Partial Answers to the Chapter End Problems

M. Asghar Bhatti

Advanced Topics in Finite Element Analysis of Structures

with Computations Using Mathematica and Matlab

John Wiley & Sons, Inc. 2006

CHAPTER ONE

Essential Background

1.1
$$w(1) + \int_0^1 (-w(ux^4 + x + u') - u'w') dx = 0$$

1.2
$$u(x) = \frac{1}{17} (15 x - 16)$$

$$\begin{pmatrix} \frac{2 k L \pi \left(\frac{r_{2}^{2}}{2} - \frac{r_{1}^{2}}{2}\right)}{(r_{1} - r_{2})^{2}} & \frac{2 k L \pi \left(\frac{r_{2}^{2}}{2} - \frac{r_{1}^{2}}{2}\right)}{(r_{1} - r_{2})(r_{2} - r_{1})} \\ \frac{2 k L \pi \left(\frac{r_{2}^{2}}{2} - \frac{r_{1}^{2}}{2}\right)}{(r_{1} - r_{2})(r_{2} - r_{1})} & \frac{2 k L \pi \left(\frac{r_{2}^{2}}{2} - \frac{r_{1}^{2}}{2}\right)}{(r_{2} - r_{1})^{2}} \end{pmatrix} \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} L \pi Q (r_{1} - r_{2}) (2 r_{1} + r_{2}) \\ -\frac{1}{3} L \pi Q (r_{1} - r_{2}) (r_{1} + 2 r_{2}) \end{pmatrix}$$

$$\left\{50,\ \frac{478}{23},\ \frac{1222}{23},\ 10\right\}$$

Exact solution: $u(x) = -\frac{10(1-5e^{100}+4e^x)}{-1+e^{100}}$

1.5

Using two linear elements

	Range	Solution
1	$1 \le x \le 1.5$	2.89749 - 0.897488 x
2	$1.5 \le x \le 2$	2.10902 - 0.371845 x

Using 1 quadratic element

Range Solution
$$1 1 \le x \le 2 0.534517 x^2 - 2.25381 x + 3.71929$$

1.6

 $I\approx 2.06155\,$

$$\partial N_2/\partial x = -\frac{s+2\ t-1}{2\ (s-t-4)}; \qquad \text{At s=0 and t=0: } \partial N_2/\partial x = -\frac{1}{8}$$

CHAPTER TWO

Analysis of Elastic Solids

2.1

Solution with three eight-node solid elements

	u	v	W
1	0	0	0
2	0	0	0
3	-0.0281233	-0.148096	-0.00123542
4	0.0357204	-0.194093	-0.00175711
5	-0.186379	-0.140973	-0.0018374
6	-0.117813	-0.216582	-0.00169579
7	-0.196634	-0.489654	-0.000698367
8	-0.115447	-0.490419	-0.000714844
9	0	0	0
10	0	0	0
11	-0.0281233	-0.148096	0.00123542
12	0.0357204	-0.194093	0.00175711
13	-0.186379	-0.140973	0.0018374
14	-0.117813	-0.216582	0.00169579
15	-0.196634	-0.489654	0.000698367
16	-0.115447	-0.490419	0.000714844

Ansys plane strain model

The planar model includes fillets to realistically capture stress concentrations at corners.

Deflections

MAXIMUM ABSOLUTE VALUES

NODE	3	29	0	1
VALUE	-1.6737	-3.9774	0.0000	4.3149

Von Mises stresses

2.2 Solution with five eight-node solid elements

	u	V	W
1	0.029312	-0.0408152	-0.000102666
2	0.0248685	-0.040961	-0.00030369
3	0.0281897	-0.0329743	0.00171985
4	0.0310753	-0.0325326	0.00160147
5	0.0163573	-0.0308656	0.00104154
6	0.0198839	-0.0237311	0.00138904
7	0.0122978	-0.00959103	0.00142794
8	0.0159712	-0.0025363	0.00162177
9	0	0	0
10	0.00298233	-0.00104209	0.00131326
11	0	0	0
11	U	U	U
12	0.000264388	0.000237822	0.000397299
			•
12	0.000264388	0.000237822	0.000397299
12 13	0.000264388 0.029312	0.000237822 -0.0408152	0.000397299 0.000102666
12 13 14	0.000264388 0.029312 0.0248685	0.000237822 -0.0408152 -0.040961	0.000397299 0.000102666 0.00030369
12 13 14 15	0.000264388 0.029312 0.0248685 0.0281897	0.000237822 -0.0408152 -0.040961 -0.0329743	0.000397299 0.000102666 0.00030369 -0.00171985
12 13 14 15	0.000264388 0.029312 0.0248685 0.0281897 0.0310753	0.000237822 -0.0408152 -0.040961 -0.0329743 -0.0325326	0.000397299 0.000102666 0.00030369 -0.00171985 -0.00160147
12 13 14 15 16 17	0.000264388 0.029312 0.0248685 0.0281897 0.0310753 0.0163573	0.000237822 -0.0408152 -0.040961 -0.0329743 -0.0325326 -0.0308656	0.000397299 0.000102666 0.00030369 -0.00171985 -0.00160147 -0.00104154
12 13 14 15 16 17	0.000264388 0.029312 0.0248685 0.0281897 0.0310753 0.0163573 0.0198839	0.000237822 -0.0408152 -0.040961 -0.0329743 -0.0325326 -0.0308656 -0.0237311	0.000397299 0.000102666 0.00030369 -0.00171985 -0.00160147 -0.00104154 -0.00138904
12 13 14 15 16 17 18	0.000264388 0.029312 0.0248685 0.0281897 0.0310753 0.0163573 0.0198839 0.0122978	0.000237822 -0.0408152 -0.040961 -0.0329743 -0.0325326 -0.0308656 -0.0237311 -0.00959103	0.000397299 0.000102666 0.00030369 -0.00171985 -0.00160147 -0.00104154 -0.00138904 -0.00142794

22	0.00298233	-0.00104209	-0.00131326
23	0	0	0
24	0.000264388	0.000237822	-0.000397299

Ansys plane stress model

Deflections

MAXIMUM ABSOLUTE VALUES

NODE	162	86	0	145
VALUE	0.44392	-0.36244	0.0000	0.56712

Von Mises stresses

2.3 Solution with four eight-node solid elements

	u	V	W
1	0	0	0
2	0.00117475	0.00092064	-0.00010388
3	0.00261739	0.00124918	-0.0000660266
4	0	0	0
5	0.00121133	-0.00106776	0.000112101
6	0.00310604	-0.00308718	-9.57036×10^{-6}
7	0.000413212	-0.00664865	0.0000283445
8	0.00137316	-0.00682205	0.0000227296
9	0.00145549	-0.0145256	-7.66489×10^{-6}
10	0.00341233	-0.0145225	-6.92322×10^{-6}
11	0	0	0
12	0.00117475	0.00092064	0.00010388
13	0.00261739	0.00124918	0.0000660266
14	0	0	0
15	0.00121133	-0.00106776	-0.000112101
16	0.00310604	-0.00308718	$9.57036\!\times\!10^{-6}$
17	0.000413212	-0.00664865	-0.0000283445
18	0.00137316	-0.00682205	-0.0000227296
19	0.00145549	-0.0145256	$7.66489\!\times\!10^{-6}$
20	0.00341233	-0.0145225	$6.92322\!\times\!10^{-6}$

Ansys plane stress model

Deflections

MAXIMUM ABSOLUTE VALUES

NODE 98 98 0 98

VALUE 0.12303E-01-0.67705E-01 0.0000 0.68813E-01

Von Mises stresses

2.4 Ansys plane stress model

Von Mises stresses

Ansys solid model

Von Mises stresses

2.5Ansys plane42 element: Rigid body patch test-Rotation

Nodal displacements with a rigid-body rotation of 60°.

$$\begin{pmatrix} 2.59808 & -1.5 \\ 1.16506 & -2.98205 \\ -0.267949 & -4.4641 \\ 0.933013 & 0.616025 \\ 0.366025 & -1.36603 \\ -1.13397 & -3.9641 \\ -0.732051 & 2.73205 \\ -1.36603 & -0.366025 \\ -2. & -3.4641 \\ \end{pmatrix}$$

Specified displacements at exterior nodes

	u	V
1	2.59808	-1.5
2	1.16506	-2.98205
3	-0.267949	-4.4641
4	0.933013	0.616025
6	-1.13397	-3.9641
7	-0.732051	2.73205
8	-1.36603	-0.366025
9	-2.	-3.4641

Computed displacements

PRINT U NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE	UX	UY	UZ	USUM
1	2.5981	-1.5000	0.0000	3.0000
2	1.1651	-2.9821	0.0000	3.2016
3	-0.26795	-4.4641	0.0000	4.4721
4	0.93301	0.61603	0.0000	1.1180
5	0.36603	-1.3660	0.0000	1.4142
6	-1.1340	-3.9641	0.0000	4.1231
7	-0.73205	2.7321	0.0000	2.8284
8	-1.3660	-0.36603	0.0000	1.4142
9	-2.0000	-3.4641	0.0000	4.0000

MAXIMUM ABSOLUTE VALUES

NODE 1 3 0 3

VALUE 2.5981 -4.4641 0.0000 4.4721

PRINT S ELEMENT SOLUTION PER ELEMENT

***** POST1 ELEMENT NODAL STRESS LISTING *****

LOAD STEP= 1 SUBSTEP= 1

TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES

ELEMENT	= 1	PLANE42				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
4	-714.29	-714.29	0.0000	0.95694E-13	0.0000	0.0000
5	-714.29	-714.29	0.0000	0.17509E-12	0.0000	0.0000
2	-714.29	-714.29	0.0000	0.21734E-13	0.0000	0.0000
1	-714.29	-714.29	0.0000	0.23056E-12	0.0000	0.0000
ELEMENT	= 2	PLANE42				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
5	-714.29	-714.29	0.0000	0.24772E-14	0.0000	0.0000
6	-714.29	-714.29	0.0000	-0.19154E-13	0.0000	0.0000
3	-714.29	-714.29	0.0000	-0.34503E-13	0.0000	0.0000
2	-714.29	-714.29	0.0000	0.14726E-12	0.0000	0.0000
ELEMENT	= 3	PLANE42				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
7	-714.29	-714.29	0.0000	0.16836E-12	0.0000	0.0000
8	-714.29	-714.29	0.0000	0.15531E-12	0.0000	0.0000
5	-714.29	-714.29	0.0000	-0.17370E-12	0.0000	0.0000
4	-714.29	-714.29	0.0000	0.12758E-12	0.0000	0.0000
ELEMENT	= 4	PLANE42				
NODE	SX	SY	SZ	SXY	SYZ	SXZ
8	-714.29	-714.29	0.0000	0.71100E-13	0.0000	0.0000

9	-714.29	-714.29	0.0000	-0.25544E-12	0.0000	0.0000
6	-714.29	-714.29	0.0000	-0.11380E-12	0.0000	0.0000
5	-714.29	-714.29	0.0000	-0.10752E-12	0.0000	0.0000

The computed displacements at node 5 are as expected. However why do we have stresses in a rigid-body rotation? The answer will be clear after looking at different stress and strain measures discussed in Chapter 9. The given rotation obviously is large. For a proper analysis we must include large displacement effects.

	X	y	u	\mathbf{v}
1	0	0	0.1	0.2
2	20	0	4.1	0.2
3	0	10	0.1	-0.4
4	20	10	4.1	-0.4
5	4	3	0.9	0.02
6	14	4	2.9	-0.04
7	6	6	1.3	-0.16
8	14	7	2.9	-0.22

2.7 Programming Project

2.8 Programming Project

CHAPTER THREE

Solids of Revolution

	r	Z	u	W
1	35	0	0.000531958	0
2	50	0	0.000420706	0
3	35	50	0.000535198	0
4	50	50	0.000453704	0

	r	Z	u	W
1	10	0	0	0
2	20	0	0	0
3	10	40	-0.0188239	0.127113
4	20	40	0	0.122604
5	10	90	0.0410784	0.226363
6	20	90	0.0566833	0.216758

3.3

Nodal solution

	r	\mathbf{z}	u	W
1	12	0	-0.0050849	0
2	20	0	-0.0221486	0
3	35	0	-0.0316438	0
4	12	20	-0.00612671	-0.021443
5	20	20	-0.0221733	-0.0198482
6	35	20	-0.03257	-0.0178926
7	12	40	-0.0100963	-0.0459928
8	20	40	-0.0258636	-0.0386396
9	35	40	-0.0370235	-0.0341886

	u	Z
1	0.000517713	0
2	0.000426099	0
3	0.000517713	0
4	0 000426099	0

	u	Z
1	0	0
2	0	0
3	-0.0203183	0.125564
4	0	0.122077
5	0.0332793	0.234792
6	0.0475977	0.221367

3.6

	u	Z
1	-0.00524106	0
2	-0.0215315	0
3	-0.0319668	0
4	-0.00497884	-0.0211027
5	-0.0215631	-0.0197578
6	-0.0324841	-0.0174939
7	-0.0120671	-0.0505293
8	-0.0262301	-0.0389688
9	-0.0362975	-0.0334733

3.7 Programming Project

CHAPTER FOUR

Multi-Field Formulations for Beam Elements

4.1 Using mixed-beam elements for EBT

 $\{M_2 = -360, M_3 = 840, R_1 = -1.5, R_2 = 11.5, v_3 = -0.178499, \theta_1 = -0.000811359\}$

2 Multifield Beams

4.2

Using mixed-beam elements for EBT

 $\{\{M_{1.} \rightarrow 818.182, \ M_{2.} \rightarrow -1636.36, \ M_{3.} \rightarrow 2181.82, \\ R_{1.} \rightarrow -20.4545, \ R_{2.} \rightarrow 52.2727, \ R_{4.} \rightarrow 18.1818, \ v_{3.} \rightarrow -0.834225, \ \theta_{4.} \rightarrow 0.0112299\}\}$

4.3

Using mixed-beam elements for EBT

$$\begin{split} \{\{M_{1.} \rightarrow 327.273, \ M_{2.} \rightarrow -654.545, \ M_{3.} \rightarrow 872.727, \\ R_{1.} \rightarrow -8.18182, \ R_{2.} \rightarrow 30.9091, \ R_{4.} \rightarrow 17.2727, \ v_{3.} \rightarrow -0.33369, \ \theta_{4.} \rightarrow 0.00449198\}\} \end{split}$$

4.4

 $\{\theta_1=0.0000102496,\ \theta_2=-0.0000206382,\ v_3=-0.00415919\}$

 $\{\theta_2 = -0.000118835, \ v_3 = -0.0206492, \ \theta_3 = -0.0000384008, \ \theta_4 = 0.000275354\}$

4.6

 $\{\theta_2 = -0.0000475338, \, \mathbf{v}_3 = -0.00825968, \, \theta_3 = -0.0000153603, \, \theta_4 = 0.000110142\}$

 $\{M_2 = -360., M_3 = 840., R_1 = -1.5, R_2 = 11.5, v_3 = -0.178499, \theta_1 = -0.000811359\}$

4.9

 $\{\{M_{2.} \rightarrow -1636.36,\ M_{3.} \rightarrow 2181.82,\ M_{1.} \rightarrow 818.182, \\ R_{1.} \rightarrow -20.4545,\ R_{2.} \rightarrow 52.2727,\ R_{4.} \rightarrow 18.1818,\ v_{3.} \rightarrow -0.834225,\ \theta_{4.} \rightarrow 0.0112299\}\}$

4.10

 $\{\{M_{2.} \rightarrow -660.,\ M_{3.} \rightarrow 870.,\ M_{1.} \rightarrow 330.,\ R_{1.} \rightarrow -8.25,\ R_{2.} \rightarrow 31.,\ R_{4.} \rightarrow 17.25,\ v_{3.} \rightarrow -0.335294,\ \theta_{4.} \rightarrow 0.00452941\}\}$

 $\{M_3 = -30., \ M_1 = -97.5, \ M_2 = 86.25, \ R_1 = 5.5625, \ R_3 = 4.9375, \ v_2 = -0.006, \ v_4 = 0.00413793, \ \theta_4 = 0.0000413793\}$

4.12

4.13

6 Multifield Beams

4.15

 $\{\theta_1=0.000806982,\ \theta_2=-0.00162491,\ \mathbf{v}_3=-0.181551\}$

4.16

 $\{\theta_2 = -0.00487222, \ v_3 = -0.846617, \ \theta_3 = -0.00157443, \ \theta_4 = 0.0112895\}$

4.17

 $\{\theta_2=-0.00259852,\ \mathbf{v}_3=-0.403294,\ \theta_3=-0.000839698,\ \theta_4=0.00602108\}$

CHAPTER FIVE

Multifield Formulations for Analysis of Elastic Solids

$$\begin{pmatrix} 0 & 0 & 0 & -A & \frac{2A}{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{4A}{3} & 0 & 0 \\ 0 & 0 & 0 & A & \frac{2A}{3} & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & L & 0 \\ -\frac{2}{3} & \frac{4}{3} & -\frac{2}{3} & 0 & 0 & 0 & \frac{L}{3} \\ 0 & 0 & 0 & -L & 0 & LE & 0 \\ 0 & 0 & 0 & 0 & -\frac{L}{3} & 0 & \frac{LE}{3} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ a_1 \\ a_2 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \frac{Lq}{6} + F_L \\ \frac{2Lq}{3} \\ \frac{Lq}{6} + F_R \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

All are work modes.

 $Eigenvalues: \{1.42857,\, 0.769231,\, 0.769231,\, 0.0925926,\, 0.0925926,\, 0,\, 0,\, 0\}$

5.3

$$\boldsymbol{P}^{\mathrm{T}} = \left(\begin{array}{ccccc} 1 & s & t & 0 & 0 \\ 0 & 1 & s & t & 0 \\ 0 & 0 & 1 & s & t \end{array} \right)$$

All are work modes.

 $Eigenvalues: \{1.2171,\ 0.715005,\ 0.650081,\ 0.121892,\ 0.085197,\ 0,\ 0,\ 0\}$

5.4

All are work modes.

 $Eigenvalues: \{0.769231,\ 0.769231,\ 0.434783,\ 0.0925926,\ 0.0925926,\ 0,\ 0,\ 0\}$

5.5

Nodal solution

	X	y	u	\mathbf{v}
1	0	0	0	0
2	50	10	0.202609	-0.0323944
3	50	20	0.205101	0.0523294
4	0	20	0	0

	u	V
1	0	0
2	0	0
3	0	0
4	0.101861	-0.0284674
5	0.104682	0.00699846
6	0.101556	0.0428647
7	0.191474	0.0198994
8	0.180643	0.017815
9	0.190381	0.0143666


```
\begin{array}{cccc} & u & w & \\ 1 & 0 & 0 & \\ 2 & 0 & 0 & \\ 3 & 0.0000972836 & -0.0000706801 \\ 4 & 0.000150769 & -9.80215 \times 10^{-6} \end{array}
```

5.8 Programming Project

CHAPTER SIX

Plates and Shells

6.1 Maximum deflection = 0.0560523

	x-coord	y-coord	\mathbf{w}	$ heta_{\mathbf{x}}$	$ heta_{ m y}$
1	0	0	0	0	0
2	5	0	0	0.0738563	0
3	5	$\frac{5}{2}$	0.114294	0	0
4	0	$\frac{5}{2}$	0	0	-0.0623135

	7
h	5

	x-coord	y-coord	w	$\theta_{\mathbf{x}}$	$ heta_{\mathbf{y}}$
1	0	0	0	0	0
2	10	5	0	-0.10891	0
3	0	5	0	0	0

Nodal solution

	x-coord	y-coord	w	$\theta_{\mathbf{x}}$	$ heta_{ m v}$
1	0	0	0	0	0
2	5	0	0	0.0539835	0
3	5	$\frac{5}{2}$	0.0682754	0	0
4	0	5	0	0	-0.0270237

6.5

Prepare a short report on different plate and shell elements available in Ansys or any other commercial finite element software available. Look through the documentation and determine the theory on which each element is based.

6.6 Computational project

Input data file

CHAPTER SEVEN

Introduction to Nonlinear Problems

7.1

Quadratic solution $u(x) = 0.197847 x^2 + 0.312499 x + \frac{1}{27}$

Cubic solution $u(x) = 0.156708 x^3 - 0.276866 x^2 + 0.651649 x + \frac{1}{27}$

7.2

Quadratic solution $u(x) = 0.36118 x^2 - 1.20384 x + 1$

Cubic solution $u(x) = -0.297702 x^3 + 1.18883 x^2 - 1.66833 x + 1$

7.3

Quadratic solution $u(x) = 0.846013 x^2 - 1.84489 x + 1.49888$

Cubic solution $u(x) = 0.599143 x^3 - 1.88008 x^2 + 2.1394 x - 0.358459$

7.4

Quadratic solution $u(x) = 1.81956 x^2 - 5.62534 x + 4.30579$

Cubic solution $u(x) = 1.04138 x^3 - 2.85862 x^2 + 1.11953 x + 1.19771$

7.5

Quadratic solution $u(x) = 1.81962 x^2 - 5.92742 x + 4.6078$

Cubic solution $u(x) = 1.09736 x^3 - 3.11873 x^2 + 1.20061 x + 1.32076$

7.6

$$\boldsymbol{k} = \left(\begin{array}{c} \frac{4 \, \ell^2 \, u_1^3 + 3 \, \ell^2 \, u_2 \, u_1^2 + 2 \left(\ell^2 \, u_2^2 + 10 \right) u_1 + u_2 \left(\ell^2 \, u_2^2 - 20 \right)}{20 \, \ell} \\ \\ \frac{\ell^2 \, u_1^3 + 2 \, \ell^2 \, u_2 \, u_1^2 + \left(3 \, \ell^2 \, u_2^2 - 20 \right) u_1 + 4 \, u_2 \left(\ell^2 \, u_2^2 + 5 \right)}{20 \, \ell} \end{array} \right)$$

$$\mathbf{r}_E = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Total nodal values, $\mathbf{d}^{(4)} = \left\{ \frac{1}{27}, 0.539496, 1.42052 \right\}$

$$\mathbf{k} = \begin{pmatrix} \frac{1}{5} \left(12 \ell u_1^3 + 9 \ell u_2 u_1^2 + \left(6 \ell u_2^2 + \frac{5}{\ell} \right) u_1 + 3 \ell u_2^3 - \frac{5 u_2}{\ell} \right) \\ \frac{3 \ell u_1^3}{5} + \frac{6}{5} \ell u_2 u_1^2 + \left(\frac{9 \ell u_2^2}{5} - \frac{1}{\ell} \right) u_1 + \frac{12 \ell u_2^3}{5} + \frac{u_2}{\ell} \end{pmatrix}$$

$$\mathbf{r}_E = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Total nodal values, $\mathbf{d}^{(6)} = \left\{1, 0.294696, 0.152172, \frac{1}{27}\right\}$

$$\begin{split} \pmb{k} &= \left\{ \frac{1}{360\,\ell^3} \\ & (45\,\ell^2 \left(3\,\ell (14\,x1+15\,\ell) + 6\,x1 \left(7\,x1+8\,\ell \right) \text{Log}[x1] - 6\,x1 \left(3\,x1+4\,\ell \right) \text{Log}[x1]^2 + 4\,x1 \left(x1+2\,\ell \right) \text{Log}[x1]^3 - 42 \\ & (x1+\ell)^2 \text{Log}[x1+\ell] + 18 \left(x1+\ell \right)^2 \text{Log}[x1+\ell]^2 - 4 \left(x1+\ell \right)^2 \text{Log}[x1+\ell]^3 \right) + 360\,\ell^2 \, u_1 + 576\,\ell^4 \, u_1^3 - 360\,\ell^2 \, u_2 + 20\,\ell \left(\ell \left(-132\,x1^2 - 132\,x1\,\ell + \ell \left(9 + 19\,\ell \right) \right) - 6\,x1^2 \left(22\,x1 + 27\,\ell \right) \text{Log}[x1] + 18\,x1^2 \left(2\,x1+3\,\ell \right) \\ & \text{Log}[x1]^2 + 6 \left(22\,x1 - 5\,\ell \right) \left(x1+\ell \right)^2 \text{Log}[x1+\ell] - 18 \left(2x1-\ell \right) \left(x1+\ell \right)^2 \text{Log}[x1+\ell]^2 \right) u_2 + 30 \\ & \left(\ell \left(36\,x1^3 + 30\,x1^2\,\ell - 12\,x1\,\ell^2 + 7\,\ell^3 \right) + 12\,x1^3 \left(3\,x1 + 4\,\ell \right) \text{Log}[x1] - 12 \left(3\,x1^4 + 4\,x1^3\,\ell + \ell^4 \right) \text{Log}[x1+\ell] \right) \\ & u_2^2 + 144\,\ell^4 \, u_2^3 + 18\,u_1^2 \left(5\left(\ell \left(12\,x1^3 + 42\,x1^2\,\ell + 52\,x1\,\ell^2 + 25\,\ell^3 \right) + \\ & 12\,x1 \left(x1^3 + 4\,x1^2\,\ell + 6\,x1\,\ell^2 + 4\,\ell^3 \right) \text{Log}[x1] - 12 \left(x1+\ell \right)^4 \text{Log}[x1+\ell] \right) + 24\,\ell^4 \, u_2 \right) - \\ & 4\,u_1 \left(-5\,\ell \left(\ell \left(132\,x1^2 + 294\,x1\,\ell + \left(-9 + 170\,\ell \right) \right) + 12\,x1 \left(11\,x1^2 + 27\,x1\,\ell + 18\,\ell^2 \right) \text{Log}[x1] \right) \\ & 36\,x1 \left(x1^2 + 3\,x1\,\ell + 3\,\ell^2 \right) \text{Log}[x1]^2 - 132 \left(x1+\ell \right)^3 \text{Log}[x1+\ell] + 36 \left(x1+\ell \right)^3 \text{Log}[x1+\ell]^2 \right) + \\ & 15\,\ell \left(36\,x1^3 + 78\,x1^2\,\ell + 36\,x1\,\ell^2 - 13\,\ell^3 \right) + 12\,x1^2 \left(3\,x1^2 + 8\,x1\,\ell + 6\,\ell^2 \right) \text{Log}[x1] - \\ & 12\left(3\,x1-\ell \right) \left(x1+\ell \right)^3 \text{Log}[x1+\ell] \right) u_2 - 72\,\ell^4 \, u_2^2 \right), \\ & \frac{1}{360\,\ell^3} \left(-45\,\ell^2 \left(3\left(14\,x1-\ell \right)\ell + 42\,x1^2 \text{Log}[x1] - 18\,x1^2 \text{Log}[x1]^2 + 4\,x1^2 \text{Log}[x1]^3 - \\ & 6\left(7\,x1^2 + 6\,x1\,\ell - \ell^2 \right) \text{Log}[x1+\ell] + 6\left(3\,x1^2 + 2\,x1\,\ell - \ell^2 \right) \text{Log}[x1+\ell]^2 + 4\,x1^2 \text{Log}[x1]^3 - \\ & 12\left(11\,x1^3 + 6\,x1^2\,\ell - 3\,x1\,\ell^2 + 2\,\ell^3 \right) \text{Log}[x1+\ell] + 36\left(x1^3 + \ell^3 \right) \text{Log}[x1+\ell]^2 \right) u_2 - \\ & 90\left(\ell \left(12\,x1^3 - 6\,x1^2\,\ell + 4\,x1\,\ell^2 - 3\,\ell^3 \right) + 12\,x1^4 \text{Log}[x1] - 12\left(x1^4 - \ell^4 \right) \text{Log}[x1+\ell] \right) u_2^2 + \\ 576\,\ell^4 \, u_2^3 - 6\,u_1^2 \left(5\left(\ell \left(36\,x1^3 + 78\,x1^2 + 2\,36\,x1\,\ell^2 - 13\,\ell^3 \right) + \\ & 12\,x1^2 \left(3\,x1^2 + 8\,x1\,\ell + 6\,\ell^2 \right) \text{Log}[x1] - 12\left(3\,x1 - \ell \right) \left(x1+\ell \right)^3 \text{Log}[x1+\ell] \right) - 48\,\ell^4 \, u_2 \right) + \\ 15\left(\ell \left(36\,x1^3 + 30\,x1^2 - 9\,\ell - 1$$

Total nodal values, $d^{(5)} = \left\{ \frac{1}{2}, 0.565264, 0.75045, \frac{1}{2} + \log(2) \right\}$

7.9

$$\mathbf{k} = \begin{pmatrix} -\frac{(u_1 - u_2)(2\ell u_1 + \ell u_2 + 6)}{6\ell} \\ -\frac{(u_1 - u_2)(\ell u_1 + 2\ell u_2 - 6)}{6\ell} \end{pmatrix}$$

$$\mathbf{r}_E = \begin{pmatrix} \frac{\ell^4}{20} + \frac{x1\ell^3}{4} + \frac{x1^2\ell^2}{2} + \frac{x1^3\ell}{2} \\ \frac{\ell^4}{5} + \frac{3x1\ell^3}{4} + x1^2\ell^2 + \frac{x1^3\ell}{2} \end{pmatrix}$$

Total nodal values, $\mathbf{d}^{(3)} = \left\{ \frac{1}{2}, 0.0793862, -0.0534516, \frac{1}{3} \right\}$

$$\mathbf{k} = \begin{pmatrix} -\frac{(u_1 - u_2)(2\ell u_1 + \ell u_2 + 6)}{6\ell} \\ -\frac{(u_1 - u_2)(\ell u_1 + 2\ell u_2 - 6)}{6\ell} \end{pmatrix}$$

$$\mathbf{r}_E = \begin{pmatrix} \frac{\ell^4}{20} + \frac{x_1\ell^3}{4} + \frac{x_1^2\ell^2}{2} + \frac{x_1^3\ell}{2} \\ \frac{\ell^4}{5} + \frac{3x_1\ell^3}{4} + x_1^2\ell^2 + \frac{x_1^3\ell}{2} \end{pmatrix}$$

$$u_1$$
 u_2 u_3 u_4 u_5 u_5 u_7 u_8 u_9 u_9

Total nodal values, $d^{(3)} = \left\{ \frac{1}{2}, -0.185885, 0.032486 \right\}$

7.11

$$\mathbf{k} = \begin{pmatrix} -\frac{(u_1 - u_2)(2 \ell u_1 + \ell u_2 + 6)}{6 \ell} \\ -\frac{(u_1 - u_2)(\ell u_1 + 2 \ell u_2 - 6)}{6 \ell} \end{pmatrix}$$

$$\mathbf{r}_E = \lambda \begin{pmatrix} \frac{\ell^4}{20} + \frac{\mathbf{x} \mathbf{1} \ell^3}{4} + \frac{\mathbf{x} \mathbf{1}^2 \ell^2}{2} + \frac{\mathbf{x} \mathbf{1}^3 \ell}{2} \\ \frac{\ell^4}{5} + \frac{3 \mathbf{x} \mathbf{1} \ell^3}{4} + \mathbf{x} \mathbf{1}^2 \ell^2 + \frac{\mathbf{x} \mathbf{1}^3 \ell}{2} \end{pmatrix}$$

Nodal values, $\mathbf{d} = \left\{ \frac{1}{2}, 0.0792459, -0.0534103, \frac{1}{3} \right\}$

$$\begin{split} \boldsymbol{k} &= \left(-\frac{\frac{(u_1 - u_2)(2\ell u_1 + \ell u_2 - 6)}{6\ell}}{6\ell} \right) \\ &- \frac{(u_1 - u_2)(\ell u_1 + 2\ell u_2 + 6)}{6\ell} \right) \\ \boldsymbol{r}_E &= \lambda \left(\frac{\frac{\ell^4}{20} + \frac{\mathbf{x}1\ell^3}{4} + \frac{\mathbf{x}1^2\ell^2}{2} + \frac{\mathbf{x}1^3\ell}{2}}{\frac{\ell^4}{5} + \frac{3\mathbf{x}1\ell^3}{4} + \mathbf{x}1^2\ell^2 + \frac{\mathbf{x}1^3\ell}{2}} \right) \end{split}$$

Nodal values,
$$d = \left\{ \frac{1}{2}, 1.12385, 0.944394 \right\}$$

$$\mathbf{r}_E = \left(\begin{array}{l} \frac{1}{2} \; P \; \ell \; \epsilon \; \sigma \; T_{\infty}^4 \; + \; \frac{q \; \ell}{2} \\ \\ \frac{1}{2} \; P \; \ell \; \epsilon \; \sigma \; T_{\infty}^4 \; + \; \frac{q \; \ell}{2} \end{array} \right)$$

Total nodal values, $\mathbf{d}^{(5)} = \{500, 339.574, 304.63\}$

CHAPTER EIGHT

Material Nonlinearity

8.1

Average area for each element

{1500, 600, 1050, 1950}

Total nodal values

$$\begin{array}{ccc} & & u \\ 1 & & 0 \\ 2 & & 0.108849 \\ 3 & & -1.24394 \\ 4 & & -0.435378 \\ 5 & & 0 \end{array}$$

8.3

$$\mathbf{r}_{q} = \frac{1}{6} \rho A \omega^{2} \begin{pmatrix} -2 x_{1}^{2} + x_{1} x_{2} + x_{2}^{2} \\ -x_{1}^{2} - x_{1} x_{2} + 2 x_{2}^{2} \end{pmatrix}$$

$$\begin{array}{c} u_{1} \quad u_{2} \quad u_{3} \quad u_{4} \quad u_{5} \\ \hline 1 \quad 2 \quad 3 \quad 4 \\ \hline \\ L \longrightarrow L \\ \hline u \quad 1 \quad 0 \quad \\ 2 \quad 0.0477439 \quad \\ 3 \quad 0.0770413 \quad \\ 4 \quad 0.0938676 \quad \\ 5 \quad 0.100181 \\ \end{array}$$

$$\begin{array}{ccc} & & u \\ 1 & & 0 \\ 2 & & 0.0664385 \\ 3 & & 0.0899684 \\ 4 & & 0.106611 \\ 5 & & 0.112924 \end{array}$$

	u	\mathbf{v}
1	8.1821	-12.0004
2	0	0
3	0	0
4	0	0

8.6

	u	\mathbf{v}
1	0	0
2	0.155035	0.297951
3	0	0
4	0	0

8.7

	u	\mathbf{v}
1	0	0
2	0.154994	0.256663
3	0	0
4	0	0

8.8

Final
$$\beta$$
 = 0.444443 \Longrightarrow σ_C = {200., -0.000204798, 0., 0., 0., 0.} and F = -0.000102399

8.9 Programming Project

CHAPTER NINE

Geometric Nonlinearity

9.1

The second PK and Cauchy stress tensors

$$\begin{pmatrix}
119.082 & 0 \\
0 & -268.645
\end{pmatrix}$$

$$\begin{pmatrix}
24.7298 & 166.59 \\
166.59 & -167.631
\end{pmatrix}$$

9.2

The second PK and Cauchy stress tensors

Large strains

$$\begin{pmatrix} -46.5812 & 138.242 \\ 138.242 & 178.062 \end{pmatrix}$$
$$\begin{pmatrix} 111.676 & 232.978 \\ 232.978 & 228.165 \end{pmatrix}$$

Small strains. Displacement 1000 times less.

$$\begin{pmatrix} 0.0251358 & 0.227147 \\ 0.227147 & 0.252424 \end{pmatrix}$$

$$\begin{pmatrix} 0.0253574 & 0.227279 \\ 0.227279 & 0.252494 \end{pmatrix}$$

With the Kirchhoff material assumption and plane *stress* constitutive matrix we get the following stresses.

Large strains

```
\{41.0354,\ 410.354,\ 227.273\}
```

 $Small\ strains.\ Displacement\ 1000\ times\ less.$

```
\{0.0252683,\ 0.252683,\ 0.227273\}
```


9.5Maximum stress using beam model

vonMises stresses with a plane stress model

Buckling load (kN).

CHAPTER TEN

Contact Problems

10.1

 $\{\{v_2 \rightarrow -2.73965, \ \theta_2 \rightarrow -0.0273965, \ v_4 \rightarrow -0.739552, \ \theta_4 \rightarrow -0.00739552, \ F_n \rightarrow 1.05181\}\}$

$$\{\{\theta_1 \rightarrow -0.000870984, \ v_2 \rightarrow -3.75, \ \theta_2 \rightarrow -0.00107053, \ \theta_3 \rightarrow 0.00786584, \ F_n \rightarrow 15248.4\}\}$$

10.3

Square of distance between node 5 and the target surface is

$$(0.25 - 0.75 a)^2 + 0.25$$

At the minimum point

$$\{\{a \rightarrow 0.333333\}\}$$

The gap (signed distance) is

0.5

10.4

Square of distance between node 5 and the target surface is

$$1250. a^2 + (14.6447 a^2 + 20.)^2$$

At the minimum point

$$\{\{a \rightarrow 0.\}, \, \{a \rightarrow 0. - 2.06879 \, i\}, \, \{a \rightarrow 0. + 2.06879 \, i\}\}$$

The gap (signed distance) is

20.

10.5

Deformed shape

Von Mises Stresses

