14 Der Raum mit Funktionen zu einer affin algebraischen Menge

Ziel. $X \subseteq \mathbb{A}^n(k) \mapsto (X, \mathcal{O}_X)$ als irreduzibele affine algebraische Menge bzw. Zariski-Topologie. D.h. wir müssen Mengen von Funktionen $\mathcal{O}_X(U)$ auf $U, U \subset X$ offen, definieren. Diese werden als Teilmengen des Funktionenkörpers K(X) definiert (dazu X irreduzibel, später bei Schemata fällt diese Bedingung weg!)

Definition 33. $K(X) := \text{Quot}(\Gamma(X))$ heißt **Funktionenkörper** von X. ($\Gamma(X)$ ist für X irreduzibel nullteilerfrei.)

Elemente $\frac{f}{g} \in K(X)$, $f, g \in \Gamma(X) = \text{hom}(X, \mathbb{A}^1(k))$, $g \neq 0$ lassen sich zumindest als Funktion auf der offenen Menge $\mathcal{D}(g) \subset X$ auffassen, wenn auch nicht i.A. auf ganz X.

Lemma 34. Gilt für $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in K(X), f_i, g_i \in \Gamma(X), und einer offenen Teilmenge <math>\emptyset \neq U \subset \mathcal{D}(g_1g_2)$

$$\frac{f_1(x)}{g_1(x)} = \frac{f_2(x)}{g_2(x)} \qquad \forall x \in U,$$

dann folgt $\frac{f_1}{g_1} = \frac{f_2}{g_2}$ in K(X).

Beweis. Sei ohne Einschränkung der Allgemeinheit $g_1 = g_2 = g$. (Sonst Erweitern!)

$$\Rightarrow (f_1 - f_2)(x) = 0 \ \forall x \in U.$$

$$\Rightarrow \emptyset \neq U \subset V(f_1 - f_2) \subset X \text{ dicht, d.h. } V(f_1 - f_2) = X.$$

$$f_1 - f_2 \in IV(f_1 - f_2) = I(X) \equiv (0) \text{ in } \Gamma(X)$$

$$\Rightarrow f_1 - f_2 = 0.$$

Definition 35. Sei X eine irreduzibele affine algebraische Menge, $U \subset X$ offen. Sei $\Gamma(X)_{\mathfrak{m}_x}$ Lokalisierung von $\Gamma(X)$ bzgl. das maximale Ideal \mathfrak{m}_x in $x \in X$.

$$\mathcal{O}_X(U) := \bigcap_{x \in U} \Gamma(X)_{\mathfrak{m}_x} \subset K(X)$$

d.h. für jedes $x \in U$ lässt sich $f \in \mathcal{O}_X(U)$ schreiben als $\frac{h}{g}$ mit $g(x) \neq 0$.

Wenn $f \in \Gamma(X)$ bezeichne $\Gamma(X)_f$ die Lokalisierung von $\Gamma(X)$ bzgl. der multiplikativ abgeschlossenen Teilmenge $\{1, f, f^2, \dots, f^n \dots\}$. Dann lässt sich

$$\Gamma(X)_{\mathfrak{m}_x} = \bigcup_{f \in \Gamma(X) \setminus \mathfrak{m}_x} \Gamma(X)_f \subset K(X)$$

schreiben. "\rightar" klar, "\rightar" $\frac{g}{f}$ mit $f(x) \neq 0$ d.h. $f \notin \mathfrak{m}_x \Rightarrow \frac{g}{f} \in \Gamma(X)_f$.

Es gilt:

(i) Für $V \subset U \subset X$ offen kommutiert das folgende Diagramm:

$$\mathcal{O}_X(V) \hookrightarrow \operatorname{Abb}(V, k)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\mathcal{O}_X(U) \hookrightarrow \operatorname{Abb}(U, k)$$

mit $\mathcal{O}_X(U) \subset \mathcal{O}_X(V)$ nach Definition.

- (ii) $\mathcal{O}_X(U) \to \text{Abb}(U, k)$, $f \mapsto (x \mapsto f(x) := \frac{g(x)}{f(x)} \in k)$ ist injektiv (Lemma 34) und wohldefiniert (kürzen/Erweitern), wobei $g, h \in \Gamma(X)$ mit $h \notin \mathfrak{m}_x$ mit $f = \frac{g}{h}$ nach Definition von $\mathcal{O}_X(U)$ existiert.
- (iii) Verklebungseigenschaft. Sei $U = \bigcup_{i \in I} U_i$. Nach Definition ist

$$\mathcal{O}_X(U) = \bigcap_i \mathcal{O}_X(U_i) \subset K(X)$$

$$\ni f: U \to k \quad \ni f_i: U_i \to k$$

[Diagramm fehlt]. $\Rightarrow (X, \mathcal{O}_X)$ ist Raum mit Funktionen, der zur irreduziblen affin algebraische Menge gehörige Raum von Funktionen.

Satz 36 (orig. 33). Für (X, \mathcal{O}_X) zu X wie oben und $f \in \Gamma(X)$ gilt:

$$\mathcal{O}_X(D(f)) = \Gamma(X)_f,$$

insbesondere $\mathcal{O}_X(X) = \Gamma(X)$.

Beweis. $\Gamma(X) \subset \mathcal{D}(f)$ klar, da $f(x) \neq 0 \ \forall x \in \mathcal{D}(f)$ bzw. $f \in P(X) \setminus \mathfrak{m}_x$.

Sei nun g in $\mathcal{O}_X(\mathcal{D}(f))$ gegeben, (*) und $\mathfrak{A} := \{h \in \Gamma(X) \mid hg \in \Gamma(X)\} \subset \Gamma(X)$ Ideal.

Dazu: $g \in \Gamma(X)_g$

 $\Leftrightarrow g = \frac{k}{g^n}$ für ein n und $k \in \Gamma(X)$

 $\Leftrightarrow f^n \in \mathfrak{A}$ für ein n.

d.h. zu zeigen: $f \in \operatorname{rad}(\mathfrak{A}) = IV(\mathfrak{A})$ (Hilbertsche Nullstellensatz)

$$\Leftrightarrow f(x) = 0 \ \forall x \in V(\mathfrak{A})$$

Ist dazu $x \in X$ mit $f(x) \neq 0$, wo $x \in \mathcal{D}(f)$, so existiert nach Voraussetzung (*) $f_1, f_2 \in \Gamma(X)$, $f_2 \notin \mathfrak{m}_x$ mit $g = \frac{f_1}{f_2}$

$$\Rightarrow f_2 \in \mathfrak{A}$$
. Da $f_2(x) \neq 0$:

$$\Rightarrow x \notin V(\mathfrak{A}).$$

Bemerkung 37 (orig. 34).

- (i) Im allgemeinen existieren für $f \in \mathcal{O}_x(U)$ nicht $g, h \in \Gamma(X)$ mit $f = \frac{g}{h}$ und $h(x) \neq 0 \ \forall x \in U$.
- (ii) Alternative Definition von \mathcal{O}_X , I.

$$\mathcal{O}_X(\mathcal{D}(f)) := \Gamma(X)_f, \quad \forall f \in \Gamma(X).$$

Da $\mathcal{D}(f)$ Basis der Topologie ist, kann es höchstens einen Raum mit Funktionen geben mit dieser Eigenschaft, es bleibt die Existenz zu zeigen.

(iii) Alternative Definition von \mathcal{O}_X , II.

Direkt von einer integeren endlich erzeugten k-Algebra A ausgehend (die X bis auf Isomorphie festlegt), aber ohne "Koordinaten" zu wählen.

$$X := {\mathfrak{m} \subseteq A \mid \text{max. Ideale}}$$

Die abgeschlossen Mengen sind gegeben durch:

$$V(\mathfrak{A}) := \{ \mathfrak{m} \subseteq A \text{ max. } | \mathfrak{m} \supseteq \mathfrak{A} \}, \quad \mathfrak{A} \subset A \text{ Ideal.}$$

 $\mathcal{O}_X(U):=\bigcap_{\mathfrak{m}\in U}A_{\mathfrak{m}}\subset \operatorname{Quot}(A)$ für $U\subset X$ offen (vgl. später Schemata).