오리엔테이션

송태영

스터디 개요

- 목적 : 파이토치를 활용한 딥러닝 익숙해 지기
- 일정 : 6월 초 ~ 7월 말
- 스터디 진행 방법
 - 매회 발표자가 담당인 chapter를 요약 정리 (30분)
 - 의견 교환 (20분)
- 교재
 - <Must Have> 텐초의 파이토치 딥러닝 특강

교재 구성 및 스케줄

• 1주

- 1장: 딥러닝 한눈에 살펴보기
- 2장 : 인공 신경망 ANN 이해하기

• 2주

- 3장 : 간단한 신경망 만들기
- 4장 : 사진 분류하기 : CNN과 VGG

• 3주

- 5장 : 유행 따라가기 : ResNet
- 6장 : 넷플릭스 주가 예측하기 : RNN으로 첫 시계열 학습

• 4주

- 7장 : 이미지 세그멘테이션 : U-Net
- 8장: 이미지 노이즈 제거: 오토인코더

• 5주

- 9장 : 자동 채색 : Let There be color 모델
- 10장 : 글쓰는 인공지능 : LSTM

• 6주

- 11장 : 직접 만드는 번역기 : 어텐션
- 12장 : 캡처 텍스트 인식 : CRNN+GRU

• 7주

- 13장 : 사람 얼굴 생성하는 GAN
- 14장 : 화질 개선하는 GAN

• 8주

- 15장 : 데이터 없이 학습하는 GAN
- 부록 A : 트랜스포머, GPT, BERT, ViT

01 딥러닝한눈에살펴보기

머신러닝과 딥러닝

- 머신러닝 : 입력 데이터를 이용해 알지 못하는 변수를 반복적으로 학습해 나가면서 예측하는 알고리즘
- 딥러닝: 인공신경망을 사용한 머신러닝 알고리즘
 - ▼ 딥러닝, 머신러닝, 인공지능의 차이

지도학습, 비지도 학습, 강화학습

- 지도학습: 학습용 데이터에 정답 레이블을 제공하는 학습 방법
- 비지도 학습: 학습용 데이터에 정답 레이블을 제공하지 않는 학습 방법 (구매 이력이 있는 소비자를 구매 취향에 따라 분류)
- 강화 학습: 인공지능이 환경으로부터 보상과 벌을 받으며 시행 착오를 통해 스스로 학습 (e.g. 알파고, GAN)

왜 딥러닝에 파이토치인가

- 파이토치는 파이썬 본래의 코드와 유사, 직관적
- 정적 계산 그래프인 텐서플로우와 다르게, 파이토치는 동적으로 계산 그래프를 만들어, 계산 중간에 변수의 값을 수정 가능 (디버깅 용이)
- 동적인 변경이 필요 없을 때는, 정적 계산 그래프가 계산이 빠름

파이토치 코딩 권고 스타일

- 클래스 사용 : 모듈 클레스로 신경망을 만들고, 데이터셋 클래스로 데이터를 불러와 학습
- 데이터 로더: 데이터셋 클래스를 입력 받아, 학습에 필요한 양 만큼 데이터를 불러오는 역할

```
▼ 마이토치신경망의기본구성

class Net(nn.Module):
    def __init__(self):
        "'' 미리 정의된 신경망 모듈 불러오기

def forward(self, input):
        "''
        # 신경망의 동작 정의
        "'' ___init__에서 정의한 모듈 연결
        return output
```

```
# 데이터로더로부터 데이터와 정답을 받아옴
for data, label in DataLoader():
# ① 모델의 예측값 계산
prediction = model(data)

# ② 손실 함수를 이용해 오차 계산
loss = LossFunction(prediction, label)

# ② 오차 역전파
loss.backward()

# ② 신경망 가중치 수정
optimizer.step()
```

딥러닝 문제 해결 프로세스

딥러닝 문제 해결 체크리스트

▼ 딥러닝 문제 해결 체크리스트

문제 풀이 단계	
풀어야 할 문제 이해하기	□ 정확한 값을 예측하는 회귀 문제인가? □ 입력이 속한 범주를 예측하는 분류 문제인가?
데이터 파악하기	 □ 입력 자료형과 정답 확인하기 □ 클래스 간의 불균형은 없는지 확인하기 □ 누락된 데이터 혹은 자료형에 맞지 않는 데이터가 포함되어 있는지 확인하기
데이터 전처리	□ 학습에 필요한 데이터가 부족하다면 데이터 증강하기□ 데이터를 정규화해서 값의 범위 맞추기
신경망 설계	□ 데이터의 공간 정보가 중요하면 합성곱 적용하기 □ 데이터의 순서 정보가 중요하면 RNN 적용하기
신경망 학습	□ 적합한 손실 함수 찾기□ 가중치 수정을 위한 최적화 정하기□ 신경망의 성능을 평가하기 위한 평가 지표 정하기
손실이 무한대로 발산한다면	□ 손실 함수 바꿔보기□ 데이터에 이상한 값이 섞여 있는지 확인하기□ 학습률 줄이기
손실이 0으로 수렴한다면	□ 데이터가 부족하지 않은지 확인하기□ 신경망 크기 줄여보기

딥러닝에 필요한 최소한의 통계 개념

- 독립변수 : 다른 변수의 값을 결정하는 변수, 입력값
- 종속변수 : 독립변수에 의해 값이 결정되는 변수, 출력값
- 평균 : 모든 데이터의 합을 데이터의 수로 나눈 값
- 분산 : 데이터가 얼마나 퍼졌는가를 나타내는 지표
- 표준편차 : 분산의 제곱근

직관적 분석에 유용한 시각화

▼ 서브플롯 시각화 예

▼ 플롯 시각화 예

▼ 맷플롯립에서 지원하는 시각화 그래프

02 인공신경망 ANN 이해하기

퍼셉트론

- 퍼셉트론: 입력값과 가중치, 편향을 이용해 출력값을 내는 수학적 모델
- 입력값을 표현하는 입력층, 신경망 출력을 계산하는 출력층
- 노드는 입력값에 가중치를 곱해 활성함수에 입력
- 가중치는 입력의 중요도, 편향은 활성화의 경계가 원점으로부터 얼마나 이동할지 결정
- 활성화 함수는 임곗값을 기준으로 노드의 출력을 결정 하는 함수 (비선형성 추가)
- 시그모이드 함수는 뉴런의 출력값을 0과 1 사이로 고정 → 이진분류에 사용

다층 신경망

- 다층 인공 신경망 : 퍼셉트론을 여러 개 사용하는 인공 신경망
- (파란, 빨간) 두 직선은 각각이 결정 경계, 선보다 위 값은 1, 아래 값은 0 반환
- 기저 벡터 변환 : 좌표계에서 점을 표현하는 기준(기저 벡터)를 다른 벡터로 변환
- 은닉층은 굳이 값을 알 필요가 없어 출력값을 숨긴다
- 순전파: 데이터가 입력층으로 부터 출력층까지 순서대로 전달

인공 신경망의 학습 방법

▼ 실습에 사용할 데이터

x_1	x_2	У
0	0	0
0	1	1
1	0	1
1	1	0

$$a = x_1 w_1 + x_2 w_2 + b$$

활성함수(F)는 0 이상이면 1출력, 0보다 작으면 0 출력

$$a_1 = F(5x_1 + 5x_2 - 8) = F(5 \times 0 + 5 \times 0 - 8) = F(-8) = 0$$

$$a_2 = F(-7x_1 - 7x_2 + 3) = F(-7 \times 0 - 7 \times 0 + 3) = F(+3) = 1$$

\boldsymbol{x}_{1}	x_2	$a_{_1}$	a_{2}
0	0	F(-8) = 0	F(3) = 1
0	1	F(-3) = 0	F(-4) = 0
1	0	F(-3) = 0	F(-4) = 0
1	1	F(2) = 1	F(-11) = 0

• 학습 과정은, y' 가 y와 유사 하도록 가중치를 찾아 가는 것

$$y' = F(\underline{-11a_1 - 11a_2 + 6}) = F(-11 \times 0 - 11 \times 1 + 6) = F(-5) = 0$$

\boldsymbol{x}_1	\boldsymbol{x}_2	$a_{_1}$	a_{2}	y'
0	0	F(-8) = 0	F(3) = 1	F(-5) = 0
0	1	F(-3) = 0	F(-4) = 0	F(6) = 1
1	0	F(-3) = 0	F(-4) = 0	F(6) = 1
1	1	F(2) = 1	F(-11) = 0	F(-16) = 0

손실 함수

• 손실함수는 정답과 신경망의 예측의 차이를 나타내는 함수

▼ 대표적인 손실 함수

함수	용도	설명
평균 제곱 오차 (Mean Squared Error, MSE)	회귀	정답과 예측값의 차의 제곱의 평균값. 1보다 작은 오차는 더 작게, 1보다 큰 오차는 더 크게 키우는 특성을 갖고 있습니다.
크로스 엔트로피 오차 (Cross Entropy Error, CE)	이진분류, 다중분류	두 확률 분포의 차이를 구하는 함수. 분류 문제에서는 인공 신경망의 출력이 확률 분포이므로 확률 분포의 차를 구하는 함수가 필요합니다. 크로스 엔트로피는 정답값의 확률과 모델이 예측한 확률에 로그를 취한 값을 곱해서 구합니다.
평균 절대 오차 (Mean Average Error, MAE)	회귀	정답과 예측값의 차이의 절댓값의 평균값. 1보다 작은 오차도 놓 치지 않는 꼼꼼함을 갖고 있지만, 오차 크기가 아니라 부호에만 의 존하기 때문에 작은 오차라도 기울기가 커질 수 있으므로 학습이 불안정합니다.
평균 제곱근 오차 (Root Mean Squared Error, RMSE)	회귀	MSE의 제곱근. 큰 오차에 대한 민감도를 줄여줍니다.

경사 하강법과 오차 역전파

- 경사하강법 : 손실을 가중치에 대해 미분한 다음, 기울기의 반대 방향으로 학습률 만큼 이동시키는 알고리즘
- 오차 역전파: 정답과 예측 결과의 오차를 최소화하는 가중치를 찾는 알고리즘, 미분 연쇄 법칙을 이용하여, 출력층에 가까운 가중치부터 수정해 나간다.

수식으로 표현하면 $W(t+1)=W_t-rac{\partial \mathfrak{L}^{\lambda}}{\partial W}$ 입니다.새로운 가중치(W(t+1))는 현재 가중치(W)에서 기울기 $(rac{\partial \mathfrak{L}^{\lambda}}{\partial W})$ 를 뺀 값입니다.

기울기 소실 예방

- 기울기 소실은 출력층으로 부터 멀어질수록 역전파되는 오차가 0에 가까워 지는 현상
- 오차가 역전파될 때 층을 한 번 거칠 때 마다, 활성함수(시그모이드)의 미분(도함수)이 곱해지기 때문
- 시그모이드의 도함수는 크거나 작은 값에서는 0에 수렴
- ReLU 함수는 0보다 작은 값은 0으로, 큰 값은 그 값 그대로 내보냄

신경망 성능 비교

- 오버피팅은 과적합이라고 하며, 학습에 사용한 데이터에 최적화되어 다른 데이터에 대한 예측 성능이 떨어지는 것
- 성능이 너무 좋다면, 데이트가 부족한 게 아닌지 의심해 보자

정리퀴즈

- 인공지능, 머신러닝, 딥러닝 중 가장 범위가 넓은 개념은?
 - •
- 매출전표를 보고 고객의 취향을 분석하는 머신러닝 알고리즘은 어떤 방법을 사용할까?
 - •
- 경사 하강법이 미분한 결과를, 기존의 값에서 더할 까 뺄까?
 - •
- 학습용 데이터를 완벽하게 분류하는 모델이 가장 좋을까?
 - •
- 이진 분류에서 왜 시그모이드를 사용 할까?
 - •

Q&A