Leyes básicas de los circuitos eléctricos

La ley de Ohm

La corriente y el voltaje, asociados con una resistencia, se relacionan entre sí mediante una fórmula muy útil y sencilla llamada la ley de Ohm. Esta ley, que examinaremos en detalle más adelante, es una de las fórmulas más utilizadas en electricidad y electrónica por parte de ingenieros, técnicos, estudiantes y principiantes, para el análisis y diseño de todo tipo de circuitos, incluyendo amplificadores, fuentes de alimentación, etc., así como para la selección apropiada de conductores, fusibles, interruptores, tomacorrientes, y otros tipos de componentes.

Antes de conocer la ley de Ohm, es conveniente recordar qué es, cómo está estructurado y cómo funciona un circuito eléctrico simple. Figura 4.1. Según vimos en una lección anterior, un circuito eléctrico, en un sentido general, es una combinación de componentes conectados de tal forma que proporcionen una trayectoria cerrada para la circulación de la corriente y permitan aprovechar la energía de los electrones en movimiento para producir otras formas de energía, por ejemplo, luz, calor, sonido, movimiento, etc. Un circuito eléctrico simple como el anterior se compone, básicamente, de los siguientes elementos:

- Una fuente de energía eléctrica (V), la cual suministra la fuerza necesaria para impulsar una corriente de electrones a través del circuito.
 Esta fuerza se expresa en voltios (V). La corriente producida se expresa en amperios (A).
- Un conjunto de conductores, los cuales proporcionan un camino de poca resistencia para la circulación de la corriente a través del circuito.
- Un interruptor (S), el cual actúa como elemento de control del circuito, regulando el paso de corriente hacia la carga.

 Una carga, la cual convierte la energía de los electrones en movimiento en otras forma de energía. En este caso, la carga está representada por una resistencia (R), la cual convierte energía eléctrica en calor. La resistencia se expresa en ohmios (Ω). En el resto de este capítulo asumiremos que la carga o cargas de un circuito son resistencias puras.

Figura 4.1. El circuito eléctrico simple

Figura 4.2. El circuito eléctrico cerrado

Bajo está condición, los electrones tendrán una trayectoria por donde circular y la fuente podrá impulsar una corriente eléctrica (I). Se dice, entonces, que el circuito está cerrado. Considerando el sentido convencional, la corriente sale de la fuente por el borne positivo (+), se desplaza a lo largo del conductor superior, atraviesa la carga (R), continúa por el conductor superior y regresa a la fuente por el borne negativo. El proceso se repite indefinidamente mientras permanezca cerrado el interruptor.

Enunciado de la ley de Ohm

En un circuito resistivo, o sea que solo tiene resistencias, el voltaje (V), la resistencia (R) y la corriente (I) están relacionados entre sí mediante una fórmula muy útil y sencilla llamada la ley de Ohm,

descubierta por el físico alemán Georg Simon Ohm (1789-1854) y dada a conocer públicamente en 1828. Esta ley establece lo siguiente:

"La intensidad (I) de la corriente eléctrica que circula por un circuito es directamente proporcional al voltaje aplicado (V) e inversamente proporcional a la resistencia (R) del mismo"

Matemáticamente, esta relación se puede representar en forma resumida mediante la siguiente fórmula:

Intensidad =
$$\frac{\text{Voltaje}}{\text{Resistencia}} \longrightarrow I = \frac{\text{V}}{\text{R}}$$

El significado de ca<mark>da u</mark>no de los términos de esta ecuación es el siguiente:

- es la tensión aplicada, expresada en voltios (V)
- es la corriente que circula por el circuito, expresada en amperios (A).
- R es la resistencia u oposición al paso de la corriente, expresada en ohmios (Ω) .

Para que la aplicación de esta fórmula produzca los resultados correctos, las cantidades deben expresarse en las unidades básicas o patrón, es decir el voltaje en voltios, la corriente en amperios y la resistencia en ohmios.

Por tanto, la ley de Ohm nos permite calcular una magnitud, digamos la corriente (I), conociendo las otros dos (V, R). También nos confirma que la intensidad o cantidad de corriente de un circuito depende del voltaje aplicado por la fuente y de la resistencia que le presenta la carga.

Otras formas de representar la ley de Ohm

Matemáticamente la ley de Ohm, originalmente expresada como I=V/R, se puede representar mediante otras dos ecuaciones equivalentes así:

Mediante esta fórmula se puede obtener el valor del voltaje (V) de la fuente de alimentación, conociendo la intensidad (I) de la corriente y la resistencia (R).

Resistencia =
$$\frac{\text{Voltaje}}{\text{Intensidad}} \longrightarrow R = \frac{V}{I}$$

Mediante esta fórmula se puede obtener el valor de la resistencia (R), conociendo la intensidad de la corriente (I) y el voltaje (V).

El triángulo de la ley de Ohm

Las diferentes formas de expresar la ley de Ohm, examinadas hasta el momento, se pueden recordar con facilidad utilizando el triángulo de la figura 4.8, donde se encuentran representadas, en forma gráfica, las tres magnitudes de cualquier circuito, es decir el voltaje (V), la intensidad de la corriente (I) y la resistencia (R).

Figura 4.8. El triángulo de la ley de Ohm