Ланцюги Маркова.

Розглянемо послідовність випадкових величин $X_1, X_2, ..., X_n, ...; X_n \in \{0,1,...\} = Z_+$

Послідовність X_n будемо називати *ланцюгом Маркова*, якщо для будь-якої сукупності індексів $n_1 < n_2 < ... < n_k$ має місце властивість:

$$P\{X_{n_k} = i_k / \underbrace{X_{n_1} = i_1, ..., X_{n_{k-2}} = i_{k-2}}_{k-2}, X_{n_{k-1}} = i_{k-1}\} = P\{X_{n_k} = i_k / X_{n_{k-1}} = i_{k-1}\} = P_{i_{k-1}i_k}\{n_{k-1}, n_k\},$$

 $P_{i_{k-1}i_{k}}(n_{k-1},n_{k})$ - перехідна ймовірність ланцюга маркова.

Марківська властивість фактично означає, що майбутнє не залежить від минулого, а залежить тільки від теперішнього.

Ланцюг Маркова називається *однорідним*, якщо $P_{ij}(m,n) = P_{ij}(n-m)$.

 $P_{ij}(n,n+1) = p_{ij}, \forall n$ - для однорідного ланцюга маркова.

В подальшому розглядаємо лише однорідні ланцюги.

 $P = \left\| p_{ij} \right\|_{i,\,i=0}^{\infty}$ - матриця перехідних ймовірностей ланцюга Маркова.

Приклад. (ланцюга Маркова)

Розглянемо схему випробувань Бернуллі з ймовірністю успіху р. Нехай "У"-успіх, "Н" — неуспіх: P("V")=p, P("H")=q; p+q=1. Розглянемо послідовність: "H", "O"..., "O".

Нехай випадкова величина X_n приймає значення : $X_n=i$, якщо на n-му випробуванню реалізувалася серія успіхів довжиною i , та $X_n=0$, якщо сталася реалізація неуспіху . $\{X_n\}$ —ланцюг Маркова з можливими станами $\{0,1,2,\ldots\}$.

Графічно це можна показати так:

 $\left\| p_{ij} \right\|_{i=1}^{\infty}$ - матриця перехідних ймовірностей ланцюга Маркова для 1-го кроку.

Запишемо матрицю переходів за один крок.

$$P = \begin{pmatrix} q & p & 0 & 0 & \dots & . \\ q & 0 & p & 0 & \dots & . \\ q & 0 & 0 & p & \dots & . \\ \dots & \dots & \dots & \dots & \dots & \dots \\ q & 0 & 0 & \dots & 0 & p \end{pmatrix}$$

- де p_{ii} ймовірність знаходження на і-му кроці в j-му стані.

 $p_{ij}(n) = P\{X_n = j/X_0 = i\}$ називається ймовірністю переходу за п кроків.

Теорема (рівняння Чепмена-Колмогорова).

Перехідні ймовірності $p_{ij}(n)$ ланцюга Маркова $\{X_n\}_{n=1}^{\infty}$ задовольняють рівняння

Чепмена-Колмогорова: $p_{ij}(n) = \sum_{k=0}^{\infty} p_{ik}(r) p_{kj}(s)$, де (r,s)- невід'ємні цілі числа такі, що:

r+s=n

◄ Запишемо $p_{ii}(n)$ за визначенням і додамо в чисельник подію ймовірності 1

$$\begin{split} &p_{ij}(n) = P\{X_n = j/X_0 = i\} = \frac{P\{X_n = j, X_0 = i\}}{P\{X_0 = i\}} = \frac{P\{X_n = j, \Omega, X_0 = i\}}{P\{X_0 = i\}} = \\ &= \frac{P\{X_n = j, \bigcup_{k=0}^{\infty} \{X_r = k\}, X_0 = i\}}{P\{X_0 = i\}} = (r < n) = \frac{\sum_{k=0}^{\infty} P\{X_n = j, X_r = k, X_0 = i\}}{P\{X_0 = i\}} = \\ &= \sum_{k=0}^{\infty} P\{X_n = j/X_r = k, X_0 = i\} \frac{P\{X_r = k, X_0 = i\}}{P\{X_0 = i\}} = \sum_{k=0}^{\infty} p_{ik}(r) p_{kj}(n - r) \end{split}$$

<u>Наслідок</u> В матричній формі рівняння записується так: P(n) = P(r)P(s), де s = n - r

Звідси отримуємо таку властивість матриці перехідних ймовірностей $P(n) = P(n-1)P(n) = ... = P^n(1) = P^n$

Розглянемо ймовірності: $p_k(0) = P\{X_0 = k\}$. Розподіл $\{p_k(0)\}_{k=0}^{\infty}$ називають початковим розподілом ланцюга Маркова

Ймовірності $\{p_k(n)\}_{k=0}^{\infty}$, де $p_k(n) = P\{X_n = k\}$, називають безумовним розподілом ланцюга Маркова на n-му кроці. Його можна обчислити користуючись формулою повної

імовірності (з гіпотезами
$$P(H_k) = p_k(0)$$
) : $p_k(n) = \sum_{i=0}^{\infty} p_i(0) p_{ik}(n)$

Класифікація станів дискретного ланцюга Маркова.

Стан i ланцюга Маркова $\{X_n\}_{n=0}^{+\infty}$ називається неістотним (несуттєвим), якщо існують таке число переходів m і стан j такі, що $p_{ij}(m) > 0$, але для $\forall n : p_{ji}(n) = 0$

Нехай $E = \{0,1,2,...\}$ —множина станів з відокремленою від неї множиною неістотних станів. Тоді цю множину називають *множиною істотних станів*. Вона характеризується тим , що потрапивши в неї ланцюг ніколи з неї більш не вийде. Розглянемо клас істотних станів.

Стан j називається досяжним з стану i, якщо існує таке число переходів $m \ge 0$, що $p_{ij}(m) > 0$. За домовленістю будемо вважати, що $p_{ij}(0) = \delta_{ij}$. Будемо позначати $i \to j$, якщо стан j є досяжним зі стану i. Стани називаються такими, що сполучаються $i \leftrightarrow j$, якщо $i \to j$ і $j \to i$: $(i \leftrightarrow j) \Leftrightarrow (i \to j \land j \to i)$

Відношення сполучення $(i \leftrightarrow j)$ " \leftrightarrow " — ϵ рефлексивним, симетричним, транзитивним. Отже, множину всіх істотних станів можна представити , як скінчену або зліченну

сукупність класів E_1, \dots, E_n, \dots , які $E_i \cap E_j = \emptyset$, а в об'єднанні вони дають множину всіх істотних станів $\bigcup_{i=1}^{+\infty} E_i = E$ й характеризуються тим, що стани з яких вони складаються сполучаються між собою, а переходи між класами істотних станів E_1, \dots, E_n, \dots є неможливими.

Отже, множина всіх станів ланцюга Маркова $Z_+ = \{0, ..., n, ...\}$ складається з E^* (клас неістотних станів) і з $E_1, E_2, ..., E_n$... (класи істотних станів), $\bigcup_{i=1}^{+\infty} E_i = E$.

Ланцюг Маркова, який складається лише з одного класу істотних станів: $E = E_1$ називається *незвідним ланцюгом*.

Число d(i) називається nepiodom стану "i" ланцюга Маркова , якщо d(i) - найменший спільний дільник(НСД) таких n , що $p_{ij}(n) > 0$. Якщо d(i) = 1 , то стан "i" називається nepioduчним.

Приклади періодичного ЛМ:

d(i) = 2, тобто лише за парне число кроків можна потрапити в будь-який стан.

Розглянемо довільний стан "i".

Для $\forall n \geq 1$ визначимо ймовірність $f_{ii}(n) = P\{X_n = i, X_{n-1} \neq i, ..., X_1 \neq i/X_0 = i\}$, яка є ймовірністю того, що почавши своє функціонування зі стану "i", ланцюг Маркова вперше повернеться в цей стан за n кроків. За домовленістю вважаємо $f_{ii}(0) = 0$, $f_{ii}(1) = p_{ii}$. Для $n \geq 1$ можна легко отримати співвідношення $p_{ii}(n) = \sum_{k=0}^n f_{ii}(k) p_{ii}(n-k)$, $n \geq 1$. Позначимо через $P_{ii}(s) = \sum_{n=0}^{+\infty} s^n p_{ii}(n)$ та $F_{ii}(s) = \sum_{n=0}^{+\infty} s^n f_{ii}(n)$ генератриси послідовностей $p_{ii}(n)$ та $f_{ii}(n)$. Тоді $P_{ii}(s) - p_{ii}(0) = P_{ii}(s) - 1 = F_{ii}(s) P_{ii}(s) \Rightarrow P_{ii}(s) = \frac{1}{1 - F_{ii}(s)}$

Стан i називається *рекурентним*, якщо: $\sum_{n=1}^{+\infty} f_{ii}(n) = 1$.

Стан i називається нерекурентним, якщо: $\sum_{n=0}^{+\infty} f_{ii}(n) < 1$.

Теорема (критерій рекурентності)

Стан $i \in$ рекурентним тоді і тільки тоді, коли $\sum_{i=0}^{+\infty} p_{ii}(n) = \infty$.

◀ Згадаємо лему Абеля з мат. аналізу, вона стверджує, якщо

а)
$$\sum_{n=0}^{+\infty} \grave{a}_n = a < \infty$$
, тоді $\lim_{s \to 1-} \sum_{n=0}^{+\infty} s^n a_n = a$;

б) якщо
$$a_n \geq 0$$
 та $\lim_{s \to 1^-} \sum_{n=0}^{+\infty} s^n a_n = a < \infty$, тоді ряд $\sum_{n=0}^{+\infty} \grave{a}_n$ збігається і $\sum_{n=0}^{+\infty} \grave{a}_n = a$.

Доведення теореми.

Необхідність:

Нехай стан "i" є рекурентним. Покажемо, що $\sum_{n=0}^{+\infty} p_{ii}(n) = +\infty$. За визначенням, якщо стан

"
$$i$$
" є рекурентним, тоді $\sum_{n=0}^{+\infty} f_{ii}(n) = 1 \stackrel{\ddot{e}.\lambda \acute{a} \mathring{a} \ddot{e} \ddot{v}}{\Rightarrow} \lim_{s \to 1-} F_{ii}(s) = 1 \Rightarrow \lim_{s \to 1-} P_{ii}(s) = \infty \Rightarrow \sum_{n=0}^{+\infty} p_{ii}(n) = \infty.$

Достатність:

Нехай $\sum_{n=0}^{+\infty} p_{ii}(n) = \infty$, а стан "i" ϵ нерекурентним.

Тоді, за визначенням $\sum_{i=1}^{+\infty} f_{ii}(n) < 1 \stackrel{\vec{e}.\lambda \acute{a} \acute{a} \vec{e} \vec{y}}{\Rightarrow} \lim_{s \uparrow 1} F_{ii}(s) < 1 \Rightarrow \lim_{s \uparrow 1} P_{ii}(s) = \infty$. Звідки випливає, що

 $\sum_{n=0}^{+\infty} p_{ii}(n) < \infty$. Це протиріччя й доводить достатність.

Стан i називається *нульовим*, якщо $\lim_{n\to\infty} p_{ii}(n) = 0$. У протилежному випадку стан i називається *ненульовим*.

Наслідок: Нерекурентний стан завжди є нульовим. Ненульовий стан завжди рекурентний.

Нульовий стан може бути рекурентним або нерекурентним . Ненульовий стан може бути лише рекурентним .