Section 4.2

Null Spaces, Column Spaces, and Linear Transformations

Learning Objectives:

- 1. Calculate null and column spaces of a given matrix.
- 2. Find a matrix whose column space matches a given subspace.
- 3. Compare and contrast null and column spaces for a matrix.
- 4. Extend these concepts to more general linear transformations on vector spaces.

1 Null space of a matrix

Definition: The **null space** of an $m \times n$ matrix A, written Nul A is the set of all solutions of the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In set notation:

$$\operatorname{Nul} A = \{ \mathbf{x} \colon A\mathbf{x} = \mathbf{0} \}.$$

- Remember that the null space is the same thing as the solution set here. By calling it the null space we are emphasizing the fact that it is a subspace.
- To describe the null space we can row reduce to find a spanning set of vectors.

Theorem: The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

Example 1. T/F: Let H be the set of all vectors in \mathbb{R}^4 whose coordinates (a, b, c, d) satisfy

$$a - 2b + 5c = d$$

$$c - a = b$$
.

Then H a subspace of \mathbb{R}^4 .

Example 2. T/F: Let H be the set of all vectors in \mathbb{R}^4 whose coordinates (a, b, c, d) satisfy

$$a - 2b + 5c - d = 4$$

$$c - a - b = 1.$$

Then H a subspace of \mathbb{R}^4 .

Example 3. What is the relationship between pivots and the number of vectors in the spanning set of Nul A?

2 Column space of a matrix

Definition: The **column space** of an $m \times n$ matrix A, written $\operatorname{Col} A$, is the set of all linear combinations of the columns of A. That is, if $A = (\mathbf{a}_1 \cdots \mathbf{a}_n)$ then

$$\operatorname{Col} A = \operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}.$$

Theorem. The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

The column space of an $m \times n$ matrix A is all of \mathbb{R}^m if and only

Example 4. Find a matrix A so that $W = \operatorname{Col} A$ where

$$W = \left\{ \begin{pmatrix} 6a - b \\ a + b \\ -7a \end{pmatrix} : a, b \in \mathbb{R} \right\}.$$

3 Contrasting the null and column spaces

Example 5. Let

$$A = \left(\begin{array}{rrrr} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{array}\right).$$

In which \mathbb{R}^k do Col A and Nul A live?

 $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

formation $x \mapsto Ax$ is one-to-one.

8. Nul $A = \{0\}$ if and only if the linear trans-

Contrast Between Nul A and Col A for an m x n Matrix A

Nul A	Col A
1. Nul A is a subspace of \mathbb{R}^n .	1. Col A is a subspace of \mathbb{R}^m .
 Nul A is implicitly defined; that is, you are given only a condition (Ax = 0) that vectors in Nul A must satisfy. 	 Col A is explicitly defined; that is, you are told how to build vectors in Col A.
 It takes time to find vectors in Nul A. Row operations on [A 0] are required. 	 It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
 There is no obvious relation between Nul A and the entries in A. 	 There is an obvious relation between Col A and the entries in A, since each column of A is in Col A.
5. A typical vector \mathbf{v} in Nul A has the property that $A\mathbf{v} = 0$.	5. A typical vector \mathbf{v} in Col A has the property that the equation $A\mathbf{x} = \mathbf{v}$ is consistent.
 Given a specific vector v, it is easy to tell if v is in Nul A. Just compute Av. 	 Given a specific vector v, it may take time to tell if v is in Col A. Row operations on [A v] are required.
7. Nul $A = \{0\}$ if and only if the equation	7. Col $A = \mathbb{R}^m$ if and only if the equation

 $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^m . 8. Col $A = \mathbb{R}^m$ if and only if the linear trans-

formation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^m .

Linear transformations 4

Definition: A linear transformation T from vectors space V to W is a rule assigning to each $\mathbf{x} \in V$ a unique vector $T(\mathbf{x}) \in W$ so that	
X C V a anique vector I (X) C VV 50 that	
Definition: The kernel of T is the set of all $\mathbf{u} \in V$ so that The range of T	
is the set of all vectors in W	
Analogy: Null space \leftrightarrow	
Column space \leftrightarrow	
<u> </u>	
Theorem: The kernel and range of a linear transformation $T: V \to W$ are subspaces of V and	

W, respectively.

Example 6. Define $T: \mathbb{P}_2 \to \mathbb{R}^2$ by $T(\mathbf{p}) = \begin{pmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{pmatrix}$. Show that T is a linear transformation. Moreover, find a polynomial \mathbf{p} that spans the kernel of T, and find the range of T.