Algorithmen Tutorium 12

Beginn: 16:15

Organisation

- Letztes ÜB sehr gut verlaufen!
- Ergebnisse des Wettbewerbs kommen noch

Inhalt

- VIIt. Konvexe Hülle
- Balance und Rotieren
- (2,4)-Baum

Konvexe Hülle

- Was heißt konvex(-es Polygon)?
 - Jeder Punkt ist von jedem anderen Punkt im Polygon sichtbar
- Was heißt sichtbar?
 - Direkte Verbindung zweier Punkte schneidet Polygonkante NICHT
 - Okay: Verbindung liegt AUF der Kante
 - Nicht Okay: Verbindung verlässt Polygon
- Polygon aus (minimaler) Teilmenge von Punkten,
 die alle anderen geometrisch konvex einfasst
- Algorithmus: Übung

AVL Bäume (AVL Bedingung)

- Für alle Knoten v (beginnend mit den Blättern)
 - Berechne die Anzahl der Knoten im Teilbaum mit v als Wurzel
 - 1 Für Blätter
 - Summe der Werte der Kinder + 1
 - Berechne Balance von v
 - Wenn Balance ungültig, stelle AVL Bedingung her (Rebalancierung)
- Operationen zum Rebalancieren
 - Einfachrotation
 - Zweifachrotation
- Achtung: Rebalancieren ist symmetrisch! Wenn Z links von X ist, ändert sich die Richtung

AVL Bäume (Einfachrotation)

- Problem: Knoten X verletzt AVL Bedingung (+2)
 - Der Teilbaum von X mit Wurzel Z ist um 2 höher
 - Der linke Teilbaum von Z ist nicht höher als der rechte
- Operation:
 - Teilbaum in Richtung von Z wird "ausgehängt"
 - Tausche Knoten X mit Elternknoten Z
 - Hänge den Teilbaum, an den Ast von X an dem vorher Z war, an

AVL Bäume (Zweifachrotation)

- Problem: Knoten X verletzt AVL Bedingung (+2)
 - Der Teilbaum von X mit Wurzel Z ist um 2 höher
 - Der linke Teilbaum von Z hat Y als Wurzel
 - Der linke Teilbaum von Z ist höher als der rechte
- Operation:
 - Einfachrotation von Y und Z
 - Einfachrotation von Y und X

(2,4)-Baum

- Baum mit mind. 2 und max. 4 Kindern pro Knoten
 - Wurzel mind, 2 Kinder
- Alle Blätter mir gleicher Tiefe
- 3 Vergleichsschlüssel(Keys) pro Knoten
- Keys im Knoten geordnet
- Knoten werden üblicherweise linksbündig dargestellt
- Bei weniger Kindern können Blätter/Schlüssel auch null/nil sein

(2,4)-Baum

- Werte werden in den Blätter gespeichert
 - NICHT in den Knoten (nur Vergleichsschlüssel)
- Schlüssel repräsentieren größtes Blatt im jeweiligen Unterbaum (NICHT beliebig)
 - Größter Wert wird als Schlüssel in Wurzel gespeichert
- Wird beim Einfügen & Löschen Balanciert
 - Suchen in konstant O(log(n))

(2,4)-Baum – Einfügen

Triviales Einfügen

- Einfügen, bei "vollem" Knoten
 - Wichtig: Wenn nicht die Wurzel, wird 18 beim Elternknoten eingefügt

(2,4)-Baum – Löschen

- Weitestgehend analog zum Einfügen (Schlüssel ggf. Löschen)
- Sonderfall: Knoten v hat nur ein Kind
 - Geschwister w hat genau 2 Kinder
 - => Verschmelze v und w & Lösche Schlüssel rekursiv bei parent(v)
 - Geschwister w hat ≥ 3 Kinder
 - => Stehle Nächsten Knoten von w zu v (Passe Schlüssel an)

 $\frac{1}{1}$ V: Gelte fir h+1 $\forall h \geq 0$. $\frac{1}{1}$ $\frac{1$

II: h=2h &|Bcl(a)| = 1

