Engine Rating Prediction

Created by: Keerthi Das

Contents

- Data Cleaning Steps
- Exploratory Data Analysis & Statistical Analysis
- Dimensionality Reduction & Outlier Detection
- Training different Supervised ML Models
- Accuracy Comparison
- Bagging using Random Forest
- Extreme Gradient Boosting
- Light Gradient Boosting
- Finding Best Parameters using Grid Search CV
- Error Analysis

Data Cleaning Steps

- Converted to appropriate data types
- Imputed nulls according to Meta Data
- Dropped columns that have > 80% nulls
- Dropped columns that have least correlation score (between -0.02 to 0.02)
- All categorical columns were encoded into numbers
- Scaled Data using Standard Scaler

Exploratory Data Analysis

Know your data:

- 1. There are a total 26307 rows & 73 columns (including target variable).
- 2. 52 columns/ variables (~72.22%) have more than 40% missing values.
- 3. Out of these 52 columns 47 are imputed with a constant value of "Yes" which is inferred from the given Meta Data.
- 4. Rest 5 values were comments which seemed like were given by human experts & hence, are dropped from the set and will not be considered for further analysis.
- 5. Out of the remaining 68 variables, 63 are of categorical type (~92.6% of total) & 5 are continuous columns (including the target variable).

From the below table, it can be inferred that

- 1. We have data of vehicles which have registrations from year 1989 to 2019.
- 2. Minimum reading in the odometer is 1 KM & maximum is 999999.000000 (which seems a little too high, this will be evaluated further).
- 3. The average vehicle engine rating is 3.62.

	year	month	odometer_reading	rating_engineTransmission
count	26307.000000	26307.000000	26307.000000	26307.000000
mean	2010.856578	5.462006	76460.143764	3.624663
std	3.766234	3.583866	46762.524489	0.847645
min	1989.000000	1.000000	1.000000	0.500000
25%	2008.000000	2.000000	46396.000000	3.500000
50%	2011.000000	5.000000	72013.000000	4.000000
75%	2014.000000	9.000000	98289.500000	4.000000
max	2019.000000	12.000000	999999.000000	5.000000

Univariate Analysis

March seems to have highest number of inspections

Average daily inspections (for this sample): 257.9117647058824 We have inspection data for 102 dates

14.167332

15

inspectionHour, dtype: float64

DATE TIME SUMMARY:

- Monthly representation is maximum for March (~ 30%) followed by January (~ 27.4%), February(~ 27%) & April (~ 15.4%).
- High spikes in inspections can be seen on 3rd, 10th, & 14th of the month.
- Average inspections on weekend is greater than the overall weekly average inspections by ~ 32 %.
- There's a spike in number of 4. inspections across from 15:00 - 16:00.

Year & Odometer Reading seems to have few outliers

Bivariate Analysis

Target Variable (Engine Rating) seems to be more of a discrete variable.

Distribution of Registration month

Inspections by Month

Year (registration year) & Odometer_reading are negatively correlated with Engine Rating

Analysing Target i.e. Engine Rating:

- Engine Rating of 0.5, 1.5 & 2.0 have a very low count (less than 1%).
- 2. The rating engineTransmission appears to be more of a discrete variable.
- 3. Rating is between 0 to 5.
- Average vehicle engine rating is 3.62.
- Rating is negatively correlated with Year & Odometer Reading.

Dimensionality Reduction: Principal Component Analysis

Validation Using Elbow Method

- According to previous slide, nearly 50% variability is explained by 5 components alone.
- 2. Of this 50%, 25% variability is explained by 2 principal components alone.
- 3. This is validated using Elbow Method. The line sharply falls down between 1 to 2.
- 4. Hence, I will be taking 2 principal components.

Models that were trained & Accuracy comparison:

Model	Train Accuracy	Test Accuracy	
Multiple Linear Regression	0.405	0.406	Poor Accuracy
Polynomial Regression	0.176	0.177	Poor Accuracy
Decision Tree Regression	1.0	1.0	Impractical
			Overfitting
Random Forest Regression	0.928	0.504	Overnating

Techniques used to improve Accuracy

Technique	Train Accuracy	Test Accuracy
Bagging	0.959	0.709 Overfitting
Extreme Gradient Boost	0.690	0.680 Still not
Light Gradient Boost	0.772	0.726 satisfactory

Accuray improved. We'll use Grid Search CV to find best parameters & further optimise it

Post using Grid Search CV

Good luck!

I hope you'll use these insights to go out and deliver a memorable pitch for your product or service!

To access the python notebook used for this analysis, please click here:

https://colab.research.google.com/drive/1Y hiB-p38yGDiDGOMSfmX39aGS-QmKyIF?usp= sharing

Dataset:

https://docs.google.com/spreadsheets/d/1 9K9M9Sg78tCpyJnb-aOOI9yJQxlv7R6wlkW6 O2ziA1E/edit#qid=0