Performance Evaluation

• Confusion Matrix:

		Detected					
		Positive	Negative				
Actual	Positive	A: True Positive	B: False Negative				
	Negative	C: False Positive	D: True Negative				

- Recall or Sensitivity or True Positive Rate (TPR):
 - It is the proportion of positive cases that were correctly identified, as calculated using the equation:

Recall =
$$\frac{A}{A+B}$$

- Accuracy (AC):
 - o *AC*: is the proportion of the total number of predictions that were correct.
 - o It is determined using the equation:

Accuracy =
$$\frac{A+D}{A+B+C+D}$$

o Error rate (misclassification rate)= 1 - AC

• The false positive rate (FPR) is the proportion of negatives cases that were incorrectly classified as positive, as calculated using the equation:

$$FPR = \frac{C}{C + D}$$

- The true negative rate (TNR) or Specificity:
 - It is defined as the proportion of negatives cases that were classified correctly, as calculated using the equation:

$$TNR = \frac{D}{C + D}$$

- The false negative rate (FNR):
 - It is the proportion of positives cases that were incorrectly classified as negative, as calculated using the equation:

$$FNR = \frac{B}{A+B}$$

- Precision:
 - P is the proportion of the predicted positive cases that were correct, as calculated using the equation:

$$Precision = \frac{A}{A+C}$$

- F-measure:
 - o The F-Measure computes some average of the information retrieval precision and recall metrics.
 - o Why F-measure?
 - An arithmetic mean does not capture the fact that a (50%, 50%) system is often considered better than an (80%, 20%) system
 - o F-measure is computed using the harmonic mean:

Given n points, $x_1, x_2, ..., x_n$, the harmonic mean is:

$$\frac{1}{H} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_i}$$

o So, the harmonic mean of Precision and Recall:

$$\frac{1}{F} = \frac{1}{2}(\frac{1}{R} + \frac{1}{P}) = \frac{P + R}{2PR}$$

- o The computation of F-measure:
 - Each cluster is considered as if it were the result of a query and each class as if it were the desired set of documents for a query
 - We then calculate the recall and precision of that cluster for each given class.
 - The F-measure of cluster *j* and class *i* is defined as follows:

$$F_{ij} = \frac{2 * Recall(i, j) * Precision(i, j)}{Precision(i, j) + Recall(i, j)}$$

• The F-measure of a given clustering algorithm is then computed as follows:

$$F-measure = \sum \frac{n_i}{n} max(\{F_{ij}\})$$

Where n is the number of documents in the collection and n_i is the number of documents in cluster i.

• Note that the computed values are between 0 and 1 and a larger F-Measure value indicates a higher classification/clustering quality.

- Receiver Operating Characteristic (ROC) Curve:
 - o It is a graphical approach for displaying the tradeoff between true positive rate (TPR) and false positive rate (FPR) of a classifier:

TPR = positives correctly classified/total positives

FPR = negatives incorrectly classified/total negatives

- o TPR is plotted along the y axis
- o FPR is plotted along the x axis
- Performance of each classifier represented as a point on the ROC curve

• Important Points: (TP,FP)

- o (0,0): declare everything to be negative class
- o (1,1): declare everything to be positive class
- o (1,0): ideal

• Diagonal line:

- o Random guessing
- Area Under Curve (AUC):
 - o It provides which model is better on the average.
 - o Ideal Model: area = 1

- o If the model is simply performs random guessing, then its area under the curve would equal 0.5.
- A model that is better than another would have a larger area.

Example:

- No model consistently outperform the other
 - o M1 is better for small FPR
 - o M2 is better for large FPR

- Example: (Kumar et al.)
 - Compute P(+|A) which is a numeric value that represents the degree to which an instance is a member of a class. In other words, it is the probability or ranking of the predicted class of each data point.
 - P(+|A) is the posterior probability as defined in Bayesian classifier.

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	_
5	0.85	_
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
 - o Count the number of TP, FP, TN, FN at each threshold
 - \circ TP rate, TPR = TP/(TP+FN)
 - o FP rate, FPR = FP/(FP + TN)

Class	+	-	+	-	-	-	+	-	+	+	
	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP	5	4	4	3	3	3	3	2	2	1	0
FP	5	5	4	4	3	2	1	1	0	0	0
TN	0	0	1	1	2	3	4	4	5	5	5
FN	0	1	1	2	2	2	2	3	3	4	5
TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Clustering Only

- Intra-Cluster Similarity (ICS):
 - o It looks at the similarity of all the data points in a cluster to their cluster centroid.
 - It is calculated as arithmetic mean of all of the data point-centroid similarities.
 - o Given a set of k clusters, ICS is defined as follows:

$$ICS = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{|C_i|} \sum_{d_j \in C_i} sim(d_j, c_i)$$

Where c_i is the centroid of cluster C_i .

- A good clustering algorithm maximizes intracluster similarity.
- Centroid Similarity (CS):
 - It computes the similarity between the centroids of all clusters.
 - o Given a set of k clusters, CS is defined as follows:

$$CS = \sum_{i=1}^{k} \sum_{j=1}^{k} sim(c_i, c_j)$$