FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO

Úloна 3

KMITY SPRIAHNUTÝCH KYVADIEL

Abstrakt

1 Teoretická analýza

Oscilátory, na ktoré pôsobiaca vonkajšia periodická sila má pôvod v inom oscilátore, nazývame spriahnutými oscilátormi. Príkladom spriahnutého kyvadla je napríklad dvojica fyzikálnych kyvadiel spojená elastickou väzbou. V našom prípade použijeme pružinku s malou tuhosťou k_1 . Pre výchylky y_1 , y_2 takýchto kyvadiel platia pohybové rovnice (pre jednoduchosť zanedbajme odpor prostredia)

$$m \cdot \frac{\mathrm{d}^2 y_1}{\mathrm{d}t^2} = -ky_1 - k_1(y_1 - y_2),$$

$$m \cdot \frac{\mathrm{d}^2 y_2}{\mathrm{d}t^2} = -ky_2 - k_1(y_1 - y_2).$$
(1)

Budeme vyšetrovať tri situácie:

- a) Symetrické vychýlenie: V čase t=0 vychýlime obe kyvadlá do polohy $y_1=y_2=A$. Riešením sústavy (1) zisťujeme, že obe kyvadlá budú kmitať súhlasne s vlastnou frekvenciou ω_1 .
- b) Opačné vychýlenie: V čase t=0 vychýlime oscilátory na opačné strany tak, že $y_1=-y_2=A$. Riešením sústavy (1) zisťujeme, že sa oba oscilátory budú pohybovať s uhlovou frekvenciou ω_2 , ale s fázovým posunom π .
- c) Antisymetrické vychýlenie: Ak jeden oscilátor vychýlime do polohy A ($y_1 = A$) a druhý podržíme v rovnovážnej polohe ($y_2 = 0$), riešením sústavy (1) dostávame všeobecne zložité neharmonické kmitanie. Ak je však rozdiel frekvencií ω_1 a ω_2 veľmi malý (čo pri viazaných oscilátoroch znamená veľmi slabú väzbu (t.j. $k_1 << k$, čo v našom prípade naozaj platí)), výsledné kmitanie sa zjednoduší. Pôjde o jednoduché sínusové kmity, ktorých amplitúda sa periodicky mení s frekvenciou ω_0 . Vznikajú teda rázy, ktorých periódu môžeme vyjadriť vzťahom

$$T_0 = \frac{2\pi}{\omega_0} \,, \tag{2}$$

pričom rázy kyvadiel sú posunuté o $\pi/2$.

Na vystihnutie sily väzby sa používa pomer $\kappa = \frac{k_1}{k_1 + k}$, ktorý je nazývaný **faktorom väzby**. Pomocou základných frekvencií spriahnutých oscilátorov ω_1 , ω_2 alebo pomocou periódy T kmitov každého oscilátora a periódy T_0 rázov, ho môžeme vyjadriť nasledovne:

$$\kappa = \frac{\omega_2^2 - \omega_1^2}{\omega_2^2 + \omega_1^2}, \qquad \kappa = \frac{4TT_0}{4T_0^2 + T^2}.$$
 (3)

2 Meranie

Úlohy:

- 1. Pri zvolenej polohe valca a väzbovej pružiny zmerať základné frekvencie ω_1 a ω_2 spriahnutých kyvadiel a určiť z nich faktor väzby κ .
- 2. Zmerať periódu rázov T_0 a periódu pohybu kyvadiel T a z nich určiť faktor väzby κ .
- 3. Určiť závislosť faktoru väzby κ od vzdialenosti d.

Pomôcky: Dve fyzikálne kyvadlá na stojane s možnosťou väzby, väzbová pružina, senzor na meranie polohy kyvadla pripojený na počítač s príslušným programovým vybavením.

Postup:

- Po uistení sa, že posuvné valce sú na oboch kyvadlách v rovnakej vzdialenosti od osi
 otáčania, overíme, že doba kmitu oboch kyvadiel je zhodná.¹
- Zmeriame dobu kmitu T_1 a z nej vypočítame vlastnú uhlovú frekvenciu oscilátorov $\omega_1 = 2\pi/T$.
- V rovnakej vzdialenosti d od osi otáčania upevníme na obe kyvadlá väzbovú pružinu.
- Postupne volíme všetky začiatočné podmienky opísané v teoretickej časti:
 - a) Meriame periódu kmitov T_1 ľubovoľného kyvadla a overíme súhlas z predchádzajúcim meraním.²
 - b) Meriame dobu kmitu T_2 ľubovoľného kyvadla a znej vypočítame druhú základnú uhlovú frekvenciu ω_2 .
 - c) Zmeriame periódu rázov T_0 a zároveň meriame tiež dobu kmitu T jedného z kyvadiel.
- Vypočítame faktor väzby κ :
 - z hodnôt $\omega_1, \, \omega_2,$
 - z hodnôt T, T_0 .

Následne obe hodnoty porovnáme.

- Meranie opakujeme pre rôzne vzdialenosti d (vzdialenosť väzbovej pružinky od osi otáčania).
- Zostrojíme graf závislosti faktoru väzby κ od vzdialenosti d.

¹Ak zistíme, že nie je, pokúsime sa to napraviť.

²Meraním periódy ešte pred upevnením pružinky.

3 Výsledky

Naše meranie sme začali zistením³ periódy kmitu $(T_1 = 1,97\,\mathrm{s})$ jedného z našich dvoch kyvadiel. Uhlová frekvencia ω_1 nám vyšla $3.195\,\mathrm{s}^{-1}$. Následne sme vykonali merania všetkých troch prípadov z teoretickej časti pre tri rôzne vzdialenosti d.

$d = 90 \, cm$

periódy				
$T_1 / [s] T_2 / [s] T / [s] T_0 / [s]$				
1,96	1,85	1,85	33,56	

Tabuľka 1: Hodnoty všetkých zisťovaných periód pre $d=90\,\mathrm{cm}$

uhlové frekvencie			
$\omega_1 / [\mathrm{s}^{-1}]$	$\omega_2 / [\mathrm{s}^{-1}]$	$\omega_0 / [s^{-1}]$	
3,20	3,39	0,19	

Tabuľka 2: Hodnoty všetkých zisťovaných uhlových frekvencií pre $d=90\,\mathrm{cm}$

$d = 70 \, cm$

periódy				
$T_1/[s] \mid T_2/[s] \mid T/[s] \mid T_0/[s]$				
1,96	1,90	1,76	54,99	

Tabuľka 3: Hodnoty všetkých zisťovaných periód pre $d=70\,\mathrm{cm}$

uhlové frekvencie			
$\omega_1 / [s^{-1}] \omega_2 / [s^{-1}] \omega_0 / [s^{-1}]$			
3,20	3,31	0,11	

Tabuľka 4: Hodnoty všetkých zisťovaných uhlových frekvencií pre $d=70\,\mathrm{cm}$

$d = 45 \, cm$

periódy				
$T_1 / [s] T_2 / [s] T / [s] T_0 / [s]$				
1,96	1,93	1,95	137,31	

Tabuľka 5: Hodnoty všetkých zisťovaných periód pre $d=45\,\mathrm{cm}$

 $[\]overline{}$ Na zisťovanie všetkých periód (okrem periódy rázov T_0) sme použili metódu založenú na nameraní závislosti vzdialenosti kyvadla od senzoru od času. Z grafu zobrazujúceho danú závislosť už nebol problém odčítať 10 dôb desať-periód (10T). Z nich sme urobili aritmetický priemer, ktorý sme následne vydelili desiatimi.

uhlové frekvencie				
$\omega_1 / [s^{-1}]$	$\omega_1 / [\mathrm{s}^{-1}] \mid \omega_2 / [\mathrm{s}^{-1}] \mid \omega_0 / [\mathrm{s}^{-1}]$			
3,20	3,25	0,05		

Tabuľka 6: Hodnoty všetkých zisťovaných uhlových frekvencií pre $d=45\,\mathrm{cm}$

Z nameraných hodnôt sme pomocou vzťahov (3) vypočítali faktor väzby. Zistené hodnoty uvádzame v tabuľke:

	d		
druh výpočtu	90 cm	$70\mathrm{cm}$	$45\mathrm{cm}$
rázy	0,0552	0,0319	0,01417
frekvencie	0,0580	0,0330	0,0155

Tabuľka 7: Hodnoty faktoru väzby κ pre skúmané vzdialenosti d

Nakoniec sme vypočítané hodnoty vyniesli do grafov:

Graf 1: Grafické znázornenie hodnôt faktoru väzby vypočítaných z periódy rázov

Graf 2: Grafické znázornenie hodnôt faktoru väzby vypočítaných z uhlových frekvencií

4 Diskusia a záver

Experimentálne sme overili, že faktor väzby κ závisí od vzdialenosti väzby od osi otáčania. Čím je vzdialenosť väzbovej pružiny od závesu väčšia, tým je väzba silnejšia a prenos mechanickej energie medzi oscilátormi prebieha rýchlejšie.

Faktor väzby κ sme vypočítali dvomi rôznymi spôsobmi. Priemerný podiel dvojice výsledkov dosiahnutých týmito metódami je $\frac{\kappa_{\text{cez rázy}}}{\kappa_{\text{cez frekvencie}}} = 0,9448$, z čoho je zrejmé, že rôznym spôsobom výpočtu sme nedostali rovnaké výsledky. Tieto výsledky sa však nelíšili až tak veľmi. Namerané hodnoty sa líšili v priemere o necelých 6 %. Tento rozdiel sme dostali kvôli nerovnakej presnosti merania frekvencie kmitov (teda ich periódy) a periódy rázov.

Keďže kyvadlá sme vychyľovali ručne, veľkosť počiatočnej výchylky a rýchlosti pravdepodobne presne nezodpovedali požadovaným hodnotám. Tieto nepresnosti mohli byť príčinou systematických chýb vo výsledkoch.

Druhým podstatným vplyvom bola relatívne nízka presnosť odčítania periódy rázov. Chyby merania ultrazvukového senzora a samotného programu Coach 6 nevieme ovplyvniť ani odmerať. Odhadujeme však, že sú rádovo menšie, než chyby spôsobené nepresnosťou merania.

Literatúra

- [1] Zrubáková, N., Brežná, E., Pisoňová, B.: Praktikum z mechaniky a molekulovej fyziky. Bratislava, UK 2003.
- [2] Baláž, M.: Kmity spriahnutých kyvadiel, 2014.

 $[3] \ \mathtt{http://fks.sk/}{\sim} \mathtt{juro/phys_materials.html}$