An attempt to give the most abstract possible definition of a blockchain.

1 BlockChain

1.1 Lists and their validation

Given a set S, let $\operatorname{SET}(S)$ be the set of all sets of elements of S, and $\operatorname{FLIST}(S)$ be the set of all finite lists of elements of S. Given $L \in \operatorname{FLIST}(S)$, we use notation $\operatorname{length}(L)$ to refer to the number of elements in L, notation L[i] to refer to the i-th element in L, where $i \in \{1, \ldots, \operatorname{length}(L)\}$, and notation L[i,j] to refer to the sublist $[L[i], \ldots, L[j]]$ of L, where $i,j \in \{1, \ldots, \operatorname{length}(L)\}$ and $i \leq j$. Notice that $\operatorname{length}(L) = 0$ if and only if L is the empty list $[\cdot]$.

From now on, assume that Σ is a finite alphabet, and that $\mathbf{B} \subseteq \Sigma^*$ is the set of all possible blocks.

Definition 1. A validation rule is a function $V : FLIST(\mathbf{B}) \to SET(\mathbf{B})$

Intuitively, V is a function taking a finite list L of blocks as input, and returning the set of blocks that could be added to L to produce a valid blockchain.

A list $G \in \text{FList}(\mathbf{B})$ is said to be a genesis list of V if $\text{length}(G) \geq 1$, $G[1] \in V([\])$ and $G[i+1] \in V(G[1,i])$, for every $i \in \{1,\ldots,\text{length}(G)-1\}$. That is, G is a genesis list if G is a non-empty valid blockchain.

Definition 2. Let V be a validation rule and G be a genesis list. Then a list $L \in FLIST(\mathbf{B})$ is valid with respect to (G, V) if:

- 1. $\operatorname{length}(G) \leq \operatorname{length}(L)$ and $G = L[1, \operatorname{length}(G)]$.
- 2. $L[i+1] \in V(L[1,i])$, for every $i \in \{length(G), ..., length(L) 1\}$.

The role of G in this definition is to provide the blocks to startup the system. Let Log(G,V) be the set of valid lists with respect to (G,V).

Two lists $L_1, L_2 \in \text{FLIST}(\mathbf{B})$ are said to disagree in the last element if one of the following conditions holds: (1) length(L_1) = 0 and length(L_2) > 0, (2) length(L_1) > 0 and length(L_2) = 0, or (3) length(L_1) > 0, length(L_2) > 0 and L_1 [length(L_1)] $\neq L_2$ [length(L_2)].

Definition 3. Let V be a validation rule and G be a genesis list of V. Then LOG(G, V) is safe if for every pair $L_1, L_2 \in FLIST(\mathbf{B})$ that disagree in the last element, it holds that $V(L_1) \cap V(L_2) = \emptyset$.

1.2 Knowledge

Given a a validation rule V, a genesis list G of V and a subset K of Log(G, V), there is a natural way to visualize K as a graph $\mathcal{G}(K)$. The set of nodes of $\mathcal{G}(K)$ is the set of blocks occurring in the lists in K, and there is an edge from a block b_1 to a block b_2 if there exists a list $L \in K$ such that $b_1 = L[i]$ and $b_2 = L[i+1]$, where $i \in \{1, \ldots, length(L) - 1\}$.

Lemma 1. Assume that LOG(G, V) is safe. Then for every subset K of LOG(G, V), it holds that $\mathcal{G}(K)$ is a tree rooted at G[1].

Juan: Related to the next comment, why do we need $\mathcal{K}(G,V)$? this is just all non-empty finite subset K of $\mathsf{Log}(G,V)$

Thus, assuming that LOG(G, V) is safe, from now on we refer to every non-empty finite subset K of LOG(G, V) as a *knowledge tree* of (G, V). Moreover, we define $\mathcal{K}(G, V)$ as the set of all knowledge trees of (G, V).

1.3 Block chain and protocols

Definition 4. A relation \leq on LOG(G, V) is said to be a knowledge order over (G, V) if \leq is a total preorder on LOG(G, V), that is, \leq is reflexive, transitive and total.

Moreover, P is said to be a blockchain protocol over (G, V) if P is a sequence $\{ \leq_i \}_{i \in \mathbb{N}}$ such that each $\leq_i (i \in \mathbb{N})$ is a knowledge order over (G, V).

Marcelo: Do we really need to use the notion of knowledge tree in the following definitions? If we say that K is a knowledge tree then we need to use $\operatorname{PATHS}(K)$ to refer to the paths in K. On the other hand, if we directly say that $K \in \operatorname{LOG}(G,V)$, we can just refer to the elements of K (we do not a special notation for paths). Knowledge trees are a nice way to visualize the blocks of set $K \in \operatorname{LOG}(G,V)$, but I think we should just mention them because of this (and we should not use them in the definitions). What do you think?

Juan: You mean $K \subset LOG(G,V)$ right? I agree that here we do not need safeness nor finitiness to make this work, so we could just stick with LOG(G,V) instead of all knowledge trees

Definition 5. Let $P = \{ \leq_i \}_{i \in \mathbb{N}}$ be a blockchain protocol over (G, V), $K \subseteq LOG(G, V)$ and $t \in \mathbb{N}$. Then a maximal element of K with respect to \leq_t is said to be a blockchain of K at time t with respect to the protocol P.

Marcelo: I stopped here. I am not totally convinced that we need to introduce the following notion of equivalence, this is something that we need to discuss.

1.4 Action, states, reward and game

Definition 6. Considering a set of player P we denote K_P the set of function $K_P: P \to K$ mapping a knowledge tree to each player.

Intuitively K_P represents the true knowledge of each player.

Definition 7. We call action a for player $w \in P$ function $a_w^{\equiv} : \mathcal{K}_P \to \mathcal{K}_P$ such that:

$$\forall K_P \in \mathcal{K}_P, \forall u \in P, K_P(u) \subseteq a_w(K_P)(u)$$

$$\forall K_P \in \mathcal{K}_P, \forall u \in P, a_w(K_P)(u) \subseteq a_w(K_P)(w) \cup K_P(u)$$

Let A_w be the set of action for player w.

An action of player w is represented by a modification of w knowledge and a round of communication.

Definition 8. Let P be a set of player, $A = A_{p_1} \times A_{p_1} \dots \times A_{p_{|P|}}$

Definition 9. We call reward for player w a function $r_w : \mathcal{K}_P \times \mathcal{A} \to \mathbb{R}^+$

Intuitively \mathcal{K}_P represent the knowledge of each player assumed by w

Definition 10. Let P be a set of player, $\mathcal{R} = r_{p_1} \times r_{p_1} \dots \times r_{p_{|P|}}$

2 Etienne 's modification space

Definition 11. Considering a set of player P, a set of function \mathcal{K}_P , the set of action \mathcal{A} , the set of reward \mathcal{R} , and a function $\mathcal{P}: \mathcal{K}_P \times \mathcal{A} \times \mathcal{K}_P \to [0;1]$ a transition probability ($\mathcal{P}(K_P,A,K_P^1)$) is the probability of transitioning from K_P to an element of K_P^1 after joint action A). We define a infinite stochastic game Γ such that:

- *P* is the set of player.
- *A is the set of available action.*
- K_P is the set of states.
- R the set of pay-off function.
- \mathcal{P} is the transition probability function.

Stationary Nash equilibrium, Reasonable knowledge

Definition 12. We call stationary strategy for a player w a function $\sigma_w : \mathcal{V} \to \mathcal{A}_w$

Definition 13. Considering a game Γ and a stationary strategy vector σ , we define the n-reachability probability $\mathcal{P}_n^{\sigma}: \mathcal{V} \to [0;1]$ by induction such that :

$$\mathcal{P}_0^{\sigma}(v_0) = 1 \land \forall v \in \mathcal{V}, v \neq v_0 \implies \mathcal{P}_0^{\sigma}(v) = 0$$
$$\mathcal{P}_{n+1}^{\sigma}(v) = \sum_{v' \in \mathcal{V}} \mathcal{P}_n^{\sigma}(v') * T(v', \sigma(v'), v)$$

We say that v is σ reachable if exists $n \in \mathcal{N}$ such that $\mathcal{P}_n^{\sigma}(v) > 0$

Definition 14. We call β discounted reward of player w for a strategy vector σ and a game Γ the value

$$u_w(\sigma) = \sum_{n=0}^{+\infty} \beta^{n+1} * r_w(v, \sigma_w(v)) * T(v, \sigma(v), \sigma_w(v)) * \mathcal{P}_n^{\sigma}(v)$$

Definition 15. We say that σ a vector of stationary strategies is a β discounted stationary equilibrium of Γ iff:

$$\forall w \in P, \forall \sigma_w, u_w(\sigma) > u_w((\sigma_{\neg w}, \sigma_w))$$

Definition 16. We say that v is α reasonable regarding a game Γ if exists a α β discounted stationary equilibrium of Γ noted σ such that

$$\sum_{n=0}^{+\infty} \mathcal{P}_n^{\sigma}(v) \ge \alpha$$

Not done ...

2.1 Equivalent games

In order to define equivalent game we just have to define equivalent knowledge regarding a game.

Definition 17. Let K = (N, E) and K' = (N', E') two knowledge we say that K and K' are \equiv equivalent regarding $\Gamma = (P, A, K_P, R, P)$ if:

$$\equiv$$
 is an equivalent function over blocks $\forall L \in K, \exists L' \in K', \forall i \in \llbracket 1, |L| \rrbracket, L[i] \equiv L'[i]$ $\forall L' \in K', \exists L \in K, \forall i \in \llbracket 1, |L'| \rrbracket, L[i] \equiv L'[i]$

$$\forall w \in P, \forall a_w \in \mathcal{A}_w, \forall K_P \in \mathcal{K}_P, K_P(w) = K, \forall p \neq w \in P, K_P'(p) = K_P(p) \land K_P'(w) = K' \implies r_w(K_p, a_w) = K_P(p) \land K_$$

 $\forall w \in P, \forall a_w \in \mathcal{A}_w, \forall K_P \in \mathcal{K}_P, K_P(w) = K, \forall p \neq w \in P, K_P'(p) = K_P(p) \land K_P'(w) = K' \implies \forall K_P^1 \in \mathcal{K}_P, \mathcal{P}(K_P, A, K_P(w)) = K_P(p) \land K_P'(w) = K' \implies \forall K_P^1 \in \mathcal{K}_P, K_P(w) = K' \implies \forall K_P^1 \in \mathcal{K}_P, K_P(w$

We denote K^{\equiv} the set of knowledge equivalent to K.