Prob. 1	Prob. 2

Team members: Imani, Guggenheim, Cordonnier, Gallay

Problem 1.

$$INT_{TM} := \{ \langle M_1, M_2 \rangle \mid L(M_1) \cap L(M_2) \neq \emptyset \}$$

 INT_{TM} is the language recognizing every couple of Turing Machine such that there existe at least one word let same w that are reconise by both two Machine M_1 and M_2

The language INT_{TM} is not Turing-recongnizable to proof that let's first proof that the language $\{\langle M_1, M_2 \rangle \mid L(M_1) \cap L(M_2) = \emptyset\}$ is undecidable but Turing-recognizable.

We can compute a TM M_3 that simply is the intersection of M_1 and M_2 .

Now we define a language similar to E_{DFA} that we saw in class namely $E_{TM} := \{\langle M_3 \rangle \mid L(M_3) = \emptyset\}$. By a similar argument we know that this language is undecidable but Turing-recognizable. Because in opposite of DFA which their language is always recognizable, it is possible that our input M_3 is undecidable. So by theorem 6 we can say that INT_{TM} is not Turing-recongnizable

Problem 2.

We have that $R:=\{w\mid \text{ either }w=0x\text{ for some }x\in A_{TM}\text{ or }w=1y\text{ for some }y\in \overline{A_{TM}}\}$, then we can find \overline{R} such that $\overline{R}:=\{w\mid \forall x\in A_{TM}, \forall y\in \overline{A_{TM}}: w\neq 0x\wedge w\neq 1y\}$. Since R and \overline{R} contain $\overline{A_{TM}}$ We can use Theorem $11:\overline{A_{TM}}\leq_m R$ and $\overline{A_{TM}}\leq_m R$ We know from Theorem 5 that $\overline{A_{TM}}$ is unrecognizable. So it implies that R and \overline{R} are unrecognizable.