EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER
PUBLICATION DATE

: 59107119

APPLICATION DATE

10-12-82 57215463

APPLICANT: TOSHIBA CORP:

INVENTOR: HIZUKA JUNJI;

INT.CL. : F23R 3/40 F23R 3/54

TITLE : COMBUSTION OF GAS TURBINE

ABSTRACT

PURPOSE: To enable a gas turbine to easily operate in response to a fluctuation in a load, by a method wherein, in the titled burning method employing a catalyst combustion system, fuel-air mixture is fed to a pipe which extends through a catalyst filling part to inject it to the outlet part of the filling part.

CONSTITUTION: Fuel, injected through a nozzle 1, is previously burnt to provide a preheat temperature which is necessary to catalyst combustion. Further, fuel for catalyst combustion is added through a nozzle 1' to burn it at a filling part 7. The fuel-air ratio of fuel-air mixture fed through a pipe 9 is adjustable to 0—s. By varying the fuel-air ratio of the pipe 9, the temperature of the mixture, present on the downstream side of the catalyst outlet, is arbitrarily controllable. Further, since the pipe 9 extends through a catalyst filling part 7, and flame is prevented from quenching due to injection of gas. As noted above, variation of the fuel-air ratio and the flow rate of fuel-air mixture within the pipe 9 enables a gest turbine to easily operate in response to a fluctuation in a load.

COPYRIGHT: (C)1984, JPO& Japio

THIS PAGE DEPRISE.

AVAILABLE COPY

(9 日本国特許庁 (JP)

① 特許出願公開

⑫公開特許公報(A)

BZ59-107119

⑤Int. Cl.³
F 23 R 3/40
3/54

15

庁内整理番号 7137-3G 7137-3G

識別記号

③公開 昭和59年(1984)6月21日発明の数 1審査請求 未請求

(全 6 頁)

の発明 者 早田輝信 ⊗ガスターピンの燃焼法 川崎市幸区小向東芝町1東京芝 浦電気株式会社総合研究所内 20特 頤 昭57-215463 **炒発明者 肥塚淳次 ②出** 願 昭57(1982)12月10日 川崎市幸区小向東芝町1東京芝 の発 川崎市幸区小向東芝町1東京芝 浦電気株式会社総合研究所内 人 東京芝浦電気株式会社 浦電気株式会社総合研究所内 川崎市幸区堀川町72番地 ②発明者 山中矢 ②代 理 人 弁理士 則近憲佑 川崎市幸区小向東芝町1東京芝 外1名 浦雷気株式会社総合研究所内

らの要求に答えるものの中には、例えば、燃料と # スタービンの供協施 1. 丁字 鉄 ガスを使用する ガスタービン・ステーム 触旋燃烧方式化より、燃料を燃烧させるガスタ - ピンの燃焼後だかいて、触媒充填薄に1 本以上 のパイプを追過させ、パイプの入口から燃料と空 気との混合気を供給し、パイプの出口媒から、そ イクル発電システムは、化石燃料を使用した従来 の混合気を触媒光項部の出口部分に噴出させると のステームターピンによる発電システムに比較し て、発電効率が高いために、将来、その生産量の 発明の詳細な説明 増加が予想される天然ガスや石炭ガス化ガス等の [佐明の技術分野] 燃料を、有効に電力に変換できる発電システムと 本発明は、ガスタービン発電システムに使用す ガスターピン晃電システムにおいて使用されて るガスターピン燃焼法に関し、更に詳じくは、燃 焼時 に発生する窒素度化物(以下、 NOx と称す) いるガスタービン総統器は、従来より、燃料と空 の最が少せく、且つ、良好な燃焼効率を有する触 気の混合物を、スパークブラグ等を用いて潜火し 機燃焼方式のガスターピン燃焼法に関する。 て均一系の燃焼を行なっている。とのような燃焼 長の一例を終1回に示す。第1回の燃焼器は、燃 [発明の技術的背景とその問題点] 近年、石油學研究各种中华的

BEST AVAILABLE COPY

```
精局報59-107119 (2)
 冷却空気 4 及び拾釈空気 5 を加えられて、所定の
                            ている。些焼器内の最高温度は、2000℃にも差す。
                            る場合があるために、この近辺(第2図針線部分)
 タービン入口品度まで冷却・希釈された後、ター
                            K かいては NO<sub>x</sub> の生成量が急散に増加する。この
 ピンノズルもからガスターピン内に吸射される。
                            ように、従来のガスタービン燃烧器には、部分的
 とのような従来の燃焼器にかける重大な問題点の
                           に高昌部が存在するために、NO<sub>x</sub>の生成量が多い。
 一つは、燃料の燃焼時において、NO。ガスの生成
 誰が多いことである。
                            という問題点がある。従って、拚煙脱硝装旋等を
  上記した NOx が生成する理由は、燃料の燃焼時
                           設けねばならず、装置が複雑になる等の問題点を
にかいて、高電部が存在することによるものであ
                           も有している。
る。NOxは、政常、燃料中に監索成分が存在して
                            とのようなガスタービン燃焼器の問題点を解決
いない場合には、燃焼用空気中の窒素と酸素が以
                           するために、無4の船銃方式が検討されている。
                           生成する NOx 量を低減するととができれば、排煙
下に示す式により反応して生成する。
                           脱硝装置を省略或いは簡略化するととができる。
     N2 + 02 2 2NO
上記反応は、高温化なる程、右側化谷行して一根
                            最近、とのよりな関点から固相触媒を用いた不
化資素(NO)の生成量が増加する。NOの一部は更
                           均一系燃烧方式(以下、煎煨燃烧方式と称す)が
に献化されて二酸化盐素 (NO₂)を生成する。
                           提案されている。触媒燃焼方式は、触媒を用いて
 第2回は、従来のガスターピン 燃焼器における
                           燃料と空気の混合気体を燃焼せしめるものである。
                           との方式によれば、比較的低級で燃焼を開始させ
流体の流れ方向の温度分布を示すものである。図
                           るととができ、冷却用空気を必要とせず、燃焼用
化示した如く、燃焼器内の温度分布は極大値を持
っており、最高温度に進した後は、冷却及び希釈
                           空気が増加するために、最高温度が低くなり、従
                           って、発生する NOx量を獲めて少さくするととが
空気により所定のメービン入口温度まで冷却され
                           でのガス改量及びガス温度(ガスタービンの出力
可能である。又、メービン入口温度も従来のもの
                           に関連する)を変動させる時には、触媒充填都へ
と変わりなく、燃料を完全燃焼させることができ
る。第3回は、とのような触媒燃焼方式の燃焼器
                           従入してくる空気と燃料の量を調整するしかをve
                           とのような形式で蜘蛛させる時の問題点は、側佐
の概念図であり、触維充填部7氏はハニカム構造
                           負荷の時、すなわち、メービンノズルの温度を低
の触媒体が完填されたものである。尚、第1回と
                           くする時には、放業に従入する燃料/空気比を低
阿じ伎親又は物質である場合には、同じ符号を付
                           くしなければならないが、触媒燃焼では触媒出口
してある。萬4路は、上記したガスタービン燃焼
                           の温度がある一定温度以上にならないと燃焼効率
否の中で、a;従来の燃焼方式、b;二段燃焼方
                           が低下するため、メービンノズルでの温度をあま
式、c;触媒燃烧方式にかける、それぞれの燃烧
四内の温度分布を示すものである。触媒燃焼方式
                           り低くするととができないという点であり、また
                           (2)、高負荷の時、あるいはより進歩したガスター
では、他の方式と比較して最高温度が低く、低額
                           ビン運転時には、メービンノズルでの医皮を高く
から徐々に不均一系の悠焼反応が起こり、途中か
                           するために、触線充填部7でも相当を高温(1200
ら均一系の燃焼反応を伴って燃焼が進行している
                           ~ 1500°C) が必要となるが、とのようを時代は触
ととがわかる。
                           株の寿命が熱による劣化のため著しく症かくなる
 とのように使れた方式である放保燃焼方式にも
欠点がある。すたわち、ガスターピンの変動運転
                           という点である。
に対応した燃焼法が充分確立されていないという
Copied from 10787403 on
                          の本条項の目的は、触媒性競技にかいてガスター
とンを運転する時に、気気変動に充分対応できる
```

DEST AVAILABLE COPY

	特局報59-107119(8)
(名明の気を)	の断熱火炎温度は 1200~1300 で程度である。
本発明は、触媒燃焼方式により、燃料を燃焼さ	の関から明らかをように、触媒出口温度がある。
せるガスタービン燃焼法にかいて、放縦充填部に	定体以上であれば、触媒を出た後でも気相中での
1本以上のパイプを通過させパイプの入口から載	均一反応が起るととを示している。したがって、
料と空気との混合気を供給し、パイプの出口増か	触媒光模部以後に燃料を加えるととによって、危
ち、その混合気を放棄充填部の出口部分に収出さ	載部では 1000D 程度でもタービンス 口気度は 150
せるととを特徴とするガスターピンの機能法であ	O程度にすることが可能であると考えられる。ま
8.	た遊に、低負荷運転の場合を考えると、700 で程
本処明者らは、鉄金研究を重ねた結果、本処明	度の包度を得ようとしても燃焼効率が低下してし
た到達したが、その研究結果の一例をまず示し本	まう。との場合は触媒出口温度を 10000 程度に保
	った後、冷却空気を加えれば燃焼効率を低下させ
発明の効果が大なるとと及びその妥当性を説明す	ないでメービン入口温度を低くするととが可能で
8.	84.
餌 5 間に実験結果例を示した。第 5 図は、メタ	ことで本苑明者らは、とれらの結果を有効に生
ン触媒燃焼の実験において断熱量の触媒反応管の	した触媒燃焼法を見い出した。本発明の燃焼法の
触媒充填部出口画度と燃焼効率との関係を示した	概念を前6回によって説明する。1のノズルから
ものである。必免効率は放採出口から下流 200 回	模割する燃料が予燃焼し、放粧燃焼に必要な予熱
ての測定値である。図中の3は燃料と空気との混	現在が得られる。さらに、どのノメルから放焦機
合気体の改速が 500 でに換算した時 (C 10 m/secの	親居の役割が加えられて触媒充填部で整義する。
もの、bは同様に20m/sec、cは同様に30m/sec	
てある。また a , b , c の各 a の混合気体の計算上	9 の、パイプから、 燃料と空気との混合気体が供給
される。との混合気体の燃料/空気比は0~∞ま	比及び視量を変えることによって、ガスターピン
て可変するととが可能としておく。 9のパイプの	の負荷変動に対応することが可能となる。
出口から頃出した混合気体は触媒出口の温度が気	以下に本苑明の効果を説明するために、本発明
相ての均一反応が充分進む温度であるため、燃焼	の概念を用いたモデル実験結果を実施例として示
する。触媒出口以後の庭皮は、 9 のパイプの燃料	†•
/ 空気比を変えるととによって任意に創御可能と	【実施例1】
なる。また、9のパイプが放棄充填部を追過して	実験に用いた装置を第7。8回に示した。第7
いるため、パイプ内の混合気体は、触維光填節で	図にかいて燃焼管12に黄金属ハニカム駐集を充填
昇配しており、との混合気体を噴出したための長	し、上推から加熱した、燃料と空気の混合気体はを
のクエッチングは起らない。もし、との混合気体	供給した。ハニカム放媒社公司の任で長さが15の
が加熱されていないと、ととで、温度低下のため	のものを用いた。据8回は、第7回と同じ鉄道を
炎のクエッテングが起ることがある。また、低負	用いパイプ17を触媒充填部に通じて、燃料と空気
可時のように タービン入口温度を低くする時には	のず合気体、あるいは空気だけ16を供給できるよ
9 のパイプから燃料/空気比が低いかあるいは燃	のす合気体、あるいは空気だけ16を供給できるようにしたものである。パイプの内径は8mとした。
9 のパイプから燃料/空気比が低いかあるいは燃 料を含まない空気を供給するととによって、燃焼	ので合成体、あるいは空気だけ16を供給できるようだしたものである。パイプの内径は8mmとした。 すなわち、第7回の場合が通常の放展燃焼鉄を想
9 のパイプから燃料/空気比が低いかあるいは燃 料を含まない空気を供給するととだよって、燃焼 ほ全体の燃料/空気比が低下するためだ、チービ	のず合気体、あるいは空気だけはを供給できるようだしたものである。パイプの内側は8mとした。 すなわち、第7回の場合が過常の放展型競技を想 定したものであるに対して、第8回は本契明の数
9 のパイプから燃料/空気比が低いかあるいは燃 料を含まない空気を供給するととによって、燃筒 ほ合体の燃料/空気比が低下するために、メービ	ので合成体、あるいは空気だけ16を供給できるようだしたものである。パイプの内径は8mmとした。 すなわち、第7回の場合が通常の放展燃焼鉄を想

BEST AVAILABLE COPY

格開版 59-187119 (4) 験した。 結果を第9回に示した。第7回の装置を 気体中にすべて含まれるため、触媒充填部の提件 用いた時の結果である、曲線なによれば、断熱火 の部分は 1200℃を超えており、触媒の熱劣化が大 **炎器度(すなわちォービン入口器度に相当)が** きく、そのため徐々に始絶効率が低下している。 1150℃以下では、燃焼効率が低下している。した しかし、第8回の装置の場合は、放展出口器度を、 がって、この様な包度に相当するメービンの出力 以下では運転できないと推定される。第8回の装 1000 ~ 1100 でになるように14の混合気件の燃料 屁を用いた時の結果は函額 * てあり、断熱火炎温 /空気比を制御し、16から供給する混合気体中の 度を低くするため、16の混合気体の温度あるいは 燃料によって触媒出口以後で300~400 ℃の温度 燃料/空気比を低くするととによって、断熱火炎 上昇を行なわせているため、触媒の包度は前者に 比べて低く、熱劣化も少ない。したがって、長期 毎度が低くても、燃焼効率は低下していない。と だわたって安定な触媒燃焼を行なわせることが可 の時、14の混合気体の湿度及び燃料/空気比は、 触媒の出口温度が1100℃になるように操作した。 能となる。 4. 図面の簡単な叙明 第9回の3の自殺に示したように、本発明の概念 第1回は追常のガスタービン燃焼器の概念回、 を用いれば、従来のものより、より広い断熱火夫 菰匠範囲(すなわち、タービン出力範囲)で触媒 第2回は通常のガスタービン燃焼器の固度分布を 示す因、第3回は触媒燃能方式のガスタービン燃 燃焼させるととが可能となる。 [央集例2] 挽着の概念図、第4回は通常のガスタービン燃焼 第7.8節に示した装置を用いて、断熱火炎量 器(4)、二段式ガスタービン燃焼器(3)及び放業燃焼 度 14000 の操作条件で、それぞれ連続運転を行な 方式ガスターピン 燃焼器(の)におけるそれぞ れの選座分布を示す図、あ5回は放業出口選択と った。摂10回に、経過時間と燃焼効率との関係を 燃焼効率との関係を示す密、第6図(4)は、本発明 の概念を用いたガスタービンの部分断菌、(b)はX

BEST AVAILABLE COPY

