Circuits	Resistors in series and parallel

Learning objectiv es

	MUST (6)	Know the rules for total resistance in series and parallel		
	SHOULD (7)	Be able to derive the rules using Kirchoff's Laws and Ohm's Law		
	COULD (8/9)	Apply the rules to calculate the total resistance of complex circuits		

STARTER: Peer-marking homework questions

MUST (6)

Know the rules for total resistance in series and parallel

For resistors in series:

$$R_T = R_1 + R_2 + \dots$$

For resistors in parallel:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$
...

Can you use the equations and rules that we've learned to derive these?

Hint: draw a simple series circuit with two resistors, and apply Kirchoff's second and first laws. You'll need Ohm's law, too. Repeat for simple parallel circuit.

COULD (8/9) Apply the rules to calculate the total resistance in complex circuits

Mini-plenary:

- a) I have two identical resistors of $x\Omega$. I put them in series, and then in parallel. What's the total resistance in each case?
- b) I have four resistors, all at 10Ω . How many different total resistances could I get from them in a circuit? (I don't have to use them all)

Simplifying circuits:

Circuits	Pircuits		Resistors in series and parallel	
Learning		Know	ow the rules for total resistance in series and parallel	
objectiv		Be at	ole to derive the rules using Kirchoff's Laws and Ohm's Law	
es	COULD (8/9)	Apply	the rules to calculate the total resistance of complex circuits	

PLENARY: When you add an extra resistor in parallel, the total resistance changes.

What's the relationship between the size of the resistor you add and the change in total resistance? Either explain qualitatively or (extension) use a mathematical argument.

