Atom, Chemical Element, & Chemical Compound Nguyên Tử, Nguyên Tố Hóa Học, & Hợp Chất Hóa Học

Nguyễn Quản Bá Hồng*

Ngày 31 tháng 3 năm 2023

Tóm tắt nội dung

[EN] This text is a collection of problems, from easy to advanced, about atom, chemical element, & chemical compound. This text is also a supplementary material for my lecture note on Elementary Chemistry, which is stored & downloadable at the following link: GitHub/NQBH/hobby/elementary chemistry/grade 8/lecture¹. The latest version of this text has been stored & downloadable at the following link: GitHub/NQBH/hobby/elementary chemistry/grade 8/atom².

[VI] Tài liệu này là 1 bộ sưu tập các bài tập chọn lọc từ cơ bản đến nâng cao về nguyên tử, nguyên tố hóa học, & hợp chất hóa học. Tài liệu này là phần bài tập bổ sung cho tài liệu chính – bài giảng GitHub/NQBH/hobby/elementary chemistry/grade 8/lecture của tác giả viết cho Hóa Học Sơ Cấp. Phiên bản mới nhất của tài liệu này được lưu trữ & có thể tải xuống ở link sau: GitHub/NQBH/hobby/elementary chemistry/grade 8/atom.

Mục lục

1	Atom – Nguyên Tử	2
	1.1 Khái niệm nguyên tử	
	1.2 Cấu tạo nguyên tử	
	1.3 Sự chuyển động của electron trong nguyên tử	
	1.4 Khối lượng nguyên tử	
2	Chemical Element – Nguyên Tố Hóa Học	5
	2.1 Khái niệm nguyên tố hóa học	
	2.2 Tên nguyên tố hóa học	
	2.3 Ký hiệu hóa học	
3	Chemical Periodic Table – Sơ Lược về Bảng Tuần Hoàn Các Nguyên Tố Hóa Học	6
	3.1 Nguyên tắc sắp xếp các nguyên tố hóa học trong bảng tuần hoàn	
	3.2 Cấu tạo bảng tuần hoàn	
	3.3 Vị trí của các nguyên tố kim loại, phi kim & khí hiểm trong bảng tuần hoàn	
	3.4 Ý nghĩa của bảng tuần hoàn	6
4	Phân Tử, Đơn Chất, Hợp Chất	6
5	Giới Thiệu về Liên Kết Hóa Học	6
6	Hóa Trị, Công Thức Hóa Học	6
m:	! No	-

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

URL: https://github.com/NQBH/hobby/blob/master/elementary_chemistry/grade_8/NQBH_elementary_chemistry_grade_8.pdf.

 $^{^2 {\}tt URL: https://github.com/NQBH/hobby/blob/master/elementary_chemistry/atom/NQBH_atom.pdf.}$

Abbreviation, Convention, & Notation – Viết Tắt, Quy Ước, & Ký Hiệu

Notation – Ký Hiệu

- $\%m_{A|A_xB_y}$: % khối lượng của nguyên tố A trong hợp chất A_xB_y , & được tính bởi công thức $\%m_{A|A_xB_y}\coloneqq \frac{xM_A}{xM_A+yM_B}$.
- $m_{A|A_xB_y}$: khối lượng của nguyên tố A trong hợp chất A_xB_y , & được tính bởi công thức $m_{A|A_xB_y} \coloneqq m_{A_xB_y} \cdot \% m_{A|A_xB_y} = m_{A_xB_y} \cdot \% m_{A|A_xB_y} = m_{A_xB_y} \cdot \% m_{A|A_xB_y}$.

1 Atom – Nguyên Tử

Nội dung. Mô hình nguyên tử của Rutherford–Bohr – mô hình sắp xếp electron trong lớp vỏ nguyên tử, khối lượng của 1 nguyên tử theo đơn vị quốc tế amu (đơn vị khối lượng nguyên tử).

atom [n] /'ætəm/: the smallest particle of a chemical element that can exist.

E.g., the splitting of the atom; 2 atoms of hydrogen with 1 atom of oxygen to form a molecule of water; The scientist Ernest Rutherford was the first person to split the atom; positively charged atoms.

Khoảng năm 440 BC, nhà triết học Hy Lạp, Democritus cho rằng nếu chia nhỏ nhiều lần 1 đồng tiền vàng cho đến khi "không thể phân chia được nữa", thì sẽ được 1 hạt gọi là nguyên tử. ("Nguyên tử" trong tiếng Hy Lạp là atomos, nghĩa là "không chia nhỏ hơn được nữa").

Kích thước nguyên tử. Có thể coi nguyên tử như những quả cầu cực nhỏ. Đường kính của nguyên tử nhỏ hơn đường kính của sợi tóc $\approx 100000-500000$ lần, mà đường kính của sợi tóc là 0.1mm. Vì thế, không thể quan sát nguyên tử bằng mắt hoặc các kính hiển vi thông thường.

1.1 Khái niệm nguyên tử

Các nhà khoa học hiện nay đã tìm thấy hàng chục triệu chất khác nhau. Tuy nhiên, khi phân tích các chất đó, người ta thấy mọi chất đều được cấu tạo từ những hạt cực kỳ nhỏ bé, không mang điện. Những hạt đó được gọi là nguyên tử.

Ví dụ 1 (M. S. Tuấn et al., 2022, p. 10). Đồng tiền vàng được cấu tạo từ các nguyên tử vàng (gold). Khí oxygen O_2 được cấu tạo từ các O_2 nguyên tử oxygen. Kim cương, than chì đều được cấu tạo từ các nguyên tử carbon O_2 Nước được tạo nên từ các nguyên tử hydrogen O_2 H & oxygen O_2 (phân tử nước có công thức hóa học là O_2). Dường ăn, có công thức phân tử là O_2 011 được tạo nên tử các nguyên tử carbon O_2 0, O_2 1 dược tạo nên tử các nguyên tử carbon O_2 1, O_2 2011 được tạo nên tử các nguyên tử carbon O_2 2, O_2 3 hydrogen O_2 4.

Bài toán 1 (M. S. Tuấn et al., 2022, 1, p. 10). Kể tên vài chất có chứa nguyên tử oxygen.

Giải. Khí oxygen O_2 , khí carbonic CO_2 , nước H_2O , đường $C_{12}H_{22}O_{11}$, oxide kim loại M_xO_y với M là kim loại, e.g., FeO, Fe $_2O_3$, Fe $_3O_4$, Cu $_2O$, Cu $_3O$, Cu $_3O$, Cu $_3O$, MgO,

1.2 Cấu tạo nguyên tử

Nguyên tử được coi như 1 quả cầu, gồm vỏ nguyên tử & hat nhân nguyên tử.

1. **Vỏ nguyên tử.** Vỏ nguyên tử được tạo bởi 1 hay nhiều electron chuyển động xung quanh hạt nhân. Electron ký hiệu là e, mang điện tích âm & có giá trị bằng 1 điện tích nguyên tố⁴, được viết đơn giản là -1.

electron [n] /ı'lektron/, /ı'lektro:n/ (physics): a very small piece of matter (= a substance) with a negative electric charge, found in all atoms.

- 2. **Hạt nhân nguyên tử.** Hạt nhân nằm ở tâm & có kích thước rất nhỏ so với kích thước của nguyên tử. Hạt nhân nguyên tử được tao bởi các proton & neutron.
 - (a) Proton ký hiệu là p, mang điện tích dương & có giá trị bằng 1 điện tích nguyên tố, được viết là +1. Điện tích của proton bằng điện tích của electron về độ lớn nhưng khác dấu.
 - (b) Neutron ký hiệu là n, không mang điện.

proton [n] /'prəucin/, /'prəucin/ (physics): a very small piece of matter (= a substance) with a positive electric charge that forms part of the nucleus (= central part) of an atom.

neutron [n] /'nju:tron/, /'nu:tro:n/ (physics): a very small piece of matter (= a substance) that carries no electric charge & that forms part of the nucleus (= central part) of an atom.

Kích thước của hạt nhân rất nhỏ so với kích thước của nguyên tử. Nếu coi hạt nhân là quả bóng có đường kính là 10cm thì nguyên tử sẽ là quả cầu khổng lồ với đường kính là 1 km (lớn gấp 10000 lần kích thước của hạt nhân nguyên tử).

Điện tích của hạt nhân nguyên tử bằng tổng điện tích của các proton. Số đơn vị điện tích hạt nhân bằng số proton. Trong nguyên tử, số electron bằng số proton.

 $^{^3}$ Khí oxygen gồm rất nhiều phân tử oxygen $\mathrm{O}_2,\,\&$ mỗi phân tử oxygen O_2 được cấu tạo từ 2 nguyên tử oxygen $\mathrm{O}.$

 $^{^41}$ điện tích nguyên tố = $1.605 \cdot 10^{-19} \rm C,$ với C là viết tắt của Coulomb.

Ví dụ 2 (M. S. Tuấn et al., 2022, p. 11). (a) Nguyên tử nitrogen (nitơ) N có 7 proton nên nitrogen có 7 electron, có điện tích hạt nhân là +7, số đơn vị điện tích hạt nhân là 7. (b) Nguyên tử helium gồm hạt nhân có 2 proton, 2 neutron, & vỏ nguyên tử có 2 electron.

Hình 1: Mô hình cấu tạo nguyên tử helium.

Bài toán 2 (M. S. Tuấn et al., 2022, 3, p. 11). Trong các hạt cấu tạo nên nguyên tử: (a) Hạt nào mang điện tích âm? (b) Hạt nào mang điện tích dương? (c) Hạt nào không mang điện?

Bài toán 3 (M. S. Tuấn et al., 2022, 1, p. 11). Quan sát mô hình cấu tạo nguyên tử lithium & hoàn thành thông tin chú thích các thành phần trong cấu tạo nguyên tử lithium.

Hình 2: Mô hình cấu tạo nguyên tử lithium.

Bài toán 4 (M. S. Tuấn et al., 2022, 2, p. 11). Hoàn thành thông tin:

Nguyên tử	Số proton	Số neutron	Số electron	Điện tích hạt nhân
Hydrogen	1	0		
Carbon		6	6	
Phosphorus	15	16		

Bài toán 5 (M. S. Tuấn et al., 2022, 3, p. 12). Aluminium Al là kim loại có nhiều ứng dụng trong thực tiễn, được dùng làm dây dẫn điện, chế tạo các thiết bị, máy móc trong công nghiệp & nhiều đồ dùng sinh hoạt. Cho biết tổng số hạt trong hạt nhân nguyên tử aluminium là 27, số đơn vị điện tích hạt nhân là 13. Nêu cách tính số hạt mỗi loại trong nguyên tử aluminium & cho biết điện tích hạt nhân của aluminium.

Ví dụ 3 (Điện tích của nguyên tử helium). Nguyên tử helium He có 2 proton, mỗi proton có điện tích +1, tổng số điện tích (duong): +2; có 2 electron, mỗi electron có điện tích -1, tổng số điện tích (am): -2. Tổng điện tích trong nguyên tử helium bằng (+2) + (-2) = 0. Ta nói nguyên tử helium He không mang điện hay trung hòa về điện.

Bài toán 6 (M. S. Tuấn et al., 2022, p. 12). Cho biết nguyên tử sulfur (lưu huỳnh) có 16 electron. Hỏi nguyên tử sulfur có bao nhiều proton? Chứng minh nguyên tử sulfur trung hòa về điện.

1.3 Sự chuyển động của electron trong nguyên tử

Theo mô hình của Rutherford–Bohr, trong nguyên tử, các electron chuyển động trên những quỹ đạo xác định xung quanh hạt nhân, như các hành tinh quay quanh Mặt Trời.

Trong nguyên tử, các electron được xếp thành từng lớp. Các electron được sắp xếp lần lượt vào các lớp theo chiều từ gần hạt nhân ra ngoài. Mỗi lớp có số electron tối đa xác định, như lớp thứ nhất có tối đa 2 electron, lớp thứ 2 có tối đa 8 electron, . . .

Ví dụ 4 (M. S. Tuấn et al., 2022, p. 12). Nguyên tử oxygen O có 8 electron, được phân bố thành 2 lớp electron, lớp thứ nhất có 2 electron, lớp thứ 2 có 6 electron. Ta nói nguyên tử oxygen có 6 electron ở lớp ngoài cùng.

Bài toán 7 (M. S. Tuấn et al., 2022, 4, p. 12). Hình sau mô tả thành phần cấu tạo của nguyên tử sodium (natri), ở giữa là hạt nhân, mỗi vòng tròn lớn tiếp theo là 1 lớp electron, mỗi chấm chỉ 1 electron:

Hình 3: Mô hình cấu tạo nguyên tử sodium.

Cho biết nguyên tử sodium có bao nhiều lớp electron. Mỗi lớp có bao nhiều electron?

Ernest Rutherford (1871–1937), nhà vật lý người New Zealand, đã đưa ra mô hình hành tinh nguyên tử để giải thích cấu tạo nguyên tử. Năm 1911, ông đã khám phá ra hầu hết các nguyên tử có cấu tạo rỗng, gồm hạt nhân ở giữa tích điện dương & vỏ nguyên tử gồm các electron tích điện âm. Mô hình hành tinh nguyên tử của Rutherford chưa mô tả được sự phân bố electron trong vỏ nguyên tử. Sau đó, nhà vật lý người Đan Mạch, Niels Bohr đã đề xuất 1 mô hình mới chỉ rõ các electron được sắp xếp trên các lớp khác nhau.

Bài toán 8 (M. S. Tuấn et al., 2022, 4, p. 13). Nguyên tử nitrogen & silicon có số electron lần lượt là 7 & 14. Cho biết mỗi nguyên tử nitrogen & silicon có bao nhiều lớp electron & có bao nhiều electron ở lớp ngoài cùng.

Bài toán 9 (M. S. Tuấn et al., 2022, 5, p. 13). Quan sát hình vẽ mô tả cấu tạo nguyên tử carbon & aluminium:

Hình 4: Mô hình cấu tạo nguyên tử carbon & nguyên tử aluminium.

Cho biết mỗi nguyên tử đó có bao nhiều lớp electron & số electron trên mỗi lớp electron đó.

Trong số các nguyên tử đã biết hiện nay, nguyên tử có kích thước lớn nhất là francium, có chứa 7 lớp electron. Nguyên tử helium có kích thước nhỏ nhất với 1 lớp electron.

1.4 Khối lượng nguyên tử

Nguyên tử có khối lượng rất nhỏ. 1 gam của bất kỳ chất nào cũng chứa tới hàng tỷ tỷ nguyên tử. Do vậy, để biểu thị khối lượng của nguyên tử, người ta dùng đơn vị khối lượng nguyên tử, ký hiệu là amu (atomic mass unit). 1 amu = $1.6605 \cdot 10^{-24}$ g. Khối lương của 1 nguyên tử bằng tổng khối lương của proton, neutron, & electron trong nguyên tử đó.

Proton & neutron đều có khối lượng xấp xỉ bằng 1 amu. Khối lượng của electron là 0.00055 amu, nhỏ hơn nhiều lần so với khối lượng của proton & neutron nên có thể coi khối lượng nguyên tử bằng khối lượng hạt nhân.

Ví dụ 5 (M. S. Tuấn et al., 2022, p. 13). (a) Nguyên tử hydrogen H chỉ có 1 proton, nên khối lượng nguyên tử hydrogen là 1 amu. (b) Nguyên tử oxygen có 8 proton & 8 neutron, nên khối lượng nguyên tử oxygen là: $8 \cdot 1 + 8 \cdot 1 = 16$ amu.

Bài toán 10 (M. S. Tuấn et al., 2022, 5, p. 13). Trong 3 loại hạt tạo nên nguyên tử, hạt nào có khối lượng nhỏ nhất?

Bài toán 11 (M. S. Tuấn et al., 2022, 6, p. 13). Khối lượng của nguyên tử được tính bằng đơn vị nào?

Bài toán 12 (M. S. Tuấn et al., 2022, 6, p. 13). Cho biết: (a) Số proton, neutron, electron trong mỗi nguyên tử carbon & aluminium. (b) Khối lượng nguyên tử của carbon & aluminium.

Bài toán 13 (M. S. Tuấn et al., 2022, 7, p. 14). Hoàn thành thông tin còn thiếu trong bảng sau:

Hạt trong nguyên tử	Khối lượng (amu)	Điện tích	Vị trí trong nguyên tử
Proton		+1	
Neutron			Hạt nhân
Electron	0.00055		

Bài toán 14 (M. S. Tuấn et al., 2022, p. 14). Ruột của bút chì thường được làm từ than chì & đất sét. Than chì được cấu tạo từ các nguyên tử carbon. (a) Ghi chú thích tên các hạt tương ứng trong mô hình cấu tạo nguyên tử carbon. (b) Tìm hiểu ý nghĩa của các ký hiệu HB, 2B, & 6B được ghi trên 1 số loại bút chì.

Tóm tắt kiến thức.

- Nguyên tử là những hạt cực kỳ nhỏ bé, không mang điện, cấu tạo nên chất. Cấu tạo nguyên tử gồm vỏ nguyên tử & hạt nhân nguyên tử.
- Hạt nhân của nguyên tử mang điện tích dương, được tạo bởi các proton & neutron. Vỏ nguyên tử gồm 1 hay nhiều electron mang điên tích âm.
- Theo mô hình Rutherford-Bohr, trong nguyên tử, electron phân bố trên các lớp electron & chuyển động quanh hạt nhân nguyên tử trên những quỹ đạo xác định.
- Khối lượng nguyên tử được coi bằng tổng khối lượng của proton & neutron có trong nguyên tử, được tính bằng đơn vị amu.

2 Chemical Element – Nguyên Tố Hóa Học

Nôi dung. Nguyên tố hóa học, ký hiệu nguyên tố hóa học.

2.1 Khái niệm nguyên tố hóa học

Định nghĩa 1. Nguyên tố hóa học là tập hợp những nguyên tử có cùng số proton trong hạt nhân.

Ví dụ 6 (Đồng vị của carbon). Hình vẽ sau mô tả những nguyên tử khác nhau nhưng cùng có 6 proton trong hạt nhân nên thuộc cùng nguyên tố carbon.

Hình 5: Mô hình cấu tạo các nguyên tử khác nhau thuộc cùng nguyên tố carbon.

Bài toán 15 (M. S. Tuấn et al., 2022, 1, p. 15). Các nguyên tử của cùng nguyên tố hóa học có đặc điểm gì giống nhau?

1 nguyên tố hóa học được đặc trưng bởi số proton trong nguyên tử. Các nguyên tử của cùng nguyên tố hóa học đều có tính chất hóa học giống nhau.

Cho đến nay, Liên minh Quốc tế về Hóa học thuần túy & Hóa học ứng dụng (International Union of Pure & Applied Chemistry, abbr., IUPAC) đã công bố tìm thấy 118 nguyên tố hóa học, trong đó trên 90 nguyên tố có trong tự nhiên, số còn lại do con người tổng hợp được, gọi là các nguyên tố nhân tạo. Hiện nay, các nhà khoa học vẫn đang tiếp tục nghiên cứu để tìm ra những nguyên tố hóa học mới.

Các nguyên tố hóa học trong cơ thể con người. Các chất trong cơ thể chúng ta được tạo thành từ khoảng 25 nguyên tố hóa học, nhưng chủ yếu là các nguyên tố: oxygen, carbon, hydrogen, phosphorus, calcium, nitrogen. Trong đó, nguyên tố calcium có nhiều trong xương & men răng. Nguyên tố iron (sắt) là thành phần quan trọng của hồng cầu trong máu.

Bài toán 16 (M. S. Tuấn et al., 2022, 1, p. 16). Số lượng mỗi loại hạt của 1 số nguyên tử được nêu trong bảng dưới đây. Cho biết những nguyên tử nào trong bảng thuộc cùng 1 nguyên tố hóa học:

Nguyên tử	Số proton	Số neutron	Số electron
X1	8	9	8
X2	7	8	7
X3	8	8	8
X4	6	6	6
X5	7	7	7
X6	11	12	11
X7	8	10	8
X8	6	8	6

2.2 Tên nguyên tố hóa học

Mỗi nguyên tố hóa học đều có tên gọi riêng. Việc đặt tên nguyên tố hóa học dựa vào nhiều cách khác nhau như: liên quan đến tính chất & ứng dụng của nguyên tố; theo tên các nhà khoa học hoặc theo tên các địa danh.

Ví dụ 7 (M. S. Tuấn et al., 2022, p. 16). (a) Tên nguyên tố carbon (thành phần chính của than) bắt nguồn từ tiếng Latin, "carbo" nghĩa là than. (b) Tên nguyên tố hydrogen bắt nguồn từ tiếng Hy Lap, nghĩa là tạo ra nước. (c) Tên nguyên tố mendelevium bắt nguồn từ tên nhfa hóa học người Nga D. I. Mendeleev. (d) Tên nguyên tố polonium bắt nguồn từ tên đất nước Ba Lan (Poland).

Có 13 nguyên tố hóa học đã quen dùng trong đời sống của người Việt Nam: vàng (gold), bạc (silver), đồng (copper), chì (lead), sắt (iron), nhôm (aluminium), kẽm (zinc), lưu huỳnh (sulfur), thiếc (tin), nitơ (nitrogen), natri (sodium), kali (potassium), & thủy ngân (mercury). Trong thực tế, các nguyên tố này được dùng cả tên tiếng Việt & tên tiếng Anh để tiên tra cứu.

Bảng: Tên gọi & ký hiệu của 1 số nguyên tố hóa học.

2.3 Ký hiệu hóa học

Định nghĩa 2. Mỗi nguyên tố hóa học được biểu diễn bằng 1 ký hiệu riêng, được gọi là ký hiệu hóa học của nguyên tố.

Ký hiệu hóa học của nguyên tố được biểu diễn bằng 1 hoặc 2 chữ cái trong tên nguyên tố. Chữ cái đầu tiên được viết ở dạng chữ in hoa, chữ cái thứ 2 (nếu có) ở dạng chữ thường.

Ví dụ 8. Ký hiệu hóa học của nguyên tố hydrogen là H, của nguyên tố oxygen là O, của nguyên tố carbon là C, của nguyên tố chlorine là Cl, . . .

Bài toán 17 (M. S. Tuấn et al., 2022, 1, p. 17). Kể tên & viết ký hiệu của 3 nguyên tố hóa học chiếm khối lượng lớn nhất trong vỏ Trái Đất.

Bài toán 18 (M. S. Tuấn et al., 2022, 2, p. 17). Nguyên tố hóa học nào có nhiều nhất trong vũ trụ?

Ví dụ 9. 1 số nguyên tố tố hóa học & ký hiệu: Iodine I, Fluorine Fl, Phosphorus P, Neon Ne, Silicon Si, Aluminium Al.

Bài toán 19 (M. S. Tuấn et al., 2022, 3, p. 17). Đọc & viết tên các nguyên tố hóa học có ký hiệu: C, O, Mg, S.

Trong 1 số trường hợp, ký hiệu hóa học của nguyên tố không tương ứng với tên theo IUPAC.

Ví dụ 10. (a) Ký hiệu nguyên tố potassium là K, bắt nguồn từ tên Latin: kalium. (b) Ký hiệu nguyên tố copper là Cu, bắt nguồn từ tên Latin: cuprum.

Bài toán 20 (M. S. Tuấn et al., 2022, 4–5, p. 18). Hoàn thành thông tin về tên hoặc ký hiệu hóa học của nguyên tố: (a) Li. (b) Helium. (c) Na. (d) Al. (e) Neon. (f) Phosphorus. (g) Cl. (h) F.

Bài toán 21 (M. S. Tuấn et al., 2022, p. 18). Calcium là 1 nguyên tố hóa học có nhiều trong xương & răng, giúp cho xương & răng chắc khỏe. Ngoài ra, calcium còn cần cho quá trình hoạt động của thần kinh, cơ, tim, chuyển hóa của tế bào & quá trình đông máu. Thực phẩm & thuốc bổ chứa nguyên tố calcium giúp phòng ngừa bệnh loãng xương ở tuổi già & hỗ trợ quá trình phát triển chiều cao của trẻ em. (a) Viết ký hiệu hóa học của nguyên tố calcium & đọc tên. (b) Kể tên 3 thực phẩm có chứa nhiều calcium.

Tóm tắt kiến thức.

- Nguyên tố hóa học là tập họp những nguyên tử có cùng số proton trong hạt nhân.
- Mỗi nguyên tố hóa học có tên gọi & ký hiệu hóa học riêng.
- Ký hiệu hóa học của nguyên tố được biểu diễn bằng 1 hoặc 2 chữ cái trong tên nguyên tố; trong đó, chữ cái đầu tiên được viết ở dạng chữ in hoa, chữ cái thứ 2 (nếu có) được viết ở dạng chữ thường.

3 Chemical Periodic Table – Sơ Lược về Bảng Tuần Hoàn Các Nguyên Tố Hóa Học

Nội dung. Nguyên tắc xây dựng bảng tuần hoàn các nguyên tố hóa học, cấu trúc bảng tuần hoàn: ô, nhóm, chu kỳ, sử dụng bảng tuần hoàn để chỉ ra các nhóm nguyên tố/nguyên tố kim loại, các nhóm nguyên tố/nguyên tố phi kim, nhóm nguyên tố khí hiếm trong bảng tuần hoàn.

- 3.1 Nguyên tắc sắp xếp các nguyên tố hóa học trong bảng tuần hoàn
- 3.2 Cấu tạo bảng tuần hoàn
- 3.3 Vị trí của các nguyên tố kim loại, phi kim & khí hiểm trong bảng tuần hoàn
- 3.4 Ý nghĩa của bảng tuần hoàn
- 4 Phân Tử, Đơn Chất, Hợp Chất
- 5 Giới Thiệu về Liên Kết Hóa Học
- 6 Hóa Trị, Công Thức Hóa Học

Dang toán 1. Từ lương chất tính lương nguyên tố.

Bài toán 22 (V. A. Tuấn, 2022, p. 70). Tính khối lượng Fe & khối lượng oxi có trong 20g Fe₂(SO₄)₃.

$$Gi\acute{a}i. \ M_{\rm Fe_2(SO_4)_3} = 2 \cdot 56 + 3(32 + 4 \cdot 16) = 400 \ {\rm g/mol} \\ \Rightarrow m_{\rm Fe|Fe_2(SO_4)_3} = \% m_{\rm Fe|Fe_2(SO_4)_3} \cdot m_{\rm Fe_2(SO_4)_3} = \frac{2 \cdot 56}{2 \cdot 56 + 3(32 + 4 \cdot 16)} \cdot 20 = 5.6 \\ \Rightarrow m_{\rm O|Fe_2(SO_4)_3} = m_{\rm Fe_2(SO_4)_3} \cdot \% m_{\rm O|Fe_2(SO_4)_3} = 20 \cdot \frac{12 \cdot 16}{2 \cdot 56 + 3(32 + 4 \cdot 16)} = 9.6 \\ {\rm g.} \qquad \Box$$

Dễ dàng tính được khối lượng S trong 20
g $\mathrm{Fe_2(SO_4)_3}$ theo 2 cách: Cách 1. Tính theo tỷ lệ % khối lượng của S trong $\mathrm{Fe_2(SO_4)_3}$ tương tự lời giải trên:
 $m_{\mathrm{S|Fe_2(SO_4)_3}}=m_{\mathrm{Fe_2(SO_4)_3}}\cdot\%m_{\mathrm{S|Fe_2(SO_4)_3}}=20\cdot\frac{3\cdot32}{2\cdot56+3(32+4\cdot16)}=4.8\mathrm{g}.$ Cách 2. Sử dụng khối lượng của hợp chất bằng tổng khối lượng của các thành phần:
 $m_{\mathrm{S|Fe_2(SO_4)_3}}=m_{\mathrm{Fe_2(SO_4)_3}}-m_{\mathrm{Fe|Fe_2(SO_4)_3}}-m_{\mathrm{O|Fe_2(SO_4)_3}}=20-5.6-9.6=4.8\mathrm{g}.$ Dễ thấy Cách 2 tiện hơn sau khi đã biết khối lượng của Fe & O trong $\mathrm{Fe_2(SO_4)_3}$.

Dạng toán 2. Từ lượng nguyên tố tính lượng chất.

Bài toán 23 (V. A. Tuấn, 2022, p. 71). \hat{Can} bao nhiêu kg ure (NH₂)₂CO \hat{de} có 5.6kg \hat{dam} (nito)?

Giải.
$$m_{(NH_2)_2CO} = \frac{m_{N|(NH_2)_2CO}}{\% m_{N|(NH_2)_2CO}} = \frac{5.6 \cdot (2(14+2)+12+16)}{2 \cdot 14} = 12 \text{kg}.$$

Dạng toán 3. Từ lượng nguyên tố này tính lượng nguyên tố kia

Bài toán 24 (V. A. Tuấn, 2022, p. 71). Trong supephotphat kép thường có bao nhiều kg canxi ứng với 49.6kg photpho?

Dạng toán 4. Tính % khối lượng các nguyên tố trong hợp chất.

Bài toán 25 (V. A. Tuấn, 2022, p. 71). Tính % khối lượng các nguyên tố trong hợp chất sắt(III) sunfat.

Giải. CTHH của sắt(III) sunfat: Fe₂(SO₄)₃⇒ % $m_{\rm Fe}$: % $m_{\rm S}$: % $m_{\rm O}$ = (2 · 56) : (3 · 32) : (12 · 16) = 112 : 96 : 192 = 7 : 6 : 12 = 28% : 24% : 48%.

Dạng toán 5. Tìm nguyên tố.

Bài toán 26 (V. A. Tuấn, 2022, p. 71). Nguyên tố X trong bảng tuần hoàn có oxit cao nhất dạng X₂O₅. Hợp chất khí với hydro của X chứa 8.82% khối lượng hydro. X là nguyên tố nào?

 $Gi \acute{a}i$. Nếu oxit cao nhất là X_2O_5 thì hợp chất kí với hydro là XH_3 . $M_X = \frac{3}{8.82} \cdot 91.18 = 31 \Rightarrow X$: P.

Tài liệu

Tuấn, Mai Sỹ et al. (2022). Khoa Học Tự Nhiên 7. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, p. 171. Tuấn, Vũ Anh (2022). Bồi Dưỡng Hóa Học Trung Học Cơ Sở. Tái bản lần thứ 12. Nhà Xuất Bản Giáo Dục Việt Nam, p. 302.