ONLINE RETAIL ANALYSIS

BHUVANESWARI KAPULURU

Agenda

Problem statement

- •The retail dataset contains thousands of transactions across multiple countries.
- •Management lacks a clear understanding of:
- Customer behavior trends
- •Purchase patterns across months and countries
- Customer retention and churn risks

Steps In Data Analysis

Data loading

Data loading

2. Handling missing values

Online retail insights using python 7

Identifying null values

df.isnull().sum()					
	0				
InvoiceNo	0				
StockCode	0				
Description	1454				
Quantity	0				
InvoiceDate	0				
UnitPrice	0				
CustomerID	135080				
Country	0				
dtype: int64					

df[["Sto	ockCode","De	escription"]]
	StockCode	Description
622	22139	NaN
1970	21134	NaN
1971	22145	NaN
1972	37509	NaN
1987	85226A	NaN
535322	84581	NaN
535326	23406	NaN
535332	21620	NaN
536981	72817	NaN
538554	85175	NaN
1454 rows	s × 2 columns	

Handled null values

d2.drop("Description_y",axis=1,inplace=True)
d2

	InvoiceNo	StockCode	Description_x	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	count
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	2302
1	536373	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 09:02:00	2.55	17850.0	United Kingdom	2302
2	536375	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 09:32:00	2.55	17850.0	United Kingdom	2302
3	536390	85123A	WHITE HANGING HEART T-LIGHT HOLDER	64	2010-12-01 10:19:00	2.55	17511.0	United Kingdom	2302
4	536394	85123A	WHITE HANGING HEART T-LIGHT HOLDER	32	2010-12-01 10:39:00	2.55	13408.0	United Kingdom	2302
541792	548999	84743C	damages	-26	2011-04-05 14:34:00	0.00	NaN	United Kingdom	1
541793	554311	84743C	damages	-16	2011-05-23 15:28:00	0.00	NaN	United Kingdom	1
541794	543899	84803A	PINK ALLIUM ARTIFICIAL FLOWER	3	2011-02-14 12:11:00	1.69	NaN	EIRE	1
541795	542731	84795C	OCEAN STRIPE HAMMOCK	2	2011-01-31 15:27:00	7.95	13600.0	United Kingdom	1
541796	542784	84795C	OCEAN STRIPE HAMMOCK	3	2011-02-01 10:04:00	0.00	NaN	United Kingdom	1
541797 rows × 9 columns									

d2[d2.Description_x.isnull()==True]
d2.Description_x.isnull().sum()
d2.isnull().sum()

0 InvoiceNo 0 StockCode 0 Description_x 0 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID Country 0

3.Feature engineering

Adding total price column

d2['total_price']=d2['Quantity']*d2['UnitPrice']
d2

	InvoiceNo	StockCode	Description_x	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	total_price
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	15.30
1	536373	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 09:02:00	2.55	17850.0	United Kingdom	15.30
2	536375	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 09:32:00	2.55	17850.0	United Kingdom	15.30
3	536390	85123A	WHITE HANGING HEART T-LIGHT HOLDER	64	2010-12-01 10:19:00	2.55	17511.0	United Kingdom	163.20
4	536394	85123A	WHITE HANGING HEART T-LIGHT HOLDER	32	2010-12-01 10:39:00	2.55	13408.0	United Kingdom	81.60
541792	548999	84743C	damages	-26	2011-04-05 14:34:00	0.00	NaN	United Kingdom	-0.00
541793	554311	84743C	damages	-16	2011-05-23 15:28:00	0.00	NaN	United Kingdom	-0.00
541794	543899	84803A	PINK ALLIUM ARTIFICIAL FLOWER	3	2011-02-14 12:11:00	1.69	NaN	EIRE	5.07
541795	542731	84795C	OCEAN STRIPE HAMMOCK	2	2011-01-31 15:27:00	7.95	13600.0	United Kingdom	15.90
541796	542784	84795C	OCEAN STRIPE HAMMOCK	3	2011-02-01 10:04:00	0.00	NaN	United Kingdom	0.00
541797 ro	ws × 9 colum	nns							

Adding month column

```
d2['month']=d2['InvoiceDate'].dt.month
d2.head(3)
```

	InvoiceNo	StockCode	Description_x	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	total_price	month	
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	15.3	12	
1	536373	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 09:02:00	2.55	17850.0	United Kingdom	15.3	12	
2	536375	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 09:32:00	2.55	17850.0	United Kingdom	15.3	12	

Chart Title

4. Visualisation

Month wise sales analysis

```
from matplotlib import pyplot as plt
  plt.figure(figsize=(20,4))
  plt.plot(m.index,m.values,color="blue",label="total_price")
  plt.title("Month Wise Sales analysis")
  plt.xlabel("month")
  plt.ylabel("total_price")
  plt.grid()
  plt.legend()
  <matplotlib.legend.Legend at 0x7a8646b00b10>
                                                                              Month Wise Sales analysis
         1e6
                                                                                                                                                               total_price
     1.4
     1.2
     0.8
     0.6
                                                                                                                                        10
                                                                                                                                                                   12
```

Sales analysis of top 5 countries in %

```
max con=d2.groupby("Country").total price.sum().sort values(ascending=False).head(5)
    plt.figure(figsize=(12,6))
    plt.pie(max_con,labels=max_con.index,autopct="%.2f%%",shadow=True,explode=(0.3,0,0,0,0))
    plt.title("SALES ANALYSIS OF TOP 5 COUNTRIES USING %")
Text(0.5, 1.0, 'SALES ANALYSIS OF TOP 5 COUNTRIES USING %')
                         SALES ANALYSIS OF TOP 5 COUNTRIES USING %
     United Kingdom
                           89.44%
                                                                           France
                                                                          Germany
                                                                         EIRE
                                                                       Netherlands
```

5.Rfm analysis

Rfm and Rfm segments

```
last date=d2['InvoiceDate'].max().date()
current date=last date+pd.Timedelta(days=1)
current date
datetime.date(2011, 12, 10)
rm=d2.groupby('CustomerID').agg({'InvoiceDate':lambda x:(current date-x.dt.date.max()).days,
                                 'InvoiceNo': 'count',
                                 'total price':'sum'})
rm.columns=['recency','frequency','monetary']
                                           recency frequency monetary
CustomerID
  12346.0
                326
                             2
                                    0.00
  12347.0
                  3
                           182
                                 4310.00
  12348.0
                 76
                                 1797.24
  12349.0
                 19
                                 1757.55
  12350.0
                311
                            17
                                  334.40
  18280.0
                278
                            10
                                  180.60
  18281.0
                181
                                   80.82
  18282.0
                  8
                                  176,60
  18283.0
                  4
                                 2094.88
```

```
rm['r seg']=pd.qcut(rm['recency'],4,labels=[4,3,2,1])
rm['f seg']=pd.qcut(rm['frequency'],4,labels=[1,2,3,4])
rm['m seg']=pd.qcut(rm['monetary'],4,labels=[1,2,3,4])
rm['rfm']=rm['r seg'].astype(str)+rm['f seg'].astype(str)
rm
            recency frequency monetary r seg f seg m seg rfm
CustomerID
  12346.0
                326
                                     0.00
                                                                11
                  3
  12347.0
                            182
                                  4310.00
                                                     4
                                                            4
                                                                44
  12348.0
                 76
                                 1797.24
                                                     2
                                                                22
                                              3
                                                     3
  12349.0
                 19
                            73
                                  1757.55
                                                                33
                                                            2 11
  12350.0
                311
                            17
                                   334.40
                                                     1
  18280.0
                278
                            10
                                   180.60
                                                     1
                                                            1 11
                             7
  18281.0
                181
                                    80.82
                                                            1 11
                  8
  18282.0
                            13
                                   176.60
                                                                41
  18283.0
                  4
                            756
                                  2094.88
                                                                44
  18287.0
                 43
                                  1837.28
```

4372 rows x 7 columns

Rfm segments analysis using graph

Customers analysis using rfm total

```
plt.figure(figsize=(12,4))
plt.title('CUSTOMERS ANALYSIS USING RFM TOTAL')
sns.histplot(rm['rfm'],kde=True)
<Axes: title={'center': 'CUSTOMERS ANALYSIS USING RFM TOTAL'}, xlabel='rfm', ylabel='Count'>
                                            CUSTOMERS ANALYSIS USING RFM TOTAL
   500
   400
Count
300
   200
   100
                                                                                41
                                                                                             32
               11
                            22
                                   33
                                         13
                                                34
                                                      42
                                                             24
                                                                   43
                                                                          12
                                                                                       23
                                                                                                    31
                                                                                                          21
```

6.Churn analysis

Churn analysis

churn=rm['recency'][rm.recency >90]
churn.columns=['churning customers']
churn

recency CustomerID 326 12346.0 12350.0 311 12353.0 205 12354.0 233 12355.0 215 18262.0 141 18268.0 135 18269.0 359 18280.0 278 18281.0 181 1454 rows x 1 columns

```
plt.figure(figsize=(12,4))
plt.title("CHURNING CUSTOMERS ANALYSIS ")
sns.histplot(churn,kde=True)
```


Overall insights

Insights

- Majority of customers purchased only once (Frequency score 1.0), showing low repeat engagement.
- Sales increased steadily, with notable peaks during the 8th to 12th months.
- UK dominates sales, contributing 89% of total revenue.
- Many customers haven't purchased recently (Recency score 3.0 1130 users), indicating churn risk.

Insights

- **Customers with recency between 100–350 days** are likely to churn and should be prioritized.
- **Spending remains consistent** across all customer segments (Monetary score).
- Balanced number of high and low RFM scores mix of loyal and disengaged users.

Recommendations

Recommendations

- •Contact churned customers with updates about new features, products, or personalized offers to bring them back.
- •Implement a visit-based discount program (e.g., after 5 visits, give a special discount) to improve recency and frequency.
- •Use regional retailers or partners in countries like France, Germany, and the Netherlands to grow international reach.
- •Invest in marketing and inventory during high-sales months like September to December to leverage year-end demand.

