## Machine Learning HW 4 – Decision Trees

## Ali Ural

## Spring 2025

1. Consider the following set of training examples for an unknown target function  $(x_1, x_2) \to y$ :

| $\overline{y}$ | $x_1$        | $x_2$        | Count |
|----------------|--------------|--------------|-------|
| +              | Т            | Τ            | 3     |
| +              | T            | F            | 4     |
| +              | F            | $\mathbf{T}$ | 4     |
| +              | F            | F            | 1     |
| _              | T            | Τ            | 0     |
| _              | T            | $\mathbf{F}$ | 1     |
| _              | $\mathbf{F}$ | Τ            | 3     |
| _              | F            | F            | 5     |
|                |              |              |       |

(a) What is the sample entropy for the class label overall, H(Y) from this training data (using log base 2) (3pts)?

The class-label distribution is  $P(+) = \frac{12}{21}$  and  $P(-) = \frac{9}{21}$ . So

$$H(Y) = -\frac{12}{21}\log_2\frac{12}{21} - \frac{9}{21}\log_2\frac{9}{21} \approx 0.985 \text{ bits.}$$

(b) What are the weighed average entropies for branching on variables  $x_1$  and  $x_2$  (6pts)?

 $x_1$ 

- $x_1 = T$ : 7 positive, 1 negative  $H = -\frac{7}{8} \log_2 \frac{7}{8} \frac{1}{8} \log_2 \frac{1}{8} \approx 0.544$ .
- $x_1 = \text{F: 5 positive, 8 negative}$  $H = -\frac{5}{13} \log_2 \frac{5}{13} - \frac{8}{13} \log_2 \frac{8}{13} \approx 0.961.$

Weighted entropy:

$$H(Y \mid x_1) = \frac{8}{21}(0.544) + \frac{13}{21}(0.961) \approx 0.802.$$

 $x_2$ 

- $x_2 = \text{T: 7 positive, 3 negative}$  $H = -\frac{7}{10} \log_2 \frac{7}{10} - \frac{3}{10} \log_2 \frac{3}{10} \approx 0.881.$
- $x_2 = \text{F: 5 positive, 6 negative}$  $H = -\frac{5}{11} \log_2 \frac{5}{11} - \frac{6}{11} \log_2 \frac{6}{11} \approx 0.994.$

Weighted entropy:

$$H(Y \mid x_2) = \frac{10}{21}(0.881) + \frac{11}{21}(0.994) \approx 0.940.$$

(c) Draw the decision tree that would be learned by the ID3 algorithm without pruning from this training data. If you arrive at a scenario where you have to put a leaf node, but the classes of the data don't all agree, put the probabilities of each class on that leaf node. (6pts)

