

■ General Description

The AME8826 family of positive, linear regulators feature low quiescent current ($45\mu A$ typ.) with low dropout voltage, making them ideal for battery applications.

Output voltages are set at the factory and trimmed to 1.5% accuracy.

These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

In applications requiring a low noise, regulated supply, place a 1000pF capacitor between Bypass and Ground.

The AME8826 is stable with an output capacitance of $4.7\mu F$ or greater.

■ Features

- Very Low Dropout Voltage
- Guaranteed 1.55A Output
- Accurate to within 1.5%
- 45μA Quiescent Current Typically
- Over-Temperature Shutdown
- Current Limiting
- Noise Reduction Bypass Capacitor (Fixed Versions)
- Power-Saving Shutdown Mode
- Space-Saving DDPAK-5, SO-8 Package
- 6 Factory Pre-set Output Voltages
- Low Temperature Coefficient
- Adjustable Version

■ Applications

- Instrumentation
- Portable Electronics
- Wireless Devices
- PC Peripherals
- Battery Powered Widgets

■ Functional Block Diagram (Fixed Versions)

■ Functional Block Diagram (Adjustable Version)

■ Typical Application

■ Pin Configuration

TO-263(DDPAK-5)
Top View

AME 8826AEDVxxx

- 1. EN
- 2. V_{IN}
- 3. GND
- 4. V_{out}
- 5. BYP

TO-263(DDPAK-5) Top View

AME8826BEDVADJ

- 1. EN
- 2. V_{IN}
- 3. GND
- 4. V_{OUT}
- 5. ADJ

SO-8 Top View

AME 8826AEHAxxx

- 1. BYP
- 2. GND
- 3. GND
- 4. EN
- 5. V_{IN}
- 6. GND
- 7. GND
- 8. V_{out}

SO-8 Top View

AME 8826BEHAADJ

- 1. ADJ
- 2. GND
- 3. GND
- 4. EN
- 5. V_{IN}
- GND
 GND
- 8. V_{out}

SO-8 Top View

AME 8826CEHAADJ

- 1. EN
- 2. V_{IN}
- 3. V_{OUT}
- 4. ADJ
- 5. GND
- 6. GND
- 7. GND
- 8. GND

■ Ordering Information

Part Number	Marking	Output Voltage	Package	Operating Temp. Range
AME8826AEDV150	AME8826 AEDV150 yyww	1.50	DDPAK-5	- 40°C to + 85°C
AME8826AEDV180	AME8826 AEDV180 yyww	1.80	DDPAK-5	- 40°C to + 85°C
AME8826AEDV250	AME8826 AEDV250 yyww	2.50	DDPAK-5	- 40°C to + 85°C
AME8826AEDV330	AME8826 AEDV330 yyww	3.30	DDPAK-5	- 40°C to + 85°C
AME8826AEDV475	AME8826 AEDV475 yyww	4.75	DDPAK-5	- 40°C to + 85°C
AME8826AEDV500	AME8826 AEDV500 yyww	5.00	DDPAK-5	- 40°C to + 85°C
AME8826BEDVADJ	AME8826 BEDVADJ yyww	ADJ	DDPAK-5	- 40°C to + 85°C
AME8826AEHA150	AME8826 AEHA150 yyww	1.50	SO-8	- 40°C to + 85°C
AME8826AEHA180	AME8826 AEHA180 yyww	1.80	SO-8	- 40°C to + 85°C
AME8826AEHA250	AME8826 AEHA250 yyww	2.50	SO-8	- 40°C to + 85°C
AME8826AEHA330	AME8826 AEHA330 yyww	3.30	SO-8	- 40°C to + 85°C
AME8826AEHA475	AME8826 AEHA475 yyww	4.75	SO-8	- 40°C to + 85°C

■ Ordering Information (contd.)

Part Number	Marking	Output Voltage	Package	Operating Temp. Range
AME8826AEHA500	AME8826 AEHA500 yyww	5.00	SO-8	- 40°C to + 85°C
AME8826BEHAADJ	AME8826 BEHAADJ yyww	ADJ	SO-8	- 40°C to + 85°C
AME8826CEHAADJ	AME8826 CEHAADJ yyww	ADJ	SO-8	- 40°C to + 85°C

Please consult AME sales office or authorized Rep./Distributor for other output voltage and package type availability.

■ Absolute Maximum Ratings

Parameter	Maximum	Unit
Input Voltage	8	V
Output Current	P _D / (V _{IN} - V _O)	mA
Output Voltage	GND - 0.3 to V _{IN} + 0.3	V
ESD Classification	В	

Caution: Stress above the listed absolute maximum rating may cause permanent damage to the device

■ Recommended Operating Conditions

Parameter	Rating	Unit
Ambient Temperature Range	- 40 to + 85	°C
Junction Temperature	- 40 to + 125	°C

■ Thermal Information

Parameter	Maximum	Unit	
Thormal Posistance (0.)	TO-263 (DDPAK-5)	5	°C / W
Thermal Resistance (θ_{jc})	SO-8	20**	*C / VV
Internal Power Dissipation (P _D)	TO-263 (DDPAK-5)	3.00	W
$(\Delta T = 100^{\circ}C)^{*}$	SO-8	2.5	٧٧
Maximum Junction Temperature	150	°C	
Maximum Lead Temperature (10 Sec)		300	°C

^{*} Assuming a heat sink capable of twice times (θjc)

^{**} Estimated

■ Electrical Specifications

TA = 25°C unless otherwise noted

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units	
Input Voltage	V _{IN}			Note 1		7	V	
Output Voltage Accuracy	Vo	I _O =1mA				1.5	%	
		1 -4 554	1.5V<=V _{O(NOM)} <=2.0V			1000		
Dropout Voltage	V _{DROPOUT}	I _O =1.55A	2.0V <v<sub>O(NOM)<=2.8V</v<sub>		See chart	800	mV	
		$V_O = V_{O(NOM)} - 2.0\%$	2.8V <v<sub>O(NOM)<3.8V</v<sub>		Criait	600		
Output Current	lo	V _O >	1.2V	1550			mA	
Current Limit	I _{LIM}	V _O >	1.2V	1550	2000		mA	
Quiescent Current		1 -4	ο Λ		45	70	_	
(For Fixed Output Voltage Options)	la	1 ₀ =0	OmA		45	70	μA	
Ground Pin Current	I _{GND}	I _O =1mA	to 1.5A		45		μA	
Line Demodeties	DEO	I _O =1mA	V _O < 2.0V			0.15	%	
Line Regulation	REG _{LINE}	$V_{IN}=V_O+1$ to V_O+2	V _O >= 2.0V		0.02	0.1	%	
Load Regulation	REG _{LOAD}	I _O =1mA	to 1.5A		0.2	1	%	
Over Temerature Shutdown	OTS				150		°C	
Over Temerature Hysterisis	ОТН				30		°C	
V _O Temperature Coefficient	TC				30		ppm/°C	
ADJ Input Bias Current	I _{ADJ}				1		μA	
ADJ Reference Voltage	V_{REF}			1.223	1.242	1.261	V	
	PSRR	L =400=4	f=1kHz		50			
Power Supply Rejection		l _O =100mA	f=10kHz		20		dB	
		$C_O=4.7\mu F$ ceramic	f=100kHz		15			
		I _O =100mA	f=1kHz		75			
Power Supply Rejection	PSRR	C _O =4.7 _µ F ceramic	f=10kHz		55		dB	
		C _{BYP} =0.01μF f=100kHz			30			
Outrot Valtage Naise	-NI	f=10Hz to 100kHz	C=-4.7.F		20		\/	
Output Voltage Noise	eN	$I_O=10$ mA, $C_{BYP}=0$ μ F	Co=4.7μF		30		μVrms	
Outrot Valtage Naisa	-NI	f=10Hz to 100kHz	C=4.7.F		20		\/	
Output Voltage Noise	eN	I_O =10mA, C_{BYP} =0.01 μ F	Co=4.7μF		30		μVrms	
EN Input Threshold	V _{EH}	V _{IN} =2.7V to 7V		2.0		V _{IN}	V	
EN Input Trieshold	V _{EL}	V _{IN} =2.7V to 7V		0		0.4	V	
EN Input Bias Current	I _{EH}	V _{EN} =V _{IN} , V _{IN} =2.7V to 7V				0.1	μA	
Livinput bias ountent	I _{EL}	V _{EN} =0V, V _{IN}	_V =2.7V to 7V			0.5	μA	
Shutdown Supply Current	I _{SD}	V_{IN} =5.0V, V_{O} =0V, V_{EN} < V_{EL}			30		μA	
Characteri Cappy Carton	usu 	V_{IN} =2.5V, V_{O} =0V, V_{EN} < V_{EL}			0.5	2	μA	

■ Detailed Description

The AME8826 family of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, and thermal shutdown.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 140°C, or the current exceeds 2.2A. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120°C.

■ External Capacitors

The AME8826 is stable with an output capacitor to ground of 4.7 μ F or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a 0.1 μ F ceramic capacitor with a 10 μ F Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.

A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be at least $0.1\mu F$ to have a beneficial effect.

A third capacitor can be connected between the BY-PASS pin and GND. This capacitor can be a low cost Polyester Film variety between the value of 0.001 \sim 0.01µF. A larger capacitor improves the AC ripple rejection, but also makes the output come up slowly. This "Soft" turn-on is desirable in some applications to limit turn-on surges.

All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.

■ Enable

When pulled low, the PMOS pass transistor shuts off, and all internal circuits are powered down. In this state, the quiescent current is less than $1\mu A$. This pin behaves much like an electronic switch.

■ Adjustable Version

The adjustable version uses external feedback resistors to generate an output voltage anywhere from 1.5V to 5.0V. Vadj is trimmed to 1.242V and VOUT is given by the equation:

Feedback resistors R1 and R2 should be high enough to keep quiescent current low, but increasing R1 + R2 will reduce stability. In general, R1 and R2 in the 10's of $k\Omega$ will produce adequate stability, given reasonable layout precautions. To improve stability characteristics, keep parasitics on the ADJ pin to a minimum, and lower R1 and R2 values.

Overtemperature Shutdown

Time 100mS/DIV

Untested Region

ILOAD (mA)

0.01

250

■ External Resistor Divider Table

R1 (K Ohm)	1	2	5	10	20	50	100	200	500	1000
Vout	Vout R2(kohm)=(1.242*R1(kohm))/(Vout-1.242)									
1.30	21.41	42.83	107.07	214.14	428.28	1070.69				
1.35	11.50	23.00	57.50	115.00	230.00	575.00				
1.40	7.86	15.72	39.30	78.61	157.22	393.04				
1.45	5.97	11.94	29.86	59.71	119.42	298.56	597.55			
1.50	4.81	9.63	24.07	48.14	96.28	240.70	481.68	962.79		
1.55	4.03	8.06	20.16	40.32	80.65	201.62	403.44	806.49		
1.60	3.47	6.94	17.35	34.69	69.39	173.46	347.07	693.85		
1.65	3.04	6.09	15.22	30.44	60.88	152.21	304.52	608.82		
1.70	2.71	5.42	13.56	27.12	54.24	135.59	271.27	542.36		
1.75	2.44	4.89	12.22	24.45	48.90	122.24	244.56	488.98		
1.80	2.23	4.45	11.13	22.26	44.52	111.29	222.64	445.16		
1.85	2.04	4.09	10.21	20.43	40.86	102.14	204.33	408.55		
1.90	1.89	3.78	9.44	18.88	37.75	94.38	188.80	377.51		
1.95	1.75	3.51	8.77	17.54	35.08	87.71	175.46	350.85	877.12	
2.00	1.64	3.28	8.19	16.39	32.77	81.93	163.88	327.70	819.26	
2.05	1.54	3.07	7.69	15.37	30.74	76.86	153.74	307.43	768.56	
2.10	1.45	2.90	7.24	14.48	28.95	72.38	144.78	289.51	723.78	
2.15	1.37	2.74	6.84	13.68	27.36	68.39	136.81	273.57	683.92	
2.20	1.30	2.59	6.48	12.96	25.93	64.82	129.67	259.29	648.23	
2.25	1.23	2.46	6.16	12.32	24.64	61.61	123.23	246.43	616.07	
2.30	1.17	2.35	5.87	11.74	23.48	58.70	117.41	234.78	586.96	
2.35	1.12	2.24	5.60	11.21	22.42	56.05	112.11	224.19	560.47	
2.40	1.07	2.15	5.36	10.73	21.45	53.63	107.27	214.51	536.27	
2.45	1.03	2.06	5.14	10.28	20.56	51.41	102.83	205.63	514.07	
2.50	0.99	1.97	4.94	9.87	19.75	49.36	98.74	197.46	493.64	
2.55	0.95	1.90	4.75	9.50	18.99	47.48	94.97	189.91	474.77	
2.60	0.91	1.83	4.57	9.15	18.29	45.73	91.47	182.92	457.29	914.58
2.65	0.88	1.76	4.41	8.82	17.64	44.11	88.22	176.42	441.05	882.10
2.70	0.85	1.70	4.26	8.52	17.04	42.59	85.19	170.37	425.93	851.85
2.75	0.82	1.65	4.12	8.24	16.47	41.18	82.37	164.72	411.80	823.61
2.80	0.80	1.59	3.99	7.97	15.94	39.86	79.73	159.44	398.59	797.18
2.85	0.77	1.54	3.86	7.72	15.45	38.62	77.25	154.48	386.19	772.39
2.90	0.75	1.50	3.75	7.49	14.98	37.45	74.92	149.82	374.55	749.10
2.95	0.73	1.45	3.64	7.27	14.54	36.36	72.72	145.43	363.58	727.17
3.00	0.71	1.41	3.53	7.06	14.13	35.32	70.65	141.30	353.24	706.48
3.05	0.69	1.37	3.43	6.87	13.74	34.35	68.70	137.39	343.47	686.95
3.10	0.67	1.34	3.34	6.68	13.37	33.42	66.85	133.69	334.23	668.46

■ External Resistor Divider Table (contd.)

R1 (K Ohm)	1	2	5	10	20	50	100	200	500	1000
Vout	R2(kohm)=(1.242*R1(kohm))/(Vout-1.242)									
3.15	0.65	1.30	3.25	6.51	13.02	32.55	65.09	130.19	325.47	650.94
3.20	0.63	1.27	3.17	6.34	12.69	31.72	63.43	126.86	317.16	634.32
3.25	0.62	1.24	3.09	6.19	12.37	30.93	61.85	123.71	309.26	618.53
3.30	0.60	1.21	3.02	6.03	12.07	30.17	60.35	120.70	301.75	603.50
3.35	0.59	1.18	2.95	5.89	11.78	29.46	58.92	117.84	294.59	589.18
3.40	0.58	1.15	2.88	5.76	11.51	28.78	57.55	115.11	287.77	575.53
3.45	0.56	1.13	2.81	5.63	11.25	28.13	56.25	112.50	281.25	562.50
3.50	0.55	1.10	2.75	5.50	11.00	27.50	55.00	110.01	275.02	550.04
3.55	0.54	1.08	2.69	5.38	10.76	26.91	53.81	107.63	269.06	538.13
3.60	0.53	1.05	2.63	5.27	10.53	26.34	52.67	105.34	263.36	526.72
3.65	0.52	1.03	2.58	5.16	10.32	25.79	51.58	103.16	257.89	515.78
3.70	0.51	1.01	2.53	5.05	10.11	25.26	50.53	101.06	252.64	505.29
3.75	0.50	0.99	2.48	4.95	9.90	24.76	49.52	99.04	247.61	495.22
3.80	0.49	0.97	2.43	4.86	9.71	24.28	48.55	97.11	242.77	485.54
3.85	0.48	0.95	2.38	4.76	9.52	23.81	47.62	95.25	238.11	476.23
3.90	0.47	0.93	2.34	4.67	9.35	23.36	46.73	93.45	233.63	467.27
3.95	0.46	0.92	2.29	4.59	9.17	22.93	45.86	91.73	229.32	458.64
4.00	0.45	0.90	2.25	4.50	9.01	22.52	45.03	90.07	225.16	450.33
4.05	0.44	0.88	2.21	4.42	8.85	22.12	44.23	88.46	221.15	442.31
4.10	0.43	0.87	2.17	4.35	8.69	21.73	43.46	86.91	217.28	434.57
4.15	0.43	0.85	2.14	4.27	8.54	21.35	42.71	85.42	213.55	427.10
4.20	0.42	0.84	2.10	4.20	8.40	20.99	41.99	83.98	209.94	419.88
4.25	0.41	0.83	2.06	4.13	8.26	20.64	41.29	82.58	206.45	412.90
4.30	0.41	0.81	2.03	4.06	8.12	20.31	40.61	81.23	203.07	406.15
4.35	0.40	0.80	2.00	4.00	7.99	19.98	39.96	79.92	199.81	399.61
4.40	0.39	0.79	1.97	3.93	7.87	19.66	39.33	78.66	196.64	393.29
4.45	0.39	0.77	1.94	3.87	7.74	19.36	38.72	77.43	193.58	387.16
4.50	0.38	0.76	1.91	3.81	7.62	19.06	38.12	76.24	190.61	381.22
4.55	0.38	0.75	1.88	3.75	7.51	18.77	37.55	75.09	187.73	375.45
4.60	0.37	0.74	1.85	3.70	7.40	18.49	36.99	73.97	184.93	369.86
4.65	0.36	0.73	1.82	3.64	7.29	18.22	36.44	72.89	182.22	364.44
4.70	0.36	0.72	1.80	3.59	7.18	17.96	35.92	71.83	179.58	359.17
4.75	0.35	0.71	1.77	3.54	7.08	17.70	35.40	70.81	177.02	354.05
4.80	0.35	0.70	1.75	3.49	6.98	17.45	34.91	69.81	174.54	349.07
4.85	0.34	0.69	1.72	3.44	6.88	17.21	34.42	68.85	172.12	344.24
4.90	0.34	0.68	1.70	3.40	6.79	16.98	33.95	67.91	169.76	339.53
4.95	0.33	0.67	1.67	3.35	6.70	16.75	33.50	66.99	167.48	334.95
5.00	0.33	0.66	1.65	3.30	6.61	16.52	33.05	66.10	165.25	330.49

Note: Small load(greater than 2 mA) is necessary as R1 or R2 is larger than 50 K Ohm. Otherwise, outputvoltage probably cannot be pulled down to 0 V on disable mode.

■ Package Dimension

SO-8

SYMBOLS	MILLIN	IETERS	INCHES		
STWIDOLS	MIN	MAX	MIN	MAX	
Α	1.35	1.75	0.05315	0.0689	
A ₁	0.10	0.25	0.00394	0.00984	
A2	1.473	REF	0.058 REF		
В	0.33	0.51	0.01299	0.02008	
С	0.19	0.25	0.00748	0.00984	
D	4.80	5.00	0.18898	0.19685	
E	3.80	4.00	0.14961	0.15748	
е	1.27	BSC	0.050 BSC		
L	0.40	1.27	0.01575	0.05	
у	-	0.10	-	0.004	
θ	0°	8°	0°	8°	

TO-263-5

SYMBOLS	MILLIN	IETERS	INC	HES	
3 TWIDOLS	MIN	MAX	MIN	MAX	
Α	10.050	10.668	0.396	0.420	
В	8.280	9.169	0.326	0.361	
С	4.310	4.597	0.170	0.181	
D	0.660	0.660 0.910 0.026		0.036	
Е	1.140	1.400	0.045		
G	1.70	REF	0.067 REF		
Н	14.605	15.875	0.575	0.625	
K	1.143	1.680	0.045	0.066	
L	0.000	0.305	0.000	0.012	
N	0.330	0.580	0.013	0.023	
Р	2.280	2.800	0.090	0.110	
R	0°	8°	0°	8°	
W	0.25	REF	0.01	REF	

Life Support Policy:

These products of AME, Inc. are not authorized for use as critical components in life-support devices or systems, without the express written approval of the president of AME, Inc.

AME, Inc. reserves the right to make changes in the circuitry and specifications of its devices and advises its customers to obtain the latest version of relevant information.

© AME, Inc. , September 2003 Document: 2006-DS8803/8814-G

E-Mail:Longman@rccn.com.cn

Address:Room 2101, No.2 Building Yulan garden, No.50 Puhuitang Rd,Shanghai,PRC zip:200030

Tel: 86-21-64285731/32 ext:8033 Sales Manager:Longman Xu

Fax: 86-21-64393342