The Macro Impact of Debt-Inflation Channel on Investment

Zixing Guo

Boston University

September 23, 2025

- The post-COVID era saw inflation surge to 40-year highs, attracting interest in the real effects of inflation.
- A key mechanism: the **debt-inflation** (**Fisher**) **channel**.
 - Unexpected inflation redistributes wealth from nominal creditors to debtors.
- Well-documented for households (Doepke & Schneider, 2006; Auclert, 2019).
 - But effects on consumption are often found to be modest.
- Firm side studies are limited (Gomes et al, 2016)
 - Non-financial corporations hold a substantial share of nominal debt.
 - How does the Fisher channel affect corporate investment?
 - Is there any heterogeneity across firms and does it matter?

- The post-COVID era saw inflation surge to 40-year highs, attracting interest in the real effects of inflation.
- A key mechanism: the debt-inflation (Fisher) channel.
 - Unexpected inflation redistributes wealth from nominal creditors to debtors.
- Well-documented for households (Doepke & Schneider, 2006; Auclert, 2019).
 - But effects on consumption are often found to be modest.
- Firm side studies are limited (Gomes et al, 2016)
 - Non-financial corporations hold a substantial share of nominal debt.
 - How does the Fisher channel affect corporate investment?
 - Is there any heterogeneity across firms and does it matter?

- The post-COVID era saw inflation surge to 40-year highs, attracting interest in the real effects of inflation.
- A key mechanism: the debt-inflation (Fisher) channel.
 - Unexpected inflation redistributes wealth from nominal creditors to debtors.
- Well-documented for households (Doepke & Schneider, 2006; Auclert, 2019).
 - But effects on consumption are often found to be modest.
- Firm side studies are limited (Gomes et al, 2016)
 - Non-financial corporations hold a substantial share of nominal debt.
 - How does the Fisher channel affect corporate investment?
 - Is there any heterogeneity across firms and does it matter?

- The post-COVID era saw inflation surge to 40-year highs, attracting interest in the real effects of inflation.
- A key mechanism: the debt-inflation (Fisher) channel.
 - Unexpected inflation redistributes wealth from nominal creditors to debtors.
- Well-documented for households (Doepke & Schneider, 2006; Auclert, 2019).
 - But effects on consumption are often found to be modest.
- Firm side studies are limited (Gomes et al, 2016)
 - Non-financial corporations hold a substantial share of nominal debt.
 - How does the Fisher channel affect corporate investment?
 - Is there any heterogeneity across firms and does it matter?

Research Questions and Result Preview

Key Questions:

- Does unexpected inflation stimulate investment and have differential effects for indebted firms? (Micro Evidence)
- What is the aggregate impact on investment and output? (Macro Quantification)

Main Results

- More indebted firms increase investment more relative to others following unexpected increase in inflation.
- The firm-side Fisher channel is quantitatively powerful: A 1% inflation surprise raises aggregate investment by 0.83%
- It can explain up to **50%** of the post-COVID investment surge; This effect is significantly larger than its household-side counterpart.

Research Questions and Result Preview

Key Questions:

- Does unexpected inflation stimulate investment and have differential effects for indebted firms? (Micro Evidence)
- What is the aggregate impact on investment and output? (Macro Quantification)

Main Results

- More indebted firms increase investment more relative to others following unexpected increase in inflation.
- The firm-side Fisher channel is quantitatively powerful: A 1% inflation surprise raises aggregate investment by 0.83%
- It can explain up to **50%** of the post-COVID investment surge; This effect is significantly larger than its household-side counterpart.

Contribution to Literature

Debt-Inflation (Fisher) Channel:

- Shifts focus from households (Doepke & Schneider 2006, Auclert 2019), and representative firm to **heterogeneous firms**.
- Shows the investment channel is quantitatively more significant.
- Investment under Financial Frictions:
 - Inflation is not just an amplifier, but a direct wealth shock that endogenously relaxes constraints (cf. BGG 1999, Ottonello & Winberry 2020).
- Nominal Rigidities beyond Sticky Prices:
 - Highlights non-state-contingent nominal debt contracts as another source of rigidity (cf. Sheedy 2014, Gomes et al. 2016).
 - Shows powerful real effects even with flexible prices

Contribution to Literature

• Debt-Inflation (Fisher) Channel:

- Shifts focus from households (Doepke & Schneider 2006, Auclert 2019), and representative firm to heterogeneous firms.
- Shows the investment channel is quantitatively more significant.

• Investment under Financial Frictions:

- Inflation is not just an amplifier, but a direct wealth shock that endogenously relaxes constraints (cf. BGG 1999, Ottonello & Winberry 2020).
- Nominal Rigidities beyond Sticky Prices:
 - Highlights non-state-contingent nominal debt contracts as another source of rigidity (cf. Sheedy 2014, Gomes et al. 2016).
 - Shows powerful real effects even with flexible prices.

Contribution to Literature

Debt-Inflation (Fisher) Channel:

- Shifts focus from households (Doepke & Schneider 2006, Auclert 2019), and representative firm to heterogeneous firms.
- Shows the investment channel is quantitatively more significant.

• Investment under Financial Frictions:

- Inflation is not just an amplifier, but a direct wealth shock that endogenously relaxes constraints (cf. BGG 1999, Ottonello & Winberry 2020).
- Nominal Rigidities beyond Sticky Prices:
 - Highlights non-state-contingent nominal debt contracts as another source of rigidity (cf. Sheedy 2014, Gomes et al. 2016).
 - Shows powerful real effects even with flexible prices.

Roadmap

- A Conceptual Framework
- Empirical Analysis
- 3 Heterogeneous Firm GE Model
- Quantitative Analysis
- Conclusion

A 2-Period Model: Setup

- ullet Two periods t=1,2, representative firm produces with $y_t=k_t^{lpha}$
- Born with initial capital k_1 and nominal corporate bond B_1
- Capital fully depreciates every period
- Key Frictions:
 - **1 Pre-existing Nominal Debt:** Interest rate i_1 and face value B_1 are fixed Unexpected inflation Π_1 reduces the real repayment $\frac{(1+i_1)B_1}{B}$.
 - Financing Constraints:
 - Non-negative dividend constraint, firms cannot issue equity.
 - Tight ϕ collateral constraint on new borrowing.
- \bullet By defining $b_t = \frac{B_t}{P_{t-1}},$ key balance sheet variable, net worth is

$$nw_1 = k_1^{\alpha} - \frac{(1+i_1)b_1}{\Pi_1}$$

A 2-Period Model: Setup

- ullet Two periods t=1,2, representative firm produces with $y_t=k_t^{lpha}$
- ullet Born with initial capital k_1 and nominal corporate bond B_1
- Capital fully depreciates every period
- Key Frictions:
 - **Quantification** Pre-existing Nominal Debt: Interest rate i_1 and face value B_1 are fixed. Unexpected inflation Π_1 reduces the real repayment $\frac{(1+i_1)B_1}{P_1}$.
 - Financing Constraints:
 - Non-negative dividend constraint, firms cannot issue equity.
 - ullet Tight ϕ collateral constraint on new borrowing.
- ullet By defining $b_t=rac{B_t}{P_{t-1}}$, key balance sheet variable, net worth is

$$nw_1 = k_1^{\alpha} - \frac{(1+i_1)b_1}{\Pi_1}$$

A 2-Period Model: Setup

- ullet Two periods t=1,2, representative firm produces with $y_t=k_t^{lpha}$
- ullet Born with initial capital k_1 and nominal corporate bond B_1
- Capital fully depreciates every period
- Key Frictions:
 - **9** Pre-existing Nominal Debt: Interest rate i_1 and face value B_1 are fixed. Unexpected inflation Π_1 reduces the real repayment $\frac{(1+i_1)B_1}{P_1}$.
 - **②** Financing Constraints:
 - Non-negative dividend constraint, firms cannot issue equity.
 - ullet Tight ϕ collateral constraint on new borrowing.
- ullet By defining $b_t=rac{B_t}{P_{t-1}}$, key balance sheet variable, net worth is

$$nw_1 = k_1^{\alpha} - \frac{(1+i_1)b_1}{\Pi_1}$$

Model Optimality Conditions

ullet Firm chooses investment (k_2,b_2) to maximize discounted dividends

$$\max_{k_2,b_2}\{d_1+\frac{d_2}{1+r}\}$$
 s.t. $d_1=nw_1-k_2+b_2\geq 0$ and $\phi k_2^\alpha-(1+r)b_2\geq 0$

ullet The unconstrained maximizer k_2^{FB} is

$$k_2^{FB} = \left(\frac{\alpha}{1+r}\right)^{\frac{1}{1-\alpha}}$$

when $nw_1 \ge k_2^{FB} - \phi \frac{(k_2^{FB})^{\alpha}}{1+r}$

• Constrained optimal investment k_2^\star when $nw_1 \leq k_2^{FB} - \phi \frac{(k_2^{FB})^{\alpha}}{1+r}$

$$k_2^{\star} - \phi \frac{(k_2^{\star})^{\alpha}}{1+r} = nw_1$$

Model Optimality Conditions

ullet Firm chooses investment (k_2,b_2) to maximize discounted dividends

$$\max_{k_2,b_2}\{d_1+\frac{d_2}{1+r}\}$$
 s.t. $d_1=nw_1-k_2+b_2\geq 0$ and $\phi k_2^\alpha-(1+r)b_2\geq 0$

 \bullet The unconstrained maximizer k_2^{FB} is

$$k_2^{FB} = \left(\frac{\alpha}{1+r}\right)^{\frac{1}{1-\alpha}}$$

when $nw_1 \ge k_2^{FB} - \phi \frac{(k_2^{FB})^{\alpha}}{1+r}$

• Constrained optimal investment k_2^\star when $nw_1 \leq k_2^{FB} - \phi \frac{(k_2^{FB})^{\alpha}}{1+r}$

$$k_2^{\star} - \phi \frac{(k_2^{\star})^{\alpha}}{1+r} = nw$$

Model Optimality Conditions

ullet Firm chooses investment (k_2,b_2) to maximize discounted dividends

$$\max_{k_2,b_2}\{d_1+\frac{d_2}{1+r}\}$$
 s.t. $d_1=nw_1-k_2+b_2\geq 0$ and $\phi k_2^\alpha-(1+r)b_2\geq 0$

 \bullet The unconstrained maximizer k_2^{FB} is

$$k_2^{FB} = (\frac{\alpha}{1+r})^{\frac{1}{1-\alpha}}$$

when $nw_1 \ge k_2^{FB} - \phi \frac{(k_2^{FB})^{\alpha}}{1+r}$

• Constrained optimal investment k_2^\star when $nw_1 \leq k_2^{FB} - \phi \frac{(k_2^{FB})^{\alpha}}{1+r}$

$$k_2^{\star} - \phi \frac{(k_2^{\star})^{\alpha}}{1+r} = nw_1$$

Model Mechanism: How Inflation Affects Investment

• Unconstrained Firms:

- Low initial debt $b_1 \implies \mathsf{High} \ \mathsf{net} \ \mathsf{worth}$.
- They invest at the first-best level (k_2^{FB}) , where MPK = user cost.
- Unexpected inflation $\uparrow \Pi_1 \Longrightarrow \uparrow nw_1$, but investment is unchanged (already optimal).

Constrained Firms:

- High initial debt $b_1 \implies$ Low net worth. The $d_1 \ge 0$ constraint binds.
- They are forced to invest less than first-best $(k_2^{\star} < k_2^{FB})$.
- On the constrained region, k_2^{\star} is strictly increasing in nw_1

$$\frac{\partial k_2^*}{\partial n w_1} = \frac{1}{1 - \frac{\phi \alpha(k_2^*)^{\alpha - 1}}{1 + r}} > 0, \qquad \frac{\partial n w_1}{\partial \Pi_1} = \frac{(1 + i_1)b_1}{(\Pi_1)^2} > 0.$$

• Unexpected inflation $\uparrow \Pi_1 \Longrightarrow \uparrow nw_1 \Longrightarrow$ Constraint relaxes $\Longrightarrow \uparrow k_2^*$

Model Mechanism: How Inflation Affects Investment

• Unconstrained Firms:

- Low initial debt $b_1 \implies \mathsf{High} \ \mathsf{net} \ \mathsf{worth}.$
- They invest at the first-best level (k_2^{FB}) , where MPK = user cost.
- Unexpected inflation $\uparrow \Pi_1 \Longrightarrow \uparrow nw_1$, but investment is unchanged (already optimal).

Constrained Firms:

- High initial debt $b_1 \implies$ Low net worth. The $d_1 \ge 0$ constraint binds.
- ullet They are forced to invest less than first-best $(k_2^\star < k_2^{FB})$.
- ullet On the constrained region, k_2^\star is strictly increasing in nw_1

$$\frac{\partial k_2^\star}{\partial n w_1} = \frac{1}{1 - \frac{\phi \alpha (k_2^\star)^{\alpha - 1}}{1 + r}} > 0, \qquad \frac{\partial n w_1}{\partial \Pi_1} = \frac{(1 + i_1)b_1}{(\Pi_1)^2} > 0,$$

• Unexpected inflation $\uparrow \Pi_1 \implies \uparrow nw_1 \implies$ Constraint relaxes $\implies \uparrow k_2^{\star}$.

Model Prediction: Comparative Statics

The differential effects of unexpected inflation

Theory Guide for Empirical Analysis

ullet Constrained k_2^\star relates b_1,Π_1 , and define $inv_1=rac{k_2}{k_1}$

$$\Delta inv_1^{\star} = \Delta \left(\frac{k_2^{\star}}{k_1}\right) = \underbrace{\frac{1}{1 - \frac{\phi\alpha(k_2^{\star})^{\alpha - 1}}{1 + r}} \frac{(1 + i_1)}{(\Pi_1)^2}}_{\text{state-dependent}} \times b_1 \Delta \Pi_1 \tag{1}$$

- Monotonicity in b_1 : higher b_1 leads to a larger response of i_1 to Π_1 .
- Constraint interaction: effects concentrate where constraint binds.
- Sorting by productivity: for given b1, higher MPK shows stronger investment responses.

Theory Guide for Empirical Analysis

ullet Constrained k_2^\star relates b_1,Π_1 , and define $inv_1=rac{k_2}{k_1}$

$$\Delta inv_1^{\star} = \Delta \left(\frac{k_2^{\star}}{k_1}\right) = \underbrace{\frac{1}{1 - \frac{\phi\alpha(k_2^{\star})^{\alpha - 1}}{1 + r}} \frac{(1 + i_1)}{(\Pi_1)^2}}_{\text{state-dependent}} \times b_1 \Delta \Pi_1 \tag{1}$$

- Monotonicity in b_1 : higher b1 leads to a larger response of i_1 to Π_1 .
- Constraint interaction: effects concentrate where constraint binds.
- Sorting by productivity: for given b1, higher MPK shows stronger investment responses.

Roadmap

- A Conceptual Framework
- 2 Empirical Analysis
- 3 Heterogeneous Firm GE Model
- Quantitative Analysis
- Conclusion

Data and Measurement

- Firm-level Data: Quarterly Compustat, 1990Q1 2023Q4.
 - Dependent Variable: Investment Rate $(i_{j,t}/k_{j,t-1})$.
 - Key Regressor: **Indebtedness**, $b_{j,t-1}$, measured as log of total nominal debt, residualized to remove firm and time fixed effects.
- Inflation Data:
 - Realized Inflation: CPI from BLS.
 - Expected Inflation: 1-year ahead from FRB Cleveland.
 - Unexpected Inflation: $\epsilon_t^{\pi} = \pi_t^{\text{realized}} \mathbb{E}_{t-4}[\pi_t]$.

Data and Measurement

- Firm-level Data: Quarterly Compustat, 1990Q1 2023Q4.
 - Dependent Variable: Investment Rate $(i_{j,t}/k_{j,t-1})$.
 - Key Regressor: **Indebtedness**, $b_{j,t-1}$, measured as log of total nominal debt, residualized to remove firm and time fixed effects.
- Inflation Data:
 - Realized Inflation: CPI from BLS.
 - Expected Inflation: 1-year ahead from FRB Cleveland.
 - Unexpected Inflation: $\epsilon_t^{\pi} = \pi_t^{\text{realized}} \mathbb{E}_{t-4}[\pi_t]$.

Unexpected Inflation Series (1990-2023)

Quarterly Inflation Series (1990Q1 - 2023Q4)

Notes: Large deflationary surprise during the Great Recession (2008-2009) and large inflationary surprises post-COVID

Empirical Strategy

To test the model's prediction, I use a difference-in-differences specification inspired by the conceptual framework:

$$i_{j,t} = \alpha_j + \alpha_{s,t} + \beta(b_{j,t-1} \times \epsilon_t^{\pi}) + \gamma b_{j,t-1} + \Gamma_A'(b_{j,t-1} \times \mathbf{A}_t) + \Gamma_Z' \mathbf{Z}_{j,t-1} + e_{j,t}$$
(2)

- α_j : Firm Fixed Effects. $\alpha_{s,t}$: Sector \times Time Fixed Effects.
- Interaction between indebtedness and GDP growth, FFR.
- Standard firm level controls including size, liquidity, sales growth etc.
- Two-way clustering standard errors by firm and quarter.
- Prediction from theory: $\beta > 0$.
 - Higher indebtedness amplifies the positive investment response to an inflation surprise.

Main Empirical Result: Heterogeneous Responses

	(1)	(2)	(3)	(4)
$b_{j,t-1} \times \epsilon_t^{\pi}$	0.116*** (0.029)	0.124*** (0.029)		. ,
$b_{j,t-1} \times \pi_t$,	,	0.089*** (0.023)	0.091*** (0.023)
Obs	268757	268757	268757	268757
R^2	0.118	0.125	0.118	0.124
Firm Ctrl	No	Yes	No	Yes
Sector-time FE	Yes	Yes	Yes	Yes

 $i_{j,t} = \alpha_j + \alpha_{s,t} + \beta(b_{j,t-1}\epsilon_t^\pi) + \gamma b_{j,t-1} + \Gamma_A'(b_{j,t-1}\mathbf{A}_t) + \Gamma_Z'\mathbf{Z}_{j,t-1} + e_{j,t}.$ Firm fixed effects included and standard errors clustered at firm-quarter level.

- ullet eta is positive and highly significant, consistent with theory.
- Magnitude: A 1 p.p. inflation surprise leads to a 3.5 bps higher investment rate for a firm with 1 std. dev. higher debt.

Main Empirical Result: Heterogeneous Responses

	(1)	(2)	(2)	(4)
	(1)	(2)	(3)	(4)
$b_{j,t-1} \times \epsilon_t^{\pi}$	0.116***	0.124***		
3,	(0.029)	(0.029)		
$b_{j,t-1} \times \pi_t$			0.089***	0.091***
· ·			(0.023)	(0.023)
Obs	268757	268757	268757	268757
R^2	0.118	0.125	0.118	0.124
Firm Ctrl	No	Yes	No	Yes
Sector-time FE	Yes	Yes	Yes	Yes

$$i_{j,t} = \alpha_j + \alpha_{s,t} + \beta(b_{j,t-1}\epsilon_t^{\pi}) + \gamma b_{j,t-1} + \Gamma_A'(b_{j,t-1}\mathbf{A}_t) + \Gamma_Z'\mathbf{Z}_{j,t-1} + e_{j,t}.$$
 Firm fixed effects included and standard errors clustered at firm-quarter level.

- ullet eta is positive and highly significant, consistent with theory.
- **Magnitude:** A 1 p.p. inflation surprise leads to a 3.5 bps higher investment rate for a firm with 1 std. dev. higher debt.

Dynamic Effects: Local Projections

To trace the dynamic effect, I estimate the local projection regression

$$\Delta \log k_{j,t+h} = \alpha_j + \alpha_{s,t} + \beta_h(b_{j,t-1}\epsilon_t^{\pi}) + \gamma_h b_{j,t-1} + e_{j,t,h}$$
(3)

• The differential effect on capital is positive and persistent, peaking around the 8th quarter.

Robustness

The main empirical finding is robust to:

- Excluding the Great Recession and COVID periods.
- Using alternative measures of indebtedness (e.g., leverage ratio).

Takeaway: Strong and robust empirical support for the firm-side Fisher channel.

Roadmap

- A Conceptual Framework
- 2 Empirical Analysis
- 3 Heterogeneous Firm GE Model
- Quantitative Analysis
- Conclusion

Continuum of mass 1 production firms indexed by $\it i$

Production Technology

$$\begin{aligned} y_{i,t} &= z_{i,t} k_{i,t}^{\alpha} n_{i,t}^{\nu}, \quad \alpha + \nu < 1 \\ \log(z_{i,t+1}) &= \rho \log(z_{i,t}) + \sigma \varepsilon_{i,t+1}, \quad \varepsilon_{j,t+1} \sim N(0,1) \end{aligned}$$

Production goods sold at competitive real price p_t

Labor Choice

$$n_{i,t}^* = \left(\frac{\nu p_t z_{i,t} k_{i,t}^{\alpha}}{w_t}\right)^{\frac{1}{1-\nu}}$$

Labor hiring at real wage w_t

Capital Accumulation

$$k_{i,t+1} = i_{i,t} + (1 - \delta)k_{i,t}$$
$$AC(i_{i,t}, k_{i,t}) = \frac{\gamma}{2} \frac{i_{i,t}^2}{k_{i,t}}$$

Continuum of mass 1 production firms indexed by $\it i$

Production Technology

$$\begin{aligned} y_{i,t} &= z_{i,t} k_{i,t}^{\alpha} n_{i,t}^{\nu}, \quad \alpha + \nu < 1 \\ \log(z_{i,t+1}) &= \rho \log(z_{i,t}) + \sigma \varepsilon_{i,t+1}, \quad \varepsilon_{j,t+1} \sim N(0,1) \end{aligned}$$

Production goods sold at competitive real price p_t

Labor Choice

$$n_{i,t}^* = \left(\frac{\nu p_t z_{i,t} k_{i,t}^{\alpha}}{w_t}\right)^{\frac{1}{1-\nu}}$$

Labor hiring at real wage w_t

Capital Accumulation

$$k_{i,t+1} = i_{i,t} + (1 - \delta)k_{i,t}$$
$$AC(i_{i,t}, k_{i,t}) = \frac{\gamma}{2} \frac{i_{i,t}^2}{k_{i,t}}$$

Continuum of mass 1 production firms indexed by $\it i$

Production Technology

$$\begin{aligned} y_{i,t} &= z_{i,t} k_{i,t}^{\alpha} n_{i,t}^{\nu}, \quad \alpha + \nu < 1 \\ \log(z_{i,t+1}) &= \rho \log(z_{i,t}) + \sigma \varepsilon_{i,t+1}, \quad \varepsilon_{j,t+1} \sim N(0,1) \end{aligned}$$

Production goods sold at competitive real price p_t

Labor Choice

$$n_{i,t}^* = \left(\frac{\nu p_t z_{i,t} k_{i,t}^{\alpha}}{w_t}\right)^{\frac{1}{1-\nu}}$$

Labor hiring at real wage w_t

Capital Accumulation

$$k_{i,t+1} = i_{i,t} + (1 - \delta)k_{i,t}$$
$$AC(i_{i,t}, k_{i,t}) = \frac{\gamma}{2} \frac{i_{i,t}^2}{k_{i,t}}$$

- ullet Exogenous Entry and Exit with death prob. π_d
 - ullet New firms draw idiosyncratic productivity and enter with k_0 to keep mass unchanged.
- Key Frictions
 - ullet One-period risk-free nominal corporate bonds B_t with predetermined nominal rate R_t and repayments.
 - \bullet Collateral constraint to ensure safety, by defining $b_t = \frac{B_t}{P_{t-1}}.$

$$(1 + R_{t+1})b_{i,t+1} \le \prod_{t+1} (p_{t+1} \underline{z}_{i,t+1} k_{i,t+1}^{\alpha} n_{i,t+1}^{\nu} - w_{t+1} n_{t+1} + (1 - \delta) k_{i,t+1})$$

New borrowings must be within the lowest possible net worth in the next period.

Non-negative dividend constraint (No equity issuance) for continuing firms:

$$d_{i,t} = p_t z_{i,t} k_{i,t}^{\alpha} n_{i,t}^{\nu} - w_t n_{i,t} - i_{i,t} - AC(i_{i,t},k_{i,t}) - (1+R_t) \frac{b_t}{\Pi_t} + b_{i,t+1} \ge 0$$

Quantitative Model: Heterogeneous Firms

- ullet Exogenous Entry and Exit with death prob. π_d
 - ullet New firms draw idiosyncratic productivity and enter with k_0 to keep mass unchanged.
- Key Frictions
 - ullet One-period risk-free nominal corporate bonds B_t with predetermined nominal rate R_t and repayments.
 - \bullet Collateral constraint to ensure safety, by defining $b_t = \frac{B_t}{P_{t-1}}.$

$$(1 + R_{t+1})b_{i,t+1} \le \Pi_{t+1}(p_{t+1}\underline{z}_{i,t+1}k_{i,t+1}^{\alpha}n_{i,t+1}^{\nu} - w_{t+1}n_{t+1} + (1 - \delta)k_{i,t+1})$$

New borrowings must be within the lowest possible net worth in the next period.

Non-negative dividend constraint (No equity issuance) for continuing firms:

$$d_{i,t} = p_t z_{i,t} k_{i,t}^{\alpha} n_{i,t}^{\nu} - w_t n_{i,t} - i_{i,t} - AC(i_{i,t}, k_{i,t}) - (1 + R_t) \frac{b_t}{\prod_t} + b_{i,t+1} \ge 0$$

Quantitative Model: Heterogeneous Firms

- ullet Exogenous Entry and Exit with death prob. π_d
 - ullet New firms draw idiosyncratic productivity and enter with k_0 to keep mass unchanged.
- Key Frictions
 - ullet One-period risk-free nominal corporate bonds B_t with predetermined nominal rate R_t and repayments.
 - \bullet Collateral constraint to ensure safety, by defining $b_t = \frac{B_t}{P_{t-1}}.$

$$(1 + R_{t+1})b_{i,t+1} \le \prod_{t+1} (p_{t+1}\underline{z}_{i,t+1}k_{i,t+1}^{\alpha} n_{i,t+1}^{\nu} - w_{t+1}n_{t+1} + (1 - \delta)k_{i,t+1})$$

New borrowings must be within the lowest possible net worth in the next period.

• Non-negative dividend constraint (No equity issuance) for continuing firms:

$$d_{i,t} = p_t z_{i,t} k_{i,t}^{\alpha} n_{i,t}^{\nu} - w_t n_{i,t} - i_{i,t} - AC(i_{i,t}, k_{i,t}) - (1 + R_t) \frac{b_t}{\prod_t} + b_{i,t+1} \ge 0$$

Quantitative Model: Firm's Problem

- Enter period with state variables (z, k, b).
- Productivity and death shocks realize.
- Exogenously exist after production.
- Choose (k',b') to the next period if continuing.

The firm's problem in Bellman equation:

$$V_{t}(z,k,b) = (1 - \pi_{d}) V_{t}^{c}(z,k,b) + \pi_{d} V_{t}^{d}(z,k,b)$$

$$V_{t}^{c}(z,k,b) = \max_{k',b'} \left\{ d_{t}(z,k,b,k',b') + \mathbb{E}_{t} \left[\Lambda_{t+1} V_{t}(z',k',b' \mid z) \right] \right\}$$

$$s.t. \qquad d_{t} = p_{t} z k^{\alpha} n^{\nu} - w n - i - A C(i,k) - (1+R) \frac{b}{\Pi_{t}} + b' \ge 0$$

$$b' \le \frac{\Pi_{t+1}}{1+R_{t+1}} (p_{t+1} \underline{z}' k'^{\alpha} n'^{\nu} - w_{t+1} n' + (1-\delta)k')$$

$$(4)$$

Quantitative Model: Other Agents

- Retailers and Final Goods Producer
 - Linear technology transferring homogeneous production goods into differentiated goods.
 - CES Technology to produce final goods using differentiated goods.
- Representative Households
 - Maximize expected utility subject to budget constraint:

$$E_0 \sum_{t=0}^{\infty} \beta^t (\log C_t - \chi N_t)$$
s.t. $P_t C_t + S_{t+1} = W_t N_t + (1 + R_t) S_t + D_t$ (5)

• Stochastic Discount Factor
$$\Lambda_{t+1}$$
 follows $\beta \frac{C_t}{C_{t+1}}$.

• Central Bank supplies money to clear money market with nominal rate determined by Fisher equation $R_t = r_t + E_{t-1}\pi_t$.

Quantitative Model: Equilibrium

Equilibrium

The steady state equilibrium for the flexible price economy is given by a set of value functions $V_t(z,k,b)$, decision rules k',b',n for capital, debt and labor, a measure of firms $\mu_t(z,k,b)$, and a set of prices $w_t,r_t,p_t,\Lambda_{t+1}$ such that:

- given prices, all firms optimize: V solves bellman equation with associated policy rules;
- household optimize;
- goods market, labor market and asset market all clear;
- ullet the distribution of firms μ is stationary.

Calibration and Model Fit

 Model is calibrated to match key moments of the U.S. economy and Compustat firm distribution at a quarterly frequency.

Calibration (Parameters)

Model Fit (Moments)

Description	Param	Value
Discount factor		
TFP persistence		
Innovations SD	σ_z	0.10
Depreciation rate		
Capital share		0.25
Labor coefficient		0.60
Adj. cost		1.00
Initial capital		0.20
Exit rate		0.02
Elasticity of subs.	ϵ_p	10

Moment	Data	Model
	0.316	0.286
$\mathbb{E}[i]$ (p.p.)	3.936	4.398
SD(i) (p.p.)	10.263	8.27
AutoCorr(Lev)		
Frac(b>0)	0.708	0.632
Annual Exit		
Emp. Ratio	0.022	0.021

Note: Employment ratio source: U.S. Census Bureau – BDS (2022).

Calibration and Model Fit

 Model is calibrated to match key moments of the U.S. economy and Compustat firm distribution at a quarterly frequency.

Calibration (Parameters)

Model Fit (Moments)

Description	Param	Value
Discount factor	β	0.99
TFP persistence	$ ho_z$	0.90
Innovations SD	σ_z	0.10
Depreciation rate	δ	0.025
Capital share	α	0.25
Labor coefficient	ν	0.60
Adj. cost	γ	1.00
Initial capital	k_0	0.20
Exit rate	π_d	0.02
Elasticity of subs.	ϵ_p	10

Data	Model
0.316	0.286
3.936	4.398
10.263	8.27
0.938	0.989
0.708	0.632
0.08	0.08
0.022	0.021
	0.316 3.936 10.263 0.938 0.708 0.08

Note: Employment ratio source: U.S. Census Bureau – BDS (2022).

Roadmap

- A Conceptual Framework
- 2 Empirical Analysis
- 3 Heterogeneous Firm GE Model
- Quantitative Analysis
- Conclusion

PE Impulse Response

• Strong PE effects: 4.5% increase in aggregate investment with 1% transitory inflation.

GE Impulse Response

- GE prices: decrease in wages and increase in real rates.
- Fisher channel effect on aggregate investment dampened to **0.83%**.

Model vs. Empirics: Replicating the Heterogeneity

- I feed the historical unexpected inflation series into the model to generate a simulated panel of firms.
- Then, I run the same regressions on the model-generated data.

Investment Rate	Empirical Estimate (1)	Model Implied Results	
		(2)	
$b_{j,t-1} imes \epsilon_t^{\pi}$	0.124***	0.048*	0.024***
	(0.029)	(0.026)	(0.005)
Observations \mathbb{R}^2	268757	192801	192801
	0.125	0.272	0.968
Firm Control	Yes	No	Yes
Two Way FE	Yes	Yes	Yes

• The model qualitatively reproduces the key empirical finding: more indebted firms invest more after an inflation surprise.

Model vs. Empirics: Replicating the Heterogeneity

- I feed the historical unexpected inflation series into the model to generate a simulated panel of firms.
- Then, I run the same regressions on the model-generated data.

Investment Rate	Empirical Estimate	Model Implied Results	
	(1)	(2)	(3)
$b_{j,t-1} \times \epsilon_t^{\pi}$	0.124***	0.048*	0.024***
	(0.029)	(0.026)	(0.005)
$\begin{array}{c} \text{Observations} \\ R^2 \\ \text{Firm Control} \\ \text{Two Way FE} \end{array}$	268757	192801	192801
	0.125	0.272	0.968
	Yes	No	Yes
	Yes	Yes	Yes

• The model qualitatively reproduces the key empirical finding: more indebted firms invest more after an inflation surprise.

Model vs. Empirics: Replicating the Heterogeneity

- I feed the historical unexpected inflation series into the model to generate a simulated panel of firms.
- Then, I run the same regressions on the model-generated data.

Investment Rate	Empirical Estimate	Model Implied Results	
	(1)	(2)	(3)
$b_{j,t-1} imes \epsilon_t^{\pi}$	0.124***	0.048*	0.024***
	(0.029)	(0.026)	(0.005)
Observations R^2 Firm Control Two Way FE	268757	192801	192801
	0.125	0.272	0.968
	Yes	No	Yes
	Yes	Yes	Yes

• The model qualitatively reproduces the key empirical finding: more indebted firms invest more after an inflation surprise.

Counterfactual: The Great Recession

- During the Great Recession, large deflationary surprises increased the real debt burden.
- How much of the investment collapse can the Fisher channel explain?

• The model-implied investment drop (blue) accounts for up to 23% of the actual drop in PNFI (orange).

September 23, 2025

Counterfactual: The Great Recession

- During the Great Recession, large deflationary surprises increased the real debt burden.
- How much of the investment collapse can the Fisher channel explain?

• The model-implied investment drop (blue) accounts for up to 23% of the actual drop in PNFI (orange).

Counterfactual: The Post-COVID Inflation Surge

- The post-COVID period saw a series of large positive inflation surprises.
- How much of the investment surge can the channel explain?

• The model-implied investment increase (blue) can account for up to **50%** of the actual surge in PNFI (orange).

Counterfactual: The Post-COVID Inflation Surge

- The post-COVID period saw a series of large positive inflation surprises.
- How much of the investment surge can the channel explain?

• The model-implied investment increase (blue) can account for up to 50% of the actual surge in PNFI (orange).

Roadmap

- A Conceptual Framework
- Empirical Analysis
- 3 Heterogeneous Firm GE Mode
- Quantitative Analysis
- Conclusion

- This paper studies the debt-inflation (Fisher) channel on investment.
- Empirically, I show that more indebted firms invest disproportionately more following an unexpected inflation surprise. This finding is robust and persistent.
- Quantitatively, a calibrated GE model shows the channel is macroeconomically significant.
 - A 1% inflation surprise raises investment by 0.83%.
 - The channel is a major contributor to investment dynamics during the Great Recession (23%) and post-COVID era (50%).
- The firm-side Fisher channel is quantitatively more important than the well-studied household consumption channel.

- This paper studies the debt-inflation (Fisher) channel on investment.
- Empirically, I show that more indebted firms invest disproportionately more following an unexpected inflation surprise. This finding is robust and persistent.
- Quantitatively, a calibrated GE model shows the channel is macroeconomically significant.
 - A 1% inflation surprise raises investment by 0.83%.
 - The channel is a major contributor to investment dynamics during the Great Recession (23%) and post-COVID era (50%).
- The firm-side Fisher channel is quantitatively more important than the well-studied household consumption channel.

- This paper studies the debt-inflation (Fisher) channel on investment.
- Empirically, I show that more indebted firms invest disproportionately more following an unexpected inflation surprise. This finding is robust and persistent.
- **Quantitatively**, a calibrated GE model shows the channel is macroeconomically significant.
 - A 1% inflation surprise raises investment by 0.83%.
 - The channel is a major contributor to investment dynamics during the Great Recession (23%) and post-COVID era (50%).
- The firm-side Fisher channel is quantitatively more important than the well-studied household consumption channel.

- This paper studies the debt-inflation (Fisher) channel on investment.
- Empirically, I show that more indebted firms invest disproportionately more following an unexpected inflation surprise. This finding is robust and persistent.
- **Quantitatively**, a calibrated GE model shows the channel is macroeconomically significant.
 - A 1% inflation surprise raises investment by 0.83%.
 - The channel is a major contributor to investment dynamics during the Great Recession (23%) and post-COVID era (50%).
- The firm-side Fisher channel is quantitatively more important than the well-studied household consumption channel.