Nur die Aufgaben mit einem * werden korrigiert.

11.1. MC Fragen.

(a) Sei $f: \mathbb{R} \to \mathbb{R}$ dreimal stetig differenzierbar mit Graph:

Welche der folgenden Aussagen trifft zu?

- \Box f ist positiv,
- \Box f ist nicht monoton,
- \Box f besitzt eine Nullstelle,
- \Box f' besitzt eine Nullstelle,
- \Box f'' besitzt keine Nullstelle,
- (b) Welche der folgenden Implikationsketten für eine Funktion f sind richtig?
 - \square f ist differenzierbar \Longrightarrow f ist stetig.
 - \square f ist stetig \Longrightarrow f ist differenzierbar.
 - $\Box f'' > 0 \Longrightarrow f \text{ ist konvex.}$
 - $\Box f'' > 0 \Longrightarrow f \text{ ist konkav.}$
- (c) Wählen Sie die richtige Aussagen.
 - Falls f_n stetige Funktionen sind und falls f_n nach f gleichmässig konvergiert, dann ist f auch stetig.

- \square Falls f_n differenzierbare Funktionen sind und falls f_n nach f gleichmässig konvergiert, dann ist f auch differenzierbar.
- Falls f_n eine Funktionenfolge ist, wobei f_n einmal stetig differenzierbar ist für jede $n \in \mathbb{N}$ und falls sowohl (f_n) als auch (f'_n) gleichmässig konvergieren mit $f_n \to f$ und $f'_n \to g$, dann ist auch f stetig differenzierbar mit f' = g.

*11.2. *n*-te Ableitung. Berechnen Sie die *n*-te Ableitung von die folgende Funktionen:

(a)
$$\frac{1}{1-5x+6x^2}$$

(b) $\sin(6x)\cos(4x)$

*11.3. Nullstellen von Funktionen.

- (a) Zeige, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \arctan(x)$ nur für x = 0 verschwindet.
- (b) Zeige, dass die Funktion $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3 6x^2 1$ nur in einer Punkt verschwindet.

11.4. Extrema. Finden Sie die Extrema von

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \sqrt[3]{x^2 - x^3}.$$