Assignment-2 REPORT

200050040-200050075

QUESTION-5

Contents

1	Reducing the Dimensions	1
2	Reconstructing to original dimensions	2
3	Code Running Instructions	4

PCA for Dimensionality Reduction

We are given the image data in the Euclidean Space of $28^2 = 784$ dimensions. Now we want to re-represent the images using only 84 coordinates in a **84-dimensional basis** for some 84-dimensional **hyperplane** within the original Euclidean space, such that the chosen 84-dimensional hyperplane **maximizes the total dispersion of the original data** (for the chosen digit) within the hyperplane.

Lets say for a digit, we have the data of **N** instances of the digit and using that data we caluculate the **ML** estimate or the empirical mean μ and the Covariance matrix **C**, using the same process that was used and explained in Question.4 of the assignment. I am briefly explaining the same again in next few lines.

So first I seggregated all the 'N' data samples of a particular digit in a **28x28xN** matrix and 'reshaped' it to **784xN** 2D matrix, where each column has the 784 coordinates of a particular 'instance' of that digit.

So the (empirical)mean is the sample mean of the N samples. i.e, $\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{d_i}$, where $\mathbf{d_i}$ is the i'th column in the data.

Let the data matrix \mathbf{D} be the **784xN** matrix. The (i,j) th element in the Covariance matrix is the covariance of the (i,j) th coordinates in each of the N data samples i.e, So we can see that if $\mathbf{S} = \mathbf{D} - \mu$, then $\mathbf{C} = \mathbf{S}^*\mathbf{S}^T/\mathbf{N}$. i,e S is the matrix after subtracting mean from the data. So I used this to caluculate the 784x784 Covariance matrix.

After finding the covariance matrix, I found the **Eigen vectors, values** by using [V,D] = eig(C). **V** is the matrix whose 784 columns are the 784 eigen vectors and **D** is a diagonal matrix of eigen values.

Our data is in a 784 dimensional basis, also let the **unit** eigen vectors be $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \ldots, \mathbf{v_{784}}$ and their eigen values be $\lambda_1, \lambda_2, \ldots$ Let \mathbf{x} be an instance of the particular digit which is a 784x1 vector. As the 784 eigen vectors are **orthogonal** (independent too) they represent a **basis** of the 784 Ecuclidean space. So the variation **around mean** μ can be written as a linear combination of the **eigen vectors**

$$x = \mu + a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \ldots + a_{784} \mathbf{v_{784}}$$

The variance along a particular principle mode of variation (i,e, along a eigen vector) is = its eigen value. But in Q4, we saw that only a few eigen values are **significant** so the variation along other directions is **very less** and it could be thought as **perturbation** in the measurement. So we can reduce the data into a lower dimension and still capture most of its variation.

1 Reducing the Dimensions

It was proved in the lecture that the lower **M** dimensional subspace or **hyperplane** that maximises the **dispersion** is represented by the **top M** principal modes of variation or the **top M eigen vectors** as its basis.

First we need to find the **top M eigen vectors** and then **project** our original data onto the hyperplane.

The projection of vector \mathbf{x} on a M dimensional plane is given be

$$proj(\mathbf{x}) = \langle \mathbf{x}, \mathbf{v_1} \rangle v_1 + \langle \mathbf{x}, \mathbf{v_2} \rangle v_2 + \dots + \langle \mathbf{x}, \mathbf{v_M} \rangle v_M$$
 [assuming mean 0]

Including the mean μ

$$proj(\mathbf{x}) = \mu + \langle \mathbf{x} - \mu, \mathbf{v_1} \rangle \mathbf{v_1} + \langle \mathbf{x} - \mu, \mathbf{v_2} \rangle \mathbf{v_2} + \dots + \langle \mathbf{x} - \mu, \mathbf{v_M} \rangle \mathbf{v_M}$$
 [any general case]

Now to represent a point on the hyperplane, we only need the M coordinates, which are nothing but the **coefficients** of the M eigen vectors, and they are nothing but the dot product of x with the **corresponding eigen vector** [as $\langle x, v \rangle = x \cdot v$ in real space]

So we transform $\mathbf{x}_{784\times1}$ to 84 coordinates by using the above equation.

$$\mathbf{x} \rightarrow [\langle \mathbf{x} - \mathbf{\mu}, \mathbf{v_1} \rangle, \langle \mathbf{x} - \mathbf{\mu}, \mathbf{v_2} \rangle, \dots \langle \mathbf{x} - \mathbf{\mu}, \mathbf{v_{84}} \rangle]_{84 \times 1}^T$$

In the code, I wrote a function reduce(X,mu,E,D,M) which takes 5 inputs (1) the vector \mathbf{x} , (2) the mean vector μ (3,4) Eigen vectors and values, (5)The dimension to which we want to reduce which in our case is 84.

It first finds the **first M eigen vectors** from the given input vectors. Subtracts mean from the given input vectors and computes the 84 coefficients required by dot product $(\mathbf{x} - \boldsymbol{\mu}) \cdot \mathbf{v}$, returns the vector \boldsymbol{C} with the 84 coordinates

2 Reconstructing to original dimensions

The algorithm to regenerate is same as th eequation wrote above, but we do the reverse. So now as we know the coefficients of the **top M eigen vectors**, we again multiply the coefficients with the 784 dimension eigen vectors and finally add the mean to regenrate the **projection of x**. We dont actually get \mathbf{x} , what we get is it's projection on the hyperplane. But it is a good enough approximation of \mathbf{x} because the variation along the other dimensions is **very less**.

I wrote the function $\operatorname{regen}(C, \operatorname{mu}, E, D, M)$ which takes 5 inputs (1) the vector \mathbf{C} which is to be reconstructed , (2) the mean vector μ (3,4) Eigen vectors and values, (5)The dimension to which we want to reduce which in our case is 84.

It first finds the **first M eigen vectors** from the given input vectors and multiplies the 84 coefficients with the eigen vectors and finally adds the mean μ , returns the vector **X** with the 784 coordinates

After reconstructing, I visualised the images of the re-constructed and the original side-by side using the imagesc() function and got the following results: I also saved them using the saveas() function. **Reconstructed: LEFT Original: RIGHT**

So we can observe that all the **main data** in the data is NOT LOST. All the primary modes of variationa are captured very well. The difference is just the **perturbation** around the digits.

3 Code Running Instructions

Run the $Q5_dimred.m$ file in code folder to produce all the 10 result images: They are also in the 'results' folder.

 \bullet Comparison for each digit, "Images_N.png" for N = 0 -9

Also I kept the "mnist.mat" data file in the same code folder, Which is read by the program when run.