# METAL-OXIDE-SEMICONDUCTOR RIELD-BRECT TRANSISTOR (MOSFET)

- *Extremely popular device* has almost pushed BJTs out of the market
- Three-Layer Device (Metal, Dielectric, and Semiconductor)
- Four-Terminal Device [Drain (D), Source (S), Gate (G), and Body/Substrate (B)]
- *Current* through two terminals (D and S) can be *controlled* by the *voltages* applied at G and B
  - > Voltage Controlled Device

- Unipolar device
  - Either *electrons* or *holes* participate in *current* conduction
- Active device
  - Capable of producing *voltage/current/power*gain
- Two basic usage:
  - **→** Amplification (*Analog Circuits*)
  - > Switching (*Digital Circuits*)
- Two Types: NMOS and PMOS

### **NMOS Structure**



#### • Technology Parameters:

- > Channel Length (L)
- > Channel Width (W)
- > Oxide Thickness (t<sub>ox</sub>)
- $\succ$  Substrate Doping  $(N_A)$
- L<sub>D</sub>: *Lateral overlap* between G and S/D
- *Actual* channel length:  $L_{act} = L 2L_D$
- For now, we will assume  $L_D = 0$

$$\triangleright$$
 L<sub>act</sub> = L

# Symbols and Current-Voltage Conventions



#### • Voltage Convention:

- > NMOS: V<sub>GS</sub> (gate-source voltage), V<sub>DS</sub> (drain-source voltage), V<sub>BS</sub> (body-source voltage)
- > PMOS: V<sub>SG</sub> (source-gate voltage), V<sub>SD</sub> (source-drain voltage), V<sub>SB</sub> (source-body voltage)

#### • Current Convention:

- > NMOS: I<sub>D</sub> (drain current) flows into the drain terminal and exits from the source terminal
- $\triangleright$  **PMOS**: I<sub>D</sub> flows into the **source terminal** and exits from the **drain terminal**

- Gate is DC isolated by the insulator
  - $\succ$  Gate Current  $I_G = 0$
  - > Tremendous advantage!
- Same current  $I_D$  flows through the device
- Extremely compact device
  - > Saves a lot of area
- Reversible device:
  - D and S terminals are determined by their bias states

# **Operation**



- The structure is *similar* to an  $n^+pn^+$  *BJT*
- However, *BJT action* is *not possible* due to *large channel length* (L)
- The way to make the device *conduct* is to form a *layer of electrons* between S and D
  - > Known as *Inversion Layer*
- Then, if a bias is applied between S and D, then inversion layer electrons will move towards the higher potential due to drift
  - > A *current* would result

- Consider  $V_S = V_D = V_B = V_G = 0$ 
  - > Device is *off* and *no current flows*
- Note that the *structure* is similar to a *capacitor*
- Now, as  $V_G$  is made *positive*, initially it will repel holes from surface towards bulk, uncovering ionized acceptor atoms there
  - > Formation of a depletion layer
- There will be *depletion layers* around *SB* and *DB junctions* as well

- As V<sub>G</sub> is kept on *increasing*, the *depletion* charge will keep on *increasing*
- At a certain value of  $V_G (= V_{GS})$ , a layer of electrons will appear at the surface
- This *particular value* of  $V_{GS}$  is known as the *threshold voltage*  $V_{TN}$
- Still *no current* would flow, since  $V_{DS} = 0$
- SB and DB junctions must remain either at zero bias or reverse bias all the time
  - $\gt V_{SB}$  and  $V_{DB} \ge 0$



- With  $V_{DS} > 0$ , inversion layer electrons will move towards the higher potential, i.e., D
  - $\triangleright$  The *drain current*  $I_D$  would *flow from D to S*
- Note:
  - The *depletion charge* would *increase* as we move *towards the D* (since the *DB junction* is *more reverse biased*)
    - The *inversion charge* would *decrease* as we move *towards the D*
    - For sufficiently high V<sub>DS</sub>, it may disappear altogether

# **Body Effect**

- The *threshold voltage*  $V_{TN}$  is a *function* of the *SB voltage*  $V_{SB}$
- As  $V_{SB} \uparrow$ , the *SB junction depletion charge* would *increase* 
  - For the same V<sub>GS</sub>, inversion charge would decrease (to maintain charge balance)
  - Thus, to *restore* the *original level* of *inversion*,  $V_{GS}$  has to be *increased*
  - $\triangleright$  Implies that  $V_{TN}$  has *increased*

#### • Expressed as:

$$V_{TN} = V_{TN0} + \gamma \left( \sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F} \right)$$

$$V_{TN0} = V_{TN}|_{V_{SD}=0} = Zero back-bias threshold voltage$$

$$\gamma = \frac{\sqrt{2q\epsilon_s N_A}}{C'_{ox}} = Body\text{-effect coefficient}$$

$$C'_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = Oxide \ capacitance \ per \ unit \ area$$

$$\phi_{F} = V_{T} \ln \left( \frac{N_{A}}{n_{i}} \right) = Bulk \ potential \ (\sim 0.3 - 0.45 \ V)$$

## **Current-Voltage Relation**

• For  $V_{GS} > V_{TN}$  and *small*  $V_{DS}$ :

$$I_{D} = k_{N} \left( V_{GT} V_{DS} - V_{DS}^{2} / 2 \right)$$

$$V_{GT} = V_{GS} - V_{TN} = Gate overdrive$$

$$k_N = (W/L)k'_N$$

= Device transconductance parameter

$$W/L = Aspect ratio$$

$$k'_{N} = \mu_{n}C'_{ox}$$

- = Process transconductance parameter
- $\mu_n = Channel \ electron \ mobility$
- For *small*  $V_{DS}$ , the  $V_{DS}^2$  term can be *neglected* 
  - $\triangleright$  I<sub>D</sub> changes *linearly* with V<sub>DS</sub>
    - *Linear* (or *Non-Saturation*) Region
- As  $V_{DS}^{\uparrow}$ , the *restraining* effect of  $V_{DS}^{2}$  term  $\uparrow$ 
  - $\triangleright$  Rate of increase of  $I_D$  with  $V_{DS}$  slows down

- For inversion channel to exist at the D end,  $V_{GD}$  must be  $> V_{TN}$ 
  - $\gt V_{DS}$  must be  $\lt V_{GT}$
- When  $V_{DS} = V_{GT}$ , the *channel* is said to be *pinched-off* at the *D end*, and  $I_D$  *does not increase any more*
- This value of  $V_{DS}$  is known as the *drain-to-source saturation voltage*  $V_{DS,sat}$

$$\triangleright$$
  $V_{DS,sat} = V_{GT}$ 

- For  $V_{DS} > V_{DS,sat}$ , the *mode of operation* is known as *saturation*
- Drain current in saturation:

$$I_{D} = \frac{k_{N}}{2} V_{GT}^{2}$$

- ightharpoonup Obtained from the non-saturation  $I_D$  expression by substituting  $V_{DS} = V_{GT}$
- $\triangleright$  Note that  $I_D$  is independent of  $V_{DS}$
- Above equations are valid for  $V_{GT} > 3V_T$ 
  - (~ 80 mV at room temperature)

### The Complete LEVEL 0 Model

$$\begin{split} I_{D} &= k_{N} \left( V_{GT} V_{DS} - V_{DS}^{2} / 2 \right) \\ & \left( \textit{linear region} - V_{GT} > 3 V_{T}, V_{DS} < V_{GT} \right) \\ &= \left( k_{N} / 2 \right) V_{GT}^{2} \\ & \left( \textit{saturation region} - V_{GT} > 3 V_{T}, V_{DS} \ge V_{GT} \right) \\ &= 0 \\ & \left( \textit{cutoff region} - V_{GT} \le 3 V_{T}, \textit{any } V_{DS} \right) \end{split}$$



**I<sub>D</sub>-V<sub>DS</sub> Characteristics** 

#### **Channel Length Modulation (CLM)**



X<sub>d</sub> → length of the pinched-off region

- For  $V_{DS} = V_{DS,sat}$ , pinch-off point P at D end
- For  $V_{DS} > V_{DS,sat}$ , *P moves towards source*
- *Effective channel length reduces* from L to  $L_{eff} = L X_d$ 
  - X<sub>d</sub> = pinch-off region/drain region/saturation region length
- Excess voltage  $(V_{DS} V_{DS,sat})$  drops across  $X_d$

- Reduction of effective channel length causes an increase in current
  - > Channel length modulation
- With  $V_{DS}\uparrow$ ,  $X_d\uparrow$ ,  $L_{eff}\downarrow$ , and  $I_D\uparrow$ 
  - > No real current saturation
- Thus, saturated drain current:

$$I_{D,sat} = (k'_{N}/2)(W/L_{eff})V_{GT}^{2}$$
$$= (k_{N}/2)V_{GT}^{2}(1+\lambda V_{DS})$$

•  $\lambda$  = Channel length modulation parameter

$$= \frac{1}{L} \frac{dX_d}{dV_{DS}}$$

- Function of L and  $N_A$
- Higher L and  $N_A => Lower \lambda$
- Typical values of  $\lambda$  may range from close to 0 to as high as 0.1-0.3  $V^{-1}$
- Very similar to V<sub>A</sub> for BJTs

• This gives *LEVEL 1 model* (also known as *Shichman-Hodges model*) for MOSFETs:

$$\begin{split} I_{D} &= k_{N} \Big[ V_{GT} V_{DS} - V_{DS}^{2} / 2 \Big] \big( 1 + \lambda V_{DS} \big) \\ &\qquad \qquad (\textit{linear region} - V_{GT} > 3 V_{T}, V_{DS} < V_{GT} \big) \\ &= \big( k_{N} / 2 \big) V_{GT}^{2} \, \big( 1 + \lambda V_{DS} \big) \\ &\qquad \qquad (\textit{saturation region} - V_{GT} > 3 V_{T}, V_{DS} \ge V_{GT} \big) \\ &= 0 \\ &\qquad \qquad (\textit{cutoff region} - V_{GT} \le 3 V_{T}, \text{ any } V_{DS} \big) \end{split}$$



I<sub>D</sub>-V<sub>DS</sub> Characteristics in presence of CLM

#### **DC Bias Point Calculation**

- To find  $R_D$  for BB
  - $V_{TN0} = 1 \text{ V}, k'_{N} = 40 \mu\text{A/V}^{2},$ W/L = 10





to the most negative potential available in the circuit (ground in this case)

$$\Rightarrow$$
  $V_{SB} = 0 \Rightarrow V_{TN} = V_{TN0}$ 

• 
$$I_G = 0 \Rightarrow V_{GS} = V_G = 2 V$$



- $V_{GT} = V_{GS} V_{TN} = 1 V$
- Assuming saturation mode of operation and neglecting CLM:

$$I_{\rm D} = (k_{\rm N}/2)V_{\rm GT}^2 = 200 \ \mu A$$

• For BB,  $V_{DS} = V_{DD}/2 = 2.5 \text{ V}$  (2-element output branch):

$$R_D = (V_{DD} - V_{DS})/I_D = 12.5 \text{ k}\Omega$$

- $V_{DS} > V_{GT} \Rightarrow Assumption of saturation$ mode of operation validated
- $P_D = V_{DS} \times I_D = 0.5 \text{ mW}$

# **Small-Signal Model**

- The *electrical equivalent* of the MOSFET at the *DC bias point*
- Must be biased in saturation
  - > Resembles a constant current source
- DC analysis must precede, since need the information regarding the Q-point  $(I_D, V_{DS})$
- This model for NMOS and PMOS is the same (incremental model)

# Validity of the Small-Signal Model

• The instantaneous current

(assuming  $\lambda V_{DS} < 0.1$ ):

$$I_{d} = \frac{k_{N}}{2} \left( V_{GT} + V_{i} \right)^{2}$$

$$= I_{D} + \frac{k_{N}}{2} \left[ 2V_{GT} V_{i} + V_{i}^{2} \right]$$

$$\Rightarrow i_{d} = k_{N} V_{GT} V_{i} \left[ 1 + \frac{V_{i}}{2V_{GT}} \right]$$



- Thus, for *linear relationship* between  $i_d$  and  $v_i$ ,  $v_i$  must  $be \ll V_{GT}$
- Note that  $V_{GT}$  (minimum) =  $3V_T$
- Hence,  $v_i$  should be at least ten times less than  $3V_T$
- Recall in BJT, for linear relationship between  $i_c$  and  $v_i$ ,  $v_i$  has to be  $<< V_T$ 
  - > Three times less than that for MOSFET
  - > MOSFETs are inherently more linear device than BJTs (compare quadratic with exponential)

### **Small-Signal Model Parameters**

• *Transconductance* (g<sub>m</sub>):

$$g_{m} \triangleq \frac{\partial I_{D}}{\partial V_{GS}} \bigg|_{V_{DS} \text{ and } V_{SB} \text{ constant}}$$

$$=k_{\mathrm{N}}V_{\mathrm{GT}}\left(1+\lambda V_{\mathrm{DS}}\right)=\sqrt{2k_{\mathrm{N}}I_{\mathrm{D}}\left(1+\lambda V_{\mathrm{DS}}\right)}$$

$$\gt If \lambda V_{DS} < 0.1$$
:

$$g_{\rm m} \simeq k_{\rm N} V_{\rm GT} \simeq \sqrt{2k_{\rm N} I_{\rm D}}$$

- ➤ An important *Figure of Merit* is *transconductance to current ratio* 
  - For MOSFETs:  $g_m/I_D = 2/V_{GT}$
  - For **BJTs**:  $g_m/I_C = 1/V_T$
  - Thus, BJTs produce more  $g_m$  per unit current
- As we will see later, a high value of  $g_m$  is highly desirable, since it dictates the gain
- $> g_m/I_D$  can be changed by changing the bias current and/or aspect ratio
- $\triangleright g_m/I_C$  is a function only of temperature

• *Body Transconductance* (g<sub>mb</sub>):

$$g_{mb} \triangleq \frac{\partial I_{D}}{\partial V_{BS}} \bigg|_{V_{GS} \text{ and } V_{DS} \text{ constant}} = \chi g_{m}$$

$$\chi = \frac{\gamma}{2\sqrt{2\phi_{\rm F} + V_{\rm SB}}} = Body \ factor \quad (\sim 0.1-0.3)$$

- > Note: As  $V_{SB}$  7,  $V_{TN}$  7  $\Rightarrow I_D$   $\checkmark$
- $\triangleright \partial I_D/\partial V_{SB}$  would have yielded negative  $g_{mb}$
- > If both B and S are tied to fixed DC potentials (including ground),  $g_{mb}$  won't matter!

• Output Conductance (g<sub>0</sub>)/

#### Output Resistance (r<sub>0</sub>):

$$g_0 = r_0^{-1} \triangleq \frac{\partial I_D}{\partial V_{DS}} \bigg|_{V_{GS} \text{ and } V_{SB} \text{ constant}} = \frac{\lambda I_D}{1 + \lambda V_{DS}}$$

 $\gt If \lambda V_{DS} < 0.1$ :

$$g_0 = 1/r_0 \approx \lambda I_D$$

- $\triangleright$   $\lambda$  has a very wide range  $\sim 0.01$ -0.5 V<sup>-1</sup>
- **>** When  $\lambda$  → 0,  $g_0$  → 0, and  $r_0$  → ∞
  - Device starts to behave like a constant current source

- Gate-Source and Gate-Drain Capacitance (C<sub>gs</sub> and C<sub>gd</sub>):
  - Each has *two components*: *intrinsic* (i) and *technological* (t)
  - Total intrinsic gate-body capacitance:  $C_{gbi} = C'_{ox}WL$
  - ➤ Using *Meyer's model*, *intrinsic component*:
    - In *linear region*:  $C_{gsi} = C_{gdi} = C_{gbi}/2$
    - In *saturation region*:  $C_{gsi} = (2/3)C_{gbi}$ ,  $C_{gdi} = 0$
  - ➤ Technology component arises due to gatesource and gate-drain overlap (L<sub>D</sub>)

#### > Technology components:

$$C_{gst} = C_{gdt} = C'_{gs0}W = C'_{gd0}W$$

Gate-Source/Drain Overlap Capacitance

per unit width: 
$$C'_{gs0} = C'_{gd0} = C'_{ox}L_{D}$$

>Thus, total capacitance in saturation:

$$C_{gs} = (2/3)C'_{ox}WL + C'_{gs0}W$$

$$C_{gd} = C'_{gd0}W$$

$$\gt C_{gs} \gt\gt C_{gd}$$

- Source-Body and Drain-Body Capacitance (C<sub>sb</sub> and C<sub>db</sub>):
  - ➤ Both reverse-biased n<sup>+</sup>p junctions

$$\begin{split} & C_{sb} = \frac{C_{sb0}}{\left(1 + V_{SB}/V_{0}\right)^{m}} \quad \text{and} \quad C_{db} = \frac{C_{db0}}{\left(1 + V_{DB}/V_{0}\right)^{m}} \\ & C_{sb0} = C_{sb}\big|_{V_{SB}=0} \quad \text{and} \quad C_{db0} = C_{db}\big|_{V_{DB}=0} \\ & V_{SB} \quad \text{and} \quad V_{DB} \geq 0 \end{split}$$

- *Drain/Source Series Resistance* (R<sub>S</sub> and R<sub>D</sub>):
  - > Due to neutral n+ source/drain regions

# The Hybrid- $\pi$ Model



#### • Simplifications:

- $\triangleright R_S$  and  $R_D$  can be safely neglected
- For *low to moderate frequencies*, the *capacitive reactances* of all the capacitances will be *extremely large*  $\Rightarrow$  *can be neglected*
- ► If both B and S are connected to fixed DC potentials, current source  $g_{mb}v_{bs}$  disappears
- Leads to the *Low-Frequency T-Model*, having only *two components*:  $g_m v_{gs}$  and  $r_0$
- $\triangleright$  Simplest possible equivalent results if  $r_0$  is also neglected (ideal current source!)







Low-Frequency T-Model
With Body Effect

Low-Frequency T-Model Without Body Effect

Without CLM

# Frequency Specification of MOSFETs

• Only *Unity-Gain Frequency* (f<sub>T</sub>)



- $i_0 \approx g_m v_{gs}$  (neglecting *reverse transmission* through  $C_{gd}$ )
- $i_i = j\omega(C_{gs} + C_{gd})$

$$\Rightarrow \frac{i_0(j\omega)}{i_i(j\omega)} = \frac{g_m}{j\omega(C_{gs} + C_{gd})}$$

At 
$$f = f_T$$
,  $|i_0/i_i| = 1$ 

$$\Rightarrow f_{T} = \frac{g_{m}}{2\pi \left(C_{gs} + C_{gd}\right)}$$

• Remarkable similarity with that for BJT

- Maximum Operable Frequency (f<sub>max</sub>):
  - $\succ$  Maximum possible  $f_T$
  - Noting that  $C_{gs} >> C_{gd}$ , neglecting  $C_{gst}$ , and substituting the expressions for  $C_{gsi}$  and  $g_m$ :

$$f_{\text{max}} = f_{\text{T}} \Big|_{\text{max}} = \frac{3\mu_{\text{n}} V_{\text{GT}}}{4\pi L^2}$$

- $ightharpoonup f_{\text{max}} \propto 1/L^2$ 
  - Thrust towards making L as small as possible
- $\succ f_{\text{max}} \propto V_{\text{GT}}$ 
  - Making V<sub>GT</sub> large may be detrimental!