Deep Learning

Marc Lelarge, Jill-Jenn Vie, and Kevin Scaman Class notes by Antoine Groudiev

Last modified 14th June 2024

Contents

1 Introduction and general overview													4	
	1.1 What is Deep Learning?											4		
		1.1.1 Neural	networks											4
			ne of Deep Learning											4
		1.1.3 Recent applications and breakthroughs											4	
			setup											4
		-	ed skills											4
		1.1.6 Building blocks of deep learning										4		
		1.1.7 Why deep learning now?											4	
	1.2 Machine Learning pipeline											4		
			s. dogs											4
		v -	l Machine Learning s	-										4
	1.2.3 Training objective									4				
										4				
			ion											4
		1.3.2 PyTore	ch implementation .											4
2	Au	Automatic differentiation									4			
3	Introduction to Reinforcement Learning										4			
4	Optimization and loss functions										4			
5	Convolutional Neural Networks									4				
6	Recursive Neural Networks								4					
7	Attention and Transformers									4				
8	Robustness and regularity									4				
9	Q-Deep Learning for Breakout										4			
10	10 Autoencoders									4				
11	11 Generative Adversarial Networks									4				
12	12 Normalizing Flows									4				

Abstract

This document is Antoine Groudiev's class notes while following the class *Deep Learning* at the Computer Science Department of ENS Ulm. It is freely inspired by the class notes written by Marc Lelarge, Jill-Jênn Vie, and Kevin Scaman.

1 Introduction and general overview

- 1.1 What is Deep Learning?
- 1.1.1 Neural networks
- 1.1.2 Timeline of Deep Learning
- 1.1.3 Recent applications and breakthroughs
- 1.1.4 Usual setup
- 1.1.5 Required skills
- 1.1.6 Building blocks of deep learning
- 1.1.7 Why deep learning now?
- 1.2 Machine Learning pipeline
- 1.2.1 Cats vs. dogs
- 1.2.2 Typical Machine Learning setup
- 1.2.3 Training objective
- 1.3 Multi-Layer Perceptron
- 1.3.1 Definition
- 1.3.2 PyTorch implementation
- 2 Automatic differentiation
- 3 Introduction to Reinforcement Learning
- 4 Optimization and loss functions
- 5 Convolutional Neural Networks
- 6 Recursive Neural Networks
- 7 Attention and Transformers
- 8 Robustness and regularity
- 9 Q-Deep Learning for Breakout
- 10 Autoencoders
- 11 Generative Adversarial Networks
- 12 Normalizing Flows