

Jul 31, 2024

General Total Protein Sample Preparation Protocol for the Immunodetection of Auxenochlorella protothecoides Proteins.

DOI

dx.doi.org/10.17504/protocols.io.dm6gpzdm8lzp/v1

Dimitrios Camacho¹, Sabeeha S. Merchant¹

¹Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA

Merchant Lab UC Berkeley

Dimitrios Camacho

University of California, Berkeley

DOI: dx.doi.org/10.17504/protocols.io.dm6gpzdm8lzp/v1

Protocol Citation: Dimitrios Camacho, Sabeeha S. Merchant 2024. General Total Protein Sample Preparation Protocol for the Immunodetection of Auxenochlorella protothecoides Proteins.. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.dm6gpzdm8lzp/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's
working

working

Created: June 24, 2024

Last Modified: July 31, 2024

Protocol Integer ID: 102337

Keywords: Protein, total protein, imumunodetection, Auxenochlorella

Funders Acknowledgement: National Institutes of Health (NIH): Nutritional Copper Signaling and Homeostasis Grant

Giant

Grant ID: GM 042143

National Institutes of Health (NIH): Molecular Basis of Cell **Function T32 Training Grant** Grant ID: 5T32GM007232-44 **US Department of Energy** (DOE), Office of Biological and Environmental Research (BER): Systems Engineering of Auxenochlorella protothecoides: from Photosynthesis to Biofuels and Bioproducts Grant Grant ID: DE-SC0023027 University of California, Berkeley, Chancellor's **Fellowship**

Grant ID: N/A

Abstract

This protocol describes a general method for quickly preparing and storing protein samples for the immunodetection of *Auxenochlorella protothecoides* proteins. The protocol was developed for metal free applications where the metal contents of *Auxenochlorella protothecoides* cells are of importance to the proteins studied. This protocol should be adapted to optimize sampling conditions for each protein of interest.

Guidelines

This protocol should be tailored to your specific protein of interest. For example, if you are also interested in light responsive proteins, you may wish to extract proteins in a specific light regime.

Use only ICPMS grade trace metal free Ultra-pure ICP-MS grade Milli-Q H₂O.

Review the certificates of analysis for each chemical used to verify potential metal contamination concentrations are minimized.

Materials

- Metal free 15 mL tubes Globe Scientific Inc. Centrifuge, high performance, red screw cap, assembled, polypropylene. Cat. No. 6295, with a maximum rating of 17,000 ×g.
- 2. Metal free 50 mL tubes - Globe Scientific Inc. Centrifuge, high performance, red screw cap, assembled, polypropylene. Cat. No. 6297, with a maximum rating of 20,000 $\times q$.
- 1 L HDPE bottle, 4 bottles. 3.
- 4. Ultra-pure 6 M HCl.
- 5. Ultra-pure ICP-MS grade Milli-Q H₂O.
- 6. Trace metal grade Na_2HPO_4 anhydrous (dibasic, MW = 138 g/mol).
- 7. Trace metal grade $NaH_2PO_4 \cdot H_2O$ (monobasic, MW = 138 g/ mol).
- 8. cOmpleteTM ULTRA Tablets, Mini, EASYpack Protease Inhibitor Cocktail.
- 9. 1-10 L dewar of liquid nitrogen.
- 10. 1.5 mL metal free screw cap tubes with gasket.
- 11. 1.5 mL metal free conical tubes.
- 12. Acid washed, metal free glass beads 425-600 µm.
- 13. Acid washed, metal free glass beads 4 mm.
- 14. Centrifuge.
- 15. Sterile hood.
- 16. Biospec Mini-BeadBeater-16
- 17. Liquid nitrogen flash freezing tube rack.
- 18. RAININ P100, P1000 pipettes and tips.

Safety warnings

Before start

- 1. Wipe down all work surfaces with 70% EtOH.
- 2. Prepare a bucket of wet ice. Add water to the ice so that the tubes will be in contact with the ice water \(\mathbb{L} \) 0 °C \\ .
- 2. Fill a 1-10 L dewar of liquid nitrogen.
- 3. Prepare cell lysis tubes.
 - 3.1. Add 🚨 200 mg of 425-600 µm acid washed glass beads to a 🚨 1.5 mL screw cap tube with gaskets.
 - 3.2. Add one 4 mm glass bead to the tube. Keep the tubes on wet ice.
- 4. Make the trace metal grade [M] 10 millimolar (mM) sodium-phosphate solution, had protease inhibitor cocktail mixture.
 - 4.1. Acid wash the \(\Delta \) 1 \(\Lambda \) HDPE bottles (Quinn and Merchant, 1998),(Camacho and Merchant, 2024).
- 4.2. Make [M] 1 Molarity (M) NaH₂PO₄ by adding \perp 138 g of NaH₂PO₄• H₂O to a \perp 1 L bottle with stirring and fill to \bot 1 \bot with Milli-Q H_2O . Store at 4 °C.
- 4.3. Make [M] 1 Molarity (M) Na₂HPO₄ by adding \bot 142 g of Na₂HPO₄ (anhydrous) to a \bot 1 L bottle with stirring and fill to \bot 1 L with Milli-Q H₂O. Store at 4 °C.
- 4.4. Make [м] 1 Molarity (М) sodium-hosphate solution, $\stackrel{\frown}{\mathbb{Q}}$ 7 by mixing $\stackrel{\bot}{\mathbb{Q}}$ 390 mL of [м] 1 Molarity (М) NaH_2PO_4 and \triangle 610 mL of [M] 1 Molarity (M) Na_2HPO_4 . Store at 4 °C.
- 4.5. Dilute [м] 1 Molarity (М) sodium-phosphate, (рн 7 to [м] 10 millimolar (mM) sodium-phosphate, (рн 7 by adding 4 10 mL of [M] 1 Molarity (M) sodium-phosphate, PH 7 to an acid washed HDPE bottle containing
- 4.6. Right before sampling, make a fresh sodium-phosphate protease inhibitor cocktail mixture in a metal free 4 15 mL tube.

 4 15 mL tube.
- 4.7. Add 1 cOmplete TM ULTRA protease inhibitor cocktail tablet to A 10 mL of M 10 millimolar (mM) sodiumphosphate, ρ 7. Keep the cocktail on wet ice.

- Collect 10⁸ 10⁹ cells by centrifugation (⊕ 10000 x g, 4°C, 00:02:00) using Globe Scientific metal free ☐ 15 mL or ☐ 50 mL tubes. Discard the supernatant.
- Wash the cells by resuspending the cell pellet in 400 µL of trace metal grade

 [M] 10 millimolar (mM) sodium-phosphate, PH 7 and protease mixture. Collect cells by centrifugation (see step 1) and remove the supernatant with a P1000 pipette tip.
- Resuspend the cells in Δ 300 μL of trace metal grade [M] 10 millimolar (mM) sodium-phosphate, phosphate, and protease mixture. Transfer the cell suspension to cold Δ 1.5 mL screw cap tubes containing acid washed beads.
- 3.1 The suspension will be thick and sticky. To collect the rest of the cell suspension, add an additional $\[\] 100 \ \mu \]$ of the sodium-phosphate and protease mixture to wash the sides of the tube and transfer all material to the respective $\[\] 1.5 \ \text{mL} \]$ tube containing glass beads. Cells may stick to the P1000 tip so use a P100 to add the extra $\[\] 100 \ \mu \]$ of sodium-phosphate and protease mixture.
- 4 Optional: Flash freeze cell suspension in liquid nitrogen and store in \$\mathbb{8} -80 \cdot \mathbb{C}\$
- 4.1 Carefully fill a tube rack with liquid nitrogen to a level where half of the tube is submerged.
- 4.2 Make sure tubes are not tightly closed and air is allowed to pass through with the cap on.
- 4.3 Use tongs to place samples into the liquid nitrogen for 00:00:10.

10s

4.4 Store samples in **&** -80 °C until further processing.

Protocol references

Camacho, D. J., Perrino, C., and Merchant, S. S. (2024) HEPES-phosphate medium for growth of Auxenochlorella protothecoides, suitable for studies of trace element nutrition. Protocols.io

Quinn, J. M., & Merchant, S. (1998). [18] Copper-responsive gene expression during adaptation to copper deficiency. In Methods in enzymology (Vol. 297, pp. 263-279). Academic Press.