## C30MaTotV1-3X\_SE\_4805\_4854\_-1M

## January 11, 2022

## List of Figures

| 1  | C30MaTotV1-3X | $_{ m SE}$ $_4805$ | 4854   | _1M_subbasin                  |
|----|---------------|--------------------|--------|-------------------------------|
| 2  | C30MaTotV1-3X | $SE_4805$          | 4854   | -1M $-$ bathy                 |
| 3  |               |                    |        | _1M_wind_speed_850            |
| 4  |               |                    |        | _1M_SSS                       |
| 5  | C30MaTotV1-3X | _SE_4805_          | _4854_ | _1M_zoSalinity                |
| 6  | C30MaTotV1-3X | _SE_4805_          | _4854_ | _1M_zoSalinity_subbasins      |
| 7  | C30MaTotV1-3X | _SE_4805_          | _4854_ | _1M_SST                       |
| 8  | C30MaTotV1-3X | _SE_4805_          | _4854_ | _1M_zoTemp                    |
| 9  | C30MaTotV1-3X | _SE_4805_          | _4854_ | _1M_zoTemp_subbasins          |
| 10 | C30MaTotV1-3X | _SE_4805_          | _4854_ | _1M_zoSST                     |
| 11 | C30MaTotV1-3X | $_{\rm SE}_{4805}$ | _4854_ | $_1M_zoStreamFunc \dots 1$    |
| 12 | C30MaTotV1-3X | _SE_4805_          | _4854_ | $_1M_baroStreamFunc \dots 1$  |
| 13 | C30MaTotV1-3X | _SE_4805_          | _4854_ | $_{1}M_{omlmax}NH$            |
| 14 | C30MaTotV1-3X | _SE_4805_          | _4854_ | $_{1}M_{min}$                 |
| 15 |               |                    |        | $_1M_{intpp} \dots 1$         |
| 16 |               |                    |        | $_{1}M_{epc100}$              |
| 17 |               |                    |        | _1M_PO4_lev                   |
| 18 |               |                    |        | _1M_zoPO4                     |
| 19 |               |                    |        | $_1M_zoPO4_subbasins \dots 1$ |
| 20 |               |                    |        | _1M_NO3_lev                   |
| 21 |               |                    |        | _1M_zoNO3                     |
| 22 |               |                    |        | $_1M_zoNO3_subbasins \dots 2$ |
| 23 |               |                    |        | _1M_O2_lev                    |
| 24 |               |                    |        | _1M_zoO2                      |
| 25 | C30MaTotV1-3X | SE 4805            | 4854   | 1M zoO2 subbasins 2           |

## NOTE



Figure 1: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_subbasin





Figure 2: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_bathy



Figure 3: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_wind\_speed\_850



Warning: Adaptative colormap (non-linear) !
SSS (sos) (PSU)

4.14 20.86 24.20 27.55 30.89 32.86 33.92 34.98 36.03 38.92

Figure 4: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_SSS



Figure 5: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoSalinity



Figure 6: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoSalinity\_subbasins





Figure 7: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_SST



Figure 8: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoTemp



Figure 9: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoTemp\_subbasins



Figure 10: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoSST



Figure 11: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoStreamFunc





Figure 12: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_baroStreamFunc



Warning: Adaptative colormap (non-linear)!

Ocean mixed layer thickness (omlmax) (m) - Northern hemisphere



Figure 13: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_omlmaxNH



Warning: Adaptative colormap (non-linear)!

Ocean mixed layer thickness (omlmax) (m) - Southern hemisphere



Figure 14: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_omlmaxSH



Warning: Adaptative colormap (non-linear)!

Total Primary production of phyto depth integrated (INTPP)  $(g.m^{-3}.d^{-1})$ 

0.000 0.013 0.027 0.040 0.053 0.066 0.080 0.112 0.154 0.336

Figure 15:  $C30MaTotV1-3X\_SE\_4805\_4854\_1M\_intpp$ 



Warning: Adaptative colormap (non-linear)!

Export of carbon particles at 100m (EPC100) (g.m<sup>-2</sup>.d<sup>-1</sup>)

0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.169 0.233 0.508

Figure 16: C30MaTotV1-3X SE 4805 4854 1M epc100



0.000 0.315 0.630 0.945 1.261 1.576 1.891 2.206 2.521 2.836

Figure 17: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_PO4\_lev



Figure 18: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoPO4



Figure 19: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoPO4\_subbasins



Figure 20: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_NO3\_lev



Figure 21: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoNO3



Figure 22: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoNO3\_subbasins



Figure 23: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_O2\_lev



Figure 24: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoO2



Figure 25: C30MaTotV1-3X\_SE\_4805\_4854\_1M\_zoO2\_subbasins