Social Network Analysis (SNA) Part2

Nik Bear Brown

In this lesson we'll learn the how to implement and analyze Social network analysis (SNA) in R.

Additional packages needed

To run the code you may need additional packages.

If necessary install the followings packages.

```
install.packages("igraph");
install.packages("tools");
install.packages("visNetwork");
library(igraph)
##
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
##
       decompose, spectrum
##
## The following object is masked from 'package:base':
##
##
       union
library(tools)
library(visNetwork)
##
## Attaching package: 'visNetwork'
## The following object is masked from 'package:igraph':
##
      %>%
##
```

Data

We will be creating graphs with the library(igraph).

```
# for reproducibility of graphs plots (plot.igraph uses random numbers)
set.seed(3333)
# create an example graph
```



```
# find all the largest cliques (returns a list of vector of vertiex
ids)
a <- largest.cliques(g1)
# let's just take the first of the largest cliques
# (in this case there's just one clique)
clique1 <- a[[1]]
# subset the original graph by passing the clique vertices
g2 <- graph.full(length(clique1))
V(g2)$name <- V(g1)$name[clique1]</pre>
```

```
# plot the clique
plot(g2)
```


In addition we will be using social relations among Renaissance Florentine families (person aggregates) collected by John Padgett from historical documents. The two relations are business ties (PADGB - specifically, recorded financial ties such as loans, credits and joint partnerships) and marriage alliances (PADGM). See http://moreno.ss.uci.edu/data.html#padgett

```
# Studying marriage ties among Renaissance Florentine families
data_url <-
'http://nikbearbrown.com/YouTube/MachineLearning/M12/padgett-
cleaned.txt'
padgett.cleaned <- read.table(url(data_url), quote="\"")</pre>
```

Cliques and Motifs among Renaissance Florentine families

Find and plot all the largest cliques seperately. Find any significant motifs.

```
florentine_marriage_ties <- padgett.cleaned[1:16,]
rownames(florentine_marriage_ties) <- c("ACCIAIUOLI", "ALBIZZI",
"BARBADORI",</pre>
```

```
"BISCHERI", "CASTELLANI",
"GINORI",
                                         "GUADAGNI",
"LAMBERTES", "MEDICI",
                                         "PAZZI", "PERUZZI", "PUCCI",
                                         "RIDOLFI", "SALVIATI",
"STROZZI",
                                         "TORNABUON")
colnames(florentine marriage ties) <-</pre>
rownames(florentine marriage ties)
florentine_graph <-</pre>
  graph_from_adjacency_matrix(as.matrix(florentine_marriage_ties))
plot(florentine_graph, layout=layout.fruchterman.reingold,
     main = "Marriage ties among Florentine families",
     vertex.label=V(florentine_graph)$name, vertex.size=25,
     vertex.color="blue", vertex.frame.color="white",
     vertex.label.color="black", vertex.label.cex=1,
     edge.arrow.size=0.25, edge.width=0.25)
```

Marriage ties among Florentine families


```
count_motifs(florentine_graph, size = 3)
## [1] 41
count_motifs(florentine_graph, size = 4)
```

```
## [1] 91
# find and plot all the largest cliques seperately
florentine_graph_undirected <- as.undirected(florentine_graph)</pre>
# following code taken from
# http://stackoverflow.com/questions/26222659/identifying-cliques-in-r
all <- largest_cliques(florentine_graph_undirected)</pre>
all
## [[1]]
## + 3/16 vertices, named:
## [1] STROZZI
                  PERUZZI CASTELLANI
##
## [[2]]
## + 3/16 vertices, named:
## [1] STROZZI PERUZZI BISCHERI
##
## [[3]]
## + 3/16 vertices, named:
## [1] MEDICI
                  RIDOLFI
                            TORNABUON
clique_graph1 <- make_full_graph(length(all[[1]]))</pre>
V(clique_graph1)$name <- V(florentine_graph_undirected)$name[all[[1]]]</pre>
plot(clique graph1)
```



```
clique_graph2 <- make_full_graph(length(all[[2]]))
V(clique_graph2)$name <- V(florentine_graph_undirected)$name[all[[2]]]
plot(clique_graph2)</pre>
```



```
clique_graph3 <- make_full_graph(length(all[[3]]))
V(clique_graph3)$name <- V(florentine_graph_undirected)$name[all[[3]]]
plot(clique_graph3)</pre>
```



```
# plot all largest cliques
# following code taken from R and Data Mining: Examples and Case
Studies
# by Yanchang Zhao, page 118
florentine_largest_cliques <-</pre>
largest_cliques(florentine_graph_undirected)
length(florentine_largest_cliques)
## [1] 3
colorbar <- rainbow(length(florentine_largest_cliques) + 1)</pre>
for (i in 1:length(florentine_largest_cliques)) {
  V(florentine_graph_undirected)[florentine_largest_cliques[[i]]]$color
<- colorbar[i+1]
plot(florentine_graph_undirected,
mark.groups=florentine_largest_cliques,
     vertex.size=0.3, vertex.label.cex=1, edge.color=rgb(1,0.5,1,1),
    main = "Largest Cliques")
```

Largest Cliques

PUCCI

LAMBERTES
GINORI
GUADAGNI
ALBIZZI
BISCHERORNABUON
PAZZI
PERSTRA REDOINIEDISALVIATI

CASTEBARNADORIAIUOLI

Maximal Cliques

PUCCI

GINORI

ALBIZZI CCIAIUOLI

LAMBERTES
GUADARMIBUEDRALVIATEZI

RIDOLFI
BISCHERI BARBADORI
STROZZI
PERGASTELLANI

```
# Calculate PageRank of the vertices
ranks_of_families <- page_rank(florentine_graph)$vector</pre>
ranks_of_families
## ACCIAIUOLI
               ALBIZZI BARBADORI
                                      BISCHERI CASTELLANI
                                                              GINORI
## 0.03035390 0.07833886 0.04980296 0.06818000 0.06864374 0.03209700
    GUADAGNI LAMBERTES
                                         PAZZI
                                                  PERUZZI
                            MEDICI
                                                               PUCCI
## 0.09742360 0.03060350 0.14437347 0.03569690 0.06720328 0.00990099
      RIDOLFI
               SALVIATI
                            STROZZI TORNABUON
## 0.06888541 0.06069627 0.08722618 0.07057395
# most important or influential family
which.max(ranks_of_families) # 9 is the index of the vertex
## MEDICI
```

Resources

Network visualization in R with the igraph package

- [Making prettier network graphs with sna and igraph via @rbloggers](http://www.r-bloggers.com/making-prettier-network-graphs-with-sna-and-igraph/)
- igraph R manual pages

References

The data, R code and lessons are based upon:

Graph theory/data structures:

- * http://math.tut.fi/~ruohonen/GT_English.pdf
- * http://www.cl.cam.ac.uk/teaching/1011/PrincComm/slides-lpr/graph_theory_1-11.pdf

*

http://www.researchgate.net/publication/228300013_Graph_Theory_A_Primer_for _Using_R_Visualization_Techniques_in_the_Applications_of_the_Adjacency_Matrix

http://www.boost.org/doc/libs/1_59_0/libs/graph/doc/graph_theory_review.html SNA:

- * http://files.meetup.com/1406240/sna_in_R.pdf
- * http://www2.unb.ca/~ddu/6634/Lecture_notes/Lec1_intro_handout.pdf
- * http://www.faculty.ucr.edu/~hanneman/nettext/

*

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.372.1960&rep=rep1&type=pdf

* http://www.rdatamining.com/examples/social-network-analysis

igraph:

- * http://statmath.wu.ac.at/research/friday/resources_WS0708_SS08/igraph.pdf
- * http://blog.revolutionanalytics.com/2014/11/a-look-at-the-igraph-package.html
- * http://www.r-bloggers.com/igraph-and-sna-an-amateurs-dabbling/
- * http://www.r-bloggers.com/going-viral-with-rs-igraph-package/
- * https://cran.r-project.org/web/packages/igraph/igraph.pdf

Other famous packages for SNA:

- * http://www.r-bloggers.com/must-have-r-packages-for-social-scientists/
- * https://cran.r-project.org/web/views/SocialSciences.html
- * https://cran.r-project.org/web/packages/sna/sna.pdf
- * https://cran.r-project.org/web/packages/RSiena/RSiena.pdf
- * https://cran.r-project.org/web/packages/network/network.pdf

https://www.bioconductor.org/packages/release/bioc/manuals/graph/man/graph.pdf

* http://www.statnet.org/

In-depth SNA tutorials:

- * http://sna.stanford.edu/rlabs.php
- * http://www.stats.ox.ac.uk/~snijders/sna_course.htm
- * http://www.shizukalab.com/toolkits

Sample projects:

http://www.orgnet.com/cases.html

Motifs:

- * http://igraph.org/r/doc/motifs.html
- * https://en.wikipedia.org/wiki/Network_motif
- * http://www.cs.columbia.edu/4761/notes07/chapter8.2-topology.pdf
- * https://sites.google.com/site/networkanalysisacourse/schedule/networkmotifs Cliques:

* http://igraph.org/r/doc/cliques.html

- * http://faculty.ucr.edu/~hanneman/nettext/C11 Cliques.html
- * https://courses.cs.washington.edu/courses/cse527/01au/oct25/oct25.html
- * ttp://www.mathcove.net/petersen/lessons/get-lesson?les=29
- * http://news.stanford.edu/news/2014/november/cliques-high-school-110514.html

PageRank:

- * http://igraph.org/r/doc/page_rank.html
- * http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
- * http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm
- * http://www.stat.cmu.edu/~ryantibs/datamining/lectures/03-pr-marked.pdf
- * http://smallstats.blogspot.com/2014/04/from-random-walks-to-personalized.html
- * http://blog.revolutionanalytics.com/2014/12/a-reproducible-r-example-finding-the-most-popular-packages-using-the-pagerank-algorithm.html
- * Mining Massive Datasets on Coursera Week 1, Videos 5 through 11 explain PageRank elegantly. The course maybe unavailable (or archived) by the time this module is out

Dataset:

- * http://moreno.ss.uci.edu/data.html#padgett
- * http://home.uchicago.edu/~jpadgett/papers/unpublished/maelite.pdf

Other SNA:

- * http://www.r-bloggers.com/experiments-with-igraph/
- * http://cran.us.r-project.org/doc/contrib/Zhao_R_and_data_mining.pdf