

- 2.1 数据与文字的表示方法
- 2.2 定点加法、减法运算
- 2.3 定点乘法运算
- 2.4 定点除法运算
- 2.5 定点运算器的组成
- 2.6 浮点运算方法和浮点运算器

- 2.1.1 数据格式
- 2.1.2 数的机器码表示
- 2.1.3 字符与字符串的表示方法
- 2.1.4 汉字的表示方法
- 2.1.5 校验码

- 计算机中使用的数据可分成两大类:
 - 符号数据:非数字符号的表示(ASCII、汉字、图 形等)
 - 数值数据:数字数据的表示方式(定点、浮点)
- 计算机数字和字符的表示方法应有利于数据的存储、加工(处理)、传送;
- 编码:用少量、简单的基本符号,选择合适的规则表示尽量多的信息,同时利于信息处理(速度、方便)

- 一、定点表示法
- 所有数据的小数点位置固定不变
- 理论上位置可以任意,但实际上将数据表示有两种方法(小数点位置固定-定点表示法/定点格式):
 - 纯小数
 - 纯整数

2.1.1 数据格式

1、定点纯小数

表示数的范围是 -1 < X < +1

2、纯小数的表示范围

x=0.000 x=1.000	x=0	正0和负0都是0
x=0.111	x=1-2 ⁻ⁿ	最大正数
x=0.0001	x=2 ⁻ⁿ	最接近0的正数
x=1.0001	x=-2 ⁻ⁿ	最接近0的负数
x=1.111	x=-(1-2 ⁻ⁿ)	最小负数

2.1.1 数据格式

$$X_0 X_1 X_2 X_3 \dots X_{n-1} X_n$$

小数点固定于最后一位之后, 不需专门存放位置

表示数的范围是
$$-(2^{n}-1) \le X \le +(2^{n}-1)$$

- 4、定点表示法的特点
 - 定点数表示数的范围受字长限制,表示数的范围有限;
 - 定点表示的精度有限
 - 机器中,常用定点纯整数表示;

2、浮点表示法

电子质量(克): $9 \times 10^{-28} = 0.9 \times 10^{-27}$

太阳质量(克): $2 \times 10^{33} = 0.2 \times 10^{34}$

2、浮点表示:小数点位置随阶码不同而浮动

2、机器中表示

阶符	数符	尾数
----	----	----

2.1.1 数据格式

浮点数的规格化表示:

$$(1.75)_{10} = 1.11 \times 2^{0}$$
 (规格化表示)
= $0.111 \times 2^{1} = 0.0111 \times 2^{2}$

- 3、IEEE754标准(规定了浮点数的表示格式,运算规则等)
 - 规则规定了单精度(32)和双精度(64)的基本格式.
 - 规则中,尾数用原码,指数用移码(便于对阶和比较)

	31	30	23 22	θ
32位浮点数	S		E	М

	63	62	52 51	θ
64位浮点数	S	E	, l	ſ

IEEE754标准

- 基数R=2,基数固定,采用隐含方式来表示它。
- 32位的浮点数:
 - S数的符号位,1位,在最高位,"0"表示正数,"1"表示负数。
 - M是尾数, 23位, 在低位部分, 采用纯小数表示
 - E是阶码,8位,采用移码表示。移码比较大小方便。
 - 规格化: 若不对浮点数的表示作出明确规定,同一个浮点数的表示就不是惟一的。
 - 尾数域最左位(最高有效位)总是1, 故这一位经常不予存储,而认为 隐藏在小数点的左边。
 - 采用这种方式时,将浮点数的指数真值e变成阶码E时,应将指数e加上一个固定的偏移值127(01111111),即E=e+127。

• 64位的浮点数中符号位1位,阶码域11位,尾数域52位,指数偏移值是1023。因此规格化的64位浮点数x的真值为:

$$x=(-1)^S\times(1.M)\times2^{E-1023}$$

e=E-1023

• 一个规格化的32位浮点数x的真值表示为 $x=(-1)^{S}\times(1.M)\times2^{E-127}$

- 真值x为零表示: 当阶码E为全0且尾数M也为全0时的值,结合符号位S为0或1,有正零和负零之分。
- 真值x为无穷大表示: 当阶码E为全1且尾数M为全0时,结合符号位S为0或1,也有+∞和-∞之分。
- 这样在32位浮点数表示中,要除去E用全0和全1(255₁₀)表示零和无穷大的特殊情况,指数的偏移值不选128(10000000),而选127(0111111)。对于规格化浮点数,E的范围变为1到254,真正的指数值e则为-126到+127。因此32位浮点数表示的绝对值的范围是10⁻³⁸~10³⁸(以10的幂表示)。
- 浮点数所表示的范围远比定点数大。一台计算机中究竟采用定点表示还是浮点表示,要根据计算机的使用条件来确定。一般在高档微机以上的计算机中同时采用定点、浮点表示,由使用者进行选择。而单片机中多采用定点表示。

浮点数表示范围如下图所示

例1: 若浮点数x的754标准存储格式为(41360000)₁₆,求其浮点数的 十进制数值。

解:将16进制数展开后,可得二制数格式为

0 100 00010 011 0110 0000 0000 0000 0000

符号S 阶码E(8位) 尾数M(23位)

指数e=E-127=10000010-01111111=00000011=(3)₁₀ 包括隐藏位1的尾数

1.M=1.011 0110 0000 0000 0000 0000=1.011011 于是有

 $x=(-1)S\times 1.M\times 2^{e}=+(1.011011)\times 2^{3}=+1011.011=(11.375)_{10}$

例2: 将数(20.59375)10转换成754标准的32位浮点数的

二进制存储格式。

解: 首先分别将整数和分数部分转换成二进制数:

20.59375=10100.10011

然后移动小数点,使其在第1,2位之间

 $10100.10011=1.010010011\times 2^4$

e=4于是得到:

S=0, E=4+127=131, M=010010011

最后得到32位浮点数的二进制存储格式为:

- 真值:一般书写的数
- 机器码: 机器中表示的数, 要解决在计算机内部数的正、负符号和小数点运算问题。
 - 原码
 - 反码
 - 补码
 - 移码

1、原码表示法

● 定点小数x₀. x₁x₂...x_n

- 有正0和负0之分
- 范围-(1-2-n) ~ +(1-2-n)

例: x=+0.11001110 , y=-0.11001110 [$x]_{原}=0.11001110$ [$y]_{原}=1.11001110$

1、原码表示法

- 有正0和负0之分
- 范围 -(2ⁿ-1) ~ +(2ⁿ-1)
- 例: x=+11001110, y=-11001110
 [x]_原=011001110 [y]_原=111001110

原码特点:

- 表示简单,易于同真值之间进行转换,实现乘除运算规则简单。
- 进行加减运算十分麻烦。

2.1.2 数的机器码表示

- 2、补码表示法
- 生活例子: 现为北京时间下午4点, 但钟表显示为7点。有两种办法校对:
 - (1) 做减法 7-3=4 (逆时针退3格)
 - (2) 做加法 7+9=16 (顺时针进9格)
 - 16 (mod 12) = 16-12 = 4 (以12为模,变成4)

2、补码表示法

- 定义: 正数的补码就是正数的本身, 负数的补码是原负数加上模。
- 计算机运算受字长限制,属于有模运算.
 - 定点小数x₀.x₁x₂...x₀,以2为模
 - 定点整数x₀.x₁x₂...x_n,以2ⁿ⁺¹为模
- 定点小数x₀.x₁x₂...x₀

补码最大的优点就是将减法运算转换成加法运算。 通常不按表达式求补码,而通过反码来得到。

- 定义:正数的表示与原、补码相同,负数的补码符号位为1,数值位是将原码的数值按位取反,就得到该数的反码表示。
- 电路容易实现,触发器的输出有正负之分。

3、反码表示法

- 对尾数求反,它跟补码的区别在于末位少加一个1, 所以可以推出反码的定义
 - 定点小数x0.x1x2...xn

```
X1=+0.1011011, [X1] 反 =0.1011011
X2= -0.1011011, [X2] 反 =1.0100100
1. 1 1 1 1 1 1 1
0. 1 0 1 1 0 1 1
1. 0 1 0 0 1 0 0
```

3、反码表示法

- [x]_补=[x]_反+2-n(证明见书)
- 反码表示有正0和负0之分

4、移码表示法

- 移码表示法(用在阶码中)
 - 定点整数定义 [x]₈=2ⁿ+x 2ⁿ >x≥-2ⁿ
 - 00000000~11111111(-2ⁿ~2ⁿ-1)
 - 例1 x=+1011111 原码为01011111 补码为01011111 反码为01011111 移码为11011111

4、移码表示法

例2: x=-1011111

原码为11011111

补码为10100001

反码为10100000

移码为00100001

特点:移码和补码尾数相同,符号位相反

范围:-2n~2n-1

浮点IEEE754表示e=-127~+128

0000000阶码表示数字"0",尾数的隐含位为0 1111111阶码表示数字"无穷大",尾数的隐含位为0

[例6]以定点整数为例,用数轴形式说明原码、反码、补码表示范围和可能的数码组合情况。

[例7]将十进制真值(-127,-1,0,+1,+127)列表表示成二进制数及原码、 反码、补码、移码值。

真值x (十进制)	真宿x (二进制)	[x]原	[x]反	[x]4h	[x]移
-127	-011111111	111111111	10000000	10000001	00000001
-1	-00000001	10000001	111111110	111111111	01111111
		000000000	00000000		
0	00000000			00000000	10000000
		10000000	111111111		
+1	+00000001	00000001	00000001	00000001	10000001
+127	+011111111	011111111	01111111	01111111	111111111

[例8]设机器字长16位,定点表示,尾数15位

- (1)定点原码整数表示时,最大正数是多少?最小负数是多少?
- 0 111 111 111 111 最大正整数

$$x=(2^{15}-1)_{10}=(+32767)_{10}$$

1 111 111 111 111 最小负整数

$$x=(1-2^{15})_{10}=-(2^{15}-1)_{10}=(-32767)_{10}$$

- (2)定点原码小数表示,最大正数是多少?最小负数是多少?
- 0 111 111 111 111 最大正小数

$$x=(1-2^{15})_{10}$$

1 111 111 111 111 最小负小数

$$x = -(1 - 2^{15})10$$

例9 假设由S,E,M三个域组成的一个32位二进制字所表示的非零规格化浮点数x,真值表示为(注意此例非IEEE754标准):

$$X = (-1)^{s} \times (1.M) \times 2^{E-128}$$

问:它所表示的规格化的最大正数、最小正数、最大负数、最小负数是多少?

(1)最大正数

$$X = [1 + (1 - 2^{-23})] \times 2^{127}$$

(2)最小正数

0 00 000 000 000 000 000 000 000 000 000

$$X = 1.0 \times 2^{-128}$$

(3)最小负数

1 11 111 111 111 111 111 111 111 111 111 111 11

$$X = -[1+(1-2^{-23})]\times 2^{127}$$

(4)最大负数

$$x = -1.0 \times 2^{-128}$$

N=R^E.M

- 符号数据:字符信息用数据表示,如ASCII等;
- 字符表示方法ASCII:用一个字节来表示,低7位用来编码(128),最高位为校验位,参见教材P24表2.1
- 字符串的存放方法

2.1.4 汉字的表示方法

- 汉字的表示方法
 - (一级汉字3755个,二级汉字3008个)
 - 输入码
 - 国标码
 - 一级(16~55)*94
 - 二级(56~87)*94
 - 图形符号(682个)(01~09)*94
 - 拼音、五笔
 - 汉字内码:汉字信息的存储,交换和检索的机内代码,两个字节组成,每个字节高位都为1(区别于英文字符)

- 汉字字模码: 汉字字形
 - 点阵

• 汉字库

2.1.5 校验码

- 校验码(只介绍奇偶校验码)
 - 引入: 信息传输和处理过程中受到干扰和故障,容易出错。
 - 解决方法: 是在有效信息中加入一些冗余信息(校验位)
 - 奇偶校验位定义
 - 设 $x = (x_0 x_1 ... x_{n-1})$ 是一个n位字,则奇校验位 C 定义为:C $= x_0 \oplus x_1 \oplus ... \oplus x_{n-1}$,式中 \oplus 代表按位加,表明只有当 x 中包含有奇数个1时,才使C=1,即 $\overline{C} = 0$ 。同理可以定义偶校验。
 - 只能检查出奇数位错;不能纠正错误。
 - p27例2.11自己看一下。
 - 其它还有Hamming,CRC

2.2 定点加法、减法运算

- 2.2.1 补码加法
- 2.2.2 补码减法
- 2.2.3 溢出概念与检测方法
- 2.2.4 基本的二进制加法/减法器

2.2.1 补码加法

• 补码加法

公式: $[x+y]_{\stackrel{}{\uparrow}}=[x]_{\stackrel{}{\uparrow}}+[y]_{\stackrel{}{\uparrow}}$ (mod 2^{n+1})

- 假设 | x | < 1, | y | < 1, | x + y | < 1
- 现分四种情况来证明

(1)
$$x > 0$$
, $y > 0$, $y > 0$

$$[x]_{\stackrel{?}{\uparrow}}=x, [y]_{\stackrel{?}{\uparrow}}=y, [x+y]_{\stackrel{?}{\uparrow}}=x+y$$

所以等式成立.

(2)
$$x > 0$$
, $y < 0$,则 $x + y > 0$ 或 $x + y < 0$

$$[x]_{k} = x, [y]_{k} = 2 + y,$$

$$[x]_{k} + [y]_{k} = x + 2 + y$$

当
$$x + y > 0$$
时,2 + $(x + y) > 2$,进位2必丢失,又因 $(x + y) > 0$,

故
$$[x]_{i}+[y]_{i}=x+y=[x+y]_{i}$$

当
$$x + y < 0$$
时,2 + $(x + y) < 2$,又因 $(x + y) < 0$,

故
$$[x]_{i}+[y]_{i}=2+(x+y)=[x+y]_{i}$$

所以上式成立

$[x]_{i} + [y]_{i} = [x + y]_{i}$ 证明

- (3) x < 0, y > 0,则 x + y > 0或 x + y < 0 这种情况和第2种情况一样,把 x和 y的位置对调即得证。
- (4) x < 0, y < 0,则 x + y < 0 相加两数都是负数,则其和也一定是负数。

:
$$[x]_{x} = 2 + x$$
, $[y]_{x} = 2 + y$

$$[x]_{x} + [y]_{x} = 2 + x + 2 + y = 2 + (2 + x + y)$$

上式右边分为"2"和(2+x+y)两部分.既然(x+y)是负数,而其绝对值又小于1,那么(2+x+y)就一定是小于2而大于1的数,进位"2"必丢失.又因(x+y)<0, 所以[x]_i+[y] $_{i}$ =2+(x+y)=[x+y] $_{i}$

2.2.1 补码加法

[例11] x=+1011, y=+0101, 求 x+y=?
 解: [x]_{ネト} = 01001, [y]_{ネト} = 00101

$$[x]_{\begin{subarray}{ll} \label{eq:continuous} \label{eq:contin$$

$$[x+y]_{k}$$
 0 1 1 1 0

$$\therefore$$
 x+y = +1110


```
[例12] x=+1011, y=-0101, 求 x+y=?解: [x]_{\stackrel{}{\uparrow}_1}=01001, [y]_{\stackrel{}{\uparrow}_1}=11011
```

$$[x]_{\nmid h}$$
 0 1 0 0 1
+ $[y]_{\nmid h}$ 1 1 0 1 1

$$[x+y]_{3}$$
 100110

$$x+y = +0110$$

2.2.2 补码减法

公式:

$$[x]_{\stackrel{?}{\uparrow}_{1}} - [y]_{\stackrel{?}{\uparrow}_{1}} = [x]_{\stackrel{?}{\uparrow}_{1}} + [-y]_{\stackrel{?}{\uparrow}_{1}}$$

 $[-y]_{\stackrel{?}{\uparrow}_{1}} = -[y]_{\stackrel{?}{\uparrow}_{1}} + 2^{-n}$


```
[例13] 已知x_1=-1110,x_2=+1101,求:  [x_1]_{\stackrel{?}{\uparrow_1}}, [-x_1]_{\stackrel{?}{\uparrow_1}}, [x_2]_{\stackrel{?}{\uparrow_1}}, [-x_2]_{\stackrel{?}{\uparrow_1}} \circ  解:  [x_1]_{\stackrel{?}{\uparrow_1}} = 10010   [-x_1]_{\stackrel{?}{\uparrow_1}} = -[x_1]_{\stackrel{?}{\uparrow_1}} + 2^{-4} = 01101 + 00001 = 01110   [x_2]_{\stackrel{?}{\uparrow_1}} = 01101   [-x_2]_{\stackrel{?}{\uparrow_1}} = -[x_2]_{\stackrel{?}{\uparrow_1}} + 2^{-4} = 10010 + 00001 = 10011
```

2.2.2 补码减法


```
[例14] x=+1101, y=+0110, 求 x-y=? 解: [x]_{\stackrel{}{\uparrow}_{1}}=01101 [y]_{\stackrel{}{\uparrow}_{1}}=00110, [-y]_{\stackrel{}{\uparrow}_{1}}=11010  + \begin{bmatrix} x \\ -y \end{bmatrix}_{\stackrel{}{\uparrow}_{1}} & 01101 \\ 11010 & 11101 \end{bmatrix}
```

$$\therefore$$
 x-y = +0111

- 溢出的概念
 - 可能产生溢出的情况
 - 两正数加,变负数,正溢(大于机器所能表示的最大数)
 - 两负数加,变正数,负溢(小于机器所能表示的最小数)

下面举两个例子。

两个正数相加的结果成为负数,表示正溢。

两个负数相加的结果成为正数,表示负溢。

溢出的概念

检测方法

1、双符号位法(变形补码)

 S_{f1} 表示正确的符号,逻辑表达式为 $V=S_{f1} \oplus S_{f2}$,可以用异或门来实现


```
[例17] x=+01100, y=+01000, 求 x+y。
解: [x]<sub>补</sub> = 001100, [y]<sub>补</sub> = 001000
```

```
[例18] x=-1100, y=-1000, 求 x+y。
解: [x]<sub>补</sub> = 110100, [y]<sub>补</sub> = 111000
```


单符号位法

```
    C<sub>f</sub> C<sub>0</sub>
    0 0 正确(正数)
    0 1 正溢
    1 0 负溢
    1 1 正确(负数)
```

• V=C_f ⊕ C₀, 其中C_f为符号位产生的进位,C₀为最高有效 位产生

2.2.4 基本的二进制加法/减法器

一位全加器真值表

0

()

0

()

• FA逻辑方程

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i}$$

$$C_{i+1} = A_{i}B_{i} + A_{i}C_{i} + B_{i}C_{i}$$

$$= A_{i}B_{i} + (A_{i} \oplus B_{i})C_{i}$$

FA逻辑电路和框图

FA(全加器)逻辑电路图

FA框图

2.2.4 基本的二进制加法/减法器

n位行波进位加法器

2.3 定点乘法运算

- 2.3.1 原码并行乘法
- 2.3.2 直接补码并行乘法

- 1、人工算法与机器算法的同异性
- 2、不带符号的阵列乘法器
- 3、带符号的阵列乘法器

1、人工算法与机器算法的同异性

- $[x]_{\mathbb{R}} = x_f \cdot x_{n-1} \dots x_1 x_0$ $[y]_{\mathbb{R}} = y_f \cdot y_{n-1} \dots y_1 y_0$
- [x.y]原= $(x_f \oplus y_f)$ + $(x_{n-1}...x_1x_0).(y_{n-1}...y_1y_0)$
- 用习惯方法求乘积如下:

设
$$x = 1101$$
, $y = 1011$

				1 1 0 1				(x)		
$\overline{}$				1	0	1 1	(y)		
					1	1	0	1		
				1	1	0	1			
			0	0	0	0				
+		1	1	0	1					
	1	0	0	0	1	1	1	1	(z)	

- n位乘n位积可能为2n位.
- 乘积的最后是所有部分积之和

采用流水式阵列乘法器,取代串行方案。

2、不带符号位的阵列乘法器

[例19] 参见图2.5,已知不带符号的二进制整数A=11011,B=10101,求每一部分乘积项 a_ib_j 的值与 $p_9p_8...p_0$ 的值。解:

```
\times 1 1 0 1 1 = A (27<sub>10</sub>)
 \times 1 0 1 0 1 = B (21<sub>10</sub>)
```

1000110111 = P

 $P = p_9 p_8 p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 = 1000110111 (567_{10})$

• 求补电路

原理: 算前求补一乘法器一算后求补, 见下图

3、带符号的阵列乘法器

- 求补电路小结
- E=0时,输入和输出相等
- E=1时,则从数最右端往左边扫描,直到第一个1的时候,该位和右边各位保持不变,左边各数值位按位取反
- 可以用符号作为E 的输入
- 原: 1.11110补: 1.000<u>10</u>

不变, 左边数值位取反

3、带符号的阵列乘法器

11000011

乘积符号为1,算后求补器输出11000011, $[x \times y]_{\mathbb{P}}$ =111000011 换算成二进制数真值是 $x \cdot y$ = (-11000011)₂ = (-195)₁₀

[例21] 设x=-15, y=-13, 用带求补器的补码阵列乘法器求出乘积 x·y=? 并用十进制数乘法进行验证。

解: [x]_补=10001, [y]_补=10011, 乘积符号位运算: 1⊕1=0 尾数部分算前求补器输出 |x|=1111, |y|=1101

1111 × 1101

1111 0000 1111 + 1111

11000011

乘积符号为0,算后求补器输出11000011, $[x \times y]_{i}=011000011$ 补码二进制数真值 $x \cdot y=0 \times 2^8+1 \times 2^7+1 \times 2^6+1 \times 2^1+1 \times 2^0$ =(+195)₁₀十进制数乘法验证 $x \cdot y=(-15) \times (-13)=+195$

2.4 定点除法运算

- 2.4.1 原码除法算法原理
- 2.4.2 并行除法器

2.4.1 原码除法算法原理

设有n位定点小数(定点整数也适用)

被除数x, $[x]_{\mathbb{P}} = x_f.x_{n-1}...x_1x_0$

除数y, $[y]_{\mathbb{P}} = y_f \cdot y_{n-1} \dots y_1 y_0$

则有商q=x/y,

 $[q]_{\mathbb{F}} = (x_f \oplus y_f) + (0.x_{n-1}...x_1x_0/0.y_{n-1}...y_1y_0)$ 商的符号运算 $q_f = x_f \oplus y_f$ 与原码乘法一样,用模2求和得到。

下面是人工算法例子。

1、定点原码除法

定点原码一位除法实现方案(手工)0.10010/0.1011

	0.1 1 0 1	商 q	
0.1 0 1 1	0.1 0 0 1 0	$X(r_0)$	被除数
/	- <u>0.<mark>0</mark></u> 1 0 1 1	$2^{-1}y$	除数右移1位,减除数
	0.0 0 1 1 1 0	r_1	得余数r1
	- <u>0.00111</u>	$2^{-2} y$	除数右移1位,减除数
	0.0000110	r_2	得余数r2
	-0.0001011	$2^{-3} y$	除数右移1位,不减除数
	0.00001100	r_3	得余数r3
	-0.00001011	$2^{-4} y$	除数右移1位,减除数
	-0.00000001	r_4	得余数r4

◆商0还是商1人可以比较后确定,计算机如何确定?

- 人工除法时,人可以比较被除数(余数)和除数的大小来确定商1(够减)或商0(不够减)
- 机器除法时,余数为正表示够减,余数为负表示不够减。 不够减时必须恢复原来余数,才能继续向下运算。这种方 法叫恢复余数法,控制比较复杂。
- 不恢复余数法(加减交替法)
 余数为正,商1,下次除数右移做减法;余数为负,商0,下次除数右移做加法。
 控制简单,有规律。

- 1、可控加法/减法(CAS)单元 原理:采用不恢复余数(加减交替)法
- P=0,作加法运算
- P=1, 作减法运算

(a) 可控加法/减法(CAS)单元的逻辑图

2.4.2 并行除法器

2、不恢复余数的阵列除法器

被除数 x=0.x₆x₅x₄x₃x₂x₁

(双倍长)

除数 y=0.y₃y₂y₁

商数 q=0.q₃q₂q₁

余数 r=0.00r₆r₅r₄r₃

除数右移

(b) 4 位除 4 位阵列除法器

2.4.2 并行除法器


```
[例23] X = 0.101001, y = 0.111, 求 X \div Y。
[解:] [x]<sub>补</sub>=0.101001, [y]<sub>补</sub>=0.111, [-y]<sub>补</sub>=1.001
0.10101 (i.e.)
                                            :被除数
                                             :第一步减除数y
               1.001
   +[-y]<sub>¾</sub>,
                1.110001
                                  <0 q<sub>4</sub>=0;余数为负,商0
                                             :除数右移1位加
   +[y]_{\nmid h} \rightarrow
              0.0 1 1 1
                                  >0 q<sub>3</sub>=1;余数为正,商1
               0.001101
   +[-y]_{\lambda}
                                             :除数右移2位减
               1.1 1 0 0 1
                                  <0 q<sub>2</sub>=0;余数为负,商0
                1.1 1 1 1 1 1
   +[y]_{i}
              0.000111
                                            ;除数右移3位加
                                  >0 q₁=1;余数为正,商1
               0.000110
```

商 $q=q_4.q_3q_2q_1=0.101$,余数 $r=(0.00r_6r_5r_4r_3)=0.000110$

- 2.5.1 逻辑运算
- 2.5.2 多功能算术/逻辑运算单元ALU
- 2.5.3 内部总线
- 2.5.4 定点运算器的基本结构

2.5.1 逻辑运算

- 1、逻辑非运算
- 2、逻辑加运算
- 3、逻辑乘运算
- 4、逻辑异运算

$$\mathbf{x} = \mathbf{x}_0 \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n$$
, 对 \mathbf{x} 求逻辑非,则有

$$\overline{x} = z = z_0 z_1 z_2 ... z_n$$

 $z_i = \overline{x}_i$, i=0,1,2,...,n

1、逻辑非运算

[例24] x_1 =01001001, x_2 =11110000, 求 \overline{x}_1 , \overline{x}_2 解:

 $\overline{x}_1 = 10110100$ $\overline{x}_2 = 00001111$

2、逻辑加运算

$$x = x_0x_1x_2...x_n$$
 , $y = y_0y_1y_2...y_n$ 则有
$$x+y = z = z_0z_1z_2...z_n$$
 $z_i = x_i+y_i$, $i=0,1,2,...,n$

2、逻辑加运算

[例25] x=10100001, y=100111011, 求 x+y 解:

10111011 z

$$x = x_0 x_1 x_2 ... x_n$$
, $y = y_0 y_1 y_2 ... y_n$ 则有
$$x \cdot y = z = z_0 z_1 z_2 ... z_n$$

$$z_i = x_i \cdot y_i$$
, $i = 0, 1, 2, ..., n$

3、逻辑乘运算

[例26] x=10111001, y=11110011, 求 x+y 解:

10111001 x

· 11110011 y

10110001 z

即 x·y = 10110001

4、逻辑异运算

$$x = x_0x_1x_2...x_n$$
 , $y = y_0y_1y_2...y_n$ 则有
$$x \oplus y = z = z_0z_1z_2...z_n$$
 $z_i = x_i \oplus y_i$, $i=0,1,2,...,n$

4、逻辑异运算

[例27] x=10101011, y=11001100, 求 x+y 解:

$$01100111$$
 z

- 1、基本思想
- 2、逻辑表达式
- 3、算术逻辑运算的实现
- 4、两级先行进位的ALU

- 1、基本思想
 - 创新点:
 - (1) 实现并行进位(先行进位)
 - (2) 实现16种算术运算,16种逻辑运算
 - 基本思想:一位全加器FA的逻辑表达式:

$$F_{i} = A_{i} \oplus B_{i} \oplus C_{n+i}$$

$$C_{n+i+1} = A_i B_i + A_i C_{n+i} + B_i C_{n+i}$$

为了实现多种算术逻辑运算,可将Ai和Bi输入一个函数发生器(进位传递函数和进位产生函数)得到输出Xi和Yi,作为一位全加器的输入(见下页图)。

ALU的逻辑图与逻辑表达式

一位ALU逻辑图

2、逻辑表达式

XiYi 与控制参数和输入量的关系构造如下真值表

$S_0 S_1$	Yi	$S_2 S_3$	$X_{\underline{i}}$
0 0 0 1 1 0 1 1	$egin{array}{c} \overline{A}_i \ \overline{A}_i B_i \ \overline{A}_i \overline{B}_i \ 0 \end{array}$	0 0 0 1 1 0 1 1	$\frac{\frac{1}{A_i} + B_i}{\overline{A_i} + \overline{B_i}}$

$$Y_{i} = \overline{S_{0}} \overline{S_{1}} \overline{A_{i}} + \overline{S_{0}} S_{1} \overline{A_{i}} B_{i} + S_{0} \overline{S_{1}} \overline{A_{i}} \overline{B_{i}}$$

$$X_{i} = \overline{S_{2}} \overline{S_{3}} + \overline{S_{2}} S_{3} (\overline{A_{i}} + \overline{B_{i}}) + \overline{S_{2}} S_{3} (\overline{A_{i}} + B_{i}) + S_{2} S_{3} \overline{A_{i}}$$

• ALU的某一位逻辑表达式见下:

$$X_{i} = \overline{S_{3} A_{i} B_{i}} + S_{2} A_{i} \overline{B}_{i}$$

$$Y_{i} = \overline{A_{i}} + S_{0} B_{i} + S_{1} \overline{B}_{i}$$

$$F_{i} = X_{i} \oplus Y_{i} \oplus C_{n+i}$$

$$C_{n+i+1} = Y_{i} + X_{i} C_{n+i}$$

• 如何实现先行进位?

答:由于每一位中X、Y的产生是同时的,则可以由下面方法算出并行进位的 C_{n+4} $C_{n+1} = Y_0 + X_0 C_n$

$$C_{n+2} = Y_1 + X_1 C_{n+1} = Y_1 + Y_0 X_1 + X_0 X_1 C_n$$

$$C_{n+3} = Y_2 + X_2 C_{n+2} = Y_2 + Y_1 X_1 + Y_0 X_1 X_2 + X_0 X_1 X_2 C_n$$

$$C_{n+4} = Y_3 + X_3 C_{n+3} = Y_3 + Y_2 X_3 + Y_1 X_2 X_3 + Y_0 X_1 X_2 X_3 + X_0 X_1 X_2 X_3 C_n$$

•
$$\Leftrightarrow G = Y_3 + Y_2X_3 + Y_1X_2X_3 + Y_0X_1X_2X_3$$

 $P = X_0X_1X_2X_3$

- G为进位发生输出 P为进位传送输出
- · 增加P和G的目的在于实现多片(组)ALU之间的先行进位,需要配合电路,称为先行进位 发生器(CLA)
- 器件: 74181

2.5.2 多功能算术/逻辑运算单元ALU 3、算术逻辑运算的实现 F_3 F_2 \mathbf{F}_1 $\mathbf{F}_{\mathbf{0}}$ A = B \triangle M

图2.11 正逻辑操作数表示的74181ALU逻辑电路图

 A_2

 B_1

 $\mathbf{B}_{\mathbf{0}}$

 A_0

 A_1

 A_3

 B_2

- 算术逻辑运算的实现(74181)
 - M=L时,对进位信号没有影响,做算术运算
 - M=H时, 进位门被封锁, 做逻辑运算
- 说明:
 - 74181执行正逻辑输入/输出方式的一组算术运算和逻辑运算和负逻辑输入/输出方式的一组算术运算和逻辑运算是等效的。
 - A=B端可以判断两个数是否相等。

- 4、两级先行进位的ALU
 - 4片(组)的先行进位逻辑
 - $\bullet \quad \mathbf{C}_{n+x} = \mathbf{G}_0 + \mathbf{P}_0 \mathbf{C}_n$
 - $C_{n+y} = G_1 + P_1 C_{n+x} = G_1 + G_0 P_1 + P_0 P_1 C_n$
 - $C_{n+x} = G_2 + P_2 C_{n+y}$
 - $= G_2 + G_1 P_2 + G_0 P_1 P_2 + P_0 P_1 P_2 C_n$
 - $\bullet \quad C_{n+4} = G_3 + P_3 C_{n+z}$
 - $= G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + P_0 P_1 P_2 P_3 C_n$
 - $\bullet = G^* + P^*C_n$
 - G*为成组先行进位发生输出
 - P*为成组先行进位传送输出

成组先行进位部件CLA的逻辑图

• 设计16位ALU

- $C_{n+x} = G_2 + P_2 C_{n+y}$ $C_{n+4} = G_3 + P_3 C_{n+z}$
- 片内先行进位,片间先行进位.

2个74L182 8个4位ALU74L181

图2.13 用两个16位全先行进位逻辑级联组成的32位ALU

- 内部总线
 - 机器内部各部份数据传送频繁,可以把寄存器间的数据传送通路加以归并,组成总线结构。
 - 分类
 - 所处位置
 - 内部总线(CPU内)
 - 外部总线(系统总线)
 - 逻辑结构
 - 单向传送总线
 - 双向传送总线

2.5.3 内部总线

(a) 带有缓冲器的双向数据总线

(b) 带有锁存器的4位双向数据总线

图2.14 由三态门组成的双向数据总线

1、单总线结构的运算器

(a) 单总线结构的运算器

2.5.4 定点运算器的基本结构

2、双总线结构的运算器

(b) 双总线结构的运算器

图2.15 运算器的三种基本结构形式

3、三总线结构的运算器

(c) 三总线结构的运算器

- 2.6.1 浮点加法、减法运算
- 2.6.2 浮点乘法、除法运算
- 2.6.3 浮点运算流水线
- 2.6.4 浮点运算器实例

2.6.1 浮点加法、减法运算

1、浮点加减运算

设有两个浮点数 x 和 y, 它们分别为

$$x = 2^{E \times M}_{x}$$

$$y = 2^{E y} \cdot M_{y}$$

其中Ex和Ey分别为数x和y的阶码,Mx和My为数x和y的尾数。两浮点数进行加法和减法的运算规则是

$$x \pm y = (M_x 2^{E_x - E_y} \pm M_y) 2^{E_y},$$
 设 $E_x < = E_y$

2.6.1 浮点加法、减法运算

- 2、浮点运算步骤如下:
 - 1. 0 操作数检查;
 - 2. 比较阶码并完成对阶(小阶向大阶对齐);
 - 3. 尾数求和运算;
 - 4. 结果规格化;
 - 5. 舍入处理。

• 浮点加减法运算操作流程

2.6.1 浮点加法、减法运算

[例28] 设 $x=2^{010}\times 0.11011011$, $y=-2^{100}\times 0.10101100$, 求**x+y**。

- 1、0操作数检查(非0)
- 2、对阶: 阶码对齐后才能加减。规则是阶码小的向阶码大的数对齐;
 - 若 $\triangle E = 0$,表示两数阶码相等,即Ex = Ey;
 - 若△E>0,表示Ex>Ey;
 - 若△E<0,表示Ex>Ey。
 - 当E x ≠E y 时,要通过尾数的移动以改变E x 或E y,使之相等。

[x]_浮=00010, 0.11011011; [y]_浮=00100, 1.01010100 阶差=[Ex]_补-[Ey]_补=00010-00100=11110

即阶差为-2,Mx右移两位,Ex加2。

 $[x]_{\text{p}} = 00100, 0.00110110(11)$

3、尾数相加

- 0.00110110(11)
 1.010100
 - 1. 1 0 0 0 1 0 1 0 (11)
- 4、结果规格化
 - 规则: 尾数右移1位, 阶码加1, 尾数左移1位, 阶码减1。
 - 左规处理,结果为1.00010101(10),阶码为00011

- 舍入处理(对阶和向右规格化时)
 - 就近舍入(0舍1入):类似"四舍五入",丢弃的最高位为1,进1
 - 朝0舍入:截尾
 - 朝+∞舍入:正数多余位不全为"0",进1;负数,截尾
 - 朝一∞舍入:负数多余位不全为"0",进1;正数,截尾 采用0舍1入法处理,得到1.00010110。
- 溢出判断和处理
 - 阶码上溢,一般将其认为是+∞和-∞。
 - 阶码下溢,则数值为0。

阶码符号位为00,不溢出。得最终结果为 $x+y=2^{011}\times(-0.11101010)$

2.6.1 浮点加法、减法运算


```
[例29] 设x = 10^{Ex} \times Mx = 10^{2} \times 0.3, y = 10^{Ey} \times My = 10^{3} \times 0.2, 求 x+y=?x-y=?
```

```
解: Ex=2, Ey=3, Ex<Ey, 对阶时小阶向大阶看齐。 x+y = (Mx\cdot10^{Ex-Ey} + My)\times10^{Ey} = (0.3\times10^{2-3} + 0.2)\times10^3 = 0.23\times10^3 = 230 x-y = (Mx\cdot10^{Ex-Ey} - My)\times10^{Ey} = (0.3\times10^{2-3} - 0.2)\times10^3 = -0.17\times10^3 = -170
```


● 设[x1]补=11.01100000,

[x2] \uparrow =11.01100001,

[x3] \Rightarrow 1.01101000,

[X4] \uparrow =11.01111001,

求执行只保留小数点后4位有效数字的舍入操作值。

- 课堂练习: x=0.1101*2⁰¹ y=-0.1010*2¹¹
- 尾数和阶符都采用补码表示,都采用双符号位表示法。
- 求x+y

2.6.1 浮点加法、减法运算

[x]₁₂₂=0001, 00.1101 [y]₁₂=0011, 11.0110 阶差=1110 即为-2 Mx应当右移2位, $[x]_{\mathbb{Z}}=0011, 00.0011 (01)$ 尾数和为11.1001(01) 左规11.0010(10),阶码减1为0010 $x+y=-0.1101*2^{10}$

2.6.2 浮点乘法和除法运算

• 设有两个浮点数 x 和 y:

$$x = 2^{E \times M}_{x}$$

$$y = 2^{E y} \cdot M_{y}$$

- $\mathbf{x} \times \mathbf{y} = 2^{(\mathbf{E} \mathbf{x} + \mathbf{E} \mathbf{y})} \cdot (\mathbf{M}_{\mathbf{x}} \times \mathbf{M}_{\mathbf{y}})$
- $\mathbf{x} \div \mathbf{y} = 2^{(\mathbf{E} \times -\mathbf{E} \mathbf{y})} \cdot (\mathbf{M}_{\mathbf{x}} \div \mathbf{M}_{\mathbf{y}})$

- 乘除运算分为四步
 - ① 0操作数检查
 - ② 阶码加减操作
 - ③ 尾数乘除操作
 - ④ 结果规格化和舍入处理

- 补码采用双符号位,为了对溢出进行判断
- 00 为正

11

为负

• 01 上溢

10 下溢

$$x = +011, y = +110, 求[x + y]_{i}$$
和[x - y]_i,并判断是否溢出。

$$[x]_{\begin{subarray}{l} [x]_{\begin{subarray}{l} [x]_{\begin{subarra$$

$$[x+y]_{\dot{i}}=[x]_{\dot{i}}+[y]_{\dot{i}}=01001$$
, 结果上溢。

$$[x-y]_{i}=[x]_{i}+[-y]_{i}=11101$$
,结果正确,为一3。

- 尾数处理
 - 截断
 - 舍入
 - 尾数用原码表示时
 - 只要尾数最低为1或者移出位中有1数值位,使最低位置1
 - 0舍1入
 - 尾数用补码表示时
 - 丢失的位全为0,不必舍入。
 - 丢失的最高位为0,以后各位不全为0时;或者最高为1,以后各位 全为0时,不必舍入。
 - 丢失的最高位为1,以后各位不全为0时,则在尾数的最低位入1的 修正操作。

[例30] 设有浮点数 $x=2^{-5}\times 0.0110011$, $y=2^{3}\times (-0.1110010)$, 阶码用4位移码表示,尾数(含符号位)用8位补码表示。求[$x\times y$]_浮。要求用补码完成尾数乘法运算,运算结果尾数保留高8位(含符号位),并用尾数低位字长值处理舍入操作。

[解:]

阶码采用双符号位,尾数原码采用单符号位,则有

 $[Mx]_{\bar{\mathbb{R}}} = 0.0110011$, $[My]_{\bar{\mathbb{R}}} = 1.1110010$

 $[Ex]_{k}=11011, [Ey]_{k}=00011$

 $[x]_{\cancel{z}}=11011,0.0110011,[y]_{\cancel{z}}=00011,1.1110010$

- (1) 求阶码和: [Ex]_补+[Ey]_补=11011+00011=11110 (补码 形式-2)
- (2) 尾数乘法运算可采用原码阵列乘法器实现,即有 $[Mx]_g \times [My]_g = [0.0110011]_g \times [1.1110010]_g$
- $= [1.0101101,0110110]_{\text{g}}$
- (3) 规格化处理:乘积不是规格化的数,需要左规。尾数左移1位变为1.1011010,1101100,阶码变为11101(-3)。
- (4) 舍入处理: 尾数为负数,取高位字长,按舍入规则舍去低位字长,故尾数为1.1011011。

最终相乘结果为 $[x \times y]_{g}$ =11101,1.1011011 其真值为 $x \times y$ = $2^{-3} \times (-0.1011011)$

2.6.2 浮点乘法和除法运算

• [例31] 设基数R=10, x=10^{Ex}×Mx=10²×0.4, y=10^{Ey}×My=10³×0.2, 用浮点法求x×y=? x÷y=?

解: Ex=2, Ey=3, Mx=+0.4, My=+0.2

$$x \times y = 10^{(Ex+Ey)} \times (Mx \times My) = 10^{2+3} \times (0.4 \times 0.2)$$

=8000

$$x \div y = 10^{(Ex-Ey)} \times (Mx \div My) = 10^{2-3} \times (0.4 \div 0.2)$$

=0.2

- 1、提高并行性的两个渠道:
- 空间并行性:增加冗余部件,如增加多操作部件处理机和超标量处理机
- 时间并行性: 改善操作流程如: 流水线技术

2、流水技术原理

- 在流水线中必须是连续的任务,只有不断的提供任务才能充分发挥流水线的效率
- 把一个任务分解为几个有联系的子任务。每个子任务由一个专门的功能部件实现
- 在流水线中的每个功能部件之后都要有一个缓冲寄存器,或 称为锁存器
- 流水线中各段的时间应该尽量相等,否则将会引起"堵塞"和"断流"的现象
- 流水线需要有装入时间和排空时间,只有当流水线完全充满时,才能充分发挥效率

设过程段 S_i 所需的时间为 τ_i ,缓冲寄存器的延时为 τ_i ,线性流水线的时钟周期定义为

$$\tau = \max\{\tau_i\} + \tau_1 = \tau_m + \tau_1$$

流水线处理的频率为 f=1/ τ。

流水线原理

- 一个具有k 级过程段的流水线处理 n 个任务需要的时钟 周期数为 $T_k = k + (n-1)$,
 - 所需要的时间为: $T=T_k \times \tau$ 而同时,顺序完成的时间为: $T=n \times k \times \tau$
- k级线性流水线的加速比:

$$C_k = \frac{TL}{Tk} = \frac{n \cdot k}{k + (n-1)}$$

流水线浮点运算器

$$A = a \times 2^{P}$$
, $B = b \times 2^{q}$

在4级流水线加法器中实现上述浮点加法时, 分为以下操作:

- (1) 求阶差
- (2) 对阶
- (3) 相加
- (4) 规格化

图2.21 向量加法计算的流水时空图

- 浮点运算器实例
 - CPU之外的浮点运算器(数学协处理器)如80287
 - 完成浮点运算功能,不能单用。
 - 可以和80386或80286异步并行工作。
 - 高性能的80位字长的内部结构。有8个80位字长以堆栈方式管理的寄存器组。
 - 浮点数格式完全符合IEEE标准。
 - CPU之内的浮点运算器(486DX以上)

2.6.4 浮点运算器实例

图2.23 80x87浮点运算器逻辑框图

本章小结

- 一个定点数由符号位和数值域两部分组成。按小数点位置不同,定点数有纯小数和纯整数两种表示方法。
- 按IEEE754标准,一个浮点数由符号位S、阶码E、尾数M三个域组成。其中阶码E的值等于指数的真值e加上一个固定偏移值。
- 为了使计算机能直接处理十进制形式的数据,采用两种表示形式: 1、字符串形式,主要用在非数值计算的应用领域; 2、压缩的十进制数串形式,用于直接完成十进制数的算术运算。

本章小结

- 数的真值变成机器码时有四种表示方法:原码表示法、反码表示法、补码表示法、移码表示法。其中移码主要用于表示浮点数的阶码E,以利于比较两个指数的大小和对阶操作。
- 字符信息属于符号数据,是处理非数值领域的问题。国际上 采用的字符系统是七位的ASCII码。
- 直接使用西文标准键盘输入汉字,进行处理,并显示打印汉字,是一项重大成就。为此要解决汉字的输入编码、汉字内码、字模码等三种不同用途的编码。

本章小结

- 为运算器构造的简单性,运算方法中算术运算通常采用补码加减法,原码乘除法或补码乘除法。为了运算器的高速性和控制的简单性,采用了先行进位、阵列乘除法、流水线等并行技术措施。运算方法和运算器是本章的重点。
- 定点运算器和浮点运算器的结构复杂程度有所不同。早期微型机中浮点运算器放在CPU芯片外,随着高密度集成电路技术的发展,现已移至CPU内部。