EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Informatik I Vorlesung

Wintersemester 2016/2017

Mitschrieb von Julian Wolff

Inhaltsverzeichnis

1	Sch	eme: Ausdrücke, Auswertung und Abstraktion	
	1.1	REPL	2
	1.2	Literale	2
	1.3	Identifier	3

Scheme: Ausdrücke, Auswertung und Abstraktion

REPL

Definition	DrRacket
Interaction	REPL

Die Anwendung von Funktionen wird in Scheme <u>ausschließlich</u> in <u>Präfixnotation</u> durchgeführt:

Mathematik	Scheme
44-2	$(-44\ 2)$
f(x,y)	$(f \times y)$
$\sqrt{81}$	(sqrt 81)
	(floor x)
9^{2}	(expt 9 2)
3!	$(!\ 3)$

Allgemein: (Funktion) (argument))

(+402) und (odd? 42) sind Beispiele für die <u>Ausdrücke</u>, die bei Auswertung einen Wert liefern. (Notation \leadsto) heißt Auswertung/Evaluation/Reduktion.

$$\begin{array}{ccc} (+\ 40\ 2) \underset{Eval}{\leadsto} 42 \\ (\text{add?}\ 42) \underset{Eval}{\leadsto} \# f \end{array}$$

Interaktionsfenster:

$$\begin{array}{c} \operatorname{Read} \leadsto \operatorname{Eval} \leadsto \operatorname{Print} \\ \operatorname{Loop} \end{array}$$

REPL

Literale

<u>Literale</u> stehen für einen konstanten Wert (auch: <u>Konstante</u>) und sind nicht weiter reduzierbar.

$\underline{\text{Literal}}$		Signatur
#t #f	(true, false, Wahrheitswerte)	boolean
,,ac" ,,x" ,, "	(Zeichenketten)	string
0 1904 -42 007	(ganze Zahlen)	integer
0.42 3.1415 -273.15	(Fließkommazehlen)	real
$1/2 \ 3/4 \ -1/10$	(rationale Zahlen)	rational
	(Bilder)	image

Auswertung <u>zusammengesetzte Ausdrücke</u> (composite expression) in mehreren Schritten (Steps), "von innen nach außen", bis keine weitere Reduktion möglich ist: $(+(+20\ 20)(+\ 1\ 1)) \rightsquigarrow (+\ 40\ (+\ 1\ 1)) \rightsquigarrow (+\ 40\ 2) \rightsquigarrow 42$

Beispiel:

$$0.7 + (\frac{1}{2}/0.25) - (0.6/0.3) = 0.7$$

Achtung: Scheme rundet bei Arithmetik mit Fließkommazahlen (interne Darstellung nicht präzise). Die Arithmetik mit rationalen Zahlen ist exakt.

Identifier

Ein Wert kann an einen <u>Namen</u> (identifier) <u>gebunden</u> werden, durch(define\(id\)\(\lambda\)\(expression\(\rangle\)\)
Es erlaubt konsistente Wiederverwendung und dient der Selbstdokumentation von Programmen.

Achtung: Dies ist eine Spezialform und kein Ausdruck. Insbesondere besitzt diese Spezialform keinen Wert, sondern einen Effekt: der Name (id) wird durch den Wert von (expression) gebunden. Namen können in Scheme fast beliebig gewählt werden, solange

- die Zeichen ()[[{}",';#\ | nicht vorkommen
- der name nicht einem numerischen Literal gleicht
- keinen Whitespaße (Leerzeichen, Tabulatoren, Neuwlines) enthalten sind

Beispiel: Euro \rightarrow US-\$

Achtung: Groß-/Kleinschreibung ist in Identifiern <u>nicht</u> relevant.