Lecture 1: Introductory remarks February 11, 2020 12:18 PM
Goals of this course
Machine learning
□ Descriptive ML
[Predictive ML
[] Generative ML
☐ Learning ☐ Notation
Goals
· Learn to use basic ML techniques
- IN I I I
■ Improve ML — New algorithms
New models
New metrics
New paradigms → Quantum ML

f(x): X is checked for { cond is and the proper action is implemented.

But how do we learn?

We see/observe

A) and try to fit with some known outcome

D) Prediction

Instance 1
$$\triangle D$$
 Output 1 Output i \in Set of outputs

2 \longleftarrow Output 2 \longrightarrow XIt is smaller than

i instance \mathcal{D}_{3}^{2} .

We infer the relation.

Example

Apple — 0

Orrange — 0

Snake — 1

Banana — 0

Elephant — 1

Input

This is known as "classification".

Regression

Both classification & regression come with

some target values and the goal is to estimate / predict

the outcome for some unseen instance.

B) try to recognize some pattern in the data.

Sometimes only the instances are given and the task is to draw some conclusion / describe the data.

C try to mimic the data we get: learning to speak
draw
sing
play music

C try to learn a procedure: how to play a game,...

* Learning ?!!

State 1 Action 2 — Reward!

State 2, a 2 — Reward 2

Tapet

Loss A

Example

Minimize

Reward ~ - Aloss

change in H

loss

\$1, right -> 1,70

\$1, left -> 12<0

Policy

go against the derivative

* Reinforcement learning

Sample 2 X(i):
$$(x_1^{(i)}, x_2^{(i)}, \dots, x_{n_f}^{(i)}) \rightarrow Properteas$$

of each

We refer to each property (column)

as a "feature"

Samples = n_S

example:

Measurement 1:
$$(P^{(1)}, V^{(1)}, n^{(1)}) \longrightarrow T^{(1)}$$

 $z : (P^{(2)}, V^{(2)}, n^{(2)}) \longrightarrow T^{(2)}$ What's $X \notin Y$?
What's $n_p \notin n_s$?