Università degli Studi di Torino

DIPARTIMENTO DI INFORMATICA Corso di Laurea in Informatica

Tesi di Laurea Triennale

Raccomandazione di contenuti musicali: un sistema intelligente basato sulla combinazione di concetti

RELATORE
Prof. Gian Luca Pozzato

CORRELATORE

CANDIDATO
Alberto Marocco
947841

DICHIARAZIONE DI ORIGINALITÀ

Dichiaro di essere responsabile del contenuto dell'elaborato che presento al fine del conseguimento del titolo, di non avere plagiato in tutto o in parte il lavoro prodotto da altri e di aver citato le fonti originali in modo congruente alle normative vigenti in materia di plagio e di diritto d'autore. Sono inoltre consapevole che nel caso la mia dichiarazione risultasse mendace, potrei incorrere nelle sanzioni previste dalla legge e la mia ammissione alla prova finale potrebbe essere negata.

ABSTRACT

Questo lavoro presenta un sistema intelligente di raccomandazione musicale basato sulla combinazione di concetti. Il sistema utilizza testi e caratteristiche stilistiche dei brani, acquisiti e arricchiti tramite un crawler automatico di Genius, per costruire prototipi di genere e ibridi cross-genere. La pipeline implementata comprende moduli di analisi delle ripetizioni, generazione di prototipi concettuali e un classificatore che sfrutta "anchors" e soglie adattive per selezionare i contenuti più rilevanti. L'approccio proposto coniuga trasparenza e interpretabilità, fornendo raccomandazioni spiegabili e adattabili a diversi scenari musicali.

INDICE

Introd	luzione	1
1.a	Contesto e motivazioni	1
1.b	Problema e idea	1
1.c	Contributi	1
1.d	Risultati in sintesi	1
1.e	Organizzazione del manoscritto	1
Fonda	menti teorici: tipicalità e combinazione di concetti (TCL)	
2.a	Prototipi, tipicalità e proprietà	
2.b	Logica di tipicalità (ALC + T)	2
2.c	Probabilità e forza delle proprietà	2
2.d	Euristica Head/Modifier	
2.e	Perché è utile nella raccomandazione	2
Proba	bilità per la combinazione: il framework TCL e gli strumenti	3
3.a	Inclusioni probabilistiche nella combinazione	
3.b	Il tool CoCoS	
3.c	Sistemi affini (DENOTER, NERVOUS, ecc.)	
3.d	Collegamento alla pipeline di questa tesi	
Estraz	zione e pre-processing dei dati (Genius)	4
4.a	Crawler e fonti	4
4.b	Pulizia e normalizzazione	
4.c	Dataset finale	4
4.d	Limiti dei testi	4
Creaz	ione dei prototipi di genere	5
5.a	Proprietà rigide e tipiche	١
$5.\mathrm{b}$	Soglie e iperparametri	
5.c	Penalità e boost	
5.d	Output dei prototipi	
Comb	inazione di generi musicali con CoCoS	6
6.a	Preprocessing head/modifier	
6.b	Generazione scenari	6

6.c	Mixing conservativo vs aggressivo	6
6.d	Coerenza e controlli	6
Classif	icatore e generazione di spiegazioni	7
7.a	Anchors e selezione delle evidenze	7
7.b	Decisione e ranking	7
7.c	Spiegazioni	7
7.d	Complessità e prestazioni	7
Sistem	a di raccomandazione	8
8.a	Architettura complessiva	8
8.b	Interfacce tra i moduli	8
8.c	Parametri globali e riproducibilità	8
Risult	ati	9
9.a	Riclassificazione e copertura	9
9.b	Ablation su head/modifier	9
9.c	Esempi qualitativi	9
9.d	Osservazioni principali	9
Discus	sione 1	0
10.a	Analisi criticità ed errori 1	0
10.b	Confronto con approcci affini 1	0
10.c	Implicazioni pratiche	.0
Conclu	usioni e sviluppi futuri 1	1
11.a	Conclusioni	1
11.b	Sviluppi futuri	. 1
Biblio	grafia / Sitografia 1	3

1 Introduzione

Questa tesi propone DEGARI-Music, un sistema di raccomandazione musicale spiegabile basato su prototipi di genere e combinazione di concetti. L'obiettivo è produrre suggerimenti trasparenti, con spiegazioni legate a proprietà tipiche e rigide dei generi (e loro ibridi).

1.A CONTESTO E MOTIVAZIONI

Le piattaforme raccomandano bene ma spiegano poco. La trasparenza incide su fiducia, controllo e scoperta consapevole.

1.B PROBLEMA E IDEA

Problema: raccomandazioni "black-box". Idea: prototipi + combinazione (head/modifier) + soglie/anchors \rightarrow spiegazioni white-box.

1.c Contributi

- Implementazione end-to-end (crawler \rightarrow prototipi \rightarrow combinazioni \rightarrow classificatore).
- Spiegazioni leggibili basate su match proprietà↔brano.
- Valutazione: riclassificazione/copertura, ablation, esempi qualitativi.

1.D RISULTATI IN SINTESI

Breve teaser dei risultati più significativi.

1.E Organizzazione del manoscritto

Breve guida ai capitoli 4–13.

2 FONDAMENTI TEORICI: TIPICALI-TÀ E COMBINAZIONE DI CONCETTI (TCL)

Presentiamo le basi logiche e cognitive: prototipi, tipicalità, inclusioni probabilistiche, euristica head/modifier. Spieghiamo perché questi strumenti sono adatti alla raccomandazione.

2. A PROTOTIPI, TIPICALITÀ E PROPRIETÀ

Concetti con proprietà tipiche (frequenti) e rigide (vincoli).

2.B LOGICA DI TIPICALITÀ (ALC + T)

Nozioni chiave: eccezioni, non-monotonicità controllata.

2.C Probabilità e forza delle proprietà

Intuizione su "quanto è tipica" una proprietà; collegamento a soglie nel sistema.

2.D EURISTICA HEAD/MODIFIER

Come si decide cosa ereditare nella combinazione.

2.E PERCHÉ È UTILE NELLA RACCOMANDAZIONE

Trasparenza, controllo, possibilità di creare ibridi "sensati".

3 Probabilità per la combinazione: il framework TCL e gli strumenti

Approfondiamo l'aspetto probabilistico della combinazione e gli strumenti impiegati (CoCoS e progetti affini), mettendo in relazione teoria e pratica.

3.A INCLUSIONI PROBABILISTICHE NELLA COMBINA-ZIONE

Intuizione: p :: $T(C) \sqsubseteq D$.

3.B IL TOOL COCOS

Scopo, input/output, ruolo nel nostro flusso.

- 3.C SISTEMI AFFINI (DENOTER, NERVOUS, ECC.)
 Breve rassegna per mostrare continuità con la letteratura.
- 3.D COLLEGAMENTO ALLA PIPELINE DI QUESTA TESI Dove intervengono p, head/modifier e CoCoS nei nostri capitoli successivi.

4 ESTRAZIONE E PRE-PROCESSING DEI DATI (GENIUS)

Descriviamo raccolta testi/metadata via Genius, pulizia e normalizzazione. Notiamo assunzioni e limiti legati all'uso dei testi.

4.A CRAWLER E FONTI

Pipeline: richieste API/scraping controllato, gestione rate-limit, campionamento per genere.

4.B PULIZIA E NORMALIZZAZIONE

Rimozione markup, lowercasing, gestione ripetizioni/chorus, token/POS (se usato).

4.C DATASET FINALE

Tabella con brani per genere, media lunghezza testo.

4.D LIMITI DEI TESTI

Ambiguità, linguaggio figurato, lingue diverse. Implicazioni sui prototipi.

5 CREAZIONE DEI PROTOTIPI DI GENE-RE

Definiamo proprietà rigide vs tipiche per ciascun genere, soglie e pesi; introduciamo le penalità/boost per differenziare i profili.

5.A PROPRIETÀ RIGIDE E TIPICHE

Criteri di selezione da tag/keyword/lemmi.

5.B SOGLIE E IPERPARAMETRI

typical_thr, rigid_thr, min_df_words, topk_typical, max_rigid. Razionale delle scelte.

5.C PENALITÀ E BOOST

 $\begin{array}{ll} {\rm COMMON_PENALTY}, & {\rm DISTINCTIVE_BOOST}, \\ {\rm DISTINCTIVE_MAX_GENRES:~effetto~intuitivo}. \end{array}$

5.D OUTPUT DEI PROTOTIPI

Formato e esempi (estratti di 2–3 generi).

6 COMBINAZIONE DI GENERI MUSICA-LI CON COCOS

Come generiamo ibridi (head/modifier), quali scenari produciamo e come variamo il mixing.

6.A PREPROCESSING HEAD/MODIFIER

Criteri per assegnare head e modifier alle coppie di generi.

6.B GENERAZIONE SCENARI

Parametri, numero di combinazioni, esempi (rap-pop, metal-trap, ecc.).

6.C MIXING CONSERVATIVO VS AGGRESSIVO

Cosa cambia in termini di proprietà ereditate; cenno agli switch nel codice.

6.D Coerenza e controlli

Rimozione proprietà incompatibili, verifica minima copertura.

7 CLASSIFICATORE E GENERAZIONE DI SPIEGAZIONI

Descriviamo il classificatore basato su anchors e soglie adattive e come generiamo spiegazioni white-box per ogni raccomandazione.

7.A ANCHORS E SELEZIONE DELLE EVIDENZE

Come scegliamo gli "ancoraggi" (feature salienti) per brano e per prototipo/ibrido.

7.B DECISIONE E RANKING

Criteri di punteggio, gestione pareggi, filtri minimi.

7.C SPIEGAZIONI

Formato spiegazioni (proprietà/keyword matchate), esempi concreti per 1-2 brani.

7.D COMPLESSITÀ E PRESTAZIONI

Note pratiche: tempi medi, caching, dimensione dataset.

8 SISTEMA DI RACCOMANDAZIONE

Vista end-to-end della pipeline: dal dato grezzo alla raccomandazione con spiegazione.

8.A ARCHITETTURA COMPLESSIVA

Schema dei moduli e flusso dati.

8.B Interface tra i moduli

Formati I/O: dove salviamo prototipi, scenari, risultati.

8.C PARAMETRI GLOBALI E RIPRODUCIBILITÀ

Seed, configurazioni, gestione ambienti/variabili (es. token GENIUS via env).

9 RISULTATI

Presentiamo i risultati quantitativi e qualitativi, con esempi di raccomandazioni spiegate.

9.A RICLASSIFICAZIONE E COPERTURA

Metriche per genere e per ibrido; eventuali heatmap/tabelle.

9.B ABLATION SU HEAD/MODIFIER

Impatto sulla qualità/riclassificazione rimuovendo l'euristica.

9.C ESEMPI QUALITATIVI

2-3 raccomandazioni con relativa spiegazione.

9.D OSSERVAZIONI PRINCIPALI

Sintesi di cosa funziona e cosa sorprende.

10 DISCUSSIONE

Interpretiamo i risultati, evidenziamo punti di forza/debolezza e confrontiamo con la letteratura.

10.A Analisi criticità ed errori

Dove il sistema fallisce e perché (dati, soglie, ambiguità del testo).

10.B CONFRONTO CON APPROCCI AFFINI

Cosa aggiunge il paradigma prototipi+combinazione rispetto a baseline o sistemi simili.

10.C IMPLICAZIONI PRATICHE

Trasparenza, controllabilità, uso per discovery e creazione playlist ibride.

11 CONCLUSIONI E SVILUPPI FUTURI

Ricapitoliamo contributi e risultati e indichiamo le direzioni successive.

11.A CONCLUSIONI

Che cosa abbiamo dimostrato e con quali limiti.

11.B SVILUPPI FUTURI

- Integrazione di feature audio e metadata strutturati.
- Estensione multilingua.
- Lessici d'intensità (es. VAD) e aspetti temporali del brano.
- Studio utente più ampio / A/B test sulle spiegazioni.

Bibliografia / Sitografia

- [1] UniTO Typst Template. (2024). [Online]. Disponibile su: https://github.com/eduardz1/UniTO-typst-template
- [2] «Typst A new markup-based typesetting system». [Online]. Disponibile su: https://typst.app/
- [3] Alberto Marocco, *DEGARI-Music*. (2025). [Online]. Disponibile su: https://github.com/albymar01/DEGARI-Music
- [4] Alberto Marocco, *Tesi-UniTO (manoscritto)*. (2025). [Online]. Disponibile su: https://github.com/albymar01/Tesi-UniTO
- [5] «Genius». [Online]. Disponibile su: https://genius.com/
- [6] «Scrapy». [Online]. Disponibile su: https://docs.scrapy.org/en/latest/
- [7] «NLTK Natural Language Toolkit». [Online]. Disponibile su: https://www.nltk.org/
- [8] «TreeTaggerWrapper». [Online]. Disponibile su: https://treetaggerwrapper.readthedocs.io/
- [9] Helmut Schmid, «TreeTagger». [Online]. Disponibile su: https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
- [10] A. Valese, «CoCoS: uno strumento per la combinazione di concetti», 2020.
- [11] «scikit-learn». [Online]. Disponibile su: https://scikit-learn.org/
- [12] «pandas». [Online]. Disponibile su: https://pandas.pydata.org/
- [13] «NumPy». [Online]. Disponibile su: https://numpy.org/
- [14] «Matplotlib». [Online]. Disponibile su: https://matplotlib.org/
- [15] Peter Gärdenfors, «Concept Combination and Prototypes», 2004.
- [16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, e Clifford Stein, Introduction to Algorithms, 3rd ed. MIT Press, 2009.

RINGRAZIAMENTI

Desidero esprimere la mia sincera gratitudine al Prof. Gian Luca Pozzato per la sua guida e supporto durante lo sviluppo di questa tesi. Un ringraziamento speciale va anche ai miei amici e familiari per il loro incoraggiamento costante.