KU LEUVEN

Multi-Agent Systems Based Solution for Pickup-And-Delivery

Thierry Deruyttere (r0660485) Armin Halilovic (r0679689) KU Leuven - Multi-Agent Systems

- 1 Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- **6** Experiments
- Conclusions

- 1 Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- 6 Experiments
- Conclusions

1 Problem definition - Setting

- Pizzeria chain RoboPizza
- Pizza delivery using robots (AGVs)
- ► RoboPizza receives pizza delivery requests (tasks), robots deliver the pizzas

1 Problem definition - Environment

- Grid city system
- AGVs can go in both directions on streets
- AGVs can pass each other
- Dynamism:
 - · Road works cause streets to be closed off
- Efficiency measure:
 - Total waiting time for tasks

1 Problem definition - Robots

- Can move from and to any position in the city
- Have static maps and can compute paths between locations
- Can carry up to 5 pizzas at once
- Can only communicate with entities that are close to them (i.e. city node they are on)
- Run on batteries which need to be recharged
 - Can charge at charging station
 - Station supports limited amount of robots at once
- Potential crash:
 - Can run out of battery ightarrow reset battery after time delay as simulation of manual replacement

1 Problem definition - Tasks

- Consist of picking up (multiple) pizzas and delivering them to a destination in the city
- ▶ If there are more than 5 pizzas in a task, it has to be split up
- Pizzas have no preparation time and can be picked up instantly
- Created each simulation tick with low probability that scales with city size:
 - Amount of pizzas by Gaussian distribution
 - Delivery position uniformly random in city

- 2 Objectives

2 Objectives

- Develop a BDI & Delegate MAS algorithm for the described setting
- ▶ Analyze the performance for certain parameter settings

- Problem definition
- Objectives
- **3** Research Questions and Hypotheses
- 4 Variables
- 6 Multi-Agent System Design
- 6 Experiments
- Conclusions

3 Research Questions and Hypotheses I

- ▶ What is the relation between the amount of requests that RoboPizza receives and the waiting time for customers?
 - H_1 : The waiting time increases with the amount of requests.
 - H₀: The waiting time does **not** increase with the amount of requests.
- Do robots drive more (non-idle time) when there are more requests in the system?
 - H₁: Robots drive more when there are more requests in the system.
 - H_0 : Robots do **not** driving more when there are more requests in the system.

3 Research Questions and Hypotheses II

- ▶ Does increasing the amount of robots decrease customer waiting time when there are many requests?
 - H_1 : Increasing the amount of robots decreases customer waiting time when there are many requests.
 - H₀: Increasing the amount of robots does not decrease customer waiting time when there are many requests.
- How do waiting times change as the amount of road works changes (dynamism)?
 - H_1 : Waiting times increase as the amount of road works increase.
 - H₀: Waiting times do **not** increase as the amount of road works increase.

- Problem definition
- Objectives
- Research Questions and Hypotheses
- 4 Variables
- 6 Multi-Agent System Design
- 6 Experiments
- Conclusions

4 Independent Variables

- $ightharpoonup n_{robots} = ext{amount of delivery robots} \ ext{\tiny (4)}$
- $p_{task} = \text{probability for a new task } (0.001 * city_size)$
- $ightharpoonup p_{road_works} = ext{probability for road works to start } {\scriptstyle (0.0025 * city_size)}$

4 Dependent Variables

- $ightharpoonup n_{task} = \text{amount of tasks}$
- $ightharpoonup n_{finished} = \text{amount of finished tasks}$
- $ightharpoonup t_{wait} =$ waiting time for customers
- $ightharpoonup n_{pizzas} = ext{amount of pizzas carried by robots}$
- $n_{distance} = distance$ all robots have traveled
- lacktriangledown $t_{driving} = ext{time robots spent driving}$
- $t_{idle} = time robots were idle$
- lacktriangledown $t_{charging}=$ time robots spent charging
- $ightharpoonup n_{road_works} = \text{amount of road works}$
- $ightharpoonup n_{dropped} = ext{amount of parcels that were dropped}$

4 Other Variables I

- lacksquare $l_{tick}=$ length of a single simulator tick $_{(1000)}$
- $lacktriangleq l_{simulation} = ext{simulation length in experiments} \ _{ ext{(10}hours)}$
- $ightharpoonup experiment_repeats = ext{amount of times experiments are ran} \ {}_{(100)}$
- $ightharpoonup l_{city} = ext{city grid size} \ {}_{\scriptscriptstyle{(20)}}$
- $ightharpoonup l_{robots} = {
 m robot \ length} \ {}_{\scriptscriptstyle{(1)}}$
- $d_{node} = ext{distance}$ between two nodes on city grid ${}_{(2*l_{robot})}$
- $ightharpoonup v_{robot} = {
 m robot \ speed} \ {}_{\scriptscriptstyle{(1)}}$
- ▶ distance_unit = distance unit (m)
- ▶ $speed_unit = speed unit_{(m/s)}$

4 Other Variables II

- lacktriangledown $cap_{robot}=$ amount of pizzas a robot can carry $_{(5)}$
- ► $cap_{charging_station} =$ amount of robots that can charge simultaneously (2)
- $ightharpoonup cap_{battery} = {\sf robot\ battery\ capacity\ } (l_{city}*l_{city}*l_{node})$
- $ightharpoonup cap_{recharge} = \mathsf{battery} \ \mathsf{capacity} \ \mathsf{recharged} \ \mathsf{per} \ \mathsf{tick} \ {}_{(0.01 \, * \, cap_{battery})}$
- ▶ paths_to_explore = amount of paths to explore towards destinations (3)
- $lacktriangledown t_{road_works} = ext{time duration of road works} \ {\scriptstyle (l_{city} * l_{city} * d_{node} * 1000)}$

4 Other Variables III

- ▶ $t_{battery_rescue} =$ time delay for replacement of empty batteries $(5*(cap_{battery}/cap_{recharge})*l_{tick})$
- ▶ $t_{intention_reservation} =$ time duration of intention reservations $(4*l_{city}*d_{node}/v_{robot})*1000)$
- ▶ $t_{refresh_intention}$ = the amount of time it takes before a robot resends intention ants $(0.5*t_{intention_reservation})$
- ▶ $t_{refresh_exploration} =$ the amount of time it takes before a robot resends intention ants $(0.4*t_{intention.reservation})$
- $ightharpoonup \mu_{pizza}, \sigma_{pizza} = extstyle{pizza}$ amount parameters (4, 0.75)
- lacktriangledown $t_{pizza}=$ preparation and pickup time of a pizza $_{(0)}$

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- **6** Experiments
- Conclusions

5 Multi-Agent System Design: Overview

- Agents
 - Robot Agent for each robot
 - Resource Agent for each node on city graph
- Ant-based Delegate MAS
 - Desire Ants
 - Find delivery tasks
 - Exploration Ants
 - Find paths towards destinations
 - Intention Ants
 - Choose path and create reservation
- Buildings
 - 1 Pizzeria
 - 1 Charging Station
 - Random Road Works

5 Multi-Agent System Design: Ants

Ants are send on a hop by hop basis through resource agents. A resource agent can only send an ant to its neighbors. The ant knows to which neighbor it wants to go and notifies the resource agent of this.

- 1 Desire ant: are sent to all the available delivery tasks in the city and will gather information about each task. (amount of pizzas required, amount of time waiting, ...).
- Exploration ant: Estimates travel duration for paths and also updates needed amount of pizzas if necessary
- 3 Intention ant: Creates reservations for best path for selected tasks

5 Multi-Agent System Design: Robot Strategy

- send desire ants towards tasks
- 2 chooseBestTask()
- 3 sendExplorationAnts() (send explor. ants to chosen desires)
- 4 Send intention ants to confirmed tasks
- 5 moveToDestinations()

5 Multi-Agent System Design: chooseBestTask

- 1 collect sent desire ants
- 2 while agent has capacity left
 - 1 Choose a task t with fitness proportionate selection where fitness is waiting time.

5 Multi-Agent System Design: sendExplorationAnts

- for i in range(Alternative paths):
 - 1 Calculate a path between chosen tasks with A* algorithm on static city graph.
- 2 send exploration ants according to calculated paths.

5 Multi-Agent System Design: moveToDestinations

- 1 follow path for confirmed intentions
- 2 check if need to recharge
 - 1 if True: chargeLogic()
 - 2 if False, continue
- 3 refresh exploration and intention ants if refresh timer is fired
- 4 if at intention:
 - 1 if all intentions finished send out exploration ant to find pizzeria and set intention to pizzeria.

5 Multi-Agent System Design: chargeLogic

- save current intentions
- set intention to charging station
- 3 move to charging station
- charge
- while the agent is charging update the path the agent needs to follow for its old intentions
- if charging is finished:
 - 1 set intentions to old intentions

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- **6** Experiments
- Conclusions

6 Experiments

- Different parameter settings for each hypothesis
- Each experiment is run 100 times
- Experiment end statistics are written to files
- Test method: two-sample t-test
- Significance level: 0.05
- Hypotheses entail one-tailed tests. Null hypothesis will be rejected if the mean difference between sample means is too small.
- ► Could not experiment with varying dynamism because of an error with RinSim Experiment repeats we couldn't fix

6 Experiments: Question 1 (1)

- ► What is the relation between the amount of requests that RoboPizza receives and the waiting time for customers?
- \blacktriangleright μ_1 : mean waiting time for lower amount of requests
- \blacktriangleright μ_2 : mean waiting time for higher amount of requests
- ▶ H_0 : The waiting time does not increase with the amount of requests. $(\mu_1 \ge \mu_2)$
- ▶ H_1 : The waiting time increases with the amount of requests. $(\mu_1 < \mu_2)$

6 Experiments: Question 1 (2)

► Total task waiting time

- ▶ $\mu_1 \ge \mu_2$
 - t-value = 56.908
 - p-value = 0.000
 - ullet ightarrow Reject null hypothesis
- ▶ $\mu_2 \ge \mu_3$
 - t-value = 14.425
 - p-value = 0.000
 - ullet ightarrow Reject null hypothesis
- ▶ $\mu_3 \ge \mu_4$
 - t-value = 21.355
 - p-value = 0.000
 - ullet o Reject null hypothesis

29

6 Experiments: Question 2 (1)

- ▶ Do robots drive more (non-idle time) when there are more requests in the system?
 - H_1 : Robots drive more when there are more requests in the system.
 - H_0 : Robots do **not** driving more when there are more requests in the system.
- ▶ TODO: Hypotheses in termen van $H_0: \mu_1 \ge \mu_2$ en $H_1: \mu_1 < \mu_2$
- http://stattrek.com/hypothesis-test/difference-in-means.aspx

6 Experiments: Question 2 (3)

► Total tasks

6 Experiments: Question 2 (2)

► Total idle and travel time

6 Experiments: Question 3 (1)

- ▶ Does increasing the amount of robots decrease customer waiting time when there are many requests?
 - H_1 : Increasing the amount of robots decreases customer waiting time when there are many requests.
 - H_0 : Increasing the amount of robots does **not** decrease customer waiting time when there are many requests.
- ▶ TODO: Hypotheses in termen van $H_0: \mu_1 \ge \mu_2$ en $H_1: \mu_1 < \mu_2$
- http://stattrek.com/hypothesis-test/difference-in-means.aspx

6 **Experiments: Question 3 (2)**

▶ grafieken ofzo

- Problem definition
- Objectives
- 3 Research Questions and Hypotheses
- 4 Variables
- Multi-Agent System Design
- 6 Experiments
- Conclusions

7 Conclusions

conclude our Conclusions

