

Algorithms of Numerical Linear Algebra Assignment 2

Exercise 1 (Singularity of A^*A)

2P.

Given $A \in \mathbb{C}^{m \times n}$ with $m \geq n$, show that A^*A is nonsingular if and only if A has full rank.

Exercise 2 (QR by Hand)

3P.

Using any method you like, determine on paper a reduced QR factorization $A=\hat{Q}\hat{R}$ and a full QR factorization A=QR where

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Exercise 3 (Givens Rotations)

4P.

Consider the orthogonal matrices $F, J \in \mathbb{R}^{m \times m}$

$$F_{\theta} = \begin{pmatrix} -c & s \\ s & c \end{pmatrix} \quad J_{\theta} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$

where $s=\sin\theta$ and $c=\cos\theta$ for some $\theta\in\mathbb{R}$. The first matrix has $\det F=-1$ and is a reflector — the special case of a Householder reflector in dimension 2. The second has $\det J=1$ and effects a rotation instead of a reflection. Such a matrix is called a *Givens Rotation*.

- (a) Describe exactly what geometric effects left-multiplications by F and J have on the plane \mathbb{R}^2 . (J rotates the plane by the angle θ , for example, but is the rotation clockwise or counterclockwise?)
- (b) Describe an algorithm for QR factorization that is analogous to a Householder QR Factorization but based on Givens rotations instead of Householder reflections.

Exercise 4 (*Least Squares*)

4P.

Given $A \in \mathbb{C}^{m \times n}$ of rank n and $b \in \mathbb{C}^m$, consider the block 2×2 system of equations

$$\begin{pmatrix} I & A \\ A^* & 0 \end{pmatrix} \begin{pmatrix} r \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix},$$

where I is the $m \times m$ identity. Show that this system has a unique solution $(r, x)^T$, and that the vectors r and x are the residual and the solution of the least squares problem [1, (18.1)].

```
import numpy as np

def magic(A):
    U,S,V = np.linalg.svd(A)
    eps = np.spacing(1)
    tol = max(np.shape(A))*S[0]*eps
    r = sum(S>tol)
    S = np.diag(np.ones(r)/S[0:r])
    X = np.dot(V[:,0:r], np.dot(S, U[:,0:r].T))
    return X
```

What does the function *magic* compute?

Exercise 6 (Householder QR Factorization)

5P.

Make sure to follow the requirements for programming tasks stated on the information sheet!

- (a) Write a Python function \mathbb{W} , $\mathbb{R} = \text{implicit_qr}(\mathbb{A})$ that computes an implicit representation of a **full** QR factorization A = QR using Householder reflections. The input is a matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ and full rank n. The output variables are a lower-triangular matrix $W \in \mathbb{C}^{m \times n}$ whose columns are the vectors v_k defining the successive Householder reflections, and a triangular matrix $R \in \mathbb{C}^{m \times n}$.
- (b) Write a Python function $Q = \text{form_q}(W)$ which retrieves the matrix Q from the Householder reflectors. The input value is the matrix W obtained from calling implicit_qr. The output is the corresponding unitary matrix $Q \in \mathbb{C}^{m \times m}$.

Note: The function np.sign does not compute the sign of a complex number as defined in the book.

Hint: The sign of a complex (or real) number z should satisfy z = sign(z)|z|.

References

[1] L.N. Trefethen and D. Bau. *Numerical Linear Algebra*. Society for Industrial and Applied Mathematics, 1997.