6.1 – Generate a test for g s-a-1. List all other faults detected.

6.3 – Use only implications to show that the fault f s-a-0 is undetectable.

SOLUTION:

f s-a-0 requires f=1 (activation)
Unique D-drive thru h implies e=0, and g=0
e=0 implies a=b=1
g=0 implies c=d=1
b=1 and c=1 implies f=0 (CONTRADICTION)

6.4 – Construct a 5-value truth table for a 2-input XOR gate.

XOR	0	1	D	D'	x
0	0	1	D	D'	Х
1	1	0	D'	D	Х
D	D	D'	0	1	Х
D'	D'	D	1	0	x
X	Х	Х	Х	Х	Х

6.5 – Can a gate on the D-frontier have bothD and D' among its input values?

SOLUTION:

YES. However, it will not propagate to the gate output.

For example:

D.
$$X$$
D. Y
D

6.8 – Assume that trying to justify d=0 via a=0 failed as a result of an inconsistency. Reverse the decision and perform all implications.

Objective	Assignment	Action	Implication
d=0	a=0	conflict, backtrack	d=0, h=1
d=0	a=1, c=0	objective is met	h=0, i=0

i.e. pick another input

6.12 – Apply PODEM to:

Decision Tree

objective f=1

backtrace to PI Set b=0

imply Failure (e=1 → h=1) X

reverse decision Set b=1

backtrace to PI Set c=0

imply Failure (g=1 → h=1) X

reverse decision Set c=1

imply Failure f=0 X

F

objective f=1 objective g=0 c=1 assign assign d=1 objective e=0 assign a=1

assign

● Backtrack ⇒ b=0 → Failure (i.e. → e=1) X

6.32 – Derive a test sequence for Z s-a-0.

(a) Assume an initial state of $(q_1=q_2=1)$

	1	q ₁	q_2	q ₁ ⁺	q_2^+	Z
Timeframe 1	0	1	1	1	0	0
Timeframe 2	1	1	0	0	0	0
Timeframe 3	1	0	0			1

(b) Assume an unknown initial state (x,x)

If I=0 then next states are (x,x)

If I=1 then next states are (x,x)

Can not initialize!!