Государственное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н. Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему:

Разработка программы записыванию видеозаписи в HDR качестве

Студент	(Подипсь, дата)	Киселев А.М.
Руководитель курсового проекта	(Подпись, дата)	Оленев А.А.

Содержание

Вве	едение										
1	Анали	гический раздел									4
	1.1	Различия LDR и HDR изображений									4
2	Консту	укторский раздел									6

Введение

В 20 веке был принят стандарт СІЕ, который охарактеризовывал то, как должна отображаться картинка на восьмибитных мониторах. Технологии того времени позволяли передавать только сильно ограниченный диапазон цветовой информации, поэтому картинка, предоставляемая монитором, была далека от более сочных и ярких цветов, которые человек видит в повседневной жизни. Такое явление может быть охарактеризованно следующими терминами: LDR(low dynamic range) или SDR(standart dynamic range) image — маленький динамичиский диапазон или стандартный динамичиский диапазон изображения. Мониторы LDR и SDR не могли передавать широкий спектр цветов. К тому же не все сенсоры цифровых камер могут позволить себе захватить широкий диапазон оттенков. Из-за этого возникает проблема засвеченных и затемненных участков на фотографии или видео.

С развитием технологий, стали появляться так называемые HDR мониторы, которые позволяют передавать цветовую информацию с глубиной в 10 битов. По причине того, что LDR и SDR мониторы обладают маленькой глубиной цвета, они не в состоянии корректно отображать картинку с широким диапазоном цветов.

Из-за того, что не все сенсоры могут запечатлить широкий спектр цветов, были придуманы специальные алгоритмы и методы получения HDR изображений с обычных и самых распространенных сенсоров(цифровые камеры, мобильные телефоны, планшеты, веб-камеры и т.п.). Полученные HDR снимки или видео с камер, сенсор которых рассчитан на LDR и SDR изображения, могут быть отображены на HDR мониторах.

Получение HDR кадра - нетривиальная задача, которая делится на несколько этапов: получения серии снимков с разной длиной экспозиции, выравниване кадров по отношению друг к другу, реконструкция и удаление движущихся объектов полученных изображений, объединение изображений (merging), проведение цветовой коррекции изображения.

1 Аналитический раздел

 $SDR(Standart\ Dynamic\ Range)\ изображение$ — изображение, пиксели которого содержат цвета и яркость, соответствующую глубине монитора.

 $LDR(Low\ Dynamic\ Range)\ изображение$ — изображение, пиксели которого хранят ограниченный диапазон цветов и яркости, предназначенное для отображении на старых мониторах.

HDR(High Dynamic Range) изображение – изображение, пиксели которого содержат более широкие значения цвета и яркости в сравнении с изображениями стандартного диапазона(SDR).

Получить HDR изображение можно получить несколькими способами:

- с помощью объединения снимков с разной длинной экспозиции,
- с помощью камеры, сенсор который позволяет захватить широкий объем данных,
 - при помощи перевода LDR изображения в HDR специальными алгоритмами

Первый метод является более распространенным, так как устройства, которые больше всего распространены в повседневной жизни(телефоны, планшеты, вебкамеры) не обладают достаточно мощными сенсорами, для того, чтобы захватить широкий диапазон цветов. Последний метод не получил распространения, потому что задача перевода LDR или SDR изображения в HDR возможна только при помощи преминениями алгоритмов реконструкций, завязанных нейронных сетях, появивщихся достаточно недавно.

Задача получения HDR изображения не является тривиальной и делится на несколько этапов:

- Выравнивание
- Реконструкция и удаление движущихся объектов
- Слияние кадров с разной экспозицией
- Преобразование HDR к LDR(tonemapping) если это требуется

1.1 Различия LDR и HDR изображений

Глубина цвета – количество бит, приходящихся на один пиксель

Несмотря на то, что технологии за послдение несколько лет быстро развиваются и качество полученных кадров и устройств, их отображающих, увеличивается, получение картинки, сопостовимой с реальным окружением, остается нелегкой задачей. Яркость, диапазон цветов, которые видит человек в повседневной жизни, невозможно отобразить на большинстве мониторов, используемых во всем мире.

Хотя уже начинают появлятся так называемые HDR мониторы и существуют камеры, сенсоры которых позволяют запечатлить широкий спектр цветов, яркостей

и деталей, цена таких устройств может достигать огромных значений, поэтому большинство мониторов остаются SDR формата и не в состоянии передать картинку с большим количеством цветовой информации.

Глубина цвета на большинстве мониторов составляет 8 бит. Глубина цвета самого распространенного формата изображений JPEG так же составляет 8 бит, в котором используется цветовое пространстов YC_rC_b . Это цветовое пространство позволяет использовать лишь малую часть видимых человеком цветов. Так же это цветовое пространство не способно передать большую часть яркостей, которых способен распознать человеческий глаз.

В противовес формату JPEG существует так называемый RAW формат. В отличии от JPEG он способен содержать гораздо больше информации. Глубина цвета такого формата может достигать 12-16 бит(Значение может варьироваться в зависимости от возможностей сенсора камеры), который доступен в большинстве современных камер. Чаще всего этот формат автоматически переводят в JPEG во время съемки, что приводит к потере многих деталей без возможности восстановления. Однако, используя специальные инструменты RAW изображение в дальнейшем можно преобразовать в LDR изображение, получив на выходе кадр без потери нужной информации(провести tonemapping).

На цветовом пространстве 1.1 наглядно показан охват возможных отображаемых цветов в RGB пространстве или на тех же LDR мониторах и в HDR с глубиной цвета хотя бы в 12 бит.

Рисунок 1.1 — Охват видимых человеком цветов цветовым пространством RGB и HDR.

2	Констукторский	разлел
_	Troncignitopenni	раздел

 check