A Rule-based Contextual Reasoning Platform for Ambient Intelligence Environments

Assaad Moawad¹, Antonis Bikakis², Patrice Caire¹, Gregory Nain¹, Yves Le Traon¹

¹University of Luxembourg, SnT

²Department of Information Studies University College London

Outline

Ambient Intelligence

- Goals & Requirements
- Context & Contextual Reasoning
- Example Scenario

R-CoRe

- Main Features
- Reasoning model: CDL
- □ Software Platform: Kevoree
- Architecture
- R-CoRe in action
- Limitations & Ongoing Work

Ambient Intelligence

- Goal: Transform our living and working environments into smart spaces
- Requirement: Augment environments with sensing, computing, communication and reasoning capabilities

Context & Contextual Reasoning

Context is any information that can be used to characterize the situation of an entity. An entity is a person, place or object that is considered relevant to the interaction between a user and application, including the user and applications themselves

[Dey and Abowd, 1999]

- Challenges of Contextual Reasoning
 - Imperfect context information
 - Heterogeneous entities
 - Highly dynamic and open environments
 - Distributed context information
 - Unreliable wireless communications
 - ...restricted by the range of transmitters

Example Scenario

R-CoRe

- Main Features
 - Distributed
 - Rule-based
 - Non-monotonic
 - Preference-based conflict resolution
 - Dynamic & Adaptive
- Underlying technologies
 - □ Contextual Defeasible Logic (CDL)
 - a distributed version of Defeasible Logic
 - Kevoree
 - a s/w framework for Distributed Dynamically Adaptive Systems

Contextual Defeasible Logic (CDL)

Combines elements of

- Defeasible Logic
 - rule-based skeptical logic, which uses priorities among rules to resolve conflicts
- Multi-Context Systems
 - logical formalizations of distributed contexts connected through a set of bridge rules, which enable information flow between contexts
 - □ Context: logical theory that models local knowledge of an agent

Results

- Argumentation Semantics (TKDE, 2010)
- Proof Theory (TSMC-A, 2011)
- Algorithms for distributed query evaluation (KAIS, 2011)

CDL – Representation Model

A Defeasible MCS C is a collection of contexts C_i

Each context C_i is a tuple (V_i, R_i, T_i)

- \Box V_i : vocabulary used by C_i
- \square R_i : set of rules
- \Box T_i : preference ordering on C

 V_i : a set of literals of the form $a, \neg a$

CDL - Representation Model (cont'd)

Three types of rules in R_i

Strict local rules

$$r_i^1: (c_i: a^1), ..., (c_i: a^{n-1}) \to (c_i: a^n)$$

Defeasible local rules

$$r_i^{d}:(c_i:a^1),...,(c_i:a^{n-1}) \Rightarrow (c_i:a^n)$$

Mapping rules

$$r_i^{\text{m}}: (c_j: a^1), ..., (c_k: a^{\text{n-1}}) \Rightarrow (c_i: a^{\text{n}})$$

 T_i is a partial preference ordering on C modeled as a Directed Acyclic Graph

Distributed Query Evaluation

- When a context receives a query for one of its local literals q
 - Evaluates answer based on local knowledgeIf not possible
 - Collects relevant information from other contexts through mappings
 - Checks applicability of rules for and against q
 - Evaluates answer based on
 - Applicable rules
 - Preferences
- Given two rules

$$r_{i1}^{m}: (c_{j}: a^{1}),..., (c_{k}: a^{n-1}) \Rightarrow (c_{i}: a^{n})$$

 $r_{i2}^{m}: (c_{k+1}: a^{1}),..., (c_{l}: a^{n-1}) \Rightarrow (c_{i}: \sim a^{n})$

• r_{i1}^{m} is "stronger" than r_{i2}^{m} if there is a context c_{y} in $c_{k+1},...,c_{l}$ s.t. for all contexts c_{x} in $c_{j},...,c_{k}$, c_{x} is preferred to c_{y} according to T_{i} (there is a path from c_{y} to c_{x} in T_{i})

 r_{hcs}^{m2} : (arm:lyingOnFloor), (med:proneToHA) T_{hcs} =[med,arm,br]

 \Rightarrow (*hcs*: \neg emergency)

 \Rightarrow (*hcs*: emergency)

A Rule-based Contextual Reasoning Platform or Ambient Intelligence Environments, RuleML-2013

 $\overline{r_{\text{hcs}}^{\text{m2}}}: (arm: \text{lyingOnFloor}), (med: \text{proneToHA}) \quad \overline{T_{hcs}} = [med, arm, br]$

 \Rightarrow (hcs: \neg emergency)

 \Rightarrow (*hcs*: emergency)

Kevoree

- Open source project available at: www.kevoree.org
 - Enables distributed reconfigurable software development
 - Any sensor, software application, web service can be represented as a component (with I/O) in Kevoree
 - □ The set of services/applications offered by a single entity (e.g. device) is represented as a Kevoree **node**
 - Channels represent different types of communication among components (TCP/IP, email, SMS, etc.)

Kevoree in R-CoRe

- Each entity (mobile computing device) is implemented as a Kevoree node.
- Each context is implemented as a Kevoree component.
- Kevoree channels enable exchange of information (messages) between different components.
- Kevoree's adaptive and auto-discovery capabilities enable detecting new nodes and adapting to any context changes.

R-CoRe Architecture

A Rule-based Contextual Reasoning Platform or Ambient Intelligence Environments, RuleML-2013

Example Scenario - in R-CoRe terms Interceptor: node0: Another component JavaSENode we developed to queryOut -Interceptor sync capture and display all QueryInterceptor _ BasicGroup the interactions Bracelet (Queries/responses) ---QueryComponent-QueriesIn QueriesOut MedProfile -**MSGChannel MSGChannel** QueryComponent consoleIn HCS **Query components:** QueryComponent_ Each one corresponds to ARM the context of a different QueryComponententity SMSModule_ -QueryComponentconsoleln consoleOut consoleln **MSGChannel** MSGChannel, _SMSConsole_ akeConsole A Rule-based Contextual Reasoning Platform or Ambient Intelligence Environments, RuleML-2013

Example Scenario - in R-CoRe terms

File Name	File contents
smsModuleKB.txt	M1: (hcs:emergency) \rightarrow (sms:dispatchSMS)
BraceletKB.txt	$L1: \rightarrow (br:normalPulse)$
${f MedProfile KB.txt}$	$L1: \rightarrow (med:proneToHA)$
ArmKB.txt	L1: \rightarrow (arm:lyingOnFloor)
HCSKB.txt	M1: (br:normalPulse) $\Rightarrow \neg$ (hcs:emergency)
	M2: (arm:lyingOnFloor), (med:proneToHA) \Rightarrow (has:emergency)
HCSPref.txt	med, arm, br

Rule bases and preferences in the example scenario

R-CoRe Limitations & Ongoing Work

- Components have limited memory, computation and power resources.
 - Limited Knowledgebase to 500 literals and rules.
 - □ Time-out: 10 seconds.
 - Not really a limitation, just trying to be realistic!
 - > Working on configurable components
- Non-overlapping vocabularies, no common knowledge
 - CDL extension to enable different contexts use common terms
 - R-CoRe extension using the groups feature of Kevoree
- Top-down algorithms do not fit well with the needs of AmI
 - > Developing bottom-up reactive algorithms for CDL
- Works only with high-level context predicates
 - > Integrating CEP methodology to reason with low-level sensor data
- Not yet tested in real environments
 - Planning to do tests at the IoT lab of SnT

Summing up

- R-CoRe (today)
 - Rule-based Contextual Reasoning Platform for AmI
 - Developed on top of Kevoree
 - Implements the nonmonotonic reasoning model of CDL
- R-CoRe demo (Thursday)
 - Check also the demo R-CoRe paper and presentation for more details about the demonstration.
 - You can download the demo and test it yourself from https://github.com/securityandtrust/ruleml13

We would really appreciate your feedback!!!

The CoPAInS Project

- Conviviality & Privacy in Ambient Intelligence Systems*
 - Tradeoff between conviviality and privacy
 - Conviviality: sharing information with all
 - Privacy: keep local knowledge private

*Supported by the National Research Fund, Luxembourg (I2R-SER-PFN-11COPA)

A Rule-based Contextual Reasoning Platform for Ambient Intelligence Environments

