

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012

QUÍMICA

TEMA 1: LA TRANSFORMACIÓN QUÍMICA

- Junio, Ejercicio 2, Opción B
- Reserva 1, Ejercicio 5, Opción A
- Reserva 1, Ejercicio 5, Opción B
- Reserva 2, Ejercicio 2, Opción B
- Reserva 2, Ejercicio 6, Opción A
- Reserva 3, Ejercicio 2, Opción B
- Reserva 4, Ejercicio 2, Opción B
- Reserva 4, Ejercicio 5, Opción B
- Septiembre, Ejercicio 4, Opción A

Se dispone de tres recipientes que contienen en estado gaseoso 1 litro de metano, 2 litros de nitrógeno y 1'5 litros de ozono (O_3) , respectivamente, en las mismas condiciones de presión y temperatura. Justifique:

- a) ¿Cuál contiene mayor número de moléculas?.
- b) ¿Cuál contiene mayor número de átomos?.
- c) ¿Cuál tiene mayor densidad?.

Masas atómicas: C = 12; H = 1; N = 14; O = 16.

QUÍMICA. 2012. JUNIO. EJERCICIO 2. OPCIÓN B

RESOLUCIÓN

a) Vamos a calcular las moléculas de cada gas.

$$n_{CH_4} = \frac{PV}{RT} = \frac{1 \cdot P}{RT} \Rightarrow \text{moléculas}(CH_4) = \frac{1 \cdot P}{RT} \cdot 6'023 \cdot 10^{23}$$

$$n_{N_2} = \frac{PV}{RT} = \frac{2 \cdot P}{RT} \Rightarrow \text{moléculas}(N_2) = \frac{2 \cdot P}{RT} \cdot 6'023 \cdot 10^{23}$$

$$n_{O_3} = \frac{PV}{RT} = \frac{1'5 \cdot P}{RT} \Rightarrow \text{moléculas}(O_3) = \frac{1'5 \cdot P}{RT} \cdot 6'023 \cdot 10^{23}$$

Luego, hay más moléculas de N₂.

b) Calculamos los átomos:

átomos (CH₄) = 5 · moléculas (CH₄) = 5 ·
$$\frac{1 \cdot P}{RT}$$
 · 6'023 · 10²³
átomos (N₂) = 2 · moléculas (N₂) = 2 · $\frac{2 \cdot P}{RT}$ · 6'023 · 10²³
átomos (O₃) = 3 · moléculas (O₃) = 3 · $\frac{1'5 \cdot P}{RT}$ · 6'023 · 10²³

Luego, hay más átomos de CH₄.

c) Calculamos la densidad:

$$d_{CH_4} = \frac{g}{V} = \frac{Pm \cdot P}{RT} = \frac{16 \cdot P}{RT}$$

$$d_{N_2} = \frac{g}{V} = \frac{Pm \cdot P}{RT} = \frac{28 \cdot P}{RT}$$

$$d_{O_3} = \frac{g}{V} = \frac{Pm \cdot P}{RT} = \frac{48 \cdot P}{RT}$$

Luego, tiene más densidad el O₃.

Dada la reacción química (sin ajustar): $AgNO_3 + Cl_2 \rightarrow AgCl + N_2O_5 + O_2$. Calcule:

a) Los moles de N₂O₅ que se obtienen a partir de 20 g de AgNO₃, con exceso de Cl₂.

b) El volumen de oxígeno obtenido, medido a 20 °C y 620 mm de Hg.

Datos: R = 0'082 atm $\cdot L \cdot K^{-1} \cdot mol^{-1}$. Masas atómicas: N = 14; O = 16; Ag = 108.

QUIMICA. 2012. RESERVA 1. EJERCICIO 5. OPCIÓN A

RESOLUCIÓN

a) Ajustamos, por tanteo, la reacción:

$$4AgNO_3 + 2Cl_2 \rightarrow 4AgCl + 2N_2O_5 + O_2$$

$$20 g AgNO_{3} \cdot \frac{1 \text{ mol } AgNO_{3}}{170 g AgNO_{3}} \cdot \frac{2 \text{ moles } N_{2}O_{5}}{4 \text{ moles } AgNO_{3}} = 0'059 \text{ moles } N_{2}O_{5}$$

b)
$$20 \,\mathrm{g} \,\mathrm{AgNO}_3 \cdot \frac{1 \,\mathrm{mol} \,\mathrm{AgNO}_3}{170 \,\mathrm{g} \,\mathrm{AgNO}_3} \cdot \frac{1 \,\mathrm{mol} \,\mathrm{O}_2}{4 \,\mathrm{moles} \,\mathrm{AgNO}_3} = 0'029 \,\mathrm{moles} \,\mathrm{O}_2$$

Calculamos el volumen

$$P \cdot V = n \cdot R \cdot T \Rightarrow V = \frac{n \cdot R \cdot T}{P} = \frac{0'029 \cdot 0'082 \cdot 293}{\frac{620}{760}} = 0'85 \text{ Litros}$$

Se preparan 25 mL de una disolución 2'5M de FeSO₄.

a) Calcule cuántos gramos de sulfato de hierro (II) se utilizarán para preparar la disolución.

b) Si la disolución anterior se diluye hasta un volumen de 450 mL ¿Cuál será la molaridad de la disolución?

Masas atómicas: S = 32; O = 16; Fe = 56.

QUIMICA. 2012. RESERVA 1. EJERCICIO 5. OPCIÓN B

RESOLUCIÓN

a)

$$M = \frac{\text{moles}}{V} \Rightarrow 2'5 = \frac{\frac{gr}{152}}{0'025} \Rightarrow 9'5 \text{ gr de FeSO}_4$$

b)

$$M = \frac{\text{moles}}{V} \Rightarrow M = \frac{\frac{9'5}{152}}{0'450} = 0'14$$

Razone si son verdaderas o falsas las siguientes proposiciones:

- a) En 22'4 L de oxígeno, a 0 °C y 1 atm, hay el número de Avogadro de átomos de oxígeno.
- b) Al reaccionar el mismo número de moles de Mg o de Al con HCl se obtiene el mismo volumen de hidrógeno, a la misma presión y temperatura.
- c) A presión constante, el volumen de un gas a 50 °C es el doble que a 25 °C.

QUIMICA. 2012. RESERVA 2. EJERCICIO 2. OPCIÓN B

RESOLUCIÓN

- a) Falsa. Habrá 2·6'023·10²³ átomos de oxígeno.
- b) Falsa. Se obtendrá más hidrógeno en el caso del aluminio, ya que:

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

Al + 3HCl
$$\rightarrow$$
 AlCl₃ + $\frac{3}{2}$ H₂

c) Falsa. Ya que:

$$\frac{V}{T} = \frac{V'}{T'} \Rightarrow \frac{V}{323} = \frac{V'}{298} \Rightarrow V = \frac{323 \cdot V'}{298} = 1'08 \cdot V'$$

Se mezclan 2 litros de cloro gas medidos a 97 °C y 3 atm de presión con 3'45 g de sodio metal y se dejan reaccionar hasta completar la reacción. Calcule:

a) Los gramos de cloruro de sodio obtenidos.

b) Los gramos del reactivo no consumido.

Datos: R = 0'082 atm $\cdot L \cdot K^{-1} \cdot mol^{-1}$. Masas atómicas: Na=23; Cl =35'5.

OUIMICA. 2012. RESERVA 2. EJERCICIO 6. OPCIÓN A

RESOLUCIÓN

a) Escribimos y ajustamos la reacción que tiene lugar:

$$Cl_2 + 2 Na \rightarrow 2 NaCl$$

Calculamos los gramos de cloro:

gr de cloro =
$$\frac{P_m \cdot P \cdot V}{R \cdot T} = \frac{71 \cdot 3 \cdot 2}{0'082 \cdot 370} = 14 \text{ g}$$

El reactivo limitante es el Na, luego:

3'45 gr Na
$$\cdot \frac{2.58'5 \text{ gr NaCl}}{2.23 \text{ gr Na}} = 8'775 \text{ gr NaCl}$$

b) Calculamos los gramos de cloro que reaccionan con los 3'45 gr de sodio

$$3'45 \text{ gr Na} \cdot \frac{71 \text{ gr Cl}_2}{2 \cdot 23 \text{ gr Na}} = 5'325 \text{ gr Cl}_2$$

Luego, los gramos de reactivo no consumidos son:

$$14-5'325=8'675 \text{ gr Cl}_2$$

Calcule:

a) Cuántos moles de átomos de oxígeno hay en un mol de etanol.

b) La masa de $2'6 \cdot 10^{20}$ moléculas de CO_2 .

c) El número de átomos de nitrógeno que hay en 0'38 g de NH₄NO₂.

Masas atómicas: H = 1; N = 14; C = 12; O = 16.

QUIMICA. 2012. RESERVA 3. EJERCICIO 2. OPCIÓN B

RESOLUCIÓN

a) 1 mol de $CH_3CH_2OH = 6'023 \cdot 10^{23}$ moléculas $= 6'023 \cdot 10^{23}$ átomos = 1 mol de átomos de O

b)
$$2'6 \cdot 10^{20}$$
 moléculas de $CO_2 \cdot \frac{44 \text{ gr}}{6'023 \cdot 10^{23} \text{ moléculas de } CO_2} = 0'0189 \text{ gr}$

c) 0'38 g de NH₄NO₂ ·
$$\frac{6'023 \cdot 10^{23} \text{ moléculas}}{64 \text{ g}}$$
 · $\frac{2 \text{ átomos}}{1 \text{ molécula}} = 7'15 \cdot 10^{21} \text{ átomos de N}$

Exprese en moles las siguientes cantidades de SO₃:

- a) 6'023·10²⁰ moléculas.
- b) 67'2 g.
- c) 25 litros medidos a 60 °C y 2 atm de presión.

Masas atómicas: O = 16; S = 32. R = 0'082 atm·L·K⁻¹·mol⁻¹

QUIMICA. 2012. RESERVA 4. EJERCICIO 2. OPCIÓN B

RESOLUCIÓN

a) moles =
$$\frac{6'023 \cdot 10^{20}}{6'023 \cdot 10^{23}} = 0'001$$
 moles

b)
$$67'2 \text{ gr} \cdot \frac{1 \text{ mol SO}_3}{80 \text{ gr SO}_3} = 0'84 \text{ moles}$$

c)
$$n = \frac{P \cdot V}{R \cdot T} = \frac{2 \cdot 25}{0'082 \cdot 333} = 1'83 \text{ moles}$$

Calcule la molaridad de una disolución preparada mezclando 150 mL de ácido nitroso 0'2 M con cada uno de los siguientes líquidos:

a) Con 100 mL de agua destilada.

b) Con 100 mL de una disolución de ácido nitroso 0'5 M.

QUIMICA. 2012. RESERVA 4. EJERCICIO 5. OPCIÓN B

RESOLUCIÓN

a)
$$M = \frac{\text{moles}}{\text{Volumen(L)}} = \frac{0.2 \cdot 0.150}{0.250} = 0.12 \text{ M}$$

b)
$$M = \frac{\text{moles}}{\text{Volumen(L)}} = \frac{0.2 \cdot 0.150 + 0.5 \cdot 0.1}{0.250} = 0.32 \text{ M}$$

Un litro de ${
m CO}_2$ se encuentra en condiciones normales. Calcule:

- a) El número de moles que contiene.
- b) El número de moléculas de CO₂ presentes.
- c) La masa en gramos de una molécula de CO 2.

Masas atómicas: C = 12; O = 16.

QUÍMICA. 2012. SEPTIEMBRE. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

a) 1 L de
$$CO_2 \cdot \frac{1 \text{ mol de } CO_2}{22'4 \text{ L de } CO_2} = 0'0446 \text{ moles de } CO_2$$

b) 0'0446 moles de
$$CO_2 \cdot \frac{6'023 \cdot 10^{23} \text{ moléculas de } CO_2}{1 \text{ mol de } CO_2} = 2'68 \cdot 10^{22} \text{ moléculas de } CO_2$$

c) 1 molécula de
$$CO_2 \cdot \frac{44 \text{ g de } CO_2}{6'023 \cdot 10^{23} \text{ moléculas de } CO_2} = 7'30 \cdot 10^{-23} \text{ g}$$