MATH-2417.001 Notes

Minh Nguyen

September 8, 2023

Contents

1	Limits					
	1.1	1.1 Introduction to Calculus — "Mathematics of Change"				
	1.2	2 Finding Limits Graphically & Numerically				
		1.2.1 When Limits Fail to Exist	2			
		1.2.2 A Formal Definition	2			
	1.3	Evaluating Limits Analytically	3			
		1.3.1 Properties of Limits	3			
		1.3.2 Squeeze Theorem	4			
	1.4 Continuity					
		1.4.1 Open and Closed Intervals	E			
		1.4.2 Discontinuities	Ę			
		1.4.3 Asymptotes	6			
2	Differentiation					
	2.1	Derivatives and Tangent Lines	7			
	2.2	2.2 Rules of Derivatives				
3	Che	eat Sheet	11			

Author's Notes

This is my very first project that I wrote in LATEX, but I hope you enjoy the notes that I poured my blood, sweat, and tears into

These notes are based off of the textbook $Calculus\ 11e$ by $Ron\ Larson$ and $Bruce\ Edwards$, as well as the lectures of professor $Carlos\ Arreche$ from the $Fall\ 2023$ semester.

If you have any complaints, or suggestions regarding these notes, please email me at mdn220004@utdallas.edu

1 Limits

1.1 Introduction to Calculus — "Mathematics of Change"

You can use calculus to study static objects by pretending they're changing

Example

A circle has area πr^2 , but you can use the radius r to calculate the area of other polygons, such as a square, triangle, pentagon, etc...

In other words, the limit of the areas inscribed polygons in a circle is πr^2

1.2 Finding Limits Graphically & Numerically

Theorem Informal Definition of Limit

 $\lim_{x \to c} f(x) = L$

As x gets closer to c, the value of f(x) becomes L

Limits also depend on what direction¹ you're coming from:

Meaning	Math Expression
From the right	$\lim_{x \to c^+} f(x)$
From the left	$\lim_{x \to c^{-}} f(x)$

Example Estimating Graphically and Numerically

Consider the function $f(x) = \frac{x^3 - 1}{x - 1}$:

Notice how in both the **table and graph**, f(x) looks like it's approaching f(x) = 3 when x = 1

 $^{^{1}}$ If the limits from the left and right don't match, then the limit doesn't exist

1.2.1 When Limits Fail to Exist

Note Limits Don't Exist When

- $\lim_{x\to c^-} f(x) \neq \lim_{x\to c^+} f(x)$
- f(x) is a violently oscillating function

1.2.2 A Formal Definition

Basically...

Theorem Limits via. $\varepsilon - \delta$

The statement $\lim_{x\to c} f(x) = L \text{ means}$ that for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x-c| < \delta$ then $|f(x)-L| < \varepsilon$

Refer back to finding limits numerically (example 1.2):

- $\pm \varepsilon$ would be the values on the row f(x)
- $\pm \delta$ would be the values on the row x

Example Proving Limits via. $\varepsilon - \delta$ Definition

Consider f(x) = 10x - 6, prove that $\lim_{x\to 3} f(x) = 24$ using the $\epsilon - \delta$ definition:

The first thing we would have to do is to find δ :

$$\begin{split} |(10x-6)-(24)| &< \varepsilon \\ |10x-30| &< \varepsilon \\ 10|x-3| &< \varepsilon \\ |x-3| &< \frac{\varepsilon}{10} \end{split}$$

$$0 < |x - (3)| < \delta$$

Notice how $\delta=\frac{\epsilon}{10}.$ This guarantees that $|f(x)-L|<\epsilon$ whenever $0<|x-c|<\delta$

2

1.3 Evaluating Limits Analytically

1.3.1 Properties of Limits

Theorem Basic Limit Properties

Let
$$\{b, c\} = \mathbb{R}, n = \mathbb{N}$$
:

1.
$$\lim_{x\to c} x = c$$

$$2. \lim_{x \to c} b = b$$

3.
$$\lim_{x \to c} x^n = c^n$$

Example Evaluating Basic Limits

$$\lim_{x \to 2} 5 = 5$$

$$\lim_{x \to 4} x = 4$$

$$\lim_{x \to 5} x^2 = 25$$

 $\begin{array}{l} \mathbb{R} \ = & \text{all real numbers} \\ \mathbb{N} \ = & \text{all natural} \\ \text{numbers} \end{array}$

f(g(x)) may also be written as $f \circ g$

Theorem Limit Properties

Let $\{b,c\} = \mathbb{R}, \, n = \mathbb{N}, \, \text{and} \, f \, \text{ and } g \, \text{ are functions with limits:}$

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = K$$

1.
$$\lim_{x\to c} [b \cdot f(x)] = b \cdot L$$

2.
$$\lim_{x \to c} [b \pm f(x)] = b \pm L$$

3.
$$\lim_{x\to c} [f(x) \cdot g(x)] = L \cdot K$$

4.
$$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{K}, K \neq 0$$

5.
$$\lim_{x \to c} [f(x)]^n = L^n$$

6.
$$\lim_{x\to c} \sqrt[n]{x} = \sqrt[n]{c}$$

7.
$$\lim_{x\to c} f(g(x)) = f(\lim_{x\to c} g(x)) = f(K)$$

Example Limit of Polynomial

Evaluate $\lim_{x\to 5} [3x^3 + 4]$:

 $\lim_{x \to 5} [3x^3 + 4] = \lim_{x \to 5} 3x^3 + \lim_{x \to 5} 4$ $= 3 \cdot \lim_{x \to 5} x^3 + \lim_{x \to 5} 4$ $= 3 \cdot (5)^3 + 4$ = 379

Theorem Limits of Polynomial/Rationals

Let $c = \mathbb{R}$ and p be a polynomial function:

$$\lim_{x \to c} p(x) = p(c)$$

Let r be a rational function $r(x) = \frac{p(x)}{q(x)}$ and $c = \mathbb{R}$ such that $q(c) \neq 0$:

$$\lim_{x \to c} r(x) = r(c) = \frac{p(r)}{q(r)}$$

1.3.2 Squeeze Theorem

Theorem The Squeeze Theorem

Suppose $h(x) \leq f(x) \leq g(x)$ for all x in an open interval except when x = c

Also suppose that $\lim_{x\to c} h(x) = L = \lim_{x\to c} g(x)$ i.e. they share the same limit.

This would mean that $\lim_{x\to c} f(x) = L$

Theorem Trigonomic Limits

- 1. $\lim_{x\to 0} \frac{\sin x}{x}$
- 2. $\lim_{x\to 0} \frac{1-\cos x}{x} = 1$

Open/closed interval continuity will be discussed later in section 1.4.1.

Squeeze Theorem

1.4 Continuity

Definition Definition of Continuity

A function f is continuous if:

- 1. f(c) exists
- 2. $\lim_{x\to c} f(x)$ exists
- 3. $f(c) = \lim_{x \to c} f(c)$

 \therefore means "therefore"

Example Determine Continuity

Determine if the function is continuous at x=2

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{for } x \neq 2\\ 1 & \text{for } x = 2 \end{cases}$$

We should probably start by plugging in x=2 for the case that $x \neq 2$ to see if it equals the case where x=2:

$$\frac{x^2 - x - 2}{x - 2} = \frac{(2)^2 - (2) - 2}{(2) - 2} = \frac{0}{0}$$

That's so uncool. Let's factor it out and try again!

$$\frac{x^2 - x - 2}{x - 2} = \frac{(x - 2)(x + 1)}{x - 2} = x + 1$$
$$= (2) + 1$$

Now, we compare both that with the case where x=2 to see if they are the same: $3 \neq 2$

 $\therefore f(x)$ is not continuous at x = 2!

Note Continuous Functions

The following functions are always continuous everywhere they're defined:

- polynomial functions
- rational functions
- radical functions
- trigonomic functions

1.4.1 Open and Closed Intervals

A function is continuous on an **open interval** (a,b) if f(x)=c for each c in (a,b)

A function is continuous on a **closed interval** [a, b] if:

- f(x) is continuous on (a, b)
- $\lim_{x\to b^-} f(x) = f(b)$
- $\lim_{x\to a^+} f(x) = f(a)$

Theorem Intermediate Value Theorem

If f(x) is continuous on $[a,b], a \neq b$, and k is any number between f(a) and f(b), then there exists a number c in [a,b] such that:

$$f(c) = k$$

1.4.2 Discontinuities

There are two cases where discontinuities happen:

Removable Discontinuity

Non-Removable Discontinuity

Another example of removable discontinuity is in example 1.2

1.4.3 Asymptotes

Definition Asymptotes

Vertical asymptote are when: Horizontal asymptote is:

$$\lim_{x\to c^\pm} f(x) = \pm \infty$$

$$\lim_{x \to \pm \infty} f(x) = L$$

Vertical Asymptote

$$f(x) = \frac{1}{x}$$

Horizontal Asymptote

$$f(x) = 2^x$$

Note

We can infer something from vertical asymptotes from this graph: As the denominator becomes closer to zero, and it's a positive number, then the f(x) will approach ∞ . If the denominator approaches zero and is negative, then f(x) will approach $-\infty$

Example Curveball Asymptote

Find the asymptotes:

$$f(x) = \frac{\sqrt{(x-1)(x-3)}}{(x-2)(x-4)}$$

You'd think that the asymptotes are $x = \{2,4\}$, but you must consider the domain at which f(x) exists. Because this is a square root function, (x-1)(x-3) cannot be a negative number. Plugging in x=2 would result in a negative square root.

> Moral of the story: double-check your answers!

Example Curveball Trigonometry

Find the asymptotes:

$$f(x) = \frac{\sin(x)}{x^3 - x}$$

Let's start by factoring out the denominator:

$$f(x) = \frac{\sin(x)}{x(x-1)(x+1)}$$

You'd think that the asymptotes are $x=\{-1,0,1\}$. However, $\lim_{x\to 0} f(x)=1-f(x)$ can also be re-written as this: $\lim_{x\to 0} \left[\frac{\sin x}{x}\right] \cdot \lim_{x\to 0} \left[\frac{1}{(x-1)^2}\right] = -1$

2 Differentiation

Note

Derivatives are essentially the slope of the function at a certain point

They also $cannot\ exist$ where the limit doesn't exist at the function

2.1 Derivatives and Tangent Lines

Some mathematicians were trying to find out how to draw a line that intersects a function at *only one point*:

However, it takes *two points* to draw a line, so they were confuzzled. You can just Google up the rest of the lore behind the definition of a limit, but it boils down to this:

Theorem Derivative via. Limits

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=f'(c) \text{ and } \lim_{x\to a}\frac{f(x)-f(a)}{x-a}=f'(c)$$

Note Alternative Ways of Writing a Derivative

There are other ways that mathematicians defined derivative:

•
$$f'(x)$$

•
$$\frac{d}{dx}f(x)$$

$$\bullet \quad \frac{dy}{dx}$$

•
$$Dx(y)$$

This isn't essential to know, but it's pretty useful to see how other mathematicians may express derivatives

Theorem Continuity of Derivatives

If function f(x) is differentiable at x=c, then it is also continuous at x=c

7

Example Finding the Tangent Line

Find the tangent lines to $f(x) = x^2 + 1$ at (-2, 5):

Let's start by finding the derivative of the function at x = -2:

$$f'(-2) = \lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h}$$

$$= \lim_{h \to 0} \frac{\left((-2+h)^2 + 1\right) - (5)}{h}$$

$$= \lim_{h \to 0} \frac{h^2 - 4h}{h}$$

$$= \lim_{h \to 0} -4 + h = -4 + (0)$$

$$= -4$$

Now we must write a point-slope equation with that derivative.

$$y - y_1 = m(x - x_1)$$

$$y - (5) = (-4)(x - (-2))$$

$$y - 5 = -4(x + 2)$$

Tangent line to $f(x) = x^2 + 1$ at (-2, 5) has equation:

$$y - 5 = -4(x + 2)$$

Another way to find the derivative of the function would be to find the limit of f(x) when x = c and then plugging in c with any number that you want:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

$$= \lim_{h \to 0} \frac{((c+h)^2 + 1) - (c^2 + 1)}{h}$$

$$= \lim_{h \to 0} \frac{(c^2 + 2ch + h^2 + 1) - (c^2 + 1)}{h}$$

$$= \lim_{h \to 0} \frac{2ch + h^2}{h} = \lim_{h \to 0} \frac{h(2c+h)}{h}$$

$$= \lim_{h \to 0} 2c + h = 2c + (0)$$

$$= 2c$$

$$c = 2$$
$$f'(-2) = 2(-2) = -4$$

2.2 Rules of Derivatives

Finding derivatives with the limit definition can get pretty exhausting, so mathematicians came up with a lot of shortcuts to evaluate derivatives much quicker. This is a pretty lengthy section, because of the many practice example problems I'll be putting in this section, but here are the rules in short:

let:
$$f(x) = a$$
 function $g(x) = a$ nother function $c = a$ constant

Rule	Math Expression
Constant	$\frac{d}{dx}c = 0$
Power	$\frac{d}{dx}x^n = nx^{n-1}$
Sum and Difference	$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$
sin	$\frac{d}{dx}\sin(x) = \cos(x)$
cos	$\frac{d}{dx}\cos(x) = -\sin(x)$
Product	$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$
Quotient	$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{\left(g(x) \right)^2}$
Chain	$\frac{d}{dx}f(g(x)) = g'(x) \cdot f'(g(x))$

Example Power Rule

1.
$$\frac{d}{dx}(3x^2 + 4x) = 6x + 4$$

$$3. \ \frac{d}{dx}\sqrt[3]{x^2} = \frac{d}{dx}x^{\frac{2}{3}} = x^{-\frac{1}{3}}$$

2.
$$\frac{d}{dx}\sqrt{x} = \frac{d}{dx}x^{\frac{1}{2}} = \frac{1}{2}x^{-\frac{1}{2}}$$

Example sin/cos Rule

1.
$$\frac{d}{dx}\left(2\sin(\theta) + 3\cos(\theta) - \frac{4}{\theta}\right) = 2\cos(\theta) - 3\sin(\theta) + \frac{4}{\theta^2}$$

2.
$$\frac{d}{dx}(x^2 + 2\cos(x)) = 2x - 2\sin(x)$$

You don't have to simplify completely on openended questions!

Example Find Horizontal Tangents

Find the horizontal tangents of $f(x) = x^4 - 2x^2 + 3$:

The question is essentially asking us to find the tangent lines whose slopes are equal to 0: f'(x) = 0

$$\frac{d}{dy}f(x) = 0$$

$$\frac{d}{dy}(x^4 - 2x^2 + 3) = 0$$

$$4x^3 - 4x = 0$$

$$4x(x^2 - 1) = 0$$

$$x = \{0, \pm 1\}$$

Now we plug in these values into f(x) to get the tangent lines:

$$f(0) = (0)^{4} - 2(x)^{2} + 3 = 3$$

$$f(-1) = (-1)^{4} - 2(-1)^{2} + 3 = 2$$

$$f(1) = (1)^{4} - 2(1)^{2} + 3 = 2$$

So the horizontal tangent lines are at y=3 and y=2

3 Cheat Sheet

Limits

$$\lim_{x \to c} f(x) = L$$