Wetting of the tarsal adhesive fluid controls underwater adhesion in ladybug beetles: Supplementary information (S1)

Pranav Sudersan,[†] Michael Kappl,[†] Bat-El Pinchasik,[‡] Hans-Jürgen Butt,[†] and
Thomas Endlein[†]

†Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany ‡School of Mechanical Engineering, Tel Aviv University, Tel Aviv-Yafo, Israel

S1.1 Simulation method: Single capillary bridge

- ³ Capillary force due to a single adhesive fluid or bubble meniscus (termed "capillary bridge")
- 4 is calculated by performing simulations in Surface Evolver¹, similar to the method described
- 5 by De Souza et al.². A simple cubic geometry, mimicking the capillary bridge, of constant
- 6 volume, V, is defined as the initial condition with an interfacial tension, γ , with the sur-
- 7 rounding medium. Interfacial tension of the capillary bridge with the substrate is given by
- $\gamma \cos \theta$, where θ is the corresponding contact angle inside the bridge. For the case of a bubble
- 9 meniscus, θ is defined w.r.t. the surrounding water, since θ can also directly characterise
- the substrate wettability. The capillary bridge spans a gap distance d between the top face
- and the substrate. The boundary conditions are set corresponding to a pinned contact line
- of diameter D on the top face and constant interfacial tension with the substrate on the
- bottom. All lengths are normalised relative to length $s = (3V/4\pi)^{1/3}$. An appropriate geom-
- etry refinement routine is chosen to evolve the capillary bridge shape to its minimum energy

- state. The normalised total capillary force, $\hat{f} = f/\gamma s$, is the sum of the Laplace pressure
- 2 and surface tension contributions, where:

$$f = f_{laplace} + f_{surface tension} = \Delta P_{laplace} A_{bottom} + 2\pi R_{bottom} \gamma \sin \theta$$
 (S1.1)

- Here, $\Delta P_{laplace}$ is the Laplace pressure of the equilibrium capillary bridge, A_{bottom} is
- 4 the contact area of the capillary bridge with the substrate at bottom and R_{bottom} is the
- 5 corresponding radius of contact, all obtained from the simulation output for the equilibrium
- 6 surface.
- The gap distance d is varied stepwise and the capillary force is calculated each time to
- 8 obtain force-distance curves for a particular choice of D and θ .

⁹ S1.2 Single capillary bridge: Effect of volume

- ¹⁰ Surface Evolver simulation results showing the effect of volume on the maximum capillary
- force of a single fluid bridge. Since the fluid is pinned at the top to the same diameter, D, a
- smaller volume would result in high interfacial curvatures, which increases the capillary force
- due to the negative Laplace pressure. In this case, small contact angles lead to a greater
- increase in adhesion.

Figure S1.1: Normalised maximum capillary force for a single bridge as a function of fluid volume

S1.3 Capillary Bridge Model: Effect of hair diameter at constant fluid volume

- 3 Here, instead of scaling the fluid volume relative to the hair diameter, we now assume a
- 4 fixed total fluid volume distributed equally among the N hairs. Total fluid volume, $V_{total} =$
- $_{5}$ $NV_{f}=2000$. Hair diameter is varied while keeping the total hair contact area constant.
- 6 Length is in arbitrary units. Forces increase at a much smaller rate on decreasing diameter
- ⁷ when compared to the case with self-similar scaling of fluid volume (Figure 8 in main text).

Figure S1.2: Normalised adhesion force of hairy pad system on a hydrophilic and hydrophobic substrate as a function of hair diameter (D_h) , calculated from the capillary bridge model. The total adhesive fluid volume is fixed to 2000. Adhesion forces are calculated from minima of the respective force-distance curves. Negative force value represents attraction. The bubble's contribution to the net force for an *underwater: bubble* contact is denoted by plus symbols. Bubble volume and pad diameter are kept fixed. All lengths are scaled relative to D_p .

S1.4 Statistical comparison

- ² Two-way ANOVA test showed a significant effect of the Contact mode (p=0.001, F=9.596,
- 3 degrees of freedom=2) and Substrate (p<0.001, F=36.231, degrees of freedom=1) categories
- 4 on the single leg adhesion force measurements of the ladybug beetle (Coccinella septempuc-
- 5 tata). Significant interaction between the above two was seen (p=0.001, F=10.551, degrees
- 6 of freedom=2). Post-hoc analysis results are shown below (Table S1.1). The uncorrected
- 7 p-values and Common Language Effect Size (CLES) are obtained from pair-wise Student t-
- * test between A and B while keeping the third parameter fixed. p-values showing statistically

- significant difference between A and B are in boldface. CLES represents the statistical pro-
- 2 portion of samples under A with higher adhesion than under B. The condition for statistical
- 3 significance is based on the Bonferroni-corrected critical p-value of 0.008.

Table S1.1

Fixed variable	A	В	Т	p-value	CLES
In air	PFOTS	Glass	-0.053	0.959	0.48
Underwater: bubble	PFOTS	Glass	3.292	0.011	0.96
Underwater: no bubble	PFOTS	Glass	10.044	0.0	1.0
PFOTS	In air	Underwater: bubble	0.133	0.897	0.48
PFOTS	In air	Underwater: no bubble	-0.224	0.828	0.48
PFOTS	Underwater: bubble	Underwater: no bubble	-0.37	0.721	0.44
Glass	In air	Underwater: bubble	4.688	0.002	1.0
Glass	In air	Underwater: no bubble	11.341	0.0	1.0
Glass	Underwater: bubble	Underwater: no bubble	2.086	0.07	0.84

⁴ S1.5 Capillary force due to a bubble

- ⁵ Capillary force of a single bubble against a PFOTS surface are compared for two different
- 6 volumes. The volumes correspond to the expected range in the case of the trapped bubble
- 7 in a ladybug. Here, the bubble is pinned to a micropatterned PDMS substrate on the top.
- 8 The maximum adhesion force of any of the bubble never exceeds 50 μN, significantly lower
- $_{9}$ than the beetle's underwater adhesion to the same substrate (> 400 μN). Thus, the bubble's
- contribution to adhesion in the "underwater: bubble" contact of a ladybug's pad should be
- 11 negligible. Example measurement video is included in the supplementary data (S4).

Figure S1.3: Capillary force of the bubble

¹ References

- 2 (1) Brakke, K. A. The surface evolver. Experiment. Math. 1992, 1, 141–165.
- 3 (2) De Souza, E. J.; Brinkmann, M.; Mohrdieck, C.; Arzt, E. Enhancement of Capillary
- Forces by Multiple Liquid Bridges. Langmuir 2008, 24, 8813–8820.