Chitramoy Mukherjee

DSC 540-T302

Week-3 and Week-4

Date: 09/22/2023

Activity-5

In [2]:

Suppose you are working with the famous Boston housing price(from 1960) # the machine learning community. Many regression problem can be formulated # run on this dataset. You will do perform basic data wrangling activity(i # dataset by reading it as a pandas dataframe.

Load necessary libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt

```
In [3]:
         # Read Boston housig dataset and read 10 records
            import csv
            file_path = 'C:\\Users\\14024\\OneDrive\\Desktop\\MS-DSC\\DSC-540\\Week-4\
            file_path
            # Open the CSV file
            with open(file_path, 'r') as file:
                # Create a CSV reader
                csv reader = csv.reader(file)
                # Skip the header row if it exists
                next(csv reader, None)
                # Read and print the first 10 records
                for i, row in enumerate(csv reader):
                    if i < 10:
                        print(row)
                    else:
                        break
```

```
['0.00632', '18', '2.31', '0', '0.538', '6.575', '65.2', '4.09', '1', '2
96', '15.3', '396.9', '4.98', '24']
['0.02731', '0', '7.07', '0', '0.469', '6.421', '78.9', '4.9671', '2',
'242', '17.8', '396.9', '9.14', '21.6']
['0.02729', '0', '7.07', '0', '0.469', '7.185', '61.1', '4.9671', '2',
'242', '17.8', '392.83', '4.03', '34.7']
['0.03237', '0', '2.18', '0', '0.458', '6.998', '45.8', '6.0622', '3',
'222', '18.7', '394.63', '2.94', '33.4']
['0.06905', '0', '2.18', '0', '0.458', '7.147', '54.2', '6.0622', '3',
'222', '18.7', '396.9', '5.33', '36.2']
['0.02985', '0', '2.18', '0', '0.458', '6.43', '58.7', '6.0622', '3', '2
22', '18.7', '394.12', '5.21', '28.7']
['0.08829', '12.5', '7.87', '0', '0.524', '6.012', '66.6', '5.5605',
'5', '311', '15.2', '395.6', '12.43', '22.9']
['0.14455', '12.5', '7.87', '0', '0.524', '6.172', '96.1', '5.9505', '5', '311', '15.2', '396.9', '19.15', '27.1']
['0.21124', '12.5', '7.87', '0', '0.524', '5.631', '100', '6.0821', '5',
'311', '15.2', '386.63', '29.93', '16.5']
['0.17004', '12.5', '7.87', '0', '0.524', '6.004', '85.9', '6.5921',
'5', '311', '15.2', '386.71', '17.1', '18.9']
```

```
In [4]:  # Read the CSV file into a DataFrame
df = pd.read_csv(file_path)

# Get the total number of records
total_records = len(df)

print(f'Total number of records in the CSV file: {total_records}')
```

Total number of records in the CSV file: 506

```
In [5]: # Create a smaller dataframe by dropping CHAS, NOX, B and LSTAT

print("\n 4 columns dropped by using df.drop() method\n")

# List of column names to drop
columns_to_drop = ['CHAS', 'NOX', 'B', 'LSTAT']

df = df.drop(columns=columns_to_drop)
print(df)
```

4 columns dropped by using df.drop() method

```
CRIM
                                     AGE
                     INDUS
                                RM
                                              DIS
                                                   RAD
                                                        TAX
                                                              PTRATIO
                                                                       PRICE
                 ΖN
0
     0.00632
              18.0
                      2.31
                             6.575
                                    65.2
                                          4.0900
                                                     1
                                                        296
                                                                 15.3
                                                                         24.0
     0.02731
                0.0
                      7.07
                             6.421
                                    78.9
                                          4.9671
                                                        242
                                                                 17.8
1
                                                     2
                                                                         21.6
2
     0.02729
                0.0
                      7.07
                             7.185
                                    61.1
                                          4.9671
                                                     2
                                                         242
                                                                 17.8
                                                                         34.7
3
     0.03237
                                    45.8
                                                         222
                                                                         33.4
                0.0
                      2.18
                            6.998
                                          6.0622
                                                     3
                                                                 18.7
                                    54.2
4
     0.06905
                0.0
                      2.18
                            7.147
                                          6.0622
                                                     3
                                                        222
                                                                 18.7
                                                                         36.2
. .
                . . .
                                                                         . . .
     0.06263
                0.0
                     11.93
                            6.593
                                    69.1
                                          2.4786
                                                        273
                                                                 21.0
                                                                         22.4
501
                                                     1
502
     0.04527
                     11.93
                                                        273
                                                                         20.6
                0.0
                             6.120
                                    76.7
                                          2.2875
                                                     1
                                                                 21.0
503
     0.06076
                0.0
                     11.93
                             6.976
                                    91.0
                                          2.1675
                                                     1
                                                        273
                                                                 21.0
                                                                         23.9
504
     0.10959
                0.0
                     11.93
                             6.794
                                    89.3
                                          2.3889
                                                     1
                                                        273
                                                                 21.0
                                                                         22.0
505
     0.04741
                0.0
                    11.93
                            6.030
                                    80.8
                                          2.5050
                                                     1
                                                        273
                                                                 21.0
                                                                         11.9
```

[506 rows x 10 columns]

Out[6]:

	CRIM	ZN	INDUS	RM	AGE	DIS	RAD	TAX	PTRATIO	PRICE
499	0.17783	0.0	9.69	5.569	73.5	2.3999	6	391	19.2	17.5
500	0.22438	0.0	9.69	6.027	79.7	2.4982	6	391	19.2	16.8
501	0.06263	0.0	11.93	6.593	69.1	2.4786	1	273	21.0	22.4
502	0.04527	0.0	11.93	6.120	76.7	2.2875	1	273	21.0	20.6
503	0.06076	0.0	11.93	6.976	91.0	2.1675	1	273	21.0	23.9
504	0.10959	0.0	11.93	6.794	89.3	2.3889	1	273	21.0	22.0
505	0.04741	0.0	11.93	6.030	80.8	2.5050	1	273	21.0	11.9

In [7]: # Plot histograms for all columns
 df.hist(bins=20, figsize=(10, 10))
 plt.show()


```
▶ # Get the column names
In [97]:
             columns = df.columns
             print(columns)
             # Loop through each column and plot a histogram
             for column in columns:
                  plt.figure(figsize=(10, 10))
                 plt.hist(df[column], bins=10)
                 plt.title(f'Histogram of {column}')
                 plt.xlabel(column)
                  plt.ylabel('Frequency')
                  plt.show()
             Index(['CRIM', 'ZN', 'INDUS', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRAT ____
             IO',
                     'PRICE'],
                    dtype='object')
                                              Histogram of CRIM
                400
                300
```

```
In [8]: # Create a scatter plot of crime rate vs price

df.plot.scatter('CRIM','PRICE', s=150,c='blue',edgecolor='k',linewidths = plt.grid(True)
    plt.title('Crime rate vs price scatter plot')
    plt.xlabel("Crime rate",fontsize=15)
    plt.ylabel("price",fontsize=15)
    plt.show
```

Out[8]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [9]: # Create the plot
   plt.scatter(np.log10(df['CRIM']),df['PRICE'],c='red')
   plt.title("Crime rate (Log) vs. Price plot", fontsize=18)
   plt.xlabel("Log of Crime rate",fontsize=15)
   plt.ylabel("Price",fontsize=15)
   plt.grid(True)
   plt.show()
```



```
In [23]:  # Percentage of houses with a low price (<$20,000)

low_price_house=df['PRICE']<20
prcnt=low_price_house.mean()*100
print("\nPercentage of house with <20,000 price is: ",prcnt)</pre>
```

Percentage of house with <20,000 price is: 41.50197628458498

Activity 6

```
In [8]: #Read adult income dataset

df = pd.read_csv("C:\\Users\\14024\\OneDrive\\Desktop\\MS-DSC\\DSC-540\\We
df.head()
Out[8]: State- Never- Adm- Not-in-
```

	39	State- gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	Male	2174	0	40
0	50	Self- emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	Male	0	0	13
1	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	Male	0	0	40
2	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Male	0	0	40
3	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Female	0	0	40
4	37	Private	284582	Masters	14	Married- civ- spouse	Exec- managerial	Wife	Female	0	0	40

```
In [13]: | # Create a script to read a text file line by line.
names = []
with open('C:\\Users\\14024\\OneDrive\\Desktop\\MS-DSC\\DSC-540\\Week-4\\a
for line in f:
        f.readline()
        var=line.split(":")[0]
        names.append(var)
```

```
In [14]:
             names
   Out[14]: ['age',
               'workclass',
               'fnlwgt',
               'education',
               'education-num',
               'marital-status',
               'occupation',
               'relationship',
               'sex',
               'capital-gain',
               'capital-loss',
               'hours-per-week',
               'native-country']
In [15]:
         # Add a name of Income for the response variable to the dataset.
             names.append('Income')
             df = pd.read_csv("C:\\Users\\14024\\OneDrive\\Desktop\\MS-DSC\\DSC-540\\We
```

Out[15]:

df.head()

se	relationship	occupation	marital- status	education- num	education	fnlwgt	workclass	age	
Ма	Not-in-family	Adm- clerical	Never- married	13	Bachelors	77516	State-gov	39	0
Ма	Husband	Exec- managerial	Married- civ- spouse	13	Bachelors	83311	Self-emp- not-inc	50	1
Ма	Not-in-family	Handlers- cleaners	Divorced	9	HS-grad	215646	Private	38	2
Ма	Husband	Handlers- cleaners	Married- civ- spouse	7	11th	234721	Private	53	3
Fema	Wife	Prof- specialty	Married- civ- spouse	13	Bachelors	338409	Private	28	4
				_	_	_	_		4

```
In [16]:
           # Find the missing values
              df.isnull().sum()
    Out[16]: age
                                  0
              workclass
                                  0
              fnlwgt
                                  0
                                  0
              education
              education-num
                                  0
              marital-status
                                  0
              occupation
                                  0
              relationship
                                  0
                                  0
              sex
                                  0
              capital-gain
              capital-loss
                                  0
              hours-per-week
                                  0
              native-country
                                  0
              Income
                                  0
              dtype: int64
           # Create a dataframe with only age, education and occupation by subsetting
In [18]:
              df1 = df[['age','education','occupation']]
              df1.head()
    Out[18]:
                  age
                      education
                                     occupation
                       Bachelors
                                    Adm-clerical
               0
                  39
               1
                  50
                       Bachelors
                                 Exec-managerial
                        HS-grad Handlers-cleaners
               2
                  38
               3
                   53
                               Handlers-cleaners
                           11th
                   28
                       Bachelors
                                   Prof-specialty
```

In [19]:
Plot the histogram of age with bin size 20.

df1['age'].hist(bins=20)

Out[19]: <AxesSubplot:>

In [22]: # Create a function to strip the whitespace characters.Use apply method to
Create a new column, copy the values from this new column to the old col

def strip_whitespace(s):
 return s.strip()

Apply strip_whitespace function on education column
df1['education_stripped']=df['education'].apply(strip_whitespace)
df1['education']=df1['education_stripped']
df1.drop(labels=['education_stripped'],axis=1,inplace=True)

Apply strip_whitespace function on occupation column
df1['occupation_stripped']=df['occupation'].apply(strip_whitespace)
df1['occupation']=df1['occupation_stripped']
df1.drop(labels=['occupation_stripped'],axis=1,inplace=True)

C:\Users\14024\AppData\Local\Temp\ipykernel_9460\2882816121.py:7: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df1['education_stripped']=df['education'].apply(strip_whitespace)
C:\Users\14024\AppData\Local\Temp\ipykernel_9460\2882816121.py:8: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df1['education']=df1['education stripped']

C:\Users\14024\AppData\Local\Temp\ipykernel_9460\2882816121.py:9: Settin
gWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df1.drop(labels=['education stripped'],axis=1,inplace=True)

C:\Users\14024\AppData\Local\Temp\ipykernel_9460\2882816121.py:12: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df1['occupation_stripped']=df['occupation'].apply(strip_whitespace)
C:\Users\14024\AppData\Local\Temp\ipykernel_9460\2882816121.py:13: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df1['occupation']=df1['occupation_stripped']

C:\Users\14024\AppData\Local\Temp\ipykernel_9460\2882816121.py:14: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#return

```
ing-a-view-versus-a-copy)
df1.drop(labels=['occupation_stripped'],axis=1,inplace=True)
```

In [26]: # Find the number of people who are aged between 30 and 50. df2=df1[(df1['age']>=30) & (df1['age']<=50)] df2.head()</pre>

Out[26]: and education

	age	education	occupation
0	39	Bachelors	Adm-clerical
1	50	Bachelors	Exec-managerial
2	38	HS-grad	Handlers-cleaners
5	37	Masters	Exec-managerial
6	49	9th	Other-service

In [27]: # Group the records based on age and education to find how the mean age is df1.groupby(['age', 'education']).mean()

C:\Users\14024\AppData\Local\Temp\ipykernel_9460\867248816.py:3: FutureW
arning: Dropping invalid columns in DataFrameGroupBy.mean is deprecated.
In a future version, a TypeError will be raised. Before calling .mean, s
elect only columns which should be valid for the function.
 df1.groupby(['age','education']).mean()

Out[27]:

age	education
17	10th
	11th
	12th
	5th-6th
	7th-8th
90	Bachelors
	HS-grad
	Masters
	Prof-school
	Some-college

965 rows × 0 columns

In [28]: # Group by occupation and show the summary statistics of age.Find which pr # has its largest share of the workforce above the 75th percentile.

df1.groupby('occupation').describe()['age']

Out[28]:

	count	mean	std	min	25%	50%	75%	max
occupation								
?	1843.0	40.882800	20.336350	17.0	21.0	35.0	61.0	90.0
Adm-clerical	3770.0	36.964456	13.362998	17.0	26.0	35.0	46.0	90.0
Armed-Forces	9.0	30.222222	8.089774	23.0	24.0	29.0	34.0	46.0
Craft-repair	4099.0	39.031471	11.606436	17.0	30.0	38.0	47.0	90.0
Exec-managerial	4066.0	42.169208	11.974548	17.0	33.0	41.0	50.0	90.0
Farming-fishing	994.0	41.211268	15.070283	17.0	29.0	39.0	52.0	90.0
Handlers-cleaners	1370.0	32.165693	12.372635	17.0	23.0	29.0	39.0	90.0
Machine-op-inspct	2002.0	37.715285	12.068266	17.0	28.0	36.0	46.0	90.0
Other-service	3295.0	34.949621	14.521508	17.0	22.0	32.0	45.0	90.0
Priv-house-serv	149.0	41.724832	18.633688	17.0	24.0	40.0	57.0	81.0
Prof-specialty	4140.0	40.517633	12.016676	17.0	31.0	40.0	48.0	90.0
Protective-serv	649.0	38.953775	12.822062	17.0	29.0	36.0	47.0	90.0
Sales	3650.0	37.353973	14.186352	17.0	25.0	35.0	47.0	90.0
Tech-support	928.0	37.022629	11.316594	17.0	28.0	36.0	44.0	73.0
Transport-moving	1597.0	40.197871	12.450792	17.0	30.0	39.0	49.0	90.0

```
In [31]: # Use subset and group by to find outliers. Plot values in bar chart.

occupation_stat= df1.groupby('occupation').describe()['age']
plt.figure(figsize=(15,8))
plt.barh(y=occupation_stat.index,width=occupation_stat['count'])
plt.yticks(fontsize=15)
plt.show()
```


Out[48]:

	age	workclass	education	sex	occupation
0	27	?	12th	Male	?
1	24	Private	HS-grad	Male	Craft-repair
2	24	Private	HS-grad	Male	Tech-support
3	24	Private	HS-grad	Female	Exec-managerial
4	24	Private	HS-grad	Female	Other-service
5	30	Private	HS-grad	Male	Craft-repair
6	30	Private	HS-grad	Male	Tech-support
7	30	Private	HS-grad	Female	Exec-managerial
8	30	Private	HS-grad	Female	Other-service
9	51	Local-gov	HS-grad	Male	Craft-repair
10	51	Local-gov	HS-grad	Male	Tech-support
11	51	Local-gov	HS-grad	Female	Exec-managerial
12	51	Local-gov	HS-grad	Female	Other-service
13	23	Local-gov	HS-grad	Male	Craft-repair
14	23	Local-gov	HS-grad	Male	Tech-support
15	23	Local-gov	HS-grad	Female	Exec-managerial
16	23	Local-gov	HS-grad	Female	Other-service
17	20	Private	Some-college	Male	Craft-repair
18	20	Private	Some-college	Male	Transport-moving
19	54	Private	Some-college	Male	Craft-repair
20	54	Private	Some-college	Male	Transport-moving
21	52	Private	Bachelors	Female	Exec-managerial
22	52	Private	Bachelors	Male	Exec-managerial
23	51	Private	Bachelors	Female	Exec-managerial
24	51	Private	Bachelors	Male	Exec-managerial
25	45	Self-emp-inc	Doctorate	Male	Prof-specialty

```
In [43]:
          ▶ # Create a series and practice basic arithmetic steps
             data = [7.3, -2.5, 3.4, 1.5]
             index = ['a', 'c', 'd', 'e']
             series1 = pd.Series(data, index=index)
             print(series1)
             data = [-2.1, 3.6, -1.5, 4, 3.1]
             index = [ 'a', 'c', 'e', 'f', 'g']
             series2 = pd.Series(data, index=index)
             print(series2)
                  7.3
             а
             c
                 -2.5
                  3.4
                  1.5
             dtype: float64
                 -2.1
                  3.6
             C
                 -1.5
             e
                  4.0
                  3.1
             dtype: float64
In [44]:
         # Add Series 1 and Series 2
             result = series1 + series2
             print(result)
                  5.2
             C
                  1.1
             d
                  NaN
                  0.0
             e
                  NaN
                  NaN
             dtype: float64
In [45]:
         # Substract Series 1 and Series 2
             result = series1 - series2
             print(result)
                  9.4
                 -6.1
             C
             d
                  NaN
             e
                  3.0
             f
                  NaN
                  NaN
             dtype: float64
```