

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет к восьмому заданию практикума на ЭВМ: Коды БЧХ

Студент 317 группы: $Ocnahos\ A.M.$

Содержание

1	Вве	едение	2
2	Основная часть		3
	2.1	Скорость БЧХ-кода	3
	2.2	Пример БЧХ-кода, для которого истинное минимальное расстояние больше,	
		чем величина $2t+1\ldots\ldots\ldots\ldots$	4
	2.3	Сравнение двух методов декодирования по времени работы	4
	2.4	Оценка работы БЧХ-кода	5
3 Заключение		6	

1 Введение

Данный отчет написан к восьмому заданию практикума на ЭВМ 317 группы. Тема задания: Коды БЧХ. Отчет написан студентом 317 группы – Оспановым Аятом.

В данной работе были реализованы модули gf.py и bch.py со всеми функциями. Были проведены исследования зависимости скорости БЧХ-кода от количества исправляемых кодом ошибок t для различных значений n и оценены доли правильно раскодированных сообщений, доли ошибочно раскодированных сообщений и доли отказов от декодирования для БЧХ-кода и проведено сравнение времени работы декодера Евклида и декодера PGZ.

Код написан на языке Python с использованием библиотеки numpy.

2 Основная часть

2.1 Скорость БЧХ-кода

Построим графики зависимости скорости БЧХ-кода r=k/n от количества исправляемых кодом ошибок t для различных значений n.

Из графика видно, что при увеличении t, скорость БЧХ-кода будет снижаться экспоненциально.

Значения t можно выбирать не больше, чем $\lfloor (n-1)/2 \rfloor$.

2.2 Пример БЧХ-кода, для которого истинное минимальное расстояние больше, чем величина $2t\,+\,1$

В качестве примера можно привести БЧХ-код, задаваемые следующими параметрами: n=15, t=1,2,3,4,5,6. Для этих кодов, минимальными расстояниями будут: l=5,8,11,15,15,15. А значения 2t+1=3,5,7,9,11,13

2.3 Сравнение двух методов декодирования по времени работы

Далее приведены графики зависимостей времени работы от t для декодера Евклида и декодера PGZ. Как видно из графиков, декодер Евклида работает за линейное время, а декодер PGZ работает за экспоненциальное.

2.4 Оценка работы БЧХ-кода

В этом разделе было проведено статистическое испытание для оценки качества декодирования БЧХ-кода исправляющих t ошибок. Как видно из следующего графика, если допускаются ошибки в количестве меньшем, чем t, то доля правильно раскодированных сообщений почти 100%, а доля ошибочно раскодированных сообщений и доля отказов минимальна и стремится к 0%. Но если ошибок станет больше, чем t, то доля правильно раскодированных сообщений будет резко уменьшаться и станет 0%, а доля отказов будет резко увеличиваться и станет 100%. При этом, доля ошибок все равно минимальна и почти 0%, что показывает, что БЧХ-код почти не допускает ошибок.

3 Заключение

В результате исследовательской работы выяснилось, что БЧХ-код почти не допускает ошибочной раскодировки. Он либо правильно раскодирует, либо откажется от раскодирования. Также было выяснено, что скорость работы декодера Евклида больше, чем скорость работы декодера PGZ.