FCC REPORT (Bluetooth)

Applicant: Corporativo Lanix S.A. de C.V.

Address of Applicant: Carrtera internacional Hermosillo-Nogale Km 8.5 Hermosillo,

83000 Mexico

Equipment Under Test (EUT)

Product Name: MOBILE PHONE

Model No.: Z20

Trade mark: LANIX

FCC ID: ZC4Z20

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2010

Date of sample receipt: 12 May, 2011

Date of Test: 12-17 May, 2011

Date of report issued: 18 May, 2011

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	2011-06-28	Original

Prepared By:	collar. He	Date:	2011-06-28	
	Project Engineer	_		
Check By:	Homs. Hu	Date:	2011-06-28	
	Reviewer			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	
4	TEST SUMMARY	
5	GENERAL INFORMATION	5
5.	1 CLIENT INFORMATION	5
5.2	2 GENERAL DESCRIPTION OF E.U.T	5
5.3	3 TEST ENVIRONMENT AND MODE	7
5.4		
5.5		
5.0	· ·	
5.	7 TEST INSTRUMENTS LIST	8
6	TEST RESULTS AND MEASUREMENT DATA	9
6.	1 Antenna requirement:	9
6.2		
6.3		
6.4		
6.5		
6.0		
6.		
6.8		
6.9		
	10 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
0.	11 RADIATED EMISSION	
	6.11.2 Transmitter emission above 1GHz	
	6.11.3 Band edge (Radiated Emission)	
7	TEST SETUP PHOTO	
8	FUT CONSTRUCTIONAL DETAILS	54

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	15.207	PASS
Conducted Peak Output Power	15.247 (b)(1)	PASS
20dB Occupied Bandwidth	15.247 (a)(1)	PASS
Carrier Frequencies Separation	15.247 (a)(1)	PASS
Hopping Channel Number	15.247 (a)(1)	PASS
Dwell Time	15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.247(d)	PASS

Remark:

• Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	Corporativo Lanix S.A. de C.V.
Address of Applicant:	Carrtera internacional Hermosillo-Nogale Km 8.5 Hermosillo, 83000 Mexico
Manufacturer:	Shenzhen Xiangyue Perfect Digital Science & Technology Co.,Ltd.
Address of Manufacturer:	Building A1, Jiujiutongxin Industrial zone II, Xinbu, Tongle, Longgang, shenzhen

5.2 General Description of E.U.T.

-	
Product Name:	MOBILE PHONE
Model No.:	Z20
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, Pi/4QPSK, 8DPSK
Antenna Type:	Integral
Antenna gain:	2dBi
Power supply:	Input: AC 100-240V 50/60Hz 0.15A MAX
	Output: DC 5V 500mA

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 6 of 54

5.3 Test environment and mode

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	45 % RH			
Atmospheric Pressure:	1050 mbar			
Test mode:				
Bluetooth mode	Keep the EUT in communicating mode by Bluetooth function			

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

■ FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 7 of 54

5.7 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd- yy)	Cal.Due date (mm-dd- yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS201	Mar. 30 2011	Mar. 30 2012
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS202	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Sept. 10 2010	Sept. 10 2011
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS204	Feb. 26 2011	Feb. 26 2012
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS205	June 30 201	June 30 2012
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Coaxial Cable	GTS	N/A	GTS400	Apr. 01 2011	Apr. 01 2012
8	Coaxial Cable	GTS	N/A	GTS401	Apr. 01 2011	Apr. 01 2012
9	Coaxial cable	GTS	N/A	GTS402	Apr. 01 2011	Apr. 01 2012
10	Coaxial Cable	GTS	N/A	GTS407	Apr. 01 2011	Apr. 01 2012
11	Coaxial Cable	GTS	N/A	GTS408	Apr. 01 2011	Apr. 01 2012
12	Amplifier(10KHz- 5GHz)	Sonnoma Instrument	305-1052	GTS210	Apr. 01 2011	Apr. 01 2012
13	Amplifier(2GHz- 20GHz)	HP	8349B	GTS231	Apr. 01 2011	Apr. 01 2012
14	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	May 11 2011	May 11 2012
15	Signal Generator	Rohde & Schwarz	SML03	GTS236	May 11 2011	May 11 2012
16	Temp. Humidity/ Barometer	Oregon Scientific	BA-888	GTS248	May 11 2011	May 11 2012
17	D.C. Power Supply	Instek	PS-3030	GTS232	NA	NA
18	Splitter	Agilent	11636B	GTS237	May 11 2011	May 11 2012

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd- yy)	Cal.Due date (mm-dd- yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS206	Apr. 10 2011	Apr. 10 2012
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS208	Sept. 14 2010	Sept. 14 2011
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS209	Sept. 14 2010	Sept. 14 2011
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS207	Apr. 14 2011	Apr. 14 2012
5	Coaxial Cable	GTS	N/A	GTS406	Apr. 01 2011	Apr. 01 2012
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 8 of 54

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 9 of 54

6.2 Conducted Emissions

	•				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz				
Limit:	Fragues av range (MUT)	Limit (c	dBuV)		
	Frequency range (MH2)	Frequency range (MHz) Quasi-peak Average			
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithn The E.U.T and simulators are				
	impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.				
Test setup:	Reference Plane				
	AUX Equipment Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilizatio Test table height=0.8m		er — AC power		
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.7 for details Refer to section 5.3 for details				
Test results:	Passed	•			
Tool Toolilo.	1 43304				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 10 of 54

Measurement Result:

Line:

: FCC PART15 CLASSB QP LISN(2011) LINE Condition

: 426RF

Job No. Test Mode : Bluetooth mode

Test Engineer: Dick

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	d₿	dBuV	dBuV	dB	
1 2 3 4 5 6 7 8 9	0. 203 0. 203 0. 307 0. 307 0. 611 0. 611 1. 141 1. 141	33. 52 43. 46 33. 56 40. 68 29. 76 41. 80 21. 56 39. 64 20. 56	0. 65 0. 65 0. 61 0. 61 0. 53 0. 53 0. 46 0. 46	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	34. 27 44. 21 34. 27 41. 39 30. 39 42. 43 22. 12 40. 20 21. 08	63. 49 50. 06 60. 06 46. 00 56. 00 46. 00 46. 00	-19. 28 -15. 79 -18. 67 -15. 61 -13. 57 -23. 88 -15. 80 -24. 92	Average QP Average QP Average QP Average
10 11 12	1. 680 2. 721 2. 721	40.38 19.56 34.49	0. 42 0. 37 0. 37	0.10 0.10 0.10	40.90 20.03 34.96	46.00	-15.10 -25.97 -21.04	Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE110600426RF

Page 11 of 54

Neutral:

Condition : FCC PART15 CLASSB QP LISN(2011) NEUTRAL

Job No. : 426RF

Test Mode : Bluetooth mode

Test Engineer: Dick

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	dB	dBu₹	dBu₹	dB	
1 2	0. 205 0. 205	30.65 39.55	0.65 0.65	0.10 0.10	31.40 40.30	63.40	-23.10	
3 4 5	0.307 0.307 0.611	32.38 37.23 31.34	0.61 0.61 0.53	0.10	33.09 37.94	60.06	-22.12	Average QP Average
5 6 7	0. 611 0. 611 1. 418	39. 23 26. 29	0.53 0.44	0.10 0.10 0.10	31.97 39.86 26.83	56.00	-16.14	
8 9	1. 418 2. 854	35.16 24.02	0.44	0.10	35. 70 24. 48	56.00	-20.30	-
10 11	2.854 5.194	39.86 19.97	0.36 0.29	0.10 0.10	40.32 20.36	56.00 50.00	-15.68 -29.64	QP Average
11 12	5. 194 5. 194	19.97 32.90	0.29 0.29	0.10 0.10	20.36 33.29		-29.64 -26.71	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 12 of 54

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Receiver setup:	RBW=3MHz, VBW=3MHz, Detector=Peak		
Limit:	21dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	3.11	21.00	Pass		
Middle	3.64	21.00	Pass		
Highest	2.11	21.00	Pass		
	Pi/4QPSK m	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	2.13	21.00	Pass		
Middle	2.62	21.00	Pass		
Highest	0.84	21.00	Pass		
	8DPSK mo	de			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	2.23	21.00	Pass		
Middle	2.75	21.00	Pass		
Highest	1.05	21.00	Pass		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 14 of 54

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	GFSK	Test channel:	Highest
1 CSt IIIOGC.		i Col Gilarii Ci.	I lightest

Test mode: Pi/4QPSK Test channel: Lowest

Test mode: Pi/4QPSK Test channel: Middle

Test mode: Pi/4QPSK Test channel: Highest

Test mode: 8DPSK Test channel: Lowest

Test mode: 8DPSK Test channel: Middle

Test mode: 8DPSK Test channel: Highest

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data					
	20dB Occupy Bandwidth (KHz)				
Test channel	GFSK	Pi/4QPSK	8DPSK		
Lowest	796.00	1380.00	1208.00		
Middle	796.00	1376.00	1204.00		
Highest	762.00	1204.00	1204.00		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 20 of 54

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: GFSK Test channel: Highest

Test mode: Pi/4QPSK Test channel: Lowest

Test mode:	Pi/4QPSK	Test channel:	Middle
1 GOL HIUUG.	FI/4QFON	i est channel.	IVIIUUIC

Project No.: GTSE110600426RF

Page 23 of 54

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 26 of 54

Measurement Data						
	GFSK mode					
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result			
Lowest	1000	920	Pass			
Middle	1004	920	Pass			
Highest	1004	920	Pass			
	Pi/4QPSK m	ode				
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result			
Lowest	1004	920	Pass			
Middle	1008	920	Pass			
Highest	1004	920	Pass			
	8DPSK mo	de				
Test channel	Carrier Frequencies Separation (KHz)	Limit (KHz)	Result			
Lowest	1004	920	Pass			
Middle	1008	920	Pass			
Highest	1004	920	Pass			

Note: According to section 6.4,

	20dB bandwidth (KHz)	Limit (KHz)	
Mode	(worse case)	(Carrier Frequencies Separation)	
	(Worse case)	(Carrier i requericies Separation)	
GFSK	796	531	
PI/4QPSK	1380	920	
8DPSK	1208	805	

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 27 of 54

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	GFSK	Test channel:	Highest
1 COL IIIOGC.	l Ol Ol	i cot oriaririor.	1 11911001

Test mode: Pi/4QPSK Test channel: Lowest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	Pi/4QPSK	Test channel:	Middle
i cot mode.	1 1/ + Q1 O1	i cot oriaririoi.	iviladio

Test mode: Pi/4QPSK Test channel: Highest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	8DPSK	Test channel:	Lowest
i cot illouc.		i cot oriaririor.	LOWCOL

Test mode:	8DPSK	Test channel:	Middle
Tost mode.	ODION	i cot chariner.	Middle

Test mode: 8DPSK Test channel: Highest

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE110600426RF

Page 32 of 54

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Receiver setup:	RBW=100KHz, VBW=300KHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data				
Mode	Hopping channel numbers	Limit		
GFSK	79	75		
Pi/4QPSK	79	75		
8DPSK	79	75		

Test plot as follows

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 33 of 54

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2003 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test mode:	Hopping transmitting with all kind of modulation.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data			
Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.1696	0.4
	DH3	0.2864	0.4
	DH5	0.3243	0.4
	2-DH1	0.1696	0.4
Pi/4QPSK	2-DH3	0.2864	0.4
	2-DH5	0.3243	0.4
	3-DH1	0.1696	0.4
8DPSK	3-DH3	0.2864	0.4
	3-DH5	0.3243	0.4

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

DH1 time slot=0.530(ms)*(1600/ (2*79))*31.6=169.6ms

DH3 time slot=1.79(ms)*(1600/ (4*79))*31.6=286.4ms

DH5 time slot=3.04(ms)*(1600/ (6*79))*31.6=324.3ms

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 36 of 54

Test plot as follows

Test mode: GFSK, Pi/4QPSK, 8DPSK Test Packet: DH1, 2-DH1, 3-DH1

Test mode: GFSK, Pi/4QPSK, 8DPSK Test Packet: DH3, 2-DH3, 3-DH3

Test mode: GFSK, Pi/4QPSK, 8DPSK Test Packet: DH3, 2-DH3, 3-DH3

6.8 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB DA00-705						
Receiver setup:	RBW=100KHz, VBW=300KHz, Detector=Peak						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						
Domark:	·						

Remark:

During test the item, Pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 39 of 54

Worse case mode: GFSK Test channel: Lowest

Worse case mode: GFSK Test channel: Highest

Project No.: GTSE110600426RF

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.9 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.7 for details						
Test results:	Passed						

Remark:

During test the item, Pre-scan the GFSK, Pi/4QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Worse case mode: GFSK Test channel: Middle

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE110600426RF

Page 43 of 54

Worse case mode: GFSK Test channel: Highest

6.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 45 of 54

6.11 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4: 20	03						
Test Frequency Range:	30MHz to 25GH	łz						
Test site:	Measurement D	istance: 3m (S	Semi-Anecho	ic Chambei	r)			
Receiver setup:		<u> </u>			,			
. 1000.100	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	7,5575 15112	Peak	1MHz	10Hz	Average Value			
Limit:	F		Line it (alDo A)	/ @ O\	Damada			
	Freque		Limit (dBuV		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21 216MHz-9		45.0 46.0		Quasi-peak Value Quasi-peak Value			
	960MHz-	•	54.0		Quasi-peak Value			
			54.0		Average Value			
	Above 1	GHz	74.0		Peak Value			
Test Procedure:	the ground rotated 360 radiation. b. The EUT was antenna, who tower. c. The antennation ground to do horizontal as the measured. d. For each succase and the meters and degrees to be specified B. f. If the emiss the limit specified B of the EUT have 10dB peak or aversheet. g. The radiation	at a 3 meter set degrees to de degrees to de des set 3 meters inch was mount a height is varietermine the mind vertical policement. It is pected emission the antennation the maximulation level of the decified, then tes would be reported to degree of the decified, would be reported to degree of the decified, then tes would be reported to degree of the decified, would be reported to degree of the decified, then tes would be reported to degree of the decified, would be reported to degree of the decified, would be reported to degree of the decified of the decified of the decified of the degree of the	emi-anechoice termine the partial section on the total ed from one naximum valuations of the section of the sec	c camber. Toosition of the interference of a varial meter to follower of the fiethe antennation heights fied from 0 decaded by the ends one by one and then reparted in X, Y,	ence-receiving able-height antenna ur meters above the ld strength. Both a are set to make ged to its worst rom 1 meter to 4 agrees to 360. Function and and the peak values asions that did not using peak, quasi-ported in a data.			

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 47 of 54

6.11.1 Radiated emission below 1GHz

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
33.33	53.74	14.84	0.62	32.23	36.97	40.00	-3.03	Vertical
55.22	48.48	15.69	0.69	31.99	32.87	40.00	-7.13	Vertical
69.11	51.42	13.43	0.82	31.89	33.78	40.00	-6.22	Vertical
431.03	36.51	15.43	2.30	32.09	22.15	46.00	-23.85	Vertical
595.13	36.54	19.38	2.68	31.31	27.29	46.00	-18.71	Vertical
922.52	36.74	24.56	3.36	31.47	33.19	46.00	-12.81	Vertical
54.64	40.25	14.98	0.69	31.99	23.93	40.00	-16.07	Horizontal
86.20	40.60	10.20	1.02	31.77	20.05	40.00	-19.95	Horizontal
148.96	41.25	10.62	1.51	31.98	21.40	43.50	-22.10	Horizontal
329.04	38.95	13.46	2.13	32.31	22.23	46.00	-23.77	Horizontal
618.54	36.13	20.27	2.74	31.36	27.78	46.00	-18.22	Horizontal
919.29	36.17	25.29	3.36	31.47	33.35	46.00	-12.65	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.11.2 Transmitter emission above 1GHz

Worse case n	node:	GFSK	Test c	hannel:	Lowest	Remark	(:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2328	6.02	29.76	39.75	53.25	49.28	74.00	-24.72	Vertical
4804	9.36	34.25	41.53	48.93	51.01	74.00	-22.99	Vertical
7206	13.38	37.23	40.98	45.19	54.82	74.00	-19.18	Vertical
9608	13.39	37.99	37.56	42.25	56.07	74.00	-17.93	Vertical
12010	16.45	39.10	39.09	41.30	57.76	74.00	-16.24	Vertical
14412						74.00		Vertical
16814						74.00		Vertical
2328	6.02	29.76	39.75	54.05	50.08	74.00	-23.92	Horizontal
4804	9.36	34.25	41.53	50.14	52.22	74.00	-21.78	Horizontal
7206	13.38	37.23	40.98	45.28	54.91	74.00	-19.09	Horizontal
9608	13.39	37.99	37.56	42.27	56.09	74.00	-17.91	Horizontal
12010	16.45	39.10	39.09	42.08	58.54	74.00	-15.46	Horizontal
14412						74.00		Horizontal
16814						74.00		Horizontal

Worse case n	node:	ĞF	SK	Test c	hannel:	Lowest	Remark	C:	Average
Frequency (MHz)	Cable Loss (c	_	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2328	6.02		29.76	39.75	36.27	32.30	54.00	-21.70	Vertical
4804	9.36		34.25	41.53	34.60	36.68	54.00	-17.32	Vertical
7206	13.38	3	37.23	40.98	28.57	38.20	54.00	-15.80	Vertical
9608	13.39	9	37.99	37.56	26.14	39.96	54.00	-14.04	Vertical
12010	16.4	5	39.10	39.09	24.81	41.27	54.00	-12.73	Vertical
14412							54.00		Vertical
16814							54.00		Vertical
2328	6.02		29.76	39.75	36.45	32.48	54.00	-21.52	Horizontal
4804	9.36	;	34.25	41.53	34.58	36.66	54.00	-17.34	Horizontal
7206	13.38	8	37.23	40.98	28.76	38.39	54.00	-15.61	Horizontal
9608	13.39	9	37.99	37.56	24.59	38.41	54.00	-15.59	Horizontal
12010	16.4	5	39.10	39.09	22.13	38.59	54.00	-15.41	Horizontal
14412							54.00		Horizontal
16814							54.00		Horizontal

Remark

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

[&]quot;---" means that the emission level is too low to be measured

Worse case	mode: G	FSK	Test	channel:	Middle	Remar	k:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2400	6.34	30.03	38.87	47.24	44.74	74.00	-29.26	Vertical
2483.5	6.22	30.32	39.53	49.58	46.59	74.00	-27.41	Vertical
4882	10.57	34.35	40.33	48.46	53.05	74.00	-20.95	Vertical
7323	12.91	37.31	40.40	45.28	55.10	74.00	-18.90	Vertical
9764	13.89	38.03	37.94	42.27	56.25	74.00	-17.75	Vertical
12205	17.95	39.23	39.30	40.16	58.04	74.00	-15.96	Vertical
14646								Horizontal
2400	6.34	30.03	38.87	48.59	46.09	74.00	-27.91	Horizontal
2483.5	6.22	30.32	39.53	49.27	46.28	74.00	-27.72	Horizontal
4882	10.57	34.35	40.33	45.67	50.26	74.00	-23.74	Horizontal
7323	12.91	37.31	40.40	44.69	54.51	74.00	-19.49	Horizontal
9764	13.89	38.03	37.94	42.26	56.24	74.00	-17.76	Horizontal
12205	17.95	39.23	39.30	40.28	58.16	74.00	-15.84	Horizontal
14646								Horizontal

Worse case	Worse case mode: GFSK		Test	Test channel: Middle		Remark:		Average
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2400	6.34	30.03	38.87	35.86	33.36	54.00	-20.64	Vertical
2483.5	6.22	30.32	39.53	35.48	32.49	54.00	-21.51	Vertical
4882	10.57	34.35	40.33	31.26	35.85	54.00	-18.15	Vertical
7323	12.91	37.31	40.40	28.95	38.77	54.00	-15.23	Vertical
9764	13.89	38.03	37.94	25.64	39.62	54.00	-14.38	Vertical
12205	17.95	39.23	39.30	23.61	41.49	54.00	-12.51	Vertical
14646						54.00		Horizontal
2400	6.34	30.03	38.87	34.05	31.55	54.00	-22.45	Horizontal
2483.5	6.22	30.32	39.53	33.56	30.57	54.00	-23.43	Horizontal
4882	10.57	34.35	40.33	30.59	35.18	54.00	-18.82	Horizontal
7323	12.91	37.31	40.40	28.59	38.41	54.00	-15.59	Horizontal
9764	13.89	38.03	37.94	26.74	40.72	54.00	-13.28	Horizontal
12205	17.95	39.23	39.30	24.85	42.73	54.00	-11.27	Horizontal
14646						54.00		Horizontal

Remark

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

[&]quot;---" means that the emission level is too low to be measured

Worse case	mode: GF	SK	Test	channel:	Highest	Remar	k:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	10.43	34.45	41.03	49.51	53.36	74.00	-20.64	Vertical
7440	12.72	37.37	40.01	44.58	54.66	74.00	-19.34	Vertical
9920	14.24	38.08	37.78	42.24	56.78	74.00	-17.22	Vertical
12400	17.55	39.34	39.48	41.05	58.46	74.00	-15.54	Vertical
14880						74.00		Vertical
17360						74.00		Vertical
4960	10.43	34.45	41.03	48.26	52.11	74.00	-21.89	Horizontal
7440	12.72	37.37	40.01	45.27	55.35	74.00	-18.65	Horizontal
9920	14.24	38.08	37.78	42.71	57.25	74.00	-16.75	Horizontal
12400	17.55	39.34	39.48	41.59	59.00	74.00	-15.00	Horizontal
14880						74.00		Horizontal
17360						74.00		Horizontal

Worse case	Worse case mode: GFSK		Test	channel:	Highest	Remar	k:	Average
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960	10.43	34.45	41.03	31.43	35.28	54.00	-18.72	Vertical
7440	12.72	37.37	40.01	28.57	38.65	54.00	-15.35	Vertical
9920	14.24	38.08	37.78	25.99	40.53	54.00	-13.47	Vertical
12400	17.55	39.34	39.48	24.36	41.77	54.00	-12.23	Vertical
14880								Vertical
17360								Vertical
4960	10.43	34.45	41.03	30.41	34.26	54.00	-19.74	Horizontal
7440	12.72	37.37	40.01	26.58	36.66	54.00	-17.34	Horizontal
9920	14.24	38.08	37.78	24.98	39.52	54.00	-14.48	Horizontal
12400	17.55	39.34	39.48	23.35	40.76	54.00	-13.24	Horizontal
14880								Horizontal
17360								Horizontal

Remark

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 51 of 54

[&]quot;---" means that the emission level is too low to be measured

6.11.3 Baı	nd odgo (Padiatod	Emission'	1				
Test mode:		smitting	Test chann		est	Remark:	Pe	eak
		5						_
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	49.70	27.22	3.14	30.76	48.02	74.00	-25.98	Horizontal
2400.00	55.12	27.58	3.37	30.10	54.69	74.00	-19.31	Horizontal
2390.00	48.20	27.22	3.14	30.76	46.52	74.00	-27.48	Vertical
2400.00	51.56	27.58	3.37	30.10	51.13	74.00	-22.87	Vertical
•					1			'
Test mode:	Trans	smitting	Test chann	el: Low	est	Remark:	Av	rerage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	32.87	27.22	3.14	30.76	31.78	54.00	-22.22	Horizontal
2400.00	36.63	27.58	3.37	30.10	36.79	54.00	-17.21	Horizontal
2390.00	31.06	27.22	3.14	30.76	29.97	54.00	-24.03	Vertical
2400.00	34.83	27.58	3.37	30.10	34.99	54.00	-19.01	Vertical
		•			<u> </u>	<u> </u>		
Test mode:	Trans	mitting	Test chann	el: High	nest	Remark:	Pe	eak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.11	27.53	3.49	29.93	52.20	74.00	-21.80	Horizontal
2500.00	48.59	27.58	3.52	29.98	49.71	74.00	-24.29	Horizontal
2483.50	48.61	27.53	3.49	29.93	49.70	74.00	-24.30	Vertical
2500.00	46.24	27.58	3.52	29.98	47.36	74.00	-26.64	Vertical
Test mode:	Trans	smitting	Test chann	el: High	nest	Remark:	Av	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	31.57	27.53	3.49	29.93	32.66	54.00	-21.34	Horizontal
2500.00	28.75	27.58	3.52	29.98	29.87	54.00	-24.13	Horizontal
2483.50	28.45	27.53	3.49	29.93	29.54	54.00	-24.46	Vertical
2500.00	26.39	27.58	3.52	29.98	27.51	54.00	-26.49	Vertical

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960