Nr indeksu 217611

Klasyfikacja gatunków warzyw przy użyciu Convolutional Neural Network i CNN + Random Forest

1. Charakterystyka zadania

Projekt dotyczy automatycznej klasyfikacji obrazów do jednej z 15 klas określających rodzaje warzyw. Do projektu wykorzystane zostały dane pobrane z Kaggle:

 $\underline{https://www.kaggle.com/datasets/misrakahmed/vegetable-image-dataset}$

2. Przygotowanie Danych

Dataset zawiera obrazy o rozmiarach 224 x 224 w formacie jpg. Łącznie 21000 obrazow podzielonych na 15 klas, oraz 3 zbiory: 'train', 'test', 'validation'.

Klasa	Train	Valid	Test	Razem
Bean	1000	200	200	1400
Bitter_Gourd	1000	200	200	1400
Bottle_Gourd	1000	200	200	1400
Brinjal	1000	200	200	1400
Broccoli	1000	200	200	1400
Cabbage	1000	200	200	1400
Capsicum	1000	200	200	1400
Carrot	1000	200	200	1400
Cauliflower	1000	200	200	1400
Cucumber	1000	200	200	1400
Papaya	1000	200	200	1400
Potato	1000	200	200	1400
Pumpkin	1000	200	200	1400
Radish	1000	200	200	1400
Tomato	1000	200	200	1400
RAZEM	15000	3000	3000	21000

2.1. Preprocessing danych

Zastosowano następujące techniki przetwarzania obrazów:

```
transforms.Resize((64, 64)),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(15),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
```

3. Metodologia

3.1 Architektura CNN

Warstwy konwolucyjne:

- Conv1: 3→48 kanałów, kernel 4×4, stride=2
- Conv2: 48→64 kanałów, kernel 2×2
- Conv3: 64→128 kanałów, kernel 3×3
- Conv4: 128→256 kanałów, kernel 2×2, stride=2

Warstwy normalizacyjne i regularyzacyjne:

- Batch Normalization po każdej warstwie konwolucyjnej
- MaxPooling 2×2 między warstwami
- Dropout (p=0.2) przed klasyfikatorem

Warstwy w pełni połączone:

- Flatten: spłaszczenie map cech ($256 \times 2 \times 2 \rightarrow 1024$)
- FC1: 1024→64 neuronów z Batch Normalization
- FC2: 64→15 neuronów (liczba klas)

```
self.conv1 = nn.Conv2d(3, 48, 4, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(48)
self.conv2 = nn.Conv2d(48, 64, 2, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = nn.Conv2d(64, 128, 3, padding=2)
self.bn3 = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128, 256, 2, stride=2, padding=0)
self.bn4 = nn.BatchNorm2d(256)
self.pool = nn.MaxPool2d(2, 2)
self.flatten = nn.Flatten()
self.dropout = nn.Dropout(0.2)
self.fc1 = nn.Linear(256 * 2 * 2, 64)
self.bn_fc1 = nn.BatchNorm1d(64)
self.fc2 = nn.Linear(64, num_classes, bias=False)
```

3.2 Trenowanie modelu CNN

Hiperparametry trenowania:

- Optimizer: AdamW z weight decay=1e-4
- Learning rate: 0.001 z ReduceLROnPlateau scheduler
- Loss function: CrossEntropyLoss
- Batch size: 64
- Early stopping: patience=5 epok

Techniki regularyzacji:

- Weight decay dla redukcji overfittingu
- Batch Normalization dla stabilizacji trenowania
- Dropout w warstwach w pełni połączonych
- Early stopping na podstawie validation loss

3.3 Klasyfikator Random Forest

Proces dwuetapowy:

- Ekstrakcja cech: Wykorzystanie wytrenowanego CNN do ekstrakcji 64 wymiarowych wektorów cech z warstwy FC1
- 2. Klasyfikacja: Trenowanie Random Forest na wyekstrahowanych cechach

Parametry Random Forest:

- n estimators: 100 drzew
- random state: 42 (dla reprodukowalności)
- n jobs: -1 (wykorzystanie wszystkich rdzeni CPU)

4 Implementacja

4.1 Klasa SimpleCNN

```
class SimpleCNN(nn.Module):
    def __init__(self, num_classes):
       super(SimpleCNN, self).__init__()
       self.conv1 = nn.Conv2d(3, 48, 4, stride=2, padding=1)
       self.bn1 = nn.BatchNorm2d(48)
       self.conv2 = nn.Conv2d(48, 64, 2, padding=1)
       self.bn2 = nn.BatchNorm2d(64)
       self.conv3 = nn.Conv2d(64, 128, 3, padding=2)
       self.bn3 = nn.BatchNorm2d(128)
       self.conv4 = nn.Conv2d(128, 256, 2, stride=2, padding=0)
       self.bn4 = nn.BatchNorm2d(256)
       self.pool = nn.MaxPool2d(2, 2)
       self.flatten = nn.Flatten()
       self.dropout = nn.Dropout(0.2)
       self.fc1 = nn.Linear(256 * 2 * 2, 64)
       self.bn_fc1 = nn.BatchNorm1d(64)
        self.fc2 = nn.Linear(64, num_classes, bias=False)
    def get_features(self, x):
       x = F.relu(self.bn1(self.conv1(x)))
        x = self.pool(x)
       x = F.relu(self.bn2(self.conv2(x)))
       x = self.pool(x)
       x = F.relu(self.bn3(self.conv3(x)))
       x = self.pool(x)
       x = F.relu(self.bn4(self.conv4(x)))
        x = self.flatten(x)
        features = F.relu(self.fc1(x))
        return features
    def forward(self, x):
        features = self.get_features(x)
        x = self.fc2(features)
        return x
```

4.2 Pipeline trenowania

- 1. Inicjalizacja modelu na urządzeniu CUDA/CPU
- 2. Petla trenowania z monitorowaniem loss i accuracy
- 3. Walidacja po każdej epoce
- 4. Zapis najlepszego modelu na podstawie validation loss
- 5. Early stopping w przypadku braku poprawy

4.3 Ekstrakcja cech i klasyfikacja RF

```
print("\nEkstraktowanie cech...")
X_train, y_train, _ = extract_features(model, train_loader)
X_test, y_test, p_test_cnn = extract_features(model, test_loader)
print(X_train.shape)
print("Trenowanie Random Forest...")
clf = RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1)
clf.fit(X_train, y_train)
y_pred_rf = clf.predict(X_test)
y_pred_rf_proba = clf.predict_proba(X_test)
```

5 Generowanie wyników

CNN: ACC=0.9887, AUC=0.9999 RandomForest: ACC=0.9877, AUC=0.9999

Raport klasyfikacji CNN: Raport klasyfikacji Random Forest:									
	precision	recall	f1-score	support		precision	recall	f1-score	support
Bean	0.99	0.98	0.98	200	Bean	0.98	0.98	0.98	200
Bitter_Gourd	0.98	0.98	0.98	200	Bitter_Gourd	0.98	0.98	0.98	200
Bottle_Gourd	1.00	1.00	1.00	200	Bottle_Gourd	0.99	0.99	0.99	200
Brinjal	0.99	0.99	0.99	200	Brinjal	0.98	0.98	0.98	200
Broccoli	0.99	0.99	0.99	200	Broccoli	0.99	0.98	0.99	200
Cabbage	0.98	0.99	0.98	200	Cabbage	0.98	0.99	0.98	200
Capsicum	1.00	0.99	0.99	200	Capsicum	1.00	0.99	1.00	200
Carrot	1.00	1.00	1.00	200	Carrot	1.00	1.00	1.00	200
Cauliflower	0.99	0.97	0.98	200	Cauliflower	0.98	0.97	0.98	200
Cucumber	0.99	1.00	1.00	200	Cucumber	0.98	0.99	0.99	200
Papaya	0.98	1.00	0.99	200	Papaya	0.99	1.00	1.00	200
Potato	1.00	1.00	1.00	200	Potato	1.00	1.00	1.00	200
Pumpkin	0.97	0.97	0.97	200	Pumpkin	0.98	0.97	0.97	200
Radish	0.99	0.99	0.99	200	Radish	0.99	0.99	0.99	200
Tomato	0.99	0.95	0.97	200	Tomato	0.99	0.97	0.98	200
accuracy			0.99	3000	accuracy			0.99	3000
macro avg	0.99	0.99	0.99	3000	macro avg	0.99	0.99	0.99	3000
weighted avg	0.99	0.99	0.99	3000	weighted avg	0.99	0.99	0.99	3000

Wykresy

6 Podsumowanie

6.1 Porównanie metod

Zalety CNN:

- Bezpośrednie uczenie: Automatyczna ekstrakcja cech istotnych dla zadania
- End-to-end optymalizacja: Wszystkie parametry optymalizowane jednocześnie
- Wyższa accuracy: Lepsze wyniki na zbiorze testowym
- Reprezentacje hierarchiczne: Uczenie cech na różnych poziomach abstrakcji

Zalety Random Forest:

- Szybkość: Znacznie szybsze trenowanie niż CNN
- Interpretowalność: Możliwość analizy ważności cech
- Mniejsze wymagania obliczeniowe: Brak potrzeby GPU
- Odporność na overfitting: Naturalna regularyzacja poprzez ensemble

6.2 Kluczowe obserwacje

Skuteczność CNN: Model CNN osiągnął lepsze wyniki, co potwierdza skuteczność deep learning wzadaniach klasyfikacji obrazów

Jakość cech: Cechy wyekstrahowane przez CNN zawierały wystarczającą informację dla RandomForest do uzyskania konkurencyjnych wyników

Transfer learning: Możliwość wykorzystania wytrenowanego CNN jako ekstraktora cech dla innychklasyfikatorów

Projekt wykazał skuteczność obu badanych podejść do klasyfikacji obrazów warzyw.

Convolutional NeuralNetwork osiągnął lepsze wyniki bezpośredniej klasyfikacji, podczas gdy

Random Forest z cechami wyekstrahowanymi przez CNN stanowił efektywną alternatywę o

mniejszych wymaganiach obliczeniowych.

Projekt potwierdził przewagę metod deep learning w zadaniach klasyfikacji obrazów, jednocześniedemonstrując wartość klasycznych metod ML w połączeniu z nowoczesnymi technikami ekstrakcji cech.

7. Bibliografia

1 Vegetable Image Dataset. Kaggle. https://www.kaggle.com/datasets/misrakahmed/vegetable-image-dataset

Kod źródłowy projektu: 'eml_lukasz_kielczyk_projekt.py'

Środowisko: Google Colab, Python 3.x, PyTorch, scikit-learn