Primer examen de Matemática Discreta 2 - Curso 2006 - IMERL

Viernes 21 de julio de 2006, 14:00 hs. Duración: 4 horas.

N ^o . Examen	Cédula	Apellido, Nombre	

No se permite el uso de ningún tipo de material salvo calculadoras. Se deberá apagar los celulares.

Ejercicio 1. (25 puntos)

Un entero positivo N se dice que es discreto si verifica las siguientes tres condiciones:

- N termina en 317;
- N deja resto 1 en la división entre 49;
- N + 1 es múltiplo de 3.
 - 1. (6 puntos) Probar que el conjunto de números discreto es no vacio.
 - 2. (13 puntos) Probar que existen al menos 6 números discretos de exactamente 6 dígitos (nota: el número 003728 = 3728 tiene cuatro dígitos y no seis).
 - 3. (6 puntos) Probar que ningún número discreto puede ser cuadrado perfecto (sug. utilizar congruencia mód. 3).

Ejercicio 2. (25 puntos) Sea A un anillo, se dice que un ideal I de A es regular si A/I tiene unidad.

- 1. (11 puntos) Probar que *I* es regular en *A* si y solo si existe $y \in A$ tal que $a ay \in I$ y $a ya \in I$ $\forall a \in A$.
- 2. (3 puntos) Probar que si *A* tiene unidad todo ideal de *A* es regular.
- 3. (11 puntos) Sea \mathbb{R}^2 con la suma usual y el producto: (r,r').(x,x')=(rx+r'x+rx',r'x'). Probar que $\mathbb{R}\times\{0\}=\{(r,0)/r\in\mathbb{R}\}$ es un ideal regular de \mathbb{R}^2 que es isomorfo a \mathbb{R}

Ejercicio 3. (25 puntos)

Sea σ una permutación en S_9 tal que $\sigma(i) = 3i \pmod{10}$ y sea τ otra permutación en S_9 tal que $\tau(i) = 7i \pmod{10}$.

- 1. (12 puntos) Hallar los ordenes y signo de σ y τ .
- 2. (13 puntos) Mostrar que σ y τ son conjugados. Hallar $\gamma \in S_9$ tal que $\sigma = \gamma \tau \gamma^{-1}$. ¿Es γ única?

Ejercicio 4. (25 puntos)

Se considera el cuerpo $(\mathbb{Z}_3,+,\cdot)$ con la suma y el producto módulo 3.

- 1. (5 puntos) Demostrar que un polinomio P(x) de $\mathbb{Z}_3[x]$ de grado 2 o 3 es reducible si y sólo si admite alguna raíz $\alpha \in \mathbb{Z}_3$.
- 2. (6 puntos) Hallar todos los polinomios irreducibles de $\mathbb{Z}_3[x]$ de la forma $x^2 + cx + 1$, $c \in \mathbb{Z}_3$.
- 3. (8 puntos) Demostrar que si P(x) es irreducible entonces el ideal $\langle P(x) \rangle$, generado por P(x), es maximal.
- 4. (6 puntos) Para P(x) correspondiente al valor de c más chico posible de la parte 2) (pensando c como número entero), justificar que $K = \mathbb{Z}_3[x]/\langle P(x) \rangle$ es un cuerpo y hallar el representante minimal de [P(x)] y $[x^4 + x^2 + 2x + 1]$.

¡Buena Suerte!

PARA USO DOCENTE:

Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4
(1)	(1)	(1)	(1)
(2)	(2)	(2)	(2)
(3)	(3)		(3)
			(4)
Total:	Total:	Total:	Total:

TOTAL EXAMEN: