

Data Mining with Weka

Class 4 – Lesson 1

Classification boundaries

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Weka's Boundary Visualizer for OneR

- Open iris.2D.arff, a 2D dataset
 - (could create it yourself by removing sepallength and sepalwidth attributes)
- ❖ Weka GUI Chooser: Visualization>BoundaryVisualizer
 - open iris.2D.arff
 - Note: petallength on X, petalwidth on Y
 - choose rules>OneR
 - check Plot training data
 - click Start
 - in the Explorer, examine OneR's rule

Visualize boundaries for other schemes

- Choose lazy>IBk
 - Plot training data; click Start
 - k = 5, 20; note mixed colors
- Choose bayes>NaiveBayes
 - set useSupervisedDiscretization to true
- Choose trees>J48
 - relate the plot to the Explorer output
 - experiment with minNumbObj = 5 and 10: controls leaf size

- Classifiers create boundaries in instance space
- Different classifiers have different biases
- Looked at OneR, IBk, NaiveBayes, J48
- Visualization restricted to numeric attributes, and 2D plots

Course text

Section 17.3 *Classification boundaries*

Data Mining with Weka

Class 4 – Lesson 2

Linear regression

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Numeric prediction (called "regression")

- Data sets so far: nominal and numeric attributes, but only nominal classes
- Now: numeric classes
- Classical statistical method (from 1805!)

$$x = w_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k$$

(Works most naturally with numeric attributes)

$$x = w_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k$$

- Calculate weights from training data
- ❖ Predicted value for first training instance a⁽¹⁾

$$w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \dots + w_k a_k^{(1)} = \sum_{j=0}^k w_j a_j^{(1)}$$

$$x = w_0 + w_1 a_1 + w_2 a_2 + ... + w_k a_k$$

- Calculate weights from training data
- ❖ Predicted value for first training instance a⁽¹⁾

$$w_0 a_0^{(1)} + w_1 a_1^{(1)} + w_2 a_2^{(1)} + \dots + w_k a_k^{(1)} = \sum_{j=0}^k w_j a_j^{(1)}$$

Choose weights to minimize squared error on training data

$$\sum_{i=1}^{n} \left(x^{(i)} \right) \sum_{j=0}^{k} w_{j} a_{j}^{(i)}$$

$$a_{1}$$

$$a_{1}$$

$$a_{20}$$

$$a_{1}$$

$$a_{20}$$

$$a_{30}$$

$$a_{40}$$

$$a_{50}$$

$$a_{60}$$

- Standard matrix problem
 - Works if there are more instances than attributes roughly speaking
- Nominal attributes
 - two-valued: just convert to 0 and 1
 - multi-valued ... will see in end-of-lesson Activity

- Open file cpu.arff: all numeric attributes and classes
- Choose functions>LinearRegression
- * Run it
- Output:
 - Correlation coefficient
 - Mean absolute error
 - Root mean squared error
 - Relative absolute error
 - Root relative squared error
- Examine model

$$\frac{|p_{1}-a_{1}|+...+|p_{n}-a_{n}|}{n}$$

$$\sqrt{\frac{(p_{1}-a_{1})^{2}+...+(p_{n}-a_{n})^{2}}{n}}$$

$$\frac{|p_{1}-a_{1}|+...+|p_{n}-a_{n}|}{|a_{1}-\bar{a}|+...+|a_{n}-\bar{a}|}$$

Model tree

- Each leaf has a linear regression model
- Linear patches approximate continuous function

- Choose trees>M5P
- Run it
- Output:
 - Examine the linear models
 - Visualize the tree
- Compare performance with the LinearRegression result: you do it!

- Well-founded, venerable mathematical technique: functions>LinearRegression
- Practical problems often require non-linear solutions
- trees>M5P builds trees of regression models

Course text

Section 4.6 *Numeric prediction: Linear regression*

Data Mining with Weka

Class 4 – Lesson 3

Classification by regression

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Data Mining with Weka

Class 4 – Lesson 4

Logistic regression

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Can do better by using prediction probabilities

Probabilities are often useful anyway ...

- Naïve Bayes produces them (obviously)
 - Open diabetes.arff and run Bayes>NaiveBayes with 90% percentage split
 - Look at columns: actual, predicted, error, prob distribution
- Other methods produce them too ...
 - Run rules>ZeroR. Why probabilities [0.648, 0.352] for [tested_negative, tested_positive]?
 - 90% training fold has 448 negatve, 243 positive instances
 - (448+1)/(448+1 + 243+1) = 0.648 [cf. Laplace correction, Lesson 3.2]
 - Run trees>J48
 - J48 uses probabilities internally to help with pruning

Make linear regression produce probabilities too!

- Linear regression: calculate a linear function and then a threshold
- Logistic regression: estimate class probabilities directly

$$Pr[1 \mid a_1, a_2, ..., a_k] = 1/(1 + exp(-w_0 - w_1a_1 - ... - w_ka_k))$$

Choose weights to maximize the log-likelihood (not minimize the squared error):

$$\sum_{i=1}^{n} (1-x^{(i)}) \log(1-\Pr[1\mid a_1^{(1)}, a_2^{(2)}, \dots, a_k^{(k)}]) + x^{(i)} \log(\Pr[1\mid a_1^{(1)}, a_2^{(2)}, \dots, a_k^{(k)}])$$

Open file diabetes.arff

•	Classification-by-regression		76.8%	mean of 10 runs
•	cf	ZeroR	65.1%	65.1%
		Naïve Bayes	76.3%	75.8%
		J48	73.8%	74.5%
•	Apply	functions>Logistic	77.2%	77.5%

- **Extension to multiple classes ...**
 - Perform a regression for each class?
 (like multi-response regression)
 - No. Probabilities won't sum to 1
 - Can be tackled as a joint optimization problem

- Logistic regression is popular and powerful
- Uses logit transform to predict probabilities directly
 - like Naïve Bayes
- ❖ Also learned about
 - Prediction probabilities from other methods
 - How to calculate probabilities from ZeroR

Course text

Section 4.6 Numeric prediction: Logistic regression

Data Mining with Weka

Class 4 – Lesson 6

Ensemble learning

lan H. Witten

Department of Computer Science
University of Waikato
New Zealand

weka.waikato.ac.nz

Committee structure: build different "experts," let them vote

- Often improves predictive performance
- Produces output that is hard to analyze
 - but: there are approaches that aim to produce a single comprehensible structure
- Methods
 - Bagging
 - Randomization
 - Boosting
 - Stacking

Bagging

- ❖ Several training sets of the same size
 - produce them by sampling ... with replacement
- Build model for each one
 - use same machine learning scheme
- Combine predictions by voting (or, for regression, averaging)
- Very suitable for "unstable" learning schemes
 - small change in training data can make big change in model
 - example: decision trees ... but not Naïve Bayes or instance-based learning
- ❖ Weka: meta>Bagging
- E.g. with glass.arff
 - J48 66.8%
 - Bagging (default parameters)72.4%

Randomization: random forests

- Randomize the algorithm, not the training data
 - how you randomize depends on the algorithm
- Random forests
 - attribute selection for J48 decision tree: don't pick the best,
 pick randomly from the k best options
 - generally improves decision trees
- Weka: trees>RandomForests
 - options: number of trees (default 10); maximum depth of trees;
 number of attributes
- E.g. with glass.arff
 - J48 66.8%
 - RandomForests (default parameters) 75.2%

Boosting

- Iterative: new models are influenced by performance of previously built ones
 - extra weight for instances that are misclassified ("hard" ones)
 - encourage new model to become an "expert" for instances misclassified by earlier models
 - Intuitive justification: committee members should complement each other's expertise
- Uses voting (or, for regression, averaging)
 - but weights models according to their performance
- Often dramatically improves performance
- Weka: meta>AdaBoostM1
- E.g. with glass.arff
 - J48 66.8%
 - AdaBoostM1 (using J48)74.3%

Stacking

- Combine predictions of base learners using a meta learner (not voting)
 - base learners: level-0 models
 - meta learner: level-1 model
 - predictions of base learners are input to meta learner
- Base learners are usually different schemes
- Can't use predictions on training data to generate data for level-1 model!
 - Instead use cross-validation-like scheme
- Weka: meta>Stacking
 - and StackingC, more efficient version
 - allow multiple level-0 models (by specifying a metaclassifier)
- Quite hard to make stacking work well, but with glass.arff I got
 - J48
 - StackingC, with default metaclassifier and base classifiers IBk, PART, J48
 72.5%

- Combining multiple models into "ensembles"
 - analogy with committees of humans
- Diversity helps, especially with "unstable" learners
 - when small changes in the training data can produce large changes in the learned model
- Create diversity by
 - Bagging: resampling the training set

meta>Bagging

Random forests: alternative branches in decision trees

trees>RandomForests

Boosting: focus on where the existing model makes errors

meta>AdaBoostM1

Stacking: combine results using another learner (instead of voting) meta>Stacking

Course text

Chapter 8 Ensemble learning

Data Mining with Weka

Department of Computer Science
University of Waikato
New Zealand

Creative Commons Attribution 3.0 Unported License

creativecommons.org/licenses/by/3.0/

weka.waikato.ac.nz