3A005 - Examen du 11 Janvier 2018

Durée 2h, Documents et calculatrice non autorisés. Tout matériel électronique interdit.

Exercice 1 (/22 points)

On étudie l'équation différentielle suivante $\frac{dy}{dx} = f(x, y) = -10y$ avec la condition limite : y(x = 0) = 1. La solution exacte est donnée par $y(x) = e^{-10x}$.

Résolution numérique de l'EDO

On souhaite obtenir une solution numérique dans l'intervalle [0; 0,6].

- 1. On utilise le schéma à un pas (S1) suivant : $y_{n+1} = y_n + hf(x_n, y_n)$. En utilisant la valeur $h_1 = 0.05$, montrer que l'on obtient par ce schéma la solution numérique suivante : $y_{S1}^1(x = 0.3) = \left(\frac{1}{2}\right)^6$ et $y_{S1}^1(x = 0.6) = \left(\frac{1}{2}\right)^{12}$.
- 2. En utilisant le même schéma (S1) avec un pas plus grand, h_2 =0,3, recalculer $y_{S1}^2(x=0,3)$, et $y_{S1}^2(x=0,6)$.
- 3. Tracer sur un même graphe la solution exacte (on donne $e^{-3} \approx 0.05$, $e^{-6} \approx 0$) ainsi que les deux solutions approchées des questions 1 et 2. Commenter et expliquer les résultats en utilisant les terminologies du cours.
- 4. On utilise maintenant le schéma à un pas (S2) suivant : $y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$ avec h_2 =0,3. Calculer les nouvelles solutions approchées $y_{S2}^2(x=0.3)$ et $y_{S2}^2(x=0.6)$
- 5. Ajouter les solutions approchées obtenues en 4 sur le graphe de la question 3. Commenter et expliquer les résultats en utilisant les terminologies du cours.
- 6. On utilise maintenant le schéma à un pas (S3) suivant :

$$y_{n+1} = y_n + \frac{h}{2}(f(x_n, y_n) + f(x_{n+1}, y_{n+1}))$$
 avec $h_2 = 0.3$.

Calculer les nouvelles solutions approchées $y_{S3}^2(x=0.3)$ et $y_{S3}^2(x=0.6)$.

7. Ajouter les solutions approchées obtenues en 6 sur le graphe de la question 3. Commenter les avantages et inconvénients du schéma (S3) par rapport aux deux précédents en utilisant les terminologies du cours.

Interpolation polynômiale

- 8. Expliciter les polynômes de base de l'interpolation de Lagrange $L_i(x) = \frac{\prod_{j \neq i} (x x_j)}{\prod_{i \neq i} (x_i x_i)}$ définis par les trois points $x_0 = 0$, $x_1 = 0.3$ et $x_2 = 0.6$.
- 9. Construire le polynôme interpolé de Lagrange, $L(x) = \sum_{i=0}^{2} L_i(x)y(x_i)$ de la fonction $y(x) = e^{-10x}$. (On donne $e^{-3} \approx 0.05$ et $e^{-6} \approx 0$).
- 10. Calculer L(x = 0.1).

Intégration numérique

Soit une fonction g(x) dont on veut approcher l'intégrale I(g) sur l'intervalle [0; 0,6].

- 11. En utilisant les polynômes de Lagrange calculés à la question 8 et définis par les trois points $x_0 = 0$, $x_1 = 0.3$ et $x_2 = 0.6$, donner l'expression du polynôme interpolé de Lagrange de la fonction g.
- Par intégration, en déduire une formule de quadrature $s(g) = \sum_{i=0}^{2} w_i g(x_i)$ sur ces trois points $x_0 = 0$, $x_1 = 0.3$, et $x_2 = 0.6$ pour le calcul approché de $I(g) = \int_0^{0.6} g(x) dx$. 12. Comment s'appelle cette formule de quadrature et quelle est sa précision?
- 13. Calculer numériquement s(y) et $I(y) = \int_0^{0.6} y(x) dx$ pour la fonction $y(x) = e^{-10x}$.
- 14. Calculer l'erreur d'intégration de la formule de quadrature.

Exercice 2 Valeurs propres (/14 points)

Soit B une matrice réelle 3x3 définie par B= $\begin{bmatrix} a & -1 & 0 \\ 0 & b & -1 \\ 0 & 0 & c \end{bmatrix}$ avec a > b > c > 0

- 1. Montrer que a, b, c sont les 3 valeurs propres de la matrice B.
- 2. Trouver un vecteur propre associé à la valeur propre a, nommé x.
- 3. Décrire la méthode de la puissance itérée. Sans effectuer de calcul, donner le résultat de l'application de la méthode de la puissance itérée à la matrice B.
- 4. Montrer que a, b, c sont aussi les valeurs propres de la transposée de B, notée B^t, et trouver un vecteur propre associé à la valeur propre a pour la matrice B^t , nommé y.
- 5. Construire la matrice $C = B a \frac{xy^t}{x^t v}$.
- 6. Montrer que b, c, et 0 sont les valeurs propres de C.
- 7. Sans effectuer de calcul, donner le résultat de l'application de la méthode de la puissance itérée sur la matrice C.
- 8. Peut-on utiliser la méthode de la puissance inverse avec la matrice B? Si oui, donner le résultat sans faire de calcul.
- 9. Est-il possible d'appliquer la méthode de la puissance inverse à la matrice C? Pourquoi?

Exercice 3. Méthode itérative pour la résolution d'un système linéaire (/4 points)

On souhaite résoudre un système linéaire donné, Ax=b, à l'aide d'une méthode itérative donnée, de matrice d'itération notée Ω .

- 1. Montrer que $\|\Omega\|$ <1 est une condition suffisante de convergence de cette méthode itérative.
- 2. Calculer la norme infinie de Ω , notée $\|\Omega\|_{\infty}$. Soit une méthode itérative telle que la matrice

d'itération soit $[\Omega] = \frac{1}{10} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 1 \\ 4 & 0 & 5 \end{bmatrix}$. La méthode itérative converge-t-elle? Justifier la réponse.