MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

Recap: Stochastic Simulation

- Inverse transform method
- Generating Samples from a Discrete random variable
- Generating samples from a Continuous random variable Y with CDF $F_Y(\cdot)$
- ▶ Define $X := F_Y^{-1}(U)$. X also has the same distribution F_Y .
- $ightharpoonup F_Y(Y)$ is a uniform random variable.
- ► This helps in checking if data samples you are are from random variable *Y* or not.

Convergence of Random Variables

Pointwise Convergence

▶ When do we say that $\{x_n\}$ converges to $x \in \mathbb{R}$?

We say that $\{x_n\}$ converges to $x \in \mathbb{R}$ (denoted by $x_n \to x$) if for every $\epsilon > 0$, we can find an $N(\epsilon) \in \mathbb{N}$ such that for $|x_n - x| < \epsilon$ for $n > N(\epsilon)$.

- What about convergence of functions?
- ▶ When do we say that a sequence of functions $F_n(\cdot)$ converge to $F(\cdot)$ on the domain \mathbb{R} ?

We say that the sequence of function $F_n(\cdot)$ converge to $F(\cdot)$ pointwise if the sequence $\{F_n(x)\}$ converges to F(x) $(F_n(x) \to F(x))$ for all $x \in \mathbb{R}$.

Uniform Convergence

We say that the sequence of function $F_n(\cdot)$ converge to $F(\cdot)$ pointwise if the sequence $\{F_n(x)\}$ converges to F(x) $(F_n(x) \to F(x))$ for all $x \in \mathbb{R}$.

- ▶ For every x, the sequence $\{F_n(x)\}$ coverges to F(x).
- For every ϵ , there exists $N(\epsilon, x)$ which can depend on x.
- ▶ Only those $F_n(x)$ are ϵ close to F(x) for which $n > N(\epsilon, x)$.

If $N(\epsilon, x) = N(\epsilon)$ (i.e., independent of x) for every $x \in \mathbb{R}$, then such convergence of $F_n(\cdot)$ to $F(\cdot)$ is called as uniform convergence.

Convergence of Sequence of random variables

- We will now be interested in the convergence properties of an infinite sequence of random variables $\{X_n\}$ to some limiting random variable X.
- ▶ What does the convergence $X_n \to X$ even mean ?
- When you perform the random experiment once, you get a sequence of realizations $\{x_n\}$ and x.
- ▶ If you are 'lucky', maybe $x_n \to x$.
- ▶ But if you were to perform the experiment again, you may not be so 'lucky' and get a different sequence $\{x'_n\}$ which may not converge to x'.
- ▶ We will come up with notions of convergence that depend on how often you see the sequence of realizations converging.

Convergence of Sequence of random variables

- ▶ Convergence of $X_n \to X$
- ▶ Here X could even be a deterministic number.
- $ightharpoonup X'_n s$ could be dependent on each other.
- Each random variable X_n could have a different law (pmf/pdf).

Modes of Convergence $(X_n \to X)$

Pointwise or Sure convergence

 $\{X_n, n \geq 0\}$ converges to X pointwise or surely if for all $\omega \in \Omega$ we have $\lim_{n \to \infty} X_n(\omega) = X(\omega)$

- ► Consider $\Omega = \{H, T\}$.
- Further, $X_n = \begin{cases} \frac{1}{n} & \text{if } \omega = H \\ 1 + \frac{1}{n} & \text{if } \omega = T. \end{cases}$ and $X = \begin{cases} 0 & \text{if } \omega = H \\ 1 & \text{if } \omega = T. \end{cases}$

Almost sure convergence

 X_n converges to X almost surely if

$$P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1.$$

- The set of outcomes where the convergence does not happen has measure 0. $P\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\} = 0.$
- Consider $\Omega = [0,1]$ where you pick a number uniformly in [0,1]. Let $X_n(\omega) = \omega^n$ for all $\omega \in \Omega$ and $X(\omega) = 0$ for all ω .
- $ightharpoonup X_n(\omega) o X(\omega)$ for $\omega \in [0,1)$.
- $ightharpoonup X_n(\omega) \nrightarrow X(\omega)$ for $\omega = 1$ and $\mathbb{P}\{\omega = 1\}$.
- ▶ This is almost sure convergence as $\mathbb{P}\{[0,1)\}=1$.

Almost sure (a.s.) convergence

 X_n converges to X almost surely if

$$P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1.$$

Example 2: Strong law of large numbers (SLLN).

Let $\{X_n, n \geq 0\}$ denote a sequence of i.i.d random variables with mean μ and denote $S_n = \sum_{i=1}^n X_i$. Then $\frac{S_n}{n} \to \mu$ a.s.

- ► Toss a biased coin (probability of head is μ) repeatedly. What is ω and Ω ?
- Let X_i denote the outcome of the i^{th} toss and S_n denotes the number of heads in n tosses.
- ► The empirical mean is given by $\frac{S_n}{n}$.

9/23

Detour: Incremental formula for sample mean

- Now that we know $\frac{S_n}{n} \to \mu$ we can use $\hat{\mu_n} := \frac{S_n}{n}$ as an 'estimator' for the mean especially in cases when the underlying distribution is not known.
- Note that the estimator $\hat{\mu_n}$ is a random variable. What is its cdf? what is its mean & Variance?
- $\hat{\mu}_n = \frac{S_n}{n}$ is an 'unbiased estimator' since $E[\hat{\mu}_n] = \mu$.
- $Var(\hat{\mu_n}) = \frac{\sigma^2}{n}$
- We will soon see CLT that will tell the CDF of $\hat{\mu_n}$ without any information on the law of X_i .

Detour: Incremental formula for sample mean

- Now given $\hat{\mu_n}$, suppose you see an additional sample X_{n+1} .
- ▶ How will you compute $\hat{\mu}_{n+1}$?
- Naive way : $\hat{\mu}_{n+1} = \frac{\sum_{i=1}^{n+1} X_i}{n+1}$.
- ▶ There is an incremental formula that uses $\hat{\mu}_n$.

$$\hat{\mu}_{n+1} = \hat{\mu}_n + \frac{1}{n+1} \left[X_{n+1} - \hat{\mu}_n \right]$$

Such averaging formulas are used extensively in Reinforcement learning.

Recap: Modes of Convergence

 $\{X_n, n \geq 0\}$ converges to X pointwise or surely if for all $\omega \in \Omega$ we have $\lim_{n \to \infty} X_n(\omega) = X(\omega)$

$$X_n$$
 converges to X almost surely if $P\left(\omega \in \Omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)\right) = 1$.

$$\{X_n, n \geq 0\}$$
 is a sequence of i.i.d random variables with mean μ and $S_n = \sum_{i=1}^n X_i$. Then $\hat{\mu}_n := \frac{S_n}{n} \to \mu$ a.s. (SLLN)

- ► Estimator $\hat{\mu}_n$ has mean μ and Variance $\frac{\sigma^2}{n}$.
- $\hat{\mu}_{n+1} = \hat{\mu_n} + \frac{1}{n+1} \left[X_{n+1} \hat{\mu_n} \right]$

Another example of a.s. convergence

- ▶ Consider a uniform r.v. U and define $X_n = n1_{\{U \leq \frac{1}{n}\}}$.
- ▶ $X_n = n$ when $U \le \frac{1}{n}$ and $X_n = 0$ otherwise.
- ▶ Given a realization of U, what can you say about the sequence $\{X_n\}$?
- ightharpoonup Once an X_n is zero, all higher indexed variables are also zero!
- ▶ This happens for all realizations U other than U = 0. In this case since $0 \le \frac{1}{n}$ for all n, $X'_n s$ run off to infinity and we don't see convergence to 0.
- ▶ But P(U = 0) = 0.
- ▶ Does $E[X_n] \rightarrow 0$?
- ▶ Almost sure convergence does not imply their means converge!

Towards convergence in probability

- Now define $X_n = n \mathbb{1}_{\{U_n \leq \frac{1}{n}\}}$ where $\{U_n\}$ are i.i.d uniform.
- $ightharpoonup X_n = n$ when $U_n \le \frac{1}{n}$ and $X_n = 0$ otherwise.
- ▶ What can you say about the sequence $\{X_n\}$?
- Is it true that once an X_n is zero, all higher indexed variables are also zero!? No!
- Every time (on every run of the experiment or every sample path), we will have a sequence of zero and non-zero values, where the non-zero values become rarer and rarer but will keep happening once in a while.
- On no sample path would you see convergence to zero but occurrence of non-zero values become rare.
- We now characterize this notion of convergence.

Convergence in probability (w.h.p)

 X_n converges to X in probability if

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$
 for all $\epsilon > 0$.

- ▶ How would you compute $P(|X_n X| > \epsilon)$ when X_n, X are either continuous or discrete random variables ?
- **Ex**: $X_n = n$ with probability $\frac{1}{n}$ and $X_n = 0$ otherwise.
- $P(|X_n X| > \epsilon) = P(X_n \neq 0) = \frac{1}{n}.$
- $ightharpoonup X_n$ converges to 0 in probability, but not almost surely.
- ▶ Equivalent definition: $\lim_{n\to\infty} P(|X_n X| \le \epsilon) = 1$.
- a.s. convergence implies convergence in probability

Convergence in r^{th} mean

 X_n converges to X in r^{th} mean if

$$\lim_{n\to\infty} E[|X_n-X|^r]=0.$$

- ▶ How will you compute $E[|X_n X|^r]$?
- When r = 2, it is convergence in mean squared sense. In addition if X = 0, it implies that the second moments converge to 0.
- ightharpoonup Convergence in r^{th} mean implies convergence in probability.

Weak convergence (in distribution)

 X_n converges to X in distribution if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$
 for all continuity points of $F_X(\cdot)$.

- ► a.s. convergence and convergence in probability imply convergence in distribution.
- Example: X_n is an exponential random variable with parameter λn .
- In this case, $F_{X_n}(x) = 1 e^{-n\lambda x}$ and $F_X(x) = 1$ for all x.
- Note x = 0 is point of discontinuity as $F_X(0) = 1$ and $F_{X_n}(0) = 0$.

Summary

Pointwise $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ for every ω

Almost sure $\lim_{n\to\infty} X_n(\omega) = X(\omega) \text{ almost surely}$

Convergence $\lim_{n\to\infty} P(|X_n-X|>\epsilon)=0$ for any $\epsilon>0$

Mean-square $\lim_{n\to\infty} \mathbb{E}[(X_n - X)^2] = 0$

Convergence $\lim_{n\to\infty} F_n(x) = F(x)$ for any continuity point x

Relation between modes of convergence (no proofs)

https://en.wikipedia.org/wiki/Proofs_of_convergence_ of random variables

Towards CLT

- ▶ Recall $\hat{\mu}_n = \frac{S_n}{n}$ where $S_n = \sum_{i=1}^n X_i$
- ▶ $\{X_i\}$ is i.i.d. with mean μ amnd variance σ^2 .
- \blacktriangleright $E[\hat{\mu}_n] = \mu$ and $var(\hat{\mu}_n) = \frac{\sigma^2}{n}$
- Now consider $Y_n = \frac{\hat{\mu}_n \mu}{\frac{\sigma}{\sqrt{n}}}$. (centering and scaling). What is the mean and variance of Y_n ?
- ▶ $E[Y_n] = 0$ and $Var(Y_n) = 1$. What is $F_{Y_n}(\cdot)$?
- ▶ What is $\lim_{n\to\infty} F_{Y_n}(\cdot)$? ANS: $\Phi(\cdot) = F_{N(0,1)}(\cdot)$
- ▶ In other words, Y_n converges to Y = N(0,1) in distribution.

CLT

Let $\{X_n, n \geq 0\}$ denote a sequence of i.i.d random variables each with mean μ and variance $0 < \sigma^2 < \infty$. Denote $\hat{\mu}_n = \frac{\sum_{i=1}^n X_i}{n}$ and $Y_n = \frac{\hat{\mu}_n - \mu}{\frac{\sigma}{\sqrt{n}}}$. Then Y_n converges to N(0,1) in distribution.

- X_i could be ANY discrete or continuous r.v. with finite mean and variance.
- ▶ What is the consequence when $E[X_i] = 0$ and $Var(X_i) = 1$.
- In this case, $Y_n = \frac{S_n}{\sqrt{n}}$ and it converges in distribution to N(0,1).
- ▶ $\frac{S_n}{n}$ converges almost surely to 0 but $\frac{S_n}{\sqrt{n}}$ converges to a random variable $\mathcal{N}(0,1)$.

CLT

Let $\{X_n, n \geq 0\}$ denote a sequence of i.i.d random variables each with mean μ and variance $0 < \sigma^2 < \infty$. Denote $\hat{\mu}_n = \frac{\sum_{i=1}^n X_i}{n}$ and $Y_n = \frac{\hat{\mu}_n - \mu}{\frac{\sigma}{\sqrt{n}}}$. Then Y_n converges to N(0,1) in distribution.

- ▶ CLT given a way to find approximate disribution of $\hat{\mu}_n$.
- Note that for large enough n, we can use the approximation that $Y_n \sim \mathcal{N}(0,1)$.
- Since Gaussianity is preserved under affine transformation, $\hat{\mu}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

Example from probabilitycourse.com

Assumptions:

- $X_1, X_2 \dots$ are iid Bernoulli(p).
- $Z_n = \frac{X_1 + X_2 + \ldots + X_n np}{\sqrt{np(1-p)}}.$

We choose $p = \frac{1}{3}$.

$$Z_3 = \frac{X_1 + X_2 + X_3 - 3p}{\sqrt{3p(1-p)}} \quad | \quad |$$

