

DS099 March 4, 2004

Spartan-3 FPGA Family: Complete Data Sheet

Advance Product Specification

This document includes all four modules of the Spartan™-3 FPGA data sheet.

Module 1: Introduction and Ordering Information

DS099-1 (v1.2) December 24, 2003 6 pages

- Introduction
- Features
- Architectural Overview
- Product Availability
- User I/O Chart
- Ordering Information

Module 2: Functional Description

DS099-2 (v1.2) July 11, 2003 40 pages

- IOBs
 - IOB Overview
 - SelectIO™ Signal Standards
- CLB Overview
- Block RAM
- Dedicated Multipliers
- Digital Clock Manager (DCM)
 - Clock Network
- Configuration

Module 3: DC and Switching Characteristics

DS099-3 (v1.3) March 4, 2004 40 pages

- DC Electrical Characteristics
 - Absolute Maximum Ratings
 - Supply Voltage Specifications
 - Recommended Operating Conditions
 - DC Characteristics
- Switching Characteristics
 - I/O Timing
 - Core Logic Timing
 - DCM Timing
 - Configuration and JTAG Timing

Module 4: Pinout Descriptions

DS099-4 (v1.4) February 27, 2004 106 pages

- · Pin Descriptions
 - Pin Behavior During Configuration
- Package Overview
- Pinout Tables
 - Footprints

IMPORTANT NOTE: The Spartan-3 FPGA data sheet is created and published in separate modules. This complete version is provided for easy downloading and searching of the complete document. Page, figure, and table numbers begin at 1 for each module, and each module has its own Revision History at the end. Use the PDF "Bookmarks" for easy navigation in this volume.

© 2003-2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DS099-1 (v1.2) December 24, 2003

Spartan-3 FPGA Family: Introduction and Ordering Information

Advance Product Specification

Introduction

The Spartan[™]-3 family of Field-Programmable Gate Arrays is specifically designed to meet the needs of high volume, cost-sensitive consumer electronic applications. The eight-member family offers densities ranging from 50,000 to five million system gates, as shown in Table 1.

The Spartan-3 family builds on the success of the earlier Spartan-IIE family by increasing the amount of logic resources, the capacity of internal RAM, the total number of I/Os, and the overall level of performance as well as by improving clock management functions. Numerous enhancements derive from state-of-the-art VirtexTM-II technology. These Spartan-3 enhancements, combined with advanced process technology, deliver more functionality and bandwidth per dollar than was previously possible, setting new standards in the programmable logic industry.

Because of their exceptionally low cost, Spartan-3 FPGAs are ideally suited to a wide range of consumer electronics applications, including broadband access, home networking, display/projection and digital television equipment.

The Spartan-3 family is a superior alternative to mask programmed ASICs. FPGAs avoid the high initial cost, the lengthy development cycles, and the inherent inflexibility of conventional ASICs. Also, FPGA programmability permits design upgrades in the field with no hardware replacement necessary, an impossibility with ASICs.

Features

- Revolutionary 90-nanometer process technology
- Very low cost, high-performance logic solution for high-volume, consumer-oriented applications

- Densities as high as 74,880 logic cells
- 326 MHz system clock rate
- Three power rails: for core (1.2V), I/Os (1.2V to 3.3V), and auxiliary purposes (2.5V)
- SelectIO[™] signaling
 - Up to 784 I/O pins
 - 622 Mb/s data transfer rate per I/O
 - Seventeen single-ended signal standards
 - Seven differential signal standards including LVDS
 - Termination by Digitally Controlled Impedance
 - Signal swing ranging from 1.14V to 3.45V
 - Double Data Rate (DDR) support
- · Logic resources
 - Abundant logic cells with shift register capability
 - Wide multiplexers
 - Fast look-ahead carry logic
 - Dedicated 18 x 18 multipliers
 - JTAG logic compatible with IEEE 1149.1/1532 specifications
- SelectRAM™ hierarchical memory
 - Up to 1,872 Kbits of total block RAM
 - Up to 520 Kbits of total distributed RAM
- Digital Clock Manager (up to four DCMs)
 - Clock skew elimination
 - Frequency synthesis
 - High resolution phase shifting
- Eight global clock lines and abundant routing
- Fully supported by Xilinx ISE development system
 - Synthesis, mapping, placement and routing
- · MicroBlaze processor, PCI, and other cores

Table 1: Summary of Spartan-3 FPGA Attributes

	System Device Gates	_	CLB Array (One CLB = Four Slices)			Distributed	Block RAM	Dedicated		Maximum	Maximum Differential
Device			Rows	Columns	Total CLBs	RAM (bits ¹)	(bits ¹)	Multipliers	DCMs	User I/O	I/O Pairs
XC3S50	50K	1,728	16	12	192	12K	72K	4	2	124	56
XC3S200	200K	4,320	24	20	480	30K	216K	12	4	173	76
XC3S400	400K	8,064	32	28	896	56K	288K	16	4	264	116
XC3S1000	1M	17,280	48	40	1,920	120K	432K	24	4	391	175
XC3S1500	1.5M	29,952	64	52	3,328	208K	576K	32	4	487	221
XC3S2000	2M	46,080	80	64	5,120	320K	720K	40	4	565	270
XC3S4000	4M	62,208	96	72	6,912	432K	1,728K	96	4	712	312
XC3S5000	5M	74,880	104	80	8,320	520K	1,872K	104	4	784	344

Notes:

By convention, one Kb is equivalent to 1,024 bits.

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Architectural Overview

The Spartan-3 family architecture consists of five fundamental programmable functional elements:

- Configurable Logic Blocks (CLBs) contain RAM-based Look-Up Tables (LUTs) to implement logic and storage elements that can be used as flip-flops or latches. CLBs can be programmed to perform a wide variety of logical functions as well as to store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus operation. Twenty-four different signal 3-state standards. includina seven high-performance differential standards, are available as shown in Table 2. Double Data-Rate (DDR) registers are included. The Digitally Controlled Impedance (DCI) feature provides automatic on-chip terminations, simplifying board designs.
- Block RAM provides data storage in the form of 18-Kbit dual-port blocks.

- Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the product.
- Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. The XC3S50 has a single column of block RAM embedded in the array. Those devices ranging from the XC3S200 to the XC3S2000 have two columns of block RAM. The XC3S4000 and XC3S5000 devices have four RAM columns. Each column is made up of several 18K-bit RAM blocks; each block is associated with a dedicated multiplier. The DCMs are positioned at the ends of the outer block RAM columns.

The Spartan-3 family features a rich network of traces and switches that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

Notes:

 The two additional block RAM columns of the XC3S4000 and XC3S5000 devices are shown with dashed lines. The XC3S50 has only the block RAM column on the far left.

Figure 1: Spartan-3 Family Architecture

Configuration

Spartan-3 FPGAs are programmed by loading configuration data into robust static memory cells that collectively control all functional elements and routing resources. Before powering on the FPGA, configuration data is stored externally in a PROM or some other nonvolatile medium either on or off the board. After applying power, the configuration data is written to the FPGA using any of five different modes: Master Parallel, Slave Parallel, Master Serial, Slave Serial and Boundary Scan (JTAG). The Master and Slave Parallel modes use an 8-bit wide SelectMAP™ port.

The recommended memory for storing the configuration data is the low-cost Xilinx Platform Flash PROM family,

which includes the XCF00S PROMs for serial configuration and the higher density XCF00P PROMs for parallel or serial configuration.

I/O Capabilities

The SelectIO feature of Spartan-3 devices supports 17 single-ended standards and seven differential standards as listed in Table 2. Many standards support the DCI feature, which uses integrated terminations to eliminate unwanted signal reflections. Table 3 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.

Table 2: Signal Standards Supported by the Spartan-3 Family

Standard Category	Description	V _{CCO} (V)	Class	Symbol	DCI Option
Single-Ende	d		'		'
GTL	Gunning Transceiver Logic	N/A	Terminated	GTL	Yes
			Plus	GTLP	Yes
HSTL	High-Speed Transceiver Logic	1.5	1	HSTL_I	Yes
			III	HSTL_III	Yes
		1.8	1	HSTL_I_18	Yes
			II	HSTL_II_18	Yes
			III	HSTL_III_18	Yes
LVCMOS	Low-Voltage CMOS	1.2	N/A	LVCMOS12	No
		1.5	N/A	LVCMOS15	Yes
		1.8	N/A	LVCMOS18	Yes
		2.5	N/A	LVCMOS25	Yes
		3.3	N/A	LVCMOS33	Yes
LVTTL	Low-Voltage Transistor-Transistor Logic	3.3	N/A	LVTTL	No
PCI	Peripheral Component Interconnect	3.0	33 MHz	PCl33_3	No
SSTL	Stub Series Terminated Logic	1.8	N/A	SSTL18_I	Yes
		2.5	1	SSTL2_I	Yes
			II	SSTL2_II	Yes
Differential					II.
LDT	Lightning Data Transport (HyperTransport™)	2.5	N/A	LDT_25	No
LVDS	Low-Voltage Differential Signaling		Standard	LVDS_25	Yes
			Bus	BLVDS_25	No
			Extended Mode	LVDSEXT_25	Yes
			Ultra	ULVDS_25	No
LVPECL	Low-Voltage Positive Emitter-Coupled Logic	2.5	N/A	LVPECL_25	No
RSDS	Reduced-Swing Differential Signaling	2.5	N/A	RSDS_25	No

Table 3: Spartan-3 I/O Chart

	Available User I/Os and Differential (Diff) I/O Pairs																	
	VQ100		TQ144		PQ208		FT256		FG320		FG456		FG676		FG900		FG1156	
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XC3S50	63	29	97	46	124	56	-	-	-	-	-	-	-	-	-	-	-	-
XC3S200	63	29	97	46	141	62	173	76	-	-	-	-	-	-	-	-	-	-
XC3S400	-	-	97	46	141	62	173	76	221	100	264	116	-	-	-	-	-	-
XC3S1000	-	-	-	-	-	-	173	76	221	100	333	149	391	175	-	-	-	-
XC3S1500	-	-	-	-	-	-	-	-	221	100	333	149	487	221	-	-	-	-
XC3S2000	-	-	-	-	-	-	-	-	-	-	-	-	489	221	565	270	-	-
XC3S4000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	633	300	712	312
XC3S5000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	633	300	784	344

Product Ordering and Availability

Table 4 shows all valid device ordering combinations of device density, speed grade, package, and temperature

range parameters for the Spartan-3 family as well as the availability status of those combinations.

Table 4: Spartan-3 Device Availability

Package Type ⁽¹⁾ :	VQFP	TQFP	PQFP	FTBGA			FBGA		
Code:	VQ100	TQ144	PQ208	FT256	FG320	FG456	FG676	FG900	FG1156
Device									
XC3S50	(C, I)	(C, I)	(C, I)	-	-	-	-	-	-
XC3S200	(C, I)	(C, I)	(C, I)	(C, I)	-	-	-	-	-
XC3S400	-	(C, I)	-	-	-				
XC3S1000	-	-	-	(C, I)	(C, I)	(C, I)	(C, I)	-	-
XC3S1500	-	-	-	-	(C, I)	(C, I)	(C, I)	-	-
XC3S2000	-	-	-	-	-	-	(C, I)	(C, I)	-
XC3S4000	-	-	-	-	-	-	-	(C, I)	(C, I)
XC3S5000	-	-	-	-	-	-	-	(C, I)	(C, I)

Notes:

- 1. Package types are explained in Ordering Information, page 5.
- 2. Commercial devices are offered in the -4 and -5 speed grades; industrial devices are only in the -4 speed grade.
- 3. C = Commercial, $T_J = 0^\circ$ to +85°C; I = Industrial, $T_J = -40^\circ$ C to +100°C.
- 4. Parentheses indicate that a given device is not yet released to production. Contact your local sales office for availability information.

^{1.} All device options listed in a given package column are pin-compatible.

Ordering Information

Device		Speed Grade		Package Type / Number of Pins	Temperature Range (T _J)		
XC3S50	-4	Standard Performance	VQ100	100-pin Very Thin Quad Flat Pack (VQFP)	С	Commercial (0°C to 85°C)	
XC3S200	-5	High Performance	TQ144	144-pin Thin Quad Flat Pack (TQFP)	I	Industrial (-40°C to 100°C)	
XC3S400			PQ208	208-pin Plastic Quad Flat Pack (PQFP)			
XC3S1000			FT256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)			
XC3S1500			FG320	320-ball Fine-Pitch Ball Grid Array (FBGA)			
XC3S2000			FG456	456-ball Fine-Pitch Ball Grid Array (FBGA)			
XC3S4000			FG676	676-ball Fine-Pitch Ball Grid Array (FBGA)			
XC3S5000			FG900	900-ball Fine-Pitch Ball Grid Array (FBGA)			
			FG1156	1156-ball Fine-Pitch Ball Grid Array (FBGA)			

Package Marking

Revision History

Date	Version No.	Description
04/11/03	1.0	Initial Xilinx release.
04/24/03	1.1	Updated block RAM, DCM, and multiplier counts for the XC3S50.
12/24/03	1.2	Added the FG320 package.

The Spartan-3 Family Data Sheet

DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)

Spartan-3 1.2V FPGA Family: Functional Description

DS099-2 (v1.2) July 11, 2003

Advance Product Specification

IOBs

IOB Overview

The Input/Output Block (IOB) provides a programmable, bidirectional interface between an I/O pin and the FPGA's internal logic.

A simplified diagram of the IOB's internal structure appears in Figure 1. There are three main signal paths within the IOB: the output path, input path, and 3-state path. Each path has its own pair of storage elements that can act as either registers or latches. For more information, see the Storage Element Functions section. The three main signal paths are as follows:

- The input path carries data from the pad, which is bonded to a package pin, through an optional programmable delay element directly to the I line. After the delay element, there are alternate routes through a pair of storage elements to the IQ1 and IQ2 lines. The IOB outputs I, IQ1, and IQ2 all lead to the FPGA's internal logic. The delay element can be set to ensure a hold time of zero.
- The output path, starting with the O1 and O2 lines, carries data from the FPGA's internal logic through a multiplexer and then a three-state driver to the IOB pad. In addition to this direct path, the multiplexer provides the option to insert a pair of storage elements.
- The 3-state path determines when the output driver is high impedance. The T1 and T2 lines carry data from

the FPGA's internal logic through a multiplexer to the output driver. In addition to this direct path, the multiplexer provides the option to insert a pair of storage elements.

 All signal paths entering the IOB, including those associated with the storage elements, have an inverter option. Any inverter placed on these paths is automatically absorbed into the IOB.

Storage Element Functions

There are three pairs of storage elements in each IOB, one pair for each of the three paths. It is possible to configure each of these storage elements as an edge-triggered D-type flip-flop (FD) or a level-sensitive latch (LD).

The storage-element-pair on either the Output path or the Three-State path can be used together with a special multiplexer to produce Double-Data-Rate (DDR) transmission. This is accomplished by taking data synchronized to the clock signal's rising edge and converting them to bits synchronized on both the rising and the falling edge. The combination of two registers and a multiplexer is referred to as a Double-Data-Rate D-type flip-flop (FDDR).

See **Double-Data-Rate Transmission**, page 3 for more information.

The signal paths associated with the storage element are described in Table 1.

Table 1: Storage Element Signal Description

Storage Element Signal	Description	Function
D	Data input	Data at this input is stored on the active edge of CK enabled by CE. For latch operation when the input is enabled, data passes directly to the output Q.
Q	Data output	The data on this output reflects the state of the storage element. For operation as a latch in transparent mode, Q will mirror the data at D.
СК	Clock input	A signal's active edge on this input with CE asserted, loads data into the storage element.
CE	Clock Enable input	When asserted, this input enables CK. If not connected, CE defaults to the asserted state.
SR	Set/Reset	Forces storage element into the state specified by the SRHIGH/SRLOW attributes. The SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not.
REV	Reverse	Used together with SR. Forces storage element into the state opposite from what SR does.

© 2003 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

2

According to Figure 1, the clock line OTCLK1 connects the CK inputs of the upper registers on the output and three-state paths. Similarly, OTCLK2 connects the CK inputs for the lower registers on the output and three-state paths. The upper and lower registers on the input path have independent clock lines: ICLK1 and ICLK2.

The enable line OCE connects the CE inputs of the upper and lower registers on the output path. Similarly, TCE connects the CE inputs for the register pair on the three-state path and ICE does the same for the register pair on the input path.

The Set/Reset (SR) line entering the IOB is common to all six registers, as is the Reverse (REV) line.

Each storage element supports numerous options in addition to the control over signal polarity described in the IOB Overview section. These are described in Table 2.

Table 2: Storage Element Options

Option Switch	Function	Specificity
FF/Latch	Chooses between an edge-sensitive flip-flop or a level-sensitive latch	Independent for each storage element.
SYNC/ASYNC	Determines whether SR is synchronous or asynchronous	Independent for each storage element.
SRHIGH/SRLOW	Determines whether SR acts as a Set, which forces the storage element to a logic "1" (SRHIGH) or a Reset, which forces a logic "0" (SRLOW).	Independent for each storage element, except when using FDDR. In the latter case, the selection for the upper element (OFF1 or TFF2) will apply to both elements.
INIT1/INIT0	In the event of a Global Set/Reset, after configuration or upon activation of the GTS net, this switch decides whether to set or reset a storage element. By default, choosing SRLOW also selects INIT0; choosing SRHIGH also selects INIT1.	Independent for each storage element, except when using FDDR. In the latter case, selecting INIT0 for one element applies to both elements (even though INIT1 is selected for the other).

Double-Data-Rate Transmission

Double-Data-Rate (DDR) transmission describes the technique of synchronizing signals to both the rising and falling edges of the clock signal. Spartan-3 devices use register-pairs in all three IOB paths to perform DDR operations.

The pair of storage elements on the IOB's Output path (OFF1 and OFF2), used as registers, combine with a special multiplexer to form a DDR D-type flip-flop (FDDR). This primitive permits DDR transmission where output data bits are synchronized to both the rising and falling edges of a clock. It is possible to access this function by placing either an FDDRRSE or an FDDRCPE component or symbol into the design. DDR operation requires two clock signals (50% duty cycle), one the inverted form of the other. These signals trigger the two registers in alternating fashion, as shown in Figure 2. Commonly, the Digital Clock Manager (DCM) generates the two clock signals by mirroring an incoming signal, then shifting it 180 degrees. This approach ensures minimal skew between the two signals.

The storage-element-pair on the Three-State path (TFF1 and TFF2) can also be combined with a local multiplexer to form an FDDR primitive. This permits synchronizing the output enable to both the rising and falling edges of a clock. This DDR operation is realized in the same way as for the output path.

The storage-element-pair on the input path (IFF1 and IFF2) allows an I/O to receive a DDR signal. An incoming DDR clock signal triggers one register and the inverted clock signal triggers the other register. In this way, the registers take turns capturing bits of the incoming DDR data signal.

Aside from high bandwidth data transfers, DDR can also be used to reproduce, or "mirror", a clock signal on the output. This approach is used to transmit clock and data signals together. A similar approach is used to reproduce a clock signal at multiple outputs. The advantage for both approaches is that skew across the outputs will be minimal.

Figure 2: Clocking the DDR Register

Pull-Up and Pull-Down Resistors

The optional pull-up and pull-down resistors are intended to establish High and Low levels, respectively, at unused I/Os. The weak pull-up resistor optionally connects each IOB pad to $V_{\rm CCO}$. A weak pull-down resistor optionally connects each pad to GND. These resistors are placed in a design using the PULLUP and PULLDOWN symbols in a schematic, respectively. They can also be instantiated as components, set as constraints or passed as attributes in HDL code. These resistors can also be selected for all unused I/O using the Bitstream Generator (BitGen) option Unused-Pin. A Low logic level on HSWAP_EN activates the pull-up resistors on all I/Os during configuration.

Weak-Keeper Circuit

Each I/O has an optional weak-keeper circuit that retains the last logic level on a line after all drivers have been turned off. This is useful to keep bus lines from floating when all connected drivers are in a high-impedance state. This function is placed in a design using the KEEPER symbol. Pull-up and pull-down resistors override the weak-keeper circuit.

ESD Protection

Clamp diodes protect all device pads against damage from Electro-Static Discharge (ESD) as well as excessive voltage transients. Each I/O has two clamp diodes: One diode extends P-to-N from the pad to V_{CCO} and a second diode extends N-to-P from the pad to GND. During operation, these diodes are normally biased in the off state. These

clamp diodes are always connected to the pad, regardless of the signal standard selected. The presence of diodes limits the ability of Spartan-3 I/Os to tolerate high signal voltages. The V_{IN} absolute maximum rating in Table 1 in Module 3: DC and Switching Characteristics specifies the voltage range that I/Os can tolerate.

Slew Rate Control and Drive Strength

Two options, FAST and SLOW, control the output slew rate. The FAST option supports output switching at a high rate. The SLOW option reduces bus transients. These options are only available when using one of the LVCMOS or LVTTL standards, which also provide up to seven different levels of current drive strength: 2, 4, 6, 8, 12, 16, and 24 mA. Choosing the appropriate drive strength level is yet another means to minimize bus transients.

Table 3 shows the drive strengths that the LVCMOS and LVTTL standards support. The Fast option is indicated by appending an "F" attribute after the output buffer symbol OBUF or the bidirectional buffer symbol IOBUF. The Slow option appends an "S" attribute. The drive strength in milliamperes follows the slew rate attribute. For example, OBUF LVCMOS18 S 6 or IOBUF LVCMOS25 F 16.

Table 3: Programmable Output Drive Current

Signal	Current Drive (mA)								
Standard	2	4	6	8	12	16	24		
LVCMOS12	✓	✓	✓	-	-	-	-		
LVCMOS15	✓	✓	✓	✓	✓	-	-		
LVCMOS18	✓	✓	✓	✓	✓	✓	-		
LVCMOS25	✓	✓	✓	✓	✓	✓	✓		
LVCMOS33	✓	✓	✓	✓	✓	✓	✓		
LVTTL	✓	✓	✓	✓	✓	✓	✓		

Boundary-Scan Capability

All Spartan-3 IOBs support boundary-scan testing compatible with IEEE 1149.1 standards. See **Boundary-Scan** (JTAG) Mode, page 36 for more information.

Selection Signal Standards

The IOBs support 17 different single-ended signal standards, as listed in Table 4. Furthermore, the majority of IOBs can be used in specific pairs supporting any of six differential signal standards, as shown in Table 5. The desired standard is selected by placing the appropriate I/O library symbol or component into the FPGA design. For example, the symbol named IOBUF_LVCMOS15_F_8 represents a bidirectional I/O to which the 1.5V LVCMOS signal standard has been assigned. The slew rate and current drive are set to Fast and 8 mA, respectively.

Together with placing the appropriate I/O symbol, two externally applied voltage levels, V_{CCO} and V_{REF} select the desired signal standard. The V_{CCO} lines provide current to the output driver. The voltage on these lines determines the

output voltage swing for all standards except GTL and GTLP.

All single-ended standards except the LVCMOS modes require a Reference Voltage (V_{REF}) to bias the input-switching threshold. Once a configuration data file is loaded into the FPGA that calls for the I/Os of a given bank to use such a signal standard, a few specifically reserved I/O pins on the same bank automatically convert to V_{REF} inputs. When using one of the LVCMOS standards, these pins remain I/Os because the V_{CCO} voltage biases the input-switching threshold, so there is no need for V_{REF} Select the V_{CCO} and V_{REF} levels to suit the desired single-ended standard according to Table 4.

Differential standards employ a pair of signals, one the opposite polarity of the other. The noise canceling (e.g., Common-Mode Rejection) properties of these standards permit exceptionally high data transfer rates. This section introduces the differential signaling capabilities of Spartan-3 devices.

Each device-package combination designates specific I/O pairs that are specially optimized to support differential standards. A unique "L-number", part of the pin name, identifies the line-pairs associated with each bank (see Module 4: **Pinout Descriptions**). For each pair, the letters "P" and "N" designate the true and inverted lines, respectively. For example, the pin names IO_L43P_7 and IO_L43N_7 indicate the true and inverted lines comprising the line pair L43 on Bank 7. The differential Output Voltage (V_OD) parameter measures the voltage difference the High and Low logic levels that a pair of differential outputs drive. The V_OD range for each of the differential standards is listed in Table 5. The V_CCO lines provide current to the outputs. The V_REF lines are not used. Select the V_CCO level to suit the desired differential standard according to Table 5.

Table 4: Single-Ended I/O Standards (Values in Volts)

	Vcc	co		Board
Signal Standard	For Outputs	For Inputs	V _{REF} for Inputs ⁽¹⁾	Termination Voltage (V _{TT})
GTL	Note 2	Note 2	0.8	1.2
GTLP	Note 2	Note 2	1	1.5
HSTL_I	1.5	-	0.75	0.75
HSTL_III	1.5	-	0.9	1.5
HSTL_I_18	1.8	-	0.9	0.9
HSTL_II_18	1.8	-	0.9	0.9
HSTL_III_18	1.8	-	1.1	1.8
LVCMOS12	1.2	1.2	-	-
LVCMOS15	1.5	1.5	-	-
LVCMOS18	1.8	1.8	-	-
LVCMOS25	2.5	2.5	-	-
LVCMOS33	3.3	3.3	-	-
LVTTL	3.3	3.3	-	-

Table 4: Single-Ended I/O Standards (Values in Volts)

	Vcc	00		Board
Signal Standard	For For Outputs Inputs		V _{REF} for Inputs ⁽¹⁾	Termination Voltage (V _{TT})
PCl33_3	3.0	3.0	-	-
SSTL18_I	1.8	-	0.9	0.9
SSTL2_I	2.5	-	1.25	1.25
SSTL2_II	2.5	-	1.25	1.25

Notes:

- Banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using V_{REF}
- The V_{CCO} level used for the GTL and GTLP standards must be no lower than the termination voltage (V_{TT}), nor can it be lower than the voltage at the I/O pad.
- 3. See Table 6 for a listing of the single-ended DCI standards.

Table 5: Differential I/O Standards

	V _{cco} (Volts)	V _{REF} for	V _{OD} ⁽¹⁾	_{DD} ⁽¹⁾ (mV)	
Signal Standard	For Outputs	For Inputs	Inputs (Volts)	Min.	Max.	
LDT_25	2.5	-	-	430	670	
LVDS_25	2.5	-	-	250	400	
BLVDS_25	2.5	-	-	250	450	
LVDSEXT_25	2.5	-	-	330	700	
ULVDS_25	2.5	-	-	430	670	
RSDS_25	2.5	-	-	100	400	

Notes:

- Measured with a termination resistor value (RT) of 100 Ohms.
- 2. See Table 6 for a listing of the differential DCI standards.

The need to supply V_{REF} and V_{CCO} imposes constraints on which standards can be used in the same bank. See **The Organization of IOBs into Banks** section for additional guidelines concerning the use of the V_{CCO} and V_{REF} lines.

Digitally Controlled Impedance (DCI)

When the round-trip delay of an output signal — i.e., from output to input and back again — exceeds rise and fall times, it is common practice to add termination resistors to the line carrying the signal. These resistors effectively match the impedance of a device's I/O to the characteristic impedance of the transmission line, thereby preventing reflections that adversely affect signal integrity. However, with the high I/O counts supported by modern devices, adding resistors requires significantly more components and board area. Furthermore, for some packages — e.g., ball grid arrays — it may not always be possible to place resistors close to pins.

DCI answers these concerns by providing two kinds of on-chip terminations: Parallel terminations make use of an integrated resistor network. Series terminations result from controlling the impedance of output drivers. DCI actively adjusts both parallel and series terminations to accurately

match the characteristic impedance of the transmission line. This adjustment process compensates for differences in I/O impedance that can result from normal variation in the ambient temperature, the supply voltage and the manufacturing process. When the output driver turns off, the series termination, by definition, approaches a very high impedance; in contrast, parallel termination resistors remain at the targeted values.

DCI is available only for certain I/O standards, as listed in Table 6. DCI is selected by applying the appropriate I/O standard extensions to symbols or components. There are five basic ways to configure terminations, as shown in Table 7. The DCI I/O standard determines which of these terminations is put into effect.

Table 6: DCI I/O Standards

		v _{cc}	_O (V)		Termination Type	
Category of Signal Standard	Signal Standard	For Outputs	For Inputs	V _{REF} for Inputs (V)	At Output	At Input
Single-Ended						
Gunning	GTL_DCI	1.2	1.2	0.8	Single	Single
Transceiver Logic	GTLP_DCI	1.5	1.5	1.0		
High-Speed	HSTL_I_DCI	1.5	1.5	0.75	None	Split
Transceiver Logic	HSTL_III_DCI	1.5	1.5	0.9	None	Single
	HSTL_I_DCI_18	1.8	1.8	0.9	None	Split
	HSTL_II_DCI_18	1.8	1.8	0.9	Split	
	HSTL_III_DCI_18	1.8	1.8	1.1	None	Single
Low-Voltage CMOS	LVDCI_15	1.5	1.5	-	Controlled impedance	None
	LVDCI_18	1.8	1.8	-	driver	
	LVDCI_25	2.5	2.5	-		
	LVDCI_33	3.3	3.3	-		
	LVDCI_DV2_15	1.5	1.5	-	Controlled driver with	
	LVDCI_DV2_18	1.8	1.8	-	half-impedance	
	LVDCI_DV2_25	2.5	2.5	-		
	LVDCI_DV2_33	3.3	3.3	-		
Stub Series	SSTL18_I_DCI	1.8	1.8	0.9	25-Ohm driver	Split
Terminated Logic	SSTL2_I_DCI	2.5	2.5	1.25	25-Ohm driver	
	SSTL2_II_DCI	2.5	2.5	1.25	Split with 25-Ohm driver	
Differential	1	<u> </u>		1	•	
Low-Voltage	LVDS_25_DCI	2.5	2.5	-	None	Split on
Differential Signalling	LVDSEXT_25_DCI	2.5	2.5	-	1	each line of pair

Notes:

1. Bank 5 of any Spartan-3 device in a VQ100 or TQ144 package does not support DCI signal standards.

Table 7: DCI Terminations

Termination	Schematic ⁽¹⁾	I/O Standards
Controlled impedance output driver	IOB R	LVDCI_15 LVDCI_18 LVDCI_25 LVDCI_33
Controlled output driver with half impedance	IOB R/2	LVDCI_DV2_15 LVDCI_DV2_18 LVDCI_DV2_25 LVDCI_DV2_33
Single resistor	NOB VCCO R ZO	GTL_DCI GTLP_DCI HSTL_III_DCI ⁽²⁾ HSTL_III_DCI_18 ⁽²⁾
Split resistors	IOB Vcco	HSTL_I_DCI ⁽²⁾ HSTL_I_DCI_18 ⁽²⁾ HSTL_II_DCI_18 LVDS_25_DCI LVDSEXT_25_DCI
Split resistors with output driver impedance fixed to 25Ω	1OB 25Ω VCCO 2R ZR Z0 = 2R Z0	SSTL18_I_DCI ⁽³⁾ SSTL2_I_DCI ⁽³⁾ SSTL2_II_DCI

- 1. The value of R is equivalent to the characteristic impedance of the line connected to the I/O. It is also equal to half the value of R_{REF} for the DV2 standards and R_{REF} for all other DCI standards.
- 2. For DCI using HSTL Classes I and III, terminations only go into effect at inputs (not at outputs).
- 3. For DCI using SSTL Class I, the split termination only goes into effect at inputs (not at outputs).

XILINX®

The DCI feature operates independently for each of the device's eight banks. Each bank has an "N" reference pin (VRN) and a "P" reference pin, (VRP), to calibrate driver and termination resistance. Only when using a DCI standard on a given bank do these two pins function as VRN and VRP. When not using a DCI standard, the two pins function as user I/Os. As shown in Figure 3, add an external reference resistor to pull the VRN pin up to V_{CCO} and another reference resistor to pull the VRP pin down to GND. Both resistors have the same value - commonly 50 Ohms with one-percent tolerance, which is either the characteristic impedance of the line or twice that, depending on the DCI standard in use. Standards having a symbol name that contains the letters "DV2" use a reference resistor value that is twice the line impedance. DCI adjusts the output driver impedance to match the reference resistors' value or half that, according to the standard. DCI always adjusts the on-chip termination resistors to directly match the reference resistors' value.

Figure 3: Connection of Reference Resistors (R_{RFF})

The rules guiding the use of DCI standards on banks are as follows:

- No more than one DCI I/O standard with a Single Termination is allowed per bank.
- 2. No more than one DCI I/O standard with a Split Termination is allowed per bank.
- Single Termination, Split Termination, Controlled-Impedance Driver, and Controlled-Impedance Driver with Half Impedance can co-exist in the same bank.

See also The Organization of IOBs into Banks, page 8.

The Organization of IOBs into Banks

IOBs are allocated among eight banks, so that each side of the device has two banks, as shown in Figure 4. For all packages, each bank has independent V_{REF} lines. For example, V_{REF} Bank 3 lines are separate from the V_{REF} lines going to all other banks.

For the Very Thin Quad Flat Pack (VQ), Plastic Quad Flat Pack (PQ), Fine Pitch Thin Ball Grid Array (FT), and Fine Pitch Ball Grid Array (FG) packages, each bank has dedicated $V_{\rm CCO}$ lines. For example, the $V_{\rm CCO}$ Bank 7 lines are separate from the $V_{\rm CCO}$ lines going to all other banks. Thus,

Spartan-3 devices in these packages support eight independent V_{CCO} supplies.

Figure 4: Spartan-3 I/O Banks (top view)

In contrast, the 144-pin Thin Quad Flat Pack (TQ144) package ties $V_{\rm CCO}$ together internally for the pair of banks on each side of the device. For example, the $V_{\rm CCO}$ Bank 0 and the $V_{\rm CCO}$ Bank 1 lines are tied together. The interconnected bank-pairs are 0/1, 2/3, 4/5, and 6/7. As a result, Spartan-3 devices in the TQ144 package support four independent $V_{\rm CCO}$ supplies.

Spartan-3 Compatibility

Within the Spartan-3 family, all devices are pin-compatible by package. When the need for future logic resources outgrows the capacity of the Spartan-3 device in current use, a larger device in the same package can serve as a direct replacement. Larger devices may add extra V_{REF} and V_{CCO} lines to support a greater number of I/Os. In the larger device, more pins can convert from user I/Os to V_{REF} lines. Also, additional V_{CCO} lines are bonded out to pins that were "not connected" in the smaller device. Thus, it is important to plan for future upgrades at the time of the board's initial design by laying out connections to the extra pins.

The Spartan-3 family is not pin-compatible with any previous Xilinx FPGA family.

Rules Concerning Banks

When assigning I/Os to banks, it is important to follow the following V_{CCO} rules:

- 1. Leave no V_{CCO} pins unconnected on the FPGA.
- 2. Set all V_{CCO} lines associated with the (interconnected) bank to the same voltage level.
- The V_{CCO} levels used by all standards assigned to the I/Os of the (interconnected) bank(s) must agree. The Xilinx development software checks for this. Tables 4, 5, and 6 describe how different standards use the V_{CCO} supply.

- If none of the standards assigned to the I/Os of the (interconnected) bank(s) use V_{CCO}, tie all associated V_{CCO} lines to 2.5V.
- 5. In general, apply 2.5V to V_{CCO} Bank 4 from power-on to the end of configuration. Apply the same voltage to V_{CCO} Bank 5 during parallel configuration or a Readback operation. For information on how to program the FPGA using 3.3V signals and power, see the 3.3V-Tolerant Configuration Interface section.

If any of the standards assigned to the Inputs of the bank use V_{RFE} then observe the following additional rules:

- Leave no V_{REF} pins unconnected on any bank.
- Set all V_{REF} lines associated with the bank to the same voltage level.
- The V_{REF} levels used by all standards assigned to the Inputs of the bank must agree. The Xilinx development software checks for this. Tables 4 and 6 describe how different standards use the V_{REF} supply.

If none of the standards assigned to the Inputs of a bank use V_{REF} for biasing input switching thresholds, all associated V_{RFF} pins function as User I/Os.

Exceptions to Banks Supporting I/O Standards

Bank 5 of any Spartan-3 device in a VQ100 or TQ144 package does not support DCI signal standards. In this case, bank 5 has neither VRN nor VRP pins.

Furthermore, banks 4 and 5 of any Spartan-3 device in a VQ100 package do not support signal standards using V_{REF} (see Table 4). In this case, the two banks do not have any V_{RFF} pins.

Supply Voltages for the IOBs

Three different supplies power the IOBs:

- The V_{CCO} supplies, one for each of the FPGA's I/O banks, power the output drivers, except when using the GTL and GTLP signal standards. The voltage on the V_{CCO} pins determines the voltage swing of the output signal.
- V_{CCINT} is the main power supply for the FPGA's internal logic.
- The V_{CCAUX} is an auxiliary source of power, primarily to optimize the performance of various FPGA functions such as I/O switching.

The I/Os During Power-On, Configuration, and User Mode

With no power applied to the FPGA, all I/Os are in a high-impedance state. The V_{CCINT} (1.2V), V_{CCAUX} (2.5V), and V_{CCO} supplies may be applied in any order. Before power-on can finish, V_{CCINT} , V_{CCO} Bank 4, and V_{CCAUX} must have reached their respective minimum recommended operating levels (see Table 2 in Module 3: **DC and Switching Characteristics**). At this time, all I/O drivers also will be in a high-impedance state. V_{CCO} Bank 4, V_{CCINT} , and V_{CCAUX} serve as inputs to the internal Power-On Reset circuit (POR).

A Low level applied to HSWAP_EN input enables weak pull-up resistors on User I/Os from power-on throughout configuration. A High level on HSWAP_EN disables the pull-up resistors, allowing the I/Os to float. As soon as power is applied, the FPGA begins initializing its configuration memory. At the same time, the FPGA internally asserts the Global Set-Reset (GSR), which asynchronously resets all IOB storage elements to a Low state.

Upon the completion of initialization, INIT_B goes High, sampling the M0, M1, and M2 inputs to determine the configuration mode. At this point, the configuration data is loaded into the FPGA. The I/O drivers remain in a high-impedance state (with or without pull-up resistors, as determined by the HSWAP_EN input) throughout configuration.

The Global Three State (GTS) net is released during Start-Up, marking the end of configuration and the beginning of design operation in the User mode. At this point, those I/Os to which signals have been assigned go active while all unused I/Os remain in a high-impedance state. The release of the GSR net, also part of Start-up, leaves the IOB registers in a Low state by default, unless the loaded design reverses the polarity of their respective RS inputs.

In User mode, all weak, internal pull-up resistors on the I/Os are disabled and HSWAP_EN becomes a "don't care" input. If it is desirable to have weak pull-up or pull-down resistors on I/Os carrying signals, the appropriate symbol — e.g., PULLUP, PULLDOWN — must be placed at the appropriate pads in the design. The Bitstream Generator (Bitgen) option UnusedPin available in the Xilinx development software determines whether unused I/Os collectively have pull-up resistors, pull-down resistors, or no resistors in User mode.

Figure 5: Arrangement of Slices within the CLB

CLB Overview

The Configurable Logic Blocks (CLBs) constitute the main logic resource for implementing synchronous as well as combinatorial circuits. Each CLB comprises four interconnected slices, as shown in Figure 5. These slices are grouped in pairs. Each pair is organized as a column with an independent carry chain.

The nomenclature that the FPGA Editor — part of the Xilinx development software — uses to designate slices is as follows: The letter "X" followed by a number identifies columns of slices. The "X" number counts up in sequence from the left side of the die to the right. The letter "Y" followed by a number identifies the position of each slice in a pair as well as indicating the CLB row. The "Y" number counts slices starting from the bottom of the die according to the sequence: 0, 1, 0, 1 (the first CLB row); 2, 3, 2, 3 (the second CLB row); etc. Figure 5 shows the CLB located in the lower left-hand corner of the die. Slices X0Y0 and X0Y1 make up the column-pair on the left where as slices X1Y0 and X1Y1 make up the column-pair on the right. For each CLB, the term "left-hand" (or SLICEM) is used to indicated the pair of slices labeled with an even "X" number, such as X0, and the term "right-hand" (or SLICEL) designates the pair of slices with an odd "X" number, e.g., X1.

Elements Within a Slice

All four slices have the following elements in common: two logic function generators, two storage elements, wide-function multiplexers, carry logic, and arithmetic gates, as shown in Figure 6. Both the left-hand and right-hand slice pairs use these elements to provide logic, arithmetic, and

ROM functions. Besides these, the left-hand pair supports two additional functions: storing data using Distributed RAM and shifting data with 16-bit registers. Figure 6 is a diagram of the left-hand slice; therefore, it represents a superset of the elements and connections to be found in all slices. See Function Generator, page 12 for more information.

The RAM-based function generator — also known as a Look-Up Table or LUT — is the main resource for implementing logic functions. Furthermore, the LUTs in each left-hand slice pair can be configured as Distributed RAM or a 16-bit shift register. For information on the former, see XAPP464: Using Look-Up Tables as Distributed RAM in Spartan-3 FPGAs; for information on the latter, refer to XAPP465: Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3 FPGAs. The function generators located in the upper and lower portions of the slice are referred to as the "G" and "F", respectively.

The storage element, which is programmable as either a D-type flip-flop or a level-sensitive latch, provides a means for synchronizing data to a clock signal, among other uses. The storage elements in the upper and lower portions of the slice are called FFY and FFX, respectively.

Wide-function multiplexers effectively combine LUTs in order to permit more complex logic operations. Each slice has two of these multiplexers with F5MUX in the lower portion of the slice and FXMUX in the upper portion. Depending on the slice, FXMUX takes on the name F6MUX, F7MUX, or F8MUX. For more details on the multiplexers, see XAPP466: Using Dedicated Multiplexers in Spartan-3 FPGAs.

- 1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.
- 2. The index i can be 6, 7, or 8, depending on the slice. In this position, the upper right-hand slice has an F8MUX, and the upper left-hand slice has an F7MUX. The lower right-hand and left-hand slices both have an F6MUX.

Figure 6: Simplified Diagram of the Left-Hand SLICEM

The carry chain, together with various dedicated arithmetic logic gates, support fast and efficient implementations of math operations. The carry chain enters the slice as CIN and exits as COUT. Five multiplexers control the chain: CYINIT, CY0F, and CYMUXF in the lower portion as well as CY0G and CYMUXG in the upper portion. The dedicated arithmetic logic includes the exclusive-OR gates XORF and XORG (upper and lower portions of the slice, respectively) as well as the AND gates GAND and FAND (upper and lower portions, respectively).

Main Logic Paths

Central to the operation of each slice are two nearly identical data paths, distinguished using the terms *top* and *bottom*. The description that follows uses names associated with the bottom path. (The top path names appear in parentheses.) The basic path originates at an interconnect-switch matrix outside the CLB. Four lines, F1 through F4 (or G1 through G4 on the upper path), enter the slice and connect directly to the LUT. Once inside the slice, the lower 4-bit path passes through a function generator "F" (or "G") that performs logic operations. The function generator's Data output, "D", offers five possible paths:

- Exit the slice via line "X" (or "Y") and return to interconnect.
- Inside the slice, "X" (or "Y") serves as an input to the DXMUX (DYMUX) which feeds the data input, "D", of the FFY (FFX) storage element. The "Q" output of the storage element drives the line XQ (or YQ) which exits the slice.
- 3. Control the CYMUXF (or CYMUXG) multiplexer on the carry chain.
- With the carry chain, serve as an input to the XORF (or XORG) exclusive-OR gate that performs arithmetic operations, producing a result on "X" (or "Y").
- Drive the multiplexer F5MUX to implement logic functions wider than four bits. The "D" outputs of both the F-LUT and G-LUT serve as data inputs to this multiplexer.

In addition to the main logic paths described above, there are two bypass paths that enter the slice as BX and BY. Once inside the FPGA, BX in the bottom half of the slice (or BY in the top half) can take any of several possible branches:

- Bypass both the LUT and the storage element, then exit the slice as BXOUT (or BYOUT) and return to interconnect.
- 2. Bypass the LUT, then pass through a storage element via the D input before exiting as XQ (or YQ).
- 3. Control the wide function multiplexer F5MUX (or F6MUX).
- 4. Via multiplexers, serve as an input to the carry chain.

- 5. Drives the DI input of the LUT. See Distributed RAM section.
- 6. BY can control the REV inputs of both the FFY and FFX storage elements. See Storage Element Section.
- Finally, the DIG_MUX multiplexer can switch BY onto to the DIG line, which exits the slice.

Other slice signals shown in Figure 6, page 11 are discussed in the sections that follow.

Function Generator

Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output (D). This permits any four-variable Boolean logic operation to be programmed into them. Furthermore, wide function multiplexers can be used to effectively combine LUTs within the same CLB or across different CLBs, making logic functions with still more input variables possible.

The LUTs in both the right-hand and left-hand slice-pairs not only support the logic functions described above, but also can function as ROM that is initialized with data at the time of configuration.

The LUTs in the left-hand slice-pair (even-numbered columns such as X0 in Figure 5) of each CLB support two additional functions that the right-hand slice-pair (odd-numbered columns such as X1) do not.

First, it is possible to program the "left-hand LUTs" as distributed RAM. This type of memory affords moderate amounts of data buffering anywhere along a data path. One left-hand LUT stores 16 bits. Multiple left-hand LUTs can be combined in various ways to store larger amounts of data. A dual port option combines two LUTs so that memory access is possible from two independent data lines. A Distributed ROM option permits pre-loading the memory with data during FPGA configuration For more information, see the Distributed RAM section.

Second, it is possible to program each left-hand LUT as a 16-bit shift register. Used in this way, each LUT can delay serial data anywhere from one to 16 clock cycles. The four left-hand LUTs of a single CLB can be combined to produce delays up to 64 clock cycles. The SHIFTIN and SHIFTOUT lines cascade LUTs to form larger shift registers. It is also possible to combine shift registers across more than one CLB. The resulting programmable delays can be used to balance the timing of data pipelines.

Block RAM Overview

All Spartan-3 devices support block RAM, which is organized as configurable, synchronous 18Kbit blocks. Block RAM stores relatively large amounts of data more efficiently than the distributed RAM feature described earlier. (The latter is better suited for buffering small amounts of data anywhere along signal paths.) This section describes basic Block RAM functions. For more information, see XAPP463: Using Block RAM in Spartan-3 FPGAs.

The aspect ratio — i.e., width vs. depth — of each block RAM is configurable. Furthermore, multiple blocks can be cascaded to create still wider and/or deeper memories.

A choice among primitives determines whether the block RAM functions as dual- or single-port memory. A name of the form RAM16_S[w_A]_S[w_B] calls out the dual-port primitive, where the integers w_A and w_B specify the total data path width at ports w_A and w_B , respectively. Thus, a RAM16_S9_S18 is a dual-port RAM with a 9-bit-wide Port A and an 18-bit-wide Port B. A name of the form RAM16_S[w] identifies the single-port primitive, where the integer w specifies the total data path width of the lone port. A RAM16_S18 is a single-port RAM with an 18-bit-wide port. Other memory functions — e.g., FIFOs, data path width conversion, ROM, etc. — are readily available using the CORE Generator^M system, part of the Xilinx development software.

Arrangement of RAM Blocks on Die

The XC3S50 has one column of block RAM. The Spartan-3 devices ranging from the XC3S200 to XC3S2000 have two columns of block RAM. The XC3S4000 and XC3S5000 have four columns. The position of the columns on the die is shown in Figure 1 in Module 1: Introduction and Ordering Information. For a given device, the total available RAM blocks are distributed equally among the columns. Table 8 shows the number of RAM blocks, the data storage capacity, and the number of columns for each device.

Table 8: Number of RAM Blocks by Device

Device	Total Number of RAM Blocks	Total Addressable Locations (bits)	Number of Columns
XC3S50	4	73,728	1
XC3S200	12	221,184	2
XC3S400	16	294,912	2
XC3S1000	24	442,368	2
XC3S1500	32	589,824	2
XC3S2000	40	737,280	2
XC3S4000	96	1,769,472	4
XC3S5000	104	1,916,928	4

The Internal Structure of the Block RAM

The block RAM has a dual port structure. The two identical data ports called A and B permit independent access to the common RAM block, which has a maximum capacity of 18,432 bits — or 16,384 bits when no parity lines are used. Each port has its own dedicated set of data, control and clock lines for synchronous read and write operations. There are four basic data paths, as shown in Figure 7: (1) write to and read from Port A, (2) write to and read from Port B, (3) data transfer from Port A to Port B, and (4) data transfer from Port B to Port A.

Figure 7: Block RAM Data Paths

Block RAM Port Signal Definitions

Representations of the dual-port primitive $RAM16_S[w_A]_S[w_B]$ and the single-port primitive $RAM16_S[w]$ with their associated signals are shown in Figure 8a and Figure 8b, respectively. These signals are defined in Table 9.

DS099-2_13_091302

Notes:

- 1. w_A and w_B are integers representing the total data path width (i.e., data bits plus parity bits) at ports A and B, respectively.
- 2. p_A and p_B are integers that indicate the number of data path lines serving as parity bits.
- 3. r_A and r_B are integers representing the address bus width at ports A and B, respectively.
- 4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.

Figure 8: Block RAM Primitives

Table 9: Block RAM Port Signals

Signal Description	Port A Signal Name	Port B Signal Name	Direction	Function
Address Bus	ADDRA	ADDRB	Input	The Address Bus selects a memory location for read or write operations. The width (w) of the port's associated data path determines the number of available address lines (r).
Data Input Bus	DIA	DIB	Input	Data at the DI input bus is written to the addressed memory location addressed on an enabled active CLK edge.
				It is possible to configure a port's total data path width (w) to be 1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and DO paths of a given port. Each port is independent. For a port assigned a width (w), the number of addressable locations will be 16,384/(w-p) where "p" is the number of parity bits. Each memory location will have a width of "w" (including parity bits). See the DIP signal description for more information of parity.
Parity Data Input(s)	DIPA	DIPB	Input	Parity inputs represent additional bits included in the data input path to support error detection. The number of parity bits "p" included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 10.

Table 9: Block RAM Port Signals (Continued)

Signal Description	Port A Signal Name	Port B Signal Name	Direction	Function
Data Output Bus	DOA	DOB	Output	Basic data access occurs whenever WE is inactive. The DO outputs mirror the data stored in the addressed memory location.
				Data access with WE asserted is also possible if one of the following two attributes is chosen: WRITE_FIRST accesses data before the write takes place. READ_FIRST accesses data after the write occurs.
				A third attribute, NO_CHANGE, latches the DO outputs upon the assertion of WE.
				It is possible to configure a port's total data path width (w) to be 1, 2, 4, 9, 18, or 36 bits. This selection applies to both the DI and DO paths. See the DI signal description.
Parity Data Output(s)	DOPA	DOPB	Output	Parity inputs represent additional bits included in the data input path to support error detection. The number of parity bits "p" included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 10.
Write Enable	WEA	WEB	Input	When asserted together with EN, this input enables the writing of data to the RAM. In this case, the data access attributes WRITE_FIRST, READ_FIRST or NO_CHANGE determines if and how data is updated on the DO outputs. See the DO signal description.
				When WE is inactive with EN asserted, read operations are still possible. In this case, a transparent latch passes data from the addressed memory location to the DO outputs.
Clock Enable	ENA	ENB	Input	When asserted, this input enables the CLK signal to synchronize Block RAM functions as follows: the writing of data to the DI inputs (when WE is also asserted), the updating of data at the DO outputs as well as the setting/resetting of the DO output latches.
				When de-asserted, the above functions are disabled.
Set/Reset	SSRA	SSRB	Input	When asserted, this pin forces the DO output latch to the value that the SRVAL attribute is set to. A Set/Reset operation on one port has no effect on the other ports functioning, nor does it disturb the memory's data contents. It is synchronized to the CLK signal.
Clock	CLKA	CLKB	Input	This input accepts the clock signal to which read and write operations are synchronized. All associated port inputs are required to meet setup times with respect to the clock signal's active edge. The data output bus responds after a clock-to-out delay referenced to the clock signal's active edge.

Port Aspect Ratios

On a given port, it is possible to select a number of different possible widths (w - p) for the DI/DO buses as shown in Table 10. These two buses always have the same width. This data bus width selection is independent for each port. If the data bus width of Port A differs from that of Port B, the

Block RAM automatically performs a bus-matching function. When data are written to a port with a narrow bus, then read from a port with a wide bus, the latter port will effectively combine "narrow" words to form "wide" words. Similarly, when data are written into a port with a wide bus, then read from a port with a narrow bus, the latter port will divide

XILINX®

"wide" words to form "narrow" words. When the data bus width is eight bits or greater, extra parity bits become available. The width of the total data path (w) is the sum of the DI/DO bus width and any parity bits (p).

The width selection made for the DI/DO bus determines the number of address lines according to the relationship expressed below:

$$r = 14 - [log(w-p)/log(2)]$$
 (1)

In turn, the number of address lines delimits the total number (n) of addressable locations or depth according to the following equation:

Table 10: Port Aspect Ratios for Port A or B

n – 2ľ	(2)

The product of w and n yields the total block RAM capacity. Equations (1) and (2) show that as the data bus width increases, the number of address lines along with the number of addressable memory locations decreases. Using the permissible DI/DO bus widths as inputs to these equations provides the bus width and memory capacity measures shown in Table 10.

DI/DO Bus Width (w – p bits)	DIP/DOP Bus Width (p bits)	Total Data Path Width (w bits)	ADDR Bus Width (r bits)	No. of Addressable Locations (n)	Block RAM Capacity (bits)
1	0	1	14	16,384	16,384
2	0	2	13	8,192	16,384
4	0	4	12	4,096	16,384
8	1	9	11	2,048	18,432
16	2	18	10	1,024	18,432
32	4	36	9	512	18,432

Block RAM Data Operations

Writing data to and accessing data from the block RAM are synchronous operations that take place independently on each of the two ports.

The waveforms for the write operation are shown in the top half of the Figure 9, Figure 10, and Figure 11. When the WE and EN signals enable the active edge of CLK, data at the DI input bus is written to the block RAM location addressed by the ADDR lines.

There are a number of different conditions under which data can be accessed at the DO outputs. Basic data access always occurs when the WE input is inactive. Under this condition, data stored in the memory location addressed by the ADDR lines passes through a transparent output latch to the DO outputs. The timing for basic data access is shown in the portions of Figure 9, Figure 10, and Figure 11 during which WE is Low.

Data can also be accessed on the DO outputs when asserting the WE input. This is accomplished using two different attributes:

Choosing the WRITE_FIRST attribute, data is written to the addressed memory location on an enabled active CLK edge and is also passed to the DO outputs. WRITE_FIRST timing is shown in the portion of Figure 9 during which WE is High.

Figure 9: Waveforms of Block RAM Data Operations with WRITE FIRST Selected

Choosing the READ_FIRST attribute, data already stored in the addressed location pass to the DO outputs before that location is over-written with new data from the DI inputs on an enabled active CLK edge. READ_FIRST timing is shown in the portion of Figure 10 during which WE is High.

Figure 10: Waveforms of Block RAM Data Operations with READ_FIRST Selected

Choosing a third attribute called NO_CHANGE puts the DO outputs in a latched state when asserting WE. Under this condition, the DO outputs will retain the data driven just

before WE was asserted. NO_CHANGE timing is shown in the portion of Figure 11 during which WE is High.

Figure 11: Waveforms of Block RAM Data Operations with NO CHANGE Selected

Dedicated Multipliers

All Spartan-3 devices provide embedded multipliers that accept two 18-bit words as inputs to produce a 36-bit product. This section provides an introduction to multipliers. For further details, see XAPP467: Using Embedded Multipliers in Spartan-3 FPGAs.

The input buses to the multiplier accept data in two's-complement form (either 18-bit signed or 17-bit unsigned). One such multiplier is matched to each block RAM on the die. The close physical proximity of the two ensures efficient

data handling. Cascading multipliers permits multiplicands more than three in number as well as wider than 18-bits. The multiplier is placed in a design using one of two primitives: an asynchronous version called MULT18X18 and a version with a register at the outputs called MULT18X18S, as shown in Figure 12a and Figure 12b, respectively. The signals for these primitives are defined in Table 11.

The CORE Generator system produces multipliers based on these primitives that can be configured to suit a wide range of requirements.

(a) Asynchronous 18-bit Multiplier

(b) 18-bit Multiplier with Register at Outputs

DS099-2_17_091302

Figure 12: Embedded Multiplier Primitives

Table 11: Embedded Multiplier Primitives Descriptions

Signal Name	Direction	Function
A[17:0]	Input	Apply one 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time before the enabled rising edge of CLK.
B[17:0]	Input	Apply the other 18-bit multiplicand to these inputs. The MULT18X18S primitive requires a setup time before the enabled rising edge of CLK.
P[35:0]	Output	The output on the P bus is a 36-bit product of the multiplicands A and B. In the case of the MULT18X18S primitive, an enabled rising CLK edge updates the P bus.
CLK	Input	CLK is only an input to the MULT18X18S primitive. The clock signal applied to this input when enabled by CE, updates the output register that drives the P bus.
CE	Input	CE is only an input to the MULT18X18S primitive. Enable for the CLK signal. Asserting this input enables the CLK signal to update the P bus.
RST	Input	RST is only an input to the MULT18X18S primitive. Asserting this input resets the output register on an enabled, rising CLK edge, forcing the P bus to all zeroes.

Digital Clock Manager (DCM)

Spartan-3 devices provide flexible, complete control over clock frequency, phase shift and skew through the use of the DCM feature. To accomplish this, the DCM employs a Delay-Locked Loop (DLL), a fully digital control system that uses feedback to maintain clock signal characteristics with a high degree of precision despite normal variations in operating temperature and voltage. This section provides a fundamental description of the DCM. For further information, see XAPP462: Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs.

Each member of the Spartan-3 family has four DCMs, except the smallest, the XC3S50, which has two DCMs. The DCMs are located at the ends of the outermost Block RAM column(s). See Figure 1 in Module 1: Introduction and Ordering Information. The Digital Clock Manager is placed in a design as the "DCM" primitive.

The DCM supports three major functions:

 Clock-skew Elimination: Clock skew describes the extent to which clock signals may, under normal circumstances, deviate from zero-phase alignment. It occurs when slight differences in path delays cause the clock signal to arrive at different points on the die at different times. This clock skew can increase set-up and hold time requirements as well as clock-to-out time, which may be undesirable in applications operating at a high frequency, when timing is critical. The DCM eliminates clock skew by aligning the output clock signal it generates with another version of the clock signal that is fed back. As a result, the two clock signals establish a zero-phase relationship. This effectively cancels out clock distribution delays that may lie in the signal path leading from the clock output of the DCM to its feedback input.

- Frequency Synthesis: Provided with an input clock signal, the DCM can generate a wide range of different output clock frequencies. This is accomplished by either multiplying and/or dividing the frequency of the input clock signal by any of several different factors.
- Phase Shifting: The DCM provides the ability to shift the phase of all its output clock signals with respect to its input clock signal.

^{1.} The control signals CLK, CE and RST have the option of inverted polarity.

Figure 13: DCM Functional Blocks and Associated Signals

The DCM has four functional components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), the Phase Shifter (PS), and the Status Logic.

Each component has its associated signals, as shown in Figure 13.

Delay-Locked Loop (DLL)

The most basic function of the DLL component is to eliminate clock skew. The main signal path of the DLL consists of an input stage, followed by a series of discrete delay elements or *taps*, which in turn leads to an output stage. This

path together with logic for phase detection and control forms a system complete with feedback as shown in Figure 14.

Figure 14: Simplified Functional Diagram of DLL

The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 12. The clock outputs drive simultaneously; however, the High Frequency mode only supports

a subset of the outputs available in the Low Frequency mode. See **DLL Frequency Modes**, page 23. Signals that initialize and report the state of the DLL are discussed in **The Status Logic Component**, page 28.

Table 12: DLL Signals

			Mode S	Support
Signal	Direction	Description	Low Frequency	High Frequency
CLKIN	Input	Accepts original clock signal.	Yes	Yes
CLKFB	Input	Accepts either CLK0 or CLK2X as feed back signal. (Set CLK_FEEDBACK attribute accordingly).	Yes	Yes
CLK0	Output	Generates clock signal with same frequency and phase as CLKIN.	Yes	Yes
CLK90	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 90°.	Yes	No
CLK180	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 180°.	Yes	Yes
CLK270	Output	Generates clock signal with same frequency as CLKIN, only phase-shifted 270°.	Yes	No
CLK2X	Output	Generates clock signal with same phase as CLKIN, only twice the frequency.	Yes	No
CLK2X180	Output	Generates clock signal with twice the frequency of CLKIN, phase-shifted 180° with respect to CLKIN.	Yes	No
CLKDV	Output	Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN.	Yes	Yes

The clock signal supplied to the CLKIN input serves as a reference waveform, with which the DLL seeks to align the feedback signal at the CLKFB input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network to all the registers it synchronizes. These registers are either internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network intro-

duces. The control block activates the appropriate number of delay elements to cancel out the clock skew. Once the DLL has brought the CLK0 signal in phase with the CLKIN signal, it asserts the LOCKED output, indicating a "lock" on to the CLKIN signal.

DLL Attributes and Related Functions

A number of different functional options can be set for the DLL component through the use of the attributes described in Table 13. Each attribute is described in detail in the sections that follow:

Table 13: DLL Attributes

Attribute	Description	Values
CLK_FEEDBACK	Chooses either the CLK0 or CLK2X output to drive the CLKFB input	NONE, 1X, 2X
DLL_FREQUENCY_MODE	Chooses between High Frequency and Low Frequency modes	LOW, HIGH
CLKIN_DIVIDE_BY_2	Halves the frequency of the CLKIN signal just as it enters the DCM	TRUE, FALSE
CLKDV_DIVIDE	Selects constant used to divide the CLKIN input frequency to generate the CLKDV output frequency	1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16.
DUTY_CYCLE_CORRECTION	Enables 50% duty cycle correction for the CLK0, CLK90, CLK180, and CLK270 outputs	TRUE, FALSE

DLL Clock Input Connections

An external clock source enters the FPGA using a Global Clock Input Buffer (IBUFG), which directly accesses the global clock network or an Input Buffer (IBUF). Clock signals within the FPGA drive a global clock net using a Global Clock Multiplexer Buffer (BUFGMUX). The global clock net connects directly to the CLKIN input. The internal and external connections are shown in Figure 15a and Figure 15c, respectively. A differential clock (e.g., LVDS) can serve as an input to CLKIN.

DLL Clock Output and Feedback Connections

As many as four of the nine DCM clock outputs can simultaneously drive the four BUFGMUX buffers on the same die edge (top or bottom). All DCM clock outputs can simultaneously drive general routing resources, including interconnect leading to OBUF buffers.

The feedback loop is essential for DLL operation and is established by driving the CLKFB input with either the CLKO or the CLK2X signal so that any undesirable clock distribution delay is included in the loop. It is possible to use either of these two signals for synchronizing any of the seven DLL outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X, or CLK2X180. The value assigned to the CLK_FEEDBACK attribute must agree with the physical feedback connection: a value of 1X for the CLK0 case, 2X for the CLK2X case. If the DCM is used in an application that does not require the DLL — i.e., only the DFS is used — then there is no feedback loop so CLK_FEEDBACK is set to NONE.

There are two basic cases that determine how to connect the DLL clock outputs and feedback connections: on-chip synchronization and off-chip synchronization, which are illustrated in Figure 15a through Figure 15d.

 In the Low Frequency mode, all seven DLL outputs are available. In the High Frequency mode, only the CLK0, CLK180, and CLKDV outputs are available.

Figure 15: Input Clock, Output Clock, and Feedback Connections for the DLL

In the on-chip synchronization case (Figure 15a and Figure 15b), it is possible to connect any of the DLL's seven output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. As shown in Figure 15a, the feedback loop is created by routing CLKO (or CLK2X, in Figure 15b) to a global clock net, which in turn drives the CLKFB input.

In the off-chip synchronization case (Figure 15c and Figure 15d), CLK0 (or CLK2X) plus any of the DLL's other output clock signals exit the FPGA using output buffers (OBUF) to drive an external clock network plus registers on the board. As shown in Figure 15c, the feedback loop is formed by feeding CLK0 (or CLK2X, in Figure 15d) back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global clock net is connected directly to the CLKFB input.

DLL Frequency Modes

The DLL supports two distinct operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DLL_FREQUENCY_MODE

attribute chooses between the two modes. When the attribute is set to LOW, the Low Frequency mode permits all seven DLL clock outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High Frequency mode allows the CLKO, CLK180 and CLKDV outputs to operate at the highest possible frequencies. The remaining DLL clock outputs are not available for use in High Frequency mode.

Accommodating High Input Frequencies

If the frequency of the CLKIN signal is high such that it exceeds the maximum permitted, divide it down to an acceptable value using the CLKIN_DIVIDE_BY_2 attribute. When this attribute is set to TRUE, the CLKIN frequency is divided by a factor of two just as it enters the DCM.

Coarse Phase Shift Outputs of the DLL Component

In addition to CLK0 for zero-phase alignment to the CLKIN signal, the DLL also provides the CLK90, CLK180 and CLK270 outputs for 90°, 180° and 270° phase-shifted signals, respectively. These signals are described in Table 12.

Their relative timing in the Low Frequency Mode is shown in Figure 16. The CLK90, CLK180 and CLK270 outputs are not available when operating in the High Frequency mode. (See the description of the DLL_FREQUENCY_MODE attribute in Table 13.) For control in finer increments than 90°, see the **Phase Shifter (PS)**, page 26 section.

Basic Frequency Synthesis Outputs of the DLL Component

The DLL component provides basic options for frequency multiplication and division in addition to the more flexible synthesis capability of the DFS component, described in a later section. These operations result in output clock signals with frequencies that are either a fraction (for division) or a multiple (for multiplication) of the incoming clock frequency. The CLK2X output produces an in-phase signal that is twice the frequency of CLKIN. The CLK2X180 output also doubles the frequency, but is 180° out-of-phase with respect to CLKIN. The CLKDIV output generates a clock frequency that is a predetermined fraction of the CLKIN frequency. The CLKDV_DIVIDE attribute determines the factor used to divide the CLKIN frequency. The attribute can be set to various values as described in Table 13. The basic frequency synthesis outputs are described in Table 12. Their relative timing in the Low Frequency Mode is shown in Figure 16.

The CLK2X and CLK2X180 outputs are not available when operating in the High Frequency mode. (See the description of the DLL FREQUENCY MODE attribute in Table 14.)

Duty Cycle Correction of DLL Clock Outputs

The CLK2X⁽¹⁾, CLK2X180, and CLKDV⁽²⁾ output signals ordinarily exhibit a 50% duty cycle – even if the incoming CLKIN signal has a different duty cycle. Fifty-percent duty cycle means that the High and Low times of each clock cycle are equal. The DUTY_CYCLE_CORRECTION attribute determines whether or not duty cycle correction is applied to the CLK0, CLK90, CLK180 and CLK270 outputs. If DUTY_CYCLE_CORRECTION is set to TRUE, then the duty cycle of these four outputs is corrected to 50%. If DUTY_CYCLE_CORRECTION is set to FALSE, then these outputs exhibit the same duty cycle as the CLKIN signal. Figure 16 compares the characteristics of the DLL's output signals to those of the CLKIN signal.

Input Signal (30% Duty Cycle)

Output Signal - Duty Cycle is Always Corrected

Output Signal - Attribute Corrects Duty Cycle

Notes:

The DLL attribute CLKDV_DIVIDE is set to 2.

Figure 16: Characteristics of the DLL Clock Outputs

^{1.} The CLK2X output generates a 25% duty cycle clock at the same frequency as the CLKIN signal until the DLL has achieved lock.

^{2.} The duty cycle of the CLKDV outputs may differ somewhat from 50% (i.e., the signal will be High for less than 50% of the period) when the CLKDV_DIVIDE attribute is set to a non-integer value *and* the DLL is operating in the High Frequency mode.

Digital Frequency Synthesizer (DFS)

The DFS component generates clock signals the frequency of which is a product of the clock frequency at the CLKIN input and a ratio of two user-determined integers. Because of the wide range of possible output frequencies such a ratio permits, the DFS feature provides still further flexibility than the DLL's basic synthesis options as described in the preceding section. The DFS component's two dedicated outputs, CLKFX and CLKFX180, are defined in Table 15.

The signal at the CLKFX180 output is essentially an inversion of the CLKFX signal. These two outputs always exhibit a 50% duty cycle. This is true even when the CLKIN signal does not. These DFS clock outputs are driven at the same time as the DLL's seven clock outputs.

The numerator of the ratio is the integer value assigned to the attribute CLKFX_MULTIPLY and the denominator is the integer value assigned to the attribute CLKFX_DIVIDE. These attributes are described in Table 14.

The output frequency (f_{CLKFX}) can be expressed as a function of the incoming clock frequency (f_{CLKIN}) as follows:

$$f_{CLKFX} = f_{CLKIN}^*(CLKFX_MULTIPLY/CLKFX_DIVIDE)$$
 (3)

Regarding the two attributes, it is possible to assign any combination of integer values, provided that two conditions are met:

- 1. The two values fall within their corresponding ranges, as specified in Table 14.
- The f_{CLKFX} frequency calculated from the above expression accords with the DCM's operating frequency specifications.

For example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, then the frequency of the output clock signal would be 5/3 that of the input clock signal.

DFS Frequency Modes

The DFS supports two operating modes, High Frequency and Low Frequency, with each specified over a different clock frequency range. The DFS_FREQUENCY_MODE attribute chooses between the two modes. When the attribute is set to LOW, the Low Frequency mode permits

the two DFS outputs to operate over a low-to-moderate frequency range. When the attribute is set to HIGH, the High Frequency mode allows both these outputs to operate at the highest possible frequencies.

DFS With or Without the DLL

The DFS component can be used with or without the DLL component:

Without the DLL, the DFS component multiplies or divides the CLKIN signal frequency according to the respective CLKFX_MULTIPLY and CLKFX_DIVIDE values, generating a clock with the new target frequency on the CLKFX and CLKFX180 outputs. Though classified as belonging to the DLL component, the CLKIN input is shared with the DFS component. This case does not employ feedback loop; therefore, it cannot correct for clock distribution delay.

With the DLL, the DFS operates as described in the preceding case, only with the additional benefit of eliminating the clock distribution delay. In this case, a feedback loop from the CLK0 output to the CLKFB input must be present.

The DLL and DFS components work together to achieve this phase correction as follows: Given values for the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, the DLL selects the delay element for which the output clock edge coincides with the input clock edge whenever mathematically possible. For example, when CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the input and output clock edges will coincide every three input periods, which is equivalent in time to five output periods.

Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values achieve faster lock times. With no factors common to the two attributes, alignment will occur once with every number of cycles equal to the CLKFX_DIVIDE value. Therefore, it is recommended that the user reduce these values by factoring wherever possible. For example, given CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing a factor of three yields CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 2. While both value-pairs will result in the multiplication of clock frequency by 3/2, the latter value-pair will enable the DLL to lock more quickly.

Table 14: DFS Attributes

Attribute	Description	Values
DFS FREQUENCY MODE	Chooses between High Frequency and Low Frequency modes	Low, High
CLKFX MULTIPLY	Frequency multiplier constant	Integer from 2 to 32
CLKFX_DIVIDE	Frequency divisor constant	Integer from 1 to 32

Table 15: DFS Signals

	•	
Signal	Direction	Description
CLKFX	Output	Multiplies the CLKIN frequency by the attribute-value ratio (CLKFX_MULTIPLY/CLKFX_DIVIDE) to generate a clock signal with a new target frequency.
CLKFX180	Output	Generates a clock signal with same frequency as CLKFX, only shifted 180° out-of-phase.

DFS Clock Output Connections

There are two basic cases that determine how to connect the DFS clock outputs: on-chip and off-chip, which are illustrated in Figure 15a and Figure 15c, respectively. This is similar to what has already been described for the DLL component. See the DLL Clock Output and Feedback Connections, page 22 section.

In the on-chip case, it is possible to connect either of the DFS's two output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. The optional feedback loop is formed in this way, routing CLK0 to a global clock net, which in turn drives the CLKFB input.

In the off-chip case, the DFS's two output clock signals, plus CLK0 for an optional feedback loop, can exit the FPGA using output buffers (OBUF) to drive a clock network plus registers on the board. The feedback loop is formed by feeding the CLK0 signal back into the FPGA using an IBUFG, which directly accesses the global clock network, or an IBUF. Then, the global clock net is connected directly to the CLKFB input.

Phase Shifter (PS)

The DCM provides two approaches to controlling the phase of a DCM clock output signal relative to the CLKIN signal: First, there are nine clock outputs that employ the DLL to achieve a desired phase relationship: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKDV CLKFX, and CLKFX180. These outputs afford "coarse" phase control.

The second approach uses the PS component described in this section to provide a still finer degree of control. The PS component accomplishes this by introducing a "fine phase shift" (T_{PS}) between the CLKFB and CLKIN signals inside the DLL component. The user can control this fine phase shift down to a resolution of 1/256 of a CLKIN cycle or one tap delay (DCM_TAP), whichever is greater. When in use, the PS component shifts the phase of all nine DCM clock output signals together. If the PS component is used together with a DCM clock output such as the CLK90, CLK180, CLK270, CLK2X180 and CLKFX180, then the fine phase shift of the former gets added to the coarse phase shift of the latter.

PS Component Enabling and Mode Selection

The CLKOUT_PHASE_SHIFT attribute enables the PS component for use in addition to selecting between two operating modes. As described in Table 16, this attribute has three possible values: NONE, FIXED and VARIABLE. When CLKOUT_PHASE_SHIFT is set to NONE, the PS component is disabled and its inputs, PSEN, PSCLK, and PSINCDEC, must be tied to GND. The set of waveforms in Figure 17a shows the disabled case, where the DLL maintains a zero-phase alignment of signals CLKFB and CLKIN upon which the PS component has no effect. The PS component is enabled by setting the attribute to either the FIXED or VARIABLE values, which select the Fixed Phase mode and the Variable Phase mode, respectively. These two modes are described in the sections that follow

Determining the Fine Phase Shift

The user controls the phase shift of CLKFB relative to CLKIN by setting and/or adjusting the value of the PHASE_SHIFT attribute. This value must be an integer ranging from -255 to +255. The PS component uses this value to calculate the desired fine phase shift (T_{PS}) as a fraction of the CLKIN period (T_{CLKIN}). Given values for PHASE-SHIFT and T_{CLKIN} , it is possible to calculate T_{PS} as follows:

$$T_{PS} = (PHASE_SHIFT/256)*T_{CLKIN}$$
 (4)

Both the Fixed Phase and Variable Phase operating modes employ this calculation. If the PHASE_SHIFT value is zero, then CLKFB and CLKIN will be in phase, the same as when the PS component is disabled. When the PHASE_SHIFT value is positive, the CLKFB signal will be shifted later in time with respect to CLKIN. If the attribute value is negative, the CLKFB signal will be shifted earlier in time with respect to CLKIN.

The Fixed Phase Mode

This mode fixes the desired fine phase shift to a fraction of the T_{CLKIN} , as determined by Equation (4) and its user-selected PHASE_SHIFT value P. The set of waveforms in Figure 17b illustrates the relationship between CLKFB and CLKIN in the Fixed Phase mode. In the Fixed Phase mode, the PSEN, PSCLK and PSINCDEC inputs are not used and must be tied to GND.

Table 16: PS Attributes

Attribute	Description	Values
CLKOUT_PHASE_SHIFT	Disables PS component or chooses between Fixed Phase and Variable Phase modes.	NONE, FIXED, VARIABLE
PHASE_SHIFT	Determines size and direction of initial fine phase shift.	Integers from -255 to +255 ⁽¹⁾

Notes:

The practical range of values will be less when T_{CLKIN} > FINE_SHIFT_RANGE in the Fixed Phase mode, also when T_{CLKIN} >
 (FINE_SHIFT_RANGE)/2 in the Variable Phase mode. the FINE_SHIFT_RANGE represents the sum total delay of all taps.

a. CLKOUT_PHASE_SHIFT = NONE

b. CLKOUT_PHASE_SHIFT = FIXED

c. CLKOUT_PHASE_SHIFT = VARIABLE

Notes:

- 1. P represents the integer value ranging from –255 to +255 to which the PHASE_SHIFT attribute is assigned.
- N is an integer value ranging from -255 to +255 that represents the net phase shift effect from a series of increment and/or decrement operations.
 - N = {Total number of increments} {Total number of decrements}

A positive value for N indicates a net increment; a negative value indicates a net decrement.

Figure 17: Phase Shifter Waveforms

Table 17: Signals for Variable Phase Mode

Signal	Direction	Description	
PSEN ⁽¹⁾	Input	Enables PSCLK for variable phase adjustment.	
PSCLK ⁽¹⁾	Input	Clock to synchronize phase shift adjustment.	
PSINCDEC ⁽¹⁾	Input	Chooses between increment and decrement for phase adjustment. It is synchronized to the PSCLK signal.	
PSDONE	Output	Goes High to indicate that present phase adjustment is complete and PS component is ready for next phase adjustment request. It is synchronized to the PSCLK signal.	

1. It is possible to program this input for either a true or inverted polarity

The Variable Phase Mode

The "Variable Phase" mode dynamically adjusts the fine phase shift over time using three inputs to the PS component, namely PSEN, PSCLK and PSINCDEC, as defined in Table 17.

Just following device configuration, the PS component initially determines T_{PS} by evaluating Equation (4) for the value assigned to the PHASE_SHIFT attribute. Then to dynamically adjust that phase shift, use the three PS inputs to increase or decrease the fine phase shift.

PSINCDEC is synchronized to the PSCLK clock signal, which is enabled by asserting PSEN. It is possible to drive the PSCLK input with the CLKIN signal or any other clock signal. A request for phase adjustment is entered as follows: For each PSCLK cycle that PSINCDEC is High, the PS component adds 1/256 of a CLKIN cycle to $T_{\rm PS}$. Similarly, for each enabled PSCLK cycle that PSINCDEC is Low, the PS component subtracts 1/256 of a CLKIN cycle from $T_{\rm PS}$. The phase adjustment may require as many as 100 CLKIN cycles plus three PSCLK cycles to take effect, at which

point the output PSDONE goes High for one PSCLK cycle. This pulse indicates that the PS component has finished the present adjustment and is now ready for the next request. Asserting the Reset (RST) input, returns T_{PS} to its original shift time, as determined by the PHASE_SHIFT attribute value. The set of waveforms in Figure 17c illustrates the relationship between CLKFB and CLKIN in the Variable Phase mode.

The Status Logic Component

The Status Logic component not only reports on the state of the DCM but also provides a means of resetting the DCM to an initial known state. The signals associated with the Status Logic component are described in Table 18.

As a rule, the Reset (RST) input is asserted only upon configuring the device or changing the CLKIN frequency. A DCM reset does not affect attribute values (e.g., CLKFX_MULTIPLY and CLKFX_DIVIDE). If not used, RST must be tied to GND.

The eight bits of the STATUS bus are defined in Table 19.

Table 18: Status Logic Signals

Signal	Direction	Description	
RST	Input	A High resets the entire DCM to its initial power-on state. Initializes the DLL taps for a delay of zero. Sets the LOCKED output Low. This input is asynchronous.	
STATUS[7:0]	Output	The bit values on the STATUS bus provide information regarding the state of DLL and PS operation	
LOCKED	Output	Indicates that the CLKIN and CLKFB signals are in phase by going High. The two signare out-of-phase when Low.	

Table 19: DCM STATUS Bus

Bit	Name	Description
0	Phase Shift Overflow	 A value of 1 indicates a phase shift overflow when one of two conditions occur: Incrementing (or decrementing) TPS beyond 255/256 of a CLKIN cycle. The DLL is producing its maximum possible phase shift (i.e., all delay taps are active).⁽¹⁾
1	CLKIN Activity	A value of 1 indicates that the CLKIN signal is not toggling. A value of 0 indicates toggling. This bit functions only when the CLKFB input is connected. (2)
2	Reserved	-
3	Reserved	-
4	Reserved	-
5	Reserved	-
6	Reserved	-
7	Reserved	-

- The DLL phase shift with all delay taps active is specified as the parameter FINE_SHIFT_RANGE.
- 2. If only the DFS clock outputs are used, but none of the DLL clock outputs, this bit will not go High when the CLKIN signal stops.

Table 20: Status Attributes

Attribute	Description	Values
STARTUP_WAIT	Delays transition from configuration to user mode until lock condition is achieved.	TRUE, FALSE

Stabilizing DCM Clocks Before User Mode

It is possible to delay the completion of device configuration until after the DLL has achieved a lock condition using the STARTUP_WAIT attribute described in Table 20. This option ensures that the FPGA does not enter user mode — i.e., begin functional operation — until all system clocks generated by the DCM are stable. In order to achieve the delay, it is necessary to set the attribute to TRUE as well as set the BitGen option LCK_cycle to one of the six cycles making up the Startup phase of configuration. The selected cycle defines the point at which configuration will halt until the LOCKED output goes High.

Global Clock Network

Spartan-3 devices have eight Global Clock inputs called GCLK0 - GCLK7. These inputs provide access to a low-capacitance, low-skew network that is well-suited to carrying high-frequency signals. The Spartan-3 clock network is shown in Figure 18. GCLK0 through GCLK3 are placed at the center of the die's bottom edge. GCLK4 through GCLK7 are placed at the center of the die's top edge. It is possible to route each of the eight Global Clock inputs to any CLB on the die.

Eight Global Clock Multiplexers (also called BUFGMUX elements) are provided that accept signals from Global Clock inputs and route them to the internal clock network as well

as DCMs. Four BUFGMUX elements are placed at the center of the die's bottom edge, just above the GCLK0 - GCLK4 inputs. The remaining four BUFGMUX elements are placed at the center of the die's top edge, just below the GCLK4 - GCLK7 inputs.

Each BUFGMUX element is a 2-to-1 multiplexer that can receive signals from any of the four following sources:

- One of the four Global Clock inputs on the same side of the die — top or bottom — as the BUFGMUX element in use.
- 2. Any of four nearby horizontal Double lines.
- 3. Any of four outputs from the DCM in the right-hand quadrant that is on the same side of the die as the BUFGMUX element in use.
- 4. Any of four outputs from the DCM in the left-hand quadrant that is on the same side of the die as the BUFGMUX element in use.

Sources 3 and 4 are not available on the XC3S50 die that lacks DCMs.

Each BUFGMUX can switch incoming clock signals to two possible destinations:

The vertical spine belonging to the same side of the die

 top or bottom — as the BUFGMUX element in use.

 The two spines — top and bottom — each comprise four vertical clock lines, each running from one of the

BUFGMUX elements on the same side towards the center of the die. At the center of the die, clock signals reach the eight-line horizontal spine, which spans the width of the die. In turn, the horizontal spine branches out into a subsidiary clock interconnect that accesses the CLBs.

The clock input of either DCM on the same side of the die — top or bottom — as the BUFGMUX element in use. A Global clock input is placed in a design using either a BUFGMUX element or the BUFG (Global Clock Buffer) element. For the purpose of minimizing the dynamic power dissipation of the clock network, the Xilinx development software automatically disables all clock line segments that a design does not use.

Figure 18: Spartan-3 Clock Network (Top View)

Interconnect

Interconnect (or routing) passes signals among the various functional elements of Spartan-3 devices. There are four kinds of interconnect: Long lines, Hex lines, Double lines, and Direct lines.

Long lines connect to one out of every six CLBs (see Figure 19a). Because of their low capacitance, these lines are well-suited for carrying high-frequency signals with minimal loading effects (e.g. skew). If all eight Global Clock Inputs are already committed and there remain additional clock signals to be assigned, Long lines serve as a good alternative.

Hex lines connect one out of every three CLBs (see Figure 19b). These lines fall between Long lines and Dou-

ble lines in terms of capability: Hex lines approach the high-frequency characteristics of Long lines at the same time, offering greater connectivity.

Double lines connect to every other CLB (see Figure 19c). Compared to the types of lines already discussed, Double lines provide a higher degree of flexibility when making connections.

Direct lines afford any CLB direct access to neighboring CLBs (see Figure 19d). These lines are most often used to conduct a signal from a "source" CLB to a Double, Hex, or Long line and then from the longer interconnect back to a Direct line accessing a "destination" CLB.

Figure 19: Types of Interconnect

Configuration

Spartan-3 devices are configured by loading application specific configuration data into the internal configuration memory. Configuration is carried out using a subset of the device pins, some of which are "Dedicated" to one function only, while others, indicated by the term "Dual-Purpose",

can be re-used as general-purpose User I/Os once configuration is complete.

Depending on the system design, several configuration modes are supported, selectable via mode pins. The mode pins M0, M1, and M2 are Dedicated pins. The mode pin settings are shown in Table 21.

Table 21: Spartan-3 Configuration Mode Pin Settings

Configuration Mode ⁽¹⁾	МО	M1	M2	Synchronizing Clock	Data Width	Serial DOUT ⁽²⁾
Master Serial	0	0	0	CCLK Output	1	Yes
Slave Serial	1	1	1	CCLK Input	1	Yes
Master Parallel	1	1	0	CCLK Output	8	No
Slave Parallel	0	1	1	CCLK Input	8	No
JTAG	1	0	1	TCK Input	1	No

Notes:

- 1. The voltage levels on the M0, M1, and M2 pins select the configuration mode.
- 2. The daisy chain is possible only in the Serial modes when DOUT is used.

An additional pin, HSWAP_EN, is used in conjunction with the mode pins to select whether user I/O pins have pull-ups during configuration. By default, HSWAP_EN is tied High (internal pull-up) which shuts off the pull-ups on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os have pull-ups during configuration. Other Dedicated pins are CCLK (the configuration clock pin), DONE, PROG_B, and the boundary-scan pins: TDI, TDO, TMS, and TCK. Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or an input accepting an externally generated clock.

A persist option is available which can be used to force the configuration pins to retain their configuration function even after device configuration is complete. If the persist option is not selected then the configuration pins with the exception of CCLK, PROG_B, and DONE can be used as user I/O in normal operation. The persist option does not apply to the boundary-scan related pins. The persist feature is valuable in applications that readback configuration data after entering the User mode.

Table 22 lists the total number of bits required to configure each FPGA as well as the PROMs suitable for storing those bits. See <u>DS123</u>: Platform Flash In-System Programmable Configuration PROMs data sheet for more information.

The Standard Configuration Interface

Configuration signals belong to one of two different categories: Dedicated or Dual-Purpose. Which category determines which of the FPGA's power rails supplies the signal's driver and, thus, helps describe the electrical at the pin.

The Dedicated configuration pins include PROG_B, HSWAP_EN, TDI, TMS, TCK, TDO, CCLK, DONE, and M0-M2. These pins use the V_{CCAUX} lines for power.

Table 22: Spartan-3 Configuration Data

		Xilinx Platform Flash PROM					
Device	File Sizes	Serial Configuration	Parallel Configuration				
XC3S50	439,264	XCF01S	XCF08P				
XC3S200	1,047,616	XCF01S	XCF08P				
XC3S400	1,699,136	XCF02S	XCF08P				
XC3S1000	3,223,488	XCF04S	XCF08P				
XC3S1500	5,214,784	XCF08P	XCF08P				
XC3S2000	7,673,024	XCF08P	XCF08P				
XC3S4000	11,316,864	XCF16P	XCF16P				
XC3S5000	13,271,936	XCF16P	XCF16P				

The Dual-Purpose configuration pins comprise INIT_B, DOUT, BUSY, RDWR_B, CS_B, and DIN/D0-D7. Each of these pins, according to its bank placement, uses the V_{CCO} lines for either Bank 4 (VCCO_4) or Bank 5 (VCCO_5). All the signals used in the serial configuration modes rely on VCCO_4 power. Signals used in the parallel configuration modes and Readback require from VCCO_5 as well as from VCCO_4.

Both the Dedicated and Dual-Purpose signals described above constitute the configuration interface. In the standard case, this interface is 2.5V-LVCMOS-compatible. This means that 2.5V is applied to the V_{CCAUX} , $VCCO_4$, and $VCCO_5$ lines (this last in the parallel or Readback case only). One need only apply 2.5 Volts to these V_{CCO} lines from power-on to the end of configuration. Upon entering the User mode, it is possible to switch to supply voltage permitting signal swings other than 2.5V.

3.3V-Tolerant Configuration Interface

It is possible to achieve 3.3V-tolerance at the configuration interface simply by adding a few external resistors. This approach may prove useful when it is undesirable to switch the VCCO_4 and VCCO_5 voltages from 2.5V to 3.3V after configuration.

The 3.3V-tolerance is implemented as follows (a similar approach can be used for other supply voltage levels):

First, to power the Dual-Purpose configuration pins, apply 3.3V to the VCCO_4 and (as needed) the VCCO_5 lines. This scales the output voltages and input thresholds associated with these pins so that they become 3.3V-compatible.

Second, to power the Dedicated configuration pins, apply 2.5V to the V_{CCAUX} lines (the same as for the standard interface). In order to achieve 3.3V-tolerance, the Dedicated inputs will require series resistors that limit the incoming current to 10mA or less. The Dedicated outputs will need pull-up resistors to ensure adequate noise margin when the FPGA is driving a High logic level into another device's 3.3V receiver. Choose a power regulator or supply that can tolerate reverse current on the V_{CCAUX} lines.

Configuration Modes

Spartan-3 supports the following five configuration modes:

- Slave Serial mode
- Master Serial mode
- Slave Parallel mode
- Master Parallel mode
- Boundary-Scan (JTAG) mode (IEEE 1532/IEEE 1149.1)

Slave Serial Mode

In Slave Serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other serial source of configuration data. The FPGA on the far right of Figure 20 is set for the Slave Serial mode. The CCLK pin on the FPGA is an input in this mode. The serial bitstream must be setup at the DIN input pin a short time before each rising edge of the externally generated CCLK.

Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed internally to the DOUT pin. The data on the DOUT pin changes on the rising edge of CCLK.

- 1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within one clock cycle.
- For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.

Figure 20: Connection Diagram for Master and Slave Serial Configuration

Slave Serial mode is selected by applying <111> to the mode pins (M0, M1, and M2). A weak pull-up on the mode pins makes slave serial the default mode if the pins are left unconnected.

Master Serial Mode

In Master Serial mode, the CCLK pin is an output pin. The FPGA just to the right of the PROM in Figure 20 is set for Master Serial mode. It is the FPGA that drives the configuration clock on the CCLK pin to a Xilinx Serial PROM which in turn feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the rising CCLK edge.

The interface is identical to slave serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a default frequency of 6 MHz. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration.

Slave Parallel Mode

The Parallel modes support the fastest configuration. Byte-wide data is written into the FPGA with a BUSY flag

controlling the flow of data. An external source provides 8-bit-wide data, CCLK, an active-Low Chip Select (CS_B) signal and an active-Low Write signal (RDWR_B). If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the Slave Parallel mode. If RDWR_B is asserted, configuration data is read out of the FPGA as part of a readback operation.

After configuration, it is possible to use any of the Multipurpose pins (DIN/D0-D7, DOUT/BUSY, INITB, CS_B, and RDWR_B) as User I/Os. To do this, simply set the BitGen option *Persist* to *No* and assign the desired signals to multipurpose configuration pins using the Xilinx development software. Alternatively, it is possible to continue using the configuration port (e.g. all configuration pins taken together) when operating in the User mode. This is accomplished by setting the *Persist* option to *Yes*.

Multiple FPGAs can be configured using the Slave Parallel mode and can be made to start-up simultaneously. Figure 21 shows the device connections. To configure multiple devices in this way, wire the individual CCLK, Data, RDWR_B, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by deasserting the CS_B pin of each device in turn and writing the appropriate data.

- 1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value between 3.3KΩ to 4.7KΩ is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within one clock cycle.
- 2. If the FPGAs use different configuration data files, configure them in sequence by first asserting the CS_B of one FPGA then asserting the CS_B of the other FPGA.
- 3. For information on how to program the FPGA using 3.3V signals and power, see 3.3V-Tolerant Configuration Interface.

Figure 21: Connection Diagram for Slave Parallel Configuration

1. There are two ways to use the DONE line. First, one may set the BitGen option DriveDone to "Yes" only for the last FPGA to be configured in the chain shown above (or for the single FPGA as may be the case). This enables the DONE pin to drive High; thus, no pull-up resistor is necessary. DriveDone is set to "No" for the remaining FPGAs in the chain. Second, DriveDone can be set to "No" for all FPGAs. Then all DONE lines are open-drain and require the pull-up resistor shown in grey. In most cases, a value between $3.3 \text{K}\Omega$ to $4.7 \text{K}\Omega$ is sufficient. However, when using DONE synchronously with a long chain of FPGAs, cumulative capacitance may necessitate lower resistor values (e.g. down to 330Ω) in order to ensure a rise time within one clock cycle.

Figure 22: Connection Diagram for Master Parallel Configuration

Master Parallel Mode

In this mode, the device is configured byte-wide on a CCLK supplied by the FPGA. Timing is similar to the Slave Parallel mode except that CCLK is supplied by the FPGA. The device connections are shown in Figure 22.

Boundary-Scan (JTAG) Mode

In Boundary-Scan mode, dedicated pins are used for configuring the FPGA. The configuration is done entirely through the IEEE 1149.1 Test Access Port (TAP). FPGA configuration using the Boundary-Scan mode is compliant with the IEEE 1149.1-1993 standard and the new IEEE 1532 standard for In-System Configurable (ISC) devices.

Configuration through the boundary-scan port is always available, independent of the mode selection. Selecting the Boundary-Scan mode simply turns off the other modes.

Configuration Sequence

The configuration of Spartan-3 devices is a three-stage process that occurs after Power-On Reset or the assertion of PROG_B. POR occurs after the $V_{\rm CCINT}$, $V_{\rm CCAUX}$, and $V_{\rm CCO}$ Bank 4 supplies have reached their respective maximum input threshold levels (see Table 7 in Module 3: DC and Switching Characteristics). After POR, the three-stage process begins.

First, the configuration memory is cleared. Next, configuration data is loaded into the memory, and finally, the logic is activated by a start-up process. A flow diagram for the configuration sequence of the Serial and Parallel modes is shown in Figure 23. The flow diagram for the Boundary-Scan configuration sequence appears in Figure 24.

Figure 23: Configuration Flow Diagram for the Serial and Parallel Modes

Figure 24: Boundary-Scan Configuration Flow Diagram

Configuration is automatically initiated after power-on unless it is delayed by the user. INIT_B is an open-drain line that the FPGA holds Low during the clearing of the configuration memory. Extending the time that the pin is Low causes the configuration sequencer to wait. Thus, configuration is delayed by preventing entry into the phase where data is loaded.

The configuration process can also be initiated by asserting the PROG_B pin. The end of the memory-clearing phase is signaled by the INIT_B pin going High. At this point, the configuration data is written to the FPGA. The FPGA holds the Global Set/Reset (GSR) signal active throughout configuration, keeping all flip-flops on the device in a reset state. The completion of the entire process is signaled by the DONE pin going High.

Notes:

 The BitGen option StartupClk in the Xilinx development software selects the CCLK input, TCK input, or a user-designated global clock input (the GCLK0 - GCLK7 pins) for receiving the clock signal that synchronizes Start-Up.

Figure 25: Default Start-Up Sequence

The default start-up sequence, shown in Figure 25, serves as a transition to the User mode. The default start-up sequence is that one CCLK cycle after DONE goes High, the Global Three-State signal (GTS) is released. This permits device outputs to which signals have been assigned to become active. One CCLK cycle later, the Global Write Enable (GWE) signal is released. This permits the internal storage elements to begin changing state in response to the design logic and the user clock.

The relative timing of configuration events can be changed via the BitGen options in the Xilinx development software. In addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start synchronously. The sequence can also be paused at any stage, until lock has been achieved on any DCM.

Readback

Using Slave Parallel mode, configuration data from the FPGA can be read back. Readback is supported only in the Slave Parallel and Boundary-Scan modes.

Along with the configuration data, it is possible to read back the contents of all registers, distributed SelectRAM, and block RAM resources. This capability is used for real-time debugging.

Revision History

Date	Version No.	Description
04/11/03	1.0	Initial Xilinx release
05/19/03	1.1	Added Block RAM column, DCMs, and multipliers to XC3S50 descriptions.
07/11/03	1.2	Explained the configuration port <i>Persist</i> option in Slave Parallel Mode section. Updated Figure 2 and Double-Data-Rate Transmission section to indicate that DDR clocking for the XCS350 is the same as that for all other Spartan-3 devices. Updated description of I/O voltage tolerance in ESD Protection section. In Table 6 , changed input termination type for DCI version of the LVCMOS standard to <i>None</i> . Added additional flexibility for making DLL connections in Figure 15 and accompanying text. In the Configuration section, inserted an explanation of how to choose power supplies for the configuration interface, including guidelines for achieving 3.3V-tolerance.

The Spartan-3 Family Data Sheet

DS099-1, Spartan-3 1.2V FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 1.2V FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 1.2V FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 1.2V FPGA Family: Pinout Descriptions (Module 4)

Spartan-3 FPGA Family: DC and Switching Characteristics

DS099-3 (v1.3) March 4, 2004

Advance Product Specification

DC Electrical Characteristics

In this section, some specifications may be designated as Advance or Preliminary. These terms are defined as follows:

Advance: Initial estimates based on simulation, early characterization, and/or extrapolation from the characteristics of other families. Values are subject to change. Use as estimates, not for production.

Preliminary: Based on characterization. Further changes are not expected.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. The following applies unless otherwise noted: The parameter values published in this module apply to all Spartan-3 devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. All parameters representing voltages are measured with respect to GND.

Some specifications list different values for one or more die revisions. All presently available Spartan-3 devices are classified as revision 0. Future updates to this module will introduce further die revisions as needed.

Table 1: Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Max	Units
V _{CCINT}	Internal supply voltage		-0.5	1.32	V
V _{CCAUX}	Auxiliary supply voltage		-0.5	3.00	V
V _{CCO}	Output driver supply voltage		-0.5	3.75	V
V _{REF} ⁽²⁾	Input reference voltage		-0.5	V _{CCO} + 0.5	V
V _{IN} ⁽²⁾	Voltage applied to all User I/O pins and Dual-Purpose pins ⁽³⁾	Driver in a high-impedance state	-0.5	V _{CCO} + 0.5	V
	Voltage applied to all Dedicated pins ⁽⁴⁾		-0.5	V _{CCAUX} +0.5	V
T _J	Junction temperature	V _{CCO} ≤ 3.0V	-	125	°C
		V _{CCO} > 3.0V	-	105	°C
T _{SOL} (5)	Soldering temperature		-	220	°C
T _{STG}	Storage temperature		- 65	150	°C

- Stresses beyond those listed under Absolute Maximum Ratings will cause permanent damage to the device. These are stress
 ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended
 Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time adversely
 affects device reliability.
- 2. Table 5 specifies the range of values for V_{CCO} and V_{CCAUX} , which are used to determine the limits of this parameter.
- All User I/O and Dual-Purpose pins (DIN/D0, D1–D7, CS_B, RDWR_B, BUSY/DOUT, AND INIT_B) draw power from the V_{CCO} power rail of the associated bank.
- 4. All Dedicated pins (M0–M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). For information concerning the use of 3.3V signals, see the **3.3V-Tolerant Configuration Interface** section in Module 2: Functional Description.
- 5. For soldering guidelines, see the information on "Packaging and Thermal Characteristics" at www.xilinx.com.

Table 2: Supply Voltage Thresholds for Power-On Reset

Symbol	Description	Min	Max	Units
V _{CCINTT}	Threshold for the V _{CCINT} supply	0.4	1.0	V
V _{CCAUXT}	Threshold for the V _{CCAUX} supply	0.8	2.0	V
V _{CCO4T}	Threshold for the V _{CCO} Bank 4 supply	0.4	1.0	V

- 1.
- V_{CCINT} , V_{CCAUX} , and V_{CCO} supplies may be applied in any order. To ensure successful power-on, V_{CCINT} , V_{CCO} Bank 4, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 3: Other Power-On Requirements

Symbol	Description	Г	Device Revision	Min	Max	Units
T _{CCO}	V _{CCO} ramp time for all eight banks	0	XC3S200, XC3S400, and XC3S1500 in the FT and FG packages ⁽¹⁾	600	-	μs
			All other devices	2.0	-	ms
		Future		To be improved	-	

Notes:

- This specification is based on characterization.
- At present, there are no ramp requirements for the V_{CCINT} and V_{CCAUX} supplies.

Table 4: Power Voltage Levels Necessary for Preserving RAM Contents

Symbol	Description	Min	Units
V _{DRINT}	V _{CCINT} level required to retain RAM data	1.0	V
V _{DRAUX}	V _{CCAUX} level required to retain RAM data	2.0	V

- RAM contents include configuration data.
- The level of the $V_{\mbox{\footnotesize CCO}}$ supply has no effect on data retention.

Table 5: General Recommended Operating Conditions

Symbol	Descript	Min	Nom	Max	Units	
TJ	Junction temperature Commercial		0	-	85	°C
		Industrial	-40	-	100	°C
V _{CCINT}	Internal supply voltage		1.140	1.200	1.260	V
V _{CCO} ⁽¹⁾	Output driver supply voltage		1.140	-	3.450	V
V _{CCAUX}	Auxiliary supply voltage	Auxiliary supply voltage		2.500	2.625	V

Table 6: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

Symbol	Description	Test Conditions	Devi	ce Revision	Min	Тур	Max	Units
ΙL	Leakage current at User	Driver is in a	0	$V_{CCO} \ge 3.0V$	-25	-	+25	μΑ
	I/O, Dual-Purpose, and Dedicated pins	high-impedance state, V _{IN} = 0V or V _{CCO} max, sample-tested		V _{CCO} < 3.0V	-10	-	+10	μА
I _{RPU} ⁽²⁾	Current through pull-up	V _{IN} =0, V _{CCO} = 3.3V		0	-0.84	-	-2.35	mA
	resistor at User I/O, Dual-Purpose, and	V _{IN} =0, V _{CCO} = 3.0V			-0.69	-	-1.99	mA
	Dedicated pins	V _{IN} =0, V _{CCO} = 2.5V			-0.47	-	-1.41	mA
		V _{IN} =0, V _{CCO} = 1.8V			-0.21	-	-0.69	mA
		V _{IN} =0, V _{CCO} = 1.5V			-0.13	-	-0.43	mA
		V _{IN} =0, V _{CCO} = 1.2V			-0.06	-	-0.22	mA
I _{RPD} ⁽²⁾	Current through pull-down resistor at User I/O, Dual-Purpose, and Dedicated pins	V _{IN} = V _{CCO}			0.37	-	1.67	mA
I _{REF}	V _{REF} current per pin		0	$V_{CCO} \ge 3.0V$	-25	-	+25	μΑ
				V _{CCO} < 3.0V	-10	-	+10	μΑ
C _{IN}	Input capacitance			All	3	-	10	pF

- 1. The numbers in this table are based on the conditions set forth in Table 5.
- This parameter is based on characterization.

The V_{CCO} range given here spans the lowest and highest operating voltages of all supported I/O standards. The recommended V_{CCO} range specific to each of the single-ended I/O standards is given in Table 8, and that specific to the differential standards is given in Table 10.

Table 7: Quiescent Supply Current Characteristics

			Commercial		Indu	strial	
Symbol	Description	Device	Тур	Max	Тур	Max	Units
I _{CCINTQ}	Quiescent V _{CCINT} supply	XC3S50	10.0				mA
	current	XC3S200	20.0				mA
		XC3S400	35.0				mA
		XC3S1000	65.0				mA
		XC3S1500					mA
		XC3S2000					mA
		XC3S4000					mA
		XC3S5000					mA
Iccoq	Quiescent V _{CCO} supply current	XC3S50	1.5				mA
		XC3S200	1.5				mA
		XC3S400	1.5				mA
		XC3S1000	1.5				mA
		XC3S1500					mA
		XC3S2000					mA
		XC3S4000					mA
		XC3S5000					mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply	XC3S50	7.0				mA
	current	XC3S200	15.0				mA
		XC3S400	20.0				mA
		XC3S1000	25.0				mA
		XC3S1500					mA
		XC3S2000					mA
		XC3S4000					mA
		XC3S5000					mA

^{1.} The numbers in this table are based on the conditions set forth in Table 5. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. For typical values, the ambient temperature (T_A) is 25 °C with V_{CCINT} = 1.2V, V_{CCO} = 2.5V, and V_{CCAUX} = 2.5V. The FPGA is programmed with a "blank" configuration data file (i.e., a design with no functional elements instantiated).

^{2.} There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3 Web Power Tool at http://www.xilinx.com/ise/power tools provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower, part of the Xilinx development software, takes a netlist as input to provide more accurate maximum and typical estimates.

Table 8: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

	V _{CCO} V _{REF}			V _{IL}	V _{IH}			
Signal Standard	Min (V)	Nom (V)	Max (V)	Min (V)	Nom (V)	Max (V)	Max (V)	Min (V)
GTL ⁽²⁾	-	-	-	0.74	0.8	0.86	V _{REF} - 0.05	V _{REF} + 0.05
GTL_DCI	-	1.2	-	0.74	0.8	0.86	V _{REF} - 0.05	V _{REF} + 0.05
GTLP ⁽²⁾	-	-	-	0.88	1	1.12	V _{REF} - 0.1	V _{REF} + 0.1
GTLP_DCI	-	1.5	-	0.88	1	1.12	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_I, HSTL_I_DCI	1.4	1.5	1.6	0.68	0.75	0.9	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_III, HSTL_III_DCI	1.4	1.5	1.6	0.68	0.9	0.9	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_I_18, HSTL_I_DCI_18	1.7	1.8	1.9	-	0.9	-	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_II_18, HSTL_II_DCI_18	1.7	1.8	1.9	-	0.9	-	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_III_18, HSTL_III_DCI_18	1.7	1.8	1.9	-	1.1	-	V _{REF} - 0.1	V _{REF} + 0.1
LVCMOS12 ⁽³⁾	1.14	1.2	1.3	-	-	-	0.20V _{CCO}	0.70V _{CCO}
LVCMOS15, LVDCI_15, LVDCI_DV2_15 ⁽³⁾	1.4	1.5	1.6	-	-	-	0.20V _{CCO}	0.70V _{CCO}
LVCMOS18, LVDCI_18, LVDCI_DV2_18 ⁽³⁾	1.7	1.8	1.9	-	-	-	0.20V _{CCO}	0.70V _{CCO}
LVCMOS25 ⁽⁴⁾ , LVDCI_25, LVDCI_DV2_25 ⁽³⁾	2.3	2.5	2.7	-	-	-	0.7	1.7
LVCMOS33, LVDCI_33, LVDCI_DV2_33 ⁽³⁾	3.0	3.3	3.45	-	-	-	0.8	2.0
LVTTL	3.0	3.3	3.45	-	-	-	0.8	2.0
PCl33_3	-	3.0	-	-	-	-	0.30V _{CCO}	0.50V _{CCO}
SSTL18_I, SSTL18_I_DCI	1.65	1.8	1.95	0.825	0.9	0.975	V _{REF} - 0.125	V _{REF} + 0.125
SSTL2_I, SSTL2_I_DCI	2.3	2.5	2.7	1.15	1.25	1.35	V _{REF} - 0.15	V _{REF} + 0.15
SSTL2_II, SSTL2_II_DCI	2.3	2.5	2.7	1.15	1.25	1.35	V _{REF} - 0.15	V _{REF} + 0.15

- Descriptions of the symbols used in this table are as follows:
 - V_{CCO} -- the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs
 - V_{REF} -- the reference voltage for setting the input switching threshold
 - V_{IL} -- the input voltage that indicates a Low logic level
 - V_{IH} -- the input voltage that indicates a High logic level
- Because the GTL and GTLP standards employ open-drain output buffers, V_{CCO} lines do not supply current to the I/O circuit, rather
 this current is provided using an external pull-up resistor connected from the I/O pin to a termination voltage (V_{TT}). Nevertheless, the
 voltage applied to the associated V_{CCO} lines must always be at or above V_{TT} and I/O pad voltages.
- 3. There is approximately 100 mV of hysteresis on inputs using any LVCMOS standard.
- 4. All Dedicated pins (M0-M2, CCLK, PROG_B, DONE, HSWAP_EN, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the V_{CCAUX} rail (2.5V). The Dual-Purpose configuration pins (DIN/D0, D1-D7, CS_B, RDWR_B, BUSY/DOUT, and INIT_B) use the LVCMOS25 standard before the User mode. For these pins, apply 2.5V to the V_{CCO} Bank 4 and V_{CCO} Bank 5 rails at power-on as well as throughout configuration. For information concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface section in Module 2: Functional Description.
- 5. The global clock inputs have the following bank associations: GCLK0 and GCLK1 with Bank 4, GCLK2 and GCLK3 with Bank 5, GCLK4 and GCLK5 with Bank 1, and GCLK6 and GCLK7 with Bank 0. The signal standards assigned to the Global Clock Lines (and I/Os) of a given bank determine the V_{CCO} voltage for that bank.

Table 9: DC Characteristics of User I/Os Using Single-Ended Standards

Signal Standard and		Test Co	nditions	Logic Level (Characteristics
Current Drive		I _{OL}	I _{ОН}	V _{OL}	V _{OH}
(mA)	Attiributo	(mA)	(mA)	Max (V)	Min (V)
GTL		32	-	0.4	-
GTL_DCI		Note 3	Note 3	=	
GTLP		36	-	0.6	-
GTLP_DCI		Note 3	Note 3	=	
HSTL_I		8	-8	0.4	V _{CCO} - 0.4
HSTL_I_DCI		Note 3	Note 3		
HSTL_III		24	-8	0.4	V _{CCO} - 0.4
HSTL_III_DCI		Note 3	Note 3		
HSTL_I_18		8	-8	0.4	V _{CCO} - 0.4
HSTL_I_DCI_18		Note 3	Note 3		
HSTL_II_18		16	-16	0.4	V _{CCO} - 0.4
HSTL_II_DCI_18		Note 3	Note 3		
HSTL_III_18		24	-8	0.4	V _{CCO} - 0.4
HSTL_III_DCI_18		Note 3	Note 3		
LVCMOS12 ⁽⁴⁾	2	2	-2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		
LVCMOS15 ⁽⁴⁾	2	2	-2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
LVDCI_15, LVDCI_DV2_15		Note 3	Note 3		
LVCMOS18 ⁽⁴⁾	2	2	-2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		
	8	8	-8	=	
	12	12	-12	=	
	16	16	-16		
LVDCI_18, LVDCI_DV2_18		Note 3	Note 3		
LVCMOS25 ^(4,5)	2	2	-2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
	24	24	-24		
LVDCI_25, LVDCI_DV2_25		Note 3	Note 3		

Table 9: DC Characteristics of User I/Os Using Single-Ended Standards (Continued)

Signal Standard and		Test Co	nditions	Logic Level C	haracteristics
Current Drive (mA)		I _{OL} (mA)	I _{OH} (mA)	V _{OL} Max (V)	V _{OH} Min (V)
LVCMOS33 ⁽⁴⁾	2	2	– 2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
	24	24	-24		
LVDCI_33, LVDCI_DV2_33		Note 3	Note 3		
LVTTL ⁽⁴⁾	2	2	-2	0.4	2.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
	24	24	-24		
PCI33_3	l .	Note 6	Note 6	0.10V _{CCO}	0.90V _{CCO}
SSTL18_I		6.7	-6.7	V _{TT} - 0.475	V _{TT} + 0.475
SSTL18_I_DCI		Note 3	Note 3		
SSTL2_I		7.5	-7.5	V _{TT} - 0.61	V _{TT} + 0.61
SSTL2_I_DCI		Note 3	Note 3		
SSTL2_II		15	–15	V _{TT} - 0.80	V _{TT} + 0.80
SSTL2_II_DCI		Note 3	Note 3		

- The numbers in this table are based on the conditions set forth in Table 5 and Table 8. 1.
- Descriptions of the symbols used in this table are as follows:

 I_{OL} -- the output current condition under which V_{OL} is tested
 I_{OH} -- the output current condition under which V_{OH} is tested
 V_{OL} -- the output voltage that indicates a Low logic level
 V_{OH} -- the output voltage that indicates a High logic level
 V_{II} -- the input voltage that indicates a Low logic level
 V_{IH} -- the input voltage that indicates a High logic level
 V_{IOC} -- the supply voltage for output drivers as well as IVCN

 - V_{CCO} -- the supply voltage for output drivers as well as LVCMOS, LVTTL, and PCI inputs V_{REF} -- the reference voltage for setting the input switching threshold V_{TT} -- the voltage applied to a resistor termination
- Tested according to the standard's relevant specifications.
- For the LVCMOS and LVTTL standards: the same V_{OL} and V_{OH} limits apply for both the Fast and Slow slew attributes.
- All Dedicated output pins (CCLK, DONE, and TDO) as well as Dual-Purpose totem-pole output pins (D0-D7 and BUSY/DOUT) exhibit the characteristics of LVCMOS25 with 12 mA drive and Fast slew rate. For information concerning the use of 3.3V signals, see the 3.3V-Tolerant Configuration Interface section in Module 2: Functional Description.
- Tested according to the relevant PCI specifications.

Figure 1: Differential Input Voltages

Table 10: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

,													
		V _{CCO} ⁽¹⁾			V_{ID}		V _{ICM}		V _{IH}		V _{IL}		
Signal Standard	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)	Min (V)	Max (V)	Min (V)	Max (V)
LDT_25	2.375	2.50	2.625	200	600	1000	0.44	0.60	0.78	-	-	-	-
LVDS_25, LVDS_25_DCI	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20	-	-	-	-
BLVDS_25	2.375	2.50	2.625	-	350	-	-	1.25	-	-	-	-	-
LVDSEXT_25, LVDSEXT_25_DCI	2.375	2.50	2.625	100	540	1000	0.30	1.20	2.20	-	-	-	-
ULVDS_25	2.375	2.50	2.625	200	600	1000	0.44	0.60	0.78	-	-	-	-
LVPECL_25	2.375	2.50	2.625	100	-	-	-	-	-	0.8	2.0	0.5	1.7
RSDS_25	2.375	2.50	2.625	100	200	-	-	1.20	-	-	-	-	-

- V_{CCO} only supplies differential output drivers, not input circuits. V_{REF} inputs are not used for any of the differential I/O standards. V_{ID} is a differential measurement.

Figure 2: Differential Output Voltages

Table 11: DC Characteristics of User I/Os Using Differential Signal Standards

			V_{OD}		ΔV	OD		V_{OCM}		ΔV _C	ОСМ	V	ОН	٧ _c	DL
Signal Standard	Device Revision	Min (mV)	Typ (mV)	Max (mV)	Min (mV)	Max (mV)	Min (V)	Typ (V)	Max (V)	Min (mV)	Max (mV)	Min (V)	Max (V)	Min (V)	Max (V)
LDT_25	All ⁽³⁾	430 ⁽⁴⁾	600	670	-15	15	0.495	0.600	0.715	-15	15	-	-	-	-
LVDS_25	0(3)	100	-	600	-	-	0.80	-	1.6	-	-	-	-	-	-
	Future	250	-	400	-	-	1.125	-	1.375	-	-	1.00	1.475	0.925	1.38
BLVDS_25	All	250	350	450	-	-	-	1.20	-	-	-	-	-	-	-
LVDSEXT_25	0(3)	100	-	600	-	-	0.80	-	1.6	-	-	-	-	-	-
	Future	330	-	700	-	-	1.125	-	1.375	-	-	-	1.700	0.705	-
ULVDS_25	AII ⁽³⁾	430	600	670	-	-	0.495	0.600	0.715	-	-	-	-	-	-
LVPECL_25 ⁽⁷⁾	All	-	-	1	-	-	-	-	-	-	-	1.35	1.745	0.565	1.005
RSDS_25	0(3)	100	-	600	-	-	0.80	-	1.6	-	-	-	-	-	-
	Future	100	-	400	-	-	1.1	-	1.4	-	-	-	-	-	-

- 1. The numbers in this table are based on the conditions set forth in Table 5 and Table 10.
- 2. V_{OD} , ΔV_{OD} , and ΔV_{OCM} are differential measurements.
- 3. For this standard, to ensure that the FPGA's output pair meets specifications, it is necessary to set the LVDSBIAS option in the BitGen utility, part of the Xilinx development software. See XAPP751. The option settings for LVDS_25, LVDSEXT_25, and RSDS_25 are different from those for LDT_25 and ULVDS_25.
- 4. This value must be compatible with the receiver to which the FPGA's output pair is connected.
- 5. Output voltage measurements for all differential standards are made with a termination resistor (R_T) of 100Ω across the N and P pins of the differential signal pair.
- 6. At any given time, only one differential standard may be assigned to each bank.
- 7. Each LVPECL output-pair requires three external resistors: a 70Ω resistor in series with each output followed by a 240Ω shunt resistor. These are in addition to the external 100Ω termination resistor at the receiver side. See Figure 3.

Figure 3: External Terminations for LVPECL

Switching Characteristics

All Spartan-3 devices are available in two speed grades: –4 and the higher performance –5. Switching characteristics in this document may be designated as Advance, Preliminary, or Production. Each category is defined as follows:

Advance: These specifications are based on simulations only and are typically available soon after establishing FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur. *All –5 grade numbers are engineering targets: characterization is still in progress*.

Preliminary: These specifications are based on complete early silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting preliminary delays is greatly reduced compared to Advance data.

Production: These specifications are approved once enough production silicon of a particular device family member has been characterized to provide full correlation

between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

All specified limits are representative of worst-case supply voltage and junction temperature conditions. Unless otherwise noted, the following applies: Parameter values apply to all Spartan-3 devices. All parameters representing voltages are measured with respect to GND.

Timing parameters and their representative values are selected for inclusion below either because they are important as general design requirements or they indicate fundamental device performance characteristics. The Spartan-3 speed files (V1.29), part of the Xilinx Development Software, are the original source for many but not all of the values. For more complete, more precise, and worst-case data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated to the simulation netlist.

I/O Timing

Table 12: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				Speed	Grade	
				-5	-4	
Symbol	Description	Conditions	Device	Max	Max	Units
Clock-to-Outpu	ıt Times					
T _{ICKOFDCM}	When reading from the Output Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is in use.	LVCMOS25 ⁽²⁾ , 12mA	XC3S50		2.59	ns
		output drive, Fast slew	XC3S200		2.59	ns
		rate, with DCM ⁽³⁾	XC3S400		2.59	ns
			XC3S1000		2.59	ns
			XC3S1500		2.60	ns
			XC3S2000		2.60	ns
			XC3S4000		2.60	ns
			XC3S5000		2.60	ns
T _{ICKOF}	When reading from OFF, the	LVCMOS25 ⁽²⁾ , 12mA	XC3S50		5.37	ns
	time from the active	output drive, Fast slew	XC3S200		5.39	ns
	transition on the Global Clock pin to data appearing	rate, without DCM	XC3S400		5.42	ns
	at the Output pin. The DCM		XC3S1000		5.51	ns
	is not in use.		XC3S1500		5.65	ns
			XC3S2000		5.83	ns
			XC3S4000		5.95	ns
			XC3S5000		6.19	ns

- 1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
- 2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate Input adjustment from Table 16. If the latter is true, add the appropriate Output adjustment from Table 19.
- 3. DCM output jitter is included in all measurements.

Table 13: Pin-to-Pin Setup and Hold Times for the IOB Input Path

			Spe		d Grade	
				-5	-4	
Symbol	Description	Conditions	Device	Min	Min	Units
Setup Times						
T_{PSDCM}	When writing to the Input	LVCMOS25 ⁽²⁾ ,	XC3S50		2.72	ns
	Flip-Flop (IFF), the time from the setup of data at	IOBDELAY = NONE ⁽⁴⁾ , with DCM ⁽⁵⁾	XC3S200		2.72	ns
	the Input pin to the active	WILLI DOWN	XC3S400		2.74	ns
	transition at a Global		XC3S1000		2.76	ns
	Clock pin. The DCM is in		XC3S1500		2.86	ns
	use.		XC3S2000		2.98	ns
			XC3S4000		3.06	ns
			XC3S5000		3.23	ns
T _{PSFD}	When writing to IFF, the	LVCMOS25 ⁽²⁾ ,	XC3S50		2.43	ns
	time from the setup of	$IOBDELAY = NONE^{(4)}$,	XC3S200		3.53	ns
	data at the Input pin to an active transition at the	without DCM	XC3S400		3.52	ns
	Global Clock pin. The		XC3S1000		3.77	ns
	DCM is not in use.		XC3S1500		4.15	ns
			XC3S2000		4.34	ns
			XC3S4000		4.53	ns
			XC3S5000		4.90	ns
Hold Times				+	+	+
T _{PHDCM}	When writing to IFF, the	LVCMOS25 ⁽³⁾ ,	XC3S50		-1.81	ns
	time from the active	$IOBDELAY = NONE^{(4)}$,	XC3S200		-1.81	ns
	transition at the Global Clock pin to the point	with DCM ⁽⁵⁾	XC3S400		-1.81	ns
	when data must be held		XC3S1000		-1.81	ns
	at the Input pin. The		XC3S1500		-1.81	ns
	DCM is in use.		XC3S2000		-1.81	ns
			XC3S4000		-1.80	ns
			XC3S5000		-1.80	ns
T _{PHFD}	When writing to IFF, the	LVCMOS25 ⁽³⁾ ,	XC3S50		-1.03	ns
- · · · · <u>-</u>	time from the active	$IOBDELAY = NONE^{(4)}$,	XC3S200		-1.89	ns
	transition at the Global	without DCM	XC3S400		-1.87	ns
	Clock pin to the point when data must be held		XC3S1000		-2.01	ns
	at the Input pin. The		XC3S1500		-2.20	ns
	DCM is not in use.		XC3S2000		-2.20	ns
			XC3S4000		-2.24	ns
			XC3S5000		-2.32	ns

- 1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
- 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, *subtract* the appropriate adjustment from Table 16. If this is true of the data Input, *add* the appropriate input adjustment from the same table.
- 3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 16. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.
- 4. All numbers measured with no programmed input delay.
- 5. DCM output jitter is included in all measurements.

Table 14: Setup and Hold Times for the IOB Input Path

				Speed	l Grade	
				-5	-4	-
Symbol	Description	Conditions	Device	Min	Min	Units
Setup Times						
T _{IOPICK}	Time from the setup of data at the Input pin to the active transition at the ICLK input of the Input Flip-Flop (IFF). No input delay is programmed.	LVCMOS25 ⁽²⁾ , IOBDELAY = NONE	All	1.15	1.32	ns
T _{IOPICKD}	Time from the setup of data	LVCMOS25 ⁽²⁾ ,	XC3S50	3.26	3.75	ns
	at the Input pin to the active transition at the IFF's ICLK	IOBDELAY = IFD	XC3S200	3.89	4.47	ns
	input. The input delay is programmed.		XC3S400	3.89	4.47	ns
			XC3S1000	4.15	4.77	ns
			XC3S1500	4.32	4.97	ns
			XC3S2000	4.50	5.17	ns
			XC3S4000	4.67	5.37	ns
			XC3S5000	5.02	5.77	ns
Hold Times					•	
T _{IOICKP}	Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. No input delay is programmed.	LVCMOS25 ⁽³⁾ , IOBDELAY = NONE	All		-0.66	ns
T _{IOICKPD}	Time from the active	LVCMOS25 ⁽³⁾ ,	XC3S50		-2.36	ns
	transition at the IFF's ICLK input to the point where	IOBDELAY = IFD	XC3S200		-2.87	ns
	data must be held at the		XC3S400		-2.87	ns
	Input pin. The input delay is programmed.		XC3S1000		-3.08	ns
	F 3. s		XC3S1500		-3.22	ns
			XC3S2000		-3.36	ns
			XC3S4000		-3.50	ns
			XC3S5000		-3.78	ns

- 1. The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.
- 2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 16.
- 3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 16. When the hold time is negative, it is possible to change the data before the clock's active edge.

Table 15: Propagation Times for the IOB Input Path

				Speed	l Grade	
				-5	-4	
Symbol	Description	Conditions	Device	Max	Max	Units
Propagation T	imes					
T _{IOPI}	The time it takes for data to travel from the Input pin to the IOB's I output with no input delay programmed	LVCMOS25 ⁽²⁾ , IOBDELAY = NONE	All	1.05	1.20	ns
T _{IOPID}	The time it takes for data	LVCMOS25 ⁽²⁾ ,	XC3S50	3.16	3.63	ns
	to travel from the Input pin to the I output with the	IOBDELAY = IFD	XC3S200	3.79	4.35	ns
	Input delay programmed		XC3S400	3.79	4.35	ns
			XC3S1000	4.05	4.65	ns
			XC3S1500	4.22	4.85	ns
			XC3S2000	4.40	5.05	ns
			XC3S4000	4.57	5.25	ns
			XC3S5000	4.92	5.65	ns
T _{IOPLI}	The time it takes for data to travel from the Input pin through the IFF latch to the I output with no input delay programmed	LVCMOS25 ⁽²⁾ , IOBDELAY = NONE	All	1.55	1.78	ns
T _{IOPLID}	The time it takes for data	LVCMOS25 ⁽²⁾ ,	XC3S50	3.66	4.21	ns
	to travel from the Input pin through the IFF latch	IOBDELAY = IFD	XC3S200	4.29	4.93	ns
	to the I output with the		XC3S400	4.29	4.93	ns
	input delay programmed		XC3S1000	4.55	5.23	ns
			XC3S1500	4.73	5.43	ns
			XC3S2000	4.90	5.63	ns
			XC3S4000	5.07	5.83	ns
			XC3S5000	5.42	6.23	ns

^{1.} The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

^{2.} This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 16.

Table 16: Input Timing Adjustments for IOB

		the ent Below	
Convert Input Time from LVCMOS25 to the	Speed	Grade	
Following Signal Standard	-5	-4	Units
Single-Ended Standards			
GTL, GTL_DCI	-0.37	-0.37	ns
GTLP, GTLP_DCI	-0.37	-0.37	ns
HSTL_I, HSTL_I_DCI	-0.18	-0.18	ns
HSTL_III, HSTL_III_DCI	-0.19	-0.19	ns
HSTL_I_18, HSTL_I_DCI_18	-0.26	-0.26	ns
HSTL_II_18, HSTL_II_DCI_18	-0.26	-0.26	ns
HSTL_III_18, HSTL_III_DCI_18	-0.20	-0.20	ns
LVCMOS12	0.40	0.40	ns
LVCMOS15, LVDCI_15, LVDCI_DV2_15	0.47	0.47	ns
LVCMOS18, LVDCI_18, LVDCI_DV2_18	0.30	0.30	ns
LVCMOS25, LVDCI_25, LVDCI_DV2_25	0	0	ns
LVCMOS33, LVDCI_33, LVDCI_DV2_33	0.09	0.09	ns
LVTTL	-0.31	-0.31	ns

Table 16: Input Timing Adjustments for IOB (Continued)

		I the ent Below	
Convert Input Time from LVCMOS25 to the	Speed	Grade	=
Following Signal Standard	-5	-4	Units
PCl33_3	0.32	0.32	ns
SSTL18_I, SSTL18_I_DCI	-0.17	-0.17	ns
SSTL2_I, SSTL2_I_DCI	-0.19	-0.19	ns
SSTL2_II, SSTL2_II_DCI	-0.21	-0.21	ns
Differential Standards	•	•	•
LDT_25	0.04	0.04	ns
LVDS_25, LVDS_25_DCI	0.06	0.06	ns
BLVDS_25			ns
LVDSEXT_25, LVDSEXT_25_DCI			ns
ULVDS_25	-0.05	-0.05	ns
LVPECL_25			ns
RSDS_25			ns

- The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5, Table 8, and Table 10.
- 2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

Table 17: Timing for the IOB Output Path

			Speed	Grade		
			-5	-4		
Symbol	Description	Conditions	Max	Max	Units	
Clock-to-Outp	ut Times					
T _{IOCKP}	When reading from the Output Flip-Flop (OFF), the time from the active transition at the OTCLK input to data appearing at the Output pin	LVCMOS25 ⁽²⁾ , 12mA output drive, Fast slew rate	3.64	4.18	ns	
Propagation T	imes		I			
T _{IOOP}	The time it takes for data to travel from the IOB's O input to the Output pin	LVCMOS25 ⁽²⁾ , 12mA output drive, Fast slew rate	2.97	3.42	ns	
T _{IOOLP}	The time it takes for data to travel from the O input through the OFF latch to the Output pin		3.41	3.92	ns	
Set/Reset Tim	es		I			
T _{IOSRP}	Time from asserting the OFF's SR input to setting/resetting data at the Output pin	LVCMOS25 ⁽²⁾ , 12mA output drive, Fast slew rate	4.44	5.10	ns	
T _{IOGSRQ}	Time from asserting the Global Set Reset (GSR) net to setting/resetting data at the Output pin		8.07	9.28	ns	

The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

^{2.} This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 19.

Table 18: Timing for the IOB Three-State Path

			Speed	Grade	
			-5	-4	
Symbol	Description	Conditions	Max	Max	Units
Synchronous Ou	tput Enable/Disable Times				
T _{IOCKHZ}	Time from the active transition at the OTCLK input of the Three-state Flip-Flop (TFF) to when the Output pin enters the high-impedance state	LVCMOS25, 12mA output drive, Fast slew rate	2.32	2.66	ns
T _{IOCKON} ⁽²⁾	Time from the active transition at TFF's OTCLK input to when the Output pin drives valid data		3.78	4.34	ns
Asynchronous O	utput Enable/Disable Times			,	
T _{GTS}	Time from asserting the Global Three State net (GTS) net to when the Output pin enters the high-impedance state	LVCMOS25, 12mA output drive, Fast slew rate	7.03	8.08	ns
Set/Reset Times					
T _{IOSRHZ}	Time from asserting TFF's SR input to when the Output pin enters a high-impedance state	LVCMOS25, 12mA output drive, Fast slew rate	3.28	3.77	ns
T _{IOSRON} ⁽²⁾	Time from asserting TFF's SR input at TFF to when the Output pin drives valid data		4.75	5.45	ns

^{1.} The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5 and Table 8.

^{2.} This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 19.

Table 19: Output Timing Adjustments for IOB

Convert Ou	itput Time	e from Orive and	Add Adjus Be	I the stment low Grade	
Fast Slew Rate	e to the F Standar		-5	-4	Units
Single-Ended			-3	-4	Ullits
GTL	Otanaara		-0.18	-0.18	ns
GTL DCI			-0.15	-0.15	ns
GTLP			-0.15	-0.15	ns
GTLP_DCI			-0.13	-0.13	ns
HSTL_I			0.08	0.08	ns
HSTL_I_DCI			0.07	0.07	ns
HSTL_III			-0.05	-0.05	ns
HSTL_III_DCI			-0.05	-0.05	ns
HSTL_I_18			0.14	0.14	ns
HSTL_I_DCI_1	HSTL_I_DCI_18				ns
HSTL_II_18		-0.13	-0.13	ns	
HSTL_II_DCI_	18		0.31	0.31	ns
HSTL_III_18			-0.02	-0.02	ns
HSTL_III_DCI_	18		-0.03	-0.03	ns
LVCMOS12	Slow	2 mA	6.47	6.47	ns
		4 mA	6.70	6.70	ns
		6 mA	5.60	5.60	ns
	Fast	2 mA	3.04	3.04	ns
		4 mA	2.25	2.25	ns
		6 mA	2.10	2.10	ns
LVCMOS15	Slow	2 mA	3.95	3.95	ns
		4 mA	3.49	3.49	ns
		6 mA	2.85	2.85	ns
		8 mA	3.44	3.44	ns
		12 mA	2.82	2.82	ns
	Fast	2 mA	2.29	2.29	ns
		4 mA	1.37	1.37	ns
		6 mA	1.15	1.15	ns
		8 mA	1.13	1.13	ns
		12 mA	1.00	1.00	ns
LVDCI_15			1.34	1.34	ns
LVDCI_DV2_15	5		1.14	1.14	ns

Table 19: Output Timing Adjustments for IOB (Continued)

Convert Ou	Add Adjus Be	,			
Fast Slew Rate	Speed Grade				
Signal	Standard	dt	-5	-4	Units
LVCMOS18	Slow	2 mA	4.31	4.31	ns
		4 mA	2.69	2.69	ns
		6 mA	2.23	2.23	ns
		8 mA	1.83	1.83	ns
		12 mA	1.97	1.97	ns
		16 mA	1.62	1.62	ns
	Fast	2 mA	2.07	2.07	ns
		4 mA	0.90	0.90	ns
		6 mA	0.77	0.77	ns
		8 mA	0.61	0.61	ns
		12 mA	0.56	0.56	ns
		16 mA	0.50	0.50	ns
LVDCI_18			0.72	0.72	ns
LVDCI_DV2_18	3		0.58	0.58	ns
LVCMOS25	Slow	2 mA	5.11	5.11	ns
		4 mA	3.17	3.17	ns
		6 mA	2.53	2.53	ns
		8 mA	2.21	2.21	ns
		12 mA	1.79	1.79	ns
		16 mA	1.77	1.77	ns
		24 mA	1.53	1.53	ns
	Fast	2 mA	2.30	2.30	ns
		4 mA	0.87	0.87	ns
		6 mA	0.30	0.30	ns
		8 mA	0.21	0.21	ns
		12 mA	0	0	ns
		16 mA	0.11	0.11	ns
		24 mA	0.04	0.04	ns
LVDCI_25			0.19	0.19	ns
LVDCI_DV2_25	5		0.10	0.10	ns

Table 19: Output Timing Adjustments for IOB (Continued)

Convert Ou	Adjus	Add the Adjustment Below			
LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following			Speed		
Signal	-5	-4	Units		
LVCMOS33	Slow	2 mA	6.22	6.22	ns
		4 mA	3.80	3.80	ns
		6 mA	3.02	3.02	ns
		8 mA	3.04	3.04	ns
		12 mA	2.18	2.18	ns
		16 mA	2.05	2.05	ns
		24 mA	1.82	1.82	ns
	Fast	2 mA	3.15	3.15	ns
		4 mA	1.30	1.30	ns
		6 mA	0.53	0.53	ns
		8 mA	0.54	0.54	ns
		12 mA	0.14	0.14	ns
		16 mA	0.08	0.08	ns
		24 mA	-0.03	-0.03	ns
LVDCI_33			0	0	ns
LVDCI_DV2_33	3		0	0	ns
LVTTL	Slow	2 mA	6.24	6.24	ns
		4 mA	3.81	3.81	ns
		6 mA	3.03	3.03	ns
		8 mA	3.02	3.02	ns
		12 mA	2.17	2.17	ns
		16 mA	2.05	2.05	ns
		24 mA	1.88	1.88	ns
	Fast	2 mA	3.14	3.14	ns
		4 mA	1.31	1.31	ns
		6 mA	0.50	0.50	ns
		8 mA	0.51	0.51	ns
		12 mA	0.12	0.12	ns
		16 mA	0.06	0.06	ns
		24 mA	0	0	ns

Table 19: Output Timing Adjustments for IOB (Continued)

Convert Output Time from	Add Adjus Be		
LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following	Speed		
Signal Standard	-5	-4	Units
PCl33_3	-0.26	-0.26	ns
SSTL18_I	-0.05	-0.05	ns
SSTL18_I_DCI	-0.01	-0.01	ns
SSTL2_I	0.08	0.08	ns
SSTL2_I_DCI	0.01	0.01	ns
SSTL2_II	-0.04	-0.04	ns
SSTL2_II_DCI	-0.14	-0.14	ns
Differential Standards			
LDT_25	-0.52	-0.52	ns
LVDS_25	-0.50	-0.50	ns
LVDS_25_DCI			ns
BLVDS_25	-0.01	-0.01	ns
LVDSEXT_25	-0.50	-0.50	ns
LVDSEXT_25_DCI			ns
ULVDS_25	-0.48	-0.48	ns
LVPECL_25			ns
RSDS_25			ns

- The numbers in this table are tested using the methodology presented in Table 20 and are based on the operating conditions set forth in Table 5, Table 8, and Table 10.
- These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Timing Measurement Methodology

When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 20 presents the conditions to use for each standard.

The method for measuring Input timing is as follows: A signal that swings between a Low logic level of V_L and a High logic level of V_H is applied to the Input under test. Some standards also require the application of a bias voltage to the V_{REF} pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (V_M) is commonly located halfway between V_L and V_H .

The Output test setup is shown in Figure 4. A termination voltage V_T is applied to the termination resistor R_T , the other end of which is connected to the Output. For each standard, R_T and V_T generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (e.g., LVCMOS,

LVTTL), then R_T is set to $1M\Omega$ to indicate an open connection, and V_T is set to zero. The same measurement point (V_M) that was used at the Input is also used at the Output.

Notes:

1. The names shown in parentheses are used in the IBIS file.

Figure 4: Output Test Setup

Table 20: Test Methods for Timing Measurement at I/Os

		Inputs		Out	Inputs and Outputs		
Signal Standard	V _{REF} (V)	V _L (V)	V _H (V)	R _T (Ω)	V _T (V)	V _M (V)	
Single-Ended						•	
GTL	8.0	V _{REF} - 0.2	V _{REF} + 0.2	25	1.2	V _{REF}	
GTL_DCI				50	1.2		
GTLP	1.0	V _{REF} - 0.2	V _{REF} + 0.2	25	1.5	V _{REF}	
GTLP_DCI				50	1.5		
HSTL_I	0.75	V _{REF} - 0.5	V _{REF} + 0.5	50	0.75	V _{REF}	
HSTL_I_DCI				50	0.75		
HSTL_III	0.90	0 V _{REF} - 0.5	V _{REF} + 0.5	50	1.5	V _{REF}	
HSTL_III_DCI				50	1.5		
HSTL_I_18	0.90	0.90 V _{REF} - 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
HSTL_I_DCI_18				50	0.9		
HSTL_II_18	0.90	V _{REF} - 0.5	V _{REF} + 0.5	25	0.9	V _{REF}	
HSTL_II_DCI_18				50	0.9		
HSTL_III_18	1.1	V _{REF} - 0.5	V _{REF} + 0.5	50	1.8	V _{REF}	
HSTL_III_DCI_18				50	1.8		
LVCMOS12	-	0	1.2	1M	0		
LVCMOS15	-	0	1.5	1M	0	0.75	
LVDCI_15				1M	0		
LVDCI_DV2_15				1M	0		

Table 20: Test Methods for Timing Measurement at I/Os (Continued)

			Inputs			Outputs		
		V _{REF}	V _L	V _H	R _T	V _T	V _M	
Signal S	Standard	(V)	(V)	(V)	(Ω)	(V)	(V)	
LVCMOS1	8	-	0	1.8	1M	0	0.9	
LVDCI_18					1M	0		
LVDCI_DV	2_18				1M	0		
LVCMOS2	5	-	0	2.5	1M	0	1.25	
LVDCI_25					1M	0		
LVDCI_DV	2_25				1M	0		
LVCMOS3	3	-	0	3.3	1M	0	1.65	
LVDCI_33					1M	0		
LVDCI_DV	2_33				1M	0		
LVTTL		-	0	3.3	1M	0	1.4	
PCl33_3	Rising	-	Note 2	Note 2	25	0	0.94	
	Falling				25	3.3	2.03	
SSTL18_I	1	0.9	V _{REF} - 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
SSTL18_I_	_DCI				50	0.9		
SSTL2_I		1.25	V _{REF} - 0.75	V _{REF} + 0.75	50	1.25	V_{REF}	
SSTL2_I_[OCI				50	1.25		
SSTL2_II		1.25	V _{REF} - 0.75	V _{REF} + 0.75	25	1.25	V_{REF}	
SSTL2_II_	DCI				50	1.25		
Differentia	I	1				1		
LDT_25		-	0.6 - 0.125	0.6 + 0.125	60	0.6	0.6	
LVDS_25		-	1.2 - 0.125	1.2 + 0.125	50	1.2	1.2	
LVDS_25_	DCI				1M	0		
BLVDS_25		-	1.2 - 0.125	1.2 + 0.125	1M	0	1.2	
LVDSEXT_	_25	-	1.2 - 0.125	1.2 + 0.125	50	1.2	1.2	
LVDSEXT_	_25_DCI				-	-		
ULVDS_25	;	-	0.6 - 0.125	0.6 + 0.125	60	0.6	0.6	
LVPECL_2	5	-	1.6 - 0.3	1.6 + 0.3	1M	0	1.6	
RSDS_25		-	1.3 - 0.1	1.3 + 0.1	50	1.2	1.2	

V_{REF} -- The reference voltage for setting the input switching threshold

 $V_{\mbox{\scriptsize M}}$ -- Voltage of measurement point on signal transition

V_L -- Low-level test voltage at Input pin

V_H -- High-level test voltage at Input pin

 R_T -- Effective termination resistance, which takes on a value of $1M\Omega$ when no parallel termination is required

V_T -- Termination voltage

C_L -- Load capacitance at Output pin, which is 0 pF for all standards

2. According to the PCI specification.

^{1.} Descriptions of the relevant symbols are as follows:

The capacitive load (C_L) is connected between the output and GND. The Output timing for all standards, as published in the speed files and the data sheet, is always based on a C_L value of zero unless otherwise specified. High-impedance probes (less than 1 pF) are used for all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those measurements to produce the final timing numbers as published in the speed files and data sheet.

Using IBIS Models to Simulate Load Conditions in Application

IBIS Models permit the most accurate prediction of timing delays for a given application. The parameters found in the IBIS model (V_{REF}, R_{REF}, C_{REF}, and V_{MEAS}) correspond directly with the parameters used in Table 20, V_T, R_T, C_L, and V_M. Do not confuse V_{REF} (the termination voltage) from the IBIS model with V_{REF} (the input-switching threshold) from the table! The four parameters describe all relevant output test conditions.

IBIS models are found at the following link:

http://www.xilinx.com/support/sw ibis.htm

Simulate delays for a given application according to its specific load conditions as follows:

- Simulate the desired signal standard with the output driver connected to the test setup shown in Figure 4. Use parameter values V_T, R_T, C_L, and V_M from Table 20
- 2. Record the time to V_M.
- Simulate the same signal standard with the output driver connected to the PCB trace with load. Use the appropriate IBIS model (including V_{REF} R_{REF} C_{REF} and V_{MEAS} values) or capacitive value to represent the load.
- 4. Record the time to V_{MEAS}.
- Compare the results of steps 2 and 4. The increase (or decrease) in delay should be added to (or subtracted from) the appropriate Output standard adjustment (Table 19) to yield the worst-case delay of the PCB trace.

Simultaneously Switching Output Guidelines

Table 21: Equivalent V_{CCO}/GND Pairs per Bank

Device	VQ100	TQ144	PQ208	FT256	FG320	FG456	FG676	FG900	FG1156
XC3S50	1	1	2	-	-	-	-	-	-
XC3S200	1	1	2	3	-	-	-	-	-
XC3S400	-	1	2	3	3	5	-	-	-
XC3S1000	-	-	2	3	3	5	5	-	-
XC3S1500	-	-	-	-	3	5	6	-	-
XC3S2000	-	-	-	-	-	-	6	9	-
XC3S4000	-	-	-	-	-	-	-	10	12
XC3S5000	-	-	-	-	-	-	-	10	12

Table 22: Maximum Number of Simultaneously Switching Outputs per V_{CCO} -GND Pair

Switching Out	,	- 000		kage
Signal S	Standard		VQ100, TQ144, PQ208	FT256, FG320, FG456, FG676, FG900, FG1156
Single-Ended S	tandards	6		
GTL				4
GTLP_DCI				3
GTLP				4
GTLP_DCI				3
HSTL_I				17
HSTL_I_DCI				17
HSTL_III				7
HSTL_III_DCI				7
HSTL_I_18				17
HSTL_I_DCI_	18			
HSTL_II_18				9
HSTL_II_DCI_	18			
HSTL_III_18				8
HSTL_III_DCI_	_18			
LVCMOS12	Slow	2		55
		4		32
		6		18
	Fast	2		31
		4		13
		6		9
LVCMOS15	Slow	2		55
		4		31
		6		18
		8		15
		12		10
	Fast	2		25
		4		16
		6		13
		8		11
		12		7
LVDCI_15				10
LVDCI_DV2_1	5			5

Table 22: Maximum Number of Simultaneously Switching Outputs per V_{CCO}-GND Pair (Continued)

3 - 4		000	Pac	kage
Signal Si	tandard		VQ100, TQ144, PQ208	FT256, FG320, FG456, FG676, FG900, FG1156
LVCMOS18	Slow	2		64
		4		34
		6		22
		8		18
		12		13
		16		10
	Fast	2		36
		4		21
		6		13
		8		10
		12		9
		16		6
LVDCI_18	 			11
LVDCI_DV2_18	}			6
LVCMOS25	Slow	2		76
		4		46
		6		33
		8		24
		12		18
		16		11
		24		7
	Fast	2		42
		4		20
		6		15
		8		13
		12		11
		16		8
		24		5
LVDCI_25				13
LVDCI_DV2_25	,			7

Table 22: Maximum Number of Simultaneously Switching Outputs per V_{CCO}-GND Pair (Continued)

ownerming outputs per 1000			Package			
Signal Si	andard		VQ100, TQ144, PQ208	FT256, FG320, FG456, FG676, FG900, FG1156		
LVCMOS33 ⁽¹⁾	Slow	2		76		
		4		46		
		6		27		
		8		20		
		12		13		
		16		10		
		24		9		
	Fast	2		44		
		4		26		
		6		16		
		8		12		
		12		10		
		16		7		
		24		3		
LVDCI_33 ⁽¹⁾				13		
LVDCI_DV2_33	3(1)			7		
LVTTL ⁽¹⁾	Slow	2		60		
		4		41		
		6		29		
		8		22		
		12		13		
		16		11		
		24		9		
	Fast	2		34		
		4		20		
		6		15		
		8		12		
		12		10		
		16		9		
		24		5		

Table 22: Maximum Number of Simultaneously Switching Outputs per V_{CCO}-GND Pair (Continued)

Package		
VQ100, TQ144, PQ208	FT256, FG320, FG456, FG676, FG900, FG1156	
	17	
	13	
	15	
	9	
	5	
1	1	
	VQ100, TQ144,	

 The numbers in this table are recommendations that assume sound board layout practice. For cases that exceed these maximum numbers, perform IBIS simulations to confirm signal integrity.

Core Logic Timing

Table 23: CLB Timing

			-5	-	-4	
Symbol	Description	Min	Max	Min	Max	Units
Clock-to-Outpu	ut Times					
T _{CKO}	When reading from the FFX (FFY) Flip-Flop, the time from the active transition at the CLK input to data appearing at the XQ (YQ) output	-	0.67	-	0.77	ns
Setup Times			11.	1		
T _{DYCK}	Time from the setup of data at the D input to the active transition at the CLK input of FFX	0.08	-	0.09	-	ns
T _{DXCK}	Time from the setup of data at the D input to the active transition at the CLK input of FFY	0.08	-	0.09	-	ns
Hold Times			11.	1		
T _{CKDY}	Time from the active transition at FFY's CLK input to the point where data is last held at the D input	0.01	-	0.01	-	ns
T _{CKDX}	Time from the active transition at FFX's CLK input to the point where data is last held at the D input	0.01	-	0.01	-	ns
Clock Timing			1	1	1	
T _{CH}	The High pulse width of the CLB's CLK signal	0.76	-	0.87	-	ns
T _{CL}	The Low pulse width of the CLK signal	0.76	-	0.87	-	ns
F _{TOG}	Maximum toggle frequency (for export control)	-	500	-	500	MHz
Propagation Ti	imes			•	1	•
T _{ILO}	The time it takes for data to travel from the CLB's F (G) input to input to the X (Y) output	-	0.65	-	0.75	ns

^{1.} The numbers in this table are based on the operating conditions set forth in Table 5.

Table 24: Synchronous 18 x 18 Multiplier Timing

				Speed	Grade		
				·5	-	4	
Symbol	Description	P Outputs	Min	Max	Min	Max	Units
Clock-to-Outp	ut Times						
T _{MULTCK}	When reading from the Multiplier, the time from the active transition at the C	P[0]	-	0.76	-	0.88	ns
		P[15]	-	0.97	-	1.11	ns
	clock input to data	P[17]	-	1.17	-	1.34	ns
	appearing at the P outputs	P[19]	-	1.37	-	1.58	ns
		P[23]	-	1.78	-	2.04	ns
		P[31]	-	2.59	-	2.97	ns
		P[35]	-	3.00	-	3.44	ns
Setup Times		1		1			1
T _{MULIDCK}	Time from the setup of data at the A and B inputs to the active transition at the C input of the Multiplier	-	2.18	-	2.50	-	ns
Hold Times		· "		•			
T _{MULCKID}	Time from the active transition at the Multiplier's C input to the point where data is last held at the A and B inputs	-	0	-	0	-	ns

Table 25: Asynchronous 18 x 18 Multiplier Timing

			Speed	Grade	
			-5	-4	
Symbol	Description	P Outputs	Max	Max	Units
Propagation Tin	nes				
T _{MULT}	The time it takes for data to travel	P[0]	1.25	1.44	ns
	from the A and B inputs to the P outputs	P[15]	2.88	3.31	ns
	Carpato	P[17]	3.10	3.56	ns
		P[19]	3.32	3.81	ns
		P[23]	3.75	4.31	ns
		P[31]	4.62	5.31	ns
		P[35]	5.06	5.81	ns

^{1.} The numbers in this table are based on the operating conditions set forth in Table 5.

I. The numbers in this table are based on the operating conditions set forth in Table 5.

Table 26: Block RAM Timing

			Speed	Grade		
		-	5	-	4	
Symbol	Description	Min	Max	Min	Max	Units
Clock-to-Outpu	t Times					
T _{BCKO}	When reading from the Block RAM, the time from the active transition at the CLK input to data appearing at the DOUT output	-	2.10	-	2.41	ns
Setup Times			<u> </u>	I	1	1
T _{BDCK}	Time from the setup of data at the DIN inputs to the active transition at the CLK input of the Block RAM	0.43	-	0.49	-	ns
Hold Times			<u>I</u>	I.	1	1
T _{BCKD}	Time from the active transition at the Block RAM's CLK input to the point where data is last held at the DIN inputs	0	-	0	-	ns
Clock Timing			,			•
T _{BPWH}	The High pulse width of the Block RAM's CLK signal	1.26	-	1.44	-	ns
T _{BPWL}	The Low pulse width of the CLK signal	1.26	-	1.44	-	ns

^{1.} The numbers in this table are based on the operating conditions set forth in Table 5.

Digital Clock Manager (DCM) Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 27 and Table 28) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 29 through Table 32) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 27 and Table 28.

Table 27: Recommended Operating Conditions for the DLL

			_			Speed	Grade		
			Frequency Mode/	Device	-	5	-	4	
	Symbol	Description	F _{CLKIN} Range	Revision	Min	Max	Min	Max	Units
Input Fi	requency Ranges								
F _{CLKIN}	CLKIN_FREQ_DLL_LF	Frequency for the	Low	All	24 ⁽²⁾	165 ⁽³⁾	24	165 ⁽³⁾	MHz
	CLKIN_FREQ_DLL_HF	CLKIN input	High	0	48	280 ⁽³⁾	48	280 ⁽³⁾	MHz
				Future	48	326	48	TBD	MHz
Input P	ulse Requirements				•			1	,
CLKIN_	PULSE	CLKIN pulse width as	All	0	45%	55%	45%	55%	-
		a percentage of the CLKIN period	F _{CLKIN} ≤ 200 MHz	Future	40%	60%	40%	60%	-
		OLIVITY PORIOG	F _{CLKIN} > 200 MHz		45%	55%	45%	55%	-
Input C	lock Jitter and Delay Pati	h Variation							
CLKIN_	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at	Low	All	-300	+300	-300	+300	ps
CLKIN_	CYC_JITT_DLL_HF	the CLKIN input	High		-150	+150	-150	+150	ps
CLKIN_	CYC_PER_DLL_LF	Period jitter at the	Low		-1	+1	-1	+1	ns
CLKIN_	CYC_PER_DLL_HF	CLKIN input	High		-1	+1	-1	+1	ns
CLKFB_	_DELAY_VAR_EXT	Allowable variation of off-chip feedback delay from the DCM output to the CLKFB input	All		-1	+1	-1	+1	ns

- DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
- Use of the DFS permits lower F_{CLKIN} frequencies. See Table 29.
- To double the maximum effective F_{CLKIN} limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE.

Table 28: Switching Characteristics for the DLL

						Speed	Grade	•	
		Frequency Mode /		Device	-	5	-4		
Symbol	Description	Frequency Mode / F _{CLKIN} Range		Revision		Max	Min	Max	Units
Output Frequency Ranges	<u> </u>								
CLKOUT_FREQ_1X_LF	Frequency for the CLK0, CLK90, CLK180, and CLK270 outputs	Low		All	24	165	24	165	MHz
CLKOUT_FREQ_1X_HF	Frequency for the CLK0 and CLK180	High	0	No phase shifting	48	280	48	280	MHz
	outputs			Phase shifting	48	200	48	200	MHz
				Future	48	326	48	TBD	MHz
CLKOUT_FREQ_2X_LF	Frequency for the	Low		0(3)	48	330	48	330	MHz
	CLK2X and CLK2X180 outputs			Future	48	330	48	330	MHz
CLKOUT_FREQ_DV_LF	Frequency for the	Low		All	1.5	100	1.5	100	MHz
CLKOUT_FREQ_DV_HF	CLKDV output	High		All	3	215	3	215	MHz
Output Clock Jitter									
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output	All		All	-100	+100	-100	+100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output				-150	+150	-150	+150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output				-150	+150	-150	+150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output				-150	+150	-150	+150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs				-200	+200	-200	+200	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division				-150	+150	-150	+150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division				-300	+300	-300	+300	ps
Duty Cycle	·		1		1	1			1
CLKOUT_DUTY_CYCLE_DLL ⁽⁴⁾	Duty cycle variation for the CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV outputs	All		All	-150	+150	-150	+150	ps

Table 28: Switching Characteristics for the DLL (Continued)

					Speed	Grade		
		Frequency Mode /	Device	-	5	-	4	
Symbol	Description	F _{CLKIN} Range	Revision	Min	Max	Min	Max	Units
Phase Alignment								
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN and CLKFB inputs	All	All	-50	+50	-50	+50	ps
CLKOUT_PHASE	Phase offset between any DLL output and any other DCM outputs	All	All	-140	+140	-140	+140	ps
Lock Time		,						
LOCK_DLL_24_30	Time required to	24 MHz ≤ F _{CLKIN} ≤ 30 MHz	All	-	960	-	960	μs
LOCK_DLL_30_40	achieve lock	30 MHz < F _{CLKIN} ≤ 40 MHz		-	720	-	720	μs
LOCK_DLL_40_50		40 MHz < F _{CLKIN} ≤ 50 MHz		-	400	-	400	μs
LOCK_DLL_50_60		50 MHz < F _{CLKIN} ≤ 60 MHz		-	200	-	200	μs
LOCK_DLL_60		F _{CLKIN} > 60 MHz		-	160	-	160	μs
Delay Lines	1	1			1	ı		-
DCM_TAP	Delay tap resolution	All	All	30.0	60.0	30.0	60.0	ps

- The numbers in this table are based on the operating conditions set forth in Table 5 and Table 27.

 DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use. For Rev. 0 devices only, use feedback from the CLK0 output (instead of the CLK2X output) and set the CLK_FEEDBACK attribute to 3.
- This specification only applies if the attribute *DUTY_CYCLE_CORRECTION* = TRUE.

Table 29: Recommended Operating Conditions for the DFS

					Speed Grade				
			Frequency	-	5	-	4		
	Symbol	Description	Mode	Min	Max	Min	Max	Units	
Input Fre	quency Ranges ⁽²⁾							•	
F _{CLKIN}	CLK_FREQ_FX	Frequency for the	Low	1	210	1	210	MHz	
	CLK_FREQ_FX_HF	CLKIN input	High	48	280	48	280	MHz	
Input Clo	ck Jitter					1	1		
CLKIN_C	YC_JITT_FX_LF	Cycle-to-cycle jitter at	Low	-300	+300	-300	+300	ps	
CLKIN_C	YC_JITT_FX_HF	the CLKIN input	High	-150	+150	-150	+150	ps	
CLKIN_C	YC_PER_FX_LF	Period jitter at the	Low	-1	+1	-1	+1	ns	
CLKIN_C	YC_PER_FX_HF	CLKIN input	High	-1	+1	-1	+1	ns	

- 1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are in use.
- 2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 27.

Table 30: Switching Characteristics for the DFS

					Speed G	arade		
		Frequency	Device	-5	j	-	-4	
Symbol	Description	Mode	Revision	Min	Max	Min	Max	Units
Output Frequency Ranges								
CLKOUT_FREQ_FX_LF	Frequency for the CLKFX	Low	All	24	210	24	210	MHz
CLKOUT_FREQ_FX_HF	and CLKFX180 outputs	High	0	210	280	210	280	MHz
			Future	210	326	210	TBD	MHz
Output Clock Jitter								
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180 outputs	All	All					ps
Duty Cycle ⁽³⁾		1	1					
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLKFX180 outputs	All	All	-100	+100	-100	+100	ps
Phase Alignment	1	1			1	I		
CLKOUT_PHASE	Phase offset between either DFS output and any other DCM output	All	All	-140	+140	-140	+140	ps
Lock Time								
LOCK_FX	Once the CLKIN and CLKFB signals become in-phase, the time it takes for the DCM's LOCKED output to go High.	All	All	-	10.0	-	10.0	ms

- 1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 29.
- DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) is in use.
- The CLKFX and CLKFX180 outputs always approximate 50% duty cycles.

Phase Shifter (PS)

Phase Shifter operation is only supported in the Low frequency mode. For Rev. 0 devices, the Variable Phase mode only permits positive shifts. For any desired negative phase shift (-S), an equivalent positive phase shift (360° – S) is

possible. In order to use the Variable Phase mode, it is necessary to set the BitGen option *Centered_x#y#* option to 0. BitGen is part of the Xilinx development software. The lines to be typed in the command prompt are shown in Table 33, page 33.

Table 31: Recommended Operating Conditions for the PS in Variable Phase Mode

		Fre	equency Mode/	Device	-	-5 -4		4	
Symbol	Description		PSCLK Range	Revision	Min	Max	Min	Max	Units
Operating Frequ	ency Ranges								
PSCLK_FREQ (F _{PSCLK})	Frequency for the PSCLK input		Low	All	1	165	1	165	MHz
Input Pulse and	Requirements								
PSCLK_PULSE	PSCLK pulse width		Low	0	45%	55%	45%	55%	-
	as a percentage of the PSCLK period	Low	F _{PSCLK} ≤ 200 MHz	Future	40%	60%	40%	60%	-
			F _{PSCLK} > 200 MHz		45%	55%	45%	55%	-

Notes:

Table 32: Switching Characteristics for the PS in Variable Phase Mode

				Speed	Grade			
		Frequency	-	5	-	4		
Symbol	Description	Mode	Min	Max	Min	Max	Units	
Phase Shifting Range								
FINE_SHIFT_RANGE	Range for variable phase shifting	Low	-	10.0	-	10.0	ns	
Lock Time								
LOCK_DLL_FINE_SHIFT ⁽³⁾	In the Variable Phase mode, the additional time it takes for the DCM's LOCKED output to go High	Low	-		-		ms	

- 1. The numbers in this table are based on the operating conditions set forth in Table 5 and Table 31.
- 2. The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE.
- 3. When in the Variable Phase mode, add the values for this parameter to the appropriate LOCK_DLL parameter from Table 28 for the total lock time.

The PS specifications in this table apply when the PS attribute CLKOUT_PHASE_SHIFT= VARIABLE.

Table 33: BitGen Commands for Variable Phase Mode

Device	DCM Location (Device Top View)	BitGen Command Line
XC3S50	Upper	bitgen -g centered_x0y1:0 design_name.ncd
	Lower	bitgen -g centered_x0y0:0 design_name.ncd
All others	Upper left	bitgen -g centered_x0y1:0 design_name.ncd
	Upper right	bitgen -g centered_x1y1:0 design_name.ncd
	Lower left	bitgen -g centered_x0y0:0 design_name.ncd
	Lower right	bitgen -g centered_x1y0:0 design_name.ncd

Configuration and JTAG Timing

Notes:

- 1. The V_{CCINT} , V_{CCAUX} , and V_{CCO} supplies may be applied in any order.
- 2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
- 3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 M2).

Figure 5: Waveforms for Power-On and the Beginning of Configuration

Table 34: Power-On Timing and the Beginning of Configuration

			All Spee	d Grades	
Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of V_{CCINT} , V_{CCAUX} , and	XC3S50	-	5	ms
	V _{CCO} Bank 4 supply voltages (whichever occurs last)	XC3S200	-	5	ms
	to the rising transition of the INIT_B pin	XC3S400	-	5	ms
		XC3S1000	-	5	ms
		XC3S1500	-	7	ms
		XC3S2000	-	7	ms
		XC3S4000	-	7	ms
		XC3S5000	-	7	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.3	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to	XC3S50	-	2	ms
	the rising transition on the INIT_B pin	XC3S200	-	2	ms
		XC3S400	-	2	ms
		XC3S1000	-	2	ms
		XC3S1500	-	3	ms
		XC3S2000	-	3	ms
		XC3S4000	-	3	ms
		XC3S5000	-	3	ms
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4.0	μs

- 1. The numbers in this table are based on the operating conditions set forth in Table 5.
- 2. Power-on reset and the clearing of configuration memory occurs during this period.
- 3. This specification applies only for the Master Serial and Master Parallel modes.

1. The CS_B, WRITE_B, and BUSY signals are not used in the serial modes. Keep the CS_B and WRITE_B inputs inactive (i.e., both pins High).

Figure 6: Waveforms for Master and Slave Serial Configuration

Table 35: Timing for the Master and Slave Serial Configuration Modes

			All Spee	d Grades		
Symbol	Description	Slave/Master	Min	Max	Units	
Clock-to-Output	Times					
T _{CCO}	The time from the rising transition on the CCLK pin to data appearing at the DOUT pin	Both	-	12.0	ns	
Setup Times		,				
T _{DCC}	T _{DCC} The time from the setup of data at the DIN pin to the rising transition at the CCLK pin		-	10.0	ns	
Hold Times						
T _{CCD}	The time from the rising transition at the CCLK pin to the point when data is last held at the DIN pin		-	0	ns	
Clock Timing						
T _{CCH}	The High pulse width at the CCLK input pin	Slave	5.0	-	ns	
T _{CCL}	The Low pulse width at the CCLK input pin		5.0	-	ns	
F _{CCSER}	Frequency of the clock signal at the CCLK input pin		-	66	MHz	
ΔF _{CCSER}	Variation from the generated CCLK frequency set using the ConfigRate BitGen option	Master	-50%	+50%	-	

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 5.

1. Switching RDWR_B High or Low while holding CS_B Low asynchronously aborts configuration.

Figure 7: Waveforms for Master and Slave Parallel Configuration

Table 36: Timing for the Master and Slave Parallel Configuration Modes

			All Speed Grades		
Symbol	Description	Slave/Master	Min	Max	Units
Clock-to-Outp	out Times				
T _{SMCKBY}	The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin	Slave	-	12.0	ns
Setup Times		1	II.	1	
T _{SMDCC}	The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin	Both	10.0	-	ns
T _{SMCSCC}	The time from the setup of a logic level at the CS_B pin to the rising transition at the CCLK pin		10.0	-	ns
T _{SMCCW} ⁽²⁾	The time from the setup of a logic level at the RDWR_B pin to the rising transition at the CCLK pin		10.0	-	ns

Table 36: Timing for the Master and Slave Parallel Configuration Modes (Continued)

				All Spee	d Grades	
Symbol	Descri	ption	Slave/Master	Min	Max	Units
Hold Times						
T _{SMCCD}	The time from the rising transi point when data is last held at	Both	0	-	ns	
T _{SMCCCS}	The time from the rising transi point when a logic level is last			0	-	ns
T _{SMWCC} ⁽²⁾	The time from the rising transi point when a logic level is last		0	-	ns	
Clock Timing						
T _{CCH}	The High pulse width at the C	CLK input pin	Slave	5	-	ns
T _{CCL}	The Low pulse width at the CO	CLK input pin		5	-	ns
F _{CCPAR}	Frequency of the clock signal	Not using the BUSY pin ⁽³⁾		-	66	MHz
	at the CCLK input pin	Using the BUSY pin		-	100	MHz
ΔF_{CCPAR}	Variation from the generated CCLK frequency set using the BitGen option ConfigRate		Master	-50%	+50%	-

- 1. The numbers in this table are based on the operating conditions set forth in Table 5.
- 2. RDWR_B is synchronized to CCLK for the purpose of performing the Abort operation. The same pin asynchronously controls the driver impedance of the D0 D7 pins. To avoid contention when writing configuration data to the D0 D7 bus, do not bring RDWR_B High when CS_B is Low.
- 3. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.

Figure 8: JTAG Waveforms

Table 37: Timing for the JTAG Test Access Port

		All Spee	All Speed Grades		
Symbol	Description	Min	Max	Units	
Clock-to-Outpu	t Times				
T _{TCKTDO}	The time from the falling transition on the TCK pin to data appearing at the TDO pin	-	11.0	ns	
Setup Times					
T _{TDITCK}	The time from the setup of data at the TDI pin to the rising transition at the TCK pin	5.0	-	ns	
T _{TMSTCK}	The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin	5.0	-	ns	
Hold Times					
T _{TCKTDI}	The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin	0	-	ns	
T _{TCKTMS}	The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin		-	ns	
Clock Timing					
T _{CCH}	The High pulse width at the TCK pin	5	-	ns	
T _{CCL}	The Low pulse width at the TCK pin	5	-	ns	
F _{TCK}	Frequency of the TCK signal	-	33	MHz	

1. The numbers in this table are based on the operating conditions set forth in Table 5.

Revision History

Date	Version No.	Description
04/11/03	1.0	Initial Xilinx release.
07/11/03	1.1	Extended Absolute Maximum Rating for junction temperature in Table 1. Added numbers for typical quiescent supply current (Table 7) and DLL timing.
02/06/04	1.2	Revised V _{IN} maximum rating (Table 1). Added power-on requirements (Table 3), leakage current number (Table 6), and differential output voltage levels (Table 11) for Rev. 0. Published new quiescent current numbers (Table 7). Updated pull-up and pull-down resistor strengths (Table 6). Added LVDCI_DV2 and LVPECL standards (Table 10 and Table 11). Changed CCLK setup time (Table 35 and Table 36).
03/04/04	1.3	Added timing numbers from v1.29 speed files as well as DCM timing (Table 27 through Table 32).

The Spartan-3 Family Data Sheet

DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)

Spartan-3 FPGA Family: Pinout Descriptions

DS099-4 (v1.4) February 27, 2004

Advance Product Specification

Introduction

This data sheet module describes the various pins on a Spartan™-3 FPGA and how they connect to the supported component packages.

- The Pin Types section categorizes all of the FPGA pins by their function type.
- The Pin Definitions section provides a top-level description for each pin on the device.
- The Detailed, Functional Pin Descriptions section offers significantly more detail about each pin, especially for the dual- or special-function pins used during device configuration.
- Some pins have associated optional behavior, controlled by settings in the configuration bitstream.
 These options are described in the Bitstream Options section.

 The Package Overview section describes the various packaging options available for Spartan-3 FPGAs. Detailed pin list tables and footprint diagrams are provided for each package solution.

Pin Descriptions

Pin Types

A majority of the pins on a Spartan-3 FPGA are general-purpose, user-defined I/O pins. There are, however, up to 12 different functional types of pins on Spartan-3 packages, as outlined in Table 1. In the package footprint drawings that follow, the individual pins are color-coded according to pin type as in the table.

Table 1: Types of Pins on Spartan-3 FPGAs

Type/ Color Code	Description	Pin Name(s) in Type
I/O	Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential I/Os.	IO, IO_Lxxy_#
DUAL	Dual-purpose pin used in some configuration modes during the configuration process and then usually available as a user I/O after configuration. If the pin is not used during configuration, this pin behaves as an I/O-type pin. There are 12 dual-purpose configuration pins on every package.	IO_Lxxy_#/DIN/D0, IO_Lxxy_#/D1, IO_Lxxy_#/D2, IO_Lxxy_#/D3, IO_Lxxy_#/D4, IO_Lxxy_#/D5, IO_Lxxy_#/D6, IO_Lxxy_#/D7, IO_Lxxy_#/CS_B, IO_Lxxy_#/RDWR_B, IO_Lxxy_#/BUSY/DOUT, IO_Lxxy_#/INIT_B
CONFIG	Dedicated configuration pin. Not available as a user-I/O pin. Every package has seven dedicated configuration pins. These pins are powered by VCCAUX.	CCLK, DONE, M2, M1, M0, PROG_B, HSWAP_EN
JTAG	Dedicated JTAG pin. Not available as a user-I/O pin. Every package has four dedicated JTAG pins. These pins are powered by VCCAUX.	TDI, TMS, TCK, TDO
DCI	Dual-purpose pin that is either a user-I/O pin or used to calibrate output buffer impedance for a specific bank using Digital Controlled Impedance (DCI). There are two DCI pins per I/O bank.	IO/VRN_# IO_Lxxy_#/VRN_# IO/VRP_# IO_Lxxy_#/VRP_#
VREF	Dual-purpose pin that is either a user-I/O pin or, along with all other VREF pins in the same bank, provides a reference voltage input for certain I/O standards. If used for a reference voltage within a bank, all VREF pins within the bank must be connected.	IO/VREF_# IO_Lxxy_#/VREF_#

© 2003-2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Table 1: Types of Pins on Spartan-3 FPGAs (Continued)

Type/ Color Code	Description	Pin Name(s) in Type
GND	Dedicated ground pin. The number of GND pins depends on the package used. All must be connected.	GND
VCCAUX	Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package used. All must be connected to +2.5V.	VCCAUX
VCCINT	Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the package used. All must be connected to +1.2V.	VCCINT
VCCO	Dedicated I/O bank, output buffer power supply pin. Along with other VCCO pins in the same bank, this pin supplies power to the output buffers within the I/O bank and sets the input threshold voltage for some I/O standards.	VCCO_# TQ144 Package Only: VCCO_LEFT, VCCO_TOP, VCCO_RIGHT, VCCO_BOTTOM
GCLK	Dual-purpose pin that is either a user-I/O pin or an input to a specific global buffer input. Every package has eight dedicated GCLK pins.	IO_Lxxy_#/GCLK0, IO_Lxxy_#/GCLK1, IO_Lxxy_#/GCLK2, IO_Lxxy_#/GCLK3, IO_Lxxy_#/GCLK4, IO_Lxxy_#/GCLK5, IO_Lxxy_#/GCLK6, IO_Lxxy_#/GCLK7
N.C.	This package pin is not connected in this specific device/package combination but may be connected in larger devices in the same package.	N.C.

1. # = I/O bank number, an integer between 0 and 7.

I/Os with Lxxy_# are part of a differential output pair. 'L' indicates differential output capability. The "xx" field is a two-digit integer, unique to each bank that identifies a differential pin-pair. The 'y' field is either 'P' for the true signal or 'N' for the inverted signal in the differential pair. The '#' field is the I/O bank number.

Pin Definitions

Table 2 provides a brief description of each pin listed in the Spartan-3 pinout tables and package footprint diagrams. Pins are categorized by their pin type, as listed in Table 1. See **Detailed, Functional Pin Descriptions** for more information.

Table 2: Spartan-3 Pin Definitions

Direction	Description
/O pins	
User-defined as input, output, bidirectional, three-state output, open-drain output, open-source output	User I/O: Unrestricted single-ended user-I/O pin. Supports all I/O standards except the differential standards.
User-defined as input, output, bidirectional, three-state output, open-drain output, open-source output	User I/O, Half of Differential Pair: Unrestricted single-ended user-I/O pin or half of a differential pair. Supports all I/O standards including the differential standards.
configuration pins	
Input during configuration	Configuration Data Port:
Possible bidirectional I/O after configuration if SelectMap port is retained.	In Parallel (SelectMAP) modes, D0-D7 are byte-wide configuration data pins. These pins become user I/Os after configuration unless the SelectMAP port is retained via the Persist bitstream option.
Otherwise, user I/O after configuration	In Serial modes, DIN (D0) serves as the single configuration data input. This pin becomes a user I/O after configuration unless retained by the Persist bitstream option.
Input during Parallel mode configuration Possible input after configuration if SelectMap port is retained. Otherwise, user I/O after configuration	Chip Select for Parallel Mode Configuration: In Parallel (SelectMAP) modes, this is the active-Low Chip Select signal. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option.
Input during Parallel mode	Read/Write Control for Parallel Mode Configuration:
configuration Possible input after configuration if SelectMap port is retained. Otherwise, user I/O after configuration	In Parallel (SelectMAP) modes, this is the active-Low Write Enable, active-High Read Enable signal. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option.
Output during configuration	Configuration Data Rate Control for Parallel Mode, Serial Data
Possible output after configuration if SelectMap port is retained. Otherwise, user I/O after configuration	Output for Serial Mode: In Parallel (SelectMAP) modes, BUSY throttles the rate at which configuration data is loaded. This pin becomes a user I/O after configuration unless the SelectMAP port is retained via the Persist bitstream option. In Serial modes, DOUT provides preamble and configuration data to downstream devices in a multi-FPGA daisy-chain. This pin becomes a user I/O after configuration.
	/O pins User-defined as input, output, bidirectional, three-state output, open-drain output, open-source output User-defined as input, output, bidirectional, three-state output, open-drain output, open-drain output, open-source output configuration pins Input during configuration Possible bidirectional I/O after configuration if SelectMap port is retained. Otherwise, user I/O after configuration Possible input after configuration Possible input after configuration Input during Parallel mode configuration Otherwise, user I/O after configuration Input during Parallel mode configuration Otherwise, user I/O after configuration Otherwise, user I/O after configuration if SelectMap port is retained. Otherwise, user I/O after configuration Output during configuration Possible output after configuration Output during configuration Possible output after configuration if SelectMap port is retained. Otherwise, user I/O after configuration if SelectMap port is retained.

Table 2: Spartan-3 Pin Definitions (Continued)

Pin Name	Direction	Description
IO_Lxxy_#/INIT_B	Bidirectional (open-drain) during configuration User I/O after configuration	Initializing Configuration Memory/Detected Configuration Error: When Low, this pin indicates that configuration memory is being cleared. When held Low, this pin delays the start of configuration. After this pin is released or configuration memory is cleared, the pin goes High. During configuration, a Low on this output indicates that a configuration data error occurred. This pin becomes a user I/O after configuration.
DCI: Digitally Controlle	ed Impedance reference resisto	r input pins
IO_Lxxy_#/VRN_# or IO/VRN_#	Input when using DCI Otherwise, same as I/O	DCI Reference Resistor for NMOS I/O Transistor (per bank): If using DCI, a 1% precision impedance-matching resistor is connected between this pin and the VCCO supply for this bank. Otherwise, this pin is a user I/O.
IO_Lxxy_#/VRP_# or IO/VRP_#	Input when using DCI Otherwise, same as I/O	DCI Reference Resistor for PMOS I/O Transistor (per bank): If using DCI, a 1% precision impedance-matching resistor is connected between this pin and the ground supply. Otherwise, this pin is a user I/O.
GCLK: Global clock bu	uffer inputs	
IO_Lxxy_#/GCLK0, IO_Lxxy_#/GCLK1, IO_Lxxy_#/GCLK2, IO_Lxxy_#/GCLK3, IO_Lxxy_#/GCLK4, IO_Lxxy_#/GCLK5, IO_Lxxy_#/GCLK6, IO_Lxxy_#/GCLK7	Input if connected to global clock buffers Otherwise, same as I/O	Global Buffer Input: Direct input to a low-skew global clock buffer. If not connected to a global clock buffer, this pin is a user I/O.
VREF: I/O bank input	reference voltage pins	
IO_Lxxy_#/VREF_# or IO/VREF_#	Voltage supply input when VREF pins are used within a bank. Otherwise, same as I/O	Input Buffer Reference Voltage for Special I/O Standards (perbank): If required to support special I/O standards, all the VREF pins within a bank connect to a input threshold voltage source. If not used as input reference voltage pins, these pins are available as individual user-I/O pins.
CONFIG: Dedicated co	onfiguration pins	
CCLK	Input in Slave configuration modes Output in Master configuration modes	Configuration Clock: The configuration clock signal synchronizes configuration data.
PROG_B	Input	Program/Configure Device: Active Low asynchronous reset to configuration logic. Asserting PROG_B Low for an extended period delays the configuration process. This pin has an internal weak pull-up resistor during configuration.

Table 2: Spartan-3 Pin Definitions (Continued)

Pin Name	Direction	Description
DONE	Bidirectional with open-drain	Configuration Done, Delay Start-up Sequence:
	or totem-pole Output	A Low-to-High output transition on this bidirectional pin signals the end of the configuration process.
		The FPGA produces a Low-to-High transition on this pin to indicate that the configuration process is complete. The DriveDone bitstream generation option defines whether this pin functions as a totem-pole output that actively drives High or as an open-drain output. An open-drain output requires a pull-up resistor to produce a High logic level. The open-drain option permits the DONE lines of multiple FPGAs to be tied together, so that the common node transitions High only after all of the FPGAs have completed configuration. Externally holding the open-drain output Low delays the start-up sequence, which marks the transition to user mode.
M0, M1, M2	Input	Configuration Mode Selection:
		These inputs select the configuration mode. The logic levels applied to the mode pins are sampled on the rising edge of INIT_B. See Table 7.
HSWAP_EN	Input	Disable Weak Pull-up Resistors During Configuration:
		A Low on this pin enables weak pull-up resistors on all pins that are not actively involved in the configuration process. A High value disables all pull-ups, allowing the non-configuration pins to float.
JTAG: JTAG interfa	ace pins	
TCK	Input	JTAG Test Clock:
		The TCK clock signal synchronizes all JTAG port operations.
TDI	Input	JTAG Test Data Input:
		TDI is the serial data input for all JTAG instruction and data registers.
TMS	Input	JTAG Test Mode Select:
		The serial TMS input controls the operation of the JTAG port.
TDO	Output	JTAG Test Data Output:
		TDO is the serial data output for all JTAG instruction and data registers.
VCCO: I/O bank or	utput voltage supply pins	
VCCO_#	Supply	Power Supply for Output Buffer Drivers (per bank):
		These pins power the output drivers within a specific I/O bank.
VCCAUX: Auxiliary	voltage supply pins	
VCCAUX	Supply	Power Supply for Auxiliary Circuits:
		+2.5V power pins for auxiliary circuits, including the Digital Clock Managers (DCMs), the dedicated configuration pins (CONFIG), and the dedicated JTAG pins. All VCCAUX pins must be connected.
VCCINT: Internal of	core voltage supply pins	
VCCINT	Supply	Power Supply for Internal Core Logic:
		+1.2V power pins for the internal logic. All pins must be connected.

Table 2: Spartan-3 Pin Definitions (Continued)

Pin Name	Direction	Description		
GND: Ground supply pins				
GND	Supply	Ground:		
		Ground pins, which are connected to the power supply's return path. All pins must be connected.		
N.C.: Unconnected pa	N.C.: Unconnected package pins			
N.C.		Unconnected Package Pin:		
		These package pins are unconnected.		

- All unused inputs and bidirectional pins must be tied either High or Low. For unused enable inputs, apply the level that disables the
 associated function. One common approach is to activate internal pull-up or pull-down resistors. An alternative approach is to
 externally connect the pin to either VCCO or GND.
- All outputs are of the totem-pole type i.e., they can drive High as well as Low logic levels except for the cases where "Open Drain" is indicated. The latter can only drive a Low logic level and require a pull-up resistor to produce a High logic level.

Detailed, Functional Pin Descriptions

I/O Type: Unrestricted, General-purpose I/O Pins

After configuration, I/O-type pins are inputs, outputs, bidirectional I/O, three-state outputs, open-drain outputs, or open-source outputs, as defined in the application

Pins labeled "IO" support all SelectIO™ signal standards except differential standards. A given device at most only has a few of these pins.

A majority of the general-purpose I/O pins are labeled in the format "IO_Lxxy_#". These pins support all SelectIO signal standards, including the differential standards such as LVDS, ULVDS, BLVDS, RSDS, or LDT.

For additional information, see the "IOBs" section in Module 2: Functional Description.

Differential Pair Labeling

A pin supports differential standards if the pin is labeled in the format "Lxxy_#". The pin name suffix has the following significance. Figure 1 provides a specific example showing a differential input to and a differential output from Bank 2.

- 'L' indicates differential capability.
- "xx" is a two-digit integer, unique for each bank, that identifies a differential pin-pair.
- 'y' is replaced by 'P' for the true signal or 'N' for the inverted. These two pins form one differential pin-pair.
- "#" is an integer, 0 through 7, indicating the associated I/O bank.

If unused, these pins are in a high impedance state. The Bitstream generator option UnusedPin enables a weak pull-up or pull-down resistor on all unused I/O pins.

Behavior from Power-On through End of Configuration

During the configuration process, all pins that are not actively involved in the configuration process are in a high-impedance state. The HSWAP_EN input determines whether or not weak pull-up resistors are enabled during configuration. HSWAP_EN = 0 enables the weak pull-up resistors. HSWAP_EN = 1 disables the pull-up resistors allowing the pins to float, which is the desired state for hot-swap applications.

Figure 1: Differential Pair Labelling

DUAL Type: Dual-Purpose Configuration and I/O Pins

These pins serve dual purposes. The user-I/O pins are temporarily borrowed during the configuration process to load configuration data into the FPGA. After configuration, these pins are then usually available as a user I/O in the application. If a pin is not applicable to the specific configuration mode—controlled by the mode select pins M2, M1, and M0—then the pin behaves as an I/O-type pin.

There are 12 dual-purpose configuration pins on every package, six of which are part of I/O Bank 4, the other six part of I/O Bank 5. Only a few of the pins in Bank 4 are used in the Serial configuration modes.

See "Configuration" in Module 2: Functional Description.
See "Pin Behavior During Configuration, page 15".

Serial Configuration Modes

This section describes the dual-purpose pins used during either Master or Slave Serial mode. See Table 7 for Mode Select pin settings required for Serial modes. All such pins are in Bank 4 and powered by VCCO 4.

In both the Master and Slave Serial modes, DIN is the serial configuration data input. The D1-D7 inputs are unused in serial mode and behave like general-purpose I/O pins.

In all the cases, the configuration data is synchronized to the rising edge of the CCLK clock signal.

The DIN, DOUT, and INIT_B pins can be retained in the application to support reconfiguration by setting the Persist bitstream generation option. However, the serial modes do not support device readback.

Table 3: Dual-Purpose Pins Used in Master or Slave Serial Mode

Pin Name	Direction	Description
DIN	Input	Serial Data Input:
		During the Master or Slave Serial configuration modes, DIN is the serial configuration data input, and all data is synchronized to the rising CCLK edge. After configuration, this pin is available as a user I/O.
		This signal is located in Bank 4 and its output voltage determined by VCCO_4.
		The BitGen option Persist permits this pin to retain its configuration function in the User mode.
DOUT	Output	Serial Data Output:
		In a multi-FPGA design where all the FPGAs use serial mode, connect the DOUT output of one FPGA—in either Master or Slave Serial mode—to the DIN input of the next FPGA—in Slave Serial mode—so that configuration data passes from one to the next, in daisy-chain fashion. This "daisy chain" permits sequential configuration of multiple FPGAs.
		This signal is located in Bank 4 and its output voltage determined by VCCO_4.
		The BitGen option Persist permits this pin to retain its configuration function in the User mode.
INIT_B	Bidirectional	Initializing Configuration Memory/Configuration Error:
(open-drain		Just after power is applied, the FPGA produces a Low-to-High transition on this pin indicating that initialization (<i>i.e.</i> , clearing) of the configuration memory has finished. Before entering the User mode, this pin functions as an open-drain output, which requires a pull-up resistor in order to produce a High logic level. In a multi-FPGA design, tie (wire AND) the INIT_B pins from all FPGAs together so that the common node transitions High only after all of the FPGAs have been successfully initialized.
		Externally holding this pin Low beyond the initialization phase delays the start of configuration. This action stalls the FPGA at the configuration step just before the mode select pins are sampled.
		During configuration, the FPGA indicates the occurrence of a data (i.e., CRC) error by asserting INIT_B Low.
		This signal is located in Bank 4 and its output voltage determined by VCCO_4.
		The BitGen option Persist permits this pin to retain its configuration function in the User mode.

Figure 2: Configuration Data Byte Mapping to D0-D7 Bits

Parallel Configuration Modes (SelectMAP)

This section describes the dual-purpose configuration pins used during the Master and Slave Parallel configuration modes, sometimes also called the SelectMAP modes. In both Master and Slave Parallel configuration modes, D0-D7 form the byte-wide configuration data input. See Table 7 for Mode Select pin settings required for Parallel modes.

As shown in Figure 2, D0 is the most-significant bit while D7 is the least-significant bit. Bits D0-D3 form the high nibble of the byte and bits D4-D7 form the low nibble.

In the Parallel configuration modes, both the VCCO_4 and VCCO_5 voltage supplies are required and must both equal the voltage of the attached configuration device, typically either 2.5V or 3.3V.

Assert Low both the chip-select pin, CS_B, and the read/write control pin, RDWR_B, to write the configuration data byte presented on the D0-D7 pins to the FPGA on a rising-edge of the configuration clock, CCLK. The order of

CS_B and RDWR_B does not matter, although RDWR_B must be asserted throughout the configuration process. If RDWR_B is de-asserted during configuration, the FPGA aborts the configuration operation.

After configuration, these pins are available as general-purpose user I/O. However, the SelectMAP configuration interface is optionally available for debugging and dynamic reconfiguration. To use these SelectMAP pins after configuration, set the Persist bitstream generation option.

The Readback debugging option, for example, requires the Persist bitstream generation option. During Readback mode, assert CS_B Low, along with RDWR_B High, to read a configuration data byte from the FPGA to the D0-D7 bus on a rising CCLK edge. During Readback mode, D0-D7 are output pins.

In all the cases, the configuration data and control signals are synchronized to the rising edge of the CCLK clock signal.

Table 4: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes

Pin Name	Direction		Description				
D0,	Input during	Configuration Data Port (high nibble):					
D1, D2, D3	configuration Output during	(SelectMAP) c	Collectively, the D0-D7 pins are the byte-wide configuration data port for the Parallel SelectMAP) configuration modes. Configuration data is synchronized to the rising edge of CCLK clock signal.				
	readback	·	The D0-D3 pins are the high nibble of the configuration data byte and located in Bank 4 and powered by VCCO_4.				
		The BitGen opt	The BitGen option Persist permits this pin to retain its configuration function in the User mode.				
D4,	Input during	Configuration Data Port (low nibble):					
D5, D6,	configuration	The D4-D7 pins are the low nibble of the configuration data byte. However, these signals are located in Bank 5 and powered by VCCO_5.					
D7	Output during readback	The BitGen option Persist permits this pin to retain its configuration function in the User mode.					
CS_B	Input	Chip Select for	r Parallel Mode Configuration:				
		Assert this pin Low, together with RDWR_B to write a configuration data byte from the D0-D7 bus to the FPGA on a rising CCLK edge.					
		•	ack, assert this pin Low, along with RDWR_B High, to read a configuration data FPGA to the D0-D7 bus on a rising CCLK edge.				
		This signal is located in Bank 5 and powered by VCCO_5.					
		The BitGen opt	tion Persist permits this pin to retain its configuration function in the User mode				
		CS_B	Function				
		0	FPGA selected. SelectMAP inputs are valid on the next rising edge of CCLK.				
		1	FPGA deselected. All SelectMAP inputs are ignored.				

Table 4: Dual-Purpose Configuration Pins for Parallel (SelectMAP) Configuration Modes (Continued)

Pin Name	Direction	Description					
RDWR_B	Input	Read/Write Co	ontrol for Parallel Mode Configuration:				
		In Master and Slave Parallel modes, assert this pin Low together with CS_B to write a configuration data byte from the D0-D7 bus to the FPGA on a rising CCLK edge. Once asserted during configuration, RDWR_B must remain asserted until configuration is complete.					
			ack, assert this pin High with CS_B Low to read a configuration data byte from he D0-D7 bus on a rising CCLK edge.				
		This signal is	located in Bank 5 and powered by VCCO_5.				
		The BitGen op	tion Persist permits this pin to retain its configuration function in the User mode.				
		RDWR_B	Function				
		0	If CS_B is Low, then load (write) configuration data to the FPGA.				
		1	This option is valid only if the Persist bitstream option is set to Yes. If CS_B is Low, then read configuration data from the FPGA.				
BUSY	Output	Configuration Data Rate Control for Parallel Mode:					
		In the Slave and Master Parallel modes, BUSY throttles the rate at which configuration day is loaded. BUSY is only necessary if CCLK operates at greater than 50 MHz. Ignore BUS for frequencies of 50 MHz and below.					
		When BUSY is Low, the FPGA accepts the next configuration data byte on the next rising CCLK edge for which CS_B and RDWR_B are Low. When BUSY is High, the FPGA ignores the next configuration data byte. The next configuration data value must be held or reloaded until the next rising CCLK edge when BUSY is Low. When CS_B is High, BUSY is in a high impedance state.					
		BUSY	Function				
		0	The FPGA is ready to accept the next configuration data byte.				
	The FPGA is busy processing the current configuration data byt ready to accept the next byte.						
		Hi-Z	If CS_B is High, then BUSY is high impedance.				
			ocated in Bank 4 and its output voltage is determined by VCCO_4. The BitGen permits this pin to retain its configuration function in the User mode.				
INIT_B	Bidirectional (open-drain)	_	nfiguration Memory/Configuration Error (active-Low): on under Serial Configuration Modes, page 7.				

JTAG Configuration Mode

In the JTAG configuration mode all dual-purpose configuration pins are unused and behave exactly like user-I/O pins, as shown in Table 10. See Table 7 for Mode Select pin settings required for JTAG mode.

Dual-Purpose Pin I/O Standard During Configuration

During configuration, the dual-purpose pins default to CMOS input and output levels for the associated VCCO voltage supply pins. For example, in the Parallel configuration modes, both VCCO_4 and VCCO_5 are required. If connected to +2.5V, then the associated pins conform to the

LVCMOS25 I/O standard. If connected to +3.3V, then the pins drive LVCMOS output levels and accept either LVTTL or LVCMOS input levels.

Dual-Purpose Pin Behavior After Configuration

After the configuration process completes, these pins, if they were borrowed during configuration, become user-I/O pins available to the application. If a dual-purpose configuration pin is not used during the configuration process—*i.e.*, the parallel configuration pins when using serial mode—then the pin behaves exactly like a general-purpose I/O. See I/O Type: Unrestricted, General-purpose I/O Pins section above.

DCI: User I/O or Digitally Controlled Impedance Resistor Reference Input

These pins are individual user-I/O pins unless one of the I/O standards used in the bank requires the Digitally Controlled Impedance (DCI) feature. If DCI is used, then 1% precision resistors connected to the VRP_# and VRN_# pins match the impedance on the input or output buffers of the I/O standards that use DCI within the bank.

The '#' character in the pin name indicates the associated I/O bank and is an integer, 0 through 7.

There are two DCI pins per I/O bank, except in the TQ144 package, which does not have any DCI inputs for Bank 5.

VRP and VRN Impedance Resistor Reference Inputs

The 1% precision impedance-matching resistor attached to the VRP_# pin controls the pull-up impedance of PMOS transistor in the input or output buffer. Consequently, the VRP_# pin must connect to ground. The 'P' character in "VRP" indicates that this pin controls the I/O buffer's PMOS transistor impedance. The VRP_# pin is used for both single and split termination.

The 1% precision impedance-matching resistor attached to the VRN_# pin controls the pull-down impedance of NMOS transistor in the input or output buffer. Consequently, the VRN_# pin must connect to VCCO. The 'N' character in "VRN" indicates that this pin controls the I/O buffer's NMOS transistor impedance. The VRN_# pin is only used for split termination.

Each VRN or VRP reference input requires its own resistor. A single resistor cannot be shared between VRN or VRP pins associated with different banks.

During configuration, these pins behave exactly like user-I/O pins. The associated DCI behavior is not active or valid until after configuration completes.

See "Digitally Controlled Impedance (DCI)" in Module 2: Functional Description.

DCI Termination Types

If the I/O in an I/O bank do not use the DCI feature, then no external resistors are required and both the VRP_# and VRN_# pins are available for user I/O, as shown in Figure 3a.

If the I/O standards within the associated I/O bank require single termination—such as GTL_DCI, GTLP_DCI, or HSTL_III_DCI—then only the VRP_# signal connects to a 1% precision impedance-matching resistor, as shown in Figure 3b. The VRN_# pin is available for user I/O.

Finally, if the I/O standards with the associated I/O bank require split termination—such as HSTL_I_DCI,

SSTL2_I_DCI, SSTL2_II_DCI, or LVDS_25_DCI and LVDSEXT_25_DCI receivers—then both the VRP_# and VRN_# pins connect to separate 1% precision impedance-matching resistors, as shown in Figure 3c. Neither pin is available for user I/O.

GCLK: Global Clock Buffer Inputs or General-Purpose I/O Pins

These pins are user-I/O pins unless they specifically connect to one of the eight low-skew global clock buffers on the device, specified using the IBUFG primitive.

There are eight GCLK pins per device and two each appear in the top-edge banks, Bank 0 and 1, and the bottom-edge banks, Banks 4 and 5. See Figure 1 for a picture of bank labeling.

During configuration, these pins behave exactly like user-I/O pins.

CONFIG: Dedicated Configuration Pins

The dedicated configuration pins control the configuration process and are not available as user-I/O pins. Every package has seven dedicated configuration pins. All CONFIG-type pins are powered by the +2.5V VCCAUX supply.

See "Configuration" in Module 2: Functional Description.

CCLK: Configuration Clock

The configuration clock signal on this pin synchronizes the reading or writing of configuration data. This pin is an input for the Slave configuration modes, both parallel and serial.

After configuration, the CCLK pin is in a high-impedance, floating state. By default, CCLK optionally is pulled High to VCCAUX as defined by the CclkPin bitstream selection. Any clocks applied to CCLK after configuration are ignored unless the bitstream option Persist is set to Yes, which retains the configuration interface. Persist is set to No by default. However, if Persist is set to Yes, then all clock edges are potentially active events, depending on the other configuration control signals.

The bitstream generator option ConfigRate determines the frequency of the internally-generated CCLK oscillator required for the Master configuration modes. The actual frequency is approximate due to the characteristics of the silicon oscillator and varies by up to 30% over the temperature and voltage range. By default, CCLK operates at approximately 6 MHz. Via the ConfigRate option, the oscillator frequency is set at approximately 3, 6, 12, 25, or 50 MHz. At power-on, CCLK always starts operation at its lowest frequency. The device does not start operating at the higher frequency until the ConfigRate control bits are loaded during the configuration process.

Figure 3: DCI Termination Types

PROG_B: Program/Configure Device

This asynchronous pin initiates the configuration or re-configuration processes. A Low-going pulse resets the configuration logic, initializing the configuration memory. This initialization process cannot finish until PROG_B returns High. Asserting PROG_B Low for an extended period delays the configuration process. At power-up, there is always a weak pull-up resistor to VCCAUX on this pin. After configuration, the bitstream generator option ProgPin determines whether or not the weak pull-up resistor is present. By default, the ProgPin option retains the weak pull-up resistor.

After configuration, hold the PROG_B input High. Any Low-going pulse on PROG_B restarts the configuration process.

Table 5: PROG_B Operation

PROG_B Input	Response
Power-up	Automatically initiates configuration process.
Low-going pulse	Initiate (re-)configuration process and continue to completion.
Extended Low	Initiate (re-)configuration process and stall process at step where configuration memory is cleared. Process is stalled until PROG_B returns High.
1	If the configuration process is started, continue to completion. If configuration process is complete, stay in User mode.

DONE: Configuration Done, Delay Start-Up Sequence

The FPGA produces a Low-to-High transition on this pin indicating that the configuration process is complete. The bitstream generator option DriveDone determines whether this pin functions as a totem-pole output that can drive High or as an open-drain output. If configured as an open-drain output—which is the default behavior—then a pull-up resistor is required to produce a High logic level. There is a bitstream option that provides an internal weak pull-up resistor, otherwise an external pull-up resistor is required.

The open-drain option permits the DONE lines of multiple FPGAs to be tied together, so that the common node transitions High only after all of the FPGAs have completed configuration. Externally holding the open-drain DONE pin Low delays the start-up sequence, which marks the transition to user mode.

Once the FPGA enters User mode after completing configuration, the DONE pin no longer drives the DONE pin Low. The bitstream generator option DonePin determines whether or not a weak pull-up resistor is present on the DONE pin to pull the pin to VCCAUX. If the weak pull-up resistor is eliminated, then the DONE pin must be pulled High using an external pull-up resistor or one of the FPGAs in the design must actively drive the DONE pin High via the DriveDone bitstream generator option.

The bitstream generator option DriveDone causes the FPGA to actively drive the DONE output High after configuration. This option should only be used in single-FPGA designs or on the last FPGA in a multi-FPGA daisy-chain.

By default, the bitstream generator software retains the weak pull-up resistor and does not actively drive the DONE pin as highlighted in Table 6. Table 6 shows the interaction of these bitstream options in single- and multi-FPGA designs.

Table 6: DonePin and DriveDone Bitstream Option Interaction

DonePin	DriveDone	Single- or Multi- FPGA Design	Comments
Pullnone	No	Single	External pull-up resistor, with value between 330 $\!\Omega$ to 3.3 k $\!\Omega$ required on DONE.
Pullnone	No	Multi	External pull-up resistor, with value between 330 $\!\Omega$ to 3.3 k $\!\Omega$ required on common node connecting to all DONE pins.
Pullnone	Yes	Single	OK, no external requirements.
Pullnone	Yes	Multi	DriveDone on last device in daisy-chain only. No external requirements.
Pullup	No	Single	OK, but weak pull-up on DONE pin has slow rise time. May require 330 Ω pull-up resistor for high CCLK frequencies.
Pullup	No	Multi	External pull-up resistor, with value between 330 $\!\Omega$ to 3.3 k $\!\Omega$ required on common node connecting to all DONE pins.
Pullup	Yes	Single	OK, no external requirements.
Pullup	Yes	Multi	DriveDone on last device in daisy-chain only. No external requirements.

M2, M1, M0: Configuration Mode Selection

These inputs select the mode to configure the FPGA. The logic levels applied to the mode pins are sampled on the rising edge of INIT_B.

Table 7: Spartan-3 Configuration Mode Select Settings

	•		9
Configuration Mode	M2	M1	МО
Master Serial	0	0	0
Slave Serial	1	1	1
Master Parallel	0	1	1
Slave Parallel	1	1	0
JTAG	1	0	1
Reserved	0	0	1
Reserved	0	1	0
Reserved	1	0	0
After Configuration	Х	Х	Х

Notes:

1. X = don't care, either 0 or 1.

In user mode, after configuration successfully completes, any levels applied to these input are ignored. Each of the bitstream generator options M0Pin, M1Pin, and M2Pin determines whether a weak pull-up resistor, weak pull-down resistor, or no resistor is present on its respective mode pin, M0, M1, or M2.

HSWAP_EN: Disable Weak Pull-up Resistors During Configuration

A Low on this asynchronous pin enables weak pull-up resistors on all user I/Os, although only until device configuration

completes. A High disables the weak pull-up resistors (during configuration, which is the desired state for some applications.

Table 8: HSWAP_EN Encoding

HSWAP_EN	Function
During Config	uration
0	Enable weak pull-up resistors on all pins not actively involved in the configuration process. Pull-ups are only active until configuration completes. See Table 10.
1	No pull-up resistors during configuration.
After Configu	ration, User Mode
Х	This pin has no function except during device configuration.

Notes:

1. X = don't care, either 0 or 1.

After configuration, HSWAP_EN essentially becomes a "don't care" input and any pull-up resistors previously enabled by HSWAP_EN are disabled. If a user I/O in the application requires a weak pull-up resistor after configuration, place a PULLUP primitive on the associated I/O pin.

The Bitstream generator option HswapenPin determines whether a weak pull-up resistor to VCCAUX, a weak pull-down resistor, or no resistor is present on HSWAP_EN after configuration.

JTAG: Dedicated JTAG Port Pins

These pins are dedicated connections to the four-wire IEEE 1532/IEEE 1149.1 JTAG port, shown in Figure 4 and

described in Table 9. The JTAG port is used for boundary-scan testing, device configuration, application debugging, and possibly an additional serial port for the application. These pins are dedicated and are not available as user-I/O pins. Every package has four dedicated JTAG pins and these pins are powered by the +2.5V VCCAUX supply.

Figure 4: JTAG Port

Using JTAG Port After Configuration

The JTAG port is always active and available before and after FPGA configuration. However, to create user-defined JTAG instructions and internal JTAG chains, add the BSCAN_SPARTAN3 primitive to the design.

Furthermore, the contents of the User ID register within the JTAG port can be specified as a Bitstream Generation option. By default, the 32-bit User ID register contains 0xFFFFFFF.

Precautions When Using the JTAG Port in 3.3V Environments

The JTAG port is powered by the +2.5V VCCAUX power supply. When connecting to a 3.3V interface, the JTAG input pins must be current-limited to 10 mA or less using a series

resistor. Similarly, the TDO pin is a CMOS output powered from +2.5V. The TDO output can directly drive a 3.3V input but with reduced noise immunity. See the **3.3V-Tolerant Configuration Interface** section in Module 2: **Functional Description** for additional details.

The following interface precautions are recommended when connecting the JTAG port to a 3.3V interface.

- 1. Set any inactive JTAG signals, including TCK, Low when not actively used.
- Limit the drive current into a JTAG input to no more than 10 mA.

VREF: User I/O or Input Buffer Reference Voltage for Special Interface Standards

These pins are individual user-I/O pins unless collectively they supply an input reference voltage, VREF_#, for any SSTL, HSTL, GTL, or GTLP I/Os implemented in the associated I/O bank.

The '#' character in the pin name represents an integer, 0 through 7, that indicates the associated I/O bank.

The VREF function becomes active for this pin whenever a signal standard requiring a reference voltage is used in the associated bank.

If used as a user I/O, then each pin behaves as an independent I/O described in the I/O type section. If used for a reference voltage within a bank, then *all* VREF pins within the bank must be connected to the same reference voltage.

Spartan-3 devices are designed and characterized to support certain I/O standards when VREF is connected to +1.25V, +1.10V, +1.00V, +0.90V, +0.80V, and +0.75V.

During configuration, these pins behave exactly like user-I/O pins.

Table 9: JTAG Pin Descriptions

14

Pin Name	Direction	Description	Bitstream Generation Option
TCK	Input	Test Clock: The TCK clock signal synchronizes all boundary scan operations on its rising edge.	The BitGen option TckPin determines whether a weak pull-up resistor, weak pull-down resistor or no resistor is present.
TDI	Input	Test Data Input: TDI is the serial data input for all JTAG instruction and data registers. This input is sampled on the rising edge of TCK.	The BitGen option TdiPin determines whether a weak pull-up resistor, weak pull-down resistor or no resistor is present.
TMS	Input	Test Mode Select: The TMS input controls the sequence of states through which the JTAG TAP state machine passes. This input is sampled on the rising edge of TCK.	The BitGen option TmsPin determines whether a weak pull-up resistor, weak pull-down resistor or no resistor is present.
TDO	Output	Test Data Output: The TDO pin is the data output for all JTAG instruction and data registers. This output is sampled on the rising edge of TCK. The TDO output is an active totem-pole driver and is not like the open-collector TDO output on Virtex-II Pro™ FPGAs.	The BitGen option TdoPin determines whether a weak pull-up resistor, weak pull-down resistor or no resistor is present.

If designing for footprint compatibility across the range of devices in a specific package, and if the VREF_# pins within a bank connect to an input reference voltage, then also connect any N.C. (not connected) pins on the smaller devices in that package to the input reference voltage. More details are provided later for each package type.

N.C. Type: Unconnected Package Pins

Pins marked as "N.C." are unconnected for the specific device/package combination. For other devices in this same package, this pin may be used as an I/O or VREF connection. In both the pinout tables and the footprint diagrams, unconnected pins are noted with either a black diamond symbol (♠) or a black square symbol (■).

If designing for footprint compatibility across multiple device densities, check the pin types of the other Spartan-3 devices available in the same footprint. If the N.C. pin matches to VREF pins in other devices, and the VREF pins are used in the associated I/O bank, then connect the N.C. to the VREF voltage source.

VCCO Type: Output Voltage Supply for I/O Bank

Each I/O bank has its own set of voltage supply pins that determines the output voltage for the output buffers in the I/O bank. Furthermore, for some I/O standards such as LVCMOS, LVCMOS25, LVTTL, etc., VCCO sets the input threshold voltage on the associated input buffers.

Spartan-3 devices are designed and characterized to support various I/O standards for VCCO values of +1.2V, +1.5V, +1.8V, +2.5V, and +3.3V.

Most VCCO pins are labeled as VCCO_# where the '#' symbol represents the associated I/O bank number, an integer ranging from 0 to 7. In the 144-pin TQFP package (TQ144) however, the VCCO pins along an edge of the device are combined into a single VCCO input. For example, the VCCO inputs for Bank 0 and Bank 1 along the top edge of the package are combined and relabeled VCCO_TOP. The bottom, left, and right edges are similarly combined.

In Serial configuration mode, VCCO_4 must be at a level compatible with the attached configuration memory or data source. In Parallel configuration mode, both VCCO_4 and VCCO_5 must be at the same compatible voltage level.

All VCCO inputs to a bank must be connected together and to the voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in XAPP623: Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors.

VCCINT Type: Voltage Supply for Internal Core Logic

Internal core logic circuits such as the configurable logic blocks (CLBs) and programmable interconnect operate

from the VCCINT voltage supply inputs. VCCINT must be +1.2V.

All VCCINT inputs must be connected together and to the +1.2V voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in XAPP623: Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors.

VCCAUX Type: Voltage Supply for Auxiliary Logic

The VCCAUX pins supply power to various auxiliary circuits, such as to the Digital Clock Managers (DCMs), the JTAG pins, and to the dedicated configuration pins (CONFIG type). VCCAUX must be +2.5V.

All VCCAUX inputs must be connected together and to the +2.5V voltage supply. Furthermore, there must be sufficient supply decoupling to guarantee problem-free operation, as described in XAPP623: Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors.

Because VCCAUX connects to the DCMs and the DCMs are sensitive to voltage changes, be sure that the VCCAUX supply and the ground return paths are designed for low noise and low voltage drop, especially that caused by a large number of simultaneous switching I/Os.

GND Type: Ground

All GND pins must be connected and have a low resistance path back to the various VCCO, VCCINT, and VCCAUX supplies.

Pin Behavior During Configuration

Table 10 shows how various pins behave during the FPGA configuration process. The actual behavior depends on the values applied to the M2, M1, and M0 mode select pins and the HSWAP_EN pin. The mode select pins determine which of the DUAL type pins are active during configuration. In JTAG configuration mode, none of the DUAL-type pins are used for configuration and all behave as user-I/O pins.

All DUAL-type pins not actively used during configuration and all I/O-type, DCI-type, VREF-type, GCLK-type pins are high impedance (floating, three-stated, Hi-Z) during the configuration process. These pins are indicated in Table 10 as shaded table entries or cells. These pins have a weak pull-up resistor to their associated VCCO if the HSWAP_EN pin is Low.

After configuration completes, some pins have optional behavior controlled by the configuration bitstream loaded into the part. For example, via the bitstream, all unused I/O pins can collectively be configured to have a weak pull-up resistor, a weak pull-down resistor, or be left in a high-impedance state.

Table 10: Pin Behavior After Power-Up, During Configuration

	Serial	Modes	SelectMap Pa	arallel Modes		Bitstream		
Pin Name	Master <0:0:0>	Slave <1:1:1>	Master <0:1:1>	Slave <1:1:0>	JTAG Mode <1:0:1>	Configuration Option		
I/O: General-purpose I/O pins								
Ю						UnusedPin		
IO_Lxxy_#						UnusedPin		
DUAL: Dual-pur	pose configuratio	n pins						
IO_Lxxy_#/ DIN/D0	DIN (I)	DIN (I)	D0 (I/O)	D0 (I/O)		Persist UnusedPin		
IO_Lxxy_#/ D1			D1 (I/O)	D1 (I/O)		Persist UnusedPin		
IO_Lxxy_#/ D2			D2 (I/O)	D2 (I/O)		Persist UnusedPin		
IO_Lxxy_#/ D3			D3 (I/O)	D3 (I/O)		Persist UnusedPin		
IO_Lxxy_#/ D4			D4 (I/O)	D4 (I/O)		Persist UnusedPin		
IO_Lxxy_#/ D5			D5 (I/O)	D5 (I/O)		Persist UnusedPin		
IO_Lxxy_#/ D6			D6 (I/O)	D6 (I/O)		Persist UnusedPin		
IO_Lxxy_#/ D7			D7 (I/O)	D7 (I/O)		Persist UnusedPin		
IO_Lxxy_#/ CS_B			CS_B (I)	CS_B (I)		Persist UnusedPin		
IO_Lxxy_#/ RDWR_B			RDWR_B (I)	RDWR_B (I)		Persist UnusedPin		
IO_Lxxy_#/ BUSY/DOUT	DOUT (O)	DOUT (O)	BUSY (O)	BUSY (O)		Persist UnusedPin		
IO_Lxxy_#/ INIT_B	INIT_B (I/OD)	INIT_B (I/OD)	INIT_B (I/OD)	INIT_B (I/OD)		UnusedPin		
DCI: Digitally Co	ontrolled Impedan	ce reference resis	stor input pins					
IO_Lxxy_#/ VRN_#						UnusedPin		
IO/VRN_#						UnusedPin		
IO_Lxxy_#/ VRP_#						UnusedPin		
IO/VRP_#						UnusedPin		

Table 10: Pin Behavior After Power-Up, During Configuration (Continued)

Table To. Fill be						
	Serial	Modes	SelectMap Pa	arallel Modes		Bitstream
Pin Name	Master <0:0:0>	Slave <1:1:1>	Master <0:1:1>	Slave <1:1:0>	JTAG Mode <1:0:1>	Configuration Option
GCLK: Global cl		(1.1.1)	VU.1.1 >	(1.1.0>	<1.0.1>	Option
IO_Lxxy_#/	ook ballet inputs					UnusedPin
GCLK0through GCLK7						Chassar III
VREF: I/O bank	input reference v	oltage pins				
IO_Lxxy_#/ VREF_#						UnusedPin
IO/VREF_#						UnusedPin
CONFIG: Dedica	ated configuration	pins				
CCLK	CCLK (O)	CCLK (I)	CCLK (O)	CCLK (I)		CclkPin ConfigRate
PROG_B	PROG_B (I) (pull-up)	PROG_B (I) (pull-up)	PROG_B (I) (pull-up)	PROG_B (I) (pull-up)	PROG_B (I), Via JPROG_B instruction	ProgPin
DONE	DONE (I/OD)	DriveDone DonePin DonePipe				
M2	M2=0 (I)	M2=1 (I)	M2=0 (I)	M2=1 (I)	M2=1 (I)	M2Pin
M1	M1=0 (I)	M1=1 (I)	M1=1 (I)	M1=1 (I)	M1=0 (I)	M1Pin
MO	M0=0 (I)	M0=1 (I)	M0=1 (I)	M0=0 (I)	M0=1 (I)	M0Pin
HSWAP_EN	HSWAP_EN (I)	HSWAP_EN (I)	HSWAP_EN (I)	HSWAP_EN (I)	HSWAP_EN (I)	HswapenPin
JTAG: JTAG inte	rface pins					
TDI	TDI (I)	TdiPin				
TMS	TMS (I)	TmsPin				
TCK	TCK (I)	TckPin				
TDO	TDO (O)	TdoPin				
VCCO: I/O bank	output voltage su	upply pins				
VCCO_4 (for DUAL pins)	Same voltage as external interface	Same voltage as external interface	Same voltage as external interface	Same voltage as external interface	VCCO_4	
VCCO_5 (for DUAL pins)	VCCO_5	VCCO_5	Same voltage as external interface	Same voltage as external interface	VCCO_5	
VCCO_#	VCCO_#	VCCO_#	VCCO_#	VCCO_#	VCCO_#	
VCCAUX: Auxilia	ary voltage supply	y pins				
VCCAUX	+2.5V	+2.5V	+2.5V	+2.5V	+2.5V	

Table 10: Pin Behavior After Power-Up, During Configuration (Continued)

	Serial Modes		SelectMap Parallel Modes			Bitstream
Pin Name	Master <0:0:0>	Slave <1:1:1>	Master <0:1:1>	Slave <1:1:0>	JTAG Mode <1:0:1>	Configuration Option
VCCINT: Interna	ıl core voltage su	oply pins				
VCCINT	+1.2V	+1.2V	+1.2V	+1.2V	+1.2V	
GND: Ground supply pins						
GND	GND	GND	GND	GND	GND	

- 1. #= I/O bank number, an integer from 0 to 7.
- 2. (I) = input, (O) = output, (OD) = open-drain output, (I/O) = bidirectional, (I/OD) = bidirectional with open-drain output. Open-drain output requires pull-up to create logic High level.
- 3. Shaded cell indicates that the pin is high-impedance during configuration. To enable a soft pull-up resistor during configuration, drive or tie HSWAP_EN Low.

Bitstream Options

Table 11 lists the various bitstream options that affect pins on a Spartan-3 FPGA. The table shows the names of the affected pins, describes the function of the bitstream option, the name of the bitstream generator option variable, and the legal values for each variable. The default option setting for each variable is indicated with bold, underlined text.

Table 11: Bitstream Options Affecting Spartan-3 Pins

Affected Pin Name(s)	Bitstream Generation Function	Option Variable Name	Values (<u>default</u> value)
All unused I/O pins of type I/O, DUAL, GCLK, DCI, VREF	For all I/O pins that are unused after configuration, this option defines whether the I/Os are individually tied to VCCO via a weak pull-up resistor, tied ground via a weak pull-down resistor, or left floating. If left floating, the unused pins should be connected to a defined logic level, either from a source internal to the FPGA or external.	UnusedPin	PulldownPullupPullnone
IO_Lxxy_#/DIN, IO_Lxxy_#/DOUT, IO_Lxxy_#/INIT_B	Serial configuration mode: If set to Yes, then these pins retain their functionality after configuration completes, allowing for device (re-)configuration. Readback is not supported in with serial mode.	Persist	• No • Yes
IO_Lxxy_#/D0, IO_Lxxy_#/D1, IO_Lxxy_#/D2, IO_Lxxy_#/D3, IO_Lxxy_#/D4, IO_Lxxy_#/D5, IO_Lxxy_#/D6, IO_Lxxy_#/D7, IO_Lxxy_#/CS_B, IO_Lxxy_#/RDWR_B, IO_Lxxy_#/BUSY, IO_Lxxy_#/INIT_B	Parallel configuration mode (also called SelectMAP): If set to Yes, then these pins retain their SelectMAP functionality after configuration completes, allowing for device readback and for partial or complete (re-)configuration.	Persist	• <u>No</u> • Yes
CCLK	After configuration, this bitstream option either pulls CCLK to VCCAUX via a weak pull-up resistor, or allows CCLK to float.	CclkPin	<u>Pullup</u>Pullnone
CCLK	For Master configuration modes, this option sets the approximate frequency, in MHz, for the internal silicon oscillator.	ConfigRate	3, <u>6</u> , 12, 25, 50

Table 11: Bitstream Options Affecting Spartan-3 Pins (Continued)

Affected Pin Name(s)	Bitstream Generation Function	Option Variable Name	Values (<u>default</u> value)
PROG_B	A weak pull-up resistor to VCCAUX exists on PROG_B during configuration. After configuration, this bitstream option either pulls DONE to VCCAUX via a weak pull-up resistor, or allows DONE to float.	ProgPin	<u>Pullup</u>Pullnone
DONE	After configuration, this bitstream option either pulls DONE to VCCAUX via a weak pull-up resistor, or allows DONE to float. See also DriveDone option.	DonePin	<u>Pullup</u>Pullnone
DONE	If set to Yes, this option allows the FPGA's DONE pin to drive High when configuration completes. By default, the DONE is an open-drain output and can only drive Low. Only single FPGAs and the last FPGA in a multi-FPGA daisy-chain should use this option.	DriveDone	• No • Yes
M2	After configuration, this bitstream option either pulls M2 to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows M2 to float.	M2Pin	PullupPulldownPullnone
M1	After configuration, this bitstream option either pulls M1 to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows M1 to float.	M1Pin	PullupPulldownPullnone
MO	After configuration, this bitstream option either pulls M0 to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows M0 to float.	M0Pin	<u>Pullup</u>PulldownPullnone
HSWAP_EN	After configuration, this bitstream option either pulls HSWAP_EN to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows HSWAP_EN to float.	HswapenPin	<u>Pullup</u>PulldownPullnone
TDI	After configuration, this bitstream option either pulls TDI to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows TDI to float.	TdiPin	PullupPulldownPullnone
TMS	After configuration, this bitstream option either pulls TMS to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows TMS to float.	TmsPin	PullupPulldownPullnone
TCK	After configuration, this bitstream option either pulls TCK to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows TCK to float.	TckPin	<u>Pullup</u>PulldownPullnone
TDO	After configuration, this bitstream option either pulls TDO to VCCAUX via a weak pull-up resistor, to ground via a weak pull-down resistor, or allows TDO to float.	TdoPin	PullupPulldownPullnone

Setting Options via BitGen Command-Line Program

To set one or more bitstream generator options using the BitGen command-line program, enter

bitgen -g <variable_name>:<value>
[<variable_name>:<value> ...]

where variable_name> is one of the entries from
Table 11 and value> is one of the possible values for the
specified variable. Multiple bitstream options may be
entered in this manner.

For a complete listing of all BitGen options, their possible settings, and their default settings, enter the following command.

bitgen -help spartan3

Setting Options in Project Navigator

To set the bitstream generation options in Xilinx ISE Project Navigator, right-click on the **Generate Programming File** step in the Process View and click **Properties**, as shown in Figure 5.

Click the **Configuration options** tab and modify the available options as required by the application, as shown in Figure 6.

DS099-4_05_030103

Figure 5: Setting Properties for Generate Programming File Step

DS099-4_06_030103

Figure 6: Configuration Option Settings

DS099-4_07_030103

Figure 7: Setting to Drive DONE Pin High after Configuration

To have the DONE pin drive High after successful configuration, click the **Startup options** tab and check the **Drive Done Pin High** box, as shown in Figure 7.

Click **OK** when finished.

Again, right-click on the **Generate Programming File** step in the Process View. This time, choose **Run** or **Rerun** to execute the changes.

Package Overview

Table 12 shows the nine low-cost, space-saving production packages for the Spartan-3 family. Not all Spartan-3 densities are available in all packages. However, for a specific package there is a common footprint for that supports the various devices available in that package. See the footprint diagrams that follow.

Table 12: Spartan-3 Family Package Options

Package	Leads	Туре	Maximum I/O	Pitch (mm)	Area (mm)	Height (mm)
VQ100	100	Very-thin Quad Flat Pack	63	0.5	16 x 16	1.20
TQ144	144	Thin Quad Flat Pack	97	0.5	22 x 22	1.60
PQ208	208	Quad Flat Pack	141	0.5	30.6 x 30.6	4.10
FT256	256	Fine-pitch, Thin Ball Grid Array	173	1.0	17 x 17	1.55
FG320	320	Fine-pitch Ball Grid Array	221	1.0	19 x 19	2.00
FG456	456	Fine-pitch Ball Grid Array	333	1.0	23 x 23	2.60
FG676	676	Fine-pitch Ball Grid Array	489	1.0	27 x 27	2.60
FG900	900	Fine-pitch Ball Grid Array	633	1.0	31 x 31	2.60
FG1156	1156	Fine-pitch Ball Grid Array	784	1.0	35 x 35	2.60

Detailed mechanical drawings for each package type are available from the Xilinx website at the specified location in Table 13.

Table 13: Xilinx Package Mechanical Drawings

Package	Web Link (URL)
VQ100	http://www.xilinx.com/bvdocs/packages/vq100.pdf
TQ144	http://www.xilinx.com/bvdocs/packages/tq144.pdf
PQ208	http://www.xilinx.com/bvdocs/packages/pq208.pdf
FT256	http://www.xilinx.com/bvdocs/packages/ft256.pdf
FG320	http://www.xilinx.com/bvdocs/packages/fg320.pdf
FG456	http://www.xilinx.com/bvdocs/packages/fg456.pdf
FG676	http://www.xilinx.com/bvdocs/packages/fg676.pdf
FG900	http://www.xilinx.com/bvdocs/packages/fg900.pdf
FG1156	http://www.xilinx.com/bvdocs/packages/fg1156.pdf

Each package has three separate voltage supply inputs—VCCINT, VCCAUX, and VCCO—and a common ground return, GND. The numbers of pins dedicated to these functions varies by package, as shown in Table 14.

Table 14: Power and Ground Supply Pins by Package

Package	VCCINT	VCCAUX	vcco	GND
VQ100	4	4	8	10
TQ144	4	4	12	16
PQ208	4	8	12	28
FT256	8	8	24	32
FG320	12	8	28	40
FG456	12	8	40	52
FG676	20	16	64	76
FG900	32	24	80	120
FG1156	40	32	104	184

A majority of package pins are user-defined I/O pins. However, the numbers and characteristics of these I/O depends on the device type and the package in which it is available, as shown in Table 15. The table shows the maximum number of single-ended I/O pins available, assuming that all I/O-, DUAL-, DCI-, VREF-, and GCLK-type pins are used as general-purpose I/O. Likewise, the table shows the maximum number of differential pin-pairs available on the package. Finally, the table shows how the total maximum user I/Os are distributed by pin type, including the number of unconnected—i.e., N.C.—pins on the device.

Table 15: Maximum User I/Os by Package

			Maximum	All Possible I/O Pins by Type			pe		
Device	Package	Maximum User I/Os	Differential Pairs	I/O	DUAL	DCI	VREF	GCLK	N.C.
XC3S50	VQ100	63	29	22	12	14	7	8	0
XC3S200	VQ100	63	29	22	12	14	7	8	0
XC3S50	TQ144	97	46	51	12	14	12	8	0
XC3S200	TQ144	97	46	51	12	14	12	8	0
XC3S400	TQ144	97	46	51	12	14	12	8	0
XC3S50	PQ208	124	56	72	12	16	16	8	17
XC3S200	PQ208	141	62	83	12	16	22	8	0
XC3S400	PQ208	141	62	83	12	16	22	8	0
XC3S200	FT256	173	76	113	12	16	24	8	0
XC3S400	FT256	173	76	113	12	16	24	8	0
XC3S1000	FT256	173	76	113	12	16	24	8	0
XC3S400	FG320	221	100	156	12	16	29	8	0
XC3S1000	FG320	221	100	156	12	16	29	8	0
XC3S1500	FG320	221	100	156	12	16	29	8	0
XC3S400	FG456	264	116	196	12	16	32	8	69
XC3S1000	FG456	333	149	261	12	16	36	8	0
XC3S1500	FG456	333	149	261	12	16	36	8	0
XC3S1000	FG676	391	175	315	12	16	40	8	98
XC3S1500	FG676	487	221	403	12	16	48	8	2
XC3S2000	FG676	489	221	405	12	16	48	8	0
XC3S2000	FG900	565	270	481	12	16	48	8	68
XC3S4000	FG900	633	300	549	12	16	48	8	0
XC3S5000	FG900	633	300	549	12	16	48	8	0
XC3S4000	FG1156	712	312	621	12	16	55	8	73
XC3S5000	FG1156	784	344	692	12	16	56	8	1

Electronic versions of the package pinout tables and footprints are available for download from the Xilinx website. Using a spreadsheet program, the data can be sorted and reformatted according to any specific needs. Similarly, the ASCII-text file is easily parsed by most scripting programs. Download the files from the following location:

http://www.xilinx.com/bvdocs/publications/s3 pin.zip

VQ100: 100-lead Very-thin Quad Flat Package

The XC3S50 and the XC3S200 devices are available in the 100-lead very-thin quad flat package, VQ100. Both devices share a common footprint for this package as shown in Table 16 and Figure 8.

All the package pins appear in Table 16 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

Table 16: VQ100 Package Pinout

	XC3S50 XC3S200	VQ100 Pin	_
Bank	Pin Name	Number	Туре
0	IO_L01N_0/VRP_0	P97	DCI
0	IO_L01P_0/VRN_0	P96	DCI
0	IO_L31N_0	P92	I/O
0	IO_L31P_0/VREF_0	P91	VREF
0	IO_L32N_0/GCLK7	P90	GCLK
0	IO_L32P_0/GCLK6	P89	GCLK
0	VCCO_0	P94	VCCO
1	Ю	P81	I/O
1	IO_L01N_1/VRP_1	P80	DCI
1	IO_L01P_1/VRN_1	P79	DCI
1	IO_L31N_1/VREF_1	P86	VREF
1	IO_L31P_1	P85	I/O
1	IO_L32N_1/GCLK5	P88	GCLK
1	IO_L32P_1/GCLK4	P87	GCLK
1	VCCO_1	P83	VCCO
2	IO_L01N_2/VRP_2	P75	DCI
2	IO_L01P_2/VRN_2	P74	DCI
2	IO_L21N_2	P72	I/O
2	IO_L21P_2	P71	I/O
2	IO_L24N_2	P68	I/O
2	IO_L24P_2	P67	I/O
2	IO_L40N_2	P65	I/O
2	IO_L40P_2/VREF_2	P64	VREF
2	VCCO_2	P70	VCCO
3	Ю	P55	I/O
3	Ю	P59	I/O
3	IO_L01N_3/VRP_3	P54	DCI
3	IO_L01P_3/VRN_3	P53	DCI
3	IO_L24N_3	P61	I/O

Table 16: VQ100 Package Pinout

Bank	XC3S50 XC3S200 Pin Name	VQ100 Pin Number	Туре
3	IO_L24P_3	P60	I/O
3	IO_L40N_3/VREF_3	P63	VREF
3	IO_L40P_3	P62	I/O
3	VCCO_3	P57	VCCO
4	IO_L01N_4/VRP_4	P50	DCI
4	IO_L01P_4/VRN_4	P49	DCI
4	IO_L27N_4/DIN/D0	P48	DUAL
4	IO_L27P_4/D1	P47	DUAL
4	IO_L30N_4/D2	P44	DUAL
4	IO_L30P_4/D3	P43	DUAL
4	IO_L31N_4/INIT_B	P42	DUAL
4	IO_L31P_4/DOUT/BUSY	P40	DUAL
4	IO_L32N_4/GCLK1	P39	GCLK
4	IO_L32P_4/GCLK0	P38	GCLK
4	VCCO_4	P46	VCCO
5	IO_L01N_5/RDWR_B	P28	DUAL
5	IO_L01P_5/CS_B	P27	DUAL
5	IO_L28N_5/D6	P32	DUAL
5	IO_L28P_5/D7	P30	DUAL
5	IO_L31N_5/D4	P35	DUAL
5	IO_L31P_5/D5	P34	DUAL
5	IO_L32N_5/GCLK3	P37	GCLK
5	IO_L32P_5/GCLK2	P36	GCLK
5	VCCO_5	P31	VCCO
6	Ю	P17	I/O
6	Ю	P21	I/O
6	IO_L01N_6/VRP_6	P23	DCI
6	IO_L01P_6/VRN_6	P22	DCI
6	IO_L24N_6/VREF_6	P16	VREF
6	IO_L24P_6	P15	I/O
6	IO_L40N_6	P14	I/O
6	IO_L40P_6/VREF_6	P13	VREF
6	VCCO_6	P19	VCCO
7	IO_L01N_7/VRP_7	P2	DCI
7	IO_L01P_7/VRN_7	P1	DCI
7	IO_L21N_7	P5	I/O
7	IO_L21P_7	P4	I/O
7	IO_L23N_7	P9	I/O
7	IO_L23P_7	P8	I/O
7	IO_L40N_7/VREF_7	P12	VREF
7	IO_L40P_7	P11	I/O

Table 16: VQ100 Package Pinout

Bank	XC3S50 XC3S200 Pin Name	VQ100 Pin Number	Туре
7	VCCO_7	P6	VCCO
N/A	GND	P3	GND
N/A	GND	P10	GND
N/A	GND	P20	GND
N/A	GND	P29	GND
N/A	GND	P41	GND
N/A	GND	P56	GND
N/A	GND	P66	GND
N/A	GND	P73	GND
N/A	GND	P82	GND
N/A	GND	P95	GND
N/A	VCCAUX	P7	VCCAUX
N/A	VCCAUX	P33	VCCAUX
N/A	VCCAUX	P58	VCCAUX
N/A	VCCAUX	P84	VCCAUX
N/A	VCCINT	P18	VCCINT
N/A	VCCINT	P45	VCCINT
N/A	VCCINT	P69	VCCINT

Table 16: VQ100 Package Pinout

Bank	XC3S50 XC3S200 Pin Name	VQ100 Pin Number	Туре
N/A	VCCINT	P93	VCCINT
VCCAUX	CCLK	P52	CONFIG
VCCAUX	DONE	P51	CONFIG
VCCAUX	HSWAP_EN	P98	CONFIG
VCCAUX	M0	P25	CONFIG
VCCAUX	M1	P24	CONFIG
VCCAUX	M2	P26	CONFIG
VCCAUX	PROG_B	P99	CONFIG
VCCAUX	TCK	P77	JTAG
VCCAUX	TDI	P100	JTAG
VCCAUX	TDO	P76	JTAG
VCCAUX	TMS	P78	JTAG

Table 17 indicates how the available user-I/O pins are distributed between the eight I/O banks on the VQ100 package.

Table 17: User I/Os Per Bank in VQ100 Package

		Maximum	n All Possible I/O Pins by Type				
Package Edge	I/O Bank	I/O	I/O	DUAL	DCI	VREF	GCLK
Тор	0	6	1	0	2	1	2
ТОР	1	7	2	0	2	1	2
Dialet	2	8	5	0	2	1	0
Right	3	8	5	0	2	1	0
Bottom	4	10	0	6	2	0	2
Bottom	5	8	0	6	0	0	2
Left	6	8	4	0	2	2	0
Len	7	8	5	0	2	1	0

VQ100 Footprint

Figure 8: VQ100 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.

TQ144: 144-lead Thin Quad Flat Package

The XC3S50, the XC3S200, and the XC3S400 are available in the 144-lead thin quad flat package, TQ144. Consequently, there is only one footprint for this package as shown in Table 18 and Figure 9.

The TQ144 package only has four separate VCCO inputs, unlike the other packages, which have eight separate VCCO inputs. The TQ144 package has a separate VCCO input for the top, bottom, left, and right. However, there are still eight separate I/O banks, as shown in Table 18 and Figure 9. Banks 0 and 1 share the VCCO_TOP input, Banks 2 and 3 share the VCCO_RIGHT input, Banks 4 and 5 share the VCCO_BOTTOM input, and Banks 6 and 7 share the VCCO_LEFT input.

All the package pins appear in Table 18 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

Table 18: TQ144 Package Pinout

Bank	XC3S50 XC3S200 XC3S400 Pin Name	TQ144 Pin Number	Туре
0	IO_L01N_0/VRP_0	P141	DCI
0	IO_L01P_0/VRN_0	P140	DCI
-		-	
0	IO_L27N_0	P137	I/O
0	IO_L27P_0	P135	I/O
0	IO_L30N_0	P132	I/O
0	IO_L30P_0	P131	I/O
0	IO_L31N_0	P130	I/O
0	IO_L31P_0/VREF_0	P129	VREF
0	IO_L32N_0/GCLK7	P128	GCLK
0	IO_L32P_0/GCLK6	P127	GCLK
1	Ю	P116	I/O
1	IO_L01N_1/VRP_1	P113	DCI
1	IO_L01P_1/VRN_1	P112	DCI
1	IO_L28N_1	P119	I/O
1	IO_L28P_1	P118	I/O
1	IO_L31N_1/VREF_1	P123	VREF
1	IO_L31P_1	P122	I/O
1	IO_L32N_1/GCLK5	P125	GCLK
1	IO_L32P_1/GCLK4	P124	GCLK
2	IO_L01N_2/VRP_2	P108	DCI
2	IO_L01P_2/VRN_2	P107	DCI
2	IO_L20N_2	P105	I/O

Table 18: TQ144 Package Pinout (Continued)

Bank	XC3S50 XC3S200 XC3S400 Pin Name	TQ144 Pin Number	Туре
2	IO_L20P_2	P104	I/O
2	IO_L21N_2	P103	I/O
2	IO_L21P_2	P102	I/O
2	IO_L22N_2	P100	I/O
2	IO_L22P_2	P99	I/O
2	IO_L23N_2/VREF_2	P98	VREF
2	IO_L23P_2	P97	I/O
2	IO_L24N_2	P96	I/O
2	IO_L24P_2	P95	I/O
2	IO_L40N_2	P93	I/O
2	IO_L40P_2/VREF_2	P92	VREF
3	Ю	P76	I/O
3	IO_L01N_3/VRP_3	P74	DCI
3	IO_L01P_3/VRN_3	P73	DCI
3	IO_L20N_3	P78	I/O
3	IO_L20P_3	P77	I/O
3	IO_L21N_3	P80	I/O
3	IO_L21P_3	P79	I/O
3	IO_L22N_3	P83	I/O
3	IO_L22P_3	P82	I/O
3	IO_L23N_3	P85	I/O
3	IO_L23P_3/VREF_3	P84	VREF
3	IO_L24N_3	P87	I/O
3	IO_L24P_3	P86	I/O
3	IO_L40N_3/VREF_3	P90	VREF
3	IO_L40P_3	P89	I/O
4	IO/VREF_4	P70	VREF
4	IO_L01N_4/VRP_4	P69	DCI
4	IO_L01P_4/VRN_4	P68	DCI
4	IO_L27N_4/DIN/D0	P65	DUAL
4	IO_L27P_4/D1	P63	DUAL
4	IO_L30N_4/D2	P60	DUAL
4	IO_L30P_4/D3	P59	DUAL
4	IO_L31N_4/INIT_B	P58	DUAL
4	IO_L31P_4/DOUT/BUSY	P57	DUAL
4	IO_L32N_4/GCLK1	P56	GCLK
4	IO_L32P_4/GCLK0	P55	GCLK
5	IO/VREF_5	P44	VREF
5	IO_L01N_5/RDWR_B	P41	DUAL
5	IO_L01P_5/CS_B	P40	DUAL
5	IO_L28N_5/D6	P47	DUAL

Table 18: TQ144 Package Pinout (Continued)

Bank	XC3S50 XC3S200 XC3S400 Pin Name	TQ144 Pin Number	Туре
5	IO L28P 5/D7	P46	DUAL
5	IO_L31N_5/D4	P51	DUAL
5	IO_L31P_5/D5	P50	DUAL
5	IO_L32N_5/GCLK3	P53	GCLK
5	IO L32P 5/GCLK2	P52	GCLK
6	IO_L01N_6/VRP_6	P36	DCI
6	IO_L01P_6/VRN_6	P35	DCI
6	IO L20N 6	P33	I/O
6	IO_L20P_6	P32	I/O
6	IO_L21N_6	P31	I/O
6	IO_L21P_6	P30	I/O
6	IO_L22N_6	P28	I/O
6	IO_L22P_6	P27	I/O
6	IO_L23N_6	P26	I/O
6	IO_L23P_6	P25	I/O
6	IO_L24N_6/VREF_6	P24	VREF
6	IO_L24P_6	P23	I/O
6	IO_L40N_6	P21	I/O
6	IO_L40P_6/VREF_6	P20	VREF
7	IO/VREF_7	P4	VREF
7	IO/VREF_7 IO_L01N_7/VRP_7	P4 P2	VREF DCI
7	IO_L01N_7/VRP_7	P2	DCI
7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7	P2 P1	DCI DCI
7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7	P2 P1 P6	DCI DCI I/O
7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7	P2 P1 P6 P5	DCI DCI I/O I/O
7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7	P2 P1 P6 P5 P8	DCI DCI I/O I/O
7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7	P2 P1 P6 P5 P8 P7	DCI DCI I/O I/O I/O I/O
7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7	P2 P1 P6 P5 P8 P7 P11	DCI DCI I/O I/O I/O I/O I/O
7 7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7	P2 P1 P6 P5 P8 P7 P11 P10	DCI DCI I/O I/O I/O I/O I/O I/O I/O
7 7 7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7	P2 P1 P6 P5 P8 P7 P11 P10 P13	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O
7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L23P_7 IO_L24N_7	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L23P_7 IO_L24N_7 IO_L24N_7 IO_L24P_7	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15 P14	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24N_7 IO_L24P_7 IO_L24P_7 IO_L40N_7/VREF_7	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15 P14 P18	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22N_7 IO_L23N_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24N_7 IO_L24P_7 IO_L24P_7 IO_L40N_7/VREF_7 IO_L40P_7	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15 P14 P18 P17	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24N_7 IO_L24P_7 IO_L24P_7 IO_L40N_7/VREF_7 IO_L40P_7 VCCO_TOP	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15 P14 P18 P17 P126	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0,1	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22N_7 IO_L23N_7 IO_L23N_7 IO_L24N_7 IO_L24N_7 IO_L24P_7 IO_L24P_7 IO_L40N_7/VREF_7 IO_L40P_7 VCCO_TOP	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15 P14 P18 P17 P126 P138	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O VCCO
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0,1 0,1	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22P_7 IO_L23N_7 IO_L23P_7 IO_L24P_7 IO_L24P_7 IO_L40N_7/VREF_7 IO_L40P_7 VCCO_TOP VCCO_TOP	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15 P14 P18 P17 P126 P138 P115	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0,1 0,1 0,1 2,3	IO_L01N_7/VRP_7 IO_L01P_7/VRN_7 IO_L20N_7 IO_L20P_7 IO_L21N_7 IO_L21P_7 IO_L22N_7 IO_L22N_7 IO_L23N_7 IO_L23N_7 IO_L24N_7 IO_L24N_7 IO_L24P_7 IO_L40N_7/VREF_7 IO_L40P_7 VCCO_TOP VCCO_TOP VCCO_TOP	P2 P1 P6 P5 P8 P7 P11 P10 P13 P12 P15 P14 P18 P17 P126 P138 P115 P106	DCI DCI I/O I/O I/O I/O I/O I/O I/O I/O VREF I/O VCCO VCCO

Table 18: TQ144 Package Pinout (Continued)

Bank	XC3S50 XC3S200 XC3S400 Pin Name	TQ144 Pin Number	Туре
4,5	VCCO_BOTTOM	P43	VCCO
4,5	VCCO_BOTTOM	P66	VCCO
6,7	VCCO_LEFT	P19	VCCO
6,7	VCCO_LEFT	P34	VCCO
6,7	VCCO_LEFT	P3	VCCO
N/A	GND	P136	GND
N/A	GND	P139	GND
N/A	GND	P114	GND
N/A	GND	P117	GND
N/A	GND	P94	GND
N/A	GND	P101	GND
N/A	GND	P81	GND
N/A	GND	P88	GND
N/A	GND	P64	GND
N/A	GND	P67	GND
N/A	GND	P42	GND
N/A	GND	P45	GND
N/A	GND	P22	GND
N/A	GND	P29	GND
N/A	GND	P9	GND
N/A	GND	P16	GND
N/A	VCCAUX	P134	VCCAUX
N/A	VCCAUX	P120	VCCAUX
N/A	VCCAUX	P62	VCCAUX
N/A	VCCAUX	P48	VCCAUX
N/A	VCCINT	P133	VCCINT
N/A	VCCINT	P121	VCCINT
N/A	VCCINT	P61	VCCINT
N/A	VCCINT	P49	VCCINT
VCCAUX	CCLK	P72	CONFIG
VCCAUX	DONE	P71	CONFIG
VCCAUX	HSWAP_EN	P142	CONFIG
VCCAUX	MO	P38	CONFIG
VCCAUX	M1	P37	CONFIG
VCCAUX	M2	P39	CONFIG
VCCAUX	PROG_B	P143	CONFIG
VCCAUX	TCK	P110	JTAG
VCCAUX	TDI	P144	JTAG
VCCAUX	TDO	P109	JTAG
VCCAUX	TMS	P111	JTAG

Table 19 indicates how the available user-I/O pins are distributed between the eight I/O banks on the TQ144 package.

Table 19: User I/Os Per Bank in TQ144 Package

		Maximum	All Possible I/O Pins by Type				All Possible I/O Pins by Type	
Package Edge	I/O Bank	I/O	I/O	DUAL	DCI	VREF	GCLK	
Тор	0	10	5	0	2	1	2	
Юр	1	9	4	0	2	1	2	
Right	2	14	10	0	2	2	0	
nigiit	3	15	11	0	2	2	0	
Bottom	4	11	0	6	2	1	2	
Bottom	5	9	0	6	0	1	2	
Left	6	14	10	0	2	2	0	
Leit	7	15	11	0	2	2	0	

TQ144 Footprint

Figure 9: TQ144 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.

PQ208: 208-lead Plastic Quad Flat Pack

The 208-lead plastic quad flat package, PQ208, supports three different Spartan-3 devices, including the XC3S50, the XC3S200, and the XC3S400. The footprints for the XC3S200 and XC3S400 are identical, as shown in Table 20 and Figure 10. The XC3S50, however, has fewer I/O pins resulting in 17 unconnected pins on the PQ208 package, labeled as "N.C." In Table 20 and Figure 10, these unconnected pins are indicated with a black diamond symbol (♠).

All the package pins appear in Table 20 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

If there is a difference between the XC3S50 pinout and the pinout for the XC3S200 and XC3S400, then that difference is highlighted in Table 20. If the table entry is shaded grey, then there is an unconnected pin on the XC3S50 that maps to a user-I/O pin on the XC3S200 and XC3S400. If the table entry is shaded tan, then the unconnected pin on the XC3S50 maps to a VREF-type pin on the XC3S200 and XC3S400. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S50 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S50 device to an XC3S200 or XC3S400 FPGA without changing the printed circuit board.

Table 20: PQ208 Package Pinout

Bank	XC3S50 Pin Name	XC3S200 XC3S400 Pin Name	PQ208 Pin Number	Туре
0	Ю	Ю	P189	I/O
0	Ю	Ю	P197	I/O
0	N.C. (◆)	IO/VREF_0	P200	VREF
0	IO/VREF_0	IO/VREF_0	P205	VREF
0	IO_L01N_0/ VRP_0	IO_L01N_0/ VRP_0	P204	DCI
0	IO_L01P_0/ VRN_0	IO_L01P_0/ VRN_0	P203	DCI
0	IO_L25N_0	IO_L25N_0	P199	I/O
0	IO_L25P_0	IO_L25P_0	P198	I/O
0	IO_L27N_0	IO_L27N_0	P196	I/O
0	IO_L27P_0	IO_L27P_0	P194	I/O
0	IO_L30N_0	IO_L30N_0	P191	I/O
0	IO_L30P_0	IO_L30P_0	P190	I/O
0	IO_L31N_0	IO_L31N_0	P187	I/O
0	IO_L31P_0/ VREF_0	IO_L31P_0/ VREF_0	P185	VREF

Table 20: PQ208 Package Pinout (Continued)

		XC3S200	PQ208	
Bank	XC3S50 Pin Name	XC3S400 Pin Name	Pin Number	Туре
0	IO_L32N_0/ GCLK7	IO_L32N_0/ GCLK7	P184	GCLK
0	IO_L32P_0/ GCLK6	IO_L32P_0/ GCLK6	P183	GCLK
0	VCCO_0	VCCO_0	P188	VCCO
0	VCCO_0	VCCO_0	P201	VCCO
1	Ю	Ю	P167	I/O
1	Ю	IO	P175	I/O
1	Ю	IO	P182	I/O
1	IO_L01N_1/ VRP_1	IO_L01N_1/ VRP_1	P162	DCI
1	IO_L01P_1/ VRN_1	IO_L01P_1/ VRN_1	P161	DCI
1	IO_L10N_1/ VREF_1	IO_L10N_1/ VREF_1	P166	VREF
1	IO_L10P_1	IO_L10P_1	P165	I/O
1	IO_L27N_1	IO_L27N_1	P169	I/O
1	IO_L27P_1	IO_L27P_1	P168	I/O
1	IO_L28N_1	IO_L28N_1	P172	I/O
1	IO_L28P_1	IO_L28P_1	P171	I/O
1	IO_L31N_1/ VREF_1	IO_L31N_1/ VREF_1	P178	VREF
1	IO_L31P_1	IO_L31P_1	P176	I/O
1	IO_L32N_1/ GCLK5	IO_L32N_1/ GCLK5	P181	GCLK
1	IO_L32P_1/ GCLK4	IO_L32P_1/ GCLK4	P180	GCLK
1	VCCO_1	VCCO_1	P164	VCCO
1	VCCO_1	VCCO_1	P177	VCCO
2	N.C. (◆)	IO/VREF_2	P154	VREF
2	IO_L01N_2/ VRP_2	IO_L01N_2/ VRP_2	P156	DCI
2	IO_L01P_2/ VRN_2	IO_L01P_2/ VRN_2	P155	DCI
2	IO_L19N_2	IO_L19N_2	P152	I/O
2	IO_L19P_2	IO_L19P_2	P150	I/O
2	IO_L20N_2	IO_L20N_2	P149	I/O
2	IO_L20P_2	IO_L20P_2	P148	I/O
2	IO_L21N_2	IO_L21N_2	P147	I/O
2	IO_L21P_2	IO_L21P_2	P146	I/O
2	IO_L22N_2	IO_L22N_2	P144	I/O
2	IO_L22P_2	IO_L22P_2	P143	I/O
2	IO_L23N_2/ VREF_2	IO_L23N_2/ VREF_2	P141	VREF
2	IO_L23P_2	IO_L23P_2	P140	I/O

Table 20: PQ208 Package Pinout (Continued)

	XC3S50			
Bank	Pin Name	Pin Name	Number	Туре
2	IO_L24N_2	IO_L24N_2	P139	I/O
2	IO_L24P_2	IO_L24P_2	P138	I/O
2	N.C. (◆)	IO_L39N_2	P137	I/O
2	N.C. (◆)	IO_L39P_2	P135	I/O
2	IO_L40N_2	IO_L40N_2	P133	I/O
2	IO_L40P_2/ VREF_2	IO_L40P_2/ VREF_2	P132	VREF
2	VCCO_2	VCCO_2	P136	VCCO
2	VCCO_2	VCCO_2	P153	VCCO
3	IO_L01N_3/ VRP_3	IO_L01N_3/ VRP_3	P107	DCI
3	IO_L01P_3/ VRN_3	IO_L01P_3/ VRN_3	P106	DCI
3	N.C. (◆)	IO_L17N_3	P109	I/O
3	N.C. (◆)	IO_L17P_3/ VREF_3	P108	VREF
3	IO_L19N_3	IO_L19N_3	P113	I/O
3	IO_L19P_3	IO_L19P_3	P111	I/O
3	IO_L20N_3	IO_L20N_3	P115	I/O
3	IO_L20P_3	IO_L20P_3	P114	I/O
3	IO_L21N_3	IO_L21N_3	P117	I/O
3	IO_L21P_3	IO_L21P_3	P116	I/O
3	IO_L22N_3	IO_L22N_3	P120	I/O
3	IO_L22P_3	IO_L22P_3	P119	I/O
3	IO_L23N_3	IO_L23N_3	P123	I/O
3	IO_L23P_3/ VREF_3	IO_L23P_3/ VREF_3	P122	VREF
3	IO_L24N_3	IO_L24N_3	P125	I/O
3	IO_L24P_3	IO_L24P_3	P124	I/O
3	N.C. (◆)	IO_L39N_3	P128	I/O
3	N.C. (◆)	IO_L39P_3	P126	I/O
3	IO_L40N_3/ VREF_3	IO_L40N_3/ VREF_3	P131	VREF
3	IO_L40P_3	IO_L40P_3	P130	I/O
3	VCCO_3	VCCO_3	P110	VCCO
3	VCCO_3	VCCO_3	P127	VCCO
4	Ю	Ю	P93	I/O
4	N.C. (◆)	Ю	P97	I/O
4	IO/VREF_4	IO/VREF_4	P85	VREF
4	N.C. (◆)	IO/VREF_4	P96	VREF
4	IO/VREF_4	IO/VREF_4	P102	VREF
4	IO_L01N_4/ VRP_4	IO_L01N_4/ VRP_4	P101	DCI

Table 20: PQ208 Package Pinout (Continued)

Bank	XC3S50 Pin Name	XC3S200 PQ208 XC3S400 Pin Pin Name Number		Type
4	IO_L01P_4/	IO_L01P_4/	P100	DCI
	VRN_4	VRN_4		
4	IO_L25N_4	IO_L25N_4	P95	I/O
4	IO_L25P_4	IO_L25P_4	P94	I/O
4	IO_L27N_4/ DIN/D0	IO_L27N_4/ DIN/D0	P92	DUAL
4	IO_L27P_4/ D1	IO_L27P_4/ D1	P90	DUAL
4	IO_L30N_4/ D2	IO_L30N_4/ D2	P87	DUAL
4	IO_L30P_4/ D3	IO_L30P_4/ D3	P86	DUAL
4	IO_L31N_4/ INIT_B	IO_L31N_4/ INIT_B	P83	DUAL
4	IO_L31P_4/ DOUT/BUSY	IO_L31P_4/ DOUT/BUSY	P81	DUAL
4	IO_L32N_4/ GCLK1	IO_L32N_4/ GCLK1	P80	GCLK
4	IO_L32P_4/ GCLK0	IO_L32P_4/ GCLK0	P79	GCLK
4	VCCO_4	VCCO_4	P84	VCCO
4	VCCO_4	VCCO_4	P98	VCCO
5	Ю	Ю	P63	I/O
5	Ю	Ю	P71	I/O
5	IO/VREF_5	IO/VREF_5	P78	VREF
5				
	IO_L01N_5/ RDWR_B	IO_L01N_5/ RDWR_B	P58	DUAL
5			P58 P57	DUAL
5	RDWR_B IO_L01P_5/	RDWR_B IO_L01P_5/		_
	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/	P57	DUAL
5	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/	P57	DUAL
5	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/	P57 P62 P61	DUAL DCI DCI
5 5	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5	P57 P62 P61 P65	DUAL DCI DCI VREF
5 5 5	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/	P57 P62 P61 P65 P64	DUAL DCI DCI VREF
5 5 5 5 5	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/	P57 P62 P61 P65 P64 P68	DUAL DCI DCI VREF I/O DUAL
5 5 5 5 5	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L31N_5/	RDWR_B IO_L01P_5/ CS_B IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L27N_5/ VREF_5 IO_L27P_5 IO_L28N_5/ D6 IO_L28P_5/ D7 IO_L31N_5/	P57 P62 P61 P65 P64 P68	DUAL DCI DCI VREF I/O DUAL DUAL

Table 20: PQ208 Package Pinout (Continued)

	XC3S50	XC3S200 PQ208 XC3S50 XC3S400 Pin			
Bank	Pin Name	Pin Name	Number	Туре	
5	IO_L32P_5/ GCLK2	IO_L32P_5/ GCLK2	P76	GCLK	
5	VCCO_5	VCCO_5	P60	VCCO	
5	VCCO_5	VCCO_5	P73	VCCO	
6	N.C. (◆)	IO/VREF_6	P50	VREF	
6	IO_L01N_6/ VRP_6	IO_L01N_6/ VRP_6	P52	DCI	
6	IO_L01P_6/ VRN_6	IO_L01P_6/ VRN_6	P51	DCI	
6	IO_L19N_6	IO_L19N_6	P48	I/O	
6	IO_L19P_6	IO_L19P_6	P46	I/O	
6	IO_L20N_6	IO_L20N_6	P45	I/O	
6	IO_L20P_6	IO_L20P_6	P44	I/O	
6	IO_L21N_6	IO_L21N_6	P43	I/O	
6	IO_L21P_6	IO_L21P_6	P42	I/O	
6	IO_L22N_6	IO_L22N_6	P40	I/O	
6	IO_L22P_6	IO_L22P_6	P39	I/O	
6	IO_L23N_6	IO_L23N_6	P37	I/O	
6	IO_L23P_6	IO_L23P_6	P36	I/O	
6	IO_L24N_6/ VREF_6	IO_L24N_6/ VREF_6	P35	VREF	
6	IO_L24P_6	IO_L24P_6	P34	I/O	
6	N.C. (◆)	IO_L39N_6	P33	I/O	
6	N.C. (◆)	IO_L39P_6	P31	I/O	
6	IO_L40N_6	IO_L40N_6	P29	I/O	
6	IO_L40P_6/ VREF_6	IO_L40P_6/ VREF_6	P28	VREF	
6	VCCO_6	VCCO_6	P32	VCCO	
6	VCCO_6	VCCO_6	P49	VCCO	
7	IO_L01N_7/ VRP_7	IO_L01N_7/ VRP_7	P3	DCI	
7	IO_L01P_7/ VRN_7	IO_L01P_7/ VRN_7	P2	DCI	
7	N.C. (♦)	IO_L16N_7	P5	I/O	
7	N.C. (♠)	IO_L16P_7/ VREF_7	P4	VREF	
7	IO_L19N_7/ VREF_7	IO_L19N_7/ VREF_7	P9	VREF	
7	IO_L19P_7	IO_L19P_7	P7	I/O	
7	IO_L20N_7	IO_L20N_7	P11	I/O	
7	IO_L20P_7	IO_L20P_7	P10	I/O	
7	IO_L21N_7	IO_L21N_7	P13	I/O	
7	IO_L21P_7	IO_L21P_7	P12	I/O	
7	IO_L22N_7	IO_L22N_7	P16	I/O	

Table 20: PQ208 Package Pinout (Continued)

14510 20.	XC3S200 PQ208						
	XC3S50	XC3S400	Pin				
Bank	Pin Name	Pin Name	Number	Туре			
7	IO_L22P_7	IO_L22P_7	P15	I/O			
7	IO_L23N_7	IO_L23N_7	P19	I/O			
7	IO_L23P_7	IO_L23P_7	P18	I/O			
7	IO_L24N_7	IO_L24N_7	P21	I/O			
7	IO_L24P_7	IO_L24P_7	P20	I/O			
7	N.C. (◆)	IO_L39N_7	P24	I/O			
7	N.C. (◆)	IO_L39P_7	P22	I/O			
7	IO_L40N_7/ VREF_7	IO_L40N_7/ VREF_7	P27	VREF			
7	IO_L40P_7	IO_L40P_7	P26	I/O			
7	VCCO_7	VCCO_7	P6	VCCO			
7	VCCO_7	VCCO_7	P23	VCCO			
N/A	GND	GND	P1	GND			
N/A	GND	GND	P186	GND			
N/A	GND	GND	P195	GND			
N/A	GND	GND	P202	GND			
N/A	GND	GND	P163	GND			
N/A	GND	GND	P170	GND			
N/A	GND	GND	P179	GND			
N/A	GND	GND	P134	GND			
N/A	GND	GND	P145	GND			
N/A	GND	GND	P151	GND			
N/A	GND	GND	P157	GND			
N/A	GND	GND	P112	GND			
N/A	GND	GND	P118	GND			
N/A	GND	GND	P129	GND			
N/A	GND	GND	P82	GND			
N/A	GND	GND	P91	GND			
N/A	GND	GND	P99	GND			
N/A	GND	GND	P105	GND			
N/A	GND	GND	P53	GND			
N/A	GND	GND	P59	GND			
N/A	GND	GND	P66	GND			
N/A	GND	GND	P75	GND			
N/A	GND	GND	P30	GND			
N/A	GND	GND	P41	GND			
N/A	GND	GND	P47	GND			
N/A	GND	GND	P8	GND			
N/A	GND	GND	P14	GND			
N/A	GND	GND	P25	GND			
N/A	VCCAUX	VCCAUX	P193	VCCAUX			
N/A	VCCAUX	VCCAUX	P173	VCCAUX			

Table 20: PQ208 Package Pinout (Continued)

Table 20. I Growt dokage I mout (continued)						
Bank	XC3S50 Pin Name	XC3S200 XC3S400 Pin Name	PQ208 Pin Number	Туре		
N/A	VCCAUX	VCCAUX	P142	VCCAUX		
N/A	VCCAUX	VCCAUX	P121	VCCAUX		
N/A	VCCAUX	VCCAUX	P89	VCCAUX		
N/A	VCCAUX	VCCAUX	P69	VCCAUX		
N/A	VCCAUX	VCCAUX	P38	VCCAUX		
N/A	VCCAUX	VCCAUX	P17	VCCAUX		
N/A	VCCINT	VCCINT	P192	VCCINT		
N/A	VCCINT	VCCINT	P174	VCCINT		
N/A	VCCINT	VCCINT	P88	VCCINT		
N/A	VCCINT	VCCINT	P70	VCCINT		
VCCAUX	CCLK	CCLK	P104	CONFIG		
VCCAUX	DONE	DONE	P103	CONFIG		
VCCAUX	HSWAP_EN	HSWAP_EN	P206	CONFIG		
VCCAUX	MO	MO	P55	CONFIG		

Table 20: PQ208 Package Pinout (Continued)

Bank	XC3S50 Pin Name	XC3S200 XC3S400 Pin Name	PQ208 Pin Number	Туре
VCCAUX	M1	M1	P54	CONFIG
VCCAUX	M2	M2	P56	CONFIG
VCCAUX	PROG_B	PROG_B	P207	CONFIG
VCCAUX	TCK	TCK	P159	JTAG
VCCAUX	TDI	TDI	P208	JTAG
VCCAUX	TDO	TDO	P158	JTAG
VCCAUX	TMS	TMS	P160	JTAG

Table 21 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S50 in the PQ208 package. Similarly, Table 22 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S200 and XC3S400 in the PQ208 package.

Table 21: User I/Os Per Bank for XC3S50 in PQ208 Package

		Maximum	All Possible I/O Pins by Type				
Package Edge	I/O Bank	I/O	I/O	DUAL	DCI	VREF	GCLK
Тор	0	15	9	0	2	2	2
Юр	1	15	9	0	2	2	2
Right	2	16	13	0	2	2	0
Hight	3	16	12	0	2	2	0
Bottom	4	15	3	6	2	2	2
Bottom	5	15	3	6	2	2	2
Left	6	16	12	0	2	2	0
Leit	7	16	12	0	2	2	0

Table 22: User I/Os Per Bank for XC3S200 and XC3S400 in PQ208 Package

		Maximum	All Possible I/O Pins by Type				
Package Edge	I/O Bank	I/O	I/O	DUAL	DCI	VREF	GCLK
Тор	0	16	9	0	2	3	2
Юр	1	15	9	0	2	2	2
Right	2	19	14	0	2	3	0
riigiit	3	20	15	0	2	3	0
Bottom	4	17	4	6	2	3	2
Bottom	5	15	3	6	2	2	2
Left	6	19	14	0	2	3	0
Len	7	20	15	0	2	3	0

PQ208 Footprint

Left Half of Package (top view)

XC3S50

(124 max. user I/O)

- 72 **I/O:** Unrestricted, general-purpose user I/O
- VREF: User I/O or input voltage reference for bank
- N.C.: Unconnected pins for XC3S50 (♠)

XC3S200, XC3S400 (141 max user I/O)

- 83 I/O: Unrestricted, general-purpose user I/O
- VREF: User I/O or input voltage reference for bank
- N.C.: No unconnected pins in this package

All devices

- 12 DUAL: Configuration pin, then possible user I/O
- 8 GCLK: User I/O or global clock buffer input
- 16 DCI: User I/O or reference resistor input for bank
- 7 CONFIG: Dedicated configuration pins
- JTAG: Dedicated JTAG port pins
- 4 VCCINT: Internal core voltage supply (+1.2V)
- 12 VCCO: Output voltage supply for bank
- 8 VCCAUX: Auxiliary voltage supply (+2.5V)
- 28 GND: Ground

Figure 10: PQ208 Package Footprint (top view). Note pin 1 indicator in top-left corner and logo orientation.

FT256: 256-lead Fine-pitch Thin Ball Grid Array

The 256-lead fine-pitch thin ball grid array package, FT256, supports three different Spartan-3 devices, including the XC3S200, the XC3S400, and the XC3S1000. The footprints for all three devices are identical, as shown in Table 23 and Figure 11.

All the package pins appear in Table 23 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

Table 23: FT256 Package Pinout

Bank	XC3S200 XC3S400 XC3S1000 Pin Name	FT256 Pin Number	Туре
0	Ю	A5	I/O
0	Ю	A7	I/O
0	IO/VREF_0	А3	VREF
0	IO/VREF_0	D5	VREF
0	IO_L01N_0/VRP_0	B4	DCI
0	IO_L01P_0/VRN_0	A4	DCI
0	IO_L25N_0	C5	I/O
0	IO_L25P_0	B5	I/O
0	IO_L27N_0	E6	I/O
0	IO_L27P_0	D6	I/O
0	IO_L28N_0	C6	I/O
0	IO_L28P_0	В6	I/O
0	IO_L29N_0	E7	I/O
0	IO_L29P_0	D7	I/O
0	IO_L30N_0	C7	I/O
0	IO_L30P_0	В7	I/O
0	IO_L31N_0	D8	I/O
0	IO_L31P_0/VREF_0	C8	VREF
0	IO_L32N_0/GCLK7	B8	GCLK
0	IO_L32P_0/GCLK6	A8	GCLK
0	VCCO_0	E8	VCCO
0	VCCO_0	F7	VCCO
0	VCCO_0	F8	VCCO
1	Ю	A9	I/O
1	Ю	A12	I/O
1	Ю	C10	I/O
1	IO/VREF_1	D12	VREF
1	IO_L01N_1/VRP_1	A14	DCI

Table 23: FT256 Package Pinout (Continued)

Bank	XC3S200 XC3S400 XC3S1000 Pin Name	FT256 Pin Number	Туре
1	IO_L01P_1/VRN_1	B14	DCI
1	IO_L10N_1/VREF_1	A13	VREF
1	IO_L10P_1	B13	I/O
1	IO_L27N_1	B12	I/O
1	IO_L27P_1	C12	I/O
1	IO_L28N_1	D11	I/O
1	IO_L28P_1	E11	I/O
1	IO_L29N_1	B11	I/O
1	IO_L29P_1	C11	I/O
1	IO_L30N_1	D10	I/O
1	IO_L30P_1	E10	I/O
1	IO_L31N_1/VREF_1	A10	VREF
1	IO_L31P_1	B10	I/O
1	IO_L32N_1/GCLK5	C9	GCLK
1	IO_L32P_1/GCLK4	D9	GCLK
1	VCCO_1	E9	VCCO
1	VCCO_1	F9	VCCO
1	VCCO_1	F10	VCCO
2	Ю	G16	I/O
2	IO_L01N_2/VRP_2	B16	DCI
2	IO_L01P_2/VRN_2	C16	DCI
2	IO_L16N_2	C15	I/O
2	IO_L16P_2	D14	I/O
2	IO_L17N_2	D15	I/O
2	IO_L17P_2/VREF_2	D16	VREF
2	IO_L19N_2	E13	I/O
2	IO_L19P_2	E14	I/O
2	IO_L20N_2	E15	I/O
2	IO_L20P_2	E16	I/O
2	IO_L21N_2	F12	I/O
2	IO_L21P_2	F13	I/O
2	IO_L22N_2	F14	I/O
2	IO_L22P_2	F15	I/O
2	IO_L23N_2/VREF_2	G12	VREF
2	IO_L23P_2	G13	I/O
2	IO_L24N_2	G14	I/O
2	IO_L24P_2	G15	I/O
2	IO_L39N_2	H13	I/O
2	IO_L39P_2	H14	I/O
2	IO_L40N_2	H15	I/O

Table 23: FT256 Package Pinout (Continued)

Bank	XC3S200 XC3S400 XC3S1000 Pin Name	FT256 Pin Number	Туре
2	IO_L40P_2/VREF_2	H16	VREF
2	VCCO_2	G11	VCCO
2	VCCO_2	H11	VCCO
2	VCCO_2	H12	VCCO
3	Ю	K15	I/O
3	IO_L01N_3/VRP_3	P16	DCI
3	IO_L01P_3/VRN_3	R16	DCI
3	IO_L16N_3	P15	I/O
3	IO_L16P_3	P14	I/O
3	IO_L17N_3	N16	I/O
3	IO_L17P_3/VREF_3	N15	VREF
3	IO_L19N_3	M14	I/O
3	IO_L19P_3	N14	I/O
3	IO_L20N_3	M16	I/O
3	IO_L20P_3	M15	I/O
3	IO_L21N_3	L13	I/O
3	IO_L21P_3	M13	I/O
3	IO_L22N_3	L15	I/O
3	IO_L22P_3	L14	I/O
3	IO_L23N_3	K12	I/O
3	IO_L23P_3/VREF_3	L12	VREF
3	IO_L24N_3	K14	I/O
3	IO_L24P_3	K13	I/O
3	IO_L39N_3	J14	I/O
3	IO_L39P_3	J13	I/O
3	IO_L40N_3/VREF_3	J16	VREF
3	IO_L40P_3	K16	I/O
3	VCCO_3	J11	VCCO
3	VCCO_3	J12	VCCO
3	VCCO_3	K11	VCCO
4	IO	T12	I/O
4	Ю	T14	I/O
4	IO/VREF_4	N12	VREF
4	IO/VREF_4	P13	VREF
4	IO/VREF_4	T10	VREF
4	IO_L01N_4/VRP_4	R13	DCI
4	IO_L01P_4/VRN_4	T13	DCI
4	IO_L25N_4	P12	I/O
4	IO_L25P_4	R12	I/O
4	IO_L27N_4/DIN/D0	M11	DUAL

Table 23: FT256 Package Pinout (Continued)

Bank	XC3S200 XC3S400 XC3S1000 Pin Name	FT256 Pin Number	Туре
4	IO_L27P_4/D1	N11	DUAL
4	IO_L28N_4	P11	I/O
4	IO_L28P_4	R11	I/O
4	IO_L29N_4	M10	I/O
4	IO_L29P_4	N10	I/O
4	IO_L30N_4/D2	P10	DUAL
4	IO_L30P_4/D3	R10	DUAL
4	IO_L31N_4/INIT_B	N9	DUAL
4	IO_L31P_4/DOUT/BUSY	P9	DUAL
4	IO_L32N_4/GCLK1	R9	GCLK
4	IO_L32P_4/GCLK0	Т9	GCLK
4	VCCO_4	L9	VCCO
4	VCCO_4	L10	VCCO
4	VCCO_4	M9	VCCO
5	Ю	N5	I/O
5	Ю	P7	I/O
5	Ю	T5	I/O
5	IO/VREF_5	T8	VREF
5	IO_L01N_5/RDWR_B	Т3	DUAL
5	IO_L01P_5/CS_B	R3	DUAL
5	IO_L10N_5/VRP_5	T4	DCI
5	IO_L10P_5/VRN_5	R4	DCI
5	IO_L27N_5/VREF_5	R5	VREF
5	IO_L27P_5	P5	I/O
5	IO_L28N_5/D6	N6	DUAL
5	IO_L28P_5/D7	M6	DUAL
5	IO_L29N_5	R6	I/O
5	IO_L29P_5/VREF_5	P6	VREF
5	IO_L30N_5	N7	I/O
5	IO_L30P_5	M7	I/O
5	IO_L31N_5/D4	T7	DUAL
5	IO_L31P_5/D5	R7	DUAL
5	IO_L32N_5/GCLK3	P8	GCLK
5	IO_L32P_5/GCLK2	N8	GCLK
5	VCCO_5	L7	VCCO
5	VCCO_5	L8	VCCO
5	VCCO_5	M8	VCCO
6	Ю	K1	I/O
6	IO_L01N_6/VRP_6	R1	DCI
6	IO_L01P_6/VRN_6	P1	DCI

Table 23: FT256 Package Pinout (Continued)

Bank	XC3S200 XC3S400 XC3S1000 Pin Name	FT256 Pin Number	Туре
6	IO_L16N_6	P2	I/O
6	IO_L16P_6	N3	I/O
6	IO_L17N_6	N2	I/O
6	IO_L17P_6/VREF_6	N1	VREF
6	IO_L19N_6	M4	I/O
6	IO_L19P_6	M3	I/O
6	IO_L20N_6	M2	I/O
6	IO_L20P_6	M1	I/O
6	IO_L21N_6	L5	I/O
6	IO_L21P_6	L4	I/O
6	IO_L22N_6	L3	I/O
6	IO_L22P_6	L2	I/O
6	IO_L23N_6	K5	I/O
6	IO_L23P_6	K4	I/O
6	IO_L24N_6/VREF_6	K3	VREF
6	IO_L24P_6	K2	I/O
6	IO_L39N_6	J4	I/O
6	IO_L39P_6	J3	I/O
6	IO_L40N_6	J2	I/O
6	IO_L40P_6/VREF_6	J1	VREF
6	VCCO_6	J5	VCCO
6	VCCO_6	J6	VCCO
6	VCCO_6	K6	VCCO
7	IO	G2	I/O
7	IO_L01N_7/VRP_7	C1	DCI
7	IO_L01P_7/VRN_7	B1	DCI
7	IO_L16N_7	C2	I/O
7	IO_L16P_7/VREF_7	C3	VREF
7	IO_L17N_7	D1	I/O
7	IO_L17P_7	D2	I/O
7	IO_L19N_7/VREF_7	E3	VREF
7	IO_L19P_7	D3	I/O
7	IO_L20N_7	E1	I/O
7	IO_L20P_7	E2	I/O
7	IO_L21N_7	F4	I/O
7	IO_L21P_7	E4	I/O
7	IO_L22N_7	F2	I/O
7	IO_L22P_7	F3	I/O
7	IO_L23N_7	G5	I/O
7	IO_L23P_7	F5	I/O

Table 23: FT256 Package Pinout (Continued)

	XC3S200			
	XC3S400	FT256		
Book	XC3S1000	Pin	Tuna	
Bank 7	Pin Name	Number	Type	
	IO_L24N_7	G3	1/0	
7	IO_L24P_7	G4	1/0	
7	IO_L39N_7	H3	1/0	
7	IO_L39P_7	H4	1/0	
7	IO_L40N_7/VREF_7	H1	VREF	
7	IO_L40P_7	G1	1/0	
7	VCCO_7	G6	VCCO	
7	VCCO_7	H5	VCCO	
7	VCCO_7	H6	VCCO	
N/A	GND	A1	GND	
N/A	GND	A16	GND	
N/A	GND	B2	GND	
N/A	GND	B9	GND	
N/A	GND	B15	GND	
N/A	GND	F6	GND	
N/A	GND	F11	GND	
N/A	GND	G7	GND	
N/A	GND	G8	GND	
N/A	GND	G9	GND	
N/A	GND	G10	GND	
N/A	GND	H2	GND	
N/A	GND	H7	GND	
N/A	GND	H8	GND	
N/A	GND	H9	GND	
N/A	GND	H10	GND	
N/A	GND	J7	GND	
N/A	GND	J8	GND	
N/A	GND	J9	GND	
N/A	GND	J10	GND	
N/A	GND	J15	GND	
N/A	GND	K7	GND	
N/A	GND	K8	GND	
N/A	GND	K9	GND	
N/A	GND	K10	GND	
N/A	GND	L6	GND	
N/A	GND	L11	GND	
N/A	GND	R2	GND	
N/A	GND	R8	GND	
N/A	GND	R15	GND	
N/A	GND	T1	GND	

Table 23: FT256 Package Pinout (Continued)

Bank XC3S200 XC3S1000 Pin Name FT256 Pin Number Type N/A GND T16 GND N/A VCCAUX A6 VCCAUX N/A VCCAUX A11 VCCAUX N/A VCCAUX F1 VCCAUX N/A VCCAUX F16 VCCAUX N/A VCCAUX L1 VCCAUX N/A VCCAUX T6 VCCAUX N/A VCCAUX T11 VCCAUX N/A VCCAUX T11 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT N/A VCCINT N4 VCCINT	3,				
N/A VCCAUX A6 VCCAUX N/A VCCAUX A11 VCCAUX N/A VCCAUX F1 VCCAUX N/A VCCAUX L1 VCCAUX N/A VCCAUX L16 VCCAUX N/A VCCAUX T6 VCCAUX N/A VCCAUX T11 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	Bank	XC3S400 XC3S1000	Pin	Туре	
N/A VCCAUX A11 VCCAUX N/A VCCAUX F1 VCCAUX N/A VCCAUX F16 VCCAUX N/A VCCAUX L1 VCCAUX N/A VCCAUX T6 VCCAUX N/A VCCAUX T11 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	GND	T16	GND	
N/A VCCAUX F1 VCCAUX N/A VCCAUX F16 VCCAUX N/A VCCAUX L1 VCCAUX N/A VCCAUX T6 VCCAUX N/A VCCAUX T11 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCAUX	A6	VCCAUX	
N/A VCCAUX F16 VCCAUX N/A VCCAUX L1 VCCAUX N/A VCCAUX L16 VCCAUX N/A VCCAUX T6 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCAUX	A11	VCCAUX	
N/A VCCAUX L1 VCCAUX N/A VCCAUX L16 VCCAUX N/A VCCAUX T6 VCCAUX N/A VCCAUX T11 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCAUX	F1	VCCAUX	
N/A VCCAUX L16 VCCAUX N/A VCCAUX T6 VCCAUX N/A VCCAUX T11 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCAUX	F16	VCCAUX	
N/A VCCAUX T6 VCCAUX N/A VCCAUX T11 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCAUX	L1	VCCAUX	
N/A VCCAUX T11 VCCAUX N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCAUX	L16	VCCAUX	
N/A VCCINT D4 VCCINT N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCAUX	T6	VCCAUX	
N/A VCCINT D13 VCCINT N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCAUX	T11	VCCAUX	
N/A VCCINT E5 VCCINT N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCINT	D4	VCCINT	
N/A VCCINT E12 VCCINT N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCINT	D13	VCCINT	
N/A VCCINT M5 VCCINT N/A VCCINT M12 VCCINT	N/A	VCCINT	E5	VCCINT	
N/A VCCINT M12 VCCINT	N/A	VCCINT	E12	VCCINT	
	N/A	VCCINT	M5	VCCINT	
N/A VCCINT N4 VCCINT	N/A	VCCINT	M12	VCCINT	
	N/A	VCCINT	N4	VCCINT	

Table 23: FT256 Package Pinout (Continued)

Bank	XC3S200 XC3S400 XC3S1000 Pin Name	FT256 Pin Number	Туре
N/A	VCCINT	N13	VCCINT
VCCAUX	CCLK	T15	CONFIG
VCCAUX	DONE	R14	CONFIG
VCCAUX	HSWAP_EN	C4	CONFIG
VCCAUX	MO	P3	CONFIG
VCCAUX	M1	T2	CONFIG
VCCAUX	M2	P4	CONFIG
VCCAUX	PROG_B	В3	CONFIG
VCCAUX	TCK	C14	JTAG
VCCAUX	TDI	A2	JTAG
VCCAUX	TDO	A15	JTAG
VCCAUX	TMS	C13	JTAG

Table 24 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FT256 package.

Table 24: User I/Os Per Bank in FT256 Package

		Maximum	All Possible I/O Pins by Type				
Package Edge	I/O Bank	I/O	I/O	DUAL	DCI	VREF	GCLK
Тор	0	20	13	0	2	3	2
ТОР	1	20	13	0	2	3	2
Right	2	23	18	0	2	3	0
nigiit	3	23	18	0	2	3	0
Bottom	4	21	8	6	2	3	2
Bottom	5	20	7	6	2	3	2
1 - 4	6	23	18	0	2	3	0
Left	7	23	18	0	2	3	0

FT256 Footprint

Figure 11: FT256 Package Footprint (top view)

I/O: Unrestricted, general-purpose user I/O **DUAL:** Configuration pin, then possible VREF: User I/O or input voltage reference for 113 12 24 user I/O DCI: User I/O or reference resistor input for GCLK: User I/O or global clock buffer input VCCO: Output voltage supply for bank 24 16 bank **CONFIG:** Dedicated configuration pins JTAG: Dedicated JTAG port pins VCCINT: Internal core voltage supply 7 8 (+1.2V)VCCAUX: Auxiliary voltage supply N.C.: No unconnected pins in this package GND: Ground 32 0 8 (+2.5V)

FG320: 320-lead Fine-pitch Ball Grid Array

The 320-lead fine-pitch ball grid array package, FG320, supports three different Spartan-3 devices, including the XC3S400, the XC3S1000, and the XC3S1500. The footprint for all three devices is identical, as shown in Table 25 and Figure 12.

The FG320 package is an 18 x 18 array of solder balls minus the four center balls.

All the package pins appear in Table 25 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

Table 25: FG320 Package Pinout

	XC3S400 XC3S1000 XC3S1500	FG320 Pin	
Bank	Pin Name	Number	Type
0	Ю	D9	I/O
0	Ю	E7	I/O
0	IO/VREF_0	B3	VREF
0	IO/VREF_0	D6	VREF
0	IO_L01N_0/VRP_0	A2	DCI
0	IO_L01P_0/VRN_0	А3	DCI
0	IO_L09N_0	B4	I/O
0	IO_L09P_0	C4	I/O
0	IO_L10N_0	C5	I/O
0	IO_L10P_0	D5	I/O
0	IO_L15N_0	A4	I/O
0	IO_L15P_0	A5	I/O
0	IO_L25N_0	B5	I/O
0	IO_L25P_0	B6	I/O
0	IO_L27N_0	C7	I/O
0	IO_L27P_0	D7	I/O
0	IO_L28N_0	C8	I/O
0	IO_L28P_0	D8	I/O
0	IO_L29N_0	E8	I/O
0	IO_L29P_0	F8	I/O
0	IO_L30N_0	A7	I/O
0	IO_L30P_0	A8	I/O
0	IO_L31N_0	В9	I/O
0	IO_L31P_0/VREF_0	A9	VREF
0	IO_L32N_0/GCLK7	E9	GCLK
0	IO_L32P_0/GCLK6	F9	GCLK
0	VCCO_0	B8	VCCO

Table 25: FG320 Package Pinout (Continued)

Bank	XC3S400 XC3S1000 XC3S1500 Pin Name	FG320 Pin Number	Туре
0	VCCO_0	C6	VCCO
0	VCCO_0	G8	VCCO
0	VCCO_0	G9	VCCO
1	Ю	A11	I/O
1	Ю	B13	I/O
1	Ю	D10	I/O
1	IO/VREF_1	A12	VREF
1	IO_L01N_1/VRP_1	A16	DCI
1	IO_L01P_1/VRN_1	A17	DCI
1	IO_L10N_1/VREF_1	A15	VREF
1	IO_L10P_1	B15	I/O
1	IO_L15N_1	C14	I/O
1	IO_L15P_1	C15	I/O
1	IO_L16N_1	A14	I/O
1	IO_L16P_1	B14	I/O
1	IO_L24N_1	D14	I/O
1	IO_L24P_1	D13	I/O
1	IO_L27N_1	E13	I/O
1	IO_L27P_1	E12	I/O
1	IO_L28N_1	C12	I/O
1	IO_L28P_1	D12	I/O
1	IO_L29N_1	F11	I/O
1	IO_L29P_1	E11	I/O
1	IO_L30N_1	C11	I/O
1	IO_L30P_1	D11	I/O
1	IO_L31N_1/VREF_1	A10	VREF
1	IO_L31P_1	B10	I/O
1	IO_L32N_1/GCLK5	E10	GCLK
1	IO_L32P_1/GCLK4	F10	GCLK
1	VCCO_1	B11	VCCO
1	VCCO_1	C13	VCCO
1	VCCO_1	G10	VCCO
1	VCCO_1	G11	VCCO
2	Ю	J13	I/O
2	IO_L01N_2/VRP_2	C16	DCI
2	IO_L01P_2/VRN_2	C17	DCI
2	IO_L16N_2	B18	I/O
2	IO_L16P_2	C18	I/O
2	IO_L17N_2	D17	I/O
2	IO_L17P_2/VREF_2	D18	VREF
2	IO_L19N_2	D16	I/O
2	IO_L19P_2	E16	I/O

Table 25: FG320 Package Pinout (Continued)

	XC3S400		
	XC3S1000	FG320	
Ponk	XC3S1500 Pin Name	Pin Number	Type
Bank			Туре
2	IO_L20N_2	E17	I/O
2	IO_L20P_2	E18	I/O
2	IO_L21N_2 IO_L21P_2	F15	1/0
		E15 F14	1/0
2	IO_L22N_2 IO_L22P_2	G14	I/O I/O
2	IO_L23N_2/VREF_2	G14 G18	VREF
2	IO_L23N_2/VHEF_2	F17	I/O
2	IO_L24N_2	G15	I/O
2	IO_L24P_2	G16	I/O
2	IO_L27N_2	H13	I/O
2	IO_L27N_2	H14	I/O
2	IO_L27P_2 IO_L34N_2/VREF_2	H16	VREF
2	IO_L34N_2/VHEF_2	H15	I/O
2	IO_L34F_2	H17	I/O
2	IO_L35P_2	H18	I/O
2	IO_L39N_2	J18	I/O
2	IO_L39N_2	J17	I/O
2	IO_L39F_2	J15	I/O
2	IO_L40N_2 IO_L40P_2/VREF_2	J14	VREF
2	VCCO 2	F16	VCCO
2	VCCO_2	H12	VCCO
2	VCCO_2	J12	VCCO
3	10	K15	I/O
3	IO_L01N_3/VRP_3	T17	DCI
3	IO_L01P_3/VRN_3	T16	DCI
3	IO_L16N_3	T18	I/O
3	IO_L16P_3	U18	I/O
3	IO_L17N_3	P16	I/O
3	IO_L17P_3/VREF_3	R16	VREF
3	IO_L19N_3	R17	I/O
3	IO_L19P_3	R18	I/O
3	IO_L20N_3	P18	I/O
3	IO_L20P_3	P17	I/O
3	IO_L21N_3	P15	I/O
3	IO_L21P_3	N15	I/O
3	IO_L22N_3	M14	I/O
3	IO_L22P_3	N14	I/O
3	IO_L23N_3	M15	I/O
3	IO_L23P_3/VREF_3	M16	VREF
3	IO_L24N_3	M18	I/O
3	IO_L24P_3	N17	I/O

Table 25: FG320 Package Pinout (Continued)

Bank	XC3S400 XC3S1000 XC3S1500 Pin Name	FG320 Pin Number	Туре
3	IO_L27N_3	L14	I/O
3	IO_L27P_3	L13	I/O
3	IO_L34N_3	L15	I/O
3	IO_L34P_3/VREF_3	L16	VREF
3	IO_L35N_3	L18	I/O
3	IO_L35P_3	L17	I/O
3	IO_L39N_3	K13	I/O
3	IO_L39P_3	K14	I/O
3	IO_L40N_3/VREF_3	K17	VREF
3	IO_L40P_3	K18	I/O
3	VCCO_3	K12	VCCO
3	VCCO_3	L12	VCCO
3	VCCO_3	N16	VCCO
4	Ю	P12	I/O
4	Ю	V14	I/O
4	IO/VREF_4	R10	VREF
4	IO/VREF_4	U13	VREF
4	IO/VREF_4	V17	VREF
4	IO_L01N_4/VRP_4	U16	DCI
4	IO_L01P_4/VRN_4	V16	DCI
4	IO_L06N_4/VREF_4	P14	VREF
4	IO_L06P_4	R14	I/O
4	IO_L09N_4	U15	I/O
4	IO_L09P_4	V15	I/O
4	IO_L10N_4	T14	I/O
4	IO_L10P_4	U14	I/O
4	IO_L25N_4	R13	I/O
4	IO_L25P_4	P13	I/O
4	IO_L27N_4/DIN/D0	T12	DUAL
4	IO_L27P_4/D1	R12	DUAL
4	IO_L28N_4	V12	I/O
4	IO_L28P_4	V11	I/O
4	IO_L29N_4	R11	I/O
4	IO_L29P_4	T11	I/O
4	IO_L30N_4/D2	N11	DUAL
4	IO_L30P_4/D3	P11	DUAL
4	IO_L31N_4/INIT_B	U10	DUAL
4	IO_L31P_4/ DOUT/BUSY	V10	DUAL
4	IO_L32N_4/GCLK1	N10	GCLK
4	IO_L32P_4/GCLK0	P10	GCLK
4	VCCO_4	M10	VCCO

Table 25: FG320 Package Pinout (Continued)

Bank	XC3S400 XC3S1000 XC3S1500 Pin Name	FG320 Pin Number	Туре
4	VCCO_4	M11	VCCO
4	VCCO_4	T13	VCCO
4	VCCO_4	U11	VCCO
5	IO	N8	I/O
5	Ю	P8	I/O
5	Ю	U6	I/O
5	IO/VREF_5	R9	VREF
5	IO_L01N_5/RDWR_B	V3	DUAL
5	IO_L01P_5/CS_B	V2	DUAL
5	IO_L06N_5	T5	I/O
5	IO_L06P_5	T4	I/O
5	IO_L10N_5/VRP_5	V4	DCI
5	IO_L10P_5/VRN_5	U4	DCI
5	IO_L15N_5	R6	I/O
5	IO_L15P_5	R5	I/O
5	IO_L16N_5	V5	I/O
5	IO_L16P_5	U5	I/O
5	IO_L27N_5/VREF_5	P6	VREF
5	IO_L27P_5	P7	I/O
5	IO_L28N_5/D6	R7	DUAL
5	IO_L28P_5/D7	T7	DUAL
5	IO_L29N_5	V8	I/O
5	IO_L29P_5/VREF_5	V7	VREF
5	IO_L30N_5	R8	I/O
5	IO_L30P_5	Т8	I/O
5	IO_L31N_5/D4	U9	DUAL
5	IO_L31P_5/D5	V9	DUAL
5	IO_L32N_5/GCLK3	N9	GCLK
5	IO_L32P_5/GCLK2	P9	GCLK
5	VCCO_5	M8	VCCO
5	VCCO_5	M9	VCCO
5	VCCO_5	T6	VCCO
5	VCCO_5	U8	VCCO
6	Ю	K6	I/O
6	IO_L01N_6/VRP_6	T3	DCI
6	IO_L01P_6/VRN_6	T2	DCI
6	IO_L16N_6	U1	I/O
6	IO_L16P_6	T1	I/O
6	IO_L17N_6	R2	I/O
6	IO_L17P_6/VREF_6	R1	VREF
6	IO_L19N_6	R3	I/O
6	IO_L19P_6	P3	I/O

Table 25: FG320 Package Pinout (Continued)

Bank	XC3S400 XC3S1000 XC3S1500 Pin Name	FG320 Pin	
		Number	Туре
6	IO_L20N_6	P2	I/O
6	IO_L20P_6	P1	I/O
6	IO_L21N_6	N4	I/O
6	IO_L21P_6	P4	I/O
6	IO_L22N_6	N5	I/O
6	IO_L22P_6	M5	I/O
6	IO_L23N_6	M3	I/O
6	IO_L23P_6	M4	I/O
6	IO_L24N_6/VREF_6	N2	VREF
6	IO_L24P_6	M1	I/O
6	IO_L27N_6	L6	I/O
6	IO_L27P_6	L5	I/O
6	IO_L34N_6/VREF_6	L3	VREF
6	IO_L34P_6	L4	I/O
6	IO_L35N_6	L2	I/O
6	IO_L35P_6	L1	I/O
6	IO_L39N_6	K5	I/O
6	IO_L39P_6	K4	I/O
6	IO_L40N_6	K1	I/O
6	IO_L40P_6/VREF_6	K2	VREF
6	VCCO_6	K7	VCCO
6	VCCO_6	L7	VCCO
6	VCCO_6	N3	VCCO
7	Ю	J6	I/O
7	IO_L01N_7/VRP_7	C3	DCI
7	IO_L01P_7/VRN_7	C2	DCI
7	IO_L16N_7	C1	I/O
7	IO_L16P_7/VREF_7	B1	VREF
7	IO_L17N_7	D1	I/O
7	IO_L17P_7	D2	I/O
7	IO_L19N_7/VREF_7	E3	VREF
7	IO_L19P_7	D3	I/O
7	IO_L20N_7	E2	I/O
7	IO_L20P_7	E1	I/O
7	IO_L21N_7	E4	I/O
7	IO_L21P_7	F4	I/O
7	IO_L22N_7	G5	I/O
7	IO_L22P_7	F5	I/O
7	IO_L23N_7	G1	I/O
7	IO_L23P_7	F2	I/O
7	IO_L24N_7	G4	I/O
7	IO_L24P_7	G3	I/O

Table 25: FG320 Package Pinout (Continued)

	XC3S400 XC3S1000 XC3S1500	FG320 Pin	
Bank	Pin Name	Number	Туре
7	IO_L27N_7	H5	I/O
7	IO_L27P_7/VREF_7	H6	VREF
7	IO_L34N_7	H4	I/O
7	IO_L34P_7	НЗ	I/O
7	IO_L35N_7	H1	I/O
7	IO_L35P_7	H2	I/O
7	IO_L39N_7	J1	I/O
7	IO_L39P_7	J2	I/O
7	IO_L40N_7/VREF_7	J5	VREF
7	IO_L40P_7	J4	I/O
7	VCCO_7	F3	VCCO
7	VCCO_7	H7	VCCO
7	VCCO_7	J7	VCCO
N/A	GND	A1	GND
N/A	GND	A13	GND
N/A	GND	A18	GND
N/A	GND	A6	GND
N/A	GND	B17	GND
N/A	GND	B2	GND
N/A	GND	C10	GND
N/A	GND	C9	GND
N/A	GND	F1	GND
N/A	GND	F18	GND
N/A	GND	G12	GND
N/A	GND	G7	GND
N/A	GND	H10	GND
N/A	GND	H11	GND
N/A	GND	H8	GND
N/A	GND	H9	GND
N/A	GND	J11	GND
N/A	GND	J16	GND
N/A	GND	J3	GND
N/A	GND	J8	GND
N/A	GND	K11	GND
N/A	GND	K16	GND
N/A	GND	K3	GND
N/A	GND	K8	GND
N/A	GND	L10	GND
N/A	GND	L11	GND
N/A	GND	L8	GND
N/A	GND	L9	GND
N/A	GND	M12	GND

Table 25: FG320 Package Pinout (Continued)

	XC3S400	<u> </u>	
	XC3S1000	FG320	
	XC3S1500	Pin	
Bank	Pin Name	Number	Туре
N/A	GND	M7	GND
N/A	GND	N1	GND
N/A	GND	N18	GND
N/A	GND	T10	GND
N/A	GND	Т9	GND
N/A	GND	U17	GND
N/A	GND	U2	GND
N/A	GND	V1	GND
N/A	GND	V13	GND
N/A	GND	V18	GND
N/A	GND	V6	GND
N/A	VCCAUX	B12	VCCAUX
N/A	VCCAUX	B7	VCCAUX
N/A	VCCAUX	G17	VCCAUX
N/A	VCCAUX	G2	VCCAUX
N/A	VCCAUX	M17	VCCAUX
N/A	VCCAUX	M2	VCCAUX
N/A	VCCAUX	U12	VCCAUX
N/A	VCCAUX	U7	VCCAUX
N/A	VCCINT	F12	VCCINT
	VOOIIVI	F12	VCCIIVI
N/A	VCCINT	F13	VCCINT
N/A	VCCINT	F13	VCCINT
N/A N/A	VCCINT VCCINT	F13 F6	VCCINT VCCINT
N/A N/A N/A	VCCINT VCCINT VCCINT	F13 F6 F7	VCCINT VCCINT VCCINT
N/A N/A N/A N/A	VCCINT VCCINT VCCINT	F13 F6 F7 G13	VCCINT VCCINT VCCINT
N/A N/A N/A N/A N/A	VCCINT VCCINT VCCINT VCCINT VCCINT	F13 F6 F7 G13 G6	VCCINT VCCINT VCCINT VCCINT
N/A N/A N/A N/A N/A N/A	VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT	F13 F6 F7 G13 G6 M13	VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT
N/A N/A N/A N/A N/A N/A N/A N/A	VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT	F13 F6 F7 G13 G6 M13 M6	VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT
N/A	VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT	F13 F6 F7 G13 G6 M13 M6 N12	VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT
N/A	VCCINT	F13 F6 F7 G13 G6 M13 M6 N12 N13	VCCINT
N/A	VCCINT	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6	VCCINT
N/A	VCCINT	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7	VCCINT
N/A	VCCINT CCINT CCLK	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15	VCCINT CONFIG
N/A	VCCINT CCINT CCLK DONE	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15 R15	VCCINT CONFIG CONFIG
N/A	VCCINT CCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CCLK DONE HSWAP_EN	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15 R15 E6	VCCINT CONFIG CONFIG
N/A	VCCINT CCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT CCLK DONE HSWAP_EN M0	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15 R15 E6 P5	VCCINT CONFIG CONFIG CONFIG
N/A	VCCINT CCLK DONE HSWAP_EN M0 M1	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15 R15 E6 P5 U3	VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG
N/A	VCCINT CCLK DONE HSWAP_EN M0 M1 M2	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15 R15 E6 P5 U3 R4	VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG
N/A	VCCINT CCLK DONE HSWAP_EN M0 M1 M2 PROG_B	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15 R15 E6 P5 U3 R4 E5	VCCINT CONFIG
N/A	VCCINT CCLK DONE HSWAP_EN M0 M1 M2 PROG_B TCK	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15 R15 E6 P5 U3 R4 E5 E14	VCCINT CONFIG
N/A	VCCINT CCLK DONE HSWAP_EN M0 M1 M2 PROG_B TCK TDI	F13 F6 F7 G13 G6 M13 M6 N12 N13 N6 N7 T15 R15 E6 P5 U3 R4 E5 E14 D4	VCCINT CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG CONFIG JTAG JTAG

Table 26 indicates how the available user-I/O pins are distributed between the eight I/O banks on the FG320 package.

Table 26: User I/Os Per Bank in FG320 Package

			Maximum		All Pos	sible I/O Pi	ins by Type	
Package Edge	I/O Bank	Maximum I/O	LVDS Pairs	I/O	DUAL	DCI	VREF	GCLK
Тор	0	26	11	19	0	2	3	2
Юр	1	26	11	19	0	2	3	2
Diaht	2	29	14	23	0	2	4	0
Right	3	29	14	23	0	2	4	0
Bottom	4	27	11	13	6	2	4	2
Вошот	5	26	11	13	6	2	3	2
Left	6	29	14	23	0	2	4	0
Leit	7	29	14	23	0	2	4	0

FG320 Footprint

Figure 12: FG320 Package Footprint (top view)

I/O: Unrestricted, general-purpose user I/O **DUAL:** Configuration pin, then possible VREF: User I/O or input voltage reference for 156 29 12 user I/O DCI: User I/O or reference resistor input for GCLK: User I/O or global clock buffer input VCCO: Output voltage supply for bank 16 **CONFIG:** Dedicated configuration pins JTAG: Dedicated JTAG port pins VCCINT: Internal core voltage supply 7 12 (+1.2V)N.C.: No unconnected pins in this package **GND:** Ground VCCAUX: Auxiliary voltage supply 0 (+2.5V)

FG456: 456-lead Fine-pitch Ball Grid Array

The 456-lead fine-pitch ball grid array package, FG456, supports three different Spartan-3 devices, including the XC3S400, the XC3S1000, and the XC3S1500. The footprints for the XC3S1000 and XC3S1500 are identical, as shown in Table 27 and Figure 13. The XC3S400, however, has fewer I/O pins which consequently results in 69 unconnected pins on the FG456 package, labeled as "N.C." In Table 27 and Figure 13, these unconnected pins are indicated with a black diamond symbol (♠).

All the package pins appear in Table 27 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

If there is a difference between the XC3S400 pinout and the pinout for the XC3S1000 and XC3S1500, then that difference is highlighted in Table 27. If the table entry is shaded grey, then there is an unconnected pin on the XC3S400 that maps to a user-I/O pin on the XC3S1000 and XC3S1500. If the table entry is shaded tan, then the unconnected pin on the XC3S400 maps to a VREF-type pin on the XC3S1000 and XC3S1500. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S400 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S400 device to an XC3S1000 or XC3S1500 FPGA without changing the printed circuit board.

Table 27: FG456 Package Pinout

Bank	3S400 Pin Name	3S1000 3S1500 Pin Name	FG456 Pin Number	Type
0	Ю	IO	A10	I/O
0	Ю	Ю	D9	I/O
0	Ю	IO	D10	I/O
0	Ю	Ю	F6	I/O
0	IO/VREF_0	IO/VREF_0	A3	VREF
0	IO/VREF_0	IO/VREF_0	C7	VREF
0	N.C. (◆)	IO/VREF_0	E5	VREF
0	IO/VREF_0	IO/VREF_0	F7	VREF
0	IO_L01N_0/ VRP_0	IO_L01N_0/ VRP_0	B4	DCI
0	IO_L01P_0/ VRN_0	IO_L01P_0/ VRN_0	A4	DCI
0	IO_L06N_0	IO_L06N_0	D5	I/O
0	IO_L06P_0	IO_L06P_0	C5	I/O
0	IO_L09N_0	IO_L09N_0	B5	I/O
0	IO_L09P_0	IO_L09P_0	A5	I/O

Table 27: FG456 Package Pinout (Continued)

	1	201000	EC4EC	
	3S400	3S1000 3S1500	FG456 Pin	
Bank	Pin Name	Pin Name	Number	Туре
0	IO_L10N_0	IO_L10N_0	E6	I/O
0	IO_L10P_0	IO_L10P_0	D6	I/O
0	IO_L15N_0	IO_L15N_0	C6	I/O
0	IO_L15P_0	IO_L15P_0	B6	I/O
0	IO_L16N_0	IO_L16N_0	E7	I/O
0	IO_L16P_0	IO_L16P_0	D7	I/O
0	N.C. (◆)	IO_L19N_0	B7	I/O
0	N.C. (♠)	IO_L19P_0	A7	I/O
0	N.C. (◆)	IO_L22N_0	E8	I/O
0	N.C. (♠)	IO_L22P_0	D8	I/O
0	IO_L24N_0	IO_L24N_0	B8	I/O
0	IO_L24P_0	IO_L24P_0	A8	I/O
0	IO L25N 0	IO_L25N_0	F9	I/O
0	IO_L25P_0	IO_L25P_0	E9	I/O
0	IO_L27N_0	IO_L27N_0	B9	I/O
0	IO_L27P_0	IO_L27P_0	A9	I/O
0	IO L28N 0	IO_L28N_0	F10	I/O
0	IO L28P_0	IO_L28P_0	E10	I/O
0	IO L29N 0	IO L29N 0	C10	I/O
0	IO_L29P_0	IO_L29P_0	B10	I/O
0	IO_L30N_0	IO_L30N_0	F11	I/O
0	IO_L30P_0	IO_L30P_0	E11	I/O
0	IO_L31N_0	IO_L31N_0	D11	I/O
0	IO L31P 0/	IO_L31P_0/	C11	VREF
O	VREF_0	VREF_0	011	VIIL
0	IO_L32N_0/	IO_L32N_0/	B11	GCLK
	GCLK7	GCLK7		
0	IO_L32P_0/	IO_L32P_0/	A11	GCLK
	GCLK6	GCLK6		
0	VCCO_0	VCCO_0	C8	VCCO
0	VCCO_0	VCCO_0	F8	VCCO
0	VCCO_0	VCCO_0	G9	VCCO
0	VCCO_0	VCCO_0	G10	VCCO
0	VCCO_0	VCCO_0	G11	VCCO
1	Ю	Ю	A12	I/O
1	Ю	Ю	E16	I/O
1	Ю	Ю	F12	I/O
1	Ю	Ю	F13	I/O
1	Ю	Ю	F16	I/O
1	Ю	Ю	F17	I/O
1	IO/VREF_1	IO/VREF_1	E13	VREF
1	N.C. (◆)	IO/VREF_1	F14	VREF
1	IO_L01N_1/ VRP_1	IO_L01N_1/ VRP_1	C19	DCI
1	IO_L01P_1/ VRN_1	IO_L01P_1/ VRN_1	B20	DCI

Table 27: FG456 Package Pinout (Continued)

	3S400	3S1000 3S1500	FG456 Pin	
Bank	Pin Name	Pin Name	Number	Type
1	IO_L06N_1/ VREF_1	IO_L06N_1/ VREF_1	A19	VREF
1	IO_L06P_1	IO_L06P_1	B19	I/O
1	IO_L09N_1	IO_L09N_1	C18	I/O
1	IO_L09P_1	IO_L09P_1	D18	I/O
1	IO_L10N_1/ VREF_1	IO_L10N_1/ VREF_1	A18	VREF
1	IO_L10P_1	IO_L10P_1	B18	I/O
1	IO_L15N_1	IO_L15N_1	D17	I/O
1	IO_L15P_1	IO_L15P_1	E17	I/O
1	IO_L16N_1	IO_L16N_1	B17	I/O
1	IO_L16P_1	IO_L16P_1	C17	I/O
1	N.C. (♦)	IO_L19N_1	C16	I/O
1	N.C. (◆)	IO_L19P_1	D16	I/O
1	N.C. (♦)	IO_L22N_1	A16	I/O
1	N.C. (♠)	IO_L22P_1	B16	I/O
1	IO_L24N_1	IO_L24N_1	D15	I/O
1	IO_L24P_1	IO_L24P_1	E15	I/O
1	IO_L25N_1	IO_L25N_1	B15	I/O
1	IO_L25P_1	IO_L25P_1	A15	I/O
1	IO_L27N_1	IO_L27N_1	D14	I/O
1	IO_L27P_1	IO_L27P_1	E14	I/O
1	IO_L28N_1	IO_L28N_1	A14	I/O
1	IO_L28P_1	IO_L28P_1	B14	I/O
1	IO_L29N_1	IO_L29N_1	C13	I/O
1	IO_L29P_1	IO_L29P_1	D13	I/O
1	IO_L30N_1	IO_L30N_1	A13	I/O
1	IO_L30P_1	IO_L30P_1	B13	I/O
1	IO_L31N_1/ VREF_1	IO_L31N_1/ VREF_1	D12	VREF
1	IO_L31P_1	IO_L31P_1	E12	I/O
1	IO_L32N_1/ GCLK5	IO_L32N_1/ GCLK5	B12	GCLK
1	IO_L32P_1/ GCLK4	IO_L32P_1/ GCLK4	C12	GCLK
1	VCCO_1	VCCO_1	C15	VCCO
1	VCCO_1	VCCO_1	F15	VCCO
1	VCCO_1	VCCO_1	G12	VCCO
1	VCCO_1	VCCO_1	G13	VCCO
1	VCCO_1	VCCO_1	G14	VCCO
2	Ю	Ю	C22	I/O
2	IO_L01N_2/ VRP_2	IO_L01N_2/ VRP_2	C20	DCI
2	IO_L01P_2/ VRN_2	IO_L01P_2/ VRN_2	C21	DCI
2	IO_L16N_2	IO_L16N_2	D20	I/O

Table 27: FG456 Package Pinout (Continued)

		3S1000	FG456	
	3S400	3S1500	Pin	
Bank	Pin Name	Pin Name	Number	Type
2	IO_L16P_2	IO_L16P_2	D19	I/O
2	IO_L17N_2	IO_L17N_2	D21	I/O
2	IO_L17P_2	IO_L17P_2/	D22	VREF
	/VREF_2	VREF_2		
2	IO_L19N_2	IO_L19N_2	E18	I/O
2	IO_L19P_2	IO_L19P_2	F18	I/O
2	IO_L20N_2	IO_L20N_2	E19	I/O
2	IO_L20P_2	IO_L20P_2	E20	I/O
2	IO_L21N_2	IO_L21N_2	E21	I/O
2	IO_L21P_2	IO_L21P_2	E22	I/O
2	IO_L22N_2	IO_L22N_2	G17	I/O
2	IO_L22P_2	IO_L22P_2	G18	I/O
2	IO_L23N_2	IO_L23N_2/	F19	VREF
	/VREF_2	VREF_2		
2	IO_L23P_2	IO_L23P_2	G19	I/O
2	IO_L24N_2	IO_L24N_2	F20	I/O
2	IO_L24P_2	IO_L24P_2	F21	I/O
2	N.C. (◆)	IO_L26N_2	G20	I/O
2	N.C. (◆)	IO_L26P_2	H19	I/O
2	IO_L27N_2	IO_L27N_2	G21	I/O
2	IO_L27P_2	IO_L27P_2	G22	I/O
2	N.C. (♦)	IO_L28N_2	H18	I/O
2	N.C. (♦)	IO_L28P_2	J17	I/O
2	N.C. (◆)	IO_L29N_2	H21	I/O
2	N.C. (♦)	IO_L29P_2	H22	I/O
2	N.C. (♦)	IO_L31N_2	J18	I/O
2	N.C. (♦)	IO_L31P_2	J19	I/O
2	N.C. (♦)	IO_L32N_2	J21	I/O
2	N.C. (♦)	IO_L32P_2	J22	I/O
2	N.C. (♦)	IO_L33N_2	K17	I/O
2	N.C. (◆)	IO_L33P_2	K18	I/O
2	IO_L34N_2/	IO_L34N_2/	K19	VREF
	VREF_2	VREF_2		
2	IO_L34P_2	IO_L34P_2	K20	I/O
2	IO_L35N_2	IO_L35N_2	K21	I/O
2	IO_L35P_2	IO_L35P_2	K22	I/O
2	IO_L38N_2	IO_L38N_2	L17	I/O
2	IO_L38P_2	IO_L38P_2	L18	I/O
2	IO_L39N_2	IO_L39N_2	L19	I/O
2	IO_L39P_2	IO_L39P_2	L20	I/O
2	IO_L40N_2	IO_L40N_2	L21	I/O
2	IO_L40P_2/	IO_L40P_2/	L22	VREF
	VREF_2	VREF_2		
2	VCCO_2	VCCO_2	H17	VCCO
2	VCCO_2	VCCO_2	H20	VCCO

Table 27: FG456 Package Pinout (Continued)

	26400	3S1000 3S1500	FG456	
Bank	3S400 Pin Name	3S1500 Pin Name	Pin Number	Туре
2	VCCO_2	VCCO_2	J16	VCCO
2	VCCO_2	VCCO_2	K16	VCCO
2	VCCO 2	VCCO_2	L16	VCCO
3	IO	IO	Y21	I/O
3	IO_L01N_3/	IO_L01N_3/	Y20	DCI
	VRP_3	VRP_3		
3	IO_L01P_3/ VRN_3	IO_L01P_3/ VRN_3	Y19	DCI
3	IO_L16N_3	IO_L16N_3	W22	I/O
3	IO_L16P_3	IO_L16P_3	Y22	I/O
3	IO_L17N_3	IO_L17N_3	V19	I/O
3	IO_L17P_3/ VREF_3	IO_L17P_3/ VREF_3	W19	VREF
3	IO_L19N_3	IO_L19N_3	W21	I/O
3	IO_L19P_3	IO_L19P_3	W20	I/O
3	IO_L20N_3	IO_L20N_3	U19	I/O
3	IO_L20P_3	IO_L20P_3	V20	I/O
3	IO_L21N_3	IO_L21N_3	V22	I/O
3	IO_L21P_3	IO_L21P_3	V21	I/O
3	IO_L22N_3	IO_L22N_3	T17	I/O
3	IO_L22P_3	IO_L22P_3	U18	I/O
3	IO_L23N_3	IO_L23N_3	U21	I/O
3	IO_L23P_3/ VREF_3	IO_L23P_3/ VREF_3	U20	VREF
3	IO_L24N_3	IO_L24N_3	R18	I/O
3	IO_L24P_3	IO_L24P_3	T18	I/O
3	N.C. (◆)	IO_L26N_3	T20	I/O
3	N.C. (◆)	IO_L26P_3	T19	I/O
3	IO_L27N_3	IO_L27N_3	T22	I/O
3	IO_L27P_3	IO_L27P_3	T21	I/O
3	N.C. (◆)	IO_L28N_3	R22	I/O
3	N.C. (◆)	IO_L28P_3	R21	I/O
3	N.C. (◆)	IO_L29N_3	P19	I/O
3	N.C. (◆)	IO_L29P_3	R19	I/O
3	N.C. (◆)	IO_L31N_3	P18	I/O
3	N.C. (◆)	IO_L31P_3	P17	I/O
3	N.C. (◆)	IO_L32N_3	P22	I/O
3	N.C. (◆)	IO_L32P_3	P21	I/O
3	N.C. (♠)	IO_L33N_3	N18	I/O
3	N.C. (♠)	IO_L33P_3	N17	I/O
3	IO_L34N_3	IO_L34N_3	N20	I/O
3	IO_L34P_3/ VREF_3	IO_L34P_3/ VREF_3	N19	VREF
3	IO_L35N_3	IO_L35N_3	N22	I/O
3	IO_L35P_3	IO_L35P_3	N21	I/O
3	IO_L38N_3	IO_L38N_3	M18	I/O

Table 27: FG456 Package Pinout (Continued)

		3\$1000	FG456	
Bank	3S400 Pin Name	3S1500 Pin Name	Pin Number	Туре
3	IO_L38P_3	IO_L38P_3	M17	I/O
3	IO L39N 3	IO_L39N_3	M20	I/O
3	IO_L39P_3	IO_L39P_3	M19	I/O
3	IO_L40N_3/	IO_L40N_3/	M22	VREF
	VREF_3	VREF_3		
3	IO_L40P_3	IO_L40P_3	M21	I/O
3	VCCO_3	VCCO_3	M16	VCCO
3	VCCO_3	VCCO_3	N16	VCCO
3	VCCO_3	VCCO_3	P16	VCCO
3	VCCO_3	VCCO_3	R17	VCCO
3	VCCO_3	VCCO_3	R20	VCCO
4	Ю	Ю	U16	I/O
4	Ю	Ю	U17	I/O
4	Ю	Ю	W13	I/O
4	Ю	Ю	W14	I/O
4	IO/VREF_4	IO/VREF_4	AB13	VREF
4	IO/VREF_4	IO/VREF_4	V18	VREF
4	IO/VREF_4	IO/VREF_4	Y16	VREF
4	IO_L01N_4/ VRP_4	IO_L01N_4/ VRP_4	AA20	DCI
4	IO_L01P_4/ VRN_4	IO_L01P_4/ VRN_4	AB20	DCI
4	N.C. (♦)	IO_L05N_4	AA19	I/O
4	N.C. (◆)	IO_L05P_4	AB19	I/O
4	IO_L06N_4/ VREF_4	IO_L06N_4/ VREF_4	W18	VREF
4	IO_L06P_4	IO_L06P_4	Y18	I/O
4	IO_L09N_4	IO_L09N_4	AA18	I/O
4	IO_L09P_4	IO_L09P_4	AB18	I/O
4	IO_L10N_4	IO_L10N_4	V17	I/O
4	IO_L10P_4	IO_L10P_4	W17	I/O
4	IO_L15N_4	IO_L15N_4	Y17	I/O
4	IO_L15P_4	IO_L15P_4	AA17	I/O
4	IO_L16N_4	IO_L16N_4	V16	I/O
4	IO_L16P_4	IO_L16P_4	W16	I/O
4	N.C. (◆)	IO_L19N_4	AA16	I/O
4	N.C. (◆)	IO_L19P_4	AB16	I/O
4	N.C. (◆)	IO_L22N_4/ VREF_4	V15	VREF
4	N.C. (◆)	IO_L22P_4	W15	I/O
4	IO_L24N_4	IO_L24N_4	AA15	I/O
4	IO_L24P_4	IO_L24P_4	AB15	I/O
4	IO_L25N_4	IO_L25N_4	U14	I/O
4	IO_L25P_4	IO_L25P_4	V14	I/O
4	IO_L27N_4/ DIN/D0	IO_L27N_4/ DIN/D0	AA14	DUAL

Table 27: FG456 Package Pinout (Continued)

	1 0430 1 408	3S1000	FG456	
	3\$400	3S1500	Pin	
Bank	Pin Name	Pin Name	Number	Type
4	IO_L27P_4/ D1	IO_L27P_4/ D1	AB14	DUAL
4	IO_L28N_4	IO_L28N_4	U13	I/O
4	IO_L28P_4	IO_L28P_4	V13	I/O
4	IO_L29N_4	IO_L29N_4	Y13	I/O
4	IO_L29P_4	IO_L29P_4	AA13	I/O
4	IO_L30N_4/ D2	IO_L30N_4/ D2	U12	DUAL
4	IO_L30P_4/ D3	IO_L30P_4/ D3	V12	DUAL
4	IO_L31N_4/ INIT_B	IO_L31N_4/ INIT_B	W12	DUAL
4	IO_L31P_4/ DOUT/BUSY	IO_L31P_4/ DOUT/BUSY	Y12	DUAL
4	IO_L32N_4/ GCLK1	IO_L32N_4/ GCLK1	AA12	GCLK
4	IO_L32P_4/ GCLK0	IO_L32P_4/ GCLK0	AB12	GCLK
4	VCCO_4	VCCO_4	T12	VCCO
4	VCCO_4	VCCO_4	T13	VCCO
4	VCCO_4	VCCO_4	T14	VCCO
4	VCCO_4	VCCO_4	U15	VCCO
4	VCCO_4	V000 4	\/4E	1/000
4	VCCO_4	VCCO_4	Y15	VCCO
5	IO	IO	U7	I/O
5	IO N.C. (◆)	IO IO	U7 U9	I/O I/O
5 5 5	IO N.C. (♠) IO	10 10 10	U7 U9 U10	I/O I/O I/O
5 5 5 5	IO N.C. (♠) IO	10 10 10	U7 U9 U10 U11	I/O I/O I/O
5 5 5 5 5	IO N.C. (◆) IO IO	10 10 10 10	U7 U9 U10 U11 V7	I/O I/O I/O I/O
5 5 5 5 5 5	IO N.C. (♦) IO IO IO	IO	U7 U9 U10 U11 V7 V10	I/O I/O I/O I/O I/O
5 5 5 5 5 5 5	IO N.C. (◆) IO IO/VREF_5	IO IO/VREF_5	U7 U9 U10 U11 V7 V10 AB11	I/O I/O I/O I/O I/O I/O VREF
5 5 5 5 5 5 5 5	IO N.C. (♦) IO IO IO IO IO IO IO/VREF_5	IO IO/REF_5	U7 U9 U10 U11 V7 V10 AB11 U6	I/O I/O I/O I/O I/O VREF VREF
5 5 5 5 5 5 5	IO N.C. (♦) IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B	IO IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B	U7 U9 U10 U11 V7 V10 AB11 U6 Y4	I/O I/O I/O I/O I/O I/O VREF VREF DUAL
5 5 5 5 5 5 5 5	IO N.C. (◆) IO IO IO IO IO IO IO/VREF_5 IO/VREF_5	IO IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5	U7 U9 U10 U11 V7 V10 AB11 U6	I/O I/O I/O I/O I/O VREF VREF
5 5 5 5 5 5 5 5	IO N.C. (♠) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5	IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4	I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL
5 5 5 5 5 5 5 5 5	IO N.C. (♠) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5	IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4	I/O I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O
5 5 5 5 5 5 5 5 5 5 5 5	IO N.C. (◆) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5	IO IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4 Y5	I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O I/O
5 5 5 5 5 5 5 5 5 5 5 5 5	IO N.C. (♠) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5 IO_L09P_5	IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09P_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4 Y5 W5	I/O I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O
5 5 5 5 5 5 5 5 5 5 5 5	IO N.C. (◆) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5	IO IO IO IO IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4 Y5	I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O I/O
5 5 5 5 5 5 5 5 5 5 5 5 5	IO N.C. (♠) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09P_5 IO_L09P_5 IO_L10N_5/	IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09P_5 IO_L09P_5 IO_L09P_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4 Y5 W5	I/O I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O I/O I/O I/O
5 5 5 5 5 5 5 5 5 5 5 5 5 5	IO N.C. (◆) IO IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06P_5 IO_L09P_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/	IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L15N_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4 Y5 W5 AB5	I/O I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O I/O I/O I/O I/O I/O I/O
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IO N.C. (♠) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06P_5 IO_L09P_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L15N_5 IO_L15N_5 IO_L15P_5	IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L15P_5/ IO_L15P_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4 Y5 W5 AB5	I/O I/O I/O I/O I/O I/O I/O VREF VREF DUAL I/O I/O I/O I/O I/O I/O I/O I/O I/O DCI
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IO N.C. (♠) IO IO IO IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L15N_5	IO IO/VREF_5 IO/VREF_5 IO_L01N_5/ RDWR_B IO_L01P_5/ CS_B IO_L06N_5 IO_L06P_5 IO_L09N_5 IO_L09P_5 IO_L10N_5/ VRP_5 IO_L10P_5/ VRN_5 IO_L15N_5	U7 U9 U10 U11 V7 V10 AB11 U6 Y4 AA3 AB4 AA4 Y5 W5 AB5 AA5 W6	I/O I/O I/O I/O I/O I/O I/O VREF VREF DUAL DUAL I/O

Table 27: FG456 Package Pinout (Continued)

Bank	3S400 Pin Name	3S1000 3S1500 Pin Name	FG456 Pin Number	Туре
5	N.C. (◆)	IO_L19N_5	Y7	I/O
5	N.C. (♠)	IO_L19P_5/ VREF_5	W7	VREF
5	N.C. (♠)	IO_L22N_5	AB7	I/O
5	N.C. (◆)	IO_L22P_5	AA7	I/O
5	IO_L24N_5	IO_L24N_5	W8	I/O
5	IO_L24P_5	IO_L24P_5	V8	I/O
5	IO_L25N_5	IO_L25N_5	AB8	I/O
5	IO_L25P_5	IO_L25P_5	AA8	I/O
5	IO_L27N_5/ VREF_5	IO_L27N_5/ VREF_5	W9	VREF
5	IO_L27P_5	IO_L27P_5	V9	I/O
5	IO_L28N_5/ D6	IO_L28N_5/ D6	AB9	DUAL
5	IO_L28P_5/ D7	IO_L28P_5/ D7	AA9	DUAL
5	IO_L29N_5	IO_L29N_5	Y10	I/O
5	IO_L29P_5/ VREF_5	IO_L29P_5/ VREF_5	W10	VREF
5	IO_L30N_5	IO_L30N_5	AB10	I/O
5	IO_L30P_5	IO_L30P_5	AA10	I/O
5	IO_L31N_5/ D4	IO_L31N_5/ D4	W11	DUAL
5	IO_L31P_5/ D5	IO_L31P_5/ D5	V11	DUAL
5	IO_L32N_5/ GCLK3	IO_L32N_5/ GCLK3	AA11	GCLK
5	IO_L32P_5/ GCLK2	IO_L32P_5/ GCLK2	Y11	GCLK
5	VCCO_5	VCCO_5	T9	VCCO
5	VCCO_5	VCCO_5	T10	VCCO
5	VCCO_5	VCCO_5	T11	VCCO
5	VCCO_5	VCCO_5	U8	VCCO
5	VCCO_5	VCCO_5	Y8	VCCO
6	Ю	Ю	Y1	I/O
6	IO_L01N_6/ VRP_6	IO_L01N_6/ VRP_6	Y3	DCI
6	IO_L01P_6/ VRN_6	IO_L01P_6/ VRN_6	Y2	DCI
6	IO_L16N_6	IO_L16N_6	W4	I/O
6	IO_L16P_6	IO_L16P_6	W3	I/O
6	IO_L17N_6	IO_L17N_6	W2	I/O
6	IO_L17P_6/ VREF_6	IO_L17P_6/ VREF_6	W1	VREF
6	IO_L19N_6	IO_L19N_6	V5	I/O
6	IO_L19P_6	IO_L19P_6	U5	I/O
6	IO_L20N_6	IO_L20N_6	V4	I/O

Table 27: FG456 Package Pinout (Continued)

	3\$400	3S1000 3S1500	FG456 Pin	
Bank	Pin Name	Pin Name	Number	Туре
6	IO_L20P_6	IO_L20P_6	V3	I/O
6	IO_L21N_6	IO_L21N_6	V2	I/O
6	IO_L21P_6	IO_L21P_6	V1	I/O
6	IO_L22N_6	IO_L22N_6	T6	I/O
6	IO_L22P_6	IO_L22P_6	T5	I/O
6	IO_L23N_6	IO_L23N_6	U4	I/O
6	IO_L23P_6	IO_L23P_6	T4	I/O
6	IO_L24N_6/ VREF_6	IO_L24N_6/ VREF_6	U3	VREF
6	IO_L24P_6	IO_L24P_6	U2	I/O
6	N.C. (◆)	IO_L26N_6	T3	I/O
6	N.C. (◆)	IO_L26P_6	R4	I/O
6	IO_L27N_6	IO_L27N_6	T2	I/O
6	IO_L27P_6	IO_L27P_6	T1	I/O
6	N.C. (◆)	IO_L28N_6	R5	I/O
6	N.C. (◆)	IO_L28P_6	P6	I/O
6	N.C. (◆)	IO_L29N_6	R2	I/O
6	N.C. (◆)	IO_L29P_6	R1	I/O
6	N.C. (◆)	IO_L31N_6	P5	I/O
6	N.C. (◆)	IO_L31P_6	P4	I/O
6	N.C. (◆)	IO_L32N_6	P2	I/O
6	N.C. (◆)	IO_L32P_6	P1	I/O
6	N.C. (◆)	IO_L33N_6	N6	I/O
6	N.C. (◆)	IO_L33P_6	N5	I/O
6	IO_L34N_6/ VREF_6	IO_L34N_6/ VREF_6	N4	VREF
6	IO_L34P_6	IO_L34P_6	N3	I/O
6	IO_L35N_6	IO_L35N_6	N2	I/O
6	IO_L35P_6	IO_L35P_6	N1	I/O
6	IO_L38N_6	IO_L38N_6	M6	I/O
6	IO_L38P_6	IO_L38P_6	M5	I/O
6	IO_L39N_6	IO_L39N_6	M4	I/O
6	IO_L39P_6	IO_L39P_6	М3	I/O
6	IO_L40N_6	IO_L40N_6	M2	I/O
6	IO_L40P_6/ VREF_6	IO_L40P_6/ VREF_6	M1	VREF
6	VCCO_6	VCCO_6	M7	VCCO
6	VCCO_6	VCCO_6	N7	VCCO
6	VCCO_6	VCCO_6	P7	VCCO
6	VCCO_6	VCCO_6	R3	VCCO
6	VCCO_6	VCCO_6	R6	VCCO
7	Ю	Ю	C2	I/O
7	IO_L01N_7/ VRP_7	IO_L01N_7/ VRP_7	C3	DCI
7	IO_L01P_7/ VRN_7	IO_L01P_7/ VRN_7	C4	DCI

Table 27: FG456 Package Pinout (Continued)

	20422	3S1000	FG456	
Bank	3S400 Pin Name	3S1500 Pin Name	Pin Number	Туре
7	IO L16N 7	IO_L16N_7	D1	I/O
7	IO_L16P_7/ VREF_7	IO_L16P_7/ VREF_7	C1	VREF
7	IO_L17N_7	IO_L17N_7	E4	I/O
7	IO_L17P_7	IO_L17P_7	D4	I/O
7	IO_L19N_7/ VREF_7	IO_L19N_7/ VREF_7	D3	VREF
7	IO_L19P_7	IO_L19P_7	D2	I/O
7	IO L20N 7	IO_L20N_7	F4	I/O
7	IO_L20P_7	IO_L20P_7	E3	I/O
7	IO_L21N_7	IO_L21N_7	E1	I/O
7	IO_L21P_7	IO_L21P_7	E2	I/O
7	IO_L22N_7	IO_L22N_7	G6	I/O
7	IO_L22P_7	IO_L22P_7	F5	I/O
7	IO_L23N_7	IO_L23N_7	F2	I/O
7	IO_L23P_7	IO_L23P_7	F3	I/O
7	IO_L24N_7	IO_L24N_7	H5	I/O
7	IO_L24P_7	IO_L24P_7	G5	I/O
7	N.C. (♦)	IO_L26N_7	G3	I/O
7	N.C. (♠)	IO_L26P_7	G4	I/O
7	IO_L27N_7	IO_L27N_7	G1	I/O
7	IO_L27P_7/ VREF_7	IO_L27P_7/ VREF_7	G2	VREF
7	N.C. (◆)	IO_L28N_7	H1	I/O
7	N.C. (♦)	IO_L28P_7	H2	I/O
7	N.C. (♦)	IO_L29N_7	J4	I/O
7	N.C. (♦)	IO_L29P_7	H4	I/O
7	N.C. (♦)	IO_L31N_7	J5	I/O
7	N.C. (♠)	IO_L31P_7	J6	I/O
7	N.C. (♠)	IO_L32N_7	J1	I/O
7	N.C. (♠)	IO_L32P_7	J2	I/O
7	N.C. (♠)	IO_L33N_7	K5	I/O
7	N.C. (♠)	IO_L33P_7	K6	I/O
7	IO_L34N_7	IO_L34N_7	K3	I/O
7	IO_L34P_7	IO_L34P_7	K4	I/O
7	IO_L35N_7	IO_L35N_7	K1	I/O
7	IO_L35P_7	IO_L35P_7	K2	I/O
7	IO_L38N_7	IO_L38N_7	L5	I/O
7	IO_L38P_7	IO_L38P_7	L6	I/O
7	IO_L39N_7	IO_L39N_7	L3	I/O
7	IO_L39P_7	IO_L39P_7	L4	I/O
7	IO_L40N_7/ VREF_7	IO_L40N_7/ VREF_7	L1	VREF
7	IO_L40P_7	IO_L40P_7	L2	I/O
7	VCCO_7	VCCO_7	H3	VCCO
7	VCCO_7	VCCO_7	H6	VCCO
1	V000_/	VUUU_/	110	V000

Table 27: FG456 Package Pinout (Continued)

	3S400	3S1000 3S1500	FG456 Pin	
Bank	Pin Name	Pin Name	Number	Type
7	VCCO_7	VCCO_7	J7	VCCO
7	VCCO_7	VCCO_7	K7	VCCO
7	VCCO_7	VCCO_7	L7	VCCO
N/A	GND	GND	A1	GND
N/A	GND	GND	A22	GND
N/A	GND	GND	AA2	GND
N/A	GND	GND	AA21	GND
N/A	GND	GND	AB1	GND
N/A	GND	GND	AB22	GND
N/A	GND	GND	B2	GND
N/A	GND	GND	B21	GND
N/A	GND	GND	C9	GND
N/A	GND	GND	C14	GND
N/A	GND	GND	J3	GND
N/A	GND	GND	J9	GND
N/A	GND	GND	J10	GND
N/A	GND	GND	J11	GND
N/A	GND	GND	J12	GND
N/A	GND	GND	J13	GND
N/A	GND	GND	J14	GND
N/A	GND	GND	J20	GND
N/A	GND	GND	K9	GND
N/A	GND	GND	K10	GND
N/A	GND	GND	K11	GND
N/A	GND	GND	K12	GND
N/A	GND	GND	K13	GND
N/A	GND	GND	K14	GND
N/A	GND	GND	L9	GND
N/A	GND	GND	L10	GND
N/A	GND	GND	L11	GND
N/A	GND	GND	L12	GND
N/A	GND	GND	L13	GND
N/A	GND	GND	L14	GND
N/A	GND	GND	M9	GND
N/A	GND	GND	M10	GND
N/A	GND	GND	M11	GND
N/A	GND	GND	M12	GND
N/A	GND	GND	M13	GND
N/A	GND	GND	M14	GND
N/A	GND	GND	N9	GND
N/A	GND	GND	N10	GND
N/A	GND	GND	N11	GND
N/A	GND	GND	N12	GND
N/A	GND	GND	N13	GND
N/A	GND	GND	N14	GND

Table 27: FG456 Package Pinout (Continued)

	3S1000 FG456 3S400 3S1500 Pin			
Bank	Pin Name	Pin Name	Number	Туре
N/A	GND	GND	P3	GND
N/A	GND	GND	P9	GND
N/A	GND	GND	P10	GND
N/A	GND	GND	P11	GND
N/A	GND	GND	P12	GND
N/A	GND	GND	P13	GND
N/A	GND	GND	P14	GND
N/A	GND	GND	P20	GND
N/A	GND	GND	Y9	GND
N/A	GND	GND	Y14	GND
N/A	VCCAUX	VCCAUX	A6	VCCAUX
N/A	VCCAUX	VCCAUX	A17	VCCAUX
N/A	VCCAUX	VCCAUX	AB6	VCCAUX
N/A	VCCAUX	VCCAUX	AB17	VCCAUX
N/A	VCCAUX	VCCAUX	F1	VCCAUX
N/A	VCCAUX	VCCAUX	F22	VCCAUX
N/A	VCCAUX	VCCAUX	U1	VCCAUX
N/A	VCCAUX	VCCAUX	U22	VCCAUX
N/A	VCCINT	VCCINT	G7	VCCINT
N/A	VCCINT	VCCINT	G8	VCCINT
N/A	VCCINT	VCCINT	G15	VCCINT
N/A	VCCINT	VCCINT	G16	VCCINT
N/A	VCCINT	VCCINT	H7	VCCINT
N/A	VCCINT	VCCINT	H16	VCCINT
N/A	VCCINT	VCCINT	R7	VCCINT
N/A	VCCINT	VCCINT	R16	VCCINT
N/A	VCCINT	VCCINT	T7	VCCINT
N/A	VCCINT	VCCINT	T8	VCCINT
N/A	VCCINT	VCCINT	T15	VCCINT
N/A	VCCINT	VCCINT	T16	VCCINT
VCCAUX	CCLK	CCLK	AA22	CONFIG
VCCAUX	DONE	DONE	AB21	CONFIG
VCCAUX	HSWAP_EN	HSWAP_EN	B3	CONFIG
VCCAUX	MO	MO	AB2	CONFIG
VCCAUX	M1	M1	AA1	CONFIG
VCCAUX	M2	M2	AB3	CONFIG
VCCAUX	PROG_B	PROG_B	A2	CONFIG
VCCAUX	TCK	TCK	A21	JTAG
VCCAUX	TDI	TDI	B1	JTAG
VCCAUX	TDO	TDO	B22	JTAG
VCCAUX	TMS	TMS	A20	JTAG

Table 28 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S400 in the FG456 package. Similarly, Table 29 shows how the avail-

able user-I/O pins are distributed between the eight I/O banks for the XC3S1000 and XC3S1500 in the FG456 package.

Table 28: User I/Os Per Bank for XC3S400 in FG456 Package

	I/O	Maximum	All Possible I/O Pins by Type						
Edge	Bank	I/O	I/O	DUAL	DCI	VREF	GCLK		
Тор	0	35	27	0	2	4	2		
	1	35	27	0	2	4	2		
Distri	2	31	25	0	2	4	0		
Right	3	31	25	0	2	4	0		
Dottom	4	35	21	6	2	4	2		
Bottom	5	35	21	6	2	4	2		
Left	6	31	25	0	2	4	0		
	7	31	25	0	2	4	0		

Table 29: User I/Os Per Bank for XC3S1000 and XC3S1500 in FG456 Package

		Maximum	All Possible I/O Pins by Type					
Edge	I/O Bank	1/0	I/O	DUAL	DCI	VREF	GCLK	
Ton	0	40	31	0	2	5	2	
Тор	1	40	31	0	2	5	2	
D: 1.	2	43	37	0	2	4	0	
Right	3	43	37	0	2	4	0	
Bottom	4	41	26	6	2	5	2	
	5	40	25	6	2	5	2	
Left	6	43	37	0	2	4	0	
	7	43	37	0	2	4	0	

FG456 Footprint

Left Half of Package (top view)

XC3S400

(264 max. user I/O)

196 I/O: Unrestricted, general-purpose user I/O

32 VREF: User I/O or input voltage reference for bank

69 N.C.: Unconnected pins for XC3S400 (♦)

XC3S1000, XC3S1500 (333 max user I/O)

261 I/O: Unrestricted, general-purpose user I/O

36 VREF: User I/O or input voltage reference for bank

N.C.: No unconnected pins in this package

All devices

12 DUAL: Configuration pin, then possible user I/O

8 GCLK: User I/O or global clock buffer input

16 DCI: User I/O or reference resistor input for bank

7 CONFIG: Dedicated configuration pins

JTAG: Dedicated JTAG port pins

12 VCCINT: Internal core voltage supply (+1.2V)

VCCO: Output voltage supply for bank

8 VCCAUX: Auxiliary voltage supply (+2.5V)

52 GND: Ground

Figure 13: FG456 Package Footprint (top view)

12	13	14	Ban 15	k 1	17	18	19	20	21	22		
I/O	I/O L30N_1	I/O L28N_1	I/O L25P_1	I/O L22N_1			I/O L06N_1 VREF_1	TMS	TCK	GND	A	
I/O L32N_1 GCLK5	I/O L30P_1	I/O L28P_1	I/O L25N_1	I/O L22P_1	I/O L16N_1	I/O L10P_1	I/O	I/O L01P_1 VRN_1	GND	TDO	В	
I/O L32P_1 GCLK4	I/O L29N_1	GND	VCCO_1	I/O L19N_1	I/O L16P_1	I/O L09N_1	I/O L01N_1 VRP_1	I/O L01N_2 VRP_2	I/O L01P_2 VRN_2	I/O	С	
I/O L31N_1 VREF_1	I/O L29P_1	I/O L27N_1	I/O L24N_1	I/O L19P_1	I/O L15N_1	I/O L09P_1	I/O L16P_2	I/O L16N_2	I/O L17N_2	I/O L17P_2 VREF_2	D	
I/O L31P_1	IO VREF_1	I/O L27P_1	I/O L24P_1	I/O	I/O L15P_1	I/O L19N_2	I/O L20N_2	I/O L20P_2	I/O L21N_2	I/O L21P_2	E	
I/O	I/O	IO VREF_1	VCCO_1	I/O	I/O	I/O L19P_2	I/O L23N_2 VREF_2	I/O L24N_2	I/O L24P_2	VCCAUX	F	
VCCO_1	VCCO_1	VCCO_1	VCCINT	VCCINT	I/O L22N_2	I/O L22P_2	I/O L23P_2	I/O L26N_2	I/O L27N_2	I/O L27P_2	G	Bank 2
	\times	\times	X	VCCINT	VCCO_2	I/O L28N_2 ◆	I/O L26P_2 ◆	VCCO_2	I/O L29N_2 ◆	I/O L29P_2 ◆	н	_
GND	GND	GND	X	VCCO_2	I/O L28P_2 ◆	I/O L31N_2 ◆	I/O L31P_2 ◆	GND	I/O L32N_2 ◆	I/O L32P_2 ◆	J	
GND	GND	GND	X	VCCO_2	I/O L33N_2 ◆	I/O L33P_2 ◆	I/O L34N_2 VREF_2	I/O L34P_2	I/O L35N_2	I/O L35P_2	ĸ	
GND	GND	GND	X	VCCO_2	I/O L38N_2	I/O L38P_2	I/O L39N_2	I/O L39P_2	I/O L40N_2	I/O L40P_2 VREF_2	L	
GND	GND	GND	X	VCCO_3	I/O L38P_3	I/O L38N_3	I/O L39P_3	I/O L39N_3	I/O L40P_3	I/O L40N_3 VREF_3	М	
GND	GND	GND	X	VCCO_3	I/O L33P_3 ◆	I/O L33N_3 ◆	I/O L34P_3 VREF_3	I/O L34N_3	I/O L35P_3	I/O L35N_3	N	
GND	GND	GND	X	VCCO_3	I/O L31P_3 ◆	I/O L31N_3 ◆	I/O L29N_3 ◆	GND	I/O L32P_3 ◆	I/O L32N_3 ◆	Р	
	X	X	X	VCCINT	VCCO_3	I/O L24N_3	I/O L29P_3 ◆	VCCO_3	I/O L28P_3	I/O L28N_3 ◆	R	
VCCO_4	VCCO_4	VCCO_4	VCCINT	VCCINT	I/O L22N_3	I/O L24P_3	I/O L26P_3 ◆	I/O L26N_3 ◆	I/O L27P_3	I/O L27N_3	т	Bank 3
I/O L30N_4 D2	I/O L28N_4	I/O L25N_4	VCCO_4	I/O	I/O	I/O L22P_3	I/O L20N_3	I/O L23P_3 VREF_3	I/O L23N_3	VCCAUX	U	
I/O L30P_4 D3	I/O L28P_4	I/O L25P_4	I/O L22N_4 VREF_4 ◆	I/O L16N_4	I/O L10N_4	IO VREF_4	I/O L17N_3	I/O L20P_3	I/O L21P_3	I/O L21N_3	v	
I/O L31N_4 INIT_B	I/O	I/O	I/O L22P_4 ◆	I/O L16P_4	I/O L10P_4	I/O L06N_4 VREF_4	I/O L17P_3 VREF_3	I/O L19P_3	I/O L19N_3	I/O L16N_3	w	
I/O L31P_4 DOUT BUSY	I/O L29N_4	GND	VCCO_4	IO VREF_4	I/O L15N_4	I/O L06P_4	I/O L01P_3 VRN_3	I/O L01N_3 VRP_3	I/O	I/O L16P_3	Y	
I/O L32N_4 GCLK1	I/O L29P_4	I/O L27N_4 DN D0	I/O L24N_4	I/O L19N_4	I/O L15P_4	I/O L09N_4	I/O L05N_4 ◆	I/O L01N_4 VRP_4	GND	CCLK	A A	
I/O L32P_4 GCLK0	IO VREF_4	I/O L27P_4 D1	I/O L24P_4	I/O L19P_4	VCCAUX	I/O L09P_4	I/O L05P_4 ◆	I/O L01P_4 VRN_4	DONE	GND	A B	
				Bank 4					DS099-	4_11b_030503	•	

Right Half of Package (top view)

FG676: 676-lead Fine-pitch Ball Grid Array

The 676-lead fine-pitch ball grid array package, FG676, supports three different Spartan-3 devices, including the XC3S1000, the XC3S1500, and the XC3S2000. All three have nearly identical footprints but are slightly different due to unconnected pins on the XC3S1000 and XC3S1500. For example, because the XC3S1000 has fewer I/O pins, this device has 98 unconnected pins on the FG676 package, labeled as "N.C." In Table 30 and Figure 14, these unconnected pins are indicated with a black diamond symbol (♠). The XC3S1500, however, has only two unconnected pins, also labeled "N.C." in the pinout table but indicated with a black square symbol (■).

All the package pins appear in Table 30 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

If there is a difference between the XC1000, XC3S1500 and XC3S2000 pinouts, then that difference is highlighted in Table 30. If the table entry is shaded grey, then there is an unconnected pin on either the XC3S1000 or XC3S1500 that maps to a user-I/O pin on the XC3S2000. If the table entry is shaded tan, then the unconnected pin on either the XC3S1000 or XC3S1500 maps to a VREF-type pin on the XC3S2000. If the other VREF pins in the bank all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S1000 or XC3S1500 to the same VREF voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S1000 through to the XC3S2000 FPGA without changing the printed circuit board.

Pinout Table

Table 30: FG676 Package Pinout

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
0	Ю	Ю	Ю	A3	I/O
0	Ю	Ю	Ю	A5	I/O
0	Ю	Ю	Ю	A6	I/O
0	Ю	Ю	Ю	C4	I/O
0	N.C. (◆)	Ю	Ю	C8	I/O
0	Ю	Ю	Ю	C12	I/O
0	Ю	Ю	Ю	E13	I/O
0	Ю	Ю	Ю	H11	I/O
0	Ю	Ю	Ю	H12	I/O
0	IO/VREF_0	IO/VREF_0	IO/VREF_0	В3	VREF
0	IO/VREF_0	IO/VREF_0	IO/VREF_0	F7	VREF
0	IO/VREF_0	IO/VREF_0	IO/VREF_0	G10	VREF
0	IO_L01N_0/ VRP_0	IO_L01N_0/ VRP_0	IO_L01N_0/ VRP_0	E5	DCI

Table 30: FG676 Package Pinout (Continued)

		r ackage r		FG676	
	XC3S1000	XC3S1500	XC3S2000	Pin	
Bank	Pin Name	Pin Name	Pin Name	Number	Type
0	IO_L01P_0/ VRN_0	IO_L01P_0/ VRN_0	IO_L01P_0/ VRN_0	D5	DCI
0	IO_L05N_0	IO_L05N_0	IO_L05N_0	B4	I/O
0	IO_L05P_0/ VREF_0	IO_L05P_0/ VREF_0	IO_L05P_0/ VREF_0	A4	VREF
0	IO_L06N_0	IO_L06N_0	IO_L06N_0	C5	I/O
0	IO_L06P_0	IO_L06P_0	IO_L06P_0	B5	I/O
0	IO_L07N_0	IO_L07N_0	IO_L07N_0	E6	I/O
0	IO_L07P_0	IO_L07P_0	IO_L07P_0	D6	I/O
0	IO_L08N_0	IO_L08N_0	IO_L08N_0	C6	I/O
0	IO_L08P_0	IO_L08P_0	IO_L08P_0	B6	I/O
0	IO_L09N_0	IO_L09N_0	IO_L09N_0	E7	I/O
0	IO_L09P_0	IO_L09P_0	IO_L09P_0	D7	I/O
0	IO_L10N_0	IO_L10N_0	IO_L10N_0	B7	I/O
0	IO_L10P_0	IO_L10P_0	IO_L10P_0	A7	I/O
0	N.C. (◆)	IO_L11N_0	IO_L11N_0	G8	I/O
0	N.C. (♠)	IO_L11P_0	IO_L11P_0	F8	I/O
0	N.C. (♠)	IO_L12N_0	IO_L12N_0	E8	I/O
0	N.C. (◆)	IO_L12P_0	IO_L12P_0	D8	I/O
0	IO_L15N_0	IO_L15N_0	IO_L15N_0	B8	I/O
0	IO_L15P_0	IO_L15P_0	IO_L15P_0	A8	I/O
0	IO_L16N_0	IO_L16N_0	IO_L16N_0	G9	I/O
0	IO_L16P_0	IO_L16P_0	IO_L16P_0	F9	I/O
0	N.C. (♦)	IO_L17N_0	IO_L17N_0	E9	I/O
0	N.C. (♦)	IO_L17P_0	IO_L17P_0	D9	I/O
0	N.C. (♦)	IO_L18N_0	IO_L18N_0	C9	I/O
0	N.C. (◆)	IO_L18P_0	IO_L18P_0	B9	I/O
0	IO_L19N_0	IO_L19N_0	IO_L19N_0	F10	I/O
0	IO_L19P_0	IO_L19P_0	IO_L19P_0	E10	I/O
0	IO_L22N_0	IO_L22N_0	IO_L22N_0	D10	I/O
0	IO_L22P_0	IO_L22P_0	IO_L22P_0	C10	I/O
0	N.C. (◆)	IO_L23N_0	IO_L23N_0	B10	I/O
0	N.C. (◆)	IO_L23P_0	IO_L23P_0	A10	I/O
0	IO_L24N_0	IO_L24N_0	IO_L24N_0	G11	I/O
0	IO_L24P_0	IO_L24P_0	IO_L24P_0	F11	I/O
0	IO_L25N_0	IO_L25N_0	IO_L25N_0	E11	I/O
0	IO_L25P_0	IO_L25P_0	IO_L25P_0	D11	I/O
0	N.C. (♦)	IO_L26N_0	IO_L26N_0	B11	I/O
0	N.C. (◆)	IO_L26P_0/ VREF_0	IO_L26P_0/ VREF_0	A11	VREF
0	IO_L27N_0	IO_L27N_0	IO_L27N_0	G12	I/O
0	IO_L27P_0	IO_L27P_0	IO_L27P_0	H13	I/O
0	IO_L28N_0	IO_L28N_0	IO_L28N_0	F12	I/O
0	IO_L28P_0	IO_L28P_0	IO_L28P_0	E12	I/O
0	IO_L29N_0	IO_L29N_0	IO_L29N_0	B12	I/O
0	IO_L29P_0	IO_L29P_0	IO_L29P_0	A12	I/O

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
0	IO_L30N_0	IO_L30N_0	IO_L30N_0	G13	I/O
0	IO_L30P_0	IO_L30P_0	IO_L30P_0	F13	I/O
0	IO_L31N_0	IO_L31N_0	IO_L31N_0	D13	I/O
0	IO_L31P_0/ VREF_0	IO_L31P_0/ VREF_0	IO_L31P_0/ VREF_0	C13	VREF
0	IO_L32N_0/ GCLK7	IO_L32N_0/ GCLK7	IO_L32N_0/ GCLK7	B13	GCLK
0	IO_L32P_0/ GCLK6	IO_L32P_0/ GCLK6	IO_L32P_0/ GCLK6	A13	GCLK
0	VCCO_0	VCCO_0	VCCO_0	C7	VCCO
0	VCCO_0	VCCO_0	VCCO_0	C11	VCCO
0	VCCO_0	VCCO_0	VCCO_0	H9	VCCO
0	VCCO_0	VCCO_0	VCCO_0	H10	VCCO
0	VCCO_0	VCCO_0	VCCO_0	J11	VCCO
0	VCCO_0	VCCO_0	VCCO_0	J12	VCCO
0	VCCO_0	VCCO_0	VCCO_0	J13	VCCO
0	VCCO_0	VCCO_0	VCCO_0	K13	VCCO
1	Ю	Ю	Ю	A14	I/O
1	Ю	Ю	Ю	A22	I/O
1	Ю	Ю	Ю	A23	I/O
1	Ю	Ю	Ю	D16	I/O
1	Ю	Ю	Ю	E18	I/O
1	Ю	Ю	Ю	F14	I/O
1	Ю	Ю	Ю	F20	I/O
1	Ю	Ю	Ю	G19	I/O
1	IO/VREF_1	IO/VREF_1	IO/VREF_1	C15	VREF
1	IO/VREF_1	IO/VREF_1	IO/VREF_1	C17	VREF
1	N.C. (♦)	IO/VREF_1	IO/VREF_1	D18	VREF
1	IO_L01N_1/ VRP_1	IO_L01N_1/ VRP_1	IO_L01N_1/ VRP_1	D22	DCI
1	IO_L01P_1/ VRN_1	IO_L01P_1/ VRN_1	IO_L01P_1/ VRN_1	E22	DCI
1	IO_L04N_1	IO_L04N_1	IO_L04N_1	B23	I/O
1	IO_L04P_1	IO_L04P_1	IO_L04P_1	C23	I/O
1	IO_L05N_1	IO_L05N_1	IO_L05N_1	E21	I/O
1	IO_L05P_1	IO_L05P_1	IO_L05P_1	F21	I/O
1	IO_L06N_1/ VREF_1	IO_L06N_1/ VREF_1	IO_L06N_1/ VREF_1	B22	VREF
1	IO_L06P_1	IO_L06P_1	IO_L06P_1	C22	I/O
1	IO_L07N_1	IO_L07N_1	IO_L07N_1	C21	I/O
1	IO_L07P_1	IO_L07P_1	IO_L07P_1	D21	I/O
1	IO_L08N_1	IO_L08N_1	IO_L08N_1	A21	I/O
1	IO_L08P_1	IO_L08P_1	IO_L08P_1	B21	I/O
1	IO_L09N_1	IO_L09N_1	IO_L09N_1	D20	I/O
1	IO_L09P_1	IO_L09P_1	IO_L09P_1	E20	I/O
1	IO_L10N_1/ VREF_1	IO_L10N_1/ VREF_1	IO_L10N_1/ VREF_1	A20	VREF

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
1	IO_L10P_1	IO_L10P_1	IO_L10P_1	B20	I/O
1	N.C. (◆)	IO_L11N_1	IO_L11N_1	E19	I/O
1	N.C. (♠)	IO_L11P_1	IO_L11P_1	F19	I/O
1	N.C. (♠)	IO_L12N_1	IO_L12N_1	C19	I/O
1	N.C. (♦)	IO_L12P_1	IO_L12P_1	D19	I/O
1	IO_L15N_1	IO_L15N_1	IO_L15N_1	A19	I/O
1	IO_L15P_1	IO_L15P_1	IO_L15P_1	B19	I/O
1	IO_L16N_1	IO_L16N_1	IO_L16N_1	F18	I/O
1	IO_L16P_1	IO_L16P_1	IO_L16P_1	G18	I/O
1	N.C. (♠)	IO_L18N_1	IO_L18N_1	B18	I/O
1	N.C. (◆)	IO_L18P_1	IO_L18P_1	C18	I/O
1	IO_L19N_1	IO_L19N_1	IO_L19N_1	F17	I/O
1	IO_L19P_1	IO_L19P_1	IO_L19P_1	G17	I/O
1	IO_L22N_1	IO_L22N_1	IO_L22N_1	D17	I/O
1	IO_L22P_1	IO_L22P_1	IO_L22P_1	E17	I/O
1	N.C. (◆)	IO_L23N_1	IO_L23N_1	A17	I/O
1	N.C. (◆)	IO_L23P_1	IO_L23P_1	B17	I/O
1	IO_L24N_1	IO_L24N_1	IO_L24N_1	G16	I/O
1	IO_L24P_1	IO_L24P_1	IO_L24P_1	H16	I/O
1	IO_L25N_1	IO_L25N_1	IO_L25N_1	E16	I/O
1	IO_L25P_1	IO_L25P_1	IO_L25P_1	F16	I/O
1	N.C. (◆)	IO_L26N_1	IO_L26N_1	A16	I/O
1	N.C. (◆)	IO_L26P_1	IO_L26P_1	B16	I/O
1	IO_L27N_1	IO_L27N_1	IO_L27N_1	G15	I/O
1	IO_L27P_1	IO_L27P_1	IO_L27P_1	H15	I/O
1	IO_L28N_1	IO_L28N_1	IO_L28N_1	E15	I/O
1	IO_L28P_1	IO_L28P_1	IO_L28P_1	F15	I/O
1	IO_L29N_1	IO_L29N_1	IO_L29N_1	A15	I/O
1	IO_L29P_1	IO_L29P_1	IO_L29P_1	B15	I/O
1	IO_L30N_1	IO_L30N_1	IO_L30N_1	G14	I/O
1	IO_L30P_1	IO_L30P_1	IO_L30P_1	H14	I/O
1	IO_L31N_1/ VREF_1	IO_L31N_1/ VREF_1	IO_L31N_1/ VREF_1	D14	VREF
1	IO_L31P_1	IO_L31P_1	IO_L31P_1	E14	I/O
1	IO_L32N_1/ GCLK5	IO_L32N_1/ GCLK5	IO_L32N_1/ GCLK5	B14	GCLK
1	IO_L32P_1/ GCLK4	IO_L32P_1/ GCLK4	IO_L32P_1/ GCLK4	C14	GCLK
1	VCCO_1	VCCO_1	VCCO_1	C16	VCCO
1	VCCO_1	VCCO_1	VCCO_1	C20	VCCO
1	VCCO_1	VCCO_1	VCCO_1	H17	VCCO
1	VCCO_1	VCCO_1	VCCO_1	H18	VCCO
1	VCCO_1	VCCO_1	VCCO_1	J14	VCCO
1	VCCO_1	VCCO_1	VCCO_1	J15	VCCO
1	VCCO_1	VCCO_1	VCCO_1	J16	VCCO

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
1	VCCO_1	VCCO_1	VCCO_1	K14	VCCO
2	N.C. (♦)	N.C. (■)	Ю	F22	I/O
2	IO_L01N_2/ VRP_2	IO_L01N_2/ VRP_2	IO_L01N_2/ VRP_2	C25	DCI
2	IO_L01P_2/ VRN_2	IO_L01P_2/ VRN_2	IO_L01P_2/ VRN_2	C26	DCI
2	IO_L02N_2	IO_L02N_2	IO_L02N_2	E23	I/O
2	IO_L02P_2	IO_L02P_2	IO_L02P_2	E24	I/O
2	IO_L03N_2/ VREF_2	IO_L03N_2/ VREF_2	IO_L03N_2/ VREF_2	D25	VREF
2	IO_L03P_2	IO_L03P_2	IO_L03P_2	D26	I/O
2	N.C. (◆)	IO_L05N_2	IO_L05N_2	E25	I/O
2	N.C. (◆)	IO_L05P_2	IO_L05P_2	E26	I/O
2	N.C. (◆)	IO_L06N_2	IO_L06N_2	G20	I/O
2	N.C. (◆)	IO_L06P_2	IO_L06P_2	G21	I/O
2	N.C. (◆)	IO_L07N_2	IO_L07N_2	F23	I/O
2	N.C. (◆)	IO_L07P_2	IO_L07P_2	F24	I/O
2	N.C. (◆)	IO_L08N_2	IO_L08N_2	G22	I/O
2	N.C. (◆)	IO_L08P_2	IO_L08P_2	G23	I/O
2	N.C. (♠)	IO_L09N_2/ VREF_2	IO_L09N_2/ VREF_2	F25	VREF
2	N.C. (♦)	IO_L09P_2	IO_L09P_2	F26	I/O
2	N.C. (♦)	IO_L10N_2	IO_L10N_2	G25	I/O
2	N.C. (♦)	IO_L10P_2	IO_L10P_2	G26	I/O
2	IO_L14N_2	IO_L14N_2	IO_L14N_2	H20	I/O
2	IO_L14P_2	IO_L14P_2	IO_L14P_2	H21	I/O
2	IO_L16N_2	IO_L16N_2	IO_L16N_2	H22	I/O
2	IO_L16P_2	IO_L16P_2	IO_L16P_2	J21	I/O
2	IO_L17N_2	IO_L17N_2	IO_L17N_2	H23	I/O
2	IO_L17P_2/ VREF_2	IO_L17P_2/ VREF_2	IO_L17P_2/ VREF_2	H24	VREF
2	IO_L19N_2	IO_L19N_2	IO_L19N_2	H25	I/O
2	IO_L19P_2	IO_L19P_2	IO_L19P_2	H26	I/O
2	IO_L20N_2	IO_L20N_2	IO_L20N_2	J20	I/O
2	IO_L20P_2	IO_L20P_2	IO_L20P_2	K20	I/O
2	IO_L21N_2	IO_L21N_2	IO_L21N_2	J22	I/O
2	IO_L21P_2	IO_L21P_2	IO_L21P_2	J23	I/O
2	IO_L22N_2	IO_L22N_2	IO_L22N_2	J24	I/O
2	IO_L22P_2	IO_L22P_2	IO_L22P_2	J25	I/O
2	IO_L23N_2/ VREF_2	IO_L23N_2/ VREF_2	IO_L23N_2/ VREF_2	K21	VREF
2	IO_L23P_2	IO_L23P_2	IO_L23P_2	K22	I/O
2	IO_L24N_2	IO_L24N_2	IO_L24N_2	K23	I/O
2	IO_L24P_2	IO_L24P_2	IO_L24P_2	K24	I/O
2	IO_L26N_2	IO_L26N_2	IO_L26N_2	K25	I/O
2	IO_L26P_2	IO_L26P_2	IO_L26P_2	K26	I/O
2	IO_L27N_2	IO_L27N_2	IO_L27N_2	L19	I/O

Table 30: FG676 Package Pinout (Continued)

				FC676	
Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
2	IO L27P 2	IO_L27P_2	IO L27P 2	L20	I/O
2	IO L28N 2	IO L28N 2	IO L28N 2	L21	1/0
2	IO L28P 2	IO L28P 2	IO L28P 2	L22	I/O
2	IO L29N 2	IO L29N 2	IO L29N 2	L25	I/O
2	IO_L29P_2	IO_L29P_2	IO_L29P_2	L26	I/O
2	IO_L31N_2	IO_L31N_2	IO_L31N_2	M19	I/O
2	IO_L31P_2	IO_L31P_2	IO_L31P_2	M20	I/O
2	IO_L32N_2	IO_L32N_2	IO_L32N_2	M21	I/O
2	IO_L32P_2	IO_L32P_2	IO_L32P_2	M22	I/O
2	IO_L33N_2	IO_L33N_2	IO_L33N_2	L23	I/O
2	IO_L33P_2	IO_L33P_2	IO_L33P_2	M24	I/O
2	IO_L34N_2/ VREF_2	IO_L34N_2/ VREF_2	IO_L34N_2/ VREF_2	M25	VREF
2	IO_L34P_2	IO_L34P_2	IO_L34P_2	M26	I/O
2	IO_L35N_2	IO_L35N_2	IO_L35N_2	N19	I/O
2	IO_L35P_2	IO_L35P_2	IO_L35P_2	N20	I/O
2	IO_L38N_2	IO_L38N_2	IO_L38N_2	N21	I/O
2	IO_L38P_2	IO_L38P_2	IO_L38P_2	N22	I/O
2	IO_L39N_2	IO_L39N_2	IO_L39N_2	N23	I/O
2	IO_L39P_2	IO_L39P_2	IO_L39P_2	N24	I/O
2	IO_L40N_2	IO_L40N_2	IO_L40N_2	N25	I/O
2	IO_L40P_2/ VREF_2	IO_L40P_2/ VREF_2	IO_L40P_2/ VREF_2	N26	VREF
2	VCCO_2	VCCO_2	VCCO_2	G24	VCCO
2	VCCO_2	VCCO_2	VCCO_2	J19	VCCO
2	VCCO_2	VCCO_2	VCCO_2	K19	VCCO
2	VCCO_2	VCCO_2	VCCO_2	L18	VCCO
2	VCCO_2	VCCO_2	VCCO_2	L24	VCCO
2	VCCO_2	VCCO_2	VCCO_2	M18	VCCO
2	VCCO_2	VCCO_2	VCCO_2	N17	VCCO
2	VCCO_2	VCCO_2	VCCO_2	N18	VCCO
3	IO_L01N_3/ VRP_3	IO_L01N_3/ VRP_3	IO_L01N_3/ VRP_3	AA22	DCI
3	IO_L01P_3/ VRN_3	IO_L01P_3/ VRN_3	IO_L01P_3/ VRN_3	AA21	DCI
3	IO_L02N_3/ VREF_3	IO_L02N_3/ VREF_3	IO_L02N_3/ VREF_3	AB24	VREF
3	IO_L02P_3	IO_L02P_3	IO_L02P_3	AB23	I/O
3	IO_L03N_3	IO_L03N_3	IO_L03N_3	AC26	I/O
3	IO_L03P_3	IO_L03P_3	IO_L03P_3	AC25	I/O
3	N.C. (◆)	IO_L05N_3	IO_L05N_3	Y21	I/O
3	N.C. (◆)	IO_L05P_3	IO_L05P_3	Y20	I/O
3	N.C. (◆)	IO_L06N_3	IO_L06N_3	AB26	I/O
3	N.C. (◆)	IO_L06P_3	IO_L06P_3	AB25	I/O
3	N.C. (◆)	IO_L07N_3	IO_L07N_3	AA24	I/O
3	N.C. (◆)	IO_L07P_3	IO_L07P_3	AA23	I/O
3	N.C. (♠)	IO_L08N_3	IO_L08N_3	Y23	I/O

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
3	N.C. (♠)	IO_L08P_3	IO_L08P_3	Y22	I/O
3	N.C. (♠)	IO_L09N_3	IO_L09N_3	AA26	I/O
3	N.C. (◆)	IO_L09P_3/ VREF_3	IO_L09P_3/ VREF_3	AA25	VREF
3	N.C. (♦)	IO_L10N_3	IO_L10N_3	W21	I/O
3	N.C. (♠)	IO_L10P_3	IO_L10P_3	W20	I/O
3	IO_L14N_3	IO_L14N_3	IO_L14N_3	Y26	I/O
3	IO_L14P_3	IO_L14P_3	IO_L14P_3	Y25	I/O
3	IO_L16N_3	IO_L16N_3	IO_L16N_3	V21	I/O
3	IO_L16P_3	IO_L16P_3	IO_L16P_3	W22	I/O
3	IO_L17N_3	IO_L17N_3	IO_L17N_3	W24	I/O
3	IO_L17P_3/ VREF_3	IO_L17P_3/ VREF_3	IO_L17P_3/ VREF_3	W23	VREF
3	IO_L19N_3	IO_L19N_3	IO_L19N_3	W26	I/O
3	IO_L19P_3	IO_L19P_3	IO_L19P_3	W25	I/O
3	IO_L20N_3	IO_L20N_3	IO_L20N_3	U20	I/O
3	IO_L20P_3	IO_L20P_3	IO_L20P_3	V20	I/O
3	IO_L21N_3	IO_L21N_3	IO_L21N_3	V23	I/O
3	IO_L21P_3	IO_L21P_3	IO_L21P_3	V22	I/O
3	IO_L22N_3	IO_L22N_3	IO_L22N_3	V25	I/O
3	IO_L22P_3	IO_L22P_3	IO_L22P_3	V24	I/O
3	IO_L23N_3	IO_L23N_3	IO_L23N_3	U22	I/O
3	IO_L23P_3/ VREF_3	IO_L23P_3/ VREF_3	IO_L23P_3/ VREF_3	U21	VREF
3	IO_L24N_3	IO_L24N_3	IO_L24N_3	U24	I/O
3	IO_L24P_3	IO_L24P_3	IO_L24P_3	U23	I/O
3	IO_L26N_3	IO_L26N_3	IO_L26N_3	U26	I/O
3	IO_L26P_3	IO_L26P_3	IO_L26P_3	U25	I/O
3	IO_L27N_3	IO_L27N_3	IO_L27N_3	T20	I/O
3	IO_L27P_3	IO_L27P_3	IO_L27P_3	T19	I/O
3	IO_L28N_3	IO_L28N_3	IO_L28N_3	T22	I/O
3	IO_L28P_3	IO_L28P_3	IO_L28P_3	T21	I/O
3	IO_L29N_3	IO_L29N_3	IO_L29N_3	T26	I/O
3	IO_L29P_3	IO_L29P_3	IO_L29P_3	T25	I/O
3	IO_L31N_3	IO_L31N_3	IO_L31N_3	R20	1/0
3	IO_L31P_3	IO_L31P_3	IO_L31P_3	R19	1/0
3	IO_L32N_3	IO_L32N_3	IO_L32N_3	R22	1/0
3	IO_L32P_3	IO_L32P_3	IO_L32P_3	R21	1/0
3	IO_L33N_3	IO_L33N_3	IO_L33N_3	R24	1/0
3	IO_L33P_3	IO_L33P_3	IO_L33P_3	T23	1/0
3	IO_L34N_3 IO_L34P_3/ VREF_3	IO_L34N_3 IO_L34P_3/ VREF_3	IO_L34N_3 IO_L34P_3/ VREF_3	R26 R25	I/O VREF
3	IO_L35N_3	IO_L35N_3	IO_L35N_3	P20	I/O
3	IO_L35P_3	IO_L35P_3	IO_L35P_3	P19	I/O
3	IO_L38N_3	IO_L38N_3	IO_L38N_3	P22	I/O
	.0_200.4_0	.00.1	.00.1		"0

Table 30: FG676 Package Pinout (Continued)

		· uonago :		FG676	
Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	Pin Number	Туре
3	IO L38P 3	IO L38P 3	IO L38P 3	P21	I/O
3	IO L39N 3	IO L39N 3	IO L39N 3	P24	I/O
3	IO L39P 3	IO L39P 3	IO_L39P_3	P23	I/O
3	IO_L30I _3	IO_L331 _3	IO_L331 _3	P26	VREF
	VREF_3	VREF_3	VREF_3		
3	IO_L40P_3	IO_L40P_3	IO_L40P_3	P25	I/O
3	VCCO_3	VCCO_3	VCCO_3	P17	vcco
3	VCCO_3	VCCO_3	VCCO_3	P18	VCCO
3	VCCO_3	VCCO_3	VCCO_3	R18	VCCO
3	VCCO_3	VCCO_3	VCCO_3	T18	VCCO
3	VCCO_3	VCCO_3	VCCO_3	T24	VCCO
3	VCCO_3	VCCO_3	VCCO_3	U19	VCCO
3	VCCO_3	VCCO_3	VCCO_3	V19	VCCO
3	VCCO_3	VCCO_3	VCCO_3	Y24	VCCO
4	Ю	10	Ю	AA20	I/O
4	Ю	Ю	Ю	AD15	I/O
4	N.C. (♦)	Ю	Ю	AD19	I/O
4	Ю	Ю	Ю	AD23	I/O
4	Ю	Ю	Ю	AF21	I/O
4	Ю	Ю	Ю	AF22	I/O
4	Ю	Ю	Ю	W15	I/O
4	Ю	Ю	Ю	W16	I/O
4	IO/VREF_4	IO/VREF_4	IO/VREF_4	AB14	VREF
4	IO/VREF_4	IO/VREF_4	IO/VREF_4	AD25	VREF
4	IO/VREF_4	IO/VREF_4	IO/VREF_4	Y17	VREF
4	IO_L01N_4/ VRP_4	IO_L01N_4/ VRP_4	IO_L01N_4/ VRP_4	AB22	DCI
4	IO_L01P_4/ VRN 4	IO_L01P_4/ VRN 4	IO_L01P_4/ VRN 4	AC22	DCI
4	IO_L04N_4	IO_L04N_4	IO_L04N_4	AE24	I/O
4	IO_L04P_4	IO_L04P_4	IO_L04P_4	AF24	I/O
4	IO_L05N_4	IO_L05N_4	IO_L05N_4	AE23	I/O
4	IO_L05P_4	IO_L05P_4	IO_L05P_4	AF23	I/O
4	IO_L06N_4/ VREF_4	IO_L06N_4/ VREF_4	IO_L06N_4/ VREF_4	AD22	VREF
4	IO_L06P_4	IO_L06P_4	IO_L06P_4	AE22	I/O
4	IO_L07N_4	IO_L07N_4	IO_L07N_4	AB21	I/O
4	IO_L07P_4	IO_L07P_4	IO_L07P_4	AC21	I/O
4	IO_L08N_4	IO_L08N_4	IO_L08N_4	AD21	I/O
4	IO_L08P_4	IO_L08P_4	IO_L08P_4	AE21	I/O
4	IO_L09N_4	IO_L09N_4	IO_L09N_4	AB20	I/O
4	IO_L09P_4	IO_L09P_4	IO_L09P_4	AC20	I/O
4	IO_L10N_4	IO_L10N_4	IO_L10N_4	AE20	I/O
4	IO_L10P_4	IO_L10P_4	IO_L10P_4	AF20	I/O
4	N.C. (◆)	IO_L11N_4	IO_L11N_4	Y19	I/O
4	N.C. (♦)	IO_L11P_4	IO_L11P_4	AA19	I/O

Table 30: FG676 Package Pinout (Continued)

				FG676	
Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	Pin Number	Type
4	N.C. (♠)	IO_L12N_4	IO_L12N_4	AB19	I/O
4	N.C. (♦)	IO_L12P_4	IO L12P 4	AC19	I/O
4	IO L15N 4	IO L15N 4	IO L15N 4	AE19	I/O
4	IO_L15P_4	IO_L15P_4	IO_L15P_4	AF19	I/O
4	IO_L16N_4	IO_L16N_4	IO_L16N_4	Y18	I/O
4	IO_L16P_4	IO_L16P_4	IO_L16P_4	AA18	I/O
4	N.C. (♦)	IO_L17N_4	IO_L17N_4	AB18	I/O
4	N.C. (♦)	IO_L17P_4	IO_L17P_4	AC18	I/O
4	N.C. (♦)	IO_L18N_4	IO_L18N_4	AD18	I/O
4	N.C. (♠)	IO_L18P_4	IO_L18P_4	AE18	I/O
4	IO_L19N_4	IO_L19N_4	IO_L19N_4	AC17	I/O
4	IO_L19P_4	IO_L19P_4	IO_L19P_4	AA17	I/O
4	IO_L22N_4/	IO_L22N_4/	IO_L22N_4/	AD17	VREF
	VREF_4	VREF_4	VREF_4		
4	IO_L22P_4	IO_L22P_4	IO_L22P_4	AB17	I/O
4	N.C. (♠)	IO_L23N_4	IO_L23N_4	AE17	I/O
4	N.C. (♦)	IO_L23P_4	IO_L23P_4	AF17	1/0
4	IO_L24N_4	IO_L24N_4	IO_L24N_4	Y16	I/O
4	IO_L24P_4	IO_L24P_4	IO_L24P_4	AA16	1/0
4	IO_L25N_4 IO_L25P_4	IO_L25N_4 IO_L25P_4	IO_L25N_4 IO_L25P_4	AB16 AC16	1/0
4	N.C. (♦)	IO_L25P_4	IO_L25P_4	AE16	I/O I/O
4	N.C. (♦)	IO_L26P 4/	IO_L26P_4/	AF16	VREF
7	N.O. (*)	VREF_4	VREF_4	711 10	VIILI
4	IO_L27N_4/ DIN/D0	IO_L27N_4/ DIN/D0	IO_L27N_4/ DIN/D0	Y15	DUAL
4	IO_L27P_4/ D1	IO_L27P_4/ D1	IO_L27P_4/ D1	W14	DUAL
4	IO_L28N_4	IO_L28N_4	IO_L28N_4	AA15	I/O
4	IO_L28P_4	IO_L28P_4	IO_L28P_4	AB15	I/O
4	IO_L29N_4	IO_L29N_4	IO_L29N_4	AE15	I/O
4	IO_L29P_4	IO_L29P_4	IO_L29P_4	AF15	I/O
4	IO_L30N_4/ D2	IO_L30N_4/ D2	IO_L30N_4/ D2	Y14	DUAL
4	IO_L30P_4/ D3	IO_L30P_4/ D3	IO_L30P_4/ D3	AA14	DUAL
4	IO_L31N_4/ INIT_B	IO_L31N_4/ INIT_B	IO_L31N_4/ INIT_B	AC14	DUAL
4	IO_L31P_4/ DOUT/BUSY	IO_L31P_4/ DOUT/BUSY	IO_L31P_4/ DOUT/BUSY	AD14	DUAL
4	IO_L32N_4/ GCLK1	IO_L32N_4/ GCLK1	IO_L32N_4/ GCLK1	AE14	GCLK
4	IO_L32P_4/ GCLK0	IO_L32P_4/ GCLK0	IO_L32P_4/ GCLK0	AF14	GCLK
4	VCCO_4	VCCO_4	VCCO_4	AD16	VCCO
4	VCCO_4	VCCO_4	VCCO_4	AD20	VCCO
4	VCCO_4	VCCO_4	VCCO_4	U14	vcco
4	VCCO_4	VCCO_4	VCCO_4	V14	VCCO

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
4	VCCO_4	VCCO_4	VCCO_4	V15	VCCO
4	VCCO_4	VCCO_4	VCCO_4	V16	VCCO
4	VCCO_4	VCCO_4	VCCO_4	W17	VCCO
4	VCCO_4	VCCO_4	VCCO_4	W18	VCCO
5	Ю	Ю	Ю	AA7	I/O
5	Ю	Ю	Ю	AA13	I/O
5	Ю	Ю	Ю	AB9	I/O
5	N.C. (◆)	Ю	Ю	AC9	I/O
5	Ю	Ю	Ю	AC11	I/O
5	Ю	Ю	Ю	AD10	I/O
5	Ю	Ю	Ю	AD12	I/O
5	Ю	Ю	Ю	AF4	I/O
5	Ю	Ю	Ю	Y8	I/O
5	IO/VREF_5	IO/VREF_5	IO/VREF_5	AF5	VREF
5	IO/VREF_5	IO/VREF_5	IO/VREF_5	AF13	VREF
5	IO_L01N_5/ RDWR_B	IO_L01N_5/ RDWR_B	IO_L01N_5/ RDWR_B	AC5	DUAL
5	IO_L01P_5/ CS_B	IO_L01P_5/ CS_B	IO_L01P_5/ CS_B	AB5	DUAL
5	IO_L04N_5	IO_L04N_5	IO_L04N_5	AE4	I/O
5	IO_L04P_5	IO_L04P_5	IO_L04P_5	AD4	I/O
5	IO_L05N_5	IO_L05N_5	IO_L05N_5	AB6	I/O
5	IO_L05P_5	IO_L05P_5	IO_L05P_5	AA6	I/O
5	IO_L06N_5	IO_L06N_5	IO_L06N_5	AE5	I/O
5	IO_L06P_5	IO_L06P_5	IO_L06P_5	AD5	I/O
5	IO_L07N_5	IO_L07N_5	IO_L07N_5	AD6	I/O
5	IO_L07P_5	IO_L07P_5	IO_L07P_5	AC6	I/O
5	IO_L08N_5	IO_L08N_5	IO_L08N_5	AF6	I/O
5	IO_L08P_5	IO_L08P_5	IO_L08P_5	AE6	I/O
5	IO_L09N_5	IO_L09N_5	IO_L09N_5	AC7	I/O
5	IO_L09P_5	IO_L09P_5	IO_L09P_5	AB7	I/O
5	IO_L10N_5/ VRP_5	IO_L10N_5/ VRP_5	IO_L10N_5/ VRP_5	AF7	DCI
5	IO_L10P_5/ VRN_5	IO_L10P_5/ VRN_5	IO_L10P_5/ VRN_5	AE7	DCI
5	N.C. (♠)	IO_L11N_5/ VREF_5	IO_L11N_5/ VREF_5	AB8	VREF
5	N.C. (◆)	IO_L11P_5	IO_L11P_5	AA8	I/O
5	N.C. (◆)	IO_L12N_5	IO_L12N_5	AD8	I/O
5	N.C. (◆)	IO_L12P_5	IO_L12P_5	AC8	I/O
5	IO_L15N_5	IO_L15N_5	IO_L15N_5	AF8	I/O
5	IO_L15P_5	IO_L15P_5	IO_L15P_5	AE8	I/O
5	IO_L16N_5	IO_L16N_5	IO_L16N_5	AA9	I/O
5	IO_L16P_5	IO_L16P_5	IO_L16P_5	Y9	I/O
5	N.C. (◆)	IO_L18N_5	IO_L18N_5	AE9	I/O
5	N.C. (◆)	IO_L18P_5	IO_L18P_5	AD9	I/O
5	IO_L19N_5	IO_L19N_5	IO_L19N_5	AA10	I/O

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
5	IO_L19P_5/	IO_L19P_5/	IO_L19P_5/	Y10	VREF
	VREF_5	VREF_5	VREF_5		
5	IO_L22N_5	IO_L22N_5	IO_L22N_5	AC10	I/O
5	IO_L22P_5	IO_L22P_5	IO_L22P_5	AB10	I/O
5	N.C. (◆)	IO_L23N_5	IO_L23N_5	AF10	I/O
5	N.C. (◆)	IO_L23P_5	IO_L23P_5	AE10	I/O
5	IO_L24N_5	IO_L24N_5	IO_L24N_5	Y11	I/O
5	IO_L24P_5	IO_L24P_5	IO_L24P_5	W11	I/O
5	IO_L25N_5	IO_L25N_5	IO_L25N_5	AB11	I/O
5	IO_L25P_5	IO_L25P_5	IO_L25P_5	AA11	I/O
5	N.C. (♠)	IO_L26N_5	IO_L26N_5	AF11	I/O
5	N.C. (♠)	IO_L26P_5	IO_L26P_5	AE11	I/O
5	IO_L27N_5/ VREF_5	IO_L27N_5/ VREF_5	IO_L27N_5/ VREF_5	Y12	VREF
5	IO_L27P_5	IO_L27P_5	IO_L27P_5	W12	I/O
5	IO_L28N_5/ D6	IO_L28N_5/ D6	IO_L28N_5/ D6	AB12	DUAL
5	IO_L28P_5/ D7	IO_L28P_5/ D7	IO_L28P_5/ D7	AA12	DUAL
5	IO_L29N_5	IO_L29N_5	IO_L29N_5	AF12	I/O
5	IO_L29P_5/ VREF_5	IO_L29P_5/ VREF_5	IO_L29P_5/ VREF_5	AE12	VREF
5	IO_L30N_5	IO_L30N_5	IO_L30N_5	Y13	I/O
5	IO_L30P_5	IO_L30P_5	IO_L30P_5	W13	I/O
5	IO_L31N_5/ D4	IO_L31N_5/ D4	IO_L31N_5/ D4	AC13	DUAL
5	IO_L31P_5/ D5	IO_L31P_5/ D5	IO_L31P_5/ D5	AB13	DUAL
5	IO_L32N_5/ GCLK3	IO_L32N_5/ GCLK3	IO_L32N_5/ GCLK3	AE13	GCLK
5	IO_L32P_5/ GCLK2	IO_L32P_5/ GCLK2	IO_L32P_5/ GCLK2	AD13	GCLK
5	VCCO_5	VCCO_5	VCCO_5	AD7	VCCO
5	VCCO_5	VCCO_5	VCCO_5	AD11	VCCO
5	VCCO_5	VCCO_5	VCCO_5	U13	vcco
5	VCCO_5	VCCO_5	VCCO_5	V11	vcco
5	VCCO_5	VCCO_5	VCCO_5	V12	vcco
5	VCCO_5	VCCO_5	VCCO_5	V13	VCCO
5	VCCO_5	VCCO_5	VCCO_5	W9	VCCO
5	VCCO_5	VCCO_5	VCCO_5	W10	VCCO
6	N.C. (♦)	N.C. (■)	Ю	AA5	I/O
6	IO_L01N_6/ VRP_6	IO_L01N_6/ VRP_6	IO_L01N_6/ VRP_6	AD2	DCI
6	IO_L01P_6/ VRN_6	IO_L01P_6/ VRN_6	IO_L01P_6/ VRN_6	AD1	DCI
6	IO_L02N_6	IO_L02N_6	IO_L02N_6	AB4	I/O
6	IO_L02P_6	IO_L02P_6	IO_L02P_6	AB3	I/O
6	IO_L03N_6/ VREF_6	IO_L03N_6/ VREF_6	IO_L03N_6/ VREF_6	AC2	VREF

Table 30: FG676 Package Pinout (Continued)

		- aonago :	,	FG676	
	XC3S1000	XC3S1500	XC3S2000	Pin	
Bank	Pin Name	Pin Name	Pin Name	Number	Туре
6	IO_L03P_6	IO_L03P_6	IO_L03P_6	AC1	I/O
6	N.C. (◆)	IO_L05N_6	IO_L05N_6	AB2	I/O
6	N.C. (◆)	IO_L05P_6	IO_L05P_6	AB1	I/O
6	N.C. (◆)	IO_L06N_6	IO_L06N_6	Y7	I/O
6	N.C. (◆)	IO_L06P_6	IO_L06P_6	Y6	I/O
6	N.C. (◆)	IO_L07N_6	IO_L07N_6	AA4	I/O
6	N.C. (◆)	IO_L07P_6	IO_L07P_6	AA3	I/O
6	N.C. (◆)	IO_L08N_6	IO_L08N_6	Y5	I/O
6	N.C. (◆)	IO_L08P_6	IO_L08P_6	Y4	I/O
6	N.C. (♠)	IO_L09N_6/ VREF_6	IO_L09N_6/ VREF_6	AA2	VREF
6	N.C. (♦)	IO_L09P_6	IO_L09P_6	AA1	I/O
6	N.C. (◆)	IO_L10N_6	IO_L10N_6	Y2	I/O
6	N.C. (♦)	IO_L10P_6	IO_L10P_6	Y1	I/O
6	IO_L14N_6	IO_L14N_6	IO_L14N_6	W7	I/O
6	IO_L14P_6	IO_L14P_6	IO_L14P_6	W6	I/O
6	IO_L16N_6	IO_L16N_6	IO_L16N_6	V6	I/O
6	IO_L16P_6	IO_L16P_6	IO_L16P_6	W5	I/O
6	IO_L17N_6	IO_L17N_6	IO_L17N_6	W4	I/O
6	IO_L17P_6/ VREF_6	IO_L17P_6/ VREF_6	IO_L17P_6/ VREF_6	W3	VREF
6	IO_L19N_6	IO_L19N_6	IO_L19N_6	W2	I/O
6	IO_L19P_6	IO_L19P_6	IO_L19P_6	W1	I/O
6	IO_L20N_6	IO_L20N_6	IO_L20N_6	V7	I/O
6	IO_L20P_6	IO_L20P_6	IO_L20P_6	U7	I/O
6	IO_L21N_6	IO_L21N_6	IO_L21N_6	V5	I/O
6	IO_L21P_6	IO_L21P_6	IO_L21P_6	V4	I/O
6	IO_L22N_6	IO_L22N_6	IO_L22N_6	V3	I/O
6	IO_L22P_6	IO_L22P_6	IO_L22P_6	V2	I/O
6	IO_L23N_6	IO_L23N_6	IO_L23N_6	U6	I/O
6	IO_L23P_6	IO_L23P_6	IO_L23P_6	U5	I/O
6	IO_L24N_6/ VREF_6	IO_L24N_6/ VREF_6	IO_L24N_6/ VREF_6	U4	VREF
6	IO_L24P_6	IO_L24P_6	IO_L24P_6	U3	I/O
6	IO_L26N_6	IO_L26N_6	IO_L26N_6	U2	I/O
6	IO_L26P_6	IO_L26P_6	IO_L26P_6	U1	I/O
6	IO_L27N_6	IO_L27N_6	IO_L27N_6	T8	I/O
6	IO_L27P_6	IO_L27P_6	IO_L27P_6	T7	I/O
6	IO_L28N_6	IO_L28N_6	IO_L28N_6	T6	I/O
6	IO_L28P_6	IO_L28P_6	IO_L28P_6	T5	I/O
6	IO_L29N_6	IO_L29N_6	IO_L29N_6	T2	I/O
6	IO_L29P_6	IO_L29P_6	IO_L29P_6	T1	I/O
6	IO_L31N_6	IO_L31N_6	IO_L31N_6	R8	I/O
6	IO_L31P_6	IO_L31P_6	IO_L31P_6	R7	I/O
6	IO_L32N_6	IO_L32N_6	IO_L32N_6	R6	I/O
6	IO_L32P_6	IO_L32P_6	IO_L32P_6	R5	I/O
1	<u> </u>	 	!	-	

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
6	IO_L33N_6	IO_L33N_6	IO_L33N_6	T4	I/O
6	IO_L33N_6	IO_L33IN_6	IO_L33N_6	R3	1/0
6	IO_L34N_6/	IO_L33I _6	IO_L33I _6	R2	VREF
O	VREF_6	VREF_6	VREF_6	nz	VNEF
6	IO_L34P_6	IO_L34P_6	IO_L34P_6	R1	I/O
6	IO_L35N_6	IO_L35N_6	IO_L35N_6	P8	I/O
6	IO_L35P_6	IO_L35P_6	IO_L35P_6	P7	I/O
6	IO_L38N_6	IO_L38N_6	IO_L38N_6	P6	I/O
6	IO_L38P_6	IO_L38P_6	IO_L38P_6	P5	I/O
6	IO_L39N_6	IO_L39N_6	IO_L39N_6	P4	I/O
6	IO_L39P_6	IO_L39P_6	IO_L39P_6	P3	I/O
6	IO_L40N_6	IO_L40N_6	IO_L40N_6	P2	I/O
6	IO_L40P_6/ VREF_6	IO_L40P_6/ VREF_6	IO_L40P_6/ VREF_6	P1	VREF
6	VCCO_6	VCCO_6	VCCO_6	P9	VCCO
6	VCCO_6	VCCO_6	VCCO_6	P10	VCCO
6	VCCO_6	VCCO_6	VCCO_6	R9	VCCO
6	VCCO_6	VCCO_6	VCCO_6	Т3	VCCO
6	VCCO_6	VCCO_6	VCCO_6	Т9	VCCO
6	VCCO_6	VCCO_6	VCCO_6	U8	VCCO
6	VCCO_6	VCCO_6	VCCO_6	V8	VCCO
6	VCCO_6	VCCO_6	VCCO_6	Y3	VCCO
6 7	VCCO_6 IO_L01N_7/ VRP_7	VCCO_6 IO_L01N_7/ VRP_7	VCCO_6 IO_L01N_7/ VRP_7	Y3 F5	VCCO
	IO_L01N_7/	IO_L01N_7/	IO_L01N_7/		
7	IO_L01N_7/ VRP_7 IO_L01P_7/	IO_L01N_7/ VRP_7 IO_L01P_7/	IO_L01N_7/ VRP_7 IO_L01P_7/	F5	DCI
7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7	F5 F6	DCI
7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7	F5 F6 E3	DCI DCI I/O
7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/	F5 F6 E3 E4	DCI DCI I/O I/O
7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7	F5 F6 E3 E4 D1	DCI DCI I/O I/O VREF
7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7	F5 F6 E3 E4 D1 D2	DCI DCI I/O I/O VREF
7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7	F5 F6 E3 E4 D1 D2 G6	DCI I/O I/O VREF I/O I/O
7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠) N.C. (♠) N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7	F5 F6 E3 E4 D1 D2 G6 G7	DCI I/O I/O VREF I/O I/O I/O
7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♦) N.C. (♦)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L05P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L06P_7	F5 F6 E3 E4 D1 D2 G6 G7 E1	DCI I/O I/O VREF I/O I/O I/O
7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠) N.C. (♠) N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2	DCI I/O I/O VREF I/O I/O I/O I/O I/O
7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠) N.C. (♠) N.C. (♠) N.C. (♠) N.C. (♠) N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L07P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L07P_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4	DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O
7 7 7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L07P_7 IO_L08N_7 IO_L08P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06P_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4 G5	DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L08P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L06N_7 IO_L06N_7 IO_L06P_7 IO_L07P_7 IO_L07P_7 IO_L08N_7 IO_L08N_7 IO_L08P_7 IO_L08P_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4 G5 F1	DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07P_7 IO_L07P_7 IO_L08N_7 IO_L08N_7 IO_L08P_7 IO_L09P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08N_7 IO_L08P_7 IO_L09P_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4 G5 F1 F2	DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03P_7 IO_L03P_7 IO_L05P_7 IO_L05P_7 IO_L06P_7 IO_L06P_7 IO_L07P_7 IO_L07P_7 IO_L08P_7 IO_L08P_7 IO_L09P_7 IO_L09P_7 IO_L09P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09N_7 IO_L09P_7 IO_L09P_7 IO_L09P_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4 G5 F1 F2 H6	DCI DCI I/O I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07P_7 IO_L07P_7 IO_L08N_7 IO_L08N_7 IO_L08P_7 IO_L09P_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08N_7 IO_L08P_7 IO_L09P_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4 G5 F1 F2	DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03P_7 IO_L03P_7 IO_L05P_7 IO_L05P_7 IO_L06P_7 IO_L06P_7 IO_L07P_7 IO_L07P_7 IO_L08P_7 IO_L09P_7 IO_L09P_7 IO_L09P_7 IO_L10N_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06P_7 IO_L06P_7 IO_L07N_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09N_7 IO_L09P_7 IO_L09P_7 IO_L09P_7 IO_L10N_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4 G5 F1 F2 H6	DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 N.C. (♠)	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L03P_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07P_7 IO_L07P_7 IO_L08N_7 IO_L08N_7 IO_L09P_7 IO_L09P_7 IO_L09P_7 IO_L09P_7 IO_L10P_7/ VREF_7	IO_L01N_7/ VRP_7 IO_L01P_7/ VRN_7 IO_L02N_7 IO_L02P_7 IO_L03N_7/ VREF_7 IO_L05N_7 IO_L05P_7 IO_L06N_7 IO_L06P_7 IO_L07P_7 IO_L07P_7 IO_L08N_7 IO_L08P_7 IO_L09P_7 IO_L09P_7 IO_L09P_7 IO_L10P_7/ VREF_7	F5 F6 E3 E4 D1 D2 G6 G7 E1 E2 F3 F4 G4 G5 F1 F2 H6 H7	DCI DCI I/O I/O VREF I/O I/O I/O I/O I/O I/O I/O I/

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
7	IO_L16P_7/ VREF_7	IO_L16P_7/ VREF_7	IO_L16P_7/ VREF_7	H5	VREF
7	IO_L17N_7	IO_L17N_7	IO_L17N_7	НЗ	I/O
7	IO_L17P_7	IO_L17P_7	IO_L17P_7	H4	I/O
7	IO_L19N_7/ VREF_7	IO_L19N_7/ VREF_7	IO_L19N_7/ VREF_7	H1	VREF
7	IO_L19P_7	IO_L19P_7	IO_L19P_7	H2	I/O
7	IO_L20N_7	IO_L20N_7	IO_L20N_7	K7	I/O
7	IO_L20P_7	IO_L20P_7	IO_L20P_7	J7	I/O
7	IO_L21N_7	IO_L21N_7	IO_L21N_7	J4	I/O
7	IO_L21P_7	IO_L21P_7	IO_L21P_7	J5	I/O
7	IO_L22N_7	IO_L22N_7	IO_L22N_7	J2	I/O
7	IO_L22P_7	IO_L22P_7	IO_L22P_7	J3	I/O
7	IO_L23N_7	IO_L23N_7	IO_L23N_7	K5	I/O
7	IO_L23P_7	IO_L23P_7	IO_L23P_7	K6	I/O
7	IO_L24N_7	IO_L24N_7	IO_L24N_7	K3	I/O
7	IO_L24P_7	IO_L24P_7	IO_L24P_7	K4	I/O
7	IO_L26N_7	IO_L26N_7	IO_L26N_7	K1	I/O
7	IO_L26P_7	IO_L26P_7	IO_L26P_7	K2	I/O
7	IO_L27N_7	IO_L27N_7	IO_L27N_7	L7	I/O
7	IO_L27P_7/ VREF_7	IO_L27P_7/ VREF_7	IO_L27P_7/ VREF_7	L8	VREF
7	IO_L28N_7	IO_L28N_7	IO_L28N_7	L5	I/O
7	IO_L28P_7	IO_L28P_7	IO_L28P_7	L6	I/O
7	IO_L29N_7	IO_L29N_7	IO_L29N_7	L1	I/O
7	IO_L29P_7	IO_L29P_7	IO_L29P_7	L2	I/O
7	IO_L31N_7	IO_L31N_7	IO_L31N_7	M7	I/O
7	IO_L31P_7	IO_L31P_7	IO_L31P_7	M8	I/O
7	IO_L32N_7	IO_L32N_7	IO_L32N_7	M6	I/O
7	IO_L32P_7	IO_L32P_7	IO_L32P_7	M5	I/O
7	IO_L33N_7	IO_L33N_7	IO_L33N_7	М3	I/O
7	IO_L33P_7	IO_L33P_7	IO_L33P_7	L4	I/O
7	IO_L34N_7	IO_L34N_7	IO_L34N_7	M1	I/O
7	IO_L34P_7	IO_L34P_7	IO_L34P_7	M2	I/O
7	IO_L35N_7	IO_L35N_7	IO_L35N_7	N7	I/O
7	IO_L35P_7	IO_L35P_7	IO_L35P_7	N8	I/O
7	IO_L38N_7	IO_L38N_7	IO_L38N_7	N5	I/O
7	IO_L38P_7	IO_L38P_7	IO_L38P_7	N6	I/O
7	IO_L39N_7	IO_L39N_7	IO_L39N_7	N3	I/O
7	IO_L39P_7	IO_L39P_7	IO_L39P_7	N4	I/O
7	IO_L40N_7/ VREF_7	IO_L40N_7/ VREF_7	IO_L40N_7/ VREF_7	N1	VREF
7	IO_L40P_7	IO_L40P_7	IO_L40P_7	N2	I/O
7	VCCO_7	VCCO_7	VCCO_7	G3	VCCO
7	VCCO_7	VCCO_7	VCCO_7	J8	VCCO
7	VCCO_7	VCCO_7	VCCO_7	K8	VCCO

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
7	VCCO_7	VCCO_7	VCCO_7	L3	VCCO
7	VCCO_7	VCCO_7	VCCO_7	L9	VCCO
7	VCCO_7	VCCO_7	VCCO_7	M9	VCCO
7	VCCO_7	VCCO_7	VCCO_7	N9	VCCO
7	VCCO_7	VCCO_7	VCCO_7	N10	VCCO
N/A	GND	GND	GND	A1	GND
N/A	GND	GND	GND	A26	GND
N/A	GND	GND	GND	AC4	GND
N/A	GND	GND	GND	AC12	GND
N/A	GND	GND	GND	AC15	GND
N/A	GND	GND	GND	AC23	GND
N/A	GND	GND	GND	AD3	GND
N/A	GND	GND	GND	AD24	GND
N/A	GND	GND	GND	AE2	GND
N/A	GND	GND	GND	AE25	GND
N/A	GND	GND	GND	AF1	GND
N/A	GND	GND	GND	AF26	GND
N/A	GND	GND	GND	B2	GND
N/A	GND	GND	GND	B25	GND
N/A	GND	GND	GND	C3	GND
N/A	GND	GND	GND	C24	GND
N/A	GND	GND	GND	D4	GND
N/A	GND	GND	GND	D12	GND
N/A	GND	GND	GND	D15	GND
N/A	GND	GND	GND	D23	GND
N/A	GND	GND	GND	K11	GND
N/A	GND	GND	GND	K12	GND
N/A	GND	GND	GND	K15	GND
N/A	GND	GND	GND	K16	GND
N/A	GND	GND	GND	L10	GND
N/A	GND	GND	GND	L11	GND
N/A	GND	GND	GND	L12	GND
N/A	GND	GND	GND	L13	GND
N/A	GND	GND	GND	L14	GND
N/A		GND	GND	L15	GND
N/A	GND	GND	GND	L16	GND
N/A	GND	GND	GND	L17	GND
N/A		GND	GND	M4	GND
N/A	GND		GND	M10	GND
N/A	GND	GND	GND	M11	GND
N/A	GND	GND	GND	M12	GND
N/A	GND	GND	GND	M13	GND
N/A	GND	GND	GND	M14	GND
N/A	GND	GND	GND	M15	GND
N/A	GND	GND	GND	M16	GND

Table 30: FG676 Package Pinout (Continued)

				FG676	
Donk	XC3S1000	XC3S1500	XC3S2000	Pin	Type
Bank	Pin Name	Pin Name	Pin Name	Number	Type
N/A	GND	GND	GND	M17	GND
N/A	GND	GND	GND	M23	GND
N/A	GND	GND	GND	N11	GND
N/A	GND	GND	GND	N12	GND
N/A	GND	GND	GND	N13	GND
N/A	GND	GND	GND	N14	GND
N/A	GND	GND	GND	N15	GND
N/A	GND	GND	GND	N16	GND
N/A	GND	GND	GND	P11 P12	GND
N/A	GND	GND	GND	P13	GND
N/A N/A					GND
	GND	GND	GND	P14	GND
N/A	GND	GND	GND	P15 P16	GND
N/A	GND	GND		_	GND
N/A	GND	GND	GND	R4	GND
N/A	GND	GND	GND	R10	GND
N/A	GND	GND	GND	R11	GND
N/A	GND	GND	GND	R12	GND
N/A	GND	GND	GND	R13	GND
N/A	GND	GND	GND	R14	GND
N/A	GND	GND	GND	R15	GND
N/A	GND	GND	GND	R16	GND
N/A	GND	GND	GND	R17	GND
N/A	GND	GND	GND	R23	GND
N/A N/A	GND	GND	GND	T10	GND
					GND
N/A N/A	GND	GND	GND	T12	GND
N/A	GND	GND	GND	T13	GND
N/A	GND	GND	GND	T15	GND
N/A	GND	GND	GND	T16	GND
N/A	GND	GND	GND	T17	GND
N/A	GND	GND	GND	U11	GND GND
N/A	GND	GND	GND	U12	
N/A	GND	GND	GND	U15	GND GND
N/A	GND	GND	GND	U16	GND
N/A	VCCAUX	VCCAUX	VCCAUX	A2	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	A9	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	A18	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	A25	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	AE1	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	AE26	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	AF2	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	AF9	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	AF18	VCCAUX
1 1/7	.00/10/		. 55,15,1	711 10	VOCAUX

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
N/A	VCCAUX	VCCAUX	VCCAUX	AF25	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	B1	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	B26	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	J1	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	J26	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	V1	VCCAUX
N/A	VCCAUX	VCCAUX	VCCAUX	V26	VCCAUX
N/A	VCCINT	VCCINT	VCCINT	H8	VCCINT
N/A	VCCINT	VCCINT	VCCINT	H19	VCCINT
N/A	VCCINT	VCCINT	VCCINT	J9	VCCINT
N/A	VCCINT	VCCINT	VCCINT	J10	VCCINT
N/A	VCCINT	VCCINT	VCCINT	J17	VCCINT
N/A	VCCINT	VCCINT	VCCINT	J18	VCCINT
N/A	VCCINT	VCCINT	VCCINT	K9	VCCINT
N/A	VCCINT	VCCINT	VCCINT	K10	VCCINT
N/A	VCCINT	VCCINT	VCCINT	K17	VCCINT
N/A	VCCINT	VCCINT	VCCINT	K18	VCCINT
N/A	VCCINT	VCCINT	VCCINT	U9	VCCINT
N/A	VCCINT	VCCINT	VCCINT	U10	VCCINT
N/A	VCCINT	VCCINT	VCCINT	U17	VCCINT
N/A	VCCINT	VCCINT	VCCINT	U18	VCCINT
N/A	VCCINT	VCCINT	VCCINT	V9	VCCINT
N/A	VCCINT	VCCINT	VCCINT	V10	VCCINT
N/A	VCCINT	VCCINT	VCCINT	V17	VCCINT
N/A	VCCINT	VCCINT	VCCINT	V18	VCCINT
N/A	VCCINT	VCCINT	VCCINT	W8	VCCINT
N/A	VCCINT	VCCINT	VCCINT	W19	VCCINT
VCC AUX	CCLK	CCLK	CCLK	AD26	CONFIG

Table 30: FG676 Package Pinout (Continued)

Bank	XC3S1000 Pin Name	XC3S1500 Pin Name	XC3S2000 Pin Name	FG676 Pin Number	Туре
VCC AUX	DONE	DONE	DONE	AC24	CONFIG
VCC AUX	HSWAP_EN	HSWAP_EN	HSWAP_EN	C2	CONFIG
VCC AUX	МО	МО	МО	AE3	CONFIG
VCC AUX	M1	M1	M1	AC3	CONFIG
VCC AUX	M2	M2	M2	AF3	CONFIG
VCC AUX	PROG_B	PROG_B	PROG_B	D3	CONFIG
VCC AUX	TCK	TCK	TCK	B24	JTAG
VCC AUX	TDI	TDI	TDI	C1	JTAG
VCC AUX	TDO	TDO	TDO	D24	JTAG
VCC AUX	TMS	TMS	TMS	A24	JTAG

User I/Os by Bank

Table 31 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S1000 in the FG676 package. Similarly, Table 32 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S1500 in the FG676 package. Finally, Table 33 shows the same information for the XC3S2000 in the FG676 package.

Table 31: User I/Os Per Bank for XC3S1000 in FG676 Package

	I/O	Maximum	All Possible I/O Pins by Type					
Edge	Bank	I/O	I/O	DUAL	DCI	VREF	GCLK	
Тор	0	49	40	0	2	5	2	
Юр	1	50	41	0	2	5	2	
Right	2	48	41	0	2	5	0	
Hight	3	48	41	0	2	5	0	
Bottom	4	50	35	6	2	5	2	
Bottom	5	50	35	6	2	5	2	
Left	6	48	41	0	2	5	0	
Leit	7	48	41	0	2	5	0	

Table 32: User I/Os Per Bank for XC3S1500 in FG676 Package

	I/O	Maximum	All Possible I/O Pins by Type					
Edge	Bank	I/O	I/O	DUAL	DCI	VREF	GCLK	
Тор	0	62	52	0	2	6	2	
Юр	1	61	51	0	2	6	2	
Right	2	60	52	0	2	6	0	
nigrit	3	60	52	0	2	6	0	
Bottom	4	63	47	6	2	6	2	
Bottom	5	61	45	6	2	6	2	
Left	6	60	52	0	2	6	0	
Leit	7	60	52	0	2	6	0	

Table 33: User I/Os Per Bank for XC3S2000 in FG676 Package

		Maximum	All Possible I/O Pins by Type					
Edge	I/O Bank	I/O	I/O	DUAL	DCI	VREF	GCLK	
Тор	0	62	52	0	2	6	2	
Юр	1	61	51	0	2	6	2	
Right	2	61	53	0	2	6	0	
Hight	3	60	52	0	2	6	0	
Bottom	4	63	47	6	2	6	2	
Bottom	5	61	45	6	2	6	2	
Left	6	61	53	0	2	6	0	
Leit	7	60	52	0	2	6	0	

FG676 Footprint

Left Half of Package (top view)

XC3S1000

(391 max. user I/O)

- 315 I/O: Unrestricted, general-purpose user I/O
- 40 VREF: User I/O or input voltage reference for bank
- 98 N.C.: Unconnected pins for XC3S1000 (♠)

XC3S1500

(487 max user I/O)

- 403 I/O: Unrestricted, general-purpose user I/O
- VREF: User I/O or input voltage reference for bank
- N.C.: Unconnected pins for XC3S1500 (■)

XC3S2000

(489 max user I/O)

- 405 I/O: Unrestricted, general-purpose user I/O
- VREF: User I/O or input voltage reference for bank
- N.C.: No unconnected pins

All devices

- DUAL: Configuration pin, then possible user I/O
- 8 GCLK: User I/O or global clock buffer input
- 16 DCI: User I/O or reference resistor input for bank
- 7 CONFIG: Dedicated configuration pins
- JTAG: Dedicated JTAG port pins
- VCCINT: Internal core voltage supply (+1.2V)
- 64 VCCO: Output voltage supply for bank
- VCCAUX: Auxiliary voltage supply (+2.5V)
- 76 GND: Ground

Figure 14: FG676 Package Footprint (top view)

 14	15	16	17	Ban 18	ık 1 19	20	21	22	23	24	25	26	
I/O	I/O L29N_1	I/O L26N_1	I/O L23N_1	VCCAUX	I/O L15N_1	I/O L10N_1 VREF_1	I/O L08N_1	I/O	I/O	TMS	VCCAUX	GND	Α
I/O L32N_1 GCLK5	I/O L29P_1	I/O L26P_1	I/O L23P_1	I/O L18N_1 ◆	I/O L15P_1	I/O L10P_1	I/O L08P_1	I/O L06N_1 VREF_1	I/O L04N_1	TCK	GND	VCCAUX	В
I/O L32P_1 GCLK4	I/O VREF_1	VCCO_1	I/O VREF_1	I/O L18P_1 ◆	I/O L12N_1	VCCO_1	I/O L07N_1	I/O L06P_1	I/O L04P_1	GND	I/O L01N_2 VRP_2	I/O L01P_2 VRN_2	c
I/O L31N_1 VREF_1	GND	I/O	I/O L22N_1	I/O VREF_1 ◆	I/O L12P_1 ◆	I/O L09N_1	I/O L07P_1	I/O L01N_1 VRP_1	GND	TDO	I/O L03N_2 VREF_2	I/O L03P_2	D
I/O L31P_1	I/O L28N_1	I/O L25N_1	I/O L22P_1	I/O	I/O L11N_1	I/O L09P_1	I/O L05N_1	I/O L01P_1 VRN_1	I/O L02N_2	I/O L02P_2	I/O L05N_2 ◆	I/O L05P_2	E
I/O	I/O L28P_1	I/O L25P_1	I/O L19N_1	I/O L16N_1	I/O L11P_1 ◆	I/O	I/O L05P_1	I/O ♦ ■	I/O L07N_2 ◆	I/O L07P_2 ◆	I/O L09N_2 VREF_2	I/O L09P_2	F
I/O L30N_1	I/O L27N_1	I/O L24N_1	I/O L19P_1	I/O L16P_1	I/O	I/O L06N_2	I/O L06P_2 ◆	I/O L08N_2	I/O L08P_2 ◆	VCCO_2	I/O L10N_2 ◆	I/O L10P_2 ◆	G
I/O L30P_1	I/O L27P_1	I/O L24P_1	VCCO_1	VCCO_1	VCCINT	I/O L14N_2	I/O L14P_2	I/O L16N_2	I/O L17N_2	I/O L17P_2 VREF_2	I/O L19N_2	I/O L19P_2	π Bank 2
VCCO_1	VCCO_1	VCCO_1	VCCINT	VCCINT	VCCO_2	I/O L20N_2	I/O L16P_2	I/O L21N_2	I/O L21P_2	I/O L22N_2	I/O L22P_2	VCCAUX	J
VCCO_1	GND	GND	VCCINT	VCCINT	VCCO_2	I/O L20P_2	I/O L23N_2 VREF_2	I/O L23P_2	I/O L24N_2	I/O L24P_2	I/O L26N_2	I/O L26P_2	κ
GND	GND	GND	GND	VCCO_2	I/O L27N_2	I/O L27P_2	I/O L28N_2	I/O L28P_2	I/O L33N_2	VCCO_2	I/O L29N_2	I/O L29P_2	L
GND	GND	GND	GND	VCCO_2	I/O L31N_2	I/O L31P_2	I/O L32N_2	I/O L32P_2	GND	I/O L33P_2	I/O L34N_2 VREF_2	I/O L34P_2	М
GND	GND	GND	VCCO_2	VCCO_2	I/O L35N_2	I/O L35P_2	I/O L38N_2	I/O L38P_2	I/O L39N_2	I/O L39P_2	I/O L40N_2	I/O L40P_2 VREF_2	N
GND	GND	GND	VCCO_3	VCCO_3	I/O L35P_3	I/O L35N_3	I/O L38P_3	I/O L38N_3	I/O L39P_3	I/O L39N_3	I/O L40P_3	I/O L40N_3 VREF_3	Р
GND	GND	GND	GND	VCCO_3	I/O L31P_3	I/O L31N_3	I/O L32P_3	I/O L32N_3	GND	I/O L33N_3	I/O L34P_3 VREF_3	I/O L34N_3	R
GND	GND	GND	GND	VCCO_3	I/O L27P_3	I/O L27N_3	I/O L28P_3	I/O L28N_3	I/O L33P_3	VCCO_3	I/O L29P_3	I/O L29N_3	т
VCCO_4	GND	GND	VCCINT	VCCINT	VCCO_3	I/O L20N_3	I/O L23P_3 VREF_3	I/O L23N_3	I/O L24P_3	I/O L24N_3	I/O L26P_3	I/O L26N_3	U
VCCO_4	VCCO_4	VCCO_4	VCCINT	VCCINT	VCCO_3	I/O L20P_3	I/O L16N_3	I/O L21P_3	I/O L21N_3	I/O L22P_3	I/O L22N_3	VCCAUX	۸ ک 3 ۸
I/O L27P_4 D1	I/O	I/O	VCCO_4	VCCO_4	VCCINT	I/O L10P_3	I/O L10N_3	I/O L16P_3	I/O L17P_3 VREF_3	I/O L17N_3	I/O L19P_3	I/O L19N_3	Bar
I/O L30N_4 D2	I/O L27N_4 DIN D0	I/O L24N_4	I/O VREF_4	I/O L16N_4	I/O L11N_4 ◆	I/O L05P_3	I/O L05N_3	I/O L08P_3	I/O L08N_3	VCCO_3	I/O L14P_3	I/O L14N_3	Y
I/O L30P_4 D3	I/O L28N_4	I/O L24P_4	I/O L19P_4	I/O L16P_4	I/O L11P_4 ◆	I/O	I/O L01P_3 VRN_3	I/O L01N_3 VRP_3	I/O L07P_3 ◆	I/O L07N_3	I/O L09P_3 VREF_3	I/O L09N_3	A A
IO VREF_4	I/O L28P_4	I/O L25N_4	I/O L22P_4	I/O L17N_4 ◆	I/O L12N_4 ◆	I/O L09N_4	I/O L07N_4	I/O L01N_4 VRP_4	I/O L02P_3	I/O L02N_3 VREF_3	I/O L06P_3 ◆	I/O L06N_3	A B
I/O L31N_4 INIT_B	GND	I/O L25P_4	I/O L19N_4	I/O L17P_4 ◆	I/O L12P_4 ◆	I/O L09P_4	I/O L07P_4	I/O L01P_4 VRN_4	GND	DONE	I/O L03P_3	I/O L03N_3	A C
I/O L31P_4 DOUT BUSY	I/O	VCCO_4	I/O L22N_4 VREF_4	I/O L18N_4	I/O •	VCCO_4	I/O L08N_4	I/O L06N_4 VREF_4	I/O	GND	I/O VREF_4	CCLK	A D
I/O L32N_4 GCLK1	I/O L29N_4	I/O L26N_4	I/O L23N_4 ◆	I/O L18P_4 ◆	I/O L15N_4	I/O L10N_4	I/O L08P_4	I/O L06P_4	I/O L05N_4	I/O L04N_4	GND	VCCAUX	A E
I/O L32P_4 GCLK0	I/O L29P_4	I/O L26P_4 VREF_4	I/O L23P_4 ◆	VCCAUX	I/O L15P_4	I/O L10P_4	I/O	I/O	I/O L05P_4	I/O L04P_4	VCCAUX	GND	A F
				ı	Bank 4						DS099-4	_12b_121103	:

Right Half of Package (top view)

FG900: 900-lead Fine-pitch Ball Grid Array

The 900-lead fine-pitch ball grid array package, FG900, supports three different Spartan-3 devices, including the XC3S2000, the XC3S4000, and the XC3S5000. The footprints for the XC3S4000 and XC3S5000 are identical, as shown in Table 34 and Figure 15. The XC3S2000, however, has fewer I/O pins which consequently results in 68 unconnected pins on the FG900 package, labeled as "N.C." In Table 34 and Figure 15, these unconnected pins are indicated with a black diamond symbol (♠).

All the package pins appear in Table 34 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

If there is a difference between the XC3S2000 pinout and the pinout for the XC3S4000 and XC3S5000, then that difference is highlighted in Table 34. If the table entry is shaded, then there is an unconnected pin on the XC3S2000 that maps to a user-I/O pin on the XC3S4000 and XC3S5000.

Pinout Table

Table 34: FG900 Package Pinout

Bank	XC3S2000 Pin Name	XC3S4000 XC3S5000 Pin Name	FG900 Pin Number	Туре
0	Ю	Ю	E15	I/O
0	Ю	Ю	K15	I/O
0	Ю	Ю	D13	I/O
0	Ю	Ю	K13	I/O
0	Ю	Ю	G8	I/O
0	IO/VREF_0	IO/VREF_0	F9	VREF
0	IO/VREF_0	IO/VREF_0	C4	VREF
0	IO_L01N_0/ VRP_0	IO_L01N_0/ VRP_0	B4	DCI
0	IO_L01P_0/ VRN_0	IO_L01P_0/ VRN_0	A4	DCI
0	IO_L02N_0	IO_L02N_0	B5	I/O
0	IO_L02P_0	IO_L02P_0	A5	I/O
0	IO_L03N_0	IO_L03N_0	D5	I/O
0	IO_L03P_0	IO_L03P_0	E6	I/O
0	IO_L04N_0	IO_L04N_0	C6	I/O
0	IO_L04P_0	IO_L04P_0	B6	I/O
0	IO_L05N_0	IO_L05N_0	F6	I/O
0	IO_L05P_0/ VREF_0	IO_L05P_0/ VREF_0	F7	VREF
0	IO_L06N_0	IO_L06N_0	D7	I/O
0	IO_L06P_0	IO_L06P_0	C7	I/O
0	IO_L07N_0	IO_L07N_0	F8	I/O

Table 34: FG900 Package Pinout (Continued)

		XC3S4000	FG900	
ъ	XC3S2000	XC3S5000	Pin	
Bank	Pin Name	Pin Name	Number	Туре
0	IO_L07P_0	IO_L07P_0	E8	I/O
0	IO_L08N_0	IO_L08N_0	D8	I/O
0	IO_L08P_0	IO_L08P_0	C8	1/0
0	IO_L09N_0	IO_L09N_0	B8	1/0
0	IO_L09P_0	IO_L09P_0	A8	I/O
0	IO_L10N_0	IO_L10N_0	J9	I/O
0	IO_L10P_0	IO_L10P_0	H9	I/O
0	IO_L11N_0	IO_L11N_0	G10	I/O
0	IO_L11P_0	IO_L11P_0	F10	I/O
0	IO_L12N_0	IO_L12N_0	C10	I/O
0	IO_L12P_0	IO_L12P_0	B10	I/O
0	IO_L13N_0	IO_L13N_0	J10	I/O
0	IO_L13P_0	IO_L13P_0	K11	I/O
0	IO_L14N_0	IO_L14N_0	H11	I/O
0	IO_L14P_0	IO_L14P_0	G11	I/O
0	IO_L15N_0	IO_L15N_0	F11	I/O
0	IO_L15P_0	IO_L15P_0	E11	I/O
0	IO_L16N_0	IO_L16N_0	D11	I/O
0	IO_L16P_0	IO_L16P_0	C11	I/O
0	IO_L17N_0	IO_L17N_0	B11	I/O
0	IO_L17P_0	IO_L17P_0	A11	I/O
0	IO_L18N_0	IO_L18N_0	K12	I/O
0	IO_L18P_0	IO_L18P_0	J12	I/O
0	IO_L19N_0	IO_L19N_0	H12	I/O
0	IO_L19P_0	IO_L19P_0	G12	I/O
0	IO_L20N_0	IO_L20N_0	F12	I/O
0	IO_L20P_0	IO_L20P_0	E12	I/O
0	IO_L21N_0	IO_L21N_0	D12	I/O
0	IO_L21P_0	IO_L21P_0	C12	I/O
0	IO_L22N_0	IO_L22N_0	B12	I/O
0	IO_L22P_0	IO_L22P_0	A12	I/O
0	IO_L23N_0	IO_L23N_0	J13	I/O
0	IO_L23P_0	IO_L23P_0	H13	I/O
0	IO_L24N_0	IO_L24N_0	F13	I/O
0	IO_L24P_0	IO_L24P_0	E13	I/O
0	IO_L25N_0	IO_L25N_0	B13	I/O
0	IO_L25P_0	IO_L25P_0	A13	I/O
0	IO_L26N_0	IO_L26N_0	K14	I/O
0	IO_L26P_0/	IO_L26P_0/	J14	VREF
	VREF_0	VREF_0		
0	IO_L27N_0	IO_L27N_0	G14	I/O
0	IO_L27P_0	IO_L27P_0	F14	I/O
0	IO_L28N_0	IO_L28N_0	C14	I/O
0	IO_L28P_0	IO_L28P_0	B14	I/O
0	IO_L29N_0	IO_L29N_0	J15	I/O
		•		

Table 34: FG900 Package Pinout (Continued)

	XC3S2000	XC3S4000 XC3S5000	FG900 Pin	
Bank	Pin Name	Pin Name	Number	Type
0	IO_L29P_0	IO_L29P_0	H15	I/O
0	IO_L30N_0	IO_L30N_0	G15	I/O
0	IO_L30P_0	IO_L30P_0	F15	I/O
0	IO_L31N_0	IO_L31N_0	D15	I/O
0	IO_L31P_0/ VREF_0	IO_L31P_0/ VREF_0	C15	VREF
0	IO_L32N_0/ GCLK7	IO_L32N_0/ GCLK7	B15	GCLK
0	IO_L32P_0/ GCLK6	IO_L32P_0/ GCLK6	A15	GCLK
0	N.C. (◆)	IO_L35N_0	B7	I/O
0	N.C. (◆)	IO_L35P_0	A7	I/O
0	N.C. (◆)	IO_L36N_0	G7	I/O
0	N.C. (◆)	IO_L36P_0	H8	I/O
0	N.C. (◆)	IO_L37N_0	E9	I/O
0	N.C. (◆)	IO_L37P_0	D9	I/O
0	N.C. (◆)	IO_L38N_0	B9	I/O
0	N.C. (◆)	IO_L38P_0	A9	I/O
0	VCCO_0	VCCO_0	C5	VCCO
0	VCCO_0	VCCO_0	E7	VCCO
0	VCCO_0	VCCO_0	C9	VCCO
0	VCCO_0	VCCO_0	G9	VCCO
0	VCCO_0	VCCO_0	J11	VCCO
0	VCCO_0	VCCO_0	L12	VCCO
0	VCCO_0	VCCO_0	C13	VCCO
0	VCCO_0	VCCO_0	G13	VCCO
0	VCCO_0	VCCO_0	L13	VCCO
0	VCCO_0	VCCO_0	L14	VCCO
1	Ю	IO	E25	I/O
1	Ю	Ю	J21	I/O
1	Ю	Ю	K20	I/O
1	Ю	Ю	F18	I/O
1	Ю	Ю	F16	I/O
1	Ю	Ю	A16	I/O
1	IO/VREF_1	IO/VREF_1	J17	VREF
1	IO_L01N_1/ VRP_1	IO_L01N_1/ VRP_1	A27	DCI
1	IO_L01P_1/ VRN_1	IO_L01P_1/ VRN_1	B27	DCI
1	IO_L02N_1	IO_L02N_1	D26	I/O
1	IO_L02P_1	IO_L02P_1	C27	I/O
1	IO_L03N_1	IO_L03N_1	A26	I/O
1	IO_L03P_1	IO_L03P_1	B26	I/O
1	IO_L04N_1	IO_L04N_1	B25	I/O
1	IO_L04P_1	IO_L04P_1	C25	I/O
1	IO_L05N_1	IO_L05N_1	F24	I/O

Table 34: FG900 Package Pinout (Continued)

	XC3S2000	XC3S4000 XC3S5000	FG900 Pin	
Bank	Pin Name	Pin Name	Number	Type
1	IO_L05P_1	IO_L05P_1	F25	I/O
1	IO_L06N_1/ VREF_1	IO_L06N_1/ VREF_1	C24	VREF
1	IO_L06P_1	IO_L06P_1	D24	I/O
1	IO_L07N_1	IO_L07N_1	A24	I/O
1	IO_L07P_1	IO_L07P_1	B24	I/O
1	IO_L08N_1	IO_L08N_1	H23	I/O
1	IO_L08P_1	IO_L08P_1	G24	I/O
1	IO_L09N_1	IO_L09N_1	F23	I/O
1	IO_L09P_1	IO_L09P_1	G23	I/O
1	IO_L10N_1/ VREF_1	IO_L10N_1/ VREF_1	C23	VREF
1	IO_L10P_1	IO_L10P_1	D23	I/O
1	IO_L11N_1	IO_L11N_1	A23	I/O
1	IO_L11P_1	IO_L11P_1	B23	I/O
1	IO_L12N_1	IO_L12N_1	H22	I/O
1	IO_L12P_1	IO_L12P_1	J22	I/O
1	IO_L13N_1	IO_L13N_1	F22	I/O
1	IO_L13P_1	IO_L13P_1	E23	I/O
1	IO_L14N_1	IO_L14N_1	D22	I/O
1	IO_L14P_1	IO_L14P_1	E22	I/O
1	IO_L15N_1	IO_L15N_1	A22	I/O
1	IO_L15P_1	IO_L15P_1	B22	I/O
1	IO_L16N_1	IO_L16N_1	F21	I/O
1	IO_L16P_1	IO_L16P_1	G21	I/O
1	IO_L17N_1/ VREF_1	IO_L17N_1/ VREF_1	B21	VREF
1	IO_L17P_1	IO_L17P_1	C21	I/O
1	IO_L18N_1	IO_L18N_1	G20	I/O
1	IO_L18P_1	IO_L18P_1	H20	I/O
1	IO_L19N_1	IO_L19N_1	E20	I/O
1	IO_L19P_1	IO_L19P_1	F20	I/O
1	IO_L20N_1	IO_L20N_1	C20	I/O
1	IO_L20P_1	IO_L20P_1	D20	I/O
1	IO_L21N_1	IO_L21N_1	A20	I/O
1	IO_L21P_1	IO_L21P_1	B20	I/O
1	IO_L22N_1	IO_L22N_1	J19	I/O
1	IO_L22P_1	IO_L22P_1	K19	I/O
1	IO_L23N_1	IO_L23N_1	G19	I/O
1	IO_L23P_1	IO_L23P_1	H19	I/O
1	IO_L24N_1	IO_L24N_1	E19	I/O
1	IO_L24P_1	IO_L24P_1	F19	I/O
1	IO_L25N_1	IO_L25N_1	C19	I/O
1	IO_L25P_1	IO_L25P_1	D19	I/O
1	IO_L26N_1	IO_L26N_1	A19	I/O

Table 34: FG900 Package Pinout (Continued)

		XC3S4000	FG900	
David	XC3S2000	XC3S5000	Pin	T
Bank	Pin Name	Pin Name	Number	Туре
1	IO_L26P_1	IO_L26P_1	B19	I/O
1	IO_L27N_1	IO_L27N_1	F17	I/O
1	IO_L27P_1	IO_L27P_1	G17	I/O
1	IO_L28N_1	IO_L28N_1	B17	I/O
1	IO_L28P_1	IO_L28P_1	C17	I/O
1	IO_L29N_1	IO_L29N_1	J16	I/O
1	IO_L29P_1	IO_L29P_1	K16	I/O
1	IO_L30N_1	IO_L30N_1	G16	I/O
1	IO_L30P_1	IO_L30P_1	H16	I/O
1	IO_L31N_1/ VREF_1	IO_L31N_1/ VREF_1	D16	VREF
1	IO_L31P_1	IO_L31P_1	E16	I/O
1	IO_L32N_1/ GCLK5	IO_L32N_1/ GCLK5	B16	GCLK
1	IO_L32P_1/ GCLK4	IO_L32P_1/ GCLK4	C16	GCLK
1	N.C. (◆)	IO_L37N_1	H18	I/O
1	N.C. (◆)	IO_L37P_1	J18	I/O
1	N.C. (♦)	IO_L38N_1	D18	I/O
1	N.C. (◆)	IO_L38P_1	E18	I/O
1	N.C. (◆)	IO_L39N_1	A18	I/O
1	N.C. (◆)	IO_L39P_1	B18	I/O
1	N.C. (◆)	IO_L40N_1	K17	I/O
1	N.C. (◆)	IO_L40P_1	K18	I/O
1	VCCO_1	VCCO_1	L17	VCCO
1	VCCO_1	VCCO_1	C18	VCCO
1	VCCO_1	VCCO_1	G18	VCCO
1	VCCO_1	VCCO_1	L18	VCCO
1	VCCO_1	VCCO_1	L19	VCCO
1	VCCO_1	VCCO_1	J20	VCCO
1	VCCO_1	VCCO_1	C22	VCCO
1	VCCO_1	VCCO_1	G22	VCCO
1	VCCO_1	VCCO_1	E24	VCCO
1	VCCO_1	VCCO_1	C26	VCCO
2	Ю	Ю	J25	I/O
2	IO_L01N_2/ VRP_2	IO_L01N_2/ VRP_2	C29	DCI
2	IO_L01P_2/ VRN_2	IO_L01P_2/ VRN_2	C30	DCI
2	IO_L02N_2	IO_L02N_2	D27	I/O
2	IO_L02P_2	IO_L02P_2	D28	I/O
2	IO_L03N_2/ VREF_2	IO_L03N_2/ VREF_2	D29	VREF
2	IO_L03P_2	IO_L03P_2	D30	I/O
2	IO_L04N_2	IO_L04N_2	E29	I/O
2	IO_L04P_2	IO_L04P_2	E30	I/O

Table 34: FG900 Package Pinout (Continued)

		XC3S4000	FG900	
	XC3S2000	XC3S5000	Pin	
Bank	Pin Name	Pin Name	Number	Туре
2	IO_L05N_2	IO_L05N_2	F28	I/O
2	IO_L05P_2	IO_L05P_2	F29	I/O
2	IO_L06N_2	IO_L06N_2	G27	I/O
2	IO_L06P_2	IO_L06P_2	G28	I/O
2	IO_L07N_2	IO_L07N_2	G29	I/O
2	IO_L07P_2	IO_L07P_2	G30	I/O
2	IO_L08N_2	IO_L08N_2	G25	I/O
2	IO_L08P_2	IO_L08P_2	H24	I/O
2	IO_L09N_2/ VREF_2	IO_L09N_2/ VREF_2	H25	VREF
2	IO_L09P_2	IO_L09P_2	H26	I/O
2	IO_L10N_2	IO_L10N_2	H27	I/O
2	IO_L10P_2	IO_L10P_2	H28	I/O
2	IO_L12N_2	IO_L12N_2	H29	I/O
2	IO_L12P_2	IO_L12P_2	H30	I/O
2	IO_L13N_2	IO_L13N_2	J26	I/O
2	IO_L13P_2/ VREF_2	IO_L13P_2/ VREF_2	J27	VREF
2	IO_L14N_2	IO_L14N_2	J29	I/O
2	IO_L14P_2	IO_L14P_2	J30	I/O
2	IO_L15N_2	IO_L15N_2	J23	I/O
2	IO_L15P_2	IO_L15P_2	K22	I/O
2	IO_L16N_2	IO_L16N_2	K24	I/O
2	IO_L16P_2	IO_L16P_2	K25	I/O
2	IO_L19N_2	IO_L19N_2	L25	I/O
2	IO_L19P_2	IO_L19P_2	L26	I/O
2	IO_L20N_2	IO_L20N_2	L27	I/O
2	IO_L20P_2	IO_L20P_2	L28	I/O
2	IO_L21N_2	IO_L21N_2	L29	I/O
2	IO_L21P_2	IO_L21P_2	L30	I/O
2	IO_L22N_2	IO_L22N_2	M22	I/O
2	IO_L22P_2	IO_L22P_2	M23	I/O
2	IO_L23N_2/ VREF_2	IO_L23N_2/ VREF_2	M24	VREF
2	IO_L23P_2	IO_L23P_2	M25	I/O
2	IO_L24N_2	IO_L24N_2	M27	I/O
2	IO_L24P_2	IO_L24P_2	M28	I/O
2	IO_L26N_2	IO_L26N_2	M21	I/O
2	IO_L26P_2	IO_L26P_2	N21	I/O
2	IO_L27N_2	IO_L27N_2	N22	I/O
2	IO_L27P_2	IO_L27P_2	N23	I/O
2	IO_L28N_2	IO_L28N_2	M26	I/O
2	IO_L28P_2	IO_L28P_2	N25	I/O
2	IO_L29N_2	IO_L29N_2	N26	I/O
2	IO_L29P_2	IO_L29P_2	N27	I/O
I.	1	1	1	

Table 34: FG900 Package Pinout (Continued)

Bank	XC3S2000 Pin Name	XC3S4000 XC3S5000 Pin Name	FG900 Pin Number	Туре
2	IO_L31N_2	IO_L31N_2	N29	I/O
2	IO_L31P_2	IO_L31P_2	N30	I/O
2	IO_L32N_2	IO_L32N_2	P21	I/O
2	IO_L32P_2	IO_L32P_2	P22	I/O
2	IO_L33N_2	IO_L33N_2	P24	I/O
2	IO_L33P_2	IO_L33P_2	P25	I/O
2	IO_L34N_2/ VREF_2	IO_L34N_2/ VREF_2	P28	VREF
2	IO_L34P_2	IO_L34P_2	P29	I/O
2	IO_L35N_2	IO_L35N_2	R21	I/O
2	IO_L35P_2	IO_L35P_2	R22	I/O
2	IO_L37N_2	IO_L37N_2	R23	I/O
2	IO_L37P_2	IO_L37P_2	R24	I/O
2	IO_L38N_2	IO_L38N_2	R25	I/O
2	IO_L38P_2	IO_L38P_2	R26	I/O
2	IO_L39N_2	IO_L39N_2	R27	I/O
2	IO_L39P_2	IO_L39P_2	R28	I/O
2	IO_L40N_2	IO_L40N_2	R29	I/O
2	IO_L40P_2/ VREF_2	IO_L40P_2/ VREF_2	R30	VREF
2	N.C. (♦)	IO_L41N_2	E27	I/O
2	N.C. (♦)	IO_L41P_2	F26	I/O
2	N.C. (♦)	IO_L45N_2	K28	I/O
2	N.C. (◆)	IO_L45P_2	K29	I/O
2	N.C. (◆)	IO_L46N_2	K21	I/O
2	N.C. (◆)	IO_L46P_2	L21	I/O
2	N.C. (◆)	IO_L47N_2	L23	I/O
2	N.C. (◆)	IO_L47P_2	L24	I/O
2	N.C. (◆)	IO_L50N_2	M29	I/O
2	N.C. (◆)	IO_L50P_2	M30	I/O
2	VCCO_2	VCCO_2	M20	VCCO
2	VCCO_2	VCCO_2	N20	VCCO
2	VCCO_2	VCCO_2	P20	VCCO
2	VCCO_2	VCCO_2	L22	VCCO
2	VCCO_2	VCCO_2	J24	VCCO
2	VCCO_2	VCCO_2	N24	VCCO
2	VCCO_2	VCCO_2	G26	VCCO
2	VCCO_2	VCCO_2	E28	VCCO
2	VCCO_2	VCCO_2	J28	VCCO
2	VCCO_2	VCCO_2	N28	VCCO
3	Ю	Ю	AB25	I/O
3	IO_L01N_3/ VRP_3	IO_L01N_3/ VRP_3	AH30	DCI
3	IO_L01P_3/ VRN_3	IO_L01P_3/ VRN_3	AH29	DCI

Table 34: FG900 Package Pinout (Continued)

		XC3S4000	FG900	
Bank	XC3S2000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
3	IO_L02N_3/	IO LO2N 3/	AG28	VREF
3	VREF_3	VREF_3	AGZO	VIILI
3	IO_L02P_3	IO_L02P_3	AG27	I/O
3	IO_L03N_3	IO_L03N_3	AG30	I/O
3	IO_L03P_3	IO_L03P_3	AG29	I/O
3	IO_L04N_3	IO_L04N_3	AF30	I/O
3	IO_L04P_3	IO_L04P_3	AF29	I/O
3	IO_L05N_3	IO_L05N_3	AE26	I/O
3	IO_L05P_3	IO_L05P_3	AF27	I/O
3	IO_L06N_3	IO_L06N_3	AE29	I/O
3	IO_L06P_3	IO_L06P_3	AE28	I/O
3	IO_L07N_3	IO_L07N_3	AD28	I/O
3	IO_L07P_3	IO_L07P_3	AD27	I/O
3	IO_L08N_3	IO_L08N_3	AD30	I/O
3	IO_L08P_3	IO_L08P_3	AD29	I/O
3	IO_L09N_3	IO_L09N_3	AC24	I/O
3	IO_L09P_3/	IO_L09P_3/	AD25	VREF
_	VREF_3	VREF_3		
3	IO_L10N_3	IO_L10N_3	AC26	1/0
3	IO_L10P_3	IO_L10P_3	AC25	I/O
3	IO_L11N_3	IO_L11N_3	AC28	1/0
3	IO_L11P_3	IO_L11P_3	AC27	1/0
3	IO_L13N_3/ VREF_3	IO_L13N_3/ VREF_3	AC30	VREF
3	IO_L13P_3	IO_L13P_3	AC29	I/O
3	IO_L14N_3	IO_L14N_3	AB27	I/O
3	IO_L14P_3	IO_L14P_3	AB26	I/O
3	IO_L15N_3	IO_L15N_3	AB30	I/O
3	IO_L15P_3	IO_L15P_3	AB29	I/O
3	IO_L16N_3	IO_L16N_3	AA22	I/O
3	IO_L16P_3	IO_L16P_3	AB23	I/O
3	IO_L17N_3	IO_L17N_3	AA25	I/O
3	IO_L17P_3/ VREF_3	IO_L17P_3/ VREF_3	AA24	VREF
3	IO_L19N_3	IO_L19N_3	AA29	I/O
3	IO_L19P_3	IO_L19P_3	AA28	I/O
3	IO_L20N_3	IO_L20N_3	Y21	I/O
3	IO_L20P_3	IO_L20P_3	AA21	I/O
3	IO_L21N_3	IO_L21N_3	Y24	I/O
3	IO_L21P_3	IO_L21P_3	Y23	I/O
3	IO_L22N_3	IO_L22N_3	Y26	I/O
3	IO_L22P_3	IO_L22P_3	Y25	I/O
3	IO_L23N_3	IO_L23N_3	Y28	I/O
3	IO_L23P_3/ VREF_3	IO_L23P_3/ VREF_3	Y27	VREF
3	IO_L24N_3	IO_L24N_3	Y30	I/O

Table 34: FG900 Package Pinout (Continued)

	XC3S2000	XC3S4000 XC3S5000	FG900 Pin	
Bank	Pin Name	Pin Name	Number	Type
3	IO L24P 3	IO_L24P_3	Y29	I/O
3	IO_L26N_3	IO_L26N_3	W30	I/O
3	IO_L26P_3	IO_L26P_3	W29	I/O
3	IO_L27N_3	IO_L27N_3	V21	I/O
3	IO_L27P_3	IO_L27P_3	W21	I/O
3	IO_L28N_3	IO_L28N_3	V23	I/O
3	IO L28P 3	IO_L28P_3	V22	I/O
3	IO_L29N_3	IO L29N 3	V25	I/O
3	IO_L29P_3	IO_L29P_3	W26	I/O
3	IO_L31N_3	IO_L31N_3	V30	I/O
3	IO_L31P_3	IO_L31P_3	V29	I/O
3	IO_L32N_3	IO_L32N_3	U22	I/O
3	IO L32P 3	IO L32P 3	U21	I/O
3	IO_L33N_3	IO L33N 3	U25	I/O
3	IO_L33P_3	IO_L33P_3	U24	I/O
3	IO_L34N_3	IO_L34N_3	U29	I/O
3	IO_L34P_3/	IO_L34P_3/	U28	VREF
	VREF_3	VREF_3		
3	IO_L35N_3	IO_L35N_3	T22	I/O
3	IO_L35P_3	IO_L35P_3	T21	I/O
3	IO_L37N_3	IO_L37N_3	T24	I/O
3	IO_L37P_3	IO_L37P_3	T23	I/O
3	IO_L38N_3	IO_L38N_3	T26	I/O
3	IO_L38P_3	IO_L38P_3	T25	I/O
3	IO_L39N_3	IO_L39N_3	T28	I/O
3	IO_L39P_3	IO_L39P_3	T27	I/O
3	IO_L40N_3/ VREF_3	IO_L40N_3/ VREF_3	T30	VREF
3	IO_L40P_3	IO_L40P_3	T29	I/O
3	N.C. (♠)	IO_L46N_3	W23	I/O
3	N.C. (♠)	IO_L46P_3	W22	I/O
3	N.C. (♠)	IO_L47N_3	W25	I/O
3	N.C. (♠)	IO_L47P_3	W24	I/O
3	N.C. (♠)	IO_L48N_3	W28	I/O
3	N.C. (♠)	IO_L48P_3	W27	I/O
3	N.C. (♠)	IO_L50N_3	V27	I/O
3	N.C. (♠)	IO_L50P_3	V26	I/O
3	VCCO_3	VCCO_3	U20	VCCO
3	VCCO_3	VCCO_3	V20	VCCO
3	VCCO_3	VCCO_3	W20	VCCO
3	VCCO_3	VCCO_3	Y22	VCCO
3	VCCO_3	VCCO_3	V24	VCCO
3	VCCO_3	VCCO_3	AB24	VCCO
3	VCCO_3	VCCO_3	AD26	VCCO
3	VCCO_3	VCCO_3	V28	VCCO

Table 34: FG900 Package Pinout (Continued)

	XC3S2000	XC3S4000 XC3S5000	FG900 Pin	
Bank	Pin Name	Pin Name	Number	Type
3	VCCO_3	VCCO_3	AB28	VCCO
3	VCCO_3	VCCO_3	AF28	VCCO
4	IO	IO	AA16	I/O
4	Ю	IO	AG18	I/O
4	Ю	Ю	AA18	I/O
4	Ю	Ю	AE22	I/O
4	Ю	Ю	AD23	I/O
4	Ю	Ю	AH27	I/O
4	IO/VREF_4	IO/VREF_4	AF16	VREF
4	IO/VREF_4	IO/VREF_4	AK28	VREF
4	IO_L01N_4/ VRP_4	IO_L01N_4/ VRP_4	AJ27	DCI
4	IO_L01P_4/ VRN_4	IO_L01P_4/ VRN_4	AK27	DCI
4	IO_L02N_4	IO_L02N_4	AJ26	I/O
4	IO_L02P_4	IO_L02P_4	AK26	I/O
4	IO_L03N_4	IO_L03N_4	AG26	I/O
4	IO_L03P_4	IO_L03P_4	AF25	I/O
4	IO_L04N_4	IO_L04N_4	AD24	I/O
4	IO_L04P_4	IO_L04P_4	AC23	I/O
4	IO_L05N_4	IO_L05N_4	AE23	I/O
4	IO_L05P_4	IO_L05P_4	AF23	I/O
4	IO_L06N_4/ VREF_4	IO_L06N_4/ VREF_4	AG23	VREF
4	IO_L06P_4	IO_L06P_4	AH23	I/O
4	IO_L07N_4	IO_L07N_4	AJ23	I/O
4	IO_L07P_4	IO_L07P_4	AK23	I/O
4	IO_L08N_4	IO_L08N_4	AB22	I/O
4	IO_L08P_4	IO_L08P_4	AC22	I/O
4	IO_L09N_4	IO_L09N_4	AF22	I/O
4	IO_L09P_4	IO_L09P_4	AG22	I/O
4	IO_L10N_4	IO_L10N_4	AJ22	I/O
4	IO_L10P_4	IO_L10P_4	AK22	I/O
4	IO_L11N_4	IO_L11N_4	AD21	I/O
4	IO_L11P_4	IO_L11P_4	AE21	I/O
4	IO_L12N_4	IO_L12N_4	AH21	I/O
4	IO_L12P_4	IO_L12P_4	AJ21	I/O
4	IO_L13N_4	IO_L13N_4	AB21	I/O
4	IO_L13P_4	IO_L13P_4	AA20	I/O
4	IO_L14N_4	IO_L14N_4	AC20	I/O
4	IO_L14P_4	IO_L14P_4	AD20	I/O
4	IO_L15N_4	IO_L15N_4	AE20	I/O
4	IO_L15P_4	IO_L15P_4	AF20	I/O
4	IO_L16N_4	IO_L16N_4	AG20	I/O
4	IO_L16P_4	IO_L16P_4	AH20	I/O

Table 34: FG900 Package Pinout (Continued)

		XC3S4000	FG900	
Bank	XC3S2000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
4	IO_L17N_4	IO_L17N_4	AJ20	I/O I/O
	IO_L17P_4	IO_L17P_4	AK20	
4	IO_L18N_4	IO_L18N_4	AA19	1/0
4	IO_L18P_4	IO_L18P_4	AB19	1/0
4	IO_L19N_4	IO_L19N_4	AC19	I/O
4	IO_L19P_4	IO_L19P_4	AD19	I/O
4	IO_L20N_4	IO_L20N_4	AE19	1/0
4	IO_L20P_4	IO_L20P_4	AF19	I/O
4	IO_L21N_4	IO_L21N_4	AG19	I/O
4	IO_L21P_4	IO_L21P_4	AH19	I/O
4	IO_L22N_4/ VREF_4	IO_L22N_4/ VREF_4	AJ19	VREF
4	IO_L22P_4	IO_L22P_4	AK19	1/0
4	IO_L23N_4	IO_L23N_4	AB18	I/O
4	IO_L23P_4	IO_L23P_4	AC18	I/O
4	IO_L24N_4	IO_L24N_4	AE18	I/O
4	IO_L24P_4	IO_L24P_4	AF18	I/O
4	IO_L25N_4	IO_L25N_4	AJ18	I/O
4	IO_L25P_4	IO_L25P_4	AK18	I/O
4	IO_L26N_4	IO_L26N_4	AA17	I/O
4	IO_L26P_4/ VREF_4	IO_L26P_4/ VREF_4	AB17	VREF
4	IO_L27N_4/ DIN/D0	IO_L27N_4/ DIN/D0	AD17	DUAL
4	IO_L27P_4/ D1	IO_L27P_4/ D1	AE17	DUAL
4	IO_L28N_4	IO_L28N_4	AH17	I/O
4	IO_L28P_4	IO_L28P_4	AJ17	I/O
4	IO_L29N_4	IO_L29N_4	AB16	I/O
4	IO_L29P_4	IO_L29P_4	AC16	I/O
4	IO_L30N_4/ D2	IO_L30N_4/ D2	AD16	DUAL
4	IO_L30P_4/ D3	IO_L30P_4/ D3	AE16	DUAL
4	IO_L31N_4/ INIT_B	IO_L31N_4/ INIT_B	AG16	DUAL
4	IO_L31P_4/ DOUT/BUSY	IO_L31P_4/ DOUT/BUSY	AH16	DUAL
4	IO_L32N_4/ GCLK1	IO_L32N_4/ GCLK1	AJ16	GCLK
4	IO_L32P_4/ GCLK0	IO_L32P_4/ GCLK0	AK16	GCLK
4	N.C. (◆)	IO_L33N_4	AH25	I/O
4	N.C. (◆)	IO_L33P_4	AJ25	I/O
4	N.C. (◆)	IO_L34N_4	AE25	I/O
4	N.C. (◆)	IO_L34P_4	AE24	I/O
4	N.C. (◆)	IO_L35N_4	AG24	I/O

Table 34: FG900 Package Pinout (Continued)

	XC3S2000	XC3S4000 XC3S5000	FG900 Pin	
Bank	Pin Name	Pin Name	Number	Type
4	N.C. (♠)	IO_L35P_4	AH24	I/O
4	N.C. (♠)	IO_L38N_4	AJ24	I/O
4	N.C. (♠)	IO_L38P_4	AK24	I/O
4	VCCO_4	VCCO_4	Y17	VCCO
4	VCCO_4	VCCO_4	Y18	VCCO
4	VCCO_4	VCCO_4	AD18	VCCO
4	VCCO_4	VCCO_4	AH18	VCCO
4	VCCO_4	VCCO_4	Y19	VCCO
4	VCCO_4	VCCO_4	AB20	VCCO
4	VCCO_4	VCCO_4	AD22	VCCO
4	VCCO_4	VCCO_4	AH22	VCCO
4	VCCO_4	VCCO_4	AF24	VCCO
4	VCCO_4	VCCO_4	AH26	VCCO
5	Ю	Ю	AE6	I/O
5	Ю	Ю	AB10	I/O
5	Ю	Ю	AA11	I/O
5	Ю	Ю	AA15	I/O
5	Ю	Ю	AE15	I/O
5	IO/VREF_5	IO/VREF_5	AH4	VREF
5	IO/VREF_5	IO/VREF_5	AK15	VREF
5	IO_L01N_5/ RDWR_B	IO_L01N_5/ RDWR_B	AK4	DUAL
5	IO_L01P_5/ CS_B	IO_L01P_5/ CS_B	AJ4	DUAL
5	IO_L02N_5	IO_L02N_5	AK5	I/O
5	IO_L02P_5	IO_L02P_5	AJ5	I/O
5	IO_L03N_5	IO_L03N_5	AF6	I/O
5	IO_L03P_5	IO_L03P_5	AG5	I/O
5	IO_L04N_5	IO_L04N_5	AJ6	I/O
5	IO_L04P_5	IO_L04P_5	AH6	I/O
5	IO_L05N_5	IO_L05N_5	AE7	I/O
5	IO_L05P_5	IO_L05P_5	AD7	I/O
5	IO_L06N_5	IO_L06N_5	AH7	I/O
5	IO_L06P_5	IO_L06P_5	AG7	I/O
5	IO_L07N_5	IO_L07N_5	AK8	I/O
5	IO_L07P_5	IO_L07P_5	AJ8	I/O
5	IO_L08N_5	IO_L08N_5	AC9	I/O
5	IO_L08P_5	IO_L08P_5	AB9	I/O
5	IO_L09N_5	IO_L09N_5	AG9	I/O
5	IO_L09P_5	IO_L09P_5	AF9	I/O
5	IO_L10N_5/ VRP_5	IO_L10N_5/ VRP_5	AK9	DCI
5	IO_L10P_5/ VRN_5	IO_L10P_5/ VRN_5	AJ9	DCI
5	IO_L11N_5/ VREF_5	IO_L11N_5/ VREF_5	AE10	VREF

Table 34: FG900 Package Pinout (Continued)

Table 04.	XC3S4000 FG900					
	XC3S2000	XC3S5000	Pin			
Bank	Pin Name	Pin Name	Number	Type		
5	IO_L11P_5	IO_L11P_5	AE9	I/O		
5	IO_L12N_5	IO_L12N_5	AJ10	I/O		
5	IO_L12P_5	IO_L12P_5	AH10	I/O		
5	IO_L13N_5	IO_L13N_5	AD11	I/O		
5	IO_L13P_5	IO_L13P_5	AD10	I/O		
5	IO_L14N_5	IO_L14N_5	AF11	I/O		
5	IO_L14P_5	IO_L14P_5	AE11	I/O		
5	IO_L15N_5	IO_L15N_5	AH11	I/O		
5	IO_L15P_5	IO_L15P_5	AG11	I/O		
5	IO_L16N_5	IO_L16N_5	AK11	I/O		
5	IO_L16P_5	IO_L16P_5	AJ11	I/O		
5	IO_L17N_5	IO_L17N_5	AB12	I/O		
5	IO_L17P_5	IO_L17P_5	AC11	I/O		
5	IO_L18N_5	IO_L18N_5	AD12	I/O		
5	IO_L18P_5	IO_L18P_5	AC12	I/O		
5	IO_L19N_5	IO_L19N_5	AF12	I/O		
5	IO_L19P_5/ VREF_5	IO_L19P_5/ VREF_5	AE12	VREF		
5	IO_L20N_5	IO_L20N_5	AH12	I/O		
5	IO_L20P_5	IO_L20P_5	AG12	I/O		
5	IO_L21N_5	IO_L21N_5	AK12	I/O		
5	IO_L21P_5	IO_L21P_5	AJ12	I/O		
5	IO_L22N_5	IO_L22N_5	AA13	I/O		
5	IO_L22P_5	IO_L22P_5	AA12	I/O		
5	IO_L23N_5	IO_L23N_5	AC13	I/O		
5	IO_L23P_5	IO_L23P_5	AB13	I/O		
5	IO_L24N_5	IO_L24N_5	AG13	I/O		
5	IO_L24P_5	IO_L24P_5	AF13	I/O		
5	IO_L25N_5	IO_L25N_5	AK13	I/O		
5	IO_L25P_5	IO_L25P_5	AJ13	I/O		
5	IO_L26N_5	IO_L26N_5	AB14	I/O		
5	IO_L26P_5	IO_L26P_5	AA14	I/O		
5	IO_L27N_5/ VREF_5	IO_L27N_5/ VREF_5	AE14	VREF		
5	IO_L27P_5	IO_L27P_5	AE13	I/O		
5	IO_L28N_5/ D6	IO_L28N_5/ D6	AJ14	DUAL		
5	IO_L28P_5/ D7	IO_L28P_5/ D7	AH14	DUAL		
5	IO_L29N_5	IO_L29N_5	AC15	I/O		
5	IO_L29P_5/ VREF_5	IO_L29P_5/ VREF_5	AB15	VREF		
5	IO_L30N_5	IO_L30N_5	AD15	I/O		
5	IO_L30P_5	IO_L30P_5	AD14	I/O		
5	IO_L31N_5/ D4	IO_L31N_5/ D4	AG15	DUAL		

Table 34: FG900 Package Pinout (Continued)

	XC3S2000	XC3S4000 XC3S5000	FG900 Pin	
Bank	Pin Name	Pin Name	Number	Туре
5	IO_L31P_5/	IO_L31P_5/	AF15	DUAL
	D5	D5		
5	IO_L32N_5/ GCLK3	IO_L32N_5/ GCLK3	AJ15	GCLK
5	IO_L32P_5/ GCLK2	IO_L32P_5/ GCLK2	AH15	GCLK
5	N.C. (◆)	IO_L35N_5	AK7	I/O
5	N.C. (♦)	IO_L35P_5	AJ7	I/O
5	N.C. (♦)	IO_L36N_5	AD8	I/O
5	N.C. (♦)	IO_L36P_5	AC8	I/O
5	N.C. (♦)	IO_L37N_5	AF8	I/O
5	N.C. (♦)	IO_L37P_5	AE8	I/O
5	N.C. (♦)	IO_L38N_5	AH8	I/O
5	N.C. (♦)	IO_L38P_5	AG8	I/O
5	VCCO_5	VCCO_5	AH5	VCCO
5	VCCO_5	VCCO_5	AF7	VCCO
5	VCCO_5	VCCO_5	AD9	VCCO
5	VCCO_5	VCCO_5	AH9	VCCO
5	VCCO_5	VCCO_5	AB11	VCCO
5	VCCO_5	VCCO_5	Y12	VCCO
5	VCCO_5	VCCO_5	Y13	VCCO
5	VCCO_5	VCCO_5	AD13	VCCO
5	VCCO_5	VCCO_5	AH13	VCCO
5	VCCO_5	VCCO_5	Y14	VCCO
6	Ю	Ю	AB6	I/O
6	IO_L01N_6/ VRP_6	IO_L01N_6/ VRP_6	AH2	DCI
6	IO_L01P_6/ VRN_6	IO_L01P_6/ VRN_6	AH1	DCI
6	IO_L02N_6	IO_L02N_6	AG4	I/O
6	IO_L02P_6	IO_L02P_6	AG3	I/O
6	IO_L03N_6/ VREF_6	IO_L03N_6/ VREF_6	AG2	VREF
6	IO_L03P_6	IO_L03P_6	AG1	I/O
6	IO_L04N_6	IO_L04N_6	AF2	I/O
6	IO_L04P_6	IO_L04P_6	AF1	I/O
6	IO_L05N_6	IO_L05N_6	AF4	I/O
6	IO_L05P_6	IO_L05P_6	AE5	I/O
6	IO_L06N_6	IO_L06N_6	AE3	I/O
6	IO_L06P_6	IO_L06P_6	AE2	I/O
6	IO_L07N_6	IO_L07N_6	AD4	I/O
6	IO_L07P_6	IO_L07P_6	AD3	I/O
6	IO_L08N_6	IO_L08N_6	AD2	I/O
6	IO_L08P_6	IO_L08P_6	AD1	I/O
6	IO_L09N_6/ VREF_6	IO_L09N_6/ VREF_6	AD6	VREF

Table 34: FG900 Package Pinout (Continued)

Bank	XC3S2000 Pin Name	XC3S4000 XC3S5000 Pin Name	FG900 Pin Number	Туре
6	IO_L09P_6	IO_L09P_6	AC7	I/O
6	IO_L10N_6	IO_L10N_6	AC6	I/O
6	IO_L10P_6	IO_L10P_6	AC5	I/O
6	IO_L11N_6	IO_L11N_6	AC4	I/O
6	IO_L11P_6	IO_L11P_6	AC3	I/O
6	IO_L13N_6	IO_L13N_6	AC2	I/O
6	IO_L13P_6/ VREF_6	IO_L13P_6/ VREF_6	AC1	VREF
6	IO_L14N_6	IO_L14N_6	AB5	I/O
6	IO_L14P_6	IO_L14P_6	AB4	I/O
6	IO_L15N_6	IO_L15N_6	AB2	I/O
6	IO_L15P_6	IO_L15P_6	AB1	I/O
6	IO_L16N_6	IO_L16N_6	AB8	I/O
6	IO_L16P_6	IO_L16P_6	AA9	I/O
6	IO_L17N_6	IO_L17N_6	AA7	I/O
6	IO_L17P_6/ VREF_6	IO_L17P_6/ VREF_6	AA6	VREF
6	IO_L19N_6	IO_L19N_6	AA3	I/O
6	IO_L19P_6	IO_L19P_6	AA2	I/O
6	IO_L20N_6	IO_L20N_6	AA10	I/O
6	IO_L20P_6	IO_L20P_6	Y10	I/O
6	IO_L21N_6	IO_L21N_6	Y8	I/O
6	IO_L21P_6	IO_L21P_6	Y7	I/O
6	IO_L22N_6	IO_L22N_6	Y6	I/O
6	IO_L22P_6	IO_L22P_6	Y5	I/O
6	IO_L24N_6/ VREF_6	IO_L24N_6/ VREF_6	Y2	VREF
6	IO_L24P_6	IO_L24P_6	Y1	I/O
6	N.C. (◆)	IO_L25N_6	W9	I/O
6	N.C. (◆)	IO_L25P_6	W8	I/O
6	IO_L26N_6	IO_L26N_6	W7	I/O
6	IO_L26P_6	IO_L26P_6	W6	I/O
6	IO_L27N_6	IO_L27N_6	W4	I/O
6	IO_L27P_6	IO_L27P_6	W3	I/O
6	IO_L28N_6	IO_L28N_6	W2	I/O
6	IO_L28P_6	IO_L28P_6	W1	I/O
6	IO_L29N_6	IO_L29N_6	W10	I/O
6	IO_L29P_6	IO_L29P_6	V10	I/O
6	N.C. (◆)	IO_L30N_6	V9	I/O
6	N.C. (◆)	IO_L30P_6	V8	I/O
6	IO_L31N_6	IO_L31N_6	W5	I/O
6	IO_L31P_6	IO_L31P_6	V6	I/O
6	IO_L32N_6	IO_L32N_6	V5	I/O
6	IO_L32P_6	IO_L32P_6	V4	I/O
6	IO_L33N_6	IO_L33N_6	V2	I/O

Table 34: FG900 Package Pinout (Continued)

14510 01.	I Good Facka	ige Pinout (Co		
	XC3S2000	XC3S4000 XC3S5000	FG900 Pin	
Bank	Pin Name	Pin Name	Number	Туре
6	IO_L33P_6	IO_L33P_6	V1	I/O
6	IO_L34N_6/ VREF_6	IO_L34N_6/ VREF_6	U10	VREF
6	IO_L34P_6	IO_L34P_6	U9	I/O
6	IO_L35N_6	IO_L35N_6	U7	I/O
6	IO_L35P_6	IO_L35P_6	U6	I/O
6	N.C. (◆)	IO_L36N_6	U3	I/O
6	N.C. (♠)	IO_L36P_6	U2	I/O
6	IO_L37N_6	IO_L37N_6	T10	I/O
6	IO_L37P_6	IO_L37P_6	T9	I/O
6	IO_L38N_6	IO_L38N_6	T6	I/O
6	IO_L38P_6	IO_L38P_6	T5	I/O
6	IO_L39N_6	IO_L39N_6	T4	I/O
6	IO_L39P_6	IO_L39P_6	Т3	I/O
6	IO_L40N_6	IO_L40N_6	T2	I/O
6	IO_L40P_6/ VREF_6	IO_L40P_6/ VREF_6	T1	VREF
6	N.C. (♠)	IO_L45N_6	Y4	I/O
6	N.C. (♠)	IO_L45P_6	Y3	I/O
6	N.C. (♠)	IO_L52N_6	T8	I/O
6	N.C. (♠)	IO_L52P_6	T7	I/O
6	VCCO_6	VCCO_6	V3	VCCO
6	VCCO_6	VCCO_6	AB3	VCCO
6	VCCO_6	VCCO_6	AF3	VCCO
6	VCCO_6	VCCO_6	AD5	VCCO
6	VCCO_6	VCCO_6	V7	VCCO
6	VCCO_6	VCCO_6	AB7	VCCO
6	VCCO_6	VCCO_6	Y9	VCCO
6	VCCO_6	VCCO_6	U11	VCCO
6	VCCO_6	VCCO_6	V11	VCCO
6	VCCO_6	VCCO_6	W11	VCCO
7	Ю	Ю	J6	I/O
7	IO_L01N_7/ VRP_7	IO_L01N_7/ VRP_7	C1	DCI
7	IO_L01P_7/ VRN_7	IO_L01P_7/ VRN_7	C2	DCI
7	IO_L02N_7	IO_L02N_7	D3	I/O
7	IO_L02P_7	IO_L02P_7	D4	I/O
7	IO_L03N_7/ VREF_7	IO_L03N_7/ VREF_7	D1	VREF
7	IO_L03P_7	IO_L03P_7	D2	I/O
7	IO_L04N_7	IO_L04N_7	E1	I/O
7	IO_L04P_7	IO_L04P_7	E2	I/O
7	IO_L05N_7	IO_L05N_7	F5	I/O
7	IO_L05P_7	IO_L05P_7	E4	I/O
7	IO_L06N_7	IO_L06N_7	F2	I/O

Table 34: FG900 Package Pinout (Continued)

		XC3S4000	FG900	
Bank	XC3S2000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
7	IO_L06P_7	IO_L06P_7	F3	I/O
7	IO_L07N_7	IO_L00I _7	G3	I/O
7	IO_L07P_7	IO_L07P_7	G4	I/O
7	IO_L08N_7	IO_L08N_7	G1	I/O
7	IO_L08P_7	IO_L08P_7	G2	I/O
7	IO_L09N_7	IO_L09N_7	H7	I/O
7	IO_L09P_7	IO_L09P_7	G6	I/O
7	IO_L10N_7	IO_L10N_7	H5	I/O
7	IO_L10P_7/	IO_L10P_7/	H6	VREF
	VREF_7	VREF_7		
7	IO_L11N_7	IO_L11N_7	НЗ	I/O
7	IO_L11P_7	IO_L11P_7	H4	I/O
7	IO_L13N_7	IO_L13N_7	H1	I/O
7	IO_L13P_7	IO_L13P_7	H2	I/O
7	IO_L14N_7	IO_L14N_7	J4	I/O
7	IO_L14P_7	IO_L14P_7	J5	I/O
7	IO_L15N_7	IO_L15N_7	J1	I/O
7	IO_L15P_7	IO_L15P_7	J2	I/O
7	IO_L16N_7	IO_L16N_7	K9	I/O
7	IO_L16P_7/ VREF_7	IO_L16P_7/ VREF_7	J8	VREF
7	IO_L17N_7	IO_L17N_7	K6	I/O
7	IO_L17P_7	IO_L17P_7	K7	I/O
7	IO_L19N_7/ VREF_7	IO_L19N_7/ VREF_7	K2	VREF
7	IO_L19P_7	IO_L19P_7	K3	I/O
7	IO_L20N_7	IO_L20N_7	L10	I/O
7	IO_L20P_7	IO_L20P_7	K10	I/O
7	IO_L21N_7	IO_L21N_7	L7	I/O
7	IO_L21P_7	IO_L21P_7	L8	I/O
7	IO_L22N_7	IO_L22N_7	L5	I/O
7	IO_L22P_7	IO_L22P_7	L6	I/O
7	IO_L23N_7	IO_L23N_7	L3	I/O
7	IO_L23P_7	IO_L23P_7	L4	I/O
7	IO_L24N_7	IO_L24N_7	L1	I/O
7	IO_L24P_7	IO_L24P_7	L2	I/O
7	N.C. (◆)	IO_L25N_7	M6	I/O
7	N.C. (◆)	IO_L25P_7	M7	I/O
7	IO_L26N_7	IO_L26N_7	M3	I/O
7	IO_L26P_7	IO_L26P_7	M4	I/O
7	IO_L27N_7	IO_L27N_7	M1	I/O
7	IO_L27P_7/ VREF_7	IO_L27P_7/ VREF_7	M2	VREF
7	IO_L28N_7	IO_L28N_7	N10	I/O
7	IO_L28P_7	IO_L28P_7	M10	I/O
7	IO_L29N_7	IO_L29N_7	N8	I/O

Table 34: FG900 Package Pinout (Continued)

	1 G300 Fack			
	XC3S2000	XC3S5000	Pin	_
Bank	Pin Name	Pin Name	Number	Туре
7	IO_L29P_7	IO_L29P_7	N9	I/O
7	IO_L31N_7	IO_L31N_7	N1	I/O
7	IO_L31P_7	IO_L31P_7	N2	I/O
7	IO_L32N_7	IO_L32N_7	P9	I/O
7	IO_L32P_7	IO_L32P_7	P10	I/O
7	IO_L33N_7	IO_L33N_7	P6	I/O
7	IO_L33P_7	IO_L33P_7	P7	I/O
7	IO_L34N_7	IO_L34N_7	P2	I/O
7	IO_L34P_7	IO_L34P_7	P3	I/O
7	IO_L35N_7	IO_L35N_7	R9	I/O
7	IO_L35P_7	IO_L35P_7	R10	I/O
7	IO_L37N_7	IO_L37N_7	R7	I/O
7	IO_L37P_7/ VREF_7	IO_L37P_7/ VREF_7	R8	VREF
7	IO_L38N_7	IO_L38N_7	R5	I/O
7	IO_L38P_7	IO_L38P_7	R6	I/O
7	IO_L39N_7	IO_L39N_7	R3	I/O
7	IO_L39P_7	IO_L39P_7	R4	I/O
7	IO_L40N_7/ VREF_7	IO_L40N_7/ VREF_7	R1	VREF
7	IO_L40P_7	IO_L40P_7	R2	I/O
7	N.C. (◆)	IO_L46N_7	M8	I/O
7	N.C. (◆)	IO_L46P_7	M9	I/O
7	N.C. (♠)	IO_L49N_7	N6	I/O
7	N.C. (◆)	IO_L49P_7	M5	I/O
7	N.C. (♠)	IO_L50N_7	N4	I/O
7	N.C. (♠)	IO_L50P_7	N5	I/O
7	VCCO_7	VCCO_7	E3	VCCO
7	VCCO_7	VCCO_7	J3	VCCO
7	VCCO_7	VCCO_7	N3	VCCO
7	VCCO_7	VCCO_7	G5	VCCO
7	VCCO_7	VCCO_7	J7	VCCO
7	VCCO_7	VCCO_7	N7	VCCO
7	VCCO_7	VCCO_7	L9	VCCO
7	VCCO_7	VCCO_7	M11	VCCO
7	VCCO_7	VCCO_7	N11	VCCO
7	VCCO_7	VCCO_7	P11	VCCO
N/A	GND	GND	A1	GND
N/A	GND	GND	B1	GND
N/A	GND	GND	F1	GND
N/A	GND	GND	K1	GND
N/A	GND	GND	P1	GND
N/A	GND	GND	U1	GND
N/A	GND	GND	AA1	GND
N/A	GND	GND	AE1	GND
	*	•	*	

Table 34: FG900 Package Pinout (Continued)

Bank	XC3S2000 Pin Name	XC3S4000 XC3S5000 Pin Name	FG900 Pin Number	Type
N/A	GND	GND	AJ1	GND
N/A	GND	GND	AK1	GND
N/A	GND	GND	A2	GND
N/A	GND	GND	B2	GND
N/A	GND	GND	AJ2	GND
N/A	GND	GND	E5	GND
N/A	GND	GND	K5	GND
N/A	GND	GND	P5	GND
N/A	GND	GND	U5	GND
N/A	GND	GND	AA5	GND
N/A	GND	GND	AF5	GND
N/A	GND	GND	A6	GND
N/A	GND	GND	AK6	GND
N/A	GND	GND	K8	GND
N/A	GND	GND	P8	GND
N/A	GND	GND	U8	GND
N/A	GND	GND	AA8	GND
N/A	GND	GND	A10	GND
N/A	GND	GND	E10	GND
N/A	GND	GND	H10	GND
N/A	GND	GND	AC10	GND
N/A	GND	GND	AF10	GND
N/A	GND	GND	AK10	GND
N/A	GND	GND	R12	GND
N/A	GND	GND	T12	GND
N/A	GND	GND	N13	GND
N/A	GND	GND	P13	GND
N/A	GND	GND	R13	GND
N/A	GND	GND	T13	GND
N/A	GND	GND	U13	GND
N/A	GND	GND	V13	GND
N/A	GND	GND	A14	GND
N/A	GND	GND	E14	GND
N/A	GND	GND	H14	GND
N/A	GND	GND	N14	GND
N/A	GND	GND	P14	GND
N/A	GND	GND	R14	GND
N/A	GND	GND	T14	GND
N/A	GND	GND	U14	GND
N/A	GND	GND	V14	GND
N/A	GND	GND	AC14	GND
N/A	GND	GND	AF14	GND
N/A	GND	GND	AK14	GND
N/A	GND	GND	M15	GND
N/A	GND	GND	N15	GND

Table 34: FG900 Package Pinout (Continued)

		XC3S4000	FG900	
Bank	XC3S2000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
N/A	GND	GND	P15	GND
N/A N/A	GND	GND	R15	GND
N/A	GND	GND	T15	GND
N/A	GND	GND	U15	GND
N/A	GND	GND	V15	GND
N/A	GND	GND	W15	GND
N/A	GND	GND	W15 M16	GND
N/A	GND	GND	N16	GND
N/A	GND	GND	P16	GND
N/A	GND	GND	R16	GND
N/A	GND	GND	T16	GND
N/A	GND	GND	U16	GND
N/A			V16	
	GND	GND		GND
N/A	GND	GND	W16	GND
N/A	GND	GND	A17	GND
N/A	GND	GND	E17	GND
N/A	GND	GND	H17	GND
N/A	GND	GND	N17	GND
N/A	GND	GND	P17	GND
N/A	GND	GND	R17	GND
N/A	GND	GND	T17	GND
N/A	GND	GND	U17	GND
N/A	GND	GND	V17	GND
N/A	GND	GND	AC17	GND
N/A	GND	GND	AF17	GND
N/A	GND	GND	AK17	GND
N/A	GND	GND	N18	GND
N/A	GND	GND	P18	GND
N/A	GND	GND	R18	GND
N/A	GND	GND	T18	GND
N/A	GND	GND	U18	GND
N/A	GND	GND	V18	GND
N/A	GND	GND	R19	GND
N/A	GND	GND	T19	GND
N/A	GND	GND	A21	GND
N/A	GND	GND	E21	GND
N/A	GND	GND	H21	GND
N/A	GND	GND	AC21	GND
N/A	GND	GND	AF21	GND
N/A	GND	GND	AK21	GND
N/A	GND	GND	K23	GND
N/A	GND	GND	P23	GND
N/A	GND	GND	U23	GND
N/A	GND	GND	AA23	GND
N/A	GND	GND	A25	GND

Table 34: FG900 Package Pinout (Continued)

	VOCCOOO	XC3S4000	FG900	
Bank	XC3S2000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
N/A	GND	GND	AK25	GND
N/A	GND	GND	E26	GND
N/A	GND	GND	K26	GND
N/A	GND	GND	P26	GND
N/A	GND	GND	U26	GND
N/A	GND	GND	AA26	GND
N/A	GND	GND	AF26	GND
N/A	GND	GND	A29	GND
N/A	GND	GND	B29	GND
N/A	GND	GND	AJ29	GND
N/A	GND	GND	AK29	GND
N/A	GND	GND	A30	GND
N/A	GND	GND	B30	GND
N/A	GND	GND	F30	GND
N/A	GND	GND	K30	GND
N/A	GND	GND	P30	GND
N/A	GND	GND	U30	GND
N/A	GND	GND	AA30	GND
N/A	GND	GND	AE30	GND
N/A	GND	GND	AJ30	GND
N/A	GND	GND	AK30	GND
N/A	GND	GND	AK2	GND
N/A N/A	VCCAUX	VCCAUX	AK2 F4	GND VCCAUX
	_	_		
N/A	VCCAUX	VCCAUX	F4	VCCAUX VCCAUX
N/A N/A	VCCAUX	VCCAUX VCCAUX VCCAUX VCCAUX	F4 K4	VCCAUX VCCAUX
N/A N/A N/A	VCCAUX VCCAUX VCCAUX	VCCAUX VCCAUX VCCAUX	F4 K4 P4	VCCAUX VCCAUX
N/A N/A N/A N/A	VCCAUX VCCAUX VCCAUX	VCCAUX VCCAUX VCCAUX VCCAUX	F4 K4 P4 U4	VCCAUX VCCAUX VCCAUX
N/A N/A N/A N/A N/A	VCCAUX VCCAUX VCCAUX VCCAUX	VCCAUX VCCAUX VCCAUX VCCAUX	F4 K4 P4 U4 AA4	VCCAUX VCCAUX VCCAUX VCCAUX
N/A	VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX	VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6	VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
N/A N/A N/A N/A N/A N/A	VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX	VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX	F4 K4 P4 U4 AA4 AE4 D6	VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10	VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG14	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG14 D17	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG14 D17 AG17	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG14 D17 AG17 D21	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG14 D17 AG17 D21 AG21	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG14 D17 AG17 D21 AG21 D25	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG14 D17 AG17 D21 AG21 D25 AG25	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG17 D21 AG21 D25 AG25 F27	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG17 D21 AG17 D21 AG21 D25 AG25 F27 K27	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG17 D21 AG21 D25 AG25 F27 K27 P27	VCCAUX
N/A	VCCAUX	VCCAUX	F4 K4 P4 U4 AA4 AE4 D6 AG6 D10 AG10 D14 AG17 D21 AG17 D21 AG21 D25 AG25 F27 K27	VCCAUX

Table 34: FG900 Package Pinout (Continued)

		XC3S4000	FG900	
Bank	XC3S2000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
N/A	VCCAUX	VCCAUX	AE27	VCCAUX
N/A	VCCINT	VCCINT	L11	VCCINT
N/A	VCCINT	VCCINT	R11	VCCINT
N/A	VCCINT	VCCINT	T11	VCCINT
N/A	VCCINT	VCCINT	Y11	VCCINT
N/A	VCCINT	VCCINT	M12	VCCINT
N/A	VCCINT	VCCINT	N12	VCCINT
N/A	VCCINT	VCCINT	P12	VCCINT
N/A	VCCINT	VCCINT	U12	VCCINT
N/A	VCCINT	VCCINT	V12	VCCINT
N/A	VCCINT	VCCINT	W12	VCCINT
N/A	VCCINT	VCCINT	M13	VCCINT
N/A	VCCINT	VCCINT	W13	VCCINT
N/A	VCCINT	VCCINT	M14	VCCINT
N/A	VCCINT	VCCINT	W14	VCCINT
N/A	VCCINT	VCCINT	L15	VCCINT
N/A	VCCINT	VCCINT	Y15	VCCINT
N/A	VCCINT	VCCINT	L16	VCCINT
N/A	VCCINT	VCCINT	Y16	VCCINT
N/A	VCCINT	VCCINT	M17	VCCINT
N/A	VCCINT	VCCINT	W17	VCCINT
N/A	VCCINT	VCCINT	M18	VCCINT
N/A	VCCINT	VCCINT	W18	VCCINT
N/A	VCCINT	VCCINT	M19	VCCINT
N/A	VCCINT	VCCINT	N19	VCCINT
N/A	VCCINT	VCCINT	P19	VCCINT
N/A	VCCINT	VCCINT	U19	VCCINT
N/A	VCCINT	VCCINT	V19	VCCINT
N/A	VCCINT	VCCINT	W19	VCCINT
N/A	VCCINT	VCCINT	L20	VCCINT
N/A	VCCINT	VCCINT	R20	VCCINT
N/A	VCCINT	VCCINT	T20	VCCINT
N/A	VCCINT	VCCINT	Y20	VCCINT
VCCAUX	CCLK	CCLK	AH28	CONFIG
VCCAUX	DONE	DONE	AJ28	CONFIG
VCCAUX	HSWAP_EN	HSWAP_EN	A3	CONFIG
VCCAUX	MO	MO	AJ3	CONFIG
VCCAUX	M1	M1	AH3	CONFIG
VCCAUX	M2	M2	AK3	CONFIG
VCCAUX	PROG_B	PROG_B	B3	CONFIG
VCCAUX	TCK	TCK	B28	JTAG
VCCAUX	TDI	TDI	C3	JTAG
VCCAUX	TDO	TDO	C28	JTAG
VCCAUX	TMS	TMS	A28	JTAG

User I/Os by Bank

Table 35 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S2000 in the FG900 package. Similarly, Table 36 shows how the

available user-I/O pins are distributed between the eight I/O banks for the XC3S4000 and XC3S5000 in the FG900 package.

Table 35: User I/Os Per Bank for XC3S2000 in FG900 Package

	I/O	Maximum		All Po	ssible I/O Pi	ns by Type	
Edge	Bank	I/O	I/O	DUAL	DCI	VREF	GCLK
Тор	0	71	62	0	2	5	2
Юр	1	71	62	0	2	5	2
Right	2	69	61	0	2	6	0
Hight	3	71	62	0	2	7	0
Bottom	4	72	57	6	2	5	2
Bottom	5	71	55	6	2	6	2
Left	6	69	60	0	2	7	0
Leit	7	71	62	0	2	7	0

Table 36: User I/Os Per Bank for XC3S4000 and XC3S5000 in FG900 Package

	I/O	Maximum	All Possible I/O Pins by Type				
Edge	Bank	I/O	I/O	DUAL	DCI	VREF	GCLK
Ton	0	79	70	0	2	5	2
Тор	1	79	70	0	2	5	2
Distri	2	79	71	0	2	6	0
Right	3	79	70	0	2	7	0
Dattom	4	80	65	6	2	5	2
Bottom	5	79	63	6	2	6	2
Loft	6	79	70	0	2	7	0
Left	7	79	70	0	2	7	0

FG900 Footprint

Left Half of Package (top view)

XC3S2000

(565 max. user I/O)

- 481 I/O: Unrestricted, general-purpose user I/O
- VREF: User I/O or input voltage reference for bank
- N.C.: Unconnected pins for XC3S2000 (♠)

XC3S4000, XC3S5000

(633 max user I/O)

- general-purpose user I/O
- VREF: User I/O or input voltage reference for bank
- N.C.: No unconnected pins in this package

All devices

- DUAL: Configuration pin, then possible user I/O
- 8 GCLK: User I/O or global clock buffer input
- DCI: User I/O or reference resistor input for bank
- 7 CONFIG: Dedicated configuration pins
- JTAG: Dedicated JTAG port pins
- 32 VCCINT: Internal core voltage supply (+1.2V)
- 80 VCCO: Output voltage supply for bank
- VCCAUX: Auxiliary voltage supply (+2.5V)
- GND: Ground

Figure 15: FG900 Package Footprint (top view)

Right Half of Package (top view)

FG1156: 1156-lead Fine-pitch Ball Grid Array

The 1,156-lead fine-pitch ball grid array package, FG1156, supports two different Spartan-3 devices, namely the XC3S4000, and the XC3S5000. The XC3S2000, however, has fewer I/O pins, which consequently results in 73 unconnected pins on the FG1156 package, labeled as "N.C." In Table 37 and Figure 16, these unconnected pins are indicated with a black diamond symbol (♠).

The XC3S5000 has a single unconnected package pin, ball AK31, which is also unconnected for the XC3S4000.

All the package pins appear in Table 37 and are sorted by bank number, then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

If there is a difference between the XC3S2000 and XC3S5000 pinouts, then that difference is highlighted in Table 37. If the table entry is shaded grey, then there is an unconnected pin on the XC3S2000 that maps to a user-I/O pin on the XC3S4000 and XC3S5000. If the table entry is shaded tan, which only occurs on ball L29 in I/O Bank 2, then the unconnected pin on XC3S4000 maps to a VREF-type pin on the XC3S5000. If the other VREF_2 pins all connect to a voltage reference to support a special I/O standard, then also connect the N.C. pin on the XC3S4000 to the same VREF_2 voltage. This provides maximum flexibility as you could potentially migrate a design from the XC3S4000 to the XC3S5000 FPGA without changing the printed circuit board.

Pinout Table

Table 37: FG1156 Package Pinout

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
0	Ю	Ю	B9	I/O
0	Ю	Ю	E17	I/O
0	Ю	Ю	F6	I/O
0	Ю	Ю	F8	I/O
0	Ю	Ю	G12	I/O
0	Ю	Ю	H8	I/O
0	Ю	Ю	H9	I/O
0	Ю	Ю	J11	I/O
0	N.C. (♠)	Ю	J9	I/O
0	N.C. (◆)	Ю	K11	I/O
0	Ю	Ю	K13	I/O
0	Ю	Ю	K16	I/O
0	Ю	Ю	K17	I/O
0	Ю	Ю	L13	I/O

Table 37: FG1156 Package Pinout (Continued)

		kage i mout (c	FG1156	<u>, </u>
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
0	IO	IO	L16	I/O
0	Ю	Ю	L17	I/O
0	IO/VREF_0	IO/VREF_0	D5	VREF
0	IO/VREF_0	IO/VREF_0	E10	VREF
0	IO/VREF_0	IO/VREF_0	J14	VREF
0	IO/VREF_0	IO/VREF_0	L15	VREF
0	IO_L01N_0/ VRP_0	IO_L01N_0/ VRP_0	В3	DCI
0	IO_L01P_0/ VRN_0	IO_L01P_0/ VRN_0	A3	DCI
0	IO_L02N_0	IO_L02N_0	B4	I/O
0	IO_L02P_0	IO_L02P_0	A4	I/O
0	IO_L03N_0	IO_L03N_0	C5	I/O
0	IO_L03P_0	IO_L03P_0	B5	I/O
0	IO_L04N_0	IO_L04N_0	D6	I/O
0	IO_L04P_0	IO_L04P_0	C6	I/O
0	IO_L05N_0	IO_L05N_0	В6	I/O
0	IO_L05P_0/ VREF_0	IO_L05P_0/ VREF_0	A6	VREF
0	IO_L06N_0	IO_L06N_0	F7	I/O
0	IO_L06P_0	IO_L06P_0	E7	I/O
0	IO_L07N_0	IO_L07N_0	G9	I/O
0	IO_L07P_0	IO_L07P_0	F9	I/O
0	IO_L08N_0	IO_L08N_0	D9	I/O
0	IO_L08P_0	IO_L08P_0	C9	I/O
0	IO_L09N_0	IO_L09N_0	J10	I/O
0	IO_L09P_0	IO_L09P_0	H10	I/O
0	IO_L10N_0	IO_L10N_0	G10	I/O
0	IO_L10P_0	IO_L10P_0	F10	I/O
0	IO_L11N_0	IO_L11N_0	L12	I/O
0	IO_L11P_0	IO_L11P_0	K12	I/O
0	IO_L12N_0	IO_L12N_0	J12	I/O
0	IO_L12P_0	IO_L12P_0	H12	I/O
0	IO_L13N_0	IO_L13N_0	F12	I/O
0	IO_L13P_0	IO_L13P_0	E12	I/O
0	IO_L14N_0	IO_L14N_0	D12	I/O
0	IO_L14P_0	IO_L14P_0	C12	I/O
0	IO_L15N_0	IO_L15N_0	B12	I/O
0	IO_L15P_0	IO_L15P_0	A12	I/O
0	IO_L16N_0	IO_L16N_0	H13	I/O
0	IO_L16P_0	IO_L16P_0	G13	I/O
0	IO_L17N_0	IO_L17N_0	D13	I/O

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
0	IO_L17P_0	IO_L17P_0	C13	I/O
0	IO_L18N_0	IO_L18N_0	L14	I/O
0	IO_L18P_0	IO_L18P_0	K14	I/O
0	IO_L19N_0	IO_L19N_0	H14	I/O
0	IO_L19P_0	IO_L19P_0	G14	I/O
0	IO_L20N_0	IO_L20N_0	F14	I/O
0	IO_L20P_0	IO_L20P_0	E14	I/O
0	IO_L21N_0	IO_L21N_0	D14	I/O
0	IO_L21P_0	IO_L21P_0	C14	I/O
0	IO_L22N_0	IO_L22N_0	B14	I/O
0	IO_L22P_0	IO_L22P_0	A14	I/O
0	IO_L23N_0	IO_L23N_0	K15	I/O
0	IO_L23P_0	IO_L23P_0	J15	I/O
0	IO_L24N_0	IO_L24N_0	G15	I/O
0	IO_L24P_0	IO_L24P_0	F15	I/O
0	IO_L25N_0	IO_L25N_0	D15	I/O
0	IO_L25P_0	IO_L25P_0	C15	I/O
0	IO_L26N_0	IO_L26N_0	B15	I/O
0	IO_L26P_0/ VREF_0	IO_L26P_0/ VREF_0	A15	VREF
0	IO_L27N_0	IO_L27N_0	G16	I/O
0	IO_L27P_0	IO_L27P_0	F16	I/O
0	IO_L28N_0	IO_L28N_0	C16	I/O
0	IO_L28P_0	IO_L28P_0	B16	I/O
0	IO_L29N_0	IO_L29N_0	J17	I/O
0	IO_L29P_0	IO_L29P_0	H17	I/O
0	IO_L30N_0	IO_L30N_0	G17	I/O
0	IO_L30P_0	IO_L30P_0	F17	I/O
0	IO_L31N_0	IO_L31N_0	D17	I/O
0	IO_L31P_0/ VREF_0	IO_L31P_0/ VREF_0	C17	VREF
0	IO_L32N_0/ GCLK7	IO_L32N_0/ GCLK7	B17	GCLK
0	IO_L32P_0/ GCLK6	IO_L32P_0/ GCLK6	A17	GCLK
0	N.C. (◆)	IO_L33N_0	D7	I/O
0	N.C. (♠)	IO_L33P_0	C7	I/O
0	N.C. (◆)	IO_L34N_0	B7	I/O
0	N.C. (◆)	IO_L34P_0	A7	I/O
0	IO_L35N_0	IO_L35N_0	E8	I/O
0	IO_L35P_0	IO_L35P_0	D8	I/O
0	IO_L36N_0	IO_L36N_0	B8	I/O

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
0	IO_L36P_0	IO_L36P_0	A8	I/O
0	IO_L37N_0	IO_L37N_0	D10	I/O
0	IO_L37P_0	IO_L37P_0	C10	I/O
0	IO_L38N_0	IO_L38N_0	B10	I/O
0	IO_L38P_0	IO_L38P_0	A10	I/O
0	N.C. (◆)	IO_L39N_0	G11	I/O
0	N.C. (◆)	IO_L39P_0	F11	I/O
0	N.C. (◆)	IO_L40N_0	B11	I/O
0	N.C. (◆)	IO_L40P_0	A11	I/O
0	VCCO_0	VCCO_0	B13	VCCO
0	VCCO_0	VCCO_0	C4	VCCO
0	VCCO_0	VCCO_0	C8	VCCO
0	VCCO_0	VCCO_0	D11	VCCO
0	VCCO_0	VCCO_0	D16	VCCO
0	VCCO_0	VCCO_0	F13	VCCO
0	VCCO_0	VCCO_0	G8	VCCO
0	VCCO_0	VCCO_0	H11	VCCO
0	VCCO_0	VCCO_0	H15	VCCO
0	VCCO_0	VCCO_0	M13	VCCO
0	VCCO_0	VCCO_0	M14	VCCO
0	VCCO_0	VCCO_0	M15	VCCO
0	VCCO_0	VCCO_0	M16	VCCO
1	Ю	Ю	B26	I/O
1	Ю	Ю	A18	I/O
1	Ю	Ю	C23	I/O
1	Ю	Ю	E21	I/O
1	Ю	Ю	E25	I/O
1	Ю	Ю	F18	I/O
1	Ю	Ю	F27	I/O
1	Ю	Ю	F29	I/O
1	Ю	Ю	H23	I/O
1	Ю	Ю	H26	I/O
1	N.C. (♦)	Ю	J26	I/O
1	Ю	Ю	K19	I/O
1	Ю	Ю	L19	I/O
1	Ю	Ю	L20	I/O
1	Ю	Ю	L21	I/O
1	N.C. (♦)	Ю	L23	I/O
1	Ю	Ю	L24	I/O
1	IO/VREF_1	IO/VREF_1	D30	VREF
1	IO/VREF_1	IO/VREF_1	K21	VREF

Table 37: FG1156 Package Pinout (Continued)

	XC3S4000	XC3S5000	FG1156 Pin	
Bank	Pin Name	Pin Name	Number	Type
1	IO/VREF_1	IO/VREF_1	L18	VREF
1	IO_L01N_1/ VRP_1	IO_L01N_1/ VRP_1	A32	DCI
1	IO_L01P_1/ VRN_1	IO_L01P_1/ VRN_1	B32	DCI
1	IO_L02N_1	IO_L02N_1	A31	I/O
1	IO_L02P_1	IO_L02P_1	B31	I/O
1	IO_L03N_1	IO_L03N_1	B30	I/O
1	IO_L03P_1	IO_L03P_1	C30	I/O
1	IO_L04N_1	IO_L04N_1	C29	I/O
1	IO_L04P_1	IO_L04P_1	D29	I/O
1	IO_L05N_1	IO_L05N_1	A29	I/O
1	IO_L05P_1	IO_L05P_1	B29	I/O
1	IO_L06N_1/ VREF_1	IO_L06N_1/ VREF_1	E28	VREF
1	IO_L06P_1	IO_L06P_1	F28	I/O
1	IO_L07N_1	IO_L07N_1	D27	I/O
1	IO_L07P_1	IO_L07P_1	E27	I/O
1	IO_L08N_1	IO_L08N_1	A27	I/O
1	IO_L08P_1	IO_L08P_1	B27	I/O
1	IO_L09N_1	IO_L09N_1	F26	I/O
1	IO_L09P_1	IO_L09P_1	G26	I/O
1	IO_L10N_1/ VREF_1	IO_L10N_1/ VREF_1	C26	VREF
1	IO_L10P_1	IO_L10P_1	D26	I/O
1	IO_L11N_1	IO_L11N_1	H25	I/O
1	IO_L11P_1	IO_L11P_1	J25	I/O
1	IO_L12N_1	IO_L12N_1	F25	I/O
1	IO_L12P_1	IO_L12P_1	G25	I/O
1	IO_L13N_1	IO_L13N_1	C25	I/O
1	IO_L13P_1	IO_L13P_1	D25	I/O
1	IO_L14N_1	IO_L14N_1	A25	I/O
1	IO_L14P_1	IO_L14P_1	B25	I/O
1	IO_L15N_1	IO_L15N_1	A24	I/O
1	IO_L15P_1	IO_L15P_1	B24	I/O
1	IO_L16N_1	IO_L16N_1	J23	I/O
1	IO_L16P_1	IO_L16P_1	K23	I/O
1	IO_L17N_1/ VREF_1	IO_L17N_1/ VREF_1	F23	VREF
1	IO_L17P_1	IO_L17P_1	G23	I/O
1	IO_L18N_1	IO_L18N_1	D23	I/O
1	IO_L18P_1	IO_L18P_1	E23	I/O

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
1	IO_L19N_1	IO_L19N_1	A23	I/O
1	IO_L19P_1	IO_L19P_1	B23	I/O
1	IO_L20N_1	IO_L20N_1	K22	I/O
1	IO_L20P_1	IO_L20P_1	L22	I/O
1	IO_L21N_1	IO_L21N_1	G22	I/O
1	IO_L21P_1	IO_L21P_1	H22	I/O
1	IO_L22N_1	IO_L22N_1	C22	I/O
1	IO_L22P_1	IO_L22P_1	D22	I/O
1	IO_L23N_1	IO_L23N_1	H21	I/O
1	IO_L23P_1	IO_L23P_1	J21	I/O
1	IO_L24N_1	IO_L24N_1	F21	I/O
1	IO_L24P_1	IO_L24P_1	G21	I/O
1	IO_L25N_1	IO_L25N_1	C21	I/O
1	IO_L25P_1	IO_L25P_1	D21	I/O
1	IO_L26N_1	IO_L26N_1	A21	I/O
1	IO_L26P_1	IO_L26P_1	B21	I/O
1	IO_L27N_1	IO_L27N_1	F19	I/O
1	IO_L27P_1	IO_L27P_1	G19	I/O
1 1	IO_L28N_1	IO_L28N_1	B19	I/O
1	IO_L28P_1	IO_L28P_1	C19	I/O
1 1	IO_L29N_1	IO_L29N_1	J18	I/O
1	IO_L29P_1	IO_L29P_1	K18	I/O
1	IO_L30N_1	IO_L30N_1	G18	I/O
1	IO_L30P_1	IO_L30P_1	H18	I/O
	IO_L31N_1/ VREF_1	IO_L31N_1/ VREF_1	D18	VREF
1	IO_L31P_1	IO_L31P_1	E18	I/O
	IO_L32N_1/ GCLK5	IO_L32N_1/ GCLK5	B18	GCLK
	IO_L32P_1/ GCLK4	IO_L32P_1/ GCLK4	C18	GCLK
1	N.C. (♦)	IO_L33N_1	C28	I/O
1 1	N.C. (♦)	IO_L33P_1	D28	I/O
1	N.C. (♦)	IO_L34N_1	A28	I/O
1 1	N.C. (♦)	IO_L34P_1	B28	I/O
1	N.C. (♦)	IO_L35N_1	J24	I/O
1	N.C. (♦)	IO_L35P_1	K24	I/O
1	N.C. (♦)	IO_L36N_1	F24	I/O
1	N.C. (♦)	IO_L36P_1	G24	I/O
1	IO_L37N_1	IO_L37N_1	J20	I/O
1	IO_L37P_1	IO_L37P_1	K20	I/O
1	IO_L38N_1	IO_L38N_1	F20	I/O

Table 37: FG1156 Package Pinout (Continued)

	XC3S4000	XC3S5000	FG1156 Pin	
Bank	Pin Name	Pin Name	Number	Type
1	IO_L38P_1	IO_L38P_1	G20	I/O
1	IO_L39N_1	IO_L39N_1	C20	I/O
1	IO_L39P_1	IO_L39P_1	D20	I/O
1	IO_L40N_1	IO_L40N_1	A20	I/O
1	IO_L40P_1	IO_L40P_1	B20	I/O
1	VCCO_1	VCCO_1	B22	VCCO
1	VCCO_1	VCCO_1	C27	VCCO
1	VCCO_1	VCCO_1	C31	VCCO
1	VCCO_1	VCCO_1	D19	VCCO
1	VCCO_1	VCCO_1	D24	VCCO
1	VCCO_1	VCCO_1	F22	VCCO
1	VCCO_1	VCCO_1	G27	VCCO
1	VCCO_1	VCCO_1	H20	VCCO
1	VCCO_1	VCCO_1	H24	VCCO
1	VCCO_1	VCCO_1	M19	VCCO
1	VCCO_1	VCCO_1	M20	VCCO
1	VCCO_1	VCCO_1	M21	VCCO
1	VCCO_1	VCCO_1	M22	VCCO
2	IO	IO	G33	I/O
2	Ю	Ю	G34	I/O
2	Ю	Ю	U25	I/O
2	Ю	Ю	U26	I/O
2	IO_L01N_2/ VRP_2	IO_L01N_2/ VRP_2	C33	DCI
2	IO_L01P_2/ VRN_2	IO_L01P_2/ VRN_2	C34	DCI
2	IO_L02N_2	IO_L02N_2	D33	I/O
2	IO_L02P_2	IO_L02P_2	D34	I/O
2	IO_L03N_2/ VREF_2	IO_L03N_2/ VREF_2	E32	VREF
2	IO_L03P_2	IO_L03P_2	E33	I/O
2	IO_L04N_2	IO_L04N_2	F31	I/O
2	IO_L04P_2	IO_L04P_2	F32	I/O
2	IO_L05N_2	IO_L05N_2	G29	I/O
2	IO_L05P_2	IO_L05P_2	G30	I/O
2	IO_L06N_2	IO_L06N_2	H29	I/O
2	IO_L06P_2	IO_L06P_2	H30	I/O
2	IO_L07N_2	IO_L07N_2	H33	I/O
2	IO_L07P_2	IO_L07P_2	H34	I/O
2	IO_L08N_2	IO_L08N_2	J28	I/O
2	IO_L08P_2	IO_L08P_2	J29	I/O

Table 37: FG1156 Package Pinout (Continued)

			FG1156	
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
2	IO_L09N_2/	IO L09N 2/	H31	VREF
2	VREF_2	VREF_2	1101	VIILI
2	IO_L09P_2	IO_L09P_2	J31	I/O
2	IO_L10N_2	IO_L10N_2	J32	I/O
2	IO_L10P_2	IO_L10P_2	J33	I/O
2	IO_L11N_2	IO_L11N_2	J27	I/O
2	IO_L11P_2	IO_L11P_2	K26	I/O
2	IO_L12N_2	IO_L12N_2	K27	I/O
2	IO_L12P_2	IO_L12P_2	K28	I/O
2	IO_L13N_2	IO_L13N_2	K29	I/O
2	IO_L13P_2/ VREF_2	IO_L13P_2/ VREF_2	K30	VREF
2	IO_L14N_2	IO_L14N_2	K31	I/O
2	IO_L14P_2	IO_L14P_2	K32	I/O
2	IO_L15N_2	IO_L15N_2	K33	I/O
2	IO_L15P_2	IO_L15P_2	K34	I/O
2	IO_L16N_2	IO_L16N_2	L25	I/O
2	IO_L16P_2	IO_L16P_2	L26	I/O
2	N.C. (◆)	IO_L17N_2	L28	I/O
2	N.C. (◆)	IO_L17P_2/ VREF_2	L29	VREF
2	IO_L19N_2	IO_L19N_2	M29	I/O
2	IO_L19P_2	IO_L19P_2	M30	I/O
2	IO_L20N_2	IO_L20N_2	M31	I/O
2	IO_L20P_2	IO_L20P_2	M32	I/O
2	IO_L21N_2	IO_L21N_2	M26	I/O
2	IO_L21P_2	IO_L21P_2	N25	I/O
2	IO_L22N_2	IO_L22N_2	N27	I/O
2	IO_L22P_2	IO_L22P_2	N28	I/O
2	IO_L23N_2/ VREF_2	IO_L23N_2/ VREF_2	N31	VREF
2	IO_L23P_2	IO_L23P_2	N32	I/O
2	IO_L24N_2	IO_L24N_2	N24	I/O
2	IO_L24P_2	IO_L24P_2	P24	I/O
2	IO_L26N_2	IO_L26N_2	P29	I/O
2	IO_L26P_2	IO_L26P_2	P30	I/O
2	IO_L27N_2	IO_L27N_2	P31	I/O
2	IO_L27P_2	IO_L27P_2	P32	I/O
2	IO_L28N_2	IO_L28N_2	P33	I/O
2	IO_L28P_2	IO_L28P_2	P34	I/O
2	IO_L29N_2	IO_L29N_2	R24	I/O
2	IO_L29P_2	IO_L29P_2	R25	I/O

Table 37: FG1156 Package Pinout (Continued)

		kage i mout (c	FG1156	,
Donk	XC3S4000	XC3S5000	Pin	Tumo
Bank	Pin Name	Pin Name	Number	Туре
2	IO_L30N_2	IO_L30N_2	R28	I/O
2	IO_L30P_2	IO_L30P_2	R29	I/O
2	IO_L31N_2	IO_L31N_2	R31	I/O
2	IO_L31P_2	IO_L31P_2	R32	I/O
2	IO_L32N_2	IO_L32N_2	R33	I/O
2	IO_L32P_2	IO_L32P_2	R34	I/O
2	IO_L33N_2	IO_L33N_2	R26	I/O
2	IO_L33P_2	IO_L33P_2	T25	I/O
2	IO_L34N_2/ VREF_2	IO_L34N_2/ VREF_2	T28	VREF
2	IO_L34P_2	IO_L34P_2	T29	I/O
2	IO_L35N_2	IO_L35N_2	T32	I/O
2	IO_L35P_2	IO_L35P_2	T33	I/O
2	IO_L37N_2	IO_L37N_2	U27	I/O
2	IO_L37P_2	IO_L37P_2	U28	I/O
2	IO_L38N_2	IO_L38N_2	U29	I/O
2	IO_L38P_2	IO_L38P_2	U30	I/O
2	IO_L39N_2	IO_L39N_2	U31	I/O
2	IO_L39P_2	IO_L39P_2	U32	I/O
2	IO_L40N_2	IO_L40N_2	U33	I/O
2	IO_L40P_2/ VREF_2	IO_L40P_2/ VREF_2	U34	VREF
2	IO_L41N_2	IO_L41N_2	F33	I/O
2	IO_L41P_2	IO_L41P_2	F34	I/O
2	N.C. (◆)	IO_L42N_2	G31	I/O
2	N.C. (◆)	IO_L42P_2	G32	I/O
2	IO_L45N_2	IO_L45N_2	L33	I/O
2	IO_L45P_2	IO_L45P_2	L34	I/O
2	IO_L46N_2	IO_L46N_2	M24	I/O
2	IO_L46P_2	IO_L46P_2	M25	I/O
2	IO_L47N_2	IO_L47N_2	M27	I/O
2	IO_L47P_2	IO_L47P_2	M28	I/O
2	IO_L48N_2	IO_L48N_2	M33	I/O
2	IO_L48P_2	IO_L48P_2	M34	I/O
2	N.C. (♦)	IO_L49N_2	P25	I/O
2	N.C. (♦)	IO_L49P_2	P26	I/O
2	IO_L50N_2	IO_L50N_2	P27	I/O
2	IO_L50P_2	IO_L50P_2	P28	I/O
2	N.C. (♦)	IO_L51N_2	T24	I/O
2	N.C. (♦)	IO_L51P_2	U24	I/O
2	VCCO_2	VCCO_2	D32	VCCO
2	VCCO_2	VCCO_2	H28	VCCO

Table 37: FG1156 Package Pinout (Continued)

		kage i mout (c	FG1156	
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
2	VCCO_2	VCCO 2	H32	VCCO
2	VCCO_2	VCCO 2	L27	VCCO
2	VCCO_2	VCCO_2	L31	VCCO
2	VCCO_2	VCCO 2	N23	VCCO
2	VCCO 2	VCCO 2	N29	VCCO
2	VCCO 2	VCCO_2	N33	VCCO
2	VCCO 2	VCCO_2	P23	VCCO
2	VCCO_2	VCCO_2	R23	VCCO
2	VCCO_2	VCCO_2	R27	VCCO
2	VCCO_2	VCCO_2	T23	VCCO
2	VCCO_2	VCCO_2	T31	VCCO
3	IO	IO	AH33	I/O
3	Ю	Ю	AH34	I/O
3	Ю	Ю	V25	I/O
3	Ю	Ю	V26	I/O
3	IO_L01N_3/ VRP_3	IO_L01N_3/ VRP_3	AM34	DCI
3	IO_L01P_3/ VRN_3	IO_L01P_3/ VRN_3	AM33	DCI
3	IO_L02N_3/ VREF_3	IO_L02N_3/ VREF_3	AL34	VREF
3	IO_L02P_3	IO_L02P_3	AL33	I/O
3	IO_L03N_3	IO_L03N_3	AK33	I/O
3	IO_L03P_3	IO_L03P_3	AK32	I/O
3	IO_L04N_3	IO_L04N_3	AJ32	I/O
3	IO_L04P_3	IO_L04P_3	AJ31	I/O
3	IO_L05N_3	IO_L05N_3	AJ34	I/O
3	IO_L05P_3	IO_L05P_3	AJ33	I/O
3	IO_L06N_3	IO_L06N_3	AH30	I/O
3	IO_L06P_3	IO_L06P_3	AH29	I/O
3	IO_L07N_3	IO_L07N_3	AG30	I/O
3	IO_L07P_3	IO_L07P_3	AG29	I/O
3	IO_L08N_3	IO_L08N_3	AG34	I/O
3	IO_L08P_3	IO_L08P_3	AG33	I/O
3	IO_L09N_3	IO_L09N_3	AF29	I/O
3	IO_L09P_3/ VREF_3	IO_L09P_3/ VREF_3	AF28	VREF
3	IO_L10N_3	IO_L10N_3	AF31	I/O
3	IO_L10P_3	IO_L10P_3	AG31	I/O
3	IO_L11N_3	IO_L11N_3	AF33	I/O
3	IO_L11P_3	IO_L11P_3	AF32	I/O
3	IO_L12N_3	IO_L12N_3	AE26	I/O

Table 37: FG1156 Package Pinout (Continued)

	V000 1000	V000000	FG1156	
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
3	IO_L12P_3	IO_L12P_3	AF27	I/O
3	IO_L13N_3/ VREF_3	IO_L13N_3/ VREF_3	AE28	VREF
3	IO_L13P_3	IO_L13P_3	AE27	I/O
3	IO_L14N_3	IO_L14N_3	AE30	I/O
3	IO_L14P_3	IO_L14P_3	AE29	I/O
3	IO_L15N_3	IO_L15N_3	AE32	I/O
3	IO_L15P_3	IO_L15P_3	AE31	I/O
3	IO_L16N_3	IO_L16N_3	AE34	I/O
3	IO_L16P_3	IO_L16P_3	AE33	I/O
3	IO_L17N_3	IO_L17N_3	AD26	I/O
3	IO_L17P_3/ VREF_3	IO_L17P_3/ VREF_3	AD25	VREF
3	IO_L19N_3	IO_L19N_3	AD34	I/O
3	IO_L19P_3	IO_L19P_3	AD33	I/O
3	IO_L20N_3	IO_L20N_3	AC25	I/O
3	IO_L20P_3	IO_L20P_3	AC24	I/O
3	IO_L21N_3	IO_L21N_3	AC28	I/O
3	IO_L21P_3	IO_L21P_3	AC27	I/O
3	IO_L22N_3	IO_L22N_3	AC30	I/O
3	IO_L22P_3	IO_L22P_3	AC29	I/O
3	IO_L23N_3	IO_L23N_3	AC32	I/O
3	IO_L23P_3/ VREF_3	IO_L23P_3/ VREF_3	AC31	VREF
3	IO_L24N_3	IO_L24N_3	AB25	I/O
3	IO_L24P_3	IO_L24P_3	AC26	I/O
3	IO_L26N_3	IO_L26N_3	AA28	I/O
3	IO_L26P_3	IO_L26P_3	AA27	I/O
3	IO_L27N_3	IO_L27N_3	AA30	I/O
3	IO_L27P_3	IO_L27P_3	AA29	I/O
3	IO_L28N_3	IO_L28N_3	AA32	I/O
3	IO_L28P_3	IO_L28P_3	AA31	I/O
3	IO_L29N_3	IO_L29N_3	AA34	I/O
3	IO_L29P_3	IO_L29P_3	AA33	I/O
3	IO_L30N_3	IO_L30N_3	Y29	I/O
3	IO_L30P_3	IO_L30P_3	Y28	I/O
3	IO_L31N_3	IO_L31N_3	Y32	I/O
3	IO_L31P_3	IO_L31P_3	Y31	I/O
3	IO_L32N_3	IO_L32N_3	Y34	I/O
3	IO_L32P_3	IO_L32P_3	Y33	I/O
3	IO_L33N_3	IO_L33N_3	W25	I/O
3	IO_L33P_3	IO_L33P_3	Y26	I/O

Table 37: FG1156 Package Pinout (Continued)

14516 67.		kage Pinout (C	FG1156	,
	XC3S4000	XC3S5000	Pin	_
Bank	Pin Name	Pin Name	Number	Туре
3	IO_L34N_3	IO_L34N_3	W29	1/0
3	IO_L34P_3/ VREF_3	IO_L34P_3/ VREF_3	W28	VREF
3	IO_L35N_3	IO_L35N_3	W33	I/O
3	IO_L35P_3	IO_L35P_3	W32	I/O
3	IO_L37N_3	IO_L37N_3	V28	I/O
3	IO_L37P_3	IO_L37P_3	V27	I/O
3	IO_L38N_3	IO_L38N_3	V30	I/O
3	IO_L38P_3	IO_L38P_3	V29	I/O
3	IO_L39N_3	IO_L39N_3	V32	I/O
3	IO_L39P_3	IO_L39P_3	V31	I/O
3	IO_L40N_3/ VREF_3	IO_L40N_3/ VREF_3	V34	VREF
3	IO_L40P_3	IO_L40P_3	V33	I/O
3	N.C. (◆)	IO_L41N_3	AH32	I/O
3	N.C. (◆)	IO_L41P_3	AH31	I/O
3	N.C. (◆)	IO_L44N_3	AD29	I/O
3	N.C. (◆)	IO_L44P_3	AD28	I/O
3	IO_L45N_3	IO_L45N_3	AC34	I/O
3	IO_L45P_3	IO_L45P_3	AC33	I/O
3	IO_L46N_3	IO_L46N_3	AB28	I/O
3	IO_L46P_3	IO_L46P_3	AB27	I/O
3	IO_L47N_3	IO_L47N_3	AB32	I/O
3	IO_L47P_3	IO_L47P_3	AB31	I/O
3	IO_L48N_3	IO_L48N_3	AA24	I/O
3	IO_L48P_3	IO_L48P_3	AB24	I/O
3	N.C. (◆)	IO_L49N_3	AA26	I/O
3	N.C. (◆)	IO_L49P_3	AA25	I/O
3	IO_L50N_3	IO_L50N_3	Y25	I/O
3	IO_L50P_3	IO_L50P_3	Y24	I/O
3	N.C. (◆)	IO_L51N_3	V24	I/O
3	N.C. (♦)	IO_L51P_3	W24	I/O
3	VCCO_3	VCCO_3	AA23	VCCO
3	VCCO_3	VCCO_3	AB23	VCCO
3	VCCO_3	VCCO_3	AB29	VCCO
3	VCCO_3	VCCO_3	AB33	VCCO
3	VCCO_3	VCCO_3	AD27	VCCO
3	VCCO_3	VCCO_3	AD31	VCCO
3	VCCO_3	VCCO_3	AG28	VCCO
3	VCCO_3	VCCO_3	AG32	VCCO
3	VCCO_3	VCCO_3	AL32	VCCO
3	VCCO_3	VCCO_3	W23	VCCO
	1.	•		

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
3	VCCO 3	VCCO 3	W31	VCCO
3	VCCO_3	VCCO_3	Y23	VCCO
3	VCCO_3	VCCO_3	Y27	VCCO
4	IO	IO	AD18	I/O
4	IO	IO	AD19	I/O
4	Ю	Ю	AD20	I/O
4	Ю	Ю	AD22	I/O
4	Ю	Ю	AE18	I/O
4	Ю	Ю	AE19	I/O
4	Ю	Ю	AE22	I/O
4	N.C. (◆)	Ю	AE24	I/O
4	Ю	Ю	AF24	I/O
4	N.C. (♠)	Ю	AF26	I/O
4	Ю	Ю	AG26	I/O
4	Ю	Ю	AG27	I/O
4	Ю	Ю	AJ27	I/O
4	Ю	Ю	AJ29	I/O
4	Ю	Ю	AK25	I/O
4	Ю	Ю	AN26	I/O
4	IO/VREF_4	IO/VREF_4	AF21	VREF
4	IO/VREF_4	IO/VREF_4	AH23	VREF
4	IO/VREF_4	IO/VREF_4	AK18	VREF
4	IO/VREF_4	IO/VREF_4	AL30	VREF
4	IO_L01N_4/ VRP_4	IO_L01N_4/ VRP_4	AN32	DCI
4	IO_L01P_4/ VRN_4	IO_L01P_4/ VRN_4	AP32	DCI
4	IO_L02N_4	IO_L02N_4	AN31	I/O
4	IO_L02P_4	IO_L02P_4	AP31	I/O
4	IO_L03N_4	IO_L03N_4	AM30	I/O
4	IO_L03P_4	IO_L03P_4	AN30	I/O
4	IO_L04N_4	IO_L04N_4	AN27	I/O
4	IO_L04P_4	IO_L04P_4	AP27	I/O
4	IO_L05N_4	IO_L05N_4	AH26	I/O
4	IO_L05P_4	IO_L05P_4	AJ26	I/O
4	IO_L06N_4/ VREF_4	IO_L06N_4/ VREF_4	AL26	VREF
4	IO_L06P_4	IO_L06P_4	AM26	I/O
4	IO_L07N_4	IO_L07N_4	AF25	I/O
4	IO_L07P_4	IO_L07P_4	AG25	I/O
4	IO_L08N_4	IO_L08N_4	AH25	I/O
4	IO_L08P_4	IO_L08P_4	AJ25	I/O

Table 37: FG1156 Package Pinout (Continued)

			FG1156	
Donle	XC3S4000	XC3S5000	Pin	Tuna
Bank	Pin Name	Pin Name	Number	Туре
4	IO_L09N_4	IO_L09N_4	AL25	I/O
4	IO_L09P_4	IO_L09P_4	AM25	I/O
4	IO_L10N_4	IO_L10N_4	AN25	I/O
4	IO_L10P_4	IO_L10P_4	AP25	I/O
4	IO_L11N_4	IO_L11N_4	AD23	I/O
4	IO_L11P_4	IO_L11P_4	AE23	I/O
4	IO_L12N_4	IO_L12N_4	AF23	I/O
4	IO_L12P_4	IO_L12P_4	AG23	I/O
4	IO_L13N_4	IO_L13N_4	AJ23	I/O
4	IO_L13P_4	IO_L13P_4	AK23	I/O
4	IO_L14N_4	IO_L14N_4	AL23	I/O
4	IO_L14P_4	IO_L14P_4	AM23	I/O
4	IO_L15N_4	IO_L15N_4	AN23	I/O
4	IO_L15P_4	IO_L15P_4	AP23	I/O
4	IO_L16N_4	IO_L16N_4	AG22	I/O
4	IO_L16P_4	IO_L16P_4	AH22	I/O
4	IO_L17N_4	IO_L17N_4	AL22	I/O
4	IO_L17P_4	IO_L17P_4	AM22	I/O
4	IO_L18N_4	IO_L18N_4	AD21	I/O
4	IO_L18P_4	IO_L18P_4	AE21	I/O
4	IO_L19N_4	IO_L19N_4	AG21	I/O
4	IO_L19P_4	IO_L19P_4	AH21	I/O
4	IO_L20N_4	IO_L20N_4	AJ21	I/O
4	IO_L20P_4	IO_L20P_4	AK21	I/O
4	IO_L21N_4	IO_L21N_4	AL21	I/O
4	IO_L21P_4	IO_L21P_4	AM21	I/O
4	IO_L22N_4/ VREF_4	IO_L22N_4/ VREF_4	AN21	VREF
4	IO_L22P_4	IO_L22P_4	AP21	I/O
4	IO_L23N_4	IO_L23N_4	AE20	I/O
4	IO_L23P_4	IO_L23P_4	AF20	I/O
4	IO_L24N_4	IO_L24N_4	AH20	I/O
4	IO_L24P_4	IO_L24P_4	AJ20	I/O
4	IO_L25N_4	IO_L25N_4	AL20	I/O
4	IO_L25P_4	IO_L25P_4	AM20	I/O
4	IO_L26N_4	IO_L26N_4	AN20	I/O
4	IO_L26P_4/ VREF_4	IO_L26P_4/ VREF_4	AP20	VREF
4	IO_L27N_4/ DIN/D0	IO_L27N_4/ DIN/D0	AH19	DUAL
4	IO_L27P_4/ D1	IO_L27P_4/ D1	AJ19	DUAL

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
4	IO_L28N_4	IO_L28N_4	AM19	I/O
4	IO_L28P_4	IO_L28P_4	AN19	I/O
4	IO_L29N_4	IO_L29N_4	AF18	I/O
4	IO_L29P_4	IO_L29P_4	AG18	I/O
4	IO_L30N_4/ D2	IO_L30N_4/ D2	AH18	DUAL
4	IO_L30P_4/ D3	IO_L30P_4/ D3	AJ18	DUAL
4	IO_L31N_4/ INIT_B	IO_L31N_4/ INIT_B	AL18	DUAL
4	IO_L31P_4/ DOUT/BUSY	IO_L31P_4/ DOUT/BUSY	AM18	DUAL
4	IO_L32N_4/ GCLK1	IO_L32N_4/ GCLK1	AN18	GCLK
4	IO_L32P_4/ GCLK0	IO_L32P_4/ GCLK0	AP18	GCLK
4	IO_L33N_4	IO_L33N_4	AL29	I/O
4	IO_L33P_4	IO_L33P_4	AM29	I/O
4	IO_L34N_4	IO_L34N_4	AN29	I/O
4	IO_L34P_4	IO_L34P_4	AP29	I/O
4	IO_L35N_4	IO_L35N_4	AJ28	I/O
4	IO_L35P_4	IO_L35P_4	AK28	I/O
4	N.C. (◆)	IO_L36N_4	AL28	I/O
4	N.C. (◆)	IO_L36P_4	AM28	I/O
4	N.C. (◆)	IO_L37N_4	AN28	I/O
4	N.C. (◆)	IO_L37P_4	AP28	I/O
4	IO_L38N_4	IO_L38N_4	AK27	I/O
4	IO_L38P_4	IO_L38P_4	AL27	I/O
4	N.C. (◆)	IO_L39N_4	AH24	I/O
4	N.C. (◆)	IO_L39P_4	AJ24	I/O
4	N.C. (◆)	IO_L40N_4	AN24	I/O
4	N.C. (◆)	IO_L40P_4	AP24	I/O
4	VCCO_4	VCCO_4	AC19	vcco
4	VCCO_4	VCCO_4	AC20	VCCO
4	VCCO_4	VCCO_4	AC21	vcco
4	VCCO_4	VCCO_4	AC22	VCCO
4	VCCO_4	VCCO_4	AG20	VCCO
4	VCCO_4	VCCO_4	AG24	VCCO
4	VCCO_4	VCCO_4	AH27	VCCO
4	VCCO_4	VCCO_4	AJ22	VCCO
4	VCCO_4	VCCO_4	AL19	VCCO
4	VCCO_4	VCCO_4	AL24	VCCO
4	VCCO_4	VCCO_4	AM27	VCCO

Table 37: FG1156 Package Pinout (Continued)

	FG1156				
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре	
4	VCCO_4	VCCO 4	AM31	VCCO	
4	VCCO_4	VCCO_4	AN22	VCCO	
5	VCCO_4	IO	AD11	I/O	
5	N.C. (♠)	10	AD11	1/0	
5	IO.C. (♥)	10	AD12 AD14	1/0	
5	10	10	AD14 AD15	I/O	
			AD15 AD16	1/0	
5	10	IO IO	AD16 AD17	I/O	
5 5	10	IO	AE14	I/O	
5	10	10	AE14 AE16	1/0	
5	N.C. (♠)	10	AF9	1/0	
5	10	10	AG9	1/0	
5	10	10	AG12	1/0	
5	10	10	AJ6	1/0	
5	10	10	AJ17	1/0	
5	10	10	AK10	I/O	
5	10	10	AK14	1/0	
5	10	10	AM12	1/0	
5	10	10	AN9	1/0	
5	IO/VREF_5	IO/VREF_5	AJ8	VREF	
5	IO/VREF_5	IO/VREF_5	AL5	VREF	
5	IO/VREF_5	IO/VREF_5	AP17	VREF	
5	IO_L01N_5/ RDWR_B	IO_L01N_5/ RDWR_B	AP3	DUAL	
5	IO_L01P_5/ CS_B	IO_L01P_5/ CS_B	AN3	DUAL	
5	IO_L02N_5	IO_L02N_5	AP4	I/O	
5	IO_L02P_5	IO_L02P_5	AN4	I/O	
5	IO_L03N_5	IO_L03N_5	AN5	I/O	
5	IO_L03P_5	IO_L03P_5	AM5	I/O	
5	IO_L04N_5	IO_L04N_5	AM6	I/O	
5	IO_L04P_5	IO_L04P_5	AL6	I/O	
5	IO_L05N_5	IO_L05N_5	AP6	I/O	
5	IO_L05P_5	IO_L05P_5	AN6	I/O	
5	IO_L06N_5	IO_L06N_5	AK7	I/O	
5	IO_L06P_5	IO_L06P_5	AJ7	I/O	
5	IO_L07N_5	IO_L07N_5	AG10	I/O	
5	IO_L07P_5	IO_L07P_5	AF10	I/O	
5	IO_L08N_5	IO_L08N_5	AJ10	I/O	
5	IO_L08P_5	IO_L08P_5	AH10	I/O	
5	IO_L09N_5	IO_L09N_5	AM10	I/O	
5	IO_L09P_5	IO_L09P_5	AL10	I/O	

Table 37: FG1156 Package Pinout (Continued)

	Tarisoraci		FG1156	<u>′</u>
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Type
				Туре
5	IO_L10N_5/ VRP_5	IO_L10N_5/ VRP_5	AP10	DCI
5	IO_L10P_5/ VRN_5	IO_L10P_5/ VRN_5	AN10	DCI
5	IO_L11N_5/ VREF_5	IO_L11N_5/ VREF_5	AP11	VREF
5	IO_L11P_5	IO_L11P_5	AN11	I/O
5	IO_L12N_5	IO_L12N_5	AF12	I/O
5	IO_L12P_5	IO_L12P_5	AE12	I/O
5	IO_L13N_5	IO_L13N_5	AJ12	I/O
5	IO_L13P_5	IO_L13P_5	AH12	I/O
5	IO_L14N_5	IO_L14N_5	AL12	I/O
5	IO_L14P_5	IO_L14P_5	AK12	I/O
5	IO_L15N_5	IO_L15N_5	AP12	I/O
5	IO_L15P_5	IO_L15P_5	AN12	I/O
5	IO_L16N_5	IO_L16N_5	AE13	I/O
5	IO_L16P_5	IO_L16P_5	AD13	I/O
5	IO_L17N_5	IO_L17N_5	AH13	I/O
5	IO_L17P_5	IO_L17P_5	AG13	I/O
5	IO_L18N_5	IO_L18N_5	AM13	I/O
5	IO_L18P_5	IO_L18P_5	AL13	I/O
5	IO_L19N_5	IO_L19N_5	AG14	I/O
5	IO_L19P_5/ VREF_5	IO_L19P_5/ VREF_5	AF14	VREF
5	IO_L20N_5	IO_L20N_5	AJ14	I/O
5	IO_L20P_5	IO_L20P_5	AH14	I/O
5	IO_L21N_5	IO_L21N_5	AM14	I/O
5	IO_L21P_5	IO_L21P_5	AL14	I/O
5	IO_L22N_5	IO_L22N_5	AP14	I/O
5	IO_L22P_5	IO_L22P_5	AN14	I/O
5	IO_L23N_5	IO_L23N_5	AF15	I/O
5	IO_L23P_5	IO_L23P_5	AE15	I/O
5	IO_L24N_5	IO_L24N_5	AJ15	I/O
5	IO_L24P_5	IO_L24P_5	AH15	I/O
5	IO_L25N_5	IO_L25N_5	AM15	I/O
5	IO_L25P_5	IO_L25P_5	AL15	I/O
5	IO_L26N_5	IO_L26N_5	AP15	I/O
5	IO_L26P_5	IO_L26P_5	AN15	I/O
5	IO_L27N_5/ VREF_5	IO_L27N_5/ VREF_5	AJ16	VREF
5	IO_L27P_5	IO_L27P_5	AH16	I/O
5	IO_L28N_5/ D6	IO_L28N_5/ D6	AN16	DUAL

Table 37: FG1156 Package Pinout (Continued)

			FG1156	
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
5				DUAL
5	IO_L28P_5/ D7	IO_L28P_5/ D7	AM16	DUAL
5	IO_L29N_5	IO_L29N_5	AF17	I/O
5	IO_L29P_5/ VREF_5	IO_L29P_5/ VREF_5	AE17	VREF
5	IO_L30N_5	IO_L30N_5	AH17	I/O
5	IO_L30P_5	IO_L30P_5	AG17	I/O
5	IO_L31N_5/ D4	IO_L31N_5/ D4	AL17	DUAL
5	IO_L31P_5/ D5	IO_L31P_5/ D5	AK17	DUAL
5	IO_L32N_5/ GCLK3	IO_L32N_5/ GCLK3	AN17	GCLK
5	IO_L32P_5/ GCLK2	IO_L32P_5/ GCLK2	AM17	GCLK
5	N.C. (◆)	IO_L33N_5	AM7	I/O
5	N.C. (◆)	IO_L33P_5	AL7	I/O
5	N.C. (◆)	IO_L34N_5	AP7	I/O
5	N.C. (◆)	IO_L34P_5	AN7	I/O
5	IO_L35N_5	IO_L35N_5	AL8	I/O
5	IO_L35P_5	IO_L35P_5	AK8	I/O
5	IO_L36N_5	IO_L36N_5	AP8	I/O
5	IO_L36P_5	IO_L36P_5	AN8	I/O
5	IO_L37N_5	IO_L37N_5	AJ9	I/O
5	IO_L37P_5	IO_L37P_5	AH9	I/O
5	IO_L38N_5	IO_L38N_5	AM9	I/O
5	IO_L38P_5	IO_L38P_5	AL9	I/O
5	N.C. (◆)	IO_L39N_5	AF11	I/O
5	N.C. (◆)	IO_L39P_5	AE11	I/O
5	N.C. (◆)	IO_L40N_5	AJ11	I/O
5	N.C. (◆)	IO_L40P_5	AH11	I/O
5	VCCO_5	VCCO_5	AC13	VCCO
5	VCCO_5	VCCO_5	AC14	VCCO
5	VCCO_5	VCCO_5	AC15	VCCO
5	VCCO_5	VCCO_5	AC16	VCCO
5	VCCO_5	VCCO_5	AG11	VCCO
5	VCCO_5	VCCO_5	AG15	VCCO
5	VCCO_5	VCCO_5	AH8	VCCO
5	VCCO_5	VCCO_5	AJ13	VCCO
5	VCCO_5	VCCO_5	AL11	VCCO
5	VCCO_5	VCCO_5	AL16	VCCO
5	VCCO_5	VCCO_5	AM4	VCCO
5	VCCO_5	VCCO_5	AM8	VCCO

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
5	VCCO_5	VCCO_5	AN13	VCCO
6	IO	IO	AH1	I/O
6	Ю	Ю	AH2	I/O
6	IO	Ю	V9	I/O
6	IO	Ю	V10	I/O
6	IO_L01N_6/ VRP_6	IO_L01N_6/ VRP_6	AM2	DCI
6	IO_L01P_6/ VRN_6	IO_L01P_6/ VRN_6	AM1	DCI
6	IO_L02N_6	IO_L02N_6	AL2	I/O
6	IO_L02P_6	IO_L02P_6	AL1	I/O
6	IO_L03N_6/ VREF_6	IO_L03N_6/ VREF_6	AK3	VREF
6	IO_L03P_6	IO_L03P_6	AK2	I/O
6	IO_L04N_6	IO_L04N_6	AJ4	I/O
6	IO_L04P_6	IO_L04P_6	AJ3	I/O
6	IO_L05N_6	IO_L05N_6	AJ2	I/O
6	IO_L05P_6	IO_L05P_6	AJ1	I/O
6	IO_L06N_6	IO_L06N_6	AH6	I/O
6	IO_L06P_6	IO_L06P_6	AH5	I/O
6	IO_L07N_6	IO_L07N_6	AG6	I/O
6	IO_L07P_6	IO_L07P_6	AG5	I/O
6	IO_L08N_6	IO_L08N_6	AG2	I/O
6	IO_L08P_6	IO_L08P_6	AG1	I/O
6	IO_L09N_6/ VREF_6	IO_L09N_6/ VREF_6	AF7	VREF
6	IO_L09P_6	IO_L09P_6	AF6	I/O
6	IO_L10N_6	IO_L10N_6	AG4	I/O
6	IO_L10P_6	IO_L10P_6	AF4	I/O
6	IO_L11N_6	IO_L11N_6	AF3	I/O
6	IO_L11P_6	IO_L11P_6	AF2	I/O
6	IO_L12N_6	IO_L12N_6	AF8	I/O
6	IO_L12P_6	IO_L12P_6	AE9	I/O
6	IO_L13N_6	IO_L13N_6	AE8	I/O
6	IO_L13P_6/ VREF_6	IO_L13P_6/ VREF_6	AE7	VREF
6	IO_L14N_6	IO_L14N_6	AE6	I/O
6	IO_L14P_6	IO_L14P_6	AE5	I/O
6	IO_L15N_6	IO_L15N_6	AE4	I/O
6	IO_L15P_6	IO_L15P_6	AE3	I/O
6	IO_L16N_6	IO_L16N_6	AE2	I/O
6	IO_L16P_6	IO_L16P_6	AE1	I/O

Table 37: FG1156 Package Pinout (Continued)

			FG1156	
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
6				I/O
	IO_L17N_6	IO_L17N_6	AD10	VREF
6	IO_L17P_6/ VREF_6	IO_L17P_6/ VREF_6	AD9	VHEF
6	IO_L19N_6	IO_L19N_6	AD2	I/O
6	IO_L19P_6	IO_L19P_6	AD1	I/O
6	IO_L20N_6	IO_L20N_6	AC11	I/O
6	IO_L20P_6	IO_L20P_6	AC10	I/O
6	IO_L21N_6	IO_L21N_6	AC8	I/O
6	IO_L21P_6	IO_L21P_6	AC7	I/O
6	IO_L22N_6	IO_L22N_6	AC6	I/O
6	IO_L22P_6	IO_L22P_6	AC5	I/O
6	IO_L23N_6	IO_L23N_6	AC2	I/O
6	IO_L23P_6	IO_L23P_6	AC1	I/O
6	IO_L24N_6/ VREF_6	IO_L24N_6/ VREF_6	AC9	VREF
6	IO_L24P_6	IO_L24P_6	AB10	I/O
6	IO_L25N_6	IO_L25N_6	AB8	I/O
6	IO_L25P_6	IO_L25P_6	AB7	I/O
6	IO_L26N_6	IO_L26N_6	AB4	I/O
6	IO_L26P_6	IO_L26P_6	AB3	I/O
6	IO_L27N_6	IO_L27N_6	AB11	I/O
6	IO_L27P_6	IO_L27P_6	AA11	I/O
6	IO_L28N_6	IO_L28N_6	AA8	I/O
6	IO_L28P_6	IO_L28P_6	AA7	I/O
6	IO_L29N_6	IO_L29N_6	AA6	I/O
6	IO_L29P_6	IO_L29P_6	AA5	I/O
6	IO_L30N_6	IO_L30N_6	AA4	I/O
6	IO_L30P_6	IO_L30P_6	AA3	I/O
6	IO_L31N_6	IO_L31N_6	AA2	I/O
6	IO_L31P_6	IO_L31P_6	AA1	I/O
6	IO_L32N_6	IO_L32N_6	Y11	I/O
6	IO_L32P_6	IO_L32P_6	Y10	I/O
6	IO_L33N_6	IO_L33N_6	Y4	I/O
6	IO_L33P_6	IO_L33P_6	Y3	I/O
6	IO_L34N_6/ VREF_6	IO_L34N_6/ VREF_6	Y2	VREF
6	IO_L34P_6	IO_L34P_6	Y1	I/O
6	IO_L35N_6	IO_L35N_6	Y9	I/O
6	IO_L35P_6	IO_L35P_6	W10	I/O
6	IO_L36N_6	IO_L36N_6	W7	I/O
6	IO_L36P_6	IO_L36P_6	W6	I/O
6	IO_L37N_6	IO_L37N_6	W3	I/O
	1	T		

Table 37: FG1156 Package Pinout (Continued)

		kage i mout (c	FG1156	<u> </u>
	XC3S4000	XC3S5000	Pin	_
Bank	Pin Name	Pin Name	Number	Туре
6	IO_L37P_6	IO_L37P_6	W2	I/O
6	IO_L38N_6	IO_L38N_6	V6	I/O
6	IO_L38P_6	IO_L38P_6	V5	I/O
6	IO_L39N_6	IO_L39N_6	V4	I/O
6	IO_L39P_6	IO_L39P_6	V3	I/O
6	IO_L40N_6	IO_L40N_6	V2	I/O
6	IO_L40P_6/ VREF_6	IO_L40P_6/ VREF_6	V1	VREF
6	N.C. (◆)	IO_L41N_6	AH4	I/O
6	N.C. (◆)	IO_L41P_6	AH3	I/O
6	N.C. (◆)	IO_L44N_6	AD7	I/O
6	N.C. (◆)	IO_L44P_6	AD6	I/O
6	IO_L45N_6	IO_L45N_6	AC4	I/O
6	IO_L45P_6	IO_L45P_6	AC3	I/O
6	N.C. (◆)	IO_L46N_6	AA10	I/O
6	N.C. (◆)	IO_L46P_6	AA9	I/O
6	IO_L48N_6	IO_L48N_6	Y7	I/O
6	IO_L48P_6	IO_L48P_6	Y6	I/O
6	N.C. (◆)	IO_L49N_6	W11	I/O
6	N.C. (◆)	IO_L49P_6	V11	I/O
6	IO_L52N_6	IO_L52N_6	V8	I/O
6	IO_L52P_6	IO_L52P_6	V7	I/O
6	VCCO_6	VCCO_6	AA12	VCCO
6	VCCO_6	VCCO_6	AB12	VCCO
6	VCCO_6	VCCO_6	AB2	VCCO
6	VCCO_6	VCCO_6	AB6	VCCO
6	VCCO_6	VCCO_6	AD4	VCCO
6	VCCO_6	VCCO_6	AD8	VCCO
6	VCCO_6	VCCO_6	AG3	VCCO
6	VCCO_6	VCCO_6	AG7	VCCO
6	VCCO_6	VCCO_6	AL3	VCCO
6	VCCO_6	VCCO_6	W12	VCCO
6	VCCO_6	VCCO_6	W4	VCCO
6	VCCO_6	VCCO_6	Y12	VCCO
6	VCCO_6	VCCO_6	Y8	VCCO
7	Ю	Ю	G1	I/O
7	Ю	Ю	G2	I/O
7	Ю	Ю	U10	I/O
7	Ю	Ю	U9	I/O
7	IO_L01N_7/ VRP_7	IO_L01N_7/ VRP_7	C1	DCI

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	FG1156 Pin Number	Туре	
7	IO_L01P_7/ VRN_7	IO_L01P_7/ VRN_7	C2	DCI
7	IO_L02N_7	IO_L02N_7	D1	I/O
7	IO_L02P_7	IO_L02P_7	D2	I/O
7	IO_L03N_7/ VREF_7	IO_L03N_7/ VREF_7	E2	VREF
7	IO_L03P_7	IO_L03P_7	E3	I/O
7	IO_L04N_7	IO_L04N_7	F3	I/O
7	IO_L04P_7	IO_L04P_7	F4	I/O
7	IO_L05N_7	IO_L05N_7	F1	I/O
7	IO_L05P_7	IO_L05P_7	F2	I/O
7	IO_L06N_7	IO_L06N_7	G5	I/O
7	IO_L06P_7	IO_L06P_7	G6	I/O
7	IO_L07N_7	IO_L07N_7	H5	I/O
7	IO_L07P_7	IO_L07P_7	H6	I/O
7	IO_L08N_7	IO_L08N_7	H1	I/O
7	IO_L08P_7	IO_L08P_7	H2	I/O
7	IO_L09N_7	IO_L09N_7	J6	I/O
7	IO_L09P_7	IO_L09P_7	J7	I/O
7	IO_L10N_7	IO_L10N_7	J4	I/O
7	IO_L10P_7/ VREF_7	IO_L10P_7/ VREF_7	H4	VREF
7	IO_L11N_7	IO_L11N_7	J2	I/O
7	IO_L11P_7	IO_L11P_7	J3	I/O
7	IO_L12N_7	IO_L12N_7	K9	I/O
7	IO_L12P_7	IO_L12P_7	J8	I/O
7	IO_L13N_7	IO_L13N_7	K7	I/O
7	IO_L13P_7	IO_L13P_7	K8	I/O
7	IO_L14N_7	IO_L14N_7	K5	I/O
7	IO_L14P_7	IO_L14P_7	K6	I/O
7	IO_L15N_7	IO_L15N_7	K3	I/O
7	IO_L15P_7	IO_L15P_7	K4	I/O
7	IO_L16N_7	IO_L16N_7	K1	I/O
7	IO_L16P_7/ VREF_7	IO_L16P_7/ VREF_7	K2	VREF
7	IO_L17N_7	IO_L17N_7	L9	I/O
7	IO_L17P_7	IO_L17P_7	L10	I/O
7	IO_L19N_7/ VREF_7	IO_L19N_7/ VREF_7	L1	VREF
7	IO_L19P_7	IO_L19P_7	L2	I/O
7	IO_L20N_7	IO_L20N_7	M10	I/O
7	IO_L20P_7	IO_L20P_7	M11	I/O

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Typo
				Туре
7	IO_L21N_7	IO_L21N_7	M7	I/O
7	IO_L21P_7	IO_L21P_7	M8	1/0
7	IO_L22N_7	IO_L22N_7	M5	I/O
7	IO_L22P_7	IO_L22P_7	M6	1/0
7	IO_L23N_7	IO_L23N_7	M3	1/0
7	IO_L23P_7	IO_L23P_7	M4	I/O
7	IO_L24N_7	IO_L24N_7	N10	1/0
7	IO_L24P_7	IO_L24P_7	M9	I/O
7	IO_L25N_7	IO_L25N_7	N3	I/O
7	IO_L25P_7	IO_L25P_7	N4	I/O
7	IO_L26N_7	IO_L26N_7	P11	I/O
7	IO_L26P_7	IO_L26P_7	N11	I/O
7	IO_L27N_7	IO_L27N_7	P7	I/O
7	IO_L27P_7/ VREF_7	IO_L27P_7/ VREF_7	P8	VREF
7	IO_L28N_7	IO_L28N_7	P5	I/O
7	IO_L28P_7	IO_L28P_7	P6	I/O
7	IO_L29N_7	IO_L29N_7	P3	I/O
7	IO_L29P_7	IO_L29P_7	P4	I/O
7	IO_L30N_7	IO_L30N_7	R6	I/O
7	IO_L30P_7	IO_L30P_7	R7	I/O
7	IO_L31N_7	IO_L31N_7	R3	I/O
7	IO_L31P_7	IO_L31P_7	R4	I/O
7	IO_L32N_7	IO_L32N_7	R1	I/O
7	IO_L32P_7	IO_L32P_7	R2	I/O
7	IO_L33N_7	IO_L33N_7	T10	I/O
7	IO_L33P_7	IO_L33P_7	R9	I/O
7	IO_L34N_7	IO_L34N_7	T6	I/O
7	IO_L34P_7	IO_L34P_7	T7	I/O
7	IO_L35N_7	IO_L35N_7	T2	I/O
7	IO_L35P_7	IO_L35P_7	Т3	I/O
7	IO_L37N_7	IO_L37N_7	U7	I/O
7	IO_L37P_7/ VREF_7	IO_L37P_7/ VREF_7	U8	VREF
7	IO_L38N_7	IO_L38N_7	U5	I/O
7	IO_L38P_7	IO_L38P_7	U6	I/O
7	IO_L39N_7	IO_L39N_7	U3	I/O
7	IO_L39P_7	IO_L39P_7	U4	I/O
7	IO_L40N_7/ VREF_7	IO_L40N_7/ VREF_7	U1	VREF
7	IO_L40P_7	IO_L40P_7	U2	I/O
7	N.C. (♠)	IO_L41N_7	G3	I/O

Table 37: FG1156 Package Pinout (Continued)

FG1156 Package Pinout (Continued)					
	XC3S4000	XC3S5000	Pin		
Bank	Pin Name	Pin Name	Number	Type	
7	N.C. (◆)	IO_L41P_7	G4	I/O	
7	N.C. (◆)	IO_L44N_7	L6	1/0	
7	N.C. (◆)	IO_L44P_7	L7	I/O	
7	IO_L45N_7	IO_L45N_7	M1	I/O	
7	IO_L45P_7	IO_L45P_7	M2	I/O	
7	IO_L46N_7	IO_L46N_7	N7	I/O	
7	IO_L46P_7	IO_L46P_7	N8	I/O	
7	N.C. (◆)	IO_L47N_7	P9	I/O	
7	N.C. (◆)	IO_L47P_7	P10	I/O	
7	IO_L49N_7	IO_L49N_7	P1	I/O	
7	IO_L49P_7	IO_L49P_7	P2	I/O	
7	IO_L50N_7	IO_L50N_7	R10	I/O	
7	IO_L50P_7	IO_L50P_7	R11	I/O	
7	N.C. (◆)	IO_L51N_7	U11	I/O	
7	N.C. (◆)	IO_L51P_7	T11	I/O	
7	VCCO_7	VCCO_7	D3	VCCO	
7	VCCO_7	VCCO_7	НЗ	vcco	
7	VCCO_7	VCCO_7	H7	VCCO	
7	VCCO_7	VCCO_7	L4	VCCO	
7	VCCO_7	VCCO_7	L8	VCCO	
7	VCCO_7	VCCO_7	N12	VCCO	
7	VCCO_7	VCCO_7	N2	VCCO	
7	VCCO_7	VCCO_7	N6	VCCO	
7	VCCO_7	VCCO_7	P12	VCCO	
7	VCCO_7	VCCO_7	R12	vcco	
7	VCCO_7	VCCO_7	R8	VCCO	
7	VCCO_7	VCCO_7	T12	VCCO	
7	VCCO_7	VCCO_7	T4	VCCO	
N/A	GND	GND	A1	GND	
N/A	GND	GND	A13	GND	
N/A	GND	GND	A16	GND	
N/A	GND	GND	A19	GND	
N/A	GND	GND	A2	GND	
N/A	GND	GND	A22	GND	
N/A	GND	GND	A26	GND	
N/A	GND	GND	A30	GND	
N/A	GND	GND	A33	GND	
N/A	GND	GND	A34	GND	
N/A	GND	GND	A5	GND	
N/A	GND	GND	A9	GND	
N/A	GND	GND	AA14	GND	

Table 37: FG1156 Package Pinout (Continued)

14576 577		age Pinout (C	FG1156	<u>/</u>
Donk	XC3S4000	XC3S5000 Pin Name	Pin Number	Turna
Bank	Pin Name			Type
N/A	GND	GND	AA15	GND
N/A	GND	GND	AA16	GND
N/A	GND	GND	AA17	GND
N/A	GND	GND	AA18	GND
N/A	GND	GND	AA19	GND
N/A	GND	GND	AA20	GND
N/A	GND	GND	AA21	GND
N/A	GND	GND	AB1	GND
N/A	GND	GND	AB17	GND
N/A	GND	GND	AB18	GND
N/A	GND	GND	AB26	GND
N/A	GND	GND	AB30	GND
N/A	GND	GND	AB34	GND
N/A	GND	GND	AB5	GND
N/A	GND	GND	AB9	GND
N/A	GND	GND	AD3	GND
N/A	GND	GND	AD32	GND
N/A	GND	GND	AE10	GND
N/A	GND	GND	AE25	GND
N/A	GND	GND	AF1	GND
N/A	GND	GND	AF13	GND
N/A	GND	GND	AF16	GND
N/A	GND	GND	AF19	GND
N/A	GND	GND	AF22	GND
N/A	GND	GND	AF30	GND
N/A	GND	GND	AF34	GND
N/A	GND	GND	AF5	GND
N/A	GND	GND	AH28	GND
N/A	GND	GND	AH7	GND
N/A	GND	GND	AK1	GND
N/A	GND	GND	AK13	GND
N/A	GND	GND	AK16	GND
N/A	GND	GND	AK19	GND
N/A	GND	GND	AK22	GND
N/A	GND	GND	AK26	GND
N/A	GND	GND	AK30	GND
N/A	GND	GND	AK34	GND
N/A	GND	GND	AK5	GND
N/A	GND	GND	AK9	GND
N/A	GND	GND	AM11	GND
N/A	GND	GND	AM24	GND

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
N/A	GND	GND	AM3	GND
N/A	GND	GND	AM32	GND
N/A	GND	GND	AN1	GND
N/A	GND	GND	AN2	GND
N/A	GND	GND	AN33	GND
N/A	GND	GND	AN34	GND
N/A	GND	GND	AP1	GND
N/A	GND	GND	AP13	GND
N/A	GND	GND	AP16	GND
N/A	GND	GND	AP19	GND
N/A	GND	GND	AP2	GND
N/A	GND	GND	AP22	GND
N/A	GND	GND	AP26	GND
N/A	GND	GND	AP30	GND
N/A	GND	GND	AP33	GND
N/A	GND	GND	AP34	GND
N/A	GND	GND	AP5	GND
N/A	GND	GND	AP9	GND
N/A	GND	GND	B1	GND
N/A	GND	GND	B2	GND
N/A	GND	GND	B33	GND
N/A	GND	GND	B34	GND
N/A	GND	GND	C11	GND
N/A	GND	GND	C24	GND
N/A	GND	GND	C3	GND
N/A	GND	GND	C32	GND
N/A	GND	GND	E1	GND
N/A	GND	GND	E13	GND
N/A	GND	GND	E16	GND
N/A	GND	GND	E19	GND
N/A	GND	GND	E22	GND
N/A	GND	GND	E26	GND
N/A	GND	GND	E30	GND
N/A	GND	GND	E34	GND
N/A	GND	GND	E5	GND
N/A	GND	GND	E9	GND
N/A	GND	GND	G28	GND
N/A	GND	GND	G7	GND
N/A	GND	GND	J1	GND
N/A	GND	GND	J13	GND
N/A	GND	GND	J16	GND

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 XC3S5000 Pin Name Pin Name		FG1156 Pin Number	Type
N/A	GND	GND	J19	GND
N/A	GND	GND	J22	GND
N/A	GND	GND	J30	GND
N/A	GND	GND	J34	GND
N/A	GND	GND	J5	GND
N/A	GND	GND	K10	GND
N/A	GND	GND	K25	GND
N/A	GND	GND	L3	GND
N/A	GND	GND	L32	GND
N/A	GND	GND	N1	GND
N/A	GND	GND	N17	GND
N/A	GND	GND	N18	GND
N/A	GND	GND	N26	GND
N/A	GND	GND	N30	GND
N/A	GND	GND	N34	GND
N/A	GND	GND	N5	GND
N/A	GND	GND	N9	GND
N/A	GND	GND	P14	GND
N/A	GND	GND	P15	GND
N/A	GND	GND	P16	GND
N/A	GND	GND	P17	GND
N/A	GND	GND	P18	GND
N/A	GND	GND	P19	GND
N/A	GND	GND	P20	GND
N/A	GND	GND	P21	GND
N/A	GND	GND	R14	GND
N/A	GND	GND	R15	GND
N/A	GND	GND	R16	GND
N/A	GND	GND	R17	GND
N/A	GND	GND	R18	GND
N/A	GND	GND	R19	GND
N/A	GND	GND	R20	GND
N/A	GND	GND	R21	GND
N/A	GND	GND	T1	GND
N/A	GND	GND	T14	GND
N/A	GND	GND	T15	GND
N/A	GND	GND	T16	GND
N/A	GND	GND	T17	GND
N/A	GND	GND	T18	GND
N/A	GND	GND	T19	GND
N/A	GND	GND	T20	GND

Table 37: FG1156 Package Pinout (Continued)

VC364000 VC36		V0005000	FG1156	
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Туре
N/A	GND	GND	T21	GND
N/A	GND	GND	T26	GND
N/A	GND	GND	T30	GND
N/A	GND	GND	T34	GND
N/A	GND	GND	T5	GND
N/A	GND	GND	T9	GND
N/A	GND	GND	U13	GND
N/A	GND	GND	U14	GND
N/A	GND	GND	U15	GND
N/A	GND	GND	U16	GND
N/A	GND	GND	U17	GND
N/A	GND	GND	U18	GND
N/A	GND	GND	U19	GND
N/A	GND	GND	U20	GND
N/A	GND	GND	U21	GND
N/A	GND	GND	U22	GND
N/A	GND	GND	V13	GND
N/A	GND	GND	V14	GND
N/A	GND	GND	V15	GND
N/A	GND	GND	V16	GND
N/A	GND	GND	V17	GND
N/A	GND	GND	V18	GND
N/A	GND	GND	V19	GND
N/A	GND	GND	V20	GND
N/A	GND	GND	V21	GND
N/A	GND	GND	V22	GND
N/A	GND	GND	W1	GND
N/A	GND	GND	W14	GND
N/A	GND	GND	W15	GND
N/A	GND	GND	W16	GND
N/A	GND	GND	W17	GND
N/A	GND	GND	W18	GND
N/A	GND	GND	W19	GND
N/A	GND	GND	W20	GND
N/A	GND	GND	W21	GND
N/A	GND	GND	W26	GND
N/A	GND	GND	W30	GND
N/A	GND	GND	W34	GND
N/A	GND	GND	W5	GND
N/A	GND	GND	W9	GND
N/A	GND	GND	Y14	GND

Table 37: FG1156 Package Pinout (Continued)

	FG1156		FG1156	
Donk	XC3S4000	XC3S5000	Pin	Toma
Bank	Pin Name	Pin Name	Number	Type
N/A	GND	GND	Y15	GND
N/A	GND	GND	Y16	GND
N/A	GND	GND	Y17	GND
N/A	GND	GND	Y18	GND
N/A	GND	GND	Y19	GND
N/A	GND	GND	Y20	GND
N/A	GND	GND	Y21	GND
N/A	N.C. (♠)	N.C. (■)	AK31	N.C.
N/A	VCCAUX	VCCAUX	AD30	VCCAUX
N/A	VCCAUX	VCCAUX	AD5	VCCAUX
N/A	VCCAUX	VCCAUX	AG16	VCCAUX
N/A	VCCAUX	VCCAUX	AG19	VCCAUX
N/A	VCCAUX	VCCAUX	AJ30	VCCAUX
N/A	VCCAUX	VCCAUX	AJ5	VCCAUX
N/A	VCCAUX	VCCAUX	AK11	VCCAUX
N/A	VCCAUX	VCCAUX	AK15	VCCAUX
N/A	VCCAUX	VCCAUX	AK20	VCCAUX
N/A	VCCAUX	VCCAUX	AK24	VCCAUX
N/A	VCCAUX	VCCAUX	AK29	VCCAUX
N/A	VCCAUX	VCCAUX	AK6	VCCAUX
N/A	VCCAUX	VCCAUX	E11	VCCAUX
N/A	VCCAUX	VCCAUX	E15	VCCAUX
N/A	VCCAUX	VCCAUX	E20	VCCAUX
N/A	VCCAUX	VCCAUX	E24	VCCAUX
N/A	VCCAUX	VCCAUX	E29	VCCAUX
N/A	VCCAUX	VCCAUX	E6	VCCAUX
N/A	VCCAUX	VCCAUX	F30	VCCAUX
N/A	VCCAUX	VCCAUX	F5	VCCAUX
N/A	VCCAUX	VCCAUX	H16	VCCAUX
N/A	VCCAUX	VCCAUX	H19	VCCAUX
N/A	VCCAUX	VCCAUX	L30	VCCAUX
N/A	VCCAUX	VCCAUX	L5	VCCAUX
N/A	VCCAUX	VCCAUX	R30	VCCAUX
N/A	VCCAUX	VCCAUX	R5	VCCAUX
N/A	VCCAUX	VCCAUX	T27	VCCAUX
N/A	VCCAUX	VCCAUX	T8	VCCAUX
N/A	VCCAUX	VCCAUX	W27	VCCAUX
N/A	VCCAUX	VCCAUX	W8	VCCAUX
N/A	VCCAUX	VCCAUX	Y30	VCCAUX
N/A	VCCAUX	VCCAUX	Y5	VCCAUX
N/A	VCCINT	VCCINT	AA13	VCCINT

Table 37: FG1156 Package Pinout (Continued)

	FG1156				
Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	Pin Number	Type	
				Type	
N/A	VCCINT	VCCINT	AA22	VCCINT	
N/A	VCCINT	VCCINT	AB13	VCCINT	
N/A	VCCINT	VCCINT	AB14	VCCINT	
N/A	VCCINT	VCCINT	AB15	VCCINT	
N/A	VCCINT	VCCINT	AB16	VCCINT	
N/A	VCCINT	VCCINT	AB19	VCCINT	
N/A	VCCINT	VCCINT	AB20	VCCINT	
N/A	VCCINT	VCCINT	AB21	VCCINT	
N/A	VCCINT	VCCINT	AB22	VCCINT	
N/A	VCCINT	VCCINT	AC12	VCCINT	
N/A	VCCINT	VCCINT	AC17	VCCINT	
N/A	VCCINT	VCCINT	AC18	VCCINT	
N/A	VCCINT	VCCINT	AC23	VCCINT	
N/A	VCCINT	VCCINT	M12	VCCINT	
N/A	VCCINT	VCCINT	M17	VCCINT	
N/A	VCCINT	VCCINT	M18	VCCINT	
N/A	VCCINT	VCCINT	M23	VCCINT	
N/A	VCCINT	VCCINT	N13	VCCINT	
N/A	VCCINT	VCCINT	N14	VCCINT	
N/A	VCCINT	VCCINT	N15	VCCINT	
N/A	VCCINT	VCCINT	N16	VCCINT	
N/A	VCCINT	VCCINT	N19	VCCINT	
N/A	VCCINT	VCCINT	N20	VCCINT	
N/A	VCCINT	VCCINT	N21	VCCINT	
N/A	VCCINT	VCCINT	N22	VCCINT	
N/A	VCCINT	VCCINT	P13	VCCINT	
N/A	VCCINT	VCCINT	P22	VCCINT	
N/A	VCCINT	VCCINT	R13	VCCINT	
N/A	VCCINT	VCCINT	R22	VCCINT	
N/A	VCCINT	VCCINT	T13	VCCINT	
N/A	VCCINT	VCCINT	T22	VCCINT	
N/A	VCCINT	VCCINT	U12	VCCINT	
N/A	VCCINT	VCCINT	U23	VCCINT	
N/A	VCCINT	VCCINT	V12	VCCINT	
N/A	VCCINT	VCCINT	V23	VCCINT	
N/A	VCCINT	VCCINT	W13	VCCINT	
N/A	VCCINT	VCCINT	W22	VCCINT	
N/A	VCCINT	VCCINT	Y13	VCCINT	
N/A	VCCINT	VCCINT	Y22	VCCINT	
VCCAUX	CCLK	CCLK	AL31	CONFIG	
VCCAUX	DONE	DONE	AD24	CONFIG	

Table 37: FG1156 Package Pinout (Continued)

Bank	XC3S4000 Pin Name	XC3S5000 Pin Name	FG1156 Pin Number	Туре
VCCAUX	HSWAP_EN	HSWAP_EN	L11	CONFIG
VCCAUX	MO	MO	AL4	CONFIG
VCCAUX	M1	M1	AK4	CONFIG
VCCAUX	M2	M2	AG8	CONFIG
VCCAUX	PROG_B	PROG_B	D4	CONFIG
VCCAUX	TCK	TCK	D31	JTAG
VCCAUX	TDI	TDI	E4	JTAG
VCCAUX	TDO	TDO	E31	JTAG
VCCAUX	TMS	TMS	H27	JTAG

User I/Os by Bank

Table 38 indicates how the available user-I/O pins are distributed between the eight I/O banks for the XC3S4000 in the FG1156 package. Similarly, Table 39 shows how the available user-I/O pins are distributed between the eight I/O banks for the XC3S5000 in the FG1156 package.

Table 38: User I/Os Per Bank for XC3S4000 in FG1156 Package

	I/O	Maximum	All Possible I/O Pins by Type				
Package Edge	Bank	I/O	I/O	DUAL	DCI	VREF	GCLK
Тор	0	90	79	0	2	7	2
юр	1	90	79	0	2	7	2
Dight	2	88	80	0	2	6	0
Right	3	88	79	0	2	7	0
Pottom	4	90	73	6	2	7	2
Bottom	5	90	73	6	2	7	2
1 - 4	6	88	79	0	2	7	0
Left	7	88	79	0	2	7	0

Table 39: User I/Os Per Bank for XC3S5000 in FG1156 Package

	I/O	Maximum	All Possible I/O Pins by Type											
Package Edge	Bank	I/O	I/O	DUAL	DCI	VREF	GCLK							
Ton	0	100	89	0	2	7	2							
Тор	1	100	89	0	2	7	2							
Diadat	2	96	87	0	2	7	0							
Right	3	96	87	0	2	7	0							
Bottom	4	100	83	6	2	7	2							
Bollom	5	100	83	6	2	7	2							
Left	6	96	87	0	2	7	0							
Leit	7	96	87	0	2	7	0							

FG1156 Footprint

Top Left Corner of Package (top view)

XC3S4000 (712 max. user I/O)

621 **I/O:** Unrestricted, general-purpose user I/O

VREF: User I/O or input voltage reference for bank

73 N.C.: Unconnected pins for XC3S4000 (♠)

XC3S5000

(784 max. user I/O)

692 **I/O:** Unrestricted, general-purpose user I/O

VREF: User I/O or input voltage reference for bank

N.C.: Unconnected pins for XC3S5000 (■)

Figure 16: FG1156 Package Footprint (top view)

			Bank 0															
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	A	GND	GND	I/O L01P_0 VRN_0	I/O L02P_0	GND	I/O L05P_0 VREF_0	I/O L34P_0 ◆	I/O L36P_0	GND	I/O L38P_0	I/O L40P_0 ◆	I/O L15P_0	GND	I/O L22P_0	I/O L26P_0 VREF_0	GND	I/O L32P_0 GCLK6
	В	GND	GND	I/O L01N_0 VRP_0	I/O L02N_0	I/O L03P_0	I/O L05N_0	I/O L34N_0 ◆	I/O L36N_0	I/O	I/O L38N_0	I/O L40N_0 ◆	I/O L15N_0	VCCO_0	I/O L22N_0	I/O L26N_0	I/O L28P_0	I/O L32N_0 GCLK7
	С	I/O L01N_7 VRP_7	I/O L01P_7 VRN_7	GND	VCCO_0	I/O L03N_0	I/O L04P_0	I/O L33P_0 ◆	VCCO_0	I/O L08P_0	I/O L37P_0	GND	I/O L14P_0	I/O L17P_0	I/O L21P_0	I/O L25P_0	I/O L28N_0	I/O L31P_0 VREF_0
	D	I/O L02N_7	I/O L02P_7	VCCO_7	PROG_B	IO VREF_0	I/O L04N_0	I/O L33N_0 ◆	I/O L35P_0	I/O L08N_0	I/O L37N_0	VCCO_0	I/O L14N_0	I/O L17N_0	I/O L21N_0	I/O L25N_0	VCCO_0	I/O L31N_0
	Ε	GND	I/O L03N_7 VREF_7	I/O L03P_7	TDI	GND	VCCAUX	I/O L06P_0	I/O L35N_0	GND	IO VREF_0	VCCAUX	I/O L13P_0	GND	I/O L20P_0	VCCAUX	GND	I/O
	F	I/O L05N_7	I/O L05P_7	I/O L04N_7	I/O L04P_7	VCCAUX	I/O	I/O L06N_0	I/O	I/O L07P_0	I/O L10P_0	I/O L39P_0 ◆	I/O L13N_0	VCCO_0	I/O L20N_0	I/O L24P_0	I/O L27P_0	I/O L30P_0
	G	I/O	I/O	I/O L41N_7 ◆	I/O L41P_7 ◆	I/O L06N_7	I/O L06P_7	GND	VCCO_0	I/O L07N_0	I/O L10N_0	I/O L39N_0 ◆	I/O	I/O L16P_0	I/O L19P_0	I/O L24N_0	I/O L27N_0	I/O L30N_0
	Н	I/O L08N_7	I/O L08P_7	VCCO_7	I/O L10P_7 VREF_7	I/O L07N_7	I/O L07P_7	VCCO_7	I/O	I/O	I/O L09P_0	VCCO_0	I/O L12P_0	I/O L16N_0	I/O L19N_0	VCCO_0	VCCAUX	I/O L29P_0
	J	GND	I/O L11N_7	I/O L11P_7	I/O L10N_7	GND	I/O L09N_7	I/O L09P_7	I/O L12P_7	I/O ◆	I/O L09N_0	I/O	I/O L12N_0	GND	IO VREF_0	I/O L23P_0	GND	I/O L29N_0
Bank 7	Κ	I/O L16N_7	I/O L16P_7 VREF_7	I/O L15N_7	I/O L15P_7	I/O L14N_7	I/O L14P_7	I/O L13N_7	I/O L13P_7	I/O L12N_7	GND	I/O ◆	I/O L11P_0	I/O	I/O L18P_0	I/O L23N_0	I/O	I/O
	L	I/O L19N_7 VREF_7	I/O L19P_7	GND	VCCO_7	VCCAUX	I/O L44N_7 ◆	I/O L44P_7 ◆	VCCO_7	I/O L17N_7	I/O L17P_7	HSWAP_ EN	I/O L11N_0	I/O	I/O L18N_0	IO VREF_0	I/O	I/O
	M	I/O L45N_7	I/O L45P_7	I/O L23N_7	I/O L23P_7	I/O L22N_7	I/O L22P_7	I/O L21N_7	I/O L21P_7	I/O L24P_7	I/O L20N_7	I/O L20P_7	VCCINT	VCCO_0	VCCO_0	VCCO_0	VCCO_0	VCCINT
	N	GND	VCCO_7	I/O L25N_7	I/O L25P_7	GND	VCCO_7	I/O L46N_7	I/O L46P_7	GND	I/O L24N_7	I/O L26P_7	VCCO_7	VCCINT	VCCINT	VCCINT	VCCINT	GND
	Ρ	I/O L49N_7	I/O L49P_7	I/O L29N_7	I/O L29P_7	I/O L28N_7	I/O L28P_7	I/O L27N_7	I/O L27P_7 VREF_7	I/O L47N_7 ◆	I/O L47P_7 ◆	I/O L26N_7	VCCO_7	VCCINT	GND	GND	GND	GND
	R	I/O L32N_7	I/O L32P_7	I/O L31N_7	I/O L31P_7	VCCAUX	I/O L30N_7	I/O L30P_7	VCCO_7	I/O L33P_7	I/O L50N_7	I/O L50P_7	VCCO_7	VCCINT	GND	GND	GND	GND
	Т	GND	I/O L35N_7	I/O L35P_7	VCCO_7	GND	I/O L34N_7	I/O L34P_7	VCCAUX	GND	I/O L33N_7	I/O L51P_7 ◆	VCCO_7	VCCINT	GND	GND	GND	GND
	U	I/O L40N_7 VREF_7	I/O L40P_7	I/O L39N_7	I/O L39P_7	I/O L38N_7	I/O L38P_7	I/O L37N_7	I/O L37P_7 VREF_7	I/O	I/O	I/O L51N_7 ◆	VCCINT	GND	GND	GND	GND	GND

DS099-4_14a_072903

All Devices

40

Top Right Corner of Package (top view)

DUAL: Configuration pin, then possible user I/O

CONFIG: Dedicated

VCCINT: Internal core voltage

configuration pins

supply (+1.2V)

- DCI: User I/O or reference 16 resistor input for bank
- JTAG: Dedicated JTAG port pins
- VCCAUX: Auxiliary voltage

supply (+2.5V)

for bank GND: Ground

104

184

buffer input

GCLK: User I/O or global clock

VCCO: Output voltage supply

18	19	20	21	22	23	24	Bank 1 25	l 26	27	28	29	30	31	32	33	34	
1/0	GND	I/O L40N_1	I/O L26N_1	GND	I/O L19N_1	I/O L15N_1	I/O L14N_1	GND	I/O L08N_1	I/O L34N_1	I/O L05N_1	GND	I/O L02N_1	I/O L01N_1 VRP_1	GND	GND	А
I/O L32N_1 GCLK5	I/O L28N_1	I/O L40P_1	I/O L26P_1	VCCO_1	I/O L19P_1	I/O L15P_1	I/O L14P_1	I/O	I/O L08P_1	I/O L34P_1	I/O L05P_1	I/O L03N_1	I/O L02P_1	I/O L01P_1 VRN 1	GND	GND	В
I/O L32P_1 GCLK4	I/O L28P_1	I/O L39N_1	I/O L25N_1	I/O L22N_1	I/O	GND	I/O L13N_1	I/O L10N_1 VREF_1	VCCO_1	I/O L33N_1	I/O L04N_1	I/O L03P_1	VCCO_1	GND	I/O L01N_2 VRP_2	I/O L01P_2 VRN_2	С
I/O L31N_1 VREF_1	VCCO_1	I/O L39P_1	I/O L25P_1	I/O L22P_1	I/O L18N_1	VCCO_1	I/O L13P_1	I/O L10P_1	I/O L07N_1	I/O L33P_1 ◆	I/O L04P_1	IO VREF_1	TCK	VCCO_2	I/O L02N_2	I/O L02P_2	D
I/O L31P_1	GND	VCCAUX	I/O	GND	I/O L18P_1	VCCAUX	I/O	GND	I/O L07P_1	I/O L06N_1 VREF_1	VCCAUX	GND	TDO	I/O L03N_2 VREF_2	I/O L03P_2	GND	E
I/O	I/O L27N_1	I/O L38N_1	I/O L24N_1	VCCO_1	I/O L17N_1 VREF_1	I/O L36N_1	I/O L12N_1	I/O L09N_1	I/O	I/O L06P_1	I/O	VCCAUX	I/O L04N_2	I/O L04P_2	I/O L41N_2	I/O L41P_2	F
I/O L30N_1	I/O L27P_1	I/O L38P_1	I/O L24P_1	I/O L21N_1	I/O L17P_1	I/O L36P_1 ◆	I/O L12P_1	I/O L09P_1	VCCO_1	GND	I/O L05N_2	I/O L05P_2	I/O L42N_2 ◆	I/O L42P_2 ◆	I/O	I/O	G
I/O L30P_1	VCCAUX	VCCO_1	I/O L23N_1	I/O L21P_1	I/O	VCCO_1	I/O L11N_1	I/O	TMS	VCCO_2	I/O L06N_2	I/O L06P_2	I/O L09N_2 VREF_2	VCCO_2	I/O L07N_2	I/O L07P_2	н
I/O L29N_1	GND	I/O L37N_1	I/O L23P_1	GND	I/O L16N_1	I/O L35N_1 ◆	I/O L11P_1	I/O •	I/O L11N_2	I/O L08N_2	I/O L08P_2	GND	I/O L09P_2	I/O L10N_2	I/O L10P_2	GND	J
I/O L29P_1	I/O	I/O L37P_1	IO VREF_1	I/O L20N_1	I/O L16P_1	I/O L35P_1 ◆	GND	I/O L11P_2	I/O L12N_2	I/O L12P_2	I/O L13N_2	I/O L13P_2 VREF_2	I/O L14N_2	I/O L14P_2	I/O L15N_2	I/O L15P_2	κ
IO VREF_1	I/O	I/O	I/O	I/O L20P_1	I/O ◆	I/O	I/O L16N_2	I/O L16P_2	VCCO_2	I/O L17N_2 ◆	I/O L17P_2 VREF_2 ◆	VCCAUX	VCCO_2	GND	I/O L45N_2	I/O L45P_2	L
VCCINT	VCCO_1	VCCO_1	VCCO_1	VCCO_1	VCCINT	I/O L46N_2	I/O L46P_2	I/O L21N_2	I/O L47N_2	I/O L47P_2	I/O L19N_2	I/O L19P_2	I/O L20N_2	I/O L20P_2	I/O L48N_2	I/O L48P_2	М
GND	VCCINT	VCCINT	VCCINT	VCCINT	VCCO_2	I/O L24N_2	I/O L21P_2	GND	I/O L22N_2	I/O L22P_2	VCCO_2	GND	I/O L23N_2 VREF_2	I/O L23P_2	VCCO_2	GND	N
GND	GND	GND	GND	VCCINT	VCCO_2	I/O L24P_2	I/O L49N_2 ◆	I/O L49P_2 ◆	I/O L50N_2	I/O L50P_2	I/O L26N_2	I/O L26P_2	I/O L27N_2	I/O L27P_2	I/O L28N_2	I/O L28P_2	Р
GND	GND	GND	GND	VCCINT	VCCO_2	I/O L29N_2	I/O L29P_2	I/O L33N_2	VCCO_2	I/O L30N_2	I/O L30P_2	VCCAUX	I/O L31N_2	I/O L31P_2	I/O L32N_2	I/O L32P_2	R
GND	GND	GND	GND	VCCINT	VCCO_2	I/O L51N_2 ◆	I/O L33P_2	GND	VCCAUX	I/O L34N_2 VREF_2	I/O L34P_2	GND	VCCO_2	I/O L35N_2	I/O L35P_2	GND	т
GND	GND	GND	GND	GND	VCCINT	I/O L51P_2 ◆	I/O	I/O	I/O L37N_2	I/O L37P_2	I/O L38N_2	I/O L38P_2	I/O L39N_2	I/O L39P_2	I/O L40N_2	I/O L40P_2 VREF_2	U

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	٧	I/O L40P_6 VREF_6	I/O L40N_6	I/O L39P_6	I/O L39N_6	I/O L38P_6	I/O L38N_6	I/O L52P_6	I/O L52N_6	I/O	I/O	I/O L49P_6 ◆	VCCINT	GND	GND	GND	GND	GND
	w	GND	I/O L37P_6	I/O L37N_6	VCCO_6	GND	I/O L36P_6	I/O L36N_6	VCCAUX	GND	I/O L35P_6	I/O L49N_6 ◆	VCCO_6	VCCINT	GND	GND	GND	GND
	Y	I/O L34P_6	I/O L34N_6 VREF_6	I/O L33P_6	I/O L33N_6	VCCAUX	I/O L48P_6	I/O L48N_6	VCCO_6	I/O L35N_6	I/O L32P_6	I/O L32N_6	VCCO_6	VCCINT	GND	GND	GND	GND
	A	I/O L31P_6	I/O L31N_6	I/O L30P_6	I/O L30N_6	I/O L29P_6	I/O L29N_6	I/O L28P_6	I/O L28N_6	I/O L46P_6 ◆	I/O L46N_6 ◆	I/O L27P_6	VCCO_6	VCCINT	GND	GND	GND	GND
	A B	GND	VCCO_6	I/O L26P_6	I/O L26N_6	GND	VCCO_6	I/O L25P_6	I/O L25N_6	GND	I/O L24P_6	I/O L27N_6	VCCO_6	VCCINT	VCCINT	VCCINT	VCCINT	GND
	A	I/O L23P_6	I/O L23N_6	I/O L45P_6	I/O L45N_6	I/O L22P_6	I/O L22N_6	I/O L21P_6	I/O L21N_6	I/O L24N_6 VREF_6	I/O L20P_6	I/O L20N_6	VCCINT	VCCO_5	VCCO_5	VCCO_5	VCCO_5	VCCINT
	A	I/O L19P_6	I/O L19N_6	GND	VCCO_6	VCCAUX	I/O L44P_6 ◆	I/O L44N_6 ◆	VCCO_6	I/O L17P_6 VREF_6	I/O L17N_6	I/O	I/O •	I/O L16P_5	I/O	I/O	I/O	I/O
Bank 6	A	I/O L16P_6	I/O L16N_6	I/O L15P_6	I/O L15N_6	I/O L14P_6	I/O L14N_6	I/O L13P_6 VREF_6	I/O L13N_6	I/O L12P_6	GND	I/O L39P_5 ◆	I/O L12P_5	I/O L16N_5	I/O	I/O L23P_5	I/O	I/O L29P_5 VREF_5
_	A F	GND	I/O L11P_6	I/O L11N_6	I/O L10P_6	GND	I/O L09P_6	I/O L09N_6 VREF_6	I/O L12N_6	I/O •	I/O L07P_5	I/O L39N_5 ◆	I/O L12N_5	GND	I/O L19P_5 VREF_5	I/O L23N_5	GND	I/O L29N_5
	A G	I/O L08P_6	I/O L08N_6	VCCO_6	I/O L10N_6	I/O L07P_6	I/O L07N_6	VCCO_6	M2	I/O	I/O L07N_5	VCCO_5	I/O	I/O L17P_5	I/O L19N_5	VCCO_5	VCCAUX	I/O L30P_5
	A	I/O	I/O	I/O L41P_6 ◆	I/O L41N_6 ◆	I/O L06P_6	I/O L06N_6	GND	VCCO_5	I/O L37P_5	I/O L08P_5	I/O L40P_5 ◆	I/O L13P_5	I/O L17N_5	I/O L20P_5	I/O L24P_5	I/O L27P_5	I/O L30N_5
	A	I/O L05P_6	I/O L05N_6	I/O L04P_6	I/O L04N_6	VCCAUX	I/O	I/O L06P_5	IO VREF_5	I/O L37N_5	I/O L08N_5	I/O L40N_5 ◆	I/O L13N_5	VCCO_5	I/O L20N_5	I/O L24N_5	I/O L27N_5 VREF_5	I/O
	A K	GND	I/O L03P_6	I/O L03N_6 VREF_6	М1	GND	VCCAUX	I/O L06N_5	I/O L35P_5	GND	1/0	VCCAUX	I/O L14P_5	GND	I/O	VCCAUX	GND	I/O L31P_5 D5
	A	I/O L02P_6	I/O L02N_6	VCCO_6	МО	IO VREF_5	I/O L04P_5	I/O L33P_5 ◆	I/O L35N_5	I/O L38P_5	I/O L09P_5	VCCO_5	I/O L14N_5	I/O L18P_5	I/O L21P_5	I/O L25P_5	VCCO_5	I/O L31N_5 D4
	A M	I/O L01P_6 VRN_6	I/O L01N_6 VRP_6	GND	VCCO_5	I/O L03P_5	I/O L04N_5	I/O L33N_5 ◆	VCCO_5	I/O L38N_5	I/O L09N_5	GND	I/O	I/O L18N_5	I/O L21N_5	I/O L25N_5	I/O L28P_5 D7	I/O L32P_5 GCLK2
	A N	GND	GND	I/O L01P_5 CS_B	I/O L02P_5	I/O L03N_5	I/O L05P_5	I/O L34P_5 ◆	I/O L36P_5	I/O	I/O L10P_5 VRN_5	I/O L11P_5	I/O L15P_5	VCCO_5	I/O L22P_5	I/O L26P_5	I/O L28N_5 D6	I/O L32N_5 GCLK3
	A P	GND	GND	I/O L01N_5 RDWR_B	I/O L02N_5	GND	I/O L05N_5	I/O L34N_5 ◆	I/O L36N_5	GND	I/O L10N_5 VRP_5	I/O L11N_5 VREF_5	I/O L15N_5	GND	I/O L22N_5	I/O L26N_5	GND	IO VREF_5
					Bank 5											_14c_072503		

Bottom Left Corner of Package (top view)

18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	
GND	GND	GND	GND	GND	VCCINT	I/O L51N_3 ◆	I/O	I/O	I/O L37P_3	I/O L37N_3	I/O L38P_3	I/O L38N_3	I/O L39P_3	I/O L39N_3	I/O L40P_3	I/O L40N_3 VREF_3	v
GND	GND	GND	GND	VCCINT	VCCO_3	I/O L51P_3 ◆	I/O L33N_3	GND	VCCAUX	I/O L34P_3 VREF_3	I/O L34N_3	GND	VCCO_3	I/O L35P_3	I/O L35N_3	GND	w
GND	GND	GND	GND	VCCINT	VCCO_3	I/O L50P_3	I/O L50N_3	I/O L33P_3	VCCO_3	I/O L30P_3	I/O L30N_3	VCCAUX	I/O L31P_3	I/O L31N_3	I/O L32P_3	I/O L32N_3	Y
GND	GND	GND	GND	VCCINT	VCCO_3	I/O L48N_3	I/O L49P_3 ◆	I/O L49N_3	I/O L26P_3	I/O L26N_3	I/O L27P_3	I/O L27N_3	I/O L28P_3	I/O L28N_3	I/O L29P_3	I/O L29N_3	A A
GND	VCCINT	VCCINT	VCCINT	VCCINT	VCCO_3	I/O L48P_3	I/O L24N_3	GND	I/O L46P_3	I/O L46N_3	VCCO_3	GND	I/O L47P_3	I/O L47N_3	VCCO_3	GND	A B
VCCINT	VCCO_4	VCCO_4	VCCO_4	VCCO_4	VCCINT	I/O L20P_3	I/O L20N_3	I/O L24P_3	I/O L21P_3	I/O L21N_3	I/O L22P_3	I/O L22N_3	I/O L23P_3 VREF_3	I/O L23N_3	I/O L45P_3	I/O L45N_3	A C
I/O	I/O	I/O	I/O L18N_4	I/O	I/O L11N_4	DONE	I/O L17P_3 VREF_3	I/O L17N_3	VCCO_3	I/O L44P_3 ◆	I/O L44N_3 ◆	VCCAUX	VCCO_3	GND	I/O L19P_3	I/O L19N_3	A D
I/O	I/O	I/O L23N_4	I/O L18P_4	I/O	I/O L11P_4	I/O •	GND	I/O L12N_3	I/O L13P_3	I/O L13N_3 VREF_3	I/O L14P_3	I/O L14N_3	I/O L15P_3	I/O L15N_3	I/O L16P_3	I/O L16N_3	шъ Bank 3
I/O L29N_4	GND	I/O L23P_4	IO VREF_4	GND	I/O L12N_4	I/O	I/O L07N_4	I/O •	I/O L12P_3	I/O L09P_3 VREF_3	I/O L09N_3	GND	I/O L10N_3	I/O L11P_3	I/O L11N_3	GND	A F
I/O L29P_4	VCCAUX	VCCO_4	I/O L19N_4	I/O L16N_4	I/O L12P_4	VCCO_4	I/O L07P_4	I/O	I/O	VCCO_3	I/O L07P_3	I/O L07N_3	I/O L10P_3	VCCO_3	I/O L08P_3	I/O L08N_3	A G
I/O L30N_4 D2	I/O L27N_4 DIN D0	I/O L24N_4	I/O L19P_4	I/O L16P_4	IO VREF_4	I/O L39N_4 ◆	I/O L08N_4	I/O L05N_4	VCCO_4	GND	I/O L06P_3	I/O L06N_3	I/O L41P_3	I/O L41N_3 ◆	I/O	I/O	A H
I/O L30P_4 D3	I/O L27P_4 D1	I/O L24P_4	I/O L20N_4	VCCO_4	I/O L13N_4	I/O L39P_4 ◆	I/O L08P_4	I/O L05P_4	I/O	I/O L35N_4	I/O	VCCAUX	I/O L04P_3	I/O L04N_3	I/O L05P_3	I/O L05N_3	A J
IO VREF_4	GND	VCCAUX	I/O L20P_4	GND	I/O L13P_4	VCCAUX	I/O	GND	I/O L38N_4	I/O L35P_4	VCCAUX	GND	N.C. ◆	I/O L03P_3	I/O L03N_3	GND	A K
I/O L31N_4 INIT_B	VCCO_4	I/O L25N_4	I/O L21N_4	I/O L17N_4	I/O L14N_4	VCCO_4	I/O L09N_4	I/O L06N_4 VREF_4	I/O L38P_4	I/O L36N_4	I/O L33N_4	IO VREF_4	CCLK	VCCO_3	I/O L02P_3	I/O L02N_3 VREF_3	A L
I/O L31P_4 DOUT BUSY	I/O L28N_4	I/O L25P_4	I/O L21P_4	I/O L17P_4	I/O L14P_4	GND	I/O L09P_4	I/O L06P_4	VCCO_4	I/O L36P_4 ◆	I/O L33P_4	I/O L03N_4	VCCO_4	GND	I/O L01P_3 VRN_3	I/O L01N_3 VRP_3	A M
I/O L32N_4 GCLK1	I/O L28P_4	I/O L26N_4	I/O L22N_4 VREF_4	VCCO_4	I/O L15N_4	I/O L40N_4 ◆	I/O L10N_4	I/O	I/O L04N_4	I/O L37N_4 ◆	I/O L34N_4	I/O L03P_4	I/O L02N_4	I/O L01N_4 VRP_4	GND	GND	A N
I/O L32P_4 GCLK0	GND	I/O L26P_4 VREF_4	I/O L22P_4	GND	I/O L15P_4	I/O L40P_4 ◆	I/O L10P_4	GND	I/O L04P_4	I/O L37P_4 ◆	I/O L34P_4	GND	I/O L02P_4	I/O L01P_4 VRN_4	GND	GND	A P
	Bank 4											DS099-4_14d_072903					

Bottom Right Corner of Package (top view)

Revision History

Date	Version No.	Description
04/03/03	1.0	Initial Xilinx release.
04/21/03	1.1	Added information on the VQ100 package footprint, including a complete pinout table (Table 16) and footprint diagram (Figure 8).
		Updated Table 15 with final I/O counts for the VQ100 package. Also added final differential I/O pair counts for the TQ144 package.
		Added clarifying comments to HSWAP_EN pin description on page 13.
		Updated the footprint diagram for the FG900 package shown in Figure 15a and Figure 15b. Some thick lines separating I/O banks were incorrect.
		Made cosmetic changes to Figure 1, Figure 3, and Figure 4.
		Updated Xilinx hypertext links.
		Added XC3S200 and XC3S400 to Pin Name column in Table 18.
05/12/03	1.1.1	AM32 pin was missing GND label in FG1156 package diagram (Figure 16).
07/11/03	1.1.2	Corrected misspellings of GCLK in Table 1 and Table 2. Changed CMOS25 to LVCMOS25 in Dual-Purpose Pin I/O Standard During Configuration section. Clarified references to Module 2. For XC3S5000 in FG1156 package, corrected N.C. symbol to a black square in Table 37, key, and package drawing.
07/29/03	1.2	Corrected pin names on FG1156 package. Some package balls incorrectly included LVDS pair names. The affected balls on the FG1156 package include G1, G2, G33, G34, U9, U10, U25, U26, V9, V10, V25, V26, AH1, AH2, AH33, AH34. The number of LVDS pairs is unaffected. Modified affected balls and re-sorted rows in Table 37. Updated affected balls in Figure 16. Also updated ASCII and Excel electronic versions of FG1156 pinout.
08/19/03	1.2.1	Removed 100 MHz ConfigRate option in CCLK: Configuration Clock section and in Table 11. Added note that TDO is a totem-pole output in Table 9.
10/09/03	1.2.2	Some pins had incorrect bank designations and were improperly sorted in Table 20. No pin names or functions changed. Renamed DCI_IN to DCI and added black diamond to N.C. pins in Table 20. In Figure 10, removed some extraneous text from pin 106 and corrected spelling of pins 45, 48, and 81.
12/17/03	1.3	Added FG320 pin tables and pinout diagram (FG320: 320-lead Fine-pitch Ball Grid Array). Made cosmetic changes to the TQ144 footprint (Figure 9), the PQ208 footprint (Figure 10), the FG676 footprint (Figure 14), and the FG900 footprint (Figure 15). Clarified wording in Precautions When Using the JTAG Port in 3.3V Environments section.
02/27/04	1.4	Clarified wording in Using JTAG Port After Configuration section. In Table 12 , reduced package height for FG320 and increased maximum I/O values for the FG676, FG900, and FG1156 packages.

The Spartan-3 Family Data Sheet

DS099-1, Spartan-3 FPGA Family: Introduction and Ordering Information (Module 1)

DS099-2, Spartan-3 FPGA Family: Functional Description (Module 2)

DS099-3, Spartan-3 FPGA Family: DC and Switching Characteristics (Module 3)

DS099-4, Spartan-3 FPGA Family: Pinout Descriptions (Module 4)

