Marine Schimel

<u>mschimel@stanford.edu</u> https://marineschimel.github.io

March 2024 -

Selected work experience

Postdoctoral Researcher | Stanford University

 Design of algorithms to probe neural circuits using optogenetic perturbations, an related data Advised by Prof. Surya Ganguli and Prof. David Sussillo 	a theoretical tools to interpret
Research Scientist Intern, Meta-Reality Labs	August 2023-January 2024
Quantitative Research Intern, G-Research	Summer 2022
Education	
 PhD Computational Neuroscience University of Cambridge Research interests: Motor control, neural dynamics, optimal control, probabilistic Supervised by Dr Guillaume Hennequin and funded by an EPSRC DTP students 	
MSci in Physics University of Cambridge 1st class BSc in Natural Sciences University of Cambridge 1st class every year • Focus on Physics and Neurobiology	2018-2019 2015-2018
CPGE PCSI Lycée Louis-le-Grand Paris	2014-2015
Publications	
Dynamic consensus-building between neocortical areas via long-range conne	ections 2024
Learning interpretable control inputs and dynamics underlying animal locol $ICLR\ 2024$	motion 2024
When and why does motor preparation arise in RNN models of motor control eLife	bl? 2023
iLQR-VAE : control-based learning of input-driven dynamics with application <i>ICLR</i> 2022 (Oral presentation, top 5% accepted papers)	ons to neural data 2022
Selected presentations	
Data-driven modelling revelas consensus building dynamics across brain are ICTP Workshop on Theoretical Neuroscience (invited speaker)	eas June 2024
Learning input-driven dynamical systems from data Cosyne Dynamical Systems Workshop (invited speaker)	March 2024
Tutorial on iLQR Janelia NeuroTheory workshop	November 2022
iLQR-VAE model presentation Neural Latents Benchmark workshop (invited talk)	February 2022
Probabilistic input-driven RNNs for identifying latent dynamics in neural d Champalimaud Research Symposium (selected talk)	ata October 2021
Selected awards	
EPSRC Access to HPC grant (estimated value of 30000£)	2022-2023 and 2023-2024
Microsoft Research Award	2019
 Awarded for the best computational research project in the Cambridge Physics N Silver Medal at the International Physics Olympiad 	4Sci. 2015
Skills	

Languages: French (Native), English (Fluent), German (C1), Spanish (A2)

Programming: Python (Numpy, Jax, Pytorch), Ocaml, Matlab

• Design of algorithms to probe neural circuits using optogenetic perturbations, and theoretical tools to interpret