Полиномиальная интерполяция

Махова Анастасия, 409

Сентябрь 2023

1 Вход и выход

Вход:

- \bullet концы отрезка [a,b],
- ullet число узлов $n\ (>=2),$
- \bullet тип узлов k (1 равноотстоящие, 2 чебышевские, 3 случайные)

Выход:

- ullet файл '1.txt' со столбцами значений узлов x_i и $f(x_i),$
- '2.txt' x_i , $P_n(x_i)$, $L_n(x_i)$ и $f(x_i)$

2 Функции и формулы

f – функция f(x)

first_table - создаем первую таблицу,

Generate – создаем узлы (x_i) по k-ому методу:

• равностоящие для $n \in 0 \dots n-1$

$$x_i = a + \frac{(b-a)i}{n-1}$$

• чебышевские

$$x_{n-1-i} = \frac{a+b}{2} + \frac{(b-a)\cos\frac{(2i+1)\pi}{2n}}{2}$$

• случайные через функцию rand()

Write1 – в '1.txt' выводим x_i и $f(x_i)$

 ${f second_table}$ — создаем вторую таблицу, добавляем новые узлы (по 2 новых равноотстоящих x_i^1 и x_i^2 между соседними существующими x_i и x_{i+1})

Pn – из матрицы Ван дер Монда методом Гаусса находим коэффициенты $a_0 \dots a_{n-1}$ полинома $P_n(x)$ и вычисляем значения в узлах $P_n(x) = \sum_{i=0}^{n-1} a_i x^i$

Ln считаем полином в форме Лагранжа $L_n(x) = \sum_{i=0}^{n-1} f(x_i) \Phi_i(x)$

РНІ вычисляем $\Phi_i(x) = \prod_{i \neq j} rac{x - x_j}{x_i - x_j}$

 $\mathbf{Write2}$ – в '2.txt' выводим столбцы значений $x_i, P_n(x_i), L_n(x_i), f(x_i)$

3 Тесты

Правильность работы:

Плохая вычислительная устойчивость при больших n:

Отсутствие сходимости для функции Рунге по равноотстоящим узлам:

Сходимость по узлам чебышева:

Отсутствие сходимости для |x|:

