Khovanov homology and surfaces in the 4-ball

Isaac Sundberg

Max-Planck-Institut für Mathematik

Low-dimensional Topology Seminar

22 September 2022

Example 1

Proposition (S.-Swann 20, Hayden-S. 21)

The knot 9_{46} bounds a pair of slice disks $D_{0,1}$ distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.

$$\mathsf{Kh}(D_1)(\varphi): \quad \bigotimes \left\{ -\bigotimes \left\{ -\bigotimes \left\{ -\bigotimes \right\} \right\} \right\} = \left\{ -\bigotimes \right\} - \left\{ -\bigotimes \right\} = \left\{ -\bigotimes$$

Example 2

Proposition (Hayden-S. 21)

The knots $15n_{103488}$ and $17nh_{73}$ bound slice disks distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

(All x labels)

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

(All x labels)

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

Thank You!

Thank you!