Data Visualisation Marks and Channels

Kamal Karlapalem

Spring 2024

Slides taken, reformatted and used from Tamara Munzner (UBC, Canada)

Visual encoding

How to systematically analyze idiom structure?

Visual encoding

How to systematically analyze idiom structure?

- Marks and channels
 - Marks: represent items or links
 - Channels: change appearance of marks based on attributes

Marks for items (rows of table)

Basic geometric elements

• 3D mark: volume, rarely used

Marks for links

→ Containment

vialab.science.uoit.ca/portfolio/bubblesets

→ Connection

Containment can be nested

[Untangling Euler Diagrams, Riche and Dwyer, 2010]

Channels

- Control appearance of marks
 - Proportional to or based on attributes
- Many names
 - Visual channels
 - Visual variables
 - Retinal channels
 - Visual dimensions
 - •

Definitions: Marks and channels

- Marks
 - Geometric primitives

Definitions: Marks and channels

- Marks
 - Geometric primitives
- Channels
 - Control appearance of marks

Definitions: Marks and channels

- Marks
 - Geometric primitives
- Channels
 - Control appearance of marks
- Channel properties differ
 - Type and amount of information that can be conveyed to human perceptual system

Visual encoding

Analyze idiom structure as combination of marks and channels

Redundant encoding

Marks as constraints

Math view: geometric primitives have dimensions

- Constraint view: mark type constrains what else can be encoded
 - Points: 0 constraints on size, can encode more attributes with size and shape
 - Lines 1 constraint on size (length), can still size code other way (width)
 - Interlocking areas: 2 constraints on size (length/width), cannot zsize or shape code
 - Interlocking: size, shape, position

Scope of analysis

• Simplifying assumptions: one mark per item (row), single view

- Later on
 - Multiple views
 - Multiple marks in a region (glyph)
 - Some items not represented by marks (aggregation and filtering)

When to use which channel

- Expressiveness
 - Match channel type to data type
- Effectiveness
 - Some channels are better than others

Channel: Rankings – how attributes are shown

Expressiveness

match channel and data characteristics magnitude for ordered how much? Which rank?

Identity for categorical what

Channel: Rankings – how attributes are shown

Channel: Rankings – how attributes are shown

Expressiveness

match channel and data characteristics

Effectiveness

channels differ in accuracy or perception spatial position ranks high for both

Grouping

- Containment
- Connection

- Proximity
 - Same spatial region
- Similarity
 - Same values as other categorical channels

Marks as Links

→ Containment

→ Connection

→ Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Channel effectiveness

- Accuracy: how precisely can we tell the difference between encoded items?
- Discriminability: how many unique steps can we perceive?
- Separability: is our ability to use this channel affected by another one?
- Popout: can things jump out using this channel?

Accuracy: fundamental theory

Steven's Psychophysical Power Law: S= I^N

- Length is accurate: linear
- Others magnified or compressed
 - Exponent characterizes

Accuracy: Visualization Experiments

[Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203–212.]

Discriminability: How many usable steps?

- Must be sufficient for number of attribute levels to show
 - Linewidth: few bins

[mappa.mundi.net/maps/maps 014/telegeography.html]

Separability vs. integrality

Position
+ Hue (Color)

Fully separable

2 groups each

Size + Hue (Color)

Some interference

2 groups each

Width + Height

Some/significant interference

3 groups total: integral area

Red + Green

Major interference

4 groups total: integral hue

Popout

- Find the red dot
- Parallel processing on many individual channels
 - Speed independent of distractor count
 - Speed depends on channel and amount of difference from distractors
- Serial search (almost all) combinations
 - Speed depends on number of distractors (tempting)

Popout

- Many channels
 - Tilt, size, shape, proximity, shadow direction
- But not all
 - Parallel line pairs do not pop out from tilted pairs

Factors affecting accuracy

- Alignment
- Distractors
- Distance
- Common scale / alignment

Relative vs. absolute judgements

- Perceptual system mostly operates with relative judgements, not absolute
 - That's why accuracy increases with common frame/scale and alignment
 - Weber's law: ratio of increment to background is constant
 - Filled rectangles differ in length by 1:9, difficult judgement
 - White rectangles differ in length by 1:2, easy judgment

after [Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531–554.]

position along unaligned common scale

position along aligned scale