COT 4521: INTRODUCTION TO COMPUTATIONAL GEOMETRY

Polygon Triangulation

Paul Rosen Assistant Professor University of South Florida

TRIANGULATION OF POLYGONS

- DECOMPOSE THE POLYGON INTO SHAPES THAT ARE EASIER TO HANDLE: TRIANGLES
- A TRIANGULATION OF A POLYGON P IS A DECOMPOSITION OF P INTO TRIANGLES WHOSE VERTICES ARE VERTICES OF P. IN OTHER WORDS, A TRIANGULATION IS A MAXIMAL SET OF NON-CROSSING DIAGONALS.

DIAGONAL-BASED TRIANGULATION

- DIAGONAL TEST
- The segment $s=v_iv_i$ is a diagonal of P iff
 - for all edges e of P that are not incident to either v_i and v_j , s and e do not intersect.
 - s is internal to P in the neighborhood of v_i and v_j .
- ALGORITHM: DIAGONAL TRIANGULATION
 REPEAT N-3 TIMES
 FOR EACH CANDIDATE DIAGONAL
 TEST EACH OF NEIGHBORHOODS
 OUTPUT PROPER DIAGONAL

TRIANGULATION THEORY: EXISTENCE OF A DIAGONAL

- Every polygon must have ≥ 1 strictly convex vertex (no collinearity)
- Every polygon of $n \geq 4$ vertices has a diagonal
- EVERY N-VERTEX POLYGON P MAY BE PARTITIONED INTO TRIANGLES BY ADDING (≥ 0) DIAGONALS [PROOF BY INDUCTION USING DIAGONALS]

TRIANGULATION THEORY OF POLYGON

- LEMMA: EVERY POLYGON MUST HAVE AT LEAST ONE STRICTLY CONVEX VERTEX.
- PROOF:
 - If the edges of polygon oriented in a counter-clockwise traversal, then a convex vertex is a left turn, and reflex vertex is right turn and interior of the polygon is always to the left
 - Let L is the line through the lowest vertex v (y-coordinate)
 - The interior of the polygon must be above
 - The edges following v must be above L
 - The walker make the left turn at v, thus v is convex

EXISTENCE OF A DIAGONAL

- LEMMA: EVERY POLYGON P WITH MORE THAN THREE VERTICES HAS A DIAGONAL
- PROOF:
 - Let v be the leftmost vertex of P.
 - Let u and w be its neighbors.
 - If uw is a diagonal we are done

EXISTENCE OF A DIAGONAL

- If uw is not a diagonal, let v^{\prime} be the vertex in triangle (u,v,w) that is farthest from uw
- Then vv' is a diagonal: If an edge was crossing it, one of its endpoints would be farther from uw and inside (u,v,w)

TRIANGULATION THEORY: PROPERTIES

- LEMMA: AN INTERNAL DIAGONAL EXISTS BETWEEN ANY TWO NONADJACENT VERTICES OF A POLYGON P IF AND ONLY IF P IS CONVEX POLYGON.
- PROOF: THE PROOF CONSISTS OF TWO PARTS, BOTH ESTABLISHED BY CONTRADICTION.

TRIANGULATION THEORY: PROPERTIES

• **THEOREM:** THE NUMBER OF DISTINCT TRIANGULATIONS OF A CONVEX POLYGON WITH n VERTICES IS THE CATALAN NUMBER

$$C_n = \frac{1}{n-1} \binom{2(n-2)}{n-2}$$

Proof: Let P_n be a convex polygon with vertices labeled from 1 to n counterclockwise. Let τ_n be the set of triangulation of P_n with t_n elements.

Let ϕ be the map from τ_n to τ_{n-1}

TRIANGULATION THEORY: PROPERTIES

• THEOREM: LET P BE A SIMPLE POLYGON WITH N VERTICES. THE NUMBER OF TRIANGULATIONS OF P IS BETWEEN I AND \mathcal{C}_n .

TRIANGULATION THEORY

- EVERY POLYGON P OF N VERTICES CAN BE PARTITIONED INTO TRIANGLES BY THE ADDITION OF ZERO OR MORE DIAGONALS. (INDUCTION PROOF)
 - Base case: N = 3 (triangle)
 - Assumption: Let it be true for < N sided polygon
 - Any N sided polygon can be partitioned into two polygons of less then N sides each by adding a diagonal, each of which can be partitioned by using premise 2 above
 - Thus, it is true for all N.

TRIANGULATION THEORY

- Any diagonal cuts P into two simple subpolygons P_1 and P_2
- Let m_1 be the number of vertices of P_1 and m_2 the number of vertices of P_2
- BOTH m_1 AND m_2 MUST BE SMALLER THAN n
 - So by induction P_1 and P_2 can be triangulated
 - Hence, P can be triangulated as well

TRIANGULATION THEORY

- ANY TRIANGULATION OF P CONSISTS OF n-2 TRIANGLES.
 - Consider an arbitrary diagonal in some triangulation \mathcal{T}_P
 - The diagonal cuts P into two subpolygons with m_1 and m_2 vertices
 - Every vertex of P occurs in exactly one of the two subpolygons, except for the vertices defining the diagonal, which occur in both subpolygons. Hence, $m_1 + m_2 = n + 2$.
 - By induction, any triangulation of P_i consists of $m_i 2$ triangles, which implies that T_P consists of $(m_1 2) + (m_2 2) = n 2$ triangles.

Brute Force Triangulation

- THEOREM: EVERY POLYGON P OF N VERTICES CAN BE PARTITIONED INTO TRIANGLE BY THE ADDITION OF (ZERO OR MORE) DIAGONALS.
- COMPLEXITY OF DIAGONAL-BASED ALGORITHM:
 - $O(n^2)$ # of diagonal candidates
 - O(n) testing each of neighborhoods
 - Repeating this $O(n^3)$ computation for each of the n-3 diagonals yields $O(n^4)$
 - Can be made $O(n^3)$

EAR BASED IDEA....

- LOCATE AN EAR
- OUTPUT DIAGONAL
- CLIP THE EAR
- REPEAT UNTIL A TRIANGLE IS LEFT

EAR BASED IDEA....

• DEFINITION OF EAR: THREE CONSECUTIVE VERTICES, A, B, C FORM AN EAR IF AC IS A DIAGONAL

• MEISTERS' TWO EARS THEOREM: EVERY POLYGON ($N \ge 4$) HAS AT LEAST TWO NON-OVERLAPPING EARS.

EAR BASED IDEA....

- PROOF: CONSIDER A TRIANGULATION OF AN N-POLYGON, WITH n>3. The triangulation consists of n-2 triangles. Since the <u>Polygon has n edges but there are only n-2 triangles, by the Pigeonhole Principle, there are <u>at least two</u> triangles with two <u>Polygon's edges</u>. These are the ears.</u>
- ANOTHER PROOF: IT IS KNOWN THAT A SIMPLE POLYGON CAN ALWAYS BE TRIANGULATED. LEAVES IN THE DUAL-TREE OF THE TRIANGULATED POLYGON CORRESPOND TO EARS AND EVERY TREE OF TWO OR MORE NODES MUST HAVE AT LEAST TWO LEAVES.

TRIANGULATION: IMPLEMENTATION

Algorithm: TRIANGULATION

Initialize the ear tip status of each vertex.

while n > 3 do

Locate an ear tip v_2 .

Output diagonal $v_1 v_3$.

Delete v_2 .

Update the ear tip status of v_1 and v_3 .

TRIANGULATION: IMPLEMENTATION

Total: O(n³)

Can be made: O(n²)

