In [1]:

```
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('D:\stroke\healthcare-dataset-stroke-data.csv'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
```

In [2]:

```
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
df = pd.read_csv('D:\stroke\healthcare-dataset-stroke-data.csv')
df.head(10)
```

Out[3]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_ty
0	9046	Male	67.0	0	1	Yes	Private	Urb
1	51676	Female	61.0	0	0	Yes	Self- employed	Ru
2	31112	Male	80.0	0	1	Yes	Private	Ru
3	60182	Female	49.0	0	0	Yes	Private	Urb
4	1665	Female	79.0	1	0	Yes	Self- employed	Ru
5	56669	Male	81.0	0	0	Yes	Private	Urb
6	53882	Male	74.0	1	1	Yes	Private	Ru
7	10434	Female	69.0	0	0	No	Private	Urb
8	27419	Female	59.0	0	0	Yes	Private	Ru
9	60491	Female	78.0	0	0	Yes	Private	Urb
4								•

In [4]:

```
print(df.columns.tolist())
```

```
['id', 'gender', 'age', 'hypertension', 'heart_disease', 'ever_married',
'work_type', 'Residence_type', 'avg_glucose_level', 'bmi', 'smoking_statu
s', 'stroke']
```

```
In [5]:
df.shape
# find how many data we have and how many type of data
# 5110 rows = total data , 12 columns = 12 types
Out[5]:
(5110, 12)
In [6]:
df.info()
# check whether there are null value
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):
     Column
                        Non-Null Count
                                         Dtype
_ _ _
                        _____
0
     id
                        5110 non-null
                                         int64
 1
                        5110 non-null
                                         object
     gender
 2
    age
                        5110 non-null
                                         float64
 3
    hypertension
                        5110 non-null
                                         int64
 4
                        5110 non-null
                                         int64
    heart_disease
 5
    ever_married
                        5110 non-null
                                         object
 6
                        5110 non-null
                                         object
    work_type
 7
     Residence_type
                        5110 non-null
                                         object
 8
     avg_glucose_level 5110 non-null
                                         float64
 9
     bmi
                        4909 non-null
                                         float64
 10 smoking_status
                        5110 non-null
                                         object
 11 stroke
                                         int64
                        5110 non-null
dtypes: float64(3), int64(4), object(5)
memory usage: 479.2+ KB
In [7]:
data = df.drop('id', axis=1) # id is useless, so we drop it
data.isnull().sum() # find how many null value in bmi
Out[7]:
gender
                       0
age
                       0
hypertension
                       0
heart_disease
                       0
ever_married
                       0
work_type
                       0
Residence type
                       0
avg_glucose_level
                       0
bmi
                     201
smoking_status
                       0
stroke
                       0
dtype: int64
In [8]:
data['bmi'].fillna(data['bmi'].mean(), inplace=True)
```

replace null value by mean

```
In [9]:
```

```
data.isnull().sum()
Out[9]:
gender
                     0
                     0
age
hypertension
                     0
heart_disease
                     0
ever_married
                     0
work type
                     0
Residence_type
                     0
avg_glucose_level
bmi
                     0
                     0
smoking_status
stroke
                     0
dtype: int64
In [10]:
features = ['gender', 'hypertension', 'heart_disease','ever_married', 'work_type', 'Res
idence_type', 'smoking_status']
for feature in features:
    print(data[feature].unique())
# find unique value
# like in gender: Other(only 1, so ignore)
# like in smoking_status: unknown(looks like there are a lot, I used mode to replace th
['Male' 'Female' 'Other']
[0 1]
[1 0]
['Yes' 'No']
['Private' 'Self-employed' 'Govt_job' 'children' 'Never_worked']
['Urban' 'Rural']
['formerly smoked' 'never smoked' 'smokes' 'Unknown']
```

In [11]:

```
print(data.smoking_status.value_counts())
sns.countplot(x = data['smoking_status'])
plt.show()
```

never smoked 1892 Unknown 1544 formerly smoked 885 smokes 789

Name: smoking_status, dtype: int64

In [12]:

```
pd.crosstab(data.smoking_status,data.stroke).plot(kind="bar")
plt.title('Stroke vs Smoking status')
plt.xlabel('smoking status')
plt.xticks(rotation = 0)
plt.legend(["Haven't", "Have"])
plt.ylabel('Count')
plt.show()
```


In [13]:

```
data['smoking_status'].replace('Unknown', np.nan, inplace=True)
data['smoking_status'].fillna(data['smoking_status'].mode()[0], inplace = True)
```

In [14]:

data.describe()

Out[14]:

	age	hypertension	heart_disease	avg_glucose_level	bmi	strok
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	5110.00000
mean	43.226614	0.097456	0.054012	106.147677	28.893237	0.04872
std	22.612647	0.296607	0.226063	45.283560	7.698018	0.21532
min	0.080000	0.000000	0.000000	55.120000	10.300000	0.00000
25%	25.000000	0.000000	0.000000	77.245000	23.800000	0.00000
50%	45.000000	0.000000	0.000000	91.885000	28.400000	0.00000
75%	61.000000	0.000000	0.000000	114.090000	32.800000	0.00000
max	82.000000	1.000000	1.000000	271.740000	97.600000	1.00000

 \triangleleft

In [15]:

data.corr()

varibales by varibles

Out[15]:

	age	hypertension	heart_disease	avg_glucose_level	bmi	str
age	1.000000	0.276398	0.263796	0.238171	0.325942	0.245
hypertension	0.276398	1.000000	0.108306	0.174474	0.160189	0.127
heart_disease	0.263796	0.108306	1.000000	0.161857	0.038899	0.134
avg_glucose_level	0.238171	0.174474	0.161857	1.000000	0.168751	0.131
bmi	0.325942	0.160189	0.038899	0.168751	1.000000	0.038
stroke	0.245257	0.127904	0.134914	0.131945	0.038947	1.000
4						•

In [16]:

```
for feature in features:
   plt.figure()
   sns.countplot(x = data[feature])
   plt.show()
```


never smoked smoking_status smokes

0

formerly smoked

```
In [17]:
print(data.hypertension.value_counts())
print("----")
print(data.heart_disease.value_counts())
print("----")
print(data.ever_married.value_counts())
print("-----")
print(data.gender.value_counts())
print("-----")
print(data.work_type.value_counts())
print("----")
print(data.Residence_type.value_counts())
print("-----")
print(data.smoking_status.value_counts())
print("-----")
print(data.stroke.value_counts())
0
    4612
1
     498
Name: hypertension, dtype: int64
0 4834
1
     276
Name: heart_disease, dtype: int64
-----
Yes
    3353
    1757
Name: ever_married, dtype: int64
Female 2994
Male
        2115
Other
```

Name: work_type, dtype: int64

....

Urban 2596 Rural 2514

Never worked

Name: Residence_type, dtype: int64

22

never smoked 3436

formerly smoked 885 smokes 789

Name: smoking_status, dtype: int64

0 48611 249

Name: stroke, dtype: int64

In [18]:

```
pd.crosstab(data.smoking_status,data.stroke).plot(kind="bar")
plt.title('Stroke vs Smoking status')
plt.xlabel('smoking status')
plt.xticks(rotation = 0)
plt.legend(["Haven't", "Have"])
plt.ylabel('Count')
plt.show()
#we can see smoking status is not relevant to stroke
```


In [19]:

```
pd.crosstab(data.hypertension,data.stroke).plot(kind="bar")
plt.title('Stroke vs hypertension')
plt.xlabel('hypertension status (0:No, 1:Yes)')
plt.xticks(rotation = 0)
plt.legend(["Haven't", "Have"])
plt.ylabel('Count')
plt.show()
#we can see shypertension is not relevant to stroke
```


In [20]:

```
plt.title('Relation of age with stroke')
sns.distplot(data.age[data.stroke==0])
sns.distplot(data.age[data.stroke==1])
plt.legend(["Haven't", "Haven"])
plt.show()
#looks like elderly will easily get stroke
```


In [21]:

```
pd.crosstab(data.gender,data.stroke).plot(kind="bar")
plt.title('Stroke VS Gender')
plt.xlabel('Gender')
plt.xticks(rotation = 0)
plt.legend(["Haven't", "Have"])
plt.ylabel('Frequency')
plt.show()
```


In [22]:

```
plt.figure()
sns.distplot(data["avg_glucose_level"], label="avg_glucose_level")
plt.legend()
```

Out[22]:

<matplotlib.legend.Legend at 0x208676f9448>

In [23]:

```
plt.title('Relation of avg_glucose_level with stroke')
sns.distplot(data.avg_glucose_level[data.stroke==0])
sns.distplot(data.avg_glucose_level[data.stroke==1])
plt.legend(["Haven't","Haven"])
plt.show()
```


In [24]:

```
plt.figure()
sns.distplot(data["bmi"], label="bmi",color="red")
plt.legend()
```

Out[24]:

<matplotlib.legend.Legend at 0x208678dabc8>

In [25]:

```
plt.title('Relation of bmi with stroke')
sns.distplot(data.bmi[data.stroke==0])
sns.distplot(data.bmi[data.stroke==1])
plt.legend(["Haven't","Haven"])
plt.show()
```


In [26]:

```
plt.figure(figsize=(10,10))
sns.heatmap(df.corr(),annot=True);
```


In [27]:

```
plt.figure(figsize=(10,10))
sns.pairplot(data)
plt.show()
```

<Figure size 720x720 with 0 Axes>

In [28]:

```
from sklearn.preprocessing import LabelEncoder
lebalencode = LabelEncoder()
en_data = data.apply(lebalencode.fit_transform)
en_data.head()
# Label encoding
```

Out[28]:

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_
0	1	88	0	1	1	2	1	
1	0	82	0	0	1	3	0	
2	1	101	0	1	1	2	0	
3	0	70	0	0	1	2	1	
4	0	100	1	0	1	3	0	

```
→
```

In [29]:

```
x = en_data.drop('stroke', axis = 1)
y = en_data['stroke']
print('X Shape: ', x.shape)
print('Y Shape: ', y.shape)
# feature selection and see now how many rows and columns
# after drop stroke, only 10 types data
```

X Shape: (5110, 10) Y Shape: (5110,)

In [30]:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size= 0.3, random_state=
0)
# split data into 30% and 70&
```

In [31]:

```
print("Transactions: ")
print("x_train: ", x_train.shape)
print("y_train: ", y_train.shape)
print("x_test: ", x_test.shape)
print("y_test: ", y_test.shape)
# To see the shape of test dataset and train dataset
```

Transactions:

x_train: (3577, 10)
y_train: (3577,)
x_test: (1533, 10)
y_test: (1533,)

In [32]:

```
from sklearn.ensemble import RandomForestClassifier #for the model
from sklearn.tree import DecisionTreeClassifier #for the model
from sklearn.neighbors import KNeighborsClassifier #for the model
from sklearn.linear_model import LogisticRegression #for the model

from sklearn.metrics import roc_curve, auc #for model evaluation
from sklearn.metrics import classification_report #for model evaluation
from sklearn.metrics import confusion_matrix #for model evaluation
from sklearn.model_selection import train_test_split #for data splitting
```

In [33]:

```
# Evaluation with ROC curve
def plot_roc(y_test,y_proba, model_name):
    fpr, tpr, thresholds = roc_curve(y_test, y_proba)
    fnr = 1 - tpr
    eer_idx = np.nanargmin(np.absolute((fnr - fpr)))
    eer = (fpr[eer_idx] + fnr[eer_idx]) / 2
    area = auc(fpr, tpr)
    label="{} AUC:{:.2f} EER:{:.2f}%".format(model name, area, eer * 100)
    plt.plot(fpr, tpr, label=label)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.rcParams['font.size'] = 12
    plt.title('ROC')
    plt.xlabel('False Positive Rate (1 - Specificity)')
    plt.ylabel('True Positive Rate (Sensitivity)')
    plt.legend()
    plt.grid(True)
```

In [34]:

```
plt.figure(figsize=(10,8),dpi=120)
classifiers = [
    LogisticRegression(C=0.1,penalty='l2',random_state=0),
    KNeighborsClassifier(5),
    DecisionTreeClassifier(max_depth=5),
    RandomForestClassifier(max_depth=5, n_estimators=10)]
for model in classifiers:
    model.fit(x_train,y_train)
    y_proba=model.predict_proba(x_test)[:,1]
    plot_roc(y_test,y_proba,type(model).__name__)
```


In [35]:

```
from sklearn.preprocessing import StandardScaler
sscaler = StandardScaler()
x_train = sscaler.fit_transform(x_train)
x_test = sscaler.transform(x_test)
# Standardization
```

In [36]:

```
# use randomforest as our model
randomforest = RandomForestClassifier()
randomforest.fit(x_train, y_train)
y_pred = randomforest.predict(x_test)
```

In [37]:

```
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
print("The Classification report: \n{}".format(classification_report(y_test, y_pred)))
print("------")
print("The Accuracy Score is: {:.3f}%".format(accuracy_score(y_test, y_pred)*100))
```

The Classification report:

	precision	recall	†1-score	support
0	0.95	1.00	0.97	1457
1	0.00	0.00	0.00	76
accuracy macro avg weighted avg	0.48 0.90	0.50 0.95	0.95 0.49 0.93	1533 1533 1533

The Accuracy Score is: 94.977%

In [38]:

```
importances = randomforest.feature_importances_
feat_labels = x.columns[0:]
# find the feature importances
```

In [39]:

```
indices = np.argsort(importances)
```

In [40]:

```
for f in range(x_train.shape[1]):
    print("%2d) %-*s %f" % (f + 1, 30, feat_labels[indices[f]], importances[indices[f]]))
    # show each featuers' importrances to stroke
```

```
1) ever_married
                                    0.020735
2) hypertension
                                    0.024168
3) heart_disease
                                    0.029258
4) Residence_type
                                    0.031888
5) gender
                                    0.034417
6) smoking_status
                                    0.051633
                                    0.053477
7) work_type
8) bmi
                                    0.234667
                                    0.240199
9) age
10) avg_glucose_level
                                    0.279557
```

In [41]:

```
threshold = 0.15
x_selected = x_train[:, importances > threshold]
x_selected.shape
# age, bmi and avg_glucose_level are most significant value
```

Out[41]:

(3577, 3)

In [42]:

In []:			