PCT

国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 H01M 10/40, 4/58, 4/36

A1 | (11)

世界知的所有権機関

(11) 国際公開番号

WO00/13250

(43) 国際公開日

2000年3月9日(09.03.00)

(21) 国際出願番号

PCT/JP99/04608

(22) 国際出願日

1999年8月26日(26.08.99)

(30) 優先権データ

特願平10/241912 特願平10/241918 1998年8月27日(27.08.98)

1998年8月27日(27.08.98)

(71) 出願人(米国を除くすべての指定国について) 日本電気株式会社(NEC CORPORATION)[JP/JP] 〒108-8001 東京都港区芝五丁目7番1号 Tokyo,(JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

沼田達治(NUMATA, Tatsuji)[JP/JP]

神部千夏(KANBE, Chika)[JP/JP]

小林 明(KOBAYASHI, Akira)[JP/JP]

白方雅人(SHIRAKATA, Masato)[JP/JP]

米沢正智(YONEZAWA, Masatomo)[JP/JP]

〒108-8001 東京都港区芝五丁目7番1号

日本電気株式会社内 Tokyo, (JP)

(74) 代理人

若林 忠, 外(WAKABAYASHI, Tadashi et al.)

〒107-0052 東京都港区赤坂1丁目9番20号

第16興和ビル8階 Tokyo, (JP)

(81) 指定国 CA, KR, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)

添付公開書類

国際調査報告書

(54)Title: NONAQUEOUS ELECTROLYTE SECONDARY CELL

(54)発明の名称 非水電解液二次電池

AMOUNT OF MM ELUTED VERSUS MIXING RATIOS OF LIMI COMPOUND OXIDES DIFFERENT FROM EACH OTHER IN D_{50} GRAIN SIZE

Duo 粒径の違う LiNi 複合酸化物の混合比に対する Mu 溶出量

(57) Abstract

The anode of a nonaqueous electrolyte secondary cell contains (A) a lithium-manganese compound oxide and (B1) a lithium-nickel compound oxide having a specific surface area X of below 0.3 (m²/g) and consisting of at least one kind selected from among the group consisting of LiNiO₂, Li₂NiO₂, LiNi₂O₄, Li₂Ni₂O₄, and LiNi_{1-x}M_xO₂ (0<x≤0.5, and M represents at least one metallic element selected from among the group consisting of Co, Mn, Al, Fe, Cu, and Sr). Such a nonaqueous electrolyte secondary cell is excellent in cell characteristics, and especially charging/discharging cycle characteristic, storage characteristic, and safety.

非水電解液二次電池の正極電極に、(A)リチウム・マンガン複合酸化物と、(B1)比表面積Xが0. $3 \le X$ (m^2/g) であって、 $LiNiO_2$ 、 $Li_2Ni_2O_4$ 、および $LiNi_{1-x}M_xO_2$ ($0 < x \le 0$. 5であり、Mは、Co、Mn、Al、Fe、Cu、およびSrからなる群より選ばれる1種類以上の金属元素を表す。)からなる群より選ばれる少なくとも1種からなるリチウム・ニッケル複合酸化物とを含ませることにより、電池特性、特に充放電サイクル特性、保存特性、さらには安全性に優れた非水電解液二電池が得られる。

明細書

非水電解液二次電池

技術分野

本発明は、非水電解液二次電池に関する。更に詳細にはリチウム二次電池あるいはリチウムイオン二次電池に関わり、高容量でかつ充放電特性、特に高温におけるサイクル寿命および容量保存特性・自己放電性を改善した非水電解液二次電池に関する。

背景技術

マンガン酸リチウムはリチウムイオン二次電池用の正極材料の一つとして非常に期待を集めている材料である。この材料系は1950年代には既に磁気的な挙動の研究対象として報告(Journal of American Chemical Society Vol. 78. pp3255-3260)されていたものであるが、1983年にMaterial Research Bulletin Vol. 18. pp461-472においてM. M. Thackerayらが電気化学的にLiイオンを出し入れ可能なことを報告して以来、リチウム二次電池の正極材料としての検討がなされてきた(例えば、Journal of Electrochemical Society Vol. 136、No. 11. pp3169-3174あるいはJournal of Electrochemical Society Vol. 138、No. 10、pp2859-2864)。

このマンガン酸リチウムは化学式 $LiMn_2O_4$ で表されるスピネル構造をとり、 $\lambda-MnO_2$ との組成間で4V級の正極材料として機能する。スピネル構造のマンガン酸リチウムは $LiCoO_2$ 等が有するような層状構造とは異なる3次元のホスト構造を持つため、理論容量のほとんどが使用可能であり、サイクル特性に優れることが期待される。

ところが、実際にはマンガン酸リチウムを正極に用いたリチウム二次電池は、 充放電を繰り返すことによって徐々に容量が低下していく容量劣化が避けられず、 その実用化には大きな問題が残されていた。

そこでマンガン酸リチウムを正極に用いた有機電解液二次電池のサイクル特性

を向上させるべく種々の方法が検討されている。例えば、合成時の反応性を改善することによる特性改善(特開平3-67464号公報、特開平3-119656号公報、特開平3-127453号公報、特開平7-245106号公報、特開平7-73883号公報等に開示)、粒径を制御することによる特性改善(特開平4-198028号公報、特開平5-28307号公報、特開平6-295724号公報、特開平7-97216号公報等に開示)、不純物を除去することによる特性改善(特開平5-21063号公報等に開示)などが挙げられるが、いずれも満足のいくサイクル特性の向上は達成されていない。

以上とは別に特開平2-270268号公報では、Liの組成比を化学量論比に対し十分過剰にすることによってサイクル特性の向上を目指した試みもなされている。同様の過剰Li組成複合酸化物の合成については、特開平4-123769号公報、特開平4-147573号公報、特開平5-205744号公報、特開平7-282798号公報等にも開示されている。この手法によるサイクル特性の向上は実験的にも明らかに確認できる。

一方、Li-Mn-Oの三成分の化合物に別の元素を添加することによって特性向上を図る検討も行われてきた。例えば、Co、Ni、Fe、CrあるいはAl等の添加・ドープである(特開平4-141954号公報、特開平4-160758号公報、特開平4-169076号公報、特開平4-237970号公報、

特開平4-282560号公報、特開平4-289662号公報、特開平5-28991号公報、特開平7-14572号公報等に開示)。これらの金属元素添加は充放電容量の低減を伴い、トータルの性能として満足するためには更に工夫が必要である。

他元素添加の検討の中で、ホウ素添加は充放電容量の減少をほとんど伴わずに、他の特性、例えばサイクル特性、自己放電特性の改善が期待されている。例えば特開平2-253560号公報、特開平3-297058号公報、特開平9-115515号公報でその旨が開示されている。いずれも二酸化マンガンまたはリチウム・マンガン複合酸化物をホウ素化合物(例えばホウ酸)と固相混合またはホウ素化合物の水溶液に浸漬し、加熱処理をすることによりリチウム・マンガン・ホウ素の複合酸化物を合成している。これらのホウ素化合物とマンガン酸化物との複合体粒子粉末は表面活性が低減しているため電解液との反応が抑制され容量の保存特性が改善されることが期待された。

しかしながら、単にホウ素添加ということだけでは、粒成長やタップ密度の低減等が生じ、電池としての高容量化には直結しなかった。また、合成条件によってはカーボン負極との組み合わせ時の実効的な電位範囲における容量低下が見られたり、電解液との反応抑制が不十分なことがあり、保存特性の改善に必ずしも効果があったわけではなかった。

上記のようにマンガン酸リチウムのサイクル特性改善には種々のアプローチが 試みられてきたが、現在、主流となっているCo系に匹敵するサイクル特性、特 に高温使用環境下では劣化機構が促進されるため、高温使用でのサイクル特性の 実現にはさらなる工夫が求められている。とりわけノートパソコンや電気自動車 等、今後の応用分野の広がりを考えると、高温でのサイクル特性確保は重要性を 増していると言える。

以上述べてきたようにマンガン酸リチウム $LiMn_2O_4$ は現在主流の正極活物質 $LiCoO_2$ の代替材料として大きな期待を集める複合酸化物であるものの、従来の $LiMn_2O_4$ を用いた電池は(1)高エネルギー密度(高充放電容量)の実現と高サイクル寿命の両立が困難であること、(2)自己放電による保存容量の減少の2点で問題があった。

この原因としては、電池製造の技術的な問題ならびに電解液との相性等も指摘されているが、正極材料自体や正極材料起因の影響によるものに着目すると以下のようなことが考えられる。

まず高エネルギー密度が実現できない原因としては、反応の不均一、相の分離、 LiとMnの組成比の過剰な不均衡、不純物の影響、タップ密度の不足等が挙げ られる。

反応の不均一ならびに相の分離は合成プロセスに依存するが、乾式混合後に焼成するプロセスの場合は、主に混合の均一性、出発原料の粒径と焼成温度によって決定される。すなわち、固相表面で反応が進行するため、Li 源とMn 源の混合が不十分であったり、粒径が粗すぎたり、焼成温度が高すぎたりすると、Mn $_2O_3$ 、Mn $_3O_4$ 、Li $_2Mn$ O_3 、Li $_3Mn$ O_4 、Li $_2Mn$ O_5 、Li $_3Mn$ O_6 、Li $_4Mn$ $_5O_{12}$ のような相が生成され、電池電圧の低下、エネルギー密度の低下を引き起こす。

充放電サイクルに伴う容量劣化の原因はLiの出入りに伴う電荷補償としてMnイオンの平均価数が3価と4価の間で変化し、そのためJahn-Teller金みが結晶中に生じてしまうこと、およびマンガン酸リチウムからのMnの溶出ないしはMn溶出が起因するインピーダンス上昇にある。すなわち充放電サイクルを繰り返すことにより充放電容量が低下する容量劣化の原因としては、不純物の影響、マンガン酸リチウムからのMnの溶出および溶出したMnの負極活物質上あるいはセパレータ上への析出、活物質粒子の遊離による不活性化、さらには含有水分により生成した酸の影響、マンガン酸リチウムからの酸素放出による電解液の劣化等が考えられる。

単一スピネル相が形成されているとした場合、Mnの溶出はスピネル構造中の3価のMnが4価のMnと2価のMnに一部不均化することにより電解液中にMnが溶解しやすい形になってしまうこと、Liイオンの相対的な不足から溶出してしまうことなどが考えられ、充放電の繰り返しにより不可逆な容量分の発生や結晶中の原子配列の乱れが促進されるとともに、溶出したMnイオンが負極あるいはセパレータ上に析出して、Liイオンの移動を妨げると思われる。またマンガン酸リチウムはLiイオンを出し入れすることにより、立方体対称はJahn

-Teller効果により歪み、単位格子長の数%の膨張・収縮を伴う。従ってサイクルを繰り返すことにより、一部電気的なコンタクト不良が生じたり、遊離した粒子が電極活物質として機能しなくなることも予想される。

さらにMn溶出に付随してマンガン酸リチウムからの酸素の放出も容易になってくると考えられる。酸素欠陥の多いマンガン酸リチウムはサイクル経過により3. 3Vプラトー容量が大きくなり、結果的にサイクル特性も劣化する。また、酸素の放出が多いと電解液の分解に影響を与えると推測され、電解液の劣化によるサイクル劣化も引き起こすと思われる。この問題点の解決のため、これまで、合成方法の改善、他遷移金属元素添加、Li過剰組成等が検討されてきたが、高放電容量の確保と高サイクル寿命の両面を同時に満足させるには至っていない。従って、Mn溶出を低減させること、格子の歪みを軽減すること、酸素欠損を少なくすること等が対策として導き出される。

次に、自己放電による保存容量の減少の原因としては、電池の製造プロセス起因の正負極のアライメント不足、電極金属屑混入等の内部ショートの現象を除外すると、保存特性の改善も、電解液に対するマンガン酸リチウムの安定性の向上、すなわちMnの溶出、電解液との反応、酸素の放出等の抑制が効果があると考えられる。

特に高温環境下における使用ではこれらの劣化はともに促進されることが、用途拡大の大きな障害となっている。しかしながら、起電力の高さ、放電時の電圧平坦性、サイクル特性、エネルギー密度等、現在の高性能二次電池に求められる性能を満足できるポテンシャルを期待できる材料系が限られるため、充放電容量劣化のない、サイクル特性、保存特性の優れた新たなスピネル構造のマンガン酸リチウムが求められている。

ところで、特開平10-112318号公報には、正極活物質として $LiMn_2O_4$ 等のリチウムマンガン複合酸化物と $LiNiO_2$ 等のリチウムニッケル複合酸化物との混合酸化物を用いることが記載されている。この公報によれば、初回充放電における不可逆容量が補填され、大きな充放電容量が得られるとされている。また、特開平7-235291号公報にも、正極活物質として $LiMn_2O_4$ 等のリチウムマンガン複合酸化物に $LiCo_{0.5}Ni_{0.5}O_2$ を混合して用いるこ

とが記載されている。

しかしながら、本発明者の検討によれば、正極活物質に単にリチウムマンガン 複合酸化物とリチウムニッケル複合酸化物との混合酸化物を用いただけでは、充 放電特性、特に高温におけるサイクル寿命および容量保存特性・自己放電性につ いては、満足できる結果が得られなかった。

さらに、特開平10-199508号公報には、正極活物質として $LiMn_2O_4$ とともに平均粒径5. 4μ mの $LiMn_{1.2}Ni_{0.8}O_4$ を用いることが記載されている。しかし、本発明者の検討によれば、リチウム・ニッケル複合酸化物であっても $LiMn_{1.2}Ni_{0.8}O_4$ のようなMnを含むスピネル型(AB_2O_4 型)では満足できる結果が得られなかった。

発明の開示

そこで本発明は、以上の問題点に鑑みてなされたものであり、電池特性、特に 充放電サイクル特性、保存特性、さらには安全性に優れた非水電解液二電池を提 供することを目的とする。

本発明者は、上記の目的を達成するために、正極活物質であるリチウム・マンガン複合酸化物からのMnの溶出を低減することを目指して鋭意検討した結果本発明に至ったものである。特にリチウムニッケル複合酸化物を正極に混合するときは、その表面積または粒径、およびリチウムニッケル複合酸化物の組成が、充放電特性、特に高温におけるサイクル寿命および容量保存特性・自己放電性の改善に関して極めて大きな影響がある。

本発明の第1の態様は、正極にリチウム・マンガン複合酸化物を用いた非水電解液二次電池において、電解液が水と反応して水素イオンを発生し得る組成を含み、電池内の電解液と接触する場所に水素イオン捕捉剤が配置されていることを特徴とする非水電解液二次電池に関する。

リチウム・マンガン複合酸化物を正極活物質に用いた非水電解液二次電池では、サイクル特性の劣化は、電解液中のMnイオンの溶出によって生じるので、電解液中のMnイオン濃度を指標として判断することができ、また、容量保存特性の劣化は電解液中のLiイオンの濃度変動によって判断することができる。

本発明者の検討では、Li 支持塩としてLi PF_6 またはLi BF_4 を用いると

電解液中へのMnイオンの溶出が特に大きく、一方これらの支持塩を用いたとき の電解液の酸性度が明らかに高かった。従って、これらの支持塩と有機電解液中 の存在している微量の水分とが反応して水素イオン (H⁺) を生成し、これがリチウム・マンガン複合酸化物中のマンガンを溶出し結晶構造を劣化させていることが推定される。

そこで、水素イオンを捕捉し得る化合物を電解液と接触し得る場所に存在させることにより、電解液中の水素イオンの濃度の上昇が抑制され、その結果電解液中へのMnイオンの溶出が抑えられたものと考えている。実際、水素イオン捕捉剤を用いることにより、電解液中に溶出するMnイオンが大幅に減少し、電解液中に存在するLiイオンの濃度変化が抑制され、さらに電解液の劣化、変色が抑えられ、酸の生成も抑制された。Mnイオンの電解液中への溶出が低減した結果、リチウム・マンガン複合酸化物中からの酸素の脱離も同様に減少するのでリチウム・マンガン複合酸化物の結晶構造の劣化を防ぐことができる。

その結果として、本発明によれば高充放電容量を保ちながらサイクル特性を向上させることができ、また、電解液の分解やLi濃度変化が抑制されたためインピーダンスの増加も避けることができる。

また、本発明の異なる態様は、正極電極に、(A)リチウム・マンガン複合酸化物と、(B1)比表面積Xが0. $3 \le X$ (m^2/g)であって、 $LiNiO_2$ 、 Li_2NiO_2 、 $LiNi_2O_4$ 、 $Li_2Ni_2O_4$ 、および $LiNi_{1-x}M_xO_2$ (0 $< x \le 0$. 5であり、Mは、Co、Mn、A1、Fe、Cu、およびSrからなる群より選ばれる1種類以上の金属元素を表す。)からなる群より選ばれる少なくとも1種からなるリチウム・ニッケル複合酸化物とを含むことを特徴とする非水電解液二次電池に関する。

また本発明のさらに異なる態様は、正極電極に、(A)リチウム・マンガン複合酸化物と、(B2) D_{50} 粒径が 40μ m以下であって、 $LiNiO_2$ 、 Li_2NiO_2 、 $LiNiO_2$ 、 Li_2NiO_3 、および $LiNi_{1-x}M_xO_2$ (0 < $x \le 0$. 5であり、Mは、Co、Mn、Al、Fe、Cu、およびSrからなる群より選ばれる1種類以上の金属元素を表す。)からなる群より選ばれる少なくとも1種からなるリチウム・ニッケル複合酸化物とを含むことを特徴とする非水電解液二

次電池に関する。

こららの場合、前記リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との重量比率を [LiMn 複合酸化物] : [LiNi 複合酸化物] = (100-a) : aで表したとき、 $3 \le a \le 45$ であることが好ましい。

本発明者の検討によれば、正極活物質であるリチウム・マンガン複合酸化物に、 (B1) 比表面積Xが0. $3 \le X$ (m^2/g) であるリチウム・ニッケル複合酸化物か、または (B2) D_{50} 粒径が $40~\mu$ m以下である特定のリチウム・ニッケル複合酸化物を混合して使用することにより、 (1) 電解液中に溶出するMnイオンが大幅に少なくなり、同時に (2) 電解液中に存在するLi イオンの濃度変化が小さくなり、 (3) 電解液の劣化、変色が抑えられ、酸の生成も抑制されていることが明らかになった。さらにその際、比表面積または粒径の依存性が大きいことは極めて注目されることである。

この理由として、本発明者は、正極中に含まれる上記の所定の組成であって所定の比表面積または所定のD₅₀粒径のリチウム・ニッケル複合酸化物が水素イオンを捕捉するものと考えられる。このときの反応としては、例えば水素イオンを取り込んで代わりにLiイオンを放出する機構が推定される。また、リチウム・ニッケル複合酸化物が、リチウム・マンガン複合酸化物と電解液と水の三者間の反応に対する、何らかの触媒毒的な働きをしている可能性もある。

いずれにしても、正極中にリチウム・マンガン複合酸化物と共に、特定のリチウム・ニッケル複合酸化物を混在させることにより、電解液中の酸の生成が抑制され、マンガン酸リチウム等のリチウム・マンガン複合酸化物から電解液中に溶出するMnが低減し、また同時にマンガン酸リチウム等のリチウム・マンガン複合酸化物からの酸素の脱離も同様に減少させることができる。従って、リチウム・マンガン複合酸化物自身の構造劣化が抑えられるとともに電解液の分解やLi濃度変化が抑制されるため、電池インピーダンスの増加を防止することができる。このため、サイクル特性、容量保存特性ともに向上させることができる。本発明は、特にLiPF。およびLiBF、のような酸を生成しやすい支持塩を用いたときでも、サイクル特性、容量保存特性ともに優れている。

さらに、リチウム・ニッケル複合酸化物として、リチウム・マンガン複合酸化

物よりも充放電容量が大きな材料系を用いた場合には、副次的な効果として同時に高容量化も図ることができる。

さらに、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との混合比率を、 [LiMn複合酸化物] : [LiNi 複合酸化物] = 100-a: aで表したときに、 $3 \le a$ となるようにすることにより、さらにリチウム・マンガン複合酸化物から電解液中に溶出するMnを低減することができるので、サイクル特性および容量保存特性を向上させることができる。また、一般にリチウム・ニッケル複合酸化物は、リチウム・マンガン複合酸化物に比べて安全性に劣ることが知られているが、 $a \le 45$ となるようにすることにより本来リチウム・マンガン複合酸化物が有している極めて高い安全性の非水電解液二次電池を得ることができる。

図面の簡単な説明

図1:80℃の電解液に20日間浸漬させた場合の電解液中のMn濃度を、リチウム・ニッケル複合酸化物の混合比率、比表面積を変えて測定した結果を示すグラフである。

図2:80 $^{\circ}$ の電解液に20日間浸漬させた場合の電解液中の $^{\circ}$ の $^{\circ}$ の取り である。

図3:本発明および従来の円筒セルの55℃における放電容量のサイクル特性を示す図である。

図4:本発明および従来の円筒セルのインピーダンスを示す図である。

図5:本発明の実施例および比較例の円筒セルの55℃における放電容量およびサイクル特性を示す図である。

図6:本発明の実施例および比較例の円筒セルのインピーダンスを示す図である。

図7: リチウム・ニッケル複合酸化物の比表面積とMn溶出量の関係を示す図である。

発明を実施するための最良の形態

本発明の正極活物質として、単独または後述するリチウム・ニッケル複合酸化

物と共に用いられるリチウム・マンガン複合酸化物は、リチウム、マンガンおよび酸素からなる酸化物であり、 $LiMn_2O_4$ 等のスピネル構造のマンガン酸リチウム、 $Li_2Mn_2O_4$ 、および $LiMnO_2$ 等を挙げることができる。この中でも、 $LiMn_2O_4$ 等のスピネル構造のマンガン酸リチウムが好ましく、スピネル構造をとる限り [Li] / [Mn] 比が0. 5からずれていてもよく、[Li] / [M n] 比としては、0. 5~0. 65、好ましくは0. 51~0. 6、最も好ましくは0. 53~0. 58である。

また、同様に、マンガン酸リチウムがスピネル構造をとる限り [Li+Mn] / [O] 比は、0.75からずれていてもよい。

また、リチウム・マンガン複合酸化物の粒径は、正極を作製するのに適したスラリーは作製の容易さ、電池反応の均一性を考慮すると、重量平均粒径で、通常 $5\sim30~\mu\mathrm{m}$ である。

このようなリチウム・マンガン複合酸化物は、次のようにして製造することができる。

マンガン(Mn)原料およびリチウム(Li)原料として、まずLi原料としては、例えば炭酸リチウム、酸化リチウム、硝酸リチウム、水酸化リチウム等のリチウム化合物を用いることができ、Mn原料として例えば電解二酸化マンガン(EMD)、Mn2O3、Mn3O4、化学二酸化マンガン(CMD)等の種々のMn酸化物、炭酸マンガンや蓚酸マンガン等のマンガン塩などのマンガン化合物を用いることができる。しかし、LiとMnの組成比の確保の容易さ、かさ密度の違いによる単位体積あたりのエネルギー密度、目的粒径確保の容易さ、工業的に大量合成する際のプロセス・取り扱いの簡便さ、有害物質の発生の有無、コスト等を考慮すると電解二酸化マンガンと炭酸リチウムの組み合わせが好ましい。

出発原料を混合する前段階として、リチウム原料およびマンガン原料を必要に応じて粉砕し、適当な粒径にそろえることが好ましい。Mn原料の粒径は、通常 $3\sim70~\mu\text{m}$ 、好ましくは $5\sim30~\mu\text{m}$ である。また、Li 源の粒径は、通常 $1~0~\mu\text{m}$ 以下、好ましくは $5~\mu\text{m}$ 以下、最も好ましくは $3~\mu\text{m}$ 以下である。

リチウム・マンガン複合酸化物の生成反応は、固相表面で反応が進行するため、 Li源とMn源の混合が不十分であったり、粒径が粗すぎたりすると、所望の組

成および構造のリチウム・マンガン複合酸化物が得られない場合がある。例えば、スピネル構造のマンガン酸リチウムを製造する際に、Li 源とMn 源の混合が不十分であったり、粒径が粗すぎたりすると、 Mn_2O_3 、 Mn_3O_4 、 Li_2MnO_3 、 $Li_2Mn_4O_9$ 、 $Li_4Mn_5O_{12}$ のような相が生成することがあり、スピネル構造のマンガン酸リチウムより、電池電圧の低下したり、エネルギー密度が低下したりすることがある。従って所望の組成および構造のリチウム・マンガン複合酸化物を得るためには、反応の均一性を高めるためにリチウム原料およびマンガン原料の接触面積を増大させるために、上記のような粒径を用いることが好ましい。そこで粒径制御や、混合粉の造粒を行っても良い。また、原料の粒径の制御を行うと、目的粒径のリチウム・マンガン複合酸化物を容易に得ることができる。

次に、それぞれの原料をLi/Mnのモル比が目的とするリチウム・マンガン 複合酸化物の組成比に合うようにとり、十分に混合し、酸素雰囲気で焼成する。 酸素は純酸素を用いても良く、また窒素、アルゴン等の不活性ガスとの混合ガス であっても良い。このときの酸素分圧は、50~760torr程度である。

焼成温度は、通常 $400\sim1000$ ℃であるが、所望の相が得られるように適宜選択する。例えば、スピネル構造のマンガン酸リチウムを製造するのに、焼成温度が高すぎると、 Mn_2O_3 や Li_2MnO_3 等の目的としない相が生成混入し、電池電圧およびエネルギー密度が十分でない場合があり、また、焼成温度が低すぎると酸素が相対的に過剰になったり、粉体密度が小さい場合があり、やはり高容量の実現には好ましくない場合もある。従ってスピネル構造のマンガン酸リチウムを製造するのには、焼成温度として好ましくは $600\sim900$ ℃、最も好ましくは $700\sim850$ ℃である。

焼成時間は、適宜調整することができるが、通常6~100時間、好ましくは 12~48時間である。冷却速度は、適宜調整できるが、最終焼成処理の際は急 冷しない方が好ましく、例えば100℃/h以下程度の冷却速度とすることが好 ましい。

このようにして得られたリチウム・マンガン複合酸化物の粉体を、必要に応じてさらに分級し、粒径をそろえて正極活物質として用いるか、または本発明の好ましい1形態においては、所定のリチウム・ニッケル複合酸化物と混合して正極

活物質として用いる。

本発明の1態様において用いられる水素イオン捕捉剤は、有機電解液中に存在する水素イオン (H⁺) と反応し、水素イオン濃度を低下させる働きをするものである。この際、水素イオンと反応した結果、本発明の電池系に対して悪影響を及ぼさないような化合物または不活性な化合物に変化するものが好ましい。一方、水素イオンと反応した結果、水を生成するものは、その水が再度支持塩と反応して水素イオンを発生することになるので本発明には不適当である。例えば、アルカリ金属水酸化物等のように、OH⁻イオンが水素イオンと反応して水を生成するものは好ましくない。また、反応した結果、電池のインピーダンスを過度に上昇させるようなものも好ましくない。

水素イオン捕捉剤は、電池内の電解液に接触する場所であればどの場所に配置 してもよい。例えば、電解液中に混合、溶解または分散させたり、電極中に混合 したりする方法が挙げられる。

例えば、電極材料としても機能し得るものであれば、本発明で用いる正極材料であるリチウム・マンガン複合酸化物に混合して、電極を形成することができる。水素イオン捕捉剤としては、無機化合物、または有機化合物のどちらでもよい。例えばリチウム・ニッケル複合酸化物、水素吸蔵合金、水素を吸蔵し得る炭素等を挙げることができる。これらは粉末状で用いることが好ましく、正極に混合したり、電解液に分散させたりして用いることができる。使用し得るリチウム・ニッケル複合酸化物は、水素イオン捕捉機能を有するものである。例えば、前述の特開平10-112318号公報に記載されているリチウム・ニッケル複合酸化物は、必ずしも水素イオン捕捉機能を有するとは言えない。

次に、本発明の各態様において用いられるリチウム・ニッケル複合酸化物について説明する。リチウム・ニッケル複合酸化物は、リチウム、ニッケルおよび酸素からなる酸化物であり、 $LiNiO_2$ 、 Li_2NiO_2 、 $LiNi_2O_4$ 、 Li_2NiO_2 、 $LiNi_2O_4$ 、 Li_2NiO_2 、 $LiNi_2O_4$ 、 Li_2NiO_2 、 $LiNi_2O_4$ 、 Li_2NiO_2 、 $LiNi_2O_4$ 、 $LiNi_2O_4$ 、 $LiNi_2O_4$ 、 $LiNi_2O_4$ 、 $LiNi_2O_4$ 、 $LiNi_2O_4$ 、 $LiNi_2O_4$ 、 $LiNi_2O_4$ 、 $LiNi_2$ $LiNi_2$

Co、Mn、Al、Fe、Cu、およびSrからなる群より選ばれる1種類以上の金属元素を表す。Mは2種以上のドープ金属元素であってもよく、ドープ金属元素の組成比の和がxになればよい。

この中でも、 $LiNiO_2$ および $LiNi_{1-x}Co_xO_2$ (この場合、xは通常0. $1\sim0$. 4である。)が好ましい。

尚本発明では、上記リチウム・ニッケル複合酸化物のLi/Ni比($LiNi_{1-x}M_xO_2$ の場合はLi/[Ni+M]比)が、表記された量論比から多少ずれていてもよく、本発明の各態様において用いられるリチウム・ニッケル複合酸化物はそのような場合をも含むものである。

本発明では、このようなリチウム・ニッケル複合酸化物として、比表面積Xが0.3以上ものを用いることにより、リチウム・マンガン複合酸化物または電解液の劣化を効果的に防止することが可能になる。また、比表面積は通常5.0以下であり、さらに3.0以下のものを用いると正極電極を製造する際に取り扱い易く容易に電極塗布が行えるスラリーが得られるので好ましい。

また、本発明では前述のリチウム・ニッケル複合酸化物として、 D_{50} 粒径が4 $0~\mu$ m以下のものを用いてもよく、 D_{50} 粒径を $4~0~\mu$ m以下とすることで、リチウム・マンガン複合酸化物または電解液の劣化を効果的に防止することが可能になる。また、 D_{50} 粒径は通常 $1~\mu$ m以上であり、特に $3~\mu$ m以上のものを用いると正極電極を製造する際に取り扱い易く容易に電極塗布が行えるスラリーが得られるので好ましい。

尚、ここで比表面積とは、粉体単位重量あたりの表面積(m^2/g)を表し、本発明ではガス吸着法によって測定したものである。

また、 D_{50} 粒径とは、重量積算値50%に対応する粒径を表し、レーザー光散 乱式測定法によって測定したものである。

このようなリチウム・ニッケル複合酸化物は、次のようにして製造することができる。まず、リチウム原料としては、前述と同様に例えば炭酸リチウム、酸化リチウム、硝酸リチウム、水酸化リチウム等のリチウム化合物を用いることができる。また、ニッケル(Ni)原料として水酸化ニッケル、酸化ニッケル、硝酸ニッケル等を用いることができる。

リチウム原料およびニッケル原料とも、必要に応じて粉砕し、適当な粒径にそろえて用いることが好ましい。特に、所定の比表面積、またはD₅₀粒径を得るためには、ニッケル原料の粒径を分級して用いることが好ましい。

その後、Li/Ni比が目的とするリチウム・ニッケル複合酸化物の組成比に合うようにとり、十分混合した後、リチウム・マンガン複合酸化物の製造と同様にして焼成する。焼成温度は500~900℃程度である。焼成して得られたリチウム・ニッケル複合酸化物を、好ましくはさらに分級することにより所望の比表面積、またはD₅₀粒径のリチウム・ニッケル複合酸化物を得ることができる。このようなリチウム・ニッケル複合酸化物は、正極活物質としての効果もあるので、リチウム・マンガン複合酸化物に混合して正極材料として用いることが好ましい。また、水素イオン捕捉剤として電解液中に分散させて使用することも可能である。

尚、本発明では正極活物質として、このようなリチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との混合物の他に、 $LiCoO_2$ 等の一般的に正極活物質として知られている化合物を混合して用いてもよい。また、安全性等のために Li_2CO_3 等の通常用いられる添加物質をさらに加えても良い。

正極の製造方法としては、特に制限はないが例えば、例えばリチウム・マンガン複合酸化物の粉体とリチウム・ニッケル複合酸化物の粉体を、例えば導電性付与剤およびバインダーと共に、バインダーを溶解しうる適当な分散媒で混合 (スラリー法) した上で、アルミ箔等の集電体上に塗布した後、溶剤を乾燥した後、プレス等により圧縮して成膜する。

尚、導電性付与剤としては特に制限は無く、カーボンブラック、アセチレンブラック、天然黒鉛、人工黒鉛、炭素繊維等の通常用いられるものを用いることができる。また、バインダーとしても、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等の通常用いられるものを用いることができる。

一方、対する負極活物質としては、リチウム、リチウム合金またはリチウムを 吸蔵・放出しうるグラファイトまたは非晶質炭素等の炭素材料を用いる。

セパレータは特に限定されないが、織布、硝子繊維、多孔性合成樹脂皮膜等を

用いることができる。例えばポリプロピレン、ポリエチレン系の多孔膜が薄膜でかつ大面積化、膜強度や膜抵抗の面で適当である。

非水電解液の溶媒としては、通常よく用いられるもので良く、例えばカーボネート類、塩素化炭化水素、エーテル類、ケトン類、ニトリル類等を用いることができる。好ましくは、高誘電率溶媒としてエチレンカーボネート(EC)、プロピレンカーボネート(PC)、アープチロラクトン(GBL)等から少なくとも1種類、低粘度溶媒としてジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エステル類等から少なくとも1種類選択し、その混合液を用いる。EC+DEC、PC+DMCまたはPC+EMCが好ましい。

支持塩としては $LiClO_4$ 、LiI、 $LiPF_6$ 、 $LiAlCl_4$ 、 $LiBF_4$ 、 CF_3SO_3Li 等から少なくとも1種類を用いる。本発明では、酸性を生成しやすい支持塩を用いても、電解液中の酸を抑制できるので、特に $LiPF_6$ または $LiBF_4$ を用いたときに最も効果を発揮し得るので好ましい。支持塩の濃度は、例えば $O.8\sim1.5$ Mである。

電池の構成としては、角形、ペーパー型、積層型、円筒型、コイン型など種々の形状を採用することができる。また、構成部品には集電体、絶縁板等があるが、 これらは特に限定されるものではなく、上記の形状に応じて選定すればよい。

実施例

以下、本発明を実施例によりさらに説明するが、本発明はこれらに限定されるものではない。尚、比表面積は、QuantaChrome社製 $QuantaSorbを用いて、<math>D_{50}$ 粒径は、MicroTrac社製FRAを用いて測定した。

[評価試験例A-1]

マンガン酸リチウムの合成には、出発原料として炭酸リチウム(Li_2CO_3)および電解二酸化マンガン(EMD)を用いた。

上記の出発原料の混合の前段階として、反応性の向上と目的粒径を有するマンガン酸リチウムを得ることを目的に、 Li_2CO_3 の粉砕およびEMDの分級を行った。マンガン酸リチウムは電池の正極活物質として用いる場合、反応の均一性

確保、スラリー作製の容易さ、安全性等の兼ね合いにより、 $5\sim30~\mu$ mの重量 平均粒径が好ましいので、EMDの粒径もマンガン酸リチウムの目的粒径と同じ $5\sim30~\mu$ mとした。

一方、 Li_2CO_3 は均一反応の確保のためには 5μ m以下の粒径が望ましいので、 D_{50} 粒径が1. 4μ mとなるように粉砕を行った。

このように所定の粒径にそろえたEMDおよびL i $_2$ CO $_3$ を、 [L i] / [M n] = 1. 05/2となるように混合した。

この混合粉を酸素フローの雰囲気下、800℃で焼成した。次いで、得られたマンガン酸リチウムの粒子中の粒径1μm以下の微小粒子を空気分級器により除去した。この時、得られたマンガン酸リチウムの比表面積は約0.9m²/gであった。

また、タップ密度は2. 17g/cc、真密度は4. 09g/cc、D50粒径は17. $2\mu m$ 、格子定数は8. 227Åという粉体特性であった。

一方、リチウム・ニッケル複合酸化物として比表面積 $1.7 \text{ m}^2/\text{goLiN}$ i O_2 を用意した。

上記のように用意したマンガン酸リチウムと $LiNiO_2$ とを表A-1に表す 割合で混合し、その混合粉5gと $LiPF_6$ (濃度1M) を含むプロピレンカーボネート (PC) とジメチルカーボネート (DMC) の混合溶媒 (50:50 (体 積%)) の電解液10 c c を密閉容器に入れた。

これらの密閉容器を80℃に加熱し、20日間放置した。その後その電解液を抽出し、電解液中のMnイオン濃度をI CPにて分析した。その結果を表A-1 に示す。

また、比較のために $LiNiO_2$ に代えて $LiMn_{1.8}Ni_{0.2}O_4$ を用いた評価も行った。

表A-1

a (LiNiO ₂ 混合比)	電解液中のMn濃度
0%	2320ppm
2%	1792ppm
3%	773ppm
5%	623ppm
10%	54ppm
15%	7. 5ppm
20%	1. 9ppm
30%	<0. 2ppm
35%	<0. 2ppm
35%	2400ppm '
但しLiMn _{1.8} Ni _{0.2} O ₄	

(表A-1中、aは前記と同義、即ち[リチウム・マンガン複合酸化物]:[リチウム・ニッケル複合酸化物]を(100-a):aと表したときのリチウム・ニッケル複合酸化物の重量混合比を表す。)

この結果から、 $LiNiO_2$ 混合比が高いほど、電解液中に溶出するMnが少なくなる。すなわち、高温環境下で電池を使用しても、正極活物質の安定性が増加することが予想される。特に、 $LiNiO_2$ が3%未満のものでは、少なくとも添加することによってMnの溶出を抑える効果は見られるものの、満足できる効果を得るためには3%以上入れることが好ましい。さらに好ましくは、10%以上である。

さらにリチウム・ニッケル複合酸化物として、Mnを含むスピネル型のものを 使用したときには、Mnの溶出を抑える効果は見られなかった。

[評価試験例A-2]

評価試験例A-1で用意した密閉容器を同様に80℃に加熱し、20日間放置した。その後その電解液を抽出し、電解液中のLiイオン濃度を原子吸光にて分析した。その結果を表A-2に示す。

表A-2

a (LiNiO ₂ 混合比)	電解液中のL i 濃度
0%	5577ppm
2%	5617ppm
3%	6323ppm
5%	6364ppm
10%	6402ppm
15%	6418ppm
30%	6420ppm
35%	6422ppm
35%	5400ppm
但しLiMn _{1.8} Ni _{0.2} O ₄	

(表中、aは表A-1と同義である。)

LiPF₆ (濃度1M) を含むプロピレンカーボネート (PC) とジメチルカーボネート (DMC) の混合溶媒 (50:50 (体積%)) の電解液中のLi濃度は約6400ppmであることを踏まえると、LiNiO₂混合比が3%以上で、電解液中のLi濃度減少を抑制できていると言える。リチウム・ニッケル複合酸化物を混合しない場合のMn濃度の1/3以下を目安とすると、電解液中のLi濃度減少抑制の観点からも、aは3以上が好ましいことがわかる。

またリチウム・ニッケル複合酸化物として、Mnを含むスピネル型のものを使用したときには、Li濃度減少を抑制する効果は見られなかった。

「評価試験例A-3]

リチウム・マンガン複合酸化物として評価試験例A-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、比表面積として3. $0\,\mathrm{m}^2/\mathrm{g}$ 、2. $36\,\mathrm{m}^2/\mathrm{g}$ 、1. $50\,\mathrm{m}^2/\mathrm{g}$ 、0. $71\,\mathrm{m}^2/\mathrm{g}$ 、0. $49\,\mathrm{m}^2/\mathrm{g}$ 、0. $30\,\mathrm{m}^2/\mathrm{g}$ 、0. $25\,\mathrm{m}^2/\mathrm{g}$ の7種類の $Li\,Ni_{0.8}\,Co_{0.2}O_2$ 粉末を用意した。

次に、マンガン酸リチウムと種々の比表面積の $LiNi_{0.8}Co_{0.2}O_2$ とを所定の重量混合比(a=0、3、5、10、15、20、30、35)で混合し、評価試験例A-1と同様にその混合粉5gと $LiPF_6$ (濃度1M)を含むプロピレンカーボネート(PC)とジメチルカーボネート(DMC)の混合容媒(5

0:50 (体積%)) の電解液10ccを密閉容器に入れた。

これらの密閉容器を80℃に加熱し、20日間放置した。その後その電解液を抽出し、電解液中のMnイオン濃度をICPにて分析した。その結果を図1に示す。比表面積が大きいほど、Mn溶出を抑制する効果が高いことが分かる。

評価試験例A-3の結果より、リチウム・ニッケル複合酸化物の比表面積が03 m^2/g 未満のものではMn溶出抑制の効果が小さすぎ、a>45でなければリチウム・ニッケル複合酸化物を混合しない場合のMn濃度の1/3以下にならない。よって比表面積が0. $3m^2/g$ 以上のものが好ましいことがわかる。

[評価試験例A-4]

リチウム・マンガン複合酸化物として評価試験例A-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、 D_{50} が2 μ m、 3μ m、 15μ m、 26μ m、 40μ m、 45μ mの6種類の $LiNi_{0.8}$ CO $_{0.2}$ O $_{2}$ 粉末を用意した。

次に、マンガン酸リチウムと種々の比表面積の $LiNi_{0.8}Co_{0.2}O_2$ とを所定の重量混合比(a=0、3、5、10、15、20、30、35)で混合し、評価試験例A-1と同様にその混合粉5gと $LiPF_6$ (濃度1M)を含むプロピレンカーボネート(PC)とジメチルカーボネート(DMC)の混合溶媒(50:50(体積%))の電解液10cc

これらの密閉容器を80 に加熱し、20 日間放置した。その後その電解液を抽出し、電解液中のMn イオン濃度をI C Pにて分析した。その結果を図2 に示す。粒径が小さいほど、Mn 溶出を抑制する効果が高いことが分かる。また、 D_{50} 粒径 40 μ mより大きいリチウムニッケル複合酸化物の混合比 α は α > 45 にしてもMn 溶出量はリチウム・ニッケル複合酸化物を混合しない場合のMn 濃度の1/3以下にならない。よって D_{50} 粒径が40 μ m以下のものが好ましいことがわかる。

[評価試験例A-5]

リチウム・マンガン複合酸化物として評価試験例A-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、比表面積として $4.5 \,\mathrm{m}^2/\mathrm{g}$ 、 $3.2 \,\mathrm{m}^2/\mathrm{g}$ 、 $3.0 \,\mathrm{m}^2/\mathrm{g}$ 、 $1.50 \,\mathrm{m}^2/\mathrm{g}$ 、 $0.0 \,\mathrm{m}^2/\mathrm{g}$

 $30\,\text{m}^2/\text{g}$ の5種類のLiNi_{0.8}Co_{0.2}O₂粉末を用意した。マンガン酸リチウム、LiNi_{0.8}Co_{0.2}O₂及び導電性付与剤としてカーボンブラックを乾式混合し、バインダーであるPVDFを溶解させたN-メチル-2-ピロリドン(NMP)中に加え、混練して均一に分散させて電池用スラリーを作成した。このとき、マンガン酸リチウム:LiNi_{0.8}Co_{0.2}O₂:導電性付与剤:PVDF:NMP=30:10:5:5:50(重量%)の混合比(a=25)であった。

ブルックフィールド粘度計にて測定を行った後、そのスラリーを厚さ25 μ m のアルミ金属箔上に均一に塗布を行った後NMPを蒸発させることで正極シートとした。表A-3に、比表面積とスラリー及び塗布の状態を示す。

表A-3

比表面積 (m²/ g)	粘度	スラリー状態	電極塗布状態
4. 5	22, 000	ゲル化した	不可
3. 2	18, 000	ゲル化した	不可
3. 0	6, 000	均一に分散	可
1. 50	5. 000	均一に分散	可
0. 30	4. 000	均一に分散	可

表A-3より、比表面積が3. 0 m²/gより大きい場合はゲル化起こり電極 塗布が困難になるので、比表面積は3. 0 m²/g以下が好ましいことがわかる。 [評価試験例A-6]

評価試験例A-5において、リチウム・ニッケル複合酸化物としては、 D_{50} が $2\,\mu$ m、 $3\,\mu$ m、 $15\,\mu$ m、 $26\,\mu$ m、 $40\,\mu$ m、 $45\,\mu$ mの $LiNi_{0.8}Co_{0.2}O_2$ 粉末を用意した以外は評価試験例A-5と同様にして正極シートとした。表 A-4に、 D_{50} 粒径とスラリー及び塗布の状態を示す。

表A-4

D_{50} (μ m)	粘度	スラリー状態	電極塗布状態
2	22. 000	ゲル化した	不可
3	8. 000	均一に分散	可
15	6. 000	均一に分散	可
26	5, 000	均一に分散	可
40	4, 000	均一に分散	可
45	3, 800	均一に分散	可

表A-4より、 D_{50} 粒径が 3μ mより小さい場合はゲル化起こり電極塗布が困難になるので、 D_{50} 粒径としては 3μ m以上が好ましいことがわかる。

[評価試験例A-7]

リチウム・マンガン複合酸化物として評価試験例A-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、比表面積 1. $7m^2/g$ の $LiNi_{0.8}Co_{0.2}O_2$ を用いて、2320 コインセルを作製した。 即ち、正極はマンガン酸リチウム: $LiNi_{0.8}Co_{0.2}O_2$:導電性付与剤:PTFE=72:8:10:10(重量%)の混合比(a=10)で混練したものを 0. 5 mmの厚さに圧延し、それを g 12 mmで打ち抜いて作製した。ここで導電性付与剤は、カーボンブラックを用いた。負極は g 14 mm、厚さ 1. g 15 mmの金属g 1 を用い、セパレータは厚さ g 25 g 1 mの多孔性 g 2 P膜を使用した。電解液は g 1 に g 2 g 2 g 3 に g 3 に g 3 に g 3 に g 3 に g 3 に g 4 に g 3 に g 4 に g 4 に g 5 g 4 に g 5 g 6 に g 6 に g 6 に g 6 に g 6 に g 7 に g 9 に g

同時に比較のために、正極をマンガン酸リチウム:導電性付与剤:PTFE= 80:10:10 (重量%) とし、 $LiNi_{0.8}Co_{0.2}O_2$ を含んでいないこと以外は、負極、セパレータ、電解液ともに同様にした2320コインセルを作製した。

これらのコインセルを用いて充放電サイクル試験を行った。サイクルは充電、 放電ともに 0.5mA/cm^2 の定電流とし、充放電電圧範囲は $3.0 \sim 4.5$ V vs Liで行った。また評価温度は10 Cから60 Cまで10 Cきざみとした。

LiNi_{0.8}Co_{0.2}O₂を含むもの(実施例)と含まないもの(比較例)のコ

インセルのサイクル評価温度による#50/#1 (1サイクルめの放電容量に対する50サイクルめの放電容量の割合)容量残存率(%)を表A-5に示す。本発明によるコインセルの方がサイクル温度を上昇させても容量残存率が高い。

表A-5

サイクル評価温度	#50/#1	容量残存率(%)
(C)	実施例	比較例
10	94	92
20	93	91
30	92	88
40	91	84
50	89	76
60	8.9	73

[評価試験例A-8]

リチウム・マンガン複合酸化物として評価試験例A-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、比表面積 1. $7m^2/g$ のLiNi_{0.8}Co_{0.2}O₂を用いて、18650円筒セルを試作した。 即ち、まずマンガン酸リチウム、LiNi_{0.8}Co_{0.2}O₂および導電性付与剤としてカーボンブラックを乾式混合し、バインダーであるPVDFを溶解させたN-メチル-2-ピロリドン(NMP)中に均一に分散させスラリーを作製した。そのスラリーを厚さ25 μ mのアルミ金属箔上に塗布後、NMPを蒸発させることにより正極シートとした。正極中の固形分比率はマンガン酸リチウム:LiNi_{0.8}Co_{0.2}O₂:導電性付与剤:PVDF=72:8:10:10(重量%)とした。このとき、a=10である。

一方、負極シートはカーボン: PVDF=90:10 (重量%) の比率となるように混合しNMPに分散させ、厚さ20 µmの銅箔上に塗布して作製した。

以上のように作製した正極および負極の電極シートを厚さ25 μ mのポリエチレン多孔膜セパレーターを介し巻き上げて円筒電池とした。

電解液は 1 MOL i PF_6 を支持塩とし、溶媒はプロピレンカーポネート (PC) とジエチルカーポネート (DEC) の混合溶媒 (50:50 (体積%)) と

した。

同時に、比較のために正極中に $LiNi_{0.8}Co_{0.2}O_2$ を含まず、固形分比率をマンガン酸リチウム:導電性付与剤:PVDF=80:10:10 (重量%) とした以外は同様にして18650円筒セルを試作した。

これらの円筒セルを用いて、55℃における充放電サイクル試験を行った。充電は500mAで4. 2Vまで、放電は1000mAで3. 0Vまで行った。図3に、 $LiNi_{0.8}Co_{0.2}O_2$ を含む場合(実施例)および含まない場合(比較例)について円筒セルの55℃における放電容量のサイクル特性比較を示す。本発明の実施例による円筒セルの方が充放電サイクルを繰り返しても容量劣化が少ないことが分かる。

さらに、上記実施例、比較例による円筒セルを用いて、55℃における充放電サイクル試験を100サイクル行った後、交流インピーダンス法で各々の円筒セルのインピーダンスを測定した。その比較を図4に示す。本発明による実施例の方が、直流等価抵抗も界面抵抗も小さいことが分かる。

[評価試験例A-9]

リチウム・マンガン複合酸化物として評価試験例A-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、比表面積 $1.7\,\mathrm{m}^2/\mathrm{g}\,\mathrm{oL}\,\mathrm{i}\,\mathrm{N}\,\mathrm{i}_{0.8}\mathrm{C}\,\mathrm{o}_{0.2}\mathrm{O}_2$ を用いて、 $1\,8\,6\,5\,0$ 円筒セルを試作した。 $1\,8\,6\,5\,0$ 円筒セルの製作方法は評価試験例A-8と同様にして行った。

この評価試験例では、正極中の固形分重量比率は、マンガン酸リチウム: L_i $N_{i_0.8}C_{0_0.2}O_2$: 導電性付与剤: PVDF=80-x:x:10:10としたときのx (重量%) を、表A-6に示す値で試験を行った。表A-6には、a (= $x\cdot100/80$ 、前述のaと同義) も併記した。

このように作製した円筒セルを用いて、55℃における容量保存試験を行った。 充電は500mAで4. 2Vまで定電流充電した後、4. 2Vで2時間定電圧 充電を行った。その後、室温において放置時間を置かずに放電させた場合と、室 温において28日間放置した後に放電させた場合の放電容量を測定した。容量測 定は室温環境下において500mAでカットオフ電位を3. 0Vとした。

表A-6に試作した円筒セルの28日間放置後の保存容量(4W容量と表記す

る)および、その保存容量の放置期間なしで放電させた場合の容量(0W容量と表記する)に対する割合を示す。 $LiNi_{0.8}Co_{0.2}O_2$ を添加しない場合(x=0の場合)に対して、添加した場合は28日間放置後も容量の保存性が高い。また、高容量のリチウム・ニッケル複合酸化物混合効果で円筒セルの容量も増加した。

表A-6

х	a	4W容量	4W容量/OW容量
		(mAh)	(%)
0	0	1205	83
4	5	1393	93
8	10	1452	94
12	15	1511	94
16	20	1554	95
20	25	1598	95
2.4	30	1642	95
28	35	1686	95
32	40	1748	96
35	43.8	1774	95
37	46. 3	1818	95
44	55	1862	96
48	60	1906	95
52	65	1949	95
56	70	1993	95

[評価試験例A-10]

評価試験例A-9で作製した円筒セルを用いて、安全性試験を行った。その結果を表A-7に示す。マンガン酸リチウムを主な正極活物質として用いた場合、Co系と比較し安全性が高いため、より厳しい条件で安全性の差異を際だたせるため、安全性評価項目として、丸棒圧壊および釘差し試験を採用した。

丸棒圧壊試験では、丸棒を用いて電池を1/2までつぶした。また釘差し試験は、電池に釘を刺すことにより強制的に内部ショートを起こさせる試験であり、4mmの釘を用いた。いずれも詳細はUL-1642に準じて行った。

丸棒圧壊試験では x が 4 0 以上で僅かな蒸気が見られ、5 2 以上で発火となっ

た。一方、釘差し試験ではxが36を越えると発煙が見られ、48以上で発火となった。リチウム・ニッケル複合酸化物の割合が多くなるほど安全性確保は困難となる。従って、安全性の観点から、xは36以下、a≤45となる。

表A-7

X	a	丸棒圧壊試験	釘差し試験
0	0	発煙・発火なし	発煙・発火なし
4	5	発煙・発火なし	発煙・発火なし
8	10	発煙・発火なし	発煙・発火なし
12	15	発煙・発火なし	発煙・発火なし
16	20	発煙・発火なし	発煙・発火なし
20	25	発煙・発火なし	発煙・発火なし
24	30	発煙・発火なし	発煙・発火なし
28	35	発煙・発火なし	発煙・発火なし
32	40	発煙・発火なし	発煙・発火なし
35	43.8	発煙・発火なし	僅かな蒸気
37	46. 3	僅かな蒸気	発煙
44	55	僅かな蒸気〜発煙	発煙
48	60	発煙	発火
52	65	発火	発火
56	70	発火	発火

以上の評価試験例の結果をまとめると、混合するリチウム・ニッケル複合酸化物は、Mn溶出の観点及びスラリーの塗布性、印刷性の観点から比表面積Xが0. $3 \le X \le 3$. $0 (m^2/g)$ が最も適している。

また、混合するリチウム・ニッケル複合酸化物は、Mn溶出の観点及びスラリーの塗布性、印刷性の観点より D_{50} 粒径が $3~\mu$ m以上 $4~0~\mu$ m以下であることが最も適している。

また、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との比率は、Mn溶出の観点及び安全性の観点より、[LiMn複合酸化物]: [LiNi [LiMn を使化物] = (100-a): [LiMn を表える [LiMn] を表える [LiMn を表える [LiMn] を表える

マンガン酸リチウムの合成には、出発原料として炭酸リチウム(Li₂CO₃)

および電解二酸化マンガン(EMD)を用いた。

上記の出発原料の混合の前段階として、反応性の向上と目的粒径を有するマンガン酸リチウムを得ることを目的に、 Li_2CO_3 の粉砕およびEMDの分級を行った。マンガン酸リチウムは電池の正極活物質として用いる場合、反応の均一性確保、スラリー作製の容易さ、安全性等の兼ね合いにより、 $5\sim30~\mu$ mの重量平均粒径が好ましいので、EMDの粒径もマンガン酸リチウムの目的粒径と同じ $5\sim30~\mu$ mとした。

一方、 Li_2CO_3 は均一反応の確保のためには 5μ m以下の粒径が望ましいので、 D_{50} 粒径が1 4μ mとなるように粉砕を行った。

このように所定の粒径にそろえたEMDおよびLi₂CO₃を、 [Li] / [M n] = 1. 05/2となるように混合した。

この混合粉を酸素フローの雰囲気下、800℃で焼成した。次いで、得られたマンガン酸リチウムの粒子中の粒径1 μ m以下の微小粒子を空気分級器により除去した。この時、得られたマンガン酸リチウムの比表面積は約0.9 m^2 /gであった。

また、タップ密度は2. 17g/cc、真密度は4. 09g/cc、D50粒径は17. $2\mu m$ 、格子定数は8. 227Aという粉体特性であった。

一方、水素イオン捕捉剤として、リチウム・ニッケル複合酸化物の1例として 比表面積1. $7 \text{ m}^2/\text{goL i N i}_{0.9}\text{Co}_{0.1}\text{O}_2$ を用意した。

上記のように用意したマンガン酸リチウムと $LiNi_{0.8}Co_{0.1}O_2$ とを、重量比で100-a:aで表したとき、a=0(比較例)、1、2、3、5、10、15、20となるように混合し、その混合粉5gと $LiPF_6$ (濃度1M)を含むプロピレンカーボネート(PC)とジメチルカーボネート(DMC)の混合溶媒(50:50(体積%))の電解液10cc

これらの密閉容器を80 \mathbb{C} に加熱し、20 日間放置した。その後その電解液を抽出し、電解液中のMn イオン濃度をI \mathbb{C} \mathbb{P} に示す。

表B-1 電解液中のMn濃度

	LiNi _{0.9} Co _{0.1} O ₂ 混合比	電解液中のMn濃度	
	a	<u></u>	
実施例	1%	1901ppm	
	2%	1797ppm	
	3%	623ppm	
	5%	519ppm	
	1 0%	23ppm	
	1 5%	4. 2ppm	
	20%	0. 2ppm以下	
比較例	0%	2320ppm	

この結果から、 $LiNi_{0.8}Co_{0.1}O_2$ 混合比が高いほど、電解液中に溶出するMnが少なくなっており、水素イオンの捕捉が効果が高いことがわかる。このように、高温環境下で電池を使用しても、正極活物質の安定性が増加することが予想される。

[評価試験例B-2]

評価試験例B-1で用意した密閉容器を80℃に加熱し、20日間放置した。 その後その電解液を抽出し、電解液中のLiイオン濃度を原子吸光にて分析した。 その結果を表B-2に示す。

表B-2 電解液中のLi濃度

	LiNi _{0.9} Co _{0.1} O ₂ 混合比	電解液中のLi濃度	
	a		
実施例	1%	5572ppm	
	2%	5610ppm	
	3%	6372ppm	
	5%	6364ppm	
	1 0%	6402ppm	
	1 5%	6418ppm	
	20%	6397ppm	
比較例	0%	5577ppm	

 $LiPF_6$ (濃度 1M) を含むプロピレンカーポネート (PC) とジメチルカ

ーポネート(DMC)の混合溶媒(50:50(体積%))の電解液中のLi 濃度は約6400ppmであることを踏まえると、 $LiNi_{0.9}Co_{0.1}O_2$ 混合比を高くするほど、電解液中のLi 濃度減少を抑制できると言える。

評価試験例B-1および2の結果より、リチウム・ニッケル複合酸化物の混合により、電解液中へのMn溶出が低減され、電解液中のLiイオン濃度変化が抑制されることが分かった。リチウム・ニッケル複合酸化物を混合しない場合のMn濃度の1/3以下を目安とすると、リチウム・ニッケル複合酸化物の混合比は [リチウム・マンガン複合酸化物]: [リチウム・ニッケル複合酸化物]=100: a (重量%)とした場合、 $a \ge 3$ となる。また評価試験例B-2より、 $a \ge 3$ の場合、電解液中のLi濃度は80 %、20 日間放置後495%以上を保持していることが分かる。これらの結果から、特に40 %に40 %に40 %に。

[評価試験例B-3]

リチウム・マンガン複合酸化物としては、評価試験例B-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、比表面積 $1.7 \text{m}^2/\text{g}$ の $LiNi_{0.8}\text{Co}_{0.2}\text{O}_2$ を用いて2320 コインセルを作製した。正極はマンガン酸リチウム: $LiNi_{0.8}\text{Co}_{0.2}\text{O}_2$:導電性付与剤:PTFE=72:8:10:10(重量%)の混合比(a=10)で混練したものを 0.5 mm の厚さに圧延し、それを 0.5 mm で打ち抜いたものを用いた。ここで導電性付与剤はカーボンブラックを用いた。負極は 0.5 mm の金属0.5 mm で用い、セパレータは厚さ 0.5 mm の多孔性0.5 mm を使用した。電解液は0.5 mm で混除しまる。電解液は0.5 mm で混合溶媒(0.5 mm を含むエチレンカーボネート(0.5 mm とジメチルカーボネートの混合溶媒(0.5 mm の混合溶媒(0.5 mm を含むエチレンカーボネート(0.5 mm とじた。

同時に比較のために、正極をマンガン酸リチウム:導電性付与剤:PTFE=80:10:10(重量%)とし、 $LiNi_{0.8}Co_{0.2}O_2$ を含んでいないこと以外は、負極、セパレータ、電解液ともに同様にした2320コインセルを作製した(比較例)。

これらのコインセルを用いて充放電サイクル試験を行った。サイクルは充電、 放電ともに $0.5 \,\mathrm{mA/c\,m^2}$ の定電流とし、充放電電圧範囲は $3.0 \,\mathrm{\sim}\, 4.5$ V~v~s~L~i~c行った。また評価温度は $10\,\mathrm{C}$ から $60\,\mathrm{C}$ まで $10\,\mathrm{C}$ きざみと

した。

LiNi_{0.8}Co_{0.2}O₂を含むもの(実施例)と含まないもの(比較例)のコインセルの、サイクル評価温度による#50/#1(1サイクルめの放電容量に対する50サイクルめの放電容量の割合)容量残存率(%)を表B-3に示す。本発明のコインセルの方がサイクル温度を上昇させても容量残存率が高い。

NA A A SECTION OF CONTRACT OF			
サイクル評価温度(℃)	#50/#1容量残存率(%)		
	実施例	比較例	
10	94	92	
20	93	91	
30	92	88	
40	91	84	
50	89	76	
60	89	73	

表B-3 #50/#1容量残存率(%)

[評価試験例B-4]

リチウム・マンガン複合酸化物としては、評価試験例B-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、比表面積 $1.7 \, \mathrm{m}^2/\mathrm{g}\,\mathrm{oL}\,\mathrm{i}\,\mathrm{N}\,\mathrm{i}_{0.8}\mathrm{C}\,\mathrm{o}_{0.2}\mathrm{O}_2$ を用いて、 $1\,8\,6\,5\,0$ 円筒セルを試作した。

まずマンガン酸リチウム、 $LiNi_{0.8}Co_{0.2}O_2$ および導電性付与剤を乾式混合し、バインダーであるPVDFを溶解させたN-メチルー2-ピロリドン (NMP) 中に均一に分散させスラリーを作製した。導電性付与剤としてはカーボンブラックを用いた。そのスラリーを厚さ $25\,\mu$ mのアルミ金属箔上に塗布後、NMPを蒸発させることにより正極シートとした。正極中の固形分比率はマンガン酸リチウム: $LiNi_{0.8}Co_{0.2}O_2$:導電性付与剤:PVDF=72:8:10:10(重量%)の混合比(a=10)とした。

一方、負極シートはカーボン: PVDF=90:10 (重量%) の比率となるように混合しNMPに分散させ、厚さ20μmの銅箔上に塗布して作製した。

以上のように作製した正極および負極の電極シートを厚さ25 μ mのポリエチ

レン多孔膜セパレーターを介し巻き上げて円筒電池とした。

電解液は 1 MoL i PF_6 を支持塩とし、プロピレンカーボネート(PC)とジエチルカーボネート(DEC)の混合溶媒(50:50(体積%))を溶媒とした。

同時に、比較のために正極中に $LiNi_{0.8}Co_{0.2}O_2$ を含まず、固形分比率をマンガン酸リチウム:導電性付与剤:PVDF=80:10:10(重量%)とした以外は同様にして18650円筒セルを試作した(比較例)。

これらの円筒セルを用いて、55℃における充放電サイクル試験を行った。充電は500mAで4. 2Vまで、放電は1000mAで3. 0Vまで行った。図5にLiNi $_{0.8}$ Co $_{0.2}$ O $_{2}$ を含む場合(実施例)および含まない場合(比較例)について円筒セルの55℃における放電容量のサイクル特性比較を示す。本発明の実施例による円筒セルの方が充放電サイクルを繰り返しても容量劣化が少ないことが分かる。

[評価試験例B-5]

評価試験例B-4で作製した円筒セルを用いて、55℃における充放電サイクル試験を100サイクル行った後、交流インピーダンス法で各々の円筒セルのインピーダンスを測定した。その比較を図6に示す。本発明による実施例の方が、直流等価抵抗も界面抵抗も小さいことが分かる。

[評価試験例B-6]

リチウム・マンガン複合酸化物として評価試験例B-1と同様にして合成したマンガン酸リチウムを用い、水素イオン捕捉剤としてリチウム・ニッケル複合酸化物としては、比表面積 $1.7m^2/g$ の $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ を用いて、18650円筒セルを試作した。

まずマンガン酸リチウム、 $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ および導電性付与剤を乾式混合し、バインダーであるPVDFを溶解させたN-メチルー2-ピロリドン(NMP)中に均一に分散させスラリーを作製した。そのスラリーを厚さ $25\,\mu$ mのアルミ金属箔上に塗布後、NMPを蒸発させることにより正極シートとした。

正極中の固形分比率は重量%でマンガン酸リチウム: LiNi_{0.8}Co_{0.15}A

 $1_{0.05}O_2$: 導電性付与剤: PVDF=80-x:x:10:10としたときのx (重量%) を表B-4に示す値で試験を行った。表B-4には、a (= $x\cdot10$ 00/80、前述のaと同義) も併記した。比較例としてx=0 (a=0) の場合も合わせて試験を行った。

一方、負極シートはカーボン: PVDF=90:10 (重量%) の比率となるように混合しNMPに分散させ、厚さ20μmの銅箔上に塗布して作製した。

電解液は 1 MoL i PF_6 を支持塩とし、プロピレンカーボネート (PC) とジエチルカーボネート (DEC) の混合溶媒 (50:50 (体積%)) を用いた。セパレーターは厚さ 25μ mのポリエチレン多孔膜を使用した。

このように作製した円筒セルを用いて、55℃における容量保存試験を行った。 充電は500mAで4. 2Vまで定電流充電した後、4. 2Vで2時間定電圧充 電を行った。その後、室温において放置時間を置かずに放電させた場合と、室温 において28日間放置した後に放電させた場合の放電容量を測定した。容量測定 は室温環境下において500mAでカットオフ電位を3. 0Vとした。

表B-4に試作した円筒セルの28日間放置後の保存容量(4W容量と表記する)および、その保存容量の放置期間なしで放電させた場合の容量(0W容量と表記する)に対する割合を示す。比較例に対して本発明による実施例では28日間放置後も容量の保存性が高い。また、高容量のリチウム・ニッケル複合酸化物混合効果で円筒セルの容量も増加した。

表B-4

	x	a	4W容量 (mAh)	4W容量/0W容量 (%)
実施例	4	5	1383	93
	8	10	1442	94
	12	15	1501	94
	16	20	1544	95
	20	25	1588	95
	24	30	1632	95
	28	35	1676	95
	32	40	1738	96
	36	45	1764	95
	40	50	1808	95
	44	55	1852	96
	48	60	1896	95
	52	65	1939	95
	56	70	1983	95
比較例	0	0	1205	83

[評価試験例B-7]

評価試験例B-6で作製した円筒セルを用いて、安全性試験を行った。その結果を表B-5に示す。ただし、マンガン酸リチウムを主な正極活物質として用いた場合、Co系と比較し安全性が高いため、短絡試験、ホットボックス等の各安全性評価項目での差異が確認しにくい。そこで、より厳しい条件で安全性の差異を際だたせるため、正極電極密度を3.1g/cm³という高い値に設定して円筒セルを作製し、安全性評価を行った。将来的には、より高容量化の方向を検討する可能性が高いため、高電極密度の条件で評価することは重要である。

安全性評価項目は過充電試験および釘差し試験とした。過充電試験は12V、3Cの条件で行った。釘差し試験は、電池に釘を刺すことにより強制的に内部ショートを起こさせる試験であり、4mmの釘を用いてUL-1642に準じて行った。

過充電試験ではxが56以上でも発煙・発火はみられなかった。一方、釘差し 試験ではxが40以上で僅かな蒸気が見られ、52以上で発火となった。従って、 安全性の観点から、xは36以下、 $a \le 45$ が好ましい。

表B-5

	х	a	過充電試験	釘差し試験
実施例	4	5	発煙・発火なし	発煙・発火なし
	8	10	発煙・発火なし	発煙・発火なし
	12	15	発煙・発火なし	発煙・発火なし
	16	20	発煙・発火なし	発煙・発火なし
	20	25	発煙・発火なし	発煙・発火なし
	24	30	発煙・発火なし	発煙・発火なし
	28	35	発煙・発火なし	発煙・発火なし
	32	40	発煙・発火なし	発煙・発火なし
	36	45	発煙・発火なし	発煙・発火なし
	40	50	発煙・発火なし	僅かな蒸気
	44	55	発煙・発火なし	発煙
	48	60	発煙・発火なし	発煙
	52	65	発煙・発火なし	発火
	56	70	発煙・発火なし	発火
比較例	0	0	発煙・発火なし	発煙・発火なし

[評価試験例B-8]

評価試験例B-1と同様にして合成したマンガン酸リチウムとリチウム・ニッケル複合酸化物としてLiNi_{0.8}Co_{0.1}Mn_{0.1}O₂とを重量比で100-a: aとしたときのa (重量%) を、0 (比較例)、3、5、10、15、20、30、35の混合比で混合し、その混合粉5gと10ccのLiPF₆ (濃度1M)を含むエチレンカーボネート (EC) とジエチルカーボネート (DEC) の混合 容媒 (50:50 (体積%))の電解液を密閉容器に入れた。このとき、LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂として、3.0m²/g、2.36m²/g、1.50m²/g、0.71m²/g、0.49m²/g、0.30m²/g、0.25m²/gの比表面積を有する7種を用いた。

このように用意した密閉容器を80℃に加熱し、20日間放置した。その後、その電解液を抽出し、電解液中のMnイオン濃度をICPにて分析した。その結果を図7に示す。比表面積が大きいほど、電解液中へのMn溶出を抑制する効果が高いことが分かった。

前述のように、安全性の確保のためには(マンガン酸リチウム): (リチウム・ニッケル複合酸化物)=100-a:a (重量%)でa≤45であることが望ましいことが明らかとなっている。一方図7から、比表面積が0.25m²/gの場合、リチウム・ニッケル複合酸化物を入れない場合のMnの溶出量2320ppmの1/3以下にまでMn溶出を抑制するためには、リチウム・ニッケル複合酸化物の混合比を50%にまで増加させなければならない。従って、リチウム・ニッケル複合酸化物の比表面積Xは0.3m²/gより大きいことが好ましいことがわかる。

[評価試験例B-9]

リチウム・マンガン複合酸化物として評価試験例B-1と同様にして合成したマンガン酸リチウムを用い、リチウム・ニッケル複合酸化物としては、比表面積として4. $5m^2/g$ 、3. $2m^2/g$ 、3. $0m^2/g$ 、1. $50m^2/g$ 、0. $30m^2/g$ の5種類のLiNi_{0.8}Co_{0.1}Mn_{0.1}O₂粉末を用意した。マンガン酸リチウム、LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂及び導電性付与剤としてカーボンブラックを乾式混合し、バインダーであるPVDFを溶解させたN-メチルー2-ピロリドン(NMP)中に加え、混練して均一に分散させて電池用スラリーを作成した。このとき、マンガン酸リチウム:LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂: 導電性付与剤:PVDF:NMP=30:10:5:5:50(重量%)の混合比(a=25)であった。

ブルックフィールド粘度計にて測定を行った後、そのスラリーを厚さ25 µm のアルミ金属箔上に均一に塗布を行った後、NMPを蒸発させることで正極シートとした。表B-6にリチウム・ニッケル複合酸化物の比表面積とスラリーの粘度・状態、電極の塗布状態を示した。

WO 00/13250 PCT/JP99/04608

比表面積 (m²/g)	スラリー粘度 (cps)	スラリー状態	電極塗布状態
4. 5	22000	ゲル化	不可
3. 2	18000	ゲル化	不可
3. 0	6000	均一分散	良好
1. 5	5000	均一分散	良好
0. 3	4000	均一分散	良好

表B-6 比表面積とスラリーおよび電極の状態

表B-6より、比表面積が3. 2m²/gより大きい場合は、スラリーがゲル 化を引き起こし、電極塗布が困難になることが分かる。従って、リチウム・ニッケル複合酸化物の比表面積は3. 0m²/g以下が望ましい。

同様な結果は、 D_{50} 粒径でも得られ、電解液中へのMn溶出の低減のためには、 D_{50} 粒径が 40μ m以下が好ましく、電極塗布が容易に行える範囲としては D_{50} 粒径は 3μ m以上が好ましい。

以上の評価試験例B $1\sim9$ の結果をまとめると、混合するリチウム・ニッケル複合酸化物は、Mn溶出の観点及びスラリーの塗布性、印刷性の観点から比表面積Xが0. $3 \le X \le 3$. 0 (m^2/g) が最も適している。

また、混合するリチウム・ニッケル複合酸化物は、Mn溶出の観点及びスラリーの塗布性、印刷性の観点より D_{50} 粒径が $3\,\mu$ m以上 $4\,0\,\mu$ m以下であることが最も適している。

また、リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との比率は、Mn溶出の観点及び安全性の観点より、[LiMn複合酸化物]: [LiNi i 複合酸化物] = (100-a): a としたとき、 $3 \le a \le 45$ が好ましい。

本発明によれば、非水電解液二電池に用いる活物質であるリチウム・マンガン 複合酸化物からのMn溶出、電解液中のLi濃度変化が抑制されるため、充放電 サイクル、特に高温における充放電寿命が大きく改善された非水電解液二電池を 提供することができる。また本発明の非水電解液二電池は容量保存特性も改善さ れている。さらに、本発明によれば安全性にも優れた非水電解液二電池を提供す ることができる。

請求の範囲

- 1. 正極にリチウム・マンガン複合酸化物を用いた非水電解液二次電池において、電解液が水と反応して水素イオンを発生し得る組成を含み、電池内の電解液と接触する場所に水素イオン捕捉剤が配置されていることを特徴とする非水電解液二次電池。
- 2. 前記電解液が、支持塩として $LiPF_6$ または $LiBF_4$ を含むことを特徴とする請求項1記載の非水電解液二次電池。
- 3. 前記水素イオン捕捉剤が、正極電極に混合されているか、または電解液に 混合、溶解もしくは分散されていることを特徴とする請求項1または2記載の非 水電解液二次電池。
- 4. 前記水素イオン捕捉剤が、正極活物質としての機能を併せ持つ材料であり、 リチウム・マンガン複合酸化物と共に正極電極に混合されていることを特徴とす る請求項3記載の非水電解液二次電池。
- 5. 前記水素イオン捕捉剤が、水素イオン捕捉機能を有するリチウム・ニッケル複合酸化物である請求項4記載の非水電解液二次電池。
- 6. 前記の水素イオン捕捉機能を有するリチウム・ニッケル複合酸化物が、比表面積Xが0. $3 \le X$ (m^2/g) であるリチウム・ニッケル複合酸化物であることを特徴とする請求項5記載の非水電解液二次電池。
- 7. 前記リチウム・ニッケル複合酸化物の比表面積Xが、さらに $X \le 3$. 0 (m^2/g) であることを特徴とする請求項6記載の非水電解液二次電池。
- 8. 前記の水素イオン捕捉機能を有するリチウム・ニッケル複合酸化物が、D 50粒径が40 μm以下であるリチウム・ニッケル複合酸化物であることを特徴と

WO 00/13250 PCT/JP99/04608

する請求項5記載の非水電解液二次電池。

9. 前記リチウム・ニッケル複合酸化物の D_{50} 粒径が、さらに 3μ m以上であることを特徴とする請求項8記載の非水電解液二次電池。

10. 前記リチウム・ニッケル複合酸化物が、正極活物質であるリチウム・マンガン複合酸化物に対して、重量比率を [LiMn複合酸化物]: [LiNi複合酸化物] = (100-a): aで表したとき、 $3 \le a \le 45$ であることを特徴とする請求項4~9のいずれかに記載の非水電解液二次電池。

11. 正極電極に、

- (A)リチウム・マンガン複合酸化物と、
- (B1) 比表面積Xが0. $3 \le X$ (m^2/g) であって、 $LiNiO_2$ 、 Li_2NiO_2 、 Li_2NiO_2 、 $LiNiO_2$ 、 Li_2NiO_3 、および $LiNi_{1-x}M_xO_2$ ($0 < x \le 0$. 5 であり、Mは、Co、Mn、Al、Fe、Cu、およびSrからなる群より選ばれる1種類以上の金属元素を表す。)からなる群より選ばれるりチウム・ニッケル複合酸化物とを含むことを特徴とする非水電解液二次電池。
- 12. 前記リチウム・ニッケル複合酸化物の比表面積Xが、さらに $X \le 3$. 0 (m^2/g) であることを特徴とする請求項11記載の非水電解液二次電池、

13. 正極電極に、

- (A) リチウム・マンガン複合酸化物と、
- (B2) D_{50} 粒径が 40μ m以下であって、 $LiNiO_2$ 、 Li_2NiO_2 、LiNi $_2O_4$ 、 $Li_2Ni_2O_4$ 、および $LiNi_{1-x}M_xO_2$ ($0 < x \le 0$. 5であり、Mは、Co、Mn、Al、Fe、Cu、およびSrからなる群より選ばれる1種類以上の金属元素を表す。)からなる群より選ばれる少なくとも1種からなるリチウム・ニッケル複合酸化物とを含むことを特徴とする非水電解液二次電池、

WO 00/13250 PCT/JP99/04608

14. 前記リチウム・ニッケル複合酸化物の D_{50} 粒径が、さらに 3μ m以上であることを特徴とする請求項13記載の非水電解液二次電池。

- 15. 前記リチウム・マンガン複合酸化物とリチウム・ニッケル複合酸化物との重量比率を [LiMn複合酸化物]: [LiNi複合酸化物] = (100-a): aで表したとき、 $3 \le a \le 45$ であることを特徴とする請求項 $11 \sim 14$ のいずれかに記載の非水電解液二次電池。
- 16. 前記リチウム・マンガン複合酸化物は、スピネル構造のマンガン酸リチウムである請求項11~15のいずれかに記載の非水電解液二次電池。
- 17. 電解液中の支持塩が、 $LiPF_6$ または $LiBF_4$ である請求項 $1.1\sim1$ 6のいずれかに記載の非水電解液二次電池。

図面

図1

比表面積の違う LiNi 複合酸化物の混合比に対する Mn 溶出量

図2

D₅₀ 粒径の違う LiNi 複合酸化物の混合比に対する Mu 溶出量

図3

55℃環境下でのサイクル特性

図4

図5

図7

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/04608

A. CLASSIFICATION OF SUBJECT MATTER Int. Cl ⁶ H01M10/40, H01M4/58, H01M4/36							
	According to International Patent Classification (IPC) or to both national classification and IPC						
	S SEARCHED						
Int.	Minimum documentation searched (classification system followed by classification symbols) Int. Cl ⁶ H01M10/40, H01M4/58, H01M4/36						
Jits	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Toroku Koho 1996-1999 Kokai Jitsuyo Shinan Koho 1971-1999 Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-1999						
JOIS	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) JOIS (Battery, Lithium, Manganese, Nickel), WPI (Nickel, Lithium, Battery)						
	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap		Relevant to claim No.				
Y	JP, 10-112318, A (FDK CORPORAT)	ION),	1-10,				
x	28 April, 1998 (28.04.98), Claims; page 3, column 3, lines 4, lines 2 to 13 (Family: non	3 to 24; page 3, column e)	11-17				
Y	JP, 6-243897, A (Fuji Photo Fil	lm Co., Ltd.),	1-17				
	02 September, 1994 (02.09.94),						
	Claims; page 4, column 6, line line 36; page 7, column 11, lines	27 to page 8, column 8, 13 to 44 (Family: none)					
Y	JP, 6-325791, A (Fuji Photo Fil	lm Co., Ltd.),	1-17				
	25 November, 1994 (25.11.94), Claims; page 2, column 2, line	31 to page 3. column 3.					
	ine 30; page 5, column 8, line line 11 (Family: none)	35 to page 6, column 9,					
Y	JP, 10-92430, A (YUASA CORPORATION),		1-10				
x	10 April, 1998 (10.04.98), Claims; page 2, column 2, line 42 to page 3, column 4,		11-17				
	line 2 (Family: none)						
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.					
	categories of cited documents:	"T" later document published after the inter	national filing date or				
conside	ent defining the general state of the art which is not red to be of particular relevance	priority date and not in conflict with the understand the principle or theory under	rlying the invention				
date	document but published on or after the international filing	"X" document of particular relevance; the c considered novel or cannot be consider					
cited to	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	step when the document is taken alone document of particular relevance; the c					
"O" docume	reason (as specified) ant referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step combined with one or more other such	documents, such				
"P" docume	means combination being obvious to a person skilled in the art						
Date of the actual completion of the international search 19 November, 1999 (19.11.99) Date of mailing of the international search report 07 December, 1999 (07.12.99)							
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer					
Facsimile No.		Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/04608

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 5-94822, A (Asahi Chemical Industry Co., Ltd.), 16 April, 1993 (16.04.93), Claims; page 2, column 2, line 22 to page 3, column 3, line 47 (Family: none)	1-17
A	JP, 8-37007, A (TOSOH CORPORATION), 06 February, 1996 (06.02.96) (Family: none)	1-17
A	JP, 8-171910, A (Matsushita Electric Industrial Co., Ltd.), 02 July, 1996 (02.07.96) & EP, 720247, A & US, 5626635, A & DE, 69502690, C	1-17
•		
*		
	·	
		•
	·	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

発明の属する分野の分類(国際特許分類(IPC)) Α. Int. Cl 6 H01M10/40, H01M4/58, H01M4/36 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl 6 H01M10/40, H01M4/58, H01M4/36 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案登録公報 1996-1999年 日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-1999年 日本国登録実用新案公報 1994-1999年 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) JOIS, 電池、リチウム、マンガン、ニッケル、Mn、Ni、Li WPI, nickel, lithium, battery 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP, 10-112318, A (富士電気化学株式会社), Y 1 - 10, 4月. 1998 (28.04.98), 特許請求の範囲, 第3頁3欄第3~24行, 第3頁4欄第2~13行 (ファミリーなし) X 11 - 17Y JP, 6-243897, A (富士写真フィルム株式会社), 1 - 179月. 1994 (02. 09. 94) , 特許請求の範囲, 第4頁6 欄第27行~第8頁8欄第36行,第7頁11欄第13~44行 (ファミリーなし) JP, 6-325791, A (富士写真フィルム株式会社) Y 1 - 175. 11月. 1994 (25. 11. 94), 特許請求の範囲, 第 2頁2欄第31行~第3頁3欄第30行,第5頁8欄第35行~第 区欄の続きにも文献が列挙されている。 ┃ ┃ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 「E」国際出願日前の出願または特許であるが、国際出願日 論の理解のために引用するもの 以後に公表されたもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」口頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 0 7.12.99 19.11.99 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4X | 7603 日本国特許庁(ISA/JP) 石井 淑久 甶 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3475

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
	6頁9欄第11行 (ファミリーなし)	
Y	JP, 10-92430, A (株式会社ユアサコーポレーション), 10.4月.1998 (10.04.98), 特許請求の範	1-10
X	囲、第2頁2欄第42行~第3頁4欄第2行(ファミリーなし)	11-17
A .	JP, 5-94822, A (旭化成工業株式会社), 16.4月. 1993 (16.04.93), 特許請求の範囲, 第2頁2欄第2 2行〜第3頁3欄第47行 (ファミリーなし)	1-17
Α	JP, 8-37007, A (東ソー株式会社), 6.2月.1996 (06.02.96) (ファミリーなし)	1-17
A	JP, 8-171910, A (松下電器産業株式会社), 2. 7 月. 1996 (02. 07. 96) & EP, 720247, A&U S, 5626635, A&DE, 69502690, C	1-17
. • •		
	·	