CS 511, Fall 2020, Lecture Slides 24 Gilmore's Algorithm

Assaf Kfoury

October 15, 2020

review and reminders (run simultaneously with an example on the board)

From lecture notes and Lecture Slides 16: $[sko,pre](\varphi) \stackrel{\text{def}}{=} [skolem](prenex](\varphi)).$

- In $4,5,\dots,12$ below, $% 1,0,\dots,12$ assume φ does not mention equality symbol ' \thickapprox ' for simplicity $% 1,0,\dots,12$
 - 1. If φ is a first-order sentence, then sko,pre (φ) is its Skolem form.
 - 2. In particular, $sko,pre(\varphi)$ is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.
 - 3. φ and sko,pre (φ) are equisatisfiable (see Problem 2 in HW #05)

review and reminders (run simultaneously with an example on the board)

From lecture notes and Lecture Slides 16: sko,pre $(\varphi) \stackrel{\text{def}}{=} skolem$ $(prenex)(\varphi)$. In $4,5,\ldots,12$ below, assume φ does not mention equality symbol ' \approx ' for simplicity :

- 1. If φ is a first-order sentence, then sko,pre (φ) is its Skolem form.
- 2. In particular, sko,pre φ is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.
- 3. φ and sko,pre φ are equisatisfiable (see Problem 2 in HW #05)
- 4. H_Expansion ($(sko,pre)(\varphi)$) $\stackrel{\text{def}}{=}$ "delete the prefix of (φ) and substitute ground terms for variables in the matrix of (φ) in all possible ways."
- 5. φ and H_Expansion($\operatorname{sko,pre}(\varphi)$) are equisatisfiable

review and reminders

(run simultaneously with an example on the board)

From lecture notes and Lecture Slides 16: $\boxed{\text{sko,pre}}(\varphi) \stackrel{\text{def}}{=} \boxed{\text{skolem}}(\boxed{\text{prenex}}(\varphi)).$

- In $4,5,\ldots,12$ below, $% \alpha =1,0,\ldots,12$ assume φ does not mention equality symbol ' \approx ' for simplicity $% \alpha =1,0,\ldots,12$
 - 1. If φ is a first-order sentence, then sko,pre $|\varphi\rangle$ is its Skolem form.
 - 2. In particular, sko,pre φ is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.
 - 3. φ and sko,pre φ are equisatisfiable (see Problem 2 in HW #05)
 - 4. H_Expansion ($\neg \text{sko,pre} \ (\varphi)$) $\stackrel{\text{def}}{=}$ "delete the prefix of $\neg \text{sko,pre} \ (\varphi)$ and substitute ground terms for variables in the matrix of $\neg \text{sko,pre} \ (\varphi)$ in all possible ways."
 - 5. φ and H_Expansion($\operatorname{sko,pre}(\varphi)$) are equisatisfiable
 - 6. FOL \mapsto PL (H_Expansion (sko,pre (φ))) $\stackrel{\text{def}}{=}$ "replace every ground atom α in H_Expansion (sko,pre (φ)) by a propositional variable X_{α} ."
 - $\varphi \text{ is satisfiable (in FOL) iff} \\ \hline \text{FOL} \mapsto \text{PL} \Big(\text{H_Expansion} \Big(\boxed{\text{sko,pre}} \Big(\varphi \big) \Big) \Big) \text{ is satisfiable (in PL)}.$

review and reminders (run simultaneously with an example on the board)

8. φ is satisfiable (in FOL) iff FOL \mapsto PL (H_Expansion(sko,pre)) is **finitely** satisfiable (in PL).

review and reminders (run simultaneously with a

(run simultaneously with an example on the board)

- 8. φ is satisfiable (in FOL) iff $FOL \mapsto PL$ (H_Expansion(sko,pre)) is sigma finitely satisfiable (in PL).
- 9. Contrapositively:

```
\varphi is <u>not</u> satisfiable (in FOL) iff there is a <u>finite</u> subset of \boxed{\text{FOL} \mapsto \text{PL}} \big( \text{H\_Expansion} \big( \boxed{\text{sko,pre}} \big| (\varphi) \big) \big) which is <u>not</u> satisfiable (in PL).
```

- 8. φ is satisfiable (in FOL) iff $[FOL \mapsto PL](H_Expansion([sko,pre](\varphi)))$ is **finitely** satisfiable (in PL).
- 9. Contrapositively:

$$\varphi$$
 is not satisfiable (in FOL) iff there is a finite subset of FOL \mapsto PL(H_Expansion(sko,pre(φ))) which is not satisfiable (in PL).

- 10. Recall that a first-order sentence ψ is **valid** iff $\neg \psi$ is **not** satisfiable.
- 11. Suppose we want to test whether a first-order sentence ψ is valid. Let

$$\boxed{ \texttt{FOL} \mapsto \texttt{PL} \Big(\texttt{H_Expansion} \Big(\boxed{\texttt{sko,pre}} \Big(\boxed{ \lnot \psi \big) \Big) \Big) = \{ \theta_1, \ \theta_2, \ \theta_3, \ldots \} }$$

Note the inserted logical negation "¬". All the θ_i 's are propositional WFF's.

- 9. Contrapositively:

$$\varphi$$
 is not satisfiable (in FOL) iff there is a finite subset of FOL \mapsto PL (H_Expansion(sko,pre)) which is not satisfiable (in PL).

- 10. Recall that a first-order sentence ψ is **valid** iff $\neg \psi$ is **not** satisfiable.
- 11. Suppose we want to test whether a first-order sentence ψ is valid. Let

$$\boxed{\mathsf{FOL} \mapsto \mathsf{PL} \big(\mathsf{H}_{\text{-}}\mathsf{Expansion} \big(\boxed{\mathsf{sko,pre}} \big(\boxed{\neg \psi} \big) \big) \big) = \{\theta_1, \ \theta_2, \ \theta_3, \ldots\}}$$

Note the inserted logical negation "¬". All the θ_i 's are propositional WFF's.

12. ψ is <u>valid</u> (in FOL) iff there is a <u>finite</u> subset of $\{\theta_1, \theta_2, \theta_3, \ldots\}$ which is <u>not</u> satisfiable (in PL).

Assume equality symbol 'pprox' does not occur in ψ for simplicity . Details for how to proceed when 'pprox' occurs are in lecture notes.

- 1. **input**: first-order sentence ψ to be tested for validity;
- **2**. k := 0;
- 3. **repeat** k := k + 1 generate first k wff's $\{\theta_1, \dots, \theta_k\}$ in:

$$\boxed{ \mathsf{FOL} \mapsto \mathsf{PL} \left(\mathsf{H}_{\mathsf{L}} \mathsf{Expansion} \left(\boxed{\mathsf{sko,pre}} \left(\boxed{\phantom{\mathsf{TV}} \psi \right) \right) \right) }$$

- **until** $\bigwedge_{1 \le i \le k} \theta_i$ is unsatisfiable; // (as a wff of PL)
- 4. **output**: ψ is valid; // (as a wff of FOL)

Assume equality symbol 'pprox' does not occur in ψ for simplicity . Details for how to proceed when 'pprox' occurs are in lecture notes.

- 1. **input**: first-order sentence ψ to be tested for validity;
- **2**. k := 0;
- 3. **repeat** k := k + 1 generate first k wff's $\{\theta_1, \dots, \theta_k\}$ in:

$$\boxed{ \mathsf{FOL} \mapsto \mathsf{PL} \left(\mathsf{H}_{\mathsf{L}} \mathsf{Expansion} \left(\boxed{\mathsf{sko,pre}} \left(\boxed{\phantom{\mathsf{TV}} \psi \right) \right) \right) }$$

```
until \bigwedge_{1 \le i \le k} \theta_i is unsatisfiable; // (as a wff of PL)
```

- 4. **output**: ψ is valid; // (as a wff of FOL)
 - **Fact**: Gilmore's algorithm terminates iff the input sentence ψ is valid.
 - ▶ **Major Drawback**: Gilmore's algorithm is highly inefficient; in particular, its performance depends on the order in which the θ_i 's are generated.

- **Exercise**: Let $\varphi_1, \ldots, \varphi_n$ and ψ be first-order sentences. Define an algorithm based on Gilmore's algorithm which terminates iff the semantic entailment $\varphi_1, \ldots, \varphi_n \models \psi$ holds.
- ▶ **Problem**: Can you define an algorithm \mathcal{A} which, given a first-order sentence ψ , always terminates and decides whether ψ is valid or not valid? *Hint*: No.

- **Exercise**: Let $\varphi_1, \dots, \varphi_n$ and ψ be first-order sentences. Define an algorithm based on Gilmore's algorithm which terminates iff the semantic entailment $\varphi_1, \dots, \varphi_n \models \psi$ holds.
- ▶ **Problem**: Can you define an algorithm \mathcal{A} which, given a first-order sentence ψ , always terminates and decides whether ψ is valid or not valid? *Hint*: No.
- ▶ Gilmore's algorithm is said to be a semi-decision procedure, because it terminates only if the input ψ is valid.
- Gilmore's algorithm was invented in the late 1950's and it was the best semi-decision procedure for first-order validity until the mid-1960's, when more efficient early versions of the tableaux and resolution methods were first introduced.

(THIS PAGE INTENTIONALLY LEFT BLANK)