Introduction to Dynamic Programming: Basic theory and numerical tools

Annuity

QuantEcon-RSE Honours workshop 2018

Fedor Iskhakov, Australian National University

QuantEcon-RSE March 10, 2018

Value of an infinite stream of payments

- Interest rate r > 0
- What is the value of the annuity V?

Next steps

Value of an infinite stream of payments

- Interest rate r > 0
- What is the value of the annuity V?
- Discounted present values

$$\frac{c}{(1+r)^0} \qquad \frac{c}{(1+r)^1} \qquad \frac{c}{(1+r)^2} \qquad \cdots$$

• Let $\beta = \frac{1}{1+r}$

$$V = c + \beta c + \beta^2 c + \dots = \sum_{t=0}^{\infty} \beta^t c$$

Next steps

Value of an infinite stream of payments

• Note that $\beta = \frac{1}{1+r} < 1$ because $r > 0 \Rightarrow$ converging geometric series

$$V = c + \beta c + \beta^2 c + \dots = \sum_{t=0}^{\infty} \beta^t c = \frac{c}{1 - \beta}$$

• Another approach: reformulate this as a recursive equation

$$V = c + \beta(c + \beta^2 c + \dots)$$

= $c + \beta V$

- Extremely simple case here, leads to the same answer
- In general, we need a range of computational tools which we can first try on this simple problem

• Start with a guess V_0

- ② Insert into the recursive equation $V_1 = c + \beta V_0$
- ③ Insert new value V_1 into the recursive equation again $V_2 = c + \beta V_1$
- Repeat until convergence (i denotes iteration number)

$$||V_i - V_{i-1}|| \le \varepsilon \text{ (small number)}$$

$$||V_i - V_{i-1}|| = ||(c + \beta V_{i-1}) - (c + \beta V_{i-2})|| = \beta ||V_{i-1} - V_{i-2}||$$

- $\beta < 1 \Rightarrow$ with every iteration i the difference $||V_i V_{i-1}||$ becomes smaller (recursive formula is a contraction mapping
- Banach fixed point theorem guarantees unique solution!

- Start with a guess V_0
- ② Insert into the recursive equation $V_1 = c + \beta V_0$
- ① Insert new value V_1 into the recursive equation again $V_2 = c + \beta V_1$
- Repeat until convergence (i denotes iteration number)

$$||V_i - V_{i-1}|| \le \varepsilon \text{ (small number)}$$

$$||V_i - V_{i-1}|| = ||(c + \beta V_{i-1}) - (c + \beta V_{i-2})|| = \beta ||V_{i-1} - V_{i-2}||$$

- $\beta < 1 \Rightarrow$ with every iteration i the difference $||V_i V_{i-1}||$ becomes smaller (recursive formula is a contraction mapping
- Banach fixed point theorem guarantees unique solution!

- Start with a guess V_0
- ② Insert into the recursive equation $V_1 = c + \beta V_0$
- **3** Insert new value V_1 into the recursive equation again $V_2 = c + \beta V_1$
- Repeat until convergence (i denotes iteration number)

$$||V_i - V_{i-1}|| \le \varepsilon \text{ (small number)}$$

$$||V_i - V_{i-1}|| = ||(c + \beta V_{i-1}) - (c + \beta V_{i-2})|| = \beta ||V_{i-1} - V_{i-2}||$$

- $\beta < 1 \Rightarrow$ with every iteration i the difference $||V_i V_{i-1}||$ becomes smaller (recursive formula is a contraction mapping)
- Banach fixed point theorem guarantees unique solution!

- Start with a guess V_0
- ② Insert into the recursive equation $V_1 = c + \beta V_0$
- **3** Insert new value V_1 into the recursive equation again $V_2 = c + \beta V_1$
- Repeat until convergence (i denotes iteration number)

$$||V_i - V_{i-1}|| \le \varepsilon \text{ (small number)}$$

$$||V_i - V_{i-1}|| = ||(c + \beta V_{i-1}) - (c + \beta V_{i-2})|| = \beta ||V_{i-1} - V_{i-2}||$$

- $\beta < 1 \Rightarrow$ with every iteration i the difference $||V_i V_{i-1}||$ becomes smaller (recursive formula is a contraction mapping)
- Banach fixed point theorem guarantees unique solution!

- lacksquare Start with a guess V_0
- ② Insert into the recursive equation $V_1 = c + \beta V_0$
- **3** Insert new value V_1 into the recursive equation again $V_2 = c + \beta V_1$
- Repeat until convergence (*i* denotes iteration number)

$$||V_i - V_{i-1}|| \le \varepsilon \text{ (small number)}$$

$$||V_i - V_{i-1}|| = ||(c + \beta V_{i-1}) - (c + \beta V_{i-2})|| = \beta ||V_{i-1} - V_{i-2}||$$

- $\beta < 1 \Rightarrow$ with every iteration *i* the difference $||V_i V_{i-1}||$ becomes smaller (recursive formula is a contraction mapping)
- Banach fixed point theorem guarantees unique solution!

Numerical illustration

The code: annuity.ipynb

Questions and discussion

- Convergence to the analytical solution?
- What determines the rate of convergence?
- **3** What happens when $\beta = 1$?

Convergence speed and the role of β

Convergence speed and the role of β

Annuity

Next steps

Cake eating problem

- Cake of initial size W_0
- How much of the cake to eat each period t?
- \bullet What is not eaten in period t is left for the future

$$W_{t+1} = W_t - c_t$$

• Utility flow from cake consumption

$$u(c_t) = \log(c_t)$$

- Future is discounted with discount factor β
- Optimization problem

$$\max_{\{c_t\}_0^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t) \longrightarrow \max$$

Recursive formulation = Bellman equation

• Value function $V(W_t)$ = the maximum attainable value given the size of cake W_t (in period t)

$$V(W_0) = \max_{\{c_t\}_0^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

$$= \max_{c_0} \{ u(c_0) + \beta \max_{\{c_t\}_1^{\infty}} \sum_{t=1}^{\infty} \beta^{t-1} u(c_t) \}$$

$$= \max_{c_0} \{ u(c_0) + \beta V(W_1) \}$$

• The Bellman equation is

$$V(W_t) = \max_{0 \le c_t \le W_t} \left\{ u(c_t) + \beta V(\underbrace{W_{t+1}}_{-W_t - c_t}) \right\}$$

Dynamic programming

"DP is a recursive method for solving sequential decision problems"

John Rust 2006 New Palgrave Dictionary of Economics

State variables vector of variables that describe all relevant information about the modeled decision process, W_t

Decision variables vector of variables describing the choices, c_t Instantaneous payoff utility function, $u(c_t)$, with time separable discounted utility

Timing scale discrete, finite/infinite horizon, discount factor β Motion rules agent's beliefs of how state variable evolve through time, conditional on choices, $W_{t+1} = W_t - c_t$

Value function maximum attainable utility, function of the state variables, $V(W_t)$

Policy function mapping from state space to action space that returns the optimal choice, $c^*(W_t)$

Cake Eating: Analytical Solution

Guess and verify

• Start with a (good) guess of $V(W) = A + B \log W$

$$V(W) = \max_{c} \left\{ u(c) + \beta V(W - c) \right\}$$
$$A + B \log W = \max_{c} \left\{ \log c + \beta (A + B \log(W - c)) \right\}$$

Exercise: Determine A and B and find the optimal rule for cake consumption.

- This is only possible in few models!
- For cake eating problem

$$c^{\star}(W) = \arg\max_{c} \left\{ \log(c) + \beta V(W - c) \right\} = (1 - \beta)W$$

Cake Eating: Numerical Solution

Will **backward induction** work as before?

• Value of annuity:

$$V = c + \beta V$$

• Cake eating:

$$V(W) = \max_{0 \le c \le W} \left\{ u(c) + \beta V(W - c) \right\}$$

- Have to solve the functional equation for V(W)
- The Bellman operator in functional space

$$T(V)(W) \equiv \max_{0 \le c \le W} \{ u(c) + \beta V(W - c) \}$$

• The Bellman equations is then V(W) = T(V)(W), with the solution given by the fixed point

Can we find the fixed point by iterations?

Annuity

- Need contraction property for T(V)(W)
- Blackwell sufficient conditions for contraction
 - Monotonicity: satisfied due to maximization in T(V)(W)
 - ② Discounting: satisfied by elementary argument when $\beta < 1$
- The Bellman operator is a contraction mapping!

Contraction Mapping Theorem (Banach Fixed Point Theorem)

Let (S, ρ) be a complete metric space with a contraction mapping $T: S \to S$. Then

- T admits a unique fixed-point $V^* \in S$, i.e. $T(V^*) = V^*$.
- ② V^* can be found by repeated application of the operator T, i.e. $T^n(V) \to V^*$ as $n \to \infty$.

Value function iterations (VFI)

- Start with an arbitrary guess $V_0(W)$
- 2 At each iteration *i* compute

$$V_{i}(W) = T(V_{i-1})(W) = \max_{0 \le c \le W} \{u(c) + \beta V_{i-1}(W - c)\}$$
$$c_{i-1}(W) = \arg\max_{0 \le c \le W} \{u(c) + \beta V_{i-1}(W - c)\}$$

8 Repeat until convergence

$$||V_i(W) - V_{i-1}(W)|| \le \varepsilon \text{ (small number,} ||\cdot|| \text{ sup norm)}$$

The contraction mapping theorem implies:

- \bullet Unique fixed point \Leftrightarrow unique solution to the Bellman equation
- The fixed point can be reached by an iterative process using an arbitrary initial guess!
- Therefore VFI algorithm converges globally

Cake Eating: numerical implementation

How to numerical implement the Bellman operator?

- Cake is continuous and thus value function is a function of continuous variable
- Solution: discretize WConstruct a grid (vector) of cake-sizes $\vec{W} \in \{0, \dots \overline{W}\}$

$$V_i(\vec{W}) = \max_{0 \le c \le \vec{W}} \{ u(c) + \beta V_{i-1}(\vec{W} - c) \}$$

- Compute value and policy function sequentially point-by-point
- May need to compute the value function between grid points
 ⇒ Interpolation and function approximation

Cake Eating: decision-state grid

Can interpolation be avoided?

- Note that conditional on W_t , the choice of c defines W_{t+1}
- Can replace c with W_{t+1} in Bellman equation so that next period cake size is the decision variable
- "Dual" formulation of the same problem

$$V_i(\vec{W}) = \max_{0 \leq \vec{W'} \leq \vec{W}} \{ u(\vec{W} - \vec{W'}) + \beta V_{i-1}(\vec{W'}) \}$$

- Compute value and policy function sequentially point-by-point
- Note that grid $\vec{W} \in \{0, \dots \overline{W}\}$ is used twice: for state space and for decision space
- Only precise when number of grid points is large

Cake eating: Numerical implementation I

The code: cake1.ipynb

Questions and discussion

- Rate of convergence?
- Magnitude of numerical errors?
- The role of grid density?

How to measure numerical errors?

• In our case there is an analytic solution

$$c^{\star}(W) = (1 - \beta)W$$

- Typically very dense (slow) grid is used in place of true solution
- Can control for max or mean error at the grid points of value and policy functions

Computed value functions

Cake Eating: another numerical implementation

Control for grid over state space separately from the discretization of the choice variables to increase accuracy

• As before solve cake eating Bellman equation by VFI

$$V(W) = \max_{0 \le c \le W} \left\{ u(c) + \beta V(W - c) \right\}$$

- Discretize state space with $\vec{W} \in \{0, \dots \overline{W}\}$
- Discretize decision space with $\vec{D} \in \{0, \dots \overline{D}\}$, usually $\overline{D} = \overline{W}$

$$V_i(\vec{W}) = \max_{0 \le \vec{D} \le \vec{W}} \{ u(c) + \beta V_{i-1}(\vec{W} - c) \}$$

- ullet Compute value/policy function point-by-point on grid $ar{W}$
- Find the maximum over the points of grid \vec{D} that satisfy the choice set condition $0 \le \vec{D} \le W$
- Now have to compute the value function between grid points

Function interpolation

- Cake consumption can take on infinitely many cake sizes \rightarrow we need to be able to approximate the value function for all resulting levels of cake left to subsequent periods, W' = W c.
- We have a grid \vec{W} , a set of points for which we have explicitly found the value function, $V(\vec{W})$

• For now, assume interpolation function is $\check{V}(W)$

Cake eating: Numerical implementation II

The code: cake2.ipynb

Questions and discussion

- Did convergence speed change?
- ② Did magnitude of numerical errors change?

Computed value functions

Cake Eating: continuous choice implementation

Is it possible not to discretize the choice variable? Yes!

• Discretize state space with $\vec{W} \in \{0, \dots \overline{W}\}$

$$V_i(\vec{W}) = \max_{0 \le c \le \vec{W}} \{ u(c) + \beta V_{i-1}(\vec{W} - c) \}$$

- \bullet Compute value/policy function point-by-point on grid \vec{W}
- Apply continuous solver to find the solution of the maximization problem inside Bellman equation for each point of the grid \vec{W} OR
- Solve the first order conditions given by the Eurler equation
- Contraction mapping property does not rely in the nature of the control variable ⇒ VFI still works!

Next steps

Euler Equation

lacktriangle First order condition (FOC) of the Bellman equation w.r.t. c

$$0 = u'(c_t) + \beta \frac{\partial V(W_{t+1})}{\partial c_t} = u'(c_t) + \beta V'(W_{t+1}) \underbrace{\frac{\partial W_{t+1}}{\partial c_t}}_{-1},$$
$$\Rightarrow u'(c_t^*) = \beta V'(W_{t+1})$$

2 From the Envelope theorem we have

$$V'(W_t) = \frac{\partial}{\partial W_t} \left[u(c_t) + \beta V(W_{t+1}) \right] \Big|_{c_t^{\star}} = \beta V'(W_{t+1}) \underbrace{\frac{\partial W_{t+1}}{\partial W_t}}_{1}$$

Ombine and plug back into FOC

$$u'(c_t^*) = V'(W_t) \Rightarrow u'(c_{t+1}^*) = V'(W_{t+1}) \Rightarrow$$
$$u'(c_t^*) = \beta u'(c_{t+1}^*)$$

VFI with non-linear optimizer or solver

- $\textbf{ 0} \ \text{Discretize state space with } \vec{W} \in \{0, \dots \overline{W}\}$
- ② Start with an arbitrary guess $V_0(\vec{W})$ or $c_0(\vec{W})$
- **3** At each iteration i and for each point W_j on grid \vec{W} compute

$$V_{i}(W_{j}) = \max_{0 \le c \le W_{j}} \left\{ u(c) + \beta V_{i-1}(W_{j} - c) \right\}$$

or solve

$$u'(c_i(W_j)) = \beta u'(c_{i-1}(W_j - c))$$

Repeat until convergence

$$\max_{j} (V_{i}(W_{j}) - V_{i-1}(W_{j})) \leq \varepsilon \text{ (small number)}$$
$$\max_{j} (c_{i}(W) - c_{i-1}(W)) \leq \varepsilon$$

Cake eating: Numerical implementation III

The code:

Homework

Questions and discussion

- Did convergence speed change?
- ② Did magnitude of numerical errors change?
- Any ideas about how to speed up the computations?

Only a primer in dynamic programming

Many topics and extensions left out:

- Finite horizon formulation
 - Time scripts essential $V_t(W_t)$ and $c_t(W_t)$
 - Final period T with $c_T(W_T) = W_T$ and $V_T(W_T) = u(W_T)$
 - Convergence replaced with backward calculation until t=0
- Stochastic models
 - Stochastic evolution of state space, controlled by decisions: random returns, controlled and exogenous Markov processes
 - Idiosyncratic random components in preferences (taste shocks)
 - Need for numerical integration in Bellman equation

Only a primer in dynamic programming

Many topics and extensions left out:

- Higher dimension
 - Multiple state variables
 - Multi-dimensional decisions
 - Need for high power computing methods
- Alternative (faster) solution approaches
 - Policy function iterations, faster convergence
 - Polyalgorithm using VFI and Newton-Raphson iteration for robust speed up
 - Endogenous gridpoint methods to avoid root-finding operations in models of applicable class

Annuity

Next steps

Thank you!

Questions?