Wintersemester 2023/2024

Physische Geographie 1

(Grundkursvorlesung PG 1 – Vorlesungsteil Klimatologie)

Prof. Dr. Christoph Beck

Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung

Institut für Geographie

Universität Augsburg

Luftdruckverteilung und Luftströmung im Mittel für die bodennahe Reibungszone Januar

Luftdruckverteilung und Luftströmung im Mittel für die bodennahe Reibungszone Juli

Alternieren der Niederschlagszonen

Abb. 7.2: Das Alternieren der Niederschlagzonen auf der Erde (verändert nach Flohn 1960 und Pleiß 1977) (Lauer, 1996)

Jahresgangtypen des Niederschlags

Abb. 7.1: Mittlere jährliche Niederschlagsmengen und Typen des Jahresgangs (Lauer, 1996)

Jahresgangtypen des Niederschlags

Abb. 7.1: Mittlere jährliche Niederschlagsmengen und Typen des Jahresgangs (Lauer, 1996)

Jahresgangtypen des Niederschlags

Abb. 7.1: Mittlere jährliche Niederschlagsmengen und Typen des Jahresgangs (Lauer, 1996)

Jahresgangtypen der Temperatur

Abb. 5.3: Mittlere reduzierte jährliche Temperaturen sowie Typen des jährlichen Temperaturgangs

(Lauer, 1996)

Jahresgangtypen der Temperatur

Abb. 5.3: Mittlere reduzierte jährliche Temperaturen sowie Typen des jährlichen Temperaturgangs

(Lauer, 1996)

Jahresgangtypen der Temperatur

Abb. 5.3: Mittlere reduzierte jährliche Temperaturen sowie Typen des jährlichen Temperaturgangs

(Lauer, 1996)

Grundidee:

Zusammenfassung lokal ausgeprägter Einzelklimate

- auf der Grundlage von Ähnlichkeitskriterien
- zu möglichst eindeutig abgrenzbaren Klimatypen
- und Ermittlung und Darstellung der räumlichen Lage und Ausdehnung der Klimatypen

Effektive Klimaklassifikationen:

- nach charakteristischen Werten meßbarer Klimaelemente
- ausgehend von den Ergebnissen klimatischer Vorgänge u. ihren Auswirkungen

Grundidee:

Zusammenfassung lokal ausgeprägter Einzelklimate

- auf der Grundlage von Ähnlichkeitskriterien
- zu möglichst eindeutig abgrenzbaren Klimatypen
- und Ermittlung und Darstellung der räumlichen Lage und Ausdehnung der Klimatypen

Effektive Klimaklassifikationen:

- nach charakteristischen Werten meßbarer Klimaelemente
- ausgehend von den Ergebnissen klimatischer Vorgänge u. ihren Auswirkungen

Genetische Klimaklassifikationen:

- nach dynamischen Vorgängen in der Atmosphäre
- ausgehend vom Zustandekommen der Klimate

Genetische Klimaklassifikation nach Flohn:

im Mittel vorherrschende zonale Stromungsrichtung als klimabestimmender Faktor

vier stetige und drei alternierende Zonenklimate

Zonenklima

1. Innertropisches Klima

2. Randtropisches Klima

6. Subpolares Klima

7. Hochpolares Klima

3. Subtropisches Trockenklima

5. Feucht-gemäßigtes Klima

4. Subtropisches Winterregenklima

EE

Effektive Klimaklassifikation nach Köppen/Geiger:

- Klassendefinition in Anlehnung an Vegetationsverbreitung
- Auf der Grundlage monatlicher und jährlicher Temperaturund Niederschlagsdaten
- Bezeichnung der Klimatypen mit Buchstabencodes
- 5 Hauptklimatypen (Klimazonen)

A B C D E

Tropische Trocken- Warm- Boreale Eis-/Schnee Klimate Klimate Klimate Klimate

Effektive Klimaklassifikation nach Köppen/Geiger:

Jahresniederschlag (N[cm]) / Jahresmitteltemperatur (T[°C])

Effektive Klimaklassifikation nach Köppen/Geiger:

Jahresniederschlag (N[cm]) / Jahresmitteltemperatur (T[°C])

Effektive Klimaklassifikation nach Köppen/Geiger:

C warmgemäßigt

Kältester Monat ($T_{min}[^{\circ}C]$)

-3°C < T_{min} < 18°C

Cf warmgemäßigt immerfeucht N-Summe des trockensten Sommermonats ≥ 1/3 N-Summe des feuchtesten Wintermonats (and > 40mm) oder

N-Summe des trockensten Wintermonats ≥ 1/10 N-Summe des feuchtesten Sommermonats

Anzahl Monate mit Mitteltemperatur ≥ 10°C

≥ 4

Type	Description	Criterion
A	Equatorial climates	$T_{min} \ge +18$ $^{\circ}C$
Af	Equatorial rainforest, fully humid	$P_{\min} \ge 60 \text{ mm}$
Am	Equatorial monsoon	$P_{ann} \ge 25(100 - P_{min})$
As	Equatorial savannah with dry summer	$P_{min} < 60 \text{ mm in summer}$
Aw	Equatorial savannah with dry winter	$P_{min} < 60 \text{ mm in winter}$
В	Arid climates	$P_{ann} < 10 P_{th}$
BS	Steppe climate	$P_{ann} > 5P_{th}$
BW	Desert climate	$P_{ann} \leq 5 P_{th}$
C	Warm temperate climates	$-3~^{\circ}\mathrm{C} < \mathrm{T_{min}} < +18~^{\circ}\mathrm{C}$
Cs	Warm temperate climate with dry summer	$P_{smin} < P_{wmin}, P_{wmax} > 3 P_{smin}$ and $P_{smin} < 40 \text{ mm}$
Cw	Warm temperate climate with dry winter	$P_{\text{wmin}} < P_{\text{smin}}$ and $P_{\text{smax}} > 10 P_{\text{wmin}}$
Cf	Warm temperate climate, fully humid	neither Cs nor Cw
D	Snow climates	$T_{min} \le -3 ^{\circ}C$
Ds	Snow climates Snow climate with dry summer	
Dw	Snow climate with dry winter	$P_{smin} < P_{wmin}, P_{wmax} > 3 P_{smin}$ and $P_{smin} < 40 \text{ mm}$
Df	Snow climate with dry winter Snow climate, fully humid	$P_{wmin} < P_{smin}$ and $P_{smax} > 10 P_{wmin}$ neither Ds nor Dw
DI	Show chillate, fully humid	Heither Ds Hot Dw
E	Polar climates	$T_{max} < +10~^{\circ}C$
ET	Tundra climate	$0 ^{\circ}\text{C} \le \text{T}_{\text{max}} < +10 ^{\circ}\text{C}$
EF	Frost climate	$T_{max} < 0$ $^{\circ}C$

Туре	Description	Criterion
h	Hot steppe / desert	$T_{ann} \ge +18 ^{\circ}C$
k	Cold steppe /desert	$T_{ann} < +18 ^{\circ}C$
a	Hot summer	$T_{max} \ge +22 ^{\circ}C$
b	Warm summer	not (a) and at least 4 $T_{mon} \ge +10 ^{\circ}\text{C}$
С	Cool summer and cold winter	not (b) and $T_{min} > -38$ °C
d	extremely continental	like (c) but $T_{min} \le -38 ^{\circ}\text{C}$

(Beck 2011)

Kopplungen zwischen Atmosphäre und Ozean

- Meeresoberflächentemperaturen (SST)
- Meeresoberflächenströmungen + Zirkulation der Ozeane
- ENSO (El-Nino-Southern-Oscillation)

Sea Surface Temperatures (SST)

Global map of average Sea Surface Temperature (SST)

Meeresoberflächenströmungen – ausgelöst durch Windstress

Meeresoberflächenströmungen

warm

kalt

Dichteunterschiede (Temp., Salzgehalt)

→ Thermohaline Ozeanische Zirkulation

Oceanic Conyeyor Belt (s. Vorlesungsteil Hydrogeographie)

(IPCC, 2001)

ENSO (El Nino / Southern Oscillation)

- als global bedeutsamste Zirkulationsschwankung
- als Beispiel einer Atmosphäre / Ozean-Kopplung

ozeanische Komponente atmosphärische Komponente

Southern Oscillation
Zirkulationsschwankung der pazifischen Walkerzelle
Schwankung des Luftdruckgefälles zwischen
Ostpazifik und Westpazifik

SOI (Southern Oscillation Index)

ENSO (El Nino / Southern Oscillation)

Auswirkungen von ENSO Ereignissen

ENSO (El Nino / Southern Oscillation)

Zeitliche Variabilität des ENSO-Phänomens

