Chapter 6 Construction of a Probability Measure

概率测度的构造 adveprobab 2

对于 \mathcal{B} 是 $\{\omega\}_{\omega\in\Omega}$,即 \mathcal{B} 是单点集组成的事件类

如果概率 P 建立在 \mathcal{B} 上,这样构造的概率比较好计算,现在的想法是:想通过有限集合或者可数集合,来进行拓展,将概率测度扩展开

即将 P 扩展到 $\mathcal{A}=2^{\Omega}$

核心:

 $finite \Rightarrow uncountable$

- Assume given Ω (countable or uncountable) and a σ -algebra $\mathcal{A} \in 2^{\Omega}$
- (Ω, \mathcal{A}) is called a measurable space. 构造P
- Want to construct probability measure on A
 - \circ When Ω is finite or countable, we have already seen this is simple to do.
 - \circ When Ω is uncountable, the same technique does not work. 失效
 - Indeed, a "typical" probability P will have $P(\{\omega\}) = 0$ for all ω , and thus the family of all numbers $P(\{\omega\})$ for $\omega \in \Omega$ does not characterize probability P in general.
 - 怎么理解上一点?对于不可数集合。。。
- In many "concrete" situations --- that it is often relatively simple to construct a "probability" on an algebra which generates the σ -algebra $\mathcal A$, and the problem at hand is then to extend this probability to the σ -algebra itself.

在由 \mathcal{A} 生成的 sigma 代数里面构建一个代数上的概率是相对比较容易的,现在要将其拓展到 sigma 代数里面

- Suppose: 在一个代数上建立概率 P
- \mathcal{A}_0 is an algebra and, $\mathcal{A} = \sigma(\mathcal{A}_0)$.

- Given a probability P on the algebra \mathcal{A}_0 : that is, a set function $P:\mathcal{A}_0 o [0,1]$ satisfying
 - $\circ P(\Omega) = 1$
 - \circ (Countable Additivity) for any sequence $\{A_n\}_{n\geq 1}\subset \mathcal{A}_0$, pairwise disjoint, and such that $\cup_{n\geq 1}A_n\in \mathcal{A}_0$, we have

$$P\left(\cup_{n\geq 1}A_n
ight)=\sum_{n=1}^{\infty}P(A_n)$$

It might seem natural to use for A, the set of all subsets of Ω , as we did in the case where Ω was countable.

We do not do so for the following reason, illustrated by an example: 不可数的不满足

- Suppose $\Omega=[0,1]$, and define a set function P on intervals of the form P((a,b])=b-a, where 0 < a < b < 1
- It is a natural "probability measure" that assigns the usual length of an interval as its probability. 概率表示为长度
- Suppose we want to extend P in a unique way to $2^{\Omega} = 2^{[0,1]} =$ all subsets of [0,1] such that
 - $\circ P(\Omega) = 1$
 - $\circ \ \ P(\cup_{n=1}^\infty A_n) = \sum_{n=1}^\infty P(A_n)$ for any sequence of subsets $\{A_n\}_{n\geq 1}$ with $A_n\cap A_m=\emptyset$ for n
 eq m
- One can prove that no such P exists! 怎么证明其不存在性?
- The collection of sets $2^{[0,1]}$ is simply **too big** for this to work.

Borel realized that we can however do this on a smaller collection of sets, namely the smallest σ -algebra containing intervals of the form (a, b].

Borel set:

- the sigma-algebra generated by the open sets 所有开集生成的 sigma 代数
- the sigma-algebra generated by the open intervals 所有开区间生成的 sigma 代数
- the sigma-algebra generated by the $(-\infty, a], a \in \mathbb{Q}$ 所有 $(-\infty, a]$ 生成的 sigma 代数 这三个定义构造的 Borel set 越来越小,事件类越小,构建概率 P 越简单

由定理2.1:在 \mathbb{R} 上的博雷尔集是由 $(-\infty,a]$ 这种形式的区间所生成的 \mathbb{R} 的或用

Proof.

Let $\mathcal C$ denote all open intervals. Since every open set in $\mathcal R$ is the countable union of open intervals, we have $\sigma(\mathcal C)=$ the Borel $\sigma-algebra$ of $\mathbb R$

Let $\mathcal D$ denote all intervals of the form $(-\infty,a]$, where $a\in\mathbb Q$.

Let $(a,b) \in \mathcal{C}$

Let $(a_n)_{n\geq 1}$ be a sequence of rationals decreasing to a

Let $(b_n)_{n\geq 1}$ be a sequence of rationals increasing strictly to b.

Then

$$egin{aligned} (a,b) &= \cup_{n=1}^\infty (a_n,b_n] \ &= \cup_{n=1}^\infty \left((-\infty,b_n] \cap (-\infty,a_n]^c
ight) \end{aligned}$$

Therefore , $\mathcal{C} \subset \sigma(\mathcal{D})$, where $\sigma(\mathcal{C}) \subset \sigma(\mathcal{D})$

However, since each element of \mathcal{D} is a closed set, it is also a Borel set, and therefore \mathcal{D} is contained in the Borel sets \mathcal{B} , Thus we have

$$\mathcal{B} = \sigma(\mathcal{C}) \subset \sigma(\mathcal{D}) \subset \mathcal{B}$$

and hence $\sigma(\mathcal{D}) = \mathcal{B}$

这个定理给出了更容易验证 Borelo - algebra 的一种方法,给出了验证博雷尔集的一个充要条件

这个定理的证明核心在于 $(a,b) = \bigcup_{n=1}^{\infty} ((-\infty,b_n] \cap (-\infty,a_n]^c)$

需要证明左边的开区间(a,b)所构成的 sigma 代数 \mathcal{B} 和右边的 $(-\infty,a]$ 这种形式构成的sigma代数 $\sigma(\mathcal{D})$ 是相等的,则需要证明两个包含关系

Theorem 6.1 概率延拓定理 (唯一延拓)

Each probability P defined on the algebra A_0 has a **unique** extension (also call P) on A.

每一个定义在代数 A_0 上的概率,在 A 上都有唯一的拓展

We will show only the uniqueness. For the existence one can consult any standard text on measure theory.

Definition 6.1

- A class C of subsets of Ω is **closed under finite intersections**
 - 对有限并封闭 (代数满足对有限并封闭)
 - \circ If for when $A_1,A_2,\ldots,A_n\in\mathcal{C}$, then $A_1\cap A_2\cap\cdots\cap A_n\in\mathcal{C}$ as well (n arbitrary but finite)
- A class C is **closed under increasing limits** C

对单增并封闭 (σ -代数满足,且 σ -代数更小)

- \circ If wherever $A_1\subset A_2\subset \cdots\subset A_n\subset \cdots$ is a sequence of events in $\mathcal C$, then $\cup_{n=1}^\infty A_n\in \mathcal C$ as well.
- A class C is closed under differences C

对差封闭 (代数满足对差封闭,但满足对差封闭的不一定是代数)

• If whenever $A, B \in \mathcal{C}$ with $A \subset B$, then $B - A \in \mathcal{C}$.

* * * * * Monotone Class Theorem 单调类定理

Let \mathcal{C} be a class of subsets of Ω , closed under finite intersections and containing Ω .

C 满足两个条件: 包含 Ω 、对有限交封闭

Let \mathcal{B} be the smallest class containing \mathcal{C} which is closed under increasing limits and by difference.

 \mathcal{B} 满足两个条件: 包含 \mathcal{C} 的最小类、对单增并、差封闭

Then $\mathcal{B} = \sigma(C)$

Proof.

Note that

- The intersection of classed of sets closed under increasing limits and differences is again a class of that type.
 - 一列事件,对单增并封闭,则把之交起来也对单增并封闭

Proof.

题设:

- 有若干个事件类 $A_{\alpha}, \alpha \in \mathcal{I}$
- 对每个 $\alpha \in \mathcal{I}$, \mathcal{A}_{α} 对单增并封闭

推导:

若 $A_1 \subset A_2 \subset \cdots$ 且 $A_i \in \cap_{\alpha \in I} \mathcal{A}_{\alpha}$

对任意固定的 $\alpha \in \mathcal{I}$, $A_i \in \mathcal{A}_{\alpha}$, i = 1, 2, ...

则 $\bigcup_{i=1}^\infty A_i \in \mathcal{A}_\alpha$,于是 $\bigcup_{i=1}^\infty A_i \in \bigcap_{\alpha \in I} \mathcal{A}_\alpha$ (每个都属于 \mathcal{A}_α ,则属于 \mathcal{A}_α 的交)

一列事件, 对差封闭, 则把之交起来也对差封闭

自己证明一下

So, by taking the intersection of all such classed,

ullet there always exists a smallest class containing ${\mathcal C}$ which is closed under increasing limits and by differences.

总存在一个最小的类,满足: 包含 C ,且对单增并封闭、差封闭

所有满足(对单增并封闭、差封闭、包含 c)的都交起来,最小

For each set B, denote \mathcal{B}_B to be the collection of sets A such that $A \in \mathcal{B}$ and $A \cap B$, *i.e.*

$$\mathcal{B}_B = \{A : A \in \mathcal{B}, A \cap B \in \mathcal{B}\}$$

看上去 \mathcal{B}_B 跟 B 的选择有关,但实际上无关

Given the properties of \mathcal{B} , one easily checks that \mathcal{B}_B is closed under increasing limits and by differences.

证明对单调并封闭,即证明: 若 $A_1\subset A_2\subset\ldots$ 且 $A_i\in\mathcal{B}_B$,证明 $\cup_{i=1}^\infty A_i\in\mathcal{B}_B$

则证明其满足两条:

- $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}$
- $(\cup_{i=1}^{\infty} A_i)B \in \mathcal{B}$

证明第一条: $\cup_{i=1}^{\infty}A_{i}\in\mathcal{B}$

- :: B 对单增并封闭(由定义)
- $\therefore \cup_{i=1}^{\infty} A_i \in \mathcal{B}$

证明第二条: $(\cup_{i=1}^{\infty} A_i)B \in \mathcal{B}$

 $(\cup_{i=1}^{\infty}A_i)B=\cup_{i=1}^{\infty}(A_iB)$ $\exists A_1B\subset A_2B\subset\dots$

则 $\cup_{i=1}^{\infty}(A_iB)\subset\mathcal{B}$ (定义)

则说明 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{B}_B$, 即 \mathcal{B}_B 对单增并封闭

仿照这个证明, 对差封闭的自己证明一下

Let $B \in \mathcal{C}$; 给定 $B \in \mathcal{C}$;

For each $C \in \mathcal{C}$ one has $B \cap C \subset \mathcal{C} \subset \mathcal{B}$ and $C \in \mathcal{B}$, thus $C \in \mathcal{B}_B$

Hence $\mathcal{C} \subset \mathcal{B}_B \subset \mathcal{B}$. 后一个是定义

 $:: \mathcal{B}_B$ 是包含了 \mathcal{C} 的对有限并、差封闭的

 $\therefore \mathcal{B} = \mathcal{B}_B$ (by the properties of \mathcal{B} and of \mathcal{B}_B)

说明在 $B \in C$ 时是可以证明 $B = B_B$ 的

下面将其拓展到 B 上

Now let $B \in \mathcal{B}$.

For each $C \in \mathcal{C} \subset \mathcal{B}$

由上一条可知,在 $B \in C$ 时是可以证明 $\mathcal{B} = \mathcal{B}_B$ 的,则在 $C \in C$ 时是可以证明 $\mathcal{B} = \mathcal{B}_C$ 的,则 $B \in \mathcal{B} = \mathcal{B}_C$

we have $B \in \mathcal{B}_C$, and because of the preceding, $B \cap C \in \mathcal{B}$, hence $C \in \mathcal{B}_B$, whence $\mathcal{C} \subset \mathcal{B}_B \subset \mathcal{B}$, hence $\mathcal{B} = \mathcal{B}_B$

$$egin{array}{ll} B \in \mathcal{B}_C & C \in \mathcal{B} \ \Downarrow 定 lambda \ 1.B \in \mathcal{B} \ 2.BC \in \mathcal{B} & \mathcal{C} \in \mathcal{B}_B \ \end{array}$$

 $\mathcal{C}\subset\mathcal{B}_B\subset\mathcal{B}$ $\mathcal{B}=\mathcal{B}_B$

即 \mathcal{B}_B 跟 B 无关,但是B 必须在 \mathcal{B} 里面

Since $\mathcal{B} = \mathcal{B}_B$ for all $B \in \mathcal{B}$, we conclude \mathcal{B} is closed by finite intersections.

 $:: \mathcal{B}_B$ 对有限并封闭

 $\forall A,B\in\mathcal{B}$

 $\therefore B \in \mathcal{B} \qquad A \in \mathcal{B} = \mathcal{B}_B$

 $\Rightarrow AB \in \mathcal{B}$

即及对有限并封闭

可以由定义推导

Furthermore $\Omega \in \mathcal{B}$, and \mathcal{B} is closed by difference, hence also under complementation.

Since $\mathcal B$ is closed by increasing limits as well, we conclude $\mathcal B$ is a σ -algebra, and it is clearly the smallest such containing $\mathcal C$.

证明: \mathcal{B} 是 σ -代数

缺一个可列并封闭:

证明:

若 $A_i \in \mathcal{B}$

令
$$B_n = \cup_{i=1}^n A_i$$
 ,则 $\cup_{i=1}^n A_i = \cup_{i=1}^n B_i$,且 $B_1 \subset B_2 \subset \ldots$

$$B_n^c = \cap_{i=1}^n A_i^c \in \mathcal{B}$$

- ullet $A_i \in \mathcal{B}$
- ullet $A_i^c \in \mathcal{B}$
- A_i^c 有限并 $\in \mathcal{B}$
- $\Rightarrow B_n \in \mathcal{B}$

则 В 对可列并封闭

 \mathcal{B} 是 σ -代数, $\mathcal{B} \supset \mathcal{C}$ \Rightarrow $\mathcal{B} \supset \sigma(\mathcal{C})$

由 $\sigma(\mathcal{C})\supset\mathcal{C}$ 且 $\sigma(\mathcal{C})$ 对单增并、差封闭

由 \mathcal{B} 的最小性,可得 $\sigma(\mathcal{C}) \supset \mathcal{B}$

则 $\mathcal{B} = \sigma(\mathcal{C})$

The proof of the uniqueness in Theorem 6.1 is an immediate consequence of the following Corollary 6.1, itself a consequence of the Monotone Class Theorem

Corollary 6.1 推论: 概率延拓定理

Let P and Q be two probabilities defined on $\mathcal A$

Suppose P and Q agree on a class $\mathcal{C} \subset \mathcal{A}$ which is closed under finite intersections.

If
$$\sigma(\mathcal{C}) = \mathcal{A}$$
, we have $P = Q$

这个定理说明:两个定义在对交封闭的 \mathcal{C} 上相等的概率测度 P,Q,可以将其延拓到 $\sigma(\mathcal{C})$ 上

Proof. We can assume w.l.o.g. that $\Omega \in \mathcal{C}$, since

- $\Omega \in \mathcal{A}$, because \mathcal{A} is a σ -algebra
- $P(\Omega)=Q(\Omega)=1$, because they are both probabilities.

Let

$$\mathcal{B} = \{A \in \mathcal{A} : P(A) = Q(A)\}$$

By the definition of a Probability measure and Theorem 2.3, $\,\mathcal{B}$ is closed by difference and by increasing limits.

Also $\mathcal B$ contains $\mathcal C$ by hypothesis.

Therefore since $\sigma(\mathcal{C}) = \mathcal{A}$, we have $\mathcal{B} = \mathcal{A}$ by the Monotone Class Theorem.

不妨设 $\Omega \in \mathcal{C}$ (若不在里面,定义 $\mathcal{C}' = \mathcal{C} \cup \{\Omega\}$)

$$\mathcal{B} = \{A \in \mathcal{A} : P(A) = Q(A)\}$$

证明:
$$\mathcal{B} = \mathcal{A}$$
 , 则在 \mathcal{A} 上 $P(A) = Q(A)$

$$\therefore C \perp P(A) = Q(A) \qquad \therefore C \subset \mathcal{B}$$

若 $A_1 \subset A_2 \subset \ldots$ $A_i \in \mathcal{B}$

则 $\bigcup_{i=1}^{\infty} A_i$

$$P\left(\cup_{i=1}^{\infty}A_{i}
ight)=\lim_{n
ightarrow\infty}P(A_{n})=\lim_{n
ightarrow\infty}Q(A_{n})=Q\left(\cup_{i=1}^{\infty}A_{i}
ight)$$

 $\therefore \cup_{i=1}^{\infty} A_i \in \mathcal{B}$

对差也一样

又 $\mathcal{B} \supset \mathcal{C}$ 且 \mathcal{B} 对单增并、差封闭

- $\therefore \quad \sigma(\mathcal{C}) = \mathcal{A} \subset \mathcal{B} \subset \mathcal{A}$
- $\mathcal{A} = \mathcal{B}$

Definition 6.2

Let P be a probability on \mathcal{A} .

A **null set** (or **negligible set**) for P is a subset A of Ω such that there exists a $B \in \mathcal{A}$ satisfying $A \subset B$ and P(B) = 0

可忽略的集合

A 是一个概率测度

因为 概率一定满足规范性和可列可加性

A 不一定在 A 上

Remark

- We say that a property holds almost surely (a. s. in short) if it holds outside a negligible set.
- This notion clearly depends on the probability, so we say sometimes <u>P-almost surely</u>, or <u>P-a.s.</u>
 几乎处处收敛

$$egin{aligned} \xi_n
ightarrow_{a.s.} \; \xi &\Leftrightarrow \exists A \subset B \ s.t. \; B \subset \mathcal{A} ext{ and } P(B) = 0 \ lim_{n
ightarrow \infty} \xi_n(\omega) = \xi \end{aligned}$$

r 收敛

$$\xi_n \to_r \xi \Leftrightarrow E|\xi_n - \xi|^r \to 0 \quad n \to \infty$$

Remark

- The negligible set are not necessarily in ${\cal A}$
- Nevertheless it is natural to say that they have probability zero.
- In the following theorem, we extend the probability to the σ -algebra which is generated by \mathcal{A} and all P-negligible sets.

目标:将概率 P 延拓到 $\mathcal{A} \cup \{\text{all } P\text{-negligible}\}$

Theorem 6.4

Let P be a probability on A and let N be the class of all P-negligible sets.

Then

$$\mathcal{A}' = \{A \cup N : A \in \mathcal{A}, N \in \mathcal{N}\}$$

is a σ -algebra, called the P-completion of $\mathcal A$

- \mathcal{A}' is the smallest σ -algebra containing \mathcal{A} and \mathcal{N}
- P extends uniquely as a probability (still denoted by P) on \mathcal{A}' , by setting $P(A \cup N) = P(A)$ for $A \in \mathcal{A}$ and $N \in \mathcal{N}$

Proof.

由 Corollary 6.1 可知,存在 $\mathcal{A} \cup \mathcal{N}$

 $orall A \in \mathcal{A} \cup \mathcal{N}$ III $A \in \mathcal{A}$ or $A \in \mathcal{N}$

下面证明 $A \cup N$ 对有限交封闭

```
2. 若 A \in \mathcal{A}, B \in \mathcal{N} AB \in \mathcal{N} \subset \mathcal{A} \cup \mathcal{N}
                                                  \because B \in \mathcal{N} 
ightarrow \exists C \in \mathcal{A} \quad s.t. \quad B \subset C \ and \ P(C) = 0
                                                  AB \subset B \subset C
                                                  \Rightarrow AB \in \mathcal{N}
  3. 若 A \in \mathcal{N}, B \in \mathcal{N} \Rightarrow AB \in \mathcal{N} \subset \mathcal{A} \cup \mathcal{N}
由 123 说明 A \cup N 对有限交封闭
```

证明 $\mathcal{A} \cup \mathcal{N} \subset \mathcal{A}'$

证明 $\mathcal{A}' = \sigma(\mathcal{A} \cup \mathcal{N})$

证明 A' 是一个 σ -algebra

```
\Omega = \Omega \cup \emptyset, \quad \Omega \in \mathcal{A}, \emptyset \in \mathcal{N}
1. \Omega \in \mathcal{A}'
```

2. 若
$$B \in \mathcal{A}'$$
 ,则 $\exists A \in \mathcal{A}, N \in \mathcal{N}$

$$\begin{split} s.\,t. \\ B &= A \cup N \\ B^C &= A^C \cap N^C = (A^C \cap C^C) \cup (A^C \cap N^C \cap C) \\ &\quad (A^C \cap C^C) \in \mathcal{A} \\ &\quad (A^C \cap N^C \cap C) \subset C \in \mathcal{N} \\ &\quad \Downarrow \\ B^C &\in \mathcal{A}' \end{split}$$

3. 可列可加

$$B_n \in \mathcal{A}', n=1,2,\ldots$$
 $N_n \subset C_n \in \mathcal{A}, P(C_n)=0$ $P(\cup_{n=1}^{\infty} C_n) \leq \sum_{n=1}^{\infty} P(C_n)=0$

$$B_n = A_n \cup N_n \qquad A_n \in \mathcal{A}, N_n \in \mathcal{N} \ \cup_{n=1}^{\infty} B_n = \left(\cup_{n=1}^{\infty} A_n \right) \cup \left(\cup_{n=1}^{\infty} N_n \right) \in \mathcal{A}' \ \cup_{n=1}^{\infty} A_n \in \mathcal{A} \ \cup_{n=1}^{\infty} N_n \in \mathcal{N}$$

则 \mathcal{A}' 是一个 σ -algebra , $\mathcal{A}' = \sigma(\mathcal{A} \cup \mathcal{N})$

由 corollary 6.1 知, The uniqueness of the extension is straightforward.

现在想知道,若 A 上有不一样的分解,其概率是否会于分解有关?

Suppose now that $A_1 \cup N_1 = A_2 \cup N_2$ with $A_i \in \mathcal{A}$ and $N_i \in \mathcal{N}$

The symmetrical difference $A_1 \triangle A_2 = (A_1 \cap A_2^c) \cup (A_1^c \cap A_2)$ is contained in $N_1 \cup N_2$ Proof.

$$A_1 A_2^c \subset (A_1 \cup N_1) A_2^c = (A_2 \cup N_2) A_2^c = A_2 A_2^c \cup N_2 A_2^c = N_2 A_2^c \subset N_2$$

$$A_1^c A_2 \subset A_1^c (A_2 \cup N_2) = A_1^c (A_1 \cup N_1) = A_1^c A_1 \cup A_1^c N_1 = A_1^c N_1 \subset N_1$$

$$A_1A_2^c \cup A_1^cA_2 \subset N_1 \cup N_2$$

$$\exists C_i \in \mathcal{A} \quad P(C_i) = 0, \quad N_i \subset C_i, \quad i = 1, 2, \dots \quad A_i \in \mathcal{A}$$

$$A_1 \triangle A_2 \subset N_1 \cup N_2 \subset C_1 \cup C_2 \quad \Rightarrow \quad A_1 \triangle A_2 \in \mathcal{N}, \quad P(C_1 \cup C_2) \leq P(C_1) + P(C_2) = 0$$

$$\begin{split} P(A_1) &= P(A_1A_2 + A_1A_2^c) \\ &= P(A_1A_2) + P(A_1A_2^c) \\ &= P(A_1A_2) \\ A_1A_2^c &\subset A_1 \triangle A_2 \subset N_1 \cup N_2 \subset C_1 \cup C_2 \quad \Rightarrow P(A_1A_2^c) \leq P(C_1 \cup C_2) = 0 \\ P(A_1) &= P(A_1A_2) \\ P(A_2) &= P(A_1A_2) \\ &\Rightarrow P(A_1) = P(A_2) \\ &\Rightarrow Q(A_1 \cup N_1) = Q(A_2 \cup N_2) \end{split}$$

则不管怎么分解,延拓的概率都相等

现在证明 Q 是概率, 概率需要验证两条:

$$1. \quad Q(\Omega) = Q(\Omega \cup \emptyset) = P(\Omega) = 1$$

2. 假设 $B_n \in \mathcal{A}'$ 且 B_n 两两互斥 n = 1, 2, ...

$$egin{aligned} Q(\cup_{i=1}^\infty B_n) &= Q\left\{ \cup_{i=1}^\infty (A_n \cup N_n
ight\} \ &= Q\left\{ \cup_{i=1}^\infty A_n \cup \cup_{i=1}^\infty N_n
ight\} \ &= P\left\{ \cup_{i=1}^\infty A_n
ight\} \ &A_n \ \mathcal{E} B_n \ \text{的一部分}, \ \ \mathbb{M} \ B_n \ \text{两两互斥得到} \ A_n \ \text{两两互斥} \ &= \sum_{n=1}^\infty P\left\{ A_n
ight\} \end{aligned}$$

$$egin{aligned} Q(B_n) &= Q(A_n \cup N_n) = P(A_n) \ &\therefore Q(\cup_{i=1}^\infty B_n) = \sum_{n=1}^\infty Q(B_n) \end{aligned}$$

则 Q 是 A' 上的概率测度,仍然记 Q 为 P

定理6.4证明完毕

回顾一下定理6.1以及其证明过程:

定理6.1: 概率 P 是 A 上的概率 N 是所有的可忽略集合类

定义 $\mathcal{A}' = \{A \cup N : A \in \mathcal{A}, N \in \mathcal{N}\}$

则可以得到:

- A' 是一个 σ-代数
- $\mathcal{A}' = \sigma(\mathcal{A} \cup \mathcal{N})$
- 概率 P (原来定义在 A 上) 可在 A' 上唯一延拓

定理6.1把概率又往前延拓,现在是可以延拓到一个σ-代数和一个可忽略集的并集构成的σ-代数上了。

定理的证明需要证明几步:

1.
$$\mathcal{A}'$$
 是一个 σ -代数 $\left\{egin{array}{l} \emptyset \ \Omega$ 在里面 A 在 \mathcal{A}' 里面,则 A^c 也在 \mathcal{A}' 里面对可列并封闭

- 2. 证明 $\mathcal{A}' = \sigma(\mathcal{A} \cup \mathcal{N})$, 由两个包含关系可以证明 其中,证明 $A \in \mathcal{N} \subset A'$ 就是为了证明这一步
- 3. 证明概率 P 延拓到 A' 上之后 (记为 Q)仍然是一个概率 (由概率的定义来证明)
- 4. 证明唯一性, 延拓之后的概率是唯一的, 则仍然可以记为 P.

唯一性的证明由性质6.1可以得到,需要证明

- A∪N 对有限交封闭
- \circ $\mathcal{A}' = \sigma(\mathcal{A} \cup \mathcal{N})$
- 。 概率与分解无关

性质6.1: 概率 P 和 概率 Q 是定义在A 上的两个概率,若 P,Q 在 $\mathcal{C} \subset A$ 上相等,并且对有限交封 闭,如果 $\sigma(\mathcal{C}) = \mathcal{A}$,则P = Q