

计算机网络

2019年4月软件与微电子学院

教学目标

- ▶理论学习:较为系统地学习计算机网络的基本工作原理,掌握计算机网络的体系结构、网络协议、网络互联等方面的知识,了解新的网络技术。
- ▶上机实验:通过实验实践教学环节,使学生更进一步认识和理解计算机网络相关理论,初步掌握路由器等网络设备的配置。

教材及参考书

> 教材

- ◆ 计算机网络: 自顶向下方法 (第7版) James F. Kurose (陈鸣 译) 机械工业出版社
- ◆ Computer Networking: A Top Down Approach, 6th Edition, James Kurose, Keith Ross, Addison-Wesley, March 2012

多参考书

- ◆ 计算机网络 Tanenbaum A .S.著,潘爱民译,清华大学出版社
- ◆ 计算机网络 谢希仁 著,电子工业出版社

课程成绩构成

课程考核

- ▶ 出勤与作业 (10%)
- > 实验成绩 (20%)
- ▶期末成绩 (70%)

学习资料获取

> 学院FTP

课程内容

- > 第1章 计算机网络和因特网 (4学时)
- ▶第2章 应用层 (4学时)
- ▶第3章 运输层 (10学时)
- ▶第4章 网络层 (10学时)
- > 第5章 链路层和局域网 (10学时)
- > 第6章 无线网络和移动网络(2学时)

第1章 计算机网络和因特网

第1章 计算机网络和因特网

我们的目标:

- ▶找到"感觉",学习术 语
- ▶ 在后面的课程中更深入 地学习,更为细致
- 方法:使用因特网为例子

概述:

- > 什么是因特网
- > 什么是协议
- > 网络边缘
- > 网络核心
- ▶ 因特网/ISP结构
- ▶ 性能: 丢包率, 时延, 吞吐量
- > 协议层次,服务模型
- > 安全

- ▶1.1 什么是因特网?
- ▶1.2 网络边缘
- ▶1.3 网络核心
- >1.4 分组交换网络中的时延、丢包和吞吐量
- >1.5 协议层次和它们的服务模型
- ▶1.6 因特网的历史和安全

计算机网络的定义

计算机网络的定义:将分布在不同地理位置上的具有独立工作能力的计算机、终端及其附属设备用通信设备和通信线路连接起来,并配置网络软件,以实现计算机资源共享的系统。

- ◆构成要素: 计算机, 通信线路, 软件(协议)
- ◆主要用途:资源共享(数据,软件,硬件)

什么是因特网: "具体构成"观点

▶联网设备: PC, Server,

Laptop, Smartphone, etc

◆主机=端系统,运行协议

和标准

◆由ISP提供联网服务

通信链路: 光纤,铜缆,无线电,

卫星, etc

◆传输速率:带宽

分组交换机:路由器和链路层交换机

什么是因特网: "服务描述"观点

Internet:为应用程序提供服务的基础设施。

什么是因特网

因特网="网络的网络"

RFC.1122, Requirements for Internet Hosts -- Communication Layers, 1.1.2 Architectural Assumptions, 1989: 是网络与网络之间所串连成的庞大网络,这些网络以一组标准的网络协议族(e.g., TCP/IP)相连,连接全世界几十亿个设备,形成逻辑上的单一巨大国际网络。

网络协议:控制报文发送,接收。

- ◆ 类型: TCP, IP, HTTP, FTP, P2P, Skype, 802.11 etc。
- ◆制定: RFC, IETF, IEEE, 等

什么是协议

人类协议 vs.计算机网络协议:

协议定义了在两个或多个通信实体之间交换 的报文格式和次序,以及在报文传输和接收 或其它事件方面所采取的动作

- ▶1.1 什么是因特网?
- ▶1.2 网络边缘
- ▶1.3 网络核心
- ▶1.4 分组交换网络中的时延、丢包和吞吐量
- >1.5 协议层次和它们的服务模型
- ▶1.6 因特网的历史和安全

网络边缘

- > 网络边缘
 - ◆端系统和应用程序
 - ◆接入网,链路
- > 网络核心
 - ◆电路与分组交换
 - ◆网络结构

网络边缘

▶端系统(主机):

- ◆运行应用程序
- ◆例如Web, 电子邮件
- ◆在"网络边缘"

>客户机/服务器模式:

- ◆客户机主机请求,从总是开的服 务器接收服务
- ◆例如Web浏览器/服务器; 电子邮件客户机/服务器

▶ 对等模式(peer-peer model):

- ◆最小限度(或不)使用专用服务器
- ◆ 例如BitTorrent, KaZaA, Skype

接入网

问题: 端系统怎样连接到边缘路由器?

- 〉住宅接入网络
- > 公司接入网络(学校,公司)
- > 移动接入网络

需要注意的是:

- ▶接入速率: bps
- ▶ 共享 vs.专用

接入网:拨号调制解调器

经调制解调器拨号

- ◆最高达56Kbps直接接入到路由器(经常较少)
- ◆不能同时上网和打电话:不能"总是在线"

接入网:非对称数字用户线路(ADSL)

ADSL(Asymmetric Digital Subscriber Line)

- ◆2.5Mbps上行速率,24Mbps下行速率(ITU 2003)
- ◆FDM: 0-4KHz用于普通电话; 4-50KHz用于上行; 50KHz-1MHz用于下行

19

接入网:电缆接入

- 定义: 利用有线电视公司现有的有线电视网络。因为经常采用 光纤和同轴电缆,又称为HFC(混合光纤同轴)
- ▶ 特点: 不对称:最高达42.8Mbps下行, 30.7 Mbps上行(DOCSIS2.0)

接入网:无线接入

- ▶ 无线局域网(Wireless LAN)
- ◆传输距离:几十米
- ◆传输速率: 802.11b/g (WiFi) 11~54Mbps
- ➤ 广域网 (Wide-area Wireless Access) : 3G, 4G
- ◆覆盖范围: 几十公里
- ◆传输速率: 1~10Mbps

to Internet

接入网: 以太网

主要应用于企业和学校等机构

- ◆ 提供10 Mbps, 100Mbps, 1Gbps, 10Gbps 的数据传输速率
- ◆端系统通过以太网交换机接入网络 Introduction

接入网:家用网

接入网: 物理媒体

同轴电缆

- > 两根同中心的铜导体
- 双向传输,可以容纳多个 信道

双绞线 (TP)

- > 两根绝缘铜线: 3类线, 5类线
- ► 屏蔽或非屏蔽双绞线: STP-屏 蔽双绞线; UTP-非屏蔽双绞线

光纤电缆

- 承载光脉冲的玻璃纤维,每 个脉冲一个比特
- > 速度高低误码率

无线电:

- ▶ 陆地微波, LAN (如 WiFi), 广域 (如蜂窝), 卫星
- > 易受干扰

分类与指标: 导引型媒体 vs 非导引型媒体; 带宽&

误码率:速度和可靠性

- ▶1.1 什么是因特网?
- ▶1.2 网络边缘
- ▶1.3 网络核心
- ▶1.4 分组交换网络中的时延、丢包和吞吐量
- >1.5 协议层次和它们的服务模型
- ▶1.6 因特网的历史和安全

网络核心

网络核心: 由互联因特网端系统的分组交换机和链路构成的网状网络。

主要作用:建立传输传输的通道

- ◆电路交换:专用线路
- ◆分组交换: 非专用线路

网络核心: 电路交换

电路交换特征

- ▶ 面向连接:建立连接→通信→ 释放连接
- > 资源独占: 非共享 性能有保障
- ➤ 多链路支持: 正交复用 FDM, TDM, CDM
- > 链路有可能闲置

固网电话方法: 电路交换

网络核心: 电路交换

一个例子: 从主机A到主机B经一个电路交换网络发送一个640,000 比特的文件需要多长时间?

- ◆所有链路是1.536 Mbps
- ◆每条链路使用具有24个时隙的TDM
- ◆创建端到端电路需500 msec

计算结果:

Time=640000/(1.536 Mbps/24)+0.5 s=10.5 s

电路交换适合传送计算机数据吗?

网络核心: 分组交换

发送端把较长的报文划分为分组,加上首部后依次传送出去

接收端收到分组后剥去首部还原成报文

网络核心: 分组交换

存储转发:路由器收到一个L长分组,先暂时存储 下来,再检查其首部,查找转发表,。

- ▶ 传输(推出)L个比特到速率为R bps链路上,需要L/R秒
- ➤ N条串行级联链路: 时延 = NL/R (假设传播延迟为 0)

思考题P个分组经过N条链路序列的时延

网络核心: 分组交换

例子: 1 Mbps链路,每个用户仅在10%的时间活跃且此时的数据速率为100 kbps电路交换:

- ◆ 电路交换: ≤10用户
- ◆ 分组交换: 总计有有35个 用户,11个以上活跃用户冲 突概率 ≈0.0004

复用 (资源共享)

- ◆比传统时分复用提高效率2-4倍
- ◆带来竞争 (拥塞),<u>产生时延</u>

$$P = C_{35}^{n} 0.1^{n} \bullet (1 - 0.1)^{35 - n}$$

网络核心: 分组交换与电路交换对比

- ▶连接:分组交换不需建立连接,更简单;电路 交换需要建立连接,通信,释放连接
- ▶效率:分组交换采用统计时分复用共享带宽资源(高);电路交换通信期间独占资源(低)
- 灵活: 分组交换采用存储转发,可动态选择路径; 电路交换采用电路连接,路径保持不变
- ▶时延:分组交换由于存在竞争和拥塞,时延性 能不能保证;电路交换时延可以保证

- ▶1.1 什么是因特网?
- ▶1.2 网络边缘
- ▶1.3 网络核心
- >1.4 分组交换网络中的时延、丢包和吞吐量
- >1.5 协议层次和它们的服务模型
- ▶1.6 因特网的历史和安全

丢包和时延是怎样出现的?

分组在路由器缓存中排队

- > 分组到达链路的速率超过输出链路能力
- > 分组排队,等待交换,出现时延;排队过长,出现丢包

空闲(可用)缓存:如果无空闲缓存则到达的分组丢失(丢包)

- ▶ 1.节点处理时延:检查比特差错;决定输出链路
- ▶ 2. 排队时延: 等待输出链路传输的时间取决于路由器拥塞的等级

分组时延的4种来源

▶3.传输时延

- ◆R= 链路带宽 (bps)
- ◆L= 分组长度(比特)
- ◆发送比特进入链路的时间= L/R

▶4.传播时延

- ◆d=物理链路的长度
- ◆s = 在媒体中传播的速度 (约3x10⁸m/sec)
- ◆传播时延 = d/s

节点总时延

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- ► d_{proc} = 处理时延
 - ◆通常几个微秒或更少
- ► d_{queue} = 排队时延
 - ◆与流量强度有关: Lα/R

- ➤ d_{trans} = 传输时延
 - ◆= L/R, 对低速链路很大
- ► d_{prop} = 传播时延
 - ◆几微秒到几百毫秒

"实际的"因特网时延和路由

➤ Traceroute原理:发送探测分组,到达路由器后, 返回响应,测量时间,重复三次

▶使用Traceroute(Window下为Tracert)程序验证

```
C:\VINDOVS\system32\cmd.exe
D : \>
D:\>tracert www.163.com
Tracing route to 163.xdwscache.glb0.lxdns.com [182.140.236.27]
over a maximum of 30 hops:
  1
       11 ms
                 10 ms
                           12 ms
                                  100.64.0.1
       18 ms
                 24 ms
                           17 ms
                                  100.64.0.1
  3
                                  118.117.93.229
                  9 ms
                           10 ms
       11 ms
                                  171.208.202.173
       16 ms
                 15 ms
                          19 ms
  5
                                  118.123.217.178
       37 ms
                 15 ms
                          14 ms
       16 ms
                                  118.123.217.46
       16 ms
                 16 ms
                          15 ms
                                  218.6.174.6
       22 ms
                 42 ms
                           71 ms
                                  182.140.236.27
Trace complete.
D = \>_
```

分组丢失

- >缓存区满,分组被丢弃(丢包率)
- > 丢失后处理: 重传或放弃

吞吐量

端到端吞吐量:单位时间内成功地传送数据的数量

- ◆和带宽的区别,单位相同,但链路带宽是链路的能力,为设 计值; 吞吐量是实际测试的传输速率
- ◆瞬时吞吐量, 平均吞吐量

server sends bits (fluid) into pipe

pipe that can carry fluid at rate R_s bits/sec)

pipe that can carry fluid at rate R_c bits/sec)

吞吐量

▶当Rs < Rc 时, 平均端到端吞吐量为?

▶当Rs>Rc时,平均端到端吞吐量为?

瓶颈链路

端到端链路制约了端到端的吞吐量

吞吐量: 因特网实际情况

- ▶每个连接的端到端吞吐量: min(R_c,R_s,R/10)
- ➤实际上: R_c和R_s通常 是瓶颈

10 connections (fairly) share backbone bottleneck link R bits/sec

- > 端系统通过接入ISPs (Access Internet Service Providers)接入因特网:家用和机构ISP
- > 接入ISPs必须互联:以保证互联网中任意两个主机能够互联;
- > 大规模连接使得整个网络及其复杂;

问题:如何将数以百万计的接入ISPs互联?

解决方案: 在任意两个接入ISP之间建立互联线路

解决方案: 建立全球ISP, 为所有的接入ISP提供互联互通服务

- > 全球ISP方案固有的弱点:安全和隐私
- ▶ ISP公司倾向于自建全球ISP

而隶属不同运营商的全球ISP必须互通互联

现实中有可能存在区域网络需要ISP

··· 并且各内容提供商(content provider)倾向于建立自有的网络, e.g. Google, Microsoft, Akamai

at center: small number of well-connected large networks

- "tier-1" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national
 & international coverage
- content provider network (e.g, Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs

List of tier 1 networks [edit]

These networks are recognised by the Internet community as tier 1 networks, even if some of them appear to have transit providers in CAIDA ranking.

Name \$	Headquarters ♦	AS number \$	January 2015 degree ^{[8][9]}	Peering policy \$		
AT&T ^[10]	United States	7018	2403	AT&T Peering policy®		
Cogent Communications (formerly PSINet)[11]	United States	174	4212	Cogent Peering Policy®		
CenturyLink (formerly Qwest)[12]	United States	209	1580	Qwest Peering Policy&		
Deutsche Telekom ^[13]	Germany	3320	557	DTAG Peering Details		
Global Telecom & Technology (GTT) (formerly Tinet & nLayer) ^[14]	United States - Italy	3257	1432	GTT Peering Policy®		
Hurricane Electric IPv6 Network (AS- HURRICANEv6) ^[15]	United States	6939	2790	Hurricane Electric Peering Policy년		
Level 3 Communications (formerly Level 3 and Global Crossing)[16][17]	United States	3356 / 3549 / 1	4260	Level 3 Peering Policy®		
NTT Communications (America) (formerly Verio)[18]	Japan	2914	1279	North America⊌		
Orange (OpenTransit) ^[19]	France	5511	143	OTI peering policy&		
Tata Communications (America) (Acquired Teleglobe) ^[20]	India	6453	653	Peering Policy⊌		
Telecom Italia Sparkle (Seabone) ^[21]	Italy	6762	489	Peering Policy⊌		
Telefonica Global Solutions [22]	Spain	12956	174	Telefonica Peering Policy 🔼		
TeliaSonera International Carrier ^[23]	Sweden - Finland	1299	1139	TeliaSonera International Carrier Global Peering Policy		
Verizon Enterprise Solutions (formerly UUNET) [24][25][26]	United States	701 / 702 / 703	1373	Verizon UUNET Peering policy 701, 702,		
NO Communications ^[27]	United States	2828	1159	XO Peering Policy®		
Zayo Group (formerly AboveNet) ^[28]	United States	6461	1489	Zayo Peering Policy®		

from wikipedia

- ▶1.1 什么是因特网?
- ▶1.2 网络边缘
- ▶1.3 网络核心
- >1.4 分组交换网络中的时延、丢包和吞吐量
- ▶1.5 协议层次和它们的服务模型
- ▶1.6 因特网的历史

协议"分层"

网络是复杂的!

许多"构件": 主机,路由器,各种媒体的链路,应用程序,协议,硬件,软件

问题:

问题就是有没有一种结构化的东西来描述/构建Internet?

协议分层体系结构

航班功能的分层

- 层次: 每一层实现一种服务
- > 由层内动作完成服务
- > 每层依赖下面层次提供的服务

分层的好处

分层的好处

- > 明确的结构有利于理解复杂系统构件的关系
- > 灵活性好
- > 模块化易于实现和维护
- > 能促进标准化工作

分多少层合适

- > 层数太少,就会使每一层的协议太复杂。
- ▶ 层数太多又会在描述和综合各层功能的系统工程任务时 遇到较多的困难

OSI七层模型与TCP/IP五层模型

OSI 的体系结构

表示层:把数据转换为能与 接收者的系统格式兼容并适 合传输的格式

会话层:负责在数据传输中 设置和维护电脑网络中两台 电脑之间的通信连接。

开发者在应用程序中实现

TCP/IP 的体系结构

b 应用层 (各种应用层协议如 TELNET, FTP,

- SMTP 等) ———— ⁴ 运输层(TCP等)
- 3 网络层 IP
- 2 链路层
- 1 物理层

TCP/IP五层模型

- ▶ 应用层:包含大量应用普遍需要的协议,支持网络应用
 - ◆ FTP, SMTP, HTTP
- 运输层: 主机到主机数据传输,负责从应用层接收消息,并传输应用层的message,到达目的后将消息上交应用。
 - ◆ TCP, UDP
- > 网络层: 从源到目的地数据报的选路
 - ◆IP, 选路协议
- > 链路层: 在邻近网络节点之间传输数据
 - ◆ PPP, 以太网
- ▶ 物理层: 物理层负责将链路层帧中每一位(bit) 从链路的一端传输到另一端。

应用层

运输层

网络层

链路层

物理层

封装

- ▶1.1 什么是因特网?
- ▶1.2 网络边缘
- ▶1.3 网络核心
- >1.4 分组交换网络中的时延、丢包和吞吐量
- >1.5 协议层次和它们的服务模型
- ▶1.6 计算机网络历史

互联网的历史

国际互联网的发展:

- ▶ 1961-1990: 构思与成熟 (军转民) 分组交换协议; ARPAnet; 网络控制协议 (NCP)
- ▶ 1990-2000: 飞速发展 欧洲核子研究中心 (CERN): WWW; 电子邮件; 浏览器; 在线商务;
- ➤ 2000-至今: 互联网 (Internet) →物联网 (Internet of Things)

互联网的历史

- >第一阶段为1986年至1996年起步阶段
- ◆ 1987年9月14日发出了中国第一封电子邮件: "Across the Great Wall we can reach every corner in the world."
- ◆ 1994年通过美国Sprint公司连入Internet的64K国际专线开通
- ◆ 1995年5月,中国电信开始筹建计中国自有算机互联网(CHINANET)
- ▶第二阶段为1997至今,快速增长
- ◆ 2000年5月17日,中国移动互联网(CMNET)投入运行
- ◆ 2001年12月22日,中国联通CDMA移动通信网一期工程如期建成
- ◆ 2003年4月9日,中国网通集团从中国电信集团拆分出来

Rank by Revenue +		Company +	Industry +	Revenue (\$B) +	FY ÷	Employees +	Market Cap (\$B) +	Headquarters +
1		Amazon	E-Commerce, Cloud	\$177.86	2017	541,900	\$737.692	Seattle, WA, USA
2		Google	Search, Cloud, Advertising	\$110.8	2017	80,110	\$780.601	Mountain View, California, USA
3		Facebook	Social	\$40.65	2017	25,105	\$528.22	Menlo Park, CA, USA
4	*3	JD.com	E-commerce	\$37.5	2016	137,975	\$67.54	Beijing, China
5	*3	Tencent	Social	\$21.90	2016	38,775	\$515.31	Shenzhen, Guangdong, China
6	*)	Alibaba	E-commerce	\$15.69	2016	50,092	\$478.09	Hangzhou, Zhejiang, China
7		Priceline Group	Travel	\$12.23	2017	18,500 ^[13]	\$92.94	Norwalk, CT, USA
8	*)	Baidu	Search	\$10.16 ^[15]	2016	45,887	\$88.11	Beijing, China
9		eBay	E-commerce	\$8.98	2016	12,600	\$43.73	San Jose, CA, USA
10		Netflix	Entertainment	\$11.7	2017	3,500	\$128.05	Los Gatos, CA, USA

常见的网络攻击方式

- > 病毒virus
- ▶ DOS攻击
- > IP地址欺骗和IP包替换
- > 口令破解
- 多窃听

- > 防火墙
- ▶入侵检测系统 (IDS)
- ▶入侵防御系统 (IPS)
- > VPN产品
- > 防病毒软件

本章小结与作业

重要内容:

- > 常用的物理媒体的特点。
- > 电路交换和分组交换要点。
- > 分组交换网络中的4种类型的时延。
- 因特网协议栈自顶向下的5个层次及各层的主要功能;各层数据单元。

作业:

- ▶ 复习回顾: R11, R13, R19, R23, R25, P3;
- ➤ 课后思考: P6+P7, P8, P15, P16, P27, P31;