AED2 - Aula 2725

Caminhos mínimos em grafos sem custos negativos e algoritmo de Dijkstra

Vamos continuar abordando o problema de encontrar caminhos mínimos

• em grafos sem custos negativos.

Neste problema recebemos como entrada:

• Um grafo G = (V, E),

```
typedef struct noh Noh;
struct noh {
   int rotulo;
   int custo;
   Noh *prox;
};
```

- com custo c(e) >= 0 em cada aresta e em E
- e um vértice origem s.

O objetivo é encontrar:

- O valor do caminho mínimo de s até cada vértice v em V,
 - o i.e., a distância de s a v.
- Também gostaríamos que os caminhos mínimos fossem devolvidos.

Algoritmo de Dijkstra

Vamos seguir no estudo do clássico algoritmo de Dijkstra para caminhos mínimos.

Para relembrar, segue um exemplo de funcionamento do algoritmo:

No pseudocódigo seguinte, para simplificar, vamos supor que

- todos os vértices do grafo são alcançáveis a partir da origem s.
- Se esse não for o caso, podemos focar nos vértices alcançáveis
 - o realizando uma busca inicial a partir de s,
- ou modificar levemente o algoritmo de Dijkstra.
 - O Quiz1: Como?

Pora todo ve V faço dist [v]=+0 e pred [v]= NULL

dist [5]= 0

R= {}

enquato R + V

ascallar v & VIR que nin. dist [v]

para cada enco (v, w) e/ w & VIR

para cada enco (v, w) e/ w & VIR

para cada enco (v, w) e/ w & VIR

para cada enco (v, w) e/ w & VIR

para cada enco (v, w) e/ w & VIR

pred [w] = dist [v] + c (v, w)

pred [w] = v

O algoritmo de Dijkstra mantém as seguintes propriedades invariantes

no início de cada iteração do laço principal do algoritmo:

1- V v E R tenos dist [v] é o volon de distance de Sa v 2- V v E V tenos pred [v] é o pendino vertice no cambo de Sav 3- V v E V R tenos dist [v] é o volor de un cambo mínimo de S a v que só usa vertices en R (xceto pelo destino v)

Faremos a prova por indução no número de iterações k.

H.I.: As propriedades 1, 2 e 3 do invariante valem no início da iteração k.

Caso base: no início da primeira iteração

- 1 vale pair R = 0

- 2 vale pair $\forall v \neq s$ à confeand camindo e pred [v] = NULL

pres tour dist [s] = 0 um camindo

sem penáltimo reitice e pred [s] = NULL

- 3 mb pair R = Ø, assin à existe camindo minimos de

s a v y vertices em R, p/ v + s

pres tour dist [s] = Ø mas o camindo vão uso vertios em R

Passo: Seja k a iteração em que v é inserido em R. Vamos mostrar que

• as propriedades 1, 2 e 3 continuam valendo no início da iteração k + 1.

O vértice v é inserido por ser o vértice fora de R com menor valor para dist[].

- Pela propriedade 3 da H.I. temos que v é o vértice com menor caminho
 - o cujos vértices intermediários estão em R.
- Vamos mostrar que este é um caminho mínimo de s até v.

Considere um caminho P qualquer de s até v e seja c(P) o custo de P.

- Em algum momento P tem que cruzar a fronteira entre
 - o vértices que estão em R e vértices fora de R.
- Suponha que o primeiro vértice de P fora de R é w, e divida P em
 - o P1 (parte que vai de s a w) e P2 (parte que vai de w a v).
- Pela propriedade 3 da H.I. temos que, dist[w] é o menor caminho de s até w
 - o que só usa vértices em R. Portanto, dut [w] ≤ c (PI)
- Como não temos arcos de custo negativo, C(P2) ≥ Ø
- Assim, pela escolha de v como o vértice que minimiza dist[],
 - temos dust [v] \leq dust [w] + \otimes \leq c(P1) + c(P2) = C(P)

Mostramos que qualquer caminho de s até v tem custo maior ou igual a dist[v].

• Portanto, a propriedade 1 do invariante vale no início da iteração k + 1.

Agora vamos mostrar que as propriedades 2 e 3 continuam valendo.

- Para os vértices que não são destino de uma aresta com origem em v
 - o nada muda e o resultado segue da H.I.
- Vamos considerar um vértice w em V \ R tal que existe aresta (v, w).
 - o Pela H.I., dist[w] e pred[w] tinham os valores corretos
- Assim, esses valores só devem ser alterados se existir
 - o um caminho de custo menor para w, que posta por v
- Mas, se for esse o caso, durante a iteração k
 o algoritmo faz dut[w] ← dut [v] + c(v,w) * pud [w] ← v
- Portanto, dist[w] corresponde ao custo do menor caminho
 - o cujos vértices intermediários estão em R (propriedade 3)
- e pred[w] aponta para o penúltimo vértice nesse caminho (popuedade 2)

Código de uma implementação básica do algoritmo de Dijkstra:

```
void Dijkstra(Grafo G, int origem, int *dist, int *pred) {
             int i, *R;
             int v, w, custo, tam R, min dist;
             Noh *p;
             // inicializando distâncias e predecessores
             for (i = 0; i < G->n; i++) {
                 dist[i] = __INT_MAX__;
                 pred[i] = -1;
             }
           - dist[origem] = 0;
            // inicializando conjunto de vértices "resolvidos" R
           - R = malloc(G->n * sizeof(int));
             for (i = 0; i < G->n; i++)
                 R[i] = 0;
         \rightarrow tam R = 0;
             // enquanto não encontrar o caminho mínimo para todo vértice
          → while (tam_R < G->n) {
                 // buscando vértice v em V \ R que minimiza dist[v] / whose min dist = INT MAX :
O(m^2)
                 min_dist = __INT_MAX__;
                 v = -1;
                 for (i = 0; i <= G->n; i++)
         \mathbb{O}(\mathsf{m})
                     if (R[i] == 0 && dist[i] < min_dist) {</pre>
                        -v = i;
                        - min_dist = dist[i];
                 // adicionando v a R e atualizando o conjunto R
              — R[v] = 1; tam_R++; ←
                    percorrendo lista com vizinhos de v
       )(18(v))
                  for (p = G \rightarrow A[v]; p != NULL; p = p \rightarrow prox) {
                     w = p->rotulo;
                     custo = p->custo;
          ' e dualizando as distâncias e predecessores quando for o caso
                     if (R[w] == 0 \&\& dist[w] > dist[v] + custo) {
                        —dist[w] = dist[v] + custo;
                       \sim pred[w] = v;
            free(R);
```

Eficiência: O(n * n + m),

- pois o último laço realiza n iterações e em cada uma delas
 - o primeiro laço interno passa por todos os vértices
 - para escolher um vértice v,
 - totalizando n * n = n^2 iterações,
 - o enquanto o segundo laço interno
 - passa por todos os arcos do vértice v escolhido.
 - o Com isso, ao longo do algoritmo, todo arco é visitado uma vez,
 - i.e., o segundo laço interno itera m vezes no total,
 - já que cada vértice é considerado
 - o em apenas uma iteração do laço externo.
- Note que, como m <= n^2 em grafos sem auto-laços e arestas múltiplas,
 - o algoritmo tem eficiência O(n^2),
 - independente do grafo ser denso ou esparso.

Implementação avançada de Dijkstra e eficiência

A eficiência do algoritmo de Dijkstra depende fortemente

- da estrutura de dados que usamos para implementar as operações
 - de escolha do vértice com menor valor de dist[].
- Como fazemos repetidas operações de remoção do mínimo de um conjunto,
 - o a escolha natural é utilizar um heap de mínimo.

Sendo n o número de elementos armazenados, um heap de mínimo

- suporta as operações de remover o mínimo e de inserir em tempo O(log n).
- Também conseguimos construir um heap em tempo O(n).
- Além disso, é possível atualizar o valor de elementos no meio do heap
 - o em tempo O(log n), o que é particularmente relevante nesta aplicação.
- Como implementar essa atualização? Discutiremos isso mais adiante.

Código do algoritmo de Dijkstra com heap,

que usa um vetor auxiliar pos_H, que é indexado pelos rótulos dos vértices,
e armazena a posição de cada vértice no vetor do heap H.

```
void DijkstraComHeap(Grafo G, int origem, int *dist, int *pred) {
             int i, *pos_H, v, w, custo, tam_H;
             Elem *H, elem aux;
             Noh *p;
             // inicializando distâncias e predecessores
    O(M)
             for (i = 0; i < G->n; i++) {
                 dist[i] = __INT_MAX__;
                 pred[i] = -1;
          → dist[origem] = 0;
             // criando um min heap em H com vetor de posições pos_H
          →H = malloc(G->n * sizeof(Elem));
           pos H = malloc(G->n * sizeof(int));
             for (i = 0; i < G->n; i++) {
  O(n)
              → H[i].chave = dist[i]; // chave é a "distância" do vértice
              → H[i].conteudo = i; // conteúdo é o rótulo do vértice
              →pos_H[i] = i; // vértice i está na posição i do heap H
           - troca(&H[0], &H[origem]); // coloca origem no início do heap H
           — troca_pos(&pos_H[0], &pos_H[origem]); // atualiza posição
\bigcirc (M \log M) = G - > n;
             while (tam_H > 0) { // enquanto não visitar todo vértice
                 // buscando vértice v que minimiza dist[v]
             tam_H = removeHeap(H, pos_H, tam_H, &elem_aux);
               → v = elem aux.conteudo;
                 // percorrendo lista com vizinhos de v
               for (p = G \rightarrow A[v]; p != NULL; p = p \rightarrow prox) {
         0(18(v))
                    w = p->rotulo;
                     custo = p->custo;
            e atualizando as distâncias e predecessores quando for o caso
                     dist[w] = dist[v] + custo;
                         pred[w] = v;
                         delem_aux.chave = dist[w];
                         elem_aux.conteudo = w;
                       🗕 atualizaHeap(H, pos_H, elem_aux); 🚄
```

```
free(H);
- free(pos_H);
}
```

Eficiência: $O((n + m) \log n) = O(m \log n)$ se o grafo for conexo,

- pois nesse caso o número de arestas supera o número de vértices.
- Essa eficiência decorre de, em cada iteração do algoritmo,
 - o um vértice ser removido do heap, o que leva tempo O(log n).
- Assim, ao longo de toda a execução as remoções levam tempo O(n log n).
- Além disso, cada arco (v, w) é considerado uma vez,
 - o quando seu vértice origem v é removido do heap.
- No caso de (v, w) fazer parte de um caminho mais curto para w,
 - o valor dist[w] deve ser atualizado no heap, o que custa O(log n).
- No total, ao longo de toda a execução, as atualizações custam O(m log n).

Para a maior parte dos grafos essa é a melhor versão do algoritmo de Dijkstra,

- já que ela é quase linear no tamanho do grafo.
- A exceção são grafos particularmente densos, com m = ⊖(n^2),
 - o em que a complexidade do algoritmo é $O(m \log n) = O(n^2 \log n)$.
- Surpreendentemente, nesse caso conseguimos melhorar a eficiência
 - o usando nossa implementação básica,
- que usa um vetor de tamanho n para armazenar as informações dist[]
 - o e tem eficiência $O(n * n + m) = O(n^2)$.

Para a versão do algoritmo de Dijkstra com heap funcionar,

- é necessário implementar a função atualizaHeap. 告
 - Para tanto é preciso modificar as funções sobeHeap e desceHeap.
- Isso porque, essas funções precisam manter atualizada,
 - o num vetor auxiliar pos_H, a posição de cada elemento do heap H.

Exemplo de operações de um heap de mínimo,

- com conteúdo dos elementos independente do valor das chaves,
- e atualizando o vetor auxiliar que guarda as posições no heap.

Código da estrutura de dados heap com operação de atualização

```
typedef struct elem {
      int chave; // vamos guardar dist aqui
      int conteudo; // vamos guardar o vértice aqui
  } Elem;
  f#define PAI(i) (i - 1) / 2
  #define FILHO_ESQ(i) (2 * i + 1)
  #define FILHO_DIR(i) (2 * i + 2)
void troca(Elem *a, Elem *b);
void troca_pos(int *a, int *b);
  // sobe o elemento em v[pos_elem_v] até restaurar a prop. do heap
  void sobeHeap(Elem v[], int pos_v[], int pos_elem_v) {
    hint f = pos_elem_v;
      while (f > 0 \& v[PAI(f)].chave > v[f].chave) {
        -troca(&v[f], &v[PAI(f)]);
       -Dtroca_pos(&pos_v[v[f].conteudo], &pos_v[v[PAI(f)].conteudo]);
          f = PAI(f);
  int insereHeap(Elem v[], int pos_v[], int m, Elem x) {
   \vee v[m] = x;
    pos_v[x.conteudo] = m;
    - sobeHeap(v, pos_v, m);
      return m + 1;
```

```
// desce o elemento em v[pos elem v] até restaurar a prop. do heap
void desceHeap(Elem v[], int pos v[], int m, int pos elem v) {
    int p = pos elem v, f;
  - while (FILHO_ESQ(p) < m && (v[FILHO_ESQ(p)].chave < v[p].chave
f = FILHO ESQ(p);

— if (FILHO_DIR(p) < m && v[FILHO_DIR(p)].chave < v[f].chave)</pre>
          f = FILHO_DIR(p);
     - troca(&v[p], &v[f]);
     - troca_pos(&pos_v[v[p].conteudo], &pos_v[v[f].conteudo]);
   }
}
int removeHeap(Elem v[], int pos_v[], int m, Elem *px) {
-(*px) = v[0];
 - troca(&v[0], &v[m - 1]);
  - troca_pos(&pos_v[v[0].conteudo], &pos_v[v[m - 1].conteudo]);
 → desceHeap(v, pos_v, ¬¬, 0);
   return m - 1;
}
void atualizaHeap(Elem v[], int pos_v[], Elem x) {
   int pos_x_v = pos_v x.conteudo; // pega a posição de x em v
   v[pos_x_v].chave = x.chave;
                                // atualiza a chave de x em v
→ sobeHeap(v, pos_v, pos_x_v); // Quiz3; por que mando subir e não
descer? Em que situação mandaria descer?
```

Curiosidade:

- É possível implementar o algoritmo de Dijkstra com heap
 - o sem usar a operação de atualização.
 - Quiz4: Como implementar essa versão?
- Dica: Inserir um mesmo vértice v várias vezes no heap.
 - Mais especificamente, cada vez que a distância de v é atualizada.
- Note que, isso não compromete o correto funcionamento do algoritmo,
 - o pois sairá primeiro do heap a cópia do vértice com menor distância.
- No entanto, devemos modificar o algoritmo para
 - descartar vértices repetidos.