Devoir surveillé n°7 Version n°2

Durée : 3 heures, calculatrices et documents interdits

I. Étude d'une suite définie implicitement.

Pour chaque $p \in \mathbb{N}^*$, on considère l'équation

$$x^{p} + x^{p-1} + \ldots + x^{2} + x = 1$$
 (\mathcal{E}_{p})

- 1) a) Montrer que, pour tout $p \in \mathbb{N}^*$, l'équation (\mathscr{E}_p) possède une unique solution positive x_p .
 - **b)** Justifier que, pour tout $p \in \mathbb{N}^*$, $x_p \in]0,1]$ et que l'on a la relation $x_p(1-x_p^p)=1-x_p$.
 - c) Établir que la suite (x_p) est décroissante puis convergente.
 - d) Établir que $x_p^p \xrightarrow[p \to +\infty]{} 0$ et en déduire la limite de (x_p) .
- 2) On écrit $x_p = \frac{1}{2}(1 + \varepsilon_p)$ avec $\varepsilon_p \xrightarrow[p \to +\infty]{} 0$ (c'est-à-dire que l'on pose $\varepsilon_p = 2x_p 1$).
 - a) Montrer que $(1 + \varepsilon_p)^{p+1} = 2^{p+1}\varepsilon_p$.
 - **b)** Établir la relation $(p+1)\varepsilon_p \ln(1+\varepsilon_p) = (p+1)\varepsilon_p \ln 2 + \varepsilon_p \ln \varepsilon_p$.
 - c) Déterminer alors la limite de $(p+1)\varepsilon_p$ puis celle de $(1+\varepsilon_p)^{p+1}$.
 - d) En déduire un équivalent simple de (ε_p) .
- 3) Dans cette question on suppose p=2, et par commodité on pose $\alpha=x_2$. On considère la fonction $f: \begin{cases} \mathbb{R}^+ \to \mathbb{R} \\ x \mapsto \frac{1}{x+1} \end{cases}$ et la suite récurrente réelle (u_n) définie par $u_0=1$ et pour tout $n \in \mathbb{N}$, $u_{n+1}=f(u_n)$.
 - a) Simplifier $f(\alpha)$.
 - **b)** Montrer que $\left[\frac{1}{2},1\right]$ est stable par f. Quelles conséquences cela a-t-il sur la suite (u_n) ?

- c) Justifier que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \leq \frac{2}{3} |u_n \alpha|$.
- d) En déduire que pour tout $n \in \mathbb{N}$, $|u_n \alpha| \leqslant \left(\frac{2}{3}\right)^n$ et déterminer la limite de la suite (u_n) .
- 4) Dans cette question on pose $\beta = x_3$.

Dans cette question on pose $\rho = x_3$.

On introduit la fonction $g: \begin{cases} \mathbb{R}^+ \to \mathbb{R} \\ x \mapsto \frac{1}{x^2 + x + 1} \end{cases}$ et on considère $x \mapsto \frac{1}{x^2 + x + 1}$ la suite récurrente réelle (v_n) définie par $v_0 = 1$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = g(v_n).$

- a) Montrer que pour tout $n \in \mathbb{N}$, $v_n \in [0, 1]$.
- b) **Démontrer** que (v_{2n}) est décroissante et que (v_{2n+1}) est croissante, puis montrer que ces deux suites convergent.
- c) On pose $\ell = \lim_{n \to +\infty} v_{2n}$ et $\ell' = \lim_{n \to +\infty} v_{2n+1}$. Montrer que $g(\ell) = \ell'$ et $g(\ell') = \ell$.
- d) En déduire que ℓ est solution de l'équation $(\ell^2+1)(\ell^3+\ell^2+\ell-1)=0$.
- e) Conclure que $\ell = \beta = \ell'$ puis déterminer la nature de (v_n) .

Images et noyaux emboîtés.

Soit E un \mathbb{R} -espace vectoriel et u un endomorphisme de E.

Un sous-espace vectoriel V de E est dit stable par u lorsque pour tout $x \in V$, on a $u(x) \in V$.

Lorsque qu'un sous-espace vectoriel V est stable par u, on peut considérer la restriction de $u \ a \ V$ notée $u|_V : V \to V$. Il est clair que $u|_V$ est un endomorphisme de V.

Pour $n \in \mathbb{N}$, u^n désigne l'endomorphisme défini par récurrence par : $u^0 = \operatorname{Id}$ et pour tout $n \in \mathbb{N}$, $u^{n+1} = u \circ u^n$ (où Id désigne l'endomorphisme identité de E).

- 1) Pour $n \in \mathbb{N}$, on note $F_n = \operatorname{Im} u^n$ et $G_n = \operatorname{Ker} u^n$.
 - a) Par quel argument simple peut-on affirmer que F_n et G_n sont des sous-espaces vectoriels de E?
 - b) Montrer que les suites de sous-espaces vectoriels (F_n) et (G_n) sont respectivement décroissante et croissante pour l'inclusion.

- **2)** On pose $F = \bigcap_{n \in \mathbb{N}} F_n$ et $G = \bigcup_{n \in \mathbb{N}} G_n$.
 - a) Établir que F et G sont des sous-espaces vectoriels de E.
 - b) Montrer que F et G sont stables par u.
 - c) Déterminer F et G lorsque u est un automorphisme de E.
- 3) Dans cette question, on suppose qu'il existe $n \in \mathbb{N}$ tel que $F_{n+1} = F_n$.
 - a) Établir que pour tout $p \in \mathbb{N}$, $F_{n+p} = F_n$.
 - b) Justifier de l'existence d'un plus petit entier $m \in \mathbb{N}$ vérifiant $F_{m+1} = F_m$.

Celui-ci sera désormais noté r(u).

- c) À partir de quel terme la suite (F_n) est-elle égale à F?
- **d)** Soit $x \in E$. Montrer qu'il existe $a \in E$ tel que $u^{r(u)}(x) = u^{2r(u)}(a)$. On pose alors $y = u^{r(u)}(a)$ et z = x y. Montrer que $z \in G_{r(u)}$. En déduire que $E = F + G_{r(u)}$.
- 4) Dans cette question, on suppose qu'il existe $n \in \mathbb{N}$ tel que $G_{n+1} = G_n$.
 - a) Établir que pour tout $p \in \mathbb{N}$, $G_{n+p} = G_n$.
 - b) Justifier l'existence d'un plus petit entier $m \in \mathbb{N}$ tel que $G_{m+1} = G_m$.

Celui-ci sera désormais noté s(u).

- c) À partir de quel terme la suite (G_n) est-elle égale à G?
- **d)** Montrer que $F_{s(u)} \cap G = \{0\}$.
- 5) À la lumière des questions précédentes (on supposera que les hypothèses des parties 3) et 4) sont vérifiées) :
 - a) Montrer que $E = F \oplus G$.
 - **b)** Montrer que s(u) = r(u).

— FIN —