1 Úvod

Definice 1.1 (Matice)

Reálná matice typu $m \times n$ je obdélníkové schéma (tabulka) reálných čísel. Prvek na pozici (i, j) matice A značíme a_{ij} nebo A_{ij} . A i-tý řádek matice A značíme A_{*i} a j-tý řádek matice A značíme A_{*j} .

Definice 1.2 (Vektor)

Reálný n-rozměrný aritmetický sloupcový vektor (standardní) je matice typu $n\times 1$ a řádkový $1\times n$.

Definice 1.3 (Soustava lineárních rovnic)

Lineární = neznámé jsou v 1. mocnině.

Soustava = více rovnic.

Rovnice výraz z neznámých (bez absolutního členu) a koeficientů rovný konstantě.

Definice 1.4 (Řešení)

Řešením rozumíme každý vektor hodnot neznámých vyhovující všem rovnicím.

Definice 1.5 (Matice soustavy)

Matice soustavy je matice koeficientů u neznámých.

Rozšířená matice soustavy je matice soustavy "následována" vektorem hodnot konstant jednotlivých rovnic.

Poznámka (Geometrický význam)

Průsečík n "přímek" v n rozměrném prostoru

Definice 1.6 (Elementární řádkové úpravy)

- Vynásobení řádku nenulovým reálným číslem.
- Přičtení jednoho řádku k druhému.
- Výměna dvou řádků. (Není elementární, protože jde vytvořit pomocí prvních dvou.)

Tvrzení 1.1

Elementární řádkové operace zachovávají množinu řešení soustavy.

 $D\mathring{u}kaz$

Elementární úpravou neztratíme žádné řešení, protože pokud je x řešením před úpravou, je i po úpravě. A naopak ho lze invertovat, takže žádné řešení ani nepřibude.

Definice 1.7 (Odsupňovaný tvar matice REF)

Matice $A \in \mathbb{R}^{m \times n}$ je v řádkově odstupňovaném tvaru, pokud existuje r takové, že platí: řádky $1, \ldots, r$ (tzv. bazické) jsou nenulové (obsahují alespoň 1 nenulový prvek), řádky $r+1, \ldots, m$ jsou nulové, a navíc označíme-li jako $p_i = minj; a_{ij} \neq 0$ (tzv. pivot) pozici prvního nenulového prvku v i-tém řádku, tak platí: $p_1 < p_2 < \cdots < p_r$.

Například

Matice, které jsou, a matice, které nejsou.

Definice 1.8 (Hodnost matice)

Počet nenulových řádků po převodu do odstupňovaného tvaru (nebo libovolného s maximálním počtem nulových řádků) značený $\operatorname{rank}(A)$.

Dále jsme dělali Gaussovu eliminaci (nemá řešení (rank $(A) \neq \text{rank}(A|b)$), má 1 řešení (rank(A|b) = n), má mnoho řešení (pak bazické proměnné vyjádřím pomocí nebazických)).

Definice 1.9 (Redukovaný odstupňovaný tvar matice RREF)

Matice v odstupňovaném tvaru je v redukovaném OT, jestliže $\forall 0 \leq i \leq r, i \in \mathbb{N} : a_{ip_i} = 1 \land \forall i > x \in \mathbb{R} a_{xp_i} = 0.$

Poznámka

Tento tvar je jednoznačný.

Definice 1.10 (Rovnost matic)

Dvě matice se rovnají, pokud mají stejné rozměry a stejné prvky na stejných souřadnicích.

Definice 1.11 (Součet matic)

Pro součet musí mít matice stejné rozměry a poté sčítáme po složkách.

Poznámka (Vlastnosti)

Komutativita (pokud jsou prvky matice komutativní).

Definice 1.12 (Násobení skalárem)

Násobíme po složkách.

Definice 1.13 (Součin matic)

Necht $A \in \mathbb{R}^{m \times n}$ a $B \in \mathbb{R}^{n \times o}$ jsou matice. Potom matice $C \in \mathbb{R}^{m \times o}$ definovaná jako $c_{ij} = a_{i*} \cdot b_{*j}$ je jejich součinem.

Poznámka (Vlastnosti)

Komutativita neplatí.

Asociativita, distributivita zleva a distributivita z prava platí. Stejně tak "asociativita" násobení skalárem.

Definice 1.14 (Transpozice)

Buď $A \in \mathbb{R}^{m \times n}$. Potom $A^T \in \mathbb{R}^{n \times m}$ definována jako $(A^T)_{ij} = a_{ji}$ je transponovaná matice A.

Poznámka (Vlastnosti)

Je sama sobě inverzním zobrazením. Distributivita pro všechny operace (pozor u násobení je antisymetrická).

$$(A^{T})^{T} = A$$
$$(A+B)^{T} = A^{T} + B^{T}$$
$$(\alpha A)^{T} = \alpha A^{T}$$
$$(AB)^{T} = B^{T}A^{T}$$

Definice 1.15 (Symetrická a antisymetrická matice)

Matice A je symetrická, pokud $A=A^T,$ a antisymetrická $A=-A^T.$

Poznámka (Vlastnosti)

Symetrické matice jsou uzavřené na součet, ale na součin ne.

Definice 1.16 (Jednotkový vektor)

 e_j definovaný jako $(e_j)_j = 1$ a $\forall i \neq j (e_j)_i = 0$ je j-tý jednotkový vektor.

\(\textit{Poznámka (Vlastnosti)} \)

$$Ae_i = A_{*i}$$
$$e_i^T = A_{i*}$$

Definice 1.17 (Skalární součin vektorů)

 $u \cdot v = u^T v$ je skalární součin vektorů u a v.

 uv^T je ? součin vektorů u a v