Shanhui Fan

In this exam, the metal is all assumed to be perfect metal. (i.e. perfect electrical conductor).

- (a) What are the boundary conditions for the electric fields at the metal-air interfaces?
- (b) What are the boundary conditions for the magnetic fields at the metal-air interfaces? Why?
- (c) Consider an infinitely long cylindrical air hole inside a metal, sketch qualitatively the $\omega \sim \beta$ diagram for the lowest order propagating modes inside the hole, where ω is the angular frequency for the waves and β is the propagation constant. (i.e. the field varies along the z-direction, defined as the axis of the cylinder, as $e^{-i\beta z}$.)
- (d) Sketch the electric field vector distribution of the lowest order propagating inside the hole.
- (e) Consider the following experiment, where a plane wave is incident upon a metal film with a hole introduced in it. Could you sketch the amount of transmitted power as the wavelength is varied from $\lambda >> a$ to $\lambda \sim a$, where a is the radius of the hole?

