Processo com ML

- Um processo que utilize algoritmos de ML deve ter uma divisão entre:
 - Dados para treino:
 - São aqueles com os quais os algoritmos são calibrados;
 - Quanto mais treino, melhor a predição;
 - Geralmente, acima de 70%;
 - Dados de teste:
 - Uma quantidade geralmente menor que a de dados treino e servem pra medir a % de acerto do algoritmo;

Tópicos Especiais em Sistemas de Informação

Validação cruzada ou k-folding

Modelo simplificado

- Supondo um conjunto de dados com 100 registros :
 - Treino do registro 1 ao 75 (75%);
 - Teste do registro 76 a 100 (25%);

```
1...25 26...50 51...75 76...100
```

 Supondo ainda que um algoritmo foi executado sobre esse dados e obteve 60% de acerto.

Mudança de dados do treino e teste

 Supondo ainda que se detectou que o 3º conjunto de dados não ficaria bem no treino e sim no teste:

 O algoritmo foi novamente executado e o resultado foi 72% de acerto;

Mudança de dados do treino e teste

Supondo agora a situação baixo:

 O algoritmo foi novamente executado e o resultado foi 50% de acerto.

Mudança de dados do treino e teste

- Eventos que alterem a ordem dos dados farão com que o resultado mude;
- Isso é uma dependência dos dados e devemos mitigar isso;
- Não necessariamente o melhor ou pior resultado vão definir o quão bom é um algoritmo;
- Devemos executar várias vezes o algoritmo com diferentes combinações de dados de um dataset.

K-folding ou validação cruzada

- Processo de executar o algoritmo várias vezes com diferentes conjuntos de treino e testes;
- Nesse processo de dividem-se os dados em de com uma constante k
- Executam-se várias combinações possíveis para um conjunto de dados;
- Ao final, deve-se calcular a média dos resultados e avaliar o desvio padrão.

K-folding ou validação cruzada

- Esse processo se chama de folding (dobrando);
- Nesse caso, chamamos de 2-fold (duas dobras) e genericamente k-fold;
- Podemos quebrar os dados em quantas dobras quisermos;
- Assim, com k-fold temos:
 - k divisões dos dados;
 - k execuções do algoritmo;

Número de foldings

- K = 2:
 - 50% pra treino e 50% para testes;
 - Duas execuções do algoritmo;

110	1120	2130	3140	4150	5160	6170	7180	8190	91100	78%
										•
									91100	

- Média: 81,50%
- Desvio padrão: 3,5%

Número de foldings

- K = 5:
 - 80% pra treino e 20% para testes;
 - 5 execuções do algoritmo;

- Média: 80,2%
- Desvio padrão: 1,7205%
- Intervalo de confiança 95%: 78,0637 a 82,33%

- Como estudo de caso, usaremos o arquivo acesso_buscas2.csv;
- Usaremos a implementação presente na função skylearning.cross_val_score;

- cross_val_score(modelo, dados_treino, marcacoes_treino, k), onde:
 - Modelo: modelo criado com o algoritmo de ML escolhido;
 - dados_treino: matriz de dados selecionados para treino/teste;
 - treino_marcacoes: matriz de dados selecionados como "resposta" para o treino/teste;
 - K: quantidade de divisões para folding.
- A função retorna um array de resultados, cada um equivalendo a uma execução do algoritmo.

 Importando pacotes, lendo o arquivo e criando os dataframes:

```
import pandas as pd
import numpy as np

df = pd.read_csv('acessos_buscas2.csv')
x = df[['home', 'busca', 'logado']]
y = df['comprou']

x = pd.get_dummies(x)
```

 Usando a implementação k-folding e exibindo os scores:

```
from sklearn.naive bayes import MultinomialNB
from sklearn.cross validation import cross val score
modelo = MultinomialNB()
k = 6
scores = cross val score(modelo, x, y, cv = k)
print(scores)
taxa de acerto = np.mean(scores)
print(taxa de acerto)
desvio = scores.std()
print(desvio)
from scipy.stats import bayes mvs
print(scipy.stats.bayes mvs(scores, 0.95))
```

Intervalo de confiança

Intervalo de confiança

Resultados

Scores:

```
[0.69230769 0.84615385 0.69230769 0.83333333
0.6666667 0.83333333]
```

- **Média**: 0.7606837606837606
- Intervalo de confiança:

0.6715733338441542 a 0.8497941875233671

Tópicos Especiais em Sistemas de Informação

Validação cruzada ou k-folding