CART Algorithm

Example

Data Set

 We work on same dataset in ID3. There are 14 instances of golf playing decisions based on outlook, temperature, humidity and wind factors.

Gini index

- Gini index is a metric for classification tasks in CART. It stores sum of squared probabilities of each class. We can formulate it as illustrated below.
- Gini = 1Σ (Pi)² for i = 1 to number of classes

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

Outlook

Outlook is a nominal feature. It can be sunny, overcast or rain. We summarize the final decisions for outlook feature.

Outlook	Yes	No	Number of instances
Sunny	2	3	5
Overcast	4	0	4
Rain	3	2	5

Gini(Outlook=Sunny) = $1 - (2/5)^2 - (3/5)^2 = 1 - 0.16 - 0.36 = 0.48$

Gini(Outlook=Overcast) = $1 - (4/4)^2 - (0/4)^2 = 0$

Gini(Outlook=Rain) = $1 - (3/5)^2 - (2/5)^2 = 1 - 0.36 - 0.16 = 0.48$

Then, we will calculate weighted sum of gini indexes for outlook feature.

Gini(Outlook) = $(5/14) \times 0.48 + (4/14) \times 0 + (5/14) \times 0.48 = 0.171 + 0 + 0.171 = 0.342$

Humidity

Humidity is a binary class feature. It can be high or normal.

Humidity	Yes	No	Number of instances
High	3	4	7
Normal	6	1	7

Gini(Humidity=High) = $1 - (3/7)^2 - (4/7)^2 = 1 - 0.183 - 0.326 = 0.489$

Gini(Humidity=Normal) = $1 - (6/7)^2 - (1/7)^2 = 1 - 0.734 - 0.02 = 0.244$

Weighted sum for humidity feature will be calculated next

Gini(Humidity) = $(7/14) \times 0.489 + (7/14) \times 0.244 = 0.367$

Temperature

Similarly, temperature is a nominal feature and it could have 3 different values: Cool, Hot and Mild. Let's summarize decisions for temperature feature.

Temperature	Yes	No	Number of instances
Hot	2	2	4
Cool	3	1	4
Mild	4	2	6

Gini(Temp=Hot) = $1 - (2/4)^2 - (2/4)^2 = 0.5$

Gini(Temp=Cool) = $1 - (3/4)^2 - (1/4)^2 = 1 - 0.5625 - 0.0625 = 0.375$

Gini(Temp=Mild) = $1 - (4/6)^2 - (2/6)^2 = 1 - 0.444 - 0.111 = 0.445$

We'll calculate weighted sum of gini index for temperature feature

Gini(Temp) = $(4/14) \times 0.5 + (4/14) \times 0.375 + (6/14) \times 0.445 = 0.142 + 0.107 + 0.190 = 0.439$

Wind

Wind is a binary class similar to humidity. It can be weak and strong.

Wind	Yes	No	Number of instances
Weak	6	2	8
Strong	3	3	6

Gini(Wind=Weak) = $1 - (6/8)^2 - (2/8)^2 = 1 - 0.5625 - 0.062 = 0.375$

Gini(Wind=Strong) = $1 - (3/6)^2 - (3/6)^2 = 1 - 0.25 - 0.25 = 0.5$

Gini(Wind) = $(8/14) \times 0.375 + (6/14) \times 0.5 = 0.428$

https://dataaspirant.com/how-decision-tree-algorithm-works/

Time to decide

We've calculated gini index values for each feature. The winner will be outlook feature because its cost is the lowest.

Feature	Gini index
Outlook	0.342
Temperature	0.439
Humidity	0.367
Wind	0.428

We'll put outlook decision at the top of the tree.

First decision would be outlook feature

Splitting is occurred at minimum gini index

Tree is over for overcast outlook leaf

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes

Gini of temperature for sunny outlook

Temperature	Yes	No	Number of instances
Hot	0	2	2
Cool	1	0	1
Mild	1	1	2

Gini(Outlook=Sunny and Temp.=Hot) = 1 - $(0/2)^2$ - $(2/2)^2$ = 0

Gini(Outlook=Sunny and Temp.=Cool) = 1 - $(1/1)^2$ - $(0/1)^2$ = 0

Gini(Outlook=Sunny and Temp.=Mild) = $1 - (1/2)^2 - (1/2)^2 = 1 - 0.25 - 0.25 = 0.5$

Gini(Outlook=Sunny and Temp.) = (2/5)x0 + (1/5)x0 + (2/5)x0.5 = 0.2

Gini of humidity for sunny outlook

Humidity	Yes	No	Number of instances
High	0	3	3
Normal	2	0	2

Gini(Outlook=Sunny and Humidity=High) = $1 - (0/3)^2 - (3/3)^2 = 0$

Gini(Outlook=Sunny and Humidity=Normal) = $1 - (2/2)^2 - (0/2)^2 = 0$

Gini(Outlook=Sunny and Humidity) = (3/5)x0 + (2/5)x0 = 0

Gini of wind for sunny outlook

Wind	Yes	No	Number of instances
Weak	1	2	3
Strong	1	1	2

Gini(Outlook=Sunny and Wind=Weak) = $1 - (1/3)^2 - (2/3)^2 = 0.266$

Gini(Outlook=Sunny and Wind=Strong) = 1- $(1/2)^2$ - $(1/2)^2$ = 0.2

Gini(Outlook=Sunny and Wind) = (3/5)x0.266 + (2/5)x0.2 = 0.466

Decision for sunny outlook

We've calculated gini index scores for feature when outlook is sunny. The winner is humidity because it has the lowest value.

Feature	Gini index
Temperature	0.2
Humidity	0
Wind	0.466

Decisions for high and normal humidity

Rain outlook

Day	Outlook	Temp.	Humidity	Wind	Decision
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
10	Rain	Mild	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

https://dataaspirant.com/how-decision-tree-algorithm-works/

Gini of temprature for rain outlook

Temperature	Yes	No	Number of instances
Cool	1	1	2
Mild	2	1	3

Gini(Outlook=Rain and Temp.=Cool) = 1 - $(1/2)^2$ - $(1/2)^2$ = 0.5

Gini(Outlook=Rain and Temp.=Mild) = 1 - $(2/3)^2$ - $(1/3)^2$ = 0.444

Gini(Outlook=Rain and Temp.) = (2/5)x0.5 + (3/5)x0.444 = 0.466

Gini of humidity for rain outlook

Humidity	Yes	No	Number of instances
High	1	1	2
Normal	2	1	3

Gini(Outlook=Rain and Humidity=High) = 1 – $(1/2)^2$ – $(1/2)^2$ = 0.5

Gini(Outlook=Rain and Humidity=Normal) = $1 - (2/3)^2 - (1/3)^2 = 0.444$

Gini(Outlook=Rain and Humidity) = (2/5)x0.5 + (3/5)x0.444 = 0.466

Gini of wind for rain outlook

Wind	Yes	No	Number of instances
Weak	3	0	3
Strong	0	2	2

Gini(Outlook=Rain and Wind=Weak) = $1 - (3/3)^2 - (0/3)^2 = 0$

Gini(Outlook=Rain and Wind=Strong) = $1 - (0/2)^2 - (2/2)^2 = 0$

Gini(Outlook=Rain and Wind) = (3/5)x0 + (2/5)x0 = 0

Decision for rain outlook

The winner is wind feature for rain outlook because it has the minimum gini index score in features.

Feature	Gini index
Temperature	0.466
Humidity	0.466
Wind	0

Sub data sets for weak and strong wind and rain outlook

Resources/ References

- Introduction to Machine Learning with Python, Andreas C. Müller and Sarah Guido, O'Reilly Media, Inc. October 2016.
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, Aurélien Géron, O'Reilly Media, September 2019, ISBN: 9781492032649.
- Python Machine Learning Third Edition, Sebastian Raschka, Vahid Mirjalili, Copyright © 2017 Packt Publishing.
- Discovering Knowledge In Data: An Introduction To Data Exploration, Second Edition, By Daniel Larose And Chantal Larose, John Wiley And Sons, Inc., 2014.
- UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- Understanding Autoencoders. (Part I) | by Jelaleddin Sultanov | AI³ | Theory, Practice, Business |
 Medium
- Statlib: http://lib.stat.cmu.edu
- Some images are used from Google search repository (https://www.google.ie/search) to enhance the level of learning.