CAMRI Loss: Improving Recall of a Specific Class without Sacrificing Accuracy

Daiki Nishiyama[†], Kazuto Fukuchi[†], Youhei Akimoto[†], Jun Sakuma[†] [†] University of Tsukuba, RIKEN AIP WCCI IJCNN 2022

Background

Focus on a real-world multi-class classification problem

- There are important classes that must not be misclassified (e.g., Fig 1)
- Improving recall of an important class is easy while sarcrificing accuracy (e.g., threshold tuning[1])
- Need to improve recall of an important class without sarcrificing accuracy

Fig 1. Examples of important classes in sign classification in automatic driving

Analysis of class-sensitive separation

Fig 2. The contour plots of the loss values formed by each loss function in the space of 2D feature z. The last FC layer's weight vectors W_1 , W_2 , and W_3 correspond to three classes, and target class is 1 corresponding to W_1 .

- Cannot improve separation when (b) & (c)
- Can improve separation when (d-1) additive angular margin penalty[4]
- Need better separation of the important class than others
- ✓ Propose Class-sensitive additive Angular MaRgIn (CAMRI)
- ✓ CAMRI loss can improve class-sensitive separation
 - (d-2) Add angular penalty only for the important class

N: sample num, K: class num, y: teacher label, h: probability vector, \blacksquare s: temperature parameter, m: margin parameter

(a)
$$\mathcal{L}_{ ext{ce}} = -rac{1}{N}\sum_{n=1}^{N}\sum_{k=1}^{K}\{y_{n,k}\log(h_{n,k})\}$$

$$\textbf{(C)} \qquad \mathcal{L}_{L2} = -\frac{1}{N} \sum_{n=1}^{N} \log \Biggl(\frac{\exp(s\cos(\theta_{t_n}))}{\sum_{k=1}^{K} \exp(s\cos(\theta_k))} \Biggr) \ \ \text{,where} \quad \theta_{t_n} = \arccos \Biggl(\frac{\boldsymbol{W}_{t_n}^T \boldsymbol{z}_n}{\|\boldsymbol{W}_{t_n}\| \|\boldsymbol{z}_n\|} \Biggr)$$

$$\text{(d-1)} \; \mathcal{L}_{\text{ArcFace}} = -\frac{1}{N} \sum_{n=1}^{N} \log \frac{\exp(s\cos(\theta_{t_n} + m))}{\exp(s\cos(\theta_{t_n} + m)) + \sum_{k \neq t_n} \exp(s\cos\theta_k)}$$

 m_{ln} : class-sensitive margin param

(d-2)
$$\mathcal{L}_{ ext{CAMRI}} = -rac{1}{N} \sum_{n=1}^N \log rac{\exp(s\cos(heta_t + m_{t_n}))}{\exp(s\cos(heta_{t_n} + m_{t_n})) + \sum_{k
eq t_n} \exp(s\cos heta_k)}$$

Experiments

Table 1. Mean of recall (upper row) and accuracy (lower row) among maintaining accuracy over ten trials.

	CIFAR-10			GTSRB			AwA2		
_	worst1	worst2	median	worst1	worst2	median	worst1	worst2	median
CAMRI	0.7919	0.8505	0.9171	0.8353	0.9600	0.9952	0.1296	0.2385	0.6457
(proposal)	(0.8821)	(0.8821)	(0.8798)	(0.9801)	(0.9842)	(0.9812)	(0.6671)	(0.6639)	(0.6558)
ArcFace	0.7656	0.8427	0.9109	0.8080	0.9416	0.9938	0.1018	0.1877	0.6123
	(0.8805)	(0.8797)	(0.8805)	(0.9806)	(0.9823)	(0.9819)	(0.6660)	(0.6660)	(0.6767)
CRWWCE	-	-	-	0.7966	0.9233	~	-	~	_
	-	-	-	(0.9809)	(0.9808)	::	-	-	i - i
WCE	0.8023	-	:=:	0.8293	0.945	; - .:	: - :	-	,=
	(0.8797)	=	-	(0.9807)	(0.9814)	-	-	-	-
Cross-Entropy	0.7383	0.8342	0.8886	0.7600	0.8700	0.9896	0.1185	0.1456	0.5599
(baseline)	(0.8796)	(0.8796)	(0.8796)	(0.9800)	(0.9800)	(0.9800)	(0.6514)	(0.6514)	(0.6514)

 CAMRI loss improves recall the most while maintaining accuracy in 8 out of 9 ways (Table 1)

Fig 3. Normlized feature vectors of MNIST and weight vectors in the 2D feature space. "3" class is important class setting.

• The sparbility of the important class increase by training the model with CAMRI loss (Fig 3)

[2] S. Panchapagesan et al., "Multi-task learning and weighted cross-entropy for dnn-based keyword spotting." in Interspeech, 2016. [3] Y. Ho et al., "The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling," IEEE Access, 2019. [4] J. Deng et al., "Arcface: Additive angular margin loss for deep face recognition," CVPR, 2019.