importing libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from patsy import dmatrices
import sklearn as skl
```

reading csv and viewing data

```
In [2]: dataframe = pd.read_csv("IBM Attrition Data.csv")
    dataframe.head(10)
```

Out[2]:		Age	Attrition	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfactio
	0	41	Yes	Sales	1	2	Life Sciences	
	1	49	No	Research & Development	8	1	Life Sciences	
	2	37	Yes	Research & Development	2	2	Other	
	3	33	No	Research & Development	3	4	Life Sciences	
	4	27	No	Research & Development	2	1	Medical	
	5	32	No	Research & Development	2	2	Life Sciences	
	6	59	No	Research & Development	3	3	Medical	
	7	30	No	Research & Development	24	1	Life Sciences	
	8	38	No	Research & Development	23	3	Life Sciences	
	9	36	No	Research & Development	27	3	Medical	

extracting column names

```
In [3]: column_names = dataframe.columns.values
    print(column_names)

['Age' 'Attrition' 'Department' 'DistanceFromHome' 'Education'
    'EducationField' 'EnvironmentSatisfaction' 'JobSatisfaction'
```

'MaritalStatus' 'MonthlyIncome' 'NumCompaniesWorked' 'WorkLifeBalance'

^{&#}x27;YearsAtCompany']

```
In [4]:
        dataframe.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1470 entries, 0 to 1469
        Data columns (total 13 columns):
             Column
                                     Non-Null Count Dtype
        ---
            -----
                                     -----
         0
                                     1470 non-null int64
            Age
                                     1470 non-null object
         1
            Attrition
         2
            Department
                                     1470 non-null
                                                    object
         3
            DistanceFromHome
                                     1470 non-null
                                                    int64
         4
            Education
                                     1470 non-null
                                                    int64
         5
            EducationField
                                     1470 non-null
                                                    object
         6
             EnvironmentSatisfaction 1470 non-null
                                                     int64
         7
             JobSatisfaction
                                                    int64
                                     1470 non-null
         8
            MaritalStatus
                                     1470 non-null
                                                    object
         9
            MonthlyIncome
                                     1470 non-null
                                                    int64
         10 NumCompaniesWorked
                                     1470 non-null
                                                    int64
         11 WorkLifeBalance
                                     1470 non-null
                                                     int64
                                     1470 non-null
         12 YearsAtCompany
                                                     int64
        dtypes: int64(9), object(4)
        memory usage: 149.4+ KB
In [5]:
        dataframe.shape
Out[5]: (1470, 13)
```

visualizing age in histogram

```
In [6]: plt.figure(figsize=(4,4))
  dataframe['Age'].hist(bins=50)
  plt.title("Age Histogram")
  plt.xlabel("Age")
  plt.ylabel("Num of Employees")
  plt.show()
```


Attriration By Age Graph

```
In [7]: plt.figure(figsize=(12,12))
   plt.scatter(dataframe.Attrition,dataframe.Age,alpha=.55)
   plt.title("Attrition Scatter Plot by Age")
   plt.ylabel("Age")
   plt.grid(visible=True,axis='y')
   plt.show()
```


Remaining Employees Graph

```
In [8]: plt.figure(figsize=(4,4,))
    colors = ['blue', 'red']
    dataframe.Attrition.value_counts().plot(kind='bar',color=colors,alpha=.55)
    plt.title("Attrition Level Scale")
    plt.show()
```


Distribuition by Education

```
In [9]: plt.figure(figsize=(8,8))
  dataframe.EducationField.value_counts().plot(kind='bar',alpha=.55)
  plt.title("Employees Distribuition by Education Field")
  for i, count in enumerate(dataframe.EducationField.value_counts()):
     plt.text(i, count, str(count), ha='center', va='bottom')
  plt.show()
```

Employees Distribuition by Education Field

Distribuition by RelationShip Status

```
In [10]: plt.figure(figsize=(5,5))
    dataframe.MaritalStatus.value_counts().plot(kind='bar',alpha=.70)
    plt.show()
```


Quartiles of DataFrame with Discriptive Statistics

	Age	DistanceFromHome	Education	EnvironmentSatisfaction	JobSatisfaction	Montl
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.000000	14
mean	36.923810	9.192517	2.912925	2.721769	2.728571	65
std	9.135373	8.106864	1.024165	1.093082	1.102846	47
min	18.000000	1.000000	1.000000	1.000000	1.000000	10
25%	30.000000	2.000000	2.000000	2.000000	2.000000	29
50%	36.000000	7.000000	3.000000	3.000000	3.000000	49
75 %	43.000000	14.000000	4.000000	4.000000	4.000000	83
max	60.000000	29.000000	5.000000	4.000000	4.000000	199

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1470 entries, 0 to 1469
         Data columns (total 13 columns):
          #
              Column
                                        Non-Null Count Dtype
          _ _ _
              _____
                                        _____
                                                       ----
          0
                                        1470 non-null
                                                        int64
              Age
          1
              Attrition
                                        1470 non-null
                                                       object
          2
              Department
                                       1470 non-null
                                                       object
          3
              DistanceFromHome
                                       1470 non-null
                                                       int64
          4
              Education
                                       1470 non-null
                                                       int64
          5
              EducationField
                                       1470 non-null
                                                        object
          6
              EnvironmentSatisfaction 1470 non-null
                                                        int64
          7
              JobSatisfaction
                                       1470 non-null
                                                        int64
          8
              MaritalStatus
                                       1470 non-null
                                                       object
          9
              MonthlyIncome
                                       1470 non-null
                                                        int64
          10 NumCompaniesWorked
                                       1470 non-null
                                                        int64
          11 WorkLifeBalance
                                       1470 non-null
                                                        int64
          12 YearsAtCompany
                                       1470 non-null
                                                        int64
         dtypes: int64(9), object(4)
         memory usage: 149.4+ KB
In [13]:
         dataframe.std()
         C:\Users\fast laptop\AppData\Local\Temp\ipykernel 5204\3401367348.py:1: FutureWarnin
         g: Dropping of nuisance columns in DataFrame reductions (with 'numeric only=None') is
         deprecated; in a future version this will raise TypeError. Select only valid columns
         before calling the reduction.
           dataframe.std()
Out[13]: Age
                                       9.135373
         DistanceFromHome
                                       8.106864
         Education
                                        1.024165
         EnvironmentSatisfaction
                                       1.093082
         JobSatisfaction
                                       1.102846
         MonthlyIncome
                                    4707.956783
         NumCompaniesWorked
                                       2.498009
         WorkLifeBalance
                                       0.706476
         YearsAtCompany
                                       6.126525
         dtype: float64
         dataframe['Attrition'].dtypes
In [14]:
Out[14]: dtype('0')
         dataframe['Attrition'].value_counts()
In [15]:
Out[15]: No
                1233
                 237
         Name: Attrition, dtype: int64
In [16]:
         dataframe['Attrition'].replace('Yes',1,inplace=True)
         dataframe['Attrition'].replace('No',0,inplace=True)
In [17]:
         dataframe.head(10)
```

Out[17]:		Age	Attrition	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfactio
	0	41	1	Sales	1	2	Life Sciences	
	1	49	0	Research & Development	8	1	Life Sciences	
	2	37	1	Research & Development	2	2	Other	
	3	33	0	Research & Development	3	4	Life Sciences	
	4	27	0	Research & Development	2	1	Medical	
	5	32	0	Research & Development	2	2	Life Sciences	
	6	59	0	Research & Development	3	3	Medical	
	7	30	0	Research & Development	24	1	Life Sciences	
	8	38	0	Research & Development	23	3	Life Sciences	
	9	36	0	Research & Development	27	3	Medical	
4								

LabelEncoding Manually For LogisiticRegression

```
In [18]: x = dataframe.drop(['Attrition'],axis=1)
    print(x.head())
    print("========"")
    y = dataframe['Attrition']
    print(y.head())
```

```
Department DistanceFromHome Education EducationField \
  Age
0
   41
                        Sales
                                             1
                                                       2 Life Sciences
1
   49 Research & Development
                                             8
                                                          Life Sciences
                                                       1
                                             2
2
       Research & Development
                                                       2
                                                                  Other
3
       Research & Development
                                             3
                                                       4
                                                          Life Sciences
                                             2
   27
       Research & Development
                                                       1
4
                                                                Medical
  EnvironmentSatisfaction JobSatisfaction MaritalStatus MonthlyIncome \
0
                                        4
                        2
                                                 Single
                        3
                                        2
1
                                                Married
                                                                 5130
2
                        4
                                        3
                                                 Single
                                                                 2090
3
                        4
                                        3
                                                Married
                                                                 2909
4
                                        2
                                                                 3468
                        1
                                                Married
  NumCompaniesWorked
                      WorkLifeBalance YearsAtCompany
0
                   8
                                   1
                                                   6
1
                   1
                                   3
                                                  10
2
                                   3
                                                   0
                   6
3
                                   3
                                                   8
                   1
4
                   9
                                   3
                                                   2
_____
0
    1
    0
1
2
    1
3
    0
Name: Attrition, dtype: int64
```

encoding EducationField column

```
dataframe['EducationField'].replace('Life Sciences',1, inplace=True)
In [19]:
         dataframe['EducationField'].replace('Medical',2, inplace=True)
         dataframe['EducationField'].replace('Marketing', 3, inplace=True)
         dataframe['EducationField'].replace('Other',4, inplace=True)
         dataframe['EducationField'].replace('Technical Degree',5, inplace=True)
         dataframe['EducationField'].replace('Human Resources', 6, inplace=True)
         print(dataframe.EducationField.head())
In [20]:
         0
              1
         1
              1
         2
              4
         3
              1
         Name: EducationField, dtype: int64
         dataframe.EducationField.value_counts()
In [21]:
Out[21]:
         1
              606
         2
              464
         3
              159
         5
              132
         4
               82
               27
         6
         Name: EducationField, dtype: int64
```

```
In [22]: dataframe.Department.value_counts()
                                   961
Out[22]: Research & Development
         Sales
                                   446
         Human Resources
                                    63
         Name: Department, dtype: int64
         Encoding Department column
In [23]:
         dataframe['Department'].replace('Research & Development',1, inplace=True)
         dataframe['Department'].replace('Sales',2, inplace=True)
         dataframe['Department'].replace('Human Resources', 3, inplace=True)
In [24]: dataframe.Department.head()
Out[24]: 0
              2
              1
         1
         2
              1
         3
              1
         4
              1
         Name: Department, dtype: int64
         Encoding MaritalStatus column
In [25]: dataframe.MaritalStatus.value_counts()
Out[25]: Married
                     673
         Single
                     470
         Divorced
                     327
         Name: MaritalStatus, dtype: int64
         dataframe['MaritalStatus'].replace('Married',1, inplace=True)
In [26]:
         dataframe['MaritalStatus'].replace('Single',2, inplace=True)
         dataframe['MaritalStatus'].replace('Divorced',3, inplace=True)
In [27]: dataframe.MaritalStatus.head()
Out[27]: 0
              2
              1
         1
         2
              2
         3
              1
         4
         Name: MaritalStatus, dtype: int64
In [28]: X = dataframe.select_dtypes(include=['int64'])
         X.dtypes
```

```
Out[28]: Age
                                      int64
          Attrition
                                      int64
          Department
                                      int64
          DistanceFromHome
                                      int64
          Education
                                      int64
          EducationField
                                      int64
          EnvironmentSatisfaction
                                      int64
          JobSatisfaction
                                      int64
          MaritalStatus
                                      int64
          MonthlyIncome
                                      int64
          NumCompaniesWorked
                                      int64
          WorkLifeBalance
                                      int64
          YearsAtCompany
                                      int64
          dtype: object
In [29]: X.columns
Out[29]: Index(['Age', 'Attrition', 'Department', 'DistanceFromHome', 'Education',
                 'EducationField', 'EnvironmentSatisfaction', 'JobSatisfaction',
                 'MaritalStatus', 'MonthlyIncome', 'NumCompaniesWorked',
                 'WorkLifeBalance', 'YearsAtCompany'],
                dtype='object')
In [41]: Y = dataframe.Attrition
          Y.head()
Out[41]: 0
               1
          1
               0
          2
               1
          3
               0
          Name: Attrition, dtype: int64
In [31]: Y, X = dmatrices('Attrition ~ Age + Department + DistanceFromHome + Education + Educat
In [42]: print(X.columns)
          X.head()
          Index(['Intercept', 'Age', 'Department', 'DistanceFromHome', 'Education',
                  'EducationField', 'YearsAtCompany'],
                dtype='object')
Out[42]:
            Intercept Age Department DistanceFromHome Education EducationField YearsAtCompany
          0
                  1.0 41.0
                                   2.0
                                                     1.0
                                                               2.0
                                                                             1.0
                                                                                             6.0
                  1.0 49.0
                                   1.0
                                                     8.0
                                                               1.0
                                                                             1.0
                                                                                             10.0
          2
                                   1.0
                                                                                             0.0
                  1.0 37.0
                                                     2.0
                                                               2.0
                                                                             4.0
          3
                  1.0 33.0
                                   1.0
                                                     3.0
                                                               4.0
                                                                             1.0
                                                                                             8.0
          4
                  1.0 27.0
                                   1.0
                                                     2.0
                                                               1.0
                                                                             2.0
                                                                                             2.0
```

Sequencing Array to 1 dimensional array

```
In [33]: Y = np.ravel(Y)
   print(Y)
   [1. 0. 1. ... 0. 0. 0.]
   Creating LogisiticRegression
In [43]: from sklearn.linear model import LogisticRegression
   model = LogisticRegression()
   model = model.fit(X,Y)
   model.score(X,Y)
Out[43]: 0.8408163265306122
In [44]: Y.mean()
Out[44]: 0.16122448979591836
In [54]: X_train,X_test,Y_train,Y_test=skl.model_selection.train_test_split(X,Y, test_size=0.4,
   model2=LogisticRegression()
   model2.fit(X_train, Y_train)
Out[54]:
   ▼ LogisticRegression
   LogisticRegression()
In [55]: predVals = model2.predict(X test)
   print(predVals)
   In [56]: prob = model2.predict proba(X test)
```

print(prob)

```
[[0.86256067 0.13743933]
          [0.82947283 0.17052717]
          [0.74749496 0.25250504]
          [0.85489844 0.14510156]
          [0.83122171 0.16877829]
          [0.82330024 0.17669976]]
In [57]: print(skl.metrics.accuracy_score(Y_test, predVals))
         0.8452380952380952
In [59]: print(skl.metrics.roc_auc_score(Y_test,prob[:, 1]))
         0.6458564135983491
In [60]:
         print(skl.metrics.confusion_matrix(Y_test,predVals))
         [[494
                 1]
          [ 90
                 3]]
In [61]: print(skl.metrics.classification_report(Y_test,predVals))
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.85
                                      1.00
                                                0.92
                                                            495
                    1
                            0.75
                                      0.03
                                                0.06
                                                             93
                                                            588
             accuracy
                                                0.85
                            0.80
                                      0.52
                                                0.49
                                                            588
            macro avg
         weighted avg
                            0.83
                                      0.85
                                                0.78
                                                            588
```