

LA FUNCIÓN DE EULER Y EL TEOREMA DE FERMAT

ALAN REYES-FIGUEROA TEORÍA DE NÚMEROS

(AULA 13) 16.AGOSTO.2024

Definición

Diremos que los números enteros b_1, b_2, \ldots, b_k forman un **sistema completo de invertibles** módulo n si

$$\{\bar{b}_1,\bar{b}_2,\ldots,\bar{b}_k\}=(\mathbb{Z}/n\mathbb{Z})^*=U(n).$$

En otras palabras, b_1, b_2, \ldots, b_k forman un sistema completo de invertibles, si todas las clases de congruencia invertibles, módulo n, están representadas en los b_i . Equivalente, eso ocurre si y sólo si los b_i satisfacen $(b_i, n) = 1$, $\forall i$, y $b_i \equiv b_j \pmod{n} \Rightarrow i = j$.

El conjunto $\{k \in \mathbb{Z} : 1 \le k \le n, (k, n) = 1\}$ se llama el sistema de invertibles **canónico** módulo n.

Estamos interesados en saber la cardinalidad de U(n).

Definición

La función $\varphi: \mathbb{Z}^+ \to \mathbb{Z}$, dada por $\varphi(n) = |U(n)|$, se llama **función** φ **de Euler**.

Alternativamente, podemos definir a la función de Euler como

$$\varphi(n) = \#\{k : 1 \le k \le n : (k, n) = 1\}.$$

Algunas observaciones:

- $\varphi(1) = \varphi(2) = 1$.
- Para n > 2, se tiene que $1 < \varphi(n) < n$ (1 y n 1 son primos relativos con n).
- Si p es primo, entonces $\varphi(p) = p 1$.
- Si p es primo, entonces $\varphi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$. <u>Prueba</u>: Para mostrar esta afirmación, basta ver que si $1 \le a \le p^k$, $(a, p^k) = 1$ si y sólo si, a no es múltiplo de p; y hay precisamente p^{k-1} múltiplos de p en el intervalo $1 < a < p^k$.
- Para calcular la función φ en el caso general, vamos a mostrar antes una propiedad útil de esta función.

Proposición

Sean $m, n \in \mathbb{Z}^+$ tales que (m, n) = 1. Entonces $\varphi(mn) = \varphi(m)\varphi(n)$. Esto es, φ es una función multiplicativa.

<u>Prueba</u>: Consideramos los números 1, 2, ..., mn, con (m, n) = 1 y los colocamos en forma matricial como sigue:

Como (kn+j,n)=(j,n), si un número en esta tabla es primo relativo con n, entonces todos los números en esa columna son primos relativos con n. De ahí, existen $\varphi(n)$ columnas con elementos primos relativos con n.

Por otro lado, toda columna posee un sistema completo de residuos módulo m: si dos entradas i_1, i_2 son tales que $ni_1 + j \equiv ni_2 + j \pmod{m}$, entonces $i_1 \equiv i_2 \pmod{m}$. (Aquí se usa el hecho que n es invertible módulo m)

Así, en cada columna existen $\varphi(m)$ números que son primos relativos con m, y portanto la cantidad de números que son simultáneamente primos relativos con n y con m es $\varphi(mn) = \varphi(m)\varphi(n)$. \square

Obs! La propiedad anterior se generaliza: $\varphi(n_1n_2\cdots n_r)=\varphi(n_1)\varphi(n_2)\cdots\varphi(n_r)$, si los n_i son coprimos a pares. Basta aplicar inducción.

La conclusión de la proposición anterior es que tenemos un método sistemático para hallar $\varphi(n)$ para cualquier $n \in \mathbb{N}$. Si $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ es la factoración en primos de n. Como $(p_i^{k_i}, p_i^{k_j}) = 1$ para $i \neq j$, entonces

$$\varphi(n) = \prod_{i=1}^{r} \varphi(p_i^{k_i}) = \prod_{i=1}^{r} p_i^{k_i-1}(p_i-1) = \prod_{i=1}^{r} (p_i^{k_i} - p_i^{k_i-1}) = n \prod_{i=1}^{r} (1 - \frac{1}{p_i}).$$

Ejemplo: Hallar $\varphi(372)$. Como $372 = 2^2 \cdot 3 \cdot 31$, entonces

$$\varphi(372) = \varphi(2^2) \cdot \varphi(3) \cdot \varphi(31) = 2(1) \cdot 2 \cdot 30 = 120.$$

Teorema (Teorema de Euler-Fermat)

Sean $a, n \in \mathbb{Z}$, n > 1 dos enteros tales que (a, n) = 1. Entonces

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

<u>Prueba</u>: Observe que si $r_1, r_2, \ldots, r_{\varphi(n)}$ es un sistema completo de invertibles módulo n, y si (a, n) = 1, entonces también $ar_1, ar_2, \ldots, ar_{\varphi(n)}$ es un sistema completo de invertibles módulo n. De hecho, tenemos que $(ar_i, n) = 1$, y si $ar_i \equiv ar_j \pmod{n}$, entonces podemos cancelar a para obtener $r_i \equiv r_i \pmod{n}$. Luego $r_i = r_i$, y portanto i = j.

En consecuencia, cada ar_i debe ser congruente con algún r_i , y

$$\prod_{i=1}^{\varphi(n)} ar_i \equiv \prod_{i=1}^{\varphi(n)} r_i \pmod{n} \implies a^{\varphi(n)} \prod_{i=1}^{\varphi(n)} r_i \equiv \prod_{i=1}^{\varphi(n)} r_i \pmod{n}.$$

Como los r_i son invertibles módulo n, también el producto $\prod_i r_i$ es invertible. Simplificanto este factor, resulta $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Teorema (Pequeño Teorema de Fermat)

Sean $a \in \mathbb{Z}$, y p un número primo. Entonces

$$a^p \equiv a \pmod{p}$$
.

<u>Prueba</u>: Si $p \mid a$, el resultado es inmediato, pues $a^p \equiv 0^p \equiv 0 \equiv a \pmod{p}$. En el caso $p \nmid a$, entonces (a,p) = 1. Como $\varphi(p) = p - 1$, del Teorema de Euler-Fermat, tenemos que $a^{p-1} \equiv 1 \pmod{p} \Rightarrow a^p \equiv a \pmod{p}$.

Obs! El Teorema de Euler-Fermat también puede probarse utilizando el Teorema de Lagrange para grupos: si G es un grupo finito, y $g \in G$, entonces $g^{|G|} = 1$. Aplicando esto en el caso G = U(n), con $|G| = \varphi(n)$, se tiene que para $a \in U(n)$ $a^{\varphi(n)} \equiv a^{|U(n)|} \equiv 1 \pmod{n}$.

 $u^{r(s)} \equiv u^{(r(s))} \equiv 1 \pmod{n}$

Dado un entero n, con factoración en primos de la forma $n=p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}$, consideramos el número

$$M = [\varphi(p_1^{k_1}), \varphi(p_2^{k_2}), \dots, \varphi(p_r^{k_r})] = mmc[\varphi(p_1^{k_1}), \varphi(p_2^{k_2}), \dots, \varphi(p_r^{k_r})].$$

El Teorema de Euler puede ser optimizado de la siguiente forma

Proposición

Sean $a, n \in \mathbb{Z}$, n > 1 dos enteros tales que (a, n) = 1, y n se factora de la forma $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$. Entonces

$$a^{M} \equiv 1 \pmod{n}$$
. donde $M = [\varphi(p_1^{k_1}), \varphi(p_2^{k_2}), \dots, \varphi(p_r^{k_r})]$.

<u>Prueba</u>: Por el Teorema de Euler-Fermat, sabemos que $a^{\varphi(p_i^{R_i})} \equiv 1 \pmod{p_i^{R_i}}$, para todo $i = 1, 2, \ldots, r$. Elevando la congruencia anterior al exponente $M/\varphi(p_i^{R_i})$, obtenemos

$$a^{M} \equiv 1 \pmod{p_{i}^{k_{i}}}, \qquad \text{para } i = 1, 2, \dots, r.$$

Así, a^M-1 es múltiplo de $p_i^{k_i}$, para todo $i=1,2,\ldots,r$, y como estos números son coprimos dos a dos, se tiene que $n\mid a^M-1 \Rightarrow a^M\equiv 1\pmod{n}$.