หน้า ๓๐ ราชกิจจานุเบกษา

เล่ม ๑๓๙ ตอนพิเศษ ๑๘๘

๑๖ สิงหาคม ๒๕๖๕

# ประกาศกรมเชื้อเพลิงธรรมชาติ

เรื่อง หลักเกณฑ์การรายงานและวิธีการคำนวณปริมาณการปล่อยก๊าซเรือนกระจก จากการประกอบกิจการปิโตรเลียม

พ.ศ. ๒๕๖๕

โดยที่เห็นสมควรกำหนดหลักเกณฑ์การรายงานและวิธีการคำนวณปริมาณการปล่อยก๊าซเรือนกระจก จากการประกอบกิจการปิโตรเลียม เพื่อประโยชน์ในการกำกับดูแลและติดตามตรวจสอบการดำเนินงาน ด้านสิ่งแวดล้อม รวมทั้งการดำเนินการให้สอดคล้องกับมาตรฐานสากลและกฎหมายอื่นที่เกี่ยวข้อง ผู้รับสัมปทาน ผู้รับสัญญาแบ่งปันผลผลิต และผู้รับสัญญาจ้างบริการ ต้องรายงานข้อมูลปริมาณ การปล่อยก๊าซเรือนกระจกจากการประกอบกิจการปิโตรเลียมให้ถูกต้อง เหมาะสม ด้วยวิธีการคำนวณ ที่เป็นไปตามมาตรฐานสากล และสามารถตรวจสอบได้

อาศัยอำนาจตามความในมาตรา ๗๖ แห่งพระราชบัญญัติปิโตรเลียม พ.ศ. ๒๕๑๔ ซึ่งแก้ไขเพิ่มเติมโดยมาตรา ๑๖ แห่งพระราชบัญญัติปิโตรเลียม (ฉบับที่ ๖) พ.ศ. ๒๕๕๐ อธิบดีกรมเชื้อเพลิงธรรมชาติจึงออกประกาศไว้ ดังต่อไปนี้

ข้อ ๑ ในประกาศนี้

"ก๊าซเรือนกระจก" หมายความถึง ก๊าซคาร์บอนไดออกไซด์ ( $CO_2$ ) ก๊าซมีเทน ( $CH_4$ ) ก๊าซไนตรัสออกไซด์ ( $N_2O$ ) ก๊าซไฮโดรฟลูออโรคาร์บอน (HFCs) ก๊าซเปอร์ฟลูออโรคาร์บอน (PFCs) ก๊าซซัลเฟอร์เฮกซะฟลูออไรด์ ( $SF_6$ ) หรือก๊าซชนิดอื่นตามบัญชีแนบท้ายประกาศนี้

"การปล่อยก๊าซเรือนกระจก" หมายความว่า การปล่อยก๊าซเรือนกระจกทางตรงและทางอ้อม จากการประกอบกิจการปิโตรเลียมในระยะสำรวจและระยะผลิต แต่ไม่รวมถึงการปล่อยก๊าซเรือนกระจก จากส่วนอาคารหรือสำนักงานที่ไม่เกี่ยวข้องโดยตรงกับงานสำรวจและผลิตปิโตรเลียมของผู้รับสัมปทาน หรือผู้รับสัญญาแบ่งปันผลผลิต หรือผู้รับสัญญาจ้างบริการ

"การปล่อยก๊าซเรือนกระจกทางตรง" หมายความว่า ก๊าซเรือนกระจกที่ปล่อยจาก แหล่งกำเนิดหรือกิจกรรมภายใต้ขอบเขตการดำเนินงานที่ผู้รับสัมปทาน หรือผู้รับสัญญาแบ่งปันผลผลิต หรือผู้รับสัญญาจ้างบริการ เป็นผู้ดำเนินการหรือมีอำนาจควบคุมการปฏิบัติงาน ประกอบด้วย ก๊าซเรือนกระจกที่เกิดจากการเผาไหม้เชื้อเพลิงฟอสซิล ก๊าซเรือนกระจกที่ปล่อยจากกระบวนการและ ที่ระบายทางช่องเปิด และก๊าซเรือนกระจกที่เกิดจากการรั่วซึม

"การปล่อยก๊าซเรือนกระจกทางอ้อม" หมายความว่า ก๊าซเรือนกระจกที่เกิดขึ้นจากการที่ผู้รับ สัมปทาน หรือผู้รับสัญญาแบ่งปันผลผลิต หรือผู้รับสัญญาจ้างบริการ ซื้อพลังงานจากผู้ผลิตหรือผู้จัดหา พลังงานภายนอกเพื่อประกอบกิจการปิโตรเลียม โดยรวมถึงพลังงานไฟฟ้า ไอน้ำ ความร้อน หรือน้ำหล่อเย็น "โปรแกรมประยุกต์" หมายความว่า โปรแกรมประยุกต์ระบบฐานข้อมูลการจัดการของเสีย และการปล่อยก๊าซเรือนกระจกจากการประกอบกิจการปิโตรเลียมของกรมเชื้อเพลิงธรรมชาติ

"อธิบดี" หมายความว่า อธิบดีกรมเชื้อเพลิงธรรมชาติ

- ข้อ ๒ ผู้รับสัมปทาน หรือผู้รับสัญญาแบ่งปันผลผลิต หรือผู้รับสัญญาจ้างบริการ ต้องรายงานปริมาณการปล่อยก๊าซเรือนกระจกในระยะเวลาสำรวจและระยะเวลาผลิตปิโตรเลียม ผ่านทางโปรแกรมประยุกต์เป็นรายปีปฏิทิน ซึ่งต้องดำเนินการภายในเดือนมีนาคมของปีถัดไป โดยจำแนกตามรายกิจกรรมตามเอกสารแนบท้ายประกาศ ทั้งนี้ ให้แสดงรายละเอียดอย่างน้อย ดังนี้
  - (๑) ปริมาณการปล่อยก๊าซเรือนกระจกทางตรง
- ก๊าซเรือนกระจกที่เกิดจากการเผาไหม้เชื้อเพลิงฟอสซิล ได้แก่ แหล่งกำเนิดอยู่กับที่ (Stationary Combustion) แหล่งกำเนิดที่มีการเคลื่อนที่ (Mobile Combustion) และการเผาก๊าซทิ้ง (Flare) (ถ้ามี)
- ก๊าซเรือนกระจกที่ปล่อยจากกระบวนการและที่ระบายทางช่องเปิด (Process and Vent Emission) (ถ้ามี)
  - ก๊าซเรือนกระจกที่เกิดจากการรั่วซึม (Fugitive Emission) (ถ้ามี)
  - (๒) ปริมาณการปล่อยก๊าซเรือนกระจกทางอ้อม
- ก๊าซเรือนกระจกที่เกิดจากการใช้พลังงานไฟฟ้า ไอน้ำ ความร้อน หรือน้ำหล่อเย็น จากผู้ผลิตหรือผู้จัดหาพลังงานภายนอก (ถ้ามี)
- ข้อ ๓ ในการรายงานการปล่อยก๊าซเรือนกระจกผ่านทางโปรแกรมประยุกต์ ผู้รับสัมปทาน หรือผู้รับสัญญาแบ่งปันผลผลิต หรือผู้รับสัญญาจ้างบริการ ต้องกรอกข้อมูลตามแบบฟอร์มของ โปรแกรมประยุกต์ โดยระบุรายละเอียดอย่างน้อย ดังนี้
  - (๑) ชนิดและปริมาณการใช้เชื้อเพลิงฟอสซิลต่อปี
  - (๒) ปริมาณก๊าซที่เผาทิ้งต่อปี และปริมาณก๊าซที่ระบายออกและจำนวนวันที่มีการระบายออกต่อปี
  - (๓) ปริมาณการผลิตน้ำมันดิบและ/หรือก๊าซธรรมชาติต่อปี
  - (๔) องค์ประกอบของก๊าซธรรมชาติในกรณีที่ใช้ก๊าซธรรมชาติที่ผลิตได้เองเป็นเชื้อเพลิง
  - (๕) องค์ประกอบของก๊าซที่เผาทิ้ง (ถ้ามี)
  - (๖) ปริมาณการใช้พลังงานจากผู้ผลิตหรือผู้จัดหาพลังงานภายนอกต่อปี
  - (๗) ข้อมูลอื่นตามที่กรมเชื้อเพลิงธรรมชาติกำหนด
- ข้อ ๔ การคำนวณปริมาณการปล่อยก๊าซเรือนกระจกของโปรแกรมประยุกต์จะใช้วิธีคำนวณ ตามคู่มือวิธีการคำนวณแนบท้ายประกาศ

ข้อ ๕ เพื่อประโยชน์ในการกำกับดูแลและติดตามตรวจสอบการดำเนินงานด้านสิ่งแวดล้อม หรือให้สอดคล้องกับมาตรฐานสากลและกฎหมายอื่นที่เกี่ยวข้อง อธิบดีอาจให้ผู้รับสัมปทาน หรือผู้รับสัญญา แบ่งปันผลผลิต หรือผู้รับสัญญาจ้างบริการ รายงานข้อมูลเพิ่มเติมจากข้อ ๒ และข้อ ๓ ได้ ข้อ ๖ ประกาศนี้ให้ใช้บังคับตั้งแต่วันถัดจากวันประกาศในราชกิจจานุเบกษาเป็นต้นไป

ประกาศ ณ วันที่ ๑๕ มิถุนายน พ.ศ. ๒๕๖๕ สราวุธ แก้วตาทิพย์ อธิบดีกรมเชื้อเพลิงธรรมชาติ

# เอกสารแนบท้ายประกาศกรมเชื้อเพลิงธรรมชาติ คู่มือวิธีการคำนวณปริมาณการปล่อยก๊าซเรือนกระจก จากการประกอบกิจการปิโตรเลียม พ.ศ. 2565

#### 1. บทน้ำ

คู่มือวิธีการคำนวณปริมาณการปล่อยก๊าซเรือนกระจกจากการประกอบกิจการปิโตรเลียม พ.ศ. .... จัดทำขึ้นเพื่อให้ผู้รับสัมปทาน ผู้รับสัญญาแบ่งปันผลผลิต และผู้รับสัญญาจ้างบริการ ใช้ประกอบการรายงาน การปล่อยก๊าซเรือนกระจก (GHG Emission\*) ผ่านทางโปรแกรมประยุกต์ระบบฐานข้อมูลการจัดการของเสีย และการปล่อยก๊าซเรือนกระจกจากการประกอบกิจการปิโตรเลียมของกรมเชื้อเพลิงธรรมชาติ เพื่อให้การกำกับ ดูแลและติดตามตรวจสอบการดำเนินงานด้านสิ่งแวดล้อมเป็นไปตามมาตรฐานที่ยอมรับในระดับสากล รวมถึง สามารถนำข้อมูลที่ได้มาใช้ประกอบการจัดทำบัญชีก๊าซเรือนกระจกจากการประกอบกิจการปิโตรเลียมซึ่งเป็น ส่วนหนึ่งของบัญชีก๊าซเรือนกระจกแห่งชาติตามกรอบข้อตกลงในพิธีสารเกียวโต (Kyoto Protocol) และอนุสัญญา สหประชาชาติว่าด้วยการเปลี่ยนแปลงสภาพภูมิอากาศ (United Nations Framework Convention on Climate Change: UNFCCC) ตลอดจนเพิ่มประสิทธิภาพในการวางแผนเพื่อควบคุมการปล่อยก๊าซเรือนกระจก จากการประกอบกิจการปิโตรเลียมต่อไป

#### 2. หลักเกณฑ์การรายงานและวิธีการคำนวณ

หลักเกณฑ์การรายงานและวิธีการคำนวณในคู่มือฉบับนี้ประยุกต์มาจาก The Petroleum Industry Guidelines for Reporting Greenhouse Gas Emissions และ Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry หรือ API Compendium และมีการปรับปรุงรายละเอียดเพื่อให้หลักเกณฑ์การรายงานและวิธีการคำนวณมีความเหมาะสม และสอดคล้องกับ บริบทของการประกอบกิจการปิโตรเลียมในประเทศไทย

สำหรับค่าสัมประสิทธิ์การปล่อยก๊าซเรือนกระจก (Emission factor) ที่นำมาใช้ประกอบการคำนวณ จะใช้ค่าเฉพาะของประเทศ (Country-specific emission factor) ตามแนวทางการประเมินคาร์บอนฟุตพริ้นท์ ขององค์กร โดยองค์การบริหารจัดการก๊าซเรือนระจก (องค์การมหาชน) และ API Compendium

## 3. ขอบเขตการคำนวณข้อมูล

ผู้รับสัมปทาน ผู้รับสัญญาแบ่งปันผลผลิต และผู้รับสัญญาจ้างบริการ ต้องรายงานปริมาณการปล่อย ก๊าซเรือนกระจก โดยรวบรวมข้อมูลจากกิจกรรมการสำรวจและผลิตปิโตรเลียมที่ผู้รับสัมปทาน ผู้รับสัญญาแบ่งปัน ผลผลิต หรือผู้รับสัญญาจ้างบริการ เป็นผู้ดำเนินงาน (Operator) รายปีปฏิทิน (มกราคม-ธันวาคม) แบ่งเป็น 2 ระยะ ได้แก่ ระยะเวลาสำรวจและระยะเวลาผลิตปิโตรเลียม อย่างไรก็ตาม ปริมาณการปล่อยก๊าซเรือนกระจก จากส่วนอาคารหรือสำนักงานที่ไม่เกี่ยวข้องโดยตรงกับการปฏิบัติงาน (Operation) เช่น สำนักงานใหญ่และ ศูนย์ฝึกอบรม รวมถึงกิจกรรมการปรับพื้นที่และการก่อสร้างฐานผลิต การผลิตสารเคมี วัสดุ อุปกรณ์ เครื่องจักร ต่างๆ ที่ใช้ในกระบวนการสำรวจและผลิตปิโตรเลียมจะไม่ถูกนำมารวมในการรายงาน

<sup>\*</sup> GHG Emission หมายถึง Greenhouse gas emission

## **3.1 การคำนวณจำแนกตามแหล่งกำเนิดของก๊าซเรือนกระจก** เป็น 2 ประเภท (รายละเอียดดังรูปที่ 1) ดังนี้

- 1) ก๊าซเรือนกระจกที่ปล่อยทางตรง (Scope 1 Direct GHG Emissions) หมายถึง ก๊าซเรือนกระจก ที่ปล่อยจากแหล่งกำเนิดหรือกิจกรรมที่ผู้รับสัมปทาน หรือผู้รับสัญญาแบ่งปันผลผลิต หรือผู้รับสัญญาจ้างบริการ ดำเนินการเองหรือมีอำนาจควบคุมการปฏิบัติงาน ประกอบด้วย การเผาไหม้เชื้อเพลิง (Fuel Combustion) กระบวนการผลิตและการระบายก๊าซ (Process and Vent) และการรั่วไหล (Fugitive)
- 2) ก๊าซเรือนกระจกที่ปล่อยทางอ้อมจากการใช้ไฟฟ้า (Scope 2 Electricity indirect GHG Emissions) หมายถึง ก๊าซเรือนกระจกที่เกิดขึ้นจากที่ผู้รับสัมปทาน หรือผู้รับสัญญาแบ่งปันผลผลิต หรือผู้รับสัญญาจ้าง บริการ ซื้อพลังงานจากภายนอกและนำเข้ามาใช้ในกิจกรรมการสำรวจและผลิตปิโตรเลียม



รูปที่ 1 แสดงการจำแนกตามแหล่งกำเนิดของก๊าซเรือนกระจก

# **3.2 การรายงานจำแนกตามกิจกรรม** รายละเอียดแสดงดังตารางที่ 1 ตารางที่ 1 การรายงานปริมาณก๊าซเรือนกระจกจำแนกตามกิจกรรม

| ์ ที่ | ประเภทแหล่งกำเนิด                             |                  | กิจกร         | รม       |          |  |  |  |
|-------|-----------------------------------------------|------------------|---------------|----------|----------|--|--|--|
| 7/1   | บระเภทแทสงกานพ                                | สำรวจ*           | เจาะสำรวจ     | เจาะผลิต | ผลิต     |  |  |  |
|       | OPE 1 : Direct Emissions                      |                  |               |          |          |  |  |  |
| ก๊าซ  | เรือนกระจกที่เกิดจากการเผาไหม้เชื้อเพลิงฟอสซิ | ล (Fuel Combu    | ustion)       |          |          |  |  |  |
| 1.    | Stationary                                    | ✓                | ✓             | ✓        | ✓        |  |  |  |
| 2.    | Mobile                                        | ✓                | ✓             | ✓        | ✓        |  |  |  |
| 3.    | Flare                                         | -                | -             | -        | <b>√</b> |  |  |  |
| ก๊าซ  | เรือนกระจกที่ปล่อยจากกระบวนการและที่ระบาย     | ทางช่องเปิด (Pro | ocess and Ven | t)       |          |  |  |  |
| 4.    | Process                                       | ✓                | ✓             | <b>√</b> | ✓        |  |  |  |
| 5.    | Vent                                          | -                | -             | -        | <b>√</b> |  |  |  |
| ก๊าซ  | เรือนกระจกที่เกิดจากการรั่วซึม (Fugitive)     |                  |               |          |          |  |  |  |
| 6.    | Equipment Leak                                | -                | -             | -        | ✓        |  |  |  |
| 7.    | Other fugitive                                | -                | -             | -        | <b>√</b> |  |  |  |
| 8.    | Fluorinate fugitive                           | -                | -             | -        | ✓        |  |  |  |
| SCC   | SCOPE 2 : Energy Indirect Emissions           |                  |               |          |          |  |  |  |
| 9.    | การใช้พลังงานจากแหล่งภายนอก                   | ✓                | ✓             | ✓        | <b>√</b> |  |  |  |

 <sup>✓</sup> หมายถึง ประเภทของแหล่งกำเนิด GHG ในแต่ละระยะของกิจกรรมที่ต้องรายงานต่อกรมเชื้อเพลิงธรรมชาติ

<sup>\*</sup> การรายงานปริมาณก๊าซเรือนกระจกในกิจกรรมการสำรวจทางธรณีฟิสิกส์จะครอบคลุมทั้งวิธีการวัดค่าคลื่นไหวสะเทือน (Seismic Survey) และวิธีการวัดค่าความเข้มสนามแม่เหล็ก (Electromagnetic Survey)

- **3.3 ก๊าซเรือนกระจกจากการประกอบกิจการปิโตรเลียม** อ้างอิงตามพิธีสารเกียวโต (Kyoto Protocol) ซึ่งกำหนดก๊าซเรือนกระจกที่สำคัญ จำนวน 6 ชนิด ประกอบด้วย
  - 1) คาร์บอนไดออกไซด์ (CO<sub>2</sub>)
  - 2) มีเทน (CH<sub>4</sub>)
  - 3) ในตรัสออกไซด์ ( $N_2O$ )
  - 4) ไฮโดรฟลูออโรคาร์บอน (HFCs)
  - 5) เปอร์ฟลูออโรคาร์บอน (PFCs)
  - 6) ซัลเฟอร์เฮกซะฟลูออไรด์ (SF<sub>6</sub>)

และกำหนดให้ใช้ค่าศักยภาพที่ทำให้โลกร้อน (Global Warming Potential: GWP) ตาม Revised 2006 IPCC Guideline ในการปรับเทียบค่าก๊าซเรือนกระจกอื่นๆ ให้อยู่ในรูปของก๊าซคาร์บอนไดออกไซด์ (CO $_2$ e) รายละเอียดแสดงดังตารางที่ 2

ตารางที่ 2 ค่าศักยภาพที่ทำให้โลกร้อน (Global Warming Potential: GWP) และเวลาชั่วชีวิต (Lifetime)

| ที่ | ชนิดก๊าซเรือนกระจก     | สูตรเคมี         | GWP <sub>100</sub> | Lifetime (yr)  |
|-----|------------------------|------------------|--------------------|----------------|
| 1.  | คาร์บอนไดออกไซด์       | $CO_2$           | 1                  | -              |
| 2.  | มีเทน                  | CH <sub>4</sub>  | 25                 | 12             |
| 3.  | ในตรัสออกไซด์          | N <sub>2</sub> O | 298                | 114            |
| 4.  | ไฮโดรฟลูออโรคาร์บอน    | HFCs             | 124 - 14,800       | 1.4 – 270      |
| 5.  | เปอร์ฟลูออโรคาร์บอน    | PFCs             | 7,390 - 12,200     | 2,600 - 50,000 |
| 6.  | ซัลเฟอร์เฮกซะฟลูออไรด์ | SF <sub>6</sub>  | 22,800             | 3,200          |

- 4. การคำนวณปริมาณการปล่อยก๊าซเรือนกระจก
  - 4.1 ก๊าซเรือนกระจกจากการเผาไหม้ (Fuel Combustion Emissions) แบ่งเป็น 3 ประเภท ได้แก่ 4.1.1 แหล่งกำเนิดอยู่กับที่ (Stationary Combustion Emissions)

เกิดจากการเผาใหม้ที่เกิดจากอุปกรณ์ เช่น เครื่องกำเนิดไฟฟ้า หม้อไอน้ำ (Boiler) หม้อต้มซ้ำ (Dehydrator reboiler) เครื่องทำความร้อน (Heater) ปั๊ม (Pump) คอมเพรสเซอร์ (Compressor) เป็นต้น ในการคำนวณจะกำหนดให้เกิดการเผาไหม้อย่างสมบูรณ์ และ **ต้องทราบชนิดของเชื้อเพลิงฟอสซิลที่ใช้** เป็นอย่างน้อย ซึ่งสามารถคำนวณได้ 3 วิธี ดังนี้

## วิธีที่ 1 กรณีทราบปริมาณเชื้อเพลิงที่ใช้ สมการ (1)

$$E_{GHG} = E_{CO2} + E_{CH4} + E_{N2O}$$

สมการ (2)

$$E_{GHG} = FC \times EF_{GHG}$$

สมการ (3)

$$E_{CO2} = FC \times HHV \times EF_{CO2}$$

$$E_{CH4} = FC \times HHV \times EF_{CH4}$$

 $E_{N2O} = FC \times HHV \times EF_{N2O}$ 

### โดยที่

 $E_{GHG} = ปริมาณการปล่อยก๊าซเรือนกระจกต่อปี (kgCO_2e/yr)$ 

 $E_{CO2} = ปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์ต่อปี (kgCO<math>_2$ /yr)

E<sub>CH4</sub> = ปริมาณการปล่อยก๊าซมีเทนต่อปี (kgCO₂e/yr)

 $E_{N2O} = ปริมาณการปล่อยก๊าซในตรัสออกไซด์ต่อปี (kgCO_2e/yr)$ 

FC = ปริมาณเชื้อเพลิงที่ใช้ต่อปี (L, scf หรือ kg)

EF<sub>GHG</sub> = Emission Factor รวมก๊าซเรือนกระจกทั้ง 3 ชนิด

 $\mathsf{EF}_{\mathsf{CO2}} = \mathsf{Emission}$  Factor ของก๊าซคาร์บอนไดออกไซด์

 $EF_{CH4}$  = Emission Factor ของก๊าซมีเทน

 $EF_{N2O}$  = Emission Factor ของก๊าซไนตรัสออกไซด์

HHV = ค่าความร้อนสูงของเชื้อเพลิงที่ใช้

หมายเหตุ

สมการ (2) ใช้ค่า  $EF_{GHG}$  จากตาราง a-1

สมการ (3) ใช้ค่า  $EF_{CO2}EF_{CH4}$  และ  $EF_{N2O}$  จากตาราง a-2

# วิธีที่ 2 กรณีทราบองค์ประกอบและปริมาณเชื้อเพลิงที่ใช้ (การใช้เชื้อเพลิงฟอสซิลในสถานะก๊าซที่ผลิตได้เอง) สมการ (4)

$$E_{CO2} = FC \times \frac{1}{1} \times [(f_{C \text{ fuel}} \times 1) + f_{CO2}) \times 44 \times (4.536 \times 10^{-4})$$
  
molar volume conversion

$$f_{C \text{ fuel}} = (\%C_{Ci} + ... + \% C_{Cj})$$
100

$$%C_{Ci} = X_{Cci} \times %C_{i}$$

#### โดยที่

 $E_{CO2}$  = ปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์ต่อปี (kgCO $_2$ /yr)

FC = ปริมาณเชื้อเพลิงที่ใช้ต่อปี (scf/yr)

 $f_{C \, fuel} =$ สัดส่วนของคาร์บอนโดยโมลในเชื้อเพลิงฟอสซิล (lb mole C / lb mole fuel)

 $f_{CO2} =$ สัดส่วนของ  $CO_2$  โดยโมลในเชื้อเพลิงฟอสซิล (lb mole  $CO_2$  / lb mole fuel)

molar volume conversion = 379.3 scf/lb mole fuel

 $%C_{Ci} = %$  คาร์บอนขององค์ประกอบ  $C_i$ ในเชื้อเพลิง

 $%C_{Cj} = %$  คาร์บอนขององค์ประกอบ  $C_{j}$ ในเชื้อเพลิง

X<sub>Cci</sub> = จำนวนโมเลกุลคาร์บอนขององค์ประกอบ C<sub>i</sub>

%C<sub>i</sub> = % โดยโมลขององค์ประกอบ C<sub>i</sub>ในเชื้อเพลิง

# วิธีที่ 3 กรณีไม่ทราบปริมาณเชื้อเพลิงที่ใช้ สมการ (5)

$$E_{GHG} = E_{in} \times EF_{GHG}$$

$$E_{in} = ER \times LF \times OT \times ETT$$

$$OT = total hour_{m1} + ... + total hour_{m12}$$

## โดยที่

E<sub>GHG</sub> = ปริมาณการปล่อยก๊าซเรือนกระจกต่อปี (kgCO<sub>2</sub>e/yr)

E<sub>in</sub> = ปริมาณพลังงานขาเข้าที่ป้อนให้อุปกรณ์ (BTU/yr)

EF<sub>GHG</sub> = Emission Factor รวมก๊าซเรือนกระจกทั้ง 3 ชนิด

= Equipment Rating (hp)

= Equipment loading factor (fraction)

= ปริมาณชั่วโมงการทำงานของอุปกรณ์ต่อปี (hr/yr)

ETT = Equipment Thermal efficiency (BTU<sub>in</sub>/hp-hr<sub>out</sub>)

total hour<sub>m1-12</sub> = ปริมาณชั่วโมงการทำงานของอุปกรณ์ ใน 1-12 เดือน

หมายเหตุ

สมการ (5) ใช้ค่า EF<sub>GHG</sub> จากตาราง a-1

ใช้ค่า ETT จากตาราง a-3

## 4.1.2 แหล่งกำเนิดที่มีการเคลื่อนที่ (Mobile Combustion Emissions)

เกิดจากการเผาไหม้จากยานพาหนะที่มีการเคลื่อนที่ เช่น รถยนต์ รถบรรทุกน้ำมัน เรือโดยสาร เรือสำรวจ เรือขนส่งน้ำมัน รถไฟขนส่งน้ำมัน เฮลิคอปเตอร์ เป็นต้น โดยผู้รับสัมปทาน หรือผู้รับสัญญาแบ่งปัน ผลผลิต หรือผู้รับสัญญาจ้างบริการ เป็นผู้รับผิดชอบค่าใช้จ่ายน้ำมันเชื้อเพลิง ในการคำนวณจะ**ต้องทราบชนิด** ของเชื้อเพลิงฟอสซิลที่ใช้เป็นอย่างน้อย ซึ่งสามารถคำนวณได้ 2 วิธี ดังนี้

วิธีที่ 1 กรณีทราบปริมาณเชื้อเพลิงที่ใช้ สมการ (6)

$$E_{GHG} = FC \times EF_{GHG}$$

E<sub>GHG</sub> = ปริมาณการปล่อยก๊าซเรือนกระจกต่อปี (kgCO<sub>2</sub>e/yr)

FC = ปริมาณเชื้อเพลิงที่ใช้ต่อปี (L หรือ kg)

EF<sub>GHG</sub> = Emission Factor รวมก๊าซเรือนกระจกทั้ง 3 ชนิด

วิธีที่ 2 กรณีทราบระยะทางและชนิดยานพาหนะ สมการ (7) - รถยนต์ และจักรยานยนต์

$$E_{GHG} = D \times (\underline{1}) \times EF_{GHG}$$

สมการ (8) - รถกระบะ และรถตู้บรรทุก

$$E_{GHG} = D \times L \times EF_{C}$$

โดยที่

E<sub>GHG</sub> = ปริมาณการปล่อยก๊าซเรือนกระจกต่อปี (kgCO<sub>2</sub>e/yr)

= ระยะทางที่ใช้ในการเดินทาง (km)

FE = อัตราการสิ้นเปลืองเชื้อเพลิงของยานยนต์

โดยที่

 $E_{GHG} = ปริมาณการปล่อยก๊าซเรือนกระจกต่อปี (tonCO<sub>2</sub>e/yr)$ 

= ระยะทางที่ใช้ในการเดินทาง (km)

= น้ำหนักบรรทก (ton)

 $\mathsf{EF}_\mathsf{C} = \mathsf{Emission} \; \mathsf{Factor} \; \mathsf{s}$ างเรือนกระจกทั้ง 3 ชนิด

$$E_{GHG} = FC \times EF_{GHG}$$

$$FC = FE \times TD$$

สมการ (10) - รถไฟ

$$E_{GHG} = D \times L \times FE \times EF_{GHG}$$

สมการ (11) - ขนส่งทางอากาศ

$$E_{GHG} = D \times (\underline{1}) \times EF_{GHG}$$

#### โดยที่

 $E_{GHG} = ปริมาณการปล่อยก๊าซเรือนกระจกต่อปี (tonCO_2e/yr)$ 

FC = ปริมาณเชื้อเพลิงที่ใช้ต่อปีในการเดินเรือ (tonne)

EF<sub>GHG</sub> = Emission Factor รวมก๊าซเรือนกระจกทั้ง 3 ชนิด

FE = อัตราการสิ้นเปลืองเชื้อเพลิงของเรือ (tonne/day)

TD = จำนวนวันที่มีการเดินเรือต่อปี

D = ระยะทางที่ใช้ในการเดินทาง (km)

L = น้ำหนักบรรทก (ton)

FE = 222 kJ/tonne-km หรือ 337 BTU/ton-mile

EF<sub>GHG</sub> = Emission Factor รวมก๊าซเรือนกระจกทั้ง 3 ชนิด

D = ระยะทางที่ใช้ในการเดินทาง (km)

FE = 0.16 km/L หรือ 0.38 mile/gallon

 $\mathsf{EF}_\mathsf{GHG} = \mathsf{Emission} \; \mathsf{Factor} \; \mathsf{รวมก๊าซเรือนกระจกทั้ง} \; 3 ชนิด$ 

หมายเหตุ

สมการ (6) (7) (9) และ (10) ใช้ค่า EF<sub>GHG</sub> จากตาราง b-1

สมการ (7) ใช้ค่า FE จากตาราง b-2

สมการ (8) ใช้ค่า  $EF_C$  จากตาราง b-3

สมการ (9) ใช้ค่า FE จากตาราง b-4

สมการ (11) ใช้ค่า  $EF_{GHG}$  จากตาราง b-1 หรือ a-2

หากเชื้อเพลิงที่ใช้เป็นเชื้อเพลิงชีวภาพ เช่น เอทานอล ไบโอดีเซล หรือเชื้อเพลิงผสมระหว่าง เชื้อเพลิงฟอสซิลกับเชื้อเพลิงชีวภาพ เช่น E85 และ B20 เป็นต้น ให้คำนวณปริมาณการปล่อยก๊าซเรือนกระจก ตามสัดส่วนของเชื้อเพลิงฟอสซิลในเชื้อเพลิงนั้น เช่น รถกระบะใช้น้ำมัน B20 จำนวน 1,000 ลิตรต่อปี การคำนวณ จะแบ่งออกเป็นก๊าซเรือนกระจกที่มาจากการเผาไหม้น้ำมันไบโอดีเซล จำนวน 200 ลิตร และน้ำมันดีเซล จำนวน 800 ลิตร อย่างไรก็ตาม คาร์บอนในเอทานอลถือว่าเป็น Biogenic carbon ซึ่งตามหลักเกณฑ์ 2006 IPCC Guidelines กำหนดให้ไม่ต้องนำปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์จาก Biogenic carbon มารวมใน บัญชีรายการการปล่อยก๊าซเรือนกระจก เช่น รถยนต์ใช้น้ำมัน E20 จำนวน 1,000 ลิตรต่อปี การคำนวณจะคิด การเผาไหม้น้ำมันเบนซิน จำนวน 800 ลิตรเท่านั้น ส่วนการเผาไหม้คาร์บอนจากเอทานอล จำนวน 200 ลิตร ไม่ต้องคำนวณและไม่นำมารวมในบัญชีรายการปล่อยก๊าซเรือนกระจก เป็นต้น

## 4.1.3 แหล่งกำเนิดจากการเผาก๊าซทิ้ง (Flare Emissions)

เกิดจากการเผาทิ้งก๊าซที่เหลือจากกระบวนการผลิตและไม่สามารถนำไปใช้ประโยชน์ได้ ในการ คำนวณจะกำหนดให้มีความสมบูรณ์ของการเผาไหม้ 98% และ**ต้องทราบปริมาณก๊าซที่เผาทิ้งต่อปี**เป็นอย่างน้อย ซึ่งสามารถคำนวณได้ 3 วิธี ดังนี้

# วิธีที่ 1 กรณีทราบองค์ประกอบของก๊าซที่เผาทิ้ง สมการ (12)

 $E_{CO2} = FC \times \frac{1}{\text{molar volume conversion}} \times [(f_{C \text{ flare}} \times 0.98) + f_{CO2}) \times 44 \times (4.536 \times 10^{-4})$ 

โดยที่

 $E_{CO2} = ปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์ต่อปี (kgCO<math>_2$ /yr)

FC = ปริมาณก๊าซที่เผาทิ้งต่อปี (scf/yr)

 $f_{C\,flare}$  = สัดส่วนของคาร์บอนในก๊าซที่เผาทิ้ง (lb mole C / lb mole flare gas)

 $f_{CO2}$  = สัดส่วนของ  $CO_2$  โดยโมลในก๊าซที่เผาทิ้ง (lb mole  $CO_2$  / lb mole flare gas)

molar volume conversion = 379.3 scf/lb mole fuel

#### สมการ (13)

 $E_{CH4} = FC \times f_{CH4} \times \%$  residual  $CH_4 \times \underline{1} \times MW_{CH4} \times (4.536 \times 10^{-4})$  molar volume conversion

โดยที่

 $E_{CH4}$  = ปริมาณการปล่อยก๊าซมีเทนต่อปี (kgCH4/yr)

FC = ปริมาณก๊าซที่เผาทิ้งต่อปี (scf/yr)

 $f_{CH4}$  = สัดส่วนของ  $CH_4$  ในก๊าซที่เผาทิ้ง (lb mole  $CH_4$  / lb mole flare gas)

% residual  $CH_4$  = สัดส่วนของ  $CH_4$  ที่ไม่ถูกเผาไหม้ เท่ากับ 2%

 $MW_{CH4} = น้ำหนักโมเลกุล CH4 เท่ากับ 16 lb/lb mole <math>CH_4$ 

molar volume conversion = 379.3 scf/lb mole fuel

# วิธีที่ 2 กรณีไม่ทราบองค์ประกอบของก๊าซที่เผาทิ้ง

ให้คำนวณจากสมการ (11) และ (12) โดยใช้ข้อมูลองค์ประกอบของก๊าซตามตารางที่ c-1

# วิธีที่ 3 การคำนวณปริมาณการปล่อยก๊าซไนตรัสไดออกไซด์จากการเผาทิ้ง

สมการ (14)

 $E_{N2O} = V \times EF_{N2O}$ 

โดยที่

 $E_{N2O} = ปริมาณการปล่อยก๊าซในตรัสไดออกไซด์ต่อปี (tonN<math>_2$ O/yr)

V = ปริมาณปิโตรเลียมที่ผลิตต่อปี (bbl หรือ MMscf)

 $\mathsf{EF}_{\mathsf{N2O}} = \mathsf{Emission} \; \mathsf{Factor} \; \mathtt{vov}$ ก๊าซในตรัสไดออกไซด์

หมายเหต

สมการ (14) ใช้ค่า EF<sub>N2O</sub> จากตาราง c-2

# 4.2 ก๊าซเรือนกระจกที่เกิดจากกระบวนการสำรวจและผลิตปิโตรเลียม และการระบายทางช่องเปิด ของอุปกรณ์ (Process and Vented Emissions)

เกิดจากการระบายก๊าซเรือนกระจกออกทางช่องเปิดของอุปกรณ์หรือกระบวนการต่าง ๆ โดยแบ่งจาก แหล่งกำเนิดได้ 5 ประเภท ดังนี้

## 4.2.1 หน่วยการดึงความชื้นออกจากก๊าซ

เกิดจากหน่วยที่ใช้ปรับปรุงคุณภาพก๊าซ โดยใช้สาร Glycol ดึงความชื้น และในการคำนวณจะต้อง ทราบ**ปริมาณก๊าซที่ป้อนเข้าหน่วย**เป็นอย่างน้อย ซึ่งสามารถคำนวณได้ 2 วิธี ดังนี้

วิธีที่ 1 กรณีใช้สารไกลคอล (Glycol Dehydrator)

สมการ (15)

 $E_{CHA} = V \times EF_{CHA}$ 

โดยที่

 $E_{CH4} = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH_4/yr)$ 

V = ปริมาณก๊าซที่ผ่าน Glycol Dehydration Unit ต่อปี (MMscf)

 $EF_{CH4}$  = Emission Factor ของก๊าซมีเทน

หมายเหตุ

สมการ (15) ใช้ค่า EF<sub>CH4</sub> จากตาราง d-1

วิธีที่ 2 กรณีใช้ตัวกลางดูดซับ (Desiccant Dehydrator)

สมการ (16)

$$E_{CH4} = (0.25\pi D^2) \times H \times G \times N \times (P_2/P_1) \times \%CH_4 \times (1.913 \times 10^{-5})$$

สมการ (17)

$$E_{CO2} = (0.25\pi D^2) \times H \times G \times N \times (P_2/P_1) \times \%CO_2 \times (5.262 \times 10^{-5})$$

โดยที่

 $E_{CH4}$  = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH<sub>4</sub>/yr)

E<sub>CO2</sub> = ปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์ต่อปี (tonCO<sub>2</sub>/yr)

D = เส้นผ่านศูนย์กลางภายในหอ (ft)

H = ความสูงหอ (ft)

G = สัดส่วนโดยปริมาตรของก๊าซในหอดูดซับ = 1 - Fraction of desiccant packing

N = จำนวนครั้งการเปลี่ยนถ่ายตัวกลางดูดซับต่อปี

P<sub>1</sub> = ความดันบรรยากาศ = 14.7 Psia

P<sub>2</sub> = ความดันของก๊าซภายในหอดูดซับ (Psia)

%CH<sub>4</sub> = องค์ประกอบก๊าซมีเทนโดยโมล (% mole) ในก๊าซที่ป้อนเข้าหอดูดซับ

 $\%{
m CO}_2=$  องค์ประกอบก๊าซคาร์บอนไดอกไซด์โดยโมล (% mole) ในก๊าซที่ป้อนเข้าหอดูดซับ

## 4.2.2 การระบายก๊าซเรือนกระจกจาก Cold Process and Vents

เกิดจากกระบวนการผลิตหรือการทดสอบหลุม (Well testing) และในการคำนวณต้องทราบ **ปริมาณก๊าซที่ป้อนเข้าหน่วย**เป็นอย่างน้อย ซึ่งสามารถคำนวณได้ 1 วิธี ดังนี้

# วิธีที่ 1 ก๊าซมีเทนและก๊าซคาร์บอนไดออกไซด์จากการผลิตน้ำมันดิบและผลิตก๊าซ สมการ (18)

(1) 
$$E_{CH4} = V_{oil} \times GOR \times \%CH_4 \times (N/365) \times (1.913 \times 10^{-5})$$

(2) 
$$E_{CO2} = V_{oil} \times GOR \times \%CO_2 \times (N/365) \times (5.262 \times 10^{-5})$$

โดยที่

 $E_{CH4}$  = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH<sub>4</sub>/yr)

E<sub>CO2</sub> = ปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์ต่อปี (tonCO<sub>2</sub>/yr)

 $V_{\text{oil}}$  = ปริมาณการผลิตน้ำมันดิบต่อปี (barrel/yr)

GOR = สัดส่วนก๊าซต่อน้ำมันดิบ (Gas-to-Oil Ratio) (scf/barrel)

%CH<sub>4</sub> = องค์ประกอบก๊าซมีเทนโดยโมล (% mole) ในก๊าซ

%CO<sub>2</sub> = องค์ประกอบก๊าซคาร์บอนไดอกไซด์โดยโมล (% mole) ในก๊าซ

N = จำนวนวันที่มีการ Vent ต่อปี

#### 4.2.3 ถังเก็บ

เกิดจากการลดลงของความดันในถังเก็บ ทำให้ก๊าซบางส่วนแยกตัวออกมาจากน้ำมันดิบ (Flash gas) ซึ่งสามารถคำนวณได้ 3 วิธี ดังนี้

## วิสีที่ 1 ถังเก็บน้ำมันดิบ

สมการ (19)

$$E_{CH4} = GOR \times V_{oil} \times \%CH_4 \times (6.76 \times 10^{-4})$$

$$GOR = G_{Flash\,gas} \times \left[ \left( \frac{P}{519.7\,\times\,10^{y_g}} \right)_{Separator}^{1.204} - \left( \frac{P}{519.7\,\times\,10^{y_g}} \right)_{Storage\,Tank}^{1.204} \right]$$

โดยที่

 $E_{CH4}$  = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH<sub>4</sub>/yr)

GOR = สัดส่วนก๊าซที่ Flash ต่อปริมาณน้ำมันดิบ ( $m^3/m^3$  oil)

 $V_{oil}$  = ปริมาณน้ำมันดิบที่ไหลเข้าถังเก็บ (bbl)

 $\%CH_4$  = องค์ประกอบก๊าซมีเทนใน Flash gas โดยปริมาตร หากไม่มีข้อมูลให้ใช้ค่า 27.4

 $G_{Flash gas} =$  ความถ่วงจำเพาะของ Flash gas หากไม่มีข้อมูลให้ใช้ค่า 0.9

P = ความดันใน Separator และในถังเก็บ (kPa)

 $y_g$  = 1.225 + 0.00164 x T - 1.769/SG<sub>oil</sub>

T = อุณหภูมิใน Separator และถังเก็บ (K)

 $SG_{oil}$  = ความถ่วงจำเพาะของน้ำมันดิบเทียบกับน้ำ = 141.5/131.5 +  $G_{oil}$ 

G<sub>oil</sub> = API gravity ของน้ำมันดิบที่ 60 °F

## วิธีที่ 2 ถังเก็บคอนเดนเสท

สมการ (20)

$$E_{CH4} = V_C \times EF_C$$

วิธีที่ 3 ถึงเก็บน้ำจากกระบวนการผลิต

สมการ (21)

$$E_{CH4} = V_{pw} \times EF_{Flash}$$

วิธีที่ 4 ถึงเก็บที่มี Blanketed Natural gas สมการ (22)

$$E_{CH4} = V_b \times \%CH_4 \times 1.913 \times 10^{-5}$$

#### โดยที่

 $E_{CH4} = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH_4/yr)$ 

V = ปริมาณคอนเดนเสทที่เข้าถังเก็บต่อปี (bbl)

 $EF_C$  = Methane flashing emission =  $2.3 \times 10^{-3} \text{ tonCH}_4/\text{bbl}$ 

#### โดยที่

 $E_{CH4}$  = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH<sub>4</sub>/yr)

V<sub>DW</sub> = ปริมาณน้ำจากกระบวนการผลิตที่เข้าถังเก็บต่อปี (bbl)

 $EF_{Elash}$  = Emission Factor ของก๊าซมีเทน จากตาราง d-2

#### โดยที่

 $E_{CH4} = \sqrt{3}$  =  $\sqrt{3}$  =

 $V_{\rm b}$  = ปริมาณน้ำมันดิบที่เติมเข้ามาแทนที่ก๊าซธรรมชาติ (bbl)

%CH<sub>4</sub> = องค์ประกอบของก๊าซมีเทนโดยโมล (%mole) ในก๊าซธรรมชาติ

หมายเหต

คำนวณที่สภาวะมาตรฐาน ความดัน 1 atm, อุณหภูมิ 60 °F

# 4.2.4 การระบายก๊าซเรือนกระจกจาก Loading Operations

เกิดจากกระบวนการขนถ่ายน้ำมันดิบหรือคอนเดนเสทจากถังเก็บไปยังผู้ซื้อ โดยบรรจุลงถังเก็บ ของรถบรรทุก รถไฟ หรือเรือ ในการคำนวณต้องทราบ**ปริมาณที่ขนถ่ายต่อปี**เป็นอย่างน้อย ซึ่งสามารถคำนวณ ได้ 1 วิธี ดังนี้

### วิธีที่ 1 การปล่อยก๊าซมีเทน

สมการ (23)

$$E_{CH4} = V_L \times EF_{TOC} \times 0.15$$

#### โดยที่

 $E_{CH4} = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH<sub>4</sub>/yr)$ 

V<sub>1</sub> = ปริมาณน้ำมันดิบหรือคอนเดนเสทที่ขนถ่ายต่อปี (m³)

 $EF_{TOC}$  = TOC Emission factor จากตาราง d-3 (tonne TOC/10<sup>3</sup> m<sup>3</sup> loaded)

# 4.2.5 การระบายก๊าซเรือนกระจกจาก Venting sourcesอื่น ๆ สามารถคำนวณได้ 2 วิธี ดังนี้

วิธีที่ 1 Mud Degassing

สมการ (24)

$$E_{CH4} = EF_{M} \times N \times (\frac{\%CH_{4 \text{ actual}}}{\%CH_{4 \text{ default}}})$$

โดยขึ

 $E_{CH4} = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH<sub>4</sub>/yr)$ 

EF<sub>M</sub> = Emission Factor จากตาราง d-4

N = จำนวนวันที่มีการขุดเจาะ

%CH<sub>4 actual</sub> = องค์ประกอบของก๊าซมีเทน

 $%CH_{4 \text{ default}} = 83.85\%$ 

วิธีที่ 2 None-routine emissions

$$E_{CH4} = EF_{CH4} \times N \times (\frac{\%CH_4}{\%CH_4})$$
  $\%CH_4$  default

โดยที่

 $E_{CH4} = ปริมาณการปล่อยก๊าซมีเทนต่อปี (tonCH<sub>4</sub>/yr)$ 

 $EF_M$  = Emission Factor จากตาราง d-4

N = จำนวนอุปกรณ์หรือจำนวนครั้งที่มีกิจกรรม

%CH<sub>4 actual</sub> = องค์ประกอบของก๊าซมีเทนโดยโมล (%mole)

 $%CH_{4 \text{ default}} = 78.8\%$ 

หมายเหตุ กำหนด  $\frac{\%CH_{4\ actual}}{\%CH_{4\ default}}=1$  เมื่อไม่ทราบ  $\%CH_{4\ actual}$ 

**4.2.6 การใช้วัตถุระเบิด** สามารถคำนวณได้ 1 วิธี ดังนี้

วิธีที่ 1 กรณีใช้ Ammonium Nitrate Fuel Oil (ANFO) โดยที่

 $E_{GHG}$  = ANFO Consumption x EF

 $E_{GHG} = ปริมาณการปล่อยก๊าซเรือกระจกต่อปี (tonneCO_2e/yr)$ 

ANFO Consumption = ปริมาณการใช้ ANFO

EF = Emission Factor = 0.17 tonne CO<sub>2</sub>/tonne ANFO

**4.2.7 การใช้สารดับเพลิง** สามารถคำนวณได้ 1 วิธี ดังนี้

วิธีที่ 1 กรณีมี Fluorinated gas หรือ  ${\sf CO}_2$  เป็นองค์ประกอบ

 $E_{GHG} = N \times GWP$ 

โดยที่

...

 $E_{GHG}=$  ปริมาณการปล่อยก๊าซเรือกระจกต่อปี (CO $_2$ e/yr)

N = ปริมาณสารดับเพลิงที่ใช้ต่อปี (kg)

4.3 ก๊าซเรือนกระจกจากการรั่วซึม (Fugitive Emissions)

เกิดจากการรั่วซึมออกจากอุปกรณ์ โดยแบ่งจากแหล่งกำเนิดได้ 3 ประเภท ดังนี้

4.3.1 การรั่วซึมจากอุปกรณ์ (Equipment Leak)

เกิดจากการรั่วซึมจากอุปกรณ์ต่าง ๆ ในกระบวนการผลิต ในการคำนวณต้องทราบ**ปริมาณการผลิต น้ำมันดิบหรือก๊าซต่อปี**เป็นอย่างน้อย ซึ่งสามารถคำนวณตามแหล่งกำเนิดจากการดำเนินงานได้ 2 วิธี ดังนี้ วิธีที่ 1 การผลิตจากแหล่งบนบกและในทะเล สมการ (25)

$$E_{CH4} = P \times EF_f \times (\frac{\%CH_4}{\%CH_4}_{actual})$$

โดยที่

 $E_{CH4} = ปริมาณก๊าซมีเทนที่รั่วซึมต่อปี (tonCH_4/yr)$ 

= ปริมาณการผลิตน้ำมันดิบหรือก๊าซต่อปี (bbl หรือ MMscf)

EF<sub>f</sub> = Emission Factor จากตาราง e-1 (tonCH₁/unit)

%CH<sub>4 actual</sub> = องค์ประกอบของก๊าซมีเทน

%CH<sub>4 default</sub> = องค์ประกอบของก๊าซมีเทน จากตาราง e-1 หมายเหตุ กำหนด <u>%CH<sub>4 octual</sub> = 1</u> เมื่อไม่ทราบ %CH<sub>4 octual</sub>

วิธีที่ 2 การแยกและปรับปรุงคุณภาพก๊าซ

$$E_{CH4} = P \times EF_f \times (\frac{\%CH_4}{\%CH_4})$$
  $\%CH_4$  default

โดยที่

 $E_{CH4} = ปริมาณก๊าซมีเทนที่รั่วซึมต่อปี (tonCH_4/yr)$ 

= ปริมาณการผลิตก๊าซต่อปี (MMscf)

 $EF_f$  = Emission Factor จากตาราง e-1

%CH<sub>4 actual</sub> = องค์ประกอบของก๊าซมีเทน

%CH<sub>4 default</sub> = 86.6% ดังตาราง e-1

หมายเหตุ กำหนด <u>%CH<sub>4 octual</sub> = 1 เมื่อไม่ทราบ %CH<sub>4 octual</sub></u>

# 4.3.2 การรั่วซึมอื่น ๆ (Other Fugitive Emissions)

เกิดจากการบำบัดน้ำเสียทางชีวภาพซึ่งจะเกิดก๊าซคาร์บอนไดออกไซด์ และก๊าซมีเทน การคำนวณ ้ ต้องทราบ**ปริมาณของน้ำเสียที่นำไปบำบัดต่อปี**เป็นอย่างน้อย ซึ่งแบ่งการคำนวณตามประเภทของระบบบำบัด น้ำเสีย เป็น 2 วิธี ดังนี้

วิลีที่ 1 ระบบบำบัดแบบเติมอากาศ

สมการ (26)

$$E_{CO2} = V \times 3.785712 \times \frac{BOD_5}{0.7} \times \frac{44}{12} \times 10^{-9}$$

 $E_{CO2} = ปริมาณ <math>CO_2$  ที่รั่วซึมต่อปี  $(tonCO_2/yr)$ 

= ปริมาณน้ำเสียที่บำบัดต่อปี (gallon/yr)

BOD<sub>5</sub> = ค่า BOD ที่ 5 วัน (mg/L)

วิธีที่ 2 ระบบบำบัดแบบไม่เติมอากาศ

สมการ (27)

 $E_{CH4} = [(V \times COD - S] \times B \times MCF \times 0.001]$ 

โดยที่

 $E_{CH4} = ปริมาณก๊าซมีเทนที่รั่วซึมต่อปี (tonCH<sub>4</sub>/yr)$ 

= ปริมาณน้ำเสียที่บำบัดต่อปี  $(m^3/vr)$ 

= ปริมาณกากตะกอนที่ถูกกำจัด (kg COD/yr)

=  $0.25 \text{ kg CH}_4/\text{kg COD}$ 

COD = ค่าเฉลี่ยภาระความสกปรกของน้ำเสีย (kg/m³)

MCF = Methane correction factor จากตาราง e-2

# 4.3.3 การรั่วซึมของก๊าซที่มีฟลูออไรด์เป็นองค์ประกอบ (Fluorinated Fugitive Emissions)

เกิดจากการรั่วซึมของน้ำยาทำความเย็นที่มีฟลูออไรด์เป็นองค์ประกอบ เช่น HFCs PFCs และ  ${\sf SF}_6$ ์ ซึ่งการคำนวณต้องทราบ**ชนิดของน้ำยาทำความเย็นที่เติม**เป็นอย่างน้อย แบ่งเป็น 2 วิธี ดังนี้

## วิธีที่ 1 กรณีทราบปริมาณของน้ำยาที่เติม

โดยที่

 $E_{Fluorinated\ gas}$  = ปริมาณ Fluorinated gas ที่รั่วซึมต่อปี (CO $_2$ e/yr)

V = ปริมาณของน้ำยาที่เติมต่อปี (kg)

GWP = ค่า GWP ของน้ำยาทำความเย็น จากตาราง e-4

 $E_{Fluorinated gas} = V \times GWP$ 

2 กรณีไม่ทราบปริมาณของน้ำยาที่เติม

สมการ (28)

 $E_{Fluorinated gas} = C \times EF_{Operationg} \times 0.001 \times N \times GWP$ 

โดยที่

 $E_{Fluorinated gas} = ปริมาณ Fluorinated gas ที่รั่วซึมต่อปี (CO<sub>2</sub>e/yr)$ 

C = ความจุของอุปกรณ์ที่เติม Fluorinated gas

EF<sub>Operations</sub> = ค่าการรั่วซึมของอุปกรณ์ต่อปี จากตาราง e-3

N = จำนวนอุปกรณ์

GWP = ค่า GWP ของน้ำยาทำความเย็น จากตาราง e-4

วิธีที่ 3 การรั่วซึมจากอุปกรณ์ไฟฟ้าบางประเภท

โดยที่

 $E_{Fluorinated gas} = ปริมาณ Fluorinated gas ที่รั่วซึมต่อปี (CO_2e/yr)$ 

V = ปริมาณของน้ำยาที่เติมต่อปี (kg)

GWP = ค่า GWP ของน้ำยาทำความเย็น จากตาราง e-4

 $E_{Fluorinated gas} = V \times GWP$ 

4.4 ก๊าซเรือนกระจกทางอ้อมจากการใช้พลังงาน (Energy Indirect Emissions)

เกิดจากการนำเข้าพลังงานไฟฟ้า ไอน้ำ ความร้อน หรือน้ำหล่อเย็นจากผู้ผลิตหรือผู้จัดหาพลังงานภายนอก เพื่อนำมาใช้ขับเคลื่อนอุปกรณ์ เครื่องมือต่าง ๆ ในกิจการสำรวจและผลิตของผู้รับสัมปทาน หรือผู้รับสัญญา แบ่งปันผลผลิต หรือผู้รับสัญญาจ้างบริการ สามารถคำนวณได้ดังสมการ

สมการ (29)

 $E_{GHG}$  = Energy consumption x EF

หมายเหตุ

- 1) กรณีซื้อหรือนำเข้าไฟฟ้าจากการไฟฟ้าส่วนภูมิภาค กำหนด EF = 0.5813 kCO<sub>2</sub>/kwh
- 2) กรณีซื้อหรือนำเข้าไฟฟ้าจากโรงไฟฟ้าเอกชน กำหนด EF ตามผู้ผลิต หากไม่ทราบให้ใช้ 0.5813 kgCO<sub>2</sub>e/kwh

# 5. ค่าสัมประสิทธิ์การปล่อยก๊าซเรือนกระจก (Emission factor : EF)

ตารางที่ a-1 ค่า  $\mathsf{EF}_\mathsf{GHG}$  สำหรับคำนวณ Stationary Combustion

| ชนิดเชื้อเพลิง           | หน่วย | EF <sub>GHG</sub> (Kg CO <sub>2</sub> e/หน่วย) | อ้างอิง         |
|--------------------------|-------|------------------------------------------------|-----------------|
| ก๊าซธรรมชาติ             | MJ    | 0.0099                                         | Ecoinvent 2.0   |
| ก๊าซธรรมชาติ             | Scf   | 0.0670                                         | IPCC            |
| ก๊าซหุงต้ม (LPG)         | MJ    | 0.0612                                         | Frankin US 98   |
| ก๊าซหุงต้ม (LPG)         | L     | 1.6812                                         | IPCC            |
| ก๊าซหุงต้ม (LPG)         | Kg    | 3.1100                                         | IPCC            |
| ถ่านหิน (Coking Coal)    | Kg    | 2.6268                                         | IPCC            |
| ถ่านหินลิกไนต์ (Lignite) | Kg    | 1.0624                                         | IPCC            |
| ถ่านหินบิทูมินัสอื่น ๆ   | Kg    | 2.5070                                         | IPCC            |
| ดีเซล                    | L     | 2.7080                                         | IPCC 2007, DEDE |
| น้ำมันเตา                | Kg    | 0.6200                                         | LCA DK          |
| น้ำมันเตา                | MJ    | 0.0926                                         | Ecolnvent 2.0   |
| น้ำมันเตา                | L     | 3.0883                                         | IPCC            |
| น้ำมันก๊าซ (Kerosene)    | L     | 2.4777                                         | IPCC            |
| สารชีวมวล (Biomass)      | Kg    | 0.6930                                         | IPCC            |

ที่มา : แนวทางการประเมินคาร์บอนฟุตพริ้นท์ขององค์กร องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน), 2554

**ตารางที่ a-2** ค่า  $\mathsf{EF}_{\mathsf{CO2}}$  , $\mathsf{EF}_{\mathsf{CH4}}$  และ  $\mathsf{EF}_{\mathsf{N2O}}$  สำหรับคำนวณ Stationary Combustion

|                                | EF                            | CO2                           | EF <sub>CH4</sub>             |                               | EF <sub>N2O</sub>             |                               |
|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| ชนิดเชื้อเพลิง                 | Tonnes<br>/10 <sup>12</sup> J |
|                                | (LHV)                         | (HHV)                         | (LHV)                         | (HHV)                         | (LHV)                         | (HHV)                         |
| Anthracite                     |                               |                               | 1.00E-03                      | 9.50E-04                      | 1.50E-03                      | 1.42E-03                      |
| Anthracite Coal                | 103.4                         | 98.2                          |                               |                               |                               |                               |
| Asphalt and Road Oil           | 75.4                          | 71.7                          |                               |                               |                               |                               |
| Aviation Gas                   | 69.0                          | 65.6                          |                               |                               |                               |                               |
| Aviation Gasoline/Jet Gasoline |                               |                               | 3.00E-03                      | 2.85E-03                      | 6.00E-04                      | 5.70E-04                      |
| Biogasoline                    |                               |                               | 3.00E-03                      | 2.85E-03                      | 6.00E-04                      | 5.70E-04                      |
| Biodiesels                     |                               |                               | 3.00E-03                      | 2.85E-03                      | 6.00E-04                      | 5.70E-04                      |
| Bitumen                        | 80.7                          | 76.6                          | 3.00E-03                      | 2.85E-03                      | 6.00E-04                      | 5.70E-04                      |
| Bituminous Coal                | 93.2                          | 88.6                          |                               |                               |                               |                               |
| Charcoal                       |                               |                               | 2.00E-01                      | 1.90E-01                      | 4.00E-03                      | 3.80E-03                      |
| Coal Tar                       |                               |                               | 1.00E-03                      | 9.50E-04                      | 1.50E-03                      | 1.42E-03                      |
| Coke                           | 113.7                         | 108.0                         |                               |                               |                               |                               |

ตารางที่ a-2 ค่า  ${\sf EF}_{\sf CO2}$  , ${\sf EF}_{\sf CH4}$  และ  ${\sf EF}_{\sf N2O}$  สำหรับคำนวณ Stationary Combustion (ต่อ)

|                               | EF                  | CO2                 | EF                  | CH4                 | EF <sub>N2O</sub>   |                     |  |
|-------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|
| a a a                         | Tonnes              | Tonnes              | Tonnes              | Tonnes              | Tonnes              | Tonnes              |  |
| ชนิดเชื้อเพลิง                | /10 <sup>12</sup> J |  |
|                               | (LHV)               | (HHV)               | (LHV)               | (HHV)               | (LHV)               | (HHV)               |  |
| Coke Oven Gas                 |                     |                     | 1.00E-03            | 9.00E-04            | 1.00E-04            | 9.00E-05            |  |
| Coke (CokeOven/Lignite/Gas)   | 107.1               | 101.7               | 1.00E-03            | 9.50E-04            | 1.50E-03            | 1.42E-03            |  |
| Coking Coal                   |                     |                     | 1.00E-03            | 9.50E-04            | 1.50E-03            | 1.42E-03            |  |
| Crude Oil                     | 74.4                | 70.7                | 3.00E-03            | 2.85E-03            | 6.00E-04            | 5.70E-04            |  |
| Ethane                        |                     |                     | 1.00E-03            | 9.50E-04            | 6.00E-04            | 5.70E-04            |  |
| Distillate Fuel (#1,2,4)      | 73.0                | 69.3                |                     |                     |                     |                     |  |
|                               | 94.5                | 89.8                |                     |                     |                     |                     |  |
| Electric Utility Coal         | 94.2                | 89.5                |                     |                     |                     |                     |  |
| Ethanol                       | 70.8                | 67.2                |                     |                     |                     |                     |  |
| Flexicoker Low BTU Gas        | 119.5               | 107.6               |                     |                     |                     |                     |  |
| Fuel Oil #4                   | 76.0                | 72.2                |                     |                     |                     |                     |  |
| Gas Coke                      |                     |                     | 1.00E-03            | 9.50E-04            | 1.00E-04            | 9.50E-05            |  |
| Gas/Diesel Oil                | 74.1                | 70.4                | 3.00E-03            | 2.85E-03            | 6.00E-04            | 5.70E-04            |  |
| Industrial Coking Coal        | 93.5                | 88.8                |                     |                     |                     |                     |  |
| Jet Fuel                      | 70.7                | 67.2                |                     |                     |                     |                     |  |
| Jet Gasoline                  |                     |                     | 3.00E-03            | 2.85E-03            | 6.00E-04            | 5.70E-04            |  |
| Kerosene                      | 72.1                | 68.5                | 3.00E-03            | 2.85E-03            | 6.00E-04            | 5.70E-04            |  |
| Landfill Gas                  |                     |                     | 1.00E-03            | 9.00E-04            | 1.00E-04            | 9.00E-05            |  |
| 1::                           | 96.2                | 91.4                | 1.00E-03            | 9.50E-04            | 1.50E-03            | 1.42E-03            |  |
| Lignite                       | 63.0                | 59.9                |                     |                     |                     |                     |  |
| Liquefied Petroleum Gas (LPG) | 62.1                | 59.0                | 1.00E-03            | 9.50E-04            | 1.00E-04            | 9.50E-05            |  |
| Liquefied Petroleum Gas (LPG) | 63.0                | 59.9                |                     |                     |                     |                     |  |
| Lubricants                    | 74.0                | 70.3                | 3.00E-03            | 2.85E-03            | 6.00E-04            | 5.70E-04            |  |
| Butane (normal)               | 64.8                | 61.5                |                     |                     |                     |                     |  |
| Ethane                        | 59.4                | 56.5                |                     |                     |                     |                     |  |
| Isobutane                     | 64.9                | 61.7                |                     |                     |                     |                     |  |
| Propane                       | 62.9                | 59.8                |                     |                     |                     |                     |  |
| Miscellaneous Product         | 74.4                | 70.7                |                     |                     |                     |                     |  |
| Motor Gasoline (Petrol)       | 70.7                | 67.2                | 3.00E-03            | 2.85E-03            | 6.00E-04            | 5.70E-04            |  |
| Naphtha (<401°F)              | 66.4                | 63.0                | 3.00E-03            | 2.85E-03            | 6.00E-04            | 5.70E-04            |  |
| Nat. Gas Liquids              | 64.2                | 61.0                | 3.00E-03            | 2.85E-03            | 6.00E-04            | 5.70E-04            |  |

**ตารางที่ a-2** ค่า  $EF_{CO2}$ , $EF_{CH4}$  และ  $EF_{N2O}$  สำหรับคำนวณ Stationary Combustion (ต่อ)

|                             | EF                                     | CO2                                    | EF                                     | CH4                                    | EF <sub>N2O</sub>                      |                                        |  |
|-----------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--|
| ชนิดเชื้อเพลิง              | Tonnes<br>/10 <sup>12</sup> J<br>(LHV) | Tonnes<br>/10 <sup>12</sup> J<br>(HHV) | Tonnes<br>/10 <sup>12</sup> J<br>(LHV) | Tonnes<br>/10 <sup>12</sup> J<br>(HHV) | Tonnes<br>/10 <sup>12</sup> J<br>(LHV) | Tonnes<br>/10 <sup>12</sup> J<br>(HHV) |  |
| Natural Gas (Pipeline)      | 55.9                                   | 50.3                                   | 1.00E-03                               | 9.00E-04                               | 1.00E-04                               | 9.00E-05                               |  |
| Natural Gas (Flared – 1,130 | 57.6                                   | 51.9                                   |                                        |                                        |                                        |                                        |  |
| Btu/scf basis)              |                                        |                                        |                                        |                                        |                                        |                                        |  |
| Other Biogas                |                                        |                                        | 1.00E-03                               | 9.00E-04                               | 1.00E-04                               | 9.00E-05                               |  |
| Other Bituminous Coal       | 94.6                                   | 89.9                                   | 1.00E-03                               | 9.50E-04                               | 1.50E-03                               | 1.42E-03                               |  |
| Other Industrial Coal       | 93.8                                   | 89.1                                   |                                        |                                        |                                        |                                        |  |
| Other Kerosene              |                                        |                                        | 3.00E-03                               | 2.85E-03                               | 6.00E-04                               | 5.70E-04                               |  |
| Other Liquid Biofuels       |                                        |                                        | 3.00E-03                               | 2.85E-03                               | 6.00E-04                               | 5.70E-04                               |  |
| Other Petroleum Products    |                                        |                                        | 3.00E-03                               | 2.85E-03                               | 6.00E-04                               | 5.70E-04                               |  |
| Other Primary Solid Biomass |                                        |                                        | 3.00E-02                               | 2.85E-02                               | 4.00E-03                               | 3.80E-03                               |  |
| Oil Shale and Tar Sands     | 106.7                                  | 101.4                                  | 1.00E-03                               | 9.50E-04                               | 1.50E-03                               | 1.42E-03                               |  |
| Other Oil (>401°F)          | 73.0                                   | 69.3                                   |                                        |                                        |                                        |                                        |  |
| Peat                        | 106.0                                  | 100.7                                  | 1.00E-03                               | 9.50E-04                               | 1.50E-03                               | 1.42E-03                               |  |
| Pentanes Plus               | 66.7                                   | 63.4                                   |                                        |                                        |                                        |                                        |  |
| Petrochemical Feedstocks    | 70.9                                   | 67.3                                   |                                        |                                        |                                        |                                        |  |
| Petroleum Coke              | 101.9                                  | 96.8                                   | 3.00E-03                               | 2.85E-03                               | 6.00E-04                               | 5.70E-04                               |  |
| Paraffin Waxes              |                                        |                                        | 3.00E-03                               | 2.85E-03                               | 6.00E-04                               | 5.70E-04                               |  |
| Petroleum Waxes             | 95.1                                   | 90.4                                   | 3.00E-02                               | 2.85E-02                               | 4.00E-03                               | 3.80E-03                               |  |
| Refinery Feedstocks         |                                        |                                        | 3.00E-03                               | 2.85E-03                               | 6.00E-04                               | 5.70E-04                               |  |
| Refinery Gas                | 57.6                                   | 51.8                                   | 1.00E-03                               | 9.00E-04                               | 1.00E-04                               | 9.00E-05                               |  |
| Residential/Commercial Coal | 95.1                                   | 90.4                                   |                                        |                                        |                                        |                                        |  |
| Residual Fuel Oil           |                                        |                                        | 3.00E-03                               | 2.85E-03                               | 6.00E-04                               | 5.70E-04                               |  |
| Residual Oil #5             | 77.8                                   | 73.9                                   |                                        |                                        |                                        |                                        |  |
| Residual Oil #6             | 78.6                                   | 74.7                                   |                                        |                                        |                                        |                                        |  |
| Shale Oil                   | 85.8                                   | 81.5                                   |                                        |                                        |                                        |                                        |  |
| Sludge Gas                  | 73.3                                   | 69.7                                   | 3.00E-03                               | 2.85E-03                               | 6.00E-04                               | 5.70E-04                               |  |
| Sub-Bituminous Coal         |                                        |                                        | 1.00E-03                               | 9.50E-04                               | 1.50E-03                               | 1.42E-03                               |  |
| Special Naphtha             | 72.7                                   | 69.0                                   |                                        |                                        |                                        |                                        |  |
| Still Gas                   | 67.6                                   | 60.9                                   |                                        |                                        |                                        |                                        |  |
| Sub-bituminous Coal         | 96.9                                   | 92.0                                   |                                        |                                        |                                        |                                        |  |
| Tires/Tire Derived Fuel     | 72.5                                   | 68.8                                   |                                        |                                        |                                        |                                        |  |
| Unfinished Oils             | 74.4                                   | 70.7                                   |                                        |                                        |                                        |                                        |  |
| Waste Oil                   |                                        |                                        | 1.00E-03                               | 9.00E-04                               | 1.00E-04                               | 9.00E-05                               |  |
| Waste Wood/Wood             |                                        |                                        | 3.00E-02                               | 2.85E-02                               | 4.00E-03                               | 3.80E-03                               |  |

**ตารางที่ a-3** ค่า Equipment Thermal Efficiency (ETT) ของอุปกรณ์สำหรับคำนวณ Stationary Combustion

|                                                                       |                | Original Units Converted Units |                              |                          |           |           |                          |
|-----------------------------------------------------------------------|----------------|--------------------------------|------------------------------|--------------------------|-----------|-----------|--------------------------|
| Generator Type                                                        | Fuel Type      | ŀ                              | HHV Basis                    |                          |           | LHV Basis |                          |
| deficiation Type                                                      | ruet rype      | Btu/kW-hr                      | Btu/hp-hr                    | J (Input)/<br>J (Output) | Btu/kW-hr | Btu/hp-hr | J (Input)/<br>J (Output) |
| Advanced Combustion Turbine                                           | Not Specified  | 9,289                          | 6,927                        | 2.722                    |           |           |                          |
| Advanced Gas / Oil Combined Cycle                                     | Not Specified  | 6,752                          | 5,035                        | 1.979                    |           |           |                          |
| Advanced Gas / Oil Combined                                           | Not Specified  | 8,613                          | 6,423                        | 2.524                    |           |           |                          |
| Cycle with Carbon Sequestration                                       |                |                                |                              |                          |           |           |                          |
| Biomass                                                               | Not Specified  | 8,911                          | 6,645                        | 2.612                    |           |           |                          |
| Combined Heat and Power                                               | Natural Gas    | 5,000 -                        | 3,729 –                      | 1.465 –                  | 4,750 -   | 3,542 –   | 1.392 –                  |
|                                                                       |                | 6,000                          | 4,474                        | 1.758                    | 5,700     | 4,250     | 1.671                    |
| Combined Cycle Single Shaft                                           | Natural Gas    | 8,952                          | 6,676                        | 2.624                    | 8,057     | 6,008     | 2.361                    |
| Combined Cycle Steam Turbine with Supplemental Firing                 | Natural Gas    | 10,229                         | 7,628                        | 2.998                    | 9,206     | 6,865     | 2.698                    |
| Conventional Combustion Turbine                                       | Not Specified  | 10,833                         | 8,078                        | 3.175                    |           |           |                          |
| Conventional Gas / Oil Combined  Cycle                                | Not Specified  | 7,196                          | 5,366                        | 2.109                    |           |           |                          |
| Distributed Generation – Baseload                                     | Not Specified  | 9,200                          | 6,860                        | 2.696                    |           |           |                          |
| Distributed Generation – Peak                                         | Not Specified  | 10,257                         | 7,649                        | 3.006                    |           |           |                          |
| Fuel Cells                                                            | Not Specified  | 7,930                          | 5,913                        | 2.324                    |           |           |                          |
|                                                                       | Liquefied      | 13,503                         | 10,069                       | 3.957                    | 12,828    | 9,566     | 3.759                    |
| Gas Turbine                                                           | Propane Gas    |                                |                              |                          |           |           |                          |
|                                                                       | Natural Gas    | 13,918                         | 10,379                       | 4.079                    | 12,526    | 9,341     | 3.671                    |
| Gas Turbine                                                           | Refinery Gas   | 15,000                         | 11,186                       | 4.396                    | 13,500    | 10,067    | 3.956                    |
| Geothermal                                                            | Not Specified  | 35,376                         | 26,380                       | 10.368                   |           |           |                          |
| Integrated Coal-Gasification Combined Cycle                           | Not Specified  | 8,765                          | 6,536                        | 2.569                    |           |           |                          |
| Integrated Coal-Gasification Combined Cycle with Carbon Sequestration | Not Specified  | 10,781                         | 8,039                        | 3.160                    |           |           |                          |
| ·                                                                     | Gasoline       | 9,387<br>(converted)           | 7,000<br>(original<br>units) | 2.751                    | 8,918     | 6,650     | 2.614                    |
| Internal Combustion Engine                                            | Natural Gas    | 10,538                         | 7,858                        | 3.088                    | 9,484     | 7,072     | 2.780                    |
|                                                                       | No. 2 Fuel Oil | 10,847                         | 8,089                        | 3.179                    | 10,305    | 7,684     | 3.020                    |
|                                                                       | Refinery Gas   | 14,000                         | 10,440                       | 4.103                    | 12,600    | 9,396     | 3.693                    |

**ตารางที่ a-3** ค่า Equipment Thermal Efficiency (ETT) ของอุปกรณ์สำหรับคำนวณ Stationary Combustion (ต่อ)

|                        |                | Original Units |           | Co         | nverted Units |           |            |  |
|------------------------|----------------|----------------|-----------|------------|---------------|-----------|------------|--|
| Generator Type         | Fuel Type      | HHV Basis      |           |            | LHV Basis     |           |            |  |
| deficiator Type        | r det rype     | Btu/kW-hr      | Btu/hp-hr | J (Input)/ | Btu/kW-hr     | Btu/hp-hr | J (Input)/ |  |
|                        |                |                |           | J (Output) |               |           | J (Output) |  |
| Scrubbed Coal – New    | Not Specified  | 9,200          | 6,860     | 2.696      |               |           |            |  |
|                        | Coal           | 11,792         | 8,793     | 3.456      | 11,202        | 8,354     | 3.283      |  |
|                        | (Anthracite)   |                |           |            |               |           |            |  |
|                        | Coal Bitu      | 9,941          | 7,413     | 2.913      | 9,444         | 7,042     | 2.768      |  |
| Steam Turbine (Boiler) | (minous)       |                |           |            |               |           |            |  |
|                        | Coal (Lignite) | 10,933         | 8,153     | 3.204      | 10,386        | 7,745     | 3.044      |  |
|                        | Coal (Sub -    | 10,354         | 7,721     | 3.034      | 9,836         | 7,335     | 2.883      |  |
|                        | Bituminous)    |                |           |            |               |           |            |  |
|                        | Liquefied      | 14,200         | 10,589    | 4.162      | 13,490        | 10,059    | 3.954      |  |
|                        | Propane Gas    |                |           |            |               |           |            |  |
|                        | Natural Gas    | 10,502         | 7,831     | 3.078      | 9,452         | 7,048     | 2.770      |  |
|                        | No. 2 Fuel     | 8,653          | 6,453     | 2.536      | 8,220         | 6,130     | 2.409      |  |
|                        | Oil            |                |           |            |               |           |            |  |
| Steam Turbine (Boiler) | Refuse,        | 13,706         | 10,221    | 4.017      | 13,021        | 9,710     | 3.816      |  |
|                        | Bagasses,      |                |           |            |               |           |            |  |
|                        | non-wood       |                |           |            |               |           |            |  |
|                        | Wood and       | 15,725         | 11,726    | 4.609      | 14,939        | 11,140    | 4.378      |  |
|                        | Wood Waste     |                |           |            |               |           |            |  |

ตารางที่ b-1 ค่า  $\mathrm{EF}_{\mathrm{GHG}}$  สำหรับคำนวณ Mobile Combustion

| ชนิดเชื้อเพลิง หน่วย |    | EF <sub>GHG</sub> (Kg CO <sub>2</sub> e/หน่วย) | อ้างอิง                                |  |  |
|----------------------|----|------------------------------------------------|----------------------------------------|--|--|
| ดีเซล                | L  | 2.7446                                         | IPCC                                   |  |  |
| ก๊าซธรรมชาติ (CNG)   | Kg | 2.2472                                         | IPCC                                   |  |  |
| ก๊าซหุงต้ม (LPG)     | L  | 1.5362                                         | IPCC                                   |  |  |
| ก๊าซหุงต้ม (LPG)     | Kg | 2.8400                                         | IPCC                                   |  |  |
| เบนซิน               | L  | 2.1896                                         | IPCC                                   |  |  |
| ไบโอดีเซล            | L  | 2.6265                                         | U.S. Energy Information Administration |  |  |

ที่มา : แนวทางการประเมินคาร์บอนฟุตพริ้นท์ขององค์กร องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน), 2554

ตารางที่ b-2 อัตราการสิ้นเปลืองเชื้อเพลิง (FE) ประเภทรถยนต์ สำหรับคำนวณ Mobile Combustion

| ประเภทรถยนต์                                          | ประเภท<br>เชื้อเพลิง | หน่วย | FE     | อ้างอิง                               |
|-------------------------------------------------------|----------------------|-------|--------|---------------------------------------|
| รถยนต์ขนาดเล็ก (1500 cc)                              | เบนซิน               | km/L  | 17.770 | กรมควบคุมมลพิษ, 2551                  |
| รถยนต์ขนาดกลาง (1600 cc)                              | เบนซิน               | km/L  | 15.238 | กรมควบคุมมลพิษ, 2551                  |
| รถยนต์ขนาดกลาง (1800 cc)                              | เบนซิน               | km/L  | 13.796 | กรมควบคุมมลพิษ, 2551                  |
| รถยนต์ขนาดใหญ่ (2000 cc)                              | เบนซิน               | km/L  | 12.248 | กรมควบคุมมลพิษ, 2551                  |
| รถยนต์เฉลี่ยทุกขนาด                                   | เบนซิน               | km/L  | 14.763 | กรมควบคุมมลพิษ, 2551                  |
| รถกระบะบรรทุกเฉลี่ย                                   | ดีเซล                | km/L  | 6.369  | American Petroleum<br>Institute, 2004 |
| รถกระบะส่วนบุคคลขนาด 1 ตัน                            | ดีเซล                | km/L  | 11.111 | American Petroleum<br>Institute, 2004 |
| รถ NGV                                                | CNG                  | km/kg | 11.905 | American Petroleum<br>Institute, 2004 |
| รถ LPG                                                | LPG                  | km/L  | 8.929  | American Petroleum<br>Institute, 2004 |
| รถตู้โดยสาร                                           | ดีเซล                | km/L  | 10.204 | American Petroleum<br>Institute, 2004 |
| รถโดยสารประจำทาง                                      | ดีเซล                | km/L  | 2.850  | American Petroleum<br>Institute, 2004 |
| รถจักรยานยนต์ 4 จังหวะ เครื่องยนต์ขนาดเล็กกว่า 125 cc | เบนซิน               | km/L  | 36.625 | กรมควบคุมมลพิษ, 2551                  |
| รถจักรยานยนต์ 4 จังหวะ เครื่องยนต์ขนาด 125 cc         | เบนซิน               | km/L  | 38.655 | กรมควบคุมมลพิษ, 2551                  |
| รถจักรยานยนต์ 2 จังหวะ เครื่องยนต์ขนาด 120 cc         | เบนซิน               | km/L  | 37.245 | กรมควบคุมมลพิษ, 2551                  |
| รถจักรยานยนต์ 2 จังหวะ เครื่องยนต์ขนาด 150 cc         | เบนซิน               | km/L  | 27.625 | กรมควบคุมมลพิษ, 2551                  |
| รถจักรยานยนต์ 4 จังหวะเฉลี่ย ทุกขนาด                  | เบนซิน               | km/L  | 37.640 | กรมควบคุมมลพิษ                        |
| รถจักรยานยนต์ 2 จังหวะเฉลี่ย ทุกขนาด                  | เบนซิน               | km/L  | 32.435 | กรมควบคุมมลพิษ                        |

ที่มา : แนวทางการประเมินคาร์บอนฟุตพริ้นท์ขององค์กร องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน, 2554)

**ตารางที่ b-3** ค่า  $\mathrm{EF}_{\mathsf{C}}$  สำหรับคำนวณ Mobile Combustion

| ประเภทรถยนต์                             | หน่วย  | EF <sub>C</sub><br>(Kg CO₂e⁄<br>หน่วย) | อ้างอิง                                 |
|------------------------------------------|--------|----------------------------------------|-----------------------------------------|
| รถกระบะบรรทุก 10 ล้อ B5 16 ตัน No load   | km     | 0.5429                                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 10 ล้อ B5 16 ตัน 50% load  | ton-km | 0.0798                                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 10 ล้อ B5 16 ตัน 75% load  | ton-km | 0.0552                                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 10 ล้อ B5 16 ตัน Full load | ton-km | 0.0425                                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 10 ล้อ16 ตัน No load       | km     | 0.6160                                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 10 ล้อ16 ตัน 50% Load      | ton-km | 0.1012                                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 10 ล้อ16 ตัน 75% Load      | ton-km | 0.0719                                 | TH database, classified and uncertified |

**ตารางที่ b-3** ค่า  $\mathrm{EF}_{\mathsf{C}}$  สำหรับคำนวณ Mobile Combustion (ต่อ)

| ประเภทรถยนต์                                  | หน่วย  | EF <sub>C</sub>        | อ้างอิง                                 |
|-----------------------------------------------|--------|------------------------|-----------------------------------------|
|                                               |        | (Kg CO <sub>2</sub> e/ |                                         |
|                                               |        | หน่วย)                 |                                         |
| รถกระบะบรรทุก 10 ล้อ16 ตัน Full load          | ton-km | 0.0555                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 4 ล้อ 7 ตัน No load             | km     | 0.3270                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 4 ล้อ 7 ตัน 50% Load            | ton-km | 0.2815                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 4 ล้อ 7 ตัน 75 % Load           | ton-km | 0.1920                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 4 ล้อ 7 ตัน Full load           | ton-km | 0.1472                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 6 ล้อขนาดเล็ก 8.5 ตัน No load   | km     | 0.4461                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 6 ล้อขนาดเล็ก 8.5 ตัน 50% load  | ton-km | 0.1298                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 6 ล้อขนาดเล็ก 8.5 ตัน 75% load  | ton-km | 0.0911                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 6 ล้อขนาดเล็ก 8.5 ตัน Full load | ton-km | 0.0705                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 6 ล้อขนาดใหญ่ 11 ตัน No load    | km     | 0.5139                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 6 ล้อขนาดใหญ่ 11 ตัน 50% load   | ton-km | 0.1127                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 6 ล้อขนาดใหญ่ 11 ตัน 75% load   | ton-km | 0.0800                 | TH database, classified and uncertified |
| รถกระบะบรรทุก 6 ล้อขนาดใหญ่ 11 ตัน Full load  | ton-km | 0.0639                 | TH database, classified and uncertified |
| รถกระบะบรรทุกกึ่งพ่วง 18 ล้อ 32 ตัน No load   | km     | 0.9065                 | TH database, classified and uncertified |
| รถกระบะบรรทุกกึ่งพ่วง 18 ล้อ 32 ตัน 50% load  | ton-km | 0.0830                 | TH database, classified and uncertified |
| รถกระบะบรรทุกกึ่งพ่วง 18 ล้อ 32 ตัน 75% load  | ton-km | 0.0588                 | TH database, classified and uncertified |
| รถกระบะบรรทุกกึ่งพ่วง 18 ล้อ 32 ตัน Full load | ton-km | 0.0459                 | TH database, classified and uncertified |
| รถกระบะบรรทุกพ่วง 20 ล้อ 32 ตัน No load       | km     | 0.8773                 | TH database, classified and uncertified |
| รถกระบะบรรทุกพ่วง 20 ล้อ 32 ตัน 50% load      | ton-km | 0.0869                 | TH database, classified and uncertified |
| รถกระบะบรรทุกพ่วง 20 ล้อ 32 ตัน 75% load      | ton-km | 0.0615                 | TH database, classified and uncertified |
| รถกระบะบรรทุกพ่วง 20 ล้อ 32 ตัน Full load     | ton-km | 0.0464                 | TH database, classified and uncertified |
| รถกระบะบรรทุกพ่วง 22 ล้อ 32 ตัน No load       | km     | 1.0655                 | TH database, classified and uncertified |
| รถกระบะบรรทุกพ่วง 22 ล้อ 32 ตัน 50% load      | ton-km | 0.0896                 | TH database, classified and uncertified |
| รถกระบะบรรทุกพ่วง 22 ล้อ 32 ตัน 75% load      | ton-km | 0.0618                 | TH database, classified and uncertified |
| รถกระบะบรรทุกพ่วง 22 ล้อ 32 ตัน Full load     | ton-km | 0.0475                 | TH database, classified and uncertified |
| รถตู้บรรทุก 10 ล้อ 16 ตัน No load             | km     | 0.6001                 | TH database, classified and uncertified |
| รถตู้บรรทุก 10 ล้อ 16 ตัน 50% load            | ton-km | 0.0887                 | TH database, classified and uncertified |
| รถตู้บรรทุก 10 ล้อ 16 ตัน 75% load            | ton-km | 0.0614                 | TH database, classified and uncertified |
| รถตู้บรรทุก 10 ล้อ 16 ตัน Full load           | ton-km | 0.0473                 | TH database, classified and uncertified |
| รถตู้บรรทุก 4 ล้อ 7 ตัน No load               | km     | 0.3492                 | TH database, classified and uncertified |
| รถตู้บรรทุก 4 ล้อ 7 ตัน 50% load              | ton-km | 0.3546                 | TH database, classified and uncertified |
| รถตู้บรรทุก 4 ล้อ 7 ตัน 75% load              | ton-km | 0.2508                 | TH database, classified and uncertified |

**ตารางที่ b-3** ค่า  $\mathrm{EF}_{\mathsf{C}}$  สำหรับคำนวณ Mobile Combustion (ต่อ)

| ประเภทรถยนต์                                | หน่วย  | <b>EF</b> <sub>C</sub> | อ้างอิง                                 |
|---------------------------------------------|--------|------------------------|-----------------------------------------|
|                                             |        | (Kg CO <sub>2</sub> e/ |                                         |
|                                             |        | หน่วย)                 |                                         |
| รถตู้บรรทุก 4 ล้อ 7 ตัน Full load           | ton-km | 0.1913                 | TH database, classified and uncertified |
| รถตู้บรรทุก 4 ล้อขนาดเล็ก 1.5 ตัน No load   | km     | 0.2523                 | TH database, classified and uncertified |
| รถตู้บรรทุก 4 ล้อขนาดเล็ก 1.5 ตัน 50% load  | ton-km | 0.3970                 | TH database, classified and uncertified |
| รถตู้บรรทุก 4 ล้อขนาดเล็ก 1.5 ตัน 75% load  | ton-km | 0.2823                 | TH database, classified and uncertified |
| รถตู้บรรทุก 4 ล้อขนาดเล็ก 1.5 ตัน Full load | ton-km | 0.2247                 | TH database, classified and uncertified |
| รถตู้บรรทุก 6 ล้อขนาดเล็ก 8.5 ตัน No load   | km     | 0.4248                 | TH database, classified and uncertified |
| รถตู้บรรทุก 6 ล้อขนาดเล็ก 8.5 ตัน 50% load  | ton-km | 0.1247                 | TH database, classified and uncertified |
| รถตู้บรรทุก 6 ล้อขนาดเล็ก 8.5 ตัน 75% load  | ton-km | 0.0877                 | TH database, classified and uncertified |
| รถตู้บรรทุก 6 ล้อขนาดเล็ก 8.5 ตัน Full load | ton-km | 0.0680                 | TH database, classified and uncertified |
| รถตู้บรรทุก 6 ล้อขนาดใหญ่ 11 ตัน No load    | km     | 0.4565                 | TH database, classified and uncertified |
| รถตู้บรรทุก 6 ล้อขนาดใหญ่ 11 ตัน 50% load   | ton-km | 0.1062                 | TH database, classified and uncertified |
| รถตู้บรรทุก 6 ล้อขนาดใหญ่ 11 ตัน 75% load   | ton-km | 0.0745                 | TH database, classified and uncertified |
| รถตู้บรรทุก 6 ล้อขนาดใหญ่ 11 ตัน Full load  | ton-km | 0.0569                 | TH database, classified and uncertified |
| รถตู้บรรทุกกึ่งพ่วง 18 ล้อ 32 ตัน No load   | km     | 0.8576                 | TH database, classified and uncertified |
| รถตู้บรรทุกกึ่งพ่วง 18 ล้อ 32 ตัน 50% load  | ton-km | 0.0831                 | TH database, classified and uncertified |
| รถตู้บรรทุกกึ่งพ่วง 18 ล้อ 32 ตัน 75% load  | ton-km | 0.0597                 | TH database, classified and uncertified |
| รถตู้บรรทุกกึ่งพ่วง 18 ล้อ 32 ตัน Full load | ton-km | 0.0465                 | TH database, classified and uncertified |
| รถตู้บรรทุกพ่วง 18 ล้อ 32 ตัน No load       | km     | 0.8216                 | TH database, classified and uncertified |
| รถตู้บรรทุกพ่วง 18 ล้อ 32 ตัน 50% Load      | ton-km | 0.0756                 | TH database, classified and uncertified |
| รถตู้บรรทุกพ่วง 18 ล้อ 32 ตัน 75% Load      | ton-km | 0.0536                 | TH database, classified and uncertified |
| รถตู้บรรทุกพ่วง 18 ล้อ 32 ตัน Full load     | ton-km | 0.0418                 | TH database, classified and uncertified |
| รถตู้บรรทุกเปิด 10 ล้อ 16 ตัน No load       | km     | 0.6320                 | TH database, classified and uncertified |
| รถตู้บรรทุกเปิด 10 ล้อ 16 ตัน 50% Load      | ton-km | 0.0917                 | TH database, classified and uncertified |
| รถตู้บรรทุกเปิด 10 ล้อ 16 ตัน 75% Load      | ton-km | 0.0642                 | TH database, classified and uncertified |
| รถตู้บรรทุกเปิด 10 ล้อ 16 ตัน Full load     | ton-km | 0.0509                 | TH database, classified and uncertified |

ที่มา : แนวทางการประเมินคาร์บอนฟุตพริ้นท์ขององค์กร องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน), 2554

ตารางที่ b-4 อัตราการสิ้นเปลืองเชื้อเพลิง (FE) ประเภทเรือ สำหรับคำนวณ Mobile Combustion

| ประเภทเรือ                               | Consumption at Full Power (tonne/day) |  |
|------------------------------------------|---------------------------------------|--|
|                                          | * GRT = Gross Registered Tonnage      |  |
| Solid bulk carriers                      | 20.186 + (0.00049 × GRT)              |  |
| Liquid bulk carriers                     | 14.685 + (0.00079 × GRT)              |  |
| General cargo                            | 9.8197 + (0.00143 × GRT)              |  |
| Container                                | 8.0552 + (0.00235 × GRT)              |  |
| Passenger/roll-on/roll-off (Ro-Ro)/cargo | 12.834 + (0.00156 × GRT)              |  |
| High speed ferry                         | 39.483 + (0.00972 × GRT)              |  |
| Inland cargo                             | 9.8197 + (0.00143 × GRT)              |  |
| Tugs                                     | 5.6511 + (0.01048 × GRT)              |  |
| Other ships                              | 9.7126 + (0.00091 × GRT)              |  |
| All ships                                | 16.263 + (0.001 x GRT)                |  |

ตารางที่ c-1 ค่าทั่วไปของ Upstream Gas Composition สำหรับคำนวณ Flare Emissions

| Con Common and          | Composition Volume (or mole) %          |                  |  |  |
|-------------------------|-----------------------------------------|------------------|--|--|
| Gas Component           | Raw or Produce Gas Gas Processing Plant |                  |  |  |
| CH <sub>4</sub>         | 80                                      | 91.9             |  |  |
| Non-methane hydrocarbon | 15 (C <sub>2</sub> H <sub>6</sub> )     | 6.84             |  |  |
|                         | 5 (C <sub>3</sub> H <sub>8</sub> )      | (MW unspecified) |  |  |
| $N_2$                   | -                                       | 0.68             |  |  |
| CO <sub>2</sub>         | -                                       | 0.58             |  |  |

ที่มา : American Petroleum Institute Compendium, 2009

**ตารางที่ c-2** ค่า  $\mathsf{EF}_{\mathsf{N2O}}$  สำหรับคำนวณ Flare Emission

| Flare Source                     | EF <sub>N2O</sub> | Uncertainty (%) | หน่วย                           |
|----------------------------------|-------------------|-----------------|---------------------------------|
| Flaring - gas production         | 5.9E-07 - 8.2E-07 | -10 to +1000    | tonnes/106 scf gas production   |
| Flaring - sweet gas processing   | 7.1E-07 – 9.6E-07 | -10 to +1000    | tonnes/106 scf raw gas feed     |
| Flaring - sour gas processing    | 1.5E-06 - 2.1E-06 | -10 to +1000    | tonnes /106 scf raw gas feed    |
| Flaring - conventional oil       | 1.0E-04 - 1.4E-04 | -10 to +1000    | tonnes/103 bbl conventional oil |
| Production                       |                   |                 | production                      |
| Flaring - heavy oil/cold bitumen | 7.3E-05 – 1.0E-04 | -10 to +1000    | tonnes/103 bbl heavy oil        |
| Production                       |                   |                 | production                      |
| Flaring - thermal oil production | 3.8E-05 - 5.2E-05 | -10 to +1000    | tonnes/103 bbl thermal          |
|                                  |                   |                 | bitumen production              |

**ตารางที่ d-1** ค่า EF<sub>CH4</sub> ของหน่วย Glycol Dehydrator สำหรับคำนวณ Process and vented Emissions

| Mode of Operation                       | EF <sub>CH4</sub> Original Units    | EF <sub>CH4</sub> Converted to Tonnes<br>per Gas Processed Basis |
|-----------------------------------------|-------------------------------------|------------------------------------------------------------------|
| Gas pump without a flash separator      | 82.63 tonne/yr per 10 <sup>6</sup>  | 0.006410 tonnes/10 <sup>6</sup> scf gas processed                |
|                                         | Nm³ /day gas processed              | 0.2264 tonnes /10 <sup>6</sup> m <sup>3</sup> gas processed      |
| Gas pump with a flash separator         | 1.98 tonne/ yr per 10 <sup>6</sup>  | 0.000154 tonnes/10 <sup>6</sup> scf gas processed                |
|                                         | Nm³ /day gas processed              | 0.00542 tonnes/10 <sup>6</sup> m <sup>3</sup> gas processed      |
| Electric pump without a flash separator | 21.46 tonne/ yr per 10 <sup>6</sup> | 0.001665 tonnes/10 <sup>6</sup> scf gas processed                |
|                                         | Nm³ /day gas processed              | 0.05879 tonnes/10 <sup>6</sup> m <sup>3</sup> gas processed      |
| Electric pump with a flash separator    | 1.64 tonne/ yr per 10 <sup>6</sup>  | 0.000127 tonnes/10 <sup>6</sup> scf gas processed                |
|                                         | Nm³ /day gas processed              | 0.00449 tonnes/10 <sup>6</sup> m <sup>3</sup> gas processed      |

**ตารางที่ d-2** ค่า EF<sub>Flash</sub> ของ Produced water tank สำหรับคำนวณ Process and vented Emissions

|                          |                             | EF <sub>Fla</sub>                | sh                           |
|--------------------------|-----------------------------|----------------------------------|------------------------------|
| Separator Pressure (psi) | Produced Water Salt Content | Tonnes CH <sub>4</sub> /1000 bbl | Tonnes CH <sub>4</sub> /1000 |
|                          |                             | produced water                   | m³ produced water            |
| 50                       | 20%                         | 0.0015                           | 0.009185                     |
| 250                      | 20%                         | 0.00986                          | 0.06200                      |
| 250                      | 10%                         | 0.0150                           | 0.09414                      |
| 250                      | 2%                          | 0.0177                           | 0.11137                      |
| 250                      | Average of 10.7%            | 0.0142                           | 0.08917                      |
| 1000                     | 20%                         | 0.0354                           | 0.22273                      |
| 1000                     | 10%                         | 0.0536                           | 0.33697                      |
| 1000                     | 2%                          | 0.0634                           | 0.39896                      |
| 1000                     | Average of 10.7%            | 0.0508                           | 0.31955                      |

ตารางที่ d-3 ค่า  $\mathsf{EF}_\mathsf{TOC}$  จาก Loading Operation สำหรับคำนวณ Process and vented Emissions

| Loading Type                             | Units           |                                                 | Crude Oil |
|------------------------------------------|-----------------|-------------------------------------------------|-----------|
| Rail / Truck loading submerged loading – | Original Units  | lb TOC/10 <sup>3</sup> gal loaded               | 2         |
| dedicated normal service                 |                 | mg TOC/L loaded                                 | 240       |
|                                          | Converted Units | tonne TOC/10 <sup>6</sup> gal loaded            | 0.91      |
|                                          |                 | tonne TOC/10 <sup>3</sup> m <sup>3</sup> loaded | 0.240     |
| Rail / Truck loading submerged loading – | Original Units  | lb TOC/10 <sup>3</sup> gal loaded               | 3         |
| vapor balance service                    |                 | mg TOC/L loaded                                 | 400       |
|                                          | Converted Units | tonne TOC/10 <sup>6</sup> gal loaded            | 1.51      |
|                                          |                 | tonne TOC/10 <sup>3</sup> m <sup>3</sup> loaded | 0.400     |

ตารางที่ d-3 ค่า  $EF_{TOC}$  จาก Loading Operation สำหรับคำนวณ Process and vented Emissions (ต่อ)

| Loading Type                          |                 | Units                                           | Crude Oil |
|---------------------------------------|-----------------|-------------------------------------------------|-----------|
| Rail / Truck loading splash loading – | Original Units  | lb TOC/10 <sup>3</sup> gal loaded               | 5         |
| dedicated normal service              |                 | mg TOC/L loaded                                 | 580       |
|                                       | Converted Units | tonne TOC/10 <sup>6</sup> gal loaded            | 2.20      |
|                                       |                 | tonne TOC/103 m³ loaded                         | 0.580     |
| Rail / Truck loading splash loading – | Original Units  | lb TOC/10 <sup>3</sup> gal loaded               | 3         |
| vapor balance service                 |                 | mg TOC/L loaded                                 | 400       |
|                                       | Converted Units | tonne TOC/ 10 <sup>6</sup> gal loaded           | 1.51      |
|                                       |                 | tonne TOC/10 <sup>3</sup> m <sup>3</sup> loaded | 0.400     |
| Marine loading – Ships/Ocean barges   | Original Units  | lb TOC/10 <sup>3</sup> gal loaded               | 0.61      |
|                                       |                 | mg TOC/L loaded                                 | 73        |
|                                       | Converted Units | tonne TOC/10 <sup>6</sup> gal loaded            | 0.28      |
|                                       |                 | tonne TOC/10 <sup>3</sup> m <sup>3</sup> loaded | 0.073     |
| Marine loading – Barges               | Original Units  | lb TOC/10 <sup>3</sup> gal loaded               | 1.0       |
|                                       |                 | mg TOC/L loaded                                 | 120       |
|                                       | Converted Units | tonne TOC/10 <sup>6</sup> gal loaded            | 0.45      |
|                                       |                 | tonne TOC/10³ m³ loaded                         | 0.120     |

**ตารางที่ d-4** ค่า  $\mathrm{EF_M}$  จากน้ำโคลน สำหรับคำนวณ Process and vented Emissions

| Mud Type        | EF <sub>M</sub> Original Units<br>(lb THC/drilling day) | EF <sub>M</sub> Converted to Tonnes Basis<br>(tonnesCH4/drilling day) |
|-----------------|---------------------------------------------------------|-----------------------------------------------------------------------|
| Water-based Mud | 881.84                                                  | 0.2605                                                                |
| Oil-based Mud   | 198.41                                                  | 0.0586                                                                |
| Synthetic Mud   | 198.41                                                  | 0.0586                                                                |

ที่มา : American Petroleum Institute Compendium, 2009

**ตารางที่ d-5** ค่า  $EF_{CH4}$  จากกิจกรรมที่ไม่ได้ทำเป็นประจำ สำหรับคำนวณ Process and vented Emissions

| Source                       | CH4 Emission Factor Converted to TonnesBasis | CH4 Content<br>Basis of Factor | Uncertainty (±%) |
|------------------------------|----------------------------------------------|--------------------------------|------------------|
| Vessel blowdowns             | 0.0015 tonnes/vessel-yr                      | 78.8 mole %                    | 326              |
| Compressor starts            | 0.1620 tonnes/compressor-yr                  | 78.8 mole %                    | 190              |
| Compressor blowdowns         | 0.07239 tonnes/compressor-yr                 | 78.8 mole %                    | 179              |
| Gas well workovers           | 0.04707 tonnes/workover                      | Not given                      | 924              |
| (tubing maintenance)         |                                              |                                |                  |
| Oil well workovers           | 0.0018 tonnes/workover                       | Not given                      | Not available    |
| (tubing maintenance)         |                                              |                                |                  |
| Onshore gas well completion  | 25.9 tonne/completionday                     | 78.8 mole %                    | Not available    |
| Offshore gas well completion | 131.5 tonne/completionday                    | 78.8 mole %                    | Not available    |

**ตารางที่ e-1** ค่า Facility-Level Average Fugitive Emission Factor (EF<sub>f</sub>) สำหรับคำนวณ Fugitive Emissions

| Source         | EF <sub>f</sub> Original                  | Uncertainty   | Basis CH <sub>4</sub>       | EF <sub>f</sub> Converted Units                                            |
|----------------|-------------------------------------------|---------------|-----------------------------|----------------------------------------------------------------------------|
|                | Units                                     | (± %)         | Content                     |                                                                            |
| Onshore oil    | 0.5173 lb CH <sub>4</sub>                 | 95.5          | 78.8 mole % CH <sub>4</sub> | 2.346E-04 tonnes CH <sub>4</sub> /bbl produced                             |
| production     | /bbl produced                             |               |                             | 1.476E-03 tonnes CH <sub>4</sub> /m <sup>3</sup> produced                  |
| Offshore oil   | 0.2069 lb CH <sub>4</sub>                 | Not available | 78.8 mole % CH <sub>4</sub> | 9.386E-05 tonnes CH <sub>4</sub> /bbl produced                             |
| production     | /bbl produced                             |               |                             | 5.903E-04 tonnes CH <sub>4</sub> /m <sup>3</sup> produced                  |
| Onshore gas    | 57.33 lb CH <sub>4</sub> /10 <sup>6</sup> | 52.9          | 78.8 mole % CH <sub>4</sub> | 2.601E-02 tonnes CH <sub>4</sub> /10 <sup>6</sup> scf produced             |
| production     | scf Produced                              |               |                             | 9.184E-01 tonnes CH <sub>4</sub> /10 <sup>6</sup> m <sup>3</sup> produced  |
| Offshore gas   | 22.93 lb CH <sub>4</sub> /10 <sup>6</sup> | Not available | 78.8 mole % CH <sub>4</sub> | 1.040E-02 tonnes CH <sub>4</sub> /10 <sup>6</sup> scf produced             |
| production     | scf Produced                              |               |                             | 3.673E-01 tonnes CH <sub>4</sub> /10 <sup>6</sup> m <sup>3</sup> produced  |
| Gas processing | 64.43 lb CH <sub>4</sub> /10 <sup>6</sup> | 82.2          | 86.8 mole % CH <sub>4</sub> | 2.922E-02 tonnes CH <sub>4</sub> /10 <sup>6</sup> scf processed            |
| plants         | scf Processed                             |               |                             | 1.032E+00 tonnes CH <sub>4</sub> /10 <sup>6</sup> m <sup>3</sup> processed |

ตารางที่ e-2 ค่า MCF ที่มาจากกระบวนการบำบัดน้ำเสีย สำหรับคำนวณ Fugitive Emissions

| Type of Treatment             | Comments                                     | Default MCF | MCF Range |
|-------------------------------|----------------------------------------------|-------------|-----------|
| Aerobic treatment plant       | Not well maintained, overloaded              | 0.3         | 0.2 - 0.4 |
| Anaerobic digester for sludge | CH <sub>4</sub> recovery not considered here | 0.8         | 0.8 - 1.0 |
| Anaerobic reactor             | CH₄ recovery not considered here             | 0.8         | 0.8 - 1.0 |
| Anaerobic shallow lagoon      | Depth less than 2 meters                     | 0.2         | 0 - 0.3   |
| Anaerobic deep lagoon         | Depth more than 2 meters                     | 0.8         | 0.8 - 1.0 |

ที่มา : American Petroleum Institute Compendium, 2009

ตารางที่ e-3 ค่า EF<sub>Operating</sub> ที่มาจากน้ำยาทำความเย็น สำหรับคำนวณ Fugitive Emissions

| Type of Equipment                                    | Capacity (kg) | EF <sub>Operating</sub> (% of capacity/year) |
|------------------------------------------------------|---------------|----------------------------------------------|
| Domestic refrigeration                               | 0.05 – 0.5    | 0.5%                                         |
| Stand-alone commercial applications                  | 0.2 – 6       | 15%                                          |
| Medium & large commercial refrigeration              | 50 - 2,000    | 35%                                          |
| Transport refrigeration                              | 3 – 8         | 50%                                          |
| Industrial refrigeration including cold storage      | 10 - 10,000   | 25%                                          |
| Chillers                                             | 10 - 2,000    | 15%                                          |
| Residential and commercial A/C, including heat pumps | 0.5 – 100     | 10%                                          |
| Mobile air conditioning                              | 0.5 – 1.5     | 20%                                          |

ตารางที่ e-4 ค่า GWP ของน้ำยาทำความเย็น สำหรับคำนวณ Fugitive Emissions

| Refrigerant | Global    | Refrigerant | Global      | Refrigerant         | Global    |
|-------------|-----------|-------------|-------------|---------------------|-----------|
| Blend       | Warming   | Blend       | Warming     | Blend               | Warming   |
|             | Potential |             | Potential   |                     | Potential |
| R-401A      | 18        | R-409A      | 0           | R-419A              | 2,403     |
| R-401B      | 15        | R-409B      | 0           | R-420A              | 1,144     |
| R-401C      | 21        | R-410A      | 1,725       | R-500               | 37        |
| R-402A      | 1,680     | R-410B      | 1,833       | R-501               | 0         |
| R-402B      | 1,064     | R-411A      | 15 R-502    |                     | 0         |
| R-403A      | 1,400     | R-411B      | 4 R-503     |                     | 4,692     |
| R-403B      | 2,730     | R-412A      | 350         | R-504               | 313       |
| R-404A      | 3,260     | R-413A      | 1,774 R-505 |                     | 0         |
| R-406A      | 0         | R-414A      | 0           | 0 R-506             |           |
| R-407A      | 1,770     | R-414B      | 0           | 0 R-507 or R-507A   |           |
| R-407B      | 2,285     | R-415A      | 25          | R-508A              | 10,175    |
| R-407C      | 1,526     | R-415B      | 105         | R-508B              | 10,350    |
| R-407D      | 1,428     | R-416A      | 767         | 767 R-509 or R-509A |           |
| R-407E      | 1,363     | R-417A      | 1,955       |                     |           |
| R-408A      | 1,944     | R-418A      | 4           |                     |           |

**ตารางที่ e-5** ค่าความร้อนสุทธิของเชื้อเพลิง

| พลังงานเชิงพาณิชย์                       | kcal/UNIT | toe/10 <sup>6</sup><br>UNIT | MJ/UNIT | 10 <sup>3</sup><br>Btu/UNIT | Commercial Energy  |
|------------------------------------------|-----------|-----------------------------|---------|-----------------------------|--------------------|
| น้ำมันดิบ (ลิตร)                         | 8,680     | 860.00                      | 36.33   | 34.44                       | Crude Oil (litre)  |
| คอนเดนเสท (ลิตร)                         | 7,900     | 782.72                      | 33.07   | 31.35                       | Condensate (litre) |
| ก๊าซธรรมชาติชื้น (ลูกบาศก์ฟุต)           | 248       | 24.57                       | 1.04    | 0.98                        | Wet (scf.)         |
| ก๊าซธรรมชาติแห้ง (ลูกบาศก์ฟุต)           | 244       | 24.18                       | 1.02    | 0.97                        | Dry (scf.)         |
| ผลิตภัณฑ์ปิโตรเลียม (Petroleum Products) |           |                             |         |                             |                    |
| ก๊าซปิโตรเลียมเหลว (ลิตร)                | 6,360     | 630.14                      | 26.62   | 25.24                       | LPG (litre)        |
| น้ำมันเบนซิน (ลิตร)                      | 7,520     | 745.07                      | 31.48   | 29.84                       | Gasoline (litre)   |
| น้ำมันเครื่องบิน (ลิตร)                  | 8,250     | 817.40                      | 34.53   | 32.74                       | Jet Fuel (litre)   |
| น้ำมันก๊าด (ลิตร)                        | 8,250     | 817.40                      | 34.53   | 32.74                       | Kerosene (litre)   |
| น้ำมันดีเซล (ลิตร)                       | 8,700     | 861.98                      | 36.42   | 34.52                       | Diesel (litre)     |
| น้ำมันเตา (ลิตร)                         | 9,500     | 941.24                      | 39.77   | 37.70                       | Fuel Oil (litre)   |
| ยางมะตอย (ลิตร)                          | 9,840     | 974.93                      | 41.19   | 39.05                       | Bitumen (litre)    |

**ตารางที่ e-5** ค่าความร้อนสุทธิของเชื้อเพลิง (ต่อ)

| พลังงานเชิงพาณิชย์   | kcal/UNIT | toe/10 <sup>6</sup> | MJ/UNIT | 10 <sup>3</sup> | Commercial Energy   |
|----------------------|-----------|---------------------|---------|-----------------|---------------------|
|                      |           | UNIT                |         | Btu/UNIT        |                     |
| ปิโตรเลียมโค๊ก (กก.) | 8,400     | 832.26              | 35.16   | 33.33           | Petroleum Coke (kg) |
| ถ่านหินนำเข้า (กก.)  | 6,300     | 624.19              | 26.37   | 25.00           | Coal Import (kg.)   |
| ถ่านโค๊ก (กก.)       | 6,600     | 653.92              | 27.63   | 26.19           | Coke (kg.)          |
| แอนทราไซต์ (กก.)     | 7,500     | 743.09              | 31.40   | 29.76           | Anthracite (kg.)    |
| อีเทน (กก.)          | 11,203    | 1,110.05            | 46.89   | 44.45           | Ethane (kg.)        |
| โปรเพน (กก.)         | 11,256    | 1,115.34            | 47.11   | 44.67           | Propane (kg.)       |
| ลิกไนต์ (Lignite)    |           |                     |         |                 |                     |
| ลี้ (กก.)            | 4,400     | 435.94              | 18.42   | 17.46           | Li (kg.)            |
| กระบี่ (กก.)         | 2,600     | 257.60              | 10.88   | 10.32           | Krabi (kg.)         |
| แม่เมาะ (กก.)        | 2,500     | 247.70              | 10.47   | 9.92            | Mae Moh (kg.)       |
| แจ้คอน (กก.)         | 3,610     | 357.67              | 15.11   | 14.32           | Chae Khon (kg.)     |

ที่มา : กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวงพลังงาน, 2555

### เอกสารอ้างอิง

- กรมเชื้อเพลิงธรรมชาติ และบริษัท เอสจีเอส (ประเทศไทย) จำกัด, 2558. คู่มือระบบบริหารการจัดการรายงาน ข้อมูลการปล่อยก๊าซเรือนกระจก และการจัดการของเสียจากการประกอบกิจการปิโตรเลียม สำหรับ บริษัทผู้รับสัมปทาน.
- กรมเชื้อเพลิงธร<sup>ร</sup>รมชาติ และบริษัท เอสจีเอส (ประเทศไทย) จำกัด, 2558. โ*ครงการจัดทำหลักเกณฑ์และวิธีการ* คำนวณเพื่อใช้จัดทำบัญชีก๊าซเรือนกระจก สำหรับการประกอบกิจการปิโตรเลียมในประเทศไทย.
- กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวงพลังงาน, 2555. *สถานการณ์พลังงานของประเทศไทย*. กันยายน 2555.
- องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน), 2554. *แนวทางการประเมินคาร์บอนฟุตพริ้นท์ของ* องค์กร โครงการส่งเสริมการจัดทำคาร์บอนฟุตพริ้นท์ขององค์กร. กรกฎาคม 2554.
- American Petroleum Institute (API), 2009 Compendium of Greenhouse Gas Emissions Methodologies for The Oil and Natural Gas Industry. August 2009.
- Intergovernmental Panel on Climate Change (IPCC), 2006. Guidelines for National Greenhouse Gas Inventories Chapter 3: Chemical Industry Emissions.