Categorías y funtores

Mario Román

December 3, 2017

Outline

Categorías

Algunas categorías

Funtores

Categorías

Definición (I)

Una categoría ${\mathcal C}$ está formada por

- objetos o *puntos*, que llamaremos *a*, *b*, *c*, . . . ,
- y morfismos o flechas de un objeto a otro, que llamaremos f, g, h, \ldots

Que un morfismo f sea de a hacia b se escribe como f: $a \to b$ o, en ocasiones, $f \in \text{hom}(a, b)$.

Definición (I)

Una categoría ${\mathcal C}$ está formada por

- objetos o *puntos*, que llamaremos *a*, *b*, *c*, . . . ,
- y morfismos o flechas de un objeto a otro, que llamaremos f, g, h,....

Que un morfismo f sea de a hacia b se escribe como f: $a \to b$ o, en ocasiones, $f \in \text{hom}(a, b)$.

Los objetos y las flechas son nociones fundamentales sin definición.

Definición (I)

Hasta aquí, parece un grafo con múltiples aristas.

Hay objetos a, b, c y flechas

- $f: a \rightarrow c$,
- $g: a \rightarrow c$,
- $h: b \rightarrow a$,
- $k: b \rightarrow c$.

3

Definición (II)

Lo que distingue a las categorías es que las flechas se componen para crear otras flechas. Hay una operación composición.

Definición (II)

Lo que distingue a las categorías es que las flechas se componen para crear otras flechas. Hay una operación composición.

La operación composición; dadas dos flechas f: a → b y
 g: b → c, da una flecha g ∘ f: a → c.

4

Definición (II)

Lo que distingue a las categorías es que las flechas se componen para crear otras flechas. Hay una operación composición.

 La operación composición; dadas dos flechas f: a → b y g: b → c, da una flecha g ∘ f: a → c.

¡Nótese que no cualesquiera dos flechas pueden componerse! Una tiene que tener como "dominio" el "codominio" de la otra para poder ser "componibles".

4

Propiedades de la composición

• Es asociativa, si tenemos

entonces $h \circ (g \circ f) = (h \circ g) \circ f$ y escribimos simplemente $h \circ g \circ f$.

Propiedades de la composición

• Es asociativa, si tenemos

entonces $h \circ (g \circ f) = (h \circ g) \circ f$ y escribimos simplemente $h \circ g \circ f$.

 Cada objeto tiene una flecha identidad, neutra respecto a la composición

$$\begin{array}{ccc}
\operatorname{id}_{a} & & \operatorname{id}_{b} \\
 & & & & \\
 & a & \xrightarrow{f} & b
\end{array}$$

de forma que $f \circ id_a = f$ y $id_b \circ f = f$.

Definición formal

En resumen, una categoría es

- 1. una colección de objetos,
- 2. con morfismos o flechas entre ellos,
- 3. con una composición de flechas "componibles",
- 4. que es asociativa,
- 5. y que tiene una flecha identidad en cada objeto.

Algunas categorías

Una categoría cualquiera

Tres objetos a, b, c y siete morfismos.

Con la composición definida como

- $f \circ h = k$,
- $g \circ h = k$,
- $id_a \circ h = h$
- $f \circ id_a = f$
- ...

que se comprueba asociativa y con identidades.

Una categoría discreta

Una categoría es discreta si sólo tiene morfismos identidad. Por ejemplo, la categoría de tres objetos con morfismos,

$$\begin{array}{cccc}
\operatorname{id}_{a} & \operatorname{id}_{b} & \operatorname{id}_{c} \\
 & & & & \\
a & b & c
\end{array}$$

donde la composición se define de la única forma posible para que sea asociativa y con identidad: $\mathrm{id}_a \circ \mathrm{id}_a = \mathrm{id}_a$; $\mathrm{id}_b \circ \mathrm{id}_b = \mathrm{id}_b$; $\mathrm{id}_c \circ \mathrm{id}_c = \mathrm{id}_c$.

8

Una categoría discreta

Una categoría es discreta si sólo tiene morfismos identidad. Por ejemplo, la categoría de tres objetos con morfismos,

$$\begin{array}{cccc}
\operatorname{id}_{a} & \operatorname{id}_{b} & \operatorname{id}_{c} \\
 & & & & \\
a & b & c
\end{array}$$

donde la composición se define de la única forma posible para que sea asociativa y con identidad: $\mathrm{id}_a \circ \mathrm{id}_a = \mathrm{id}_a$; $\mathrm{id}_b \circ \mathrm{id}_b = \mathrm{id}_b$; $\mathrm{id}_c \circ \mathrm{id}_c = \mathrm{id}_c$.

¡Los conjuntos son lo mismo que las categorías discretas!

Una categoría vacía

La categoría vacía tiene 0 objetos, con 0 morfismos. La composición entre dos morfismos no hay que definirla porque no hay dos morfismos componibles; y como no existe, es claramente asociativa y existe una identidad para cada uno de los 0 objetos.

Una categoría con un sólo objeto

Una categoría con un sólo objeto a e infinitos (numerables) morfismos $f^0, f^1, f^2, \ldots : a \to a$, todos de a hacia a.

$$\begin{array}{ccc}
f^0 & f^1 \\
f^2 & \\
a & \\
f^3 & \\
\dots
\end{array}$$

Que se componen como $f^n \circ f^m = f^{n+m}$. La composición es asociativa y hay una identidad llamada f^0 .

Una categoría con un sólo objeto

Una categoría con un sólo objeto a e infinitos (numerables) morfismos $f^0, f^1, f^2, \ldots : a \rightarrow a$, todos de a hacia a.

$$\begin{array}{cccc}
f^0 & f^1 \\
f^2 & & \\
a & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Que se componen como $f^n \circ f^m = f^{n+m}$. La composición es asociativa y hay una identidad llamada f^0 .

Esta categoría es el monoide de los naturales con la suma. ¡Todos monoides son categorías de un objeto!

Una categoría infinita

Una categoría que tiene *infinitos* (numerables) objetos $a_0, a_1, a_2, ...$ y morfismos de la forma $p_{xy}: a_x \to a_y$ para cualesquiera $x \le y$. *¡No dibujamos todas las flechas!*

Una categoría infinita

Una categoría que tiene *infinitos* (numerables) objetos $a_0, a_1, a_2, ...$ y morfismos de la forma $p_{xy} \colon a_x \to a_y$ para cualesquiera $x \le y$. *¡No dibujamos todas las flechas!*

La composición se define $p_{y,z} \circ p_{x,y} = p_{x,z}$. Se puede ver que es asociativa y que tiene una identidad en cada objeto, $p_{x,x}$.

La (enorme) categoría de conjuntos

Una categoría que tiene un objeto por cada conjunto que existe; y un morfismo por cada función entre conjuntos que existe.

La (enorme) categoría de conjuntos

Una categoría que tiene un objeto por cada conjunto que existe; y un morfismo por cada función entre conjuntos que existe.

Un dibujo infinito y extraordinariamente complejo iría aquí, pintando todos los conjuntos posibles y todas las funciones posibles.

La (enorme) categoría de conjuntos

Una categoría que tiene un objeto por cada conjunto que existe; y un morfismo por cada función entre conjuntos que existe.

Un dibujo infinito y extraordinariamente complejo iría aquí, pintando todos los conjuntos posibles y todas las funciones posibles.

La composición es la composición usual de funciones, donde $g \circ f$ es la función tal que $(g \circ f)(x) = g(f(x))$. Esta composición es asociativa y cada conjunto tiene una función identidad definida $\mathrm{id}(x) = x$.

Grupos

Parecida a la categoría de conjuntos, pero sólo consideramos los conjuntos que son grupos como objetos y sólo consideramos las funciones que son homomorfismos de grupos como morfismos.

Grupos

Parecida a la categoría de conjuntos, pero sólo consideramos los conjuntos que son grupos como objetos y sólo consideramos las funciones que son homomorfismos de grupos como morfismos.

¡Tenemos que comprobar que la composición de dos homomorfismos de grupos es un homomorfismo de grupos y que la identidad es un homomorfismo de grupos!

Espacios topológicos

Parecida a la categoría de conjuntos, pero sólo consideramos los conjuntos que son espacios topológicos como objetos y sólo consideramos las funciones que son continuas como morfismos.

Espacios topológicos

Parecida a la categoría de conjuntos, pero sólo consideramos los conjuntos que son espacios topológicos como objetos y sólo consideramos las funciones que son continuas como morfismos.

¡Tenemos que comprobar que la composición de dos funciones continuas es una función continua y que la identidad es una función continua!

La "categoría" de los tipos en un lenguaje de programación

Los objetos son los tipos del lenguaje, como Int, String, Bool, [Bool], (String, Bool), y los morfismos son las funciones de un tipo a otro, como

```
isprime :: Int -> Bool
swap :: (String, Bool) -> (Bool, String)
```

La composición está dada como

• compose g f x = g (f x)

y es asociativa y tiene una identidad para cada tipo dada por id x = x.

Funtores

Un funtor F de una categoría $\mathcal C$ a una categoría $\mathcal D$ sería algo así como un homomorfismo de categorías.

Un funtor F de una categoría $\mathcal C$ a una categoría $\mathcal D$ sería algo así como un homomorfismo de categorías.

• A cada objeto a de C, se le asigna un objeto F(a) en D.

Un funtor F de una categoría $\mathcal C$ a una categoría $\mathcal D$ sería algo así como un homomorfismo de categorías.

- A cada objeto a de C, se le asigna un objeto F(a) en D.
- A cada morfismo $f: a \to b$ de C, se le asigna un morfismo $F(f): F(a) \to F(b)$ de D.

Un funtor F de una categoría $\mathcal C$ a una categoría $\mathcal D$ sería algo así como un homomorfismo de categorías.

- A cada objeto a de C, se le asigna un objeto F(a) en D.
- A cada morfismo f: a → b de C, se le asigna un morfismo
 F(f): F(a) → F(b) de D.

¡Nótese que la F tiene dos significados!

Además los funtores deben cumplir dos propiedades.

• Respetar composiciones, es decir,

$$F(g \circ f) = F(g) \circ F(f)$$
.

• Y respetar identidades, es decir,

$$F(\mathrm{id}_a)=\mathrm{id}_{F(a)}.$$

Dibujando un funtor: flechas

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

- F(x) = a
- F(y) = c
- \bullet F(u) = t

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

- F(x) = a
- F(y) = c
- F(u) = g

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

- F(x) = b
- F(y) = c
- F(u) = k

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

- F(x) = c
- F(y) = c
- $F(u) = id_c$

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

Un funtor F estaría definido eligiendo un F(x), un F(y) y un $F(u): F(x) \to F(y)$. Por ejemplo:

Definir un funtor desde la categoría de una flecha es elegir una flecha.

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

donde $v \circ u = w$.

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

donde $v \circ u = w$. Un funtor F estará definido eligiendo F(x), F(y), F(z) y luego F(u) y F(v) de forma que al componerse den $F(w) = F(v \circ u) = F(v) \circ F(u)$. Por ejemplo:

- F(u) = h
- F(v) = f
- $F(w) = F(v \circ u) = F(v) \circ F(u) = h \circ f = k$

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

donde $v \circ u = w$. Un funtor F estará definido eligiendo F(x), F(y), F(z) y luego F(u) y F(v) de forma que al componerse den $F(w) = F(v \circ u) = F(v) \circ F(u)$. Por ejemplo:

- F(u) = h
- F(v) = g
- $F(w) = F(v \circ u) = F(v) \circ F(u) = h \circ g = k$

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

donde $v \circ u = w$. Un funtor F estará definido eligiendo F(x), F(y), F(z) y luego F(u) y F(v) de forma que al componerse den $F(w) = F(v \circ u) = F(v) \circ F(u)$. Por ejemplo:

- F(u) = f
- $F(v) = id_c$
- $F(w) = F(v \circ u) = F(v) \circ F(u) = \mathrm{id}_c \circ f = f$

Sean dos categorías, de las que no dibujamos la identidad. A la izquierda $\mathcal C$ y a la derecha $\mathcal D$,

donde $v \circ u = w$. Un funtor F estará definido eligiendo F(x), F(y), F(z) y luego F(u) y F(v) de forma que al componerse den $F(w) = F(v \circ u) = F(v) \circ F(u)$. Por ejemplo:

Definir un funtor desde la categoría de un triángulo es elegir un triángulo.

Dibujando un funtor: grafos

Sean dos categorías, una la llamamos \Rightarrow la dibujamos a la izquierda y la otra es la categoría de conjuntos completa, Set.

Dibujando un funtor: grafos

Sean dos categorías, una la llamamos \Rightarrow la dibujamos a la izquierda y la otra es la categoría de conjuntos completa, Set.

Definir un funtor G es elegir:

- un conjunto G(a), función G(s): $G(a) \rightarrow G(v)$,
- otro conjunto G(v), otra función G(t): $G(a) \to G(v)$.

Dibujando un funtor: grafos

Sean dos categorías, una la llamamos \Rightarrow la dibujamos a la izquierda y la otra es la categoría de conjuntos completa, Set.

Definir un funtor *G* es elegir:

- un conjunto G(a), función G(s): $G(a) \rightarrow G(v)$,
- ullet otro conjunto G(v), ullet otra función $G(t)\colon G(a) o G(v)$.

¡Esto es equivalente a definir un grafo! Elegimos un conjunto de aristas, uno de vértices, y a cada arista le asignamos un inicio (source) y un final (target). Los grafos son funtores de la categoría \Rightarrow a Set.

Ejemplo de funtor: palabras

Este es un endofuntor, es decir, la categoría de partida y la categoría de llegada serán la misma, ambas serán Set.

Set Set

Ejemplo de funtor: palabras

Este es un endofuntor, es decir, la categoría de partida y la categoría de llegada serán la misma, ambas serán Set.

Set Set

Para definir ese endofuntor P, asignamos a cada conjunto A otro conjunto P(A), dado por palabras con letras en A; es decir, si $a,b,c\in A$, entonces $abbc,bac,aaac\in P(A)$, por ejemplo.

Ejemplo de funtor: palabras

Este es un endofuntor, es decir, la categoría de partida y la categoría de llegada serán la misma, ambas serán Set.

Set Set

Para definir ese endofuntor P, asignamos a cada conjunto A otro conjunto P(A), dado por palabras con letras en A; es decir, si $a, b, c \in A$, entonces abbc, bac, $aaac \in P(A)$, por ejemplo.

Cada función $f: A \to B$ puede convertirse en una función $P(f): P(A) \to P(B)$, que lleva palabras de A en palabras de B aplicándose sobre cada letra. Por ejemplo:

$$P(f)(aacba) = f(a)f(a)f(c)f(b)f(a)$$

Ejemplo de funtor: listas

En programación funcional se trabaja con endofuntores de la categoría de tipos.

Types Types

Ejemplo de funtor: listas

En programación funcional se trabaja con endofuntores de la categoría de tipos.

Por ejemplo, el funtor lista [-] lleva cada tipo A al tipo de las listas de elementos de A, llamado [A]. Y lleva cada función del tipo $f :: A \to B$ en una función $[f] :: [A] \to [B]$ que se suele llamar map f.

$$\texttt{map f} [\texttt{a}, \texttt{b}, \texttt{c}] = [\texttt{f a}, \texttt{f b}, \texttt{f c}].$$