OpenCMISS-iron examples and tests used by OpenCMISS developers at University of Stuttgart, Germany

Christian Bleiler, Andreas Hessenthaler, Thomas Klotz, Aaron Krämer, Benjamin Maier, Sergio Morales, Mylena Mordhorst, Harry Saini*

> June 30, 2017 13:17

CONTENTS

1	Introduction					
	1.1	Cmgu	ıi files for cmgui-2.9	4		
	1.2	Variat	tions to consider	4		
	1.3	Folde	r structure	5		
2	Hov	v to wo	work on this document			
3	Diffusion equation					
	3.1		tion in general form	6		
	3.2 Example-0001					
	-	3.2.1	Mathematical model - 2D	7		
		3.2.2	Mathematical model - 3D	7		
		3.2.3	Computational model	7		
		3.2.4	Result summary	8		
	3.3 Example-0001-u			11		
		3.3.1	Mathematical model - 2D	11		
		3.3.2	Mathematical model - 3D	11		
		3.3.3	Computational model	11		
		3.3.4	Result summary	12		
	3.4	Exam	ple-0002	15		
		3.4.1	Mathematical model - 2D	15		
		3.4.2	Mathematical model - 3D	15		
		3.4.3	Computational model	15		
		3.4.4	Result summary	16		
	3.5	Exam	ple-0003	10		

^{*} Institute of Applied Mechanics (CE), University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

[†] Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

[‡] Lehrstuhl Mathematische Methoden für komplexe Simulation der Naturwissenschaft und Technik, University of Stuttgart, Allmandring 5b, 70569 Stuttgart, Germany

		3.5.1	Mathematical model - 2D	19
		3.5.2	Mathematical model - 3D	19
		3.5.3	Computational model	19
		3.5.4	Result summary	20
	3.6	Examp	ple-0011	23
		3.6.1	Mathematical model - 2D	23
		3.6.2	Mathematical model - 3D	23
		3.6.3	Computational model	23
		3.6.4	Result summary	24
4	Line	ar elast		27
•	4.1		ion in general form	27
	4.2		ple-0101	28
	•		Mathematical model	28
		-	Computational model	28
		•	Results	28
		4.2.4		28
5	Fini	te elasti		31
<i>5</i>			kes flow	32
		nodoma		
7				33
8	Cell	ML mo	odel	34
LI	ST	OF FI	IGURES	
Fig	gure :	Í.	2D results, iron reference w/ command line argu-	
•			ments [2.0 1.0 0.0 8 4 0 1 0]	8
Figure 2			2D results, current run w/ command line arguments	
•	,		[2.0 1.0 0.0 8 4 0 1 0]	9
Figure 3		3	3D results, iron reference w/ command line argu-	
•	,		ments [2.0 1.0 1.0 8 4 4 1 0]	9
Fig	gure 2	1	3D results, current run w/ command line arguments	
•	,	•	[2.0 1.0 1.0 8 4 4 1 0]	10
Fig	gure !	5	2D results, iron reference w/ command line argu-	
(· · · · ·		ments [2.0 1.0 0.0 8 4 0 1 0]	12
Figure 6		5	2D results, current run w/ command line arguments	
(50		[2.0 1.0 0.0 8 4 0 1 0]	13
Fig	gure ₂	7	3D results, iron reference w/ command line argu-	-5
	5	•	ments [2.0 1.0 1.0 8 4 4 1 0]	13
Figure 8		3	3D results, current run w/ command line arguments	- 5
(5arc v		[2.0 1.0 1.0 8 4 4 1 0]	14
Figure 9)	2D results, iron reference w/ command line argu-	-4
1 16	5urc :	9	ments [2.0 1.0 0.0 8 4 0 1 0]	16
Figure 10		10	2D results, current run w/ command line arguments	10
1.15	guite .	10	[2.0 1.0 0.0 8 4 0 1 0]	10
Figure 11		1 1		17
T. T	5ure :	LI	3D results, iron reference w/ command line arguments [20101084410]	4 F
E:	21180		ments [2.0 1.0 1.0 8 4 4 1 0].	17
Г1	gure	12	3D results, current run w/ command line arguments	~ O
17:			[2.0 1.0 1.0 8 4 4 1 0]	18
Figure 13		13	2D results, iron reference w/ command line argu-	
г.			ments [2.0 1.0 0.0 8 4 0 1 0]	21
F18	gure :	14	2D results, current run w/ command line arguments	
			[2.0 1.0 0.0 8 4 0 1 0]	21

Figure 15	3D results, iron reference w/ command line argu-	
	ments [2.0 1.0 1.0 8 4 4 1 0]	22
Figure 16	3D results, current run w/ command line arguments	
	[2.0 1.0 1.0 8 4 4 1 0]	22
Figure 17	2D results, iron reference w/ command line argu-	
	ments [2.0 1.0 0.0 8 4 0 1 0 1 1]	25
Figure 18	2D results, current run w/ command line arguments	
	[2.0 1.0 0.0 8 4 0 1 0 1 1]	25
Figure 19	3D results, iron reference w/ command line argu-	
	ments [2.0 1.0 1.0 8 4 4 1 0 1 1 1]	26
Figure 20	3D results, current run w/ command line arguments	
	[2.0 1.0 1.0 8 4 4 1 0 1 1 1]	26
Figure 21	Results, analytical solution	28
Figure 22	Results, Abaqus reference	29
Figure 23	Results, iron reference	29
Figure 24	Results, current run	30
LIST OF TA	ABLES	
Table 1	Initials of people working on examples, in alphabeti-	
	cal order (surnames)	

INTRODUCTION 1

This document contains information about examples used for testing OpenCMISSiron. Read: How-to¹ and [1].

- Cmgui files for cmgui-2.9
- Variations to consider
 - Geometry and topology

1D, 2D, 3D

Length, width, height

Number of elements

Interpolation order

Generated or user meshes

quad/hex or tri/tet meshes

- Initial conditions
- Load cases

Dirichlet BC

Neumann BC

Volume force

Mix of previous items

- Sources, sinks
- Time dependence

Static

Quasi-static

Dynamic

Material laws

Linear

Nonlinear (Mooney-Rivlin, Neo-Hookean, Ogden, etc.)

Active (Stress, strain)

- Material parameters, anisotropy
- Solver

Direct

Iterative

Test cases

Numerical reference data

Analytical solution

• A mix of previous items

¹ https://bitbucket.org/hessenthaler/opencmiss-howto

1.3 Folder structure

TBD..

HOW TO WORK ON THIS DOCUMENT

In the Google Doc at https://docs.google.com/spreadsheets/d/1RGKj8vVPqQ-PH0UwMX_ e9TAzqaYavKi0z0D4pKY9RGI/edit#gid=0 please indicate what you are working on or if a given example was finished

- no mark: to be done
- x: currently working on it
- xx: done

Initials	Full name
СВ	Christian Bleiler
AH	Andreas Hessenthaler
TK	Thomas Klotz
AK	Aaron Krämer
BM	Benjamin Maier
SM	Sergio Morales
MM	Mylena Mordhorst
HS	Harry Saini

 Table 1: Initials of people working on examples, in alphabetical order (surnames).

3 DIFFUSION EQUATION

3.1 Equation in general form

The governing equation is,

$$\partial_t \mathbf{u} + \nabla \cdot [\boldsymbol{\sigma} \nabla \mathbf{u}] = \mathbf{f}, \tag{1}$$

with conductivity tensor $\boldsymbol{\sigma}.$ The conductivity tensor is,

- defined in material coordinates (fibre direction),
- diagonal,
- defined per element.

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.2.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{2}$$

with boundary conditions

$$u = 0 x = y = 0, (3)$$

$$u = 1$$
 $x = 2, y = 1.$ (4)

No material parameters to specify.

3.2.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{5}$$

with boundary conditions

$$u = 0 \qquad \qquad x = y = z = 0, \tag{6}$$

$$u = 1$$
 $x = 2, y = z = 1.$ (7)

No material parameters to specify.

3.2.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

• Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

3.2.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Figure 1: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1

Figure 2: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 3: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

Figure 4: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.3 Example-0001-u

Example uses user-defined regular meshes in CHeart mesh format and solves a static problem, i.e., applies the boundary conditions in one step.

3.3.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{8}$$

with boundary conditions

$$u = 0 x = y = 0, (9)$$

$$u = 1$$
 $x = 2, y = 1.$ (10)

No material parameters to specify.

3.3.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{11}$$

with boundary conditions

$$u = 0 \qquad \qquad x = y = z = 0, \tag{12}$$

$$u = 1$$
 $x = 2, y = z = 1.$ (13)

No material parameters to specify.

3.3.3 Computational model

Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

```
2.0 1.0 0.0 8 4 0 1 1
2.0 1.0 0.0 2 1 0 2 1
2.0 1.0 0.0 4 2 0 2 1
2.0 1.0 0.0 8 4 0 2 1
2.0 1.0 1.0 2 1 1 1 0
2.0 1.0 1.0 4 2 2 1 0
2.0 1.0 1.0 8 4 4 1 0
2.0 1.0 1.0 2 1 1 2 0
2.0 1.0 1.0 4 2 2 2 0
2.0 1.0 1.0 8 4 4 2 0
2.0 1.0 1.0 2 1 1 1 1
2.0 1.0 1.0 4 2 2 1 1
2.0 1.0 1.0 8 4 4 1 1
2.0 1.0 1.0 2 1 1 2 1
2.0 1.0 1.0 4 2 2 2 1
2.0 1.0 1.0 8 4 4 2 1
```

• Note: Binary uses command line arguments to search for the relevant mesh files.

3.3.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Figure 5: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1 o].

Figure 6: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0].

Figure 7: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

Figure 8: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0].

3.4 Example-0002

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.4.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{14}$$

with boundary conditions

$$u = 15y$$
 $x = 0$, (15)

$$u = 25 - 18y$$
 $x = 2.$ (16)

No material parameters to specify.

3.4.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = \mathbf{0} \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{17}$$

with boundary conditions

$$u = 15y x = 0, (18)$$

$$u = 25 - 18y$$
 $x = 2.$ (19)

No material parameters to specify.

3.4.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

3.4.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Figure 9: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1

Figure 10: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 $\,$ o].

Figure 11: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 10].

Figure 12: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 o].

3.5 Example-0003

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.5.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot \nabla u = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{20}$$

with boundary conditions

$$u = 15y \qquad x = 0, \tag{21}$$

$$u = 15y$$
 $x = 0,$ (21) $\vartheta_n u = 25 - 18y$ $x = 2.$ (22)

No material parameters to specify.

3.5.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot \nabla \mathbf{u} = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{23}$$

with boundary conditions

$$u = 15y$$
 $x = 0$, (24)

$$\partial_n u = 25 - 18y$$
 $x = 2.$
(25)

No material parameters to specify.

3.5.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

interger: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

Commandline arguments for tests are:

2.0 1.0 0.0 2 1 0 1 0

2.0 1.0 0.0 4 2 0 1 0

2.0 1.0 0.0 8 4 0 1 0

2.0 1.0 0.0 2 1 0 2 0

2.0 1.0 0.0 4 2 0 2 0

2.0 1.0 0.0 8 4 0 2 0

2.0 1.0 0.0 2 1 0 1 1

2.0 1.0 0.0 4 2 0 1 1

```
2.0 1.0 0.0 8 4 0 1 1
2.0 1.0 0.0 2 1 0 2 1
2.0 1.0 0.0 4 2 0 2 1
2.0 1.0 0.0 8 4 0 2 1
2.0 1.0 1.0 2 1 1 1 0
2.0 1.0 1.0 4 2 2 1 0
2.0 1.0 1.0 8 4 4 1 0
2.0 1.0 1.0 2 1 1 2 0
2.0 1.0 1.0 4 2 2 2 0
2.0 1.0 1.0 8 4 4 2 0
2.0 1.0 1.0 2 1 1 1 1
2.0 1.0 1.0 4 2 2 1 1
2.0 1.0 1.0 8 4 4 1 1
2.0 1.0 1.0 2 1 1 2 1
2.0 1.0 1.0 4 2 2 2 1
2.0 1.0 1.0 8 4 4 2 1
```

3.5.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

current_run/l2x1x0_n2x1x0_i1_s0/Example.part0.exnode

current_run/l2x1x1_n8x4x4_i2_s1/Example.part0.exnode

Passed tests: 0 / 24

Failed tests:

```
current_run/l2x1x0_n4x2x0_i1_s0/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x0_n8x4x0_i1_s0/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x0_n2x1x0_i2_s0/Example.part0.exnode
                                                             CHeart
current_run/l2x1x0_n4x2x0_i2_s0/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x0_n8x4x0_i2_s0/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x0_n2x1x0_i1_s1/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x0_n4x2x0_i1_s1/Example.part0.exnode
                                                             CHeart
current_run/l2x1x0_n8x4x0_i1_s1/Example.part0.exnode
                                                             CHeart
current_run/l2x1x0_n2x1x0_i2_s1/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x0_n4x2x0_i2_s1/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x0_n8x4x0_i2_s1/Example.part0.exnode
                                                             CHeart
current_run/l2x1x1_n2x1x1_i1_s0/Example.part0.exnode
                                                             CHeart
current_run/l2x1x1_n4x2x2_i1_s0/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x1_n8x4x4_i1_s0/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x1_n2x1x1_i2_s0/Example.part0.exnode
                                                             CHeart
current_run/l2x1x1_n4x2x2_i2_s0/Example.part0.exnode
                                                             CHeart
current_run/l2x1x1_n8x4x4_i2_s0/Example.part0.exnode
                                                            | CHeart
current_run/l2x1x1_n2x1x1_i1_s1/Example.part0.exnode
                                                            | CHeart
\verb|current_run/l2x1x1_n4x2x2_i1_s1/Example.part0.exnode|\\
                                                             CHeart
current_run/l2x1x1_n8x4x4_i1_s1/Example.part0.exnode
                                                             CHeart
current_run/l2x1x1_n2x1x1_i2_s1/Example.part0.exnode
                                                             CHeart
current_run/l2x1x1_n4x2x2_i2_s1/Example.part0.exnode
                                                            | CHeart
```

- Iron $|_{2} = 27.3358$ - Iron $|_{-2} = 22.1869$ - Iron $|_{2} = 19.7449$ - Iron $|_{-2} = 44.2627$ - Iron $|_{2} = 37.2776$ - Iron $|_{-2} = 32.2165$ - Iron $|_{2} = 27.3358$ - Iron $|_{-2} = 22.1869$ - Iron $|_{2} = 19.7449$ - Iron $|_{-2} = 124.749$ - Iron $|_{2} = 128.672$ - Iron $|_{-2} = 143.606$ - Iron $|_{2} = 94.2619$ - Iron $|_{-2} = 98.7606$ - Iron $|_{-2} = 118.047$

| CHeart

| CHeart

- Iron $|_{-2} = 44.2627$

- Iron $|_2 = 37.2776$

- Iron $|_{-2} = 32.2165$

- Iron $|_{-2} = 124.749$

- Iron $|_{2} = 128.672$

- Iron $|_{-2} = 143.606$

- Iron $|_{2} = 94.2619$ - Iron $|_{-2} = 98.7606$

- Iron $|_{2} = 118.047$

Figure 13: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 10].

Figure 14: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 $\,$ o].

Figure 15: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 10].

Figure 16: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 $\,$ o].

3.6 Example-0011

Example uses generated regular meshes and solves a static problem, i.e., applies the boundary conditions in one step.

3.6.1 Mathematical model - 2D

We solve the following scalar equation,

$$\nabla \cdot [\sigma \nabla u] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1], \tag{26}$$

with boundary conditions

$$u = 0 x = y = 0, (27)$$

$$u = 1$$
 $x = 2, y = 1.$ (28)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{29}$$

3.6.2 Mathematical model - 3D

We solve the following scalar equation,

$$\nabla \cdot [\boldsymbol{\sigma} \nabla \mathbf{u}] = 0 \qquad \qquad \Omega = [0, 2] \times [0, 1] \times [0, 1], \tag{30}$$

with boundary conditions

$$u = 0$$
 $x = y = z = 0,$ (31)

$$u = 1$$
 $x = 2, y = z = 1.$ (32)

The conductivity tensor is defined as,

$$\sigma(x,t) = \sigma = I. \tag{33}$$

3.6.3 Computational model

• Commandline arguments are:

float: length along x-direction float: length along y-direction

float: length along z-direction (set to zero for 2D)

integer: number of elements in x-direction integer: number of elements in y-direction

integer: number of elements in z-direction (set to zero for 2D)

integer: interpolation order (1: linear; 2: quadratic)

integer: solver type (o: direct; 1: iterative)

float: σ_{11} float: σ_{22}

float: σ_{33} (ignored for 2D)

• Commandline arguments for tests are:

3.6.4 Result summary

We use CHeart rev. 6292 to produce numerical reference solutions.

Figure 17: 2D results, iron reference w/ command line arguments [2.0 1.0 0.0 8 4 0 1011].

Figure 18: 2D results, current run w/ command line arguments [2.0 1.0 0.0 8 4 0 1 0

Figure 19: 3D results, iron reference w/ command line arguments [2.0 1.0 1.0 8 4 4 10111].

Figure 20: 3D results, current run w/ command line arguments [2.0 1.0 1.0 8 4 4 1 0 1 1 1].

4 LINEAR ELASTICITY

4.1 Equation in general form

$$\label{eq:delta_theta_$$

4.2.1 Mathematical model

We solve the following equation,

$$\nabla \cdot \sigma(\mathbf{u}, \mathbf{t}) = \mathbf{0}$$
 $\Omega = [0, 160] \times [0, 120], \mathbf{t} \in [0, 5],$ (35)

with time step size $\Delta_{t}=1$ and boundary conditions

$$\dots$$
 (37)

2D: specify thickness, Young's modulus and Poisson's ratio.

- 4.2.2 Computational model
 - Length, width, height
 - Direct/iterative solver
 - Generated/user mesh
 - Number of elements
 - Interpolation order
 - Number of solver steps (time steps, load steps)
- 4.2.3 Results

Figure 21: Results, analytical solution.

4.2.4 Validation

CHeart rev. 6328, Abaqus 2017, analytical reference solution, whatever...

Figure 22: Results, Abaqus reference.

Figure 23: Results, iron reference.

Figure 24: Results, current run.

5 FINITE ELASTICITY

6 NAVIER-STOKES FLOW

7 MONODOMAIN

8 CELLML MODEL

REFERENCES

[1] Chris Bradley, Andy Bowery, Randall Britten, Vincent Budelmann, Oscar Camara, Richard Christie, Andrew Cookson, Alejandro F Frangi, Thiranja Babarenda Gamage, Thomas Heidlauf, et al. Opencmiss: a multi-physics & multi-scale computational infrastructure for the vph/physiome project. Progress in biophysics and molecular biology, 107(1):32-47, 2011.