VE370 Hw2 国辖3 518021911039
1. addi \$t0, \$0, 15
sll \$t0, \$t0, 24
lb \$s1, 2(\$t0)
The content of \$s1 is 0×00000047

2. FACT: addi \$op, \$op, 8 € addi \$sp, \$sp, -8 sw \$ra, 4(\$sp) sw \$a0, 0(\$sp) add \$s0, \$0, \$a0 beq \$t0, \$0, L1 addi \$sp, \$sp, -8 € addi \$sp, \$sp, 8 jr \$ra L1: addi \$a0, \$a0, -1 jal FACT addi \$v0, \$0, 1 delete this line lw \$a0, 4(\$sp) lw \$ra, 0(\$sp) addi \$sp, \$sp, 8

in \$ra

di \$sp, \$sp, 8

mul \$vo, \$ao, \$vo jr \$ra

Sub \$t1, \$t3, \$t2

- 2). R-type
- 4. 1). OP \$52 \$51 -32

100011 10010 10001 1111111111100000

Therefore, the binary code is 1000 1110 0101 0001 1111 1111 1110 0000

2). I-type

5. 1).
$$128 = 2^{7}$$

op rs rt rd shamt funct

6 bit 7bit 7bit 7bit 5bit 6 bit

Total = 38 bits

6. i).
$$64 = 2^{4}$$
op rs rt constant or address
$$6 \text{ bit } 6 \text{ bit } 6 \text{ bit } 4 \text{ bit}$$

For beq, new PC = current PC + 4 + Relative address × 4.

Since the bits for relative address is changed from 1b to 14.

Therefore, the range of address for beq is reduced.

٦. [6 bit		bbit		oriami	414
ا (د	op	rs	rt	rd	shamt	funct

For jr, it is R-type and PC = R[rs].

Therefore, the range of address for ir is unchanged.

7. 0x1000F400	000000	00000	01000	01101	00000	1010	010
0x1000F404	000101	01101	00000	0000	000000	000	001
0×1000F408	000010	0000 00	200 00	00 1111	0100	00 DI	10
0×1000F40C			l	· ·	000000		
0×1000F410	1	1	01010	0000	00000	0000	00
0×1000F4 14	000010	0000 01	DOO 001	00 [[[]	0100	0000	DO
0x1000 F418							

```
module datamemory (rdata, addr, wdata, memwrite, memread):
input [31:0] addr, wdata;
input memwrite, memread;
output [31:0] rdata;
reg [31:0] rdata;
reg [31:0] mem[1023:0];
always @ (addr or wdata or memwrite or memread)
begin
if (memwrite = 1) mem[addr] = wdata;
else if (memread = 1) rdata = mem[addr];
end
endmodule
```

> W rdata[31:0]	00000014	XXXX	XXXX	0000	0001	0000	00000014		
> 🐶 addr[31:0]	00000001	00000000		0000		000a 000		00001	
> 🐶 wdata[31:0]	00000014	00000000 0000000		0001	0000	000a	0000	0014	
1 memwrite	0								
¼ memread	1								

	endmodul e																			
> W resu	H(31.0)	00000000	(6031	(031(03)			contest			010001f+		0100014		OHEO1f+		031603316			
la zero		1																		
To overf	low	0																		
14 alave	ert	0																	_	
14 bneg	pate	1																		
> W open	ation[1:0]	3			,								2							
> W a[31:	0)	00000000	9100	0110	9100	Off	9100	0310			9100	0166			10031011				0018	(0)1
> M b(31)	:00	D000000	9160	0110	9160	ore	9160	0160	9160	ore	0160	0310	0110	03ff		(00)	1003		(0)1	1011

10.

Executable File		
Header		
	Text size	0x 440
	Data size	0× 90
Text Segment	Address	Instruction
	0×00400000	lui \$at, Dx1000
	0x00400004	ori \$00, \$at, 0x0000
		•••
	0× 004000084	jr \$ra
	•••	٠٠,
	0x00400140	SW \$00, Dx 8020(\$9P)
	0×00400144	jmp 0x004002C0
		•••
	0×004002C0	jal 0×00400000
	**.	•••
Data Segment	Address	
	0×10000 000	(X)
	***	• • • •
	0×1000 0020	(Y)
		•