

CP 460 - Applied Cryptography

More About Block Ciphers

Department of Physics and Computer Science Faculty of Science, Waterloo

Abbas Yazdinejad, Ph.D.

Content of this Chapter

- Encryption with Block Ciphers: Modes of Operation
 - Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Output Feedback mode (OFB)
 - Cipher Feedback mode (CFB)
 - Counter mode (CTR)
 - Galois Counter Mode (GCM)
- Exhaustive Key Search Revisited
- Increasing the Security of Block Ciphers

Block Ciphers

- A block cipher is much more than just an encryption algorithm, it can be used ...
 - to build different types of block-based encryption schemes
 - to realize stream ciphers
 - to construct hash functions
 - to make message authentication codes
 - to build key establishment protocols
 - to make a pseudo-random number generator
 - •
- The security of block ciphers also can be increased by
 - key whitening
 - multiple encryption

Block ciphers are a type of symmetric encryption algorithm used to encrypt data in fixed-size chunks, or "blocks." Instead of encrypting data bit by bit (like stream ciphers), block ciphers take a plaintext block of a certain length (usually 64 or 128 bits) and transform it into a ciphertext block of the same length using a secret key. This transformation occurs through multiple rounds of complex mathematical operations, which provide strong security when properly implemented.

Encryption with Block Ciphers

- There are several ways of encrypting long plaintexts, e.g., an e-mail or a computer file, with a block cipher ("modes of operation")
 - Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Output Feedback mode (OFB)
 - Cipher Feedback mode (CFB)
 - Counter mode (CTR)
 - Galois Counter Mode (GCM)
- All of the 6 modes have one goal:
 - In addition to confidentiality, they provide authenticity and integrity:
 - Is the message really coming from the original sender? (authenticity)
 - Was the ciphertext altered during transmission? (integrity)

Electronic Code Book mode (ECB)

ECB is the simplest mode of operation but has significant security weaknesses because it treats each block independently.

- $e_k(x_i)$ denote the encryption of a b-bit plaintext block x_i with key k
- $e_k^{-1}(y_i)$ denote the decryption of b-bit ciphertext block y_i with key k
- Messages which exceed b bits are partitioned into b-bit blocks
- Each Block is encrypted separately

Encryption: $y_i = e_k(x_i), i \ge 1$

Decryption: $x_i = e_k^{-1}(y_i) = e_k^{-1}(e_k(x_i)), i \ge 1$

ECB: advantages/disadvantages

- Advantages
 - no block synchronization between sender and receiver is required
 - bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks
 - Block cipher operating can be parallelized
 - advantage for high-speed implementations
- Disadvantages
 - ECB encrypts highly deterministically
 - identical plaintexts result in identical ciphertexts
 - an attacker recognizes if the same message has been sent twice
 - plaintext blocks are encrypted independently of previous blocks
 - an attacker may reorder ciphertext blocks which results in valid plaintext

Substitution Attack on ECB

ECB is vulnerable to substitution attacks because it encrypts each block independently.

- Once a particular plaintext to ciphertext block mapping $x_i \rightarrow y_i$ is known, a sequence of ciphertext blocks can easily be manipulated
- Suppose an electronic bank transfer

Block #	1	2	3	4	5
		Sending Account #		Receiving Account #	

- the encryption key between the two banks does not change too frequently
- The attacker sends \$1.00 transfers from his account at bank A to his account at bank B repeatedly
 - He can check for ciphertext blocks that repeat, and he stores blocks
 1,3 and 4 of these transfers
- He now simply replaces block 4 of other transfers with the block
 4 that he stored before
 - all transfers from some account of bank A to some account of bank B are redirected to go into the attacker's B account!

Example of encrypting bitmaps in ECB mode

Identical plaintexts are mapped to identical ciphertexts

This slide visually demonstrates the weakness of ECB mode. Patterns in plaintext are still visible in the ciphertext because of the deterministic nature of ECB.

Statistical properties in the plaintext are preserved in the ciphertext

Cipher Block Chaining mode (CBC)

CBC mode improves on ECB by introducing chaining, where each ciphertext block is influenced by the previous one, making encryption more secure.

- There are two main ideas behind the CBC mode:
 - The encryption of all blocks are "chained together"
 - ciphertext y_i depends not only on block x_i but on all previous plaintext blocks as well
 - The encryption is randomized by using an initialization vector (IV)

Encryption (first block): $y_1 = e_k(x_1 \oplus IV)$

Encryption (general block): $y_i = e_k(x_i \oplus y_{i-1}), i \ge 2$

Decryption (first block): $x_1 = e_k^{-1}(y_1) \oplus IV$

Decryption (general block): $x_i = e_k^{-1}(y_i) \oplus y_{i-1}, i \ge 2$

Cipher Block Chaining mode (CBC)

The importance of choosing a different IV for each encryption is emphasized.

- For the first plaintext block x_1 there is no previous ciphertext
 - an IV is added to the first plaintext to make each CBC encryption nondeterministic
 - the first ciphertext y_1 depends on plaintext x_1 and the IV
- The second ciphertext y_2 depends on the IV, x_1 and x_2
- The third ciphertext y_3 depends on the IV and x_1 , x_2 and x_3 , and so on

Output Feedback mode (OFB)

OFB mode generates a stream of key bits by continuously encrypting the output of the previous encryption. The plaintext is XORed with this key stream to produce the ciphertext, making OFB function like a stream cipher. This mode is useful when transmission errors need to be handled gracefully.

- It is used to build a synchronous stream cipher from a block cipher
- The key stream is not generated bitwise but instead in a blockwise fashion
- The output of the cipher gives us key stream bits S_i with which we can encrypt plaintext bits using the XOR operation

Encryption (first block): $s_1 = e_k(IV)$ and $y_1 = s_1 \oplus x_1$

Encryption (general block): $s_i = e_k(s_{i-1})$ and $y_i = s_i \oplus x_i$, $i \ge 2$

Decryption (first block): $s_1 = e_k(IV)$ and $x_1 = s_1 \oplus y_1$

Decryption (general block): $s_i = e_k(s_{i-1})$ and $x_i = s_i \oplus y_i$, $i \ge 2$

Cipher Feedback mode (CFB)

- It uses a block cipher as a building block for an asynchronous stream cipher (similar to the OFB mode), more accurate name: "Ciphertext Feedback Mode"
- The key stream S_i is generated in a blockwise fashion and is also a function of the ciphertext
- As a result of the use of an IV, the CFB encryption is also nondeterministic

Encryption (first block): $y_1 = e_k(IV) \oplus x_1$ Encryption (general block): $y_i = e_k(y_{i-1}) \oplus x_i$, $i \ge 2$ Decryption (first block): $x_1 = e_k(IV) \oplus y_1$ Decryption (general block): $x_i = e_k(y_{i-1}) \oplus y_i$, $i \ge 2$

It can be used in situations where short plaintext blocks are to be encrypted

Counter mode (CTR)

CTR mode uses a counter that is incremented with each block. It's highly efficient because the encryption of each block can be parallelized, making it ideal for high-speed implementations.

- It uses a block cipher as a stream cipher (like the OFB and CFB modes)
- The key stream is computed in a blockwise fashion
- The input to the block cipher is a counter which assumes a different value every time the block cipher computes a new key stream block

- Unlike CFB and OFB modes, the CTR mode can be parallelized since the 2nd encryption can begin before the 1st one has finished
 - Desirable for high-speed implementations, e.g., in network routers

Encryption:
$$y_i = e_k(\text{IV} || \text{CTR}_i) \oplus x_i, \quad i \ge 1$$

Decryption: $x_i = e_k(\text{IV} || \text{CTR}_i) \oplus y_i, \quad i \ge 1$

Galois Counter Mode (GCM)

GCM is a mode that provides both encryption and integrity protection. It is widely used in secure communication protocols like TLS because it ensures both confidentiality and authenticity of messages.

- It also computes a *message authentication code* (MAC), i.e., a cryptographic checksum is computed for a message (for more information see Chapter 12 in *Understanding Cryptography*)
- By making use of GCM, two additional services are provided:
 - Message Authentication
 - the receiver can make sure that the message was really created by the original sender
 - Message Integrity
 - the receiver can make sure that nobody tampered with the ciphertext during transmission

Galois Counter Mode (GCM)

- For encryption
 - An initial counter is derived from an IV and a serial number
 - The initial counter value is incremented then encrypted and XORed with the first plaintext block
 - For subsequent plaintexts, the counter is incremented and then encrypted
- For authentication
 - A chained Galois field multiplication is performed (for more information Galois field see Chapter 4.3 in *Understanding Cryptography*)
 - For every plaintext an intermediate authentication parameter g_i is derived
 - g_i is computed as the XOR of the current ciphertext and the last g_{i-1} , and multiplied by the constant H
 - H is generated by encryption of the zero input with the block cipher
 - All multiplications are in the 128-bit Galois field $GF(2^{128})$

Galois Counter Mode (GCM)

Encryption:

- a. Derive a counter value CTR_0 from the IV and compute $CTR_1 = CTR_0 + 1$
- b. Compute ciphertext: $y_i = e_k(CTR_i) \oplus x_i$, $i \ge 1$

Authentication:

- a. Generate authentication subkey $H = e_k(0)$
- b. Compute $g_0 = AAD \times H$ (Galois field multiplication)
- c. Compute $g_i = (g_{i-1} \oplus y_i) \times H$, $1 \le i \le n$ (Galois field multiplication)
- d. Final authentication tag: $T = (g_n \times H) \oplus e_k(CTR_0)$

Content of this Chapter

- Encryption with Block Ciphers: Modes of Operation
- Exhaustive Key Search Revisited
- Increasing the Security of Block Ciphers

Exhaustive Key Search Revisited

This slide explains the complexity of brute-force attacks.

• A simple exhaustive search for a DES key knowing one pair (x_1,y_1) :

$$DES_k^{(i)}(x_1) \stackrel{?}{=} y_1, \quad i = 0, 1, \dots, 2^{56}-1$$

- However, for most other block ciphers a key search is somewhat more complicated
- A brute-force attack can produce false positive results
 - keys k_i that are found are not the one used for the encryption

- The likelihood of this is related to the relative size of the key space and the plaintext space
- A brute-force attack is still possible, but several pairs of plaintext-ciphertext are needed

Content of this Chapter

- Encryption with Block Ciphers: Modes of Operation
- Exhaustive Key Search Revisited
- Increasing the Security of Block Ciphers
 - Double Encryption and Meet-in-the-Middle Attack
 - Triple Encryption
 - Key Whitening

Increasing the Security of Block Ciphers

- In some situations we wish to increase the security of block ciphers, e.g., if a cipher such as DES is available in hardware or software for legacy reasons in a given application
- Two approaches are possible
 - Multiple encryption
 - theoretically much more secure, but sometimes in practice increases the security very little
 - Key whitening

Double Encryption

• A plaintext x is first encrypted with a key k_L , and the resulting ciphertext is encrypted again using a second key k_R

• Assuming a key length of k bits, an exhaustive key search would require $2^k \cdot 2^k = 2^{2k}$ encryptions or decryptions

Meet-in-the-Middle Attack

• A Meet-in-the-Middle attack requires $2^k+2^k=2^{k+1}$ operations!

- **Phase I**: for the given (x_1, y_1) the **left** encryption is brute-forced for all $k_{L,i}$, $i=1,2,...,2^k$ and a lookup table with 2^k entry (each n+k bits wide) is computed
 - the lookup table should be ordered by the result of the encryption $(z_{L,i})$
- **Phase II**: the **right** encryption is brute-forced (using decryption) and for each $z_{R,i}$ it is checked whether $z_{R,i}$ is equal to any $z_{L,i}$ value in the table of the first phase
- Computational Complexity

number of encryptions and decryptions =
$$2^k + 2^k = 2^{k+1}$$

number of storage locations = 2^k

Double encryption is not much more secure then single encryption!

Triple Encryption

- The encryption of a block three times $y = e_{k3} (e_{k2} (e_{k1} (x)))$
- In practice a variant scheme is often used EDE (encryption-decryption-encryption)

$$y = e_{k3} (e^{-1}_{k2} (e_{k1} (x)))$$

- Advantage: choosing k1=k2=k3 performs single DES encryption
- Still we can perform a meet-in-the middle attack, and it reduces the *effective key* length of triple encryption from 3K to 2K!
 - The attacker must run 2¹¹² tests in the case of 3DES

Triple encryption effectively doubles the key length

Key Whitening

Key whitening is a technique used in cryptographic algorithms, especially in block ciphers, to enhance security by making it harder for an attacker to discover the encryption key. The process involves XORing (exclusive OR operation) the plaintext and/or ciphertext with one or more sub-keys derived from the main encryption key. This additional layer of XORing is typically applied before the encryption rounds start and sometimes after the final round.

- Makes block ciphers such as DES much more resistant against brute-force attacks
- In addition to the regular cipher key k, two whitening keys k_1 and k_2 are used to XOR-mask the plaintext and ciphertext

- It does not strengthen block ciphers against most analytical attacks such as linear and differential cryptanalysis
- It is not a "cure" for inherently weak ciphers
- The additional computational load is negligible
- Its main application is ciphers that are relatively strong against analytical attacks but possess too short a key space especially DES
 - a variant of DES which uses key whitening is called DESX

Lessons Learned

- There are many different ways to encrypt with a block cipher. Each mode of operation has some advantages and disadvantages
- Several modes turn a block cipher into a stream cipher
- There are modes that perform encryption together together with authentication, i.e., a cryptographic checksum protects against message manipulation
- The straightforward ECB mode has security weaknesses, independent of the underlying block cipher
- The counter mode allows parallelization of encryption and is thus suited for high speed implementations
- Double encryption with a given block cipher only marginally improves the resistance against brute-force attacks
- Triple encryption with a given block cipher roughly doubles the key length
- Triple DES (3DES) has an effective key length of 112 bits
- Key whitening enlarges the DES key length without much computational overhead.

