Sparse Matrix Methods Chapter 5 lecture notes QR factorization

Tim Davis

2011

Householder reflections

- $H = I \beta v v^T$; β a scalar and v a vector
- can choose v and β based on x so that Hx is all zero except $(Hx)_1 = \pm ||x||_2$.
- $Hx = x v(\beta(v^Tx))$
- H is symmetric ($H = H^T$)
- H is orthogonal $HH^T = H^TH = I$
- if x_1 is nonzero, then x and v have the same nonzero pattern $(\mathcal{V} = \mathcal{X})$.
- if x_1 is zero, then permute the rows of x to make it so

QR factorization

- pick H1 based on A(:,1), to zero out all but A(1,1)
- then A = H1 * A
- repeat for 2nd column, zeroing out everything below the diagonal
- etc, until A becomes upper triangular

Theorem (Golub)

The QR factorization QR = A, where
$$A \in \mathbb{R}^{m \times n}$$
 and $m \ge n$, is $Q = H_1 H_2 \cdots H_n = \prod_{k=1}^n H_k$ and $R = Q^T A = H_n \cdots H_2 H_1 A = (\prod_{k=n}^1 H_k) A = A^{[n]}$.

MATLAB prototype: right-looking QR

```
function [V,Beta,R] = qr_right (A)
[m n] = size (A);
V = zeros (m,n);
Beta = zeros (1,n);
for k = 1:n
    [v,beta,s] = gallery ('house', A (k:m,k), 2);
    V (k:m,k) = v;
    Beta (k) = beta;
    A (k:m,k:n) = A (k:m,k:n) - v * (beta * (v' * A (k:m,k:n)));
end
R = A;
```

MATLAB prototype: left-looking QR

```
function [V,Beta,R] = qr_left (A)
[m n] = size (A);
V = zeros (m,n);
Beta = zeros (1,n);
R = zeros (m,n);
for k = 1:n
   x = A (:,k) ;
   for i = 1:k-1
       v = V (i:m,i):
       beta = Beta (i);
       x (i:m) = x (i:m) - v * (beta * (v' * x (i:m)));
    end
    [v,beta,s] = gallery ('house', x (k:m), 2);
    V(k:m,k) = v;
    Beta (k) = beta;
    R(1:(k-1),k) = x(1:(k-1));
   R(k,k) = s;
end
```

Nonzero pattern of HA

Theorem (George, Liu, and Ng)

Consider $HA = A - v(\beta(v^TA))$. Then $(HA)_{i*}$ where $i \notin \mathcal{V}$ is equal to row i of A. For any row $i \in \mathcal{V}$, the nonzero pattern of $(HA)_{i*}$ is

$$\bigcup_{i\in\mathcal{V}}\mathcal{A}_{i*}.\tag{1}$$

That is, in HA, the nonzero pattern of any modified row $i \in \mathcal{V}$ is replaced with the set union of all rows that are modified by the Householder reflection H.

Nonzero pattern of R

Theorem (Golub and Van Loan [?])

If A^TA is positive definite, and its Cholesky factorization is $LL^T = A^TA$, then $L = R_{1-n,1-n}^T$.

Nonzero pattern of R, continued

Theorem (Coleman et al., George and Heath)

Assuming the matrix A has the strong Hall property, $\mathcal{R}_{*k} = \mathcal{L}_{k*}$, where \mathcal{L}_{k*} denotes the nonzero pattern of the kth row of the symbolic Cholesky factor of A^TA . If A does not have the strong Hall property, $\mathcal{R}_{*k} \subseteq \mathcal{L}_{k*}$.

More concisely ...

Theorem

 $\mathcal{R}_{*k} = Reach_{\mathcal{T}_k}(\{\min A_{i*} | i \in A_{*k}\})$ (assuming A has the strong Hall property).

Nonzero pattern of the Householder vectors

Theorem

$$\mathcal{V}_{k} = \left(\bigcup_{k=parent(i)} \mathcal{V}_{i} \setminus \{i\}\right) \cup \{i \mid k = \min \mathcal{A}_{i*}\},$$

where each set in the above expression is disjoint from all other sets, and A has the strong Hall property. That is,

$$|\mathcal{V}_k| = \left(\sum_{k=parent(i)} |\mathcal{V}_i| - 1\right) + |\{i \mid k = \min \mathcal{A}_{i*}\}| \qquad (2)$$

If A does not have the strong Hall property, this is an upper bound on V.

left-looking QR

Figure 5.1. QR factorization

left-looking QR

```
function [V, \beta_{1...n}, R] = \text{sparse\_qr\_left}(A)
       \mathcal{T} = \text{elimination tree of } A^T A
       compute |R| using cs_counts of A^TA
       compute |\mathcal{V}_1|_n using (5.2)
       for k=0 to n-1 do
               \mathcal{R}_{*k} = \operatorname{Reach}_{\mathcal{T}_k}(\{\min \mathcal{A}_{i*} \mid i \in \mathcal{A}_{*k}\})
               x = A_{*}\iota
               \mathcal{V}_{k} = \mathcal{A}_{*k}
               for each i \in \mathcal{R}_{*k} do
                      x = x - v_i(\beta_i(v_i^T x))
                       if parent(i) = k then
                              \mathcal{V}_k = \mathcal{V}_k \cup \mathcal{V}_i \setminus \{i\}
               R_{1...k-1.k} = x_{1...k-1}
               [v_k, \beta_k, r_{kk}] = \text{house}(x_{k-m})
```