Digital System Design

Finite State Formulation, State Reduction, and Assignment

Alfonso Fernandez

Academia de Sistemas Digitales Escuela Superior de Cómputo, ESCOM Instutito Politécnico Nacional, IPN

Contents

Finite State Formulation

State Reduction

State Assignment

Contents

Finite State Formulation

State Reduction

State Assignment

Begin at the beginning

"Begin at the beginning," the King said, very gravely, "and go on till you come to the end: then stop."

—Lewis Carroll, Alice in Wonderland

Mealy Formulation

Example 1: '11' Sequence Detector

\overline{x}	0	1	1	0	1	0	1	1	1	0
z	0	0	1	0	0	0	0	1	1	0

Example 1: Resulting State Diagram

Example 2: '101' Sequence Detector

Example 2: Corresponding State Diagram

Example 3: '10110' Sequence Detector

\overline{x}	0	1	0	1	1	0	1	1	0	0	0	1	0	1	1	0	0	1	1	0
z	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0

Example 3: State Diagram

Example 4: '00'/'11' Detector

Example 4: State Diagram

Example 5: BCD to Excess-3 Code Converter

	x, E	3CD			z	, Ex	cess-	3
t_3	t_2	t_1	t_0	\overline{t}	3	t_2	t_1	t_0
0	0	0	0	()	0	1	1
0	0	0	1	(\mathbf{C}	1	0	0
0	0	1	0	(\mathbf{C}	1	0	1
0	0	1	1	(\mathbf{C}	1	1	0
0	1	0	0	(\mathbf{C}	1	1	1
0	1	0	1	-	1	0	0	0
0	1	1	0	-	1	0	0	1
0	1	1	1	-	1	0	1	0
1	0	0	0	-	1	0	1	1
1	0	0	1	-	1	1	0	0

Example 5: State Diagram

Example 6: Decreased by 2 Converter

- A sequential circuit has one input, x, and two outputs, z and w.
- The input signal x represents a 4-bit binary number N, which is input least significant bit first.
- The ouput signal z represents a 4-bit binary number equal to N-2, which is output least significant bit first.
- At the time the fourth input occurs, w=1 if N-2 is negative; otherwise, w=0.
- The circuit always resets after the fourth bit of x is received.

Example 6: State Diagram

Moore Formulation

Example 1: '11' Sequence Detector

\overline{x}	0	1	1	0	1	0	1	1	1	0
z	0	0	0	1	0	0	0	0	1	1

Example 1: Resulting State Diagram

Example 2: '101' Sequence Detector

Example 2: Corresponding State Diagram

Example 3: '10110' Sequence Detector

\overline{x}	0	1	0	1	1	0	1	1	0	0	0	1	0	1	1	0	0	1	1	0
z	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0

Example 3: State Diagram

Example 4: '00'/'11' Detector

Example 4: State Diagram

Example 5: BCD to Excess-3 Code Converter

	x, E	3CD		z	, Ex	cess-	3
t_3	t_2	t_1	t_0	t_4	t_3	t_2	t_1
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Example 5: State Diagram

Example 6: On/Off Circuit

Example 6: State Diagram

Contents

Finite State Formulation

State Reduction

State Assignment

State Diagram

State Table

Present State		ext ate	Out	put
	x = 0	x = 1	x = 0	x = 1
S_0	S_0	S_1	0	0
S_1	S_2	S_3	0	0
S_2	S_0	S_3	0	0
S_3	S_4	S_5	0	1
S_4	S_0	S_5	0	1
S_5	S_6	S_5	0	1
S_6	S_0	S_5	0	1

Reduced State Table

Present State		ext ate	Output				
	$\overline{x=0}$	x = 1	x = 0	x = 1			
S_0	S_0	S_1	0	0			
S_1	S_2	S_3	0	0			
S_2	S_0	S_3	0	0			
S_3	S_4	S_3	0	1			
S_4	S_0	S_3	0	1			

Reduced State Diagram

Contents

Finite State Formulation

State Reduction

State Assignment

Binary State Assignments

State	Assignment 1 Binary	Assignment 2 Gray Code	Assignment 3 Johnson	Assignment 4 One-Hot
S_0	000	000	000	00001
S_1	001	001	100	00010
S_2	010	011	110	00100
S_3	011	010	111	01000
S_4	100	110	011	10000