Project Development Phase Model Performance Test

Date	16 November 2022
Team ID	PNT2022TMID 49894
Project Name	Project — Web Phishing Detection
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Classification Model: G o ting 4%ssification A dea Sco	#COMPARTING TOW CLOSE/PLOCETION PROGRAMS OF THE MODEL PROSPECTION OF TH
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method — KFOLD & Cross Validation Method	Wilconous signed-sank less is [58] which and coust intrinses manu- fees a time of coust intrinses manu- fees a time of coust intrinses of coust fees a time of coust intrinses for a global local signed and but for a global local signed for a global local signed and countries of coust intrinses for a global local signed and countries of countries for a global local signed and countries for a global local signed and countries for a global local signed and countries for a global local signed for more built and colors in global local signed for local signed and countries for local signe

1. METRICS:

CLASSIFICATION REPORT:

In [52]: #computing the classification report of the model

p+ nt(metrics.classification_report(y_test, y_test_gbc))

support	+1-score	nacal1	precision	
.76 1235	e°7 0 . 96	e. 6 0 . 99	0°s g.97	-1 1
J2 1 1 221 1 221 1	0.97 0.97 0.97	8.°7 0.°7	.0 8 9. 97	accurac;' macro avg weighted avg

PERFORMANCE:

	ML Moâet	Accuracy	fJ_score	Recall	Precision
0	Cradient Boosting Ctassifier	0.974	0.977	0.994	0.986
1	CatBoost Classified	0.972	0.975	0.994	0.989
2	Random Forest	0.96•	0.972	0.992	0.991
3	Support Vector Machine	0.964	0.968	0.980	0.96S
4	Decision Tree	0.938	0.962	0.991	0.993
5	K-Nearest Neighbors	0.956	0.9fi1	0.991	0.989
6	Log stic Regression	0.934	0.941	0.943	0.927
7	Naive Bayes ClaSsifier	0.605	0.454	0.292	0.997
8	XGBoonCla§fiKer	0.548	0.348	0.993	0.984
9	Mufti-layer Perceptron	0.543	0.543	0.989	0.983

2. TUNE THE MODEL - HYPERPARAMETER TUNING

In [58]: #HYPERPARAMETER TUNING
 grid.fit(X_train, y_train)

GridSearchCV

GridSearchCV(cv=5,

estimator=GradientBoostingClassifier(learning_rate=0.7, max_depth=4),

'çeitia' r.í: rraÿ|1?, Ø, å, 4h iØ, (Ø, Ø, ,)Ø lB,1], lã, l3Ø $Ml \varnothing lAlE_l tMANE_l$

''tilt''.;''{''t؜'ti%l'''iíi''

GradientBoostingClassifier(learning_rate=0.7, max_depth=4)

GradientBoostingClassifier

GradientBoostingClassifier(learning_rate=0.7, max_depth=4)

In [59]: print("The best parameters are %s with a score of %0.2f"
 \((\text{grid.\"oest pants}\), \(\text{grid.\"lest sroee_}\))

The best parameters are {'max_features': 5, 'n_estimators': 200} with a score of 0.97

VALIDATION METHODS: KFOLD & Cross Folding

Wllexon signed-rank test

```
In [7°]: #KFOLD and Cross Validation Model
          from sclpy.stats font »11coxon
          fno+ sk1earn.datasets b«po• t 1oad_1r1s
          +mm sk1earn.ense«tb1e Vapor-t GradlentBoest1ngC1ass1f1er
          from xgboost io}zort XGBC1ass:tf1er
              sklearn.«odc1_se1ectSon Prepaid cross_va1_scorc, Krold
         4 Load th.e doTcsel
         X = 1oad_1r1s().data
         y = 1oad 1rds().target
         # Prepare models and select your CV method
         modell = GradientBoostingClassifier(n_esticators=100)
         mWel2 = XG8Clssifier(n estinators=1 )
         kf = KFol d(n_sp1l ts = Z0, _randoni_state-None)
         4 Ex.W acl resulLe for each .'nodes or'. the sa.
         result s_nlodell - cross_va1_score(r«ode11, X, y, cv=kf)
          results «tocle12 = cross val score(«ode12, X, y, cv=kf)
          stat. p = w11coxon(resu1ts_m>de11, results_eode12, zero_eethod= 'zsp1it'),
```

5z2CV combined F test

```
In [89]: frcm o1xtend.eva1uate 1mpoi-l ccmb1ned_ftest_5x2cv
          fr"oo sk1corn. tree Import Dec1sIonTreeC1ossTfler, ExtretreeCiassi-tSer
          from sk1earn.ensetrb1e import GradlentBoost1ngC1asstf1er
          frmi u1xtend.data 1npoi-t 1r1s_data
          * P. epa. e fiiata or.d c1.fis
          X, y = 1r1s_data()
          clll = Grad1ent8oostlngC1assLiber()
          c1f2 = DeclsionTreeC1ass11°1er()
          # Calculate p-value
          f, p = combined_ftest_5x2cv(estimator1=clf1,
                                      estimator2=clf2,
                                      X=X, y=y,
random_seed=1)
          print('| -va 1ue- ', | )
          print ( p-va Ke : ', p)
          f-va1ue: 1.72727272727233
          p-ve1ue: 6.2B40'135734291782
```