Lab 3: Arithmetic Logic Unit (ALU)

CEG 2136 B - Computer Architecture Fall 2017

School of Electrical Engineering and Computer Science University of Ottawa

Course Coordinator: Dr. Sawsan Abdul-majid

Group 18
Felix Singerman 7970742
Nasser Haidar 8543506
Submission Date: November 6, 2017

Theoretical Part

1. Introduction of problem

In this lab we designed, simulated, and built an Arithmetic Logic Unit (ALU). The ALU has to execute 16 different operations on two operands of 4 bits and will provide a 4-bit result as well as 4 status bits (Overflow, Sign, Zero, Carry).

2. Discussion of problem

The problem for this lab consisted of designing, simulating, building and testing an Arithmetic Logic Unit.

Figure 1: ALU datapath

The ALU has to perform the following arithmetic and logic micro-operations:

		Cor	ntro ord	I	ALU Data	Micro-operation									
Circuit	S3	S2	S1	S0	Output	Description									
	0	0	0	0	$C \leftarrow A + B$	Addition									
	0	0	0	1	$C \leftarrow A + B + 1$	Add with carry									
	0	0	1	0	$C \leftarrow A$	Transfer A									
	0	0	1	1	$C \leftarrow A+1$	Increment A									
	0	1	0	0	$C \leftarrow A + \overline{B}$	Subtraction A - B with borrow (using 1's complement of B gives a result lower by 1 than a conventional subtraction).									
	0 1 0			1	$C \leftarrow A + \overline{B} + 1$	Subtraction A - B (use 2's complement of B									
	0	1	1	0	$C \leftarrow \overline{A}$	NOT A (complement A)									
	0	1	1	1	$C \leftarrow \overline{A} + 1$	2's complement of A									
	1	0	0	0	C ←''0000'	Reset C									
	1	0	0	1	C ←"1111"	Set C									
	1	0	1	0	$C \leftarrow A \wedge B$	A AND B									
	1	0	1	1	$C \leftarrow A \lor B$	A OR B									
	1	1	0	0	$C \leftarrow A \oplus B$	A EXCLUSIVE-OR B									
	1	1	0	1	$C \leftarrow A \wedge \overline{B}$	Reset A bits selected by "mask" B									
	1	1	1	0	$C \leftarrow a \operatorname{shl} A$	Shift A left (signed multiplication by 2)									
	1	1	1	1	$C \leftarrow a \operatorname{shr} A$	Shift A right (signed division by 2)									

Table 1: Arithmetic and logic micro-operations

3. Discussion of algorithmic solution

In order to build the ALU, we used a hierarchical design. The lowest level consists of the 1-bit full adder and 1-bit logic and shift circuit (LSC). The intermediate files consists of a 4-bit register, a 4-bit arithmetic circuit (AC), a 4-bit logic and shift circuit (LSC) and a state circuit. Finally, the highest level will consist of the complete circuit, which is what is loaded to the circuit board.

Figure 2: Hierarchy of the files

Design Part

1. Presentation of the design methodology applied to solving the lab problems

Logic Circuit:

S2	S1	S0	CL_i
0	0	0	$CL_i \leftarrow 0$
0	0	1	$CL_i \leftarrow 1$
0	1	0	$CL_i \leftarrow A_i \wedge B_i$
0	1	1	$CL_i \leftarrow A_i \vee B_i$
1	0	0	$CL_i \leftarrow A_i \oplus B_i$
1	0	1	$CL_i \leftarrow A_i \wedge \overline{B}$
1	1	0	$CL_{i} \leftarrow A_{i-1}$
1	1	1	$CL_i \leftarrow A_{i+1}$

Table 2: The LSC logic table

Using Table 1 and a 8-1 Multiplexer we were able to design the LSC 1-bit

Figure 3: 1-bit LSC

We combined 4 1-bit LSCs to form a 4-bit LSC.

Figure 4: 4-bit LSC

Arithmetic Circuit:

We used the CA Outputs to determine the inputs of A and B.

S2	S1	S0	Op1	Op2	Cy_in	CA Out
1	0	0	Α	В	0	CA←A+B
0	0	1	Α	В	1	CA←A+B+1
0	1	0	Α	0	0	CA←A
0	1	1	Α	0	1	CA←A+1
1	0	0	Α	B'	0	CA←A+B′
1	0	1	Α	B'	1	CA←A+B'+1
1	1	0	A'	0	0	CA←A′
1	1	1	A'	0	1	CA←A'+1

Figure 5: Operations of AC

We used Table 2 to determine the inputs for the multiplexers along with a full adder to build the 1-bit Arithmetic circuit.

Figure 6: 1-bit Arithmetic Circuit

We combined 4 1-bit ACs to form the 4-bit AC.

Figure 7: 1-bit Full Adder

Figure 8: 4-bit Arithmetic Circuit

9: 4-bit Register

Figure 10: State 4-bit Register

Finally, using specifications provided in the lab manual we created this ALU.

Figure 11: Complete ALU Design

Simulation Help																											anth after	9.1(9878
8 A A X X X	E 器)E 15 12 18	化烷烷石	3 5																									
Ope			4	A Pointer	996.34 mi					Inte	mai: 596.24	ins.					91	etr dipe					b	dt 2.4us				
Halos at Egm	0 pe 300,8 ne 0 pe	300 _/ 8 mi :	300 ₁ 8 ms	400,014	900 _/ 8 ms	800,81	900 _, 8 mi	800	it ne	900 ₁ 8 ms	184	-	rim	LŽ M	1.34		140	rám	1.6	1.70	1.0	all .	rijes	2.54	2.10	2.3 us	2.3	ut 2.4
8 110L	18%	1110	X	0000	0011		1100	X	0018	X	8880	X	0000	X	8880	\supset	0001	_X	30.00	000			111	0000	\rightarrow	0000	X	10111
8 1010	2010	0118	X	0011	1100	\rightarrow	9011	Х_	1018	X_	9900	х	6401	\propto	1110	_	0110		E101.	000			H1.	0118	X	3331	\sim	1108
9 00 LL	8011	0008	\sim	0.001	0000	=	0.001	\sim		8800		х	0065	\propto		0000			0011		00	00	\Rightarrow	0001	=	0000		1018
*0	0 *	X c		- 1	X 0	\Rightarrow	- 6	\sim	- 5	\rightarrow X		30	2	DC	E		7	\rightarrow	- 1		2	X	£	X	X		\supset	e
***	B) A	(1		A	(1			0			4	-	1	_	2				0			\sim	2	X .	X		2	
	6 1904 8 1904 8 1900 9 8013 MO	Telephone at Tele	Triple at E OF 200,8 FM 2	Televis art Com 200,8 ne 200,8 ne	Telescore																						8 A A X X X B B Y C X X Y C X A A B PARTY SMAJAN BROWN SMAJAN SWEET X A B Y C X B X D X S X B X X B X D X D	(A) 本文() () 数 () () () () () () () () () () () () ()

Figure 12: Waveform Diagram of the complete ALU

2. Discussion of used components

AND Gate

A gate where the output is 1 if and only if both inputs have a value of 1, otherwise, its output is 0.

NOT Gate

A gate where the output is 1 if the input is 0, and vice versa.

XOR Gate

A gate where the output is 1 if only one of the inputs is 1.

NOR Gate

A gate where the output is 1 if and only if both inputs are 0, otherwise, its output is 0.

Circuit Diagrams

Refer to "Design Part"

3. Discussion of actual solution

Circuit Diagrams

Refer to "Design Part"

After creating each circuit separately, we created symbols for each one to make it easier to connect everything together. This can be seen in the figure below. Since an ALU is a combinational circuit, a control signal - S3 - is used to determine whether the Arithmetic Circuit or the Logic and Shifting Circuit will be used. Furthermore, the control signals S2-S0 is used to determine which operations will be performed by each circuit. There are 8 data inputs: A3 - A0 and B3 - B0, 4 data outputs (C3 - C0) and the most significant carry bits are used for the status circuits.

Figure 12: Complete ALU Design

Cycle	S ₃	S ₂	S ₁	S ₀	A←op1	B←op2	С	V, Z, N, Cy	S ₁₆	A ₁₆	B ₁₆	C ₁₆	St ₁₆
1	1	1	0	1	1010	0011	1000	1010	D	Α	3	8	Α
2	1	1	1	0	0110	Х	1100	0010	E	6	Х	С	2
3	0	0	0	0	0011	0101	1000	1010	0	3	5	8	Α
4	0	0	1	1	1100	Х	1101	0010	3	С	Х	D	2
5	1	1	0	0	0011	0101	0110	0000	С	3	5	6	0
6	0	1	1	0	1010	Х	0101	0000	6	Α	Х	5	0
7	1	0	0	0	Х	Х	0000	0100	8	Х	Х	0	4
8	0	1	0	1	0101	0011	0010	0001	5	5	3	2	1
9	0	0	1	0	1110	Х	1110	0010	2	Е	Х	E	2
10	0	1	1	1	0110	Х	1010	0010	7	6	Х	Α	2
11	1	0	1	0	0101	0011	0001	0000	Α	5	3	1	0
12	0	0	0	1	0001	0010	0100	0000	1	1	2	4	0
13	1	1	1	1	1101	Х	1110	0010	F	D	Х	E	2
14	0	1	0	0	0110	0101	0000	0101	4	6	5	0	5
15	1	0	0	1	Х	Х	1111	0010	9	Х	Х	F	2
16	1	0	1	1	1100	1010	1110	0010	В	С	Α	E	2

Figure 13: Sequence of micro-operations to execute

4. Discussion of tool

We first needed to design the circuit in our prelab using the given operations and tables. The arithmetic logic unit included many smaller circuits that all contributed to the final schematic diagram. First, we needed to design and implement a 1-bit arithmetic circuit to handle the arithmetic side of the unit. Since we were creating a four-bit circuit we then made a 4-bit arithmetic circuit using four symbols we created of the 1-bit circuit. The next part that was designed was the logic and shift side of the unit. We approached this the same way we did with the arithmetic circuit, starting with 1-bit logic circuits and then creating a 4-bit one from that. Finally, we needed to create the 4-bit status register. During the implementation, we also had to create schematics for a 4-bit register and a full adder that were provided in the instructions.

Using all of these circuits we implemented the arithmetic logic unit that is seen in the above diagrams.

Altera DE2-115 Board

This is a circuit board which consists of multiple pins, buttons, and LEDs. It allows us to visualize and test our designed circuits from the Quartus software.

5. Discussion of challenging problems

We experienced several problems during this lab, but with the guidance of the TA's we were able to solve them. When simulating in our waveform we had our MSB and LSB swapped so we were not receiving the results that we were supposed to. We also weren't connecting the diagrams together properly as there were many lines. We were getting the first Arithmetic computation correct so we narrowed down the issue to be part of the Logic. We started from the 1-bit and worked our way up. We now have gained a full understanding of the ALU and all of the components needed to create one.