CADP MANUAL PAGES SCRUTATOR (LOCAL)

NAME

scrutator - pruning of Labelled Transition Systems

SYNOPSIS

```
bcg_open [bcg_opt] spec[.bcg] [cc_opt] scrutator [scrutator_opt] lts[.bcg]
or:
exp.open [exp_opt] spec[.exp] [cc_opt] scrutator [scrutator_opt] lts[.bcg]
or:
fsp.open [fsp_opt] spec[.lts] [cc_opt] scrutator [scrutator_opt] lts[.bcg]
or:
lnt.open [lnt_opt] spec[.lnt] [cc_opt] scrutator [scrutator_opt] lts[.bcg]
or:
lotos.open [lotos_opt] spec[.lotos] [cc_opt] scrutator [scrutator_opt] lts[.bcg]
or:
seq.open [seq_opt] spec[.seq] [cc_opt] scrutator [scrutator_opt] lts[.bcg]
```

DESCRIPTION

scrutator takes as input a Labelled Transition System (LTS) represented either as a BCG graph *spec.***bcg**, a composition expression *spec.***exp**, an FSP program *spec.***lts**, an LNT program *spec.***Int**, a LOTOS program *spec.***lotos**, or a sequence file *spec.***seq**.

scrutator performs an on-the-fly exploration of the LTS *spec* and prunes certain parts of it according to the options and arguments specified (see OPTIONS below). The resulting LTS, represented as a BCG graph, is stored in the file *lts*.**bcg**.

Additionally, **scrutator** can also reduce the LTS on the fly according to various relations (see OPTIONS below).

Note: The method implemented in the current version of **scrutator** (described in [MPS07,MPS12]) is based on a translation of the pruning problem into the resolution of a Boolean Equation System (BES), which is performed on the fly using the algorithms provided by the **caesar_solve_1**(LOCAL) library of OPEN/CAESAR (see the corresponding manual page and the article [Mat06] for details).

OPTIONS

```
The options bcg_opt, if any, are passed to bcg_lib(LOCAL).
```

The options *exp_opt*, if any, are passed to **exp.open**(LOCAL).

The options *fsp_opt*, if any, are passed to **fsp.open**(LOCAL).

The options *lnt_opt*, if any, are passed to **lnt.open**(LOCAL).

The options *lotos_opt*, if any, are passed to **caesar**(LOCAL) and to **caesar.adt**(LOCAL).

The options *seq_opt*, if any, are passed to **seq.open**(LOCAL).

The options *cc_opt*, if any, are passed to the C compiler.

The following options *scrutator opt* are currently available:

-nodeadlock

Prune *spec* by keeping only the transitions whose target states do not eventually lead to deadlock states.

Formally, a transition s--L-->s' is kept in *lts*.**bcg** iff state s' satisfies the following CTL formula:

```
not (AF deadlock)
```

or the equivalent mu-calculus formula:

```
nu X . <true> X
```

This kind of pruning corresponds to the adaptation technique proposed in [CPS06], the difference being that the pruning is performed on-the-fly. This option is mutually exclusive with the **-potential** and **-inevitable** options. Default option.

-potential [-total | -partial | -gate] matching_filename

Prune *spec* by keeping only the transitions whose target states potentially lead to states having an outgoing transition labelled by an action matching the rules defined in *matching_filename*.

The format of *matching_filename* is the same as of hiding files defined in the **cae-sar_hide_1**(LOCAL) manual page, except that the keyword "match" is used instead of "hide". The **-total**, **-partial**, and **-gate** options specify the "total matching", "partial matching", and "gate matching" semantics, respectively. See the **caesar_hide_1**(LOCAL) manual page for more details about these semantics. Option **-total** is the default.

Formally, a transition s--L-->s' is kept in *lts*.**bcg** iff state s' satisfies the following CTL formula:

```
EF <action> true
```

or the equivalent mu-calculus formula:

```
mu X . <action> true or <true> X
```

where *action* denotes an action (transition label) matching the rules specified in *matching_file-name*. This kind of pruning corresponds to the adaptation technique proposed in [MPS07,MPS12]. This option is mutually exclusive with the **-nodeadlock** and **-inevitable** options. Not a default option.

-inevitable [-total | -partial | -gate] matching_filename

Prune *spec* by keeping only the transitions whose target states eventually lead to states having an outgoing transition labelled by an action matching the rules defined in *matching_filename*.

The format of *matching_filename* is the same as of hiding files defined in the **cae-sar_hide_1**(LOCAL) manual page, except that the keyword "match" is used instead of "hide". The **-total**, **-partial**, and **-gate** options specify the "total matching", "partial matching", and "gate matching" semantics, respectively. See the **caesar_hide_1**(LOCAL) manual page for more details about these semantics. Option **-total** is the default.

Formally, a transition s--L-->s' is kept in *lts*.**bcg** iff state s' satisfies the following CTL formula:

```
AF <action> true
```

or the equivalent mu-calculus formula:

```
mu X . <action> true or (<true> true and [true] X)
```

CADP MANUAL PAGES SCRUTATOR (LOCAL)

where *action* denotes an action (transition label) matching the rules specified in *matching_file-name*. This option is mutually exclusive with the **-nodeadlock** and **-potential** options. Not a default option.

-cache n

Use a cache of size n for storing the states of spec during the pruning. This option allows to trade off memory consumption against execution time. Not a default option.

-stat Display statistical information about the resolution of the BES corresponding to the pruning of *spec*. Not a default option.

-version

Display the current version number of the tool and stop. To be effective, this option should occur as the first argument on the command line. Subsequent options and/or arguments, if any, will be discarded. Not a default option.

The options below specify additional reductions that can be applied on-the-fly during the pruning of the LTS:

-tauconfluence

Reduce the LTS on the fly modulo tau-confluence (a form of partial order reduction that preserves branching equivalence). This option can be used in conjunction with options **-taustar** and **-weak-trace**, and in some cases it may reduce the execution time and the memory consumption significantly. Not a default option.

-taustar

Reduce the LTS on the fly modulo tau*.a equivalence. This reduction eliminates all internal transitions (labelled by the "i" action) in *lts.*bcg. Not a default option.

-weaktrace

Reduce the LTS on the fly modulo weak trace equivalence. This reduction eliminates all internal transitions and determinizes *lts*.**bcg**. Not a default option.

Note: The reduction options above replace the divergences (cycles of tau-transitions) present in the LTS with deadlock states. This may influence the inevitable reachability of certain states (e.g., deadlock states or states having an outgoing transition labelled by a given action), and therefore may trigger a more drastic pruning of the LTS when used in conjunction with the **-nodeadlock** and **-inevitable** options.

EXIT STATUS

Exit status is 0 if everything is alright, 1 otherwise.

BIBLIOGRAPHY

[CPS06]

C. Canal, P. Poizat, and G. Salaun. Synchronizing Behavioural Mismatch in Software Composition. In Roberto Gorrieri and Heike Wehrheim (Eds.), Proceedings of the 8th IFIP International Conference on Formal Methods for Open Object-Based Distributed Systems FMOODS'2006 (Bologna, Italy), Lecture Notes in Computer Science vol. 4037, pp. 63-77. Springer Verlag, June 2006.

CADP MANUAL PAGES SCRUTATOR (LOCAL)

[Mat06] R. Mateescu. CAESAR_SOLVE: A Generic Library for On-the-Fly Resolution of Alternation-Free Boolean Equation Systems. Springer International Journal on Software Tools for Technology Transfer (STTT) 8(1):37-56, 2006. Full version available as INRIA Research Report RR-5948.

[MPS07]

R. Mateescu, P. Poizat, and G. Salaun. On-the-Fly Adaptation of Component Compositions based on Process Algebra Encodings. In Alexander Egyed and Bernd Fischer (Eds.), Proceedings of the 22nd IEEE/ACM International Conference on Automated Software Engineering ASE'07 (Atlanta, Georgia, USA), pp. 385-388. ACM Press, Nov. 2007. Full version available as INRIA Research Report RR-6362.

[MPS12]

R. Mateescu, P. Poizat, and G. Salaun. Adaptation of Service Protocols Using Process Algebra and On-the-Fly Reduction Techniques. IEEE Transactions on Software Engineering 38(4):755-777, 2012.

AUTHORS

Radu Mateescu (INRIA/CONVECS).

OPERANDS

spec.bcg	BCG graph (input)
spec.exp	network of communicating LTSs (input)
spec.lts	FSP specification (input)
spec.lnt	LNT specification (input)
spec.lotos	LOTOS specification (input)
spec.seq	sequence file (input)
lts.bcg	BCG graph (output)

FILES

The binary code of **scrutator** is available in \$CADP/bin.'arch'/scrutator.a

SEE ALSO

$$\label{eq:condition} \begin{split} & \textbf{bcg}(LOCAL), & \textbf{bcg_open}(LOCAL), & \textbf{exp}(LOCAL), & \textbf{exp.open}(LOCAL), & \textbf{fsp.open}(LOCAL), \\ & \textbf{Int.open}(LOCAL), & \textbf{lotos}(LOCAL), & \textbf{lotos.open}(LOCAL), & \textbf{seq.open}(LOCAL) \\ & \textbf{seq.open}(LOCAL), & \textbf{seq.open}(LOCAL), & \textbf{seq.open}(LOCAL) \\ & \textbf{seq.open}(LOCAL), & \textbf{seq.open}(LOCAL), & \textbf{seq.open}(LOCAL) \\ & \textbf{seq.open}(LOCAL), & \textbf{seq.open}(LOCAL), & \textbf{seq.open}(LOCAL), \\ & \textbf{seq.open}(LOCAL), \\$$

Additional information is available from the CADP Web page located at http://cadp.inria.fr

Directives for installation are given in files \$CADP/INSTALLATION *.

Recent changes and improvements to this software are reported and commented in file \$CADP/HISTORY.

BUGS

Please report bugs to Radu.Mateescu@inria.fr