

DSim

A Distributed Message-Passing Mobsim Implementation

Janek Laudan, Christian Rakow, Marcel Rieser · Simunto GmbH Steffen Axer, Hannes Rewald · Volkswagen AG

Problem & Recap

What is our problem?

MATSim modelers want to:

- Simulate larger model domains
- With greater detail

This leads to increased computational demands and long runtimes as:

- We can only run on a single machine
- The QSim's current parallelization architecture does not take full advantage of modern multicore CPU hardware

What could be the solution?

We presented: Distributed parallel Qsim (with Paul Heinrich and Kai Nagel)

- A prototype implementation of a distributed mobsim in Rust
- MPI based distributed computation
- Aimed at High-Performance Computing Hardware
- Scalability up to 1000 CPU-Cores
- Open-Source Implementation

Published as High-Performance Mobility Simulation: Implementation of a Parallel Distributed Message-Passing Algorithm for MATSim¹

Why DSim?

Why DSim?

Implement a message-passing mobility simulation in Java

- Take advantage of modern multicore CPUs
- Stay compatible with the existing MATSim-Codebase
- Support distributed execution of MATSim-Simulations

Why DSim – General Idea

Take the main ideas from Rust-Prototype

- Adopt a message-passing architecture for the mobsim
- Distribute simulation work by partitioning the simulated network

While staying compatible to the ecosystem

- The simulation must execute in the JVM
- Current Infrastructure should be compatible
- The new mobsim implementation should be usable as a drop-in replacement

Distribute Workload geographically

Domain Decomposition is a well-understood problem with plenty of algorithms, e.g., METIS

Estimate computational load for each vertice of the graph by estimating #vehicles crossing the node

METIS balances the computational load across partitions

Distribute Workload geographically

Domain Decomposition is a well-understood problem with plenty of algorithms, e.g., METIS

Estimate computational load for each vertice of the graph by estimating #vehicles crossing the node

METIS balances the computational load across partitions

One MATSim process is started per JVM

- Multiple simulation processes
- Multiple events handlers
- One Communicator
- One Events Manager
- One Task Scheduler

One MATSim process is started per JVM

- Multiple simulation processes
- Multiple events handlers
- One Communicator
- One Events Manager
- One Task Scheduler

Multiple processes communicate via the network layer

Architecture - Gotchas

Unified Parallelization Strategy

- Mobsim and event handling are part of the same executor
- Parallelization on the 'outer' loop
- Simulation process is single threaded
- Event Handlers are single threaded
- Well defined synchronization via messages

Possibility for distributed traffic simulation

Possibility for distributed event processing

Results

Benchmark Scenario

Kanton Zürich with 1.6 million synthetic persons

Demand Generation with Creario

Partitioning with METIS based on expected node weights

Test Environment: High-Performance Cluster with AMD EPYC™ 7313 (2x16 cores) and 240GB RAM

Benchmark Kanton Zürich

Benchmark Kanton Zürich

Summed durations on Partition 0

Benchmark DRT (Berlin Scenrio)

Conclusion

- Architecture for distributed computing in MATSim implemented
- Improved scalability compared to QSim
- Better reasoning about bottlenecks
- 4. Truly distributed execution needs further testing and improved stability

Outlook

Help and Support appreciated

Adapt more parts of MATSim to take advantage of new architecture

- Event handling must be switched to a distributed approach
- Develop strategy for services such as DRT

DSim will be merged into the main repository in the upcoming weeks

Closing

Janek Laudan
Software Consultant @ Simunto
laudan@simunto.com
https://simunto.com

Simunto GmbH
Riedgrabenweg 49
8050 Zürich
Schweiz
mail@simunto.com

Thanks to Steffen Axer's group at Volkswagen for supporting this work financially!

