Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [668]: # Dependencies and Setup
    import pandas as pd

# File to Load (Remember to Change These)
    school_data_to_load = "Resources/schools_complete.csv"
    student_data_to_load = "Resources/students_complete.csv"

# Read School and Student Data File and store into Pandas DataFrames
    school_data = pd.read_csv(school_data_to_load)
    student_data = pd.read_csv(student_data_to_load)

# Combine the data into a single dataset.
    school_data_complete = pd.merge(student_data, school_data, how="left", o
    n=["school_name", "school_name"])
    school_data_complete.head()
```

Out[668]:

	Student ID	student_name	gender	grade	school_name	reading_score	math_score	School ID	ţ
0	0	Paul Bradley	М	9th	Huang High School	66	79	0	Dis
1	1	Victor Smith	М	12th	Huang High School	94	61	0	Dis
2	2	Kevin Rodriguez	М	12th	Huang High School	90	60	0	Dis
3	3	Dr. Richard Scott	М	12th	Huang High School	67	58	0	Dis
4	4	Bonnie Ray	F	9th	Huang High School	97	84	0	Dis

District Summary

- · Calculate the total number of schools
- · Calculate the total number of students
- · Calculate the total budget
- · Calculate the average math score
- Calculate the average reading score
- Calculate the percentage of students with a passing math score (70 or greater)
- Calculate the percentage of students with a passing reading score (70 or greater)
- Calculate the percentage of students who passed math and reading (% Overall Passing)
- · Create a dataframe to hold the above results
- · Optional: give the displayed data cleaner formatting

```
In [684]: district_totals = school_data_complete.nunique()
          district_totals.head(11)
Out[684]: Student ID
                            39170
          student_name
                            32715
          gender
                                2
          grade
                                4
          school_name
                               15
                               37
          reading score
          math score
                               45
          School ID
                               15
                                2
          type
          size
                               15
          budget
                               15
          dtype: int64
In [685]: # Check for any null values
           # school data complete.isnull().sum().sum()
```

```
In [686]: # Calculate the total number of schools
          total schools = district totals["School ID"]
          #total schools
          # Calculate the total number of students
          total students = district totals["Student ID"]
          #total students
          # Calculate the total budget
          total_budget = school_data["budget"].sum()
          #total budget
          # Calculate the average math score
          avg math = student data["math score"].mean()
          #avg math
          # Calculate the average reading score
          avg read = student data["reading score"].mean()
          #avg read
          # Calculate the percentage of students with a passing math score (70 or
           greater)
          math pass = len(school data complete.loc[school data complete["math scor
          e"]>=70])
          math_pass_percent = (math_pass/total_students) *100
          #math pass percent
          # Calculate the percentage of students with a passing reading score (70
           or greater)
          read pass = len(school data complete.loc[school data complete["reading s
          core"]>=70])
          read pass percent = (read pass/total students) *100
          #read pass percent
          # Calculate the percentage of students who passed math and reading (% Ov
          erall Passing)
          both pass = len(school data complete.loc[(school data complete["math sco
          re"]>=70) & (school data complete["reading score"]>=70)])
          both percent = (both pass/total students) *100
          #both percent
```

```
In [687]: #Create a dataframe to hold the above results
          district summary =pd.DataFrame({"Total Schools": [total schools],
                                           "Total Student": [total_students],
                                           "Total Budget": [total_budget],
                                           "Average Math Score": [avg_math],
                                           "Average Reading Score": [avg read],
                                           "% Passing Math": [math pass percent],
                                           "% Passing Reading": [read pass percent
          ],
                                           "% Overall Passing": [both_percent]})
          # Optional: give the displayed data cleaner formatting
          district_summary["Total Student"] = district_summary["Total Student"].ma
          p("{:,}".format)
          district_summary["Total Budget"] = district_summary["Total Budget"].map(
          "${:,.2f}".format)
          district_summary
```

Out[687]:

	Total Schools	Total Student	Total Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing	
0	15	39 170	\$24 649 428 00	78 985371	81 87784	74 980853	85 805463	65 172326	

School Summary

- Create an overview table that summarizes key metrics about each school, including:
 - School Name
 - School Type
 - Total Students
 - Total School Budget
 - Per Student Budget
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - % Overall Passing (The percentage of students that passed math and reading.)
- · Create a dataframe to hold the above results

```
In [688]: | # School Name and Type
          school_type = school_data.set_index(["school_name"])["type"]
          # Group by and merge data
          school_total = school_data_complete.groupby(["school_name"]).mean()
          school_total = pd.merge(school_type, school_total, on="school_name")
          # Total Students per school
          total_stu_per_school = school_total["size"]
          # Total School Budget per school
          school_budget = school_total["budget"]
          # Per Student Budget per school
          student_budget = school_total["budget"]/school_total["size"]
          # Average Math Score per school
          math_school_avg = school_total["math_score"]
          # Average Reading Score per school
          read_school_avg = school_total["reading_score"]
          # % Passing Math
          math_schools = school_data_complete.loc[school_data_complete["math_scor"]
          e"]>=70, ["school_name", "math_score"]]
          math schools = math schools.groupby(["school name"]).count()
          # % Passing Reading
          read_schools = school_data_complete.loc[school_data_complete["reading_sc
          ore"]>=70, ["school_name", "reading_score"]]
          read_schools = read_schools.groupby(["school_name"]).count()
          # % Overall Passing (The percentage of students that passed math and rea
          ding.)
          overall_schools = school_data_complete.loc[(school_data_complete["math_s")
          core"]>=70) & (school_data_complete["reading_score"]>=70), ["school_nam"]
          e", "reading score"]]
          overall_schools = overall_schools.groupby(["school_name"]).count()
          # Add new columns to DataFrame
          school_total["Per Student Budget"] = school_total["budget"]/school_total
          ["size"]
          school_total["% Passing Math"] = (math_schools["math_score"]/total_stu_p
          er school)*100
          school_total["% Passing Reading"] = (read_schools["reading_score"]/total
          _stu_per_school)*100
          school_total["% Overall Passing"] = (overall_schools["reading_score"]/to
```

```
tal_stu_per_school)*100

# Remove unwanted columns
school_total.pop("Student ID")
school_total.pop("School ID")

# Sort school names alphabetically
school_results = school_total.sort_values(["school_name"], ascending=Tru
e)
```

```
In [689]: # Create a dataframe to hold the above results
          # Reorganize the columns
          school_summary = school_results[["type",
                                            "size",
                                            "budget",
                                            "Per Student Budget",
                                            "math score",
                                            "reading_score",
                                            "% Passing Math",
                                            "% Passing Reading",
                                            "% Overall Passing"]]
          # Rename the columns
          school summary = school_summary.rename(columns={"type":"School Type",
                                                            "size": "Total Students",
                                                            "budget": "Total School B
          udget",
                                                            "math_score": "Average Ma
          th Score",
                                                            "reading_score": "Average
          Reading Score"})
          # Remove the index header
          school summary.index.name = None
          # Give the displayed data cleaner formatting
          school summary["Total Students"] = school summary["Total Students"].map(
          "{:.0f}".format)
          school_summary["Total School Budget"] = school summary["Total School Bud
          get"].map("${:,.2f}".format)
          school summary["Per Student Budget"] = school summary["Per Student Budge
          t"].map("${:.2f}".format)
          # Display DataFrame
          school summary
```

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
Bailey High School	District	4976	\$3,124,928.00	\$628.00	77.048432	81.033963	66.680064	81.933280
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	97.039828
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602	79.299014
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	97.138965
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999
Holden High School	Charter	427	\$248,087.00	\$581.00	83.803279	83.814988	92.505855	96.252927
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	95.945946
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055
Shelton High School	Charter	1761	\$1,056,600.00	\$600.00	83.359455	83.725724	93.867121	95.854628
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	97.308869
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	96.539641
Wright High School	Charter	1800	\$1,049,400.00	\$583.00	83.682222	83.955000	93.333333	96.611111

Top Performing Schools (By % Overall Passing)

• Sort and display the top five performing schools by % overall passing.

```
In [676]:
            # Sort and display top five performing schools by % overall passing
            top_five = school_summary.sort_values(["% Overall Passing"], ascending=F
            alse)
            top_five.head(5)
Out[676]:
                                                                                      %
                                                                                                %
                                                       Per
                                                             Average
                                                                       Average
                     School
                                 Total
                                       Total School
                                                   Student
                                                                Math
                                                                       Reading
                                                                                 Passing
                                                                                           Passing
                        Type
                             Students
                                            Budget
                                                    Budget
                                                               Score
                                                                         Score
                                                                                    Math
                                                                                           Reading
             Cabrera
                                                   $582.00 83.061895 83.975780 94.133477 97.039828 §
                High
                     Charter
                                 1858 $1,081,356.00
              School
             Thomas
                     Charter
                                 1635 $1,043,130.00 $638.00 83.418349 83.848930 93.272171 97.308869 $
                High
              School
               Griffin
                                 1468
                                        $917,500.00 $625.00 83.351499 83.816757 93.392371 97.138965 $
                High
                     Charter
              School
              Wilson
```

```
In [ ]:
```

\$585,858.00

2283 \$1,319,574.00 \$578.00 83.274201 83.989488 93.867718 96.539641 \$

\$609.00 83.839917 84.044699 94.594595 95.945946 \$

Bottom Performing Schools (By % Overall Passing)

Sort and display the five worst-performing schools by % overall passing.

962

High

School

Pena

High School Charter

Charter

```
In [677]: # Sort and display the five worst-performing schools by % overall passin
g
bottom_five = school_summary.sort_values(["% Overall Passing"], ascendin
g=True)
bottom_five.head(5)
```

Out[677]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592	80.220055
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471	80.739234
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922	81.316421
Hernandez High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967	80.862999
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551	81.222432

Math Scores by Grade

- Create a table that lists the average Math Score for students of each grade level (9th, 10th, 11th, 12th) at each school.
 - Create a pandas series for each grade. Hint: use a conditional statement.
 - Group each series by school
 - Combine the series into a dataframe
 - Optional: give the displayed data cleaner formatting

```
In [690]: # Create a series for each grade
          grades = school data complete.set index(["school name"])["grade"]
          grades
          math ninth = school data complete.loc[school data complete["grade"]=="9t
          h", ["school_name", "math_score"]]
          math_ninth_avg = math_ninth.groupby(["school_name"]).mean()
          math ninth avg
          math_tenth = school_data_complete.loc[school_data_complete["grade"]=="10"]
          th", ["school_name", "math_score"]]
          math_tenth_avg = math_tenth.groupby(["school_name"]).mean()
          math_tenth_avg
          math eleventh = school data complete.loc[school data complete["grade"]==
          "11th", ["school_name", "math_score"]]
          math eleventh avg = math_eleventh.groupby(["school name"]).mean()
          math eleventh avg
          math twelfth = school data complete.loc[school data complete["grade"]==
          "12th", ["school_name", "math_score"]]
          math_twelfth avg = math_twelfth.groupby(["school_name"]).mean()
          math_twelfth_avg
          # Add new columns to DataFrame
          math ninth avg["10th"] = math tenth avg
          math_ninth_avg["11th"] = math_eleventh_avg
          math ninth avg["12th"] = math twelfth avg
          math ninth avg
          # Rename the DataFrame and columns
          math by grade = math ninth avg.rename(columns={"math score":"9th"})
          math by grade
          # Remove the index header
          math by grade.index.name = None
          math by grade
```

	9th	10th	11th	12th
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

In []:

Reading Score by Grade

• Perform the same operations as above for reading scores

```
In [691]: # Create a series for each grade
          grades = school data complete.set index(["school name"])["grade"]
          grades
          read ninth = school data complete.loc[school data complete["grade"]=="9t
          h", ["school_name", "reading_score"]]
          read_ninth_avg = read_ninth.groupby(["school_name"]).mean()
          read ninth avg
          read_tenth = school_data_complete.loc[school_data_complete["grade"]=="10"]
          th", ["school_name", "reading_score"]]
          read_tenth_avg = read_tenth.groupby(["school_name"]).mean()
          read_tenth_avg
          read_eleventh = school_data_complete.loc[school_data_complete["grade"]==
          "11th", ["school_name", "reading_score"]]
          read eleventh avg = read eleventh.groupby(["school name"]).mean()
          read eleventh avg
          read twelfth = school data complete.loc[school data complete["grade"] ==
          "12th", ["school_name", "reading_score"]]
          read twelfth avg = read twelfth.groupby(["school name"]).mean()
          read_twelfth_avg
          # Add new columns to DataFrame
          read ninth avg["10th"] = read tenth avg
          read_ninth_avg["11th"] = read_eleventh_avg
          read ninth avg["12th"] = read twelfth avg
          read ninth avg
          # Rename the DataFrame and columns
          read by grade = read ninth avg.rename(columns={"reading score":"9th"})
          read by grade
          # Remove the index header
          read by grade.index.name = None
          read by grade
```

	9th	10th	11th	12th
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

In []:

Scores by School Spending

- Create a table that breaks down school performances based on average Spending Ranges (Per Student). Use 4 reasonable bins to group school spending. Include in the table each of the following:
 - Average Math Score
 - Average Reading Score
 - % Passing Math
 - % Passing Reading
 - Overall Passing Rate (Average of the above two)

```
In [692]: # Create the bins in which data will be held
          bins = [0, 584.9, 629.9, 644.9, 675]
          # Create the names for the four bins
          group_names = ["<$584", "$585-629", "$630-644", "$645-675"]
          # Cut the bins
          school_total["Spending Ranges (Per Student)"] = pd.cut(school_total["Per
          Student Budget"], bins, labels=group names, include lowest=True)
          # Groupby spending ranges
          school_spending_group = school_total.groupby(["Spending Ranges (Per Stud
          ent)"]).mean()
          school spending group
          # Reorganize the columns
          school spending = school spending group[["math score",
                                            "reading_score",
                                            "% Passing Math",
                                            "% Passing Reading",
                                            "% Overall Passing"]]
          # Rename the columns
          school_spending = school_spending.rename(columns={"math_score":"Average
           Math Score",
                                                           "reading score": "Average
          Reading Score"})
          # Give the displayed data cleaner formatting
          school spending["Average Math Score"] = school spending["Average Math Sc
          ore"].map("{:.2f}".format)
          school spending["Average Reading Score"] = school spending["Average Read
          ing Score"].map("{:.2f}".format)
          school spending["% Passing Math"] = school spending["% Passing Math"].ma
          p("{:.2f}".format)
          school_spending["% Passing Reading"] = school_spending["% Passing Readin
          g"].map("{:.2f}".format)
          school_spending["% Overall Passing"] = school_spending["% Overall Passin
          g"].map("{:.2f}".format)
          school spending
```

Out[692]:

		Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
5	Spending Ranges (Per Student)					
	<\$584	83.46	83.93	93.46	96.61	90.37
	\$585-629	81.90	83.16	87.13	92.72	81.42
	\$630-644	78.52	81.62	73.48	84.39	62.86
	\$645-675	77.00	81.03	66.16	81.13	53.53

Scores by School Size

• Perform the same operations as above, based on school size.

```
In [693]: | # Create the bins in which data will be held
          bins = [0, 999.9, 1999.9, 4999.9]
          # Create the names for the three bins
          group names = ["Small(<1000)", "Medium (1000-2000)", "Large(2000-5000)"]
          # Cut the bins
          school_total["School Size"] = pd.cut(school_total["size"], bins, labels=
          group names, include lowest=True)
          # Groupby size ranges
          school_size_group = school_total.groupby(["School Size"]).mean()
          school_size_group
          # Reorganize the columns
          school size = school size group[["math score",
                                            "reading score",
                                            "% Passing Math",
                                            "% Passing Reading",
                                            "% Overall Passing"]]
          # Rename the columns
          school size = school size.rename(columns={"math score":"Average Math Sco
          re",
                                                     "reading score": "Average Readi
          ng Score"})
          # Give the displayed data cleaner formatting
          school size["Average Math Score"] = school size["Average Math Score"].ma
          p("{:.2f}".format)
          school size["Average Reading Score"] = school size["Average Reading Scor
          e"].map("{:.2f}".format)
          school_size["% Passing Math"] = school_size["% Passing Math"].map("{:.2
          f}".format)
          school size["% Passing Reading"] = school size["% Passing Reading"].map(
          "{:.2f}".format)
          school size["% Overall Passing"] = school size["% Overall Passing"].map(
          "{:.2f}".format)
          school size
```

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
School Size					
Small(<1000)	83.82	83.93	93.55	96.10	89.88
Medium (1000- 2000)	83.37	83.86	93.60	96.79	90.62
Large(2000- 5000)	77.75	81.34	69.96	82.77	58.29

Scores by School Type

· Perform the same operations as above, based on school type

```
In [694]: school_total = school_total.rename(columns={"type": "School Type"})
          # Groupby school type
          school_type_group = school_total.groupby(["School Type"]).mean()
          school type group
          # Reorganize the columns
          school_type = school_type_group[["math_score",
                                            "reading_score",
                                            "% Passing Math",
                                            "% Passing Reading",
                                            "% Overall Passing"]]
          # Rename the columns
          school_type = school_type.rename(columns={"math_score":"Average Math Sco
          re",
                                                     "reading_score": "Average Readi
          ng Score"})
          school type
```

Out[694]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	% Overall Passing
School Type					
Charter	83.473852	83.896421	93.620830	96.586489	90.432244
District	76.956733	80.966636	66.548453	80.799062	53.672208

```
In [ ]:
```