Tugas Sentiment Analysis

IF5153 Pemrosesan Bahasa Alami

Penulis:

Melvin Kent Jonathan

13521052

25 September 2024

1. Kode Program

Library

```
import pandas as pd
import string
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

from Sastrawi.Stemmer.StemmerFactory import StemmerFactory

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics import precision_score, accuracy_score, recall_score,
fl_score
from sklearn.metrics import classification_report
```

Program sentiment analysis ini menggunakan beberapa library sebagai berikut:

Libary	Kegunaan				
pandas	Menampung dan melakukan pemrosesan sederhana terhadap data latih dan data uji				
string	Melakukan lowercase pada preprocessing				
nitk	Melakukan <i>preprocessing</i> seperti tokenisasi dan penghapusan <i>stop words</i> dan tanda baca				
Sastrawi	Melakukan preprocessing seperti stemming				
sklearn	Melakukan vektorisasi terhadap kata-kata dalam teks menjadi bag of words; Melakukan perhitungan metrik seperti akurasi, presisi, recall, dan f1 score; Menerapkan algoritme pembelajaran mesin tradisional, seperti logistic regression, Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), dan Naive Bayes.				

NLP Tools Initializastion

create stemmer

```
stemmer_factory = StemmerFactory()
stemmer = stemmer_factory.create_stemmer()

# Download NLTK data for tokenization and stopword removal
nltk.download('punkt')
nltk.download('stopwords')

# Load Indonesian stopwords from NLTK
stop_words = set(stopwords.words('indonesian'))

# Initialize the CountVectorizer (Bag of Words model)
binary_vectorizer = CountVectorizer(binary=True) # binary as value
tf_vectorizer = CountVectorizer() # count as value
tfidf_vectorizer = TfidfVectorizer() # tfidf as value
```

Bagian kode ini diperuntukkan sebagai tempat inisialisasi dari kakas NLP yang digunakan pada program. Pada program dibutuhkan 3 jenis *vecotizer*, yakni binary, tf, dan tfidf yang akan dipakai untuk menerapkan variasi terhadap nilai fitur dari *bag of words*.

Preprocessing

```
# Define a function to preprocess the text

def preprocess_text(text):
    # 1. Convert text to lowercase
    text = text.lower()

# 2. Tokenize the text
    tokens = word_tokenize(text)

# 3. Remove stopwords and punctuation
    tokens = [word for word in tokens if word not in stop_words and word not
in string.punctuation]

# 4. Stem the tokens
    tokens = [stemmer.stem(word) for word in tokens]

# Rejoin the tokens into a single string
    processed_text = ' '.join(tokens)

return processed_text
```

Bagian kode ini berisi fungsi yang dapat dipanggil untuk menerapkan *preprocessing* terhadap data latih dan data uji sebelum dimasukkan ke dalam model pembelajaran mesin. Adapun *preprocessing* yang dilakukan adalah:

- 1. Melakukan lowecasing terhadap teks.
- 2. Melakukan tokenisasi terhadap teks.
- 3. Melakukan penghapusan terhadap stop words dan tanda baca.
- 4. Melakukan stemming terhadap token

Metrics Function

```
# Define a function to display the metrics
def metrics(y_test, y_pred):
    # Calculate metrics
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred, average='macro')
    recall = recall_score(y_test, y_pred, average='macro')
    f1_score_value = f1_score(y_test, y_pred, average='macro')

    print(f'Accuracy : {accuracy:.4f}')
    print(f'Precision : {precision:.4f}')
    print(f'Recall : {recall:.4f}')
    print(f'F1-score : {f1_score_value:.4f}')

# Generate and display classification report
    report = classification_report(y_test, y_pred, target_names=['Negative', 'Neutral', 'Positive'])
    print(report)
```

Bagian kode ini mendefinisikan fungsi metrics yang berfungsi sebagai evaluator terhadap kinerja prediksi dari model. Adapun evaluasi performa didasarkan kepada 4 metrik, yakni nilai akurasi, presisi, *recall*, dan *f1-score*.

Import Data for Training and Testing

```
headers = ['text', 'label']

# import train data

train = pd.read_csv("nlp_data/train_preprocess.tsv", sep='\t',
names=headers)

# import test data

test = pd.read_csv("nlp_data/test_preprocess.tsv", sep='\t',
names=headers)
```

```
# Preprocess the train data
train['preprocessed_text'] = train['text'].apply(preprocess_text)
# Preprocess the test data
test['preprocessed_text'] = test['text'].apply(preprocess_text)
```

Bagian kode ini melakukan *import* data latih dan data uji. Adapun data latih dan data uji diperoleh dari sumber berikut:

https://github.com/IndoNLP/indonlu/tree/master/dataset/smsa_doc-sentiment-prosa

Data latih dan data uji kemudian dikenakan fungsi preprocess_text guna memastikan data minim dari *noise* yang dapat mengurangi performa pembelajaran mesin.

Bag of Words using Binary, TF, TFxIDF

```
# Example preprocessed text data
train_preprocessed_texts = train['preprocessed_text']  # This column
contains the preprocessed text

test_preprocessed_texts = test['preprocessed_text']

y_train = train['label']

y_test = test['label']

# Fit and transform the preprocessed text data to generate the Bag of
Words matrix

## binary

X_train_binary = binary_vectorizer.fit_transform(train_preprocessed_texts)

X_test_binary = binary_vectorizer.transform(test_preprocessed_texts)

## TF

X_train_tf = tf_vectorizer.fit_transform(train_preprocessed_texts)

X_test_tf = tf_vectorizer.transform(test_preprocessed_texts)

## TFxIDF

X_train_tfidf = tfidf_vectorizer.fit_transform(train_preprocessed_texts)

X_test_tfidf = tfidf_vectorizer.transform(test_preprocessed_texts)
```

Bagian kode ini membuat data latih ke dalam representasi bag of words menggunakan *vectorizer* yang sudah diinisialisasi sebelumnya pada bagian **NLP Tools Initialization**. Adapun nilai dari fitur yang dipakai berupa nilai biner, Term Frequency (TF), dan Term Frequency-Inverse Document Frequency (TFxIDF).

Train and Evaluate Function

```
train and evaluate(classifier, X train binary, X train tf,
X_train_tfidf,    y_train,    X_test_binary,    X_test_tf,    X_test_tfidf,    y_test):
 # Train and make predictions
 ## Binary
 classifier.fit(X_train_binary, y_train)
 y pred binary = classifier.predict(X test binary)
 print("============ Binary ===========")
 metrics(y_test, y_pred_binary)
 ## TF
 classifier.fit(X train tf, y train)
 y pred tf = classifier.predict(X test tf)
 metrics(y_test, y_pred_tf)
 ## TFxIDF
 classifier.fit(X train tfidf, y train)
 y pred tfidf = classifier.predict(X test tfidf)
 print("============== TFxIDF ==============")
 metrics(y test, y pred tfidf)
```

Bagian kode ini berisi fungsi yang melakukan pelatihan menggunakan model yang diterima dari parameter fungsi. Pelatihan dilakukan untuk masing-masing jenis nilai dari fitur *bag of words*. Untuk setiap jenis, dipanggil pula fungsi metrics untuk memperlihatkan kinerja prediksi model.

Logistic Regression

```
from sklearn.linear_model import LogisticRegression

# Initialize the Logistic Regression classifier

classifier = LogisticRegression(max_iter=500)

# Train and Evaluate

train_and_evaluate(classifier, X_train_binary, X_train_tf, X_train_tfidf,
y_train, X_test_binary, X_test_tf, X_test_tfidf, y_test)
```

Support Vector Machines (SVM)

```
from sklearn.svm import SVC
```

```
# Initialize the SVM classifier
classifier = SVC(kernel='linear')
# Train and Evaluate
train_and_evaluate(classifier, X_train_binary, X_train_tf, X_train_tfidf,
y_train, X_test_binary, X_test_tf, X_test_tfidf, y_test)
```

k-Nearest Neighbors (k-NN)

```
from sklearn.neighbors import KNeighborsClassifier

# Initialize the k-NN classifier

classifier = KNeighborsClassifier(n_neighbors=3)

# Train and Evaluate

train_and_evaluate(classifier, X_train_binary, X_train_tf, X_train_tfidf,
y_train, X_test_binary, X_test_tf, X_test_tfidf, y_test)
```

Naive Bayes

```
from sklearn.naive_bayes import MultinomialNB

# Initialize the Naive Bayes classifier
classifier = MultinomialNB()

# Train and Evaluate
train_and_evaluate(classifier, X_train_binary, X_train_tf, X_train_tfidf, y_train, X_test_binary, X_test_tf, X_test_tfidf, y_test)
```

Link github:

https://github.com/melvinkj/Sentiment-Analysis-NLP

2. Skenario Eksperimen

Skenario dari eksperimen yang dilakukan adalah dengan memilih 4 variasi model pembelajaran mesin tradisional, yakni *logistic regression*, *Support Vector Machine* (SVM), *k-Nearest Neighbors* (k-NN), dan Naive Bayes. Untuk setiap model pembelajaran, dilakukan pula variasi terhadap jenis nilai dari fitur bag of words, yakni biner biner, Term Frequency (TF), dan Term Frequency-Inverse Document Frequency (TFxIDF). Oleh karena itu, terdapat 12 kasus uji yang dijalankan.

3. Hasil Eksperimen

a. Logistic Regression

1) Binary

=======			Binary =	======	=======	
Accuracy	: 0.7560					
Precision	: 0.7597					
Recall	: 0.7032					
F1-score	: 0.7181					
	prec	ision	recall	f1-score	support	
Negati	ive	0.73	0.88	0.80	204	
Neutr	ral	0.76	0.48	0.59	88	
Positi	ive	0.79	0.75	0.77	208	
accura	асу			0.76	500	
macro a	avg	0.76	0.70	0.72	500	
weighted a	avg	0.76	0.76	0.75	500	
Confusion	Matrix					
Predicted	negativ	e neutr	ral posi	tive All		
Actual						
negative	17	9	4	21 204		
neutral	2	4	42	22 88		
positive	4	2	9	157 208		
A11	24	5	55	200 500		

2) TF

••								
=======	:=====:	=====	= TF =		:====	=====	======	===
Accuracy	: 0.7440							
Precision	: 0.7325							
Recall	: 0.6934							
F1-score	: 0.7048							
	prec	ision	red	call	f1-s	core	suppo	rt
Negati	ve	0.72	(ð.85		0.78	2	04
Neutr	al	0.69	6	3.48		0.56		88
Positi	ve	0.79	(a.75		0.77	2	08
accura	ісу					0.74	5	00
macro a	ıvg	0.73	6	3.69		0.70	5	00
weighted a	ıvg	0.74	(3.74		0.74	5	00
Confusion	Matrix							
Predicted	negative	e neu	tral	posit	ive	A11		
Actual								
negative	173	3	7		24	204		
neutral	2	7	42		19	88		
positive	39	9	12		157	208		
A11	239	9	61		200	500		

3) TFxIDF

Accuracy Precision Recall F1-score	: 0.7767 : 0.6589		TFxIDF =	======		====
	preci	ision	recall	f1-scor	e support	
Negati	ive	0.68	0.91	0.7	7 204	
Neutr	ral	0.85	0.33	0.4	8 88	
Positi	ive	0.80	0.74	0.7	7 208	
accura	асу			0.7	4 500	
macro a	avg	0.78	0.66	0.6	7 500	
weighted a	avg	0.76	0.74	0.7	2 500	
Confusion						
Predicted	negative	e neutr	al posi	tive Al	1	
Actual						
negative	189	5	1	18 20	4	
neutral	39)	29	20 8	8	
positive	56)	4	154 20	8	
A11	274	1	34	192 50	9	

b. Support Vector Machines (SVM)

1) Binary

Accuracy : Precision : Recall : F1-score :	0.7060 0.6927 0.6669	==== Bir	nary ==			
TI-Score .	precisi	on re	ecall	f1-score	support	
Negative	e 0.	69	0.79	0.74	204	
Neutra]		64	0.50	0.56	88	
Positive	e 0.	75	0.71	0.73	208	
accuracy	/			0.71	500	
macro avg	g 0.	69	0.67	0.68	500	
weighted av	g 0.	71	0.71	0.70	500	
Confusion Ma	atrix					
Predicted r Actual	negative	neutral	posit	ive All		
negative	162	15		27 204		
neutral	23	44		21 88		
positive	51	10		147 208		
A11	236	69		195 500	1	

2) TF

=========		= TF ====		
Accuracy : 0	.7100			
Precision: 0	. 6877			
Recall : 0.	.6723			
F1-score : 0.	.6776			
	precision	recall	f1-score	support
Negative	0.69	0.78	0.73	204
Neutral	0.59	0.51		88
Positive	0.78	0.72		
10310170	0.70	0.72	0.75	200
accuracy			0.71	500
macro avg	0.69	0.67		
weighted avg	0.71	0.07	0.71	500
weighted avg	0.71	0.71	0.71	900
Confusion Mat	niv.			
Predicted neg		tnal noci	itive All	
Actual	gacive neu	crai posi	icive Ali	
	160	17	27 204	
negative			15 88	
neutral	28 44	45 14	15 88	
positive				
A11	232	76	192 500	

3) TFxIDF

Accuracy Precision Recall F1-score	: 0.7500 : 0.7593 : 0.6962	:==== TF:	∢IDF ==	====			
	precis	ion re	ecall	f1-sc	core	support	
Negati	ve 0	.69	0.88	(ð.78	204	
Neutr	al 0	.76	0.47	(ð.58	88	
Positi	ve 0	.82	0.74	(ð.78	208	
accura	су			(ð.75	500	
macro a	vg 0	.76	0.70	(ð.71	500	
weighted a	vg 0	.76	0.75	(ð.74	500	
Confusion	Matrix						
Predicted Actual	negative	neutral	posit	ive	A11		
negative	180	3		21	204		
neutral	35	41		12	88		
positive	44	10		154	208		
A11	259	54		187	500		

c. k-Nearest Neigbors (k-NN) 1) Binary

=======		=====	Binary =		:======:	
Accuracy	: 0.5420					
Precision	: 0.5837					
Recall	: 0.4523					
F1-score	: 0.4329					
	prec	ision	recall	f1-score	support	
Negati	ive	0.47	0.76	0.59	204	
Neutr	ral	0.60	0.07	0.12	88	
Positi	ive	0.68	0.52	0.59	208	
accura	асу			0.54	500	
macro a	avg	0.58	0.45	0.43	500	
weighted a	avg	0.58	0.54	0.51	. 500	
Confusion	Matrix					
Predicted	negativ	e neuti	ral posi	tive All		
Actual	_					
negative	15	6	3	45 204		
neutral	7	5	6	7 88		
positive	9	8	1	109 208		
A11	32	9	10	161 500)	

2) TF

• •					
========		= TF ===	======	=====	=======
Accuracy : 0	.5380				
Precision: 0	.5712				
Recall : 0	.4689				
F1-score : 0	.4654				
	precision	recal	l f1-s	core	support
Negative	0.48	0.7	9	0.60	204
Neutral		0.1	7	0.26	88
Positive	0.68	0.4	5	0.54	208
accuracy				0.54	500
macro avg	0.57	0.4	7	0.47	500
weighted avg	0.58	0.5	4	0.51	500
Confusion Mat	rix				
Predicted ne	gative neu	tral po	sitive	A11	
Actual					
negative	161	6	37	204	
neutral	66	15	7	88	
positive	109	6	93	208	
A11	336	27	137	500	

3) TFxIDF

========		TF	xIDF ==			======	====
Accuracy :	: 0.4340						
Precision :	: 0.3654						
Recall :	: 0.3539						
F1-score	: 0.2530						
	preci	ision r	ecall	f1-sc	ore	support	
Negativ	ve	0.42	0.96	0	.58	204	
Neutra	al	0.00	0.00	0	.00	88	
Positiv	ve	0.68	0.10	0	.18	208	
accurac	су			0	.43	500	
macro av	vg	0.37	0.35	0	.25	500	
weighted a	vg	0.45	0.43	0	.31	500	
Confusion N	Matrix						
Predicted	negative	e neutral	posit	ive /	A11		
Actual							
negative	196	5 0		8 2	204		
neutral	86	5 0		2	88		
positive	186	5 1		21	208		
A11	468	3 1		31 !	500		

d. Naive Bayes 1) Binary

	===== Bi	nary =====	======	========
Accuracy : 0.6520				
Precision: 0.6950				
Recall : 0.5851				
F1-score : 0.5917				
prec	ision r	ecall f1-	score	support
Negative	0.61	0.91	0.73	204
Neutral	0.76	0.30	0.43	88
Positive	0.71	0.55	0.62	208
accuracy			0.65	500
macro avg	0.70	0.59	0.59	500
weighted avg	0.68	0.65	0.63	500
Confusion Matrix				
Predicted negativ	e neutral	positive	A11	
Actual				
negative 18	6 0	18	204	
neutral 3	4 26	28	88	
positive 8	6 8	114	208	
A11 30	6 34	160	500	

2) TF

Accuracy : 0.6400 Precision : 0.6554 Recall : 0.5842 F1-score : 0.5874	========	======		= TF =			=====	======	==
Recall : 0.5842 F1-score : 0.5874	Accuracy	: 0.6400							
F1-score : 0.5874	Precision	: 0.6554							
Negative 0.60 0.91 0.72 204 Neutral 0.64 0.34 0.44 88 Positive 0.73 0.50 0.60 208 accuracy	Recall	: 0.5842							
Negative 0.60 0.91 0.72 204 Neutral 0.64 0.34 0.44 88 Positive 0.73 0.50 0.60 208 accuracy 0.64 500 macro avg 0.66 0.58 0.59 500 weighted avg 0.66 0.64 0.62 500 Confusion Matrix Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	F1-score	: 0.5874							
Neutral 0.64 0.34 0.44 88 Positive 0.73 0.50 0.60 208 accuracy 0.64 500 macro avg 0.66 0.58 0.59 500 weighted avg 0.66 0.64 0.62 500 Confusion Matrix Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208		prec	ision	rec	all	f1-s	core	suppor	t
Positive 0.73 0.50 0.60 208 accuracy 0.64 500 macro avg 0.66 0.58 0.59 500 weighted avg 0.66 0.64 0.62 500 Confusion Matrix Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	Negati	ve	0.60	e	.91		0.72	20	4
accuracy 0.64 500 macro avg 0.66 0.58 0.59 500 weighted avg 0.66 0.64 0.62 500 Confusion Matrix Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	Neutr	al	0.64	e	.34		0.44	8	8
macro avg 0.66 0.58 0.59 500 weighted avg 0.66 0.64 0.62 500 Confusion Matrix Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	Positi	ve	0.73	6	.50		0.60	20	8
macro avg 0.66 0.58 0.59 500 weighted avg 0.66 0.64 0.62 500 Confusion Matrix Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208									
weighted avg 0.66 0.64 0.62 500 Confusion Matrix Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	accura	су					0.64	50	0
Confusion Matrix Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	macro a	vg	0.66	e	.58		0.59	50	0
Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	weighted a	vg	0.66	66 0.64			0.62	50	0
Predicted negative neutral positive All Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208									
Actual negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	Confusion	Matrix							
negative 185 3 16 204 neutral 35 30 23 88 positive 89 14 105 208	Predicted	negative	e neu	tral	posit	tive	A11		
neutral 35 30 23 88 positive 89 14 105 208	Actual								
positive 89 14 105 208	negative	185	5	3		16	204		
·	neutral	3!	5	30		23	88		
A11 309 47 144 500	positive	89	9	14		105	208		
A11 303 47 144 300	A11	309	9	47		144	500		

3) TFxIDF

=======		======	TFxIDF =	=====	=====	========	==
Accuracy	: 0.6660						
Precision							
Recall							
F1-score							
11-30010		ision	recall	£1_c	cone	support	
	prec	131011	recarr	11-3	core	зиррог с	
Negati	ive	0.68	0.79		0.73	204	
Neutral		1.00	0.03		0.07	88	
Positive		0.65	0.81		0.72	208	
accura	асу				0.67	500	
macro avg		0.78	0.55		0.51	500	
weighted a	avg	0.72	0.67		0.61	500	
Confusion Matrix							
Predicted	negativ	e neutr	al posi	tive	A11		
Actual							
negative	16	2	0	42	204		
neutral	3	7	3	48	88		
positive	4	9	0	168	208		
A11	23	9	3	258	500		

4. Error Analysis

a. Logistic Regression

Untuk Binary, model cenderung dapat memprediksi sentimen dengan label negative. Untuk TF, model cenderung dapat memprediksi sentimen dengan label negative. Untuk TFxIDF, model cenderung dapat memprediksi sentimen dengan label negative.

Pada TFxIDF, pelabelan negative cenderung lebih banyak ketimbang dengan jenis lainnya. Apabila dianalisis lebih lanjut, pertambahan pelabelan negative berasal dari data-data dengan yang sebenarnya berlabel neutral.

b. Support Vector Machines (SVM)

Untuk Binary, model cenderung dapat memprediksi sentimen dengan label negative. Untuk TF, model cenderung dapat memprediksi sentimen dengan label negative. Untuk TFxIDF, model cenderung dapat memprediksi sentimen dengan label negative.

Pada TFxIDF, pelabelan negative cenderung lebih banyak ketimbang dengan jenis lainnya. Apabila dianalisis lebih lanjut, pertambahan pelabelan negative berasal dari data-data dengan yang sebenarnya berlabel neutral.

c. k-Nearest Neighbors (k-NN)

Untuk Binary, model cenderung dapat memprediksi sentimen dengan label negative. Untuk TF, model cenderung dapat memprediksi sentimen dengan label negative. Untuk TFxIDF, model cenderung dapat memprediksi sentimen dengan label negative.

Pada TFxIDF, pelabelan negative mendominasi label lainnya secara signifikan.Proporsi pelabelan positive maupun neutral menjadi sangat berkurang, bahkan mendekati nol.

d. Naive Bayes

Untuk Binary, model cenderung dapat memprediksi sentimen dengan label negative. Untuk TF, model cenderung dapat memprediksi sentimen dengan label negative. Untuk TFxIDF, model cenderung dapat memprediksi sentimen dengan label positif.

Pada TFxIDF, pelabelan positive cenderung lebih banyak ketimbang dengan jenis lainnya. Apabila dianalisis lebih lanjut, pertambahan pelabelan positive berasal dari data-data dengan yang sebenarnya berlabel neutral.

e. Analisis Menyeluruh

Secara keseluruhan, prediksi dari masing-masing model cenderung bias ke arah label negatif. Hal ini mungkin disebabkan oleh tahap *preprocessing* yang masih kurang optimal, terutama dalam memberikan konteks konotasi negatif yang biasanya diawali kata "tidak", "ga", ataupun "kurang". Perbaikan yang dapat dilakukan adalah dengan menambah teknik *entity masking* serta *spelling correction* pada tahap *preprocessing*.

Link Github : https://github.com/melvinkj/Sentiment-Analysis-NLP

Sumber Data:

https://github.com/IndoNLP/indonlu/tree/master/dataset/smsa doc-sentiment-prosa