

Model Development Phase Template

Date	21 June 2024	
Team ID	739954	
Project Title	Ceralal analysis based on ratings by using meachine learning techniques	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Paste the screenshot of the model training code

Model Validation and Evaluation Report:

Model	Classification Report	Accurac y	Confusion Matrix
Linear Regression model	<pre> ✓ LINEAR REGRESSION MODEL [] from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(x_train,y_train) ✓ LinearRegression LinearRegression()</pre>	60.7561	[] 1r_pred [] 2 srew([[20.9242851], [40.7874487], [40.7874487], [40.7874487], [40.7874487], [40.7874487], [40.787448], [40.787448], [40.787448], [40.787448], [40.787448], [40.787448], [40.787448], [40.787448], [40.787448], [40.787448], [40.78748], [40.7874878], [40.78748], [40.78748], [40.78748], [40.78748], [40.78748], [40.78748], [40.78748], [40.78748], [40.78748], [40.78748], [40.78748],
R2_score Model	R2_SCORE MODEL from sklearn.metrics import r2_score r2_score(y_test,lr_pred) r 0.999999999999999999999999999999999999	68.4029] y.p = ln.predict([[6,6,6,6,1,6,6,6,78,4,1,136,16,5,6,280,25,5,1,6,33]])] y.p] y.p grav([[64.4297334]])