Measure Theory Homework 5

Gandhar Kulkarni (mmat2304)

October 9, 2023

1

We have a sequence of non-negative measurable functions $\{f_n\}$ such that $0 \le f_1 \le \dots f$, where f is a non-negative measurable function that is defined as $\lim_{n \to \infty} f_n$. Then we know that $f_n \le f \implies \int_X f_n \le \int_X f$ for all $n \in \mathbb{N}$. This means that $\lim_{n \to \infty} \int_X f_n \le \int_X f$. Note that from Fatou's lemma we can say that

$$\int_X \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int_X f_n.$$

Since $\{f_n\}$ is increasing, we can say that $\liminf_{n\to\infty} f_n = f$. Therefore we have

$$\int_{X} \liminf_{n \to \infty} f_n = \int_{X} f \le \liminf_{n \to \infty} \int_{X} f_n.$$

We know that integration preserves order; that is, $f_n \leq f_{n+1} \implies \int_X f_n \leq \int_X f_{n+1}$ for all n. This means that $\liminf_{n \to \infty} \int_X f_n = \lim_{n \to \infty} \int_X f_n$. Therefore we have $\int_X f \leq \lim_{n \to \infty} \int_X f_n$, which implies that $\lim_{n \to \infty} f_n = \int_X f$.

2

Let $X_n = \{x \in X : f(x) \ge n\}$. Then

$$\int_{X_{-}} f = \nu_f(X_n),$$

where ν_f is the measure function determined by f. Note that $X_1\supseteq X_2\supseteq\dots$ This means that $\nu_f(X_1)\ge \nu_f(X_2)\ge\dots$ This is clearly a decreasing sequence. Since $f\in L^1(\mu),\ \nu_f(X_1)<\infty,\ \nu_f(X_n)<\infty$ for all n. Moreover, $A_\infty\{x\in X:f(x)=\infty\}$, and $\mu(A_\infty)=0$. Thus $\nu_f(A_\infty)=0$. We can use continuity from above to see that $\nu_f(\cap_{n=1}^\infty X_n)=\lim_{n\to\infty}\nu_f(X_n)=\nu_f(A_\infty)=0$. This gives us our result.

3

Since $f_n \to f$, and $f_n \ge f_{n+1} \ge f$, we have $\int f_n \ge \int f$. Also note that $\int f_1 < \infty$ means that $\int f_n < \infty$ and $\int f < \infty$. Thus $\left\{ \int f_n \right\}$ is a bounded monotone sequence, hence it must be convergent. Since $\int f_n \ge \int f$, we have $\lim_{n \to \infty} \int f_n \ge \int f$. To get the second inequality, see that by Fatou's lemma, $\int \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int f_n$. Since $\{f_n\}$ is convergent, $\liminf_{n \to \infty} f_n = \lim_{n \to \infty} f_n = f$. Since $\{\int f_n\}$ is convergent, we have $\lim_{n \to \infty} f_n = \lim_{n \to \infty} f_n$. This gives us our result, that is $\lim_{n \to \infty} f_n = \int f$.

4

Let $\varepsilon > 0$. Choose a measurable partition A_1, \ldots, A_m of X where

$$\int_X f < \varepsilon + \mathcal{L}(f, P).$$

Denote by E the union of those A_j 's such that $\inf_{A_j} g > 0$. Then we have $\mu(E) < \infty$ as otherwise we could have $\mathcal{L}(f,P) = \infty$, contradicting that $\int_X f < \infty$. Now see that

$$\int_{X\setminus E} f = \int_X f - \int_X \chi_E f < (\varepsilon + \mathcal{L}(f, P)) - \mathcal{L}(\chi_E f, P) < \varepsilon,$$

which gives us the desired result.

5

Let $f \in L^+$. We know that a sequence of simple functions $\{f_n\}$ (that are bounded) that approximate f. Moreover, $|f_n| \leq |f_{n+1}| \leq |f|$. Simple functions are measurable, and we have $f_n \to f$. Note that we can have $f_n \in L^+$, without loss of generality as we can replace the function f_n with $|f_n|$. Using the monotone convergence theorem we can say that $\lim_{n\to\infty} \int f_n = \int f$.

6

Define $f: \mathbb{R} \to \mathbb{R}$, where

$$f(x) = \begin{cases} \frac{1}{x} & x < 0\\ \frac{1}{1+x^2} & x \ge 0. \end{cases}$$

This function is measurable, as $f^{-1}(a,\infty)$ is $\left[0,\sqrt{\frac{1}{a}-1}\right)$ for $0\leq a<1,\ \phi$ for $a>1,\ [0,\infty)$ for a=0, and $\left(-\infty,\frac{1}{a}\right)\cup [0,\infty)$ for a<0. These are all measurable, however, see that $f^+=f|_{x\geq 0}$ is integrable, while $f^-=-f|_{x<0}$ is not integrable as the integral does not exist. To show this, see that the sequence of simple functions $\{\varphi_n\}$, where $\varphi_n(x)=\frac{1}{i}$ for $x\in [i,i+1), i\leq n,$ and 0 for x>n. $\int_{-\infty}^0\varphi_n=1+\frac{1}{2}+\cdots+\frac{1}{n}.$ See that $\varphi_n\leq f^-,$ which means that the integral for f^- cannot exist.

7

Since $f_n=(n+1)x^n$, we see that $\int_0^1 f_n=[x^{n+1}]_{x=0}^{x=1}=1$, we have $\liminf_{n\to\infty}\int_0^1 f_n=1$. To find $\liminf_{n\to\infty}f_n(x)$, see that for 0< x<1, $f_n(x)=(n+1)x^n$ will go to zero as $n\to\infty$. For x=0, $\liminf_{n\to\infty}f_n(0)=0$. For x=1, $\liminf_{n\to\infty}f_n(1)=n+1\to\infty$. Then we have $\liminf_{n\to\infty}f_n(x)$ is zero for all $x\in[0,1]$ except x=1, where it is $+\infty$. This is zero almost everywhere, hence $\int_0^1 \liminf_{n\to\infty}f_n=0$. Thus in this case $\int_0^1 \liminf_{n\to\infty}f_n \leq \liminf_{n\to\infty}\int_0^1 f_n$; that is, Fatou's lemma applies strictly.

8

Define $\{f_n\}$ as a sequence of simple (hence integrable) functions on \mathbb{R} , and f(x) is $\frac{1}{x}$ for x>0 and 0 otherwise. We define $f_n(x)$ as

$$f_n(x) = \frac{2^n}{i}, \quad x \in \left[\frac{i-1}{2^n}, \frac{i}{2^n}\right), 0 \le i \le n2^n$$

= 0 otherwise.

See that

$$\int_{\mathbb{R}} f_n = \int_0^\infty f_n = \sum_{i=0}^{n2^n} \frac{2^n}{i} \cdot \frac{1}{2^n} < \infty.$$

Also note that $f_n \leq f_{n+1} \leq f$, and see that this sequence converges pointwise to f. However, see that f is not integrable, which means that there could be a sequence of integral functions that converges pointwise to a limit but that limit need not be integrable.

9

We will fix $x\in[0,1]$ and observe its behaviour as n varies. For $x\in\left[0,\frac{1}{3}\right]$ we have $f_n(x)=0,1,0,1,\ldots$ for $n\geq1$. For $x\in\left[\frac{1}{3},1\right]$, $f_n(x)=1,0,1,0,\ldots$ Thus $\liminf_{n\to\infty}f_n(x)=0$, while $\limsup_{n\to\infty}f_n(x)=1$. See that $\int_0^1f_{2n}=\frac{1}{3}$, while $\int_0^1f_{2n+1}=\frac{2}{3}$. Then $\int_0^1f_n\in\left\{\frac{1}{3},\frac{2}{3}\right\}$. We can then infer that $\limsup_{n\to\infty}\int_0^1f_n=\frac{2}{3}$, and $\limsup_{n\to\infty}\int_0^1f_n=\frac{1}{3}$. Putting all of this together gives us our required result.

10

Let $X_{\alpha} := \{x \in X : f(x) \geq \alpha\}$. Then define the function $g(x) = \alpha \cdot \chi_{X_{\alpha}}$. Note that $f(x) \geq g(x)$ for all $x \in X$, and $f \in L^+$, hence

$$\int_X f \ge \int_X g = \int_{X_n} \alpha + \int_{X \setminus X_n} 0 = \alpha \cdot \mu(X_\alpha),$$

which is the desired inequality.

11

Let $A_n:=\{x\in X: f(x)\in [n,n+1)\}$, for $n\geq 1$. See that $X_n=\sqcup_{i=n}^\infty A_i$, for $n\geq 1$. Define $A_0=\{x\in X: f(x)=0\}$, and $A_\infty=\{x\in X: f(x)=\infty\}$. Since $f\in L^1(\mu)$, we must have $\mu(A_\infty)=0$, as otherwise the integral would not be finite. Thus see that

$$\int_{X} f = \int_{A_0} 0 + \int_{A_{\infty}} \infty + \sum_{i=1}^{\infty} \int_{A_i} f$$

$$\geq 0 + 0 + \sum_{i=1}^{\infty} i \cdot \mu(A_i) = (\mu(A_1) + \mu(A_2) + \dots) + (\mu(A_2) + \mu(A_3) + \dots) + \dots$$

$$= \sum_{n=1}^{\infty} \mu(X_n) < \infty.$$

Thus $f\in L^1(\mu)\Longrightarrow \sum_{n=1}^\infty\mu(X_n)<\infty$. To see the converse, we will first show that $\mu(A_\infty)=0$. Since $\sum_{n=1}^\infty\mu(X_n)<\infty$, we must have $\mu(X_n)\to 0$ and $n\to\infty$. Then we have $\mu(\cap_{n=1}^\infty X_n)=\lim_{n\to\infty}\mu(X_n)=\mu(A_\infty)=0$. Then see that for $K\in\mathbb{N},$ $4\int_{A_0}0+\int_{A_\infty}\infty+\sum_{i=1}^K\int_{A_i}f\le 0+0+\sum_{i=1}^K(i+1)\mu(A_{i+1})\le \sum_{i=1}^\infty(i+1)\mu(A_{i+1})\le \sum_{i=1}^\infty\mu(X_i)+\mu(X_1)<\infty$. Since the left hand side holds for all $K\in\mathbb{N}$, we see that $\int_X f<\infty$, which means that $f\in L^1(\mu)$.

12

We know that $\{f_n\}\subseteq L^+$, and that $f_n\leq f$. From monotonicity of integral, we have that $\int f_n\leq \int f$, which means that $\lim_{n\to\infty}\int f_n\leq \int f$. Now see that since $f_n\to f$, $\lim\inf_{n\to\infty}f_n=\lim_{n\to\infty}f_n=f$. We also know that since $\{f_n\}$ is convergent, $\{\int f_n\}$ is also convergent. Therefore by Fatou's lemma see that $\int \liminf_{n\to\infty}f_n\leq \liminf_{n\to\infty}\int f_n$. Thus we have $\int f\leq \lim_{n\to\infty}\int f_n$. This is the inequality in the other direction, which implies that $\lim_{n\to\infty}\int f_n=\int f$.