Parallel Programming in C with MPI and OpenMP

Michael J. Quinn

Chapter 3 Parallel Algorithm Design

Outline

- Task/Channel Model
- Algorithm Design Methodology
- Case Studies
 - Boundary value problem
 - Finding the maximum
 - The n-body problem
 - Adding data input

Task/Channel Model

Parallel computation

a set of tasks interact by sending messages through channels

Task

Program + Local memory + Collection of I/O ports

Channel

- a message queue (output port → input port)
- Receiving is a synchronous operation (wait→block)
 Sending is an asynchronous operation

Task/Channel Model

Foster's Design Methodology

- Ian Foster has proposed a 4-steps process for designing parallel algorithms
- 1. Partitioning
- 2. Communication
- 3. Agglomeration
- 4. Mapping

Foster's Methodology

Partitioning

- Dividing computation and data into pieces.
 - Data-centric approach or computation-centric approach
- Domain decomposition
 - Divide data into pieces
 - Determine how to associate computations with the data
- Functional decomposition
 - Divide computation into pieces (e.q. pipelining)
 - Determine how to associate data with the computations

Example Domain Decompositions

Three domain decompositions of a 3D matrix

Example Functional Decomposition

Functional decomposition of a system supporting interactive image-guided surgery

Partitioning Checklist

- More tasks: At least 10× more primitive tasks than processors in target parallel computer.
- Less redundancy: Minimize redundant computations and redundant data structure storage.
- Same size: Primitive tasks are roughly the same size.
- Scalability: The number of tasks is an increasing function of the problem size.

Communication

- Determine values passed among tasks
- Local communication
 - Task needs values from a small number of other tasks
 - Create channels illustrating data flow
- Global communication
 - Significant number of tasks contribute data to perform a computation
 - Don't create channels for them early in design

Communication Checklist

- Equal traffic: Communication operations balanced among tasks
- Less traffic: Each task communicates with only small group of neighbors
- Talking: Tasks can perform communications concurrently
- Working: Tasks can perform computations concurrently

Agglomeration

- Grouping tasks into larger tasks
 - Improve performance (a.)
 - Simplify programming (b.)
- Goals
 - Lower communication overhead (a.)
 - Maintain scalability of the parallel design (a.)
 - Reduce software engineering cost (b.)
- In MPI programming, goal often to create one agglomerated task per processor

Agglomeration Can Improve Performance

- Increasing the locality: Eliminate communication between primitive tasks agglomerated into consolidated task
- Reducing channels: Combine groups of sending and receiving tasks

Agglomeration Checklist

Tuning partitioning and communication.

- Locality of parallel algorithm has increased
- Replicated computations take less time than communications they replace
- Data replication doesn't affect scalability
- Agglomerated tasks have similar computational and communications costs
- Number of tasks increases with problem size
- Number of tasks suitable for likely target systems
- Trade-off between agglomeration and code modifications costs is reasonable

Mapping

- Process of assigning tasks to processors
- Centralized multiprocessor
 - mapping done by operating system
- Distributed memory system
 - mapping done by user (our target)
- Conflicting goals of mapping
 - Maximize processor utilization
 - Minimize inter-processor communication

Mapping Example

Mapping of tasks to three processors

Optimal Mapping

- Finding optimal mapping is NP-hard
 - There are no known polynomial-time algorithms to map tasks to processors to minimize the execution time.
 - NP-hard
 - NP-hard, NIST, http://www.nist.gov/dads/HTML/nphard.html
 - NP-hard, Wikipedia, http://en.wikipedia.org/wiki/NP-hard
- Must rely on heuristics

Decision Tree of Mapping Strategy (1)

- Static number of tasks
 - Structured communication
 - Constant computation time per task
 - Agglomerate tasks to minimize communication
 - Create one task per processor
 - Variable computation time per task
 - Cyclically map tasks to processors
 - Unstructured communication
 - Use a static load balancing algorithm
- Dynamic number of tasks

Decision Tree of Mapping Strategy (2)

- Static number of tasks
- Dynamic number of tasks
 - Frequent communications between tasks
 - Use a dynamic load balancing algorithm
 - Many short-lived tasks
 - Use a run-time task-scheduling algorithm

Mapping Checklist

- 1 vs. M: Considered designs based on one task per processor and multiple tasks per processor
- S vs. D: Evaluated static and dynamic task allocation
- If dynamic task allocation chosen, task allocator is not a bottleneck to performance
- If static task allocation chosen, ratio of tasks to processors is at least 10:1

Case Studies

- Boundary value problem
- Finding the maximum
- The n-body problem
- Adding data input

Boundary Value Problem

A thin rod is suspended between two ice baths.

Then ends of the rod are in contact with the icewater.

The rod is surrounded by a thick blanket of insulation.

We can use a partial differential equation to model the temperature at any point on the rod as a function of time

Rod Cools as Time Progresses

The finite difference method finds the temperature at a fixed number of points in the rod at certain time intervals. Decreasing the size of the steps in space and time can lead to more accurate solutions.

Finite Difference Approximation

Data structure used in a finite difference approximation to the rod-cooling problem. Every point $u_{i,j}$ represents a matrix element containing the temperature at position i on the rod at time j. At each end of the rod the temperature is always 0. At time 0 the temperature at point x is $100\sin(\pi x)$.

1. Partitioning

- One data item per grid point easy
- Associate one primitive task with each grid point
- Two-dimensional domain decomposition

2. Communication

- Identify communication pattern between primitive task
- Each interior primitive task has three incoming and three outgoing channels

$$u_{i,j+1} = ru_{i-1,j} + (1-2r)u_{i,j} + ru_{i+1,j}$$

3. Agglomeration and 4. Mapping

Sequential Execution Time

- The rod has been divided into n pieces of size h.
 - χ time to update element $u_{i,j+1} = ru_{i-1,j} + (1-2r)u_{i,j} + ru_{i+1,j}$
 - *n* number of elements
 - m number of iterations
- Sequential execution time: $m(n-1)\chi$

Parallel Execution Time

- If each processor is responsible for an equal-sized portion of the rod's elements.
 - p number of processors
 - ∧ message latency
- The computation time for each iteration: $\chi \left| \frac{n-1}{p} \right|$
- Necessary communication time: 2λ
- Parallel execution time: $m\left(\chi \left| \frac{n-1}{p} \right| + 2\lambda\right)$

Finding the Maximum Error

- The error between the computed solution x and correction solution is |(x-c)/c|.
- Enhance previous parallel algorithm to find the maximum error.

Computed	0.15	0.16	0.16	0.19
Correct	0.15	0.16	0.17	0.18
Error (%)	0.00%	0.00%	6.25%	5.26%

6.25%

Reduction

- Given
 - a set of *n* values $a_0, a_1, a_2, ..., a_{n-1}$
 - an associative operator ⊕
- Reduction is the process of computing

$$a_0 \oplus a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1}$$

- Examples: add, multiply, AND, OR, maximum, minimum
- Reduction requires exactly n-1 operations, it has $\Theta(n)$ time complexity on a sequential computer.
 - How to perform a reduction on parallel computer quickly?

Parallel Reduction Evolution (1)

- Partitioning
 - Divide it into n pieces, one task per piece.
- Communication
 - χ time to perform an addition
 - ∧ message latency

Time complexity $= (n-1)(\lambda + \chi)$

Only one task receives all other n-1 results.

Parallel Reduction Evolution (2)

Time complexity

$$= \left(\frac{n}{2} - 1\right) (\lambda + \chi) + (\lambda + \chi)$$

$$=\frac{n}{2}(\lambda+\chi)$$

Two tasks work together.

$$2\left(\frac{n}{2}-1\right)+1=n-1$$

Parallel Reduction Evolution (3)

Continue ... Binomial Trees

Subgraph of Hypercube

$$n = 2^k$$
$$k = \log n$$

Binomial trees with 1, 2, 4, and 8 nodes.

Finding Global Sum in logarithmic time

Agglomeration and Mapping

n tasks mapped top processors

16 tasks are mapped to 4 processors.

Agglomerate Primitive Tasks

n/p primitive tasks
 with 1 value
 ↓

1 primitive tasks with *n/p* values

4 tasks on each processor are agglomerated into a single task

Analysis

- χ time to perform the binary operation
- ∧ message latency
- All tasks performance concurrently: $\left(\left|\frac{n}{p}\right|-1\right)\chi$

$$\left(\left\lceil \frac{n}{p}\right\rceil - 1\right)\chi$$

- A reduction of p values distributed among p tasks can be preformed in $\lceil \log p \rceil$ communication steps.
- Each reduction stop requires time: $\lambda + \chi$
- Overall execution time: $\left(\left|\frac{n}{p}\right|-1\right)\chi+\left\lceil\log p\right\rceil(\lambda+\chi)$

The n-Body Problem

Newtonian n-body simulation.

Straightforward sequential algorithms Time complexity: $\Theta(n^2)$ per iteration.

The n-Body Problem

Straightforward sequential algorithms Time complexity: $\Theta(n^2)$ per iteration.

Partitioning

- Domain partitioning
- Assume one task per particle
- Task
 - particle's position
 - velocity vector
- Iteration
 - Get positions of all other particles
 - Compute new position, velocity

Gather

All-gather

Complete Graph for All-gather

Set up a channel between every pair of tasks.

Hypercube for All-gather

Each task have only $\log p$ outgoing channels and $\log p$ incoming channels

Analysis

- **B** bandwidth of each channel
- Communication time
 - Complete graph

$$(p-1)\left(\lambda + \frac{n/p}{\beta}\right) = (p-1)\lambda + \frac{n(p-1)}{\beta p}$$

Hypercube

$$\sum_{i=1}^{\log p} \left(\lambda + \frac{2^{i-1} n/p}{\beta} \right) = \lambda \log p + \frac{n(p-1)}{\beta p}$$

Overall time complexity

$$\lambda \log p + \frac{n(p-1)}{\beta p} + \chi \left(\frac{n}{p}\right)(n-1)$$

Error in textbook

Adding Data Input

Augment the task/channel graph for the n-body problem

I/O Time Complexity:

$$\lambda_{io} + \frac{n}{\beta_{io}} \{ \text{for } n \text{ data elements (1D)} \}$$

$$\lambda_{io} + \frac{4n}{\beta_{io}} \begin{cases} \text{for positions(2D)} \\ \text{and velocities(2D)of } n \text{ particles} \end{cases}$$

Task 0 is responsible for I/O.

Scatter

Scatter in $\log p$ Steps

Communication

- Time for scatter the particles (sequential)
 - Send p-1 message, each of length 4n/p

$$(p-1)\left(\lambda + \frac{4n}{p\beta}\right) = (p-1)\lambda + \frac{4n(p-1)}{p\beta}$$

• Time for scatter the particles (in log p steps)

$$\sum_{i=1}^{\log p} \left(\lambda + \frac{4n}{2^i \beta} \right) = \lambda \log p + \frac{4n(p-1)}{p\beta}$$
Error in textbook

• The " $\log p$ steps" algorithm is better.

Analysis

Overall execution time for m iterations:

$$2\left(\lambda_{io} + \frac{4n}{\beta_{io}}\right) + 2\left(\lambda \log p + \frac{4n(p-1)}{p\beta}\right) + m\left(\lambda \log p + \frac{2n(p-1)}{p\beta} + \chi \left\lceil \frac{n}{p} \right\rceil (n-1)\right)$$

Input and Output

Log p steps scattering

All-gather and computation

Summary: Task/channel Model

- Parallel computation
 - Set of tasks
 - Interactions through channels
- Good designs
 - Maximize local computations
 - Minimize communications
 - Scale up

Summary: Design Steps

- Partition computation
- Agglomerate tasks
- Map tasks to processors
- Goals
 - Maximize processor utilization
 - Minimize inter-processor communication

Summary: Fundamental Algorithms

- Reduction
- Gather and scatter
- All-gather

Exercise

- 3.11
- 3.13
- 3.18, 3.19

Discussion

Real world

- Processor
 - Single Core
 - Hyper-threading, multi-threading
 - http://www.intel.com/personal/desktop/dualcore/demo/pop up/demo.htm
 - Dual Core
- Programming
 - Multi-thread (share memory space)
 - Multi-process (no share memory space)
 - → extend to MPI process.

Parallelization Policy

