# Exercise Solutions Calculus Volume 1

Henrik Samuelsson

# **Contents**

| Co | onten | ts                         | 2  |
|----|-------|----------------------------|----|
| 1  | Fun   | ctions and Graphs          | 3  |
|    | 1.1   | Review of Functions        | 3  |
|    | 1.2   | Basic Classes of Functions | 22 |
|    | 1.3   | Trigonometric Functions    | 31 |
|    | 1.4   | Inverse Functions          | 31 |
|    | 1.5   | Chapter Review             | 31 |

# Chapter 1

# **Functions and Graphs**

# 1.1 Review of Functions

# **Checkpoint 1.1: Evaluating Functions**

# Instruction

For the function  $f(x) = x^2 - 3x + 5$  evaluate

- (a) f(1)
- (b) f(a+h)

# **Solution**

(a) 
$$f(1) = 1^2 - 3 \cdot 1 + 5 = 1 - 3 + 5 = 3$$
.

(b) 
$$f(a+h) = (a+h)^2 - 3(a+h) + 5 = a^2 + 2ah + h^2 - 3a - 3h + 5$$
.

# Answer

- (a) f(1) = 3.
- (b)  $f(a+h) = a^2 + 2ah + h^2 3a 3h + 5$ .

# Checkpoint 1.2: Finding Domain and Range

# Instruction

Find the domain and range for  $f(x) = \sqrt{4 - 2x} + 5$ .

#### Solution

i To find the domain of f, we need the expression  $4 - 2x \ge 0$ , due to that real negative numbers do not have a square root. Solving this inequality, we conclude that the domain is  $\{x \mid x \le 2\}$ .

ii To find the range of f, we note that since  $\sqrt{4-2x} \ge 0$ , it follows that  $f(x) = \sqrt{4-2x} + 5 \ge 5$ . Therefore, the range of f must be a subset of the set  $\{y \mid y \ge 5\}$ .

To show that every element in this set is in the range of f, we need to show that for all y in this set, there exists a real number x in the domain such that f(x) = y. Let  $y \ge 5$ . Then, f(x) = y if and only if

$$\sqrt{4-2x}+5=y.$$

Solving this equation for x, we see that x must solve the equation

$$\sqrt{4-2x} = y - 5.$$

Since  $y \ge 5$ , such an x could exist. Squaring both sides of the above equation we have

$$4 - 2x = (y - 5)^2.$$

Therefore we need

$$-2x = (y-5)^2 - 4,$$

which implies

$$x = 2 - \frac{(y-5)^2}{2}.$$

We just need to verify that x is in the domain of f. Since the domain of f consists of all real numbers less or equal to 2, and

$$2 - \frac{(y-5)^2}{2} \le 2,$$

there does exist an x in the domain of f. We conclude that the range of f is  $\{y \mid y \ge 5\}$ .

#### **Answer**

Domain =  $\{x \mid x \le 2\}$ , range =  $\{y \mid y \ge 5\}$ .

# **Checkpoint 1.3: Finding Zeroes**

#### Instruction

Find the zeroes of  $f(x) = x^3 - 5x^2 + 6x$ .

#### Solution

The zeroes of a function are the values of x where f(x) = 0. To find the zeroes, we need to solve

$$f(x) = x^3 - 5x^2 + 6x = 0.$$

Factor out *x* 

$$f(x) = x(x^2 - 5x + 6) = 0.$$

We can continue factoring by pure inspection, with the goal of finding a pair of numbers that add up to -5 and whose product is 6. This pair of numbers turns out to be -2 and -3, leading to the factoring

$$f(x) = x(x-2)(x-3) = 0.$$

From the above complete factoring of f, we conclude that there are three zeroes when x is 0, 2, and 3.

### **Answer**

x = 0, 2, 3.

# Checkpoint 1.4: Combining Functions Using Mathematical Operations

# Instruction

For  $f(x) = x^2 + 3$  and g(x) = 2x - 5, find (f/g)(x) and state its domain.

# **Solution**

To find (f/g)(x) we write the function with the quotient operator

$$\frac{f}{g}(x) = \frac{x^2+3}{2x-5}.$$

The domain of this function is  $\{x \mid x \neq \frac{5}{2}\}$ .

#### **Answer**

 $\frac{f}{g}(x) = \frac{x^2+3}{2x-5}$ . The domain is  $\{x \mid x \neq \frac{5}{2}\}$ .

# **Checkpoint 1.5: Compositions of Functions**

#### Instruction

Let 
$$f(x) = 2 - 5x$$
. Let  $g(x) = \sqrt{x}$ . Find  $(f \circ g)(x)$ .

#### **Solution**

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = 2 - 5\sqrt{x}.$$

#### **Answer**

$$(f \circ g)(x) = 2 - 5\sqrt{x}.$$

# Checkpoint 1.6: Application Involving a Composite Function

#### Instruction

If items are on sale for 10% off their original price, and a customer has a coupon for an additional 30% off, what will be the final price for an item that is originally x dollars, after applying the coupon to the sale price?

# **Solution**

Since the sale price 10% off the original price, if an item is *x* dollars, its sale price is given by

$$f(x) = 0.90x$$
.

Since the coupon entitles an individual to 30% off the price of any item, if an item is *y* dollars, the price after applying the coupon, is given by

$$g(y) = 0.70y$$
.

Therefore, if the price is originally *x* dollars, its price after applying the coupon to the sale price will be

$$(g \circ f)(x) = g(f(x)) = (0.70)0.90x = 0.63x..$$

#### Answer

$$(g \circ f)(x) = 0.63x.$$

# Exercise 1.1.1

## Instruction

Assuming the relation in table 1.1.

- (a) Determine the domain and the range of the relation.
- (b) State whether the relation is a function.

| - | x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
|---|---|----|----|----|---|---|---|---|
|   | Ŋ | 9  | 4  | 1  | 0 | 1 | 4 | 9 |

Table 1.1: Relation between x and y in exercise 1.1.1

(a) The domain of the relation is the set of unique *x* values,

$$\{-3, -2, -1, 0, 1, 2, 3\}.$$

The range of the relation is the set of unique *y* values,

$$\{0,1,4,9\}.$$

(b) This relation is a function, each input is a assigned to exactly one output.

### **Answer**

- (a) Domain =  $\{-3, -2, -1, 0, 1, 2, 3\}$ , range =  $\{0, 1, 4, 9\}$ .
- (b) Yes, a function.

# Exercise 1.1.2

# Instruction

Assuming the relation in table 1.2.

- (a) Determine the domain and the range of the relation.
- (b) State whether the relation is a function.

| $\bar{x}$      | -3 | -2 | -1 | 0 | 1 | 2 | 3  |
|----------------|----|----|----|---|---|---|----|
| $\overline{y}$ | -2 | -8 | -1 | 0 | 1 | 8 | -2 |

Table 1.2: Relation between *x* and *y* in exercise 1.1.2

# **Solution**

(a) The domain of the relation is the set of unique *x* values,

$$\{-3, -2, -1, 0, 1, 2, 3\}.$$

The range of the relation is the set of unique *y* values,

$$\{-8, -2, -1, 0, 1, 8\}.$$

(b) This relation is a function, each input is a assigned to exactly one output.

- (a) Domain =  $\{-3, -2, -1, 0, 1, 2, 3\}$ , range =  $\{-8, -2, -1, 0, 1, 8\}$ .
- (b) Yes, a function.

### Exercise 1.1.3

#### Instruction

Assuming the relation in table 1.3.

- (a) Determine the domain and the range of the relation.
- (b) State whether the relation is a function.

Table 1.3: Relation between x and y in exercise 1.1.3

#### Solution

(a) The domain of the relation is the set of unique *x* values,

$$\{0,1,2,3\}.$$

The range of the relation is the set of unique *y* values,

$$\{-3, -2, -1, 0, 1, 2, 3\}.$$

(b) This relation is not a function, each input is not assigned to exactly one output. Take for example x = 1 that can cause both y = -3 and y = 1.

#### Answer

- (a) Domain =  $\{0,1,2,3\}$ , range =  $\{-3,-2,-1,0,1,2,3\}$ .
- (b) No, not a function.

# Exercise 1.1.4

#### Instruction

Assuming the relation in table 1.4.

- (a) Determine the domain and the range of the relation.
- (b) State whether the relation is a function.

| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| y | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Table 1.4: Relation between *x* and *y* in exercise 1.1.4

(a) The domain of the relation is the set of unique *x* values,

$$\{1,2,3,4,5,6,7\}.$$

The range of the relation is the set of unique *y* values,

{1}.

(b) This relation is a function, each input is a assigned to exactly one output.

# **Answer**

- (a) Domain =  $\{1, 2, 3, 4, 5, 6, 7\}$ , range =  $\{1\}$ .
- (b) Yes, a function.

# Exercise 1.1.5

# Instruction

Assuming the relation in table 1.5.

- (a) Determine the domain and the range of the relation.
- (b) State whether the relation is a function.

| $\bar{x}$      | 3 | 5 | 8 | 10 | 15 | 21 | 33 |
|----------------|---|---|---|----|----|----|----|
| $\overline{y}$ | 3 | 2 | 1 | 0  | 1  | 2  | 3  |

Table 1.5: Relation between *x* and *y* in exercise 1.1.5

### **Solution**

(a) The domain of the relation is the set of unique *x* values,

$${3,5,8,10,15,21,33}.$$

The range of the relation is the set of unique *y* values,

$$\{0,1,2,3\}.$$

(b) This relation is a function, each input is a assigned to exactly one output.

- (a) Domain =  $\{3, 5, 8, 10, 15, 21, 33\}$ , range =  $\{0, 1, 2, 3\}$ .
- (b) Yes, a function.

### Exercise 1.1.6

## Instruction

Assuming the relation in table 1.6.

- (a) Determine the domain and the range of the relation.
- (b) State whether the relation is a function.

Table 1.6: Relation between x and y in exercise 1.1.6

### **Solution**

(a) The domain of the relation is the set of unique *x* values,

$$\{-7, -2, 0, 1, 3, 6\}.$$

The range of the relation is the set of unique y values,

$$\{-2, -1, 1, 4, 5, 11\}.$$

(b) This relation is not a function, each input is not assigned to exactly one output. See x = -2, that can cause both y = 1 and y = 5.

## **Answer**

- (a) Domain =  $\{-7, -2, 0, 1, 3, 6\}$ , range =  $\{-2, -1, 1, 4, 5, 11\}$ .
- (b) No, not a function.

#### Exercise 1.1.7

## Instruction

Find the below values for the function f(x) = 5x - 2, if they exist, then simplify.

(a) f(0)

- (b) f(1)
- (c) f(3)
- (d) f(-x)
- (e) *f*(*a*)
- (f) f(a+h)

- (a)  $f(0) = 5 \cdot 0 2 = 0 2 = -2$ .
- (b)  $f(1) = 5 \cdot 1 2 = 5 2 = 3$ .
- (c)  $f(2) = 5 \cdot 3 2 = 15 2 = 13$ .
- (d) f(-x) = 5(-x) 2 = -5x 2.
- (e) f(a) = 5a 2.
- (f) f(a+h) = 5(a+h) 2 = 5a + 5h 2.

# Answer

- (a) -2.
- (b) 3.
- (c) 13.
- (d) -5x 2.
- (e) 5a 2.
- (f) 5a + 5h 2.

# Exercise 1.1.8

# Instruction

Find the below values for the function  $f(x) = 4x^2 - 3x + 1$ , if they exist, then simplify.

- (a) f(0).
- (b) f(1).
- (c) f(3).
- (d) f(-x).
- (e) f(a).
- (f) f(a+h).

(a) 
$$f(0) = 4 \cdot 0^2 - 3 \cdot 0 + 1 = 4 \cdot 0 - 0 + 1 = 0 - 0 + 1 = 1$$
.

(b) 
$$f(1) = 4 \cdot 1^2 - 3 \cdot 1 + 1 = 4 \cdot 1 - 3 + 1 = 4 - 3 + 1 = 2$$
.

(c) 
$$f(3) = 4 \cdot 3^2 - 3 \cdot 3 + 1 = 4 \cdot 9 - 9 + 1 = 36 - 9 + 1 = 28$$
.

(d) 
$$f(-x) = 4(-x)^2 - 3(-x) + 1 = 4x^2 + 3x + 1$$
.

(e) 
$$f(a) = 4a^2 - 3a + 1$$
.

(f) 
$$f(a+h) = 4(a+h)^2 - 3(a+h) + 1$$
  
=  $4(a^2 + 2ah + h^2) - 3a - 3h + 1$   
=  $4a^2 + 4h^2 + 8ah - 3a - 3h + 1$ .

#### **Answer**

- (a) 1.
- (b) 2.
- (c) 28.

(d) 
$$4x^2 + 3x + 1$$
.

(e) 
$$4a^2 - 3a + 1$$
.

(f) 
$$4a^2 + 4h^2 + 8ah - 3a - 3h + 1$$
.

## Exercise 1.1.15

Find the domain, range, and all zeros/intercepts, if any, of the function  $g(x) = \sqrt{8x - 1}$ .

## **Solution**

- i The domain of the square root function is  $[0, \infty)$ , which implies  $8x 1 \ge 0$ . Solving for x gives  $x \ge \frac{1}{8}$ .
- ii To find the range of g, we note that  $\sqrt{8x-1} \ge 0$ . Therefore, the range of g must be a subset of the set  $\{y \mid y \ge 0\}$ . To show that every element in this set is in the range of g, we need to show that for a given g in this set, there exists a real number g in the domain such that g(g) = g.

Let 
$$y \ge 0$$
. Then  $g(x) = y$  if and only if

$$\sqrt{8x-1}=y.$$

We are interested in x, and will solve this equation for x. Since  $y \ge 0$  such an x could exist. Squaring both sides of this equation, we have

$$8x - 1 = y^2$$
.

Therefore, we need

$$8x = y^2 + 1,$$

which implies

$$x = \frac{y^2 + 1}{8}.$$

We just need to verify that x is in the domain of g. Since the domain of g consists of all real numbers greater than or equal to 1/8, and

$$\frac{y^2+1}{8}\geq \frac{1}{8},$$

there does exist an x in the domain of g. We conclude that the range of g is  $\{y \mid y \ge 0\}$ .

- iii To find the zeroes, solve  $g(x) = \sqrt{8x 1} = 0$ . We discover that g have one zero at x = -1/8.
- iv The y-intercept is given by (0, g(0)). Since x = 0 isn't in the domain of g, it follows that that there aren't any intercepts.

#### **Answer**

Domain =  $x \ge \frac{1}{8}$ , range =  $\{y \mid y \ge 0\}$ , zeroes x = -1/8, no intercepts.

# Exercise 1.1.23

Sketch the graph for the function f(x) = 3x - 6 with the aid of table 1.7.

| $\bar{x}$      | -3  | -2  | -1 | 0  | 1  | 2 | 3 |
|----------------|-----|-----|----|----|----|---|---|
| $\overline{y}$ | -15 | -12 | -9 | -6 | -3 | 0 | 3 |

Table 1.7: Relation between *x* and *y* in exercise 1.1.23

# **Solution**

Begin by sketching the axes. We choose the same scale on both axes to not distort the graph. We choose the range for both axes to be -15 to 15, allowing us to plot all the points from table 1.7, see figure 1.1.



Figure 1.1: Empty graph with just the axes

After having sketched the axes we add markers based on the data in table 1.7, see figure 1.2.



Figure 1.2: Graph with added markers

We then connect the markers with line segments. In this particular case the result will be a single straight line so we can use a ruler when sketching, , see figure 1.3.



Figure 1.3: Graph with connected markers



Figure 1.4: Answer to exercise 1.1.23

# Exercise 1.1.29

Use the vertical line test to determine whether the graph in figure 1.5 represent a function. Assume that the graph continues at both ends beyond the given grid. If the graph represents a function, then determine the following for the graph:

- (a) Domain and range
- (b) *x*-intercept, if any (estimate where necessary)
- (c) *y*-intercept, if any (estimate where necessary)
- (d) The intervals for which the function is increasing

- (e) The intervals for which the function is decreasing
- (f) The intervals for which the function is constant
- (g) Symmetry about any axis and/or the origin
- (h) Whether the function is even, odd, or neither



Figure 1.5: Graph for exercise 1.1.29

The graph in figure 1.5 do represent a function because every vertical line that may be drawn intersects the graph no more than once. See figure 1.6 for an example of a vertical line with one intersection of the graph. We could slide this line over the entire graph and there would always only be at most one intersection.



Figure 1.6: Vertical line test illustration

- (a) i The function seems to grow rapidly as x goes towards  $\pm \infty$ , but there will still always be a y value. We conclude that the domain is all real numbers.
  - ii *y* is always greater or equal to 0, this is the range.
- (b) y is zero for x = -1, and x = 1, these are the x-intercepts.
- (c) The *y*-intercept is y = 1.
- (d) The function is increasing for the intervals -1 < x < 0 and  $1 < x < \infty$ .
- (e) The function is decreasing for the intervals  $-\infty < x < -1$  and 0 < x < 1.
- (f) The function changes from decreasing/increasing when x is -1, 0, and 1, but there are no intervals for which the function is constant.
- (g) (-x,y) is on the graph whenever (x,y) is on the graph, in other words the function is symmetric around the y-axis.
- (h) The function is not odd because  $f(-x) \neq -f(x)$  for all x in the domain. Take for example x = 0.5 for which  $f(-x) \approx 0.6$  and  $-f(x) \approx -0.6$ .
  - The function is even because f(-x) = f(x) for all x. Take for example x = 0.5 for which  $f(-x) \approx 0.6$  and  $f(x) \approx 0.6$ .

Graph represents a function.

- (a) Domain: all real numbers, range:  $y \ge 0$ .
- (b) x = -1 and x = 1.
- (c) y = 1.
- (d) -1 < x < 0 and  $1 < x < \infty$ .
- (e)  $-\infty < x < -1$  and 0 < x < 1.
- (f) Not constant.
- (g) y-axis.
- (h) Even.

# Exercise 1.1.37

# Instruction

For the pair of functions f(x) = x - 8 and  $g(x) = 5x^2$ , find each of the below new functions. Also determine the domain for each of these new functions.

- (a) f + g
- (b) f g
- (c)  $f \cdot g$
- (d) f/g

# **Solution**

(a) Add the two given functions to form the requested function,

$$f + g = x - 8 + 5x^2 = 5x^2 + x - 8.$$

The domain of the above new function is all real numbers.

(b) Subtract the two given functions to form the requested function,

$$f - g = x - 8 - 5x^2 = -5x^2 + x - 8.$$

The domain of the above new function is all real numbers.

(c) Multiply the two given functions to form the requested function,

$$f \cdot g = (x - 8)5x^2 = 5x^3 - 8x^2.$$

The domain of the above new function is all real numbers.

(d) Divide the two given functions to form the requested function,

$$\frac{f}{g} = \frac{x - 8}{5x^2}.$$

The division is defined except for for x = 0, the domain is hence  $x \neq 0$ .

#### **Answer**

- (a)  $5x^2 + x 8$ , domain: all real numbers.
- (b)  $-5x^2 + x 8$ , domain: all real numbers.
- (c)  $5x^3 8x^2$ , domain: all real numbers.
- (d)  $\frac{x-8}{5x^2}$ , domain:  $x \neq 0$ .

# Exercise 1.1.43

#### Instruction

For the pair of functions f(x) = x + 4 and g(x) = 4x - 1, find the below listed compositions. Simplify the results. Find the domain of each of the results.

- (a)  $(f \circ g)(x)$
- (b)  $(g \circ f)(x)$

# **Solution**

(a) The composition is given by

$$(f \circ g)(x) = f(g(x)) = (4x - 1) + 4 = 4x - 1 + 4 = 4x + 3.$$

The domain of the above composition is all real numbers.

(b) The composition is given by

$$(g \circ f)(x) = g(f(x)) = 4(x+4) - 1 = 4x + 16 - 1 = 4x + 15.$$

The domain of the above composition is all real numbers.

- (a) 4x + 3, domain: all real numbers.
- (b) 4x + 15, domain: all real numbers.

# Exercise 1.1.49

# Instruction

Table 1.8 lists the NBA championship winners for the years 2001 to 2012.

| Year | Winner            |
|------|-------------------|
| 2001 | La Lakers         |
| 2002 | La Lakers         |
| 2003 | San Antonio Spurs |
| 2004 | Detroit Pistons   |
| 2005 | San Antonio Spurs |
| 2006 | Miami Heat        |
| 2007 | San Antonio Spurs |
| 2008 | Boston Celtics    |
| 2009 | La Lakers         |
| 2010 | La Lakers         |
| 2011 | Dallas Mavericks  |
| 2012 | Miami Heat        |
|      |                   |

Table 1.8: NBA championship winners for the years 2001 to 2012

- (a) Consider the relation in which the domain values are the years 2001 to 2012 and the range is the corresponding winner. Is this relation a function? Explain why or why not.
- (b) Consider the relation where the domain values are the winners and the range is the corresponding years. Is this relation a function? Explain why or why not.

## **Solution**

- (a) The relation in which the domain values are the years and the range is the corresponding winner is a function because a given year have only one winner. This functions set of inputs is the years 2001 to 2012 and the output is a team name. The rule for assigning each input to exactly one output is defined by table 1.8.
- (b) The relation where the domain values are the winners and the range is the corresponding years is not a function because there are teams that have won more than once during the years. A function shall have a rule for assigning each input to exactly one output. In this case we cannot deduce exactly one year from just knowing a team name.

- (a) Yes, a function.
- (b) No, not a function.

#### Exercise 1.1.51

## Instruction

The volume of a cube depends on the length of the sides *s*.

- (a) Write a function V(s) for the volume of the cube.
- (b) Find an interpret V(11.8).

#### **Solution**

(a) A cube will have sides *s* of equal length. The volume is found by multiplying *s* three times

$$V(s) = s \cdot s \cdot s = s^3$$
.

(b) A cube with the side equal to 11.8 length units will have the volume

$$V(11.8) = 11.8^3 \approx 1643$$

cubic units.

#### **Answer**

- (a)  $V(s) = s^3$ .
- (b)  $V(11.8) = 11.8^3 \approx 1643$  cubic units.

#### Exercise 1.1.57

#### Instruction

The manager at a skateboard shop pays his workers a monthly salary *S* of \$750 plus a commission of \$8.50 for each skateboard they sell.

- (a) Write a function y = S(x) that models a worker's monthly salary based on the number of skateboards x he or she sells.
- (b) Find the monthly salary when a worker sells 25, 40, or 55 skateboards.
- (c) Use the INTERSECT feature on a graphing calculator to determine the number of skateboards that must be sold for a worker to earn a monthly income of \$1400. (Hint: Find the intersection of the function and the line y = 1400.)

(a) The workers have a base salary plus a commission based on number of skate-boards sales. The function will be the constant base salary plus a product depending *x* being number of skateboards sold,

$$y = S(x) = 750 + 8.50 \cdot x.$$

(b) Having the formula from above we can calculate monthly salary for the different amount of skateboards sold,

$$S(25) = 750 + 8.50 \cdot 25 = 962.5,$$

$$S(40) = 750 + 8.50 \cdot 40 = 1090$$

$$S(55) = 750 + 8.50 \cdot 55 = 1217.5.$$

(c) Using a graphing calculator to graph our function and the liny y=1400 we note that there will be two lines than intersect at the point (76.47, 1400). We can conclude that a worker will need to sell 77 skateboards to earn \$1400.

#### **Answer**

- (a)  $y = S(x) = 750 + 8.50 \cdot x$ .
- (b) \$962.5, \$1090, \$1217.50.
- (c) 77 skateboards.

# 1.2 Basic Classes of Functions

# Checkpoint 1.9: Finding the Slope and Equations of Lines

# Instruction

Consider the line passing through points (-3,2) and (1,4).

- (a) Find the slop of the line.
- (b) Find an equation of the line in point-slop form.
- (c) Find and equation of the line in slope-intercept form.

(a) The slope of the line is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 2}{1 - (-3)} = \frac{4 - 2}{1 + 3} = \frac{2}{4} = \frac{1}{2}.$$

(b) The point-slope equation for a line passing through the point  $(x_1, y_1)$  with slope m is  $y - y_1 = m(x - x_1)$ . To find an equation for the given line in point-slope form, use the slope  $m = \frac{1}{2}$  from part a and choose any point on the line. If we choose the point (1,4), we get the equation

$$y - 4 = \frac{1}{2}(x - 1).$$

(c) To find an equation for the given line in slope-intercept form, solve the equation in part b for *y*.

$$y-4 = \frac{1}{2}(x-1),$$

$$y-4 = \frac{1}{2}x - \frac{1}{2},$$

$$y = \frac{1}{2}x - \frac{1}{2} + 4,$$

$$y = \frac{1}{2}x + \frac{7}{2}.$$

#### Answer

(a) 
$$m = \frac{1}{2}$$

(b) 
$$y-4=\frac{1}{2}(x-1)$$
.

(c) 
$$y = \frac{1}{2}x + \frac{7}{2}$$
.

# **Checkpoint 1.10: Graphing Polynomial Functions**

#### Instruction

Consider the quadratic function  $f(x) = 3x^2 - 6x + 2$ .

- (a) Find the zeroes of f.
- (b) Doest the parabola open upward or downward?
- (c) Sketch a graph of f.

(a) We find the zeroes of f using the quadratic function. In this case we have a = 3, b = -6, c = 2. The two zeroes are

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3} = \frac{6 \pm 2\sqrt{3}}{6} = \frac{3 \pm \sqrt{3}}{3} = 1 \pm \frac{\sqrt{3}}{3}.$$

Using an calculator we can find the alternate form  $x_1 \approx 1.58$ ,  $x_2 \approx 0.423$ .

- (b) We have an quadratic function on the form  $f(x) = ax^2 + bx + c$ . The plot for this type of function will be a parabola. If a > 0, then  $f(x) \to \infty$  as  $x \to \infty$  and  $f(x) \to -\infty$  as  $x \to -\infty$ . This is due to that  $x^2$  will eventually start to dominate as x grows, the other part of the function will not matter. This leads to that the parabola will open upwards for a > 0. In this case we have a = 3, which is greater than zero. We conclude that the parabola will open upward.
- (c) We can manually sketch the parabola by first calculating points (x, f(x)) for some different x values around to the zeroes calculated in part a. Then plot these points. Finally connect the points with a parabola shape, remembering from part b that the parabola will open upward.

Another way is to use graphing tool, can be a calculator or a computer software, see figure 1.7 for an example of the result.



Figure 1.7: Graph of the quadratic function in checkpoint 1.10

- (a) The zeroes are  $1 \pm \sqrt{3}/3$ .
- (b) The parabola opens upward.
- (c) See the graph in figure 1.7.

# **Checkpoint 1.11: Finding Domain and Range for Algebraic Functions**

Instruction

Consider the function f(x) = (5x + 2)/(2x - 1).

- (a) Find the domain of the function.
- (b) Find the range of the function.

# **Solution**

- (a) It is not possible to divide by zero, so the domain is the set of real numbers x such that  $x \neq 1/2$ .
- (b) To find the range, we need to find the values *y* for which there exists a real number *x* such that

$$y = \frac{5x+2}{2x-1}.$$

We solve this equation for x,

$$y(2x - 1) = 5x + 2,$$

$$2xy - y = 5x + 2,$$

$$2xy - 5x = y + 2,$$

$$x(2y - 5) = y + 2,$$

$$x = \frac{y + 2}{2y - 5}.$$

If y = 5/2, the above equation have no solution. On the other hand as long as  $y \neq 5/2$ , there will be a real number x that satisfies the equation. We conclude that the range of f is  $\{y \mid y \neq 5/2\}$ .

#### **Answer**

- (a) The domain is the set of real numbers such x such that  $x \neq 1/2$ .
- (b) The range is the set  $\{y \mid y \neq 5/2\}$ .

# Checkpoint 1.16: Transforming a Function

# Instruction

Describe how the function  $f(x) = -(x+1)^2 - 4$  using the graph of  $y = x^2$  and a sequence of transformations.

# **Solution**

We start with the graph of  $y = x^2$ , see figure 1.8.



Figure 1.8: Starting point

We shift left by 1 unit, see figure 1.9.



Figure 1.9: Shift left by 1

We apply a factor of -1, making the graph reflected, see figure 1.10.



Figure 1.10: Reflect the graph in the *x*-axis

Based on the book Calculus Volume 1. Download for free at https://openstax.org/details/books/calculus-volume-1.

We shift down by 4 units, see figure 1.11.



Figure 1.11: Shift down by 4

We have now applied all needed transformations.

## **Answer**

Shift the graph  $y = x^2$  to the left 1 unit, reflect about the x -axis, then shift down 4 units.

# Checkpoint 1.17: Converting between Radians and Degrees

# Instruction

- (a) Express 210° using radians.
- (b) Express  $5\pi/3$  rad using degrees.

# **Solution**

(a) The fact that  $\pi$  radians is 180 degrees gives us the conversion factor  $\frac{\pi}{180^{\circ}}$  rad which we can use to convert from degrees to radians,

$$210^{\circ} = 210^{\circ} \cdot \frac{\pi}{180^{\circ}} \, rad = \frac{7\pi}{6} \, rad.$$

(b) In the same way as in part (a) we have the conversion factor  $\frac{180^{\circ}}{\pi}$  which we can use to convert from radians to degrees,

$$\frac{11\pi}{6} = \frac{11\pi}{6} \cdot \frac{180^{\circ}}{\pi} = 330^{\circ}$$

### Answer

- (a)  $7\pi/6$  radians.
- (b) 330°.

### Exercise 1.1.59

#### Instruction

For the line that passes through the pair of points (-2,4) and (1,1).

- (a) Find the slope of the line.
- (b) Indicate whether the line is increasing, decreasing, horizontal, or vertical.

#### **Solution**

(a) The slope of the line through two points  $(x_1, y_1)$ ,  $(x_2, y_2)$  is given by,

$$m = \frac{y_2 - y_1}{x_2 - x_1}.$$

We substitute the given points to get the slope,

$$m = \frac{1-4}{1-(-2)} = \frac{-3}{1+2} = \frac{-3}{3} = -1.$$

(b) The slope is negative, hence the line is decreasing.

#### Answer

- (a) -1.
- (b) Decreasing.

# Exercise 1.1.61

#### Instruction

For the line that passes through the pair of points (3,5) and (-1,2).

- (a) Find the slope of the line.
- (b) Indicate whether the line is increasing, decreasing, horizontal, or vertical.

(a) The slope of the line through two points  $(x_1, y_1)$ ,  $(x_2, y_2)$  is given by,

$$m = \frac{y_2 - y_1}{x_2 - x_1}.$$

We substitute the given points to get the slope,

$$m = \frac{2-5}{-1-3} = \frac{-3}{-4} = \frac{3}{4}.$$

(b) The slope is positive, hence the line is increasing.

#### **Answer**

- (a) 3/4.
- (b) Increasing.

# Exercise 1.1.67

#### Instruction

Assuming a line with slope = -6, passing through the point (1,3). Write the equation for this line in slope-intercept form.

### **Solution**

We have the slope and one point on the line, this enables to write the equation for the line in point-slope form, which in general is  $y - y_1 = m(x - x_1)$ . In this case we get

$$y - 3 = -6(x - 1)$$
.

Then to get the slope-intercept form we simply solve the above equation for y,

$$y = -6(x-1) + 3 = -6x + 6 + 3 = -6x + 9.$$

#### **Answer**

$$y = -6x + 9$$
.

# 1.3 Trigonometric Functions

# 1.4 Inverse Functions

# 1.5 Chapter Review

## **Review Exercise 1.310**

#### Instruction

Is it true or false that a function is always one-to-one?

#### **Solution**

A function is one-to-one if  $f(x_1) \neq f(x_2)$  if  $x_1 \neq x_2$ . The function f(x) = x is an example of a function that is one-to-one. An example of a function not being one-to-one is the function  $f(x) = x^2$ , for which f(1) = f(-1) = 1. We conclude that it is false to say that a function is always one-to-one.

#### **Answer**

False.

#### **Review Exercise 1.311**

#### Instruction

Is it true or false that  $f \circ g = g \circ f$ , assuming f and g are functions?

## Solution

The composition of two functions is not necessarily commutative, meaning that the order we apply the functions will matter. We can see that it is not always true that  $f \circ g = g \circ f$  by computing the two compositions with two simple functions, f(x) = x + 1 and  $g(x) = x^2$ .

$$(f \circ g)(x) = f(g(x)) = f(x^2) = x^2 + 1,$$

and

$$(g \circ f)(x) = f(g(x)) = g(x+1) = (x+1)^2 = x^2 + 2x + 1,$$

We get different results for the two compositions. Thus it is clearly not always true that  $f \circ g = g \circ f$ .

#### **Answer**

False.