

Pose related effect in terms of Dextran-FITC conjugate take-up at high concentrations

FIGURE 6

CD40 co-stimulating surface marker expression

5/32

FIGURE 9

Expression of CD80 co-stimulating surface marker

FIGURE 10

Effect of OM-294-MP and OM-294-DP products on αTNF production
by predendritic cells at DC-6 stage

FIGURE 11

Effect of OM-294-MP and OM-294-DP products on IL-12 p70 production by predendritic cells at DC-6 stage (IFN = γ IFN)

IL-12 p70 in the supernatant fluids of dendritic cells (DC-6)

FIGURE 12

Effect of OM-294-MP products on IL-12 p70 production by monocytes (IFN = γ IFN)

IL-12 p70 in the supernatant fluids of monocytes

. 19/32

FIGURE 34

SYNTHESIS SCHEME 2

Bn = benzyl Ph = phényl

OlyP(OlO
$$\sim$$
 OH \sim NH2 \sim OH \sim O

Bn = benzyl Ph = phenyl

$$(HO)_2P(O)O \longrightarrow \qquad \qquad \qquad \downarrow \qquad \qquad OP(O)(OH)_2$$

$$HO \longrightarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad OH$$

$$HO \longrightarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad OH$$

$$HO \longrightarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

FIGURE 36 OP(0)(0Bn), deprotection 0 BnO I 0) ((BnO)₂P(O)O (BnO)₂P(O)O Bn = benzyl R = allyl Y = protecting group Pro-WZ10b 0 Bro I è

0

Bno 1

P WZ7a'

SYNTHESIS SCHEME 4

P F

BEST AVAILABLE COF

SYNTHESIS SCHEME 5

Bn = benzyl R = allyl Y = protecting group

Instrumentation: Micromass Quatro II (Z-spray), triple stage quadrupole

Instrumentation: Micromass Quatro II (Z-spray), triple stage quadrupole

FIGURE 41

SPECTRUM 3

Diphosphorylated compound ES-MS spectra (positive mode fragmentation)

Instrumentation: Hewlett-Packard MSD, single quadrupole

Instrumentation: Varian Unity INOVA 500 MHz

monophosphorylated compound

SPECTRUM 6

Instrumentation: Bruker DPX 250 MHz

BEST AVAILABLE COPY

Instrumentation: Bruker DPX 250 MHz

Instrumentation: Bruker DPX 300 MHz

Instrumentation: Bruker DPX 300 MHz