1	CLAIMS
2	1. An integrated circuit comprising:
3	a first three-terminal device of a first type; and
4	a second three-terminal device of the first type, a first terminal of the second three-
5	terminal device electrically coupled to a first terminal of the first three-terminal device, and a
6	second terminal of the second three-terminal device electrically coupled to a second terminal of
7	the first three-terminal device,
8	wherein:
9	a reference current applied to a third terminal of the second three-terminal device
10	generates a control voltage applied to the second terminals of the first and second three-terminal
11	devices;
12	where the control voltage is a function of comparing an output voltage at the third
13	terminal of the second three-terminal device to a reference voltage; and
14	the reference current is derived from the reference voltage and a reference
15	resistance.
1	2. The integrated circuit of claim 1 wherein:
2	the second three-terminal device has a different output impedance than the first three-
3	terminal device.
1	3. The integrated circuit of claim 2 wherein:
2	the second three-terminal device has a larger output impedance than the first three-
3	terminal device.

2	a supply voltage electrically coupled to the first terminals of the first and second three-
3	terminal devices.
1	5. The integrated circuit of claim 1 wherein:
2	the second terminal of the first three-terminal device is a first control terminal for the first
3	three-terminal device; and
4	the second terminal of the second three-terminal device is a second control terminal for
5	the second three-terminal device.
1	6. The integrated circuit of claim 1 further comprising:
2	a first resistor coupled to a third terminal of the first three-terminal device;
3	a second resistor coupled to the third terminal of the second three-terminal device; and
4	an output of the integrated circuit coupled to the first resistor,
5	wherein:
6	the reference current is applied to the third terminal of the second three-terminal
7	device through the second resistor; and
8	the output voltage at the third terminal of the second three-terminal device is
9	measured from the second resistor.

4. The integrated circuit of claim 1 further comprising:

1

1	7. The integrated circuit of claim 6 wherein:
2	an output impedance at the output of the integrated circuit comprises an output
3	impedance of the first three-terminal device and an impedance of the first resistor.
1	8. The integrated circuit of claim 7 wherein:
2	the impedance of the first resistor is greater than the output impedance of the first three-
3	terminal device.
1	9. The integrated circuit of claim 8 wherein:
2	the output impedance of the integrated circuit is substantially linear across an operating
3	range of an output voltage at the output of the integrated circuit.
1	10. The integrated circuit of claim 1 further comprising:
2	an output of the integrated circuit coupled to a third terminal of the first three-terminal
3	device; and
4	a capacitor coupling the second terminals of the first and second three-terminal devices to
5	the output of the integrated circuit.
1	11. The integrated circuit of claim 10 wherein:
2	the capacitor controls a slew rate of an output voltage at the output of the integrated
3	circuit.
1	

12. The integrated circuit of claim 1 further comprising:

a third three-terminal device of the first type, a first terminal of the third three-terminal device electrically coupled to the first terminals of the first and second three-terminal devices, a second terminal of the third three-terminal device removably and electrically coupled to the first and second terminals of the first and second three-terminal devices, and a third terminal of the third three-terminal device electrically coupled to a third terminal of the first three-terminal device; and

a fourth three-terminal device of the first type, a first terminal of the fourth three-terminal device electrically coupled to the first terminals of the first, second, and third three-terminal devices, a second terminal of the fourth three-terminal device removably and electrically coupled to the first terminals of the first, second, and third three-terminal devices and to the second terminals of the first and second three-terminal devices.

13. The integrated circuit of claim 1 further comprising:

an output of the integrated circuit coupled to a third terminal of the first three-terminal device;

a third three-terminal device of the first type, a first terminal of the third three-terminal device coupled to a third terminal of the second three-terminal device, and a third terminal of the third three-terminal device coupled to the second terminals of the first and second three-terminal devices;

an amplifier comprising two inputs and an output, a first one of the two inputs coupled to the third terminal of the second three-terminal device and to the first terminal of the third three-

terminal device, the output coupled to a second terminal of the third three-terminal device, and a 10 second one of the two inputs coupled to the reference voltage; and 11 a current source providing the reference current and coupled to the third terminal of the 12 third three-terminal device and to the second terminals of the first and second three-terminal 13 14 devices. 14. The integrated circuit of claim 13 further comprising: 1 a first resistor coupling the output of the integrated circuit to the third terminal of the first 2 3 three-terminal device; and a second resistor coupling the third terminal of the second three-terminal device to the 4 first one of the two inputs of the amplifier and to the first terminal of the third three-terminal 5 6 device. 7 wherein: the reference current is applied to the third terminal of the second three-terminal 8 device through the second resistor and through the third three-terminal device; and 9 the output voltage at the third terminal of the second three-terminal device is 10 11 measured from the second resistor. 15. The integrated circuit of claim 13 further comprising: 1 a capacitor coupling the second terminals of the first and second three-terminal devices, 2

the third terminal of the third three-terminal devices, and the current source to the output of the

3

4

integrated circuit.

1	16. The integrated circuit of claim 15 wherein:
2	the capacitor controls a slew rate of an output voltage at the output of the integrated
3	circuit.
1	17. The integrated circuit of claim 13 further comprising:
2	a first resistor coupling the output of the integrated circuit to the third terminal of the first
3	three-terminal device;
4	a second resistor coupling the third terminal of the second three-terminal device to the
5	first one of the two inputs of the amplifier and to the first terminal of the third three-terminal
6	device; and
7	a capacitor coupling the second terminals of the first and second three-terminal devices,
8	the third terminal of the third three-terminal devices, and the current source to the output of the
9	integrated circuit and to the first resistor;
0	wherein:
1	the reference current is applied to the third terminal of the second three-terminal
12	device through the second resistor and through the third three-terminal device;
13	the output voltage at the third terminal of the second three-terminal device is
14	measured from the second resistor; and
15	the capacitor controls a slew rate of an output voltage at the output of the
16	integrated circuit.

1	18. The integrated circuit of claim 1 further comprising:
2	an output of the integrated circuit coupled to a third terminal of the first three-terminal
3	device;
4	an amplifier comprising two inputs and an output, a first one of the two inputs coupled to
5	a third terminal of the second three-terminal device, a second one of the two inputs coupled to
6	the reference voltage, and the output coupled to the second terminals of the first and second
7	three-terminal devices; and
8	a current source providing the reference current and coupled to the first one of the two
9	inputs of the amplifier and to the third terminal of the second three-terminal device.
1	19. The integrated circuit of claim 18 further comprising:
2	a first resistor coupling the output of the integrated circuit to the third terminal of the first
3	three-terminal device; and
4	a second resistor coupling the third terminal of the second three-terminal device to the
5	first one of the two inputs of the amplifier and to the current source,
6	wherein:
7	the reference current is applied to the third terminal of the second three-terminal
8	device through the second resistor; and
9	the output voltage at the third terminal of the second three-terminal device is
10	measured from the second resistor.

1	20. The integrated circuit of claim 18 further comprising:
2	a capacitor coupling the second resistor, the first one of the two inputs of the amplifier,
3	and the current source to the first resistor and to the output of the integrated circuit.
1	21. The integrated circuit of claim 20 wherein:
2	the capacitor controls a slew rate of an output voltage at the output of the integrated
3	circuit.
1	22. The integrated circuit of claim 18 further comprising:
2	a first resistor coupling the output of the integrated circuit to the third terminal of the first
3	three-terminal device;
4 .	a second resistor coupling the third terminal of the second three-terminal device to the
5	first one of the two inputs of the amplifier and to the current source; and
6	a capacitor coupling the second resistor, the first one of the two inputs of the amplifier,
7	and the current source to the first resistor and to the output of the integrated circuit,
8	wherein:
9	the reference current is applied to the third terminal of the second three-terminal
0	device through the second resistor;
1	the output voltage at the third terminal of the second three-terminal device is
12	measured from the second resistor; and
13	the capacitor controls a slew rate of an output voltage at the output of the
4	integrated circuit.

I	23. A driver circuit comprising.
2	a first MOSFET having a first gate electrode, a first drain electrode, and a first source
3	electrode;
4	a first resistor coupled to the first drain electrode;
5	an output of the driver circuit coupled to the first resistor;
6	a second MOSFET having a second gate electrode, a second drain electrode, and a
7	second source electrode, the first and second gate electrodes coupled together and the first and
8	second source electrodes coupled together;
9	a second resistor coupled to the second drain electrode;
0	a third MOSFET having a third gate electrode, a third drain electrode, and a third source
1	electrode, the third source electrode coupled to the second resistor;
12	an amplifier having a first amplifier input, a second amplifier input, and an amplifier
13	output, the first amplifier input coupled to the second resistor and the third source electrode, the
4	second amplifier input coupled to a reference voltage, and the amplifier output coupled to the
5	third gate electrode; and
16	a current source coupled to the third drain electrode, the first gate electrode, and the
17	second gate electrode.
1	24. The driver circuit of claim 23 wherein:
2	the second MOSFET has a larger output impedance than the first MOSFET; and
3	the second resistor has a larger impedance than the first resistor.

1 25. The driver circuit of claim 24 wherein: an output impedance of the driver circuit at the output of the driver circuit comprises an 2 output impedance of the first MOSFET and an impedance of the first resistor; 3 the impedance of the first resistor is greater than the output impedance of the first 4 MOSFET such that the output impedance of the driver circuit is substantially linear. 5 26. The driver circuit of claim 25 further comprising: 1 a capacitor coupling output of the driver circuit to the third drain electrode, the first and 2 second gate electrodes, and the current source to control a slew rate of an output voltage at the 3 4 output of the driver circuit. 1 27. The driver circuit of claim 25 further comprising: 2 a fourth MOSFET having a fourth gate electrode, a fourth drain electrode, and a fourth source electrode, the fourth drain electrode coupled to the first resistor and the first drain 3 electrode, and the fourth source electrode coupled to the first and second source electrodes; and 4 a first switch coupling the fourth gate electrode to the first and second gate electrodes and 5 6 the current source. 28. The driver circuit of claim 27 further comprising: 1 a fifth MOSFET having a fifth gate electrode, a fifth drain electrode, and a fifth source 2 3 electrode, the fifth drain electrode coupled to the first resistor and the first and fourth drain

electrodes, and the fifth source electrode coupled to the first, second, and fourth source

4

5

electrodes;

0	a second swhich coupling the fifth gate electrode to the first and second gate electrodes
7	and the current source;
8	a third switch coupling the fifth gate electrode to the first, second, fourth and fifth source
9	electrodes; and
10	a fourth switch coupling the fourth gate electrode to the first, second, fourth, and fifth
11	source electrodes.
1	29. The driver circuit of claim 28 further comprising:
2	a capacitor coupling the output of the driver circuit and the first resistor to the first and
3	second gate electrodes, the third drain electrode, and the current source to control a slew rate of
4	an output voltage at the output of the driver circuit.
1	30. The driver circuit of claim 29 further comprising:
2	a fifth switch coupling the first and second gate electrodes, the capacitor, the third drain
3	electrode, and the current source to the first, second, fourth, and fifth source electrodes,
4	wherein:
5	the first and third switches are simultaneously opened and closed; and
6	the second and fourth switches are simultaneously opened and closed.

- 1 31. An integrated circuit comprising:
- 2 a voltage-mode driver circuit having an integral, analog on-chip termination.
- 1 32. The integrated circuit of claim 31 wherein:
- the voltage-mode driver circuit has a substantially constant output impedance within an
- 3 operating range of an output voltage of the voltage-mode driver circuit.

1	33. A method of controlling output impedance of a driver circuit comprising:
2	generating a reference voltage as a function of a reference current and a reference
3	resistance;
4	using a first sub-circuit to generate the output impedance of the driver circuit;
5	using a second sub-circuit with a feedback loop to generate a control voltage; and
6	using the control voltage to control the output impedance.
1	34. The method of claim 33 wherein:
2	the second sub-circuit is a replica of the first sub-circuit.
1	35. The method of claim 34 wherein:
2	the second sub-circuit is a scaled replica of the first sub-circuit.
1	36. The method of claim 33 wherein:
2	using the control voltage further comprises adjusting the control voltage to keep the
3	output impedance substantially linear across an operating range of an output voltage of the driver
4	circuit.

1	37. A method of controlling output impedance of a driver circuit comprising:
2	generating a reference current as a function of a reference voltage and a reference
3	resistance;
4	using a first sub-circuit to generate the output impedance of the driver circuit;
5	using a second sub-circuit with a feedback loop to generate a control current; and
6	using the control current to control the output impedance.
1	38. The method of claim 37 wherein:
2	the second sub-circuit is a replica of the first sub-circuit.
1	39. The method of claim 38 wherein:
2	the second sub-circuit is a scaled replica of the first sub-circuit.
1	40. The method of claim 37 wherein:
2	using the control voltage further comprises adjusting the control voltage to keep the
3	output impedance substantially linear across an operating range of an output voltage of the driver
4	circuit