• Under forward bias:

- \triangleright BH reduces to $(V_0 V_D)$
- \succ Inj that creates current flow $\propto \exp(V_D/V_T)$
- > Note the *exponential dependence*
 - $lacktrianglequip Possibility of large injection for large <math>V_D$
- > Drift component remains more or less same, since it is dependent on the minority carriers
- \succ Current increases exponentially with V_D
- $\succ V_D$ can never equal or exceed V_0
 - Thermodynamically untenable situation

- Under reverse bias:
 - ightharpoonup Inj $ightharpoonup due to negative <math>V_D$
 - > Drift component remains same
 - Function of minority carriers available on the two sides, which is a constant (function only of temperature)
 - > Current becomes small and independent of bias
- In *forward bias*, both injection components create current from p to n
- In reverse bias, both minority carrier drift components create current from n to p

Current-Voltage Characteristic

- I_D = I₀[exp(V_D/V_T) 1]
 ➤ I₀: Reverse Saturation Current (~ nA-fA)
- In *equilibrium*: $V_D = 0 \Rightarrow I_D = 0$
- Under forward bias: V_D positive
 - $ightharpoonup I_D$ positive (flows from p to n) (\sim mA)
 - \triangleright For $V_D > 4V_T$ (~ 100 mV at 300 K):
 - $I_D \approx I_0[\exp(V_D/V_T)]$ (A True Exponent)

- Under reverse bias: V_D negative
 - $ightharpoonup I_D$ negative (flows from n to p)
 - \gt For $|V_D| > 4V_T$:
 - $I_D \approx -I_0$ (note the *negative sign*)
 - Extremely small, almost negligible
- Depending on V_D , the ratio of the forward current to the reverse current can range from 5 to 14 orders of magnitude!
- Primary applications:
 - > Rectification and various types of waveshaping

Complete I-V Characteristic

Note that the forward and reverse current scales are not same