Homework #15 Key

1 Matrix multiplication

 $M_1: 20 \times 5, M_2: 5 \times 10, M_3: 10 \times 12, M_4: 12 \times 6, M_5: 6 \times 25$

The first thing we do is calculate the cost of multiplying any two adjacent matrices.

M_1M_2	M_1
M_2	$20 \cdot 5 \cdot 10 = 1000$
M_2M_3	M_2
M_3	$5 \cdot 10 \cdot 12 = 600$
M_3M_4	M_3
M_4	$10 \cdot 12 \cdot 6 = 720$
M_4M_5	M_4
M_5	$12 \cdot 6 \cdot 25 = 1800$

We now calculate the minimum cost of multiplying any three consecutive matrices. For example, to calculate the cost of $M_1 \times M_2 \times M_3$, we consider the cost of $M_1 \times (M_2 \times M_3)$ and $(M_1 \times M_2) \times M_3$. The total cost includes the cost of $M_2 \times M_3$ and $M_1 \times M_2$ respectively.

$M_1M_2M_3$	M_1		M_1M_2	
M_2M_3	$20 \cdot 5 \cdot 12 + 600 = 1800$			
M_3		20 ·	$10 \cdot 12 + 1000 = 3$	3400
$M_2M_3M_4$	M_2		M_2M_3	
M_3M_4	$5 \cdot 10 \cdot 6 + 720 = 1020$			
M_4		$5 \cdot 12$	$2 \cdot 6 + 600 = 960$	
$M_3M_4M_5$	M_3		M_3M_4	
M_4M_5	$10 \cdot 12 \cdot 25 + 1800 = 480$	0		
M_5		10	$0 \cdot 6 \cdot 25 + 720 = 2$	2220

We do the same thing for any four consecutive matrices, referring to the tables above as necessary. When determining how much to add from a table above, we choose the minimum. In this example, to obtain $M_1M_2M_3M_4$, it is cheapest to calculate $M_2M_3M_4$ and then multiply M_1 by that result.

$M_1M_2M_3M_4$	M_1	M_1M_2	$M_1M_2M_3$
$M_2M_3M_4$	$20 \cdot 5 \cdot 6 + 960 = 1560$		
M_3M_4		$20 \cdot 10 \cdot 6 + 1000 + 720 = 2920$	
M_4			$20 \cdot 12 \cdot 6 + 1800 = 3240$
$M_2M_3M_4M_5$	M_2	M_2M_3	$M_2 M_3 M_4$
$M_3M_4M_5$	$5 \cdot 10 \cdot 25 + 2220 = 3470$	0	
M_4M_5		$5 \cdot 12 \cdot 25 + 600 + 1800 = 3900$)
M_5			$5 \cdot 6 \cdot 25 + 960 = 1710$

Finally, we can calculate the minimum cost to find the product of all the matrices.

$M_1M_2M_3M_4M_5$	M_1	M_1M_2	$M_1 M_2 M_3$	$M_1M_2M_3M_4$
$M_2M_3M_4M_5$	$20 \cdot 5 \cdot 25$			
	+1710 = 4210			
$M_3M_4M_5$		$20 \cdot 10 \cdot 25$		
		+1000 + 2220 = 8220		
M_4M_5			$20 \cdot 12 \cdot 25$	
			+1800 + 1800 = 9600	
M_5				$20 \cdot 6 \cdot 25$
				+1560 = 4560

2 All paths

The Initial table of 1-hop distances from the graph, Table(i, j, 0). We only need to consider the upper triangle, because the graph is undirected, so distances are symmetric.

Table(i, j, 1), being the shortest distances considering hopping through vertex a:

	a	b	\mathbf{c}	d	e
a	0	3	5	-	9
a b		0	8	-	12
\mathbf{c}			0	2	4
d				0	1
e					0

Table(i, j, 2), being the shortest distances considering hopping through vertex b:

	a	b	\mathbf{c}	d	e
a	0	3	5	-	9
a b		0	8	-	12
\mathbf{c}			0	2	4
$_{ m d}^{ m c}$				0	1
e					0

Table(i, j, 3), being the shortest distances considering hopping through vertex c:

	a	b	\mathbf{c}	d	e
a	0	3	5	7	9
a b		0	8	10	12
$^{\mathrm{c}}$			0	2	4
d				0	1
e					0

Table(i, j, 4), being the shortest distances considering hopping through vertex d:

	a	b	\mathbf{c}	d	e
a	0	3	5	7	8
a b		0	8	10	11
c			0	2	3
d				0	1
e					0

Table(i, j, 5), being the shortest distances considering hopping through vertex e:

	a	b	\mathbf{c}	d	e
a	0	3	5	7	8
a b		0	8	10	11
\mathbf{c}			0	2	3
d				0	1
e					0