

Combinational Logic Gates

宋美 shuangsonghz@zju.edu.cn

Syllabus

课数	角客	课数	肉客
1	导论	9	差分放大器
2	器件模型	10	运算放大器
3	电客特性, 小信号模型	11	导线
4	工艺流程	12	反相器
5	模拟基本单元	13	反相器
6	电流镜与基准	14	组合逻辑
7	单级放大器	15	集成电路专题讲座一
8	课堂测验	16	集成电路专题讲座二

Goals

- In-depth discussion of logic families in CMOS
 - Static and Dynamic
 - Non-retioed and ratioed logic
 - Pass-transistor
- Optimizing a logic gate for area, speed, energy, or robustness

Combinational vs. Sequential Logic

Combinational

Sequential

Output=f(ln)

组合逻辑:输出只与

当前状态有关

Output=f(In, Previous In)

时序逻辑:输出与当前状态及上一时钟周期状态有关

Combinational logic expressions

- □ Combinational logic: function value is a combination of **function arguments**. (布尔函数)
- A logic gate implements a particular logic function.
- Both specification (logic equations) and implementation (logic gate networks) are written in Boolean logic.

Why designing gates for logic functions is non-trivial:

- may not have logic gates in the library for all logic expressions;
- a logic expression may map into gates that consume a lot of area, delay, or power.

CMOS Circuit Styles

Static CMOS

output connected to either VDD or GND via a low-resistance path

- high noise margins
- low output impedance, high input impedance
- no steady state path between VDD and GND
- delay a function of load capacitance and transistor resistance

Dynamic CMOS

relies on temporary storage of signal values on the capacitance of **high-impedance** circuit nodes

- simpler, faster gates
- increased sensitivity to noise

Outline

- Static CMOS Design
 - Complementary CMOS
 - Ratioed Logic
 - Pass-Transistor Logic
- Dynamic CMOS Design

Static Complementary CMOS

- Complementary: complementary Pull-up Network (PUN, P-type) vs. Pull-down Network (PDN, N-type)
- Static: do not rely on stored charge
- Simple, effective, reliable; hence ubiquitous

PUN and PDN are dual logic networks

Threshold Drops

A. Why PMOS in PUN and NMOS in PDN?

PUN

PDN

NMOS/PMOS in Series/Parallel Connection

- B. Transistors can be thought as a switch controlled by its gate signal
 - □ NMOS switch closes when switch control input is high

☐ PMOS switch closes when switch control input is low

Construction of PDN

- NMOS devices in series implement a NAND function
- □ NMOS devices in parallel implement a NOR function

Dual PUN and PDN

- C. PUN and PDN are dual networks 对偶网络
 - De Morgan's theorems

$$A + B = A \cdot B$$
 [!(A + B) = !A \cdot !B or !(A | B) = !A \cdot !B]
 $A \cdot B = A + B$ [!(A \cdot B) = !A + !B or !(A \cdot B) = !A | !B]

- a parallel connection of transistors in the PUN corresponds to a series connection of the PDN
- D. Complementary gate is naturally inverting (NAND, NOR) {NAND, NOR} is a complete sets; {AND, OR} is not complete.

$$AND = NAND + INV$$

E. Number of transistors for N-input logic gate: 2N

Dual PUN and PDN: Example

CMOS NAND

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

CMOS NOR

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

Dual PUN and PDN: Example

□ Complex CMOS Gate

Dual PUN and PDN: Example

CMOS Gate Layout

What logic function is this?

VTC: Data-Dependent

 \square V_{TH} of M_2 is higher than M_1 : the body effect (γ)

$$V_{\text{Tn1}} = V_{\text{Tn0}}$$
 $V_{\text{Tn2}} = V_{\text{Tn0}} + \gamma(\sqrt{(|2\phi_{\text{F}}| + V_{\text{int}})} - \sqrt{|2\phi_{\text{F}}|})$

The noise margins are input-pattern dependent.

Switch Delay Model

Propagation Delay: Input Patterns

- Delay is dependent on the input patterns
- Input: high to low transition
 - both inputs go low: $0.69 R_p/2 C_L$
 - one input goes low: 0.69 R_p C_L
- Input: low to high transition
 - both inputs go high: 0.69 2R_n C_L
 Adding devices in series: slow down
 Wider device: avoid a performance penalty

A gate with multi-in's: the combination of input that triggers the worst-case conditions (resistance in series)

Delay Dependence on Input Patterns

Input Data Pattern	Delay (psec)
A=B=0→1	69
A=1, B=0→1	62
A= 0→1, B=1	50
A=B=1→0	35
A=1, B=1→0	76
A= 1→0, B=1	57

time [ps]

Inverter: NMOS = 0.5μ m/ 0.25μ m

 $PMOS = 1.5 \mu m/0.25 \ \mu m$

NMOS = $1.0 \mu m/0.25 \mu m$

 $PMOS = 1.5 \mu m / 0.25 \mu m$

Transistor sizing

Fan-In Considerations

t_p as a Function of Fan-In

NOTE!: Gates with a fan-in greater than 4 should be avoided.

Outline

- Static CMOS Design
 - Complementary CMOS
 - Ratioed Logic
 - Pass-Transistor Logic
- Dynamic CMOS Design

Ratioed Logic

Goal: to reduce the number of devices over complementary CMOS

- \square 2N -> N+1
- □ $V_{OH} = VDD$, $V_{OL} \neq 0$ $noise margin \downarrow$, static power \uparrow
- Tadeoff: the size of the load relative to the PDN vs. NM, delay, power
- □ Ratioed Logic
- □ Pseudo-nMOS

Pseudo-NMOS: 2-input NOR

Uses a p-type as a resistive pullup, n-type network for PDN.

- Consumes static **power**.
- Much smaller PUN network than static gate.
- Pull-up time is longer.
- Wiring is simple.

- □ For logic 0 output, PUN and PDN form a voltage divider.
 Must choose N/P transistor sizes to create R_{eq} of the required ratio.
- ☐ Effective resistance of PDN must be computed in worst case: series n-types means larger transistors.

Transistor ratio calculation

In steady state logic 0 output:

PUN: saturation region $V_{ds} > V_{gs} - V_t$; PDN: linear region $V_{ds} < V_{gs} - V_t$. PUN and PDN: $I_{dp} = I_{dn}$.

Equate two currents while generate V_{OL}:

$$I_{dp} = 1/2k_{p}'(W_{p}/L_{p})(V_{DD}-V_{t})^{2};$$

$$I_{dn} = 1/2k_{n}'(W_{n}/L_{n})[2(V_{DD}-V_{t})V_{OL}-V_{OL}^{2}];$$

$$V_{OL} = (V_{DD}-V_{t})(1-\sqrt{1-\frac{k_{p}'(W_{p}/L_{p})}{k_{n}'(W_{n}/L_{n})}})$$

 V_{OL} is $0.2V_{DD}$, V_t , k_p ' and k_n ' is dependent on technology.

Using 0.18 um parameters, VDD=1.8V, V_t ≈0.4~0.5V, k_p'/k_n' ≈0.18

$$=> W_p/L_p=2.5W_n/L_n$$
 (or $L_p/W_p=0.4L_n/W_n$)

since equivalent resistance of MOS transistor $R_t=(L/W)R_{N,P}$, $R_N=0.2R_P$,

=> equivalent
$$R_{tp}=R_P$$
 (Lp/Wp)= 5 R_N 0.4 L_n /W $_n$ =2 R_{tn} , τ = R_tC_L ,

=> Pullup time is 2 times longer than pulldown for pseudo-NMOS.

Pseudo-NMOS VTC

Pseudo-NMOS: 4-input NOR and NAND

☐ Small area: 2N -> N+1

 $V_{OH} = V_{DD}$ (similar to complementary CMOS)

NOR

XOR gates

Can be implemented with different gates

Improved Loads - DCVSL

Differential Cascode Voltage Switch Logic (DCVSL)

-- Differential Output

Differential logic +Positive feedback PDN1 and PDN2: 1) NMOS 2)exclusive

DCVSL Transient Response: AND/NAND

■ AND/NAND gate in DCVSL

NOTE:

- As Out is pulled down to VDD-|VTp|, |Out| starts to charge up to VDD quickly.
- ☐ The delay from the input to *Out* is 197 psec and to ! *Out* is 321 psec.

Outline

- Static CMOS Design
 - Complementary CMOS
 - Ratioed Logic
 - Pass-Transistor Logic
- Dynamic CMOS Design

Pass-Transistor (PT) Logic

- Gate is static a low-impedance path exists to both supply rails under all circumstances
- N transistors instead of 2N
- No static power consumption
- Ratioless

Pass-Transisitor AND Gate: VTC

- Be data-dependent
- Pure PT logic is not regenerative the signal gradually degrades after passing through a number of PTs (can fix with static CMOS inverter insertion)

Differential PT Logic (CPL/DPL)

Four-input NAND in CPL

Transmission Gate: Example

Transmission gate: Multiplexer

$$\overline{F} = (A \cdot S + B \cdot \overline{S})$$

Delay in Transmission Gate Networks

Delay of RC Chain $t_p(V_n) = 0.69 \sum_{k=0}^{n} CR_{eq}k = 0.69 CR_{eq} \frac{n(n+1)}{2}$

The propagation delay is proportional to n^2 and increased rapidly with the switches in the chain.

 Delay optimization: break the chain and insert buffers every m switches

TG Networks : Delay Optimization

Delay of Buffered Chain

$$t_{p} = 0.69 \left[\frac{n}{m} CR_{eq} \frac{m(m+1)}{2} \right] + \left(\frac{n}{m} - 1 \right) t_{buf}$$

$$= 0.69 \left[CR_{eq} \frac{n(m+1)}{2} \right] + \left(\frac{n}{m} - 1 \right) t_{buf} \implies m_{opt} = 1.7 \sqrt{\frac{t_{pbuf}}{CR_{eq}}} \qquad m=3 \text{ or } 4$$

The number of switches per segment grows with increasing values of t_{buf} .

Outline

- Static CMOS Design
- Dynamic CMOS Design
 - Dynamic Logic: Basic Principles
 - Speed and Power Dissipation of Dynamic Logic
 - Cascading Dynamic Gates

Dynamic CMOS

- In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - Complementary: fan-in of N requires 2N devices
 - Pseudo-NMOS: fan-in of N requires N+1 devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires only N+2 transistors
 - takes a sequence: precharge phase, conditional evaluation phases

Dynamic Gate

Two phase operation:

- -- Precharge (CLK = 0)
- -- **Evaluate** (CLK = 1)

$$Out = \overline{CLK} + \overline{(AB+C)} \cdot CLK$$

Conditions on Output

- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C₁

Properties of Dynamic Gates

- Logic function is implemented by the PDN only
 - transistors number: N+2 (vs. static complementary CMOS: 2N)
 - be smaller in area
- \square Full swing outputs: V_{OL} =GND, V_{OH} = V_{DD}
- Nonratioed sizing of PMOS is not important for proper functioning (only for performance)
- □ Faster switching speeds (charge leakage)
- Power dissipation should be better
 - only dynamic power no short circuit power consumption since the pull-up path is not on when evaluating
 - lower C_L- C_{int} (fewer transistors connected to the drain output)
 - C_{ext} (output load is one per connected gate, not two)
 - by construction can have at most one transition per cycle no glitching
- Needs a precharge clock

Dynamic Behavior

Power Consumption

Power only dissipated when previous Out = 0

Issues in Dynamic Design: Charge Leakage

Minimum clock rate of a few kHz CLK Precharge Evaluate V_{out} 3.02.0 Noltage, V 1.0

Output settles to an intermediate voltage determined by a resistive divider of the pull-up and pull-down networks (Once the output drops below V_M of the fan-out logic gate, the output is interpreted as a low voltage)

0.0

10

20

time, ms

40

CLK

30

Cascading Dynamic Gates

Only a single $0 \rightarrow 1$ transition allowed at the inputs during the evaluation period!

Domino Logic

- Only non-inverting logic can be implemented
- □ Very high speed
 - □ static inverter can be skewed, only L-H transition
 - ☐ Input capacitance reduced smaller logical effort

Designing with Domino Logic

Footless Domino

- ☐ The first gate in the chain needs a foot switch Precharge is rippling — short-circuit current
- A solution is to delay the clock for each stage

Properties of Domino Gates

- Logic function is implemented by the PDN only requires N + 2 transistors (vs. static complementary CMOS: 2N)
- Be smaller in area (vs. static complementary CMOS)
- ☐ Full swing outputs $(V_{OL} = GND \text{ and } V_{OH} = VDD)$
- Faster switching speeds:
 - C_{int} reduced (fewer transistors connected to the drain output)
 - C_{ext} (output load is one per connected gate, not two)
- Inverter is required
- Needs a precharge clock.

Summary

- Static **complementary static CMOS logic** combines dual PDN and PUN networks. The performance of a CMOS gate is a strong function of the fan-in, and also is a function of the fan-out.
- ☐ The ratioed logic style consists of an active pull-down network connected to a load device.
- Pass-transistor logic implements a logic gate as a simple switch network.
- Dynamic logic: a two-phase scheme consisting of a pre-charge followed by an evaluation step.
- Current trend is towards an increased use of complementary static CMOS logic: design support through EDA tools, robust, more amenable to voltage scaling.

集成电路原理与设计11.逻辑门

宋美 shuangsonghz@zju.edu.cn