Redes de Satélite Redes de sensores sem fio

Daniel Corujo, dcorujo@ua.pt
Francisco Fontes, fontes@ua.pt
2023/2024

Redes de satélite

SATÉLITES

atmosfera da Terra

Fundamentos

- orbitas elípticas ou circulares o tempo de rotação completo depende da distância satélite-terra ☐ inclinação: ângulo entre a órbita e o equador elevação: ângulo entre o satélite e o horizonte LOS (Line of Sight) ao satélite necessário para conexão → alta elevação necessária, menor absorção devido, por exemplo, a edifícios ☐ Uplink: conexão estação base - satélite ☐ Downlink: conexão satélite - estação base Ifrequências normalmente separadas para uplink e downlink
 - transponder usado para enviar/receber e mudar de frequências
 - transponder transparente: apenas mudança de frequências
 - transponder regenerativo: adicionalmente regeneração de sinal

Recursos de redes de satélite

- Efeitos da mobilidade por satélite
 - A topologia é dinâmica.
 - As alterações de topologia são previsíveis e periódicas.
 - O tráfego é muito dinâmico e não homogêneo.
 - As transferências são necessárias.
- Limitações e capacidades dos satélites
 - A potência e a capacidade de processamento integrada são limitadas.
 - Implementar a tecnologia de ponta é difícil.
 - Os satélites têm uma natureza de transmissão.
- Natureza das constelações de satélites
 - Maiores atrasos de propagação.
 - Número fixo de nós.
 - Estrutura altamente simétrica e uniforme.

Atenuação atmosférica

CM 23/24

8

• Os links ascendentes e descendentes de satélite podem operar em diferentes bandas de frequência:

Frequency Bands	Downlink Channel (DL)	Uplink Channel (UL)	
L Band	1.535 - $1.56~\mathrm{GHz}$	1.635-1.66 GHz	Comunicações móveis/fixas, GPS
S Band	2.5-2.54 GHz	2.65-2.69 GHz	Comunicações diretas para sábado
C Band	3.7-4.2 GHz	5.9-6.4 GHz	TV bcast., algum Wi-Fi, telefones e radares meteorológicos
X Band	$7.25-7.75 \; \mathrm{GHz}$	7.9-8.4 GHz	Comunicações do espaço profundo.
Ku Band	10-13 GHz	14-17 GHz	Backhauls, estúdios de TV
Ka Band	18-20 GHz	27-31 GHz	Radares em aviões militares

- O up-link é um link ponto a ponto altamente direcional
- O link descendente pode ter uma área ocupada fornecendo cobertura para uma área substancial de "feixe pontual".

Tipos de órbitas de satélite

- Com base na inclinação, "i", sobre o plano equatorial:
 - Órbitas Equatoriais acima do equador da Terra (i=0°)
 - As órbitas polares passam por ambos os pólos (i=90°)
 - Outras órbitas chamadas órbitas inclinadas (0°<i<90°)

- Baseado na excentricidade
 - Circular com centro no centro da Terra
 - Elíptico com um foco no centro da Terra

Tipos de redes baseadas em satélite

- Com base na altitude do satélite
 - GEO Órbitas Geoestacionárias
 - 36.000 km = 22.300 milhas, equatorial, alta latência
 - MEO Órbitas Terrestres Médias
 - Alta largura de banda, alta potência, alta latência
 - LEO Órbitas Terrestres Baixas
 - Baixo consumo de energia, baixa latência, mais satélites, tamanho reduzido
 - VSAT
 - Satélites de abertura muito pequena
 - WANs privadas

Órbitas de satélite – Outra perspectiva

GEO - Órbita Geoestacionária

-No plano equatorial

-Período orbital = 23 h 56 m 4,091 s

= 1 dia sideral*

-O satélite parece estar estacionário em qualquer ponto do equador:

- A Terra gira na mesma velocidade que o satélite

Satélites GEO

- Sem transferência
- Atraso de propagação unidirecional: 250-280 ms
- 3 a 4 satélites para cobertura global
- Usado principalmente em transmissão de vídeo
- Outras aplicações:
 - Previsão do tempo, comunicações globais, aplicações militares
- Vantagem: adequado para serviços de transmissão
- Desvantagens: Longo atraso, alta atenuação de espaço livre

Satélites MEO

- Atraso de propagação unidirecional: 100 130 ms
- 10 a 15 satélites para cobertura global
- Transferência pouco frequente
- Período de órbita: ~6 horas
- Usado principalmente na navegação
 - GPS, Galileu, Glonass
- Comunicações: Inmarsat, ICO

Exemplo MEO: GPS

- Sistema de Posicionamento Global
 - Desenvolvido pelo Departamento de Defesa dos EUA
 - Tornou-se totalmente operacional em 1993
 - Atualmente 31 satélites a 20,200 km.
 - Último almoço: março de 2008
- Funciona com base em um princípio geométrico
 - "A posição de um ponto pode ser calculada se as distâncias entre este ponto e três objetos com posições conhecidas puderem ser medidas"
- Quatro satélites são necessários para calcular a posição
 - O quarto satélite é necessário para corrigir o relógio do receptor.
- Disponibilidade Seletiva
- Glonass (russo): 24 satélites, 19.100 km
- Galileo (UE): 30 satélites, 23.222 km, em desenvolvimento (data prevista: 2013)
- Beidou (China): Atualmente experimental e limitado.

LEO - Órbitas Terrestres Baixas

- Órbita circular ou inclinada com altitude <1400 km
 - O satélite viaja pelo céu de horizonte a horizonte em 5 a 15 minutos => precisa de transferência
 - As estações terrenas devem rastrear satélites ou ter antenas omnidirecionais
 - É necessária uma grande constelação de satélites para comunicação contínua (66 satélites necessários para cobrir a Terra)
 - Requer arquitetura complexa
 - Requer rastreamento no solo

Satélites LEO

- Atraso de propagação unidirecional: 5 20 ms
- Mais de 32 satélites para cobertura global
- Transferência frequente
- Período de órbita: ~2 horas
- Formulários:
 - Observação da Terra
 - Provedores de imagens do GoogleEarth (DigitalGlobe, etc.)
 - RASAT (Primeiro satélite a ser produzido exclusivamente na Turquia)
 - Comunicações
 - Globalstar, Iridium
 - Busca e Resgate (SAR)
 - COSPAS-SARSAT

Irídio

- 66 satélites (6 aviões, 11 satélites por avião) e 10 peças sobressalentes.
- Inclinação de 86,4: cobertura total
- Altitude: 780 km
- Links intersatélites, processamento integrado
- Tempo de visibilidade do satélite: 11,1 min
- Satélites lançados em 1997-98.
- A empresa inicial entrou em falência
 - Tecnologicamente impecável, no entanto:
 - Muito caro; Plano de negócios horrível
 - Não é possível competir com GSM
- Agora, propriedade da Iridium Satellite LLC.
- 280.000 assinantes (em agosto de 2008)
- Contrato plurianual com o DoD dos EUA.
- Colisão de satélite (10 de fevereiro de 2009).

Challenges	Implications	
Intermittent connectivity	 Satellites on this orbit are characterized by scheduled predictable/semi-predictable intermittent connectivity, whether for a satellite to ground links or inter-satellite links. There are no contemporary paths present for satellite and ground station communication or cross-link communication. 	
Orbital period	 LEO satellite orbital velocity ~= 7800 m/s, based on the satellite altitude orbital period of about 90–110 minu for 160–1200 km altitudes respectively. Limited encounter time between satellites which in turns bounds data transfer rate. 	
Inter-CubeSat links	 Transmission range between two satellites, approximately 5–200 km. The transmission range of inter-CubeSats is bound by cross-link antenna transmission power. Limited antenna size and capability compared with the conventional satellites. Limited antenna coverage compared with the conventional satellites. 	
II /Dans Pala and discount of Car	 Transmission range between satellite and ground station, approximately 200–1200 km The transmission range of CubeSats is bounded by the downlink antenna transmit power. Satellite revisit time Limited antenna size and capability 	
Altitude and inclination ranges	- Orbit altitude rang is 200–1200 km above the Earth and orbit inclination ranges 0°–180°.	
Natural drag	 Common de-orbiting behaviour leads to changes in orbital height and hence meeting time between CubeSats will also change over time. Orbiting at lower altitudes increases the drag process. The drag upsurges with increasing solar activity (sunspots). 	
High failure rate	 Space radiation effects on electronic components, particularly Commercial-off-the Shelf (COTS) components. Impossibility of recovery under failure. 	
Energy	 Solar cells limited space available on the small size of the CubeSat body. Small storage batteries. High power consumption of up/downlinks and cross-links. 	
Topology density	- Satellite dissemination and encounter times.	
	 There is no space on the CubeSats for advanced stability control devices. Antenna directionality and steering ability. 	
Data rate	 A single CubeSat has limited data rate CubeSat swarms and constellations can provide a higher overall system data rate, however, networking CubeSats in these systems is challenging and requires advanced routing protocols. 	

Plataformas de Alta Altitude (HAPs)

- Plataformas aéreas não tripuladas
- Posição quase estacionária (a 17-22 km)
- Telecomunicações e vigilância
- Vantagens:
 - Cobrir áreas maiores do que estações base terrestres
 - Sem problemas de mobilidade como LEOs
 - Baixo atraso de propagação
 - Terminais de usuário menores e mais baratos
 - Implantação fácil e incremental
- Desvantagens:
 - Tecnologia de dirigível imatura
 - Monitoramento do movimento da plataforma

Integração HAP-Satélite

- As PAH têm vantagens significativas.
- Os satélites ainda representam a solução mais atractiva para serviços de radiodifusão e multicast
- Devem ser consideradas como tecnologias complementares.

Satélites - Visão Geral

- GEOs têm boa capacidade de transmissão, mas longo atraso de propagação.
- LEOs oferecem baixa latência e baixos requisitos de energia terminal.
- Links entre satélites e processamento integrado para maior desempenho e melhor utilização dos satélites
 - De espelhos voadores a roteadores inteligentes no céu.
- Grande problema com LEOs: Mobilidade de satélites
 - Entrega frequente
- Outro problema importante com satélites:
 - Inviável atualizar a tecnologia, após o lançamento do satélite

Roteamento

Uma solução: links entre satélites (ISL)
número reduzido de gateways necessários
encaminhar conexões ou pacotes de dados dentro da rede de satélite pelo maior tempo possível
☐apenas um uplink e um downlink por direção necessários para a conexão de dois telefones celulares
• Problemas:
□focagem mais complexa de antenas entre satélites
alta complexidade do sistema devido à movimentação de roteadores
☐ maior consumo de combustível
portanto, vida útil mais curta
• Iridium e Teledesic planejados com ISL

• Outros sistemas utilizam gateways e adicionalmente redes terrestres

Modelo de referência para acesso via satélite

Arquitetura de protocolo

Arquitetura de protocolo

Interoperabilidade IP

Redes de sensores sem fio