Graded Project Proposal

- Monday, September 26
- PDF document (1-2 pages) to be submitted on blackboard
 - Team members
 - Motivation & Problem Statement
 - Approach
 - Deliverables & Timeline
- Things to keep in mind
 - Define a problem you can reasonably tackle in one semester
 - Of a backup plan if you want to try something more ambitious
 - Data collection methodologies (if you are using data)
- In-class presentation by members
 - PowerPoint, other props allowed

Using Markov Decision Processes for Policy Enforcement

September 16, 2016

Automated enforcement of privacy policies

- Healthcare industry has had numerous high profile privacy incidents
- Government is increasingly cracking down on such breaches
- Privacy is an ongoing process
- Problem: Manual audit log reviews are tedious and expensive

Verifying an organization obeys privacy policies

- Privacy policies restrict the purpose for which some protected information can be used for
- Types of restrictions
 - Prohibitive rules
 - An organization does not use certain information for a purpose
 - Example: Yahoo!'s privacy policy
 - Exclusivity rules
 - An organization users certain information only for a given list of purposes
 - Example: HIPAA

Enforcing privacy policies

Problem:

- Tools for enforcement assume that actions they audit are accurately labeled with the purpose
- Tools do not analyze the meaning of purpose

Solution:

 Need a way to determine if an action could be for a purpose

Purpose in policy enforcement

- Planning is central to purpose
 - Cognitive psychology: Purpose is the central determinant of behavior
- Formalizing the relationship between planning and purpose
 - Use MDP to construct all possible behaviors an exclusivity privacy policy allows
 - Auditing an organization:
 - MDP model of allowed behaviors VS
 - Behaviors recorded in the given audit log

Planning for a purpose

- Use an MDP to model the environment the organization being audited operates in
- Why MDP?
 - Good for planning with probabilistic systems
 - Reward function quantifies the degree of progress towards a purpose that taking an action from a state results in
- If the organization being audited logs actions that only help to achieve a particular purpose:
 - Actions correspond to an optimal plan for that MDP
 - Actions are for that purpose

MDP: Formally

- MDP is a tuple <S, A, T, R, γ>
 - S is a finite state space
 - A is a finite action set
 - $-T: S \times A \rightarrow D(S)$ is a transition function that given a state and an action, maps to a distribution over states D(S)
 - $-R: S \times A \rightarrow \mathbb{R}$ is a reward function
 - γ : a discount factor such that $0 < \gamma < 1$

Example process modeled by MDP

- Actions: Left, Right, Up, Down
- Entering top-right corner gives reward of +1 and then takes you to a random state.
- Finding good strategy that maximizes reward.

Goal of an agent using MDP to plan its actions

- $MDP = \langle S, A, T, R, \gamma \rangle$
- Maximize its expected total discounted reward $\mathcal{E}\left[\sum_{i=0}^{\infty} \gamma^i r_i\right]$
 - i is a natural number ranging over time modeled as discrete steps
 - $-r_i$ is the reward at time i
 - Expectation taken over probabilistic transitions
 - Discount factor γ accounts for preference of people to receive rewards sooner, not later

What is a good strategy?

- What we want a strategy to optimize:
 - Expected reward / time step
 - Expected reward in the first t steps
 - Maximizing the expected discounted reward

Slides: Avrim Blum

Maximizing the discounted reward

$$Q(s,a) = r_0 + \gamma r_1 + \gamma^2 r_2 + \gamma^3 r_3 + \dots$$

$$V(s) = \max_{a} Q(s, a)$$

$$V(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s')V(s')]$$

Solving for the maximum discounted award

• Given:

- Transition function
- Reward function
- Possible Solutions
 - Dynamic programming
 - Start with guesses $V_0(s)$ for all states s

• Update using
$$V_i(s) = \max_a \left[\mathbf{E}[R(s,a)] + \gamma \sum_{s'} \Pr(s') V_{i-1}(s') \right]$$

- Linear programming
 - Replace "max" with " \geq " and minimize $\sum_{s} V(s)$ subject to the constraints

Infinite MDP

There exists an optimal stationary policy, with certain conditions on rewards.

Was that an infinite MDP?

- How can you make it one?
 - Add a stop action that loops at the end

Audit Algorithm

```
AUDIT(m = \langle S, A, t, r, \gamma \rangle, b = [s_1, a_1, \dots, s_n, a_n]):
01 if (IMPOSSIBLE(m, b))
02 return true // behavior impossible for NMDP
03 V_m^* := \text{SOLVEMDP}(m)
04 for (i := 1; i \le n; i++):
05 if (\mathbb{Q}^*(V_m^*, s_i, a_i) < V_m^*(s_i)):
06 return true // action suboptimal
07 if (\mathbb{Q}^*(V_m^*, s_i, a_i) \le 0 \text{ and } a_i \ne \text{Stop}):
08 return true // action redundant
09 return false
```

Figure 2. The algorithm AUDIT

Questions on the homework?