COL 351: Analysis and Design of Algorithms

Lecture 34

All Problems covered till now

- Have polynomial time solutions
 - Example: Max-flows, MST, Closest-pair, Matrix-multiplication, Sorting, etc.

There are large class of problems for which

- No polynomial time (eg. $O(n^c)$) solution is known till now:
 - Example: Vertex-cover, Independent-set, Longest-Path, etc.
- They have no known "super-polynomial" lower bound on running-time.
- They all are ALL <u>closely related to each other.</u>

Vertex Cover and Dominating Set

Vertex Cover

Given: A graph G = (V, E) with n vertices.

Def: A subset $W \subseteq V$ such that for each edge $(a,b) \in E$, either a or b lies in W.

Decision Version:

Find if there is a vertex-cover of size $\leq k$.

Dominating Set

Given: A graph G = (V, E) with n vertices.

Def: A subset $D \subseteq V$ such that for each $v \notin D$, a neighbour of v lies in set "D".

Decision Version:

Find if there is a dominating-set of size $\leq k$.

More Examples: Graph Instances

Class: Vertex Cover

Instances
$$\begin{cases} (G,1) - NO \\ (G,2) - NO \\ (G,3) - NO \\ (G,4) - YES \\ (G,5) - YES \end{cases}$$

If
$$G_1 = K_n$$
, then
$$(G_1, n-2) - NO$$

$$(G_1, n-1) - YES$$

Vertex Cover

Dominating Set

Given: A graph G = (V, E) with n vertices.

Def: A subset $W \subseteq V$ such that for each edge $(a, b) \in E$, either a or b lies in W.

Given: A graph G = (V, E) with n vertices.

Def: A subset $D \subseteq V$ such that for each $v \notin D$, a neighbour of v lies in set "D".

Decision Version:

Find if there is a vertex-cover of size $\leq k$.

Decision Version:

Find if there is a dominating-set of size $\leq k$.

Which problem is easier to solve?

Lemma: If dominating-set can be solved in polynomial time, then the vertex-cover problem also has a poly-time algorithm.

Lemma: If dominating-set can be solved in polynomial time, then the vertex-cover problem also has a poly-time algorithm.

Proof: Let (X_V, X_E) be a partition of vertices in H, where $X_V = V(G)$, and X_E correspond to E(G).

(G, k) is Yes \Rightarrow (H, k) is Yes

- Let *W* be a vertex-cover of *G* of size at most *k*.
- Then, *W* is a dominating-set of *G*.
- Morover, each vertex in X_E is adjacent to a vertex in W.
- So, W is a dominating-set of H.

(H, k) is Yes \Rightarrow (G, k) is Yes

- Let *D* be a dominating-set of *H* of size at most *k*.
- By exchange argument, we can ensure $D \subseteq X_V$.
- Each vertex in X_E is adjacent to a vertex in D.
- Thus, *D* is a vertex-cover of *G*.

Polynomial Time Reductions

<u>Definition:</u> A problem A is said to be reducible in polynomial time to problem B (denoted by $A_{\leq P}B$) iff

There is a polynomial-time algorithm F that

- Maps an instance I_A of A to an instance $I_B = F(I_A)$ of B.
- I_A is YES-instance of $A \iff I_B$ is YES-instance of B.

Polynomial Time Reductions

<u>Definition:</u> A problem A is said to be reducible in polynomial time to problem B (denoted by $A_{\leq P}B$) iff

There is a polynomial-time algorithm F that

- Maps an instance I_A of A to an instance $I_B = F(I_A)$ of B.
- I_A is YES-instance of $A \iff I_B$ is YES-instance of B.

<u>Consequence 1:</u> If **B** is polynomial time solvable, then **A** is also polynomial time solvable.

Consequence 2: If there is NO polynomial time algorithm for A, then there is NO polynomial time algorithm for B.

From last class: Computing path of maximum capacity

Claim: Given any s in flow-graph G = (V, E, c), we can compute for each vertex v, an (s, v)-path of maximum capacity in $O(m \log n)$ total time.

If
$$x_1, ..., x_t$$
 are in-neighbors of y , then
$$\operatorname{MaxCap}(s, y) = \max_{1 \le i \le t} \left(\min \left(\operatorname{MaxCap}(s, x_i), c(x_i, y) \right) \right)$$

Max capacity using		
(x,,y) edge	300	
(x_2, y) edge	3 50	- ANSWER
(x3, y) edge	200	
V. V		1

From last class: Computing path of maximum capacity

```
1. Initialise an empty Q, and an array max-cap[] of size n
2. For each vertex v \in V:
       \max-cap[v] \leftarrow 0
       Add v to queue Q.
3. \max-cap[s] \leftarrow \bigcirc \infty
4. While Q is not empty:
       x \leftarrow \text{vertex in } Q \text{ with } \frac{|\mathbf{x}|}{|\mathbf{x}|}
       Remove x from Q
       For each out-neighbor y of x still in Q:
              temp \leftarrow \min(\max{-cap[x], c(x, y)})
              If temp > max-cap[y]:
                             \max-cap[x] \leftarrow temp
5. Return max-cap[]
```