Lecture: Smoothing

http://bicmr.pku.edu.cn/~wenzw/opt-2018-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghe's lecture notes

Smoothing

- introduction
- smoothing via conjugate
- examples

First-order convex optimization methods

complexity of finding ϵ -suboptimal point of f(x)

subgradient method: f nondifferentiable with Lipschitz constant G

$$O((G/\epsilon)^2)$$
 iterations

• proximal gradient method: f = g + h, where h is a 'simple' nondifferentiable function, g is differentiable with L-Lipschitz continuous gratient

$$O(L/\epsilon)$$
 iterations

fast proximal gradient methods

$$O(\sqrt{L/\epsilon})$$
 iterations

Non-differentiable optimization by smoothing

for nondifferentiable f that cannot be handled by proximal gradient method

- replace f with differentiable approximation f_{μ} (parametrized by μ)
- ullet minimize f_{μ} by (fast) gradient method

Complexity: #iterations for (fast) gradient method depends on L_{μ}/ϵ_{μ}

- L_{μ} is Lipschitz constant of ∇f_{μ}
- ullet ϵ_{μ} is accuracy with which the smooth problem is solved

trade-off in amount of smoothing (choice of μ)

- ullet Large L_{μ} (less smoothing) gives more accurate approximation
- Small L_{μ} (more smoothing) gives faster convergence

Example: Huber penalty as smoothed absolute value

$$\phi_{\mu}(z) = \begin{cases} z^2/2(\mu) & |z| \le \mu \\ |z| - \mu/2 & |z| \ge \mu \end{cases}$$

 μ controls accuracy and smoothness

accuracy

$$|z| - \frac{\mu}{2} \le \phi_{\mu}(z) \le |z|$$

smoothness

$$\phi_{\mu}''(z) \le \frac{1}{\mu}$$

Huber penalty approximation of 1-norm minimization

$$f(x) = ||Ax - b||_1, \qquad f_{\mu}(x) = \sum_{i=1}^{m} \phi_{\mu}(a_i^T x - b_i)$$

• accuracy: from $f(x) - m\mu/2 \le f_{\mu}(x) \le f(x)$,

$$f(x) - f^* \le f_\mu(x) - f_\mu^* + m\mu/2$$

to achieve $f(x)-f^\star \leq \epsilon$, we need $f_\mu(x)-f^\star_\mu \leq \epsilon_\mu \;\; {
m With} \; \epsilon_\mu = \epsilon - m\mu/2$

• Lipschitz constant of f_{μ} is $L_{\mu} = \|A\|_2^2/\mu$

complexity: for $\mu = \epsilon/m$

$$\frac{L_{\mu}}{\epsilon_{\mu}} - \frac{\|A\|_{2}^{2}}{\mu(\epsilon - m\mu/2)} = \frac{2m\|A\|^{2}}{\epsilon^{2}}$$

 $i.e., O(\sqrt{L_{\mu}/\epsilon_{\mu}} = O(1/\epsilon)$ iteration complexity for fast gradient method

Outline

- introduction
- smoothing via conjugate
- examples

Minimum of strongly convex function

if x is a minimizer of a strongly convex function f, then it is unique and

$$f(y) \ge f(x) + \frac{\mu}{2} ||y - x||_2^2 \quad \forall y \in \text{dom} f$$

(μ is the strong convexity constant of f)

proof: if some y does not satisfy the inequality, then for some small $\theta>0$:

$$f((1-\theta)x + \theta y) \le (1-\theta)f(x) + \theta f(y) - \mu \frac{\theta(1-\theta)}{2} \|y - x\|_2^2$$

$$= f(x) + \theta(f(y) - f(x) - \frac{\mu}{2} \|y - x\|_2^2) + \mu \frac{\theta^2}{2} \|x - y\|_2^2$$

$$< f(x)$$

Conjugate of strongly convex function

suppose f is closed and strongly convex with constant μ and conjugate

$$f^*(y) = \sup_{x \in \mathbf{dom}f} (y^T x - f(x))$$

• f^* is defined and differentiable at all y, with gradient

$$\nabla f^*(y) = \underset{x}{\operatorname{argmax}}(y^T x - f(x))$$

• ∇f^* is Lipschitz continuous with constant $1/\mu$

$$\|\nabla f^*(u) - \nabla f^*(v)\|_2 \le \frac{1}{\mu} \|u - v\|_2$$

outline of proof

- $y^Tx f(x)$ has a unique maximizer x_y for every y (follows from closedness and strong convexity of $f(x) y^Tx$)
- from strong convexity (with $x_{\mu} = \nabla f^*(u), x_{\nu} = \nabla f^*(\nu)$)

$$f(x_u) - v^T x_u \ge f(x_v) - v^T x_v + \frac{\mu}{2} ||x_u - x_v||_2^2$$

$$f(x_v) - u^T x_v \ge f(x_u) - u^T x_u + \frac{\mu}{2} ||x_u - x_v||_2^2$$

adding the left- and right-hand sides of the inequalities gives

$$\mu \|x_u - x_v\|_2^2 \le (x_u - x_v)^T (u - v)$$

by the Cauchy-Schwarz inequality, $\mu \|x_u - x_v\|_2 \le \|u - v\|_2$

Proximity function

d is a **proximity function** for a closed convec set C if

- d is continuous and strongly convex
- \circ $C \subseteq \mathbf{dom}d$

d(x) measures 'distance' of x to the **center** $x_d = \operatorname{argmin}_{x \in C} d(x)$ of C

normalization

- we will assume the strong convexity constant is 1 and $\inf_{x \in C} d(x) = 0$
- for a normalized proximity function

$$d(x) \ge \frac{1}{2} \|x - x_d\|_2^2 \quad \forall x \in C$$

common proximity functions

- $d(x) = ||x u||_2^2/2$ with $x_d = u \in C$
- $d(x) = \sum_{i=1}^{n} w_i(x_i u_i)^2/2$ with $w_i \ge 1$ and $x_d = u \in C$
- $d(x) = \sum_{i=1}^{n} x_i \log x_i + \log n$ for $C = \{x \ge 0 \mid \mathbf{1}^T x = 1\}, x_d = (1/n)\mathbf{1}$

example (probability simplex): entropy and $d(x) = (1/2)||x - (1/n)\mathbf{1}||_2^2$

Smoothing via conjugate

conjugate (dual) representation: suppose f can be expressed as

$$f(x) = \sup_{y \in \mathbf{dom}h} ((Ax + b)^T y - h(y))$$
$$= h^*(Ax + b)$$

where h is closed and convex with **bounded** domain

smooth approximation: choose proximity function d for C = cldomh

$$f_{\mu}(x) = \sup_{\mathbf{y} \in \mathbf{dom}h} ((Ax + b)^{T} \mathbf{y} - h(\mathbf{y}) - \mu d(\mathbf{y}))$$
$$= (h + \mu d)^{*} (Ax + b)$$

 f_{μ} is differentiable because $h + \mu d$ is strongly convex

Example: absolute value

conjugate representation

$$|x| = \sup_{-1 \le y \le 1} xy = h^*(x), \qquad h(y) = I_{[-1,1]}(y)$$

proximity function: choosing $d(y) = y^2/2$ gives Huber penalty

$$f_{\mu}(x) = \sup_{-1 \le y \le 1} (xy - \mu y^2 / 2) = \begin{cases} x^2 / (2\mu) & |x| \le \mu \\ |x| - \mu / 2 & |x| > \mu \end{cases}$$

proximity function: choosing $d(y) = 1 - \sqrt{1 - y^2}$ gives

$$f_{\mu}(x) = \sup_{-1 \le y \le 1} (xy + \mu \sqrt{1 - y^2} - \mu) = \sqrt{x^2 + \mu^2} - \mu$$

14/26

another conjugate representation of *x*

$$|x| = \sup_{\substack{y_1 + y_2 = 1 \\ y \succeq 0}} x(y_1 - y_2)$$

 $i.e., |x| = h^*(ax)$ for $h = I_C$,

$$C = \{ y \succeq 0 | y_1 + y_2 = 1 \}, \qquad A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

proximity function for C

$$d(y) = y_1 \log y_1 + y_2 \log y_2 + \log 2$$

smooth approximation

$$f_{\mu}(x) = \sup_{y_1 + y_2 = 1} (xy_1 - xy_2 + \mu(y_1 \log y_1 + y_2 \log y_2 + \log 2))$$
$$= \mu \log \left(\frac{e^{x/\mu} + e^{-x/\mu}}{2} \right)$$

comparison: three smooth approximations of absolute value

Gradient of smooth approximation

$$f_{\mu}(x) = (h + \mu d)^* (Ax + b)$$

=
$$\sup_{y \in \mathbf{dom}h} ((Ax + b)^T y - h(y) - \mu d(y))$$

from properties of the conjugate of strongly convex function (page 7)

• f_{μ} is differentiable, with gradient

$$\nabla f_{\mu}(x) = A^{T} \underset{y \in \mathbf{dom}h}{\operatorname{argmax}} ((Ax + b)^{T} y - h(y) - \mu d(y))$$

• $\nabla f_{\mu}(x)$ is Lipschitz continuous with constant

$$L_{\mu} = \frac{\|A\|_2^2}{\mu}$$

Accuracy of smooth approximation

$$f(x) - \mu D \le f_{\mu}(x) \le f(x), \qquad D = \sup_{y \in \mathbf{dom}h} d(y)$$

note $D < +\infty$ because domh is bounded and domh \subseteq domd

lower bound follows from

$$f_{\mu}(x) = \sup_{\mathbf{y} \in \mathbf{dom}h} ((Ax + b)^{T} \mathbf{y} - h(\mathbf{y}) - \mu d(\mathbf{y}))$$

$$\geq \sup_{\mathbf{y} \in \mathbf{dom}h} ((Ax + b)^{T} \mathbf{y} - h(\mathbf{y}) - \mu D)$$

$$= f(x) - \mu D$$

upper bound follows from

$$f_{\mu}(x) \leq \sup_{y \in \mathbf{dom}h} ((Ax + b)^{T}y - h(y)) = f(x)$$

Complexity

to find solution of nondifferentiable problem with accuracy $f(x) - f^* \le \epsilon$

• solve smoothed problem with accuracy $\epsilon_{\mu} = \epsilon - \mu D$, so that

$$f(x) - f^* \le f_{\mu}(x) + \mu D - f_{\mu}^* \le \epsilon_{\mu} + \mu D = \epsilon$$

• Lipschitz constant of f_{μ} is $L_{\mu} = \|A\|_2^2/\mu$

complexity: for $\mu = \epsilon/(2D)$

$$\frac{L_{\mu}}{\epsilon_{\mu}} = \frac{\|A\|_{2}^{2}}{\mu(\epsilon - \mu D)} = \frac{4D\|A\|_{2}^{2}}{\mu\epsilon^{2}}$$

- gives $O(1/\epsilon)$ iteration bound for fast gradient method
- ullet efficiency in practice can be improved by decreasing μ gradually

Outline

- introduction
- smoothing via conjugate
- examples

Piecewise-linear approximation

$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

conjugate representation

$$f(x) = \sup_{\mathbf{y} \succeq 0, \mathbf{1}^T \mathbf{y} = 1} (Ax + b)^T \mathbf{y}$$

proximity function

$$d(y) = \sum_{i=1}^{m} y_i \log y_i + \log m$$

smooth approximation

$$f_{\mu}(x) = \mu \log \sum_{i=1}^{m} e^{(a_i^T x + b_i)/\mu} - \mu \log m$$

1-Norm approximation

$$f(x) = ||Ax - b||_1$$

conjugate representation

$$f(x) = \sup_{\|y\|_{\infty} \le 1} (Ax - b)^T y$$

proximity function

$$d(y) = \frac{1}{2} \sum_{i} w_i y_i^2 \qquad \text{(with } w_i > 1\text{)}$$

smooth approximation: Huber approximation

$$f_{\mu}(x) = \sum_{i=1}^{n} \phi_{\mu w_i} (a_i^T x - b_i)$$

Maximum eigenvalue

conjugate representation: for $X \in \mathbb{S}^n$,

$$f(X) = \lambda_{\max}(X) = \sup_{Y \succeq , \operatorname{tr} Y = 1} \operatorname{tr}(XY)$$

proximity function: negative matrix entropy

$$d(Y) = \sum_{i=1}^{n} \lambda_i(Y) \log \lambda_i(Y) + \log n$$

smooth approximation

$$f_{\mu}(X) = \sup_{Y \succeq 0, \text{tr}Y = 1} (\text{tr}(XY) - \mu d(Y))$$
$$= \mu \log \sum_{i=1}^{n} e^{\lambda_i(X)/\mu} - \mu \log n$$

Nuclear norm

nuclear norm $f(X) = \|X\|_{\star}$ is sum of singular values of $X \in \mathbb{R}^{m \times n}$ conjugate representation

$$f(X) = \sup_{\|Y\|_2 \le 1} \operatorname{tr}(X^T Y)$$

proximity function

$$d(Y) = \frac{1}{2} ||Y||_F^2$$

smooth approximation

$$f_{\mu}(X) = \sup_{\|Y\|_2 \le 1} \operatorname{tr}(X^T Y - \mu d(Y)) = \sum_{i} \phi_{\mu}(\sigma_i(X))$$

the sum of the Huber penalties applied to the singular values of X

Lagrange dual function

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $x \in C$

 $f_i(x)$ convex, C closed and bounded

smooth approximation of dual function: choose prox. function d for C

$$g_{\mu}(\lambda) = \inf_{x \in C} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \mu d(x))$$

minimize
$$f_0(x) + \mu d(x)$$
 subject to
$$f_i(x) \leq 0, \quad i = 1, \dots, m$$

$$x \in C$$

References

- D. Bertsekas, Nonlinear Programming (1995), §5.4.5
- Yu. Nesterov, Smooth minimization of non-smooth functions, Mathamatical Programming (2005)