[Aula 20] Máquina de Turing – Modelos equivalentes

Prof. João F. Mari joaof.mari@ufv.br

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 8.
 - + Slides disponibilizados pelo autor do livro.

HOPCROFT J. E.; MOTWANI, R.; ULLMAN, J. D.
 Introdução a teoria dos autômatos, linguagens e computação, 1. Ed., Campus, 2002.

Modelos equivalentes à Maquina de Turing

- A máquina de Turing é o mais geral dispositivo de computação
 - Todos os demais modelos e máquinas propostos, bem como as modificações da máquina de Turing possuem, no máximo, o mesmo poder computacional da máquina de Turing.

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

Modelos equivalentes à Maquina de Turing

- Modelos Equivalentes à Máquina de Turing
 - Autômato com Múltiplas Pilhas
 - Máquina de Turing Não-Determinística
 - Máquina de Turing com Fita Infinita à Esquerda e à Direita
 - Máquina de Turing com Múltiplas Fitas
 - Máquina de Turing Multidimensional
 - Máquina de Turing com Múltiplas Cabeças
 - Modificações combinadas sobre a Máquina de Turing
- Todas essas variações sobre a Máquina de Turing podem ser simuladas por uma Máquina de Turing tradicional.

Máquina de Turing com múltiplas trilhas

- A fita da máquina de Turing pode ser composta por um número finito K de trilhas.
 - O controle finito lê, verticalmente, uma k-tupla.
 - Cada componente da tupla é um símbolo lido de cada trilha
 - Não aumenta o poder computacional da MT.
- **[EX]** = K = 3
 - $-\delta(q_1, [a,b,c]) = (q_2, [d,e,f], D)$
 - Estou no estado q₁, leio:
 - (a) da trilha 1, (b) da trilha 2, (c) da trilha 3.
 - Vou para o estado q₂, escrevo:
 - (d) na trilha 1, (e) na trilha 2 e (f) na trilha 3.
 - Me movimento para a Direita.

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] Máquina de Turing – Número primo

 Projetar uma máquina de Turing que lê na primeira trilha um número em binário > 2, delimitado pelos símbolos ⊄ e \$, e determina se ele é primo.

[EX] Máquina de Turing – Número primo

Algoritmo:

- -1) Escrever o divisor 2_{10} (10₂) na 2^{a} trilha.
- 2) Copiar o número da 1º trilha na 3º trilha
- 3) Subtrair quantas vezes for possível, o número da 2º trilha do número da 3º trilha, e armazenar o resultado na trilha 3.
 - a) Se o resultado na 3º trilha for 0:
 - a1) Se o núm. na 1º trilha == núm. na 2º trilha → PRIMO!
 - a2) Se o núm. na 1ª trilha != núm. na 2ª. Trilha → NÃO PRIMO!
 - b) Se o resultado na 3ª trilha for != 0:
 - Incrementa-se o divisor e retoma o algoritmo a partir do passo
 (2).

Prof. João Fernando Mari (joaof.mari@ufv.br)

/

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] MT – Número primo \mid (1) q_0

- Percorre a número na fita, da esquerda para a direita, até localizar o símbolo \$ (final do número).
 - $-\delta(q_0, [\not\subset, \beta, \beta]) = (q_0, [\not\subset, \beta, \beta], D)$
 - $-\delta(q_0, [d, \beta, \beta]) = (q_0, [d, \beta, \beta], D)$
 - $-\delta(q_0, [\$, \beta, \beta]) = (q_1, [\$, \beta, \beta], E)$

			•		
⊄	1	1	1	\$	β
β	β	β	β	β	β
β	β	β	β	β	β

[EX] MT – Número primo | (2) q_1 , q_2 e q_3

- Escreve o número binário 10_2 (2 na base decimal) na segunda trilha da fita.
 - $-\delta(q_1, [d, β, β]) = (q_2, [d, 0, β], E)$ Escreve o 0 do 10.
 - $-\delta(q_2, [d, β, β]) = (q_3, [d, 1, β], E)$ Escreve o 1 do 10.
 - $-\delta(q_3, [d, \beta, \beta]) = (q_3, [d, 0, \beta], E)$
 - Preenche com zeros a esquerda do número binário 10.
 - $-\delta(q_3, [\not\subset, \beta, \beta]) = (q_4, [\not\subset, \beta, \beta], D)$

	1				
С	1	1	1	\$	β
β	0	1	0	β	β
β	β	β	β	β	β

Prof. João Fernando Mari (joaof.mari@ufv.br)

9

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] MT – Número primo | (3) q_4

- Copia o número na trilha 1 para a trilha 3:
 - $-\delta(q_4, [0, d, e]) = (q_4, [0, d, 0], D)$
 - $-\delta(q_4, [1, d, e]) = (q_4, [1, d, 1], D)$
 - $-\delta(q_4, [\$, \beta, \beta]) = (q_5, [\$, \beta, \beta], E)$

			₽		
С	1	1	1	\$	β
β	0	1	0	β	β
β	1	1	1	β	β

[EX] MT – Número primo | (4) q_5 e q_6

- Subtrai o número na trilha 2 do número da trilha 3 e armazena o resultado na trilha 3.
 - $-\delta(q_5, [d, 0, 0]) = (q_5, [d, 0, 0], E)$
 - $-\delta(q_5, [d, 0, 1]) = (q_5, [d, 0, 1], E)$
 - $-\delta(q_5, [d, 1, 1]) = (q_5, [d, 1, 0], E)$
 - $\delta(q_5, [d, 1, 0]) = (q_6, [d, 1, 1], E)$ "Peguei emprestado" 1
 - $-\delta(q_5, [⊄, β, β]) = (q_7, [⊄, β, β], D)$ → Resultado final é POSITIVO
 - Em q₅ eu não "emprestei" nada dos dígitos a esquerda.
 - Eu vou para q₇ quando o resultado é **positivo.**
 - $-\delta(q_6, [d, 1, 1]) = (q_6, [d, 1, 1], E)$
 - $-\delta(q_6, [d, 1, 0]) = (q_6, [d, 1, 0], E)$
 - $-\delta(q_6, [d, 0, 0]) = (q_6, [d, 0, 1], E)$
 - $\delta(q_6, [d, 0, 1]) = (q_5, [d, 0, 0], E) → Não estou "devendo" mais.$
 - − $\delta(q_6, [⊄, β, β]) = (q_9, [⊄, β, β], D)$ → Resultado final é NEGATIVO
 - Em q₆ eu "emprestei" dos dígitos a esquerda.
 - Quando o resultado e **negativo**, eu vou para q₉ (é impossível subtrair).

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] MT – Número primo | (5) $q_7 e q_8$

- Compara o número na trilha 3 com 0:
 - Se igual a 0 vai para q_{12} (3a no algoritmo);
 - Se for diferente vai para q_8 (nova subtração).
 - $\delta(q_7, [d, d, 0]) = (q_7, [d, d, 0], D)$
 - $\delta(q_7, [\$, \beta, \beta]) = (q_{12}, [\$, \beta, \beta], E)$
 - − T3 igual a 0 \rightarrow Vai para q_{12} (Etapa 7);
 - $\delta(q_7, [d, d, 1]) = (q_8, [d, d, 1], D)$
 - T3 dif. de 0 \rightarrow Vai para q8;
 - $\delta(q_8, [d, d, d]) = (q_8, [d, d, d], D)$
 - $\delta(q_8, [\$, \beta, \beta]) = (q_5, [\$, \beta, \beta], E)$
 - Retorna o controle para o final da palavra e inicia uma nova subtração (q_5).

[EX] MT – Número primo | (6) q_9 , q_{10} e q_{11}

- Quando não é mais possível subtrair:
 - O controle finito volta para a direita (q_9) para iniciar o processo de incremento do número na Trilha 2 $(q_{10} e q_{11})$.
 - $\delta(q_9, [d, d, d]) = (q_9, [d, d, d], D)$
 - $\delta(q_9, [\$, \beta, \beta]) = (q_{10}, [\$, \beta, \beta], E)$
 - Caminha para a direita (até final do número (\$)).
 - $\delta(q_{10}, [d, 1, d]) = (q_{10}, [d, 0, d], E)$
 - Soma e "vai um"
 - $\delta(q_{10}, [d, 0, d]) = (q_{11}, [d, 1, d], E)$
 - Soma e não "vai um" (fim da op. de incremento).
 - $\delta(q_{11}, [d, 1, d]) = (q_{11}, [d, 1, d], E)$
 - $\delta(q_{11}, [d, 0, d]) = (q_{11}, [d, 0, d], E)$
 - $\delta(q_{11}, [\not \subset, \beta, \beta]) = (q_4[\not \subset, \beta, \beta], D)$
 - Caminha até a esquerda (até o início do número (⊄)).

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] MT – Número primo | (7) q_{12} e q_{13}

- Compara se o valor na trilha 1 é igual ao valor na trilha 2.
 - Se forem iguais, a MT vai para q_{13} (estado final).
 - O número na trilha 1 É PRIMO.
 - Se forem diferentes, a MT encontra uma transição indefinida, parando em um estado não final.
 - O número na trilha 1 NÃO É PRIMO.
 - $-\delta(q_{12}, [0, 0, d]) = (q_{12}, [0, 0, d], E)$
 - $-\delta(q_{12}, [1, 1, d]) = (q_{12}, [1, 1, d], E)$
 - $-\delta(q_{12}, [\not\subset, \beta, \beta]) = (q_{13}[\not\subset, \beta, \beta], D)$

[EX] MT – Número primo (FINAL)

 q_0

 $\delta(q_0, [\not\subset, \beta, \beta]) = (q_0, [\not\subset, \beta, \beta], D)$ $\delta(q_0, [d, \beta, \beta]) = (q_0, [d, \beta, \beta], D)$ $\delta(q_0, [\$, \beta, \beta]) = (q_1, [\$, \beta, \beta], E)$

q_1, q_2, q_3

$$\begin{split} &\delta(q_1, [d, \beta, \beta]) = (q_2, [d, 0, \beta], E) \\ &\delta(q_2, [d, \beta, \beta]) = (q_3, [d, 1, \beta], E) \\ &\delta(q_3, [d, \beta, \beta]) = (q_3, [d, 0, \beta], E) \\ &\delta(q_3, [\not\subset, \beta, \beta]) = (q_4, [\not\subset, \beta, \beta], D) \end{split}$$

q⊿

 $\delta(q_4, [0, d, e]) = (q_4, [0, d, 0], D)$ $\delta(q_4, [1, d, e]) = (q_4, [1, d, 1], D)$ $\delta(q_4, [\$, \beta, \beta]) = (q_5, [\$, \beta, \beta], E)$ $q_5 e q_6$

 $\delta(q_5, [d, 0, 0]) = (q_5, [d, 0, 0], E)$ $\delta(q_5, [d, 0, 1]) = (q_5, [d, 0, 1], E)$ $\delta(q_5, [d, 1, 1]) = (q_5, [d, 1, 0], E)$ $\delta(q_5, [d, 1, 0]) = (q_6, [d, 1, 1], E)$ $\delta(q_5, [\not\subset, \beta, \beta]) = (q_7, [\not\subset, \beta, \beta], D)$ $\delta(q_6, [d, 1, 1]) = (q_6, [d, 1, 1], E)$ $\delta(q_6, [d, 1, 0]) = (q_6, [d, 1, 0], E)$ $\delta(q_6, [d, 0, 0]) = (q_6, [d, 0, 1], E)$ $\delta(q_6, [d, 0, 1]) = (q_5, [d, 0, 0], E)$ $\delta(q_6, [\not\subset, \beta, \beta]) = (q_9, [\not\subset, \beta, \beta], D)$

 $q_7 e q_8$

 $\delta(q_7, [d, d, 0]) = (q_7, [d, d, 0], D)$ $\delta(q_7, [\$, \beta, \beta]) = (q_{12}, [\$, \beta, \beta], E)$ $\delta(q_7, [d, d, 1]) = (q_8, [d, d, 1], D)$ $\delta(q_8, [d, d, d]) = (q_8, [d, d, d], D)$ $\delta(q_8, [\$, \beta, \beta]) = (q_5, [\$, \beta, \beta], E)$

q₉ e **q**₁₀

 $\delta(q_{9}, [d, d, d]) = (q_{9}, [d, d, d], D)$ $\delta(q_{9}, [\$, \beta, \beta]) = (q_{10}, [\$, \beta, \beta], E)$ $\delta(q_{10}, [d, 1, d]) = (q_{10}, [d, 0, d], E)$ $\delta(q_{10}, [d, 0, d]) = (q_{11}, [d, 1, d], E)$ $\delta(q_{11}, [d, 1, d]) = (q_{11}, [d, 1, d], E)$ $\delta(q_{11}, [d, 0, d]) = (q_{11}, [d, 0, d], E)$ $\delta(q_{11}, [\not, \beta, \beta]) = (q_{4}[\not, \beta, \beta], D)$

q_{12}

 $\delta(q_{12}, [0, 0, d]) = (q_{12}, [0, 0, d], E)$ $\delta(q_{12}, [1, 1, d]) = (q_{12}, [1, 1, d], E)$ $\delta(q_{12}, [\not \subset, \beta, \beta]) = (q_{13}[\not \subset, \beta, \beta], D)$

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] MT – Número primo (FINAL)

PER-3 – out-2021

[EX] MT – Número primo (FINAL)

• SIN131 - T1 (2011-1)

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] MT – Número primo (FINAL)

Prof. João Fernando Mari (joaof.mari@ufv.br)

[EX] MT – Número primo (FINAL)

SIN131 – T2 (2012-1)

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] MT – Número primo (FINAL)

SIN131 – T1 (2017-1)

[EX] MT – Número primo

• 7 (111) é primo?

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] MT – Número primo

1	⊄	1	1	1	\$	β	5	⊄	1	1	1	\$	β
	β	β	β	β	β	β		β	0	1	0	β	β
	β	β	β	β	β	β		β	0	0	1	β	β
2	⊄	1	1	1	\$	β	6	⊄	1	1	1	\$	β
	β	0	1	0	β	β		β	0	1	1	β	β
	β	1	1	1	β	β		β	1	1	1	β	β
3	⊄	1	1	1	\$	β	7	⊄	1	1	1	\$	β
	β	0	1	0	β	β		β	0	1	1	β	β
	β	1	0	1	β	β		β	1	0	0	β	β
4	⊄	1	1	1	\$	β	8	⊄	1	1	1	\$	β
	β	0	1	0	β	β		β	0	1	1	β	β
	β	0	1	1	β	β		β	0	0	1	β	β

[EX] MT – Número primo

9	⊄	1	1	1	\$	β	13	⊄	1	1	1	\$	β
	β	1	0	0	β	β		β	1	1	0	β	β
	β	1	1	1	β	β		β	1	1	1	β	β
10	⊄	1	1	1	\$	β	14	⊄	1	1	1	\$	β
	β	1	0	0	β	β		β	1	1	0	β	β
	β	0	1	1	β	β		β	0	0	1	β	β
11	⊄	1	1	1	\$	β	15	⊄	1	1	1	\$	β
	β	1	0	1	β	β		β	1	1	1	β	β
	β	1	1	1	β	β		β	1	1	1	β	β
12	⊄	1	1	1	\$	β	16	⊄	1	1	1	\$	β
	β	1	0	1	β	β		β	1	1	1	β	β
	β	0	1	0	β	β		β	0	0	0	β	β

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 19] Máquina de Turing – Modelos equivalentes

SIN 131 – Introdução à Teoria da Computação (PER-3)

[FIM]

- FIM:
 - [AULA 19] Máquina de Turing Modelos equivalentes
- Próxima aula:
 - [AULA 20] Linguagem sensível ao contexto