

Exercice 1 4 points

Commun à tous les candidats

Lors d'un examen professionnel, chaque candidat doit présenter un dossier de type A ou un dossier de type B; 60 % des candidats présentent un dossier de type A, les autres présentant un dossier de type B.

Le jury attribue à chaque dossier une note comprise entre 0 et 20. Un candidat est reçu si la note attribuée à son dossier est supérieure ou égale à 10.

On choisit au hasard un dossier.

On admet qu'on peut modéliser la note attribuée à un dossier de type A par une variable aléatoire *X* suivant la loi normale d'espérance 11,3 et d'écart-type 3, et la note attribuée à un dossier de type B par une variable aléatoire *Y* suivant la loi normale d'espérance 12,4 et d'écart type 4,7.

On pourra noter A l'évènement : « le dossier est un dossier de type A », B l'évènement : « le dossier est un dossier de type B », et R l'évènement : « le dossier est celui d'un candidat reçu à l'examen ». Les probabilités seront arrondies au centième.

- 1. Le dossier choisi est de type A. Quelle est la probabilité que ce dossier soit celui d'un candidat reçu à l'examen? On admet que la probabilité que le dossier choisi, sachant qu'il est de type B, soit celui d'un candidat reçu est égale à 0,70.
- **2.** Montrer que la probabilité, arrondie au centième, que le dossier choisi soit celui d'un candidat reçu à l'examen est égale à 0,68.
- **3.** Le jury examine 500 dossiers choisis aléatoirement parmi les dossiers de type B. Parmi ces dossiers, 368 sont ceux de candidats reçus à l'examen.
 - Un membre du jury affirme que cet échantillon n'est pas représentatif. Il justifie son affirmation en expliquant que dans cet échantillon, la proportion de candidats reçus est trop grande.
 - Quel argument peut-on avancer pour confirmer ou contester ses propos?
- **4.** Le jury décerne un « prix du jury » aux dossiers ayant obtenu une note supérieure ou égale à N, où N est un nombre entier. La probabilité qu'un dossier choisi au hasard obtienne le « prix du jury » est comprise entre 0,10 et 0,15.

Déterminer le nombre entier N.

Exercice 2 6 points

Commun à tous les candidats

On donne ci-dessous la représentation graphique \mathcal{C}_g dans un repère orthogonal d'une fonction g définie et continue sur \mathbb{R} . La courbe \mathcal{C}_g est symétrique par rapport à l'axe des ordonnées et se situe dans le demi-plan y>0.

Pour tout $t \in \mathbb{R}$ on pose :

$$G(t) = \int_0^t g(u) \, \mathrm{d}u.$$

Partie A

Les justifications des réponses aux questions suivantes pourront s'appuyer sur des considérations graphiques.

- **1.** La fonction *G* est-elle croissante sur $[0; +\infty[?]$ Justifier.
- **2.** Justifier graphiquement l'inégalité $G(1) \leq 0,9$.
- **3.** La fonction G est-elle positive sur \mathbb{R} ? Justifier.

Dans la suite du problème, la fonction gest définie sur \mathbb{R} par $g(u) = e^{-u^2}$.

Partie B

- 1. Étude de g
 - a. Déterminer les limites de la fonction g aux bornes de son ensemble de définition.
 - **b.** Calculer la fonction dérivée de g et en déduire le tableau de variations de g sur \mathbb{R} .
 - **c.** Préciser le maximum de g sur \mathbb{R} . En déduire que $g(1) \leq 1$.
- **2.** On note E l'ensemble des points M situés entre la courbe \mathscr{C}_g , l'axe des abscisses et les droites d'équation x = 0 et x = 1. On appelle I l'aire de cet ensemble. On rappelle que :

$$I = G(1) = \int_0^1 g(u) du.$$

On souhaite estimer l'aire I par la méthode dite « de Monte-Carlo » décrite ci-dessous.

• On choisit un point M(x; y) en tirant au hasard de façon indépendante ses coordonnées x et y selon la loi uniforme sur l'intervalle [0; 1]. On admet que la probabilité que le point M appartienne à l'ensemble E est égale à I.

- On répète *n* fois l'expérience du choix d'un point *M* au hasard. On compte le nombre *c* de points appartenant à l'ensemble *E* parmi les *n* points obtenus.
- La fréquence $f = \frac{c}{n}$ est une estimation de la valeur de I.
- **a.** La figure ci-dessous illustre la méthode présentée pour n = 100. Déterminer la valeur de f correspondant à ce graphique.

- **b.** L'exécution de l'algorithme ci-dessous utilise la méthode de Monte-Carlo décrite précédemment pour déterminer une valeur du nombre f. Recopier et compléter cet algorithme.
 - f, x et y sont des nombres réels, n, c et i sont des entiers naturels. ALEA est une fonction qui génère aléatoirement un nombre compris entre 0 et 1.

$$c \leftarrow 0$$
Pour i variant de 1 à n faire:
$$x \leftarrow \text{ALEA}$$

$$y \leftarrow \text{ALEA}$$
Si $y \leqslant \dots$ alors
$$c \leftarrow \dots$$
fin Si
fin Pour
$$f \leftarrow \dots$$

c. Une exécution de l'algorithme pour $n=1\,000$ donne f=0,757. En déduire un intervalle de confiance, au niveau de confiance de 95 %, de la valeur exacte de I.

Partie C

On rappelle que la fonction g est définie sur \mathbb{R} par $g(u) = e^{-u^2}$ et que la fonction G est définie sur \mathbb{R} par :

$$G(t) = \int_0^t g(u) \, \mathrm{d}u.$$

On se propose de déterminer une majoration de G(t) pour $t \ge 1$.

1. Un résultat préliminaire.

On admet que, pour tout réel $u \ge 1$, on a $g(u) \le \frac{1}{u^2}$.

En déduire que, pour tout réel $t \ge 1$, on a :

$$\int_1^t g(u) \, \mathrm{d} u \leqslant 1 - \frac{1}{t}.$$

2. Montrer que, pour tout réel $t \ge 1$,

$$G(t) \leqslant 2 - \frac{1}{t}$$
.

Que peut-on dire de la limite éventuelle de G(t) lorsque t tend vers $+\infty$?

Exercice 3 5 points

Commun à tous les candidats

Préciser si chacune des affirmations suivantes est vraie ou fausse en justifiant votre réponse.

- 1. Soit m un nombre réel et soit l'équation (E): $2z^2 + (m-5)z + m = 0$.
 - a. Affirmation 1:

« Pour m = 4, l'équation (E) admet deux solutions réelles. »

b. Affirmation 2:

« Il n'existe qu'une seule valeur de m telle que (E) admette deux solutions complexes qui soient des imaginaires purs. »

2. Dans le plan complexe, on considère l'ensemble *S* des points *M* d'affixe *z* vérifiant :

$$|z-6| = |z+5i|$$
.

Affirmation 3:

«L'ensemble S est un cercle.»

3. On munit l'espace d'un repère orthonormé $(0; \vec{t}, \vec{j}, \vec{k})$. On note d la droite dont une représentation paramétrique est :

$$d: \left\{ \begin{array}{rcl} x & = & -1+t \\ y & = & 2-t & t \in \mathbb{R}. \\ z & = & 3+t \end{array} \right.$$

On note d' la droite passant par le point B(4; 4; -6) et de vecteur directeur \overrightarrow{v} (5; 2; -9).

Affirmation 4:

- « Les droites d et d' sont coplanaires. »
- 4. On considère le cube ABCDEFGH représenté ci-dessous.

5 points

Affirmation 5:

«Le vecteur \overrightarrow{DE} est un vecteur normal au plan (ABG).»

Exercice 4 Pour les candidats n'ayant pas suivi l'enseignement de spécialité

Soit f la fonction définie sur l'intervalle [0; 4] par

$$f(x) = \frac{2+3x}{4+x}.$$

Partie A

On considère la suite (u_n) définie par :

 $u_0 = 3$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$.

On admet que cette suite est bien définie.

- **1.** Calculer u_1 .
- **2.** Montrer que la fonction f est croissante sur l'intervalle [0; 4].
- **3.** Montrer que pour tout entier naturel n,

$$1 \leqslant u_{n+1} \leqslant u_n \leqslant 3$$
.

- **4. a.** Montrer que la suite (u_n) est convergente.
 - **b.** On appelle ℓ la limite de la suite (u_n) ; montrer l'égalité :

$$\ell = \frac{2+3\ell}{4+\ell}$$

.

c. Déterminer la valeur de la limite ℓ .

Partie B

On considère la suite (v_n) définie par :

 $v_0 = 0$, 1 et pour tout entier naturel n, $v_{n+1} = f(v_n)$.

1. On donne en **Annexe, à rendre avec la copie**, la courbe représentative, \mathscr{C}_f , de la fonction f et la droite D d'équation y = x.

Placer sur l'axe des abscisses par construction géométrique les termes v_1 , v_2 et v_3 sur l'annexe, à rendre avec la copie.

Quelle conjecture peut-on formuler sur le sens de variation et le comportement de la suite (v_n) quand n tend vers l'infini?

2. a. Montrer que pour tout entier naturel n,

$$1 - \nu_{n+1} = \left(\frac{2}{4 + \nu_n}\right) (1 - \nu_n).$$

b. Montrer par récurrence que pour tout entier naturel *n*,

$$0 \leqslant 1 - \nu_n \leqslant \left(\frac{1}{2}\right)^n.$$

3. La suite (v_n) converge-t-elle? Si oui, préciser sa limite.

Exercice 4
Pour les candidats ayant suivi l'enseignement de spécialité

Les deux parties sont indépendantes.

Partie A

Un laboratoire étudie l'évolution d'une population d'insectes parasites de plantes.

Cette évolution comporte deux stades : un stade larvaire et un stade adulte qui est le seul au cours duquel les insectes peuvent se reproduire.

L'observation de l'évolution de cette population conduit à proposer le modèle suivant.

Chaque semaine:

- Chaque adulte donne naissance à 2 larves puis 75 % des adultes meurent.
- 25 % des larves meurent et 50 % des larves deviennent adultes.

Pour tout entier naturel n, on note ℓ_n le nombre de larves et a_n le nombre d'adultes au bout de n semaines.

Pour tout entier naturel n, on note X_n la matrice colonne définie par : $X_n = \begin{pmatrix} \ell_n \\ a_n \end{pmatrix}$

1. Montrer que, pour tout entier naturel n, $X_{n+1} = AX_n$ où A est la matrice :

$$A = \begin{pmatrix} 0,25 & 2 \\ 0,5 & 0,25 \end{pmatrix}.$$

5 points

- **2.** On note U et V les matrices colonnes : $U = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $V = \begin{pmatrix} a \\ 1 \end{pmatrix}$, où a est un nombre réel.
 - **a.** Montrer que AU = 1,25U.
 - **b.** Déterminer le réel a tel que AV = -0.75V.

Dans les questions 3 et 4, le réel a est fixé de sorte qu'il est la solution de AV = -0.75V.

- **3.** On admet qu'il existe deux nombres réels α et β tels que : $X_0 = \alpha U + \beta V$ et $\alpha > 0$.
 - **a.** Montrer que, pour tout entier naturel n, $X_n = \alpha(1,25)^n U + \beta(-0,75)^n V$.
 - **b.** En déduire que pour tout entier naturel n: $\begin{cases} \ell_n = 2(1,25)^n \left(\alpha \beta(-0,6)^n\right) \\ a_n = (1,25)^n \left(\alpha + \beta(-0,6)^n\right). \end{cases}$
- **4.** Montrer que $\lim_{n\to+\infty} \frac{\ell_n}{a_n} = 2$. Interpréter ce résultat dans le contexte de l'exercice.

Partie B

- **1.** On considère l'équation (E): 19x 6y = 1. Déterminer le nombre de couples d'entiers (x; y) solutions de l'équation (E) et vérifiant $2000 \le x \le 2100$.
- **2.** Soit n un entier naturel. Montrer que les entiers (2n+3) et (n+3) sont premiers entre eux si et seulement si n n'est pas un multiple de 3.

Annexe

À rendre avec la copie

