トップレベルの性能と安定性。

私たちはこれまでの大会での経験から、安定性したロボットを 作ることが最も重要であることを学んだ。

今回の機体「シローは、ハードウェアとソフトウェアの共存を 実現し、**これまでにない性能と安定性を獲得した**ロボットである。 レスキューまで完璧にこなす性能と、安定性を備えたロボット で「満点走行」を狙う。

考え抜かれたラインセンサ

ラインセンサ基板には16個のフォトリフレクタと2つのデジタル カラーセンサを搭載している。

フォトリフレクタの値からラインの位置を-7~7の範囲で算出し、 その値をもとにPD制御を行う。

カラーセンサ用のLEDにはフルカラーLEDを採用。黄色 (#FFFF00) で光らせることで、緑と赤の検知精度を上げている。 よく考えられたセンサ配置によって、前に出てラインを読むな どの無駄な動作が全くないライントレースが実現されている。

例えば、トの字は前に1つ取り付けられたフォトリフレクタを 読むだけで検知することができる。緑マーカーも、時刻情報を用 いた独自のアルゴリズムによって一切止まらずに検知できる。

圧倒的な走破性

異次元の**小型化**と低重心化、そして強力な駆動ユニットは、 どんなハザードも楽々と乗り越える走破性を実現している。

低重心化のために、ロボットを支え る板には5mm厚のアルミ板を採用。 部品をできる限り低い位置に配置する ことで、下から3cmという重心の低さ を実現した。

駆動用モータには連続回転シリアルサーボであるSTS3032を使 用。小さいサイズながら十分なスピードとトルクを備えていて、 エンコーダも内蔵されている高性能なモータである。

タイヤは自らシリコンで成型したものを使用している。凹凸の あるシリコンタイヤは圧倒的なグリップ力を誇り、坂道上での動 作を安定したものとしている。

全国大会機「シロ」

ターミナル基板 フルカラーLED WS2812B ToF測路サンサ サブマイコン STM32F103RC 電源基板 正面基板 No. ToF測距センサ 圧電ブザー ヒューズ 電圧計 電源スイッチ

高精度な物体検出

被災者と避難所はOpenMV H7カメラによって認識する。

銀被災者

単純な画像処理では白い床と区別しづらいため、機械学 習を使用した。Edge Impulseにて学習した軽量なモデル をOpenMV カメラに搭載し、リアルタイムな物体検出シス テムを構築している。軽量なモデルのため精度はそこまで 高くないが、過去10回の検出結果をDBSCANクラスタリン グを用いて分類することによって、安定した検出を実現し

黒被災者、緑・赤避難所

これら3つは色相を用いて**完全アルゴリズムベース**で検出

既定の露光時間ではほとんど見分けがつかないため、それ ぞれに専用の露光時間を設定し、色相の情報を最大限に活 用して検出精度を向上させている。

洗練されたレスキュー機構

アームは、ボールをつかむ機構とそれを持ち上げる機構の二つから構成され ている。これにより単純な機構だけで、ボールをつかんで籠に移動させるとい う複雑な動きを実現している。

リンク機構をかごに用いることで、①かごを傾ける ②蓋を開ける という 二種類の動きを一つのモーターだけで実現している。

シンプルで確実なワークフロー

レスキューは以下のフローチャートの通りに行う。 確実に救助を行うため、1人ずつ回収して避難所に放出する。

Member

五十嵐柊司 回路・ソフトウェア 高津 諒大 ハードウェア 光本周一郎 ソフトウェア

History

2025関東ブロック 準優勝 2025東東京ノード 進優勝 2025年1月 結成

Link

