Ejercicios propuestos

- 1. Consideramos las operaciones y orden de \mathbb{Q} restringidas al conjunto de los números decimales \mathbb{D} . Demuestre que $(\mathbb{D},+,\cdot,\leqslant)$ es un anillo unitario, integro y ordenado. Justifique por qué $(\mathbb{D},+,\cdot)$ no es un cuerpo.
- 2. Demuestre que para todo $n \in \mathbb{N}^*$, el número $\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2}$ no es un número decimal.
- 3. Sea el grupo multiplicativo (\mathbb{Q}_+^*,\cdot) , y sea $H=\{a/b\in\mathbb{Q}_+^*\mid a\leqslant b\}$. Se define en \mathbb{Q}_+^* la relación \ll por: $\alpha\ll\beta$ si y sólo si $\alpha\beta^{-1}\in H$. Demuestre que la relación \ll es una relación de orden total en \mathbb{Q}_+^* compatible con el producto \cdot de números racionales.
- 4. Sea la fracción irreducible a/b con $a,b \in \mathbb{N}^*$. Estudie si las fracciones

$$\frac{a+b}{a}$$
, $\frac{a-b}{ab}$, $\frac{a^2+b^2}{a+b}$, $\frac{a^2+b^2}{ab}$

son irreducibles.

5. Sean $a y b \in \mathbb{N}^*$ primos entre sí y tales que b < a. Se trata de ver que que existen enteros naturales $a_0, a_1, a_2, \ldots, a_n$ no nulos tales que

$$\frac{a}{b} = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{\ddots a_{n-1} + \cfrac{1}{a_n}}}}}$$

El desarrollo anterior se denomina fracción continua y se escribe abreviadamente $(a_0, a_1, \ldots, a_{n-1}, a_n)$.

Ejemplo: Supongamos $\frac{a}{b} = \frac{217}{52}$, que es una fracción irreducible. Hágase las divisiones enteras de 217 entre 52, de 52 entre 9, de 9 entre 7 y de 7 entre 2. Deduzca los valores de $(a_0, a_1, a_2, a_3, a_4)$ tales que

$$\frac{217}{52} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$$

En general, dado $\frac{a}{b}$ fracción irreducible con $a, b \in \mathbb{N}^*$, para demostrar la existencia de la fracción continua $(a_0, a_1, \dots, a_{n-1}, a_n) = \frac{a}{b}$, utilice el algoritmo de Euclides para hallar el mcd(a, b) y tenga en cuenta que, para todo $p, q \in \mathbb{N}^*$ tales que p > q,

si
$$p = cq + r$$
 con $0 < r < q$
entonces $\frac{p}{q} = c + \frac{r}{q} = c + \frac{1}{\frac{q}{r}}$.

- 6. Explicite el conjunto de los números reales que verifican cada una de las siguientes desigualdades:
 - a) |x+1| < 2
 - b) |x| > |x+1|
 - c) |x+2| + |x-2| < 12
 - d) $x < x^2 12 < 4x$
 - e) $(x+1)/(x-1) \ge 0$
 - $f) x^2 < |1-x|+1$
 - $g) |x(1-x)| \leqslant 1/2$
 - h) ||x+1|-|x-1|| < 1
- 7. Determine el supremo y el ínfimo en \mathbb{R} , si existen, de los siguientes conjuntos, indicando si son máximos o mínimos.
 - a) $A = \{x^2 \mid -2 \le x < 1\}$
 - b) $A = \{x \in \mathbb{R} \mid x^2 x + 4 < 0\}$
 - c) $A = \{x \in \mathbb{R} \mid x^2 + x + 1 > 0\}$
 - $d) A = \{(n+1)/n \mid n \in \mathbb{N}^*\}$
 - $e) \ A = \left\{ \frac{1}{1+x^2} \mid x \in \mathbb{R} \right\}$
- 8. a) Demuestre que para todo $x \in \mathbb{R}$ tal que x > 0, existe un número natural n tal que:

$$\frac{2n+2}{3n+1} - \frac{2}{3} < x$$

b) Demuestre que para todo $x \in \mathbb{R}$, existe un número $n \in \mathbb{N}$ tal que:

$$\frac{n^2 + n}{n - 1} > x$$

- 9. Exprese 1/7 y 7/6 como decimales periódicos.
- 10. Escriba en forma de fracción los números racionales representados por las expresiones decimales periódicas siguientes:

$$1,222222...$$
 $1,212121...$ $1,21210210...$

- 11. Sean A y B dos subconjuntos no vacíos de $\mathbb R$ tales que a < b para todo $a \in A$ y $b \in B$. Demuestre que existen sup A e inf B y que, además, sup $A \le \inf B$. ¿Se puede asegurar que sup $A \ne \inf B$?
- 12. Sean $A \vee B$ dos subconjuntos no vacíos de \mathbb{R} y sea el conjunto:

$$C=A+B=\{a+b\mid a\in A,b\in B\}$$

Demuestre que si A y B están acotados superiormente (resp. inferiormente) entonces C está acotado superiormente (resp. inferiormente) y $\sup(C) = \sup(A) + \sup(B)$ (resp. $\inf(C) = \inf(A) + \inf(B)$).

13. Sean A y B dos subconjuntos no vacíos de \mathbb{R}_+ y sea el conjunto:

$$D = AB = \{ab \mid a \in A, b \in B\}$$

Demuestre que si A y B están acotados superiormente (resp. inferiormente) entonces D está acotado superiormente (resp. inferiormente) y $\sup(D) = \sup(A)\sup(B)$ (resp. $\inf(D) = \inf(A)\inf(B)$). ¿Se puede asegurar que la propiedad es cierta si A y B son subconjuntos de \mathbb{R} ?

- 14. Sean I un conjunto no vacío y $\{[a_i,b_i] \mid i \in I\}$ una familia de intervalos cerrados en $\mathbb R$ tal que dos intervalos cualesquiera de la familia tienen al menos un punto en común. Demuestre que los conjuntos $\{a_i \mid i \in I\}$ y $\{b_i \mid i \in I\}$ están respectivamente acotados superior e inferiormente. Deduzca que $\bigcap_{i \in I} [a_i,b_i] \neq \emptyset$.
- 15. Se considera el subconjunto de \mathbb{R} ,

$$\mathbb{K} = \{a + b\sqrt{2} \mid a,b \in \mathbb{Q}\}$$

dotado con las restricciones a \mathbb{K} de la suma y del producto en \mathbb{R} . Demuestre que $(\mathbb{K},+,\cdot)$ es un cuerpo.

- 16. Demuestre que los conjuntos (0,1] y [0,1] son equipotentes. Lo mismo con [0,1) y [0,1].
- 17. Demuestre que los conjuntos (0,1) y [0,1] son equipotentes.

- 18. Demuestre que la aplicación $f : (-1,1) \longrightarrow \mathbb{R}$ tal que $f(x) = \frac{x}{1-|x|}$ para todo $x \in (-1,1)$, es una biyección.
- 19. Ponga un ejemplo de aplicación biyectiva de \mathbb{R} en (a, b).
- 20. Se dice que un número real es **algebraico** si es raíz de algún polinomio con coeficientes enteros. En caso contrario se denomina **trascendente**.
 - a) Demuestre que el conjunto de los números algebraicos es numerable.
 - b) Deduzca que el conjunto de los números trascendentes no es numerable.