Quotient Maps

New spaces can be created from existing spaces by identifying (gluing) points in new spaces via equivalence relations.

Example: Cylinder

Identifying two edges of a square to make a cylinder:

The gluing function $q: X \to C$ defined by:

$$g(x,y) = (x, \sin(2\pi y), \cos(2\pi y))$$

A set is U is open in C iff $g^{-1}(U)$ is open in X. Thus, gluing functions are automatically continuous.

However, it is easier to identify points using equivalence relations that partition the identified points.

$$C = \{\{(x,y)\} \,|\, x \in [0,1], y \in (0,1)\} \cup \{\{(x,0),(x,1)\} \,|\, x \in [0,1]\}$$

Definition: Identification Space

Let X be a topological space and let \sim be an equivalence relation on X. The function $f:X\to X/\sim$ defined by $f(X)=X/\sim$ is called an *identification map*. The resulting space X^* of equivalence classes is called an *identification space*. A set U is open in X^* iff $f^{-1}(U)$ is open in X. Hence, f is continuous by definition.

Example: Möbius Band

Construct a Möbius band explicitly as an identification space of $X = [0, 8] \times [0, 1]$.

$$X^* = \{\{(x,y)\} \,|\, x \in (0,8), y \in [0,1]\} \cup \{(0,y), (8,1-y) \,|\, y \in [0,1]\}$$

Example: Torus

Construct a torus explicitly as:

1. An identification space of a cylinder C.

$$C = \{ (R\sin\theta, R\cos\theta, \ell) \mid \theta \in [0, 2\pi), \ell \in [0, L] \}$$

$$C^* = \{ \{ (R \sin \theta, R \cos \theta, \ell) \} \mid \theta \in [0, 2\pi), \ell \in (0, L) \} \cup \{ \{ (R \sin \theta, R \cos \theta, 0), (R \sin \theta, R \cos \theta, L) \} \mid \theta \in [0, 2\pi) \}$$

2. An identification space of $X = [0, 1] \times [0, 1]$.

$$X^* = \{\{(x,y)\} \mid x \in (0,1), y \in (0,1)\} \cup \{\{(x,0),(x,1)\} \mid x \in (0,1)\} \cup \{\{(0,y),(1,y)\} \mid y \in [0,1]\}$$

3. An identification space of \mathbb{R}^2 .

$$(x,y) \sim (u,v) \iff x-u \in \mathbb{Z} \text{ and } y-v \in \mathbb{Z}$$

Definition: Quotient Topology

Let X be a topological space and Y be a set, and let $f:X\to Y$ be surjective. The *quotient topology* on Y with respect to f is the collection of all $U\subset Y$ such that $f^{-1}(U)\in \mathscr{T}_X$. Thus, f is continuous by definition.

Theorem

The quotient topology actually defines a topology.

Proof. Assume X is a topological space, Y is a set, and $f: X \to Y$ is surjective.

- 1. $f^{-1}(\emptyset) = \emptyset \in \mathscr{T}_X$. Therefore $\emptyset \in \mathscr{T}_Y$.
- 2. $f^{-1}(Y) = X \in \mathscr{T}_X$. Therefore $Y \in \mathscr{T}_Y$.
- 3. Assume that $U,V\in\mathscr{T}_Y$. This means that $f^{-1}(U),f^{-1}(V)\in\mathscr{T}_X$ and so:

$$f^{-1}(U)\cap f^{-1}(V)=f^{-1}(U\cap V)\in\mathscr{T}_X$$

Therefore $U \cap V \in \mathcal{T}_V$.

4. Assume that $\{U_{\alpha}: \alpha \in \lambda\} \subset \mathscr{T}_{Y}$. This means that for all $a \in \lambda$, $f^{-1}(U_{\alpha}) \in \mathscr{T}_{X}$ and so:

$$\bigcup_{\alpha \in \lambda} f^{-1}(U_{\alpha}) = f^{-1}(\bigcup_{\alpha \in \lambda} U_{\alpha}) \in \mathscr{T}_X$$

Therefore $\bigcup_{\alpha \in \lambda} U_{\alpha} \in \mathscr{T}_{Y}$.

Therefore, the quotient topology on Y defines a topology.

Theorem

Let X be a topological space and Y be a set, and let $f:X\to Y$ be surjective. The quotient topology on Y is the finest topology that makes f continuous.

Proof. ABC there exists some topology \mathscr{T} on T that is finer than T_Y . Thus, there exists $U \in \mathscr{T}$ but $U \notin \mathscr{T}_Y$. This would mean that $f^{-1}(U)$ is not open in X, contradicting the continuity of f.

Therefore
$$\mathscr{T} = \mathscr{T}_Y$$
.

Theorem

Let X and Y be topological spaces and let $f:X\to Y$ be a continuous, surjective, open map. f is a quotient map.

Proof. Let $\mathscr{T}_Y^f = \{U \subset Y \mid f^{-1}(U) \in \mathscr{T}_X\}$. Since \mathscr{T}_Y^f is the finest topology that makes f continuous, it must be the case that $\mathscr{T}_Y \subset \mathscr{T}_Y^f$.

WTS: $\mathscr{T}_{V}^{f} \subset \mathscr{T}_{Y}$.

Assume $U \in \mathscr{T}_Y^f$. Then, by definition, $f^{-1}(U) \in \mathscr{T}_X$. But f is open and surjective, so:

$$f(f^{-1}(U)) = U \in \mathscr{T}_Y$$

Therefore $\mathscr{T}_{Y}^{f} \subset \mathscr{T}_{Y}$ and hence $T_{Y}^{f} = T_{Y}$.

Theorem

Let X,Y, and Z be topological spaces and let $f:X\to Y$ be a quotient map. The map $g:Y\to Z$ is continuous iff $g\circ f$ is continuous.

Proof.

 $\implies \text{ Assume } g:Y\to Z \text{ is continuous.}$

But the composition of continuous functions is continuous.

Therefore $g \circ f$ is continuous.

 $\begin{tabular}{ll} \longleftarrow & {\sf Assume} \ g \circ f \ {\sf is} \ {\sf continuous}. \end{tabular}$

Assume $W \in \mathscr{T}_Z$, and thus $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)) \in \mathscr{T}_X$. But f is a quotient map, and so by definition, $g^{-1}(W) \in \mathscr{T}_Y$.

Therefore g is continuous.

Example

Quotient maps do not preserve Hausdorff. As a counterexample, consider $X=\mathbb{R}^+\times\{0,1\}$ and the equivalence relationship $(x,0)\sim(x,1)$. This yields R_{+00} , which is not Hausdorff.