Homework 1 STAT 5333 (Spring 2021)

Md Abul Hayat

Problem 1.2

(a) Nominal (b) Ordinal (c) Ordinal (d) Nominal (e) Nominal (f) Ordinal

Problem 1.4

(a) Probability mass function, $P(Y=y) = \frac{n!}{y!(n-y)!} \pi^y (1-\pi)^{n-y}$. Here, $\pi=0.5$ and n=2

```
p = 0.5
n = 2
dbinom(0:n,n,p)
```

[1] 0.25 0.50 0.25

Also, mean, $\mu = n\pi = 2 \times 0.5 = 1$ and standard deviation, $\sigma = \sqrt{n\pi(1-\pi)} = \frac{1}{\sqrt{2}}$

(b)

```
p = 0.6
dbinom(0:n,n,p)
```

[1] 0.16 0.48 0.36

```
p = 0.4
dbinom(0:n,n,p)
```

[1] 0.36 0.48 0.16

(c) Likelihood function, $L(\pi) = P(Y = 1 | \pi) = \frac{2!}{1!1!} \pi^1 (1 - \pi)^1 = 2\pi (1 - \pi)$

```
p = seq(0,1,0.01)
L = 2*p*(1-p)
plot(p,L,type="l", col="red", xlab="Probability", ylab="Likelihood")
abline(v=0.5, col="blue", lty = 2)
abline(h=0.5, col="blue", lty = 2)
grid()
```


(d) The maximum value of $L(\pi)$ is 0.5 at $\pi = 0.5$, which is the ML estimate.

Problem 1.6

- (a) Here, $n = n_1 + n_2 + n_3$. Hence, $n_3 = n n_1 n_2$ if we know n_1 and n_2 .
- (b) All $(=10=\frac{5!}{2!3!})$ possible observations (n_1,n_2,n_3) with n=3 are (0,0,3), (0,1,2), (0,2,1), (0,3,0), (1,0,2), (1,1,1), (1,2,0), (2,0,1), (2,1,0), (3,0,0)
- (c) Multinomial probability of $(n_1, n_2, n_3) = (1, 2, 0)$ with $(\pi_1, \pi_2, \pi_3) = (0.25, 0.50, 0.25)$ is

dmultinom(x=c(1,2,0),prob=c(0.25,0.5,0.25))

[1] 0.1875

(d) n_1 has binomial distribution with $n_1 \sim Bin(n, \pi_1)$.

$$P(n_1 = k) = \frac{n!}{k!(n-k)!} \pi_1^k (1 - \pi_1)^{n-k} = \frac{n!}{k!(n-k)!} \pi_1^k (\pi_2 + \pi_3)^{n_2 + n_3}$$