upGrad

Analytics Using PySpark

Contents

upGrad

- 1. Basic EDA using Spark ML library
- 2. Linear Regression
- 3. Logistic Regression
 - a. Case Study: CTR Prediction
 - b. Hands-On Coding
- 4. K-Means
 - a. Case Study
 - b. Hands-On Coding

upGrad

Machine Learning: Quick Recap

MACHINE LEARNING

- Machine learning models can be classified into two categories on the basis of the learning algorithm:
 - Supervised learning method: Past data with labels is available to build the model.
 - Regression: The output variable is continuous in nature.
 - Classification: The output variable is categorical in nature.
 - Unsupervised learning method: Past data with labels is not available.
 - Clustering: There is no predefined notion of labels.

upGrad

Linear Regression

LINEAR REGRESSION

- A simple linear regression model attempts to explain the relationship between a dependent variable and an independent variable using a straight line.
- Example: Sales prediction of a company based on the marketing budget
 - Sales prediction is a dependent variable.
 - Marketing budget is an independent variable.
- Case study: Before deciding the marketing budget, the marketing head wants to know how much will be the sales number.

SCATTER PLOT

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION

RESIDUALS

RESIDUALS

$$Y=\beta_0+\beta_1 X$$

$$\downarrow \qquad \qquad \downarrow$$
Slope
Intercept

$$e_i = y_i - y_{pred}$$

Ordinary Least Squares Method:

$$e_1^2+e_2^2+_{--}+e_n^2$$
 (Residual Sum of Squares)

RSS=
$$(Y_1-\beta_0-\beta_1 X_1)^2 + (Y_2-\beta_0-\beta_1 X_2)^2 - + (Y_n-\beta_0-\beta_1 X_n)^2$$

RSS=
$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

LINEAR REGRESSION STEPS

- Start with a scatter plot to check the relationship between Sales and the Marketing Budget.
- Find residuals and the residual sum of squares (RSS) for any given line passing through the scatter plot
- \circ Find the equation of the best-fit line by minimising the RSS and find the optimal values of $β_0$ and $β_1$

LINEAR REGRESSION

- O You can find the equation of the best-fit regression line (Y = β_0 + β_1 X) by minimising the cost function.
- (RSS in this case, using the ordinary least squares method), which is done using the following two methods:
 - Differentiation
 - Gradient descent
- The drawback in RSS is that it looks at the absolute number.
- If we change the sales number from rupees to dollar, then the RSS value will also change accordingly.
 - Example: (100–95) rupees vs (2–1.5) dollars
 - Both will give vastly different RSS values.

LINEAR REGRESSION

- O The strength of a linear regression model is mainly explained by R^2 , where $R^2 = 1 (RSS/TSS)$
 - RSS: Residual sum of squares
 - TSS: Total sum of squares
- TSS: The sum of squares is a measure of how a data set varies around a central number (for example, mean).