## Modelo Futuros Mini Ibovespa - Dados Históricos

O Mercado Futuro é o ambiente onde você pode ganhar com a alta ou baixa de um determinado ativo, seja ele uma commodity (Milho, Café, Boi Gordo), uma moeda (como o dólar), um Índice (Bovespa, Índice S&P 500) ou mesmo uma taxa de juros. Nele, são negociados contratos futuros.



O mini índice é um contrato futuro derivado do Índice Bovespa, ou seja, é um ativo que tem como base o sobe e desce desse índice. Como esse tipo de operação envolve **risco considerável** e **oscilações frequentes no mercado**, ela é indicada apenas para aqueles que se encaixam no perfil de investidor arrojado.

Neste trabalho iremos implementar uma RNNs para realizar a predição diária do Mini Índice da Ibovespa.

O dataset "FuturosMiniBovespa.csv" possui informações dispostas em colunas :

- Date: Data das operações na bolsa (diária)
- Close: Valor de Fechamento do Índice da Ibovespa (no dia)
- Open: Valor da Abertura do Índice da Ibovespa (no dia)
- High: Valor máximo do Índice da Ibovespa (no dia)
- Low: Valor mínimo do Índice da Ibovespa (no dia)
- Vol: Volume de contratos negociados (no dia)

### **Bibliotecas**

```
In [1]:
```

```
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
import plotly.graph_objects as go
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

### Carregando os dados

Vamos começar lendo o arquivo FuturosMiniBovespa.csv em um dataframe do pandas, mas antes vamos dar uma olhadinha no gráfico de variação do último mês do índice Ibovespa.

```
In [2]: DataSet=pd.read_csv('FuturosEthereum-teste.csv')
```

## Rede Neural Recorrente (RNN)

Antes de avançar para LSTM, primeiro vamos introduzir o conceito de Redes Recorrentes. Elas são redes utilizadas para reconhecer padrões quando os resultados do passado influenciam no resultado atual. Um exemplo disso são as séries temporais, em que a ordem dos dados é muito importante.

Nesta arquitetura, um neurônio tem como entrada seu estado anterior, além das entradas da camada anterior. A imagem abaixo ilustra esta nova modelagem.

Observe que H representa o estado. Assim, no estado H\_1, o neurônio recebe como parâmetro de entrada X\_1 e, além disso, seu estado anterior H\_0. O principal problema desta arquitetura é que os estados mais antigos são esquecidos muito rapidamente. Ou seja, para sequências em que precisamos lembrar além de um passado imediato, as redes RNNs são limitadas

### Rede LSTM

Uma rede LSTM tem origem em uma RNN (Rede Neural Recorrente). Mas ela resolve o problema de memória mudando sua arquitetura.



Nesta nova arquitetura, cada neurônio possui 3 gates, cada um com uma função diferente. São eles:

- Input Gate
- Output Gate
- Forget Gate

Agora, um neurônio LSTM recebe entradas de seu estado anterior, assim como ocorria na Rede Recorrente:



## Agora vamos ler o arquivo do período desejável

```
In [4]: DataSet=pd.read_csv('FuturosEthereum-treino.csv')
   DataSet=DataSet.dropna()
   DataSet.head()
```

| Out[4]: |   | Date       | Open     | High     | Low      | Close    | Adj Close | Volume   |
|---------|---|------------|----------|----------|----------|----------|-----------|----------|
|         | 0 | 2015-08-07 | 2.831620 | 3.536610 | 2.521120 | 2.772120 | 2.772120  | 164329.0 |
|         | 1 | 2015-08-08 | 2.793760 | 2.798810 | 0.714725 | 0.753325 | 0.753325  | 674188.0 |
|         | 2 | 2015-08-09 | 0.706136 | 0.879810 | 0.629191 | 0.701897 | 0.701897  | 532170.0 |
|         | 3 | 2015-08-10 | 0.713989 | 0.729854 | 0.636546 | 0.708448 | 0.708448  | 405283.0 |
|         |   |            |          |          |          |          |           |          |

```
In [5]: DataSet.describe()
```

| Out[5]: | Open  |             | High Low    |             | Close Adj Close |             | Volume       |  |
|---------|-------|-------------|-------------|-------------|-----------------|-------------|--------------|--|
|         | count | 2090.000000 | 2090.000000 | 2090.000000 | 2090.000000     | 2090.000000 | 2.090000e+03 |  |
|         | mean  | 308.398014  | 319.833590  | 296.184254  | 309.636474      | 309.636474  | 6.075951e+09 |  |
|         | std   | 425.797837  | 443.141785  | 407.478094  | 429.030976      | 429.030976  | 8.970136e+09 |  |

**4** 2015-08-11 0.708087 1.131410 0.663235 1.067860 1.067860 1463100.0

|     | Open       | High       | Low        | Close      | Adj Close  | Volume       |
|-----|------------|------------|------------|------------|------------|--------------|
| min | 0.431589   | 0.482988   | 0.420897   | 0.434829   | 0.434829   | 1.021280e+05 |
| 25% | 13.185075  | 13.531575  | 12.693700  | 13.176775  | 13.176775  | 3.173252e+07 |
| 50% | 189.438515 | 196.909904 | 184.524468 | 189.644058 | 189.644058 | 1.972050e+09 |
| 75% | 359.281754 | 371.925491 | 348.044732 | 359.041008 | 359.041008 | 8.570984e+09 |

# Inicialmente iremos criar uma RNN baseada apenas no Valor de Abertura

```
In [6]:
    plt.scatter(DataSet['Date'],DataSet['Open'],)
    plt.show()

    base_treinamento = DataSet.iloc[:, 1:2].values

#DataSet.drop(['Date','Close','High','Low', 'Volume'],axis=1,inplace=True)
```



## Normalizar os dados do Mini Índice

```
[8.56696341e-04]
[9.95708653e-05]
...
[9.66253763e-01]
[9.96705304e-01]
[1.00000000e+00]]
```

## Definição dos previsores

## Tranformar para o formato do Tensor do Keras

```
In [23]:
          # Camada de entrada
          regressor = Sequential()
          regressor.add(LSTM(units = 100, return sequences = True, input shape = (previ
          regressor.add(Dropout(0.3))
          # Cada Oculta 1
          regressor.add(LSTM(units = 50, return sequences = True))
          regressor.add(Dropout(0.3))
          # Cada Oculta 2
          regressor.add(LSTM(units = 50, return sequences = True))
          regressor.add(Dropout(0.3))
          # Cada Oculta 3
          regressor.add(LSTM(units = 50))
          regressor.add(Dropout(0.3))
          # Camada de Saída
          regressor.add(Dense(units = 1, activation = 'linear'))
```

#### Construindo a Rede

```
In [24]:
    regressor.compile(optimizer = 'rmsprop', loss = 'mean_squared_error',
           metrics = ['mean absolute error'])
    regressor.fit(previsores, preco real, epochs = 100, batch size = 32)
   Epoch 1/100
   absolute error: 0.0587
   Epoch 2/100
   absolute error: 0.0332
   Epoch 3/100
   absolute error: 0.0317
   Epoch 4/100
   absolute error: 0.0285
   Epoch 5/100
   absolute error: 0.0284
   Epoch 6/100
   absolute error: 0.0280
   Epoch 7/100
   absolute error: 0.0256
   Epoch 8/100
   absolute error: 0.0266
   Epoch 9/100
   absolute error: 0.0252
   Epoch 10/100
   absolute error: 0.0246
```

```
Epoch 11/100
absolute error: 0.0222
Epoch 12/100
absolute error: 0.0228
Epoch 13/100
63/63 [================== ] - 11s 178ms/step - loss: 0.0016 - mean
absolute error: 0.0235
Epoch 14/100
absolute error: 0.0227
Epoch 15/100
absolute error: 0.0206
Epoch 16/100
absolute error: 0.0212
Epoch 17/100
63/63 [================== ] - 11s 176ms/step - loss: 0.0010 - mean
absolute error: 0.0206
Epoch 18/100
absolute error: 0.0197
Epoch 19/100
63/63 [=================== ] - 11s 177ms/step - loss: 0.0012 - mean
absolute error: 0.0204
Epoch 20/100
absolute error: 0.0206
Epoch 21/100
absolute error: 0.0207
Epoch 22/100
63/63 [=================== ] - 11s 175ms/step - loss: 9.3160e-04 -
mean absolute error: 0.0189
Epoch 23/100
63/63 [================== ] - 11s 174ms/step - loss: 9.6013e-04 -
mean absolute error: 0.0185
Epoch 24/100
absolute error: 0.0201
Epoch 25/100
63/63 [============== ] - 11s 176ms/step - loss: 9.7575e-04 -
mean absolute error: 0.0194
Epoch 26/100
absolute error: 0.0187
Epoch 27/100
_absolute_error: 0.0195
Epoch 28/100
absolute error: 0.0211
Epoch 29/100
63/63 [================== ] - 11s 178ms/step - loss: 0.0011 - mean
absolute error: 0.0186
Epoch 30/100
63/63 [=================== ] - 11s 181ms/step - loss: 7.8500e-04 -
mean absolute error: 0.0185
```

```
Epoch 31/100
63/63 [=================== ] - 11s 176ms/step - loss: 9.8730e-04 -
mean absolute error: 0.0187
Epoch 32/100
absolute error: 0.0199
Epoch 33/100
63/63 [================== ] - 11s 173ms/step - loss: 0.0010 - mean
absolute error: 0.0189
Epoch 34/100
absolute error: 0.0195
Epoch 35/100
63/63 [================= ] - 11s 174ms/step - loss: 9.8068e-04 -
mean absolute error: 0.0176
Epoch 36/100
63/63 [=================== ] - 11s 175ms/step - loss: 9.2939e-04 -
mean absolute error: 0.0185
Epoch 37/100
63/63 [================== ] - 11s 175ms/step - loss: 0.0012 - mean
absolute error: 0.0194
Epoch 38/100
mean absolute error: 0.0182
Epoch 39/100
mean absolute error: 0.0172
Epoch 40/100
mean absolute error: 0.0174
Epoch 41/100
mean absolute error: 0.0182
Epoch 42/100
63/63 [============== ] - 12s 187ms/step - loss: 8.4554e-04 -
mean absolute error: 0.0177
Epoch 43/100
absolute error: 0.0192
Epoch 44/100
63/63 [================== ] - 12s 184ms/step - loss: 8.3003e-04 -
mean absolute error: 0.0178
Epoch 45/100
63/63 [============== ] - 11s 180ms/step - loss: 8.7891e-04 -
mean absolute error: 0.0176
Epoch 46/100
63/63 [================= ] - 11s 181ms/step - loss: 8.5457e-04 -
mean_absolute_error: 0.0181
Epoch 47/100
mean_absolute_error: 0.0176
Epoch 48/100
63/63 [================ ] - 11s 172ms/step - loss: 7.1617e-04 -
mean absolute error: 0.0170
Epoch 49/100
63/63 [================= ] - 11s 177ms/step - loss: 7.4395e-04 -
mean absolute error: 0.0163
Epoch 50/100
63/63 [============== ] - 11s 173ms/step - loss: 8.0962e-04 -
mean absolute error: 0.0160
```

```
Epoch 51/100
mean absolute error: 0.0171
Epoch 52/100
63/63 [============== ] - 11s 173ms/step - loss: 9.1947e-04 -
mean absolute error: 0.0180
Epoch 53/100
63/63 [================= ] - 11s 171ms/step - loss: 7.5348e-04 -
mean_absolute_error: 0.0174
Epoch 54/100
absolute error: 0.0180
Epoch 55/100
63/63 [================= ] - 11s 171ms/step - loss: 8.4986e-04 -
mean absolute error: 0.0172
Epoch 56/100
mean absolute error: 0.0167
Epoch 57/100
63/63 [================= ] - 11s 174ms/step - loss: 7.7178e-04 -
mean absolute error: 0.0165
Epoch 58/100
mean absolute error: 0.0172
Epoch 59/100
mean absolute error: 0.0165
Epoch 60/100
63/63 [=================== ] - 11s 177ms/step - loss: 7.0981e-04 -
mean absolute error: 0.0161
Epoch 61/100
mean absolute error: 0.0157
Epoch 62/100
63/63 [============== ] - 11s 177ms/step - loss: 7.7409e-04 -
mean absolute error: 0.0160
Epoch 63/100
63/63 [=================== ] - 11s 177ms/step - loss: 7.0291e-04 -
mean absolute error: 0.0157
Epoch 64/100
63/63 [================== ] - 11s 179ms/step - loss: 8.6078e-04 -
mean absolute error: 0.0171
Epoch 65/100
63/63 [============== ] - 12s 183ms/step - loss: 9.4839e-04 -
mean absolute error: 0.0178
Epoch 66/100
63/63 [================= ] - 11s 181ms/step - loss: 5.9985e-04 -
mean_absolute_error: 0.0158
Epoch 67/100
mean_absolute_error: 0.0164
Epoch 68/100
mean absolute error: 0.0164
Epoch 69/100
63/63 [================= ] - 11s 176ms/step - loss: 7.3680e-04 -
mean absolute error: 0.0160
Epoch 70/100
63/63 [============== ] - 11s 175ms/step - loss: 8.0002e-04 -
mean absolute error: 0.0161
```

```
Epoch 71/100
63/63 [================= ] - 11s 175ms/step - loss: 7.6728e-04 -
mean absolute error: 0.0158
Epoch 72/100
63/63 [============== ] - 11s 175ms/step - loss: 7.9832e-04 -
mean absolute error: 0.0162
Epoch 73/100
63/63 [================= ] - 11s 176ms/step - loss: 7.4304e-04 -
mean_absolute_error: 0.0164
Epoch 74/100
63/63 [============== ] - 11s 181ms/step - loss: 6.9806e-04 -
mean absolute error: 0.0159
Epoch 75/100
63/63 [================= ] - 11s 178ms/step - loss: 7.9505e-04 -
mean absolute error: 0.0165
Epoch 76/100
63/63 [========================= ] - 11s 179ms/step - loss: 6.8144e-04 -
mean absolute error: 0.0159
Epoch 77/100
63/63 [================= ] - 11s 175ms/step - loss: 7.8674e-04 -
mean absolute error: 0.0162
Epoch 78/100
mean absolute error: 0.0158
Epoch 79/100
mean absolute error: 0.0156
Epoch 80/100
63/63 [================== ] - 10s 166ms/step - loss: 7.6319e-04 -
mean absolute error: 0.0161
Epoch 81/100
63/63 [============ ] - 11s 167ms/step - loss: 9.2105e-04 -
mean absolute error: 0.0170
Epoch 82/100
63/63 [============== ] - 11s 171ms/step - loss: 6.3826e-04 -
mean absolute error: 0.0158
Epoch 83/100
63/63 [=================== ] - 11s 175ms/step - loss: 7.0190e-04 -
mean absolute error: 0.0156
Epoch 84/100
63/63 [================= ] - 11s 173ms/step - loss: 7.9875e-04 -
mean absolute error: 0.0166
Epoch 85/100
63/63 [============== ] - 11s 174ms/step - loss: 7.7809e-04 -
mean absolute error: 0.0162
Epoch 86/100
63/63 [================= ] - 11s 175ms/step - loss: 6.4176e-04 -
mean absolute error: 0.0147
Epoch 87/100
63/63 [================== ] - 11s 178ms/step - loss: 7.2543e-04 -
mean_absolute_error: 0.0153
Epoch 88/100
mean absolute error: 0.0163
Epoch 89/100
mean absolute error: 0.0157
Epoch 90/100
63/63 [============== ] - 11s 173ms/step - loss: 7.2527e-04 -
mean absolute error: 0.0155
```

```
Epoch 91/100
       63/63 [================== ] - 11s 174ms/step - loss: 7.6337e-04 -
       mean absolute error: 0.0156
       Epoch 92/100
       63/63 [============== ] - 11s 174ms/step - loss: 5.4174e-04 -
       mean absolute error: 0.0143
       Epoch 93/100
       63/63 [================== ] - 11s 174ms/step - loss: 8.3118e-04 -
       mean absolute error: 0.0164
       Epoch 94/100
       63/63 [============== ] - 11s 178ms/step - loss: 5.6554e-04 -
       mean absolute error: 0.0144
       Epoch 95/100
       mean absolute error: 0.0144
       Epoch 96/100
       63/63 [=================== ] - 11s 180ms/step - loss: 6.5369e-04 -
       mean_absolute error: 0.0161
       Epoch 97/100
       63/63 [============ ] - 11s 175ms/step - loss: 5.4592e-04 -
       mean absolute error: 0.0152
       Epoch 98/100
       mean absolute error: 0.0155
       Epoch 99/100
       63/63 [============ ] - 11s 173ms/step - loss: 7.1616e-04 -
       mean absolute error: 0.0154
       Epoch 100/100
       63/63 [============== ] - 11s 177ms/step - loss: 7.2076e-04 -
       maan ahsoluta arror: 0 0167
Out[24]: <tensorflow.python.keras.callbacks.History at 0x7fd1f5b2b950>
```

### Conjunto de dados para o Teste

```
In [25]: DataSet_teste=pd.read_csv('FuturosEthereum-teste.csv')
    preco_real_teste = DataSet_teste.iloc[:, 1:2].values
    base_completa = pd.concat((DataSet['Open'], DataSet_teste['Open']), axis = 0)
    entradas = base_completa[len(base_completa) - len(DataSet_teste) - NRecursao:
    entradas = entradas.reshape(-1, 1)
    entradas = scaler.transform(entradas)
```

```
In [26]:
          DataSetTestLen = len(DataSet_teste)
          NPredictions = 90
          X_{\text{teste}} = []
          for i in range(NRecursao, DataSetTestLen+NRecursao):
              X teste.append(entradas[i-NRecursao:i, 0])
          X teste = np.array(X teste)
          X_teste = np.reshape(X_teste, (X_teste.shape[0], X_teste.shape[1], 1))
          previsoes = regressor.predict(X teste)
          previsoes = scaler.inverse transform(previsoes)
In [27]:
          RNN=[]
          predictions teste=X teste[0].T
          predictions teste=np.reshape(predictions teste, (predictions teste.shape[0],
          predictions teste[0][NRecursao-1][0]=regressor.predict(predictions teste)[0][
          RNN.append(regressor.predict(predictions_teste)[0])
          for i in range(NPredictions-1):
              predictions teste=np.roll(predictions teste,-1)
              predictions teste[0][NRecursao-1][0]=regressor.predict(predictions teste)
              RNN.append(regressor.predict(predictions teste)[0])
          RNN = scaler.inverse_transform(RNN)
          print(RNN.mean())
          print(previsoes.mean())
          print(preco real teste.mean())
         2096.7557163208708
         2823.6003
         3455.175944095238
In [28]:
          plt.plot(preco real teste, color = 'red', label = 'Preço real')
          plt.plot(previsoes, color = 'blue', label = 'Previsões')
          #plt.plot(RNN, color = 'green', label = 'RNN')
          plt.title('ETHEREUM')
          plt.xlabel('Tempo')
          plt.ylabel('Valor')
          plt.legend()
          plt.show()
```



