17 SECOND-ORDER DIFFERENTIAL EQUATIONS

17.1 Second-Order Linear Equations

- 1. The auxiliary equation is $r^2 r 6 = 0 \implies (r 3)(r + 2) = 0 \implies r = 3, r = -2$. Then by (8) the general solution is $y = c_1 e^{3x} + c_2 e^{-2x}$.
- **2.** The auxiliary equation is $r^2 6r + 9 = 0$ \Rightarrow $(r-3)^2 = 0$ \Rightarrow r = 3. Then by (10), the general solution is $y = c_1 e^{3x} + c_2 x e^{3x}$.
- 3. The auxiliary equation is $r^2 + 2 = 0 \implies r = \pm \sqrt{2}i$. Then by (11) the general solution is $y = e^{0x} \left(c_1 \cos \left(\sqrt{2} x \right) + c_2 \sin \left(\sqrt{2} x \right) \right) = c_1 \cos \left(\sqrt{2} x \right) + c_2 \sin \left(\sqrt{2} x \right)$.
- **4.** The auxiliary equation is $r^2 + r 12 = 0$ \Rightarrow (r-3)(r+4) = 0 \Rightarrow r=3, r=-4. Then by (8) the general solution is $y = c_1 e^{3x} + c_2 e^{-4x}$.
- 5. The auxiliary equation is $4r^2 + 4r + 1 = 0$ \Rightarrow $(2r+1)^2 = 0$ \Rightarrow $r = -\frac{1}{2}$. Then by (10), the general solution is $y = c_1 e^{-x/2} + c_2 x e^{-x/2}$.
- **6.** The auxiliary equation is $9r^2 + 4 = 0 \implies r^2 = -\frac{4}{9} \implies r = \pm \frac{2}{3}i$, so the general solution is $y = e^{0x} \left[c_1 \cos \left(\frac{2}{3}x \right) + c_2 \sin \left(\frac{2}{3}x \right) \right] = c_1 \cos \left(\frac{2}{3}x \right) + c_2 \sin \left(\frac{2}{3}x \right)$.
- 7. The auxiliary equation is $3r^2 4r = r(3r 4) = 0 \implies r = 0, r = \frac{4}{3}$, so $y = c_1e^{0x} + c_2e^{4x/3} = c_1 + c_2e^{4x/3}$.
- 8. The auxiliary equation is $r^2 1 = (r 1)(r + 1) = 0 \implies r = 1, r = -1$. Then the general solution is $y = c_1 e^x + c_2 e^{-x}$.
- **9.** The auxiliary equation is $r^2 4r + 13 = 0 \implies r = \frac{4 \pm \sqrt{-36}}{2} = 2 \pm 3i$, so $y = e^{2x}(c_1 \cos 3x + c_2 \sin 3x)$.
- **10.** The auxiliary equation is $3r^2 + 4r 3 = 0 \implies r = \frac{-4 \pm \sqrt{52}}{6} = \frac{-2 \pm \sqrt{13}}{3}$, so $y = c_1 e^{(-2 + \sqrt{13})x/3} + c_2 e^{(-2 \sqrt{13})x/3}$.
- **11.** The auxiliary equation is $2r^2 + 2r 1 = 0$ \Rightarrow $r = \frac{-2 \pm \sqrt{12}}{4} = \frac{-1 \pm \sqrt{3}}{2}$, so $y = c_1 e^{\left(-1 + \sqrt{3}\right)t/2} + c_2 e^{\left(-1 \sqrt{3}\right)t/2}$.
- **12.** The auxiliary equation is $r^2 + 6r + 34 = 0 \implies r = \frac{-6 \pm \sqrt{-100}}{2} = -3 \pm 5i$, so $R = e^{-3t}(c_1 \cos 5t + c_2 \sin 5t)$.

720 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

- **13.** The auxiliary equation is $3r^2 + 4r + 3 = 0 \implies r = \frac{-4 \pm \sqrt{-20}}{6} = -\frac{2}{3} \pm \frac{\sqrt{5}}{3}i$, so $V = e^{-2t/3} \left[c_1 \cos\left(\frac{\sqrt{5}}{3}t\right) + c_2 \sin\left(\frac{\sqrt{5}}{3}t\right) \right]$.
- **14.** The auxiliary equation is $4r^2-4r+1=(2r-1)^2=0 \implies r=\frac{1}{2}$, so the general solution is $y=c_1e^{x/2}+c_2xe^{x/2}$. We graph the basic solutions $f(x)=e^{x/2}, g(x)=xe^{x/2}$ as well as $y=2e^{x/2}+3xe^{x/2}$, $y=-e^{x/2}-3xe^{x/2}$, and $y=4e^{x/2}-2xe^{x/2}$. The graphs are all asymptotic to the x-axis as $x\to-\infty$, and as $x\to\infty$ the solutions approach $\pm\infty$.

15. The auxiliary equation is $r^2 + 2r + 2 = 0$ \Rightarrow $r = \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$, so the general solution is $y = e^{-x} (c_1 \cos x + c_2 \sin x)$. We graph the basic solutions $f(x) = e^{-x} \cos x$, $g(x) = e^{-x} \sin x$ as well as

 $y=e^{-x}\left(-\cos x-2\sin x\right)$ and $y=e^{-x}\left(2\cos x+3\sin x\right)$. All the solutions oscillate with amplitudes that become arbitrarily large as $x\to-\infty$ and the solutions are asymptotic to the x-axis as $x\to\infty$.

16. The auxiliary equation is $2r^2+r-1=(2r-1)(r+1)=0 \Rightarrow r=\frac{1}{2}, r=-1$, so the general solution is $y=c_1e^{x/2}+c_2e^{-x}$. We graph the basic solutions $f(x)=e^{x/2}, g(x)=e^{-x}$ as well as $y=2e^{x/2}+e^{-x}$, $y=-e^{x/2}-2e^{-x}$, and $y=e^{x/2}-e^{-x}$. Each solution consists of a single continuous curve that approaches either 0 or $\pm\infty$ as $x\to\pm\infty$.

- 17. $r^2+3=0 \Rightarrow r=\pm\sqrt{3}\,i$ and the general solution is $y=e^{0x}\left[c_1\cos\left(\sqrt{3}\,x\right)+c_2\sin\left(\sqrt{3}\,x\right)\right]=c_1\cos\left(\sqrt{3}\,x\right)+c_2\sin\left(\sqrt{3}\,x\right)$. Then $y(0)=1 \Rightarrow c_1=1$ and, since $y'=-\sqrt{3}\,c_1\sin\left(\sqrt{3}\,x\right)+\sqrt{3}\,c_2\cos\left(\sqrt{3}\,x\right), \ y'(0)=3 \Rightarrow \sqrt{3}\,c_2=3 \Rightarrow c_2=\frac{3}{\sqrt{3}}=\sqrt{3}$, so the solution to the initial-value problem is $y=\cos(\sqrt{3}\,x)+\sqrt{3}\sin(\sqrt{3}\,x)$.
- **18.** $r^2 2r 3 = (r 3)(r + 1) = 0$, so r = 3, r = -1 and the general solution is $y = c_1 e^{3x} + c_2 e^{-x}$. Then $y' = 3c_1 e^{3x} c_2 e^{-x}$, so $y(0) = 2 \implies c_1 + c_2 = 2$ and $y'(0) = 2 \implies 3c_1 c_2 = 2$, giving $c_1 = 1$ and $c_2 = 1$. Thus the solution to the initial-value problem is $y = e^{3x} + e^{-x}$.
- **19.** $9r^2 + 12r + 4 = (3r + 2)^2 = 0$ $\Rightarrow r = -\frac{2}{3}$ and the general solution is $y = c_1 e^{-2x/3} + c_2 x e^{-2x/3}$. Then y(0) = 1 $\Rightarrow c_1 = 1$ and, since $y' = -\frac{2}{3}c_1e^{-2x/3} + c_2\left(1 \frac{2}{3}x\right)e^{-2x/3}$, y'(0) = 0 $\Rightarrow -\frac{2}{3}c_1 + c_2 = 0$, so $c_2 = \frac{2}{3}$ and the solution to the initial-value problem is $y = e^{-2x/3} + \frac{2}{3}xe^{-2x/3}$.

SECTION 17.1 SECOND-ORDER LINEAR EQUATIONS 721

- **20.** $3r^2 2r 1 = (3r + 1)(r 1) = 0 \implies r = -\frac{1}{3}, r = 1$ and the general solution is $y = c_1 e^{-x/3} + c_2 e^x$. Then $y' = -\frac{1}{3}c_1 e^{-x/3} + c_2 e^x$, so $y(0) = 0 \implies c_1 + c_2 = 0$ and $y'(0) = -4 \implies -\frac{1}{3}c_1 + c_2 = -4$, giving $c_1 = 3$ and $c_2 = -3$. Thus the solution to the initial-value problem is $y = 3e^{-x/3} 3e^x$.
- **21.** $r^2 6r + 10 = 0 \implies r = 3 \pm i$ and the general solution is $y = e^{3x}(c_1 \cos x + c_2 \sin x)$. Then $2 = y(0) = c_1$ and $3 = y'(0) = c_2 + 3c_1 \implies c_2 = -3$ and the solution to the initial-value problem is $y = e^{3x}(2 \cos x 3 \sin x)$.
- **22.** $4r^2 20r + 25 = (2r 5)^2 = 0 \implies r = \frac{5}{2}$ and the general solution is $y = c_1 e^{5x/2} + c_2 x e^{5x/2}$. Then $2 = y(0) = c_1$ and $-3 = y'(0) = \frac{5}{2}c_1 + c_2 \implies c_2 = -8$. The solution to the initial-value problem is $y = 2e^{5x/2} 8xe^{5x/2}$.
- 23. $r^2 r 12 = (r 4)(r + 3) = 0 \implies r = 4, r = -3$ and the general solution is $y = c_1 e^{4x} + c_2 e^{-3x}$. Then $0 = y(1) = c_1 e^4 + c_2 e^{-3}$ and $1 = y'(1) = 4c_1 e^4 3c_2 e^{-3}$ so $c_1 = \frac{1}{7}e^{-4}$, $c_2 = -\frac{1}{7}e^3$ and the solution to the initial-value problem is $y = \frac{1}{7}e^{-4}e^{4x} \frac{1}{7}e^3e^{-3x} = \frac{1}{7}e^{4x-4} \frac{1}{7}e^{3-3x}$.
- **24.** $4r^2+4r+3=0 \Rightarrow r=-\frac{1}{2}\pm\frac{\sqrt{2}}{2}i$ and the general solution is $y=e^{-x/2}\left(c_1\cos\frac{\sqrt{2}}{2}x+c_2\sin\frac{\sqrt{2}}{2}x\right)$. Then $0=y(0)=c_1$ and $1=y'(0)=\frac{\sqrt{2}}{2}c_2-\frac{1}{2}c_1 \Rightarrow c_2=\sqrt{2}$ and the solution to the initial-value problem is $y=e^{-x/2}\left(0+\sqrt{2}\sin\frac{\sqrt{2}}{2}x\right)=\sqrt{2}\,e^{-x/2}\sin\frac{\sqrt{2}}{2}x$.
- **25.** $r^2 + 16 = 0 \implies r = \pm 4i$ and the general solution is $y = c_1 \cos 4x + c_2 \sin 4x$. Then $-3 = y(0) = c_1$ and $2 = y(\pi/8) = c_2$, so the solution of the boundary-value problem is $y = -3 \cos 4x + 2 \sin 4x$.
- **26.** $r^2 + 6r = r(r+6) = 0 \implies r = 0, r = -6$ and the general solution is $y = c_1 + c_2 e^{-6x}$. Then $1 = y(0) = c_1 + c_2$ and $0 = y(1) = c_1 + c_2 e^{-6}$ so $c_1 = \frac{1}{1 e^6}, c_2 = -\frac{e^6}{1 e^6}$. The solution of the boundary-value problem is $y = \frac{1}{1 e^6} \frac{e^6}{1 e^6} \cdot e^{-6x} = \frac{1}{1 e^6} \frac{e^{6-6x}}{1 e^6}.$
- **27.** $r^2 + 4r + 4 = (r+2)^2 = 0 \implies r = -2$ and the general solution is $y = c_1 e^{-2x} + c_2 x e^{-2x}$. Then $2 = y(0) = c_1$ and $0 = y(1) = c_1 e^{-2} + c_2 e^{-2}$ so $c_2 = -2$, and the solution of the boundary-value problem is $y = 2e^{-2x} 2xe^{-2x}$.
- **28.** $r^2 8r + 17 = 0 \implies r = 4 \pm i$ and the general solution is $y = e^{4x}(c_1 \cos x + c_2 \sin x)$. But $3 = y(0) = c_1$ and $2 = y(\pi) = -c_1 e^{4\pi} \implies c_1 = -2/e^{4\pi}$, so there is no solution.
- **29.** $r^2-r=r(r-1)=0 \implies r=0, r=1$ and the general solution is $y=c_1+c_2e^x$. Then $1=y(0)=c_1+c_2$ and $2=y(1)=c_1+c_2e$ so $c_1=\frac{e-2}{e-1}, c_2=\frac{1}{e-1}$. The solution of the boundary-value problem is $y=\frac{e-2}{e-1}+\frac{e^x}{e-1}$.
- 30. $4r^2 4r + 1 = (2r 1)^2 = 0 \implies r = \frac{1}{2}$ and the general solution is $y = c_1 e^{x/2} + c_2 x e^{x/2}$. Then $4 = y(0) = c_1$ and $0 = y(2) = c_1 e + 2c_2 e \implies c_2 = -2$. The solution of the boundary-value problem is $y = 4e^{x/2} 2xe^{x/2}$.

722 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

- **31.** $r^2 + 4r + 20 = 0 \implies r = -2 \pm 4i$ and the general solution is $y = e^{-2x}(c_1 \cos 4x + c_2 \sin 4x)$. But $1 = y(0) = c_1$ and $2 = y(\pi) = c_1 e^{-2\pi} \implies c_1 = 2e^{2\pi}$, so there is no solution.
- 32. $r^2 + 4r + 20 = 0 \implies r = -2 \pm 4i$ and the general solution is $y = e^{-2x}(c_1 \cos 4x + c_2 \sin 4x)$. But $1 = y(0) = c_1$ and $e^{-2\pi} = y(\pi) = c_1 e^{-2\pi} \implies c_1 = 1$, so c_2 can vary and the solution of the boundary-value problem is $y = e^{-2x}(\cos 4x + c \sin 4x)$, where c is any constant.
- 33. (a) Case $I(\lambda=0)$: $y'' + \lambda y = 0 \implies y'' = 0$ which has an auxiliary equation $r^2 = 0 \implies r = 0 \implies y = c_1 + c_2 x$ where y(0) = 0 and y(L) = 0. Thus, $0 = y(0) = c_1$ and $0 = y(L) = c_2 L \implies c_1 = c_2 = 0$. Thus y = 0. Case $2(\lambda < 0)$: $y'' + \lambda y = 0$ has auxiliary equation $r^2 = -\lambda \implies r = \pm \sqrt{-\lambda}$ [distinct and real since $\lambda < 0$] $\implies y = c_1 e^{\sqrt{-\lambda}x} + c_2 e^{-\sqrt{-\lambda}x}$ where y(0) = 0 and y(L) = 0. Thus $0 = y(0) = c_1 + c_2$ (*) and $0 = y(L) = c_1 e^{\sqrt{-\lambda}L} + c_2 e^{-\sqrt{-\lambda}L}$ (†). Multiplying (*) by $e^{\sqrt{-\lambda}L}$ and subtracting (†) gives $c_2 \left(e^{\sqrt{-\lambda}L} e^{-\sqrt{-\lambda}L} \right) = 0 \implies c_2 = 0$ and thus $c_1 = 0$ from (*). Thus y = 0 for the cases $\lambda = 0$ and $\lambda < 0$.
 - (b) $y'' + \lambda y = 0$ has an auxiliary equation $r^2 + \lambda = 0 \implies r = \pm i \sqrt{\lambda} \implies y = c_1 \cos \sqrt{\lambda} \, x + c_2 \sin \sqrt{\lambda} \, x$ where y(0) = 0 and y(L) = 0. Thus, $0 = y(0) = c_1$ and $0 = y(L) = c_2 \sin \sqrt{\lambda} L$ since $c_1 = 0$. Since we cannot have a trivial solution, $c_2 \neq 0$ and thus $\sin \sqrt{\lambda} \, L = 0 \implies \sqrt{\lambda} \, L = n\pi$ where n is an integer $\implies \lambda = n^2 \pi^2 / L^2$ and $y = c_2 \sin(n\pi x/L)$ where n is an integer.
- 34. The auxiliary equation is $ar^2+br+c=0$. If $b^2-4ac>0$, then any solution is of the form $y(x)=c_1e^{r_1x}+c_2e^{r_2x}$ where $r_1=\frac{-b+\sqrt{b^2-4ac}}{2a}$ and $r_2=\frac{-b-\sqrt{b^2-4ac}}{2a}$. But a,b, and c are all positive so both r_1 and r_2 are negative and $\lim_{x\to\infty}y(x)=0$. If $b^2-4ac=0$, then any solution is of the form $y(x)=c_1e^{rx}+c_2xe^{rx}$ where r=-b/(2a)<0 since a,b are positive. Hence $\lim_{x\to\infty}y(x)=0$. Finally if $b^2-4ac<0$, then any solution is of the form $y(x)=e^{\alpha x}(c_1\cos\beta x+c_2\sin\beta x)$ where $\alpha=-b/(2a)<0$ since a and b are positive. Thus $\lim_{x\to\infty}y(x)=0$.
- 35. (a) $r^2 2r + 2 = 0 \implies r = 1 \pm i$ and the general solution is $y = e^x$ ($c_1 \cos x + c_2 \sin x$). If y(a) = c and y(b) = d then e^a ($c_1 \cos a + c_2 \sin a$) $= c \implies c_1 \cos a + c_2 \sin a = ce^{-a}$ and e^b ($c_1 \cos b + c_2 \sin b$) $= d \implies c_1 \cos b + c_2 \sin b = de^{-b}$. This gives a linear system in c_1 and c_2 which has a unique solution if the lines are not parallel. If the lines are not vertical or horizontal, we have parallel lines if $\cos a = k \cos b$ and $\sin a = k \sin b$ for some nonzero constant k or $\frac{\cos a}{\cos b} = k = \frac{\sin a}{\sin b} \implies \frac{\sin a}{\cos a} = \frac{\sin b}{\cos b} \implies \tan a = \tan b \implies b a = n\pi$, n any integer. (Note that none of $\cos a$, $\cos b$, $\sin a$, $\sin b$ are zero.) If the lines are both horizontal then $\cos a = \cos b = 0 \implies b a = n\pi$, and similarly vertical lines means $\sin a = \sin b = 0 \implies b a = n\pi$. Thus the system has a unique solution if $b a \ne n\pi$.

SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ☐ 723

(b) The linear system has no solution if the lines are parallel but not identical. From part (a) the lines are parallel if

$$b-a=n\pi$$
. If the lines are not horizontal, they are identical if $ce^{-a}=kde^{-b}$ \Rightarrow $\frac{ce^{-a}}{de^{-b}}=k=\frac{\cos a}{\cos b}$ \Rightarrow

$$\frac{c}{d} = e^{a-b} \frac{\cos a}{\cos b}$$
. (If $d=0$ then $c=0$ also.) If they are horizontal then $\cos b=0$, but $k=\frac{\sin a}{\sin b}$ also (and $\sin b \neq 0$) so

we require
$$\frac{c}{d} = e^{a-b} \frac{\sin a}{\sin b}$$
. Thus the system has no solution if $b-a = n\pi$ and $\frac{c}{d} \neq e^{a-b} \frac{\cos a}{\cos b}$ unless $\cos b = 0$, in

which case
$$\frac{c}{d} \neq e^{a-b} \frac{\sin a}{\sin b}$$

(c) The linear system has infinitely many solution if the lines are identical (and necessarily parallel). From part (b) this occurs

when
$$b-a=n\pi$$
 and $\frac{c}{d}=e^{a-b}\frac{\cos a}{\cos b}$ unless $\cos b=0$, in which case $\frac{c}{d}=e^{a-b}\frac{\sin a}{\sin b}$

17.2 Nonhomogeneous Linear Equations

1. The auxiliary equation is $r^2 + 2r - 8 = (r - 2)(r + 4) = 0 \implies r = 2, r = -4$, so the complementary solution is

$$y_c(x) = c_1 e^{2x} + c_2 e^{-4x}$$
. We try the particular solution $y_p(x) = Ax^2 + Bx + C$, so $y_p' = 2Ax + B$ and $y_p'' = 2A$.

Substituting into the differential equation, we have $(2A) + 2(2Ax + B) - 8(Ax^2 + Bx + C) = 1 - 2x^2$ or

$$-8Ax^2 + (4A - 8B)x + (2A + 2B - 8C) = -2x^2 + 1$$
. Comparing coefficients gives $-8A = -2$ \Rightarrow

$$A=\frac{1}{4},\ 4A-8B=0 \ \Rightarrow \ B=\frac{1}{8},\ \text{and}\ 2A+2B-8C=1 \ \Rightarrow \ C=-\frac{1}{32},$$
 so the general solution is

$$y(x) = y_c(x) + y_p(x) = c_1 e^{2x} + c_2 e^{-4x} + \frac{1}{4}x^2 + \frac{1}{8}x - \frac{1}{32}$$

2. The auxiliary equation is $r^2 - 3r = r(r - 3) = 0 \implies r = 0, r = 3$, so the complementary solution

is
$$y_c(x) = c_1 + c_2 e^{3x}$$
. We try the particular solution $y_p(x) = A\cos 2x + B\sin 2x$, so

 $y_p' = -2A\sin 2x + 2B\cos 2x$ and $y_p'' = -4A\cos 2x - 4B\sin 2x$. Substitution into the differential

equation gives $(-4A\cos 2x - 4B\sin 2x) - 3(-2A\sin 2x + 2B\cos 2x) = \sin 2x \implies$

$$(-4A-6B)\cos 2x + (6A-4B)\sin 2x = \sin 2x$$
. Then $-4A-6B=0$ and $6A-4B=1 \implies A=\frac{3}{26}$ and $B=-\frac{1}{13}$.

Thus the general solution is $y(x) = y_c(x) + y_p(x) = c_1 + c_2 e^{3x} + \frac{3}{26} \cos 2x - \frac{1}{13} \sin 2x$.

3. The auxiliary equation is $9r^2 + 1 = 0$ with roots $r = \pm \frac{1}{3}i$, so the complementary solution is

$$y_c(x) = c_1 \cos(x/3) + c_2 \sin(x/3)$$
. Try the particular solution $y_p(x) = Ae^{2x}$, so $y_p' = 2Ae^{2x}$ and $y_p'' = 4Ae^{2x}$.

Substitution into the differential equation gives $9 \left(4 A e^{2x}\right) + \left(A e^{2x}\right) = e^{2x}$ or $37 A e^{2x} = e^{2x}$. Thus $37 A = 1 \implies A = \frac{1}{37}$

and the general solution is $y(x) = y_c(x) + y_p(x) = c_1 \cos(x/3) + c_2 \sin(x/3) + \frac{1}{37}e^{2x}$.

4. The auxiliary equation is $r^2 - 2r + 2 = 0$ with roots $r = 1 \pm i$, so the complementary solution is

 $y_c(x) = e^x(c_1 \cos x + c_2 \sin x)$. Try the particular solution $y_p(x) = Ax + B + Ce^x$, so $y_p' = A + Ce^x$ and $y_p'' = Ce^x$.

Substitution into the differential equation gives $(Ce^x) - 2(A + Ce^x) + 2(Ax + B + Ce^x) = x + e^x \implies$

724 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

$$2Ax + (-2A + 2B) + Ce^x = x + e^x$$
. Comparing coefficients, we have $2A = 1 \implies A = \frac{1}{2}, -2A + 2B = 0 \implies B = \frac{1}{2}$, and $C = 1$, so the general solution is $y(x) = y_c(x) + y_p(x) = e^x(c_1 \cos x + c_2 \sin x) + \frac{1}{2}x + \frac{1}{2} + e^x$.

- 5. The auxiliary equation is $r^2-4r+5=0$ with roots $r=2\pm i$, so the complementary solution is $y_c(x)=e^{2x}(c_1\cos x+c_2\sin x)$. Try $y_p(x)=Ae^{-x}$, so $y_p'=-Ae^{-x}$ and $y_p''=Ae^{-x}$. Substitution gives $Ae^{-x}-4(-Ae^{-x})+5(Ae^{-x})=e^{-x} \Rightarrow 10Ae^{-x}=e^{-x} \Rightarrow A=\frac{1}{10}$. Thus the general solution is $y(x)=e^{2x}(c_1\cos x+c_2\sin x)+\frac{1}{10}e^{-x}$.
- **6.** The auxiliary equation is $r^2 4r + 4 = (r 2)^2 = 0 \implies r = 2$, so the complementary solution is $y_c(x) = c_1 e^{2x} + c_2 x e^{2x}$. For y'' 4y' + 4y = x try $y_{p_1}(x) = Ax + B$. Then $y'_{p_1} = A$ and $y''_{p_1} = 0$, and substitution into the differential equation gives 0 4A + 4(Ax + B) = x or 4Ax + (4B 4A) = x, so $4A = 1 \implies A = \frac{1}{4}$ and $4B 4A = 0 \implies B = \frac{1}{4}$. Thus $y_{p_1}(x) = \frac{1}{4}x + \frac{1}{4}$. For $y'' 4y' + 4y = -\sin x$ try $y_{p_2}(x) = A\cos x + B\sin x$. Then $y'_{p_2} = -A\sin x + B\cos x$ and $y''_{p_2} = -A\cos x B\sin x$. Substituting, we have $(-A\cos x B\sin x) 4(-A\sin x + B\cos x) + 4(A\cos x + B\sin x) = -\sin x \implies (3A 4B)\cos x + (4A + 3B)\sin x = -\sin x$. Thus 3A 4B = 0 and 4A + 3B = -1, giving $A = -\frac{4}{25}$ and $A = -\frac{3}{25}$, so $A = -\frac{4}{25}$ so $A = -\frac{3}{25}$ so $A = -\frac{4}{25}$ sin $A = -\frac{3}{25}$. The general solution is $A = -\frac{4}{25}$ and $A = -\frac{3}{25}$ sin $A = -\frac{4}{25}$ sin sin
- 7. The auxiliary equation is $r^2-2r+5=0$ with roots $r=1\pm 2i$, so the complementary solution is $y_c(x)=e^x(c_1\cos 2x+c_2\sin 2x)$. Try the particular solution $y_p(x)=A\cos x+B\sin x$, so $y_p'=-A\sin x+B\cos x$ and $y_p''=-A\cos x-B\sin x$. Substituting, we have $(-A\cos x-B\sin x)-2(-A\sin x+B\cos x)+5(A\cos x+B\sin x)=\sin x$ \Rightarrow $(4A-2B)\cos x+(2A+4B)\sin x=\sin x$. Then 4A-2B=0, 2A+4B=1 \Rightarrow $A=\frac{1}{10}$, $B=\frac{1}{5}$ and the general solution is $y(x)=y_c(x)+y_p(x)=e^x(c_1\cos 2x+c_2\sin 2x)+\frac{1}{10}\cos x+\frac{1}{5}\sin x$. But $1=y(0)=c_1+\frac{1}{10}$ \Rightarrow $c_1=\frac{9}{10}$ and $1=y'(0)=2c_2+c_1+\frac{1}{5}$ \Rightarrow $c_2=-\frac{1}{20}$. Thus the solution to the initial-value problem is $y(x)=e^x\left(\frac{9}{10}\cos 2x-\frac{1}{20}\sin 2x\right)+\frac{1}{10}\cos x+\frac{1}{5}\sin x$.
- 8. The auxiliary equation is $r^2-1=0$ with roots $r=\pm 1$, so the complementary solution is $y_c(x)=c_1e^x+c_2e^{-x}$. Try the particular solution $y_p(x)=(Ax+B)e^{2x}$, so $y_p'=(2Ax+A+2B)e^{2x}$ and $y_p''=(4Ax+4A+4B)e^{2x}$. Substituting, we have $(4Ax+4A+4B)e^{2x}-(Ax+B)e^{2x}=xe^{2x} \Rightarrow (3Ax+4A+3B)e^{2x}=xe^{2x}$. Then $3A=1 \Rightarrow A=\frac{1}{3}$ and $4A+3B=0 \Rightarrow B=-\frac{4}{9}$, and the general solution is $y(x)=y_c(x)+y_p(x)=c_1e^x+c_2e^{-x}+\left(\frac{1}{3}x-\frac{4}{9}\right)e^{2x}$. But $0=y(0)=c_1+c_2-\frac{4}{9}$ and $1=y'(0)=c_1-c_2-\frac{5}{9} \Rightarrow c_1=1, c_2=-\frac{5}{9}$. Thus the solution to the initial-value problem is $y(x)=e^x-\frac{5}{9}e^{-x}+\left(\frac{1}{3}x-\frac{4}{9}\right)e^{2x}$.

SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ☐ 725

- 9. The auxiliary equation is $r^2-r=0$ with roots r=0, r=1 so the complementary solution is $y_c(x)=c_1+c_2e^x$. Try $y_p(x)=x(Ax+B)e^x$ so that no term in y_p is a solution of the complementary equation. Then $y_p'=(Ax^2+(2A+B)x+B)e^x$ and $y_p''=(Ax^2+(4A+B)x+(2A+2B))e^x$. Substitution into the differential equation gives $(Ax^2+(4A+B)x+(2A+2B))e^x-(Ax^2+(2A+B)x+B)e^x=xe^x \Rightarrow (2Ax+(2A+B))e^x=xe^x \Rightarrow A=\frac{1}{2}, B=-1$. Thus $y_p(x)=\left(\frac{1}{2}x^2-x\right)e^x$ and the general solution is $y(x)=c_1+c_2e^x+\left(\frac{1}{2}x^2-x\right)e^x$. But $2=y(0)=c_1+c_2$ and $1=y'(0)=c_2-1$, so $c_2=2$ and $c_1=0$. The solution to the initial-value problem is $y(x)=2e^x+\left(\frac{1}{2}x^2-x\right)e^x=e^x\left(\frac{1}{2}x^2-x+2\right)$.
- **10.** $y_c(x) = c_1 e^x + c_2 e^{-2x}$. For y'' + y' 2y = x try $y_{p_1}(x) = Ax + B$. Then $y'_{p_1} = A$, $y''_{p_1} = 0$, and substitution gives $0 + A 2(Ax + B) = x \implies A = -\frac{1}{2}$, $B = -\frac{1}{4}$, so $y_{p_1}(x) = -\frac{1}{2}x \frac{1}{4}$. For $y'' + y' 2y = \sin 2x$ try $y_{p_2}(x) = A\cos 2x + B\sin 2x$. Then $y'_{p_2} = -2A\sin 2x + 2B\cos 2x$, $y''_{p_2} = -4A\cos 2x 4B\sin 2x$, and substitution gives $(-4A\cos 2x 4B\sin 2x) + (-2A\sin 2x + 2B\cos 2x) 2(A\cos 2x + B\sin 2x) = \sin 2x \implies A = -\frac{1}{20}$, $B = -\frac{3}{20}$. Thus $y_{p_2}(x) = -\frac{1}{20}\cos 2x + -\frac{3}{20}\sin 2x$ and the general solution is $y(x) = c_1 e^x + c_2 e^{-2x} \frac{1}{2}x \frac{1}{4} \frac{1}{20}\cos 2x \frac{3}{20}\sin 2x$. But $1 = y(0) = c_1 + c_2 \frac{1}{4} \frac{1}{20}$ and $0 = y'(0) = c_1 2c_2 \frac{1}{2} \frac{3}{10} \implies c_1 = \frac{17}{15}$ and $c_2 = \frac{1}{6}$. Thus the solution to the initial-value problem is $y(x) = \frac{17}{15}e^x + \frac{1}{6}e^{-2x} \frac{1}{2}x \frac{1}{4} \frac{1}{20}\cos 2x \frac{3}{20}\sin 2x$.
- 11. The auxiliary equation is $r^2 + 3r + 2 = (r+1)(r+2) = 0$, so r = -1, r = -2 and $y_c(x) = c_1 e^{-x} + c_2 e^{-2x}$. Try $y_p = A\cos x + B\sin x \implies y_p' = -A\sin x + B\cos x$, $y_p'' = -A\cos x B\sin x$. Substituting into the differential equation gives $(-A\cos x B\sin x) + 3(-A\sin x + B\cos x) + 2(A\cos x + B\sin x) = \cos x$ or $(A+3B)\cos x + (-3A+B)\sin x = \cos x$. Then solving the equations A+3B=1, -3A+B=0 gives $A=\frac{1}{10}$, $B=\frac{3}{10}$ and the general solution is $y(x)=c_1e^{-x}+c_2e^{-2x}+\frac{1}{10}\cos x+\frac{3}{10}\sin x$. The graph shows y_p and several other solutions. Notice that all solutions are asymptotic to y_p as $x\to\infty$. Except for y_p , all solutions approach either ∞
- **12.** The auxiliary equation is $r^2 + 4 = 0 \implies r = \pm 2i$, so $y_c(x) = c_1 \cos 2x + c_2 \sin 2x$. Try $y_p = Ae^{-x} \implies y_p' = -Ae^{-x}$, $y_p'' = Ae^{-x}$. Substituting into the differential equation gives $Ae^{-x} + 4Ae^{-x} = e^{-x} \implies 5A = 1 \implies A = \frac{1}{5}$, so $y_p = \frac{1}{5}e^{-x}$ and the general solution is $y(x) = c_1 \cos 2x + c_2 \sin 2x + \frac{1}{5}e^{-x}$. We graph y_p along with several other solutions. All of the solutions except y_p oscillate around $y_p = \frac{1}{5}e^{-x}$,

or $-\infty$ as $x \to -\infty$.

and all solutions approach ∞ as $x \to -\infty$

726 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

- **13.** Here $y_c(x) = c_1 e^{2x} + c_2 e^{-x}$, and a trial solution is $y_p(x) = (Ax + B)e^x \cos x + (Cx + D)e^x \sin x$.
- 14. Here $y_c(x) = c_1 \cos 2x + c_2 \sin 2x$. For $y'' + 4y = \cos 4x$ try $y_{p_1}(x) = A \cos 4x + B \sin 4x$ and for $y'' + 4y = \cos 2x$ try $y_{p_2}(x) = x (C \cos 2x + D \sin 2x)$ (so that no term of y_{p_2} is a solution of the complementary equation). Thus a trial solution is $y_p(x) = y_{p_1}(x) + y_{p_2}(x) = A \cos 4x + B \sin 4x + Cx \cos 2x + Dx \sin 2x$.
- **15.** Here $y_c(x) = c_1 e^{2x} + c_2 e^x$. For $y'' 3y' + 2y = e^x$ try $y_{p_1}(x) = Axe^x$ (since $y = Ae^x$ is a solution of the complementary equation) and for $y'' 3y' + 2y = \sin x$ try $y_{p_2}(x) = B\cos x + C\sin x$. Thus a trial solution is $y_p(x) = y_{p_1}(x) + y_{p_2}(x) = Axe^x + B\cos x + C\sin x$.
- **16.** Since $y_c(x) = c_1 e^x + c_2 e^{-4x}$ try $y_p(x) = x(Ax^3 + Bx^2 + Cx + D)e^x$ so that no term of $y_p(x)$ satisfies the complementary equation.
- 17. Since $y_c(x) = e^{-x}(c_1 \cos 3x + c_2 \sin 3x)$ we try $y_p(x) = x(Ax^2 + Bx + C)e^{-x} \cos 3x + x(Dx^2 + Ex + F)e^{-x} \sin 3x$ (so that no term of y_p is a solution of the complementary equation).
- **18.** Here $y_c(x) = c_1 \cos 2x + c_2 \sin 2x$. For $y'' + 4y = e^{3x}$ try $y_{p_1}(x) = Ae^{3x}$ and for $y'' + 4y = x \sin 2x$ try $y_{p_2}(x) = x(Bx + C)\cos 2x + x(Dx + E)\sin 2x$ (so that no term of y_{p_2} is a solution of the complementary equation).

Note: Solving Equations (7) and (9) in The Method of Variation of Parameters gives

$$u_1' = -\frac{Gy_2}{a\left(y_1y_2' - y_2y_1'\right)} \qquad \text{and} \qquad u_2' = \frac{Gy_1}{a\left(y_1y_2' - y_2y_1'\right)}$$

We will use these equations rather than resolving the system in each of the remaining exercises in this section.

- 19. (a) Here $4r^2+1=0 \implies r=\pm\frac{1}{2}i$ and $y_c(x)=c_1\cos\left(\frac{1}{2}x\right)+c_2\sin\left(\frac{1}{2}x\right)$. We try a particular solution of the form $y_p(x)=A\cos x+B\sin x \implies y_p'=-A\sin x+B\cos x$ and $y_p''=-A\cos x-B\sin x$. Then the equation $4y''+y=\cos x$ becomes $4(-A\cos x-B\sin x)+(A\cos x+B\sin x)=\cos x$ or $-3A\cos x-3B\sin x=\cos x \implies A=-\frac{1}{3}, B=0$. Thus, $y_p(x)=-\frac{1}{3}\cos x$ and the general solution is $y(x)=y_c(x)+y_p(x)=c_1\cos\left(\frac{1}{2}x\right)+c_2\sin\left(\frac{1}{2}x\right)-\frac{1}{3}\cos x$.
 - (b) From (a) we know that $y_c(x)=c_1\cos\frac{x}{2}+c_2\sin\frac{x}{2}$. Setting $y_1=\cos\frac{x}{2},\,y_2=\sin\frac{x}{2}$, we have

$$y_1y_2' - y_2y_1' = \frac{1}{2}\cos^2\frac{x}{2} + \frac{1}{2}\sin^2\frac{x}{2} = \frac{1}{2}. \text{ Thus } u_1' = -\frac{\cos x \sin\frac{x}{2}}{4 \cdot \frac{1}{2}} = -\frac{1}{2}\cos\left(2 \cdot \frac{x}{2}\right)\sin\frac{x}{2} = -\frac{1}{2}\left(2\cos^2\frac{x}{2} - 1\right)\sin\frac{x}{2}$$

and
$$u_2' = \frac{\cos x \cos \frac{x}{2}}{4 \cdot \frac{1}{2}} = \frac{1}{2} \cos(2 \cdot \frac{x}{2}) \cos \frac{x}{2} = \frac{1}{2} (1 - 2 \sin^2 \frac{x}{2}) \cos \frac{x}{2}$$
. Then

$$u_1(x) = \int \left(\frac{1}{2}\sin\frac{x}{2} - \cos^2\frac{x}{2}\sin\frac{x}{2}\right)dx = -\cos\frac{x}{2} + \frac{2}{3}\cos^3\frac{x}{2}$$
 and

$$u_2(x) = \int \left(\frac{1}{2}\cos\frac{x}{2} - \sin^2\frac{x}{2}\cos\frac{x}{2}\right) dx = \sin\frac{x}{2} - \frac{2}{3}\sin^3\frac{x}{2}$$
. Thus

$$y_p(x) = \left(-\cos\frac{x}{2} + \frac{2}{3}\cos^3\frac{x}{2}\right)\cos\frac{x}{2} + \left(\sin\frac{x}{2} - \frac{2}{3}\sin^3\frac{x}{2}\right)\sin\frac{x}{2} = -\left(\cos^2\frac{x}{2} - \sin^2\frac{x}{2}\right) + \frac{2}{3}\left(\cos^4\frac{x}{2} - \sin^4\frac{x}{2}\right)$$
$$= -\cos\left(2 \cdot \frac{x}{2}\right) + \frac{2}{3}\left(\cos^2\frac{x}{2} + \sin^2\frac{x}{2}\right)\left(\cos^2\frac{x}{2} - \sin^2\frac{x}{2}\right) = -\cos x + \frac{2}{3}\cos x = -\frac{1}{3}\cos x$$

and the general solution is $y(x) = y_c(x) + y_p(x) = c_1 \cos \frac{x}{2} + c_2 \sin \frac{x}{2} - \frac{1}{3} \cos x$.

SECTION 17.2 NONHOMOGENEOUS LINEAR EQUATIONS ☐ 727

- **20.** (a) Here $r^2-2r-3=(r-3)\,(r+1)=0 \quad \Rightarrow \quad r=3,\, r=-1$ and the complementary solution is $y_c(x)=c_1e^{3x}+c_2e^{-x}$. A particular solution is of the form $y_p(x)=Ax+B \quad \Rightarrow \quad y_p'=A,\, y_p''=0$, and substituting into the differential equation gives $0-2A-3\,(Ax+B)=x+2$ or -3Ax+(-2A-3B)=x+2, so $A=-\frac{1}{3}$ and $-2A-3B=2 \quad \Rightarrow \quad B=-\frac{4}{9}$. Thus $y_p(x)=-\frac{1}{3}x-\frac{4}{9}$ and the general solution is $y(x)=y_c(x)+y_p(x)=c_1e^{3x}+c_2e^{-x}-\frac{1}{3}x-\frac{4}{9}$.
 - (b) In (a), $y_c(x) = c_1 e^{3x} + c_2 e^{-x}$, so set $y_1 = e^{3x}$, $y_2 = e^{-x}$. Then $y_1 y_2' y_2 y_1' = -e^{3x} e^{-x} 3e^{3x} e^{-x} = -4e^{2x}$ so $u_1' = -\frac{(x+2)e^{-x}}{-4e^{2x}} = \frac{1}{4}(x+2)e^{-3x} \quad \Rightarrow \quad u_1(x) = \frac{1}{4}\int(x+2)e^{-3x}\,dx = \frac{1}{4}\left[-\frac{1}{3}(x+2)e^{-3x} \frac{1}{9}e^{-3x}\right] \quad \text{[by parts]}$ and $u_2' = \frac{(x+2)e^{3x}}{-4e^{2x}} = -\frac{1}{4}(x+2)e^x \quad \Rightarrow \quad u_2(x) = -\frac{1}{4}\int(x+2)e^x\,dx = -\frac{1}{4}[(x+2)e^x e^x] \quad \text{[by parts]}.$ Hence $y_p(x) = \frac{1}{4}\left[\left(-\frac{1}{3}x \frac{7}{9}\right)e^{-3x}\right]e^{3x} \frac{1}{4}[(x+1)e^x]e^{-x} = -\frac{1}{3}x \frac{4}{9} \text{ and}$ $y(x) = y_c(x) + y_p(x) = c_1e^{3x} + c_2e^{-x} \frac{1}{3}x \frac{4}{9}.$
- 21. (a) $r^2 2r + 1 = (r 1)^2 = 0 \implies r = 1$, so the complementary solution is $y_c(x) = c_1 e^x + c_2 x e^x$. A particular solution is of the form $y_p(x) = Ae^{2x}$. Thus $4Ae^{2x} 4Ae^{2x} + Ae^{2x} = e^{2x} \implies Ae^{2x} = e^{2x} \implies A = 1 \implies y_p(x) = e^{2x}$. So a general solution is $y(x) = y_c(x) + y_p(x) = c_1 e^x + c_2 x e^x + e^{2x}$.
 - (b) From (a), $y_c(x) = c_1 e^x + c_2 x e^x$, so set $y_1 = e^x$, $y_2 = x e^x$. Then, $y_1 y_2' y_2 y_1' = e^{2x} (1+x) x e^{2x} = e^{2x}$ and so $u_1' = -x e^x \implies u_1(x) = -\int x e^x dx = -(x-1)e^x$ [by parts] and $u_2' = e^x \implies u_2(x) = \int e^x dx = e^x$. Hence $y_p(x) = (1-x)e^{2x} + x e^{2x} = e^{2x}$ and the general solution is $y(x) = y_c(x) + y_p(x) = c_1 e^x + c_2 x e^x + e^{2x}$.
- 22. (a) Here $r^2 r = r(r-1) = 0 \implies r = 0$, 1 and $y_c(x) = c_1 + c_2 e^x$ and so we try a particular solution of the form $y_p(x) = Axe^x$. Thus, after calculating the necessary derivatives, we get $y'' y' = e^x \implies Ae^x(2+x) Ae^x(1+x) = e^x \implies A = 1$. Thus $y_p(x) = xe^x$ and the general solution is $y(x) = c_1 + c_2 e^x + xe^x$.
 - (b) From (a) we know that $y_c(x) = c_1 + c_2 e^x$, so setting $y_1 = 1$, $y_2 = e^x$, then $y_1 y_2' y_2 y_1' = e^x 0 = e^x$. Thus $u_1' = -e^{2x}/e^x = -e^x$ and $u_2' = e^x/e^x = 1$. Then $u_1(x) = -\int e^x dx = -e^x$ and $u_2(x) = x$. Thus $y_p(x) = -e^x + xe^x$ and the general solution is $y(x) = c_1 + c_2 e^x e^x + xe^x = c_1 + c_3 e^x + xe^x$.
- 23. As in Example 5, $y_c(x) = c_1 \sin x + c_2 \cos x$, so set $y_1 = \sin x$, $y_2 = \cos x$. Then $y_1 y_2' y_2 y_1' = -\sin^2 x \cos^2 x = -1$, so $u_1' = -\frac{\sec^2 x \cos x}{-1} = \sec x \quad \Rightarrow \quad u_1(x) = \int \sec x \, dx = \ln\left(\sec x + \tan x\right)$ for $0 < x < \frac{\pi}{2}$, and $u_2' = \frac{\sec^2 x \sin x}{-1} = -\sec x \tan x \quad \Rightarrow \quad u_2(x) = -\sec x$. Hence $y_p(x) = \ln(\sec x + \tan x) \cdot \sin x \sec x \cdot \cos x = \sin x \ln(\sec x + \tan x) 1$ and the general solution is $y(x) = c_1 \sin x + c_2 \cos x + \sin x \ln(\sec x + \tan x) 1.$

728 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

24. As in Exercise 23, $y_c(x) = c_1 \sin x + c_2 \cos x$, $y_1 = \sin x$, $y_2 = \cos x$, and $y_1 y_2' - y_2 y_1' = -1$. Then

$$u_1' = -\frac{\sec^3 x \cos x}{-1} = \sec^2 x \quad \Rightarrow \quad u_1(x) = \tan x \text{ and } u_2' = \frac{\sec^3 x \sin x}{-1} = -\sec^2 x \tan x \quad \Rightarrow$$

$$u_2(x) = -\int \tan x \, \sec^2 x \, dx = -\frac{1}{2} \tan^2 x$$
. Hence

$$y_p(x) = \tan x \sin x - \frac{1}{2} \tan^2 x \cos x = \tan x \sin x - \frac{1}{2} \tan x \sin x = \frac{1}{2} \tan x \sin x$$
 and the general solution

is
$$y(x) = c_1 \sin x + c_2 \cos x + \frac{1}{2} \tan x \sin x$$
.

25. $y_1 = e^x$, $y_2 = e^{2x}$ and $y_1 y_2' - y_2 y_1' = e^{3x}$. So $u_1' = \frac{-e^{2x}}{(1 + e^{-x})e^{3x}} = -\frac{e^{-x}}{1 + e^{-x}}$ and

$$u_1(x) = \int -\frac{e^{-x}}{1 + e^{-x}} dx = \ln(1 + e^{-x}).$$
 $u_2' = \frac{e^x}{(1 + e^{-x})e^{3x}} = \frac{e^x}{e^{3x} + e^{2x}}$ so

$$u_2(x) = \int \frac{e^x}{e^{3x} + e^{2x}} dx = \ln\left(\frac{e^x + 1}{e^x}\right) - e^{-x} = \ln(1 + e^{-x}) - e^{-x}$$
. Hence

$$y_p(x) = e^x \ln(1 + e^{-x}) + e^{2x} [\ln(1 + e^{-x}) - e^{-x}]$$
 and the general solution is

$$y(x) = [c_1 + \ln(1 + e^{-x})]e^x + [c_2 - e^{-x} + \ln(1 + e^{-x})]e^{2x}.$$

26. $y_1 = e^{-x}$, $y_2 = e^{-2x}$ and $y_1 y_2' - y_2 y_1' = -e^{-3x}$. So $u_1' = -\frac{(\sin e^x)e^{-2x}}{-e^{-3x}} = e^x \sin e^x$

and
$$u_2' = \frac{(\sin e^x)e^{-x}}{e^{-3x}} = -e^{2x}\sin e^x$$
. Hence $u_1(x) = \int e^x \sin e^x dx = -\cos e^x$ and

$$u_2(x) = \int -e^{2x} \sin e^x dx = e^x \cos e^x - \sin e^x$$
. Then $y_p(x) = -e^{-x} \cos e^x - e^{-2x} [\sin e^x - e^x \cos e^x]$

and the general solution is $y(x) = (c_1 - \cos e^x)e^{-x} + [c_2 - \sin e^x + e^x \cos e^x]e^{-2x}$.

27. $r^2 - 2r + 1 = (r - 1)^2 = 0 \implies r = 1$ so $y_c(x) = c_1 e^x + c_2 x e^x$. Thus $y_1 = e^x$, $y_2 = x e^x$ and

$$y_1y_2' - y_2y_1' = e^x(x+1)e^x - xe^xe^x = e^{2x}$$
. So $u_1' = -\frac{xe^x \cdot e^x/(1+x^2)}{e^{2x}} = -\frac{x}{1+x^2}$

$$u_1 = -\int \frac{x}{1+x^2} \, dx = -\frac{1}{2} \ln \left(1+x^2\right), \ u_2' = \frac{e^x \cdot e^x/(1+x^2)}{e^{2x}} = \frac{1}{1+x^2} \quad \Rightarrow \quad u_2 = \int \frac{1}{1+x^2} \, dx = \tan^{-1} x \text{ and } x = -\frac{1}{2} \ln \left(1+x^2\right), \ u_2' = \frac{e^x \cdot e^x/(1+x^2)}{e^{2x}} = \frac{1}{1+x^2} \quad \Rightarrow \quad u_2 = \int \frac{1}{1+x^2} \, dx = \tan^{-1} x \, dx$$

$$y_p(x) = -\frac{1}{2}e^x \ln(1+x^2) + xe^x \tan^{-1} x$$
. Hence the general solution is $y(x) = e^x \left[c_1 + c_2 x - \frac{1}{2}\ln(1+x^2) + x \tan^{-1} x\right]$.

28. $y_1 = e^{-2x}$, $y_2 = xe^{-2x}$ and $y_1y_2' - y_2y_1' = e^{-4x}$. Then $u_1' = \frac{-e^{-2x}xe^{-2x}}{x^3e^{-4x}} = -\frac{1}{x^2}$ so $u_1(x) = x^{-1}$ and

$$u_2' = \frac{e^{-2x}e^{-2x}}{x^3e^{-4x}} = \frac{1}{x^3}$$
 so $u_2(x) = -\frac{1}{2x^2}$. Thus $y_p(x) = \frac{e^{-2x}}{x} - \frac{xe^{-2x}}{2x^2} = \frac{e^{-2x}}{2x}$ and the general solution is

$$y(x) = e^{-2x}[c_1 + c_2x + 1/(2x)].$$

(b)

17.3 Applications of Second-Order Differential Equations

- 1. By Hooke's Law k(0.25)=25 so k=100 is the spring constant and the differential equation is 5x''+100x=0. The auxiliary equation is $5r^2+100=0$ with roots $r=\pm 2\sqrt{5}i$, so the general solution to the differential equation is $x(t)=c_1\cos\left(2\sqrt{5}\,t\right)+c_2\sin\left(2\sqrt{5}\,t\right)$. We are given that $x(0)=0.35 \implies c_1=0.35$ and $x'(0)=0 \implies 2\sqrt{5}\,c_2=0 \implies c_2=0$, so the position of the mass after t seconds is $x(t)=0.35\cos\left(2\sqrt{5}\,t\right)$.
- **2.** By Hooke's Law k(0.4) = 32 so $k = \frac{32}{0.4} = 80$ is the spring constant and the differential equation is 8x'' + 80x = 0. The general solution is $x(t) = c_1 \cos\left(\sqrt{10}\,t\right) + c_2 \sin\left(\sqrt{10}\,t\right)$. But $0 = x(0) = c_1$ and $1 = x'(0) = \sqrt{10}\,c_2 \implies c_2 = \frac{1}{\sqrt{10}}$, so the position of the mass after t seconds is $x(t) = \frac{1}{\sqrt{10}}\sin\left(\sqrt{10}\,t\right)$.
- 3. k(0.5)=6 or k=12 is the spring constant, so the initial-value problem is 2x''+14x'+12x=0, x(0)=1, x'(0)=0. The general solution is $x(t)=c_1e^{-6t}+c_2e^{-t}$. But $1=x(0)=c_1+c_2$ and $0=x'(0)=-6c_1-c_2$. Thus the position is given by $x(t)=-\frac{1}{5}e^{-6t}+\frac{6}{5}e^{-t}$.
- **4.** (a) $k(0.25)=13 \Rightarrow k=52$, so the differential equation is 2x''+8x'+52x=0 with general solution $x(t)=e^{-2t}\left[c_1\cos\left(\sqrt{22}\,t\right)+c_2\sin\left(\sqrt{22}\,t\right)\right]$. Then $0=x(0)=c_1$ and $0.5=x'(0)=\sqrt{22}\,c_2 \Rightarrow c_2=\frac{1}{2\sqrt{22}}$, so the position is given by $x(t)=\frac{1}{2\sqrt{22}}e^{-2t}\sin\left(\sqrt{22}\,t\right)$.

- **5.** For critical damping we need $c^2 4mk = 0$ or $m = c^2/(4k) = 14^2/(4 \cdot 12) = \frac{49}{12}$ kg.
- **6.** For critical damping we need $c^2 = 4mk$ or $c = 2\sqrt{mk} = 2\sqrt{2 \cdot 52} = 4\sqrt{26}$.
- 7. We are given m = 1, k = 100, x(0) = -0.1 and x'(0) = 0. From (3), the differential equation is $\frac{d^2x}{dt^2} + c\frac{dx}{dt} + 100x = 0$ with auxiliary equation $r^2 + cr + 100 = 0$.

If c=10, we have two complex roots $r=-5\pm 5\sqrt{3}\,i$, so the motion is underdamped and the solution is $x=e^{-5t}\left[c_1\cos\left(5\sqrt{3}\,t\right)+c_2\sin\left(5\sqrt{3}\,t\right)\right]. \text{ Then } -0.1=x(0)=c_1 \text{ and } 0=x'(0)=5\sqrt{3}\,c_2-5c_1 \quad \Rightarrow \quad c_2=-\frac{1}{10\sqrt{3}},$ so $x=e^{-5t}\left[-0.1\cos\left(5\sqrt{3}\,t\right)-\frac{1}{10\sqrt{3}}\sin\left(5\sqrt{3}\,t\right)\right].$

If c=15, we again have underdamping since the auxiliary equation has roots $r=-\frac{15}{2}\pm\frac{5\sqrt{7}}{2}i$. The general solution is $x=e^{-15t/2}\Big[c_1\cos\Big(\frac{5\sqrt{7}}{2}t\Big)+c_2\sin\Big(\frac{5\sqrt{7}}{2}t\Big)\Big]$, so $-0.1=x\left(0\right)=c_1$ and $0=x'(0)=\frac{5\sqrt{7}}{2}c_2-\frac{15}{2}c_1 \ \Rightarrow \ c_2=-\frac{3}{10\sqrt{7}}$. Thus $x=e^{-15t/2}\Big[-0.1\cos\Big(\frac{5\sqrt{7}}{2}t\Big)-\frac{3}{10\sqrt{7}}\sin\Big(\frac{5\sqrt{7}}{2}t\Big)\Big]$.

730 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

For c=20, we have equal roots $r_1=r_2=-10$, so the oscillation is critically damped and the solution is $x=(c_1+c_2t)e^{-10t}$. Then $-0.1=x(0)=c_1$ and $0=x'(0)=-10c_1+c_2 \implies c_2=-1$, so $x=(-0.1-t)e^{-10t}$. If c=25 the auxiliary equation has roots $r_1=-5$, $r_2=-20$, so we have overdamping and the solution is $x=c_1e^{-5t}+c_2e^{-20t}$. Then $-0.1=x(0)=c_1+c_2$ and $0=x'(0)=-5c_1-20c_2 \implies c_1=-\frac{2}{15}$ and $c_2=\frac{1}{30}$, so $x=-\frac{2}{15}e^{-5t}+\frac{1}{30}e^{-20t}$.

If c=30 we have roots $r=-15\pm 5\sqrt{5}$, so the motion is overdamped and the solution is $x=c_1e^{\left(-15+5\sqrt{5}\right)t}+c_2e^{\left(-15-5\sqrt{5}\right)t}$. Then $-0.1=x(0)=c_1+c_2$ and $0=x'(0)=\left(-15+5\sqrt{5}\right)c_1+\left(-15-5\sqrt{5}\right)c_2 \Rightarrow c_1=\frac{-5-3\sqrt{5}}{100}$ and $c_2=\frac{-5+3\sqrt{5}}{100}$, so $x=\left(\frac{-5-3\sqrt{5}}{100}\right)e^{\left(-15+5\sqrt{5}\right)t}+\left(\frac{-5+3\sqrt{5}}{100}\right)e^{\left(-15-5\sqrt{5}\right)t}$.

8. We are given m=1, c=10, x(0)=0 and x'(0)=1. The differential equation is $\frac{d^2x}{dt^2}+10\frac{dx}{dt}+kx=0$ with auxiliary equation $r^2+10r+k=0$. k=10: the auxiliary equation has roots $r=-5\pm\sqrt{15}$ so we have overdamping and the solution is $x=c_1e^{\left(-5+\sqrt{15}\right)t}+c_2e^{\left(-5-\sqrt{15}\right)t}$. Entering the initial conditions gives $c_1=\frac{1}{2\sqrt{15}}$ and $c_2=-\frac{1}{2\sqrt{15}}$, so $x=\frac{1}{2\sqrt{15}}e^{\left(-5+\sqrt{15}\right)t}-\frac{1}{2\sqrt{15}}e^{\left(-5-\sqrt{15}\right)t}$.

k=20: $r=-5\pm\sqrt{5}$ and the solution is $x=c_1e^{\left(-5+\sqrt{5}\right)t}+c_2e^{\left(-5-\sqrt{5}\right)t}$ so again the motion is overdamped. The initial conditions give $c_1=\frac{1}{2\sqrt{5}}$ and $c_2=-\frac{1}{2\sqrt{5}}$, so $x=\frac{1}{2\sqrt{5}}e^{\left(-5+\sqrt{5}\right)t}-\frac{1}{2\sqrt{5}}e^{\left(-5-\sqrt{5}\right)t}$.

k=25: we have equal roots $r_1=r_2=-5$, so the motion is critically damped and the solution is $x=(c_1+c_2t)e^{-5t}$. The initial conditions give $c_1=0$ and $c_2=1$, so $x=te^{-5t}$.

k=30: $r=-5\pm\sqrt{5}\,i$ so the motion is underdamped and the solution is $x=e^{-5t}\big[c_1\cos\big(\sqrt{5}\,t\big)+c_2\sin\big(\sqrt{5}\,t\big)\big]$.

The initial conditions give $c_1=0$ and $c_2=\frac{1}{\sqrt{5}}$, so $x=\frac{1}{\sqrt{5}}\,e^{-5t}\sin\left(\sqrt{5}\,t\right)$.

k=40: $r=-5\pm\sqrt{15}\,i$ so we again have underdamping.

The solution is $x = e^{-5t} \left[c_1 \cos\left(\sqrt{15}t\right) + c_2 \sin\left(\sqrt{15}t\right) \right]$,

and the initial conditions give $c_1 = 0$ and $c_2 = \frac{1}{\sqrt{15}}$

Thus
$$x = \frac{1}{\sqrt{15}}e^{-5t}\sin(\sqrt{15}t)$$
.

9. The differential equation is $mx'' + kx = F_0 \cos \omega_0 t$ and $\omega_0 \neq \omega = \sqrt{k/m}$. Here the auxiliary equation is $mr^2 + k = 0$ with roots $\pm \sqrt{k/m} i = \pm \omega i$ so $x_c(t) = c_1 \cos \omega t + c_2 \sin \omega t$. Since $\omega_0 \neq \omega$, try $x_p(t) = A \cos \omega_0 t + B \sin \omega_0 t$. Then we need $(m)(-\omega_0^2)(A \cos \omega_0 t + B \sin \omega_0 t) + k(A \cos \omega_0 t + B \sin \omega_0 t) = F_0 \cos \omega_0 t$ or $A(k - m\omega_0^2) = F_0$ and

SECTION 17.3 APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS ☐ 731

 $B\left(k-m\omega_0^2\right)=0. \text{ Hence } B=0 \text{ and } A=\frac{F_0}{k-m\omega_0^2}=\frac{F_0}{m(\omega^2-\omega_0^2)} \text{ since } \omega^2=\frac{k}{m}. \text{ Thus the motion of the mass is given}$ by $x(t)=c_1\cos\omega t+c_2\sin\omega t+\frac{F_0}{m(\omega^2-\omega_0^2)}\cos\omega_0 t.$

- 10. As in Exercise 9, $x_c(t) = c_1 \cos \omega t + c_2 \sin \omega t$. But the natural frequency of the system equals the frequency of the external force, so try $x_p(t) = t(A\cos \omega t + B\sin \omega t)$. Then we need $m(2\omega B \omega^2 At)\cos \omega t m(2\omega A + \omega^2 Bt)\sin \omega t + kAt\cos \omega t + kBt\sin \omega t = F_0\cos \omega t$ or $2m\omega B = F_0$ and $-2m\omega A = 0$ [noting $-m\omega^2 A + kA = 0$ and $-m\omega^2 B + kB = 0$ since $\omega^2 = k/m$]. Hence the general solution is $x(t) = c_1 \cos \omega t + c_2 \sin \omega t + [F_0 t/(2m\omega)] \sin \omega t$.
- 11. From Equation 6, x(t) = f(t) + g(t) where $f(t) = c_1 \cos \omega t + c_2 \sin \omega t$ and $g(t) = \frac{F_0}{m(\omega^2 \omega_0^2)} \cos \omega_0 t$. Then f is periodic, with period $\frac{2\pi}{\omega}$, and if $\omega \neq \omega_0$, g is periodic with period $\frac{2\pi}{\omega_0}$. If $\frac{\omega}{\omega_0}$ is a rational number, then we can say $\frac{\omega}{\omega_0} = \frac{a}{b} \implies a = \frac{b\omega}{\omega_0}$ where a and b are non-zero integers. Then $x(t + a \cdot \frac{2\pi}{\omega}) = f(t + a \cdot \frac{2\pi}{\omega}) + g(t + a \cdot \frac{2\pi}{\omega}) = f(t) + g(t + \frac{b\omega}{\omega_0} \cdot \frac{2\pi}{\omega}) = f(t) + g(t + b \cdot \frac{2\pi}{\omega_0}) = f(t) + g(t) = x(t)$ so x(t) is periodic.
- **12.** (a) The graph of $x = c_1 e^{rt} + c_2 t e^{rt}$ has a t-intercept when $c_1 e^{rt} + c_2 t e^{rt} = 0 \Leftrightarrow e^{rt}(c_1 + c_2 t) = 0 \Leftrightarrow c_1 = -c_2 t$. Since t > 0, x has a t-intercept if and only if c_1 and c_2 have opposite signs.
 - (b) For t > 0, the graph of x crosses the t-axis when $c_1 e^{r_1 t} + c_2 e^{r_2 t} = 0 \iff c_2 e^{r_2 t} = -c_1 e^{r_1 t} \iff c_2 = -c_1 \frac{e^{r_1 t}}{e^{r_2 t}} = -c_1 e^{(r_1 r_2)t}$. But $r_1 > r_2 \implies r_1 r_2 > 0$ and since t > 0, $e^{(r_1 r_2)t} > 1$. Thus $|c_2| = |c_1| e^{(r_1 r_2)t} > |c_1|$, and the graph of x can cross the t-axis only if $|c_2| > |c_1|$.
- 13. Here the initial-value problem for the charge is Q'' + 20Q' + 500Q = 12, Q(0) = Q'(0) = 0. Then $Q_c(t) = e^{-10t}(c_1\cos 20t + c_2\sin 20t)$ and try $Q_p(t) = A \Rightarrow 500A = 12$ or $A = \frac{3}{125}$. The general solution is $Q(t) = e^{-10t}(c_1\cos 20t + c_2\sin 20t) + \frac{3}{125}$. But $0 = Q(0) = c_1 + \frac{3}{125}$ and $Q'(t) = I(t) = e^{-10t}[(-10c_1 + 20c_2)\cos 20t + (-10c_2 20c_1)\sin 20t]$ but $0 = Q'(0) = -10c_1 + 20c_2$. Thus the charge is $Q(t) = -\frac{1}{250}e^{-10t}(6\cos 20t + 3\sin 20t) + \frac{3}{125}$ and the current is $I(t) = e^{-10t}(\frac{3}{5})\sin 20t$.
- 14. (a) Here the initial-value problem for the charge is 2Q'' + 24Q' + 200Q = 12 with Q(0) = 0.001 and Q'(0) = 0. Then $Q_c(t) = e^{-6t}(c_1\cos 8t + c_2\sin 8t)$ and try $Q_p(t) = A \implies A = \frac{3}{50}$ and the general solution is $Q(t) = e^{-6t}(c_1\cos 8t + c_2\sin 8t) + \frac{3}{50}$. But $0.001 = Q(0) = c + \frac{3}{50}$ so $c_1 = -0.059$. Also $Q'(t) = I(t) = e^{-6t}[(-6c_1 + 8c_2)\cos 8t + (-6c_2 8c_1)\sin 8t]$ and $0 = Q'(0) = -6c_1 + 8c_2$ so $c_2 = -0.04425$. Hence the charge is $Q(t) = -e^{-6t}(0.059\cos 8t + 0.04425\sin 8t) + \frac{3}{50}$ and the current is $I(t) = e^{-6t}(0.7375)\sin 8t$.

732 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

- **15.** As in Exercise 13, $Q_c(t) = e^{-10t}(c_1 \cos 20t + c_2 \sin 20t)$ but $E(t) = 12 \sin 10t$ so try $Q_p(t) = A \cos 10t + B \sin 10t$. Substituting into the differential equation gives $(-100A + 200B + 500A) \cos 10t + (-100B 200A + 500B) \sin 10t = 12 \sin 10t \implies 400A + 200B = 0$ and 400B 200A = 12. Thus $A = -\frac{3}{250}$, $B = \frac{3}{125}$ and the general solution is $Q(t) = e^{-10t}(c_1 \cos 20t + c_2 \sin 20t) \frac{3}{250} \cos 10t + \frac{3}{125} \sin 10t$. But $0 = Q(0) = c_1 \frac{3}{250}$ so $c_1 = \frac{3}{250}$. Also $Q'(t) = \frac{3}{25} \sin 10t + \frac{6}{25} \cos 10t + e^{-10t}[(-10c_1 + 20c_2)\cos 20t + (-10c_2 20c_1)\sin 20t]$ and $0 = Q'(0) = \frac{6}{25} 10c_1 + 20c_2$ so $c_2 = -\frac{3}{500}$. Hence the charge is given by $Q(t) = e^{-10t} \left[\frac{3}{250} \cos 20t \frac{3}{500} \sin 20t \right] \frac{3}{250} \cos 10t + \frac{3}{125} \sin 10t$.
- **16.** (a) As in Exercise 14, $Q_c(t) = e^{-6t}(c_1\cos 8t + c_2\sin 8t)$ but try $Q_p(t) = A\cos 10t + B\sin 10t$. Substituting into the differential equation gives $(-200A + 240B + 200A)\cos 10t + (-200B 240A + 200B)\sin 10t = 12\sin 10t$, so B = 0 and $A = -\frac{1}{20}$. Hence, the general solution is $Q(t) = e^{-6t}(c_1\cos 8t + c_2\sin 8t) \frac{1}{20}\cos 10t$. But $0.001 = Q(0) = c_1 \frac{1}{20}$, $Q'(t) = e^{-6t}[(-6c_1 + 8c_2)\cos 8t + (-6c_2 8c_1)\sin 8t] \frac{1}{2}\sin 10t$ and $0 = Q'(0) = -6c_1 + 8c_2$, so $c_1 = 0.051$ and $c_2 = 0.03825$. Thus the charge is given by $Q(t) = e^{-6t}(0.051\cos 8t + 0.03825\sin 8t) \frac{1}{20}\cos 10t$.

- 17. $x(t) = A\cos(\omega t + \delta) \Leftrightarrow x(t) = A[\cos\omega t\cos\delta \sin\omega t\sin\delta] \Leftrightarrow x(t) = A\Big(\frac{c_1}{A}\cos\omega t + \frac{c_2}{A}\sin\omega t\Big)$ where $\cos\delta = c_1/A$ and $\sin\delta = -c_2/A \Leftrightarrow x(t) = c_1\cos\omega t + c_2\sin\omega t$. [Note that $\cos^2\delta + \sin^2\delta = 1 \Rightarrow c_1^2 + c_2^2 = A^2$.]
- **18.** (a) We approximate $\sin \theta$ by θ and, with L=1 and g=9.8, the differential equation becomes $\frac{d^2 \theta}{dt^2} + 9.8\theta = 0$. The auxiliary equation is $r^2 + 9.8 = 0 \implies r = \pm \sqrt{9.8} i$, so the general solution is $\theta(t) = c_1 \cos\left(\sqrt{9.8} t\right) + c_2 \sin\left(\sqrt{9.8} t\right)$.

SECTION 17.4 SERIES SOLUTIONS ☐ 733

Then $0.2 = \theta(0) = c_1$ and $1 = \theta'(0) = \sqrt{9.8} c_2 \implies c_2 = \frac{1}{\sqrt{9.8}}$, so the equation is $\theta(t) = 0.2 \cos(\sqrt{9.8} t) + \frac{1}{\sqrt{9.8}} \sin(\sqrt{9.8} t)$.

- (b) $\theta'(t) = -0.2\sqrt{9.8}\sin(\sqrt{9.8}\,t) + \cos(\sqrt{9.8}\,t) = 0$ or $\tan(\sqrt{9.8}\,t) = \frac{5}{\sqrt{9.8}}$, so the critical numbers are $t = \frac{1}{\sqrt{9.8}}\tan^{-1}\left(\frac{5}{\sqrt{9.8}}\right) + \frac{n}{\sqrt{9.8}}\pi \text{ (n any integer)}. \text{ The maximum angle from the vertical is}$ $\theta\left(\frac{1}{\sqrt{9.8}}\tan^{-1}\left(\frac{5}{\sqrt{9.8}}\right)\right) \approx 0.377 \text{ radians (or about } 21.7^{\circ}).$
- (c) From part (b), the critical numbers of $\theta(t)$ are spaced $\frac{\pi}{\sqrt{9.8}}$ apart, and the time between successive maximum values is $2\left(\frac{\pi}{\sqrt{9.8}}\right)$. Thus the period of the pendulum is $\frac{2\pi}{\sqrt{9.8}}\approx 2.007$ seconds.

(d)
$$\theta(t) = 0 \implies 0.2\cos(\sqrt{9.8}\,t\,) + \frac{1}{\sqrt{9.8}}\sin(\sqrt{9.8}\,t\,) = 0 \implies \tan(\sqrt{9.8}\,t\,) = -0.2\sqrt{9.8} \implies t = \frac{1}{\sqrt{9.8}}\left[\tan^{-1}\left(-0.2\sqrt{9.8}\,\right) + \pi\right] \approx 0.825 \text{ seconds}.$$

(e) $\theta'(0.825) \approx -1.180 \text{ rad/s}$.

17.4 Series Solutions

1. Let $y(x) = \sum_{n=0}^{\infty} c_n x^n$. Then $y'(x) = \sum_{n=1}^{\infty} n c_n x^{n-1}$ and the given equation, y' - y = 0, becomes

 $\sum_{n=1}^{\infty} nc_n x^{n-1} - \sum_{n=0}^{\infty} c_n x^n = 0.$ Replacing n by n+1 in the first sum gives $\sum_{n=0}^{\infty} (n+1)c_{n+1}x^n - \sum_{n=0}^{\infty} c_n x^n = 0,$ so

 $\sum_{n=0}^{\infty} \left[(n+1)c_{n+1} - c_n \right] x^n = 0.$ Equating coefficients gives $(n+1)c_{n+1} - c_n = 0$, so the recursion relation is

 $c_{n+1} = \frac{c_n}{n+1}, n = 0, 1, 2, \dots$ Then $c_1 = c_0, c_2 = \frac{1}{2}c_1 = \frac{c_0}{2}, c_3 = \frac{1}{3}c_2 = \frac{1}{3} \cdot \frac{1}{2}c_0 = \frac{c_0}{3!}, c_4 = \frac{1}{4}c_3 = \frac{c_0}{4!},$ and

in general, $c_n=\frac{c_0}{n!}$. Thus, the solution is $y(x)=\sum\limits_{n=0}^{\infty}c_nx^n=\sum\limits_{n=0}^{\infty}\frac{c_0}{n!}\,x^n=c_0\sum\limits_{n=0}^{\infty}\frac{x^n}{n!}=c_0e^x$.

2. Let $y(x) = \sum_{n=0}^{\infty} c_n x^n$. Then $y' = xy \implies y' - xy = 0 \implies \sum_{n=1}^{\infty} n c_n x^{n-1} - x \sum_{n=0}^{\infty} c_n x^n = 0$ or

 $\sum_{n=1}^{\infty} n c_n x^{n-1} - \sum_{n=0}^{\infty} c_n x^{n+1} = 0.$ Replacing n with n+1 in the first sum and n with n-1 in the second

gives $\sum_{n=0}^{\infty} (n+1)c_{n+1}x^n - \sum_{n=1}^{\infty} c_{n-1}x^n = 0$ or $c_1 + \sum_{n=1}^{\infty} (n+1)c_{n+1}x^n - \sum_{n=1}^{\infty} c_{n-1}x^n = 0$. Thus,

 $c_1 + \sum_{n=1}^{\infty} \left[(n+1)c_{n+1} - c_{n-1} \right] x^n = 0$. Equating coefficients gives $c_1 = 0$ and $(n+1)c_{n+1} - c_{n-1} = 0$. Thus, the

recursion relation is $c_{n+1} = \frac{c_{n-1}}{n+1}$, $n = 1, 2, \dots$ But $c_1 = 0$, so $c_3 = 0$ and $c_5 = 0$ and in general $c_{2n+1} = 0$. Also,

734 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

$$c_2 = \frac{c_0}{2}, c_4 = \frac{c_2}{4} = \frac{c_0}{4 \cdot 2} = \frac{c_0}{2^2 \cdot 2!}, c_6 = \frac{c_4}{6} = \frac{c_0}{6 \cdot 4 \cdot 2} = \frac{c_0}{2^3 \cdot 3!} \text{ and in general } c_{2n} = \frac{c_0}{2^n \cdot n!}. \text{ Thus, the solution}$$

$$\text{is } y(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} c_{2n} x^{2n} = \sum_{n=0}^{\infty} \frac{c_0}{2^n \cdot n!} x^{2n} = c_0 \sum_{n=0}^{\infty} \frac{\left(x^2/2\right)^n}{n!} = c_0 e^{x^2/2}.$$

3. Assuming
$$y(x) = \sum_{n=0}^{\infty} c_n x^n$$
, we have $y'(x) = \sum_{n=1}^{\infty} n c_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) c_{n+1} x^n$ and

$$-x^{2}y = -\sum_{n=0}^{\infty} c_{n}x^{n+2} = -\sum_{n=2}^{\infty} c_{n-2}x^{n}. \text{ Hence, the equation } y' = x^{2}y \text{ becomes } \sum_{n=0}^{\infty} (n+1)c_{n+1}x^{n} - \sum_{n=2}^{\infty} c_{n-2}x^{n} = 0$$

or
$$c_1 + 2c_2x + \sum_{n=2}^{\infty} [(n+1)c_{n+1} - c_{n-2}]x^n = 0$$
. Equating coefficients gives $c_1 = c_2 = 0$ and $c_{n+1} = \frac{c_{n-2}}{n+1}$

for
$$n=2,3,\ldots$$
 But $c_1=0$, so $c_4=0$ and $c_7=0$ and in general $c_{3n+1}=0$. Similarly $c_2=0$ so $c_{3n+2}=0$. Finally

$$c_3 = \frac{c_0}{3}, c_6 = \frac{c_3}{6} = \frac{c_0}{6 \cdot 3} = \frac{c_0}{3^2 \cdot 2!}, c_9 = \frac{c_6}{9} = \frac{c_0}{9 \cdot 6 \cdot 3} = \frac{c_0}{3^3 \cdot 3!}, \dots, \text{ and } c_{3n} = \frac{c_0}{3^n \cdot n!}.$$
 Thus, the solution

is
$$y(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} c_{3n} x^{3n} = \sum_{n=0}^{\infty} \frac{c_0}{3^n \cdot n!} x^{3n} = c_0 \sum_{n=0}^{\infty} \frac{x^{3n}}{3^n n!} = c_0 \sum_{n=0}^{\infty} \frac{\left(x^3/3\right)^n}{n!} = c_0 e^{x^3/3}$$

4. Let
$$y(x) = \sum_{n=0}^{\infty} c_n x^n \implies y'(x) = \sum_{n=1}^{\infty} n c_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) c_{n+1} x^n$$
. Then the differential equation becomes

$$(x-3)\sum_{n=0}^{\infty}(n+1)c_{n+1}x^n + 2\sum_{n=0}^{\infty}c_nx^n = 0 \quad \Rightarrow \quad \sum_{n=0}^{\infty}(n+1)c_{n+1}x^{n+1} - 3\sum_{n=0}^{\infty}(n+1)c_{n+1}x^n + 2\sum_{n=0}^{\infty}c_nx^n = 0 \quad \Rightarrow \quad \sum_{n=0}^{\infty}(n+1)c_{n+1}x^n + 2\sum_{n=0}^{\infty}c_nx^n = 0$$

$$\sum_{n=1}^{\infty} nc_n x^n - \sum_{n=0}^{\infty} 3(n+1)c_{n+1} x^n + \sum_{n=0}^{\infty} 2c_n x^n = 0 \quad \Rightarrow \quad \sum_{n=0}^{\infty} [(n+2)c_n - 3(n+1)c_{n+1}] x^n = 0$$

$$\left[\text{since }\sum_{n=1}^{\infty}nc_nx^n=\sum_{n=0}^{\infty}nc_nx^n\right]. \text{ Equating coefficients gives }(n+2)c_n-3(n+1)c_{n+1}=0, \text{ thus the recursion relation is }(n+2)c_n-3(n+1)c_{n+1}=0, \text{ thus the recursion relation }(n+2)c_n-3(n+1)c_{n+1}=0, \text{ thus the recursion relation }(n+2)c_n-3(n+1)c_{n+1}=0, \text{ thus the recursion }(n+2)c_n-3(n+1)c_n$$

$$c_{n+1} = \frac{(n+2)c_n}{3(n+1)}, n = 0, 1, 2, \dots \text{ Then } c_1 = \frac{2c_0}{3}, c_2 = \frac{3c_1}{3(2)} = \frac{3c_0}{3^2}, c_3 = \frac{4c_2}{3(3)} = \frac{4c_0}{3^3}, c_4 = \frac{5c_3}{3(4)} = \frac{5c_0}{3^4}, \text{ and } c_1 = \frac{5c_0}{3^4}, c_2 = \frac{3c_1}{3(2)} = \frac{3c_0}{3^2}, c_3 = \frac{4c_2}{3(3)} = \frac{4c_0}{3^3}, c_4 = \frac{5c_3}{3(4)} = \frac{5c_0}{3^4}, c_4 = \frac{5c_0}{3^4}, c_5 = \frac{5c_0}{3^4}, c_7 = \frac{5c_0}{3^4}, c_8 =$$

in general,
$$c_n = \frac{(n+1)c_0}{3^n}$$
. Thus the solution is $y(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 \sum_{n=0}^{\infty} \frac{n+1}{3^n} x^n$

Note that
$$c_0 \sum_{n=0}^{\infty} \frac{n+1}{3^n} x^n = \frac{9c_0}{(3-x)^2}$$
 for $|x| < 3$.

5. Let
$$y(x) = \sum_{n=0}^{\infty} c_n x^n \quad \Rightarrow \quad y'(x) = \sum_{n=1}^{\infty} n c_n x^{n-1}$$
 and $y''(x) = \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n$. The differential equation

becomes
$$\sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n + x\sum_{n=1}^{\infty} nc_nx^{n-1} + \sum_{n=0}^{\infty} c_nx^n = 0 \text{ or } \sum_{n=0}^{\infty} [(n+2)(n+1)c_{n+2} + nc_n + c_n]x^n = 0$$

since
$$\sum_{n=1}^{\infty} nc_n x^n = \sum_{n=0}^{\infty} nc_n x^n$$
. Equating coefficients gives $(n+2)(n+1)c_{n+2} + (n+1)c_n = 0$, thus the recursion

relation is
$$c_{n+2} = \frac{-(n+1)c_n}{(n+2)(n+1)} = -\frac{c_n}{n+2}$$
, $n = 0, 1, 2, \dots$ Then the even

coefficients are given by
$$c_2=-\frac{c_0}{2}$$
, $c_4=-\frac{c_2}{4}=\frac{c_0}{2\cdot 4}$, $c_6=-\frac{c_4}{6}=-\frac{c_0}{2\cdot 4\cdot 6}$, and in general,

SECTION 17.4 SERIES SOLUTIONS □ 735

$$c_{2n} = (-1)^n \frac{c_0}{2 \cdot 4 \cdot \dots \cdot 2n} = \frac{(-1)^n c_0}{2^n n!}$$
. The odd coefficients are $c_3 = -\frac{c_1}{3}$, $c_5 = -\frac{c_3}{5} = \frac{c_1}{3 \cdot 5}$, $c_7 = -\frac{c_5}{7} = -\frac{c_1}{3 \cdot 5 \cdot 7}$

and in general,
$$c_{2n+1} = (-1)^n \frac{c_1}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1)} = \frac{(-2)^n n! c_1}{(2n+1)!}$$
. The solution is

$$y(x) = c_0 \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n!} x^{2n} + c_1 \sum_{n=0}^{\infty} \frac{(-2)^n n!}{(2n+1)!} x^{2n+1}.$$

6. Let
$$y(x) = \sum_{n=0}^{\infty} c_n x^n$$
. Then $y''(x) = \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n$. Hence, the equation $y'' = y$

becomes
$$\sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n - \sum_{n=0}^{\infty} c_nx^n = 0$$
 or $\sum_{n=0}^{\infty} [(n+2)(n+1)c_{n+2} - c_n]x^n = 0$. So the recursion relation

is
$$c_{n+2} = \frac{c_n}{(n+2)(n+1)}$$
, $n = 0, 1, \ldots$ Given c_0 and $c_1, c_2 = \frac{c_0}{2 \cdot 1}$, $c_4 = \frac{c_2}{4 \cdot 3} = \frac{c_0}{4!}$, $c_6 = \frac{c_4}{6 \cdot 5} = \frac{c_0}{6!}$, ...,

$$c_{2n} = \frac{c_0}{(2n)!} \text{ and } c_3 = \frac{c_1}{3 \cdot 2}, c_5 = \frac{c_3}{5 \cdot 4} = \frac{c_1}{5 \cdot 4 \cdot 3 \cdot 2} = \frac{c_1}{5!}, c_7 = \frac{c_5}{7 \cdot 6} = \frac{c_1}{7!}, \dots, c_{2n+1} = \frac{c_1}{(2n+1)!}. \text{ Thus, the solution } c_{2n} = \frac{c_1}{(2n+1)!}$$

is
$$y(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} c_{2n} x^{2n} + \sum_{n=0}^{\infty} c_{2n+1} x^{2n+1} = c_0 \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} + c_1 \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$
. The solution can be written

as
$$y(x) = c_0 \cosh x + c_1 \sinh x$$
 $\left[\text{or } y(x) = c_0 \frac{e^x + e^{-x}}{2} + c_1 \frac{e^x - e^{-x}}{2} = \frac{c_0 + c_1}{2} e^x + \frac{c_0 - c_1}{2} e^{-x} \right]$.

7. Let
$$y(x) = \sum_{n=0}^{\infty} c_n x^n \implies y'(x) = \sum_{n=1}^{\infty} n c_n x^{n-1} = \sum_{n=0}^{\infty} (n+1) c_{n+1} x^n$$
 and $y''(x) = \sum_{n=0}^{\infty} (n+2) (n+1) c_{n+2} x^n$. Then

$$(x-1)y''(x) = \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^{n+1} - \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n = \sum_{n=1}^{\infty} n(n+1)c_{n+1}x^n - \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n.$$

Since
$$\sum_{n=1}^{\infty} n(n+1)c_{n+1}x^n = \sum_{n=0}^{\infty} n(n+1)c_{n+1}x^n$$
, the differential equation becomes

$$\sum_{n=0}^{\infty} n(n+1)c_{n+1}x^n - \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n + \sum_{n=0}^{\infty} (n+1)c_{n+1}x^n = 0 \quad \Rightarrow$$

$$\sum_{n=0}^{\infty} \left[n(n+1)c_{n+1} - (n+2)(n+1)c_{n+2} + (n+1)c_{n+1} \right] x^n = 0 \text{ or } \sum_{n=0}^{\infty} \left[(n+1)^2 c_{n+1} - (n+2)(n+1)c_{n+2} \right] x^n = 0.$$

Equating coefficients gives $(n+1)^2c_{n+1} - (n+2)(n+1)c_{n+2} = 0$ for $n = 0, 1, 2, \ldots$. Then the recursion relation is

$$c_{n+2} = \frac{(n+1)^2}{(n+2)(n+1)}c_{n+1} = \frac{n+1}{n+2}c_{n+1}, \text{ so given } c_0 \text{ and } c_1, \text{ we have } c_2 = \frac{1}{2}c_1, c_3 = \frac{2}{3}c_2 = \frac{1}{3}c_1, c_4 = \frac{3}{4}c_3 = \frac{1}{4}c_1, \text{ and } c_1 = \frac{1}{2}c_1, c_2 = \frac{1}{2}c_2, c_3 = \frac{1}{2}c_1, c_4 = \frac{3}{4}c_2 = \frac{1}{4}c_1, c_4 = \frac{3}{4}c_2 = \frac{3}{4}c$$

in general $c_n = \frac{c_1}{n}$, $n = 1, 2, 3, \ldots$ Thus the solution is $y(x) = c_0 + c_1 \sum_{n=1}^{\infty} \frac{x^n}{n}$. Note that the solution can be expressed as $c_0 - c_1 \ln(1-x)$ for |x| < 1.

8. Assuming
$$y(x) = \sum_{n=0}^{\infty} c_n x^n$$
, $y''(x) = \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n$ and

$$-xy(x) = -\sum_{n=0}^{\infty} c_n x^{n+1} = -\sum_{n=1}^{\infty} c_{n-1} x^n$$
. The equation $y'' = xy$ becomes

736 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

$$\sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n - \sum_{n=1}^{\infty} c_{n-1}x^n = 0 \text{ or } 2c_2 + \sum_{n=1}^{\infty} [(n+2)(n+1)c_{n+2} - c_{n-1}]x^n = 0. \text{ Equating coefficients}$$
gives $c_2 = 0$ and $c_{n+2} = \frac{c_{n-1}}{(n+2)(n+1)}$ for $n = 1, 2, \dots$. Since $c_2 = 0$, $c_{3n+2} = 0$ for $n = 0, 1, 2, \dots$. Given c_0 ,
$$c_3 = \frac{c_0}{3 \cdot 2}, c_6 = \frac{c_3}{6 \cdot 5} = \frac{c_0}{6 \cdot 5 \cdot 3 \cdot 2}, \dots, c_{3n} = \frac{c_0}{3n(3n-1)(3n-3)(3n-4) \cdot \dots \cdot 6 \cdot 5 \cdot 3 \cdot 2}. \text{ Given } c_1, c_4 = \frac{c_1}{4 \cdot 3},$$

$$c_7 = \frac{c_4}{7 \cdot 6} = \frac{c_1}{7 \cdot 6 \cdot 4 \cdot 3}, \dots, c_{3n+1} = \frac{c_1}{(3n+1)3n(3n-2)(3n-3) \cdot \dots \cdot 7 \cdot 6 \cdot 4 \cdot 3}. \text{ The solution can be written}$$
as $y(x) = c_0 \sum_{n=0}^{\infty} \frac{(3n-2)(3n-5) \cdot \dots \cdot 7 \cdot 4 \cdot 1}{(3n)!} x^{3n} + c_1 \sum_{n=0}^{\infty} \frac{(3n-1)(3n-4) \cdot \dots \cdot 8 \cdot 5 \cdot 2}{(3n+1)!} x^{3n+1}.$

9. Let
$$y(x) = \sum_{n=0}^{\infty} c_n x^n$$
. Then $-xy'(x) = -x \sum_{n=1}^{\infty} n c_n x^{n-1} = -\sum_{n=1}^{\infty} n c_n x^n = -\sum_{n=0}^{\infty} n c_n x^n$, $y''(x) = \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n$, and the equation $y'' - xy' - y = 0$ becomes

$$\sum_{n=0}^{\infty} \left[(n+2)(n+1)c_{n+2} - nc_n - c_n \right] x^n = 0.$$
 Thus, the recursion relation is

$$c_{n+2} = \frac{nc_n + c_n}{(n+2)(n+1)} = \frac{c_n(n+1)}{(n+2)(n+1)} = \frac{c_n}{n+2}$$
 for $n = 0, 1, 2, \dots$ One of the given conditions is $y(0) = 1$. But

$$y(0) = \sum_{n=0}^{\infty} c_n(0)^n = c_0 + 0 + 0 + \cdots = c_0$$
, so $c_0 = 1$. Hence, $c_2 = \frac{c_0}{2} = \frac{1}{2}$, $c_4 = \frac{c_2}{4} = \frac{1}{2 \cdot 4}$, $c_6 = \frac{c_4}{6} = \frac{1}{2 \cdot 4 \cdot 6}$, ...,

$$c_{2n} = \frac{1}{2^n n!}$$
. The other given condition is $y'(0) = 0$. But $y'(0) = \sum_{n=1}^{\infty} nc_n(0)^{n-1} = c_1 + 0 + 0 + \cdots = c_1$, so $c_1 = 0$.

By the recursion relation, $c_3 = \frac{c_1}{3} = 0$, $c_5 = 0$, ..., $c_{2n+1} = 0$ for $n = 0, 1, 2, \ldots$. Thus, the solution to the initial-value

problem is
$$y(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} c_{2n} x^{2n} = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!} = \sum_{n=0}^{\infty} \frac{(x^2/2)^n}{n!} = e^{x^2/2}$$
.

10. Assuming that
$$y(x) = \sum_{n=0}^{\infty} c_n x^n$$
, we have $x^2 y = \sum_{n=0}^{\infty} c_n x^{n+2}$ and

$$y''(x) = \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} = \sum_{n=-2}^{\infty} (n+4)(n+3)c_{n+4} x^{n+2} = 2c_2 + 6c_3 x + \sum_{n=0}^{\infty} (n+4)(n+3)c_{n+4} x^{n+2}.$$

Thus, the equation
$$y'' + x^2y = 0$$
 becomes $2c_2 + 6c_3x + \sum_{n=0}^{\infty} [(n+4)(n+3)c_{n+4} + c_n] x^{n+2} = 0$. So $c_2 = c_3 = 0$ and

the recursion relation is
$$c_{n+4} = -\frac{c_n}{(n+4)(n+3)}$$
, $n = 0, 1, 2, \dots$ But $c_1 = y'(0) = 0 = c_2 = c_3$ and by the recursion

relation,
$$c_{4n+1} = c_{4n+2} = c_{4n+3} = 0$$
 for $n = 0, 1, 2, \dots$ Also, $c_0 = y(0) = 1$, so $c_4 = -\frac{c_0}{4 \cdot 3} = -\frac{1}{4 \cdot 3}$,

$$c_8 = -\frac{c_4}{8 \cdot 7} = \frac{(-1)^2}{8 \cdot 7 \cdot 4 \cdot 3}, \dots, c_{4n} = \frac{(-1)^n}{4n(4n-1)(4n-4)(4n-5) \cdot \dots \cdot 4 \cdot 3}.$$
 Thus, the solution to the initial-value

SECTION 17.4 SERIES SOLUTIONS ☐ 737

11. Assuming that
$$y(x) = \sum_{n=0}^{\infty} c_n x^n$$
, we have $xy = x \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} c_n x^{n+1}$, $x^2 y' = x^2 \sum_{n=1}^{\infty} n c_n x^{n-1} = \sum_{n=0}^{\infty} n c_n x^{n+1}$, $y''(x) = \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} = \sum_{n=-1}^{\infty} (n+3)(n+2)c_{n+3}x^{n+1}$ [replace n with $n+3$]
$$= 2c_2 + \sum_{n=0}^{\infty} (n+3)(n+2)c_{n+3}x^{n+1}$$
,

and the equation $y'' + x^2y' + xy = 0$ becomes $2c_2 + \sum_{n=0}^{\infty} [(n+3)(n+2)c_{n+3} + nc_n + c_n] x^{n+1} = 0$. So $c_2 = 0$ and the

recursion relation is $c_{n+3} = \frac{-nc_n - c_n}{(n+3)(n+2)} = -\frac{(n+1)c_n}{(n+3)(n+2)}$, $n = 0, 1, 2, \dots$ But $c_0 = y(0) = 0 = c_2$ and by the

recursion relation, $c_{3n} = c_{3n+2} = 0$ for $n = 0, 1, 2, \dots$ Also, $c_1 = y'(0) = 1$, so $c_4 = -\frac{2c_1}{4 \cdot 3} = -\frac{2}{4 \cdot 3}$,

 $c_7 = -\frac{5c_4}{7 \cdot 6} = (-1)^2 \frac{2 \cdot 5}{7 \cdot 6 \cdot 4 \cdot 3} = (-1)^2 \frac{2^2 5^2}{7!}, \dots, c_{3n+1} = (-1)^n \frac{2^2 5^2 \cdot \dots \cdot (3n-1)^2}{(3n+1)!}.$ Thus, the solution is

$$y(x) = \sum_{n=0}^{\infty} c_n x^n = x + \sum_{n=1}^{\infty} \left[(-1)^n \frac{2^2 5^2 \cdot \dots \cdot (3n-1)^2 x^{3n+1}}{(3n+1)!} \right].$$

12. (a) Let $y(x) = \sum_{n=0}^{\infty} c_n x^n$. Then $x^2 y''(x) = \sum_{n=2}^{\infty} n(n-1)c_n x^n = \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2} x^{n+2}$,

$$xy'(x) = \sum_{n=1}^{\infty} nc_n x^n = \sum_{n=-1}^{\infty} (n+2)c_{n+2}x^{n+2} = c_1 x + \sum_{n=0}^{\infty} (n+2)c_{n+2}x^{n+2}$$
, and the equation

$$x^2y'' + xy' + x^2y = 0$$
 becomes $c_1x + \sum_{n=0}^{\infty} \{[(n+2)(n+1) + (n+2)]c_{n+2} + c_n\}x^{n+2} = 0$. So $c_1 = 0$ and the

recursion relation is $c_{n+2} = -\frac{c_n}{(n+2)^2}$, $n = 0, 1, 2, \dots$ But $c_1 = y'(0) = 0$ so $c_{2n+1} = 0$ for $n = 0, 1, 2, \dots$

Also,
$$c_0 = y(0) = 1$$
, so $c_2 = -\frac{1}{2^2}$, $c_4 = -\frac{c_2}{4^2} = (-1)^2 \frac{1}{4^2 2^2} = (-1)^2 \frac{1}{2^4 (2!)^2}$, $c_6 = -\frac{c_4}{6^2} = (-1)^3 \frac{1}{2^6 (3!)^2}$, ...,

$$c_{2n} = (-1)^n \frac{1}{2^{2n} (n!)^2}$$
. The solution is $y(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2^{2n} (n!)^2}$.

(b) The Taylor polynomials T_0 to T_{12} are shown in the graph. Because T_{10} and T_{12} are close together throughout the interval [-5, 5], it is reasonable to assume that T_{12} is a good

approximation to the Bessel function on that interval.

738 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

17 Review

TRUE-FALSE QUIZ

- **1.** True. See Theorem 17.1.3.
- 2. False. The differential equation is not homogeneous.
- 3. True. $\cosh x$ and $\sinh x$ are linearly independent solutions of this linear homogeneous equation.
- **4.** False. $y = Ae^x$ is a solution of the complementary equation, so we have to take $y_p(x) = Axe^x$.

EXERCISES

- **1.** The auxiliary equation is $4r^2 1 = 0 \implies (2r+1)(2r-1) = 0 \implies r = \pm \frac{1}{2}$. Then the general solution is $u = c_1 e^{x/2} + c_2 e^{-x/2}$.
- **2.** The auxiliary equation is $r^2 2r + 10 = 0$ \Rightarrow $r = 1 \pm 3i$, so $y = e^x(c_1 \cos 3x + c_2 \sin 3x)$.
- **3.** The auxiliary equation is $r^2 + 3 = 0 \implies r = \pm \sqrt{3}i$. Then the general solution is $y = c_1 \cos(\sqrt{3}x) + c_2 \sin(\sqrt{3}x)$.
- **4.** The auxiliary equation is $r^2 + 8r + 16 = 0 \implies (r+4)^2 = 0 \implies r = -4$, so the general solution is $y = c_1 e^{-4x} + c_2 x e^{-4x}$.
- 5. $r^2 4r + 5 = 0 \implies r = 2 \pm i$, so $y_c(x) = e^{2x}(c_1 \cos x + c_2 \sin x)$. Try $y_p(x) = Ae^{2x} \implies y_p' = 2Ae^{2x}$ and $y_p'' = 4Ae^{2x}$. Substitution into the differential equation gives $4Ae^{2x} 8Ae^{2x} + 5Ae^{2x} = e^{2x} \implies A = 1$ and the general solution is $y(x) = e^{2x}(c_1 \cos x + c_2 \sin x) + e^{2x}$.
- **6.** $r^2 + r 2 = 0 \implies r = 1, r = -2$ and $y_c(x) = c_1 e^x + c_2 e^{-2x}$. Try $y_p(x) = Ax^2 + Bx + C \implies y_p' = 2Ax + B$ and $y_p'' = 2A$. Substitution gives $2A + 2Ax + B 2Ax^2 2Bx 2C = x^2 \implies A = B = -\frac{1}{2}, C = -\frac{3}{4}$ so the general solution is $y(x) = c_1 e^x + c_2 e^{-2x} \frac{1}{2}x^2 \frac{1}{2}x \frac{3}{4}$.
- 7. $r^2 2r + 1 = 0 \implies r = 1 \text{ and } y_c(x) = c_1 e^x + c_2 x e^x$. Try $y_p(x) = (Ax + B) \cos x + (Cx + D) \sin x \implies$ $y_p' = (C Ax B) \sin x + (A + Cx + D) \cos x \text{ and } y_p'' = (2C B Ax) \cos x + (-2A D Cx) \sin x$. Substitution gives $(-2Cx + 2C 2A 2D) \cos x + (2Ax 2A + 2B 2C) \sin x = x \cos x \implies A = 0, B = C = D = -\frac{1}{2}$. The general solution is $y(x) = c_1 e^x + c_2 x e^x \frac{1}{2} \cos x \frac{1}{2} (x + 1) \sin x$.
- 8. $r^2+4=0 \implies r=\pm 2i$ and $y_c(x)=c_1\cos 2x+c_2\sin 2x$. Try $y_p(x)=Ax\cos 2x+Bx\sin 2x$ so that no term of y_p is a solution of the complementary equation. Then $y_p'=(A+2Bx)\cos 2x+(B-2Ax)\sin 2x$ and $y_p''=(4B-4Ax)\cos 2x+(-4A-4Bx)\sin 2x$. Substitution gives $4B\cos 2x-4A\sin 2x=\sin 2x \implies A=-\frac{1}{4}$ and B=0. The general solution is $y(x)=c_1\cos 2x+c_2\sin 2x-\frac{1}{4}x\cos 2x$.

CHAPTER 17 REVIEW □ 739

- 9. $r^2 r 6 = 0 \implies r = -2, r = 3$ and $y_c(x) = c_1 e^{-2x} + c_2 e^{3x}$. For y'' y' 6y = 1, try $y_{p_1}(x) = A$. Then $y'_{p_1}(x) = y''_{p_1}(x) = 0$ and substitution into the differential equation gives $A = -\frac{1}{6}$. For $y'' y' 6y = e^{-2x}$ try $y_{p_2}(x) = Bxe^{-2x}$ [since $y = Be^{-2x}$ satisfies the complementary equation]. Then $y'_{p_2} = (B 2Bx)e^{-2x}$ and $y''_{p_2} = (4Bx 4B)e^{-2x}$, and substitution gives $-5Be^{-2x} = e^{-2x} \implies B = -\frac{1}{5}$. The general solution then is $y(x) = c_1e^{-2x} + c_2e^{3x} + y_{p_1}(x) + y_{p_2}(x) = c_1e^{-2x} + c_2e^{3x} \frac{1}{6} \frac{1}{5}xe^{-2x}$.
- **10.** Using variation of parameters, $y_c(x) = c_1 \cos x + c_2 \sin x$, $u_1'(x) = -\csc x \sin x = -1 \implies u_1(x) = -x$, and $u_2'(x) = \frac{\csc x \cos x}{x} = \cot x \implies u_2(x) = \ln|\sin x| \implies y_p = -x \cos x + \sin x \ln|\sin x|$. The solution is $y(x) = (c_1 x)\cos x + (c_2 + \ln|\sin x|)\sin x$.
- 11. The auxiliary equation is $r^2 + 6r = 0$ and the general solution is $y(x) = c_1 + c_2 e^{-6x} = k_1 + k_2 e^{-6(x-1)}$. But $3 = y(1) = k_1 + k_2$ and $12 = y'(1) = -6k^2$. Thus $k_2 = -2$, $k_1 = 5$ and the solution is $y(x) = 5 2e^{-6(x-1)}$.
- 12. The auxiliary equation is $r^2 6r + 25 = 0$ and the general solution is $y(x) = e^{3x}(c_1 \cos 4x + c_2 \sin 4x)$. But $2 = y(0) = c_1$ and $1 = y'(0) = 3c_1 + 4c_2$. Thus the solution is $y(x) = e^{3x}(2\cos 4x \frac{5}{4}\sin 4x)$.
- 13. The auxiliary equation is $r^2 5r + 4 = 0$ and the general solution is $y(x) = c_1 e^x + c_2 e^{4x}$. But $0 = y(0) = c_1 + c_2$ and $1 = y'(0) = c_1 + 4c_2$, so the solution is $y(x) = \frac{1}{3}(e^{4x} e^x)$.
- **14.** $y_c(x) = c_1 \cos(x/3) + c_2 \sin(x/3)$. For 9y'' + y = 3x, try $y_{p_1}(x) = Ax + B$. Then $y_{p_1}(x) = 3x$. For $9y'' + y = e^{-x}$, try $y_{p_2}(x) = Ae^{-x}$. Then $9Ae^{-x} + Ae^{-x} = e^{-x}$ or $y_{p_2}(x) = \frac{1}{10}e^{-x}$. Thus the general solution is $y(x) = c_1 \cos(x/3) + c_2 \sin(x/3) + 3x + \frac{1}{10}e^{-x}$. But $1 = y(0) = c_1 + \frac{1}{10}$ and $2 = y'(0) = \frac{1}{3}c_2 + 3 \frac{1}{10}$, so $c_1 = \frac{9}{10}$ and $c_2 = -\frac{27}{10}$. Hence the solution is $y(x) = \frac{1}{10}[9\cos(x/3) 27\sin(x/3)] + 3x + \frac{1}{10}e^{-x}$.
- **15.** $r^2 + 4r + 29 = 0 \implies r = -2 \pm 5i$ and the general solution is $y = e^{-2x}(c_1 \cos 5x + c_2 \sin 5x)$. But $1 = y(0) = c_1$ and $-1 = y(\pi) = -c_1 e^{-2\pi} \implies c_1 = e^{2\pi}$, so there is no solution.
- **16.** $r^2+4r+29=0 \implies r=-2\pm 5i$ and the general solution is $y=e^{-2x}(c_1\cos 5x+c_2\sin 5x)$. But $1=y(0)=c_1$ and $-e^{-2\pi}=y(\pi)=-c_1e^{-2\pi}\implies c_1=1$, so c_2 can vary and the solution of the boundary-value problem is $y=e^{-2x}(\cos 5x+c\sin 5x)$, where c is any constant.
- 17. Let $y(x) = \sum_{n=0}^{\infty} c_n x^n$. Then $y''(x) = \sum_{n=0}^{\infty} n(n-1)c_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1)c_{n+2}x^n$ and the differential equation becomes $\sum_{n=0}^{\infty} [(n+2)(n+1)c_{n+2} + (n+1)c_n]x^n = 0$. Thus the recursion relation is $c_{n+2} = -c_n/(n+2)$ for $n = 0, 1, 2, \ldots$. But $c_0 = y(0) = 0$, so $c_{2n} = 0$ for $n = 0, 1, 2, \ldots$. Also $c_1 = y'(0) = 1$, so $c_3 = -\frac{1}{3}$, $c_5 = \frac{(-1)^2}{3 \cdot 5}$,

740 CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

$$c_7 = \frac{(-1)^3}{3 \cdot 5 \cdot 7} = \frac{(-1)^3 2^3 3!}{7!}, \dots, c_{2n+1} = \frac{(-1)^n 2^n n!}{(2n+1)!}$$
 for $n = 0, 1, 2, \dots$ Thus the solution to the initial-value problem

is
$$y(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} \frac{(-1)^n 2^n n!}{(2n+1)!} x^{2n+1}$$

18. Let $y(x) = \sum_{n=0}^{\infty} c_n x^n$. Then $y''(x) = \sum_{n=0}^{\infty} n(n-1) c_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1) c_{n+2} x^n$ and the differential equation

becomes
$$\sum_{n=0}^{\infty} [(n+2)(n+1)c_{n+2} - (n+2)c_n]x^n = 0$$
. Thus the recursion relation is $c_{n+2} = \frac{c_n}{n+1}$ for

$$n=0,\,1,\,2,\,\ldots$$
 Given c_0 and c_1 , we have $c_2=\frac{c_0}{1},\,c_4=\frac{c_2}{3}=\frac{c_0}{1\cdot 3},\,c_6=\frac{c_4}{5}=\frac{c_0}{1\cdot 3\cdot 5},\,\ldots$

$$c_{2n} = \frac{c_0}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)} = c_0 \frac{2^{n-1}(n-1)!}{(2n-1)!}$$
. Similarly $c_3 = \frac{c_1}{2}$, $c_5 = \frac{c_3}{4} = \frac{c_1}{2 \cdot 4}$

$$c_7=\frac{c_5}{6}=\frac{c_1}{2\cdot 4\cdot 6},\ldots,c_{2n+1}=\frac{c_1}{2\cdot 4\cdot 6\cdot \cdots \cdot 2n}=\frac{c_1}{2^n\, n!}$$
 . Thus the general solution is

$$y(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_0 \sum_{n=1}^{\infty} \frac{2^{n-1} (n-1)! \, x^{2n}}{(2n-1)!} + c \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2^n \, n!}. \text{ But } \sum_{n=0}^{\infty} \frac{x^{2n+1}}{2^n \, n!} = x \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} x^2\right)^n}{n!} = x e^{x^2/2},$$

so
$$y(x) = c_1 x e^{x^2/2} + c_0 + c_0 \sum_{n=1}^{\infty} \frac{2^{n-1}(n-1)! x^{2n}}{(2n-1)!}$$
.

19. Here the initial-value problem is 2Q'' + 40Q' + 400Q = 12, Q(0) = 0.01, Q'(0) = 0. Then

$$Q_c(t) = e^{-10t}(c_1 \cos 10t + c_2 \sin 10t)$$
 and we try $Q_p(t) = A$. Thus the general solution is

$$Q(t) = e^{-10t}(c_1\cos 10t + c_2\sin 10t) + \frac{3}{100}. \text{ But } 0.01 = Q'(0) = c_1 + 0.03 \text{ and } 0 = Q''(0) = -10c_1 + 10c_2,$$

so
$$c_1 = -0.02 = c_2$$
. Hence the charge is given by $Q(t) = -0.02e^{-10t}(\cos 10t + \sin 10t) + 0.03e^{-10t}(\cos 10t + \cos 10t) + 0.0$

20. By Hooke's Law the spring constant is k = 64 and the initial-value problem is 2x'' + 16x' + 64x = 0, x(0) = 0,

$$x'(0)=2.4$$
. Thus the general solution is $x(t)=e^{-4t}(c_1\cos 4t+c_2\sin 4t)$. But $0=x(0)=c_1$ and

$$2.4 = x'(0) = -4c_1 + 4c_2 \implies c_1 = 0, c_2 = 0.6$$
. Thus the position of the mass is given by $x(t) = 0.6e^{-4t} \sin 4t$.

21. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density ρ as follows:

$$\rho = \frac{\text{mass of earth}}{\text{volume of earth}} = \frac{M}{\frac{4}{3}\pi R^3}.$$
 If V_r is the volume of the portion of the earth which lies within a distance r of the

center, then
$$V_r=\frac{4}{3}\pi r^3$$
 and $M_r=\rho V_r=\frac{Mr^3}{R^3}$. Thus $F_r=-\frac{GM_rm}{r^2}=-\frac{GMm}{R^3}r$.

(b) The particle is acted upon by a varying gravitational force during its motion. By Newton's Second Law of Motion,

$$m\frac{d^2y}{dt^2} = F_y = -\frac{GMm}{R^3}y$$
, so $y''(t) = -k^2y(t)$ where $k^2 = \frac{GM}{R^3}$. At the surface, $-mg = F_R = -\frac{GMm}{R^2}$, so

$$g = \frac{GM}{R^2}$$
. Therefore $k^2 = \frac{g}{R}$.

CHAPTER 17 REVIEW □ 741

- (c) The differential equation $y'' + k^2y = 0$ has auxiliary equation $r^2 + k^2 = 0$. (This is the r of Section 17.1, not the r measuring distance from the earth's center.) The roots of the auxiliary equation are $\pm ik$, so by (11) in Section 17.1, the general solution of our differential equation for t is $y(t) = c_1 \cos kt + c_2 \sin kt$. It follows that $y'(t) = -c_1k \sin kt + c_2k \cos kt$. Now y(0) = R and y'(0) = 0, so $c_1 = R$ and $c_2k = 0$. Thus $y(t) = R \cos kt$ and $y'(t) = -kR \sin kt$. This is simple harmonic motion (see Section 17.3) with amplitude R, frequency k, and phase angle 0. The period is $T = 2\pi/k$. $R \approx 3960$ mi $= 3960 \cdot 5280$ ft and g = 32 ft/s², so $k = \sqrt{g/R} \approx 1.24 \times 10^{-3}$ s⁻¹ and $T = 2\pi/k \approx 5079$ s ≈ 85 min.
- (d) $y(t) = 0 \Leftrightarrow \cos kt = 0 \Leftrightarrow kt = \frac{\pi}{2} + \pi n$ for some integer $n \Rightarrow y'(t) = -kR\sin\left(\frac{\pi}{2} + \pi n\right) = \pm kR$. Thus the particle passes through the center of the earth with speed $kR \approx 4.899 \text{ mi/s} \approx 17,600 \text{ mi/h}$.

INSTRUCTOR USE ONLY

© Cengage Learning. All Rights Reserved.