Control Systems Lab Presentation

Inverted Double Pendulum

Cirillo Matteo Van der Spijk Tim Laporte Lilian 5616395 4693817 5615208

Outline

- Modelling
 - Full Non Linear Model
 - State Space Linearization
- Identification
 - Interfacing
 - Nonlinear White Box model
 - Linear Black box model
- Linear Control
 - LQR Regulator
 - PID Controller

Plant - Inverted Double Pendulum

Modelling - Ideal Nonlinear SIMO Model

- Single Input

$$u(t) = v_{in}(t)$$

Chosen State (5th order system)

$$\vec{x}(t) = (\frac{d\theta_1}{dt}, \frac{d\theta_2}{dt}, \theta_1, \theta_2, T)^T$$

Available Outputs

$$\vec{y}(t) = (\theta_1, \theta_2)^T$$

$$\frac{d\vec{x}}{dt}(t) = \vec{F}(\vec{x}(t), v_{in}(t), t)$$

Modelling - Linearization

- Matlab Manual Symbolic Linearization
 - Longer implementation
 - Longer execution
 - More control (Educational)
- Final State Space
 - Continuous Time

$$\frac{d\vec{x}}{dt}(t) = \vec{F}(\vec{x}(t), v_{in}(t), t)$$

$$\downarrow$$

$$\frac{d\vec{x}}{dt} = \mathbf{A}\vec{x} + \mathbf{B}u$$

$$\vec{y} = \mathbf{C}\vec{x}$$

Identification - Interfacing

Sampling Period

h ~ Fastest Dynamic / 2 ~ $\tau_{\rm e}$ / 2

Design in CT

Sensor Calibration

Probed Sensor Voltage

Converted in Radians

Unwrapped Measurement

Dead-zones / Compensation

- Dead-zones
 - ~5% range loss
 - At pi/2 for both links
- Range Stretching
 - Reduces discontinuity
 - Spreads error

Dead-zones / Compensation

- Dead-zones
 - ~5% range loss
 - At pi/2 for both links
- Range Stretching
 - Reduces discontinuity
 - Spreads error

Identification - Nonlinear White Box model

- Method
 - Simdata
 - Isqnonlin
- Experiments
 - Second link
 - Motor
 - First link
- Troubles

Identification - Nonlinear White Box model

Symbol	Predetermined	Estimated
I1 [m]	0.1	0.0897
l2 [m]	0.1	0.1
m1 [kg]	0.125	0.2
m2 [kg]	0.05	0.087972
c1 [m]	-0.04	0.01
c2 [m]	0.06	0.07
I1 [kg.m²]	0.074	0.01076
l2 [kg.m²]	0.00012	0.0001
b1 [kg.s ⁻¹]	4.8	5.33518
b2 [kg.s ⁻¹]	0.0002	0.00004
k _m [Nm]	50	39.2954
$ au_{ m e}$ [s]	0.03	0.01

Identification - Linear Black box model

- ARX linear discrete time model
 - Data set: up up position
 - Not used in practice
 - Educational

Linear Control - Objectives

- Equilibrium Stabilization
 - Up up position
- Input Disturbance Rejection
 - Down Down position
- Motivation for Positions
 - Intuition
 - Simulation 'eig(ctrb(A, B))'

Up Up Position - LQR Regulator

- Motivation w.r.t Objective
 - Easy pole placement
- Combined Layout
 - Luenberg Observer
 - Output Feedback
- Design
 - Decoupling of the eigenvalues
 - Feedback first, observe faster

LQR Regulator - Luenberg Observer

Demo

Results and Problems

- Objective
- Control input
 - Noisy observer
 - Non Saturated
- Backlash / Friction
 - Small Oscillations
 - Steady State Error

Down Down - PID Controller

- Motivation w.r.t Objective
 - Tune response to disturbance
 - Derivative control w/o observer
- Layout Motivation
 - Avoid unwanted stable equilibriums
- Problems
 - Many parameters
 - Long settling time

Down Down- Improved PID Controller

- Improvement
 - Single controller
 - Less parameters
 - Faster Settling time
- Layout Motivation
 - Avoid unwanted stable points

Demo

Results and Problems

- Objective
 - Fast Settling
 - Low Overshoot
 - Stability and backlash
- Control input
 - Saturates
 - Wind up

Improvements

- Time spent on white box
- Observer
- Filtering
- Swing up?

Questions?

