基于 Tri tra in in 图学监督学习的中文组织机构名识别*

蔡月红^{ab},朱 倩 a 程显毅 a

(江苏大学 a计算机科学与通信工程学院; b外语学习中心, 江苏 镇江 212013)

摘要:针对中文组织机构名识别中的标注语料匮乏问题,提出了一种基于协同训练机制的组织机构名识别方 法。该算法利用 Tri-train in學 习方式将基于条件随机场的分类器、基于支持向量机的分类器和基于记忆学习方 法的分类器组合成 一份类体系,并依据最优效用选择策略进行新加入样本的选择。在大规模真实语料上与 co. training方法进行了比较实验,实验结果表明,此方法能有效利用大量未标注语料提高算法的泛化能力。

关键词:中文组织机构名;半监督学习;协同训练; Tritmining

中图分类号: TP391 文献标志码: A 文章编号: 1001-3695(2010)01-0193-03 doi 10 3969 / J issn 1001-3695, 2010, 01, 057

Chinese organization names recognition with Tritraining learning

CAIYue_hong b ZHU Qian CHENG X jan_y i

(a School of Computer Science Communication Engineering by Foreign Language Learning Center Jiangsu University Zheng jiang Jiangsu 212013 China)

Abstract In view of the data scarcity problem in for Chinese organization names recognition this paper presented a contrain ing style method for Organization Names Recognition And proposed a novel selection method for Tri training learning using three classifiers CRFs SVMs and MBL. In Tri training process, selected new new 1/2 labeled samples based on the selection mode | maxim zing training utility and computed the agreement according to the agreement scoring function. Experiments on $[auge.scale\ corpus\ show\ that\ the\ proposed\ Tri.\ training\ approach\ can more\ effective \cite{beta} and\ stably\ exp\ pit\ un\ labeled\ data$ to improve the generalization ability than contraining and the standard Tritraining

Keywords Chinese organization name recognition semi-supervised learning contraining Tri-training

引言

命名实体识别(named entity recognition)是信息处理中最 为基础的关键技术之一。命名实体是指现实世界中具体的或 抽象的实体,通常有人名、地名、组织机构名、日期、时间、货币、 百分数七类。其中,组织机构名识别是命名实体识别研究的重 点,也是难点,特别是中文组织机构名由于中文构词方式的灵 活性和词性信息的不明确性,其识别更为困难。

中文组织机构名识别算法的研究方法早期是基于规则 的[12], 近年来研究的主流是基于统计学习的。郑家恒等人[3] 提出了基于隐马尔可夫模型的方法,冯冲等人[4]将最大熵模 型用于组织机构名的识别,周俊生等人「河提出了基于条件随 机场模型的方法,陈霄等人[6]将基于支持向量机的方法用于 组织机构名的识别。上述方法都是基于监督学习的,此类方法 为保证泛化能力,需要大量的标注语料做训练集。语料库的人 工标注是很费时费力的,而大量的未标注语料却很容易获取, 这就是所谓的标注瓶颈问题。因此如何利用大量的未标注语 料来改善学习性能己成为基于机器学习的组织机构名识别研 究中最受关注的问题之一。

本文探求了利用半监督学习技术克服中文组织机构名识 别中的标注语料匮乏这一困难的途径,实现了一个基于样本最 优效用选择策略的 Tri-train ing半监督学习算法。实验结果表 明,该方法在组织机构名的识别中能有效利用大量的未标注语 料来提高性能。

组织机构名分析

组织机构名是泛指机关、团体等实体的名称。虽然组织机 构名没有人名、地名那样明确的特点和固定的用词,但也有一 定的组成特点。完整的组织机构名通常由一个或一个以上的 机构名前部词加上一个机构名后缀词(如大学、协会等)组成。

标注方法

对于标注集,考虑到机构名后缀词的独特作用,本文融合 了组块分析中的"BID"和"IDE"标注方法,引入了四个标注符 号,即 BISQ 这样就可以将机构名识别问题转换为序列化的标 注问题,即对于给定输入词序列 X={ W, W, ..., W_n}及其词性 标注, 给出每个词的 BBO标注。这四个标记的含义如下: B表 中间: S表示这个词为组织机构名的后缀: O表示这个词不属 于任何组织机构名。

这样就可以将组织机构名识别看成一个在上面定义的四 类标记中进行类 别判断的分类问题。

收稿日期: 2009-04-02; 修回日期: 2009-05-13 基金项目: 国家自然科学基金资助项目(60702056)

作者简介: 蔡月红 (1969-), 女, 江苏兴 化人, 工程师, 硕士研究生, 主要研究方向为自然语言处理, 机器学习等(Cai)h@ u.j. edu cn), 朱倩 (1979-), 女, 江苏镇江人, 讲师, 博士研究生, 主要研究方向为自然语言处理、模式识别; 程显毅(1956-), 男, 黑龙江哈尔滨人, 教授, 博导, 主要研究 方向为模式识别、自然语言理解. ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

1. 特征选择

特征选择的目的是寻找有助于识别组织机构名的文本属 性。本文选择特征时主要考虑词本身的特征和词邻近的上下 文特征,以命名实体及其上下文的词性、机构名的标注作为样 本选择的基本单元,上下文窗口大小定为[-2,2]。用于后缀 词标注的组织机构名后缀词表的构建方法如下: 应用统计方法 从训练语料中获取初始组织机构名后缀词表,并将每次 Tri training过程中新选择的样本加入词表以更新后缀词表。

这样, 最终的样本特征确定为

其中: W表示当前位置的词; P表示该词的词性标注; t 表示该 词的 BISO标注; W_{+k} P_{-k} t_{-k} (k=1,2)表示前 k个位置的词、 词性标注及 BISO标注; W_{i+k} P_{i+k} t_{+k} (k=1,2)表示后 k个位 置的词、词性标注及BEO标注。

基干 的组织机构名识别

半监督学习的本质是利用大量未标注样本提高对某些相 关统计分布估计的准确性。 Tri-training算法 [7] 是协同训练模 式的半监督学习算法。该算法使用了三个分类器,首先对有标 注样本集进行可重复取样以获得三个有标记训练集,然后从每 个训练集产生一个分类器, 在协同训练过程中, 各分类器所获 得的新标注样本都由 其余两个分类 器协作提供。 在对 未标注 样本进行预测时,Tri tra in in 8算法不再像以往算法那样挑选一 个分类器来使用,而是使用集成学习中经常用到的投票法来将 三个分类器组成一个集成来实现对未标注样本的预测。该算 法既不要求充分冗余视图也不要求使用不同类型分类器,而且 不必使用交叉验证,因此适用范围更广、效率更高。

算法

在应用 Tri_trainin8算法时,需要选取三个初始分类器,为 使初始分类器具有一定的差异性,本文实验中分别选取了基于 条件随机场的分类器 CRF§ 基于支持向量机的分类器 SVMs 及基于记忆学习方法的分类器 MBL

在文献[7]中,Tri training训练结束时由训练所得联合分 类器 { H, H, H, H} 采用多数投票规则对新数据进行分类。本文 考虑到初始分类器性能的差异性,采用基于性能的集成方法, 算法中采用式(1)所示的加权投票规则对训练所得联合分类 器进行类别标记,在集成时考虑每个分类器的性能权重,权重 由三个分类器在初始带标注语料 L上的分类准确率 $P_i(L)$ 所 决定。

$$H(1\ 2\ 3)(x) = \arg\max_{\substack{E \text{ lished} \\ E \text{ lished}}} \frac{\sum_{i=1}^{3} \alpha(y) H_i(x)) \times P_i(L)}{\sum_{i=1}^{3} P_i(L)}$$
其中: $\alpha(y) H_i(x) = \begin{cases} 1 & H_i(x) = y \\ 0 & H_i(x) \neq y \end{cases}$
其王 Triatain 形的组织机构会识别管注仍代码加下所示

其中:
$$\delta(y H_i(x)) = \begin{cases} 1 & H_i(x) = y \\ 0 & H_i(x) \neq y \end{cases}$$

基于 Tri train in 8的组织机构名识别算法伪代码如下所示, 每次迭代时使用的未标注语料取之用于缓存一部分未标注语 料的缓存器。

算法. 基于 Tri- train ing的组织机构名识别算法

输入: 初始带标记样本集 [4未标记样本集 [4] 分类器 [4]、

输出: 最终标注结果。

a)初始化

 $M_1^0 \leftarrow train(H, I_1^0)$

 M_{\leftarrow}^{0} train(H, I_{2}^{0}),

 M_3^0 train (H, I_3^0)

(b) U add un labeled data from U

(S)由 Mi, Mi, Mi, Mi, Mi, Mi, 对 Ui进行标记, 并依照最优效用选择 策略选择标记样本子集 $\{P_1\}$ 、 $\{P_2\}$ 和 $\{P_3\}$;

(d生成 H_i 的新训练集 $L_1^{i+1} \leftarrow L_1^i + \{P_1\}, L_2^{i+1} \leftarrow L_2^i +$ $\{P_2\}, L_1^{+1} \leftarrow L_1^1 + \{P_2\};$

$$(e)M_1^{i+1} \leftarrow train(H_1, L_1^{i+1})$$

$$M_2^{i+1} \leftarrow train(H_1, L_2^{i+1})$$

$$M_3^{i+1} \leftarrow \operatorname{train}(H_3, L_3^{i+1})$$

(
$$\int S - L_1^{i+1} + L_2^{i+1} + L_3^{i+1}$$
;

(S)联合分类器 { H, H, H, H, } 按加权投票规则对 S中新标 记数据重新分类标记。

重复上述过程,直到 U为空。

样本选择策略

本文中机构名识别问题是一个序列化的标注问题,在 Tri training训练过程的每次迭代中,基于最优化选择机制进行新 加入样本的选择[8],即尽可能选择具有最优训练效用和最小 化误差的新标注样本,并基于一致性评价函数判断两个分类器 的一致性。

一致性评价函数

对于任意给定的数据序列 $X=\{x_1,x_2,...,x_n\}$,如果用两 个分类器对它进行标注,得到两个标注序列 $Y = \{ y_1, y_2, ..., y_n \}$ y_{n} }及 $Y_{2} = \{ y_{12}, y_{22}, ..., y_{n2} \}$, 那么一致性评价函数 AS为

其中:
$$(y_i, y_j) = \begin{cases} 1 & y_i = y_j \\ 0 & y_i \neq y_j \end{cases}$$
 (2)

一致性评价函数 Ag的值表示两个标注序列也即两个分类 器之间的一致性,Ag越大说明一致性最高。

样本选择方法

文献[7]中各分类器所获得的新标注样本都由其余两个 分类器协作提供,而在本文中为了尽可能选择具有高训练效用 的新标注样本,提出了改进的样本选择方法。假设三个不同分 类器 片、片和 片、是未标注语料内任一样本,那么新标注样 本选择准则如下:

a)如果 其 和 其对 x的分类结果一致, 那么就认为该标注 结果是正确的。

b)如果目标分类器 H 对 x的分类结果和其他两个分类 器(且、且)不一致,那么就认为该标注结果不能正确地训练 H,

结合上述两个准则,每次迭代过程中,各分类器所获得的 新标注样本的选择方法如下(假设 C,、C,、C, 表示分类器 共、 H,和 H,对缓存器中未标注样本的分类结果).

a)计算 C_i C_k $(,j \not\models i)$ 中所有样本的一致性, 按比例选择

H. 出一致性函数值最高的样本子集。 21994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

b)计算 C_{i} C_{j} 中所有样本的一致性,按比例选择出一致性函数值最低的样本子集。

의取这两个样本子集的交集交给分类器 H_2 重新标注,生成分类器 H_2 的新样本集 L_2^{rev} 。

本文称该样本选择策略为最优效用选择策略。

实验结果及分析

. 实验语料

本文实验语料由人民日报语料库 1998年 1月语料和国家 "863"计划 2004年命名实体识别评测简体语料组成。首先去除对学习器的训练或是测试都没有帮助的无组织结构名出现的部分。 经筛选过的语料规模为 12 791条 (其中人民日报语料库 1998年 1月语料为 8 326条, 国家"863"计划 2004年命名实体识别评测简体语料为 4 466条),然后对每个语料 随机取出 25% 做测试集,15% 作为最初的训练集 L并对这两部分语料的标注体系进行转换,用BDS格式对原来标注为"[…] n**格式重新进行标注,其余的 60% 语料作为未标注集 U用于 Tri_training

. 性能评测

$$P = N_2/N_1 \times 100\%$$
 (3)

$$R = N_2 / N_3 \times 100\%$$
 (4)

$$F = (\beta^2 + 1) \times P \times R/(\beta^2 \times R + P)$$
 (5)

其中: N_1 为实际识别的组织机构名个数; N_2 为正确标志的组织机构名个数; N_3 为标注的组织机构名的总数。这里的正确识别是指命名实体的类别和边界的标注都是正确的。

. 实验结果及分析

本实验在 Tri training中所采用的学习算法分别是CRF++(N)42)、SVM-lish 吸 TMBL,为了研究样本选择策略对分类性能的影响,将本文提出的样本最优效用选择策略与文献[7]的样本选择策略进行了对比实验,并且为了对比 Tri training算法,本文在实验中还进行了文献[9]中所介绍的 cotraining算法的测试,cotraining算法实验中新训练样本的选择也使用了基于一致性评价的样本最优效用选择策略。

3.31 两种样本选择策略的 Tri training的结果比较

图 1给出了两种样本选择策略下各个分类器对未标注语料进行 Tri-trainin8学习时的综合指标 F值随着训练过程的迭代变化情况。其中,CRF\$1表示样本最优效用选择策略下的CRF\$分类器模型,CRF\$2表示文献[7]样本选择策略下的CRF\$分类器模型,并依此类推。考察各分类器的 F值可以看出,第一次迭代后提升幅度最大,第三次迭代后就不再显著变化。在所有情况下,三种分类器所得的最终 F值均显著高于初始 F值 而本文提出的样本选择策略优于文献[7]的样本选择策略,应用最优效用选择策略的三个分类器的性能均有明显提高。特别对于单分类器性能最差的 MBI分类器的泛化能力提高尤为显著,这说明基于最优效用选择策略的 Tri-trainin8学习能充分利用未标注样本提高分类性能。

3.32 Tri training和 co training的结果比较

图 2给出了基于最优效用选择策略的 Tritraining和 co.

training在未标注语料上综合指标 F值随训练过程的迭代变化情况。从图中可以看出,每次迭代过程中,Tri_training的性能都明显优于 ^{CC_training} 对比两算法的迭代过程可以发现,Tri_training的 F值的变化较为稳定,几乎不会出现 ^{CC_training}的波动现象,这说明基于最优效用选择策略的 Tri_training的迭代错误率较低,能更稳定地保证泛化性能的提高,有更好的健壮性。

结束语

本文基于协同训练基本原理提出一种中文组织机构名识别的半监督学习算法。建立三个独立的分类器,即 CRFs分类器、SVMs分类器及 MBI分类器,以 Tri-training方式迭代地对未标注语料进行标记以扩充原训练语料,并在新标注样本选择上采用最优效用策略。实验结果表明,本方法可有效利用大量未标注语料提高泛化性能。

本文所做工作是利用半监督学习解决组织机构名识别中标注瓶颈问题的一个尝试。在本文实验中,由于初始标注语料规模小、难以训练出高精度的分类器,自动标注的样本中噪声会不可避免地随着训练的进行而不断积累。如何在迭代过程中(尤其迭代的早期)使用相关技术识别错误标记的样本是下一步研究方向。

参考文献:

- [1] 张小衡, 王玲玲. 中文机构名称的识别与分析[J. 中文信息学报, 1997, 1(4): 21-32.
- [2] WANG How feng SHIW was and A simple rule based approach to organization name recognition in Chinese text [C] //Proc of the 6th CCL ing Heidelberg Springer Verlag 2005, 769-772.
- [3] 郑家恒,张辉.基于 HMM的中国组织机构名自动识别[J. 计算机应用,2002 22(11): 1-2.
- [4] 冯冲,陈肇雄,黄河燕.采用主动学习策略的组织机构识别[J.小型微型计算系统,2006 27(4):710-714
- [5] 周俊生, 戴新宇, 尹存燕, 等. 基于层叠条件随机场模型的中文机构自动识别[]. 电子学报, 2006 34(5): 804-809.
- [6] 陈霄, 刘慧, 陈玉泉. 基于支持向量机方法的中文组织机构名的识别[]. 计算机应用研究, 2008 25(2), 362-364
- [7] ZHOU Zhihua LIMing Tritraining exploiting unlabeled data using three classifiers J. IEEE Trans on Knowledge and Data Engineering 2005 17(11): 1529-1541.
- [8] SPEDMAN M. HWAR CLARK S et al. Example selection for bootstrapping statistical parsets Q //Proc of Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology Edmonton Canada Association for Computational Linguistics 2003 157-164.
- [9] PHAM TP, NG HT, LEEW S, Word sense disambiguation with sen; supervised learning C] //Proc of the 20 th National Conference on Artificial Intelligence, Menlo Park, AAAI Press, 2005, 1093-