Отчёт о выполнении финального экзамена

1. Робастный принцип робастного контроля заключается в нахождении такого правила контроля, при котором при изменениях параметром системы в определённом диапазоне, система всё равно будет сходиться к желаемым значениям. Это обеспечивается за счёт введения скользящей поверхности (sliding surface) и структуры управления, которая учитывает возможные отклонения от ожидаемых параметров. На приложенных ниже снимках представлен вывод контроллера в скользящем режиме. Контроль τ задаётся как обычный контроль обратной динамики с номинальными значениями параметров M(q), $C(q, \dot{q})$ и g(q): $\tau = \hat{M}(q)v + \hat{C}(q, \dot{q})\dot{q} + \hat{g}(q)$. Подставляя данный контроль в уравнение динамики, можно выразить \ddot{q} .

Уравнение скользящей плоскости задаётся как $s = \left(\frac{d}{dt} + \lambda\right)\tilde{q} = \dot{\tilde{q}} + \lambda\tilde{q}$. v задаётся как сумма v_s (скользящего фид-форварда) и v_n (номинального). $v_n = \ddot{q}_d + \lambda\dot{\tilde{q}}$. Таким образом $v = v_n + v_s = v_s + \ddot{q}_d + \lambda\dot{\tilde{q}}$.

2. В <u>репозитории</u> на Github находится код, реализующий робастное управление при помощи библиотек MuJoCo и Pinocchio.

Сначала к изменённой модели робота с изменёнными весами был применён обычный контроль, основанный на обратной динамике, который не смог привести систему к желаемому состоянию, сильно отклонившись от него. В папке logs/plots представлены графики ошибки, контроля и фазовый портрет всех для всех шарниров.

В свою очередь робастное управление привело систему к желаемому состоянию, но имело тряску в шарнирах, что в настоящем роботе может привести к серьёзным проблемам в двигателях вплоть до их поломки.

3. Тряска в шарнирах при применении робастного управления возникает из-за того, что контроллер в скользящем режиме (v_s) при приближении к нулю начинает резко менять свой знак и значения, что приводит к резкому изменению значения контроля τ на противоположное или сильно отличающееся. На практике это может привести к очень быстрой поломке двигателя из-за резких перепадов напряжения в моторах. Для исправления этой проблемы можно задать условие, что если норма вектора ѕ меньше определённой границы ϵ ($\|s\| \le \epsilon$), то норма заменяется на это значение ϵ :

$$v_{s} = \begin{cases} \rho \frac{s}{\|s\|}; \|s\| > \epsilon \\ \rho \frac{s}{\epsilon}; \|s\| \le \epsilon \end{cases}$$

Чем больше это самое значение ϵ , тем медленнее и менее точно будет сходиться к нулю ошибка положения, а если значение будет слишком низким, то тогда проблема с тряской сохранится. В папке logs/plots хранятся графики, показывающие разные параметры системы при разных значениях ϵ , а также в папке logs/videos можно найти записи работы системы для разных значений.

Математический вывод параметров:

