2021 CCF 非专业级别软件能力认证第一轮

(CSP-J)入门级 C++语言试题 模拟卷 - 8

考片	上沙十	幸	市	邗	
与'-	H //T	.思.	⇉	ᄱ	:

A. 克劳德・香农

C. 查尔斯・巴比奇

1. 全部试题答案均]要求写在答卷纸上,写	在试卷纸上一律无效。	
2. 不得使用任何电	3子设备(如计算器、手	机、电子词典等) 或查	阅任何书籍资料。
一、 单选题(共 18 1. 2E+03 表示()	5 题,每题 2 分,共计 3)。	80 分;每题有且仅有一	个正确答案)
A. 2.03	B. 5	C. 8	D. 2000
2. 一个字节(byte	ə)由 () 个二进制位组	成。	
A. 8	B. 16	C. 32	D. 以上皆有可能
	【的值恒为真的是 () 。		
A. P∪(¬ P∩	Q)∪(¬ P∩¬ Q)	B. Q∪(¬ P∩(Q)∪(P∩¬ Q)
C. PUQU(P	∩¬ Q)∪(¬ P∩Q)	D. P∪¬ Q∪(I	P∩¬ Q)∪(¬ P∩¬ Q)
4. 在一个无向的简 的是无重边,无自		·边,问至少有多少个顶	〔点。无向图中的简单图指 〔 <u>有</u>
A. 30	B. 31	C. 9	D. 8
5. 提出"存储程序	序"的计算机原理的是《	() .	

B. 戈登・摩尔

D. 冯・诺依曼

6. 班里有7位同学,	每位同学都准备了-	一份礼物,老师负责分配	配礼物给同学,并且同学不
会拿到自己准备的礼	物,问老师有多少种	分配礼物的方案。	
A. 265	B. 768	C. 1854	D. 14833
7. 前缀表达式"+3	* 2 + 5 12"的值是	() .	
A.23	B.25	C.37	D.65
8. 主存储器的存取递	医度比中央处理器 (C	PU)的工作速度慢得多	,从而使得后者的效率受到
影响。而根据局部性	原理,CPU 所访问的	的存储单元通常都趋于验	聚集在一个较小的连续区域
中。于是,为了提高	系统的整体执行效率	a,在 CPU 中引入()。	9
A.寄存器	B.高速缓存	C.闪存	D.外存
9. 对 8 位的十进制数	女3和8,执行(3 <<	8 >> 8)的返回值是() .
A. 3	В. 0		
C. 1	D. 6		
10. 班里有7个同学	参与排队,A 想和 B	排在一起,但是 A 不想	思和 C 排在一起,问有多少
种排队的方案()。			
A. 1200	B. 1440	C. 600	D. 720
11. 一个自然数在十起	进制下有 n 位,则它ā	在二进制下的位数与())最接近。
A.5n	B.nlog ₂ 10	C.10log₂n	D.10nlog ₂ n

12.	元素 R1、R2、	R3、R4、R5 入栈的	的顺序为 R1、R2、F	3、R4、R5.如	四果第一个出栈的
是I	R3,那么第五个出	出栈的不可能是 ()。			
	A.R1	B.R2	C.R4	D.R	5
13.	双向链表中有两	个指针域 llink 和 rlir	ık,分别指向该结点的	的前驱和后继。	设P指向链表中
的一	一个结点,它的左	左右结点均非空。现 ₃	要求删除结点 P,则下	下面语句序列中	错误的是()。
	A.P->rlink->ll	ink=P->rlink;P->llir	nk->rlink=P->llink;	delete(P)	
	B.P->llink->rl	ink=P->rlink;P->rli	nk->llink=P->llink;	delete(P)	
	C.P->rlink->ll	ink=P->llink;P->rliı	nk->llink->rlink=P-	->rlink;delete	(P)
	D.P->llink->rl	ink=P->rlink;P->lliı	nk->rlink->llink=P-	->llink;delete((P)
14.	一棵二叉树的前	字遍历序列是 ABCD	EFG,后序遍历序列爿	是CBFEGDA,师	则根结点的左子树
的纟	吉点个数可能是	() .			
	A.2	B.3	C.4		D.5
15.	完全二叉树的顺	序存储方案,是指将	完全二叉树的结点点	从上至下、从左	左至右依次存放到
_/	个顺序结构的数约	且中。假定根结点存放	效在数组的1号位置	,则第 k 号结点	点的父结点如果存
在的	ሳ话,应当存放 在	主数组的 () 号位置。	•		
	A.2k		B.2k+1		
	C.k/2 向下取鏨	室	D.(k+1)/	2 向下取整	

二、阅读程序 (程序输入不超过数组或字符串定义的范围: 判断题正确填 " $\sqrt{}$ ", 错误填 " \times "; 除特殊说明外,判断题 1.5 分,选择题 4 分,共计 40 分)

```
01
    #include<iostream>
    using namespace std;
0
2
    int rSum(int j)
0
    {
3
0
        int sum=0;
        while(j!=0)
4
        {
0
            sum=sum*10+(j%10);
5
0
            j=j/10;
6
        }
07
        return sum;
0
8
    int main()
0
9
    {
10
        int n,m,i;
11
        cin>>n>>m;
        for(i=n;i< m;i++)
12
            if(i==rSum(i))
13
                 cout<<i<<' ';
14
```

15	return 0;
16	}
17	
18	
19	
2	
0	
21	
2	
2	
2	
3	
规定	程序输入的 n 和 m 均为正整数,且 n <= m。
判断	题
1) 当	有程序执行到第 12 行时,sum 的值一定比 j 的值大。()
O) +	去,和 · · · 初月十叶 · 和 · · · · · · · · · · · · · · · · ·

2) 若 n 和 m 都很大时,程序一定有输出结果。()

3) 将第7行的"j!=0", 改为"j>=0"时,程序会出错。()

4) 若输入的 n 等于 m,程序一定没有输出。()

选择题

5) 若要想程序输出的最后一个数字是 99, 则输入的 m 有	()种方案	: :
---------------------------------	---	------	--------

A.2 B.3 C.11 D.12

6) 若输入的 n 和 m 分别为 1000 和 2000, 则程序会输出 () 个数字。

A.20 B. 9 C. 10 D.11

2.

```
01
    #include<iostream>
    #include<string>
0
2
    using namespace std;
0
    int main()
3
0
4
        string s;
        char m1,m2;
0
        int i;
5
        getline(cin,s);
0
        m1=' ';
6
07
        m2=' ';
        for(i=0;i<s.length();i++)
0
            if(s[i]>m1)
8
            {
0
9
                 m2=m1;
                 m1=s[i];
10
            }
11
             else if(s[i]>m2)
12
                 m2=s[i];
13
```

```
cout<<int(m1)<<' '<<int(m2)<<endl;</pre>
14
15
         return 0;
16
    }
17
18
19
2
0
21
2
2
2
3
```

字符	空格	'0'	'A'	'a'
ASCII 码	32	48	65	97

判断题

1)输入的字符串中包含有空格时,程序不能完整读入()

2)若输入的字符串只包含小写字母,输出的两个值一定大于等于 97。()

3)若输入的字符串只包含大小写字母,且输出的第二个值为 90, 则输入的字符串中有且只有一个小写字母。()

4)若输入的字符串只包含数字 2, 且多于两个字符, 则输出的两个值都是 50。()

选择题

5)若输入的字符串为"Expo 2010 Shanghai China",则输出的结果是()。

A.120 110

B.120 112

C.110 120

D.112 120

6)若输入的字符串有3个字符,且都是数字,并且输出的两个值分别是51和50,则输入一 共有()种不同的方案。

A.7

B.15 C.31

D.63

3.

```
01
    #include<iostream>
0
    using namespace std;
2
    const int NUM=5;
0
3
    int r(int n)
0
    {
4
         int i;
0
         if(n \le NUM)
5
             return n;
         for(i=1;i \le NUM;i++)
0
             if(r(n-i)<0)
6
07
                 return i;
         return -1;
0
    }
8
```

```
0
    int main()
9
10
11
        int n;
12
        cin>>n;
        cout<<r(n)<<endl;
13
        return 0;
14
15
    }
16
17
18
19
2
0
21
2
2
```

保证输入为非负整数数字。

判断题

1)将第 10 行"i=1" 改为"i=0", 程序不会出错。()

2)程序输出的结果有可能小于-1。()

3)若程序两次输入的值分别为 n_1 和 n_2 ,且有 n_1 - n_2 =1 的关系,则对于这两次运行的结果 ans $_1$ 和 ans $_2$ - $_1$ 有 ans $_2$ =1。()

4)若输入的 n 大于等于 6 时,程序一定至少执行一次第 13 行。()

选择题

5)(2分)若输入2020,输出的结果为()。

A.3 B.4 C.5 D.-1

6)若已知 0≤n≤100,则要使输出的结果为-1,则 n 的取值有()种。

A.10 B.12 C.14 D.16

三、完善程序(单选题,每小题 3 分,共计 30 分)

1. (哥德巴赫猜想)哥德巴赫猜想是指,任一大于 2 的偶数都可写成两个质数之和。迄今为止,这仍然是一个著名的世界难题,被誉为数学王冠上的明珠。试编写程序,验证任一大于 2 且不超过 n 的偶数都能写成两个质数之和。

```
01
    #include<iostream>
0
    using namespace std;
2
    int main()
0
3
        const int SIZE=1000;
0
        int n,r,p[SIZE],i,j,k,ans;
4
        bool tmp;
0
        cin>>n;
5
         r=1;
```

```
p[1]=2;
0
        for(i=3;i<=n;i++)
6
        {
07
0
            ①;
            for(j=1;j<=r;j++)
8
                 if(i%②==0)
0
                 {
9
                     tmp=false;
10
                     break;
11
                 }
12
            if(tmp)
13
            {
14
15
                 r++;
                 3;
16
            }
17
        }
18
19
        ans=0;
        for(i=2;i<=n/2;i++)
2
        {
0
             tmp=false;
21
2
            for(j=1;j<=r;j++)
                 for(k=j;k<=r;k++)
2
```

```
if(i+i==4)
2
                   {
3
2
                       tmp=true;
                       break;
4
2
                   }
           if(tmp)
5
2
               ans++;
6
        }
27
        cout<<ans<<endl;
        return 0;
2
8
    }
2
9
3
0
31
3
2
3
3
3
4
```

3	
5	
3	
6	
37	7
3	
8	
3	
9	
4	
0	
41	1
4	
2	

若输入 n 为 2010,则输出⑤ 时表示验证成功,即大于 2 且不超过 2010 的偶数都满足哥德巴赫猜想。

1)①处应填()。

A. tmp=true B. tmp=false
C. tmp++ D. r=sqrt(n)
2)②处应填()。
A.j B. p[j] C. p[j+1] D. p[i]

3)③处应填()。

A. p[r]=i B.p[r-1]=i C. p[r]=j D. p[r-1]=j
4)④处应填()。

A. p[k] B. p[i]+p[k] C. p[i]+p[i] D. p[j]+p[k]

5)⑤处应填()。

A.1003 B. 1004 C.1005 D.1006

2.(过河问题)在一个月黑风高的夜晚,有一群人在河的右岸,想通过唯一的一根独木桥走到河的左岸。在伸手不见五指的黑夜里,过桥时必须借照灯光来照明,不幸的是,他们只有一盏灯。另外,独木桥上最多能承受两个人同时经过,否则将会坍塌。每个人单独过独木桥都需要一定的时间,不同的人用的时间可能不同。两个人一起过独木桥时,由于只有一盏灯,所以需要的时间是较慢的那个人单独过桥所花费的时间。现在输入 N(2≤N<1000)和这N个人单独过桥需要的时间,请计算总共最少需要多少时间,他们才能全部到达河左岸。

例如,有3个人甲、乙、丙,他们单独过桥的时间分别为1、2、4,则总共最少需要的时间为7。具体方法是:甲、乙一起过桥到河的左岸,甲单独回到河的右岸将灯带回,然后甲、丙在一起过桥到河的左岸,时间为2+1+4=7。

01 #include<iostream>

0 #include<cstring>

2 using namespace std;

0 | const int SIZE=100;

3 | const int INFINITY = 10000;

0 | const bool LEFT=true;

4 const bool RIGHT=false;

```
0
    const bool LEFT_TO_RIGHT=true;
    const bool RIGHT_TO_LEFT=false;
5
    int n, hour[SIZE];
0
6
    bool pos[SIZE];
    int max(int a,int b){
07
        if(a>b) return a;
0
8
        else
                 return b;
0
    }
    int go(bool stage)
9
    {
10
11
        int i,j, num, tmp,ans;
        if(stage==RIGHT_TO_LEFT)
12
        {
13
14
             num=0;
15
             ans=0;
            for(i=1;i<=n;i++)
16
                if(pos[i]==RIGHT)
17
                {
18
19
                     num++;
                     if(hour[i]>ans)
2
                         ans=hour[i];
0
                }
21
```

```
if(1)
2
2
                 return ans;
             ans=INFINITY;
2
3
             for(i=1;i<=n-1;i++)
                 if(pos[i]==RIGHT)
2
                     for(j=i+1;j \le n;j++)
4
                         if(pos[j]==RIGHT)
2
                         {
5
                              pos[i]=LEFT;
2
                              pos[j]=LEFT;
6
                              tmp=max(hour[i], hour[j])+2;
27
                              if(tmp<ans)
2
8
                                  ans=tmp;
                              pos[i]=RIGHT;
2
                              pos[j]=RIGHT;
9
                         }
3
0
             return ans;
        }
31
        if(stage==LEFT_TO_RIGHT)
3
        {
2
             ans=INFINITY;
3
             for(i=1;i<=n;i++)
3
```

```
if(③)
3
                {
4
                     pos[i]=RIGHT;
3
5
                     tmp=4;
                     if(tmp<ans)
3
6
                         ans=tmp;
                     ⑤;
37
                }
3
8
            return ans;
        }
3
        return 0;
9
4
    }
    int main()
0
41
        int i;
4
2
        cin>>n;
        for(i=1;i<=n;i++)
4
        {
3
            cin>>hour[i];
4
            pos[i]=RIGHT;
4
        }
4
        cout<<go(RIGHT_TO_LEFT)<<endl;
5
```

4		return 0
6	}	
47		
4		
8		
4		
9		
5		
0		
51		
5		
2		
5		
3		
5		
4		
5		
5		
5		
6		
57		
5		

8	
5	
9	
6	
0	
61	
6	
2	
6	
3	
6	
4	
6	
5	
6	
6	
67	
6	
8	
6	
9	
70	

