How worse can a stock perform?

Greatest, likely loss?

Value at Risk Simulation

Value at Risk using a Monte Carlo simulation

```
repeat n times -> first kernel
    repeat t times
        generate normal distributed number
        update interim price
        save end price to path array
extract the nth rank -> second kernel
scale value at risk to holding period
print results
```

1st kernel (generating random prices)

specification

trivial problem / no interaction between threads

All threads run the same code / no thread divergence...

{demo}

2nd kernel (extracting the minimal price)

{demo}

specification

non trivial problem / dependence between threads potential bank conflicts / idle threads solved through efficient reduction

. . .

performance evaluation

gpu specification

gpu specification

NVIDIA GeForce 940MX

3 Mb dedicated memory

384 cores

misc

using wakeup call to prevent JIT and lazy initialization using std::chrono::steady_clock using tile_size with multiple of two

problem size

https://github.com/KarelZe/MC-VAR-Sim