

# Lecture 7: Topic Modeling

Pilsung Kang

School of Industrial Management Engineering
Korea University

# AGENDA

| 01 | Topic Modeling                         |
|----|----------------------------------------|
| 02 | Probabilistic Latent Semantic Analysis |
| 03 | LDA: Document Generation Process       |
| 04 | LDA Inference: Gibbs Sampling          |
| 05 | LDA Evaluation                         |

### Topic Model: Conceptual Approach

- Topic Model
  - ✓ From an input corpus and the number of topics  $K \rightarrow$  words to topics
  - ✓ From an input corpus and the number of topics  $K \rightarrow words$  to topics



#### TOPIC 1

computer, technology, system, service, site, phone, internet, machine

#### TOPIC 2

sell, sale, store, product, business, advertising, market, consumer

#### TOPIC 3

play, film, movie, theater, production, star, director, stage

## Topic Model: Conceptual Approach

- Topic Model
  - √ For each document, what topics are expressed by that document?



# Topic Model: Conceptual Approach



# Topic Models: Topic Extraction

Kim et al. (2016)

#### • Topic Extraction

√ 30 Topics discovered for "Deep Learning"

| ault detection wi<br>th DBN | Convolutional<br>neural network | Network<br>Learning       | Representation<br>learning | Face<br>Recognition   | Speech<br>Recognition    | Acoustic<br>Modeling           | Extreme<br>Learning                | Deep learning<br>architecture            | Image<br>Segmentation |
|-----------------------------|---------------------------------|---------------------------|----------------------------|-----------------------|--------------------------|--------------------------------|------------------------------------|------------------------------------------|-----------------------|
| deep                        | neural                          | layer<br>input            | feature                    | face<br>              | speaker                  | speech<br>                     | deep                               | deep                                     | image                 |
| belief                      | convolutional                   | output                    | level                      | recognition           | speech                   | recognition<br>                | learn                              | architecture                             | scene                 |
| network                     | pool                            | unit                      | extract                    | estimation            | noise                    | acoustic                       | algorithm                          | neural                                   | scale                 |
| dbn                         | convolution                     | hide                      | learn                      | facial                | adaptation               | hmm                            | structure                          | standard                                 | segmentatio           |
| fault                       | convnet                         | function                  | extraction                 | shape                 | source                   | neural                         | extreme                            | explore                                  | pixel                 |
| Long-short<br>term memory   | Predictive analytics            | Signal processing         | Classification<br>models   | Large-scale computing | Image quality assessment | Visual recognition             | NLP                                | Detection using CNN                      | Action recognition    |
| term                        | data                            | analysis                  | classification             | application           | domain                   | pattern                        | word                               | cnn                                      | video                 |
| recurrent                   | prediction                      | filter                    | classifier                 | implementation        | state                    | process                        | text                               | detection                                | human                 |
| long                        | technique                       | signal                    | class                      | efficient             | quality                  | compute                        | language                           | convolutional                            | temporal              |
| lstm                        | information                     | component                 | vector                     | process               | resolution               | visual                         | representation                     | neural                                   | action                |
| network                     | research                        | audio                     | support                    | power                 | relationship             | field                          | semantic                           | detect                                   | track                 |
| lmage<br>retrieval          | Medical image di agnosis        | Reinforcement<br>learning | Parameter optimization     | Auto<br>encoder       | RBM and variations       | Learning with few labeled data | Fast learning complexity reduction | Applications<br>for vehicles<br>& robots | Character recognition |
| image                       | image                           | learn                     | train                      | representation        | machine                  | train                          | fast                               | time                                     | recognition           |
| visual                      | segmentation                    | question                  | algorithm                  | learn                 | boltzmann                | data                           | reduce                             | real                                     | system                |
| retrieval                   | disease<br>                     | state                     | gradient                   | sparse                | rbm                      | label                          | parameter                          | application                              | character             |
| descriptor                  | cell                            | answer                    | sample                     | encode                | restrict                 | few                            | weight                             | drive                                    | network               |
| attribute                   | medical                         | reinforcement             | optimization               | stack                 | distribution             | transfer                       | complexity                         | Vehicle                                  | neural                |

# Topic Models: Topic Extraction

#### • Topic Extraction

#### √ 50 Topics discovered for "Ultrasound/Ultrasonography"

| Vascular      | Prostate    | heart      | CAD          | MSK          | nerve      | tumor           | ОВ          | surgery        | intervention |
|---------------|-------------|------------|--------------|--------------|------------|-----------------|-------------|----------------|--------------|
| plaque        | biopsy      | artery     | image        | joint        | block      | case            | ultrasound  | surgery        | guide        |
| ivus          | prostate    | carotid    | ultrasound   | patient      | nerve      | lesion          | fetal       | patient        | patient      |
| coronary      | cancer      | patient    | method       | disease      | ultrasound | diagnosis       | infant      | intraoperative | complication |
| intravascular | patient     | stenosis   | base         | score        | guide      | ultrasound      | abnormality | preoperative   | treatment    |
| stent         | transrectal | plaque     | propose      | arthritis    | patient    | cyst            | prenatal    | surgical       | percutaneous |
| patient       | trus        | ultrasound | feature      | ultrasound   | pain       | mass            | case        | ultrasound     | ultrasound   |
| lesion        | guide       | cardiac    | algorithm    | clinical     | anesthesia | tumor           | fetus       | localization   | drainage     |
| mm.           | core        | dus        | segmentation | inflammatory | surgery    | finding         | anomaly     | operative      | month        |
| ultrasound    | ultrasound  | stroke     | analysis     | activity     | plexus     | ultrasonography | diagnosis   | resection      | rate         |
| area          | rate        | arterial   | result       | study        | technique  | present         | congenital  | surgeon        | procedure    |

| osteoporosis | cerebral   | ER&ICU     | cancer          | Lab test      | US general  | vein       | lymph node | lung        | Healthcare |
|--------------|------------|------------|-----------------|---------------|-------------|------------|------------|-------------|------------|
| age          | brain      | patient    | cancer          | extraction    | ultrasound  | vein       | node       | lung        | patient    |
| ultrasound   | dog        | emergency  | patient         | assist        | imaging     | venous     | lymph      | chest       | risk       |
| child        | fus        | care       | tumor           | ultrasound    | technique   | patient    | patient    | ultrasound  | ultrasound |
| bone         | bbb        | ultrasound | stage           | method        | clinical    | internal   | biopsy     | patient     | year       |
| year         | ultrasound | department | eus             | liquid        | review      | ultrasound | metastasis | pulmonary   | study      |
| study        | blood      | bedside    | gastric         | sample        | application | jugular    | ultrasound | lus         | follow     |
| fat          | study      | perform    | ovarian         | time          | diagnostic  | thrombosis | cancer     | pleural     | clinical   |
| qus          | day        | physician  | endoscopic      | solvent       | disease     | central    | guide      | line        | factor     |
| body         | follicle   | point      | ultrasonography | determination | article     | dvt        | negative   | radiography | month      |
| measure      | barrier    | cardiac    | invasion        | extract       | role        | femoral    | positive   | diagnosis   | age        |

# Topic Models: Topic Extraction

#### • Topic Extraction

√ 10 Topics discovered for "Insider Threat"

| No. | Insider threat in relational database | Assessment of insider threat | Insider attacks on<br>Communication<br>protocol | Modeling and system framework for insider threat | Masquerade detection |
|-----|---------------------------------------|------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------|
| ı   | data                                  | measure                      | attack                                          | insider                                          | user                 |
| 2   | information                           | assess                       | agent                                           | threat                                           | behavior             |
| 3   | database                              | security                     | scheme                                          | social                                           | detect               |
| 4   | leakage                               | behavior                     | protocol                                        | analysis                                         | activity             |
| 5   | access                                | analysis                     | monitor                                         | framework                                        | malicious            |
| 6   | detect                                | management                   | mitigation                                      | mitigate                                         | masquerade           |
| 7   | transaction                           | privacy                      | fraud                                           | monitor                                          | attack               |
| 8   | confidential                          | policy                       | damage                                          | factor                                           | legitimate           |
| 9   | document                              | risk                         | psychological                                   | technical                                        | abnormal             |
| 10  | file                                  | threat                       | financial                                       | business                                         | decoy                |

| No. | Access control<br>for insider threat<br>mitigation | Network intrusion detection systems | Feature selection<br>for intrusion<br>detection | Miscellaneous | Malicious domain detection |
|-----|----------------------------------------------------|-------------------------------------|-------------------------------------------------|---------------|----------------------------|
| 1   | insider                                            | network                             | detection                                       | software      | attack                     |
| 2   | access                                             | detection                           | algorithm                                       | security      | malicious                  |
| 3   | user                                               | intrusion                           | feature                                         | system        | domain                     |
| 4   | control                                            | malicious                           | classification                                  | device        | event                      |
| 5   | cloud                                              | traffic                             | accuracy                                        | server        | scenario                   |
| 6   | misuse                                             | log                                 | dataset                                         | malicious     | human                      |
| 7   | trust                                              | event                               | performance                                     | protect       | knowledge                  |
| 8   | risk                                               | packet                              | pattern                                         | web           | ontology                   |
| 9   | abuse                                              | internet                            | learning                                        | architecture  | represent                  |
| 10  | attacker                                           | resource                            | random                                          | electronic    | generate                   |

## Topic Models: Relation between Topics

Kim et al. (2016)

Relation between Topics: Deep Learning



### Topic Models: Relation between Topics

Kim and Kang (2018+)

Relation between Topics: Internet of Things



### Topic Models: Trend Analysis

Lee and Kang (2017)

• Topic trends for "technology and innovation management"



# Topic Model: Document Retrieval



### Topic Model: Document Retrieval



### Topic Model: Document Retrieval



### Topic Model

Matrix Factorization Approach



✓ If we use singular value decomposition (SVD), it is called latent semantic analysis (LSA)



# Topic Model

- Disadvantage of LSA
  - ✓ Statistical foundation is missing
  - ✓ SVD assumes normally distributed data
  - √ Term occurrence is not normally distributed
  - √ Still, often it works remarkably good because matrix entries are weighted (e.g. tf-idf)
    and those weighted entries may be normally distributed

## Topic Model

- Probabilistic Topic Model: Generative Approach
  - ✓ Each document is a probability distribution over topics
  - ✓ Distribution over topics represents the essence of a given document
  - ✓ Each topic is a probability distribution over words
    - Topic "Education": school, students, education, university,...
    - Topic "Budget": million, finance, tax, program, ...



#### Model-based methods

- ✓ Statistical inference is based on fitting a probabilistic model of data
- √ The idea is based on a probabilistic or generative model
- √ Such models assign a probability for observing specific data examples
  - Observing words in a text document
- ✓ Generative models are powerful method to encode specific assumptions of how unknown parameters interact to create data

#### How it work?

- $\checkmark$  It defines a conditional probability distribution over data given a hypothesis P(D|h)
- $\checkmark$  Given h, we generate data from the conditional distribution P(D|h)
- ✓ Has many advantages but the main disadvantage is that fitting the model can be more complicated than an algorithmic approach

- How it work?
  - $\checkmark$  It defines a conditional probability distribution over data given a hypothesis P(D|h)
  - $\checkmark$  Given h, we generate data from the conditional distribution P(D|h)
  - ✓ Has many advantages but the main disadvantage is that fitting the model can be more complicated than an algorithmic approach



- (Statistical) inference is the reverse of the generation process
  - ✓ We are given some data D, e.g. a collection of documents
  - √ We want to estimate the model, or more precisely the parameters of the hypothesis
    h that are most likely to have generated data



Process of generative model



# AGENDA

| 01 | Topic Modeling                         |
|----|----------------------------------------|
| 02 | Probabilistic Latent Semantic Analysis |
| 03 | LDA: Document Generation Process       |
| 04 | LDA Inference: Gibbs Sampling          |
| 05 | LDA Evaluation                         |

#### Latent Structure

 Given a matrix that "encodes" data (e.g. term-document matrix), we have following potential problems

- √ Too large
- √ Too complicated
- ✓ Lack of structure
- √ Missing Entries
- ✓ Noisy Entries, ...

|                | $\int a_{11}$       | • • • | $a_{1j}$ | • • • | $a_{1m}$ |
|----------------|---------------------|-------|----------|-------|----------|
|                |                     |       |          |       |          |
| $\mathbf{A} =$ | $a_{i1}$            | • • • | $a_{ij}$ | • • • | $a_{im}$ |
|                |                     |       |          |       |          |
|                | $\backslash a_{n1}$ |       | $a_{nj}$ |       | $a_{nm}$ |

#### Questions

- ✓ Is there a simpler way to explain entities?
- ✓ There might be a latent structure underlying the data
- √ How can we reveal or discover this structure?

### Matrix Decomposition

Common approach: approximately factorize matrix



Factors are typically constrained to be "thin"



## LSA Decomposition (revisited)

Reduce the dimensions using SVD



✓ Step I) Construct the approximated matrix  $A_k$  from the original term-document matrix A using SVD

$$\mathbf{A} \approx \mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

 $\checkmark$  Step 2) Multiply the transpose of  $U_k$  to obtain k (<<m) by n term-document matrix

$$\mathbf{U}_k^T \mathbf{A}_k = \mathbf{U}_k^T \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T = \mathbf{I} \mathbf{\Sigma}_k \mathbf{V}_k^T = \mathbf{\Sigma}_k \mathbf{V}_k^T$$

✓ Step 3: Apply data mining algorithms

### LSA Decomposition

Illustrative Example



## Language Model: Naïve Approach

Maximum likelihood estimation (MLE)



Number of occurrences of term w in document d

$$\hat{P}_{\text{ML}}(w|d) = \frac{n(d, w)}{\sum_{w'} n(d, w')}$$

Zero frequency problem: terms not occurring in a document get zero probability

### Language Model: Estimation Problem Hofmann (2005)

- Crucial question
  - ✓ In which way can the document collection be utilized to improve estimates?



### Probabilistic Latent Semantic Analysis (pLSA)

Hofmann (2005)

- Concept expression probability
  - ✓ Estimated based on all documents that are dealing with a concept
  - "Unmixing" of superimposed concepts is achieved by statistical learning algorithm
  - ✓ No prior knowledge about concepts required, context and term co-occurrences are exploited



#### pLSA: Latent Variable Model

Hofmann (2005)

Structural modeling assumption (mixture model)







#### pLSA: Matrix Decomposition

Hofmann (2005)

Mixture model can be written as a matrix factorization

$$\hat{P}_{LSA}(d, w) = \sum_{z} \frac{P(d|z)}{P(d|z)} P(z) \frac{P(w|z)}{P(w|z)} = P(d) \sum_{z} P(w|z) P(z|d)$$



- Contrast to LSA
  - √ Non-negativity: every element in U & V is non-negative.
  - ✓ Normalization: Each document vector in U and each term vector in V has sum I

### pLSA: Graphical Model

Hofmann (2005)

Graphical Representation



### pLSA: Parameter Inference

#### Parameter inference

- √ We will infer parameters using Maximum Likelihood Estimator (MLE)
- ✓ First, we need to write down the likelihood function
- $\checkmark$  Let  $n(w_i, d_j)$  be the number of occurrences of word  $w_i$  in document  $d_j$
- $\checkmark p(w_i,d_j)$  is the probability of observing a single occurrence word  $w_i$  in document  $d_j$
- $\checkmark$  Then, the probability of observing  $n(w_i,d_j)$  occurrence of word  $w_i$  in document  $d_j$  is give by:

$$p(w_i, d_j)^{n(w_i, d_j)}$$

### pLSA: Parameter Inference

#### Parameter Inference

- ✓ The probability of observing the compete document collection is then given by the product of probabilities of observing every single word in every document with corresponding number of occurrences
- ✓ Then, the likelihood function becomes

$$L = \prod_{i=1}^{m} \prod_{j=1}^{n} p(w_i, d_j)^{n(w_i, d_j)}$$

√ The log-likelihood function becomes

$$\mathcal{L} = \sum_{i=1}^{m} \sum_{j=1}^{n} n(w_i, d_j) log(p(w_i, d_j))$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} n(w_i, d_j) log(\sum_{l=1}^{k} p(w_i|z_l) p(z_l) p(d_j|z_l))$$

#### pLSA: Parameter Inference

Helic (2014)

#### Parameter Inference

- √ We can not maximize the likelihood analytically because of the logarithm of the sum
- ✓ A standard procedure is to use an algorithm called Expectation-Maximization (EM)
- ✓ This is an iterative method to estimate parameters of the models with latent variables
- $\checkmark$  Each iteration consists of two steps: expectation step (E) and maximization step (M)

### pLSA: EM Algorithm

• E-Step: Posterior probability of latent variables (concepts)

$$p(z|d, w) = \frac{P(z)P(d|z)P(w|z)}{\sum_{z' \in Z} P(z')P(d|z')P(w|z')}$$

Probability that the occurence of term w in document d can be "explained" by concept z

• M-Step: Parameter estimation based on "completed" statistics

$$P(w|z) = \frac{\sum_{d \in D} n(d, w) P(z|d, w)}{\sum_{d \in D, w' \in W} n(d, w') P(z|d, w')}$$

how often is term w associated with concept z ?

$$P(d|z) = \frac{\sum_{w \in W} n(d, w) P(z|d, w)}{\sum_{d' \in D, w \in W} n(d', w) P(z|d', w)}$$

how often is document d associated with concept z ?

$$P(z) = \frac{\sum_{d \in D, w \in W} n(d, w) P(z|d, w)}{\sum_{d \in D, w \in W} n(d, w)}$$

how prevalent is the concept z?

#### • Raw Data

|            | Doc 1 | Doc 2 | Doc 3 | Doc 4 | Doc 5 | Doc 6 |
|------------|-------|-------|-------|-------|-------|-------|
| Baseball   | 1     | 2     | 0     | 0     | 0     | 0     |
| Basketball | 3     | 1     | 0     | 0     | 0     | 0     |
| Boxing     | 2     | 0     | 0     | 0     | 0     | 0     |
| Money      | 3     | 3     | 2     | 3     | 2     | 4     |
| Interest   | 0     | 0     | 3     | 2     | 0     | 0     |
| Rate       | 0     | 0     | 4     | 1     | 0     | 0     |
| Democrat   | 0     | 0     | 0     | 0     | 4     | 3     |
| Republican | 0     | 0     | 0     | 0     | 2     | 1     |
| Cocus      | 0     | 0     | 0     | 0     | 3     | 2     |
| President  | 0     | 0     | 1     | 0     | 2     | 3     |

#### • Parameter Initialization

#### P(z)

| Topic 1 | Topic 2 | Topic 3 |
|---------|---------|---------|
| 0.525   | 0.407   | 0.068   |

#### P(d|z)

|       | Topic 1 | Topic 2 | Topic 3 |
|-------|---------|---------|---------|
| Doc 1 | 0.020   | 0.008   | 0.048   |
| Doc 2 | 0.294   | 0.255   | 0.329   |
| Doc 3 | 0.204   | 0.138   | 0.178   |
| Doc 4 | 0.200   | 0.146   | 0.007   |
| Doc 5 | 0.186   | 0.196   | 0.233   |
| Doc 6 | 0.096   | 0.257   | 0.205   |

#### P(w|z)

|         | Topic 1 | Topic 2 | Topic 3 |
|---------|---------|---------|---------|
| Term 1  | 0.022   | 0.016   | 0.010   |
| Term 2  | 0.018   | 0.133   | 0.166   |
| Term 3  | 0.242   | 0.058   | 0.133   |
| Term 4  | 0.123   | 0.088   | 0.145   |
| Term 5  | 0.016   | 0.030   | 0.044   |
| Term 6  | 0.020   | 0.167   | 0.056   |
| Term 7  | 0.147   | 0.129   | 0.201   |
| Term 8  | 0.188   | 0.156   | 0.039   |
| Term 9  | 0.146   | 0.114   | 0.008   |
| Term 10 | 0.077   | 0.110   | 0.199   |

#### • After I EM step

#### Initialization

| Topic 1 | Topic 2 | Topic 3 |
|---------|---------|---------|
| 0.525   | 0.407   | 0.068   |

|       | Topic 1 | Topic 2 | Topic 3 |
|-------|---------|---------|---------|
| Doc 1 | 0.020   | 0.008   | 0.048   |
| Doc 2 | 0.294   | 0.255   | 0.329   |
| Doc 3 | 0.204   | 0.138   | 0.178   |
| Doc 4 | 0.200   | 0.146   | 0.007   |
| Doc 5 | 0.186   | 0.196   | 0.233   |
| Doc 6 | 0.096   | 0.257   | 0.205   |

#### After I EM step

| Topic 1 | Topic 2 | Topic 3 |
|---------|---------|---------|
| 0.459   | 0.430   | 0.111   |

|       | Topic 1 | Topic 2 | Topic 3 |
|-------|---------|---------|---------|
| Doc 1 | 0.180   | 0.077   | 0.382   |
| Doc 2 | 0.124   | 0.089   | 0.091   |
| Doc 3 | 0.147   | 0.213   | 0.149   |
| Doc 4 | 0.125   | 0.110   | 0.004   |
| Doc 5 | 0.266   | 0.204   | 0.167   |
| Doc 6 | 0.158   | 0.308   | 0.207   |

#### • After I EM step

#### Initialization

|         | Topic 1 | Topic 2 | Topic 3 |
|---------|---------|---------|---------|
| Term 1  | 0.022   | 0.016   | 0.010   |
| Term 2  | 0.018   | 0.133   | 0.166   |
| Term 3  | 0.242   | 0.058   | 0.133   |
| Term 4  | 0.123   | 0.088   | 0.145   |
| Term 5  | 0.016   | 0.030   | 0.044   |
| Term 6  | 0.020   | 0.167   | 0.056   |
| Term 7  | 0.147   | 0.129   | 0.201   |
| Term 8  | 0.188   | 0.156   | 0.039   |
| Term 9  | 0.146   | 0.114   | 0.008   |
| Term 10 | 0.077   | 0.110   | 0.199   |

#### After I EM step

|         | Topic 1 | Topic 2 | Topic 3 |
|---------|---------|---------|---------|
| Term 1  | 0.077   | 0.033   | 0.028   |
| Term 2  | 0.024   | 0.074   | 0.245   |
| Term 3  | 0.061   | 0.005   | 0.043   |
| Term 4  | 0.370   | 0.222   | 0.295   |
| Term 5  | 0.088   | 0.093   | 0.065   |
| Term 6  | 0.033   | 0.159   | 0.035   |
| Term 7  | 0.115   | 0.129   | 0.129   |
| Term 8  | 0.058   | 0.058   | 0.010   |
| Term 9  | 0.099   | 0.098   | 0.004   |
| Term 10 | 0.073   | 0.129   | 0.146   |

- Topic Distribution
  - √ Topic distribution changes w.r.t. the EM iterations



#### • Final result

|            | Doc 1 | Doc 2 | Doc 3 | Doc 4 | Doc 5 | Doc 6 |
|------------|-------|-------|-------|-------|-------|-------|
| Baseball   | 1     | 2     | 0     | 0     | 0     | 0     |
| Basketball | 3     | 1     | 0     | 0     | 0     | 0     |
| Boxing     | 2     | 0     | 0     | 0     | 0     | 0     |
| Money      | 3     | 3     | 2     | 3     | 2     | 4     |
| Interest   | 0     | 0     | 3     | 2     | 0     | 0     |
| Rate       | 0     | 0     | 4     | 1     | 0     | 0     |
| Democrat   | 0     | 0     | 0     | 0     | 4     | 3     |
| Republican | 0     | 0     | 0     | 0     | 2     | 1     |
| Cocus      | 0     | 0     | 0     | 0     | 3     | 2     |
| President  | 0     | 0     | 1     | 0     | 2     | 3     |

| Topic 1 | Topic 2 | Topic 3 |
|---------|---------|---------|
| 0.456   | 0.281   | 0.263   |

|       | Topic 1 | Topic 2 | Topic 3 |
|-------|---------|---------|---------|
| Doc 1 | 0.000   | 0.000   | 0.600   |
| Doc 2 | 0.000   | 0.000   | 0.400   |
| Doc 3 | 0.000   | 0.625   | 0.000   |
| Doc 4 | 0.000   | 0.375   | 0.000   |
| Doc 5 | 0.500   | 0.000   | 0.000   |
| Doc 6 | 0.500   | 0.000   | 0.000   |

|            | Topic 1 | Topic 2 | Topic 3 |  |  |  |
|------------|---------|---------|---------|--|--|--|
| Baseball   | 0.000   | 0.000   | 0.200   |  |  |  |
| Basketball | 0.000   | 0.000   | 0.267   |  |  |  |
| Boxing     | 0.000   | 0.000   | 0.133   |  |  |  |
| Money      | 0.231   | 0.313   | 0.400   |  |  |  |
| Interest   | 0.000   | 0.312   | 0.000   |  |  |  |
| Rate       | 0.000   | 0.312   | 0.000   |  |  |  |
| Democrat   | 0.269   | 0.000   | 0.000   |  |  |  |
| Republican | 0.115   | 0.000   | 0.000   |  |  |  |
| Cocus      | 0.192   | 0.000   | 0.000   |  |  |  |
| President  | 0.192   | 0.063   | 0.000   |  |  |  |

# pLSA: Example

#### • Concepts extracted from Science Magazine articles

|               | universe                                                                         | 0.0439                                                            | drug                                              | 0.0672                                                             | cells                                                | 0.0675                                                 | sequence                                               | 0.0818                                                   | years                                                      | 0.156                                                             |
|---------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|
| <b>A</b>      | galaxies                                                                         | 0.0375                                                            | patients                                          | 0.0493                                                             | stem                                                 | 0.0478                                                 | sequences                                              | 0.0493                                                   | million                                                    | 0.0556                                                            |
|               | clusters                                                                         | 0.0279                                                            | drugs                                             | 0.0444                                                             | human                                                | 0.0421                                                 | genome                                                 | 0.033                                                    | ago                                                        | 0.045                                                             |
| (Z            | matter                                                                           | 0.0233                                                            | clinical                                          | 0.0346                                                             | cell                                                 | 0.0309                                                 | dna                                                    | 0.0257                                                   | time                                                       | 0.0317                                                            |
| P(w z)        | galaxy                                                                           | 0.0232                                                            | treatment                                         | 0.028                                                              | gene                                                 | 0.025                                                  | sequencing                                             | 0.0172                                                   | age                                                        | 0.0243                                                            |
|               | cluster                                                                          | 0.0214                                                            | trials                                            | 0.0277                                                             | tissue                                               | 0.0185                                                 | map                                                    | 0.0123                                                   | year                                                       | 0.024                                                             |
|               | cosmic                                                                           | 0.0137                                                            | therapy                                           | 0.0213                                                             | cloning                                              | 0.0169                                                 | genes                                                  | 0.0122                                                   | record                                                     | 0.0238                                                            |
| •             | dark                                                                             | 0.0131                                                            | trial                                             | 0.0164                                                             | transfer                                             | 0.0155                                                 | chromosome                                             | 0.0119                                                   | early                                                      | 0.0233                                                            |
|               | light                                                                            | 0.0109                                                            | disease                                           | 0.0157                                                             | blood                                                | 0.0113                                                 | regions                                                | 0.0119                                                   | billion                                                    | 0.0177                                                            |
|               | density                                                                          | 0.01                                                              | medical                                           | 0.00997                                                            | embryos                                              | 0.0111                                                 | human                                                  | 0.0111                                                   | history                                                    | 0.0148                                                            |
|               |                                                                                  |                                                                   |                                                   |                                                                    | _                                                    |                                                        |                                                        |                                                          |                                                            |                                                                   |
|               | bacteria                                                                         | 0.0983                                                            | male                                              | 0.0558                                                             | theory                                               | 0.0811                                                 | immune                                                 | 0.0909                                                   | stars                                                      | 0.0524                                                            |
| •             | -                                                                                |                                                                   | male<br>females                                   | 0.0558<br>0.0541                                                   | theory<br>physics                                    | 0.0811<br>0.0782                                       | immune<br>response                                     | 0.0909<br>0.0375                                         |                                                            |                                                                   |
| <b>†</b>      | bacteria                                                                         | 0.0983                                                            |                                                   |                                                                    | 1                                                    |                                                        |                                                        |                                                          | stars                                                      | 0.0524                                                            |
| $\frac{1}{2}$ | bacteria<br>bacterial                                                            | 0.0983<br>0.0561                                                  | females                                           | 0.0541                                                             | physics                                              | 0.0782                                                 | response                                               | 0.0375                                                   | stars<br>star                                              | 0.0524<br>0.0458                                                  |
| (w z)         | bacteria<br>bacterial<br>resistance                                              | 0.0983<br>0.0561<br>0.0431                                        | females<br>female                                 | 0.0541<br>0.0529                                                   | physics<br>physicists                                | 0.0782<br>0.0146                                       | response<br>system                                     | 0.0375<br>0.0358                                         | stars<br>star<br>astrophys                                 | 0.0524<br>0.0458<br>0.0237                                        |
| P(w z)        | bacteria<br>bacterial<br>resistance<br>coli                                      | 0.0983<br>0.0561<br>0.0431<br>0.0381                              | females<br>female<br>males                        | 0.0541<br>0.0529<br>0.0477<br>0.0339                               | physics<br>physicists<br>einstein                    | 0.0782<br>0.0146<br>0.0142                             | response<br>system<br>responses                        | 0.0375<br>0.0358<br>0.0322                               | stars<br>star<br>astrophys<br>mass                         | 0.0524<br>0.0458<br>0.0237<br>0.021                               |
| P(w z)        | bacterial<br>bacterial<br>resistance<br>coli<br>strains                          | 0.0983<br>0.0561<br>0.0431<br>0.0381<br>0.025                     | females<br>female<br>males<br>sex                 | 0.0541<br>0.0529<br>0.0477<br>0.0339                               | physics<br>physicists<br>einstein<br>university      | 0.0782<br>0.0146<br>0.0142<br>0.013                    | response<br>system<br>responses<br>antigen             | 0.0375<br>0.0358<br>0.0322<br>0.0263                     | stars<br>star<br>astrophys<br>mass<br>disk                 | 0.0524<br>0.0458<br>0.0237<br>0.021<br>0.0173                     |
| P(w z)        | bacterial bacterial resistance coli strains microbiol                            | 0.0983<br>0.0561<br>0.0431<br>0.0381<br>0.025<br>0.0214           | females<br>female<br>males<br>sex<br>reproductive | 0.0541<br>0.0529<br>0.0477<br>0.0339<br>0.0172                     | physics physicists einstein university gravity       | 0.0782<br>0.0146<br>0.0142<br>0.013<br>0.013           | response<br>system<br>responses<br>antigen<br>antigens | 0.0375<br>0.0358<br>0.0322<br>0.0263<br>0.0184           | stars<br>star<br>astrophys<br>mass<br>disk<br>black        | 0.0524<br>0.0458<br>0.0237<br>0.021<br>0.0173<br>0.0161           |
| P(w z)        | bacteria<br>bacterial<br>resistance<br>coli<br>strains<br>microbiol<br>microbial | 0.0983<br>0.0561<br>0.0431<br>0.0381<br>0.025<br>0.0214<br>0.0196 | females female males sex reproductive offspring   | 0.0541<br>0.0529<br>0.0477<br>0.0339<br>0.0172<br>0.0168<br>0.0166 | physics physicists einstein university gravity black | 0.0782<br>0.0146<br>0.0142<br>0.013<br>0.013<br>0.0127 | response system responses antigen antigens immunity    | 0.0375<br>0.0358<br>0.0322<br>0.0263<br>0.0184<br>0.0176 | stars<br>star<br>astrophys<br>mass<br>disk<br>black<br>gas | 0.0524<br>0.0458<br>0.0237<br>0.021<br>0.0173<br>0.0161<br>0.0149 |

### pLSA: Example

#### • Example

# ✓ Polysemy: a word may have multiple senses and multiple types of usage in different context

| "segment 1"                                               | "segment 2"                                                        | "matrix 1"                                                              | "matrix 2"                                                            | "line 1"                                                         | "line 2"                                                   | "power 1"                                                   | power 2"                                                    |
|-----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| imag SEGMENT texture color tissue brain slice cluster mri | speaker speech recogni signal train hmm source speakerind. SEGMENT | robust MATRIX eigenvalu uncertainti plane linear condition perturb root | manufactur cell part MATRIX cellular famili design machinepart format | constraint LINE match locat imag geometr impos segment fundament | alpha redshift LINE galaxi quasar absorp high ssup densiti | POWER spectrum omega mpc hsup larg redshift galaxi standard | load memori vlsi POWER systolic input complex arrai present |
| volume                                                    | sound                                                              | suffici                                                                 | group                                                                 | recogn                                                           | veloc                                                      | model                                                       | implement                                                   |

```
Document 1, P\{z_k|d_1, w_j = \text{`segment'}\} = (0.951, 0.0001, ...)
P\{w_j = \text{`segment'}|d_1\} = 0.06
```

SEGMENT medic imag challeng problem field imag analysi diagnost base proper SEGMENT digit imag SEGMENT medic imag need applic involv estim boundari object classif tissu abnorm shape analysi contour detec textur SEGMENT despit exist techniqu SEGMENT specif medic imag remain crucial problem [...]

```
Document 2, P\{z_k|d_2, w_j = \text{`segment'}\} = (0.025, 0.867,...)
P\{w_j = \text{`segment'}|d_2\} = 0.010
```

consid signal origin sequenc sourc specif problem **SEGMENT** signal relat **SEGMENT** sourc address issu wide applic field report describ resolu method ergod hidden markov model hmm hmm state correspond signal sourc signal sourc sequenc determin decod procedur viterbi algorithm forward algorithm observ sequenc baumwelch train estim hmm paramet train materi applic multipl signal sourc identif problem experi perform unknown speaker identif [...]

### pLSA: Example

#### • Experimental Evaluation





- √ Consistent improvements of retrieval accuracy
- √ Relative improvement of average precision: I5-45%

