Ensembles et Probabilites		
Commutatif	$A \cup B = B \cup A$	$A\cap B=B\cap A$
Associatif	$A \cup (B \cup C) = A \cup (B \cup C)$	$A\cap (B\cap C)=A\cap (B\cap C)$
Élément neutre	$A \cup \emptyset = A$	$A\cap E=A$
Élément absorbant	$A \cup E = E$	$A\cap\emptyset=\emptyset$
Distributivité	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
Lois de De Morgan	$\overline{A\cap B}=\overline{A}\cup\overline{B}$	$\overline{A \cup B} = \overline{A} \cap \overline{B}$
Lois de Laplace	$P(A) = rac{ ext{nombre de cas favorables}}{ ext{nombre de cas possibles}}$	
Évènement contraire	$Pig(\overline{A}ig)=1-P(A)$	
Réunion de deux évènements	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$)
Probabilité conditionnelle	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	
Evénements indépendants	$P(A \mid B) = P(A)$	$P(A \cap B) = P(A) \times P(B)$
Permutations	$P_n=n!=n imes(n-1) imes imes2 imes1$	ex : $P_4=4!=4 imes3 imes2 imes1=24$
Arrangement sans répétition	$^{n}A_{p}=rac{n!}{(n-p)!}$	$\operatorname{ex}: {}^6A_2 = rac{6!}{(6-2)!} = 30$
Arrangement avec répétition	$^{n}A_{p}^{\prime }=n^{p}$	ex : ${}^5A_3' = 5^3 = 125$
Openhinainan	$n = n A_p $ $n!$	5α 5A_4 $^{-5}$
Combinaisons	$^nC_p=rac{^nA_p}{p!}=rac{n!}{(n-p)! imes p!}$	$\operatorname{ex}: {}^{5}C_{4} = \frac{{}^{5}A_{4}}{4!} = 5$
	Valeur moyenne	$\mu = x_1p_1 + x_2p_2 + + x_kp_k$
Distribution de Probabilité	Écart type	$\sigma = \sqrt{\sum_{i=1}^k p_i (x_i - \mu)^2}$

Loi binomiale $P(X=k)={}^nC_k.\ p^k.\ (1-p)^{n-k}$ $ext{ex}: B(10;0,6) \ P(X=3)={}^{10}C_3 imes 0, 6^3 imes 0, 4^7$