Rationale Potenzen

Satz 1.13 (Existenz der n-ten Wurzel) Sei $a \in \mathbb{R}, a \geq 0$ und $n \in \mathbb{N}$. Dann gibt es genau ein $x \in \mathbb{R}, x \geq 0$, mit $x^n = a$. x wird die n-te Wurzel aus a genannt und mit $x = \sqrt[n]{a}$ oder $x = a^{\frac{1}{n}}$ bezeichnet. Im Fall n = 2 schreibt man $x = \sqrt{a}$.

Def (rationale Potenzen) Für $a \in \mathbb{R}$ und $n \in \mathbb{N}$ definieren wir

$$a^n := \underbrace{a \cdots a}_{n-\text{mal}}, \qquad a^0 := 1$$

$$a^{-n} := \frac{1}{a^n}$$
, falls $a \neq 0$.

Für $a \in \mathbb{R}, \, a > 0, \, p \in \mathbb{Z}, \, q \in \mathbb{N}$ definieren wir

$$a^{\frac{p}{q}} := \sqrt[q]{a^p}.$$

Außerdem setzen wir $0^r := 0$ für $r \in \mathbb{Q}, r > 0$.

Satz 1.14 (Potenzregeln)

Für alle $a, b \in \mathbb{R}$, a, b > 0 und $r, s \in \mathbb{Q}$ gilt:

- $1) a^r a^s = a^{r+s}$
- $2) (ab)^r = a^r b^r$
- $3) (a^r)^s = a^{rs}$
- 4) $a < b \Leftrightarrow a^r < b^r$, falls r > 0 $a < b \Leftrightarrow a^r > b^r$, falls r < 0