## FAET630004: AI-Core and RISC Architecture

(Due: 4/2/20)

## Homework Assignment #1

Instructor: Chixiao Chen Name: Kai Wang, FudanID: 20210720201

## Problem 1: Implement a simple RISC Core

(2+5+8=15 points)

On class, we define an extremely simple RISC ISA and its hardware organization, which are both shown below. For this homework assignment, we need to design/implement/simulate this core.

| 极简指令集(RISC)Load/Store 架构 |        |                 |                     |
|--------------------------|--------|-----------------|---------------------|
| opcode                   | 目标 Reg | 源寄存器/立即数        | 说明                  |
| Load                     | rd     | rs+imm(5b)      | //在 rst imm 地址→rd   |
| Store                    | /      | rs(地址)/rs(DATA) | //rs(DAI)→Mem index |
|                          |        |                 | =rs( <u>地址</u> )    |
| моч                      | rd     | imm(9b)         | //赋值→rd             |
| МАС                      | rd     | rs1,rs2,funct=0 | //乘加                |
|                          | rd     | rs1,/,funct=1   | //初始赋值清除            |

## (a) Which HDL you want to use?

I want to use Verilog HDL.

(b) For Verilog-players, please write an top-level structural verilog file to decribe the system. For C-players, please complete a header filer and .cc file , compatible to Vivado HLS, to describe the system. (Hint: Please submit your script as well)

Please see the attachment.



(c) For Verilog-players, please write a testbench verilog file to simulate the system. It should complete a 4-MAC

(neuron) computing.

For C-players, please complete a \_test.cc file , compatible to Vivado HLS, to simulate the system. It should complete a 4-MAC (neuron) computing.

(Hint: Please submit your script and simulated waveform, highlight the final results and compare it with the theoretical value.)

• Theoretical calculation



• Simulation results and waveform(simulation environment:VCS)

