ANSWER THREE (3) OF THE FOUR QUESTIONS. ALL QUESTIONS HAVE 20 MARKS SECTION B.

- **B.1.** Given the function defined on R by $f(x) = e^{\frac{x^2}{2}}$
 - **B.1.1.** Derive $P_4(x)$, the fourth Taylor polynomial approximating f at a point x=1.
 - B.1.2. Use P to estimate $\frac{1}{\sqrt{g}}$
 - B.1.3. What is the error bound for this estimation?
 - B.1.4. What is the relative error of this estimation?
- B.2. In class we derived the three-point formulae for $f'(x_0)$, $f'(x_1)$ and $f'(x_2)$. Consider a four-point case with (x_0, y_0) , (x_1, y_1) , (x_2, y_2) and (x_3, y_0) . Derive the four-point formulae for $f'(x_0), f'(x_1), f'(x_2)$ and $f'(x_3)$.
- B/3. Consider the $f(x) = x^2 e^x$
 - B.3.1. Generate $P_4(x)$, the Lagrange polynomial using Newton's divided difference method where $x_0 = 0.2$, and h = 0.2
 - B.3.2. Use $P_4(x)$ to estimate f(0.5)
- B.4. Consider the function defined on R as $f(x) = x^2 e^x$
 - B.4.1. Use three-point numerical differentiation formula to estimate f'(0.4) with h=0.2
 - B.4.2. Estimate

$$\int_{0.0}^{1.0} f(x) dx$$

Using the composite Simpson rule with h=0.2