

HABIB UNIVERSITY

Data Structures & Algorithms

CS/CE 102/171 Spring 2023 Instructor: Maria Samad

Time Complexity of Recursive Functions – Recursion Tree Method

Q1)	For the given recurrence equation, derive its time complexity, by using the Recursion Tree Method.	Make sure
you s	show the pattern before solving it for the final equation.	

$$T(n) = \begin{bmatrix} T(n-1) + n^2 & , n > 0 \\ 1 & , n = 0 \end{bmatrix}$$

Student Name:

Q2) For the given recurrence equation, derive its time complexity, by using the Recursion Tree Method. Make sure you show the pattern before solving it for the final equation.

$$T(n) = \begin{bmatrix} T(n-4) + n & ,n > 0 \\ 1 & ,n = 0 \end{bmatrix}$$

Q3) For the given recurrence equation, derive its time complexity, by using the Recursion Tree Method. Make sure you show the pattern before solving it for the final equation.

$$T(n) = \begin{bmatrix} 3T(n-1) + 5 & ,n > 0 \\ 1 & ,n = 0 \end{bmatrix}$$

Q4) For the given recurrence equation, derive its time complexity, by using the Recursion Tree Method. Make sure you show the pattern before solving it for the final equation.

$$T(n) = \begin{bmatrix} 3T(n-4) + 1 & ,n > 0 \\ 1 & ,n = 0 \end{bmatrix}$$

Q5) For the given recurrence equation, derive its time complexity, by using the Recursion Tree Method. Make sure you show the pattern before solving it for the final equation.

$$T(n) = \begin{bmatrix} T(n/3) + 7 & ,n > 1 \\ 1 & ,n = 1 \end{bmatrix}$$

Q6) For the given recurrence equation, derive its time complexity, by using the Recursion Tree Method. Make sure you show the pattern before solving it for the final equation.

$$T(n) = \begin{bmatrix} T(n/2) + n & ,n > 1 \\ 1 & ,n = 1 \end{bmatrix}$$

Q7) For the given recurrence equation, derive its time complexity, by using the Recursion Tree Method. Make sure you show the pattern before solving it for the final equation.

$$T(n) = \begin{bmatrix} 2T(n/2) + n & ,n > 1 \\ 1 & ,n = 1 \end{bmatrix}$$