Balanced Trees

Sridhar Alagar

Motivation

Height of the BST can be as high n-1

Binary Search Tree

• In a BST, each node stores one key

 Each node splits the key space into two halves

Generalizing BST

• Each node stores many keys in sorted order

• Each node with k keys splits the key space into k+1 regions

Balanced Multiway Search Tree

- Building a balanced multiway search tree is easy
- Just pack them in one node

- At some point it becomes a bad idea. Why?
- It is just a sorted array
- Need to limit the number of keys in a node. How?

· Push keys down after the limit exceeded in a node

20

Push keys down after the limit exceeded in a node

20 30

· Push keys down after the limit exceeded in a node

20 30 70

Push keys down after the limit exceeded in a node

Limit exceeded...
push down

- Easy to implement
- · But tree can be unbalanced

· Split node and push middle key up if limit exceeded

20 30 70

80 35 40 50 38 39

· Split node and push middle key up if limit exceeded

Limit exceeded... split and push up

35 40 50 38 39

- Slightly trickier to implement
- But tree is balanced. So, search, insert are efficient

B-trees

A B-tree of order b is a multiway search tree where:

- each node has b-1 to 2b-1 keys, other than root which can have up to b-1 keys
- each node is either a leaf or has one more child than the number of keys
- all leaves are at the same depth

Maximum height of a B-tree? O(log_b n)

RT for Search

Search every node

• Find the key or the child to descend to

• RT to search a node:

Binary search - log b

• RT for search = $\log b \log_b n = O(\log n)$

RT for insertion

- Need to visit log_b n nodes
- May need to split every node O(b)
- RT for insertion: = $O(b \log_b n)$ = $O((b/\log b) \log n)$

- In practice,
 - b = 2 (2-3-4 trees)
 - b = 1024/4096 (B-trees)

External data structures

- If n is too large to fit into memory, nodes are stored in secondary storage
- compute time <<< access time
- Ideal size (branching factor) of node is the size of block (minimum amount of data read from the storage device)
 - Typically, block size is 1K or 4K bytes
- Minimizes the storage device access

Insertion: $O(\log_b n)$

Search: O(log_b n)

If there are billion keys, # disk access = 3

2-3-4 trees

A B-tree with order b = 2

- each node has 1 to 3 keys; root will have 1 key only
- each node is either a leaf or has one more child than the number of keys

The story so far

- · We know how to build a balanced multiway search tree
- 2-3-4 trees when main memory is sufficient
- B-trees for huge amount of keys

A 2-3-4 tree can be transformed into a corresponding red-black tree

What can you infer about the depth?

Root Property:

The root is black

Red Property:

The parent of a red node is black

Depth Property:

The number of black nodes on each path from the root to a leaf node is the same

Root Property:

The root is black

Red Property:

The parent of a red node is black

Depth Property:

The number of black nodes on each path from the root to a leaf node is the same Leaf Nodes:

All leaf nodes are black nil nodes

A red-black tree can be transformed into a corresponding 2-3-4 tree

A red-black tree can be transformed into a corresponding 2-3-4 tree

Move the red nodes up to their parents

Corresponding Transformation

2-node or 3-node 4-node

Insert(53)?

Insert(53)

Problem of the day

Given an array of integers, and x, find how many pairs of elements of the array sum to x, i.e., how many indexes $i \neq j$ are there with arr[i] + arr[j] = x? Array is not sorted, and may contain duplicate elements. Solve the problem using balanced BST with RT = $O(n \log n)$. For example, If arr = $\{3,3,4,5,3,5,4\}$ then howMany(A,8) returns 7.