$$P_n = \{a_0 + a_1 x + \dots + a_n x^n \mid a_i \in \mathbb{R}^{\frac{n}{2}}\}$$
 $d_i^n m \quad P_n = n + 1$
 $Basis \quad B = \{c, g, \dots, g^n\}$

$$f \in P_3$$
 $\rightarrow f : a_0 + a_1 x + a_2 x^2 + a_3 x^3$

Eg:
$$f = 2 + 42 + 72 + 2|2^3$$
; $T(f) = f!$
Intermediation
$$3f' = 4 + 142 + 3(21)2^4$$

Integrating,

$$\frac{1}{3} = 4x + 14x^{1} + 3(2x) + 3 = 4x + 4x^{1} + 21x^{1} + 21x^{1} + 2 = 3$$

c = consfant.

 $\frac{\partial}{\partial x}$. From that $T: P_{\lambda} \to P_{\lambda}$ $T(f) = \int_{\mathbb{R}} dx \qquad \text{Proof a λ.}$

Find m(T).

Soln: Let fig & B.

 $T(f+g) = \int (f+g) dx$

= Sfdn + Sgdn

Let & be a scenar.

T(xf) = s(xs)dr

=

fdr

= 047(4)

in the a Lit.

Basis for Pa = { 1, 9, 92}

Passis for
$$R_3 = \{1, 9, 9, 9, 9\}$$

$$T(1) = \int I dx = x + G = G \cdot 1 + 1 \cdot 9 + 0 \cdot 2 \cdot 7 + 0 \cdot 2 \cdot 7$$

$$T(x) = \int x dx = \frac{x^2}{2} + G = G \cdot 1 + 0 \cdot x + \frac{1}{2} \cdot x^2 + 0 \cdot 2 \cdot 7$$

$$T(x^2) = \int 9 \cdot dx = \frac{x^3}{3} + G = G \cdot 1 + 0 \cdot x + 0 \cdot 2 \cdot 7 + \frac{1}{3} \cdot x^2$$

volure 9, 9, 9 au constants.

$$f \in P_2 \Rightarrow f = a_0 + a_1 x + a_2 x^2 ; \quad a_3 \in \mathbb{R}$$

$$\int f du = a_0 x + a_1 x^2 + a_2 x^3 + c ;$$

c = constant.

$$\int \int dx = 0 \Rightarrow a_0 = 0 ; a_1 = 0 ; a_2 = 0;$$

$$C = 0.$$

$$\Rightarrow f = 0$$

$$\therefore \text{ Ker } T = \begin{cases} 0 \end{cases} \Rightarrow \dim \text{ Ker } T = 0.$$

Function
$$f$$
 is called one-one if $f(x) := f(y) \Rightarrow x = y$. (9 preimager coincide) (orinide)

Result:
$$T:V \rightarrow W$$
 be a $L:T$. Then

(AT às one-one (\Rightarrow) (iff) Ker $T:=\{0\}$.

To prove: Ker T : {o}.

Prof. Kedukodi Babushri Srinivas, Department of Mathematics, MIT Manipal

$$= \mathcal{T}(0) + \mathcal{T}(0) \Rightarrow \mathcal{T}(0) = 0$$

By (1) and (2),
$$0 \in \text{KerT}$$

 $\Rightarrow fo) \subseteq \text{KerT}$ — (I).
To prove : $\text{KerT} \subseteq fo)$.
Take $t \in \text{KerT}$
 $\Rightarrow T(t) = 0$
 $= T(0)$ (by (1))
As $T \in \text{one-one}$, $t = 0$
 $\Rightarrow \text{KerT} \subseteq fo)$ — (II)

$$\Rightarrow T(\pi) - T(\eta) = 0$$

$$\Rightarrow 9x-y \in \text{Ker T} = \{0\}. \quad (Gruen)$$

$$\Rightarrow 9x-y = 0$$

$$\Rightarrow 9x = y$$

$$\Rightarrow 1 = y \quad \text{one -one}.$$

Right:
$$T:V \rightarrow W$$
 be a L.T.

 T es one-one (\Rightarrow) $T(x) = 0$ implies $9(=0)$

(B)

PAf. Del Babushri Shhikas, Bepartment of Mathematics, MIT Manipal

$$= \mathcal{T}(0)$$

$$\Rightarrow$$
 $92-y=0$ (given)
 \Rightarrow $92=y$
 \Rightarrow 788 one-one.

$$T(X) = 0 \text{ implies } x = 0.$$

characterization of one-one linear transformation.

CAll three statements