At. 01 - Álgebra matricial

Gustavo Almeida Silva

2.4

Dados as matrizes \mathbf{A} e \mathbf{B} , onde \mathbf{A}^{-1} e \mathbf{B}^{-1} existem, prove as seguintes alternativas

- A) $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$
 - Mutiplicando ambos os lados por A´:

$$\mathbf{A}'(\mathbf{A}')^{-1} = \mathbf{A}'(\mathbf{A}^{-1})'$$

$$= \mathbf{A}'(\mathbf{A}')^{-1} = (\mathbf{A}^{-1}\mathbf{A})'$$

$$= \mathbf{A}'(\mathbf{A}')^{-1} = I'$$

$$= \mathbf{A}'(\mathbf{A}')^{-1} = I$$

Portanto: $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$

- $\bullet \quad B) \ (\mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$
 - Mutiplicando ambos os lados por **AB**:

$$(\mathbf{A}\mathbf{B})^{-1}\mathbf{A}\mathbf{B} = \mathbf{B}^{-1}\mathbf{A}^{-1}\mathbf{A}\mathbf{B}$$
$$(\mathbf{A}\mathbf{B})^{-1}\mathbf{A}\mathbf{B} = \mathbf{B}^{-1}I\mathbf{B}$$
$$(\mathbf{A}\mathbf{B})^{-1}\mathbf{A}\mathbf{B} = I$$

Portanto: $(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$

2.8

Dada a matriz $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix}$ encontre os autovalores λ_1, λ_2 e seus autovetores normalizados e_1, e_2 . Determine a decomposição espectral (2-16) de \mathbf{A}

Para encontrar os autovalores e autovetores, tem-se que:

$$(A - \lambda I) \ \tilde{x} = 0$$

Encontrando os autovalores normalizados, a partir de:

$$Det(A-\lambda I)=0$$

$$\det\begin{pmatrix} 1-\lambda & 2\\ 2 & -2-\lambda \end{pmatrix} = \lambda^2 + \lambda - 6$$

Resolvendo a eq. de segundo grau, tem-se que: $\lambda_1=2$ e $\lambda_2=-3$

Assim, pode-se encontrar os autovetores \boldsymbol{e}_1 e \boldsymbol{e}_2

Para e_1 , associado ao autovalor $\lambda_1=2$

$$\begin{pmatrix} 1 - \lambda_1 & 2 \\ 2 & -2 - \lambda_1 \end{pmatrix} = \begin{pmatrix} 1 - 2 & 2 \\ 2 & -2 - 2 \end{pmatrix}$$
$$\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Resolvendo o sistema, tem-se que 2x = y

Portanto, o primeiro conjunto de autovalor e autovetor pode ser escrito como

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Para normalizar o autovetor, temos que dividi-lo por sua norma, assim: $||e_1|| = \sqrt{2^2 + 1^2} = \sqrt{5}$

Portanto:
$$e_1 = \sqrt{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Para $e_2,$ associado ao autovalor $\lambda_2=-3$

$$\begin{pmatrix} 1 - \lambda_2 & 2 \\ 2 & -2 - \lambda_2 \end{pmatrix} = \begin{pmatrix} 1 + 3 & 2 \\ 2 & -2 + 3 \end{pmatrix}$$
$$\begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Resolvendo o sistema, tem-se que x = -2y

Portanto, o primeiro conjunto de autovalor e autovetor pode ser escrito como

$$\begin{pmatrix} -1\\2 \end{pmatrix}$$

Para normalizar o autovetor, temos que dividi-lo por sua norma, assim: $||e_2|| = \sqrt{-1^2 + 2^2} = \sqrt{5}$

Portanto:
$$e_2 = \sqrt{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

A decomposição espectral de ${\bf A}$ é dada por: $A=\lambda_1~e_1~e_1^{\ \prime}+\lambda_2~e_2~e_2^{\ \prime}$

$$\text{Assim: } \mathbf{A} = (2 \ \cdot \sqrt{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \cdot \sqrt{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix}) + (-3 \ \cdot \sqrt{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \cdot \sqrt{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

2.9

Seja A a mesma matriz do exercício 2.8

- a) Encontre \mathbf{A}^{-1}
 - Sabemos que $\mathbf{A}^{-1}\mathbf{A}=I.$ Assim, podemos a matriz inversa via metodo de Gauss-Jordan:

$$\begin{split} \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} & \mid \mid \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad L_2 = -2L_1 + L2 \\ \begin{pmatrix} 1 & 2 \\ 0 & -6 \end{pmatrix} & \mid \mid \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix} \quad L_2 = -\frac{1}{6}L_2 \\ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} & \mid \mid \begin{pmatrix} 1 & 0 \\ \frac{1}{3} & -\frac{1}{6} \end{pmatrix} \quad L_1 = -2L_2 + L_1 \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \mid \mid \begin{pmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & -\frac{1}{6} \end{pmatrix} \end{split}$$

Assim
$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{1}{3} & -\frac{1}{6} \end{pmatrix}$$

- b) Encontre os autovalores e autovetores de \mathbf{A}^{-1}
 - Dado que ja encontramos os autovalores e autovetores de $\bf A$ no exercício 2.8, os autovalores e autovetores de $\bf A^{-1}$ podem ser encontrados mais facilmente. Sabemos que

$$\lambda_1=2, \lambda_2=-3, e_1=\sqrt{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \ , e_2=\sqrt{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

 $\begin{array}{l} \text{Utilzando a seguinte propriedade: Se } A = \lambda_1 \ e_1 \ e_1' + \lambda_2 \ e_2 \ e_2', \\ \text{Assim: } A^{-1} = \frac{1}{2} \cdot \sqrt{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \cdot \sqrt{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix}) + \frac{1}{-3} \sqrt{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \cdot \sqrt{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \cdot \sqrt{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \\ \end{array}$

- c) Escreva a decomposição espectar
l de ${\bf A}^{-1}$
 - Como escrito em b)

$$A^{-1} = \frac{1}{2} \cdot \sqrt{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \cdot \sqrt{5} \begin{pmatrix} 2 \\ 1 \end{pmatrix}) + \frac{1}{-3} \sqrt{5} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \cdot \sqrt{5} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

2.12

Mostre que o determinante de uma matriz quadrada $p \times p$, A, pode ser expressado como o produto de seus autovalores

2.14

Mostre que $\mathbf{Q'AQ}$ e \mathbf{A} possuem os mesmos autovalores se \mathbf{Q} for ortogonal

2.15

A forma quadrática de x'**A**x é dita positiva definida se **A** for positiva definida. Então a forma quadratica $3x_1^2 + 3x_2^2 - 2x_1x_2$ é positiva definida?

Para descobrir se $\bf A$ é positiva definida temos que, encontrar $\bf A$ e verificar se seus autovalores são positivos Assim, dada uma forma quadrática $3x_1^2 + 3x_2^2 - 2x_1x_2$ pode-se $x' \bf A x$ a partir de

$$\begin{pmatrix} (x_1 & x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

onde a forma quadrática é dada por:

$$a_{11}x_1^2 + a_{22}x_2^2 + 2a_{12}x_1x_2$$

Portanto: $\mathbf{A} = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$

E seus autovalores são dados por: $det(A - \lambda I) = 0$

$$det\begin{pmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{pmatrix} = 0$$
$$\lambda^2 - 6\lambda + 8 = 0$$

Resolvendo a equação: $\lambda_1=4$ e $\lambda_2=2$

Portanto os autovalores de A são postivos e logo A é positiva definida

2.16

Considere uma matriz arbitraria $n \times p, \mathbf{A}$. Então $\mathbf{A'A}$ é uma matriz simétrica $p \times p$, mostre que ela é obrigatoriamente não negativa definida

Parar todo vetor \tilde{x} não nulo, temos que

$$\tilde{x}'A'A\tilde{x} = (A\tilde{x})'A\tilde{x} = ||A\tilde{x}||^2$$

Onde, $|A\tilde{x}||^2>0$ e portanto A é obrigatoriamente não negativa

2.17

Prove que todo autovalor de uma matriz quadrada positiva definida é positivo