MOTEURS TRIPHASES

RECAPITULATIF METHODE DE RECHERCHE - ENROULEMENT A PLAN

RAPPEL

- Ils sont toujours réalisés à pôles conséquents et répartis sur deux plans, <u>sauf</u> les machines à <u>2 pôles</u> qui sont réalisées à pôles alternés et, l'enroulement est réparti sur trois plans (1 plan par phase).
- Lorsque (à pôles conséquents) le nombre total de bobines est impair (cas des 4 pôles, 10 pôles, 14 pôles ...) il y a un nombre impair de bobines par plan ; une bobine chevauche sur les deux plans.

METHODE DE CALCUL

- 1) Calculer le nombre de bobines.
- 2) Calculer le nombre de faisceaux par bobine (à plan 1 faisceau par encoche) Pour déterminer le nombre de sections par bobine.
- 3) Calculer le nombre d'encoches par pôles $\rightarrow \frac{N}{2p}$.
- 4) Calculer le nombre d'encoches par pôle et par phase $\rightarrow \frac{N}{2p \times m}$
- 5) Calculer le décalage entre les entrées de phase.

RECHERCHE DU SCHEMA NUMERIQUE : METHODE

Rappel:

- Les bobines sont à sections concentriques.

Exemple:

- Stator 24 encoches, 4 pôles.

MOTEURS TRIPHASES

Calculs résumés :

- 2 sections par bobine
- 6 encoches par pôle
- 2 encoches par pôle et par phase
- décalage des entrées 4 encoches

SCHEMA NUMERIQUE

Phase 1			Phase 2			Phase 3				
→ 1 E1	→ ∠	8	→ E2	5	→ ✓	12	→ E3	9	→ /	16
2	\rightarrow	7		6	\rightarrow	11		10	+	15
	~				~				7	
13	3 →	20		17	\rightarrow	24		21	-	4
	~				<				7	
14	1 →	19		18	\rightarrow	23		22	←	3
	S1	1			S2	Ţ			S3	1

➤ On place les bobines d'entrée de chaque phase en premier.

NOTA

■ La petite section chevauche les encoches par pôle et par phase occupées par les deux autres phases.

- 2 -

- Le pas de la petite section est égal au <u>nombre d'encoches par pôle par phase multiplié par 2 + 1</u>.
- Le pas entre bobines d'une même phase est égal au nombre d'encoches par pôle multiplié par 2.

G 08 61 MCA 1

MOTEURS TRIPHASES

RECAPITULATIF METHODE DE RECHERCHE – ENROULEMENT ENCHEVETRE

RAPPEL

- Ils peuvent être réalisés à pôles alternés ou à pôles conséquents.
- En pratique, les enroulements sont réalisés :
 - Soit à sections enchevêtrées, dans ce cas le pas doit être impair.
 - Soit à bobines enchevêtrées, à sections à pas égaux dans ce cas, la bobine chevauche les encoches par pôle et par phase occupée par les deux autres phases.
- Il y a un faisceau par encoche, les sections sont de forme trapézoïdale.

METHODE DE CALCUL

- 1) Calculer le nombre de bobines.
- 2) Calculer le nombre de faisceaux par bobine. Par conséquent, déterminer le nombre de sections par bobine.
- 3) Calculer le nombre d'encoches par pôle $\rightarrow \frac{N}{2p}$.
- 4) Calculer le nombre d'encoches par pôle et par phase $\rightarrow \frac{N}{2p \times m}$.
- 5) Dans le cas d'enroulement à sections enchevêtrées, calculer le pas polaire \Rightarrow Yp = $\frac{F}{2p}$; Si le pas est impair il est utilisable, dans le cas contraire, on le raccourcit généralement de 1.
- 6) Calculer le décalage entre les entrées de phase.

MOTEURS TRIPHASES

Rappel

- Types d'enroulement

SCHEMA NUMERIQUE: METHODE

Exemples

- Stator 24 encoches 4 pôles alternés à sections enchevêtrées

Calculs résumés

- 12 bobines à 1 section,
- pas polaire Yp = 6 : donc pas réel Yr = 5
- 6 encoches par pôle,
- 2 encoches par pôle et par phase
- décalage des entrées : 4

MOTEURS TRIPHASES

	Phase 1	Phase 3	Phase 2	
1 ^{ère} bobine	\	>	\	
	E1 1 → 6 ¬	S3 3 → 8 ¬	E2 5 → 10 ¬	
2ème bobine		\		
•	7 ← 12 √	E3 9 ← 14 ¬	ل 16 ← 11 ر	
3ème bobine	L ₁₃ → ₁₈ ¬	_ 15 → 20 J	17 → 22 ¬	
4 ^{ème} bobine	19 ← 24	21 ← 2 _	23 ← 4	
	₹		Y	
	S1		S2	

NOTA

- On a toujours à gauche des chiffres impairs, à droite des chiffres pairs.
- Le pas des sections est impair.
- Le pas entre les bobines d'une même phase est égal au nombre d'encoches par pôle.

MOTEURS TRIPHASES

- Stator 24 encoches ; 4 pôles conséquents, à sections enchevêtrées.

Calculs résumés :

- 6 bobines à 2 sections,
- pas polaire Yp = 6 donc pas réel Yr =5,
- 6 encoches par pôle,
- 2 encoches par pôle et par phase, décalage des entrées : 4

	Phase 1	Phase 2	Phase 3		
1 ^{ère} bobine	1 → 6 E1 ✓	5 → 10 E2 ✓	∇ 9 ← 14 E3 ✓		
	3 → 8	7 → 12	11 ← 16		
	✓	✓	7		
	13 → 18	17 → 22	21 ← 2		
2 ^{ème} bobine	✓	✓	7		
	15 → 20	19 → 24	23 ← 4		
	S1 ↓	S2 ↓	S3 †		

NOTA

- Dans ce cas, on place les phases dans l'ordre (1.2.3.).
- Le pas des sections est impair.
- On a toujours à gauche des chiffres impairs, à droite des chiffres pairs.
- Le pas entre les bobines d'une même phase est égal au nombre d'encoches par pôle multiplié par 2.

-6-

G 08 61 MCA 1

MOTEURS TRIPHASES

- Stator 24 encoches 4 pôles conséquents à bobines enchevêtrées.

Calculs résumés :

- 6 bobines à deux sections à pas égaux ; 6 encoches par pôle soit 2 encoches par pôle et par phase, décalage entre les entrées de phase 4.

	Phase 1	Phase 2	Phase 3		
1 ^{ère} phase	1 → 7 E1 🖌	∑ 5 → 11 E2 ✓	∇ 9 → 15 E3 ✓		
	2 → 8	6 → 12	10 ← 16		
	13 → 19	17 → 23	21 ← 3		
	✓	✓	7		
2 ^{ème} phase	14 → 20	18 → 24	24 ← 4		
	₹	✓	✓		
	S1	S2	S3		

NOTA:

- Dans ce cas, on place les phases dans l'ordre (1.2.3.).
- Le pas des sections est égal :
 - au nombre d'encoches par pôle et par phase multiplié par 2 + 2.
- Le pas entre les bobines d'une même phase est égal :
 - au nombre d'encoches par pôle multiplié par 2.
 - Le pas des sections est pair

Remarque

Par convention les faisceaux à gauche sont les petits côtés des sections, donc les faisceaux à droite sont les grands faisceaux des sections.

MOTEURS TRIPHASES

RECAPITULATIF METHODE DE RECHERCHE - ENROULEMENT EN MANTEAU

RAPPEL

- Ils sont toujours à pôles alternés, il y a deux faisceaux par encoches, les bobines sont à sections à pas égaux, les sections sont de forme hexagonale.
- Le pas des sections peut être entier ou raccourci. (raccourcissement maximum $\frac{1}{3}$ du pas polaire).

METHODE DE CALCUL

- 1) Calculer le nombre de bobines.
- 2) Calculer le nombre de faisceaux par bobine, pour déterminer le nombre de sections par bobine.
- 3) Calculer le nombre d'encoches par pôle $\rightarrow \frac{N}{2p}$
- 4) Calculer le nombre d'encoches par pôle par phase $\rightarrow \frac{N}{2p \times m}$
- 5) Calculer le pas aux encoches (s'il est polaire) YPe = $\frac{N}{2p}$; s'il est raccourci Yr = YPe raccourcissement.
- 6) Calculer le pas aux faisceaux Yrf = Yre x 2 + 1.
- 7) Calculer le décalage entre les entrées de phase.

SCHEMA NUMERIQUE: METHODE

Exemple

- Stator 24 encoches ; 4pôles ; enroulement à pas entier.

MOTEURS TRIPHASES

Calculs résumés :

- 12 bobines à 2 sections
- 6 encoches par pôle
- 2 encoches par pôle et par phase
- pas aux encoches 6 pas aux faisceaux 13
- décalage entre les entrées de phase 4

AUX	K ENCOCI	I ES	AUX FAISCEAUX			
Phase 1	Phase 3	Phases 2	Phase 1	Phase 3	Phase 2	
`	S3	\ <u>\</u>	`	Y	``	
E1 1 \rightarrow 7	3 → 9	E2 5 → 11	E1 1 → 14	S3 5 → 18	E2 9 → 22	
✓	✓	✓	✓	✓	₹	
2 → 87	4 → 10 —	6 → 12 ¬	3 → 16¬	7 → 20 ¬	11 → 24	
$ \begin{bmatrix} 7 & \leftarrow & 13 \\ 8 & \leftarrow & 14 \end{bmatrix} $ $ 13 \rightarrow 19$ $ \checkmark $ $ 14 \rightarrow 20 $	9 ← 15 → 10 ← 16 ¬ Γ15 → 21 ✓ 16 → 22 ¬	11 ← 17 12 ← 18 17 → 23 18 → 24 ¬	$ \begin{bmatrix} -13 \leftarrow 26 \\ \nearrow \\ 15 \leftarrow 28 \end{bmatrix} $ $ 25 \rightarrow 38$ $ \checkmark $ $ 27 \rightarrow 40 $	E3 17 \leftarrow 30 19 \leftarrow 32 $ \begin{array}{c} $	$ \begin{array}{c} 21 \leftarrow 34 \\ \nearrow \\ 23 \leftarrow 36 \\ \hline 33 \rightarrow 46 \\ \checkmark \\ 35 \rightarrow 48 \end{array} $	
S1 19 ← 1 20 ← 2	21 ← 3 22 4	S2 23 ← 5 24 ← 6	S1 37 ← 2 ✓ 39 ← 4	41 ← 6 ✓ 43 ← 8	S2 45 ← 10 ✓ 47 ← 12	

NOTA

- Pour le schéma numérique aux encoches et aux faisceaux, le pas des sections est celui calculé.
- Le pas entre les bobines d'une même phase est égal au pas polaire.
- Pour le schéma numérique aux faisceaux, le numéro de droite est égal au numéro de droite du numérique aux encoches multiplié par 2.
- Sur le schéma numérique aux faisceaux, on a toujours à gauche des numéros impairs, à droite des numéros pairs.

G 08 61 MCA 1 -9 -