

廣東工業大學

机械课程设计报告

学院	机电工程学院
专业	测控技术与仪器
学号	3122000234
姓名	袁汉阔

2024年6月25日

目录

1	设计要求	1
	1.1 测量范围	1
	1.2 精度等级	1
	1.3 外形尺寸	1
	1.4 标尺特性	2
2	方案论证	3
	2.1 结构概述	3
	2.1.1 灵敏元件	3
	2.1.2 传动放大机构	3
	2.1.3 示数装置	3
	2.2 原理分析	3
3	参数选择	5
	3.1 弹簧管	5
	3.2 曲柄滑块机构	5
	3.3 齿轮传动参数的选择	5
	3.4 标尺指针参数选择	6
	3.5 游丝的选择	6
4	参数计算	7
	4.1 弹簧管有关参数的确定	7
	4.1.1 弹簧管外型参数的确定	7
	4.1.2 弹簧管末端位移的确定	7
	4.2 曲柄滑块机构参数的确定	9
	4.3 压力表原理误差分析	9
	4.4 游丝应力校核	10
	4.5 游丝系数确定	l1
5	设计总结	.2
6	标准化统计	.3
7	公式来源	4

1 设计要求

设计普通型弹簧压力表, 其技术要求为:

1.1 测量范围

测量下限制为 0,测量上限制为: 6。单位为 $\mathrm{MPa}(\approx 10 kgf/cm^2)$

1.2 精度等级

精度等级: 1.5 级

1.3 外形尺寸

外形尺寸如图 1.2所示:

图 1.1

图 1.2 表壳外形尺寸

接头位置为径向;表壳无边;表壳公称直径 D=100mm; $H \le 60mm$,

$$B \le 100mm, a = M20 \times 1.5, S = 17^{\circ}_{-0.28}, L = 20_{\pm 0.52}, h = 5_{\pm 0.30}, d_1 = 6_{-0.30}$$

1.4 标尺特性

等分分度; 标度角: 270°;

表 1.1 测量上限值与最小分度值的关系

测量上限值	0.06	0.1	0.16	0.25	0.4	0.6
测量下限值	0.001	0.002	0.005	0.005	0.01	0.01
测量上限值	1	1.6	2.5	4	0.6	
测量下限值	0.02	0.05	0.05	0.1	0.1	

由表 1.1,由于我们设计的压力表量程上限为 0.4Mpa,所以选择最小分度值为 0.01. 所以,所设计的压力表最小分度值为 0.01MPa($\approx 10kgf/cm^2$)

2 方案论证

2.1 结构概述

弹簧管压力表是一种用来测量气体压力的仪表。 压力表的组成:

- 灵敏部分(弹簧管)
- 传动放大部分(曲柄滑块、齿轮机构)
- 示数部分(指针、刻度盘)
- 辅助部分(支承、轴、游丝)

2.1.1 灵敏元件

将不便测量的物理量转换成易于直接比较的物理量,本设计将弹簧管作为灵敏元件,将不易于比较的压力转换为易于测量的位移.

2.1.2 传动放大机构

本设计由曲柄滑块机构和齿轮传动机构组成.目的在于传递或放大位移,改变位移性质和得到等分刻度,并且应具有一定的补偿特性,同时仪表有较好的线性特性.

2.1.3 示数装置

其作用是在接受传动放大机构的位移后,指示出待测量的数值.本设计采用指针指示标尺刻度.

2.2 原理分析

作为灵敏元件的弹簧管可以把气体压力转变为管末端的位移,通过曲柄滑块机构 将此位移转变为曲柄的转角,然后通过齿轮机构将曲柄转角放大,带动指针偏转,从 而指示压力的大小。将转角放大便于测量,可以提高测量精度。压力表工作原理和框图 如图 2.1和图 2.2所示。

弹簧管的压力一位移是线性关系,但弹簧管本身的工艺问题(如材料、加工等)会造成一些线性误差,弹簧管形状的不直、不均匀也会导致非线性误差。曲柄滑块机构可以补偿弹簧管的线性及非线性误差。从 $0\sim0.4Mpa$ 调整满足满刻度精度为线性误差调整,中间部分不均匀调整为非线性误差调整。

图 2.1 压力表工作原理

图 2.2 压力表工作原理框图

3 参数选择

3.1 弹簧管

毛坯外径

毛坯中径

壁厚

轴比

中心角

材料

泊松比

弹性模量 E

如图 3.1所示:

 $\phi = 15mm$

R = 50mm

h = 0.3mm

 $\frac{a}{b} = 4$

 $\gamma'' = 250^{\circ}$

锡青铜 (QSn4-0.3)

 $\mu = 0.3$

 $1.127 \times 10^{5} MPa$

图 3.1 弹簧管尺寸示意图

3.2 曲柄滑块机构

相对杆长: $\lambda = 4$

转动范围角: $\alpha_p = 18^{\circ}$

终止位置角: $\alpha_k = 9^\circ$

相对轴偏量: $\varepsilon = 1$

初始位置角: $\alpha_0 = -9^\circ$

3.3 齿轮传动参数的选择

模数: m = 0.25

传动比: i₂₁ = 15

小齿轮齿数: $z_2 = 21$

3.4 标尺指针参数选择

分度尺寸: 3.375°

长标线长度: 10mm

指针形状: 楔杆形

短标线长度: 5mm

指针与短标线重合长度: 2mm

指针末端宽度: 2mm

3.5 游丝的选择

外径: $D_1 = 25mm$

圈数: n = 10

宽度比: $\eta = 6$

当量摩擦系数: $f_v = 0.314$

内径: $D_2 = 5mm$

安装角度: $\phi_{min} = \frac{\pi}{2}$

摩擦系数: f = 0.2

4 参数计算

4.1 弹簧管有关参数的确定

4.1.1 弹簧管外型参数的确定

单位:(mm)

项目	公式依据	计算结果
x(2b = x, 2a = 4x)	$\pi(\phi - h) = \pi x + 2(4x - x)$	5.050
短轴中径 2b	2b = x	5.050
长轴中径 2a	2a = 4x	20.200
短轴 2B	2B = 2b + h	5.350
长轴 2 <i>A</i>	2A = 2a + h	20.500

4.1.2 弹簧管末端位移的确定

项目	公式依据	计算结果
$\frac{\gamma - \gamma'}{\gamma}$	$(1)^{\frac{\gamma - \gamma'}{\gamma}} = p^{\frac{1 - \mu^2}{E}} \frac{R^2 C_1}{bh[C_2 + (\frac{Rh}{a^2})^2]} (1 - \frac{b^2}{a^2})$	1.225×10^{-2}
径向位移 S_r	$(2)S_r = \frac{\gamma - \gamma'}{\gamma} R(1 - \cos\gamma)$	1.046mm
切向位移 S_t	$(3)S_t = \frac{\gamma - \gamma'}{\gamma} R(\gamma - \sin \gamma)$	2.837mm
总位移 S	$(4)S = \sqrt{S_r^2 + S_t^2}$	$3.024 \mathrm{mm}$
位移方向角 φ	$(5)\phi = \arctan\frac{S_r}{S_t}$	20.24°

附: 查表 $C_1 = 0.437, C_2 = 0.121, \gamma = 225^{\circ}$

图 4.1 曲柄滑块结构简图

图 4.2 中心距计算图

4.2 曲柄滑块机构参数的确定

项目	公式依据	计算结
		果
曲柄长	a =	9.665mm
度 a	$\frac{s}{(\sin \alpha_k - \sin \alpha_o) + \sqrt{\lambda^2 - (\cos \alpha_o - \varepsilon)^2} - \sqrt{\lambda^2 - (\cos \alpha_k - \varepsilon)^2}}$	
连杆初	$b'=a\lambda$	38.662mm
算值 b'		
偏移距 e	$e = a\varepsilon$	9.665mm
连杆初	$\phi' = \arcsin \frac{a \cos \alpha_k - e}{b'}$	-0.176°
始位与		
滑块运		
动夹角		
ϕ'		
α_5	$\alpha_5 = 90^{\circ} - \alpha_k + \phi'$	80.824°
c'	$c' = \sqrt{a^2 + (b')^2 - 2ab'\cos\alpha_5}$	38.327mm
α_7	$\alpha_7 = 90^\circ - \phi - \sin^{-1} \frac{e}{c'}$	55.154°
理论中	$A' = \sqrt{R^2 + (c')^2 - 2Rc'\cos\alpha_7}$	42.178mm
心距 A'		
实际中	$(6) A = \frac{mz_2}{2}(i_{21} + 1)$	42.000mm
心距 A		
α_9	$\alpha_9 = \arccos \frac{R\cos\phi - e}{A} + \phi$	47.760°
修正后 c	$c = \sqrt{A^2 + R^2 - 2AR\cos\alpha_9}$	37.955mm
修正后 b	$b = \sqrt{a^2 + c^2 - 2ac\cos(\alpha_o + \alpha_7 + \phi)}$	35.216mm
扇形角	$V_{\rm d} = \alpha_p (1 + 25\%) + 2$ 个齿的度数	27.070°
V齿		

4.3 压力表原理误差分析

$$S_n = \frac{\alpha_n - \alpha_o}{\alpha_k - \alpha_o} S \tag{4.1}$$

(7)
$$S'_n = a(\sin \alpha_n - \sin \alpha_o) + a\sqrt{\lambda^2 - (\cos \alpha_o - \varepsilon)^2} - a\sqrt{\lambda^2 - (\cos \alpha_n - \varepsilon)^2}$$
 (4.2)

α_n	理想值 S_n	实际值 S'_n	原理误差绝对值	原理误差相对值
			$ S_n - S_n' $	$ S_n - S_n' /S_n$
9°	3.1400	3.1406	0.0006	0.0184%
7°	2.7911	2.7935	0.0024	0.0853%
5°	2.4423	2.4450	0.0028	0.1132%
3°	2.0933	2.0954	0.0021	0.1011%
1°	1.7444	1.7453	0.0008	0.0483%
-1°	1.3956	1.3949	0.0006	0.0461%
-3°	1.0465	1.0448	0.0019	0.1828%
-5°	0.6986	0.6952	0.0026	0.3626%
-7°	0.3489	0.3468	0.0020	0.5861%
-9°	0	0	0	0

4.4 游丝应力校核

项目		公式依据	计算结果
P_1		$P_1=m_{ ext{th}}+m_{ ext{fl}}+m_{ ext{fl}}+m_{ ext{fl}}, m= ho v g$	0.063N
F	P_2	$P_2 = m_{ar{f g}{ m K}{ m K}{ m K}} + m_{ m K}$	0.050N
	Mf_{z1}	$Mf_{z1} = \frac{1}{2}f_v P_1 d, f_v = 0.2, f = 0.314$	$1.73\times 10^{-5}Nm$
竖直放	Mf_{z2}	$Mf_{z2} = \frac{1}{2}f_v P_2 d$	$1.62\times 10^{-5}Nm$
	Mf_z	$Mf_z = Mf_{z1} + Mf_{z2} \frac{1}{i} \frac{1}{\eta} (\eta = 0.9)$	$2.12\times 10^{-5}Nm$
	Mf_{z1}	$Mf_{z1} = \frac{1}{3}P_1f\frac{d_1^3 - d_2^3}{d_1^2 - d_2^2}, d_1 = 1.1d_2, f = 0.2$	$1.17\times 10^{-5}Nm$
水平放	Mf_{z2}	$Mf_{z2} = \frac{1}{3}P_2f\frac{d_1^3 - d_2^3}{d_1^2 - d_2^2}$	$1.02\times10^{-5}Nm$
	Mf_z	$Mf_z = Mf_{z1} + Mf_{z2} \frac{1}{i_{\pm 21}} \frac{1}{\eta_{21}}$	$2.23\times 10^{-5}Nm$
max($Mf_z)$	$\max(Mf_z$ 竖直, Mf_z 水平)	$2.23 \times 10^{-5} Nm$
M_r	nin	(8) $M_{min} = \frac{kMf_z}{1-k\xi}, k = 2.5, \xi = 0.1$	$7.45 \times 10^{-5} Nm$
$M_{ m r}$	nax	$M_{ m max} = M_{ m min} rac{\phi_{max}}{\phi_{min}} = 4 M_{ m min}$	$3.21\times 10^{-4}\mathrm{Nm}$
初定游	丝长 L	(9) $L = \pi n \frac{D_1 + D_2}{2}$	$574.5\mathrm{mm}$
初定游丝厚 h		(10) $h = \sqrt[4]{\frac{12LM_{\min}}{\mu E \phi_{\min}}}, E = 1.1 \times 10^5 \text{MPa}$	$0.28\mathrm{mm}$
初定游丝宽 b		$(11) b = \mu h$	1.61 mm
最大应力 σ_{\max}		$(12) \sigma_{\text{max}} = \frac{6M_{\text{max}}}{bh^2}$	194.7 MPa
许用应力 $[\sigma_b]$		$[\sigma_b] = \frac{\sigma_b}{s}, \ s = 3.2, \ \sigma_b = 640 \mathrm{MPa}$	200 MPa

结论: 因为 $\sigma_{max} < \sigma_b$, 因此各参数选择计算合理。

4.5 游丝系数确定

注意: 式子中 K 为游丝个数。在实际加工之后游丝的 a、D1、D2 有微小改变,但并不影响游丝的特性,故可得出在实际加工之后 a、D1、D2 不必再根据 K 值重新计算;由 4.4 可得游丝基本参数:

游丝长度 L	574.5
游丝圈数 n	9
圈间距 a	1.5
游丝个数 K	4

项目	公式依据	计算结果
游丝长度 L	$(13) L = \frac{Ebh^3 \phi_{\min}}{12M_{\min}}$	574.5
游丝圈数 n	$(14) \ n = \frac{2L}{\pi(D_1 + D_2)}$	9
圏间距 a	$(15) \ a = \frac{D_1 - D_2}{2n}$	$1.5 \mathrm{mm}$
游丝个数 k	$(16) k = \frac{a}{h} (k \ge 3)$	4 个

5 设计总结

压力表是工业常用的测量气体压力的仪器,在工业生产中具有举足重轻的作用.在 实际生产中对压力表的要求非常严格,要求有足够的精度,灵敏度,并要求安全可靠. 同时根据不同的工作任务和条件,对压力表提出特殊要求,如耐高温,抗震,防潮,防尘等.

本设计要求为普通工业气体压力表,我们的设计方案为弹簧管压力表,它具有灵敏 度高,造价低廉,结构简单,传动平稳,易于加工和制造及适应性强等特点,经过以上 设计和计算表明,该方案基本达到了设计要求,完成了规定的设计任务.

同时,本设计也存在一些不足,对工作环境及测量气体均无具体要求,没有考虑它们对压力表的影响.另外,环境的温度,湿度及气体对压力表的腐蚀都可能降低其精密度.

在近三周的课程设计中,我将机械零件与制图等课程有机结合起来,提高了自己的综合能力和独立完成工作的能力,并初步掌握了机械仪表的设计方法和初步树立正确的设计思想.

工作过程中, 我受到了指导老师和同学们的大力支持和帮助, 在此深表感谢.

6 标准化统计

国标代号	零件名称	数量	材料
GB65-02	螺钉 M2	3	H62
GB65-02	螺钉 M3	5	H62
GB948-02	螺钉 M5	5	HPb59-1
GB97-02	垫圈 2	4	GB97-02
GB97-02	垫圈 3	1	GB97-02
GB117-02	圆柱销	1	HPb59-1Y

• 标准件总数: 19

• 零件总数: 42

• 标准化率: 45.2

7 公式来源

附表:

公式代号	参考书名称	页数
(1)		P_{45} 2-51
(2)	《精密机械零件》	P_{46} 2-52
(3)	天津大学	P_{46} 2-53
(4)	庞振基傅雄刚主编	$P_{46}2-54$
(5)		P_{46} 2-55
(6)	《精密机械设计》	P_{222} 8-94
(7)	庞振基黄其圣主编	P ₉₀ 5-12
(8)	《仪表零件及机构》	P_{177} 7-44
(9)		P_{347} 13-22
(10)		P_{347} 13-24
(11)		P_{347} 13-25
(12)	《精密机械设计》	P_{347} 13-26
(13)	庞振基, 黄其圣主编	P_{346} 13-21
(14)		$P_{347} 13-22$
(15)		$P_{348} 13-27$
(16)		P_{348} 13-28