

INTRODUCTION TO INDUSTRIAL ENGINEERING AND MANAGEMENT

TU-A1300

Paul Lillrank

THE IDEA OF THE COURSE: FROM FUNDAMENTAL PHENOMENA TO MANAGEMENT TECHNOLOGIES

Production MANAGEMENT Quality Systems, **Business** control SPC, SixSigma Model **TECHNOLOGIES*** Canvas Logistics Customer value Useful skills Delivery Purchasing Quality Exchange value precision MANAGEMENT Cost control **ISSUES** Scheduling Layout **Pricing** Coordination Volume **Prospect Trading** Conrol Division of labor **OBJECTIVES** Specialization Variability Value Standardization Decay Understanding **TRANSFORMATION TRANSACTION** how the world PHENOMENA works Chaos - order Cooperation **Entropy** Time-space

Aalto University

School of Science

') Technology here in the broad sense, se fig. #13.

TUOTANTOTALOUS INDUSTRIAL ENGINEERING AND MANAGEMENT OPERATIONS MANAGEMENT

Produces knowledge about:

Production systems = Purposeful, value creating socio-technoeconomic systems

Methods

- Empirical: mixed method: case, survey, simulation,...
- Theory: models

Results: managerial technologies for planning, management and improvement

Societal mission: Improve productivity: get more with less

SUB-AREAS

Supply chain

management

Operations strategy: make or buy, locations, investments

Planning and control of production systems

Logistics: material- and information flows

Purchasing

Networks, partnering, and contracting

Quality and risk management

Project management

Continuous improvement

Management accounting

Human resources

Innovations

THE NECESSARY INSTITUTIONS FOR ECONOMIC PROGRESS

- 1. Private ownership
 - Legal and legitimate protection of property and investment
 - Contracting
- 2. Scientific and technical thinking
 - Rationality: the world works in a way that can be known
 - Empiricism: observations and experimentation
- 3. Capital markets
 - Connect savers and investors
 - Spread risk
- 4. Logistics
 - Transport
 - Communication

PURPOSEFUL ECONOMIC ACTIVITY

PRODUCTION FUNCTIONS DO THE JOB

Basic production functions

Extraction: Hunting & gathering, fishery, mining

Cultivation: Agriculture, animal husbandry,

fermentation

Subtraction: Carving, machining

Forming: Molding, casting, pottery

Assembly: Construction, discrete manufacturing

Chemical

reaction: Process industries, petrochemicals

Addition: Candle-making, 3D-printing

"Manufacturing is to apply controlled energy to matter in order to realize an idea."

Varnecke, H.J, The Fractal Company. Springer 1993.

PRODUCTION FUNCTIONS ARE ORGANIZED INTO PROCESSES AND SYSTEMS

Input

- orders
- material, energy, labor

Physical technologies and fixed assets

Cognitive technologies: capabilities and skills

Social technologies: organisation och processes

External constraints

regulation, trade barriers, availability of resources,...

Output / throughput
• sellable goods

Feedback

control, learning

TRANSACTIONS IN MARKETS

Economy: the science of rational management of scarcity

Oikonomie (house) → housekeeping → economy

Self-sufficiency → exchange economy: social exchange, barter, pecuniary economy.

Trade: voluntary exchange of goods and services perceived to be beneficial to both parties

Opposite: robbery, slavery, exploitation,

Exchange requires a common conception of value

- Value-in-exchange Market value
- Value-in-use Utility
- Show-off –value Status

Value is a property of transaction and use (not product)

Product attributes: functionality, grade, style, quality

RESEARCH UNIVERSITIES PRODUCE KNOWLEDGE

Accumulation of knowledge

Aalto University School of Science

THE WORLDS OF SCIENCE

Sciences of the mind: Mathematics,

Aalto University School of Science Art and commentary: Humanities

THE OPERATIONS MANAGEMENT PLAYING FIELD

TECHNOLOGY IS TO MANIPULATE A PHENOMENON FOR A PURPOSE

A technology is built upon some principle, "some method of the thing", that constitutes the base of idea of its working.

A technology is a phenomenon captured and put to use.

A technology is a programming of phenomena to our purposes.

Physics, Chemistry →

Biology

Psychology

Social science

→ Engineering

→ Clinical medicine

→ Behavioral technologies

→ Management

FIRST THERE WAS TECHNOLOGY

Steam engine

Thomas Savery 1678
Thomas Newcomen 1711
JJames Watts 1765

Aalto University School of Science

Thermodynamics

Sadi Carnot 1824 Lord Kelvin 1854

FIRST IT WORKED IN PRACTICE, THEN IN THEORY

Toyota production system, 1955→ Exportsuccess 1975→

Theoretical explanation: Lean Production 1990

Lean healthcare

DEVELOP TECHNOLOGIES

What is it? Ontology	What can be known? Epistemology	How does it work? Dynamics	What can be done? Technology
Conceptual model	Measures	Dynamic model	Interventions

Deterministic
Stochastic
Enabling
Necessary /
sufficient conditions
Simulations
Experimentation

Context Intervention Mechanism Outcome

THE STRUCTURE OF A DISSERTATION

HOW TO CREATE KNOWLEDGE?

SERVICE DEFINITIONS

1. Immaterial but tradable good

- Immaterial, Heterogeneous, Inseparable, Perishable (IHIP)

2. State change

3. Customers participate: production in open systems

- Co-creation of value; Service –dominant logic (SDL)
 - Resource Integration (RI)

THE IHIP -DEFINITION OF SERVICES

Intangible: Services provide value in forms that are intangible and can't be owned

→ agreement about delivery criteria prior to service production; a promise of service is marketed

Heterogeneous: Services are complex bundles of activities

Inseparable: Services exist only the moment they are produced and consumed

- → customer affects the service process to varying degree
- > services cannot be owned

Perishable: services cannot be stored

→ capacity management, demand management

Source: mainstream service literature; e.g. Parasuraman et al. 1985, Grönroos 2000

SERVICES APPEAR AS STATE CHANGES

1 11111

*) In economics 'utility' means whatever a person or a market perceives as valuable. Utilities are revealed in Aalto University
School of Science preferences, i.e. what people choose when they have a chance.

THE GOODS AND THE SERVICE DOMINANT LOGICS

GOODS – DOMINANT LOGIC
GDL

SERVICE – DOMINANT LOGIC SDL

PRODUCTION SYSTEM

Resources

CONSUMPTION SYSTEM

Production Exchange Consumption

PRODUCTION CONSUMPTION SYSTEM

Outcome

Co-creation value

"With service processes, the customer provides significant inputs into the production process." (Sampson and Froehle 2006).

"The customer is always a co-producer." (Vargo and Lush 2004)

RESOURCE INTEGRATION AND IHIP

Producer resources & capabilities: PERISHABLE

- Customer requests activate resources
- Unused resource perishes
- Capacity & demand management

Service contract: **IMMATERIAL**

- No change of ownership
- Promises
- Roles, rights, and responsibilities compliance to agreements

Service production:

INSEPARABLE

- -Customer participates throug person, possession or information
- Production in open systems
- Customer-introduced variability

Consumption

HETEROGENEOUS

- Individual and situational preferences

Developed from: Moeller, Sabine: Characteristics of services – a new approach uncovers their value. Journal of Service Marketing 2010, 24/5

THE TASKS OF SERVICE OPERATIONS MANAGEMENT

SYSTEMS HAVE BOUNDARIES

PRODUCTION IN CLOSED OR OPEN SYSTEMS?

CLOSED SYSTEM	OPEN SYSTEM	
Goods –dominant logic	Service –dominant logic	
Standard / formatted processes	Routine / explorative processes	
Identical copies of prototype	Each unit is designed	
Inventory management	Capacity management	
Value stream additive	Value stream includes multiples	
Value resides in product	Value resides in process	
Property rights, ownership	Rights and responsibilities	
Demand on schedule	Drop-in demand	
Variability minimized	Variability absorbed	

INDUSTRIAL MANAGEMENT MILESTONES

Early concepts1776 →

- Division of labor and specialization (Smith, Babbage)
- Interchangeable parts, standardization (Whitney)

Scientific management 1880 →

- Time & Motion studies (Gilbreth)
- One best way (Taylor)
- Queuing theory (Erlang)

Mass production 1910 →

- Moving assembly line (Ford)
- Statistical process control (Shewhart)
- Economic order quantity (Harris)
- Linear programming PERT (DuPont)
- MRP

Lean production 1980→

- JIT, TQM, Six Sigma
- CAD/CAM, EDI
- Cross-functional processes

Mass Customization 1995→

- Globalization & Internet
- Demand-supply chain management
- ERP

Service Engineering and Management 2004 →

- Servitization
- KIBS, PSTS
- · SOA, SaS
- · Outcome -based business models

Platforms, P2C

Aalto University
School of Science

VOLUME

COST

QUALITY

FEXIBILITY

SOLUTIONS