Introduction à la notion de « plongement de mot » (word embedding)

Thierry Poibeau thierry.poibeau@ens.psl.eu

Master Humanités numériques, PSL, 2025

Principales sources de ce support

- Sur les modèles plus anciens d'analyse distributionnelle
 - Distributional Semantic Models, S. Evert
 - https://esslli2016.unibz.it/wpcontent/uploads/2015/10/dsm tutorial part1.slides.pdf

Sur BERT

- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Bidirectional Encoder Representations from Transformers) Jacob Devlin
- https://nlp.stanford.edu/seminar/details/jdevlin.pdf (contient beaucoup plus d'information que dans ces transparents)

Plan

- Analyse distributionnelle
- Plongements de mots
- Visualisation de plongements de mots
- Bert
- Jeux de données disponibles
- Evaluation
- Conclusion

Analyse distributionnelle et modèles vectoriels

L'hypothèse distributionnelle

- Hypothèse distributionnelle : mots apparaissant dans contextes similaires = signification similaire (Harris 1954)
 - Difference of meaning correlates with difference of distribution —(Zellig Harris 1954)
 - "Die Bedeutung eines Wortes liegt in seinem Gebrauch." (Wittgenstein)
 - "You shall know a word by the company it keeps" (Firth, 1957)
 - "What people know when they say that they know a word is not how to recite its dictionary definition they know how to use it (...) in everyday discourse." (Miller 1986)

Exemples

- Retrouver un mot par son contexte (cad par des mots qui le caractérisent, cf. mots croisés)
 - Concombre, sauce, pizza, ketchup ⇒ tomate
 - Parole, morceau, musique, populaire ⇒ chanson

Crossword computer has all the answers

The software has been found to outperform some commercial crossword solvers but, crucially, it does so by training its with minimal human involvement

Représentation vectorielle

• On peut représenter le sens d'un mot par les mots apparaissant dans son contexte proche

	song	cucumber	meal	black
tomato	0	6	5	0
book	2	0	2	3
pizza	0	2	4	1

- Chaque mot est associé à un vecteur de dimension |V| (la taille du vocabulaire)
- On voit que *tomato* est assez proche de *pizza* mais pas de book (d'après les valeurs dans les colonnes)

Représentation vectorielle

- On s'attend à ce que des mots sémantiquement similaires aient des vecteurs similaires
- Etant donné la représentation vectorielle de deux mots donnés, on peut déterminer leur similarité (cf. *infra*)
- La même représentation peut être utilisée à différents niveaux : mot, syntagme, document, etc.

Prétraitements

- Un simple comptage est inefficace
 - Les mots les plus fréquents sont peu informatifs
- D'autres techniques sont généralement utilisées
 - Suppression des mots sémantiquement vides
 - Pondération tf.idf
 - Information mutuelle (PMI = p(x,y) / p(x)p(y))
 - Cf. cours précédents

« Densifier » la représentation

- Deux problèmes avec une représentation vectorielle « brute »
 - Les vecteurs sont trop grands (par défaut, taille vecteur = taille du vocabulaire à modéliser)
 - Ils sont « creux » (la plupart des valeurs = 0)
- Deux solutions possibles
 - Réduire la taille des vecteurs (il y a des algorithmes pour ça, par ex. SVD)
 - « Apprendre » directement des vecteurs de taille réduite ⇒ word embedding)

Plongements de mots (= Word embeddings)

Plongements de mots (Word embeddings)

- Chaque mot est représenté par un vecteur de faible dimension (typiquement, 300 ou 500 valeurs)
- Tous les mots sont modélisés dans un même espace sémantique
- Les mots sémantiquement similaires ont normalement des vecteurs similaires (= leur vecteurs sont proches dans l'espace sémantique)
- Les plongements de mots sont le « cœur » de beaucoup d'applications de TAL actuellement

« Vectoriser » le sens des mots

 Encodage du sens des mots dans des vecteurs de taille fixe (typiquement, dimension 300 à 500). Chaque case représente un ensemble de contextes, c'est-à-dire une notion sémantique latente

• Calcul sur les vecteurs : King - Man + Woman = Queen

Word2Vec

- Modèle ayant popularisé la notion de word embedding en TAL
- Modèle relativement simple et efficace
 - Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
 - Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean, 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (NIPS 2013).

Word2Vec

- Hypothèse : les mots sémantiquement similaires ont un contexte sémantiquement similaire
 - $X \simeq Y \Rightarrow$ Contexte $(X) \simeq$ Contexte (Y)
- Modèle de calcul efficace pour obtenir des plongements de mots
 - Simplifier la notion de contexte
 - Repérer les contextes similaires
 - Ajuster leur représentation (poids associé à chaque mot) au fur et à mesure de l'apprentissage (backpropagation)
 - Le contenu d'une dimension est arbitraire, mais peut correspondre à une notion sémantique

Paramétrage

- Analyse sac de mots ou souvent stratégie plus élaborée, de type skipgram par ex.
- Autres paramètres
 - Augmenter le poids des mots les plus proches du mot cible dans le contexte
 - Supprimer (ou baisser le poids des) mots vides et/ou très fréquents
- Prise en compte des mots composés
 - Pas possible par défaut avec Word2vec (New et York dans New York sont deux mots simples)
 - Solution : prétraitement pour identifier les mots composés les plus fréquents (par information mutuelle, PMI, par ex.) alors considérés comme un seul token

Package Word2vec

- On trouve facilement des Jupyter notebook autour de Word2vec
- Le code est aussi disponible ici : (répertoire de Mikolov) : https://github.com/tmikolov/word2vec
 - Récupérer le corpus par défaut (wget http://mattmahoney.net/dc/text8.zip) ou n'importe quel corpus

Les paramètres (ou hyperparamètres) jouent un rôle important

Taille de la fenêtre prise en compte pour le calcul

Word: walk	Windov	v size = 3	Window	v size = 30
	Word	Cosine distance	Word	Cosine distance
	go	0.488083	walking	0.48631
	snipe	0.464912	walked	0.43076
	shoot	0.456677	walks	0.40677
	fly	0.449722	stairs	0.40151
	sit	0.449678	go	0.39927
	pass	0.442459	sidewalk	0.38578
	climbs	0.440931	stand	0.38048
	walked	0.436502	cortege	0.37103
	ride	0.434034	wheelchair	0.36287
	stumble	0.426750	strapped	0.36017
	bounce	0.425577	hollywood	0.35654
	travelling	0.419419	carousel	0.35618
	walking	0.412107	grabs	0.35600
	walks	0.410949	swim	0.35502
	trot	0.410418	breathe	0.35431
	leaping	0.406744	tripped	0.35289
	sneak	0.401918	cheer	0.35247
	climb	0.399793	moving	0.35094
	move	0.396715	inductees	0.34779
	wait	0.394463	walkway	0.34716
	going	0.391639	shout	0.34622
	shouted	0.388382	pounding	0.34055
	roam	0.388073	blvď	0.33912
	thrown	0.384087	crowd	0.33873
	get	0.383894	levada	0.33489

Les paramètres (ou hyperparamètres) jouent un rôle important

Nombre d'itérations

Word: walk

No. of i	No. of iterations = 1		No. of iterations = 100	
Word	Cosine distance	Word	Cosine distance	
walking	0.851438	walked	0.483473	
walks	0.846485	ride	0.470925	
bat	0.843796	walks	0.470889	
ride	0.830734	stand	0.449993	
crowd	0.821692	walking	0.449071	
quiet	0.812538	go	0.430172	
spot	0.802777	shoot	0.421110	
steal	0.787917	get	0.404258	
door	0.787571	move	0.403757	
doors	0.786485	live	0.403347	
bed	0.773686	fly	0.400929	
dinner	0.772160	climbs	0.396346	
shadow	0.769573	throw	0.391768	
luck	0.768221	climb	0.384038	
baby	0.767862	wiggle	0.380892	
shoot	0.765968	thrown	0.380426	
walked	0.765739	pull	0.375478	
sitting	0.765394	goes	0.375406	
shirt	0.759116	moving	0.374447	
rides	0.759047	pass	0.372463	
watching	0.755140	conversing	0.364413	
watch	0.750808	sit	0.362765	
gehrig	0.741494	crowd	0.361651	
shoots	0.740971	kiss	0.359883	
looking	0.740904	stay	0.357015	

Les paramètres (ou hyperparamètres) jouent un rôle important

Taille des vecteurs de représentation utilisés

No. of dimensions = 5

Word: walk

Word	Cosine distance	Word	Cosine distance
catcher	0.998074	walks	0.304954
shirt	0.996589	walked	0.303322
lechuck	0.995313	snipe	0.287221
bullseye	0.994644	walking	0.272690
bowler	0.994381	ride	0.266770
punter	0.993154	canter	0.251025
lovell	0.992815	bandleaders	0.246454
heels	0.992255	climbs	0.233725
whip	0.992085	catapulted	0.230075
outfit	0.992047	climb	0.229263
tore	0.991924	trot	0.228362
steals	0.991524	shouted	0.227306
guybrush	0.991166	stand	0.223288
gigs	0.990291	seagulls	0.221745
hanging	0.990201	fly	0.216602
burns	0.990043	fences	0.216366
backing	0.989966	lifts	0.215402
orser	0.989960	pray	0.214977
torch	0.989747	paws	0.214865
beat	0.989435	bounces	0.214449
showdown	0.989381	shoot	0.213457
feat	0.989242	grabs	0.212018
cheers	0.988951	walkway	0.211136
clad	0.988646	swim	0.209120
lunch	0.988326	tumble	0.207765
		_	

No. of dimensions = 1000

Visualiser le contenu d'un *Word Embedding* obtenu avec Word2vec

Visualiser les word embeddings

- Comment « voir » le contenu d'un Word embedding ?
 - Impossible / difficile directement (vecteur = juste un ensemble de chiffres. Pas de proximité entre mots immédiatement lisible)
 - Nécessité de recourir à des outils (même si, en pratique, on va rarement voir le contenu d'un word embedding)
 - Visualizing Data using t-SNE, Maaten and Hinton, 2008

Visualisation: Word2Vec

Visualisation : Glove

Un outil plus spécialisé : Wevi

 Wevi permet d'observer le contenu d'un Word embedding : https://ronxin.github.io/wevi/

wevi: word embedding visual inspector

UMAP

- UMAP (Uniform Manifold Approximation and Projection) est une méthode de réduction de dimension
- Conserve la structure locale des données en les projetant dans un espace 2D/3D
- Modélise les voisinages (graphes de k plus proches voisins) et préserve ces liens
- Avantages : rapide, non linéaire, souvent plus lisible que t-SNE pour les grands jeux de données

Exemple de représentation avec UMAP

UMAP vs PCA / t-SNE

• PCA : linéaire, très rapide, conserve surtout la variance globale.

• t-SNE : non linéaire, bon pour les structures locales, mais plus lent et paramètres sensibles.

• UMAP : non linéaire, conserve bien les voisinages, plus stable et scalable que t-SNE en pratique.

Paramètres UMAP essentiels

- n_neighbors : taille du voisinage local (plus grand → structure globale ; plus petit → local)
- min_dist : densité des amas (plus petit → points serrés ; plus grand → plus espacés)
- metric : mesure de distance (euclidean, cosine, etc.)
- Astuce: tester rapidement quelques valeurs (p. ex. n_neighbors=5, 15, 50; min_dist=0.1, 0.5).

BERT

BERT

- BERT: Bidirectional Encoder Representations from Transformers
 - Modèle mis au point par Google en 2018
 - Modèle très populaire = a permis des améliorations importantes en termes de performances pour la plupart des tâches de TAL
 - Aujourd'hui utilisé dans de très nombreuses applications de TAL
 - Existe pour l'anglais à l'origine, puis d'autre langues + version multilingue
- Des modèles plus récents (Mistral, Llama) sont devenus plus populaires suite à ChatGPT, mais Bert reste d'actualité pour l'analyse (robuste, plus léger, disponible en français...)

BERT

- Points clés
 - BERT peut considérer tous les mots de la phrase comme contexte alors que les modèles précédents se limitaient généralement à une fenêtre autour du mot à modéliser
 - BERT peut distinguer les différents sens d'un mot (jusqu'à un certain point)

BERT en pratique

- Reprend l'idée du « cloze test » de Word2Vec
 - « Masquage » de certains mots
 - Tests pour essayer de les « identifier » dynamiquement d'après leur contexte
 - Jusqu'à obtenir des représentations fiables
- Utilise ensuite la notion de « transformeur » (le T de Bert, GPT, ...) pour calculer une représentation dynamique en fonction du contexte
- Voir des présentations en ligne pour les détails techniques
 - Par exemple: https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

BERT en pratique

- Le modèle original de Google
 - Entraîné sur Wikipedia (2.5 milliards de mots) + un corpus issu de Google Books
 - Grand à l'époque, très petit aujourd'hui
- On dispose de corpus d'entraînement de milliards de mots pour de nombreuses langues (cf. corpus Common Crawl)
 - Débauche de calcul et d'énergie !
 - Heureusement, on peut utiliser des modèles disponibles (pré-entraînés)

Plongements de mots multilingues

- Utile pour la traduction ou l'analyse multilingue
 - Les différentes langues partagent le même espace sémantique
 - Les mots de même sens occupent des positions rapprochées dans l'espace

Source: Hermann and Blunsom, 2013. Cf. https://arxiv.org/abs/1312.6173

Pourquoi le succès de Bert ?

- Bert encode de très nombreuses informations (au-delà de la simple proximité sémantique)
 - Eléments de contexte local et moins local
 - Analyse syntaxique et sémantique
 - Entités nommées, etc.
- Mais il est très difficile de savoir ce qui est encodé exactement dans ce type de modèle
 - Question de recherche active
 - Limite de ces modèles (ils sont très puissants mais ont un côté « boîte noire » difficile à contourner)

BERT vs GPT

- Objectif : prédire les mots manquants dans une phrase incomplète.
 - Exemple : « Le chat ____ sur le canapé » → BERT prédit : "dort".
- Entraînement bidirectionnel : le modèle lit à gauche et à droite du mot masqué → il prend en comptele contexte complet d'une phrase.
- Utilisation principale : Analyse de texte, classification, recherche d'information, reconnaissance d'entités, etc.
- Type d'architecture : encodeur (Transformer encoder).
- BERT ne génère pas de texte (au sens propre) : il comprend et classe, mais ne produit pas de phrases complètes.

GPT vs BERT

- Objectif : prédire le mot suivant dans une séquence de texte
 - Exemple : « Le chat dort sur » → GPT prédit : "le canapé".
- Entraînement unidirectionnel : le modèle ne regarde que vers la gauche
- GPT = Generative Pretrained Transformer (OpenAI, depuis 2018), Llama, Gemini, Claude, Deepseek, Mistral...
- Utilisation principale : Rédaction, dialogue, résumé, traduction, raisonnement, code, etc.
- Type d'architecture : décodeur (Transformer decoder).
- GPT est un modèle génératif : il produit du texte mot par mot, de façon cohérente (y compris des annotations

Succès des modèles GPT

- Les modèles de type GPT sont dits génératifs :
 - Leur atout principal : ils fonctionnent sans entraînement spécifique.
 - Il suffit d'un prompt (instruction en langage naturel) pour obtenir une réponse.
- Cela les rend extrêmement polyvalents
 - Is peuvent s'adapter à de nombreuses tâches : écriture, analyse, aide à la recherche, prototypage, etc.
- Mais : leurs sorties dépendent d'un apprentissage massif, souvent opaque, et d'une logique de probabilités plutôt que de vérification
 - Ils sont puissants, mais parfois peu fiables ou peu reproductibles

Intérêt de BERT pour les SHS

- BERT n'est pas génératif : il « comprend » le texte, mais ne le produit pas
 - Il sert à analyser, classifier, comparer, extraire des entités, etc.
- De nombreux modèles dérivés (CamemBERT, FlauBERT, etc.) ont été entraînés sur des corpus francophones ou spécialisés
 - Voire aussi ModernBERT
 - https://huggingface.co/blog/modernbert
- Il offre une meilleure interprétabilité et adaptabilité à la recherche académique.

Jeux de données disponibles

BERT

- BERT
 - Pour l'anglais, puis de nombreuses autres langues
 - https://github.com/google-research/bert
 - Pour le français
 - Flaubert https://github.com/getalp/Flaubert
 - CamemBert : https://camembert-model.fr/
 - Modèle multilingue (de Google)
 - https://github.com/google-research/bert/blob/master/multilingual.md
 - En pratique, les modèles sont intégrés à des plateformes comme Spacy ou HuggingFace qui en facilitent l'accès (qq lignes de code)

ModernBERT

Coût environnemental

- BERT : environ 110 à 340 millions de paramètres.
 - Entraînement initial sur 4 jours avec 64 TPU v2. Idéal pour les tâches de classification et d'analyse linguistique. Peu coûteux en calcul, et facilement réentraînable localement.
- GPT (ex. GPT-3): 175 milliards de paramètres.
 - Entraînement estimé à environ 3×10²³ FLOPs, soit plusieurs millions de dollars de coût matériel. Nécessite des grappes massives de GPU A100.
- L'écart de coût est d'un facteur de 1 000 à 10 000, selon la taille et l'usage (pour des différences de performance parfois modestes)
 - Les modèles GPT consomment plusieurs MWh d'électricité par phase d'entraînement et restent très onéreux à exécuter en production.

Evaluation, limites et remarques finales

Capacité des modèles à repérer des relations sémantiques

- Similarité ≈ « corrélation » entre mots ?
 - walk walking, walk run, walk stroll
 - Germany Berlin, Germany England
 - dog cat, dog Labrador, dog leash
- Modèles capables de retrouver des régularités linguistiques, voire des connaissances de sens commun
 - Cf. Mikolov (calculs évidemment sur les vecteurs et non sur les mots)
 - "king" "man" + "woman" = "queen" (en fait un peu bidon...)
 - "mice" "mouse" + "door" = "doors" (sg. / pl.)

Evaluation

- Evaluer la qualité d'un plongement de mots est un problème ouvert
 - Qu'est-ce qui est encodé ?
 - Syntaxe ? (ou juste du par cœur ?)
 - Sémantique ? (oui, mais sous quelle forme ?)
- En pratique, utilisation de benchmarks avec des ensembles de tests (les modèles sont multitâches)
 - Glue, SuperGLue, etc. (https://super.gluebenchmark.com/)

BERT pour une langue à morphologie riche

Limites et évolutions

- Défauts de Word2vec
 - Une seule représentation par mot (même si mot ambigu)
 - Pas de traitement de la morphologie
- BERT est plus précis
 - Adaptable à différentes tâches (entités nommées, analyse de sentiments) et domaines
 - Possibilités de le réentraîner
- Modèles plus récents (de type GPT) plus performants
 - Modèles génératifs (Mistral, Llama...)
 - Production d'annotation vue comme une tâche de génération

Biais et questions éthiques

- Beautiful teacher = traduction au féminin!
- Smart teacher = traduction au masculin!

Biais et questions éthiques

- Les plongements de mots reflètent les bais des corpus sur lesquels ils ont été appris !
 - How to make a racist AI without really trying https://gist.github.com/rspeer/ef750e7e407e04894cb3b78a82d66aed (Blog, Robyn Speer 13/07/2017)
 - Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them. http://u.cs.biu.ac.il/~gonenhi/ (Hila Gonen and Yoav Goldberg, NAACL 2019)

Conclusion

Conclusion

- Plongements de mots
 - Un composant essentiel du TAL aujourd'hui
 - Modèles puissants, faciles à intégrer
 - Similarité entre mots, mais aussi bien d'autres types de connaissances

• Limites

- Modèles (relativement) coûteux à entraîner
- Aspect boîte noire (pas d'accès direct, difficulté d'interprétation)
- De nombreux biais, coût environnemental des techniques liées