ΘΕΜΑ Α

- **Α.1** Πότε μια συνάρτηση f με πεδίο ορισμού A παρουσιάζει στο $x_0 \in A$, τοπικό ελάχιστο;
- **Α.2** Πότε η ευθεία $y = \lambda x + \beta$ λέγεται ασύμπτωτη της γραφικής παράστασης μιας συνάρτησης f, στο $+\infty$;
- **A.3** Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο x_0 , να αποδείξετε ότι και η f+g είναι παραγωγίσιμη στο x_0 και ισχύει

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

- Α.4 Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη.
 - α. Αν μια παραγωγίσιμη συνάρτηση f είναι γνησίως αύξουσα σε ένα διάστημα Δ , τότε ισχύει f'(x)>0 για κάθε $x\in\Delta$.
 - β. Κρίσιμα σημεία μιας συνάρτησης f ονομάζονται τα σημεία στα οποία μηδενίζεται η παράγωγος της f, ή τα σημεία στα οποία η f δεν είναι παραγωγίσιμη.
 - γ. Η συνάρτηση $f(x) = x^4$ είναι κυρτή στο \mathbb{R} .
 - δ. Αν για μια παραγωγίσιμη συνάρτηση f, ισχύει $f'(x_0)$ σε κάποιο σημείο $x_0 \in (a, \beta)$, τότε η f έχει τοπικό ακρότατο στο σημείο αυτό.
 - ε. Ισχύει ότι $(\sqrt{x})' = \frac{2}{\sqrt{x}}$

ΘΕΜΑ Β Δίνεται η συνάρτηση $f(x) = \ln(x^2 + 1)$.

- ${\bf B.1}\ \ {\rm Na}$ μελετήσετε τη συνάρτηση $f\ \omega\varsigma$ προς τη μονοτονία και τα ακρότατα.
- **Β.2** Να μελετήσετε την f ως προς την κυρτότητα και τα σημεία καμπής.
- **B.3** Να βρεθεί η εξίσωση της εφαπτομένης της $C_{f'}$ στο σημείο της M(2, f'(2)).
- Β.4 Να υπολογίσετε το όριο

$$\lim_{x \to +\infty} \frac{f(x)}{x^2}$$

 $\mathbf{\Theta}\mathbf{EMA}$ Γ Δίνεται η συνάρτηση $f:\mathbb{R}\to\mathbb{R}$ με τύπο

$$f(x) = \begin{cases} xe^x & , x \ge 0 \\ x^2 + ax & , x < 0 \end{cases}$$

της οποίας η γραφική παράσταση διέρχεται από το σημείο M(-2,2).

- **Γ.1** Να αποδείξετε ότι a = 1.
- **Γ.2** Να αποδείξετε ότι η f είναι κυρτή στο \mathbb{R} .
- Γ .3 Να βρεθεί η εξίσωση της εφαπτομένης της C_f στο σημείο της M(1, f(1)).
- Γ.4 Να αποδείξετε ότι ισχύει

$$x\left(e^{x-1}-2\right) \ge -1$$

για κάθε $x \ge 0$.

ΘΕΜΑ Δ (Τράπεζα Θεμάτων - 29644)

Στο διπλανό σχήμα δίνεται η γραφική παράσταση μιας συνεχούς συνάρτησης f στο διάστημα [-3,2] η οποία παρουσιάζει μέγιστο στο 0 το 3 και τέμνει τον άξονα x'x στα σημεία A και B. Έστω η συνάρτηση g με $g(x)=f(x)+x, x\in [-3,2]$.

- Δ.1 Να αποδείξετε ότι:
 - α. Η συνάρτηση g είναι συνεχής στο [-3, 2].
 - β. Η εξίσωση g(x) = 0 έχει μία τουλάχιστον ρίζα.
- **Δ.2** Αν η συνάρτηση f είναι παραγωγίσιμη στο (-1,2), να αποδείξετε ότι η εφαπτομένη ευθεία της γραφικής παράστασης της συνάρτησης g, στο σημείο που η f παρουσιάζει μέγιστο, έχει εξίσωση y=x+3.

