```
#logistic regression sigmoid plot
#import library
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# Define the logistic function
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Define the range of the x-axis
x = np.arange(-10, 10, 0.1)
х
    array([-1.00000000e+01, -9.90000000e+00, -9.80000000e+00, -9.70000000e+00,
             -9.60000000e+00, -9.50000000e+00, -9.40000000e+00, -9.30000000e+00,
            -9.20000000e+00, -9.10000000e+00, -9.00000000e+00, -8.90000000e+00,
            -8.80000000e+00, -8.70000000e+00, -8.60000000e+00, -8.50000000e+00,
            -8.40000000e+00, -8.30000000e+00, -8.20000000e+00, -8.10000000e+00,
            -8.00000000e+00, -7.90000000e+00, -7.80000000e+00, -7.700000000e+00,
            -7.60000000e+00, -7.50000000e+00, -7.40000000e+00, -7.30000000e+00,
            -7.20000000e+00, -7.10000000e+00, -7.00000000e+00, -6.90000000e+00,
            -6.80000000e+00, -6.70000000e+00, -6.60000000e+00, -6.50000000e+00,
            -6.40000000e+00, -6.30000000e+00, -6.20000000e+00, -6.10000000e+00,
            -6.00000000e+00, -5.90000000e+00, -5.80000000e+00, -5.70000000e+00,
            -5.60000000e+00, -5.50000000e+00, -5.40000000e+00, -5.30000000e+00,
            -5.20000000e+00, -5.10000000e+00, -5.00000000e+00, -4.90000000e+00,
            -4.80000000e+00, -4.70000000e+00, -4.60000000e+00, -4.50000000e+00,
            -4.40000000e+00, -4.30000000e+00, -4.20000000e+00, -4.10000000e+00,
            -4.00000000e+00, -3.90000000e+00, -3.80000000e+00, -3.70000000e+00,
            -3.60000000e+00, -3.50000000e+00, -3.40000000e+00, -3.30000000e+00,
            -3.20000000e+00, -3.10000000e+00, -3.00000000e+00, -2.90000000e+00,
            -2.80000000e+00, -2.70000000e+00, -2.60000000e+00, -2.50000000e+00,
            -2.40000000e+00, -2.30000000e+00, -2.20000000e+00, -2.10000000e+00,
            -2.00000000e+00, -1.90000000e+00, -1.80000000e+00, -1.70000000e+00,
            -1.60000000e+00, -1.50000000e+00, -1.40000000e+00, -1.30000000e+00,
            -1.20000000e+00, -1.10000000e+00, -1.00000000e+00, -9.00000000e-01,
            -8.00000000e-01, -7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
            -4.0000000e-01, -3.0000000e-01, -2.00000000e-01, -1.00000000e-01,
            -3.55271368e-14, 1.00000000e-01, 2.00000000e-01, 3.00000000e-01,
                                                6.00000000e-01,
                                                                 7.00000000e-01,
             4.00000000e-01,
                              5.00000000e-01,
             8.00000000e-01,
                              9.00000000e-01,
                                                1.00000000e+00,
                                                                 1.10000000e+00,
             1.20000000e+00,
                              1.30000000e+00,
                                                1.40000000e+00,
                                                                 1.50000000e+00,
             1.60000000e+00.
                              1.70000000e+00.
                                                1.80000000e+00.
                                                                 1,90000000e+00.
             2.00000000e+00,
                              2.10000000e+00,
                                                2.20000000e+00,
                                                                 2.30000000e+00,
             2.40000000e+00.
                              2.50000000e+00.
                                                2,60000000e+00,
                                                                 2.70000000e+00.
                                                                 3.10000000e+00.
             2.800000000+00.
                              2.900000000+00.
                                                3.000000000+00.
             3.20000000e+00,
                               3.30000000e+00,
                                                3.40000000e+00,
                                                                 3.50000000e+00.
             3.60000000e+00,
                              3.70000000e+00,
                                                3.80000000e+00,
                                                                 3.90000000e+00,
             4.00000000e+00,
                              4.10000000e+00,
                                                4.20000000e+00,
                                                                 4.30000000e+00,
             4.40000000e+00,
                              4.50000000e+00.
                                                4.60000000e+00,
                                                                 4.70000000e+00.
             4.80000000e+00,
                              4.90000000e+00,
                                                5.00000000e+00,
                                                                 5.10000000e+00,
             5.20000000e+00.
                               5.30000000e+00,
                                                5.40000000e+00.
                                                                 5.50000000e+00.
             5.60000000e+00.
                               5.70000000e+00.
                                                5.80000000e+00.
                                                                 5.90000000e+00.
                                                                 6.30000000e+00,
             6.00000000e+00,
                              6.10000000e+00,
                                                6.20000000e+00,
             6.40000000e+00,
                               6.50000000e+00,
                                                6.60000000e+00,
                                                                 6.70000000e+00,
             6.80000000e+00,
                              6.90000000e+00,
                                                7.00000000e+00,
                                                                 7.10000000e+00,
             7.20000000e+00,
                              7.30000000e+00,
                                                7.400000000+00.
                                                                 7.50000000e+00.
             7.60000000e+00,
                              7.70000000e+00,
                                                7.80000000e+00,
                                                                 7.90000000e+00,
             8.00000000e+00,
                               8.10000000e+00,
                                                8.20000000e+00,
                                                                 8.30000000e+00,
                                                                 8.700000000+00.
             8.400000000+00.
                              8.500000000+00.
                                                8.600000000+00.
             8.80000000e+00,
                              8.90000000e+00,
                                                9.00000000e+00,
                                                                 9.10000000e+00,
                                                                 9.50000000e+00,
             9.20000000e+00.
                              9.30000000e+00.
                                                9.40000000e+00,
             9.60000000e+00.
                                                                 9.90000000e+001)
                              9.70000000e+00.
                                                9.80000000e+00,
# Plot the sigmoid function
plt.plot(x, sigmoid(x), color='blue')
plt.xlabel("x")
plt.ylabel("sigmoid(x)")
plt.title("Sigmoid Function")
```

Text(0.5, 1.0, 'Sigmoid Function')

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv"
data = pd.read_csv(url, sep=';')
data

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sι
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	
4893	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	
4894	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	
4895	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	
4896	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	
4897	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26	
4										•

```
# This example assumes that the dataset has already been preprocessed
```

```
# Calculate the y-values for the sigmoid plot
y_output = sigmoid(x_input)
```

```
# Create the plot
plt.plot(x_input, y_output)
# Set the plot title and labels
plt.title("Logistic Plot for Fixed Acidity")
plt.xlabel("Fixed Acidity")
plt.ylabel("Output")
# Show the plot
plt.show()
```

[#] and is available as a pandas dataframe called "data"

[#] x_input is the input feature that we want to use for the sigmoid plot

x_input = data['fixed acidity']

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
wine_data = pd.read_csv(url, sep=';')
wine_data

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1599 rows × 12 columns

```
\ensuremath{\text{\#}} Define the features and target variable
```

X = wine_data.iloc[:,:-1].values ##slicin function
x

```
array([[ 7.4 , 0.7 , 0. , ..., 3.51 , 0.56 , 9.4 ],
        [ 7.8 , 0.88 , 0. , ..., 3.2 , 0.68 , 9.8 ],
        [ 7.8 , 0.76 , 0.04 , ..., 3.26 , 0.65 , 9.8 ],
        ...,
        [ 6.3 , 0.51 , 0.13 , ..., 3.42 , 0.75 , 11. ],
        [ 5.9 , 0.645, 0.12 , ..., 3.57 , 0.71 , 10.2 ],
        [ 6. , 0.31 , 0.47 , ..., 3.39 , 0.66 , 11. ]])
```

Calculate the y-values for the sigmoid plot $y_{output} = sigmoid(X)$

plt.plot(X,y_output)

 $X = wine_data.iloc[:,:-1].values$

y = wine_data.iloc[:, -1].values

Colab paid products - Cancel contracts here