Attention Is All You Need

Lee Haesung Soynet Internship

NIPS'17

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain

lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

[†]Work performed while at Google Brain.

[‡]Work performed while at Google Research.

Overview

- Introduction (Motivation)
- Background (RNN, Attention)
- Model Architecture (Transformer)
- Self-Attention
- Training & Results
- Discussion

Introduction – Sequential Nature

Recurrent model (Recurrent Neural Network, RNN)

- Generate a sequence of hidden states h_t , as a function of the previous hidden state h_{t-1} and the input for position t
- Should wait h_{t-1} for h_t for sequence information
- precluding parallelization

- Modelling of dependencies without regard to their distance in the input or output sequences
 - Mostly used with RNN (not now)

Model architecture

- Eschewing recurrence
- Relying entirely on an attention mechanism to draw global dependencies between input and output.

Background – RNN

Sequence Modeling and Transduction Problems

- Language Modeling, Machine Translation
- Time Series Prediction

Recurrent Neural Network

- RNN (vanila)
- Long Short-Term Memory
- Gated Recurrent Unit

Background - Attention

RNN – Drawbacks

- Gradients Vanishing
- Lose of Information

Attention Mechanism

- Calculate current state with every previous states
- Find out important states for now

Background – Attention (Cont'd)

Query, Key, and Value

- Query($Result_{t-1}$)
- $Key(Probability_{(t-1),i} = SoftMax(Hidden_i * Result_{t-1}))$
- $Value(Probability_{(t-1),i} * Hidden_i)$

Model Architecture

- Encoder and Decoder Stacks
- Attention
- Position-wise Feed-Forward Networks
- Embeddings and Softmax

Encoder

- Six identical layers
- Each layer consists of self attention and position-wise fully connected feedforward network sublayers
 - Each sublayer got residual connection by itself
 - Layer batch normalization

Decoder

- Six identical layers
- Each layer consists of two sublayers as same as encoder and one additional sublayers
 - Perform attention mechanism with output from encoder
 - Modify existed attention layer to masked one

Multi-Head Attention

Multiple queries at once

Application

- Encoder
 - Query Certain position
 - Value Every positions except query
 - Key Same position with value
- Decoder
 - Query Certain position
 - Value Every positions except query
 - Key Same position with value
- Encoder-Decoder
 - Query Output of previous decoder layer
 - Value Output of encoder
 - Key Same position with value

Scaled Dot-Product Attention

- Convolution
- Self Attention
 - Computational Complexity
 - Parallelism
 - Path Length between Long-Range Dependencies
 - Length of the paths forward and backward signals have to traverse in the network matters

Dataset

WMT 2014 English-German dataset

Hardware

8 NVIDIA P100 GPUs

Optimizer

Adam