1 Aim: Demostrate Data Imputation with satistical techniques on numerical values and write down the conclusion about the assumption.

```
In [1]:
```

```
import pandas as pd
import numpy as np
```

In [2]:

```
df = pd.read_csv("titanic_toy - titanic_toy.csv")
```

In [3]:

```
df.head()
```

Out[3]:

	Age	Fare	Family	Survived
0	22.0	7.2500	1	0
1	38.0	71.2833	1	1
2	26.0	7.9250	0	1
3	35.0	53.1000	1	1
4	35.0	8.0500	0	0

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Age	714 non-null	float64
1	Fare	846 non-null	float64
2	Family	891 non-null	int64
3	Survived	891 non-null	int64

dtypes: float64(2), int64(2)

memory usage: 28.0 KB

```
In [6]:
df.isnull().sum()
Out[6]:
            177
Age
Fare
             45
Family
              0
Survived
              0
dtype: int64
In [9]:
df.isnull().mean()*100
Out[9]:
Age
            19.865320
             5.050505
Fare
Family
             0.000000
             0.000000
Survived
dtype: float64
In [10]:
x = df.drop(columns = ['Survived']) # independent Columns
In [11]:
y = df['Survived'] #dependent columns
In [12]:
У
Out[12]:
0
       0
1
       1
2
       1
3
       1
4
       0
      . .
886
       0
887
       1
888
       0
889
       1
890
Name: Survived, Length: 891, dtype: int64
In [13]:
df.shape
Out[13]:
(891, 4)
```

```
In [21]:
```

```
from sklearn.model_selection import train_test_split
```

```
In [22]:
```

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=2)
```

In [23]:

```
x_train.shape
```

Out[23]:

(712, 3)

In [32]:

```
x_test.shape
```

Out[32]:

(179, 3)

In [35]:

```
mean_age = x_train["Age"].mean()
```

In [36]:

```
mean_age
```

Out[36]:

29.78590425531915

In [28]:

```
df.describe()
```

Out[28]:

	Age	Fare	Family	Survived
count	714.000000	846.000000	891.000000	891.000000
mean	29.699118	32.279338	0.904602	0.383838
std	14.526497	50.305796	1.613459	0.486592
min	0.420000	0.000000	0.000000	0.000000
25%	20.125000	7.895800	0.000000	0.000000
50%	28.000000	14.454200	0.000000	0.000000
75%	38.000000	31.206250	1.000000	1.000000
max	80.000000	512.329200	10.000000	1.000000

In [37]:

```
median_age = x_train["Age"].median()
```

```
In [38]:
```

```
median_age
```

Out[38]:

28.75

In [40]:

```
mean_fare = x_train['Fare'].mean()
mean_fare
```

Out[40]:

32.617596893491076

In [42]:

```
median_fare = x_train['Fare'].median()
median_fare
```

Out[42]:

14.4583

In [46]:

```
#imputation

x_train['Age_mean']=x_train['Age'].fillna(mean_age)
x_train['Age_median']=x_train['Age'].fillna(median_age)
```

In [48]:

x_train

Out[48]:

Age	Fare	Family	Age_mean	Age_median
40.0	27.7208	0	40.000000	40.00
4.0	16.7000	2	4.000000	4.00
47.0	9.0000	0	47.000000	47.00
9.0	31.3875	6	9.000000	9.00
20.0	9.8458	0	20.000000	20.00
30.0	8.6625	0	30.000000	30.00
NaN	8.7125	0	29.785904	28.75
71.0	49.5042	0	71.000000	71.00
NaN	221.7792	0	29.785904	28.75
NaN	25.9250	0	29.785904	28.75
	40.0 4.0 47.0 9.0 20.0 30.0 NaN 71.0	40.0 27.7208 4.0 16.7000 47.0 9.0000 9.0 31.3875 20.0 9.8458 30.0 8.6625 NaN 8.7125 71.0 49.5042 NaN 221.7792	40.0 27.7208 0 4.0 16.7000 2 47.0 9.0000 0 9.0 31.3875 6 20.0 9.8458 0 30.0 8.6625 0 NaN 8.7125 0 71.0 49.5042 0 NaN 221.7792 0	40.0 27.7208 0 40.000000 4.0 16.7000 2 4.000000 47.0 9.0000 0 47.000000 9.0 31.3875 6 9.000000 20.0 9.8458 0 20.000000 30.0 8.6625 0 30.000000 NaN 8.7125 0 29.785904 71.0 49.5042 0 71.000000 NaN 221.7792 0 29.785904

712 rows × 5 columns

```
In [50]:
```

```
x_train['Fare_mean']=x_train['Fare'].fillna(mean_age)
x_train['Fare_median']=x_train['Fare'].fillna(median_age)
```

In [51]:

x_train

Out[51]:

	Age	Fare	Family	Age_mean	Age_median	Fare_mean	Fare_median
30	40.0	27.7208	0	40.000000	40.00	27.7208	27.7208
10	4.0	16.7000	2	4.000000	4.00	16.7000	16.7000
873	47.0	9.0000	0	47.000000	47.00	9.0000	9.0000
182	9.0	31.3875	6	9.000000	9.00	31.3875	31.3875
876	20.0	9.8458	0	20.000000	20.00	9.8458	9.8458
534	30.0	8.6625	0	30.000000	30.00	8.6625	8.6625
584	NaN	8.7125	0	29.785904	28.75	8.7125	8.7125
493	71.0	49.5042	0	71.000000	71.00	49.5042	49.5042
527	NaN	221.7792	0	29.785904	28.75	221.7792	221.7792
168	NaN	25.9250	0	29.785904	28.75	25.9250	25.9250

712 rows × 7 columns

In [63]:

```
print('Original age variance',x_train["Age"].var())
```

Original age variance 204.3495133904614

In [64]:

```
print("After imputation age variance of age",x_train['Age_mean'].var())
print("After imputation age variance of age",x_train['Age_median'].var())
```

After imputation age variance of age 161.81262452718673 After imputation age variance of age 161.9895663346054

In [65]:

```
print('Original age variance',x_train["Fare"].var())
```

Original age variance 2448.197913706318

In [66]:

```
print("After imputation age variance of age",x_train['Fare_mean'].var())
print("After imputation age variance of age",x_train['Fare_median'].var())
```

After imputation age variance of age 2324.623996772905 After imputation age variance of age 2324.9576136149317

In [73]:

```
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
x_train['Age'].plot(kind='kde' ,ax=ax) #original Distribution
#After imputation with mean
x_train['Age_mean'].plot(kind='kde', ax=ax,color='red')
#After imputation with median
x_train['Age_median'].plot(kind='kde' ,ax=ax,color='green')
#Adding Legends
lines,labels = ax.get_legend_handles_labels()
ax.legend(lines,labels,loc='best')
```

Out[73]:

<matplotlib.legend.Legend at 0x259614b3be0>

In [74]:

```
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
x_train['Fare'].plot(kind='kde' ,ax=ax) #original Distribution
#After imputation with mean
x_train['Fare_mean'].plot(kind='kde', ax=ax,color='red')
#After imputation with median
x_train['Fare_median'].plot(kind='kde' ,ax=ax,color='green')
#Adding legends
lines,labels = ax.get_legend_handles_labels()
ax.legend(lines,labels,loc='best')
```

Out[74]:

<matplotlib.legend.Legend at 0x259614b6910>

In [80]:

```
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
```

In [81]:

```
imputer1= SimpleImputer(strategy='mean')
imputer2= SimpleImputer(strategy='median')
```

In [82]:

```
trf =ColumnTransformer([
    ('imputer1',imputer1,['Age']),
    ('imputer2',imputer2,['Age']),
],remainder='passthrough')
```

```
In [83]:
trf.fit(df)
Out[83]:
ColumnTransformer(remainder='passthrough',
                   transformers=[('imputer1', SimpleImputer(), ['Age']),
                                  ('imputer2', SimpleImputer(strategy='media
n'),
                                   ['Age'])])
In [84]:
trf.named_transformers_['imputer1'].statistics_
Out[84]:
array([29.69911765])
In [85]:
trf.named_transformers_['imputer2'].statistics_
Out[85]:
array([28.])
In [87]:
sm = trf.transform(df)
sm
Out[87]:
array([[22.
                    , 22.
                                   7.25
                                                  1.
                                                                0.
       [38.
                    , 38.
                                   71.2833
                                                   1.
                    , 26.
       [26.
                                   7.925
                                                  0.
       . . . ,
                                  , 23.45
       [29.69911765, 28.
                                                  3.
                                                                0.
       [26.
                    , 26.
                                                   0.
                                                                1.
                                            nan,
                                                                           ],
       [32.
                                     7.75
                                                                           11)
                    , 32.
                                                   0.
                                                                0.
```

2 Conclusion:

We have observed while finding the mean and median of Age and Fare columns,replacing nulls values of both the columns are highly affected the data distribution while the replacing the null values with median are less affected compare to mean. Also, if nulls values are less than 5% in the column, the data distribution is not affected after replacing the values by mean/median.

```
In [ ]:
```