• *CB*:

ac Schematic

High-Frequency Equivalent

- Note that there is no input-output coupling capacitor present in this circuit
 - \Rightarrow Miller effect will be absent, and the circuit will have very high f_H

$$\succ C_{\pi}$$

$$R_{\pi}^{0} = R_{S} \parallel r_{E}$$
 and $\tau_{1} = R_{\pi}^{0}C_{\pi}$

 $> C_{\mu}$:

$$R_{\mu}^{0} = R_{L}$$
 and $\tau_{2} = R_{\mu}^{0}C_{\mu}$

Taking the *values* of our previous *example*:

$$R_{\pi}^{0} = 25.34 \ \Omega, \ \tau_{1} = 0.253 \ ns$$

$$R_{\mu}^{0} = 2 \text{ k}\Omega, \ \tau_{2} = 1 \text{ ns}$$

$$\Rightarrow \tau_{net} = 1.25 \text{ ns} \text{ and } f_H = 127.3 \text{ MHz}$$

> Note the enormous increase of f_H from about 4 MHz for a CE amplifier

• CG:

ac Schematic

High-Frequency Equivalent

➤ Note that all 4 capacitors would be present and none could be eliminated

- $\succ C_{gs}$ and C_{sb} are in parallel
 - \Rightarrow Can be clubbed to a single capacitor $C_1 = C_{gs} + C_{sb}$, with time constant τ_1
- Also, C_{gd} and C_{db} can be clubbed to another single capacitor $C_2 = C_{gd} + C_{db}$, with time constant τ_2
- > Again note the absence of any input-output coupling capacitor
 - \Rightarrow This circuit should also have very high f_H
- $ightharpoonup C_1$: $R_1^0 = R_S || R$ and $\tau_1 = R_1^0 C_1$
- $ightharpoonup C_2$: $R_2^0 = R_L$ and $\tau_2 = R_2^0 C_2$

• *CC*:

ac Schematic

High-Frequency Equivalent

- This circuit is slightly more involved can't be done by inspection
- > But we will have some other Standard Forms

- This circuit has a *peculiar frequency response*
 - At midband:

$$A_{v} = v_{0}/v_{s} = [R_{L}/(R_{L} + r_{E})] \times [R_{i}/(R_{i} + R_{S})]$$

$$R_{i} = r_{\pi} + (\beta + 1)R_{L}$$

- Beyond f_H , as f ?, reactance of C_{π} ↓ earlier than that of C_{μ} (since, in general, $C_{\pi} >> C_{\mu}$)
- Eventually, reactance of C_{π} would approach zero, thus shorting out r_{π}
- Under this condition, circuit behaves like a *simple* voltage divider with a gain of $R_L/(R_L + R_S)$
- If $f \uparrow$ further, then eventually C_{μ} also will short out, and v_0 would go to zero

■ Thus, the *frequency response* of this circuit looks like a *staircase*, having *two steps*

$> C_{\pi}$

- \blacksquare R_{π}^{0} can't be obtained by inspection
- Analyze the circuit and show that:

$$R_{\pi}^{0} = r_{\pi} \parallel \left(\frac{R_{S} + R_{L}}{1 + g_{m}R_{L}} \right)$$

$$\Rightarrow \tau_{1} = R_{\pi}^{0}C_{\pi}$$

■ This is another *Standard Form* = and the *topology should be carefully noted*