Experimental Plan

Callum Malcolm

2023-12-07

Contents

Thesis Plan
Chapter 1: Clinical Data
C1.1 Analysis of Immune cell make up of publically available RNAseq BL Datasets
Chapter 2: Rituximab Resistance in BL PDX
Experiment 1: Establish Rituximab-related CDC in PDX
Experiment 2: Establishing RTX-resistant PDX
Experiment 3: Analyse changes in CD20
Experiment 4: Co-inhibitor Testing
Experiment 5: ADCC Testing
NK-92 and Rituximab
C2.1 Humanised vs NSG Pilot
Project 1: Spatial Transciptomics of BL
Tools
Paper Plan
Thesis ID
Publically Available RNAseq
Ideas
Rituximab Resistance
Generate Rituximab Resistant PDX
Humanised Mice PDX
Incorporate Barcodes?
Omo-MYC
(Shelved) A20 Modelling the BL Tumour Microenviroment
Overview
Experimental Plan
Loncastuximab tesirine
Ferritin as a drug delivery system

Thesis Plan

Chapter 1: Clinical Data

C1.1 Analysis of Immune cell make up of publically available RNAseq BL Datasets

- CIBERSORT
- Immune profile
- ECOTYPER
- COO analysis
- GSEA analysis of samples with unique immune profile(?)

###C1.2Spatial Transcriptomics of sBL Clinical Samples - 4 samples (maybe 6) - Initial IHC: * H+E * CD20 * CD10 * Ki-67 * MYC - Genomic Analysis of MYC status * FISH - ST * 10x Visium * Focus on Immune profile subsets

###C1.3 Mibiscope - Identify proteins of interest from 1.1/1.2

Chapter 2: Rituximab Resistance in BL PDX

- Overview: looking at mechanisms of Rituximab resistance in BL PDX
 - CDC: Complement Dependent Cytoxicity
 - ADCC: Antibody-Dependent Ccellular Cytoxicity
- Use N2 and RBL2P
- Can incorporate publicially available dataset to compare Rituximab treatment vs not
 - refractory

Experiment 1: Establish Rituximab-related CDC in PDX

Overview: Are PDX susceptible to RTX-dependent CDC? - Previously described protocol: * Paper: [Analysis of changes in CD20, CD55, and CD59 expression on established rituximab-resistant B-lymphoma cell lines] (Analysis of changes in CD20, CD55, and CD59 expression on established rituximab-resistant B-lymphoma cell lines)

Naive RAMOS cells (RAMOS-N) were simultaneously exposed to the several concentrations of rituximab and human serum, and then after 1-h incubation at 37 °C, the percentage of lysed cells was measured. RAMOS-N cells were found to be lysed in the presence of rituximab and serum, and the percentage of lysed cells increased gradually in a dose-dependent manner. These results confirmed that RAMOS-N cells were sensitive to rituximab-related CDC and that the lysis ratio increased according to the concentration of rituximab and serum.

Outcome: Cell Lysis curves for RTX-Dependent CDC in PDX

Experiment 2: Establishing RTX-resistant PDX

Overview: Can we generate PDX lines resistant to RTX? - Protocol found in paper above - Incorporate WILDseq to look at the change in clonal dynamics

Outcome: Validation of RTX-Resistant Cells Lines

Experiment 3: Analyse changes in CD20

Overview: How does CD20 expression dynamics change in PDX-N vs PDX-R? - Flow for CD20 (CD19 Control) - qPCR for CD20 expression

Experiment 4: Co-inhibitor Testing

Overview: Do co-inhibtors found in the literature promote CDC in PDX-R?

- Midostaurin: PI3K/AKT pathway
- CD59 inhibitor
- PIM1 inhibition

Experiment 5: ADCC Testing

Overview: Does RTX CDC resistance confer ADCC resistance?

sBL PDX in Humanised Mice

NK-92 and Rituximab

- 2x PDX?
- WILDseq GFP+ test
- Co-Culture "EC50"
 - Use GFP+ as a proxy for cell viability
 - -+/- Rituximab (other Glo-BNHL treatments?)
 - You need to think about this
- Long term co-culture
 - Sort
 - RNAseq
 - Proteomics (?)
 - WILDseq Clonal Selection (?)

C2.1 Humanised vs NSG Pilot

- IHC
- Flow

Project 1: Spatial Transciptomics of BL

- 11 Samples of BL acquired from VIVO BioBank
- Want to do stuff similar to these studies:
- * PDAC Spatial Transcriptomics
- * Genomic/Transcriptomic analysis of Clinical BL Samples Whole Genome, whole exome sequencing Patient demographics? Survival outcomes?

Tools

- NCI GDC data portal
 - Compare gene expression, mutations, survial analytics(?)
- Cibersortx
 - Look at predicted immune populations
- SRA
 - Publicly available BL RNAseq datasets
- GEO
 - Gene expression omnibus
- BLGSP
 - BL genome repository (need access)
- ICGC
 - BL genome repository (need access)
 - ICGC 25k $\operatorname{argos}(?)$ should have BL cases
- DepMap

- Cancer dependency on various genes (skews metabolic in terms of relevant output)
- GTEx
 - Adult Genotype-Tissue Expression (GTEx) project

_

Paper Plan

Based on PDAC ST paper

- Panel 1:
 - Patient Data
 - a. Correlation survival studies between immune cell infiltration and survival
- Panel 1:
 - Patient sample characterisation
 - a. Work Flow (sample backgrounds, collection from sources)
 - b. Overview of all cell types profiled in the scRNA-seq cohort.
 - c. Overview of spatial transcriptomics cohort
- Panel 2
 - Characterize the tumour (Tumor vs stroma vs immune cells)
 - a. Differential pathway enrichment case-level tumor subpopulations
 - b. Tumor cluster pathway enrichment for specific case
 - c. Tumor cluster pathway enrichment for another specific case
 - d. UMAP of tumor subclusters for specific case
 - e. UMAP of tumor subclusters for specific case
- Panel 3
 - Genomic Landscape and oncogenic driver heterogeneity (??)
- Panel 4
 - Tumour cell heterogeneity in ST data(?)
- Panel 5
 - Immune Populations in TME
- Panel 6
 - Mibiscope

Thesis ID

Looking at characterizing the Human BL TME

- Publically available BL Data
- VISIUM internal samples
- Mibiscope Internal Samples

Publically available datasets analysis

- Talk to Jamie again
 - 10x Visium transcriptomics
 - T Cell Dynamics
 - * Infiltration
 - * Exhaustion
 - NK cell dynamics
 - Places to get it done:
 - * CI (no)
 - * Source Bioscience
 - * Wellcome Sanger Institute
 - · Teichmann Lab used 10x Visium
 - MIBIScope Comparison
 - Does Protein expression map onto spatial gene expression?
 - Collaborate with Nina in Germany

Publically Available RNAseq

- 1. The iDEP or TACITuS pipeline for transcriptomic profiling and GSEA/pathway analysis.
- 2. The CIBERSORT immune-cell deconvolution algorithm to obtain cell-fractions and gene expression/enrichment scores of tumor-infiltrating lymphocytes.
- 3. The GEPIA2 database for survival analysis correlating to immune infiltration and/or differential gene expression.

Ideas

Rituximab Resistance

Generate Rituximab Resistant PDX

- Resistance to Rituximab-CDC
- Resistance to Rituximab-ADCC (NK cell dependent)
- Apply barcoding approach to try to identify signalling pathways which are depended on for evasion

Humanised Mice PDX

Incorporate Barcodes?

• This is very undercooked

Omo-MYC

• Waiting for regualtory approval

(Shelved) A20 Modelling the BL Tumour Microenviroment

Overview

- Using A20 to model BL immune TME
 - Look specifically at T-cell infiltration
 - Immune evasion mechanisms deployed by BL
- Compare results to patient data
- Apply findings to humanised mouse models of BL PDX

Issues

- What is the Biological/clinical relevance of this model?
- Are you priming an infiltrating response due to the nature of cell injections causing necrosis (thereby stimulating the immune system)

Background

- The impact of immune TME in BL is unclear
- BL

Experimental Plan

E1: NSG vs BALB/C A20 injection

E1 Overview

- Compare between immunocompetent and immunocomprimised mice
- Basic actors to compare
 - Tumour growth rate
 - Tumour size

Injection Plan

Group	Strain	Location	Cell Injection
1	BALB/c	Sub-cut	A20
2	BALB/c	IP	A20
3	NSG	IP	A20
4	NSG	Sub-cut	A20

IHC Panel

- Compare markers between tumour types
- Burkitt IHC indentification:
 - CD10+ (B-Cell Germinal Centre)
 - Bcl-2-
 - Ki-67%hi (proliferation index)

Potential IHC Panel Markers

Cell Type	Marker
Proliferation marker	Ki67
B cell	CD20
T cells (all)	CD3
T Cells (cytotoxic)	CD8
T cells (helper)	CD 4
Dendritic Cells	CD11c
Macrophage	F4/80
NK (?)	CD56 (?)

Flow Panel

- Options are:
 - Standard T Cell
 - TRegs
 - B-cells
 - DC Mono CD11c
 - Th17
 - TfH
- Check what Swetha ordered
- Box 7 antibody sheet dropbox

Standard T Cell

Cell Type	Marker
T Memory	CXCR3
Naive Immune Cells	CCR7
Naive T Cells	CD45RA

Cell Type	Marker
Th17	CCR6
GC B-Cells	CD38
TRegs (Helper)	CD4
Macrophage	HLA-DR
T Cells (all)	CD3
T Cells (Cytoxic)	CD8

E2: BL Therapies (this will not work)

- Balb/c drug vs no drug vs WS-A20 drug vs WS-A20 no drug
 - Want to compare effect of GFP on immune cell infiltration
 - Look at clonal dynamics of rituximab treatment
- Glo-BNHL Trial
 - Odronextamab
 - * CD20xCD3 Bispecific antibody

_

Loncastuximab tesirine

- Rituximab
- CAR treatments?
- Bi-Specific antibodies (check that they can be applied to mice)
- Rituximab comparison
 - Clonal dynamics of Rituximab treatment
 - * WILDseq

E3: Immune focused CRISPR Screen

- Immune compromised vs Immune competent
 - Think very carefully about specific mouse models (some still have macrophages, NK cells, ect.)
 - JAX Lab Article

Ferritin as a drug delivery system

• Does BL have increased Tfr1 expression relative to normal cells/B cells?