Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 26. března 2023

Obor: F Skupina: Út 16:00 Testováno:

Úloha č. 9:

Měření elektrického napětí a proudu

 $T=21,1~^{\circ}\mathrm{C}$ $p=101,35~\mathrm{kPa}$ $\varphi=47,7~\%$

1. Úvod

V úloze se budeme zabývat měřením vnitřního odporu ručkového ampérmetru a navržením obvodů pro rozsíření jeho rozsahu. Druhá část úlohy je zaměřená na digitálně analogové a analogově digitální převodníky a jejich vlastnosti.

2. Teorie

2.1. Měření vnitřního odporu ampérmetru

Určit vnitřní odpor ručkového ampermetru jde jednoduše přímo z Ohmova zákona zapojením obvodu z obrázku 1.

Obrázek 1: Měření vnitřního odporu ampérmetru z Ohmova zákona

2. možnost využívá nastavitelného odporu podle obrázku 2. Nejprve necháme dekádu nepřipojenou a řiditelným zdrojem nastavíme na ampérmetru maximální výchylku rozsahu I_0 . Poté dekádu připojíme a snažíme se nastavením hodnoty jejího odporu dosáhnout poloviční výchylky $I=\frac{I_0}{2}$. Nyní protéká oběma větvemi stejný proud, což nastane právě tehdy, když obě větve mají stejný odpor.

Obrázek 2: Měření vnitřního odporu ampérmetru pomocí odporové dekády

2.2. změna rozsahu ampérmetru

Obecně můžeme rozsah přístroje pouze zvětšit. Měřený proud jde pomocí bočníku rozdělit do dvou větví a proud se měří jen v jdené, jako na obrázku 3. Celkový proud dopočítáme se znalostí odporu bočníku R_B .

Obrázek 3: Zapojení bočníku

Protože napětí je na měřicím přístroji i na celkovém obvodu je stejné

$$\frac{I_N}{R_A + R_B} = R_A I_A = U$$

$$R_B = \frac{R_A}{\frac{I_N}{I_A} - 1},$$
(2)

$$R_B = \frac{R_A}{\frac{I_N}{I_A} - 1},\tag{2}$$

kde I_N , je celkový proud a I_A měřený proud ampérmetrem. Vztah (2) udává potřebnou volbou R_B pro $\frac{I_N}{I_A}=$ n-násobného zvětšení rozsahu proudu.

2.3. Změna rozsahu voltmetru

Namísto paralelně zapojeného bočníku je v případě změny rozsahu voltmetru třeba použít sériově zapojený odpor, tzv. předřadník (zapojení předřadníku je na obr. 4). Místo voltmetru se taky dá použít ampérmetr se známým vnitřním odporem a napětí spočítat z ohmova zákona.

Obrázek 4: Zapojení předřadníku

Protože proud, který teče voltmetrem je stejný jako ten, který teče celým obvodem,

$$\frac{U_V}{R_V} = \frac{U_N}{R_P + R_V} \tag{3}$$

$$R_P = (\frac{U_N}{U_V} - 1)R_V, \tag{4}$$

(5)

kde $\frac{U_N}{U_A}=n,$ což je keficient zvětšení rozsahu. Pokud namísto voltmetru použijeme ampérmetr,

$$U_N = (R_A + R_B) * I_A \tag{6}$$

$$R_B = \frac{U_N}{I_A} - R_A. (7)$$

2.4. Digitální část

Číslený rozsah n-bitového převodníku určíme jako $[0, 2^n - 1]$ a jeho kvantizační krok

$$k = \frac{U_m - U_0}{2^n - 1},\tag{8}$$

kde U_0 je minimální a U_m maximální napětí. Pokud pro žádané napětí hledáme odpovídající vstup použijeme,

$$x = \frac{U(x) - U_0}{k} \tag{9}$$

Na obrázku 5 je uvedený jeden možný n-bitový přechodník, který obecně patří do skupiny převodníků konstruovaných pro mapování rozsahu $(0, 2^n - 1)$ na napěťový rozsah $(0, U_m)$. Reálné získané napětí ale může být odlišné. Zavádíme proto veličny charakterizující tyto odchylky jako

chyba ofsetu
$$\delta_0 = \frac{U_0}{k}$$
 (10)
chyba zesílení
$$\delta_m = \frac{U_m - U_0}{k},$$
 (11)

chyba zesílení
$$\delta_m = \frac{U_m - U_0}{k}, \tag{11}$$

Obrázek 5: D/A převodník s váhovými rezistory

3. Výsledky měření

3.1. Měření vnitřního odporu ampérmetru

Použili jsme dvě metody měření vnitřního odporu ampérmetru R_A . Přímo z ohmova zákona zapojením obvodu z obrázku 1 apomocí odporové dekády podle obrázku 2.

měření z Ohmova zákona	$1650(50) \Omega$
měření Dekádou	$1670(20) \Omega$

Tabulka 1: výsledky měření vnitřního odporu ručkového ampérmetru

3.2. Zvětšení rozsahu ampérmetru

N-násobné zvětšení rozsahu můžeme realizovat zapojením obvodu z obrázku 3 s odporem R_B , který spočítáme ze vztahu (2) se seznalostí R_A . Nejjednodušší způsob kontroly je použít velmi přesný nastavitelný zdroj napětí a nastavit ho tak, aby na ručkovém ampérmetru byl právě maximální hodnota. Nakonec provnáme předpokládanou hodnotu proudu s tou nastavenou na zdroji.

n	$R_B [\Omega]$	$I_A [\mu A]$	předpokládáme $I = nI_0$ [mA]	opravdový proud I [mA]
5	420(5)	100	0.5	0.4929
10	187(2)	100	1	0.9790
20	88(1)	100	2	1.9664

Tabulka 2: Tabulka měření proudu použitím bočníku podle vztahu (2)

3.3. Zvětšení rozsahu voltmertu

Se znalostí vnitřního odporu jde ampérmetr použít jako voltmetr. S přeřadníkem s odporem R_P podle obvodu z obrázku 4 můžeme navíc zvětšit jeho rozsah na hodnotu U_N podle vztahu (7). Ke kontrole použijeme podobný postup jako u bočníku.

předpokládané napětí U_N [V]	$I_A [\mu A]$	$R_B [k\Omega]$	opravdové napětí U_N [V]
5	100	48.320	5.086
10	100	98.320	10.420

Tabulka 3: Tabulka měření napětí použitím přeřadníku podle vztahu (7)

3.4. D/A převodníky

Určíme rozsah 8-bitového převodníku MDAC08 a 16-bitobého USB - 9162.

převodník	n	U_m [V]	U_0 [V]	k
MDAC08	8	9.88121	$1.2560*10^{-3}$	$38.6 * 10^{-3}$
USB - 9162	16	10.6970	-10.6735	$0.326 * 10^{-3}$

Tabulka 4: rozsahy dvou D/A převodníků a jejich kvantizační kroky

Interpolací teď můžeme podle vztahu (9) nastavit libovolné napětí v rozsahu. Třeba pro U(x)=3.2 je x = 42545. Skutečné napětí bylo 3.19917 V.

Nominální rozsah př
vodníku MDAC08 je 0 - 10 V. Ze vzta
ů (10) a (11) můžeme určit chybu ofsetu a chybu zesílení jako

$$\delta_0 = 1.26 * 10^{-3} \tag{12}$$

$$\delta_m = 11.8 * 10^{-3}. (13)$$

3.5. Vliv vzorkovací frekvence na kvalitu záznamu

Zaznamenávali jsme signál o frekvenci 1kHz A/D převodníkem a růžnými vzorkovacími frekvencemi. Výsledky jsou uvedeny v tabulce 3.

Vzorkovací frekvence	frekvence záznamu
20 kHz	1 kHz
2 kHz	1 kHz
1,1 kHz	100 Hz
1 kHz	-
100 Hz	-

Tabulka 5: Vliv vzorkovací frekvence na kvalitu záznamu A/D převodníku

3.6. Kvantizační krok A/D převodníku

Kvantizační krok vyjadřuje minimální rozdíl napětí, který jde A/D převodníkem změřit. K jeho určení existuje následující postup; Zkratováním vstupních svorek začne karta měřit malé náhodné rozdíly napětí. Kvantizační krok se v získaných datech, projeví jako nejmenší nenulový rozdíl dvou následujících hodnot. Použili jsme 12-bitový A/D převodník na kartě ICP DAS PCI-1202LU z měřícího systému ISES. Nejmenší naměřený rozdíl byl 1.22099 mV.

4. Závěr

Použil jsem dvě různé metody pro měření vnitřního odporu ručkového ampérmetru. Obě měření uvedené v tabulce 1 jsou docela přesné a zhodují se. Dál jsme chtěli zvětšit měřící rozsah. Podle vztahů (2) a (7) jsem odhadl velikosti odporů bočníků a přeřadníků a výsledky uvedl v tabulkách 2 a 3. Rozdíl vypočítaných hodnot a skutečných byl v obou případech minimální.

Určil jsem velikosti kvantizačních kroků dvou D/A přeřadníků MDAC08 a USB - 9162 uvedné v tabulce 4. Povedlo se správně odhadnout potřebné vstupní číslo pro nastavení 3.2 V a chyby ofsetu a zesílení byli obě minimální.

V tabluce 5 jsme testovali různé vzorkovací frekvence pro měření signálu o frekvenci 1 kHz. Ke spolehlivým výsledkům bylo potřeba alespoň dvojnásobná vzorkovací frekvence.

Určil jsem kvantizační krok 12-bitového A/D převodníku s rozsahem 0 - 5 V na kartě ICP DAS PCI-1202LU jako 1.22099 mV, což odpovídá teoretickému výsledku $k = \frac{U_r}{2^n-1} = 1.221$ mV.

Reference

[1] Návod k úloze 9 https://www.physics.muni.cz/kof/vyuka/fp1_09.pdf.