

planetmath.org

Math for the people, by the people.

proof of Fodor's lemma

Canonical name ProofOfFodorsLemma
Date of creation 2013-03-22 12:53:19
Last modified on 2013-03-22 12:53:19

Owner Henry (455) Last modified by Henry (455)

Numerical id 4

Author Henry (455)

Entry type Proof Classification msc 03E10 If we let $f^{-1}: \kappa \to P(S)$ be the inverse of f restricted to S then Fodor's lemma is equivalent to the claim that for any function such that $\alpha \in f(\kappa) \to \alpha > \kappa$ there is some $\alpha \in S$ such that $f^{-1}(\alpha)$ is stationary.

Then if Fodor's lemma is false, for every $\alpha \in S$ there is some club set C_{α} such that $C_{\alpha} \cap f^{-1}(\alpha) = \emptyset$. Let $C = \Delta_{\alpha < \kappa} C_{\alpha}$. The club sets are closed under diagonal intersection, so C is also club and therefore there is some $\alpha \in S \cap C$. Then $\alpha \in C_{\beta}$ for each $\beta < \alpha$, and so there can be no $\beta < \alpha$ such that $\alpha \in f^{-1}(\beta)$, so $f(\alpha) \geq \alpha$, a contradiction.