

Basics in Applied Mathematics

Sheet 1 - 16.10.2025 (submission until 21.10.2025)

Task 1 (8 points). Let $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ with $a, b, c \in \mathbb{R}$, such that $\det A \neq 0$. Determine $\operatorname{cond}_1(A)$, $\operatorname{cond}_2(A)$ and $\operatorname{cond}_{\infty}(A)$ and discuss for which ratios of a, b and c the corresponding linear equation systems are ill conditioned.

Task 2 (8 points). Let $A \in \mathbb{R}^{n \times n}$ be invertible and let $\|\cdot\|$ be an induced operator norm on $\mathbb{R}^{n \times n}$. Show that

$$||A^{-1}|| = \left(\inf_{||x||=1} ||Ax||\right)^{-1}$$

and $||A^{-1}|| \ge ||A||^{-1}$ hold.

Task 3 (8 points). Let $A \in \mathbb{R}^{n \times n}$ be a positive definite matrix, i.e. $x^{\mathsf{T}}Ax > 0$ for all $x \in \mathbb{R}^n \setminus \{0\}$.

- (i) Show that A is regular.
- (ii) Show that for all $1 \le k \le n$ the $k \times k$ submatrix $A_k = (a_{ij})_{1 \le i,j \le k}$ is also positive definite.
- (iii) Show that all real eigenvalues of A are positive.

Task 4 (8 bonus points). Let $A \in \mathbb{R}^{n \times n}$, a lower triangular matrix L and an upper triangular matrix U with A = LU be given. Show that, for k = 1, 2, ..., n and the left, upper $k \times k$ submatrices A_k, L_k and U_k of A, L and U respectively, the decomposition $A_k = L_k U_k$ also holds.

Project 1 (4 bonus points). Write a program that calculates the operator norm $\|\cdot\|_{\infty}$ of a matrix $A \in \mathbb{R}^{m \times n}$. Measure manually, for the Hilbert matrix $H \in \mathbb{R}^{n \times n}$ with entries $h_{ij} = 1/(i+j-1), 1 \le i, j \le n$, the runtimes of the programs for $n = 10^k, k = 1, 2, \ldots, 4$.