Denote by $\Gamma_0(\mathcal{X})$ the set of proper convex l.s.c. functions on $\mathcal{X} \to (-\infty, +\infty]$.

Douglas-Rachford algorithm

Let A and B be maximal monotone operators on $\mathcal{X} \to 2^{\mathcal{X}}$. Denote by J_A , J_B their resolvents. Define

$$C_A = 2J_A - I$$

and $C_B = 2J_B - I$. The Douglas-Rachford (DR) operator is given by

$$T = \frac{I + C_A C_B}{2} \,.$$

Exercise 1 (Fixed points of the DR-operator). The aim is to prove the following points.

i) If
$$\xi \in \text{fix } T$$
, then $J_B(\xi) \in \text{zer}(A+B)$.
ii) If $\text{zer}(A+B) \neq \emptyset$, then $\text{fix } T \neq \emptyset$.

- 1. Show that fix $T = \text{fix } C_A C_B$.
- 2. Choose $\xi \in \mathcal{X}$. Define $u = J_B(\xi)$, $b = \xi u$. Prove that

$$C_B(\xi) = u - b$$
.

- 3. Assume that $\xi \in \operatorname{fix} C_A C_B$. Prove that $u = J_A(u b)$.
- 4. Deduce that $0 \in b + A(u)$.
- 5. Using that $J_B(\xi) = u$, show that $b \in B(u)$.
- 6. Deduce that $u \in \text{zer}(A+B)$ and conclude about point i).
- 7. Consider an arbitrary $\bar{u} \in \text{zer}(A+B)$. Prove that $\exists \bar{b} \in B(\bar{u}) \text{ s.t. } -\bar{b} \in A(\bar{u})$.
- 8. Using that $\bar{b} \in B(\bar{u})$, prove that $\bar{u} = J_B(\bar{u} + \bar{b})$. Deduce that $C_B(\bar{u} + \bar{b}) = \bar{u} \bar{b}$.
- 9. Using that $-\bar{b} \in A(\bar{u})$, prove that $\bar{u} = J_A(\bar{u} \bar{b})$. Deduce that $C_A(\bar{u} \bar{b}) = \bar{u} + \bar{b}$.
- 10. From the previous two questions, deduce that $\bar{u} + \bar{b} \in \operatorname{fix} C_A C_B$ and conclude.

Exercise 2 (DR as an averaged operator). The aim is to prove the following result.

$$T = \frac{I + C_A C_B}{2}$$
 is an averaged operator.

We recall the inequality: $||J_B(x) - J_B(y)||^2 \le ||x - y||^2 - ||(I - J_B)(x) - (I - J_B)(y)||^2$.

- 1. Using the above inequality, prove that C_B is non-expansive *i.e.*, $||C_B x C_B y|| \le ||x y||$ for every x, y.
- 2. Show that $C_A C_B$ is non-expansive.
- 3. Prove that $||Tx Ty||^2 \le ||x y||^2 ||(I T)(x) (I T)(y)||^2$ and conclude. Hint: Use the parallelogram identity $2||a||^2 + 2||b||^2 = ||a + b||^2 + ||a - b||^2$ with a = Tx - Ty and b = (I - T)(x) - (I - T)(y), along with question 2.

Exercise 3. We assume that $zer(A+B) \neq \emptyset$. We consider the iterates $\xi^{k+1} = T(\xi^k)$.

1. Show that the iterates ξ^k are generated by the following algorithm:

$$u^{k} = J_{B}(\xi^{k})$$

$$v^{k} = J_{A}(2u^{k} - \xi^{k})$$

$$\xi^{k+1} = \xi^{k} + v^{k} - u^{k}.$$

- 2. Prove that the above sequence (u^k) converges to a point in zer(A+B).
- 3. Consider the problem

minimize
$$f + g$$

where $f, g \in \Gamma_0(\mathcal{X})$. Let $\gamma > 0$. Using Question 2, propose an algorithm which requires one call to $\operatorname{prox}_{\gamma f}$ and $\operatorname{prox}_{\gamma g}$ at every iteration.

4. Under what sufficient condition on f + g does this algorithm indeed converge to a minimizer?

Exercise 4 (Parallel programming). Consider the problem

minimize
$$\sum_{i=1}^{n} f_i(x)$$
 w.r.t. $x \in \mathcal{X}$ (1)

where $f_1, \ldots, f_n \in \Gamma_0(\mathcal{X})$. Let $C \subset \mathcal{X}^n$ be the linear space $C := \{(x, \ldots, x) : x \in \mathcal{X}\}$.

1. In what sense is the following problem equivalent to (1)?

minimize
$$\sum_{i=1}^{n} f_i(x_i) + \iota_C(x_1, \dots, x_n) \text{ w.r.t.}(x_1, \dots, x_n) \in \mathcal{X}^n$$

- 2. Write the Douglas-Rachford algorithm associated to this problem.
- 3. In what sense does this algorithm deserves the name of parallel algorithm?

Smoothness, strong convexity and Baillon Haddad's lemma

- We say that $f: \mathcal{X} \to \mathbb{R}$ is L-smooth if it is differentiable and if ∇f is L-lipschitz continuous.
- We say that $f \in \Gamma_0(\mathcal{X})$ is μ -strongly convex $(\mu > 0)$ if $f \frac{\mu}{2} \|.\|^2$ is convex.
- We say that a operator $A: \mathcal{X} \to 2^{\mathcal{X}}$ is μ -strongly monotone if

$$\forall (x,y) \in \text{dom}(A) \times \text{dom}(A), \ \forall (u,v) \in A(x) \times A(y), \ \langle u-v, x-y \rangle \ge \mu \|x-y\|^2.$$

Exercise 5. The aim is to prove the statement:

If $f \in \Gamma_0(\mathcal{X})$ is μ -strongly convex, then f^* is μ^{-1} -smooth.

- 1. Let $f \in \Gamma_0(\mathcal{X})$ be μ -strongly convex. Prove that ∂f is μ -strongly monotone. Hint: set $g := f - \frac{\mu}{2} \|.\|^2$ and use that ∂g is monotone.
- 2. Justify that $dom(f^*) = \mathcal{X}$.
- 3. Show that for all $\varphi \in \mathcal{X}$, $\partial f^*(\varphi) = \arg\min_{x \in \mathcal{X}} f(x) \langle \varphi, x \rangle$.
- 4. Deduce that f^* is differentiable.
- 5. Using 1), prove that for every $\varphi, \lambda \in \mathcal{X}$,

$$\langle \varphi - \lambda, \nabla f^*(\varphi) - \nabla f^*(\lambda) \rangle \ge \mu \|\nabla f^*(\varphi) - \nabla f^*(\lambda)\|^2.$$
 (2)

6. Conclude.

As a matter of fact, the above result has a converse, which we admit (the proof can be found in Hiriart-Urruty and LeMaréchal, Fundamentals of Convex Analysis.).

If f is convex and L-smooth, then f^* is L^{-1} -strongly convex

7. Using Question 5, recover the Baillon-Haddad Lemma.

Correction 1

- 1. Evident.
- 2. $C_B(\xi) = 2u (u+b) = u b$.
- 3. If $\xi = C_A C_B(\xi)$, then $\xi = C_A(u b)$. This reads $u + b = 2J_A(u b) u + b$. Thus, $u = J_A(u b)$.
- 4. Consequently, $u b \in (I + A)(u)$, which reads $-b \in A(u)$.
- 5. As $J_B(\xi) = u$, we have $\xi \in u + B(u)$, thus $b = \xi u \in B(u)$.
- 6. Given $\xi \in \text{fix } T$, we have found some $b \in B(u)$ s.t. $0 \in b + A(u)$. That is, $0 \in B(u) + A(u)$. Thus, $u \in \text{zer}(A + B)$.
- 7. Evident from the definition of zer(A+B).
- 8. One has $\bar{b} \in B(\bar{u})$, thus $\bar{u} + \bar{b} \in (I+B)(\bar{u})$, hence $\bar{u} = J_A(\bar{u} + \bar{b})$. Thus $C_A(\bar{u} + \bar{b}) = 2\bar{u} (\bar{u} + \bar{b}) = \bar{u} \bar{b}$.
- 9. One has $-\bar{b} \in A(\bar{u})$, thus $\bar{u} \bar{b} \in (I + A)(\bar{u})$, hence $\bar{u} = J_A(\bar{u} \bar{b})$. Thus $C_A(\bar{u} \bar{b}) = 2\bar{u} (\bar{u} \bar{b}) = \bar{u} + \bar{b}$.
- 10. One has $\bar{u} + \bar{b} = C_A(\bar{u} \bar{b}) = C_A C_B(\bar{u} + \bar{b}).$

Correction 2

1. Set $C = C_B$. As $J_B = \frac{I+C}{2}$, the inequality given in the text reads:

$$\left\| \frac{x - y + Cx - Cy}{2} \right\|^{2} \le \|x - y\|^{2} - \left\| \frac{x - y - (Cx - Cy)}{2} \right\|^{2}.$$

The result follows by simply expanding the squared-norms in both handsides of the above inequality.

- 2. Straightforward by composition of two non-expansive mappings.
- 3. Setting a and b as suggested, we obtain a + b = x y and

$$a - b = (2T - I)(x) - (2T - I)(y) = C_A C_B x - C_A C_B y$$
.

In particular $||a - b|| \le ||x - y||$. The parallelogram identity yields

$$2\|Tx - Ty\|^2 + 2\|(I - T)(x) - (I - T)(y)\|^2 \le 2\|x - y\|^2,$$

which is the expected result.

Correction 3

- 1. Just expand T as a function of J_A , J_B .
- 2. As $\operatorname{zer}(A+B) \neq \emptyset$, we have $\operatorname{fix} T \neq \emptyset$ (see exercise 1). As T is averaged, ξ^k converges to a point ξ^* in $\operatorname{fix} T$. By continuity of J_B , u^k converges to $J_B(\xi^*)$. By exercise 1, $J_B(\xi^*) \in \operatorname{zer}(A+B)$.
- 3. Just replace J_A , J_B by $\operatorname{prox}_{\gamma f}$ and $\operatorname{prox}_{\gamma g}$ respectively.
- 4. A sufficient condition is

$$\arg \min f + g \neq \emptyset$$
$$0 \in ri(\operatorname{dom} f - \operatorname{dom} g) ,$$

where the last condition ensures that $\arg \min f + g = \operatorname{zer}(\partial f + \partial g)$.

Correction 4

1. If x is a feasible point for (1), then $(x, ..., x) \in \mathcal{X}^n$ is a feasible point for the constrained problem and its objective value is $\sum_{i=1}^n f_i(x) + \iota_C(x, ..., x) = \sum_{i=1}^n f_i(x)$.

Reciprocally, if (x_1, \ldots, x_n) is a feasible point for the constrained problem, then $x_i = x_1$ for all i and x_1 is a feasible point for (1). Moreover, its objective value is $\sum_{i=1}^n f_i(x_1) = \sum_{i=1}^n f_i(x_i) + \iota_C(x_1, \ldots, x_n)$.

Hence, there is a bijection between the sets of feasible points of both problems that keeps the objective value unchanged. In that sense, both problems are equivalent.

2. We choose $B = \partial \iota_C$ and $A = \partial f_1 \times \ldots \times \partial f_n$.

As f is separable, $(J_A(x))_i = (\operatorname{prox}_f(x))_i = \operatorname{prox}_{f_i}(x_i)$.

 $J_B(y) = \operatorname{prox}_{\iota_C}(y) = \operatorname{arg\,min}_{x \in C} \frac{1}{2} ||y - x||^2 \text{ so } \operatorname{prox}_{\iota_C} \text{ is the projection on } C.$ This projection amounts to computing for all $i, p_i = \frac{1}{n} \sum_{i=1}^n y_i \text{ and } \operatorname{prox}_{\iota_C}(y) = p.$

Hence, the Douglas-Rachford algorithm writes

$$\forall i, u_i^k = \frac{1}{n} \sum_{j=1}^n \xi_j^k$$

$$\forall i, v_i^k = \text{prox}_{f_i} (2u_i^k - \xi_i^k)$$

$$\forall i, \xi_i^{k+1} = \xi_i^k + v_i^k - u_i^k$$

3. The updates for u^k amounts to a sum over n vectors. The sum is commutative and associative so this operation can be performed in parallel.

The updates for v^k and ξ^{k+1} are independent component-wise. Hence, these updates can be performed in parallel, each i being allocated to a single computing unit.

All the operations of the algorithm can be performed in parallel, so one can say that this is a parallel algorithm.

Correction 5

1. Let $g := f - \frac{\mu}{2} \|.\|^2$. One has $g \in \Gamma_0(\mathcal{X})$. Thus,

$$\partial f = \partial (g + \frac{\mu}{2} ||.||^2) = \partial g + \mu I.$$

Let $(x,y) \in \text{dom}(\partial f) \times \text{dom}(\partial f)$ and choose $(u,v) \in \partial f(x) \times \partial f(y)$. One has $u - \mu x \in \partial g(x)$ and $v - \mu y \in \partial g(y)$. Thus, $\langle u - \mu x - (v - \mu y), x - y \rangle \geq 0$, which is the required inequality.

- 2. $f^*(\varphi) = -\inf_x (f(x) \langle \varphi, x \rangle)$. The infermum is attained as f is strongly convex. Thus, $f^*(\varphi) = \langle \varphi, x \rangle f(x)$ for some fixed x. Hence, $f^*(\varphi) < +\infty$. As this holds for every $\varphi \in \mathcal{X}$, we deduce that $\operatorname{dom}(f^*) = \mathcal{X}$.
- 3. $x \in \partial f^*(\varphi) \Leftrightarrow \varphi \in \partial f(x) \Leftrightarrow 0 \in \partial f(x) \varphi$. By Fermat's rule, this is equivalent to $x \in \arg\min_{y \in \mathcal{X}} f(y) \langle \varphi, y \rangle$.
- 4. As f is strongly convex, the argument of the minimum is attained (for any $\varphi \in \mathcal{X}$) and is a singleton. Thus ∂f^* is single-valued, meaning that f^* is differentiable.
- 5. Choose $(\varphi, \lambda) \in \mathcal{X} \times \mathcal{X}$. One has $\varphi \in \partial f(\nabla f^*(\varphi))$ and similarly for λ . By strong-monotonicity of ∂f , Eq. (2) is proven.
- 6. The conclusion follows from Cauchy-Schwartz inequality.
- 7. Choose $f: \mathcal{X} \to \mathbb{R}$ as convex and L-smooth. As f^* is L^{-1} -strongly convex, Question 5 states that for every $(x, y) \in \mathcal{X} \times \mathcal{X}$,

$$\langle x - y, \nabla f^{**}(x) - \nabla f^{**}(y) \rangle \ge L^{-1} \|\nabla f^{**}(x) - \nabla f^{**}(y)\|^2$$
.

As $f = f^{**}$, we obtain Baillon-Haddad's lemma.