Homework 5 Report

學號:r06521605

系級:土木所電輔組碩一

姓名:許舜翔

1. (1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何? (Collaborators:)

答:

• 架構(含資料處理)

模型是利用 keras 套件建立(如圖一),我參考 keras sample 中 imdb—lstm 的模型架構,並利用 Glove 先 pre-train 出 embedding 層。而資料處理部分,設定詞向量維度為 300,字典大小取 60000,input 的 max_len 取 100,以上皆有考慮標點符號,LSTM 層中設定 dropout=0.2, recurrent dropout=0.2。

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 100, 300)	24000000
lstm_1 (LSTM)	(None, 128)	219648
dense_1 (Dense)	(None, 1)	129
Total params: 24,219,777 Trainable params: 219,777 Non-trainable params: 24,000,000		
 圖—		

訓練過程

Optimizer = adam, learning rate = 0.01, batch size = 256, epoch 大約在 6~8 次後會收斂到最好的模型。

準確率

最佳結果為 0.82088/0.81992 (Public/Private),有實作 semi-supervised 來提升精度,而在實作前為 0.81535/0.81362。

2. (1%) 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何?

(Collaborators:)

答:

• 架構

利用的字典大小為 20000,text_to_matrix 採用的 mode 為 count,由於資料量龐大,DNN 模型隱藏層設置僅一層,該層的 units 為 512,完整架構如圖二所示。

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	512)	10240512
dropout_1 (Dropout)	(None,	512)	0
dense_2 (Dense)	(None,	1)	513
Total params: 10,241,025 Trainable params: 10,241,025 Non-trainable params: 0			

圖 __

• 訓練過程

Optimizer = adam, learning rate = 0.01, batch size = 256, epoch 大約 在 3~4 次後會收斂到最好的模型,且都會有 overfitting 的現象。

• 準確率

為 0.79601/0.79654 (Public/Private),因記憶體需求過大,故未能實作 semi-supervised。

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

(Collaborators:)

答:

使用第一題及第二題的架構訓練出來的模型,評價上述兩句的情緒分數,結果如下表。

	today is a good day,	today is hot,	
but it is hot		but it is a good day	
RNN	0.07397	0.99972	
BOW	0.57235	0.57235	

可以看出使用 RNN 模型評估的結果,較接近我們直覺認為的情緒反應,且能區別兩句話的差別,而對於 BOW 模型來說,因為不考慮語序,所以兩者分數相同,除此之外分數也接近 0.5,未能明確判斷究竟是屬於哪一類,推測應為在不考慮語序的情況下,當正向的字出現越多,則歸類為 1,反之則為 0,所以當一句話在沒有特別多正向或負向的字詞時,就無法做出正確的判斷。若題目的句子改為"today is a good day "與"today is hot"的話,評分結果如下表,此時 BOW 模型方能做出區別,並做出較正確的判斷。

	today is a good day	today is hot
RNN	0.99993	0.24155
BOW	0.82327	0.40573

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。

(Collaborators:)

答:

使用第一題 RNN 架構,做不同方式的比較,結果如下表。

	Public	Private
包含標點符號	0.82088	0.81992
不包含標點符號	0.81767	0.81744

在維持其他條件不變下,雖然差異不大,但、未包含標點符號的精度稍低,推測應為某些特定句子,會受到標點符號的影響而產生不同的語意,因此拿出兩種模型針對原訓練集評估的結果中,差距超過 0.8 的句子來觀察,例如原句為"gettin to bed soon .. up pretty early tomorrow morning !",前者訓練資料包含標點符號的模型,會認為是偏負面的句子,評估分數為 0.056;而在後者未包含標點符號的模型,則是認為為偏向正面的句子,評估分數為 0.883,而實際的 label 為 0。

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-surpervised training 對準確率的影響。

(Collaborators:)

答:

設定不同大小的 threshold,並對大於該值或小於 1-threshold 的數據分別標上 1 跟 0,並將標籤後的資料加上原本資料重新進行 training,利用的資料包含 test 及 no-label。以第一題中 RNN 的架構訓練出來的模型為基準,測試 semi-supervised 在不同閥值下產生的影響,模型未實作前的準確率為 0.81535/ 0.81362,改變的準確率如下表,結果顯示大多都會改善原先的精度,但以這次作業來說,當閥值取到 0.85,精度的提升明顯下降,且會造成反效果。

		Г	
Threshold 設定值	新增資料量	實作 Semi-supervised training 之後	
		Public	Private
0.7	935,478		
	(from no-label data)	0.82023	0.81958
	159,254		
	(from test data)		
0.8	788,077	0.81995	0.81851
	(from no-label data)		
	134,334		
	(from test data)		
0.85	695,634	0.81423	0.81426
	(from no-label data)		
	118,504		
	(from test data)		