

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta049

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

* Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subjectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se determine partea reală a numărului complex $z = i^6 + i^7$.
- (4p) b) Să se calculeze lungimea medianei din A a triunghiului cu vârfurile în punctele A(-2,-2), B(2,0), C(0,4).
- (4p) c) Să se calculeze $\cos^2(75^0) + \cos^2(15^0)$.
- (4p) d) Să se determine în câte puncte se intersectează dreapta de ecuație y = 1 cu cercul de centrul O(0,0) și de rază egală cu 1.
- (2p) e) Să se determine câte puncte cu ambele coordonate întregi sunt situate în interiorul cercului cu centrul în O(0,0) și de rază egală cu 1.
- (2p) f) Să se scrie ecuația unei drepte paralele cu dreapta de ecuație 3x y 2 = 0 care trece prin punctul O(0,0).

SUBIECTUL II (30p)

1.

- (3p) a) Să se determine cel mai mare dintre numerele $a = \sqrt{2}$ și $b = \sqrt[3]{3}$.
- (3p) b) Să se determine câte numere de 2 cifre scrise în baza 10 nu conțin cifrele 2, 3, 4 și 5.
- (3p) c) Să se determine câte numere întregi c satisfac : $2 < \log_2 c < 3$.
- (3p) d) Să se determine câte numere întregi d satisfac relația $\left[\frac{2d}{3}\right] = 2$, unde [x] reprezintă partea întreagă a numărului real x.
- (3p) e) Să se dea un exemplu de polinom de gradul al treilea cu coeficienți întregi pentru care produsul rădăcinilor sale este egal cu 2.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}, f(x) = \frac{2x}{x^2 + 3}$.
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se determine punctele de extrem local ale funcției f.
- (3p) c) Să se determine cel mai mare dintre numerele $a = f(\sqrt{3})$ și b = f(2).
- (3p) d) Să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
- (3p) e) Să se calculeze $\int_{0}^{1} f(x) dx$.

SUBIECTUL III (20p)

Se consideră $a \in \mathbb{R}$, $n \in \mathbb{N}^*$, $n \ge 3$ și polinomul $f = X^n - (\cos 2na + i \sin 2na)$, cu rădăcinile notate $x_0, x_1, ..., x_{n-1} \in \mathbb{C}$ și formulele

 $1 - \cos 2a = 2\sin^2 a$, $1 + \cos 2a = 2\cos^2 a$ şi $2\sin a\cos a = \sin 2a$, $\forall a \in \mathbf{R}$.

- (4p) a) Să se calculeze f(1) și f(-1).
- (4p) b) Să se verifice identitatea $1 \cos 2x i \sin 2x = -2i \sin x (\cos x + i \sin x)$, $\forall x \in \mathbb{R}$.
- (4p) c) Să se verifice identitatea $1 + \cos 2x + i \sin 2x = 2\cos x(\cos x + i \sin x)$, $\forall x \in \mathbb{R}$.

(2p) d) Să se arate că
$$x_k = cos\left(2a + \frac{2k\pi}{n}\right) + i sin\left(2a + \frac{2k\pi}{n}\right), \forall k \in \{0, 1, ..., n-1\}.$$

(2p) e) Să se arate că
$$f = \prod_{k=0}^{n-1} \left(X - \left(\cos \left(2a + \frac{2k\pi}{n} \right) + i \sin \left(2a + \frac{2k\pi}{n} \right) \right) \right).$$

- (2p) f) Să se arate că $sin na = 2^{n-1} \prod_{k=0}^{n-1} sin \left(a + \frac{k\pi}{n} \right), \forall a \in \mathbb{R}, \forall n \in \mathbb{N}, n \ge 3.$
- (2p) g) Să se arate că $cos(2p+1)a = 2^{2p}(-1)^p \prod_{k=0}^{2p} cos\left(a + \frac{k\pi}{2p+1}\right), \forall a \in \mathbb{R}, \forall p \in \mathbb{N}^*.$

SUBIECTUL IV (20p)

Se consideră funcțiile $f: \mathbf{R} \to \mathbf{R}$ și $g: \mathbf{R} \to \mathbf{R}$, unde $g(x) = \frac{ex}{e-1} + 1$, iar f este

continuă în x = 0, f(0) = 1 și $f(x) - f\left(\frac{x}{e}\right) = x$, $\forall x \in \mathbf{R}$.

- (4p) a) Să se arate că funcția g verifică relațiile g(0) = 1 și $g(x) g\left(\frac{x}{e}\right) = x$, $\forall x \in \mathbf{R}$.
- (4p) b) Să se arate că $1 + \frac{1}{e} + \frac{1}{e^2} + \dots + \frac{1}{e^n} = \frac{e}{e-1} \left(1 \frac{1}{e^{n+1}} \right), \forall n \in \mathbb{N}^*.$
- **(4p)** c) Să se calculeze $\lim_{n \to \infty} \left(1 + \frac{1}{e} + \frac{1}{e^2} + ... + \frac{1}{e^n} \right)$.
- (2p) d) Să se calculeze $\lim_{n\to\infty} f(x \cdot e^{-n-1}), x \in \mathbf{R}$
- (2p) e) Să se arate că $f\left(\frac{x}{e}\right) f\left(\frac{x}{e^2}\right) = \frac{x}{e}, \ \forall x \in \mathbf{R}$.
- (2p) f) Să se arate că $f\left(\frac{x}{e^n}\right) f\left(\frac{x}{e^{n+1}}\right) = \frac{x}{e^n}, \ \forall \ x \in \mathbb{R}, \ \forall \ n \in \mathbb{N}.$
- (2p) g) Să se determine f(x), $x \in \mathbb{R}$.

2