International Islamic University Chittagong

Department of Computer Science and Engineering

B. Sc. in CSE Final Term Assessment, Spring 2021

Course Code: CSE 3635 Course Title: Artificial Intelligence

Total marks: 30

Time: 4 hours 30 minutes for exam + 30 minutes for submission

[Answer the following questions. Figures in the right hand margin indicate full marks.]

CO DL

C2

C5

CO₂

- 1. Consider the following sentences:-
 - John likes all kinds of food.
 - Apples are food.
 - Chicken is food.
 - Anything anyone eats and isn't killed by is food.
 - Bill eats peanuts and still alive.
 - Sue eats everything Bill eats.
 - i) Translate these sentences into formulas in predicate logic.
 - ii) Prove that John likes peanuts using backward chaining.
 - iii) Convert the formula into clause form.
 - iv) Prove that "John likes peanuts" using resolution.
- 2. a) Apply Alpha-beta search procedure on following game tree. Suppose the first player is the maximizing player.

- (i) Suppose the first player is the maximizing player. What move should be chosen? 4 CO3 C3
- (ii) In the game tree, what nodes would not need to be examined using the alpha-beta pruning procedure?
- b) Given knowledge base R1, R2, R3, R4, R5 below, show that P1,2 is false. 2 CO5

R1: ~ P11

R2: B11 \Leftrightarrow (P2,1 \vee P1,2)

R3: B2,1 \Leftrightarrow (P1,1 \vee P2,2 \vee P3,1)

R4: ~ B1,1 R5: B2,1

- 3. a) What is Artificial Neural Network? Show with diagram. Compare artificial and biological 2 CO2 C2 network.
 - b) Find Y for the following neuron if Input X1=0.5, X2=0.2, X3=0.7 And weight W1=0.1, 4 CO5 C5 W2=0.3 and W3=0.6
 - i) Compute the value of **Y** without a transfer function
 - ii) Compare the value of **Y** with a threshold function. If the value is **0.5** or less, call it **0**; otherwise call it **1**.
 - iii) Compute the value of \boldsymbol{Y} with the sigmoid transfer function

4. a) Write down the parse tree for the sentence "Kawsar wrote the program" using the following 2 CO3 simple grammar for a fragment of English in Figure 1.

C3

$S \rightarrow NP VP$	$VP \rightarrow V$
$NP \rightarrow the NP1$	$VP \rightarrow V NP$
$NP \rightarrow PRO$	N → file program
$NP \rightarrow PN$	PN → Kawsar
$NP \rightarrow NP1$	$PRO \rightarrow I$
$NP1 \rightarrow ADJS N$	ADJ → short Long fast
ADJS → ε ADJS ADJS	V → printed Created wrote

Figure 1. A simple grammar for a fragment of English

- b) Determine whether the following sentence is i) Satisfiable ii) Contradictory iii) Valid 2 CO3 C3 (P v Q) -> (P & Q)
- c) Transform the following sentence into Conjunctive Normal Form (CNF): (P -> Q) -> R 2 CO3 C3
- 5. A Bayesian network (Figure 2) with Boolean variables B = BrokeElectionLaw, I = Indicted, M = 6 CO3 C3 PoliticallyMotivatedProsecutor, = FoundGuilty, J = Jailed, showing both the topology and the conditional probability tables (CPTs).

Figure 2

- i) Calculate the value of P(b, i, m, g, j)
- ii) Calculate the probability that someone goes to jail given that they brove the law, have been indicted, and face politically motivated prosecutor.
- iii) Suppose we want to addthe variable P = PresidentialPardon to the network, draw the new network and briefly explain any links you add.