MATHEMATICS-I (MATH F111)

Dr. Krishnendra Shekhawat

BITS PILANI
Department of Mathematics

CHAPTER 11

Conic Sections and Polar Coordinates

Polar Coordinates

- Polar Coordinates
- Curve Tracing

- Polar Coordinates
- Ourve Tracing

- Polar Coordinates
- Curve Tracing
- Areas and Lengths of the Curves

- Polar Coordinates
- Ourve Tracing
- Areas and Lengths of the Curves
- Conic Sections

Section 11.3

Polar Coordinates

• How can be describe or represent a curve?

- How can be describe or represent a curve?
- Cartesian coordinates

- How can be describe or represent a curve?
- Cartesian coordinates
- Polar coordinates

Cartesian Coordinates

A point in cartesian coordinate or x-y co-ordinate or rectangular co-ordinate is described in terms of horizontal and vertical distances from the origin (0,0).

Polar Coordinates

To define polar coordinates in a plane, we start with an origin (called the pole) and an initial ray.

Figure: θ is an angle made by the ray OP with initial ray and r is the distance of P from O along ray OP.

Plotting of Polar co-ordinates

Plot the following points:

- \bullet (2,0)
- $(3, \frac{\pi}{2})$
- $(-3, \frac{\pi}{2})$
- $(2,\pi)$

Polar Coordinates with Negative r Values

The points $(-r,\theta)$ and (r,θ) lie on the same line through the pole O and at the distance |r| from O, but on opposite sides of O.

Polar Coordinates with Negative r Values

The points $(-r,\theta)$ and (r,θ) lie on the same line through the pole O and at the distance |r| from O, but on opposite sides of O.

• If r > 0, the point (r, θ) is in the same quadrant as θ .

Polar Coordinates with Negative r Values

The points $(-r,\theta)$ and (r,θ) lie on the same line through the pole O and at the distance |r| from O, but on opposite sides of O.

- If r > 0, the point (r, θ) is in the same quadrant as θ .
- If r < 0, the point (r, θ) is in the quadrant opposite of the angle θ , *i.e.*, opposite of pole.

Different representation of Polar co-ordinates

Plot
$$(\sqrt{2}, \pi/4)$$

The number of Polar Coordinate Pairs

Q:. How many Polar Coordinate Pairs the point (r, θ) can have?

The number of Polar Coordinate Pairs

Q:. How many Polar Coordinate Pairs the point (r, θ) can have?

Sol. Infinite

The different polar coordinates of a point (r, θ) are:

The different polar coordinates of a point (r, θ) are:

•
$$(r, \theta + 2n\pi), \quad n = 0, \pm 1, \pm 2, \dots$$

The different polar coordinates of a point (r, θ) are:

•
$$(r, \theta + 2n\pi), \quad n = 0, \pm 1, \pm 2, \dots$$

$$\bullet$$
 $(-r, \theta + (2n+1)\pi), \quad n = 0, \pm 1, \pm 2, \dots$

Remark. If $P \equiv O$, then r = 0 and $(0, \theta)$ represents pole for any value of θ .

Figure: The point $\left(2, \frac{\pi}{6}\right)$ has infinitely many polar coordinate pairs

Q:. $0 \le \theta \le \frac{\pi}{6}$, $r \ge 0$.

Q:. $0 \le \theta \le \frac{\pi}{6}$, $r \ge 0$. Sol.

Figure: An infinite region

Q:. $0 \le \theta \le \frac{\pi}{6}$, $r \ge 0$. Sol.

Figure: An infinite region

Q:.
$$\theta = \frac{\pi}{3}, -1 \le r \le 3$$
.

Q:.
$$\theta = \frac{\pi}{3}, -1 \le r \le 3.$$
 Sol.

Figure: A line segment

Q:.
$$r = a$$

Q:. r = a (The Polar Equation of a Circle with radius |a| centered at O)

Q:. Graph the set of points whose polar coordinates satisfy the inequality $1 \le r \le 2$.

Q:. Graph the set of points whose polar coordinates satisfy the inequality $1 \le r \le 2$.
Sol.

Q:.
$$1 \le |r| \le 2, 0 \le \theta \le \pi/2$$

Q:.
$$1 \le |r| \le 2, 0 \le \theta \le \pi/2$$

Q:
$$r = \theta, \theta \geqslant 0$$

The Graph of Some Inequalities

(d)

•
$$-2 ≤ r ≤ -1$$
.

• $-2 \le r \le -1$.(An annulus).

- $-2 \le r \le -1$.(An annulus).
- -1 ≤ r ≤ 2.

- $-2 \le r \le -1$.(An annulus).
- $-1 \le r \le 2$.(Interior of circle r = 2 including boundary).

- $-2 \le r \le -1$.(An annulus).
- $-1 \le r \le 2$.(Interior of circle r = 2 including boundary).
- $r \le 1$.

- $-2 \le r \le -1$.(An annulus).
- $-1 \le r \le 2$.(Interior of circle r = 2 including boundary).
- $r \le 1$.(Whole plane).

- $-2 \le r \le -1$.(An annulus).
- $-1 \le r \le 2$.(Interior of circle r = 2 including boundary).
- $r \le 1$.(Whole plane).
- $r \ge -1$. (Whole plane).

Relation between Polar and Cartesian Coordinates

Figure: The usual way to relate polar and cartesian coordinates

From figure, we have

$$x = r\cos\theta$$
, $y = r\sin\theta$,

From figure, we have

$$x = r\cos\theta, \quad y = r\sin\theta,$$

on squaring and adding:

$$x^2 + y^2 = r^2,$$

From figure, we have

$$x = r\cos\theta$$
, $y = r\sin\theta$,

on squaring and adding:

$$x^2 + y^2 = r^2,$$

on dividing:

$$\theta = \tan^{-1} \frac{y}{x}.$$

Q:. Replace $r = \sin \theta$ by an equivalent cartesian equation.

Q:. Replace $r = \sin \theta$ by an equivalent cartesian equation. Sol.

$$r = \sin \theta$$

$$\Rightarrow r^2 = r \sin \theta$$

$$\Rightarrow x^2 + y^2 = y$$

$$\Rightarrow x^2 + y^2 - y = 0$$

$$\Rightarrow x^2 + \left(y - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2.$$

Q:. Replace $r^2(1 + \sin 2\theta) = 1$ by an equivalent cartesian equation.

Q:. Replace $r^2(1 + \sin 2\theta) = 1$ by an equivalent cartesian equation.

Sol.

$$r^{2} + 2r^{2} \sin \theta \cos \theta = 1$$

$$\Rightarrow r^{2} + 2(r \sin \theta)(r \cos \theta) = 1$$

$$\Rightarrow x^{2} + y^{2} + 2xy = 1$$

$$\Rightarrow x + y = \pm 1.$$

Q:. Replace $x^2 - y^2 = 9$ by an equivalent polar equation.

Q:. Replace $x^2 - y^2 = 9$ by an equivalent polar equation. Sol.

$$x^{2} - y^{2} = 9$$

$$\Rightarrow r^{2} \cos^{2} \theta - r^{2} \sin^{2} \theta = 9$$

$$\Rightarrow r^{2} \left(\cos^{2} \theta - \sin^{2} \theta\right) = 9$$

$$\Rightarrow r^{2} \cos 2\theta = 9$$

$$\Rightarrow r = \pm 3 \sqrt{\sec 2\theta}.$$

Q:. Replace $(x-5)^2 + y^2 = 25$ by an equivalent polar equation.

Q:. Replace $(x-5)^2 + y^2 = 25$ by an equivalent polar equation.

Sol.

$$(x-5)^2 + y^2 = 25$$

$$\Rightarrow x^2 - 10x + 25 + y^2 = 25$$

$$\Rightarrow r^2 - 10r\cos\theta = 0$$

$$\Rightarrow r = 10\cos\theta.$$

Section 11.4

Graphing in Polar Coordinates

How to Trace a Curve in Polar Coordinate

How to Trace a Curve in Polar Coordinate

Trace the Curve $r = 1 - \cos\theta$

How to Trace a Curve in Polar Coordinate

Trace the Curve $r = 1 - \cos\theta$

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
r	0	0.29	1	1.71	2	1.71	1	0.29	0

Figure: $r = 1 - \cos\theta$

Q:. Do you see symmetry in above Figure?

Q:. Do you see symmetry in above Figure? What is its role?

Q:. Do you see symmetry in above Figure? What is its role?

Q:. Where can be draw tangent in the above Figure

Q:. Do you see symmetry in above Figure? What is its role?

Q:. Where can be draw tangent in the above Figure (slope of a curve)?

Curves in Polar Coordinates

• For polar coordinates (r,θ) , the equation $f(r,\theta) = 0$ (implicit form) or $r = f(\theta)$ (explicit form) defines a curve C in the plane.

Curves in Polar Coordinates

- For polar coordinates (r, θ) , the equation $f(r, \theta) = 0$ (implicit form) or $r = f(\theta)$ (explicit form) defines a curve C in the plane.
- A point P lies on C if and only if for at least one polar coordinate (r_0, θ_0) of P, $f(r_0, \theta_0) = 0$.

Curves in Polar Coordinates

- For polar coordinates (r, θ) , the equation $f(r, \theta) = 0$ (implicit form) or $r = f(\theta)$ (explicit form) defines a curve C in the plane.
- A point P lies on C if and only if for at least one polar coordinate (r_0, θ_0) of P, $f(r_0, \theta_0) = 0$.

In this section, our aim is to trace the curve $r = f(\theta)$ or $f(r,\theta) = 0$.

Symmetry Test 1

• Symmetry about *x*-axis: If the point (r, θ) lies on the graph, the point $(r, -\theta)$ or $(-r, \pi - \theta)$ also lies on the graph.

Symmetry Test 1

• Symmetry about *x*-axis: If the point (r, θ) lies on the graph, the point $(r, -\theta)$ or $(-r, \pi - \theta)$ also lies on the graph.

Symmetry Test 2

• Symmetry about the y-axis: If the point (r, θ) lies on the graph, the point $(-r, -\theta)$ or $(r, \pi - \theta)$ also lies on the graph.

Symmetry Test 2

• Symmetry about the y-axis: If the point (r, θ) lies on the graph, the point $(-r, -\theta)$ or $(r, \pi - \theta)$ also lies on the graph.

Symmetry Test 3 and 4

• Symmetry about the origin: If the point (r, θ) lies on the graph, the point $(-r, \theta)$ or $(r, \pi + \theta)$ also lies on the graph.

Symmetry Test 3 and 4

- Symmetry about the origin: If the point (r, θ) lies on the graph, the point $(-r, \theta)$ or $(r, \pi + \theta)$ also lies on the graph.
- Symmetry about the line y = x: If the point (r, θ) lies on the graph, the point $\left(r, \frac{\pi}{2} \theta\right)$ or $\left(-r, -\frac{\pi}{2} \theta\right)$ also lies on the graph.

Figure: Symmetry about the pole and line y = x respectively

•
$$r = 2 + \sin \theta$$

•
$$r = 2 + \sin \theta$$
 (symmetry about y-axis)

•
$$r = 2 + \sin \theta$$
 (symmetry about y-axis)

$$r^2 = 4\sin 2\theta$$

•
$$r = 2 + \sin \theta$$
 (symmetry about y-axis)

•
$$r^2 = 4\sin 2\theta$$
 (symmetry about the origin)

•
$$r = 2 + \sin \theta$$
 (symmetry about y-axis)

•
$$r^2 = 4\sin 2\theta$$
 (symmetry about the origin)

•
$$r^2 = 4\cos 2\theta$$

- $r = 2 + \sin \theta$ (symmetry about y-axis)
- $r^2 = 4\sin 2\theta$ (symmetry about the origin)
- $r^2 = 4\cos 2\theta$ (symmetry about x-axis, y-axis, the origin)

• If a curve is symmetric about x-axis and y-axis, then it is symmetric about the pole.

- If a curve is symmetric about x-axis and y-axis, then it is symmetric about the pole.
- If a curve is symmetric about x-axis & pole, then it is symmetric about y-axis.

- If a curve is symmetric about x-axis and y-axis, then it is symmetric about the pole.
- If a curve is symmetric about x-axis & pole, then it is symmetric about y-axis.
- If a curve is symmetric about y-axis & pole, then it is symmetric about x-axis.

- If a curve is symmetric about x-axis and y-axis, then it is symmetric about the pole.
- If a curve is symmetric about x-axis & pole, then it is symmetric about y-axis.
- If a curve is symmetric about y-axis & pole, then it is symmetric about x-axis.
- Thus if a curve is symmetric about *x*-axis but not symmetric about *y*-axis (or if a curve is symmetric about *y*-axis but not symmetric about *x*-axis) then it can not be symmetric about the pole.

Slope of a Polar Curve

Slope of a Polar Curve

• The parametric equations of $r = f(\theta)$ are $x = r\cos\theta$, $y = r\sin\theta$.

Slope of a Polar Curve

- The parametric equations of $r = f(\theta)$ are $x = r\cos\theta$, $y = r\sin\theta$.
- The slope of the curve $r = f(\theta)$ at any point (r, θ) is given by

$$\frac{dy}{dx}\Big|_{(r,\theta)} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}\Big|_{(r,\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$

provided $\frac{dx}{d\theta} \neq 0$ at any point (r, θ) .

Example

Find the slope of the curve $r = 4 \sin 3\theta$ at $\theta = \frac{\pi}{6}$.

Example

Find the slope of the curve $r = 4 \sin 3\theta$ at $\theta = \frac{\pi}{6}$. Sol.

$$\left. \frac{dy}{dx} \right|_{(r,\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta} \\ = \frac{12\cos3\theta\sin\theta + 4\sin3\theta\cos\theta}{12\cos3\theta\cos\theta - 4\sin3\theta\sin\theta}.$$

Example

Find the slope of the curve $r = 4\sin 3\theta$ at $\theta = \frac{\pi}{6}$. Sol.

$$\frac{dy}{dx}\Big|_{(r,\theta)} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}$$

$$= \frac{12\cos 3\theta\sin\theta + 4\sin 3\theta\cos\theta}{12\cos 3\theta\cos\theta - 4\sin 3\theta\sin\theta}.$$

Thus

$$\left. \frac{dy}{dx} \right|_{\theta = \pi/6} = -\sqrt{3}$$

$$\left. \frac{dy}{dx} \right|_{\theta = \pi/6} = -\sqrt{3}.$$

$$\left. \frac{dy}{dx} \right|_{\theta = \pi/6} = -\sqrt{3}.$$

At
$$\theta = \frac{\pi}{6}$$
, $r = 4$ and $\tan \theta_1 = -\sqrt{3} \implies \theta_1 = \frac{2\pi}{3}$.

$$\left. \frac{dy}{dx} \right|_{\theta = \pi/6} = -\sqrt{3}.$$

At $\theta = \frac{\pi}{6}$, r = 4 and $\tan \theta_1 = -\sqrt{3} \implies \theta_1 = \frac{2\pi}{3}$. Here θ_1 is the angle the tangent at $(r, \theta) = (4, \frac{\pi}{6})$ makes with the x-axis.

How to compute Slope at Pole?

How to compute Slope at Pole? If the curve $r = f(\theta)$ passes through the pole at $\theta = \theta_0$, then $r = f(\theta_0) = 0$.

How to compute Slope at Pole? If the curve $r = f(\theta)$ passes through the pole at $\theta = \theta_0$, then $r = f(\theta_0) = 0$. Hence the slope of the curve $r = f(\theta)$ at pole is given by

$$\left. \frac{dy}{dx} \right|_{(0,\theta_0)} = \tan \theta_0$$

.

Krishnendra Shekhawat

How to compute Slope at Pole? If the curve $r = f(\theta)$ passes through the pole at $\theta = \theta_0$, then $r = f(\theta_0) = 0$. Hence the slope of the curve $r = f(\theta)$ at pole is given by

$$\left. \frac{dy}{dx} \right|_{(0,\theta_0)} = \tan \theta_0$$

Hence the line $\theta = \theta_0$ is the tangent to the curve at the pole.

Q:. Find the slope of the curve $r = 1 + \cos \theta$ at $\theta = \frac{\pi}{2}$.

Q:. Find the slope of the curve $r = 1 + \cos \theta$ at $\theta = \frac{\pi}{2}$. Sol.

$$\frac{dy}{dx}\Big|_{\theta=\pi/2} = 1.$$

Tracing the Curve in Polar Coordinate

Q:. Trace the curve $r = 1 + \cos \theta$.

Tracing the Curve in Polar Coordinate

Q:. Trace the curve $r = 1 + \cos \theta$.

Step 1. Check for symmetries (it will reduce the work for tracing).

Tracing the Curve in Polar Coordinate

- **Q:.** Trace the curve $r = 1 + \cos \theta$.
- **Step 1.** Check for symmetries (it will reduce the work for tracing).
 - \square Since $(r, -\theta)$ lies on the curve, it is symmetric about x-axis.

Tracing the Curve in Polar Coordinate

- **Q:.** Trace the curve $r = 1 + \cos \theta$.
- **Step 1.** Check for symmetries (it will reduce the work for tracing).
 - □ Since $(r, -\theta)$ lies on the curve, it is symmetric about x-axis. Hence, it is enough to consider the steps for $0 \le \theta \le \pi$.

Step 2. Solve the equation r = 0 for θ .

Step 2. Solve the equation r = 0 for θ . If $\theta = \theta_0$ satisfies r = 0, then the line $\theta = \theta_0$ will be a tangent to the curve at pole.

Step 2. Solve the equation r = 0 for θ . If $\theta = \theta_0$ satisfies r = 0, then the line $\theta = \theta_0$ will be a tangent to the curve at pole.

r = 0 gives $\cos \theta = -1 \implies \theta = \pi$. Thus $\theta = \pi$ is a tangent to the curve at pole.

Step 3 Find
$$\frac{dr}{d\theta}$$
. $\Box \frac{dr}{d\theta} = -\sin\theta$.

$$\Box \frac{dr}{d\theta} = -\sin\theta$$

Step 3 Find
$$\frac{dr}{d\theta}$$
.

$$\Box \frac{dr}{d\theta} = -\sin\theta.$$

Step 3.1 Find the values of θ for which $\frac{dr}{d\theta} > 0$.

 $\Box \frac{dr}{d\theta} = -\sin\theta.$

Step 3.1 Find the values of θ for which $\frac{dr}{d\theta} > 0$. This would be an interval (or no value of θ). In this interval r is an increasing function.

 $\Box \frac{dr}{d\theta} = -\sin\theta.$

Step 3.1 Find the values of θ for which $\frac{dr}{d\theta} > 0$. This would be an interval (or no value of θ). In this interval r is an increasing function. Find max/min values of r and the associated θ values in this interval.

 $\Box \frac{dr}{d\theta} = -\sin\theta.$

Step 3.1 Find the values of θ for which $\frac{dr}{d\theta} > 0$. This would be an interval (or no value of θ). In this interval r is an increasing function. Find max/min values of r and the associated θ values in this interval.

$$\Box \frac{dr}{d\theta} > 0 \Rightarrow \sin \theta < 0,$$

- **Step 3** Find $\frac{dr}{d\theta}$.
 - $\Box \frac{dr}{d\theta} = -\sin\theta.$
- **Step 3.1** Find the values of θ for which $\frac{dr}{d\theta} > 0$. This would be an interval (or no value of θ). In this interval r is an increasing function. Find max/min values of r and the associated θ values in this interval.
 - $\Box \frac{dr}{d\theta} > 0 \Rightarrow \sin \theta < 0$, thus no value of θ in between 0 and π .

Step 3.2 Similarly find the values of θ for which $\frac{dr}{d\theta} < 0$. This would be an interval (or no value of θ). In this interval r is a decreasing function. Find max/min values of r and the associated θ values in this interval.

- **Step 3.2** Similarly find the values of θ for which $\frac{dr}{d\theta} < 0$. This would be an interval (or no value of θ). In this interval r is a decreasing function. Find max/min values of r and the associated θ values in this interval.
 - $\Box \frac{dr}{d\theta} < 0 \Rightarrow \sin \theta > 0 \Rightarrow 0 < \theta < \pi, \text{ thus } r \text{ decreases}$ in the interval $[0, \pi]$.

- **Step 3.2** Similarly find the values of θ for which $\frac{dr}{d\theta} < 0$. This would be an interval (or no value of θ). In this interval r is a decreasing function. Find max/min values of r and the associated θ values in this interval.
 - $\Box \frac{dr}{d\theta} < 0 \Rightarrow \sin \theta > 0 \Rightarrow 0 < \theta < \pi, \text{ thus } r \text{ decreases}$ in the interval $[0, \pi]$.

Clearly $\max r = 2$ at $\theta = 0$ and $\min r = 0$ at $\theta = \pi$.

$$\left. \frac{dy}{dx} \right|_{\theta=0} = \infty, \quad \left. \frac{dy}{dx} \right|_{\theta=\frac{\pi}{2}} = 1.$$

$$\left. \frac{dy}{dx} \right|_{\theta=0} = \infty, \quad \left. \frac{dy}{dx} \right|_{\theta=\frac{\pi}{2}} = 1.$$

At
$$\theta = 0$$
, $r = 2$ and $\tan \theta_1 = \infty \implies \theta_1 = \frac{\pi}{2}$.

$$\begin{aligned} \frac{dy}{dx}\Big|_{\theta=0} &= \infty, \quad \frac{dy}{dx}\Big|_{\theta=\frac{\pi}{2}} &= 1. \\ \text{At } \theta &= 0, \ r=2 \ \text{and} \ \tan\theta_1 &= \infty \implies \theta_1 &= \frac{\pi}{2}. \\ \text{At } \theta &= \frac{\pi}{2}, \ r=1 \ \text{and} \ \tan\theta_1 &= 1 \implies \theta_1 &= \frac{\pi}{4}. \end{aligned}$$

Step 5. Make a table θ vs r for different values of θ .

Step 5. Make a table θ vs r for different values of θ .

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	π
r	2	$1 + \frac{1}{\sqrt{2}}$	$\frac{3}{2}$	1	$\frac{1}{2}$	$1-\frac{1}{\sqrt{2}}$	0

Step 5. Make a table θ vs r for different values of θ .

θ	0	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	π
r	2	$1 + \frac{1}{\sqrt{2}}$	<u>3</u> 2	1	$\frac{1}{2}$	$1-\frac{1}{\sqrt{2}}$	0

Step 6. Plot the curve while considering the above steps.

