

MGMT 590 Machine Learning

Li-Ci (Lilian) Chuang Su-Tien Lee

Problem Statement

01

Problem 1

Given the 58-year portfolio data, what is the highest sharpe ratio we can achieve?

Problem 2

What is the best performance (a.k.a highest R-square) we can achieve with the market return and predictors dataset?

Model 1

data_Z_eff

Feature matrix X with size 2219316×64

data_R_eff Cutoff to the

output vector with ±0.2 return

data_R_org_eff

Output vector with size 2219316×1

data_group_ind

starting and ending indices of stocks in time t = 1, 2, ..., T

Model 2

Xs A small set of predictors (GoyalWelch) available at the beginning of month t

Χl

A large set of predictors (GoyalWelch+ Macro variables) available at the beginning of month t

У

Value-weighted market annual return for month t

RESULT

9.46

Sharpe Ratio

-0.287

R-Square

STRATEGY

-2

Trial

Problem 1

Given the 58-year portfolio data, what is the highest sharpe ratio we can achieve?

Problem 2

What is the best performance (a.k.a highest R-square) we can achieve with the market return and predictors dataset?

STRATEGY

FINDINGS

Best performance with 'adam' when in a simple-layer model, but 'adamax' and 'RMSprop' outperforms in a more complicated model

Model 1

- Larger batch size seems to perform better
- Consistency in # nodes is good (opposite case in model 1)
- Consistency in # nodes and batch size is good

Model 2

LESSONS LEARNED

Different Combinations

step-by-step Organized way

Time Management

Running Time

