

SEQUENCE LISTING

<110> Cedars-Sinai Medical Center
Readhead, Carol W.
Winston, Robert
Koeffler, H. Phillip
Müller, Carsten

<120> Transfection, Storage and Transfer of
Male Germ Cells for Generation of Selectable Transgenic Stem
Cells

<130> P07 41795

<140> Unassigned
<141> 1999-04-15

<150> US 09/191,920
<151> 1998-11-13

<150> US 60/065,825
<151> 1997-11-14

<150> US 09/272,443
<151> 1999-03-19

<150> PCT/US98/24238
<151> 1998-11-13

<160> 32

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 1958
<212> DNA
<213> HUMAN

<400> 1

tcgatctgat tttagagattt	agggatggat	gttttaaaaa	aagcaaaagt	agtaacagac	60
tatagcattg gtaatgtgtg	tgtgcataata	tacatattat	ttttaaaaaa	ataaaagttcg	120
attatttcac ctggcttgct	agtacacctat	gcaggcgtct	gagcccccg	gtttccagga	180
gcccccggta taaggacccc	agggactct	ctccccacgc	ggccgggccc	cccgccccggc	240
ccccagcccg gagagctgcc	accgacccccc	tcaacgtccc	aagccccagc	tctgtcgccc	300
cggttccttc ctcttcctgg	gccacaatct	tggcttccc	gggcccggctt	cacgcagttg	360
cgcaggagcc cgcgggggaa	gacctctcg	ggggacctcg	agcacgacgt	gcgaccctaa	420
atccccacat ctcctctgcc	gcctcgcagg	ccacatgcac	cggagccgg	gcggggcagg	480
cgcggccgc aaggaccccc	gcgatggaga	cgcaacactg	ccgcgactgc	actggggca	540
gccccggccgc gtcccagccg	cctcccgcca	ggaagcgtag	gtgtgtgagc	cgaccggag	600
cgagccgcgc cctcgggcca	gctgtggcag	ggcgccgcag	cctgcgcagc	cccgaggacc	660
ccgcgtcgct ctcccggagcc	agggttctca	ggagcgggccc	gcgcaggaga	cgtagaggg	720
ggttgttagc ggctgttggg	agaacgggtc	acggaaacag	tcccttccaa	agccggggcc	780

atcggtgggt	ggcgagtc	gcctccag	gccggggcg	cggaccagag	gggacgtgt	840
cagacggccg	cggtcagccc	cacctgccc	ggcgagac	gcacagctgg	agctggaggg	900
ccgtcgcccc	ttgggccc	aggggctga	acgcccagg	gtcgccgca	gtccacccgg	960
acgcagtcag	gtgagcaggt	cgcattggcg	atgcggccccc	ggagagcgca	cgcctgccc	1020
ggtcggcatg	gaaacgctcc	cgttaggtcc	ggggcgcccg	ctgattggcc	gattcaacag	1080
acgcgggtgg	gcagtcagc	cgcattcgcta	agcccggccg	cctccaggc	tggaatccct	1140
cgacacttgg	tccttcccgc	cccgccttc	cgtgcctgc	cctccctgc	ccttccccgc	1200
cctgccccgc	ccggcccggc	ccggccctgc	ccaaccctgc	ccgcctgc	ccgcggcagc	1260
cggccaccc	ttaaccgcga	tcctccagtg	cacttgccag	ttgttccgga	cacatagaaa	1320
gataacgacg	ggaagacggg	gccccgttt	gggtccaggc	aggtttggg	gcctccgtc	1380
tggtgggagg	aggccgcagc	gcagcaccct	gctcgtaact	tggatggag	accggctttc	1440
ccgcaatcat	gtaccctgga	tctttattt	ggggctgggg	agaagagtat	ctcaagctgg	1500
aaggaccggg	gctcccagat	ttcgctttcc	agtaacgtg	ggttagtat	cccacttgg	1560
aggcttgc	aatgtttct	ctcctccag	ccaaacacga	agtcttggg	taaaaagcct	1620
ccctcaggg	tcaaaataac	tgtttgatt	cagagcaact	ttgatgcct	gtgcggtcgc	1680
acctgcctt	tcagccccaa	taattactgg	gaagatcagc	aattgggttt	agtcccattg	1740
cttggtgctc	tccctccat	aggtcgctg	tgtccttgg	gccccgggtg	gacggaatcg	1800
actaaacagc	ttgtctgtt	ctctttccct	ggttagcagc	gcccgtggag	tctgaagcaa	1860
tgcactgcag	caaccccaag	agtggagtt	tgctggctac	agtggccga	ggtcccgtatg	1920
cttgtcagat	actcaccaga	gccccgtgg	gccaggat			1958

<210> 2
 <211> 1442
 <212> DNA
 <213> HUMAN

<220>
 <221> promoter
 <222> (1)...(1442)

 <221> mutation
 <222> (1427)...(1427)

<400> 2

cgatctgat	ttagagattt	aggatggat	gtttaaaaaa	aagcaaaagt	agtaacagac	60
tatagcattg	gtaatgtgt	tgtgcatata	tacatattat	tttaaaaaa	ataaaagttcg	120
attatttcac	ctggcttgc	agtccacat	gcaggcgtct	gagccccgg	gttccagga	180
cccccccgta	taaggacccc	aggactcct	ctccccacgc	ggccggggcg	ccgcggccgc	240
ccccagcccg	gagagctgcc	accgacccccc	tcaacgtccc	aagccccagc	tctgtcgccc	300
gcgttccccc	ctcttcctgg	gccacaaatct	tggcttccc	ggccggctt	cacgcagttg	360
cgcaggagcc	cgcgggggaa	gacctctcg	ggggacctcg	agcacgacgt	gcgaccctaa	420
atccccacat	ctcctctgcc	gcctcgcagg	ccacatgcac	cgggagccgg	gcggggcagg	480
cgcggccgc	aaggacccccc	gcatggaga	cgcaacactg	ccgcgactgc	acttggggca	540
ccccggccgc	gtcccagccg	cctccggca	gaaagcgtag	gtgtgtgagc	cgaccggag	600
cgcaggccgc	cctcgggcca	gcgtgggcag	ggcgccgcag	cctgcgcagc	cccgaggacc	660
ccgcgtcgct	ctcccggagcc	agggttctca	ggagcggggc	gcccaggaga	cgttagaggg	720
gtttgttagc	ggctgttggg	agaacgggtc	acggaaacag	tcccttccaa	agccggggcc	780
atcggtgggt	ggcgagtc	gcctccca	gccggggggcg	cggaccagag	gggacgtgt	840
cagacggccg	cgttcagccc	cacctgccc	ggcgagac	gcacagctgg	agctggaggg	900
ccgtcgcccc	ttgggccc	aggggctga	acgcccagg	gtcgccggca	gtccacccgg	960
agcgagtcag	gtgagcaggt	cgcattggcg	atgcggccccc	ggagagcgca	cgcctgccc	1020
ggtcggcatg	gaaacgctcc	cgttaggtcc	ggggcgcccg	ctgattggcc	gattcaacag	1080
acgcgggtgg	gcagtcagc	cgcattcgcta	agcccggccg	cctccaggc	tggaatccct	1140

cgacacttgg tccttcccgc cccgccttc cgtgcctgc ccttcctgc cttccccgc	1200
cctgccccgc cggcccggc cggccctgc ccaaccctgc cccgcctgc cccgcccagc	1260
cggccacctc ttaaccgca tcctccagtg cacttgccag ttgttccgga cacatagaaa	1320
gataacgacg ggaagacggg gccccgtttg ggttccaggg aggtttggg gcctcctgtc	1380
tggtgggagg aggccgcagc gcagcaccct gctcgtaact tggatttag accggcttcc	1440
cc	1442

<210> 3
 <211> 1294
 <212> DNA
 <213> HUMAN

<220>
 <221> promoter
 <222> (1) ... (1294)

<221> mutation
 <222> (1279) ... (1279)

<400> 3

atgcaggcgt ctgagccccc ggtttccag gagccccc tataaggacc ccagggactc	60
ctctcccac gggccgggc cgccgcggc gccccagcc cggagagctg ccaccgacc	120
cetcaacgtc ccaagccca gctctgtcgc cgcgttcct tcctcttcct gggccacaat	180
cttggcttc cccggccggc ttacgcagt tgcgcaggag cccgcgggg aagacctctc	240
ctggggacct cgagcacgac gtgcgaccct aaatccccac atctcctctg ccgcctcgca	300
gccccatgc accgggagcc gggcgggca ggcgcggccc gcaaggacc ccgcgatgga	360
gacgcaacac tgccgcgact gcacttgggg cagccccgcc gcgtcccagc cgccctccgg	420
caggaaagcgt aggtgtgtga gccgaccgg agcgagccgc gcctcggc cagcgtggc	480
agggcgcgcg agcctgcgca gccccgagga ccccgctcg ctctcccgag ccagggttct	540
caggagcggg cgcgcgagga gacgttagag ggggttgtt gcgctgtt gggaaacggg	600
tcacggaaac agtcccttc aaagccggg ccatcgtggg gtggcgagc ccgcctccc	660
aggccggggg cgcggaccag aggggacgtg tgcagacggc cgccgtcagc cccacctcgc	720
ctggggcggag acgcacagct ggagctggag gcccgtcgcc cgttggggcc tcaggggcct	780
gacgcccag ggttcgccc gagtccaccc ggagcgagtc aggtgagcag gtcgccatgg	840
gatgcggcc cccggagagcg cacgcctgcc ggggtcggca tggaaacgct cccgcttaggt	900
ccggggggcgc cgctgattgg ccgattcaac agacgcgggt gggcagctca gccgcacatcgc	960
taagccggc cgcccccag gctggaatcc ctcgacactt ggtccttccc gccccggccct	1020
tccgtgcctt gcccttcctt gcccttcccc gccctgcccc gccggggcccg gccccggccct	1080
gcccaaccc gccccggccct gccccggcca gccggccacc tcttaaccgc gatcctccag	1140
tgcacttggc agttgttccg gacacataga aagataacga cgggaagacg gggccccgtt	1200
tgggttcag gcagggtttt gggccttcctg tctggtggga ggaggccgca ggcgcagcacc	1260
ctgctcgta cttgggattt agaccggattt tccc	1294

<210> 4
 <211> 597
 <212> DNA
 <213> HUMAN

<220>
 <221> promoter
 <222> (1) ... (597)

<221> mutation

<222> (582) ... (582)

<400> 4

ggccgcggtc	agccccacct	cgcccgggcg	gagacgcaca	gctggagctg	gaggccgtc	60
gcccgttggg	ccctcagggg	cctgaacgcc	caggggtcgc	ggcgagtcca	cccggagcga	120
gtcaggtgag	caggtcgcca	tggcgatgct	gccccggaga	gcgcacgcct	gccgcggtcg	180
gcatggaaac	gctcccgcta	ggtccggggg	cgccgctgat	tggccgattc	aacagacgcg	240
ggtgggcagc	tcaagccgat	cgctaagccc	ggccgcctcc	caggctggaa	tccctcgaca	300
cttggtcctt	cccgccccgc	ccttccgtgc	cctgcccattc	cctgcccattc	cccgcctgc	360
cccgccccgc	ccggccccggc	cctgccccaa	cctgccccggc	cctgccccggc	ccagccggcc	420
acctcttaac	cgcgatcctc	cagtgcactt	gccagttgtt	ccggacacat	agaaaagataa	480
cgacggaaag	acggggcccc	gttgggggtc	caggcaggtt	ttggggcctc	ctgtctggtg	540
ggaggaggcc	gcagcgcagc	accctgctcg	tcacttggga	ttgagaccgg	ctttccc	597

<210> 5

<211> 469

<212> DNA

<213> HUMAN

<220>

<221> promoter

<222> (1) ... (469)

<221> mutation

<222> (454) ... (454)

<400> 5

acgaggctcg	catggcgatg	cggcccccgg	gagcgcacgc	ctggccgggt	cggcatggaa	60
acgctccgc	taggtccggg	ggcgccgctg	attggccgat	tcaacagacg	cgggtgggca	120
gttcagccgc	atcgctaagc	ccggccgcct	cccaggctgg	aatccctcg	cacttggtcc	180
ttcccgcccc	gcccttcgg	gccctgcct	tccctgcct	tcccccgcct	gccccgcccc	240
gccccggcccc	gccctgcccc	accctgcccc	gccctgcccc	gcccagccgg	ccacctctta	300
accgcgatcc	tccagtgcac	ttgccagttg	ttccggacac	atagaaaagat	aacgacggga	360
agacggggcc	ccgtttgggg	tccaggcagg	ttttggggcc	tcctgtctgg	tgggaggagg	420
ccgcagcgca	gcaccctgct	cgtcacttgg	gattgagacc	ggctttccc		469

<210> 6

<211> 333

<212> DNA

<213> HUMAN

<220>

<221> promoter

<222> (1) ... (333)

<221> mutation

<222> (318) ... (318)

<400> 6

aagccccggcc	gcctcccaagg	ctggaatccc	tcgacacttg	gtccttcccg	ccccgcctt	60
ccgtgccttg	cccttccctg	cccttccccg	ccctgccccg	cccgccccgg	cccgccccctg	120
cccaaccctg	ccccgcctg	ccccgcccag	ccggccacct	cttaaccgcg	atcctccagt	180
gcacttgcca	gttgttccgg	acacatagaa	agataacgac	ggaaagacgg	ggccccgttt	240

ggggtccagg cagggtttgg ggccctcctgt ctgggtggag gaggccgcag cgcagcaccc	300
tgctcgtcac ttgggattga gaccggcttt ccc	333
<210> 7	
<211> 303	
<212> DNA	
<213> HUMAN	
<220>	
<221> promoter	
<222> (1) ... (303)	
<221> mutation	
<222> (288) ... (288)	
<400> 7	
tcgacacttg gtccttcccg ccccggccctt ccgtgccttg cccttccttg cccttcccg	60
ccctgccccg cccggccccg cccggccctg cccaaaccctg ccccgccctg ccccgccccag	120
ccggccacct cttaaccgcg atcctccagt gcacttgcca gttgttccgg acacatagaa	180
agataacgac gggaaagacgg ggccccgtt ggggtccagg caggtttgg ggcctcctgt	240
ctgggtggag gaggccgcag cgcagcaccc tgctcgtcac ttgggattga gaccggcttt	300
CGC	303
<210> 8	
<211> 263	
<212> DNA	
<213> HUMAN	
<220>	
<221> promoter	
<222> (1) ... (263)	
<221> mutation	
<222> (248) ... (248)	
<400> 8	
cccttccctg cccttcccg ccctgccccg cccggccccg cccggccctg cccaaaccctg	60
ccccggccctg ccccgccccag cccggccacct cttaaccgcg atcctccagt gcacttgcca	120
gttgttccgg acacatagaa agataacgac gggaaagacgg ggccccgtt ggggtccagg	180
caggttttg ggcctcctgt ctgggtggag gaggccgcag cgcagcaccc tgctcgtcac	240
ttgggattga gaccggcttt ccc	263
<210> 9	
<211> 255	
<212> DNA	
<213> HUMAN	
<220>	
<221> promoter	
<222> (1) ... (255)	
<221> mutation	
<222> (240) ... (240)	

<400> 9
 tgcccttccc cgccctgccc cgcccgcccc ggcccgcccc tgcccaaccc tgccccgccc 60
 tgccccgccc agccggccac ctcttaaccg cgatcctcca gtgcacttgc cagttgtcc 120
 ggacacatag aaagataacg acgggaagac ggggccccgt ttgggttcca ggcaggttt 180
 ggggcctcct gtctggtggg aggaggccgc agcgcagcac cctgctcgtc acttgggatt 240
 gagaccggct ttccc 255

<210> 10
 <211> 209
 <212> DNA
 <213> HUMAN

<220>
 <221> promoter
 <222> (1) ... (209)

<400> 10
 aagcccgccc gcctcccagg ctggaatccc tcgacacttg gtccttccc cccgcgcctt 60
 ccgtgcgcctg cccttccctg cccttccccg ccctgccccg cccggccccgg cccggccctg 120
 cccaaccctg ccccgccctg ccccgccccag ccggccaccc tttaaccggc atcctccagt 180
 gcacttgcca gttgttccgg acacataga 209

<210> 11
 <211> 202
 <212> DNA
 <213> HUMAN

<220>
 <221> promoter
 <222> (1) ... (202)

<400> 11
 aagcccgccc gcctcccagg ctggaatccc tcgacacttg gtccttccc cccgcgcctt 60
 ccgtgcgcctg cccttccctg cccttccccg ccctgccccg cccggccccgg cccggccctg 120
 cccaaccctg ccccgccctg ccccgccccag ccggccaccc tttaaccggc atcctccagt 180
 gcacttgcca gttgttccgg ac 202

<210> 12
 <211> 195
 <212> DNA
 <213> HUMAN

<220>
 <221> promoter
 <222> (1) ... (195)

<400> 12
 aagcccgccc gcctcccagg ctggaatccc tcgacacttg gtacttccc cccgcgcctt 60
 ccgtgcgcctg cccttccctg cccttccccg ccctgccccg cccggccccgg cccggccctg 120
 cccaaccctg ccccgccctg ccccgccccag ccggccaccc tttaaccggc atcctccagt 180
 gcacttgcca gttgt 195

```

<210> 13
<211> 194
<212> DNA
<213> HUMAN

<220>
<221> promoter
<222> (1) ... (194)

<400> 13
aagcccgccc gcctcccaagg ctggaatccc tcgacacttg gtccttcccg ccccgccctt 60
ccgtgcctcg cccttccctg cccttccccg ccctgccccg cccggcccg cccggccctg 120
cccaaccctg ccccgccctg ccccgccccag ccggccacct cttaaccgcg atcctccagt 180
gcacttgcca gttg 194

<210> 14
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Single-stranded oligonucleotide primer sequence

<400> 14
ccctctcaga acagacatac a 21

<210> 15
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Single-stranded oligonucleotide primer sequence

<400> 15
ctgatccaga ataacacctg a 21

<210> 16
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> n equals inosine; Universal 5' RACE abridged
      anchor primer

<400> 16
ggccacgcgt cgactagtagc gggnnnnnnn gggnnng 36

<210> 17
<211> 19
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Single-stranded oligonucleotide primer sequence

<400> 17
ctcctcccac cagacagga 19

<210> 18
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Double-stranded oligonucleotide

<400> 18
cctgccccgc cctgccccgc ccagcc 26

<210> 19
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Double-stranded oligonucleotide

<400> 19
ccttccccgc cctgccccgc ccggcccc 27

<210> 20
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Double-stranded oligonucleotide

<400> 20
attcgatcg ggccggggcga gc 22

<210> 21
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Double-stranded oligonucleotide

<400> 21
gagaccggct cgaacgcaat catgt 25

<210> 22
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Single-stranded oligonucleotide

<400> 22
aatcgataag aattcgtcga ccga

<210> 23
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Single-stranded oligonucleotide

<400> 23
cccgccctg ccccttacag ccggccacc

<210> 24
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Single-stranded oligonucleotide

<400> 24
cccgccctg ccccttacag ccggccacc

<210> 25
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Single-stranded oligonucleotide

<400> 25
ccctgcccc tccggcccg cc

<210> 26
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Single-stranded oligonucleotide

<400> 26
ctgcccttcc cttccctgcc cc

24

29

29

22

22

27
42
DNA
Artificial Sequence

27
Single-stranded oligonucleotide

27
42

28
45
DNA
Artificial Sequence

28
Single-stranded oligonucleotide

28
45

29
29
DNA
Artificial Sequence

29
Single-stranded oligonucleotide

29
45

29
29
DNA
Artificial Sequence

29
EGFP-specific single-stranded oligonucleotide

30
24
DNA
Artificial Sequence

30
EGFP-specific single-stranded oligonucleotide

30
24

31
24
DNA
Artificial Sequence

31
EGFP-specific single-stranded oligonucleotide

31

tcaccgggt ggtgccatcc tttg

24

<210> 32
<211> 6
<212> DNA
<213> HUMAN

```
<220>
<221> misc_feature
<222> (0)...(0)
```

<400> 32

t cgccgg

6