

课程名称: <u>\$\frac{\fr</u>

一 美胜场。

10双多榜夫子的和年级环西种大的平波现象。

(2)、侧用解决子吃烟盐玻璃红通线。

用年版环侧地字本程.

二、杂彩仪器

四省呈做钱. 知此了. 年故怀. 先多稻玻路

三. 年. 孔原理

1. 劈头干涉.

并是平线型(i=3°).入的空气器(n=1)对。

8 = 2e+ 2 = (2k+1)2

ber, BAG

栅级.e=0. 8=→. 0台.

sd = ez-e, = sk->

tend = sq = skx

联系方式: 1988 55 7864

 $D = \tan \theta = \frac{\lambda \delta k}{2\lambda}$

指导教师签字:_____

北京理工大学良乡校区管理处监制

电话: 8138208

争项

2.年极环

R= rel

和松 暗版车在下时连线曲面车 0~30.

7= 18 3mm

联系方式: _____

指导教师签字:_____

北京理工大学良乡校区管理处监制

电话: 81382088

课程名称:	实验名称:	实验日期:	年	月	日
班 级:	教学班级:	学号:	姓	名:	
四、实验的对多	然 。	" Wille.	争级		
120次是五					

- 门、将玻璃片的在星线铁工作台上在的玻璃之间头上一根玻璃丝
- (2) 星的铁圈马、直到看到海湖特级
- 13. 及又丝发给到新山岛尾一边、过途全程的影响。
- (4). 附置外头到玻璃丝地名 L.

2.观多年敬阳千两

- 11). 年顿环经工作台户, 打开的缺了, 轻的丰度镜, 使帆野最亮
- (3.)周节目录、及触看见又经、将该角阵内、新近年放环、直至庙的
- 的所鼓轮、又包面过于防圆虹中心
- (4) 重多回 6次

联系方式:

指导教师签字:		
	1 4	

实验七 光的干涉

7= 58 . sonm

实验数据与结果

1. 利用劈形膜的干涉特性测量玻璃丝直径 D(u)

被测量	X _{₹IJ}	X*	$X_i = X_{\pm} - X_{\overline{\eta}}$	L _初	L _*	$L_i = L_{\frac{1}{N}} - L_{\frac{1}{N}}$	\overline{X}_u	\bar{L}_{u}
1	13.290	19.478		11.59	31.415			
2	THE RESERVE OF THE PERSON NAMED IN	13.272		31.42/	11.540	11.2		
3	13.298	19.478		THE PERSON NAMED IN COLUMN TWO	31.421			
4		13%7		31-328	11.534			
5	0132	919.47	/		31-387			

 $D = \frac{l\lambda}{2x} \mathbf{X} \Delta K$

7054 . mh.

注: X_i 为 $\Delta K = 30$ 条暗纹的横向距离; L_i 为劈尖到玻璃丝的距离。

2. 利用牛顿环测量曲率半径 R(u)

						A	5. 11	
被测量 次数	X ₁₁	<i>X</i> ₁	X' ₁	X'11	$D_{11} = X_{11} - X_{11}'$	$D_1 = X_1 - X$	\overline{D}_{11u}	\overline{D}_{1u}
1	83	26.22	2.8	22.18		San Carlotte Commission Commissio		
2	22.240	23. Fo	2625	27.655	12/3-12		107	
3	A STATE OF THE PARTY	The second second	1	122-178				
4	22,223		Section 1	27.62				
5	27.5	2624	23,75	322176				

 $R = \frac{D_m^2 - D_n^2}{4(m-n)\lambda} \qquad N = 1. \qquad M = 1$ $\mathbb{R} \left(M_p \right) = 1$

3. 测量头发丝的直径 D(u)

被测量 次数	$X_{i_{\overline{0}}}$	X _*	$X_i = X_{\pm} - X_{\overline{\eta} \overline{J}}$	L _初	L _*	$L_i = L_{\overline{\chi}} - L_{\overline{\eta}}$	\overline{X}_u	\bar{L}_{u}
1			The second second					

 $D = \frac{l\lambda}{2x} = \Delta K$

课程名称:	实验名称:	实验日期:	年_	月	B
班 级:	教学班级:	学 号:	姓	名:	<u> </u>

数批好性/

1. 劈处击 被疏丝里见(4).

(1).
$$\bar{X} = \sum_{i=1}^{N} \sum_{j=1}^{N} = 6.922 \, \text{mm}$$
. $\bar{C} = 19.8662 \, \text{mm}$.

联

系方式:	指导教师签字:
ポガス・	그렇게 보고 있다. 이렇게 하는 것이 되었다. 그렇게 되는 것이 없는 것이다.

课程名称:	实验名称:	实验日期:	年	月	— н
班 级:	数学班级:	学 号:	姓名:		
	教佛处理之	_			
华敬孙侧里	西军丰建.				
可是了	= 5.408bmm	D = 2.6706 mh	٦.		
R= 1/2/2	-= 938.4mm.				
	(0,0033 V	ım.		ACCOUNTY)	
MAIDOP =	0.0062 mm				
nuo= 15 :			u h ha		
u(Pu)=-	9. 9) to wan J UDIK	It walk - 9.00	y mor		
n(D) =	1.00 68 mm				
u(P) ~ \[\frac{2}{5}	1(34), N(X!)				
$=\sqrt{D_i}$	2011-1))	- = 2.5mm			
	(n) = 938.4 (+) mm.			

联系方式:		
-00/31/3- 4.	Tales of the Control	200

指导教师签字:_____

4 13.267 19.461 6.194 11.534 31.378 19844 13.269 19.472 6.203 11.504 31.307 19.803 ΔX^2 ΔL^2 uxa(mm) uxb(mm) ux(mm) ud(mm) 1,76E-05 0.001918 0.003878 0.002887 0.004835 0.00014 1.44E-05 0.000219 ula(mm) ulb(mm) ul(mm) 0.000149 0.000718 0.019161 0.002887 0.019377 3.24E-06 0.000493 0.000117 0.003994 2.牛顿环测量曲率半径R() X11(mm) X1(mm) X1'(mm) X11'(mm) D11(mm) D1(mm) $\overline{D11}(mm)$ $\overline{D1}(mm)$ R(mm) λ (mm) 27.598 26.228 23.582 22.183 5.415 2.646 5.4086 2.6706 938.4375 0.000589 22.24 23.58 26.257 27.655 5.415 2.677 2 27.582 26.209 23.53 5.404 2.679 22.178 3 22.223 26.258 5.398 4 23.584 27.621 2.674 27.587 26.24 23.563 22.176 5.411 2.677 ΔD11^2 ΔD1^2 uD11a(mr uD11b(mr uD11(mm ud(mm) 4.1E-05 0.000605 0.003326 0.002887 0.004404 2.546873 4.1E-05 4.1E-05 uD1a(mm uD1b(mm uD1(mm) 2.12E-05 7.06E-05 0.006202 0.002887 0.006841 0.000112 1.16E-05 5.76E-06 4.1E-05

31.421

19.893

13.298

19.478

6.18

11.528

· 内侧破.条纹型. 事到、

外侧窝、条纹的、丰红、

西西西城, 田李科3 园山时, 越华的, 与子面关身战小,

越外, 与平面夹部、吸回间隔衣缝差数、 解处组 因多如同问所图光钱多小、条纹档的疏、