

GCP Fundamentals: Core Infrastructure

Summary and Review

Comparing compute options

	Compute Engine	Kubernetes Engine	App Engine Flex	App Engine Standard	Cloud Functions
Service model	laaS	Hybrid	PaaS	PaaS	Serverless
Use cases	General computing workloads	Container- based workloads	Web and mobile applications; container- based workloads	Web and mobile applications	Ephemeral functions responding to events

Toward managed infrastructure

Toward dynamic infrastructure

Google Cloud

Remember the continuum that this course discussed at the very beginning: the continuum between managed infrastructure and dynamic infrastructure. GCP's compute services are arranged along this continuum, and you can choose where you want to be on it.

Choose Compute Engine if you want to deploy your application in virtual machines that run on Google's infrastructure. Choose Kubernetes Engine if you want instead to deploy your application in containers that run on Google's infrastructure, in a Kubernetes cluster you define and control.

Choose App Engine instead if you want to just focus on your code, leaving most infrastructure and provisioning to Google. App Engine Flexible Environment lets you use any runtime you want, and gives you full control of the environment in which your application run; App Engine Standard Environment lets you choose from a set of standard runtimes and offers finer-grained scaling and scale-to-zero.

To completely relieve yourself from the chore of managing infrastructure, build or extend your application using Cloud Functions. You supply chunks of code for business logic, and your code gets spun up on-demand in response to events.

Comparing load-balancing options

Global HTTP(S)	Global SSL Proxy	Global TCP Proxy	Regional	Regional internal
Layer 7 load balancing based on load	Layer 4 load balancing of non-HTTPS SSL traffic based on load	Layer 4 load balancing of non-SSL TCP traffic	Load balancing of any traffic (TCP, UDP)	Load balancing of traffic inside a VPC
Can route different URLs to different back ends	Supported on specific port numbers	Supported on specific port numbers	Supported on any port number	Use for the internal tiers of multi-tier applications

6 Google Cloud

GCP offers a variety of ways to load-balance inbound traffic. Use Global HTTP(S) Load Balancing to put your web application behind a single anycast IP to the entire Internet; it load-balances traffic among all your backend instances in regions around the world, and it's integrated with GCP's Content Delivery Network.

Comparing interconnect options

Secure multi-Gbps connection over VPN tunnels

Private connection between you and Google for your hybrid cloud workloads

Carrier Peering

Connection through the largest partner network of service providers

Dedicated Interconnect

Connect N X 10G transport circuits for private cloud traffic to Google Cloud at Google POPs

SLAs available

Partner Interconnect

Connectivity between your on-premises network and your VPC network through a supported service provider SLAs available

GCP also offers a variety of ways for you to interconnect your on-premises or other-cloud networks with your Google VPC. It's simple to set up a VPN, and you can use Cloud Router to make it dynamic. You can peer with Google at its many worldwide points of presence, either directly or through a carrier partner. Or, if you need a Service Level Agreement and can adopt one of the required network topologies, use Dedicated Interconnect. A Partner Interconnect connection is useful if your data center is in a physical location that can't reach a Dedicated Interconnect colocation facility or if your data needs don't warrant an entire 10 Gbps connection.

Comparing storage options

	Cloud Datastore	Cloud Bigtable	Cloud Storage	Cloud SQL	Cloud Spanner	BigQuery
Туре	NoSQL document	NoSQL wide column	Blobstore	Relational SQL for OLTP	Relational SQL for OLTP	Relational SQL for OLAP
Best for	Getting started, App Engine applications	"Flat" data, Heavy read/write, events, analytical data	Structured and unstructured binary or object data	Web frameworks, existing applications	Large-scale database applications (> ~2 TB)	Interactive querying, offline analytics
Use cases	Getting started, App Engine applications	AdTech, Financial and IoT data	Images, large media files, backups	User credentials, customer orders	Whenever high I/O, global consistency is needed	Data warehousing

Google Cloud

Consider using Cloud Datastore if you need to store structured objects, or if you require support for transactions and SQL-like queries.

Consider using Cloud Bigtable if you need to store a large amount of single-keyed data, especially structured objects.

Consider using Cloud Storage if you need to store immutable binary objects.

Consider using Cloud SQL or Cloud Spanner if you need full SQL support for an online transaction processing system. Cloud SQL provides terabytes of capacity, while Cloud Spanner provides petabytes and horizontal scalability.

Consider BigQuery if you need interactive querying in an online analytical processing system with petabytes of scale.

Choosing among Google Cloud Storage classes

	Multi-regional	Regional	Nearline	Coldline	
Intended for data that is	Most frequently accessed	Accessed frequently within a region	Accessed less than once a month	Accessed less that once a year	
Availability SLA	99.95%	99.90%	99.00%	99.00%	
Access APIs	Consistent APIs				
Access time	Millisecond access				
Storage price	Price per GB stored per month				
Retrieval price				Total price per GB transferr	
Use cases	Content storage and delivery	In-region analytics, transcoding	Long-tail content, backups	Archiving, disaster recovery	

I'd like to zoom into one of those services we just discussed, Cloud Storage, and remind you of its four storage classes. Multi-regional and regional are the classes for warm and hot data. Use multi-regional especially for content that's served to a global web audience, and use regional for working storage for compute operations. Nearline and coldline are the classes for, as you'd guess, cooler data. Use nearline for backups and for infrequently accessed content, and use coldline for archiving and disaster recovery.

Please take 5 minutes to give us feedback

- 1. Login to the Qwiklabs deployment (site) where you had the lab session in the class
- 2. Click "My Learning" on the left side menu to open class list page
- 3. a) If the class is not over yet, you will see the "In Progress" class card, click it; b) If the class is over, you will see the class under "Completed Courses and Quests", click it
- 4. Click the link under "Survey" in "Overview" panel on the right hand side to open the survey form
- 5. Complete all the questions and submit

You can fill out the survey during or after class. You will be able to revise your answers if you do so prior to completing all of the questions.

Google Cloud

If you're a cloud architect, a DevOps person, or any other kind of IT professional who deploys, migrates and maintains applications in the cloud, continue with the course: Architecting with Google Cloud Platform: Infrastructure.

If you're an application programmer or any other kind of software engineer who writes code for the cloud, continue to the course <u>Developing Applications with Google Cloud Platform.</u>

Become Google Cloud Certified and show the world that you can design, develop, manage and administer application infrastructure and data solutions on Google Cloud technology. The Google Cloud Certified designation means you've demonstrated the necessary skills to leverage Google Cloud technology in a way that transforms businesses and meaningfully impacts the people and customers they serve.

