1 Grundlagen

- Qualitative Attribute:
 - Variieren nach Beschaffenheit
- Quantitative Attribute:
 - Variieren nach Wert/Zahlen
- Diskrete Attribute:
 - abgestufte Werte
- Stetige Attribute:
 - können im Intervall jeden reellen Wert annehmen

1.1 Skalenniveaus

- Nominal
 - nur Gleichheit oder Andersartigkeit feststellbar (keine Bewertung)
 - stets qualitativ
- Ordinal
 - natürliche oder festzulegende Rangfolge
- Kardinal/Metrisch
 - numerischer Art
 - Ausprägung und Unterschied sind messbar
 - verhältnisskaliert (Absoluter Nullpunkt vorhanden; (Doppelt so viel.))
 - intervallskaliert (Kein Nullpunkt, nur Differenzen)

1.2 Sym. vs asym. Attribute

- Das symmetrische binäre Attribut ist ein Attribut, bei dem jeder Wert gleichwertig ist (w/m)
- Asymmetrisch ist ein Attribut, bei dem die beiden Ausprägungen nicht gleichwertig sind (Testergebnisse oder Vergleich von Umfragen)

1.3 Rauschen Artefakte, Ausreißer

- Rauschen (Random Verzerrung der Messung durch Einflussfaktoren)
- Artefakte (Unvollständige Messwerte)
- Ausreißer (Messwerte, die nicht im Normalbereich liegen)

1.4 Datenvorverarbeitung

- Aggregation (Zusammenfassung mehrerer Messwerte, Details gehen verloren)
- Sampling (Random(Behält gleiche Verteilung), Stratified (Einordnung in ähnliche Subgruppen nach Attribut und dann random daraus ziehen))
- Diskretisierung / Binarisierung (Gleiche Breite, gleiche Anzahl, Cluster)
- Transformation (Skalierung etc., PCA?, Kernel?)
- Dimensionsreduktion (Reduzierung und trotzdem Inhalte behalten)
- Feature Subset Selection (Konzentration auf wichtige Features)
- Feature Creation (W & H: Algo zusammenhang nicht verstehen, Größe(H*W) geht besser)

1.5 Ähnlichkeits- und Distanzmaße

1.5.1 Ähnlichkeit

Eigenschaften:

- s(x, y)0 <= s <= 1
- s(x, y) = 0, wenn x = y
- Symmetry: s(x, y) = s(y, x)

Simple Matching Coefficient (SMC):

•
$$SMC = \frac{\bar{f}_{00} + f_{11}}{f_{01} + f_{10} + f_{00} + f_{11}}$$

- Binäre Daten
- gut für sym. Attribute, da Vorhandensein und Abwesenheit gleich gewertet wird

Jaccard Coefficient:

- $J = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$
- Binäre Daten
- gut für **asym. Attribute**, da Vorhandensein gewertet wird
- $0 \le EJ \le 1$ (1 sehr ähnlich)

Extended Jaccard Coefficient (Tanimoto):

- $EJ: \frac{\langle x, y \rangle}{||x||^2 + ||y||^2 \langle x, y \rangle}$
- · Jaccard für alle Daten
- $0 \le EJ \le 1$ (1 sehr ähnlich)

Cosine Similarity:

- $cos(x, y) = \frac{\langle x, y \rangle}{||x|| * ||y||}$
- -1 <= cos(x, y) <= 1
- 1 = sehr ähnlich, 0 = Vekrtor im 90° Winkel, -1 = Vektor im 180° Winkel

- Umrechnung von zahl zu Winkel im Taschenrechner mit cos^{-1}
- auch für asym. Attribute da 0-0 Paare rausfallen

Correlation:

- corr(x, y) über Taschenrechner
- zeigt linearen Zusammenhang $(-1 \le corr \le 1)$
- Taschenrechner:
 - Menü 6 -> 2 Statistik -> $\leq a + bx$
 - Dateneingabe und AC drücken
 - *OPTN* -> Regression
 - -r = correlation

1.5.2 Distanz (Minkowski)

Eigenschaften:

- Positivity $(d(x,y) \ge 0, d(x,y) = 0, wenn x = y)$
- Symmetry (d(x,y)=d(y,x))
- Triangle Inequality $(d(x,z) \le d(x,y) + d(y,z))$

$$d(x, y) = \sqrt[r]{\sum_{k=1}^{n} |x_k - y_k|^r}$$

Name	r	Anwendung
Hamming	1	Bin.Vekt.
CityBlock	1	nur gerade
Euclid	2	schräg (gleiche Skalierung)
Supremum	∞	nur größte Dist.

1.5.3 Weiteres

Verhalten für Multiplikation und Addition:

Property	Cosine	Correlation	Minkowski
Invariant to multiplication	Yes	Yes	No
Invariant to addition	No	Yes	No

Mutual Information:

- Ähnlich wie Correlation, aber für nicht linearen Zusammenhang
- 0 = kein Zusammenhang, 1 = starker Zusammenhang
- HIER fehlts

Umrechnung Ähnlichkeit < - > **Distanz:**

Bspw:

•
$$s = \frac{1}{d} - 1$$

•
$$s = ln(x) * -1$$

•
$$d = 1 - s$$

•
$$d = \sqrt[2]{1-s}$$

Klassifikation

- Zuordnung einer abhängigen Variable (y) anhand von unanhängigen Variablen
- · Model hat beim Training (Induction) gelernt zuzuordnen
- Model wendet das gelernte bei der Klassifikation an (Deduction)

2.1 Beispiele von Klassifikationsverfahren

- Elementare Verfahren (Decision Trees, KNN, Naive Bays, SVM, NN)
- Ensemble Verfahren (Random Forests, bagging, Boosting, ...)

2.2 Entscheidungsbäume

- Datensatz durchläuft von der Wurzel bis zum Blatt die Knoten und wird anhand der Entscheidungen am Knoten klassifiziert
- Hunts Algo entscheidet, wie Splits gesetzt werden (gibt noch mehr)

2.2.1 Hunts Algo

- Sei D_t die Menge der Trainingsdatensätze, die Knoten t erreichen
- Wenn D_t nur Datensätze enthält, die zur selben Klasse ytgehören, dann ist t ein Blatt des Baumes und wird mit vtgekennzeichnet.
- Falls D_t Datensätze enthält, die zu mehr als einer Klasse gehören, verwende eine Attribut-Testbedingung, um die Daten in kleinere Untermengen aufzuteilen

2.2.2 Split bei Attributen

- Binärer Split
- Mehrfach Split

Möglichkeiten der Diskretisierung

- Einteilung in gleichbelegte Bereiche (Percentile)
- Einteilung in gleiche Bereiche (Clustering)
- Binäre Entscheidung: (A < v) und (A >= v)

Greedy Ansatz Algorithmus der schrittweise den besten nächsten Schritt mit dem höchsten gewinn wählt.

2.3 Maß für Knotenunreinheit

- $p_i(t)$ Häufigkeit von klasse i beim Knoten t c Gesamtzahl der Klassen
- Gini Index

 - $GI = 1 \sum_{i=0}^{c-1} p_i(t)^2$ Maximum: $1 \frac{1}{c}$

- Minimum: 0 (Best Case)
- Ablesbare Werte ohne Berechnungen:
 - * Nur bei 2 Klassen:
 - * Klassen mit 0 und 0 = 0
 - * Klassen mit 0 und X = 0
 - * Klassen mit X und X = 0.5

Entropy

- $-E = -\sum_{i=0}^{c-1} p_i(t) * log_2 p_i(t)$
- Maximum: log_2c
- Minimum: 0 (Best Case)

Klassifikationsfehler

- $CE = 1 max[p_i(t)]$
- Maximum: Wenn alle Datensätze auf die Klassen gleich verteilt sind
- Minimum: 0 (Best Case, wenn alle datensätze zu einer Klasse gehören)
- · Siehe Bild für Eigenschaften

2.4 Nachfolgende Berechnungen

- Können mit allen 3 Maßen berechnet werden.
- Split
 - $split = \sum_{i=1}^{k} \frac{n_i}{n} * Knotenunreinheit$
 - $-n_i$ = Anzahl der Daten im Kindknoten i
 - -n = Anzahl der Daten im Elternknoten
- Gain
 - gain = P M
 - P = Knotenunreinheit des Elternknoten
 - -M =Split der Kindknoten
 - Gain maximieren für einen guten Split bzw. M minimieren!!!
 - InformationGain: Gain berechnet mit der Entropie!
- Problem: Splits mit vielen Kindsknoten mit wenigen aber einen Datensätze werden bevorzugt!
- SplitInfo
 - $splitInfo = -\sum_{i=1}^{k} \frac{n_i}{n} log_2 \frac{n_i}{n}$ splitInfo = Entropie der Partitionierung
- GainRatio
 - $gainRatio = \frac{gain_{split}}{splitInfo}$
 - Korrigierter Gain um Entropie -> Bestrafung hoher Anzahl kleiner Partitionen
 - Maximum (Best Case)

2.5 Bewertung Bäume, Overfitting etc.

- Trainingsfehler: Klassifikationsfehler von Daten aus Training
- Testfehler: Klassifikationsfehler von Daten aus Test
- Generalisierungsfehler: Erwarteter K-Fehler bei random Daten

2.5.1 Under-/Overfitting

- Undefitting: Modell ist zu simpel (Training- /Testfehler
- Overfitting: Modell ist zu komplex oder zu wenig Daten (Testfehler groß)
- Typischer Ellenbogen Im "Knick" ist das Optimum

2.5.2 Fehlerabschätzung

- Ockhams Razor/Sparsamkeitsprinzip
- pess. Fehlerabschätzung: $err_{gen}(T) = err(T) + \Omega *$

 $\overline{N_{train}}$

- err(T) = Gesamtfehlermenge Training
- k = Anzahl Blätter im Baum
- N_{train} Anzahl Trainingsdatensätze

2.5.3 Pruning

- Pre-Pruning
 - Stoppe im Prozess, wenn bspw.
 - Datensätze zur selben Klasse gehören
 - Alle Datensätze bei allen Attributen die selben Werte haben
 - Anzahl der Datensätze Schwellenwert unterschre-
 - Klassenverteilung nach χ^2 unabhängig ist
 - Gain nicht hoch genug ist
- Post-Pruning
 - Nach Fertigstellung des Baumes
 - bottum-up Ansatz

2.6 Modell Evaluation

2.6.1 Validierung

- Holdout (Split zwischen Training- und Testdaten)
- Kreuzvalidierung (Mehrfach Holdout mit disjunkten Mengen und Durchschnitt über)

2.6.2 Konfusionmatrix

Siehe Bild im Repo

• Precision (% der richtig klassifizierten innerhalb der positiven Vorhersagen)

- Recall/True Positive Rate (% der richtig klassifizierten von den ursprünglich positiven)
- False Positive Rate (% der flasch positiv klassifizierten innerhalb der ursprünglich negativen)
- Accuracy (% der richtig klassifizierten Daten über allen)
- F1-Score (Gewichtetes Maß zwischen Precision und Recall)

2.6.3 ROC Kurve

Siehe Bild im Repo

- Achsen:
 - X: False Positive Rate
 - Y: True Positive Rate
 - (0,0): alle Prognosen negativ
 - (1,1): alle Prognosen positiv
 - (1,0): Idealzustand, alle Prognosen korrekt
- Diagonale (Ergebnis zufälligen Ratens)
- Area under the Curve (AUC)
 - Idealwert 1, Zufallsmodell 0.5
- Bester Split beim Punkt, der am nächsten an (1,0) liegt!
- ROC visuell lösen:
 - Oben rechts in Vis anfangen, links in der Tabelle
 - Tabelle vorstellen, dass Grenze Schritt für Schritt nach rechts geschoben wird. (Links der Grenze Klasse A, rechts Klasse B)
 - Wenn hinzukommender Eintrag richtig klassifiziert wird: Curve geht 1 Schritt nach links
 - Wenn hinzukommender Eintrag falsch klassifiziert wird: Curve geht 1 Schritt nach unten
 - Schrittgröße Links = $\frac{1}{Anzahl_{neg.Einträge}}$ - Schrittgröße runter = $\frac{1}{1}$
 - Schrittgroße runter = $\frac{1}{Anzahl_{pos.Einträge}}$
- Schwellenwerte ablesen:
 - Oben rechts anfangen und abzählen
 - Punkt finden und dann $>= S_{Punkt}$
- Gewichtung ändern:
 - FP x-mal schwerer als FN (FPR Achse mal x skalieren)
 - FN x-mal schwerer als FN (TPR Achse mal x skalieren)

3 Clustering

- Ordne Datenobjekt einem Cluster zu
- Objekt innerhalb des Clusters möglich ähnlich

- Objekte aus unterschiedlichen Clustern möglichst unterschiedlich
- Exklusives Clustering (Daten dürfen nur einem C angehören) nicht exklusives
- Probabilistisches Clustering (Datenpunkte gehören mit Wahrscheinlichkeit X zu Cluster. Alle Wahrscheinlichkeiten aufaddiert = 1)
- Fuzzy Cluster (daten gehören anteilig zu Clustern)
- Vollständiges Clustering (Alle Datenpunkte sind in einem C)
- Partielles Clustering (Es gibt Daten ohne Cluster)

3.1 Arten von Clustern

- Wahl-separierte Cluster
 - Jeder Punkt eines Clusters liegt n\u00e4her an jedem anderen Punkt des Clusters als an irgendeinem Punkt eines anderen Clusters
- · prototyp-basiert
 - Jeder Punkt liegt n\u00e4her am Prototypen des Clusters, als an einem anderen Prototypen
 - Zentroid: Durchschnitt aller Punkte (Schwerpunkt)
 - Mediod: mittlerer Punkt (Median)
- kontiguitäts-basiert
 - Jeder Punkt eines Clusters liegt n\u00e4her an (ist \u00e4hn-licher zu) einem oder mehreren Punkten des Clusters als zu irgendeinem Punkt eines anderen Clusters
- dichte-basiert
 - Ein Cluster ist eine Region dichter Punkte, die durch Regionen mit geringer Punktdichtevon anderen Regionen mit hoher Punktdichte separiert ist
 - Einsatz bei unregelmäßig geformten Clustern & bei Datenrauschen oder Ausreißern

3.2 Partitionierendes Clustering (K-Means)

3.2.1 Eigenschaften:

- Vollständig partitionierend
- prototyp-basiert (Zentroid)
- Anzahl der Cluster muss vorgegeben werden
- Speicherplatzkomplexität: O((n + K) * d)
- Laufzeitkomplexität: O(n*K*I*d)
- *n*= Anzahl der Punkte, *K*= Anzahl der Cluster, *I*= Anzahl der Iterationen, *d*=Anzahl der Attribute

- Algo konvergiert recht schnell
- Durch zufällig gewählte Zentroids unterschiedliche Ergebnisse
- Häufig wird nur lokale und nicht globale Minimum gefunden!

3.2.2 Algorithmus:

- Select k points as initial centroids
- repeat
 - Form k clusters by assigning all points to the closets centroid
 - recompute the centroid of each cluster
- until centroids don't change

3.2.3 Zielfunktion

- Sum of Squared Error (SSE)
- Fehler: Abstand eines Datenpunkts zum nächstgelegenen Zentroid
- $SSE = \sum_{i=1}^{k} \sum_{x \in c_i} dist(m_i, x)^2$
- Summe sinkt mit jeder Iteration bis lokales/globales Min erreicht ist

3.2.4 Optimierung KMeans

- Mehrfach ausführen (Wahrscheinlichkeit schlecht)
- Zentroid Wahl über Heuristik (Wahl nacheinander mit möglichst großem Abstand)
- Bisecting (Erst zwei Cluster, dann weiter spalten)

3.2.5 Grenzen und Probleme KMeans

Schlecht bei:

- Cluster unterschiedlicher Größe
- Cluster unterschiedlicher Dichte
- · Cluster nicht kugelförmig sind
- Cluster mit Ausreißer oder Rauschenhaben

3.3 DBSCAN - dichte basiertes Clustering

3.3.1 Eigenschaften

- Keine Probleme mit unterschiedlichen Clustergrößen und -formen
- Unempfindlich gegenüber Rauschen
- Kernpunkt
 - Punkt, in derem ϵ Umgebung sich mindestsns MinPts befinden
 - Kernpunkt wird mitgezählt
- Randpunkt
 - Nicht Kernpunkt
 - Aber in ϵ Distanz von kernpunkt entfernt ist
- Rauschpunkt
 - Weder Kern- noch Randpunkt

3.3.2 Algorithmus

- Kennzeiche alle Punkte als, kern, Rand und Rauschpunkt
- Lösche Randpunkte
- Verbinde alle Kernpunkte, die in ϵ Distanz liegen
- Jede Gruppe von Kernpunkten wird ein Cluster
- Jeder Randpunkt wird einem Cluster zugeordnet

3.3.3 Parameter auswählen

- \bullet ϵ
- Plotte Abstände zu allen k Nachbarn
- Randpunkte haben kurze Distanz, Rauschpunkte große
- Sobald Distanz sign. ansteigt, ϵ ablesen
- MinPts
 - Zu kleiner Wert führt zu Miniclustern
 - Wert erhöhen bis Anzahl der Cluster nicht mehr stark sinkt

3.3.4 Grenzen und Probleme DBSCAN

Schlecht bei:

- · Cluster unterschiedlicher Dichte
- hochdimensionalen Daten

3.4 Hierarchisches Clustering

3.4.1 Eigenschaften

- Erzeugt Menge von verschachtelten Clustern
- Baumdiagramm der Cluster als Dendogram darstellbar
- Keine Angabe von Clusteranzahl nötig! (Anzahl kann sich nach Erstellung beliebig ausgesucht werden)
- Agglomeratives Clustern (verschmelzent)
- Divisives Clustern (teilend)
- Verwenden beide Ähnlichkeits- oder Distanzmaße (Greedy Ansatz)
- Speicherplatzkomplexität: $O(n^2)$
- Zeitkomplexität: $O(n^3)$

3.4.2 Algo agglomeratives Clustering

- Abstandsmatrix berechnen
- repeat
 - Merge 2 dichteste Cluster
 - Update Abstandsmatrix
- until, 1 Cluster übrig bleibt

3.4.3 Inter-Cluster Abstand

• Minimaler Abstand (Single Link)

- Wähle immer das Minimum der kleinsten Abstände aus
- Kein Problem mit nicht eliptischen Clustern!
- Probleme mit verrauschten Daten und Ausreißern
- Maximaler Abstand (Complete Link)
 - Wähle immer das Minimum der maximalsten Abstände aus
 - Kaum/Keine Probleme mit verrauschten Daten und Ausreißern
 - Bevorzugt kugelförmige Cluster
 - Trennt große Cluster häufiger auf
- Durchschnittlicher Abstand (Average Link)
 - Der Abstand zweier Cluster entspricht dem Durchschnitt der Abstände aller Punktpaareaus den verschiedenen Clustern
 - Wähle immer das Minimum der durchschnittlichen Abstände
 - KOmpromiss zwischen Min und Max Distanz
 - Stärke (Weniger anfällig für Rauschen, Trennt große Cluster weniger häufiger)
 - Schwäche (Bevorzugt kugelförmige Cluster, Berechnung aufwändig)