

Relational Design Theory

Motivation & overview

Designing a database schema

- Usually many designs possible
- Some are (much) better than others!
- How do we choose?

Often use higher-level design tools, but ...

- Some designers go straight to relations
- Useful to understand why tools produce certain schemas
- Very nice theory for relational database design

Example: College application info.

- SSN and name
- Colleges applying to
- High schools attended (with city)
- Hobbies

Apply(SSN, sName, cName, HS, HScity, hobby)

123 Ann from PAHS (P.A.) and GHS (P.A.) plays tennis and trumpet and applied to Stanford, Berkeley, and MIT

```
123 Ann Stanford PAHS P.A. tennis
123 Ann Berkeley PAHS P.A. tennis
123 Ann Berkeley PAHS P.A. trumpet
:: CHS:
```

123 Ann from PAHS (P.A.) and GHS (P.A.) plays tennis and trumpet and applied to Stanford, Berkeley, and MIT

Design "anomalies"

123 Ann from PAHS (P.A.) and GHS (P.A.) plays tennis and trumpet and applied to Stanford, Berkeley, and MIT

Design "anomalies"

- Redundancy
- Update anomaly

update facts trumpet cornet

123 Ann from PAHS (P.A.) and GHS (P.A.) plays tennis and trumpet and applied to Stanford, Berkeley, and MIT

Design "anomalies"

- Redundancy
- Update anomaly
- Deletion anomaly

- **Example: College application info.**
 - SSN and name
 - Colleges applying to
 - High schools attended (with city)
 - Hobbies

```
Student(SSN, sName)
Apply(SSN, cName) hobby)
HighSchool (SSN, HS), Houly )
```

Design by decomposition

- Start with "mega" relations containing everything
- Decompose into smaller, better relations with same info.
- Can do <u>decomposition</u> automatically

Automatic decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information

Properties and Normal Forms

- \checkmark Functional dependencies \Rightarrow Boyce-Codd Normal Form
- \checkmark + Multivalued dependences \Rightarrow Fourth Normal Form

Functional Dependencies and BCNF

Apply(SSN, sName, cName)

Redundancy; Update & Deletion Anomalies

- Storing SSN-sName pair once for each college <</p>

Functional Dependency (SN) -> sName

- Same SSN always has same sName
- Should store each SSN's sName only once

Boyce-Codd Normal Form If $A \rightarrow B$ then A is a key

Decompose: Student(SSN, SName) Apply(SSN, cName)

Multivalued Dependencies and 4NF

Apply(SSN, cName, HS)

- Redundancy; Update & Deletion Anomalies
- Multiplicative effect C colleges, H high schools tuples
- Not addressed by BCNF: No functional dependencies

Multivalued Dependency SSN ->> CName SSN ->> HS

- Given SSN has every combination of cName with HS
- Should store each cName and each HS for an SSN once

Fourth Normal Form If A >>> B) then (A is a key

Decompose: Apply(SSN, cName) HighSchool(SSN, HS)

Design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information
- Functional dependencies ⇒ Boyce-Codd Normal Form
- Multivalued dependences ⇒ Fourth Normal Form