Санкт-Петербургский Национальный Исследовательский Университет ИТМО

Домашняя работа №5

По дискретной математике Вариант 46

> Выполнил: Студент группы Р3133 Рахматов Нематджон

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	4	3			1					5	
e2	4	0		2	2						1	5
e3	3		0							5		
e4		2		0		4						
e5		2			0		1	3	4	4		
e6	1			4		0	1			1	5	4
e7					1	1	0	3	1	2	5	2
e8					3		3	0			2	
e9					4		1		0			3
e10			5		4	1	2			0		
e11	5	1				5	5	2			0	
e12		5				4	2		3			0

Исходный Граф:

V/V	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	p(E)
E1	0	1	1			1					1		4
E2	1	0		1	1						1	1	5
E3	1		0							1			2
E4		1		0		1							2
E5		1			0		1	1	1	1			5
E6	1			1		0	1			1	1	1	6
E7					1	1	0	1	1	1	1	1	7
E8					1		1	0			1		3
E9					1		1		0			1	3
E10			1		1	1	1			0			4
E11	1	1				1	1	1			0		5
E12		1				1	1		1			0	4

Перенумерованный граф (Граф №2)

V/V	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	p(F)
F1	0							1	1		1		3
F2		0				1			1	1	1		4
F3			0	1					1		1		3
F4			1	0	1	1	1				1		5
F5				1	0		1	1	1			1	5
F6		1		1		0	1	1			1	1	6
F7				1	1	1	0			1			4
F8	1				1	1		0			1		4
F9	1	1	1		1				0		1		5
F10		1					1			0			2
F11	1	1	1	1		1		1	1		0		7
F12					1	1						0	2

Для графа G₁ $\sum p(E)$ =50. Список P(E) = {7,6,5,5,5,4,4,4,3,3,2,2}

Для графа $G_2 \sum p(F) = 50$. Список $P(F) = \{7,6,5,5,5,4,4,4,3,3,2,2\}$

Разделим вершины графов на классы по их степеням

	p(E) =	p(E) =	p(E) =	p(E) =	p(E) =	p(E) =
	p(F) = 7	p(F) = 6	p(F) = 5	p(F) = 4	p(F) = 3	p(F) = 2
Е	E ₇	E ₆	E_2, E_5, E_{11}	E_1, E_{10}, E_{12}	E ₈ ,E ₉	E_3,E_4
F	F ₁₁	F ₆	F_4,F_5,F_9	F_2,F_7,F_8	F ₁ ,F ₃	F ₁₀ ,F ₁₂

$$p(E)=p(F) = 7: E_7 - F_{11}$$

 $p(E)=p(F) = 6: E_6 - F_6$

E	F
E ₆	F ₆
E ₇	F ₁₁

Для определения соответствия вершин с $\rho(E) = \rho(F) = 4$ попробуем связать

вершины из классов с $\rho(E) = \rho(F) = 7$ и $\rho(E) = \rho(F) = 6$ с неустановленными верши-

нами.

E	F		
E_6 E_1	F_2 F_6		
E_7 E_{10}	F_7 F_{11}		
E ₁₂	F ₈		

Анализ связей вершин показывает соответствие вершин E_{12} – F_8 , E_1 – F_7 , тогда следует, что E_{10} – F_2

Продолжим процесс для p(E)=p(F)=5

	E	F	
E ₆	E_2	F ₄	F ₆
E ₇	E₅	F ₅	F ₁₁
E ₁₂	E ₁₁	F_9	F ₈
E ₁			F ₇
E ₁₀			F ₂

Анализ связей вершин показывает соответствие вершин E_{11} – F_4 и E_2 – F_5 , тогда следует, что E_5 – F_9

Продолжим процесс для p(E)=p(F)=3

E	F	
E ₆ / E ₈	F_1	F_6
E ₇	F ₃	F ₁₁
E ₁₂		F ₈
E ₁		F ₇
E ₁₀		F ₂
E ₂		F ₅
E ₅ //		F ₉
E ₁₁ /		F ₄

Анализ связей вершин показывает соответствие вершин E_8 – F_3 и тогда следует, что E_9 – F_1

Продолжим процесс для p(E)=p(F)=2

E	F

E_6 E_3	F_{10} F_{6}
E_7 E_4	F_{12} F_{11}
E ₁₂	F ₈
E_1	F ₇
E ₁₀	F_2
E ₂	F ₅
E ₅	F ₉
E ₁₁	F ₄
E ₈	F ₃
E ₉	F ₁

Анализ связей вершин показывает соответствие вершин E_3 – F_{10} и E_4 – F_{12}

Из сказанного можно сделать вывод, что графы G1 и G2 изоморфны.