

89/2007/2

1/18

FIG. 1

SEQ ID NO: 1:

GAGAAGGTTT GTTATGCCTC AGGGTTATCT GCAGTTCCC AATATTGACC CCGTATTGTT 60
TTCGATCGGC CCTCTAGCGG TCGCCTGGTA TGGCTTGATG TATTGGTGG GTTCCCTTT 120
TGCTATGTGG TTGGCCAATC GCCGAGCGGA TCGCGCGGC AGTGGTTGGA CGCGTGAGCA 180
AGTCTCTGAC TTGTTATTG CCGGCTTTT AGGTGTAGTG ATCGGTGGCC GAGTTGGTTA 240
TGTGATCTTC TACAATTTG ATCTGTTCCCT TGCTGACCCT CTTTATTTAT TCAAAGTGTG 300
GACTGGCGGC ATGTCCTTCC AC GGCGGCTT ATTGGGTGTG ATCACCGCCA TGTTCTGGTA 360
TGCGCGTAAA AACCAACGCA CCTTCTTG TGTTGCCGAT TTTGTTGCC CTTTAGTGCC 420
ATTCGGTTTG GGGATGGGAC GTATCGGTAA CTTTATGAAT AGTGAACCTT GGGGACGAGT 480
AACGGATGTG CCTTGGGCTT TTGTATTCCC TAATGGTGGC CCACTGCCGC GCCATCCTTC 540
ACAGCTTAT GAATTCGCCT TAGAAGGCGT GGTTCTGTT CTTATTCTTA ATTGGTTTAT 600
TGGTAAACCT CGTCCGCTAG GCAGCGTATC CGGACTGTTT TTAGCTGGAT ACGGTACATT 660
CCGCTTCCTT GTGGAATACG TCCGTGAGCC AGATGCTCAG TTGGGTCTGT TTGGTGGCTT 720
CATTCAATG GGGCAAATCC TCTCCTTACC TATGGTGATC ATCGGTATT TGATGATGGT 780
TTGGTCTTAC AAGCGCGGTT TGTATCAAGA CCGTGTAGCA GCAAAATAGG GTAGTTAGGT 840
GAAACAGTAT TTAGATCTT GTCAGCGCAT CGTCGATCAA GGTGTTGGG TTGAAAATGA 900
ACGAACGGGC AAGCGTTGTT TGAATGTGAT TAATGCCGAT TTGACCTACG ATGTGGGCAA 960
CAATCAGTTT CCTCTAGTGA CTACACGCAA GAGTTTTGG AAAGCTGCCG TAGCCGAGTT 1020
GCTCGGCTAT ATTCTGGTT ACGATAATGC GGCGGATTTT CGCCAATTAG GTACCAAAAC 1080
CTGGGATGCT AATGCCAATT TAAACCAAGC ATGGCTCAAC AATCCTTACC GTAAAGGTGA 1140
GGATGACATG GGACCGCGTGT ATGGTGTCA GGGTAGAGCT TGGGCTAAGC CTGATGGTGG 1200
TCATATTGAC CAGTTGAAAA AGATTGTTGA TGATTTGAGC CGTGGCGTTG ATGACCGAGG 1260
TGAAATTCTT AACTTCTACA ATCCGGGTGA ATTCACATG GGGTGTGTC GCCCTTGCAT 1320
GTACAGCCAT CATTTTCAT TGCTGGGGGA TACCTTGTAT CTCAACAGTA CTCAGCGTTC 1380
ATGTGATGTG CCCTTGGGGT TGAATTCAA CATGGTGCAG GTTTATGTGT TCCTTGCCT 1440
GATGGCACAG ATCACAGGGGA AAAAGCCGGG CTTGGCGTAT CACAAGATCG TCAATGCGCA 1500

09/700712

PCT/EP99/03509

WO 99/61634

2/18

FIG.1 (cont.)

CATTTACCAA GATCAACTCG AATTGATGCG CGATGTGCAG CTAAAACGTG AGCCATTCCC 1560
AGCGCCTCAG TTCCATATCA ATCCAAAGAT TAAAACACTG CAGGATTGG AAACCTGGGT 1620
CACTTTGGAT GATTTGACG TCACCGGATA TCAGTTCCAC GATCCTATTG AATACCCGTT 1680
TTCAGTCTAA TCCCGTATTG AGGCCGTATG CCTTGATGGG TTTTATATAA AAAAAGCTCC 1740
CGAAGGTCGG GAGCTTTTT TATACAGATG ATGCTTAAC GCTTAAGCGG TTAGGGCAAG 1800
AATGCTGCCG GGGATGACGA CAAACACACC CAATAAGTAA CTCACCACCA CCATTTGCT 1860
CTTACAAGCC CAAGTTGAGA TGAGCTCAGC ACCTTTAATA GGCAAGTCGC GTAAGAAAGG 1920
AATACCGTAA ATCAAGACCG TAGCCATCAA GTTAAAGCTT AAGTGCACCA GCGCAATTG 1980
CAGAGCAAAC ACGGCAAAC CACCAAGAGAC AGCGGTTGCG GCGAGCAGAG CAGTAATACA 2040
AGTGCCAATG TTCGCACCTA AGGTAAATGG GTAGATTCA CGCACTTCA GCACGCCAGA 2100
GCCCACGAGA GGAACCATTG GGCTGGTTGT GGTCGATGAA GATTGAACCA ATACCGTAAC 2160
CACTGTACCT GAAGCAATAC CGTGTAGTGG GCCTCGGCCA ATCGCATTGTT GTAGAATTTC 2220
ACGTGCGCGG CCAACCATCA AACTCTCAT CAGTTGCCA ATCACCGTAA TGGCGACGAA 2280
AATGGTCGCA ATACCCAATA CGATAAGTGC GACACCACCG AAAGTATTAC CCAATACCGA 2340
AAGCTGGTT TCAAGCCCTG TGATGACAGG TTTGGTAATC GGTTTGATAA AATCAAAACC 2400
TTTCATGCTC ATATGCCAG TCGCAAGCAG AGGCAGAACG AGCCAGTGTG AGACTTTCTC 2460
TAAAATGCCA AACATCATTG CTAGAGGTAG GAAGATCAGC ACCCGAGAA GATTGAAAAA 2520
ATCGTGGATG GTGGCACTGG CGAAAGCACG GCGAAACTCT TCTTACAGC GCATATGGCC 2580
AAGGCTGACG AGAGTATTGG TCACAGTAGT ACCAATATTG GCACCCATCA CCATAGGAAT 2640
CGCGGTTCA ACCGGTAACC CACCGAAC GAGACCAACA ATAATAGAAG TCACCGTGT 2700
TGAGGATTGA ATCAGTGCAG TTGCCACTAA ACCAATCATC AATCCTGCAA TTGGGTGGGA 2760
AGCAAATTCA AATAGAACTT TGGCTTGATC GCCGGTTGCC CATTAAAC CGCTGCCGAC 2820
CATCGCACT GCAAGAAGTA GTAAATACAG CATGAAAGCC AAGTTGCCA AACGTAGGCC 2880
TTTCGTGGTC AGCGAAATCG GCGCTGCAG 2909

09/2007/2

PCT/EP99/03509

WO 99/61634

3/18

FIG.2

SEQ ID NO: 2:

GAGAAGGTTT GTTATGCCTC AGGGTTATCT GCAGTTCCC AATATTGACC CCGTATTGTT 60
TTCGATCGGC CCTCTAGCGG TCGCGTGGTA TGGCTTGATG TATTTGGTGG GTTCCCTTT 120
TGCTATGTGG TTGGCCAATC GCCGAGCGGA TCGCGCGGGC AGTGGTTGGA CGCGTGAGCA 180
AGTCTCTGAC TTGTTATTG CCGGCTTTT AGGTGTAGTG ATCGGTGGCC GAGTTGGTTA 240
TGTGATCTTC TACAATTTG ATCTGTCCT TGCTGACCCCT CTTTATTTAT TCAAAGTGTG 300
GACTGGCGGC ATGTCCTTCC AC GGCGGCTT ATTGGGTGTG ATCACCGCCA TGTTCTGGTA 360
TGC CGTAAA AACCAACGCA CCTTCTTGG TGTGGCCGAT TTTGTTGCC CTTTAGTGCC 420
ATT CGGTTTG GGGATGGGAC GTATCGGTAA CTTTATGAAT AGTGAACCTT GGGGACGAGT 480
AACGGATGTG CCTTGGGCTT TTGTATTCCC TAATGGTGGC CCACTGCCGC GCCATCCTTC 540
ACAGCTTAT GAATT CGCCT TAGAAGGCGT GGTTCTGTT C TTTATTCTTA ATTGGTTAT 600
TGGTAAACCT CGTCCGCTAG GCAGCGTATC CGGACTGTTT TTAGCTGGAT ACGGTACATT 660
CCGCTTCCTT GTGGAATACG TCCGTGAGCC AGATGCTCAG TTGGGTCTGT TTGGTGGCTT 720
CATTTCAATG GGGCAAATCC TCTCCTTACC TATGGTGATC ATCGGTATTT TGATGATGGT 780
TTGGTCTTAC AAGCGCGGTT TGTATCAAGA CCGTGTAGCA GCAAAATAGG GTAGTTAG 838

09/2007/2

PCT/EP99/03509

WO 99/61634

4/18

FIG.3

SEQ ID NO: 3:

TAATCCCGTA TTCAGGCGGT ATGGCTTGAT GGGTTTATA TAAAAAAAGC TCCCGAAGGT 60
CGGGAGCTTT TTTTATACAG ATGATGCTTT AACGCTTAAG CGGTTAGGGC AAGAATGCTG 120
CCGGGGATGA CGACAAACAC ACCCAATAAG TAACTCACCA CCACCATTTC GCTCTTACAA 180
GCCCAAGTTG AGATGAGCTC AGCACCTTA ATAGGCAGTT CGCGTAAGAA AGGAATACCG 240
TAAATCAAGA CCGTAGCCAT CAAGTTAAAG CTTAAGTGCA CCAGCGCAAT TTGCAGAGCA 300
AACACGGCAA ACTCACCAGA GACAGCGGTT GCGGCGAGCA GAGCAGTAAT ACAAGTGCCA 360
ATGTTCGCAC CTAAGGTAAA TGGGTAGATT TCACGCACCT TCAGCACGCC AGAGCCCACG 420
AGAGGAACCA TTAGGCTGGT TGTGGTCGAT GAAGATTGAA CTAATACCGT AACCACTGTA 480
CCTGAAGCAA TACCGTGTAG TGGGCCTCGG CCAATCGCAT TTTGTAGAAT TTCACCGTGC 540
CGGCCAACCA TCAAACCTTT CATCAGTTG CCCATCACCG TAATGGCGAC GAAAATGGTC 600
GCAATACCCA ATACGATAAG TGCGACACCA CCGAAAGTAT TACCCAATAC CGAAAGCTGG 660
GTTTCAAGCC CTGTGATGAC AGGTTGGTA ATCGGTTGTA TAAAATCAAACCTTTCATG 720
CTCATATCGC CAGTCGCAAG CAGAGGCAGA ACGAGCCAGT GTGAGACTTT CTCTAAAATG 780
CCAAACATCA TTTCTAGAGG TAGGAAGATC AGCACCGCGA GAAGATTGAA AAAATCGTGG 840
ATGGTGGCAC TGGCGAAAGC ACGGGCAAAC TCTTCTTAC AGCGCATATG GCCAAGGCTG 900
ACGAGAGTAT TGGTCACAGT AGTACCAATA TTGGCACCCA TCACCATAGG AATCGCGGTT 960
TCAACCGGTA ACCCACCGGC AACGAGACCA ACAATAATAG AAGTCACCGT GCTTGAGGAT 1020
TGAATCAGTG CCGTTGCCAC TAAACCAATC ATCAATCCTG CAATTGGGTG GGAAGCAAAT 1080
TCAAATAGAA CTTGGCTTG ATCGCCGGTT GCCCATTAA AACCGCTGCC GACCATCGCG 1140
ACTGCAAGAA GTAGTAAATA CAGCATGAAA GCCAAGTTG CCCAACGTAG GCCTTCGTG 1200
GTCAGCGAAA TCGGCGCTGC AG 1222

09/20/12

PCT/EP99/03509

WO 99/61634

5/18

FIG.4

SEQ ID NO: 4:

Val Lys Gln Tyr Leu Asp Leu Cys Gln Arg Ile Val Asp Gln Gly Val
 1 5 10 15

Trp Val Glu Asn Glu Arg Thr Gly Lys Arg Cys Leu Thr Val Ile Asn
 20 25 30

Ala Asp Leu Thr Tyr Asp Val Gly Asn Asn Gln Phe Pro Leu Val Thr
 35 40 45

Thr Arg Lys Ser Phe Trp Lys Ala Ala Val Ala Glu Leu Leu Gly Tyr
 50 55 60

Ile Arg Gly Tyr Asp Asn Ala Ala Asp Phe Arg Gln Leu Gly Thr Lys
 65 70 75 80

Thr Trp Asp Ala Asn Ala Asn Leu Asn Gln Ala Trp Leu Asn Asn Pro
 85 90 95

Tyr Arg Lys Gly Glu Asp Asp Met Gly Arg Val Tyr Gly Val Gln Gly
 100 105 110

Arg Ala Trp Ala Lys Pro Asp Gly Gly His Ile Asp Gln Leu Lys Lys
 115 120 125

Ile Val Asp Asp Leu Ser Arg Gly Val Asp Asp Arg Gly Glu Ile Leu
 130 135 140

Asn Phe Tyr Asn Pro Gly Glu Phe His Met Gly Cys Leu Arg Pro Cys
 145 150 155 160

Met Tyr Ser His His Phe Ser Leu Leu Gly Asp Thr Leu Tyr Leu Asn
 165 170 175

Ser Thr Gln Arg Ser Cys Asp Val Pro Leu Gly Leu Asn Phe Asn Met
 180 185 190

Val Gln Val Tyr Val Phe Leu Ala Leu Met Ala Gln Ile Thr Gly Lys
 195 200 205

Lys Pro Gly Leu Ala Tyr His Lys Ile Val Asn Ala His Ile Tyr Gln
 210 215 220

Asp Gln Leu Glu Leu Met Arg Asp Val Gln Leu Lys Arg Glu Pro Phe
 225 230 235 240

Pro Ala Pro Gln Phe His Ile Asn Pro Lys Ile Lys Thr Leu Gln Asp
 245 250 255

Leu Glu Thr Trp Val Thr Leu Asp Asp Phe Asp Val Thr Gly Tyr Gln
 260 265 270

Phe His Asp Pro Ile Gln Tyr Pro Phe Ser Val
 275 280

09/2007/2

PCT/EP99/03509

WO 99/61634

6/18

FIG. 5

SEQ ID NO: 5:

Met Pro Gln Gly Tyr Leu Gln Phe Pro Asn Ile Asp Pro Val Leu Phe
1 5 10 15

Ser Ile Gly Pro Leu Ala Val Arg Trp Tyr Gly Leu Met Tyr Leu Val
20 25 30

Gly Phe Leu Phe Ala Met Trp Leu Ala Asn Arg Arg Ala Asp Arg Ala
35 40 45

Gly Ser Gly Trp Thr Arg Glu Gln Val Ser Asp Leu Leu Phe Ala Gly
50 55 60

Phe Leu Gly Val Val Ile Gly Gly Arg Val Gly Tyr Val Ile Phe Tyr
65 70 75 80

Asn Phe Asp Leu Phe Leu Ala Asp Pro Leu Tyr Leu Phe Lys Val Trp
85 90 95

Thr Gly Gly Met Ser Phe His Gly Gly Leu Leu Gly Val Ile Thr Ala
100 105 110

Met Phe Trp Tyr Ala Arg Lys Asn Gln Arg Thr Phe Phe Gly Val Ala
115 120 125

Asp Phe Val Ala Pro Leu Val Pro Phe Gly Leu Gly Met Gly Arg Ile
130 135 140

Gly Asn Phe Met Asn Ser Glu Leu Trp Gly Arg Val Thr Asp Val Pro
145 150 155 160

Trp Ala Phe Val Phe Pro Asn Gly Gly Pro Leu Pro Arg His Pro Ser
165 170 175

Gln Leu Tyr Glu Phe Ala Leu Glu Gly Val Val Leu Phe Phe Ile Leu
180 185 190

Asn Trp Phe Ile Gly Lys Pro Arg Pro Leu Gly Ser Val Ser Gly Leu
195 200 205

Phe Leu Ala Gly Tyr Gly Thr Phe Arg Phe Leu Val Glu Tyr Val Arg
210 215 220

Glu Pro Asp Ala Gln Leu Gly Leu Phe Gly Gly Phe Ile Ser Met Gly
225 230 235 240

Gln Ile Leu Ser Leu Pro Met Val Ile Ile Gly Ile Leu Met Met Val
245 250 255

Trp Ser Tyr Lys Arg Gly Leu Tyr Gln Asp Arg Val Ala Ala Lys
260 265 270

09/2007/2

PCT/EP99/03509

WO 99/61634

7/18

FIG. 6

09/00 7/2

8/18

FIG. 7

E. coli : MKQYLELMQKVLDEGT-QKNDRRTGTTLSIFGHQMRFNL-QDGFPLVTTKRCHLRSIIHE
V. cholerae : VKQYLDLCQRIVDQGVWVENERTGKRCLTVINADLYDVGNQFPLVTRKSFWKAIAE
H. influenza: MKQYLELCRRIVSEGEWVANERTGKHCLTVINADLEYDVANNQFPLITTRKSYWKAIAE

E. coli : LLWFLQGDTNIAYHENNTIWD-----EWADE----NGDLGPVYGKOWRAWPTPDG
V. cholerae : LLGYIRGYDNAADFRQLGKTWDANANLNQAWLNNSYRKGEDDMGRVYGVQGRAWKPDG
H. influenza: FLGYIRGYDNAADFRALGKTWDANANENAALANPHRRGVDDMGRVYGVQGRAWRKPN

E. coli : RHIDQITTVLNQLKNDPDSRRIIVSAWNVGELDKMALAPCHAFFQFYVADGKLSCQLYQR
V. cholerae : GHIDQLKKIVDDLSSRGVDDRGEILNPYNPGEFHMGCLRPMYSHHSLLGDTLYLNSTQR
H. influenza: ETIDQLRKIVNNLTKGIDDRGEILTFNPGEFDLGCLRPMHTHTFSLVGDTLHLTSYQR

E. coli : SCDVFLGLPFNIAASYALLVHMMMAQQCDLEVGFVWTGGDTHLYSNHMD-QTHLQLSREPR
V. cholerae : SCDVPLGLNFNMVQVYVFLALMAQITGKKPGLAYHKIVNAHIYQDQLELMRDVQLKREPF
H. influenza: SCDVPLGLNFNQIQVFTFLALMAQITGKKAGKAYHKIVNAHIYEDQLELMRDVQLKREPF

E. coli : PLPKLIIKRKPESTFDY---RFEDFEIEGYDPHPGIKAPVAI
V. cholerae : PAPQFHINPKIKTLQDLETWVTLDLDFVTGYQFHDPIQYPFSV
H. influenza: PLPKELINPDIKTLLEDLETWVTMDDFKVVGYQSHEPIKYPFSV

09/00712

PCT/EP99/03509

WO 99/61634

9/18

FIG. 8

PstI restricted Kan gene
block from pUC4K

09/700712

PCT/EP99/03509

WO 99/61634

10/18

FIG. 9

PCR to generate thyA-Kan-thyA fragment with *Xba*I ends.
 Primers were chosen so that the *Eco*RI and *Hind*III sites
 were eliminated

09/700712

FIG. 10

FIG. 11

Cut with *Xhol* and self ligation

Δ thyA Δ Kan in pNEB193 (4877 bp)

FIG. 12

09/2007/2

PCT/EP99/03509

WO 99/61634

14/18

FIG. 13

09/700712
PCT/EP99/03509

WO 99/61634

15/18

FIG. 14

FIG. 15

09/70072

PCT/EP99/03509

WO 99/61634

17/18

FIG. 16

89/700712

PCT/EP99/03509

WO 99/61634

18/18

FIG. 17

