### Stacks - 2

#### TABLE OF CONTENTS

- 1. Nearest Smaller Element [ on L.H.S & on R.H.S ]
- 2. Nearest Greater Element ( NGE ) [ on L.H.S & on R.H.S ]
- 3. Index of Nearest Smaller
- 4. Largest Rectangle in Histogram
- 5. Sum of (max-min) for all Subarrays



| -0 | 0 | 4 | Y V |     | 65 | 214 | V |
|----|---|---|-----|-----|----|-----|---|
| -0 |   |   |     |     | ớ  |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     | 1 1 |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |
|    |   |   |     |     |    |     |   |

#### **Nearest Smaller Element**

QI→ coiver or integer array find the index of nearest smaller element on left of i YALi].

Vi, fird mox j s.t Alj] < Ali] & j < i.

$$A = [4 5 2 10 8 2]$$

Bruteforce  $\rightarrow$   $TC = O(N^2)$  SC = O(1)

For any i > 5, can index 0 be the ars?

No, 
$$\forall i > 5$$
, if  $8 < A Li$   $\Rightarrow 5 < A Li$ 

& closer index will be 5.

TC = O(N) SC = O(N)

else are [i] = st. peck ()

 $02 \rightarrow$  Find nearest smaller or equal on left.

03 → Fird nearest greater element on left.

Q4 → Fird nearest greater or equal on left.

st. push (i)



## Q5 → Find nearest smaller element on right.



 A person uses Google Maps to find the nearest restaurants and picks one based on it's proximity. Unfortunately, after visiting, they realised that the restaurant didn't meet their expectations.

#### Task

Let's break it down with a simple example. You have a list of restaurants and their ratings. For each restaurant, we're going to find the next restaurant to the right on the list that's not just close but also has a higher rating than the current one. If there's no better option on the list, we'll say there's none available.

#### **Problem**

Given a sequence of restaurants listed on Google Maps with their ratings, create a tool that helps users discover the rating of the next higher-rated restaurant to the right for each listed establishment.

## Nearest greater on right.











## Idea - Find continuous bars that give largest rectargle.

Bruteforce  $\rightarrow$  Y subarray, calculate

area = (min Ali]) \* length of subarray.

carry forward  $l-r \Rightarrow \underline{r-l+1}$   $TC = O(N^3) \rightarrow O(N^2)$  SC = O(1)

 $TC < O(N^2) \Rightarrow \text{ we cannot travel all subarrays i.e width.}$   $\underline{Idea 2} \rightarrow \forall \text{ height find mox width.}$ 



[j+1]width = k-1 (j+1) + k-1= k-1 - k-1

Nearest smaller Nearest smaller

on left = j on right = k

Ans = masc (ALi] \* (nearestSmallerRightfi?-Vi nearestSmallerLeft (i?-1))

TC = O(N + N + N) = O(N)

SC = O(N)



< **Question** >: Find sum of ( max-min ) for all subarrays.

 $1 \le N \le 10^5$ 

0 1 2

arr: [ 1 2 3 ]

|         | max | min | max-min |
|---------|-----|-----|---------|
| [1]     | ı   | 1   | 0       |
| [1,2]   | 2.  | 1   | 1       |
| [1,2,3] | 3   | 1   | 2       |
| [2]     | 2   | 2   | 0       |
| [2,3]   | 3   | 2   | 1       |
| [3]     | 3   | 3   | 0       |
|         |     |     | 4 (Ans) |

Bruteforce 
$$\rightarrow$$
  $TC = O(N^3) \longrightarrow O(N^2)$  (corry forward)  
 $SC = O(1)$ 

#### Contribution Technique

#### < Question >: In how many subarrays, ith element is the maximum element?

# suborrays 
$$\rightarrow$$
 (# start)  $\Rightarrow$  (# end) =  $(i-j) \Rightarrow (k-i)$   
 $[j+1 \quad i]$  [ $i \quad k-1$ ]  
 $i-(j+1)+1=i-j \quad k-1-i+1=\underline{k-i}$ 

# # <u>subarrays</u> A[i] is min 7 i → Neorest smaller on

 $j \rightarrow Neorest smaller on left$   $k \rightarrow Neorest smaller on right$ 



$$TC = O(N + N + N + N + N) = O(N)$$
  $SC = O(N)$ 







