

## Benvenuto!

Grazie per aver acquistato il nostro Convertitore da Analogico a Digitale ADS1115 Az Delivery. Nelle pagine seguenti, ti illustreremo come utilizzare e configurare questo pratico dispositivo.

#### **Buon divertimento!**





Il modulo ADS1115 è una scheda breakout a quattro canali. Questi moduli sono perfetti per aggiungere la conversione analogico-digitale ad alta risoluzione a qualsiasi progetto basato su microprocessore (come Raspberry Pi) o se si desidera aggiungere un convertitore analogico-digitale con maggiore precisione a un progetto basato su microcontrollore (come Arduino).

Questo modulo può funzionare con segnali logici e di alimentazione tra 2V e 5V, quindi sono compatibili con tutti i comuni processori da 3,3V e 5V. Poiché molte di queste 4 schede possono essere controllate dallo stesso bus I2C. Questo ti dà fino a 16 canali single-ended o 8 differenziali.

Un gain amplifier programmabile fornisce un guadagno fino a x16 per piccoli segnali.

## **Specifiche**

» Risoluzione: 16 Bits

» Sample Rate Programmabile: da 8 a 860 campionamenti al secondo

» Alimentazione e Livelli Logici: 2.0V a 5.5V

» Basso Consumo di Corrente: Modalità Continua: 150µA

» Modalità Single-Shot: Autospegnimento

» Guadagno Interno: fino a x16

» Interfaccia I2C: Indirizzi Selezionabili 4 pin

» Input: 4 Single-Ended o 2 Input Differenziali

» Comparatore Programmabile

» Riferimento Voltaggio Low-Drift Interno

» Oscillatore Interno



#### Indirizzamento I2C

Il chip ADS1115 ha un indirizzo I2C a 7 bit, un valore predefinito di *0x48* e uno schema di indirizzamento che consente quattro indirizzi diversi utilizzando solo un pin di indirizzo denominato *ADDR*.

Per impostare l'indirizzo, collegare il pin dell'indirizzo come segue:

ADR -> GND 0x48

ADR -> VDD 0x49

 $ADR \rightarrow SDA$  0x4A

ADR -> SCL 0x4B

Questo schema di indirizzamento ci consente di collegare quattro diversi moduli sullo stesso microprocessore.



## Input Single Ended vs. Differenziali

Il modulo supporta quattro ingressi single ended o due differenziali. Gli ingressi single ended misurano la tensione tra il canale di ingresso analogico (uno qualsiasi dei pin A0, A1, A2 e A3) e la terra analogica (pin GND). Gli ingressi differenziali misurano la tensione tra due canali di ingresso analogici, pin A0 e A1 o pin A2 e A3.

Gli ingressi single ended offrono quattro ingressi analogici. Per definizione, gli ingressi single ended misurano solo tensioni positive. È possibile ottenere solo una risoluzione effettiva di 15 bit.

Le misurazioni differenziali offrono una maggiore immunità dal rumore elettromagnetico (quando si usano cavi di segnale lunghi o si opera in un ambiente elettricamente rumoroso). Ciò è desiderabile anche quando si ha a che fare con piccoli segnali che richiedono un alto guadagno, poiché il guadagno amplifica il rumore e il segnale. Gli ingressi differenziali forniscono la risoluzione a 16 bit e la capacità di misurare tensioni negative.



## Collegamento del modulo con Arduino Uno

Arduino Uno ha già i pin di ingresso analogico, ma perché dovremmo collegare un altro convertitore da analogico a digitale ad Arduino? Il modulo è più preciso del convertitore da analogico a digitale integrato all'interno del microcontrollore a bordo di Arduino. Quindi, se hai bisogno di un convertitore analogico-digitale più preciso, puoi usare questo modulo con Arduino. Collega tutto come nello schema qui sotto, usiamo il potenziometro solo per esempio, per leggere alcune variazioni della tensione analogica:



Pin Modulo > Pin Arduino

VDD > 5V Filo rosso

GND > GND Filo nero

SCL > A5 Filo verde

SDA > A4 Filo viola

Pin Modulo > Pin Potenziometro

A0 > Pin centrale Filo blu

Pin Arduino > Pin Potenziometro

3.3V > Pin destro Filo arancio

GND > Pin sinistro Filo nero



#### Libreria Arduino IDE

Dobbiamo prima scaricare una libreria per il nostro modulo. Apri l'Arduino IDE e vai su *Strumenti*> *Gestisci librerie* e nella casella di ricerca digita "*ADS1115*" e scarica la libreria da Adafruit, come nell'immagine qui sotto:



#### **Codice Arduino:**

```
#include <Wire.h>
#include <Adafruit_ADS1X15.h>
Adafruit_ADS1115 ads;
int16_t adc0;
void setup() {
 Serial.begin(9600);
                                 //gain
 // ads.setGain(GAIN_TWOTHIRDS);// 2/3x +/- 6.144V 1bit = 0.1875mV default
                                // 1x
 // ads.setGain(GAIN_ONE);
                                        +/-4.096V 1bit = 0.125mV
 // ads.setGain(GAIN_TWO);
                                // 2x
                                        +/- 2.048V
                                                    1bit = 0.0625mV
 // ads.setGain(GAIN_FOUR);
                                // 4x
                                                    1bit = 0.03125mV
                                        +/- 1.024V
  // ads.setGain(GAIN_EIGHT);
                                // 8x
                                        +/- 0.512V 1bit = 0.015625mV
  // ads.setGain(GAIN_SIXTEEN); // 16x + /- 0.256V 1bit = 0.0078125mV
  ads.begin();
void loop() {
  adc0 = ads.readADC_SingleEnded(0);
  Serial.print("Analog input pin 0: ");
 Serial.println(adc0);
  delay(1000);
}
```



E quando si avvia Monitor seriale (*Strumenti> Monitor seriale*) l'output quando si sposta l'albero del potenziometro dovrebbe apparire così:





# Collegamento del modulo con Raspberry Pi

Raspberry Pi non ha il convertitore da analogico a digitale, il che significa che non ha la capacità di leggere le tensioni analogiche. Quindi questo modulo analogico a digitale ADS1115 è perfetto per Raspberry Pi. Dà la possibilità a Raspberry Pi di leggere tensioni analogiche.

La prima cosa da fare è abilitare l'interfaccia I2C di Raspberry Pi. Nel tuo Rasbian, vai su Start> Preferenze> Configurazione Raspberry Pi.





Questo aprirà una nuova finestra, apri la seconda scheda "Interfacce" e abilita l'interfaccia I2C e fai clic sul pulsante ok come nell'immagine qui sotto.



Ora hai abilitato l'interfaccia I2C hardware sui pin GPIO:

GPIO2 > SDA

GPIO3 > SCL



Collegare il modulo con Raspberry Pi come nello schema di collegamento seguente. Usiamo il potenziometro solo per esempio, per leggere alcune variazioni della tensione analogica.



| Pin Modulo   |              | Pin Raspberry     |         |              |
|--------------|--------------|-------------------|---------|--------------|
| VDD          | >            | 3.3V              | [pin 1] | Filo rosso   |
| GND          | >            | GND               | [pin 9] | Filo nero    |
| SCL          | >            | GPIO 3            | [pin 5] | Filo verde   |
| SDA          | >            | GPIO 2            | [pin 3] | Filo viola   |
| Pin Modulo   | >            | Pin potenziometro |         |              |
| A0           | >            | pin centr         | ale     | Filo blu     |
| RaspPi Pin   | >            | Pin potenziometro |         |              |
| 3.3V [pin 17 | <b>'</b> ] > | Pin sinist        | tro     | Filo arancio |
| GND [pin 20  | )] >         | Pin destr         | то      | Filo nero    |



## **Script Raspberry Pi**

Prima di iniziare a utilizzare questo modulo, dobbiamo installare la libreria per esso. La libreria è "Adafruit\_Python\_ADS1x15". Apri quindi l'app terminal in Raspbian ed esegui questi comandi uno alla volta:

```
sudo apt-get update
sudo apt-get install build-essential python-dev python-smbus git
git clone https://github.com/adafruit/Adafruit_Python_ADS1x15
cd Adafruit_Python_ADS1x15
sudo python3 setup.py install
```

Dopo aver installato questa libreria, creiamo un nuovo file chiamato "AnalogRead.py" e inseriamo il prossimo codice di script:

```
import time
import Adafruit_ADS1x15
adc = Adafruit_ADS1x15.ADS1115() # Create an ADS1115 ADC (16-bit) instance
GAIN = 1
print('[press ctrl+c to end the script]')
try: # Main program loop
   while True:
      values = adc.read_adc(0, gain=GAIN) # Read the ADC channel 0 value
      print('{0:>6}'.format(values))
      time.sleep(0.5)

# Scavenging work after the end of the program
except KeyboardInterrupt:
    print('Script end!')
```



Per eseguire lo script, apri l'app terminal in Raspbian ed esegui il comando seguente:

Python3 AnalogRead.py

Quando si sposta l'albero del potenziometro l'output dovrebbe assomigliare a questo:

```
pi@raspberrypi: ~/RPiArduiScripts _ _ _ ×

File Edit Tabs Help

pi@raspberrypi:~ $ cd RPiArduiScripts pi@raspberrypi:~/RPiArduiScripts $ python3 AnalogRead.py
[press ctrl+c to end the script]
15685
15698
15706
15706
15704
12690
8426
6870
5754
7268
15306
15711
15724
15715
15689
^CScript end!
pi@raspberrypi:~/RPiArduiScripts $
```

Per fermare lo script, premi CTRL + C.

Ce l'hai fatta, ora puoi usare il tuo modulo per i tuoi progetti.



E ora è tempo di imparare e di creare dei Progetti da solo. Lo puoi fare con l'aiuto di molti script di esempio e altri tutorial, che puoi trovare in internet.

Se stai cercando dei prodotti di alta qualità per il tuo Arduino e Raspberry Pi, AZ-Delivery Vertriebs GmbH è l'azienda giusta dove potrai trovarli. Ti forniremo numerosi esempi di applicazioni, guide di installazione complete, e-book, librerie e l'assistenza dei nostri esperti tecnici.

https://az-delivery.de

Buon divertimento!

Impressum

https://az-delivery.de/pages/about-us