Topic

Binary Trees
(Non-Linear Data
Structures)

Linear Data Structures

- Arrays
- Linked lists
- Skip lists
- Self-organizing lists

CIS210

Non-Linear Data Structures

- Hierarchical representation?
 - → Trees
 - → General Trees
 - → Binary Trees
 - → Search Trees
 - → Balanced Trees
 - → Heaps
 - →...

CIS210

General Trees

A (Rooted) Tree?

- A finite, nonempty set of nodes and edges s.t.
 - **One special node** (the root of the tree)
 - → Each node may be associated (edge) with one or more different nodes (its children).
 - → Each node except the root has exactly one parent. The root node has no parent (no incoming edge).
 - There exists a unique path from the root to any other node!

General Rooted Trees

Example: (General Rooted)Trees?

More Terminology

- Path
 - → A sequence of nodes.
- **Level** of a node
- Height of a node
 - The number of nodes in the longest path from that node to a leaf.
- Height of a tree
 - The height of the root node.

An N-ary Tree?

- Each node may be associated (edge) with **exactly N** different nodes (its children).
- If the set is empty (no node), then an empty N-ary tree.

Example: N-ary Trees (N=3)

* Note: = Empty tree!

The World of Trees

An Ordered Tree?

- A rooted tree in which the children of each node are ordered.
 - irst child, second child, third child, etc. ...
- Most practical implementations of trees define an implicit ordering of the subtrees.

Example: Ordered Trees

Different Views on Trees

- We may view trees as
 - → A mathematical construct.
 - → A data structure.
 - → An abstract data type.

Binary Trees

Binary Trees

• A binary tree is an ordered N-ary tree where N=2

Example: Binary Trees

Example: Binary Trees?

Two Different Binary Trees

Quiz

- How many different binary trees with 3 nodes?
 5
- How many different binary trees with 4 nodes?
 14

Quiz

• What is the range of possible heights of a binary tree with 3 nodes?

 \rightarrow 2 to 3

• What is the range of possible heights of a binary tree with 100 nodes?

→ 7 to 100

The World of Trees

Different Shapes of Binary Trees

- Short & Fat binary trees
 - → A full binary tree
 - → A complete binary tree
 - → A balanced binary tree
- Tall & Skinny binary trees
 - → A skewed binary tree

A Full Binary Tree

- A binary tree in which
 - → All of the leaves are on the same level. (at level h for the binary tree of height h.)
 - → Every nonleaf node has exactly two children.

Shape of A Full Binary Tree

• The basic shape of a full binary tree is triangular!

Example: Full Binary Trees

A Complete Binary Tree

- A binary that is
 - → Either full binary tree
 - →Or full through the next-to-last level, with the leaves on the last level as far to the left as possible (filled in from left to right).
- A binary tree in which all leaf nodes are at level n or n-1, and all leaves at level n are towards the left.
- A binary tree of height h that is full to level h-1 and has level h filled from left to right.

Shape of A Complete Binary Tree

• The basic shape of a complete binary tree is like

Example: Complete Binary Trees?

Example: Complete Binary Trees?

CIS210

A (Height) Balanced Binary Tree

• A binary tree in which the left and right subtrees of any node have heights that differ by at most 1.

Example: (Height) Balanced Binary Trees

A Skewed Binary Tree

- A degenerate binary tree
- A skewed binary tree is expensive to process!

Example: Skewed Binary Trees

Quiz

- Is a full binary tree complete?
 - Yes!
- Is a complete binary tree full?
 - →No!
- Is a full binary tree balanced?
 - Yes!
- Is a complete binary tree balanced?
 - → Yes!

Properties of Binary Trees

• What is the maximum height of a binary tree with n nodes?

 \rightarrow n

The maximum height of a binary tree with n nodes is n.

- What is the minimum height of a binary tree with n nodes?
 - \rightarrow $\lceil \log (n+1) \rceil$ where the ceiling of $\log (n+1) = \log (n+1)$ rounded up.

```
The minimum height of a binary tree with n nodes is \lceil \log (n+1) \rceil. (The ceiling of \log (n+1) = \log (n+1) rounded up.)
```

The height of a binary tree with n nodes is at least $\lceil \log (n+1) \rceil$ and at most n.

• What is the minimum number of nodes that a binary tree of height h can have?

 \rightarrow h

The minimum number of nodes that a binary tree of height h can have is h.

• What is the maximum number of nodes that a full binary tree of height h can have?

$$\rightarrow 2^{h} - 1$$

The maximum number of nodes that a binary tree of height h can have is 2h - 1.

- Full binary trees and complete binary trees have the minimum height!
- Skewed (degenerate) binary trees have the maxim m height!

Representation of Binary Trees

CIS210

How to Represent a Binary Tree?

- An array-based representation
- An array-based representation for complete binary trees
- A pointer-based representation

1. An Array-Based Representation

- Represent a node in the binary tree as a structure
 - → A data
 - Two indexes (One for each child)
- Represent the binary tree as an array of structures.

An Array-Based Representation

```
const int MAX NODES = 100;
struct BTnode
    typedef string DataType;
    DataType Data;
    int Lchild;
    int Rchild;
BTnode BT[MAX NODES];
int Root;
int Free;
```

An Array-Based Representation

2. An Array-Based Representation of a Complete Binary Tree

- A **better** array-based representation for a complete binary tree!
- Represent a node in the binary tree as
 - → A data
- Represent the binary tree as an array.

An Array-Based Representation of a Complete Binary Tree

```
const int MAX_NODES = 100;
typedef string DataType;
DataType BT[MAX_NODES];
int Root;
```

An Array-Based Representation of a Complete Binary Tree

CIS210

An Array-Based Representation of a Complete Binary Tree

- Any node BT[i]
 - → Its left child =
 - →BT [2 * i + 1]
 - → Its left child =
 - \rightarrow BT [2 * i + 2]
 - → Its parent =
 - →BT [(i -1) / 2]
- Must maintain it as a complete binary tree!
- Limited delete!

3. A Pointer-Based Representation

- Represent a node in the binary tree as a structure
 - → A data
 - Two pointers (One for each child)
- Represent the binary tree as a linked structure.

A Pointer-Based Representation

A Pointer-Based Representation

```
struct BInode
    typedef string DataType;
    DataType Data;
    BTnode* LchildPtr;
    BTnode* RchildPtr;
BTnode* rootBT;
```

A Pointer-Based Representation using Template

```
template<class DataType>
struct BTnode
    DataType Data;
    BTnode<DataType>* LchildPtr;
    BTnode<DataType>* RchildPtr;
BTnode<DataType>* rootBT;
```

A Pointer-Based Representation using Template Class

```
template<class DataType>
class BTnode
Public:
   BTnode();
   BTnode (DataType D, BTnode < DataType > * 1,
          BTnode<DataType>* r)
           :data(D), LchildPtr(1),
RchildPtr(r) { }
   friend class BT<DataType>;
private:
   DataType data;
   BTnode<DataType>* LchildPtr;
   BTnode<DataType>* RchildPtr;
```

A Pointer-Based Representation using Template Class

```
template<class DataType>
class BT
Public:
   BT();
private:
BTnode<DataType>* rootBT;
```

Binary Trees as ADTs

CIS210

Operations on Binary Trees

- Create an empty binary tree.
- Create a one-node binary tree, given an item.
- Create a binary tree, given an item for its root and two binary trees for the root's left and right subtrees.
- Attach a left or right child to the binary tree's root.
- Attach a left or right subtree to the binary tree's root.
- Detach a left or right subtree to the binary tree's root.

Destroy a binary tree.

More Operations on Binary Trees

- Determine whether a binary tree empty?
- Determine or change the data in the binary tree's root.
- Return a copy of the left or right subtree of the binary tree's root.
- Traverse the nodes in a binary tree in preorder, inorder or postorder.

• ...

Traversal Operations on Binary Trees

- It is frequently necessary to examine every node exactly once in a binary tree.
- Binary tree traversal is the process of
 - → Visiting systematically all the nodes of a binary tree and
 - → Performing a task (calling a visit procedure like print).

Traversal Operations on Binary Trees

- Two essential approaches:
 - Depth-first traversal
 - → Breadth-first traversal

Possible Depth-First Traversals

- Six possible ways to arrange those tasks:
 - → 1. Process a node, then left-child subtree, then right-child subtree.
 - → 2. Process left-child subtree, then a node, then right-child subtree.
 - → 3. Process left-child subtree, then right-child subtree, then a node.
 - → 4. Process a node, then right -child subtree, then left-child subtree.
 - → 5. Process right -child subtree, then a node, then left-child subtree.
 - → 6. Process right -child subtree, then left-child subtree, then a node.
- In almost all cases, the subtrees are analyzed left to right!

Common Binary Tree Traversals

- Three ways to arrange those tasks:
 - → 1. Process a node, then its left-child subtree, then its right-child subtree.
 - Preorder Traversal
 - → 2. Process its left-child subtree, then a node, then its right-child subtree.
 - **→** Inorder Traversal
 - → 3. Process its left-child subtree, then its right-child subtree, then a node.
 - Postorder Traversal

1. Pre-order Traversal

- If the tree is not empty then
 - → Visit the root
 - → Preorder traverse the left subtree recursively
 - → Preorder traverse the right subtree recursively

Pre-order Traversal - Processing Order

Example: Preorder traversal

Preorder Traversal & Print

```
void preorder print(BTnode* rootBT)
   if (rootBT != NULL)
      cout << rootBT->Data << endl;</pre>
      preorder print(rootBT-> LchildPtr);
      preorder print(rootBT-> RchildPtr);
```

Preorder Traversal and Operation

```
typedef void (*fType) (DataType& AnItem);
void preorder(BTnode* rootBT, fType Op)
   if (rootBT != NULL)
      Op(rootBT->Data);
      preorder(rootBT-> LchildPtr);
      preorder(rootBT-> RchildPtr);
```

2. In-order Traversal

- If the tree is not empty then
 - → Inorder traverse the left subtree recursively
 - → Visit the root
 - → Inorder traverse the right subtree recursively

In-order Traversal - Processing Order

Example: Inorder traversal

Inorder Traversal & Print

```
void inorder print(BTnode* rootBT)
   if (rootBT != NULL)
      inorder print(rootBT-> LchildPtr);
      cout << rootBT->Data << endl;</pre>
      inorder print(rootBT-> RchildPtr);
```

CIS210

Inorder Traversal and Operation

```
typedef void (*fType) (DataType& AnItem);
void inorder(BTnode* rootBT, fType Op)
   if (rootBT != NULL)
      inorder(rootBT-> LchildPtr);
      Op(rootBT->Data);
      inorder(rootBT-> RchildPtr);
```

3. Post-order Traversal

- If the tree is not empty then
 - → Postorder traverse the left subtree recursively
 - → Postorder traverse the right subtree recursively
 - → Visit the root

Post-order Traversal - Processing Order

Example: Postorder traversal

Postorder Traversal & Print

```
void postorder print(BTnode* rootBT)
   if (rootBT != NULL)
      postorder print(rootBT-> LchildPtr);
      postorder print(rootBT-> RchildPtr);
      cout << rootBT->Data << endl;</pre>
```

Postorder Traversal and Operation

```
typedef void (*fType) (DataType& AnItem);
void postorder(BTnode* rootBT, fType Op)
   if (rootBT != NULL)
      postorder(rootBT-> LchildPtr);
      postorder(rootBT-> RchildPtr);
      Op(rootBT->Data);
```

5. Backward In-order Traversal

- 5. Process right-child subtree, then a node, then left-child subtree.
- If the tree is not empty then
 - → Backward Inorder traverse the right subtree recursively
 - Visit the root
 - → Backward Inorder traverse the left subtree recursively

Backward In-order Traversal - Processing Order

Example: Backward Inorder Traversal

Example: Backward Inorder Traversal

Example: Backward Inorder traversal

Example: Backward Inorder traversal

CIS210

Breadth-First Traversal of Binary Trees

Breadth-First (Levelorder)Traversal

- If the tree is not empty then then visit the nodes in the order of their level (depth) in the tree.
 - → Visit all the nodes at depth zero (the root).
 - Then, all the nodes from left to right at depth one
 - Then, all the nodes from left to right at depth two
 - Then, all the nodes from left to right at depth three
 - → And so on ...

Level-order Traversal - Processing Order

Example: Levelorder traversal

CIS210

Algebraic Expressions: Notations

- Algebraic expressions
 - → Fully parenthesized Infix notation
 - → Not fully parenthesized Infix notation
 - → Postfix notation
 - → Prefix notation

1. Fully Parenthesized Infix Notation

- We need to place parentheses around each pair of operands together with their operator!
- Examples:

```
→ (1+2)
→ (1+(2 * 3))
→ ((1+2) * 3)
→ ((a/b) + ((c - d) * e))
```

• Inconvenient!

2. Not Fully Parenthesized Infix Notation

- We can omit unnecessary parentheses!
- Examples:

⇒
$$(1+2)$$
 → $1+2$
⇒ $(1+(2*3))$ → $1+2*3$
⇒ $((1+2)*3)$ → $(1+2)*3$
⇒ $((a/b)+((c-d)*e))$ → $a/b+(c-d)*e$

• Convenient, BUT, we need rules to interpret correctly.

CIS210

Not Fully Parenthesized Infix Notation

- Operator precedence rule
 - \rightarrow * / higher than + -
- Operator association rule
 - → Associate from left to right
- Examples: (Interpretation using rules)

$$\rightarrow 1 + 2 \rightarrow (1+2)$$

$$\rightarrow$$
 1+ 2 * 3 \rightarrow (1+ (2 * 3))

$$\rightarrow$$
 (1 + 2) * 3 \rightarrow ((1 + 2) * 3)

$$\rightarrow a/b + (c-d)*e \rightarrow ((a/b) + ((c-d)*e))$$

CIS210

3. Postfix Notation

Postfix Notation:

• Examples:

4. Prefix Notation

Postfix Notation:

- →<op> := + | | * | /
- → <id> := <variable> | <number>
- Examples:
 - \rightarrow (1+2) \rightarrow 1+2 \rightarrow +12
 - \rightarrow (1+ (2 * 3)) \rightarrow 1+ 2 * 3 \rightarrow + 1 * 2 3
 - \rightarrow ((1+2) * 3) \rightarrow (1+2) * 3 \rightarrow * + 1 2 3
 - \rightarrow ((a/b)+((c-d)*e)) \rightarrow a/b+(c-d)*e \rightarrow +/ab*-cde

Postfix and Prefix Notations

- Postfix and prefix notations do not need!
 - → Parentheses
 - Operator precedence rules
 - Operator association rules

Algebraic Expressions as Expression Trees

- Algebraic expressions involving binary operations can be represented by labeled binary trees.
- Expression trees represent algebraic expressions!

Algebraic Expression a / b + (c - d) * e

- ((a/b) + ((c-d)*e))
- a b / c d e * +
- + / a b * c d e

Expression Tree for a / b + (c - d) * e


```
// exprtree.h
     // Class declarations for the linked implementation of the
     // Expression Tree ADT
      class ExprTree; // Forward declaration of the ExprTree class
      class ExprTreeNode // Facilitator class for the ExprTree class
       private:
        // Constructor
        ExprTreeNode (char elem,
                ExprTreeNode *leftPtr, ExprTreeNode *rightPtr );
        // Data members
        char dataItem; // Expression tree data item
        ExprTreeNode *left, // Pointer to the left child
                       *right; // Pointer to the right child
       friend class ExprTree;
CIS210};
```

```
class ExprTree
 public:
  // Constructor
  ExprTree ();
  // Destructor
  ~ExprTree ();
  // Expression tree manipulation operations
  void build (); // Build tree from prefix expression
  void expression () const; // Output expression in infix form
  float evaluate () const; // Evaluate expression
  void clear (); // Clear tree
```

// Output the tree structure -- used in testing/debugging void showStructure () const;

ExprTree (const ExprTree &valueTree); // Copy constructor

private: // Recursive partners of the public member functions -- insert // prototypes of these functions here. void buildSub (ExprTreeNode *&p); void exprSub (ExprTreeNode *p) const; float evaluateSub (ExprTreeNode *p) const; void clearSub (ExprTreeNode *p); void showSub (ExprTreeNode *p, int level) const; // Data member **ExprTreeNode *root;** // Pointer to the root node **}**;

```
// exprtree.cpp
ExprTreeNode: ExprTreeNode (char nodeDataItem,
                 ExprTreeNode *leftPtr,
                 ExprTreeNode *rightPtr )
// Creates an expression tree node containing
// data item nodeDataItem,
// left child pointer leftPtr, and right child pointer rightPtr.
 : dataItem(nodeDataItem),
  left(leftPtr),
  right(rightPtr)
```

```
ExprTree:: ExprTree ()
// Creates an empty expression tree.
: root(0)
{}
```

```
ExprTree:: ~ExprTree()
// Frees the memory used by an expression tree.
  clear();
void ExprTree:: clear ()
// Removes all the nodes from an expression tree.
  clearSub(root);
  root = 0;
```

```
void ExprTree:: clearSub ( ExprTreeNode *p )
// Recursive partner of the clear() function. Clears the subtree
// pointed to by p.
  if (p!=0)
    clearSub(p->left);
    clearSub(p->right);
    delete p;
```

```
void ExprTree:: build ()
// Reads a prefix expression (consisting of single-digit, nonnegative
// integers and arithmetic operators) from the keyboard and
// builds the corresponding expression tree.
{
   buildSub(root);
}
```

```
void ExprTree:: buildSub (ExprTreeNode *&p)
// Recursive partner of the build() function. Builds a subtree and
// sets p to point to its root.
  char ch; // Input operator or number
  cin >> ch;
  p = new ExprTreeNode(ch,0,0); // Link in node
  if (!isdigit(ch)) // Operator -- construct subtrees
    buildSub(p->left);
    buildSub(p->right);
```

CIS210

```
void ExprTree:: expression () const
// Outputs the corresponding arithmetic expression in fully
// parenthesized infix form.
{
    exprSub(root);
}
```

```
void ExprTree:: exprSub ( ExprTreeNode *p ) const
// Recursive partner of the expression() function.
// Outputs the subtree pointed to by p.
  if (p!=0)
    if ( !isdigit(p->dataItem) ) cout << '(';</pre>
    exprSub(p->left);
    cout << p->dataItem;
    exprSub(p->right);
    if ( !isdigit(p->dataItem) ) cout << ')';</pre>
```

CIS210

```
float ExprTree:: evaluate ()

// Returns the value of the corresponding arithmetic expression.

{

// Requires that the tree is not empty
return evaluateSub(root);
}
```

```
float ExprTree:: evaluateSub ( ExprTreeNode *p ) const
// Recursive partner of the evaluate() function. Returns the value of
// subtree pointed to by p.
  float l, r, // Intermediate results
      result; // Result returned
  if ( isdigit(p->dataItem) )
    result = p->dataItem - '0'; // Convert from char to number
  else
    l = evaluateSub(p->left); // Evaluate subtrees
    r = evaluateSub(p->right);
    switch (p->dataItem) // Combine results
     case '+': result = l + r; break;
     case '-': result = l - r; break;
     case '*': result = l * r; break;
     case '/': result = 1/r;
  return result;
```