UNIVERSIDADE FEDERAL DA BAHIA - UFBA ESCOLA POLITÉCNICA / DEPARTAMENTO DE ENGENHARIA ELÉTRICA 2018.1 – ENGG57 – LABORATÓRIO INTEGRADO IV-A – PROF. WAGNER L. A. DE OLIVEIRA

Este Laboratório Integrado será formado por um conjunto de problemas, cada qual gerador de uma nota, sendo a nota final na disciplina a média aritmética simples das notas obtidas nos problemas apresentados (exceto nos casos de prova final).

A nota de cada problema será formada por 3 componentes, com ponderação ajustável de acordo com o problema:

- Nota Produto (NP);
- Nota Relatório (NR);
- Nota Participação Individual (NI).

Para cada problema, o não cumprimento do prazo acarretará na penalização da perda de 2,0 pontos por semana de atraso. Caso o produto obtido não seja satisfatório (Nota Produto inferior a 5,0), os temas tratados no respectivo problema serão objeto de uma prova final, feita ao término do semestre, a qual conterá assuntos de todos os problemas não satisfatórios. Da mesma forma, caso o(a) aluno(a) fique com NI inferior a 5,0 em algum dos problemas, deverá fazer uma prova final, nos mesmos moldes da realizada para problemas não satisfatórios. A nota NI poderá ser aferida através de avaliações esporádicas, sem data determinada. No caso de realização de prova final, esta será a média na disciplina.

Calendário Previsto (poderá ser alterado)

Semana	Data	Atividade		
1	12/04	Problema 1: Processador Pipeline		
2	19/04	Sessão PBL / Implementação		
3	26/04	Sessão PBL / Implementação		
4	03/05	Sessão PBL / Implementação		
5	10/05	Sessão PBL / Implementação		
6	17/05	Problema 2: Módulo de Exibição		
7	23/05	Entrega do Problema 1		
	24/05	Sessão PBL / Implementação		
8	31/05	Sessão PBL / Implementação		
9	07/06	Sessão PBL / Implementação		
10	14/06	Sessão PBL / Implementação		
11	21/06	Sessão PBL / Implementação		
12	28/06	Problema 3: Módulo de Interfaceamento		
13	04/07	Entrega do Problema 2		
	05/07	Sessão PBL / Implementação		
14	12/07	Sessão PBL / Implementação		
15	19/07	Entrega do Problema 3		
16	26/07	Prova Final (Problemas não satisfatórios)		

Problema 1: Processador Pipeline

Tema

Noções básicas de operacionalização das partes internas de um processador de propósito geral, otimizado com pipeline de instruções.

Problema

Dispositivos do tipo FPGA (Field-Programmable Gate Array) são chips de lógica reconfigurável após o encapsulamento, cujo uso tem apresentado significativa ascensão nos últimos anos. Atualmente, é possível sintetizar um processador RISC em um chip FPGA por apenas US\$ 2.00. Outros exemplos de aplicação desse tipo de chip podem ser encontrados em áreas diversas:

- telecomunicações: circuitos de roteamento de estações rádio base de telefonia celular / satélites;
- controles industriais: circuitos de controle integrados ou como lógica "glue", no interfaceamento de microcontroladores;
- sistemas de processamento digital de sinais: sistemas de reconhecimento de padrões (computação gráfica / análise facial / análise de íris / reconhecimento de placas de automóveis), decodificadores MPEG4 e HEVC;
- mod chips: dispositivos que "modificam" a função original de um sistema (desbloqueios de videogames);
- arquiteturas reconfiguráveis;
- dispositivos acionados por computador: implementação de interfaces com barramentos padrão de PCs (PCI, PCI-Express, SCSI, dentre outros), possibilitando, inclusive, a síntese da própria aplicação de hardware desejada (back-end do dispositivo); e
- HPC (High-Performance Computing): coprocessadores para aceleração de partes de algoritmos em substituição/colaboração com GPUs (exemplo: Bing da Microsoft);

Neste contexto, buscando a inserção no mercado relativamente novo de *IP cores* no Brasil (tanto *hard-* quanto *soft-cores*), a empresa para a qual você trabalha - *PANE Technologies* - solicita à sua equipe de desenvolvimento a elaboração do *soft-core* de um processador para uso em FPGAs de baixo custo, que possa ter desempenho otimizado, através do uso de paralelismo em nível de instrução.

Especificação do Processador

O processador otimizado com pipeline deverá ter as seguintes características:

- Arquitetura de 5 estágios funcionais de execução paralela.
- Possibilidade de lidar com 3 hazards RAW consecutivos, sem paralisar a propagação de instruções entre os estágios funcionais.
- Instruções de 16/32 bits e operações internas em 16 bits.
- Mínimo de 32 registradores de propósito geral: RO R31 (RO e R1 auxiliares).

- Memória segmentada, com acesso definido a cada segmento de acordo com a instrução
 - Segmento de Programa: tamanho mínimo de 1k x 16.
 - Segmento de Dados: tamanho mínimo de 1k x 16, para armazenamento de dados em geral, registradores de comunicação de E/S e máscaras de interrupção.
- Modos de endereçamento:
 - imediato
 - base-deslocamento
 - a registrador
- Comunicação via mecanismo de interrupção:
 - Vetor de interrupções para atender até 4 ISRs (Interrupt Service Routines), no
 - E/S baseada em memória compartilhada, com controlador próprio, capaz de atender pelo menos 4 dispositivos de controle externos, com registradores de controle/dados mapeados em endereços do Segmento de Dados.
 - PIC (Programmable Interrupt Controller) externo ao processador, com controle de mascaramento de interrupções por memória compartilhada, no Segmento de Dados.
- Conjunto de instruções: vide tabela 1.

Tabela 1. Conjunto básico de instruções para o processador proposto.

Tipo	Instrução	Operandos	Descrição
Transferência De Dados	LW	R _D , I ₁₆ (R _B)	$R_0 \leftarrow [I_{16} + R_8] \mid R_0 \leftarrow [R_8] \mid R_0 \leftarrow I_{16}$
	SW	Rs, I ₁₆ (R _B)	$[I_{16}+R_{8}] \leftarrow R_{S} \mid [R_{8}] \leftarrow R_{S}$
Aritmética	ADD	R _D , R _F	$R_D \leftarrow R_D + R_F$
	SUB	R _D , R _F	$R_D \leftarrow R_D - R_F$
	MUL	RD, RF	$R_0 \leftarrow R_0 * R_F$
	DIV	Ro, R _F	$R_D \leftarrow R_D / R_F$
Lógica	AND	RD, RF	Ro ← Ro AND R _F
	OR	RD, RF	R ₀ ← R ₀ OR R _F
	СМР	Ro, Rf	compara Ro e Rr, configurando RFlags
	NOT	Ro	R ₀ ← NOT R ₀
Transferência de Controle	JR	R	desvio incondicional para o endereço [R]
	JPC	116	desvio incondicional relativo a PC atualizado
	BRFL	R, i, Const	desvio para o endereço [R] se RFlags[i] = Const
	CALL	R	chamada de subrotina no endereço [R]
	RET	Nenhum	retorno de subrotina
	NOP	Nenhum	nenhuma operação

Obs.: RFlags[4:0] = [overflow; above; equal; below; error]

Produtos

Sua equipe deverá entregar 2 produtos:

- O protótipo FPGA do Processador Pipeline, juntamente com um programa teste, rodando na plataforma DE2-115 da Altera, escrito em Verilog; e
- 2. Um relatório técnico.

O relatório técnico, em formato de artigo IEEE, deverá ter no máximo 15 páginas, contendo a descrição do protótipo (descrição geral, partes constituintes e sua correlação, estudos realizados e detalhes relevantes para a compreensão), conclusões (problemas encontrados, abrangência da implementação, possíveis melhorias, participação individual e aprendizado adquirido por cada membro) e referências bibliográficas. Os produtos (relatório técnico e pasta de projeto Quartus Prime) deverão ser encaminhados para o e-mail oliveira.wagner@ufba.br, na data limite indicada no calendário.

Obs.: Entregas parciais e/ou alterações de especificação poderão ser solicitadas.

Avaliação

- 50% (Processador), 40% Participação Individual, 10% (Relatório)

A PANE Technologies deseja-lhes um bom projeto, ciente do árduo trabalho que a equipe de desenvolvimento terá nas próximas semanas, o qual certamente isolará seus membros de qualquer tipo de vida social / familiar / esportiva / televisiva / introspectiva – enfim, de qualquer tipo de vida.