Assignment Topic 5 & 6

Oleh: Rosyida Ishma Mardhiyyah

Mentor: Erwin Fernanda

Topic 5

Link Google Colab

OUTLINE

1. Import library & Understanding Dataset

2. Missing Values Handling

Categorical Data Encoding

4. Anomalies and Outlier Handling

Import Library & Understanding Dataset

Import Library

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Load Dataset

from google.colab import drive
drive.mount('/content/drive')

churn=pd.read_csv("drive/MyDrive/WA_Fn-UseC_-Telco-Customer-Churn.csv")

Understanding Dataset

Syntax churn.head() → Menampilkan beberapa baris teratas dari dataset

Output

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	Onli
0	7590- VHVEG	Female	0	Yes	No		No	No phone service	DSL	
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	
4	9237-HQITU	Female	0	No	No	2	Yes	No	Fiber optic	
5 rows × 21 columns										

Syntax Churn.shape → Menampilkan jumlah baris dan kolom dari dataset

Output (7843, 21) → Jumlah baris: 7043; Jumlah kolom: 21

Understanding Dataset

Syntax

churn.info()

Menampilkan informasi seperti variabel, jumlah nonnull value, type data, dan memory usage

Output

<class 'pandas.core.frame.DataFrame'> RangeIndex: 7043 entries, 0 to 7042 Data columns (total 21 columns): Non-Null Count Dtype Column 7043 non-null customerID object gender 7043 non-null object SeniorCitizen 7043 non-null int64 Partner 7043 non-null object 7043 non-null Dependents object 7043 non-null int64 tenure PhoneService 7043 non-null object MultipleLines 7043 non-null object InternetService 7043 non-null object OnlineSecurity 7043 non-null object OnlineBackup 7043 non-null object DeviceProtection 7043 non-null object TechSupport 7043 non-null object StreamingTV 7043 non-null object StreamingMovies 7043 non-null object 15 Contract 7043 non-null object PaperlessBilling 7043 non-null object PaymentMethod 7043 non-null object MonthlyCharges 7043 non-null float64 TotalCharges 7043 non-null object Churn 7043 non-null object dtypes: float64(1), int64(2), object(18) memory usage: 1.1+ MB

Missing Values Handling

Missing Values Checking

Menampilkan jumlah missing value pada masing-masing variabel.

Output

customerID gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV StreamingMovies Contract PaperlessBilling Payment Method MonthlyCharges TotalCharges Churn dtype: int64

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Tidak terdeteksi adanya missing value sehingga tidak perlu dilakukan penanganan lebih lanjut.

Categorical Data Encoding

Data Type Checking

Menampilkan tipe data pada masing-masing variabel.

Output

churn.dtypes	
customerID	object
gender	object
SeniorCitizen	int64
Partner	object
Dependents	object
tenure	int64
PhoneService	object
MultipleLines	object
InternetService	object
OnlineSecurity	object
OnlineBackup	object
DeviceProtection	object
TechSupport	object
StreamingTV	object
StreamingMovies	object
Contract	object
PaperlessBilling	object
PaymentMethod	object
MonthlyCharges	float64
TotalCharges	object -
Churn	object
dtype: object	

Terdapat tipe data yang tidak sesuai dengan variabelnya, yaitu:

- Variabel Senior citizen seharusnya bertipe object
- Variabel Total Charges seharusnya bertipe float

Converting Data Type (Senior Citizen)

Syntax yang digunakan untuk mengubah tipe data "int" menjadi "object" adalah .astype("str")

Converting Data Type (Total Charges)

Tipe data "object" dalam variabel Total Charges tidak bisa langsung diubah menjadi "float", sehingga perlu dilakukan modifikasi dengan mengosongkan value Total Charges, lalu mengganti tipe datanya menjadi float dan mengisi value ulang dengan mengalikan tenure dan Monthly Charges.

Syntax

```
churn['TotalCharges'] = '0'
churn['TotalCharges'] = churn['TotalCharges'].astype('float')
churn['TotalCharges'] = churn['tenure']*churn['MonthlyCharges']
churn['TotalCharges'].dtype
```

Output

```
dtype('float64')

Tipe data variabel Total Charges sudah berubah menjadi "float"
```

Categorical Encoding

- Setelah melakukan converting data type, maka dapat dilakukan categorical encoding.
- Categorical encoding dapat dilakukan pada data yang bertipe "object" dan memuat values berupa kategori.
- Dalam categorical encoding, syntax yang digunakan adalah pd.get_dummies()

Syntax

```
churn_new = churn.drop(columns = ['customerID']) -
churn_dummies = pd.get_dummies(churn_new)
churn_dummies.head()
```

Menghapus customer ID karena customer ID bertipe "object", tetapi values nya bukan kategorik. Apabila tidak dihapus maka customer ID akan ikut di-encoding.

Output

	tenure	MonthlyCharges	TotalCharges	gender_Female	gender_Male	SeniorCitizen_0	SeniorCitizen_1	Partner_No Pa
0		29.85	29.85		0		0	0
1	34	56.95	1936.30	0	1	1	0	1
2	2	53.85	107.70	0	1		0	1
3	45	42.30	1903.50	0	1	1	0	1
4	2	70.70	141.40		0		0	1
5 rd	ows × 48 c	olumns						

Anomalies & Outliers Handling

Anomalies & Outliers Checking

Anomalies dan outliers hanya dapat dideteksi pada data numerik.

Syntax .describe() digunakan untuk menampilkan statistik dari data numerik.

Syntax

churn.describe()

Output

	tenure	MonthlyCharges	TotalCharges		
count	7043.000000	7043.000000	7043.000000		
mean	32.371149	64.761692	2279.581350		
std	24.559481	30.090047	2264.729447		
min	0.000000	18.250000	0.000000		
25%	9.000000	35.500000	394.000000		
50%	29.000000	70.350000	1393.600000		
75%	55.000000	89.850000	3786.100000		
max	72.000000	118.750000	8550.000000		

Variabel Tenure, Monthly Charges, dan Total Chargers merupakan variabel yang bertipe numerik sehingga selanjutnya pengecekan serta penangangan anomalies dan outliers dilakukan pada ketiga variabel ini.

Outliers Checking for Tenure

Cara yang paling umum untuk mendeteksi outlier adalah menggunakan boxplot

Import library import matplotlib.pyplot as plt

Syntax

plt.boxplot(churn["tenure"]) plt.show

Tidak terdeteksi adanya outlier dalam variabel Tenure

Outliers Checking for Monthly Charges

Cara yang paling umum untuk mendeteksi outlier adalah menggunakan boxplot

Syntax

plt.boxplot(churn["MonthlyCharges"])
plt.show

Output

Tidak terdeteksi adanya outlier dalam variabel Monthly Charges

Outliers Checking for Total Charges

Cara yang paling umum untuk mendeteksi outlier adalah menggunakan boxplot

Syntax

```
plt.boxplot(churn["TotalCharges"])
plt.show
```

Output

Tidak terdeteksi adanya outlier dalam variabel Total Charges

Topic 6

Link Google Colab