Two (possibly dependent) variables

Consider the following data from 1974 Motor Trend US magazine:

weight (1000s lb)	efficiency (mpg)		
1.513	30.4		
5.424	10.4		
1.935	27.3		
3.52	15.5		
3.44	18.7		
4.07	16.4		
5.25	10.4		
3.15	22.8		
2.78	21.4		
3.46	18.1		

Make a scatterplot

Find the (Pearson's) correlation coefficient

The correlation coefficient has many equivalent formulas.

The correlation coefficient can be thought of as the mean of products of standard scores.

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

The following is probably easier to use for calculations.

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y}$$

Calculate the correlation coefficient

X	У	xy
1.513	30.4	45.9952
5.424	10.4	56.4096
1.935	27.3	52.8255
3.52	15.5	54.56
3.44	18.7	64.328
4.07	16.4	66.748
5.25	10.4	54.6
3.15	22.8	71.82
2.78	21.4	59.492
3.46	18.1	62.626
$\sum x = 34.542$	$\sum y = 191.4$	$\sum x_i y_i = 589.4043$
$\bar{x} = 3.4542$	$\bar{y} = 19.14$	
$s_x = 1.25$	$s_y = 6.55$	

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{(n-1)s_x s_y} = \frac{589.4043 - 10 \cdot 3.4542 \cdot 19.14}{(10-1) \cdot 1.25 \cdot 6.55} = -0.971$$

Determine the best-fit line

The regression line has the form

$$y = a + bx$$

So, a is the y-intercept and b is the slope. We have formulas to determine them:

$$b = r \frac{s_y}{s_x} = -0.971 \cdot \frac{6.55}{1.25} = -5.09$$

$$a = \bar{y} - b\bar{x} = 19.14 - (-5.09) \cdot 3.4542 = 36.7$$

Our regression line:

$$y = 36.7 + (-5.09)x$$

Graph the regression line

Calculate and interpret the coefficient of determination

The coefficient of determination is the square of the correlation coefficient.

coefficient of determination =
$$r^2 = (-0.971)^2 = 0.943$$

We say that 94.3% of the variance in y (fuel efficiency) is explained by x (weight).

Determine the residuals (error between model and actual)

Determine the residuals and standard error of regression

Let y' be the predicted value from y = a + bx linear model.

X	у	y'	y-y'	$(y-y')^2$
1.513	30.4	29	1.4	1.96
5.424	10.4	9.09	1.31	1.72
1.935	27.3	26.9	0.4	0.16
3.52	15.5	18.8	-3.3	10.9
3.44	18.7	19.2	-0.5	0.25
4.07	16.4	16	0.4	0.16
5.25	10.4	9.98	0.42	0.176
3.15	22.8	20.7	2.1	4.41
2.78	21.4	22.5	-1.1	1.21
3.46	18.1	19.1	-1	1

$$s_{y-y'} = \sqrt{\frac{\sum (y-y')^2}{n-2}} = \sqrt{\frac{21.946}{10-2}} = 1.66$$

We think predictions tend to be off by 1.66 mpg.

Draw standard error

Make a point estimate using the linear model

Predict the fuel efficiency of a car with a mass of 200 lbs (x = 0.2).

$$y = 36.7 + (-5.09)(0.2) = 35.682$$

... notice this model does not do a good job predicting the fuel efficiency of a bicycle. A bicycle is much more efficient that that (approximately 200 mpg on an energy basis).