Lire C[1].Rayon

PROJET ALGORITHMIQUE AVANCE

1. A. Un cercle est définit par les coordonnées x et y de son centre et son rayon R. Ecrire une fonction qui lit les informations de deux cercles et vérifie s'ils sont en intersection. B. Quel est la complexité de votre algorithme

Solution	
A)	
Structure Cercle	
Entier coordonneeX	
Entier coordonneeY	
Entier Rayon	
Fin Struct	
Fonction IntersectionCercle (): Entier	
Cercle C[2] //On cr	rée un Tableau C de type cercl
Entier SommeRayon	
Réél Distance	
Debut	
Ecrire ("Saisir Coordonnée X du premier co	ercle'')
Lire C[0].CoordonneeX	// X1
Ecrire ("Saisir Coordonnée Y du premier co	ercle'')
Lire C[0].CoordonneeY	//Y1
Ecrire ("Saisir Coordonnée Rayon du prem	ier cercle'')
Lire C[0].Rayon	//R1
Ecrire ("Saisir Coordonnée X du deuxième	cercle ")
Lire C[1].CoordonneeX	//X2
Ecrire ("Saisir Coordonnée Y du deuxième	cercle'')
Lire C[1].CoordonneeY	//Y2
Ecrire ("Saisir Coordonnée Rayon du deux	ième cercle'') //R2

KABUYA KAZADI GAEL M1 TELECOMMUNICATIONS ET RESEAUX

Distance = SQRT((C[1].CoordonneeX - C[0].CoordonneeX) 2 + C[1].CoordonneeY - C[0].CoordonneeY) 2

// la distance entre deux points est donnée par la formule : $d = \sqrt{(X2-X1)^2 + (Y2-Y1)^2}$ on //calcule la distance entre les deux centres des cercles

SommeRayon = C[0].Rayon + C[1].Rayon // La somme des deux rayons

Si Distance > SommeRayon alors

Retourne 0 //si la distance entre les deux centre des

Sinon
//cercles est supérieure à la somme des
//deux rayon alors on retourne 0 pour

Retourne 1 //dire que les cercles ne se croise pas

Finsi

Fin //sinon si la distance entre les deux

Fin IntersectionCercle

//centre des cercles est inferieure ou
//égale à la somme des deux rayon
//alors on retourne 1 parce que les

//deux cercles se croisent.

B) La complexité est de 23

C'est une complexité constance $\partial(1)$

2.A Ecrire une fonction qui lit deux tableaux triés et le regroupe en un seul tableau trié

Solution

Fonction FusionTableau (Entier Tab1[n], Entier n, Entier Tab2[m], Entier m): Entier

Entier t, i, j, tampon, CompteurTab1, CompteurTab2

Entier Tab3[m + n]

// la fonction prend 4

//paramètres, les deux //tableaux Tab 1 et Tab 2 ainsi

//que la taille des deux

//tableaux respectivement n et m

Début

t = n + m // t est la taille du tableau fusionné

i = 0

CompteurTab1 = 1 //compteur de tab 1

CompteurTab2 = 0 //Compteur de tab 2

Pour i de 0 à (t-1) faire

Si CompteurTab1 <= n alors

Tab3[i] = Tab1[i]

KABUYA KAZADI GAEL M1 TELECOMMUNICATIONS ET RESEAUX

Fin

2.B

Complexité Quadratique $\partial(t^2)$

```
CompteurTab1 = CompteurTab1 + 1
                                                                 //on affecte les valeurs du tableau 1 et
                                                                 //du tableau 2 dans le tableau 3 qui
               Sinon
                                                                 //est le tableau de fusion
                      Tab3[i] = Tab2[CompteurTab2]
                      CompteurTab2 = CompteurTab2 + 1
               Finsi
       FinPour
       i = 0
                                                   // on initialise les variables i et j
       j = 0
       Tampon = 0
                                            // une variable qui sera utilisé comme tampon
       Pour i de 0 \grave{a} (t-1)
               Pour j de (i + 1) à (t - 1)
                      Si Tab3[i] > Tab3[j] alors
                                                          //on applique un algorithme de trie
                             Tampon = Tab3[i]
                                                          // par sélection pour trier le tableau
                             Tab3[i] = tab3[j]
                                                          // fusionné
                             Tab3[j] = Tampon
                      Finsi
              FinPour
       FinPour
       Retourne Tab3[]
                                                   //on retourne le tableau fusionné et trié
Fin FusionTableau
Complexité = 4 + 4t + 3 + (t * (t-1) * 5) + 1 = 5t^2 - t + 8
```