tpjyl7pfo

February 22, 2025

1 Bagpack Price Prediction

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

1.1 Reading the dataset

```
[2]: df = pd.read_csv("./train.csv")
```

1.2 Exploring the dataset

```
[3]: print("Information of the dataset: ") print(df.info())
```

Information of the dataset:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 300000 entries, 0 to 299999

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	id	300000 non-null	int64
1	Brand	290295 non-null	object
2	Material	291653 non-null	object
3	Size	293405 non-null	object
4	Compartments	300000 non-null	float64
5	Laptop Compartment	292556 non-null	object
6	Waterproof	292950 non-null	object
7	Style	292030 non-null	object
8	Color	290050 non-null	object
9	Weight Capacity (kg)	299862 non-null	float64
10	Price	300000 non-null	float64

dtypes: float64(3), int64(1), object(7)

memory usage: 25.2+ MB

 ${\tt None}$

```
[4]: print("Description of the dataset: ") print(df.describe())
```

Description of the dataset:

```
Compartments
                                      Weight Capacity (kg)
                   id
                                                                      Price
       300000.000000
                       300000.000000
                                              299862.000000
                                                              300000.000000
count
       149999.500000
                            5.443590
                                                  18.029994
                                                                  81.411107
mean
std
        86602.684716
                            2.890766
                                                   6.966914
                                                                  39.039340
                                                   5.000000
                                                                  15.000000
min
            0.000000
                            1.000000
25%
        74999.750000
                            3.000000
                                                  12.097867
                                                                  47.384620
50%
       149999.500000
                            5.000000
                                                  18.068614
                                                                  80.956120
75%
       224999.250000
                            8.000000
                                                  24.002375
                                                                 115.018160
       299999.000000
                           10.000000
                                                  30.000000
                                                                 150.000000
max
```

```
[5]: print("Shape of the dataset ", df.shape)
```

Shape of the dataset (300000, 11)

1.3 Exploring the null values

```
[6]: df.isnull().sum()
```

```
[6]: id
                                  0
     Brand
                               9705
     Material
                               8347
     Size
                               6595
     Compartments
                                  0
     Laptop Compartment
                               7444
     Waterproof
                               7050
     Style
                               7970
     Color
                               9950
     Weight Capacity (kg)
                                138
     Price
                                  0
     dtype: int64
```

1.4 Handling the null values

```
[7]: df['Brand'] = df['Brand'].fillna("Non Branded")

df['Material'] = df['Material'].fillna("Unknown")

df['Size'] = df['Size'].fillna('Unknown')

df['Laptop Compartment'] = df['Laptop Compartment'].fillna("Unknown")

df['Waterproof'] = df['Waterproof'].fillna("Unknown")
```

```
df['Style'] = df['Style'].fillna("Unknown")

df['Color'] = df['Color'].fillna('Unique')

weight_mean = df['Weight Capacity (kg)'].mean()
df['Weight Capacity (kg)'] = df['Weight Capacity (kg)'].fillna(weight_mean)

print("After removing all the outliers")
df.isnull().sum()
```

After removing all the outliers

```
[7]: id
                               0
     Brand
                               0
     Material
                               0
     Size
                               0
     Compartments
                               0
     Laptop Compartment
                               0
     Waterproof
                               0
     Style
                               0
     Color
                               0
     Weight Capacity (kg)
                              0
     Price
                               0
     dtype: int64
```

1.5 Adding Columns for better Graph plotting

1.6 Skewness

```
[10]: numerical_cols = df.select_dtypes(include=['float64', 'int64'])
    skewness = numerical_cols.skew()

# Print skewness values
    print("Skewness of numerical columns:")
```

```
print(skewness)

# Plotting skewness using subplots for numerical columns
n_cols = len(numerical_cols.columns)

# Set up the subplots
fig, axes = plt.subplots(nrows=1, ncols=n_cols, figsize=(5 * n_cols, 4))

# Plot each numerical column
for ax, col in zip(axes, numerical_cols.columns):
    sns.histplot(df[col], ax=ax, kde=True)
    ax.set_title(f'Distribution of {col}\nSkewness: {skewness[col]:.2f}')
    ax.axvline(df[col].mean(), color='red', linestyle='--', label='Mean')
    ax.axvline(df[col].median(), color='blue', linestyle='--', label='Median')
    ax.legend()

plt.tight_layout()
plt.show()
```

Skewness of numerical columns:

id 0.000000 Compartments 0.029125 Weight Capacity (kg) -0.064254 Price 0.036883

dtype: float64

[11]: df.isnull().sum()

[11]: id 0 Brand 0 0 Material 0 Size Compartments 0 Laptop Compartment 0 Waterproof 0 Style Color 0 Weight Capacity (kg)

Price 0
Weight Category 0
Price Category 693
dtype: int64

1.7 Univariate Analysis

```
[12]: # Brand
plt.figure(figsize = (8, 5))
sns.countplot(x = df['Brand'], data = df, palette = 'pastel', hue = None)

plt.title('Count of each Brand')
plt.xlabel('Brand')
plt.ylabel('Count')

plt.show()
```

<ipython-input-12-4aeb48e43e68>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x = df['Brand'], data = df, palette = 'pastel', hue = None)


```
[13]: # Brand
plt.figure(figsize = (8, 5))
sns.countplot(x = df['Material'], data = df, palette = 'muted', hue = None)

plt.title('Count of each Material')
plt.xlabel('Material')
plt.ylabel('Count')

plt.show()
```

<ipython-input-13-71edb78387b0>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x = df['Material'], data = df, palette = 'muted', hue = None)


```
[14]: # Brand
plt.figure(figsize = (8, 5))
sns.countplot(x = df['Style'], data = df, palette = 'Set1', hue = None)
```

```
plt.title('Count of each Style')
plt.xlabel('Style')
plt.ylabel('Count')

plt.show()
```

<ipython-input-14-eef356250b69>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(x = df['Style'], data = df, palette = 'Set1', hue = None)


```
[15]: # Color
color = df.groupby('Color', as_index = False).count()

plt.figure(figsize=(8, 8))
plt.pie(color['Brand'], labels=color['Color'], autopct='%1.1f%%', startangle=90)

# Draw a white circle in the center to create a doughnut effect
centre_circle = plt.Circle((0, 0), 0.70, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
```

```
# Equal aspect ratio ensures that pie is drawn as a circle
plt.axis('equal')
plt.title('Color Distribution')
plt.show()
```


<ipython-input-16-2c15eedf876d>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x='Weight Category', y='Count', data=category_counts,
palette='pastel')

1.8 Bivariate analysis

```
[17]: # Brand vs Material
grouped = df.groupby(['Brand', 'Material']).size().reset_index(name='Count')
pivoted = grouped.pivot(index='Brand', columns='Material', values='Count').

ofillna(0)

pivoted.plot(kind='bar', stacked=False)
plt.title('Count of Materials by Brand')
plt.xlabel('Brand')
plt.ylabel('Brand')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.legend(title='Material', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```



```
pivoted.plot(kind='bar', stacked=False)
plt.title('Count of Brand by Price Category')
plt.xlabel('Brand')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.legend(title='Price Category', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```

<ipython-input-18-facb2f982896>:2: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

```
grouped = df.groupby(['Brand', 'Price
Category']).size().reset_index(name='Count')
```



```
[19]: # Brand vs Style
grouped = df.groupby(['Brand', 'Style']).size().reset_index(name='Count')
pivoted = grouped.pivot(index='Brand', columns='Style', values='Count').

ofillna(0)
```

```
pivoted.plot(kind='bar', stacked=False)
plt.title('Count of Style by Brand')
plt.xlabel('Brand')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.legend(title='Style', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```



```
plt.legend(title='Weight Category', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```

<ipython-input-20-ca41bccade79>:2: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

```
grouped = df.groupby(['Brand', 'Weight
Category']).size().reset_index(name='Count')
```



```
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.legend(title='Price Category', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```

<ipython-input-21-aa9cd85781be>:2: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

```
grouped = df.groupby(['Material', 'Price
Category']).size().reset_index(name='Count')
```



```
plt.title('Count of Style by Price Category')
plt.xlabel('Style')
plt.ylabel('Price Category')
plt.xticks(rotation=45)
plt.legend(title='Price Category', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```

<ipython-input-22-421eda627aae>:2: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

```
grouped = df.groupby(['Style', 'Price
Category']).size().reset_index(name='Count')
```



```
pivoted.plot(kind='bar', stacked=False)
plt.title('Count of Color by Price Category')
plt.xlabel('Color')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.legend(title='Price Category', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```

<ipython-input-23-555c3cb96ee6>:2: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

```
grouped = df.groupby(['Color', 'Price
Category']).size().reset_index(name='Count')
```


1.9 Feature Engineering for Model Training

```
[24]: # Drop unwanted columns

new_df = df.drop(['id', 'Waterproof', 'Laptop Compartment', 'Weight Category', □

→'Price Category'], axis = 1)
```

```
[25]: # Change the float values to int as some models give error for float values
    new_df['Compartments'] = new_df['Compartments'].astype(int)
    new_df['Price'] = new_df['Price'].astype(int)
    new_df['Weight Capacity (kg)'] = new_df['Weight Capacity (kg)'].astype(int)
```

1.10 Model Training

```
[26]: # Defining X and Y dataset
X = new_df.drop(columns = ['Price'])
Y = new_df['Price']
```

1.10.1 Import libraries

```
[28]: from sklearn.compose import ColumnTransformer
      from sklearn.pipeline import Pipeline
      from sklearn.preprocessing import OneHotEncoder
      from sklearn.metrics import r2_score,mean_absolute_error
      from xgboost import XGBRegressor
      from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
      from sklearn.neighbors import KNeighborsRegressor
      from sklearn.tree import DecisionTreeRegressor
      from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
      from sklearn.ensemble import
       -RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor, ExtraTreesRegressor
      from sklearn.ensemble import VotingRegressor, BaggingRegressor,
       \hookrightarrowStackingRegressor
      from sklearn.svm import SVR
      from sklearn.metrics import r2 score, mean absolute error, mean squared error
      from sklearn.model_selection import train_test_split
```

1.11 Linear Regression

RMSE score 39.18521675416943

1.12 Ridge Regression

RMSE score 39.18521621559453

1.13 Lasso Regression

RMSE score 39.19518883212979

1.14 ElasticNet Regression

RMSE score 39.19413509444018

1.15 Decision Tree

RMSE score 53.4981778839449

1.16 Extra tree

1.17 Voting

```
[35]: step1 = ColumnTransformer(
          transformers=[('col_tnf', OneHotEncoder(sparse_output=False, drop='first'),__
       \hookrightarrow[0, 1, 2, 4, 5])],
          remainder='passthrough'
      ridge_model = Ridge()
      linear_model = LinearRegression()
      lasso_model = Lasso()
      voting_regressor = VotingRegressor(estimators=[
          ('ridge', ridge_model),
          ('linear', linear_model),
          ('lasso', lasso_model)
      ])
      pipe = Pipeline([
          ('step1', step1),
          ('step2', voting_regressor)
      ])
      pipe.fit(X_train, y_train)
      y_pred = pipe.predict(X_test)
      print('RMSE:', np.sqrt(mean_squared_error(y_test, y_pred)))
```

RMSE: 39.184375647684455

1.18 Bagging

```
pipe = Pipeline([
    ('step1', step1),
    ('step2', bagging_regressor)
])

pipe.fit(X_train, y_train)

y_pred = pipe.predict(X_test)

print('RMSE:', np.sqrt(mean_squared_error(y_test, y_pred)))
```

RMSE: 39.184898304234295

1.19 Random Forest

RMSE 43.9357107695224

1.20 AdaBoost

```
('step1',step1),
    ('step2',step2)
])

pipe.fit(X_train,y_train)

y_pred = pipe.predict(X_test)

print('RMSE', np.sqrt(mean_squared_error(y_test, y_pred)))
```

RMSE 39.207410208141226

1.21 K Means Clustering

RMSE 89.14747095559008

1.22 Gradient Boosting

```
('step2', step2)
])

pipe.fit(X_train, y_train)

y_pred = pipe.predict(X_test)

print('RMSE', np.sqrt(mean_squared_error(y_test, y_pred)))
```

RMSE 39.187112181786034

1.23 Stacking

```
[41]: step1 = ColumnTransformer(
          transformers=[('col_tnf', OneHotEncoder(sparse_output=False, drop='first'),__
       \rightarrow[0, 1, 2, 4, 5, 6])],
          remainder='passthrough'
      base_learners = [
          ('lr', LinearRegression()),
          ('gb', GradientBoostingRegressor(random_state=42)),
      ]
      final_estimator = GradientBoostingRegressor(random_state=42)
      stacking_model = StackingRegressor(estimators=base_learners,_

→final_estimator=final_estimator)
      pipe = Pipeline([
          ('step1', step1),
          ('stacking', stacking_model)
      ])
      pipe.fit(X_train, y_train)
      y_pred = pipe.predict(X_test)
      print('RMSE', np.sqrt(mean_squared_error(y_test, y_pred)))
```

RMSE 39.18726052784003

1.24 K Nearest Neighbors

RMSE 42.959242254852576

1.25 XG Boost

RMSE 39.33804068980177