Read Mapping (ohne Varianten) Vortrag im Rahmen der Projektgruppe

Marcel Bargull Janet Fiedler
PG583: Algorithmen zur Entdeckung
krebsauslösender Genvarianten

Fakultät für Informatik, Technische Universität Dortmund

2. April 2014

Inhalt

- Was ist Read Mapping?
- 2 Ablauf: Auswertung der Reads
- 3 Eingabeeigenschaften
- 4 Read Mapping: Indizierung
- 5 Read Mapper: Beispiele
- 6 Read Mapper: MAQ
- Read Mapper: Bowtie
- 8 Read Mapper: Laufzeitvergleich
- 9 Ausgabe
- 10 PileUp
- Variantenidentifizierung

Was ist Read Mapping?

Ausgabe der Sequenziermaschinen:

- Genom nicht als zusammenhängende Basensequenz
- Sondern: Reads
 - Millionen einzelner kleiner DNA-Schnipsel
- Keine Positionsangaben

Was ist Read Mapping?

Positionsbestimmung durch Read Mapping:

- Gegebenes Referenzgenom
- Suche den Reads ähnliche Teilsequenzen im Genom

Ablauf: Auswertung der Reads

Eingabeeigenschaften: Reads

Abweichung vom Referenzgenom

- einzelne Basen
 - Sequenzierfehler (Mismatch)
 - Echte SNV (Single Nucleotide Variation)
- Indels (Insertions / Deletions)
 - Sequenzierfehler
 - Echte Varianten

Eingabeeigenschaften

Zusätzliche Schwierigkeiten

- Mehrfachmatches
- Repeats im Genom

Erleichterungen

- Angabe zur Sequenzierqualität der Basen
- Paired-End Reads

Read Mapping: Indizierung

Indizierung für schnelles Mapping nötig, da

- Großes Genom
- Sehr viele Reads

Index von:

- Referenzgenom
- Reads

Verfahren:

- Burrows-Wheeler-Transformation
- Hashtabelle

Read Mapper: Beispiele

Zwei Beispiele für Read Mapper:

- MAQ (Hashtabellen auf Reads)
- Bowtie (BWT auf Referenzgenom)

- Hashtabellen auf Reads
- Nur kurze Reads \leq 63 bp (\leq 127 ab v. 0.7.0)
- Saat = Erste 28 bp vom "high quality end" (i.d.R. 5'-Ende)
- Lässt 2 Mismatches in der Saat zu
- Sucht pro Read ein Mapping ohne Gaps
- Benutzt Paired-End Reads
 - Korrektur falscher Mappings
 - Erkennung von Gaps
 - Unterstützung bei Repeats

- Erstellt 6 Hashtabellen zu den Reads (28 bp Saat)
- Hashtabellen zugeordnet zu "noncontiguous seed templates"
- Indiziert nur Basen mit "1" im Template

Beispiel für 8 bp:

```
Ref.
            acgttcga
Read 1
                      0 Mismatches
            acgttcga
Read 2
            aggttcga 1 Mismatches
            tggttcga 2 Mismatches
Read 3
            aggtacga 2 Mismatches
Read 4
Template 1A
            11110000 S1
Template 1B 00001111 S1 S2 S3
Template 2A 11000011
                       S1
Template 2B 00111100
                       S1 S2 S3
Template 3A 11001100
                       S1
                       S1 S2 S3 S4
Template 3B
            00110011
```

- Sucht f
 ür alle Referenz-28-Gramme nach Hashes
- Je 2 komplementäre Templates pro Durchlauf des Genoms
- $lue{}$ Sechs Templates garantieren Finden von Saaten mit ≤ 2 Mismatches
- Bei gefundenem Hash
 - Mismatch Score = Summe der (Sequenzier-) Q-Werte der Mismatches (über ganzem Read)
- Wählt Mappingposition mit niedrigster Mismatch Score

Weist Mappings Qualitätswerte (Q-Werte, phred-scaled) zu

■ Hoher Q-Wert ⇔ W'keit gering, dass Mapping falsch ist

Bei Paired-Reads:

- 6 Tabellen je Richtung
- Speichert je 2 beste Positionen von Hits in Vorwärtsrichtung
- Markiere als Paar, falls Hit auf Rückwärtsstrang in erlaubtem Abstand zu den 2 Positionen
- Falls nur ein Read gemappt
 - Smith-Waterman gapped alignment

Bowtie

- Erstellt Index auf Referenzgenom mittels BWT
- Benutzt Backtracking bei Mismatches
 - Begrenzt Anzahl an Mismatches in der Saat (erste 28 Basen)
 - Wählt Substitution mit geringstem Basenqualitätswert Q
 - Begrenzt Summe von Q für Mismatches auf < 70
- Zusätzlich Index auf reversem Genom
 - Zur Vermeidung von Backtracking

Bowtie – Backtracking

Bowtie - Algorithmus

- Wie MAQ bis zu 2 Mismatches in der Saat
- Backtracking vermeiden: 28bp-Saat in hi-half und lo-half teilen

Bowtie – Eigenschaften

- + Index kann vorberechnet werden
- + Deutlich schneller als MAQ
- Unterstützt keine Gaps
- Valide Alinierung f
 ür beide Paired-End Reads n
 ötig
 - Auch hierdurch keine Gapunterstützung
- Nachfolger: Bowtie 2
 - Unterstützt Gaps und lokale Alinierung

Read Mapper: Laufzeitvergleich

	Single-end			Paired-end		
Program	Time (s)	Conf (%)	Err (%)	Time (s)	Conf (%)	Err (%)
Bowtie-32	1271	79.0	0.76	1391	85.7	0.57
BWA-32	823	80.6	0.30	1224	89.6	0.32
MAQ-32	19797	81.0	0.14	21589	87.2	0.07
SOAP2-32	256	78.6	1.16	1909	86.8	0.78
Bowtie-70	1726	86.3	0.20	1580	90.7	0.43
BWA-70	1599	90.7	0.12	1619	96.2	0.11
MAQ-70	17928	91.0	0.13	19046	94.6	0.05
SOAP2-70	317	90.3	0.39	708	94.5	0.34
bowtie-125	1966	88.o	0.07	1701	91.0	0.37
BWA-125	3021	93.0	0.05	3059	97.6	0.04
MAQ-125	17506	92.7	0.08	19388	96.3	0.02
SOAP2-125	555	91.5	0.17	1187	90.8	0.14

Abbildung: Ergebnisse

Ausgabe – Alinierung

Coor	12345678901234	5678901234	56789012345	6789012345
ref	AGCATGTTAGATAA*	*GATAGCTGT	GCTAGTAGGCA	GTCAGCGCCAT
+r001/1	TTAGATAAA	AGGATA*CTG		
+r002	aaaAGATAA*	GGATA		
+r003	${ t gcctaAGCTAA}$			
+r004		ATAGCT		.TCAGC
-r003		ti	${ t tagctTAGGC}$	
-r001/2				CAGCGGCAT

Ausgabe – SAM-Datei

```
QHD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
r001
      163 ref
              7.30.8M2T4M1D3M = 37.39.TTAGATAAAGGATACTG
r002
              9 30 3S6M1P1T4M *
                                     O AAAAGATAAGGATA
       0 ref
r003
       0 ref 9 30 5S6M
                                     O GCCTAAGCTAA
                                 0
r004
       0 ref 16 30 6M14N5M
                                     O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                      TAGGC
r001
      83 ref 37 30 9M
                              = 7 -39 CAGCGGCAT
```

http://samtools.github.io/hts-specs/SAMv1.pdf

Pileup

- Mappings aus Sicht der Referenz
- $lue{}$ Pro Position / Base im Referenzgenom Auflistung der Überdeckenden Reads ightarrow Coverage
- Pileup-Format:

http://samtools.sourceforge.net/pileup.shtml

Variantenidentifizierung

Variante erkennbar, falls

- Genügend Abdeckung / Coverage
- Mappings mit hoher Qualität (z.B. > 60) vorhanden
- Wenige Abweichungen von Referenz in Nachbarschaft
- Genügend Mappings mit geleicher Ausprägung

Variantenidentifizierung

Beispiel für weitere Probleme durch Alinierung:

Fehlerhafte Mappings rund um Indels:

```
12345678901234
                          5678901234567890123456
coor
ref
        aggttttataaaac----aattaagtctacagagcaacta
sample
        aggttttataaaacAAATaattaagtctacagagcaacta
read1
        aggttttataaaac****aaAtaa
read2
         ggttttataaaac****aaAtaaTt
read3
             ttataaaacAAATaattaagtctaca
read4
                 CaaaT****aattaagtctacagagcaac
read5
                   aaT****aattaagtctacagagcaact
read6
                     T****aattaagtctacagagcaacta
       http://samtools.sourceforge.net/mpileup.shtml
```

Read Mapping mit Varianten

Read Mapper können Fehler von Varianten schlecht unterscheiden

- Varianten evtl. als Fehler verworfen
- Verzerrung in Richtung Referenzgenom
- Read Mapping mit Variantenunterstützung nötig!