

Time Series Analysis

Homework Assignment 1

Problem 1

a) The plot below shows the average sales of souvenirs from January 1987 to December 1993.

Average Monthly Souveniors Sales from January 1987- December 1993

Figure 1

b) The decomposition to be used is multiplicative. This is because the fluctuation in seasonality increases as time increases. The result of the decomposition is in Figure 2

below. We can then observe the trend, seasonal and time series behaviours of the time series.

Decomposition of multiplicative time series

Figure 2

c) Taking the logarithm of data before fitting a linear regression model helps reduce to make data more interpretable especially if the data grows exponentially. Most specifically, it converts a multiplicative model into an additive model. As shown in Figure 3 below, the level of fluctuation throughout the time series is almost the same unlike the results in Figure 1, before taking the logarithm of the data.

Figure 3

- d) The estimated values are as follows;
 - alpha = -580.76432

• beta = 0.29641

Figure 4 below shows the fitted linear regression model.

Average Monthly Souveniors Sales

Figure 4

- e) The estimated alpha and beta values above can be used to predict as follows;
 - → Prediction sales for April 1994 exp(-580.76432 + 0.29641 * (1994 * (3/12))) = 8.887516e-189
 - → Prediction sales for January 1995 $\exp(-580.76432 + 0.29641 * (1995 * (0/12)))$ = 5.987707e-253
- f) In this section, we can remove seasonal effects and results in an annual time series as shown in Figure 5. We can see the time series without the seasonal effects.

Annual Souveniors Sales Time Series

Figure 5

Problem 2

a) Figure 6 shows the time series for monthly births in Germany from 2003 to 2021.

Number of Monthly Birth in Germany from January 2003 to December 2021

Figure 6

b) Applying Holt-Winters filtering results to Figure 7. We can further decompose this result to obtain level, slope, and seasonal components as shown in Figure 8.

Holt-Winters filtering

Figure 7

Holt-Winters Decomposition

Figure 8

c) We then used the Holt-Winters method to make predictions for the number of births in Germany for each month in 2022 and plotted it as shown in Figure 9.

Prediction for 2022

Figure 9