Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 23

Searching in a Graph

- Graph searching = systematically follow the edges of the graph so as to visit the vertices of the graph
- Two basic graph searching algorithms:
 - Breadth-first search
 - Depth-first search
- The difference between them is in the order in which they explore the unvisited edges of the graph
- Graph algorithms are typically elaborations of the basic graph-searching algorithms

Breadth-First Search (BFS)

• Input:

- A graph G = (V, E) (directed or undirected)
- A source vertex s from V

Goal:

Explore the edges of G to "discover" every vertex reachable from s, taking the ones closest to s first

Output:

- d[v] = distance (smallest # of edges) from s to v, for all v from V
- A "breadth-first tree" rooted at s that contains all reachable vertices

Breadth-First Search (cont.)

- Keeping track of progress:
 - Color each vertex in either white,
 gray or black
 - Initially, all vertices are white
 - When being discovered a vertex becomes gray
 - After discovering all its adjacent vertices the node becomes
 black
 - Use FIFO queue Q to maintain
 the set of gray vertices
 CS 477/677 Lecture 23

Breadth-First Tree

- BFS constructs a breadth-first tree
 - Initially contains the root (source vertex s)
 - When vertex v is discovered while
 scanning the adjacency list of a vertex u
 ⇒ vertex v and edge (u, v) are added to
 the tree
 - u is the predecessor (parent) of v in the
 breadth-first tree
 - A vertex is discovered only once ⇒ it has
 only one parent cs 477/677 Lecture 23

source

BFS Additional Data Structures

- G = (V, E) represented using adjacency lists
- color[u] the color of the vertex for all u in $V_{\it source}$
- $\pi[u]$ predecessor of u
 - If $\mathbf{u} = \mathbf{s}$ (root) or node \mathbf{u} has not yet been discovered then $[\mathbf{u}] = \pi \, \mathbf{NIL}$
- d[u] the distance from the source s to vertex u
- Use a FIFO queue Q to maintain the set of gray vertices

BFS(V, E, s)

- 1. **for** each **u** in V {s}
- 2. **do** color[u] =

3.
$$d[u] \leftarrow \infty$$

4.
$$\pi[u] = NIL$$

6.
$$d[s] \leftarrow 0$$

7.
$$\pi[s] = NIL$$

8.
$$Q = empty$$

9.
$$Q \leftarrow ENQUEUE(Q, s)$$

BFS(V, E, s)

- 10. while Q not empty
- 11. **do** $\mathbf{u} \leftarrow \mathsf{DEQUEUE}(\mathbf{Q})$
- 12. for each v in Adj[u]
- 13. do if color[v] = WHITE
- 14. **then** color[v] = GRAY
- 15. $d[v] \leftarrow d[u] + 1$
- 16. $\pi[v] = u$
- 17. ENQUEUE(Q, v)
- 18. color[u] = BLACK

Example

Analysis of BFS

- 1. for each $u \in V \{s\}$
- 2. do color[u] ←WHITE
- 3. $d[U] \leftarrow \infty$
- 4. $\pi[\cup] = NIL$
- 5. $color[s] \leftarrow GRAY$
- 6. $d[s] \leftarrow 0$
- 7. $\pi[s] = NIL$
- 8. $Q \leftarrow \emptyset$
- 9. $Q \leftarrow ENQUEUE(Q, s)$

O(|V|)

 $\Theta(1)$

Analysis of BFS

- **10.** while Q not empty ← $\Theta(1)$ $do u \leftarrow DEQUEUE(Q) \leftarrow$ for each v in Adj[u] Scan Adj[u] for all vertices **12.** u in the graph do if color[v] = WHITE 13. Each vertex u is processed only once, 14. then color[v] = GRAY when the vertex is dequeued **15.** $d[v] \leftarrow d[u] + 1$ • Sum of lengths of all adjacency lists = $\Theta(|E|)$ 16. $\pi[v] = u$ Scanning operations: ENQUEUE(Q, v) \leftarrow $\Theta(1)$ 17. 18. color[u] = BLACK
 - Total running time for BFS = O(|V| + |E|)

Shortest Paths Property

- BFS finds the shortest-path distance from the source vertex $\mathbf{s} \in \mathbf{V}$ to each node in the graph
- Shortest-path distance = $\delta(s, u)$
 - Minimum number of edges in any path from \boldsymbol{s} to \boldsymbol{u}

Depth-First Search

Input:

- G = (V, E) (No source vertex given!)

Goal:

- Explore the edges of G to "discover" every vertex in
 V starting at the most current visited node
- Search may be repeated from multiple sources

Output:

- 2 **timestamps** on each vertex:
 - d[v] = discovery time
 - f[v] = finishing time (done with examining v's adjacency list)
- Depth-first forest

Depth-First Search

Search "deeper" in the graph whenever of possible

- After all edges of v have been explored, the search "backtracks" from the parent of v
- The process continues until all vertices reachable from the original source have been discovered
- If undiscovered vertices remain, choose one of them as a new source and repeat the search from that vertex
- DFS creates a "depth-first forest"

Depth-First Search

- Search "deeper" in the graph whenever of possible
- Edges are explored out of the most recently discovered vertex v that still has unexplored edges
- After all edges of v have been explored, the search "backtracks" from the parent of v
- The process continues until all vertices reachable from the original source have been discovered
- If undiscovered vertices remain, choose one of them as a new source and repeat the search from that vertex
- DFS creates a "depth-first forest"

DFS Additional Data Structures

- Global variable: time-step
 - Incremented when nodes are discovered/finished
- color[u] similar to BFS
 - White before discovery, gray while processing and black when finished processing
- $\pi[u]$ predecessor of u
- d[u], f[u] discovery and finish times

$$1 \le d[\upsilon] < f[\upsilon] \le 2 |V|$$

DFS(V, E)

- 1. for each $u \in V$
- 2. do color[u] \leftarrow WHITE
- 3. $\pi[u] \leftarrow NIL$
- 4. time $\leftarrow 0$
- 5. for each $u \in V$
- 6. do if color[u] = WHITE
- 7. then DFS-VISIT(u)
- Every time DFS-VISIT(u) is called, u becomes the root of a new tree in the depth-first forest

DFS-VISIT(u)

- 1. $color[u] \leftarrow GRAY$
- 2. time \leftarrow time+1
- 3. $d[u] \leftarrow time$
- 4. for each $v \in Adj[u]$
- 5. do if color[v] = WHITE
- 6. then $\pi[v] \leftarrow u$
- 7. DFS-VISIT(v)
- 8. color[u] ← BLACK
- 9. time \leftarrow time + 1
- 10. $f[u] \leftarrow time$

Example

Example (cont.)

The results of DFS may depend on:

- The order in which nodes are explored in procedure DFS
- The order in which the neighbors of a vertex are visited in DFS-VISIT

Edge Classification

- Tree edge (reaches a WHITE vertex):
 - (u, v) is a tree edge if v was first
 discovered by exploring edge (u, v)

- Back edge (reaches a GRAY vertex):
 - (u, v), connecting a vertex u to an ancestor v in a depth first tree
 - Self loops (in directed graphs) are also back edges

Edge Classification

- Forward edge (reaches a BLACK vertex & d[u] < d[v]):
 - Non-tree edge (u, v) that connects a vertex u to a descendant v in a depth first tree

- Cross edge (reaches a BLACK vertex & d[u] > d[v]):
 - Can go between vertices in same depth-first tree (as long as there is no ancestor / descendant relation) or between different depth-first trees

Analysis of DFS(V, E)

```
1. for each u \in V
        do color[u] ← WHITE
           \pi[u] \leftarrow NIL
4. time \leftarrow 0
5. for each u \in V
                                         \Theta(|V|) – without
        do if color[u] = WHITE
                                         counting the
                                         time for DFS-VISIT
              then DFS-VISIT(u)
```

Analysis of DFS-VISIT(u)

1. $color[u] \leftarrow GRAY$

DFS-VISIT is called exactly

once for each vertex

- 2. time \leftarrow time+1
- 3. d[u] ← time
- 4. for each $v \in Adj[u]$
- 5. do if color[v] = WHITE
- 6. then $\pi[v] \leftarrow u$
- 7. DFS-VISIT(v)
- Each loop takes | Adj[u] |

- 8. $color[u] \leftarrow BLACK$
- 9. time \leftarrow time + 1

10.
$$f[u] \leftarrow time$$

Total:
$$\Sigma_{u \in V} |Adj[u]| + \Theta(|V|) = \Theta(|E|) = \Theta(|V| + |E|)$$

Properties of DFS

u = π[v] ⇔ DFS-VISIT(v) was
 called during a search of u's
 adjacency list

Vertex v is a descendant of
 vertex u in the depth first forest
 ⇔ v is discovered during the time
 in which u is gray
 CS 477/677 - Lecture 23

Parenthesis Theorem

In any DFS of a graph G, for all **u**, **v**, exactly one of the following holds:

- [d[u], f[u]] and [d[v], f[v]]
 are disjoint, and neither of u
 and v is a descendant of the
 other
- [d[v], f[v]] is entirely within [d[u], f[u]] and v is a descendant of u
- 3. [d[u], f[u]] is entirely within [d[v], f[v]] and u is a descendant of v

Well-formed expression: parenthesis are properly nested

Other Properties of DFS

Corollary

Vertex \mathbf{v} is a proper descendant of \mathbf{u}

$$\iff$$
 d[u] < d[v] < f[v] < f[u]

Theorem (White-path Theorem)

In a depth-first forest of a graph G, vertex **v** is a descendant of **u** if and only if at time **d[u]**, there is a path **u** \Rightarrow **v** consisting of only white vertices.

Topological Sort

Topological sort of a directed acyclic graph G = (V, E): a linear order of vertices such that if there exists an edge (u, v), then u appears before v in the ordering.

- Directed acyclic graphs (DAGs)
 - Used to represent precedence of events or processes that have a partial order

```
a before bb before cb before ca before ca before ca and b?
```

Topological sort helps us establish a total order

Topological Sort

Topological Sort

TOPOLOGICAL-SORT(V, E)

- Call DFS(V, E) to compute finishing times f[v] for each vertex v
- When each vertex is finished, insert it onto the front of a linked list
- 3. Return the linked list of vertices

socks undershorts pants shoes watch shirt belt tie jacket

Running time: $\Theta(|V| + |E|)$

Lemma

A directed graph is **acyclic** \iff a DFS on G yields no back edges.

Proof:

- "⇒": acyclic ⇒ no back edge
 - Assume back edge ⇒ prove cycle
 - Assume there is a back edge (u, v)
 - \Rightarrow v is an ancestor of u
 - \Rightarrow there is a path from v to u in G (v \Rightarrow u)
 - ⇒ v ⇒ u + the back edge (u, v) yield a cycle

Lemma

A directed graph is **acyclic** ← a DFS on G yields no back edges.

Proof:

- "←": no back edge ⇒ acyclic
 - Assume cycle ⇒ prove back edge
 - Suppose G contains cycle c
 - Let v be the first vertex discovered in c, and (u, v)
 be the preceding edge in c
 - At time d[v], vertices of c form a white path $v \Rightarrow u$
 - u is descendant of v in depth-first forest (by whitepath theorem)
 - ⇒ (u, v) is a back edge

Readings

- For this lecture
 - Chapter 15
 - Coming next
 - Chapter 20