

Corso di Laurea Magistrale in Informatica

Exploring the Potential of Quantum NLP for Non-Functional Requirements Classification

Prof. Fabio Palomba

Dott. Francesco Casillo

Marco Calenda

Mat.: 0522501165

m.calenda10@studenti.unisa.it

mcalenda.github.io

Contesto e Motivazioni

Introduzione e Background

Ingegneria dei Requisiti

Fase del processo di sviluppo software che comprende tutte le attività connesse alla gestione dei requisiti.

Contesto e Motivazioni

Introduzione e Background

Necessità di automatizzare l'individuazione e classificazione degli NFR tramite tecniche di Natural Language Processing (NLP).

Requisiti Funzionali

Funzionalità specifiche che un sistema software deve possedere.

Generalmente, ben definiti e documentati.

Requisiti Non-Funzionali (NFR)

Attributi e vincoli del sistema di varia tipologia (qualità, performance, etica, sicurezza, ...).

Nascosti in frasi *ambigue* dei documenti o gestiti *implicitamente*.

Grande impatto sul tasso di fallimento dei progetti IT

Quantum Natural Language Processing (QNLP)

 Area emergente che sfrutta principi della Meccanica Quantistica per modellare il linguaggio naturale.

Combina la semantica:

Distribuzionale

Composizionale

DisCoCat

- Framework de-facto in QNLP introdotto da Coecke et.al.
- Permette di modellare frasi sottoforma di string-diagram basati su una grammatica pre-gruppo.

Obiettivo Principale

Fornire una visione pratica di come un modello di QNLP basato su string-diagram può essere utilizzato per modellare e classificare NFR.

Valutare l'efficacia nella classificazione degli NFR rispetto a soluzioni classiche (BoW, TF-IDF e Word2Vec).

2

Analisi empirica sul valore della grammatica confrontando DisCoCat con altri lettori lineari.

Metodi classici di NLP

Metodologia

Collezione dei Dati

Metodologia

Collezione dei dati

Preprocessing del testo

Pipeline di QNLP

Validazione

PROMISE NFR Dataset di Dalpiaz et al.

48
Progetti

525NFR

11 Sottocategorie NFR

Pre-processing del Testo

Metodologia

Collezione dei dati

Preprocessing del testo

Pipeline di QNLP

Validazione

Filtraggio Manuale

- Termini tecnici poco frequenti per ridurre la grandezza del vocabolario.
- Requisiti molto grandi e/o composti da più frasi.
- Struttura grammaticale complessa o errata.

mcalenda.github.io

Parsing delle Frasi

Metodologia

Collezione dei dati

Preprocessing del testo

Pipeline di QNLP

Validazione

Parametrizzazione

Metodologia

mcalenda.github.io

Ottimizzazione

Metodologia

Collezione dei dati

Preprocessing del testo

Pipeline di QNLP

Validazione

Discesa del Gradiente

Esperimenti classici

mcalenda.github.io

Validazione e Criteri di Valutazione

Metodologia

Collezione dei dati

Preprocessing del testo

Pipeline di QNLP

Validazione

Grid-Search

10-fold Stratified Cross Validation

Metriche di Valutazione

- Precision
- Recall

- Accuracy
- F1-Score

m.calenda10@studenti.unisa.it

mcalenda.github.io

Shal	IOW	Maci	nine	Lear	nıng
Risultati					

			Bin	aria	

		Sicurezza	Usabilità	Operazionali	Performance
	Precision	0.96	0.92	0.98	0.92
Word2Vec	Recall	0.95	0.89	0.95	0.89
google-news-300	Accuracy	0.95	0.90	0.95	0.91
	F1-Score	0.95	0.91	0.95	0.92
	Precision	0.87	0.75	0.86	0.80
TF-IDF	Recall	0.84	0.70	0.83	0.77
ור-וטר	Accuracy	0.83	0.70	0.83	0.77
	F1-Score	0.83	0.71	0.84	0.77
BoW	Precision	0.77	0.70	0.80	0.76
	Recall	0.78	0.69	0.77	0.75
	Accuracy	0.77	0.68	0.77	0.74
	F1-Score	0.76	0.68	0.77	0.75

Multi-Classe
0.78
0.75
0.75
0.75
0.70
0.65
0.68
0.68
0.65
0.62
0.65
0.65

Shallow Machine Learning Risultati

0.78

0.77

0.76

	1				
		Binaria			
		Sicurezza	Usabilità	Operazionali	Performance
	Precision	0.96	0.92	0.98	0.92
Word2Vec	Recall	0.95	0.89	0.95	0.89
google-news-300	Accuracy	0.95	0.90	0.95	0.91
	F1-Score	0.95	0.91	0.95	0.92
	Precision	0.87	0.75	0.86	0.80
TF-IDF	Recall	0.84	0.70	0.83	0.77
	Accuracy	0.83	0.70	0.83	0.77
	F1-Score	0.83	0.71	0.84	0.77
	Precision	0.77	0.70	0.80	0.76

0.69

0.68

0.68

Multi-Classe
0.78
0.75
0.75
0.75
0.70
0.65
0.68
0.68
0.65
0.62
0.65
0.65

BoW

Recall

Accuracy

F1-Score

mcalenda.github.io

@mcalenda

0.75

0.74

0.75

0.77

0.77

0.77

				Binaria			
			Sicurezza	Usabilità	Operazionali	Performance	
		Precision	0.86	0.78	0.84	0.81	
Classics		Recall	0.80	0.76	0.80	0.79	
Classico	Classico Accuracy F1-Score		0.85	0.76	0.82	0.81	
			0.84	0.78	0.84	0.80	
		Precision	0.98	0.95	0.97	0.90	
	d = 1	Recall	0.89	0.85	0.90	0.90	
	u – 1	Accuracy	0.93	0.88	0.94	0.88	
Oughtum		F1-Score	0.94	0.91	0.96	0.90	
Quantum		Precision	0.90	0.89	0.93	0.86	
	d = 5	Recall	0.86	0.85	0.85	0.84	
		Accuracy	0.93	0.87	0.88	0.89	
		F1-Score	0.88	0.88	0.91	0.86	

Multi-Classe
0.66
0.62
0.65
0.64
0.70
0.68
0.68
0.68
0.80
0.71
0.76
0.74

Il parametro d (depth) è il numero di IQP-layers dei circuiti quantistici.

mcalenda.github.io

DisCoCat Risultati

Multi-Classe

0.66

0.62

0.65

0.64

0.70

0.68

0.68

0.68

0.80

0.71

0.76

0.74

Risultati simili a quelli ottenuti con **TF-IDF**.

Classico

Quantum

Precision

Accuracy

F1-Score

Precision

Accuracy

F1-Score

Precision

Accuracy

F1-Score

Recall

Recall

d = 1

d = 5

Recall

Binaria					

Sicurezza	Usabilità	Operazionali	Performance		
0.86	0.78	0.84	0.81		
0.80	0.76	0.80	0.79		
0.85	0.76	0.82	0.81		
0.84	0.78	0.84	0.80		
0.98	0.95	0.97	0.90		
0.89	0.85	0.90	0.90		
0.93	0.88	0.94	0.88		
0.94	0.91	0.96	0.90		
0.90	0.89	0.93	0.86		

0.85

0.88

0.91

0.85

0.87

0.88

Il parametro d (depth) è il numero di IQP-layers dei circuiti quantistici.

0.86

0.93

0.88

mcalenda.github.io

@mcalenda

0.84

0.89

0.86

Lettori Lineari Risultati

			Binaria			
		Sicurezza	Usabilità	Operazionali	Performance	
	Precision	0.98	0.95	0.97	0.90	
DioCoCot	Recall	0.89	0.85	0.90	0.90	
DisCoCat	Accuracy	0.93	0.88	0.93	0.88	
	F1-Score	0.94	0.91	0.96	0.90	
	Precision	0.94	0.91	0.93	0.90	
Spidoro	Recall	0.89	0.82	0.88	0.85	
Spiders	Accuracy	0.89	0.92	0.91	0.89	
	F1-Score	0.94	0.90	0.92	0.88	
Cups	Precision	0.90	0.86	0.91	0.89	
	Recall	0.84	0.86	0.90	0.83	
	Accuracy	0.85	0.89	0.91	0.85	
	F1-Score	0.89	0.86	0.91	0.87	

Multi-Classe
0.80
0.71
0.76
0.74
0.78
0.70
0.72
0.73
0.75
0.73
0.70
0.74

Lettori Lineari

Risultati

La grammatica			Binaria			
migliora la classificazione.					***	
		Sicurezza	Usabilità	Operazionali	Performance	
	Precision	0.98	0.95	0.97	0.90	
DioCoCot	Recall	0.89	0.85	0.90	0.90	
DisCoCat	Accuracy	0.93	0.88	0.93	0.88	
	F1-Score	0.94	0.91	0.96	0.90	
	Precision	0.94	0.91	0.93	0.90	
Cnidoro	Recall	0.89	0.82	0.88	0.85	
Spiders	Accuracy	0.89	0.92	0.91	0.89	
	F1-Score	0.94	0.90	0.92	0.88	
C	Precision	0.90	0.86	0.91	0.89	
	Recall	0.84	0.86	0.90	0.83	
Cups	Accuracy	0.85	0.89	0.91	0.85	
	F1-Score	0.89	0.86	0.91	0.87	

Multi-Cl	asse
0.80	
0.71	
0.76	
0.74	
0.78	
0.70	
0.72	
0.73	
0.75	
0.73	
0.70	
0.74	

Risultati Conclusioni

DisCoCat classico

Risultati simili ai modelli di shallow-ML che utilizzano BoW e TF-IDF.

DisCoCat Quantistico

- Risultati simili a Word2Vec riducendo significativamente il numero di parametri.
- Prestazioni leggermente superiori rispetto ai lettori lineari suggerendo che la grammatica è un valore aggiunto in questo contesto.

Sviluppi Futuri Conclusioni

mcalenda.github.io

Questa tesi ha contribuito a piantare un <u>albero di caffè</u> in **Kenya**

Exploring the Potential of Quantum NLP for NFRs Classification

Grazie!

Marco Calenda

m.calenda10@studenti.unisa.it

