α) Η ανίσωση $\frac{\omega^2-1}{\omega-3}>0$ με $\omega\neq 3$ είναι ισοδύναμη με την $\left(\omega^2-1\right)\left(\omega-3\right)>0$.

Το πρόσημο του $(\omega^2-1)(\omega-3)$ φαίνεται στον παρακάτω πίνακα.

ω	-∞	_	1		1		3	+∞
ω-3		-		-		-	•	+
$\omega^2 - 1$		+	•	-	•	+		+
$(\omega - 3)(\omega^2 - 1)$		-	•	+	•	_	•	+

Συνεπώς η ανίσωση $\frac{\omega^2-1}{\omega-3}>0$ αληθεύει για κάθε $\omega\in \left(-1,1\right)\cup \left(3,+\infty\right).$

β) Η παράσταση Α ορίζεται για κάθε πραγματική τιμή του x για την οποία ισχύει $\frac{e^{2x}-1}{e^x-3}>0 \text{ .Aν θέσουμε } e^x=\omega \text{ η ανίσωση } \frac{e^{2x}-1}{e^x-3}>0 \text{ γίνεται } \frac{\omega^2-1}{\omega-3}>0 \text{ που όπως δείξαμε}$ στο α) αληθεύει για $\omega\in(-1,1)\cup(3,+\infty)$.

Συνεπώς θα πρέπει $-1 < \omega < 1 \Leftrightarrow -1 < e^x < 1 \Leftrightarrow x < 0 \ \ \acute{n} \ \ \omega > 3 \Leftrightarrow e^x > 3 \Leftrightarrow x > \ln 3$ Τελικά η παράσταση Α ορίζεται για κάθε $x \in (-\infty,0) \cup (\ln 3,+\infty)$.

γ) Η εξίσωση $A = -\ln 3$ ορίζεται για κάθε $x \in \left(-\infty,0\right) \cup \left(\ln 3,+\infty\right)$ και γίνεται ισοδύναμα

$$\ln\left(\frac{e^{2x}-1}{e^x-3}\right) = \ln 3^{-1} \Leftrightarrow$$

$$\frac{e^{2x}-1}{e^x-3} = \frac{1}{3} \Leftrightarrow$$

$$3e^{2x}-3 = e^x-3 \Leftrightarrow$$

$$3e^{2x}-e^x = 0 \Leftrightarrow$$

$$e^x \left(3e^x-1\right) = 0 \Leftrightarrow$$

$$3e^x-1 = 0 \Leftrightarrow$$

$$e^x = \frac{1}{3} \Leftrightarrow$$

$$x = \ln \frac{1}{3}$$

και επειδή $\frac{1}{3}$ < 1 \Leftrightarrow $\ln\frac{1}{3}$ < 0 η λύση $x = \ln\frac{1}{3}$ είναι δεκτή.