Joint Modelling of Longitudinal and Survival Data: Tools to Evaluate Exposures and Predict Outcome Across the Lifespan

Eleni-Rosalina Andrinopoulou and Rhonda Szczesniak

Erasmus University Medical Center and Cincinnati Children's Hospital

material based on work by Dimitris Rizopoulos

ACE 2018

September 23, 2018, Cincinnati

Contents

1	Introduction													
	1.1 Motivating Studies	2												
	1.2 Research Questions	12												
	1.3 Recent Developments	14												
2	Linear Mixed-Effects Models	16												
	2.1 Features of Longitudinal Data	17												
	2.2 The Linear Mixed Model	19												
	2.3 Model Building	30												

	2.4 Mixed-Effects Models in R	34
3	Relative Risk Models	40
	3.1 Features of Survival Data	41
	3.2 Relative Risk Models	44
	3.3 Relative Risk Models in R	48
	3.4 Time Dependent Covariates	50
	3.5 Extended Cox Model	55
4	The Basic Joint Model	62
	4.1 Joint Modeling Framework	63

	4.2 Estimation	73
	4.4 Bayesian Estimation	78
	4.5 Comparison with the TD Cox	82
	4.6 Joint Models in R	85
5	Extensions of Joint Models	91
	5.1 Parameterizations	92
	5.2 Parameterizations in R	110
	5.3 Multiple Biomarkers	113
	5.4 Multiple Biomarkers in R	116
	5.5 Variable Selection	119

	5.6 Variable Selection in R	. 122
	5.7 Time-Varying Association	. 124
	5.8 Time-Varying Association in R	. 129
6	Dynamic Predictions	130
	6.1 Survival Probabilities	. 131
	6.2 Dynamic Predictions in R	. 136
7	Closing	140
	7.1 Concluding Remarks	. 141
	7.2 Additional References	. 145

																											1 -	-
フラ	Medical Papers																										L	、 /
I	ivienical Papers) 4
	Wicarcal Lapers		-			•	•	•	•	•	•	-	-	-	•	•	•	•	•	•	•	•	•	•	•	•		٠.

What is this Course About

- Often in follow-up studies different types of outcomes are collected
- Explicit outcomes

 - ▷ time-to-event(s) of particular interest (e.g., death, treatment)

What is this Course About (cont'd)

• Methods for the separate analysis of such outcomes are well established in the literature

• Longitudinal data:

⊳ mixed effects models, GEE, . . .

Survival data:

Dox model, accelerated failure time models, . . .

What is this Course About (cont'd)

Purpose of this workshop is to present the state of the art in

Joint Modeling Framework for Longitudinal and Survival Data

Learning Objectives

- Goals: After this workshop participants will be able to
 - □ identify settings in which a joint modeling approach is required,
 - > construct and fit an appropriate joint model, and
 - > correctly interpret the obtained results
- The workshop will be explanatory rather than mathematically rigorous

Agenda

- Part I: Introduction
 - Data sets that we will use throughout the course
 - > Categorization of possible research questions
- Part II: (brief) Review of Linear Mixed Models
 - ▶ Features of repeated measurements data

Agenda (cont'd)

- Part III: (brief) Review of Relative Risk Models
 - > Features of survival data

 - > Time-dependent covariates
- Part IV: The Basic Joint Model
 - ▶ Definition
 - ▷ Estimation & Inference

Agenda (cont'd)

- Part V: Extensions of the Basic Joint Model
 - ▶ Parameterizations
 - ∀ariable selection
 - > Time-varying effects
- Part VI: Dynamic Predictions
 - > Individualized predictions for the survival

Structure of the Course & Material

- Lectures & short software practicals using R package **JMbayes**
- Material (also available in

https://github.com/ERandrinopoulou/JointModelsWorkshopCincinnati2018):

- ⊳ R code in soft format (app)
- ▶ Practicals with solutions

References

• Joint modeling sources

- ▶ Rizopoulos, D. (2012). *Joint Models for Longitudinal and Time-to-Event Data, with Applications in R.* Boca Raton: Chapman & Hall/CRC.
- Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (2009). Longitudinal Data Analysis. Handbooks of Modern Statistical Methods. Boca Raton: Chapman & Hall/CRC, Chapter 15.
- Wu, L. (2009). Mixed Effects Models for Complex Data. Boca Raton: Chapman & Hall/CRC, Chapter 8.
- ⊳ Ibrahim, J., Chen, M.-H. and Sinha, D. (2001). *Bayesian Survival Analysis*. New York: Springer-Verlag, Chapter 7.

References (cont'd)

- Useful material for package **JMbayes**
 - ▷ a paper describing the current capabilities of the package is available on JSS
 http://dx.doi.org/10.18637/jss.v072.i07

References (cont'd)

- Standard texts in **longitudinal** data analysis
 - Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data. New York: Springer-Verlag.
 - ▶ Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data.
 New York: Springer-Verlag.
 - Fitzmaurice, G., Laird, N., and Ware, J. (2004). Applied Longitudinal Analysis.
 Hoboken: Wiley.
 - Diggle, P., Heagerty, P., Liang, K.-Y., and Zeger, S. (2002). *Analysis of Longitudinal Data*, 2nd edition. New York: Oxford University Press.

References (cont'd)

- Standard texts in **survival** analysis
 - ⊳ Kalbfleisch, J. and Prentice, R. (2002). *The Statistical Analysis of Failure Time Data, 2nd Ed.*. New York: Wiley.
 - ▶ Therneau, T. and Grambsch, P. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer-Verlag.
 - ▷ Cox, D. and Oakes, D. (1984). *Analysis of Survival Data*. London: Chapman & Hall.
 - Description No. And Processes New York: Springer-Verlag. Statistical Models Based on Counting Processes. New York: Springer-Verlag. ■
 - ▶ Klein, J. and Moeschberger, M. (2003). Survival Analysis Techniques for Censored and Truncated Data. New York: Springer-Verlag.

Chapter 1 Introduction

1.1 Motivating Studies

- AIDS: 467 HIV infected patients who had failed or were intolerant to zidovudine therapy (AZT) (Abrams et al., NEJM, 1994)
- The aim of this study was to compare the efficacy and safety of two alternative antiretroviral drugs, didanosine (ddl) and zalcitabine (ddC)
 - ▷ Randomized treatment: 230 patients ddl and 237 ddC
- Outcomes of interest:

 - ▷ CD4 cell count at baseline, 2, 6, 12 and 18 months

Kaplan-Meier Estimate

- Research Questions:

 - ▷ Is CD4 cell count a good biomarker?
 - * if treatment improves CD4 cell count, does it also improve survival?

- PBC: 312 patients with Primary Biliary Cirrhosis which is a chronic, fatal but rare liver disease
- Data collected by Mayo Clinic from 1974 to 1984 (Murtaugh et al., Hepatology, 1994)
 - > Randomized treatment: 158 patients received D-penicillamine and 154 placebo
- Outcomes of interest:
 - b time-to-death and/or time-to-liver transplantation
 - > longitudinal serum bilirubin levels
 - **▷** longitudinal serum cholesterol levels

Kaplan-Meier Estimate

• Research Questions:

- > Can bilirubin and cholesterol discriminate between patients of low and high risk?

1.2 Research Questions

- Depending on the questions of interest, different types of statistical analysis are required
- We will distinguish between two general types of analysis
 - > separate analysis per outcome
- Focus on each outcome separately

 - > are the average longitudinal evolutions different between the two treatments or between males and females?

1.2 Research Questions (cont'd)

- Focus on multiple outcomes

 - ▷ Association structures:
 - * which feature of the biomarker(s) is associated with the hazard of death?
 - * how marker-specific evolutions are related to each other
 - > Prediction: can we improve prediction for the time to death by considering all available information simultaneously?

1.3 Recent Developments

- Up to now emphasis has been
 - > restricted or coerced to separate analysis per outcome
 - ▷ or given to naive types of joint analysis (e.g., last observation carried forward, mean or slope of the repeated covariate, . . .)
- Main reasons
 - □ lack of appropriate statistical methodology

1.3 Recent Developments (cont'd)

- However, recently there has been an explosion in the statistics and biostatistics literature of joint modeling approaches
- Many different approaches have been proposed that
 - > can handle different types of outcomes
 - > can be utilized in pragmatic computing time
 - > can be rather flexible
 - > most importantly: can answer the questions of interest

Chapter 2 Linear Mixed-Effects Models

2.1 Features of Longitudinal Data

- Repeated evaluations of the same outcome in each subject over time
 - ▷ CD4 cell count in HIV-infected patients
 - > serum bilirubin and cholesterol in PBC patients
- Longitudinal studies allow to investigate
 - 1. how treatment means differ at specific time points, e.g., at the end of the study (cross-sectional effect)
 - 2. how treatment means or differences between means of treatments change over time (*longitudinal effect*)

2.1 Features of Longitudinal Data (cont'd)

Measurements on the same subject are expected to be (positively) correlated

• This implies that standard statistical tools, such as the *t*-test and simple linear regression that assume independent observations, are not optimal for longitudinal data analysis.

2.2 The Linear Mixed Model

The direct approach to model correlated data ⇒ linear regression

$$y_i(t) = x_i^{\top}(t)\beta + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, V_i),$$

where

 $\triangleright y_i(t)$ the vector of responses for the *i*th subject

 $\triangleright x_i^{\top}(t)$ design matrix describing structural component

 $\triangleright V_i$ covariance matrix describing the correlation structure

• There are several options for modeling V_i , e.g., compound symmetry, autoregressive process, exponential spatial correlation, Gaussian spatial correlation, . . .

• Alternative intuitive approach: Each subject in the population has her own subject-specific mean response profile over time

• The evolution of each subject over time can be described by a linear model

$$y_{ij} = \tilde{\beta}_{i0} + \tilde{\beta}_{i1}t_{ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2),$$

where

 $\triangleright y_{ij}$ the jth response of the ith subject

 $hd \widetilde{eta}_{i0}$ is the intercept and \widetilde{eta}_{i1} the slope for subject i

• We can reformulate the model as

$$y_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})t_{ij} + \varepsilon_{ij},$$

where

- $\triangleright \beta$ s are known as the *fixed effects*
- $\triangleright b_i$ s are known as the *random effects*
- In accordance for the random effects we assume

$$b_i = \begin{bmatrix} b_{i0} \\ b_{i1} \end{bmatrix} \sim \mathcal{N}(0, D)$$

• Put in a general form

$$\begin{cases} y_i(t) = x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \\ \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{n_i}), \end{cases}$$

with

 $\rhd x_i^\top(t) \text{ design matrix for the fixed effects } \beta$

 $\triangleright z_i^{\top}(t)$ design matrix for the random effects b_i

 $\triangleright b_i \perp \!\!\! \perp \varepsilon_i$

• Interpretation:

- $\triangleright \beta_i$ denotes the change in the average y_i when x_i is increased by one unit
- $\triangleright b_i$ are interpreted in terms of how a subset of the regression parameters for the ith subject deviates from those in the population
- Advantageous feature: population + subject-specific predictions
 - $\triangleright \beta$ describes mean response changes in the population
 - $\triangleright \beta + b_i$ describes individual response trajectories

Estimation → maximum likelihood (MLE)

• The log-likelihood of a linear mixed model takes the form

$$\ell(\theta) = \sum_{i=1}^{n} \log \int p(y_i \mid b_i; \theta_y) p(b_i; \theta_b) db_i,$$

where p(.) the density function

- Example: We fit a linear mixed model for the AIDS dataset assuming
 - ▷ different average longitudinal evolutions per treatment group (fixed part)
 - > random intercepts & random slopes (random part)

$$\begin{cases} y_{ij} = \beta_0 + \beta_1 t_{ij} + \beta_2 \{ \text{ddI}_i \times t_{ij} \} + b_{i0} + b_{i1} t_{ij} + \varepsilon_{ij}, \\ \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

• Note: We did not include a main effect for treatment due to randomization

	Value	Std.Err.	t-value	p-value
β_0	7.189	0.222	32.359	< 0.001
β_1	-0.163	0.021	-7.855	< 0.001
β_2	0.028	0.030	0.952	0.342

 No evidence of differences in the average longitudinal evolutions between the two treatments

2.3 Model Building

- Mixed-effetcs models consist of two parts, namely
 - ▶ fixed effects that describe how specific covariates influence the average longitudinal evolutions
 - > random effects that describe how specific regression coefficients deviate from the overall mean described by the fixed effects
 - * the random effects also model the correlations in the repeated measurements
- Interest can either be
 - > on the fixed-effects part alone (e.g., does treatment influence the average evolutions) or
 - ▷ on both parts (e.g., to obtain subject specific predictions)

2.3 Model Building (cont'd)

- The general model building strategy is:
 - 1. Put all the covariates of interest in the fixed-effects part, considering possible nonlinear terms and/or interactions between them do NOT remove the ones that are not significant
 - 2. Then select an appropriate random-effects structure that adequately describes the correlations in the repeated measurements
 - * typically we start from random intercepts and include each time an additional random effect term to see if we improve the fit (i.e., random slopes, quadratic random slopes, etc.)
 - * you should be a bit anti-conservative, i.e., do not favor a simpler covariance matrix if the p-value is just non-significant

2.3 Model Building (cont'd)

3. Finally, return to the mean part and exclude non significant covariates * first start by testing the nonlinear & interaction terms

2.3 Model Building (cont'd)

- For **nested** models the preferable test for selecting a model is the likelihood ratio test

 * nested means that all terms of a smaller model occur in a larger model
- For non-nested models we choose the model that has the lowest AIC/BIC value

2.4 Mixed-Effects Models in R

- R> There are two primary packages in R for mixed models analysis:
 - ▷ Package nlme
 - * fits linear & nonlinear mixed effects models, and marginal models for normal data
 - * allows for both random effects & correlated error terms
 - * several options for covariances matrices and variance functions
 - ▷ Package Ime4
 - * fits linear, nonlinear & generalized mixed effects models
 - * uses only random effects
 - * allows for nested and crossed random-effects designs

- R> We will only use package **nlme** because package **JMbayes** accepts as an argument a linear mixed model fitted by **nlme**
- R> The basic function to fit linear mixed models is lme() and has three basic arguments

 - > random: a formula specifying the random-effects structure

R> The data frame that contains all variables should be in the *long format*

Subject	У	time	gender	age
1	5.1	0.0	male	45
1	6.3	1.1	male	45
2	5.9	0.1	female	38
2	6.9	0.9	female	38
2	7.1	1.2	female	38
2	7.3	1.5	female	38
ŧ	ŧ	:	:	:

R> Using formulas in R

$$ightharpoonup \mathsf{CD4} = \mathsf{Time} + \mathsf{Gender}$$

 $\Rightarrow \mathsf{cd4} \sim \mathsf{time} + \mathsf{gender}$

R> Note: the intercept term is included by default

R> The code used to fit the linear mixed model for the AIDS dataset (p. 28) is as follows

```
lmeFit <- lme(CD4 ~ obstime + obstime:drug, data = aids,
    random = ~ obstime | patient)</pre>
```

summary(lmeFit)

R> The same fixed-effects structure but only random intercepts

```
lme(CD4 ~ obstime + obstime:drug, data = aids,
    random = ~ 1 | patient)
```

R> The same fixed-effects structure, random intercepts & random slopes, with a diagonal covariance matrix (using the pdDiag() function)

```
lme(CD4 ~ obstime + obstime:drug, data = aids,
    random = list(patient = pdDiag(form = ~ obstime)))
```

Chapter 3 Relative Risk Models

3.1 Features of Survival Data

- The most important characteristic that distinguishes the analysis of time-to-event outcomes from other areas in statistics is **Censoring**
 - > the event time of interest is not fully observed for all subjects under study
- Implications of censoring:
 - \triangleright standard tools, such as the sample average, the t-test, and linear regression cannot be used
 - > inferences may be sensitive to misspecification of the distribution of the event times

3.1 Features of Survival Data (cont'd)

- Several types of censoring:
 - ▷ Location of the true event time wrt the censoring time: right, left & interval
 - ▷ Probabilistic relation between the true event time & the censoring time:
 informative & non-informative

Here we focus on non-informative right censoring

• <u>Note:</u> Survival times may often be truncated; analysis of truncated samples requires similar calculations as censoring

3.1 Features of Survival Data (cont'd)

- Notation (i denotes the subject)
 - $\triangleright T_i^*$ 'true' time-to-event
 - $\triangleright C_i$ the censoring time (e.g., the end of the study or a random censoring time)
- Available data for each subject
 - \triangleright observed event time: $T_i = \min(T_i^*, C_i)$
 - \triangleright event indicator: $\delta_i = 1$ if event; $\delta_i = 0$ if censored

Our aim is to make valid inferences for T_i^* but using only $\{T_i, \delta_i\}$

3.2 Relative Risk Models

• Relative Risk Models assume a multiplicative effect of covariates on the hazard scale, i.e.,

$$h_i(t) = h_0(t) \exp(\gamma_1 w_{i1} + \gamma_2 w_{i2} + \ldots + \gamma_p w_{ip}) \Rightarrow$$

$$\log h_i(t) = \log h_0(t) + \gamma_1 w_{i1} + \gamma_2 w_{i2} + \ldots + \gamma_p w_{ip},$$

where

- $\triangleright h_i(t)$ denotes the hazard of an event for patient i at time t
- $\triangleright h_0(t)$ denotes the baseline hazard
- $\triangleright w_{i1}, \ldots, w_{ip}$ a set of covariates

3.2 Relative Risk Models (cont'd)

• Standard MLE can be applied based on the log-likelihood function

$$\ell(\theta) = \sum_{i=1}^{n} \delta_i \log p(T_i; \theta) + (1 - \delta_i) \log S_i(T_i; \theta),$$

which also can be re-expressed in terms of the hazard function

$$\ell(\theta) = \sum_{i=1}^{n} \delta_i \log h_i(T_i; \theta) - \int_0^{T_i} h_i(s; \theta) ds$$

where p(.) density function; S(.) survival function

Sensitivity to distributional assumptions due to censoring

3.2 Relative Risk Models (cont'd)

- Cox Model: We make no assumptions for the baseline hazard function
- Parameter estimates and standard errors are based on the log partial likelihood function

$$p\ell(\gamma) = \sum_{i=1}^{n} \delta_i \Big[\gamma^{\top} w_i - \log \Big\{ \sum_{j: T_j \ge T_i} \exp(\gamma^{\top} w_j) \Big\} \Big],$$

where only patients who had an event contribute

3.2 Relative Risk Models (cont'd)

• Example: For the PBC dataset we are interested in the treatment effect while correcting for sex and age effects

$$h_i(t) = h_0(t) \exp(\gamma_1 D - penic_i + \gamma_2 Female_i + \gamma_3 Age_i)$$

	Value	HR	Std.Err.	z-value	p-value
γ_1	-0.138	0.871	0.156	-0.882	0.378
γ_2	-0.493	0.611	0.207	-2.379	0.017
γ_3	0.021	1.022	0.008	2.784	0.005

3.3 Relative Risk Models in R

- R> The primary package in R for the analysis of survival data is the **survival** package
- R> A key function in this package that is used to specify the available event time information in a sample at hand is Surv()
- R> For right censored failure times (i.e., what we will see in this course) we need to provide the observed event times time, and the event indicator status, which equals 1 for true failure times and 0 for right censored times

Surv(time, status)

3.3 Relative Risk Models in R (cont'd)

R> Cox models are fitted using function coxph(). For instance, for the PBC data the following code fits the Cox model that contains the main effects of 'drug', 'sex' and 'age':

R> The two main arguments are a formula specifying the design matrix of the model and a data frame containing all the variables

3.4 Time Dependent Covariates

- Often interest in the association between a time-dependent covariate and the risk of an event
 - ▷ treatment changes with time (e.g., dose)

 - > markers of disease or patient condition (e.g., blood pressure, PSA levels)

▷ . . .

• Example: In the PBC study, are the longitudinal bilirubin measurements associated with the hazard of death?

- To answer our questions of interest we need to postulate a model that relates
 - be the serum bilirubin with
 - the time-to-death
- The association between **baseline** marker levels and the risk of death can be estimated with standard statistical tools (e.g., Cox regression)
- When we move to the time-dependent setting, a more **careful consideration** is required

- There are two types of time-dependent covariates (Kalbfleisch and Prentice, 2002, Section 6.3)
 - \triangleright Exogenous (aka external): the future path of the covariate up to any time t>s is not affected by the occurrence of an event at time point s, i.e.,

$$\Pr\{\mathcal{Y}_i(t) \mid \mathcal{Y}_i(s), T_i^* \ge s\} = \Pr\{\mathcal{Y}_i(t) \mid \mathcal{Y}_i(s), T_i^* = s\},$$

where
$$0 < s \le t$$
 and $\mathcal{Y}_i(t) = \{y_i(s), 0 \le s < t\}$

▷ Endogenous (aka internal): not Exogenous

- It is **very important** to distinguish between these two types of time-dependent covariates, because the type of covariate dictates the appropriate type of analysis
- In our motivating examples all time-varying covariates are Biomarkers ⇒ These are always endogenous covariates

 - b the complete history is not available
 - > existence directly related to failure status

3.5 Extended Cox Model

• The Cox model presented earlier can be extended to handle time-dependent covariates using the counting process formulation

$$h_i(t \mid \mathcal{Y}_i(t), w_i) = h_0(t) \exp\{\gamma^{\top} w_i + \alpha y_i(t)\},\$$

where

 $\triangleright y_i(t)$ denotes the value of the time-varying covariate at t

• Interpretation:

$$h_i(t \mid \mathcal{Y}_i(t), w_i) = h_0(t) \exp\{\gamma^\top w_i + \alpha y_i(t)\}$$

 $\exp(\alpha)$ denotes the relative increase in the risk of an event at time t that results from one unit increase in $y_i(t)$ at the same time point

• Typically, data must be organized in the long format

Patient	Start	Stop	Event	$y_i(t)$	Age
1	0	135	1	5.5	45
2	0	65	0	2.2	38
2	65	120	0	3.1	38
2	120	155	1	4.1	38
3	0	115	0	2.5	29
3	115	202	0	2.9	29
<u>:</u>	:	:	i	:	i

- How does the extended Cox model handle time-varying covariates?
 - > assumes no measurement error
 - ▷ step-function path
 - > existence of the covariate is not related to failure status

• Therefore, the extended Cox model is only valid for exogenous time-dependent covariates

Treating endogenous covariates as exogenous may produce spurious results!

Quiz 1: Is treatment an endogenous or an exogenous time-dependent variable?

Chapter 4 The Basic Joint Model

4.1 Joint Modeling Framework

 To account for the special features of endogenous covariates a new class of models has been developed

Joint Models for Longitudinal and Time-to-Event Data

- Intuitive idea behind these models
 - 1. use an appropriate model to describe the evolution of the marker over time for each patient
 - 2. the estimated evolutions are then used in a Cox model
- Feature: Marker levels are **not** assumed constant between visits

Some notation

 $\triangleright T_i^*$: True event time for patient i

 $\triangleright T_i$: Observed event time for patient i

 $\triangleright \delta_i$: Event indicator, i.e., equals 1 for true events

 $\triangleright y_i$: Longitudinal responses

• We will formulate the joint model in 3 steps — in particular, ...

- Step 1: From the observed longitudinal response $y_i(t)$ reconstruct the covariate history for each subject
- Then, we can define a mixed effects model (we focus, for now, on continuous markers)

$$y_i(t) = m_i(t) + \varepsilon_i(t)$$

= $x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \varepsilon_i(t), \quad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2),$

where

 $\triangleright x_i(t)$ and β : Fixed-effects part

 $\triangleright z_i(t)$ and b_i : Random-effects part, $b_i \sim \mathcal{N}(0,D)$

- Step 2: Let's assume that we know $m_i(t)$, i.e., the *true* & *unobserved* value of the marker at time t
- Then, we can define a standard relative risk model

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\{\gamma^{\top} w_i + \alpha m_i(t)\},$$

where

- $\triangleright \mathcal{M}_i(t) = \{ m_i(s), 0 \le s < t \}$ longitudinal history
- hd lpha quantifies the strength of the association between the marker and the risk of an event
- $\triangleright w_i$ baseline covariates

- ullet The two processes are associated \Rightarrow define a model for their joint distribution
- Joint Models (JM) for such joint distributions are of the following form (Tsiatis & Davidian, Stat. Sinica, 2004)

$$p(y_i, T_i, \delta_i) = \int p(y_i \mid b_i) \{h(T_i \mid b_i)^{\delta_i} S(T_i \mid b_i)\} p(b_i) db_i,$$

where

 $\triangleright b_i$ a vector of random effects that explains the interdependencies

 $\triangleright p(\cdot)$ density function; $S(\cdot)$ survival function

- Key assumption: Full Conditional Independence ⇒ random effects explain all interdependencies
 - > the longitudinal outcome is independent of the time-to-event outcome
 - > the repeated measurements in the longitudinal outcome are independent of each other

$$p(y_i, T_i, \delta_i \mid \mathbf{b_i}) = p(y_i \mid \mathbf{b_i}) \ p(T_i, \delta_i \mid \mathbf{b_i})$$
$$p(y_i \mid \mathbf{b_i}) = \prod_j p(y_{ij} \mid \mathbf{b_i})$$

• The survival function, which is a part of the likelihood of the model, depends on the whole longitudinal history

$$S_i(t \mid b_i) = \exp\left(-\int_0^t h_0(s) \exp\{\gamma^\top w_i + \alpha m_i(s)\} ds\right)$$

- Therefore, care in the definition of the design matrices of the mixed model
 - \triangleright when subjects have nonlinear profiles \Rightarrow
 - □ use splines or polynomials to model them flexibly

- ullet Assumptions for the baseline hazard function $h_0(t)$
 - \triangleright parametric \Rightarrow possibly restrictive
 - □ unspecified ⇒ within JM framework underestimates standard errors
- It is advisable to use parametric but flexible models for $h_0(t)$
 - ▷ splines

$$\log h_0(t) = \gamma_{h_0,0} + \sum_{q=1}^{Q} \gamma_{h_0,q} B_q(t,v),$$

where

* $B_q(t,v)$ denotes the q-th basis function of a B-spline with knots v_1,\ldots,v_Q

* γ_{h_0} a vector of spline coefficients

- The censoring and visiting* processes are assumed non-informative:
- Decision to withdraw from the study or appear for the next visit

 - ▶ no additional dependence on underlying, latent subject characteristics associated with prognosis

^{*}The visiting process is defined as the mechanism (stochastic or deterministic) that generates the time points at which longitudinal measurements are collected.

4.2 Estimation

- Mainly maximum likelihood but also Bayesian approaches
- The log-likelihood contribution for subject *i*:

$$\ell_i(\theta) = \log \int \left\{ \prod_{i=1}^{n_i} p(y_{ij} \mid b_i; \theta) \right\} \left\{ h(T_i \mid b_i; \theta)^{\delta_i} S_i(T_i \mid b_i; \theta) \right\} p(b_i; \theta) db_i,$$

where

$$S_i(t \mid b_i; \theta) = \exp\left(-\int_0^t h_0(s; \theta) \exp\{\gamma^\top w_i + \alpha m_i(s)\} ds\right)$$

4.3 Introduction to Bayesian*

• Bayes theorem

$$p(\mathsf{B} \mid \mathsf{A}) = \frac{p(\mathsf{A} \mid \mathsf{B}) * p(\mathsf{B})}{p(\mathsf{A})}$$

4.3 Introduction to Bayesian* (cont'd)

• Bayes theorem

$$p(\text{hypothesis} \mid \text{data}) = \frac{p(\text{data} \mid \text{hypothesis}) * p(\text{hypothesis})}{p(\text{data})}$$

where hypothesis is typically something unobserved or unknown. It's what you want to learn about using the data.

For regression models, the "hypothesis" is a parameter (intercept, slopes or error terms).

Bayes theorem tells you the probability of the hypothesis given the data.

4.3 Introduction to Bayesian* (cont'd)

• How plausible is some hypothesis given the data?

$$p(\text{hypothesis} \mid \text{data}) \ = \ \frac{p(\text{data} \mid \text{hypothesis}) * p(\text{hypothesis})}{p(\text{data})} \\ \propto \ p(\text{data} \mid \text{hypothesis}) * p(\text{hypothesis})$$

• Renaming...

posterior
$$\propto$$
 data $*$ prior

Bayes' theorem provides a systematic way to update our knowledge as we encounter new data.

4.3 Introduction to Bayesian* (cont'd)

Quiz 2: What do you see in the following picture? Are you a Bayesian or not?

4.4 Bayesian Estimation

- Bayesian estimation
 - \triangleright under the Bayesian paradigm both θ and b_i $\{i=1,\ldots,n\}$ are regarded as parameters
- Inference is based on the full posterior distribution

$$p(\theta, b \mid T, \delta, y) = \frac{\prod_{i} p(T_{i}, \delta_{i} \mid b_{i}; \theta) p(y_{i} \mid b_{i}; \theta) p(b_{i}; \theta) p(\theta)}{\prod_{i} p(T_{i}, \delta_{i}, y_{i})}$$

$$\propto \prod_{i=1}^{n} \left\{ p(T_i, \delta_i \mid b_i; \theta) \; p(y_i \mid b_i; \theta) \; p(b_i; \theta) \right\} \; p(\theta)$$

4.4 Bayesian Estimation (cont'd)

- For the standard joint model we have define thus far, the majority of the parameters can be updated using Gibbs sampling (or slice sampling) \Rightarrow MCMC
 - > when no close-form posterior conditionals are available, we can use the Metropolis-Hastings algorithm
- Good proposal distributions can be obtained from the separate fits of the two submodels

4.4 Bayesian Estimation (cont'd)

- Inference then proceeds in the usual manner from the MCMC output, e.g.,
 - > posterior means, variances, and standard errors
 - > credible intervals

 - ⊳ DIC, CPO

▷ . . .

4.4 Bayesian Estimation (cont'd)

- for **frequentists**, a probability is a measure of the frequency of repeated events, so the interpretation is that parameters are fixed (but unknown), and data are random
- for **Bayesians**, a probability is a measure of the degree of certainty about values, so the interpretation is that parameters are random and data are fixed

4.5 Comparison with the TD Cox

• Example: To illustrate the virtues of joint modeling, we compare it with the standard time-dependent Cox model for the AIDS data

$$\begin{cases} y_i(t) &= m_i(t) + \varepsilon_i(t) \\ &= \beta_0 + \beta_1 t + \beta_2 \{t \times \text{ddI}_i\} + b_{i0} + b_{i1} t + \varepsilon_i(t), \qquad \varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2), \end{cases}$$

$$\begin{cases} h_i(t) &= h_0(t) \exp\{\gamma \text{ddI}_i + \alpha m_i(t)\}, \end{cases}$$

where

 $\triangleright h_0(t)$ is assumed P-splines

	JMbayes	Cox		
	log HR (std.err)	log HR (std.err)		
Treat	0.342 (0.008)	0.309 (0.147)		
$CD4^{1/2}$	-0.297 (0.002)	-0.193 (0.024)		

• Clearly, there is a considerable effect of ignoring the measurement error, especially for the CD4 cell counts

4.5 Comparison with the TD Cox (cont'd)

- A unit decrease in CD4 $^{1/2}$, results in a

 - ► Time-Dependent Cox: 1.2-fold increase in risk (95% CI: 1.16; 1.27)

Which one to believe?

> a lot of theoretical and simulation work has shown that the Cox model underestimates the true association size of markers

4.6 Joint Models in R

R> Joint models are fitted using function jointModelBayes() from package
JMbayes. This function accepts as main arguments a linear mixed model and a Cox
PH model based on which it fits the corresponding joint model

```
lmeFit <- lme(CD4 ~ obstime + obstime:drug,
    random = ~ obstime | patient, data = aids)

coxFit <- coxph(Surv(Time, death) ~ drug, data = aids.id, x = TRUE)

jointFit <- jointModelBayes(lmeFit, coxFit, timeVar = "obstime",
    baseHaz = c("P-splines"))

summary(jointFit)</pre>
```


- R> As before, the data frame given in lme() should be in the long format, while the data frame given to coxph() should have one line per subject*
 - > the ordering of the subjects needs to be the same
- R> In the call to coxph() you need to set x = TRUE (or model = TRUE) such that the design matrix used in the Cox model is returned in the object fit
- R> Argument timeVar specifies the time variable in the linear mixed model

* Unless you want to include exogenous time-varying covariates or handle competing risks

R> Argument baseHaz specifies the type of relative risk model

Available options are:

- ▷ "regression-splines": B-spline basis function
- ▷ "P-splines": B-spline basis function with penatlies (P-splines)

- R> details about **JMbayes**:

 - > allows for categorical longitudinal data as well
 - > allows for general transformation functions
 - > penalized B-splines for the baseline hazard function

 \triangleright . . .

R> In both packages methods are available for the majority of the standard generic functions + extras

```
> summary(), anova(), vcov(), logLik()
> coef(), fixef(), ranef()
> fitted(), residuals()
> plot()
> xtable() (you need to load package xtable first)
```


Quiz 3: What is the interpretation of the parameters in the survival submodel from the output of the basic joint model (app)?

Chapter 5 Extensions of Joint Models

5.1 Parameterizations

The standard joint model

$$\begin{cases} h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where
$$\mathcal{M}_{i}(t) = \{m_{i}(s), 0 \leq s < t\}$$

The standard joint model

$$\begin{cases} h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}, \\ y_i(t) = m_i(t) + \varepsilon_i(t) \\ = x_i^\top(t)\beta + z_i^\top(t)b_i + \varepsilon_i(t), \end{cases}$$

where $\mathcal{M}_{i}(t) = \{m_{i}(s), 0 \leq s < t\}$

Is this the only option? Is this the most optimal choice?

- <u>Note:</u> Inappropriate modeling of time-dependent covariates may result in surprising results
- Example: Cavender et al. (1992, J. Am. Coll. Cardiol.) conducted an analysis to test the effect of cigarette smoking on survival of patients who underwent coronary artery surgery
 - by the estimated effect of current cigarette smoking was positive on survival although not significant (i.e., patients who smoked had higher probability of survival)
 - > most of those who had died were smokers but many stopped smoking at the last follow-up before their death

We need to carefully consider the functional form of time-dependent covariates

• Let's see some possibilities...

• Lagged Effects: The hazard of an event at t is associated with the level of the marker at a previous time point:

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t_+^c)\},$$

where

$$t_+^c = \max(t - c, 0)$$

• Time-dependent Slopes: The hazard of an event at t is associated with both the current value and the slope of the trajectory at t (Ye et al., 2008, Biometrics):

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\{\gamma^{\top} w_i + \alpha_1 m_i(t) + \alpha_2 m_i'(t)\},$$

where

$$m_i'(t) = \frac{d}{dt} \{ x_i^{\top}(t)\beta + z_i^{\top}(t)b_i \}$$

• *Cumulative Effects:* The hazard of an event at t is associated with the whole area under the trajectory up to t:

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \int_0^t m_i(s) ds\right\}$$

ullet Area under the longitudinal trajectory taken as a summary of $\mathcal{M}_i(t)$

• Weighted Cumulative Effects (convolution): The hazard of an event at t is associated with the area under the weighted trajectory up to t:

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\left\{\gamma^\top w_i + \alpha \int_0^t \overline{w}(t-s) m_i(s) ds\right\},$$

where $\varpi(\cdot)$ an appropriately chosen weight function, e.g.,

- ▷ Student's-t density

▷ ...

• Random Effects: The hazard of an event at t is associated only with the random effects of the longitudinal model:

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp(\gamma^{\top} w_i + \boldsymbol{\alpha}^{\top} \boldsymbol{b_i})$$

- Features:
 - > avoids numerical integration for the survival function
 - \triangleright interpretation of α more difficult, especially in high-dimensional random-effects settings

- Example: Sensitivity of inferences for the longitudinal process to the choice of the parameterization for the AIDS data
- We use the same mixed model as before, i.e.,

$$y_i(t) = m_i(t) + \varepsilon_i(t)$$

$$= \beta_0 + \beta_1 t + \beta_2 \{t \times ddI_i\} + b_{i0} + b_{i1}t + \varepsilon_i(t)$$

and the following four survival submodels

Model I (current value)

$$h_i(t) = h_0(t) \exp\{\gamma ddI_i + \alpha_1 m_i(t)\}\$$

Model II (current value + current slope)

$$h_i(t) = h_0(t) \exp\{\gamma \operatorname{dd} \mathbf{I}_i + \alpha_1 m_i(t) + \alpha_2 m_i'(t)\},\$$

where

$$\triangleright m_i'(t) = \beta_1 + \beta_2 \mathbf{ddI}_i + b_{i1}$$

Model III (random slope)

$$h_i(t) = h_0(t) \exp\{\gamma ddI_i + \alpha_3 b_{i1}\}\$$

• Model IV (area)

$$h_i(t) \, = \, h_0(t) \exp\Bigl\{\gamma \mathrm{dd} \mathrm{I}_i + \alpha_4 \int_0^t m_i(s) \; ds\Bigr\},$$

where

- There are noticeable differences between the parameterizations
 - ▷ especially in the slope parameters
- Therefore, a sensitivity analysis should not stop at the standard joint model parameterization but also consider alternative association structures

5.2 Parameterizations in R

- R> Lagged effects can be fitted using the lag argument of jointModelBayes(). For example, the following code fits a joint model for the PBC dataset with
 - > random intercepts and random slopes for log serum bilirubin, and
 - > a relative risk model with P-splines baseline hazard and the *true* effect at the previous year

```
lmeFit <- lme(log(serBilir) ~ year, random = ~ year | id, data = pbc2)

coxFit <- coxph(Surv(years, status2) ~ 1, data = pbc2.id, x = TRUE)

jointFit <- jointModelBayes(lmeFit, coxFit, timeVar = "year",
    baseHaz = "P-splines", lag = 1)

summary(jointFit)</pre>
```

5.2 Parameterizations in R (cont'd)

- R> For the time-dependent slopes and cumulative effects parameterizations, arguments param and extraForm of jointModelBayes() should be used
 - ▷ Options are

```
* param = "td-value"

* param = "td-extra"

* param = "td-both"

* param = "shared-betasRE"

* param = "shared-RE"
```

5.2 Parameterizations in R (cont'd)

R> Include also the slope of the longitudinal biomarker

```
dform = list(fixed = ~ 1, random = ~ 1,
    indFixed = 2, indRandom = 2)

jointFit2 <- jointModelBayes(lmeFit, coxFit, timeVar = "year",
    param = "td-both", extraForm = dform, baseHaz = "P-splines")

summary(jointFit2)</pre>
```

5.3 Multiple Biomarkers

- So far we have concentrated on a single continuous marker
- But very often we may have several markers we wish to study, some of which could be categorical
- Example: In the PBC dataset we have used serum bilirubin as the most important marker, but during follow-up several other markers have been recorded
 - > serum cholesterol (continuous)

 - ▷ ascites (2 categories)

 \triangleright . . .

5.3 Multiple Biomarkers (cont'd)

We need to extend the basic joint model!

- To handle multiple longitudinal markers of different types we use Generalized Linear Mixed Models
 - \triangleright We assume Y_{i1}, \ldots, Y_{iJ} for each subject, each one having a distribution in the exponential family, with expected value

$$m_{ij}(t) = E(y_{ij}(t) \mid b_{ij}) = g_j^{-1} \{ x_{ij}^{\top}(t) \beta_j + z_{ij}^{\top}(t) b_{ij} \},$$

with $g(\cdot)$ denoting a link function

5.3 Multiple Biomarkers (cont'd)

▷ Correlation between the outcomes is built by assuming a multivariate normal distribution for the random effects

$$b_i = (b_{i1}^\top, \dots, b_{iJ}^\top)^\top \sim \mathcal{N}(0, D)$$

 The expected value of each longitudinal marker is incorporated in the linear predictor of the survival submodel

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\{\gamma^{\top} w_i + \sum_{j=1}^{J} \alpha_j m_{ij}(t)\},$$

where
$$\mathcal{M}_{i}(t) = \{m_{ij}(s), 0 \le s < t, 1 \le j \le J\}$$

5.4 Multiple Biomarkers in R

- R> Joint models for multiple longitudinal outcomes can be fitted with function
 mvJointModelBayes() from package JMbayes
 - The use of this function mimics the one of jointModelBayes() but with some small differences, namely
 - b we fit a multivariate mixed model using mvglmer(),
 - ▷ following we fit a Cox model using coxph(), and
 - □ and we give the resulting objects as input in mvJointModelBayes()

5.4 Multiple Biomarkers in R (cont'd)

R> An example for the PBC dataset using serum bilirubin (continuous) and spiders (binary)

5.4 Multiple Biomarkers in R (cont'd)

- R> Function mvJointModelBayes() also allows for
 - ▷ right, left, interval censored data
 - ▷ left truncated data

5.5 Variable Selection

- Note: In the previous extension of joint models,

we used the default parameterization that includes the current value term $m_i(t)$ in the linear predictor of the survival submodel(s)

Nonetheless, all the other parameterizations we have seen earlier are also applicable

5.5 Variable Selection (cont'd)

• For example in the case of multiple longitudinal outcomes

$$g_j[E\{y_{ij}(t) \mid b_{ij}\}] = m_{ij}(t) = x_{ij}^{\top}(t)\beta_j + z_{ij}^{\top}(t)b_{ij}$$

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp\left\{\gamma^{\top} w_i + \sum_{j=1}^J \sum_{l=1}^L f_{jl}(m_{ij}(t), \boldsymbol{\alpha_{jl}})\right\}$$

where
$$\mathcal{M}_{i}(t) = \{m_{ij}(s), 0 \le s < t, 1 \le j \le J\}$$

5.5 Variable Selection (cont'd)

- In this case we face a challenging model selection problem
- Different possible solutions
 - ▷ lasso
 - ⊳ ridge
 - ▷ horseshoe
 - ▷ . . .

5.6 Variable Selection in R

- R> Function mvJointModelBayes() also allows to consider multiple parameterization per outcome in a similar manned as jointModelBayes() does
- R> It also implements a global-local ridge-type prior for the association parameters

$$\alpha_{jl} \sim \mathcal{N}(0, \tau \psi_{jl})$$

$$\tau^{-1} \sim Gamma(0.1, 0.1)$$

$$\psi_{jl}^{-1} \sim Gamma(1, 0.01)$$

5.6 Variable Selection in R (cont'd)

R> An example for the PBC dataset using serum bilirubin (continuous) and spiders (binary)

```
Forms <- list("log(serBilir)" = "value",
               "log(serBilir)" = list(fixed = ~ 1, random = ~ 1,
                                  indFixed = 2, indRandom = 2, name = "slope"),
               "spiders" = list(fixed = ^{\sim} 0 + year + I(year^{\sim}2/2), random = ^{\sim} 0 + year,
                            indFixed = 1:2, indRandom = 1, name = "area"))
multJMFit2 <- update(multJMFit, Formulas = Forms)</pre>
summary(multJMFit2)
Ints <- list("log(serBilir)" = ~ drug, "log(serBilir)_slope" = ~ drug,</pre>
              "spiders_area" = ~ drug)
multJMFit3 <- update(multJMFit2, Interactions = Ints,</pre>
               priors = list(shrink_alphas = TRUE))
summary(multJMFit3)
```

5.7 Time-Varying Association

- Standard joint models assume a constant regression coefficient for the effect of the covariates.
 - by when treatment is initiated, the strength of the association between the longitudinal and survival outcomes may also change

5.7 Time-Varying Association (cont'd)

Time-varying coefficient for log Serum Bilirubin

5.7 Time-Varying Association (cont'd)

A time-varying coefficient joint model (VCJM)

5.7 Time-Varying Association (cont'd)

Specifically,

$$h_i\{t \mid \mathcal{M}_i(t)\} = h_0(t) \exp[\gamma^{\top} w_i + \sum_{j=1}^J \sum_{l=1}^L f_{j\ell}\{m_{ij}(t), \frac{\lambda_{j\ell}(t)}{\lambda_{j\ell}(t)}\}],$$

where

- w_i is a vector of baseline covariates with a corresponding vector of regression coefficients $oldsymbol{\gamma}$
- $f_{j\ell}\{m_{ij}(t), \frac{\lambda_{j\ell}(t)}{\lambda_{j\ell}(t)}\}$ is the outcome (j = 1, ..., J) and the form of association ($\ell = 1, \ldots, L$) between the longitudinal and the survival outcomes

5.7 Time-Varying Association (cont'd)

• We consider estimation of the function $\lambda_{j\ell}(t)$ using the regression P-spline method, where

$$\lambda_{j\ell}(t) = \sum_{u=1}^{U} \alpha_{j\ell u} B_{j\ell u}(t, \nu),$$

where

- $\alpha_{j\ell u}$ is a set of parameters that capture the strength of association between the longitudinal and survival outcomes
- $B_{j\ell u}(t,
 u)$ denotes the q-th basis function of a B-spline with knots $u_1,\dots,
 u_Q$
- The idea behind the P-spline method is to assume a high number of knots and penalize the coefficients to tackle the problem of the large number or parameters.

5.8 Time-Varying Association in R

R> An example for the PBC dataset using serum bilirubin (continuous) and spiders (binary)

Chapter 6 Dynamic Predictions

6.1 Survival Probabilities

 Nowadays there is great interest for prognostic models and their application to personalized medicine

• Examples are numerous

> cancer research, cardiovascular diseases, HIV research, . . .

Physicians are interested in accurate prognostic tools that will inform them about the future prospect of a patient in order to adjust medical care

- ullet We are interested in predicting survival probabilities for a new patient j that has provided a set of serum bilirubin measurements up to a specific time point t
- Example: We consider Patients 2 and 25 from the PBC dataset that have provided us with 9 and 12 serum bilirubin measurements, respectively
 - Dynamic Prediction survival probabilities are dynamically updated as additional longitudinal information is recorded
- We need to account for the endogenous nature of the marker
 - \triangleright providing measurements up to time point $t\Rightarrow$ the patient was still alive at time t

ullet More formally, for a new subject j we have available measurements up to time point t

$$\mathcal{Y}_j(t) = \{y_j(s), 0 \le s \le t\}$$

and we are interested in

$$\pi_j(u \mid t) = \Pr\{T_j^* \ge u \mid T_j^* > t, \mathcal{Y}_j(t), \mathcal{D}_n\},\$$

where

 \triangleright where u > t, and

 $riangleright \mathcal{D}_n$ denotes the sample on which the joint model was fitted

- We assume that the joint model has been fitted to the data at hand
- Based on the fitted model we can estimate the conditional survival probabilities (Rizopoulos, 2011, Biometrics)

6.2 Dynamic Predictions in R

• Example: Dynamic predictions of survival probabilities for Patients 2 and 25 from the PBC dataset: We fit the joint model

Longitudinal submodel

- > random effects: Intercept, linear & quadratic time effects

Survival submodel

- ▷ treatment effect + underlying serum bilirubin level
- ⊳ P-splines

R> Individualized predictions of survival probabilities are computed by function survfitJM() – for example, for Patient 2 from the PBC dataset we have

Chapter 7 Closing

7.1 Concluding Remarks

When we need joint models for longitudinal and survival outcomes?

- > to investigate the association between the longitudinal and the survival outcome
- > to handle endogenous time-varying covariates in a survival analysis context

How joint models work?

- > a mixed model for the longitudinal outcome
- > a relative risk model for the event process
- > explain interrelationships with shared random effects

7.1 Concluding Remarks (cont'd)

Extensions

- > under the full conditional independence assumption we can easily extend the basic joint model
- multiple longitudinal outcomes / different association parameters / time-varying effects
- > though more computationally intensive

Where to pay attention when defining joint models?

- > model flexibly the subject-specific evolutions for the longitudinal outcome
- □ use parametric but flexible models for the baseline hazard function
- > consider how to model the association structure between the two processes
 - \Rightarrow Parameterization

7.1 Concluding Remarks (cont'd)

Individualized predictions

- > these are dynamically updated as extra information is recorded for the subjects
- $hd \Rightarrow$ joint models constitute an excellent tool for personalized medicine

What we did not cover

- > assessment of predictive performance
- > nonrandom dropout

 $\triangleright \dots$

The End!

7.2 Additional References

- Andrinopoulou, E.R., Eilers, P.H.C., Takkenberg, J.J.M. and Rizopoulos, D. (2017). Improved dynamic predictions from joint models of longitudinal and survival data with time-varying effects using P-splines. *Biometrics*, to appear.
- Andrinopoulou, E.R., Rizopoulos, D., Takkenberg, J.J.M. and Lesaffre, E. (2017). Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data. *Statistical Methods in Medical Research*, to appear.
- Andrinopoulou, E.R., Rizopoulos, D., Takkenberg, J.J.M. and Lesaffre, E. (2014). Joint modeling of two longitudinal outcomes and competing risk data. *Statistics in Medicine* **33**, 3167–3178.
- Brown, E. and Ibrahim, J. (2003). A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. *Biometrics* **59**, 221–228.
- Brown, E. Ibrahim, J. and DeGruttola, V. (2005). A flexible B-spline model for multiple longitudinal biomarkers and survival. *Biometrics* **61**, 64–73.
- Chi, Y.-Y. and Ibrahim, J. (2006). Joint models for multivariate longitudinal and multivariate survival data. *Biometrics* **62**, 432–445.

- DeGruttola, V. and Tu, X. (1994). Modeling progression of CD-4 lymphocyte count and its relationship to survival time. *Biometrics* **50**, 1003–1014.
- Elashoff, R., Li, G. and Li, N. (2008). A joint model for longitudinal measurements and survival data in the presence of multiple failure types. *Biometrics* **64**, 762–771.
- Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. *Statistics in Medicine* **15**, 1663–1685.
- Garcia-Hernandez, A. and Rizopoulos, D. (2017). %JM: A SAS macro to fit jointly generalized mixed models for longitudinal data and time-to-event responses. *Journal of Statistical Software*, to appear.
- Gerds, T. and Schumacher, M. (2006). Consistent estimation of the expected Brier score in general survival models with right-censored event times. *Biometrical Journal* **48**, 1029–1040.
- Heagerty, P. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. *Biometrics* **61**, 92–105.
- Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. *Biostatistics* **1**, 465–480.

- Henderson, R., Diggle, P. and Dobson, A. (2002). Identification and efficacy of longitudinal markers for survival. *Biostatistics* **3**, 33–50.
- Hsieh, F., Tseng, Y.-K. and Wang, J.-L. (2006). Joint modeling of survival and longitudinal data: Likelihood approach revisited. *Biometrics* **62**, 1037–1043.
- Lin, H., Turnbull, B., McCulloch, C. and Slate, E. (2002). Latent class models for joint analysis of longitudinal biomarker and event process: Application to longitudinal prostate-specific antigen readings and prostate cancer. *Journal of the American Statistical Association* **97**, 53–65.
- Liu, L. and Huang, X. (2009). Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. *Journal of the Royal Statistical Society, Series C* **58**, 65–81.
- Mauff, K., Steyerberg, E.W., Nijpels, G., van der Heijden, A. and Rizopoulos, D. (2017). Extension of the association structure in joint models to include weighted cumulative effects. *Statistics in Medicine*, to appear.
- Proust-Lima, C., Joly, P., Dartigues, J. and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. *Computational Statistics and Data Analysis* **53**, 1142–1154.

- Proust-Lima, C. and Taylor, J. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach. *Biostatistics* **10**, 535–549.
- Rizopoulos, D. (2016). The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. *Journal of Statistical Software* **72**(7), 1–45.
- Rizopoulos, D. (2012). Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. *Computational Statistics and Data Analysis* **56**, 491–501.
- Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. *Biometrics* **67**, 819–829.
- Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. *Journal of Statistical Software* **35** (9), 1–33.
- Rizopoulos, D. and Ghosh, P. (2011). A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. *Statistics in Medicine* **30**, 1366–1380.

- Rizopoulos, D., Hatfield, L.A., Carlin, B.P. and Takkenberg, J.J.M. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. *Journal of the American Statistical Association* **109**, 1385–1397.
- Rizopoulos, D. and Lesaffre, E. (2014). Introduction to the special issue on joint modelling techniques. *Statistical Methods in Medical Research* **23**, 3–10.
- Rizopoulos, D., Molenberghs, G. and Lesaffre, E. (2017). Dynamic Predictions with Time-Dependent Covariates in Survival Analysis using Joint Modeling and Landmarking. *Biometrical Journal*, to appear.
- Rizopoulos, D., Taylor, J.M.G., van Rosmalen, J., Steyerberg, E.W. and Takkenberg, J.J.M. (2016). Personalized screening intervals for biomarkers using joint models for longitudinal and survival data. *Biostatistics* 17, 149–164.
- Rizopoulos, D., Verbeke, G. and Lesaffre, E. (2009). Fully exponential Laplace approximation for the joint modelling of survival and longitudinal data. *Journal of the Royal Statistical Society, Series B* **71**, 637–654.
- Rizopoulos, D., Verbeke, G., Lesaffre, E. and Vanrenterghem, Y. (2008). A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. *Biometrics* **64**, 611–619.

- Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2010). Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. *Biometrics* **66**, 20–29.
- Rizopoulos, D., Verbeke, G. and Molenberghs, G. (2008). Shared parameter models under random effects misspecification. *Biometrika* **95**, 63–74.
- Song, X., Davidian, M. and Tsiatis, A. (2002). A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. *Biometrics* **58**, 742–753.
- Taylor, J., Park, Y., Ankerst, D., Proust-Lima, C., Williams, S., Kestin, L., Bae, K., Pickles, T., and Sandler, H. (2013). Real-time individual predictions of prostate cancer recurrence using joint models. *Biometrics*, **69**, 206–213.
- Tseng, Y.-K., Hsieh, F. and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. *Biometrika* **92**, 587–603.
- Tsiatis, A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. *Biometrika* **88**, 447–458.

- Tsiatis, A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: An overview. *Statistica Sinica* **14**, 809–834.
- Tsiatis, A., DeGruttola, V., and Wulfsohn, M. (1995). Modeling the relationship of survival to longitudinal data measured with error: Applications to survival and CD4 counts in patients with AIDS. *Journal of the American Statistical Association* **90**, 27–37.
- Viviani, S., Alfó, M. and Rizopoulos, D. (2014). Generalized linear mixed joint model for longitudinal and survival outcomes. *Statistics and Computing*, **24**, 417–427.
- Viviani, S., Rizopoulos, D. and Alfó, M. (2014). Local sensitivity of shared parameter models to nonignorability of dropout. *Statistical Modelling* **14**, 205–228.
- Wang, Y. and Taylor, J. (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. *Journal of the American Statistical Association* **96**, 895–905.
- Wu, M. and Bailey, K. (1988). Analysing changes in the presence of informative right censoring caused by death and withdrawal. *Statistics in Medicine* **7**, 337–346.

- Wu, M. and Bailey, K. (1989). Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. *Biometrics* **45**, 939–955.
- Wu, M. and Carroll, R. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. *Biometrics* **44**, 175–188.
- Wulfsohn, M. and Tsiatis, A. (1997). A joint model for survival and longitudinal data measured with error. *Biometrics* **53**, 330–339.
- Xu, C., Baines, P. and Wang, J.-L. (2014). Standard error estimation using the EM algorithm for the joint modeling of survival and longitudinal data. *Biostatistics*, to appear.
- Xu, J. and Zeger, S. (2001). Joint analysis of longitudinal data comprising repeated measures and times to events. *Applied Statistics* **50**, 375–387.
- Ye, W., Lin, X., and Taylor, J. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data a two stage regression calibration approach. *Biometrics* **64**, 1238–1246.

- Yu, M., Law, N., Taylor, J., and Sandler, H. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. *Statistica Sinica* **14**, 835–862.
- Yu, M., Taylor, J. and Sandler, H. (2008). Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. *Journal of the American Statistical Association* **108**, 178–187.
- Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. *The Annals of Statistics* **33**, 2132–2163.
- Zheng, Y. and Heagerty, P. (2007). Prospective accuracy for longitudinal markers. *Biometrics* **63**, 332–341.

7.3 Medical Papers

- Andrinopoulou, E.R., Rizopoulos, D., Jin, R., Bogers, A., Lesaffre, E. and Takkenberg, J. (2012). An introduction to mixed models and joint modeling: Analysis of valve function over time. *Annals of Thoracic Surgery* **93**, 1765–1772.
- Andrinopoulou, E.R., Rizopoulos, D., Geleijnse, M., Lesaffre, E., Bogers, A. and Takkenberg, J. (2015). Dynamic prediction of outcome for patients with severe aortic stenosis: Application of joint models for longitudinal and time-to-event data. *BMC Cardiovascular Disorders*, to appear.
- Daher Abdi, D.Z., Essig, M., Rizopoulos, D., Le Meur, Y., Premaud, A., Woillard, J.-B., Rerolle, J.-P., Marquet, P. and Rousseau, A. (2013). Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach. *Pharmacological Research* **72**, 52–60.
- Ibrahim, J., Chu, H. and Chen, L.-M. (2010). Basic concepts and methods for joint models of longitudinal and survival data. *Journal of Clinical Oncology* **28**, 2796–2801.
- Nunez, J., Nunez, E., Rizopoulos, D., Minana, G., Bodi, V., Bondanza, L., Husser, O., Merlos, P., Santas, E., Pascual-Figal, D.,; Chorro, F. and Sanchis, J. (2014). Red blood cell distribution width is longitudinally associated with mortality and incident anemia in heart failure patients. *Circulation Journal* **78**, 410—418.
- Rizopoulos, D. and Takkenberg, J. (2014). Tools & Techniques: Dealing with time-varying covariates in survival analysis joint models versus Cox models. *EuroIntervention* **10**, 285–288.

7.3 Medical Papers (cont'd)

- Thabut, G., Christie, J., Mal, H., Fournier, M., Brugiere, O., Leseche, G., Castier, Y. and Rizopoulos, D. (2013). Survival benefit of lung transplant for cystic fibrosis since lung-allocation-score implementation. *American Journal of Respiratory and Critical Care Medicine* **187**, 1335–1340.
- van der Linde, D., Roos-Hesselink, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Takkenberg, J. (2013). Surgical outcome of discrete subaortic stenosis in adults: A multicenter study. *Circulation* **127**, 1184–1191.
- van der Linde, D., Takkenberg, J., Rizopoulos, D., Heuvelman, H., Budts, W., van Dijk, A., Witsenburg, M., Yap, S., Bogers, A., Oxenius, A., Silversides, C., Oechslin, E. and Roos-Hesselink, J. (2013). Natural history of discrete subaortic stenosis in adults: A multicenter study. *European Heart Journal* **34**, 1548–1556.