Proyecto Final Día 2

```
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import seaborn as sns
```

Haz doble clic (o ingresa) para editar

1 df_prices = pd.read_csv('stocks_daily_prices-230525-093933.csv')
2 df_prices

$\overline{\Rightarrow}$		Date	AAPL	JPM	PG	UAL
	0	1/2/2008	5.949703	29.448614	47.058838	29.915234
	1	1/3/2008	5.952452	29.246094	47.058838	29.690800
	2	1/4/2008	5.498071	28.582682	46.870098	31.000002
	3	1/7/2008	5.424478	28.868999	47.175980	29.180000
	4	1/8/2008	5.229351	27.723747	47.299629	24.389999

	3637	6/13/2022	131.880005	115.989998	138.149994	37.020000
	3638	6/14/2022	132.759995	114.059998	133.839996	36.990002
	3639	6/15/2022	135.429993	115.410004	132.509995	37.889999
	3640	6/16/2022	130.059998	113.430000	133.320007	34.779999
	3641	6/17/2022	131.559998	113.029999	132.360001	36.279999

1 df_returns = pd.read_csv('stocks_daily_returns-230525-093933.csv')

3642 rows × 5 columns

\overline{z}		Date	AAPL	JPM	PG	UAL		
	0	1/2/2008	0.000000	0.000000	0.000000	0.000000		
	1	1/3/2008	0.046203	-0.687708	0.000000	-0.750233		
	2	1/4/2008	-7.633517	-2.268378	-0.401072	4.409454		
	3	1/7/2008	-1.338518	1.001718	0.652615	-5.870973		
	4	1/8/2008	-3.597157	-3.967066	0.262103	-16.415356		
	•••							
	3637	6/13/2022	-3.828484	-2.977838	-2.677001	-10.058308		
	3638	6/14/2022	0.667265	-1.663937	-3.119796	-0.081034		
	3639	6/15/2022	2.011147	1.183593	-0.993725	2.433084		
	3640	6/16/2022	-3.965145	-1.715625	0.611284	-8.207972		
	3641	6/17/2022	1.153314	-0.352642	-0.720077	4.312824		
	3642 rows × 5 columns							

```
1 df_prices['Date'] = pd.to_datetime(df_prices['Date'])
```

² df_returns

² df_returns['Date'] = pd.to_datetime(df_returns['Date'])

¹ df_prices.plot(x='Date', y=['AAPL','JPM','PG','UAL'], linewidth=3, figsize=(16,8))

² plt.ylabel('Price')

³ plt.title('Stock Prices')

⁴ plt.legend(loc = 'upper center')

⁵ plt.grid();


```
1 df_returns.plot(x='Date', y=['AAPL','JPM','PG','UAL'], subplots=True, grid=True, linewidth=3, figsize=(16,16))
2 plt.ylabel('Price')
3 plt.title('Stock Prices')
4 plt.legend(loc = 'upper center');
```



```
1 plt.figure(figsize=(20, 4))
 3 plt.subplot(1, 4, 1)
 4 plt.plot(df_returns['AAPL'], 'r--')
 5 plt.grid();
 7 plt.subplot(1, 4, 2)
 8 plt.plot(df_returns['JPM'], 'b.')
9 plt.grid();
10
11 plt.subplot(1, 4, 3)
12 plt.plot(df_returns['PG'], 'g--')
13 plt.grid();
14
15 plt.subplot(1, 4, 4)
16 plt.plot(df_returns['UAL'], 'y.')
17 plt.grid();
\overline{\pm}
```

```
1 X = df_returns['AAPL']
2 Y = df_returns['JPM']
3 plt.figure(figsize=(15,10))
4 plt.scatter(X, Y)
5 plt.grid();
```



```
1 plt.figure(figsize=(15,8))
2 sns.scatterplot(x='AAPL', y='JPM', data=df_returns)
3 plt.grid();
```



```
1 values = [10, 70, 10, 10]
2 colors = ['g', 'r', 'y', 'b']
3 explode = [0, 0.2, 0, 0]
4 labels = ['JP Morgan Chase (JPM)', 'APPLE (AAPL)', 'United Airlines (UAL)', 'P&G (PG)']
5
6 plt.figure(figsize=(10, 10))
7 plt.pie(values, colors=colors, labels=labels, explode=explode)
8 plt.title('Sport Portfolio')
9 plt.show();
```


Sport Portfolio


```
1 plt.figure(figsize=(20,15));
2
3 mu_UAL = round(df_returns['UAL'].mean(), 2)
4 sigma_UAL = round(df_returns['UAL'].std(), 2)
5
6 mu_PG = round(df_returns['PG'].mean(), 2)
7 sigma_PG = round(df_returns['PG'].std(), 2)
8
9 df_returns[['PG', 'UAL']].plot.hist(bins=60, alpha=0.7, figsize=(15,8))
10 plt.grid();
11 plt.ylabel('Probability');
12
13 plt.title(f'Histogram: P&G mu={mu_PG}, P&G sigma={sigma_PG}, United Airlines mu={mu_UAL}, United Airlines sigma={sigma_UAL}');
14 plt.show();
```


- 1 plt.figure(figsize=(12,10))
- 2 cm = df_returns.corr()
- 3 sns.heatmap(cm, annot=True);

