

Winning Space Race with Data Science

Christian Baumgartner 04.05.2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data Collection API / Webscraping
- Data Wrangling
- Exploartory Data Analysis with
 - SQL
 - Visualization (Matplotlib/Seaborn, Folium)
- Predictive Analysis using Machine Learning
- Summary of all results

Introduction

Project background and context

- SpaceX advertises cheap rocket launches (62 million dollars)
- cheap compared to other providers (> 165 million dollars)
- Saving come from reusable first rocket stages

Problems you want to find answers

Determine whether the first stage will land to determine the cost of a launch based on mission parameters, e.g. payload, orbit, launch site or customer

Methodology

Executive Summary

- Data collection methodology:
 - Data requested from SpaceX API
 - Webscraping from Wikipedia Falcon 9 launches
- Perform data wrangling
 - Dealing with missing values (e.g. payload NaN replaced with mean payload)
 - One-Hot encoding of labeled data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Logistic regression, SVM, Decision Tree, kNN

Data Collection

Data Sources:

SpaceX API

Direct request from SpaceX data via Json files

• Wikipedia: List of Falcon 9 and Falcon Heavy launches

https://en.wikipedia.org/wiki/List of Falcon 9 and Falcon Heavy launches

webscraping using BeautifulSoup

Data Collection - SpaceX API

Data collection with SpaceX REST calls

• GitHub:

https://github.com/DrBChris/IBM-Data-Science-Capstone-Project/blob/main/DataCollection.i pynb

Flowchart:

- define URL
- request data
- convert json into a Pandas dataframe
- normalize data

Data Collection - Scraping

Webscraping with BeautifulSoup

 From Wikipedia: List of Falcon 9 and Falcon Heavy launches

• GitHub:

https://github.com/DrBChris/IBM-Data-Science-Capstone-Project/blob/main/webscraping.ipynb

Flowchart:

- define URL
- request data
- create BeautifulSoup object from parsed data
- extract tables
- fill Pandas dataframe with parsed data

Data Wrangling

- Identifying of missing values for each attribute
- Identifying the data types
- Creating a landing outcome label (either 1 = success or 0 = failure)

• GitHub: https://github.com/DrBChris/IBM-Data-Science-Capstone-Project/blob/main/DataWrangling.ipynb

EDA with Data Visualization

- Used scatterplots to visualize
 - Flight Number vs Launch Site
 - Payload vs Launch Site
 - Flight Number vs Orbit
 - Payload vs Orbit
- Bar Chart
 - Success vs Orbit
- Line Chart
 - Yearly success trend
- GitHub: https://github.com/DrBChris/IBM-Data-Science-Capstone-Project/blob/main/DataViz.ipynb

EDA with SQL

• List of SQL Queries:

- Unique launch sites
- 5 records that begin with 'CCA'
- Total payload carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version F9 v1.1
- · Date when the first successful landing outcome in ground pad was achieved
- Name of boosters with success (4000 < mass < 6000)
- Total number of successful and failure missions
- Name of booster versions which carried the maximum payload
- · Failed laning outcomes in drone ship, their booster version and launch sites for 2015
- Ranking the number of landing outcomes between 2010-06-04 and 2017-03-20
- GitHub: https://github.com/DrBChris/IBM-Data-Science-Capstone-Project/blob/main/SQL.ipynb

Build an Interactive Map with Folium

- Visualizing all launch sites with circles
- Visualizing launch outcome with colored markers at each launch site
- Calcuating the distance between launch site and closest
 - coast line
 - highway
 - railway
 - city
- GitHub: https://github.com/DrBChris/IBM-Data-Science-Capstone-Project/blob/main/Folium.ipynb

Build a Dashboard with Plotly Dash

Piechart to visualize successrates of all and individual launch sites

 Scatterplot to visualize the relation between outcome and payload including a slider to display individual payload ranges

• GitHub: https://github.com/DrBChris/IBM-Data-Science-Capstone-Project/blob/main/dash.py

Predictive Analysis (Classification)

- We use different machine learning approaches to predict the outcome of a mission:
 - Logistic Regression
 - Support Vector Machines
 - Decision Trees
 - K Nearest Neighbor
- GridSearchCV was used to fine-tune hyperparameters
- GitHuB: https://github.com/DrBChris/IBM-Data-Science-Capstone-Project/blob/main/ML.ipynb

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

%%sql

SELECT DISTINCT launch_site FROM SPACEXDATASET

* ibm_db_sa://qsn36287:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb Done.

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

```
%%sql
SELECT *
FROM SPACEXDATASET
WHERE launch_site like 'CCA%'
LIMIT 5
```

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

```
%%sql
SELECT SUM(payload_mass__kg_)
FROM SPACEXDATASET
WHERE customer = 'NASA (CRS)'
```

* ibm_db_sa://qsn36287:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb Done.

1

45596

Average Payload Mass by F9 v1.1

```
%%sql
SELECT AVG(payload_mass__kg_)
FROM SPACEXDATASET
WHERE booster_version = 'F9 v1.1'

* ibm_db_sa://qsn36287:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb
Done.

1
2928
```

First Successful Ground Landing Date

```
%%sql
SELECT MIN(Date)
FROM SPACEXDATASET
WHERE landing_outcome like 'Success%'
```

* ibm_db_sa://qsn36287:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb Done.

1

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%%sql
SELECT booster_version
FROM SPACEXDATASET
WHERE landing_outcome = 'Success (drone ship)'
    AND payload_mass__kg_ > 4000
    AND payload_mass__kg_ < 6000</pre>
```

* ibm_db_sa://qsn36287:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb Done.

booster version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

```
%%sql
SELECT COUNT(mission_outcome)
FROM SPACEXDATASET
WHERE mission outcome like '%Success%'
* ibm_db_sa://qsn36287:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb
Done.
100
%%sq1
SELECT COUNT(mission outcome)
FROM SPACEXDATASET
WHERE mission outcome like '%Failure%'
* ibm_db_sa://qsn36287:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb
Done.
```

Boosters Carried Maximum Payload

```
%%sql
SELECT booster_version, payload_mass__kg_
FROM SPACEXDATASET
WHERE payload_mass__kg_ = (
    SELECT MAX(payload_mass__kg_)
    FROM SPACEXDATASET)
```

booster_version	payload_masskg_
F9 B5 B1048.4	15600
F9 B5 B1049.4	15600
F9 B5 B1051.3	15600
F9 B5 B1056.4	15600
F9 B5 B1048.5	15600
F9 B5 B1051.4	15600
F9 B5 B1049.5	15600
F9 B5 B1060.2	15600
F9 B5 B1058.3	15600
F9 B5 B1051.6	15600
F9 B5 B1060.3	15600
F9 B5 B1049.7	15600

2015 Launch Records

```
%%sql

SELECT booster_version, launch_site, landing__outcome

FROM SPACEXDATASET

WHERE landing__outcome like 'Failure (drone ship)'

AND DATE BETWEEN '2015-01-01' AND '2015-12-31'
```

booster_version	launch_site	landing_outcome
F9 v1.1 B1012	CCAFS LC-40	Failure (drone ship)
F9 v1.1 B1015	CCAFS LC-40	Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

```
%%sql

SELECT landing__outcome, COUNT(landing__outcome)
FROM SPACEXDATASET

WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
GROUP BY landing__outcome

ORDER BY COUNT(landing__outcome) DESC
```

landing_outcome			
No attempt	10		
Failure (drone ship)	5		
Success (drone ship)	5		
Controlled (ocean)	3		
Success (ground pad)	3		
Failure (parachute)	2		
Uncontrolled (ocean)	2		
Precluded (drone ship)	1		

SpaceX Launch Sites

Example of Color-Labeled Launch Outcomes

Distances from Launch Site

Launch Success for all launch sites

KSC LC-39A has to most success launching Falcon 9 rockets

Total Success Launches for KSC LC-39A

Low (<5000 kg) vs High (>5000 kg) Payload

Classification Accuracy

Decision Trees (DT) achieved the highest accuracy

Confusion Matrix

Conclusions

- Since 2017 SpaceX has about 80% success rate over all missions
- The most successful launch site is KSC LC-39A
- ES-L1, SSO, HEO, GEO are the most successful orbits (100%), although some of these orbits have only been target once
- VLEO is a highly frequented orbit with a success rate of 87%
- Payloads below 5000 kg seem to be more successful
- Decision Trees are the best approach to predict the success of a mission

