WHAT IS CLAIMED IS:

1. A method for treating excessive osteolysis in a patient, comprising administering to said patient an effective amount of a compound of Formula I:

$$(CH_2)_r - C - NR_5 - (CHR)_p - Z$$

$$(R_2)_q$$

$$(R_1)_p - (CHR)_p - Z$$

$$(I)_q$$

wherein

R is independently H, OH, alkyl, aryl, cycloalkyl, heteroaryl, alkoxy, heterocyclic and amino:

each R₁ is independently selected from the group consisting of alkyl, halo, aryl, alkoxy, haloalkyl, haloalkoxy, cycloalkyl, heteroaryl, heterocyclic, hydroxy,

 $-C(O)-R_8$, $-NR_9R_{10}$, $-NR_9C(O)-R_{12}$ and $-C(O)NR_9R_{10}$;

each R₂ is independently selected from the group consisting of alkyl, aryl, heteroaryl, -C(O)-R₈ and SO₂R", where R" is alkyl, aryl, heteroaryl, NR₉N₁₀ or alkoxy; each R₅ is independently selected from the group consisting of hydrogen, alkyl, aryl, haloalkyl, cycloalkyl, heteroaryl, heterocyclic, hydroxy, -C(O)-R₈ and (CHR)_rR₁₁; X is O or S;

p is 0-3;

q is 0-2;

r is 0-3;

R₈ is selected from the group consisting of -OH, alkyl, aryl, heteroaryl, alkoxy, cycloalkyl and heterocyclic;

R₉ and R₁₀ are independently selected from the group consisting of H, alkyl, aryl, aminoalkyl, heteroaryl, cycloalkyl and heterocyclic, or R₉ and R₁₀ together with N may form a ring, where the ring atoms are selected from the group consisting of C, N, O and S;

R₁₁ is selected from the group consisting of –OH, amino, monosubstituted amino, disubstituted amino, alkyl, aryl, heteroaryl, alkoxy, cycloalkyl and heterocyclic; R₁₂ is selected from the group consisting of alkyl, aryl, heteroaryl, alkoxy, cycloalkyl and heterocyclic;

Z is OH, O-alkyl, or -NR₃R₄, where R₃ and R₄ are independently selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, and heterocyclic, or R₃ and R₄ may combine with N to form a ring where the ring atoms are selected from the group consisting of CH₂, N, O and S or

$$\underbrace{ (Y)_n }_{(Y)_n} Q \underbrace{ \begin{pmatrix} R^1 \\ C \\ R^1 \end{pmatrix}_m}_{R^4}$$

wherein Y is independently CH2, O, N or S,

Q is C or N;

n is independently 0-4; and

m is 0-3;

or a salt thereof.

- 2. The method of claim 1, wherein R_1 is halo and p is 1.
- 3. The method of claim 2, where Z is -NR₃R₄, wherein R₃ and R₄ form a morpholine ring.
- 4. The method of claim 1, wherein Z is:

$$\underbrace{ \left(\begin{array}{c} (Y)_n \\ (Y)_n \end{array} \right)}_{Q} \underbrace{ \left(\begin{array}{c} R^1 \\ C \\ R^1 \end{array} \right)}_{m} R^3$$

wherein each Y is CH₂, each n is 2, m is 0 and R₃ and R₄ form a morpholine ring.

5. The method of any of claims 1-3, wherein R₂ is methyl and q is 2, wherein the methyls are bonded at the 3 and 5 positions.

6. The method of claim 1, wherein the compound administered is a compound of Formula II:

- 7. The method of claim 6, wherein R_5 is H.
- 8. The method of claim 6, wherein R_2 is methyl, q is 2, wherein the methyls are bonded at the 3 and 5 positions.
- 9. The method of claim 6, wherein the patient has cancer that has metastasized to bone.
- 10. The method of claim 6, wherein the patient has a cancer that secretes M-CSF.
- 11. The method of claim 6, wherein the patient has osteoporosis.
- 12. The method of claim 6, wherein the patient is post-menopausal.

13. The method of claim 1, wherein the compound administered is selected from the group consisting of

14. The method of claim 1, wherein the compound of formula I is selected from the group consisting of:

Compound 5

15. A method of inhibiting phosphorylation of CSF1R in a patient in need of such inhibition, comprising administering to said patient an inhibitory amount of a compound of Formula I:

$$(CH_2)_r - C - NR_5 - (CHR)_p - Z$$

$$(R_2)_q$$

$$(R_1)_p - (CHR)_p - Z$$

$$(I)$$

wherein

R is independently H, OH, alkyl, aryl, cycloalkyl, heteroaryl, alkoxy, heterocyclic and amino;

each R_1 is independently selected from the group consisting of alkyl, halo, aryl, alkoxy, haloalkyl, haloalkoxy, cycloalkyl, heteroaryl, heterocyclic, hydroxy, $-C(O)-R_8$, $-NR_9R_{10}$, $-NR_9C(O)-R_{12}$ and $-C(O)NR_9R_{10}$; each R_2 is independently selected from the group consisting of alkyl, aryl, heteroaryl, $-C(O)-R_8$ and SO_2R'' , where R'' is alkyl, aryl, heteroaryl, NR_9N_{10} or alkoxy; each R_5 is independently selected from the group consisting of hydrogen, alkyl, aryl, haloalkyl, cycloalkyl, heteroaryl, heterocyclic, hydroxy, $-C(O)-R_8$ and $(CHR)_rR_{11}$; X is O or S;

p is 0-3;

q is 0-2;

r is 0-3;

R₈ is selected from the group consisting of –OH, alkyl, aryl, heteroaryl, alkoxy, cycloalkyl and heterocyclic;

R₉ and R₁₀ are independently selected from the group consisting of H, alkyl, aryl, aminoalkyl, heteroaryl, cycloalkyl and heterocyclic, or R₉ and R₁₀ together with N may form a ring, where the ring atoms are selected from the group consisting of C, N, O and S;

R₁₁ is selected from the group consisting of -OH, amino, monosubstituted amino,

disubstituted amino, alkyl, aryl, heteroaryl, alkoxy, cycloalkyl and heterocyclic R_{12} is selected from the group consisting of alkyl, aryl, heteroaryl, alkoxy, cycloalkyl and heterocyclic;

Z is OH, O-alkyl, or -NR₃R₄, where R₃ and R₄ are independently selected from the group consisting of hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, and heterocyclic, or R₃ and R₄ may combine with N to form a ring where the ring atoms are selected from the group consisting of CH₂, N, O and S or

$$\underbrace{ \left(\begin{array}{c} (Y)_n \\ (Y)_n \end{array} \right) }_{(Y)_n} Q \underbrace{ \left(\begin{array}{c} R^1 \\ C \\ R^1 \end{array} \right)}_{m} N \underbrace{ \left(\begin{array}{c} R^3 \\ R^4 \end{array} \right) }_{R^4}$$

wherein Y is independently CH₂, O, N or S, Q is C or N
n is independently 0-4; and
m is 0-3.