VE311 Electronic Circuit Homework 5

Due: June 19th

Note:

- 1) Please use A4 size paper or page.
- 2) Please clearly state out your final result for each question.
- 3) Please attach the screenshot of Pspice simulation result if necessary.

Question 1. Common Gate (Easy)

In the common gate stage amplifier, the internal resistance of I is $1k\Omega$, what is the output resistance when $I_{REF}=0.01mA$ and 0.1mA respectively? (Neglect body effect)

Parameter for NMOS: $V_{THN}=0.7V,~K_n=110\mu A/V^2,\lambda=0.04V^{-1}$

Parameter for PMOS: $V_{THP} = -0.7V$, $K_p = 50 \mu A/V^2$, $\lambda = 0.05 V^{-1}$

All the size of transistor is $W = 20\mu m, L = 1\mu m$

Transconductance $g_m = \sqrt{2K_n' \frac{W}{L} I_D}$

Output Resistance $r_0 = \frac{1}{\lambda I_D}$

Then we do the small signal analysis:

Question 2. Common Gate Common Source (Medium)

Find the intrinsic gain A_v and output impedance R_{out} for the amplifier when $I_1 = 0.01$ and 0.1mA respectively. (Neglect body effect)

Parameter for NMOS: $V_{THN}=0.7V,\, K_n=110\mu A/V^2,\lambda=0.04V^{-1}$

Parameter for PMOS: $V_{THP}=-0.7V,~K_p=50\mu A/V^2,\lambda=0.05V^{-1}$

All the size of transistor is $W = 20\mu m, L = 1\mu m$

Tranductance 9m = 12kn W Ip Output Resistance ro = 1 Small signal analysis:

To find the output resistance:

To get Av, we need to know die we can use the AC circuit to obtain the relationship between vont and vin

 $\begin{array}{c} - \circ V_{out} \\ \hline \\ | - \circ V_b \end{array} \begin{array}{l} \text{Voice} = - \text{Vge}_2 + \text{Fo}_2 \left(I_1 - 9 \text{m}_2 \text{Vge}_2 \right) \\ \\ 0 = - \text{Vge}_2 - \left(I_1 - 9 \text{m}_1 \text{Vge}_1 \right) \cdot \text{Fo}_1 \\ \\ \text{Vgs}_1 = \text{Vin} \end{array}$

> voure = Vin. - (ro. 9m. + ro. ro1 9m. 9m2) + (ro1 + ro2 + ro, ro2 gm2)],

=> Au = \frac{\frac{\partial Vout}{\partial Vout}}{\partial Vout} = -r_{01} gm_1 - r_{01} r_{02} gm_1 gm_2 2

From O and O. We can know that

when I1 = 0.0 | mA, ro1 = ro2 = II1 = 2.5 x 10 n $g_{m_1} = g_{m_2} = \sqrt{2k'_n \frac{W}{L} I_1} = 2.098 \times 10^{-4} \text{ I/N}$

> Rove = 1.32 ×109 N . Av = -2.76 ×105

when I = 0. | mA, ro = roz = 2.5 x 10 1

9mi = 9m2 = [2kn W] = 6.633 x 10 1/1

⇒ Pont = 4.196 x 10 N, Av = -2.77 x 104

Question 3. Common Gate Common Source (Medium)

Find the intrinsic gain A_v and output impedance R_{out} for the amplifier when $I_1 = 0.01$ and 0.1mA respectively. (Neglect body effect)

Parameter for NMOS: $V_{THN}=0.7V,\, K_n=110\mu A/V^2,\lambda=0.04V^{-1}$

Parameter for PMOS: $V_{THP} = -0.7V$, $K_p = 50 \mu A/V^2$, $\lambda = 0.05 V^{-1}$

All the size of transistor is $W = 20\mu m, L = 1\mu m$

To find the output resistance:

Tranductance $g_{mn} = \sqrt{2k'_n \frac{W}{L}} J_D$ $g_{mp} = \sqrt{2k'_p \frac{W}{L}} J_D$

Output Resistance $r_0 = \frac{1}{\lambda J_D}$

Small signal analysis:

From O and O. We can know that when I = 0.0 | mA,

ros = ros = 2x10 N, ro= ro1 = 2.5x10 N. gmz = gm3 = 12x10 1/N. gm1 = gm = 144 x10 1/N

⇒ Pout = 3.976 × 108 m. Av = -8.3 × 104

From O and O. We can know that when I = 0.1 mA.

ros = ros = 2 x 10 n, ro = ro1 = 2.5 x 10 n. 9m2 = 9m3 = 120 x 10 1/n. 9m1 = 9m = 144 x 10 1/n

⇒ Pont = 1.273 x 107 m. Av = -8.4x 103

Question 4. Differential Pair (Hard)

Find the intrinsic gain A_v for the amplifier when $I_{SS} = 0.02$ and 0.2mA respectively. (Neglect body effect)

Parameter for NMOS: $V_{THN} = 0.7V$, $K_n = 110 \mu A/V^2$, $\lambda = 0.04 V^{-1}$

Parameter for PMOS: $V_{THP} = -0.7V$, $K_p = 50 \mu A/V^2$, $\lambda = 0.05 V^{-1}$

All the size of transistor is $W = 20\mu m, L = 1\mu m$

To find Gm:

Output Resistance $r_0 = \frac{1}{\lambda J_D}$

Small signal analysis:

 V_{0} V_{0} V

To find the output resistance:

From O. we can know that when Iss = 0.02 mA

And when Iss = 0.2 mA

⇒ Au = 73.70

Question 5. Differential Pair (Hard)

Find the intrinsic gain A_v for the amplifier when $I_{SS} = 0.02$ and 0.2mA respectively. (Neglect body effect)

Parameter for NMOS: $V_{THN} = 0.7V$, $K_n = 110 \mu A/V^2$, $\lambda = 0.04 V^{-1}$

Parameter for PMOS: $V_{THP} = -0.7V$, $K_p = 50 \mu A/V^2$, $\lambda = 0.05 V^{-1}$

Question 6. Common Source with Diode-connected Load (Lunatic)

Consider the circuit of Fig. 2 with $(W/L)_1 = 50/0.5$ and $(W/L)_2 = 10/0.5$. Assume that $\lambda = \gamma = 0$. Then 3 V for V_{DD} , 0.7 V for V_{TH1} , 0.45 V^{$\frac{1}{2}$} for γ , and 0.9 V for $2\Phi_F$

- 1) At what input voltage is M_1 at the edge of the triode region? What is the small-signal gain under this condition?
- 2) What input voltage drives M_1 into the triode region by 50mV? What is the smallsignal gain under this condition?

the triode region:

$$V_{DS_1} = V_{GS_1} - V_{TH_1}$$

Then we analyze M2:

=> M2 at saturation region

=
$$I_{D_2} = \frac{1}{2} \mu_n G_{0x} \left(\frac{W}{L}\right)_2 \left(V_{DD} - V_{in} + V_{THS} - V_{THS}\right)^2$$

$$\Rightarrow 5 (V_{in} - 0.7)^2 = (3 - V_{in})^2 \Rightarrow V_{in} = 1.4 | V_{in} =$$

$$\Rightarrow A_V = \frac{\partial V_{out}}{\partial V_{ih}} = -\int \overline{\xi}$$

dition?
$$3V \quad \text{So mV into triode}$$

$$\Rightarrow V_{\text{out}} = \underbrace{(.4|-0.7)}_{\text{o.o.}} - 0.05 = 0.66V$$

$$N_{\text{out}} \quad \text{for } M_2 : V_{\text{GL}} = V_{\text{pp}} - V_{\text{out}} = 2.34V > V_{\text{TH}}$$

$$\Rightarrow V_{\text{out}} \Rightarrow \text{saturation region}$$

$$\Rightarrow I_{\text{Da}} = \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \left(\frac{W}{L}\right)_{1} \left[V_{\text{in}} - V_{\text{TH}}\right]^{2}$$

$$\Rightarrow I_{\text{Da}} = \mu_{\text{n}} C_{\text{ox}} \left(\frac{W}{L}\right)_{1} \left[V_{\text{in}} - V_{\text{TH}}\right] \cdot V_{\text{out}} - \frac{1}{2} V_{\text{out}}^{2}$$

$$\Rightarrow I_{\text{Da}} = I_{\text{Da}} \Rightarrow \frac{1}{2} (2.34 - 0.7)^{2} = 5 \left[V_{\text{in}} - 0.7\right] \cdot 0.66 - \frac{1}{2} \cdot 0.66\right]$$
Then we can get that $V_{\text{in}} = 1.4375 V$

$$Meanwhile \cdot \frac{1}{2} (3 - V_{\text{out}} - 0.7)^{2} = 5 \left[V_{\text{in}} - 0.7\right] \cdot V_{\text{out}} - \frac{1}{2} V_{\text{out}}^{2}$$

$$\Rightarrow Vin = \frac{(2.3 - V_{out})^2}{[o V_{out}]} + \frac{1}{2} V_{out}$$

Question 7. Common Source with Resistive Load (Hell)

Assume $V_{TH} = 0.7 \text{ V}$. $K_n = 110 \text{ pA}/V^2$ Suppose the common-source stage of Fig. 1 is to provide an output swing from 1 V to 2.5 V. Assume that $(W/L)_1 = 50/0.5$, $R_D = 2k\Omega$, and $\lambda = 0$.

- 1) Calculate the input voltages that yield $V_{\rm out}=1~{\rm V}$ and $V_{\rm out}=2.5~{\rm V}.$
- 2) Calculate the drain current and the transconductance of M_1 for both cases.
- 3) How much does the small-signal gain, gm R_D , vary as the output goes from 1 V to 2.5 V? (Variation of small-signal gain can be viewed as nonlinearity.)

1)

Assume MOSFET at saturation:

$$= \frac{1}{2} K_n' \frac{W}{L} (V_{in} - 0.7)^2 = 10^{-3}$$

> indeed at saturation > assumption stands

Volt = 2.5 V
$$\Rightarrow$$
 $I_p = \frac{V_{pp} - V_{out}}{R_p} = 0.25 \text{ mA}$

Assume MOSFET at saturation:

$$I_{0} = \frac{1}{2} K_{n} \frac{W}{L} (V_{hs} - V_{TH})^{2} = \frac{1}{2} K_{n} \frac{W}{L} (V_{in} - 0.7)^{2} = 0.25 \times 10^{3}$$

> indeed at saturation >> assumption stands

2)
$$q_m = \sqrt{2k_n' \frac{w}{L} I_D}$$

= 4.69 x 10-3 1/1

3) Pow = r. // RD = RD (since
$$\lambda = 0$$
)