Лекция 9. Гомотопии и аналитическое продолжение

Теория функций комплексного переменного

Гомотопия между двумя путями

Рис. 6.1. Гомотопия между путями γ_0 и γ_1 , соединяющими точки p и q

Гомотопия с закрепленными концами

Свободная гомотопия между петлями

Определение 6.2. Пусть $\gamma_0, \gamma_1 \colon [A;B] \to U$ — непрерывные замкнутые пути в открытом множестве $U \subset \mathbb{C}$. Говорят, что пути γ_0 и γ_1 гомотопны, если существует такое непрерывное отображение $F \colon [A;B] \times [0;1] \to U$, что $F(t,0) = \gamma_0(t)$ и $F(t,1) = \gamma_1(t)$ для всех $t \in [A;B]$, а также F(A,s) = F(B,s) для всех $s \in [0;1]$.

Отображение F называется $\mathit{гомотопией}$ (точнее — гомотопией между замкнутыми путями), соединяющей пути γ_0 и γ_1 .

Условие «F(A,s)=F(B,s) для всех s» означает, конечно, что все пути γ_s замкнуты.

Линейная гомотопия

- Задается формулой $F(t,s) = (1-s)\gamma_0(t) + s\gamma_1(t)$.
- ullet Не выходит за пределы множества U, если U выпукло.
- Имеет смысл и как гомотопия с фиксированными концами, и как (свободная) гомотопия замкнутых путей (=петель).

Лемма об улучшении гомотопии

Лемма 6.4 (об улучшении гомотопии). Пусть $U \subset \mathbb{C}$ — открытое подмножество, и пусть $\gamma_0, \gamma_1 \colon [A; B] \to U$ — два кусочно гладких пути, которые либо соединяют одну и ту же пару точек р и q, либо оба являются замкнутыми. Если γ_0 и γ_1 гомотопны (как пути с закрепленными концами — в первом случае, как замкнутые пути — во втором), то между ними существует такая гомотопия $G: [A;B] \times [0;1] \to U$ (также являющаяся в первом случае гомотопией путей с закрепленными концами, а во втором — гомотопией замкнутых путей), что для всякого $s \in [0;1]$ путь $\gamma_s: [A;B] \to U$, $\gamma_s(t) = G(t,s)$, является кусочно гладким, а также для всякого $t \in$ $\in [A;B]$ путь $\mu_t: [0;1] \to U$, $\mu_t(s) = G(t,s)$, является кусочно гладким.

Кривая Пеано

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=384543

Лемма об улучшении гомотопии: идея доказательства

- Достаточно считать, что γ_0 и γ_1 равномерно близки.
- Покроем γ_0 U γ_1 конечным числом выпуклых множеств.
- В каждом из этих выпуклых множеств сделаем линейную гомотопию.

Росток функции

Для данной точки $p \in \mathbb{C}$ рассмотрим множество всех пар (U, f), где $U \ni p$ — окрестность и $f: U \to \mathbb{C}$ — голоморфная функция. Пары (U_1, f_1) и (U_2, f_2) будем называть эквивалентными, если функции f_1 и f_2 совпадают на некоторой окрестности точки p.

Определение 6.6. *Ростками* голоморфных функций в точке p называются классы эквивалентности пар (U, f) относительно этого отношения эквивалентности; класс эквивалентности пары (U, f) называется ростком функции f в точке p.

Множество ростков голоморфных функций в точке p обозначается \mathcal{O}_p .

Аналитическое продолжение

- Естественная биекция между \mathcal{O}_p и степенными рядами с центром в p и положительным радиусом сходимости.
- Пусть путь γ покрыт конечным числом открытых дисков D_i с центрами в точках $\gamma(t_i)$ и радиусами $r_i>0$ т.ч. $t_0=0< t_1< \cdots < t_{n-1}< t_n=1$ и $D_i\cap D_{i+1}\neq \emptyset$.
- Допустим, s_i сходящийся в i-м диске степенной ряд с центром $\gamma(t_i)$, т.ч. s_i и s_{i+1} сходятся на пересечении соотв. дисков к одинаковой сумме.

Аналитическое продолжение II

- Пусть $f_i : D_i \to \mathbb{C}$ сумма ряда s_i .
- Тогда говорят, что функции f_0 в точке $\gamma(0)$ аналитически продолжается вдоль γ .
- Пусть $\Gamma(t)$ росток функции f_i т.ч. $\gamma(t) \in D_i$. Тогда все ростки $\Gamma(t)$ являются аналитическими продолжениями друг друга вдоль соответствующих отрезков пути γ .

Переразложение ряда

- Пусть R>0 радиус сходимости ряда $s_a(z)=c_0+c_1(z-a)+c_2(z-a)^2+\cdots$
- Возьмем точку $b \in \mathbb{D}(a,R)$ и переразложим этот ряд с центром в этой точке:

$$s_b(z) = s_a(b + (z - b))$$

$$= (c_0 + c_1(b - a) + c_2(b - a)^2 + \cdots)$$

$$+ (c_1 + 2c_2(b - a) + \cdots)(z - b) + (c_2 + \cdots)(z - b)^2 + \cdots$$

$$= d_0 + d_1(z - b) + d_2(z - b)^2 + \cdots$$

- Коэффициенты d_n задаются формулой $d_n = \frac{s_a^{(n)}(b)}{n!}$.
- Ряд s_{i+1} получается из s_i переразложением.

Пример

$$s(z) = 1 + z + z^2 + z^3 + \dots = \frac{1}{1 - z},$$
 $|z| < 1$

$$S(z) = 1 + z + z^{2} + z^{3} + ... = \frac{1}{1 - z} \quad \text{mon } |z| < 1$$

$$Tyeth |q| < 1. \quad Torga \quad S(z) = \frac{1}{(1 - q) - (z - q)} = \frac{1}{(1 - q)^{1 - (z - q)}} = \frac{1}{1 - q} = \frac{1}{1 - q}$$

Важно:

- Аналитическому продолжению подвергаются ростки, а не значения функции (бывает так, что значения совпадают, а ростки разные).
- Аналитическое продолжение бывает и над вещественными числами. Например, можно аналитически продолжать ростки «функции» угол на окружности.
- Теория аналитического продолжения почти алгебраическая. Из анализа нужна только сходимость ряда.

Карл Вейерштрасс (1815 — 1897)

- Определение непрерывной функции
- Теория эллиптических функций
- Теория аналитического продолжения
- Вариационное исчисление, дифференциальная геометрия, линейная алгебра

Композиция аналитического продолжения и голоморфной функции

Следствие 6.13. Пусть $\gamma\colon [A;B]\to \mathbb{C}$ — непрерывный путь, соединяющий точки p и q, вдоль которого возможно аналитическое продолжение ростка $f\in \mathcal{O}_p$ в росток $\mathbf{g}\in \mathcal{O}_q$. Если V — открытое множество, содержащее $\gamma([A;B])$, и $\varphi\colon V\to \mathbb{C}$ — голоморфная функция, то вдоль γ возможно аналитическое продолжение ростка $\varphi\circ f$ в росток $\varphi\circ \mathbf{g}$.

Доказательство: Каждая из функций $\varphi \circ f_i$ разлагается в сходящийся степенной ряд в диске D_i .

Единственность аналитического продолжения

Предложение 6.14. Пусть $\gamma \colon [A;B] \to \mathbb{C}$ — непрерывный путь на комплексной плоскости, соединяющий точки $p = \gamma(A)$ и $q = \gamma(B)$. Если аналитическое продолжение ростка $f \in \mathcal{O}_p$ вдоль пути γ существует, то оно единственно.

Идея доказательства. Рассмотрим два покрытия пути γ дисками D_i и D_j' . Расположим все эти диски по порядку. Убедимся в том, что семейство $\Gamma(t)$ одно и то же (по теореме единственности).

Теорема о монодромии

Предложение 6.15. Пусть $F: [A;B] \times [0;1] \to \mathbb{C}$ — гомотопия с закрепленными концами путей, соединяющих точки p и q, так что F(A,s)=p для всех $s\in [0;1]$ и F(B,s)=q для всех $s\in [0;1]$. Пусть $f\in \mathcal{O}_p$ — росток голоморфной функции в точке p, и предположим, что f допускает аналитическое продолжение вдоль каждого промежуточного пути $\gamma_s: t\mapsto F(t,s)$.

Тогда результаты аналитических продолжений ростка f вдоль всех путей γ_s (в частности, вдоль путей γ_0 и γ_1) совпадают.

- Достаточно доказать для близких путей.
- Они покрываются одной и той же последовательностью дисков.

Многозначная аналитическая функция

- Множество всех ростков, полученных из данного аналитическими продолжениями вдоль всевозможных путей.
- Примеры: $\sqrt[n]{z}$, $\log z$, $\arcsin z$, $z^a = e^{(\log z)a}$, ...
- $a^z = e^{(\log a)z}$ НЕ является многозначной аналитической функцией (это разные однозначные функции в зависимости от ветви логарифма).
- Значения многозначной аналитической функции иногда можно определить и в тех точках, в которые нельзя продолжить ростки. Например, $\sqrt{0}=0$.

By YAMASHITA Makoto - Own work, CC BY 2.5, https://commons.wikimedia.org/w/in dex.php?curid=1063792

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- Wolfram Mathematica
- https://wikipedia.org

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ