Implementación de un Sistema de Atención al Cliente con TDA, Graphviz y XML 202300689 – Josue Daniel Herrera Cottom

202300689 - Josue Daniel Herrera Cottom

Resumen

Este proyecto implementa un sistema de atención al cliente para empresas, diseñado para gestionar puntos de servicio, escritorios activos y transacciones mediante programación orientada a objetos (POO) y tipos de datos abstractos (TDA). Utilizando archivos XML para la configuración inicial y la herramienta Graphviz para visualización, el sistema simula la asignación de clientes a escritorios, garantizando un orden FIFO (First-In-First-Out) y calculando tiempos de espera y atención. La solución integra estructuras de datos personalizadas, una interfaz gráfica con Tkinter y algoritmos para simular escenarios reales, cumpliendo con los requisitos académicos y técnicos del curso.

Palabras clave

Atención al cliente, TDA, FIFO, Graphviz, XML, Python.

Abstract

This project implements an enterprise customer service system designed to manage points of service, active desktops, and transactions using object-oriented programming (OOP) and abstract data types (ADT). Using XML files for initial configuration and Graphviz for visualization, the system simulates the assignment of customers to desktops, ensuring a FIFO (First-In-First-Out) order and calculating wait and service times. The solution integrates custom data structures, a graphical interface with Tkinter, and algorithms to simulate reallife scenarios, meeting the academic and technical requirements of the course.

Keywords

Customer service, TDA, FIFO, Graphviz, XML, Python.

Introducción

En un contexto empresarial, la gestión eficiente de clientes en puntos de atención presencial es crucial para optimizar recursos y mejorar la experiencia del usuario. Este proyecto aborda este desafío mediante un sistema prototipo que simula la operación de escritorios de servicio, clientes en cola y transacciones con tiempos definidos. Desarrollado para la empresa ficticia *Soluciones Guatemaltecas*, *S.A.*, el sistema permite cargar configuraciones desde XML, activar/desactivar escritorios, generar reportes gráficos y garantizar un orden justo de atención. Este ensayo detalla el diseño, implementación y resultados del software, destacando el uso de TDA, POO y visualización con Graphviz.

Desarrollo del tema

a. Diseño del sistema

El sistema se modeló mediante las siguientes clases:

- **Empresa**: Gestiona puntos de atención y transacciones.
- **PuntoAtencion**: Contiene escritorios y una cola de clientes.
- Escritorio: Representa un puesto de servicio con estado activo/inactivo.
- **Cliente**: Almacena transacciones solicitadas y tiempo estimado de atención.
- **SistemaAtencion**: Coordina la lógica de asignación, simulación y reportes.

Se utilizó un diagrama de clases (ver Apéndice A) para definir las relaciones entre estos componentes.

b. Implementación de estructuras de datos

Se desarrollaron estructuras personalizadas para cumplir con las restricciones del proyecto:

- **LinkedList**: Lista enlazada para almacenar escritorios, puntos de atención y transacciones.
- **Queue**: Cola FIFO para gestionar clientes en espera.

Estas estructuras evitan el uso de listas o

c. diccionarios nativos de Python, fomentando una comprensión profunda de TDA.

c. Algoritmo de atención FIFO

El sistema sigue estos pasos:

- 1. Cargar empresas, puntos de atención y transacciones desde XML.
- 2. Activar escritorios según la configuración inicial.
- 3. Asignar clientes a escritorios libres en orden de llegada.
- 4. Calcular tiempos de atención basados en las transacciones solicitadas.
- **d.** 5. Simular el avance del tiempo para liberar escritorios y reasignar clientes.

d. Integración con Graphviz

Se generan dos tipos de reportes:

- 1. Cola de clientes: Muestra a los clientes en espera con sus transacciones (ver Apéndice C).
- Escritorios: Visualiza el estado (activo/inactivo) y encargado de cada puesto.
 Los gráficos se crean en formato DOT y se exportan a PDF para su revisión.

e. Manejo de archivos XML

El sistema utiliza dos archivos XML:

- Configuración del sistema: Define empresas, puntos de atención y transacciones.
- Configuración inicial: Especifica escritorios activos y clientes en cola (ver Apéndice B). El parser se implementó con xml.etree.ElementTree, validando la estructura y extrayendo datos críticos.

f. Interfaz gráfica con Tkinter

La interfaz permite:

- Cargar archivos XML.
- Activar/desactivar escritorios.
- Simular atención en tiempo real.
- Generar reportes visuales.

Universidad de San Carlos de Guatemala Escuela de Ingeniería en Ciencias y Sistemas, Facultad de Ingeniería Introducción a la programación y computación 2, 1er. Semestre 2025

Validación y pruebas

Se probaron escenarios clave:

- Caso 1: Tres clientes con transacciones variadas. El sistema asignó correctamente los tiempos (ej: 14 min para Juan Morales) y respetó el orden FIFO.
- Caso 2: Desactivación de un escritorio durante la simulación. El sistema dejó de asignar clientes al puesto inactivo.
- Caso 3: Generación de reportes con Graphviz, verificando que reflejen el estado real de la cola y los escritorios.

Conclusiones

- El uso de TDA y POO permitió un diseño modular, facilitando la extensión del sistema.
- Graphviz demostró ser esencial para visualizar estructuras complejas como colas y escritorios.
- La restricción de no usar estructuras nativas de Python fomentó la implementación de algoritmos eficientes.
- El proyecto cumple con los requisitos del enunciado, destacando cómo la programación puede optimizar procesos empresariales.

Referencias bibliográficas

- 1. USAC. (2025). Proyecto 2 IPC2. Documento interno.
- 2. Graphviz. (2023). Documentación oficial. https://graphviz.org
- 3. Python Software Foundation. (2023). Python 3.11 documentation.
- 4. Universidad San Carlos. (2025). Guía de ensayos académicos.

Extensión:

• Apéndice A: Diagrama de clases del sistema.

 Apéndice B: Ejemplo de archivo XML de entrada.

• **Apéndice C**: Capturas de pantalla de visualizaciones en Graphviz.

