Appendix for Rewiring food webs through trophic rewilding

Supporting information

Changes to the PHYLACINE database

In the PHYLACINE 1.2 database, the two extinct species *Sinomegaceros ordosianus* and *Dusicyon australis* had inaccurate body mass information. We thus modified their body mass before modelling and analyses. Specifically, body mass of *S. ordosianus* was set equal to the mass of *S. yabei* and body mass of *D. australis* to *D. avus*. Moreover, the cow (*Bos primigenius*) and the dromedary (*Camelus dromedarius*), two species considered to be extinct as wild populations by the IUCN ¹, were included in the analyses as extant species. This was because *B. primigenius* and *C. dromedarius* are often considered to be sufficiently similar to their ancestral forms ² (Sandom et al. 2020).

Supplementary Table 1: Average proportions from the reconstructed food webs of the number of species per trophic level. Proportions show the relative number of species under current and rewilding scenarios respect to the no-extinction scenario for large protected areas $\geq 5000 \text{ km}^2$ with IUCN management category I-II and for areas $\geq 5000 \text{ km}^2$ randomly distributed in each biogeographic realm.

Trophic level	Current / no-extinction	Rewilding / no-extinction
Protected areas		
Megacarnivores (≥ 100 kg)	0.29	0.53
Megaherbivores (≥ 1,000 kg)	0.17	0.31
Large carnivores (21.5–99 kg)	0.71	0.80
Large herbivores (45–999 kg)	0.44	0.61
Small carnivores (< 21.5 kg)	0.94	0.98
Small herbivores (< 45 kg)	0.97	0.98
Random areas		
Megacarnivores (≥ 100 kg)	0.15	0.51
Megaherbivores (≥ 1,000 kg)	0.08	0.31
Large carnivores (21.5–99 kg)	0.51	0.92
Large herbivores (45–999 kg)	0.33	0.60
Small carnivores (< 21.5 kg)	0.92	0.98
Small herbivores (< 45 kg)	0.96	0.98

Supplementary Table 2: Average proportions from the reconstructed food webs of the number of interactions among trophic levels. Proportions show the relative number of predator-prey interactions under current and rewilding scenarios respect to the no-extinction scenario for large protected areas $\geq 5000 \text{ km}^2$ with IUCN management category I-II and for areas $\geq 5000 \text{ km}^2$ randomly distributed in each biogeographic realm.

Predator	Prey	Current / present-natural	Rewilding / present-natural
Protected areas			
Megacarnivores	Large carnivores	0.31	0.61
	Large herbivores	0.17	0.33
	Small carnivores	0.29	0.60
	Small herbivores	0.28	0.55
Large carnivores	Large herbivores	0.42	0.50
	Small carnivores	0.69	0.88
	Small herbivores	0.78	0.89
Small carnivores	Small herbivores	0.95	0.99
Random areas			
Megacarnivores	Large carnivores	0.12	0.62
	Large herbivores	0.08	0.38
	Small carnivores	0.17	0.60
	Small herbivores	0.16	0.58
Large carnivores	Large herbivores	0.29	0.55
	Small carnivores	0.46	0.92
	Small herbivores	0.57	0.92
Small carnivores	Small herbivores	0.89	0.98

Supplementary Table 3: List of the extinct species that were replaced by functional analogues under the rewilding scenario for the focal biogeographic realm.

Extinct species	Functional analogues	Biogeographic realm
Agalmaceros blicki	Odocoileus virginianus	Neotropic
Antidorcas australis	Pelea capreolus	Afrotropic
Antidorcas bondi	Sylvicapra grimmia	Afrotropic
Arctodus simus	Ursus arctos	Nearctic
Arctodus simus	Ursus arctos	Neotropic
Arctotherium wingei	Ursus americanus	Neotropic
Aztlanolagus agilis	Lepus californicus	Nearctic
Aztlanolagus agilis	Lepus californicus	Neotropic
Aztlanolagus agilis	Sylvilagus floridanus	Neotropic
Bettongia anhydra	Bettongia lesueur	Australasia
Bettongia pusilla	Bettongia lesueur	Australasia
Bettongia pusilla	Bettongia penicillata	Australasia
Bootherium bombifrons	Connochaetes taurinus	Nearctic
Brachyprotoma obtusata	Conepatus leuconotus	Nearctic
Bubalus palaeokerabau	Bos javanicus	Indomalaya
Caipora bambuiorum	Brachyteles arachnoides	Neotropic
Camelops hesternus	Camelus ferus	Nearctic
Camelops hesternus	Camelus dromedarius	Neotropic
Canis dirus	Canis lupus	Nearctic
Canis dirus	Canis lupus	Neotropic
CapriniGen spA	Tragelaphus scriptus	Afrotropic
Catagonus stenocephalus	Pecari tajacu	Neotropic
Cervalces scotti	Alces alces	Nearctic
Conilurus albipes	Conilurus penicillatus	Australasia

Conilurus capricornensis	Conilurus penicillatus	Australasia
Cryptonanus ignitus	Thylamys venustus	Neotropic
Cuvieronius hyodon	Elephas maximus	Nearctic
Cuvieronius hyodon	Loxodonta africana	Neotropic
Damaliscus hypsodon	Tragelaphus scriptus	Afrotropic
Damaliscus niro	Alcelaphus buselaphus	Afrotropic
Dasypus bellus	Dasypus kappleri	Nearctic
Dasypus bellus	Dasypus kappleri	Neotropic
Dusicyon avus	Lycalopex griseus	Neotropic
Elasmotherium sibiricum	Ceratotherium simum	Palearctic
Elephas iolensis	Loxodonta africana	Afrotropic
Elephas iolensis	Loxodonta africana	Palearctic
Elephas namadicus	Elephas maximus	Indomalaya
Elephas namadicus	Elephas maximus	Palearctic
Elephas naumanii	Elephas maximus	Indomalaya
Elephas naumanii	Elephas maximus	Palearctic
Equus francisci	Equus ferus	Nearctic
Equus francisci	Equus ferus	Neotropic
Equus hydruntinus	Equus ferus	Palearctic
Equus ovodovi	Equus ferus	Palearctic
Euceratherium collinum	Bison bison	Nearctic
Euceratherium collinum	Bison bison	Neotropic
Gazella atlantica	Ammotragus lervia	Palearctic
Gazella bilkis	Capricornis crispus	Afrotropic
Gazella bilkis	Naemorhedus caudatus	Afrotropic
Gazella bilkis	Procapra gutturosa	Afrotropic
Gazella bilkis	Procapra przewalskii	Afrotropic

Gazella bilkis	Eudorcas albonotata	Palearctic
Gazella saudiya	Gazella gazella	Afrotropic
Gazella saudiya	Gazella gazella	Palearctic
Gazella tingitana	Gazella cuvieri	Palearctic
Haploidoceros mediterraneus	Cervus elaphus	Palearctic
Hemiauchenia macrocephala	Lama guanicoe	Nearctic
Hemiauchenia macrocephala	Lama guanicoe	Neotropic
Hemiauchenia paradoxa	Camelus dromedarius	Neotropic
Hemitragus cedrensis	Capra pyrenaica	Palearctic
Hexaprotodon sivalensis	Choeropsis liberiensis	Indomalaya
Hippidion devillei	Equus ferus	Neotropic
Hippidion principale	Equus quagga	Neotropic
Hippotragus leucophaeus	Alcelaphus buselaphus	Afrotropic
Hippotragus leucophaeus	Damaliscus pygargus	Afrotropic
Homotherium latidens	Panthera tigris	Palearctic
Homotherium serum	Panthera onca	Nearctic
Homotherium serum	Panthera onca	Neotropic
Hystrix kiangsenensis	Hystrix brachyura	Indomalaya
Hystrix kiangsenensis	Hystrix brachyura	Palearctic
Hystrix refossa	Hystrix indica	Indomalaya
Hystrix refossa	Hystrix indica	Palearctic
Kolpochoerus majus	Hylochoerus meinertzhageni	Afrotropic
Lagorchestes asomatus	Lagorchestes hirsutus	Australasia
Lagostomus crassus	Lagostomus maximus	Neotropic
Leopardus amnicola	Catopuma badia	Nearctic
Leopardus amnicola	Leopardus wiedii	Neotropic

Macropus greyi	Thylogale billardierii	Australasia
Mammut americanum	Loxodonta africana	Nearctic
Mammut americanum	Loxodonta africana	Neotropic
Mammuthus columbi	Elephas maximus	Nearctic
Mammuthus columbi	Elephas maximus	Neotropic
Mammuthus primigenius	Elephas maximus	Indomalaya
Mammuthus primigenius	Elephas maximus	Nearctic
Mammuthus primigenius	Elephas maximus	Palearctic
Manis paleojavanica	Smutsia gigantea	Indomalaya
Megaloceros giganteus	Alces alces	Palearctic
Megalotragus priscus	Alcelaphus buselaphus	Afrotropic
Megalovis guangxiensis	Pseudois nayaur	Indomalaya
Megalovis guangxiensis	Pseudois nayaur	Palearctic
Metasthenurus newtonae	Macropus rufus	Australasia
Metridiochoerus compactus	Phacochoerus africanus	Afrotropic
Miracinonyx trumani	Puma concolor	Nearctic
Morenelaphus brachyceros	Ozotoceros bezoarticus	Neotropic
Muknalia minima	Pecari tajacu	Nearctic
Muknalia minima	Pecari tajacu	Neotropic
Navahoceros fricki	Odocoileus virginianus	Nearctic
Navahoceros fricki	Odocoileus virginianus	Neotropic
Neochoerus aesopi	Hydrochoerus hydrochaeris	Nearctic
Neochoerus aesopi	Hydrochoerus hydrochaeris	Neotropic
Neovison macrodon	Neovison vison	Nearctic
Notiomastodon platensis	Elephas maximus	Neotropic
Notomys amplus	Notomys mitchellii	Australasia

Notomys longicaudatus	Notomys mitchellii	Australasia
Notomys macrotis	Notomys mitchellii	Australasia
Notomys mordax	Notomys alexis	Australasia
Notomys mordax	Notomys aquilo	Australasia
Notomys mordax	Notomys fuscus	Australasia
Notomys robustus	Notomys fuscus	Australasia
Ochotona whartoni	Ochotona alpina	Nearctic
Onychogalea lunata	Petrogale lateralis	Australasia
Oreamnos harringtoni	Ovis canadensis	Nearctic
Oreamnos harringtoni	Ovis canadensis	Neotropic
Palaeolama major	Camelus dromedarius	Neotropic
Palaeolama mirifica	Lama guanicoe	Nearctic
Palaeolama mirifica	Lama guanicoe	Neotropic
Palaeolama mirifica	Vicugna vicugna	Neotropic
Palaeolama weddeli	Camelus dromedarius	Neotropic
Panthera atrox	Panthera tigris	Nearctic
Panthera atrox	Panthera leo	Neotropic
Panthera spelaea	Panthera tigris	Nearctic
Panthera spelaea	Panthera tigris	Palearctic
Paraceros fragilis	Ozotoceros bezoarticus	Neotropic
Pelorovis antiquus	Bos primigenius	Palearctic
Perameles eremiana	Perameles bougainville	Australasia
Petauroides ayamaruensis	Pseudochirulus canescens	Australasia
Petauroides ayamaruensis	Pseudochirulus schlegeli	Australasia
Potorous platyops	Potorous gilbertii	Australasia
Procoptodon browneorum	Macropus giganteus	Australasia

Procoptodon gilli	Macropus rufus	Australasia
Protemnodon hopei	Macropus antilopinus	Australasia
Protemnodon hopei	Macropus giganteus	Australasia
Protemnodon hopei	Macropus rufus	Australasia
Protemnodon nombe	Macropus giganteus	Australasia
Protemnodon tumbuna	Macropus giganteus	Australasia
Protocyon troglodytes	Chrysocyon brachyurus	Neotropic
Protopithecus brasiliensis	Brachyteles arachnoides	Neotropic
Pseudomys glaucus	Pseudomys novaehollandiae	Australasia
Pseudomys gouldii	Pseudomys desertor	Australasia
Rucervus schomburgki	Rucervus eldii	Indomalaya
Rusingoryx atopocranion	Kobus ellipsiprymnus	Afrotropic
Sangamona fugitiva	Cervus canadensis	Nearctic
Simosthenurus maddocki	Macropus giganteus	Australasia
Sinomegaceros ordosianus	Alces alces	Palearctic
Sinomegaceros yabei	Alces alces	Indomalaya
Sinomegaceros yabei	Alces alces	Palearctic
Sivacobus sankaliai	Capricornis thar	Indomalaya
Sivacobus sankaliai	Capricornis thar	Palearctic
Smilodon fatalis	Panthera tigris	Nearctic
Smilodon fatalis	Panthera leo	Neotropic
Smilodon populator	Panthera leo	Nearctic
Smilodon populator	Panthera tigris	Neotropic
Soergelia minor	Capra sibirica	Palearctic
Spirocerus kiakhtensis	Bos primigenius	Palearctic
Stegodon orientalis	Elephas maximus	Indomalaya

Stegodon orientalis	Elephas maximus	Palearctic
Stegodon trigonocephalus	Elephas maximus	Indomalaya
Stephanorhinus kirchbergensis	Ceratotherium simum	Indomalaya
Stephanorhinus kirchbergensis	Ceratotherium simum	Palearctic
Sthenurus andersoni	Macropus rufus	Australasia
Stockoceros conklingi	Antilocapra americana	Nearctic
Stockoceros conklingi	Antilocapra americana	Neotropic
Sus bucculentus	Sus scrofa	Indomalaya
Tapirus augustus	Tapirus indicus	Indomalaya
Tapirus augustus	Tapirus indicus	Palearctic
Tapirus merriami	Tapirus bairdii	Nearctic
Tapirus rondoniensis	Tapirus terrestris	Neotropic
Tapirus veroensis	Tapirus bairdii	Nearctic
Tapirus veroensis	Tapirus bairdii	Neotropic
Tetrameryx shuleri	Antilocapra americana	Nearctic
Tetrameryx shuleri	Antilocapra americana	Neotropic
Theriodictis tarijensis	Chrysocyon brachyurus	Neotropic
Thylogale christenseni	Dorcopsulus vanheurni	Australasia
Tremarctos floridanus	Ursus americanus	Nearctic
Tremarctos floridanus	Ursus americanus	Neotropic
Troposodon minor	Macropus giganteus	Australasia
Ursus spelaeus	Ursus arctos	Palearctic
Vombatus hacketti	Lasiorhinus latifrons	Australasia
Wallabia kitcheneri	Macropus fuliginosus	Australasia

Supplementary Figure 1: Number of extinct species that could not be replaced (red) and that could be replaced through rewilding (green). Species were replaced by functional analogue extant species that were phylogenetically closely-related with similar body size. Functional analogues were selected from extinct species' Families except for Proboscidean, which were grouped together in the Proboscidea order.

Human pressure in protected areas

We examined the level of human pressure in large protected areas (PAs) \geq 5,000 km² with strict IUCN management status I-II to investigate possible negative consequences of rewilding for human-wildlife coexistence. We downloaded the Human Footprint (HF) raster, representing the cumulative pressure of anthropogenic activities, such as urban areas and agricultural land, worldwide at 1 km² resolution³. We re-projected the HF layer to a 5 km² resolution using bilinear interpolation with a Behrmann equal-area projection, as this was used for all other analyses. We then extracted the values of HF within PAs \geq 5,000 km² with strict IUCN management status I-II and compared them with cells not covered by PAs using the non-parametric Wilcoxon rank-sum test.

We found that HF was significantly lower within large PAs I-II than outside (P < 0.05). In particular, cells within PAs had an average HF = 1.66, whereas cells outside PAs had an average HF = 5.95. Moreover, half of the cells within PAs had HF = 0, i.e., they have very low anthropogenic disturbances, while only 23% of the cells outside PAs had HF = 0. These results show that human pressure is significantly lower within the PAs chosen for simulating the rewilding scenario (Supplementary Figure 5) and suggest human-wildlife coexistence can be more easily achievable within PAs \geq 5000 km² I-II than in other regions globally.

Supplementary Figure 2: Human Footprint (HF) outside and within protected areas (PAs). The boxplots show values of HF for cells outside and within large protected areas (PAs) $\geq 5,000 \text{ km}^2$ with strict IUCN management status I-II. HF was significantly (P < 0.05) within than outsides PAs.

Supplementary Figure 3: Example of species-specific background buffer for maximum entropy (Maxent) models for the white rhinoceros (*Ceratotherium simum*). For each species, we calculated the background buffer as the maximum distance (black line) from the centroid (blue point) to the edge (red point) of the largest continuous range (shown in green). The smallest continuous range is also shown (light grey). Buffer size was then used to delimit the area accessible to the species through dispersal, i.e. the area used to generate background locations. Ranges were the combined current and present-natural ranges from the PHYLACINE database ⁴ (Faurby et al. 2018).

Supplementary Table 4: Summary of the evaluation statistics for the species distribution models. Continuous Boyce Index (CBI) indicates how much models discriminate against random expectation and the average Area Under the Curve (AUC) of the Receiver Operating Clot show indicates how well models differentiate between presences and pseudo-absences. Low omission rates based on the minimum training presence value (OR_{MTP}) indicate models were not overfit. Introduction ranges were from 1.5

Evaluation statistic	Median	Median absolute deviation	Mean	Standard deviation
Continuous Boyce Index (CBI)	0.93	0.08	0.87	0.15
Area under the curve (AUC) of the receiver operating curve	0.86	0.01	0.85	0.04
Omission rate minimum training presence (OR_{MTP})	0.02	0.03	0.07	0.15
Proportion of known introduction ranges predicted*	0.84	0.23	0.62	0.41

Supplementary Figure 4: Performance of maximum entropy (Maxent) species distribution models (SDMs). a–c, Histograms of the evaluation statistics for the Maxent SDMs. Predictive ability of SDMs is shown by both the Continuous Boyce Index (**a**) and by the Area Under the Curve (AUC) of the receiver operating curve (**b**). Model tendency to overfit is shown by the Omission Rate Minimum Training Presence (OR_{MTP}; **c**). **d**, Scatterplot showing predictions of known introduction ranges of mammals using Maxent SDMs. Species with fully predicted known introduction range are on the line with intercept = 0 and slope = 1 (dashed line). Introduced ranges were from ⁵ Lundgren et al. (2018; red circles) and ¹ the IUCN Red List of Threatened Species (IUCN 2019; black circles).

Supplementary Figure 5: Schematics showing selection of functional analogues to replace extinct species for the trophic rewilding scenario. An example is shown for the extinct species Smilodon fatalis. Functional analogues were selected from extant species that were phylogenetically closely-related and with similar body size to extinct species. Species were considered closely-related if they were from the same family, with the exception of Proboscidean species (* in figure), which were considered all closely-related within the Proboscidea order, as they share common morphological characteristic and similar functional roles ⁶. Functional analogues were considered to have similar body size to extinct species when they had body size between 50% - 150% body size of extinct species. Few exceptions (* in figure) were made: megaherbivores ($\geq 1,000 \text{ kg}$) Proboscideans were allowed to be replaced by any extant megaherbivore from this order; megacarnivores ($\geq 100 \text{ kg}$) for the Felidae and Ursidae families were allowed to be replaced by any extant megacarnivore from their respective families. More details can be found in the main text.

Supplementary Figure 6: Example of a functional analogue rewilding range for the extinct species *Smilodon fatalis* in the Nearctic realm. The present-natural range of *S. Fatalis* (green shade) represent a counter-factual range for today's climate without anthropogenic pressure through time ⁴ (Faurby et al. 2018). The rewilding ranges of the functional analogues *Panthera leo* (yellow shade) and *Panthera tigris* (purple shade) were obtained assessing their climatic suitability through maximum entropy species distribution models and clipped to the present-natural of *S. fatalis*. In this example, *P. tigris* is selected as functional analogue for rewilding in the Nearctic due to the larger rewilding area within the present-natural of *S. fatalis* in this biogeographic realm.

Supplementary Figure 7: Size of protected areas $(PAs) \ge 5,000 \text{ km}^2$ in the six biogeographic realm. Violin plots show the distribution of the PAs size in each biogeographic realm and the points the individual PAs. Superscripts (n) indicate the number of PAs $\ge 5,000 \text{ km}^2$ in each realm displayed.

References

Elith, J. et al. A statistical explanation of maxent for ecologists. *Divers. Distrib.* **17**, 43–57 (2011).

Faurby, S. et al. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. *Ecology* **99**, 2626–2626 (2018).

Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. *Environ. Conserv.* **24**, 38–49 (1997).

Guevara, L., Gerstner, B. E., Kass, J. M. & Anderson, R. P. Toward ecologically realistic predictions of species distributions: A cross-time example from tropical montane cloud forests. *Glob. Change Biol.* **24**, 1511–1522 (2018).

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. *Ecol. Model.* **199**, 142–152 (2006).

Hof, C. et al. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. *Proc. Nat. Acad. Sci.* **115**, 13294–13299 (2018).

IUCN 2019. The IUCN Red List of Threatened Species. Version 2019-3. http://www.iucnredlist.org/. Downloaded on 10 December 2019.

Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. *Ecol. Evol.* **6**, 337–348 (2016).

Lundgren, E. J., Ramp, D., Ripple, W. J. & Wallach, A. D. Introduced megafauna are rewilding the Anthropocene. *Ecography* **41**, 857–866 (2018).

Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide to maxent for modeling species' distributions: What it does, and why inputs and settings matter. *Ecography* **36**, 1058–1069.

Merow, C. et al. What do we gain from simplicity versus complexity in species distribution models? *Ecography* **37**, 1267–1281 (2014).

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. *Ecography* **40**, 887–893 (2017).

Poo-Muñoz, D. A. et al. Galictis cuja (Mammalia): An update of current knowledge and geographic distribution. *Iheringia*. *Série Zoologia* **104**, 341–346 (2014).

Sandom, C. J. et al. Trophic rewilding presents regionally specific opportunities for mitigating climate change. *Philos. Trans. R. Soc. B: Biol. Sci.* **375**, 20190125 (2020).

Swets, J. A. Measuring the accuracy of diagnostic systems. *Science* **240**, 1285–1293 (1988).

- 1. IUCN. The IUCN Red List of Threatened Species, Version 2019-3. (2019).
- 2. Sandom, C. J. *et al.* Trophic rewilding presents regionally specific opportunities for mitigating climate change. *Philos. Trans. R. Soc. B Biol. Sci.* **375**, 1–8 (2020).
- 3. Venter, O. *et al.* Global terrestrial Human Footprint maps for 1993 and 2009. *Sci. Data* **3**, 1–10 (2016).
- 4. Faurby, S., Davis, M., Pedersen Rasmus Øand Schowanek, S. D., Antonelli, A. & Svenning, J.-C. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. *Ecology* **99**, 2626 (2018).
- 5. Lundgren, E. J., Ramp, D., Ripple, W. J. & Wallach, A. D. Introduced megafauna are rewilding the Anthropocene. *Ecography (Cop.).* **41**, 857–866 (2018).
- 6. Donlan, C. J. *et al.* Pleistocene rewilding: An optimistic agenda for twenty-first century conservation. *Am. Nat.* **168**, 660–681 (2006).