

AD-A124 988 OPTIMIZATION OF THREE DIMENSIONAL COMBINED TRUSS/FRAME 1/2
STRUCTURES(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
G L BENDER OCT 82

UNCLASSIFIED

F/G 13/13 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

(2)

AD A124988

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

OPTIMIZATION OF THREE DIMENSIONAL COMBINED
TRUSS/FRAME STRUCTURES

by

Gregory L. Bender

October 1982

Thesis Advisor:

G.N. Vanderplaats

Approved for public release; distribution unlimited.

DTIC FILE COPY

DTIC
ELECTED
MAR 01 1983
S 0978 D E

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		AD-A124988
4. TITLE (and Subtitle) Optimization of Three Dimensional Combined Truss/Frame Structures		5. TYPE OF REPORT & PERIOD COVERED Engineer's Thesis October 1982
7. AUTHOR(s) Gregory L. Bender		6. PERFORMING ORG. REPORT NUMBER
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940		12. REPORT DATE October 1982
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 98
		16. SECURITY CLASS. (for this report) Unclassified
		16a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (ref info Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (ref the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Optimization, Structural Optimization, Design Optimization, Mast Design, Mast Optimization, Frame Structure Optimization		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A finite element code is developed for analysis and design of three dimensional truss and frame structures. Structures are designed for minimum weight subject to constraints on: member stresses, Euler buckling, shell buckling, joint displacements and system natural frequencies. Structures are optimized with respect to member size and structure configuration. The finite element code may be used for analysis only, or may be coupled to an optimizer of the user's choice. The		

displacement method is used for static analysis, and structure natural frequencies are calculated via the sub-space iteration method.

Flexibility is provided for expansion to other than tubular frame elements, and provisions are made for the future growth to panel and other types of structural elements.

Documentation is provided to facilitate use of the code. A User's manual is presented with examples and results. An explanation of how this code may be coupled to an optimizer is also provided.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Avail and/or	
Dist	Special
A	

Approved for public release; distribution unlimited.

Optimization of Three Dimensional Combined
Truss/Frame Structures

by

Gregory L. Bender
Lieutenant, United States Navy
B.S.Nuc.Eng., North Carolina State University, 1974

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

AND

MECHANICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL
October 1982

Author

Approved by:

Barry N. Vandeploeg Thesis Advisor

Young J. Li Second Reader

B. J. Marto
Chairman, Department of Mechanical Engineering

William M. Jolley
Dean of Science and Engineering

ABSTRACT

A finite element code is developed for analysis and design of three dimensional truss and frame structures. Structures are designed for minimum weight subject to constraints on: member stresses, Euler buckling, shell buckling, joint displacements and system natural frequencies. Structures are optimized with respect to member size and structure configuration.

The finite element code may be used for analysis only, or may be coupled to an optimizer of the user's choice. The displacement method is used for static analysis, and structure natural frequencies are calculated via the subspace iteration method.

Flexibility is provided for expansion to other than tubular frame elements, and provisions are made for the future growth to panel and other types of structural elements.

Documentation is provided to facilitate use of the code. A User's manual is presented with examples and results. An explanation of how this code may be coupled to an optimizer is also provided.

TABLE OF CONTENTS

I.	INTRODUCTION-----	11
II.	ANALYSIS-----	14
	A. INTRODUCTION-----	14
	B. STATIC ANALYSIS-----	14
	C. DYNAMIC ANALYSIS-----	15
	D. GRADIENTS-----	17
III.	OPTIMIZATION-----	18
	A. INTRODUCTION-----	18
	B. GENERAL FORMULATION-----	18
	C. DESIGN VARIABLES-----	19
	D. OBJECTIVE FUNCTION-----	20
	E. CONSTRAINTS-----	20
	1. Stress-----	21
	2. Local or Thin Shell Buckling-----	21
	F. DESIGN VARIABLE BOUNDS-----	22
	G. OPTIMUM GEOMETRY-----	22
IV.	PROGRAM FEATURES-----	23
	A. INTRODUCTION-----	23
	B. FEATURES-----	23
	C. EXAMPLE-----	25
V.	USER GUIDE-----	31
	A. INTRODUCTION-----	31

B.	DESIGN EXAMPLE-----	31
C.	SADX DATA-----	31
1.	Formatted Data-----	33
2.	Unformatted Data-----	33
D.	CONSTRAINTS-----	34
E.	EXAMPLE-----	36
1.	Properties/Conditions-----	37
2.	Input Control Parameters-----	38
VI.	NUMERICAL EXAMPLES-----	59
A.	INTRODUCTION-----	59
B.	EXAMPLE 1: TRUSS-BRACED CANTILEVER BEAM-----	59
C.	EXAMPLE 2: TWO-TIER 3-D PORTAL FRAME WITH TRUSS X-BRACES-----	61
D.	EXAMPLE 3: DD-963 FOREMAST-----	65
VII.	CONCLUSION AND RECOMMENDATIONS-----	73
A.	CONCLUSIONS-----	73
B.	RECOMMENDATIONS-----	73
LIST OF REFERENCES-----		75
APPENDIX A: DATA FILES-----		76
A.	INTRODUCTION-----	76
APPENDIX B: PROGRAM ORGANIZATION-----		92
A.	DESCRIPTION-----	92
INITIAL DISTRIBUTION LIST-----		97

LIST OF FIGURES

2.1	FORCE ORIENTATION CONVENTION FOR AN ELEMENT-----	16
5.1	TRUSS-BRACED CANTILEVER BEAM-----	32
6.1	TRUSS-BRACED CANTILEVER BEAM-----	60
6.2	TWO-TIER 3-D PORTAL FRAME WITH TRUSS X-BRACES-----	63
6.3	DD-963 FOREMAST PORT SIDE-----	66
6.4	DD-963 FOREMAST STARBOARD SIDE-----	67
6.5	DD-963 FOREMAST FORWARD SIDE-----	68
6.6	DD-963 FOREMAST AFT SIDE-----	69

LIST OF TABLES

I.	TRUSS-BRACED CANTILEVER BEAM: INPUT CONTROL PARAMETERS-----	26
II.	EXAMPLE 1: JOINT COORDINATE AND MEMBER INPUT DATA-----	27
III.	EXAMPLE 1: SAMPLE DISPLACEMENT AND FORCE/STRESS OUTPUT-----	28
IV.	EXAMPLE 1: SAMPLE CONSTRAINT OUTPUT INFORMATION---	29
V.	EXAMPLE 1: FINAL OPTIMIZATION INFORMATION-----	30
VI.	COMMON VARIABLE NOMENCLATURE-----	39
VII.	EXAMPLE 1: FINAL OPTIMIZATION INFORMATION-----	62
VIII.	EXAMPLE 2: FINAL OPTIMIZATION INFORMATION-----	64
IX.	EXAMPLE 3: FINAL OPTIMIZATION INFORMATION-----	71
X.	DATA FILE TRUSS-BRACED CANTILEVER BEAM-----	77
XI.	DATA FILE TRUSS-BRACED CANTILEVER BEAM continued-----	78
XII.	DATA FILE TWO-TIER 3-D PORTAL FRAME-----	79
XIII.	DATA FILE TWO-TIER 3-D PORTAL FRAME continued-----	80
XIV.	DATA FILE TWO-TIER 3-D PORTAL FRAME continued-----	81
XV.	DATA FILE DD-963 FOREMAST-----	82
XVI.	DATA FILE DD-963 FOREMAST continued-----	83
XVII.	DATA FILE DD-963 FOREMAST continued-----	84
XVIII.	DATA FILE DD-963 FOREMAST continued-----	85

XIX.	DATA FILE DD-963 FOREMAST continued-----	86
XX.	DATA FILE DD-963 FOREMAST continued-----	87
XXI.	DATA FILE DD-963 FOREMAST continued-----	88
XXII.	DATA FILE DD-963 FOREMAST continued-----	89
XXIII.	DATA FILE DD-963 FOREMAST continued-----	90
XXIV.	SUBROUTINE DIRECTORY-----	93
XXV.	PROGRAM BLOCK DIAGRAM-----	96

ACKNOWLEDGEMENT

I have been fortunate enough to receive a great deal of assistance, guidance, and encouragement during the course of the year I have spent doing my research and developing my design code.

I would like to thank the Mechanical Engineering Department for allowing me to pursue the research of my choice and those members of the Naval Postgraduate School faculty under whose tutelage I labored for the education I received. I want to thank Professor Young Shin for his assistance and guidance in producing this document.

I want to express my most heartfelt appreciation to Professor Gary Vanderplaats for his guidance, his encouragement, his time, and his patience during the course of this project. His ability to cut to the heart of the problem made my task ever so much easier. I cannot thank him too much.

Finally to my loving wife and partner in this endeavor, Alice, words are inadequate to express my appreciation for the support you have provided during the past 27 months here at the Naval Postgraduate School.

I. INTRODUCTION

The task of the Engineer is to provide the best solution to the customer's problem. Usually the "best" solution is the one that does the job with an adequate margin of safety, is aesthetically pleasing, and is economically feasible. The solution may be reached through various means, but efficient use of design tools, as well as efficient use of materials is important since both add to the overall cost of the product. Design optimization is one method that can be used to maximize the efficiency of a structure by minimizing its weight and, presumably, cost.

Optimization of structures has had continuing changes since its development in the early 1960's with an active area of research being elastic structures. The main goal is to design structural systems that efficiently perform specified purposes. Since most physical structures can be modeled by the finite element method, a computer program can be written to perform the necessary calculations to solve the problem.

The purpose of this research was to develop a finite element code that could be used to analyze a combined truss/frame structure and could be easily coupled to an optimizer; thus providing a useful tool for designing such structures

as, for example, ships' masts. This code expands the previous work by Fitzgerald [Ref. 1] on truss structures to the more general six degree-of-freedom truss/frame case.

The design problem considered in this study is the optimization of three-dimensional statically indeterminant combined truss-frame structures under varying load conditions and subject to a variety of constraints. The objective is to minimize the weight of the structure where the design variables are member sizes and joint coordinates. Constraints include: maximum normal stress; maximum joint displacements; minimum structure natural frequencies; Euler buckling; and in the case of the tubular frame elements, local or shell buckling.

In the present code, all gradient information is calculated by the finite difference method. Modification of the code to permit calculation of gradients analytically has been identified as a necessary future extension.

This document describes the use and capabilities of the finite element computer code to be coupled to an optimizer. The user's manual presented in Chapter V contains a simple design example in which the program is coupled to the CONMIN optimization code [Ref. 2]. Additionally, guidelines for coupling the code to an optimizer of the user's choice are presented.

Several examples demonstrating the program under a variety of conditions are presented. Conclusions and recommendations for future work are given.

II. ANALYSIS

A. INTRODUCTION

When the finite element method of analysis is used to design optimization, two objectives must be kept in mind. First, the number of analyses for the structure should be kept to a minimum. Second, the amount of gradient information required during the design process should be minimized to shorten run times and minimize computer storage requirements.

B. STATIC ANALYSIS

Initial formulation of the problem must include approximate member areas in the case of truss elements, and for frame elements, characteristic dimensions (for tubular members: mean diameter and wall thickness); material properties (which may be different for each member); a set or sets of external loads; any non-structural attached masses; and specified joint support conditions.

The analysis for the stresses and deflections at the joints must satisfy the conditions of equilibrium of forces at the nodes and geometric conditions of compatibility of deformation. In this analysis the structure is assumed to behave in a linearly elastic fashion. The weight of an individual member is not inherently included as part of the

specified load conditions; but, as an option, half of the weight of each member may be applied at the member's end-points as an additional load in the negative Y-direction.

For this analysis, the following assumptions are made: truss and frame members are treated as discrete entities; truss elements have three translational degrees of freedom at each node and are treated as pin-connected; frame elements have three translational and three rotational degrees of freedom at each node and are treated as fixed-fixed beams; and loads and reactions are applied at the joints as shown in Figure 2.1.

The Displacement (Stiffness) method for finite element analysis [Ref. 3] is utilized where

$$\underline{\underline{K}}\underline{u} = \underline{F} \quad (3.1)$$

and where $\underline{\underline{K}}$ is the global stiffness matrix, \underline{F} is the vector or vectors of applied loads, and \underline{u} is the vector or vectors of displacements. The method used herein is an extension of that described by Felix and Vanderplaats [Ref. 4]. By applying the constitutive stress-displacement relationships, stresses in the elements may be recovered.

C. DYNAMIC ANALYSIS

When constraints on the system's natural frequencies are to be considered, the design process requires the solution of an eigenvalue problem. The sub-space iteration

Figure 2.1 FORCE ORIENTATION CONVENTION FOR AN ELEMENT

method of Bathe and Wilson [Ref. 5] is used to solve for the desired number of lowest eigenvalues and the associated eigenvectors. This method is reasonably efficient for a small number of lowest frequencies for a large problem, and is well suited for re-analysis when small changes are made in the design.

D. GRADIENTS

Gradients are currently calculated with respect to member sizes and coordinates only by finite difference techniques. Inclusion of the capability to calculate gradients analytically is identified as a needed extension to this work.

III. OPTIMIZATION

A. INTRODUCTION

The primary objective of structural optimization is to design systems that efficiently perform specified purposes. Selection of a specific optimizing algorithm must take into account the following: 1) the structure should be analyzed as few times as possible; 2) the algorithm should minimize the amount of gradient information required; 3) the algorithm should provide reasonable assurance that an optimum or near-optimum design will be reached.

B. GENERAL FORMULATION

The general statement of inequality constrained minimization is as follows:

Minimize

$$F(\underline{X}) \quad (4.1)$$

Subject to:

$$G_j(\underline{X}) \leq 0 \quad j=1,m \quad (4.2)$$

$$x_i^l \leq x_i \leq x_i^u \quad i=1,n \quad (4.3)$$

where $F(\underline{X})$ is the objective function to be minimized. The functions $G_j(\underline{X})$ are the set of inequality constraints to be met. The vector \underline{X} contains the design variables.

The inequality constraints, $G_j(\underline{x}) \leq 0$ $j=1,m$, must be satisfied for the design to be accepted as feasible. Side constraints, x_i^l and x_i^u , are lower and upper bounds on the design variables. The objective function must be minimized as much as possible while still satisfying all inequality constraints. In the case that it is not possible to satisfy all constraints, the most nearly feasible solution must be found. Felix and Vanderplaats [Ref. 4] is an excellent source for the basic structural design formulation.

C. DESIGN VARIABLES

The vector \underline{x} contains the design variables; in this case, member characteristic dimensions for frame elements, cross-sectional areas for truss elements, and spacial coordinates of the joints. The user may elect to optimize the structure weight with respect to any combination of the above variables.

For truss elements, where normal stress is dependent only upon the magnitude of the cross-sectional area of an element and not the distribution of that area, it is sufficient to use the area as the design variable as long as the Euler buckling stress can be related to the cross-sectional area. For frame elements where stresses are dependent on area distribution, more flexibility is allowed by varying two characteristic dimensions and allowing the code to calculate the section properties from these.

In the case of tubular elements, the characteristic dimensions are mean diameter and wall thickness; from which area, bending and polar moments, and maximum radial dimensions are generated.

The optimum geometry problem requires that the joint coordinates be design variables. The x, y, and z coordinates of a joint are treated as separate design variables.

In many cases it is desirable to link a set of design variable together to preserve symmetry, limit the number of variables to be solved, or to limit the number of unique elements to be manufactured. The code has provisions for design variable linking by which two or more variables may be linked in equality or some fixed ratio.

D. OBJECTIVE FUNCTION

The objective function under consideration is weight

$$F(X) = \sum_{i=1}^{NE} \rho_i A_i L_i \quad (4.4)$$

where ρ_i is the weight density (in consistent units) of the material of the i th element, A_i is the cross-section area of the i th element, and L_i is the length of the i th element and NE is the number of elements in the structure.

E. CONSTRAINTS

This code is designed to accommodate constraints on maximum normal stress, Euler buckling, local or shell buckling,

maximum joint displacements, and minimum natural frequencies of the structure. All constraint values are normalized.

1. Stress:

For truss elements, maximum normal stress σ_M is calculated directly from the element tensile forces. For frame elements; tensile stress σ_A , maximum bending and shear stresses σ_B and σ_T are calculated. Maximum and minimum normal stresses are

$$\sigma_{\max} = \text{max magnitude of } \sigma_A \pm \frac{\sqrt{(\sigma_A)^2 + 4(\sigma_T)^2}}{2} \quad (4.5)$$

$$\sigma_{\min} = \text{min magnitude of } \sigma_A \pm \frac{\sqrt{(\sigma_A)^2 + 4(\sigma_T)^2}}{2} \quad (4.6)$$

The upper and lower bounds on stress may be different for each member, but are taken to be the same for every loading condition.

2. Local or Thin Shell Buckling

The stress at which local or thin shell buckling occurs is given by:

$$\sigma_{L_i} = \frac{0.4E_i}{D_{m_i}/t_i} \quad (4.7)$$

where the subscript i corresponds to the member number, E_i is Young's modulus, D_{m_i} is the element's mean diameter, and t_i is the element's wall thickness.

F. DESIGN VARIABLE BOUNDS

Side constraints are imposed on the design variables as:

$$CD_i^l \leq CD_i \leq CD_i^u \quad (4.8)$$

CD is the characteristic dimension and CD_i^l and CD_i^u are the minimum and maximum allowable characteristic dimensions of the ith element, and are taken to be the same for all load cases. If, as is the case in a tubular element, geometry dictates that some relationship between the design variables cannot be exceeded, i.e., thickness cannot exceed the mean diameter, the user must arrange the bounds to preclude such an occurrence.

G. OPTIMUM GEOMETRY

Joint coordinates are treated as design variables with a separate design variable for each coordinate direction of a node. Coordinate design variables may also be linked.

IV. PROGRAM FEATURES

A. INTRODUCTION

Computer codes each have their own features and formats with which the user must become familiar if he is to use the code easily and efficiently. The SADX code developed in the course of this research has been designed with various options which are explained in this chapter. Chapter V contains a User's Manual with sample data for a typical problem that might be solved with this code: a truss-braced cantilever beam. This problem along with other numerical examples will be presented in detail with results in Chapter VI.

The SADX code was written to be used as a stand alone analysis program or as an analysis code that could be easily be coupled to an optimizer (of the user's choice) through simple modifications to the main driver program.

B. FEATURES

When the user supplies member areas, section types, characteristic dimensions, material data, connectivities and joint coordinates, along with a set of program control parameters; the analysis mode will calculate the weight of the structure. The addition of one or more sets of loading parameters will result in the calculation of resultant joint

displacements, member stresses, and/or forces for each load case along with the desired number of structure natural frequencies and modes. Design variables may be chosen as truss element areas, frame element characteristic dimensions, and joint coordinates. When coupled to an optimizer, the code will minimize the weight of the structure and print the final optimization information. The code is designed to be as simple to use as possible while retaining the flexibility for use on a variety of problems.

The code's modular construction allows the user to use frame element cross-sections other than tubular elements. This is done by reading in two characteristic dimensions for each frame element along with a section type identifier. Subroutine SADX85 is called to calculate the section properties, area, maximum radial dimensions, and bending and polar moments of inertia. The user may augment this subroutine to calculate section properties for whatever section type he may choose to work with.

Many computer codes require the definition of an auxiliary node to orient the principle axis of a non-axially symmetric element. In this code it is assumed that the element's local z-axis is parallel to the global x-z plane.

Pseudo-dynamic storage is used to allow storage of most data in one integer and one real array for more efficient use of storage.

Various print control options are available to tailor the printed output to match the user's desires.

Design variable linking is available to allow elements and joints to be grouped to maintain symmetry, limit the number of independent design variables, or reduce the variety of member sizes generated.

Optimization may be performed with respect to member size, with respect to structure geometry, or with respect to both.

Structures may be comprised of truss elements, frame elements, or a mix of the two types.

Structures may be optimized for multiple load cases with constraints imposed upon any combination of maximum normal stress, maximum joint displacements and rotations, Euler and local buckling, and a specified number of minimum natural frequencies in free vibration. Separate displacement constraints may be imposed for each load case. Both consistent and lumped mass options are coded. Either forces or stresses or both can be output. The user may decide whether to include the structure's weight and the fixed masses as loads applied to the structure.

C. EXAMPLE

The following example of the truss-braced cantilever beam presented in Tables (I-V) demonstrates some of the options available in the code.

TABLE I
TRUSS-BRACED CANTILEVER BEAM: INPUT CONTROL PARAMETERS

INPUT PARAMETERS FOR STRUCTURAL ANALYSIS AND DESIGN
ROUTINE, "SADX"

TRUSS-BRACED CANTILEVER BEAM: EXAMPLE 1
CONTROL PARAMETERS

TOTAL NUMBER OF ELEMENTS,	NE=	4
TOTAL NUMBER OF BAR ELEMENTS,	NEB=	2
TOTAL NUMBER OF FRAME ELEMENTS,	NFF=	2
TOTAL NUMBER OF JOINTS,	NJ=	5
JOINT MAXIMUM DEGREES OF FREEDOM,	JCM=	6
JOINT CONSTRAINT VARIABLE,	NCJ=	3
NUMBER OF MATERIAL TYPES,	NMT=	2
NUMBER OF LOAD CONDITIONS,	NLC=	2
NUMBER OF EIGENVALUES,	NEIG=	1
NO. OF EIGENVALUES CALCULATED,	NEIG1=	2
NUMBER OF FIXED MASSES,	NFIASS=	1
EULER BUCKLING CONSTRAINT ID,	NEUBC=	1
LOCAL BUCKLING CONSTRAINT ID,	LBUCK=	1
NO. OF DISPL. CONSTRAINTS,	NDSPLC=	2
NO. OF FREQ. CONSTRAINIS,	NFREQ=	1
LUMPED MASS OPTION	LMASS=	0
FORCE/STRESS PRINT OPTION,	NSTRES=	2
OPTIMUM SIZE/BOTH/GEOM OPTION	IDVCLC=	2
STRUCTURE WEIGHT AS LOADS OPTION	NSTW=	1
FIXED MASSES AS LOADS OPTION	NFMW=	1

ACCELERATION DUE TO GRAVITY, GRAV = 0.38640E+03
EIGENVALUE CONVERGENCE TOLERANCE, EPSEIG = 0.10000E-03

TABLE II

EXAMPLE 1: JOINT COORDINATE AND MEMBER INPUT DATA

JCINT	COORDINATES		
	X	Y	Z
1	0.0	0.0	0.0
2	0.1000E+03	0.0	0.0
3	0.2000E+03	0.0	0.0
4	0.0	0.1500E+03	0.0
5	0.0	0.0	0.5000E+02

COORDINATE DESIGN VARIABLES

JCINT	DESIGN VARIABLE			MULTIPLIER		
	X	Y	Z	X	Y	Z
1	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0
4	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01
5	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01

ELEMENT INFORMATION FOR BAR ELEMENTS

ELEMENT-JOINT RELATIONSHIPS

LNO	NODE1	NODE2	MATL	DVAR1	AREA	LENGTH
1	2	4	1	1	0.3000E+01	0.1803E+03
2	2	5	1	2	0.3000E+01	0.1118E+03

ELEMENT INFORMATION FOR FRAME ELEMENTS

ELEMENT-JOINT RELATICSASHIPS ELEMENT PROPERTIES

ELEMENT NUMBER	NCDE1	NODE2	MATL	1ST DESVAR		2ND DESVAR		ZMAX	YMAX
				1	2	3	4		
1	2	2	2	0.157E+02	0.100E+03	0.511E+02	0.511E+02	0.300E+01	0.300E+01

ELEMENT NUMBER	NCDE1	NODE2	MATL	1ST DESVAR		2ND DESVAR		ZMAX	YMAX
				2	3	2	3		
2	3	3	3	0.157E+02	0.100E+03	0.511E+02	0.511E+02	0.300E+01	0.300E+01

TABLE III

EXAMPLE 1: SAMPLE DISPLACEMENT AND FORCE/STRESS OUTPUT

```

NO. OF BAR ELEMENTS = 2
LNG LOAD COND TENSILE FORCE IN X MAX STRESS
1 1 -0.7375E-04 -0.6428E-03
1 1 -0.1544E-04 -0.4447E-03
LNG LOAD COND TENSILE FORCE IN X MAX STRESS
1 1 -0.3425E-04 -0.3420E-03
1 1 -0.3413E-03 -0.3413E-03

NO. OF FRAME ELEMENTS = 2
ELEMENT LOAD COND NCNE TENSILE FORCE IN X DIREC SHEAR FORCE IN Y DIREC SHEAR FORCE IN Z DIREC TOPSIGN MOMENT ABOUT X AXIS BENDING MOMENT ABOUT Y AXIS BENDING MOMENT ABOUT Z AXIS MAX STRESS
1 1 LGH HIGH -0.1737E-03 -0.1063E-03 -0.3333E-03 0.0 -0.3333E-03 0.7143E-03 -0.7143E-03
1 2 LGH HIGH -0.2667E-03 -0.2187E-03 -0.1482E-03 0.0 0.1482E-03 -0.1333E-03 -0.1333E-03
ELEMENT LOAD COND NCNE TENSILE FORCE IN X DIREC SHEAR FORCE IN Y DIREC SHEAR FORCE IN Z DIREC TOPSIGN MOMENT ABOUT X AXIS BENDING MOMENT ABOUT Y AXIS BENDING MOMENT ABOUT Z AXIS MAX STRESS
1 1 LGH HIGH -0.2883E-03 -0.7109E-03 -0.2765E-03 0.0 0.2765E-03 -0.7109E-03 -0.2771E-03
1 2 LGH HIGH -0.3908E-03 -0.2833E-03 -0.1000E-03 0.0 -0.1000E-03 -0.3908E-03 -0.3909E-03
EIGENVALUES AND EIGENVECTORS
MORE DEPLRNS? EIGENVECTORS? EIGENVECTORS? EIGENVECTORS? EIGENVECTORS?
JCONST 1 0.0 0.0 0.0
1 -0.2415E-01 -0.2775E-01 -0.1930E-01
1 -0.2334E-01 -0.1755E-01 0.1000E-01

LOAD CONDITION 1
DISPLACEMENTS DEGREE OF FREEDOM
JAT X-CISPL Y-CISPL Z-DISPL ROT ABT X ROT ABT Y ROT ABT Z T ABT Z
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 -0.4155E-02 -0.2755E-02 -0.1375E-03 0.0 0.0 0.0 0.0
3 -0.0505E-02 -0.1505E-01 -0.3435E-03 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 C.C. C.C. 0.0 0.0 0.0 0.0 0.0 0.0
LEAD CONDITION 2
DISPLACEMENTS DEGREE OF FREEDOM
JAT X-CISPL Y-CISPL Z-DISPL ROT ABT X ROT ABT Y ROT ABT Z T ABT Z
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 -0.526E-02 -0.571E-02 -0.187E-02 0.0 0.0 0.0 0.0
3 -0.5226E-02 -0.161F-01 -0.784E-02 0.0 0.0 0.0 0.0
4 C.C. C.C. 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 3.0 0.0 0.0 0.0 0.0 0.0

```

TABLE IV
EXAMPLE 1: SAMPLE CONSTRAINT OUTPUT INFORMATION

DISPLACEMENT CONSTRAINTS START AT NUMBER 2 AND STOP AT NUMBER 5

TRUSS ELEMENT STRESS CONSTRAINTS
START AT NUMBER 6 AND STOP AT NUMBER 17

FRAME ELEMENT STRESS CONSTRAINTS
START AT NUMBER 18 AND STOP AT NUMBER 41

THE NUMBER OF CONSTRAINTS NCTOT = 41

1)	- .4 C E 882 E + C2	- .161055 E + 01	- .389445 E + 00	- .258895 E + 00
5)	- .174111 E + C1	- .5 E 1 E 88 E + 00	- .101841 E + C1	- .943857 E + 00
9)	- .101236 E + C1	- .5 E 7 E 4 C E + 00	- .103769 E + 01	- .102428 E + 01
13)	- .578722 E + C C	- .102139 E + 01	- .888444 E + 00	- .111156 E + 01
17)	- .901716 E + C C	- .12 E 755 E + C1	- .732450 E + C C	- .152875 E + C1
21)	- .471251 E + C0	- .1185559 E + 01	- .972695 E + 00	- .597988 E + 00
25)	- .14 C 201 E + C1	- .22 E C1 4 E + C0	- .177499 E + C1	- .127432 E + 01
29)	- .959641 E + C0	- .171444 E + 01	- .285557 E + C0	- .1000000 E + 01
33)	- .569999 E + C0	- .123411 E + 01	- .965558 E + 00	- .581741 E - 04
37)	- .159994 E + C1	- .555598 E + 00	- .10 C000 E + C1	- .132766 E + 01
41)	- .551795 E + C0			

TABLE V
EXAMPLE 1: FINAL OPTIMIZATION INFORMATION

FINAL OPTIMIZATION INFORMATION

OBJ = C.5E75C7E+C3

DECISION VARIABLES (X-VECTOR)

1)	C.3481E+C1	0.8499E+01	0.48389E+01	0.21898E+00	0.15576E+00
7)	C.4543E+02				

CONSTRAINT VALUES (G-VECTOR)

1)	C.4086E+02	-0.161C6E+01	-0.38945E+00	-0.25889E+00	-0.17411E+01
7)	-C.10184E+01	-0.94386E+00	-0.10124E+01	-0.98764E+00	-0.10377E+01
13)	-C.97572E+00	-0.10214E+01	-0.8844E+C0	-0.11116E+01	-0.90172E+00
19)	-C.7324E+00	-0.15287E+C1	-0.47125E+00	-0.11856E+C1	-0.97270E+00
25)	-C.1402CE+01	-0.22501E+00	-0.17750E+01	-0.12743E+01	-0.95964E+00
31)	-0.28556E+00	-0.100COE+C1	-C.10000E+01	-0.12341E+01	-0.96556E+00
37)	-C.19996E+01	-0.10000E+01	-0.10000E+01	-0.13277E+C1	-0.95180E+C0

THERE ARE 1 ACTIVE CONSTRAINTS
CONSTRAINT NUMBERS ARE
36

THERE ARE 0 VIOLATED CONSTRAINTS

THERE ARE 0 ACTIVE SIDE CONSTRAINTS

TERMINATION CRITERION

ABS(OBJ(I)-OBJ(I-1)) LESS THAN DABFUN FOR 3 ITERATIONS

NUMBER OF ITERATIONS = 12

OBJECTIVE FUNCTION WAS EVALUATED 114 TIMES

CONSTRAINT FUNCTIONS WERE EVALUATED 114 TIMES

THIS RUN REQUIRED 116 STRUCTURAL ANALYSES

NUMBER OF SECONDS REQUIRED FOR EXECUTION = 2.79

WEIGHT OF STRUCTURE GIVEN AREAS & LENGTHS

WEIGHT= C.5E751E+C3

TOTAL WEIGHT INCLUDING FIXED MASSES

TOTAL WEIGHT= C.83751E+03

JCINT COORDINATES

JCINT	X	Y	Z
1	0.0	0.0	0.0
2	0.1C0COE+C3	0.0	0.0
3	0.2C0COE+C3	0.0	0.0
4	0.0	0.84259E+02	0.0
5	0.0	0.0	0.45432E+02

ELEMENT INFORMATION FOR BAR ELEMENTS

ELEMENT-JCINT RELATIONSHIPS

ELEMENT	NODE 1	NODE 2	AREA	LENGTH
1	2	4	C.3481E+C1	0.1308E+03
2	2	5	0.8499E+01	0.1058E+03

ELEMENT INFORMATION FOR FRAME ELEMENTS

ELEMENT-JCINT RELATIONSHIPS

LN	NCCE1	NCCE2	AREA	LENGTH	CHAR.DIM.1	CHAR.DIM.2
3	1	2	0.3329E+01	0.1000E+03	0.4839E+01	0.2190E+00
4	2	3	0.2366E+01	0.1000E+03	0.4839E+01	0.1558E+00

V. USER GUIDE

A. INTRODUCTION

In developing any computer code for engineering analysis, it is necessary to additionally develop concise, easily understood documentation. This SADX USER'S GUIDE is written to be easily understood by the user having only minimal knowledge of the FORTRAN language. The format follows that of the optimization code, COPES/CONMIN [Ref. 2].

This chapter is devoted to acquainting the user with the code and necessary input data.

B. DESIGN EXAMPLE

The simple example of a four-element combined truss/frame structure is used to demonstrate some of the features of the SADX program.

The structure is shown in Figure 5.1, and consists of two tubular frame elements along the x-axis with two truss braces to the y and z axes from the joint between the frame elements. A non-structural fixed mass is attached at the outboard end of the second frame element where two loads are applied.

C. SADX DATA

The SADX program reads data from unit 5 and writes output on unit 6. Units 30 and 40 are used as scratch files.

Figure 5.1 TRUSS-BRACED CANTILEVER BEAM

The scratch file numbers may be changed by changing two cards at the beginning of subroutine SADX01. The SADX program has the capability to read unformatted data. The following sections define the data which is required by SADX. The data is segmented into "BLOCKS" for convenience.

SADX data begins with a TITLE card and ends with a END card. Comment cards may be inserted anywhere in the SADX data stack prior to the END card, and are identified by a dollar sign (\$) in column 1. Data may be of either the "I10" or "F10.0" type or may be free-format separated by commas with no imbedded blanks. Lines of formatted and unformatted data may be intermixed.

1. Formatted Data

Formats are of "I10" and "F10.0" type. "I" formats must be right justified, and "F" formats must have the decimal point. The number of cards read per data block is listed at the bottom of each block.

2. Unformatted Data

While the USER'S MANUAL data sheet defines SADX data in formatted fields of ten, the data may actually be read in a simplified fashion by separating data by commas or one or more blanks. If more than one number is contained on an unformatted data card, a comma must appear somewhere on the card. If exponential numbers such as 2.5+10 are read on an unformatted card, there must be no imbedded blanks. Unformatted cards may be intermingled with formatted cards. Real numbers on an unformatted card must have a decimal point.

EXAMPLES

Unformatted data

5,7,3.2,1.3+6,-5,2

Equivalent formatted data

col	10	20	30	40	50	60	70	80
	5	7	3.2	1.3+6	-5	0	2	

Unformatted data

2

2,3

2 3

Equivalent formatted data

col	10	20	30	40	50	60	70	80
	2							
	2	3						

2 3

NOTE: The third line of data contains no commas and is therefore assumed to be already formatted.

Placement of more than eight unformatted data on a card will create two (or more) formatted cards as required. Fields of zeros will be created if more data are required than are filled on an unformatted card.

D. CONSTRAINTS

Constraints are calculated and stored in the G vector as listed in the following chart. The total number of constraints

NCON=NFREQ+2*NDSPLC+NLC*(2*NEB + 4*NEF + NEB + 2*NEF)
freq displ stress stress buckl buckl

Where NCON is the total number of constraints, NFREQ is the number of frequency constraints, NDSPLC is the number of displacement constraints, NLC is the number of load cases imposed, NEB is the number of bar or truss elements, and NEF is the number of frame elements. When any of the constraints are missing from the G vector, all constraints are moved up in the vector. For example, if there is no frequency constraint, then a displacement constraint would fill the first location of the G vector.

CONSTRAINTS ARE STORED IN THE G VECTOR IN
THE FOLLOWING ORDER:

NFREQ FREQUENCY CONSTRAINTS

2*NDSPLC JOINT DISPLACEMENT CONSTRAINTS

STRESS CONSTRAINTS ARE STORED ELEMENT BY ELEMENT

FOR A GIVEN ELEMENT CONSTRAINTS ARE STORED BY LOAD CASE

FOR A GIVEN TRUSS ELEMENT AND LOAD CASE,

CONSTRAINTS ARE STORED:

TENSILE STRESS LOWER LIMIT

TENSILE STRESS UPPER LIMIT

EULER BUCKLING STRESS LIMIT (IF APPLICABLE)

FOR A GIVEN FRAME ELEMENT AND LOAD CASE,

CONSTRAINTS ARE STORED:

NORMAL STRESS AT LOW NODE LOWER LIMIT

NORMAL STRESS AT LOW NODE UPPER LIMIT

NORMAL STRESS AT HIGH NODE LOWER LIMIT

NORMAL STRESS AT HIGH NODE UPPER LIMIT

EULER BUCKLING STRESS LIMIT (IF APPLICABLE)

LOCAL BUCKLING STRESS LIMIT (IF APPLICABLE)

E. EXAMPLE

The initial configuration of the braced cantilever beam is shown in Figure 5.1 Stress constraints are imposed as well as constraints on Euler and local buckling, displacement, and first fundamental frequency. A non-structural fixed mass is applied at the tip of the beam, and two load conditions (P_1 , and P_2) are imposed. The structure's own weight will be considered as an imposed load as will be the fixed mass.

The linking of design variables is demonstrated by linking the mean diameters of the two frame members (D_1 , and D_2 with $D_1=D_2$). Member size variables are: truss member areas (A_1 , and A_2), frame member mean diameters (D_1 , and D_2), and frame member thicknesses (T_1 , and T_2). Member sizing DESIGN VARIABLES are: $XA(1)=A_1$, $XA(2)=A_2$, $XA(3)=D_1=D_2$, $XA(4)=T_1$, $XA(5)=T_2$.

Geometry variables are the attachment points (joints 4 and 5) of the two truss members on the y and z axes (Y_4, Z_5). Coordinate DESIGN VARIABLES are: $XC(1)=Y_4$ and $XC(2)=Z_5$. The structure's weight is then optimized with respect to member sizes and structure geometry for a total of seven design variables.

1. Properties/Conditions

Two material types are used: type 1, aluminum, is used for the truss members; and type 2, steel, is used for the frame members. The weight densities of the materials (ρ) are:

$$\text{type 1} = 0.1 \text{ lb/in}^3$$

$$\text{type 2} = 0.3 \text{ lb/in}^3$$

The Young's moduli of the materials (E) are:

$$\text{type 1 } E = 10.0E+6 \text{ psi}$$

$$\text{type 2 } E = 29.0E+6 \text{ psi}$$

The non-structural fixed mass attached at the tip of the structure weights 250 lb. The applied loads are:

P1 1000.0 lb in the +y direction

P2 1000.0 lb in the -z direction

The acceptable maximum normal stresses are:

$$\text{type 1 } -25000 \text{ psi} \leq \sigma_{\max} \leq 25000 \text{ psi}$$

$$\text{type 2 } -36000 \text{ psi} \leq \sigma_{\max} \leq 36000 \text{ psi}$$

Displacement limits, imposed upon joint number 3 (the tip) for each load case in the direction of loading, are:

load case 1 y-direction +/- 3.0 in.

load case 2 z-direction +/- 3.5 in.

Bounds, placed on the positions of joints 4 and 5 along the y and z axes, are:

joint 4 y-coordinate 0.0 inches to 200.0 inches

joint 5 z-coordinate 0.0 inches to 100.0 inches

The minimum natural frequency of the structure is constrained to be greater than 1Hz.

2. Input Control Parameters

The following input control parameters are given
for ease of following the example:

NEB=2	NEF=2	NJ=5	NCJ=3
NMT=2	IDVCLC=2	NDJ=2	NEUBC=1
LBUCK=1	NFREQ=1	NFMASS=1	NEIG=1
NEIG1=2	NPRI=0	NLC=2	NDSPLC=2
NSTRES=2	NSTW=1	NFMW=1	

Table VI is a listing of commonly used nomenclature.

The following USER'S MANUAL is divided into blocks A through P. Appearng directly below each data field line are the parameters for the TRUSS-BRACED CANTILEVER BEAM example. It is important to note that the user may choose any consistent system of units.

TABLE VI
COMMON VARIABLE NOMENCLATURE

A	- MEMBER'S CROSS -SECTİONAL AREA
BL	- LOWER BOUND ON DISPLACEMENTS
BU	- UPPER BOUND ON DISPLACEMENTS
CHARDIM1,2	- CHARACTERISTIC DIMENSIONS FOR FRAME MEMBERS FOR LSECT.EQ.1: MEAN DIAMETER AND THICKNESS
DIR	- DIRECTION 1=X, 2=Y, 3=Z, 4=rot about x, 5=rot about y, 6=rot about z.
E	- YOUNGS MODULUS
EPSEIG	- CONVERGENCE TOLERANCE OF EIGENVALUE SOLUTIONS (DEFAULT=.0001)
FC 1,...,FCN	- LOWER BOUND ON FIRST, SECOND, ETC. SYSTEM NATURAL FREQUENCY
FX	- LOAD FORCES APPLIED IN THE X DIRECTION
FY	- LOAD FORCES APPLIED IN THE Y DIRECTION
FZ	- LOAD FORCES APPLIED IN THE Z DIRECTION
GRAV	- ACCELERATION DUE TO GRAVITY (DEFAULT= 386.4)
ID VLC	- THE OPTIMIZATION OPERATION IDENTIFIER 1 FOR OPTIMUM MEMBER SIZE ONLY 2 FOR BOTH OPTIMUM MEMBER SIZE AND GEOMETRY 3 FOR OPTIMUM GEOMETRY ONLY
IX	- CONSTRAINT IDENTIFIER. IF NON-ZERO THE X-DOF IS CONSTRAINED
IY	- CONSTRAINT IDENTIFIER. IF NON-ZERO THE Y-DOF IS CONSTRAINED
IZ	- CONSTRAINT IDENTIFIER. IF NON-ZERO THE Z-DOF IS CONSTRAINED
IXX	- CONSTRAINT IDENTIFIER. IF NON-ZERO THE ROTATION ABOUT THE X-AXIS IS CONSTRAINED
IYY	- CONSTRAINT IDENTIFIER. IF NON-ZERO THE ROTATION ABOUT THE Y-AXIS IS CONSTRAINED
IZZ	- CONSTRAINT IDENTIFIER. IF NON-ZERO THE ROTATION ABOUT THE Z-AXIS IS CONSTRAINED
JN	- JOINT NUMBER (GLOBAL) KEULER- EULER BUCKLING COEFFICIENT FOR BAR ELEMENTS
LBUCK	- LOCAL BUCKLING CONSTRAINT IDENTIFIER IF LBUCK.NE.0, LOCAL BUCKLING CONSTRAINTS WILL BE APPLIED TO TUBULAR FRAME MEMBERS
LC	- LOAD CONDITION
LMASS	- LUMPED MASS OPTIONS IF LMASS.EQ.0 CONSISTENT MASS MATRIX USED IF LMASS.NE.0 LUMPED MASS MATRIX USED
LNO	- ELEMENT NUMBER
LSECT	- CROSS-SECTION TYPE IDENTIFIER LSECT.EQ.1 INDICATES A TUBULAR MEMBER
NCJ	- THE NUMBER OF CONSTRAINED JOINTS
NDJ	- THE NUMBER OF JOINTS WITH (OR LINKED TO) DESIGN VARIABLES
ND SG 1	- TRUSS MEMBER AREA DESIGN VARIABLE NUMBER
ND SG 2	- COORDINATE DESIGN VARIABLE NUMBER
ND SG 3	- FRAME MEMBER CHARACTERISTIC DIMENSION 1 DESIGN VARIABLE NUMBER
ND SG 4	- FRAME MEMBER CHARACTERISTIC DIMENSION 2 DESIGN VARIABLE NUMBER

NDSPLC	- THE NUMBER OF DISPLACEMENT CONSTRAINT SETS
NEB	- THE NUMBER OF TRUSS ELEMENTS
NEF	- THE NUMBER OF FRAME ELEMENTS
NEIG	- NUMBER OF PRECISE EIGENVALUES TO BE FOUND
NEIG1	- NUMBER OF EIGENVALUE/EIGENVECTOR TO BE EVALUATED DEFAULT =MIN(2*NEIG, NEIG+8)
NEUBC	- EULER BUCKLING CONSTRAINT IDENTIFIERS. IF NEUBC.NE.0 EULER BUCKLING CONSTRAINTS WILL BE IMPOSED ON BAR AND FRAME ELEMENTS
NFMASS	- NUMBER OF NON-STRUCTURAL FIXED MASSES ATTACHED TO THE STRUCTURE
NFMW	- FIXED MASS WEIGHT IDENTIFIER IF(NFMW.NE.0) FIXED MASSES WILL BE CONSIDERED AS LOADS
NFREQ	- NUMBER OF FREQUENCY CONSTRAINTS
NID	- NUMBER OF INDEPENDENT DEGREES OF FREEDOM
NJ	- THE NUMBER OF JOINTS
NLC	- NUMBER OF LOADING CONDITIONS
NLJ	- NUMBER OF LOADED JOINTS FOR THIS LOAD CONDITION
NMT	- NUMBER OF SEPARATE MATERIAL TYPES
NPRI	- INPUT PRINT CONTROL IF NPRI.NE.0 INPUT VALUES are NOT PRINTED IF NPRI.EQ.5 LOCI/LOCR/IA/RA ARRAYS PRINTED
NSTRES	- THE FORCE/STRESS PRINT IDENTIFIER IF NSTRES.EQ.0 MEMBER FORCES PRINTED IF NSTRES.EQ.1 MEMBER STRESSES PRINTED IF NSTRES.EQ.2 BOTH are PRINTED
NSTW	- STRUCTURE WEIGHT IDENTIFIER IF(NSTW.NE.0) THE STRUCTURE'S OWN WEIGHT WILL BE CONSIDERED AS LOADS
POISSN	- POISSON'S RATIO
RHO	- MATERIAL WEIGHT DENSITY
SIGMIN	- MINIMUM ALLOWABLE NORMAL STRESS
SIGMAX	- MAXIMUM ALLOWABLE NORMAL STRESS
TX	- TORSIONAL MOMENT APPLIED ABOUT THE X-AXIS
TY	- TORSIONAL MOMENT APPLIED ABOUT THE Y-AXIS
TZ	- TORSIONAL MOMENT APPLIED ABOUT THE Z-AXIS
XA	- INITIAL VALUE OF AREA DESIGN VARIABLE
XAL	- LOWER BOUNDS ON XA
XAU	- UPPER BOUNDS ON XA
XC	- INITIAL VALUE OF COORDINATE DESIGN VARIABLE
XCL	- LOWER BOUNDS ON XC
XCU	- UPPER BOUNDS ON XC

DATA BLOCK A

DESCRIPTION: Title Card

Format and Example

TITLE	FORMAT
	20A4
TRUSS-BRACED CANTILEVER BEAM	

FIELD **CONTENTS**

1 ANY 80 CHARACTER TITLE MAY BE GIVEN ON THIS
LINE

DATA BLOCK B

DESCRIPTION: Control Parameters

Format and Example

NEB	NEF	NJ	NCJ	NMT	IDVCLC	NDJ	FORMAT
							7I10
2	2	5	3	2	2	2	
NEUBC	LBUCK	NPREQ	NFMASS	NEIG	NEIG1	NPRI	format
							7I10
1	1	1	1	1	2	0	
NLC	NDSPLC	NSTRES	NSIW	NFMW			FORMAT
							5I10
2	2	2	1	1			

**NOTE: DEFINITIONS OF PROGRAM INPUT CONTROL
PARAMETERS ARE LISTED ON NEXT PAGE**

<u>FIELD</u>	<u>CONTENT</u>
FIRST CARD	
1	NEB-number of bar elements
2	NEF-number of frame elements
3	NJ-number of joints
4	NCJ-number of constrained joints
5	NMT-number of separate material types
6	IDVCLC-design variable parameter If (IDVCLC.EQ.1) NDV=NDVAR1 optimizes wrt member size only If (IDVCLC.EQ.2) NDV=NDVAR1+ NDVAR2 optimizes wrt member size and geometry If (IDVCLC.EQ.3) NDV=NDVAR2 optimizes wrt geometry only
7	NDJ-total linked and design variable joints (i.e. number of 'movable' joints)
SECOND CARD	
1	NEUBC-Euler buckling constraint identifier If (NEUBC.NE.0) EULER buckling constraints will be imposed on bar elements
2	LBUCK-local buckling constraint identifier If (LBUCK.NE.0) local buckling constraints will be imposed on tubular frame elements
3	NFREQ-number of frequency constraints
4	NFMASS-number of fixed masses attached to structure
5	NEIG-number of precise eigenvalues to be evaluated

6 NEIG1-number of eigenvalues to be evaluated
DEFAULT=min. of (2*NEIG , NEIG+8)
7 NPR1-print control identifier
NPR1.ne.0 input info not printed
NPR1.eq.5 RA/IA/LOCR/LOCI arrays
will be printed for debugging

THIRD CARD

1 NLC-number of load conditions
2 NDSPLC-number of displacement constraints
3 NSTRES-force/stress print identifier
If (NSTRES.EQ.0) stresses are printed
If (NSTRES.EQ.1) forces are printed
If (NSTRES.EQ.2) both are printed
4 NSTW-structure weight identifier
If (NSTW.NE.0) the structure's weight is
considered as loads
5 NFMW-fixed mass weight identifier
If (NFMW.NE.0) the fixed masses are
considered as loads

DATA BLOCK C

DESCRIPTION: Dynamic Analysis Information

Format and Example

LMASS	GRAV	EPSEIG		FORMAT
				I10,2P10.0
0	386.4	0.0		

FIELD **CONTENTS**

- 1 LMASS-lumped mass option (if LMASS.NE.0)
the lumped mass matrix is used.
- 2 GRAV-accleration due to gravity
(default=386.4 inches/sec²)
- 3 EPSEIG-convergence tolerance on eigenvalue
solution. (default=.0001)

DATA BLOCK D

DESCRIPTION: Joint Coordinates

Format and Example

JN	X	Y	Z	FORMAT
				I10,3F10.0
1	0.0	0.0	0.0	
2	100.0	0.0	0.0	
3	200.0	0.0	0.0	
4	0.0	150.0	0.0	
5	0.0	0.0	50.0	

FIELD

CONTENTS

- 1 JN-joint coordinate number
- 2 X-x coordinate
- 3 Y-y coordinate
- 4 Z-z coordinate

NOTE: Number of cards read=NJ

DATA BLOCK E

Omit this block if NDJ=0 in BLOCK B

DESCRIPTION: Coordinate Design Variable Linking Data

Format and Example

JN	IX	IY	IZ	PCX	PCY	PCZ	FORMAT
							4i10,3f10.0
4	0	1	0	1.0	1.0	1.0	

4	0	1	0	1.0	1.0	1.0	
5	0	0	2	1.0	1.0	1.0	

FIELD

CONTENTS

- 1 IX-design variable associated with x coord.
- 2 IY-design variable associated with y coord.
- 3 IZ-design variable associated with z coord.
- 4 PCX-participation coefficient of x-coord.
- 5 PCY-participation coefficient of y-coord.
- 6 PCZ-participation coefficient of z-coord.

NOTE: Number of cards read=NDJ

DATA BLOCK F

DESCRIPTION: Material Properties

Format and Example

E	RHO	SIGMIN	SIGMAX	KEULER	POISSN	FORMAT
1.0E+7	0.1	-25000.	25000.	2.0	0.27	6F10.0
2.9E+7	0.3	-36000.	36000.	2.0	0.27	

FIELD **CONTENTS**

- 1 E-Young's Modulus
- 2 RHO-material density
- 3 SIGMIN-minimum allowable stress
- 4 SIGMAX-maximum allowable stress
- 5 KEULER-Euler buckling coefficient
- 6 POISSN-Poisson's ratio

NOTE: Number of cards read=NMT

DATA BLOCK G

Omit this block if NEB=0 in BLOCK B

DESCRIPTION: Bar Element Information

Format and Example

LNC	NODE1	NODE2	MATCOD	NDSG1	A	LSECT	FORMAT
							5I10 f10,I10
3	2	4	1	1	3.0	1	
2	2	5	1	2	3.0	1	

FIELD

CONTENTS

- 1 LNO-element number
- 2 NODE1-global number associated with the element's 1st node
- 3 NODE2-global number associated with the element's 2nd node
- 4 MATCOD-material type of this element
- 5 NDSG1-design variable number associated with this element's area
- 6 A-member cross-sectional area
- 7 LSECT-cross-section type identifier
LSECT.EQ.1 indicates a tubular member

NOTE: Number of cards read=NEB

DATA BLOCK H

Omit this block if NEF=0 in BLOCK B

DESCRIPTION: Frame Element Information Format and Example

LNO	NODE1	NODE2	MATCOD	NDSG3	NDSG4	LSECT	FORMAT
							7I10
3	1	2	2	2	4	1	
CHARDIM1	CHARDIM2						FORMAT
							2F10
5.0	1.0						
4	2	3	2	3	5	1	
5.0	1.0						

FIELD**CONTENTS**

- 1 LNO-element number
- 2 NODE1-global number associated with the element's 1st node
- 3 NODE2-global number associated with the element's 2nd node
- 4 MATCOD-material type of this element
- 5 NDSG3-design variable number associated with the element's 1st characteristic dimension
- 6 NDSG4-design variable number associated with the element's 2nd characteristic dimension
- 7 LSECT-cross-section type identifier
LSECT.EQ.1 indicates a tubular member

NOTE: Number of cards read=NEF

DATA BLOCK I

DESCRIPTION: Joint Constraint Information

Format and Example

JN	IX	IY	IZ	IXX	IYY	IZZ	FORMAT
1	1	1	1	1	1	1	7I10
2	0	0	0	0	0	0	
3	0	0	0	0	0	0	
4	1	1	1	1	1	1	
5	1	1	1	1	1	1	

FIELD

CONTENTS

- 1 JN- joint number
- 2 IX- x-displacement constraint identifier.
- 3 IY- y-displacement constraint identifier.
- 4 IZ- z-displacement constraint identifier.
- 5 IXX- x-axis rotation constraint identifier.
- 6 IYY- y-axis rotation constraint identifier.
- 7 IZZ- z-axis rotation constraint identifier.
if .NE.0 - corresponding DOF constrained

NOTE: Number of cards read=NCJ

DATA BLOCK J

Omit this block if NLC=0 in BLOCK B.

DESCRIPTION: Joint Loading Information

Format and Example

NLJ								FORMAT
1								I10
JN	FX	FY	FZ	TX	TY	TZ	FORMAT	
2	0.0	1000.	0.0	0.0	0.0	0.0	I10,6F10	
1								
2	0.0	0.0	-1000.	0.0	0.0	0.0		

FIELD **CONTENT**

1 NLJ-number of loaded joints for this load condition

1 JN-joint number

2 FX

3 FY- Forces in the X,Y,Z directions

4 FZ

5 TX

6 TY- Moments about the X,Y,Z axes

7 TZ

NOTE: Number of cards read per set=NJL

Number of sets of cards read=NLC

DATA BLOCK K

Omit this block if NFMASS=0 in BLOCK B

DESCRIPTION: Fixed Mass Information

Format and Example

JN	MASS	FORMAT
		I10,F10
3	250.0	

FIELD

CONTENTS

- 1 JN-joint number
- 2 MASS-point mass at joint (JN) in force units

NOTE: Number of cards read=NFMASS

DATA BLOCK L

Omit this block if IDVCLC=3

DESCRIPTION: Design Variable Information
(MEMBER SIZE VARIABLES)

Format and Example

XA (1)	XA (2)	XA (NDVAR 1)	FORMAT
				8F10.0
20.0	20.0	20.0	2.0	2.0
XAL (1)	XAL (2)	XAL (NDVAR 1)	FORMAT
				8F10.0
0.50	0.50	4.0	0.10	0.10
XAU (1)	XAU (2)	XAU (NDVAR 1)	FORMAT
				8F10.0
25.0	35.0	25.0	2.5	4.0

FIELD

CONTENTS

- 1 XA-initial value of area design variables
- 2 XAL-lower bounds on area design variables
- 3 XAU-upper bounds on area design variables

NOTE: read one value of XA, XAL, XAU for each independent member size variable defined in BLOCKS G and H

Number of cards read = as required

DATA BLOCK M

Omit this block if IDVCLC=1

DESCRIPTION: Design Variable Information
(COORDINATE VARIABLES)

Format and Example

XC (1)	XC (2) XC (NDVAR2)	FORMAT
			8F10.0
150.0	50.0		
XCL (1)	XCL (2) XCL (NDVAR2)	FORMAT
			3F10.0
0.0	0.0		
XCU (1)	XCU (2) XCU (NDVAR2)	FORMAT
			8F10.0
200.0	100.0		

FIELD

CONTENTS

- 1 XC-initial value of coord. design variables
- 2 XCL-lower bounds on coord. design variables
- 3 XCU-upper bounds on coord. design variables

NOTE: read one value of XC,XCL,XCU for each
independent coord. variable defined in BLOCK D

Number of cards read =as required.

DATA BLOCK N

Omit this block if NDSPLC=0 in BLOCK B

DESCRIPTION: Joint Displacement Constraint Information

Format and Example

JN	DIR	LC	BL	BU	FORMAT
					3I10,2P10.0
3	2	1	-3.0	3.0	
3	3	2	-3.5	3.5	

FIELD CONTENTS

- 1 JN-joint number
- 2 DIR-direction
 1=x,2=y,3=z displacement
 4=x,5=y,6=z rotation
- 3 LC-load condition
- 4 BL-lower bound on displacement
- 5 BU-upper bound on displacement

NOTE: Number of cards read= NDSPLC

DATA BLOCK 0

Omit this block if NFREQ=0 in BLOCK B

DESCRIPTION: Frequency Constraint Information

Format and Example

FC1	FC2	FC3FCN	FORMAT
				8F10.0

1.0

FIELD **CONTENTS**

- 1 FC1- lower bound on first natural frequency constraint in Hz. (cycles per second)
- N FCN- lower bound on NFREQ-th natural frequency constraint in Hz. (cycles per second)

NOTE: Number of cards read = is required

DATA BLOCK P

DESCRIPTION: End card

Format and Example

END

FORMAT

3A1

END

NOTE: This card MUST appear at the end of the
SADX data.

VI. NUMERICAL EXAMPLES

A. INTRODUCTION

Design of three-dimensional truss and frame structures are presented herein and the corresponding numerical results are summarized to demonstrate the use of the SADX code.

The examples begin with the truss-braced cantilever beam.

B. EXAMPLE 1: TRUSS-BRACED CANTILEVER BEAM

The simple truss-braced cantilever beam, as shown in Figure 6.1, has been previously used for the SADX USER's MANUAL example. It consists of two steel tubular frame members with a common outer diameter and different wall thicknesses arranged as a cantilever beam along the X-axis. There is a fixed 250 pound mass at the tip of the beam. Two aluminum truss members are attached from the beam midpoint to points on the Y and Z axes. This structure is designed for optimum member size and geometry under a set of two load conditions and subject to constraints on maximum stress, maximum joint displacement, Euler and local buckling, and minimum structure natural frequencies. The weight of the non-structural fixed mass and the structure's own weight are imposed as loads. There are five member size and two coordinate design variables, and a total of 41 constraints.

Figure 6.1 TRUSS-BRACED CANTILEVER BEAM

The number of analyses required for this design is 116 using 2.75 seconds of CPU time and terminating on the 12th iteration. Of the analyses conducted, 84 were required for the calculation of gradients. The weight of the structure, including non-structural fixed masses, is reduced from 9542 pounds to 838 pounds. Results are given in Table VII.

C. EXAMPLE 2: TWO-TIER 3-D PORTAL FRAME WITH TRUSS X-BRACES

The two-tier three-dimensional portal frame with truss member diagonal braces, as shown in Figure 6.2, is a symmetric moderately sized case that can be analyzed easily by a variety of other codes. There are 20 truss elements, 16 frame elements, and four non-structural fixed masses. The material used is steel. This structure is designed for optimum member size and geometry under a set of three load conditions and subject to constraints on maximum stress, maximum joint displacement, Euler and local buckling, and minimum structure natural frequencies. The weight of the non-structural fixed masses and the structure's own weight are imposed as loads. There are 10 member size and five coordinate design variables and a total of 493 constraints. The number of analyses required for this design is 385 using 120 seconds of CPU time and terminating on the 21st iteration. Of the analyses conducted, 305 were required for the calculation of gradients. The weight of the structure, including non-structural fixed masses, is reduced from 9302 pounds to 1462 pounds. Results are given in Table VIII.

TABLE VII

EXAMPLE 1: FINAL OPTIMIZATION INFORMATION

FINAL OPTIMIZATION INFORMATION

OBJ = C.5E75C7E+C3

THERE ARE 1 ACTIVE CONSTRAINTS
CONSTRAINT NUMBERS ARE
26

THERE ARE 0 VIOLATED CONSTRAINTS

THERE ARE 0 ACTIVE SIDE CONSTRAINTS

TERMINATION CRITERION

AES(OBJ(1)-OBJ(I-1)) LESS THAN DABFUN FOR 3 ITERATIONS

NUMBER OF ITERATIONS = 12

OBJECTIVE FUNCTION WAS EVALUATED 114 TIMES

CONSTRAINT FUNCTIONS WERE EVALUATED 114 TIMES

THIS RUN REQUIRED 116 STRUCTURAL ANALYSES

NUMBER OF SECNCS REQUIRED FOR EXECUTION = 2.79

WEIGHT OF STRUCTURE GIVEN AREAS & LENGTHS
WEIGHT= 0.58751E+03TOTAL WEIGHT INCLUDING FIXED MASSES
TOTAL WEIGHT= C.83751E+03

JCINT	JCINT COORDINATES		
	X	Y	Z
1	0.0	0.0	0.0
2	0.1CCOE+C3	0.0	0.0
3	0.2CCOE+C3	0.0	0.0
4	0.0	0.84259E+02	0.0
5	0.0	0.0	0.45432E+02

ELEMENT INFORMATION FOR BAR ELEMENTS

ELEMENT-JCINT RELATIONSHIPS

ELEMENT	NODE 1	NODE 2	AREA	LENGTH
1	2	4	0.3481E+01	0.13C8E+03
2	2	5	0.8499E+01	0.1098E+03

ELEMENT INFORMATION FOR FRAME ELEMENTS

ELEMENT-JCINT RELATIONSHIPS

LAC	NCDE1	NCCE2	AREA	LENGTH	CHAR.DIM.1	CHAR.DIM.2
3	1	2	0.3325E+01	0.1000E+03	0.4839E+01	0.2190E+00
4	2	1	0.2360E+01	0.10C0E+03	0.4839E+01	0.1558E+00

EIGENVALUES AND EIGENVECTORS

MODE NUMBER 1
FREQUENCY = C.4188E+C2 CPSEIGENVALUE = C.6927CE+05
EIGENVECTOR DEGREE OF FREEDOM

JCINT	1	2	3
1	C.0	0.0	0.0
2	0.0	C.0	0.0
3	-0.23425E-01	-C.32985E-01	-0.745C7E-01
4	-0.50777E-01	-C.10745E-01	0.15820E-03
5	-0.23425E-01	-C.17155E-01	0.100CCE+01

Figure 6.2 TWO-TIER 3-D PORTAL FRAME WITH TRUSS X-BRACES

TABLE VIII

EXAMPLE 2: FINAL OPTIMIZATION INFORMATION

FINAL OPTIMIZATION INFORMATION

OBJ = C.14418E+C4

THESE ARE 3 ACTIVE CONSTRAINTS
CONSTRAINT NUMBERS ARE
46 91 196

THERE ARE 0 VIOLATED CONSTRAINTS

THESE ARE 1 ACTIVE SIDE CONSTRAINTS
DECISION VARIABLES AT LOWER OR UPPER BOUNDS
(MINUS INDICATES LOWER BOUND)
-14

TERMINATION CRITERION

$ABS(CBJ(I)-CBJ(I-1))$ LESS THAN CABFUN FOR 3 ITERATIONS

NUMBER OF ITERATIONS = 21

OBJECTIVE FUNCTION WAS EVALUATED 383 TIMES

CONSTRAINT FUNCTIONS WERE EVALUATED 383 TIMES

THIS RUN REQUIRED 385 STRUCTURAL ANALYSES

NUMBER OF SECONDS REQUIRED FOR EXECUTION = 120.7

WEIGHT OF STRUCTURE GIVEN AREAS & LENGTHS
WEIGHT= 0.14418E+C4

TOTAL WEIGHT INCLUDING FIXED MASSES
TOTAL WEIGHT= C.1E418E+04

JINT COORDINATES

JINT	X	Y	Z
1	0.62385E+C2	0.0	0.500C2E+02
2	0.62385E+C2	0.0	-0.90002E+02
3	-0.62385E+C2	0.0	-0.90002E+02
4	-0.62385E+C2	0.0	0.90002E+02
5	0.62339E+C2	0.20000E+02	0.69074E+02
6	0.62339E+C2	0.20000E+02	-0.69074E+02
7	-0.62339E+C2	0.20000E+02	-0.69074E+02
8	-0.62339E+C2	0.20000E+02	0.69074E+02
9	0.1C000E+C3	0.10000E+03	0.1C000E+03
10	0.1C000E+C3	0.10000E+03	-0.1C000E+03
11	-0.1C000E+C3	0.10000E+03	-0.1C000E+03
12	-0.1C000E+C3	0.10000E+03	0.1C000E+03

ELEMENT INFORMATION FOR BAR ELEMENTS
ELEMENT-JOINT RELATIONSHIPS

ELEMENT	NODE 1	NODE 2	AREA	LENGTH
1	1	6	0.42555E+C0	0.1612E+03
2	2	5	0.42555E+C0	0.1612E+03
3	3	7	0.42555E+C0	0.1465E+03
4	3	6	0.42555E+C0	0.1465E+03
5	3	8	0.42555E+C0	0.1612E+03
6	4	7	0.42555E+C0	0.1612E+03
7	4	5	0.42555E+C0	0.1465E+03
8	1	6	0.42555E+C0	0.1465E+03
9	1	7	0.42555E+C0	0.2118E+03
10	6	8	0.42555E+C0	0.2118E+03
11	5	10	0.15444E+C1	0.1881E+03
12	6	9	0.15444E+C1	0.1881E+03
		11	0.15444E+C1	0.1996E+03

D. EXAMPLE 3: DD-963 FOREMAST

Example three is a redesign of the forward mast on the DD-963 of SPRUANCE class destroyer. The DD-963 foremast has been chosen as the third test case for the following reasons: 1) the structure is typical of the masts found on many combatants in the United States and other navies, 2) high topside weight reduction is desirable from a stability viewpoint for any ship, 3) the structural members are predominantly tubular, 4) the problem is sufficiently complex to make conventional design methods cumbersome, 5) the member size and loading information is available.

The structure as shown in Figures 6.3 through 6.6 is constructed of 172 aluminum frame members. The material used in the structure is 5086 H32 aluminum, an alloy with moderate strength, good weldability, and good corrosion resistance.

This structure is designed for optimum member size under a single load condition and subject to constraints on maximum member stress, maximum joint displacement, Euler and local buckling.

Some structural simplifications are made. The weights of mast-mounted radars, antennas, and platforms are modeled by a series of fixed masses which are imposed as loads along with the structure's own weight. The forces due to halyards and wire antennas are applied as loads. Inertial forces due to ships motion are calculated for the initial design point

Figure 6.3 DD-963 FOREMAST PORT SIDE

Figure 6.4 DD-963 FOREMAST STARBOARD SIDE

Figure 6.5 DD-363 FOREMAST FORWARD SIDE

Figure 6.6 DD-963 FOREMAST AFT SIDE

and consist of the product of a member's half-weight and a coordinate-dependent load-factor applied at each end of the element [Ref. 6]. The load-factor multiplier is dependent on the distances from a point at the intersection of the design waterline and the ship centerline amidships (frame 264 1/2). Ship's motion loads are applied for a roll to port. In that the purpose of this example is only to attempt to solve a large and messy problem rather than to produce an actual design no attempt is made to include wind, shock, and blast loads. There are 34 member size design variables and a total of 1054 constraints. The number of analyses required for this design is 555 using 4482 seconds of CPU time and terminating on the 17th iteration. Of the analyses conducted, 544 were required for the calculation of gradients. The weight of the structure, including non-structural fixed masses, is increased from 48,199 pounds to 56,746 pounds. The structure as modeled was initially infeasible due, most likely to the structural simplifications made in the topmast area. Results are given in Table IX.

TABLE IX

EXAMPLE 3: FINAL OPTIMIZATION INFORMATION

FINAL OPTIMIZATION INFORMATION

OBJ = C.3986C4E+05

THERE ARE 2 ACTIVE CONSTRAINTS
CONSTRAINT NUMBERS ARE
E60 E66

THERE ARE 0 VIOLATED CONSTRAINTS

THERE ARE 0 ACTIVE SIDE CONSTRAINTS

TERMINATION CRITERION
ABS(OBJ(I)-OBJ(I-1)) LESS THAN TOLFUN FOR 3 ITERATIONS

NUMBER OF ITERATIONS = 17

OBJECTIVE FUNCTION WAS EVALUATED 553 TIMES

CONSTRAINT FUNCTIONS WERE EVALUATED 553 TIMES

THIS RUN REQUIRED 555 STRUCTURAL ANALYSES

WEIGHT OF STRUCTURE GIVEN AREAS & LENGTHS
WEIGHT= 0.29860E+05TOTAL WEIGHT INCLUDING FIXED MASSES
TOTAL WEIGHT= 0.56746E+05

NUMBER OF SECONDS REQUIRED FOR EXECUTION = 4482.46

NO. OF FRAME ELEMENTS = 172
ELEMENT-JCINT RELATIONSHIPS

LNO	NCCE1	NOCE2	AREA	LENGTH	CHAR.DIM.1	CHAR.DIM.2
1	4	12	C.5979E+02	0.1061E+03	C.19005E+02	0.1002E+01
2	3	11	C.5979E+02	0.1061E+03	C.19006E+02	0.1002E+01
3	5	1	C.5979E+02	0.1112E+03	C.19006E+02	0.1002E+01
4	2	10	C.5979E+02	0.1112E+03	C.19006E+02	0.1002E+01
5	4	8	C.6247E+01	0.1342E+03	C.6563E+01	0.3030E+00
6	3	6	C.6247E+01	0.1342E+03	C.6563E+01	0.3030E+00
7	1	8	C.6247E+01	0.1369E+03	C.6563E+01	0.3030E+00
8	2	6	C.6247E+01	0.1369E+03	C.6563E+01	0.3030E+00
9	8	12	C.6247E+01	0.1295E+03	C.6563E+01	0.3030E+00
10	6	11	C.6247E+01	0.1295E+03	C.6563E+01	0.3030E+00
11	5	4	C.6247E+01	0.1132E+03	C.6563E+01	0.3030E+00
12	6	10	C.6247E+01	0.1132E+03	C.6563E+01	0.3030E+00
13	3	7	C.6247E+01	0.6846E+02	C.6563E+01	0.3030E+00
14	4	7	C.6247E+01	0.6846E+02	C.6563E+01	0.3030E+00
15	7	11	C.6247E+01	0.6846E+02	C.6563E+01	0.3030E+00
16	7	12	C.6247E+01	0.6846E+02	C.6563E+01	0.3030E+00
17	1	12	C.6247E+01	0.1156E+03	C.6563E+01	0.3030E+00
18	2	12	C.6247E+01	0.1156E+03	C.6563E+01	0.3030E+00
19	5	6	C.6247E+01	0.1097E+03	C.6563E+01	0.3030E+00
20	5	10	C.6247E+01	0.1057E+03	C.6563E+01	0.3030E+00
21	9	12	C.6247E+01	0.2172E+03	C.6563E+01	0.3030E+00
22	10	11	C.6247E+01	0.2172E+03	C.6563E+01	0.3030E+00
23	11	12	C.6247E+01	0.84COE+02	C.6563E+01	0.3030E+00
24	6	10	C.6247E+01	0.1894E+03	C.6563E+01	0.3030E+00
25	12	41	C.5979E+02	C.1081E+03	C.19006E+02	0.1002E+01
26	11	18	C.5979E+02	C.1081E+03	C.19006E+02	0.1002E+01
27	5	16	C.5979E+02	C.1111E+03	C.19006E+02	0.1002E+01
28	10	17	C.5979E+02	C.1111E+03	C.19006E+02	0.1002E+01
29	9	21	C.7358E+01	C.2380E+03	C.7767E+01	0.3016E+00
30	10	16	C.7358E+01	C.2380E+03	C.7767E+01	0.3016E+00
31	11	13	C.7358E+01	C.6846E+02	C.7767E+01	0.3016E+00
32	12	13	C.7358E+01	C.6846E+02	C.7767E+01	0.3016E+00

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

An existing finite element code was expanded to encompass the more general case of frame members; i.e., six degrees of freedom per joint. Combined truss and frame structures were designed for minimum weight with multiple load conditions considered.

The displacement method was used for static analysis and the subspace iteration method was used for eigenvalues.

Several examples were considered. In every case the code worked as an analysis tool, and significant weight reductions were obtained with the coupled optimizer CONMIN.

The SADX design code has been shown to be a useful tool for ship mast optimum design.

B. RECOMMENDATIONS

The following recommendations may be of value for future work.

1. The routines necessary to calculate gradients analytically should be added to the code.
2. The code should be extended to include plate and shear elements and a library of member cross-sections.
3. An out of core equation solver should be added.

4. The ability to specify multipliers for applying inertial loads along the three coordinate axes should be added in a fashion similar to that used for applying structure's own weight as loads. Such an addition would simplify dynamic load analysis and design.

5. The method of gradient calculation should be dependent on specific gradients required [Ref. 7] and [Ref. 8].

6. Gradients of frequency constraints would benefit from a more efficient algorithm [Ref. 9].

7. The need for a large scale public structural optimization code still exists.

8. The code should be modified to allow optimum member size design followed by simultaneous optimum member size and optimum geometry design.

LIST OF REFERENCES

1. Fitzgerald, J. E., III, Development of a Computer Program for the Testing and Evaluation of Numerical Optimization Techniques, Master of Science in Mechanical Engineering Thesis, U.S. Naval Postgraduate School, Monterey, CA, June 1982.
2. Madsen, L. E., and Vanderplaats, G. N., COPES - A Fortran Program for Engineering Synthesis, NPS69-81-003, Naval Postgraduate School, Monterey, CA, March 1982.
3. Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-Hill, New York, 1968.
4. Felix, J. and Vanderplaats, G. N., Configuration Optimization of Trusses Subject to Strength, Displacement and Frequency Constraints, proc. ASME Computer Engineering Conference and Exhibit, San Diego, August 15-19, 1982.
5. Bathe, K. J. and Wilson, E. L., Large Eigenvalue Problems in Dynamics Analysis, Journal of the Engineering Mechanics Division, ASCE, Vol. 98, June 1973, pp. 213-226.
6. BUSHIPS SKETCH Number 80064-128-SK4587979
7. Arora, J. S. and Haug, E. J., Methods of Design Sensitivity Analysis in Structural Optimization, AIAA Journal, Vol. 17, No. 9, Sept. 1979, pp. 970-974.
8. Vanderplaats, G. N., "Comment on Method of Design Sensitivity Analysis in Structural Optimization," AIAA Journal, Vol. 18, No. 11, Nov. 1976, pp. 1406-1407.
9. Nelson, R. B., "Simplified Calculation of Eigenvector Derivatives," AIAA Journal, Vol. 14, No. 9, Sept. 1976, pp. 1201-1205.

APPENDIX A

DATA FILES

A. INTRODUCTION

This appendix contains the data files used to create the test cases in Chapter VI. Additionally the data file for the USER'S guide in complete form is presented.

TABLE X
DATA FILE TRUSS-BRACED CANTILEVER BEAM

```

*****1*****2*****3*****4*****5*****6*****7*****
$BLCK A TITLE 1 CARD FORMAT 80H
TRUSS-BRACED CANTILEVER BEAM: EXAMPLE 1
*****1*****2*****3*****4*****5*****6*****7*****
$BLCK B CONTROL PARAMETERS 3 CARDS FORMAT 8I10
$ NEB NJ NCJ NMT IDVCLC NDJ
$ NEUBC 2 LBUCK 2 NFREQ 5 NFMASS 3 NEIG 2 NEIG1 2 NPRI 2
$ NLC 1 NDSPLC 1 NSTRES 1 NSTW 1 NFMW 1 2 0
$ 2 2 2 2 1
*****1*****2*****3*****4*****5*****6*****7*****
$BLCK C DYNAMIC ANALYSIS INFORMATION 1 CARD FORMAT I10,2F10.0
$ LMASS GRAV EPSEIG
$ 0 386.4 0.
*****1*****2*****3*****4*****5*****6*****7*****
$BLCK C JOINT COORDINATES
$ NJ CAPOS FORMAT I10,3F10
$ JN X-COORD Y-COORD Z-COORD
$ 1 0. 0. 0.
$ 2 100. 0. 0.
$ 3 200. 0. 0.
$ 4 0. 150. 0.
$ 5 0. 0. 50.
$BLCK E DESIGN VARIABLE LINKING DATA
$ NDJ CAROS FORMAT 4I10,3F10.0
$ JN IX IY IZ PCX PCY PCZ
$ 1 1 1 1 1 1 1
$ 2 0 0 2 1.0 1.0 1.0
$ 3 0 0 2 1.0 1.0 1.0
$ 4 0 0 2 1.0 1.0 1.0
$ 5 0 0 2 1.0 1.0 1.0
*****1*****2*****3*****4*****5*****6*****7*****
$BLCK F MATERIAL PROPERTIES NMT CARDS FORMAT 6F10.0
$ E Rho SIGMIN SIGMAX KEULER POISSN
$ 1.0E+4 0.1 -25000. 25000. 2. .27
$ 2.9E+7 0.3 -36000. 36000. 2. .27
*****1*****2*****3*****4*****5*****6*****7*****
$BLCK G BEAR ELEMENT INFORMATION NEB CARDS FORMAT 5I10,F10.1I0
$ LNO NOCE2 NCDE3 MATCOD NSDG1 AREA LSECT
$ 1 1 1 1 1 3.0 1
$ 2 2 2 4 1 2 3.0 1
$ 3 2 2 5 1 2 3.0 1
*****1*****2*****3*****4*****5*****6*****7*****
$BLCK H FRAME ELEMENT INFORMATION 2*NEF CARDS FORMAT 7I10/2F10
$ LNO NOCE2 NCDE3 MATCOD NSDG1 NSDG2 LSECT
$ 1 3 1 1 3 4 1
$ 2 4 2 2 3 5 1
$ 3 5 1 1 1 1 1
$CHARDIM1 CHARCIM2
$ 1 1
$ 2 1.0
$ 3 1.0
$ 4 1.0
$ 5 1.0
*****1*****2*****3*****4*****5*****6*****7*****
$BLCK I JOINT CONSTRAINT DATA NCJ CARDS FORMAT 7I10
$ JN IX IY IZ IXX IYY IZZ
$ 1 1 1 1 1 1 1
$ 2 2 0 0 0 0 0
$ 3 3 0 0 0 0 0
$ 4 4 1 1 1 1 1
$ 5 5 1 1 1 1 1
*****1*****2*****3*****4*****5*****6*****7*****
$BLCK J JOINT LOADING DATA 1 CARD FORMAT I10
$ (CMT IF NLC=0 IN BLCK B)
$ NLJ 1

```

TABLE XI

DATA FILE TRUSS-BRACED CANTILEVER BEAM continued

	JN	FX	FY	FZ	NLJ CARDS	FORMAT I10,6F10	
		!	!	!	TX	TY	TZ
\$	3	0.	1000.0	0.	0.	0.	0.
\$	3	0.	0.0	-1000.0	0.	0.	0.
\$BLOCK K	FIXED MASS DATA			NFMASS CARDS	FORMAT I10,F10.0		
\$	(CMIT IF NFMASS=0 IN BLOCK 8)						
\$	JN	MASS					
\$	3	250.0					
\$BLOCK L	DESIGN VARIABLE INFORMATION			CARDS AS REQ'D	FORMAT 8F10.0		
\$	(AREA AND DIMENSION VARIABLES			CMIT IF NDVAR1=0)			
\$	XA(I)	•	•	XA(NDVAR1)			
\$	20.0	20.0	20.0	2.0	2.0		
\$	XAL(I)						
\$.50	.50	4.0	.10	.10		
\$	XAU(I)						
\$	25.0	35.0	25.0	2.5	4.0		
\$BLOCK M	DESIGN VARIABLE INFORMATION			CARDS AS REQ'D	FORMAT 8F10.0		
\$	(COORDINATE VARIABLES			OMIT IF NDVAR2=0)			
\$	XC(I)	•	•	XC(NDVAR2)			
\$	150.0	50.0					
\$	XCL(I)						
\$	0.0	0.0					
\$	XCU(I)						
\$	200.0	100.0					
\$BLOCK N	JOINT DISPLACEMENT CONSTRAINTS			NDSPLC CARDS	FORMAT 3I10,2F10		
\$	(CMIT IF NDSPLC=C IN BLOCK 8)						
\$	JN	CIR	LC	BL	BU		
\$	3	2	1	-3.0	3.0		
\$	3	3	2	-3.5	3.5		
\$BLOCK C	FREQUENCY CONSTRAINTS			NO. OF CARDS AS REQ'D	FORMAT 8F10.0		
\$	(CMIT IF NFREQ=0 IN BLOCK 8)						
\$	FC1	•	FCN				
\$	1.0						
\$BLOCK P	END CARD						
\$	ENC						

TABLE XII
DATA FILE TWO-TIER 3-D PORTAL FRAME

```

*****1*****2*****3*****4*****5*****6*****7*****
$BLOCK A TITLE
2-TIER FRAME STRUCTURE WITH TRUSS X-BRACES: EXAMPLE 2
*****1*****2*****3*****4*****5*****6*****7*****
$BLOCK E CONTROL PARAMETERS
$ NEF      NEF      NJ      NCJ      NMT      FORMAT I10
$ NEUBC   20       LBLCK  16       NFREQ   12       NFMASS  8       NEIG    1       NEIG1  2       NPRI    0
$ NLC      1       NDSFLC 1       NSTRES 1       NSTW    4       NFMW    3       6       0
$           3       12      2
*****1*****2*****3*****4*****5*****6*****7*****
$BLOCK C DYNAMIC ANALYSIS INFORMATION
$MASS     GRAV    EPSEIG
$           0       386.4    0
*****1*****2*****3*****4*****5*****6*****7*****
$BLOCK E JOINT COORDINATES
$ NJ CARDS
$ JN      X-CORD  Y-CORD  Z-CORD      FORMAT I10,3F10
$           1       100.     0.      100.
$           2       100.     0.     -100.
$           3      -100.     0.     -100.
$           4      -100.     0.      100.
$           5       100.    50.      100.
$           6       100.    50.     -100.
$           7      -100.    50.     -100.
$           8      -100.    50.      100.
$           9       100.   100.      100.
$          10      100.   100.     -100.
$          11     -100.   100.     -100.
$          12     -100.   100.      100.
*****1*****2*****3*****4*****5*****6*****7*****
$BLOCK E DESIGN VARIABLE LINKING DATA
$ NCJ CARDS
$ JN      IY      IY      IZ      PCX      PCY      PCZ      FORMAT 4I10,3F10.0
$           1       1       0       2       1.0      0.0      1.0
$           2       1       0       2       1.0      0.0     -1.0
$           3       1       0       2       -1.0     0.0     -1.0
$           4       3       0       2       -1.0     0.0      1.0
$           5       3       4       2       1.0      1.0      1.0
$           6       3       4       2       1.0      1.0     -1.0
$           7       3       4       2       -1.0     1.0     -1.0
$           8       3       4       2       -1.0     1.0      1.0
*****1*****2*****3*****4*****5*****6*****7*****
$BLOCK F MATERIAL PROPERTIES
$ E      RFC      SIGMIN  NMT CARDS      FORMAT 6F10.0
$           SIGMAX  KEULER  POISSN
$           2.9E+7  0.2     -42000  36000  4.        .27
*****1*****2*****3*****4*****5*****6*****7*****
$BLOCK G BAR ELEMENT INFORMATION
$ LNO      NOCE2  NCDE2  MATCOC  NEB CARDS      FORMAT 5I10,F10,I10
$           NSDG1  AREA    LSECT
$           1       6
2.0,2.1,1.5,0.1
3.0,2.7,1.1,5,0.1
4.0,6,2.1,1.5,0.1
5.0,3.8,1.1,5,0.1
6.0,7.4,1.1,1.5,0.1
7.0,4.5,1.1,5,0.1
8.0,1.8,1.1,5,0.1
9.0,7,1.1,1.5,0.1
10.0,8,1.1,1.5,0.1
11.0,5.10,1.2,5,C,1
12.0,6.5,1.2,5,C,1
13.0,6.11,1.2,5,C,1
14.0,7.10,1.2,5,C,1

```

TABLE XIII
DATA FILE TWO-TIER 3-D PORTAL FRAME continued

```

15,7,12,1,2,5,C,1
16,8,11,1,2,5,C,1
17,8,9,1,2,5,0,C,1
18,8,12,1,2,5,C,1
19,9,11,1,2,5,C,1
20,10,12,1,2,5,0,C,1
*****2*****3*****4*****5*****6*****7*****
$BLCK H FRAME ELEMENT INFORMATION 2*NEF CARDS FORMAT 7I10/2F10
$ LNC NOCE2 NCDE3 MATCOC NSDG1 NSDG2 LSECT
$   |   |   |   |   |   |
21,1,5,1,3,4,1
22,2,6,1,3,4,1 0.50
23,3,7,1,3,4,1 0.50
24,4,8,1,3,4,1 0.50
25,5,9,1,5,6,1 0.50
26,6,10,1,5,6,1 0.50
27,7,11,1,5,6,1 C.50
28,8,12,1,5,6,1 C.50
29,5,6,1,7,8,1 0.50
30,6,7,1,7,8,1 0.50
31,7,8,1,7,8,1 C.50
32,8,5,1,7,8,1 0.50
33,9,10,1,9,1C,1 C.50
34,10,11,1,9,1C,1 0.50
35,11,12,1,9,1C,1 0.50
36,12,9,1,9,1C,1 C.50
*****2*****3*****4*****5*****6*****7*****
$BLCK I JOINT CCNSTPAINT DATA NCJ CARDS FORMAT 7I10
$ JN   IX   IY   IZ   IXX   IYY   IZZ
$   |   |   |   |   |   |
1,1,1,1,1,1,1
2,1,1,1,1,1,1
3,1,1,1,1,1,1
4,1,1,1,1,1,1
5,
6,
7,
8,
9,
10,
11,
12,
*****2*****3*****4*****5*****6*****7*****
$BLCK J JOINT LCACING DATA 1 CARD FORMAT I10
$ (C'IT IF NLC=0 IN BLCK B)
$ NLJ
$   |
$   |
$ JN   FX   FY   FZ   NLJ CARDS FORMAT I10,6F10
$   |   |   |   |   |   |   |
$ 1000.
$ 1C.1000.
$ 4.
$ 500.
$ 10,500.

```

TABLE XIV
DATA FILE TWO-TIER 3-D PORTAL FRAME continued

```

5.-500.
6.-500.
4,
1C,1000.
C,C,C,C,C,1000.
12,-100C.
11,C.0,O,C,-10C0.
*****2*****3*****4*****5*****6*****7*****
$BLCK K FIXED MASS DATA NFMASS CARDS FORMAT I10,F10.0
(CMIT IF NFMASS=0 IN BLOCK B)
JN MASS
| |
5C.0
10,50.C
11,50.C
12,50.C
*****2*****3*****4*****5*****6*****7*****
$BLCK L DESIGN VARIABLE INFORMATION CARDS AS REQ'D FORMAT 8F10.0
(AREA AND DIMENSION VARIABLES CMIT IF NDVAR1=0)
XA(I) . . . XA(NDVAR1)
3.5 3.5 5.0 0.5 5.0 0.5 5.0 0.5
XAL(I)
0.1 0.1 .50 0.1 .50 0.1 .50 0.1
XAU(I)
3C.0 30.0 30.0 .50 30.0 .50 30.0 0.5
3C.0 .5C.0
*****2*****3*****4*****5*****6*****7*****
$BLCK M DESIGN VARIABLE INFORMATION CARDS AS REQ'D FORMAT 8F10.0
(CORDINATE VARIABLES CMIT IF NDVAR2=0)
XC(I) . . . XC(NDVAR2)
100.0 100.0 100.0 100.0 50.0 1 1
XCL(I)
20.0 20.0 20.0 20.0 20.0 1 1
XCU(I)
16C.0 160.0 160.0 160.0 80.0 1 1
*****2*****3*****4*****5*****6*****7*****
$BLCK N JOINT DISPLACEMENT CONSTRAINTS NDSPLC CARDS FORMAT 3I10,2F10
(CMIT IF NDSPLC=0 IN BLOCK B)
JN DIR LC BL BU
9 1 -5.0 5.0
10 1 -5.0 5.0
11 1 -5.0 5.0
12 1 -5.0 5.0
9 2 -5.0 5.0
10 2 -5.0 5.0
11 2 -5.0 5.0
12 2 -5.0 5.0
9 3 -5.0 5.0
10 3 -5.0 5.0
11 3 -5.0 5.0
12 3 -5.0 5.0
*****2*****3*****4*****5*****6*****7*****
$BLCK O FREQUENCY CONSTRAINTS NO. OF CARDS AS REQ'D FORMAT 8F10.0
(CMIT IF NFREQ=0 IN BLCK B)
FC1 . . FCN
1.0 5.0 10.0 1 1 1 1
*****2*****3*****4*****5*****6*****7*****
$BLCK F END CARD
ENC

```

TABLE XV
DATA FILE DD-963 FOREMAST

```

$BLOCK A TITLE
CC-963 CLASS DESTROYER FORWARD MAST REDESIGN: EXAMPLE 1
$ THIS IS A SIMPLIFICATION OF THE ACTUAL STRUCTURE AND LOADS BASED ON
$ NAVSHIPS DRAWING NUMBER 128-4535510 AND NAVSHIPS SKETCH NUMBER
$ 80064-128-SK45879
$ THIS ANALYSIS REQUIRES A THE X-AXIS FORWARD, Y-AXIS UP, AND Z-AXIS
$ TO STBD; A DIFFERENT ORIENTATION THAN IN THE ABOVE DRAWINGS
$SELLOCK E CCNTCL PARAMETERS
$ NEB      NEF      NJ      NCJ      NMT      IDVCLC      NDJ
$          0        172     73      20       1           1         0
$ NEUBC    LBCK     NFREQ   NFMAS  NEIG     NEIG1     NPRI
$          0        1        0        33      0         0         0
$ NLC      NDSFLC   NSTRES  NSTW   NFMN
$          1        0        0        0       0
$          1        2        1        1
$*****2*****3*****4*****5*****6*****7***  

$SELLOCK C DYNAMIC ANALYSIS INFORMATION
$ 0 386.4 0.
$BLOCK C JOINT COORDINATES
1 -240.0 0.0 -106.0
2 -240.0 0.0 106.0
3 0.0 0.0 42.0
4 0.0 0.0 -42.0
5 -228.0 54.0 0.0
6 -120.0 54.0 68.4
7 -2.64 54.0 0.0
8 -120.0 54.0 -68.4
9 -216.0 108.0 -54.7
10 -216.0 108.0 54.7
11 -5.28 108.0 42.0
12 -5.28 108.0 -42.0
13 -7.92 162.0 0.0
14 -172.0 444.0 0.0
$ NOCE 15 IS AN UNCONNECTED FIXED CUMMY NODE
15 0.1 0.0 0.0
16 -192.6 216.0 -83.16
17 -192.6 216.0 83.16
18 -1C.56 216.0 42.0
19 54.0 216.0 42.0
20 54.0 216.0 -42.0
21 -1C.56 216.0 -42.0
22 -172.0 736.0 -18.0
23 -172.0 736.0 18.0
24 -13.2 270.0 0.0
25 -168.8 324.0 0.0
26 -168.8 324.0 -71.76
27 -168.8 324.0 71.76
28 -15.84 324.0 42.0
29 -15.84 324.0 -42.0
30 1C8.0 324.0 48.0
31 168.0 324.0 0.0
32 1C8.0 324.0 -48.0
33 -18.12 372.0 0.0
34 -147.8 420.0 -61.68
35 -147.8 420.0 0.0
36 -147.8 420.0 61.68
37 -20.4 420.0 42.0
38 12.0 420.0 39.0
39 -20.4 420.0 -42.0
40 12.0 420.0 -39.0
41 -22.2 456.0 0.0
42 -132.0 492.0 -54.0
43 -132.0 492.0 -54.0
44 -172.0 492.0 -54.0
45 -24.0 492.0 42.0
46 30.0 492.0 36.0
47 -24.0 492.0 -42.0
48 30.0 492.0 -36.0
$ END NODES FOR THE LOWER QUADRPOD OF THE FORWARD MAST
$ START THE UPPER FOREMAST NODES

```

TABLE XVI

TABLE XVII
DATA FILE DD-963 FOREMAST continued

7.625	.375	9	1	3	4	1	
7.625	.375	10	1	3	4	1	
7.625	.375	12	1	3	4	1	
7.625	.375	9	1	3	4	1	
7.625	.375	10	1	3	4	1	
7.625	.375	11	1	3	4	1	
7.625	.375	12	1	3	4	1	
7.625	.375	9	1	3	4	1	
7.625	.375	10	1	3	4	1	
\$ ENC 1ST TIER OF QUADRAPOC	.375	12	1	2	1		
11.625	.375	12	1	2	1		
11.625	.375	18	1	1	2	1	
11.625	.375	16	1	1	2	1	
11.625	.375	16	1	1	2	1	
11.625	.375	17	1	1	2	1	
11.625	.375	21	1	5	6	1	
11.625	.375	10	1	5	6	1	
7.625	.375	18	1	5	6	1	
7.625	.375	11	1	5	6	1	
7.625	.375	13	1	5	6	1	
7.625	.375	12	1	5	6	1	
7.625	.375	13	1	5	6	1	
7.625	.375	18	1	5	6	1	
7.625	.375	13	1	5	6	1	
7.625	.375	12	1	5	6	1	
7.625	.375	13	1	5	6	1	
7.625	.375	18	1	5	6	1	
7.625	.375	21	1	5	6	1	
7.625	.375	16	1	5	6	1	
7.625	.375	21	1	7	8	1	
7.625	.375	17	1	7	8	1	
7.625	.375	18	1	7	8	1	
7.625	.375	21	1	7	8	1	
7.625	.375	16	1	7	8	1	
7.625	.375	17	1	7	8	1	
7.625	.375	20	1	7	8	1	
11.625	.375	11	1	7	8	1	
11.625	.375	19	1	7	8	1	
11.625	.375	20	1	7	8	1	
7.625	.375	18	1	7	8	1	
7.625	.375	19	1	7	8	1	
7.625	.375	20	1	7	8	1	
7.625	.375	19	1	7	8	1	
\$ ENC 2ND TIER OF THE QUADRAPOC	.375	21	1	2	1		
11.625	.375	29	1	1	2	1	
11.625	.375	28	1	1	2	1	
11.625	.375	26	1	1	2	1	
11.625	.375	27	1	1	2	1	
11.625	.375	29	1	9	10	1	
7.625	.375	16	1	9	10	1	
7.625	.375	28	1	9	10	1	
7.625	.375	20	1	7	8	1	
11.625	.375	19	1	7	8	1	
11.625	.375	30	1	9	10	1	
7.625	.375	20	1	9	10	1	

TABLE XVIII

DATA FILE DD-963 FOREMAST continued

7.625	.375	31	1	9	10	1
7.625	.375	24	1	9	10	1
7.625	.375	24	1	9	10	1
7.625	.375	24	1	9	10	1
7.625	.375	24	1	9	10	1
7.625	.375	24	1	9	10	1
7.625	.375	25	1	9	10	1
11.60	.50	25	1	9	10	1
11.60	.50	25	1	9	10	1
11.60	.50	25	1	9	10	1
\$ MEMBERS	61 THRU 70	MCCEL THE SPQ-9 PLATFCRM ALCNG WITH A FIXED MASS				
11.60	.50	26	1	11	12	1
11.60	.50	27	1	11	12	1
11.60	.50	28	1	11	12	1
11.60	.50	29	1	11	12	1
11.60	.50	30	1	11	12	1
11.60	.50	31	1	11	12	1
11.60	.50	32	1	11	12	1
11.60	.50	33	1	11	12	1
11.60	.50	34	1	11	12	1
11.60	.50	35	1	11	12	1
11.60	.50	36	1	11	12	1
11.60	.50	37	1	11	12	1
11.60	.50	38	1	11	12	1
11.60	.50	39	1	11	12	1
11.60	.50	40	1	11	12	1
\$ ELEMENTS	68 AND 69	ARE DUMMY ELEMENTS				
.CC1	.0001	60	1	0	0	1
.CC1	.0001	60	1	0	0	1
.CC1	.0001	60	1	11	12	1
11.60	.50	32	1	11	12	1
\$ END TIE	3RD TIER OF THE QUADRAPOD START THE 4TH TIER					
11.60	.75	29	39	1	1	2
11.60	.75	28	37	1	1	2
11.60	.75	26	34	1	1	2
11.60	.75	27	36	1	1	2
11.60	.75	25	39	1	13	14
7.625	.375	27	37	1	13	14
7.625	.375	27	37	1	13	14
7.625	.375	24	40	1	13	14
7.625	.375	28	38	1	13	14
7.625	.375	26	52	1	13	14
7.625	.375	27	53	1	13	14
7.625	.375	27	53	1	13	14
7.625	.375	28	33	1	13	14
7.625	.375	29	33	1	13	14
7.625	.375	29	37	1	13	14
7.625	.375	29	37	1	13	14
7.625	.375	30	39	1	13	14
7.625	.375	30	39	1	13	14
7.625	.375	34	39	1	13	14
7.625	.375	34	39	1	13	14
7.625	.375	36	37	1	13	14
7.625	.375	37	37	1	13	14
7.625	.375	39	40	1	13	14
7.625	.375	37	28	1	13	14

TABLE XIX

DATA FILE DD-963 FOREMAST continued

7.625	.375					
7.625	.375	54	1	15	16	1
7.625	.375	54	1	15	16	1
7.625	.375	54	1	15	16	1
7.625	.375	54	1	15	16	1
7.625	.375	44	1	15	16	1
7.625	.375	59	1	15	16	1
7.625	.375	58	1	17	18	1
\$ END THE LOWER QUADRAGON START THE TOPMAST MEMBERS						
7.625	.375	52	1	17	18	1
7.625	.375	57	1	17	18	1
7.625	.375	58	1	17	18	1
7.625	.375	61	1	17	18	1
7.625	.375	61	1	17	18	1
7.625	.375	58	1	17	18	1
7.625	.375	57	1	17	18	1
7.625	.375	63	1	17	18	1
7.625	.375	63	1	17	18	1
7.625	.375	14	25	1	19	20
23.CO	1.5	62	1	19	20	1
23.CO	1.5	61	1	19	20	1
23.CO	1.62	63	1	19	20	1
23.CO	1.61	63	1	19	20	1
23.CO	1.63	64	1	19	20	1
23.CO	1.65	65	1	21	22	1
9.50	.50	66	1	21	22	1
9.50	.50	67	1	21	22	1
9.50	.50	39	1	13	14	1
\$ UPPER YARDARMS AND BRACES						
146	.64	70	1	23	24	1
14.CO	.75	71	1	23	24	1
147	.64	72	1	25	26	1
14.CO	.75	71	1	25	26	1
148	.70	73	1	25	26	1
1C.CO	.50	68	1	25	26	1
149	.50	69	1	25	26	1
1C.CO	.50	72	1	27	28	1
150	.50	73	1	27	28	1
10.CO	.50	61	1	27	28	1
151	.73	70	1	29	30	1
10.CO	.50	61	1	27	28	1
152	.375	61	1	27	28	1
7.625	.375	61	1	27	28	1
7.625	.375	61	1	27	28	1
154	.63	71	1	29	30	1
5.75	.25	72	1	27	28	1
5.75	.63	73	1	27	28	1
5.75	.25	61	1	27	28	1
7.625	.375	61	1	27	28	1
7.625	.375	63	1	29	30	1

TABLE XX
DATA FILE DD-963 FOREMAST continued

7.625 S END THE 4RD TIER OF THE QUADRPOC START THE 5TH TIER						
89	.375	47	1	1	2	1
11.75	.75	45	1	1	2	1
11.75	.75	42	1	1	2	1
11.75	.75	43	1	1	2	1
11.75	.75	47	1	15	16	1
7.625	.375	45	1	15	16	1
7.625	.375	48	1	13	14	1
7.625	.375	46	1	13	14	1
7.625	.375	26	1	13	14	1
7.625	.375	27	1	13	14	1
7.625	.375	35	1	13	14	1
7.625	.375	35	1	13	14	1
1C0	.27	35	1	13	14	1
7.625	.375	35	1	13	14	1
1C1	.34	35	1	13	14	1
7.625	.375	35	1	13	14	1
1C2	.35	36	1	13	14	1
7.625	.375	42	1	13	14	1
1C3	.35	43	1	13	14	1
7.625	.375	43	1	13	14	1
1C4	.35	41	1	13	14	1
7.625	.375	41	1	13	14	1
1C5	.37	41	1	13	14	1
7.625	.375	41	1	13	14	1
1C6	.39	41	1	13	14	1
7.625	.375	41	1	13	14	1
1C7	.41	45	1	13	14	1
7.625	.375	47	1	13	14	1
1C8	.41	47	1	13	14	1
7.625	.375	109	1	15	16	1
S MEMBERS 109 THRU 128 MODEL THE SPG-60 PLATFORM ALONG WITH A FIXED MASS						
1C9	.42	47	1	15	16	1
7.625	.375	45	1	15	16	1
110	.43	45	1	15	16	1
7.625	.375	43	1	15	16	1
111	.42	43	1	15	16	1
7.625	.375	47	1	15	16	1
112	.45	47	1	15	16	1
7.625	.375	48	1	15	16	1
113	.48	47	1	15	16	1
7.625	.375	46	1	15	16	1
114	.45	46	1	15	16	1
7.625	.375	46	1	15	16	1
115	.48	46	1	15	16	1
7.625	.375	53	1	15	16	1
116	.52	53	1	15	16	1
7.625	.375	51	1	13	14	1
117	.26	51	1	13	14	1
7.625	.375	51	1	13	14	1
118	.27	51	1	13	14	1
7.625	.375	51	1	13	14	1
119	.52	51	1	13	14	1
7.625	.375	51	1	13	14	1
120	.53	51	1	13	14	1
7.625	.375	52	1	15	16	1
121	.44	52	1	15	16	1
7.625	.375	53	1	15	16	1
122	.53	53	1	15	16	1
7.625	.375	54	1	15	16	1
123	.52	54	1	15	16	1

TABLE XXI
DATA FILE DD-963 FOREMAST continued

5.75	.25						
5.75	.25						
\$ SPS55	PLATFORM						
1.60	.63	71	1	29	30	1	
5.75	.25	22	1	29	30	1	
5.75	.25	23	1	29	30	1	
5.75	.25	23	1	29	30	1	
5.75	.25	23	1	29	30	1	
5.75	.25	23	1	29	30	1	
5.75	.25	22	1	29	30	1	
\$ LOWER YARDARP AND BRACES							
1.65	.44	62	1	15	16	1	
7.625	.375	62	1	15	16	1	
1.66	.59	62	1	15	16	1	
7.625	.375	44	1	31	32	1	
11.0	.50	50	1	31	32	1	
11.0	.50	50	1	31	32	1	
11.0	.50	55	1	31	32	1	
11.0	.50	56	1	31	32	1	
11.0	.50	49	1	33	34	1	
5.75	.25	50	1	33	34	1	
5.75	.25						
\$*****1*****2*****3*****4*****5*****6*****7***							
\$BLOCK I JOINT CONSTRAINT DATA							
\$ JR	I X	I Y	I Z	NCJ CARDS	FORMAT	7110	I ZZ
1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1
4	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1
6	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1
8	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1
11	1	1	1	1	1	1	1
12	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1
21	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1
24	1	1	1	1	1	1	1
25	1	1	1	1	1	1	1
26	1	1	1	1	1	1	1
27	1	1	1	1	1	1	1
28	1	1	1	1	1	1	1
29	1	1	1	1	1	1	1
30	1	1	1	1	1	1	1
31	1	1	1	1	1	1	1
32	1	1	1	1	1	1	1
33	1	1	1	1	1	1	1
34	1	1	1	1	1	1	1

TABLE XXII
DATA FILE DD-963 FOREMAST continued

38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							
51							
52							
53							
54							
55							
56							
57							
58							
59							
60							
61							
62							
63							
64							
65							
66							
67							
68							
69							
70							
71							
72							
73							
*****1*****2*****3*****4*****5*****6*****7***							
BLOCK J JOINT LEADING DATA (CMMT IF NLC=G IN BLCK 8)				1 CARD		FORMAT I10	
NLJ							
76							
JN FX FY FZ NLJ CARDS TX				FORMAT I10,6F10			
HARPY AND WIRE ANTENNA LOADS				TY		TZ	
45	-50.	-100.0	0.0	-	0.	-	-
60	-50.	-100.0	0.0	0.	0.	0.	0.
65	-50.	-100.0	0.0	0.	0.	0.	0.
66	-50.	-100.0	0.0	0.	0.	0.	0.
67	0.	-50.0	0.0	0.	0.	0.	0.
SHIP'S MOTION LOADS				TX		TY TZ	
JN	FX	FY	FZ	TX		TY	TZ
1	-	-	-	-		-	-
2	0.0	0.0	160.	0.0		0.0	0.0
3	0.0	0.0	163.	0.0		0.0	0.0
4	0.0	0.0	96.	0.0		0.0	0.0
5	0.0	0.0	137.	0.0		0.0	0.0
6	0.0	0.0	1C8.	0.0		0.0	0.0
7	0.0	0.0	184.	0.0		0.0	0.0
8	0.0	0.0	66.	0.0		0.0	0.0
9	0.0	0.0	184.	0.0		0.0	0.0
10	0.0	0.0	414.	0.0		0.0	0.0
11	0.0	0.0	467.	0.0		0.0	0.0
12	0.0	0.0	381.	0.0		0.0	0.0
13	0.0	0.0	70.	0.0		0.0	0.0
14	0.0	0.0	325.	0.0		0.0	0.0
15	0.0	0.0	525.	0.0		0.0	0.0
16	0.0	0.0	528.	0.0		0.0	0.0
17	0.0	0.0	429.	0.0		0.0	0.0
18	0.0	0.0	226.	0.0		0.0	0.0
19	0.0	0.0	9				

TABLE XXIII
DATA FILE DD-963 FOREMAST continued

20	0.0	0.0	214.8	0.0	0.0
21	0.0	0.0	468.9	0.0	0.0
22	0.0	0.0	539.0	0.0	0.0
23	0.0	0.0	51.6	0.0	0.0
24	0.0	0.0	474.7	0.0	0.0
25	0.0	0.0	3234.2	0.0	0.0
26	0.0	0.0	2296.0	0.0	0.0
27	0.0	0.0	1874.0	0.0	0.0
28	0.0	0.0	1459.2	0.0	0.0
29	0.0	0.0	1258.5	0.0	0.0
30	0.0	0.0	1489.9	0.0	0.0
31	0.0	0.0	211.7	0.0	0.0
32	0.0	0.0	498.7	0.0	0.0
33	0.0	0.0	606.8	0.0	0.0
34	0.0	0.0	468.7	0.0	0.0
35	0.0	0.0	725.9	0.0	0.0
36	0.0	0.0	174.3	0.0	0.0
37	0.0	0.0	725.9	0.0	0.0
38	0.0	0.0	174.3	0.0	0.0
39	0.0	0.0	345.5	0.0	0.0
40	0.0	0.0	1729.0	0.0	0.0
41	0.0	0.0	1425.6	0.0	0.0
42	0.0	0.0	1810.4	0.0	0.0
43	0.0	0.0	1468.1	0.0	0.0
44	0.0	0.0	1810.4	0.0	0.0
45	0.0	0.0	1468.1	0.0	0.0
46	0.0	0.0	185.6	0.0	0.0
47	0.0	0.0	540.9	0.0	0.0
48	0.0	0.0	965.8	0.0	0.0
49	0.0	0.0	783.4	0.0	0.0
50	0.0	0.0	464.2	0.0	0.0
51	0.0	0.0	113.0	0.0	0.0
52	0.0	0.0	254.5	0.0	0.0
53	0.0	0.0	426.2	0.0	0.0
54	0.0	0.0	1425.6	0.0	0.0
55	0.0	0.0	7.3	0.0	0.0
56	0.0	0.0	304.6	0.0	0.0
57	0.0	0.0	544.0	0.0	0.0
58	0.0	0.0	1407.7	0.0	0.0
59	0.0	0.0	135.0	0.0	0.0
60	0.0	0.0	138.8	0.0	0.0
61	0.0	0.0	100.3	0.0	0.0
62	0.0	0.0	60.1	0.0	0.0
63	0.0	0.0	60.1	0.0	0.0
64	0.0	0.0	463.2	0.0	0.0
65	0.0	0.0	1713.1	0.0	0.0
66	0.0	0.0	27.0	0.0	0.0
67	0.0	0.0	1081.2	0.0	0.0
68	0.0	0.0	0.0	0.0	0.0
69	0.0	0.0	0.0	0.0	0.0
70	0.0	0.0	0.0	0.0	0.0
71	0.0	0.0	0.0	0.0	0.0
72	0.0	0.0	0.0	0.0	0.0
73	0.0	0.0	0.0	0.0	0.0

*****4*****3*****4*****5*****6*****7***
 SBLCK K FIXED MASS DATA NFMASS CARDS FORMAT I10,F10.0
 (CNIT IF NFMASS=C IN BLOCK 8)
 JN MASS
 PLATFOM BELCW SPQ-S
 18 32.0
 19 32.0
 20 32.0
 21 32.0
 S SPC-5 AND FLATFCRM
 26 650.0
 27 650.0
 28 890.0
 29 890.0
 30 650.0
 31 890.0
 32 890.0
 S SPG-60 ANC FLATFCRM

42 \$40.0
 43 \$40.0
 44 \$40.0
 45 \$40.0
 46 \$40.0
 47 \$40.0
 48 \$40.0
 49 \$40.0
 \$ SPS-55 AND PLATFCRM
 50 25.0
 51 25.0
 52 25.0
 53 25.0
 54 25.0
 \$ ANTENNAS AND OTHER FIXTURES
 55 25.0
 56 25.0
 57 12.0
 58 12.0
 59 220.0
 60 30.0
 61 26.0
 62 26.0
 63 120.0
 64 972.0
 65 65.0
 ****2****3****4****5****6****7***
 \$BLCK L DESIGN VARIABLE INFORMATION CARDS AS REQ'D FORMAT 8F10.0
 \$ (AREA AND DIMENSION VARIABLES OMIT IF NOVAR1=0)
 \$ XA(I) . . . XA(NOVARI)
 \$
 13.75 .75 7.625 .375 8.625 .375 7.625 .375
 8.625 .375 12.50 .50 7.625 .375 7.625 .375
 7.625 .375 23.00 1.50 9.50 .50 14.00 .75
 10.00 .50 7.625 .375 7.625 .375 11.50 .50
 5.75 .25 1.00 1.00 1.00 1.00 1.00 1.00
 \$ XAL(I)
 \$
 8.00 .50 5.000 .250 5.000 .250 5.000 .250
 5.000 .250 8.00 .250 5.000 .250 5.000 .250
 5.000 .250 15.00 .250 6.00 .250 10.00 .50
 6.00 .25 5.000 .250 3.00 .10 8.00 .25
 3.00 .10 1.00 1.00 1.00 1.00 1.00 1.00
 \$ XAU(I)
 \$
 22.00 2.50 15.00 1.50 15.00 1.50 15.00 1.50
 15.00 1.50 22.00 2.50 15.00 1.50 15.00 1.50
 15.00 1.50 36.00 2.50 15.00 1.50 26.00 2.00
 15.00 1.50 15.00 1.50 12.00 1.50 22.00 1.50
 12.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00
 ****2****3****4****5****6****7***
 \$BLCK N JOINT DISPLACEMENT CONSTRAINTS ND SPLC CARDS FORMAT 3I10,2F10
 \$ (OMIT IF ACSPLC=C IN BLOCK B)
 \$ JN CIR LC BL BU
 \$
 1 1 1 -6.0 6.0
 6 1 1 -6.0 6.0
 46 1 1 -3.0 3.0
 48 1 1 -3.0 3.0
 22 1 1 -6.0 6.0
 22 1 1 -6.0 6.0
 23 1 1 -6.0 6.0
 23 1 1 -6.0 6.0
 64 1 1 -0.02 0.02
 31 1 1 -2.0 2.0
 31 1 1 -0.02 0.02
 ****2****3****4****5****6****7***
 \$BLCK C FREQUENCY CONSTRAINTS
 \$ 2.0
 ****2****3****4****5****6****7***
 \$SELCK P END CARD
 ENO

APPENDIX B

PROGRAM ORGANIZATION

A. DESCRIPTION

The program organization is layed out in the following flow charts. The main driver program (SADXMD) calls a subdriver (SADXSD), and the optimizer of the user's choice. All changes required for replacement of the optimizer are made in SADXMD, thus allowing for easy testing of several optimizers on the same problem.

SADXSD may be called from the main for input, analysis, and output. Printed output may vary as the user requires. A complete listing of all subroutines and their functions is given in Table XXIV.

TABLE XXIV

SUBROUTINE DIRECTORY	
SADXM	DRIVER PROGRAM FOR USING THE ABOVE SUBROUTINES. SADXM MAY BE COUPLED TO OPTIMIZER OF USER'S CHOICE.
SADXSD	SUBDRIVER PROGRAM FOR COUPLING SADX ROUTINES TO SADXM
SADX01	THIS ROUTINE READS AND PRINTS INPUT DATA AND ORGANIZES PSEUDO-DYNAMIC STORAGE ALLOCATION
SADX02	BUILDS VECTORS JC AND IIK FOR FINITE ELEMENT STRUCTURAL ANALYSIS
SADX03	BUILDS THE 12x12 ELEMENT STIFFNESS MATRIX
SADX05	SUPERIMPOSES THE ELEMENT STIFFNESS MATRIX EK (OR ELEMENT MASS MATRIX EM) ON THE COMPACTED GLOBAL STIFFNESS MATRIX AK (OR THE GLOBAL COMPACTED MASS MATRIX AM)
SADX06	BUILDS GLOBAL LUMPED MASS MATRIX
SADX07	LJ DECOMPOSES SYMMETRIC, POSITIVE-DEFINITE SPARCE MATRICES, THE UPPER TRIANGLE OF WHICH IS STORED IN MATRIX AK (OR AM) WITH LEADING ZEROES NOT STORED
SADX08	FORWARD AND BACK SUBSTITUTES TO YIELD A SOLUTION A SET OF LINEAR EQUATIONS (DECOMPOSED BY SADX07 OR EQUIVALENT)
SADX09	PRINTS ALL JOINT DISPLACEMENTS FOR EACH LOAD CONDITION OF A FINITE ELEM. STRUCTURE
SADX11	ROUTINE TO ORGANIZE ANALYSIS
SADX15	CALCULATES VALUES FOR ALL DESIGN AND BEHAVIORAL CONSTRAINTS AS DEFINED BY "SADX" PROGRAM
SADX16	CALCULATES STRESS IN TRUSS ELEMENT LNO UNDER LOAD CONDITION JJ
SADX17	PRINTS STRESSES AND/OR FORCES FOR TRUSS ELEMENTS
SADX19	ADDS ELEMENT MASS MATRIX AA OF ELEMENT LNO TO GLOBAL MASS MATRIX AM TO BUILD THE LUMPED MASS MATRIX
SADX23	CALCULATES WEIGHT OF TRUSS/FRAME STRUCTURE OR CALCULATE WEIGHT OF INDIVIDUAL MEMBERS
SADX36	CALCULATES ($XEIG - T * AM * XEIG$) FOR GRADIENT CALCULATIONS IN FREQUENCY CONSTRAINTS
SADX37	CALCULATES EIGENVALUE GRADIENT INFORMATION IN FINITE ELEMENT STRUCTURAL ANALYSIS AND DESIGN

SADX46	READS INPUT INFORMATION FOR TRUSS ELEMENTS
SADX47	TRANSFORMS THE ELEMENT STIFFNESS MATRIX EK (OR ELEMENT MASS MATRIX EM) FROM LOCAL TO GLOBAL COORDINATES
SADX49	SOLVES REAL EIGENVALUE PROBLEMS USING THE SUBSPACE ITERATION METHOD
SADX50	BUILDS INITIAL SET OF BASIS VECTORS FOR EIGEN SOLUTION BY REDUCED BASIS METHOD
SADX53	PRINTS MEMBER INFORMATION FOR TRUSS ELEMENTS
SADX62	PRINTS NEIG EIGENVALUES STORED IN EIGVAL AND THEIR CORRESPONDING EIGENVECTORS STORED IN XEIG
SADX71	PRINTS G VECTOR OF CONSTRAINTS
SADX72	READS IN FRAME ELEMENT INPUT DATA
SADX78	BUILDS 3x3 TRANSFORMATION ARRAY TFORM FOR TRANSFORMING FROM LOCAL TO GLOBAL COORDINATES
SADX80	CALLS SADX03 TO BUILD THE ELEMENT STIFFNESS MATRIX; CALLS SADX47 TO TRANSFORM THE MATRIX; AND CALLS SADX05 TO BUILD THE REDUCED GLOBAL STIFFNESS MATRIX
SADX81	CALCULATES STRESS IN FRAME ELEMENT LNO UNDER LOAD CONDITION JJ (IF JJ=0 STRESSES CALCULATED FOR ALL LOAD CONDITIONS)
SADX82	READS INPUT DATA FOR FRAME ELEMENTS WITH SPECIFIED SECTION TYPES
SADX83	PRINTS STRESSES AND/OR FORCES FOR FRAME ELEMENTS
SADX84	PRINTS MEMBER INFORMATION FOR FRAME ELEMENTS
SADX85	CALCULATES SECTION PROPERTIES FOR FRAME ELEMENTS OF A SECTION TYPE GIVEN BY ISECT
SADX86	CALLS EITHER SADX06 TO BUILD THE LUMPED MASS MATRIX OR BUILDS THE CONSISTENT MASS MATRIX BY CALLING SADX87 TO BUILD THE ELEMENT MASS MATRIX, SADX78 TO BUILD THE TRANSFORMATION MATRIX, SADX47 TO TRANSFORM THE ELEMENT MASS MATRIX, AND SADX88 TO ASSEMBLE THE COMPACTED GLOBAL MASS MATRIX
SADX87	CALLS BUILDS THE ELEMENT CONSISTENT MASS MATRIX

SADX88	CONVERTS UNFORMATTED DATA TO FORMATTED DATA IN FIELDS OF 10, EACH RIGHT JUSTIFIED AND ACCEPTS \$COMMENT CARDS IN DATA
SADX89	SOLVES EIGENVALUE PROBLEM A-ALAMBDA*B Y=0
SADX90	SOLVES EIGENVALUE PROBLEM
SADX91	SOLVES EIGENVALUE PROBLEM
SETIME	STARTS EXECUTION TIMER (NONIMSL LIBRARY)
GETIME	STOPS EXECUTION TIMER (NONIMSL LIBRARY)

AD-A124 988

OPTIMIZATION OF THREE DIMENSIONAL COMBINED TRUSS/FRAME
STRUCTURES(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
G L BENDER OCT 82

2/2

UNCLASSIFIED

F/G 13/13 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

TABLE XXV
PROGRAM BLOCK DIAGRAM

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3. Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	2
4. Dr. Garret N. Vanderplaats, Code 69Vn Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	10
5. Dr. Young Shin, Code 69Sg Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940	1
6. Dr. Richard H. Galleger Dean of College of Engineering University of Arizona Tucson, Arizona 85721	1
7. Dr. Lucien A. Schmit Department of Mechanical & Structural Eng. 6731 Boelter Hall University of California Los Angeles Los Angeles, California 85721	1
8. LT Jorge E. Felix Care of: Director de Educacion de la Armada Comandancia General de Marina Quito, Ecuador, SOUTH AMERICA	1
9. LT Gregory L. Bender, USN 379C Bergin Drive Monterey, California 93940	3

	No. Copies
10. LT James E. Fitzgerald Code 331.6 Pearl Harbor Naval Shipyard Box 400 Pearl Harbor, Hawaii 96860	1
11. LT David J. Mulholland Code 331.2 Pearl Harbor Naval Shipyard Box 400 Pearl Harbor, Hawaii 96860	1
12. Robert Sielski Department of the Navy Naval Sea Systems Command (Code 55Y12) Washington, DC 20362	1