(1

Name: Spogmai Tan Roll No: 2430-0081 Subject: Digital Logic Design

Assignment No : 03

Problem # 2.2

F) abc+abc+abc+abc+

Solution:

Rearrange the terms:

(a,pc+a,pc,)+ (apc,+apc)

Taking Common:

a,p (c+c,) + ap (c,+c)

10 C+C1 = 1

Thus a'b(1) + ab(1).

= 0'b+ ab

= p (a, +a) ra, a, +a=1

= b(1) = b dy

Problem# 2.3

q) x1+x(n5+n51)

first simply the Parenthesis.

W2+W21

W(2+21)

2+21=1

so now the expression is xy+xw -= x(y+w) da. Problem 2.4 c) A'B(B'+C'D)+B(A+A'CD) Solutions Expand the terms. A'BB' +A'BC'D + BA + BA'CD Notice that / A'BC'D + BA'CD/has a common factor of ABI A'B (B'+C'D) + BA + BA'CD A'B (b'+c')+B(A+A'CD) as A+A'CD = A+CD. A'B (D'+C')+B (A+CD) Further Simplifications A'BD'+ABC' + BA+BCD. · ABC + A'BD' + BCD+BA Since A'BC'+A'BD'= (A'B[('+D']) we get A'B(c'+D')+BcD+BAA'B(C'+D') + B (CD+A) 5 C'+D'=1 A+CD=A. A'B(1) + B(A). A'B + BA B(A'+A) & A'+A=A

Problem# 2.9

Solutions

Taking whole complement.

Apply De Morganis Theorem:

Applying this on expression.

Applying De-morganis Theorem on Each term.

a'c' + (a' +b) + able to

Problem #2.12

Bitwise operation a) AND (A&B).

A= 10110001

B= 1010 1100

Thus A&B (10100000)

A	B	A&B
1	1	1
0	0	1
1	1	1
_1	0	0
0	. 1	0 0 0
0	1	0
_0	0	O
1	0	0

P	3	AIIB
1	7	1
0	0	0
1	1	1
1	0	1
D	1	1
0	1	1
0	0	0
1	O	1

A	B	HABB
1	1	0
0	0	0
1	1	0
1	O	
0	1	1
0	1	1
0	0	0
1	D	1

7	\sim A	
1	0	
0	1	
1	0	
1	0	
000	1	
0	1	_
0	1	
1	0	

Solutions

Solutions

Solu)Flou:		0.15	A'	D	BD	4	
A	BC	D	BID			0	0	
0	0 0	0	0	1	_	0	1	
0	0 0	1	0	1	0_	0	0	
0	0 1	$\frac{0}{1}$	1		1	0	1	
0	0 1	0 0	0		0	0		
0		0 1	0	-	0	0	1	
0	1	1 0	7		1	1	0	
0	1	1	2		0	0		
1	0	0) 7	2			0	
-1	0	0	1	1	0_		1	
1	0	1	6	0	0		0	
1	0	1	1	1	D	0	1	
1	1	0	0	0	0	0	0	
1	1	0	1	0	1	_1_	1	
1	1	1	0	0	0	0	0	
-1		1	1	0	1	_ 1	1	
	1							

Sum of minterne

Product of maxterne

Problem # 2.24

Dual of exclusive DR is equal to its

complement. X-OR

Complement

Comprehence

$$A \oplus B = A'B + AB'$$

$$(A \oplus B)' = (A'B + AB')'$$

$$= [(A')' + B'] \cdot [A' + (B')']$$

$$= A + B' \cdot (A' + B)$$

$$USing distribution.$$

$$AA' + AB + B'A' + B'B$$

$$(A \oplus B)' = AB + A'B'$$

$$duch : = (A + B') \cdot (A + B)$$

$$= AA + AB + B'A' + B'A$$

$$= AB + A'B'$$

combase:

$$(A \oplus B)' = AB + A'B'$$

Dud of $(A \oplus B) = AB + A'B'$

Dud of $A \oplus B = (A' + B)$. $(A + B')$