K Nearest Neighbors

How would you classify a new observation?

K-NN Algorithm Summary

- Find k nearest nearest neighbors to point of interest
- Count how many of those k neighbors are of each class
- Classify the point of interest as the majority class

k-NN Decision Boundaries

See IPython Notebook

Distance Metrics

Euclidean Distance:

$$\left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} = \|\vec{x}\|_2$$

Distance Metrics

Cosine Similarity:

similarity =
$$cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

Distance Metrics

- Most common choices are Euclidean (L^2 norm) and cosine similarity
- Many others to choose from:
 - Manhattan distance (L^1 norm)
 - L^p norm
 - L^infinity norm
 - Hamming distance

k-NN Details

- Instance-based learning
- "Lazy" learning
- Sometimes called the first machine learning method (invented in 1950s)

How to Choose k?

- Cross-validation
- Rule of thumb: start with k = sqrt(n)

Pros/Cons of k-NN

Pros

- works with any number of classes
- easy to store the model
 (it's just the data plus your distance metric)
- can learn a very complex function

Cons

- slow
- irrelevant attributes can affect results
- curse of dimensionality

Uses of k-NN

- Classification
- Imputation
 - Replace missing values with k-NN
 http://nerds.airbnb.com/overcoming-missing-values-in-a-rfc/
 http://www.icmc.usp.br/~gbatista/files/his2002.pdf
- Anomaly Detection
 - e.g. use distance to kth nearest neighbor is an outlier score

Variants of k-NN

- Weighted k-NN
- Edited knn

k-NN Theoretical Guarantees

Behavior in the Limit

```
\epsilon^*(\mathbf{x}): Error of optimal prediction \epsilon_{NN}(\mathbf{x}): Error of nearest neighbor Theorem: \lim_{n\to\infty}\epsilon_{NN}\leq 2\epsilon^*

Proof sketch (2-class case): \epsilon_{NN}=p_+p_{NN\in-}+p_-p_{NN\in+}\\ =p_+(1-p_{NN\in+})+(1-p_+)p_{NN\in+}\\ \lim_{n\to\infty}p_{NN\in+}=p_+,\quad \lim_{n\to\infty}p_{NN\in-}=p_-\\ \lim_{n\to\infty}\epsilon_{NN}=p_+(1-p_+)+(1-p_+)p_+=2\epsilon^*(1-\epsilon^*)\leq 2\epsilon^*
Theorem: \lim_{n\to\infty}\epsilon_{NN}=p_+(1-p_+)+(1-p_+)p_+=2\epsilon^*(1-\epsilon^*)\leq 2\epsilon^*
```