Date: 30-June-2023

Banasthali Vidyapith **Faculty of Mathematics and Computing**

Course Handout- B.Tech IT (III Semester) July 2023 –Dec 2023

Course Code: CS 207 **Course Name: Computer Organization and Architecture**

Credit Points: 4 Max. Marks: 100 (CA: 40 + ESA: 60)

Course Instructors: Dr. Gaurav Sharma (IT)

Learning Outcomes:

After successful completion of the course, students will be able to:

- Use the concepts and design of all type of sequential and combinational circuits.
- Have knowledge to design and conduct experiments, as well as to analyze of the hardware of a computer system and its components such as control unit, arithmetic and logical (ALU) unit, input/output, and memory unit.
- Design techniques such as pipelining and microprogramming in the design of the central processing unit of a computer system.

Syllabus:

Section A

Computer Codes: Weighted and non-weighted, self-complementing codes.

Logic Gates and Boolean Algebra: Basic and universal gates, laws, canonical forms, simplification, k-map.

Combinational Circuits: Adder, subtractor, decoder, encoder, multiplexer, de-multiplexer, comparator, parity generator and checker.

Sequential Circuits: Introduction, latches and flip flops, timing diagrams, analysis and design of clocked sequential circuits, state reduction and assignment.

Section B

Counters and Registers: Synchronous and asynchronous counters, shift registers, serial adder. Computer Organization and Design: Instruction formats, instruction set, instruction cycle.

Micro Programmed Control: Control memory, address sequencing, design of control unit.

Central Processing Unit: General register organization, stack organization, addressing modes, CISC and RISC characteristics.

Section C

Pipelining and Vector Processing: Parallel processing, pipelining, arithmetic pipeline, instruction pipeline, RISC pipeline, data control and hazards, vector processing.

Memory Organization: Memory hierarchy, characteristics, RAM and ROM chips, associative memory, cache memory - features, principle of locality, address mapping- direct, associative, set-associative, cache performance, cache coherence.

Input - Output Organization: Interface, modes of transfer -programmed I/O, interrupt initiated, DMA; I/O processor.

Suggested Books:

- R1: Mano, M. M. (2017). Digital logic and Computer Design. Pearson Education India.
- R2: Mano, M. M. (2003). Computer System Architecture. Prentice-Hall of India.
- R3: Stallings, W. (2003). Computer organization and architecture: designing for performance. Pearson Education

R4: Tocci, R. J. (1991). Digital systems: principles and applications. Pearson Education India.

Suggested E-Learning Material:

E1:http://home.ustc.edu.cn/~louwenqi/reference_books_tools/Computer%20Organization%20and%20Architecture%2 010th%20-%20William%20Stallings.pdf

E2: The Computing Technology Inside Your Smartphone https://www.edx.org/course/computing-technology-inside-smartphone-cornellx-engri1210x-0

- E3: Computer Organizations and Architecture- https://nptel.ac.in/courses/106103068
- E4: Digital Electronics Circuits- https://www.coursera.org/learn/digital-systems

Evaluation Scheme:

Component	Marks	Submission Date	Allotment
Home Assignment I**	10	28 August, 2023	Topics shall be allotted in the class by 12 August 2023
Periodical Test I	10	8-11 September 2023*	Section A
Home Assignment II**	10	11 October, 2023	Topics shall be allotted in the class 25 September 2023
Periodical Test II	10	4-8 November 2023*	Section B
Semester Examination	60	2-18 December 2023*	Whole Syllabus

^{*}Subject to Change

Lecture-Wise Schedule:

Lec. No.	Topics to be covered	References	
	SECTION A		
1-3	Computer Codes : Weighted and non-weighted, self-complementing codes.		
4-8	Logic Gates and Boolean Algebra: Basic and universal gates, laws, canonical forms, simplification, k-map.		
9-12	Combinational Circuits: Adder, subtractor, decoder, encoder, multiplexer, de-multiplexer, comparator, parity generator and checker.	R1, R4, E4	
13-16	Sequential Circuits: Introduction, latches and flip flops, timing diagrams, analysis design of clocked sequential circuits, state reduction and assignment.	R1, R4, E4	
17-19	Design of clocked sequential circuits, state reduction and assignment.	R1, R4, E4	
	SECTION B		
20-25	Counters and Registers: Synchronous and asynchronous counters, shift registers, serial adder.	R2, R3, E3	
26-28	Computer Organization and Design: Instruction formats, instruction set, instruction cycle.	R2, R3, E3	
29-34	Micro Programmed Control: Control memory, address sequencing, design of control unit.	R2, R3,E3	
35-36	Central Processing Unit: General register organization, stack organization, addressing modes, CISC and RISC characteristics.	R2, R3, E3	
	SECTION C		
37-40	Pipelining and Vector Processing : Parallel processing, pipelining, arithmetic pipeline, instruction pipeline, RISC pipeline, data control and hazards, vector processing	R2, R3, E3	
41-45	Memory Organization: Memory hierarchy, characteristics, RAM and ROM chips, associative memory, cache memory - features, principle of locality, address mapping- direct, associative, set-associative, cache performance, cache coherence	R2, R3, E3	

^{*}Assignment marks will be based on written document, viva-voce, online test, and any other components as decided by the instructors on the regular basis.

46-50	Input - Output Organization: Interface, modes of transfer -programmed	R2, R3, E3
	I/O, interrupt initiated, DMA; I/O processor.	
	Course Revision & Problem Discussions	

Dr. Gaurav Sharma - IT