INTRODUCTION TO COMPUTER NETWORKS

Campus Network Association

講師:石柱@CNA

大綱

- 何謂網路?
- 一些必備小知識
- OSI 模型
- TCP/IP 模型
- 資料的封裝與傳遞
- 其他常見通訊協定
- 常用的網路指令

何謂網路?

網路

Network

• 將數台電腦用網路傳輸媒介接在一起

網際網路 (Internet) ?

網路的種類

- 區域網路 (LAN)
 - Local Area Network
- 廣域網路(WAN)
 - Wide Area Network

一些必備小知識

進位制

- 生活常用:十進位制
 - 0~9
 - $123 = 1*10^2 + 2*10^1 + 3*10^0$
- 電腦:二進位制、八進位制、十六進位制...

二進位制

- 0, 1
- 十進位轉二進位:

$$(219)_{10} = (1101 \ 1011)_2$$

10 219 10 21 - 9 10 2 - 1 0 - 2

• 二進位轉十進位:

1	1	0	1	1	0	1	1
2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
128	64	32	16	8	4	2	1

2^0:2的0次方

 $(1101 \ 1011)_2$

$$\rightarrow$$
 128 + 64 + 16 + 8 + 2 + 1 = (219)₁₀

十六進位制

- 0~9、 A~F
- 網路卡號 (MAC)
- 二進位轉十六進位:
 (1101 1011)₂ = (DB)₁₆ 16 = 2⁴
- 十六進位轉二進位: 分別換成4個一組的二進位

十進位	十六進位
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	Е
15	F

來練習看看吧

十進位	二進位	十六進位
168		
	1111 1010	
		OA

十進位	10	11	12	13	14	15
十六進位	А	В	С	D	Е	F

答案

十進位	二進位	十六進位
168	1010 1000	A8
250	1111 1010	FA
10	0000 1010	OA

十進位	10	11	12	13	14	15
十六進位	А	В	С	D	E	F

傳輸單位、速度與頻寬

• 傳輸單位

```
1 Byte(位元組) = 8 bits(位元)

1 Kb(Kilo bits) = 1024 bits

1 KB(Kilo Bytes) = 1024 Bytes

1 MB(Mega Bytes) = 1024 KB

1 GB(Giga Bytes) = 1024 MB
```

速度

```
1 Mbps = 1024 Kbps(Kilo bits per second)
100 Mbps = 12.5 MB/s(Mega Bytes per second)
```

• 頻寬

100M → 最快可達100Mbps

邏輯

- AND (且)
 - 之前在德國念書 且 改考卷的原則是「XXX扣爆」
- OR (或)
 - 答案少一字 或 標點符號寫錯
- NOT (非)
 - 非 考試不及格 = 考試及格

邏輯運算

• AND (且)

А	0	0	1	1
В	0	1	0	1
A∧B	0	0	0	1

• OR (或)

А	0	0	1	1
В	0	1	0	1
A∨B	0	1	1	1

NOT (非)

А	0	1
~A	1	0

二進位的邏輯運算

• AND (且)

А	1	0	0	0	0	1	1	1	0	1	1	0	1	1	1	1
В	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	0
A∧B	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0	0

• OR (或)

А	1 0 0 0	0 1 1 1 0 1 1 0	1 1 1 1
		0 0 0 0 0 0 1 0	
A∨B	1 0 0 1	0 1 1 1 0 1 1 0	1 1 1 1

NOT (非)

А	1 0 0 0	0 1 1 1	0 1 1 0	1 1 1 1
~A	0 1 1 1	1 0 0 0	1 0 0 1	0 0 0 0

單播 (Unicast)

• 一對 —

• 只有對方會收到

廣播 (Broadcast)

• 一對所有

• 所有?

廣播域 (Broadcast Domain)

• 由所有收得到廣播的設備所組成

網段(Network Segment)

- •網路的片段,又稱子網路(Subnet)
- 同網段就像住同條路的鄰居
- 切割不同的廣播域
- IP位址的完整表示法:

```
Network ID + Host ID 
網段名稱 + 機器名稱
(路名) (門牌)
```

子網路遮罩(Subnet Mask)

- 區分不同網段(區分不同路)
- 由二進位連續的'1'所組成
- Example:

 (255.255.255.0)₁₀

 (11111111.1111111.11111111.00000000)₂

 (255.255.255.192)₁₀

 (11111111.1111111.1111111.11000000)₂

網段計算

• IP Address AND Subnet Mask

```
• 表示法:
     192.168.239.176 255.255.255.192
     192.168.239.176 / 26
      11000000.10101000.11101111.10110000
IP
Mask
      11111111.11111111.11111111.11000000
網段
     11000000.10101000.11101111.10000000
該網段ID為:192.168.239.128
```

• 首個為該網段的Network ID,末個為該網段的 Broadcast IP

練習

• 192.168.234.180/28 的 Network ID 和 Broadcast IP 分別是?

• /27的網段中,共有幾組IP可使用?

答案

/27的網段中,共有幾組IP可使用?
 2^5 - 2(Network ID & Broadcast IP) = 30

客戶端與伺服器端

- 客戶端 (Client)
 - 請求服務
- 伺服器端 (Server)
 - 提供服務

通訊協定 (Protocol)

定義兩個以上的通訊實體間,交換訊息的格式和順序,以及傳送、接收訊息或發生其他事件時所要採取的動作

就像人類之間若要溝通,需要有相同語言或共同擁有某些概念才能順利溝通

OSI 模型

OSI模型

- OpenSystemInterconnection
- 共七層
- 國際標準化組織(ISO)提出
- 優點:
 - 簡化
 - 標準化
 - 工程模組化

第七層	應用層 Application Layer
第六層	表達層 Presentation Layer
第五層	會談層 Session Layer
第四層	傳輸層 Transport Layer
第三層	網路層 Network Layer
第二層	資料鏈結層 Data Link Layer
第一層	實體層 Physical Layer

第七層 - 應用層(Application Layer)

• 與應用程式介面溝通,

為用戶端與應用程式之間的橋樑

- 通訊協定:HTTP、HTTPS、Telnet
- 應用程式:Skype

第六層 - 表達層(Presentation Layer)

- 提供用戶端與用戶端間的語碼轉換
- 例如:壓縮、解壓縮、加密、解密
- 通訊協定:
 - TLS(Transport Layer Security)
 - SSL(Secure Sockets Layer)

第五層 - 會談層(Session Layer)

- 通訊方與通訊方之間約定的通訊標準
- 建立、管理、終止應用程式之間的通訊

第四層 – 傳輸層(Transport Layer)

- 控制資料流量
- 進行偵錯與錯誤處理,確保通訊順利
- 傳送端會將資料加上序號,

使接收端得以正確地將資料重組

• 利用Port進行多工(Multiplexing)處理

Port?多工?

連接埠(Port)

- 0~1023: 常駐程式、系統程式(預設)
- 1024~65535:客戶端程式
- 不一定全都一直開著

- Example:
 - HTTP: 80
 - HTTPS: 443
 - Telnet: 23

第四層 – 傳輸層(Transport Layer)

- 控制資料流量
- 進行偵錯與錯誤處理,確保通訊順利
- 傳送端會將封包加上序號,

使接收端得以正確地將封包重組

- 利用Port進行多工(Multiplexing)處理
- 通訊協定:TCP、UDP

TCP vs. UDP

TCP	UDP
Transmission Control Protocol	User Datagram Protocol
正確性,需先建立連線(三方握手)	即時性,不須先建立連線
封包有序	封包無序
相較較慢	相較較快
應用: HTTP、Mail	應用: 影音串流

三方握手(Three-Way Handshake)

三方握手(Three-Way Handshake)

第三層 - 網路層(Network Layer)

- 決定發送端到接收端的最佳路徑
- 路由(Routing):

衡量<mark>壅塞程度、服務品質、封包優先序、路由消耗等,</mark> 以決定最佳路徑

- 設備:路由器(Router)
- 通訊協定:IP(Internet Protocol)

路由器(Router)

- OSI Layer 3
- 轉發前往不同網路的封包(Packet)
- 預設路由(Default Route)

IPv4

- 32bits
- 格式:xxx.xxx.xxx.xxx
- Example:
 - 140.123.5.5 學校首頁
 - 140.123.241.1 宿網首頁
- IPv4位置枯竭,故提出IPv6(128bits)

私人IP(Private IP)

• 在區域網路(LAN)中使用

```
10.0.0.0 ~ 10.255.255.255
```

172.16.0.0 ~ 172.31.255.255

192.168.0.0 ~ 192.168.255.255

- 有效節省IP
- 本地(localhost)IP: 127.0.0.1

Break time!!

S A 訓練課程 (2016 Spring)

03/30 基礎訓練 & Shell Script

19:00 @ 電算中心 R214

04/07 FreeBSD

19:00 @ 電算中心 R217

04/26 WWW & SSL & FTP

19:00 @ 電算中心 R217

05/04 MySQL & PHP

19:00 @ 電算中心 R214

還有進階課程,敬請期待...

△ 現在報名: goo.gl/BgNwqq

Campus Network Association

第二層 - 資料鏈結層(Data Link Layer)

•對Layer 1 二進位資料進行偵錯、重傳、修正

設備:交換器(Switch)

通訊協定:MAC、ARP

交換器(Switch)

- OSI Layer 2
- 依照MAC傳遞訊框(Frame)
- MAC Address Table
- 預設閘道(Default Gateway)

MAC

- Media Access Control
- 48bits,以十六進位表示
- 每組MAC都是獨一無二的
- 常見表示法:
 - 74-D0-2B-C3-14-A2
 - 74:D0:2B:C3:14:A2
 - 74D0.2BC3.14A2
- 廣播位置:FF-FF-FF-FF-FF

ARP

- Address Resolution Protocol
- IP Address → MAC Address
- From ARP Table

ARP欺騙(ARP Spoofing)

Passive Sniffing 被動嗅探

Man-in-the-Middle Attack中間人攻撃

第一層-實體層(Physical Layer)

- 定義機器與物理媒介之間的關係
- 二進位的傳輸
- 設備:網路線、網路介面卡

網路線

- 無遮蔽式雙絞線(UTP, Unshielded Twisted Pair)
- 規格:Cat. 5、Cat. 5e、Cat. 6...
- 網路線接頭:RJ-45
- 雙絞目的:減少磁場、雜音等干擾

網路介面卡

- 10/100/1000 Base-T
- Ethernet 10 Mbps

• Fast Ethernet - 100 Mbps

TCP/IP 模型

TCP/IP模型

- Transmission Control Protocol / Internet Protocol
- 共四層
- 實際上在使用的模型

第四層	應用層 Application Layer
第三層	傳輸層 Transport Layer
第二層	網際網路層 Internet Layer
第一層	鏈結層 Link Layer

OSI模型 vs. TCP/IP模型

第七層	應用層 Application Layer		
第六層	表達層 Presentation Layer	應用層 Application Layer	
第五層	會談層 Session Layer		
第四層	傳輸層 Transport Layer	傳輸層 Transport Layer	
第三層	網路層 Network Layer	網際網路層 Internet Layer	
第二層	資料鏈結層 Data Link Layer	鏈結層	
第一層	實體層 Physical Layer	Link Layer	

資料的封裝與傳遞

資料封裝與解封

資料單位

同網段下的資料傳遞(A→B)

不同網段下的資料傳遞(A→C)

Local Area Network(LAN)

Virtual Local Area Network(VLAN)

Trunk

- 在訊框(Frame)上加上tag,標記是屬於哪個VLAN
- 收到資料後,依據tag決定要送往哪個VLAN

其他常見通訊協定

DNS

- Domain Name System 網域名稱系統
- OSI Layer 7
- 方便記述
- 使用UDP

DHCP

- Dynamic Host Configuration Protocol 動態主機設定協定
- OSI Layer 7
- 發送主機使用之IP與DNS(自動取得)
- 方便管理IP、設定新電腦
- 使用UDP

DHCP

STP

- Spanning Tree Protocol 生成樹協定
- OSI Layer 2
- 確保區域網路(LAN)無迴圈

常用的網路指令

Windows - 命令提示字元

• Windows鍵 + R

• 輸入"cmd",按「Enter」

■ 執行	×
	入程式、資料夾、文件或網際網路資源的名稱,Windows 自動開啟。
開啟(<u>O</u>):	~
	確定 取消 瀏覽(<u>B</u>)

cmd : Command Line

Linux - Terminal

常用的網路指令

- ipconfig /all (Linux: ifconfig)
- getmac /v
- ping [Domain|IP] -t
- arp -a
- netstat -an
- nslookup [Domain]
- tracert [Domain|IP](Linux: traceroute [Domain|IP])

'|', '[', ']'

不需要打出來

ipconfig /all

C:\Users\ >ipconfig /all	
Windows IP 設定	
主機名稱	混合式 否 否
乙太網路卡 乙太網路:	
連線特定 DNS 尾碼	Intel(R) Ethernet Connection I217-V 是 是 (偏好選項) (偏好選項) 255.255.255.0
租用取得	2016年3月13日 上午 03:51:01
DHCP 伺服器	
DNS 伺服器	

ifconfig

```
@ubuntu: ~
        @ubuntu:~$ ifconfig
eth0
          Link encap:Ethernet HWaddr 00:0c:29:1f:0e:01
         inet addr:192.168.109.128 Bcast:192.168.109.255 Mask:255.255.255.0
         inet6 addr: fe80::20c:29ff:fe1f:e01/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:3685 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1709 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:4109291 (4.1 MB) TX bytes:191969 (191.9 KB)
lo
         Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
         inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
          RX packets:516 errors:0 dropped:0 overruns:0 frame:0
          TX packets:516 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:103483 (103.4 KB) TX bytes:103483 (103.4 KB)
```

getmac /v

C:\Users\	>getmac /v		
連線名稱	網路介面卡	實體位址	傳輸名稱
VPN – VPN Clien	VPN Client Adap	00-AC-0D-84-33-72	=====================================
nMatrix Virtual 乙太網路 3 乙太網路 4 乙太網路 Hamachi	VMware Virtual VMware Virtual Intel(R) Ethern	00-20-05-01-3E-BF 00-50-56-C0-00-01 00-50-56-C0-00-08 7A-79-19-3C-8D-EB	\Device\Tcpip_{857117E5-4723-49} \Device\Tcpip_{A17B25B3-5556-43} \Device\Tcpip_{E4004625-E112-41} \Device\Tcpip_{DFF37DDB-727E-4C} \Device\Tcpip_{F4EF9165-F121-41}

ping [Domain|IP] -t

```
>ping www.ccu.edu.tw
C:\Users\
Ping herol.ccu.edu.tw [140.123.5.5] (使用 32 位元組的資料):
回覆自 140.123.5.5: 位元組=32 時間<1ms TTL=61
回覆自 140.123.5.5: 位元組=32 時間<1ms TTL=61
回覆自 140.123.5.5: 位元組=32 時間=1ms TTL=61
回覆自 140.123.5.5: 位元組=32 時間=1ms TTL=61
140.123.5.5 的 Ping 統計資料:
   封包: 已傳送 = 4, 已收到 = 4, 已遺失 = 0 (0% 遺失),
大約的來回時間 (毫秒):
   最小值 = 0ms,最大值 = 1ms,平均 = 0ms
```

arp -a

	·	
C:\Users\ >arp -a		
介面: 192.168.137.1	- 0xb	
網際網路網址	實體位址	類型
192.168.137.254		動態
192.168.137.255	ff-ff-ff-ff-ff	靜態
224.0.0.22		靜態
224.0.0.251		靜態
224.0.0.252		靜態
224.65.25.1		靜態
224.66.25.1		靜態
224.67.25.3		靜態
224.81.25.1		靜態
224.82.25.1		靜態
224.84.25.3		靜態
229.67.30.3		靜態
229.68.30.3		靜態
229.81.30.1		靜態
229.83.30.3		靜態
229.84.30.3		靜態
230.65.31.1		靜態
230.66.31.1		靜態
230.67.31.3		靜態
230.68.31.3		靜態
231.67.32.3		靜態

netstat -an

	11000		
C:\Users	>netstat -an		
使用中導	自然		
区 用于 <i>进</i>	ENT		
協定	本機位址	外部位址	狀態
TCP	0.0.0.0:80	0.0.0.0:0	LISTENING
TCP	0.0.0.0:135	0.0.0.0:0	LISTENING
TCP	0.0.0.0:443	0.0.0.0:0	LISTENING
TCP	0.0.0.0:445	0.0.0.0:0	LISTENING
TCP	0.0.0.0:902	0.0.0.0:0	LISTENING
TCP	0.0.0.0:912	0.0.0.0:0	LISTENING
TCP	0.0.0.0:2067	0.0.0.0:0	LISTENING
TCP	0.0.0.0:2841	0.0.0.0:0	LISTENING
TCP	0.0.0.0:2861	0.0.0.0:0	LISTENING
TCP	0.0.0.0:9930	0.0.0.0:0	LISTENING
TCP	0.0.0.0:17500	0.0.0.0:0	LISTENING
TCP	0.0.0.0:49664	0.0.0.0:0	LISTENING
TCP	0.0.0.0:49665	0.0.0.0:0	LISTENING
TCP	0.0.0.0:49666	0.0.0.0:0	LISTENING
TCP	0.0.0.0:49667	0.0.0.0:0	LISTENING
TCP	0.0.0.0:49668	0.0.0.0:0	LISTENING
TCP	0.0.0.0:49671	0.0.0.0:0	LISTENING
TCP	6.1.1.1:139	0.0.0.0:0	LISTENING
TCP	25.60.141.235:139	0.0.0.0:0	LISTENING
TCP	127.0.0.1:843	0.0.0.0:0	LISTENING
TCP	127.0.0.1:5354	0.0.0.0:0	LISTENING
TCP	127.0.0.1:5354	127.0.0.1:4966	
TCP	127 0 0 1.5354	127 0 0 1 4967	70 ESTARI ISHED

nslookup [Domain]

tracert [Domain IP]

```
C:\Users\
          >tracert www.ccu.edu.tw
在上限 30 個躍點上
追蹤 hero1.ccu.edu.tw [140.123.5.5] 的路由:
         1 ms 1 ms 10.123.234.250
   3 ms
 2 <1 ms <1 ms <1 ms 140.123.243.250
   1 ms <1 ms <1 ms 140.123.9.251
   1 ms <1 ms <1 ms herol.ccu.edu.tw [140.123.5.5]
皀蹤完成。
```

traceroute [Domain|IP]