ML Hw4

b05902127 資工二 劉俊緯

PCA of colored faces

Q1: 所有臉的平均

Q2: 前四Eigenfaces

eigenface	0	1	2	3
picture	(C) (C)			

Q3: Reconstruction

reconstruction	12.jpg	27.jpg	127.jpg	217.jpg
picture			35	

Q4: Proportion

idx	0	1	2	3
%	4.1%	2.9%	2.4%	2.2%

Image clustering

Q1: Two different dim reduction or clustering

method	private score	public score
kmeans	0.51750	0.51674
autoencoder+kmeans	0.99692	0.99683

- 以下image都做過data normalization。
- autoencoder的model。(以下的code + Adam(5e-4) + binary crossentropy),再用Kmeans降維度。

```
x = Input(shape=(28,28,1))
encode = Conv2D(16, (3,3),padding='same')(x)
encode = MaxPooling2D()(encode)
encode = Activation('relu')(encode)
encode = Conv2D(32, (3,3),padding='same')(encode)
encode = MaxPooling2D()(encode)
encode = Activation('relu')(encode)
encode = Conv2D(64, (3,3),padding='same')(encode)
encode = MaxPooling2D()(encode)
encode = Activation('relu')(encode)
encode = Conv2D(128, (3,3),padding='same')(encode)
encode = MaxPooling2D()(encode)
encode = Activation('relu')(encode)
encode = Flatten()(encode)
encode = Dense(64 , activation = 'relu')(encode)
encode = Dense(32 , activation = 'relu')(encode)
decode = Dense(64 , activation = 'relu')(encode)
decode = Dense(128 , activation = 'relu')(encode)
decode = Dense(784 , activation = 'sigmoid')(decode)
          Reshape((28,28,1))(decode)
```

Q2: visualization with predict labels

- 使用 sklearn的TSNE(2,init='pca') 視覺化。
- model 是 **Q1**的autoencoder + Kmeans。

Q3: visualization with true labels

• 與原本用Kmeans預測的labels發現,在t-sne降維後的cluster原本距離很近的點,在Kmeans也可能會分錯。

Ensemble learning

Q1: description of my ensemble model

- 將原本的CNN model,分別train 10次,最後用每個對於個別class的probability相加取最大的為投票結果。
- 這10次分別train的model的training data/validation data是使用K-fold作法。

•

model	private score	public score
single model	0.66508	0.67623
single model	0.69434	0.70409

• 單個model的描述:

```
BatchNormalization(axis=-1, momentum=0.5)(x)
BatchNormalization(axis=-1, momentum=0.5)(conv(32,5,'relu')(output))
 output
 output =
 #output = Dropout(0.5)(output)
output = BatchNormalization(ax
output = BatchNormalization(ax)
                                        BatchNormalization(axis=-1, momentum=0.5)(conv(32,5,'relu')(output))
BatchNormalization(axis=-1, momentum=0.5)(pool()(output))
 output
 output =
                                         keras.layers.GaussianNoise(0.1)(output)
output = Relative is a control of contr
output = BatchNormalization(axis=-1, momentum=0.5)(conv(128,3,'relu')(output))
output = BatchNormalization(axis=-1, momentum=0.5)(conv(128,3,'relu')(output))
output = BatchNormalization(axis=-1, momentum=0.5)(pool()(output))
\begin{array}{lll} \text{output} &= \text{BatchNormalization}(axis = -1, & momentum = 0.5)(\text{conv}(256, 3, 'relu')(\text{output})) \\ \text{output} &= \text{BatchNormalization}(axis = -1, & momentum = 0.5)(\text{conv}(256, 3, 'relu')(\text{output})) \\ \text{output} &= \text{BatchNormalization}(axis = -1, & momentum = 0.5)(\text{pool}()(\text{output})) \end{array}
output = Flatten()(output)
output = Dropout(0.5)(output)
output = BatchNormalization(axis=-1, momentum=0.5)(den(512)(output))
y = Dense(7, activation='softmax', kernel initializer='glorot normal')(output)
ally.append(y)
model[i] = Model(x,y)
### COMPILE ###
```