Markov Decision Processes Infinite Horizon Problems

Alan Fern *

^{*} Based in part on slides by Craig Boutilier and Daniel Weld

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: a policy that achieves an "optimal value"

This depends on how we define the value of a policy

 There are several choices and the solution algorithms depend on the choice

- We will consider two common choices
 - Finite-Horizon Value
 - Infinite Horizon Discounted Value

Infinite Horizons

Consider accumulating reward over an infinite horizon?

Infinite Horizon

Example policy: $\pi(s_0) = a_0$, $\pi(s_1) = a_1$

Do we have any problems here for infinite horizon?

Infinite Horizon

Example policy: $\pi(s_0) = a_1$, $\pi(s_1) = a_0$

Do we have any problems here for infinite horizon?

Discounted Infinite Horizon MDPs

- Defining value as total reward is problematic with infinite horizons $r_0 + r_1 + r_2 + r_3 + \cdots$
 - many or all policies have infinite expected reward
 - some MDPs are ok (e.g., zero-cost absorbing states)
- Why is this bad?
 - ♠ Consider π_1 that gets R=1 per step and π_2 that gets R=2 per step
 - \uparrow π_2 is clearly better, but infinite total reward can't distinguish between them (both get infinite value)
- "Trick": introduce discount factor $0 \le \beta < 1$
 - future rewards discounted by β per time step

$$r_0 + \beta r_1 + \beta^2 r_2 + \beta^3 r^3 + \cdots$$

Discounted Infinite Horizon MDPs

Expected infinite horizon discounted reward

$$V_{\pi}(s) = E\left[\sum_{t=0}^{\infty} \beta^{t} R^{t} \mid \pi, s\right]$$

We avoid infinite values (consider getting max absolute reward each step)

Maximum absolute reward

$$V_{\pi}(s) \leq E\left[\sum_{t=0}^{\infty} \beta^{t} R^{\max}\right] = \frac{1}{1-\beta} R^{\max}$$

Motivation: economic? prob of death? convenience?

/

Notes: Discounted Infinite Horizon

- Optimal policies guaranteed to exist (Howard, 1960)
 - ▲ I.e. there is a policy that maximizes value at each state
- Furthermore there is always an optimal stationary policy
 - Intuition: why would we change action at s at a new time when there is always forever ahead
- We define V*(s) to be the optimal value function.
 - That is, $V*(s) = V_{\pi}(s)$ for some optimal stationary π

Computational Problems

- Policy Evaluation
 - Given π and an MDP compute V_{π}

- Policy Optimization
 - riangle Given an MDP, compute an optimal policy π^* and V^* .
 - We'll cover two algorithms for doing this: value iteration and policy iteration

Policy Evaluation

Value equation for fixed policy

$$V_{\pi}(s) = R(s,\pi(s)) + \beta \sum_{s'} T(s,\pi(s),s') \cdot V_{\pi}(s')$$
 immediate reward discounted expected value of following policy in the future

 Equation can be derived from original definition of infinite horizon discounted value

Sutton & Barto Notation vs. Ours

- Recall that Sutton & Barto define MDPs via $p(s', r \mid s, a)$ rather than R(s,a) and T(s,a,s') as in our slides
- Define $R(s,a)=\sum_{s'}\sum_{r}p(s',r\mid s,a)\cdot r=E_p[r\mid s,a]$ and $T(s,a,s')=\sum_{r}p(s',r\mid s,a)=p(s'\mid s,a)$
- By defining R and T this way, our value function defined via R and T is equivalent to definition via Sutton & Barto's p

$$V_{\pi}(s) = \sum_{s'} \sum_{r} p(s', r \mid s, \pi(s)) \cdot (r + \beta V_{\pi}(s')) \quad \text{;; definition via p}$$

$$= \sum_{s'} \sum_{r} p(s', r \mid s, \pi(s)) \cdot r + \sum_{s'} \sum_{r} p(s', r \mid s, \pi(s)) \cdot \beta V_{\pi}(s'))$$

$$= R(s, \pi(s)) + \beta \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}(s') \quad \text{;; definition via R and T}$$

Policy Evaluation

Value equation for fixed policy

$$V_{\pi}(s) = R(s,\pi(s)) + \beta \sum_{s'} T(s,\pi(s),s') \cdot V_{\pi}(s')$$
 immediate reward discounted expected value of following policy in the future

 Equation can be derived from original definition of infinite horizon discounted value

Policy Evaluation

Value equation for fixed policy

$$V_{\pi}(s) = R(s, \pi(s)) + \beta \sum_{s'} T(s, \pi(s), s') \cdot V_{\pi}(s')$$

- How can we compute the value function for a fixed policy?
 - we are given R, T, π , β and want to find $V_{\pi}(s)$ for each s
 - linear system with n variables and n constraints
 - Variables are values of states: $V(s_1), ..., V(s_n)$
 - Constraints: one value equation (above) per state
 - Use linear algebra to solve for V (e.g. matrix inverse)

Policy Evaluation via Matrix Inverse

$$S = \{s_1, s_2, \dots, s_n\}$$

 V_{π} is n-dim column vector, where $V_{\pi}(i) = V_{\pi}(s_i)$

R is n-dim column vector, where $R(i) = R(s_i, \pi(s_i))$

T is an nxn matrix s.t. $T(i,j) = T(s_i, \pi(s_i), s_j)$

$$V_{\pi} = R + \beta T V_{\pi}$$

$$\downarrow \downarrow$$

$$(I - \beta T)V_{\pi} = R$$

$$\downarrow \downarrow$$

$$V_{\pi} = (I - \beta T)^{-1} R$$

Computational Problems

- Policy Evaluation
 - Given π and an MDP compute V_{π}

- Policy Optimization
 - riangle Given an MDP, compute an optimal policy π^* and V^* .
 - We'll cover two algorithms for doing this: value iteration and policy iteration

Optimizing Value Functions

- Our first algorithm will compute an arbitrarily close approximation to optimal value function V*.
- If we are given just V*, do we know which action to take in a state?
- What if we are also given the transition function T?
- Use greedy policy: (one step lookahead)

$$gr[V^*](s) = \arg\max_{a} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^*(s')$$

Computing an Optimal Value Function

Bellman equation for optimal value function

we get optimal value in future

Bellman proved this is always true for an optimal value function

Computing an Optimal Value Function

Bellman equation for optimal value function

$$V^{*}(s) = \max_{a} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^{*}(s')$$

- How can we solve this equation for V*?
 - The MAX operator makes the system non-linear, so the problem is more difficult than policy evaluation

- Idea: lets pretend that we have a finite, but very, very long, horizon and apply finite-horizon value iteration
 - Adjust Bellman Backup to take discounting into account.

Bellman Backups (Revisited)

$$V^{k+1}(s) = \max_{a} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^{k}(s')$$

Value Iteration

 Can compute optimal policy using value iteration based on Bellman backups, just like finite-horizon problems (but include discount term)

$$V^{0}(s) = 0$$

$$V^{k}(s) = \max_{a} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')$$

- Do we need to store all of the V^k in memory?
 - ^ No. We only need to store the latest value function V^{k-1} , to compute the updated V^k

Value Iteration

 Can compute optimal policy using value iteration based on Bellman backups, just like finite-horizon problems (but include discount term)

$$V^{0}(s) = 0$$

$$V^{k}(s) = \max_{a} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')$$

- Will it converge to optimal value function as k gets large?
 - Yes. $\lim_{k\to\infty} V^k = V^*$
- Why? When should we stop iterating in practice?

Convergence of Value Iteration

- Bellman Backup Operator: define B to be an operator that takes a value function V as input and returns a new value function after a Bellman backup
 - lacktriangle Think of V and B[V] as vectors indexed by states

$$B[V](s) = \max_{a} R(s,a) + \beta \sum_{s'} T(s,a,s') \cdot V(s')$$

Value iteration is just the iterative application of B:

$$V^0 = 0$$

$$V^k = B[V^{k-1}]$$

Convergence: Fixed Point Property

Bellman equation for optimal value function

$$V^{*}(s) = \max_{a} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^{*}(s')$$

- Fixed Point Property: The optimal value function is a fixed-point of the Bellman Backup operator B.
 - ◆ That is B[V*]=V*

$$B[V^*](s) = \max_{a} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^*(s') = V^*$$

Convergence: Contraction Property

- Let ||V|| denote the max-norm of V, which returns the maximum absolute value of the vector.
 - \blacksquare E.g. ||(0.1 100 5 6)|| = 100

• B[V] is a contraction operator wrt max-norm

For any V and V', $\|\boldsymbol{B}[V] - \boldsymbol{B}[V']\| \leq \beta \|V - V'\|$

- You will prove this.
- That is, applying B to any two value functions causes them to get closer together in the maxnorm sense!

Convergence

- Using the properties of B we can prove convergence of value iteration.
- Proof:
 - 1. For any V: $||V^* B[V]|| = ||B[V^*] B[V]|| \le \beta ||V^* V||$
 - So applying Bellman backup to any value function V brings us closer to V* by a constant factor β
 ||V* V^{k+1}|| = ||V* B[V^k]|| ≤ β || V* V^k ||
 - 3. This means that $||V^* V^k|| \le \beta^k ||V^* V^0||$
 - 4. Thus $\lim_{k\to\infty} \left\|V^* V^k\right\| = 0$

Value Iteration: Stopping Condition

- Want to stop when we can guarantee the value function is near optimal.
- Key property: (not hard to prove)

If
$$||V^k - V^{k-1}|| \le \epsilon$$
 then $||V^k - V^*|| \le \epsilon \beta /(1-\beta)$

- Continue iteration until ||V^k V^{k-1}||≤ ε
 - Select small enough ε for desired error guarantee

How to Act

 Given a V^k from value iteration that closely approximates V*, what should we use as our policy?

Use greedy policy: (one step lookahead)

$$gr[V^k](s) = \underset{a}{\operatorname{arg\,max}} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^k(s')$$

- Note that the value of greedy policy may not be exactly equal to V^k
 - ◆ Why?

How to Act

Use greedy policy: (one step lookahead)

$$gr[V^k](s) = \underset{a}{\operatorname{arg max}} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^k(s')$$

- For simplicity, define $\pi_k(s) = gr[V^k](s)$
- We care about the value of the greedy policy which we denote by $V_{\pi_{\nu}}$
 - ◆ This is how good the greedy policy will be in practice.

- How close is $V_{\pi_{\nu}}$ to V^* ?
 - ◆ What is the price for acting greedily with respect to a close approximation to V* compared to V*?

Value of Greedy Policy

$$\pi_k(s) = gr[V^k](s)$$

- Define V_{π_k} to be the value of this greedy policy
 - ◆ This is likely not the same as V^k
- Property: If $||V^k V^*|| \le \lambda$ then $||V_{\pi_k} V^*|| \le 2\lambda\beta/(1-\beta)$
 - ↑ Thus, V_{π_k} is not too far from optimal if V^k is close to optimal
- Our previous stopping condition allows us to bound λ based on ||V^{k+1} – V^k||

- Set stopping condition so that $||V_{\pi_{\nu}} V^*|| \leq \Delta$
 - ◆ How?

Goal: $||V_{\pi_k} - V^*|| \le \Delta$

Property: If $||V^k - V^*|| \le \lambda$ then $||V_{\pi_k} - V^*|| \le 2\lambda\beta/(1-\beta)$

Property: If $||V^k - V^{k-1}|| \le \epsilon$ then $||V^k - V^*|| \le \epsilon \beta / (1-\beta)$

Answer: If $||V^k - V^{k-1}|| \le (1 - \beta)^2 \Delta / (2\beta^2)$ then $||V_{\pi_k} - V^*|| \le \Delta$

Asynchronous Value Iteration

We just considered synchronous value iteration:

At iteration k perform Bellman Backup at ALL states.

$$V^{k}(s) = \max_{a} R(s, a) + \beta \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')$$

Asynchronous Value Iteration:

At iteration k perform a Bellman Backup on a random state s (V^k only differs from V^{k-1} at a single state)

Asynchronous Value Iteration converges as long as all states are updated infinitely often. Order of updates does not mater.

Do we need to store full copies of both V^k and V^{k+1} as in VI?

Policy Evaluation Revisited

- Sometimes policy evaluation is expensive due to matrix operations
- Can we have an iterative algorithm like value iteration for policy evaluation?
- **Idea:** Given a policy π and MDP M, create a new MDP $M[\pi]$ that is identical to M, except that in each state s we only allow a single action $\pi(s)$

Example policy:

$$\pi(s_0) = a_0, \pi(s_1) = a_1$$

What is V^* for $M[\pi]$?

Policy Evaluation Revisited

- Sometimes policy evaluation is expensive due to matrix operations
- Can we have an iterative algorithm like value iteration for policy evaluation?
- Idea: Given a policy π and MDP M, create a new MDP $M[\pi]$ that is identical to M, except that in each state s we only allow a single action $\pi(s)$
- Since the only valid policy for $M[\pi]$ is π , $V^* = V_{\pi}$.

Policy Evaluation Revisited

- Running VI on $M[\pi]$ will converge to $V^* = V_{\pi}$.
 - ◆ What does the Bellman backup look like here?

- The Bellman backup now only considers one action in each state, so there is no max
 - lacktriangle We are effectively applying a backup restricted by π

Restricted Bellman Backup:

$$B_{\pi}[V](s) = R(s, \pi(s)) + \beta \sum_{s'} T(s, \pi(s), s') \cdot V(s')$$

Iterative Policy Evaluation

• Running VI on $M[\pi]$ is equivalent to iteratively applying the restricted Bellman backup.

Iterative Policy Evaluation:

$$V^0 = 0$$

$$V^{0} = 0$$

$$V^{k} = B_{\pi}[V^{k-1}]$$

Convergence: $\lim_{k\to\infty} V^k = V_{\pi}$

Often become close to V_{π} for small k

Computational Problems

- Policy Evaluation
 - Given π and an MDP compute V_{π}

- Policy Optimization
 - riangle Given an MDP, compute an optimal policy π^* and V^* .
 - We'll cover two algorithms for doing this: value iteration and policy iteration

Optimization via Policy Iteration

- Policy iteration uses policy evaluation as a sub routine for optimization
- It iterates steps of policy evaluation and policy improvement
 - 1. Choose a random policy π
 - 2. Loop:
 - (a) Evaluate V_{π}
 - (b) $\pi' = \text{ImprovePolicy}(V_{\pi})$
 - (c) Replace π with π'

Until no improving action possible at any state

Given V_{π} returns a strictly better policy if π isn't optimal

Policy Improvement

- Given V_{π} how can we compute a policy π' that is strictly better than a sub-optimal π ?
- Idea: given a state s, take the action that looks the best assuming that we following policy π thereafter
 - ightharpoonup That is, assume the next state s' has value $V_{\pi}(s')$

Action Values for Policy Improvement

- The Q-function is widely used in MDP literature for assigning values to actions
- $Q_{\pi}(s,a)$ is expected discounted cumulative reward of taking action a in s and then following π thereafter

$$Q_{\pi}(s,a) = R(s,a) + \beta \sum_{s'} T(s,a,s') V_{\pi}(s')$$

• Improved Policy π' : act greedily according to Q_{π}

For each
$$s$$
 in S , $\pi'(s) = \arg\max_{a \in A} Q_{\pi}(s, a) = gr[V_{\pi}](s)$

Policy Improvement Theorem

If π is not optimal then π' is strictly better than π !

For any two value functions V_1 and V_2 , we write $V_1 \ge V_2$ to indicate that for all states s, $V_1(s) \ge V_2(s)$.

Proposition: $V_{\pi'} \geq V_{\pi}$ with strict inequality for sub-optimal π .

Useful Properties for Proof:

- 1) $V_{\pi} = B_{\pi}[V_{\pi}]$;; fixed point property
- 2) $B[V_{\pi}] = B_{\pi'}[V_{\pi}]$;; by the definition of π'
- 3) For any V_1, V_2 and π , if $V_1 \ge V_2$ then $B_{\pi}[V_1] \ge B_{\pi}[V_2]$

$$\pi'(s) = \arg\max_{a \in A} Q_{\pi}(s, a)$$

Proposition: $V_{\pi'} \ge V_{\pi}$ with strict inequality for sub-optimal π .

Proof: (first part, non-strict inequality)

We know that $V_{\pi} = B_{\pi}[V_{\pi}] \le B[V_{\pi}] = B_{\pi'}[V_{\pi}]$

So we have that $V_{\pi} \leq B_{\pi'}[V_{\pi}]$.

Now by monotonicity we get $B_{\pi'}[V_{\pi}] \leq B_{\pi'}^2[V_{\pi}]$ where $B_{\pi'}^k$ denotes k applications of $B_{\pi'}$.

We can continue and derive that in general for any k, $B_{\pi'}^k[V_{\pi}] \leq B_{\pi'}^{k+1}[V_{\pi}]$, which also implies that $V_{\pi} \leq B_{\pi'}^k[V_{\pi}]$ for any k.

Thus
$$V_{\pi} \leq \lim_{k \to \infty} B_{\pi'}^{k}[V_{\pi}] = V_{\pi'}$$

$$\pi'(s) = \arg\max_{a \in A} Q_{\pi}(s, a)$$

Proposition: $V_{\pi'} \ge V_{\pi}$ with strict inequality for sub-optimal π .

Proof: (part two, strict inequality)

We want to show that if π is sub-optimal then $V_{\pi'} > V_{\pi}$.

We prove the contrapositive *if* $\neg (V_{\pi'} > V_{\pi})$ *then* π *is optimal.*

Since we already showed that $V_{\pi'} \geq V_{\pi}$ we know that the condition of the contrapositive $\neg (V_{\pi'} > V_{\pi})$ is equivalent to $V_{\pi'} = V_{\pi}$.

Now assume that $V_{\pi'} = V_{\pi}$. Combining this with $V_{\pi'} = B_{\pi'}[V_{\pi'}]$ yields $V_{\pi} = B_{\pi'}[V_{\pi}] = B[V_{\pi}]$.

Thus V_{π} satisfies the Bellman Equation and must be optimal.

Optimization via Policy Iteration

- 1. Choose a random policy π
- 2. Loop:
 - (a) Evaluate V_{π}
 - (b) For each s in S, set $\pi'(s) = \arg\max_{a \in A} Q_{\pi}(s, a)$ where $Q_{\pi}(s, a) = R(s, a) + \beta \sum_{s'} T(s, a, s') V_{\pi}(s')$
 - (c) Replace π with π'

Until no improving action possible at any state

Proposition: $V_{\pi'} \ge V_{\pi}$ with strict inequality for sub-optimal π .

Policy iteration goes through a sequence of improving policies

Policy Iteration: Convergence

- Convergence assured in a finite number of iterations
 - Since finite number of policies and each step improves value, then must converge to optimal
- Gives exact value of optimal policy

Policy Iteration Complexity

- Each iteration runs in polynomial time in the number of states and actions
- There are at most |A|ⁿ policies and PI never repeats a policy
 - So at most an exponential number of iterations
 - Not a very good complexity bound
- Empirically O(n) iterations are required often it seems like O(1)
 - ◆ Challenge: try to generate an MDP that requires more than that n iterations
- Recent theoretical progress

Policy Iteration Complexity

- Recently it has been shown that for a fixed discount factor β , the max number of iterations of PI is $O\left(\frac{|A|}{1-\beta}\log\left(\frac{|S|}{1-\beta}\right)\right)$
 - So it is polynomial in the # of states and actions for a fixed β
 - ♠ But this bound is horrible for β ≈ 1
- In general if we do not treat β as a constant,
 PI has been shown to run for an exponential number of iterations for some MDPs
 - ◆ That is, there are MDPs and values of the discount factor that will cause PI to take exponential time
 - Of course these are quite pathological MDPs

Value Iteration vs. Policy Iteration

- Which is faster? VI or PI
 - ▲ It depends on the problem
- VI takes more iterations than PI, but PI requires more time on each iteration
 - PI must perform policy evaluation on each iteration which involves solving a linear system
- VI is easier to implement since it does not require the policy evaluation step
 - ◆ But see next slide
- We will see that both algorithms will serve as inspiration for more advanced algorithms

Modified Policy Iteration

- Modified Policy Iteration: replaces exact policy evaluation step with inexact iterative evaluation
 - Uses a small number of restricted Bellman backups for evaluation
- Avoids the expensive policy evaluation step
- Perhaps easier to implement.
- Often is faster than PI and VI
- Still guaranteed to converge under mild assumptions on starting points

Modified Policy Iteration

Policy Iteration

- 1. Choose initial value function V
- 2. Loop:
 - (a) For each s in S, set $\pi(s) = gr[V](s)$
 - (b) Partial Policy Evaluation Repeat K times: $V \leftarrow B_{\pi}[V]$ Approx. evaluation

Until change in V is minimal

Generalized Policy Iteration

If we make MPI asynchronous then we get what Sutton & Barto refer to as **Generalized Policy Iteration**.

• Each iteration selects a state *s* to update and then selects whether to do policy eval update or VI update to *s*.

```
Choose initial value function V and initial policy \pi
Loop:
   Select a state s ;; non-zero prob for all states
   Choose one of the following ;; non-zero prob of either
   i) policy eval: V(s) = B_{\pi}[V](s)
   ii) policy improve: \pi(s) = \arg\max_{a} R(s,a) + \beta \sum_{s'} T(s,a,s') \cdot V(s')
Until change in V is minimal
```

Many DP and RL algorithms can be put in this framework.

Recap: things you should know

- What is an MDP?
- What is a policy?
 - Stationary and non-stationary
- What is a value function?
 - Finite-horizon and infinite horizon
- How to evaluate policies?
 - Finite-horizon and infinite horizon
 - ▲ Time/space complexity?
- How to optimize policies?
 - Finite-horizon and infinite horizon
 - Time/space complexity?
 - Why they are correct?