 out of 10,000 genes
- we want that the proportion of discoveries that are false (i.e H_0 was actually true) to be small
- control the proportion of false discoveries at level α instead of individual p-values
- Benjamini & Hochberg (BH) (1995 JRSS-B) propose a simple choice for α_{FDR} based on n and assuming n independent tests
- Issue: we will still have lower power in this low data scenario!

- FDR threshhold α_{FDR}
- if $p_i < \alpha_{\sf FDR}$, call this is a "discovery"
- collect all of our discoveries, say 100 out of 10,000 genes
- we want that the proportion of discoveries that are false (i.e H_0 was actually true) to be small
- control the proportion of false discoveries at level α instead of individual p-values
- Benjamini & Hochberg (BH) (1995 JRSS-B) propose a simple choice for α_{FDR} based on n and assuming n independent tests
- Issue: we will still have lower power in this low data scenario!
- Borrow strength!

Strategy II: Hierarchical Model

$$Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2) \ \mu_i \stackrel{iid}{\sim} g$$

Strategy II: Hierarchical Model

$$Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2) \ \mu_i \stackrel{iid}{\sim} g$$

• naive approach: choose g as $N(\mu, \sigma_{\mu}^2)$ & estimate μ and σ_{μ}^2 (Empirical Bayes) assuming $\sigma^2 = 1$ so that $\hat{\mu} = \bar{y}$ and $s_y^2 = 1 + \hat{\sigma}_{\mu}^2$, so $\hat{\sigma}_{\mu}^2 = \max(0, 1 - s_y^2)$

Strategy II: Hierarchical Model

$$Y_i \mid \mu_i, \sigma^2 \stackrel{iid}{\sim} (\mu_i, \sigma^2) \ \mu_i \stackrel{iid}{\sim} g$$

• naive approach: choose g as $N(\mu, \sigma_{\mu}^2)$ & estimate μ and σ_{μ}^2 (Empirical Bayes) assuming $\sigma^2 = 1$ so that $\hat{\mu} = \bar{y}$ and $s_y^2 = 1 + \hat{\sigma}_{\mu}^2$, so $\hat{\sigma}_{\mu}^2 = \max(0, 1 - s_y^2)$

■ Conclude in favor of H_{1i} if $0 \notin (\mu_{Li}, \mu_{Ui})$

- Conclude in favor of H_{1i} if $0 \notin (\mu_{Li}, \mu_{Ui})$
- otherwise fail to reject

- Conclude in favor of H_{1i} if $0 \notin (\mu_{Li}, \mu_{Ui})$
- otherwise fail to reject

Question: Do we expect this approach to have a huge Type I error rate exploding with n (# tests)? Why or why not?

shrinkage and borrowing of information leads to narrower CI

- Conclude in favor of H_{1i} if $0 \notin (\mu_{Li}, \mu_{Ui})$
- otherwise fail to reject

Question: Do we expect this approach to have a huge Type I error rate exploding with n (# tests)? Why or why not?

- shrinkage and borrowing of information leads to narrower CI
- information from the other y_i s enters into the posterior for μ_i through the estimates of μ and σ^2_{μ}

- Conclude in favor of H_{1i} if $0 \notin (\mu_{Li}, \mu_{Ui})$
- otherwise fail to reject

Question: Do we expect this approach to have a huge Type I error rate exploding with n (# tests)? Why or why not?

- shrinkage and borrowing of information leads to narrower CI
- information from the other y_i s enters into the posterior for μ_i through the estimates of μ and σ^2_{μ}

$$\mu_i \mid y_1, \dots, y_n \sim N\left(rac{y_i + \hat{\mu}/\hat{\sigma}_{\mu}^2}{1 + 1/\hat{\sigma}_{\mu}^2}, rac{1}{1 + 1/\hat{\sigma}_{\mu}^2}
ight).$$

- Conclude in favor of H_{1i} if $0 \notin (\mu_{Li}, \mu_{Ui})$
- otherwise fail to reject

Question: Do we expect this approach to have a huge Type I error rate exploding with n (# tests)? Why or why not?

- shrinkage and borrowing of information leads to narrower CI
- information from the other y_i s enters into the posterior for μ_i through the estimates of μ and σ^2_{μ}

$$\mu_i \mid y_1, \dots, y_n \sim N\left(rac{y_i + \hat{\mu}/\hat{\sigma}_{\mu}^2}{1 + 1/\hat{\sigma}_{\mu}^2}, rac{1}{1 + 1/\hat{\sigma}_{\mu}^2}
ight).$$

• when σ_{μ}^2 is small credible intervals are much narrower than with MLE

Hypothetical Setting

• first i = 1, 2, 3 "signals" (H_{1i} is true)

Hypothetical Setting

- first i = 1, 2, 3 "signals" (H_{1i} is true)
- add n-3 nulls (H_{0i} is true)

Hypothetical Setting

- first i = 1, 2, 3 "signals" (H_{1i} is true)
- add n-3 nulls (H_{0i} is true)

Does throwing in more nulls lead to more Type I errors?

- what happens to $\hat{\mu}$ and $\hat{\sigma}_{\mu}^2$?
- what happens to the credible intervals?

Informal Approach B

■ an issue with the $N(\mu, \sigma_{\mu}^2)$ for g in the hypothetical setting is that it can capture only noise and not the signals. (signals are outliers under normal model)

Informal Approach B

- an issue with the $N(\mu, \sigma_{\mu}^2)$ for g in the hypothetical setting is that it can capture only noise and not the signals. (signals are outliers under normal model)
- choose a more flexible *g* to capture both noise and signal!

Informal Approach B

- an issue with the $N(\mu, \sigma_{\mu}^2)$ for g in the hypothetical setting is that it can capture only noise and not the signals. (signals are outliers under normal model)
- choose a more flexible *g* to capture both noise and signal!

Local scale

$$egin{aligned} \mu_i \mid \lambda_i, au &\sim N(0, \lambda_i au) \ \lambda_i &\sim f & ext{local-scale} \ au &\sim h & ext{global-scale} \end{aligned}$$

Local scale

$$egin{aligned} \mu_i \mid \lambda_i, au \sim N(0, \lambda_i au) \ & \lambda_i \sim f \quad ext{ local-scale} \ & au \sim h \quad ext{ global-scale} \end{aligned}$$

density that is concentration around zero to shrink noise to zero

Local scale

$$egin{aligned} \mu_i \mid \lambda_i, au \sim N(0, \lambda_i au) \ & \lambda_i \sim f \quad ext{ local-scale} \ & au \sim h \quad ext{ global-scale} \end{aligned}$$

- density that is concentration around zero to shrink noise to zero
- heavy tails avoid over-shrinkage of signals (want heavier than normal)

Local scale

$$egin{aligned} \mu_i \mid \lambda_i, au \sim N(0, \lambda_i au) \ & \lambda_i \sim f \quad ext{ local-scale} \ & au \sim h \quad ext{ global-scale} \end{aligned}$$

- density that is concentration around zero to shrink noise to zero
- heavy tails avoid over-shrinkage of signals (want heavier than normal)
- Includes:
 - horseshoe
 - generalized double pareto
 - Dirichlet Laplace

 a single Gaussian or Double Exponential prior (Bayes Lasso) have exponential tails same as likelihood (in the normal means problem)

- a single Gaussian or Double Exponential prior (Bayes Lasso) have exponential tails same as likelihood (in the normal means problem)
- single parameter controls tail behaviour and concentration at zero

- a single Gaussian or Double Exponential prior (Bayes Lasso) have exponential tails same as likelihood (in the normal means problem)
- single parameter controls tail behaviour and concentration at zero
- will overshrink the signal if there are many noise cases

- a single Gaussian or Double Exponential prior (Bayes Lasso) have exponential tails same as likelihood (in the normal means problem)
- single parameter controls tail behaviour and concentration at zero
- will overshrink the signal if there are many noise cases
- Good shrinkage prior allows separate control of the concentration around zero and tails

- a single Gaussian or Double Exponential prior (Bayes Lasso) have exponential tails same as likelihood (in the normal means problem)
- single parameter controls tail behaviour and concentration at zero
- will overshrink the signal if there are many noise cases
- Good shrinkage prior allows separate control of the concentration around zero and tails
- tails need to exhibit bounded influence

- a single Gaussian or Double Exponential prior (Bayes Lasso) have exponential tails same as likelihood (in the normal means problem)
- single parameter controls tail behaviour and concentration at zero
- will overshrink the signal if there are many noise cases
- Good shrinkage prior allows separate control of the concentration around zero and tails
- tails need to exhibit bounded influence
- continous versions/relaxations of a spike and slab prior

$$\mu_i \sim \pi_0 \delta_0 + (1-\pi)g$$

- a single Gaussian or Double Exponential prior (Bayes Lasso) have exponential tails same as likelihood (in the normal means problem)
- single parameter controls tail behaviour and concentration at zero
- will overshrink the signal if there are many noise cases
- Good shrinkage prior allows separate control of the concentration around zero and tails
- tails need to exhibit bounded influence
- continous versions/relaxations of a spike and slab prior

$$\mu_i \sim \pi_0 \delta_0 + (1-\pi)g$$

• allows formal Bayes multiple testing $H_{0i}: \mu = 0$

- a single Gaussian or Double Exponential prior (Bayes Lasso) have exponential tails same as likelihood (in the normal means problem)
- single parameter controls tail behaviour and concentration at zero
- will overshrink the signal if there are many noise cases
- Good shrinkage prior allows separate control of the concentration around zero and tails
- tails need to exhibit bounded influence
- continous versions/relaxations of a spike and slab prior

$$\mu_i \sim \pi_0 \delta_0 + (1-\pi)g$$

- lacktriangledown allows formal Bayes multiple testing $H_{0i}: \mu=0$
- bayesiano Bayesiana and a superior a