习题课

Exercise 1

试用一阶语言将以下的推理符号化, 并试用系统 G 给出形式证明:

所有的狗都不吃鱼. 没有一只猫不吃鱼. 故没有一只狗是猫.

解:

先进行形式化:

设一元谓词 d(x) 指 x 为狗. c(x) 指 x 为猫. e(x) 指 x 吃鱼.

所有的狗都不吃鱼: $\forall x (d(x) \rightarrow \neg e(x))$

没有一只猫不吃鱼: $\neg \exists x (c(x) \rightarrow e(x))$

没有一只狗是猫: $\neg \exists x (d(x) \land c(x))$

即要推导 $\forall x(d(x) \rightarrow \neg e(x)), \neg \exists x(c(x) \rightarrow e(x)) \vdash \neg \exists x(d(x) \land c(x))$

使用 G 系统推出证明树即可

 $\dfrac{\cdots}{orall x(d(x)
ightarrow
eg (x)),
eg \exists x(c(x)
ightarrow e(x)) dash
eg \exists x(d(x) \land c(x))}$

Exercise 2

证明任何协调集都可以拓展成为最大协调集.

证明:

假设所有公式组成的集合为 $\{A_1,A_2,\cdots\}$, $\mathcal L$ 的任意一个协调公式集为 Γ ,下面证其可以扩张为一个极 大协调公式集 Γ' .

进行数学归纳:

奠基 (Basic): 当 n=0 时, $\Gamma_0=\Gamma$, 易知 $Con(\Gamma_0)$

归纳假设 (I.H.): 假设当 n-1 时, 有 $Con(\Gamma_{n-1})$

归纳步骤 (I.S.):

由归纳假设可知 $Con(\Gamma_{n-1})$

若 $Con(\Gamma_{n-1} \cup \{A_n\})$, 则令 $\Gamma_n = \Gamma_{n-1} \cup \{A_n\}$

若 $Incon(\Gamma_{n-1} \cup \{A_n\})$, 则令 $\Gamma_n = \Gamma_{n-1}$

所以可知 $Con(\Gamma_n)$

归纳成立.

$$\diamondsuit \Gamma' = \Gamma_0 \cup \Gamma_1 \cup \Gamma_2 \cup \cdots \cup \Gamma_n \cup \cdots$$

下面证明 Γ' 极大协调.

由归纳的步骤我们可知,对于任何一个公式 A_n :

$$Con(\Gamma' \cup \{A_n\}) \Rightarrow Con(\Gamma_{n-1} \cup \{A_n\}) \Rightarrow A_n \in \Gamma_n \Rightarrow A_n \in \Gamma'$$

即对任何公式 A 均有若 $Con(\Gamma' \cup \{A\})$ 则 $A \in \Gamma'$

所以 Γ' 极大协调, 即

一阶语言 $\mathcal L$ 的一个协调公式集 Γ 均可扩张为 $\mathcal L$ 的一个极大协调公式集 Γ' .

Exercise 3

$$\Gamma = \{ \neg (x \doteq S^n(0)) | n \in \mathbb{N} \}$$

(1)

证明 Γ 在标准算术模型中不可满足.

证明:

反设 $M \models_{\sigma} \Gamma$

设
$$k = \sigma(x) \in \mathbb{N}, N = \{\mathbb{N}, 0\}$$

从而 $k \neq n$ 对于 $\forall n \in \mathbb{N}$, 产生矛盾.

(2)

证明 Γ 可满足.

证明:

设 S 为 Γ 的任意一个有穷子集

从而可设 $S\subseteq \{\neg(x\doteq S^n(0))|n\leqslant k\}$, 其中 $k\in\mathbb{N}$

令 $\sigma(x) = k + 1$ 从而 $M \models_{\sigma} S$, 从而可满足.

由紧性定理可知, Γ 可满足.

Exercise 4

用一阶语言描述极限存在的定义.

Exercise 5

证明 $\forall x P(x,x), \forall x y z (P(x,y) \land P(y,z) \rightarrow P(x,y)) \vdash \forall x \forall y (P(x,y) \rightarrow P(y,z))$ 不可证. 构造模型 $M = (\{0,1\},\leqslant)$

显然这个模型不能使该矢列满足,则该矢列不可证.

Exercise 6

证明若一阶语言句子集 Σ 具有论域基数可为任意大自然数的模型,则 Σ 具有一个论域为无穷集的模型.

证明:

$$\diamondsuit arphi_n riangleq \exists x_1,...,x_n. igwedge_{1 \leq i < j \leq n} \lnot (x_i \doteq x_j)$$

易见 $\mathfrak{M} \models \varphi_n \Leftrightarrow |M| \geq n$

 $\mathfrak{M} \models \{\varphi_i | i \in \mathbb{N}^+\} \Leftrightarrow |M| \geq \aleph_0$

令 $\Gamma \triangleq \Sigma \cup \{ arphi_i | i \in \mathbb{N}^+ \}$,对于任何 Γ 的

有穷子集 $\Delta\subseteq\Sigma\cup\{arphi_i|i\in\mathbb{N}^+\}$, 存在 k 使

 $\Delta \subseteq \Sigma \cup \{\varphi_1, ..., \varphi_k\},\$

由于 Σ 具有论域基数大于 k 的模型, 故 Δ 可满足,

由紧致性定理知 Γ 可满足, 那么有, $\mathfrak{M} \models \Gamma$

从而 $\mathfrak{M} \vDash \{\varphi_i | i \in \mathbb{N}^+\}$, 故 $|M| \ge \aleph_0$.

Exercise 7

证明 $\models \exists x \forall y P(x, y) \rightarrow \forall y \exists x P(x, y).$

证明:

设 3 为任何模型.

 $\mathfrak{M} \models \exists x \forall y P(x, y),$

存在 $a \in M$ 对任何 $b \in M$ 有 $\langle a,b \rangle \in P_{\mathfrak{M}}$

 \Rightarrow

对任何 b 存在 a (取上面的 a) 使得

$$\langle a,b \rangle \in P_{\mathfrak{M}} \Rightarrow \mathfrak{M} \models \forall y \exists x P(x,y)$$

另一种证法:

要证 $\models \exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$, 由 Completeness 知

只需证 $\vdash \exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$

$$\frac{\frac{P(t,u), \forall y P(t,y) \vdash P(t,u), \exists x P(x,u)}{P(t,u), \forall y P(t,y) \vdash \exists x P(x,u)} \exists R}{\frac{\forall y P(t,y) \vdash \exists x P(x,u)}{\forall y P(x,y) \vdash \forall y \exists x P(x,y)}} \forall R}{\frac{\forall y P(t,y) \vdash \forall y \exists x P(x,y)}{\exists x \forall y P(x,y) \vdash \forall y \exists x P(x,y)}}{\vdash \exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)} \rightarrow R$$

$$\therefore \vdash \exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$$

$$\therefore \models \exists x \forall y P(x,y) \rightarrow \forall y \exists x P(x,y)$$

Exercise 8

证明 $\not\models \forall x \exists y P(x,y) \rightarrow \exists y \forall x P(x,y)$.

证明:

构造模型 $\mathfrak{M} = (\mathbb{N}, <), P_M = \{(a.b)|a < b\}$

即可证明其不满足.

Exercise 9

只需证每个有穷图可 4 色则无穷图可四色.

设 MAP 为一张无穷地图, 令全体国家的集合为

 $\{a_i|i\in I\}$, 这里 $|I|\geq \aleph_0$.

设一阶语言 \mathcal{L} 由以下构成

- 1. 常元: $\{a_i|i\in I\}$
- 2. 一元谓词符: $C_k(x)(k=1,2,3,4)$ $(C_k(x)$ 表示x着k色)
- 3. 二元谓词符: q(x,y) (q(x,y) 表示 x = 0 有大于 0 的公共边界).

令 $Q \triangleq \{ < i, j > | i, j \in I \}$ 且在 MAP 中 a_i 与 a_j 有大于 0 的公共边界.

设 $S \subseteq \Gamma$ 为 Γ 的任何有穷子集, 不妨设 $\{a_0,...,a_n\}$

为出现在 S 中的全体常元, 令 $M=\{a_0,...,a_n\},MAP[s]$ 为 $\{a_0,...,a_n\}$ 的生成子图. 从而 MAP[s] 可着 4 色.

 $\Leftrightarrow (C_k)_{\mathfrak{M}} \triangleq \{a_i | a_i \stackrel{.}{=} k \otimes i \leq n\}, k = 1, 2, 3, 4$

$$q_{\mathfrak{M}} = \{ < a_i, a_j > | < i, j > \in Q \}$$
 从而 $\mathfrak{M} \vDash S$

由 compactness 知有 \mathfrak{M} 使 $\mathfrak{M} \models \Gamma$ 即 MAP 可 4 染色.

PS: Exercise 6 和 Exercise 9 的证明来源于网络.