Математические основы искусственного интеллекта Системы случайных величин - II

Солодушкин Святослав Игоревич

Кафедра вычислительной математики и компьютерных наук, УрФУ имени первого Президента России Б.Н. Ельцина

Ноябрь 2021

Системы случайных величин

Пусть случайные величины ξ_1, \ldots, ξ_n заданы на одном вероятностном пространстве $\langle \Omega, \mathcal{F}, \mathsf{P} \rangle$.

Определение

Функция $F_{\xi_1,...,\xi_n}(x_1,...,x_n) = P(\xi_1 < x_1,...,\xi_n < x_n)$ называется функцией распределения вектора $(\xi_1,...,\xi_n)$ или функцией совместного распределения случайных величин $\xi_1,...,\xi_n$.

Опрпеделение

Случайные величины ξ_1,ξ_2 имеют абсолютно непрерывное совместное распределение, если существует неотрицательная функция $f_{\xi_1,\xi_2}(x,y)$ такая, что для любого множества $B\in\mathfrak{B}(\mathbb{R}^2)$ имеет место равенство

$$P((\xi_1, \, \xi_2) \in B) = \int \int_B f_{\xi_1, \, \xi_2}(x, \, y) \, dx \, dy.$$

Если случайные величины ξ_1, ξ_2 имеют абсолютно непрерывное совместное распределение, то для любых x_1, x_2 имеет место равенство

$$F_{\xi_1,\,\xi_2}(x_1,\,x_2) = \mathsf{P}(\xi_1 < x_1,\,\xi_2 < x_2) = \int\limits_{-\infty}^{x_1} \left(\int\limits_{-\infty}^{x_2} f_{\xi_1,\,\xi_2}(x,\,y) \; dy \right) dx.$$

Если совместное распределение абсолютно непрерывно, то по функции совместного распределения его плотность находится как смешанная частная производная:

$$f_{\xi_1,\,\xi_2}(x,\,y) = \frac{\partial^2}{\partial x \partial y} F_{\xi_1,\,\xi_2}(x,\,y).$$

Если случайные величины ξ_1 и ξ_2 имеют абсолютно непрерывное совместное распределение с плотностью $f_{\xi_1,\xi_2}(x,y)$, то ξ_1 и ξ_2 в отдельности также имеют абсолютно непрерывное распределение с плотностями:

$$f_{\xi_1}(x) = \int\limits_{-\infty}^{\infty} f_{\xi_1,\xi_2}(x, y) \, dy; \quad f_{\xi_2}(y) = \int\limits_{-\infty}^{\infty} f_{\xi_1,\xi_2}(x, y) \, dx.$$

Для n>2 плотности случайных величин ξ_1,\ldots,ξ_n по плотности их совместного распределения $f_{\xi_1,\ldots,\xi_n}(x_1,\ldots,x_n)$ находятся интегрированием функции f по всем «лишним» координатам.

Независимость случайных величин

Определение

Случайные величины ξ_1, \ldots, ξ_n независимы (в совокупности), если для любых x_1, \ldots, x_n имеет место равенство

$$F_{\xi_1,...,\xi_n}(x_1,...,x_n) = F_{\xi_1}(x_1) \cdot ... \cdot F_{\xi_n}(x_n).$$

Условные законы распределения

Условная вероятность события B, если событие A наступило, вычисляется так:

$$P(B|A) = \frac{P(A|B)}{P(A)}.$$

Рассмотрим двумерную дискретную случайную величину (ξ,η) .

$\xi \mid \eta$	<i>y</i> ₁	<i>y</i> ₂	 Уm
<i>x</i> ₁	p_{11}	p_{12}	 p_{1m}
<i>x</i> ₂	<i>p</i> ₂₁	<i>p</i> ₂₂	 p_{2m}
Xn	p_{n1}	p_{n2}	 p _{nm}

Допустим, что в результате испытания величина η приняла значение y_1 ; при этим ξ принимает одно из значений: x_1, x_2, \ldots, x_n . Обозначим условную вероятность того, что ξ примет значение x_1 (при условии, что $\eta = y_1$) через $p(x_1|y_1)$.

Условные законы распределения

Условная вероятность того, что ξ примет значение x_i (при условии, что $\eta=y_1$)

$$p(x_i|y_1) = \frac{p(x_i,y_1)}{p(y_1)}.$$

В общем случае условная вероятность того, что ξ примет значение x_i (при условии, что $\eta = y_i$)

$$p(x_i|y_j) = \frac{p(x_i,y_j)}{p(y_i)}.$$

Условные законы распределения. Пример

Дано распределение дискретной случайной величины (ξ,η)

$\xi \mid \eta$	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃
<i>x</i> ₁	0.20	0.30	0.10
<i>x</i> ₂	0.05	0.20	0.15

Найдем условное распределение η при условии, что $\xi=x_1$.

$$\frac{\eta}{P}$$
 при $\xi = x_1$ | y_1 | y_2 | y_3 | y_4 | y_5 | y_6 | y

Найдем условное распределение ξ при условии, что $\eta = \mathit{y}_1,$ а также ξ при условии, что $\eta = y_3$.

$$\xi$$
 при $\eta = y_3$ | x_1 | x_2 | P | 0.4 | 0.6

Условные законы распределения непрерывных случайных величин

Пусть (ξ,η) —непрерывная двумерная случайная величина. Условной плотностью $f_\xi(x|\eta=y)$ распределения составляющей ξ при условии $\eta=y$ называется функция

$$f_{\xi}(x|\eta=y)=\frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)}.$$

Если задана плотность $f_{\xi,\eta}(x,y)$ то условные плотности составляющих можно найти по формулам

$$f_{\xi}(x|\eta=y) = \frac{f_{\xi,\eta}(x,y)}{\int\limits_{-\infty}^{+\infty} f_{\xi,\eta}(x,y) dx}, \qquad f_{\eta}(y|\xi=x) = \frac{f_{\xi,\eta}(x,y)}{\int\limits_{-\infty}^{+\infty} f_{\xi,\eta}(x,y) dy}.$$

Условное математическое ожидание

Условное математическое ожидание случайной величины η при условии, что $\xi=x,$

$$E(\eta|\xi=x)=\int_{-\infty}^{+\infty}y\,f_{\eta}(y|\xi=x)\,dy.$$

Условное математическое ожидание $E(\eta|\xi=x)$ — функция от x. Эту функцию называют *функцией регрессии*.

Математическое ожидание произведения

Теорема

Если ξ и η независимы и их математические ожидания существуют, то $\mathsf{E}(\xi\eta) = \mathsf{E}\,\xi\,\mathsf{E}\,\eta$.

Доказательство. В дискретном случае

$$E(\xi \eta) = \sum_{k,n} (x_k y_n) P(\xi = x_k, \eta = y_n) =$$

$$= \sum_{k} x_k P(\xi = x_k) \sum_{n} y_n P(\eta = y_n) = E \xi E \eta.$$

Мат. ожидание функции от случайной величины

Человек идет 1 км на работу пешком с постоянной скоростью. Его скорость зависит от настроения и описывается случайной величиной ξ :

Найти мат. ожидание скорости. Сколько в среднем минут он потратит на дорогу?

$$\mathsf{E}\,\xi = rac{1}{4}\,(1+2+4+5) = 3$$
 км/ч.

В 1 часе — 60 минут.

Найдем время в пути: 1 км / 3 км/ч * 60 мин = 20 мин.

Мат. ожидание функции от случайной величины

Решение, представленное на предыдущем слайде, неверное!

$$\mathsf{E} f(\xi) \neq f(\mathsf{E} \xi).$$

Мат. ожидание от функции не равно функция от мат. ожидания.

ξ , км/ч	1	2	4	5
$1/\xi$, ч	1	0.5	0.25	0.2
Р	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

E
$$\left(\frac{1}{\xi}\right) = \frac{1}{4} \left(1 + 0.5 + 0.25 + 0.2\right) = 39/20 \text{ ч.}$$

Это 29 минут 15 секунд.

Задачи формальные

• Найти вероятность попадания случайной точки (ξ,η) в прямоугольник $[\pi/6,\,\pi/2] \times [\pi/4,\,\pi/3],$ если известна функция распределения

$$F_{\xi,\eta}(x,y) = \sin x \sin y, \quad (x,y) \in [0, \pi/2] \times [0, \pi/2].$$

В условии задачи функция $F_{\xi,\eta}(x,y)$ задана не на всем множестве. А как надо формально продлить ее на \mathbb{R}^2 ? Найти плотность распределения $f_{\xi,\eta}(x,y)$.

Задачи формальные

 Плотность распределения двумерной случайной величины задана следующим образом

$$f_{\xi,\eta}(x,y) = egin{cases} C\cos x\cos y, & ext{ если } (x,y) \in \left[-rac{\pi}{2},rac{\pi}{2}
ight] imes \left[-rac{\pi}{2},rac{\pi}{2}
ight], \ 0, & ext{ иначе }. \end{cases}$$

Найти напамерт C, вероятность попадания в прямоугольник $\left[0,\frac{\pi}{6}\right] \times \left[0,\frac{\pi}{3}\right]$, функцию распределения $F_{\xi,\eta}(x,y)$. Найти плотности распределений $f_{\xi}(x)$ и $f_{\eta}(y)$.

Задачи формальные

 Плотность распределения двумерной случайной величины задана следующим образом

$$f_{\xi,\eta}(x,y) = egin{cases} C, & ext{если } 2\,x+y \leq 4, \ 0 \leq x \leq 3, \ 0 \leq y. \ 0, & ext{иначе} \ . \end{cases}$$

Найти параметр C.

Найти условное распределение $f_{\xi}(x|\eta=y)$, найти математическое условное ожидание $E(x|\eta=y)$.

Содержательная задача про слепого Пью

Как-то раз слепому Пью показалось, что он окружен солдатами. Прижавшись к стене, он стал стрелять во все стороны, равномерно выбирая угол от 90° влево до 90° вправо. Напротив Пью стоял забор, в который и попадали пули.

Каково распределение пуль, попавших в доски забора? Сколько пуль в среднем попало в доску прямо напротив Пью? Сколько в доску в 10 ярдах справа от нее? Каково среднее этого распределения?

Распределение Коши

Случайная величина ξ имеет распределение Коши, если плотность распределения $f_{\xi}(x)$ имеющет вид

$$f_X(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]} = \frac{1}{\pi} \left[\frac{\gamma}{(x-x_0)^2 + \gamma^2}\right],$$

где

 $x_0 \in \mathbb{R}$ — параметр сдвига;

 $\gamma>0$ — параметр масштаба.

Если $x_0=0$ и $\gamma=1$, то такое распределение называется стандартным распределением Коши:

$$f_X(x) = \frac{1}{\pi} \frac{1}{x^2 + 1}.$$

График плотности распределения Коши

