Why Deep Learning?

Modularization

Deep → Modularization

Don't put everything in your main function.

http://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html

Modularization

• Deep→Modularization

 Each basic classifier can have sufficient training examples.

Modularization can be trained by little data Deep → Modularization Classifier Girls with long hair Boy or Girl? Classifier Boys with Little data fine Basic **Image** Classifier Classifier Girls with short hair Long or short? Classifier Boys with Sharing by the short hair following classifiers as module

Modularization - Image

Deep → Modularization

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV 2014* (pp. 818-833)

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given enough hidden neurons)

Yes, shallow network can represent any function.

However, using deep structure is more effective.

Analogy

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

less gates needed

Neural network

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler

less parameters

less data?

This page is for EE background.

Analogy

• E.g. *parity check*

For input sequence with d bits,

Two-layer circuit need O(2^d) gates.

With multiple layers, we need only O(d) gates.

More Analogy

 x_2

 x_1

 x_2

More Analogy - Experiment

Different numbers of training examples

End-to-end Learning

End-to-end training:

What each function should do is learned automatically

End-to-end Learning

- Speech Recognition
- Deep Learning

Less engineering labor, but machine learns more

Complex Task ...

A. Mohamed, G. Hinton, and G. Penn, "Understanding how Deep Belief Networks Perform Acoustic Modelling," in ICASSP, 2012.

 Speech recognition: Speaker normalization is automatically done in DNN

