Labs

Optimization for Machine Learning Spring 2020

EPFL

School of Computer and Communication Sciences

Martin Jaggi & Nicolas Flammarion

github.com/epfml/OptML_course

Problem Set 10, due May 15, 2020 (Duality)

Prove the following property from the lecture slides:

If f is closed and convex, then for any x, y,

$$\mathbf{y} \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \partial f^*(\mathbf{y})$$

 $\Leftrightarrow f(\mathbf{x}) + f^*(\mathbf{y}) = \mathbf{x}^\top \mathbf{y}$

Hint: if function $f(\mathbf{x})$ is of the following form: $f(\mathbf{x}) = \max_{\alpha \in \mathcal{A}} f_{\alpha}(\mathbf{x})$, then its subgradient is given by

$$\partial f(\mathbf{x}) = \mathbf{Co} \left[\bigcup \left\{ \partial f_{\alpha}(\mathbf{x}) | f_{\alpha}(\mathbf{x}) = f(\mathbf{x}) \right\} \right],$$

where Co is taking a convex hull of the set.

Solution:

• First, we will show that if $y \in \partial f(x)$, then $x \in \partial f^*(y)$.

If $\mathbf{y} \in \partial f(\mathbf{x})$, then by definition of subgradient it means that $f(\mathbf{z}) \geq f(\mathbf{x}) + \mathbf{y}^{\top}(\mathbf{z} - \mathbf{x}) \ \forall \mathbf{z}$. Reordering, we get $\mathbf{y}^{\top}\mathbf{z} - f(\mathbf{z}) \leq \mathbf{y}^{\top}\mathbf{x} - f(\mathbf{x}) \ \forall \mathbf{z}$, which means that $\mathbf{x} \in \operatorname{argmax}_{\mathbf{z}}\{\mathbf{y}^{\top}\mathbf{z} - f(\mathbf{z})\}$.

Taking the subgradient of the dual function $f^*(\mathbf{y}) = \max_{\mathbf{z}} \{\mathbf{y}^\top \mathbf{z} - f(\mathbf{z})\}$ (using the formula given in the exercise):

$$\partial f^*(\mathbf{y}) = \mathbf{Co}\left[\cup \left\{ \mathbf{z} \; \middle| \; \mathbf{z} \in \operatorname*{argmax}_{\mathbf{z}} \{ \mathbf{y}^{ op} \mathbf{z} - f(\mathbf{z}) \}
ight\} \right]$$

But since $\mathbf{x} \in \operatorname{argmax}_{\mathbf{z}} \{ \mathbf{y}^{\top} \mathbf{z} - f(\mathbf{z}) \}$, this means that $\mathbf{x} \in \partial f^*(\mathbf{y})$.

- To show that the reverse is also true (i.e. if $\mathbf{x} \in \partial f^*(\mathbf{y})$ then $\mathbf{y} \in \partial f(\mathbf{x})$), we just apply the previous result to the function f^* and use that $f^{**} = f$.
- Now we prove that $\mathbf{y} \in \partial f(\mathbf{x}) \Leftrightarrow f(\mathbf{x}) + f^*(\mathbf{y}) = \mathbf{x}^\top \mathbf{y}$.

Proof of \Rightarrow : As we proved already, $\mathbf{y} \in \partial f(\mathbf{x}) \Leftrightarrow \mathbf{x} \in \arg\max_{\mathbf{z}} \mathbf{y}^{\top} \mathbf{z} - f(\mathbf{z})$, and we have $f^*(\mathbf{y}) := \max_{\mathbf{z}} \mathbf{z}^{\top} \mathbf{y} - f(\mathbf{z}) = \mathbf{x}^{\top} \mathbf{y} - f(\mathbf{x})$, which implies $f(\mathbf{x}) + f^*(\mathbf{y}) = \mathbf{x}^{\top} \mathbf{y}$.

Proof of \Leftarrow : We have $f^*(\mathbf{y}) := \max_{\mathbf{z}} \ \mathbf{z}^\top \mathbf{y} - f(\mathbf{z})$ and $f^*(\mathbf{y}) = \mathbf{x}^\top \mathbf{y} - f(\mathbf{x})$ so we have $\max_{\mathbf{z}} \ \mathbf{z}^\top \mathbf{y} - f(\mathbf{z}) = \mathbf{x}^\top \mathbf{y} - f(\mathbf{z}) \Rightarrow \mathbf{x} \in \arg\max_{\mathbf{z}} \mathbf{y}^\top \mathbf{z} - f(\mathbf{z}) \Rightarrow \mathbf{y} \in \partial f(\mathbf{x})$