PROJECT 2: IMPLEMENTING EDF SCHEDULER

Name Abdurrahman Mohamed Elhefnawy

Email Abdurrahman.elhefnawy@gmail.com

1. Using analytical methods

System HyperPeriod

Task	Periodicity
Button_1_Monitor	50 ms
Button_2_Monitor	50 ms
Periodic_Transmitter	100 ms
Uart_Receiver	20 ms
Load_1_Simulation	10 ms
Load_2_Simulation	100 ms

HyperPeriod = *L*east common multiplier

HyperPeriod = 100 ms

CPU Load

Task	Execution Time (during 1 hyperperiod)
Button_1_Monitor	13*2 us
Button_2_Monitor	13*2 us
Periodic_Transmitter	20*1 us
Uart_Receiver	5*28 us
Load_1_Simulation	5*10 ms
Load_1_Simulation	12*1 ms

Total Execution Time (one hyperperiod) = 26 us + 26 us + 20 us + 140 us +

$$50 \text{ ms} + 12 \text{ ms} = 62.212 \text{ ms}$$

$$CPU Load = \frac{Total \ Execution \ Time}{Total \ System \ Time}$$

CPU Load =
$$\frac{62.212}{100}$$
 * 100 = 62.212%

System Schedulablity:

Using Time Demand Analysis

Task 1: Load 1 Simulation (E: 5 ms, P: 10ms, Provided Time=10ms)

$$w1(10) = 5 ms + 0 = 5$$

$$w(10) = 5 < 10$$

Task 1: Load 1 simulation is schedulable

Task 2: Uart Receiver (E: 28 us, P: 20 ms, Provided Time=20ms)

$$w2(20) = 28 \text{ us} + (20/10) *5 = 10.02$$

$$w$$
 (20) = 10.02 < 20

Task 2: Uart Receiver is schedulable

Task 3: Button 1 Monitor (E: 13 us, P: 50 ms, Provided Time=50ms)

$$w3(50) = 13 \text{ us} + (50/10) * 5(\text{ms}) + (50/20) * 28 (\text{us}) = 25.083 \text{ ms}$$

$$w$$
 (50) = 25.083 < 50

Task 3: Button 1 Monitor is schedulable

Task 4: Button 2 Monitor (E: 13 us, P: 50ms, Provided Time=50ms)

$$w4(50) = 13 \text{ us} + (50/10) * 5 ms + (50/20) 28 \text{ us} + (50/50) 13 \text{ us} = 25.096$$

 $w(50) = 25.096 < 50$

Task 4: Button 2 Monitor is schedulable

Task 5: Periodic Transmitter (E: 27 us, P: 100 ms, Provided Time=100ms)

$$w5(100) = 27 \text{ us} + (100/10) *5 ms + (100/20) 28 \text{ us} + (100/50) * 13 \text{ us} +$$

$$(100/50) * 13 \text{ us} = 50.219 \text{ ms}$$

$$w$$
 (100) = 50.219 < 100

Task 5: Periodic Transmitter is schedulable

Task 6: Load 2 Simulation (E: 24 ms, P: 100 ms, Provided Time=100ms)

$$w6(100) = 12 \text{ ms} + (100/10) * 5 \text{ (ms)} + (100/20) * 28 \text{ (us)} + (100/50) * 13 \text{ us}$$

+ $(100/50)13 \text{ us} + (100/100)27 \text{ us} = 62.219$

$$w$$
 (100) = 62.219 < 100

Task 6: Load 2 Simulation is schedulable

2. SIMSO simulator

Tasks set:

Results:

We can see that we have the same CPU load that we have calculated by analytical method.

Timeline:

We can see that we Our system is schedulable as there isn't any task misses its deadline

3. Using Keil simulator

Logic Analyzer

Note that it is the same Timeline we got from the offline simulator (Simso).

CPU Load

Note that it is the same CPU load we got from the analytical method and from the offline simulator (Simso).