Tutorial 3

ME346-S3 Fall 2023

Question 1

A long wire of diameter D = 1 mm is submerged in an oil bath of temperature T_{∞} = 25°C. The wire has an electrical resistance per unit length of R'_{e} = 0.01 Ω/m . The properties of the wire are ρ = 8000 kg/m³, c = 500 J/kg · K, and k = 20 W/m · K.

If a current of I = 100 A flows through the wire and the convection coefficient is h = 500 W/m² · K, what is the steady-state temperature of the wire?

From the time the current is applied, how long does it take for the wire to reach a temperature that is within 1°C of the steady-state value?

$$\begin{array}{c|c}
\hline
Oil & T_{\infty}=25^{\circ}C \\
h=500W/m^{2}\cdot K
\end{array}$$

$$\begin{array}{c}
\hline
& I=100A \\
\hline
& \times
\end{array}$$

Question 2

Consider the one-dimensional wall shown in the sketch, which is initially at a uniform temperature T_i and is suddenly subjected to the convection boundary condition with a fluid at T_{∞} .

For a particular wall, case 1, the temperature at $x = L_1$ after $t_1 = 100$ s is $T_1(L_1, t_1) = 315$ °C. Another wall, case 2, has different thickness and thermal conditions as shown.

How long will it take for the second wall to reach 28.5°C at the position $x = L_2$?

Case	<i>L</i> (m)	α (m ² /s)	$\frac{k}{(W/m \cdot K)}$	T_i (°C)	<i>T</i> _∞ (°C)	h (W/m ² · K)
1	0.10	15×10^{-6}	50	300	400	200
2	0.40	25×10^{-6}	100	30	20	100