L² Completeness

Theorem

 $\forall f,g\in L^2$, let $d(f,g)=\|f-g\|$. This is a proper metric, and thus L^2 is a metric space.

Proof

M1: Assume
$$f, g \in L^2$$

$$\|f-g\|=0\iff f-g=0\ a.e.\iff f=g\ a.e.$$

M2: Assume $f,g\in L^2$

$$||f - g|| = (\int |f - g|^2)^{\frac{1}{2}} = (\int |g - f|^2)^{\frac{1}{2}} = ||g - f||^2$$

M3: Assume $f,g,h\in L^2$

$$||x - z|| = ||(x - y) + (y - z)|| \le ||x - y|| + ||y - z||$$

Theorem

 L^2 is complete in its metric.

Proof

Assume (f_n) is Cauchy in L^2 Let (f_{n_k}) be the subsequence such that $\|f_{n_{k+1}} - f_{n_k}\| \le 2^{-k}$ Let $f = f_{n_1} + \sum_{k=0}^{\infty} (f_{n_{k+1}} - f_{n_k})$ Let $g = |f_{n_1}| + \sum_{k=0}^{\infty} |f_{n_{k+1}} - f_{n_k}|$ $0 \le |f| \le g$

Consider the partial sum:

$$S_N(g) = |f_{n_1}| + \sum_{k=0}^{N} |f_{n_{k+1}} - f_{n_k}|$$

So, by the triangle inequality:

$$||S_N(g)|| \le ||f_{n_1}|| + \sum_{k=0}^N ||f_{n_{k+1}} - f_{n_k}|| \le ||f_{n_1}|| + \sum_{k=0}^N 2^{-k} < \infty$$

As $N \to \infty$, $S_N(g) \nearrow g$, and since $S_N(g), g \ge 0$, $|S_N(g)|^2 \nearrow |g|^2$. Thus, by the MCT, $\int |S_N(g)|^2 \nearrow \int |g|^2$ and since $||S_N(g)||$ converges, $\int |g|^2$ also converges $\therefore g \in L^2$, and since $|f| \le g, f \in L^2$.

So,
$$f < \infty$$
 $a.e.$, and $S_n(f) = f_{n_{k+1}} \rightarrow f$ $a.e.$

To show that this convergence is in L^2 , consider:

$$|f_{n_k} - f|^2 \le (|f_{n_k}| + |f|)^2 \le (2g)^2$$

Thus, by the DCT:

$$\lim \int |f_{n_k} - f|^2 = \int \lim |f_{n_k} - f|^2 = 0$$

$$\therefore ||f_{n_k} - f|| \to 0$$

Finally, since L^2 is a metric space and a subsequence of every Cauchy sequence in L^2 converges in the norm, every Cauchy sequence converges in the norm.

 $\therefore L^2$ is complete in its norm.