More on Sesqui/Bi-Linear forms

- 1. Consider now a sesquiliner form $X \times X \xrightarrow{s} \mathbb{K}$ and introduce $s^*(x,u) := \overline{s(u,x)}$. Then s^* is again a sesquilinear form $(s^*(x\lambda,u\mu) = \overline{s(u\mu,x\lambda)} = \overline{\mu s(u,x)\lambda} = \overline{\lambda s(u,x)}\mu = \overline{\lambda s^*(x,u)\mu})$ Let $Y \in Cen\mathbb{K}$; this means $Y\lambda = \lambda Y$ for each $\lambda \in \mathbb{K}$ and hence $\overline{Y}\lambda = \overline{\lambda \gamma} = \overline{\gamma \lambda} = \lambda \overline{\gamma}$ for each $\lambda \in \mathbb{K}$. Thus $Y \in Cen(\mathbb{K})$ iff $\overline{\gamma} \in Cen\mathbb{K}$. Let $\Gamma(\mathbb{K}) := y \in Cen(\mathbb{K}) \mid y\overline{y} = 1$. Then $\Gamma(\mathbb{K})$ is not empty since $\pm 1 \in \Gamma(\mathbb{K})$. We make a definition. A sesquilinear form $X \times X \xrightarrow{s} \mathbb{K}$ is called $y hermitian(y \in \Gamma(\mathbb{K}))$ iff $s = \gamma s^*$, i.e, $s(x,u) = \overline{\gamma s(u,x)}$ at each $x,u \in X$.
 - (i) When $\gamma=1$, we say that γ -hermitian form is hermitian, when $\gamma=-1$, we say it is skew-hermitian. Thus s is hermitian iff $s(x,u)=\overline{s(u,x)}$ and s is skew hermitian iff $s(x,u)=-\overline{s(u,x)}$
 - (ii) For the trivial involution (thus \neg is forced to be commutative) we have bilinear forms and 'hermitian' is called 'symmetric'. Thus a bilinear form β is called symmetric iff $\beta(x,u) = \beta(u,x)$ and it is called skew symmetric iff $\beta(x,u) = -\beta(u,x)$.
- 2. When X → X is an isomorphism with s(τx, τ) = s(x, u), it is called an isometry on X; the term unitary transformation is also used. The unitary transformation is also used. The unitary transformations of X constitute a group under composition (s(τ⁻¹x, τu) = s(τ(τ⁻¹x), τ(τ⁻¹u)) = s(x, u)) with id_X as the identity. (A group is a set A with an associative binary operation(i.e. a(bc) = (ab)c holds) in which each a ∈ A has an inverse a⁻¹ so that aa⁻¹ = 1 = a⁻¹a; the existence of an identity is part of the definition. The nonzero quaternions from a group; in fact the nonzero elements of any division ring do. The eight quaternions ±e_i | i = 0, 1, 2, 3 also form a group; it is called the quaternion group. When a group is commutative, it is called 'abelian'; the additive fragment of any

ring is an abelian group, the nonzero elements of a field form an abelian group).

- 3. (i) Let $X \times X \xrightarrow{s} \mathbb{K}$ be a sesquilinear form. Then if \mathbb{C} is a subring of \mathbb{K} and the involution on \mathbb{K} becomes involution of complex numbers i.e. conjugation on \mathbb{C} , we have $(since \ \bar{i} = i^{-1}, \ \bar{i}^{\bar{k}} = i^{-k} \ and \ s \ is \ conjugate-linear in the first \ variable)$. $\sum_{k=0}^{3} s(x+ui^k,x+ui^k)i^k = \sum_{k=0}^{3} [s(x,x)+s(x,u)i^k+s(u,x)i^{-k}+s(u,u)i^k] = \sum_{k=0}^{3} [s(x,x)i^k+s(x,u)i^2+s(u,x)i^{-k}i^k+s(u,u)i^k] = \sum_{k=0}^{3} [s(x,x)-s(x,u)+s(u,u)]i^k + \sum_{k=0}^{3} s(u,x) = [s(x,x)-s(x,u)+s(u,u)][1+i+i^2+i^3] + 4s(u,x) = 4s(u,x) \ (\because 1+i+i^2+i^3=0)$ The relation $4s(u,x) = \sum_{k=0}^{3} s(x+ui^k,x+ui^k)i^k$ is known as the Polarization identity for the sesquilinear forms. (ii) The rings $\mathbb{K} = \mathbb{C}$, $\mathbb{K} = \mathbb{H}$ (the quaternions) clearly satisfy the requirement for \mathbb{K} in (i) above. There are in fact many other \mathbb{K} (e.g the ring of complex $n \times m$ matrices with conjugation on \mathbb{K} defined as the conjugate-transposse) for which the calculations in (i) are valid but we will not discuss the more general situation (which needs \mathbb{K} to be what is known as a \mathbb{C}^* -algebra).
- **4.** (i) If we write s(x,x) as Q(x), we associate a function $X \xrightarrow{X} \mathbb{K}$ called the quadratic form of s. Then the polarization identity says that $s(u,x) = \frac{1}{4} [\sum_{k=0}^{3} Q(x+ui^k, x+ui^k)i^k]$ so that the sesquilinear form is completely determined by its quadratic form.
 - (ii) Noting that $s^*(u,x) := \overline{s(x,u)}$ is also sesquilinear (6 on page 6 preceding) and the quadratic form for $s^*(u,x)$ is then $Q^*(x) := \overline{Q(x)}$, we conclude that s is γ -hermitian iff $Q^*(x) = \overline{Q(x)} = \gamma Q(x)$ In particular: A sesquilinear form s is hermitian/skewhermitian iff its associated quadratic form satisfies $Q(x) = \overline{Q(x)}/Q(x) = -\overline{Q(x)}$.
 - (iii) When $\mathbb{K} = \mathbb{C}$ or \mathbb{H} , we conclude by using (ii) (\mathbb{H} =quaternions) A sesquilinear form $X \times X \xrightarrow{s} \mathbb{K}$ ($\mathbb{K} = \mathbb{C}$ or \mathbb{H}) is hermitian iff $Q(x) \in \mathbb{R}$.
 - (iv) Suppose $\mathbb{K} = \mathbb{C}$ or \mathbb{H} . Let the real part of $a \in \mathbb{K}$ be denoted by a_0 (thus

$$a = \begin{cases} a_0 + a_1 i & \text{for } a \in \mathbb{K} \\ a_0 + i a_1 \end{cases}$$

and $a = a_0 + \underline{a}$ where $\underline{a} = e_1 a_1 + e_2 a_2 + e_3 a_3$ for $a \in \mathbb{H}$) Then $a + \overline{a} = 2a_0$. If s is hermitian, we have $s(x\lambda + u\mu, x\lambda + u\mu) = s(x\lambda, x\lambda) + s(u\mu, x\lambda) + s(x\lambda, u\mu) + s(u\mu, umu)$ $= \overline{\lambda} s(x, x)\lambda + \overline{\mu} s(u, x)\lambda + \overline{\lambda} s(x, u)\mu + \overline{\mu} s(u, u)\mu$ $= \overline{\lambda} s(x, x)\lambda + \overline{\lambda} \overline{s}(x, u)\mu + \overline{\lambda} s(x, u)\mu + \overline{\mu} s(u, u)\mu$ $(\because \overline{\lambda} \overline{s}(x, u)\mu = \overline{\mu} \overline{s}(x, u)\overline{\lambda} = \overline{\mu} s(u, x)\lambda)$ $= |\lambda|^2 s(x, x) + 2(\overline{\lambda} s(x, u)\mu) + |\mu|^2 s(u, u) \ (\because s(z, z) \in \mathbb{R} \text{ for each } z \in X \text{ and } \mathbb{R} = Cen(\mathbb{H});$

 $=|\lambda|^2 s(x,x) + 2(\overline{\lambda}s(x,u)\mu) + |\mu|^2 s(u,u) \ (\because s(z,z) \in \mathbb{R} \text{ for each } z \in X \text{ and } \mathbb{R} = Cen(\mathbb{H});$ for $\mathbb{K} = \mathbb{C}$ the argument is obvious any way)

That is, $Q(x\lambda + u\mu) = |\lambda|^2 Q(x) + 2(\overline{\lambda}s(x,u)\mu)_0 + |\mu|^2 Q(u)$ (every term in this is a real number)

(v) For complex numbers, $a = a_0 + ia_1$ will be written $a = \underline{re}(a) + i\overline{im}(a)$. Then $ai = a_0i - a_1$ so $\underline{re}(ai) = -\underline{im}(a)$ and $\underline{im}(ai) = \underline{re}(a)$. For $X \times X \xrightarrow{s} \mathbb{C}$, we have $s(xi, u) = \overline{is}(x, u) = -is(x, u)$. Thus $\underline{im}s(x, u) = -\underline{re}(is(x, u)) = \underline{re}s(xi, u)$. Further, s is hermitian iff $s(x, u) = \overline{s(u, x)}$ and hence we have, from $s(xi, u) = \overline{is}(x, u)$, s is hermitian iff $s(xi, u) = \overline{is}(u, x) = \overline{s(u, x)} = -is(u, x) = -is(x, u)$ i.e. s is hermitian iff s is skew hermitian.