Wahrscheinlichkeitsrechnung und Statistik

8. Vorlesung - 2017

Bemerkung:

Sei $X = (X_1, \dots, X_n)$ Zufallsvektor. Der n dimensionale Vektor

$$E(X) = (E(X_1), \ldots, E(X_n))$$

ist der Erwartungswert des Zufallsvektors X.

Beispiel: Seien $X, Y \sim \mathcal{N}(0,1)$. (X,Y) sind die Koordinaten eines zufälligen Punktes in der Ebene. Sei K ein zufälliger Kreis, so dass $(X,Y) \in K$ und (0,0) ist der Mittelpunkt des Kreises K. Man bestimme den Erwartungswert für den Flächeninhalt des Kreises K!

Mittelwert E(X) und Varianz V(X) in Matlab

Werte der ZG
$$X$$
 seien $x = [x_1, \dots, x_n]$

$$\Rightarrow mean(x) = \frac{1}{n}(x_1 + \dots + x_n)$$

$$mean(x) \approx E(X) \text{ wenn } n \text{ groß ist}$$

$$\Rightarrow var(x, 1) = \frac{1}{n} \sum_{i=1}^{n} (x_i - mean(x))^2$$

$$var(x, 1) \approx V(X) \text{ wenn } n \text{ groß ist}$$

Definition 19

 $cov(X, Y) = E((X - E(X)) \cdot (Y - E(Y)))$ ist die **Kovarianz** der Zufallsgrößen X und Y.

Kovarianz cov(X, Y) in Matlab:

- \blacktriangleright Werte der ZG X, Y seien $x = [x_1, \dots, x_n]$ bzw. $y = [y_1, \dots, y_n]$
- ▶ man bezeichne:

$$CV := \frac{1}{n} \sum_{i=1}^{n} (x_i - mean(x))(y_i - mean(y))$$

▶ in Matlab:

$$\Rightarrow \cos(x, y, 1) = \begin{pmatrix} var(x, 1) & CV \\ CV & var(y, 1) \end{pmatrix}$$

Satz 17

Sind X, Y ZG (diskret oder stetig), dann gilt:

- (1) $V(X) = E(X^2) (E(X))^2$.
- (2) $V(aX + b) = a^2V(X) \forall a, b \in \mathbb{R}$.
- (3) X und Y unabhängig $\Rightarrow E(X \cdot Y) = E(X) \cdot E(Y)$; V(X + Y) = V(X) + V(Y).
- (4) cov(X, X) = V(X).
- (5) $\operatorname{cov}(X, Y) = E(X \cdot Y) E(X)E(Y)$.
- (6) $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab cov(X, Y)$ $\forall a, b \in \mathbb{R}.$

Verteilung	Erwartungswert	Varianz
Bin(n,p)	пр	np(1-p)
$Poisson(\lambda)$	λ	λ
Unif [a, b]	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\mathcal{N}(\mu, \sigma^2)$	μ	σ^2
Gamma(lpha,eta)	$\alpha\beta$	$\alpha \beta^2$
$Exp(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Definition 18

 $(X_n)_n$ ist eine **Folge von unabhängigen ZG**, wenn $\forall \{i_1,\ldots,i_k\} \subset \mathbb{N}$ die ZG X_{i_1},\ldots,X_{i_k} sind unabhängig, d.h.

$$P(X_{i_1} \leq x_{i_1}, \dots, X_{i_k} \leq x_{i_k}) = P(X_{i_1} \leq x_{i_1}) \cdot \dots \cdot P(X_{i_k} \leq x_{i_k})$$

 $\forall x_{i_1},\ldots,x_{i_k} \in \mathbb{R}.$

Zum Beispiel:

ZG X_n = die angezeigte Zahl im n-ten Wurf eines Würfels $\Rightarrow (X_n)_n$ ist eine Folge von unabhängigen ZG

Definition 19

Die Folge $(X_n)_n$ von ZG konvergiert fast sicher zur ZG X, wenn

$$P(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\}) = 1.$$

Bezeichnung: $X_n \stackrel{\text{f.s.}}{\to} X$

1. Beispiel:

$$X_n \sim \begin{pmatrix} -\frac{1}{n} & \frac{1}{n} \\ 0.5 & 0.5 \end{pmatrix} \Rightarrow X_n \xrightarrow{\text{f.s.}} ???$$

2. Beispiel:

 $\Omega:=[0,1]$ Grundraum, $\mathcal{K}:=\mathcal{B}([0,1])$ Borel- σ -Algebra auf [0,1]; sei P das Wahrscheinlichkeitsmaß auf [0,1], d.h. für alle $\alpha<\beta$ aus [0,1] berechnet man

$$P([\alpha, \beta]) = P([\alpha, \beta]) = P((\alpha, \beta]) = P((\alpha, \beta)) := \beta - \alpha$$

P entspricht dem Lebesgue Maß auf [0,1] (siehe 2. Vorlesung)

$$X_n(\omega) = \omega + \omega^n, \ \omega \in [0, 1], n \ge 1 \Rightarrow X_n \xrightarrow{\text{f.s.}}$$
 ???
$$\lim_{n \to \infty} X_n(\omega) = \begin{cases} \omega & \text{für } \omega \in [0, 1) \\ 2 & \text{für } \omega = 1 \end{cases}$$

Sei $X(\omega) = \omega$ für alle $\omega \in \Omega$

$$\Rightarrow \{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = \omega\} = [0, 1)$$
$$\Rightarrow P(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = \omega\}) = P([0, 1)) = 1$$

Relative und absolute Häufigkeit

Sei A ein zufälliges Ereignis das in einem Experiment auftaucht; man wiederholt das Experiment n mal (unter denselben gegebenen Bedingungen); man bezeichnen mit $k_n(A)$ wie oft das Ereignis A auftaucht; die relative Häufigkeit des Ereignisses A ist die Zahl $h_n(A) = \frac{k_n(A)}{n}$; die absolute Häufigkeit des Ereignisses A ist die Zahl $k_n(A)$.

Experiment: Man wirft *n* mal eine Münze; *A*: man erhält *Zahl*

n Anzahl	absolute Häufigkeit	relative Häufigkeit
Durchführungen Exp.	$k_n(A)$	$h_n(A)$
100	48	0.48
1000	497	0.497
10000	5005	0.5005

$$h_n(A) \xrightarrow{f.s.} \frac{1}{2}$$
 (siehe Satz 20)

Das Starke Gesetz der großen Zahlen (SGGZ)

Definition 20

Die Folge von ZG $(X_n)_n$ mit $E|X_n|<\infty$ für alle $n\in\mathbb{N}$ erfüllt das starke Gesetz der großen Zahlen (SGGZ) wenn

$$\frac{1}{n}\sum_{k=1}^{n}\left(X_{k}-E(X_{k})\right)\xrightarrow{f.s.}0.$$

Das Starke Gesetz der großen Zahlen (SGGZ)

Satz 18

Sei $(X_n)_n$ Folge von unabhängigen ZG mit $E|X_n|<\infty$ für alle $n\in\mathbb{N}$ und $\sum_{n=1}^\infty \frac{1}{n^2}V(X_n)<\infty \Rightarrow (X_n)_n$ erfüllt das **SGGZ**.

Satz 19

Sei $(X_n)_n$ Folge von unabhängigen ZG mit der gleichen Verteilung wie die ZG X (d.h. $E(X_n)=E(X)$, $V(X_n)=V(X)$ für alle $n\in\mathbb{N})\Rightarrow (X_n)_n$ erfüllt das **SGGZ**, d.h.

$$\frac{1}{n}(X_1+\cdots+X_n)\stackrel{f.s.}{\longrightarrow} E(X).$$

Würfeln: Matlab Simulation Gesetz der großen Zahlen

```
clear all
clf
hold on
n = 350:
x = unidrnd(6,1,n);
for i=1:n
 s(i)=sum(x(1:i))/i;
y(i)=i;
plot(y(i),s(i),'b.')
plot(y(i), 3.5, 'g-')
end
plot(y,s,'r-')
xlabel('Anzahl Würfe')
ylabel('Durchschnittliche Summe der Zahlen')
\Rightarrow x(1:7)=[1, 4, 6, 6, 2, 1, 1]
\Rightarrow s(1:7)=[1, 2.5, 3.6667, 4.25, 3.8, 3.3333, 3]
```

Gesetz der großen Zahlen

Satz 20

Sei A ein zufälliges Ereignis das in einem Experiment auftaucht; man wiederholt das Experiment n mal (unter denselben gegebenen Bedingungen).

Das Gesetz der großen Zahlen: je öfter man das Zufallsexperiment durchführt (also je größer n), desto besser approximiert die relative Häufigkeit $h_n(A)$ des Ereignisses A seine echte Wahrscheinlichkeit P(A):

$$h_n(A) \xrightarrow{f.s.} P(A)$$
, wenn $n \to \infty$.

In der Praxis: $h_n(A) \approx P(A)$, wenn n hinreichend groß ist! Beweis: Man benutzt Satz 19.