Announcements

- Homework 4 due today
- Homework 5 online due next week

Last Time

- Dynamic Programming
- Longest Common Subsequence

Dynamic Programming

Our final general algorithmic technique:

- 1. Break problem into smaller subproblems.
- 2. Find recursive formula solving one subproblem in terms of simpler ones.
- 3. Tabulate answers and solve all subproblems.

```
\begin{aligned} & \text{LCSS}(A_{1}A_{2}...A_{n}, B_{1}B_{2}...B_{m}) = \\ & \text{Max}(\text{LCSS}(A_{1}A_{2}...A_{n-1}, B_{1}B_{2}...B_{m}), \\ & \text{LCSS}(A_{1}A_{2}...A_{n}, B_{1}B_{2}...B_{m-1}), \\ & \text{[LCSS}(A_{1}A_{2}...A_{n-1}, B_{1}B_{2}...B_{m-1}) + 1]) \\ & \text{[where the last option is only allowed if } A_{n} = B_{m}] \end{aligned}
```

```
LCSS (A_1A_2...A_n, B_1B_2...B_m)
  Initialize Array T[0...n, 0...m]
    For i = 0 to n
                      O(nm) iterations
    For j = 0 to m
      If (i = 0) OR (j = 0)
      T[i,j] \leftarrow 0
     Else If A_i = B_i
       T[i,j] \leftarrow \max(T[i-1,j],T[i,j-1],T[i-1,j-1]+1)
      Else
        T[i,j] \leftarrow \max(T[i-1,j],T[i,j-1])
 Return T[n,m]
```

Today

- Notes about design and analysis of dynamic programs
- Knapsack

Notes about DP

- General Correct Proof Outline:
 - Prove by induction that each table entry is filled out correctly
 - Use base-case and recursion

Notes about DP

- General Correct Proof Outline:
 - Prove by induction that each table entry is filled out correctly
 - Use base-case and recursion
- Runtime of DP:
 - Usually[Number of subproblems]x[Time per subproblem]

More Notes about DP

- Finding Recursion
 - Often look at first or last choice and see what things look like without that choice

More Notes about DP

- Finding Recursion
 - Often look at first or last choice and see what things look like without that choice
- Key point: Picking right subproblem
 - Enough information stored to allow recursion
 - Not too many

Problem: Knapsack

You are a burglar and are in the process of robbing a home. You have found several valuable items, but the sack you brought can only hold so much weight, what is the best combination of items to steal?

Problem: Knapsack

You are a burglar and are in the process of robbing a home. You have found several valuable items, but the sack you brought can only hold so much weight, what is the best combination of items to steal?

Alternative formulations:

- Packing for a trip
- Deciding what modules to put on a spacecraft

Specification

You have an available list of items. Each has a (non-negative integer) weight, and value. Your sack also has a capacity.

Specification

- You have an available list of items. Each has a (non-negative integer) weight, and value. Your sack also has a capacity.
- The goal is to find the collection of items so that:
- 1. The total weight of all the items is less than the capacity
- 2. Subject to 1, the total value is as large as possible.

Variations

There are two slight variations of this problem:

- 1. Each item can be taken as many times as you want.
- 2. Each item can be taken at most once.

Question: Knapsack

Given the knapsack problem below (only one copy of each item), what is the best set of items to take?

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

Question: Knapsack

Given the knapsack problem below (only one copy of each item), what is the best set of items to take?

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

BD

Weight = 6 Value = \$9

Greedy Algorithms Don't Work

Greedy Algorithms Don't Work

Capacity = 6

Most valuable item

Item	Weight	Value
A	6	\$ 10
В	3	\$ 9
С	3	\$ 9

Greedy: Optimal:

A = \$10 B+C = \$18

Greedy Algorithms Don't Work

Capacity = 6

Most valuable item

Biggest	Value/	/Wei	ight
----------------	--------	------	------

Item	Weight	Value
A	6	\$ 10
В	3	\$ 9
С	3	\$ 9

Item	Weight	Value
A	4	\$ 5
В	3	\$ 3
С	3	\$ 3

Greedy:

A = \$10

Optimal:

B+C = \$18

Greedy:

A = \$5

Optimal:

B+C = \$6

What are our subproblems?

 If you make one choice of an item to go into the bag, what is left?

- If you make one choice of an item to go into the bag, what is left?
 - Remaining items must have total weight at most Capacity
 - Weight of item

- If you make one choice of an item to go into the bag, what is left?
 - Remaining items must have total weight at most Capacity –
 Weight of item
 - Total value equalsValue of item + Value of other items

- If you make one choice of an item to go into the bag, what is left?
 - Remaining items must have total weight at most Capacity –
 Weight of item
 - Total value equalsValue of item + Value of other items
 - Want to maximize value of other items subject to their weight not exceeding Capacity-Weight of chosen item

- If you make one choice of an item to go into the bag, what is left?
 - Remaining items must have total weight at most Capacity –
 Weight of item
 - Total value equalsValue of item + Value of other items
 - Want to maximize value of other items subject to their weight not exceeding Capacity-Weight of chosen item
- Subproblem: BestValue(Capacity').

What is BestValue(C)?

What is BestValue(C)?

Possibilities:

- No items in bag
 - Value = 0

What is BestValue(C)?

Possibilities:

- No items in bag
 - Value = 0
- Item i in bag
 - Value = BestValue(C-weight(i)) + value(i)

What is BestValue(C)?

Possibilities:

- No items in bag
 - Value = 0
- Item i in bag
 - Value = BestValue(C-weight(i)) + value(i)

```
Recursion: BestValue(C) = Max(0, Max_{wt(i) \le C} (val(i)+BestValue(C-wt(i)))
```

```
Knapsack(Wt, Val, Cap)
  Create Array T[0...Cap]
  For C = 0 to Cap
    T[C] \leftarrow 0
    For items i with Wt(i) \leq C
       If T[C] < Val(i) + T[C-Wt(i)]
         T[C] \leftarrow Val(i) + T[C-Wt(i)]
  Return T[Cap]
```

```
Knapsack(Wt, Val, Cap)
  Create Array T[0...Cap]
  For C = 0 to Cap
                         Subproblems
    T[C] \leftarrow 0
    For items i with Wt(i) \leq C
       If T[C] < Val(i) + T[C-Wt(i)]
         T[C] \leftarrow Val(i) + T[C-Wt(i)]
  Return T[Cap]
```

```
Knapsack (Wt, Val, Cap)
  Create Array T[0...Cap]
  For C = 0 to Cap
                         Subproblems
    T[C] \leftarrow 0
    For items i with Wt(i) \leq C
       If T[C] < Val(i) + T[C-Wt(i)]
         T[C] \leftarrow Val(i) + T[C-Wt(i)]
  Return T[Cap]
```

O(#items)
time/subproblem

```
Knapsack (Wt, Val, Cap)
  Create Array T[0...Cap]
  For C = 0 to Cap
                         Subproblems
    T[C] \leftarrow 0
    For items i with Wt(i) \leq C
       If T[C] < Val(i) + T[C-Wt(i)]
         T[C] \leftarrow Val(i) + T[C-Wt(i)]
  Return T[Cap]
```

O(#items)
time/subproblem

Runtime: O([Cap] [#Items])

Example

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

С	0	1	2	3	4	5	6
BestValue							

Example

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

С	0	1	2	3	4	5	6
BestValue	\$0						

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

С	0	1	2	3	4	5	6
BestValue	\$0	\$1					

\$0 or \$1+\$0

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

С	0	1	2	3	4	5	6
BestValue	\$0	\$1	\$4				

\$0 or \$1+\$1 or \$4+\$0

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

\$0 or \$1+\$4 or \$4+\$1 or \$3+\$0

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

 C
 0
 1
 2
 3
 4
 5
 6

 BestValue
 \$0
 \$1
 \$4
 \$5
 \$8

\$0 or \$1+\$5 or \$4+\$4 or \$3+\$1 or \$5+\$0

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

\$0 or \$1+\$8 or \$4+\$5 or \$3+\$4 or \$5+\$1

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

С	0	1	2	3	4	5	6
BestValue	\$0	\$1	\$4	\$5	\$8	\$9	\$12

\$0 or \$1+\$9 or \$4+\$8 or \$3+\$5 or \$5+\$4

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

С	0	1	2	3	4	5	6
BestValue	\$0	\$1	\$4	\$5	\$8	\$9	\$12

В

\$0 or \$1+\$9 or \$4+\$8 or \$3+\$5 or \$5+\$4

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

С	0	1	2	3	4	5	6
BestValue	\$0	\$1	\$4	\$5	\$8	\$9	\$12

3

\$0 or \$1+\$5 or \$4+\$4 or \$3+\$1 or \$5+\$0

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

С	0	1	2	3	4	5	6
BestValue	\$0	\$1	\$4	\$5	\$8	\$9	\$12
	R	B		R		B	

\$0 or \$1+\$1 or \$4+\$0

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

$$B+B+B = $12$$

С	0	1	2	3	4	5	6
BestValue	\$0	\$1	\$4	\$5	\$8	\$9	\$12

B

B

B

- If we put some item in the sack:
 - Other items must have total weight at most
 Capacity Weight(chosen item)
 - Total value is value(other items)+value(chosen item)

- If we put some item in the sack:
 - Other items must have total weight at most
 Capacity Weight(chosen item)
 - Total value is value(other items)+value(chosen item)
 - Chosen item cannot be picked again.

- If we put some item in the sack:
 - Other items must have total weight at most
 Capacity Weight(chosen item)
 - Total value is value(other items)+value(chosen item)
 - Chosen item cannot be picked again.
- Recursion needs to keep track of remaining capacity and the item that cannot be used.

Let's make subproblem

BestValue_{≠i}(Cap) – the best value achievable without using item i that doesn't go over capacity.

Let's make subproblem

BestValue_{≠i}(Cap) – the best value achievable without using item i that doesn't go over capacity.

Can we make a recursion with this?

Let's make subproblem

BestValue_{≠i}(Cap) – the best value achievable without using item i that doesn't go over capacity.

Can we make a recursion with this?

No!

Let's make subproblem

BestValue_{≠i}(Cap) – the best value achievable without using item i that doesn't go over capacity.

Can we make a recursion with this?

No!

After using item j, the remaining items cannot include i or j.

BestValue excluding 2 items? No... recursive calls would need to exclude a 3rd and so on.

BestValue excluding 2 items? No... recursive calls would need to exclude a 3rd and so on.

BestValue_s(Cap) – best value achievable using only items from S with total weight at most Cap.

BestValue excluding 2 items? No... recursive calls would need to exclude a 3rd and so on.

BestValue_s(Cap) – best value achievable using only items from S with total weight at most Cap.

 $BV_S(Cap) = max_{i \in S}(Val(i) + BV_{S-i}(Cap-Wt(i)))$ [or 0]

BestValue excluding 2 items? No... recursive calls would need to exclude a 3rd and so on.

BestValue_s(Cap) – best value achievable using only items from S with total weight at most Cap.

 $BV_S(Cap) = max_{i \in S}(Val(i) + BV_{S-i}(Cap-Wt(i)))$ [or 0] We have a recursion!

BestValue excluding 2 items? No... recursive calls would need to exclude a 3rd and so on.

BestValue_s(Cap) – best value achievable using only items from S with total weight at most Cap.

 $BV_S(Cap) = max_{i \in S}(Val(i) + BV_{S-i}(Cap-Wt(i)))$ [or 0] We have a recursion!

Unfortunately, this is too slow. The number of subproblems is more than 2^{#items}.

Need to try something different.

- Need to try something different.
- Imagine items coming along a conveyor belt.
 You decide one at a time whether or add to your sac.

- Need to try something different.
- Imagine items coming along a conveyor belt.
 You decide one at a time whether or add to your sac.
- Last item: either add or don't.

- Need to try something different.
- Imagine items coming along a conveyor belt.
 You decide one at a time whether or add to your sac.
- Last item: either add or don't.
 - Add: BestValue_{<n-1}(Cap-Wt(n)) + Val(n)

- Need to try something different.
- Imagine items coming along a conveyor belt.
 You decide one at a time whether or add to your sac.
- Last item: either add or don't.
 - Add: BestValue_{<n-1}(Cap-Wt(n)) + Val(n)
 - Don't add: BestValue_{≤n-1}(Cap)

- Need to try something different.
- Imagine items coming along a conveyor belt.
 You decide one at a time whether or add to your sac.
- Last item: either add or don't.
 - Add: BestValue_{<n-1}(Cap-Wt(n)) + Val(n)
 - Don't add: BestValue_{≤n-1}(Cap)
- We only need subproblems of the form BestValue_{<k}(Cap).

BestValue $_{\leq k}$ (Cap) = Highest total value of items with total weight at most Cap using only items from the first k.

BestValue $_{\leq k}$ (Cap) = Highest total value of items with total weight at most Cap using only items from the first k.

Base Case: BestValue_{≤ 0}(C) = 0

BestValue $_{\leq k}$ (Cap) = Highest total value of items with total weight at most Cap using only items from the first k.

Base Case: BestValue_{≤ 0}(C) = 0

Recursion: BestValue $_{\leq k}$ (C) is the maximum of

1. BestValue_{$\leq k-1$}(C)

BestValue $_{\leq k}$ (Cap) = Highest total value of items with total weight at most Cap using only items from the first k.

Base Case: BestValue_{≤ 0}(C) = 0

Recursion: BestValue $_{\leq k}$ (C) is the maximum of

- 1. BestValue_{$\leq k-1$}(C)
- 2. BestValue_{$\leq k-1$}(C- Wt(k))+Val(k) [where this is only used if Wt(k) \leq Cap]

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

Cap	0	1	2	3	4	5	6
Ø							
А							
AB							
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А							
AB							
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0						
AB							
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1					
AB							
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB							
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0						
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1					
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4				
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5			
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC							
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0						
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1					
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4				
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5			
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5		
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD							

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0						

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1					

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4				

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5			

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5	\$5		

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5	\$5	\$7	

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5	\$5	\$7	\$9

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5	\$5	\$ 7	\$9

 \bigcup

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$0	\$1	\$1	\$1	\$1	\$1	\$1
AB 🥌	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5	\$5	\$ 7	\$9

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

Cap	0	1	2	3	4	5	6
Ø	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$	\$1	\$1	\$1	\$1	\$1	\$1
AB 🔨	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5	\$5	\$7	\$9

P

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

Cap	0	1	2	3	4	5	6
ØF	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$8	\$1	\$1	\$1	\$1	\$1	\$1
AB 🔨	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5	\$5	\$7	\$9

P

Item	Weight	Value
A	1	\$ 1
В	2	\$ 4
С	3	\$ 3
D	4	\$ 5

Capacity:

6

$$B+D = $9$$

Cap	0	1	2	3	4	5	6
ØF	\$0	\$0	\$0	\$0	\$0	\$0	\$0
А	\$8	\$1	\$1	\$1	\$1	\$1	\$1
AB 🥌	\$0	\$1	\$4	\$5	\$5	\$5	\$5
ABC	\$0	\$1	\$4	\$5	\$5	\$7	\$8
ABCD	\$0	\$1	\$4	\$5	\$5	\$7	\$ 9

P

Number of Subproblems: O([Cap] [#items])

- Number of Subproblems: O([Cap] [#items])
- Time per subproblem O(1)
 - Only need to compare two options.

- Number of Subproblems: O([Cap] [#items])
- Time per subproblem O(1)
 - Only need to compare two options.
- Final runtime O([Cap][#items]).