CSC165H1: Problem Set 3

Michael Zhou

2023-03-13

Question 1. Number representation.

For all $n \in \mathbb{N}$ and $k \in \mathbb{Z}^+$, we define C(n, k) to be:

$$\exists a_1, \dots, a_k \in \mathbb{N}, (\forall i \in \mathbb{Z}^+, 1 \le i \le k \Rightarrow a_i \le i) \land (n = \sum_{i=1}^k a_i \cdot i!)$$

Prove using induction that $\forall n \in \mathbb{N}, \forall k \in \mathbb{Z}^+, n < (k+1)! \Rightarrow C(n,k)$.

Proof. We define the predicate P(k): " $\forall n \in \mathbb{N}, n < (k+1)! \Rightarrow C(n,k)$ ", where $k \in \mathbb{Z}^+$.

Base case. Let k = 1. We want to prove P(1). Let $n \in \mathbb{N}$. Assume n < 2!. Since k = 1, we know $n = \sum_{i=1}^{1} a_i \cdot i! = a_1$. And a_1 can be either 1 or 0, and both cases will result in n < 2. Thus the base case is True for P(1).

Inductive step. Let $x \in \mathbb{Z}^+$. Assume P(x) is True, such that $\forall n \in \mathbb{N}, n < (x+1)! \Rightarrow C(n,x)$. We want to prove that P(x+1) is True, such that $\forall n \in \mathbb{N}, n < (x+2)! \Rightarrow C(n,x+1)$.

Let $n \in \mathbb{N}$. Assume n < (x+2)!. We want to prove that C(n, x+1). Since we know that n < (x+1)! or $n \ge (x+1)!$, we can divide the proof into two cases:

Case 1. Assume n < (x + 1)!.

Then we know C(n,x) is True by the induction hypothesis. So we know that $\exists a_1,\ldots,a_x\in\mathbb{N}, (\forall i\in\mathbb{Z}^+,1\leq i\leq x\Rightarrow a_i\leq i)$, and $n=\sum_{i=1}^x a_i\cdot i!$. In other words, a_1,\ldots,a_k satisfy $n=\sum_{i=1}^x a_i\cdot i!$.

Let $a_1' = a_1, a_2' = a_2, \dots, a_x' = a_x, a_{x+1}' = 0$. Then we have

$$n = a_1 \cdot 1! + a_2 \cdot 2! + \dots + a_x \cdot x! + 0 \cdot (x+1)!$$

$$= a'_1 \cdot 1! + a'_2 \cdot 2! + \dots + a'_x \cdot x! + a'_{x+1} \cdot (x+1)!$$

$$= \sum_{i=1}^{x+1} a_i \cdot i!$$

We know that $a'_{x+1} = 0$ satisfies the first part of the predicate since 0 < i for all positive integers i. So C(n, x + 1) is True for n < (x + 1)!.

Case 2. Assume $n \ge (x+1)!$.

By the assumptions of the statement we want to prove, we know that n can be represented using the Quotient Remainder Theorem: $\exists q, r \in \mathbb{Z}$ such that all n between $(x+1)! \leq n < (x+2)!$ can be written as q(x+1)! + r. We know that $0 \leq r < (x+1)!$ by the definition of theorem, so r can already be represented by P(x) using the proof in Case 1 such that there exists a_1, \ldots, a_x that satisfy $r = \sum_{i=1}^x a_i \cdot i!$.

We also know that in order for n to be less than (x + 2)!, q has to be less than (x + 2), or in other words, $q \le (x + 1)$. Let $q = a_{x+1}$, then we get

$$n = q \cdot (x+1)! + r$$

$$n = a_{x+1} \cdot (x+1)! + \sum_{i=1}^{x} a_i \cdot i!$$

$$n = \sum_{i=1}^{x+1} a_i \cdot i!$$

We know that $a_{x+1} = q$ satisfies the first part of the statement since $q \leq (x+1)$.

So C(n, x + 1) is True by the assumption of n < (x + 2)!.

Thus P(x+1) is True by the assumption of P(x), so we have proven the predicate P(k): " $\forall n \in \mathbb{N}, n < (k+1)! \Rightarrow C(n,k)$ " where $k \in \mathbb{Z}^+$ by induction.

Question 2. Induction.

For all $m, n \in \mathbb{N}$, let $A_m = \{a \mid a \in \mathbb{N} \land a \leq m\}$ and $B_n = \{b \mid b \in \mathbb{N} \land b \leq n\}$, and define $F_{m,n}$ to be:

$$\{f: A_m \to B_n \mid [\forall k, l \in A_m, k \le l \Rightarrow f(k) \le f(l)] \land f(m) = n\}$$

For all $m, n \in \mathbb{N}$, define P(m, n) to be:

$$|F_{m,n}| = \frac{(m+n)!}{m! \cdot n!}$$

- (a) Prove each following statement.
 - (i) $\forall m \in \mathbb{N}, P(m, 0).$

Proof. Let $m \in \mathbb{N}$. We want to prove that P(m,0) is True.

Since the codomain is a set that contains only 0, the size of $F_{m,n}$ would only be 1, since the only function that would satisfy the conditions would be the one that mapped all m to 0. It would look like a horizontal line at the origin, since $f(0), \ldots, f(m)$ must all be natural numbers less than or equal to 0.

$$LHS = |F_{m,n}|$$

$$= 1$$

$$RHS = \frac{(m+0)!}{m! \cdot 0!}$$

$$= \frac{m!}{m!}$$

$$= 1$$

$$LHS = RHS = 1$$

Thus we have proven both sides of P(m,0) are equal, so the statement is True for all $m \in \mathbb{N}$.

(ii) $\forall n \in \mathbb{N}, P(0, n)$.

Proof. Let $n \in \mathbb{N}$. We want to prove that P(0,n) is True.

Since the domain is a set that only contains 0, we would have one function in $F_{m,n}$ since $A_m = \{0\}$. The function would only have f(0) = n.

$$LHS = |F_{m,n}|$$

$$= 1$$

$$RHS = \frac{(0+n)!}{0! \cdot n!}$$

$$= \frac{n!}{n!}$$

$$= 1$$

$$LHS = RHS = 1$$

Thus we have proven both sides of P(0,n) are True, so the statement is True for all $n \in \mathbb{N}$.

(iii) $\forall m, n \in \mathbb{N}, P(m, n+1) \land P(m+1, n) \Rightarrow P(m+1, n+1).$

Proof. Let $m, n \in \mathbb{N}$. Assume $P(m, n + 1) \wedge P(m + 1, n)$. We want to show that P(m + 1, n + 1), such that $|F_{m+1,n+1}| = \frac{(m+n+2)!}{(m+1)!(n+1)!}$.

We know every function in $F_{m,n+1}$ has f(m) = n + 1. To convert these functions to members of $F_{m+1,n+1}$, we would have to add the assignment f(m+1) = n + 1. These functions would include all cases where f(m) = n + 1.

We need to also do this for $F_{m+1,n}$, and make f(m+1) = n+1 for all of these functions. This new set would have all cases where $f(m) \le n$.

We are not introducing any new functions into these sets, but instead modifying the existing functions so f(m+1) = n+1. These functions would all satisfy the statement by the hypothesis.

There would not be any overlaps since the $F_{m,n+1}$ set includes of all cases where f(m) = n+1 and the $F_{m+1,n}$ group takes care of all cases where $f(m) \leq n$.

The cardinality of $F_{m+1,n+1}$ would be the total amount of functions that that can have their final term be f(m+1) = n+1, such that $f(m) \le n+1$, which means the union of $F_{m,n+1}$ and $F_{m+1,n}$ would cover all cases where $f(m) \le n+1$ and f(m+1) = n+1.

In other words, $|F_{m+1,n+1}| = |F_{m,n+1}| + |F_{m+1,n}|$.

Substituting into the equation, we have

$$LHS = |F_{m+1,n+1}|$$

$$= \frac{(m+n+2)!}{(m+1)!(n+1)}$$
 (By definition of $P(m,n)$)
$$RHS = |F_{m,n+1}| + |F_{m+1,n}|$$

$$= \frac{(m+n+1)!}{m!(n+1)!} + \frac{(m+n+1)!}{(m+1)!n!}$$
 (By assumption)
$$= \frac{(m+n+1)!(m+1)}{(m+1)!(n+1)!} + \frac{(m+n+1)!(n+1)}{(m+1)!(n+1)!}$$

$$= \frac{(m+n+1)!((m+1)+(n+1))}{(m+1)!(n+1)!}$$

$$= \frac{(m+n+1)!(m+n+2)}{(m+1)!(n+1)!}$$

$$= \frac{(m+n+2)!}{(m+1)!(n+1)!}$$

$$LHS = RHS$$

Both sides are equal assuming P(m, n + 1) and P(m + 1, n), thus P(m + 1, n + 1) is True.

(b) Prove, using results from part (a), that $P(1,1) \wedge P(2,2)$.

Proof. We want to prove $P(1,1) \wedge P(2,2)$. Let $m, n \in \mathbb{N}$. By part (a), we know that P(0,n) and P(m,0) are both True. If we let m=1 and n=1, then P(0,1) and P(1,0) are both True. Similarly for P(0,2) and P(2,0).

By part (a), we know that if $P(m, n+1) \wedge P(m+1, n)$, then P(m+1, n+1) would be also be True. If we let m=0 and n=0, we get $P(0,1) \wedge P(1,0)$, which we know are both True, then we know that P(1,1) is also True.

We can also do the same for P(2,0) and P(1,1) by letting m=1 and n=0 and proving P(2,1). And the same goes for P(0,2) and P(1,1) by letting m=0, n=1, proving P(1,2).

Finally, using m = 1 and n = 1, we have $P(2, 1) \land (1, 2) \Rightarrow P(2, 2)$.

Thus both P(1,1) and P(2,2) are True by the results from part (a).

(c) For each $t \in \mathbb{N}$, define Q(t) to be $\forall m, n \in \mathbb{N}, m+n=t \Rightarrow P(m,n)$. Prove using induction and the results from part (a), that: $\forall t \in \mathbb{N}, Q(t)$

Proof. Let $t \in \mathbb{N}$. We want to prove Q(t) such that for all $m, n \in \mathbb{N}$ if m + n = t, then P(m, n).

Base case. Let t = 0. Assume that t = m + n. We want to show that P(m, n) is True. Since m, n are both natural numbers, they must both be 0 since m + n = 0. Then P(0, 0) is True by the results in part (a).

Inductive step. Let $k \in \mathbb{N}$. Assume that Q(k) is True such that $m_1 + n_1 = k \Rightarrow P(m_1, n_1)$. We want to prove that Q(k+1) is True, such that $m_2 + n_2 = k + 1 \Rightarrow P(m_2, n_2)$. We will use a proof by cases.

We know that if $m_2 + n_2 = k + 1$, either $m_2 = m_1 + 1 \land n_2 = n_1$, or $m_2 = m_1 \land n_2 = n_1 + 1$.

Case 1. Assume $m_2 = m_1 + 1 \land n_2 = n_1$.

Using the induction hypothesis, we have $P(m_1, n_1) = P(m_2 - 1, n_2)$. We also have $P(m_2, n_2 - 1)$ by rearranging $k = m_1 + n_1 = m_2 - 1 + n_2 = m_2 + n_2 - 1$. By part (a), we can conclude that since $P(m_2 - 1, n_2) \wedge P(m_2, n_2 - 1)$, that $P(m_2, n_2)$ is True in this case.

Case 2. Assume $m_2 = m_1 \wedge n_2 = n_1 + 1$.

Following the same procedure as Case 1, we have $P(m_1, n_1) = P(m_2, n_2 - 1)$, and rearranging $k = m_2 + n_2 - 1$ we get $P(m_2 - 1, n_2)$. By part (a), we can conclude that that since $P(m_2 - 1, n_2) \wedge P(m_2, n_2 - 1)$, that $P(m_2, n_2)$ is also True in this case.

Thus we have proven that $P(m_2, n_2)$ is True in both cases by the assumption that $m_2 + n_2 = k + 1$, such that Q(k+1) is True by the assumption that Q(k) is True. We have proven Q(t) by induction.

(d) Prove, using results form part (c), that: $\forall m, n \in \mathbb{N}, P(m, n)$.

Proof. Let $m, n \in \mathbb{N}$. We want to prove that P(m, n).

Let $t \in \mathbb{N}$. From part (c), we know that if m + n = t then P(m, n) is True.

If you add two natural numbers, the result will always be a natural number, so there will always be a natural number t such that m + n = t.

Thus, by part (c), P(m,n) is True for any natural numbers m,n.

Question 3. Asymptotic notation.

(a) Prove or disprove that $n^n \in \mathcal{O}(n!)$.

Translation. $\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow n^n \leq c \cdot n!$

Proof. Let $n \in \mathbb{N}$. We want to prove that $n^n \notin \mathcal{O}(n!)$. We will use a proof by contradiction.

Let c, n_0 be arbitrary positive real numbers. Assume that $n^n \in \mathcal{O}(n!)$, such that if $n \geq n_0$ then

$$n^n \le c \cdot n!$$

$$\frac{n^n}{n!} \le c$$

Then there would exist a c that is always greater than $\frac{n^n}{n!}$ by the assumption that $n^n \in \mathcal{O}(n!)$.

We know that n^n is larger than n! since if we line up all values, the values of n^n are all greater than n! after the first term, so the ratio grows to infinity:

$$n^n = n \cdot n \cdot \dots \cdot n \cdot n \tag{n terms}$$

$$n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1 \tag{n terms}$$

But we know that there does not exist a largest natural number, since the set is infinite. Thus, there cannot exist a c that always satisfies this inequality, creating a contradiction.

(b) Prove that if $a, b \in \mathbb{R}$ and b > 0, then $(n+a)^b \in \Theta(n^b)$.

Proof. Let $a, b \in \mathbb{R}$. Assume that b > 0. We want to prove that $(n+a)^b \in \Theta(n^b)$.

Expanding on the definition of $\Theta(n^b)$, we have

$$\exists c_1, c_2, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow c_1 n^b \le (n+a)^b \le c_2 n^b$$

Let $c_1 = (\frac{1}{2})^b$, $c_2 = (\frac{3}{2})^b$, $n_0 = 2|a|$. Assume $n \ge n_0$. We want to show that $c_1 n^b \le (n+a)^b \le c_2 n^b$. Solving for the left side we get

$$(n+a)^b = \left(\frac{n}{2} + \frac{n}{2} + a\right)^b$$

$$\geq \left(\frac{n}{2} + |a| + a\right)^b \qquad \text{(Since } n > 2|a|\text{)}$$

$$\geq \left(\frac{n}{2}\right)^b \qquad \text{(Since } |a| + a \geq 0\text{)}$$

$$\geq \left(\frac{1}{2}\right)^b \cdot n^b$$

$$> c_1 n^b$$

Solving for the right side we get

$$(n+a)^b \le \left(n + \frac{n}{2}\right)^b$$

$$\le \left(\frac{3n}{2}\right)^b$$

$$\le \left(\frac{3}{2}\right)^b \cdot n^b$$

$$\le c_2 n^b$$
(Since $n \ge 2|a|$)

Thus we have proven $c_1 n^b \leq (n+a)^b \leq c_2 n^b$ assuming $n \geq n_0$ and b > 0.

Question 4. More asymptotic notation.

(a) Prove or disprove that: if $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$, $k \in \mathbb{R}^+$ and $f(n) \in \mathcal{O}(n^k)$, then $\log_2(f(n)) \in \mathcal{O}(\log_2 n)$.

Proof. Let $k \in \mathbb{R}^+$. We want to show that if $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$ and $f(n) \in \mathcal{O}(n^k)$, then $\log_2(f(n)) \in \mathcal{O}(\log_2 n)$. Let n_0 be an arbitrary positive real number. Let c = k + 1. Let $n_0 = c$. Let $n \in \mathbb{N}$. Then by our assumption and the definition of Big-Oh, if $n \geq n_0$, we have

$$\begin{split} f(n) &\in \mathcal{O}(n^k) \\ f(n) &\leq c \cdot n^k \\ \log_2(f(n)) &\leq \log_2(c \cdot n^k) \\ \log_2(f(n)) &\leq \log_2(c) + \log_2(n^k) \\ \log_2(f(n)) &\leq \log_2(n) + \log_2(n^k) \\ \log_2(f(n)) &\leq \log_2(n) + k \cdot \log_2(n) \\ \log_2(f(n)) &\leq (k+1) \cdot \log_2(n) \\ \log_2(f(n)) &\leq c \cdot \log_2(n) \\ \log_2(f(n)) &\in \mathcal{O}(\log_2(n)) \end{split}$$

Thus we have proven the $\log_2(f(n)) \in \mathcal{O} \log_2 n$ by the assumption that $f(n) \in \mathcal{O}(n^k)$.

(b) Prove that: if $f_1, f_2, g_1, g_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}, f_1 \in \mathcal{O}(g_1)$, and $f_2 \in \mathcal{O}(g_2)$, then $f_1 + f_2 \in \mathcal{O}(\max(g_1, g_2))$. Here, $(f_1 + f_2)(n) = f_1(n) + f_2(n)$ and $\max(g_1, g_2)(n) = \max(g_1(n), g_2(n))$.

Proof. Assume that $f_1, f_2, g_1, g_2 : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $f_1 \in \mathcal{O}(g_1)$, and $f_2 \in \mathcal{O}(g_2)$. We want to show that $f_1 + f_2 \in \mathcal{O}(\max(g_1, g_2))$.

Using the definition of Big-Oh, we can express the hypothesis as $\exists c_1, c_2, n_1, n_2 \in \mathbb{R}^+, \forall n \in \mathbb{N}, (n \geq n_1 \Rightarrow f_1 \leq c_1 \cdot g_1) \land (n \geq n_2 \Rightarrow f_2 \leq c_2 \cdot g_2).$

Let $c_3 = c_1 + c_2$, let $n_3 = \max(n_1, n_2)$. Then by our assumptions, we know that $f_1 \leq c_1 \cdot g_1$ and $f_2 \leq c_2 \cdot g_2$. Adding these together we have

$$f_1 + f_2 \le c_1 \cdot g_1 + c_2 \cdot g_2$$

$$f_1 + f_2 \le c_1 \cdot \max(g_1, g_2) + c_2 \cdot \max(g_1, g_2) \qquad (\max(g_1, g_2) \ge g_1, \text{ same for } g_2)$$

$$f_1 + f_2 \le (c_1 + c_2) \cdot \max(g_1, g_2)$$

$$f_1 + f_2 \le c_3 \cdot \max(g_1, g_2)$$

$$f_1 + f_2 \in \mathcal{O}(\max(g_1, g_2)) \qquad (n \ge n_3)$$

Thus we have proven $f_1 + f_2 \in \mathcal{O}(\max(g_1, g_2))$ assuming that $f_1 \in \mathcal{O}(g_1)$ and $f_2 \in \mathcal{O}(g_2)$.