Homework 6 Solutions

Problem 1

The following data corresponds to a leak-off test in an offshore well in the Gulf of Mexico.

FCP 900 5500 F Downhole Pressure 5400 800 Surface Pressure Downhole Pressure (psi) 5300 700 600 5200 500 5100 5000 400 4900 300 4800 100 4700 4600 00:00:00 00:15:00 00:30:00 00:45:00 01:00:00 01:15:00 01:30:00 Time

Fig. 5 – Schematic of Auger TLP Well Configuration

a) Estimate S_{ν} at the shoe depth (TVDSS = 8050 ft).

We assume the pore pressure gradient is 0.44 psi/ft and the overburden gradient is 1 psi/ft.

 $S_{
m v}$ at 8050 ft is the summation of the overlying hydrostatic head of water and the remaining pressure head to that depth:

$$S_v = 2862 \times 0.44 + (8050 - 2862) \times 1 = 6447psi$$

b) Assuming the pore pressure is P_p = 4700 psi, and fracture closure occurs at time 1:18:00, calculate effective vertical stress σ_v and minimum effective stress σ_3 .

At 1:18:00, the downhole pressure is approximately 5270 psi and the surface pressure is 550 psi.

$$\sigma_V = S_v - P_p = 6447 - 4700 = 1747 psi$$

$$\sigma_{hmin} = P_{FCP} - P_p = 5270 - 4700 = 570psi$$

c) What is the faulting regime? Calculate the effective stress anisotropy ratio σ_v/σ_{lmin} .

Faulting regime is normal since $\sigma_{v} > \sigma_{hmin}$

$$\frac{\sigma_v}{\sigma_{hmin}} = \frac{1747}{570} = 3.06$$

d) What is the density of the drilling mud?

BHP = 4600 psi since downhole pressure reading at time 00:00:00 is 4700 psi and the surface pressure is approximately 100 psi

$$\rho_m = \frac{BHP}{8050ft} \times \frac{8.33ppg}{0.44psilft} = 10.81ppg$$

Problem 2

Download the file "MicrofracData.xls" which corresponds to a minifrac field test. The pressure reading corresponds to surface pressure.

a) Plot surface pressure and injection rate in a double y-axis plot as a function of time. Plot the entire interval and make a zoom from 70 to 90 min. TVD is 7503 ft

```
In [1]: import pandas as pd

excel_file = 'HW6.xlsx'
DataQ2Summary = pd.read_excel(excel_file, sheet_name="Q2")
DataQ2Summary.head(721)
```

Out[1]:

	Time (minutes)	Sqrt(Time)	Pressure(psi)	Rate (gpm)
0	70.2900	8.383913	1332.848	0.000
1	70.3626	8.388242	1342.264	0.000
2	70.4220	8.391782	1353.660	0.000
3	70.4946	8.396106	1362.405	0.000
4	70.5474	8.399250	1369.632	0.000
5	70.6002	8.402393	1377.376	0.000
6	70.6596	8.405926	1467.873	0.000
7	70.7124	8.409067	1632.455	0.000
8	70.7652	8.412205	1867.525	0.000
9	70.8246	8.415735	2142.580	0.000
10	70.8972	8.420048	2213.464	0.000
11	70.9500	8.423182	2216.214	0.000
12	71.0028	8.426316	2228.248	0.165
13	71.0622	8.429840	2203.894	9.647
14	71.1150	8.432971	2229.238	14.729
15	71.1678	8.436101	2221.307	19.349
16	71.2470	8.440794	2213.090	20.988
17	71.2998	8.443921	2205.423	21.208
18	71.3526	8.447047	2207.029	23.078
19	71.4120	8.450562	2224.453	25.839
20	71.4120	8.450562	2229.337	29.392
21	71.5176	8.456808	2206.853	29.843
22	71.5176	8.456808	2203.124	27.929
23	71.6496	8.464609	2222.077	29.612
24	71.7024	8.467727	2207.315	29.557
25	71.7552	8.470844	2210.626	28.831
26	71.8146	8.474350	2210.582	30.294
27	71.8674	8.477464	2196.315	30.745
28	71.9202	8.480578	2202.893	30.800
29	71.9796	8.484079	2194.852	31.251

```
0.000
689
           109.9098 10.483787
                                    1625.371
690
           109.9626 10.486305
                                    1625.349
                                                   0.000
           110.0220
691
                    10.489137
                                    1625.250
                                                   0.000
692
           110.0748 10.491654
                                    1625.195
                                                   0.000
693
           110.1474 10.495113
                                    1625.096
                                                   0.000
           110.2002 10.497628
                                                   0.000
                                    1625.030
694
695
           110.2596
                     10.500457
                                    1624.975
                                                   0.000
           110.3124
                     10.502971
                                    1624.920
                                                   0.000
696
697
           110.3652
                    10.505484
                                    1624.843
                                                   0.000
           110.4378 10.508939
                                    1624.788
                                                   0.000
698
           110.4972
                                    1624.722
699
                     10.511765
                                                   0.000
700
           110.5500
                     10.514276
                                    1624.667
                                                   0.000
701
           110.6028
                     10.516787
                                    1624.590
                                                   0.000
702
           110.6622 10.519610
                                    1624.502
                                                   0.000
           110.7150
703
                    10.522120
                                    1624.458
                                                   0.000
704
           110.7678
                     10.524628
                                    1624.392
                                                   0.000
705
           110.8470
                     10.528390
                                    1624.315
                                                   0.000
706
           110.8998
                     10.530897
                                    1624.249
                                                   0.000
                                                   0.000
           110.9526
                                    1624,172
707
                     10.533404
           111.0120
708
                   10.536223
                                    1624.117
                                                   0.000
709
           111.0648
                     10.538729
                                    1624.040
                                                   0.000
710
           111.1176
                     10.541233
                                    1623.974
                                                   0.000
711
           111.1902
                     10.544676
                                    1623.897
                                                   0.000
712
           111.2496 10.547493
                                    1623.842
                                                   0.000
713
           111.3024
                   10.549995
                                    1623.765
                                                   0.000
714
           111.3552
                     10.552497
                                    1623.699
                                                   0.000
715
           111.4146
                     10.555311
                                    1623.644
                                                   0.000
716
           111.4674 10.557812
                                    1623,567
                                                   0.000
           111.5400
                                    1623.501
717
                    10.561250
                                                   0.000
718
           111.5928 10.563749
                                    1623.424
                                                   0.000
```

```
In [4]: import numpy as np
         import matplotlib.pyplot as plt
         Time = DataQ2Summary['Time (minutes)']
         SQRT_Time = DataQ2Summary['Sqrt(Time)
         Pressure = DataQ2Summary['Pressure(psi)']
         Rate = DataQ2Summary['Rate (gpm)']
         # Plot data
         fig, ax1 = plt.subplots()
         ax2 = ax1.twinx()
         ax1.plot(Time, Rate, 'b-')
         ax2.plot(Time, Pressure, 'k-')
         # Plot labels
         ax1.set_xlabel('Time')
         ax1.set_ylabel('Rate [bbl/min]', color='b')
ax2.set_ylabel('Pressure [psi]', color='k')
         # Axis range
         plt.xlim([60, 120])
         ax1.set_ylim(0, 100)
         ax2.set_ylim(500, 2500)
         plt.show()
         # Change plot size
         plt.rcParams["figure.figsize"] = (10,9)
```



```
In [5]: # PLot data
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.plot(Time, Rate, 'b-')
ax2.plot(Time, Pressure, 'k-')
# PLot Labels
ax1.set_xlabel('Time')
ax1.set_ylabel('Rate [bbl/min]', color='b')
ax2.set_ylabel('Pressure [psi]', color='k')
# Axis range
plt.xlim([70, 90])
ax1.set_ylim(0, 100)
ax2.set_ylim(0, 100)
ax2.set_ylim(500, 2500)
plt.show()
# Change plot size
plt.rcParams["figure.figsize"] = (10,9)
```


b) Find the instantaneous shut-in pressure (ISIP) and make a plot of surface pressure as a function of square root of time. Find the fracture closure pressure (FCP) [surface pressure].

ISIP is 2035 psi

From the below figure, FCP is approximately 1800 psi (pressure at which pressure departs from linear portion)

```
In [4]: import numpy as np
         import matplotlib.pyplot as plt
         # Segment of the data set to plot
        SQRT_Time1 = SQRT_Time.iloc[60:720]
         Pressure1 = Pressure.iloc[60:720]
        # Segment of the data set for calculating FCP
SQRT_Time2 = SQRT_Time.iloc[70:100]
        Pressure2 = Pressure.iloc[70:100]
         # Plot data
        plt.plot(SQRT_Time1, Pressure1, 'ok',markersize=3)
         # Calculate the simple linear regression fit to find loading strain rate
        coefficients = np.polyfit(SQRT_Time2, Pressure2, 1)
        yy = np.poly1d(coefficients)
         # plot trendline
        plt.plot(SQRT_Time2,yy(SQRT_Time2),"-r",linewidth=2)
         # Plot labels
        plt.xlabel('Square Root of Time [min^{0.5}]')
         plt.ylabel('Pressure [psi]', color='k')
         # Axis range
        plt.xlim([8.5, 9.5])
        plt.ylim([1600, 2100])
        plt.show()
         # Change plot size
        plt.rcParams["figure.figsize"] = (10,9)
```


c) The true depth is 7,503 ft. Assuming a hydrostatic pressure gradient inside the wellbore of 0.44 psi/ft, calculate the minimum total principal stress S_3 in this place.

$$S_3 = FCP + P_W = 1800 + 0.44 \times 7503 = 5100psi$$

Problem 3

The figure below shows the results of a DFIT test (data from Zoback 2007).

a) How many barrels of fracturing fluid were used in this test?

15 barrels of fracturing fluid

b) Indicate fracture propagation pressure (FPP), instantaneous shut-in pressure (ISIP) and fracture closure pressure (FCP) (as well as you can without analyzing the data in detail).

c) Describe and sketch the flow behavior around the wellbore before and after shut-in.

Before shut-in,

d) At surface pressure of 0 psi the bottom-hole pressure is 5,500 psi. What is the minimum principal stress in this formation?

Minimum principal stress is $S_3 = FCP + P_W = 1820 + 5500 = 7320 psi$. Notice that the pressure needed for fracture propagation is a few hundred psi higher.

Problem 4

Interpret the following step-rate test data (i.e., find the formation parting pressure). Plot pressure vs. time for all steps.

```
In [5]: import pandas as pd

excel_file = 'HW6.xlsx'
DataQ4Summary = pd.read_excel(excel_file, sheet_name="Q4_Data")
DataQ4Summary.head(14)
```

Out[5]:

	Step#	Test Rate [bbl/min]	Test Rate (% of Max Rate)	-	1	2	3	4	5	6	7
0	1	0.2	5	Time [min]	0	5	10	15	20	25	30
1	-	-	-	Pressure [psi]	0	99	105	108	109	110	110
2	2	0.4	10	Time [min]	0	5	10	15	20	25	30
3	-	-	-	Pressure [psi]	88	187	204	215	219	220	220
4	3	0.8	20	Time [min]	0	5	10	15	20	25	30
5	-	-	-	Pressure [psi]	209	358	424	431	438	439	440
6	4	1.6	40	Time [min]	0	5	10	15	20	25	30
7	-	-	-	Pressure [psi]	418	770	869	871	875	878	882
8	5	2.4	60	Time [min]	0	5	10	15	20	25	30
9	-	-	-	Pressure [psi]	825	1089	1133	1199	1265	1298	1321
10	6	3.2	80	Time [min]	0	5	10	15	20	25	30
11	-	-	-	Pressure [psi]	1210	1375	1459	1507	1529	1535	1540
12	7	4	100	Time [min]	0	5	10	15	20	25	30
13	-	-	-	Pressure [psi]	1485	1595	1650	1683	1727	1749	1760

```
In [6]: import pandas as pd
    excel_file = 'HW6.xlsx'
    DataQ4Summary = pd.read_excel(excel_file, sheet_name="Q4_Plot1")
    DataQ4Summary.head(55)
```

Out[6]:

	Step	Cumulative Time [min]	Time [min]	Pressure [psi]	Rate [bbl/min]
0	1	0	0.0	0.0	0.2
1	-	5	5.0	99.0	0.2
2	-	10	10.0	105.0	0.2
3	-	15	15.0	108.0	0.2
4	-	20	20.0	109.0	0.2
5	-	25	25.0	110.0	0.2
6	-	30	30.0	110.0	0.2
7	Pseudo	30	NaN	NaN	0.4
8	2	30	0.0	88.0	0.4
9	-	35	5.0	187.0	0.4
10	-	40	10.0	204.0	0.4
11	-	45	15.0	215.0	0.4
12	-	50	20.0	219.0	0.4
13	-	55	25.0	220.0	0.4
14	-	60	30.0	220.0	0.4
15	Pseudo	60	NaN	NaN	0.8
16	3	60	0.0	209.0	0.8
17	-	65	5.0	358.0	0.8
18	-	70	10.0	424.0	0.8
19	-	75	15.0	431.0	0.8
20	-	80	20.0	438.0	0.8
21	-	85	25.0	439.0	0.8
22	-	90	30.0	440.0	0.8
23	Pseudo	90	NaN	NaN	1.6

25	-	95	5.0	770.0	1.6
26	-	100	10.0	869.0	1.6
27	-	105	15.0	871.0	1.6
28	-	110	20.0	875.0	1.6
29	-	115	25.0	878.0	1.6
30	-	120	30.0	882.0	1.6
31	Pseudo	120	NaN	NaN	2.4
32	5	120	0.0	825.0	2.4
33	-	125	5.0	1089.0	2.4
34	-	130	10.0	1133.0	2.4
35	-	135	15.0	1199.0	2.4
36	-	140	20.0	1265.0	2.4
37	-	145	25.0	1298.0	2.4
38	-	150	30.0	1321.0	2.4
39	Pseudo	150	NaN	NaN	3.2
40	6	150	0.0	1210.0	3.2
41	-	155	5.0	1375.0	3.2
42	-	160	10.0	1459.0	3.2
43	-	165	15.0	1507.0	3.2
44	-	170	20.0	1529.0	3.2
45	-	175	25.0	1535.0	3.2
46	-	180	30.0	1540.0	3.2
47	Pseudo	180	NaN	NaN	4.0
48	7	180	0.0	1485.0	4.0
49	-	185	5.0	1595.0	4.0
50	-	190	10.0	1650.0	4.0
51	-	195	15.0	1683.0	4.0
52	-	200	20.0	1727.0	4.0
53	-	205	25.0	1749.0	4.0
54	-	210	30.0	1760.0	4.0

0.0

418.0

From the following plot, we can pick the maximum pressure at steady-state conditions

```
In [7]: import numpy as np import matplotlib.pyplot as plt

Time = DataQ4Summary['Cumulative Time [min]']  
Pressure = DataQ4Summary['Pressure [psi]']  
Rate = DataQ4Summary['Rate [bbl/min]']  

# Plot data  
fig, ax1 = plt.subplots()  
ax2 = ax1.twinx()  
ax1.plot(Time, Rate, 'b-')  
ax2.plot(Time, Pressure, 'k-')  
# Plot tabels  
ax1.set_xlabel('Time')  
ax2.set_ylabel('Pressure [psi]', color='b')  
ax2.set_ylabel('Pressure [psi]', color='k')  
# Axis range  
plt.xlim([0, 218])  
ax1.set_ylim(0, 2000)  
plt.show()  
# Change plot size  
plt.rcParams["figure.figsize"] = (10,9)
```



```
In [8]: import pandas as pd

excel_file = 'HW6.xlsx'
DataQ4Summary = pd.read_excel(excel_file, sheet_name="Q4_Plot2")
DataQ4Summary.head(10)
```

Out[8]:

	Rate [bbl/min]	Max Pressure [psi]
0	0.2	110
1	0.4	220
2	0.8	440
3	1.6	882
4	2.4	1321
5	3.2	1540
6	4	1760
7	-	-
8	Formation Parting Pressure [psi]	1318.75

```
In [9]: import numpy as np
          import matplotlib.pyplot as plt
         Rate = DataQ4Summary['Rate [bbl/min]']
Pressure = DataQ4Summary['Max Pressure [psi]']
          Rate1 = Rate.iloc[0:5]
          Pressure1 = Pressure.iloc[0:5]
          Rate2 = Rate.iloc[4:7]
         Pressure2 = Pressure.iloc[4:7]
          # Plot data
          plt.plot(Rate1,Pressure1,'o-k')
          plt.plot(Rate2,Pressure2,'o-b')
          # Plot labels
         plt.xlabel('Rate [bbl/min]')
plt.ylabel('Pressure [psi]')
          # Axis range
          plt.xlim([0, 5])
          plt.ylim([0, 2000])
          plt.show()
          # Change plot size
          plt.rcParams["figure.figsize"] = (10,3)
```


From above graph, the formation parting pressure is 1320 [psi], the intersection between the two trends.