

AIGHT LINES

Exercise-1: Single Choice Problems

- 1. The ratio in which the line segment joining (2, -3) and (5, 6) is divided by the x-axis is:
 - (a) 3:1

(b) 1:2

(c) $\sqrt{3}:2$

(d) $\sqrt{2}:3$

- **2.** If L is the line whose equation is ax + by = c. Let M be the reflection of L through the y-axis, and let N be the reflection of L through the x-axis. Which of the following must be true about M and N for all choices of a, b and c?
 - (a) The x-intercepts of M and N are equal
 - (b) The y-intercepts of M and N are equal
 - (c) The slopes of M and N are equal
 - (d) The slopes of M and N are reciprocal
- 3. The complete set of real values of 'a' such that the point $P(a, \sin a)$ lies inside the triangle formed by the lines x - 2y + 2 = 0; x + y = 0 and $x - y - \pi = 0$, is:

(a)
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

(c) $(0, \pi)$

4. Let m be a positive integer and let the lines 13x + 11y = 700 and y = mx - 1 intersect in a point whose coordinates are integer. Then m equals to:

(c) 6

(d) 7

5. If
$$P = \left(\frac{1}{x_p}, p\right); Q = \left(\frac{1}{x_q}, q\right); R = \left(\frac{1}{x_r}, r\right)$$

where $x_k \neq 0$, denotes the k^{th} terms of a H.P. for $k \in N$, then:

208	CHE.				Advanced Problem	ns in Mathematics for JEE
	(a)	ar. $(\Delta PQR) = \frac{p^2q^2}{2}$	$\frac{r^2}{\sqrt{(p-q)^2+(q-r)^2}}$	+ (r	$-p)^2$	
		ΔPQR is a right ar				
		the points P, Q, R				
		None of these				
6.	If th	e sum of the slope	es of the lines given by	x2 -	$2cxy - 7y^2 = 0$ is	four times their product,
	ther	c has the value:	g ,			
	(a)	1	(b) -1	(c)	2	(d) -2
7.	A pi	ece of cheese is loc	ated at (12, 10) in a coo	rdina	ite plane. A mouse	is at (4,-2) and is running
	up t	the line $y = -5x +$	18. At the point (a, b) , t	he m	ouse starts getting	g farther from the cheese
	(a)		t. The value of $(a + b)$ is			
	(c)			(b)		
R.			alo of a right and a deci	(d)		. II 2 10 01
٠.	the	two other vertices.	, at points (2, –3) and (angle 4 1)	then the area of t	It line $2x + y - 10 = 0$ and
		$\sqrt{10}$	(b) 3			(d) 11
					33 5	and the state of t
9.	Give	en the family of ling or the family of lines situat	nes, $a(2x + y + 4) + b(x)$ red at a distance of $\sqrt{10}$	- 2y from	(-3) = 0. Among the point $M(2,-3)$	he lines of the family, the
	(a)	0		(b)	1	
	(c)			(d)		
10.	Poir	it $(0, \beta)$ lies on	or inside the triang	le fo	ormed by the lir	nes $y = 0, x + y = 8$ and
		-4y + 12 = 0. Then	(b) 4	(c)	0	40
	(a)					(d) 12
11.	ther		0, 4x + 3y + 4 = 0 and .	x + u	$y + p = 0$, where α	$^{2} + \beta^{2} = 2$, are concurrent
		$\alpha = 1, \beta = -1$		(b)	$\alpha = 1, \beta = \pm 1$	
		$\alpha = 1, \beta = 1$ $\alpha = -1, \beta = \pm 1$			$\alpha = \pm 1, \beta = \pm 1$ $\alpha = \pm 1, \beta = 1$	
12.			h the origin 'O' meets	the p	arallel lines 4x +	2y = 9 and $2x + y = -6$ at
	poir	its P and Q respect	ively. Then the point 'C	div	ides the segment I	2y = 9 and $2x + y = -6$ at 20 in the ratio :
	(a)	1:2	(b) 4:3	(c)	2:1	(d) 3 · 4
13.	If th	e points (2a, a), (a	a, 2a) and (a, a) enclose	a tr	iangle of area 72 t	units, then co-ordinates of
	the	centroid of the tria	iligie iliay be .			, men co oraniates or
	(a)	(4, 4)	(b) (-4, 4)	(c)	(12, 12)	(d) (16, 16)
14.	Let ;	g(x) = ax + b, when	re $a < 0$ and g is define	d fro	m [1, 3] onto [0, 2]	then the value of

(c) g(3)

(d) g(1) + g(3)

 $\cot(\cos^{-1}(|\sin x| + |\cos x|) + \sin^{-1}(-|\cos x| - |\sin x|))$ is equal to:

(b) g(2)

(a) g(1)

1	1	2	c	1
L	A	,	Z,	,

(d) x - y = 0

(d) (2, 8)

locus of P is: (a) ax + by = 0

7x + y - 8 = 0 is:

concurrent at :	are			
(a) (0, 1) (b) (1, 0) (c) (-1, 1) (d) (1, -1)				
19. From a point $P = (3, 4)$ perpendiculars PQ and PR are drawn to line $3x + 4y - 7 = 0$ a	nd a			
variable line $y - 1 = m(x - 7)$ respectively, then maximum area of $\triangle PQR$ is :				
\$4000 LET 1800 MENER MENER 1800 M				
	ls of			
(a) $\frac{10}{3}$ (b) $\frac{20}{3}$ (c) $\frac{40}{3}$ (d) $\frac{50}{3}$	3, 4) perpendiculars PQ and PR are drawn to line $3x + 4y - 7 = 0$ and a $= m(x-7)$ respectively, then maximum area of $\triangle PQR$ is: (b) 12 (c) 6 (d) 9 0 adjacent sides of rhombus are given by $y = x$ and $y = 7x$. The diagonals of ect each other at the point $(1, 2)$. Then the area of the rhombus is: (b) $\frac{20}{3}$ (c) $\frac{40}{3}$ (d) $\frac{50}{3}$ reflected across the line $y = -x$. Then it is translated horizontally 3 units to ally 3 units up. Finally, it is reflected across the line $y = x$. What are the point after these transformations? (b) $(0, 0)$ (d) $(-6, 0)$ $t^3 + 9$ and $y = \frac{3t^3}{4} + 6$ represents a straight line where t is a parameter. The line is: (b) 9 (c) 6 (d) 1 nation of two adjacent sides of a rhombus formed in first quadrant is; then slope of its longer diagonal is: (b) -2 (c) 2 (d) $\frac{1}{2}$ egral points inside the triangle made by the line $3x + 4y - 12 = 0$ with the ich are equidistant from at least two sides is/are:			
21. The point $P(3, 3)$ is reflected across the line $y = -x$. Then it is translated horizontally 3 unit the left and vertically 3 units up. Finally, it is reflected across the line $y = x$. What are coordinates of the point after these transformations?				
(*)				
(-) (-) (-)				
22. The equations $x = t^3 + 9$ and $y = \frac{3t^3}{4} + 6$ represents a straight line where t is a parameter.	eter.			
Then <i>y</i> -intercept of the line is:				
(a) $-\frac{3}{4}$ (b) 9 (c) 6 (d) 1				
4				
23. The combined equation of two adjacent sides of a rhombus formed in first quadra $7x^2 - 8xy + y^2 = 0$; then slope of its longer diagonal is:	nt is			
23. The combined equation of two adjacent sides of a rhombus formed in first quadra $7x^2 - 8xy + y^2 = 0$; then slope of its longer diagonal is:	nt is			
 23. The combined equation of two adjacent sides of a rhombus formed in first quadrates 7x²-8xy + y² = 0; then slope of its longer diagonal is: (a) -1/2 (b) -2 (c) 2 (d) 1/2 24. The number of integral points inside the triangle made by the line 3x + 4y - 12 = 0 with coordinate axes which are equidistant from at least two sides is/are: 				
 23. The combined equation of two adjacent sides of a rhombus formed in first quadra 7x²-8xy + y² = 0; then slope of its longer diagonal is: (a) -1/2 (b) -2 (c) 2 (d) 1/2 24. The number of integral points inside the triangle made by the line 3x + 4y - 12 = 0 with coordinate axes which are equidistant from at least two sides is/are: (an integral point is a point both of whose coordinates are integers.) 				
 23. The combined equation of two adjacent sides of a rhombus formed in first quadra 7x²-8xy + y² = 0; then slope of its longer diagonal is: (a) -1/2 (b) -2 (c) 2 (d) 1/2 24. The number of integral points inside the triangle made by the line 3x + 4y - 12 = 0 with coordinate axes which are equidistant from at least two sides is/are: (an integral point is a point both of whose coordinates are integers.) 				
 23. The combined equation of two adjacent sides of a rhombus formed in first quadra 7x²-8xy + y² = 0; then slope of its longer diagonal is: (a) -1/2 (b) -2 (c) 2 (d) 1/2 24. The number of integral points inside the triangle made by the line 3x + 4y - 12 = 0 with coordinate axes which are equidistant from at least two sides is/are: (an integral point is a point both of whose coordinates are integers.) 				
 23. The combined equation of two adjacent sides of a rhombus formed in first quadra 7x²-8xy + y² = 0; then slope of its longer diagonal is: (a) -1/2 (b) -2 (c) 2 (d) 1/2 24. The number of integral points inside the triangle made by the line 3x + 4y - 12 = 0 with coordinate axes which are equidistant from at least two sides is/are: (an integral point is a point both of whose coordinates are integers.) 				
 23. The combined equation of two adjacent sides of a rhombus formed in first quadra 7x²-8xy + y² = 0; then slope of its longer diagonal is: (a) -1/2 (b) -2 (c) 2 (d) 1/2 24. The number of integral points inside the triangle made by the line 3x + 4y - 12 = 0 with coordinate axes which are equidistant from at least two sides is/are: (an integral point is a point both of whose coordinates are integers.) 				

15. If the distances of any point P from the points A(a+b, a-b) and B(a-b, a+b) are equal, then

16. If the equation $4y^3 - 8a^2yx^2 - 3ay^2x + 8x^3 = 0$ represent three straight lines, two of them are

17. The orthocentre of the triangle formed by the lines x-7y+6=0, 2x-5y-6=0 and

(c) bx + ay = 0

(c) (1, 1)

(b) ax - by = 0

perpendicular then sum of all possible values of \boldsymbol{a} is equal to :

(b) (0, 0)

25.	5. The area of triangle formed by the straight lines whose equations are $y = 4x + 2$, $2y = x + 3$ and $x = 0$ is:											
	(a)	$\frac{25}{7\sqrt{2}}$	(b)	$\frac{\sqrt{2}}{28}$	(c)	<u>1</u> 28	(d)	15 7				
26.	In a	triangle ABC, if A $x = 4$ respectively	is (1, then	2) and the equatio B must be :	ns of	f the medians throu	ıgh <i>E</i>	3 and C are x + y = 5				
	(a)	(1, 4)	(b)	(7, -2)				(-2, 7)				
27.	The	equation of image	of pa	air of lines $y = x - y $	1 w	rith respect to y-axi	is is	:				
	(a)	$x^2 - y^2 - 2x + 1 =$	0			$x^2 - y^2 - 4x + 4 =$						
	(c)	$4x^2 - 4x - y^2 + 1$	= 0		(d)	$x^2 - y^2 + 2x + 1 =$	0					
28.	28. If P , Q and R are three points with coordinates $(1, 4)$, $(4, 5)$ and (m, m) respectively, then to value of m for which $PR + RQ$ is minimum, is:											
	(a)	4	(b)	3	(c)	$\frac{17}{8}$	(d)	$\frac{7}{2}$				
29.	The the	vertices of triangle angle ABC of $\triangle ABC$	<i>ABC</i> is :			U	luati	on of the bisector of				
		y + 2x - 11 = 0			(b)	x-7y+2=0						
2		y - 2x + 9 = 0				y + 7x - 36 = 0						
30.		ne of the lines give	n by	$6x^2 - xy + 4cy^2 =$	0 is 3	3x + 4y = 0, then $c = 0$	= .					
_	(a)		(b)	10 7-10	(c)		(d)	1,				
31.	The	equations of L_1 and	dL_2 a	are y = mx and y =	nx, r	espectively. Suppos	e L ₁	make twice as large				
	and	that I. has 4 times	the c	lone of I If I is no	nt ho	lockwise from the p	ositi	vex -axis) as $does L_2$				
	equa	als:	are s.	tope of 22. If In 15 In	JE HO	rizontai, tilen the v	aiue	of the product (mn)				
	(a)	_			<i>a</i> >	$\sqrt{2}$						
	(a)		eria. Selve	31.4	(D)	$-\frac{\sqrt{2}}{2}$						
	(c)	2			(d)							
32.	Give	n A (0, 0) and $B(x,$	y)w	with $x \in (0,1)$ and y	> 0.	Let the slope of the	line	AB equals m_1 . Point				
	Clie	s on the line $x = 1$ s	uch t	hat the slope of BC	equ	als m_2 where $0 < m$		m If the annual Cale				
	trian	igle ABC can be exp	oress	ed as $(m_1 - m_2)f(x)$	r), tl	nen the largest pos	sible	e value of $f(x)$ is:				
	(a)	1			(b)	1/2		7.1. 3				
	(c)				(d)							
33.	If no	on-zero numbers a	, b, c	are in H.P., then	the	straight line $\frac{x}{-}$ +	<u>y</u> +	$\frac{1}{c} = 0$ always passes				
	thro	ign a fixed point, c	0-010	umate of fixed poin	nt is	: a	b	c annujo puoco				
	(a)	(-1, 2)	(b)	(-1, -2)	(c)	(1, – 2)	(d)	$\left(1,\frac{1}{2}\right)$				

Straight lines	271
34. If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$ represent pair of straig then $ab: h^2$ is:	ght lines and slope of one line is twice the other,
(a) 9:8 (b) 8:9	(c) 1:2 (d) 2:1
35. Statement-1: A variable line drawn through The locus of mid-point of <i>AB</i> is a circle.	a a fixed point cuts the coordinate axes at A and B .
because	
Statement-2: Through 3 non-collinear point	nts in a plane, only one circle can be drawn.
(a) Statement-1 is true, statement-2 is true, statement-1.	ue and statement-2 is correct explanation for
(b) Statement-1 is true, statement-2 is true a statement-1.	and statement-2 is not the correct explanation for
(c) Statement-1 is true, statement-2 is false.	
(d) Statement-1 is false, statement-2 is true.	
36. A line passing through origin and is perpen	
4x + 2y - 9 = 0, then the ratio in which the or	
(a) 1:2	(b) 1:1
(c) 5:4	(d) 3:4
37. If a vertex of a triangle is (1, 1) and the mid-	
and (3, 2), then the centroid of the triangle is	(7) (1.7)
(a) $\left(-1, \frac{7}{3}\right)$ (b) $\left(-\frac{1}{3}, \frac{7}{3}\right)$	
38. The diagonals of parallelogram PQRS are alon	g the lines $x + 3y = 4$ and $6x - 2y = 7$. Then PQRS
must be :	
(a) rectangle	(b) square
(c) rhombus	(d) neither rhombus nor rectangle
39. The two points on the line $x + y = 4$ that lie	e at a unit perpendicular distance from the line
$4x + 3y = 10$ are (a_1, b_1) and (a_2, b_2) , then a_1	
(a) 5 (b) 6	
40. The orthocentre of the triangle formed by the	1 = 1, $2x + 3y = 0$ and $4x - y + 4 = 0$ lies
in:	(b) second quadrant
(a) first quadrant	(d) fourth quadrant
(c) third quadrant41. The equation of the line passing through the integral of the line passing through the line pa	
The equation of the line passing through the	$\frac{1}{1}$

(b) 5x-7y+2=0

(d) 5x + 7y + 2 = 0

and perpendicular to 7x - 5y + 3 = 0 is:

(a) 5x + 7y - 2 = 0

(c) 7x - 5y + 2 = 0

- **42.** The points (2, 1), (8, 5) and (x, 7) lie on a straight line. Then the value of x is:
 - (a) 10
- (b) 11
- (c) 12
- (d) $\frac{35}{3}$
- **43.** In a parallelogram *PQRS* (taken in order), *P* is the point (-1, -1), *Q* is (8, 0) and *R* is (7, 5). Then *S* is the point :
 - (a) (-1, 4)
- (b) (-2, 2)
- (c) $\left(-2,\frac{7}{2}\right)$
- (d) (-2, 4)
- **44.** The area of triangle whose vertices are (a, a), (a + 1, a + 1), (a + 2, a) is:
 - (a) a^3
- (b) 2a
- (c) 1
- (d) 2

- **45.** The equation $x^2 + y^2 2xy 1 = 0$ represents :
 - (a) two parallel straight lines
- (b) two perpendicular straight lines

(c) a point

- (d) a circle
- **46.** Let A = (-2, 0) and B = (2, 0), then the number of integral values of $a, a \in [-10, 10]$ for which line segment AB subtends an acute angle at point C = (a, a + 1) is:
 - (a) 15
- (b) 17
- (c) 19
- (d) 21
- **47.** The angle between sides of a rhombus whose $\sqrt{2}$ times sides is mean of its two diagonal, is equal to:
 - (a) 300°
- (b) 45°
- (c) 60°
- (d) 90°
- **48.** A rod of *AB* of length 3 rests on a wall as follows :

P is a point on AB such that AP:PB=1:2. If the rod slides along the wall, then the locus of P lies on

(a) 2x + y + xy = 2

(b) $4x^2 + xy + xy + y^2 = 4$

(c) $4x^2 + y^2 = 4$

- (d) $x^2 + y^2 x 2y = 0$
- **49.** If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$, represents pair of straight lines and slope of one line is twice the other. Then $ab: h^2$ is:
 - (a) 8:9
- (b) 1:2
- (c) 2:1
- (d) 9:8

1	A 264 C		The state of the s	A SANSPORENCE OF SANSON	Mary-Jile		outs out on the	
50.			tion	of point (a, 0) w.r.t	. the	line $yt = x + at^2$ i	s give	en by (t is parameter,
	t∈i							_
	•			y-a=0				y + a = 0
51.		ght ray emerging f ris. If the reflected						ed at a point Q in the
	(a)	$\frac{5}{2}$	(b)	3	(c)	$\frac{7}{2}$	(d)	1
52.	If the equal	the axes are rotated attion $x^2 - y^2 = a^2$	throu	igh 60° in the antic	lockv	vise sense, find the	e trai	nsformed form of the
	(a)	$X^2 + Y^2 - 3\sqrt{3} X^2$	Y=2	ta ²	(b)	$X^2 + Y^2 = a^2$		
	(c)	$Y^2 - X^2 - 2\sqrt{3} X^2$	Y = 2	a^2	(d)	$X^2 - Y^2 + 2\sqrt{3} X$	Y = 2	$2a^2$
53.	The	straight line $3x + $	y -4	x = 0, x + 3y - 4 = 0	0 and	x + y = 0 form a	trian	gle which is :
	(a)	equilateral			(b)	right-angled		
	(c)	acute-angled and	isoso	celes	(d)	obtuse-angled an	d isc	sceles
54.	If m	and b are real nu	ımbe	rs and $mb > 0$, the	n th	e line whose equa	tion	is $y = mx + b$ cannot
	con	tain the point:						
	(a)	(0, 2008)			(b)	(2008, 0)		
	(c)	(0, -2008)			(d)	(20, -100)		
55.	The	number of possil	ble st	rraight lines, passi	ng th	rough (2, 3) and	form	ning a triangle with
	000	rdinate axes, whos	se are	ea is 12 sq. units, is	:			
	(a)	one				two		
		three				four		
56.			, y ₃	are both in G.P. with	n the	same common rati	o the	en the points (x_1, y_1) ,
		(y_2) and (x_3, y_3)						
		lie on a straight l				lie on a circle		
	(c)	are vertices of a t	riang	gle		None of these		1 14
57.				ingle whose vertice	s are	$(a\cos t, a\sin t), (t$	sint	$a, -b \cos t$ and $(1, 0)$;
		re t is a parameter			a.	$(3x-1)^2+(3y)^2$:	2 . 12
		$(3x-1)^2+(3y)^2$						
		$(3x+1)^2+(3y)^2$				$(3x+1)^2+(3y)^2$		
58.		equation of the st whose sum is -1		it line passing thro	ugh ((4, 3) and making	inte	rcepts on co-ordinate
		$\frac{x}{2} + \frac{y}{3} = -1 \text{ and } \frac{y}{2}$		$\frac{y}{1} = -1$	(b)	$\frac{x}{2} - \frac{y}{3} = -1 \text{ and } -\frac{y}{3}$	$\frac{x}{-2}$ +	$\frac{y}{1} = -1$
	(c)	$\frac{x}{2} + \frac{y}{3} = 1 \text{ and } \frac{x}{2}$	$+\frac{y}{1} =$	=1	(d)	$\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-3}$	$\frac{1}{2} + \frac{y}{1}$	' ₁ = 1

59. Let A = (3, 2) and B = (5, 1). ABP is an equilateral triangle is constructed one the side of AB remote from the origin then the orthocentre of triangle ABP is:

(a)
$$\left(4 - \frac{1}{2}\sqrt{3}, \frac{3}{2} - \sqrt{3}\right)$$

(b)
$$\left(4 + \frac{1}{2}\sqrt{3}, \frac{3}{2} + \sqrt{3}\right)$$

(c)
$$\left(4-\frac{1}{6}\sqrt{3},\frac{3}{2}-\frac{1}{3}\sqrt{3}\right)$$

(d)
$$\left(4 + \frac{1}{6}\sqrt{3}, \frac{3}{2} + \frac{1}{3}\sqrt{3}\right)$$

60. Area of the triangle formed by the lines through point (6, 0) and at a perpendicular distance of 5 from point (1, 3) and line y = 16 in square units is:

(d) 130

61. The straight lines 3x + y - 4 = 0, x + 3y - 4 = 0 and x + y = 0 form a triangle which is :

(a) equilateral

(b) right-angled

(c) acute-angled and isosceles

(d) obtuse-angled and isosceles

62. The orthocentre of the triangle with vertices $(5,0), (0,0), \left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$ is:

(b)
$$\left(\frac{5}{2}, \frac{5}{2\sqrt{3}}\right)$$
 (c) $\left(\frac{5}{6}, \frac{5}{2\sqrt{3}}\right)$ (d) $\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$

(c)
$$\left(\frac{5}{6}, \frac{5}{2\sqrt{3}}\right)$$

(d)
$$\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$$

63. All chords of a curve $3x^2 - y^2 - 2x + 4y = 0$ which subtends a right angle at the origin passes through a fixed point, which is:

64. Let P(-1,0), Q(0,0), $R(3,3\sqrt{3})$ be three points then the equation of the bisector of the angle

(a)
$$\frac{\sqrt{3}}{2}x + y = 0$$
 (b) $x + \sqrt{3}y = 0$ (c) $\sqrt{3}x + y = 0$

(b)
$$x + \sqrt{3}y = 0$$

$$(c) \quad \sqrt{3}x + y = 0$$

(d)
$$x + \frac{\sqrt{3}}{2}y = 0$$

Answers

						The state of the s		Value of the same of		6.	X828	100	(b)	8.	(b)	9.	(b)	10.	(a)
11.	(d)	12.	(d)	13.	(d)	14.	(c)	15.	(d)	16.	(b)	17.	(c)	18.	(b)	19.	(4)	20.	(a)
21.	(a)	22.	(a)	23.	(c)	24.	(a)	25.	(c)	26.	(b)	27.	(d)	28.	(a)	29.	(P)	30	(a)
31.	(c)	32.	(d)	33.	(c)	34.	(a)	35.	(d)	36.	(d)	37.	(c)	38.	(c)	39.	(d)	40.	(a)
41.	(d)	42.	(b)	43.	(d)	44.	(c)	45.	(a)	46.	(c)	47.	(d)	48.	(c)	40	(4)	=0	(c)
51.	(a)	52.	(c)	53.	(d)	54.	(b)	55.	(c)	56.	(a)	57.	(b)	58.	(d)	59.	(d)	60.	(c)
61.	(d)	62.	(b)	63.	(b)	64.	(c)										`-'		