1) Investigar y explicar 10 librerías de programación diferentes que no sean CUDA para programar el GPU.

R:

- NVIDIA NvGraph
 - Se utiliza para paralelización de grafos que contienen muchas aristas o nodos.
- OpenCV
 - Es una librería open source, se especializa en machine learning y procesamiento de imágenes.
- cuSolver
 - o Librería que se especializa en entregar soluciones de optimización lineal.
- cuDNN
 - Se enfoca en redes neuronales.
- Thrust
 - Librería que paraleliza diferentes estructuras de datos en GPU.
- MGPU
 - o Exclusivo para implementación de aplicaciones que utilizan multi-GPU.
 - Aún continúa en fase alfa.
- Sh
- Está basado en el proyecto RapidMind de Intel, la cual le daba mantenimiento a esta librería hasta el 2010
- Geometric Performance Primitives
 - Librería para la modelación de circuitos integrados.
- GIE
 - Es utilizada para simular la inferencia de las redes neuronales, es un proyecto que aún está en desarrollo pero de puede tener acceso e inclusive colaborar en el proyecto.
- Boostorg
 - Librería parecida a OpenCl implementada exclusivamente a C++ y es proyecto open source.
- 2) Investigar y explicar 5 librerías de programación diferentes que no sean OpenCL para programación de cómputo heterogéneo CPU+GPU.

- GPipe
 - Está basado en OpenCL pero excluye la imperatividad de la máquina de estados.
- MAGMA
 - Librería de programación de regresiones lineales, el cual intenta aprovechar los que es el poder del CPU y GPU.
- HIPLAR (for R)
 - Está hecho para hacer operaciones lineales de manera rápida y eficaz, en arquitecturas mixtas (GPU+CPU), exclusivo para el lenguaje R.
- NVBIO

 Utilizada para el análisis de secuencias de alto rendimiento, es una librería modular.

Bolt

- o Librería que permite la compatibilidad de la STL en desarrollos de GPU.
- 3) Investigar y explicar 10 diferentes bindings de CUDA, es decir, explicar en qué otros lenguajes de programación diferentes a C y C++ se puede acceder a la aceleración de GPU con CUDA y cómo.

R:

Alea GPU

- Librería que está especializada en el lenguaje C# para la integración con .NET.
- Se puede utilizar como extensiones de Visual Studio descargadas por NuGet.

ArrayFire

- Librería open source, hecha en base a C, pero se puede utilizar en Python,
 Fortran , Java y R.
- o Se puede instalar en cualquier computadora, desde el sitio web de la librería

Paralution

- Es una librería open source, tiene soporte para CUDA y OpenGl, basado en C++
 pero tiene soporte para lenguajes como Fortran.
- Se puede descargar de la página oficial de la librería, se puede elegir utilizar la versión open source o la versión de paga.

Cula-Tools

- Es una librería para hacer cálculos lineales, utiliza CUDA y está desarrollado para uso en C++, pero se puede utilizar para Python, Fortran y Matlab.
- Se puede bajar la versión básica desde la página de CULA Tools, existen las versiones CULA Premium y CULA Commercial que son de paga.

cuBLAS

- Es una librería para realizar subrutinas de álgebra, es una parte de lo que sería la librería completa de BLAS, está diseñado para lenguajes de la familia C, pero se puede utilizar con Fortran.
- Viene integrado con el CUDA Toolkit 7.5 y 8.

pyCUDA

- Es la librería de CUDA haciendo un binding directo a lo que es Python.
- Por consola usando la instrucción pip install -y pyCUDA, tener cuidado de la versión de python se está instalando, ya que puede estar disponible únicamente para python3.

Julia GPU

- Es la librería OpenCl adaptada al desarrollo de Matlab.
- Se puede instalar siguiendo las instrucciones que se encuentran en el repositorio de Github.

SGC Ruby

Es la librería de CUDA para implementar dentro de Ruby.

o Requiere que el GPU y CUDA estén habilitados, puede encontrarse en el repositorio de Github.

JCUDA

- o Librería para implementar operaciones de CUDA en el lenguaje JAVA.
- o Requiere que el GPU y CUDA estén habilitados.

Accelerate HS

- Librería para implementar operaciones de CUDA en el lenguaje Haskell.
- Se encuentra en el repositorio de Github.
- 4) Investigar y explicar las diferencias entre las versiones 1.X, 2.X, 3.X, 4.X, 5.X, 6.X, 7X y 8X de CUDA.

Table 11 Feature Support per Compute Capability

Feature Support			Comp	ute Cap	ability		
(Unlisted features are supported for all compute capabilities)	1.0	1.1	1.2	1.3	2.x	3.0	3.5, 5.0
Atomic functions operating on 32-bit integer values in global memory (Atomic Functions)	No			V	es		
atomicExch() operating on 32-bit floating point values in global memory (atomicExch())	NO			(10	es		
Atomic functions operating on 32-bit integer values in shared memory (Atomic Functions)							
atomicExch() operating on 32-bit floating point values in shared memory (atomicExch())	No		Yes				
Atomic functions operating on 64-bit integer values in global memory (Atomic Functions)							
Warp vote functions (Warp Vote Functions)							
Double-precision floating-point numbers		No			Y	es	
Atomic functions operating on 64-bit integer values in shared memory (Atomic Functions)							
Atomic addition operating on 32-bit floating point values in global and shared memory (atomicAdd())							
ballot() (Warp Vote Functions)							
threadfence_system() (Memory Fence Functions)		N	lo			Yes	
syncthreads_count(),syncthreads_and(),							
syncthreads_or() (Synchronization Functions)							
Surface functions (Surface Functions)							
3D grid of thread blocks							
Unified Memory Programming			No			Y	es
Funnel shift (see reference manual)		Ĉes .	N	lo			Yes
Dynamic Parallelism							

				C	ompu	ite ca	apabi	lity (v	versi	on)			
Architecture specifications	1.0	Compute capability (version) 1.1 1.2 1.3 2.0 2.1 3.0 3.5 3.7 5.0 5.0 8[19]	5.2	6.0	6.1								
Number of ALU lanes for integer and single-precision floating-point arithmetic operations	8 ^[19] 32 48 192 12		28	64	128								
Number of special function units for single-precision floating-point transcendental functions	2 4 8			32			16	32					
Number of texture filtering units for every texture address unit or render output unit (ROP)	2 4 8 16				8								
Number of warp schedulers	rp schedulers 1		1		2		4				2	4	
Number of instructions issued at once by scheduler	1 2[20]		[20]										

5) Buscar y mostrar la lista de todos los modelos de tarjetas de video que soportan programación con CUDA. Hacer la lista indicando el número de CUDA cores de cada una de forma descendente

R

Nota: Las tarjetas que están marcadas con NA son tarjetas de las cuales no se encontró la información pertinente.

Tarjeta	# Cores	Tarjetas	# Cores	Tarjetas	# Cores
GeForce GTX TITAN Z	5760	GeForce GTX 760M	768	GeForce GTX 465	352
GeForce GTX TITAN X	3072	GeForce GTX 650	768	Quadro 5000	352
GeForce GTX 690	3072	GeForce GTX 950	768	GeForce GTX 460	336
GeForce GTX 780Ti	2880	GeForce 8800 Ultra	612	GeForce GTX 670M	336
GeForce GTX TITAN	2688	GeForce GTX 750Ti	640	GeForce GTX 560	336/288
GeForce GTX 780	2304	GeForce 8800 GTX	575	GeForce 9800 GX2	256
GeForce GTX 980	2048	GeForce GTX 750	512	Quadro 4000	256
GeForce	1664	GeForce	512	GeForce	240

GTX 970		GTX 580		GTX 285	
GeForce GTX 770	1536	GeForce GTX 570	480	GeForce GTX 280	240
GeForce GTX 680	1536	GeForce GTX 480	480	GeForce GTX 275	240
GeForce GTX 880M	1536	GeForce GTX 295	480	Quadro FX 5800	240
GeForce GTX 780M	1536	Quadro Plex 1000 Model IV	480	Tesla M1060	240
GeForce GTX 680MX	1536	GeForce GTX 470	448	Tesla C1060	240
GeForce GTX 680M	1344	Quadro 6000	448	GeForce GTX 550	192
GeForce GTX 670	1344	Tesla C2050	448	GeForce GTS 450	192
GeForce GTX 760	1152	GeForce GT 640	384	GeForce GTX 260	192
GeForce GTX 960	1024	GeForce GTX 675M	384	GeForce GTX 560M	192
GeForce GTX 590	1024	GeForce GTX 660M	384	Quadro FX 4800	192
GeForce GTX 770M	960	GeForce GT 650M	384	Quadro FX 3800	192
GeForce GTX 675MX	960	GeForce GT 645M	384	GeForce GT 555M	up to 144

GeForce GTX 670MX	960	GeForce GT 640M	384	GeForce GTS 250	128
Quadro Plex 1000 Model S4	960	GeForce GTX 580M	384	GeForce 9800 GTX+	128
GeForce GTX 765M	768	GeForce GTX 570M	336	GeForce 9800 GTX	128
Tarjetas	# Cores	Tarjetas	# Cores	Tarjetas	# Cores
GeForce GTX 285M	128	GeForce GT 550M	96	GeForce 9500 GT	32
GeForce GTX 280M	128	GeForce GT 540M	96	GeForce 9650M GS	32
Tesla C870	128	GeForce GT 525M	96	GeForce 9600M GT	32
Tesla D870	128	GeForce 8800M GTX	96	GeForce 9600M GS	32
Tesla S870	128	Quadro FX 1800M	72	GeForce 9500M GS	32
Quadro FX 3800M	128	GeForce GT 335M	72	Quadro FX 1700	32
Quadro FX 3700M	128	GeForce GTS 160M	64	GeForce 9100M G	26

GeForce GTS 240	112	GeForce GTS 150M	64	GeForce 8200M G	19
GeForce 9800 GT	112	GeForce 9800M GTS	64	GeForce 9500M G	16
GeForce 8800 GT	112	GeForce 9800M GS	64	GeForce 9400 GT	16
GeForce GTX 260M	112	GeForce 8800M GTS	64	GeForce G110M	16
GeForce 9800M GTX	112 per GPU	Quadro FX 1800	64	GeForce G102M	16
Quadro FX 2800M	96	Quadro FX 2700M	48	GeForce 9300M G	16
GeForce 9800M GT	96	GeForce GT 330M	48	Quadro NVS 450	16
GeForce GTS 360M	96	GeForce GT 325M	48	Quadro NVS 420	16
GeForce GTS 350M	96	GeForce GT 520M	48	Quadro NVS 295	8
GeForce GTS 260M	96	GeForce GT 220	48	Quadro NVS 290	8
GeForce GTS 250M	96	GeForce GT 240M	48	GeForce G105M	8
GeForce	96	GeForce	48	GeForce	8

GT 620M		GT 230M		9300M GS	
GeForce GT 440	96	GeForce 9700M GTS	48	GeForce 9200M GS	8
GeForce GT 430	96	Quadro FX 1700M	32	GeForce 8600 m	NA
GeForce GT 240	96	GeForce 9700M GT	32	GeForce 8500 GT	NA
GeForce 9600 GSO	96	GeForce 9650M GT	32	GeForce 8400 GS	NA

Tarjetas	# Cores	Tarjetas	# Cores	Tarjetas	# Cores
GeForce 8300 m	NA	GeForce GT 320M	NA	Quadro FX 4700 X2	NA
GeForce 8200 m	NA	GeForce 310M	NA	Quadro FX 4600	NA
GeForce 8100 m	NA	GeForce GT 220M	NA	Quadro FX 3700	NA
GeForce GT 750M	NA	GeForce G210M	NA	Quadro FX 3600M	NA
GeForce GT 745M	NA	GeForce GT 130M	NA	Tesla S1070	NA
GeForce GT 740M	NA	GeForce GT 120M	NA		

GeForce GT 735M	NA	GeForce G103M	NA
GeForce GT 730M	NA	GeForce G100	NA
GeForce GTX 480M	NA	Quadro FX 5600	NA

6) Menciona 20 aplicaciones diferentes de industrias distintas en las que se puede usar paralelismo y/o supercómputo.

R:

Nota: Se pone entre paréntesis a qué industria pertenece la aplicación.

- Altimesh's Hybridizer C# (Computational Finance)
- ACME Atmosphere (Climate, Weather and Ocean Modeling)
- Gunrock (Data Science & Analytics)
- Elcomsoft (Defense and Intelligence)
- Clarifai (Deep Learning & Machine Learning)
- Altair AcuSolve (Computational Fluid Dynamics)
- NASA FUN3D (Research CFD Developments)
- ANSYS Mechanical (Computational Structural Mechanics)
- Allegorithmic Substance Designer (Design and Visualization)
- Altair FEKO (Electronic Design Automation)
- AAA Studio FurryBall (Animation, Modeling and Rendering)
- ARRI Raw Converter (Color Correction and Grain Management)
- Autodesk Flame Premium (Compositing, Finishing and Effects)
- Adobe Premier Pro CC (Editing)
- ArcVideo Core (Encoding and Digital Distribution)
- ChyronHego (On-air Graphics)
- Powergrid (Medical Imaging)
- Arioc (Bioinformatics)
- AMBER (Molecular Dynamics)
- Abinit (Quantum Chemistry)
- 7) Investigar y mencionar al menos el nombre de 10 conferencias/congresos importantes de cómputo paralelo o GPU que aparezcan en la base de datos de IEEE y ACM. También el nombre de 5 journals/revistas internacionales de las mismas áreas. Además, mencionar el nombre de 15 laboratorios de investigación en el mundo en esas áreas. No debe mencionarse ninguno ya dicho en la clase o que ya esté en los links del blackboard.

Congresos

- ISUM Congreso de Supercomputo
- ACM International Supercomputing Conference
- Australian Supercomputing Conference
- International Supercomputing Conference
- ACM+IEEE International Supercomputing Conference
- IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.
- CiComp International Computer Science Conference
- MAEB Congreso de Metaheurística, Algoritmos Evolutivos y Bioinspirado
- Alternative construction of the Voronoi diagrams using a GPU parallel calculation (congreso)
- Performance Study of Cellular Genetic Algorithms implemented on GPU (congreso)

Journals

- Supercomputing Frontiers and Innovations
- The Journal of Supercomputing Impact & description
- The Computer Journal
- Journal of Graphics, GPU and Game Tools
- SIAM Journal

Laboratorios

- CIICAP-UAEM
- Laboratorio Nacional Oak Ridge
- Instituto Nacional de Investigaciones Nucleares (ININ)
- Laboratorio de Inteligencia Computacional de la Universidad de Chile
- Laboratorio de supercomputación, diseño y gráficos de la Escuela Politécnica Superior de Alicante
- Laboratorio de Computación de Alto Rendimiento de la UNILA
- UNICACH
- High Performance Computing Virtual Laboratory
- Los Alamos National Laboratory
- Scalable Parallel Computing Laboratory
- CUDA High Performance Computing Laboratory
- SPIRAL de la universidad de Drexel
- High Performance Computing Research Laboratory
- Intel Parallel Computing Laboratory
- Core Labs
- 8) Revisar la lista de top500 supercomputadoras. De esas 500 mejores obtener las siguientes estadísticas: cuántas hay de cada país, cuántos sistemas operativos diferentes tienen (es decir: Linux, Windows, HPUX, Solaris, AIX, MacOSX, ZOS o algún sistema operativo de Mainframe, etc) y cuántos de cada uno, de cuántas marcas de HW hay y cuántas de c/u, la suma total de cores de todas ellas, la suma total de TFLOPS, y cuáles son los 10 lugares (laboratorios o institutos) que más tienen equipos de supercómputo en esa lista.

Las supercomputadoras del top500 están divididas en 29 países del mundo, de la siguiente manera:

Australia - 5, Austria - 5, Bélgica - 2, Brasil - 4, Canadá - 1, China - 168, República Checa - 1, Dinamarca - 2, Finlandia - 5, Francia - 18, Alemania - 26, India - 9, Irlanda - 3, Italia - 5, Japón - 29, Corea del Sur - 7, Holanda - 3, Nueva Zelanda - 1, Noruega - 1, Polonia - 6, Rusia - 7, Arabia Saudita - 5, Singapur - 1, Sudáfrica - 1, España - 1, Suecia - 5, Suiza - 3, Reino Unido - 11, Estados Unidos - 165.

De la misma manera están divididos en 17 sistemas operativos de la siguiente manera: AIX - 3, Bullx Linux - 4, Bullx SCS - 9, bullx SUperCOmputer Suite A.E.2.1 - 3, CentOS - 62, Cray Linux Environment - 42, Kylin Linux - 2, Linux - 334, RedHat - 10, RHEL - 3, Scientific Linux - 3, Sunway RaiseOS 2.0.5 - 1, SUSE Linux Server - 24.

Las 500 supercomputadoras se dividen en 43 manufactureras de hardware de la siguiente manera:

ACTION - 1, Adtech - 1, AMD + ASUS + FIAS + GSI - 1, Atipa Technology - 3, Bull + Atos Group - 22, ClusterVision - 2, ClusterVision + Supermicro - 1, Cray Inc - 60, DALCO AG Switzerland - 1, Dell - 10, Dell + Intel - 1, EXXACT Corporation - 1, Fujitsu - 10, Gigabyte + ClusterVision - 1, HP - 127, Hitachi + Fujitsu - 1, Huawei - 2, IBM - 38, IBM + Lenovo - 4, Inspur - 20, Intel - 1, IPE + NVIDIA + Tyan - 1, Lenovo - 84, Lenovo + IBM - 4, Megatel + Action - 1, MEGWARE - 2, National Research Center of Parallel Computer Engineering & Technology - 1, NEC - 2, NEC + HP - 1, Netweb Technologies - 1, Niagara Computers + Supermicro - 1, NRCPC - 1, NUDT - 4, PEZY Computing + Exascaler Inc. - 2, RSC Group - 3, Self-Made - 1, SGI - 25, SUGON - 51, Sun Microsystems - 1, Supermicro - 1, Supermicro + Mellanox - 1, T-Platforms - 3, Xenon systems - 1.

La suma de los cores de las 500 supercomputadoras nos da un resultado de 41015113 cores. La suma total de PFLOPS de las 500 supercomputadoras es de 593.4 PFlops.

Los 10 laboratorios que tienen más supercomputadoras son:

- Compañías de Software 33
- Gobierno 26
- Internet Service (B) 19
- Internet Company 17
- Internet Company A 15
- Service Provider 13
- Energy Company (D) 8
- IT Service Provider 7
- Hosting Services 6
- Navy DSRC 6

Referencias

https://developer.nvidia.com/gpu-accelerated-libraries

http://arxiv.org/abs/1301.1215

https://www.connect-r.com/viewproject.php?t=2740

http://libsh.org/

http://www.culatools.com/

https://www.top500.org/

http://portal.core.edu.au/conf-ranks/?search=Super&by=all&source=CORE2014&sort=atitle&page=1

http://www.saber.cic.ipn.mx/cake/SABERsvn/trunk/publicacions/webListaGeneral/1/tipo_id/asc/4/2016/2011/4

http://blogs.ua.es/labseps/2013/06/12/l14-laboratorio-de-supercomputacion-diseno-y-graficos/

https://www.unila.edu.br/lab-computacao

https://spcl.inf.ethz.ch/

https://www.rit.edu/kgcoe/facility/

http://www.aut.ac.nz/study-at-aut/study-areas/computer-mathematical-sciences/research-groups/high-performance-computing-research-laboratory

https://corelabs.kaust.edu.sa/supercomputing

http://www.nvidia.es/content/EMEAI/images/tesla/tesla-server-gpus/nvidia-gpu-application-catalog-eu.pdf