READER-HOST-PROTOCOL PUR - EXTENSION

Histroy of Change:

10.03.2010	sde	Created document	v0.01
21.06.2011	sde	Added Lock-Tag codes	v0.02
08.12.2011	sde	Added Gen2-EPC-Size,	v0.03
		Added description for Read-From-Tag,	
		Added notification values	
12.12.2012	sde	Added Cyclic-Inventory Start Bytes	v0.04
		Added Gen2-Send-Handle	
		Added Gen2-Send-PC	
09.01.2013	sde	Added Commands:	v0.05
		- Get-Handle-From-Tag	
		- Read-From-Handle	
		- Write-To-Handle	
15.01.2013	sde	Added new Inventory Mode	v0.06
		Added new Tag-Handler	

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 2 von 20
PUR-Extensions.docx		

1 Int	troduction	4
2 Pa	rameter–Dictionary	5
2.1	Inventory Mode	6
2.2	Power Safe Setting	7
2.3	RSSI	7
2.4	Tag-Id-Behavior	8
2.5	Gen2-Link-Frequency	9
2.6	Gen2-Bit-Encoding	9
2.7	Gen2-Modulation Depth	10
2.8	Gen2-EPC-Size	10
2.9	Gen2-Send-Handle	11
2.10	Gen2-Send-PC	11
3 Fu	nction Descriptions	12
3.1	Read-From-Tag (50-03)	12
3.2	Lock-Tag (50-05)	12
4 Cı	ıstom–Tag–Commands	13
4.1	NXP-Set-ReadProtect (01)	14
4.2	NXP-Clear-ReadProtect (02)	15
4.3	Get-Handle-From-Tag (04)	16
4.4	Read-From-Handle (05)	17
4.5	Write-To-Handle (06)	18
5 Cy	clic-Inventory Start Bytes	19
6 Na	ntifications	20

EN_DS - Reader-Host-Protocol -
PUR-Extensions.docx

1 Introduction

This document describes the extensions to the standard RF-Embedded Reader-Host-Protocol for the PUR.

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 4 von 20
PUR-Extensions.docx		

2 Parameter-Dictionary

Name	Address	Size	Description	Version
Inventory Mode	0x0000	1 Byte	The used inventory mode	
Power Safe Settings	0x0001	3 Bytes	The settings for the power safe	
RSSI	0x0002	1 Byte	Defines if the RSSI Value is sent to the host	
Tag-Id-Behavior-Mode	0x0003	1 Byte	Defines how the reader should behave if a tag is detected.	
Gen2-Link-Frequency	0x0020	1 Byte	The used link frequency	
Gen2-Bit-Encoding	0x0021	1 Byte	The used bit encoding	
Gen2-Modulation-Depth	0x0022	1 Byte	The used modulation depth	
Gen2-EPC-Size	0x0023	1 Byte	The expected EPC Size	v1.07
Gen2-Send-Handle	0x0024	1 Byte	Send Handle with EPC	v1.17
Gen2-Send-PC	0x0025	1 Byte	Send PC with EPC	v1.17

The Parameters that can be set and read with the commands Get-Param and Set-Param are shown in the following table:

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 5 von 20	
PUR-Extensions.docx			

2.1 Inventory Mode

The set inventory mode defines how the reader does an inventory. This setting affects for example the used slot count and the used anti collision procedure.

Data structure:

1 byte

Inventory-Mode-Enum

Possible settings:

Name	Value	Description
Gen2 - Fast Multi Tag	0x00	Inventory Mode that does not take the tag to the
		Opened but to the Acknowledged State. This
		inventory mode is not as secure as the standard
		mode, but is faster.
Gen2 - Fast Single Tag	0x01	The same inventory mode like the Fast Multi Tag, but
		with the slot count of 1. This has the effect that no
		anti collision procedure is performed, but if there is
		only one tag in the field, it is detected much more
		faster
Gen2 - Standard Multi Tag	0x02	Inventory mode like defined in the standard
Gen2 - NXP-ReadProtect	0x03	Inventory that only searches for read protected tags.
Inventory		The epc of these tags will always be composed of
		zeros.
Gen2 - Standard Single Tag	0x04	The same inventory mode like the Standard Multi
		Tag, but with the slot count of 1. This has the effect
		that no anti collision procedure is performed, but if
		there is only one tag in the field, it is detected much
		more faster

Default:

Inventory-Mode-Enum

0x02

Gen2 – Standard Multi Tag

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 6 von 20
PUR-Extensions.docx		

2.2 Power Safe Setting

The power safe setting can be used to pulse the reader and so safe power. If turned on, the reader switches the field on and performs an inventory after which he switches off the field and sleeps for the specified time. After this time this process is restarted.

Data Structure:

1 byte Switch (ON (0x01) / OFF (0x00))

2 byte Sleep Time in milliseconds

Default:

 Switch
 0x00
 OFF

 Sleep Time
 0x00FA
 250 ms

2.3 **RSSI**

If the RSSI Setting is enabled, the RSSI Value of the detected tags is appended to every Inventory-Cyclic-Interrupt.

Data Structure:

1 byte Switch (ON (0x01) / OFF (0x00))

Default:

Switch 0x00 OFF

2.4 Tag-Id-Behavior

With this option the reader be configured how, it should react if it detects a tag.

Data structure:

1 byte

Tag-Id-Behavior-Enum

Possible settings:

Name	Value	Description
Send-Tag-Id-Immediately	0x00	Every time the reader detects a tag, it is immediately
		forwarded to the host.
Send-Tag-Id-Once	0x01	If the reader detects a tag, it forwards the tag-Id to
		the host and stores it into a temporary buffer. If the
		same tag is detected again in the same inventory
		round, it is no more forwarded to the host. The
		buffer is cleared at the start of each cyclic inventory.
Send-Tag-Id-Immediately	0x02	The same Tag-Id behavior like Send-Tag-Id-
And Stop		Immediately but when the first tag is detected, the
		Cyclic-Inventory is stopped.

Default:

Tag-Id-Behavior-Enum

0x00

Send-Tag-Id-Immediately

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 8 von 20
PUR-Extensions.docx		

2.5 Gen2-Link-Frequency

This option sets the used Link Frequency for the Gen2 protocol.

Data Structure:

1 byte Link-Frequency

Possible settings:

Value	Description
0x00	40 kHz
0x01	80 kHz
0x02	160 kHz
0x03	213 kHz
0x04	256 kHz
0x05	320 kHz

Default:

Link-Frequency 0x02 160 kHz

2.6 Gen2-Bit-Encoding

This option sets the used Bit-Encoding for the Gen2 protocol.

Data Structure:

1 byte Bit-Encoding

Possible settings:

Value	Description
0x00	FM0
0x01	Miller 2
0x02	Miller 4
0x03	Miller 8

Default:

Bit-Encoding 0x01 Miller 2

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 9 von 20
PUR-Extensions.docx		

2.7 Gen2-Modulation Depth

This option sets the used Modulation Depth for the Gen2 protocol.

Data Structure:

1 byte Modulation-Depth in %

Default:

Modulation-Depth 0x64 100%

2.8 Gen2-EPC-Size

This option sets the expected EPC size of the tags that should be scanned. If the EPC size is set to a constant value, only tags with this EPC size are detected. If the EPC size is set to 0, all tags with different sizes are detected. For constant sizes only multiples of 2 are allowed.

Data Structure:

1 byte EPC Size

Possible settings:

Value	Description
0	Dynamic
2	2 Byte EPC
4	4 Byte EPC
12	12 Byte EPC
18	18 Byte EPC

Default:

EPC Size 12 Constant 12 Byte Size

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 10 von 20
PUR-Extensions.docx		

2.9 Gen2-Send-Handle

If the Send-Handle is enabled, the Handle Value of a detected tag is appended to every Inventory-Cyclic-Interrupt.

Data Structure:

Switch (ON (0x01) / OFF (0x00)) 1 byte

Default:

Switch 0x00 OFF

2.10 Gen2-Send-PC

If the Send-PC is enabled, the PC Value of a detected tag is appended to every Inventory-Cyclic-Interrupt.

Data Structure:

Switch (ON (0x01) / OFF (0x00)) 1 byte

Default:

Switch 0x00 OFF

created by: Stefan Detter

page: 11 von 20

3 Function Descriptions

3.1 Read-From-Tag (50-03)

If the byte size 0 is selected, the reader reads until the tag responses with a "Memory Overrun" error. But with using tags with bigger User Memory banks, the reader uses another stop condition. It reads at a maximum of 200 bytes, and then returns the 200 bytes. So if bigger amounts of data should be read and the maximum size is not known, the Read-From-Tag function should be called with incremented addresses as long as the read byte count is lower than 200 bytes or a TMI_MEM_OVERRUN error is returned.

3.2 Lock-Tag (50-05)

The lock tag command needs to types of codes to lock a tag. For a Gen2 tag these codes are:

```
typedef enum{
      UNLOCK
                              = 0x00,
      LOCK
                              = 0x01,
      PERMALOCK
                              = 0 \times 02,
      LOCK AND PERMALOCK = 0x03,
} eRFE LOCK MODE;
typedef enum{
     KILL \ PASSWORD = 0x00,
     ACCESS PASSWORD = 0x01,
     EPC
                       = 0x02,
      TID
                        = 0x03,
                        = 0 \times 04
      USER
} eRFE_LOCK_MEMORY_SPACE;
```

These codes are directly connected to the Gen2 standard. Further information about these codes and there meaning can be found there.

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 12 von 20
PUR-Extensions.docx		

4 Custom-Tag-Commands

In this section the available custom tag commands are documented. These commands can be used by calling the command 05-10 of the Reader-Host-Protocol.

The available commands are:

Command	Value
NXP-Set-ReadProtect	0x01
NXP-Clear-ReadProtect	0x02
Get-Handle-From-Tag	0x04
Read-From-Handle	0x05
Write-To-Handle	0x06

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 13 von 20	
PUR-Extensions.docx			

4.1 NXP-Set-ReadProtect (01)

This function transfers a NXP tag into the ReadProtect Mode. In this mode the tag only returns zeroes instead of its actual EPC.

Parameters: unsigned char command, unsigned char tagldCount,

unsigned char tagld[tagldCount], unsigned long accessPassword,

Return Values: RFE_RET_VALUE status

Status Values: RFE_RET_SUCCESS, RFE_RET_ERR_ON_EXEC_OP, RFE_RET_ERR_COULD_NOT_WRITE,

RFE_RET_ERR_WRONG_PARAM_COUNT, RFE_RET_ERR_WRONG_PARAM, Every TMI

Return Code

Example: Set the tag 30-08-33-b2-dd-d9-01-40-35-05-00-00 to ReadProtect:

PC -> Reader

52 46 45 01 5010 02 12 03 01 00 300833b2ddd9014035050000 12345678 04 cs

dataLength = 0x12

command = 0x01 -> NXP-ReadProtect

tagldCount = 0x0C -> 12 Bytes

tagld = 30-08-33-b2-33-33-01-40-35-05-00-00

accessPassword = 0x12345678

Reader -> PC 52 46 45 01 5010 02 01 03 00 04 cs

dataLength = 0x01

status = 0x00 -> RFE RET SUCCESS

4.2 NXP-Clear-ReadProtect (02)

This function retrieves a NXP tag from the ReadProtect Mode.

Parameters: unsigned char command, unsigned char tagldCount,

unsigned char tagld[tagldCount], unsigned long accessPassword,

Return Values: RFE RET VALUE status

Status Values: RFE_RET_SUCCESS, RFE_RET_ERR_ON_EXEC_OP, RFE_RET_ERR_COULD_NOT_WRITE,

RFE_RET_ERR_WRONG_PARAM_COUNT, RFE_RET_ERR_WRONG_PARAM, Every TMI

Return Code

Example: Clear the ReadProtect of the tag 00-00-00-00-00-00-00-00-00-00:

PC -> Reader

Reader -> PC 52 46 45 01 5010 02 01 03 00 04 cs

dataLength = 0x01

status = 0x00 -> RFE_RET_SUCCESS

4.3 Get-Handle-From-Tag (04)

This function tries to get the handle of a specified tag.

Parameters: unsigned char command, unsigned char tagldCount,

unsigned char tagld[tagldCount]

Return Values: RFE_RET_VALUE **status**, unsigned char **handle**[2]

Status Values: RFE_RET_SUCCESS, RFE_RET_ERR_ON_EXEC_OP, RFE_RET_ERR_COULD_NOT_WRITE,

RFE_RET_ERR_WRONG_PARAM_COUNT, RFE_RET_ERR_WRONG_PARAM, Every TMI

Return Code

Example: Get the handle from the tag 30-08-33-b2-dd-d9-01-40-35-05-00-00:

PC -> Reader

Reader -> PC 52 46 45 01 5010 02 01 03 00 1234 04 cs

dataLength = 0x01

status = 0x00 -> RFE_RET_SUCCESS

handle = 12-34

4.4 Read-From-Handle (05)

With this function data can be read from the memory of a tag via the specified handle.

unsigned char handle[2], unsigned char memoryBank, Parameters:

unsigned short startAddress, unsigned long accessPassword,

unsigned char byteCount

Return Values: RFE RET VALUE status, unsigned char byteCount, unsigned char data[byteCount]

Status Values: RFE_RET_SUCCESS, RFE_RET_RESULT_PENDING, RFE_RET_ERR_ON_EXEC_OP,

RFE RET ERR COULD NOT WRITE, RFE RET ERR WRONG PARAM COUNT,

RFE_RET_ERR_WRONG_PARAM, Every TMI Return Code

Example: Read 5 byte from the tag with the handle 12-34 at the memory bank 1 and the start

> address 0x12: PC -> Reader

52 46 45 01 5010 02 0B 03 05 1234 01 0000 00000000 06 **04** cs

> dataLength = 0x0B

command = 0x05 -> Read-From-Handle

handle = 12-34

memoryBank = 0x01 -> second bank

startAddress = 0x0000

= 0x00000000accessPassword

bytesCount = 0x06 -> 6 Bytes

52 46 45 01 5010 02 08 03 00 06 020023A4884C 04 cs Reader -> PC

> dataLength = 0x08

status = 0x00 -> RFE RET SUCCESS

bytesCount = 0x06 -> 6 Bytes data = 0x020023A4884C

4.5 *Write-To-Handle* (06)

With this function data can be written to the memory of a tag via the specified handle.

unsigned char handle[2], unsigned char memoryBank, **Parameters:**

> unsigned short startAddress, unsigned long accessPassword, unsigned char **byteCount**, unsigned char **data** [byteCount]

Return Values: RFE_RET_VALUE status

Status Values: RFE_RET_SUCCESS, RFE_RET_RESULT_PENDING, RFE_RET_ERR_ON_EXEC_OP,

RFE RET ERR COULD NOT WRITE, RFE RET ERR WRONG PARAM COUNT,

RFE_RET_ERR_WRONG_PARAM, Every TMI Return Code

Example: Write 5 byte to the tag with the handle 12-34 at the memory bank 1 and the start

> address 0x12: PC -> Reader

52 46 45 01 5010 02 11 03 06 1234 0000 00000000 06 020023A48840

dataLength = 0x11

command = 0x06 -> Write-To-Handle

handle = 12-34

memoryBank = 0x01 -> first bank

startAddress = 0x0000

= 0x00000000accessPassword

bytesCount = 0x06 -> 6 Bytes = 0x020023A4884C data

52 46 45 01 5010 02 01 03 00 04 cs Reader -> PC

> dataLength = 0x01

status = 0x00 -> RFE_RET_SUCCESS

5 Cyclic-Inventory Start Bytes

The standard start bytes for cyclic inventory information are extended with this type of reader. This is the complete list of start bytes.

Name	Byte	Size	Description
RFE_TAG_ID_START_BYTE	0x01	Variable	The ID of the detected Tag. The variable size of the id is sent in the first byte of the id.
RFE_RSSI_START_BYTE	0x02	2 Byte	The RSSI value of the detected tag.
RFE_ANTENNA_ID_START_BYTE	0x05	1 Byte	The antenna at which the tag was detected.
RFE_READ_FREQU_START_BYTE	0x06	3 Byte	The frequency at which the tag was detected.
RFE_GEN2_HANDLE_START_BYTE	0x07	2 Byte	The handle of the detected Gen2 tag.
RFE_GEN2_PC_START_BYTE	0x0A	2 Byte	The PC of the detected Gen2 tag.

Example:

Part	Field	Description
01 0c 000000000000000000000000000000000	ID	ID(0x0C = 12 Byte): 00-00-00-00- 00-00-00-00-00-04
02 081e	RSSI	Signal Q: 8dB Signal I: 30dB
06 0d37fc	FREQU	Frequency: 866300 MHz
07 5eac	HANDLE	Gen2 Handle: 0x5eac
0a 30000	PC	Gen2 PC: 0x3000

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 19 von 20
PUR-Extensions.docx		

6 Notifications

The available notifications are:

ID	Name	Value	Description
0	Antenna-Power-	1 byte = (bool) on	The notification is sent every time the
	Changed		antenna power changes.
1	Frequency-	3 byte = (long) frequency	The notification is sent every time the
	Changed		frequency changes.
2	Inventory-Round-	0 byte	The notification is sent every time an
	Ended		inventory round ended.
3	LBT-RSSI-Value-	2 byte = (short) value	The notification is sent every time the LBT
	Measured		implementations measured a new RSSI
			value.

EN_DS - Reader-Host-Protocol -	created by: Stefan Detter	page: 20 von 20	
PUR-Extensions.docx			