Лекция 5

- □ Прямая в пространстве. Основные способы задания прямой в пространстве.
- Взаимное расположение двух прямых в пространстве. Угол между прямыми
- Расстояние от точки до прямой и расстояние между прямыми
- □ Взаимное расположение прямой и плоскости в пространстве.

Прямая в пространстве.

Уравнения прямой в пространстве.

1. Общее уравнение прямой.

Прямая в пространстве может быть задана как линия пересечения двух непараллельных плоскостей:

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0; \\ A_2 x + B_2 y + C_2 z + D_2 = 0; \end{cases}$$

где коэффициенты A_1 , B_1 , C_1 не пропорциональны коэффициентам A_2 , B_2 , C_2 . Это общее уравнение прямой в пространстве.

Замечание. Через каждую прямую проходит бесконечное множество различных плоскостей. Значит, существует бесконечно много возможностей выбрать две из них.

2. Прямая в пространстве однозначно задается точкой $M_0(x_0; y_0; z_0)$, лежащей на этой прямой, и вектором $\vec{q}(l; m; n)$, параллельным этой прямой (направляющим вектором) .

Для \forall точки $M(x; y; z) \in L$

$$\overrightarrow{M_0} \stackrel{M}{\longrightarrow} \underbrace{M_0} \stackrel{M}{\longrightarrow} \underbrace{M_0} \stackrel{M}{\longrightarrow} \underbrace{\overline{q}}$$

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

- каноническое уравнение прямой, проходящей через точку $M_0(x_0; y_0; z_0)$ параллельно направляющему вектору $\vec{q}(l; m; n)$.

3. Параметрическое уравнение.

$$\frac{x-x_{0}}{l} = \frac{y-y_{0}}{m} = \frac{z-z_{0}}{n} = t$$

$$\begin{cases} x = x_{0} + lt, \\ y = y_{0} + mt, \\ z = z_{0} + nt - t \end{cases}$$

параметрическое уравнение прямой, проходящей через точку $M_0(x_0; y_0; z_0)$ параллельно направляющему вектору $\vec{q}(l; m; n)$.

4. Уравнение прямой в векторном виде.

Обозначим:

$$ec{r} = egin{pmatrix} x \\ y \\ - & pадиус-вектор произвольной точки M , лежащей на прямой, $ec{r}_0 = egin{pmatrix} x_0 \\ y_0 \\ z_0 \\ \end{matrix} \end{pmatrix} - & pадиус-вектор фиксированной точки M_0 , лежащей на прямой, $ec{q} = egin{pmatrix} l \\ m \\ \end{matrix} - & \text{направляющий вектор прямой.} \end{cases}$$$$

$$\vec{r} = \vec{r_0} + t\vec{q}, \ t \in \mathfrak{R}.$$

Связь между общим уравнением прямой и каноническим.

Пусть прямая задана общим уравнением:

$$\begin{cases} A_1 x + B_1 y + C_1 z + D_1 = 0; \\ A_2 x + B_2 y + C_2 z + D_2 = 0. \end{cases}$$

Чтобы получить каноническое уравнение необходимо найти координаты любой точки, лежащей на прямой и координаты направляющего вектора.

Координаты точки, лежащей на прямой можно найти из системы уравнений, придав одной из координат произвольное значение.

Прямая перпендикулярна нормальным векторам $\vec{n}_1(A_1; B_1; C_1)$ и $\vec{n}_2(A_2; B_2; C_2)$. Значит, направляющий вектор прямой можно принять векторное произведение

$$\vec{q} = [\vec{n}_1, \vec{n}_2].$$

Пример.

Найти каноническое уравнение прямой

$$L: \begin{cases} x - y + 4z - 1 = 0, \\ 2x - 3z + 5 = 0. \end{cases}$$

Решение

Первый способ.

Найдем координаты точки M_0 , лежащей на прямой. Для этого мы можем одну из координат, например z_0 , взять равной нулю. Пусть точка $M_0(x_0; y_0; 0) \in L$, тогда:

$$\begin{cases} x_0 - y_0 = 1 \\ 2x_0 + 5 = 0 \end{cases} \Rightarrow \begin{cases} y_0 = x_0 - 1 \\ x_0 = -\frac{5}{2} \end{cases} \Rightarrow \begin{cases} y_0 = -\frac{7}{2} \\ x_0 = -\frac{5}{2} \end{cases} \Rightarrow M_0 \left(-\frac{5}{2}; -\frac{7}{2}; 0 \right) \in L.$$

Найдем координаты направляющего вектора \vec{q} .

 $\vec{n}_1(1;-1;4)$ — нормальный вектор плоскости $P_1;$ $\vec{n}_2(2,0,-3)$ — нормальный вектор плоскости $P_2.$ $\vec{q}\perp\vec{n}_1$ и $\vec{q}\perp\vec{n}_2\Rightarrow\vec{q}\parallel [\vec{n}_1,\vec{n}_2].$

$$\begin{bmatrix} \vec{n}_1, \vec{n}_2 \end{bmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 4 \\ 2 & 0 & -3 \end{vmatrix} = \vec{i} \begin{vmatrix} -1 & 4 \\ 0 & -3 \end{vmatrix} - \vec{j} \begin{vmatrix} 1 & 4 \\ 2 & -3 \end{vmatrix} + \vec{k} \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} = \mathbf{i} \begin{vmatrix} -1 & 4 \\ 2 & 0$$

 $=3\vec{i}+11\vec{j}+2\vec{k}$.

Итак, вектор \vec{q} (3; 11; 2) - направляющий вектор прямой L; а точка $M_0\left(-5/2; -7/2; 0\right) \in L$. Тогда каноническое уравнение прямой:

$$\frac{x+\frac{5}{2}}{3} = \frac{y+\frac{7}{2}}{11} = \frac{z}{2}.$$

Второй способ.

$$L: \begin{cases} x - y + 4z - 1 = 0 \\ 2x - 3z + 5 = 0 \end{cases}$$

Выразим из второго уравнения x и подставим его в первое уравнение:

уравнение:

$$L: \begin{cases} x - y + 4z - 1 = 0 \\ 2x - 3z + 5 = 0 \end{cases} \Rightarrow \begin{cases} \frac{3z - 5}{2} - y + 4z - 1 = 0 \\ x = \frac{3z - 5}{2} \end{cases} \Rightarrow \begin{cases} 3z - 5 - 2y + 8z - 2 = 0 \\ 2x + 5 = 3z \end{cases} \Rightarrow \begin{cases} \frac{z}{2} = \frac{y + \frac{7}{2}}{11} \\ 2x + 5 = 3z \end{cases} \Rightarrow \begin{cases} \frac{z}{2} = \frac{y + \frac{7}{2}}{11} \Rightarrow \frac{z}{2} \end{cases}$$

$$\frac{x + \frac{5}{2}}{3} = \frac{y + \frac{7}{2}}{11} = \frac{z}{2}.$$

Третий способ.

Найдем координаты двух точек, лежащих на данной прямой. Координаты точки $M_0\left(-5/2;-7/2;0\right) \in L$ были найдены ранее. Найдем координаты еще одной точки, лежащей на прямой - $M_1(x_1,y_1,z_1)$. Пусть, например, x_1 =0. Тогда

$$\begin{cases} -y_1 + 4z_1 = 1 \\ -3z_1 + 5 = 0 \end{cases} \Rightarrow \begin{cases} y_1 = 4z_1 - 1 \\ z_1 = 5/3 \end{cases} \Rightarrow \begin{cases} y_1 = 17/3 \\ z_1 = 5/3 \end{cases} \Rightarrow M_1\left(0; \frac{17}{3}; \frac{5}{3}\right) \in L.$$

Найдем координаты вектора

$$\overrightarrow{M_1M_0} = (-\frac{5}{2} - 0; -\frac{7}{2} - \frac{17}{3}; 0 - \frac{5}{3}) = (-\frac{5}{2}; -\frac{55}{6}; -\frac{5}{3}).$$

Тогда в качестве направляющего вектора прямой мы можем взять любой вектор, коллинеарный век \overline{p}_0 . Например, можем взять \overline{g} ектор (3, 11, 2).

Тогда каноническое уравнение прямой:
$$\frac{x + \frac{5}{2}}{3} = \frac{y + \frac{7}{2}}{11} = \frac{z}{2}.$$

Взаимное расположение прямых в пространстве.

Прямые в пространстве могут совпадать, быть параллельными, пересекаться или скрещиваться.

Прямые L_1 и L_2 лежат в одной плоскости тогда и только тогда, когда компланарны векторы $\overline{M_1M_2}, \overline{q_1}$ и $\overline{q_2}$, где $\overline{q_1}$ и $\overline{q_2}$ — направляющие векторы прямых L_1 и L_2 , соответственно, а $\overline{M_1M_2}$ — вектор, соединяющий произвольную точку M_1 , лежащую на прямой L_1 , с точкой M_2 , лежащей на прямой L_2 .

Следовательно, если
$$(\overline{M_1M_2}, \vec{q}_1, \vec{q}_2) = 0$$
,

то прямые лежат в одной плоскости. Если прямые принадлежат одной плоскости, то они могут совпадать, пересекаться и быть параллельными.

Пусть
$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}, L_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}.$$

Тогда прямые L_1 и L_2 :

1) скрещиваются, если
$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} \neq 0;$$

2) пересекаются, если

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0$$

$$_{\mathrm{H}}$$
 $\vec{q}_{1}/\!\!/\vec{q}_{2} \Rightarrow$

$$\frac{l_1}{l_2} \neq \frac{m_1}{m_2}$$
 или $\frac{l_1}{l_2} \neq \frac{n_1}{n_2}$;

3) параллельны, если

$$\vec{q}_1 \parallel \vec{q}_2 \Rightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$

и точка $M_1(x_1, y_1, z_1) \notin L_2$, т. е. $\frac{x_1 - x_2}{l_2} \neq \frac{y_1 - y_2}{m_2}$ или $\frac{x_1 - x_2}{l_2} \neq \frac{z_1 - z_2}{n_2}$;

4) совпадают, если

$$\vec{q}_1 \parallel \vec{q}_2 \Rightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$

и точка $M_1(x_1, y_1, z_1) \in L_2$, т. е. $\frac{x_1 - x_2}{l_2} = \frac{y_1 - y_2}{m_2} = \frac{z_1 - z_2}{n_2}.$

Угол между прямыми в пространстве

Пусть
$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}, \quad L_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2},$$

$$\cos(L_1, L_2) = \left|\cos(\vec{q}_1, \vec{q}_2)\right| = \frac{|(\vec{q}_1, \vec{q}_2)|}{|\vec{q}_1| \cdot |\vec{q}_2|}.$$

Расстояние от точки до прямой в пространстве.

Пусть
$$L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}, M(x_1; y_1; z_1) \notin L.$$

Приложим вектор \vec{q} к точке M_0 . Тогда расстояние от точки M до прямой L равно высоте треугольника MKM_0 .

$$S_{\Delta MKM_0} = \frac{1}{2} \left[\overrightarrow{M_0 M}, \overrightarrow{q} \right] = \frac{1}{2} h \cdot |\overrightarrow{q}| \Rightarrow h = \frac{\left[M_0 M, \overrightarrow{q} \right]}{|\overrightarrow{q}|}$$

Следовательно,

$$\rho(M,L) = |MN| = \frac{\left| \left[\overline{M}_{0} \overline{M}, \overline{q} \right] \right|}{|\overline{q}|}.$$

Замечание. Расстояние между параллельными прямыми может быть найдено по этой же формуле, как расстояние от любой точки, принадлежащей одной прямой, до другой прямой.

Расстояние между скрещивающимися прямыми в пространстве.

Пусть
$$L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}, L_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2},$$

Прямые L_1 и L_2 не лежат в одной плоскости, значит,

$$(\overrightarrow{M_1M_2}, \overrightarrow{q}_1, \overrightarrow{q}_2) \neq 0.$$

На векторах $M_1 M_2, \vec{q}_1$ и \vec{q}_2 построим параллелепипед.

$$\begin{split} V_{\text{пар.}} &= \left| \left(\overrightarrow{M_1} \overrightarrow{M}_2, \overrightarrow{q}_1, \overrightarrow{q}_2 \right) \right| = \\ &= H \cdot S_{\text{осн.}} = H \cdot \left| \left[\overrightarrow{q}_1, \overrightarrow{q}_2 \right] \right| \Rightarrow \\ H &= \frac{\left| \left(\overrightarrow{M_1} \overrightarrow{M}_2, \overrightarrow{q}_1, \overrightarrow{q}_2 \right) \right|}{\left[\overrightarrow{q}_1, \overrightarrow{q}_2 \right] \right|} \end{split}$$

Тогда расстояние между скрещивающимися прямыми

$$\rho(L_1, L_2) = \frac{\left| \left(\overline{M_1 M}_2, \vec{q}_1, \vec{q}_2 \right) \right|}{\left| \left[\vec{q}_1, \vec{q}_2 \right] \right|}.$$

Взаимное расположение прямой и плоскости в пространстве.

Пусть

$$L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}, P: Ax + By + Cz + D = 0.$$

Прямая может пересекать плоскость, быть ей параллельной или лежать в плоскости.

1. Если прямая лежит в плоскости, то $\vec{n} \perp \vec{q}$ и точка $M_0(x_0; y_0; z_0) \in P$. Тогда $L \subset P$, если

$$\begin{cases} (\vec{n}, \vec{q}) = 0, \\ Ax_0 + By_0 + Cz_0 + D = 0. \end{cases}$$

2. Если прямая параллельна плоскости, то $\vec{n} \perp \vec{q}$ и точка $M_0(x_0; y_0; z_0) \not\in P$. То есть $L \parallel P$, если

$$\begin{cases} (\vec{n}, \vec{q}) = 0, \\ Ax_0 + By_0 + Cz_0 + D \neq 0. \end{cases}$$

3. Прямая пересекает плоскость, если направляющий вектор прямой не перпендикулярен нормальному вектору плоскости, а значит $(\vec{n}, \vec{q}) \neq 0$.

Угол между прямой и плоскостью.

Углом между прямой и плоскостью называется угол между прямой и ее проекцией на плоскость.

Пусть
$$L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}, Ax+By+Cz+D=0.$$

 $\cos \beta = \cos(90 - \alpha) = \sin \alpha$, если угол β острый,

 $\cos \beta = \cos(\alpha + 90) = -\sin \alpha$, если угол β тупой.

$$\cos \beta = \frac{(\vec{n}, \vec{q})}{|\vec{n}| \cdot |\vec{q}|} \Rightarrow \sin(L, P) = \left| \cos(\vec{n}, \vec{q}) \right| = \frac{|(\vec{n}, \vec{q})|}{|\vec{n}| \cdot |\vec{q}|}.$$