```
Welcome to STN International
                Web Page URLs for STN Seminar Schedule - N. America
NEWS 1
NEWS 2
                 "Ask CAS" for self-help around the clock
NEWS 3 FEB 28 PATDPAFULL - New display fields provide for legal status
                data from INPADOC
NEWS 4 FEB 28 BABS - Current-awareness alerts (SDIs) available
NEWS 5 MAR 02 GBFULL: New full-text patent database on STN
NEWS 6 MAR 03 REGISTRY/ZREGISTRY - Sequence annotations enhanced
NEWS 7 MAR 03 MEDLINE file segment of TOXCENTER reloaded
NEWS 8 MAR 22
                KOREAPAT now updated monthly; patent information enhanced
NEWS 9 MAR 22 Original IDE display format returns to REGISTRY/ZREGISTRY
NEWS 10 MAR 22 PATDPASPC - New patent database available
                REGISTRY/ZREGISTRY enhanced with experimental property tags
NEWS 11 MAR 22
NEWS 12 APR 04
                EPFULL enhanced with additional patent information and new
                 fields
NEWS 13 APR 04
                EMBASE - Database reloaded and enhanced
NEWS 14 APR 18
                New CAS Information Use Policies available online
NEWS 15 APR 25
                Patent searching, including current-awareness alerts (SDIs),
                based on application date in CA/CAplus and USPATFULL/USPAT2
                may be affected by a change in filing date for U.S.
                 applications.
NEWS 16 APR 28 Improved searching of U.S. Patent Classifications for
                U.S. patent records in CA/CAplus
                GBFULL enhanced with patent drawing images
NEWS 17 MAY 23
                REGISTRY has been enhanced with source information from
NEWS 18 MAY 23
                CHEMCATS
NEWS 19 JUN 06
                STN Patent Forums to be held in June 2005
NEWS 20 JUN 06
                The Analysis Edition of STN Express with Discover!
                 (Version 8.0 for Windows) now available
NEWS 21 JUN 13
                RUSSIAPAT: New full-text patent database on STN
NEWS 22 JUN 13 FRFULL enhanced with patent drawing images
NEWS 23 JUN 20 MEDICONF to be removed from STN
NEWS EXPRESS JUNE 13 CURRENT WINDOWS VERSION IS V8.0, CURRENT
              MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
              AND CURRENT DISCOVER FILE IS DATED 13 JUNE 2005
              STN Operating Hours Plus Help Desk Availability
NEWS HOURS
NEWS INTER
              General Internet Information
              Welcome Banner and News Items
NEWS LOGIN
              Direct Dial and Telecommunication Network Access to STN
NEWS PHONE
NEWS WWW
              CAS World Wide Web Site (general information)
Enter NEWS followed by the item number or name to see news on that
specific topic.
 All use of STN is subject to the provisions of the STN Customer
 agreement. Please note that this agreement limits use to scientific
 research. Use for software development or design or implementation
 of commercial gateways or other similar uses is prohibited and may
 result in loss of user privileges and other penalties.
 FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005
=> file uspatful
COST IN U.S. DOLLARS
                                               SINCE FILE
                                                               TOTAL.
                                                    ENTRY
                                                             SESSION
FULL ESTIMATED COST
                                                     0.21
                                                                0.21
FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005
CA INDEXING COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)
FILE COVERS 1971 TO PATENT PUBLICATION DATE: 21 Jun 2005 (20050621/PD)
FILE LAST UPDATED: 21 Jun 2005 (20050621/ED)
HIGHEST GRANTED PATENT NUMBER: US6910221
HIGHEST APPLICATION PUBLICATION NUMBER: US2005132458
CA INDEXING IS CURRENT THROUGH 21 Jun 2005 (20050621/UPCA)
ISSUE CLASS FIELDS (/INCL) CURRENT THROUGH: 21 Jun 2005 (20050621/PD)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Apr 2005
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Apr 2005
>>> USPAT2 is now available. USPATFULL contains full text of the
                                                                     <<<
>>> original, i.e., the earliest published granted patents or
                                                                     <<<
>>> applications. USPAT2 contains full text of the latest US
                                                                     <<<
```

```
>>> USPATFULL. A USPATFULL record contains not only the original
                                                                           <<<
    published document but also a list of any subsequent
                                                                           <<<
    publications. The publication number, patent kind code, and
                                                                           <<<
>>>
>>> publication date for all the US publications for an invention
                                                                           <<<
    are displayed in the PI (Patent Information) field of USPATFULL
                                                                           <<<
>>>
     records and may be searched in standard search fields, e.g., /PN,
>>>
                                                                          <<<
                                                                           <<<
>>>
    /PK, etc.
    USPATFULL and USPAT2 can be accessed and searched together
                                                                           <<<
>>>
     through the new cluster USPATALL. Type FILE USPATALL to
                                                                           <<<
>>>
     enter this cluster.
                                                                           <<<
>>>
                                                                           <<<
>>>
    Use USPATALL when searching terms such as patent assignees,
                                                                           <<<
>>>
    classifications, or claims, that may potentially change from
                                                                           <<<
>>>
     the earliest to the latest publication.
                                                                           <<<
This file contains CAS Registry Numbers for easy and accurate
substance identification.
=> s hydroxyapatite
          9532 HYDROXYAPATITE
T.1
=> s ll and hydroxyapatite/clm
          1599 HYDROXYAPATITE/CLM
          1599 L1 AND HYDROXYAPATITE/CLM
=> s 12 and adenovir?
         33013 ADENOVIR?
            69 L2 AND ADENOVIR?
=> s 13 and adenovir?/clm
          2978 ADENOVIR?/CLM
            13 L3 AND ADENOVIR?/CLM
T.4
=> d 14,cbib,1-13
    ANSWER 1 OF 13 USPATFULL on STN
2005:104948 Producing telomerase activators and inhibitors by screening with
    purified telomerase.
    Weinrich, Scott L., Chesterfield, MO, UNITED STATES Atkinson, Edward M. III, Seattle, WA, UNITED STATES
    Lichtsteiner, Serge P., Encinitas, CA, UNITED STATES
    Vasserot, Alain P., Berkeley, CA, UNITED STATES
    Pruzan, Ronald A., Palo Alto, CA, UNITED STATES
    US 2005089883 A1 20050428
    APPLICATION: US 2004-811033 A1 20040326 (10)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
    ANSWER 2 OF 13 USPATFULL on STN
2004:204153 Antibodies associated with alterations in bone density.
    Brunkow, Mary E., Seattle, WA, UNITED STATES
    Galas, David J., Claremont, CA, UNITED STATES
    Kovacevich, Brian, Renton, WA, UNITED STATES
    Mulligan, John T., Seattle, WA, UNITED STATES
    Paeper, Bryan W., Seattle, WA, UNITED STATES
    Van Ness, Jeffrey, Claremont, CA, UNITED STATES Winkler, David G., Seattle, WA, UNITED STATES
    Darwin Discovery Ltd., Bothell, WA, UNITED STATES, 98021 (U.S. corporation)
    US 2004158045 A1 20040812
    APPLICATION: US 2004-788606 A1 20040227 (10)
    PRIORITY: US 1998-110283P 19981127 (60)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
    ANSWER 3 OF 13 USPATFULL on STN
2004:76543 Compositions and methods for increasing bone mineralization.
    Brunkow, Mary E., Seattle, WA, UNITED STATES
    Galas, David J., Claremont, CA, UNITED STATES
    Kovacevich, Brian, Renton, WA, UNITED STATES
    Mulligan, John T., Seattle, WA, UNITED STATES
Paeper, Bryan, Seattle, WA, UNITED STATES
    Van Ness, Jeffrey, Claremont, CA, UNITED STATES
    Winkler, David G., Seattle, WA, UNITED STATES
    Darwin Discovery Ltd., Slough, UNITED KINGDOM, SL1 3WE (U.S. corporation)
    US 2004058321 A1 20040325
    APPLICATION: US 2002-95248 A1 20020307 (10)
    PRIORITY: US 1998-110283P 19981127 (60)
```

>>> publications, starting in 2001, for the inventions covered in

<<<

DOCUMENT TYPE: Utility; APPLICATION. CAS INDEXING IS AVAILABLE FOR THIS PATENT.

```
ANSWER 4 OF 13 USPATFULL on STN
2003:238090 Compositions and methods for increasing bone mineralization.
   Brunkow, Mary E., Seattle, WA, UNITED STATES
   Galas, David J., Claremont, CA, UNITED STATES
   Kovacevich, Brian, Renton, WA, UNITED STATES
   Mulligan, John T., Seattle, WA, UNITED STATES
    Paeper, Bryan W., Seattle, WA, UNITED STATES
   Van Ness, Jeffrey, Claremont, CA, UNITED STATES
   Winkler, David G., Seattle, WA, UNITED STATES
   Darwin Discovery Ltd., Bothell, WA, UNITED STATES (U.S. corporation)
   US 2003166247 A1 20030904
   APPLICATION: US 2003-384893 A1 20030306 (10)
   PRIORITY: US 1998-110283P 19981127 (60)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
    ANSWER 5 OF 13 USPATFULL on STN
2003:214336 Traversal of nucleic acid molecules through a fluid space and
   expression in repair cells.
    Sosnowski, Barbara A., Coronado, CA, UNITED STATES
    Pierce, Glenn, Rancho Santa Fe, CA, UNITED STATES
   Selective Genetics, Inc., San Diego, CA, UNITED STATES, 92121 (U.S.
   corporation)
   US 2003148979 A1 20030807
   APPLICATION: US 2002-264284 A1 20021002 (10)
    PRIORITY: US 2001-327513P 20011003 (60)
   DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
    ANSWER 6 OF 13 USPATFULL on STN
2003:10286 Urease-based vaccine and treatment for helicobacter infection.
   Michetti, Pierre, Lausanne, SWITZERLAND
   Corthesy-Theulaz, Irene, Lausanne, SWITZERLAND
   Blum, Andre, Romammotier, SWITZERLAND
    Davin, Catherine, Rule de Moulins, FRANCE
   Haas, Rainer, Tubingen, GERMANY, FEDERAL REPUBLIC OF
    Kraehenbuhl, Jean-Pierre, Rivaz, SWITZERLAND
    Saraga, Emilia, Lausanne, SWITZERLAND
   US 2003007980 A1 20030109
   APPLICATION: US 2001-955739 A1 20010918 (9)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
   ANSWER 7 OF 13 USPATFULL on STN
2002:126348 Method for purifying adenoviruses.
   Cannon-Carlson, Susan V., Wayne, NJ, UNITED STATES
    Cutler, Collette, Bloomingdale, NJ, UNITED STATES
    Vellekamp, Gary J., Glen Ridge, NJ, UNITED STATES
   Voloch, Marcio, New York, NY, UNITED STATES
    Schering Corporation (U.S. corporation)
    US 2002064860 A1 20020530
    APPLICATION: US 2001-991080 Al 20011116 (9)
    PRIORITY: US 2000-253823P 20001129 (60)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
   ANSWER 8 OF 13 USPATFULL on STN
2001:212417 In situ bioreactors and methods of use thereof.
    Pierce, Glenn, Rancho Santa Fe, CA, United States
    Chandler, Lois Ann, Encinitas, CA, United States
    US 2001044413 Al 20011122
    APPLICATION: US 2000-729644 A1 20001130 (9)
    PRIORITY: US 1999-168470P 19991201 (60)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
   ANSWER 9 OF 13 USPATFULL on STN
2001:157800 Urease-based vaccine and treatment for helicobacter infection.
    Michetti, Pierre, Lausanne, Switzerland
    Corthesy-Theulaz, Irene, Lausanne, Switzerland
    Blum, Andre, Romammotier, Switzerland
    Davin, Catherine, Nyon, Switzerland
    Haas, Rainier, Tubingen, Switzerland
    Kraehenbuhl, Jean-Pierre, Rivat, Switzerland
    Saraga, Emilia, Lausanne, Switzerland
```

OraVax, Inc., Cambridge, MA. United States (U.S. corporation)

US 6290962 B1 20010918 APPLICATION: US 1994-200346 19940223 (8) DOCUMENT TYPE: Utility; GRANTED. CAS INDEXING IS AVAILABLE FOR THIS PATENT. ANSWER 10 OF 13 USPATFULL on STN 2001:105329 GENE TRANSFER TO INTERVERTEBRAL DISC CELLS. KANG, JAMES D., PITTSBURGH, PA, United States EVANS, CHRISTOPHER H., PITTSBURGH, PA, United States NISHIDA, KOTARO, PITTSBURGH, PA, United States ROBBINS, PAUL D., PITTSBURGH, PA, United States US 2001006948 A1 20010705 APPLICATION: US 1998-199978 A1 19981125 (9) DOCUMENT TYPE: Utility; APPLICATION. CAS INDEXING IS AVAILABLE FOR THIS PATENT. ANSWER 11 OF 13 USPATFULL on STN 2000:149968 Chromatographic purification of adeno-associated virus (AAV). O'Riordan, Catherine E., Boston, MA, United States Erickson, Amy E., Charlton, MA, United States Smith, Alan E., Dover, MA, United States Genzyme Corporation, Cambridge, MA, United States (U.S. corporation) US 6143548 20001107 WO 9708298 19970306 APPLICATION: US 1998-11828 19980629 (9) WO 1996-US13872 19960830 19980629 PCT 371 date 19980629 PCT 102(e) date PRIORITY: US 1995-2967P 19950830 (60) DOCUMENT TYPE: Utility; Granted. CAS INDEXING IS AVAILABLE FOR THIS PATENT. ANSWER 12 OF 13 USPATFULL on STN 1999:99644 Methods and compositions for multiple gene transfer into bone cells. Bonadio, Jeffrey, Ann Harbor, MI, United States Goldstein, Steven A., Ann Harbor, MI, United States The Regent of The University of Michigan, Ann Arbor, MI, United States (U.S. corporation) US 5942496 19990824 APPLICATION: US 1994-316650 19940930 (8) DOCUMENT TYPE: Utility; Granted. CAS INDEXING IS AVAILABLE FOR THIS PATENT. ANSWER 13 OF 13 USPATFULL on STN 1998:65199 Gene transfer into bone cells and tissues. Bonadio, Jeffrey, Ann Arbor, MI, United States Goldstein, Steven A., Ann Arbor, MI, United States The Regent of the University of Michigan, Ann Arbor, MI, United States (U.S. corporation) US 5763416 19980609 APPLICATION: US 1994-199780 19940218 (8) DOCUMENT TYPE: Utility; Granted. CAS INDEXING IS AVAILABLE FOR THIS PATENT. => d 14,cbib,ab,clm,11 ANSWER 11 OF 13 USPATFULL on STN 2000:149968 Chromatographic purification of adeno-associated virus (AAV). O'Riordan, Catherine E., Boston, MA, United States Erickson, Amy E., Charlton, MA, United States Smith, Alan E., Dover, MA, United States Genzyme Corporation, Cambridge, MA, United States (U.S. corporation) US 6143548 20001107 WO 9708298 19970306 APPLICATION: US 1998-11828 19980629 (9) WO 1996-US13872 19960830 19980629 PCT 371 date 19980629 PCT 102(e) date PRIORITY: US 1995-2967P 19950830 (60) DOCUMENT TYPE: Utility; Granted. CAS INDEXING IS AVAILABLE FOR THIS PATENT. The present invention relates to the purification of large scale quantities of active (infectious) adenovirus and AAV, especially for use in therapeutic applications. In particular, the invention provides improved methods for contacting such viruses with suitable chromatographic materials in a fashion such that any damage to the virus, particularly to surface components thereof, resulting from contact with such chromatographic materials is minimized or eliminated. The result is the ability to rapidly and efficiently purify commercial level quantities of active (infectious) virus suitable for use in therapeutic applications, e.g. gene transfer/therapy procedures.

CLM

What is claimed is:

- 1. An improved method for purification of adeno-associated virus (AAV) from a composition containing both AAV and adenovirus, wherein the improvement comprises inclusion of a step for inactivation and removal of adenovirus, said step comprising mixing the composition with a chromatographic matrix material having pores which are approximately the size of adenovirus, such that adenovirus is inactivated, said chromatographic matrix material being selected from the group consisting of: a. "macroporous" resins, such as macroporous DEAE resins and the BioRad macroporous series (Biorad, Melville, N.Y.); b. heparinized polymers, such as Heparin Agarose (4% cross-linked) (Sigma Chemical, St. Louis, Mo.); c. virus-specific antibodies; such as anti-rep antibodies; d. sulfated resins, such as Sterogene-S (Sulfated Hi Flow) (Sterogene, Carlsbad, Calif.), Spherilose-S (Isco, Lincoln, Nebr.), and Cellufine® sulfate (Amicon, Beverly, Mass.); e. hydroxyapatite resins, such as ceramic hydroxyapatite resins from Biorad (Melville, N.Y.); f. a series of column separations including the use of ceramic hydroxyapatite, DEAE ion-exchange, Cellufine® sulfate, and, optionally, zinc chelate chromatography.
- 2. The method of claim 1, wherein the chromatographic matrix material comprises a macroporous DEAE resin.
- 3. The method of claim 1, wherein the chromatographic matrix material comprises a macroporous **hydroxyapatite**.
- 4. The method of claim 1, wherein the chromatographic matrix material comprises a cellulose or silica membrane resin in conjunction with a macroporous resin.

=> d his

L1 L2

1.3

L4

(FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005)

FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005 9532 S HYDROXYAPATITE 1599 S L1 AND HYDROXYAPATITE/CLM 69 S L2 AND ADENOVIR? 13 S L3 AND ADENOVIR?/CLM

=> s 13 and ay<2001 3201823 AY<2001

L5 33 L3 AND AY<2001

=> s 15 not 14 L6 27 L5 NOT L4

=> d 16,ti,1-27

L6 ANSWER 1 OF 27 USPATFULL on STN
TI Cartilage-Derived morphogenetic proteins

L6 ANSWER 2 OF 27 USPATFULL on STN TI Osteogenic devices

L6 ANSWER 3 OF 27 USPATFULL on STN TI OSTEOGENIC DEVICES

L6 ANSWER 4 OF 27 USPATFULL on STN TI Methods for purifying telomerase

L6 ANSWER 5 OF 27 USPATFULL on STN
TI Methods for promoting growth of bone using ZVEGF4

L6 ANSWER 6 OF 27 USPATFULL on STN
TI Bone morphogenetic protein-3 and compositions

L6 ANSWER 7 OF 27 USPATFULL on STN TI Therapy for α -galactosidase a deficiency

L6 ANSWER 8 OF 27 USPATFULL on STN
TI Sustained delivery of polyionic bioactive agents

L6 ANSWER 9 OF 27 USPATFULL on STN
TI DNA molecules encoding cartilage-derived morphogenetic proteins

L6 ANSWER 10 OF 27 USPATFULL on STN
TI DNA molecules encoding cartilage-derived morphogenetic proteins

```
ANSWER 11 OF 27 USPATFULL on STN
L6
TI
      Product and process for T lymphocyte immunosuppression
     ANSWER 12 OF 27 USPATFULL on STN
L6
ΤI
      BMP-4 products
     ANSWER 13 OF 27 USPATFULL on STN
L6
      BMP-3 products
ΤI
     ANSWER 14 OF 27 USPATFULL on STN
L6
       Parainfluenza virus glycoproteins and vaccines
TI
     ANSWER 15 OF 27 USPATFULL on STN
L6
      Product for T lymphocyte immunosuppression
ΤI
L6
    ANSWER 16 OF 27 USPATFULL on STN
      In vivo gene transfer methods for wound healing
ΤI
    ANSWER 17 OF 27 USPATFULL on STN
L6
       Devices comprising chondrogenic protein and methods of inducing
ΤI
       endochondral bone formation therewith
    ANSWER 18 OF 27 USPATFULL on STN
L6
      Formation of human bone in vivo using ceramic powder and human marrow
ΤI
      stromal fibroblasts
     ANSWER 19 OF 27 USPATFULL on STN
L6
      BMP-15 compositions
TΙ
     ANSWER 20 OF 27 USPATFULL on STN
L6
      Neutrophil inhibitors
TI
     ANSWER 21 OF 27 USPATFULL on STN
L6
      Bone morphogenetic protein-10 (BMP-10) compositions
TI
L6
     ANSWER 22 OF 27 USPATFULL on STN
      Bone morphogenetic protein-9 compositions
ΤI
     ANSWER 23 OF 27 USPATFULL on STN
L6
      Compositions comprising bone morphogenetic protein-2 (BMP-2)
TΙ
     ANSWER 24 OF 27 USPATFULL on STN
L6
TI
      Purified thermostable nucleic acid polymerase enzyme from Thermotoga
      maritima
L6
     ANSWER 25 OF 27 USPATFULL on STN
ΤI
      Bone morphogenetic protein 5(BMP-5) compositions
     ANSWER 26 OF 27 USPATFULL on STN
L6
       Process of preparing a soluble LDL receptor
TΙ
     ANSWER 27 OF 27 USPATFULL on STN
L6
TI
       Osteogenic devices
=> d his
     (FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005)
     FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005
           9532 S HYDROXYAPATITE
L1
           1599 S L1 AND HYDROXYAPATITE/CLM
L2
L3
             69 S L2 AND ADENOVIR?
             13 S L3 AND ADENOVIR?/CLM
L4
L5
             33 S L3 AND AY<2001
             27 S L5 NOT L4
L6
=> s us5496926/pn
             1 US5496926/PN
L7
=> d 17,cbib,clm
    ANSWER 1 OF 1 USPATFULL on STN
96:19199 Process of preparing a soluble LDL receptor.
    Rubinstein, Menachem, Givat Shmuel, Israel
    Novick, Daniela, Rehovot, Israel
    Tal, Nathan, Rehovot, Israel
    Yeda Research and Development Co. Ltd., Rehovot, Israel (non-U.S.
```

corporation)
US 5496926 19960305
APPLICATION: US 1993-92817 19930719 (8)
PRIORITY: IL 1992-100696 19920119

IL 1992-102915 19920823

DOCUMENT TYPE: Utility; Granted.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

What is claimed is:

- 1. A process for the preparation of a soluble LDL receptor protein, comprising: (a) treating, with interferon- γ , cells capable of entering an antiviral state in response to induction by interferon- γ to produce soluble LDL receptor protein; (b) isolating the soluble LDL receptor protein from the supernatant; and (c) purifying the soluble LDL receptor.
- 2. A process in accordance with claim 1, wherein said cells are mammalian cells.
- 3. A process in accordance with claim 1, wherein said cells are human cells and said soluble LDL receptor protein has a molecular weight of 28 kD when measured by SDS-PAGE under reducing conditions, and includes the amino acid sequence of SEQ ID NO:6.
- 4. A process according to claim 1, wherein said cells are human WISH cells.
- 5. A process for preparing a soluble LDL receptor protein, comprising: (a) growing to confluency cells capable of entering an antiviral state in response to induction by interferon- $\!\gamma\!$ to produce soluble LDL receptor protein; (b) inducing the cells with interferon- γ ; (c) harvesting the culture supernatant; (d) concentrating the supernatant; (e) subjecting the concentrated supernatant of step (d) to anion exchange chromatography and selecting the fraction having antiviral activity; (f) applying the fraction obtained in step (e) to chromatography on a hydroxyapatite column and selecting the fraction having antiviral activity; (g) applying the fraction obtained in step (f) to anion HPLC and selecting the fraction having antiviral activity; (h) applying the fraction obtained in step (g) to hydrophobic interaction chromatography and selecting the fraction having antiviral activity; (i) applying the fraction obtained in step (h) to reverse phase HPLC and selecting the fraction having antiviral activity; and (j) repeating step (i) to obtain soluble LDL receptor purified to homogeneity.
- 6. A process according to claim 5, wherein at least one of the chromatography steps (e)-(j) is replaced by immunoaffinity chromatography on an anti LDL receptor monoclonal antibody column, the monoclonal antibody of the monoclonal antibody column having an epitope binding region specific for an epitope of said soluble LDL receptor protein.
- 7. A process according to claim 6, wherein the monoclonal antibody is C7 (ATCC, CRL 1691) and the soluble receptor is eluted at a high pH.
- 8. A process according to claim 5, wherein said cells are human WISH cells.
- 9. A process in accordance with claim 5, wherein said cells are mammalian cells.
- 10. A process in accordance with claim 5, wherein said cells are human cells and said soluble LDL receptor protein has a molecular weight of 28 kD when measured by SDS-PAGE under reducing conditions, and includes the amino acid sequence of SEQ ID NO:6.
- 11. A process for preparing a soluble LDL receptor protein from a biological fluid sample isolated from a mammalian body, comprising: (a) concentrating the biological fluid sample; (b) subjecting the concentrated sample of step (b) to anion exchange chromatography and selecting the fraction having antiviral activity; (c) applying the fraction obtained in step (b) to chromatography on a hydroxyapatite column and selecting the fraction having antiviral activity; (d) applying the fraction obtained in step (c) to anion HPLC and selecting the fraction having antiviral activity; (e) applying the fraction obtained in step (d) to hydrophobic interaction chromatography and selecting the fraction having antiviral activity; (f) applying the fraction obtained in step (e) to reverse phase HPLC and selecting the fraction having antiviral activity; (g) repeating step (f) to obtain

soluble LDL receptor purified to homogeneity.

- 12. A process according to claim 11, wherein at least one of the steps (b)-(g) is replaced by immunoaffinity chromatography on an anti-LDL receptor monoclonal antibody column, said monoclonal antibody of the monoclonal antibody column having an epitope binding region specific for an epitope of said soluble LDL receptor protein.
- 13. A process according to claim 12, wherein the monoclonal antibody is C7 (ATCC, CRL 1691) and the soluble receptor is eluted at a high pH.
- 14. A process for obtaining a soluble LDL receptor protein, comprising: obtaining a biological fluid sample from a mammalian body; and isolating the soluble LDL receptor protein therefrom.

=> d his

(FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005)

```
FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005
L1
           9532 S HYDROXYAPATITE
           1599 S L1 AND HYDROXYAPATITE/CLM
L2
             69 S L2 AND ADENOVIR?
L3
             13 S L3 AND ADENOVIR?/CLM
L4
             33 S L3 AND AY<2001
L5
             27 S L5 NOT L4
L6
              1 S US5496926/PN
L7
-=> s 17 and adenovir?
         33013 ADENOVIR?
             1 L7 AND ADENOVIR?
L8
```

=> d 18, kwic

DETD

L8 ANSWER 1 OF 1 USPATFULL on STN 19960305 PΙ US 5496926

. . . sequences may be employed, depending on the nature of the host. They may be derived from viral sources, such as adenovirus, bovine papilloma virus, Simian virus, or the like, where the regulatory signals are associated with a particular gene which has. .

=> s us5624833/pri 1 US5624833/PN L9

=> d 19,cbib,clm

ANSWER 1 OF 1 USPATFULL on STN

97:36094 Purified thermostable nucleic acid polymerase enzyme from Thermotoga maritima.

Gelfand, David H., Oakland, CA, United States Lawyer, Frances C., Oakland, CA, United States Stoffel, Susanne, El Cerrito, CA, United States

Hoffmann-La Roche Inc., Nutley, NJ, United States (U.S. corporation) US 5624833 19970429

APPLICATION: US 1995-475231 19950607 (8)

DOCUMENT TYPE: Utility; Granted.

CAS INDEXING IS AVAILABLE FOR THIS PATENT. CLM

What is claimed is:

- 1. A purified thermostable DNA polymerase I enzyme that catalyzes combination of nucleoside triphosphates to form a nucleic acid strand complementary to a nucleic acid template strand, said enzyme derived from the eubacterium Thermotoga maritima.
- 2. The enzyme of claim 1 having a molecular weight of about 97 kilodaltons as determined by SDS-page, a predicted molecular weight of about 102 kilodaltons.
- 3. The enzyme of claim 1 that has reverse transcriptase activity.
- 4. The enzyme of claim 1 that has $3' \rightarrow 5'$ exonuclease activity.
- 5. The enzyme of claim 1 that is in native form.
- 6. The enzyme of claim 2 that is in native form.
- 7. The enzyme of claim 1 that is in recombinant form.

- 8. The enzyme of claim 2 that is in recombinant form.
- 9. The enzyme of claim 2 that has reverse transcriptase and $3' \rightarrow 5'$ exonuclease activity.
- 10. The enzyme of claim 9 that is in native form.
- 11. The enzyme of claim 9 that is in recombinant form.
- 12. A method for purifying Thermotoga maritima DNA polymerase from T. maritima cells, said method comprising the steps of: (a) preparing a crude cell extract from said cells; (b) adjusting the ionic strength of said extract so that said polymerase dissociates from any nucleic acid in said extract; (c) subjecting the extract to hydrophobic interaction chromatography; (d) subjecting the extract to DNA binding protein affinity chromatography; (e) subjecting the extract to nucleotide binding protein affinity chromatography; and (f) subjecting the extract to chromatography selected from the group consisting of anion exchange, cation exchange, and hydroxyapatite chromatography.

=> d his

```
(FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005)
     FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005
            9532 S HYDROXYAPATITE
L1
           1599 S L1 AND HYDROXYAPATITE/CLM
L2
              69 S L2 AND ADENOVIR?
L3
              13 S L3 AND ADENOVIR?/CLM
L4
              33 S L3 AND AY<2001
L5
              27 S L5 NOT L4
L6
              1 S US5496926/PN
L7
               1 S L7 AND ADENOVIR?
L8
               1 S US5624833/PN
L9
=> s 19 and adenovir?
          33013 ADENOVIR?
              1 L9 AND ADENOVIR?
=> d 110, kwic
L10 ANSWER 1 OF 1 USPATFULL on STN
       US 5624833
                                 19970429
PΙ
       . . . 40 (SV 40) (Fiers et al., 1978, Nature 273: 113), or other
SUMM
       viral promoters such as those derived from polyoma, adenovirus 2,
       bovine papilloma virus (BPV), or avian sarcoma viruses, or immunoglobulin promoters and heat shock promoters. A system for
       expressing. .
```

```
=> e erickson amy e/in
           1
                  ERICKSON ALVE JOHN/IN
             1
                  ERICKSON ALVIN L/IN
E2
             1 --> ERICKSON AMY E/IN
E3
                 ERICKSON ANDREW IVAR/IN
            1
E4
                  ERICKSON ANDREW N/IN
E5
             2
E.6
             3
                  ERICKSON ANDREW NORMAN/IN
                  ERICKSON ANITA/IN
E7
             2
                  ERICKSON ANITA S/IN
E8
                  ERICKSON ANN HART/IN
E9
             2
                  ERICKSON ARLEN J/IN
E10
             6
                   ERICKSON ARLEN JEROME/IN
E11
             1
                   ERICKSON ARNOLD R/IN
E12
             5
=> s e3
             1 "ERICKSON AMY E"/IN
L11
```

=> d 111,cbib

L11 ANSWER 1 OF 1 USPATFULL on STN 2000:149968 Chromatographic purification of adeno-associated virus (AAV). O'Riordan, Catherine E., Boston, MA, United States Erickson, Amy E., Charlton, MA, United States Smith, Alan E., Dover, MA, United States Genzyme Corporation, Cambridge, MA, United States (U.S. corporation) US 6143548 20001107

```
WO 1996-US13872 19960830 19980629 PCT 371 date 19980629 PCT 102(e) date
    PRIORITY: US 1995-2967P 19950830 (60)
    DOCUMENT TYPE: Utility; Granted.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
=> e shabram paul w/in
El
                  SHABRAM PATRICT L/IN
            1
            3
                  SHABRAM PAUL/IN
F.2
            5 --> SHABRAM PAUL W/IN
E3
                  SHABRAM SR LYLE F/IN
£4
            3
                  SHABRANG MANI/IN
E5
            6
                  SHABSIGH RIDWAN/IN
E6
            2
                  SHABTAI BEN ZION/IN
E7
            1
E8
           11
                  SHABTAI JOSEPH/IN
                  SHABTAI JOSEPH S/IN
£.9
            8
                  SHABTAI LIOR/IN
E10
            1
E11
            1
                  SHABTAI MORDECHAI/IN
                  SHABTAI MOTI/IN
E12
            1
=> s e3
             5 "SHABRAM PAUL W"/IN
L12
=> d 112,cbib,1-5
L12 ANSWER 1 OF 5 USPATFULL on STN
2002:329464 Methods and compositions for reducing immune response.
    LaFace, Drake M., San Diego, CA, UNITED STATES
    Rahman, Amena, San Diego, CA, UNITED STATES
    Shabram, Paul W., Olivenhain, CA, UNITED STATES
    Tsai, Van T., San Diego, CA, UNITED STATES
    US 2002187143 A1 20021212
    APPLICATION: US 2002-222722 A1 20020816 (10)
    PRIORITY: US 1999-152650P 19990907 (60)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
L12 ANSWER 2 OF 5 USPATFULL on STN
2002:272442 Selectively replicating viral vectors.
    Ramachandra, Muralidhara, San Diego, CA, UNITED STATES
    Shabram, Paul W., Olivenhain, CA, UNITED STATES
    US 2002150557 A1 20021017
    APPLICATION: US 2002-62216 A1 20020130 (10)
    PRIORITY: US 1998-104399P 19981015 (60)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
L12 ANSWER 3 OF 5 USPATFULL on STN
2002:268409 Methods and compositions for reducing immune response.
    LaFace, Drake M., San Diego, CA, United States
    Rahman, Amena, San Diego, CA, United States
    Shabram, Paul W., Olivenhain, CA, United States
    Tsai, Van T., San Diego, CA, United States
    Canji, Inc., San Diego, CA, United States (U.S. corporation)
    US 6464976 B1 20021015
    APPLICATION: US 2000-653474 20000831 (9)
    PRIORITY: US 1999-152650P 19990907 (60)
    DOCUMENT TYPE: Utility; GRANTED.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
L12 ANSWER 4 OF 5 USPATFULL on STN
1999:155518 Viral production process.
    Giroux, Daniel D., La Jolla, CA, United States
    Goudreau, Ann M., San Diego, CA, United States
    Ramachandra, Muralidhara, San Diego, CA, United States
    Shabram, Paul W., Olivenhain, CA, United States
    Canji, Inc., San Diego, CA, United States (U.S. corporation)
    US 5994134 19991130
    APPLICATION: US 1998-73076 19980504 (9)
    DOCUMENT TYPE: Utility; Granted.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
L12 ANSWER 5 OF 5 USPATFULL on STN
1998:143924 Method of purification of viral vectors.
    Shabram, Paul W., Olivenhain, CA, United States
    Huyghe, Bernard G., San Diego, CA, United States
```

Liu, Xiaodong, New York, NY, United States

WO 9708298 19970306

APPLICATION: US 1998-11828 19980629 (9)

Shepard, H. Michael, Rancho Santa Fe, CA, United States Canji, Inc., San Diego, CA, United States (U.S. corporation) US 5837520 19981117
APPLICATION: US 1995-400793 19950307 (8)
DOCUMENT TYPE: Utility; Granted.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

=> d 112,cbib,clm,4,5

L12 ANSWER 4 OF 5 USPATFULL on STN
1999:155518 Viral production process.
Giroux, Daniel D., La Jolla, CA, United States
Goudreau, Ann M., San Diego, CA, United States
Ramachandra, Muralidhara, San Diego, CA, United States
Shabram, Paul W., Olivenhain, CA, United States
Canji, Inc., San Diego, CA, United States
(U.S. corporation)
US 5994134 19991130
APPLICATION: US 1998-73076 19980504 (9)
DOCUMENT TYPE: Utility; Granted.

CAS INDEXING IS AVAILABLE FOR THIS PATENT. CLM What is claimed is:

1. A method of achieving a cell density greater than 5×106 producer cells/ml in a microcarrier based bioreactor process for the production of a virus in a producer cell, said method comprising the steps of: a) preparing a culture of producer cells attached to microcarriers wherein the ratio of producer cells to microcarriers is approximately 10 cells/microcarrier b) seeding the bioreactor with a quantity of the producer cell-coated microcarriers prepared in step (a) to a density greater than approximately 6 grams (based on the dry weight of the microcarrier) of producer cell-coated microcarriers per liter of bioreactor media volume; and c) culturing the producer cells in the bioreactor under perfusion conditions in serum containing media to a density of greater than 100 cells/microcarrier.

- 2. The method of claim 1, wherein the producer cell is a 293 cell.
- 3. The method of claim 2 wherein the virus is an adenovirus.
- 4. The method of claim 3 wherein the virus is a replication defective adenovirus derived from the adenovirus type 5 genome.
- 5. The method of claim 4 wherein the replication defective adenovirus further comprises an expression cassette for an exogenous transgene.
- 6. The method of claim 5 wherein the exogenous transgene is selected from the group consisting of tumor suppressor genes, cytotoxic genes, cytostatic genes, proapoptotic genes, or prodrug activating genes.
- 7. The method of claim 6 wherein the exogenous transgene is a tumor suppressor gene.
- 8. The method of claim 7 wherein the tumor suppressor gene is p53.
- 9. A method producing a population of producer cells containing a high titer of viral particles in a microcarrier based bioreactor in serum free media, said method comprising the process of claim 1 further comprising the steps of: d) removing the serum containing medium; e) synchronizing the producer cells in G1 phase; f) infecting the producer cells with a virus; g) culturing cells under conditions to permit viral replication until a maximum point is achieved.
- 10. The method of claim 9, wherein the producer cell is a 293 cell.
- 11. The method of claim 10 wherein cell synchronization is achieved by holding the cells in a non-serum medium for greater than approximately one-third of a cell cycle.
- 12. The method of claim 11 wherein the virus is an adenovirus.
- 13. The method of claim 12 wherein the virus is a replication defective adenovirus derived from the adenovirus type $5\ \mathrm{genome}$.
- $14.\ \, {
 m The\ method\ of\ claim\ }13$ wherein the replication defective adenovirus further comprises an expression cassette for an exogenous transgene.
- 15. The method of claim 14 wherein the exogenous transgene is selected from the group consisting of tumor suppressor genes, cytotoxic genes, cytostatic genes, proapoptotic genes, or prodrug activating genes.

- 16. The method of claim 9, further comprising the steps of: h) harvesting the cells; i) lysing the producer cells; j) isolating the viral particles from the cell lysate; and k) purifying the intact viral particles.
- 17. The method of claim 11 wherein the virus is an adenovirus.

L12 ANSWER 5 OF 5 USPATFULL on STN
1998:143924 Method of purification of viral vectors.

Shabram, Paul W., Olivenhain, CA, United States
Huyghe, Bernard G., San Diego, CA, United States
Liu, Xiaodong, New York, NY, United States
Shepard, H. Michael, Rancho Santa Fe, CA, United States
Canji, Inc., San Diego, CA, United States (U.S. corporation)
US 5837520 19981117
APPLICATION: US 1995-400793 19950307 (8)
DOCUMENT TYPE: Utility; Granted.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

metal ion affinity resin.

CLM What is claimed is:

- 1. A method for purification of an intact viral particle from a cell lysate, the method comprising: a) treating said cell lysate which contains said intact viral particle with an enzymatic agent that selectively degrades both unencapsulated DNA and RNA; b) chromatographing the treated lysate from step a) on a first resin; and c) chromatographing the eluant from step b) on a second resin; wherein one resin is an anion exchange resin and the other is an immobilized
- 2. The method of claim 1, wherein the first resin is an anion exchange resin and the second resin is an immobilized metal affinity resin.
- 3. The method of claim 1, which comprises the additional step of filtering the treated lysate from step (a).
- 4. The method of claim 1, which comprises the additional step of buffering the pH of the cell lysate between about 5.0 and about 9.0 before applying it to the first resin.
- 5. The method of claim 1, wherein the viral particle is a retrovirus.
- 6. The method of claim 1, wherein the viral particle is an adenovirus.
- 7. The method of claim 6, wherein the adenoviral particle is a recombinant viral particle which comprises a tumor suppressor gene.
- 8. The method of claim 1, wherein the adenoviral particle is a type 2 or type 5 adenovirus.
- 9. The method of claim 8, wherein the adenoviral particle is a type 5 adenovirus.
- 10. The method of claim 7, wherein the tumor suppressor gene is a wild-type p53 gene.
- 11. The method of claim 1, wherein the anion exchange resin is chosen from the group consisting of DEAE, TMAE, DMAE, QAE and PEI.
- 12. The method of claim 11, wherein the anion exchange resin is DEAE resin.
- 13. The method of claim 1, wherein the immobilized metal affinity resin is charged with a divalent cation of a metal chosen from the group consisting of cobalt, nickel, copper, and zinc.
- 14. The method of claim 13, wherein the immobilized metal affinity resin is a TED or an IDA resin.
- 15. The method of claim 14, wherein the immobilized metal affinity resin is an IDA-(cross-linked agarose) resin.
- 16. The method of claim 13, wherein the divalent cation is zinc.
- 17. The method of claim 1, wherein the enzymatic agent that selectively degrades both unencapsulated DNA and RNA is one or more enzymes.
- 18. The method of claim 17, wherein the one or more enzymes are endonucleases.

- 19. The method of claim 18, wherein the enzyme is a mixture of RNase and DNase.
- 20. A method for purification of intact viral particles from a cell lysate, the method comprising the steps of: a) treating said cell lysate which contains said intact viral particle with an enzymatic agent that selectively degrades both unencapsulated DNA and RNA; b) chromatographing the treated lysate from step a) on a first resin, and c) chromatographing the eluant from step b) on a second resin; wherein: one resin is an anion exchange resin and the other is a hydrophobic interaction chromatography resin; or one resin is a cation exchange resin and the other is either a hydrophobic interaction chromatography resin or an immobilized metal ion affinity resin.
- 21. The method of claim 20, wherein one resin is an anion exchange resin and the other is a hydrophobic interaction chromatography resin.
- 22. The method of claim 21, wherein the first resin is an anion exchange resin and the second is a hydrophobic interaction chromatography resin.
- 23. The method of claim 20, wherein one resin is a cation exchange resin and the other is an immobilized metal ion affinity resin.
- 24. The method of claim 20, wherein one resin is a cation exchange resin and the other is a hydrophobic interaction chromatography resin.
- 25. A method of determining the number of intact viral particles in a sample, the method comprising: a) chromatographing the sample containing the intact viral particles on an anion exchange resin; b) monitoring the absorbance of the eluate from the chromatography of step (a) at a selected wavelength; and c) determining the total number of intact viral particles in the sample by comparing the absorbance value obtained in step (b) to a standard curve which relates absorbance to number of viral particles.
- 26. The method of claim 25, wherein the anion exchange resin has QAE groups covalently attached to a polystyrene/divinyl benzene copolymer support.
- 27. The method of claim 25, wherein the method further comprises chromatographing the eluate from the chromatography of step (a) on a second resin, wherein the second resin is an immobilized metal ion affinity resin.

=> d his

(FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005)

```
FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005
           9532 S HYDROXYAPATITE
L1
           1599 S L1 AND HYDROXYAPATITE/CLM
L2
             69 S L2 AND ADENOVIR?
L3
             13 S L3 AND ADENOVIR?/CLM
L4
             33 S L3 AND AY<2001
L5
             27 S L5 NOT L4
L6
L7
             1 S US5496926/PN
             1 S L7 AND ADENOVIR?
L8
            1 S US5624833/PN
L9
             1 S L9 AND ADENOVIR?
L10
                E ERICKSON AMY E/IN
L11
              1 S E3
               E SHABRAM PAUL W/IN
L12
              5 S E3
```

=> file wpids COST IN U.S. DOLLARS FULL ESTIMATED COST

SINCE FILE TOTAL
ENTRY SESSION
51.20 51.41

FILE 'WPIDS' ENTERED AT 18:46:16 ON 22 JUN 2005

COPYRIGHT (C) 2005 THE THOMSON CORPORATION

FILE LAST UPDATED: 21 JUN 2005 <20050621/UP>
MOST RECENT DERWENT UPDATE: 200539 <200539/DW>
DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

```
>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,
http://www.stn-international.de/training center/patents/stn_guide.pdf <<<
>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE
   http://thomsonderwent.com/coverage/latestupdates/
                                                                <<<
>>> FOR INFORMATION ON ALL DERWENT WORLD PATENTS INDEX USER
   GUIDES, PLEASE VISIT:
                                                                <<<
   http://thomsonderwent.com/support/userguides/
>>> NEW! FAST-ALERTING ACCESS TO NEWLY-PUBLISHED PATENT
    DOCUMENTATION NOW AVAILABLE IN DERWENT WORLD PATENTS INDEX
    FIRST VIEW - FILE WPIFV.
    FOR FURTHER DETAILS: http://www.thomsonderwent.com/dwpifv <<<
>>> THE CPI AND EPI MANUAL CODES HAVE BEEN REVISED FROM UPDATE 200501.
   PLEASE CHECK:
http://thomsonderwent.com/support/dwpiref/reftools/classification/code-revision/
   FOR DETAILS. <<<
=> s hydroxyapatite
         2918 HYDROXYAPATITE
L13
=> s 113 and adenovir?
          3801 ADENOVIR?
           14 L13 AND ADENOVIR?
L14
=> s 114 and py<2001
SEARCH ENDED BY USER
SEARCH ENDED BY USER
=> s 114 and py<2001
SEARCH ENDED BY USER
=> s 114 and py<2001
SEARCH ENDED BY USER
=> d 114,bib,ab,1-14
L14 ANSWER 1 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
     2005-331961 [34]
                      WPIDS
ΑN
     1999-590379 [50]; 2001-450477 [48]; 2003-465598 [44]; 2003-742824 [70];
CR
     2003-811733 [76]
DNC C2005-103147
     Preparation of a compound having telomerase regulating activity, used to
     treat e.g. cancer, comprises combining obtained mammalian telomerase
     enzyme preparation with test compound; and determining and identifying the
     telomerase activity.
DC:
     B04 B05 D16
     ATKINSON, E M; LICHTSTEINER, S P; PRUZAN, R A; VASSEROT, A P; WEINRICH, S
IN
     (ATKI-I) ATKINSON E M; (LICH-I) LICHTSTEINER S P; (PRUZ-I) PRUZAN R A;
     (VASS-I) VASSEROT A P; (WEIN-I) WEINRICH S L
CYC
     US 2005089883 Al 20050428 (200534)*
PΙ
    US 2005089883 Al CIP of US 1995-510736 19950804, Cont of US 1997-833377
ADT
     19970404, CIP of US 1999-420056 19991018, Cont of US 2000-717828 20001120,
     Cont of US 2002-330872 20021224, US 2004-811033 20040326
     US 2005089883 A1 Cont of US 5968506, CIP of US 6261556, Cont of US
     6517834, Cont of US 6787133
                          20001120; US 1995-510736
                                                          19950804:
PRAI US 2000-717828
     US 1997-833377
                          19970404; US 1999-420056
                                                          19991018;
                                                          20040326
     US 2002-330872
                          20021224; US 2004-811033
     US2005089883 A UPAB: 20050527
     NOVELTY - Production of a compound (I) that regulates telomerase activity
     comprising obtaining a mammalian telomerase enzyme preparation (A);
     combining (A) with a test compound; determining telomerase activity of the
     enzyme in the presence of the test compound; identifying (I) as being a
     telomerase regulator if the telomerase activity measured is affected by
```

the presence of (I); and then producing (I), is new.

DETAILED DESCRIPTION - Production of a compound (I) that regulates telomerase activity comprises obtaining a mammalian telomerase enzyme preparation (A) (at least approximately 2000-fold more pure than an extract of cells from adenovirus-transformed kidney cell line (293 cells) and where the telomerase enzyme contains telomerase RNA component and has a molecular weight of 200-2000 kDa); combining (A) with a test compound; determining telomerase activity of the enzyme in the presence of the test compound; identifying (I) as being a telomerase regulator if the telomerase activity measured is affected by the presence of (I); and then producing (I) if it is identified as being a telomerase regulator.

ACTIVITY - Cytostatic.

No biological data given.

MECHANISM OF ACTION - Telomerase regulator; Telomerase inhibitor; Telomerase activator.

USE - (I) is useful for the treatment of age-related diseases and diseases associated with it, including cancer.

ADVANTAGE - The method provides telomerase preparations with high purity of at least 3000-fold increased relative purity, 20000-fold increased relative purity, 60000-fold increased relative purity or 100000-fold increased relative purity. Dwg.0/7

L14 ANSWER 2 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN Full Text 2005-322638 [33] WPIDS DNC C2005-100583 DNN N2005-263930

Implant for regenerating bone or cartilage, comprises biocompatible material containing adenoviral vector with transcriptional factor gene of bone/cartilage inductive transcription factor or retroviral vector. A96 B04 D16 D22 P34

KOJIMA, H; UEMURA, T TN

(NISC-N) JAPAN SCI & TECHNOLOGY AGENCY; (NAAD-N) NAT INST ADVANCED IND SCI & TECHNOLOGY

CYC 108

WO 2005035014 Al 20050421 (200533)* JA PΤ RW: AT BE BG BW CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IT KE

LS LU MC MW MZ NA NL OA PL PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW W: AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

ADT WO 2005035014 Al WO 2004-JP15673 20041015 20031015

PRAI JP 2003-355505

WO2005035014 A UPAB: 20050524

NOVELTY - A bone or cartilage regenerating implant comprising biocompatible material containing adenoviral vector with transcriptional factor gene of bone/cartilage inductive transcription factor or retroviral vector, is new.

USE - For regenerating bone or cartilage.

ADVANTAGE - The implant enables favorable degeneration of bone or cartilage by releasing the transcriptional factor in sustained manner. The bone/cartilage regeneration can be performed conveniently and safely.

DESCRIPTION OF DRAWING(S) - The figure shows the diagram of rat femur defect portion replanting experiment. Dwg.3/12

L14 ANSWER 3 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN Full Text

2005-161610 [17] WPTDS AN

2000-687541 [67]; 2001-611088 [70]; 2002-573696 [61]; 2003-352153 [33]; 2003-874621 [81]; 2004-070738 [07]; 2004-225671 [21]; 2005-011673 [01]

DNC C2005-052146

Promoting growth of bone, ligament, or cartilage in mammal comprises administering a composition comprising z-vascular endothelial growth factor-4 (zvegf4) in combination with delivery vehicle to a mammal.

DC A96 B04 D16 D21 D22 IN

GILBERTSON, D G; HART, C E (GILB-I) GILBERTSON D G; (HART-I) HART C E PΑ

CYC 1

A1 20050210 (200517)* PΤ US 2005031694 31

US 2005031694 Al Provisional US 1999-132250P 19990503, Provisional US 1999-164463P 19991110, Provisional US 2000-180169P 20000204, Div ex US 2000-540224 20000331, Cont of US 2002-226559 20020823, US 2004-910938 20040803

FDT US 2005031694 Al Div ex US 6468543

20040803; US 1999-132250P 19990503; PRAI US 2004-910938 19991110; US 2000-180169P 20000204; US 1999-164463P

US 2000-540224 20000331; US 2002-226559 20020823

US2005031694 A UPAB: 20050311

NOVELTY - Promoting (M1) growth of bone, ligament, or cartilage in a mammal comprising administering a composition comprising a z-vascular endothelial growth factor-4 (zvegf4) in combination with a delivery vehicle to the mammal is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for:

- (1) promoting (M2) proliferation or differentiation of cells, comprises culturing the cells in zvegf4, where the cells are osteoblasts, osteoclasts, chondrocytes, or bone marrow stem cells; and
- (2) promoting (M3) cartilage growth, comprising culturing chondrocytes ex vivo in the presence of zvegf4 under conditions, where the chondrocytes proliferate, and placing the cultured chondrocytes into a mammal, where cartilage is to be grown.

ACTIVITY - Osteopathic.

MECHANISM OF ACTION - Promotes proliferation or differentiation of cells (claimed).

The ability of zvegf4 to promote proliferation of cells was determined in vivo. Mice (C57BL6) were infected with a zvegf4-encoding adenovirus vector (AdZyvegf4) to determine the effects on serum chemistry, complete blood counts (CBC), body and organ weight changes, and histology. Group 1 mice received green fluorescent protein (green fluorescent protein (GFP) control adenovirus. Group 2 mice received zvegf4 adenovirus. Group 3 mice were untreated controls. The mice received injections of the appropriate adenovirus solution. Blood was collected for CBCs and clinical chemistry measurements. On day 20, mice were weighed and sacrificed by cervical dislocation. Tissues were collected for histopathology. Spleen and liver weight was significantly greater in all AdZyvegf4-treated mice. In the liver, proliferation of sinusoidal endothelial cells were observed. In the spleen, proliferation of reticuloendothelial cells were observed.

USE - (M1) is useful for promoting growth of bone, ligament, or cartilage in a mammal (claimed). $Dwg.\,0/1 \cdot$

L14 ANSWER 4 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN

Full Text

AN 2004-737348 [72] WPIDS

DNN N2004-583520 DNC C2004-259277

TI Three-dimensional construct, for presenting biological information to cell or tissue, has polymeric matrix, and nanoparticle coated with monomolecular layer with biological information, dispersed in polymeric matrix.

DC A89 B04 D16 S03

IN CHEN, I; SHASTRI, V P; ZNIDARSIC, W

PA (CHIL-N) CHILDRENS HOSPITAL PHILADELPHIA; (UYPE-N) UNIV PENNSYLVANIA CYC 108

PI WO 2004085998 A2 20041007 (200472)* EN 38

RW: AT BE BG BW CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IT KE LS LU MC MW MZ NL OA PL PT RO SD SE SI SK SL SZ TR TZ UG ZM ZW

W: AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG

US UZ VC VN YU ZA ZM ZW ADT WO 2004085998 A2 WO 2004-US9192 20040326

PRAI US 2003-458258P 20030328

AB W02004085998 A UPAB: 20041109

NOVELTY - A three-dimensional construct (I), comprising a polymeric matrix, and a nanoparticle having a structure and a chemical functional group attached to the structure, where the nanoparticle has a diameter of 5 nm-10 microns and is coated with a monomolecular layer comprising biological information and dispersed in the polymeric matrix at a density of 0.01 vol%, is new.

 ${\tt DETAILED}$ <code>DESCRIPTION</code> - <code>INDEPENDENT</code> CLAIMS are also included for the following:

- (1) preparing (M2) (I), comprising:
- (a) providing the polymeric matrix, providing an unprocessed nanoparticle;
- (b) making the nanoparticle by contacting the unprocessed nanoparticle with a carrier of biological information to form the monomolecular layer; and
- (c) dispersing the nanoparticle in the polymeric matrix at the density of 0.01 vol% and thus making (I);
- (2) a nanoparticle (II) comprising a structure chosen from silicon oxide functionalized with a chemical functional group, (poly)lactic acid, (poly)lactic-co-glycolic acid and (poly)anhydride, a monomolecular layer of hydroxyapatite, and optionally a monomolecular layer of (poly)acrylic acid and/or a monomolecular layer of collagen, where the structure is

coated with the monomolecular layer of **hydroxyapatite** and optionally with the monomolecular layer of (poly)acrylic acid and/or monomolecular layer of collagen, provided that the monomolecular layer of **hydroxyapatite** is an outermost monomolecular layer; and

(3) administering (II) to a cell, comprising providing (II), optionally providing an auxiliary surface chosen from polymer, carbonaceous material, wool, glass, ceramic and metal, where the auxiliary surface is in communication with (II), and contacting the cell with (II) and thus administering (II).

USE - (I) is useful for presenting biological information to a cell or a tissue, which involves providing (I) and contacting (I) with the cell or the tissue to present the biological information and thus affecting at least one characteristic of the cell or the tissue. The diameter, the biological information and the density are selected to affect at least one characteristic of the cell or the tissue. The biological information includes a biomolecule, polymer and bone substitute. The characteristic of the cell or tissue is proliferation or differentiation. The monomolecular layer comprises at least one of a monomolecular layer of poly(acrylic acid) and a monomolecular layer of collagen as the intermediate monomolecular layer, provided that the monomolecular layer comprising hydroxyapatite is the outermost monomolecular layer. The hydroxyapatite is deposited onto collagen from an aqueous mixture comprising calcium nitrate tetrahydrate and ammonium phosphate at a molar ratio of 1.5-2 and pH of 7-9.5, preferably the molar ratio is equal to 2. The method further involves contacting (I) with an auxiliary surface prior to contacting (I) with the cell or tissue. The auxiliary surface is chosen from polymer, carbonaceous material, wool, glass, ceramic and metal. The auxiliary surface is in a shape of a mesh, fiber, sheet, sponge, layer, pattern and pre-formed object. (All claimed.) (I) has wide-ranging applicability in areas of tissue engineering, medical devices, medical implants, bio-micro electro-mechanical systems and high throughput screening technologies.

L14 ANSWER 5 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN Full Text

AN 2003-788077 [74] WPIDS

DNC C2003-217499

Dwg.0/11

TI Implant used as bone substitute for regeneration comprises biocompatible material with bone marrow originated cells having growth factor gene transferred into them.

DC A96 B04 D16

IN KOJIMA, H; MATSUMOTO, K; TATEISHI, T; UEMURA, T

PA (NISC-N) JAPAN SCI & TECHNOLOGY CORP; (NAAD-N) NAT INST ADVANCED IND SCI & TECHNOLOGY

CYC 3

PI WO 2003070291 A1 20030828 (200374)* JA 37 W: CA JP US

JP 2003569244 X 20050609 (200538) 20

ADT WO 2003070291 A1 WO 2002-JP10866 20021021; JP 2003569244 X WO 2002-JP10866 20021021, JP 2003-569244 20021021

FDT JP 2003569244 X Based on WO 2003070291

PRAI JP 2002-41604 20020219

AB WO2003070291 A UPAB: 20031117

NOVELTY - Implant comprises a biocompatible material containing cells transferred with a growth factor gene.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for production of the implant which comprises in vitro differentiation induction of bone marrow originated cells into osteoblasts, transfecting the cells with a growth factor gene, and disseminating a biocompatible material with the resultant cells.

ACTIVITY - Osteopathic.

MECHANISM OF ACTION - None given.

USE - The implant is used as bone substitute for regeneration. ADVANTAGE - The implant is highly biocompatible and enables rapid bone regeneration.

Dwg.0/10

L14 ANSWER 6 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN

Full Text

AN 2003-430202 [40] WPIDS

DNC C2003-113633

TI Transferring nucleic acid into cells associated with fluid space by contacting wound site situated in tissue associated with fluid space, with composition comprising nucleic acid and biocompatible matrix.

DC A96 B04 D16

IN PIERCE, G; SOSNOWSKI, B A

PA (SELE-N) SELECTIVE GENETICS INC

CYC 102

```
PI WO 2003029429 A2 20030410 (200340)* EN 95
```

RW: AT BE BG CH CY CZ DE DK EA EE ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SK SL SZ TR TZ UG ZM ZW

W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

US 2003148979 A1 20030807 (200358)

EP 1438413 A2 20040721 (200447) EN

R: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI SK TR

AU 2002343475 A1 20030414 (200461)

ADT WO 2003029429 A2 WO 2002-US31546 20021002; US 2003148979 A1 Provisional US 2001-327513P 20011003, US 2002-264284 20021002; EP 1438413 A2 EP 2002-780419 20021002, WO 2002-US31546 20021002; AU 2002343475 A1 AU 2002-343475 20021002

FDT EP 1438413 A2 Based on WO 2003029429; AU 2002343475 Al Based on WO 2003029429

PRAI US 2001-327513P 20011003; US 2002-264284 20021002

AB WO2003029429 A UPAB: 20030624

NOVELTY - Transferring (M1) a nucleic acid molecule into cells associated with a fluid space, involves contacting a wound site with a composition (I) comprising a nucleic acid molecule and a biocompatible matrix, the wound site being situated in a tissue associated with the fluid space.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for:

- (1) stimulating (M2) gene expression in cartilage progenitor cells located within a cartilage progenitor tissue site of an animal, involves contacting the tissue site with a composition comprising a chondrogenic gene and a biocompatible matrix;
- (2) stimulating (M3) cartilage repair or regeneration, by implanting at a cartilage defective site a matrix-gene composition comprising a chondrogenic gene and a biocompatible matrix;
- (3) treating (M4) arthritis, by implanting at a cartilage defective site a matrix- gene composition comprising chondrogenic gene and a biocompatible matrix:
- (4) treating (M5) ischemic heart disease by implanting a matrix-gene composition comprising an angiogenic gene and a biocompatible matrix into an ischemic region; and
- $\ \ (5)$ a composition comprising multiple genes associated with a multi-partitional biocompatible matrix.

ACTIVITY - Vulnerary; Antiarthritic; Antiinflammatory; Vasotropic. MECHANISM OF ACTION - Gene therapy. Influence of collagen-immobilized fibroblast growth factor (FGF) genes on muscle wound repair was examined using the rodent hind limb model. At day 14 following delivery of DNA(FGF2) formulated in a blend of 1% collagen and 1% gelatin, trichrome stains revealed that these matrices were well infiltrated by both mononuclear cells and elongated fibroblastoid cells. Many of these cells were organized around simple single-walled vessel, and may represent vascular precursors giving rise to neovasculature. The presence of erythrocytes with vessel lumens confirmed that these vessels were perfused. By day 21 post-treatment, in addition to microvasculature, well-organized muscular arterioles were also present. Skeletal muscle bundles were scattered throughout the collagen-gelatin matrix, which appeared to be reduced in volume over that seen at day 14. neither the residual matrix nor the surrounding tissue showed any signs of edema. Very similar observations were seen following the delivery of collagen-gelatin-DNA(FGF6) to muscle wounds, including the development of both micro- and macrovasculature. Delivery of the control transgene luciferase induced a much different response. Even at day 21, considerable collagen-gelatin matrix remained, and although a mononuclear cell infiltrate was present, blood- perfused vessels perfused were rare. infiltrating cells were organized into discrete areas, however the majority of these structures were not true vasculature in that they were not lined by a continuous endothelium and were not perfused with blood. Finally, delivery of FGF2 protein was seen to induce a limited angiogenic response comprised of small capillaries. Arteriogenesis similar to that induced by FGF2 or FGF6 gene delivery was not observed.

USE - (M1) is useful for transferring a nucleic acid molecule into cells associated with a fluid space. (M2) is useful for stimulating gene expression in cartilage progenitor cells located within a cartilage progenitor tissue site of an animal, where expression of the gene in the cell stimulates the cells to promote cartilage tissue repair or regeneration. The cartilage progenitor tissue site of an animal is a site of cartilage injury (a partial-thickness injury or a full-thickness injury), or is a cartilage cavity site, or is the result of surgery or the removal of cartilage tumor. The chondrogenic gene is in the form of plasmid DNA, a DNA insert within the genome of a recombinant adenovirus, a DNA insert within the genome of a recombinant adenovirus.

(AAV) or a DNA insert within the genome of a recombinant retrovirus. The chondrogenic gene is parathyroid hormone (PTH) gene, bone morphogenic factor (BMP) gene, a cartilage-derived morphogenic protein (CDMP) gene, a growth factor gene, a growth factor receptor gene (e.g, IGF receptor gene or MBP receptor gene), where the growth factor gene is fibroblast growth factor (FGF) gene, insulin-like growth factor (IGF) gene, hepatocyte growth factor (HGF) gene, a gene in the transforming growth factor (TGF) family of genes, epidermal growth factor (EGF) gene, connective tissue growth factor (CTGF) gene, leukemia inhibitory factor (LIF) gene, parathyroid hormone-related peptide (PTHrP) gene, platelet-derived growth factor (PDGF) gene, skeletal growth factor (SGF) gene, BIP gene, MP52 gene, chondromodulin gene, preferably basic FGF gene, IGF-I or IGF-II gene, TGF alpha , TGF beta 1 or TGF beta 2, BMP2, BMP3, BMP4, BMP5, BMP6, BMP7, BMP8, BMP9, BMP10, BMP11, BMP12 or BMP13 gene. (M3) is useful for stimulating cartilage repair or regeneration. (M4) is useful for treating arthritis, where the chondrogenic gene that is implanted is an IL-4 gene, or a gene that encodes either a ribozyme that cleaves mRNAs for an inflammation mediator, or an antisense nucleic acid that binds to mRNA for an inflammation mediator such as IL-1, IL-6, IL-8, TNF- alpha , granulocyte-macrophage colony stimulating factor (GM-CSF), a soluble receptor that binds to a mediator of inflammation, or an antibody or its fragment that binds to a mediator of inflammation. (M5) is useful for treating ischemic heart disease, where the angiogenic gene that is implanted is FGF gene, VEGF gene, TNF- alpha gene, HGF gene, or a PDGF gene (all claimed).

ADVANTAGE - Direct plasmid DNA transfer from a matrix to a mammalian repair cell, through stimulation of the wound healing process, has the following advantages:

- (a) each are capable of producing and purifying DNA constructs;
- (b) matrices can act as structural scaffolds that, in and of themselves, promote cell in growth and proliferation, thus facilitating the targeting of repair cells for gene transfer;
- (c) the introduction of a biocompatible matrix to tissues associated with a fluid space results in less damage to surrounding tissues during introduction;
- (d) the biocompatible matrix may be implanted through or across the fluid space without harming other tissue;
- (e) the method therefore, is a minimally invasive means of utilizing gene therapy to introduce therapeutic molecules to tissues associated with fluid spaces;
- (f) the proximity of a fluid space facilitates the migration of repair cells to the biocompatible matrix that is inserted into a tissue associated with a fluid space; and
- (g) the methods are efficient in introducing gene therapy products to target cells associated with a fluid space. ${\rm Dwg.}\,0/6$
- L14 ANSWER 7 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN Full Text
- AN 2002-582334 [62] WPIDS
- DNC C2002-164580
- TI Purifying adenovirus comprising a therapeutic gene from contaminants in a sample pool, by contacting sample pool with hydroxyapatite chromatographic medium to reversibly bind adenovirus and eluting the bound adenovirus.
- DC B04 D16
- IN CANNON-CARLSON, S V; CUTLER, C; VELLEKAMP, G J; VOLOCH, M; CUTLER, C M
- PA (SCHE) SCHERING CORP
- CYC 97
- PI US 2002064860 Al 20020530 (200262)*
 - WO 2002044348 A2 20020606 (200262) EN
 - RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZM ZW
 - W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EC EE ES FI GB GD GE HR HU ID IL IN IS JP KG KR KZ LC LK LR LT LU LV MA MD MG MK MN MX MZ NO NZ PH PL PT RO RU SE SG SI SK SL TJ TM TR TT TZ UA UZ VN YU ZA ZM
 - AU 2002032443 A 20020611 (200264)
 - EP 1337627 A2 20030827 (200357) EN
 - R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT RO SE SI TR
- ADT US 2002064860 A1 Provisional US 2000-253823P 20001129, US 2001-991080 20011116; WO 2002044348 A2 WO 2001-US44684 20011128; AU 2002032443 A AU 2002-32443 20011128; EP 1337627 A2 EP 2001-991967 20011128, WO 2001-US44684 20011128
- FDT AU 2002032443 A Based on WO 2002044348; EP 1337627 A2 Based on WO 2002044348
- PRAI US 2000-253823P 20001129; US 2001-991080 20011116
- AB US2002064860 A UPAB: 20021031

NOVELTY - Purifying adenovirus from contaminants in a sample pool, comprises contacting the sample pool with a hydroxyapatite chromatographic medium to reversibly bind the adenovirus to the hydroxyapatite and eluting the bound adenovirus from the hydroxyapatite.

USE - The method is useful for purifying an adenovirus comprising a therapeutic gene or a nucleic acid sequence from the p53 or p21 gene, from contaminants in a sample pool. The adenovirus is preferably ACN53 (claimed). The adenovirus can be wild-type, recombinant, or mutant, type 2 and type 5 adenoviral vectors being preferred.

ADVANTAGE - The method reduces concentration of a contaminant in the sample pool by at least 80%, empty capsids by at least 75% or bovine serum albumin (BSA) by at least 70% (claimed). The method greatly reduces the level of contaminants and empty adenovirus capsids from adenovirus samples first purified by conventional purification methods. Empty capsids, i.e. incomplete viral particles which are not infectious and thus not useful for gene therapy or other applications, are separated from intact viruses. NaCl concentrations (150 mM) present in buffers prevent the adenovirus from irreversibly binding to the hydroxyapatite. Highly pure adenovirus preparation is obtained.

Dwg.0/0

```
L14 ANSWER 8 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
    2002-171026 [22]
                       WPIDS
ΑN
    2000-423420 [36]; 2001-300278 [31]; 2002-689759 [74]; 2003-328485 [31];
CR
     2003-370630 [35]; 2004-303322 [28]
DNC C2002-052770
     Promoting growth of bone, ligament or cartilage in a mammal, involves
     administering to the mammal a protein which comprises growth factor domain
     of zvegf3 protein, a homolog of platelet-derived growth factor.
DC
    B04 D16
    GILBERTSON, D G; HART, C E
ΙN
     (GILB-I) GILBERTSON D G; (HART-I) HART C E; (ZYMO) ZYMOGENETICS INC
PA
CYC 1
    US 2002004225
                    Al 20020110 (200222)*
    US 6663870
                    B2 20031216 (200382)
ADT US 2002004225 A1 Provisional US 1998-111173P 19981207, Provisional US
     1999-142576P 19990706, Provisional US 1999-161653P 19991021, Provisional
     US 1999-165255P 19991112, CIP of US 1999-457066 19991207, Provisional US
     2000-193723P 20000331, US 2001-823033 20010329; US 6663870 B2 Provisional
     US 1998-111173P 19981207, Provisional US 1999-142576P 19990706,
     Provisional US 1999-161653P 19991021, Provisional US 1999-165255P
     19991112, CIP of US 1999-457066 19991207, Provisional US 2000-193723P
     20000331, US 2001-823033 20010329
PRAI US 2001-923033
                         20010329; US 1998-111173P
                                                         19981207;
                         19990706; US 1999-161653P
                                                         19991021;
    US 1999-142576P
     US 1999-165255P
                         19991112; US 1999-457066
                                                         19991207;
     US 2000-193723P
                         20000331
    US2002004225 A UPAB: 20040429
```

NOVELTY - Promoting (M) growth of bone, ligament or cartilage and stimulating proliferation of osteoblasts or chondrocytes in a mammal, comprises administering to the mammal a composition containing a dimeric protein (DP) which comprises growth factor domain comprising residues 235-345 of human or mouse zvegf3 protein of 345 (S1) amino acids fully defined in the specification, and a delivery vehicle.

DETAILED DESCRIPTION - Promoting growth of bone, ligament or cartilage in a mammal, involves administering to the mammal a protein which comprises growth factor domain of zvegf3 protein, which is a homolog of platelet-derived growth factor. Alternatively, in in vitro method, cartilage growth is promoted by culturing chondrocytes ex vivo in the presence of DP under conditions, where the chondrocytes proliferate, and placing the cultured chondrocytes into a mammal where cartilage is to be grown. Proliferation or differentiation of osteoblasts, osteoclasts, chondrocytes or bone marrow stem cells is promoted by culturing the cells in an effective amount of DP.

ACTIVITY - Osteopathic.

MECHANISM OF ACTION - Promoter of cell proliferation and differentiation. Recombinant zvegf3 was analyzed for mitogenic activity on human aortic smooth muscle cells (HAoSMC) and human umbilical vein endothelial cells (HUVEC). HAOSMC and HUVEC were plated at a density of 5000 cells/well in 96-well culture plates and grown for 24 hours in DMEM (Dulbecco's Modified Eagle medium) containing 10% fetal calf serum at 37 deg. C. Cells were quiesced by incubating them for 24 hours in serum-free DMEM/Ham's F-12 medium containing insulin (5 micro g/ml), transferrin (20 micro g/ml) and selenium (16 pg/ml) (ITS). Test samples consisted of either conditioned media (CM) from adenovirally-infected HaCaT human keratinocyte cells expressing full-length zvegf3, purified growth factor domain expressed in BHK cells, or control media from cells infected with parental adenovirus. The control CM was generated from HaCaT cells

infected with a parental green fluorescent protein-expressing adenovirus and treated identically to the zvegf3 CM. Purified protein in a buffer containing 0.1% bovine serum albumin (BSA) was serially diluted into ITS medium at concentrations of 1 micro g/ml-1 ng/ml and added to the test plate. A control buffer of 0.1% BSA was diluted identically to the highest concentration of zvegf3 protein and added to the plate. For measurement of (3H) thymidine incorporation, 20 micro 1 of a 50 micro Ci/ml stock in DMEM was added directly to the cells, for a final activity of 1 micro Ci/well. Mitogenic activity was assessed by measuring the uptake of (3H) thymidine. The results demonstrated that zvegf3 CM had approx. 1.5-fold higher mitogenic activity on HAoSM cells over control CM, and purified protein caused a maximal 1.8-fold increase in (3H) thymidine incorporation over the buffer control. Zvegf3 CM had no mitogenic activity on HUVEC compared to the control CM, and purified protein caused a maximal 1.3-fold increase in (3H) thymidine incorporation over the buffer control.

USE - (M) is useful for promoting growth of bone, ligament or cartilage in a mammal, where the composition is administered at a site of a bony defect, preferably a fracture, bone graft site, implant site, or periodontal pocket, and for stimulating proliferation of osteoblasts or chondrocytes in a mammal. (M) is further useful for promoting proliferation of osteoblasts, osteoclasts, chondrocytes or bone marrow stem cells, where the bone marrow stem cells are harvested from a patient prior to culture (claimed). The method is therefore useful for treating osteoporosis.

```
Dwg.0/2
L14 ANSWER 9 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
    2001-611088 [70] WPIDS
ΑN
    2000-687541 [67]; 2002-573696 [61]; 2003-352153 [33]; 2003-874621 [81];
    2004-070738 [07]; 2004-225671 [21]; 2005-011673 [01]; 2005-161610 [17]
                       DNC C2005-098290
DNN
   N2005-258282
     Use of zvegf4 polypeptide for promoting bone, ligament or cartilage growth
    in mammal at site of fracture, implant, and bone graft, and for promoting
    growth or differentiation of osteoblasts, chondrocytes in culture.
DC:
    A96 B04 D16 P34
TN
    GILBERTSON, D G; HART, C E
     (ZYMO) ZYMOGENETICS INC
PA
CYC
    WO 2001057083 A1 20010809 (200170)* EN
                                               57
        RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
           OA PT SD SE SL SZ TZ UG ZW
        W: AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ
           EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK
           LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI
           SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW
     AU 2000051259 A 20010814 (200173)
                    B1 20021022 (200277)
     US 6468543
    WO 2001057083 A1 WO 2000-US12095 20000503; AU 2000051259 A AU 2000-51259
     20000503; US 6468543 B1 Provisional US 1999-132250P 19990503, Provisional
     US 1999-164463P 19991110, Provisional US 2000-180169P 20000204, US
     2000-540224 20000331
FDT AU 2000051259 A Based on WO 2001057083
                         20000331; US 2000-180169P
                                                         20000204;
PRAI US 2000-540224
                          19990503; US 1999-164463P
                                                         19991110
     US 1999-132250P
    WO 200157083 A UPAB: 20050524
     NOVELTY - Use of zvegf4 polypeptide (I) for promoting bone, ligament or
```

DETAILED DESCRIPTION - Use of zvegf4 polypeptide (I):

cartilage growth in a mammal, and for promoting proliferation or

(a) for promoting growth of bone, ligament or cartilage in a mammal when administered in combination with a delivery vehicle; and

differentiation of osteoblasts, osteoclasts, chondrocytes or bone marrow stem cells in culture. For promoting cartilage growth, chondrocytes are cultured ex vivo in presence of (I) and then placed into mammal where

(b) for promoting proliferation or differentiation of osteoblasts, osteoclasts, chondrocytes or bone marrow stem cells in culture. Promoting cartilage growth involves culturing chondrocytes ex vivo in the presence of (I) such that the chondrocytes proliferate and placing the cultured chondrocytes into a mammal where cartilage is to be grown.

ACTIVITY - Osteopathic; vulnerary.

cartilage is to be grown.

MECHANISM OF ACTION - Production of bone and/or connective tissue stimulator; mitogenic; growth of bone, ligament or cartilage promoter. Recombinant zvegf4 was analyzed for mitogenic activity on rat liver stellate cells, human aortic smooth muscle cells, human retinal pericytes and human hepatic fibroblasts. Test samples consisted of conditioned media (CM) from adenovirally infected HaCaT human keratinocyte cells expressing full length zvegf-4. Control CM was generated from HaCaT cells infected with a parental green fluorescent protein (GFP)-expressing

adenovirus (zPar). The CM were concentrated 10-fold then diluted back to 1x with ITS media (serum-free DMEM/Ham's F-12 medium containing 5 micro g/ml insulin, 20 micro g/ml transferrin, and 16 pg/ml selenium). Cells were plated and grown for approximately 72 hours in DMEM (Dulbecco's modified eagles medium) containing 10% fetal calf serum at 37 deg. C. Cells were quiesced by incubating them for approximately 20 hours in serum-free DMEM/Ham's F-12 medium containing insulin, transferrin and selenium. At the time of the assay, the medium was removed, and test samples were added to the wells. After another 24 hours incubation, media were removed and cells were incubated with 0.1 ml of trypsin until cells detached. Cells were harvested. The plates were then dried, sealed after adding scintillation cocktail and counted on a microplate scintillation counter. Results demonstrated that zvegf4 CM had approximately 7-fold higher mitogenic activity than control CM on pericytes cells and approximately a 1.5-2.4-fold higher mitogenic activity on the other cell types tested.

USE - Zvegf4 polypeptide is useful for promoting growth of bone, ligament or cartilage in a mammal at a site of bony defect such as fracture, bone graft, implant or periodontal pocket (claimed), in humans and non-human animals such as domestic animals including livestock and companion animals. (I) is used for promoting growth of bone, ligament, or cartilage in conditions of bone defects following therapeutic treatments of bone cancers or other conditions characterized by increased bone loss or decreased bone formation, or elevation of peak bone mass in pre-menopausal woman. (I) is also useful for healing bone following radiation-induced osteonecrosis, repairing bone defects arising from surgery, and promotion of bone healing in plastic surgery, increasing bone formation during distraction osteogenesis, treating bone injuries including repair of cartilage and ligament and treatment of osteoporosis. Dwg.0/1

```
Dwg.0/1
L14 ANSWER 10 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
    2001-407594 [43]
                       WPIDS
AN
    C2001-123425
    Transferring a gene of interest to invertebral disc cells, is used to
ΤI
    treat and study degenerative disc diseases.
DC
    A96 B04 D16
    EVANS, C H; KANG, J D; NISHIDA, K; ROBBINS, P D
IN
     (EVAN-I) EVANS C H; (KANG-I) KANG J D; (NISH-I) NISHIDA K; (ROBB-I)
PA
     ROBBINS P D
CYC
    1
    US 2001006948 A1 20010705 (200143)*
                                                15
PΙ
ADT US 2001006948 A1 US 1998-199978 19981125
PRAI US 1998-199978
                          19981125
    US2001006948 A UPAB: 20010801
    NOVELTY - Transferring a gene of interest to an invertebral disc cell,
     comprising inserting a nucleic acid encoding the gene into the cell so
     that it is expressed, is new.
          DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the
     following:
          (1) treating a degenerative disc disease, comprising introducing a
     nucleic acid sequence encoding a gene of interest into a population of
     invertebral disc cells;
          (2) producing an animal model for degenerative disc disease,
     comprising introducing a nucleic acid sequence encoding a gene of interest
     into a population of invertebral disc cells, so that expression of the
     gene in the animal contributes to a pathology of a degenerative disc
     disease; and
          (3) a genetically modified invertebral disc cell which expresses an
     exogenous gene of interest.
         ACTIVITY - Osteopathic.
          MECHANISM OF ACTION - Gene therapy.
          No biological data is given.
          USE - For treating and studying degenerative disc disorders
     (claimed).
     Dwa.0/4
L14 ANSWER 11 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
    2001-389951 [41]
                       WPIDS
DNC C2001-118827
     Bioreactor for systemic delivery of bioactive agents, comprises nucleic
     acids encoding growth stimulating and bioactive agents, and a
     biocompatible substance capable of cellular infiltration.
DC
     A14 A17 A28 A89 B04 B07 D16 D22
```

(SELE-N) SELECTIVE GENETICS INC; (CHAN-I) CHANDLER L A; (PIER-I) PIERCE G

ΙN

PA

CYC 94

CHANDLER, L A; PIERCE, G

```
WO 2001040272 A2 20010607 (200141)* EN
                                               69
        RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
           NL OA PT SD SE SL SZ TR TZ UG ZW
        W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM
           DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC
           LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE
           SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
    AU 2001019398 A 20010612 (200154)
                   A1 20011122 (200176)
    US 2001044413
    WO 2001040272 A2 WO 2000-US32754 20001130; AU 2001019398 A AU 2001-19398
    20001130; US 2001044413 Al Provisional US 1999-168470P 19991201, US
    2000-729644 20001130
    AU 2001019398 A Based on WO 2001040272
FDT
                         19991201; US 2000-729644
                                                         20001130
PRAT US 1999-168470P
    WO 200140272 A UPAB: 20010724
    NOVELTY - An in situ bioreactor (I) adapted for systemic delivery of
    bioactive agents, comprising a nucleic acid encoding a growth stimulating
    agent, a nucleic acid encoding a bioactive agent, and a biocompatible
    substance capable of cellular infiltration, is new.
         DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the
     following:
         (1) systemic delivery of a protein from a tissue site in an animal,
     comprising contacting the tissue site with (I);
          (2) a Bi-gene device comprising a biocompatible substance capable of
    cellular infiltration, a nucleic acid encoding a cell growth stimulating
    agent, and a second nucleic acid encoding a bioactive agent;
         (3) a kit for the production of a device comprising:
     (a) a container;
          (b) a biocompatible substance;
          (c) a nucleic acid encoding a cell growth stimulating agent; and
          (d) a second nucleic acid encoding a bioactive agent; and
          (4) a kit for the production of a coated device comprising:
          (a) a device coated with a biocompatible substance;
          (b) a nucleic acid encoding a growth stimulating agent; and
          (c) a second nucleic acid encoding a bioactive agent.
         ACTIVITY - Vulnerary; hemostatic; antianemic; antidiabetic;
    antiarthritic; coagulant; antiinflammatory; immunosuppressive;
     neuroprotective; cytostatic; antirheumatic; osteopathic; anti-infertility;
     contraception.
         MECHANISM OF ACTION - Bioactive agent deliverer; protein and gene
     therapy.
         USE - (I) is used for cellular ingrowth and systemic delivery of a
     bioactive agent, such as a protein from a tissue site in an animal
     (claimed). (I) is used as an implant. (I) can be used to treat
     conditions associated with renal dialysis, hemophilia, hemoglobinopathies,
     thalassemias, anemia, lipid storage disease, mucopolysaccharidoses,
    diabetes, hypercoagulability, arthritis, hypercoagulability, stroke,
     cerebroprotective, inflammation, infection, autoimmunity, multiple
     sclerosis, thrombocytopenia, cancer, osteoporosis, infertility, and birth
         ADVANTAGE - (I) allows sustained and controlled gene delivery as well
     as sustained product expression using in vivo transfer and expression of
     desired nucleic acids.
     Dwg.0/3
L14 ANSWER 12 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
     2001-202687 [20]
                       WPIDS
AN
DNN
    N2001-144640
                       DNC C2001-060149
    Delivery of agents into targeted tissue, particularly cardiac tissue
TI
     comprises a flowable substance containing a number of small particles.
     A96 B05 B07 P31
    EVANS, D G; HOGANSON, D M; NASH, J E
IN
     (KENS-N) KENSEY NASH CORP; (MARS-N) MARSH CREEK CORP CENT
CYC
    95
    WO 2001010313 A1 20010215 (200120)* EN
ΡI
        RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
            NL OA PT SD SE SL SZ TZ UG ZW
         W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM
            DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC
            LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE
            SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
     AU 2000066112
                    A 20010305 (200130)
     EP 1206219
                     A1 20020522 (200241) EN
         R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
            RO SE SI
     JP 2003506131
                     W 20030218 (200315)
                                                99
                     A1 20031009 (200367)
     US 2003191449
     US 6709427
                     B1 20040323 (200421)
```

US 2004158227 A1 20040812 (200454)

ADT WO 2001010313 A1 WO 2000-US20525 20000728; AU 2000066112 A AU 2000-66112 20000728; EP 1206219 A1 EP 2000-953711 20000728, WO 2000-US20525 20000728; JP 2003506131 W WO 2000-US20525 20000728, JP 2001-514842 20000728; US 2003191449 A1 Div ex US 1999-368410 19990805, US 2003-405394 20030402; US 6709427 B1 US 1999-368410 19990805; US 2004158227 A1 Cont of US 1999-368410 19990805, US 2004-763558 20040123

FDT AU 2000066112 A Based on WO 2001010313; EP 1206219 Al Based on WO 2001010313; JP 2003506131 W Based on WO 2001010313; US 2004158227 Al Cont of US 6709427

PRAI US 1999-368410 19990805; US 2003-405394 20030402;

US 2004-763558 20040123

AB WO 200110313 A UPAB: 20010410

NOVELTY - A system (I) for delivering agents into a targeted internal tissue comprising a delivery instrument (II) and a flowable agent (III) containing a number of small particles for introduction into the tissue, where (II) is arranged to introduce (III) at or adjacent the tissue by imparting a force to (III) which enters the tissue at an entry sinus, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for (I) for vascularizing cardiac tissue to cause the formation of lumens in communication with the patient's arterial system and treating cardiac tissue to affect the conduction of electrical signals or nerve signals in the cardiac tissue.

 $\ensuremath{\mathsf{USE}}$ - For delivering agents into targeted tissue, particularly cardiac tissue (claimed).

ADVANTAGE - The local intra-tissue delivery of the flowable agent is more efficient than previous systems for delivery of medications to the heart, i.e. systemically by vein or regionally, e.g. intracoronary infusion.

Dwg.0/22

L14 ANSWER 13 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN

Full Text

AN 2000-524218 [47] WPIDS

DNN N2000-387494 DNC C2000-155662

TI Composition for delivery of a virus vector to an animal cell comprising a virus vector bound to the exterior surface of a matrix, useful for gene therapy of conditions such as cancer and wounds.

DC A96 B04 B07 D16 D22 P31

IN JONES, P L; LEVY, R J

PA (CHIL-N) CHILDRENS HOSPITAL PHILADELPHIA

CYC 90

PI WO 2000043044 Al 20000727 (200047)* EN 83

RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SL SZ TZ UG ZW

W: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AU 2000034714 A 20000807 (200055)

ADT WO 2000043044 A1 WO 2000-US1193 20000119; AU 2000034714 A AU 2000-34714 20000119

FDT AU 2000034714 A Based on WO 2000043044

PRAI US 1999-116405P 19990119

AB WO 200043044 A UPAB: 20000925

NOVELTY - A composition for delivery of a virus vector to an animal cell comprising a virus vector bound to the exterior surface of a matrix in a physiologically reversible manner, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) a surface coated with the composition above;
- (2) an implantable device having a surface coated with the composition;
- (3) a method (M1) of making a composition for delivery of a virus vector to an animal; and
- (4) a method (M2) of delivering a virus vector to an animal tissue, comprising placing the composition in fluid communication with the animal tissue.

ACTIVITY - Vulnerary; cytostatic; vasotropic.

MECHANISM OF ACTION - Gene therapy.

USE - The composition is used to deliver nucleic acids encoding anti-restenotic and, anti-oncogenic proteins into cells, particularly in gene therapy of disorders such as wounds, cancer and restenosis.

Dwg.0/1

L14 ANSWER 14 OF 14 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN

Full Text

AN 2000-412321 [35] WPIDS

```
2005-081936 [09]
DNN N2000-308172
                       DNC C2000-125048
    Nucleic acids (I) encoding a transforming growth factor beta binding
    protein, useful for identifying agents for treating osteopenia,
     osteoporosis and fractures.
DC
     B04 D16 P14 S03
     BRUNKOW, ME; GALAS, D J; KOVACEVICH, B; MULLIGAN, J T; PAEPER, B W; VAN
IN
     NESS, J; WINKLER, D G; BRUNKOW, M E; PAEPER, B; NESS, J V
     (DARW-N) DARWIN DISCOVERY LTD; (CLLT) CELLTECH R & D INC
PΑ
CYC
    WO 2000032773 A1 20000608 (200035)* EN 157
PΤ
        RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
            OA PT SD SE SL SZ TZ UG ZW
         W: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES
            FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS
            LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL
            TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
                   A 20000619 (200044)
     AU 2000020313
                     A1 20010919 (200155) EN
     EP 1133558
         R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
                    A 20020305 (200225)
     BR 9915679
     CN 1333828
                    A 20020130 (200231)
     US 6395511
                    B1 20020528 (200243)
                    W 20020924 (200278)
     JP 2002531090
                    B1 20021203 (200301)
     US 6489445
                    B1 20021217 (200307)
     US 6495736
                    A 20030226 (200321)
Al 20030904 (200359)
                                               189
     ZA 2001004234
     US 2003166247
                    A 20031219 (200404)
    NZ 512122
     US 2004009535
                   A1 20040115 (200406)
     MX 2001005275
                    A1 20030601 (200417)
                   A1 20040325 (200422)
    US 2004058321
     AU 2003271274
                   A1 20040122 (200442)#
     AU 769977
                    B2 20040212 (200453)
                    A1 20040812 (200454)
     US 2004158045
                    B1 20041012 (200467)
     US 6803453
ADT WO 2000032773 A1 WO 1999-US27990 19991124; AU 2000020313 A AU 2000-20313
     19991124; EP 1133558 A1 EP 1999-963986 19991124, WO 1999-US27990 19991124;
     BR 9915679 A BR 1999-15679 19991124, WO 1999-US27990 19991124; CN 1333828
     A CN 1999-815505 19991124; US 6395511 B1 Provisional US 1998-110283P
     19981127, US 1999-449218 19991124; JP 2002531090 W WO 1999-US27990
     19991124, JP 2000-585404 19991124; US 6489445 B1 Provisional US
     1998-110283P 19981127, Div ex US 1999-449218 19991124, US 2000-668529
     20000921; US 6495736 B1 Provisional US 1998-110283P 19981127, Div ex US
     1999-449218 19991124, US 2000-668037 20000921; ZA 2001004234 A ZA
     2001-4234 20010523; US 2003166247 Al Provisional US 1998-110283P 19981127,
     Cont of US 1999-449218 19991124, Div ex US 2002-95248 20020307, US
     2003-384893 20030306; NZ 512122 A NZ 1999-512122 19991124, WO 1999-US27990
     19991124; US 2004009535 Al Provisional US 1998-110283P 19981127, Cont of
     US 1999-449218 19991124, CIP of US 2002-95248 20020307, US 2003-463190
     20030616; MX 2001005275 A1 WO 1999-US27990 19991124, MX 2001-5275
     20010525; US 2004058321 Al Provisional US 1998-110283P 19981127, Cont of
     US 1999-449218 19991124, US 2002-95248 20020307; AU 2003271274 Al Div ex
     AU 2000-20313 19991124, AU 2003-271274 20031218; AU 769977 B2 AU
     2000-20313 19991124; US 2004158045 A1 Provisional US 1998-110283P
     19981127, Div ex US 1999-449218 19991124, Cont of US 2000-668021 20000921,
     US 2004-788606 20040227; US 6803453 B1 Provisional US 1998-110283P
     19981127, Div ex US 1999-449218 19991124, US 2000-668021 20000921
FDT AU 2000020313 A Based on WO 2000032773; EP 1133558 A1 Based on WO
     2000032773; BR 9915679 A Based on WO 2000032773; JP 2002531090 W Based on
     WO 2000032773; US 6489445 B1 Div ex US 6395511; US 6495736 B1 Div ex US
     6395511; US 2003166247 A1 Cont of US 6395511; NZ 512122 A Div in NZ
     529538, Based on WO 2000032773; US 2004009535 Al Cont of US 6395511; MX
     2001005275 Al Based on WO 2000032773; US 2004058321 Al Cont of US 6395511;
     AU 769977 B2 Previous Publ. AU 2000020313, Based on WO 2000032773; US
     2004158045 Al Div ex US 6395511; US 6803453 Bl Div ex US 6395511
PRAI US 1998-110283P
                         19981127; US 1999-449218
                                                         19991124;
                         20000921; US 2000-668037
     US 2000-668529
                                                         20000921;
     US 2002-95248
                          20020307; US 2003-384893
                                                         20030306;
     US 2003-463190
                          20030616; AU 2003-271274
                                                         20031218;
     US 2000-668021
                          20000921; US 2004-788606
                                                         20040227
     WO 200032773 A UPAB: 20050207
     NOVELTY - Isolated nucleic acids (I) encoding a transforming growth factor
     beta binding protein (TGF- beta BP) (II), are new. claims are also
     included for a ribozyme capable of cleaving TGF- beta BP mRNA.
          DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the
     following:
```

(1) an isolated nucleic acid molecule (I) selected from:

⁽a) an isolated nucleic acid molecule comprising 1 of 6 defined

- sequences ((Ia) (Ie)) given in the specification (or their complements);
- (b) an isolated nucleic acid molecule that specifically hybridizes to the nucleic acid molecule of (a) under conditions of high stringency; and
- (c) an isolated nucleic acid molecule that encodes a TGF- beta binding protein (BP) according to (a) or (b);
- (2) an isolated oligonucleotide (I') which hybridizes to (Ia) (Ig) ((If) and (Ig) are defined sequences given in the specification), or their complements under high stringency conditions;
- (3) an isolated protein (II) comprising a TGF- beta BP encoded by (I);
- (4) an expression vector (III) comprising a promoter operably linked to (I);
- (5) a method (M1) of producing a TGF- beta BP (II), comprising culturing a cell (IV) which contains (III) under conditions suitable for protein production;
 - (6) a host cell (IV) comprising (III);
 - (7) an antibody (V) that specifically binds to (II);
 - (8) a hybridoma (VI) that produces (V);
- (9) a fusion protein (VII) comprising (II) (or a fragment of (II) at least 10 amino acids in length) and a second polypeptide comprising a non-TGF- beta BP.
- (10) a pair of primers (VIII) that specifically amplify all or part of (I);
 - (11) a ribozyme (IX) which cleaves RNA encoding (II);
 - (12) a nucleic acid molecule (X) encoding (IX);
 - (13) a vector (XI) comprising (X);
 - (14) a host cell (XII) comprising (X) and/or (XI);
- (15) a method (M2) for producing a ribozyme, comprising providing (X)under the transcriptional control of a promoter and transcribing the $\ensuremath{\mathsf{DNA}}$ to produce (IX);
- (16) a method (M3) for increasing bone mineralization, comprising introducing (IX) into a warm blooded animal;
- (17) a method (M4) of detecting nucleic acids encoding TGF- beta BP, comprising incubating (I') under high stringency conditions, and detecting hybridization of the oligonucleotide;
- (18) a method (M5) for detecting a TGF- beta, comprising incubating (V) under conditions suitable for binding to (II) and detecting any binding that occurs;
- (19) a transgenic non-human animal (XIII) whose germ cells and somatic cells contain a nucleic acid molecule encoding a TGF- beta BP operably linked to a promoter (the gene is introduced into the animal (or an ancestor) at an embryonic stage);
- (20) a method (M6) for determining whether a candidate molecule is capable of increasing bone mineral content, comprising:
- (a) mixing 1 or more candidate molecules (CMs) with TGF- beta BP encoded by (I) and a selected member of the TGF- beta protein family; and
- (b) determining whether the CM alters the signaling of the TGF- beta protein or alters the binding of the TGF- beta BP to the TGF- beta protein;
- (21) a kit (XIV) for the detection of TGF- beta BP expression comprising (I), (I') and/or a 20 nucleotide fragment of (I); and (22) a kit (XV) for the detection of TGF- beta BP comprising (V).
- ACTIVITY Osteopathic. MECHANISM OF ACTION - Transforming growth factor- beta binding

protein.

The interaction of BEER (a TGF- beta BP) with proteins from different phylogenetic arms of the TGF- beta superfamily were studied using immunoprecipitation methods. Purified TGF- beta 1, TGF- beta 2, TGF- beta 3, BMP-4, BMP-5, BMP-6 and GDNF were obtained from commercial sources. Partially purified BEER was dialyzed into HEPES (N-(2-OH-ethyl-)piperazine-N'-(2-ethanesulfonic acid)) buffered saline (25 mM HEPES 7.5, 150 mM NaCl). Immunoprecipitations were done in 300 microliters of IP buffer (150 mM NaCI, 25 mM Tris pH 7.5, 1 mM EDTA (ethylene diamine tetraacetic acid), 1.4 mM beta -mercaptoethanol, 0.5 % triton multiply 100, and 10% glycerol). 30 ng recombinant human BMP-5 protein was applied to 15 microliters of FLAG affinity matrix in the presence and absence of 500 ng FLAG epitope-tagged BEER. The proteins were incubated for 4 hours at 4 deg. C and then the affinity matrix-associated proteins were washed 5 times in IP buffer (1 ml per wash). The bound proteins were eluted from the affinity matrix in 60 microliters of 1 multiply SDS PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) sample buffer. The proteins were resolved by SDS PAGE and BEER associated BNP-5 was detected by western blot using anti-BNP-5 antiserum.

- USE (I) and the protein (II) it encodes may be used in the prevention, treatment and diagnosis of diseases associated with inappropriate TGF-beta BP expression. For example, (I) (and vectors containing (I) (III)) and the TGF-beta BP polypeptide may be used to treat disorders associated with decreased TGF-beta BP expression.
 - (I) or (III) may be administered to treat diseases by rectifying

mutations or deletions in a patient's genome that affect the activity of TGF-beta BP by expressing inactive proteins or to supplement the patients own production of TGF-beta BP polypeptides. Additionally, (I) may be used to produce TGF-beta BP, according to standard recombinant DNA methodology (for example see Sambrook et al., Molecular Biology: A Laboratory Manual, (1989)), by inserting the nucleic acids into a host cell and culturing the cell to express the protein (the protein may be expressed either in vitro (in a fermentation culture) or in vivo (as part of a gene therapy procedure)). Conversely, antisense nucleic acid molecules (i.e. (I')) may be administered to down regulate TGF-beta BP expression by binding with the cells own TGF-beta BP genes and preventing their expression.

(I) and (I') may also be used as DNA probes in diagnostic assays (e.g. polymerase chain reactions (PCR)) to detect and quantitate the presence of similar nucleic acid sequences in samples, and hence which patients may be in need of restorative therapy.

They may also be used to study the expression and function of TGF-beta BP polypeptides and their role in metabolism.

The TGF-beta BP polypeptides may be used as antigens in the production of antibodies against TGF-beta BP and in assays to identify modulators (agonists and antagonists) of TGF-beta BP expression and activity. The anti-TGF-beta BP antibodies and TGF-beta BP antagonists may also be used to down regulate TGF-beta BP expression and activity.

The anti-TGF-beta BP antibodies may also be used as diagnostic agents for detecting the presence of TGF-beta BP polypeptides in samples (e.g. by enzyme linked immunosorbant assay (ELISA)). Antagonists of TGF-beta BP may be used to increase bone mineral content for the treatment of conditions such a osteopenia, osteopenosis, fractures and other disorders associated with low mineral content.

The ribozyme may be used for cleaving TGF-beta BP mRNA. Dwg.0/6

```
=> e shabram p w/in
E1
             5
                   SHABRAM P/IN
                   SHABRAM P L/IN
E2
             1
              --> SHABRAM P W/IN
E3
                   SHABRANG M/IN
E.4
             7
             3
                   SHABRANSKI V A/IN
E5
                   SHABRAT Y U A/IN
E.6
             1
                   SHABRATOV D V/IN
E7
             6
                   SHABRATOV V G/IN
E8
             1
                   SHABRATSK V I/IN
E.9
             1
                   SHABRATSKI V I/IN
E10
             5
                   SHABRATSKII V I/IN
E11
            - 4
             1
                   SHABRATSKIVI/IN
E12
=> s e3
             6 "SHABRAM P W"/IN
L1.5
=> d 115,bib,1-6
L15 ANSWER 1 OF 6 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
     2003-198263 [19]
                        WPIDS
ΑN
    C2003-050756
DNC
     New recombinant virus utilizing a pathway-responsive promoter that
     inhibits viral replication, useful for diagnosing and treating cancer with
     p53-pathway defects or with a lack of TGFapproximatelyb antiproliferative
     action.
DC
     B04 D16
     RAMACHANDRA, M; SHABRAM, P W
TN
     (RAMA-I) RAMACHANDRA M; (SHAB-I) SHABRAM P W
CYC
     US 2002150557 A1 20021017 (200319)*
ΡI
                                                51
    US 2002150557 A1 Provisional US 1998-104399P 19981015, CIP of US
     1999-416812 19991013, US 2002-62216 20020130
PRAI US 1998-104399P
                          19981015; US 1999-416812
                                                          19991013:
     US 2002-62216
                          20020130
L15 ANSWER 2 OF 6 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
     2001-191764 [19]
                        WPIDS
AN
DNC
     C2001-057587
     Reducing antiviral antibodies concentration in a plasma sample with a
ΤI
     immunoaffinity chromatographic column to allow improved treatment of
     mammals with therapeutic viruses.
DC
     B04 D16
     LAFACE, D M; RAHMAN, A; SHABRAM, P W; TSAI, V T
```

(CANJ-N) CANJI INC; (LAFA-I) LAFACE D M; (RAHM-I) RAHMAN A; (SHAB-I)

PA

```
SHABRAM P W; (TSAI-I) TSAI V T
CYC
    WO 2001017537 A2 20010315 (200119)* EN
PΙ
       RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
           NL OA PT SD SE SL SZ TZ UG ZW
         W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CZ DE DK DM DZ
           EE ES FI GB GD GE HR HU ID IL IN IS JP KG KR KZ LC LK LR LT LU LV
           MA MD MG MK MN MX MZ NO NZ PL PT RO RU SE SG SI SK SL TJ TM TR TT
           TZ UA UZ VN YU ZA
     AU 2000074741
                    A 20010410 (200137)
     EP 1214082
                    A2 20020619 (200240) EN
         R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
           RO SE SI
                    B1 20021015 (200271)
     US 6464976
                    A1 20021212 (200301)
     US 2002187143
                    W 20030304 (200319)
     JP 2003508157
     MX 2002002453
                    A1 20020801 (200367)
ADT WO 2001017537 A2 WO 2000-US24109 20000901; AU 2000074741 A AU 2000-74741
     20000901; EP 1214082 A2 EP 2000-963306 20000901, WO 2000-US24109 20000901;
     US 6464976 B1 Provisional US 1999-152650P 19990907, US 2000-653474
     20000831; US 2002187143 Al Provisional US 1999-152650P 19990907, Div ex US
     2000-653474 20000831, US 2002-222722 20020816; JP 2003508157 W WO
     2000-US24109 20000901, JP 2001-521328 20000901; MX 2002002453 A1 WO
     2000-US24109 20000901, MX 2002-2453 20020306
FDT AU 2000074741 A Based on WO 2001017537; EP 1214082 A2 Based on WO
     2001017537; US 2002187143 Al Div ex US 6464976; JP 2003508157 W Based on
    WO 2001017537; MX 2002002453 Al Based on WO 2001017537
                         19990907; US 2000-653474
                                                         20000831:
PRAI US 1999-152650P
     US 2002-222722
                         20020816
L15 ANSWER 3 OF 6 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
     2000-317990 [27]
                      WPIDS
AN
DNC
   C2000-096341
     Recombinant viruses which selectively replicate in target cells used in
TI
     the treatment of tumors comprise a pathway-responsive promoter linked to a
     viral replication repressor.
     B04 C06 D16
     RAMACHANDRA, M; SHABRAM, P W
TN
PA
     (CANJ-N) CANJI INC
CYC
    88
                    A2 20000420 (200027)* EN
PT
     WO 2000022137
                                               49
        RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
            OA PT SD SE SL SZ TZ UG ZW
        W: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CZ DE DK DM EE ES FI
            GB GD GE HR HU ID IL IN IS JP KG KR KZ LC LK LR LT LU LV MA MD MG
            MK MN MX NO NZ PL PT RO RU SE SG SI SK SL TJ TM TR TT TZ UA UZ VN
            YU ZA
                       20000501 (200036)
     AU 9963915
     BR 9914527
                    A 20010626 (200140)
     NO 2001001843
                    A 20010614 (200141)
                    A2 20010808 (200146) EN
     EP 1121441
         R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
           RO SE SI
     SK 2001000441
                    A3 20011203 (200203)
     CZ 2001001129
                    A3 20020116 (200215)
     CN 1330715
                    A 20020109 (200229)
     HU 2001004107
                    A2 20020328 (200234)
                    A 20020220 (200257)
     KR 2002013472
                    W 20021210 (200301)
                                                72
     JP 2002541761
                       20030320 (200329)
     AU 758354
                     В
     MX 2001003840
                    A1 20020301 (200362)
                    A 20031219 (200404)
     NZ 510805
     AU 2003204841
                    A1 20030724 (200464)#
     NZ 528283
                    A 20050527 (200537)
    WO 2000022137 A2 WO 1999-US21452 19991014; AU 9963915 A AU 1999-63915
ADT
     19991014; BR 9914527 A BR 1999-14527 19991014, WO 1999-US21452 19991014;
     NO 2001001843 A WO 1999-US21452 19991014, NO 2001-1843 20010410; EP
     1121441 A2 EP 1999-951481 19991014, WO 1999-US21452 19991014; SK
     2001000441 A3 WO 1999-US21452 19991014, SK 2001-441 19991014; CZ
     2001001129 A3 WO 1999-US21452 19991014, CZ 2001-1129 19991014; CN 1330715
     A CN 1999-814361 19991014; HU 2001004107 A2 WO 1999-US21452 19991014, HU
     2001-4107 19991014; KR 2002013472 A KR 2001-704690 20010413; JP 2002541761
     W WO 1999-US21452 19991014, JP 2000-576027 19991014; AU 758354 B AU
     1999-63915 19991014; MX 2001003840 Al WO 1999-US21452 19991014, MX
     2001-3840 20010416; NZ 510805 A NZ 1999-510805 19991014, WO 1999-US21452
     19991014; AU 2003204841 Al Div ex AU 1999-63915 19991014, AU 2003-204841
     20030620; NZ 528283 A Div ex NZ 1999-510805 19991014, NZ 1999-528283
```

19991014

```
FDT AU 9963915 A Based on WO 2000022137; BR 9914527 A Based on WO 2000022137;
     EP 1121441 A2 Based on WO 2000022137; SK 2001000441 A3 Based on WO
    2000022137; CZ 2001001129 A3 Based on WO 2000022137; HU 2001004107 A2
     Based on WO 2000022137; JP 2002541761 W Based on WO 2000022137; AU 758354
     B Previous Publ. AU 9963915, Based on WO 2000022137; MX 2001003840 A1
     Based on WO 2000022137; NZ 510805 A Div in NZ 528283, Based on WO
     2000022137; NZ 528283 A Div ex NZ 510805
PRAI US 1998-172686
                         19981015; AU 2003-204841
                                                        20030620
L15 ANSWER 4 OF 6 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
    2000-317859 [27]
                       WPIDS
DNC C2000-096225
    Use of calpain inhibitors to enhance p53-mediated apoptosis in a cell in
    combination with p53, to induce cell death in p53 positive tumor cells,
     and for ablating neoplastic cells contaminating a population of normal
     cells.
DC
    B04 D16
    ATENCIO, I A; LAFACE, D M; RAMACHANDRA, M; SHABRAM, P W
IN
PΑ
     (CANJ-N) CANJI INC
CYC 87
    WO 2000021575 A2 20000420 (200027)* EN
PΙ
       RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
           OA PT SD SE SL SZ TZ UG ZW
        W: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CZ DE DK DM EE ES FI
           GB GD GE HR HU ID IL IN IS JP KG KR KZ LC LK LR LT LU LV MA MD MG
           MK MN MX NO NZ PL PT RO RU SE SG SI SK SL TJ TM TR TT TZ UA UZ VN
           YU ZA
    AU 2000010926
                    A 20000501 (200036)
    WO 2000021575 A2 WO 1999-US21453 19991014; AU 2000010926 A AU 2000-10926
ADT
     19991014
FDT AU 2000010926 A Based on WO 2000021575
PRAI US 1998-172685
                         19981015
L15 ANSWER 5 OF 6 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
AN
    2000-023581 [02]
                      WPIDS
DNC
    C2000-005872
    Achieving cell density in microcarrier based bioreactor process, useful
     for production of virus, especially for gene therapy.
DC
    B04 D16
IN
    GIROUX, D D; GOUDREAU, A M; RAMACHANDRA, M; SHABRAM, P W
     (CANJ-N) CANJI INC
PA
CYC 85
                    A1 19991111 (200002)* EN 32
PΙ
    WO 9957297
       RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
           OA PT SD SE SL SZ UG ZW
        W: AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GD
           GE HR HU ID IL IN IS JP KG KR KZ LC LK LR LT LU LV MD MG MK MN MX
           NO NZ PL PT RO RU SE SG SI SK SL TJ TM TR TT UA UZ VN YU ZA
                    A 19991130 (200003)
     US 5994134
                    A 19991123 (200016)
     AU 9938823
                    A1 20010228 (200113) EN
        R: AT BE CH DE DK ES FI FR GB GR IE IT LI LT LU LV NL PT RO SE
                   W 20020514 (200236)
     JP 2002513583
                                                41
    MX 2000010892
                    A1 20020401 (200363)
ADT WO 9957297 A1 WO 1999-US9813 19990504; US 5994134 A US 1998-73076
     19980504; AU 9938823 A AU 1999-38823 19990504; EP 1078095 Al EP
     1999-921681 19990504, WO 1999-US9813 19990504; JP 2002513583 W WO
     1999-US9813 19990504, JP 2000-547250 19990504; MX 2000010892 A1 WO
     1999-US9813 19990504, MX 2000-10892 20001106
    AU 9938823 A Based on WO 9957297; EP 1078095 Al Based on WO 9957297; JP
     2002513583 W Based on WO 9957297; MX 2000010892 Al Based on WO 9957297
PRAI US 1998-73076
                         19980504
L15 ANSWER 6 OF 6 WPIDS .COPYRIGHT 2005 THE THOMSON CORP on STN
Full Text
     1996-425436 [42]
AN
                       WPIDS
DNC
    C1996-134114
     Purificn. of recombinant viral vectors contg. therapeutic genes from cell
     lysates - by, e.g. treating lysate with enzyme, chromatographing lysate
     with anion exchange resin and chromatographing this prod on immobilised
     metal ion resin.
     A96 B04 D16
     HUYGHE, B G; LIU, X; SHABRAM, P W; SHEPARD, H M
IN
PA
     (CANJ-N) CANJI INC
CYC
    72
     WO 9627677
                    A2 19960912 (199642)* EN
```

RW: AT BE CH DE DK EA ES FI FR GB GR IE IT KE LS LU MC MW NL OA PT SD

SE SZ UG W: AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN A 19960923 (199702) AU 9654213 WO 9627677 A3 19970116 (199715) A 19971126 (199802) ZA 9601849 42 A1 19971229 (199805) EN EP 813606 R: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE A 19981117 (199902) US 5837520 W 20000822 (200045) JP 2000510682 45 ADT WO 9627677 A2 WO 1996-US3369 19960306; AU 9654213 A AU 1996-54213 19960306; WO 9627677 A3 WO 1996-US3369 19960306; ZA 9601849 A ZA 1996-1849 19960306; EP 813606 A1 EP 1996-911282 19960306, WO 1996-US3369 19960306; US 5837520 A US 1995-400793 19950307; JP 2000510682 W JP 1996-527081 19960306, WO 1996-US3369 19960306 AU 9654213 A Based on WO 9627677; EP 813606 Al Based on WO 9627677; JP 2000510682 W Based on WO 9627677 19950307 PRAI US 1995-400793 => d 115,bib,ab,6 L15 ANSWER 6 OF 6 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN Full Text 1996-425436 [42] WPIDS DNC C1996-134114 Purificn. of recombinant viral vectors contg. therapeutic genes from cell lysates - by, e.g. treating lysate with enzyme, chromatographing lysate with anion exchange resin and chromatographing this prod on immobilised metal ion resin. A96 B04 D16 HUYGHE, B G; LIU, X; SHABRAM, P W; SHEPARD, H M (CANJ-N) CANJI INC 72 WO 9627677 A2 19960912 (199642)* EN RW: AT BE CH DE DK EA ES FI FR GB GR IE IT KE LS LU MC MW NL OA PT SD SE SZ UG W: AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AU 9654213 A 19960923 (199702) A3 19970116 (199715) WO 9627677 ZA 9601849 A 19971126 (199802) 42 A1 19971229 (199805) EN EP 813606 R: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE US 5837520 A 19981117 (199902) JP 2000510682 W 20000822 (200045) 45 ADT WO 9627677 A2 WO 1996-US3369 19960306; AU 9654213 A AU 1996-54213 19960306; WO 9627677 A3 WO 1996-US3369 19960306; ZA 9601849 A ZA 1996-1849 19960306; EP 813606 A1 EP 1996-911282 19960306, WO 1996-US3369 19960306; US 5837520 A US 1995-400793 19950307; JP 2000510682 W JP 1996-527081 19960306, WO 1996-US3369 19960306 FDT AU 9654213 A Based on WO 9627677; EP 813606 Al Based on WO 9627677; JP 2000510682 W Based on WO 9627677 PRAI US 1995-400793 19950307 9627677 A UPAB: 19961115 WO Purificn. of a recombinant viral vector contg. a therapeutic gene from a cell lysate, comprises: (a) treating the cell lysate with an enzymatic agent that selectively degrades both encapsulated DNA and RNA; (b) chromatographing the treated lysate from step (a) on a first resin, and (c) chromatographing the eluant from step (b) on a second resin.

One of the resins is an anion exchange resin and the other is an immobilised metal ion affinity resin.

Also claimed are:

DC:

PΑ

PΙ

CYC

- (1) determining the number of intact viral particles in an eluant sample from a chromatographic procedure comprising:
- (a') constructing a standard curve on the number of viral particles at a selected absorbance;
- (b') chromatographing the sample contg. the viral particles on an anion exchange resin;
- (c') monitoring the chromatography of step (b') at the selected
- (d') determining the total number of viral particles in the eluant sample by comparing the absorbance value obtd. in step (c') to the standard curve of step (a').

USE - The viral vectors may be used in gene therapy.

ADVANTAGE - The processes (A) and (B) yield vectors which retain their infectivity during and after chromatographic treatment and are able to effect gene transfer. The purificn. processes yield vectors which are as pure and active as vectors purified using a three day ultracentrifugation.

Dwg.0/8 => d his(FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005) FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005 9532 S HYDROXYAPATITE L11599 S L1 AND HYDROXYAPATITE/CLM L2 69 S L2 AND ADENOVIR? L3 13 S L3 AND ADENOVIR?/CLM L433 S L3 AND AY<2001 L5 27 S L5 NOT L4 L6 1 S US5496926/PN L7 1 S L7 AND ADENOVIR? L8 1 S US5624833/PN T.9 1 S L9 AND ADENOVIR? L10 E ERICKSON AMY E/IN L11 1 S E3 E SHABRAM PAUL W/IN 5 S E3 L12 FILE 'WPIDS' ENTERED AT 18:46:16 ON 22 JUN 2005 L13 2918 S HYDROXYAPATITE L14 14 S L13 AND ADENOVIR? E SHABRAM P W/IN 6 S E3 L15 => e erickson a e/in 4 ERICKSON A A/IN E1 E2 1 ERICKSON A B/IN 1 --> ERICKSON A E/IN ЕЗ ERICKSON A G/IN E4 1 2 ERICKSON A H/IN E5 ERICKSON A I/IN E6 1 E7 4 ERICKSON A J/IN ERICKSON A K/IN E8 ERICKSON A L/IN E9 3 ERICKSON A N/IN E10 4 2 ERICKSON A O/IN E11 E12 10 ERICKSON A R/IN => s e3 1 "ERICKSON A E"/IN L16 => d 116,bib,ab L16 ANSWER 1 OF 1 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN Full Text AN 1997-179255 [16] WPIDS DNC C1997-057749 Purifying active and infectious adenovirus - by contacting virus with chromatographic matrix material having binding gps. with affinity for virus confined to pores sufficiently large to allow virus to pass through undamaged. DC B04 D16 ERICKSON, A E; ORIORDAN, C E; SMITH, A E; O'RIORDAN, C E; HELGERSON, A L TN (GENZ) GENZYME CORP; (HELG-I) HELGERSON A L; (ORIO-I) O'RIORDAN C E; (SMIT-I) SMITH A E CYC 71 ΡI A1 19970306 (199716)* EN 62 RW: AT BE CH DE DK EA ES FI FR GB GR IE IT KE LS LU MC MW NL OA PT SD SE SZ UG W: AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US AU 9670108 A 19970319 (199728) EP 847442 Al 19980617 (199828) R: AL AT BE CH DE DK ES FI FR GB GR IE IT LI LT LU LV MC NL PT SE SI JP 11511326 W 19991005 (199953) 66

B 20000727 (200041)

A 20001107 (200059)

US 2004152183 A1 20040805 (200452)

AU 722196 US 6143548 ADT WO 9708298 A1 WO 1996-US13872 19960830; AU 9670108 A AU 1996-70108 19960830; EP 847442 A1 EP 1996-931425 19960830, WO 1996-US13872 19960830; JP 11511326 W WO 1996-US13872 19960830, JP 1997-510556 19960830; AU 722196 B AU 1996-70108 19960830; US 6143548 A Provisional US 1995-2967P 19950830, WO 1996-US13872 19960830, US 1998-11828 19980629; US 2004152183 A1 Provisional US 1995-2967P 19950830, Cont of WO 1996-US13872 19960830, Cont of US 1998-11828 19980629, Cont of US 2000-604349 20000627, US 2004-470604 20040302

FDT AU 9670108 A Based on WO 9708298; EP 847442 Al Based on WO 9708298; JP 11511326 W Based on WO 9708298; AU 722196 B Previous Publ. AU 9670108, Based on WO 9708298; US 6143548 A Based on WO 9708298; US 2004152183 A1 Cont of US 6143548

19950830; US 1998-11828 19980629; PRAI US 1995-2967P 20000627; US 2004-470604 US 2000-604349 20040302

WO 9708298 A UPAB: 19970417

Purifying active and infectious adenovirus comprises contacting the virus with a chromatographic matrix material having binding gps. with affinity for the virus, which are confined to pores in the matrix sufficiently large to allow the virus to pass through undamaged. Also claimed are: (1) purifying active and infectious adenovirus comprising contacting the virus with a chromatographic matrix material comprising pores and having binding qps. with affinity for the virus, where the matrix further comprises crosslinking or tentacles sufficient to substantially prevent the virus from contacting the pores; and (2) purifying adeno-associated virus (AAV) from a sample also contg. adenovirus comprising contacting the sample with a chromatographic material capable of damaging adenovirus, where the damaged adenovirus becomes non-infectious.

USE - The methods are useful for the purificn. of commercially useful quantities of infectious adenovirus and AAV, esp. for therapeutic use, e.g. in gene transfer and gene therapy.

ADVANTAGE - The improved methods for contacting therapeutically useful viruses with suitable materials are used in chromatographic fractionation techniques in a fashion and under conditions so that viruses, esp. surface components believed to be required for infectivity, are not damaged by such contact. Dwg.7AB/14

=> file uspatful COST IN U.S. DOLLARS

FULL ESTIMATED COST

SINCE FILE TOTAL ENTRY SESSION 129.40 180.81

<<<

FILE 'USPATFULL' ENTERED AT 18:53:21 ON 22 JUN 2005 CA INDEXING COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Apr 2005

FILE COVERS 1971 TO PATENT PUBLICATION DATE: 21 Jun 2005 (20050621/PD) FILE LAST UPDATED: 21 Jun 2005 (20050621/ED) HIGHEST GRANTED PATENT NUMBER: US6910221 HIGHEST APPLICATION PUBLICATION NUMBER: US2005132458 CA INDEXING IS CURRENT THROUGH 21 Jun 2005 (20050621/UPCA) ISSUE CLASS FIELDS (/INCL) CURRENT THROUGH: 21 Jun 2005 (20050621/PD) REVISED CLASS FIELDS (/NCL) LAST RELOADED: Apr 2005

>>> USPAT2 is now available. USPATFULL contains full text of the original, i.e., the earliest published granted patents or <<< >>> applications. USPAT2 contains full text of the latest US <<< publications, starting in 2001, for the inventions covered in <<< >>> >>> USPATFULL. A USPATFULL record contains not only the original <<< >>> published document but also a list of any subsequent <<< publications. The publication number, patent kind code, and <<< >>> >>> publication date for all the US publications for an invention <<< >>> are displayed in the PI (Patent Information) field of USPATFULL <<< records and may be searched in standard search fields, e.g., /PN, <<< >>> <<< >>> /PK, etc. <<< >>> USPATFULL and USPAT2 can be accessed and searched together through the new cluster USPATALL. Type FILE USPATALL to >>> <<< <<< >>> enter this cluster. <<< >>> >>> Use USPATALL when searching terms such as patent assignees, <<< classifications, or claims, that may potentially change from <<< >>> the earliest to the latest publication. <<<

This file contains CAS Registry Numbers for easy and accurate substance identification.

```
E1
             1
                   VELLECO GUS/IN
             1
                   VELLEGO GENI/IN
E2
             0 --> VELLEKAMP G J/IN
E3
                  VELLEKAMP GARY/IN
E4
                  VELLEKAMP GARY J/IN
E5
             3
E6
             5
                  VELLEKOOP LINDA J/IN
                  VELLEKOOP MARINUS H/IN
E7
            1
             3
                  VELLEKOOP MICHAEL JOHANNES/IN
E8
                  VELLEKOOP PIETER/IN
            1
F.9
             1
                  VELLELLA VINCENT A/IN
E10
                  VELLEMAN KLAUS/IN
             1
E11
                  VELLEMAN KOEN/IN
             1
E12
=> s e4 or e5
             4 "VELLEKAMP GARY"/IN
             3 "VELLEKAMP GARY J"/IN
             7 "VELLEKAMP GARY"/IN OR "VELLEKAMP GARY J"/IN
1.17
=> d 117,ti,1-7
   ANSWER 1 OF 7 USPATFULL on STN
L17
       Compositions comprising viruses and methods for concentrating virus
TI
       preparations
    ANSWER 2 OF 7 USPATFULL on STN
L17
       Compostions comprising viruses and methods for concentrating virus
       preparations
    ANSWER 3 OF 7 USPATFULL on STN
L17
TI
      Method for purifying adenoviruses
    ANSWER 4 OF 7 USPATFULL on STN
L17
      Methods for purifying viruses
TI
    ANSWER 5 OF 7 USPATFULL on STN
L17
      Methods for purifying viruses
TI
    ANSWER 6 OF 7 USPATFULL on STN
L17
       Purification of bacterially expressed human interleukin-10
TT
    ANSWER 7 OF 7 USPATFULL on STN
L17
TΤ
       Purification of human interleukin-10 from a cell culture medium
=> d 117, cbib, clm, 1-7
L17 ANSWER 1 OF 7 USPATFULL on STN
2003:225255 Compositions comprising viruses and methods for concentrating virus
    preparations.
    Frei, Andreas, Freehold, NJ, UNITED STATES
    Kwan, Henry K.H., Summit, NJ, UNITED STATES
    Sandweiss, Varda E., Forest Hills, NY, UNITED STATES
    Vellekamp, Gary J., Glen Ridge, NJ, UNITED STATES
    Yuen, Pui-Ho, Princeton Junction, NJ, UNITED STATES
    Bondoc, Laureano L., JR., Piscataway, NJ, UNITED STATES
    Porter, Frederick William, IV, Edison, NJ, UNITED STATES
    Tang, John Chu-Tay, Livingston, NJ, UNITED STATES
    Ihnat, Peter, Brooklyn, NY, UNITED STATES
    US 2003157066 A1 20030821
    APPLICATION: US 2003-365632 A1 20030404 (10)
    PRIORITY: US 1996-33176P 19961213 (60)
    US 1998-74873P 19980217 (60)
    US 1998-85559P 19980515 (60)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
CLM
       What is claimed is:
       1. A composition comprising virus in a formulation comprising a
       polyhydroxy hydrocarbon buffered to maintain a pH in a range from about
       7 to about 8.5 at a temperature in the range from about 2° C. to
       27° C.
       2. The composition of claim 1 wherein the virus is a recombinant virus.
```

- 3. The composition of claim 1 wherein the polyhydroxy hydrocarbon is glycerol.
- 4. The composition of claim 1 further comprising a disaccharide.
- 5. The composition of claim 1 wherein the composition comprises a buffer $% \left(1\right) =\left(1\right) \left(1\right)$

system comprising sodium phosphate monobasic dihydrate in a concentration of about 0.5 to 10 mg/mL and tromethamine in a concentration of about 0.5 to 10 mg/mL.

- 6. The composition of claim 1 further comprising a divalent metal salt in a concentration of about 0.1 to 1 mg/mL.
- 7. The composition of claim 1 which further comprises a diluent comprising water.
- 8. The composition of claim 1 wherein the virus is present in a concentration of about 1×10^9 to 1×10^{13} particles/mL.
- 9. The composition of claim 1 wherein the virus is adenovirus.
- 10. The composition of claim 2 wherein the recombinant virus comprises a wild-type p53 gene.
- 11. The composition of claim 10 wherein the recombinant virus is A/C/N153.
- 12. The composition of claim 1 wherein the virus is adenovirus; the polyhydroxy hydrocarbon is glycerol; the buffer system maintains the pH in a range from about 7.3 to about 7.9 at a temperature ranging from 20° C. to 27° C.; and the composition further comprises a disaccharide.
- 13. The composition of claim 12 wherein the adenovirus is A/C/N/53; the disaccharide is sucrose; the buffer system comprises sodium phosphate monobasic dihydrate and tromethamine; and the composition further comprises a divalent metal salt and water.
- 14. A method for concentrating a virus preparation comprising: (a) adding a polyhydroxy hydrocarbon to a virus preparation to a final polyhydroxy hydrocarbon concentration of about 20% or more; and (b) subjecting the virus preparation to a filtration process wherein the concentration of virus is increased by applying pressure to the preparation such that diluent is removed from the virus preparation through a filter while the virus is retained.
- 15. The method of claim 14 wherein the filtration process comprises ultrafiltration.
- 16. The method of claim 14 wherein the filtration process comprises tangential flow filtration.
- 17. A method of purifying a virus preparation comprising: (a) subjecting the virus preparation to anion-exchange chromatography, wherein the virus is eluted as a virus preparation product from an anion-exchange chromatographic medium; (b) adding a polyhydroxy hydrocarbon to the virus preparation product of step (a) so that the concentration of polyhydroxy hydrocarbon in the preparation reaches a level of about 25% or more; and (c) increasing the concentration of virus in the virus preparation product of step (b) by applying pressure to the preparation such that diluent is removed from the virus preparation through a filter while the virus is retained; and (d) subjecting the concentrated virus preparation product of step (c) to one or more additional processing steps.
- 18. The method of claim 14 wherein the virus is a recombinant virus.
- 19. The method of claim 14 wherein the virus is a recombinant virus carrying a therapeutic transgene for use in gene therapy.
- 20. The method of claim 17 wherein an additional processing step comprises size exclusion chromatography.
- 21. The method of claim 17 wherein the process of step (c) comprises tangential flow filtration.
- 22. The method of claim 21 wherein the process of step (c) is carried out using apparatus comprising a Pellicon XL filtration system.
- 23. A virus preparation concentrated by the method of claim 14.
- 24. A virus preparation purified by the method of claim 17.
- 25. A method for concentrating a virus preparation comprising: (a)

centrifuging a composition which comprises a first layer comprising a polyhydroxy hydrocarbon in a concentration of 35% to 80% (v/v), the first layer overlaid with a second layer comprising a polyhydroxy hydrocarbon in a concentration of 5% to 30% (v/v), the second layer overlaid with a third layer comprising virus; and (b) recovering the virus from the first layer.

- 26. The composition of claim 1, wherein the composition is subjected to an additional processing step of agitation, followed by microfiltration, for the prevention of particulate formation during storage of the composition.
- 27. The composition of claim 1, wherein the composition is subjected to one or more freeze/thaw cycles, followed by agitation, and then microfiltration, for the prevention of particulate formation during storage of the composition.
- 28. The composition of claim 12 further comprising a monovalent metal' salt in a concentration of about 0.6 to 10.0 mg/mL.

L17 ANSWER 2 OF 7 USPATFULL on STN

2003:95964 Compostions comprising viruses and methods for concentrating virus preparations.

Frei, Andreas, Freehold, NJ, United States
Kwan, Henry K. H., Summit, NJ, United States
Sandweiss, Varda E., Forest Hills, NY, United States
Vellekamp, Gary J., Glen Ridge, NJ, United States
Yuen, Pui-Ho, Princeton Junction, NJ, United States
Ihnat, Peter, Brooklyn, NY, United States
Schering Corporation, Kenilworth, NJ, United States (U.S. corporation)
US 6544769 B1 20030408
APPLICATION: US 1999-249646 19990212 (9)
PRIORITY: US 1998-85559P 19980515 (60)
US 1998-74873P 19980217 (60)
US 1996-33176P 19961213 (60)
DOCUMENT TYPE: Utility; GRANTED.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

CLM What is claimed is:

- 1. A composition comprising a recombinant adenovirus, 20 to 200 mg/ml glycerol, and an aqueous buffer system which maintains a pH range from about 7 to about 8.5 at a temperature range from about 2° C. to 27° C., wherein the recombinant adenovirus comprises a wild-type p53 gene.
- 2. The composition of claim 1 wherein the recombinant adenovirus is A/C/N/53.
- 3. The composition of claim 2 which further comprises sucrose and a divalent metal salt, and wherein the aqueous buffer system comprises sodium phosphate monobasic dihydrate and tromethamine and maintains a pH range from about 7.3 to about 7.9.
- 4. A composition comprising adenovirus, 20 to 200 mg/ml glycerol, sucrose, and an aqueous buffer system which maintains a pH range from about 7 to about 8.5 at a temperature range from about 2° C. to 27° C.
- 5. A composition comprising from 1×10^9 to 1×10^{13} particles of A/C/N/53, 20 to 200 mg/ml glycerol, 5 to 25 mg/ml sucrose, a divalent metal salt, and an aqueous buffer system which comprises from 0.5 to 10 mg/ml sodium phosphate monobasic dihydrate and from 0.5 to 10 mg/ml tromethamine and which maintains a pH range from 7.3 to 8 at a temperature range from 4° C. to 27° C.

L17 ANSWER 3 OF 7 USPATFULL on STN
2002:126348 Method for purifying adenoviruses.
Cannon-Carlson, Susan V., Wayne, NJ, UNITED STATES
Cutler, Collette, Bloomingdale, NJ, UNITED STATES
Vellekamp, Gary J., Glen Ridge, NJ, UNITED STATES
Voloch, Marcio, New York, NY, UNITED STATES
Schering Corporation (U.S. corporation)
US 2002064860 Al 20020530
APPLICATION: US 2001-991080 Al 20011116 (9)
PRIORITY: US 2000-253823P 20001129 (60)
DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

CLM What is claimed is:

- 1. A method for purifying adenovirus from contaminants in a sample pool, comprising: contacting the sample pool with a hydroxyapatite chromatographic medium to reversibly bind the adenovirus to the hydroxyapatite; and eluting the bound adenovirus from the hydroxyapatite.
- 2. The method of claim 1, wherein the sample pool comprises sodium chloride in a concentration of from about 150 to 500 mM.
- 3. The method of claim 1, wherein the hydroxyapatite chromatographic medium is equilibrated with a buffer comprising sodium chloride at a concentration of from about 150 to 500 mM before the step of contacting the sample pool with the hydroxyapatite.
- 4. The method of claim 1, further comprising the step of washing the hydroxyapatite with a buffer comprising sodium chloride in a concentration of 150 to 500 mM, wherein the hydroxyapatite comprises an adenovirus bound thereto.
- 5. The method of claim 1, wherein the adenovirus is eluted using a buffer comprising sodium chloride in a concentration from about 150 mM to 500 mM.
- 6. The method of claim 1 wherein the sodium chloride concentration in a buffer used in the method is from about $350\ \text{mM}$ to $450\ \text{mM}$.
- 7. The method of claim 1, wherein the sample pool is prepared from an eluate of a conventional chromatography medium.
- 8. The method of claim 7 wherein the conventional chromatography medium is: an anion exchange resin; an immobilized metal ion affinity resin; a size exclusion chromatography resin; or a medium used in hydrophobic interaction chromatography.
- , 9. The method of claim 1, wherein the eluting step is a gradient elution to 600 mM phosphate.
- 10. The method of claim 1, wherein the eluting step is a step elution with 250 mM phosphate.
- 11. The method of claim 1, wherein a buffer used in the method comprises glycerol or sucrose.
- 12. The method of claim 1, wherein the concentration of adenovirus in the sample pool is equal to or less than 1×10^{14} particles per $^{\rm nl}$
- 13. The method of claim 1, wherein the adenovirus comprises a therapeutic gene.
- 14. The method of claim 1, wherein the adenovirus is ACN53.
- 15. The method of claim 1, wherein the adenovirus comprises a nucleic acid sequence from the p53 gene or from the p21 gene.
- 16. A method of claim 1, which reduces the concentration of a contaminant in the sample pool by at least 80%.
- 17. A method of claim 1, which reduces the concentration of empty capsids by at least 75%.
- 18. A method of claim 1, which reduces the concentration of BSA by at least 70%.
- 19. A method for purifying adenovirus from contaminants in sample pool, comprising: contacting the sample pool with a hydroxyapatite chromatographic medium to reversibly bind the adenovirus to the hydroxyapatite; washing the adenovirus-bound hydroxyapatite with a buffered solution; and eluting the bound adenovirus from the hydroxyapatite, wherein the sample pool is a buffered solution comprising about 50 mM sodium phosphate pH about 7.5, about 400 mM sodium chloride, about 2% sucrose, about 2 mM MgCl2, and about 10% glycerol, and the concentration of total contaminants is reduced by at least 80%.

Vellekamp, Gary, Glen Ridge, NJ, United States Bondoc, Laureano L., JR., Piscataway, NJ, United States US 2001036657 Al 20011101

APPLICATION: US 2001-872134 A1 20010601 (9)

PRIORITY: US 1996-33176P 19961213 (60) DOCUMENT TYPE: Utility; APPLICATION.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

CLM What is claimed is:

1. A method for purification of a virus preparation comprising: a) subjecting the virus preparation to anion-exchange chromatography, wherein the virus is eluted from an anion-exchange chromatographic medium; and b) subjecting the virus product of step A to size exclusion chromatography, wherein the virus is eluted from a size exclusion chromatographic medium.

- 2. The method of claim 1, wherein the virus preparation is a cell lysate.
- 3. The method of claim 2, wherein the cell lysate is filtered before step a.
- 4. The method of claim 1, wherein the virus is a recombinant adenovirus.
- 5. The method of claim 1, wherein the anion-exchange medium is ${\sf FRACTOGEL.TM.-DEAE.}$
- 6. The method of claim 1, wherein the size exclusion medium is $\operatorname{Superdex-200}$.
- 7. The method of claim 1, wherein the size-exclusion medium is provided in a column prepared as a salt gradient decreasing in ionic strength from the top of the column towards the bottom, the top of the column having a buffer having an ionic strength substantially identical to that of the product of step a.
- 8. The method of claim 1 wherein the anion exchange medium comprises diethylaminoethyl groups on a cross-linked agarose, cellulose, polyacrylamide or polystyrene backbone.
- 9. The method of claim 1, wherein the size-exclusion medium comprises a cross-linked polysaccharide.
- 10. The method of claim 9, wherein the cross-linked polysaccharide is a composite of cross-linked agarose and dextran.
- 17. The method of claim 1 wherein the virus is ACN53.
- 18. The method of claim 1, wherein the anion exchange chromatographic medium is extensively washed before application of the virus preparation.
- 19. A virus purified by the method of claim 1.

L17 ANSWER 5 OF 7 USPATFULL on STN

2001:112091 Methods for purifying viruses.

Tang, John Chu-Tay, Livingston, NJ, United States

Vellekamp, Gary, Glen Ridge, NJ, United States

Bondoc, Jr., Laureano L., Piscataway, NJ, United States Schering Corporation, Kenilworth, NJ, United States (U.S. corporation)

US 6261823 B1 20010717

APPLICATION: US 1997-989227 19971211 (8)

PRIORITY: US 1996-33176P 19961213 (60)

DOCUMENT TYPE: Utility; GRANTED.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- 1. A method of purifying adenovirus from a virus preparation, comprising the successive steps of: a) subjecting the virus preparation to anion-exchange chromatography, wherein the adenovirus is eluted from an anion-exchange chromatographic medium; and b) subjecting the eluate of step a) which contains the adenovirus to size exclusion chromatography, wherein the adenovirus is eluted from a size exclusion chromatographic medium.
- 2. The method of claim 1, wherein the virus preparation is a cell lysate.
- 3. The method of claim 2, wherein the cell lysate is filtered before step a).

- 4. The method of claim 1, wherein the adenovirus is recombinant.
- 5. The method of claim 1 wherein the adenovirus is ACN53.
- 6. The method of claim 1, wherein the anion-exchange medium is DEAE-FRACTOGEL.
- 7. The method of claim 1, wherein the size exclusion medium is SUPERDEX-200.
- 8. The method of claim 1 wherein the anion-exchange medium comprises diethylaminoethyl groups on a cross-linked agarose, cellulose, polyacrylamide or polystyrene backbone.
- 9. The method of claim 1, wherein the size-exclusion medium comprises a cross-linked polysaccharide.
- 10. The method of claim 9, wherein the cross-linked polysaccharide is a composite of cross-linked agarose and dextran.
- 11. The method of claim 1, wherein the anion-exchange chromatographic medium is extensively washed before step a).
- 12. The method of claim 1, wherein step b) further comprises eluting the adenovirus from the size-exclusion chromatographic medium into a low-salt buffer by a high-salt elution buffer, wherein the size-exclusion medium is in a column containing a salt gradient which decreases in ionic strength from the top of the column towards the bottom of the column.
- 13. The method of claim 1, wherein the anion-exchange chromatographic medium or the size exclusion chromatographic medium is contacted with a buffer comprising glycerol, including wash, equilibration, loading and elution buffer.
- 14. The method of claim 1, further comprising a step of adding glycerol to a fraction which contains the adenovirus.

L17 ANSWER 6 OF 7 USPATFULL on STN

1998:7167 Purification of bacterially expressed human interleukin-10.

Vellekamp, Gary, Glen Ridge, NJ, United States

Cannon-Carlson, Susan, Wayne, NJ, United States

Tang, John, Livingston, NJ, United States

Schering Corporation, Kenilworth, NJ, United States (U.S. corporation)

US 5710251 19980120

WO 9420525 19940915

APPLICATION: US 1995-495558 19951218 (8)

WO 1994-US1909 19940303 19951218 PCT 371 date 19951218 PCT 102(e) date DOCUMENT TYPE: Utility; Granted.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- 1. A method for purifying bacterially expressed human Interleukin-10 (IL-10) contained within a solution comprising: (a) applying a solution containing IL-10 to a cation exchange chromatography column thereby obtaining fractions containing IL-10; (b) applying the IL-10-containing fractions from step (a) to an anion exchange chromatography column thereby obtaining fractions containing IL-10; (c) applying the IL-10-containing fractions from step (b) to a hydroxyapatite chromatography chromatography thereby obtaining fractions containing a single isolated dimer of IL-10.
- 2. The method of claim 1 wherein the cation exchange chromatography column from step (a) is comprised of sulfonate exchange groups attached to a support matrix.
- 3. The method of claim 2 wherein the support matrix is agarose.
- 4. The method of claim 1 wherein the anion exchange chromatography column is comprised of quaternary amino ethyl exchange groups attached to a support matrix.
- 5. The method of claim 4 wherein the support matrix is agarose.
- 6. The method of claim 1 further comprising applying the IL-10-containing fractions obtained from step (c) of claim 1 to a gel filtration chromatography column to obtain dimeric IL-10 substantially free of high and low molecular weight impurities.

- 7. The method of claim 6 wherein the material in the gel filtration chromatography column has a fractionation range of from 1 to 600 kDa.
- 8. The method of claim 1 wherein prior to step (a) the bacterially expressed human IL-10 is extracted from bacteria in inclusion bodies, denatured and refolded into biologically active human IL-10.
- 9. A method for separating non-acetylated homodimers of Interleukin-10 (IL-10) from acetylated IL-10 homodimers and from acetylated IL-10 heterodimers contained within a solution comprising: applying the solution to an anion exchange chromatography column under conditions in which the non-acetylated homodimers are separated from the acetylated homodimers and from the acetylated heterodimers.
- L17 ANSWER 7 OF 7 USPATFULL on STN

94:60238 Purification of human interleukin-10 from a cell culture medium.

Vellekamp, Gary, Glen Ridge, NJ, United States Cannon-Carlson, Susan, Wayne, NJ, United States

Tang, John, Livingston, NJ, United States

Schering-Plough, Kenilworth, NJ, United States (U.S. corporation)

US 5328989 19940712

APPLICATION: US 1993-26942 19930305 (8)

DOCUMENT TYPE: Utility; Granted.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- 1. A method for purifying Interleukin-10 (IL-10) from a cell culture medium comprising: (a) subjecting the culture medium containing IL-10 to cation exchange chromatography thereby obtaining fractions containing IL-10; (b) subjecting the IL-10-containing fractions from step (a) to anion exchange chromatography thereby obtaining fractions containing IL-10; (c) subjecting the IL-10-containing fractions from step (b) to hydroxyapatite chromatography thereby obtaining fractions containing a single isolated dimer of IL-10.
- 2. The method of claim 1 wherein the cation exchange chromatography from step (a) uses a column comprised of sulfonate exchange groups attached to a support matrix.
- 3. The method of claim 2 wherein the support matrix is agarose.
- 4. The method of claim 1 wherein the anion exchange chromatography uses a column comprised of quartenary amino ethyl exchange groups attached to a support matrix.
- 5. The method of claim 4 wherein the support matrix is agarose.
- 6. The method of claim 1 further comprising applying the IL-10-containing fractions obtained from step (c) of claim 1 to a gel filtration chromatography column to obtain dimeric IL-10 substantially free of high and low molecular weight impurities.
- 7. The method of claim 6 wherein the gel has a fractionation range of from 1 to 600 kDa.
- 8. The method of claim 1 wherein the IL-10 is human IL-10.
- 9. The method of claim 1 wherein IL-10 is secreted in a cell culture medium from eukaryotic cell.
- 10. A method for separating different dimers of IL-10 present in an IL-10 containing protein fraction comprising: subjecting the IL-10 containing fraction to hydroxyapatite chromatography under conditions wherein the different IL-10 dimers are separated from each other.
- 11. The method of claim 10 wherein the IL-10 dimers present in the protein fraction are $\Delta 0:\Delta 0$, $\Delta 0:\Delta 2$ and $\Delta 2:\Delta 2$ IL-10 dimers.
- 12. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta0\!:\!\Delta0$ IL-10 dimer.
- 13. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta0\!:\!\Delta2$ IL-10 dimer.
- 14. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta 2:\Delta 2$ IL-10 dimer.

- 15. The method of claim 10 wherein the hydroxyapatite is sintered hydroxyapatite.
- 16. A method for separating different dimers of a protein contained within a protein fraction wherein the different dimers have different N-terminal amino acid sequences comprising: subjecting the protein fraction to hydroxyapatite chromatography under conditions wherein the different dimers of the protein are separated from each other.
- 17. A method for separating variants of a protein contained within a protein fraction wherein the variants of the protein have different N-terminal amino acid sequences comprising: subjecting the protein fraction to hydroxyapatite chromatography under conditions wherein the variants of the protein are separated from each other.

=> s 117 and hydroxyapatite 9532 HYDROXYAPATITE L18 3 L17 AND HYDROXYAPATITE

=> d 118, cbib, clm, 1-3

L18 ANSWER 1 OF 3 USPATFULL on STN
2002:126348 Method for purifying adenoviruses.
Cannon-Carlson, Susan V., Wayne, NJ, UNITED STATES
Cutler, Collette, Bloomingdale, NJ, UNITED STATES
Vellekamp, Gary J., Glen Ridge, NJ, UNITED STATES
Voloch, Marcio, New York, NY, UNITED STATES
Schering Corporation (U.S. corporation)
US 2002064860 Al 20020530
APPLICATION: US 2001-991080 Al 20011116 (9)
PRIORITY: US 2000-253823P 20001129 (60)
DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- 1. A method for purifying adenovirus from contaminants in a sample pool, comprising: contacting the sample pool with a **hydroxyapatite** chromatographic medium to reversibly bind the adenovirus to the **hydroxyapatite**; and eluting the bound adenovirus from the **hydroxyapatite**.
- 2. The method of claim 1, wherein the sample pool comprises sodium chloride in a concentration of from about 150 to 500 mM.
- 3. The method of claim 1, wherein the **hydroxyapatite** chromatographic medium is equilibrated with a buffer comprising sodium chloride at a concentration of from about 150 to 500 mM before the step of contacting the sample pool with the **hydroxyapatite**.
- 4. The method of claim 1, further comprising the step of washing the **hydroxyapatite** with a buffer comprising sodium chloride in a concentration of 150 to 500 mM, wherein the **hydroxyapatite** comprises an adenovirus bound thereto.
- 5. The method of claim 1, wherein the adenovirus is eluted using a buffer comprising sodium chloride in a concentration from about 150 mM to 500 mM.
- 6. The method of claim 1 wherein the sodium chloride concentration in a buffer used in the method is from about 350 mM to 450 mM.
- 7. The method of claim 1, wherein the sample pool is prepared from an eluate of a conventional chromatography medium.
- 8. The method of claim 7 wherein the conventional chromatography medium is: an anion exchange resin; an immobilized metal ion affinity resin; a size exclusion chromatography resin; or a medium used in hydrophobic interaction chromatography.
- 9. The method of claim 1, wherein the eluting step is a gradient elution to 600 $\ensuremath{\text{mM}}$ phosphate.
- 10. The method of claim 1, wherein the eluting step is a step elution with 250 mM phosphate.
- 11. The method of claim 1, wherein a buffer used in the method comprises glycerol or sucrose.

- 12. The method of claim 1, wherein the concentration of adenovirus in the sample pool is equal to or less than 1×10^{14} particles per ml
- 13. The method of claim 1, wherein the adenovirus comprises a therapeutic gene.
- 14. The method of claim 1, wherein the adenovirus is ACN53.
- 15. The method of claim 1, wherein the adenovirus comprises a nucleic acid sequence from the p53 gene or from the p21 gene.
- 16. A method of claim 1, which reduces the concentration of a contaminant in the sample pool by at least 80%.
- 17. A method of claim 1, which reduces the concentration of empty capsids by at least 75%.
- 18. A method of claim 1, which reduces the concentration of BSA by at least 70%.
- 19. A method for purifying adenovirus from contaminants in sample pool, comprising: contacting the sample pool with a hydroxyapatite chromatographic medium to reversibly bind the adenovirus to the hydroxyapatite; washing the adenovirus-bound hydroxyapatite with a buffered solution; and eluting the bound adenovirus from the hydroxyapatite, wherein the sample pool is a buffered solution comprising about 50 mM sodium phosphate pH about 7.5, about 400 mM sodium chloride, about 2% sucrose, about 2 mM MgCl₂, and about 10% glycerol, and the concentration of total contaminants is reduced by at least 80%.

L18 ANSWER 2 OF 3 USPATFULL on STN

1998:7167 Purification of bacterially expressed human interleukin-10.

Vellekamp, Gary, Glen Ridge, NJ, United States Cannon-Carlson, Susan, Wayne, NJ, United States

Tang, John, Livingston, NJ, United States

Schering Corporation, Kenilworth, NJ, United States (U.S. corporation)

US 5710251 19980120 WO 9420525 19940915

APPLICATION: US 1995-495558 19951218 (8)

WO 1994-US1909 19940303 19951218 PCT 371 date 19951218 PCT 102(e) date

DOCUMENT TYPE: Utility; Granted.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- 1. A method for purifying bacterially expressed human Interleukin-10 (IL-10) contained within a solution comprising: (a) applying a solution containing IL-10 to a cation exchange chromatography column thereby obtaining fractions containing IL-10; (b) applying the IL-10-containing fractions from step (a) to an anion exchange chromatography column thereby obtaining fractions containing IL-10; (c) applying the IL-10-containing fractions from step (b) to a hydroxyapatite chromatography chromatography thereby obtaining fractions containing a single isolated dimer of IL-10.
- 2. The method of claim 1 wherein the cation exchange chromatography column from step (a) is comprised of sulfonate exchange groups attached to a support matrix.
- 3. The method of claim 2 wherein the support matrix is agarose.
- 4. The method of claim 1 wherein the anion exchange chromatography column is comprised of quaternary amino ethyl exchange groups attached to a support matrix.
- 5. The method of claim 4 wherein the support matrix is agarose.
- 6. The method of claim 1 further comprising applying the IL-10-containing fractions obtained from step (c) of claim 1 to a gel filtration chromatography column to obtain dimeric IL-10 substantially free of high and low molecular weight impurities.
- 7. The method of claim 6 wherein the material in the gel filtration chromatography column has a fractionation range of from 1 to 600 kDa.
- 8. The method of claim 1 wherein prior to step (a) the bacterially expressed human IL-10 is extracted from bacteria in inclusion bodies,

denatured and refolded into biologically active human IL-10.

9. A method for separating non-acetylated homodimers of Interleukin-10 (IL-10) from acetylated IL-10 homodimers and from acetylated IL-10 heterodimers contained within a solution comprising: applying the solution to an anion exchange chromatography column under conditions in which the non-acetylated homodimers are separated from the acetylated homodimers and from the acetylated heterodimers.

L18 ANSWER 3 OF 3 USPATFULL on STN

94:60238 Purification of human interleukin-10 from a cell culture medium.

Vellekamp, Gary, Glen Ridge, NJ, United States

Cannon-Carlson, Susan, Wayne, NJ, United States

Tang, John, Livingston, NJ, United States

Schering-Plough, Kenilworth, NJ, United States (U.S. corporation)

US 5328989 19940712

APPLICATION: US 1993-26942 19930305 (8)

DOCUMENT TYPE: Utility; Granted.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- 1. A method for purifying Interleukin-10 (IL-10) from a cell culture medium comprising: (a) subjecting the culture medium containing IL-10 to cation exchange chromatography thereby obtaining fractions containing IL-10; (b) subjecting the IL-10-containing fractions from step (a) to anion exchange chromatography thereby obtaining fractions containing IL-10; (c) subjecting the IL-10-containing fractions from step (b) to hydroxyapatite chromatography thereby obtaining fractions containing a single isolated dimer of IL-10.
- 2. The method of claim 1 wherein the cation exchange chromatography from step (a) uses a column comprised of sulfonate exchange groups attached to a support matrix.
- 3. The method of claim 2 wherein the support matrix is agarose.
- 4. The method of claim 1 wherein the anion exchange chromatography uses a column comprised of quartenary amino ethyl exchange groups attached to a support matrix.
- 5. The method of claim 4 wherein the support matrix is agarose.
- 6. The method of claim 1 further comprising applying the IL-10-containing fractions obtained from step (c) of claim 1 to a gel filtration chromatography column to obtain dimeric IL-10 substantially free of high and low molecular weight impurities.
- 7. The method of claim 6 wherein the gel has a fractionation range of from 1 to 600 kDa. \cdot
- 8. The method of claim 1 wherein the IL-10 is human IL-10.
- 9. The method of claim 1 wherein IL-10 is secreted in a cell culture medium from eukaryotic cell.
- 10. A method for separating different dimers of IL-10 present in an IL-10 containing protein fraction comprising: subjecting the IL-10 containing fraction to hydroxyapatite chromatography under conditions wherein the different IL-10 dimers are separated from each other.
- 11. The method of claim 10 wherein the IL-10 dimers present in the protein fraction are $\Delta 0:\Delta 0$, $\Delta 0:\Delta 2$ and $\Delta 2:\Delta 2$ IL-10 dimers.
- 12. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta 0:\Delta 0$ IL-10 dimer.
- 13. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta 0:\Delta 2$ IL-10 dimer.
- 14. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta 2:\Delta 2$ IL-10 dimer.
- 15. The method of claim 10 wherein the **hydroxyapatite** is sintered **hydroxyapatite**.
- 16. A method for separating different dimers of a protein contained within a protein fraction wherein the different dimers have different

N-terminal amino acid sequences comprising: subjecting the protein fraction to hydroxyapatite chromatography under conditions wherein the different dimers of the protein are separated from each other.

17. A method for separating variants of a protein contained within a protein fraction wherein the variants of the protein have different N-terminal amino acid sequences comprising: subjecting the protein fraction to **hydroxyapatite** chromatography under conditions wherein the variants of the protein are separated from each other.

```
=> e cutler collette/in
                  CUTLER CHRISTOPHER W/IN
E1
            1
                  CUTLER CLIFFORD P/IN
E2
            1 --> CUTLER COLLETTE/IN
E.3
                  CUTLER DAN/IN
E4
            2
                  CUTLER DANIEL JAMES/IN
E5
            1
                  CUTLER DANIEL S/IN
            1
                  CUTLER DANNY L/IN
E7
            1
                  CUTLER DAVE/IN
E8
            1
                  CUTLER DAVE WILLIAM/IN
E9
            1
                  CUTLER DAVID/IN
E10
            5
            1
                  CUTLER DAVID G/IN
E11
                  CUTLER DAVID J/IN
E12
            2
=> s e3
             1 "CUTLER COLLETTE"/IN
L19
=> d 119,cbib
L19 ANSWER 1 OF 1 USPATFULL on STN
2002:126348 Method for purifying adenoviruses.
   Cannon-Carlson, Susan V., Wayne, NJ, UNITED STATES
   Cutler, Collette, Bloomingdale, NJ, UNITED STATES
    Vellekamp, Gary J., Glen Ridge, NJ, UNITED STATES
   Voloch, Marcio, New York, NY, UNITED STATES
   Schering Corporation (U.S. corporation)
   US 2002064860 A1 20020530
   APPLICATION: US 2001-991080 A1 20011116 (9)
    PRIORITY: US 2000-253823P 20001129 (60)
    DOCUMENT TYPE: Utility; APPLICATION.
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
=> e cannon-carlson s v/in
        3
                 CANNON WILLIAM P/IN
E.1
                  CANNON WILLIAM R/IN
             1
E2
            0 --> CANNON-CARLSON S V/IN
E3
                CANNONE ANTHONY G/IN
E4
           3
                  CANNONE DOMENICO/IN
E5
             4
                 CANNONE GREGORY/IN
E6
            1
                CANNONE GREGORY M/IN
E7
             2
                CANNONE ROBERT P/IN
CANNONE SALVATORE L/IN
E8
            1
Ε9
             1
               CANNONS ANDREW/IN
E10
            1
                  CANNONS ANDREW CLIVE/IN
E11
            1
            1
                  CANNOVA CHRISTINE L/IN
E12
=> e cannon carlson s v/in
E1
             3
                  CANNON BRET D/IN
                  CANNON BRUCE L/IN
E2
             7
             0 --> CANNON CARLSON S V/IN
E3
                CANNON CARLSON SUSAN/IN
\mathbf{F}.\mathbf{A}
             3
             2
                   CANNON CARLSON SUSAN V/IN
E5
                  CANNON CARTER/IN
F.6
             3
E7
             6
                CANNON CARTER S/IN
                  CANNON CARTER SCOTT/IN
E8
             1
                  CANNON CHARLES/IN
E9
             1
                  CANNON CHARLES C/IN
E10
             1
                  CANNON CHARLES E/IN
E11
             3
E12
                   CANNON CHARLES G/IN
=> s e4 or e5
             3 "CANNON CARLSON SUSAN"/IN
            2 "CANNON CARLSON SUSAN V"/IN
L20
             5 "CANNON CARLSON SUSAN"/IN OR "CANNON CARLSON SUSAN V"/IN
```

```
FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005
           9532 S HYDROXYAPATITE
L1
L2
           1599 S L1 AND HYDROXYAPATITE/CLM
             69 S L2 AND ADENOVIR?
1.3
             13 S L3 AND ADENOVIR?/CLM
L4
             33 S L3 AND AY<2001
L5
             27 S L5 NOT L4
L6
1.7
              1 S US5496926/PN
              1 S L7 AND ADENOVIR?
^{\text{L8}}
              1 S US5624833/PN
L9
              1 S L9 AND ADENOVIR?
L10
                E ERICKSON AMY E/IN
              1 S E3
T.11
                E SHABRAM PAUL W/IN
L12
              5 S E3
     FILE 'WPIDS' ENTERED AT 18:46:16 ON 22 JUN 2005
           2918 S HYDROXYAPATITE
L13
             14 S L13 AND ADENOVIR?
L14
                E SHABRAM P W/IN
              6 S E3
L15
                E ERICKSON A E/IN
L16
              1 S E3
     FILE 'USPATFULL' ENTERED AT 18:53:21 ON 22 JUN 2005
               E VELLEKAMP G J/IN
              7 S E4 OR E5
L17
L18
              3 S L17 AND HYDROXYAPATITE
                E CUTLER COLLETTE/IN
T.19
              1 S E3
                E CANNON-CARLSON S V/IN
                E CANNON CARLSON S V/IN
1.20
              5 S E4 OR E5
=> d 120,bib,clm,1-5
L20 ANSWER 1 OF 5 USPATFULL on STN
Full Text
       2002:126348 USPATFULL
ΑN
TI
       Method for purifying adenoviruses
       Cannon-Carlson, Susan V., Wayne, NJ, UNITED STATES
       Cutler, Collette, Bloomingdale, NJ, UNITED STATES
       Vellekamp, Gary J., Glen Ridge, NJ, UNITED STATES
       Voloch, Marcio, New York, NY, UNITED STATES
PA
       Schering Corporation (U.S. corporation)
                        A1 20020530
PI
       US 2002064860
ΑI
       US 2001-991080
                          A1
                               20011116 (9)
       US 2000-253823P
                           20001129 (60)
PRAI
       Utility
DΤ
FS
       APPLICATION
       SCHERING-PLOUGH CORPORATION, PATENT DEPARTMENT (K-6-1, 1990), 2000
LREP
       GALLOPING HILL ROAD, KENILWORTH, NJ, 07033-0530
CLMN
       Number of Claims: 19
ECL
       Exemplary Claim: 1
DRWN
       No Drawings
LN.CNT 423
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
       What is claimed is:
CLM
       1. A method for purifying adenovirus from contaminants in a sample pool,
       comprising: contacting the sample pool with a hydroxyapatite
       chromatographic medium to reversibly bind the adenovirus to the
       hydroxyapatite; and eluting the bound adenovirus from the
       hydroxyapatite.
       2. The method of claim 1, wherein the sample pool comprises sodium
```

- 2. The method of claim 1, wherein the sample pool comprises sodium chloride in a concentration of from about 150 to 500 mM.
- 3. The method of claim 1, wherein the hydroxyapatite chromatographic medium is equilibrated with a buffer comprising sodium chloride at a concentration of from about 150 to 500 mM before the step of contacting the sample pool with the hydroxyapatite.
- 4. The method of claim 1, further comprising the step of washing the hydroxyapatite with a buffer comprising sodium chloride in a concentration of 150 to 500 mM, wherein the hydroxyapatite comprises an adenovirus bound thereto.

- 5. The method of claim 1, wherein the adenovirus is eluted using a buffer comprising sodium chloride in a concentration from about 150 mM to 500 mM.
- 6. The method of claim 1 wherein the sodium chloride concentration in a buffer used in the method is from about $350\ \mathrm{mM}$ to $450\ \mathrm{mM}$.
- 7. The method of claim 1, wherein the sample pool is prepared from an eluate of a conventional chromatography medium.
- 8. The method of claim 7 wherein the conventional chromatography medium is: an anion exchange resin; an immobilized metal ion affinity resin; a size exclusion chromatography resin; or a medium used in hydrophobic interaction chromatography.
- 9. The method of claim 1, wherein the eluting step is a gradient elution to $600\ \mathrm{mM}$ phosphate.
- 10. The method of claim 1, wherein the eluting step is a step elution with 250 mM phosphate.
- 11. The method of claim 1, wherein a buffer used in the method comprises qlycerol or sucrose.
- 12. The method of claim 1, wherein the concentration of adenovirus in the sample pool is equal to or less than 1×10^{14} particles per ml.
- 13. The method of claim ${\bf 1}$, wherein the adenovirus comprises a therapeutic gene.
- 14. The method of claim 1, wherein the adenovirus is ACN53.
- 15. The method of claim 1, wherein the adenovirus comprises a nucleic acid sequence from the p53 gene or from the p21 gene.
- 16. A method of claim 1, which reduces the concentration of a contaminant in the sample pool by at least 80%.
- 17. A method of claim 1, which reduces the concentration of empty capsids by at least 75%.
- 18. A method of claim 1, which reduces the concentration of BSA by at least 70%.
- 19. A method for purifying adenovirus from contaminants in sample pool, comprising: contacting the sample pool with a hydroxyapatite chromatographic medium to reversibly bind the adenovirus to the hydroxyapatite; washing the adenovirus-bound hydroxyapatite with a buffered solution; and eluting the bound adenovirus from the hydroxyapatite, wherein the sample pool is a buffered solution comprising about 50 mM sodium phosphate pH about 7.5, about 400 mM sodium chloride, about 2% sucrose, about 2 mM MgCl₂, and about 10% glycerol, and the concentration of total contaminants is reduced by at least 80%.

```
Full Text
       2002:84882 USPATFULL
ΑN
       Pegylated interleukin-10
ΤI
       Lee, Seoju, Edison, NJ, UNITED STATES
IN
       Wylie, David C., Cranford, NJ, UNITED STATES
       Cannon-Carlson, Susan V., Wayne, NJ, UNITED STATES
                               20020418
PΙ
       US 2002044921
                          A1
       US 2001-967223
                          A1
                               20010928 (9)
ΑI
                           20000929 (60)
       US 2000-236596P
PRAI
DT
       Utility
       APPLICATION
FS
       SCHERING-PLOUGH CORPORATION, PATENT DEPARTMENT (K-6-1, 1990), 2000
LREP
       GALLOPING HILL ROAD, KENILWORTH, NJ, 07033-0530
CLMN
       Number of Claims: 20
ECL
       Exemplary Claim: 1
DRWN
       No Drawings
LN.CNT 847
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
       What is claimed is:
```

L20 ANSWER 2 OF 5 USPATFULL on STN

1. A mono-PEG-IL-10.

- 2. The mono-PEG-IL-10 of claim 1, comprising one or two PEG molecules covalently attached via a linker to one amino acid residue on IL-10, wherein the attachment is at an N-terminal amino acid residue or on a lysine residue.
- 3. The mono-PEG-IL-10 of claim 2: (a) which comprises a methoxy PEG; (b) wherein the IL-10 is human IL-10; (c) wherein the total molecular mass of all PEG covalently attached to the linker is from 3,000 daltons to 60,000 daltons; or (d) wherein the linker is a linear or branched C_{1-11} alkyl.
- 4. The mono-PEG-IL-10 of claim 2, wherein the total molecular mass of all PEG covalently attached to the linker is from 10,000 daltons to 36,000 daltons.
- 5. The mono-PEG-IL-10 of claim 2, wherein the linker is a linear C_3 alkyl.
- 6. The mono-PEG-IL-10 of claim 1, wherein a PEG molecule is covalently attached to the alpha amino group of one N-terminus of IL-10 via a linear C_3 alkyl linker.
- 7. A PEG-IL-10 comprising the formula: $[X-O(CH_{2CH2O})_n].s$ ub.b--L--NH-IL-10, where X is H or C_{1-4} alkyl, n is 20 to 2300, b is 1 to 9 and L is a C_{1-11} alkyl linker moiety which is covalently attached to nitrogen (N) of the alpha amino group at the amino terminus of one IL-10 subunit, provided that when b is greater than 1 the total of n does not exceed 2300.
- 8. A PEG-IL-10 of claim 7, wherein L is --CH_{2CH2CH2}---
- 9. A pharmaceutical composition, comprising a mono-PEG-IL-10 of claim 1 in combination with a pharmaceutically acceptable carrier.
- 10. A method of treating inflammation in an individual in need of such treatment, comprising administering to the individual a therapeutically effective amount of a pharmaceutical composition of claim 9.
- 11. A process for preparing a mono-PEG-IL-10, comprising the step of: reacting IL-10 with an activated PEG-aldehyde linker in the presence of a reducing agent to form the mono-PEG-IL-10, wherein the linker is covalently attached to one amino acid residue of the IL-10.
- 12. The process of claim 11 wherein: (a) the reducing agent is sodium cyanoborohydride; (b) the activated PEG-aldehyde linker is PEG-propionaldehyde; (c) the PEG is a methoxy-PEG; (d) the linker is multi-armed; (e) the ratio of IL-10 to the sodium cyanoborohydride is from about 1:0.5 to 1:50; (f) the total molecular mass of all PEG comprising the PEG-aldehyde linker is from 3,000 daltons to 60,000 daltons; or (g) the reacting step is performed at a pH of 5.5 to 7.8.
- 13. The process of claim 11, wherein the ratio of IL-10 to the sodium cyanoborohydride is 1:5 to 1:15.
- 14. The process of claim 11, wherein the total molecular mass of all PEG comprising the PEG-aldehyde linker is from 10,000 daltons to 36,000 daltons.
- 15. The process of claim 11, wherein the reacting step is performed at a ρH of 6.3 to 7.5.
- 16. The process of claim 11, further comprising a step selected from: incubating the mono-PEG-IL-10 product in a buffer at pH 5.0 to 9.0; and treating the mono-PEG-IL-10 product with 0.05 to 0.4 M hydroxylamine HCl salt.
- 17. A process for preparing a mono-PEG-IL-10, comprising the step of: reacting IL-10 with an activated PEG-propionaldehyde linker in the presence of sodium cyanoborohydride, wherein the molar ratio of IL-10 to sodium cyanoborohydride is from about 1:5 to about 1:15, at a pH of about 6.3 to about 7.5 and a temperature of from 18°C. to 25°C. form the mono-PEG-IL-10, wherein the linker is covalently attached to one amino acid residue of the IL-10.
- 18. The process of claim 17, wherein the total molecular mass of all PEG comprising the PEG-aldehyde linker is from 10,000 daltons to 36,000 daltons.

- 19. The process of claim 17, further comprising a step selected from: incubating the mono-PEG-IL-10 product in a TRIS buffer at pH 7.0 to 8.0; and treating the mono-PEG-/IL-10 product with 0.05 to 0.4 \mbox{M} hydroxylamine HCl salt.
- 20. A PEG-IL-10 prepared according to a process of claim 11.

L20 ANSWER 3 OF 5 USPATFULL on STN Full Text 2001:142470 USPATFULL AN TI Methods for conversion of protein isoforms IN Cannon-Carlson, Susan, Wayne, NJ, United States Frei, Andres, Freehold, NJ, United States Lee, Seoju, Edison, NJ, United States Mengisen, Roland, Freehold, NJ, United States Voloch, Marcio, New York City, NY, United States Wylie, David C., Cranford, NJ, United States Schering Corporation, Kenilworth, NJ, United States (U.S. corporation) ΡI US 6281337 В1 20010828 ΑI US 1999-441653 19991112 (9) US 1998-107978P 19981112 (60) PRAI DΤ Utility FS GRANTED EXNAM Primary Examiner: Kemmerer, Elizabeth; Assistant Examiner: Landsman, Robert S. Wyatt, Donald W. LREP

CLMN Number of Claims: 17

Exemplary Claim: 1 ECL

DRWN No Drawings

LN.CNT 613

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- 1. A method for increasing the yield of an interferon alpha composition, comprising converting a pyruvate adjunct isoform of interferon alpha into interferon alpha by exposing said pyruvate adjunct isoform of interferon alpha to a solution having a pH of at least 5.0.
- 2. The method of claim 1, wherein said interferon alpha is interferon alpha 2b.
- 3. The method of claim 2, wherein said adjunct isoform is exposed to acid solution having a pH in the range of about 5.2 to about 5.6.
- 4. The method of claim 3, wherein said acid solution is at about pH 5.5.
- 5. The method of claim 4, wherein said acid solution at $34-40^{\circ}$ C.
- 6. The method of claim 5, wherein said acid solution comprises an antioxidant.
- 7. The method of claim 6, wherein said antioxidant comprises methionine.
- 8. The method of claim 7, wherein said methionine is at a concentration of 5-40 mM.
- 9. The method of claim 1, wherein said adjunct isoform is exposed to zinc solution.
- 10. The method of claim 9, wherein said zinc solution is at about pH 7.8 to about pH 8.6.
- 11. The method of claim 10, wherein said zinc solution is at 30-38° C.
- 12. The method of claim 11, wherein said zinc solution comprises an
- 13. The method of claim 12, wherein said antioxidant comprises methionine.
- 14. The method of claim 13, wherein said methionine is at a concentration of 5-40 mM.
- 15. The method of claim 3, wherein said is exposed to said solution for
- 16. The method of claim 11, wherein the ratio of said Zinc to said isoform is 0.6 to 1.0.

17. The method of claim 16, wherein said isoform is exposed to said solution until 80% of said isoform is converted to interferon alpha.

L20 ANSWER 4 OF 5 USPATFULL on STN

Full Text 1998:7167 USPATFULL ΑN Purification of bacterially expressed human interleukin-10 TΤ Vellekamp, Gary, Glen Ridge, NJ, United States Cannon-Carlson, Susan, Wayne, NJ, United States Tang, John, Livingston, NJ, United States Schering Corporation, Kenilworth, NJ, United States (U.S. corporation) PΑ 19980120 ΡI US 5710251 WO 9420525 19940915 US 1995-495558 19951218 (8) ΑI WO 1994-US1909 19940303 19951218 PCT 371 date 19951218 PCT 102(e) date RT.T Continuation-in-part of Ser. No. US 1993-26942, filed on 5 Mar 1993, now patented, Pat. No. US 5328989 DΤ Utility FS Granted Primary Examiner: Guzo, David; Assistant Examiner: Degen, Nancy T. EXNAM McLaughlin, Jaye P., Dulak, Norman C. LREP Number of Claims: 9 CLMN ECL Exemplary Claim: 1 DRWN No Drawings LN.CNT 835 CAS INDEXING IS AVAILABLE FOR THIS PATENT. What is claimed is: 1. A method for purifying bacterially expressed human Interleukin-10 (IL-10) contained within a solution comprising: (a) applying a solution

- containing IL-10 to a cation exchange chromatography column thereby obtaining fractions containing IL-10; (b) applying the IL-10-containing fractions from step (a) to an anion exchange chromatography column thereby obtaining fractions containing IL-10; (c) applying the IL-10-containing fractions from step (b) to a hydroxyapatite chromatography chromatography thereby obtaining fractions containing a single isolated dimer of IL-10.
- 2. The method of claim 1 wherein the cation exchange chromatography column from step (a) is comprised of sulfonate exchange groups attached to a support matrix.
- 3. The method of claim 2 wherein the support matrix is agarose.
- 4. The method of claim 1 wherein the anion exchange chromatography column is comprised of quaternary amino ethyl exchange groups attached to a support matrix.
- 5. The method of claim 4 wherein the support matrix is agarose.
- 6. The method of claim 1 further comprising applying the IL-10-containing fractions obtained from step (c) of claim 1 to a gel filtration chromatography column to obtain dimeric IL-10 substantially free of high and low molecular weight impurities.
- 7. The method of claim 6 wherein the material in the gel filtration chromatography column has a fractionation range of from 1 to 600 kDa.
- 8. The method of claim 1 wherein prior to step (a) the bacterially expressed human IL-10 is extracted from bacteria in inclusion bodies, denatured and refolded into biologically active human IL-10.
- 9. A method for separating non-acetylated homodimers of Interleukin-10 (IL-10) from acetylated IL-10 homodimers and from acetylated IL-10 heterodimers contained within a solution comprising: applying the solution to an anion exchange chromatography column under conditions in which the non-acetylated homodimers are separated from the acetylated homodimers and from the acetylated heterodimers.

L20 ANSWER 5 OF 5 USPATFULL on STN Full Text
AN 94:60238 USPATFULL

TI Purification of human interleukin-10 from a cell culture medium IN Vellekamp, Gary, Glen Ridge, NJ, United States

Vellekamp, Gary, Glen Ridge, NJ, United States
Cannon-Carlson, Susan, Wayne, NJ, United States

Tang, John, Livingston, NJ, United States

PA Schering-Plough, Kenilworth, NJ, United States (U.S. corporation)

PI US 5328989 19940712

AI US 1993-26942 19930305 (8)

DT Utility

FS Granted

EXNAM Primary Examiner: Russel, Jeffrey E.; Assistant Examiner: Gromet, Nancy

LREP Lunn, Paul G., Dulak, Norman C., Kanstad, Steinar V.

CLMN Number of Claims: 17 ECL Exemplary Claim: 1

DRWN No Drawings

LN.CNT 471

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- 1. A method for purifying Interleukin-10 (IL-10) from a cell culture medium comprising: (a) subjecting the culture medium containing IL-10 to cation exchange chromatography thereby obtaining fractions containing IL-10; (b) subjecting the IL-10-containing fractions from step (a) to anion exchange chromatography thereby obtaining fractions containing IL-10; (c) subjecting the IL-10-containing fractions from step (b) to hydroxyapatite chromatography thereby obtaining fractions containing a single isolated dimer of IL-10.
- 2. The method of claim 1 wherein the cation exchange chromatography from step (a) uses a column comprised of sulfonate exchange groups attached to a support matrix.
- 3. The method of claim 2 wherein the support matrix is agarose.
- 4. The method of claim 1 wherein the anion exchange chromatography uses a column comprised of quartenary amino ethyl exchange groups attached to a support matrix.
- 5. The method of claim 4 wherein the support matrix is agarose.
- 6. The method of claim 1 further comprising applying the IL-10-containing fractions obtained from step (c) of claim 1 to a gel filtration chromatography column to obtain dimeric IL-10 substantially free of high and low molecular weight impurities.
- 7. The method of claim 6 wherein the gel has a fractionation range of from 1 to 600 kDa.
- 8. The method of claim 1 wherein the IL-10 is human IL-10.
- 9. The method of claim 1 wherein IL-10 is secreted in a cell culture medium from eukaryotic cell.
- 10. A method for separating different dimers of IL-10 present in an IL-10 containing protein fraction comprising: subjecting the IL-10 containing fraction to hydroxyapatite chromatography under conditions wherein the different IL-10 dimers are separated from each other.
- 11. The method of claim 10 wherein the IL-10 dimers present in the protein fraction are $\Delta 0:\Delta 0$, $\Delta 0:\Delta 2$ and $\Delta 2:\Delta 2$ IL-10 dimers.
- 12. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta 0:\Delta 0$ IL-10 dimer.
- 13. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta0\!:\!\Delta2$ IL-10 dimer.
- 14. The method of claim 11 wherein the IL-10 dimer which is collected is the $\Delta 2:\Delta 2$ IL-10 dimer.
- 15. The method of claim 10 wherein the hydroxyapatite is sintered hydroxyapatite.
- 16. A method for separating different dimers of a protein contained within a protein fraction wherein the different dimers have different N-terminal amino acid sequences comprising: subjecting the protein fraction to hydroxyapatite chromatography under conditions wherein the different dimers of the protein are separated from each other.
- 17. A method for separating variants of a protein contained within a protein fraction wherein the variants of the protein have different

N-terminal amino acid sequences comprising: subjecting the protein fraction to hydroxyapatite chromatography under conditions wherein the variants of the protein are separated from each other.

```
=> d his
     (FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005)
     FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005
           9532 S HYDROXYAPATITE
L1
           1599 S L1 AND HYDROXYAPATITE/CLM
L2
             69 S L2 AND ADENOVIR?
L3
             13 S L3 AND ADENOVIR?/CLM
L4
             33 S L3 AND AY<2001
L5
L6
             27 S L5 NOT L4
L7
             1 S US5496926/PN
             1 S L7 AND ADENOVIR?
L9
             1 S US5624833/PN
             1 S L9 AND ADENOVIR?
L10
               E ERICKSON AMY E/IN
L11
             1 S E3
                E SHABRAM PAUL W/IN
              5 S E3
L12
     FILE 'WPIDS' ENTERED AT 18:46:16 ON 22 JUN 2005
L13
           2918 S HYDROXYAPATITE
             14 S L13 AND ADENOVIR?
L14
               E SHABRAM P W/IN
L15
              6 S E3
               E ERICKSON A E/IN
L16
             1 S E3
     FILE 'USPATFULL' ENTERED AT 18:53:21 ON 22 JUN 2005
               E VELLEKAMP G J/IN
              7 S E4 OR E5
L17
              3 S L17 AND HYDROXYAPATITE
L18
               E CUTLER COLLETTE/IN
L19
             1 S E3
                E CANNON-CARLSON S V/IN
               E CANNON CARLSON S V/IN
              5 S E4 OR E5
L20
=> file medline
COST IN U.S. DOLLARS
                                                  SINCE FILE
                                                                  TOTAL
                                                       ENTRY
                                                                SESSION
FULL ESTIMATED COST
                                                       43.76
                                                                 224.57
FILE 'MEDLINE' ENTERED AT 18:59:27 ON 22 JUN 2005
FILE LAST UPDATED: 22 JUN 2005 (20050622/UP). FILE COVERS 1950 TO DATE.
On December 19, 2004, the 2005 MeSH terms were loaded.
The MEDLINE reload for 2005 is now available. For details enter HELP
RLOAD at an arrow promt (=>). See also:
    http://www.nlm.nih.gov/mesh/
    http://www.nlm.nih.gov/pubs/techbull/nd04/nd04_mesh.html
OLDMEDLINE now back to 1950.
MEDLINE thesauri in the /CN, /CT, and /MN fields incorporate the
MeSH 2005 vocabulary.
This file contains CAS Registry Numbers for easy and accurate
 substance identification.
=> s hydroxyapatite
L21
          9422 HYDROXYAPATITE
=> s 121 and (vir? or retrovir? or adenovir?)
        663873 VIR?
         34438 RETROVIR?
         31060 ADENOVIR?
           230 L21 AND (VIR? OR RETROVIR? OR ADENOVIR?)
L22
```

=> s 122 and py<2001

1

=> s 123 and purif? . 680266 PURIF? L24 101 L23 AND PURIF?

=> d 124,cbib,ab,1-25

L24 ANSWER 1 OF 101 MEDLINE on STN
2003033301. PubMed ID: 12539718. A study on biological properties of fimbriae of A. viscosus. III. Adherence activity of fimbriae of A. viscosus. Liu T; Li W; Yue S. (College of Stomatology, West China University of Medical Sciences.) Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology, (1999 May) 17 (2) 169-72. Journal code: 9422648. ISSN: 1000-1182. Pub. country: China. Language: Chinese.

OBJECTIVE: To investigate the adherence activity of two types of fimbriae of A. viscosus on tooth surface or with S. sanguis 34. METHODS: The inhibited adherence tests, coaggregation tests and the inhibited coaggregation tests were done. RESULTS: 1. The purified type I and type II fimbriae inhibited the adherence of A. viscosus to salivary-treated hydroxyapatite (SHA) and the two specific IgG to type I and type II fimbriae blocked the adsorption of strain T14V, strain 5519 and strain 5951 to SHA; 2. Only type II fimbria indirectly mediated the visible agglutination of S. sanguis 34 and only IgG to type II fimbriae inhibited coaggregation of strain T14V and strain 5915 with S. sanguis 34. CONCLUSION: Type I and type II fimbriae have adherence ability, and only type II fimbria has the agglutination activity. Additionally, the methods which were used to prepare fimbriae don't damage the biological activity of fimbriae.

L24 ANSWER 2 OF 101 MEDLINE on STN 2001132208. PubMed ID: 11199265. Scaleable chromatographic purification process for recombinant adeno-associated **virus** (rAAV). O'Riordan C R; Lachapelle A L; Vincent K A; Wadsworth S C. (Genzyme Corporation, Framingham, MA 01701-9322, USA.. coriordan@genzyme.com) . journal of gene medicine, (2000 Nov-Dec) 2 (6) 444-54. Journal code: 9815764. ISSN: 1099-498X. Pub. country: England: United Kingdom. Language: English. BACKGROUND: Adeno-associated virus (AAV) is a human parvovirus currently being developed as a vector for gene therapy applications. Traditionally AAV has been purified from cell lysates using CsCl gradients; this approach however is not likely to be useful in large-scale manufacturing. Moreover gradient-purified AAV vectors tend to be contaminated with significant levels of cellular and adenoviral proteins and nucleic acid. To address the issue of purification we have developed a process scale method for the rapid and efficient purification of recombinant AAV (rAAV) from crude cellular lysates. METHODS: The preferred method for the purification of rAAVbetagal includes treatment of virally infected cell lysates with both trypsin and nuclease followed by ion exchange chromatography using ceramic hydroxyapatite and DEAE-Sepharose in combination with cellufine sulphate affinity chromatography. RESULTS: Purification of rAAV particles from crude cellular lysates co-infected with adenovirus was achieved using column chromatography exclusively. Column-purified rAAV was shown to be greater than 90% pure, free of any detectable contaminating adenovirus, biologically active, and capable of directing efficient gene transfer to the lungs of both cotton rats and mice. CONCLUSIONS: This study demonstrates the feasibility of using column chromatography alone for the isolation of highly purified rAAV vector. The methods described here are advancements in procedures to purify rAAV and are adaptable for commercial production of clinical-grade rAAV vector.

L24 ANSWER 3 OF 101 MEDLINE on STN

2001063126. PubMed ID: 11090756. Bydroxyapatite-coated nylon beads as a new reagent to develop a particle agglutination assay system for detecting Japanese encephalitis virus-specific human antibodies. Yamamoto A; Nakayama M; Tashiro M; Ogawa T; Kurane I. (Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640, Tokyo, Japan.) Journal of clinical virology: official publication of the Pan American Society for Clinical Virology, (2000 Dec) 19 (3) 195-204. Journal code: 9815671. ISSN: 1386-6532. Pub. country: Netherlands. Language: English.

AB BACKGROUND: Detection of Japanese encephalitis virus (JEV)-specific antibodies is done today by hemagglutination-inhibition assay (HIA), neutralization assay (NTA) and enzyme-linked immunosorbent assay (ELISA). These conventional assays are often difficult to perform in diagnostic laboratories with insufficient resources. An alternative antibody

detection kit, which is simple, preservable and inexpensive, is needed for

extended use in rural areas of Asia. OBJECTIVES: (i) Characterization of a new antigen carrier, hydroxyapatite-coated nylon (Ha-Ny) beads, and (ii) evaluation of the JEV antigen-coated Ha-Ny beads as a reagent to detect anti-JEV antibodies in human serum samples. STUDY DESIGN: We examined the Ha-Ny beads for hydroxyapatite content, precipitation efficiency and protein adsorption ability. We then developed a particle agglutination assay system using the JEV antigen-coated Ha-Ny beads, and tried out the newly developed assay system with reference serum samples. RESULTS: The beads had the ability to adsorb 0.44 mg of lysozyme per gram. Sedimentation speed was 10.2 cm/30 min in phosphate buffered saline (PBS), pH 7.0. Binding of the JEV antigen on Ha-Ny beads was confirmed by scanning electron microscopy (SEM) and ELISA. Eighteen confirmed-human serum samples were tested by the newly developed particle agglutination assay system. The results were consistent with those from HIA, NTA and ELISA. CONCLUSION: The Ha-Ny beads can be applicable to the development of a new JEV antibody-detection kit, which does not require specific laboratory facilities.

MEDLINE on STN L24 ANSWER 4 OF 101 PubMed ID: 10733882. Optimized production and purification 2000200244. of Bacillus anthracis lethal factor. Park S; Leppla S H. (Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, 20892, USA.) Protein expression and purification, (2000 Apr) 18 (3) 293-302. Journal code: 9101496. ISSN: 1046-5928. Pub. country: United States. Language: English. Bacillus anthracis lethal factor (LF) is a 90-kDa zinc metalloprotease that plays an important role in the virulence of the organism. LF has previously been purified from Escherichia coli and Bacillus anthracis. The yields and purities of these preparations were inadequate for crystal structure determination. In this study, the genes encoding wild-type LF and a mutated, inactive LF (LF-E687C) were placed in an E. coli-Bacillus shuttle vector so that LF was produced with the protective antigen (PA) signal peptide at its N-terminus. The resulting vectors, pSJ115 and pSJ121, express wild-type and mutated LF fusion proteins, respectively. Expression of the LF genes is under the control of the PA promoter and, during secretion, the PA signal peptide is cleaved to release the 90-kDa LF proteins. The wild-type and mutated LF proteins were purified from the culture medium using three chromatographic steps (Phenyl-Sepharose, O-Sepharose, and hydroxyapatite). The purified proteins were greater than 95% pure and yields (20-30 mg/L) were higher than those obtained in other expression systems (1-5 mg/L). These proteins have been crystallized and are being used to solve the crystal structure of LF. Their potential use in anthrax vaccines is also discussed. Copyright 2000 Academic Press.

MEDLINE on STN L24 ANSWER 5 OF 101 PubMed ID: 10600124. Properties of p-cresol methylhydroxylase 2000068856. flavoprotein overproduced by Escherichia coli. Engst S; Kuusk V; Efimov I; Cronin C N; McIntire W S. (Molecular Biology Division, Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA.) Biochemistry, (1999 Dec 14) 38 (50) 16620-8. Journal code: 0370623. ISSN: 0006-2960. Pub. country: United States. Language: English. The alpha(2)beta(2) flavocytochrome p-cresol methylhydroxylase (PCMH) from Pseudomonas putida is composed of a flavoprotein homodimer (alpha(2) or PchF(2); M(r) = 119 kDa) with a cytochrome monomer (beta, PchC; M(r) = 9.3kDa) bound to each PchF subunit. Escherichia coli BL21(DE3) has been transformed with a vector for expression of the pchF gene, and PchF is overproduced by this strain as the homodimer. During purification, it was recognized that some PchF had FAD bound, while the remainder was FAD-free. However, unlike PchF obtained from PCMH purified from P. putida, FAD was bound noncovalently. The FAD was conveniently removed from **purified** E. coli-expressed PchF by **hydroxyapatite** chromatography. Fluorescence quenching titration indicated that the affinity of apo-PchF for FAD was sufficiently high to prevent the determination of the dissociation constant. It was found that p-cresol was virtually incapable of reducing PchF with noncovalently bound FAD (PchF(NC)), whereas 4-hydroxybenzyl alcohol, the intermediate product of p-cresol oxidation by PCMH, reduced PchF(NC) fairly quickly. In contrast, p-cresol rapidly reduced PchF with covalently bound FAD (PchF(C)), but, unlike intact PCMH, which consumed 4 electron equiv/mol when titrated with p-cresol (2 electrons from p-cresol and 2 from 4-hydroxybenzyl alcohol), PchF(C) accepted only 2 electron equiv/mol. This is explained by extremely slow release of 4-hydroxybenzyl alcohol from reduced PchF(C). 4-Hydroxybenzyl alcohol rapidly reduced PchF(C), producing 4-hydroxybenzaldehyde. It was demonstrated that p-cresol has a charge-transfer interaction with FAD when bound to oxidized PchF(NC), whereas 4-bromophenol (a substrate analogue) and 4-hydroxybenzaldehyde have charge-transfer interactions with FAD when bound to either PchF(C) or PchF(NC). This is the first example of a "wild-type" flavoprotein, which

normally has covalently bound flavin, to bind flavin noncovalently in a stable, redox-active manner.

- L24 ANSWER 6 OF 101 MEDLINE on STN PubMed ID: 10592813. Production and purification of 2000060398. Bordetella pertussis toxin. Ju C L; Sheu G C; Cheng Y; Lu C H. (National Institute of Preventive Medicine, Taipei, Taiwan, R.O.C.) Zhonghua min guo wei sheng wu ji mian yi xue za zhi = Chinese journal of microbiology and immunology, **(1997 May)** 30 (2) 72-83. Journal code: 8008067. ISSN: 0253-2662. Pub. country: CHINA (REPUBLIC: 1949-). Language: English. Pertussis toxin (PT) is the major protective antigen of acellular pertussis vaccine (aP). We have established an optimal culture condition for the growth of B. pertussis and the production of PT in a laboratory scale fermentor. It was found that when the dissolved oxygen in medium was supplied with pure oxygen instead of air, the yield of PT was dramatically increased (i.e. from 2-3 mg/l using air to 8-10 mg/l using pure oxygen). PT was purified by affinity chromatography using hydroxyapatite and fetuin-sepharose columns. SDS-PAGE analysis and CHO cell clustering test showed that the **purified** PT was comparable to the reference PT in purity and biological activity. The purified PT could be detoxified by formaldehyde (d-PT). The results of CHO cell clustering neutralization assay and ELISA showed that the antibody induced by d-PT in mice was comparable to that induced by PT contained in a commercial DTaP. These results indicated that the immunogenicity of our d-PT was retained after the purification and detoxification procedures.
- L24 ANSWER 7 OF 101 MEDLINE on STN
 1999290073. PubMed ID: 10361722. Generation of a new protein

 purification matrix by loading ceramic hydroxyapatite with metal
 ions--demonstration with poly-histidine tagged green fluorescent protein.
 Nordstrom T; Senkas A; Eriksson S; Pontynen N; Nordstrom E; Lindqvist C.
 (Department of Biochemistry and Pharmacy, Abo Akademi University, Finland.)
) Journal of biotechnology, (1999 Apr 15) 69 (2-3) 125-33. Journal
 code: 8411927. ISSN: 0168-1656. Pub. country: Netherlands. Language:
 English.
- The gene encoding the green fluorescent protein (GFP) from the jellyfish Aequorea victoria, was inserted under transcriptional control of the polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus and expressed in the Spodoptera frugiperda insect cell line Sf9 during viral infection. The baculovirus transfervector pBlueBacHisB was used for constructing the recombinant baculovirus, so that the green fluorescent protein could be tagged with a poly-histidine tail. This fusion protein was utilized as a marker for evaluating the properties of metal ion loaded ceramic hydroxyapatite as a matrix in protein purification. Ceramic hydroxyapatite loaded with Zn(II) was the best choice for purifying this poly-histidine tagged GFP, followed by Fe(III) of the metal ions tested. Ni(II) that is superior especially in many poly-histidine purification systems did not, when loaded to hydroxyapatite, have binding properties comparable to Zn(II) or Fe(III). Elution of poly-histidine tagged GFP was best performed with phosphate buffers or EDTA that could compete with the phosphate molecules in hydroxyapatite or complexly bind the metal ions, respectively.
- L24 ANSWER 8 OF 101 MEDLINE on STN
 1999221316. PubMed ID: 10206475. Kinetics of the reconstituted
 tricarboxylate carrier from eel liver mitochondria. Zara V; Palmieri L;
 Franco M R; Perrone M; Gnoni G V; Palmieri F. (Dipartimento di Biologia,
 Universita di Lecce, Italy.) Journal of bioenergetics and biomembranes,
 (1998 Dec) 30 (6) 555-63. Journal code: 7701859. ISSN: 0145-479X. Pub.
 country: United States. Language: English.
- The tricarboxylate carrier from eel liver mitochondria was purified by AB chromatography on hydroxyapatite and Matrix Gel Blue B and reconstituted into liposomes by removal of the detergent with Amberlite. Optimal transport activity was obtained by using a phospholipid concentration of 11.5 mg/ml, a Triton X- 114/phospholipid ratio of 0.9, and ten passages through the same Amberlite column. The activity of the carrier was influenced by the phospholipid composition of the liposomes, being increased by cardiolipin and phosphatidylethanolamine and decreased by phosphatidylinositol. The reconstituted tricarboxylate carrier catalyzed a first-order reaction of citrate/citrate or citrate/malate exchange. The maximum transport rate of external [14C]citrate was 9.0 mmol/min per g of tricarboxylate carrier protein at 25 degrees C and this value was virtually independent of the type of substrate present in the external or internal space of the liposomes. The half-saturation constant (Km) was 62 microM for citrate and 541 microM for malate. The activation energy of the citrate/citrate exchange reaction was 74 kJ/mol from 5 to 19 degrees C and 31 kJ/mol from 19 to 35 degrees C. The rate of the exchange had an external pH optimum of 8.

- expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide. Hoenicka M; Becker E M; Apeler H; Sirichoke T; Schroder H; Gerzer R; Stasch J P. (DLR Institute of Aerospace Medicine, Cologne, Germany. hoenicka@pbmail.me.kp.dlr.de) . Journal of molecular medicine (Berlin, Germany), (1999 Jan) 77 (1) 14-23. Journal code: 9504370. ISSN: 0946-2716. Pub. country: GERMANY: Germany, Federal Republic of. Language: English.
- Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide, a messenger molecule with multiple clinical implications. Understanding the activation of sGC is an important step for establishing new therapeutic principles. We have now overexpressed sGC in a baculovirus/Sf9 system optimized for high protein yields to facilitate spectral and kinetic studies of the activation mechanisms of this enzyme. It was expressed in a batch fermenter using a defined mixture of viruses encoding the alpha and betal subunits of the rat lung enzyme. The expressed enzyme was purified from the cytosolic fraction by anion exchange chromatography, hydroxyapatite chromatography, and size exclusion chromatography. By use of this new method 2.5 l culture yielded about 1 mg of apparently homogeneous sGC with a content of about one heme per heterodimer without the need of a heme reconstitution step. The enzyme did not contain stoichiometric amounts of copper. The basal activities of the **purified** enzyme were 153 and 1259 nmol min(-1) mg(-1) in the presence of Mg2+ and Mn2+, respectively. The nitric oxide releasing agent 2-(N,N-diethylamino)diazenolate-2-oxide (DEA/NO) stimulated the enzyme 160-fold with Mg2+, whereas the NO-independent activator 3-(5'-hydroxymethyl-2'-furyl)-1benzylindazole (YC-1) induced an increase in the activity of 101-fold at a concentration of 300 microM. The combination of DEA/NO (10 microM) and YC-1 (100 microM) elicited a dose-dependent synergistic stimulation with a maximum of a 792-fold increase over the basal activity in the presence of Mq2+, resulting in a specific activity of 121 micromol min(-1) mg(-1). The synergistic stimulation of DEA/NO and YC-1 was attenuated by the sGC inhibitor 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one (ODQ) (10 microM) by 94%. In a different experimental setup a saturated carbon monoxide solution in the absence of ambient oxygen or NO stimulated the enzyme 15-fold in the absence and 1260-fold in the presence of YC-1 compared to an argon control. The heme spectra of the enzyme showed a shift of the Soret peak from 432 to 399 and 424 nm in the presence of DEA/NO or carbon monoxide, respectively. The heme spectra were not affected by YC-1 in the absence or in the presence of DEA/NO or of carbon monoxide, which reflects the fact that YC-1 does not interact directly with the heme group of the enzyme. In summary, this study shows that our expression/purification procedure is suitable for producing large amounts of highly pure sGC which contains one heme per heterodimer without a reconstitution step. The activator experiments show that in a synergistic stimulation with YC-1 sGC can be activated maximally both by nitric oxide and by carbon monoxide and that YC-1 does not directly act via heme. The described method should help to facilitate the investigation of the new therapeutic principle of NO-independent guanylyl cyclase activators.
- L24 ANSWER 10 OF 101 MEDLINE on STN
 1999055198. PubMed ID: 9836747. Isolation of an RNA-directed RNA
 polymerase-specific cDNA clone from tomato. Schiebel W; Pelissier T;
 Riedel L; Thalmeir S; Schiebel R; Kempe D; Lottspeich F; Sanger H L;
 Wassenegger M. (Max-Planck-Institut fur Biochemie, Abteilung
 Viroidforschung, D-82152 Martinsried, Germany.) Plant cell, (1998 Dec)
 10 (12) 2087-101. Journal code: 9208688. ISSN: 1040-4651. Pub. country:
 United States. Language: English.
- A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.

- 1998380387. PubMed ID: 9712790. Isolation and characterization of two proteins from Moraxella catarrhalis that bear a common epitope. McMichael J C; Fiske M J; Fredenburg R A; Chakravarti D N; VanDerMeid K R; Barniak V; Caplan J; Bortell E; Baker S; Arumugham R; Chen D. (Wyeth-Lederle Vaccines and Pediatrics, West Henrietta, New York 14586-9728, USA.. John_McMichael@internetmail.pr.cyanamid.com) . Infection and immunity, (1998 Sep) 66 (9) 4374-81. Journal code: 0246127. ISSN: 0019-9567. Pub. country: United States. Language: English.
- The UspAl and UspA2 proteins of Moraxella catarrhalis are potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspAl exhibited a molecular weight of approximately 350, 000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100 degreesC. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspAl and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspAl was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspAl and UspA2 serve different virulence functions and that both are promising vaccine candidates.
- L24 ANSWER 12 OF 101 MEDLINE on STN
- 1998163279. PubMed ID: 9504751. Identification of hepatitis E virus in clinical specimens: amplification of hydroxyapatite-purified virus RNA and restriction endonuclease analysis. Gouvea V; Cohen S J; Santos N; Myint K S; Hoke C Jr; Innis B L. (Department of Virus Diseases, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA.. dr. vera_gouvea@wrsmtp-ccmail.army.mil) . Journal of virological methods, (1997 Dec) 69 (1-2) 53-61. Journal code: 8005839. ISSN: 0166-0934. Pub. country: Netherlands. Language: English.
- A multi-site nested reverse transcription and polymerase chain reaction (RT-PCR) followed by restriction endonuclease analysis (REA) was developed to identify hepatitis E virus (HEV) in clinical specimens. Four sets of primers were selected to amplify regions in the HEV genome supposed to encode the helicase, polymerase, and parts of the **viral** capsid protein. Digestion of the nested PCR products with HinfI, HaeII, AvaII, BglI, KpnI, SmaI, or EcoRI generated readily recognizable profiles that confirm the HEV sequences and/or distinguish the unique Mexico genotype (our positive control) from all other isolates (Asian genotype). In addition, the hydroxyapatite (HA) adsorption method was compared to other adsorption and extraction methods widely used to purify viral RNA from clinical specimens for RT-PCR. All methods presented the same sensitivity of recovery of HEV RNA, but only the adsorption methods efficiently removed fecal enzymatic inhibitors. The HA method gave the best results and was the most economic in terms of time, cost, manipulations and reagents. The method was validated by screening a small number of serum and fecal specimens available from patients with acute non-A,B,C hepatitis in Nepal. HEV RNA was identified in half (5/11) of the fecal specimens obtained from patients with evidence of recent HEV infection, but in none of the 14 patients without a serological marker for hepatitis E.
- L24 ANSWER 13 OF 101 MEDLINE on STN
- 97445050. PubMed ID: 9300039. Purification and characterization of the protein kinase encoded by the UL13 gene of herpes simplex virus type 2. Daikoku T; Shibata S; Goshima F; Oshima S; Tsurumi T; Yamada H; Yamashita Y; Nishiyama Y. (Laboratory of Virology, Nagoya University School of Medicine, Japan.. daikokut@tsuru.med.nagoya-u.ac.jp). Virology, (1997 Aug 18) 235 (1) 82-93. Journal code: 0110674. ISSN: 0042-6822. Pub. country: United States. Language: English.
- AB The proteins encoded by the UL13 genes of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) have been predicted to be protein kinases. To identify the UL13 gene product, we have raised a rabbit polyclonal

antiserum against a His.Tag-HSV-1 UL13 fusion protein. The antibody specifically reacted with the 60-kDa UL13 fusion protein expressed in Escherichia coli and also recognized 56- to 57-kDa late proteins in nuclear fractions of HSV-1- and HSV-2-infected cells. On the other hand, novel casein kinase activity was induced at the late stage of infection when Vero cells were infected with HSV-1 and HSV-2. The induction of the activity was most prominent in the nuclear fractions of HSV-2-infected cells and therefore we purified the protein kinase (PK) from the nuclear extracts by successive column chromatography (phosphocellulose, DEAE-cellulose, and hydroxyapatite) using casein as an exogenous substrate. The final preparation of the enzyme contained a single major protein with an apparent molecular weight of 56 kDa which was specifically reacted with the UL13 antiserum. The PK activity was optimal in the absence of NaCl and at relatively high pH. Acidic proteins such as casein and phosvitin were efficiently phosphorylated by the PK. A basic protein, protamine, which is the best substrate for the HSV-2 US3 PK, was not detectably phosphorylated but histone was a relatively good substrate for the UL13 PK. Phosphoamino acid analysis revealed that the PK phosphorylated serine and threonine but not tyrosine. Moreover the enzyme was found to be highly resistant to heparin, a potent inhibitor of casein kinase II (CK II) and also resistant to CK I-7, a synthetic inhibitor of CK I, but very sensitive to a bioflavonoid quercetin. These results indicate that the HSV-2 UL13 PK had unique catalytic properties different from those of cellular CK I, CK II, and the **viral** PK encoded by the US3 gene. We have also determined the complete nucleotide sequence of the HSV-2 UL13 gene. The overall amino acid homology between the HSV-2 and HSV-1 UL13 PKs was 85.9% and the homology was highly conserved in the C-terminal region.

- L24 ANSWER 14 OF 101 MEDLINE on STN
- 97433272. PubMed ID: 9288912. Expression of natural and synthetic genes encoding herpes simplex virus 1 protease in Escherichia coli and purification of the protein. Apeler H; Gottschalk U; Guntermann D; Hansen J; Massen J; Schmidt E; Schneider K H; Schneidereit M; Rubsamen-Waigmann H. (Pharma Research, Bayer AG, Wuppertal, Germany.) European journal of biochemistry / FEBS, (1997 Aug 1) 247 (3) 890-5. Journal code: 0107600. ISSN: 0014-2956. Pub. country: GERMANY: Germany, Federal Republic of. Language: English.
- An attractive target for anti-herpes chemotherapy is the herpes simplex virus 1 (HSV-1) protease encoded by the UL26 gene. Studies with HSV-1 strains that harbour mutations in the protease gene have demonstrated that the protease is essential for DNA packaging and virus maturation. The UL26 translation product is 635 amino acids long and undergoes autoproteolytic processing between residues Ala247/Ser248 and Ala610/Ser611. The N-terminal processing product (amino acids 1-247) contains the protease domain. To perform crystallization studies and high throughput screening for potent inhibitors, large amounts of the HSV-1 protease are required. However, expression of the natural HSV-1 protease gene in Escherichia coli using a T7-promoter-regulated system is low and does not allow for the efficient production of larger amounts of highly purified enzyme. In this report, we describe the use of a synthetic protease gene with optimized E. coli codon usage. The level of protease expression was at least 20 times higher with the synthetic gene as compared to the natural UL26 gene. The HSV-1 protease was purified to homogeneity in three steps using mixed-bed ion-exchange chromatography, affinity chromatography, and hydroxyapatite chromatography.
- L24 ANSWER 15 OF 101 MEDLINE on STN
- 97420842. PubMed ID: 9275272. Site-specific endonuclease AbaI from Azospirillum brasilense UQ 1796 is an isoschizomer of endonuclease BclI. Zabaznaya E V; Nikiforov V V; Zheleznaya L A; Matvienko N I. (Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia.. root@ibppm.saratov.su) . Biochemistry. Biokhimiia, (1997 Apr) 62 (4) 343-9. Journal code: 0376536. ISSN: 0006-2979. Pub. country: RUSSIA: Russian Federation. Language: English.
- AB The site-specific endonuclease AbaI was isolated and **purified** to functional purity from the soil nitrogen-fixing bacterium Azospirillum brasilense UQ 1796. **Purification** included successive chromatography on columns with phosphocellulose, heparin-Sepharose, and **hydroxyapatite**. The **purified** enzyme recognizes the palindromic DNA sequence 5'-T decreases ATCA-3' and cleaves it as shown by the arrow. The isolated enzyme belongs to class II restriction endonuclease and is an isoschizomer of endonuclease BcII. The enzyme of AbaI is active at 26-56 degrees C. The optimal temperature is 48 degrees C and the optimal buffer is LRB.
- L24 ANSWER 16 OF 101 MEDLINE on STN
- 97327744. PubMed ID: 9210421. **Purification** and properties of alpha-mannosidase II from Golgi-like membranes of baculovirus-infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Ren J; Castellino F J;

Bretthauer R K. (Department of Chemistry and Biochemistry and the Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.) Biochemical journal, (1997 Jun 15) 324 (Pt 3) 951-6. Journal code: 2984726R. ISSN: 0264-6021. Pub. country: ENGLAND: United Kingdom. Language: English.

AB An alpha-mannosidase II-like activity was identified in baculovirus-infected Spodoptera frugiperda (IPLB-SF21-AE) cells. The enzyme responsible was purified from Golgi-type membranes to apparent homogeneity by using a combination of steps including DEAE-cellulose, hydroxyapatite, concanavalin A-Sepharose and gel filtration chromatography. The molecular mass of this purified protein was approx. 120 kDa by SDS/PAGE under reducing conditions and approx. 240 kDa under non-reducing conditions, indicating that the enzyme is a disulphide-linked dimer. Substrates demonstrated to undergo hydrolysis with this enzyme were GlcNAc-Man5-GlcNAc-GlcNAc (non-reduced and reduced) and p-nitrophenyl alpha-d-mannopyranoside. The oligosaccharide substrate was converted into GlcNAc-Man3-GlcNAc-GlcNAc through an intermediate GlcNAc-Man4-GlcNAc-GlcNAc. Treatment of the isolated intermediate oligosaccharide with endoglycosidase H resulted in its conversion into GlcNAc-Man4-GlcNAc. This indicated that it contained the alpha-1,3-linked mannose residue on the alpha-1,6-linked mannose arm and showed that the alpha-1,6-linked mannose residue on the alpha-1,6-linked mannose arm had been preferentially hydrolysed by the mannosidase. The oligosaccharide lacking the beta-1,2-linked GlcNAc residue on the alpha-1,3-linked mannose arm (Man5-GlcNAc-GlcNAc) was not hydrolysed in the presence of the enzyme. Metal ions were not required for enzymic activity on any of the substrates, but Cu2+ was strongly inhibitory. The activity of the enzyme was inhibited at low concentrations of swainsonine, but much higher concentrations of 1-deoxymannojirimycin were required to achieve inhibition. All of these properties are characteristic of mannosidase II enzymes from other eukaryotic tissues. The presence of mannosidase II in lepidopteran insect cells would allow entry of N-linked glycoproteins into the complex processing reaction pathway or into the terminal Man3-GlcNAc-GlcNAc pathway.

L24 ANSWER 17 OF 101 MEDLINE on STN

- 97163301. PubMed ID: 9009069. NAD-independent lactate and butyryl-CoA dehydrogenases of Clostridium acetobutylicum P262. Diez-Gonzalez F; Russell J B; Hunter J B. (Section of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853, USA.) Current microbiology, (1997 Mar) 34 (3) 162-6. Journal code: 7808448. ISSN: 0343-8651. Pub. country: United States. Language: English.
- Clostridium acetobutylicum P262 cells that were growing on lactate and acetate had an NAD-independent lactate dehydrogenase(iLDH) activity of 200 nmol mg protein-1 min-1.Ammonium sulfate precipitation and DEAE cellulose caused a 35-fold purification. Gel filtration indicated that the iLDH had a molecular weight of approximately 55 kDa, but two bands were always observed. Phenyl sepharose could not separate the two proteins, and hydroxyapatite caused a complete loss of activity. The semi-purified iLDH had a Vmax of 13,000 nmol mg protein-1 min-1 and a Km value of 3.5 mM for D-lactate. The Vmax and Km values for L-lactate were 300 nmol mg protein-1 min-1 and 0.7 mM. The iLDH had a pH optimum of 7.5, was not activated by fructose-1,6-bisphosphate (FDP), and could be coupled to either 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) or dichlorophenol-indophenol (DCPIP), but not methyl viologen (MV) or benzyl viologen (BV). The iLDH did not have strong absorbance between 500 and 300 nm, and trichloroacetic acid or acid ammonium sulfate extracts had virtually no fluorescence at 450 nm. The crude extracts also had MTT-linked butyryl-CoA dehydrogenase activity (60 nmol mg protein-1 min-1). The NAD-independent butyryl-CoA dehydrogenase eluted from DEAE-cellulose as two fractions. The yellow fraction was extremely unstable, but the green fraction could be stored for short periods of time at 5 degrees C. The green-colored butyryl-CoA dehydrogenase had strong absorption at 450 nm, and gel filtration indicated that it had a molecular weight of 90 kDa. The NAD-independent butyryl-CoA dehydrogenase could be coupled to MTT, DCPIP, or MV, but not BV. Because the NAD-independent lactate and butyryl-CoA dehydrogenase could both be linked to low potential carriers, these two enzymes may function as oxidation-reduction system in vivo.
- L24 ANSWER 18 OF 101 MEDLINE on STN
- 97067132. PubMed ID: 8910534. Efficient purification and reconstitution of P-glycoprotein for functional and structural studies. Dong M; Penin F; Baggetto L G. (Insitut de Biologie et Chimie des Proteines, UPR 412 CNRS, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France.. lgb@ibcp.fr). Journal of biological chemistry, (1996 Nov 15) 271 (46) 28875-83. Journal code: 2985121R. ISSN: 0021-9258. Pub. country: United States. Language: English.
- AB Plasma membrane P-glycoprotein is known as an ATP-dependent drug efflux

pump that confers multidrug resistance to tumor cells. None of the reported purification procedures worked properly for our P-qlycoprotein-overproducing cell lines, i.e. murine lymphoid leukemia P388/ADR25, rat hepatoma AS30-D/COL10, and human lymphoblastic leukemia CEM/VLB5 cells. We have thus developed a general procedure for efficient purification of P-glycoprotein by combining solubilization with sodium dodecyl sulfate and chromatography on ceramic hydroxyapatite. This procedure was successful for the three cell lines and yielded 70% of the P-glycoprotein present in the starting plasma membranes with more than 99% purity. After exchanging sodium dodecyl sulfate into dodecyl maltoside and reconstitution into liposomes, purified P-glycoprotein exhibited a specific ATPase activity of about 200 nmol/min/mg, which was very similar to that obtained for P-glycoprotein solubilized and purified with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. This ATPase activity was sensitive to orthovanadate inhibition and stimulated by verapamil and other drugs. More importantly, drug transport properties of the reconstituted P-glycoprotein were comparable with those of P-glycoprotein embedded in plasma membranes. Since it is virtually devoid of lipids, this preparation is suitable for both functional and structural investigations.

L24 ANSWER 19 OF 101 MEDLINE on STN

PubMed ID: 8737719. The reactivity of sera from patients with 96353512. systemic lupus erythematosus to seven different species of single and double stranded deoxyribonucleic acids. Yu C L; Huang M H; Tsai C Y; Sun K H; Hsieh S C; Tsai Y Y; Tsai S T; Yu H S; Han S H. (Department of Medicine, Veterans General Hospital-Taipei, Taiwan, ROC.) Clinical and experimental rheumatology, (1996 Mar-Apr) 14 (2) 137-44. Journal code: 8308521. ISSN: 0392-856X. Pub. country: Italy. Language: English. OBJECTIVE: Anti-DNA antibodies are frequently found in the serum of patients with systemic lupus erythematosus (SLE). To understand whether the avidity of SLE sera to different species of single-stranded (ss) and double-stranded (ds) DNA is different or not, the reactivity of active SLE sera to seven species of DNA from viral, bacterial, piscine, and mammalian sources was compared. METHODS: Nineteen sera from patients with active SLE were studied for their reactivity to different ssDNA and dsDNA from Escherichia coli (EC), Micrococcus lysodeikticus (ML), Clostridium perfringens (CP), calf thymus (CT), salmon testis (ST), human placenta (HP) and lambda phage by ELISA. The dsDNA was purified by treating it with S1 nuclease and proteinase K, followed by Sephacryl S-300 gel filtration. The ssDNA was purified by absorption on a hydroxyapatite column after heat-cleavage of the dsDNA. RESULTS: The reactivity of SLE sera to 7 species of dsDNA was not significantly different and they recognized a more widely shared epitope. In contrast, the reactivity of these sera to 7 species of ssDNA was erratic and the antigens could be grouped into high (CP and HP), medium (EC, ML, CT, and ST) and low (lambda-phage) antigenicities. CONCLUSION: The anti-ssDNA and anti-dsDNA antibodies of SLE patients recognize more widely shared determinants on the DNA of seven different species. Lambda-phage DNA shows the poorest immunogenicity among them.

L24 ANSWER 20 OF 101 MEDLINE on STN

96110914. PubMed ID: 8557373. Immunosuppressive factor from Actinobacillus actinomycetemcomitans down regulates cytokine production. Kurita-Ochiai T; Ochiai K. (Department of Microbiology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.) Infection and immunity, (1996 Jan) 64 (1) 50-4. Journal code: 0246127. ISSN: 0019-9567. Pub. country: United States. Language: English.

A cytoplasmic soluble fraction of Actinobacillus actinomycetemcomitans Y4 AR was isolated and characterized as suppressing mitogen-stimulated proliferation of and cytokine production by C3H/HeN mouse splenic T cells. This factor, designated suppressive factor 1 (SF1), was isolated from the supernatant of sonicated whole bacteria and purified by Q-Sepharose Fast Flow column chromatography, DEAE-Sepharose Fast Flow column chromatography, hydroxyapatite high-pressure liquid chromatography (HPLC), and Protein Pack 300 & 125 gel filtration HPLC. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the purified SF1 migrated as a single band corresponding to a molecular mass of 14 kDa. This molecule was protease labile, heat resistant, and noncytotoxic. N'-terminal sequence analysis revealed no homology with any known peptides of periodontopathic bacteria or with any host-derived growth factors. Purified SF1 suppressed the proliferation of mouse splenic T cells which had been stimulated with concanavalin A, as well as suppressing the production of interleukin-2 (IL-2), gamma interferon, IL-4, and IL-5 from CD4+ T cells as 0.1 microgram/ml or more. These data suggest that SF1 produced by the periodontal pathogen A. actinomycetemcomitans functions as a virulence factor by down regulating T-cell proliferation and cytokine production at local defense sites.

- L24 ANSWER 21 OF 101 MEDLINE on STN
 96080290. PubMed ID: 7503803. Cytochrome P450 2A1, 2E1, and 2C9
 cDNA-expression by insect cells and partial **purification** using
 hydrophobic chromatography. Grogan J; Shou M; Andrusiak E A; Tamura S;
 Buters J T; Gonzalez F J; Korzekwa K R. (Laboratory of Molecular
 Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA.)
 Biochemical pharmacology, (1995 Oct 26) 50 (9) 1509-15. Journal code:
 0101032. ISSN: 0006-2952. Pub. country: ENGLAND: United Kingdom. Language:
- High-level expression of three cloned cytochrome P450 enzymes was AΒ accomplished using the baculovirus-insect cell expression system. amount of enzyme expression was enhanced by cell infections in the presence of medium-supplements containing hemin and by growth in suspension cultures. Human cytochromes P450 2E1 and 2C9 and rat cytochrome P450 2Al were partially purified from cell extracts using hydrophobic interaction and hydroxyapatite chromatography. The resulting enzymes were of estimated molecular masses similar to those reported previously and analyzed by PAGE. Reconstitution of enzyme activity resulted when the enzymes were incubated together with NADPH-cytochrome P450 reductase, phospholipid, NADPH, and appropriate substrates. The cytochrome P450 activity of the partially purified enzymes was comparable to that of the corresponding enzymes expressed in the vaccinia virus-Hep G2 system. These results provide evidence for a general means of obtaining cytochrome P450 enzymes for mechanistic, immunochemical, and biophysical investigations.
- L24 ANSWER 22 OF 101 MEDLINE on STN
- 95094156. PubMed ID: 8001029. Proliferation of hematopoietic cell lines induced by a soluble factor derived from human squamous cell carcinomas of the head and neck. Yasumura S; Amoscato A; Hirabayashi H; Lin W C; Whiteside T L. (Department of Pathology, University of Pittsburgh School of Medicine, PA.) Cancer immunology, immunotherapy: CII, (1994 Dec) 39 (6) 407-15. Journal code: 8605732. ISSN: 0340-7004. Pub. country: GERMANY: Germany, Federal Republic of, Language: English.
- GERMANY: Germany, Federal Republic of. Language: English. The supernatant of a cell line of squamous cell carcinoma of the head and neck (SCCHN), PCI-50, was previously shown to induce activation, promote . proliferation and increase antitumor cytotoxicity of freshly purified human natural killer (NK) cells and CD4+ T lymphocytes [Arch Otolaryngol Head Neck Surg (1994) in press]. This supernatant was found also to promote the growth of a variety of hematopoietic cell lines, including Jurkat, THP-1, K562, NK-92 or Epstein-Barr-virus-transformed B cell lines. The Jurkat cell line was selected as a reporter cell in an 18-h proliferation assay established to measure the growth-promoting activity of PCI-50 supernatant. The presence of soluble tumor-derived factors able to induce proliferation of Jurkat cells was demonstrated in the supernatant produced by several other SCCHN cell lines but not in that produced by a gastric cancer cell line (HR) or renal cell carcinoma line (5117G8). The growth-promoting PCI-50 supernatant was shown to contain 28 +/- 0.5 pg/ml interleukin-6 (IL-6) in vitro but was negative for interferon gamma, IL-1, IL-2, IL-4, tumor necrosis factor alpha, granulocyte/macrophage-colony-stimulating factor and IL-12. The addition of any of these recombinant cytokines to Jurkat cell cultures did not significantly promote growth, while PCI-50 supernatant was consistently growth-stimulatory. This supernatant neither enhanced intracellular Ca2+ concentration in Jurkat cells nor induced up-regulation of activation antigens on the cell surface, although it supported growth of Jurkat cells in the absence of IL-2. The growth-promoting activity in the PCI-50 $\,$ supernatant was acid-labile at pH 2 for 4 h, heat-resistant at 96 degrees C for 1 h and sensitive to treatments with trypsin and pepsin. Preincubation of the PCI-50 producer cells with tunicamycin or cyclohexamide reduced the level of growth-promoting activity in the supernatant. A partial purification of this activity was achieved using Amicon filtration, chromatography on concanavalin-A-Sepharose and then a hydroxyapatite column and high-pressure liquid chromatography gel filtration. The partially purified glycoprotein had a molecular mass of 50-70 kDa, as determined by gel filtration.
- L24 ANSWER 23 OF 101 MEDLINE on STN
- 95081237. PubMed ID: 7989435. Identification of Norwalk **virus** in artificially seeded shellfish and selected foods. Gouvea V; Santos N; Timenetsky M do C; Estes M K. (Division of Molecular Biological Research and Evaluation, Food and Drug Administration, Washington, DC 20204.) Journal of virological methods, **(1994 Jul)** 48 (2-3) 177-87. Journal code: 8005839. ISSN: 0166-0934. Pub. country: Netherlands. Language: English.
- AB A rotavirus dsRNA **purification** protocol was adapted to extract Norwalk ssRNA from artificially contaminated shellfish, and a sensitive reverse transcription-polymerase chain reaction assay for Norwalk **virus** was devised to identify an estimated 20-200 genomic copies. The technique

includes deproteinization with guanidinium isothiocyanate, adsorption of RNA to hydroxyapatite, and sequential precipitation with cetyltrimethylammonium bromide and ethanol. The protocol allows high recovery of viral RNA free of enzymatic inhibitors from oysters, clams, and a variety of food matrices. Norwalk virus sequences were copied and amplified by using primers selected from the polymerase gene. Digestion of the amplified products with restriction enzymes ensured the specificity of the test. This rapid and sensitive assay may significantly improve the prospect for the routine screening of the uncultivatable Norwalk virus in food stuffs.

- L24 ANSWER 24 OF 101 MEDLINE on STN
- 94230647. PubMed ID: 8175943. Improved method for **purification** of **viral** RNA from fecal specimens for rotavirus detection. Santos N; Gouvea V. (Division of Molecular Biological Research and Evaluation, Food and Drug Administration, Washington, DC 20204.) Journal of virological methods, **(1994 Jan)** 46 (1) 11-21. Journal code: 8005839. ISSN: 0166-0934. Pub. country: Netherlands. Language: English.
- An improved procedure to recover and **purify** double-stranded RNA (dsRNA) from fecal specimens is described. Guanidine isothiocyanate, hydroxyapatite, and cetyltrimethylammonium bromide were used to extract and **purify** rotavirus dsRNA from fecal specimens. The method is very efficient and easy to perform, and precludes the use of toxic substances such as phenol, chloroform, and Freon. It yields RNA free of enzymatic inhibitors, permitting its detection by reverse transcription-polymerase chain reaction assays. In addition, it was demonstrated that during initial clarification of the fecal suspension, the pellet must be washed at least twice to avoid massive losses of virus, viral protein, or viral nucleic acid retained in the solid debris.
- L24 ANSWER 25 OF 101 MEDLINE on STN
- 94002663. PubMed ID: 8399763. [New site site-specific endonuclease and methylase from Bacillus licheniformis 736]. Novye sait-spetsificheskie endonukleaza i metilaza iz Bacillus licheniformis 736. Matvienko N N; Kramarov V M; Zheleznaia L A; Matvienko N I. Biokhimiia (Moscow, Russia), (1993 Aug) 58 (8) 1139-53. Journal code: 0372667. ISSN: 0320-9725. Pub. country: RUSSIA: Russian Federation. Language: Russian.
- AB The site-specific endonuclease R Bli736I and methylase M Bli736I have been isolated from the Bacillus licheniformis strain 736 by blue-agarose, hydroxyapatite-Ultragel and heparin-Sepharose chromatography. The enzymes are free from interfering impurities. R Bli736I recognizes the 5'-GGTCTCN-3' decreases and decreases 5'-NNNNNGAGACC-3' sequences on the DNA and cleaves the DNA as indicated by arrows to form single-stranded 4-nucleotide 5'-protruding termini. This enzyme is an isoschizomer of Eco3II isolated from E. coli.
- => d 124,cbib,ab,26-50
- L24 ANSWER 26 OF 101 MEDLINE on STN
- 93354294. PubMed ID: 8350878. [Isolation and properties of BstBSI restriction endonuclease from the thermophilic soil bacteria Bacillus stearothermophilus BS]. Vydelenie i svoistva endonukleazy restriktsii BstBSI iz termofil'noipochvennoi bakterii Bacillus stearothermophilus BS. Kovalevskaia N P; Ivanov L Iu; Zheleznaia L A; Matvienko N I. Molekuliarnaia genetika, mikrobiologiia i virusologiia, (1993 May-Jun) (3) 22-5. Journal code: 9315607. ISSN: 0208-0613. Pub. country: RUSSIA: Russian Federation. Language: Russian.
- An ew restriction endonuclease BstBSI was isolated and **purified** from the thermophilic soil bacterium Bacillus stearothermophilus BS by the blue sepharose and **hydroxyapatite** chromatographies. The enzyme is an isoschizomer of SnaI from Sphaerotilus natans C. It recognizes the hexanucleotide GTATAC and cleaves DNA in the center of the sequence. The maximal catalytic activity of the endonuclease is registered in 50 mM tris-HCl (pH 9.0) buffer with the high ionic strength (100 mM NaCl) in the presence of 10 mM MgCl2 at 45 degrees C. Glucosylated DNA of the phage T4 is not cleaved by the enzyme.
- L24 ANSWER 27 OF 101 MEDLINE on STN
- 93091730. PubMed ID: 1668797. Adsorption and preparation of human viruses using hydroxyapatite column. Tsuru S; Shinomiya N; Katsura Y; Uwabe Y; Noritake M; Rokutanda M. (Department of Microbiology, National Defense Medical College, Saitama, Japan.) Bio-medical materials and engineering, (1991) 1 (3) 143-7. Journal code: 9104021. ISSN: 0959-2989. Pub. country: United States. Language: English.
- AB The adsorption and chromatographic properties of hydroxyapatite sorbents for application to different viruses have been investigated. The strong adsorption of viruses was observed on macroporous hydroxyapatite with hydrophilic properties of the sorbent surface. The viruses were

purified on this sorbent without loss of biological activity. The column can be used for virus vaccine production.

- L24 ANSWER 28 OF 101 MEDLINE on STN
- 93089020. PubMed ID: 1456017. Advances in osteogenin and related bone morphogenetic proteins in bone induction and repair. Luyten F P; Cunningham N S; Vukicevic S; Paralkar V; Ripamonti U; Reddi A H. (Bone cell biology section, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892.) Acta orthopaedica Belgica, (1992) 58 Suppl 1 263-7. Journal code: 2985165R. ISSN: 0001-6462. Pub. country: Belgium. Language: English.
- Bone matrix is a repository of growth and differentiation factors as $% \left(1\right) =\left(1\right) \left(1\right$ demonstrated by the induction of local cartilage and bone formation in rats. The bone inductive activity, termed osteogenin, can be dissociatively extracted, and it was isolated by heparin affinity, hydroxyapatite and molecular sieve chromatography. Osteogenin has been purified to homogeneity from bovine bone matrix and the sequences of several tryptic peptides have been determined. The sequences were similar to portions of the amino acid sequence deduced from the cDNA clone of bone morphogenetic protein-3 (BMP-3). The carboxyl-terminal quarter of osteogenin has sequence identity to the corresponding regions of two related proteins BMP-2A and BMP-2B. The bone inductive proteins are members of the TGF-beta superfamily, by virtue of the location of the highly conserved cysteines in their carboxyl-terminal region. Osteogenin and related BMPs initiate cartilage and bone formation in vivo. The study of the mechanism of action of these proteins will add considerable new information on the molecular signals controlling endochondral bone formation. In vitro data indicate that osteogenin stimulates the expression of the osteogenic and chondrogenic phenotypes. Our results demonstrate their profound influence on proteoglycan synthesis and degradation in bovine cartilage explant cultures. High affinity specific binding sites have been identified in both MC3T3 cells and articular chondrocytes. In vivo experiments demonstrate the efficacy of primate osteogenin in restoring large calvarial defects in adult baboons, establishing a primary role for osteogenin in therapeutic initiation and promotion of osteogenesis.
- L24 ANSWER 29 OF 101 MEDLINE on STN
- 91244982. PubMed ID: 1645368. Detection of group B and C rotaviruses by polymerase chain reaction. Gouvea V; Allen J R; Glass R I; Fang Z Y; Bremont M; Cohen J; McCrae M A; Saif L J; Sinarachatanant P; Caul E O. (Division of Viral and Rickettsial Diseases, Centers for Disease Control, Atlanta, Georgia 30333.) Journal of clinical microbiology, (1991 Mar) 29 (3) 519-23. Journal code: 7505564. ISSN: 0095-1137. Pub. country: United States. Language: English.
- We adapted the polymerase chain reaction (PCR) to detect the noncultivatable group B and C rotaviruses and introduced a simple and convenient technique to purify viral RNA from stool specimens. Double-stranded RNA present in stool extracts was purified by adsorption to hydroxyapatite and was used as the template for reverse transcription and polymerase amplification. Primer pairs specific for group B (gene 8) and group C (gene 6) rotaviruses were selected to amplify group-characteristic sizes of cDNA copies readily identifiable in ethidium bromide-stained agarose gels. These primer pairs were used separately in individual PCR assays or were pooled with a primer pair specific for group A rotavirus (gene 9) in a combined PCR assay for the simultaneous detection of all three rotavirus groups. The method was very sensitive and was used to identify both human and porcine strains of group B and C rotaviruses in stool specimens. A second PCR amplification with internal group-specific primers served to increase further the sensitivity of the test and to confirm the diagnostic results obtained in the first amplification.
- L24 ANSWER 30 OF 101 MEDLINE on STN
- 91160571. PubMed ID: 2001711. Immunology, biosynthesis and in vivo assembly of the branched-chain 2-oxoacid dehydrogenase complex from bovine kidney. Clarkson G H; Lindsay J G. (Department of Biochemistry, University of Glasgow, Scotland, UK.) European journal of biochemistry / FEBS, (1991 Feb 26) 196 (1) 95-100. Journal code: 0107600. ISSN: 0014-2956. Pub. country: GERMANY: Germany, Federal Republic of. Language: English.
- Specific, polyclonal antisera have been raised to the native branched-chain 2-oxoacid dehydrogenase complex (BCOADC) from bovine kidney and each of its three constituent enzymes: E1, the substrate-specific 2-oxoacid dehydrogenase; E2, the multimeric dihydrolipoamide acyltransferase 'core' enzyme and E3, dihydrolipoamide dehydrogenase.

 Purified BCOADC, isolated by selective poly(ethyleneglycol) precipitation and hydroxyapatite chromatography, contains only traces of endogenous E3 as detected by a requirement for this enzyme in assaying overall complex activity and by immunoblotting criteria. A weak antibody

response was elicited by the E1 beta subunit relative to the E2 and E1 $\,$ alpha polypeptides employing either purified El or BCOADC as antigens. Anti-BCOADC serum showed no cross-reaction with high levels of pig heart E3 indicating the absence of antibody directed against this component. However, immunoprecipitates of mature BCOADC from detergent extracts of NBL-1 (bovine kidney) or PK-15 (porcine kidney) cell lines incubated for 3-4 h in the presence of [35S] methionine contained an additional 55,000-Mr species which was identified as E3 on the basis of immunocompetition studies. Accumulation of newly synthesised [35S]methionine-labelled precursors for E2, E1 alpha and E3 was achieved by incubation of PK-15 cells for 4 h in the presence of uncouplers of oxidative phosphorylation. Pre-E2 exhibited an apparent Mr value of 56,500, pre-E1 alpha, 49,000 and pre-E3, 57,000 compared to subunit Mr values of 50,000, 46,000 and 55,000, respectively, for the mature polypeptides. Thus, like the equivalent lipoate acyltransferases of the mammalian pyruvate dehydrogenase (PDC) and 2-oxoglutarate dehydrogenase (OGDC) complexes, pre-E2 of BCOADC characteristically contains an extended presequence. In NBL-1 cells, pre-E2 was found to be unstable since no cytoplasmic pool of this precursor could be detected; moreover, processed El alpha was not assembled into intact BCOADC as evidenced by the absence of E2 or E3 in immunoprecipitates with anti-(BCOADC) serum after a 45-min 'chase' period in the absence of uncoupler. Dihydrolipoamide dehydrogenase (E3), in its precursor state, was not present in immune complexes with anti-(BCOADC) serum, indicating that its co-precipitation with mature complex is by virtue of its high affinity for assembled complex in vivo whereas no equivalent interaction of pre-E3 with its companion precursors occurs prior to mitochondrial import.

L24 ANSWER 31 OF 101 MEDLINE on STN 91077215. PubMed ID: 1369279. A human hybrid hybridoma producing a bispecific monoclonal antibody that can target tumor cells for attack by Pseudomonas aeruginosa exotoxin A. Honda S; Ichimori Y; Iwasa S. (Research and Development Division, Takeda Chemical Industries, Ltd., Osaka, Japan.) Cytotechnology, (1990 Jul) 4 (1) 59-68. Journal code: 8807027. ISSN: 0920-9069. Pub. country: Netherlands. Language: English. By fusing a human hybridoma producing an IgG2 kappa antibody against human A431 epidermoid carcinoma cells with an Epstein-Barr virus-transformed human B lymphocyte producing an IgG2 kappa antibody against Pseudomonas aeruginosa exotoxin A, we established a hybrid hybridoma producing a bispecific monoclonal antibody reacting with both A431 cells and the exotoxin. Human IgG was purified from the culture supernatant of the hybrid hybridoma, and the bispecific monoclonal antibody in the IgG preparation was further separated from the two parental antibodies by hydroxyapatite high-performance liquid chromatography. The human

bispecific monoclonal antibody thus obtained efficiently targeted the

antibody-reactive cells, A431, for attack by the exotoxin in vitro. L24 ANSWER 32 OF 101 MEDLINE on STN PubMed ID: 2195030. Expression of the alpha, beta II, and gamma 90307739. protein kinase C isozymes in the baculovirus-insect cell expression system. Purification and characterization of the individual isoforms. Burns D J; Bloomenthal J; Lee M H; Bell R M. (Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710.) Journal of biological chemistry, (1990 Jul 15) 265 (20) 12044-51. Journal code: 2985121R. ISSN: 0021-9258. Pub. country: United States. Language: English. Detailed in vitro comparisons of the biochemical characteristics of three protein kinase C isozymes were performed. As an alternative to earlier uncertain separation methods and expression schemes, highly purified and genetically distinct protein kinase C enzymes were produced using the baculovirus expression system. The baculovirus expression system yielded approximately 200-300 micrograms of the **purified** isozyme from 3 x 10(8) (100 ml of culture medium) baculovirus-infected insect cells. Biochemical characterization of the expressed isozymes indicated that the three isozymes had virtually indistinguishable Ca2+, Mg2+, and ATP dependencies. However, in certain critical functional characteristics such as phosphatidylserine dependencies, phospholipid and substrate preferences, and arachidonic acid activation, the gamma isozyme exhibited distinctive properties when compared with both the alpha and beta II subtypes. In addition, the activity of the beta II subtype was more dependent upon diacylglycerol or phorbol esters for activation than either the alpha or gamma isoforms. The alpha isozyme, unlike the beta II and gamma forms, was totally dependent on Ca2+ for activation in the presence of free arachidonic acid. These studies provide definitive characterizations of the pure isoforms; many of the findings were consistent with earlier enzymatic observations using hydroxyapatitepurified isoforms. Thus, the distinctive biochemical properties of the protein kinase C isozymes are consistent with the hypothesis that each isoform may have distinct roles in signal transduction processes.

- 90279505. PubMed ID: 1693746. LamB (maltoporin) of Salmonella typhimurium: isolation, purification and comparison of sugar binding with LamB of Escherichia coli. Schulein K; Benz R. (Lehrstuhl fur Biotechnologie, Universitat Wurzburg, FRG.) Molecular microbiology, (1990 Apr) 4 (4) 625-32. Journal code: 8712028. ISSN: 0950-382X. Pub. country: ENGLAND: United Kingdom. Language: English.
- LamB (maltoporin) of Salmonella typhimurium was found to be more strongly associated with the murein than OmpF. It was purified in one step using a hydroxyapatite (HTP) column. Reconstitution of the pure protein with lipid bilayer membrane showed that LamB of S. typhimurium formed small ion-permeable channels with a single channel conductance of about 90 pS in 1 M KCl and some preference for cations over anions. The conductance concentration curve was linear, which suggested that LamB of S. typhimurium does not contain any binding site for ions. Pore conductance was completely inhibited by the addition of 20 mM maltotriose. Titration of the LamB-induced membrane conductance with different sugars, including all members of the maltooligosaccharide series up to seven glucose residues, suggested that the channel contains, like LamB (maltoporin) of Escherichia coli, a binding site for sugars. The binding constant of sugars of the maltooligosaccharide series increased with increasing number of glucose residues up to five (saturated). Small sugars had a higher stability constant for sugar binding relative to LamB of E. coli. The advantage of a binding site inside a specific porin for the permeation of solutes is discussed with respect to the properties of a general diffusion porin.
- L24 ANSWER 34 OF 101 MEDLINE on STN
- 90203608. PubMed ID: 2108211. Neutrophil activation by inflammatory microcrystals of monosodium urate monohydrate utilizes pertussis toxin-insensitive and -sensitive pathways. Terkeltaub R A; Sklar L A; Mue'ller H. (VA Medical Center, Department of Medicine, San Diego, CA 92161.) Journal of immunology (Baltimore, Md.: 1950), (1990 Apr 1) 144 (7) 2719-24. Journal code: 2985117R. ISSN: 0022-1767. Pub. country: United States. Language: English.
- The activation of leukocytes by particulates is a critical event in certain inflammatory syndromes, including acute gout associated with microcrystals of monosodium urate monohydrate. In this study we have evaluated mechanisms of human neutrophil activation by urate crystals. Both N-formyl-nor-leu-leu-phe-nor-leu-tyr-lys and uncoated urate crystals (0.5 to 5 mg/ml) but not urate crystals coated with human low density lipoprotein (which suppresses crystal-induced neutrophil responsiveness), stimulated pertussis toxin (PT)-sensitive GTPase activity in purified preparations of human neutrophil membranes. **Hydroxyapatite** crystals (up to 5 mg/ml) were inactive. Pretreatment of neutrophil membranes with cholera toxin also inhibited crystal-induced and formylated peptide-induced GTPase activity. Pretreatment of whole neutrophils with PT resulted in nearly complete inhibition of formylated peptide-induced cytosolic calcium mobilization, release of superoxide and release of the azurophil granule constituent alpha-mannosidase. In contrast, identical pretreatment of whole neutrophils with PT only partially suppressed urate crystal-induced alpha-mannosidase and superoxide release and failed to inhibit crystal phagocytosis and increases in cytosolic free calcium. Mechanisms of neutrophil activation by monosodium urate crystals appear to be heterogeneous in comparison with activation by formylated peptides and there is no absolute requirement for PT-sensitive membrane G proteins in neutrophil responsiveness to urate crystals.
- L24 ANSWER 35 OF 101 MEDLINE on STN
- 89229186. PubMed ID: 2540828. Activation of rat liver cytosolic phosphatidic acid phosphatase by nucleoside diphosphates. Berglund L; Bjorkhem I; Angelin B; Einarsson K. (Department of Clinical Chemistry, Karolinska Institutet, Huddinge University Hospital, Sweden.) Biochimica et biophysica acta, (1989 Apr 26) 1002 (3) 382-7. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- O217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.

 Phosphatidic acid phosphatase (EC 3.1.3.4) was purified 30-fold by ammonium sulfate fractionation and hydroxyapatite chromatography from the soluble fraction of rat liver. ADP was found to stimulate the enzyme activity with half-maximal stimulation at 0.2 mM. Similar effects were seen when ADP was replaced by GDP or CDP. In contrast, ATP inhibited the enzyme; half-maximal inhibition observed at 0.2 mM. Again, the degree of inhibition did not differ when GTP or CTP replaced ATP. Thus, the structure of the base part of the nucleotide was not critical for mediating these effects. The positions of the phosphate groups in the nucleotide structure were however found to be of importance for the enzyme activity. Variations in the structure of the phosphate ester bound at the 5'-position had a pronounced effect on phosphatidic acid phosphatase activity. The effect of nucleotides depended on pH, and the inhibition by ATP was more pronounced at pH levels lower than 7.0, whereas the

stimulatory effect of ADP was **virtually** the same from pH 6.0 to pH 8.0. The enzyme showed substrate saturation kinetics with respect to phosphatidic acid, with an apparent Km of 0.7 mM. Km increased in the presence of ATP, whereas both apparent Vmax and Km increased in the presence of ADP, suggesting different mechanisms for the action of the two types of nucleotides. The results indicated that physiological levels of nucleotides with a diphosphate or a triphosphate ester bound at the 5'-position of the ribose moiety influenced the activity of phosphatidic acid phosphatase. The possibility is discussed that these effects might be of importance for the regulation of triacylglycerol biosynthesis.

- L24 ANSWER 36 OF 101 MEDLINE on STN
- 89180922. PubMed ID: 2853272. Proteolysis of V antigen from Yersinia pestis. Brubaker R R; Sample A K; Yu D Z; Zahorchak R J; Hu P C; Fowler J M. (Department of Microbiology and Public Health, Michigan State University, East Lansing 48824-1101.) Microbial pathogenesis, (1987 Jan) 2 (1) 49-62. Journal code: 8606191. ISSN: 0882-4010. Pub. country: ENGLAND: United Kingdom. Language: English.
- Lcr-plasmids of yersiniae are known to mediate a unique low calcium response characterised by restriction of growth in vitro with induction of putative virulence factors including yersiniae outer membrane-peptides (YOPs) and V antigen (Lcr+). A medium was developed that permitted expression of high yields of V by Yersinia pestis KIM in large fermenter vessels. Immunoblots of specific precipitates prepared by prior molecular sieving showed that native unaggregated V exists as a monomeric 37,000 dalton peptide. Fractionation by precipitation with (NH4)2SO4 and chromatography on phenyl-Sepharose, DEAE cellulose, Sephacryl S200, calcium hydroxyapatite, and Sephadex G200 yielded highly purified antigen as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of parallel preparations from Lcr+ and Lcr- yersiniae. However, yields of V obtained by this process were unexpectedly low. As determined from immunoblots with monospecific polyclonal and monoclonal anti-V, this loss of activity occurred as a function of evident degradation at every step of purification yielding antigenic fragments of about 36,000, 34,000, 31,000, 30,000, and 28,000 daltons. Neutral or acidic pH favored hydrolysis; insignificant cleavage occurred in viable Lcr+ cells of Y. pestis or in culture supernatant fluids. V in neutral cytoplasm from Yersinia pseudotuberculosis or Yersinia enterocolitica did not undergo comparable degradation.
- L24 ANSWER 37 OF 101 MEDLINE on STN
- 89078612. PubMed ID: 2462512. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. Presek P; Reinacher M; Eigenbrodt E. (Rudolf Buchheim-Institut fur Pharmakologie, Justus Liebig-Universitat Giessen, FRG.) FEBS letters, (1988 Dec 19) 242 (1) 194-8. Journal code: 0155157. ISSN: 0014-5793. Pub. country: Netherlands. Language: English.
- Chicken embryo cells (CECs) contain pyruvate kinase (PK) type M2 (M2-PK). Transformation of CECs by Rous sarcoma virus (RSV) leads to a reduction in the affinity of PK for the substrate phosphoenolpyruvate. In vitro, M2-PK can be phosphorylated at tyrosine residues by pp60v-src, the transforming protein of RSV. To study tyrosine phosphorylation of M2-PK in intact RSV-transformed cells, the protein was immunoprecipitated from 32P-labeled normal and RSV-SR-A-transformed CECs. Phosphoamino acid analysis of immunoprecipitated M2-PK revealed that M2-PK of both normal and transformed CECs contained phosphoserine and small amounts of phosphothreonine. Only M2-PK of transformed CECs contained phosphotyrosine in addition. For enzyme kinetic studies M2-PK was partially purified by chromatography upon DEAE-Sephacel and hydroxyapatite. A decreased affinity for phosphoenolpyruvate was observed 3 h after the onset of transformation using the temperature-sensitive mutant of RSV, ts-NY 68. The kinetic changes were correlated with tyrosine phosphorylation of M2-PK, but there is no direct evidence that they are caused by post-translational modification of the enzyme.
- L24 ANSWER 38 OF 101 MEDLINE on STN
- 89073761. PubMed ID: 3201752. **Purification** and characterization of vaccinia **virus** structural protein VP8. Yang W P; Bauer W R. (Department of Biochemistry, School of Medicine, State University of New York, Stony Brook 11794.) Virology, **(1988 Dec)** 167 (2) 578-84. Journal code: 0110674. ISSN: 0042-6822. Pub. country: United States. Language: English.
- AB A major vaccinia virus core protein, designated VP8, has been purified from virions to homogeneity through DEAE-cellulose, CM-cellulose, and hydroxyapatite chromatography. VP8 migrates as a 25-kDa band in SDS-polyacrylamide gel electrophoresis and sediments as a monomeric species in neutral sucrose gradient centrifugation. This protein is a significant constitutent of the virion, comprising about 6.5% of the total viral polypeptides by mass. Analysis by filter binding and by

sucrose gradient centrifugation shows that VP8 binds to double-stranded as well as to single-stranded DNA at low salt concentrations (25 mM NaCl). At higher salt concentrations (100 mM NaCl), the protein binds with a relatively greater affinity to single-stranded DNA. The results from sucrose gradient centrifugation indicate that VP8 probably binds noncooperatively to all structural forms of DNA. The protein is likely to be a component of the **viral** nucleoprotein complex.

- L24 ANSWER 39 OF 101 MEDLINE on STN PubMed ID: 2840854. The isolation and purification of pre-S2 88292944. containing hepatitis B virus surface antigen by chemical affinity chromatography. Lin J Y; Hsieh Y S; Chu S C. (Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei, R.O.C.) Applied biochemistry and biotechnology, (1987 Oct) 15 (3) 255-63. Journal code: 8208561. ISSN: 0273-2289. Pub. country: United States. Language: English. A simple, rapid, and efficient method was developed to isolate and purify pre-S2 containing HBsAgs from the plasma of a single chronic carrier of HBsAg (adw) by ammonium sulfate fractionation, hydroxyapatite column chromatography, and polymerized human serum albumin-affinity column chromatography. About 500 micrograms of pre-S2 containing HBsAg was obtained from 140 mL of plasma containing 4,200 micrograms of HBsAg. Two purified pre-S2 containing HBsAgs were analyzed by SDS-polyacrylamide gel electrophoresis and their molecular weights were determined to be 31,000 and 68,000 respectively. No significant amount of HBsAg or its derivative was detected in the final product.
- L24 ANSWER 40 OF 101 MEDLINE on STN PubMed ID: 3314115. Crystallization, enzymatic cleavage, and the 88044486. polarity of the adenovirus type 2 fiber. Devaux C; Caillet-Boudin M L; Jacrot B; Boulanger P. (European Molecular Biology Laboratory, Grenoble Outstation, France.) Virology, (1987 Nov) 161 (1) 121-8. Journal code: 0110674. ISSN: 0042-6822. Pub. country: United States. Language: English. Crystals of the fiber protein of adenovirus type 2 have been grown. Analysis of these crystals (type I crystals) showed that they were composed of fiber polypeptide with a lower apparent molecular weight (60 kDa) than that of the soluble or virion-incorporated fiber (62 kDa). N-terminal sequencing revealed that the fiber polypeptide chain of 60 kDa was cleaved at tyrosine17 from the N-end. The C-terminus remained intact. Assays with protease inhibitors suggested that the spontaneous cleavage of the fiber occurring upon its crystallization was due to a cellular, calcium-dependent, chymotrypsin-like protease co-purifying with the fiber and activated during hydroxyapatite chromatography. Crystallization of fiber purified in the presence of chymostatin provided crystals of a different structure under the electron microscope (crystals of type II), composed of 62-kDa fiber polypeptide units. The 62-kDa fiber from the type II crystals, as well as the 62-kDa fiber isolated from infected cell extracts, were able to associate with the penton base in vitro to form a penton capsomer. The 60-kDa fiber has lost this capacity. The accessibility of the N- and C-termini of the fiber inside the penton structure was probed by anti-peptide sera after limited proteolysis. The results are consistent with a polarity of the fiber in which its N-terminus is oriented toward the penton base, the C-terminal domain corresponding to the distal knob.
- L24 ANSWER 41 OF 101 MEDLINE on STN
 87322574. PubMed ID: 2442971. Isolation and characterization of mutants of
 Streptococcus mutans using selective removal of wild-type cells by
 agglutination with an agglutinin from Persea americana. Curtiss R 3rd;
 Pearce C; Pollack J; Murchison H M. Acta microbiologica Polonica, (1987)
 36 (1-2) 3-15. Journal code: 7610362. ISSN: 0137-1320. Pub. country:
 Poland. Language: English.
- Persea americana agglutinin (PAA), a substance known to bind basic proteins and inhibit the sucrose-independent adherence of Streptococcus mutants to saliva = coated hydroxyapatite (Staat et al., 1980) was used to selectively enrich for mutants defective in a variety of cell surface associated virulence characteristics from cultures UAB62 (PS14 Riff, serotype c), UAB66 (6715 Strr Spcr, serotype g) and UAB77 (GS5, serotype c). Following mutagenesis and growth for segregation and phenotypic expression, washed cells of each strain were exposed to PAA overnight at 37 degrees C. Aggregated cells were removed by low-speed centrifugation and cells remaining in the supernatant fluids were concentrated, grown to stationary phase and the enrichment with PAA repeated. Mutants isolated following enrichment were phenotypically diverse and included strains defective in one or more of the following characteristics: adherence to glass in a sucrose-containing medium, aggregation with sucrose, dextran or PAA. dextranase production, colony morphology, cell or chain morphology, fermentation of sorbitol, lactose, galactose, raffinose, melibiose, or fructose, and production of surface protein antigen A (SpaA). The diversity of mutant phenotypes identified along with the observation that

PAA could still cause aggregation (with a lower efficiency) of all mutants leads us to infer that the interaction of this agglutinin with proteins on the S. mutans cell surface is relatively nonspecific and that the observed inhibition of S. mutants attachment to saliva-coated **hydroxyapatite** caused by PAA is not due to a highly specific unique interaction of PAA with the protein(s) responsible for sucrose-independent adherence.

- L24 ANSWER 42 OF 101 MEDLINE on STN
- 87273542. PubMed ID: 3111722. Identification of a major 50-kDa molecular weight human B-cell growth factor with Tac antigen-inducing activity on B cells. Kawano M; Matsushima K; Oppenheim J J. Cellular immunology, (1987 Aug) 108 (1) 132-49. Journal code: 1246405. ISSN: 0008-8749. Pub. country: United States. Language: English.
- A bioassay was developed using human small B cells adherent to anti-human IgM (anti-mu)-coated wells. These B cells were stimulated to proliferate by culture supernatants of concanavalin A (Con A)-activated human peripheral blood lymphocytes (Con A Sup) even in the presence of high concentrations of anti-mu coated on assay wells. Human B-cell growth factor (BCGF) activities were partially purified from Con A Sup. Preparative chromatography (Sephacryl S-200 and isoelectrofocusing) yielded a major peak of BCGF activity for B cells adherent to anti-mu-coated wells with a molecular weight of 50,000 (50 kDa) and a pI 7.6. The 50-kDa BCGF was further purified by sequential chromatography using DEAE-Sephacel, CM-Sepharose, Sephacryl S-200, CM-high performance liquid chromatography (HPLC), and hydroxyapatite (HA)-HPLC. The HA-HPLC-purified 50-kDa BCGF was free of interleukin-1 (IL-1), interleukin-2 (IL-2), and interferon activities, but could support growth of BCL1 cells, similar to BCGF-II. Neither IL-1 nor interferon-gamma had any growth-stimulating effect in our B-cell proliferation assay with or without BCGF in Iscove's synthetic assay medium. BCGF-induced proliferation of B cells adherent to anti-mu-coated wells could be markedly augmented by the simultaneous or sequential addition of recombinant human IL-2 (rIL-2). When cultured for 3 days with 50-kDa BCGF, about 40% of B cells adherent to anti-mu-coated wells expressed Tac antigen, and monoclonal anti-Tac antibody inhibited rIL-2 enhancement of proliferation of 50-kDa BCGF-preactivated B cells. In addition, 50-kDa BCGF could induce Tac antigen on an Epstein-Barr virus-transformed B-cell line (ORSON) in the presence of a suboptimal dose of phorbol myristate acetate (PMA) and also on a natural killer-like cell line (YT cells). We have therefore identified a major 50-kDa BCGF activity with Tac antigen-inducing activity that also has a synergistic effect with IL-2 on normal B-cell proliferation.
- L24 ANSWER 43 OF 101 MEDLINE on STN
- 87154340. PubMed ID: 3826625. Rapid **purification** of Bordetella pertussis toxin by alternating affinity and hydrophobic chromatography. Svoboda M; Hannecart-Pokorni E; Borremans M; Christophe J. Analytical biochemistry, (1986 Dec) 159 (2) 402-11. Journal code: 0370535. ISSN: 0003-2697. Pub. country: United States. Language: English.
- Pertussis toxin was purified to homogeneity from a 2-day culture supernatant of Bordetella pertussis by stepwise elution from three columns of, consecutively, Blue Sepharose, phenyl Sepharose, and hydroxyapatite. The toxin was eluted from Blue Sepharose and hydroxyapatite by high ionic strength and from phenyl Sepharose with low ionic strength and with 17% glycerol. Toxin fractions from one chromatographic column were immediately charged on the next column, saving laborious and time-consuming concentration or dialysis steps. Based on peptide composition (after sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and on HPLC profile (under nondenaturing conditions), the toxin was already practically pure after two steps, the third hydroxyapatite column serving only to separate the whole native toxin from any free S1 subunit. Recovery was estimated from the capacity of the preactivated toxin (and any preexisting free S1 subunit) to catalyze the ADP-ribosylation of the guanine nucleotide binding protein Ni in rat pancreatic plasma membranes: of the total capacity initially present in the culture medium, 23% could be recovered as pure native toxin with the present procedure. Besides, the nondenaturing HPLC method used to check the purity of the native toxin appeared to be superior to classical acidic polyacrylamide gel electrophoresis.
- L24 ANSWER 44 OF 101 MEDLINE on STN
- 87085493. PubMed ID: 2432165. Functional purification and enzymic characterization of the RNA-dependent DNA polymerase of human immunodeficiency virus. Wondrak E M; Lower J; Kurth R. Journal of general virology, (1986 Dec) 67 (Pt 12) 2791-7. Journal code: 0077340. ISSN: 0022-1317. Pub. country: ENGLAND: United Kingdom. Language: English.
- AB The RNA-dependent DNA polymerase (RDDP) of human immunodeficiency virus (HIV) was purified from sucrose density gradient-banded virus by four successive procedures: anion exchange chromatography, cation exchange

chromatography, affinity chromatography on oligo(dT)-cellulose and adsorption chromatography on hydroxyapatite. The enzyme preparation was free of cellular DNA-dependent DNA polymerase activity. The properties of HIV RDDP were determined with a variety of template-primers. Generally, the enzyme used Mg2+ for optimal activity except with (Cm)n X (dG)12-18 as template-primer. Kinetic data (Michaelis constant, Hill coefficient) were calculated for several substrates.

L24 ANSWER 45 OF 101 MEDLINE on STN PubMed ID: 2427504. Isolation and characterization of 86304229. alpha-macroglobulin from guinea pig plasma. Suzuki Y; Sinohara H. Journal of biochemistry, (1986 Jun) 99 (6) 1655-65. Journal code: 0376600.

ISSN: 0021-924X. Pub. country: Japan. Language: English.

- Guinea pig alpha-macroglobulin was purified to apparent homogeneity by sequential chromatography on Sephacryl S-300, DEAE-cellulose, and hydroxyapatite. A molecular weight of 780,000 was obtained by equilibrium sedimentation. The preparation migrated as a single band of Mr = 180,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Rabbit antiserum raised against the final preparation partially cross-reacted with human and rat alpha-2-macroglobulins but not with rat alpha-1-macroglobulin. Guinea pig alpha-macroglobulin stimulated the amidolytic activity of trypsin towards a small substrate, but inhibited the proteolytic activity of trypsin towards remazol brilliant blue hide powder. When treated with trypsin or methylamine, four thiol groups per molecule were newly generated. The reaction with trypsin proceeded with at least at two different rates: half of the thiol groups were generated in a fast reaction and the remaining half in a slower reaction. On the other hand, such a two-step reaction was not detected in the reaction with methylamine. The methylamine-treated alpha-macroglobulin retained half the capacity to bind trypsin and its mobility in polyacrylamide gel under nondenaturing conditions remained virtually unchanged. These properties are in marked contrast to those reported for human alpha-2-macroglobulin, but resemble those of rat alpha-2- and mouse alpha-macroglobulins. The amidase activity of trypsin bound to guinea pig alpha-macroglobulin was impaired by soybean trypsin inhibitor to a much greater degree than that of trypsin bound to human or rat alpha-2-macroglobulin.
- L24 ANSWER 46 OF 101 MEDLINE on STN

PubMed ID: 3080314. Isolation and properties of porcine 86108335. lecithin:cholesterol acyltransferase. Knipping G. European journal of biochemistry / FEBS, (1986 Jan 15) 154 (2) 289-94. Journal code: 0107600. ISSN: 0014-2956. Pub. country: GERMANY, WEST: Germany, Federal Republic of. Language: English.

- Lecithin: cholesterol acyltransferase (LCAT, phosphatidylcholine: sterol O-acyltransferase, EC 2.3.1.43) was purified approximately 20 000-fold from pig plasma by ultracentrifugation, phenyl-Sepharose and hydroxyapatite chromatography. Purified LCAT had an apparent relative molecular mass of 69 000 \pm 2000. By isoelectrofocusing it separated into five or six bands with pI values ranging from pH 4.9 to 5.2. The amino acid composition was similar to that of the human enzyme. An antibody against pig LCAT was prepared in goat. The antibody reacted against pig LCAT and gave a reaction of partial identity with human LCAT. Incubation of pig plasma or purified enzyme with the antibody virtually inhibited LCAT activity. The same amount of antibody inactivated only 62% of the LCAT activity in human serum. Pig and human LCAT were activated to the same extent by either human or pig apolipoprotein A-I (apo-A-I) using small liposomes as substrate. Human apoA-I, however, caused a higher esterification rate for both enzymes. Using apoA-I and small liposomes as a substrate, the addition of apoC-II up to 4 micrograms/ml had no effect on the LCAT reaction, but above this concentration LCAT was inhibited. Small liposomes with phosphatidylcholine/cholesterol molar ratios of 3:1 up to 8.4:1 did not show any significant differences in the LCAT reaction, when used as substrates in the presence of various amounts of apoA-I and albumin. In contrast, the LCAT activity was significantly reduced by liposomes with phosphatidylcholine/cholesterol molar ratios below 3:1.
- MEDLINE on STN L24 ANSWER 47 OF 101

PubMed ID: 2999443. Proteolytic cleavage of the E2 glycoprotein 86062922. of murine coronavirus: activation of cell-fusing activity of **virions** by trypsin and separation of two different 90K cleavage fragments. Sturman L S; Ricard C S; Holmes K V. Journal of virology, (1985 Dec) 56 (3) 904-11. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English.

In the murine coronavirus mouse hepatitis virus, a single glycoprotein, E2, is required both for attachment to cells and for cell fusion. Cell fusion induced by infection with mouse hepatitis **virus** strain A59 was inhibited by the addition of monospecific anti-E2 antibody after virus

adsorption and penetration. Adsorption of concentrated coronavirions to uninfected cells did not cause cell fusion in the presence of cycloheximide. Thus, cell fusion was induced by E2 on the plasma membrane of infected 17 Cl 1 cells but not by E2 on virions grown in these cells. Trypsin treatment of virions purified from 17 Cl 1 cells quantitatively cleaved 180K E2 to 90K E2 and activated cell-fusing activity of the virions. This proteolytic cleavage yielded two different 90K species which were separable by sodium dodecyl sulfate-hydroxyapatite chromatography. One of the trypsin cleavage products, 90A, was acylated and may be associated with the lipid bilayer. The other, 90B, was not acylated and yielded different peptides than did 90A upon limited digestion with thermolysin or staphylococcal V8 protease. Thus, the cell-fusing activity of a coronavirus required proteolytic cleavage of the E2 glycoprotein, either by the addition of a protease to virions or by cellular proteases acting on E2, which was transported to
the plasma membrane during virus maturation. There is a striking functional similarity between the E2 glycoprotein of coronavirus, which is a positive-strand RNA virus, and the hemagglutinin glycoprotein of negative-strand orthomyxoviruses, in that a single glycoprotein has both attachment and protease-activated cell-fusing activities.

- L24 ANSWER 48 OF 101 MEDLINE on STN
- 86004718. PubMed ID: 4043087. Flavobacterium heparinum 6-O-sulphatase for N-substituted glucosamine 6-O-sulphate. Bruce J S; McLean M W; Williamson F B; Long W F. European journal of biochemistry / FEBS, (1985 Oct 1) 152 (1) 75-82. Journal code: 0107600. ISSN: 0014-2956. Pub. country: GERMANY, WEST: Germany, Federal Republic of. Language: English.
- A specific glyco-6-O-sulphatase has been purified to homogeneity from Flavobacterium heparinum. The enzyme hydrolyses the 6-O-sulphates of 2-deoxy-2-sulphamido-6-0-sulpho-D-glucose (GlcNS-6S), 2-acetamido-2-deoxy-6-O-sulpho-D-glucose (GlcNAc-6S) and 2-amino-2-deoxy-6-O-sulphato-Dqlucose (GlcN-6S). The activity was purified 2100-fold by successive chromatography on CM-Sepharose CL-6B, Sepharose CL-4B, hydroxyapatite and blue-Sepharose CL-6B. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis showed a protein of relative molecular mass 64000. Four novel assays were developed using 35S-labelled and 14C-labelled monosaccharides. The purified enzyme was free of all other known heparin-degrading enzymes. In particular this was the first resolution of the 6-O-sulphatase from the sulphamidase. Optimal activity was at pH 7.5. Enzyme activity was **virtually** unaffected by Na+ and K+ ions. Enhancements of activity of 12% and 30% were effected by Mg2+ and Ca2+ ions respectively. Inorganic phosphate and sulphate (both 0.005 mol dm-3) inhibited activity by 48% and 50% respectively. The Km value for the free amino substrate GlcN-6S was 1.35 mmol dm-3. In contrast the Km values for the GlcNAc-6S and GlcNS-6S were 54 mumol dm-3 and 16 mumol dm-3 respectively.
- L24 ANSWER 49 OF 101 MEDLINE on STN
 85289634. PubMed ID: 2993328. Isolation of the subunits of the coronavirus
 envelope glycoprotein E2 by hydroxyapatite high-performance liquid

chromatography. Ricard C S; Sturman L S. Journal of chromatography, (1985 Jun 19) 326 191-7. Journal code: 0427043. ISSN: 0021-9673. Pub. country:

Netherlands. Language: English.

- AB The coronavirus glycoprotein E2, which is responsible for **virus** attachment to cell receptors and **virus**-induced cell fusion, was **purified** by solubilization of **virions** with Triton X-114 and phase fractionation. Native E2 and tryptic subunits of the glycoprotein were separated by size-exclusion high-performance liquid chromatography (HPLC). Two distinct 90 kD E2 subunits, which had identical electrophoretic mobilities when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were separated by **hydroxyapatite** HPLC in the presence of sodium dodecyl sulfate.
- L24 ANSWER 50 OF 101 MEDLINE on STN
- 85179492. PubMed ID: 3987694. Flavobacterium heparinum 3-O-sulphatase for N-substituted glucosamine 3-O-sulphate. Bruce J S; McLean M W; Long W F; Williamson F B. European journal of biochemistry / FEBS, (1985 Apr 15) 148 (2) 359-65. Journal code: 0107600. ISSN: 0014-2956. Pub. country: GERMANY, WEST: Germany, Federal Republic of. Language: English.
- AB A novel bacterial sulphatase has been discovered in an extract of Flavobacterium heparinum. The enzyme hydrolyses the 3-O-sulphate from 2-deoxy-2-sulphamido-3-O-sulpho-D-glucose and 2-acetamido-2-deoxy-3-O-sulpho-D-glucose. The activity was purified 10 800-fold by chromatography successively on CM-Sepharose CL-6B, hydroxyapatite, taurine-Sepharose CL-4B and CM-Sepharose CL-6B. Sodium dodecylsulphate/polyacrylamide gel electrophoresis showed the enzyme to be homogeneous and of relative molecular mass 56 000. Two novel assays were developed using 2-[14C]acetamido-2-deoxy-3-O-sulpho-D-glucose and 2-deoxy-2-sulphamido-3-O-sulpho-D-glucose as respective substrates. The

purified 3-O-sulphatase was shown to be free of all other known heparin-degrading enzymes. Optimal activity was at pH 7.5 for the disulphated substrate and pH 8.0 for the N-acetylated substrate. Enzyme activity was virtually unaffected by Na+, K+ or Mg2+ ions. A 1.2-fold enhancement of activity was effected by 0.002 mol dm-3 Ca2+. Inorganic phosphate and sulphate inhibited 3-O-sulphatase activity. The Km value of the N-acetylated substrate was determined to be 42 mumol dm-3. No activity was detected with 2-amino-2-deoxy-3-O-sulpho-D-glucose.

=> d 124,cbib,ab,51-75

- L24 ANSWER 51 OF 101 MEDLINE on STN

 85158060. PubMed ID: 6099371. **Purification** of the structural and nonstructural proteins of St. Louis encephalitis **virus**. Vorndam A.V;

 Trent D W. Journal of virological methods, **(1984 Dec)** 9 (4) 283-91.

 Journal code: 8005839. ISSN: 0166-0934. Pub. country: Netherlands.
- Language: English.

 AB We have developed a procedure for **purifying** both the structural and nonstructural proteins of flaviviruses from lysates of infected cell cultures. The procedure involves: immunoprecipitation to concentrate **viral** proteins and eliminate most of the cellular proteins, preparative polyacrylamide gel electrophoresis to separate the **viral** proteins, and **hydroxyapatite** chromatography, which eliminates most of the unlabeled cellular protein. This procedure offers an improvement over previous **purification** schemes in that there is no loss of **viral** proteins after the immunoprecipitation step, any combination of labeling isotopes may be
- L24 ANSWER 52 OF 101 MEDLINE on STN
- 85154571. PubMed ID: 2984046. 'Red pigment' from ADE-2 mutants of S. cerevisiae prevents DNA cleavage by restriction endonucleases. Meskauskas A; Ksenzenko V; Shlyapnikov M; Kryukov V; Citavicius D. FEBS letters, (1985 Mar 25) 182 (2) 413-4. Journal code: 0155157. ISSN: 0014-5793. Pub. country: Netherlands. Language: English.

used, and it is not necessary to soak proteins out of gel slices.

- AB Protection of DNA from cleavage by restriction endonucleases EcoRI,
 HindIII, BamHI, and Bg/II with red pigment, produced by ADE-2 mutants of
 Saccharomyces cerevisiae is demonstrated. **Purification** of yeast DNA
 from pigment can be achieved by chromatography on hydroxyapatite columns.
- L24 ANSWER 53 OF 101 MEDLINE on STN
- 85058193. PubMed ID: 6094828. Mammalian DNA enriched for replication origins is enriched for snap-back sequences. Zannis-Hadjopoulos M; Kaufmann G; Martin R G. Journal of molecular biology, (1984 Nov 15) 179 (4) 577-86. Journal code: 2985088R. ISSN: 0022-2836. Pub. country: ENGLAND: United Kingdom. Language: English.
- AB Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.
- L24 ANSWER 54 OF 101 MEDLINE on STN
- 84160757. PubMed ID: 6200446. **Purification** of a specific inhibitor of reverse transcriptase from human placenta. Leong J C; Wood S O; Lyford A O; Levy J A. International journal of cancer. Journal international du cancer, (1984 Apr 15) 33 (4) 435-9. Journal code: 0042124. ISSN: 0020-7136. Pub. country: Denmark. Language: English.
- AB Human placental extracts contain a factor which specifically and reversibly inhibits the reverse transcriptase of mammalian retroviruses. This placental inhibitor has been partially purified and characterized. It elutes at 0.1-0.2 M phosphate on hydroxyapatite chromatography and can be further purified by phosphocellulose chromatography where it elutes at 0.4 M KCl. By these purification procedures, specific activities of 40-70,000 units of inhibitor per mg of protein were obtained. The size of the inhibitor is about 60-65,000 daltons as estimated by velocity sedimentation. The inhibitor purified by these techniques selectively inhibits the activity of purified reverse transcriptase from Rauscher murine leukemia virus and baboon endogenous virus. It is substantially less active against the reverse transcriptase of avian myeloblastosis virus. The specificity of this inhibitor for mammalian enzymes and particularly for the human placental

reverse transcriptase suggests that it plays a role in the regulation of DNA synthesis in human placental development.

- L24 ANSWER 55. OF 101 MEDLINE on STN
- 84154707. PubMed ID: 6704398. ATP(GTP)-dependent conversion of MVM parvovirus single-stranded DNA to its replicative form by a purified 10 S species of mouse DNA polymerase alpha. Faust E A; Gloor G; MacIntyre M F; Nagy R. Biochimica et biophysica acta, (1984 Apr 5) 781 (3) 216-24. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- A species of DNA polymerase alpha that is active in the ATP(GTP)-dependent conversion of MVM parvovirus single-stranded linear DNA to the duplex replicative form has been purified 4300-fold from Ehrlich ascites mouse tumour cells. The single-stranded---replicative form activity is maintained throughout ammonium sulfate precipitation, DEAE-cellulose, phosphocellulose and hydroxyapatite column chromatography and glycerol gradient sedimentation. Polypeptides with Mr = 230 000, 220 000, 183 000, 157 000, 125 000, 70 000, 65 000, 62 000, 57 000, 53 000 and 48 000 copurify with the single-stranded----replicative form activity, which sediments at approx. 10 S. The Mr = 183 000, 157 000 and 125 000 polypeptides exhibit catalytic activity when assayed in situ following SDS-polyacrylamide gel electrophoresis. The 10 S form of DNA polymerase alpha is functionally distinguishable from an 8.4 S form of the enzyme obtained from the same cells on the basis of single-stranded---replicative form activity. The single-stranded----replicative form activity of the 10 S enzyme is stable at 22 degrees C for up to 3 h, but exhibits a half life of only 5 min at 45 degrees C.
- L24 ANSWER 56 OF 101 MEDLINE on STN
- 84032875. PubMed ID: 6313727. Electron microscopic studies of transcriptional complexes released from vaccinia cores during RNA-synthesis in vitro: methods for fractionation of transcriptional complexes. Esteban M; Cabrera C V; Holowczak J A. Journal of virological methods, (1983 Aug) 7 (2) 73-92. Journal code: 8005839. ISSN: 0166-0934. Pub. country: Netherlands. Language: English.
- Electron microscopic (EM) and biochemical methods were employed to study the transcriptional complexes present in detergent lysates of vaccinia virus cores actively synthesizing RNA in vitro. When processed and examined in the EM, 14 'transcriptional sites' could be observed on full-length DNA templates. Fractionation of lysates by equilibrium density centrifugation in CsSO4, chromatography on hydroxyapatite columns or by sedimentation in sucrose gradients, allowed isolation of DNA templates associated with transcripts but these manipulations often resulted in fragmentation of the DNA template or promoted the release of transcripts from the template. It is suggested that RNA transcripts remain associated with the template in regions of supercoiling. These regions, in turn, may be maintained by DNA-protein interactions which are compromised as the transcriptional complexes are fractionated and purified.
- L24 ANSWER 57 OF 101 MEDLINE on STN
- 83138809. PubMed ID: 6761443. Evolution of single-copy DNA and the ADH gene in seven drosophilids. Zwiebel L J; Cohn V H; Wright D R; Moore G P. Journal of molecular evolution, (1982) 19 (1) 62-71. Journal code: 0360051. ISSN: 0022-2844. Pub. country: GERMANY, WEST: Germany, Federal Republic of. Language: English.
- AB . Single-copy DNA was isolated from Drosophila melanogaster and hybridized with total genomic DNA of D. melanogaster, D. mauritiana, D. simulans, D. pseudoobscura, D. willistoni, D. hydei and D. virilis. The duplexes were thermally eluted from **hydroxyapatite** and the data used to assess the relatedness of each species to D. melanogaster. The general pattern of relatedness was similar to that predicted by morphological methods but with some notable exceptions. The rate of nucleotide substitution was estimated to be greater than 0.66% of bases per million years. An unexpected, rapidly evolving component of D. melanogaster single-copy DNA was identified. The relatedness of these species was also studied with respect to the gene coding for alcohol dehydrogenase (ADH). The ADH gene, previously cloned from D. melanogaster (Goldberg 1980), was hybridized with Southern blots of genomic digests of the seven species. The intensity and position of the hybridizing bands suggest the amount of divergence of the gene. Divergence was quantitated by reassociation of a fragment of the cloned ADH gene with total DNA of the seven drosophilids and thermal elution of the resultant duplexes from hydroxyapatite. The ADH gene was isolated from genomic clone libraries of D. melanogaster, D. simulans and D. mauritiana and further studied by comparison of position of restriction sites. Species relationships deduced from comparison of total single-copy DNA and the ADH gene were consistent, demonstrating that a single gene can reflect divergence of the entire genome.

- L24 ANSWER 58 OF 101 MEDLINE on STN
 83023215. PubMed ID: 7126596. Circular dichroism and biochemical
 properties of the hepatitis B virus core antigen. Yamaki M; Ohori H;
 Onodera S; Ishida N; Maeda H. Biochimica et biophysica acta, (1982 Sep
 7) 706 (2) 165-73. Journal code: 0217513. ISSN: 0006-3002. Pub. country:
- Netherlands. Language: English. The hepatitis B virus (HBV) core antigen was purified by mild procedures, including hydroxyapatite column chromatography, with care taken to avoid the degradation of the particles. Circular dichroism (CD) of the HBV core particles in saline showed low intensities of negative ellipticities in the region dominated by amide bond absorption. Acid treatment of the particles induced a remarkable change in the CD spectrum, with the appearance of a positive extremum at about 208 nm. The amino acid composition and the COOH-terminal residue of the isolated core polypeptide (Mr 21,000-21,500) were shown to be essentially the same as those of the polypeptide deduced from the nucleotide sequences which had been proposed for the HBV core antigen by other laboratories. We failed to detect any NH2-terminal dansyl-derivatives from the core polypeptide by the dansyl-Edman method. We also showed by the method of fluorescein polarization that the core polypeptide conjugated with fluorescein isothiocyanate has an affinity for serum albumin. This may indicate a state of disassembled or non-assembled core polypeptide in sera.
- L24 ANSWER 59 OF 101 MEDLINE on STN

 82242344. PubMed ID: 7097863. **Purification** of a native

 membrane-associated **adenovirus** tumor antigen. Persson H; Katze M G;

 Philipson L. Journal of virology, (1982 Jun) 42 (3) 905-17. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language:
- A 15,000-dalton protein was purified from HeLa cells infected with adenovirus type 2. Proteins solubilized from a membrane fraction of lytically infected cells was used as the starting material for purification. Subsequent purification steps involved lentil-lectin, phosphocellulose, hydroxyapatite, DEAE-cellulose, and aminohexyl-Sepharose chromatographies. A monospecific antiserum, raised against the purified protein, immunoprecipitated a 15,000-dalton protein encoded in early-region E1B (E1B/15K protein) of the adenovirus type 2 DNA. Tryptic finger print analysis revealed that the purified protein was identical to the E1B/15K protein encoded in the transforming part of the viral genome. The antiserum immunoprecipitated the E1B/15K protein from a variety of viral transformed cell lines isolated from humans, rats, or hamsters. The E1B/15K protein was associated with the membrane fraction of both lytically and virus-transformed cell lines and could only be released by detergent treatment. Furthermore, a 11,000- to 12,000-dalton protein that could be precipitated with the anti-E1B/15K serum was recovered from membranes treated with trypsin or proteinase K, suggesting that a major part of the E1B/15K protein is protected in membrane vesicles. Translation of early viral mRNA in a cell-free system, supplemented with rough microsomes, showed that this protein was associated with the membrane fraction also in vitro.
- L24 ANSWER 60 OF 101 MEDLINE on STN
- 82192587. PubMed ID: 6281469. Organization of type C viral DNA sequences endogenous to baboons: analysis with cloned viral DNA. Battula N; Hager G L; Todaro G J. Journal of virology, (1982 Feb) 41 (2) 583-92. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English.
- Unintegrated linear and circular forms of baboon endogenous type C virus M7 DNA were prepared from M7-infected cells by chromatography on hydroxyapatite columns, and the circular DNAs were purified in cesium ${\tt chloride-ethidium\ bromide\ equilibrium\ density\ gradients.} \quad {\tt The\ circular}$ DNAs were linearized by digestion with EcoRI, which had a unique site on the viral DNA. The linearized DNA was then inserted into lambda gtWES. lambda B at the EcoRI site and cloned in an approved EK2 host. Molecularly cloned full-length M7 DNA was restricted with BamHI, and the resulting five subgenomic fragments were then subcloned individually in plasmid pBR322. The organization and sites of integration of the approximately 100 copies of M7 DNA sequences endogenous to baboons were investigated by digesting the DNA with restriction enzymes and identifying the virus-specific fragments by hybridization to labeled probes made by using the molecularly cloned full-length and subgenomic fragments of the viral DNA. We found that most of the endogenous sequences had sizes and organizations similar to those of the unintegrated viral DNA and therefore approximately similar to the RNA of the infectious virus. A few of the multiple sequences had deletions in the 3' end (envelope region), and some of the sequences either lacked or contained modified BamHI restriction sites on the 5' end of the viral DNA. The endogenous viral DNA sequences were nontandem, uninterrupted, and colinear with the DNA of the infectious virus, and they were integrated at different sites

in the baboon DNA, like the M7 proviral DNA sequences acquired upon infection.

- L24 ANSWER 61 OF 101 MEDLINE on STN
- 82072740. PubMed ID: 7030741. Pyruvate dehydrogenase complex from baker's yeast. 2. Molecular structure, dissociation, and implications for the origin of mitochondria. Kresze G B; Ronft H. European journal of biochemistry / FEBS, (1981 Oct) 119 (3) 581-7. Journal code: 01.07600. ISSN: 0014-2956. Pub. country: GERMANY, WEST: Germany, Federal Republic of. Language: English.
- 1. Pyruvate dehydrogenase complex from Saccharomyces cerevisiae is similar in size (s20,w 77 S) and flavin content (1.3--1.4 nmol/mg) to the complexes from mammalian mitochondria. 2. The relative molecular masses of the constituent polypeptide chains, as determined by dodecylsulfate gel electrophoresis at different gel concentrations, were: lipoate acetyltransferase (E2), 58 000; lipoamide dehydrogenase (E3), 56 000; pyruvate dehydrogenase (E1), alpha-subunit, 45 000, and beta-subunit, 35 000. Gel chromatography in the presence of 6 M guanidine . HCl gave a value of 52 000 for E2 indicating anomalous electrophoretic migration as described for the E2 components of other pyruvate dehydrogenase complexes. Thus, the organization and subunit Mr values are similar with the mammalian complexes and virtually identical with the complexes of gram-positive bacteria but differ greatly from the pyruvate dehydrogenase complexes of gram-negative bacteria. 3. The complex was resolved into its component enzymes by the following methods. E1 was obtained by treatment of the complex with elastase followed by gel chromatography on Sepharose CL-2B using a reverse ammonium sulfate gradient for elution. E2 was isolated by gel filtration of the complex in the presence of 2 M KBr, and E3 was obtained by hydroxyapatite chromatography in 8 M urea. The isolated enzymes reassociated spontaneously to give pyruvate dehydrogenase overall activity.
- L24 ANSWER 62 OF 101 MEDLINE on STN
- 81247236. PubMed ID: 7255356. Improved rapid methodology for the isolation of nucleic acids from agarose gels. Tracy S. Preparative biochemistry, (1981) 11 (3) 251-68. Journal code: 1276634. ISSN: 0032-7484. Pub. country: United States. Language: English.
- AB Improved methodology is presented with which DNA may be rapidly isolated from agarose gels. **Bydroxyapatite** is used to bind the nucleic acid after agarose solubilization and a sodium citrate buffer is used to elute the nucleic acid free of agarose. Rapid concentration of the sample may then be effected by ethanol precipitation. **Purified** oyster glycogen may be used as carrier in this regard and does not inhibit restriction endonucleases nor T4 DNA ligase in the concentrations used. This methodology is useful for the isolation of single-and double-stranded DNA, supercoil plasmid DNA, and mRNA.
- L24 ANSWER 63 OF 101 MEDLINE on STN
- PubMed ID: 6783635. Isolation and characterization of 81168066. sex-steroid-binding protein from rat and rabbit plasma. Suzuki Y; Ito M; Sinohara H. Journal of biochemistry, (1981 Jan) 89 (1) 231-6. Journal code: 0376600. ISSN: 0021-924X. Pub. country: Japan. Language: English. The sex-steroid-binding plasma protein (SBP), which had been reported to be absent in the rat by several workers, was detected in 6-week-old male rats, but not in female rats aged 5-43 days. The rat SBP was purified to apparent homogeneity by affinity chromatography on testosterone-17alpha-ethynylcarboxyaminoethyl Sepharose 4B followed by hydroxyapatite column chromatography, and its properties were compared with those of rabbit SBP prepared in exactly the same fashion. The concentration of SBP in adult male rabbit was 25-fold greater than that in 6-week-old male rat, but the binding characteristics of both SBPs were very similar. They specifically bind testosterone, 5 alpha-dihydrotestosterone, and 5 alpha-androstane-3 alpha, 17 beta-diol, but have virtually no affinity for estradiol, progesterone, or cortisol. Equilibrium dissociation constants for dihydrotestosterone were estimated to be 11.7 nM for rat SBP and 14.9 nM for rabbit SBP.
- L24 ANSWER 64 OF 101 MEDLINE on STN
- 81076570. PubMed ID: 6255415. The extraction by micrococcal nuclease of glucocorticoid receptors and mouse mammary tumor virus DNA sequences is dissociated. Andre J; Raynaud A; Rochefort H. Nucleic acids research, (1980 Aug 11) 8 (15) 3393-411. Journal code: 0411011. ISSN: 0305-1048. Pub. country: ENGLAND: United Kingdom. Language: English.
- AB Glucocorticoid receptors (RG) and mammary tumor virus (MM-TV) DNA sequences were extracted by micrococcal nuclease digestion from the nuclei of C3H mouse mammary tumor cells in order to specify their relative distribution in chromatin. RG was labelled and translocated into the nuclei by incubating cells with 3H Dexamethasone (3H Dex). The purified nuclei were then treated at 2 degrees C with micrococcal nuclease. Three

chromatin fractions were successively obtained: an isotonic extract (ne3H1), ahypotonic extract (ne2) and the residual pellet (P). The Dex-RG complexes were measured by the hydroxyapatite technique. The MMTV DNA sequences were titrated by molecular hybridization with an excess of MMTV radioactive cDNA probe. Up to 75% of the nuclear 3H Dex and the MMTV radioactive cDNA probe. Up to 75% of the nuclear 3H Dex and MMTV DNA sequences were extracted in a concentration dependent manner while only 10-15% of nucleic acids became soluble in 10% perchloric acid. The extracted 3H Dex-RG complex was found to be partly bound to soluble chromatin and partly free. The free complex displayed similar sedimentation constants (4S, 7S) and DNA binding ability to the cytosol receptor. The 3H Dex-RG complexes were 2 to 8 fold more concentrated in nel, which is known to be enriched in active chromatin, than in ne2. Conversely, the concentration of MMTV DNA sequences per microgram DNA was the same in the three nuclear fractions. These results suggest that the Dex-RG complexes are concentrated in an active fraction of chromatin. We propose that, among the 20-30 copies of MMTV genes per haploid genome, only a small proportion are transcribed or regulated.

- L24 ANSWER 65 OF 101 MEDLINE on STN
- 81071202. PubMed ID: 7441207. Spectrophotometric characteristics of cholera phage phi2 DNA. Chaudhuri K; Maiti M. Journal of general virology, (1980 Aug) 49 (2) 433-6. Journal code: 0077340. ISSN: 0022-1317. Pub. country: ENGLAND: United Kingdom. Language: English.
- AB **Purified** preparations of cholera bacteriophage phi2 were treated with cold phenol and the nucleic acid examined for its **hydroxyapatite** chromatographic pattern, thermal denaturation profile, base composition and mol. wt.
- L24 ANSWER 66 OF 101 MEDLINE on STN
- 81028277. PubMed ID: 6158579. **Purification** and biochemical characterization of the Epstein-Barr **virus**-determined nuclear antigen and an associated protein with a 53,000-dalton subunit. Luka J; Jornvall H; Klein G. Journal of virology, **(1980 Sep)** 35 (3) 592-602. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English.
- The Epstein-Barr virus-determined nuclear antigen (EBNA) was purified 700-fold to apparent homogeneity from Raji and Namalwa cell extracts by a three-step procedure involving heat treatment, DNA-cellulose chromatography, and hydroxyapatite chromatography. Acid-fixed nuclear binding and complement fixation were used to monitor antigenic specificity. Purified EBNA was also capable of specifically inhibiting the regular anticomplement immunofluorescence reaction for EBNA against Raji target cells. The **purified** antigen had a molecular weight of 170,000 to 200,000. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it yielded a single 48,000-dalton (48K) monomer. An EBNA-associated protein was also purified from the same cell extract. It had a molecular weight of about 200,000 and yielded a single 53K protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The same protein was also found in Epstein-Barr virus negative B-cell lymphoma lines. The two types of protein were characterized by amino acid composition and peptide mapping. The results showed that the 53K and 48K protein components have no long regions in common; this excludes that the smaller product arises by breakdown of the larger product. Residue distributions were different, but an excess of hydrophilic residues was found in both proteins, suggesting a certain overall similarity in properties. 53K components from different cell lines appeared to differ somewhat. Epstein-Barr virus-positive lines carry two 53K components, one of which may be a slightly modified 53K product. Immunocomplexing assay showed that the 48K, but not the 53K, protein carries EBNA specificity. In mixtures, the 53K protein is co-precipitated with the 48K protein. The data suggest that EBNA may form a complex with the 53K proten within the cell.
- L24 ANSWER 67 OF 101 MEDLINE on STN
- 80248411. PubMed ID: 7399676. Fibril-mediated adherence of Actinomyces viscosus to saliva-treated **hydroxyapatite**. Wheeler T T; Clark W B. Infection and immunity, **(1980 May)** 28 (2) 577-84. Journal code: 0246127. ISSN: 0019-9567. Pub. country: United States. Language: English.
- AB Fibril-mediated adherence of Actinomyces viscosus strain T14V cells to saliva-treated hydroxyapatite was studied. Fibrils were purified by ammonium sulfate precipitation and differential centrifugation from the crude supernatant of whole cells that were sheared by one passage through a French pressure cell. Purified fibrils and crude supernatant inhibited strain T14V adherence to saliva-treated hydroxyapatite to similar extents. However, anti-strain T14V serum and antifibril specific antibody completely abolished strain T14V adherence. The blocking immunoglobulin could be adsorbed from anti-T14V serum by strain T14V whole cells, by purified fibrils, and, to a lesser extent, by cell walls. It

was concluded that fibrils mediate adherence of strain T14V cells to saliva-treated hydroxyapatite. In addition, fibril preparations were shown to contain more than 95% protein and to be antigenically homogeneous by immunodiffusion and Laurell rocket immunoelectrophoresis. Purified fibril preparations showed serological identity with the virulence-associated 1 antigen of Lancefield-extracted T14V cells, whereas crude supernatants contained both virulence-associated 1 and virulence-associated 2 antigens, as shown by rocket immunoelectrophoresis.

- L24 ANSWER 68 OF 101 MEDLINE on STN

 80221173. PubMed ID: 6248116. Physical properties of the complementary T4

 RNA. Helland D E. Biochimica et biophysica acta, (1980 Jun 27) 608 (1)

 127-37. Journal code: 0217513. ISSN: 0006-3002. Pub. country:

 Netherlands. Language: English.
- AB The complementary transcribed T4 RNA after self-annealing and RNAase treatment was isolated by gel chromatography and then used for further studies. From salt-dependent RNAase resistance and melting studies it is 'evident that this RNA represents a genuine double-stranded structure. The base content of the isolated double-stranded RNA was found to be the same as total T4 mRNA. Sucrose gradient analysis and hydroxyapatite chromatography of T4 RNA, annealed early and late RNA, and of the isolated double-stranded RNA, gave results indicating that the complementary RNA is part of a RNA molecule and further that the size of the complementary regions are independent of the RNA molecules. Partial digestion of pulse-labelled late RNA with phosphodiesterase I prior to annealing with unlabelled early RNA, showed that the complementary regions on the mRNA are not located to the 5'- or 3'-end but randomly distributed along the T4
- L24 ANSWER 69 OF 101 MEDLINE on STN
 80164759. PubMed ID: 232213. The isolation of extrachromosomal DNA by
 hydroxyapatite chromatography. Shoyab M; Sen A. Methods in enzymology,
 (1979) 68 199-206. Journal code: 0212271. ISSN: 0076-6879. Pub.
 country: United States. Language: English.

RNA molecules.

- L24 ANSWER 70 OF 101 MEDLINE on STN 80065640. PubMed ID: 508758. **Hydroxyapatite** chromatography of short single-stranded DNA. Wittelsberger S C; Hansen J N. Biochimica et biophysica acta, (1979 Nov 22) 565 (1) 125-30. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- AB Short single-stranded segments of calf thymus DNA were obtained by random cleavage with DNAase I. After treatment with various concentrations of DNAase I, fragment sizes were estimated using the ratio of total to terminal phosphorus. DNA populations ranging from 4--180 bases were obtained. Fragments with lengths up to 1140 were generated by shearing in a Virtis homogenizer. The hydroxyapatite elution profiles of sized populations were determined by elution with phosphate gradients. A curve relating elution molarities to single-strand chain length was 'biphasic', with the elution molarity being extremely sensitive to chain lengths below 50 nucleotides but much less sensitive to chain lengths above 100 nucleotides. These results show that single-stranded fragments below 50 nucleotides elute from hydroxyapatite appreciably before high molecular-weight denatured DNA using phosphate gradients. This is an important consideration when using hydroxyapatite to fractionate DNA populations which contain short single strands.
- L24 ANSWER 71 OF 101 MEDLINE on STN

 80034994. PubMed ID: 291053. Isolation and characterization of germ line

 DNA from mouse sperm. Shiurba R; Nandi S. Proceedings of the National

 Academy of Sciences of the United States of America, (1979 Aug) 76 (8)

 3947-51. Journal code: 7505876. ISSN: 0027-8424. Pub. country: United
- States. Language: English.

 AB Mouse germ line DNA was isolated from sperm by a physicochemical procedure that preferentially destroys contaminating somatic cell DNA. The use of reducing conditions and chelating agents in combination with phenol permitted extraction of molecular weight DNA from mature sperm nuclei with approximately 80% efficiency. Less than 0.1% somatic cell DNA contamination remained in sperm DNA prepared by this method. Germ line DNA was characterized by determination of its ultraviolet absorbance spectrum, buoyant density in cesium chloride, and melting profile on a hydroxyapatite column. Contamination by mitochondrial DNA was assessed by cesium chloride/ethidium bromide gradient centrifugation. The significance of the mouse germ line DNA isolation procedure is discussed with respect to the possible genetic transmission of mammary tumor virus and leukemia virus, the origin of antibody diversity, and the origin of testicular teratomas.
- L24 ANSWER 72 OF 101 MEDLINE on STN 80021071. PubMed ID: 90522. Characterization of an RNA-directed

DNA-polymerase from a cell line derived from a radiation-induced lymphoma in mice. Sarin P S; Donlon J; Friedman B; Gallo R C. Biochimica et biophysica acta, (1979 Sep 27) 564 (2) 235-45. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English. An RNA-directed DNA polymerase was purified from a cell line derived from a radiation-induced lymphoma in NIH Swiss mice which produced non-infectious type C virus particles. The enzyme was isolated from a high speed particulate fraction which bands at a density of 1.16--1.19 g/ml in a sucrose gradient, and purified by successive chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a KCl optimum of 50 mM, and a Mn2+ optimum of 0.25 mM. It prefers (dT)15 . (A)n to (dT)15 . (dA)n as the primer template and transcribes the poly(C) strand of (dG)15 .(C)n and (dG)15 . (OMeC)n. It transcribes heteropolymeric regions of avian myeloblastosis virus 70 S RNA, and is inhibited by antiserum to Rauscher murine leukemia virus DNA polymerase. Comparison of the properties of DNA polymerase purified from radiation-induced lymphoma cells with the DNA polymerase purified from non-defective murine type C RNA tumor viruses shows that the mouse lymphoma enzyme is both biochemically and immunologically related to

L24 ANSWER 73 OF 101 MEDLINE on STN

murine leukemia **virus** DNA polymerases.

- 79193978. PubMed ID: 109427. Purification and characterization of testosterone-binding globulin of canine serum. Suzuki Y; Okumura Y; Sinohara H. Journal of biochemistry, (1979 May) 85 (5) 1195-203. Journal code: 0376600. ISSN: 0021-924X. Pub. country: Japan. Language: English.
- AB Testosterone-binding globulin (TeBG) of canine serum was **purified** to apparent homogeneity by affinity chromatography on testosterone-17 alpha-ethynylcarboxyaminoethyl-Sepharose 4B followed by **hydroxyapatite** column chromatography. Canine TeBG was a glycoprotein containing 5.5% carbohydrates. Equilibrium sedimentation analysis in the presence and absence of 6 M guanidine hydrochloride gave molecular weights of 40,000 and 76,000, respectively, suggesting that native TeBG consists of two subunits. Equilibrium dissociation constants at 0 degrees C for testosterone and dihydrotestosterone were estimated to be 5.58 x 10(-8) M and 1.43 x 10(-8) M, respectively, and the number of binding site per native molecule was approximately unity for both androgens. Canine TeBG had **virtually** no affinity for estradiol, progesterone, or cortisol. Canine TeBG did not cross-react with a rabbit antiserum raised against bovine TeBG.
- L24 ANSWER 74 OF 101 MEDLINE on STN
- 79187996. PubMed ID: 444534. **Purification** and properties of a nuclear DNA endonuclease from HeLa S3 cells. Fischman G J; Lambert M W; Studzinski G P. Biochimica et biophysica acta, (1979 Apr 12) 567 (2) 464-71. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- An endonuclease that can act on calf thymus DNA and circular doublestranded phage PM2 DNA has been isolated from HeLa S3 cell chromatin. Approximately 200-fold purification was achieved by a sequence of subcellular fractionation, differential NaCl solubility and chromatography on CM-Sephadex, DEAE-cellulose and hydroxyapatite, and isoelectric point is pH 5.1 +/- 0.2. Divalent cations are necessary for its activity and the enzyme is heat inactivated at 60 degrees C. The enzyme activity is sensitive to caffeine and sulfhydryl reacting compounds. The molecular weight, determined by gel filtration and SDS gel electrophoresis, is approx. 22 000.
- L24 ANSWER 75 OF 101 MEDLINE on STN
- 79103926. PubMed ID: 216411. Properties and **purification** of a glucose-regulated protein from chick embryo fibroblasts. Shiu R P; Pastan I H. Biochimica et biophysica acta, (1979 Jan 25) 576 (1) 141-50. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- AB A glucose-regulated protein of molecular weight 78,000 (GRP-78) had been purified from a membrane fraction isolated from viral transformed chick embryo fibroblasts. Purification was achieved by extraction of the membrane fraction with Triton X-100, and chromatography on diethylaminoethyl-cellulose and hydroxyapatite. The purified protein exhibited one single spot on two-dimensional polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and has a pI of about 5.3. A monospecific antiserum to GRP-78 was generated in a goat. Immunofluorescence studies using affinity purified antibodies to GRP-78 revealed that this protein was not exposed on the cell surface but was localized in a granular vesicular network inside the cell that resembles the distribution of endoplasmic reticulum. The availability of purified GRP-78 and a specific antiserum to it should prove useful in elucidating

the role of this protein in glucose metabolism and its relationship to malignant transformation.

=> d 124,cbib,ab,76-101

- L24 ANSWER 76 OF 101 MEDLINE on STN 79029802. PubMed ID: 212583. Purification of the Epstein-Barr virus-determined nuclear antigen from Epstein-Barr virus-transformed human lymphoid cell lines. Luka J; Lindahl T; Klein G. Journal of virology, (1978 Sep) 27 (3) 604-11. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English. The Epstein-Barr virus-determined nuclear antigen (EBNA) was purified from extracts of the human lymphoid cell lines Raji, Namalwa, and B95-8/MLD by two different methods. In the first approach, the apparently native antigen was purified 1,200-fold by a four-step procedure involving DNA-cellulose chromatography, blue dexptran-agarose chromatography, hydroxyapatite chromatography, and gel filtration, employing complement fixation as the assay procedure. Such EBNA preparations specifically inhibited the anticomplement immunofluorescence test for EBNA and bound to methanol/acetic acid-fixed metaphase chromosomes. The purified antiger, which has a molecular weight of 170,000 to 200,000, yielded a single protein band of molecular weight about 48,000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. These data indicate that native EBNA has a tetrameric structure. In the second purification method, EBNA-containing cell extracts containing radioactively labeled proteins were incubated with anti-EBNA-positive sera, and antigen-antibody complexes were adsorbed to matrix-bound staphylococcal protein A. The bound proteins were then released with an SDS-containing buffer, and denatured EBNA was separated from antibody chains by SDS-polyacrylamide gel electrophoresis and yisualized by fluorography. The denatured EBNA obtained in
- L24 ANSWER 77 OF 101 MEDLINE on STN PubMed ID: 211127. A rapid method for the purification of 79005639. extrachromosomal DNA from eukaryotic cells. Shoyab M; Sen A. Journal of biological chemistry, (1978 Oct 10) 253 (19) 6654-6. Journal code: 2985121R. ISSN: 0021-9258. Pub. country: United States. Language: English. A simple and efficient procedure to purify the low molecular weight extrachromosomal DNA from eukaryotic cells is described. Gentle lysis of cells with urea and sodium dodecyl sulfate in 0.24 M phosphate buffer (pH 6.8) is followed by the removal of high molecular weight bulk DNA by centrifugation. Protein and RNA are removed from the supernatant by hydroxyapatite chromatography in urea/phosphate buffer. Urea is then removed with 0.15 M phosphate buffer and the extrachromosomal DNA, virtually free from protein and RNA, is finally eluted in 0.5 M phosphate buffer. The procedure allows the recovery of about 99% simian virus 40 (SV40) DNA from infected monkey kidney cells in the extrachromosomal fraction. In normal mouse, monkey, andhuman cells, approximately 1% of total cell DNA appears to be extrachromosomal.

radiochemically pure form by this procedure has a molecular weight of about 48,000, so both methods yield an EBNA monomer of the same size.

- L24 ANSWER 78 OF 101 MEDLINE on STN
 79000383. PubMed ID: 687604. Isolation of the ADP, ATP carrier as the carboxyatractylate . protein complex from mitochondria. Klingenberg M; Riccio P; Aquila H. Biochimica et biophysica acta, (1978 Aug 8) 503 (2) 193-210. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- The procedure for the isolation from mitochondria of the undenatured ADP, ATP carrier is described. The condition of retaining the nativity are elaborated. 1. As indicator for the ADP, ATP carrier (35S) - or (3H) carboxyatractylate were used. By preloading the mitochondria with carboxyatractylate, a stable carboxyatractylate . protein complex could be retained after solubilization with Triton X-100. Among the polyoxyethylene detergents emulphogen is also solubilizing, whereas Brij and Lubrol fail to solubilize. 2. When unloaded mitochondria are solubilized the capacity for binding carboxyatractylate disappears rapidly, particularly at 20 degrees C. 3. When mitochondria are preloaded with atractylate, the binding after solubilization with Triton X-100 is considerably lower than with carboxyatractylate, indicating that the high affinity of carboxyatractylate is required for effectively protecting the protein. 4. For purification hydroxyapatite is most effective. The carboxyatractylate-protein complex appears in the pass-through whereas the bulk of other mitochondrial proteins are retained such that a 7-fold purification is obtained. The nonadsorptivity to hydroxyapatite is dependent on the undenatured state maintained in the carboxyatractylate . protein complex. 5. Subsequent gel filtration on Sepharose results in a 1.5-fold further enrichment of specific carboxyatractylate binding up to

17 mumol/g protein, corresponding to a 10-fold purification from mitochondria. This value cannot be increased with further measures. 6. At the last purification step, in sodium dodecyl sulfate polyacrylamide gel electrophoresis virtually a single band of 30 000 molecular weight is found, confirming the purity at this stage. A molecular weight of 60 000 is calculated from the carboxyatractylate binding, indicating that the carboxyatractylate protein complex consists of two 30 000 subunits. From this the protein share of the ADP, ATP carrier in beef heart mitochondria can be calculated to amount to 9.5%9 7. The intact carboxyatractylate . protein complex is protected against proteolytic degradation. The release of carboxyatractylate ensues a conformational change of protein as assayed by conformation specific antibodies, concomitant with unmasking of proteolytic site as assayed by tryptic digestion. 8. The amino acid composition indicates hydrophobicity (39% polarity) and a high content of basic amino acid such as lysine and arginine. There is 1.5 mol percent cysteine and a blocked N-terminal. 9. From the solubilized complex (35S) carboxyatractylate can be removed by carboxyatractylate, ADP and ATP but not by ITP, etc., indicating the presence of recognizing sites specific fof ADP, ATP and therefore, identity with the ADP, ATP carrier. 10. Other reported procedures for isolating the ADP, ATP carrier are shown to either fail or have lower yield than the present, original procedure.

- L24 ANSWER 79 OF 101 MEDLINE on STN
- 78225521. PubMed ID: 673856. A method for the recovery of DNA from agarose gels. Tabak H F; Flavell R A. Nucleic acids research, (1978 Jul) 5 (7) 2321-32. Journal code: 0411011. ISSN: 0305-1048. Pub. country: ENGLAND: United Kingdom. Language: English.
- AB We describe a quick and versatile method for the isolation of DNA from agarose gels. The DNA is electrophoresed into a trough containing hydroxyapatite, where it is bound. The hydroxyapatite is taken out and the DNA eluted with phosphate buffer. By putting the hydroxyapatite on a small column of Sephadex G50, elution and subsequent removal of phosphate can be performed in one step. The DNA recovered can be used equally well in enzymatic incubations as DNA not purified through agarose gel electrophoresis. Several applications of this technique are described.
- L24 ANSWER 80 OF 101 MEDLINE on STN
- 78185001. PubMed ID: 207199. Large-scale isolation and partial purification of type C RNA viruses on hydroxyapatite. 1. Biochemical characterization. Smith R G; Lee S A. Analytical biochemistry, (1978 May) 86 (1) 252-63. Journal code: 0370535. ISSN: 0003-2697. Pub. country: United States. Language: English.
- L24 ANSWER 81 OF 101 MEDLINE on STN
- 78167214. PubMed ID: 206358. Radioimmunoassay for protein p28 of murine mammary tumor **virus** in organs and serum of mice and search for related antigens in human sera and breast cancer extracts. Hendrick J C; Francois C; Calberg-Bacq C M; Colin C; Franchimont P; Gosselin L; Kozma S; Osterrieth P M. Cancer research, **(1978 Jun)** 38 (6) 1826-31. Journal code: 2984705R. ISSN: 0008-5472. Pub. country: United States. Language: English.
- The main protein of the core of murine mammary tumor virus, with a molecular weight of 28,000 (p28), was solubilized by deoxycholate treatment of the virus and purified by Ultrogel ACA-54 filtration and hydroxyapatite chromatography. This protein was used as labeled antigen in a highly specific and reproducible radioimmunoassay. Organ extracts of uninfected C57BL mice did not contain p28, but organ extracts of infected RIII mice did contain the antigen. Despite the high content in the mammary gland, the level of p28 in the other organs was identical in male and female mice. Sera of uninfected mice and the majority of the sera of infected mice did not contain the antigen. The investigation included 338 human sera (50, normal; 157, breast cancer; 77, polycystic disease; 32, benign mastopathy; 12, fibroadenoma; 10, at risk of developing breast cancer). None contained an antigen related to p28. Eight of 24 extracts of human breast cancer gave results that appeared weakly positive, possibly as a result of proteolysis. Extracts of healthy breast tissue and the serum from the breast arterial and venous blood of corresponding patients were negative.
- L24 ANSWER 82 OF 101 MEDLINE on STN
- 78089719. PubMed ID: 621785. Procedure for purification of intact DNA from vaccinia virus. Cabrera C V; Esteban M. Journal of virology, (1978 Jan) 25 (1) 442-5. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English.
- AB A procedure for the isolation of intact vaccinia DNA molecules by chromatography on **hydroxyapatite** in the presence of 6 M urea is described. When lysates of **virions** containing 0.5 to 10 microgram of DNA were employed, over 95% of the **viral** DNA could be recovered free of

poteins. Vaccinia DNA molecules isolated in this manner sedimented at 68S in neutral sucrose gradients and had an average contour length of 62.3 micrometer when examined in an electron microscope, and the DNA could be cleaved with the restriction endonuclease EcoRI and BamHI. The results of these analyses showed that intact vaccinia DNA molecules of 120 X 10(6) to 130 X 10(6) molecular weight could be obtained by the procedures described.

- L24 ANSWER 83 OF 101 MEDLINE on STN
- PubMed ID: 563788. Chick-embryo DNA polymerase gamma. Identity 78084346. of gamma-polymerases purified from nuclei and mitochondria. Bertazzoni U; Scovassi A I; Brun G M. European journal of biochemistry / FEBS, (1977 Dec 1) 81 (2) 237-48. Journal code: 0107600. ISSN: 0014-2956. Pub. country: GERMANY, WEST: Germany, Federal Republic of. Language: English. The level of DNA polymerase gamma as compared to DNA polymerases alpha and beta has been determined in chick embryo by means of specific tests: the amount of gamma-polymerase in the 12-day-old chick embryo reaches about 15% of the total polymerase activity. This enzyme is mainly localized in nuclei and mitochondria, where it represents the prevailing if not the unique DNA polymerase activity. The mitochondrial DNA polymerase gamma is likely to be associated with the internal membrane or the matrix of this organelle since it is not removed by digitonin treatment. The gamma-polymerases have been purified from chick embryo nuclei and mitochondria 500-700 times by means of DEAE-cellulose, phosphocellulose and hydroxyapatite chromatographies. The purified mitochondrial DNA polymerase gamma is closely related to the homologous enzyme purified from the nuclei of the same cells. So far, they cannot be distinguished on the basis of their sedimentation, catalytical properties and response to inhibitors or denaturating agents. The purified gamma enzymes are distinct from the chick embryo DNA polymerases alpha and beta and are not inhibited by antibodies prepared against the latter enzymes. The nuclear
- L24 ANSWER 84 OF 101 MEDLINE on STN PubMed ID: 924490. Simple method of purification of bacteriophage lambda by hydroxyapatite column chromatography. Das S; Ghosh S. Indian journal of biochemistry & biophysics, (1977 Mar) 14 (1) 65-7. Journal code: 0310774. ISSN: 0301-1208. Pub. country: India. Language: English.

virus DNA polymerase assay with natural mRNAs.

and mitochondrial gamma-polymerases do not respond to the oncogenic RNA

- L24 ANSWER 85 OF 101 MEDLINE on STN
- 78040500. PubMed ID: 200268. Purification and characterization of baboon endogenous virus DNA polymerase. Sarin P S; Friedman B; Gallo R C. Biochimica et biophysica acta, (1977 Nov 16) 479 (2) 198-206. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- An RNA-directed DNA polymerase was purified from baboon endogenous type-C virus by successive column chromatography on DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 8.0, a Mn2+ optimum of 1 mM, and a KCl optimum of 40 mM. The purified enzyme transcribes heteropolymeric regions of viral 60--70 S RNA isolated from different type-C viruses. The purified enzyme is immunologically related to a similarly purified polymerase from the cat endogenous type-C virus RD114.
- MEDLINE on STN L24 ANSWER 86 OF 101
- PubMed ID: 63292. Purification and characterization of gibbon ape leukemia virus DNA polymerase. Sarin P S; Gallo R C. Biochimica et biophysica acta, (1976 Dec 1) 454 (2) 212-21. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- An RNA directed DNA polymerase was **purified** over 2500 fold from gibbon ape leukemia virus by successive column chromatography on Sephadex G100, DEAF cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a Mn2+ optimum of 0.8 mM, and KCl optimum of 80 mM. The purified enzyme transcribes heteropolymeric regions of **viral** 60-70 S RNA isolated from avian myeloblastosis **virus**, Rauscher murine leukemia **virus** and simian sarcoma **virus** and it is inhibited by antiserum prepared against either gibbon ape leukemia virus or simian sarcoma virus DNA polymerases.
- L24 ANSWER 87 OF 101 MEDLINE on STN
- 77031841. PubMed ID: 185420. Isolation and structural characterization of monomeric and dimeric forms of replicative intermediates of Kilham rat virus DNA. Gunther M; May P. Journal of virology, (1976 Oct) 20 (1) 86-95. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English.
- Two virus-specific species of newly synthesized DNA were isolated from rat fibroblast cell cultures infected with the Kilham rat **virus** (RV).

These two DNA species were **purified**; their behavior on **hydroxyapatite** chromatography and their sedimentation coefficients in sucrose gradients were determined. One of the two species corresponds to the linear double-stranded form of the RV DNA, and the other corresponds to the dimeric duplex form. After denaturation, a fraction of both species showed an intramolecular renaturation; these molecules are composed of **viral** strand covalently linked to complementary strand. Models for the structure of both species are posposed. Both species may be considered as double-strand replicative intermediates of the single-stranded RV DNA.

- L24 ANSWER 88 OF 101 MEDLINE on STN
- 76024145. PubMed ID: 170217. Appearance of C-type virus-like particles after co-cultivation of a human tumor-cell line with rat (XC) cells. Gabelman N; Waxman S; Smith W; Douglas S D. International journal of cancer. Journal international du cancer, (1975 Sep 15) 16 (3) 355-69. Journal code: 0042124. ISSN: 0020-7136. Pub. country: Denmark. Language: English.
- A serially progagated cell line (L104) was established by co-cultivation of alung adenocarcinoma (L-1) from a patient with concurrent chronic lymphocytic leukemia and XC, a non-producer rat line, known to carry the Rous sarcoma **virus** (RSV) genome. Karyotype of the L104 cultures revealed predominantly rat-like patterns; however, about 5% of the cells reacted with HLA antibodies and demonstrated human isozyme patterns. Electron microscopy of L104 cells revealed the presence of C-type particles budding from the cell membranes and in cytoplasmic vacuoles. Virus was not detected in any of the other normal lung, lung tumor or XC cells examined after co-cultivation with XC cells. The particles isolated from tissue culture fluids had the biochemical and biophysical characteristics common to other known mammalian C-type particles and were serologically related to the woolly monkey virus (WMV)/gibbon ape leukemia virus (GaLV) complex. Cross-hybridization between viral 3H-DNA transcripts and cellular RNAs from virus-infected cells clearly show the presence of sequences in the L104 cellular RNA related to both the GaLV/WMV group of viruses and rat viruses. Hydroxyapatite chromatography reveals however that the primate-related sequences in the viral RNA are indistinguishable from WMV in thermal elution profile. The host range of L104 virus appears to vary greatly from WMV in being xenotropic and, in the cell lines thus far tested appears, to infect only rat cells. The virus gave positive KC but negative XC assays. Inoculation of whole cells or cell-free supernatants into weaning hamster did not result in either solid tumors or leukemia. Co-cultivation of appropriate cell lines may represent an approach to the detection of latent viruses in human neoplasia.
- L24 ANSWER 89 OF 101 MEDLINE on STN
- 75208988. PubMed ID: 1149742. Improved techniques for the fractionation of non-histone proteins of chromatin on hydroxyapatite. Rickwood D; MacGillivray A J. European journal of biochemistry / FEBS, (1975 Feb 21) 51 (2) 593-601. Journal code: 0107600. ISSN: 0014-2956. Pub. country: GERMANY, WEST: Germany, Federal Republic of. Language: English.
- AB The effect of the dissociation medium on the fractionation of chromatin on hydroxyapatite has been studied. Optimal separations of the histones and non-histone protein are only achieved when columns are run in buffers containing high concentrations of sodium ions. We have modified our previously published method such that the chromosomal proteins can be recovered in virtually quantitative yields. Each of the hydroxyapatite fractions has been analysed with respect to nucleic acid content and the proteins have been analysed by two-dimensional gel electrophoresis.
- L24 ANSWER 90 OF 101 MEDLINE on STN
- 75184070. PubMed ID: 166680. A rapid **purification** method of restriction endonucleases from Haemophilus strains. Kopecka H. Biochimica et biophysica acta, **(1975 May 23)** 391 (1) 109-20. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- AB A simple and rapid method of **purification** of restriction endonucleases from different Haemophilus strains is presented. By this method highly **purified** and stable enzymes can be obtained. Separation of different restriction activities present in the same strain is possible. This method was so far successfully used with Haemophilus influenzae, Haemophilus parainfluenzae and Haemophilus aegyptius strains. The main advantages over previously published procedures reside in the simplication of certain **purification** steps (for instance the BioGel A 0.5 M filtration is replaced by a **hydroxyapatite** batch step), elimination of exonuclease activity by fractionation with (NH4) 2SO4, separation of different restriction activities by phosphocellulose chromatography, application of this method to various strains and high **purification** degree of enzymes.

- L24 ANSWER 91 OF 101 MEDLINE on STN
- 75097765. PubMed ID: 163367. Proteins in intracellular simian **virus** 40 nucleoportein complexes: comparison with simian **virus** 40 core proteins. Meinke W; Hall M R; Goldstein D A. Journal of virology, **(1975 Mar)** 15 (3) 439-48. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English.
- Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the **viral** polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.
- L24 ANSWER 92 OF 101 MEDLINE on STN
- 75097715. PubMed ID: 163342. Characterization of human papovavirus BK DNA. Howley P M; Mullarkey M F; Takemoto K K; Martin M A. Journal of virology, (1975 Jan) 15 (1) 173-81. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English.
- AB The DNA of the BK virus (BKV) human papovavirus was found to be heterogeneous, consisting of at least four discrete species of DNA. Only the largest of these four species, BKV DNA (i), which has a molecular weight calculated to be 96% that of simian virus 40 (SV40) DNA, was infectious. Homogeneous preparations of BKV DNA were obtained, however, from virions purified after low multiplicity infections of human embryonic kidney cells. BKV DNA (i) was shown to contain a single R-Eco RI and four R-Hind cleavage sites. The R-Eco RI site was localized in the largest R-Hind cleavage fragment. Radiolabeled BKV DNA reassociated slightly faster than SV40 DNA; 20 to 30% polynucleotide sequence homology was demonstrated between the genomes of BKV and SV40 when the reaction was monitored by chromatography on hydroxyapatite.
- L24 ANSWER 93 OF 101 MEDLINE on STN
- 75010464. PubMed ID: 4370057. Granulated **hydroxyapatite**: preparation and chromatographic properties. Mazin A L; Sulimova G E; Vanyushin B F. Analytical biochemistry, **(1974 Sep)** 61 (1) 62-71. Journal code: 0370535. ISSN: 0003-2697. Pub. country: United States. Language: English.
- L24 ANSWER 94 OF 101 MEDLINE on STN
- 74097651. PubMed ID: 4777662. **Hydroxyapatite** chromatography of short double-helical DNA. Wilson D A; Thomas C A Jr. Biochimica et biophysica acta, (1973 Dec 21) 331 (3) 333-40. Journal code: 0217513. ISSN: 0006-3002. Pub. country: Netherlands. Language: English.
- L24 ANSWER 95 OF 101 MEDLINE on STN
- 74031339. PubMed ID: 4584872. A simple method for the separation of single-stranded and double-stranded RNA on hydroxyapatite. Kalmakoff J; Payne C C. Analytical biochemistry, (1973 Sep) 55 (1) 26-33. Journal code: 0370535. ISSN: 0003-2697. Pub. country: United States. Language: English.
- L24 ANSWER 96 OF 101 MEDLINE on STN
- 74020661. PubMed ID: 4355929. **Hydroxyapatite** chromatography and formamide denaturation of **adenovirus** DNA. Tibbetts C; Johansson K; Philipson L. Journal of virology, **(1973 Aug)** 12 (2) 218-25. Journal code: 0113724. ISSN: 0022-538X. Pub. country: United States. Language: English.
- L24 ANSWER 97 OF 101 MEDLINE on STN
- 72260424. PubMed ID: 5053102. **Hydroxyapatite** column chromatography of reconstitution products of TMV: some properties of the isolated fractions. Guilley H; Stussi C; Thouvenel J C; Pfeiffer P; Hirth L. Virology, (1972 Aug) 49 (2) 475-85. Journal code: 0110674. ISSN: 0042-6822. Pub. country: United States. Language: English.
- L24 ANSWER 98 OF 101 MEDLINE on STN
- 71060531. PubMed ID: 5488405. Separation of oligonucleotides on hydroxyapatite columns. Mundry K W. Bulletin de la Societe de chimie biologique, (1970) 52 (8) 873-83. Journal code: 7503398. ISSN:

```
0037-9042. Pub. country: France. Language: English.
L24 ANSWER 99 OF 101
                         MEDLINE on STN
71060528. PubMed ID: 5488402. [Chromatography of nucleic acids of healthy
    tobacco and tobacco infected by various viruses on a hydroxyapatite
     column]. Chromatographie des acides nucleiques de tabac sain et infecte
    par divers virus sur colonne d'hydroxyapatite. Pinck L. Bulletin de la
    Societe de chimie biologique, (1970) 52 (8) 843-55. Journal code:
    7503398. ISSN: 0037-9042. Pub. country: France. Language: French.
L24 ANSWER 100 OF 101
                          MEDLINE on STN
          PubMed ID: 5459575. Chromatography of RNA-DNA complexes on
70293053.
    hydroxyapatite. A method for the separation of the complementary strands
    in T2 DNA. Siebke J C; Ekren T. European journal of biochemistry / FEBS,
     (1970 Feb) 12 (2) 380-6. Journal code: 0107600. ISSN: 0014-2956. Pub.
    country: GERMANY, WEST: Germany, Federal Republic of. Language: English.
L24 ANSWER 101 OF 101
                          MEDLINE on STN
            PubMed ID: 4889266. Separation of T-even bacteriophage
69175424.
    deoxyribonucleic acid from host deoxyribonucleic acid by hydroxyapatite
    chromatography. Oishi M. Journal of bacteriology, (1969 Apr) 98 (1)
    104-8. Journal code: 2985120R. ISSN: 0021-9193. Pub. country: United
    States. Language: English.
=> d his
     (FILE 'HOME' ENTERED AT 18:36:36 ON 22 JUN 2005)
     FILE 'USPATFULL' ENTERED AT 18:36:44 ON 22 JUN 2005
L1
          9532 S HYDROXYAPATITE
          1599 S L1 AND HYDROXYAPATITE/CLM
L2
            69 S L2 AND ADENOVIR?
L3
             13 S L3 AND ADENOVIR?/CLM
L4
            33 S L3 AND AY<2001
L5
             27 S L5 NOT L4
L6
L7
             1 S US5496926/PN
             1 S L7 AND ADENOVIR?
L8
             1 S US5624833/PN
1.9
             1 S L9 AND ADENOVIR?
L10
               E ERICKSON AMY E/IN
T.11
             1 S E3
               E SHABRAM PAUL W/IN
             5 S E3
L12
     FILE 'WPIDS' ENTERED AT 18:46:16 ON 22 JUN 2005
          2918 S HYDROXYAPATITE
T.1.3
            14 S L13 AND ADENOVIR?
L14
               E SHABRAM P W/IN
L15
              6 S E3
               E ERICKSON A E/IN
             1 S E3
L16
     FILE 'USPATFULL' ENTERED AT 18:53:21 ON 22 JUN 2005
              E VELLEKAMP G J/IN
              7 S E4 OR E5
L17
             3 S L17 AND HYDROXYAPATITE
L18
               E CUTLER COLLETTE/IN
              1 S E3
L19
```

E CANNON-CARLSON S V/IN

E CANNON CARLSON S V/IN

5 S E4 OR E5

FILE 'MEDLINE' ENTERED AT 18:59:27 ON 22 JUN 2005

L21 9422 S HYDROXYAPATITE

230 S L21 AND (VIR? OR RETROVIR? OR ADENOVIR?)

L23 199 S L22 AND PY<2001

101 S L23 AND PURIF? L24

=> log off

L20

L22

ALL L# QUERIES AND ANSWER SETS ARE DELETED AT LOGOFF LOGOFF? (Y)/N/HOLD:y

STN INTERNATIONAL LOGOFF AT 19:18:23 ON 22 JUN 2005