學號:R06922117 系級:資工碩一 姓名:李岳庭

1. (1%) 請說明你實作的 CNN model, 其模型架構、訓練過程和準確率為何? 答:

我使用的 CNN 架構與手把手教學的相同,其 summary 如下:

#4DC/13113	, , , , , ,	74 4 11 HI	- - / ·	1 > 1
Layer (type)	Output Shape		Param #	211:
conv2d_1 (Conv2D)	(None, 44, 44	, 64)	1664	conv2d_1_input: InputL
zero_padding2d_1 (ZeroPaddin	(None, 48, 48	64)	0	conv2d_1: Conv2D
max_pooling2d_1 (MaxPooling2	(None, 22, 22	2, 64)	0	conv2d_1. Conv2D
zero_padding2d_2 (ZeroPaddin	(None, 24, 24	, 64)	0	zero_padding2d_1: ZeroPac
conv2d_2 (Conv2D)	(None, 22, 22	, 64)	36928	
zero_padding2d_3 (ZeroPaddin	(None, 24, 24	, 64)	0	max_pooling2d_1: MaxPoo
conv2d_3 (Conv2D)	(None, 22, 22	, 64)	36928	
average_pooling2d_1 (Average	(None, 10, 10	, 64)	0	zero_padding2d_2: ZeroPad
zero_padding2d_4 (ZeroPaddin	(None, 12, 12	, 64)	0	
conv2d_4 (Conv2D)	(None, 10, 10	, 128)	73856	conv2d_2: Conv2D
zero_padding2d_5 (ZeroPaddin	(None, 12, 12	, 128)	0	
conv2d_5 (Conv2D)	(None, 10, 10	, 128)	147584	zero_padding2d_3: ZeroPac
zero_padding2d_6 (ZeroPaddin	(None, 12, 12	, 128)	0	
average_pooling2d_2 (Average	(None, 5, 5,	128)	0	conv2d_3: Conv2D
flatten_1 (Flatten)	(None, 3200)		0	
dense_1 (Dense)	(None, 1024)		3277824	average_pooling2d_1: Average
dropout_1 (Dropout)	(None, 1024)		0	
dense_2 (Dense)	(None, 1024)		1049600	zero_padding2d_4: ZeroPad
dropout_2 (Dropout)	(None, 1024)		0	<u> </u>
dense_3 (Dense)	(None, 7)		7175	conv2d_4: Conv2D
Total params: 4,631,559 Trainable params: 0				

一開始用手把手的架構,準確率大概 60%左右,我有嘗試過其它的模型,但都沒有顯著提升,加了 image generator 後,準確率才提升到 66%~67%。

特別的地方是,由上圖的 accuracy 和 loss 的趨勢圖可看出,雖然 val_loss 到後期越來越高,但是 val_acc 也緩慢上升,雖然趨勢圖看起來有 overfitting 的跡象,但 test 的結果丟上 kaggle 的準確率居然達到 67%,若設 early stop 的結果則是 64%,所以我的推論是這次的 data 及 CNN 架構適合 train 越多 epoch 越準。

2. (1%) 承上題,請用與上述 CNN 接近的參數量,實做簡單的 DNN model。其模型架構、訓練過程和準確率為何?試與上題結果做比較,並說明你觀察到了什麼? 答:

將 DNN 架構建構成跟 CNN 的架構有差不多的參數(Total params),大概 400 多萬個,其準確率只有 24%,而且 loss 很難下降,效果比 CNN 差很多,可見對於影像分類的問題, CNN 是非常重要的技術。

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	256)	590080
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	256)	65792
dropout_2 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	256)	65792
dropout_3 (Dropout)	(None,	256)	0
dense_4 (Dense)	(None,	1024)	263168
dropout_4 (Dropout)	(None,	1024)	0
dense_5 (Dense)	(None,	1024)	1049600
dropout_5 (Dropout)	(None,	1024)	0
dense_6 (Dense)	(None,	1024)	1049600
dropout_6 (Dropout)	(None,	1024)	0
dense_7 (Dense)	(None,	1024)	1049600
dropout_7 (Dropout)	(None,	1024)	0
dense_8 (Dense)	(None,	7)	7175
Total params: 4,140,807 Trainable params: 4,140,807 Non-trainable params: 0			

3. (1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析] 答:

我使用的 validation set 是 training set 的前 1/10 筆資料,其 label 分佈是

Angry	Disgust	Fear	Нарру	Sad	Surprise	Neutral
423	39	431	711	466	307	493

其中 Disgust 數量偏少,因此不討論他,預測準確率最低的是 Fear,只有 46%,被預測錯的類別分別是 Sad(18%)、Neutral(12%)、Angry(11%)。

4. (1%) 從(1)(2)可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型 在做 classification 時,是 focus 在圖片的哪些部份? 答:

我使用的圖片 idx=9487,由 silency map 可看出 heat 高的部分都在五官處,與人類 直覺判斷的方式蠻符合的。

5. (1%) 承(1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate。

答:

input image:

layer 0:

	Output of layer0 (Given image9487)		·
		1 30	
		e 2	- '
		de la companya de la	
	2 .	Pat .	* E
15			1
	查	\$ E	* "
			25
		* R	200
াৰ্		0	16 mg
	** \$5	x - 1	
c			
			\$ \$°
	b f	4 4	-)
w	-		

layer 1:	Output of layer1 (Given in		
layer 2:			
	Output of layer2 (Given in	Inage 9467)	
filters:			