

Cours MALG & MOVEX

Analyse des programmes

Dominique Méry Telecom Nancy, Université de Lorraine

Année universitaire 2023-2024

- Introduction
- 2 Example of analysis
- 3 Static analysis
- 4 Standard, Collecting and Abstract Semantics
- Finding Sound Abstractions for Computing
- 6 Galois Connections
- **7** Examples of Galois connections
- 8 Domain of Signs

- Open Domain of intervals
- Mathematical Abstraction and approximation
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Example

Analysing Iterative Programs

14 Exercice

Sommaire

- 1 Introduction
- 2 Example of analysis
- 3 Static analysis
- 4 Standard, Collecting and Abstract Semantics
- 5 Finding Sound Abstractions for Computing
- 6 Galois Connections
- **7** Examples of Galois connections
- 8 Domain of Signs
- Open in the property of the
- Abstraction and approximation
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs
 Example
 Analysing Iterative Programs
- Exercice

Current Summary

- Introduction

- Examples of Galois connections

- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

- ▶ Objectives of static program analysis
 - to prove properties about the run-time behaviour of a program
 - in a fully automatic way ie without interaction
 - without actually executing the program
- Applications
 - code optimisation
 - error detection (array out of bound access, null pointers)
 - proof support for generation of invariant

Foundational Ideas of Abstract Interpretation

- ► A Theory described in works of Patrick Cousot (1976 → now), Father of the Abstract Interpretation : analysis of large codes for embedde software A380 with Astrée.
- ... and Radhia Cousot is the second Almate of the Abstract Interpretation Company.
- A Comprehensive Web Site is maintanined by Professor Patrick Cousot at ENS Paris.
- abstract interpretation relies on an idea of discrete approximation which consists in replacing the reasoning on a concrete exact semantics by a computation on an abstract approximate semantics.
- ► A theory unifying abstract and concrete objects with respect to a given semantics
- A theory providing a way to *transfer* statements from a concrete (complex) to an abstract (simpler) semanticical framework.
- ► A theory formalizing the approximated analyse of programs and allowing to compare relative precision of analyses

- Static Analysis computes approximations
- Abstract Interpretation (AI) provides a mathematical framework for relating approximations
- Properties of programs are generally non computable :
 - the halting problem is undecidable
 - Model checking is computing over finite structures
 - Proof assistant may be useful for proving partial correctness or total correctness by applying induction priciniles (see Event B)
 - Al provides another solution by trabfering results from a concret framework to an abstract structure

Static Analysis of Program Properties

- $ightharpoonup \mathcal{CS}(P)$ is the concrete semantics of a program P: the set of reachable states of P.
- $ightharpoonup \mathcal{AS}(P)$ is the approximation of $\mathcal{CS}(P): \mathcal{CS}(P) \subseteq \mathcal{AS}(P)$.
- $ightharpoonup \mathcal{CS}(P)$ is generally not computable and we will seek for *computable* approximation or abstract semantics $\mathcal{AS}(P)$.
- ▶ Problems : AS(P) may *loose* the expression of properties.

- ightharpoonup arphi is a program property stating the possible bugs or arrors which we want to avoid.
- $ightharpoonup \mathcal{CS}(P)$ is the concrete semantics of a program P: the set of reachable states of P.
- ▶ $\mathcal{AS}(P)$ is the approximation of $\mathcal{CS}(P)$: $\mathcal{CS}(P) \subseteq \mathcal{AS}(P)$.
- ► Case $1 : \mathcal{CS}(P) \cap \varphi = \emptyset$ and $\mathcal{AS}(P) \cap \varphi = \emptyset$
- ► Case 2 : $CS(P) \cap \varphi \neq \emptyset$ and $AS(P) \cap \varphi \neq \emptyset$
- ► Case 3 : $CS(P) \cap \varphi = \emptyset$ and $AS(P) \cap \varphi \neq \emptyset$

Static Analysis of Program Properties

- ► Case 1 : $CS(P) \cap \varphi = \emptyset$ and $AS(P) \cap \varphi = \emptyset$:
 - P is safe with respect to φ and no error specified by φ is possible for P.
 - Checking is computable on the approximation
- ► Case 2 : $CS(P) \cap \varphi \neq \emptyset$ and $AS(P) \cap \varphi \neq \emptyset$:
 - An error is detected on the approximation and on the concrete semantics.
 - P is unsafe with respect to φ
 - and an error is detected by the analyser.
- ► Case 3 : $\mathcal{CS}(P) \cap \varphi = \emptyset$ and $\mathcal{AS}(P) \cap \varphi \neq \emptyset$:
 - P is safe with respect to φ
 - but an error is detected by the analyser
 - A false alarm is provided by the analyzer
 - Approximation is over-approximating P with respect to φ
 - The analysis should be refined

Current Summary

- Introduction
- 2 Example of analysis

- Examples of Galois connections

- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

The Interproc Analyzer

- a web interface to the Interproc analyzer connected to the APRON Abstract Domain Library
- ► Analysis of programs uting different abstract domains
- http://pop-art.inrialpes.fr/interproc/
- developed by Antoine Miné and his team.

```
proc incr (x:int) returns (y:int)
begin
  y = x+1;
end
var i:int;
begin
  i = 0;
  while (i \le 10) do
    i = incr(i);
  done;
end
```

Example 1 : Increment of a value

```
proc incr (x : int) returns (y : int) var ;
begin
  /* (L3 C5) [|x>=0: -x+10>=0|] */
  y = x + 1; /* (L4 C10)
                [|x>=0; -x+10>=0; y-1>=0; -y+11>=0|] */
end
var i : int;
begin
 /* (L8 C5) top */
  i = 0; /* (L9 C8) [|i>=0; -i+11>=0|] */
  while i \le 10 do
    /* (L10 C18) [|i>=0; -i+10>=0|] */
    i = incr(i): /* (L11 C16)
                    [|i-1>=0: -i+11>=0|] */
  done; /* (L12 C7) [|i-11=0|] */
end
```

```
var Q : int, R : int, X : int, Y : int;
begin

Q = 0;
R = Y;

while R >= Y do
    Q = Q + 1;
    R = R - Y;
done;
```

end

```
Annotated program after forward analysis
var Q : int, R : int, X : int, Y : int;
begin
  /* (L3 C5) top */
  Q = 0; /* (L5 C8) [|Q=0|] */
  R = Y; /* (L6 C8) [|Q>=0|] */
  while R >= Y do
    /* (L8 C20) [|Q>=0|] */
    Q = Q + 1; /* (L9 C17) [|Q-1>=0|] */
    R = R - Y: /* (L10 C17) \lceil |Q-1\rangle = 0 \rceil \rceil */
  done; /* (L11 C10) [|Q>=0|] */
end
```

Example 3 : modified division

```
var Q : int, R : int, X : int, Y : int;
begin

Q = 0;
R = Y;
if Y > 0 then
    while R >= Y do
    Q = Q + 1;
    R = R - Y;
    done;
else
    skip;
endif;
end
```

Annotated program after forward analysis

```
Annotated program after forward analysis
var Q : int, R : int, X : int, Y : int;
begin
 /* (L3 C5) top */
 Q = 0; /* (L5 C8) [|Q=0|] */
 R = Y: /* (L6 C8) [|Q=0|] */
 if Y > 0 then
     /* (L7 C15) [|Q>=0; Y-1>=0|] */
    while R >= Y do
       /* (L8 C20) [|Q>=0; R-1>=0; Y-1>=0|] */
       Q = Q + 1; /* (L9 C17)
                     [|Q-1>=0: R-1>=0: Y-1>=0|] */
       R = R - Y; /* (L10 C17)
                     [|Q-1>=0: Y-1>=0|] */
     done: /* (L11 C10) [|Q>=0: Y-1>=0|] */
  else
    /* (L12 C6) [|Q=0: -Y>=0|] */
    skip: /* (L13 C9) [|Q=0: -Y>=0|] */
  endif; /* (L14 C8) [|Q>=0|] */
end
```

Current Summary

- Introduction
- 3 Static analysis

- Examples of Galois connections

- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Static analysis

Static program analysis analyses computer software without actually executing programs :

- absence of run time errors
- detecting variables used before initialisation.
- ► Data flow analysis
- Abstract interpretation
- Use of property-preserving abstractions
- Programs are interpreted in abstractions

- ► Sign analysis is used to determine the sign of variables
- x is an integer variable and has the following possible abstract states:
 - x > 0
 - $x \ge 0$
 - x = 0
 - *x* < 0
 - *x* ≤ 0
 - *x* ≠ 0

```
\ell_0:
y := -11;
IF x < y THEN
  \ell_1:
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1:
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1: y < 0 \quad x < 0
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1: y < 0 \quad x < 0
   z := y;
  \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := y;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := x;
  \ell_4:
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := x;
   \ell_4: y < 0 \quad x \in \mathbb{Z}
FI
\ell_5:
```

Simple example

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := x;
   \ell_4: y < 0 \quad x \in \mathbb{Z}
FΙ
\ell_5: y < 0 \quad x \in \mathbb{Z} \quad z \in \mathbb{Z}
```

Simple example

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := x;
   \ell_4: y < 0 \quad x \in \mathbb{Z}
FΙ
\ell_5: y < 0 \quad x \in \mathbb{Z} \quad z \in \mathbb{Z}
```

Result

y<0 $x\in\mathbb{Z}$ z<0 means that z<0 is an information resulting from the analysis over abstract domain of signs.

Verification by computing set of reachable states

- \blacktriangleright \mathcal{MS} is $(Th(s,c), x, \text{VALS}, \text{INIT}(x), \{r_0, \dots, r_n\})$
- \triangleright NEXT $\stackrel{def}{=} r_0 \lor \ldots \lor r_n$.
- \triangleright S is a safety property, when $\forall x_0, x \in \text{VALS}.Init(x_0) \land \text{NEXT}^*(x_0, x) \Rightarrow x \in S.$
- ightharpoonup S is a safety property for \mathcal{MS} if, and only if, REACHABLE $(\mathcal{MS})\subseteq \mathcal{S}$

Characterisation of REACHABLE(\mathcal{MS}) $\subseteq \mathcal{S}$ as a fixed-point

 $(\mathcal{P}(VALS), \subseteq, \emptyset, \cup, \cap)$ is a complete lattice and

$$F \in \mathcal{P}(VALS) \longrightarrow \mathcal{P}(VALS)$$
 is defined as :

following properties:

- F is a monotonic function.
- \triangleright REACHABLE(\mathcal{MS}) = $\mu\mathcal{F}$
- $\blacktriangleright \mu F$ is defined as follows :
 - $F^0 \varnothing$
 - $F^{i+1} = F(F^i), \forall i \in \mathbb{N}$
 - $\mu F = Sup\{F^i | i \in \mathbb{N}\}$
 - For any safety property S, $\mu F \subseteq S$.

Computing the least fixed-point over a finite lattice

```
INPUT F \in T \longrightarrow T
OUTPUT result = \mu.F
VARIABLES x, y \in T, i \in \mathbb{N}
\ell_0 : \{x, y \in T\}
x := \bot;
u := \bot:
i := 0:
\ell_{11}: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T) \land i = 0\};
WHILE i < Card(T)
   \ell_1: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0, k=i} F^k \land i \leq Card(T)\};
   x := F(x);
   \ell_2: \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0, k=i} F^k \land i \leq Card(T)\};
   y := x \sqcup y;
   \ell_3: \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0: k=i+1} F^k \land i \leq Card(T)\};
   i := i+1:
  \ell_4: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0, k=i} F^k \land i \leq Card(T)+1\};
OD:
\ell_5: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i = Card(T)+1\};
result := u:
\ell_6: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0 \cdot k=i} F^k \land i = Card(T) + 1 \land result = y\};
```

Verification in action

- ▶ Identify the safety property *S* to check.
- ▶ Run the algorithm for computing μF .
- ▶ Check that $\mu F \subseteq S$ or $\overline{S} \cap \mu F = \emptyset$.
- ► Check that $BUG \cap \mu F = \emptyset$, when BUG is a set of states that you identify as *bad states*.

Problem

- ▶ The general case is either infinite or large . . . approximations of μF .
- Computing over abstract finite domain
- ▶ How to compute when it is not decidable?
- Develop a framework for defining sound abstractions of software systems under analysis.

Current Summary

- Introduction

- 4 Standard, Collecting and Abstract Semantics

- Examples of Galois connections

- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Standard, Collecting and Abstract Semantics

- Abstract interpretation of programs is an approximation of programs semantics
- Correctness proof of the abstract interpretation requires the existence of the standard semantics describing the possible behaviours of programs during their execution.
- The class of properties of program executions is defined by a collecting semantics or static semantics.
- The collecting semantics can be an instrumented version of the standard semantics to gather information about programs executions.
- or the standard semantics reduced to essentials in order to ignore irrelevant details about program execution.
- The collecting semantics provides a sound and relatively complete proof method for the considered class of properties.
- It can be used subsequently as a reference semantics for proving the correctness of all other approximate semantics for that class of properties.
- ▶ The abstract semantics usually considers effectively computable properties of programs.
- ▶ The soundness of this abstract semantics is proved with respect to the collecting semantics.

Examples

- ► Computation Traces of Program
- ► Transitive Closure of the program transition relation
- Set of states

The collecting semantics is the semantics which is interesting our analysis and we will consider as collecting semantics the set of states.

Summary of the technique

Collecting semantics

- Static analysis of a program states a property of program executions defined by a standard semantics.
- Defining a so-called collecting semantics defining the strongest static property of interest
- Collecting semantics defines the class of static analysis, which approximates it
- State properties are subsets of I×I×I×I and abstract interpretation executes programs on thse properties

Approximation

- Spaces of values should be restricted to computable entities
- Over-approximation of concrete properties

Small Programming Language

```
\begin{array}{cccc} Expr & ::= & v \\ & \mid & ? \\ & \mid & x \\ & \mid & Expr \ op \ Expr \end{array}
                                                                                                             v \in \mathbb{Z}
                                                                                                             x \in \mathbb{V} op \in \{+, -, \times, /\}
                                                                                                             relop \in \{<, \leq, >, \geq, =, \neq\}
  cond ::= Expr \ relop \ Expr
                 | not cond
| cond and cond
  stmt ::= \ell[x := Expr]
                                                                                                             \ell \in \mathbb{C}
                  \begin{array}{c|c} | & \ell[skip] \\ | & \textbf{if} \ \ell[cond] \ \textbf{then} \ stmt \ \textbf{else} \ stmt \ \textbf{end} \ \textbf{if} \end{array}
                          while \ell[cond] do stmt end do
                            stmt; stmt
```

Two examples of annotated programs

$$\begin{array}{l} \ell_0[X := 0]; \\ \ell_1[Y := Y + X]; \\ \ell_2[skip] \\ \ell_3[X := Y]; \end{array}$$

```
\begin{array}{l} \ell_0[Q:=0];\\ \ell_1[R:=X];\\ \textbf{IF } \ell_5[Y>0]\\ & \textbf{WHILE } \ell_2[R\geq Y]\\ & \ell_3[Q:=Q+1];\\ & \ell_4[R:=R-Y]\\ & \textbf{ENDWHILE}\\ \textbf{ELSE}\\ & \ell_6[skip]\\ \textbf{ENDIF} \end{array}
```

Defining the semantics of the small programming language

Semantic Domains

$$\begin{array}{ccc} Mem & \stackrel{def}{=} & \mathbb{V} \longrightarrow \mathbb{Z} \\ States & \stackrel{def}{=} & \mathbb{C} \times Mem \end{array}$$

► Semantics for Expressions

$$\mathcal{E}\llbracket v \rrbracket(m) \in \mathcal{P}(\mathbb{Z}), \ e \in Expr, m \in Mem, \ x \in \mathbb{V}, \ op \in \{+, -, \times, /\}$$

$$\mathcal{E}\llbracket v \rrbracket(m) \qquad \stackrel{def}{=} \quad \{v\}$$

$$\mathcal{E}\llbracket v \rrbracket(m) \qquad \stackrel{def}{=} \quad \mathbb{Z}$$

$$\mathcal{E}\llbracket x \rrbracket(m) \qquad \stackrel{def}{=} \quad \{m(x)\}$$

$$\mathcal{E}\llbracket e_1 \ op \ e_2 \rrbracket(m) \qquad \stackrel{def}{=} \quad \{v | \exists ve_1, ve_2. \left(\begin{array}{c} ve_1 \in \mathcal{E}\llbracket e_1 \rrbracket(m) \\ ve_2 \in \mathcal{E}\llbracket e_2 \rrbracket(m) \\ v = ve_1 \ o \ ve_2 \end{array} \right) \}$$

Defining the semantics of the small programming language

Semantics for conditions $C[[cond]](m) \in \mathcal{P}(\mathbb{B}), \ cond \in Cond, m \in Mem, \ x \in \mathbb{V}, \ op \in \{+, -, \times, /\}$

$$\begin{aligned} & \textit{tt} \in \mathcal{C}\llbracket e_1 \; relop \; e_2 \rrbracket(m) & \overset{def}{=} & \exists v_1, v_2. \begin{pmatrix} v_1 \in \mathcal{E}\llbracket e_1 \rrbracket(m) \\ v_2 \in \mathcal{E}\llbracket \; e_2 \rrbracket(m) \\ v_1 \; relop \; v_2 \\ v_1 \in \mathcal{E}\llbracket e_1 \rrbracket(m) \\ v_2 \in \mathcal{E}\llbracket \; e_2 \rrbracket(m) \\ v_1 \; relop \; v_2 \\ v_2 \in \mathcal{E}\llbracket \; e_2 \rrbracket(m) \\ v_2 \in \mathcal{E}\llbracket \; e_2 \rrbracket(m) \\ v_1 \; relop \; v_2 \\ v_2 \in \mathcal{E}\llbracket \; e_2 \rrbracket(m) \\ v_1 \; relop \; v_2 \\ v_2 \in \mathcal{E}\llbracket \; e_2 \rrbracket(m) \\$$

Structural Operational Semantics : Small-step Semantics

- $\blacktriangleright (x := e, m) \longrightarrow m[x \mapsto v], \text{ where } v \in \mathcal{E}[\![e]\!](m)$
- \triangleright $(skip, m) \longrightarrow m$
- ▶ If $(S_1, m) \longrightarrow m'$, then $(S_1; S_2, m) \longrightarrow (S_2, m')$.
- ▶ If $tt \in C[be]$, then (if be then S_1 else S_2 end if, m) \longrightarrow (S_1, m).
- ▶ If $ff \in \mathcal{C}\llbracket be \rrbracket$, then (if be then S_1 else S_2 end if, m) \longrightarrow (S_2, m) .
- ▶ If $tt \in C[be]$, then (while be do S end do, m) \longrightarrow (S; while be do S end do, m).
- ▶ If $ff \in C[[be]]$, then (while be do S end do, m) $\longrightarrow m$.

Generating Control Flowchart Graph from Program

- ▶ A control flow graph is generated from the program under consideration namely P.
- ▶ A control flow graph $\mathcal{CFG}[\![P]\!]$ is defined by nodes $(l \in \mathcal{C})$ which are program control points of P, $\mathcal{C}ontrol[\![P]\!]$ and by labelled edges with actions $(\mathcal{A}ctions[\![P]\!])$ defined by the following rules :

```
\begin{array}{cccc} actions & ::= & v := exp \\ & | & skip \\ & | & \textbf{assert} \ be \end{array}
```

- A control flow graph is effectively defined by :
 - $\ell_{init} \in \mathcal{C}ontrol[\![P]\!]$: the entry point
 - $\ell_{end} \in \mathcal{C}ontrol[\![P]\!]$: the exit point
 - $\mathcal{E}dges[\![P]\!] \subseteq \mathcal{C}ontrol[\![P]\!] \times \mathcal{A}ctions[\![P]\!] \times \mathcal{C}ontrol[\![P]\!]$
- $\triangleright \ \mathcal{CFG}[\![P]\!] = (\ell_{init}, \mathcal{E}dges[\![P]\!], \ell_{end})$

From program to flowchart

```
\begin{array}{l} \ell_0[Q:=0];\\ \ell_1[R:=X];\\ \textbf{IF}\ \ell_5[Y>0]\\ & \textbf{WHILE}\ \ell_2[R\geq Y]\\ \ell_3[Q:=Q+1];\\ \ell_4[R:=R-Y]\\ & \textbf{ENDWHILE}\\ \textbf{ELSE}\\ \ell_6[skip]\\ \textbf{ENDIF} \end{array}
```


Small-step Semantics for Control Flowcharts

- $ightharpoonup Mem \stackrel{def}{=} \mathbb{V} \longrightarrow \mathbb{Z}$
- ▶ Semantics for $\mathcal{CFG}\llbracket P \rrbracket : \xrightarrow{P} \subseteq States \times States$
 - If $m \stackrel{a}{\longrightarrow} m'$ and $(\ell_1, a, \ell_2) \in \mathcal{E} dges \llbracket P \rrbracket$, then $(\ell_1, m) \stackrel{P}{\longrightarrow} (\ell_2, m')$
 - The set of initial states is $\{\ell_{init}\} \times Mem$
 - The set of reachable states for P is denoted REACHABLE(P) and defined by $[\![P]\!] = \{s | \exists s_0 \in \{\ell_{init} \times Mem : s_0 \xrightarrow{P} s\}.$

lackbox Defining for each control point ℓ of P the set of reachables values :

$$[\![P]\!]_\ell^{coll} = \{s | s \in States \land s \in [\![P]\!] \land \exists m \in Mem : s = (\ell, m)\}$$

 \blacktriangleright Characterizing $[\![P]\!]^{coll}_\ell$: it satisfies the system of equations

$$\forall \ell \in \mathcal{C}(P). X_{\ell} = X_{\ell}^{init} \cup \bigcup_{(\ell_1, a, \ell) \in \mathcal{E} dges[\![P]\!]} [\![a]\!] (X_{\ell_1})$$
 (1)

▶ Let $a \in Actions[P]$ and $x \subseteq Mem$.

$$\llbracket a \rrbracket(x) = \{e | e \in States \land \exists f. f \in x \land f \xrightarrow{a} e\}$$

$$\forall \ell \in \mathcal{C}(P). \left(\begin{array}{c} \ell = \ell_{init} \Rightarrow X_{\ell}^{init} = Mem \\ \ell \neq \ell_{init} \Rightarrow X_{\ell}^{init} = \varnothing \end{array} \right)$$

Collecting Semantics for Programs

- © Théorème Let F the function defined as follows :
 - ightharpoonup n is the cardinality of $\mathcal{C}(P)$.
 - $ightharpoonup F \in \mathcal{P}(States)^n \longrightarrow \mathcal{P}(States)^n$
 - ▶ If $X \in \mathcal{P}(States)^n$, then $F(X) = (\dots, F_{\ell}(X), \dots)$
 - $\blacktriangleright \forall \ell \in \mathcal{C}(P).F_{\ell}(X) = X_{\ell}^{init} \cup \bigcup_{(\ell_1, a, \ell) \in \mathcal{E}dges\llbracket P \rrbracket} \llbracket a \rrbracket(X_{\ell_1})$

The function F is monotonic over the complete lattice $(\mathcal{P}(States)^n, \subseteq)$ and has a least fixed-point μF defining the collecting semantics.

From flowchart to equational system

From flowchart to equational system

From flowchart to equational system

Solving the equational system

- ► The collecting semantics is the least fixed-point of the system of equations, which exists by fixed-point theorems.
- Questions :
 - How to compute the solution?
 - Computing over finite structures, when it is possible....
 - Using an approximation of fixed-points?
 - What is an approximation?
 - What is an abstraction?
 - What is the best abstraction?

Next step

Defining a framework for computing Ifp solution of these equational systems in any case.

Example for computing reachable states

- ▶ System of equations over $(\mathcal{P}(\mathbb{Z}, \subseteq)$
 - $X_1 = \mathbb{Z}$
 - $X_2 = \{1\} \cup \{v | v \in \mathbb{Z} \land v 1 \in X_3\}$
 - $X_3 = \{v | v \in X_2 \land v < 10 \}$
 - $X_4 = \{v | v \in X_2 \land v \ge 10 \}$
- Reachability
 - $X_1 = \mathbb{Z}$
 - $X_2 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - $X_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - $X_4 = \{10\}$

Current Summary

- 1 Introduction
- 2 Example of analysis
- Static analysis
- A Standard, Collecting and Abstract Semantics
- 5 Finding Sound Abstractions for Computing
- **6** Galois Connections
- Examples of Galois connections
- 8 Domain of Signs
- Open Domain of intervals
- Abstraction and approximation
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs
 Example
 Analysing Iterative Programs
- **14** Exercice

- ▶ $n \in \mathbb{N}$: abstraction for n is defined as modulo(n, 9).
- \blacktriangleright A is the set of possible abstract values $\bar{0},\bar{1},\bar{2},\bar{3},\bar{4},\bar{5},\bar{6},\bar{7},\bar{8}$
- $n \star m = \bar{n} \star \bar{m}$
- ▶ But $25 \star 25 \neq 265$ and $\overline{25 \star 25} = \overline{265}$

- ▶ $n \in \mathbb{N}$: abstraction for n is defined as modulo(n,9).
- \blacktriangleright A is the set of possible abstract values $\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}, \bar{8}$
- $n \star m = \bar{n} \star \bar{m}$
- ▶ But $25 \star 25 \neq 265$ and $\overline{25 \star 25} = \overline{265}$

- ▶ $n \in \mathbb{N}$: abstraction for n is defined as modulo(n,9).
- \blacktriangleright A is the set of possible abstract values $\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}, \bar{7}, \bar{8}$
- $n \cdot \bar{m} = \bar{n} \cdot \bar{m}$
- $ightharpoonup 25 \star 25 = 625, \ 2\bar{5}\bar{\star}2\bar{5} = 6\bar{2}5, \ \bar{7}\bar{\star}\bar{7} = \bar{4}, \ \overline{7 \star 7} = \bar{4}, \ \overline{49} = \bar{4}, \ \bar{4} = \bar{4},$
- ▶ But $25 \star 25 \neq 265$ and $\overline{25 \star 25} = \overline{265}$

- A number $z \in \mathbb{Z}$ is soundly approximated by an abstract value $abstract(z) \in Signs.$
- ightharpoonup 2 is approximated by $pos: \{2\} \subseteq concrete(pos)$
- ▶ $\{2,8\}$ is approximated by $pos: \{2,8\} \subseteq concrete(pos)$
- ▶ -2 is approximated by $neg: \{2\} \subseteq concrete(neg)$
- ▶ 0 is approximated by $zero: \{0\} \subseteq concrete(zero)$
- ▶ $\{-2, -8\}$ is approximated by $pos: \{-2, -8\} \subseteq concrete(neg)$
- \blacktriangleright $\{-2,2,8\}$ is approximated by $pos: \{-2,2,8\} \subseteq concrete(nonzero)$

- ightharpoonup A number $z \in \mathbb{Z}$ is soundly approximated by an abstract value $abstract(z) \in Signs.$
- ightharpoonup 2 is approximated by $pos: \{2\} \subseteq concrete(pos)$
- \blacktriangleright {2,8} is approximated by $pos: \{2,8\} \subseteq concrete(pos)$
- ▶ -2 is approximated by $neg: \{2\} \subseteq concrete(neg)$
- ightharpoonup 0 is approximated by $zero: \{0\} \subseteq concrete(zero)$
- ▶ $\{-2, -8\}$ is approximated by $pos: \{-2, -8\} \subseteq concrete(neg)$
- \blacktriangleright $\{-2,2,8\}$ is approximated by $pos: \{-2,2,8\} \subseteq concrete(nonzero)$

- A number $z \in \mathbb{Z}$ is soundly approximated by an abstract value $abstract(z) \in Signs.$
- ▶ 2 is approximated by $pos: \{2\} \subseteq concrete(pos)$
- ▶ $\{2,8\}$ is approximated by $pos: \{2,8\} \subseteq concrete(pos)$
- ▶ -2 is approximated by $neg: \{2\} \subseteq concrete(neg)$
- ▶ 0 is approximated by $zero: \{0\} \subseteq concrete(zero)$
- ▶ $\{-2, -8\}$ is approximated by $pos: \{-2, -8\} \subseteq concrete(neg)$
- \blacktriangleright $\{-2,2,8\}$ is approximated by $pos: \{-2,2,8\} \subseteq concrete(nonzero)$

 $\mathcal{P}(\mathbb{Z})$ concret Signs

- $concret(pos) = \{z | z \in \mathbb{Z} \land z > 0\}$
- $concret(neg) = \{z | z \in \mathbb{Z} \land z < 0\}$
- $ightharpoonup concret(non) = \varnothing$

- A number $z \in \mathbb{Z}$ is soundly approximated by an abstract value $abstract(z) \in Signs.$
- ightharpoonup 2 is approximated by pos:
 - $\{2\} \subseteq concrete(pos)$
 - $abstract(\{2\}) = pos$
- \blacktriangleright $\{2,8\}$ is approximated by pos:
 - $\{2,8\} \subseteq concrete(pos)$
 - $abstract(\{2,8\}) = pos$
- \blacktriangleright $\{-2,2,8\}$ is approximated by pos:
 - $\{-2, 2, 8\} \subseteq concrete(nonzero)$ $abstract(\{-2, 2, 8\}) = nonzero$

Current Summary

- Introduction

- 6 Galois Connections
- Examples of Galois connections

- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Defining good abstractions

- ▶ Let $(A, \sqsubseteq, \sqcup, \sqcap)$ be a complete lattice. Let Q a subset of A. Q is a Moore family, if for each part Q' of Q, $\sqcap Q' \in Q$.
- ▶ **Property** : Let $(A, \sqsubseteq, \sqcup, \sqcap)$ be a complete lattice and $B \subseteq A$.
 - $\textbf{ 1} \ \, \text{If, for any } p \in A, \ \{q \in B | p \sqsubseteq q\} \ \, \text{has a least element, then } B \text{ is } \\ \, \text{Moore family.}$
 - 2 If B is Moore family, then for any $p \in A$, $\{q \in B | p \sqsubseteq q\}$ has a least element

If B is a Moore family, then it is a good abstraction.

Defining good abstractions

- ▶ Let $(A, \sqsubseteq, \sqcup, \sqcap)$ be a complete lattice.
- $\blacktriangleright \ \rho \in A \longrightarrow A$ is a upper closure operator, if it satisfies the following properties :
 - ρ is monotonic : $\forall x, y \in A.x \sqsubseteq y \Rightarrow \rho(x) \sqsubseteq \rho(y)$.
 - ρ is extensive : $\forall x \in A.x \sqsubseteq \rho(x)$.
 - ρ is idempotent : $\forall x \in A. \rho(x) = \rho(\rho(x))$.
- ▶ **Property** : Let $(A, \sqsubseteq, \sqcup, \sqcap)$ be a complete lattice. and $B \subseteq A$. B is a Moore family if, and only if, there exists a closure operator ρ such that $B = \rho(A)$
- ▶ B is a good abstraction of C, if it satisfies $B = \rho(C)$ where ρ is a closure operator.

Defining good abstractions

- ▶ Two complete lattices $(C, \sqsubseteq_1, \sqcup_1, \sqcap_1)$ and $(A, \sqsubseteq_2, \sqcup_2, \sqcap_2)$ are supposed to be given.
- \blacktriangleright Two functions α and γ are supposed to be defined as follows :
 - $\alpha \in C \longrightarrow A$
 - $\gamma \in A \longrightarrow C$
- ► The pair (α, γ) is a Galois connection, if it satisfies the following property : $\forall x_1 \in C, x_2 \in A.\alpha(x_1) \sqsubseteq_2 x_2 \Leftrightarrow x_1 \sqsubseteq_1 \gamma(x_2)$
- ▶ A complete lattice *A* is a good abstraction of *L*, when there is a Galois connection between *A* and *L*.

- ▶ a is a sound abstraction of c, if $c \sqsubseteq_1 \gamma(a)$.
- ▶ functional operator : af is a sound abstraction of cf, if $\forall a \in A.cf(\gamma(a)) \sqsubseteq_1 \gamma(af(a))$

- ▶ a is a sound abstraction of c, if $c \sqsubseteq_1 \gamma(a)$.
- ▶ functional operator : af is a sound abstraction of cf, if $\forall a \in A.cf(\gamma(a)) \sqsubseteq_1 \gamma(af(a))$
- relational operator : ar is a sound abstraction of cr, if $\forall a \in A.cr(\gamma(a_1), \ldots, \gamma(a_n)) \sqsubseteq_1 \gamma(ac(a_1, \ldots, a_n)))$

Galois Connections

The pair (α, γ) is a Galois connection, if it satisfies the following property : $\forall x_1 \in L, x_2 \in L.\alpha(x_1) \sqsubseteq' x_2 \Leftrightarrow x_1 \sqsubseteq \gamma(x_2)$

Notation : $L \stackrel{\gamma}{\longleftrightarrow} L'$

Properties of a Galois connection $L \stackrel{\gamma}{\longleftrightarrow} L'$

- $ightharpoonup \alpha$ and γ are monotonic over the lattices.
- ightharpoonup id $(L)\subseteq\gamma\circ\alpha:\gamma\circ\alpha$ is extensive.
- $ightharpoonup \alpha \circ \gamma \subseteq \mathsf{id}(L') : \alpha \circ \gamma \text{ is retractive.}$
- $ightharpoonup \alpha \circ \gamma \circ \alpha = \alpha \text{ and } \gamma \circ \alpha \circ \gamma = \gamma$
- $ightharpoonup \alpha(x) = \bigcap' \{ y \in L' | x \sqsubseteq \gamma(y) \}$
- $ightharpoonup \gamma(y) = \bigcup \{x \in L | \alpha(x) \sqsubseteq' y\}$

Properties

- $ightharpoonup \gamma \circ \alpha \circ \gamma \circ \alpha = \gamma \circ \alpha$
- ▶ We assume that $\{(\alpha_i, \gamma_i) | i \in \{1 \dots n\}\}$ is a family of Galois connections :

$$L_1 \stackrel{\gamma_1}{\underset{\alpha_1}{\longleftrightarrow}} L_2 \stackrel{\gamma_2}{\underset{\alpha_2}{\longleftrightarrow}} \dots L_{n-1} \stackrel{\gamma_{n-1}}{\underset{\alpha_{n-1}}{\longleftrightarrow}} L_n$$

Then $(\alpha_1; \ldots; \alpha_i; \ldots; \alpha_{n-1}, \gamma_{n-1}; \ldots, \gamma_i; \ldots; \gamma_1)$ is a Galois connection. or equivalently

$$L_1 \stackrel{\gamma_1 \circ \dots \gamma_i \circ \dots \circ \gamma_{n-1}}{\underbrace{\alpha_{n-1} \circ \dots \circ \alpha_i \circ \dots \circ \alpha_i}}$$
 is a Galois connection.

We assume that $\{(\alpha_i, \gamma_i) | i \in \{1, 2\}\}$ two Galois connections : $\alpha_1 = \alpha_2$ if, and only if, $\gamma_1 = \gamma_2$

Current Summary

- 1 Introduction
- 2 Example of analysis
- Static analysis
- 4 Standard, Collecting and Abstract Semantics
- 5 Finding Sound Abstractions for Computing
- 6 Galois Connections
- 7 Examples of Galois connections
- 8 Domain of Signs
- Domain of intervals
- Abstraction and approximation
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

 Example

 Analysing Iterative Programs
- **14** Exercice

Examples

- We consider a transition system (S, I, t) where S is the set of states, I is the set of initial states and t is a binary relation over S.
- ▶ A property P of the transition system is a subset of $S: P \subseteq S$.
- ightharpoonup P holds in $s \in S$, when $s \in P$.
- Four operators over properties can be defined as follows :
 - $\operatorname{pre}[t]P \stackrel{def}{=} \{s | s \in S \land \exists s'. ((s, s') \in t \land s' \in P)\}$
 - $\overset{\sim}{\mathsf{pre}} \ [t] P \overset{def}{=} \{ s | s \in S \land \forall s'. ((s,s') \in t \Rightarrow s' \in P) \}$
 - $\mathsf{post}[t]P \stackrel{def}{=} \{s | s \in S \land \exists s'. ((s',s) \in t \land s' \in P)\}$
 - post $[t]P \stackrel{def}{=} \{s|s \in S \land \forall s'. ((s',s) \in t \Rightarrow s' \in P)\}$
- Duality of operators :
 - $\bullet \quad \overset{\sim}{\mathsf{pre}} \ [t] \neg P = \neg \mathsf{pre}[t] P$
 - $\overset{\sim}{\mathbf{post}} [t] \neg P = \neg \mathsf{post}[t] P$
- \blacktriangleright Galois connections over \mathcal{P} , the set of subsets of S:

$$(\mathcal{P},\subseteq) \xrightarrow[\operatorname{post}[t]]{\circ} (\mathcal{P},\subseteq) \qquad \qquad (\mathcal{P},\subseteq) \xrightarrow[\operatorname{post}[t]]{\circ} (\mathcal{P},\subseteq)$$

Examples

- lackbox Let two sets $\mathcal L$ standing for labels et $\mathcal M$ standing for memories.
- First step :
 - \sqsubseteq is the partial ordering over functions using the subset relationship over function graphs : $f \sqsubseteq g$ means that $\mathbb{G}raph(f) \subseteq \mathbb{G}raph(g)$.
 - $\alpha_1 = \lambda P.\lambda l.\{m|(l,m) \in P\}$
 - $\gamma_1 = \lambda Q.\{(l,m)|l \in \mathcal{L} \land m \in Q(l)\}$
 - $(\mathcal{P}(\mathcal{L} \times \mathcal{M}), \subseteq) \xrightarrow{\stackrel{\gamma_1}{\alpha_1}} (\mathcal{L} \longrightarrow \mathcal{P}(\mathcal{M}), \subseteq)$ is a Galois connection
- Second step :
 - Let two sets Pred, set of predicates, and \mathcal{M} , a set of memories.
 - The relationship between both sets is stating as follows: For any given predicate p and any given memory m, p holds in m.
 - We define $B(p) = \{m | m \in \mathcal{M} \land p(m)\}$, set of predicates in which p holdsd.
 - Next we define:

 - $\gamma_2 = \lambda P \cap \{B(p) | p \in P\}$
 - $(\mathcal{P}(\mathcal{M}), \subseteq) \xrightarrow{\frac{\gamma_2}{\alpha_2}} (\mathcal{P}(Pred), \Rightarrow)$ is a Galois connection.

- ► Third step
 - $\alpha_3 = \lambda \ell. \alpha_2(Q_\ell) : Q \subseteq_1 Q' \stackrel{def}{=} \forall \ell \in \mathcal{L}. Q_\ell \subseteq Q'_\ell.$
 - $\gamma_3 = \lambda \ell. \gamma_2(P\ell) : P \Rightarrow_1 P' \stackrel{def}{=} \forall \ell \in \mathcal{L}. P_\ell \Rightarrow P'_\ell.$
 - $(\mathcal{L} \longrightarrow \mathcal{P}(\mathcal{M}), \subseteq_1) \stackrel{\gamma_3}{\longleftarrow} (\mathcal{L} \longrightarrow \mathcal{P}(Pred), \Rightarrow_1)$ is a Galois connection.

Current Summary

- Introduction

- Galois Connections
- Examples of Galois connections
- 8 Domain of Signs
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Examples of Abstractions

$$\begin{array}{l} \ell_0[I:=1];\\ \text{while } \ell_1[I\leq 100] \text{ do}\\ \ell_2[I:=I{+}1];\\ \text{end while}\\ \ell_{final}[skip] \end{array}$$

Domain of Signs

- Abstraction by projection : $(\mathcal{P}(Var \longrightarrow \mathbb{Z}), \subseteq) \xrightarrow{\gamma_{\pi}} (Var \longrightarrow \mathcal{P}(\mathbb{Z}), \subseteq)$
- $\begin{array}{c} \blacktriangleright \ \ \, \text{Abstraction of signs} \\ (Var \longrightarrow \mathcal{P}(\mathbb{Z}), \subseteq) \stackrel{\gamma_{sign}}{\longleftarrow} (Var \longrightarrow \mathbb{S}igns), \subseteq) \end{array}$
- Composition of abstractions : $(\mathcal{P}(Var \longrightarrow \mathbb{Z}), \subseteq) \xrightarrow{\gamma_{\pi} \circ \gamma_{sign}} (Var \longrightarrow \mathbb{S}igns), \subseteq)$
- $ightharpoonup \alpha = \alpha_{sign} \circ \alpha_{\pi} \text{ and } \gamma = \gamma_{\pi} \circ \gamma_{sign}$

Best approximation of a function

ightharpoonup L is the concrete domain and L' is the abstract model :

f' is the best approximation of f

(2)

- ▶ Concrete states : $cv \in Var \longrightarrow \mathcal{P}(\mathbb{Z})$: if if X is in Var, then $cv(X) \in \mathcal{P}(\mathbb{Z})$.
- Abstract states : $av \in Var \longrightarrow \mathbb{S}igns$: if X is in Var, then $av(X) \in \mathbb{S}igns$.
- $\begin{array}{l} (\alpha,\gamma) \text{ is extended as :} \\ (\alpha_1,\gamma_1) \text{ entre } (Var \longrightarrow \mathcal{P}(\mathbb{Z}),\subseteq) \text{ et } (Var \longrightarrow \mathbb{S}igns,\sqsubseteq). \text{ En } \\ \text{particulier, } \alpha_1(cv) = av \text{ et, pour tout } X \text{ de } Var, \\ av(X) = \alpha(cv(X)); \ \gamma_1(av) = cv \text{ et, pour tout } X \text{ de } Var, \\ cv(X) = \gamma(av(X)). \end{array}$
- \blacktriangleright Any expression e can be evaluated on each domain :
 - concrete domain : $States = Var \longrightarrow \mathcal{P}(\mathbb{Z})$: $\llbracket e \rrbracket \in (Var \longrightarrow \mathcal{P}(\mathbb{Z})) \longrightarrow \mathcal{P}(\mathbb{Z})$ and $\llbracket e \rrbracket (cv)$
 - abstract domain : $AStates = Var \longrightarrow \mathbb{S}igns$: $\llbracket e \rrbracket_a \in (Var \longrightarrow \mathbb{S}igns) \longrightarrow \mathbb{S}igns$ and $\llbracket e \rrbracket_a (av)$.

Domain of signs

- ► The best abstraction is simply dedined as follows : $\llbracket e \rrbracket_{best}(av) = \alpha \circ \llbracket e \rrbracket \circ \gamma_1(av).$
- ► Applying the best approximation for assignment :

$$[x := e]_{best}(av) = \begin{cases} av(y), y \neq x \\ [e]_{best}(av) \end{cases}$$

- $(\mathcal{P}(Var \longrightarrow \mathbb{Z}), \subseteq) :$ $A, B \in \mathcal{P}(\mathbb{Z}) : A+B = \{a+b | a \in A \land b \in B\}$
- $(Var \longrightarrow \mathbb{S}igns), \subseteq) :$ $x, y \in \mathbb{S}igns : x \oplus y = \alpha(\gamma(x) + \gamma(y))$
- examples :
 - $pos \oplus neg = \alpha(\gamma(pos) + \gamma(neg)) = \alpha((1, +\infty) + (-\infty, -1)) = \alpha((-\infty, +\infty)) = any$
 - $pos \oplus zero = \alpha(\gamma(pos) + \gamma(zero)) = \alpha((1, +\infty) + (0)) = \alpha((1, +\infty)) = pos$
 - Building a table for the abstract operation ⊕.

Applying the analysis on the example

$\ell_0[X:=1];$
$\ell_1[Y:=5];$
$\ell_2[X := X + 1];$
$\ell_3[Y := Y - 1];$
$\ell_4[X := Y + X];$
$\ell_{final}[skip];$

pie				
ℓ	X	Y		
ℓ_0	any	any		
ℓ_1	pos	any		
ℓ_2	pos	pos		
ℓ_3	pos	pos		
ℓ_4	pos	non-neg		
ℓ_{final}	non-neg	non-neg		

- ▶ ℓ_3 to ℓ_4 : abstract value of Y is pos and by γ , we obtain $(1, +\infty)$ a,d now we can compute in concrete domain \mathbb{Z} $(1, +\infty)+(-1)=(0, +\infty)$. By reapplying α we obtain non-neg.
- Computations may be not computable and one should use techniques for accelarating the convergence like widening.
- ightharpoonup Computing is still costly: computing now in the abstraction and defining a sound approximation of f.

► Evaluation is using the *best* approximation :

$$\llbracket e \rrbracket_{best}(av) = \alpha \circ \llbracket e \rrbracket \circ \gamma_1(av)$$

- ► Evaluation is using the *best* approximation : $\llbracket e \rrbracket_{best}(av) = \alpha \circ \llbracket e \rrbracket \circ \gamma_1(av)$
- ► Computing over the concrete domain is remaining complex

- ► Evaluation is using the *best* approximation : $\llbracket e \rrbracket_{best}(av) = \alpha \circ \llbracket e \rrbracket \circ \gamma_1(av)$
- ► Computing over the concrete domain is remaining complex
- ▶ Idea : approximation of the *best* approximation :

- ► Evaluation is using the *best* approximation : $\llbracket e \rrbracket_{best}(av) = \alpha \circ \llbracket e \rrbracket \circ \gamma_1(av)$
- ► Computing over the concrete domain is remaining complex
- ▶ Idea : approximation of the *best* approximation : $\llbracket e \rrbracket_a$ and, for any av abstract state, $\llbracket e \rrbracket_{best}(av) \sqsubseteq \llbracket e \rrbracket_a(av)$.

- Evaluation is using the *best* approximation : $[e]_{best}(av) = \alpha \circ [e] \circ \gamma_1(av)$
- ► Computing over the concrete domain is remaining complex
- ▶ Idea : approximation of the *best* approximation : $\llbracket e \rrbracket_a$ and, for any av abstract state, $\llbracket e \rrbracket_{best}(av) \sqsubseteq \llbracket e \rrbracket_a(av)$.
- Abstract semantics is defined as follows : $av \in Var \longrightarrow \mathbb{S}iqns$:

- ► Evaluation is using the *best* approximation : $[e]_{best}(av) = \alpha \circ [e] \circ \gamma_1(av)$
- ► Computing over the concrete domain is remaining complex
- ▶ Idea : approximation of the *best* approximation : $\llbracket e \rrbracket_a$ and, for any av abstract state, $\llbracket e \rrbracket_{best}(av) \sqsubseteq \llbracket e \rrbracket_a(av)$.
- Abstract semantics is defined as follows : $av \in Var \longrightarrow \mathbb{S}ians$:
 - $\llbracket const \rrbracket_a(av) = \alpha(\lbrace c \rbrace)$

 - $[e_1+e_2]_a(av) = [e_1]_a(av) \oplus [e_2]_a(av)$
 - $[e_1 + e_2]_a(av) = [e_1]_a(av) \otimes [e_2]_a(av)$

- Evaluation is using the *best* approximation : $[e]_{best}(av) = \alpha \circ [e] \circ \gamma_1(av)$
- ► Computing over the concrete domain is remaining complex
- ▶ Idea : approximation of the *best* approximation : $\llbracket e \rrbracket_a$ and, for any av abstract state, $\llbracket e \rrbracket_{best}(av) \sqsubseteq \llbracket e \rrbracket_a(av)$.
- Abstract semantics is defined as follows : $av \in Var \longrightarrow \mathbb{S}ians$:
 - $\llbracket const \rrbracket_a(av) = \alpha(\lbrace c \rbrace)$

 - $[e_1+e_2]_a(av) = [e_1]_a(av) \oplus [e_2]_a(av)$
 - $[e_1+e_2]_a(av) = [e_1]_a(av) \otimes [e_2]_a(av)$
- $\ell[X := E] : [\![E]\!]_a \text{ in } av \text{ ou encore } [\![E]\!]_a(av) : [\![Y + X + 6]\!]_a(av) = [\![Y]\!]_a(av) +_a [\![X]\!]_a(av) +_a [\![6]\!]_a(av).$
 - $[Y-1]_a(av) = [Y]_a(av) \oplus [-1]_a(av)_a = pos \oplus neg = any$
 - $[Y-1]_{best}(av) = \alpha \circ [Y-1] \circ \gamma_1(av) == \alpha([Y-1](\gamma_1(av))) = \alpha([Y-1](\{Y \mapsto (1, +\infty)\}) = \alpha((1+\infty) + (-1)) = \alpha((0, +\infty)) = non-neg$

Sound approximations of f with respect to a Galois connection

A sound approximation of f with respect to a Galois connection f^\prime satisfies the following property :

$$\forall x \in L, y \in L'.\alpha(x) \sqsubseteq y \Rightarrow \alpha(f(x)) \sqsubseteq f'(y)$$

The four statements are equivalent

- ightharpoonup f' is a sound approximation of f with respect to a Galois connection

Defining an abstract semantics of expressions

- $\llbracket e \rrbracket_{best}(av) = \alpha \circ \llbracket e \rrbracket \circ \gamma_1(av)$ provide the best abstraction but is costly.
- Another solution is to define an abstract semantics for expressions : $\llbracket e \rrbracket_a$ such that for any av, $\llbracket e \rrbracket_{best}(av) \sqsubseteq \llbracket e \rrbracket_a(av)$.
- $ightharpoonup av \in Var \longrightarrow \mathbb{S}igns:$
 - $\llbracket const \rrbracket_a(v) = \alpha(\lbrace c \rbrace)$
 - $\bullet \quad \llbracket x \rrbracket_a(v) = v(x)$
 - $[e_1+e_2]_a(v) = [e_1]_a(v) \oplus [e_2]_a(v)$
 - $[e_1+e_2]_a(v) = [e_1]_a(v) \otimes [e_2]_a(v)$

- $[Y-1]_a(av) = [Y]_a(av) \oplus [-1](av)_a = pos \oplus neg = may$
- $[Y-1]_{best}(av) = \alpha_1 \circ [Y-1] \circ \gamma_1(av) == \alpha_1([Y-1](\gamma_1(av))) = \alpha_1([Y-1](\{Y\mapsto (1,+\infty)\}) = \alpha_1((1+\infty)+(-1)) = \alpha_1((0,+\infty)) = non-neg$

Forward analysis in the domain of signs using the approximation

► Applying the analysis on the example

$$\begin{split} &\ell_0[X:=1];\\ &\ell_1[Y:=5];\\ &\ell_2[X:=X+1];\\ &\ell_3[Y:=Y-1];\\ &\ell_4[X:=Y+X];\\ &\ell_{final}[skip]; \end{split}$$

hic		
ℓ	X	Y
ℓ_0	any	any
ℓ_1	pos	any
ℓ_2	pos	pos
ℓ_3	pos	pos
ℓ_4	pos	any
ℓ_{final}	any	any

► The new analysis is less precise but more efficient since we compute in the domain of signs.

Current Summary

- Introduction

- Examples of Galois connections
- Open Domain of intervals
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Abstract Domain of Intervals

- $\mathbb{I}(\mathbb{Z}) = \{\bot\} \cup \{[l, u] | l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{\infty\}, l \le u\}$
- $ightharpoonup [l_1, u_1] \sqsubseteq [l_2, u_2]$ si, et seulement si, $l2 \le l1$ et $u_1 \le u_2$.
- $ightharpoonup (\mathbb{I}(\mathbb{Z}), \sqsubseteq)$ est une structure partiellement ordonnée.
- $\begin{array}{l} \bullet & \bullet & [l_1,u_1] \sqcup [l_2,u_2] = [min(l_1,l_2),max(u_1,u_2)] \\ \bullet & [l_1,u_1] \sqcap [l_2,u_2] = \left\{ \begin{array}{l} [max(l_1,l_2),min(u_1,u_2)] \\ \bot, si \; max(l_1,l_2) > min(u_1,u_2) \end{array} \right. \end{array}$
- $ightharpoonup (\mathbb{I}(\mathbb{Z}), \sqcup)$ is a complete lattice.
- \blacktriangleright (α, γ) is a Galois connexion.
- $i_1 \oplus i_2 = [l_1 + l_2, u_1 + u_2]$
 - $\mathbf{2} \ i_1 \ominus i_2 = [l_1 u_2, u_1 l_2]$
 - $2i_1 \ominus i_2 = [l_1 u_2, u_1 l_2]$
 - $3 i_1 \otimes i_2 = [min(l_1 \cdot l_2, l_1 \cdot u_2, u_1 \cdot l_2, u_1 \cdot u_2, max(l_1 \cdot l_2, l_1 \cdot u_2, u_1 \cdot l_2, u_1 \cdot u_2)]$

Current Summary

- Introduction

- Examples of Galois connections

- 10 Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Operators for approximating fixed-point computations

- Computing collecting semantics is generally undecidable :
 - S is a safety property for \mathcal{MS} if, and only if, REACHABLE $(\mathcal{MS}) \subseteq \mathcal{S}$.
 - Finding a sound approximation of REACHABLE(\mathcal{MS}), denoted $\alpha(\text{REACHABLE}(\mathcal{MS}))$, and satisfying $\gamma(\alpha(\text{REACHABLE}(\mathcal{MS}))) \subseteq \mathcal{S}$.
 - REACHABLE(\mathcal{MS}) $\subseteq \gamma(\alpha(\text{REACHABLE}(\mathcal{MS})))$ and $\gamma(\alpha(\text{REACHABLE}(\mathcal{MS}))) \subseteq \mathcal{S}$.
- ▶ Abstract domains can be finite as the domain of Signs but the domain of intervals is infinite: computing REACHABLE(\mathcal{MS}) remains undecidable but we can approximate its computation.
- ► Abstract domains can be infinite: we have to accelarate the computations of fixed-points in the case of loops for instance: widening and narrowing.

Best approximation of a function

ightharpoonup L is the concrete domain and L' is the abstract model :

$$f' = \alpha \circ f \circ \gamma \tag{3}$$

 f^{\prime} is the best approximation of f

Sound approximations of f with respect to a Galois connection

A sound approximation of f with respect to a Galois connection f^\prime satisfies the following property :

$$\forall x \in L, y \in L'.\alpha(x) \sqsubseteq y \Rightarrow \alpha(f(x)) \sqsubseteq f'(y)$$

The four statements are equivalent

- f' is a sound approximation of f with respect to a Galois connection

Defining an abstract semantics of expressions

- $\llbracket e \rrbracket_{best}(av) = \alpha \circ \llbracket e \rrbracket \circ \gamma_1(av)$ provides the best abstraction but is costly.
- Another solution is to define an abstract semantics for expressions : hide $[\![e]\!]_a$ such that for any av, $[\![e]\!]_{best}(av) \sqsubseteq [\![e]\!]_a(av)$.
- $ightharpoonup av \in Var \longrightarrow \mathbb{S}igns:$
 - $\llbracket const \rrbracket_a(v) = \alpha(\lbrace c \rbrace)$
 - $\bullet \quad \llbracket x \rrbracket_a(v) = v(x)$
 - $[e_1+e_2]_a(v) = [e_1]_a(v) \oplus [e_2]_a(v)$
 - $[e_1+e_2]_a(v) = [e_1]_a(v) \otimes [e_2]_a(v)$

Approximation of a function f

- ightharpoonup Suppose that $C \stackrel{\gamma}{\longleftrightarrow} A$ is a Galois connection
- \blacktriangleright a function $f\in C\to C$: to find a function g

- ightharpoonup f is monotone
- $\blacktriangleright \ g = R(\alpha, \gamma, f) \ \text{and} \ f \sqsubseteq \gamma \circ g \circ \alpha$
- $f \sqsubseteq \gamma \circ g \circ \alpha$ or equivalently $\alpha \circ f \circ \gamma \sqsubseteq g$
- $ightharpoonup g = \alpha \circ f \circ \gamma$ is the *best* approximation.

Definition of a sound approximation of a function f

A function $g \in A \longrightarrow A$ is a sound approximation of a function $f \in C \longrightarrow C$, if it satisfies the following condition : $\forall c \in C : \forall a \in A : \alpha(c) \sqsubseteq a \Rightarrow \alpha(f(c)) \sqsubseteq g(a)$

Properties

Suppose that $C \stackrel{\gamma}{\longleftrightarrow} A$ is a Galois connection.

The four statements are equivalent

- $oldsymbol{0}$ g is a sound approximation of f with respect to a Galois connection

- $\bullet \ f \circ \gamma \sqsubseteq \gamma \circ g$
- **6** $f \sqsubseteq \gamma \circ g \circ \alpha$

Fixpoint Abstraction

Best abstraction

Suppose that :

- $ightharpoonup C \stackrel{\gamma}{\longleftrightarrow} A$ is a Galois connection.
- $ightharpoonup f \in C \longrightarrow C$ is monotonous

Then $lfp(f) \sqsubseteq \gamma(lfp(g))$ and $\alpha(lfp(f)) \sqsubseteq lfp(g)$ or equivalently rewritten as $\mu f \sqsubseteq \gamma(\mu g)$ and $\alpha(\mu f) \sqsubseteq \mu g$

Sound approximation of fixed-point

First theorem

- ightharpoonup Suppose that $C \stackrel{\gamma}{\longleftrightarrow} A$ is a Galois connection
- ▶ Two functions $f \in C \to C$ and $g \in A \to A$:

- ightharpoonup f and g are monotone

Then $\alpha(\mu.f) = \mu.g$.

- - $f(\mu f) = \mu f$ (fixed-point property)
 - $\alpha(f(\mu f)) = \alpha(\mu f)$ (applying the relation over f and g)
 - $\alpha(f(\mu f)) = g(\alpha(\mu f)) = \alpha(\mu f)$
 - $\alpha(\mu f)$ is a fixed-point of g and $\mu g \sqsubseteq \alpha(\mu f)$
- $\alpha(\mu f) \sqsubseteq \mu g$
 - Consider y a fixed-point of g:g(y)=y and $\mu g\sqsubseteq y$.
 - $\gamma(y)$ is a fixed-point of f
 - $\mu f \sqsubseteq \gamma(y)$
 - $\alpha(\mu f) \sqsubseteq y$
 - $\alpha(\mu f) \sqsubseteq \mu g$

Sound approximation of fixed-point

Second theorem

- ightharpoonup Suppose that $C \stackrel{\gamma}{\longleftrightarrow} A$ is a Galois connection
- ▶ Two functions $f \in C \to C$ and $g \in A \to A$:

- ightharpoonup f and g are monotone
- $ightharpoonup \alpha \circ f \sqsubseteq g \circ \alpha.$

Then $\alpha(\mu f) \sqsubseteq \mu g$.

Example of computation

- $f \in \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{Z}) \text{ where } f(X) = \{0\} \cup \{x+2 | x \in \mathbb{Z} \land x \in X\}$
- $\blacktriangleright \ g = \alpha \circ f \circ \gamma$
- $f^0 = \emptyset, f^1 = \{0\}, f^2 = \{0, 2\}, \dots$
- $g(\bot) = \bot, \ g^1 = \alpha \circ f \circ \gamma(\bot) = [0, \infty[, \ g^2 = [0, \infty[, \ \dots \text{ and } \forall i \geq 2: g^i = [0, \infty[.$

Definition

 \bigtriangledown is a widening operator over (L,\sqsubseteq) $(\bigtriangledown \in L \times L \to L)$

- ightharpoonup For any x and y in $L: x \sqcup y \sqsubseteq x \bigtriangledown y$
- For any sequence $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq x_3 \ldots \sqsubseteq x_i \sqsubseteq x_{i+1} \ldots$, the sequence $\{y_i | i \in \mathbb{N}\}$
 - $y_0 = x_0$
 - $y_{i+1} = y_i \nabla x_{i+1}$

stabilizes after a finite amount of time.

Theorem

If ∇ is a widening operator over (L, \sqsubseteq) ($\nabla \in L \times L \to L$), then the ascending sequence $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq x_3 \ldots \sqsubseteq x_i \sqsubseteq x_{i+1} \ldots$ defined by :

- $ightharpoonup x_0 = \bot$
- $ightharpoonup x_{i+1} = x_i \bigtriangledown f(x_i)$

is eventually stationary and its limit satisfies $lfp(f) \sqsubseteq \sqsubseteq \{x_i | i \in \mathbb{N}\}$ stabilizes after a finite amount of time.

▶ Using ∇ instead of \sqsubseteq for computing approximation of upper bound.

Intervals

- $ightharpoonup \perp \triangle \top = \top$
- $ightharpoonup \perp \bigtriangledown (l, u) = (l, u) \bigtriangledown \perp = (l, u)$
- $(l1, u1) \bigtriangledown (l2, u2) = \left(\left(\begin{array}{c} -\infty \ if \ l2 < l1 \\ l1 \end{array} \right), \left(\begin{array}{c} \infty \ if \ u2 > u1 \\ u1 \end{array} \right) \right)$

Examples of widening

- $\blacktriangleright \ \mathbb{I}(\mathbb{Z}) = \{\bot\} \cup \{[l,u] | l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{\infty\}, l \le u\}$
- ightharpoonup ($\mathbb{I}(\mathbb{Z}), \sqsubseteq$) est une structure partiellement ordonnée.
- $ightharpoonup [l_1, u_1] \supset [l_2, u_2] = [cond(l_2 < l_1, -\infty, l_1), cond(u_1 < u_2, \infty, u_1)]$
- $\blacktriangleright [2,3] \bigtriangledown [1,4] = [-\infty,\infty]$
- $ightharpoonup [0,1] \sqsubseteq [0,3]$
- $ightharpoonup [0,1] \supset [0,3] = [0,\infty].$
- $ightharpoonup [0,3] \supset [0,2] = [0,3].$
- \blacktriangleright $[0,2] \nabla ([0,1] \nabla [0,2]) = [0,\infty]$
- $\blacktriangleright \ ([0,2] \bigtriangledown [0,1]) \bigtriangledown [0,2] = [0,2]$

Approximation of a fixed-point operator

Let us assume that (L,\sqsubseteq) is a complete lattice and f is a monotonic function defined from L to L.

Theorem

If $\nabla \in L \times L \to L$ is a widening operator, then the sequence $\{x_i | i \in \mathbb{N}\}$ defined by

- $ightharpoonup x_0 = \bot$

is eventually stationary and its limit satisfies $lfp(f) \sqsubseteq \bigcup \{x_i | i \in \mathbb{N}\}$

Current Summary

- Introduction

- Examples of Galois connections

- Abstraction and approximation
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Definition of a sound approximation of a function f

A function $g \in A \longrightarrow A$ is a sound approximation of a function $f \in C \longrightarrow C$, if it satisfies the following condition : $\forall c \in C : \forall a \in A : \alpha(c) \sqsubseteq a \Rightarrow \alpha(f(c)) \sqsubseteq g(a)$

Properties

Suppose that $C \stackrel{\gamma}{\longleftrightarrow} A$ is a Galois connection.

The four statements are equivalent

- $oldsymbol{0}$ g is a sound approximation of f with respect to a Galois connection
- $\mathbf{2} \ \alpha \circ f \sqsubseteq g \circ \alpha$
- $\bullet \ f \circ \gamma \sqsubseteq \gamma \circ g$
- **6** $f \sqsubseteq \gamma \circ g \circ \alpha$

Example of a sound approximation of the invariant of a system

- ▶ C is the set of concrete states : $cv \in Var \longrightarrow \mathcal{P}(\mathbb{Z})$: if X is in Var, then $cv(X) \in \mathcal{P}(\mathbb{Z})$.
- ▶ A is the set of abstract states : $av \in Var \longrightarrow \mathbb{S}igns$: if X is in Var, then $av(X) \in \mathbb{S}igns$.
- (α, γ) is extended as : (α_1, γ_1) entre $(Var \longrightarrow \mathcal{P}(\mathbb{Z}), \subseteq)$ et $(Var \longrightarrow \mathbb{S}igns, \sqsubseteq)$. En particulier, $\alpha_1(cv) = av$ et, pour tout X de Var, $av(X) = \alpha(cv(X))$; $\gamma_1(av) = cv$ et, pour tout X de Var, $cv(X) = \gamma(av(X))$.

Computing the set of computing states of a transition system TS

- ▶ $Init \subseteq C$ is the set of initial states.
- ► NEXT defines the transition over concrete states
- ► REACHABLE $(TS) = \{u | u \in C \land (\exists x_0.x_0 \in C \land (x_0 \in Init) \land \text{Next}^*(x_0, x))\}$
- \blacktriangleright pour toute partie U de Σ , U = FP(U)
- ▶ pour toute partie U de Σ , $FP(U) = Init_S \cup \longrightarrow [U]$

First Theorem

- Suppose that $C \xrightarrow{\gamma} A$ is a Galois connection
- ▶ Two functions $f \in C \to C$ and $g \in A \to A$:
- ► f and g are monotone

Then $\alpha(\mu.f) = \mu.g$.

- - $f(\mu f) = \mu f$ (fixed-point property)
 - $\alpha(f(\mu f)) = \alpha(\mu f)$ (applying the relation over f and g)
 - $\alpha(f(\mu f)) = g(\alpha(\mu f)) = \alpha(\mu f)$
 - $\alpha(\mu f)$ is a fixed-point of g and $\mu g \sqsubseteq \alpha(\mu f)$
- $\alpha(\mu f) \sqsubseteq \mu g$
 - Consider y a fixed-point of g: g(y) = y and $\mu g \sqsubseteq y$.
 - $\gamma(y)$ is a fixed-point of f
 - $\mu f \sqsubseteq \gamma(y)$
 - $\alpha(\mu f) \sqsubseteq y$
 - $\alpha(\mu f) \sqsubseteq \mu g$

Second Theorem

- Suppose that $C \xrightarrow{\gamma} A$ is a Galois connection
- ▶ Two functions $f \in C \to C$ and $g \in A \to A$:
- ► f and g are monotone

Then $\alpha(\mu f) \sqsubseteq \mu g$.

Example of computation

- $f \in \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$ where $f(X) = \{0\} \cup \{x+2 | x \in \mathbb{Z} \land x \in X\}$
- $g = \alpha \circ f \circ \gamma$
- $f^0 = \emptyset, f^1 = \{0\}, f^2 = \{0, 2\}, \dots$
- $g(\bot) = \bot, \ g^1 = \alpha \circ f \circ \gamma(\bot) = [0, \infty[, \ g^2 = [0, \infty[, \ \dots \text{ and } \forall i \geq 2: g^i = [0, \infty[.$

Current Summary

- Introduction

- Examples of Galois connections

- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

Definition

 \bigtriangledown is a widening operator over (L,\sqsubseteq) $(\bigtriangledown\in L\times L\to L)$

- ightharpoonup For any x and y in $L: x \sqcup y \sqsubseteq x \bigtriangledown y$
- For any sequence $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq x_3 \ldots \sqsubseteq x_i \sqsubseteq x_{i+1} \ldots$, the sequence $\{y_i | i \in \mathbb{N}\}$
 - $y_0 = x_0$
 - $y_{i+1} = y_i \nabla x_{i+1}$

stabilizes after a finite amount of time.

Theorem

If ∇ is a widening operator over (L, \sqsubseteq) ($\nabla \in L \times L \to L$), then the ascending sequence $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq x_3 \ldots \sqsubseteq x_i \sqsubseteq x_{i+1} \ldots$ defined by :

- $ightharpoonup x_0 = \bot$
- $\blacktriangleright x_{i+1} = x_i \bigtriangledown f(x_i)$

is eventually stationary and its limit satisfies $lfp(f) \sqsubseteq \sqsubseteq \{x_i | i \in \mathbb{N}\}$ stabilizes after a finite amount of time.

▶ Using ∇ instead of \sqsubseteq for computing approximation of upper bound.

Intervals

- $ightharpoonup \perp \triangle \top = \top$
- $ightharpoonup \perp \bigtriangledown (l, u) = (l, u) \bigtriangledown \perp = (l, u)$
- $(l1, u1) \bigtriangledown (l2, u2) = \left(\left(\begin{array}{c} -\infty \ if \ l2 < l1 \\ l1 \end{array} \right), \left(\begin{array}{c} \infty \ if \ u2 > u1 \\ u1 \end{array} \right) \right)$

Examples of widening

- $\blacktriangleright \ \mathbb{I}(\mathbb{Z}) = \{\bot\} \cup \{[l,u] | l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{\infty\}, l \le u\}$
- ightharpoonup ($\mathbb{I}(\mathbb{Z}), \sqsubseteq$) est une structure partiellement ordonnée.
- $ightharpoonup [l_1, u_1] \supset [l_2, u_2] = [cond(l_2 < l_1, -\infty, l_1), cond(u_1 < u_2, \infty, u_1)]$
- $\blacktriangleright [2,3] \bigtriangledown [1,4] = [-\infty,\infty]$
- $ightharpoonup [0,1] \sqsubseteq [0,3]$
- $ightharpoonup [0,1] \supset [0,3] = [0,\infty].$
- $ightharpoonup [0,3] \supset [0,2] = [0,3].$
- ▶ $[0,2] \nabla ([0,1] \nabla [0,2]) = [0,\infty]$
- $ightharpoonup ([0,2] \bigtriangledown [0,1]) \bigtriangledown [0,2] = [0,2]$

Approximation of a fixed-point operator

Let us assume that (L,\sqsubseteq) is a complete lattice and f is a monotonic function defined from L to L.

Theorem

If $\nabla \in L \times L \to L$ is a widening operator, then the sequence $\{x_i | i \in \mathbb{N}\}$ defined by

- $ightharpoonup x_0 = \bot$

is eventually stationary and its limit satisfies $lfp(f) \sqsubseteq \bigcup \{x_i | i \in \mathbb{N}\}$

Current Summary

- 1 Introduction
- 2 Example of analysis
- Static analysis
- 4 Standard, Collecting and Abstract Semantics
- 5 Finding Sound Abstractions for Computing
- **6** Galois Connections
- Texamples of Galois connections
- 8 Domain of Signs
- Domain of intervals
- Abstraction and approximation
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

 Example

 Analysing Iterative Programs
- 14 Exercice

Current Subsection Summary

- Introduction

- Examples of Galois connections

- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs Example

```
\ell_0:
y := -11;
IF x < y THEN
  \ell_1:
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1:
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1: y < 0 \quad x < 0
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1: y < 0 \quad x < 0
   z := y;
  \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := y;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := x;
  \ell_4:
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := y;
   \ell_4: y < 0 \quad x \in \mathbb{Z} \quad z < 0
FI
\ell_5:
```

Simple example

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := y;
   \ell_{4}: y < 0 \quad x \in \mathbb{Z} \quad z < 0
FI
\ell_5: y < 0 \quad x \in \mathbb{Z} \quad z < 0
```

Simple example

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := y;
   \ell_{4}: y < 0 \quad x \in \mathbb{Z} \quad z < 0
FI
\ell_5: y < 0 \quad x \in \mathbb{Z} \quad z < 0
```

Result : y<0 $x\in\mathbb{Z}$ z<0 means that z<0 is an information resulting from the analysis over abstract domain of

Current Subsection Summary

- 1 Introduction
- 2 Example of analysis
- Static analysis
- 4 Standard, Collecting and Abstract Semantics
- 5 Finding Sound Abstractions for Computing
- **6** Galois Connections
- Examples of Galois connections
- 8 Domain of Signs
- Open Domain of intervals
- Abstraction and approximation
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs

 Example

 Analysing Iterative Pro
 - Analysing Iterative Programs
- **14** Exercice

Verification by computing set of reachable states

- $ightharpoonup \mathcal{MS}$ is $(Th(s,c),x, \text{VALS}, \text{INIT}(x), \{r_0,\ldots,r_n\})$
- \triangleright NEXT $\stackrel{def}{=} r_0 \lor \ldots \lor r_n$.
- ► S is a safety property, when $\forall y, x \in \text{VALS}.Init(y) \land \text{NEXT}^*(y, x) \Rightarrow x \in S.$
- ▶ $(\mathcal{P}(VALS), \subseteq, \varnothing, \cup, \cap)$ is a complete lattice.
- $\blacktriangleright \mu F$ is defined as follows :
 - $F^0 = \emptyset$
 - $F^{i+1} = F(F_i), \forall i \in \mathbb{N}$
 - $\mu F = Sup\{F^i | i \in \mathbb{N}\}$
 - For any safety property S, $\mu F \subseteq S$.

Computing the least fixed-point over a finite lattice

```
INPUT tf \in T \longrightarrow T
OUTPUT result = \mu.f
VARIABLES x, u \in T, i \in \mathbb{N}
\ell_0 : \{x, y \in T\}
x := \bot:
y := \bot;
i := 0:
\ell_{11}: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T) \land i = 0\};
WHILE i < Card(T)
  \ell_1: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T)\};
  x := f(x);
  \ell_2: \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T)\};
  y := x \sqcup y;
  \ell_3 : \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0: k=i+1} F^k \land i \leq Card(T)\};
  i := i+1:
  \ell_4: \{x,y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T) + 1\};
OD:
\ell_5: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0 \cdot k=i} F^k \land i = Card(T)+1\};
result := y:
\ell_6: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0 \cdot k=i} F^k \land i = Card(T) + 1 \land result = y\};
```

- Abstract interpretation is a general framework for defining sound approximation of the semantics of computer programs, based on monotonic functions over ordered sets, especially lattices.
- Main concrete application is formal static analysis, the automatic extraction of information about the possible executions of computer programs.
- ▶ When defining an abstract domain, it can be finite (diomain of signs) or infinite (domain of intervals) : it means that we have to manage undecidability questions for computing fixed-points.
- ▶ interproc is a tool that can be used for analysing recursive programs and for playing with abstract interpretation.

Current Summary

- 1 Introduction
- 2 Example of analysis
- Static analysis
- 4 Standard, Collecting and Abstract Semantics
- 5 Finding Sound Abstractions for Computing
- **6** Galois Connections
- Examples of Galois connections
- 8 Domain of Signs
- Domain of intervals
- Abstraction and approximation
- Abstraction and approximation
- Widening and Narrowing
- Analysis of Programs
 Example
 Analysing Iterative Programs
- **14** Exercice

```
\ell_0:
y := -11;
IF x < y THEN
  \ell_1:
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1:
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1: y < 0 \quad x < 0
  z := y;
  \ell_2 :
ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
  \ell_1: y < 0 \quad x < 0
   z := y;
  \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
  \ell_3:
  z := x;
  \ell_4 :
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := y;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := x;
  \ell_4:
\ell_5:
```

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
 ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := y;
   \ell_4: y < 0 \quad x \in \mathbb{Z} \quad z < 0
FI
\ell_5:
```

Simple example

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := y;
   \ell_{4}: y < 0 \quad x \in \mathbb{Z} \quad z < 0
FI
\ell_5: y < 0 \quad x \in \mathbb{Z} \quad z < 0
```

Simple example

```
\ell_0:
y := -11;
\ell_0: y < 0
IF x < y THEN
   \ell_1: y < 0 \quad x < 0
   z := x;
   \ell_2: y < 0 \quad x < 0 \quad z < 0
ELSE
   \ell_3: y < 0 \quad x \in \mathbb{Z}
   z := y;
   \ell_{4}: y < 0 \quad x \in \mathbb{Z} \quad z < 0
FI
\ell_5: y < 0 \quad x \in \mathbb{Z} \quad z < 0
```

Result

Verification by computing set of reachable states

- $ightharpoonup \mathcal{MS}$ is $(Th(s,c), x, \text{VALS}, \text{INIT}(x), \{r_0, \dots, r_n\})$
- \triangleright NEXT $\stackrel{def}{=} r_0 \lor \ldots \lor r_n$.
- ► S is a safety property, when $\forall y, x \in \text{VALS}.Init(y) \land \text{NEXT}^{\star}(y, x) \Rightarrow x \in S.$
- ▶ $(\mathcal{P}(VALS), \subseteq, \varnothing, \cup, \cap)$ is a complete lattice.
- $\blacktriangleright \mu F$ is defined as follows :
 - $F^0 = \emptyset$
 - $F^{i+1} = F(F_i), \forall i \in \mathbb{N}$
 - $\mu F = Sup\{F^i | i \in \mathbb{N}\}$
 - For any safety property S, $\mu F \subseteq S$.

Computing the least fixed-point over a finite lattice

```
INPUT tf \in T \longrightarrow T
OUTPUT result = \mu.f
VARIABLES x, u \in T, i \in \mathbb{N}
\ell_0 : \{x, y \in T\}
x := \bot:
y := \bot;
\ell_{11}: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T) \land i = 0\};
WHILE i < Card(T)
  \ell_1: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T)\};
  x := f(x);
  \ell_2: \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T)\};
  y := x \sqcup y;
  \ell_3 : \{x, y \in T \land x = F^{i+1} \land y = \bigcup_{k=0: k=i+1} F^k \land i \leq Card(T)\};
  i := i+1:
  \ell_4: \{x,y \in T \land x = F^i \land y = \bigcup_{k=0: k=i} F^k \land i \leq Card(T) + 1\};
OD:
\ell_5: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0 \cdot k=i} F^k \land i = Card(T)+1\};
result := y:
\ell_6: \{x, y \in T \land x = F^i \land y = \bigcup_{k=0 \cdot k=i} F^k \land i = Card(T) + 1 \land result = y\};
```

- Abstract interpretation is a general framework for defining sound approximation of the semantics of computer programs, based on monotonic functions over ordered sets, especially lattices.
- Main concrete application is formal static analysis, the automatic extraction of information about the possible executions of computer programs.
- ▶ When defining an abstract domain, it can be finite (diomain of signs) or infinite (domain of intervals) : it means that we have to manage undecidability questions for computing fixed-points.
- ▶ interproc is a tool that can be used for analysing recursive programs and for playing with abstract interpretation.

 $ightharpoonup \mathcal{R}$: exigences du système.

- $ightharpoonup \mathcal{R}$: exigences du système.
- $ightharpoonup \mathcal{D}$: domaine du problème.

- $ightharpoonup \mathcal{R}$: exigences du système.
- $ightharpoonup \mathcal{D}$: domaine du problème.
- $ightharpoonup \mathcal{S}$: système répondant aux spécifications.

- $ightharpoonup \mathcal{R}$: exigences du système.
- $ightharpoonup \mathcal{D}$: domaine du problème.
- $ightharpoonup \mathcal{S}$: système répondant aux spécifications.

 \mathcal{D}, \mathcal{S} Satisfait \mathcal{R}

- $ightharpoonup \mathcal{R}$: exigences du système.
- $ightharpoonup \mathcal{D}$: domaine du problème.
- $ightharpoonup \mathcal{S}$: système répondant aux spécifications.

\mathcal{D}, \mathcal{S} satisfait \mathcal{R}

- $ightharpoonup \mathcal{R}$: pre/post.
- $ightharpoonup \mathcal{D}$: entiers, réels, . . .
- $ightharpoonup \mathcal{S}$: code, procédure, programme, . . .

$$\mathcal{D}, \text{Alg} \quad \text{SATISFAIT} \quad \left\{ egin{array}{l} \mathsf{pre}(\text{Alg})(v) \\ \mathsf{post}(\text{Alg})(v_0, v) \end{array}
ight.$$

 $\frac{\mathcal{D}}{\frac{\mathsf{pre}(\mathsf{ALG})(v)}{\mathsf{post}(\mathsf{ALG})(v_0,v)}}$

$$\mathcal{D}, \text{Alg} \quad \text{satisfait} \quad \left\{ \begin{array}{l} \textbf{pre}(\text{Alg})(v) \\ \textbf{post}(\text{Alg})(v_0, v) \end{array} \right.$$

Vérification de conditions de vérification

pre(ALG)(v) $\mathsf{post}(\mathsf{ALG})(v_0,v)$ ALG

$$\mathcal{D}, \text{Alg} \quad \text{satisfait} \quad \left\{ \begin{array}{l} \textbf{pre}(\text{Alg})(v) \\ \textbf{post}(\text{Alg})(v_0, v) \end{array} \right.$$

Vérification de conditions vérification

pre(ALG)(v) $\mathsf{post}(\mathsf{ALG})(v_0,v)$ ALG

Vérification des conditions de vérification avec un model-checker par exploration de tous les états.

$$\mathcal{D}, \text{Alg} \quad \text{satisfait} \quad \left\{ \begin{array}{l} \textbf{pre}(\text{Alg})(v) \\ \textbf{post}(\text{Alg})(v_0, v) \end{array} \right.$$

Vérification de conditions de vérification

- Vérification des conditions de vérification avec un model-checker par exploration de tous les états.
- Vérification des conditions de vérification avec un outil de preuve formelle.

$$\mathcal{D}, ext{ALG} \quad ext{SATISFAIT} \quad \left\{ egin{array}{ll} ext{requires } ext{ALG}(v) \ ext{ensures } ext{ALG}(v_0, v) \end{array}
ight.$$

 \mathcal{D} requires $\mathrm{ALG}(v)$ ensures $\mathrm{ALG}(v_0,v)$ ALG

 $\mathcal{D}, ext{ALG} \quad ext{SATISFAIT} \quad \left\{ egin{array}{ll} ext{requires } ext{ALG}(v) \\ ext{ensures } ext{ALG}(v_0, v) \end{array}
ight.$

Vérification de conditions de vérification

 \mathcal{D}

requires ALG(v)ensures $ALG(v_0, v)$

ALG

$\mathcal{D}, ext{Alg}$ satisfait

 $\left\{\begin{array}{l} \texttt{requires} \ \mathrm{ALG}(v) \\ \texttt{ensures} \ \mathrm{ALG}(v_0, v) \end{array}\right.$

Vérification de conditions de vérification

 \mathcal{D}

requires ALG(v)ensures $ALG(v_0, v)$ Vérification des conditions de vérification avec un outil de preuve formelle QED

 Vérification des conditions de vérification avec un outil de preuve formelle Alt-Ergo