# ENB 350 Real-time Computer based systems

Lecture 3 – EXTENDED PRECISION
ARITHMETIC
V. Chandran



#### Contents

- Review of R4000 instructions
- The stack push and pop
- Floating point and Fixed point
- Fixed point 8.8 multiplication
- Extended precision 16.16 multiplication



#### Example

If CF = 1 A = 00110110 and contents of the memory address given by HL are 00110111 what is the result in A?



#### Example

If CF = 1 A = 00110110 and contents of the memory address given by HL are 00110111 what is the result in A?



#### R4000 instruction (example 2)

32 bit operation

Bitwise AND

Bitwise AND 4000

AND JKHL, BCDE

| Opcode | Instruction   | Clocks  | Operation          |
|--------|---------------|---------|--------------------|
| ED E6  | AND JKHL,BCDE | 4 (2,2) | JKHL = JKHL & BCDE |

| F | Flags |   | ALTD |   |   | IOI/IOE |    |   |   |
|---|-------|---|------|---|---|---------|----|---|---|
| Г | 8     | Z | L/V  | С | F | R       | 8P | 8 | D |
|   | •     | • | L    | 0 | • | •       |    |   |   |

#### Description

Performs a bitwise AND operation between the 32-bit registers JKHL and BCDE. The result is stored in JKHL.



### Example

In HEX

J=00, K=10, H=21,L=30,B=01,C=11,D=20,E=13 what is the result?

JKHL = 000000000001000001000110000

BCDE= 00000001000100010010000000110011

Result=

This is 0x ? and will be stored in ?.



#### Example

In HEX

J=00, K=10, H=21,L=30,B=01,C=11,D=20,E=13 what is the result?

JKHL = 000000000001000001000110000

BCDE= 00000001000100010010000000110011

Result= 000000000001000001000000010000

This is 0x00102010 and will be stored in JKHL.



#### R4000 instruction (example 3)

8 bit operation, loads A

With contents of

Memory Address (16 bit) in register pair BC or DE or immediate constant

| Load | 2000, 3000, 4000 |
|------|------------------|
|      |                  |

LD A, (BC) LD A, (DE) LD A, (mn)

| Opcode | Instruction            | Clocks        | Operation |
|--------|------------------------|---------------|-----------|
| 0A     | LD A,(BC)              | 6 (2,2,2)     | A=(BC)    |
| 1A     | LD A,(DE)              | 6 (2,2,2)     | A = (DE)  |
| 3A n m | LD A <sub>i</sub> (mn) | 9 (2,2,2,1,2) | A = (mn)  |

| Flags |   |     | ALTD |   |   | IOI/IOE |   |   |
|-------|---|-----|------|---|---|---------|---|---|
| 8     | Z | L/V | С    | F | R | 8P      | 8 | D |
| -     | - | -   | -    |   | • |         | • |   |

#### Description

Loads A with the data whose address is:

- BC, or
- DE, or
- the 16-bit constant mn.



# LD A, (0x0347)

A = ?

| Address<br>(in Hex) | Data<br>(in binary) |  |
|---------------------|---------------------|--|
|                     |                     |  |
| 034C                | 10011100            |  |
| 034B                | 11001110            |  |
| 034A                | 10011101            |  |
| 0349                | 10001000            |  |
| 0348                | 01101010            |  |
| 0347                | 01000111            |  |
| 0346                | 01000110            |  |
| 0345                | 00010001            |  |
|                     |                     |  |

# LD A, (0x0347)

A = 01000111

|          | Address<br>(in Hex) | Data<br>(in binary) |  |
|----------|---------------------|---------------------|--|
|          |                     |                     |  |
|          | 034C                | 10011100            |  |
|          | 034B                | 11001110            |  |
|          | 034A                | 10011101            |  |
|          | 0349                | 10001000            |  |
|          | 0348                | 01101010            |  |
| <b>→</b> | 0347                | 01000111            |  |
|          | 0346                | 01000110            |  |
|          | 0345                | 00010001            |  |
|          |                     |                     |  |

# LD (HL),BCDE

HL = 0x0348 B=00000001 C=00000010 D=00000011 E=00000100

What are the new values in the table?

| <br>                |                     |  |
|---------------------|---------------------|--|
| Address<br>(in Hex) | Data<br>(in binary) |  |
|                     |                     |  |
| 034C                | 10011100            |  |
| 034B                | 11001110            |  |
| 034A                | 10011101            |  |
| 0349                | 10001000            |  |
| 0348                | 01101010            |  |
| 0347                | 01000111            |  |
| 0346                | 01000110            |  |
| 0345                | 00010001            |  |
|                     |                     |  |

# LD (HL),BCDE

HL = 0x0348 B=00000001 C=00000010 D=00000011 E=00000100

What are the new values in the table?

Note: "little endian" Low order byte first

|          | Address<br>(in Hex) | Data<br>(in binary) |   |
|----------|---------------------|---------------------|---|
|          |                     |                     |   |
|          | 034C                | 10011100            |   |
|          | 034B                | 0000001             | В |
|          | 034A                | 00000010            | С |
|          | 0349                | 00000011            | D |
| <b>→</b> | 0348                | 00000100            | Е |
|          | 0347                | 01000111            |   |
|          | 0346                | 01000110            |   |
|          | 0345                | 00010001            |   |
|          |                     |                     |   |

#### R4000 arithmetic instructions

- 8 bit, 16 bit and 32 bit operations
- Add, Subtract
- 16 bit Multiply unsigned (MULU) and signed (MUL) with result in 32 bit register
- No divide, No floating point co processor
- Dynamic C uses library functions for real arithmetic



#### Stack

- Special region of memory in which data is ordered
- Data stored in same order as written; retrieved in reverse order
- LIFO (Last In First Out)
- Stack Pointer holds address of stack top
- PUSH and POP instructions
- Stack used extensively by procedure calls to store return address, parameters and local variables
- In assembly code sp refers to the stack pointer and (sp) the contents of the stack at sp.



#### POP BCDE

SP = 0xD949

B = ?

C = ?

D = ?

E = ?

SP = ?

|          | Address<br>(in Hex) | Data<br>(in binary) |  |
|----------|---------------------|---------------------|--|
|          |                     |                     |  |
|          | D945                | 10011100            |  |
|          | D946                | 11001110            |  |
|          | D947                | 10011101            |  |
|          | D948                | 10001000            |  |
| <b>→</b> | D949                | 01101010            |  |
|          | D94A                | 01000111            |  |
|          | D94B                | 01000110            |  |
|          | D94C                | 00010001            |  |
|          | D94D                | 00100100            |  |

#### POP BCDE

SP = 0xD949

B = 00010001

C = 01000110

D = 01000111

E = 01101010

SP = 0xD94D

Note: Stack grows

towards lower addresses.

Data is stored little endian

in memory.

|          | Address<br>(in Hex) | Data<br>(in binary) |   |
|----------|---------------------|---------------------|---|
|          |                     |                     |   |
|          | D945                | 10011100            |   |
|          | D946                | 11001110            |   |
|          | D947                | 10011101            |   |
|          | D948                | 10001000            |   |
|          | D949                | 01101010            | Е |
|          | D94A                | 01000111            | D |
|          | D94B                | 01000110            | С |
|          | D94C                | 00010001            | В |
| <b>→</b> | D94D                | 00100100            |   |

#### PUSH BCDE

SP = 0xD949

B = 00000001

C = 00000010

D = 00000011

E = 00000100

New stack entries = ?

SP = ?

|          | Address<br>(in Hex) | Data<br>(in binary) |  |
|----------|---------------------|---------------------|--|
|          |                     |                     |  |
|          | D945                | 10011100            |  |
|          | D946                | 11001110            |  |
|          | D947                | 10011101            |  |
|          | D948                | 10001000            |  |
| <b>^</b> | D949                | 01101010            |  |
|          | D94A                | 01000111            |  |
|          | D94B                | 01000110            |  |
|          | D94C                | 00010001            |  |
|          | D94D                | 00100100            |  |

#### PUSH BCDE

SP = 0xD949

B = 00000001

C = 00000010

D = 00000011

E = 00000100

New stack entries = ?

SP = 0xD945?

|          | Address<br>(in Hex) | Data<br>(in binary) |   |
|----------|---------------------|---------------------|---|
|          |                     |                     |   |
| <b>→</b> | D945                | 00000100            | E |
|          | D946                | 00000011            | D |
|          | D947                | 00000010            | С |
|          | D948                | 0000001             | В |
|          | D949                | 01101010            |   |
|          | D94A                | 01000111            |   |
|          | D94B                | 01000110            |   |
|          | D94C                | 00010001            |   |
|          | D94D                | 00100100            |   |

#### Why?

- Computers use binary arithmetic
- Conversion to decimal required for human readable displays
- Numbers with fractional parts (real numbers)
  require special representation and arithmetic is
  performed with algorithms implemented as a
  library that may be speeded up with a coprocessor.



# Conversion: binary to decimal

We can use polynomial evaluation: (note: this is 'human' conversion. Computer representation of decimal may be in binary 2s complement or binary coded decimal and each decimal digit will need to be separated and displayed)

$$= 1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 128 + 32 + 16 + 4 + 1$$

$$= 181_{10}$$



#### decimal to binary

- Whole part and fractional parts must be handled separately!
  - Whole part: Use repeated division.
  - Fractional part: Use repeated multiplication.
  - Combine results when finished.
- Example: 97.1 = ?



#### Integer part – repeated division

97 ÷ 2 → quotient = 48, remainder = 1 (LSB)

 $48 \div 2 \rightarrow$  quotient = 24, remainder = 0.

 $24 \div 2 \rightarrow$  quotient = 12, remainder = 0.

 $12 \div 2 \rightarrow$  quotient = 6, remainder = 0.

 $6 \div 2 \rightarrow$  quotient = 3, remainder = 0.

 $3 \div 2 \rightarrow$  quotient = 1, remainder = 1.

 $1 \div 2 \rightarrow$  quotient = 0 (Stop) remainder = 1 (MSB)

Result = 1 1 0 0 0 0 1



#### fractional part - repeated multiplication

```
.1 \times 2 \rightarrow 0.2 (fractional part = .2, whole part = 0)
```

$$.2 \times 2 \rightarrow 0.4$$
 (fractional part = .4, whole part = 0)

$$.4 \times 2 \rightarrow 0.8$$
 (fractional part = .8, whole part = 0)

$$.8 \times 2 \rightarrow 1.6$$
 (fractional part = .6, whole part = 1)

$$.6 \times 2 \rightarrow 1.2$$
 (fractional part = .2, whole part = 1)

```
Result = .00011..... (could continue on) 97.1 = 100001.00011....
```



#### Finite word length

- Computers represent data with a finite number of bits.
- Real numbers (such as 97.1 in the previous example) cannot be EXACTLY represented in binary with finite number of bits
- Testing for equality on real numbers is not good practice
- Integers can also overflow and rollover.



# Signed 2s complement

Sign bit : 0 = positive 1 = negative

| Number           | Sign magnitude | 1s complement | 2s complement |
|------------------|----------------|---------------|---------------|
| 1                | 0 0000001      |               | 0000001       |
| 2                | 0 0000010      |               | 0000010       |
| 57               | 0 0111001      |               | 00111001      |
| Negative numbers |                |               |               |
| -1               | 1 0000001      | 1 1111110     | 11111111      |
| -2               | 1 0000010      | 1 1111101     | 11111110      |
| -57              | 1 0111001      | 1 1000110     | 11000111      |





### As polynomial expansions

$$57 = 00111001 = 0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$-57 = 11000111 = -1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

For the 2s complement representation (Verify this)



#### Signed or Unsigned

unsigned Signed (2s Comp)  $167_{10}$   $\longrightarrow$   $-89_{10}$ 

- Signed or Unsigned is a matter of interpretation
- a single bit pattern can represent two different values.



#### Why 2s complement?

| +3 | 011 |
|----|-----|
| +2 | 010 |
| +1 | 001 |
| 0  | 000 |
| -1 | 111 |
| -2 | 110 |
| -3 | 101 |
| -4 | 100 |

- Just as easy to determine sign as in sign-magnitude form.
- 2. Almost as easy to change the sign of a number. 1s complement and add 1.
- 3. Addition can proceed without worrying about which operand is larger.
- 4. A single zero!
- 5. One hardware adder works for both signed and unsigned operands.







#### Which is greater? 1001 or 0011

- Answer: It depends!
  - (unsigned: 9 > 3, signed: -7 < 3)
- So how does the computer decide:
- "if (x > y).." /\* Is this true or false? \*/
- It's a matter of <u>interpretation</u>, and depends on how x and y were declared: signed? Or unsigned?



#### **Unsigned Overflow**

```
1100
                   (12)
                               Value of lost bit is 2^n (16).
      +0111
                                     16 + 3 = 19
      10011
                                  (The right answer!)
Lost
            (Result limited by word size)
       0011
                   (3)
                            wrong
```



# Signed Overflow

$$-120_{10}$$

**→** 

10001000<sub>2</sub>

 $+11101111_2$ 

sum: -137<sub>10</sub>

**1**01110111<sub>2</sub>

01110111<sub>2</sub> (keep 8 bits)

 $(+119_{10})$  wrong

Note:  $119 - 2^8 = 119 - 256 = -137$ 

This means that algorithms can be devised to use the overflow bit and extend arithmetic to longer word lengths



## Floating-Point Real



#### Three components:





#### Floating pt representation of -2

-2

Sign bit = 1 being negative

 $2 = 1.0 \times 2^{1}$ 

Leading 1 is ignored in the significand because it is always 1

Exp bias is +127

Thus S = 1

Exponent = 1 + 127 = 128 = 10000000



#### Floating pt representation of -0.75

-0.75

Sign bit = 1 being negative

 $0.75 = 1.5 \times 2^{-1}$ 

Leading 1 is ignored in the significand because it is always 1

Exp bias is +127

Thus S = 1

Exponent = -1 + 127 = 126 = 011111110



# Single-precision Floating-point Representation

Significand

```
2.000
   10000000
       1.000
   01111111
       0.750
   01111110
       0.500
  0 01111110
       0.000
  0 0000000
       -0.500
       1 01111110
-0.750
  1 01111110
       -1.000
       1 01111111
-2.000
   10000000
```



S

Exp+127

### **Fixed-Point Real**

#### Three components:





### P.P Fixed-Point Format





### Scale factor

There is an assumed scale factor (which converts the integer to the fixed point and moves the binary point left by P bits)

$$0001.0000 = 1$$

$$(16 \times 2^{-4})$$



#### Addition

Align binary points. Same as integer addition. Correct if the result is within the range of representation.

| 0001.0000 = 1   | $(16 \times 2^{-4})$    |
|-----------------|-------------------------|
| 0001.1000 = 1.5 | (24 x 2 <sup>-4</sup> ) |
| 0010.1000 = 2.5 | (40 x 2 <sup>-4</sup> ) |



# Negative number / subtraction

Align binary points. Same as integer operation. Correct if the result is within the range of representation.

$$0001.0000 = 1$$
 (16 x 2<sup>-4</sup>)  
 $1110.1000 = -1.5$  (-24 x 2<sup>-4</sup>)  
 $1111.1000 = -0.5$  (-8 x 2<sup>-4</sup>)

Check and convince yourself that the above 2s complement representations of negative numbers are correct.



### Multiplication

Align binary points. Binary point shifts and loss of bits can occur at MSB and LSB.

$$0001.0000 = 1$$
 (16 x 2<sup>-4</sup>)  
 $1110.1000 = -1.5$  (-24 x 2<sup>-4</sup>)  
 $11111110.100000000 = -1.5$  (-384 x 2<sup>-8</sup>)

Check and convince yourself that the above 2s complement representation is actually -384. Note: sign extensions are made when negative numbers in 2s complement are extended in length



# Fixed vs. Floating

#### Floating-Point:

Pro: Large dynamic range determined by exponent; resolution determined by significand.

Con: Implementation of arithmetic in hardware is complex (slow).

#### Fixed-Point:

Pro: Arithmetic is implemented using regular integer operations of processor (fast).

Con: Limited range and resolution.



Note: Rabbit 4000 supports 16 bit by 16 bit multiplication.

Can be done without a need for any additional algorithm







Problem: R4000 does not support 32 bit by 32 bit multiplication

Needs an algorithm that extends 16.16 product to 32.32 product

| 31         | 0                  |              |  |
|------------|--------------------|--------------|--|
| Whole Part | Fractional<br>Part | Multiplicand |  |
| 31         | 0                  |              |  |
| Whole Part | Fractional<br>Part | Multiplier   |  |
|            |                    | •            |  |





#### First consider a 32-bit unsigned number:

$$A_{u} = 2^{31}A_{31} + 2^{30}A_{30} + ... + 2^{0}A_{0}$$

$$= 2^{31}A_{31} + (2^{30}A_{30} + ... + 2^{0}A_{0})$$

$$= 2^{31}A_{31} + A_{30..0}$$
where  $A_{30..0} = 2^{30}A_{30} + ... + 2^{0}A_{0}$ 

First a formula for signed product is developed in terms of unsigned product



Thus the 64-bit product of two 32-bit unsigned operands would be:

$$A_{u}B_{u} = (2^{31}A_{31} + A_{30..0})(2^{31}B_{31} + B_{30..0})$$

$$= 2^{62}A_{31}B_{31} + 2^{31}(A_{31}B_{30..0} + B_{31}A_{30..0})$$

$$+ A_{30..0}B_{30..0}$$



Now consider a 32-bit <u>signed number</u> in 2s complement form:

$$A_s = -2^{31}A_{31} + 2^{30}A_{30} + \dots + 2^{0}A_{0}$$

$$= -2^{31}A_{31} + (2^{30}A_{30} + \dots + 2^{0}A_{0})$$

$$= -2^{31}A_{31} + A_{30..0}$$



Thus the 64-bit product of two 32-bit signed operands would be:

$$\begin{aligned} \mathsf{A}_{\mathsf{s}}\mathsf{B}_{\mathsf{s}} &= (-2^{31}\mathsf{A}_{31} + \mathsf{A}_{30..0})(-2^{31}\mathsf{B}_{31} + \mathsf{B}_{30..0}) \\ &= 2^{62}\mathsf{A}_{31}\mathsf{B}_{31} - 2^{31}(\mathsf{A}_{31}\;\mathsf{B}_{30..0} + \mathsf{B}_{31}\;\mathsf{A}_{30..0}) \\ &\quad + \mathsf{A}_{30..0}\;\mathsf{B}_{30..0} \\ &= \mathsf{A}_{\mathsf{u}}\mathsf{B}_{\mathsf{u}} - 2\;(2^{31}\mathsf{A}_{31}\;\mathsf{B}_{30..0} + 2^{31}\mathsf{B}_{31}\;\mathsf{A}_{30..0}) \\ &= \mathsf{A}_{\mathsf{u}}\mathsf{B}_{\mathsf{u}} - 2^{32}\mathsf{A}_{31}\;\mathsf{B}_{30..0} - 2^{32}\mathsf{B}_{31}\;\mathsf{A}_{30..0} \end{aligned}$$



What does this result mean?

$$A_s B_s = A_u B_u - (2^{32} A_{31} B_{30..0} - (2^{32} B_{31} A_{30..0})$$

If A is negative, subtract  $B_{30..0}$  from the most-significant half of  $A_uB_u$ 

If B is negative, subtract A<sub>30..0</sub> from the most-significant half of A<sub>u</sub>B<sub>u</sub>



don't need A<sub>u</sub>B<sub>u</sub> (32 bits) don't need

- don't need  $B_{30..0}$  (Subtract if A < 0)
- don't need  $A_{30..0}$  (Subtract if B < 0)



not used  $A_sB_s$  (32 bits)

not used



$$A_{u}B_{u} = (2^{16}A_{hi} + A_{lo})(2^{16}B_{hi} + B_{lo})$$
$$= 2^{32}A_{hi}B_{hi} + 2^{16}(A_{hi}B_{lo} + A_{lo}B_{h}) + A_{lo}B_{lo}$$

not used

 $A_{hi} B_{hi}$ 

$$A_{hi} B_{lo} + A_{lo} B_{h}$$

Then get unsigned product in terms of lower length products that are already available as operations.

A<sub>lo</sub> B<sub>lo</sub>

not used



### **MULU**

#### **Multiply Unsigned**

4000

#### MULU

| Opcode | Instruction | Clocks    | Operation                  |  |  |
|--------|-------------|-----------|----------------------------|--|--|
| A7     | MULU        | 12 (2,10) | HL:BC = BC • DE (unsigned) |  |  |

| Flags |   |     | ALTD |   |   | IONOE |   |   |
|-------|---|-----|------|---|---|-------|---|---|
| s     | Z | L/V | C    | F | R | SP    | s | D |
| -     | - | -   | -    |   |   |       |   |   |

#### Description

An unsigned multiplication operation is performed on the 16-bit binary integers in the BC and DE registers. The unsigned 32-bit result is loaded in HL (bits 31 through 16) and BC (bits 15 through 0).

#### Examples:

```
LD BC, 0FFFFh ; BC gets 65,535
LD DE, 0FFFFh ; DE gets 65,535
```

MULU ; HL|BC = 4,294,836,225 HL gets 0xFFFE, BC gets 0x0001

LD BC, 0FFFFh ; BC gets 65,535 LD DE, 00001h ; DE gets 1

MULU ; HL|BC = 65,535, HL gets 0x0000, BC gets 0xFFFF



### Multiplication of unsigned 16 bit

unsigned long prodUnsigned(unsigned int x, unsigned int y);

```
#asm
prodUnsigned::
    push hl
    Id hl, (sp + 0x04)
    ex de,hl
    Id hl, (sp + 0x06)
    ex de,hl
    Id bc,hl
    MULU
    ex bc,hl
    Id de,hl
    pop hl
    ret
#endasm
```

Save value of hl register in the stack Load parameter x from the stack into hl Move it to de by exchanging de and hl Load parameter y from the stack into hl Again exchange de and hl Now the two operands are in de and hl Parameter y is in de and x is in hl Move x to bc. Operands are in bc and de. MULU multiplies them Result is put into HL and BC Return value is expected in BC and DE So exchange HL and BC and then Move HL to DE. Then return.



### Driver to test it

```
main()
{
unsigned int a, b;
unsigned long prodab;
a = (unsigned int) 0x0008;
b = (unsigned int) 0x8000;

prodab = (unsigned long) prodUnsigned(a,b);

printf("a = %4x\n",a);
printf("b = %4x\n",b);
printf("product = %8lx\n",prodab);

exit(0);
}
```



#### Conclusion

- Data in binary form may need to be manipulated by an embedded systems programmer
- Not all embedded systems have a floating point coprocessor
- Floating point operations using library functions can be slower
- Comparisons of real numbers are problematic because adjustment of precision can result in loss of information
- Fixed point arithmetic can have advantages such as deterministic and fixed (faster) computation times.

