Corrigé proposé par : M. Afekir - École Royale de l'Air CPGE Marrakech cpgeafek@yahoo.fr

Quelques manifestations des transferts thermiques

Première partie Thermodiffusion dans une barre

1.1. Équations générales

- $\mathbf{1.1.1}.$ \overrightarrow{j}_{Q} : vecteur densité de courant thermique diffusif ou flux surfacique conductif!
- $\bullet \ \ {\rm Dimension}: M\,T^{-3}$
- Unité (S.I) : kqm^{-3}
- **1.1.2.** Considérons un système $fermé\ (\Sigma)$ constitué d'une tranche cylindrique de la barre , comprise entre x et x+dx et de section S: soit un volume élémentaire (constant) $d\tau=Sdx$.

Le flux thermique conductif :
$$\Phi^c_{th} = \frac{\delta Q_{th}}{dt} = \iint_{(\Sigma)} \vec{j}_Q . d\vec{S}$$

L'énergie thermique δQ_{th} pénétrant dans le volume d au pendant dt :

$$\delta Q_{th} = j_Q(x,t)Sdt - j_Q(x+dx,t)Sdt = -\frac{\partial j_Q(x,t)}{\partial x}d\tau dt$$

Premier principe de la thermodynamique appliqué au volume élémentaire (fermé) donne :

$$dU = \delta Q_{th} = d\tau du \implies \frac{\delta Q_{th}}{dt} = d\tau \frac{\partial u}{\partial t} = -\frac{\partial j_Q(x,t)}{\partial x} d\tau$$
Soit:
$$\frac{\partial u}{\partial t} = -\frac{\partial j_Q(x,t)}{\partial x}$$

1.1.3. Loi de Fourier :

La loi de fourier :
$$\overrightarrow{j}_Q = -\lambda \overrightarrow{grad}T = -\lambda \frac{\partial T(x,t)}{\partial x} \overrightarrow{u}_x$$
 soit $j(x,t) = -\lambda \frac{\partial T(x,t)}{\partial x}$

 λ : conductivité thermique. Unité (S.I): $kgs^{-3}mK^{-1}$.

 ${f 1.1.4.}$ Pour la tranche cylindrique de la barre, de volume d au=Sdx, l'énergie interne élémentaire :

$$dU = dmcdT = \mu d\tau cdT = d\tau du \qquad \Rightarrow \qquad du = \mu cdT$$
 où :
$$u = \mu cT + u_o$$

1.1.5. D'après 1.1.2. et la question précédente :

$$\frac{\partial u}{\partial t} = \mu c \frac{\partial T(x,t)}{\partial t} = -\frac{\partial j(x,t)}{\partial x}$$

D'après 1.1.3. :

$$j(x,t) = -\lambda \frac{\partial T(x,t)}{\partial x}$$
 \Rightarrow $\frac{\partial T(x,t)}{\partial t} = \frac{\lambda}{\mu c} \frac{\partial^2 T(x,t)}{\partial x^2}$

1.1.6. L'équation au dérivées partielles précédente pourra s'écrire :

$$\frac{1}{D}\frac{\partial T(x,t)}{\partial t} \ = \ \frac{\partial^2 T(x,t)}{\partial x^2} \qquad \qquad \text{tel que}: \qquad \qquad D = \frac{\lambda}{\mu c}$$

Unité du coefficient de diffusion thermique D dans (S.I) est : m^2s^{-1} .

1.2. Régime stationnaire

$$T_1 = T(x = 0, t)$$
 ; $T_2 = T(x = L, t)$

1.2.1. En régime stationnaire, T ne dépend que du x: T(x,t) = T(x)

$$\Rightarrow \frac{\partial^2 T(x,t)}{\partial x^2}$$

1.2.2. D'après l'équation précédente :

 $\frac{dT(x)}{dx}$ ne dépend pas de x et $j=-\lambda \frac{dT(x)}{dx}$ \Rightarrow $\frac{j}{\lambda}$ est, donc, indépendant de x

Soit:
$$T(x) = -\frac{j}{\lambda}x + T(x=0)$$
 et $T(x=L) = -\frac{j}{\lambda}L + T(x=0)$

D'où :
$$T(x) = T(x=0) - \frac{x}{L} \left(T(x=0) - T(x=L) \right) = T_1 - \frac{x}{L} \left(T_1 - T_2 \right)$$

1.2.3. Flux surfacique \overrightarrow{j}_Q

$$\overrightarrow{j}_{Q} = j_{Q} \overrightarrow{u}_{x} = -\lambda \frac{\partial T(x)}{\partial x} \overrightarrow{u}_{x} \qquad \Rightarrow \qquad \overrightarrow{j}_{Q} = \frac{\lambda}{L} (T_{1} - T_{2}) \overrightarrow{u}_{x}$$

1.3. Régime transitoire

1.3.1. Profils de température à différentes instants au sein de la barre de longueur L = 1m.

- **1.3.2**. $\theta_o = 20^{\circ}C$; $\theta_1 = 100^{\circ}C$ et $\theta_2 = 20^{\circ}C$
- 1.3.2.1. Pour maintenir l'extrémité droite de la barre à la température ambiante, il suffit de de la mettre en contact avec l'air ambiant ou utiliser un thermostat fixé à la température ambiante désirée!
 - 1.3.2.2. Profils de température au sein de la barre aux différentes instants :

Deuxième partie Contacts thermiques

2.1. Modèle statique

2.1.1. En utilisant le résultat de la question 1.2.2., on trouve :

$$T_a(x) = T_o + \frac{x}{L_1} (T_o - T_1)$$
 et $T_b(x) = T_o - \frac{x}{L_2} (T_o - T_2)$

2.1.2. Vecteurs densités de courant thermiques $\overrightarrow{j}_{Q}^{a}(x)$ et $\overrightarrow{j}_{Q}^{b}(x)$

$$\overrightarrow{j}_{Q}^{a}(x) = -\lambda_{1} \frac{\partial T_{a}(x)}{\partial x} \overrightarrow{u}_{x} = -\frac{\lambda_{1}}{L_{1}} (T_{o} - T_{1}) \overrightarrow{u}_{x}$$

$$\overrightarrow{j}_{Q}^{b}(x) = -\lambda_{2} \frac{\partial T_{b}(x)}{\partial x} \overrightarrow{u}_{x} = +\frac{\lambda_{2}}{L_{2}} (T_{o} - T_{2}) \overrightarrow{u}_{x}$$

2.1.3. Température T_o de l'interface x = 0

En
$$x = 0$$
 on a: $j_Q^a(0) = j_Q^b(0)$ \Rightarrow $\frac{\lambda_1}{L_1} (T_o - T_1) + \frac{\lambda_2}{L_2} (T_o - T_2) = 0$

Ou
$$T_o = \frac{\lambda_1 \frac{T_1}{L_1} + \lambda_2 \frac{T_2}{L_2}}{\frac{\lambda_1}{T_1} + \frac{\lambda_2}{T_2}}$$

2.1.4. Contact main-bois et contact main-acier

$ heta_2$	T_o	$T_o^{'}$
$100^{o}C = 373K$ (sensation de chaud)	$43^{o}C = 316K$	$35^{o}C = 308K$
$10^{o}C = 283K$ (sensation de froid)	$94^{o}367KC$	$12^{o}C = 285K$

 $\underline{\text{Commentaire}}$: L'acier est plus conducteur thermique (zone chaude ou zone froide) par rapport au bois!

2.2. Modèle dynamique

2.2.1.

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{D} \frac{\partial T}{\partial t} \qquad \text{et} \qquad u = \frac{x}{\sqrt{4Dt}} \qquad \Rightarrow \qquad \frac{d^2 T}{du^2} + 2u \frac{dT}{du} = 0$$

$$\Rightarrow \qquad \frac{d}{du} \left(\frac{dT}{du} \right) + 2u \left(\frac{dT}{du} \right) = 0$$

$$\text{Posons } : \alpha = \left(\frac{dT}{du} \right) \qquad \Rightarrow \qquad \frac{d\alpha}{du} + 2u\alpha = 0 \qquad \Rightarrow \qquad \frac{d\alpha}{\alpha} = -2udu$$

$$\Rightarrow \qquad \alpha = \alpha_o \exp{-u^2 du} = \frac{dT}{du} \qquad \Rightarrow \qquad T = \alpha_o \int_0^u \exp{-x^2 dx} + k = \alpha_o \frac{\sqrt{\pi}}{2} \operatorname{erf}(u) + k \quad k = cte.$$

2.2.2. Conditions aux limites

	Cylindre \mathcal{C}_a	Interface $\mathcal{C}_a - \mathcal{C}_b$	Cylindre \mathcal{C}_b
Paramètre x	$-\infty$	0	$+\infty$
Variable composée $\ u$	$-\infty$	0	$+\infty$
Fonction erreur $erf(u)$	-1	0	+1
Température T	T_1	T_o	T_2

Soit: T(u) = A + Berf(u)

Soient:

$$T_1=A_1-B_1 \quad \text{ et } \quad T_o=A_1 \quad \Rightarrow \quad B_1=T_o-T_1$$

$$T_2=A_2+B_2 \quad \text{ et } \quad T_o=A_2 \quad \Rightarrow \quad B_2=-T_o+T_2$$

$$Ou: \qquad A_1=A_2=T_o \quad ; \quad B_1=T_o-T_1 \quad \text{ et } \quad B_2=B_2=-T_o+T_2$$

2.2.3. vecteur courant thermique dans le cylindre \mathcal{C}_a

$$\overrightarrow{j}_{Q}^{a}(x,t) = -\lambda_{1} \frac{\partial T(x,t)}{\partial x} \overrightarrow{u}_{x} = -\lambda_{1} \frac{dT(u)}{du} \frac{\partial u(x)}{\partial x} \overrightarrow{u}_{x} = -\frac{\lambda_{1}}{\sqrt{4D_{1}t_{1}}} \frac{dT(u)}{du} \overrightarrow{u}_{x}$$

$$T(u) = A_{1} + B_{1} \text{erf}(u) \quad \Rightarrow \quad \frac{dT(u)}{du} = B_{1} \frac{d\text{erf}(u)}{du} = \frac{2B_{1}}{\sqrt{\pi}} \exp{-u^{2}} = \frac{2B_{1}}{\sqrt{\pi}} \exp{-\frac{x^{2}}{4D_{1}t}}$$

$$\Rightarrow \qquad \overrightarrow{j}_{Q}^{a}(x,t) = -(T_{o} - T_{1}) \frac{\lambda_{1}}{\sqrt{\pi D_{1}t}} \exp{-\frac{x^{2}}{4D_{1}t}}$$

$$\overrightarrow{j}_{Q}(x,t) = -(T_{o} - T_{1}) \frac{E_{1}}{\sqrt{\pi t}} \exp{-\frac{x^{2}}{4D_{1}t}} \overrightarrow{u}_{x} \quad \text{avec} \quad E_{1} = \frac{\lambda_{1}}{\sqrt{D_{1}}} = \sqrt{u_{1}c_{1}\lambda_{1}}$$

 $E_1: {
m effusivit\'e \ exprim\'e \ dans \ le \ (S.I) \ en}: kgs^{-5/2}K^{-1}$

2.2.4. De la même manière, on détermine l'expression de $\overrightarrow{j}_Q^b(x,t)$

$$\text{D'où}: \qquad \overrightarrow{j}_{Q}^{b}(x,t) = + \left(T_{o} - T_{2}\right) \frac{E_{2}}{\sqrt{\pi t}} \exp{-\frac{x^{2}}{4D_{2}t}} \overrightarrow{u}_{x} \qquad \text{avec} \qquad E_{2} = \frac{\lambda_{2}}{\sqrt{D_{2}}} = \sqrt{u_{2}c_{2}\lambda_{2}}$$

2.2.5. Au niveau de l'interfaçe x=0 on a $j_Q^a(0,t)=j_Q^b(0,t)$

D'où :
$$T_o = \frac{T_1 E_1 + T_2 E_2}{E_1 + E_2}$$

Conclusion :En plus de λ_1 , T_1 , λ_2 et T_2 , la température T_o dépende :

- ullet des paramètres L_1 et L_2 dans le cadre du modèle statique.
- ullet des paramètres μ_1 , μ_2 , c_1 et c_2 dans le cadre du modèle dynamique.
- 2.2.6. Contact main-bois et contact main-acier

$ heta_2$	T_o	$T_o^{'}$
$100^{\circ}C = 373K$ (sensation de chaud)	$48^{o}C = 321K$	$93^{o}C366K$
$10^{o}C = 283K$ (sensation de froid)	$32^{o}C = 305K$	$13^{o}C = 286K$

2.2.7. Le frigo est en équilibre thermodynamique, l'eau contenue dans les deux types de bouteilles est, donc, portée à la <u>même température</u> (même fraîcheur dans les deux bouteilles). C'est, tout simplement, la sensation main-verre et main-plastique qui diffère suite à la différence de l'effusivité des deux corps (plastique et verre).

Troisième partie Analogies thermoélectriques

3.1. Résistance thermique

3.1.1. A la traversée d'une section S en une position x:

Le flux thermique conductif :
$$\Phi^c_{th} = \frac{\delta Q_{th}}{dt} = \iint_{(S)} \vec{j}_Q . d\overrightarrow{S} = j_Q(x) S = -\lambda S \frac{dT(x)}{dx}$$

$$T(x) = T_o + (T_L - T_o)\frac{x}{L}$$
 \Rightarrow $\Phi_{th}^c = \lambda \frac{S}{L}(T_L - T_o) = \frac{(T_L - T_o)}{R_{th}^c}$ \Rightarrow $R_{th}^c = \frac{L}{\lambda S}$

Loi de Fourier - Loi d'Ohm

3.1.2.1. Loi d'ohm locale : $\overrightarrow{j}_e(M) = \gamma(M)\overrightarrow{E}(M)$ où : $\overrightarrow{j_e}$: vecteur densité du courant électrique et γ : conductivité électrique. Cette loi est valable en régime statique en absence du champ magnétique \overline{B} .

3.1.2.2. En utilisant la relation électrique locale $\overrightarrow{E} = -\overrightarrow{\operatorname{grad}}V$:

Grandeurs électriques	Grandeurs thermiques
Loi d'ohm $\overrightarrow{j}_e = \gamma \overrightarrow{E} = -\gamma \overrightarrow{\operatorname{grad}} V$	Loi de fourier $\overrightarrow{j}_Q = -\lambda \overrightarrow{\operatorname{grad}} T$
Vecteur courant électrique \overrightarrow{j}_e	Vecteur courant thermique \overrightarrow{j}_Q
Potentiel électrique V	Champ de température T
Conductivité électrique γ	Conductivité thermique λ
Intensité du courant électrique I	Intensité du courant thermique (flux) Φ^c_{th}
Différence de potentiels (tension) $V_o - V_L = U_{oL}$	Différence de températures $(T_o - T_L)$
Résistance électrique $R = \frac{(V_o - V_L)}{I}$	Résistance thermique $R_{th}^c = \frac{(T_o - T_L)}{\Phi_{th}^c}$

3.1.3. Association de resistors :

Association en série	Association en parallèle
$R_{th}^{c} = R_{th1}^{c} + R_{th2}^{c}$	$\frac{1}{R_{th}^c} = \frac{1}{R_{th2}^c} + \frac{1}{R_{th2}^c}$

3.1.4. Loi de Newoton:

Le flux thermique convecto – conductif : $\Phi_{th}^{cc} = hS(T - T_a)$

$$\Phi_{th}^{cc} = hS\left(T - T_a\right) = \frac{T - T_a}{R_{th}^{cc}} \qquad \text{avec} \qquad R_{th}^{cc} = \frac{1}{hS}$$

3.1.5.

3.1.5.1. Loi de Stephan:

	Pour le corps solide	Pour l'environnement ambiant
Flux surfacique emis	$\Phi_1^r = \sigma T^4$	$\Phi_2^r = \sigma T_a^4$

3.1.5.2. Flux thermique radiatif total Φ_{th}^r

$$\Phi_{th}^r = \Phi_1^r - \Phi_2^r = \sigma S \left(T^4 - T_a^4 \right)$$

3.1.5.3.

$$\Phi_{th}^{r} = \sigma S \left(T^{4} - T_{a}^{4} \right) = \sigma S \left(T - T_{a} \right) \left(T^{3} + T^{2} T_{a} + T T_{a}^{2} + T_{a}^{3} \right)$$

Pour un faible écart entre T et T_a on pourra considérer : $T \sim T_a$.

Soit:
$$\Phi^{r}_{th} \approx \sigma S \left(T-T_{a}\right) \left(4T_{a}^{3}\right) \approx 4\sigma S T_{a}^{3} \left(T-T_{a}\right) = \frac{\left(T-T_{a}\right)}{R_{th}^{r}}$$

$$R_{th}^r = \frac{1}{4\sigma S T_a^3}$$

3.1.5.4. Application numérique : $R_{th}^r = 0,11 \, kg^{-1} m^{-2} s^3 K$

3.2. Bilan thermique du corps humain

3.2.1. Régime stationnaire :

3.2.1.1.

ullet Puissance métabolique \mathcal{P}_M développée par le corps humain :

$$\mathcal{P}_M = \frac{13 \times 10^6}{24 \times 3600} \simeq 150,5 \, kgms^{-3}.$$

ullet Flux thermique Φ^r_{th} émis par rayonnement :

$$\Phi^{r}_{th} = \frac{T - T_a}{R^{r}_{th}} \simeq 75, 2 \, kgm s^{-3}.$$

• Flux thermique Φ^{cc}_{th} émis par convection :

$$\Phi_{th}^{cc} = \frac{T - T_a}{R_{th}^{cc}} \simeq 59,9 \, kgms^{-3}.$$

3.2.1.2. La puissance \mathcal{P}_e nécessaire pour entretenir l'évaporation thermique de l'eau :

$$\mathcal{P}_e = \frac{m_e L}{\Delta t} = \frac{0.3 \times 2.4 \times 10^6}{24 \times 3600} \simeq 8.3 \, kgms^{-3}.$$

Puissance résiduelle \mathcal{P}_s

Le bilan de puissance se traduit par :

sance se traduit par :
$$\boxed{\mathcal{P}_M = \mathcal{P}_e + \Phi^{cc}_{th} + \Phi^r_{th} + \mathcal{P}_s}$$

$$\mathcal{P}_s \ \simeq 150 - 75, 2 - 59, 9 - 8, 3 = 6, 7 \, kgms^{-3}.$$

3.2.1.4. Théorème de Millmann appliqué au noeud A donne :

$$I_2 + I_1 - I + (V_B - V_A) \left(\frac{1}{R_1} + \frac{1}{R_2}\right) = 0 \qquad \text{tels que}: \qquad V_A = V_a \ \text{et} \ V_B = V_a$$
 Soit :
$$V - V_a = \frac{R_1 R_2}{R_1 + R_2} \left(I - I_1 - I_2\right)$$

3.2.1.5. Par analogie thermoélectrique établi en 3.1.2.2., le bilan thermique est traduit par l'equation suivante :

Représentation de Norton 3.2.1.6.

Représentation de Thévenin

Dans les deux cas de représentation, on retrouve l'équation établie en 3.2.1.5. , et par conséquent le bilan de puissance.

- **3.2.2.** On se place en régime quasi stationnaire, et on note $C_s = C/S$ la capacité thermique surfacique du corps humain.
 - **3.2.2.1**. Premier principe de la thermodynamique entre t et t+dt:

$$dU = \delta Q_{th} + \delta W = \delta Q_{th} = CdT \quad \text{(le corps humain est supposé à volume constant)}$$

$$\implies \frac{\delta Q_{th}}{dt} = C\frac{dT}{dt} = \mathcal{P}_{th} = \mathcal{P}_{M} - \mathcal{P}_{e} - \mathcal{P}_{s} - \Phi_{th}^{r} - \Phi_{th}^{cc}$$

$$\implies C\frac{dT}{dt} + \left(\frac{1}{R_{th}^{cc}} + \frac{1}{R_{th}^{r}}\right)(T - T_{a}) = \mathcal{P}_{M} - \mathcal{P}_{e} - \mathcal{P}_{s}$$

$$\boxed{\frac{dT}{dt} + \frac{T - T_{a}}{\tau} = \Lambda} \quad \text{(2)} \quad \text{avec}: \qquad \tau = \frac{R_{th}^{r} R_{th}^{cc}}{R_{th}^{r} + R_{th}^{cc}}C \quad \text{avec}: \qquad \Lambda = \frac{\mathcal{P}_{M} - \mathcal{P}_{e} - \mathcal{P}_{s}}{C}$$

3.2.2.2. En régime stationnaire :

$$\frac{dT}{dt} = 0 \qquad \Longrightarrow \qquad \boxed{T - T_a = \tau \Lambda = \frac{R_{th}^r R_{th}^{cc}}{R_{th}^r + R_{th}^{cc}} \left(\mathcal{P}_M - \mathcal{P}_e - \mathcal{P}_s \right)}$$

On retrouve, alors, les résultats de la question 3.2.1.6.

3.2.2.3. On pose:

3.2.2.4. Résolution de l'équation (2) :

La solution de l'équation (2) s'écrit : $T(t)-T_a=\tau\Lambda+k\exp{-\frac{t}{\tau}}$ k est une constante d'intégration

3.2.2.5. L'équilibre correspond au régime permanent t>> au

$$T_e = T_a + \tau \Lambda$$

Application numérique : $T_e = 33\,^{o}C = 306\,K$

3.2.2.6. Représentation graphique de T(t)

$$T(t) = T_e + (T(0) - T_e) \exp{-\frac{t}{\tau}}$$

- $\bullet \quad T(0) > T_e \quad {\rm Courbe} \ (a) \ : {\rm Refroidissement} \ {\rm du} \ {\rm corps} \\ {\rm humain}.$
- $T(0) < T_e$ Courbe (c) : Réchauffement du corps humain.

Pour déterminer τ , il suffit de tracer la (ou les) tangente(s) à l'origine des temps des courbes d'évolution T(t) pour $T(0) > T_e$ et $T(0) < T_e$. Son (ou leur) intersection(s) avec l'axe des temps corresponde au paramètre τ .

3.2.2.7. Le corps humain se refroidit dans l'eau 25 fois plus rapidement que dans l'air $:\tau_{\rm air}=25\,\tau_{\rm eau}$

$$\tau_{\rm air} = \frac{R^r_{th}R^{cc}_{th}}{R^r_{th} + R^{cc}_{th}}C \qquad \text{et} \qquad \tau_{\rm eau} = \frac{R^r_{th}R^{cc}_{th,\rm eau}}{R^r_{th} + R^{cc}_{th,\rm eau}}C \qquad \Longrightarrow \qquad \left[R^{cc}_{th,\rm eau} = \frac{R^r_{th}R^{cc}_{th}}{25R^r_{th} + 24R^{cc}_{th}}\right]$$

Application numérique : $R^{cc}_{th,\mathrm{eau}} = 3,03 \times 10^3 \, kg^{-1} m^{-1} s^3 K$

3.3. Effet des vêtements sur le bilan thermique du corps

3.3.1. La surface S du corps humain est recouverte à $80^o/_o$: $20^o/_o S = 0, 2 S$ est, donc, en contact avec l'air, soient :

$$R_{th}^{cc,v} = \frac{R_{th}^{cc}}{0,2} = 835 \times 10^{-3} \, KW^{-1} \qquad \text{et} \qquad R_{th}^{r,v} = \frac{R_{th}^r}{0,2} = 665 \times 10^{-3} \, KW^{-1}$$

- **3.3.2.** Les $80^o/_o$ recouverte des vêtements introduit un nouvel échange thermique (entre les vêtements et le corps sur une section de $0,8\,S$), tout en négligeant les échanges thermiques par rayonnement et par conducto-convection à travers les vêtements, donc : une nouvelle résistance thermique $R_{tb}^{c,v}$.
 - **3.3.3**. Schéma du circuit thermique (régime stationnaire) :

 ${\bf 3.3.4.} \quad {\rm R\acute{e}sistance\ thermique\ des\ v\^{e}tements}\ R_{th}^{c,v}$ Le bilan de puissance thermique s'écrit :

$$\mathcal{P}_{M} - \mathcal{P}_{e} - \mathcal{P}_{s} = \left(\theta - \theta_{a}^{'}\right) \left(\frac{1}{R_{th}^{cc,v}} + \frac{1}{R_{th}^{r,v}} + \frac{1}{R_{th}^{c,v}}\right) = (T - T_{a}) \left(\frac{1}{R_{th}^{cc}} + \frac{1}{R_{th}^{r}}\right)$$

$$\implies R_{th}^{c,v} = \frac{\theta - \theta_{a}^{'}}{(T - T_{a}) \left(\frac{1}{R_{th}^{cc}} + \frac{1}{R_{th}^{r}}\right) - (\theta - \theta_{a}^{'}) \left(\frac{1}{R_{th}^{cc,v}} + \frac{1}{R_{th}^{r,v}}\right)}$$

Application numérique : $R_{th}^{c,v} = 130 \times 10^{-3} \ KW^{-1}$