1. Use the normal equation $f(x) = a2^x + b2^{-x}$ that best fits $\{(0,0), (-1,1), (1,2)\}$.

2. Use the normal equation to find the single number f(x) = a that best fits $\{(x_1, y_1), \dots, (x_n, y_n)\}$.

 $^{^{1}}$ The normal equation is $(V^{\top}V)^{-1}V^{\top}y$

3. Find the function of the form $ax + bx^3$ in PS[0, 1] closest to x^2 .

4. Let $p_k(x)$ be the k^{th} Legendre polynomial. Show when $j \neq k$

$$\left\langle p_k \left(\frac{2x-a-b}{b-a} \right), p_j \left(\frac{2x-a-b}{b-a} \right) \right\rangle = 0.$$

where the inner product is defined for functions in PS[a,b].