1

ASSIGNMENT-2

B PREMSAGAR - EE22BTECH11013

Question XH-3.2023: Given a fair six-faced dice where the faces are labelled '1','2','3','4','5', and '6'. what is the probability of getting a '1' on the first roll of the dice and a '4' on the second roll?

Solution: PMF calculates the probability of obtaining exactly "k" successes in a fixed number of "n" independent trials, each with a probability of success "p."

Binomial pmf given by, $Pr(X = k) = {}^{n}C_{k}p^{k}(1 - p)^{n-k}$

 $\begin{array}{c} \text{TABLE 0} \\ \text{parameters for PMF} \end{array}$

parameter	value
n	2
p	$\frac{1}{6}$
k	2
1-p	<u>5</u>

probability of getting a '1' on the first roll of the dice and a '4' on the second roll

$$\Pr(X=2) = {}^{2}C_{2} \left(\frac{1}{6}\right)^{2} \left(1 - \frac{1}{6}\right)^{2-2} \tag{1}$$

$$= {}^{2}C_{2} \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{0} \tag{2}$$

$$=\frac{1\times1^2}{6^2}\tag{3}$$

$$=\frac{1}{36}\tag{4}$$

$$= 0.028$$
 (5)

Hence, probability of getting a '1' on the first roll of the dice and a '4' on the second roll is 0.028