SPIKING NEURAL NETWORKS

Daniel Price and Brandon Nguyen

Artificial Neural Networks

- Poorly represent the human brain
- Matrix Multiplication (GEMM)
 - More Computation -> More Energy
- Offline learning
- Backpropagation
 - High training Cost

Spiking Neural Networks

- Incorporates neuron models
- Spikes convert GEMM into accumulation
 - Less Computation -> Less Energy
- Online learning
- Surrogate Gradient Descent / STDP (Unsupervised)
 - Low training cost

Applications

- Robotics
- Neuroscience
- Autonomous systems
- Natural language processing
- Computer vision
- etc.

Canada's Mars Exploration Science Rover

Leaky-Integrate and Fire

- Simple Neuron Model
- Represents neurons as an RC circuit
- Input current increase membrane potential
- When membrane potential breaks threshold, potential resets

Learning

- Surrogate Gradient Descent
 - Step function learning (spike or no spike)
 - Replace derivative with a surrogate function
- STDP (Spike-Time Dependent Plasticity)
 - Unsupervised learning
 - Updates weights on spiking behavior
 - Presynaptic / Postsynaptic spikes

Workflow Distribution

Brandon:

- Visualization of model architecture
- Data Processing and Data Visualization construction
- Code Documentation

Daniel:

- CNN and CSNN Architecture Design
- Generation of results and case study data
- Hyperparameter tuning

Problem Description

Train a SNN on MNIST Dataset for a supervised multi-class classification task.

Compare with ANN /
CNN on accuracy and
training loss

Compare computation cost in **FLOPs** (Floating Point Operations)

Initial Approach

- LIF / STDP model
- Struggled to correlate images to labels

Why?

- STDP struggles with classification
 - Unsupervised learning
 - Learning does not use labels
- STDP is used more commonly in TNNs (Temporal Neural Networks)
- SNNs are emerging:
 - Limited application
 - Research focused

Attempts to salvage Initial Approach

Normalization & Regularization

- Varying threshold voltage
- Reward modulated STDP (R-STDP)
 - Rewards/Punishes neurons based on prediction

Hyperparameter tuning variation

- R/C/Tau
- Timesteps
- Learning Rate

Batch Normalization (BN)

$$\Rightarrow \text{ layer } \Rightarrow x \Rightarrow \hat{x} = \frac{x - \mu}{\sigma} \Rightarrow y = \gamma \hat{x} + \beta$$

- μ : mean of x in mini-batch
- σ: std of x in mini-batch
- γ: scale
- β : shift

- μ , σ : functions of x, analogous to responses
- γ , β : parameters to be learned, analogous to weights

Image: http://tzutalin.blogspot.com/2017/07/deep-learning-batch-normalization-note.html

New Approach

- BNTT (Batch Normalization Through Time)
 - Codebase detailing implementation
 - Batch Normalization
 - Normalizes inputs across batch
 - Reduces covariant shift
 - Applies to each timestep
 - Backpropagation
 - Preferable with SNNs / Classification
- Solid foundation, but more complex than necessary.

Code: https://github.com/Intelligent-Computing-Lab-Yale/BNTT-Batch-Normalization-Through-Time/blob/main/model.py

New Approach: Our Implementation

Simplify Architecture:

- Reduce layers from 9 to 3
- Reduce Shape / Input channels
 - Match input (MNIST)
 - Lower Complexity (hidden shapes)
- Reduce epochs and timesteps

Justification:

 Model is too complex for dataset

Experimental Methodology

- Dataset: MNIST Handwritten Digits
- Model Architecture
- Hyperparameters used
- Encoding type
- Case Study
- Evaluation: Classification accuracy, training loss, and FLOPs

MNIST Examples

MNIST Dataset

A database of handwritten digits containing a training set of 60,000 examples, and a test set 10,000 examples.

Using 10% of the dataset due to training overhead (SNN)

Training on 6,000 samples.

Testing on 1,000 samples.

Goal: Correctly classify images as one of the ten digits.

Input: MNIST Batch Layer 1 PoissonGen SConv2D **SBNN** Layer 2 SConv2D **SBNN** AvgPool2D Layer 3 **FCNN** FC_SBNN **FCNN** Output Voltage

Model

- Visual diagram of our model architecture and flow of our forward pass function if observing layers only.
- Baseline CNN ignores PoissonGen and uses non-spiking equivalents
 - o SConv2D -> Conv2D

<u>Hyperparameters - Baseline</u>

Global Hyperparameters:

batch size, learning rate, number of epochs

Convolutional Layer 1

Input Channels: 1; Output Channels 64; Kernel Size:
 1; Stride: 1

Convolutional Layer 2

 Input Channels: 64; Output Channels: 64; Kernel Size: 3; Stride: 1

2D Batch Normalization between Layers

Input Channels: 64; Epsilon: 1e-4; Momentum: 0.1;

Pooling (after L2 and BN)

Average Pooling; Kernel Size: 2

Fully-connected Layer 1

Input Dimension: 14 * 14 * 64; Output Dimension: 512

1D Batch Normalization

Input Dimension: 512; Epsilon: 1e-4; Momentum:
0.1

Fully-connected Layer 2

Input Dimension: 512; Output Dimension: 10

Activation Function

Rectified Linear Unit following each BN operation.

Hyperparameters - CSNN

Global Hyperparameters:

 number of time steps, leakage memory, batch size, learning rate, number of epochs

Convolutional Layer 1

 Input Channels: 1; Output Channels 64; Kernel Size: 1; Stride: 1

Convolutional Layer 2

 Input Channels: 64; Output Channels: 64; Kernel Size: 3; Stride: 1

Spiking 2D Batch Normalization between Layers

Input Channels: 64; Epsilon: 1e-4; Momentum: 0.1;

Pooling (after L2 and BN)

Average Pooling; Kernel Size: 2

Fully-connected Layer 1

Input Dimension: 14 * 14 * 64; Output Dimension: 512

Spiking 1D Batch Normalization

Input Dimension: 512; Epsilon: 1e-4; Momentum: 0.1

Fully-connected Layer 2

Input Dimension: 512; Output Dimension: 10

Activation Function

N/A

Encoding Type

Rate Encoding

 Represents data as firing rate (frequency)

Latency Encoding

Represents data as spike timings

BNTT uses rate encoding

- SNNs prefer Rate encoding
- TNNs prefer Latency encoding

Case Study

Hyperparameter Variation

- Batch Size
- Epochs
- Timesteps
 - Steps in each forward pass of a neuron
- Leakage Voltage
 - Percentage of voltage retained between each step

Metrics

- Testing Accuracy
- Total FLOPs (Normalized)

<u>Case Study – Testing Accuracy vs. Batch Size</u>

CNN Results:

<u>Case Study – Testing Accuracy vs Learning Rate</u>

CNN Results:

Case Study – Testing Accuracy vs Epochs

CNN Results:

<u>Case Study – Testing Accuracy vs Leakage Voltage / Time Steps</u>

<u>Case Study – Norm FLOPs vs Leakage Voltage / Time Steps</u>

Model	CNN	SNN
Batch Size	32	32
Learning Rate	0.1	0.2
Epochs	50	50
Time Steps	N/A	10
Leakage Voltage	N/A	0.985
Training Loss	0.00098	0.00371
Testing Accuracy	98.535	98.145
Normalized Inference FLOPs	1x	0.428x

Evaluation

- Training Loss
- Classification Testing Accuracy
- Floating Point Operations comparison

<u>Takeaway</u>

- CSNN Model classifies with similar accuracy
- Computes 42.8% flops compared to CNN
- Ignores multiplier, majority of computational energy
- Achieves Significant decrease in energy usage.

QUESTIONS?