第一章 线性映射

本章开始,我们转向线性映射的研究。

我们将用三章完成线性映射的研究。本章我们将从映射最基本的研究方式:向量的作用 开始

线性映射的独特之处在于:一方面它能在常规的映射加法和纯量乘法下构成一个线性空间;另一方面,如果我们将复合视为乘法,它可以构成一个幺环。

第一节中,我们将给出线性映射的定义及运算,并研究基本性质;

第二节中,我们将研究两种由线性映射导出的子空间,核和像,并借此提出一个概念: 秩。它和我们之前的秩也有很强的联系;

第三节到第五节中,我们将研究矩阵,它是将线性映射在基下的作用写成的一张数表,非常便于在数值上研究矩阵;

第六节中,我们将研究行列式,它是一个反对称多线性函数,我们以此为工具,为后续我们对线性映射分解的研究铺垫。

1.1 线性映射的定义和运算

1.1.1 线性映射的定义

我们首先给出线性映射的定义

定义 1.1.1: 线性映射

设 V_1, V_2 是一个 F 上的两个线性空间,, 映射 $A: V_1 \to V_2$ 如果满足:

 $\forall \alpha,\beta \in V_1, k \in F$

 $A(\alpha + \beta) = A(\alpha) + A(\beta)$

 $A(k\alpha) = kA(\alpha)$

那么我们称 A 是一个从 V_1 到 V_2 的线性映射

全体 V_1 到 V_2 的线性映射的集合记作 $hom(V_1, V_2)$

特别地,如果 $V_1 = V_2$,我们称 A 是一个 V_1 上的线性变换

有一些常用的线性映射,我们在这里列出来:

定义 1.1.2: 一些常用的线性映射

1. 恒等变换: $I: V \ni \alpha \mapsto \alpha \in V$

2. 数乘变换: $k: V \ni \alpha \mapsto k\alpha \in V$

3. 零变换: $0: V_1 \ni \alpha \mapsto \mathbf{0}_{V_2} \in V_2$

1.1.2 线性映射的运算

前面我们定义了线性映射,现在我们开始赋予 $hom(V_1, V_2)$ 线性空间和环的性质。 我们会定义三种运算:加法、纯量乘法、乘法

定义 1.1.3: 线性映射的运算

我们定义:

映射 $+: \text{hom}(V_1, V_2) \times \text{hom}(V_1, V_2) \rightarrow \text{hom}(V_1, V_2)$, 称为加法, 如果满足:

$$\forall A, B \in \text{hom}(V_1, V_2), \alpha \in V_1, (A + B)(\alpha) = A(\alpha) + B(\alpha) \tag{1.1}$$

映射 $\cdot: F \times \text{hom}(V_1, V_2) \to \text{hom}(V_1, V_2)$,称为纯量乘法,如果满足:

$$\forall k \in F, A \in \text{hom}(V_1, V_2), \alpha \in F, (k \cdot A)(\alpha) = kA(\alpha)$$
(1.2)

映射。: $hom(V_1, V_2) \times hom(V_1, V_2) \rightarrow hom(V_1, V_2)$, 称为乘法, 如果满足:

$$\forall A, B \in \text{hom}(V_1, V_2), \alpha \in V_1, (A \circ B)(\alpha) = A(B(\alpha)) \tag{1.3}$$

我们也常常把 $k \cdot A$ 简记为 kA, 将 $A \circ B$ 简记为 AB

显然, $(hom(V_1, V_2), F, +, \cdot)$ 是一个线性空间,0 是它的零向量;

 $(\text{hom}(V_1,V_2),+,\circ)$ 是一个幺环,0 是它的加法单位元,I 是它的乘法单位元

除此之外,还有一些运算,但是它们是针对特殊的线性映射的,比如说:

定义 1.1.4: 线性变换的幂

 $\forall A \in \text{hom}(V, V)$

我们定义:
$$A^m := \begin{cases} A \circ A^{m-1}, m \geqslant 1 \\ I, m = 0 \end{cases}$$
 , $m \geqslant 0$

如果一个映射的幂不会使其本身变化,我们称它是一个幂等变换

定义 1.1.5: 幂等映射

 $A \hom(V, V)$ 如果有:

 $A = A^2$

我们称它是一个幂等变换

我们不再讨论其他的运算,我们接下来转入线性映射一般性质的研究

1.1.3 线性映射的性质

1.

命题 1.1.1.
$$\forall A \in \text{hom}(V_1, V_2), A(\mathbf{0}_{V_1}) = \mathbf{0}_{V_2}$$

证明:
$$A(\mathbf{0}_{V_1}) = A(0 \cdot \mathbf{0}_{V_1}) = 0 \cdot A(\mathbf{0}_{V_1}) = \mathbf{0}_{V_2}$$

2.

命题 **1.1.2.**
$$\forall A \in \text{hom}(V_1, V_2), A(-\alpha) = -A(\alpha)$$

证明:
$$A(-\alpha) = A((-1) \cdot \alpha) = (-1) \cdot A(\alpha) = -A(\alpha)$$

3.

命题 1.1.3.
$$\forall A \in \text{hom}(V_1, V_2), A(\sum_{i=1}^n k_i \alpha_i) = \sum_{i=1}^n k_i A(\alpha_i)$$
 证明: 对 n 使用数学归纳法易证。

值得注意,这个定理并不能随意地推广到 \aleph_0 ,因为此时依赖于度量线性空间或线性映射的进一步性质。

4.

命题 1.1.4. $\forall A \in \text{hom}(V, V), m \ge 1, A^m = A^{m-1} \circ A$

证明: 对m作数学归纳法。

首先, 当 m=2 时, $A^2=A\circ A$, 命题成立

现在假设 m 时成立, 我们来证明 m+1 时命题也成立:

$$A^m = A \circ A^{m-1} = A \circ A^{m-2} \circ A = A^{m-1} \circ A$$
,于是命题得证。

这个命题看似显然,但是是必要的,因为线性映射环不交换。这个命题指出:递归式地推导幂时,从左右方向都是等价的。进一步,在递归中不断变换方向也不会影响结果。

5.

命题 1.1.5. $\forall A \in \text{hom}(V_1, V_2)$

如果 $\alpha_1, \cdots, \alpha_s$ 线性相关,那么 $A(\alpha_1), \cdots, A(\alpha_s)$ 也线性相关

证明: $\alpha_1, \dots, \alpha_s$ 线性相关

$$\Rightarrow \exists k_1, \dots, k_s, k_1\alpha_1 + \dots + k_n\alpha_s = \mathbf{0}$$
,其中 k_1, \dots, k_s 不全为零

$$\Rightarrow A(k_1\alpha_1 + \dots + k_n\alpha_s) = k_1A(\alpha_1) + \dots + k_nA(\alpha_s) = \mathbf{0}$$

$$\Rightarrow A(\alpha_1), \cdots, A(\alpha_n)$$
 线性无关

1.2 线性映射的核和像

5

值得注意的是,不同于同构映射,在这个命题中把线性相关改为线性无关会使命题变得不成立。比如说,零映射会把任何线性无关的向量组变得线性相关

6.

命题 1.1.6. $\forall T, Y \in \text{hom}(V_1, V_2)$, $B \neq V_1$ 的一个基

如果 $\forall \alpha \in B, T(\alpha) = Y(\beta)$, 那么 T = Y

证明: 只需证明: $\forall \gamma \in V_1, T(\gamma) = Y(\gamma)$

因为 $B \in V_1$ 的基,所以一定有 $\gamma = k_1\alpha_1 + \cdots + k_s\alpha_s, \alpha_1, \cdots, \alpha_s \in B$

此时, $T(\gamma)=k_1T(\alpha_1)+\cdots+k_sT(\alpha_s)=k_1Y(\alpha_1)+\cdots+k_sY(\alpha_s)=Y(\gamma)$,于是命题得证。

这个命题指出,线性映射完全由其在基上的作用决定,因为我们其实只需要指定基上的像就指定了线性映射本身。

定理 1.1.1: $hom(V_1, V_2)$ 的维数

如果 $\dim V_1, \dim V_2 < \aleph_0$

那么, $\dim \operatorname{hom}(V_1, V_2) = \dim V_1 \cdot \dim V_2$

否则, $\dim \operatorname{hom}(V_1, V_2) = (\dim V_2)^{\dim V_1}$

7.

证明:

1.2 线性映射的核和像

本节中,我们将借助核与像继续研究线性映射。所谓核,即是线性映射映到零的那一部分,像则是值域。

同时,我们会引入对偶映射,借助本节中核与像的工具,我们将看到对偶和本身之间的联系。

1.2.1 核与像的定义

定义 1.2.1: 线性映射的核

设 $A \in \text{hom}(V_1, V_2)$, 我们定义:

$$\ker A := \{\alpha \in V_1 | A(\alpha) = \mathbf{0}_{V_2}\} \tag{1.4}$$

称为线性映射 A 的核

定义 1.2.2: 线性映射的像

设 $A \in \text{hom}(V_1, V_2)$, 我们定义:

$$Im A := A(V_1) := \{ A(\alpha) | \alpha \in V_1 \}$$
(1.5)

称为线性映射 A 的像

特别地,核与像的维数我们分别称为零化度和秩:

定义 1.2.3: 线性映射的零化度

设 $A \in \text{hom}(V_1, V_2)$, 我们定义:

$$\operatorname{nullity}(A) := \dim(\ker A)$$
 (1.6)

称为线性映射 A 的零化度

定义 1.2.4: 线性映射的秩

设 $A \in \text{hom}(V_1, V_2)$, 我们定义:

$$rank(A) := \dim(\operatorname{Im} A) \tag{1.7}$$

称为线性映射 A 的秩

事实上,线性映射的秩和之前我们曾提及的向量组的秩有着很大的联系,我们将在后续看到这一点。

为了方便后续性质的研究,接下来我们给出对偶映射的概念

1.2 线性映射的核和像

定义 1.2.5: 对偶映射

设 $A \in \text{hom}(V_1, V_2)$,我们定义对偶映射 $T^* \in \text{hom}(V_2^*, V_1^*)$

如果满足: $\forall f \in V_2^*, \alpha \in V_1$

$$(T^*(f))(\alpha) = (f \circ T)(\alpha) \tag{1.8}$$

1.2.2 核与像的性质

接下来研究核与像的性质

1.

命题 1.2.1. $\forall A \in \text{hom}(V, W)$, ker A, Im A 都是线性空间

证明: 先证明 ker A 是一个线性空间

注意到, $\mathbf{0}_V \in \ker A$,因为 $A(\mathbf{0}_V) = \mathbf{0}_W$,因此 $\ker A$ 非空

2.

命题 1.2.2. $A \in \text{hom}(V, W)$, 那么:

A 是单射 $\Leftrightarrow \ker A = \{\mathbf{0}_V\}$

3.

命题 1.2.3. $A \in \text{hom}(V, W)$, 那么:

A 是单射 \Leftrightarrow $\operatorname{Im} A = W$

证明: 这是显然的。

4. 秩-零化度定理 在给出定理前,我们先给出一个引理。它是一个线性空间的"同态基本定理",证明方法也很相似

引理 1.2.1

 $\forall A \in \text{hom}(V, W)$

$$V/\ker A \cong \operatorname{Im} A \tag{1.9}$$

它的直接推论是被称为秩-零化度定理的结论,它揭示了秩和零化度的联系

1.3 矩阵 8

定理 1.2.2: 秩-零化度定理

 $\forall A \in \text{hom}(V, W)$

$$rank(A) + nullity(A) = \dim V \tag{1.10}$$

1.3 矩阵

1.3.1 矩阵的定义

定义 1.3.1: 矩阵

形如以下的矩形阵列称为一个域 F 上的矩阵 $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, a_{ij} \in F$

简记为 $(a_{ij})_{m\times n}$ 或 $(a_{ij})_{o}$ 。m 称为矩阵的行数,n 称为矩阵的列数。

特别地,如果 m=n,我们称它是一个 m 阶方阵。

F 上的全体 $m \times n$ 矩阵的集合记作 $M_{m \times n}(F)$,特别地如果 m=n,记作 $M_n(F)$ 。 我们也将矩阵 ${\bf A}$ 在 m 行 n 列处的元素记作 ${\bf A}_{ij}$

1.3.2 矩阵的运算

1. 相等

定义 1.3.2: 矩阵的相等

设 $A \in M_{m \times n}(F), B \in M_{m \times n}(F)$,如果 $\forall i, j, A(i;j) = B(i;j)$,则称 A = B。

2. 转置

定义 1.3.3: 矩阵的转置

设 $A \in M_{m \times n}(F)$,

我们定义矩阵 $A^T \in M_{n \times m}(F)$ 为满足 $A^T(i;j) = A(i;j)$ 的矩阵,称为 A 的转置。

3. 加法

1.3 矩阵 9

定义 1.3.4: 矩阵的加法

设 $A \in M_{m \times n}(F), B \in M_{m \times n}(F)$

我们定义: (A+B)(i;j) = A(i;j) + B(i;j)。

4. 纯量乘法

定义 1.3.5: 矩阵的纯量乘法

设 $A \in M_{m \times n}(F), k \in F$,

我们定义矩阵 $k\cdot A\in M_{m\times n}(F)$ 为满足 $(k\cdot A)(i;j)=k\cdot A(i;j)$ 的矩阵。

5. 乘法

定义 1.3.6: 矩阵的乘法

设 $A \in M_{m \times n}(F), B \in M_{n \times p}(F)$,

我们定义矩阵 $A\cdot B\in M_{m\times p}(F)$ 为满足 $(A\cdot B)(i;j)=\sum_{k=1}^n A(i;k)B(k;j)$ 的矩阵

6. 幂

定义 1.3.7: 方阵的幂

设 $A \in M_n(F)$ 是一个方阵,我们定义: $A^k = A \cdot A^{k-1}$

1.4 特殊矩阵 10

1.3.3 矩阵的性质

- 1.4 特殊矩阵
- 1.5 可逆矩阵
 - 1.6 行列式

1.6.1 行列式的定义和性质

定义 1.6.1: 行列式

设 F 是一个域, V 是 F 上的一个线性空间, 并且 $dim_F V = n$

映射 $\det: V^n \to F$ 如果满足:

$$\textcircled{1} \det(\alpha_1, \cdots, \alpha_i + \beta_i, \cdots, \alpha_n) = \det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_n) + \det(\alpha_1, \cdots, \beta_i, \cdots, \alpha_n)$$

$$② \det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_i, \cdots, \alpha_n) = -\det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_i, \cdots, \alpha_n)$$

③ 存在 V 的一组基 $\gamma_i, \dots, \gamma_n, \det(\gamma_1, \dots, \gamma_n) = 1$

那么我们称 det 是一个 V 上的 n 阶行列式

由行列式的定义,我们可以推导出行列式的基本性质

命题 1.6.1. 向量组
$$\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n$$
 如果有 $\alpha_i=\alpha_j$ 那么 $\det(\alpha_1,\cdots,\alpha_i,\cdots,\alpha_i,\cdots,\alpha_n)=0$

推论 1.6.1: 存在成比例变量的行列式为零

向量组 $\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n$ 如果有 $\alpha_i=k\alpha_j,k\in F$ 那么 $\det(\alpha_1,\cdots,\alpha_i,\cdots,\alpha_i,\cdots,\alpha_n)=0$

证明:
$$\det(\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n)=k\cdot\det(\alpha_1,\cdots,\alpha_j,\cdots,\alpha_j,\cdots,\alpha_n)=0$$

1.6 行列式 11

1.6.2 行列式在基上的展开

定理 1.6.2: 行列式的展开

设 F 是一个域, V 是 F 上的一个线性空间, 并且 $dim_F V = n$,

V 上的 n 阶行列式 det 满足 $\det(\gamma_1,\cdots,\gamma_n)=1$,其中 $\{\gamma_1,\cdots,\gamma_n\}$ 是 V 的一组基那么,有:

$$\det(\alpha_1, \cdots, \alpha_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$
(1.11)

其中 $\alpha_i = \sum_{j=1}^n a_{i,j} \gamma_j$

证明:
$$\det(\alpha_1,\cdots,\alpha_n) = \det\left(\sum_{i_1=1}^n a_{1,i_1}\gamma_{i_1},\cdots,\sum_{i_n=1}^n a_{n,i_n}\gamma_{i_n}\right)$$

$$= \sum_{i_1=1}^n \cdots \sum_{i_n=1}^n \left(\prod_{k=1}^n a_{k,i_k} \det(\alpha_{i_1},\cdots,\alpha_{i_n})\right)$$

$$= \sum_{\sigma \in S_n} \left(\prod_{k=1}^n a_{k,\sigma(k)} \mathrm{sgn}(\sigma)\right)$$

事实上,我们也可以改变第一个求和指标,使之称为一个固定但是可以随意选取的置换

推论 1.6.3

设 F 是一个域, V 是 F 上的一个线性空间, 并且 $dim_F V = n$,

V 上的 n 阶行列式 det 满足 $\det(\gamma_1,\cdots,\gamma_n)=1$,其中 $\{\gamma_1,\cdots,\gamma_n\}$ 是 V 的一组基那么,有:

$$\det(\alpha_1,\cdots,\alpha_n) = \operatorname{sgn}(\rho) \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\rho(i),\sigma(i)} \tag{1.12}$$

其中 $\alpha_i = \sum_{j=1}^n a_{i,j} \gamma_j$, ρ 是一个置换

证明: $\det(\alpha_1, \dots, \alpha_n) = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \prod_{i=1}^n a_{i,\tau(i)}$

对指标作置换 ρ ,累乘的结果不会变化,所以有:

$$\det(\alpha_1,\cdots,\alpha_n) = \sum_{\tau \in S_n} \mathrm{sgn}(\tau) \prod_{i=1}^n a_{\rho(i),(\rho \circ \tau)(i)}$$

记
$$\sigma=\rho\circ au$$
,那么 $\det(lpha_1,\cdots,lpha_n)=\sum_{
ho^{-1}\circ\sigma\in S_n}\mathrm{sgn}(
ho^{-1}\circ\sigma)\prod_{i=1}^na_{
ho(i),\sigma(i)}$

但是, $\rho^{-1}\circ\sigma\in S_n$ 其实就是 $\sigma\in S_n$,并且我们知道 $\mathrm{sgn}(\rho^{-1}\circ\sigma)=\mathrm{sgn}(\rho)\mathrm{sgn}(\sigma)$

所以
$$\det(\alpha_1,\cdots,\alpha_n)=\mathrm{sgn}(\rho)\sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)\prod_{i=1}^n a_{\rho(i),\sigma(i)}$$
 $\hfill\Box$

1.6 行列式 12

1.6.3 矩阵的行列式

我们之前已经指出, $M_n(F)\cong F^{n^2}\cong (F^n)^n$,因此,我们可以对矩阵定义行列式:

定义 1.6.2: 矩阵的行列式

设矩阵 $A=(\alpha_1,\cdots,\alpha_n)\in M_n(F)$,我们定义:

 $|A| = \det(A) := \det(\alpha_1, \cdots, \alpha_n)$

并且有 $\det(e_1,\cdots,e_n)=1$,其中 e_i 是标准基向量 $(0,\cdots,1,\cdots,0)$,1 在第 i 个位置上。

矩阵的行列式也可以类似地在标准基上展开

定理 1.6.4: 矩阵的行列式的展开

设 F 是一个域,矩阵 $A=(a_{ij})\in M_{n\times n}(F)$ 那么,有:

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$
(1.13)

1.6.4 矩阵的行列式的余子式展开

1.6.5 矩阵乘积的行列式