Descreptive statistics -

A measure of Disperssion! -

1 Variance

2 Standard Leviation

3 Runge

1 Variance

population 2

Sample 52 [1,2,3,4,5,6]

5.3

$$- o^2 = \frac{1}{N} \sum_{i=1}^{N=0} (x_i - M)^2$$

$$-2 = \frac{1}{N-1} \sum_{i=1}^{N-1} (X_i - \overline{X})^2$$

n-1 = Degree of Freedom Besils correction

population
$$\sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - u)^2$$

Sample
$$S = \int \frac{1}{n-1} \sum_{j=1}^{\infty} (x_j - \overline{x})^2$$

3 Lepto kutosis

& Emperical Rule of Distribution.

/ Emperical formula =

68-95-99.5

Variables

which It is a container box hold value inside it.

X = 10

Type of variable

vanable

Quantifetive Qualifative variable

-> Descret qunt. variable (whole number)

nominal gula var. (PIF, FIM, TIF)

_> Continous qual varble (Decimale number)

-> Ordinal qual. var. (10th, 12th, U.G. PG, Ph.D.)

	Dataset				10
1		×2_	73	X4	X
	Age	weight	educatry	Home	Gender
	18	40	10th	1	W
	19.6	50	ph.D.	2	√
	20.4	55.3	104	3	F
	30.8	75	Ph	1	w
		80-8			1
l					

A.

Variance

$$S^{2} = \frac{1}{N-1} \sum_{i=0}^{\infty} \left(\times_{i} - \overline{\chi} \right)^{2}$$

$$\overline{\times}$$
 = 7.1

$$\mathcal{N} = 10$$

$$\times$$
 ! - \times . $(\times$! - \times)

$$2 - 7.1 = -5.1 = 26.1$$

$$13 - 7.1 = 5.9 = 33.04$$

$$4 - 7.1 = -3.1 = 9.61$$

$$S^{2} = \frac{1}{10-1} \left(26.1 + 16.81 + 4.41 + 0.01 + 15.21 + 24.61 + 33.64 + 0.81 + 1.21 + 9.61 \right)$$

$$S^{2} = \frac{1}{9} \times 131.22$$

$$S^{2} = 14.58$$

$$S = 3.7841$$