تمرین سری ٥

Sign of M, equivalent inductance

- 3. The magnetic coupling between two linear time-invariant inductors is provided by a core as shown in Fig. P8.3. The values of the self-inductances are $L_{11} = 2$ henrys and $L_{22} = 3$ henrys, and the mutual inductance is M = 1 henry.
- a. Calculate the equivalent inductance between terminals (1) and (2) when (1) and (2) are tied together.
- b. Calculate the equivalent inductance between terminals (1) and (2) when (1) and (2) are tied together.
- c. Suggest a procedure for measuring the mutual inductance between windings using only an inductance bridge.

Fig. P8.3

Inductance matrix, equivalent two-ports The inductors in the circuits shown in Fig. P8.4 are linear and timeinvariant.

Fig. P8.4

- Obtain the inductance matrix for each circuit.
- b. Show that if $L_c = M$, circuits (a) and (b) have the same inductance matrix.
- c. How should L'_a and n_1/n_2 be related with L_a and M so that circuits (a) and (c) have the same inductance matrix?

Mesh analysis

5. The circuit shown in Fig. P8.5 is in sinusoidal steady state, where the input is a voltage source $e_s(t) = \cos(2t + 30^\circ)$. Determine the steady-state currents i_1 and i_2 .

Fig. P8.5

Node analysis

6. Write the node equations for the circuit shown in Fig. P8.6. If $i_s(t) = \cos t$, determine the sinusoidal steady-state voltage $v_2(t)$.

Fig. P8.6

Energy stored

8. In the circuit of Prob. 7, assume that i_8 is a constant current source and $i_1 = 2$, $i_2 = 1$, and $i_3 = -3$ amp. What is the energy stored in the inductors?

$$L = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 4 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

Fig. P8.7

Defining equations of ideal transformer

- a. Determine the equivalent resistance of the one-port shown in Fig. P8.11.
 - Repeat the problem when points a and a' are connected by a short circuit.

Fig. P8.11

Driving-point and transfer properties of ideal transformer 12. For the circuits shown in Fig. P8.12, calculate [using (a)] the impedances

$$Z_{11}(j\omega) = \frac{V_1}{I_1}$$
 and $Z_{21}(j\omega) = \frac{V_2}{I_1}$

and [using (b)] the impedances

$$Z_{22}(j\omega) = \frac{V_2}{I_2}$$
 and $Z_{12}(j\omega) = \frac{V_1}{I_2}$

where V_1 and V_2 are phasors that represent the sinusoidal output voltages $v_1(t)$ and $v_2(t)$, respectively, and I_1 and I_2 are phasors that represent the sinusoidal input currents $i_1(t)$ and $i_2(t)$, respectively. Note that in (a), terminals (2) and (2) are left open-circuited, and in (b) terminals (1) and (1) are left open-circuited.

Fig. P8.12