18 Jan 37 Lesti, 8 eus - 4 - Februl = (= = =) - 12 - 13 - 13 - 13 S+'S: (===) /mot = 0 Name Doy (is Sahand (is2+1:3) 0 10 95 (=+8-) nl 至一起几个人一会 Section: 02 (at.2-86.2) ! (- 10) w 1 0 5 · 0 + (| FEL |) of = (MA)

$$\frac{1}{s} = \frac{1}{s} - \frac{1}{s} = \frac{1}$$

$$\frac{1}{s} \left(\frac{1}{s^2} + \frac{1}{s^2} \right) \left(\frac{1}{s^2} + \frac{1}{s^2} \right) \left(\frac{1}{s^2} \right) = \frac{1}{s}$$

$$\frac{1}{s} \left(\frac{1}{s^2} + \frac{1}{s^2} \right) = \frac{1}{s}$$

$$\frac{1}{s} \left(\frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s}$$

$$\frac{1}{s} \left(\frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s}$$

$$\frac{1}{s} \left(\frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s}$$

$$\frac{1}{s} \left(\frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s}$$

$$\frac{1}{s} \left(\frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s}$$

$$\frac{1}{s} \left(\frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s} + \frac{1}{s}$$

$$\frac{1}{s} \left(\frac{1}{s} + \frac{1}{s} + \frac$$

$$= \frac{1}{2} \left[\frac{1}{2} \left(\cos 26t \right) + \frac{1}{2} \left(\cos 6t \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{s^2 + 26^2} + \frac{3}{s^2 + 6^2} \right] (10 \ 200) = (10 \ 200)$$

Given,
$$\int_{-1}^{-1} \left[\frac{s}{(s^2+64)(s-4)} \right]$$

Decomposing (5764) (5-4) into partaial fraction =)

$$\frac{S}{(s^2+64)(s-4)} = \frac{As+B}{(s^2+64)} + \frac{C}{(s^2+64)}$$

$$= \frac{(As+B)(s-4)+C(s^2+64)}{(s^2+64)(s-4)}$$

So,
$$s = (As+B)(s-4) + C(s^2+64)$$

 $\Rightarrow s = As^2 + Bs - 4As - 4B + Cs^2 + 64C$
 $\therefore s = s^2(A+C) + s(B-4A) + (-4B+64C)$
Pluggin, $S=4$ in equation D ,
 $4 = (As+B)(4-4) + C(4^2+64)$
 $\Rightarrow 4 = C(16+64)$
 $\therefore C = \frac{1}{20}$
Plugging, $C = \frac{1}{20}$ in equation D ,
 $S = S^2(A + \frac{1}{20}) + S(B-4A) + (-4B + \frac{64}{20})$
Now, Equating the coefficients,
 $A + \frac{1}{20} = 0$ $B-4A = 1$
 $\therefore A = -\frac{1}{20}$ $\Rightarrow B+\frac{1}{5} = 1$
 $\therefore B = \frac{4}{5}$

$$\frac{s}{(\frac{1}{4}64)(s-4)} = \frac{1}{20}s + \frac{4}{5} = \frac{1}{20}s + \frac{1$$

Given differential equation,
$$\frac{1}{2} = \frac{1}{2} = \frac{1}{$$

$$\Rightarrow \frac{1}{3} + \frac{$$

-C (Hene,)
$$s^{2} + 80$$
; $(e+e-)9 + (1-A)(e-e-)B = 08 + 1e C$
 $(s+9)(s-9)(s-1) = (8+9) + (3-9) + (s-1)$
 $(o1-) \cdot (e1-) \cdot A = 08 - 18$
 $= A(3-9)(s-1) + B(s+9)(s-1) + C(s+9)(s-9)$
 $= (s+9)(s-9)(s-1) + (s-9)(s-9)$

when,
$$S = 9$$
?

 $9^2 - 80 = A(9-9)(9-1)+B(9+9)(9-9)$

When,
$$\pm S = \frac{1}{2}$$
, $\pm e$

$$1^{2} - 80 = A(1-9)(1-1) + iB(1+9)(1-1) + iC(1+9)(1-9)$$

$$\therefore C = \frac{79}{90}$$

$$\begin{cases} (e_{-1})^{\frac{1}{2}} 90 = A(-9-9)(-9-1) + B(-9+9)(-9-1) + C(-9+9)(-9-9) \\ = (-1)^{\frac{1}{2}} (-1$$