Homological Algebra

Original lectures notes by Baptiste Rognerud, but now typeset in LATEX

1 Introduction to category theory

References:

- Emily Riehl, Category Theory in Context (chapter I)
- Saunders Mac Lane, Categories for the Working Mathematician
- Ibrahim Assem, Introduction au langage catégorique (chapters I, II)

▶ Near 1945 Eilenberg and Mac Lane gave the good formalism for a "natural isomorphism" (the general theory of natural transformations). For instance, if V is a finite-dimensional vector space, $V \simeq V^*$ and $V \simeq V^{**}$, but the first isomorphism is not natural ("a choice needs to be made"), while the second is. But why?

It turns out solving this question gave a formalism, category theory, that unified already existing mathematical concepts, gave new links between different notions and also gave new questions!

▲ Category theory is not a theory that trivializes mathematics.

It is used today by (almost) everyone: algebraic geometry, algebra, representation theory, topology, combinatorics, . . .

1.1 Categories and functors

Definition 1.1. A category C is the data of

- A collection of morphisms Mor(C)
- A collection of *objects* Ob(C)

such that

- 1. Every morphism $f \in \text{Mor}(\mathcal{C})$ has a specified domain $X \in \text{Ob}(\mathcal{C})$ and codomain $Y \in \text{Ob}(\mathcal{C})$. We write $f: X \to Y$.
- 2. For every object $X \in \mathrm{Ob}(\mathcal{C})$ there exists a morphism $1_X : X \to X$ (the *identity* of X), also written id_X
- 3. For any three objects $X,Y,Z\in \mathrm{Ob}(\mathcal{C})$ and morphims $f:X\to Y$ and $g:Y\to Z$ there exists a morphism $g\circ f:X\to Z$ (we often omit \circ and just write gf)

satisfying

(Identity)
$$\forall f: X \to Y, 1_Y f = f = f1_X$$

(Associativity) $\forall f: W \to X, g: X \to Y, h: Y \to Z, h(gf) = (hg)f$

Remark.

- 1. We use the term "collection" because we don't want to worry about set-theoretical issues
- 2. If $Mor(\mathcal{C})$ is a set, we say that \mathcal{C} is small
- 3. We denote by $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ (or $\mathcal{C}(X,Y)$) the collection of $f:X\to Y\in\operatorname{Mor}(\mathcal{C})$

Examples 1.2 (Concrete categories).

- 1. The category **Set**, where objects are sets and morphisms are just maps.
- 2. **Top**, where objects are topological spaces and morphisms are continuous maps.
- 3. Groups together with group homomorphisms form a category called **Grp**. The same can be said about rings, fields...
- 4. k-vector spaces, or more generally left/right R-modules, together with linear maps, form a category denoted RMod or ModR (for left or right R-modules).

In these previous examples, objects are sets with additional structure, and morphisms between two objects are in particular maps between the two underlying sets. Such categories are called *concrete categories* (a rigorous definition will be given later). However, a category need not be concrete.

Examples 1.3 (Abstract categories).

- 1. Let k be a field. There exists a category \mathbf{Mat}_k where objects are the natural numbers \mathbb{N} and morphisms are $\mathrm{Hom}(m,n)=\mathrm{Mat}_{n,m}(k)$, where composition is given by matrix multiplication.
- 2. If G is a group, there exists a category BG which has only one object \bullet , and morphisms $\operatorname{Hom}(\bullet, \bullet) = G$, where composition is multiplication in G.
- 3. If (P, \leq) is a poset (a partially ordered set, that is a set P together with a reflexive, transitive relation \leq), then one can construct a category \hat{P} by setting $\mathrm{Ob}(\hat{P}) = P$ and $|\mathrm{Hom}(x,y)| = \begin{cases} 1 & \text{if } x \leq y \\ 0 & \text{otherwise} \end{cases}$, where composition is defined in the only possible way.
- 4. The homotopy category of topological spaces: objects are topological spaces, and $\operatorname{Hom}(X,Y)$ is $\operatorname{Hom}_{\mathbf{Top}}(X,Y)/\sim$ where \sim is homotopy of continuous maps.

Exercise. Check the categories defined above really are categories. In (2), what are the minimal hypotheses needed on G for BG to be a category? In (3), what are the minimal hypotheses needed on \subseteq for \widehat{P} to be a category?

Examples 1.4 (Categories constructed from categories).

1. If \mathcal{C} is a category, one can construct its *opposite category* \mathcal{C}^{op} , defined by $\text{Ob}(\mathcal{C}^{\text{op}}) = \text{Ob}(\mathcal{C})$ and $\text{Hom}_{\mathcal{C}^{\text{op}}}(X,Y) = \text{Hom}_{\mathcal{C}}(Y,X)$, with composition described by the following diagram:

$$\begin{array}{ccc}
X & X \\
\downarrow f & f^{\text{op}} & \downarrow \\
Y & \leadsto & Y \\
\downarrow g & g^{\text{op}} & \downarrow \\
Z & Z
\end{array}$$

- 2. Let \mathcal{C} be a category. A subcategory \mathcal{D} of \mathcal{C} is another category such that $\mathrm{Ob}(\mathcal{D}) \subset \mathrm{Ob}(\mathcal{C})$ and $\mathrm{Mor}(\mathcal{D}) \subset \mathrm{Mor}(\mathcal{C})$ and the composition in \mathcal{D} is induced by the one in \mathcal{C} . For instance, \mathbf{Ab} , the category of abelian groups and group homomorphisms, is a subcategory of \mathbf{Grp} .
- 3. Let \mathcal{C} and \mathcal{D} be categories. The *product category* of \mathcal{C} and \mathcal{D} is the category $\mathcal{C} \times \mathcal{D}$ defined by $\mathrm{Ob}(\mathcal{C} \times \mathcal{D}) = \mathrm{Ob}(\mathcal{C}) \times \mathrm{Ob}(\mathcal{D})$ and $\mathrm{Mor}(\mathcal{C} \times \mathcal{D}) = \mathrm{Mor}(\mathcal{C}) \times \mathrm{Mor}(\mathcal{D})$, composition and identities being defined componentwise.

Exercise. Describe $(BG)^{op}$ for G a group and \hat{P}^{op} for (P, <) a poset.

▲ Set^{op} is not Set. TODO

Remark. In a category \mathcal{C} the objects can be anything, so saying $x \in X$ for $X \in \mathrm{Ob}(\mathcal{C})$ doesn't make sense. Hence, categorical notions are defined using arrows and not elements.

Definition 1.5. Let \mathcal{C} be a category.

- 1. $f: X \to Y$ is an isomorphism if there exists $g: Y \to X$ such that $gf = \mathrm{id}_X$ and $fg = \mathrm{id}_Y$.
- 2. $f: X \to Y$ is a monomorphism if for all $g, h: W \to X$ such that fg = fh, g = h (f is left-cancellable).
- 3. $f: X \to Y$ is an *epimorphism* if for all $g, h: Y \to Z$ such that gf = hf, g = h (f is right-cancellable).

A Being both a mono and an epi doesn't imply being an iso. TODO

Definition 1.6. Let \mathcal{C}, \mathcal{D} be two categories. A *(covariant) functor* $F : \mathcal{C} \to \mathcal{D}$ is the data of

- An object $F(X) \in \mathrm{Ob}(\mathcal{D})$ for all $X \in \mathrm{Ob}(\mathcal{C})$
- A morphism $F(f) \in \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ for all $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$

such that $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$ for all $X \in \mathrm{Ob}(\mathcal{C})$ and F(gf) = F(g)F(f) whenever $f, g \in \mathrm{Mor}(\mathcal{C})$ are composable.

Definition 1.7. A contravariant functor from \mathcal{C} to \mathcal{D} is a functor from \mathcal{C}^{op} to \mathcal{D} (so composition is reversed, i.e. F(gf) = F(f)F(g)).

Examples 1.8.

1. $U : \mathbf{Grp} \to \mathbf{Set}, U(G) = G, U(f) = f$ the functor that to a group assigns it its underlying set and to a homomorphism the underlying map. It is called the *forgetful functor* from groups to sets, because it forgets the group structure.

- 2. $U: \mathbf{Ass} \to \mathbf{Lie}$ the forgetful functor from the category of associative algebras to the category of Lie algebras. It forgets the "associative structure" but remembers the underlying abelian group.
- 3. $F: \mathbf{Set} \to \mathbf{Ab}, X \mapsto \mathbb{Z}[X], f \mapsto \mathbb{Z}[f]$, which to a set assigns the free abelian group with basis X (the group of finite linear combinations of elements of X). A map $f: X \to Y$ can then be uniquely extended to a linear map $\mathbb{Z}[f]: \mathbb{Z}[X] \to \mathbb{Z}[Y]$ that agrees with f on the bases of $\mathbb{Z}[X]$ and $\mathbb{Z}[Y]$.
- 4. Suppose \mathcal{C} is locally small (i.e. for any X, Y, $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a set). For all $X \in \mathcal{C}$, $\operatorname{Hom}(X, -)$ is a functor $\mathcal{C} \to \mathbf{Set}$. Similarly, $\operatorname{Hom}_{\mathcal{C}}(-, X)$ is a contravariant functor $\mathcal{C} \to \mathbf{Set}$. $\operatorname{Hom}_{\mathcal{C}}(-, -)$ is a functor $\mathcal{C} \times \mathcal{C}^{\operatorname{op}} \to \mathbf{Set}$.
- 5. Functors $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ can be composed in the obvious sense.

TODO: DRAW DIAGRAMS

Definition 1.9. Let $\mathcal{C} \xrightarrow{F} \mathcal{D}$ be two functors. A natural transformation η from F to G is the data of morphisms $\eta_X : F(X) \to G(X) \in \operatorname{Mor}(\mathcal{D})$ for all $X \in \operatorname{Ob}(\mathcal{C})$ such that for all

is the data of morphisms $\eta_X : F(X) \to G(X) \in \operatorname{Mor}(\mathcal{D})$ for all $X \in \operatorname{Ob}(\mathcal{C})$ such that for all $f: X \to Y \in \operatorname{Mor}(\mathcal{C})$, the diagram

$$F(X) \xrightarrow{\eta_X} G(X)$$

$$\downarrow^{F(f)} \qquad \downarrow^{G(f)}$$

$$F(Y) \xrightarrow{\eta_Y} G(Y)$$

commutes, that is $G(f)\eta_X = \eta_Y F(f)$. We write $\eta: F \Rightarrow G$ or draw $\mathcal{C} \xrightarrow{F} \mathcal{D}$

Example 1.10. Let V be a k-vector space. $\mathrm{id}_{\mathbf{Vect}_k}$ and $D^2 = \mathrm{Hom}_{\mathbf{Vect}_k}(\mathrm{Hom}_{\mathbf{Vect}_k}(-,k),k)$ are two endofunctors of \mathbf{Vect}_k . $\mathrm{ev}_-: V \to V^{**}$ defines a natural transforma-

$$\begin{array}{cccc} v & v \\ v & \mapsto & \operatorname{Hom}(V,k) & \to & k \\ \phi & \mapsto & \phi(v) \end{array}$$

tion between them:

$$V \xrightarrow{\text{ev}} V^{**}$$

$$f \downarrow \qquad \qquad \downarrow D^2(f)$$

$$W \xrightarrow{\text{ev}} W^{**}$$

For $a \in V$, $D^2(f) \circ \operatorname{ev}_a$: $W^* \to k$ $\phi \mapsto \phi(f(a))$ $\in W^{**}$ and in the other direction $(\operatorname{ev} \circ f)(a) = \operatorname{ev}_{f(a)}$.

However, there is no natural transformation from $id_{\mathbf{Vect}_k}$ to D. For one, the first is covariant and the second is contravariant. To get a natural transformation from a covariant to a contravariant

functor, we can modify the definition of naturality to be that $V \to V^*$ commutes, but even such $W \to W^*$

natural transformations do not exist from $id_{\mathbf{Vect}_k}$ to D.

Definition 1.11. A natural transformation $\mathcal{C} \underbrace{\downarrow \eta}_{G} \mathcal{D}$ is a *natural isomorphism* if η_X is an isomorphism for all $X \in \mathrm{Ob}(\mathcal{C})$.

Remark. One can compose natural transformations in two ways, "vertical composition":

$$C \xrightarrow{F} \mathcal{D} \xrightarrow{F} \mathcal{C} \xrightarrow{F} \mathcal{D} \text{ where } (\beta \circ \alpha)_X = \beta_X \circ \alpha_X$$

or "horizontal composition":

$$\mathcal{C} \underbrace{ \underbrace{ \int_{G_1}^{F_1}}_{G_1} \mathcal{D} \underbrace{ \int_{G_2}^{F_2}}_{G_2} \mathcal{E}}_{G_2} \mathcal{E} \xrightarrow{\mathcal{C}} \mathcal{C} \underbrace{ \underbrace{ \int_{\alpha_2 * \alpha_1}^{F_2 \circ F_1}}_{G_2 \circ G_1} \mathcal{E}}_{\mathcal{C}_{2} \circ G_1} \mathcal{E} \text{ where } (\alpha_2 * \alpha_1)_X = G_2((\alpha_1)_X) \circ (\alpha_2)_{F_1(X)}$$

Horizontal composition can also be defined in another equivalent way using commutativity of

$$F_{2}F_{1}(X) \xrightarrow{(\alpha_{2})_{F_{1}(X)}} G_{2}F_{1}(X)$$

$$F_{2}((\alpha_{1})_{X}) \downarrow \qquad \qquad \downarrow G_{2}((\alpha_{1})_{X})$$

$$F_{2}G_{1}(X) \xrightarrow{(\alpha_{2})_{G_{1}(X)}} G_{2}G_{1}(X)$$

The diagram commutes by naturality of α_2 , so $(\alpha_2 * \alpha_1) = (\alpha_2)_{G_1(X)} \circ F_2((\alpha_1)_X)$.

Definition 1.12. Let \mathcal{C}, \mathcal{D} be two categories. Then the functor category from \mathcal{C} to \mathcal{D} written $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ or $\mathcal{D}^{\mathcal{C}}$ is the category whose objects are functors from \mathcal{C} to \mathcal{D} and morphisms are natural transformations.

Remark. Categories, together with functors and natural transformations between them is the prototypal example of a 2-category.

1.2 Equivalences of categories

Definition 1.13. Let \mathcal{C} and \mathcal{D} be two categories. An equivalence of categories from \mathcal{C} to \mathcal{D} is the data of

- 1. $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ we functors
- 2. Natural isomorphisms $\eta: 1_{\mathcal{C}} \Rightarrow GF$ and $\varepsilon: FG \Rightarrow 1_{\mathcal{D}}$ where $1_{\mathcal{C}}$ and $1_{\mathcal{D}}$ are the identity functors of \mathcal{C} and \mathcal{D} .

Remark.

- 1. G is called a quasi-inverse of F.
- 2. Most of the time we say that F is an equivalence if there exists G such that (F,G) is an equivalence.

- 3. If F, G are contravariant, we speak of duality between C and D.
- 4. If two categories are equivalent, every property that can be expressed "in terms of arrows" is preserved.

Definition 1.14. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then, we say

- 1. F is faithful if $\forall X, Y \in \mathrm{Ob}(\mathcal{C}), F : \mathrm{Hom}_{\mathcal{C}}(X,Y) \to \mathrm{Hom}_{\mathcal{D}}(F(X),F(Y))$ is injective. $f \mapsto F(f)$
- 2. F is full if the previous map is surjective.
- 3. F is essentially surjective if for all $Y \in \mathrm{Ob}(\mathcal{D})$ there is $X \in \mathrm{Ob}(\mathcal{C})$ such that $F(X) \simeq Y$ in \mathcal{D} .

Theorem 1.15. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F is an equivalence of categories if and only if it is fully faithful and essentially surjective.

Proof. lacktriangle There is a little set-theoretic issue: an equivalence of categories is always fully faithful and essentially surjective, but the converse requires the axiom of choice for the class $\mathrm{Ob}(\mathcal{C})$. Suppose $F:\mathcal{C}\to\mathcal{D}$ is an equivalence of categories, and let $G:\mathcal{D}\to\mathcal{C}$ be a quasi-inverse of F, together with natural isomorphisms $\eta:1_{\mathcal{C}}\to GF$ and $\varepsilon:1_{\mathcal{D}}\to FG$. If Y is an object of \mathcal{D} , then $Y\simeq FG(Y)$, so F is essentially surjective. Let X,Y be objects of \mathcal{C} . To show F is fully faithful we will construct an inverse to $F:\mathrm{Hom}_{\mathcal{C}}(X,Y)\to\mathrm{Hom}_{\mathcal{D}}(F(X),F(Y))$. For any $f\in\mathrm{Hom}_{\mathcal{D}}(F(X),F(Y))$, we have a commutative diagram

$$X \xrightarrow{\eta_X} GF(X)$$

$$f \downarrow \qquad \qquad \downarrow_{GF(f)}$$

$$Y \xrightarrow{\eta_Y} GF(Y)$$

which prompts us to define $\phi: \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y)) \to \operatorname{Hom}_{\mathcal{C}}(X,Y)$. We now check it is $g \mapsto \eta_Y^{-1} \circ G(g) \circ \eta_X$ the map we're looking for. If $f: X \to Y$, since the above diagram commutes and η_Y is invertible, we

the map we're looking for. If $f: X \to Y$, since the above diagram commutes and η_Y is invertible, we get that $\phi(F(f)) = f$, so $\phi \circ F = \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(X,Y)}$, which means F is faithful. We have two commutative diagrams, by definition of ϕ and by naturality of η :

$$X \xrightarrow{\eta_X} GF(X) \qquad X \xrightarrow{\eta_X} GF(X)$$

$$\phi(g) \downarrow \qquad \qquad \phi(g) \downarrow \qquad \qquad \downarrow GF(\phi(g))$$

$$Y \xrightarrow{\eta_Y} GF(Y) \qquad Y \xrightarrow{\eta_Y} GF(Y)$$

therefore, $G(g) \circ \eta_X = GF(\phi(g)) \circ \eta_X$. Since η_X is invertible, $G(g) = GF(\phi(g))$. The previous point shows that G is faithful, so $g = F(\phi(g))$, hence F is full.

Now suppose F is fully faithful and essentially surjective. Our goal is to construct G. For any $Y \in \mathrm{Ob}(\mathcal{D})$, since F is essentially surjective, there exists $X_Y \in \mathrm{Ob}(\mathcal{C})$ and an isomorphism $\varepsilon_Y : Y \to F(X_Y)$. Therefore, for any $Y, Z \in \mathrm{Ob}(\mathcal{D})$ and $f: Y \to Z$, we have a commutative diagram

$$Y \xrightarrow{f} Z$$

$$\downarrow^{\varepsilon_Y} \qquad \downarrow^{\varepsilon_Z}$$

$$F(X_Y) \xrightarrow[\varepsilon_Z \circ f \circ \varepsilon_Y^{-1}]{} F(X_Z)$$

Which leads us to define $G(Y) = X_Y$ and G(f) to be the unique morphism $m_f : X_Y \to X_Z$ such that $F(m_f) = \varepsilon_Z \circ f \circ \varepsilon_Y^{-1}$ (this works because F is fully faithful). We have $G(\mathrm{id}_Y) = \mathrm{id}_{X_Y}$ since $\varepsilon_Y \circ \mathrm{id}_Y \circ \varepsilon_Y^{-1} = \mathrm{id}_Y$ and $F(\mathrm{id}_{X_Y}) = \mathrm{id}_Y$. The next diagram shows $G(g \circ f) = G(g) \circ G(f)$:

$$W \xrightarrow{f} Y \xrightarrow{g} Z$$

$$\downarrow \varepsilon_W \qquad \downarrow \varepsilon_Y \qquad \downarrow \varepsilon_Z$$

$$F(X_W) \xrightarrow{F(m_f)} F(X_Y) \xrightarrow{F(m_g) \circ F(m_f)} F(X_Z)$$

By this construction, ε is a natural isomorphism $\mathrm{id}_{\mathcal{D}} \Rightarrow FG$ (look at the above diagrams). Now, pick $Y,Z\in \mathrm{Ob}(\mathcal{C})$ and $f:Y\to Z$. We have $GF(Y)=X_{F(Y)}$ and $\varepsilon_Y:F(Y)\stackrel{\sim}{\to} F(X_{F(Y)})$. Since F is fully faithful, there exists a unique $\eta_Y:Y\to X_{F(Y)}=GF(Y)$ such that $F(\eta_Y)=\varepsilon_Y$. Here, $\eta_Y=G(\varepsilon_Y)$, which means that η_Y is an isomorphism since functors preserve isomorphisms. We obtain the diagram

$$Y \xrightarrow{\eta_Y} GF(Y)$$

$$\downarrow^f \qquad \qquad \downarrow^{GF(f)}$$

$$Z \xrightarrow{\eta_Z} GF(Z)$$

The diagram commutes because GF(f) is the unique morphism such that

$$F(GF(f)) = \varepsilon_Z \circ F(f) \circ \varepsilon_Y^{-1} = F(\eta_Z \circ f \circ \eta_Y^{-1})$$

and F is faithful. η is then a natural isomorphism $id_{\mathcal{C}} \Rightarrow GF$.

Example 1.16. Vect_k \simeq Mat_k through the functor $n \mapsto k^n$ and $(A : n \to m) \mapsto (f_A : k^n \to k^m)$.

2 Universal properties

References:

- Riehl (Chapters II, III, IV)
- Mac Lane (Chapters III, IV, V)
- Assem (Chapters III, IV, V)

▶ Let S be a set together with an equivalence relation \sim . Let S/\sim be the quotient set, and $\pi: S \to S/\sim$ be the projection. For any $f: S \to X$ compatible with \sim , there exists a unique map $\bar{f}: S/\sim \to X$ such that $f=\bar{f}\circ\pi$. This is represented by the following commutative diagram:

$$S \xrightarrow{f} X$$

$$\pi \downarrow \qquad \exists ! \bar{f}$$

$$S/\sim$$

We say that $S \xrightarrow{\pi} S/\sim$ is a solution to the universal problem posed by the compatible maps. Such a solution is unique up to unique isomorphism: if $S \xrightarrow{p} S'$ is another solution, then we get the three commutative diagrams

then $abp = a\pi = p$. The identity of S' also makes this diagram commute so by uniqueness $ab = \mathrm{id}_{S'}$ and similarly $ba = \mathrm{id}_{S/\sim}$.

2.1 Initial and final objects

Definition 2.1. Let \mathcal{C} be a category. An object $c \in \mathrm{Ob}(\mathcal{C})$ is *initial* (*final*) if for all $d \in \mathrm{Ob}(\mathcal{C})$ there exists a unique morphism $c \to d$ (a unique morphism $d \to c$).

Proposition 2.2. If an initial/final object exists, then it is unique up to unique isomorphism.

Proof. Let c, c' be two initial objects. Then there exists a unique morphism $f: c \to c'$ and a unique morphism $g: c' \to c$. There also exists a unique morphism $c \to c$, that is id_c . Therefore, $gf = \mathrm{id}_c$. In the same way, $fg = \mathrm{id}_{c'}$. Therefore, c and c' are isomorphic and the isomorphism is unique. \square

Examples 2.3.

- 1. \emptyset is initial in **Set** and any singleton is final.
- 2. $\{0\}$ is both initial and final in \mathbf{Vect}_k (or $R\mathbf{Mod}$).
- 3. The category of fields does not have initial/final objects (reason on field characteristics).

We want to say a universal object is an initial or final object. A category has at most 2, so this may seem a little restrictive, but this is solved by thinking of a good category.

Definition 2.4. Let $F: \mathcal{C} \to \mathbf{Set}$ be a functor. Let $\int F$ be the category defined by

$$Ob(\int F) = \{(c, x) \mid c \in Ob(C) \text{ and } x \in F(c)\}$$

 $Hom((c, x), (c', x')) = \{f \in Hom(c, c') \mid F(f)(x) = x'\}$

where composition is composition in C, and $\mathrm{id}_{(c,x)} = \mathrm{id}_c$ for all x. If F is contravariant, let $\int F$ have the same objects and morphisms $\mathrm{Hom}((c,x),(c',x')) = \{f \in \mathrm{Hom}(c,c') \mid F(f)(x') = x\}$.

Proposition 2.5. There is a forgetful functor $\pi: \int F \to \mathcal{C}$ defined by $\pi(c, x) = c$ and $\pi(f: (c, x) \to (c', x')) = f: c \to c'$.

Example 2.6. Let S be a set, and \sim an equivalence relation on S. Let $F : \mathbf{Set} \to \mathbf{Set}$ be defined by $F(X) = \{f : S \to X \mid x \sim y \Rightarrow f(x) = f(y)\}$ and $F(\alpha : X \to Y) = \alpha \circ -$.

 $\int F$ has for objects $(X, S \xrightarrow{f} X)$ where f is compatible with \sim , and for morphisms α that makes

this diagram commute: $\int_{f} \int_{\alpha} X'$

 $(S/\sim, S \xrightarrow{\pi} S/\sim)$ is an initial object of $\int F$.

Definition 2.7. Let $F: \mathcal{C} \to \mathbf{Set}$ be a functor. A *universal element* for F is an initial object of f, that is a pair (c, x) with $c \in \mathrm{Ob}(\mathcal{C})$ and $x \in F(c)$ such that

$$\forall (d, y), d \in \mathrm{Ob}(\mathcal{C}), y \in F(d), \exists ! \alpha : c \to d, y = F(\alpha)(x)$$

Definition 2.8. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor and $d \in \mathrm{Ob}(\mathcal{D})$. A universal arrow from d to F is a pair (c, f) where $c \in \mathrm{Ob}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{D}}(d, F(c))$, such that

$$\forall (c', f'), c' \in \mathrm{Ob}(\mathcal{C}), f' : d \to F(c'), \exists ! \alpha \in \mathrm{Hom}_{\mathcal{C}}(c, c'), F(\alpha) \circ f = f'$$

$$f \not d$$

$$F(c) \xrightarrow{F(\alpha)} F(c')$$

$$c \xrightarrow{\exists ! \alpha} c'$$

Exercise. Define a category $d \downarrow F$ such that a universal arrow is an initial object of $d \downarrow F$.

Example 2.9. Let $U: \mathbf{Vect}_k \to \mathbf{Set}$ be the forgetful functor. Let $X \in \mathbf{Set}$. A universal arrow from X to U is the "best" k-vector space V_X with a map $X \to V_X$. Set $V_X = k[X]$ the k-vector space with basis X, and $i: X \to V_X$ that maps $x \in X$ to the corresponding basis element. Then, for any vector space V and map $f: X \to U(V)$, f can be extended by linearity into a linear map $\tilde{f}: k[X] \to V$, which makes this diagram commute:

If α is another map that makes the diagram commute then α and \tilde{f} coincide on a basis of k[X] and therefore are equal.

Proposition 2.10. Universal elements and arrows are two equivalent notions.

Proof. Let $F: \mathcal{C} \to \mathbf{Set}$ be a functor and (c,x) a universal element for F. Consider $f_x: \{*\} \to F(c)$. Then, (c,f_x) is a universal arrow $*\to F$, because $F(\alpha)(x)=y$ iff $F(\alpha)\circ f_x=f_y$.

$$\begin{cases}
f_x \\
f_y
\end{cases}$$

$$F(c) \xrightarrow{F(\alpha)} F(c')$$

Conversely, if $F: \mathcal{C} \to \mathcal{D}$ is a functor and (c, f) is a universal arrow $d \to F$, then consider the functor $\operatorname{Hom}_{\mathcal{D}}(d, F(-)): \mathcal{C} \to \operatorname{\mathbf{Set}}$ (we need to assume \mathcal{D} is locally small so the $x \mapsto \operatorname{Hom}_{\mathcal{D}}(d, F(x))$

functor is set-valued). Then, $f \in \text{Hom}_{\mathcal{D}}(d, F(c))$ is a universal element for this functor.

2.2 Representable functors

Definition 2.11. Let \mathcal{C} be a (locally small) category, and $F: \mathcal{C} \to \mathbf{Set}$ a functor.

- 1. We say that F is representable if there is some $c \in \text{Ob}(\mathcal{C})$ such that F and $\text{Hom}_{\mathcal{C}}(c, -)$ are naturally isomorphic (if F is contravariant, use $\text{Hom}_{\mathcal{C}}(-, c)$ instead).
- 2. A representation of F is the data of $c \in Ob(\mathcal{C})$ and a natural isomorphism $\eta : Hom(c, -) \Rightarrow F$.

Example 2.12. The forgetful functor $U: \mathbf{Grp} \to \mathbf{Set}$ is representable since $\mathrm{Hom}_{\mathbf{Grp}}(\mathbb{Z}, -) \simeq U$. The natural isomorphism is given by $\alpha \in \mathrm{Hom}_{\mathbf{Grp}}(\mathbb{Z}, G) \mapsto \alpha(1) \in G$.

The following theorem explains how to find the natural isomorphism $\alpha: \text{Hom}_{\mathcal{C}}(c, -) \Rightarrow F$ in general.

Theorem 2.13 (Yoneda lemma). Let $F: \mathcal{C} \to \mathbf{Set}$ be a functor with \mathcal{C} locally small, and $c \in \mathrm{Ob}(\mathcal{C})$. Then.

$$\operatorname{Nat}(\operatorname{Hom}(c, -), F) \xrightarrow{\sim} F(c)
\alpha \mapsto \alpha_c(\operatorname{id}_c)$$

and this isomorphism is natural in c and in F.

Proof. Let $\alpha \in \text{Nat}(\text{Hom}(c, -), F)$. Let $d \in \mathcal{C}$ and $f : c \to d$. By naturality, we have a commutative diagram

$$\operatorname{Hom}(c,c) \xrightarrow{\alpha_c} F(c)$$

$$\downarrow^{f \circ -} \qquad \downarrow^{F(f)}$$

$$\operatorname{Hom}(c,d) \xrightarrow{\alpha_d} F(d)$$

This means that $F(f) \circ \alpha_c = \alpha_d \circ (f \circ -)$. Evaluating at id_c , we get $F(f) \circ \alpha_c(\mathrm{id}_c) = \alpha_d(f)$. This shows that the natural transformation α is entirely determined by the value of $\alpha_c(\mathrm{id}_c)$, which shows the map defined above is injective. Conversely, if $e \in F(c)$, then we define $\alpha^e : \mathrm{Hom}(c, -) \Rightarrow F$ by $\alpha_d^e : g \mapsto F(g)(e)$. We check it is a natural transformation:

$$\operatorname{Hom}(c,c) \xrightarrow{g \mapsto F(g)(e)} F(c)$$

$$\downarrow^{f \circ -} \qquad \downarrow^{F(f)}$$

$$\operatorname{Hom}(c,d) \xrightarrow{h \mapsto F(h)(e)} F(d)$$

and this diagram commutes since for $g: c \to c$ we have

$$F(f)(F(g)(e)) = F(f \circ g)(e) = F((f \circ -)(g))(e)$$

This shows the map in the theorem is surjective, therefore an isomorphism, and its inverse is given by $e \in F(c) \mapsto \alpha^e$. We now check naturality. We first need to understand what it means to say the isomorphism is natural in c. Let $f: c \to d$. Nat(Hom(c, -), F) is functorial in c, as it is the composition of two contravariant hom-functors. More concretely:

$$c \xrightarrow{f} d \leadsto \operatorname{Hom}(d,-) \xrightarrow{-\circ f} \operatorname{Hom}(c,-) \leadsto \operatorname{Nat}(\operatorname{Hom}(c,-),F) \xrightarrow{-\circ (-\circ f)} \operatorname{Nat}(\operatorname{Hom}(d,-),F)$$

(Nat is the hom-functor of the functor category $C^{\mathbf{Set}}$). One thing to note is that the morphism $f: c \to d$ induces a natural transformation $\operatorname{Hom}(d,-) \xrightarrow{-\circ f} \operatorname{Hom}(c,-)$, and this makes the whole thing work. This is in general a property of functors defined on a product category, see the remark below. Now, saying the isomorphism, which we'll write $\Phi_{d,F}$, is natural means that the square

$$\operatorname{Nat}(\operatorname{Hom}(c,-),F) \xrightarrow{\Phi_{c,F}} F(c)$$

$$\downarrow^{-\circ(-\circ f)} \qquad \downarrow^{F(f)}$$

$$\operatorname{Nat}(\operatorname{Hom}(d,-),F) \xrightarrow{\Phi_{d,F}} F(d)$$

commutes. And indeed, if $\alpha: \text{Hom}(c, -) \Rightarrow F$ is a natural transformation,

$$\Phi_{d,F}(\alpha \circ (-\circ f)) = (\alpha \circ (-\circ f))_d(\mathrm{id}_d) = [\alpha_d \circ (-\circ f)](\mathrm{id}_d) = \alpha_d(f)$$
$$F(f)(\Phi_{c,F}(\alpha)) = F(f)(\alpha_c(\mathrm{id}_c)) = \alpha_d(f \circ \mathrm{id}_c) = \alpha_d(f)$$

The second to last equality comes from the naturality of α .

We now turn to naturality in F. Let G be another functor $\mathcal{C} \to \mathbf{Set}$ and $\beta : F \Rightarrow G$ be a natural transformation. We check that

$$\operatorname{Nat}(\operatorname{Hom}(c,-),F) \xrightarrow{\Phi_{c,F}} F(c)$$

$$\downarrow^{\beta \circ -} \qquad \qquad \downarrow^{\beta_c}$$

$$\operatorname{Nat}(\operatorname{Hom}(c,-),G) \xrightarrow{\Phi_{c,G}} G(c)$$

commutes. For $\alpha: \text{Hom}(c, -) \Rightarrow F$, we have

$$\beta_c(\Phi_{c,F}(\alpha)) = \beta_c(\alpha_c(\mathrm{id}_c)) = (\beta \circ \alpha)_c(\mathrm{id}_c) = \Phi_{c,G}(\beta \circ \alpha)$$

which completes the proof of naturality.

Remark.

1. If $F: \mathcal{C} \to \mathbf{Set}$, then (c, x) is a universal element for F if and only if the natural transformation $\alpha_x : \mathrm{Hom}(c, -) \Rightarrow F$ induced by x is an isomorphism. Indeed, α_x is an isomorphism iff $\forall c' \in \mathcal{C}$, $(\alpha_x)_{c'} : \mathrm{Hom}(c, c') \to F(c')$ is bijective iff

$$\forall c' \in \mathcal{C}, \forall y \in F(c'), \exists ! f : c \to c', F(f)(x) = y$$

- 2. For universal arrows, use $\operatorname{Hom}_{\mathcal{D}}(d, F(-))$ as before.
- 3. Let \mathcal{C}, \mathcal{D} and \mathcal{E} be categories, and $F: \mathcal{C} \times \mathcal{D} \to \mathcal{E}$ be a functor. Let $c, d \in \mathrm{Ob}(\mathcal{C}), x, y \in \mathrm{Ob}(\mathcal{D})$ and morphisms $f: c \to d, g: x \to y$. The morphism f induces a natural transformation $F(f, \mathrm{id}_{-}): F(c, -) \Rightarrow F(d, -)$, see the commutative square:

$$F(c,x) \xrightarrow{F(f,\mathrm{id}_x)} F(d,x)$$

$$\downarrow^{F(\mathrm{id}_c,g)} \qquad \downarrow^{F(\mathrm{id}_d,g)}$$

$$F(c,y) \xrightarrow{F(f,\mathrm{id}_y)} F(d,y)$$

2.3 Examples of objects defined by universal properties

2.3.1 Products, coproducts

Let \mathcal{C} be a small category and $X, Y \in \mathrm{Ob}(\mathcal{C})$. We define a category $\mathcal{C}_{X,Y}$ whose objects are tuples (Z, f, g) where $Z \in \mathrm{Ob}(\mathcal{C})$ and $f: Z \to X$, $g: Z \to Y$ and morphisms are maps $\alpha: Z \to Z'$ in \mathcal{C} such that the following diagram commutes:

$$\begin{array}{c|c}
 & Z \\
 & X \\
 & X \\
 & X \\
 & X \\
 & Y \\
 & X \\
 & Y \\$$

Definition 2.14. A product of X and Y is a final object in $\mathcal{C}_{X,Y}$. Concretely, it is an object $X \times Y$ together with two maps $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ such that for any $(Z, f, g) \in \mathrm{Ob}(\mathcal{C}_{X,Y})$, we have a commutative diagram

$$Z \\ \downarrow \exists ! \alpha \\ X \xleftarrow{} X \times Y \xrightarrow{} T_{Y} Y$$

Since it is defined as being a final object, if it exists, a product is unique up to unique isomorphism.

Examples 2.15. In **Set**, the product of X and Y is the cartesian product. In **Grp**, it is the product group. In **Top**, it is the cartesian product equipped with the product topology. In these examples, the maps in the definition are the canonical projections.

The notion dual to the one of a product is called a coproduct.

Definition 2.16. A coproduct of X and Y is a product in \mathcal{C}^{op} . Concretely, it satisfies the universal property expressed by this commutative diagram:

$$X \xrightarrow{i_X} X \sqcup Y \xleftarrow{i_Y} Y$$

$$\downarrow_{\exists ! \alpha} \qquad \forall g$$

Examples 2.17. In **Set**, the coproduct of X and Y is the disjoint union together with canonical inclusion. In **Top**, the coproduct of X and Y is their disjoint union equipped with the disjoint union topology. However, in **Grp**, the underlying set of the coproduct of two groups is not the disjoint union.

2.3.2 Equalizers and coequalizers

Definition 2.18. Let \mathcal{C} be a category and $X, Y \in \text{Ob}(\mathcal{C}), f, g : X \to Y$. Consider the contravariant functor $F : \mathcal{C} \to \mathbf{Set}$ defined by $F(c) = \{\alpha : c \to X \mid f\alpha = g\alpha\}$ and $F(\beta) = -\circ \beta$. An equalizer in \mathcal{C} is a representation of the contravariant functor F.

By the Yoneda lemma, a natural transformation $\operatorname{Hom}(-,c)\Rightarrow F$ is the same as an element of F(c), so a representation of F is a pair (c,e) with $c\in\operatorname{Ob}(\mathcal{C})$ and $e\in F(c)$ such that the natural transformation given by the Yoneda lemma is an isomorphism. Concretely, we want $\eta_e:\operatorname{Hom}(d,c)\to F(d)$ to be an isomorphism for all $d\in\operatorname{Ob}(c)$. This translates into $h\mapsto F(h)(e)$

the follwing diagram:

$$c \xrightarrow{\exists ! \alpha} d$$

$$\downarrow^{\forall h} \qquad \downarrow^{e} X \xrightarrow{f} Y$$

Example 2.19. In Set, $E = \{x \in X \mid f(x) = g(x)\} \hookrightarrow X$ is an equalizer.

The dual notion is that of a coequalizer.

Definition 2.20. A coequalizer of $X \xrightarrow{f} Y$ is an object $Z \in \text{Ob}(\mathcal{C})$ together with a morphism $\pi: Y \to Z$ such that $\pi f = \pi g$ and that universal to this property:

$$X \xrightarrow{f} Y \xrightarrow{\pi} Z$$

$$\downarrow^{\forall h} \qquad \exists ! \alpha$$

$$Z'$$

Example 2.21. In **Set**, consider the equivalence relation \sim on Y generated by $f(x) \sim g(x)$ (the smallest equivalence relation on Y with this property). Then $y \xrightarrow{\pi} Y/\sim$ is a coequalizer.

2.4 Adjoint functors

This notion was introduced by Kan in 1958.

Definition 2.22. An adjunction (G, D) is a pair of functors $G : \mathcal{C} \to \mathcal{D}$ and $D : \mathcal{D} \to \mathcal{C}$ together with an isomorphism $\operatorname{Hom}_{\mathcal{D}}(G(c), d) \simeq \operatorname{Hom}_{\mathcal{C}}(c, D(d))$ which is natural in both c and d. We write $G \dashv D$ and say G is left adjoint to D and D is right adjoint to G.

If $G \dashv D$ we have $\forall c, d \in \mathrm{Ob}(\mathcal{C}) \times \mathrm{Ob}(\mathcal{D})$,

$$\operatorname{Hom}_{\mathcal{D}}(G(c),d) \xrightarrow{\sim \atop \alpha_{c,d}} \operatorname{Hom}_{\mathcal{C}}(c,D(d))$$

and in particular when d = G(c) we get $\operatorname{Hom}_{\mathcal{D}}(G(c), G(c)) \xrightarrow[\alpha_{c,G(c)}]{\sim} \operatorname{Hom}_{\mathcal{C}}(c, DG(c))$.

Let $\eta_c: c \to DG(c)$ be the image of $\mathrm{id}_{G(c)}$. This gives a collection of morphisms $-\to DG(-)$.

Proposition 2.23. These morphisms make up a natural transformation $id_{\mathcal{C}} \Rightarrow DG$.

Proof. Let $f: c \to d$. We want to show that

$$c \xrightarrow{\eta_c = \alpha_{c,G(c)}(\mathrm{id}_{G(c)})} DG(c)$$

$$\downarrow^f \qquad \qquad \downarrow^{DG(f)}$$

$$d \xrightarrow{\eta_d = \alpha_{d,G(d)}(\mathrm{id}_{G(d)})} DG(d)$$

commutes. By naturality of the isomorphism α given by the adjunction, we get the following commutative diagram

which gives us these equations:

$$DG(f) \circ \eta_c = DG(f) \circ \alpha_{c,G(c)}(\mathrm{id}_{G(c)}) = \alpha_{c,G(d)}(G(f) \circ \mathrm{id}_{G(c)}) = \alpha_{c,G(d)}(G(f))$$
$$\eta_d \circ f = \alpha_{d,G(d)}(\mathrm{id}_{G(d)}) \circ f = \alpha_{c,G(d)}(\mathrm{id}_{G(c)} \circ G(f)) = \alpha_{c,G(d)}(G(f))$$

which completes the proof.

We also get a natural transformation $\varepsilon: GD \Rightarrow \mathrm{id}_{\mathcal{D}}$ when c = D(d) by setting $\varepsilon_d = \alpha_{D(d),d}^{-1}(\mathrm{id}_{D(d)})$.

Definition 2.24. The natural transformation $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow DG$ is called the *unit* of the adjunction. The natural transformation $\varepsilon : GD \Rightarrow \mathrm{id}_{\mathcal{D}}$ is called its *counit*.

Proposition 2.25. Let $C \xrightarrow{G} \mathcal{D}$ be two functors. Then, $G \dashv D$ if and only if there are natural transformations $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow DG$ and $\varepsilon : GD \Rightarrow \mathrm{id}_{\mathcal{D}}$ such that the following diagrams commute:

$$G \xrightarrow{G\eta} GDG \qquad D \xrightarrow{\eta D} DGD$$

$$\downarrow_{\varepsilon G} \qquad \downarrow_{D\varepsilon}$$

$$G \qquad D \xrightarrow{id_D} DGD$$

where $G\eta$ is the natural transformation given by the morphisms $G(\eta_c)$ and εG is the one give by morphisms $\varepsilon_{G(c)}$ (and similarly for ηD and $D\varepsilon$).

Proof. Suppose $G \dashv D$. Let $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow DG$ and $\varepsilon : GD \Rightarrow \mathrm{id}_{\mathcal{D}}$ be the unit and counit of the adjunction. Let $c \in \mathcal{C}$. We have

$$(\varepsilon G)_c \circ (G\eta)_c = \varepsilon_{G(c)} \circ G(\eta_c) = \alpha_{DG(c),G(c)}^{-1}(\mathrm{id}_{DG(c)}) \circ G(\alpha_{c,G(c)}(\mathrm{id}_{G(c)}))$$

and the naturality of α gives the following commutative diagram

$$\begin{array}{c} \operatorname{Hom}(G(c),G(c)) \xleftarrow{\sim} & \operatorname{Hom}(c,DG(c)) \\ -\circ G(\alpha_{c,G(c)}(\operatorname{id}_{G(c)})) \uparrow & \uparrow^{-\circ\alpha_{c,G(c)}(\operatorname{id}_{G(c)})} \\ \operatorname{Hom}(GDG(c),G(c)) \xleftarrow{\sim} & \operatorname{Hom}(DG(c),DG(c)) \end{array}$$

which shows that $(\varepsilon G)_c \circ (G\eta)_c = \mathrm{id}_{G(c)}$, hence $\varepsilon G \circ G\eta = \mathrm{id}_G$. The commutativity of the other triangle is treated in a similar way.

Now assume that there are natural transformations η and ε that make both triangles commute. We define two maps

$$\alpha_{c,d}: \operatorname{Hom}(G(c),d) \to \operatorname{Hom}(c,D(d))$$

$$f \mapsto D(f) \circ \eta_{c}$$

$$\beta_{c,d}: \operatorname{Hom}(c,D(d)) \to \operatorname{Hom}(G(c),d)$$

$$g \mapsto \varepsilon_{d} \circ G(g)$$

and we show these are natural isomorphisms that give us the adjunction. First we check naturality of α . Let $f: c \to c' \in \operatorname{Mor}(\mathcal{C})$ and $g: d \to d' \in \operatorname{Mor}(\mathcal{D})$. We need to check that the diagrams

$$\operatorname{Hom}_{\mathcal{D}}(G(c),d) \xrightarrow{\alpha_{c,d}} \operatorname{Hom}_{\mathcal{C}}(c,D(d)) \qquad \operatorname{Hom}_{\mathcal{D}}(G(c),d) \xrightarrow{\alpha_{c,d}} \operatorname{Hom}_{\mathcal{C}}(c,D(d))$$

$$-\circ G(f) \uparrow \qquad -\circ f \uparrow \qquad \qquad \downarrow g \circ - \qquad \downarrow D(g) \circ -$$

$$\operatorname{Hom}_{\mathcal{D}}(G(c'),d) \xrightarrow{\alpha_{c',d}} \operatorname{Hom}_{\mathcal{C}}(c',D(d)) \qquad \operatorname{Hom}_{\mathcal{D}}(G(c),d') \xrightarrow{\alpha_{c,d'}} \operatorname{Hom}_{\mathcal{C}}(c,D(d'))$$

commute. We only check the left diagram and leave the right to the reader (sorry). We have

$$\alpha_{c,d} \circ (-\circ G(f)) = (D(-)\circ \eta_c) \circ (-\circ G(f)) = D(-\circ G(f)) \circ \eta_c = D(-)\circ DG(f) \circ \eta_c$$
$$(-\circ f) \circ \alpha_{c',d} = (-\circ f) \circ (D(-)\circ \eta_{c'}) = D(-)\circ \eta_{c'} \circ f = D(-)\circ DG(f) \circ \eta_c$$

One shows β is natural in c and d in a similar way. We leave it to the reader (sorry again). Now we need to check that α and β are inverses of each other, and that's where the triangle diagrams come into play.

$$\alpha_{c,d} \circ \beta_{c,d} = D(\varepsilon_d \circ G(-)) \circ \eta_c = D(\varepsilon_d) \circ DG(-) \circ \eta_c = D(\varepsilon_d) \circ \eta_{D(d)} \circ - = -$$

We used the definitions of α and β , the functoriality of D, the naturality of η and the second triangle diagram. We leave to the reader (sorry) to check that $\beta_{c,d} \circ \alpha_{c,d}$ is also the identity.

Examples 2.26.

- 1. The forgetful functor $Ab \to Set$ is right adjoint to the free abelian group functor $Set \to Ab$.
- 2. The forgetful functor $\mathbf{Ab} \to \mathbf{Grp}$ is right adjoint to the abelianization functor $\mathbf{Grp} \to \mathbf{Ab}$ that sends a group G to its abelianization $G^{ab} = G/[G,G]$ and a morphism $f: G \to H$ to the induced morphism $f^{ab}: G^{ab} \to H^{ab}$.
- 3. The forgetful functor $\mathbf{Top} \to \mathbf{Set}$ is right adjoint to the functor $\mathbf{Set} \to \mathbf{Top}$ that takes a set and equips it with the coarse topology. The forgetful functor $\mathbf{Top} \to \mathbf{Set}$ is also left adjoint to the functor $\mathbf{Set} \to \mathbf{Top}$ that equips a set with the discrete topology.
- 4. Let G be a group, H one of its subgroups and k be a field. We have a functor from the category $\mathbf{Rep}_k(G)$ of representations of G on k-vector spaces to the category $\mathbf{Rep}_k(H)$ of representations of H on k-vector spaces. It is the restriction functor Res_H^G . Its left adjoint is Ind_H^G , the induced representation functor.

Theorem 2.27. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. The following are equivalent:

- 1. F admits a left adjoint
- 2. For all $X \in \text{Ob}(\mathcal{D})$, $\text{Hom}_{\mathcal{D}}(X, F(-))$ is representable
- 3. For all $X \in Ob(\mathcal{D})$, there exists a universal arrow $X \to F$

Corollary. If they exist, adjoints are unique up to isomorphism.

Proof. 2 \iff 3 was the subject of a previous remark right after the Yoneda lemma. We prove $1 \iff$ 2. Suppose F admits a left adjoint G. Let $X \in \mathrm{Ob}(\mathcal{D})$. Then for all $Y \in \mathrm{Ob}(\mathcal{C})$ we have a bijection $\mathrm{Hom}_{\mathcal{D}}(X,F(Y)) \simeq \mathrm{Hom}_{\mathcal{C}}(G(X),Y)$ which is natural in Y, so G(X) represents $\mathrm{Hom}_{\mathcal{D}}(X,F(-))$. For the converse, suppose all functors $\mathrm{Hom}_{\mathcal{D}}(X,F(-))$ are representable. We define G(X) to be an object of \mathcal{C} that represents $\mathrm{Hom}_{\mathcal{D}}(X,F(-))$. Now choose $X,Y \in \mathrm{Ob}(\mathcal{D})$ and $f:X \to Y$. We need to define G(f). We wish to have a commuting square

$$\begin{array}{ccc} \operatorname{Hom}(G(X),-) & \stackrel{\sim}{\longrightarrow} & \operatorname{Hom}(X,F(-)) \\ & & & & & -\circ f \\ & & & & & + \circ f \\ \operatorname{Hom}(G(Y),-) & \stackrel{\sim}{\longrightarrow} & \operatorname{Hom}(Y,F(-)) \end{array}$$

We need to recover a map $G(X) \to G(Y)$ such that composing with it gives us γ . This works by the Yoneda lemma, which tells us that the natural transformation γ comes from an element $\operatorname{Hom}(G(X),G(Y))$. Call it G(f). Using this diagram with X=Y and $f=\operatorname{id}_X$ shows that $G(\operatorname{id}_X)=\operatorname{id}_{G(X)}$. It remains to check this does define a functor. Let $X\xrightarrow{f} Y\xrightarrow{g} Z$ in \mathcal{C} . Then we have the diagram

Which shows $G(g \circ f) = G(g) \circ G(f)$ (because the map γ above is unique).

This theorem shows there is a deep link between universal properties and adjoint functors.

2.5 Limits and colimits

(This subsection may be skipped on a first reading.) Let us recall the definition of a functor category.

Definition 2.28. Let \mathcal{C}, \mathcal{D} be two categories. Then $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$, also written $\mathcal{D}^{\mathcal{C}}$, is the category whose objects are functors $\mathcal{C} \to \mathcal{D}$ and morphisms are natural transformations between such functors, with composition given by vertical composition. It is called the *functor category category from* \mathcal{C} to \mathcal{D} . When \mathcal{J} is a small category we also say that $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ is the category of diagrams of shape \mathcal{J} in \mathcal{C} .

Examples 2.29.

1. Let **2** be the category • → • which has two objects 1 and 2 and three morphisms (two of them being identities).

identities). Then, a functor from 2×2 to \mathcal{C} is a commutative diagram of this shape in \mathcal{C} .

2. If \mathcal{J} is a small category, there is a map $\Delta : \mathrm{Ob}(\mathcal{C}) \to \mathrm{Fun}(\mathcal{J}, \mathcal{C})$ where $\Delta(c)$ is the constant functor at c, that is the functor that sends all objects to c and all morphisms to id_c .

Definition 2.30. A cone above a diagram $F: \mathcal{J} \to \mathcal{C}$ with summit $c \in \mathcal{C}$ is a natural transformation $\lambda: \Delta(c) \Rightarrow F$. Dually, a cone under F with summit c, also called a *cocone*, is a natural transformation $\lambda: F \Rightarrow \Delta(c)$.

Let us unwrap this definition. A cone is a collection of maps $\lambda_j : c \to F(j)$ for all $j \in \text{Ob}(\mathcal{J})$, such that for any morphism $f : i \to j \in \text{Mor}(\mathcal{J})$, this diagram commutes:

$$F(i) \xrightarrow{F(f)}^{c} F(j)$$

Definition 2.31. Let $F: \mathcal{J} \to \mathcal{C}$ be a diagram. A *limit* (or *projective limit* or *inverse limit*) of F is a universal cone above F, in the sense that it is a final object in the category of cones above F. Dually, a *colimit* (or *inductive limite* or *direct limit*) is a universal cocone, that is an initial object in the category of cones under F.

Concretely, a limit of $F: \mathcal{J} \to \mathcal{C}$ is a pair $(\lim F, \phi)$ with $\lim F \in \mathrm{Ob}(\mathcal{C})$ and $\phi: \Delta(\lim F) \Rightarrow F$ is such that for any **TODO**