

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer:

0 361 229
A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89117097.9

(51) Int. Cl. 5: C09B 69/10, C12Q 1/68,
G01N 33/58

(22) Anmeldetag: 15.09.89

(30) Priorität: 28.09.88 DE 3832830
30.06.89 DE 3921498

(43) Veröffentlichungstag der Anmeldung:
04.04.90 Patentblatt 90/14

(84) Benannte Vertragsstaaten:
CH DE FR GB IT LI

(71) Anmelder: BAYER AG

D-5090 Leverkusen 1 Bayerwerk(DE)

(72) Erfinder: Hugl, Herbert, Dr.
Gemarkenweg 9
D-5060 Bergisch Gladbach 2(DE)
Erfinder: Bömer, Bruno, Dr.
Max-Planck-Strasse 53
D-5060 Bergisch Gladbach 2(DE)
Erfinder: Kölbl, Heinz, Dr.

Edgewater Tower, Apt. 94 1 Campbell
Avenue

West Haven Connecticut 06516(US)

Erfinder: Seng, Florin, Dr.

Am Katterbach 46

D-5060 Bergisch Gladbach 2(DE)

Erfinder: Kuckert, Eberhard, Dr., c/o Molecular
Diagn.Inc.

400 Morgan Lane

West Haven, CT 06516(US)

Erfinder: Sackmann, Günter, Dr.

Friedenberger Strasse 11

D-5090 Leverkusen 3(DE)

(54) Polymer-gebundene-Farbstoffe, Verfahren zu deren Herstellung und Verwendung.

(57) Die vorliegende Erfindung betrifft Polymer-gebundene-Farbstoffe, Verfahren zu deren Herstellung und deren Verwendung wie zum Beispiel als Markierungssubstanzen in Analysenverfahren. Die Polymer-gebundenen Farbstoffe, auch Polymere Farbstoffe genannt, enthalten verknüpfbare funktionelle Gruppen und sind unter üblichen Analysenbedingungen wasserlöslich. Verantwortlich für diese Wasserlöslichkeit ist normalerweise der Polymeranteil. Die Farbstoffe an sich sind oft wasserunlöslich.

EP 0 361 229 A2

Ref. #64
SMX 3093 (99-100R1)
G. Klaerner et al.
S.N. 09/609,461
Filed 07/03/00

Polymer-gebundene-Farbstoffe, Verfahren zu deren Herstellung und Verwendung

Die vorliegende Erfindung betrifft Polymer-gebundene-Farbstoffe, Verfahren zu deren Herstellung und deren Verwendung wie zum Beispiel als Markierungssubstanzen in Analysenverfahren. Die Polymer-gebundenen Farbstoffe, auch Polymere Farbstoffe genannt, enthalten verknüpfbare funktionelle Gruppen und sind unter üblichen Analysenbedingungen wasserlöslich. Verantwortlich für diese Wasserlöslichkeit ist

5 normalerweise der Polymeranteil. Die Farbstoffe an sich sind oft wasserunlöslich.

Die Aufgabe die der vorliegenden Erfindung zugrunde lag, war es, neue Markierungssubstanzen zu entwickeln, welche in biologischen Testsystemen einsetzbar sind. Die Markierungssubstanzen sollen eine vergleichbare Nachweisempfindlichkeit aufweisen, wie die bekannten Markierungssubstanzen. Sie sollen aber nicht deren Nachteile haben, wie z.B. schlechte Arbeitssicherheit und nur verwendbar in Speziallabora

10 (Radioaktivität) oder mangelhafte Stabilität (Enzymmarkierung).

Die erfindungsgemäßen polymeren Farbstoffe haben normalerweise mittlere Molekulargewichte in der Größenordnung von etwa $M_n = 2 \times 10^3$ bis etwa 5×10^6 Dalton. Bevorzugt sind Molekulargewichte von etwa 10^4 bis 10^6 Dalton.

Unter üblichen Analysenbedingungen sind die Polymeren Farbstoffe in wässrigen Medien zu mindestens 15 0,1 %, vorzugsweise mindestens zu 1 % löslich.

Unter üblichen Analysenbedingungen werden solche verstanden wie sie in biologischen Testen insbesondere in Bindungsanalysenverfahren wie z.B. Immunoassays oder Gensonden-Tests vorkommen. Zu nennen wären dabei beispielsweise Temperaturen von bis zu etwa 70 °C, bevorzugt von ca. 10 °C bis 40 °C und pH-Werte von etwa 3 bis 11, bevorzugt von 5 bis 9. Bei besonderen Testen bzw. Analysenverfahren kann durchaus von diesen Werten abgewichen werden. Wesentlich ist die Wasserlöslichkeit der Polymer-gebundenen-Farbstoffe, weil dadurch der Einsatz der Farbstoffe in biologischen Analysenverfahren möglich ist.

Farbige Polymere und ihre Herstellung durch Umsetzung von Dicarbonsäureanhydridgruppen enthalten den Polymeren mit vorzugsweise Aminogruppen enthaltenden Farbstoffen sind bekannt. So beschreiben 25 Kalopassis und Viout in US-PS 3 915 635 Haarbehandlungsmittel, welche aus anhydridgruppenhaltigen Polymeren und Azo-, Anthrachinon-oder Benzolfarbstoffen mit Aminogruppen hergestellte polymere Farbstoffe enthalten. Die Polymeren sind jedoch nur in wässrigen Alkoholen und nicht in Wasser löslich. Außerdem besitzen sie keine zusätzlichen Reaktivgruppen, die eine gezielte Verknüpfung mit z.B. Antikörpern oder DNA ermöglichen.

30 Hirschfeld beschreibt in US-PS 4 166 105 Reagenzien zum Nachweis spezifischer Reaktanten wie Antigene, die aus einem an einen Antikörper gebundenen Polymeren, welches eine Vielzahl von Farbstoffmolekülen enthält, bestehen.

Die Farbstoffpolymeren besitzen endständige funktionelle Gruppen, die zur Verknüpfung mit dem Protein und eine Vielzahl anderer funktioneller Gruppen, die zur Bindung der Farbstoffmoleküle genutzt 35 werden. Als geeignete Rückgrat-Polymere werden Polyethylenimine, Polylysin und Polyamide wie Nylon 6 und niedermolekulare Polycarbonsäuren genannt.

Im ersten Beispiel dieser Anmeldung wird die Synthese eines Polymeren-Farbstoffes aus Polyethylenimin und Fluoresceinisothiocyanat beschrieben, der 70 Farbstoffmoleküle je Molekül Polyethylenimin enthält. Im Beispiel 7 wird jedoch die Quantenausbeute eines polymeren Farbstoffes mit 80 gebundenen Fluores-40 ceineinheiten zu nur 4 % bestimmt. Daraus folgt, daß dieses Polymer bei etwa hundertfachem Molekulargewicht nur etwa dreimal so stark fluoresziert, wie monomeres FITC.

Im Gegensatz dazu erhält man erfindungsgemäß bei Bindung von 4-Aminofluorescein an Acrylamid-Maleinsäureanhydrid-Copolymere polymere Farbstoffe mit starker Fluoreszenz und Quantenausbeuten über 60 %.

45 Die erfindungsgemäßen polymeren Farbstoffe bestehen aus einem wasserlöslichen Polymer-Rückgrat, an welches geeignete Farbstoffe covalent gebunden sind und welches außerdem noch über Spacer verknüpfte funktionelle Gruppen enthält, die eine covalente Verknüpfung des polymeren Farbstoffes mit biologischen Materialien wie zum Beispiel mit Proteinen oder funktionalisierten Oligonukleotiden ermöglicht.

Dafür geeignete funktionelle Gruppen sind zum Beispiel Hydroxyl-, Amino-, Carboxyl oder auch 50 Thiogruppen sowie Isothiocyanatgruppen, ferner N-Hydroxysuccinimidester-, N-Hydroxyphthalimidester- bzw. N-Acylbenztriazolgruppen sowi falls eine Verknüpfung unter besonders schonenden, vorzugsweise wasserfreien Bedingungen möglich ist, auch Säurechlorid-, Säureanhydrid- und Isocyanatgruppen.

Die Polymeren bestehen aus covalent verknüpften (copolymerisierten) Monomerbausteinen, die dem Polymer die vorteilhaften Eigenschaften verleihen.

1. Wasserlöslich machende nicht-ionische Monomerbausteine wie Acrylamid, Methacrylamid, N-C,-

C₄-Alkyl(meth)acrylamide, N,N-C₁-C₄-Dialkylacrylamide, N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinylformamid, N-Vinylacetamid, N-Vinyl-N-methyl-acetamid, N-Vinyl-O-methylurethan.

2. Über Ester- bzw. Säureimidgruppen oder vorzugsweise Säureamidgruppen covalent gebundene Farbstoffmolekül .

- 5 Die Farbstoffmoleküle können entweder durch Copolymerisation entsprechender Farbstoffmonomere wie (Meth)acrylsäureester oder (Meth)acrylamide geeigneter Farbstoffe oder durch Umsetzung von vorzugsweise Aminogruppen enthaltenden Farbstoffen mit Reaktivgruppen des Rückgratpolymers eingeführt werden. Reaktivgruppeneinführende Monomere sind beispielsweise Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid, (Meth)acrylsäurechlorid, (Meth)acrylsäure-N-hydroxysuccinimidester, (Meth)acrylsäure-N-hydroxyphthalimidester, N-(Meth)acryloylbenztriazol, 3- bzw. 4-Isothiocyanatophenyl(meth)acrylat, 2-Isocyanatoethylmethacrylat, Isocyanatosstyrol, Isocyanatoisopropenylbenzol, Vinyloxiran sowie (Meth)acrylsäure in Kombination mit Carbodiimiden.

- 10 3. Reaktive oder aktivierbare Gruppen enthaltende Monomerbausteine, die eine covalente Verknüpfung zum Beispiel mit den Antikörpern, Antigenen, Haptenen oder Nucleinsäuren sowie gegebenenfalls den Farbstoffmolekülen ermöglichen.

15 Als solche können die obengenannten reaktivgruppeneinführenden Monomeren dienen, wenn sie nicht quantitativ mit Farbstoffmolekülen umgesetzt wurden und die Verknüpfung unter solchen Bedingungen durchgeführt werden kann, daß eine Hydrolyse der Reaktivgruppen zu vernachlässigen ist.

- 20 Ferner können zu diesem Zweck vorzugsweise Monomere eingebaut werden, die eine aliphatische Alkoholgruppe enthalten, wie Hydroxialkyl(meth)acrylate wie Hydroxiethyl(meth)acrylat, Hydroxipropyl(meth)acrylat, Butandiolmono(meth)acrylat.

Die Alkoholgruppe kann auch durch Umsetzung der unter 2. genannten Reaktivgruppen des Rückgratpolymeren mit Aminoalkoholen wie Aminoethanol, Aminopropanol oder 6-Amino-1-hexanol eingeführt werden.

- 25 Die Alkoholgruppe des Polymeren kann durch Überführung in die Tresyl-(= Trifluormethansulfonyl-) oder Methansulfonylgruppe aktiviert werden.

- 30 4. Falls gewünscht, können ionische, die Wasserlöslichkeit des Polymeren erhöhende Monomerbausteine wie (Meth)acrylsäure, 2-Acryloylamino-2-methyl-propansulfonsäure, Styrolsulfonsäure, Dialkylaminoalkyl-(meth)acrylate bzw. Dialkylaminoalkyl-(meth)acrylamide wie Dimethylaminoethyl-methacrylat oder Dimethylaminopropylacrylamid bzw. die sich von diesen Monomeren ableitenden quaternierten (Meth)acrylate bzw. (Meth)acrylamide mit einpolymerisiert werden.

Zusätzliche Carboxyl-, Sulfonsäure- oder tert.-Aminogruppen können ferner durch Umsetzung eines Teils der Reaktivgruppen des Rückgratpolymers mit Aminocarbonsäuren, Aminosulfonsäuren bzw. primär-tertiären oder sekundär-tertiären Diaminen eingeführt werden.

- 35 Der Einbau ionischer Gruppen ist besonders bevorzugt, wenn die Polymere einen hohen Anteil gebundener hydrophober Farbstoffmoleküle enthalten.

Bevorzugte verknüpfbare anionische polymere Farbstoffe entsprechen der allgemeinen Formel

- 50 A = mit ungesättigten Dicarbonsäureanhydriden copolymerisierbare Monomere wie Acrylamid, Methacrylamid, N-C₁-C₄-Alkyl(meth)acrylamide, N,N-C₁-C₄-Dialkylacrylamide, N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinylformamid, N-Vinylacetamid, N-Vinyl-N-methyl-acetamid, N-Vinyl-O-methylurethan sowie Ethen und Vinylmethylether, vorzugsweise Ethen, Methylvinylether, N-Vinylpyrrolidon, (Meth)acrylamid und N-Vinyl-N-methyl-acetamid.

55 besonders bevorzugt Acrylamid und Vinylpyrrolidon, da sie zu besonders gut wasserlöslichen Copolymeren führen;

B = Carboxylgruppenfreier Rest von Maleinsäure, Itaconsäure oder Citraconsäure,

besonders bevorzugt Maleinsäure;

F = Rest eines eine oder mehrere primäre und/oder sekundäre Aminogruppen enthaltenden Farbstoffes;
Y = gegenüber Antigenen bzw. endständig reaktiv funktionalisierten DNA (Gen-probes) reaktive Gruppe,
besonders bevorzugt -O-SO₂-CH₃ und -O-SO₂-CH₂-CF₃;

5 X = die Wasserlöslichkeit des verknüpfbaren polymeren Farbstoffes erhöhende Gruppe, insbesondere
-SO₃H-;

R = C₂-C₁₂-Alkylen, Cycloalkylen- oder Arylengruppe.

Eine weitere bevorzugte Gruppe verknüpfbarer polymere Farbstoffe entspricht der Formel

10

15

20

25 mit

C = Resten von (Meth)acrylamid, N-Vinylpyrrolidon, N-Vinyl-N-methylacetamid, besonders bevorzugt (Meth)acrylamid;

Z = H oder CH₃

30 D = (Meth)acrylsäure, 2-Acryloylamino-2-methylpropansulfonsäure, Styrolsulfonsäure, Dialkylaminoalkyl-(meth)acrylate bzw. Dialkylaminoalkyl(meth)acrylamide bzw. die sich von diesen Monomeren ableitenden quaternierten (Meth)acrylate bzw. (Meth)acrylamide.

Das nachstehende Schema verdeutlicht ein Verfahren zur Herstellung der erfindungsgemäßen polymeren Farbstoffe.

35

40

45

50

55

Statistische Copolymeren aus Acrylamid und Maleinsäur anhydrid können durch radikalische Fällungs-

polymerisation in gegen Anhydridgruppen inerten Lösungsmitteln wie Aceton, Toluol oder Essigsäureethylester hergestellt werden. Zur Herstellung der erfindungsgemäßen polymeren Farbstoffe sind Copolymeren mit $\bar{m} = 25$ bis 10^4 , vorzugsweise $\bar{m} = 50$ bis 10^3 copolymerisierten Acrylamidmonomeren und $\bar{n} = 3$ bis 10^3 , vorzugsweise 5 bis 200 copolymerisierten Maleinsäureanhydridmonomeren geeignet. Das Verhältnis von \bar{m} : \bar{n} liegt üblicherweise zwischen 2:1 und 20:1.

5 Ⓛ steht stellvertretend für den Farbstoff und \bar{a} für die mittlere Anzahl von Farbstoffmolekülen pro Polymerkette. \bar{a} liegt zwischen 3 und 10^3 , vorzugsweise zwischen 5 und 500, besonders bevorzugt zwischen 10 and 200. \bar{a} ist immer um mindestens 1 kleiner als \bar{n} , die Zahl der Maleinsäureanhydridmonomere pro Polymerkette.

10 Durch Umsetzung mit einem Aminoalkohol $H_2N-R-OH$ werden Alkoholgruppen in den polymeren Farbstoff eingeführt. Die Zahl dieser Gruppen \bar{b} pro Polymerkette beträgt 1 bis 5, vorzugsweise 1 - 3.

15 Es ist möglich entweder die Umsetzung mit dem aminogruppenhaltigen Farbstoff oder mit dem Aminoalkohol zuerst durchzuführen.

20 Falls es erwünscht ist, können anschließend die noch verbliebenen Anhydridgruppen des Polymers mit einer Aminosulfonsäure ($-R-X = -R-SO_3H$), einer Aminocarbonsäure ($-R-X = R-COOH$) oder mit Ammoniak ($-R-X = -H$) umgesetzt werden. Die Anzahl \bar{c} dieser Moleküle kann 0 betragen. Vorzugsweise ist $\bar{c} = 0$ bis 100. Die Umsetzung mit Aminosulfonsäuren ist besonders bevorzugt, wenn die polymeren Farbstoffe eine große Anzahl hydrophober Farbstoffreste pro Polymerkette enthalten, da durch die eingeführten Sulfonsäuregruppen die Wasserlöslichkeit der polymeren Farbstoffe verbessert wird.

25 Die Umsetzungen des reaktiven Basispolymeren (z.B. des Acrylamid-Maleinsäureanhydrid-Copolymeren) mit dem Farbstoff (Ⓐ-NH₂), dem Aminoalkohol ($H_2N-R-OH$) und gegebenenfalls der Aminosäure oder Ammoniak können in homogener Lösung oder in Suspension durchgeführt werden. Das Lösungsmittel bzw. Suspensionsmedium sollte möglichst inert gegenüber den Reaktivgruppen des Basispolymeren sein um störende Nebenreaktionen zu vermeiden.

30 Bevorzugt sind solche Lösungsmittel bzw. Suspensionsmedien, die entweder eine Durchführung des gesamten Reaktionsszyklus in homogener Lösung ermöglichen oder das Basispolymere bzw. den polymeren Farbstoff lösen. Nach Durchführung der Reaktionsfolge wird der polymere Farbstoff nach an sich bekannten Methoden isoliert durch Abdampfen des Lösungsmittels, vorzugsweise durch Ausfällen des polymeren Farbstoffes in einem geeigneten organischen Medium.

35 Das Verhältnis der gebundenen hydrophoben Farbstoffmoleküle \bar{a} zur Zahl der wasserlöslich machenden Polymerbestandteile \bar{m} = Acrylamid und \bar{c} = gebundene Aminosulfonsäure, Aminocarbonsäure oder Ammoniak wird so gewählt, daß die polymeren Farbstoffe die erforderliche Wasserlöslichkeit besitzen.

40 Die Abtrennung eines eventuellen Überschusses an Reagenzien kann entweder beim Ausfällen des polymeren Farbstoffs, durch erneutes Umfällen oder im Falle wasserlöslicher Reagenzien auch durch Dialyse oder Ultrafiltration erfolgen.

45 Anschließend wird der gereinigte polymere Farbstoff getrocknet.

50 Nach anschließender Überführung der Alkoholgruppen des polymeren Farbstoffes in Methansulfonyl-, Tresyl-, Trifluoracetyl-, Benzolsulfonyl- bzw. p-Toluolsulfonylgruppen, die nach bekannten Verfahren erfolgen kann, erhält man die erfindungsgemäßen verknüpfbaren polymeren Farbstoffe.

55 Analog zu den Acrylamid-Maleinsäureanhydrid-Copolymerisaten können auch weitere Dicarbonsäure-anhydridgruppen enthaltende Copolymeren aus Acrylamid, Methacrylamid, N-C₁-C₄-Alkyl(meth)acrylamiden, N,N-C₁-C₄-Dialkylacrylamiden, N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinylformamid, N-Vinylacetamid, N-Vinyl- N-methyl-acetamid, N-Vinyl-O-methylurethan, Ethen oder Methylvinylether und Maleinsäureanhydrid, Itaconsäureanhydrid bzw. Citraconsäureanhydrid mit Aminogruppen enthaltenden

60 Farbstoffen, Aminoalkoholen sowie gegebenenfalls Aminosulfonsäuren, Aminocarbonsäuren oder Ammoniak zu wasserlöslichen polymeren, verknüpfbaren Farbstoffen umgesetzt werden.

65 Auch Copolymeren aus Acrylamid, Methacrylamid, N-C₁-C₄-Alkyl(meth)acrylamiden, N,N-C₁-C₄-Dialkylacrylamiden, N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid oder N-Vinyl-O-methylurethan und (Meth)acrylsäurechlorid, Isocyanatoethylmethacrylat, Isocyanatosstyrol, Isocyanatoisopropenylbenzol und Vinyloxiran können analog zu den Anhydridgruppen enthaltenden Copolymerisaten zu wasserlöslichen verknüpfbaren polymeren Farbstoffen umgesetzt werden. Dabei werden die Umsetzungen der Säurechloridgruppen enthaltenden Copolymeren vorzugsweise in Gegenwart von tert.-Aminen als Säurefänger durchgeführt.

70 Copolymerisate aus Acrylamid, Methacrylamid, N-C₁-C₄-Alkyl(meth)acrylamiden, N,N-C₁-C₄-Dialkylacrylamiden, N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinylformamid, N-Vinylacetamid, N-Vinyl-N-methyl-acetamid oder N-Vinyl-O-methylurethan und (Meth)acrylsäure-N-hydroxysuccinimidester, (Meth)acrylsäure-N-hydroxyphthalimidester, 1-N-(Meth)acryloylbenztriazol oder Isothiocyanatophenyl-(meth)acrylat können ebenfalls analog zu den Anhydridgruppen enthaltenden Copolymeren mit Aminogrup-

pen enthaltenden Farbstoffen, Aminoalkoholen und gegebenenfalls Aminosulfonsäuren, Aminocarbonsäuren oder Ammoniak umgesetzt werden.

Bei diesen Copolymerisaten besteht jedoch zusätzlich die Möglichkeit, daß Reaktivgruppen nur teilweise mit Aminogruppen enthaltenden Farbstoffen sowie gegebenenfalls Aminosulfonsäuren, Aminocarbonsäuren und/oder Ammoniak umzusetzen so daß 1 bis 5 Reaktivgruppen pro polymerem Farbstoffmolekül übrig bleiben. Die Verknüpfung mit den Antikörpern, Antigenen, Haptenen oder Nucleinsäuren erfolgen dann über diese Gruppen.

Außerdem können bei diesen Polymerisaten zusätzlich Hydroxialkyl(meth)acrylate einpolymerisiert werden. In diesem Falle können alle acylierenden Reaktivgruppen mit Farbstoffmolekülen sowie gegebenenfalls mit die Wasserlöslichkeit erhöhenden Verbindungen umgesetzt und die Alkoholgruppen anschließend in Methansulfonyl-, Tresyl-oder andere Reaktivgruppen überführt werden.

Eine weitere Möglichkeit zur Herstellung verknüpfbarer wasserlöslicher polymerer Farbstoffe besteht in der Copolymerisation von Farbstoffmonomeren, die außer dem Chromophor eine (Meth)acrylsäureester oder (Meth)acrylamid-Gruppe oder eine sonstige polymerisierbare Vinyl-bzw. Isopropenyl-Gruppe enthalten mit wasserlöslich machenden nicht-ionischen Monomerbausteinen wie Acrylamid, Methacrylamid, N-C₁-C₄-Alkyl(meth)acrylamiden, N,N-C₁-C₄-Dialkylacrylamiden, N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinylformamid, N-Vinylacetamid, N-Vinyl-N-methyl-acetamid oder N-Vinyl-O-methylurethan, sowie mit einem weiteren Monomeren, welches eine gegen Wasser beständige reaktive oder eine aktivierbare Gruppe enthält. Die Monomerverhältnisse werden dabei so gewählt, daß im Mittel jede Polymerkette 1-5 reaktive bzw. aktivierbare Gruppen enthält und das Polymer wasserlöslich ist.

Die verwendbaren Farbstoffe, sind normalerweise solche, die im Ultravioletten, Infraroten oder sichtbaren Spektralbereich eine Absorption zeigen. Als Farbstoffe, die im sichtbaren Bereich absorbieren eignen sich insbesondere Azo-, Methin- sowie Anthrachinonfarbstoffe für den Einbau in die beschriebenen Polymere. Sehr gut geeignet sind auch Heterozyklen enthaltende Methinfarbstoffe wie Oxazine, Thiazine, Triphenodioxazine oder Chinophthalone. Diese Farbstoffe können sowohl wasserunlöslich sein als auch durch Sulfonsäure, Carbonsäure- bzw. kationische Gruppen Wasserlöslichkeit erhalten.

Bevorzugt sind Fluoreszens-Farbstoffe. Geeignete Farbstoffe sind zum Beispiel:
Cumarine der allgemeinen Formel

30

35

worin

R₁ für O-Alkyl, N(Alkyl)₂, NH-Alkyl, NH-SO₂-Alkyl, NH-SO₂-Aryl40 R₂ für H, CN, Cl, OH, Alkylen, Aryl,R₃ für Phenyl, Hetaryl steht.R₁ kann auch noch

45

50

bedeuten, wobei

X für O, N-Alkyl oder (CH₂)_n steht worin n 0 oder 1 sein kann.

Weiterhin gut geeignet sind Cumarine der Formel

55

5

- 10 worin R₂ und R₃ die oben genannte Bedeutung haben.

Wenigstens einer der Substituenten R₁, R₂ oder R₃ soll eine funktionelle Gruppe für die Verknüpfung des Farbstoffs mit dem Polymer betragen. Die NH₂-Gruppe wird dafür als besonders geeignet angesehen.

Ebenfalls geeignet sind Carbostyrole der allgemeinen Formel

15

20

- 25 worin

R₁, R₂ und R₃ die bei den Cumarienen angegebenen Bedeutung haben können und R₄ für Alkyl steht.

Auch hier muß einer der Substituenten ein eine funktionelle Gruppe für Verknüpfung mit dem Polymer tragen.

30

Weiterhin geeignet sind

Pyrazoline der allgemeinen Formel

35

- 40 worin

R₅ = für H, oder CH₃,

R₇ und R₈ unabhängig voneinander für H oder Cl und

R₉ für Alkylen,

45

- 50 Alkylen-O-Alkylen steht

wobei

R₁₀ = Alkyl bedeutet.

Auch gut einsetzbar sind

Naphthalimide der allgemeinen Formel

55

5

10

worin

R₁₁ für Alkyl,

15 R₁₂, R₁₃ für H, OAlkyl, N(Alkyl)₂ steht und entweder die Alkylgruppe an R₁₁ oder jene an R₁₂ bzw. R₁₃ eine NH₂-Gruppe zur Verknüpfung mit dem Polymer trägt.

Als ebenfalls geeignet sind zu nennen

Pyrene der allgemeinen Formel

20

25

30

35 worin

R₁₄ für H oder SO₃H,

R₁₅ und R₁₆ unabhängig voneinander für OAlkyl oder N(Alkyl)₂ und entweder eine Alkylgruppe an R₁₅ oder an R₁₆ eine NH₂-Gruppe zur Verknüpfung mit dem Polymer trägt.

Zu nennen wären noch Fluoresceine der Formel

40

45

50

Auch geeignet sind Rhodanine der allgemeinen Formel

55

5

10

 Y^\ominus

worin

15 Y^\ominus ein farbloses Anion bedeutet und
R₁ und R₂ für Alkyl,

20

25

steht

wobei X für O, N-Alkyl oder $(\text{CH}_2)_n$ mit n = 0 oder 1 steht.R₁ und R₂ können auch zusammen mit den Aromaten einen Ring bilden wie zum Beispiel

25

30

Diese und noch weitere Farbstoffe sind der Literatur wie z.B. "The Chemistry of Synthetic Dyes", Volume V, Akademie Press (1971), oder auch "Fluorescent Whitening Agents", vom Georg Thieme Verlag Stuttgart (1975).

Die erfindungsgemäßen Farbstoffe eignen sich zur Markierung in biologischen Analysenverfahren. So können z.B. Antikörper oder geeignet funktionalisierte Oligonucleotide farbig markiert werden, die dann in die üblichen Tests (Immunoassays bzw. Gensonden-Tests) eingesetzt werden können.

Ein für die Leistungsfähigkeit solcher Tests entscheidende Größe ist die Empfindlichkeit. Sie wird bei den meisten derzeit üblichen Testverfahren durch Einsatz radioaktiver Markierungssubstanzen erreicht.

Diese Methode hat in der praktischen Durchführung aber viele gravierende Nachteile (Strahlengefährdung, Zersetzungsfähigkeit der Substanzen, schwierige Abfallsorgung, Spezialausrüstung der Labors, spezielle Ausbildung des Personals), die eine Ausdehnung dieser vorteilhaften und leistungsfähigen Tests zu Routineverfahren bisher behindert haben. (s. z.B. WO 88-02784, Pharmacia, 21. 4. 88).

Es sind daher mehrere Versuche unternommen worden, die radioaktive Markierung durch eine problemlose Farbstoffmarkierung zu ersetzen. Damit umgeht man die Nachteile der radioaktiven Markierung, die erzielbare Empfindlichkeit ist aber für viele Tests nicht ausreichend [s. z.B. Nucleic Acids Res. 16, 4957 (1988)].

Hier bieten die erfindungsgemäßen polymeren Farbstoffe den Vorteil einer gesteigerten Empfindlichkeit ohne Verwendung von Radioaktivität.

Zur Verknüpfung der Polymeren Farbstoffe mit biologischen Substraten bieten sich mehrere Verfahren an.

1. Das Polymer enthält einpolymerisiert geeignete Gruppierungen, die zur Reaktion mit Antikörpern oder entsprechend funktionalisierten Oligonucleotiden befähigt sind, z.B. können Acrylester von N-Hydroxysuccinimid oder 1-N-Hydroxybenztriazol einpolymerisiert werden.

Die aktiven Polymere werden nach Beladen mit Farbstoffen in wässriger Lösung mit den zu markierenden biologischen Materialien umgesetzt. Die erhaltenen Mischungen können entweder direkt in Analysen verwendet werden oder nach vorheriger Reinigung.

2. Das Polymer enthält geeignete funktionelle Gruppen, die durch eine separate chemische Umsetzung so aktiviert werden, daß sie zur Verknüpfung mit Antikörpern und geeignet funktionalisierten Oligonucleotiden befähigt sind.

5 Solche Gruppierungen können z.B. Hydroxygruppen sein, die sich durch Umsetzung nach literaturbekannten Verfahren in aktivierte Ester, z.B. Sulfonsäure- oder Carbonsäureester, überführen lassen.

Dazu wird das Hydroxylgruppen-haltige Farbstoffpolymer in einem geeigneten Lösungsmittel, beispielsweise mit Methansulfonsäurechlorid, in das Mesylat umgewandelt.

10 Dieses aktivierte Farbstoffpolymer wird dann in wässriger Lösung mit dem biologischen Substrat (Antikörper bzw. geeignet funktionalisiertes Oligonucleotid) umgesetzt. Die erhaltene Mischung kann entweder direkt in Tests eingesetzt werden oder auch nach vorheriger Reinigung.

Geeignet funktionalisierte Oligonucleotide sind literaturbekannt. Darunter werden z.B. Oligonucleotide verstanden, die über einen inerten Spacer Amino-, Mercapto-oder Hydroxyfunktionen enthalten.

15 Beispiel 1

Copolymeres aus Acrylamid und Maleinsäureanhydrid:

- 20 57 g Acrylamid, 20 g Maleinsäureanhydrid und 0,77 g Azobisisobuttersäuredinitril werden in 500 ml trockenem Ethylacetat gelöst und die Lösung filtriert. Der Sauerstoff wird durch dreimaliges Evakuieren und Füllen mit Stickstoff entfernt und die Reaktionsmischung unter Stickstoff 20 Stunden bei 60 °C gerührt. Das ausgefallene Copolymerpulver wird abgesaugt, gründlich mit Ethylacetat gewaschen und im Vakuum bei 50 °C getrocknet.
- 25 Ausbeute: 56,3 g; N = 14,8 % = 25 Gew.-% Maleinsäureanhydrid.
Grenzviskosität $[\eta] = 0,15$ (gemessen in 0,9 %iger, wässriger Kochsalzlösung) dies entspricht einem mittleren Molekulargewicht von etwa 20 000 Dalton.

30 Beispiel 2

Copolymeres aus N-Vinylpyrrolidon und Maleinsäureanhydrid

- 35 26,6 g N-Vinylpyrrolidon, 23,4 g Maleinsäureanhydrid und 116 g Methylenechlorid werden vorgelegt. Die Lösung wird wie in Beispiel A von Sauerstoff befreit und auf 40 °C erwärmt. Innerhalb von 15 Minuten wird eine Lösung von 250 mg Dilauroyl-peroxid in 50 g Methylenechlorid zugetropft und dann 12 Stunden bei 40 °C polymerisiert. Das ausgefallene Copolymerisat wird abfiltriert, mit Methylenechlorid gewaschen und im Vakuum bei 50 °C getrocknet.
- 40 Ausbeute: 20,6 g, N = 6,8 %, entsprechend einem molaren Verhältnis von N-Vinylpyrrolidon zu Maleinsäureanhydrid von etwa 1:1; $[\eta] = 0,11$ (gemessen in DMF).

Beispiel 3

45

Copolymeres aus Acrylamid und Acryloyloxysuccinimid

- 54 g Acrylamid, 6 g Acryloyloxysuccinimid und 0,3 g Azobisisobuttersäurenitril werden in 400 ml trockenem Ethylacetat gelöst. Die Lösung wird wie in Beispiel A von Sauerstoff befreit und unter Stickstoff 20 Stunden bei 60 °C gerührt. Das ausgefallene Copolymerpulver wird abgesaugt, gründlich mit Ethylacetat gewaschen und im Vakuum bei 50 °C getrocknet.
- Ausbeute: 58,4 g
Grenzviskosität $[\eta] = 0,71$ (gemessen in 0,8 %iger wässriger Kochsalzlösung) dies entspricht einem mittleren Molekulargewicht von etwa 115 000 Dalton.

Beispiel 4

- 1.5 g des Acrylamid-Malinsäureanhydrid-Copolymers von Beispiel 1 werden in 30 ml trockenem Formamid bei 50° C gelöst. Nach dem Abkühlen werden bei Raumtemperatur 20 mg 6-Amino-1-hexanol zugegeben und der Ansatz 1 Stunde bei Raumtemperatur gerührt. Nach Zugabe von 600 mg 4-Aminofluorescein wird 24 Stunden bei Raumtemperatur und anschließend 5 Stunden bei 50° C weitergerührt. Der warme Ansatz wird in 1 l Aceton ausgefällt, das Polymer abgesaugt und in 40 ml Formamid bei 50° C gelöst. Nach Zugabe von 1 ml 25 %iger NH₄OH-Lösung wird 30 Minuten bei 50° C gerührt, der Ansatz abgekühl und in 1 l Aceton erneut ausgefällt. Das Polymer wird abgesaugt, mit Aceton gewaschen und im Hochvakuum bei 25° C getrocknet. Die Fluoreszenz wird in Wasser bei pH 9 gemessen.
 Ausbeute: 1,45 g; $\lambda_{\max} = 493 \text{ nm}$
- 10 Extinktion bei 493 nm = 0,05 (4,5 mg polymerer Farbstoff in 1 l Wasser); Quantenausbeute = 0,63
 1 g des so erhaltenen polymeren Fluoreszenzfarbstoffes werden bei Raumtemperatur in 50 ml trockenem Pyridin vorgelegt, mit 1 g Methansulfonsäurechlorid versetzt und unter Feuchtigkeitsausschluß 4 Stunden bei Raumtemperatur verrührt.
 Anschließend wird abgesaugt und zweimal mit je 30 ml Isopropanol gewaschen.
- 15 Ausbeute: 0,9 g schwach gelbes, hygroskopisches Pulver.
 Anstelle von Methansulfonsäurechlorid können zur Aktivierung des Farbstoffes nach analogem Verfahren auch Trifluormethansulfonsäurechlorid, Benzolsulfonsäurechlorid, Trifluoressigsäureanhydrid oder p-Toluolsulfonsäurechlorid verwendet werden.

20 Beispiel 5

- 3 g des Acrylamid-Maleinsäureanhydrid-Copolymers von Beispiel 1 werden bei 50° C in 30 ml trockenem Formamid gelöst. Eine Suspension von 266 mg 3-(4-Aminophenyl)-7-Methylamino-cumarin in 25 2,5 ml trockenem DMF wird zugegeben und der Ansatz 3 Stunden bei 50° C gerührt. 30 mg 6-Amino-1-hexanol (fest) werden zugegeben und der Ansatz 1 Stunde bei 50° C weitergerührt. Die Lösung wird dann in 400 ml Ethylacetat eingerührt, wobei das Polymer ausfällt. Das Polymer wird abgesaugt, intensiv mit Ethylacetat gewaschen und im Vakuum über Phosphorpentoxid getrocknet.
 Ausbeute: 2,8 g; $\lambda_{\max} = 389 \text{ nm}$
- 30 Extinktion bei 389 nm = 0,05 (21 mg polymerer Farbstoff in 1 l Wasser); Quantenausbeute = 0,38.
 1 g des so erhaltenen polymeren Fluoreszenzfarbstoffes werden in 100 ml trockenem Pyridin vorgelegt und mit 1 g Methansulfonsäurechlorid versetzt. Unter Feuchtigkeitsausschluß wird bei Raumtemperatur 4 Stunden gerührt, dann abgesaugt und mit je 30 ml Isopropanol 2 x gewaschen.
 Ausbeute: 0,9 g farbloses, hygroskopisches Pulver.

35

Beispiel 6

- 3 g des Acrylamid-Acryloyloxysuccinimid-Copolymers aus Beispiel 3 werden in 40 ml trockenem 40 Formamid bei 50° C gelöst. Nach dem Abkühlen auf 25° C werden 0,3 g 4-Aminofluorescein zugegeben und der Ansatz 22 Stunden bei 25° C und 4 Stunden bei 50° C gerührt. Das Polymer wird in 500 ml Ethylacetat ausgefällt, nochmals in 30 ml Formamid gelöst und erneut in 500 ml Ethylacetat gefällt und nach der Isolierung im Vakuum über Phosphorpentoxid getrocknet.
 Ausbeute: 2,4 g; $\lambda_{\max} = 493 \text{ nm}$
- 45 Extinktion bei 493 nm = 0,05 (12 mg polymerer Farbstoff in 1 l Wasser bei pH 10); Quantenausbeute = 0,18
 Mit ähnlichem Ergebnis lässt sich ein entsprechendes Acrylamid / 1-Acryloxy-benztriazol Copolymeres mit 4-Aminofluorescein markieren.

50 Beispiel 7

- 2,09 g eines gemäß Beispiel 2 hergestellten Copolymerisats aus Maleinsäureanhydrid und N-Vinylpyrrolidon werden zusammen mit 1,356 g des Farbstoffes

55

in 25 ml Formamid gelöst.

Nach 2-stündigem Rühren bei 50° C addiert man folgende Lösung zum Reaktionsgemisch:

- 10 52 mg 6-Amino-1-hexanol
500 mg 2-Aminoethansulfonsäure
5 ml Formamid
5 ml H₂O

15 Es wird noch 6 Stunden bei 50° C nachgerührt. Danach kühlte man auf Raumtemperatur ab und fällt den entstandenen polymeren Farbstoff durch Einröhren in einen 15fachen Überschuss an Aceton aus. Der abfiltrierte Farbstoff wird über Nacht im Exsikkator getrocknet.

Ausbeute: 3,56 g; $\lambda_{\max} = 510 \text{ nm}$

Extinktion bei 510 nm = 0,43 (40 mg polymerer Farbstoff in 1 l H₂O).

20 Beispiel 8

1,5 g des Acrylamid-Maleinsäureanhydrid-Copolymers von Beispiel 1 werden in 30 ml trockenem Formamid bei 40-60° C gelöst.

25 Eine Lösung von 115 mg (3-(4-Aminophenyl)-7-diethylaminocumarin in 1,5 ml DMF wird zugegeben und die Lösung bei 50° C 1 Stunde gerührt. Nach Zugabe von 0,75 ml einer 1 %igen 3-Aminopropanollösung wird 30 Minuten weitergerührt und anschließend werden 0,5 ml konzentrierte wäßrige Ammoniaklösung zugegeben. Es wird 30 Minuten bei 50° C nachgerührt und der Ansatz in 750 ml Ethylacetat eingetropft. Der Polymerfarbstoff fällt feinteilig aus. Er wird abgesaugt, mit Ethylacetat gewaschen und rasch in einen Exiccator überführt, da er hydroioskopisch ist. Die Trocknung erfolgt bei < 0,1 mbar.
30 Ausbeute: 1,42 g; $\lambda_{\max} = 412 \text{ nm}$; Extinktion bei 412 nm = 0,07 (25 mg polymerer Farbstoff in 1 l H₂O); $\lambda_{\text{Emission}} = 497 \text{ nm}$; Quantenausbeute = 0,21.

35 Beispiel 9

40 1,5 g des Acrylamid-Maleinsäureanhydrid-Copolymers von Beispiel 1 werden in 30 ml trockenem Formamid bei 50° C gelöst. Nach Zugabe einer Lösung von 115 mg 3-(4-Aminophenyl)-7-diethylaminocumarin in 1,5 ml DMF wird eine Stunde bei 50° C gerührt. 20 mg 6-Amino-1-hexanol (fest) werden zugegeben und der Ansatz 30 Minuten bei 50° C weitergerührt. Nach Zugabe von 300 mg Taurin (fest) wird weitere 60 Minuten bei 50° C gerührt und der Farbstoff anschließend wie in Beispiel 1 gefällt, isoliert und getrocknet.

45 Ausbeute: 1,85 g; $\lambda_{\max} = 414 \text{ nm}$; Extinktion bei 414 nm = 0,07 (35 mg polymerer Farbstoff in 1 l H₂O); $\lambda_{\text{Emission}} = 501 \text{ nm}$; Quantenausbeute = 0,23

50 1 g des so hergestellten, Hydroxylgruppen enthaltenden polymeren Farbstoffes wird bei Raumtemperatur in 100 ml destilliertem trockenem Pyridin suspendiert. 1 ml Methansulfonsäurechlorid wird zugetropft und der Ansatz bei Raumtemperatur unter Lichtausschluß 4 Stunden gerührt. Anschließend wird rasch abgesaugt, zweimal mit je 30 ml Isopropanol gewaschen und im Ölumpenvakuum getrocknet.

Ausbeute: 0,95 g schwach gelbes, hydroioskopisches Pulver.

Beispiel 10

55 1,5 g des Acrylamid-Maleinsäureanhydrid-Copolymers von Beispiel 1 werden in 35 ml trockenem Formamid bei 60° C gelöst. Eine Lösung von 300 mg 4-Aminofluorescein in 3 ml DMF wird zugegeben und der Ansatz 1 Stunde bei 60° C gerührt. Nach Zugabe von 15 mg 6-Amino-1-hexanol (fest) wird 30

Minuten bei 60° C weiter gerührt. 300 mg Taurin (fest) werden zugegeben und 30 Minuten bei 60° C nachgerührt. Anschließend wird der polymere Farbstoff wie in Beispiel 1 beschrieben isoliert und getrocknet.

Ausbeute: 1,75 g; $\lambda_{\max} = 476 \text{ nm}$;

- 5 Extinktion bei 476 nm = 0,04 (50 mg polymerer Farbstoff in 1 l H₂O); $\lambda_{\text{Emission}} = 518 \text{ nm}$;
Quantenausbeute = 0,22.

Beispiel 11

- 10 2,09 g des Copolymerisats aus N-Vinylpyrrolidon und Maleinsäureanhydrid von Beispiel 2 werden zusammen mit 131 mg des Farbstoffs 3-(4-Aminophenyl)-7-diethylaminocumarin in 6,66 g Formamid bei 50° C umgesetzt.

Nach 1-stündigem Rühren bei 50° C gibt man folgende Lösung zum Reaktionsgemisch:

- 15 19 mg 6-Amino-1-hexanol (fest)
960 mg einer wäßrige Lösung von Na-Taurin (Festgehalt: 43 %)
3,0 g Formamid
3,0 g Wasser.

- 20 Es wird noch 5 Stunden bei 50° C nachgerührt. Dann kühlte man auf Raumtemperatur ab und fällt den polymeren Farbstoff durch Einröhren in einen Überschuß von Aceton aus. Das Produkt wird im Exsikkator über Nacht getrocknet.

Ausbeute: 2,40 g, $\lambda_{\max} = 411 \text{ nm}$;
Extinktion bei 411 nm = 0,05 (20 mg polymerer Farbstoff in 1 l H₂O); $\lambda_{\text{Emission}} = 500 \text{ nm}$;
Quantenausbeute = 0,30.

25

Beispiel 12

- 30 5 g des Acrylamid-Maleinsäureanhydrid-Copolymers von Beispiel 1, 150 ml wasserfreies Formamid und 500 mg des Farbstoffes

- 40 werden unter Stickstoff 2 Stunden bei 120° C gerührt. Nach dem Abkühlen auf 60° C werden 40 mg 6-Amino-1-hexanol (fest) zugegeben und eine Stunde bei 60° C weitergerührt. 2 ml konzentrierte wäßrige Ammoniaklösung werden zugegeben und nach einer weiteren Stunde bei 60° C wird der polymere Farbstoff in 1,5 l Ethylacetat ausgefällt und wie in Beispiel 1 isoliert und getrocknet.
Ausbeute: 5,5 g; $\lambda_{\max} = 568 \text{ nm}$;
- 45 Extinktion bei 568 nm = 0,67 (0,2 mg polymerer Farbstoff in 1 ml Wasser).

Beispiel 13

- 50 1,25 g des Acrylamid-Maleinsäureanhydrid-Copolymers von Beispiel 1 werden in 50 ml trockenem Formamid bei 60° C gelöst. 10 mg 6-Amino-1-hexanol (fest) werden zugegeben. Nach 1 Stunde bei 60° C werden 0,75 g des Farbstoffes

55

zugegeben und der Ansatz 4 Stunden bei 60° C weitergerührt. Dann werden 500 mg Taurin (fest) zugegeben und 1 Stunde bei 60° C nachgerührt. Der polymere Farbstoff wird durch Eintropfen der Reaktionslösung in 1,5 l Aceton ausgefällt und wie in Beispiel 1 beschrieben isoliert und getrocknet.
 10 Ausbeute: 1,75 g; $\lambda_{\text{max}} = 533 \text{ nm}$;
 Extinktion bei 533 nm = 0,7 (0,2 mg polymerer Farbstoff in 1 ml Wasser).

15 Beispiel 14

1,26 g eines alternierenden Copolymerisates aus Maleinsäureanhydrid und Ethylen mit dem Molekulargewicht 25.000 (EMA®21 der Firma Monsanto) werden in 20 ml Formamid gelöst. Zu dieser Lösung gibt man eine Lösung von 1,695 g eines Farbstoffes mit der Formel

ebenfalls gelöst in 20 ml Formamid. Das Reaktionsgemisch wird 1 Stunde bei Raumtemperatur und 2 Stunden bei 50° C gerührt. Danach addiert man 117,6 mg 6-Amino-1-hexanol, gelöst in 5 ml Formamid, und röhrt weitere 30 Minuten. Schließlich gibt man 500 mg 2-Aminoethansulfonsäure und nach einer weiteren halben Stunde 5 ml H₂O zum Reaktionsgemisch und röhrt noch 6 Stunden bei 50° C nach. Nach Abkühlen auf Raumtemperatur wird der gebildete polymere Farbstoff durch Einröhren in ca. 1,5 l Aceton ausgefällt. Nach dem Abfiltrieren wird der Farbstoff bis zur Gew.-Konstanz im Vakuumexsikkator getrocknet. Ausbeute: 3,21 g; $\lambda_{max} = 495$ nm;

Extinktion bei $\lambda_{max} = 1.08$ (Konzentr.: 40 mg/l; LM : H₂O). Molarer Extinktionskoeffizient: $1.9 \cdot 10^6$.

1 g des so hergestellten polymeren Farbstoffes wird bei Raumtemperatur in 50 ml trockenem Pyridin mit 1 g Methansulfonsäurechlorid 4 Stunden unter Feuchtigkeitsausschluß verrührt. Anschließend wird abgesaugt, zweimal mit 30 ml Isopropanol gewaschen und im Ölpumpenvakuum bei Raumtemperatur getrocknet.

40 Ausbeute: 0,9 g schwarzes, hygrokopisches Pulver.

Beispiel 15

45 1,56 g eines alternierenden Copolymerisates aus Maleinsäureanhydrid und Methylvinylether mit dem
Molekulargewicht 20.000 (Gantrez®AN-119 der Firma GAF) werden in 20 ml Formamid gelöst. Zu dieser
Lösung werden 2,034 g einer Lösung des in Beispiel 14 verwendeten Farbstoffes in 30 ml Formamid
gegeben. Nach einstündigem Rühren bei Raumtemperatur und zweistündigem Rühren bei 50 ° C wird
folgendes Reaktionsgemisch zugegeben:

50 235 mg 6-Amino-1-hexanol
 250 mg 2-Aminoethansulfonsäure
 5 ml Formamid
 5 ml H₂O.

Nach sechsständigem Rühren bei 50 ° C wird die Lösung auf Raumtemperatur abgekühlt und in ca. 1,2 l Ethylacetat eingerührt. Dabei fällt der polymere Farbstoff als feines Pulver aus, das abfiltriert und im Vakuum bei Raumtemperatur bis zur Gew.-Konstanz getrocknet wird.

Ausbeute: 1,25 g; $\lambda_{\text{max}} = 493 \text{ nm}$; Extinktion bei $\lambda_{\text{max}} = 0,788$ (Konzentr.: 40 mg/l; LM : H₂O). Molarer Extinktionskoeffizient: $0,97 \cdot 10^6$.

1 g des so hergestellten polymeren Farbstoffes wird bei Raumtemperatur in 70 ml trockenem Pyridin mit 2 g Methansulfonsäurechlorid 4 Stunden unter Feuchtigkeitsausschluß verrührt. Anschließend wird abgesaugt, zweimal mit 30 ml Isopropanol gewaschen und im Ölumpenvakuum bei Raumtemperatur getrocknet.

- 5 Ausbeute: 0,9 g schwarzes, hygrokopisches Pulver.

Beispiel 16

- 10 0,5 mg monoklonale Antikörper gegen CEA (Carcinogen Embryonal Antigen) werden in 1 ml H₂O mit 0,86 mg aktiviertem Farbstoff gemäß Beispiel 4 1 Stunde bei Raumtemperatur inkubiert, gegen Wasser dialysiert und lyophilisiert. Der so erhaltene markierte monoklonale Antikörper wurde durch UV-Spektroskopie charakterisiert.

15 Im immunologischen Test auf CEA erzielt man bei Verwendung dieses markierten Antikörpers eine erhöhte Empfindlichkeit verglichen mit analogen monomeren Farbstoffen.

- Mit ähnlichen Resultaten lässt sich der CEA monoklonale Antikörper auch mit Farbstoffen gemäß den Beispielen 5, 6, 7, 9, 14 und 15 markieren.

Beispiel 17

Es werden 500 µg eines Aminolink-Oligonucleotids, abgeleitet von der Sequenz: GCCGCCTCGG CCTCGCCGAC GCCCGGGACG GGCGCCACCC CCAACGACGT (geeignet als Gensonden-Test für Pseudorabies-Virus) [Synthese: E. Sonveaux, Bioorganic Chemistry 14, 274 (1986) sowie N. D. Sinha u. R.

- 25 M. Cook, Nucleic Acids Research 16, 2659 (1988) in 200 µl Carbonat-Puffer (pH = 9) gelöst. Dazu gibt man einen Überschuß eine Lösung des polymeren Fluoreszenz-Farbstoffes gemäß Beispiel 6 in 300 µl Formamid und röhrt 36 Stunden bei Raumtemperatur. Die Aufarbeitung erfolgt durch Gelfiltration on BIORAD-Bio-Gel P 4 und anschließende RP-HPLC Reinigung.

Bei Verwendung des so markierten Aminolink-Oligonucleotids beim DNA-Probe-Test auf Pseudorabies-Virus wird eine verbesserte Sensitivität erreicht als bei Einsatz von mit entsprechenden monomeren Fluoreszenz-Farbstoffen markierter DNA.

Mit ähnlichen Resultaten lässt sich das Aminolinknucleotid auch mit aktivierten polymeren Farbstoffen gemäß den Beispielen 4, 5, 7, 9, 14 und 15 markieren und bei DNA-Probe-Tests einsetzen.

35

Ansprüche

- 40 1. Polymer gebundene verknüpfbare Farbstoffe bestehend aus
a) einem wasserlöslichen Polymer-Rückgrat,
b) daran covalent gebundenen Farbstoffen sowie
c) funktionellen Gruppen, die eine covalente Verknüpfung der polymeren Farbstoffe, mit biologischen Materialien ermöglichen,
worin das wasserlösliche Polymer-Rückgrat ein Copolymer ist welches als nicht-ionische Monomerbausteine Acrylamid, Methacrylamid, $N^{\alpha}C_1-C_4$ -Alkyl(meth)-acrylamide, $N,N-C_1-C_4$ -Dialkylacrylamide, N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinylformamid, N-Vinylacetamid, N-Vinyl-N-methyl-acetamid, N-Vinyl-O-methylurethan, Ethen oder Vinylmethylether enthält.

45 2. Polymer gebundene verknüpfbare Fluoreszenzfarbstoffe gemäß Anspruch 1 enthaltend einen Farbstoff aus der Gruppe der Cumarine, Carbostyrene, Pyrazoline, Naphthalimide, Pyrene, Fluoresceine der Rhodanine.

50 3. Polymer gebundene verknüpfbare Farbstoffe gemäß Anspruch 1 enthaltend einen Farbstoff aus der Gruppe der Azo-, Methin- oder Anthrachinonfarbstoffe.

55 4. Polymer gebundene verknüpfbare Farbstoffe gemäß Anspruch 1 enthaltend funktionelle Gruppen aus der Gruppe der Hydroxyl-, Amino-, Carboxyl-, Thio- und Isothiocyanatgruppen.

5. Polymer gebundene verknüpfbare Farbstoffe gemäß Anspruch 1 wobei
a) das wasserlösliche Polymerrückgrat ein Acrylamid-Maleinsäureanhydrid-Copolymer ist
b) der Farbstoff aus der Gruppe Coumarine, Fluoresceine und Rhodamine stammt und
c) die funktionellen Gruppen durch Umsetzung mit Aminoalkoholen eingeführt werden.

6. Polymer gebundene verknüpfbare Farbstoffe gemäß Anspruch 1 wobei

- a) das wasserlösliche Polymerrückgrat ein Vinylpyrrolidon-Maleinsäureanhydrid-Copolymer ist
 - b) der Farbstoff aus der Grupp Coumarine, Fluoresceine und Rhodamine stammt und
 - c) die funktionellen Gruppen durch Umsetzung mit Aminoalkoholen eingeführt werden.
- 7) Antikörper verknüpft mit einem Polymer gebundenen Farbstoff gemäß einem der Ansprüche 1 bis 6.
- 5 8) Nucleinsäure verknüpft mit einem Polymer gebundenen Farbstoff gemäß einem der Ansprüche 1 bis
6.

10

15

20

25

30

35

40

45

50

55

(19) Europäisches Patentamt
European Patent Office
Offic européen des brevets

(11) Veröffentlichungsnummer:

0 361 229
A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89117097.9

(51) Int. Cl. 5: C09B 69/10, C12Q 1/68,
G01N 33/58

(22) Anmeldetag: 15.09.89

(30) Priorität: 28.09.88 DE 3832830
30.06.89 DE 3921498

(43) Veröffentlichungstag der Anmeldung:
04.04.90 Patentblatt 90/14

(64) Benannte Vertragsstaaten:
CH DE FR GB IT LI

(88) Veröffentlichungstag des später veröffentlichten
Recherchenberichts: 08.08.90 Patentblatt 90/32

(71) Anmelder: BAYER AG

D-5090 Leverkusen 1 Bayerwerk(DE)

(72) Erfinder: Hugi, Herbert, Dr.
Gemarkenweg 9
D-5060 Bergisch Gladbach 2(DE)
Erfinder: Börner, Bruno, Dr.
Max-Planck-Strasse 53
D-5060 Bergisch Gladbach 2(DE)
Erfinder: Kölbl, Heinz, Dr.
Edgewater Tower, Apt. 941 Campbell
Avenue
West Haven Connecticut 06516(US)
Erfinder: Seng, Florin, Dr.
Am Katterbach 46
D-5060 Bergisch Gladbach 2(DE)
Erfinder: Kuckert, Eberhard, Dr., c/o Molecular
Diagn.Inc.
400 Morgan Lane
West Haven, CT 06516(US)
Erfinder: Sackmann, Günter, Dr.
Friedenberger Strasse 11
D-5090 Leverkusen 3(DE)

(54) Polymer-gebundene-Farbstoffe, Verfahren zu deren Herstellung und Verwendung.

(57) Die vorliegende Erfindung betrifft Polymer-
gebundene-Farbstoffe, Verfahren zu deren Herstel-
lung und deren Verwendung wie zum Beispiel als
Markierungssubstanzen in Analysenverfahren. Die
Polymer-gebundenen Farbstoffe, auch Polymere
Farbstoffe genannt, enthalten verknüpfbare funkto-
nelle Gruppen und sind unter üblichen Analysenbe-
dingungen wasserlöslich. Verantwortlich für diese
Wasserlöslichkeit ist normalerweise der Polymere
Anteil. Die Farbstoffe an sich sind oft wasserunlöslich.

EP 0 361 229 A3

Eur päisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 89 11 7097

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.5)
D, A	US-A-4 166 105 (HIRSCHFELD) * Anspruch 1 * ---	1	C 09 B 69/10 C 12 Q 1/68 G 01 N 33/58
A	FR-A-2 390 731 (CHANDON INVESTMENT PLANNING LTD) * Ansprüche * -----	1	
			RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
			C 09 B G 01 N
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenort DEN HAAG	Abschlußdatum der Recherche 03-05-1990	Prüfer GINESTET M. E. J.	
KATEGORIE DER GENANNTEN DOKUMENTE			
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur	T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patendokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument		