fraud-detection

February 21, 2024

```
[1]: import pandas as pd
     import matplotlib.pyplot as plt
     import numpy as np
     import seaborn as sns
[2]: data = pd.read_csv('/content/creditcard.csv')
     data.head()
[2]:
        Time
                    V1
                              V2
                                         V3
                                                   ۷4
                                                             V5
                                                                       V6
                                                                                  ۷7
         0.0 -1.359807 -0.072781
                                  2.536347
                                            1.378155 -0.338321
                                                                 0.462388
                                                                           0.239599
     1
             1.191857 0.266151
                                  0.166480
                                            0.448154 0.060018 -0.082361 -0.078803
         1.0 -1.358354 -1.340163
                                  1.773209
                                            0.379780 -0.503198
                                                                1.800499
     3
         1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309
                                                                 1.247203
         2.0 -1.158233 0.877737
                                  1.548718 0.403034 -0.407193
                                                                 0.095921
              V8
                        V9
                                    V21
                                               V22
                                                         V23
                                                                   V24
                                                                             V25
     0 0.098698 0.363787
                            ... -0.018307
                                         0.277838 -0.110474
                                                             0.066928
                                                                        0.128539
     1 0.085102 -0.255425
                            ... -0.225775 -0.638672
                                                   0.101288 -0.339846
                                                                        0.167170
     2 0.247676 -1.514654
                            ... 0.247998
                                         0.771679
                                                   0.909412 -0.689281 -0.327642
     3 0.377436 -1.387024
                            ... -0.108300
                                        0.005274 -0.190321 -1.175575 0.647376
     4 -0.270533 0.817739
                            ... -0.009431
                                         0.798278 -0.137458  0.141267 -0.206010
             V26
                       V27
                                 V28
                                      Amount
                                               Class
     0 -0.189115  0.133558 -0.021053
                                      149.62
                                                 0.0
     1 0.125895 -0.008983
                            0.014724
                                         2.69
                                                 0.0
     2 -0.139097 -0.055353 -0.059752
                                      378.66
                                                 0.0
     3 -0.221929
                  0.062723
                            0.061458
                                      123.50
                                                 0.0
     4 0.502292 0.219422
                            0.215153
                                        69.99
                                                 0.0
     [5 rows x 31 columns]
[3]: data.describe()
[3]:
                     Time
                                      V1
                                                      ۷2
                                                                     VЗ
            182329.000000
                           182329.000000
                                           182329.000000
                                                          182329.000000
     count
             64969.194676
                                                0.022185
     mean
                               -0.140528
                                                               0.417493
     std
             30828.520647
                                1.873983
                                                1.614571
                                                               1.416903
```

min	0.000000	-56.407510	-72.715728	-33.680984	
25%	42410.000000	-0.975751	-0.560485	-0.172141	
50%	63339.000000	-0.139500	0.094318	0.570588	
75%	81849.000000	1.196395	0.791998	1.267890	
max	125353.000000	2.439207	22.057729	9.382558	
	V4	V5	V6	V7 `	\
count	182329.000000	182329.000000	182329.000000	182329.000000	
mean	0.096426	-0.150145	0.053535	-0.068736	
std	1.384183	1.355202	1.304002	1.212992	
min	-5.683171	-42.147898	-26.160506	-43.557242	
25%	-0.768971	-0.809987	-0.699692	-0.582837	
50%	0.099818	-0.203398	-0.209359	-0.023584	
75%	0.914961	0.412695	0.447010	0.477721	
max	16.875344	34.801666	22.529298	36.677268	
	V8	V9		V21 V2:	2 \
count	182329.000000	182328.000000	182328.0000	000 182328.000000)
mean	0.025907	0.014692	0.0214	476 -0.067798	3
std	1.223914	1.144658	0.7423	347 0.678239	9
min	-73.216718	-13.434066	34.830	382 -10.93314	4
25%	-0.170715	-0.661010	0.2289	923 -0.542896	6
50%	0.050375	-0.076790	0.0494	453 -0.053276	6
75%	0.344873	0.634247	0.1383	0.389549	9
max	20.007208	15.594995	27.2028	10.503090	С
	V23	V24	V25	V26 '	\
count	182328.000000	182328.000000	182328.000000	182328.000000	
mean	-0.019683	0.007206	0.078579	0.010185	
std	0.594938	0.600877	0.476265	0.489616	
min	-44.807735	-2.836627	-10.295397	-2.604551	
25%	-0.169356	-0.335944	-0.216393	-0.330644	
50%	-0.032859	0.056785	0.122284	-0.059203	
75%	0.106009	0.418491	0.393032	0.268662	
max	19.002942	4.022866	7.519589	3.517346	
	V27	V28	Amount	Class	
count	182328.000000	182328.000000	182328.00000	182328.000000	
mean	0.002032	0.002194	88.52699	0.002002	
std	0.392343	0.307251	247.55138	0.044698	
min	-22.565679	-11.710896	0.00000	0.00000	
25%	-0.066026	-0.034975	5.76000	0.000000	
50%	0.007456	0.020019	22.43000	0.000000	
75%	0.089507	0.078215	78.12000	0.000000	
max	12.152401	33.847808	19656.53000	1.000000	

[8 rows x 31 columns]

[4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 182329 entries, 0 to 182328
Data columns (total 31 columns):

раца	COLUMNIS	(total of columns).			
#	Column	Non-Null Count Dtype			
0	Time	182329 non-null float64			
1	V1	182329 non-null float64			
2	V2	182329 non-null float64			
3	٧3	182329 non-null float64			
4	V4	182329 non-null float64			
5	V 5	182329 non-null float64			
6	V6	182329 non-null float64			
7	V7	182329 non-null float64			
8	V8	182329 non-null float64			
9	V 9	182328 non-null float64			
10	V10	182328 non-null float64			
11	V11	182328 non-null float64			
12	V12	182328 non-null float64			
13	V13	182328 non-null float64			
14	V14	182328 non-null float64			
15	V15	182328 non-null float64			
16	V16	182328 non-null float64			
17	V17	182328 non-null float64			
18	V18	182328 non-null float64			
19	V19	182328 non-null float64			
20	V20	182328 non-null float64			
21	V21	182328 non-null float64			
22	V22	182328 non-null float64			
23	V23	182328 non-null float64			
24	V24	182328 non-null float64			
25	V25	182328 non-null float64			
26	V26	182328 non-null float64			
27	V27	182328 non-null float64			
28	V28	182328 non-null float64			
29	Amount	182328 non-null float64			
30	Class	182328 non-null float64			
dtypes: float64(31)					

memory usage: 43.1 MB

[5]: data.isna().sum()

[5]: Time 0 V1 0 V2 0 V3 0

```
۷4
           0
۷5
           0
۷6
           0
۷7
           0
8V
           0
۷9
           1
V10
           1
V11
           1
V12
           1
V13
           1
V14
           1
V15
           1
V16
           1
V17
           1
V18
           1
V19
           1
V20
           1
V21
           1
V22
V23
           1
V24
           1
V25
           1
V26
           1
V27
           1
V28
           1
Amount
           1
Class
dtype: int64
```

Data Preprocessing:

```
[6]: from sklearn.impute import SimpleImputer

# Impute missing values with the mean for numerical columns
imputer = SimpleImputer(strategy="mean")

# Fill missing values in numerical columns
data = pd.DataFrame(imputer.fit_transform(data), columns=data.columns)

# Check if any missing values remain
print(data.isnull().sum())
```

```
Time 0
V1 0
V2 0
V3 0
V4 0
V5 0
```

```
V6
           0
۷7
           0
8V
           0
۷9
           0
           0
V10
V11
           0
V12
           0
           0
V13
V14
           0
V15
           0
V16
           0
V17
           0
           0
V18
           0
V19
V20
           0
           0
V21
V22
           0
V23
           0
V24
           0
V25
           0
V26
           0
V27
           0
           0
V28
Amount
           0
Class
           0
dtype: int64
```

```
[7]: from sklearn.model_selection import train_test_split

# Separate features (X) and target variable (y)

X = data.drop(columns=["Class"]) # Features

y = data["Class"] # Target variable

# Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u)

orandom_state=42)
```

Feature Selection:

```
[9]: from sklearn.preprocessing import StandardScaler

# Create a StandardScaler object
scaler = StandardScaler()

# Fit the scaler to the training data and transform it
X_train_scaled = scaler.fit_transform(X_train)

# Transform the testing data using the fitted scaler
```

```
X_test_scaled = scaler.transform(X_test)
```

Data Splitting:

```
[10]: from sklearn.model_selection import train_test_split

# Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u_srandom_state=42)
```

Model Selection:

```
[11]: from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, of1_score, roc_auc_score
```

```
[13]: # Define a threshold value to classify as 1 (fraudulent)
threshold_value = 0.5

# Convert continuous target values to binary labels
y_train = (y_train > threshold_value).astype(int)
```

Model Evaluation:

```
[14]: # Train and evaluate models
for name, model in models.items():
    print(f"\033[1mTraining {name}:\033[0m")
    model.fit(X_train, y_train)

# Predict on the test set
    y_pred = model.predict(X_test)

# Evaluate the model
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred)
    recall = recall_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
```

```
auc_roc = roc_auc_score(y_test, y_pred)
                              # Print evaluation metrics
                              print(f"\033[1;3mAccuracy:\033[0m \{accuracy:.4f\}, \n\033[1;3mPrecision:
                      \sim 033[0m \{precision: .4f\}, \n\033[1; 3mRecall: \033[0m \{recall: .4f\}, \n\033[0m \{recall: .4f\}, \n\03[0m \{recall: .
                      3mF1-score:\033[0m {f1:.4f}, \n\033[1;3mAUC-ROC:\033[0m {auc_roc:.4f}\n")
                Training Logistic Regression:
                Accuracy: 0.9990,
                Precision: 0.8085,
                Recall: 0.5758,
                F1-score: 0.6726,
                AUC-ROC: 0.7878
                Training Random Forest:
                Accuracy: 0.9995,
                Precision: 0.9259,
                Recall: 0.7576,
                F1-score: 0.8333,
                AUC-ROC: 0.8787
                Training Gradient Boosting:
                Accuracy: 0.9989,
                Precision: 0.8000,
                Recall: 0.5455,
                F1-score: 0.6486,
                AUC-ROC: 0.7726
                Training Neural Network:
                Accuracy: 0.9979,
                Precision: 0.4479,
                Recall: 0.6515,
                F1-score: 0.5309,
                AUC-ROC: 0.8250
                Data Visualization:
[15]: from sklearn.metrics import confusion_matrix, roc_curve,_
                      ⇒precision_recall_curve, auc
[16]: # Plot confusion matrix
                  y_pred = model.predict(X_test)
                  conf_matrix = confusion_matrix(y_test, y_pred)
                  plt.imshow(conf_matrix, cmap='Blues', interpolation='nearest')
                  plt.title('Confusion Matrix')
```

plt.colorbar()

plt.xlabel('Predicted Label')

```
plt.ylabel('True Label')
plt.show()
```



```
[18]: # Plot precision-recall curve
    precision, recall, _ = precision_recall_curve(y_test, y_pred_proba)
    plt.plot(recall, precision, color='blue', lw=2, label='Precision-Recall curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.title('Precision-Recall Curve')
    plt.legend(loc='upper right')
    plt.show()
```

