MSBD5007 Optimization and Matrix Computation Homework 5

RONG Shuo

May 2, 2025

- 1. Find explicit formulas for the projection of $y \in \mathbb{R}^n$ onto the following non-empty, closed, and convex sets $S \subset \mathbb{R}^n$, respectively.
 - (a) The unit ∞ -norm ball

$$S = \{ x \in \mathbb{R}^n \mid ||x||_{\infty} \le 1 \}.$$

(b) The closed halfspace

$$S = \{ x \in \mathbb{R}^n \mid a^T x \le b \},$$

where $a \in \mathbb{R}^n$, $a \neq 0$, and $b \in \mathbb{R}$ are given.

2. Consider the optimization problem in $x = (x_1, x_2, x_3) \in \mathbb{R}^3$:

$$\min_{x \in \mathbb{R}^3} \frac{1}{2} (x_1^2 + 4x_2^2 + 9x_3^2) - (4x_1 + 2x_2),$$

s.t. $x_1 + x_2 + x_3 = 3,$
 $x_i \ge 0, \quad i = 1, 2, 3.$

- (a) Write down the KKT conditions (stationarity, feasibility, complementary slackness).
- (b) Solve the KKT system to find the optimal solution x^* , the Lagrange multiplier λ^* for the equality constraint, and the multipliers $\mu^* = (\mu_1, \mu_2, \mu_3)$ for the inequality constraints.
- 3. We wish to compute the projection of $y \in \mathbb{R}^n$ onto the unit ℓ_1 ball, i.e. solve

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||x - y||_2^2$$

s.t. $||x||_1 \le 1$.

(a) Derive the Lagrange dual problem and show it can be written as

$$\max_{\lambda \ge 0} d(\lambda), \quad d(\lambda) = \sum_{i=1}^{n} h_{\lambda}(y_i) - \lambda,$$

where $h_{\lambda}: \mathbb{R} \to \mathbb{R}$ is the so-called Huber's function (which is a smooth function consisting of a quadratic and two linear pieces) defined by

$$h_{\lambda}(t) = \begin{cases} \frac{1}{2}t^2, & |t| \leq \lambda, \\ \lambda|t| - \frac{1}{2}\lambda^2, & |t| \geq \lambda. \end{cases}$$

- (b) Prove that strong duality holds.
- (c) Find the optimal dual multiplier λ^* .
- (d) Give an expression of the projection in terms of λ^* .
- 4. Let $S \subseteq \mathbb{R}^n$ be a nonempty, closed, convex set, and let $\|\cdot\|_2$ denote 2-norm. The projection of any point $y \in \mathbb{R}^n$ onto S is defined by

$$\mathcal{P}_S(y) = \arg\min_{x \in S} \|x - y\|_2.$$

Prove that the projection $\mathcal{P}_S: \mathbb{R}^n \to S$ is nonexpansive: for all $x, y \in \mathbb{R}^n$,

$$\|\mathcal{P}_S(x) - \mathcal{P}_S(y)\|_2 \le \|x - y\|_2.$$

1 Answer