$$F(x) = x, \quad 0 < x < 1$$

$$D^{+} = \max_{k=1,\dots,N} \left(\frac{k}{N} - F(x_{k})\right)$$

$$= \max\left\{\left(\frac{1}{3} - F(0.2)\right), \left(\frac{2}{3} - F(0.6)\right), \left(\frac{3}{3} - F(0.7)\right)\right\}$$

$$= \max\left\{\frac{2}{15}, \frac{1}{15}, \frac{3}{10}\right\}$$

$$= 0.3$$

$$D^{-} = \max_{k=1,\dots,N} \left(F(x_{k}) - \frac{k-1}{N}\right)$$

$$= \max\left\{\left(F(0.2) - \frac{0}{3}\right), \left(F(0.6) - \frac{1}{3}\right), \left(F(0.7) - \frac{2}{3}\right)\right\}$$

$$= \max\left\{\frac{2}{10}, \frac{4}{15}, \frac{1}{30}\right\}$$

$$= 0.2666$$

$$D^{N} = \max(D^{+}, D^{-}) = \max(0.3, 0.2666) = 0.3$$

 D^+ is the largest value of how much the sample cumulative distribution function (CDF) over the real cumulative distribution function. It can measure how far the sample away from the real CDF. D^- is the largest value of how much the real CDF over sample CDF. It can measure how below the sample CDF from the real CDF. D_N is the largest difference between the sample CDF and the real CDF.

$$\max \left[F(x_1), \max_{k=1,\dots,N-1} \left(F(x_{k+1}) - \frac{k}{N}, \frac{k}{N} - F(x_k) \right), 1 - F(x_N) \right]$$

=

$$\max \left[F(x_1), F(x_2) - \frac{1}{N}, \frac{1}{N} - F(x_1), F(x_3) - \frac{2}{N}, \frac{2}{N} - F(x_2), \dots, F(x_N) - \frac{N-1}{N}, \frac{N-1}{N} - F(x_{N-1}), 1 - F(x_N) \right]$$

=

$$\max \left[F(x_1) - \frac{0}{N}, F(x_2) - \frac{1}{N}, \frac{1}{N} - F(x_1), F(x_3) - \frac{2}{N}, \frac{2}{N} - F(x_2), \dots, F(x_N) - \frac{N-1}{N}, \frac{N-1}{N} - F(x_{N-1}), \frac{N}{N} - F(x_N) \right]$$

=

$$\max\left[\max_{k=1,\dots,N}\left(\frac{k}{N}-F(x_k)\right),\max_{k=1,\dots,N}\left(F(x_k)-\frac{k-1}{N}\right)\right]$$

(Combine all the $\frac{k}{N} - F(x_k)$ form, and combine all the $F(x_k) - \frac{k-1}{N}$ form.)

Result:

 H_0 : the sample is from U(0,1)

 $D_N = 0.036956$

P-value=0.130285

We assume $\alpha = 0.05$

P-value> α . Therefore do not reject H_0

Algorithm:

1. Write a head file, mc_gen.h, which can generate MCG random numbers.

$$x_n = a * x_{n-1} \operatorname{mod} M$$

Where
$$a = 23$$
, $M = 10^8 + 1$, $x_0 = 47594118$

2.. Write a head file, KStest.h, which can test whether given numbers are random numbers or not. Let the sample be stored in *ivector[i] i=0 to999* for *i=0 to 999*

$$ivector2[i] = \max \left[\left(\frac{i}{N} - ivector(i) \right), ivector(i) - \frac{i-1}{N} \right) \right]$$

end for

Then we sort ivector2[i], and the last term (largest term) is the D_N .

Because we have $\sqrt{N}D_N$'s CDF, we can find p-value=1- $F(\sqrt{N}D_N)$

3. Write a source file, which include the main function and print the answer.

We use the RANDU random numbers here. $x_n = a * x_{n-1} \mod M$

Where a = 65539, $M = 2^{31}$, $x_0 = 1$. We know that it is not a good

generator, because we can find the 15 planes in 3D.

Result:

We got 10 χ^2 statistics form the RANDU random numbers, which are 14.2, 8.24, 9.5, 12.14, 14.08, 6.04, 8.52, 9.74, 14.8 and 15.

Then we test the 10 χ^2 statistics whether came from χ^2 distributions or not by KS-test.

 H_0 : the sample is from χ^2 distributions

The p-value=5.5466e-10.

We assume $\alpha = 0.05$

P-value $< \alpha$.

Therefore we reject the H_0 .

Algorithm:

We use both C++ and Matlab in this problem.

1. We have the head file, mc_gen.h, in problem 3 which can generate

RANDU random numbers by giving a = 65539, $M = 2^{31}$, $x_0 = 1$.

2. Write a head file, ChiSquTest.h, which can test whether given numbers are random numbers or not by chi-square goodness-of-fit test.

We hope to find Q_{k-1} in the ChiSquTest.h. Where

$$Q_{k-1} = \sum_{i=1}^{k} \frac{(Y_i - np_i)^2}{np_i}$$

We stored the sample in vector vec[i], i=0 to 999, and we have subinterval k=10. We find every vec[i] belong to which subinterval and count the

number of samples in every subinterval, denote Y_j j=0 to 9

For
$$i=0$$
 to 999

For $j=0$ to 0.9

If $vec[i] \in (j,j+0.1)$
 $Y_j = Y_j + 1$;

end if

end for

end for

Then we could get Q_{k-1} .

3. We got the 10 Q_{k-1} 's and then we use KS-test to decide whether the 10

 Q_{k-1} 's came from χ^2 distributions by Matlab.

Where P is the p-value.

Result:

 H_0 : The Fibonacci generator is from U(0,1)

$$Q_{k-1} = 24.22$$

P-value=2.269e-5

We assume $\alpha = 0.05$

P-value $< \alpha$. Therefore we reject H_0

Algorithm:

1. Write a head file, fibo_gen.h, which can generate Fibonacci random numbers.

$$x_n = x_{n-1} + x_{n-2} \pmod{M}$$

Where $M = 2^{31}$, $x_0 = 1$, $x_1 = 1$ and we start with the 101^{st} term.

2.. Write a head file, gap_test.h, which can test whether given numbers are random numbers or not. We store the Fibonacci random numbers in vec[i] i=0 to99999. J=(0.3,0.8). We store the times of gap i in vector gap[i], i=0 to t-1 and We store the times of gap $\geq t$ in gap[t]

for
$$i=0$$
 to 9999

if $vec[i] \in J$

count the gaps and store in $gap[i]$ if $gap=i$

and in $gap[t]$ if $gap \ge t$

else

 $gap=gap+1;$

end if

if $\sum_{i=1}^{l} gap[i]=100$

stop the loop

end if

3. find
$$Q_{k-1} = \sum_{i=1}^{k} \frac{(Y_i - np_i)^2}{np_i}$$
. Where $Y_i = gap[i]$, $i = 0$ to t, n=100,
$$p_i = (1-p)^i p \qquad \text{if} \quad i = 0 \text{ to t-1}$$
$$= (1-p)^i \qquad \text{if} \quad i = t$$

4. We have Q_{k-1} =24.22 and we can get P-value=2.269e-5 by Matlab. p=1-chi2cdf(Q,k-1)

$$p=1-chi2cdf(Q,k-1)$$

We assume $~\alpha$ =0.05 and P-value < α . Therefore we reject $~H_{\scriptscriptstyle 0}\,.$

Result:

 H_0 : The classical MCG random numbers are from U(0,1)

Collision=212

The cumulative probabilities, and the percentage points:

Cumulative	0.011742	0.057543	0.260926	0.512275	0.756484	0.953438	0.990032	1
probabilities								
Percentage	160	168	179	187	195	207	215	233
points:								

We assume $\alpha = 0.05$

P-value is between 0.990032 and 1.

Therefore P-value $< \alpha$. We reject H_0

Algorithm:

1. Using the head file, mc_gen.h, in problem 3 which can generate MCG random numbers.

$$x_n = a * x_{n-1} \mod M$$

Where
$$a = 23$$
, $M = 10^8 + 1$, $x_0 = 47594118$

2. Write a head file, coll_test.h, can compute the collisions and the cumulative probabilities, and the percentage points.

We store the random numbers in VEC[i], i=0 to 1999, and we assume vector urn[i], i=0 to 9999 is the 10000 urns. We compute the collisions first.

3. In coll_test.h we also compute the cumulative probabilities, and the percentage points. First, we find the probability matrix $[P_{i,n}]$.

 $P_{j,n}$ means the P{j urns occupied in n tosses} and we have

$$P_{j,n} = \frac{j}{M} P_{j,n-1} + \frac{M-j+1}{M} P_{j-1,n-1}.$$

Then we have P{collision $\leq x$ } = $\sum_{i=0}^{x} P_{N-i,N}$, after computing we have

Cumulative	0.011742	0.057543	0.260926	0.512275	0.756484	0.953438	0.990032	1
probabilities								
Percentage	160	168	179	187	195	207	215	233
points:								

4. We can compare the sample collisions and above table, and then we have P-value is between 0.990032 and 1. We assume α =0.05 Therefore P-value $< \alpha$. We reject H_0 .