# WK4: SYSTEM NETWORK DIAGRAM

Part 2

Anila Naz

University of Phoenix

BSA-425: BSIT Capstone

Professor: Dr. Reid

14<sup>th</sup>. July 2024



## Detailed Network Diagram Structure

- 1. External Network
  - Internet
    - ISP (Internet Service Provider)
      - Edge Router (Cisco/Huawei)
- 2. Perimeter Network (DMZ)
  - Firewall (Cisco/Huawei)
    - Web Servers (AWS/Azure)
    - o DNS Server
    - o Email Server
    - Load Balancer
- 3. Internal Network
  - Core Switches (Cisco/Huawei)
    - o Application Servers (AWS/Azure)
      - Banking Application Server
      - Middleware Server
    - Database Servers (SAN)
      - Customer Data DB
      - Transactions DB
    - File Servers
      - Shared Drives
    - Backup Servers
      - Backup Storage

### Disaster Recovery Server

### 4. User Access

- Branch Offices (via VPN)
  - Secure VPN Gateway
    - Local Switch
    - PCs and Workstations
- ATMs (via Secure Channels)
  - o ATM Controller
- Mobile and Remote Users (via Zscaler ZTNA)
  - o Remote Access Gateway
- 5. Security Layers
  - IDS/IPS (Intrusion Detection/Prevention System)
  - NAC (Network Access Control)
  - SIEM (Security Information and Event Management)
- 6. Wireless Network
  - Access Points (Cisco/Huawei)
    - WLAN Controllers
- 7. VLANs and Subnets
  - VLAN 10 (Management)
    - o Network Management Devices
  - VLAN 20 (Finance)
    - Finance Department Workstations
  - VLAN 30 (HR)

HR Department Workstations

## • VLAN 40 (Customer Service)

Customer Service Desktops

## • VLAN 50 (IT Department)

o IT Department Workstations

## Diagram Layout

### 1. Top Level (Internet and ISP):

 Position the Internet at the top, connected to the ISP, which then connects to the Edge Router.

#### 2. **DMZ**:

- o Directly below the edge router, place the **Firewall**.
- Behind the firewall, arrange Web Servers, DNS Server, Email Server, and Load Balancer horizontally.

### 3. Internal Network:

- o Below the DMZ, position the Core Switches.
- Connect various servers to the core switches (arrange them in clusters):
  - Application Servers
  - Database Servers
  - File Servers
  - Backup Servers

#### 4. User Access:

On the left side, show connections for Branch Offices (via VPN) with a Secure
 VPN Gateway connected to local switches and workstations.

- On the right side, depict ATMs connected via secure channels to an ATM
  Controller.
- Below, represents Mobile and Remote Users connected via Zscaler ZTNA to a Remote Access Gateway.

# 5. Security Layers:

 Place IDS/IPS, NAC, and SIEM around the core switches and servers to show they are monitoring and protecting the internal network.

### 6. Wireless Network:

 Place Access Points connected to WLAN Controllers around the internal network components.

### 7. VLANs and Subnets:

 Use color-coded lines or labels to differentiate between the VLANs (VLAN 10, VLAN 20, etc.) within the internal network.



The diagram on pg. 7 includes **cloud infrastructure**, indicating that application servers, database servers, file servers, and backup servers are housed on AWS, Azure, private cloud, and public cloud environments. This setup reflects a cloud-based architecture for the internet bank.

## **System Network Diagram with Improvement Recommendations:**



**Internet Bank Network Diagram with Improvement Recommendations:** 

### **Detailed Explanation**

### 1. External Network:

o **Internet**: Entry point for external connections.

- o **ISP** (Internet Service Provider): Connects the internet to the bank's network.
- Edge Router (Cisco/Huawei): Routes traffic between the ISP and the bank's network.

### 2. Perimeter Network (DMZ):

- o **Firewall**: Secures traffic entering and leaving the network.
- Web Servers (AWS/Azure): Host public-facing applications and websites.
- Load Balancer: Distributes incoming traffic across multiple servers.

### 3. Internal Network:

- o Core Switch: Central switch connecting all internal devices.
- Application Servers (AWS/Azure): Run banking applications, middleware, and API gateways.
- Database Servers:
  - DBMS: Database management systems store and manage data.
- o File Servers:
  - File Management Systems: Store and manage files.
- o Backup Servers:
  - **Backup Systems**: Provide data backup and recovery.
- Blockchain/DeFi Servers: Manage digital currency transactions and decentralized finance (DeFi) lending services.

### 4. Security Layers:

- o **IDS/IPS**: Monitor and prevent malicious activities.
- NAC: Control access to the network.
- o **SIEM**: Collect and analyze security-related data.

### 5. Wireless Network:

- o Access Points: Provide wireless connectivity within the bank premises.
- o WLAN Controllers: Manage access points and enforce security policies.

### 6. User Access:

- o Branch Offices:
  - VPN Gateway: Secure connection for branch offices.
  - Local Switch: Connects devices within the branch.
  - Workstations: PCs and terminals used by employees.

### o ATMs:

• **ATM Controller**: Manages secure connections to ATMs.

### Mobile/Remote Users:

- **Zscaler ZTNA**: Secure access for mobile and remote users.
- Remote Access Gateway: Connects remote users to the bank's network.

### 7. Digital Currency and DeFi:

 Blockchain/DeFi Servers: Handle transactions for digital currencies and decentralized finance applications.

#### **Interactions and Flows**

- Arrows can be used to indicate data flow and interactions between components:
  - From **Internet** to **ISP** to **Edge Router**.
  - o From Edge Router to Firewall to Web Servers.
  - From Web Servers and Load Balancer to Application Servers.
  - From Application Servers to Core Switch.

- From Core Switch to Database Servers, File Servers, Backup Servers, and Blockchain/DeFi Servers.
- o From Core Switch to Security Layers (IDS/IPS, NAC, SIEM).
- o From Core Switch to Access Points and WLAN Controllers.
- From Core Switch to User Access components (Branch Offices, ATMs, Mobile/Remote Users).

This plaintext diagram provides a detailed representation of the physical network components, their interactions, and the flow of data within an internet bank network.