A1, A2, A3, A4, A5

$\mathbf{A1}$

- 1. Find permutations p, q in S_3 such that $p \cdot q \neq q \cdot p$
- 2. Prove that if $n \geq 3$ then there exists $p, q \in S_n$ such that $p \cdot q \neq q \cdot p$
- 3. Let $a, b \in J_n$ with $a \neq b$. Prove that (a, b) = (b, a)
- 4. Prove that (a,b)(a,b) = e. Here e denotes the identity in S_n
- 5. Compute $(a, b, c) \cdot (a, b, c) \cdot (a, b, c)$.
- 1. Let p=(1,2,3) and q=(1,3). Then, we see that $p\cdot q=(1,2,3)$ and $q\cdot p=(1,2)$. Clearly, these are not the same.
- 2. We will prove this by induction. For our base case, we will look at part 1 and see that it holds true for n = 3. Next,

A2

1. Let $i \in J_n$. Prove that the permutations (i, i + 3) may be written as

$$(i, i+1) \cdot (i+1, i+2) \cdot (i+2, i+3) \cdot (i+2, i+1) \cdot (i+1, i).$$

Hint: Consider $x < i, i \le x \le i+3$ and x > i+3.

2. Prove that if c_i and c_2 are disjoint cycles then $c_1 \cdot c_2 = c_2 \cdot c_1$

.

A3 Prove that if $A = (a_{ij})$ is an $n \times n$ triangular matrix (either $a_{ij} = 0$ for all i < j or $a_{ij} = 0$ for all i > j), then $det(A) = a_{11} \cdot a_{22} \cdots a_{nn}$.

A4

- 1. Let A, B, C be 2×2 matrices. Let X be the 4×4 matrix whose first two rows are $[A \ B]$ and its last two rows are $[0 \ C]$, where 0 stands for the 2×2 matrix whose entries are the all equal to zero. Prove that det(X) = det(A)det(C).
- 2. Generalize this result for $2n \times 2n$ matrices.

_

A5 For each $i, j \in J_n$ let $a_{ij}(x)$ be a differentiable functions of x. Let $A(x) = (a_{ij}(x))$. Prove that $(det(A(x)))' =_{i=1}^n det(B_i(x))$ where $B_i(x)$ is the matrix resulting from the replacing in A(x) the i-th column by the column made up by the derivatives of the i-th column of A(x).