Predicting Sepsis on the PredictEM Masked Blutkulturen Dataset - May

Bachelor Thesis by Yannick Müller

What I did

- K-Fold Validation: improvement AUC_ROC from 0.64 to 0.67 as whole dataset was trained
- 2. Boolean Variables: minor improvement
- 3. Feature Selection: minor improvement
- ROC_AUC: Implemented
- 5. Ensemble: got worse
- 6. One-Hot-Encoding
- 7. Hyperparameter tuning: minor improvement, still working on it
- 8. Created Minimal Example

Improved 26 Features

LACT =lactat, LACT =lactat inf quant 0.7, CRP, GGT, GGT inf median, INRiH inf median, INRiH, THZ (Thrombozyten), THZ (Thrombozyten) inf quant 0.3, ASAT inf quant 0.3, UREA = Harnstoff, UREA = Harnstoff inf quant 0.3, ort_vor_aufnahme_spital: anderes Spital, BIC_VB, BIC_st, BIC_st inf quant 0.1, IVI_consc_alert, pH inf quant 0.1, CR inf quant 0.8, EOS =eosinophile inf quant 0.6, age_admission_unz, diastolic_bp_first inf quant 0.4, respiratory_rate_first inf quant 0.3, systolic bp_first inf quant 0.4, Hb, PCThs

Predicting blood culture positive

Average Score 8-Fold Validation Set	F1 Score	AUC_ROC
Linear Regression	0.45	0.67
Ridge Classifier	0.45	0.67
Ridge Regression	0.45	0.67
Bayesian Ridge	0.45	0.67
XGB Classifier	0.43	0.66
Gaussian Naive Bayes	0.43	0.65

Preprocessing Example

```
from sklearn.model selection import GroupKFold
from sklearn.linear model import RidgeClassifier
from sklearn.metrics import roc auc score
import numpy as np
import pandas as pd
np.random.seed(0)
cols = ["age admission unz", "triage", "referral unz", "admission choice",
"systolic bp first", "systolic bp first inf 100", "diastolic bp first",
"respiratory rate first", "gcs inf 15 first", "lvl consc alert",
"temperature lowest", "spo2 first", "THZ (Thrombozyten)", "NA", "ASAT",
"UREA = Harnstoff", "GFR", "PCThs", "EOS =eosinophile", "CRP", "KA = Kalium",
"Hb", "INRiH", "CR", "pH", "LACT =lactat", "GGT", "BIC st", "leuk sup 10",
"leuk inf 4", "leuk inf 0 5", "LACT =lactatinf7", "GGTinf5", "INRiHinf5",
"THZ (Thrombozyten)inf3", "ASATinf3", "UREA = Harnstoffinf3",
"ort vor aufnahme spitalinf2", "BIC stinf1", "pHinf1", "CRinf8",
"EOS =eosinophileinf6", "diastolic bp firstinf4", "respiratory rate firstinf3",
"systolic bp firstinf4", "NCH", "PLWS", "PSYCH", 'Hausarzt (privat)',
'Inselklinik', 'Polizei (In Begleitung)'l
df = pd.read csv('x.csv')
df = df.join(pd.get dummies(df["admission choice"]))
df = df.join(pd.get dummies(df["referral unz"]))
df.referral unz = pd.factorize(df.referral unz)[0]
df.admission choice = pd.factorize(df.admission choice)[0]
df.ort vor aufnahme spital = pd.factorize(df.ort vor aufnahme spital)[0]
df = df.select dtypes(['number'])
for i in df.columns:
  for j in range(1,10):
    df[i+"inf"+str(i)] = (df[i] >= df[i].quantile(0.1*i)).astype(int)
```

Example Ridge Classifier

```
proc x = df[cols]
proc y = df["blood culture positive"]
group by = df["pseudoid patient"]
proc x = proc x.fillna(0)
kf = GroupKFold(n splits=8)
roc auc list = []
for train index, test index in kf.split(proc x, proc y, groups=group by):
   X train, X test = proc x.iloc[train index], proc x.iloc[test index]
   y train, y test = proc y.iloc[train index], proc y.iloc[test index]
   clf = RidgeClassifier(class weight= 'balanced')
   clf.fit(X train, y train)
   y pred = clf.predict(X test)
    roc auc list.append(roc auc score(y test, y pred))
print(np.mean(roc auc list)) # 0.688
```

Effectiveness different elements

Element	Improvement ROC_AUC
Feature Selection	0.014
Binary threshold encoding	0.023
One-Hot-Encoding	0.017
8-fold validation instead of 80/20 Split	0.006
No scaling instead of Normalization	0.026
No scaling instead of StandardScaler	0.001
Ridge Classification instead of Linear Regression	0.004
Missing values replace with constant instead of mean	0.042
Class weight balanced instead of weight 1	0.157

Disallowed

Element	Improvement ROC_AUC
Regression instead of Classification	0.052
Shuffle instead of group split	0.003

If it was allowed a AUC_ROC score of 0.727 could be achieved

Up Next

- 1. Polynomial functions on features
- 2. More advanced neural network
- 3. Fourier Transform
- 4. Pretrained Net for Medical Data and then fine tune on this dataset
- Sklearn GridSearchCV
- 6. Min, Max, Mean, Messungen beim Patienten oder falls NaN immer die alten
- Bidirectional RNN

Questions

- ROC_AUC Score from regression between 0 and 1 or classification between 0 and 1. Regression 0.72, Classification 0.67
- 2. Can I do K-Fold Validation on the whole dataset or do I still need a 20% Test set?
- 3. What can I do to further improve the model?
- 4. Do you have any improvements to the minimal example