Теория и реализация языков программирования.

Задание 8: контекстно-свободные языки и магазинные автоматы II

Сергей Володин, 272 гр.

задано 2013.10.23

Упражнение 1

- 1. Левый вывод однозначно задает дерево вывода, так как вывод последовательность слов из $(N \cup T)^*$ с указанием нетерминала для каждого слова и правила. Будем определять дерево так: если $A \longrightarrow x_1...x_n$. добавим к вершине A потомков $x_1,...,x_n$ в таком порядке. Если два левых вывода различны, то построенные таким образом деревья также получатся различными.
- 2. Если дано дерево вывода, то левый вывод можно получить его обходом в глубину, выбирая на каждом шаге самого левого из непросмотренных потомков. Если два дерева вывода различны, то так построенные выводы также получатся различными.
- 3. Пусть существует единственное дерево вывода. Предположим, что существуют два различных левых вывода. Построим по ним деревья вывода. Они получатся различными противоречие.
- 4. Аналогично, если существует единственный левый вывод, то существует единственное дерево вывода.

Упражнение 2

Задача 1

1. Определим МП-автомат $\mathcal{A} = (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по принимающему состоянию.

(a)
$$\Sigma \stackrel{\text{\tiny def}}{=} \{a, b, c, f\}$$

(b)
$$\Gamma \stackrel{\text{def}}{=} \{F, Z\}$$

(c)
$$Q \stackrel{\text{def}}{=} \{q_0, q_1, q_2, q_3\}$$

(d) δ изображена справа

(e)
$$F \stackrel{\text{def}}{=} \{q_0, q_3\}$$

- $f, F/F \qquad a, a/aa \qquad b, a/\varepsilon \qquad c, Z/Z$ $q_0 \qquad a, F/aF \qquad b, a/\varepsilon \qquad \varepsilon, Z/Z$ $q_1 \qquad b, a/\varepsilon \qquad q_2 \qquad \varepsilon, F/F \qquad q_3$ $f, Z/F \qquad c, Z/Z \qquad c$
- 2. Определим грамматику $G = (\Sigma, T, P, S)$:

1.
$$T \stackrel{\text{def}}{=} \{S, X, C, F\}$$

2. P:

i.
$$S \longrightarrow XC|FX|X$$

ii.
$$X \longrightarrow aXb|\varepsilon$$

iii.
$$C \longrightarrow cC|c$$

iv.
$$F \longrightarrow fF|f$$

- 3. Автомат является детерминированным по определению ($|\delta(q,\sigma,\gamma)| \leq 1$, и если $\delta(q,\sigma,\gamma) \neq \emptyset$, то $\delta(q,\varepsilon,\gamma) = \emptyset$).
- 4. Докажем, что грамматика однозначная: действительно, для каждого нетерминала X,C,F можно применить только два правила, причем одно из них уменьшает количество X,C,F, а второе сохраняет. Поэтому после применения второго нельзя применить первые. Правила для X либо добавляют a,b, либо нет, причем другие правила не добавляют a,b. Значит, количество применений правила $X \longrightarrow aXb$ фиксировано для каждого слова. Аналогично получаем, что к C,F можно применить только одно правило при фиксированном порожденном слове.
 - XC, FX и X не имеют пересечений в множествах порождаемых слов из терминалов: действительно, C добавляет c, F добавляет f, X не порождает c или f. Поэтому при фиксированном слове S может перейти только в одно из этих слов.
- 5. Докажем, что L(G) = L:
 - (a) $L \subset L(G)$. Пусть $w \in L$. Построим вывод:
 - і. Если $w=f^na^mb^m,\ n>0,$ $\underline{S}\to\underline{F}X\to f\underline{F}X\to\dots\to f^n\underline{X}\to f^na\underline{X}b\to\dots\to f^na^m\underline{X}b^m\to f^na^mb^m.$

- іі. Если $w = a^n b^n c^m$, m > 0, $\underline{S} \to \underline{X}C \to a\underline{X}bC \to \dots \to a^n\underline{X}b^nC \to a^nb^n\underline{C} \to a^nb^nc\underline{C} \to \dots \to a^nb^nc^m.$
- ііі. Если $w = a^n b^n$, $S \to X \to aXb \to \dots \to a^nXb^n \to a^nb^n$.
- (b) $L(G) \subset L$. Очевидно, C порождает c^k , k > 0; F порождает f^l , l > 0; X порождает $a^n b^n$, $n \geqslant 0$. Также заметим. Пусть $w \in L(G)$. Рассмотрим вывод. Рассмотрим первое правило:
 - і. $S \to X$. Тогда $w = a^n b^n \in L$
 - іі. $S \to XC$. Тогда $w = a^n b^n c^n \in L$
 - і
іі. $S \to FX$. Тогда $w = f^n a^m b^m \in L$.
- 6. Докажем, что L(A) = L:
 - (a) Пусть $w \in L$.
 - і. $w = a^n b^n c^m, n > 0, m \geqslant 0$. Тогда $(q_0, a^n b^n c^m, Z) \vdash (q_1, a^{n-1} b^n c^m, aZ) \vdash (q_1, a^{n-2} b^n c^m, aaZ) \vdash \ldots \vdash (q_1, b^n c^m, a^n Z) \vdash (q_2, b^{n-1} c^m, a^{n-1} Z) \vdash (q_2, b^{n-2} c^m, a^{n-2} Z) \vdash \ldots \vdash (q_2, c^m, Z) \vdash (q_3, c^m, Z) \vdash \ldots \vdash (q_3, \varepsilon, Z).$ $q_3 \in F \Rightarrow w \in L(\mathcal{A})$.
 - іі. $w=c^m, m\geqslant 0$. Тогда $(q_0,c^m,Z)\vdash (q_3,c^m,Z)\vdash \ldots \vdash (q_3,\varepsilon,Z)$. $q_3\in F\Rightarrow w\in L(\mathcal{A})$
 - іїі. $w=f^n, n\geqslant 0$. Тогда $(q_0,f^n,Z)\vdash (q_0,f^{n-1},F)\vdash \ldots \vdash (q_0,\varepsilon,F)$. $q_0\in F\Rightarrow w\in L(\mathcal{A})$
 - iv. $w=f^na^mb^m, n\geqslant 0, m>0$. Тогда $(q_0,f^na^mb^m)\stackrel{6(a)ii}{\vdash^*}(q_0,a^mb^m,F)\stackrel{6(a)i}{\vdash^*}(q_2,\varepsilon,F)\vdash (q_3,\varepsilon,F).$ $q_3\in F\Rightarrow w\in L(\mathcal{A}).$
 - (b) Пусть $w \in L(\mathcal{A}) \Rightarrow (q_0, w, Z) \vdash^* (q, \varepsilon, \gamma), q \in F \equiv \{q_0, q_3\}.$
 - і. $q=q_0$. Переходы в q_0 только из q_0 по f, поэтому $w=f^m\in L$
 - іі. $q = q_3$. Переходов в q_3 три:
 - А. Был совершен переход $q_0 \stackrel{c,Z/Z}{\longrightarrow} q_3$. Как было отмечено, в q_0 переходы только по f. Но эти переходы заменяют Z на дне стека на F, поэтому переход из данного случая не мог быть произведен. Значит, $w = cw_1$, и цепочка конфигураций имеет вид $(q_0, cw_1, Z) \vdash (q_3, w_1, Z)$. Но из q_3 переходы только по c, значит, $w = c^l \in L$
 - В. Был совершен переход $q_2 \stackrel{\varepsilon,Z/Z}{\longrightarrow} q_3$. Поскольку на дне стека Z, а не F, то символы f не были прочитаны (они могут быть прочитаны только в q_0 , когда Z на дне стека, и прочтение заменит Z на f). Рассмотрим последний переход в q_2 . Это был переход вида $\stackrel{b,a/\varepsilon}{\longrightarrow} q_2$ (других нет), значит, в стеке был символ a. В q_2 есть переходы только из q_1 , поэтому перед попаданием в q_2 (буквы a удаляются из стека при прочтении b) конфигурация была $(q_1, b^n x, a^n \gamma)$. Но буквы a могли быть добавлены только при прочтении a, другие символы не могли быть прочитаны, поэтому $w=a^nb^nx$. Из q_3 есть переходы только по c, значит, w= $a^nb^nc^m\in L$
 - С. Был совершен переход $q_2 \overset{\varepsilon,F/F}{\longrightarrow} q_3$. Значит, были прочтены f. Аналогично получаем, что $w = f^n a^m b^m x$. Но из q_3 нет переходов при F на верхушке стека, значит, $x=\varepsilon$, и $w=f^na^mb^m\in L$.

Задача 2

Задача 3

- 1. $M' = (\Sigma, \Gamma, Q', q_0, Z, \delta', F)$ расширенный МП-автомат, допускающий по принимающему состоянию. Построим обычный МП-автомат $M = (\Sigma, \Gamma, Q, q_0, Z, \delta, F)$, допускающий по принимающему состоянию:
 - (a) $Q=Q'\cup\bigcup_{i=1}^{|\delta'|}Q_i$, где для каждого перехода i в исходном автомате $\delta(q,\sigma,\alpha)\ni(s,\beta)$ определено $Q_i\stackrel{\text{def}}{=} \begin{cases} \varnothing, & |\alpha|=1\\ \{s_i^1,...,s_i^{|\alpha|-1}\} & |\alpha|\geqslant 2 \end{cases} |\alpha|-1 \text{ новых состояний.}$

$$Q_i \stackrel{\text{\tiny def}}{=} egin{cases} \varnothing, & |lpha| = 1 \ \{s_i^1,...,s_i^{|lpha|-1}\} & |lpha| \geqslant 2 \end{cases} - |lpha| - 1$$
 новых состояний.

(b) $\delta = \bigcup_{i=1}^{|\delta^i|} \delta_i$, где для каждого перехода i в исходном автомате $\delta(q,\sigma,\alpha) \ni (s,\beta)$ определено

$$\delta_i \stackrel{\text{def}}{=} \begin{cases} q \stackrel{\sigma,\alpha/\beta}{\longrightarrow} s, & |\alpha| = 1 \\ q \stackrel{\sigma,\alpha_1/\varepsilon}{\longrightarrow} s_i^1 \cup s_i^1 \stackrel{\varepsilon,\alpha_2/\varepsilon}{\longrightarrow} s_i^2 \cup \ldots \cup s_i^{n-1} \stackrel{\varepsilon,\alpha_n/\beta}{\longrightarrow} s & |\alpha| \geqslant 1 \end{cases}, \text{ где } \alpha = \alpha_1 \ldots \alpha_n, \, \forall i \in \overline{1,n} \hookrightarrow \alpha_i \in \Gamma \text{ во втором случае.}$$

Иными словами, переходы, удаляющие один символ не изменяются, а остальные переходы вида

- 1. $(L(M') \subseteq L(M))$ Пусть $w \in L(M')$. Рассмотрим цепочку конфигураций в исходном автомате. Каждый переход, удаляющий один символ из стека может быть совершен в новом автомате, т.к. он содержится в δ . Переходы, удаляющие больше одного символы также могут быть совершены (по построению). Получаем, что M оказывается в том же состоянии q, что и M'. $q \in F \Rightarrow w \in L(M)$
- 2. $(L(M) \subseteq L(M'))$. Пусть $w \in L(M) \Rightarrow q_0 \xrightarrow{w} q \in F$. Рассмотрим цепочку конфигураций. Переходы по состояниям $s_i^1...s_i^n$ можно «свернуть» в один переход из исходного по построению (степени исхода и захода у созданных вершин равны 1, поэтому, путь из s_j^i может быть только в соответствующее состояние q). Таким образом, исходный автомат также может оказаться в состоянии $q \in F \Rightarrow w \in L(M')$
- 2. В задании не дано определение детерминированного расширенного $M\Pi$ -автомата, поэтому используется определение для обычных $M\Pi$ -автоматов (одно правило по первому символу, который удаляется из стека)

Пусть M' — детерминированный, докажем, что M — детерминированный. Действительно, из созданных состояний s_i^j переход один по построению, и в другое состояние.

По определению детерминированности M' имеем

 $\forall q \in Q' \, \forall \sigma \in \Sigma \, \forall \gamma \in \Gamma \hookrightarrow |\delta'(q, \sigma, \gamma)| \leqslant 1$, и

 $\forall \sigma \in \Sigma \, \forall \gamma \in \Gamma \hookrightarrow (\delta'(q,\varnothing,\gamma) \neq \varnothing \Rightarrow \delta'(q,\sigma,\gamma) = \varnothing)$ Поскольку для каждого измененного перехода из q было изменено только состояние, куда совершается переход и символ, удаляемый из стека (вместо слова), получаем это же утверждение для $M \Rightarrow M$ — детерминированный.

Задача 4

Задача 5