Basic Numerical Optimization

Note: the slides are based on EE263 at Stanford. Reorganized, revised, and typed by Hao Su $\,$

Outline

- Least-squares
 - least-squares (approximate) solution of overdetermined equations
 - minimal norm solution of underdetermined equations
 - unified solution form by SVD
- ► Low-rank Approximation
 - eigenface problem
 - principal component analysis

Outline

- Least-squares
 - least-squares (approximate) solution of overdetermined equations
 - least-norm solution of underdetermined equations
 - unified solution form by SVD
- ► Low-rank Approximation
 - eigenface problem
 - principal component analysis

Example Application: Line Fitting

- ▶ Given $\{(x_i, y_i)\}$, find line through them. i.e., find a and b in y = ax + b
- ▶ Using matrix and vectors, we look for a and b such that

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \approx \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

Overdetermined Linear Equations

- ▶ consider y = Ax where $A \in \mathbb{R}^{m \times n}$ is (strictly) skinny, i.e., m > n
 - called overdetermined set of linear equations (more equations than unknowns)
 - \triangleright for most y, cannot solve for x
- one approach to approximately solve y = Ax:
 - ightharpoonup define *residual* or error r = Ax y
 - find $x = x_{ls}$ that minimize ||r||
- $ightharpoonup x_{ls}$ called *least-squares* (approximate) solution of y = Ax

Geometric Interpretation

Given $y \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ to minimize ||Ax - y||

 Ax_{ls} is point in range(A) closest to y $(Ax_{ls}$ is *projection* of y onto range(A))

Least-squares (approximate) Solution

- ► assume A is full rank, skinny IIrII $^2=IIAx-yII^2=(Ax-y)^T(Ax-y)$
- ightharpoonup to find x_{ls} , we'll minimize norm of residual squared,

$$||r||^2 = x^T A^T A x - 2y^T A x + y^T y$$

set gradient w.r.t. x to zero:

$$\nabla_x ||r||^2 = 2A^T Ax - 2A^T y = 0$$

- ightharpoonup yields the normal equation: $A^TAx = A^Ty$
- ightharpoonup assumptions imply A^TA invertible, so we have

$$x_{ls} = (A^T A)^{-1} A^T y$$

...a very famous formula

Least-squares (approximate) Solution

- \triangleright $\mathbf{x}_{\mathbf{k}}$ is linear function of y
- \triangleright $x_{ls} = A^{-1}y$ if A is square
- $ightharpoonup x_{ls}$ solves $y = Ax_{ls}$ if $y \in \mathbf{range}(A)$

Least-squares (approximate) Solution

for A skinny and full rank, the *pseudo-inverse* of A is

$$A^{\dagger} = (A^T A)^{-1} A^T$$

▶ for A skinny and full rank, A^{\dagger} is a *left inverse* of A

$$A^{\dagger}A = (A^{T}A)^{-1}A^{T}A = I$$

lacktriangle if A is not skinny and full rank then A^\dagger has a different definition

Underdetermined Linear Equations

- ▶ consider y = Ax where $A \in \mathbb{R}^{m \times n}$ is (strictly) fat, i.e., m < n
 - called underdetermined set of linear equations (more unknowns than equations)
 - the solution may not be unique
- we find a specific solution to y = Ax and the null space of A:

$$\begin{array}{ll}
\text{minimize} & \frac{1}{2} ||x||^2 \\
\text{s.t.} & y = Ax
\end{array}$$

this is called the least-norm solution

Least-norm Solution

$$\begin{array}{ll}
\text{minimize} & \frac{1}{2} ||x||^2 \\
\text{s.t.} & y = Ax
\end{array}$$

||x||^2=x^T x=x^T | x |q=2x

- ▶ assume *A* is full (row-)rank, fat
- we use Lagrangian multiplier method to solve *x*:

$$L(x, \lambda) = \frac{1}{2} ||x||^2 - \lambda^T (y - Ax)$$
$$\nabla_x L(x, \lambda) = x - A^T \lambda$$

Set $\nabla_x L(x,\lambda) = 0$, we have $x = A^T \lambda$, so $y = Ax = AA^T \lambda$ Note that A is fat and full rank, so AA^T invertible So, $\lambda = (AA^T)^{-1}y$ By $x = A^T \lambda$, we have

$$x = A^T (AA^T)^{-1} y$$

Least-norm Solution

A=US(V^T) U: m x m S: m x m V^T: m x n

for A fat and full rank, the pseudo-inverse of A is

$$A^{\dagger} = A^{T} (AA^{T})^{-1}$$

0=Az

x is a solution to y=Ax x+z is also a solution

• for A fat and full rank, A^{\dagger} is a *right inverse* of A

$$AA^{\dagger} = AA^{T}(AA^{T})^{-1} = I$$

Unifying least-square and least-norm solutions by SVD

Let the SVD decomposition of A be $A = U\Sigma V^T$ (the economic form of Σ that all the diagonals are non-zero).

► For skinny matrix, the least-square solution:

$$x = (A^{T}A)^{-1}A^{T}y = V\Sigma^{-1}U^{T}y$$

For fat matrix, the least-norm solution:

$$x = A^{T} (AA^{T})^{-1} y = V \Sigma^{-1} U^{T} y$$

Solution to linear equation system y = Ax

$$x = V \Sigma^{-1} U^T y$$

Note:

- ▶ For least-norm solution, $x = V \Sigma^{-1} U^T y$ is a special solution
- ightharpoonup Ex: how to obtain all the solutions? (Hint: the null space of U^T)

Outline

- Least-squares
 - least-squares (approximate) solution of overdetermined equations
 - least-norm solution of underdetermined equations
 - unified solution form by SVD
- ► Low-rank Approximation
 - eigenface problem
 - principal component analysis

Example Application: Face Retrieval

Suppose you have *10 million* face images, Question:

- ▶ How can you find the 5 faces closest to a query (maybe yours!) in just 0.1 sec?
- ▶ How can you show all of them in a single picture?

Example Application: Face Retrieval

Suppose you have *10 million* face images, Question:

- ▶ How can you find the 5 faces closest to a query (maybe yours!) in just 0.1 sec?
- ▶ How can you show all of them in a single picture?
- SVD can help you do it!

Data as Points in a Euclidean Space

- While data can be represented as high-dimensional vectors
- Lower-dimensional structure is often present in data

The Space of All Face Images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - ▶ 100 × 100 image=10,000 dims
 - Slow and lots of storage is needed
- ▶ But very few 10,000-dimensional vectors are valid face images
- ▶ We want to *effectively* model the subspace of face images

Low-Dimensional Face Space

Reconstruction Formulation

- ▶ Data matrix of face images: $X = \begin{bmatrix} x_1^T \\ x_2^T \\ \dots \\ x_n^T \end{bmatrix} \in \mathbb{R}^{n \times m}$, each row is a face image
- ▶ Orthonormal basis of the face subspace: $F = \begin{bmatrix} f_1' \\ f_2^T \\ \vdots \\ f_r^T \end{bmatrix} \in \mathbb{R}^{r \times m}, r << m$ 7 x 10000
- ► Face coordinates: $W = \begin{bmatrix} w_1^T \\ w_2^T \\ \dots \\ w_n^T \end{bmatrix} \in \mathbb{R}^{n \times r}$ nimg x 7
- ▶ Reconstruction: $\hat{X} = WF + \mu$, where $\mu \in \mathbb{R}^{n \times m}$ replicates the mean face vector at each row.

Optimization Formulation of Face Subspace Learning

- Frobenius norm of a matrix: $\|X\|_F = \sqrt{\sum_{ij} x_{ij}^2}$
- ▶ We use $\|\cdot\|_F$ to measure $X \approx \hat{X}$:

$$||X - \hat{X}||_F^2 = ||X - (WF + \mu)||_F^2 = ||(X - \mu) - WF||_F^2$$

▶ Let $D = X - \mu$, we have an optimization problem:

$$\underset{W \in \mathbb{R}^{n \times r}, F \in \mathbb{R}^{r \times m}}{\mathsf{minimize}} \quad \|D - WF\|_F^2$$

We do not know how to obtain the global minimum of the above problem (non-convex); however, we can solve the following equivalent problem:

Low-rank Approximation Theorem

$$\begin{split} D = & USV^T = [u_1, \ u_2, \ \dots, \ u_n] \ S \ [v_1 \ v_2 \ \dots \ v_n] \\ & = & \sum_{i=1}^n (sigma_i) \ (u_i) \ (v_i^T) \\ & \sim & \sum_{\hat{D}} |D - \hat{D}||_F^2 \\ & \text{s.t.} \qquad & \text{rank}(\hat{D}) \leq r \end{split}$$

Let $D = U\Sigma V^T \in \mathbb{R}^{n \times m}$, $n \ge m$ be the singular value decomposition of D and partition U, Σ , and V as follows:

$$U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}, \Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix}, V = \begin{bmatrix} V_1, V_2 \end{bmatrix},$$

where $U_1 \in \mathbb{R}^{m \times r}$, $\Sigma_1 \in \mathbb{R}^{r \times r}$, and $V_1 \in \mathbb{R}^{n \times r}$.

► Then the solution is

$$\hat{D} = U_1 \Sigma_1 V_1^T$$

Principal Component Analysis

SVD for the eigenface problem

Let
$$W = U_1 \Sigma_1$$
 and $F = V_1^T$

This is a general dimension reduction technique!

Principal Component Analysis

Goal: Find *r*-dim projection that best preserves data

- 1. Compute mean vector μ
- 2. Subtract μ from data matrix
- 3. SVD and select top r right-singular vectors
- 4. Project points onto the subspace spanned by them

Reconstruction Results for Faces

▶ after computing eigenfaces using 400 face images from ORL face database

Homework: PCA for 2D plane detection in 3D point cloud

Review: Three Optimization Problems We Learned Today

Least-square (overdetermined)

$$\underset{x}{\text{minimize}} \quad \|Ax - y\|^2 \tag{1}$$

Least-square (underdetermined)

minimize
$$||x||^2$$

s.t. $Ax = y$ (2)

Low-rank Approximation (underdetermined)

minimize
$$\|D - \hat{D}\|_F^2$$

 \hat{D}
s.t. $\operatorname{rank}(\hat{D}) \leq r$ (3)

Gradient Descent

Least-square (overdetermined)

$$\underset{x}{\text{minimize}} \quad \|Ax - y\|^2 \tag{4}$$

Closed form solution: $x = A^{\dagger}y$

We can also use *gradient descent* to optimize the problem:

$$x_n = x_{n-1} - \alpha \nabla f(x_{n-1})$$

Congrats!

You have done the warm-up job for analyzing pictures!