

departamento de física

MECÂNICA E CAMPO ELETROMAGNÉTICO

ano letivo 2023/2024

Série 3

Campo Magnético

Lei de Biot e Savart

1. Considere um fio condutor retilíneo finito percorrido por uma corrente *l*:

- a) Determine o campo magnético criado no ponto P, em função dos parâmetros indicados.
- b) Considere o fio muito comprido e calcule agora o campo magnético criado no mesmo ponto.

Solução: a)
$$B=\frac{\mu_0\,I}{4\pi d}\left(\mathrm{sen}\left|\alpha_1\right|+\mathrm{sen}\left|\alpha_2\right|\right)$$
 (T); b) $B=\frac{\mu_0I}{2\pi d}$ (T).

2. Um fio infinito tem um troço semicircular de raio *R*. Este fio é percorrido por uma corrente *I*. Determine o campo magnético no centro da curvatura do troço.

Solução: $B = \frac{\mu_0 I}{4R}$ (T)

- **3.** Considere um anel circular de raio *r* percorrido por uma corrente *l*.
 - a) Determine o campo magnético no centro do anel.
 - b) Utilize o resultado da alínea anterior para calcular o campo magnético no centro de um disco isolador de raio R, carregado com densidade superficial de carga σ . O disco roda com velocidade angular ω .
 - c) Determine o campo magnético ao longo do eixo do anel de raio R, a uma distância d do seu centro. Obtenha uma aproximação para d>>r.

Solução: a) $B = \frac{\mu_0 I}{2R}$ (T) b) $B = \frac{\mu_0}{2} \sigma.\omega.R$ (T) c) $B = \frac{\mu_0 I R^2}{2 \left(R^2 + d^2\right)^{3/2}}$; $B = \frac{\mu_0 I R^2}{2 d^3}$ (T)

- **4.** Considere uma espira quadrada de lado a, percorrida por uma corrente l.
 - a) Determine o campo magnético no centro da espira.
 - b) Determine o campo magnético ao longo do eixo da espira, a uma distância d do seu centro, numa aproximação válida para d>>a.
 - c) Compare os resultados das alíneas 3.c) e 4.b). Introduza nos resultados a grandeza *momento dipolar* magnético, p_m , que é (em módulo) igual ao produto (corrente × área da espira).

5. Um átomo de hidrogénio consiste num protão e num eletrão separados por uma distância de 0.5×10^{-10} m. Assumindo que o eletrão se move numa órbita circular em torno do protão com uma frequência de 10^{13} Hz, calcule o campo magnético, no sítio do núcleo, criado pelo movimento do eletrão.

Solução: $B = \frac{\mu_0 e f}{2 r} \approx 2.10^{-2} \text{ T}$

Força magnética:

6. Numa região do espaço coexistem um campo elétrico $\vec{E} = (3\hat{i} + 5\hat{j} - 2\hat{k}).10^4 \text{ V/m}$ e um campo magnético desconhecido.

Uma partícula de carga $\it Q$ =10 $^{-10}$ C sofre, num instante em que possui a velocidade de $\it \vec{v}$ = $10^3 \it \hat{i}$ m/s , uma força $\it \vec{F}$ = $\left(3 \it \hat{i}$ + $2 \it \hat{j}\right) \cdot 10^{-6}$ N . Determine o vetor campo magnético e o ângulo entre este campo e a direção da aceleração da partícula.

Solução: $\vec{B} = B_x \vec{i} + 20 \vec{j} + 30 \vec{k}$ (T); $\alpha = \arccos\left(\frac{3B_x + 40}{\sqrt{13B_x^2 + 16900}}\right)$ (rad)

- **7.** Considere dois fios infinitos, paralelos, distanciados de *d*, e percorridos por correntes iguais mas de sentidos opostos.
- a) Calcule o campo magnético no ponto P situado a uma distância *d*, do ponto médio entre os fios.
- b) Calcule o campo magnético no ponto D sobre a reta perpendicular ao plano que contêm os fios e passa pelo ponto médio, situado a uma distância *d* do plano.
- c) Calcule a força por unidade de comprimento que atua em cada fio.

Solução: a)
$$\overrightarrow{B} = \frac{-2}{3} \frac{\mu_0 I}{\pi d} \overrightarrow{j}$$
 (T); b) $\overrightarrow{B} = \frac{2}{5} \frac{\mu_0 I}{\pi d} \overrightarrow{j}$ (T);

c)
$$\overrightarrow{F} = \frac{\mu_0 I^2}{2\pi d} \overrightarrow{i}$$
 (N)

- **8**. Dois fios condutores retilíneos, paralelos e infinitos, distanciado de d, estão percorridos pelas correntes l e l'. Entre eles e no mesmo plano, coloca-se um terceiro fio condutor de comprimento L, percorrido por l'' e podendo deslocar-se lateralmente.
 - a) Como devem ser os sentidos das correntes para existir uma posição de equilíbrio do 3º condutor entre os dois primeiros?
 - b) Qual é a posição de equilíbrio do 3º condutor? Será que o comprimento desse tem uma influência? Discuta a estabilidade do equilíbrio.

a) I e I' de mesmo sentido

b)
$$x = \frac{I}{|I - I'|}d$$
 (m)

- **9.** Considere a balança indicada na figura, onde um dos pratos está substituído por um quadro condutor por onde passa uma corrente *I* no sentido horário. A balança está em equilíbrio quando se coloca no prato uma massa *m*.
 - a) Suponha que se cria um campo magnético uniforme perpendicular ao plano do papel. A balança fica em equilíbrio se se adicionar ao outro prato uma massa m_1 . Determine o sentido e o módulo do campo aplicado.
 - b) Se tirar as massas m e m_1 , determine o sentido e o módulo do campo magnético capaz de manter a balança em equilíbrio.

a)
$$B = \frac{m_1 g}{II}$$
 (T) b) $B = \frac{mg}{II}$ (T)

- **10.** Uma pequena esfera de massa m e carga q pode-se mover livremente no plano xy encontrando-se inicialmente (t < 0) em (x,y) = (0,0). Existe no espaço um campo magnético uniforme $\vec{B} = B_Z \ \hat{k}$. No instante t = 0 estabelece-se no espaço um campo elétrico uniforme $\vec{E} = E_x \ \hat{i}$.
 - a) Determine a velocidade da esfera como função do tempo.
 - b) Escreva um conjunto de equações paramétricas (parâmetro t tempo), que traduzam a posição da esfera no plano xy em função do tempo.

a)
$$\vec{v}(t) = \frac{E_x}{B_z} [\hat{i} . \text{sen}(\omega t) + \hat{j}(\cos(\omega t) - 1)]$$
 (m/s) com $\omega = \frac{q.B_z}{m}$ (rad/s)

b)
$$x(t) = \frac{E_x}{wB_z} (1 - \cos(\omega t))$$
 (m) ; $y(t) = \frac{E_x}{B_z} \frac{1}{\omega} \sin(\omega t)$ (m)

11. Usando a Lei de Ampére calcule o campo \vec{B} , criado por um fio infinito percorrido por uma corrente *I*. Calcule a circulação de \vec{B} ao longo de uma circunferência de raio *d* centrada no ponto médio entre dois fios paralelos, distanciados de *d*, e percorridos por correntes iguais mas de sentidos opostos.

Solução:
$$\vec{B}=\frac{\mu_0 I}{2\pi r}\widehat{\phi}$$
 (T) ; $\int \vec{B}\cdot d\vec{l}=0$

12. Um solenoide é constituído por um fio enrolado uniformemente sobre um corpo de superfície cilíndrica. Considere um solenoide de raio R, comprimento L (L >> R) e N voltas por metro. Calcule o campo magnético num ponto do eixo do solenoide, no interior deste.

Solução:
$$B=\mu_0\,rac{N}{L}\,I$$
 (T)

- **13.** Um cabo coaxial é formado por um cilindro condutor sólido de raio R_1 , envolvido por um cilindro condutor oco concêntrico com raio interno R_2 externo R_3 .
 - a) Usando a lei de Ampère determine o campo magnético para todos os pontos, dentro e fora do condutor. Faça o gráfico de *B* em função de *r*. Suponha que a densidade de corrente é uniforme.

Na prática a corrente / é enviada pelo fio interno e retorna pela parte externa.

b) Suponha que o condutor interior está ligeiramente descentrado. Determine o campo magnético no plano perpendicular aos condutores, ao longo da reta que passa pelos eixos de ambos.

Solução:
$$r < R_1 \implies B = \frac{\mu_0 I}{2\pi} \frac{r}{R_1^2}$$
 (T);
 $R_1 < r < R_2 \implies B = \frac{\mu_0 I}{2\pi} \frac{1}{r}$ (T)
 $R_2 < r < R_3 \implies B = \frac{\mu_0 I}{2\pi} \frac{1}{r} \left(1 - \frac{r^2 - R_2^2}{R_3^2 - R_2^2} \right)$ (T); $r > R_3 \implies B = 0$ (T)