MIT CS 6.00.1x

Table of Contents

Week 1

Lecture	e 1 – Introduction:	
•	Basics of Computation	1 - 1
•	Types of Knowledge	1 - 2
•	Basic machine architecture	1 - 4
•	Programming Language Characteristics	1 - 4
Lecture	e 2 – Core elements of programs:	
•	Types of Programming Languages	2 - 1
•	Objects, Expressions, Operators	2 - 2
•	Variables and Naming	2 - 4
•	Strings	2 - 5
•	Simple Scripts	2 - 6
•	Branching programs	2 - 7
Lecture	e 3 – Simple algorithms: Iteration	3 - 1
•	Guess and Check Algorithms	3 - 2
•	Loop Mechanisms	3 - 4
•	Floating Point Accuracy	3 - 5
•	Approximation Methods	3 - 6
•	Bisection Search	3 - 7
•	Newton-Raphson	3 - 8
•	TVCWIGHT Raphison	0 0
Lecture	e 4 – Functions:	
•	Creating Functions	4 - 1
•	Environments	4 - 2
•	Computing Powers	4 - 4
•	Understanding Variable Binding	4 - 6
•	How Environments Separate Variable Bindings	4 - 8
•	Understanding Root Finding	4 - 11
	Modules	1 12

Week 3

Lecture 5 – Recursion:	
Iterative Algorithms	5 - 1
Recursive Algorithms	5 - 2
Using Environments to Understand Recursion	5 - 2
Inductive Reasoning	5 - 4
Factorial	5 - 5
Towers of Hanoi	5 - 5
Fibonacci	5 - 6
Recursion on Strings	5 - 7
Global Variables	5 - 8
Lecture 6 – Objects :	
• Tuples	6 - 1
Lists and Mutability	6 - 2
Operations on Lists	6 - 3
Functions as Objects	6 - 6
Dictionaries	6 - 8
Week 4	
Lecture 7 – Debugging:	
Testing and Debugging	7 - 1
Test Suites	7 - 2
Black Box Testing	7 - 3
Glass Box Testing	7 - 4
Test Drivers and Stubs	7 - 5
Debugging Skills	7 - 6
Lecture 8 – Assertions and Exceptions	
Exceptions	8 - 1
Error Handling	8 - 3
Exceptions as Control Flow	8 - 5
 Assortions 	9 6

Week 5

Lecture 9 – Efficiency and Orders of Growth	
Measuring Complexity	9 - 1
Asymptotic Notation	9 - 3
Complexity Classes	9 - 5
Comparing Complexity Classes	9 - 9
Lecture 10 – Memory and Search	
Search Algorithms	10 - 1
Binary Search	10 - 2
Selection Sort	10 - 4
Merge Sort	10 - 5
Hasing	10 - 7
Week 6	
Lecture 11 – Classes	
Classes: User Defined Types	11 - 1
A Class Example	11 - 3
An Environment View of Classes	11 - 5
Adding Methods to Class	11 - 8
Example Class: A Set of Integers	11 - 9
Lecture 12 – Object Oriented Programming	
• Inheritance	12 - 1
Using Inheritance Subclasses to Extend Behaviour	12 - 2
Using Inheritance: Designing a Class Hierarchy	12 - 5
Example: A Gradebook	12 - 6
Generators	12 - 8
Week 7	
Lecture 13 – Trees	
Trees Introduction	13 - 1
Searching a Tree	13 - 3
Decision Trees	13 - 6
Implicit Search	13 - 9
Overgrown Trees	13 - 10