

Datenbanksysteme 4 Das relationale Modell

Prof. Dr. Gregor Grambow

Hochschule Aalen Fakultät Elektronik und Informatik

Überblick

Inhalt

- Grundlagen des relationalen Modells
- Relationale Algebra
- Verbindungen verschiedener Tabellen – JOINS
- Abbildung ER → relational

Ziele

- Verständnis des relationalen Modells
- Unterschiede verschiedener JOIN Typen kennen
- Aus einem ER Modell ein Relationales ableiten können

Das relationale Datenmodell

- E.F. Codd: A relational model of data for large shared data banks. In *Communications of the ACM 13*(6), June 1970, 377-387.
- Mathematische Relationen Relationen in Datenbanken
- Abhängigkeiten innerhalb und zwischen DB-Relationen
- Relationenschemata Datenbankschemata

Grundlagen des Relationalen Modells

- Seien D₁, D₂, ..., Dₙ Mengen, so ist
 r ⊆ D₁ x D₂ x... x Dₙ eine n-stellige Relation
 über den Mengen D₁, D₂, ..., Dₙ.

 Teilmenge des karthesischen Produkts
- n ist der Grad (degree) der Relation.
- A x B wird als kartesisches Produkt der Mengen A, B bezeichnet.
 A x B ist die Menge aller geordneten Paare aus je einem Element aus A und B:
- A x B := $\{(a,b) \mid a \in A, b \in B\}$.

Von Quartl - Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22436861

Grundlagen des Relationalen Modells

Bsp.: Telefonbuch ⊆ string x string x integer

Name X Adresse X Telefon#

- Tupel: t ∈ R
 - Bsp.: t = ("Mickey Mouse", "Main Street", 4711)
- Schema: legt die Struktur der gespeicherten Daten fest
- Bsp.:
- Telefonbuch: {Name: string, Adresse: string, Telefon#:integer}

Grundlagen des Relationalen Modells

Telefonbuch					
Name Straße <u>Telefon#</u>					
Mickey Mouse	Main Street	4711			
Minnie Mouse	Broadway	94725			
Donald Duck	Broadway	95672			
•••	• • •	•••			

- Ausprägung: der aktuelle Zustand der Datenbasis
- **Schlüssel**: minimale Menge von Attributen, deren Werte ein Tupel eindeutig identifizieren
- Primärschlüssel: wird unterstrichen
 - Einer der Schlüsselkandidaten wird als Primärschlüssel ausgewählt
 - Hat eine besondere Bedeutung bei der Referenzierung von Tupeln

Abhängigkeiten innerhalb einer Relation

- Intrarelationale Abhängigkeit:
- $\sigma : Rel(A) \rightarrow \{F, W\}$
- Abhängigkeit σ gilt in r bzw.
- Abhängigkeit σ ist in r erfüllt, falls $\sigma(r) = W$.

Beispiel

Schlüsselabhängigkeit (Schreibw. ($K \rightarrow A$)) für

eine Attributmenge $K \subset A$

und

eine Relation $R \in \mathcal{R}$ (A) :

$$(K \rightarrow A)(R) :=$$

a)
$$\forall s,t \in F$$

$$(K \rightarrow A)(R) := W \text{ falls}$$
 a) $\forall s,t \in R$ $s|_{K} = t|_{K} \Rightarrow s = t$

b) für kein K' ⊊ K gilt a)

F sonst

alternativ:

$$(K \rightarrow A)(R) := W fall$$

$$(K \rightarrow A)(R) := W \text{ falls} \quad a) \neg \exists s, t s \neq t \land s|_K = t|_K$$

b) für kein K' ⊊ K gilt a)

F sonst

Relationenschemata

- Ein Relationenschema hat die Form
- $\mathcal{R} = (A, \Sigma_A)$ dabei ist
- R der Name des Schemas
- A die Attributmenge
- Σ_A die Menge der intrarelationalen Abhängigkeiten, die für jede Relation, die zum Relationenschema gehört, erfüllt sein müssen.
- Beispiel Relationenschema Mitarbeiter
- Mitarbeiter =
- ({Personalnr, N-Name, V-Name, G-Datum, Gehalt, Steuerkl},
- { ({Personalnr} → {Personalnr, N-Name, V-Name, G-Datum, Gehalt, Steuerkl}) })

Relationenschemata - vereinfacht

- Beispiel Relationenschema Mitarbeiter
- Mitarbeiter = {<u>Personalnr</u>, N-Name, V-Name, G-Datum, Gehalt, Steuerkl}

Abhängigkeiten zwischen Relationen

- Beschreibung der Konsistenz einer Datenbank insgesamt
- Interrelationale Abhängigkeit: σ : Dat(\mathbb{Z}) \rightarrow {F, W}
- Abhängigkeit σ gilt in d bzw.
- Abhängigkeit σ ist in d erfüllt, falls $\sigma(d) = W$.

Inklusionsabhängigkeiten

- Für
 - zwei verschiedene Relationenschemata $R_1=(A_1, \Sigma_1), R_2=(A_2, \Sigma_2)$
 - und einer Menge von Attributen G = {a1, ..., an} a_k ∈ (A₁ ∩ A₂)
- bezeichnen wir die Bedingung

$$(R_1|_G \subseteq R_2|_G)(d) :=$$
 W falls $\forall \mu \in \mathbf{r_1} \exists \nu \in \mathbf{r_2} \forall a \in \mathbf{G} \mu(a) = \nu(a)$
F sonst

- als
- Inklusionsabhängigkeit (IND) $R_1|_G \subseteq R_2|_G$.
- "G in R₁ verweist auf G in R₂"

Beispiel

- Mitarbeiter einer Abteilung stehen in
- einer Beziehung "Anstellung" (Mitarbeiter ist angestellt in ...)
- Relationenschemata:
- Mitarbeiter = {P-Nr, N-Name, V-Name, G-Datum, Gehalt}
- Anstellung = {P-Nr, Abt-Nr}
- Außerdem:
- Jeder Mitarbeiter ist in einer Abteilung angestellt.

Beispiel

- Zu jedem Tupel in Anstellung gibt es ein Tupel in Mitarbeiter mit dem gleichen Wert für das Attribut P-Nr.:
- Anstellung|_(P-Nr) ⊆ Mitarbeiter|_(P-Nr)
- Anmerkung: P-Nr ist Fremdschlüssel in Anstellung.
- Soll jeder Mitarbeiter in (mindestens) einer Abteilung angestellt sein, gilt auch:
- Mitarbeiter|_(P-Nr) ⊆ Anstellung|_(P-Nr)

Inklusionsabhängigkeiten → Fremdschlüssel

- Eine Attributmenge F ⊆ A wird als Fremdschlüssel in R = (A, ...)
 bezeichnet, falls
- die Inklusionsabhängigkeit (R|_F ⊆ R'|_{F'}) gilt (wobei R' ≠ R) und
- F' Schlüssel im <u>fremden</u> Schema R' ist
- $(R|_F \subseteq R'|_{F'})$ wird dann als *Fremdschlüsselabhängigkeit* bezeichnet
- Mitarbeiter = {P-Nr, N-Name, V-Name, G-Datum, Gehalt}
- Anstellung = {P-Nr, Abt-Nr}

Transformation ER-Modell → **Relationenmodell**

- ER-Modell:
 - Entity-Typen
 - Beziehungstypen → beides durch Attribute beschrieben.
- Relationenmodell:
 - Relationenschemata
 - Abhängigkeiten
- Transformation
 - Entity-und Beziehungs-Typen → Relationenschemata
 - Kopplung Super- / Sub-Entity von ISA → Inklusionsabhängigkeiten.

Entity-Typen

- Zu jedem Entity-Typ E = (A, K)
- wird ein Relationenschema

$$R_{E} = (A, \{(K \rightarrow A)\})$$

definiert, wenn alle $a \in A$ einfache Attribute sind.

- Beispiel (ohne Wertebereiche der Attribute)
- Entity-Typ:

Mitarbeiter = {P-Nr, N-Name, V-Name, G-Datum, Gehalt}

Relationenschema (in Kurzschreibweise):

Mitarbeiter = {P-Nr, N-Name, V-Name, G-Datum, Gehalt}

Transformation zusammengesetzter Attribute

- Entity-Typ E = (A, K) mit zusammengesetztem Attribut a ∈ A
 - → Relationenschema:

$$RE = (A', \{(K' \rightarrow A')\})$$

mit

$$A' = (A - \{a\}) \cup \{as_1, ..., as_n\}$$
 $K' = (K - \{a\}) \cup \{as_1, ..., as_n\} \text{ falls } a \in K$
 $K = sonst$

wobei {as₁, ..., as_n} die Zerlegung von a in einfache Attribute ist.

Beispiel:

```
Entity-Typ Mitarbeiter = ({P-Nr, Name:{V-Name, N-Name}}, {P-Nr})
```

→ Relationenschema Mitarbeiter = ({P-Nr, V-Name, N-Name}, { ({P-Nr} → {P-Nr, V-Name, N-Name}) }) in Kurzschreibweise: {P-Nr, V-Name, N-Name}

Transformation mehrwertiger Attribute

- Entity-Typ E = (A, K) mit mehrwertigem Attribut a∈A
 - → zwei Relationenschemata:

$$R_E = (A-\{a\}, \{(K \rightarrow A-\{a\})\})$$
 // $a \notin K$
 $R_a = (K \cup \{a\}, \{(K \cup \{a\} \rightarrow K \cup \{a\})\})$

- + Inklusions- bzw. Fremdschlüsselabhängigkeit $R_a|_K \subseteq R_E|_K$
- Beispiel:

Entity-Typ Mitarbeiter = ({P-Nr, V-Name, N-Name, FSp-Kenntnis*}, {P-Nr})

- → Relationenschemata Mitarbeiter = ({P-Nr, V-Name, N-Name}, {})
 MAFSp-Kenntnis = ({P-Nr, FSp-Kenntnis}, {})
- \rightarrow Fremdschlüsselabhängigkeit MAFSp-Kenntnis $|_{\{P-Nr\}} \subseteq$ Mitarbeiter $|_{\{P-Nr\}}$

Darstellung von Entitytypen

- Studenten: {MatrNr:integer, Name: string, Semester: integer}
- Vorlesungen: {VorlNr:integer, Titel: string, SWS: integer}
- Professoren: {PersNr:integer, Name: string, Rang: string, Raum: integer}
- Assistenten: {PersNr:integer, Name: string, Fachgebiet: string}

Beziehungen – allgemeiner Fall

- Abstrakte Beziehung B = (E₁ × ...× E_n, A_B)
 - → Relationenschema:

$$R_B = (A, \{(K \rightarrow A)\})$$

mit

$$A = Key(E_1) \cup ... \cup Key(E_n) \cup A_B$$
 $Key(E_1) \cup ... \cup Key(E_n) \subseteq K \subseteq A$
(falls

alle $a \in A_B$ einfache Attribute sind und

 $Key(E_1), ..., Key(E_n), A_B$ jeweils paarweise disjunkt sind)

+ Fremdschlüsselabhängigkeiten $R_B|_{Key(Ei)} \subseteq R_{Ei}|_{Key(Ei)}$

Beziehungen unseres Beispiel-Schemas

- hören : {MatrNr: integer, VorlNr: integer}
- lesen : {PersNr: integer, VorlNr: integer}
- arbeitenFür: {AssistentenPersNr: integer, ProfPersNr: integer}
- voraussetzen : {Vorgänger: integer, Nachfolger: integer}
- prüfen : {MatrNr: integer, VorlNr: integer, PersNr: integer,
 - Note: decimal}

Schlüssel der Relationen

hören: {MatrNr: integer, VorlNr: integer}

lesen: {PersNr: integer, <u>VorlNr: integer</u>}

arbeitenFür : {AssistentenPersNr: integer, ProfPersNr: integer}

voraussetzen: {Vorgänger: integer, Nachfolger: integer}

prüfen : {MatrNr: integer, VorlNr: integer, PersNr: integer,

Note: decimal}

Ausprägung der Beziehung hören

Studenten		
MatrNr		
26120		
27550		

hören		
MatrNr	VorlNr	
26120	5001	
27550	5001	
27550	4052	
28106	5041	
28106	5052	
28106	5216	
28106	5259	
29120	5001	
29120	5041	
29120	5049	
29555	5022	
25403	5022	
29555	5001	

Vorlesungen		
VorlNr		
5001		
4052		
•••		

hören

Verfeinerung des relationalen Schemas

1:N-Beziehung

- Initial-Entwurf
 - Vorlesungen : { VorlNr, Titel, SWS}
 - Professoren : {PersNr, Name, Rang, Raum}
 - lesen: { VorINr, PersNr}

Verfeinerung des relationalen Schemas

Professoren 1 lesen Vorlesungen

1:N-Beziehung

- Initial-Entwurf
 - Vorlesungen : { VorlNr, Titel, SWS}
 - Professoren : {PersNr, Name, Rang, Raum}
 - lesen: { VorINr, PersNr}
- Verfeinerung durch Zusammenfassung

Vorlesungen: { VorlNr, Titel, SWS, gelesenVon}

Professoren: {PersNr, Name, Rang, Raum}

Regel

Relationen mit gleichem Schlüssel kann man zusammenfassen aber nur diese und keine anderen!

Ausprägung von Professoren und Vorlesung

Professoren					
PersNr	Name Rang Raum				
2125	Sokrates	C4	226		
2126	Russel	C4	232		
2127	Kopernikus	C3	310		
2133	Popper	C3	52		
2134	Augustinus	C3	309		
2136	Curie	C4	36		
2137	Kant	C4	7		

Vorlesungen			
VorlNr	Titel	SWS	Gelesen Von
5001	Grundzüge	4	2137
5041	Ethik	4	2125
5043	Erkenntnistheorie	3	2126
5049	Mäeutik	2	2125
4052	Logik	4	2125
5052	Wissenschaftstheorie	3	2126
5216	Bioethik	2	2126
5259	Der Wiener Kreis	2	2133
5022	Glaube und Wissen	2	2134
4630	Die 3 Kritiken	4	2137

Vorsicht: So geht es NICHT

Professoren				
PersNr	Name	Rang	Raum	liest
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
•••				
2134	Augustinus	C3	309	5022
2136	Curie	C4	36	??

Vorlesungen		
VorlNr	Titel	SWS
5001	Grundzüge	4
5041	Ethik	4
5043	Erkenntnistheorie	3
5049	Mäeutik	2
4052	Logik	4
5052	Wissenschaftstheorie	3
5216	Bioethik	2
5259	Der Wiener Kreis	2
5022	Glaube und Wissen	2
4630	Die 3 Kritiken	4

Vorsicht: So geht es NICHT Folgen→Anomalien

Professoren				
PersNr	Name	Rang	Raum	liest
2125	Sokrates	C4	226	5041
2125	Sokrates	C4	226	5049
2125	Sokrates	C4	226	4052
2134	Augustinus	C3	309	5022
2136	Curie	C4	36	??

Vorlesungen		
VorlNr	Titel	SWS
5001	Grundzüge	4
5041	Ethik	4
5043	Erkenntnistheorie	3
5049	Mäeutik	2
4052	Logik	4
5052	Wissenschaftstheorie	3
5216	Bioethik	2
5259	Der Wiener Kreis	2
5022	Glaube und Wissen	2
4630	Die 3 Kritiken	4

- Update-Anomalie: Was passiert wenn Sokrates umzieht
- Lösch-Anomalie: Was passiert wenn "Glaube und Wissen" wegfällt
- Einfügeanomalie: Curie ist neu und liest noch keine Vorlesungen

1:n Beziehungen

min/max Notation!

- Beziehungs-Typ B = $(E_1 \times E_2, A_B)$ mit
 - $E_1 = (A_1, K_1)$ max. Kardinalität von E_1 in B = n
 - $E_2 = (A_2, K_2)$ max. Kardinalität von E_2 in B = 1
 - \rightarrow ein Relationenschema für E₂ und B:

$$R_{E2B} = (A_2 \cup K_1 \cup A_B, \{ (K_2 \rightarrow A_2 \cup K_1 \cup A_B) \})$$

Sind A₂, K₁, A_B nicht paarweise disjunkt → Attribute umbenennen

+ Fremdschlüsselabhängigkeit R_{E2B}|_{K1} ⊆ R_{E1}|_{K1}

Beispiel 1:n

- Projektleitung
- ein Mitarbeiter leitet 0 bis beliebig viele Projekte → Kardinalität (0,n)
- ein Projekt wird von genau einem Mitarbeiter geleitet → Kardinalität (1,1)
- Entity- und Beziehungstypen
 - Mitarbeiter = (A_M, K_M)
 - Projekt = (A_P, K_P)
 - Projektleitung = (Mitarbeiter × Projekt, A_{PL})
- Relationenschemata
 - Mitarbeiter = $(A_M, \{(K_M \rightarrow A_M)\})$
 - Projekt = $(A_P \cup K_M \cup A_{PL}, \{(K_P \rightarrow A_P \cup K_M \cup A_{PL})\})$
- Fremdschlüsselabhängigkeit
 - Projekt|_{KM} ⊆ Mitarbeiter|_{KM}

1:1 Beziehungen

- Beziehungs-Typ B = $(E_1 \times E_2, A_B)$ mit
 - max. Kardinalität von E₁, E₂ in B = 1
 - $E_1 = (A_1, K_1)$
 - $E_2 = (A_2, K_2)$

 \rightarrow ein Relationenschema für E₁, E₂ und B möglich:

$$R_G = (A_1 \cup A_2 \cup A_B, \{ (K_1 \rightarrow A_1 \cup A_2 \cup A_B) \})$$

 Sind A₁, A₂, A_B nicht paarweise disjunkt → Attribute evtl. umbenennen

Spezialisierung (ISA)

• $E_1 \leftarrow E_2$

•
$$E_1 = (A_1, K)$$

$$\mathsf{E}_2 = (\mathsf{A}_1 \cup \mathsf{A}_2, \mathsf{K})$$

→ zwei Relationenschemata:

$$R_{E1} = (A_1, \{ (K \rightarrow A_1) \})$$

$$R_{E2} = (\mathsf{K} \cup \mathsf{A}_2, \{ (\mathsf{K} \to \mathsf{K} \cup \mathsf{A}_2) \})$$

+ Fremdschlüsselabhängigkeit R_{E2}|_K ⊆ R_{E1}|_K

Spezialisierungen (ISA)

- Beispiel
- Projektleiter ist Spezialisierung von Mitarbeiter.
- Relationenschema:
- Mitarbeiter = {[P-Nr, N-Name, V-Name, G-Datum, Gehalt]}
- Zusätzliche Attribute eines Projektleiters: Projektbudget
- Relationenschema:
- Projektleiter-Besonderheiten = {[P-Nr, Projektbudget]}
- Beide Schemata verwenden den gleichen Schlüssel.
- Jede Projektleiter-Besonderheit gehört zu einem Mitarbeiter:
- Projektleiter-Besonderheiten|_(P-Nr) ⊆ Mitarbeiter|_(P-Nr)

ISA beim Hochschulbeispiel

- Angestellte: { <u>PersNr</u>, Name}
- Professoren: { <u>PersNr</u>, Rang, Raum}
- Assistenten: { <u>PersNr</u>, Fachgebiet}

Relationale Modellierung schwacher Entitytypen

- Prüfungen: {[MatrNr: integer, PrüfTeil: string, Note: integer]}
- umfassen: {[MatrNr: integer, PrüfTeil: string, VorlNr: integer]}
- abhalten: {[MatrNr: integer, PrüfTeil: string, PersNr: integer]}

Fremdschlüssel auf ein schwaches Entity

 Man beachte, dass in diesem Fall der (global eindeutige) Schlüssel der Relation Prüfung nämlich MatrNr und PrüfTeil als Fremdschlüssel in die Relationen umfassen und abhalten übernommen werden muss.

Die relationale Hochschul-DB

_							
Professoren							
PersNr	Name	Rang	Raum				
2125	Sokrates	C4	226				
2126	Russel	C4	232				
2127	Kopernikus	C3	310				
2133	Popper	C3	52				
2134	Augustinus	C3	309				
2136	Curie	C4	36				
2137	Kant	C4	7				

Studenten					
MatrNr	Name	Semester			
24002	Xenokrates	18			
25403	Jonas	12			
26120	Fichte	10			
26830	Aristoxenos	8			
27550	Schopenhauer	6			
28106	Carnap	3			
29120	Theophrastos	2			
29555	Feuerbach	2			

voraussetzen					
Vorgänger	Nachfolger				
5001	5041				
5001	5043				
5001	5049				
5041	5216				
5043	5052				
5041	5052				
5052	5259				

hören				
MatrNr	VorlNr			
26120	5001			
27550	5001			
27550	4052			
28106	5041			
28106	5052			
28106	5216			
28106	5259			
29120	5001			
29120	5041			
29120	5049			
29555	5022			
25403	5022			

Vorlesungen						
VorlNr	Titel	SWS	gelesen von			
5001	Grundzüge	4	2137			
5041	Ethik	4	2125			
5043	Erkenntnistheorie	3	2126			
5049	Mäeutik	2	2125			
4052	Logik	4	2125			
5052	Wissenschaftstheorie	3	2126			
5216	Bioethik	2	2126			
5259	Der Wiener Kreis	2	2133			
5022	Glaube und Wissen	2	2134			
4630	Die 3 Kritiken	4	2137			

prüfen						
MatrNr	VorlNr	PersNr	Note			
28106	5001	2126	1			
25403	5041	2125	2			
27550	4630	2137	2			

Assistenten							
PerslNr	Name	Name Fachgebiet					
3002	Platon	Ideenlehre	2125				
3003	Aristoteles	Syllogistik	2125				
3004	Wittgenstein	Sprachtheorie	2126				
3005	Rhetikus	Planetenbewegung	2127				
3006	Newton	Keplersche Gesetze	2127				
3007	Spinoza	Gott und Natur	2126				

Zusammenfassung ER→Relational

- Entitäten werden als Relationen realisiert
- Bei schwachen Entitäten muss ein Fremdschlüssel auf das involvierte starke Entity inkludiert werden der gleichzeitig auch Teil des Primärschlüssels der Relation des schwachen Entities ist
- Bei zusammengesetzten Attributen k\u00f6nnen alle Teile in die Relation des jeweiligen Entities integriert werden
- Für mehrwertige Attribute wird eine eigene Relation erstellt, die den gleichen Primärschlüssel wie das involvierte Entity hat
- Beziehungen können immer als eigenständige Relation realisiert werden
- 1:n Beziehungen können über Fremdschlüssel in der Relation für eins der beteiligten Entities realisiert werden (das öfter vorkommende)
- Bei 1:1 Bezeigungen können auch beide Entities und die Beziehung in einer Relation realisiert werden.
- → Bitte modellieren Sie 1:n und 1:1 Beziehungen immer möglichst kompakt, also ohne eigenständige Relation!

Die relationale Algebra

- σ Selektion
- π Projektion
- x Kreuzprodukt
- ⋈ Join (Verbund)
- ρ Umbenennung
- Mengendifferenz
- ÷ Division
- UVereinigung
- Mengendurchschnitt
- Semi-Join (linkes Argument wird gefiltert)
- Semi-Join (rechtes Argument wird gefiltert)
- ▼ rechter äußerer Join

Die relationalen Algebra-Operatoren

 $\sigma_{\text{Semester} > 10}$ (Studenten)

Selektion

$\sigma_{\text{Semester} > 10}$ (Studenten)						
MatrNr Name Semester						
24002	Xenokrates	18				
25403	Jonas	12				

 Π_{Rang} (Professoren)

Projektion

Π_{Rang} (Professoren)					
Rang					
C4					
C3					

Die relationalen Algebra-Operatoren

Kartesisches Produkt

Professoren x hören

	höı	ren			
PersNr	Name	Rang	MatrNr	VorlNr	
2125	Sokrates	C4	226	26120	5001
•••			•••	•••	• • •
2125	Sokrates	C4	226	29555	5001
			•••	•••	• • •
2137	Kant	C4	7	29555	5001

Problem: riesige Zwischenergebnisse

Beispiel: (Professoren x hören)

"bessere" Operation: Join (siehe unten)

Der natürliche Verbund (Join)

Gegeben seien:

•
$$R(A_1,...,A_m,B_1,...,B_k)$$

•
$$S(B_1,..., B_k, C_1,..., C_n)$$

$$R \bowtie S = \prod_{A1,...,Am, R.B1,...,R.Bk, C1,...,Cn} (\sigma_{R.B1=S.B1 \land ... \land R.Bk=S.Bk}(RxS))$$

R⋈S											
	R -	- S			R	S			S -	- R	
A_1	A_2		A _m	B_1	B ₂		B_k	C_1	C_2		C_n

Drei-Wege-Join

(Studenten ⋈ hören) ⋈ Vorlesungen

(Studenten ⋈ hören) ⋈ Vorlesungen							
MatrNr	Name	Semester	VorlNr	Titel	SWS	gelesenVon	
26120	Fichte	10	5001	Grundzüge	4	2137	
27550	Jonas	12	5022	Glaube und Wissen	2	2134	
28106	Carnap	3	4052	Wissenschftstheorie	3	2126	
	•••	•••	•••	•••		•••	

Allgemeiner Join (Theta-Join)

- Gegeben seien folgende Relationen(-Schemata)
 - R(A1, ..., An) und
 - S(B1, ..., Bm)

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

$$R \bowtie_{\theta} S$$

$R \bowtie_{\theta} S$							
R				9	5		
A_1	A ₂		A _n	B ₁	B ₂	•••	B _m

natürlicher Join

L					
Α	В	С			
a_1	b_1	C_1			
a ₂	b ₂	C ₂			

	Resultat				
Α	В	C	D	Ē	
a_1	b_1	C ₁	d_1	e_1	

linker äußerer Join

L					
Α	В	O			
a_1	b_1	C_1			
a_2	b ₂	C_2			

 \bowtie

M

	R		
С	D	Е	
C_1	d_1	e_1	=
C_3	d_2	e_2	

Resultat					
Α	В	С	D	Е	
a_1	b_1	C ₁	d_1	e_1	
a_2	b_2	C ₂	-	-	

rechter äußerer Join

L					
Α	В	С			
a_1	b_1	C ₁			
a_2	b_2	C ₂			

	R		
С	D	Е	
C_1	d_1	e_1	=
C_3	d_2	e_2	

	Resultat					
Α	В	C	Δ	Е		
a_1	b_1	C ₁	d_1	e_1		
_	-	C ₃	d_2	e_2		

äußerer Join

L					
Α	В	С			
a_1	b_1	C_1			
a ₂	b ₂	C ₂			

	Resultat						
Α	A B C D E						
a_1	b_1	C ₁	d_1	e_1			
a_2	b_2	C ₂	1	1			
-	1	C ₃	d_2	e_2			

Semi-Join von L mit R

L					
Α	В	С			
a_1	b_1	C_1			
a ₂	b_2	C ₂			

×

R			
C	D	Е	
C_1	d_1	e_1	=
C ₃	d_2	e_2	

Resultat		
Α	В	С
a_1	b_1	C_1

Semi-Join von R mit L

L		
Α	В	C
a_1	b_1	C_1
a_2	b_2	C ₂

R			
С	D	Е	
C_1	d_1	e_1	=
C ₃	d_2	e_2	

Resultat

 $\begin{array}{c|cc} C & D & E \\ \hline c_1 & d_1 & e_1 \end{array}$

Anti-Semi-Join von L mit R

R		
С	D	Е
C_1	d_1	e_1
C ₃	d_2	e_2

Resultat

Α	В	С
a ₂	b_2	C ₂

Zusammenfassung

- Grundlagen des relationalen Modells
- Mapping vom ER Modell zum relationalen Modell
- Grundlegende Operationen der relationalen Algebra
- Verschiedene JOIN Typen