```
#import the basics libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

df=pd.read_csv("/content/50_Startups.csv")

df
```

| 12/24/22, 6:45 PM 50 fortune .ipynb - Co |            |          |           |           |            |           |  | Colabo |
|------------------------------------------|------------|----------|-----------|-----------|------------|-----------|--|--------|
|                                          | 18         | 91749.16 | 1141/5./9 | 294919.57 | Fiorida    | 124266.90 |  | •      |
|                                          | 19         | 86419.70 | 153514.11 | 0.00      | New York   | 122776.86 |  |        |
|                                          | 20         | 76253.86 | 113867.30 | 298664.47 | California | 118474.03 |  |        |
|                                          | 21         | 78389.47 | 153773.43 | 299737.29 | New York   | 111313.02 |  |        |
|                                          | 22         | 73994.56 | 122782.75 | 303319.26 | Florida    | 110352.25 |  |        |
|                                          | 23         | 67532.53 | 105751.03 | 304768.73 | Florida    | 108733.99 |  |        |
|                                          | 24         | 77044.01 | 99281.34  | 140574.81 | New York   | 108552.04 |  |        |
|                                          | 25         | 64664.71 | 139553.16 | 137962.62 | California | 107404.34 |  |        |
|                                          | 26         | 75328.87 | 144135.98 | 134050.07 | Florida    | 105733.54 |  |        |
|                                          | 27         | 72107.60 | 127864.55 | 353183.81 | New York   | 105008.31 |  |        |
|                                          | 28         | 66051.52 | 182645.56 | 118148.20 | Florida    | 103282.38 |  |        |
|                                          | 29         | 65605.48 | 153032.06 | 107138.38 | New York   | 101004.64 |  |        |
|                                          | 30         | 61994.48 | 115641.28 | 91131.24  | Florida    | 99937.59  |  |        |
|                                          | 31         | 61136.38 | 152701.92 | 88218.23  | New York   | 97483.56  |  |        |
|                                          | df.head()  |          |           |           |            |           |  |        |
|                                          | ui.ileau() |          |           |           |            |           |  |        |

| Profit    | State      | Marketing Spend | Administration | R&D Spend |     |
|-----------|------------|-----------------|----------------|-----------|-----|
| 192261.83 | New York   | 471784.10       | 136897.80      | 165349.20 | 0   |
| 191792.06 | California | 443898.53       | 151377.59      | 162597.70 | 1   |
| 191050.39 | Florida    | 407934.54       | 101145.55      | 153441.51 | 2   |
| 182901.99 | New York   | 383199.62       | 118671.85      | 144372.41 | 3   |
| 166187.94 | Florida    | 366168.42       | 91391.77       | 142107.34 | 4   |
| 70000 04  | 0 115      | 170705.07       | 110510.05      | 00754.00  | 4.0 |

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):

| 2000                         | COTA ( COCAT 2  |                |         |  |  |  |
|------------------------------|-----------------|----------------|---------|--|--|--|
| #                            | Column          | Non-Null Count | Dtype   |  |  |  |
|                              |                 |                |         |  |  |  |
| 0                            | R&D Spend       | 50 non-null    | float64 |  |  |  |
| 1                            | Administration  | 50 non-null    | float64 |  |  |  |
| 2                            | Marketing Spend | 50 non-null    | float64 |  |  |  |
| 3                            | State           | 50 non-null    | object  |  |  |  |
| 4                            | Profit          | 50 non-null    | float64 |  |  |  |
| dtypes, fleet(4/4) object(1) |                 |                |         |  |  |  |

dtypes: float64(4), object(1)
memory usage: 2.1+ KB

df.describe()

|       | R&D Spend     | Administration | Marketing Spend | Profit        |
|-------|---------------|----------------|-----------------|---------------|
| count | 50.000000     | 50.000000      | 50.000000       | 50.000000     |
| mean  | 73721.615600  | 121344.639600  | 211025.097800   | 112012.639200 |
| std   | 45902.256482  | 28017.802755   | 122290.310726   | 40306.180338  |
| min   | 0.000000      | 51283.140000   | 0.000000        | 14681.400000  |
| 25%   | 39936.370000  | 103730.875000  | 129300.132500   | 90138.902500  |
| 50%   | 73051.080000  | 122699.795000  | 212716.240000   | 107978.190000 |
| 75%   | 101602.800000 | 144842.180000  | 299469.085000   | 139765.977500 |
| max   | 165349.200000 | 182645.560000  | 471784.100000   | 192261.830000 |

df.corr()

1





```
#Plot Administration vs Profit
x1 = df.iloc[:, 1].values
y1 = df.iloc[:, -1].values
plt.scatter(x1,y1,color='Red',s=50)
plt.xlabel('Administration')
plt.ylabel('Profit')
plt.title('Administration vs Profit')
plt.show()
```



```
#Plot Marketing Spend vs Profit
x1 = df.iloc[:, 2].values
y1 = df.iloc[:, -1].values
plt.scatter(x1,y1,color='Black',s=50)
```

```
plt.xlabel('Marketing Spend')
plt.ylabel('Profit')
plt.title('Marketing Spend vs Profit')
plt.show()
```



```
#High correlation between Marketing Spend and Profit.
#Plot State vs Profit
x1 = df.iloc[:, 3].values
y1 = df.iloc[:, -1].values
plt.scatter(x1,y1,color='Blue',s=50)
plt.xlabel('State')
plt.ylabel('Profit')
plt.title('State vs Profit')
plt.show()
```



df.head()

|   | R&D Spend | Administration | Marketing Spend | State      | Profit    | 1 |
|---|-----------|----------------|-----------------|------------|-----------|---|
| 0 | 165349.20 | 136897.80      | 471784.10       | New York   | 192261.83 |   |
| 1 | 162597.70 | 151377.59      | 443898.53       | California | 191792.06 |   |
| 2 | 153441.51 | 101145.55      | 407934.54       | Florida    | 191050.39 |   |
| 3 | 144372.41 | 118671.85      | 383199.62       | New York   | 182901.99 |   |
| 4 | 142107.34 | 91391.77       | 366168.42       | Florida    | 166187.94 |   |

```
# Recommended way
sns.lmplot(x='Administration', y='Profit', data=df)
```

<sup>#</sup> Alternative way

<sup>#</sup> sns.lmplot(x=df.Administration, y=df.Profit)

<seaborn.axisgrid.FacetGrid at 0x7f14058b8c10>



# Plot using Seaborn
sns.lmplot(x='R&D Spend', y='Administration', data=df, fit\_reg=False)

# Tweak using Matplotlib
plt.ylim(0, None)
plt.xlim(0, None)



# Boxplot
sns.boxplot(data=df)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f1402f21640>



```
# Set theme
sns.set_style('whitegrid')

# Violin plot
sns.violinplot(x='Administration', y='State', data=df)
plt.xticks(rotation=90)
```

```
(array([
         175000., 200000., 225000.]),
 <a list of 10 Text major ticklabel objects>)
   New York
 E California
     Florida
                                      Administration
```

0., 25000., 50000., 75000., 100000., 125000., 150000.,

```
pkmn_type_colors = ['#78C850', # Grass
                      '#F08030', # Fire
                      '#6890F0', # Water
                      '#A8B820', # Bug
                      '#A8A878', # Normal
                      '#A040A0', # Poison
'#F8D030', # Electric
                      '#E0C068', # Ground
                      '#EE99AC', # Fairy
                      '#C03028',  # Fighting
                      '#F85888', # Psychic
'#B8A038', # Rock
                      '#705898', # Ghost
                      '#98D8D8', # Ice
                      '#7038F8', # Dragon
```

# Swarm plot with Pokemon color palette sns.swarmplot(x='Marketing Spend', y='State', data=df, palette=pkmn\_type\_colors)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f1400e93dc0>



# Swarmplot with melted\_df sns.swarmplot(x='State', y='Marketing Spend', data=df) <matplotlib.axes.\_subplots.AxesSubplot at 0x7f1400e11370>



# Calculate correlations
corr = df.corr()

# Heatmap
sns.heatmap(corr)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f1400dcaaf0>



# Count Plot (a.k.a. Bar Plot)
sns.countplot(x='State', data=df, palette=pkmn\_type\_colors)

# Rotate x-labels
plt.xticks(rotation=-90)

(array([0, 1, 2]), <a list of 3 Text major ticklabel objects>)



sns.kdeplot(df["R&D Spend"], df["Profit"])



# Joint Distribution Plot
sns.jointplot(x='Marketing Spend', y='Profit', data=df)

<seaborn.axisgrid.JointGrid at 0x7f1402eb44f0>



## Seperation of dependent and independent variables bold text

X = df.iloc[:, :-1].values
print(X)

```
[[165349.2 136897.8 471784.1 'New York']
 [162597.7 151377.59 443898.53 'California']
 [153441.51 101145.55 407934.54 'Florida']
 [144372.41 118671.85 383199.62 'New York']
 [142107.34 91391.77 366168.42 'Florida']
 [131876.9 99814.71 362861.36 'New York']
 [134615.46 147198.87 127716.82 'California']
 [130298.13 145530.06 323876.68 'Florida']
 [120542.52 148718.95 311613.29 'New York']
 [123334.88 108679.17 304981.62 'California']
 [101913.08 110594.11 229160.95 'Florida']
 .
[100671.96 91790.61 249744.55 'California']
 [93863.75 127320.38 249839.44 'Florida']
 [91992.39 135495.07 252664.93 'California']
 [119943.24 156547.42 256512.92 'Florida']
 [114523.61 122616.84 261776.23 'New York']
 [78013.11 121597.55 264346.06 'California']
 -
[94657.16 145077.58 282574.31 'New York']
 [91749.16 114175.79 294919.57 'Florida']
 [86419.7 153514.11 0.0 'New York']
 [76253.86 113867.3 298664.47 'California']
 [78389.47 153773.43 299737.29 'New York']
 [73994.56 122782.75 303319.26 'Florida']
 [67532.53 105751.03 304768.73 'Florida']
 [77044.01 99281.34 140574.81 'New York']
 [64664.71 139553.16 137962.62 'California']
 [75328.87 144135.98 134050.07 'Florida']
 [72107.6 127864.55 353183.81 'New York']
```

```
[66051.52 182645.56 118148.2 'Florida']
      [65605.48 153032.06 107138.38 'New York']
      [61994.48 115641.28 91131.24 'Florida']
      [61136.38 152701.92 88218.23 'New York']
      [63408.86 129219.61 46085.25 'California']
      [55493.95 103057.49 214634.81 'Florida']
      [46426.07 157693.92 210797.67 'California']
      [46014.02 85047.44 205517.64 'New York']
      [28663.76 127056.21 201126.82 'Florida']
      [44069.95 51283.14 197029.42 'California']
      [20229.59 65947.93 185265.1 'New York']
      .
[38558.51 82982.09 174999.3 'California']
      [28754.33 118546.05 172795.67 'California']
      [27892.92 84710.77 164470.71 'Florida']
      [23640.93 96189.63 148001.11 'California']
      [15505.73 127382.3 35534.17 'New York']
      [22177.74 154806.14 28334.72 'California']
      [1000.23 124153.04 1903.93 'New York']
      [1315.46 115816.21 297114.46 'Florida']
      [0.0 135426.92 0.0 'California']
      [542.05 51743.15 0.0 'New York']
      [0.0 116983.8 45173.06 'California']]
y = df.iloc[:, 4].values
print(y)
     [192261.83 191792.06 191050.39 182901.99 166187.94 156991.12 156122.51
      155752.6 152211.77 149759.96 146121.95 144259.4 141585.52 134307.35
      132602.65 129917.04 126992.93 125370.37 124266.9 122776.86 118474.03
      111313.02 110352.25 108733.99 108552.04 107404.34 105733.54 105008.31
      103282.38 101004.64 99937.59 97483.56 97427.84 96778.92 96712.8
       96479.51 90708.19 89949.14 81229.06 81005.76 78239.91 77798.83
       71498.49 69758.98 65200.33 64926.08 49490.75 42559.73 35673.41
       14681.4
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
X[:, 3] = labelencoder.fit_transform(X[:, 3])
# Avoiding the Dummy Variable Trap
X = X[:, 1:]
print(X)
     [[136897.8 471784.1 2]
      [151377.59 443898.53 0]
      [101145.55 407934.54 1]
      [118671.85 383199.62 2]
      [91391.77 366168.42 1]
      [99814.71 362861.36 2]
[147198.87 127716.82 0]
      [145530.06 323876.68 1]
      [148718.95 311613.29 2]
      [108679.17 304981.62 0]
      [110594.11 229160.95 1]
      [91790.61 249744.55 0]
      [127320.38 249839.44 1]
      [135495.07 252664.93 0]
      [156547.42 256512.92 1]
      [122616.84 261776.23 2]
      [121597.55 264346.06 0]
      [145077.58 282574.31 2]
      [114175.79 294919.57 1]
      [153514.11 0.0 2]
      [113867.3 298664.47 0]
      [153773.43 299737.29 2]
      [122782.75 303319.26 1]
      [105751.03 304768.73 1]
      [99281.34 140574.81 2]
      [139553.16 137962.62 0]
      [144135.98 134050.07 1]
      [127864.55 353183.81 2]
      [182645.56 118148.2 1]
      [153032.06 107138.38 2]
```

[115641.28 91131.24 1]

```
[152701.92 88218.23 2]
      [129219.61 46085.25 0]
      [103057.49 214634.81 1]
      [157693.92 210797.67 0]
      [85047.44 205517.64 2]
      [127056.21 201126.82 1]
      [51283.14 197029.42 0]
      [65947.93 185265.1 2]
      [82982.09 174999.3 0]
      [118546.05 172795.67 0]
      [84710.77 164470.71 1]
      [96189.63 148001.11 0]
      [127382.3 35534.17 2]
      [154806.14 28334.72 0]
      [124153.04 1903.93 2]
      [115816.21 297114.46 1]
      [135426.92 0.0 0]
      [51743.15 0.0 2]
      [116983.8 45173.06 0]]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
BUILDING OF MODEL
# Fitting Multiple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
     LinearRegression()
# Predicting the Test set results
y_pred = regressor.predict(X_test)
#evaluate the model
from sklearn.metrics import r2_score
r2_score(y_test,y_pred)
    0.3161625677198352
Evaluate the result:-
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
#evaluate the model
from sklearn.metrics import r2_score
r2_score(y_test,y_pred)
    0.3161625677198352
df.head()
```

```
R&D Spend Administration Marketing Spend
                                                         State
                                                                  Profit
      0 165349.20
                          136897.80
                                           471784.10 New York 192261.83
from sklearn.linear_model import Ridge
from sklearn.model_selection import train_test_split
from yellowbrick.datasets import load_concrete
from yellowbrick.regressor import ResidualsPlot
# Load a regression dataset
X, y =
# Create the train and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Instantiate the linear model and visualizer
model = Ridge()
visualizer = ResidualsPlot(model)
visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data
                                   # Finalize and render the figure
visualizer.show()
     TypeError
                                                Traceback (most recent call last)
     <ipython-input-45-fa09cf5dd279> in <module>
           7 # Load a regression dataset
     ----> 8 X, y = df()
          10 # Create the train and test data
     TypeError: 'DataFrame' object is not callable
      SEARCH STACK OVERFLOW
# Instantiate the linear model and visualizer # Insta
model = Ridge()
visualizer = ResidualsPlot(model)
visualizer.fit(X_train, y_train) # Fit the training data to the visualizer
visualizer.score(X_test, y_test) # Evaluate the model on the test data
g = visualizer.poof()
                                   # Draw/show/poof the data
                            Residuals for Ridge Model
         80000
                                                                            80000
                                                Train R^2 = 0.648
                                                 Test R^2 = 0.319
         60000
                                                                            60000
         40000
                                                                            40000
                                                                            20000
         20000
        -20000
                                                                            -20000
        -40000
                                                                            -40000
        -60000
                                                                            -60000
                           80000 100000 120000 140000 160000 180000
                40000
                     60000
                                 Predicted Value
                                                                 Distribution
from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test,y_pred)
     24725.68122329431
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test,y_pred)
     874553943.1239169
```

✓ 0s completed at 18:44

• X