CS1026

Lab #1

Jakub Slowinski

Student number:16319781

Design an XOR using NAND gates • Implement: $F(X, Y) = X \oplus Y$

NAND gate logic

Inputs		Output
A	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

XOR gate logic

Inputs		Output
Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

The logic NAND Gate is a combination of the digital logic AND gate with that of an invertor or NOT gate connected together in series.

The XOR gate uses a combination of 4 NAND gates.

The LED lights up when the output comes to 1. This happens when one of the inputs is 1 while the other is 0.

A.B' + A'.B is the algebraic expression for a XOR gate.