# Colorful Cutout: Enhancing Image Data Augmentation with Curriculum Learning

Juhwan Choi and Youngbin Kim

Chung-Ang University

## **Data Augmentation**

In the field of deep learning, data augmentation is widely used for regularization

- Data augmentation aims to transform given data to enlarge the training dataset
- For instance, we can augment an image by rotating or flipping it
- Data augmentation enhances the performance and generalizability of the model



## **Curriculum Data Augmentation**

Recently, reserachers suggested to incorporate curriculum learning and data augmentation

- Curriculum data augmentation aims to sequentially enhance the difficulty of augmented data
- For instance, a previous study<sup>1</sup> gradually increased the amount of modification for data augmentation
- They found this approach can improve conventional data augmentation





#### **Our Motivation**

While curriculum data augmentation is promising, it is primarily applied for text data

- We explore the method for curriculum data augmentation for image data
- We achieve this through straightforward modification of Cutout<sup>1</sup>, while maintaining its simplicity

Original Image









## **Preliminary: Cutout**

Cutout introduces augmentation by randomly masking out a box region of given image

- For a given image x, augmented image  $\hat{x}$  is generated by masking box region
- In general, the box is filled with zero value
- This simple method introduces variation and improves performance of the model



## **Proposed Method: Colorful Cutout**

We propose **colorful cutout** with several updates to previous cutout:

- 1. We fill the mask box with random color, instead of zero value
- 2. We divide the mask box into sub-region and fill each region with different colors
- 3. We increase the number of sub-region as the epoch increases:  $2^{N_{epoch}}$
- This configuration enables curriculum data augmentation, as it introduces more complex, thus difficult noises



## **Experimental Result**

We performed our experiment on three different models and datasets, with various baselines

- Models: ResNet50, EfficientNet-B0, ViT-B/16
- Datasets: CIFAR-10, CIFAR-100, Tiny ImageNet
- Baselines: Cutout, Mixup, Cutmix
- We found our method exhibits remarkable performance improvement
- The ablation study that excludes curriculum reveals its importance

|                   | ResNet50    |       |       | EfficientNet-B0 |       |       | ViT-B/16 |       |       |
|-------------------|-------------|-------|-------|-----------------|-------|-------|----------|-------|-------|
| Dataset           | <b>C</b> 10 | C100  | TI    | C10             | C100  | TI    | C10      | C100  | TI    |
| Baseline          | 94.82       | 80.56 | 73.09 | 96.48           | 82.38 | 78.25 | 95.58    | 83.94 | 81.54 |
| Cutout            | 95.49       | 80.97 | 73.52 | 96.56           | 82.53 | 78.41 | 96.08    | 84.21 | 81.49 |
| Mixup             | 95.56       | 81.15 | 73.24 | 96.63           | 82.50 | 78.26 | 96.45    | 84.25 | 81.48 |
| CutMix            | 95.67       | 81.45 | 73.63 | 96.67           | 82.96 | 78.53 | 96.27    | 84.32 | 81.82 |
| Ours<br>w/o Curr. | 95.16       | 81.15 | 73.61 | 96.72           | 82.92 | 78.32 | 96.35    | 84.20 | 82.15 |
| Ours              | 95.70       | 81.57 | 73.81 | 96.81           | 83.37 | 78.65 | 96.55    | 84.36 | 82.36 |

#### Conclusion

#### We proposed:

Colorful cutout, a simple method for curriculum data augmentation for image data

#### We found that:

- Our colorful cutout demonstrates effectiveness compared to previous methods
- The inclusion of curriculum is important for colorful cutout, suggesting its strength

#### We plan to:

- Expand our approach to other image augmentation techniques
- Develop a dedicated approach for curriculum data augmentation for image data

## Thank You!