МАТЛОГ 2020

ИСЧИСЛЕНИЕ ВЫСКАЗЫВАНИЙ	
Метапеременные	"Placeholder" for variables
Пропозициональные переменные	Элементарные высказывания мы будем обозначать БОЛЬШИМИ латинскими буквами и называть пропозициональными переменными. — символы, обозначающие высказывания пропозициональные переменные это чисто фиксированные объекты тип буквы они там уже при какой-то оценке разные значения будут принимать
Высказывания	Строка в некотором алфавите, строящаяся по определенным правилам 1) A, B, C - пропозициональные переменные 2) а - высказывание => !а - высказывание 3) $\alpha \land \beta$ 4) $\alpha \lor \beta$ 5) $\alpha \rightarrow \beta$
Схемы аксиом	Аксиомы классического исчисления высказываний. Аксиомами классического исчисления высказываний будем называть пропозициональные формулы любого из следующих видов, где A, B, C — произвольные формулы: 1. A -> (B -> A); 2. (A -> B) -> (A -> B -> C) -> (A -> C); 3. A & B -> A; 4. A & B -> B; 5. A -> B -> A & B; 6. A -> A V B; 7. B -> A V B; 8. (A -> C) -> ((B -> C) -> (A V B -> C)); 9. (A -> B) -> (A -> ¬B) -> ¬A; 10. ¬¬A -> A.
МП	Единственным правилом вывода исчисления высказываний является правило «modus ponens» (MP).

	разрешает получить из формул A и $(A \to B)$ формулу B .
Общезначимость	Формула общезначима если истинна в любой оценке
Следование	формула X следует из G_1G_n , если в любой оценке, в которой истинны G_1G_n истинна и X
Доказательство	последовательность высказываний, каждое из которых либо аксиома, либо получено из каких-то предыдущих с помощью Modus Ponens.
Доказуемость	Формула α доказуема, если существует доказательство последним высказыванием в котором является α
Вывод из гипотез	α выводимо из Г, где Г — список высказываний, если существует <i>вывод</i> , то есть последовательность высказываний такая, что каждое из них либо аксиома, либо из Г, либо получается по М. Р.
Выводимость	Формула α выводима из Г, если существует вывод из Г последним высказыванием в котором является α
Корректность	доказуемость ⇒ общезначимость
Полнота	общезначимость ⇒ доказуемость
Непротиворечивость	Множество формул Г называется непротиворечивым , если из него одновременно НЕ выводятся формулы A и ¬A.
Теорема о дедукции для исчисления высказываний	$\Gamma \vdash \alpha \longrightarrow \beta \iff \Gamma, \ \alpha \vdash \beta$
Теорема о полноте исчисления высказываний	ИВ полно
ВНК-интерпретация	lpha& eta , если есть доказательство $lpha$ и eta и eta и eta и eta и eta и eta и и и eta и и и и и и и и и и и и и и и и и и и
Теорема Гливенко	Если ⊢κα, то ⊢謬α

решетка	$\langle A, \leq \rangle \langle A, \leq \rangle$ — решётка, если: $\forall a, b \in A$: \exists наименьший $c = a + b : a \leq c, \ b \leq c$ $\forall a, b \in A$: \exists наибольший $c = a \cdot b : c \leq a, \ c \leq b$
Дистрибутиваная решетка	решётка + свойство: a+(b⋅c)=(a+b)⋅(a+c) лемма: a⋅(b+c)=a⋅b+a⋅c теорема: решётка дистрибутивна ⇔ не содержит ни диаманта ни пентагона
Импликативная решетка	дистрибутивная решётка + определена операция псевдодополнения (относительно b): $c=a \rightarrow b=max\{x x\cdot a \le b\}$ теорема : дистрибутивность в определении можно опустить def : 1 — наибольший элемент решётки def : 0 — наименьший элемент решётки
Алгебра Гейтинга	Импликативная решетка называется псевдобулевой алгеброй или алгеброй Гейтинга , если в ней есть наименьший элемент, который мы будем обозначать о. Псевдодополнением элемента а данной псевдобулевой алгебры называется элемент а → о, обозначаемый ~ а. Всякая алгебра Гейтинга — модель ИИВ
Булевая алгебра	$\forall a: a + \neg a = 1$
Алгебра Линденбаума	Пусть α , β — формулы, $\alpha \le \beta$, если $\beta \vdash \alpha$, $\alpha \approx \beta$, если $\alpha \le \beta$ & $\beta \le \alpha$ Тогда, алгебра Линденбаума — ИИВ/≈ [факторизация по операции ≈] теорема: Алгебра Линденбаума — корректная и полная модель ИИВ.
Модели Крипке.	$<\Omega,\leqslant,\Vdash>\ -\ \mathrm{упорядоченная}\ \mathrm{тройка},\ \mathrm{где}:$ Ω - множество миров, $\Omega,\leqslant,\Vdash-\ \mathrm{отношениe}\ \mathrm{частичногo}\ \mathrm{порядка}$ $\Vdash:\Omega xP$, такое что если $W_i\leqslant W_j$ и $W_i\Vdash\varphi$, то $W_j\Vdash\varphi$ $W_i\Vdash\varphi\&\psi\ ,\ \mathrm{если}\ W_i\Vdash\varphi$ и $W_i\Vdash\psi$ $W_i\Vdash\varphi\lor\psi$, если $W_i\Vdash\varphi$ или $W_i\Vdash\psi$ $W_i\Vdash\varphi\to\psi$, если $W_i\Vdash\varphi$ или $W_i\Vdash\psi$ $W_i\Vdash\varphi\to\psi$, если для любого $W_i\leqslant W_j$ $W_j\Vdash\varphi$ влечет $W_j\Vdash\psi$
Сведение моделей Крипке к	Утверждение: если $<$ X , Ω $>$ - топология, то $<$ Ω , \leq - алгебра Гейтинга.

псевдобулевым алгебрам.	Сведение моделей Крипке к топологии: $<\Omega, <\!\!\!> -$ множество миров. $X=\Omega$. T - открытое множество миров: если $x\in T$ и $x\leqslant y$, то $y\in T$ Тогда X - переменная, $S=\{W_i W_i$ $\in X\}$ - открытое	
Нетабличность интуиционистского исчисления высказываний.	У ИИВ нет полной табличной модели :(
Гёделева алгебра.	Алгебра A геделева, если для любых a, b из A: если a + b = 1,то a = 1 или b = 1	
Операция Г(А)	Г(A) Добавим к алгебре новую "1", большую всех элементов, а старую переименуем в "ω". Утв. Если A - алгебра Гейтинга, то и Г(A) алгебра Гейтинга Утв. Г(A) - геделева	
Дизъюнктивность интуиционистского исчисления высказываний	- а b, значит доказуемо а или доказуемо b	
	ИСЧИСЛЕНИЕ ПРЕДИКАТОВ	
Предикатные и функциональные символы		
Константы и пропозициональные переменные	Константа это 0-местный функциональный символ(возвр элемент предметного множества) Пропозициональная переменная это 0-местный предикат	
Свободные и связанные вхождения предметных переменных в формулу	Связанное вхождение — вхождение в области действия квантора. ∀х.х Связывающее вхождение — вхождение непосредственно рядом с квантором.	
Свобода для подстановки	$\phi[x := \psi]$ - имеется свобода для подстановки ψ вместо x в ϕ - никакие свободные вхождения переменных в ψ не станут связанными	
Правила вывода для кванторов	$2.\frac{\psi \to \phi}{\psi \to \forall x. \phi}$ $3.\frac{\phi \to \psi}{(\exists x. \phi) \to \psi}$, где x не входит свободно в ψ	

Аксиомы исчисления предикатов	$11.(\forall x.\phi) o \phi[x:=\Theta] \ 12.\phi[x:=\Theta] o \exists x.\phi \ \}$, где Θ свободна для подстановки вместо x в ϕ
Теорема о дедукции в исчислении предикатов	 Если Г + ф → ψ , то Г, ф + ψ Если Г, ф + ψ и в доказательстве отсутствуют правила для кванторов по свободным переменным из ф , то Г + ф → ψ
Теорема о корректности для исчисления предикатов	каждое доказуемое утв. общезначимо
Замкнутая формула	Формула без свободных переменных
Непротиворечивое множество формул	Определение Γ — непротиворечивое множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ при некотором α Теорема Γ — непротиворечивое множество замкнутых (бескванторных) формул. Γ — непротиворечивое множество замкнутых (обескванторных) формула φ , хотя бы $\Gamma \cup \{\varphi\}$ или $\Gamma \cup \{\neg \varphi\}$ — непротиворечиво
Полное непротиворечивое множество формул	Определение $\Gamma - полное \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Существование моделей у непротиворечивых множеств формул в бескванторном исчислении предикатов.	Определение Моделью для множества формул F назовём такую модель \mathcal{M} , что при всяком $\varphi \in F$ выполнено $[\![\varphi]\!]_{\mathcal{M}} = \mathcal{U}$. Альтернативное обозначение: $\mathcal{M} \models \varphi$. Теорема Любое непротиворечивое множество замкнутых бескванторных формул имеет модель.

	Определение Пусть М — полное непротиворечивое множество замкнутых бескванторных формул. Тогда модель М задаётся так: 1. D — множество всех замкнутых бескванторных формул и дополнительная строка "ошибка!" 2. [[f(θ₁,,θ _n)]] = "f(" + [[θ₁]] + "," + + "," + [[θ _n]] + ")" 3. [[P(θ₁,,θ _n)]] = { И, если "P(" + [[θ₁]] + "," + + "," + [[θ _n]] + ")" ∈ M Л, иначе
Формула с поверхностными кванторами	Определение 7.4. Назовём формулу α формулой с поверхностными кванторами, если существует такой узел в дереве разбора формулы, не являющийся квантором, ниже которого нет ни одного квантора, а выше — нет ничего, кроме кванторов.
Теорема Геделя о полноте исчисления предикатов	лемма: Для любой формулы ИП найдётся эквив. ей ф-ла с поверхностными кванторами теорема: Г — непротиворечивое множество формул ИП. Тогда, существует модель для Г
Следствие из теоремы Геделя о полноте исчисления предикатов	если формула общезначима, то она выводима
Теории первого порядка, структуры и модели.	Определение Теорией первого порядка назовём исчисление предикатов с дополнительными («нелогическими» или «математическими»): ▶ предикатными и функциональными символами; ▶ аксиомами. Сущности, взятые из исходного исчисления предикатов, назовём логическими
Аксиоматика Пеано.	Определение N (или, более точно, $\langle N,0,(')\rangle$) соответствует аксиоматике Пеано, если следующее определено/выполнено: 1. Операция «штрих» $('): N \to N$, причём нет $a,b \in N$, что $a \ne b$, но $a' = b'$. Если $x = y'$, то x назовём следующим за y , а y — предшествующим x . 2. Константа $0 \in N$: нет $x \in N$, что $x' = 0$. 3. Индукция. Каково бы ни было свойство («предикат») $P: N \to V$, если: 3.1 $P(0)$ 3.2 При любом $x \in N$ из $P(x)$ следует $P(x')$ то при любом $x \in N$ выполнено $P(x)$. Как построить? Например, в стиле алгебры Линденбаума: 1. N — язык, порождённый грамматикой $\nu := 0 \mid \nu$ «'» 2. 0 — это «0», x' — это x $+$ «'»
Арифметические операции.	Определение $a+b=\left\{\begin{array}{ll} a, & \textit{если } b=0 \\ (a+c)', & \textit{если } b=c' \end{array}\right.$
	Определение $a\cdot b=\left\{\begin{array}{ll} 0, & \textit{если } b=0\\ a\cdot c+a, & \textit{если } b=c' \end{array}\right.$

Формальная арифметика.	Определение Формальная арифметика — теория первого порядка, со следующими добавленными нелогическими разместными функциональными символами $(+)$, (\cdot) ; одноместным функциональным символом $(')$, нульместным фукнциональным символом 0 ; разместным предикатным символом $(=)$; восемью нелогическими аксиомами: $(A1) \ a = b \to a = c \to b = c (A5) \ a + 0 = a$ $(A2) \ a = b \to a' = b' (A6) \ a + b' = (a + b)'$ $(A3) \ a' = b' \to a = b (A7) \ a \cdot 0 = 0$ $(A4) \ \neg a' = 0 (A8) \ a \cdot b' = a \cdot b + a$
Примитивы:	Определение 4. Рассмотрим следующие примитивы. 1. $Z: \mathbb{N}_0 \to \mathbb{N}_0, Z(x) = 0$ 2. $N: \mathbb{N}_0 \to \mathbb{N}_0, N(x) = x'$ 3. Проекция. $U_i^n: \mathbb{N}_0^n \to \mathbb{N}_0, U_i^n(x_1,x_n) = x_i$ 4. Подстановка. Если $f: \mathbb{N}_0^n \to \mathbb{N}_0, u \ g_1,g_n: \mathbb{N}_0^m \to \mathbb{N}_0, \ mo \ S\langle f, g_1,g_n \rangle : \mathbb{N}_0^m \to \mathbb{N}_0.$ При этом $S\langle f, g_1,g_n \rangle (x_1,x_m) = f(g_1(x_1,x_m),g_n(x_1,x_m))$ 5. Примитивная рекурсия. Если $f: \mathbb{N}_0^n \to \mathbb{N}_0 \ u \ g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0, \ mo \ R\langle f, g \rangle : \mathbb{N}_0^{n+1} \to \mathbb{N}_0, \ npu \ этом$ $R\langle f, g \rangle (x_1,x_n, y) = \begin{cases} f(x_1,x_n) & ,y = 0 \\ g(x_1,x_n, y - 1, R\langle f, g \rangle (x_1,x_n, y - 1)) & ,y > 0 \end{cases}$ 6. Минимизация. Если $f: \mathbb{N}_0^{n+1} \to \mathbb{N}_0, \ mo \ \mu \langle f \rangle : \mathbb{N}_0^n \to \mathbb{N}_0, \ npu \ этом \mu \mu \langle f \rangle (x_1,x_n) - такое минимальное число y, что f(x_1,x_n, y) \neq 0. Если такого y нет, результат данного примитива неопределен.$
Примитивно-рекурсивн ая функция	Функция называется примитивно-рекурсивной, если возможно построить выражение только из первых пяти примитивов, такое, что оно при всех аргументах возвращает значение, равное значению требуемой функции.
Рекурсивная функция	Если функция может быть выражена с помощью всех шести примитивов, она называется рекурсивной.
Функция Аккермана.	Определение 6. Функцией Аккермана мы назовем так определенную функцию: $A(m,n) = \left\{ \begin{array}{c} n+1, & \textit{если } m=0 \\ A(m-1,1), & \textit{если } m>0, n=0 \\ A(m-1,A(m,n-1)), & \textit{если } m>0, n>0 \end{array} \right.$
Выразимость отношений	Определение 1. Отношение R называется выразимым (в формальной арифметике), если существует такая формула $\alpha(x_1, \dots x_n)$ с n свободными переменными, что для любых натуральных чисел $k_1 \dots k_n$ 1. если $(k_1, \dots k_n) \in R$, то доказуемо $\alpha(\overline{k_1}, \dots \overline{k_n})$ 2. если $(k_1, \dots k_n) \notin R$, то доказуемо $\neg \alpha(\overline{k_1}, \dots \overline{k_n})$.
Представимость функций	Определение 2. Введем следующее сокращение записи: пусть $\exists ! y.\phi(y)$ означает $(\exists y.\phi(y)) \& \forall a.\forall b.\phi(a) \& \phi(b) \rightarrow a = b$ Здесь а u b — некоторые переменные, не входящие в формулу ϕ свободно. Определение 3. Функция f от n аргументов называется представимой в формальной арифметике, если существует такая формула $\alpha(x_1, \dots x_{n+1})$ c $n+1$ свободными пременными, что для любых натуральных чисел k_1 k_{n+1} 1. $f(k_1, \dots k_n) = k_{n+1}$ тогда u только тогда, когда доказуемо $\alpha(\overline{k_1}, \dots \overline{k_{n+1}})$. 2. Доказуемо $\exists ! b.\alpha(\overline{k_1}, \dots \overline{k_n}, b)$

Бета-функция Гёделя.	Теорема Любая рекурсивная функция представима в Ф.А. Теорема Любая представимая в Ф.А. функция рекурсивна. Определение
	eta -функция Гёделя: $eta(b,c,i):=b\%(1+(i+1)\cdot c)$ 3 десь $(\%)$ — остаток от деления. Теорема eta -функция Гёделя представима в Φ . A . формулой $\beta(b,c,i,d):=\exists q.(b=q\cdot (1+c\cdot (i+1))+d)\&(d<1+c\cdot (i+1))$ Деление b на x с остатком: найдутся частное (q) и остаток (d) , что $b=q\cdot x+d$ и $0\leq d< x$.
Гёделева нумерация.	Будем называть гёделевой нумерацией списка следующую конструкцию. Пусть $\langle a_0,\dots,a_{n-1}\rangle$ — некоторый список натуральных чисел. Пусть p_i — это простое число номер i (естественно, $p_0=2$). Тогда гёделева нумерация этого списка $\lceil \langle a_0,a_1,\dots,a_{n-1}\rangle \rceil = 2^{a_0} \cdot 3^{a_1} \cdot \dots \cdot p_{n-1}^{a_{n-1}}$. Например, $\lceil \langle 7,1,4\rangle \rceil = 2^{r} \cdot 3^1 \cdot 5^4 = 240000$.
Самоприменимость	Определение Определим функцию $W_1\colon W_1(x,p)=1$, если $x=\lceil \xi \rceil$, где ξ — формула c единственной свободной переменной x_1 , а p — доказательство самоприменения $\xi\colon \vdash \xi(\lceil \xi \rceil)$ $W_1(x,p)=0, \text{ если это не так.}$ Теорема Существует формула ω_1 со свободными переменными x_1 и x_2 , такая, что: $1.\vdash \omega_1(\lceil \varphi \rceil, \overline{p})$, если p — гёделев номер доказательства самоприменения φ ; $2.\vdash \neg \omega_1(\lceil \varphi \rceil, \overline{p})$ иначе.
Непротиворечивость	Формальная арифметика непротиворечива, если нет формулы $lpha$, что $dash lpha$ и $dash eg lpha$.
ω-непротиворечивость	Формальная арифметика ω -непротиворечива, если для любой формулы $\varphi(x)$, что $\vdash \varphi(\overline{p})$ при всех $p \in \mathbb{N}_0$, выполнено $\not \vdash \exists p. \neg \varphi(p)$. $\vdash \varphi(\overline{0}), \vdash \varphi(\overline{1}), \vdash \varphi(\overline{2}), \vdash \varphi(\overline{3}), \dots$ Значит, нет p , что $\vdash \neg \varphi(p)$. Если формальная арифметика ω -непротиворечива, то она непротиворечива.
Первая теорема Гёделя о неполноте арифметики	Определение $\sigma(x) := \forall p. \neg \omega_1(x, p)$ Теорема (первая теорема Гёделя о неполноте арифметики) 1. Если формальная арифметика непротиворечива, $\tau o \not\vdash \sigma(\ \ \ \ \ \ \ \ \)$. 2. Если формальная арифметика ω -непротиворечива, $\tau o \not\vdash \neg \sigma(\overline{\ \ \ \ \ \ \)$.
Неформальный смысл первой теоремы Геделя	ФА не полна :(

Формулировка первой теоремы Гёделя о неполноте арифметики в форме Россера	Определение $W_2(x,p)=1$, если $p-$ доказательство отрицания самоприменения. Лемма Существует формула ω_2 , что $\vdash \omega_2(\overline{x},\overline{p})$, если $W_2(x,p)=1$, иначе $\vdash \neg \omega_2(\overline{x},\overline{p})$ Теорема Π усть $\rho(x):=\forall p.\omega_1(x,p) \to \exists q.q Тогда eq \rho(\overline{p}) и eq \neg \rho(\overline{p})$
Consis	Теорема $ C y ществует формула \ \pi(x,p) - доказуемая \ тогда \ и \ только \ тогда, \ когда \ proof(x,p) = 1. $ Определение
Вторая теорема Геделя о неполноте	Теорема ⊢ Consis $\rightarrow \sigma(\overline{\ }\overline{\sigma})$