Signály a informace

Přednáška č.6

Diskrétní Fourierova transformace (DFT a FFT)

Připomenutí předchozích přednášek

- Frekvenční analýza je důležitá pro získání informací obsažených v signálu
- Zahrnuje určení amplitudového a fázového spektra
- U spojitých periodických signálů je spektrum čárové (nenulové hodnoty amplitud a fáze jsou pouze harmonických složek zákl. a vyšší harmonické)
- U číslicových signálů je rozsah frekvencí omezen pouze na 0 až Fs/2,
- Při vzorkování nebo generování signálu jsou vyšší frekvence přeloženy do pásma 0 až Fs/2.

Fourierovy řady - připomenutí

Umožňují rozklad libovolného **spojitého periodického** signálu na harm. složky, z nichž lze signál opět <u>beze ztráty složit</u>.

Polární a exponenciální tvar Fourierových řad:

$$x(t) = \sum_{k=0}^{\infty} c_k \cos(k\omega_0 t + \varphi_k)$$

$$x(t) = \sum_{k=-\omega}^{\infty} X_k e^{jk\omega_0 t}$$

Vztah mezi nimi

$$x(t) = \sum_{k=0}^{\infty} c_k \cos(k\omega_0 t + \varphi_k) = \sum_{k=0}^{\infty} c_k (e^{j(k\omega_0 t + \varphi_k)} + e^{-j(k\omega_0 t + \varphi_k)})/2 =$$

$$= \sum_{k=0}^{\infty} (\frac{c_k}{2} \cdot e^{j\varphi_k} e^{jk\omega_0 t} + \frac{c_k}{2} \cdot e^{-j\varphi_k} e^{-jk\omega_0 t}) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}$$

Exponenciální tvar je vhodnější pro praktický výpočet. Popisuje signál jako součet exponenciál s kladnými a zápornými frekvencemi. Modul koeficientů u kladných a záporných frekvencí je stejný a je poloviční v porovnání s koeficienty v polárním tvaru, fáze u záporných frekvencí jsou opačné vzhledem k fázím u kladných koeficientů.

Platí tedy
$$X_k = \frac{c_k}{2} \cdot e^{j\varphi_k t}$$
 $c_k = 2 \mid X_k \mid$ $X_{-k} = X_k^*$

Jednostranné a dvoustranné spektrum

Jednostranné spektrum vychází z polárního tvaru a zobrazuje pouze kladné frekvence.

Dvoustranné spektrum vychází z exponenciálního tvaru a zobrazuje kladné a záporné frekvence.

Příklad
$$x(t) = \cos(2\pi f t - \frac{\pi}{2}) + \frac{1}{3}\cos(2\pi 3 f t - \frac{\pi}{2}) + \frac{1}{5}\cos(2\pi 5 f t - \frac{\pi}{2})$$

jednostranné spektrum

dvoustranné spektrum

Oba typy spekter jsou samozřejmě ekvivalentní co do obsahu informace.

Spektrum používané **v praxi je jednostranné**, většina výpočetních postupů však počítá dvoustranné spektrum, z něhož snadno odvodíme jednostranné.

Spektrum u číslicových signálů

Problémy s jeho určením:

- 1. Na číslicové signály nelze přímo aplikovat FŘ, protože tyto nejsou popsány analytickou funkcí.
- 2. Signály analyzované v praxi jsou konečné a více či méně náhodné.

Proč potřebujeme nástroje na jeho určení:

- 1. Číslicové signály jsou dnes v praxi mnohem častější než analogové.
- 2. K dispozici je HW (AD a DA převodníky, speciální procesory DSP), které umožňují provádět velmi složité procedury s prakticky libovolným signálem.

Diskrétní Fourierovy řady (1)

Jsou aplikovatelné na periodické číslicové signály.

<u>Požadavek:</u> pro vzorkovaný periodický signál musí dávat **stejný výsledek** (stejné spektrum) jako pro pův. nevzorkovaný signál.

Vztah:
$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi nk/N}$$

určuje jak vypočítat komplexní spektrální koeficient X[k] z N vzorků vstupního číslicového signálu.

Např. pro N = 4

$$X[0] = \frac{1}{4} (x[0] \cdot e^{-j2\pi 0.0/4} + x[1] \cdot e^{-j2\pi 1.0/4} + x[2] \cdot e^{-j2\pi 2.0/4} + x[3] \cdot e^{-j2\pi 3.0/4})$$

$$X[1] = \frac{1}{4} (x[0] \cdot e^{-j2\pi 0.1/4} + x[1] \cdot e^{-j2\pi 1.1/4} + x[2] \cdot e^{-j2\pi 2.1/4} + x[3] \cdot e^{-j2\pi 3.1/4})$$

$$X[2] = \frac{1}{4} (x[0] \cdot e^{-j2\pi 0.2/4} + x[1] \cdot e^{-j2\pi 1.2/4} + x[2] \cdot e^{-j2\pi 2.2/4} + x[3] \cdot e^{-j2\pi 3.2/4})$$

$$X[3] = \frac{1}{4} (x[0] \cdot e^{-j2\pi 0.3/4} + x[1] \cdot e^{-j2\pi 1.3/4} + x[2] \cdot e^{-j2\pi 2.3/4} + x[3] \cdot e^{-j2\pi 3.3/4})$$

Pro $k \ge N$ bychom dostali <u>tytéž hodnoty</u>, protože členy $e^{-j\pi nk/N}$ generují periodickou posloupnost s periodou N, tudíž i spektrum je periodické

Diskrétní Fourierovy řady – příklad (1)

Příklad: Mějme signál $x(t) = \cos 2\pi 250t$ vzorkovaný na 1 kHz Určeme jeho spektrum.

Periodu tvoří 4 vzorky, tj N = 4, x[0]=1, x[1]=0, x[2]=-1, x[3]=0 pro výpočet spektra můžeme použít rovnice na předchozí stránce

$$X[0] = \frac{1}{4}(x[0] \cdot e^{-j2\pi 0.0/4} + x[1] \cdot e^{-j2\pi 1.0/4} + x[2] \cdot e^{-j2\pi 2.0/4} + x[3] \cdot e^{-j2\pi 3.0/4} = \frac{1}{4}(1.1 + 0.1 - 1.1 + 0.1) = 0$$

$$X[1] = \frac{1}{4}(x[0] \cdot e^{-j2\pi 0.1/4} + x[1] \cdot e^{-j2\pi 1.1/4} + x[2] \cdot e^{-j2\pi 2.1/4} + x[3] \cdot e^{-j2\pi 3.1/4}) = \frac{1}{4}(1 + 0 + (-1).(-1) + 0) = 0,5$$

$$X[2] = \frac{1}{4}(x[0] \cdot e^{-j2\pi 0.2/4} + x[1] \cdot e^{-j2\pi 1.2/4} + x[2] \cdot e^{-j2\pi 2.2/4} + x[3] \cdot e^{-j2\pi 3.2/4}) = \frac{1}{4}(1.1 + 0.1 - 1.1 + 0.1) = 0$$

$$X[3] = \frac{1}{4}(x[0] \cdot e^{-j2\pi 0.3/4} + x[1] \cdot e^{-j2\pi 1.3/4} + x[2] \cdot e^{-j2\pi 2.3/4} + x[3] \cdot e^{-j2\pi 3.3/4}) = \frac{1}{4}(1 + 0 + (-1).(-1) + 0) = 0,5$$

Koeficienty X[k] patří k harmonickým složkám na frekvencích <u>k.(Fs/N)</u>, tedy na frekvencích 0 Hz, 250 Hz, 500 Hz, 750 Hz

Diskrétní Fourierovy řady – příklad (2)

Složka na frekvenci 0 Hz má (komplexní) koeficient 0

250 Hz 0,5

500 Hz 0

750 Hz 0,5

U číslic.signálů však **neexistují frekvence nad** *Fs/2*, dojde tedy k přesunutí z 500 Hz na 0 Hz a ze 750 Hz na - 250 Hz

V jednostranném spektru neuvažujeme záporné frekvence, takže budeme mít složky pouze na frekvencích:

0 Hz s koeficientem 0, a 250 Hz s koeficientem 0.5 + 0.5 = 1

Diskrétní Fourierovy řady - shrnutí

K výpočtu spektra u <u>periodických</u> číslicových signálů lze použít vztah: $X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \cdot e^{-j2\pi nk/N}$

Výsledné spektrum je <u>stejné</u> jako u nevzorkovaného signálu **Poznámky:**

- 1. Je-li signál popsán *N* vzorky, stačí spočítat pouze prvních *N/2* hodnot spektra. Dalších *N/2* hodnot jsou čísla komplexně sdružená a není třeba je počítat. Při praktické interpretaci je třeba amplitudu násobit číslem 2.
- 2. Výpočtem podle výše uvedeného vztahu dostaneme *diskrétní spektrum*, nebo také *vzorkované spektrum* s hodnotami komplexních koeficientů na frekvencích *k.Fs/N*.
- 3. Spektrum můžeme počítat i pro k > N, dostaneme však stejné hodnoty jako pro základní interval -N/2 < k < N/2. Spektrum číslicových signálů je totiž *periodické* s periodou Fs.

Od periodických signálů k obecným

Spojité signály (popsané analytickou funkcí)

Na neperiodický signál se nahlíží jako na signál, jehož $T \rightarrow \infty$.

Místo Fourier.řad se používá Fourierova transformace (FT):

$$X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt$$

<u>Důsledek:</u> Protože T $\rightarrow \infty$, Δ f $\rightarrow 0$ spektrum je *spojité*

Číslicové signály (popsané konečnou sekvencí hodnot)

Na danou sekvenci hodnot pohlížíme, jakoby by byla *jednou periodou* periodického signálu.

Pak můžeme použít **Diskrétní Fourierovu transformaci (DFT)**, která je popsána **úplně stejným** vztahem jako DFŘ.

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \exp(-j2\pi nk / N)$$

<u>Důsledek:</u> Spektrum číslicového signálu je *diskrétní a periodické*

Diskrétní Fourier. Transformace (1)

Definiční vztah

$$X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \exp(-j2\pi nk / N)$$

Použití:

- **1. Vstupem** je *N* hodnot číslic. signálu (podle předpokladu jde o 1 periodu)
- **2. Výstupem** je *N* hodnot komplexních koeficientů spektra na normovaných frekvencích *k/N*, tj. na reálných frekvencích *k.Fs/N*.
- 3. Spektrum je **periodické** s periodou Fs, tj. pro k > N dostaneme tytéž hodnoty
- 4. Hodnoty koeficientů pro N/2 < k < N jsou **komplexně sdružené** s prvními N/2 hodnotami, netřeba je počítat. Při určování modulu klasického jednostranného spektra je nutné **násobit dvěma**.
- 5. Pokud vybraných *N* vzorků signálu **netvoří jednu periodu** (v praxi se to stává téměř vždy), jsou výsledné hodnoty pouze **aproximací** spektra, zatíženou různými systémovými chybami, např. tzv. *rozmazání spektra*.

Diskrétní Fourier. Transformace (2)

Ilustrace – závislost na počtu vzorků N (harm. signál 1 kHz)

Závěr: N určuje velikost rozlišení frekvencí ve spektru

Diskrétní Fourier. Transformace (3)

Ilustrace – závislost na výřezu (harm. signál 1 kHz)

Závěr: pokud N nereprezentuje periodu, spektrum je "rozmazané"

Diskrétní Fourier. Transformace (4)

Při analýze neznámých signálů neznáme jejich periodu, signály navíc nemusí být ani periodické, prakticky vždy tedy dojde k rozmazaní spektra (objeví se neexistující složky)

Okénkovací funkce (window function) – řeší otázku, jak nejlépe provést výřez, a alespoň částečně eliminovat rozmazání

Obdélníkové okno

(prostý výřez signálu) boxcar(N)

Trojúhelníkové okno

(násobení trojúhel. funkcí) bartlett(N)

Hammingovo okno

hamming(N)

Diskrétní Fourier. Transformace (5)

Vliv okénkovacích funkcí

Provést výřez části signálu znamená násobit signál obdélníkovou funkcí.

Násobení v čase se převádí na konvoluci ve spektru (konvoluce spektra signálu se spektrem okna). Obdélníkové okno má z tohoto pohledu nejnepříznivější spektrum.

Obdélníkové okno boxcar(N)

Trojúhelníkové okno bartlett(N)

Hammingovo okno hamming(N)

Zpětná (inverzní) DFT

Převádí signál popsaný spektrem zpět do časové oblasti. Vztahy pro DFT a IDFT:

$$X[k] = \sum_{n=0}^{N-1} x[n] \exp(-j2\pi nk/N) \qquad x[n] = \frac{1}{N} \sum_{n=0}^{N-1} X[k] \exp(j2\pi nk/N)$$

- 1. Vztah pro IDFT se liší od DFT pouze ve **znaménku** exponenciální funkce. Normalizační koeficient *1/N* se někdy uvádí u DFT, jindy u FFT. Zde uvádíme vztah používaný v Matlabu.
- 2. Do IDFT **vstupuje vždy N hodnot dvoustranného spektra**, tj. nejenom *N/2* hodnot jednostranného spektra.
- 3. Pokud na signál aplikujeme nejprve DFT a následně IDFT, dostaneme tentýž signál. Vyplývá z toho, že popis signálu v časové oblasti i ve frekvenční oblasti je **ekvivalentní** co do úplnosti informace. (Ve spektrální oblasti však musíme vždy uvažovat jak modul, tak i fázi.)

FFT – optimalizovaný výpočet DFT

FFT (Fast Fourier Transform) – rychlý algoritmus výpočtu DFT

- poskytuje úplně stejné hodnoty jako DFT, ale mnohem rychlejším způsobem
- vysoké rychlosti je dosaženo optimalizovaným výpočtem,
- ten bere v úvahu např. symetričnost exponenciálních členů exp (-j2πnk/N)
- dále podobnost mezi lichými a sudými koeficienty, atd.
- nejrychleji funguje v případech, že N je mocninou 2
- např. pro N = 1024 je FFT cca 200 rychlejší než DFT

V MATLABU

```
fft(x) ... spočítá DFT pro signál x ifft(x) ... spočítá IDFT pro spektrum x
```

Praktická aplikace DFT a FFT

- 1. Analyzovaný signál **rozdělíme do kratších úseků**, v nichž se charakter signálu příliš nemění.
- 2. Délku úseků dále volíme tak, aby se počet vzorků v úseku **N rovnal druhé mocnině 2**.
- 3. Pokud není možné zvolit N jako mocninu 2, **doplníme signál nulovými vzorky** až do nejbližší mocniny 2.
- 4. Vzorky v daném úseku vynásobíme vhodnou **okénkovací funkcí** (nejčastěji Hammingovým okénkem).
- 5. Pomocí FFT vypočítáme komplexní koeficienty spektra.
- 6. Pro prvních N/2 hodnot **určíme modul a fázi** a ty pak vykreslíme nebo použijeme pro další zpracování.
- 7. Potřebujeme-li převod zpět do časové oblasti, **použijeme IFFT** a přesně opačný postup.
- 8. Není-li k dispozici program pro IFFT, lze použít FFT podle vztahu IFFT (x) = 1/N. $(FFT(x^*))^*$

Shrnutí

- Výpočet spektra u číslicových signálů je možný díky diskrétní Fourierově transformaci - DFT
- U periodických číslicových signálů DFT poskytne stejný výsledek, jako bychom dostali pomocí FŘ aplikovaných na nevzorkovanou funkci.
 Podmínkou je celistvý násobek periody.
- Pokud není podmínka splněna nebo jde-li o obecný signál, bude spektrum obsahovat ještě další složky soustředěné kolem hlavních frekvenčních složek ("rozmazání spektra").
- FFT je algoritmus, který umožňuje velmi rychlý výpočet DFT (speciálně pro N = 2^B).

Konec přednášky

Děkuji za pozornost.