

On the Decoding of Polar Codes on Permuted Factor Graphs

Nghia Doan¹, **Seyyed Ali Hashemi**¹, Marco Mondelli², and Warren Gross¹

GLOBECOM 2018 Abu Dhabi, UAE Dec 10, 2018

¹McGill University, Québec, Canada

²Standford University, California, USA

Problem Statement

- Polar codes: selected for the eMBB control channel in 5G
- Successive Cancellation (SC) List (SCL): good error-correction performance, serial nature
- ▶ Belief Propagation (BP): reasonable error-correction performance, highly parallel → enable high decoding throughput!

Problem Statement

This paper

- Improve the error-correction performance of polar-code decoding by exploiting factor-graph permutations
- Provide a hardware friendly representation of the factor-graph permutations

Polar codes

- ▶ Introduced by Arıkan¹ in 2009
- \triangleright $\mathcal{P}(N,K)$, N: code length, K: message length
- Code construction: based on polarization phenomenon
 - K most reliable channels: information bits
 - ightharpoonup (N-K) least reliable channels: frozen bits

Graph layer indices

 $\mathcal{P}(8,5)$ with u_0 , u_1 , and u_2 are frozen bits

¹E. Arıkan. "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels". In: 55.7 (2009), pp. 3051–3073. ISSN: 0018-9448. DOI:

Belief Propagation (BP) Decoding

- An iterative message passing algorithm
- Belief messages are updated through Processing Elements (PEs)
- ▶ Termination conditions: CRC-based condition², maximum number of iterations

²Y. Ren et al. "Efficient early termination schemes for belief-propagation decoding of polar codes". In: *IEEE 11th Int. Conf. on ASIC*. 2015, pp. 1–4. DOI: 10.1109/ASICON.2015.7517046.

BP Decoding on Permuted Factor Graphs

- Permuting the factor-graph layers preserves the code³⁴
- Running BP decoding on multiple factor-graph permutations improves the error-correction performance⁵⁶

Various factor-graph permutations of $\mathcal{P}(8,5)$

³S. B. Korada. "Polar Codes for Channel and Source Coding". PhD thesis. Lausanne, Switzerland: EPFL, 2009.

⁴Nadine Hussami, Satish Babu Korada, and Rudiger Urbanke. "Performance of polar codes for channel and source coding". In: *IEEE Int. Symp. on Inf. Theory.* 2009, pp. 1488–1492.

⁵A. Elkelesh et al. "Belief propagation decoding of polar codes on permuted factor graphs". In: *IEEE Wireless Commun. and Net. Conf.* 2018, pp. 1–6. DOI: 10.1109/WCNC.2018.8377158.

⁶Ahmed Elkelesh et al. "Belief Propagation List Decoding of Polar Codes". In: *IEEE Communications Letters* 22 (2018), pp. 1536–1539.

BP Decoding on Permuted Factor Graphs

Permuted factor graph representations for $\mathcal{P}(8,5)$

- Problem: each factor-graph permutation requires a different decoding schedule → require different decoders in hardware
- Solution: transform factor-graph layer permutation to codeword-position permutation

Definitions:

- ▶ Permutation $\pi : \{0, 1, ..., n-1\} \rightarrow \{0, 1, ..., n-1\}$ where $n = \log_2(N)$
- Apply a permutation π to the original graph layer $L = \{l_{n-1}, \dots, l_1, l_0\}$:

$$L = \{I_{n-1}, \dots, I_1, I_0\} \xrightarrow{\pi} L_{\pi} = \{I_{\pi(n-1)}, \dots, I_{\pi(1)}, I_{\pi(0)}\}$$

► Binary expansion of the integer *i*

$$\{b_{n-1}^{(i)},\ldots,b_1^{(i)},b_0^{(i)}\}$$

where
$$b_i^{(i)} \in \{0, 1\}$$
 $(0 \le i \le N - 1; 0 \le j \le n - 1)$

Theorem 1

Apply permutation π to the original factor graph of a polar code

$$L = \{I_{n-1}, \dots, I_1, I_0\} \xrightarrow{\pi} L_{\pi} = \{I_{\pi(n-1)}, \dots, I_{\pi(1)}, I_{\pi(0)}\}.$$

Then, the synthetic channel associated with the binary expansion

$$\{b_{n-1}^{(i)},\ldots,b_1^{(i)},b_0^{(i)}\}$$

of the **original** factor graph **L** is the same as the synthetic channel associated with the binary expansion

$$\{b_{\pi(n-1)}^{(i)}, \ldots, b_{\pi(1)}^{(i)}, b_{\pi(0)}^{(i)}\}$$

of the **permuted** factor graph \mathbf{L}_{π} .

Proof.

▶ On *L*, the synthetic channel associated with the binary expansion $\{b_{n-1}^{(i)}, \dots, b_1^{(i)}, b_0^{(i)}\}$ is

$$W_L^{(i)} = ((((W^{b_{n-1}^{(i)}})^{\dots})^{b_1^{(i)}})^{b_0^{(i)}})$$

► On L_{π} , the synthetic channel associated with the binary expansion $\{b_{\pi(n-1)}^{(i)}, \dots, b_{\pi(1)}^{(i)}, b_{\pi(0)}^{(i)}\}$ is

$$W_{L_{\pi}}^{(i)} = ((((W^{b_{\pi(\pi(n-1))}^{(i)}})^{\dots})^{b_{\pi(\pi(1))}^{(i)}})^{b_{\pi(\pi(0))}^{(i)}})$$
$$= ((((W^{b_{n-1}^{(i)}})^{\dots})^{b_{1}^{(i)}})^{b_{0}^{(i)}}) = W_{L}^{(i)}$$

Apply Theorem 1 to a **permuted** factor graph L_{π} :

$$L_{\pi} = \{I_{\pi(n-1)}, \dots, I_{\pi(1)}, I_{\pi(0)}\} \xrightarrow{\pi} L = \{I_{n-1}, \dots, I_1, I_0\}.$$

Then, the synthetic channel associated with the binary expansion

$$\{b_{n-1}^{(i)},\ldots,b_1^{(i)},b_0^{(i)}\}$$

of the **permuted** factor graph L_{π} is the same as the synthetic channel associated with the binary expansion

$$\{b_{\pi(n-1)}^{(i)},\ldots,b_{\pi(1)}^{(i)},b_{\pi(0)}^{(i)}\}$$

of the original factor graph L.

An example:

Original codeword positions Permuted graph layers

Permuted codeword positions Original graph layers

Selection of Good Permutations

- Construct a set of permutations P
 - Fix (n k) left-most layers of the original graph
 - Construct k! permutations of the k right-most layers
 - $|\mathbb{P}| = k!$
- If the decoding algorithm fails on the original graph
 - ightharpoonup Run the decoding algorithm on each permutation p of \mathbb{P}
 - Numerically evaluate the probability of successful decoding for each permutation p
 - ▶ Select the M best permutations of \mathbb{P}

Selection of Good Permutations

FER performance of BP decoding on 16 best permuted factor graphs of $\mathcal{P}(1024,512)$ with 24-bit CRC, and $|\mathbb{P}|=k!$.

► Good permutations: found by permuting the layers on the right-most side of the original factor graph

5G $\mathcal{P}(1024, 512)$, no CRC, AWGN channel

⁷Korada, "Polar Codes for Channel and Source Coding".

⁸Hussami, Korada, and Urbanke, "Performance of polar codes for channel and source coding".

⁹Elkelesh et al., "Belief propagation decoding of polar codes on permuted factor graphs".

$5G \mathcal{P}(1024, 512), 24$ -bit CRC, AWGN channel

2.5

 E_b/N_0 [dB]

3.5

¹⁰Korada, "Polar Codes for Channel and Source Coding".

¹¹Hussami, Korada, and Urbanke, "Performance of polar codes for channel and source coding".

¹²Elkelesh et al., "Belief propagation decoding of polar codes on permuted factor graphs".

Conclusion

- Factor-graph permutations can be mapped to codeword-position permutations
 - → require a single decoder for hardware implementation
- Propose a method to construct good permutations for different polar-code decoders
 - ▶ 5G $\mathcal{P}(1024,512)$, no CRC, at $FER = 10^{-4}$: PSC-B10 is 0.4 dB better than PSC-R10, and almost equivalent to SCL32
 - ▶ 5G $\mathcal{P}(1024,512)$, 24-bit CRC, at $FER = 10^{-4}$: PBP-B128 is 0.25 dB better than PBP-R128, but 0.3 dB worse than SCL32

Thank you!