Algebra und Diskrete Mathematik Übungsblatt 3

Beispiele 95, 98, 104, 105, 125, 127, 151

Aufgabe 95. Beweisen Sie die folgenden Beziehungen mit Hilfe von Elementtafeln oder geben Sie ein konkretes Gegenbeispiel an.

$$A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$$

Lösung. Die beiden Formeln sind äquivalent!

A	В	C	A	\cap	$(B \Delta C)$	$(A \cap B)$	Δ	$(A \cap C)$
1	1	1	1	0	0	1	0	1
1	1	0	1	1	1	1	1	0
1	0	1	1	1	1	0	1	1
1	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0
0	0	1	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0

Aufgabe 98. Beweisen oder widerlegen Sie die folgende Identität für Mengen:

$$(A \times B) \cup (B \times A) = (A \cup B) \times (A \cup B)$$

Lösung. $(A \times B) : \{(a,b) \mid a \in A \land b \in B\}$. Das gilt aufgrund des Kommutativgesetzes auch für $(B \times A)$. Die Vereinigung der beiden ist $A \times B$, also $\{(a,b) \mid a \in A \land b \in B\}$.

Auf der rechten Seite hat man nun $(A \cup B)$, was $\{a \mid a \in A \land a \in B\}$ entspricht. Dasselbe gilt für den zweiten Faktor im kartesischen Produkt, welches nun wie folgt dargestellt wird: $\{(a,b) \mid a \in A \land b \in B\}$. Daraus folgt, dass die linke Seite der rechten entspricht:

$$(A \times B) \cup (B \times A) = (A \cup B) \times (A \cup B)$$
$$\{(a,b) \mid a \in A \land b \in B\} = \{(a,b) \mid a \in A \land b \in B\}$$

Hiermit ist die Identität der Mengen bewiesen.

Aufgabe 104. Man untersuche nachstehend angeführte Relationen $R \subseteq M^2$ in Hinblick auf die Eigenschaften Reflexivität, Symmetrie, Antisymmetrie und Transitivität:

- (a) $M = \text{Menge aller Einwohner von Wien, } aRb \Leftrightarrow a \text{ ist verheiratet mit } b$
- (b) M wie oben, $a R b \Leftrightarrow a$ ist nicht älter als b
- (c) M wie oben, $a R b \Leftrightarrow a$ ist so groß wie b
- (d) $M = \mathbb{R}, aRb \Leftrightarrow a b \in \mathbb{Z}$
- (e) $M = \mathbb{R}^n$, $(x_1, ..., x_n) R(y_1, ..., y_n) \Leftrightarrow x_i \leq y_i \ \forall i = 1, ..., n$

Lösung. (a)

Reflexivität $a R a \Longrightarrow a$ verheiratet mit $a \not \downarrow$

Symmetrie $a R b \Longrightarrow b R a \checkmark$

Antisymmetrie $a R b \wedge b R a \Longrightarrow a = b$ mit sich selbst verheiratet? \not

Transitivität $a R b \wedge b R c \Longrightarrow a R c \not$

(b)

Reflexivität $a R a \Longrightarrow (a \le a) \land (b \le b) \checkmark$

Symmetrie $a R b \Longrightarrow b R a \ (a \le b) \land (b \le a) \checkmark$

Antisymmetrie $a R b \wedge b R a \Longrightarrow (a \leq b) \vee (b \leq a) \Longrightarrow a = b \checkmark$

Transitivität $a R b \wedge b R c \Longrightarrow a R c \Longrightarrow (a \le b) \wedge (b \le c) \Longrightarrow (a \le c) \checkmark$

(c)

Reflexivität $a R a \Longrightarrow (a = a) \land (b = b) \checkmark$

Symmetrie $a R b \Longrightarrow b R a \Longrightarrow (a = b) \land (b = a) \checkmark$

Antisymmetrie $a R b \wedge b R a \Longrightarrow b = a \checkmark$

Transitivität $a R b \wedge b R c \Longrightarrow a R c \Longrightarrow (a = b) \wedge (b = c) \Longrightarrow a = c \checkmark$

(d)

Reflexivität $a - b \in a - b$

Symmetrie

Aufgabe 125. Welche der folgenden Eigenschaften Reflexivität, Symmetrie, Antisymmetrie und Transitivität hat folgende Relation R auf \mathbb{Z} :

$$mRn \iff m^4 = n^4$$

Lösung. Die Relation $mRn \iff m^4 = n^4$ ist symmetrisch, antisymmetrisch, reflexiv und transitiv.

Symmetrie $mRn \Longrightarrow nRm: m^4 = n^4 \Longrightarrow n^4 = m^4$

Reflexivität $mRm \wedge nRn : m^4 = m^4 \wedge n^4 = n^4$

Antisymmetrie $mRn \wedge nRm \Longrightarrow m=n: m^4=n^4 \wedge n^4=m^4 \Longrightarrow m^4=n^4$

Transitivität $mRn \wedge nRo \Longrightarrow mRo: m^4 = n^4 \wedge n^4 = o^4 \Longrightarrow m^4 = o^4$