Energiespeicher: Energie zum Zeitpunkt des Bedarfs

Energie nützt nur etwas, wenn sie zum Zeitpunkt des Bedarfs zur Verfügung gestellt werden kann. Kein Problem ist dies mit in grossen Mengen vorhandenen lagerbaren Energieträgern wie Öl, Gas und Kohle. Viel anspruchsvoller wird dies mit erneuerbaren Energien. Die Möglichkeiten zum Anpassen des Energieverbrauchs zur Zeit des Angebots und zur Speicherung der Energie sind sehr beschränkt und relativ bis sehr aufwendig und z.T. auch sehr umweltbelastend.

Übersicht einiger gängiger Speichertechnologien

	Medium	Speicher- kapazität kWh / m ³	Investition CHF / m ³	Investition CHF / kWh Speicherka- pazität	Speicher- kosten für Saison- speicherung CHF / kWh	Speicher- kosten CHF / kWh bei entspr. Zyklen Zahl	Verfügbar- keit der Rohstoffe	Zyklen	Lebens- erwartung in Jahren
Elektrische Speicher	Lithium- Ionen- Batterie	400	120`000	300	30	0.30 (bei 1000)	sehr begrenzt	500 bis 1000	5 bis 10
	Blei- Batterie	125	15'000	120	12	0.12 (bei 1000)	sehr begrenzt	500 bis 1000	5 bis 10
Elektr	Wasser Pumpspei- cherkraftwerk	2.7 (Fallhöhe 1000 m)	135	50	0.50	0.125 (bei 400)	unkritisch	unbegrenzt	> 100
Speicher	Wasser Wärmespei- cher im Stahl- behälter	70 (bei Delta T 60°C)	500	7	0.10	0.023 (bei 300)	unkritisch	unbegrenzt	# 75
Thermische Speicher	Wasser Grosswärme- speicher in Tiefbau- technik	35 (bis Delta T 30°C)	70	2	0.04	0.02 (bei 100)	unkritisch	unbegrenzt	50

Bei den angegebenen Zahlen handelt es sich um ideale Werte (100% Wirkungsgrad), bei den Kosten um momentane Richtwerte (Netto-Grosshandelskosten) des effektiven Speichers, bezogen auf 1 Kubikmeter Speichervolumen. Die Kosten weisen nur den Preis für die Energiespeicherung ohne Infrastruktur darum herum aus und müssen im konkreten Einzelfall abgeklärt werden. Sie sind linear ohne Kapitalverzinsung etc. berechnet. Vor allem die Kosten von Batterien können sich durch Technologiesprünge, aber auch durch Rohstoffverknappungen, gestiegene Nachfrage etc. massiv ändern. Die Lade-Entlade-Wirkungsgrade liegen im Bereich von 60 - 90% und sind bei Batterien auch abhängig davon, wie intensiv sie geladen oder entladen werden, was ihre Lebenserwartung stark verkürzen kann. Zudem weisen einige Speicher zeitabhängige Verluste (Selbstentladung, Isolationsverluste) auf.

Als Vergleich: «Energieinhalt» von 1 m³ Holz, Öl und Kohle

	Holz	ÖI	Kohle
Energieinhalt in kWh pro m³	2'400-3'400	9'600-11'000	6'600-11'700