MATHIO02

LECTURE 8-F

LINES IN IR2 & IR3: OVERVIEW & COMPARISON.

Summary of the last two lectures:

	Normal form	General form	Vector form	Parametric Brm
Lines in R ²	n. n = n.p e un: normal veabr	ax + by = c ax + by = c	$\vec{x} = \vec{p} + t\vec{a}$, ter \vec{d} : direction vector	$x = p_1 + td_1$ $y = p_2 + td_2 \qquad t \in \mathbb{R}$ $\vec{d} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$
Lines in IR ³			元=p+td, telp d: direction vector.	$x = p_1 + td_1$ $y = p_2 + td_2 \qquad t \in \mathbb{R},$ $z = p_3 + td_3 \qquad d = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$

useful when I give you a useful when I ask, point and ask, " Is it in 2?"

" what are some points in 2?"

In \mathbb{R}^2 : Both ophions exist. How do we switch between them?

Example: Recall from lost time the line LCIR2 passing through P = (1, -3) and Q = (2, -1).

We saw it has vector equation

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Goal: Find its normal form and general equation.

Solution: We need to find the components of a normal vector $\vec{n} = \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$ to ℓ .

It will schishy in . d = 0.

Taking $\vec{d} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, we obtain $n_1 + \partial n_2 = 0$

There will be lots of solutions, so we can take $n_2 = -1$, and then $n_1 = 2$.

So $\vec{n} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ is a normal vector to ℓ ,

and we can write down the normal firm

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \vec{\chi} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

= 2+3 =5

i.e.
$$\begin{bmatrix} 2 \\ -1 \end{bmatrix} \cdot \overrightarrow{x} = 5$$
 \leftarrow normal form

· We just saw: vector equation -> normal firm -> general firm.

We can also airectly go:

- · parametric equations -> general form
- · general form → parametric equations.

Example: from parametric equations to general lim:

• Start from
$$\begin{cases} x = 1 + t \\ y = -3 + at \end{cases}$$
 $t \in \mathbb{R}$.

• Isolate t: t = x-1

$$t = \frac{1}{2}(y+3)$$

• Obtain an equation:
$$x-1 = \frac{1}{2}(y+3)$$

$$\Rightarrow$$
 $2x-y=5$ \Rightarrow general equation!

Example: From general equation to parametric equations:

- · Start from ax -y = 5
- Isolate one variable: e.g. y = 2x-5.
- · Let the other variable be a parameter: x=s, self.

$$\begin{cases} x = s \\ y = 2s - 5 \end{cases} \quad \text{Se } \mathbb{R} . \tag{34}$$

Claim: these parametric equations give the some line

as
$$\begin{cases} x = 1 + t \\ y = -3 + 2t \end{cases} t \in \mathbb{R}.$$

• indeed if we set s = 1+t, (x) becomes

$$\begin{cases} x = 1+t, \\ y = 2(1+t) - 5 & t \in \mathbb{R}. \end{cases}$$

$$= 2t - 3$$

Example: Consider the line l in \mathbb{R}^2 with parametric equations $\begin{cases} x = a - t \\ y = -4 + 2t \end{cases}$ $t \in \mathbb{R}$.

Exercise: Find a general equation for 1.

Solve for t: $t = 2-x \Rightarrow 2t = 4-2x$ 2t = 4+4

Forming two sides: 4-2x = y+4

=) 2x + y =0.

 $E_{\underline{\text{xercise}}}$: Read off a direction weath g a normal-weathr g.

• direction vector from vector equation: $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$

•normal vector from general firm $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Summary of the lecture:

	Normal form	General form	Vector form	Parametric Brm
Lines in R ²	n. n	ax + by = c $x\hat{n} = \begin{bmatrix} a \\ b \end{bmatrix}; c = x\hat{n} \cdot \hat{p}$	it = p+ta, ter d: airection vector	$x = p_1 + td_1$ $y = p_2 + td_2 \qquad teR$ $\vec{d} = [d_2]$
Lines in 1R3			7 = p+td, tell d: direction vector.	$x = p_1 + td_1$ $y = p_2 + td_2 \qquad t \in \mathbb{R},$ $z = p_3 + td_3 \qquad d = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$
	K	^		$\vec{d} = \begin{bmatrix} \vec{d}_z \\ d_z \end{bmatrix}$

- can read off normal vector can read off

direction vector.

You should be able to:

· identify different forms, switch between them, and use then to extract information about the line.