

$$Let A = \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$$

We know that A = IA

$$\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Applying $R_2 \rightarrow R_2$ + $3R_1$ and $R_3 \rightarrow R_3$ – $2R_1,$ we have:

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 9 & -11 \\ 0 & -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A$$

Applying $R_1 \rightarrow R_1 + 3R_3$ and $R_2 \rightarrow R_2 + 8R_3$, we have:

$$\begin{bmatrix} 1 & 0 & 10 \\ 0 & 1 & 21 \\ 0 & -1 & 4 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ -13 & 1 & 8 \\ -2 & 0 & 1 \end{bmatrix} A$$

Applying $R_3 \rightarrow R_3 + R_2$, we have:

$$\begin{bmatrix} 1 & 0 & & 10 \\ 0 & 1 & & 21 \\ 0 & 0 & & 25 \end{bmatrix} = \begin{bmatrix} -5 & 0 & & 3 \\ -13 & 1 & & 8 \\ -15 & 1 & & 9 \end{bmatrix} A$$

Applying $R_3 \rightarrow \frac{1}{25} R_3$, we have:

$$\begin{bmatrix} 1 & 0 & 10 \\ 0 & 1 & 21 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ -13 & 1 & 8 \\ -\frac{3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix} A$$

Applying $R_1 \rightarrow R_1 - 10R_3$, and $R_2 \rightarrow R_2 - 21R_3$, we have:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{3}{5} \\ -\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\ -\frac{3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix} A$$

$$\therefore A^{-1} = \begin{bmatrix} 1 & -\frac{2}{5} & -\frac{3}{5} \\ -\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\ -\frac{3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix}$$

Question 17:

Find the inverse of each of the matrices, if it exists.

$$\begin{bmatrix} 2 & & 0 & & -1 \\ 5 & & 1 & & 0 \\ 0 & & 1 & & 3 \end{bmatrix}$$

Answe

$$Let A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

We know that A = IA

$$\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} A$$

$$\begin{bmatrix} 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c} R_1 \rightarrow \frac{1}{2}R_1 \\ \text{Applying} \end{array}$$
, we have

$$\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Applying $R_2 \rightarrow R_2 - 5R_1$, we have:

$$\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Applying $R_3 \rightarrow R_3 - R_2$, we have:

$$\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ \frac{5}{2} & -1 & 1 \end{bmatrix} A$$

Applying $R_3 \rightarrow 2R_3$, we have:

$$\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{5}{2} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{5}{2} & 1 & 0 \\ 5 & -2 & 2 \end{bmatrix} A$$

Applying $R_1 \rightarrow R_1 + \frac{1}{2}R_3$, and $R_2 \rightarrow R_2 - \frac{5}{2}R_3$, we have:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} A$$

$$\therefore A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

Question 18:

Matrices A and B will be inverse of each other only if

$$\mathbf{A.} \ AB = BA$$

C.
$$AB = 0$$
, $BA = I$

$$\mathbf{B.} \ AB = BA = 0$$

$$\mathbf{D.} \ AB = BA = I$$

Answer

We know that if A is a square matrix of order m, and if there exists another square matrix B of the same order m, such that AB = BA = I, then B is said to be the inverse of A. In this case, it is clear that A is the inverse of B.

Thus, matrices A and B will be inverses of each other only if AB = BA = I.

Miscellaneous Solutions

Question 1:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \text{ show that } \left(aI + bA\right)^n = a^nI + na^{n-1}bA, \text{ where } I \text{ is the identity matrix of order 2 and } n \in \mathbf{N}$$

Answer

$$A = \begin{bmatrix} 0 & & 1 \\ 0 & & 0 \end{bmatrix}$$
 It is given that

To show:
$$P(n):(aI+bA)^n = a^nI + na^{n-1}bA, n \in \mathbb{N}$$

We shall prove the result by using the principle of mathematical induction.

For n = 1, we have:

$$P(1):(aI + bA) = aI + ba^{0}A = aI + bA$$

Therefore, the result is true for n = 1.

Let the result be true for n = k.

That is,

$$P(k):(aI+bA)^{k}=a^{k}I+ka^{k-1}bA$$

Now, we prove that the result is true for n = k + 1.

Consider

$$(aI + bA)^{k+1} = (aI + bA)^k (aI + bA)$$

$$= (a^k I + ka^{k-1}bA)(aI + bA)$$

$$= a^{k+1}I + ka^k bAI + a^k bIA + ka^{k-1}b^2A^2$$

$$= a^{k+1}I + (k+1)a^k bA + ka^{k-1}b^2A^2 \qquad \dots (1)$$

Now,
$$A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$

From (1), we have:

$$(aI + bA)^{k+1} = a^{k+1}I + (k+1)a^kbA + O$$

= $a^{k+1}I + (k+1)a^kbA$

Therefore, the result is true for n = k + 1.

Thus, by the principle of mathematical induction, we have:

$$(aI + bA)^n = a^nI + na^{n-1}bA$$
 where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $n \in \mathbb{N}$

Question 2:

$$A = \begin{bmatrix} 1 & & 1 & & 1 \\ 1 & & 1 & & 1 \\ 1 & & 1 & & 1 \end{bmatrix}, \text{ prove that } A^n = \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix}, n \in \mathbf{N}$$

Answer

$$A = \begin{bmatrix} 1 & & 1 & & 1 \\ 1 & & 1 & & 1 \\ 1 & & 1 & & 1 \end{bmatrix}$$
 It is given that

p show:
$$P(n): A^{n} = \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix}, n \in \mathbf{N}$$

We shall prove the result by using the principle of mathematical induction.

$$P(1):\begin{bmatrix}3^{1-1} & 3^{1-1} & 3^{1-1} & 3^{1-1} \\ 3^{1-1} & 3^{1-1} & 3^{1-1}\end{bmatrix} = \begin{bmatrix}3^0 & 3^0 & 3^0 \\ 3^0 & 3^0 & 3^0 \\ 3^0 & 3^0 & 3^0\end{bmatrix} = \begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{bmatrix} = A$$

Therefore, the result is true for n = 1.

Let the result be true for n = k.

$$P(k) \colon A^{k} = \begin{bmatrix} 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \end{bmatrix}$$

That is

********* END *******