3. Gramàtiques incontextuals

Teoria de la Computació

FIB

Antoni Lozano Q1 2024–2025

Gramàtiques incontextuals

- Introducció
- Conceptes
- Tancament
- 4 Ambigüitat

Esquema general

Classes de llenguatges ↑

- Tots
- Decidibles (TM)
- NP (TM)
- P (TM)
- Incontextuals (CFG, PDA)
- Regulars (FA, NFA, λ-NFA, expressions regulars)

Esquema general

Models de càlcul ↑

- TM: Turing Machine
- PDA: Push-Down Automaton (autòmat amb pila)
 - DPDA: Deterministic PDA
- CFG: Context-Free Grammar (gramàtica incontextual)
- FA: Finite Automaton
 - DFA: Deterministic Finite Automaton
 - NFA: Nondeterministic Finite Automaton
 - λ-NFA: Lambda Nondeterministic FA

Motivació

Sabem que:

Teorema

El llenguatge $\{0^n1^n \mid n \ge 0\}$ no és regular.

Però sovint cal reconèixer aquest llenguatge, com ara en la parentització dels llenguatges de programació.

Ho farem introduint els llenguatges incontextuals.

Motivació

Sabem que:

Teorema

El llenguatge $\{0^n1^n \mid n \ge 0\}$ no és regular.

Però sovint cal reconèixer aquest llenguatge, com ara en la parentització dels llenguatges de programació.

Ho farem introduint els llenguatges incontextuals.

Terminologia i notació

Exemple 1

Gramàtica incontextual G, amb $\Sigma = \{0, 1\}$:

$$S
ightarrow 0 S 1$$

 $S
ightarrow \lambda$

- Conté dues regles de substitució (produccions)
- Té una variable (S) i un terminal (0)
- Permet fer infinites derivacions de mots. Per exemple:

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 0011$$
.

• El llenguatge generat és $L(G) = \{0^n 1^n \mid n \ge 0\}$.

Terminologia i notació

Exemple 2

Gramàtica incontextual G, amb $\Sigma = \{0, 1\}$:

$$S \rightarrow A$$

 $S \rightarrow B$
 $A \rightarrow 0 A 1$
 $A \rightarrow \lambda$
 $B \rightarrow 1 B 0$
 $B \rightarrow \lambda$

- La variable que genera el llenguatge se'n diu inicial i és la primera que escrivim: S
- Una derivació sempre comença per la variable inicial: $S \Rightarrow A \Rightarrow 0.000$ $\Rightarrow 0.000$ $\Rightarrow 0.000$
- El llenguatge generat és $L(G) = L_A \cup L_B = \{0^n 1^n \mid n \ge 0\} \cup \{1^n 0^n \mid n \ge 0\}$

Terminologia i notació

Exemple 2

Escriurem les gramàtiques de forma més compacta!

Convenció: Escriurem

$$A \rightarrow \alpha \mid \beta$$

en lloc de $A \rightarrow \alpha$ i $A \rightarrow \beta$.

La gramàtica anterior G l'escriurem com

$$\textbf{S} \rightarrow \textbf{A} \mid \textbf{B}$$

$$A \rightarrow 0 A 1 \mid \lambda$$

$$B \rightarrow 1 B 0 | \lambda$$

Gramàtiques incontextuals

- Introducció
- 2 Conceptes
- 3 Tancament
- 4 Ambigüitat

Definició de gramàtica

Definició

Una gramàtica incontextual (CFG, de *context-free grammar*) és un quàdruple (V, Σ, P, S) on

- V és un conjunt finit d'elements anomenats variables (o no terminals)
- Σ és un alfabet, $\Sigma \cap V \neq \emptyset$, d'elements anomenats terminals
- $P \subseteq V \times (V \cup \Sigma)^*$ és un conjunt finit de produccions (o regles)
- $S \in V$ és la variable inicial

Notació

Donada una CFG (V, Σ, P, S), una producció (X, α) $\in P$ l'escriurem sempre com $X \to \alpha$.

Definició de gramàtica

Definició

Una gramàtica incontextual (CFG, de *context-free grammar*) és un quàdruple (V, Σ, P, S) on

- V és un conjunt finit d'elements anomenats variables (o no terminals)
- Σ és un alfabet, $\Sigma \cap V \neq \emptyset$, d'elements anomenats terminals
- $P \subseteq V \times (V \cup \Sigma)^*$ és un conjunt finit de produccions (o regles)
- $S \in V$ és la variable inicial

Notació

Donada una CFG (V, Σ, P, S), una producció (X, α) $\in P$ l'escriurem sempre com $X \to \alpha$.

Exemple

Una gramàtica que, a la pràctica, descrivim com

$$S \rightarrow a S \mid a T T \rightarrow a T b \mid \lambda$$

és formalment un quàdruple $(\{S, T\}, \{a, b\}, P, S)$, on

$$P = \{(S, aS), (S, aT), (T, aTb), (T, \lambda)\}.$$

La primera notació és completa:

- Les variables hi apareixen en majúscula
- Els terminals hi apareixen en minúscula
- Les produccions hi són totes
- La variable de la part esquerra de la primera producció és la inicial

Exemple

Una gramàtica que, a la pràctica, descrivim com

$$S \rightarrow a S \mid a T$$

 $T \rightarrow a T b \mid \lambda$

és formalment un quàdruple $(\{S, T\}, \{a, b\}, P, S)$, on

$$P = \{(S, aS), (S, aT), (T, aTb), (T, \lambda)\}.$$

La primera notació és completa:

- Les variables hi apareixen en majúscula
- Els terminals hi apareixen en minúscula
- Les produccions hi són totes
- La variable de la part esquerra de la primera producció és la inicial

Derivació

Definició

Donada una gramàtica $G = (V, \Sigma, P, S)$ i dues cadenes $\alpha, \beta \in (V \cup \Sigma)^*$, escrivim $\alpha \Rightarrow_G \beta$ i diem que hi ha una derivació directa de α a β , si existeix una producció $A \to \gamma$ a P tal que

$$\alpha = \alpha_1 A \alpha_2$$
 i $\beta = \alpha_1 \gamma \alpha_2$

per a $\alpha_1, \alpha_2, \gamma \in (V \cup \Sigma)^*$.

Exemple

En la CFG G vista abans

$$S \rightarrow a S \mid a \mid T \rightarrow a \mid T \mid b \mid S$$

tenim les derivacions directes per a tot k > 0

$$a^k S \Rightarrow_G a^{k+1} S$$
, $a^k S \Rightarrow_G a^{k+1} T$, $T \Rightarrow_G \lambda$.

Derivació

Definició

Donada una gramàtica $G = (V, \Sigma, P, S)$ i dues cadenes $\alpha, \beta \in (V \cup \Sigma)^*$, escrivim $\alpha \Rightarrow_G \beta$ i diem que hi ha una derivació directa de α a β , si existeix una producció $A \to \gamma$ a P tal que

$$\alpha = \alpha_1 A \alpha_2$$
 i $\beta = \alpha_1 \gamma \alpha_2$

per a $\alpha_1, \alpha_2, \gamma \in (V \cup \Sigma)^*$.

Exemple

En la CFG G vista abans

$$S \rightarrow a S \mid a T$$

 $T \rightarrow a T b \mid \lambda$

tenim les derivacions directes per a tot $k \ge 0$

$$a^k S \Rightarrow_G a^{k+1} S$$
, $a^k S \Rightarrow_G a^{k+1} T$, $T \Rightarrow_G \lambda$.

Definició

Donada una gramàtica $G = (V, \Sigma, \delta, S)$ i dues cadenes $\alpha, \beta \in (V \cup \Sigma)^*$, escrivim

$$\alpha \Rightarrow_{G}^{n} \beta$$

i diem que hi ha una derivació de n passos de α a β , si

- n = 0 i $\alpha = \beta$ o bé
- n > 0 i existeix γ tal que $\alpha \Rightarrow_G \gamma \Rightarrow_G^{n-1} \beta$.

Escrivim $\alpha \Rightarrow_{G}^{*} \beta$ si $\alpha \Rightarrow_{G}^{n} \beta$ per a algun $n \ge 0$.

(S'elideix la G quan és clara pel context)

Exemple

En la gramàtica anterior

$$S
ightarrow a \, S \mid a \, T \ T
ightarrow a \, T \, b \mid \lambda$$

tenim la derivació $S\Rightarrow aT\Rightarrow aaTb\Rightarrow aab$, que abreugem $S\Rightarrow^3 aab$.

Definició

Donada una gramàtica $G = (V, \Sigma, \delta, S)$ i dues cadenes $\alpha, \beta \in (V \cup \Sigma)^*$, escrivim

$$\alpha \Rightarrow_{G}^{n} \beta$$

i diem que hi ha una derivació de n passos de α a β , si

- n = 0 i $\alpha = \beta$ o bé
- n > 0 i existeix γ tal que $\alpha \Rightarrow_G \gamma \Rightarrow_G^{n-1} \beta$.

Escrivim $\alpha \Rightarrow_{G}^{*} \beta$ si $\alpha \Rightarrow_{G}^{n} \beta$ per a algun $n \ge 0$.

(S'elideix la G quan és clara pel context)

Exemple

En la gramàtica anterior,

$$S \rightarrow a S \mid a T$$

 $T \rightarrow a T b \mid \lambda$

tenim la derivació $S \Rightarrow aT \Rightarrow aaTb \Rightarrow aab$, que abreugem $S \Rightarrow^3 aab$.

A tota derivació li correspon un arbre de derivació.

La derivació $S \Rightarrow aT \Rightarrow aaTb \Rightarrow aab$ es representa amb l'arbre

Les fulles de l'arbre llegides d'esquerra a dreta formen el mot generat.

Llenguatge d'una gramàtica

El llenguatge generat per una CFG $G = (V, \Sigma, P, S)$ és

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow_G^* w \}.$$

Exemple

Considerem la gramàtica G

$$S \rightarrow a S \mid a T T \rightarrow a T b \mid \lambda$$

Una derivació des de S sempre és de la forma

$$S \Rightarrow^i a^i S \Rightarrow^1 a^{i+1} T \Rightarrow^j a^{i+1} a^j T b^j \Rightarrow^1 a^{i+1} a^j \lambda a^j = a^{i+j+1} b^j$$

amb $i, j \ge 0$. Per tant, tenim $L(G) = \{a^m b^n \mid m > n\}$

Llenguatge d'una gramàtica

El llenguatge generat per una CFG $G = (V, \Sigma, P, S)$ és

$$\textit{L}(\textit{G}) = \{\textit{w} \in \Sigma^* \mid \textit{S} \Rightarrow_{\textit{G}}^* \textit{w}\}.$$

Exemple

Considerem la gramàtica G

$$S \rightarrow a S \mid a T$$

 $T \rightarrow a T b \mid \lambda$

Una derivació des de S sempre és de la forma

$$S \Rightarrow^i a^i S \Rightarrow^1 a^{i+1} T \Rightarrow^j a^{i+1} a^j T b^j \Rightarrow^1 a^{i+1} a^j \lambda a^j = a^{i+j+1} b^j$$

amb $i, j \ge 0$. Per tant, tenim $L(G) = \{a^m b^n \mid m > n\}$.

$$G: S \rightarrow B E$$

$$S \rightarrow D B$$

$$E \rightarrow B E \mid A$$

$$D \rightarrow D B \mid A$$

$$A \rightarrow B A B \mid \#$$

$$B \rightarrow 0 \mid 1$$

$$G: S \rightarrow B E$$

$$S \rightarrow D B$$

$$E \rightarrow B E \mid A$$

$$D \rightarrow D B \mid A$$

$$A \rightarrow B A B \mid \#$$

$$B \rightarrow 0 \mid 1$$

$$B \Rightarrow^* 0, B \Rightarrow^* 1$$

$$G: S \rightarrow B E$$
 $S \rightarrow D B$
 $E \rightarrow B E \mid A$
 $D \rightarrow D B \mid A$
 $A \rightarrow B A B \mid \#$
 $B \rightarrow 0 \mid 1$

$$A \Rightarrow^* x \# y, |x| = |y|$$

 $B \Rightarrow^* 0, B \Rightarrow^* 1$

$$G: S \rightarrow B E$$
 $S \rightarrow D B$
 $E \rightarrow B E \mid A$
 $D \rightarrow D B \mid A$
 $A \rightarrow B A B \mid \#$
 $B \rightarrow 0 \mid 1$
 $D \Rightarrow^* x \# y, |x| \leq |y|$
 $A \Rightarrow^* x \# y, |x| = |y|$
 $A \Rightarrow^* 0, B \Rightarrow^* 1$

$$G: S \to B E$$

 $S \to D B$
 $E \to B E | A$
 $D \to D B | A$
 $A \to B A B | \#$
 $B \to 0 | 1$
 $E \Rightarrow^* x \# y, |x| \ge |y|$
 $D \Rightarrow^* x \# y, |x| \le |y|$
 $A \Rightarrow^* x \# y, |x| = |y|$
 $B \Rightarrow^* 0, B \Rightarrow^* 1$

$$G: S \to B E$$

 $S \to D B$
 $E \to B E | A$
 $D \to D B | A$
 $A \to B A B | \#$
 $B \to 0 | 1$
 $D \to B E | A$
 $D \Rightarrow x \# y, |x| ≤ |y|$
 $D \Rightarrow x \# y, |x| ≤ |y|$
 $D \Rightarrow x \# y, |x| ≤ |y|$
 $D \Rightarrow x \# y, |x| ≤ |y|$

$$G: S \rightarrow B E$$
 $BE \Rightarrow^* x \# y, |x| > |y|$
 $S \rightarrow D B$
 $DB \Rightarrow^* x \# y, |x| < |y|$
 $E \rightarrow B E | A$
 $E \Rightarrow^* x \# y, |x| \ge |y|$
 $D \rightarrow D B | A$
 $D \Rightarrow^* x \# y, |x| \le |y|$
 $A \rightarrow B A B | \#$
 $A \Rightarrow^* x \# y, |x| = |y|$
 $B \Rightarrow 0 | 1$
 $B \Rightarrow^* 0 B \Rightarrow^* 1$

Classes de llenguatges

Llenguatges incontextuals

Un llenguatge se'n diu incontextual (context-free language) si existeix una CFG que el genera.

És a dir, L és incontextual si existeix una CFG tal que L = L(G).

Classe dels incontextuals

Es defineix CFL com la classe dels llenguatges incontextuals.

Regulars i incontextuals

$Reg \subseteq CFL$

De forma equivalent: tot regular és incontextual.

La construcció és la següent. Suposem que L és reconegut per un DFA

$$A = (\{q_0, \ldots, q_{n-1}\}, \Sigma, \delta, q_0, F).$$

Ara definim una CFG $G = (\{R_0, \dots, R_{n-1}\}, \Sigma, P, R_0)$ tal que

$$P = \{R_i \to aR_j \mid \delta(q_i, a) = q_j\} \cup \{R_i \to \lambda \mid q_i \in F\}.$$

Aleshores, L(G) = L(A) = L. Per tant, L és incontextual.

Exercici

Demostreu per inducció que la construcció anterior és correcta (és a dir, que L(G) = L(A)).

Regulars i incontextuals

$Reg \subset CFL$

De forma equivalent: tot regular és incontextual.

La construcció és la següent. Suposem que L és reconegut per un DFA

$$A = (\{q_0, \ldots, q_{n-1}\}, \Sigma, \delta, q_0, F).$$

Ara definim una CFG $G = (\{R_0, \dots, R_{n-1}\}, \Sigma, P, R_0)$ tal que

$$P = \{R_i \to aR_j \mid \delta(q_i, a) = q_j\} \cup \{R_i \to \lambda \mid q_i \in F\}.$$

Aleshores, L(G) = L(A) = L. Per tant, L és incontextual.

Exercici

Demostreu per inducció que la construcció anterior és correcta (és a dir, que L(G) = L(A)).

Regulars i incontextuals

Exemple: múltiples de 3 en binari

Havíem vist que el llenguatge dels mots sobre $\{0,1\}$ que interpretats com a nombres binaris són múltiples de 3 és regular:

La conversió de DFA a CFG vista abans produeix la gramàtica:

$$egin{aligned} R_0 &
ightarrow 0 \; R_0 \; | \; 1 \; R_1 \; | \; \lambda \ R_1 &
ightarrow 0 \; R_2 \; | \; 1 \; R_0 \ R_2 &
ightarrow 0 \; R_1 \; | \; 1 \; R_2 \end{aligned}$$

Gramàtiques incontextuals

- Introducció
- Conceptes
- Tancament
- 4 Ambigüitat

Reunió

CFL és tancada per reunió

Suposem que $G_1 = (V_1, \Sigma, P_1, S_1)$ i $G_2 = (V_2, \Sigma, P_2, S_2)$ són dues CFGs tals que $L(G_1) = L_1$ i $L(G_2) = L_2$. Definim la CFG

$$G = (\{S\} \cup V_1 \cup V_2, \Sigma, \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2, S)$$

on S és un símbol nou $(S \notin V_1 \cup V_2)$.

Qualsevol derivació d'un mot en G és de la forma

$$S \Rightarrow S_1 \Rightarrow^* w$$
 o $S \Rightarrow S_2 \Rightarrow^* w$.

En el primer cas, $w \in L(G_1)$ i en el segon $w \in L(G_2)$. A l'inrevés, tot mot de $L(G_1) \cup L(G_2)$ té una derivació en G. Per tant,

$$L(G) = L(G_1) \cup L(G_2) = L_1 \cup L_2$$

i el llenguatge $L_1 \cup L_2$ és incontextual.

Reunió

Exemple: reunió

Abans hem vist que

$$L = \{x \# y \mid x, y \in \{0, 1\}^* \land |x| \neq |y|\}$$

es pot generar amb una gramàtica que combina dues CFGs que generen

$$L_1 = \{x\#y \mid x,y \in \{0,1\}^* \ \land \ |x| < |y|\} \ i$$

$$L_2 = \{x \# y \mid x, y \in \{0, 1\}^* \ \land \ |x| > |y|\}.$$

Exercic

Completeu l'exemple donant les CFGs per a L, L₁ i L₂

Reunió

Exemple: reunió

Abans hem vist que

$$L = \{x \# y \mid x, y \in \{0, 1\}^* \ \land \ |x| \neq |y|\}$$

es pot generar amb una gramàtica que combina dues CFGs que generen

$$L_1 = \{x\#y \mid x,y \in \{0,1\}^* \ \land \ |x| < |y|\} \ i$$

$$L_2 = \{x \# y \mid x, y \in \{0, 1\}^* \ \land \ |x| > |y|\}.$$

Exercici

Completeu l'exemple donant les CFGs per a L, L_1 i L_2 .

Concatenació

Suposem que $G_1=(V_1,\Sigma,P_1,S_1)$ i $G_2=(V_2,\Sigma,P_2,S_2)$ són dues CFGs tals que $L(G_1)=L_1$ i $L(G_2)=L_2$.

CFL és tancada per concatenació

La concatenació L₁L₂ és generada per la CFG

$$(\{\mathcal{S}\}\cup V_1\cup V_2, \Sigma, \{\mathcal{S}\to\mathcal{S}_1\mathcal{S}_2\}\cup P_1\cup P_2, \mathcal{S})$$

on S és un símbol nou ($S \notin V_1 \cup V_2$).

Exercici

Demostreu que $\{a^ib^{i+j}c^j\mid i,j\geq 0\}$ és incontextual sabent que $\{a^nb^n\mid n\geq 0\}$ i $\{b^nc^n\mid n\geq 0\}$ ho són.

Estrella de Kleene

Suposem que $G = (V, \Sigma, P, S)$ és una CFG tal que L(G) = L.

CFL és tancada per l'estrella de Kleene

L'estrella de Kleene de L, L*, és generada per la CFG

$$(\{S\} \cup V_1, \Sigma, \{S \rightarrow SS_1 | \lambda\} \cup P_1, S)$$

on S és un símbol nou ($S \notin V_1$).

Exercici

Argumenteu que les construccions anteriors justifiquen el tancament de CFL per les propietats respectives.

Gramàtiques incontextuals

- Introducció
- Conceptes
- Tancament
- 4 Ambigüitat

Exemple

Sigui $G = (\{S\}, \{a, b, c\}, P, S)$ on P conté les produccions $S \to S \ b \ S \ | \ S \ c \ S \ | \ a$

Llavors, el mot abaca té l'arbre de derivació

Una de les derivacions corresponents a l'arbre de dalt seria

$$S \Rightarrow SbS \Rightarrow SbScS \Rightarrow abScS \Rightarrow abSca \Rightarrow abaca$$
.

Ambigüitat

Una gramàtica incontextual és ambigua si existeix un mot $x \in L(G)$ per al qual es poden trobar dos arbres de derivació. En cas contrari, es diu que G és inambigua.

Exemple d'ambigüitat 1

En la gramàtica de l'exemple anterior, abaca té dos arbres de derivació:

Per tant, la gramàtica és ambigua.

Exemple d'ambigüitat 2

La gramàtica $S \to aSb \mid bSa \mid SS \mid \lambda$ és ambigua perquè té un mot amb més d'un arbre de derivació. Per exemple, per al mot abab:

De fet, també es poden trobar dos arbres de derivació per al mot λ :

El fet que una gramàtica sigui ambigua pot ser degut a la forma en què s'ha definit o bé pot degut a una. propietat del llenguatge que genera.

Definició

Un llenguatge incontextual és inherentment ambigu si tota gramàtica que el genera és ambigua.

Exemples

① El llenguatge $\{x \in \{a,b\}^* \mid |x|_a = |x|_b\}$ no és inherentment ambigu perquè té una gramàtica inambigua que el genera:

$$S \rightarrow a B S \mid b A S \mid \lambda$$

 $A \rightarrow b A A \mid a$
 $B \rightarrow a B B \mid b$

2 El llenguatge $\{a^i b^j c^k \mid i = j \lor j = k\}$ només és generat per gramàtiques ambigües i, per tant, és inherentment ambigu.