MTS-123: DISCRETE STRUCTURES

GENERAL INFORMATION

Course Number	MTS-123
Credit Hours	4 hours
Prerequisite	N/A
Course Coordinator	Not Specified

COURSE OBJECTIVES

Discrete Mathematics also known as finite mathematics, The main focus of this course is to understand a particular set of mathematical facts and how to apply them, more importantly, such a course should teach students how to think logically and mathematically. This course covers the discrete data structures such as sets, relations, discrete functions, graphs, and trees, the subject of discrete structures widely used in the field of computer science for programming and reasoning about data.

CATALOG DESCRIPTION

MTS-123

COURSE CONTENT

Session No.	Date/Week	Suggested Readings				
01-04	Week 01	Introduction to numbers, Mathematical reasoning	Discrete Mathematics & its			
05-08	Week 01-02	Introduction to logic , Propositional Logic, Negation, Disjunction, Conjunction, implications, ,Bicondition (Exclusives) & truth table	Applications 7 th Edition, K.H Rosen & Discrete Mathematics with applications			
09-12	Week 03-04	Rules of Inference, valid and invalid arguments and Applications of Propositional Logic	4 th Edition, Susanna S.Epp,			
13-16	Week 05	Propositional Equivalences, Predicates, Quantifiers, Introduction to Proofs & Method of proofs				
17-20	Week 06	Sets Set Operations Cardinality of Sets				
21-24	Week 07	Sequences & Summations Mathematical Induction , Induction and Recursion				
25-28	Week 08	Function, Composite function and Inverse functions, Genrating Functions				
29-32	Week 09-10	Relations and Their Properties n-ary Relations and Their Applications Representing Relations Equivalence Relations				
33-36	Week 10-11	Algorithms The Growth of Functions Complexity of Algorithms				

37-40	Week 11-12	Number Theory, Divisibility and Modular Arithmetic Integer Representations and Algorithms Primes and Greatest Common Divisors
41-44	Week 13-14	Solving Congruence Applications of Congruence Cryptography An Introduction to Discrete Probability
45-48	Week 14	The Basics of Counting Permutations and Combinations
49-52	Week 15	Graphs and Graph Models Graph Terminology and Special Types of Graphs
53-56	Week 16	Representing Graphs and Graph Isomorphism Euler and Hamilton Paths Shortest path problems
57-58	Week 17	Boolean Algebra / Algebraic structures and coding theory

TEXT BOOK

- 1. K.H Rosen, Discrete Mathematics, 7th Edition
- 2. Susanna S.Epp, Discrete Mathematics with applications 4th Edition

REFERENCE MATERIAL

- Richard Johnson Baugh, Discrete Mathematics, 7th Edition
 Kolman, Busby & Ross, Discrete Mathematical Structures, 4th Edition

COURSE LEARNING OUTCOMES

	Course Learning Outcomes (CLO)
1	Understand the key concepts of discrete structures such as sets, permutations, relations, graphs and trees.
2	To apply logic in the proofs of the propositions. Develop mathematical skills by practicing problem solving, modeling, logical reasoning and writing precise proofs.
3	Apply these concepts to solve computational problems.

CLO-SO Map

	SO IDs											
CLO ID	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CLO 1	1	1	0	0	0	0	0	0	0	0	0	0
CLO 2	0	1	0	0	0	0	0	0	0	0	0	0
CLO 3	0	0	1	0	0	0	0	0	0	0	0	0

APPROVALS

Prepared By	Iftikhar Ahmed Bhutto
Approved By	
Last Update	07/01/2023