S76: Inferring Clinical Workflow Efficiency via Electronic Medical Record Utilization

You Chen
Department of Biomedical Informatics
School of Medicine
Vanderbilt University

Disclosure

We have no competing interests to declare.

Workflow in Diabetes Mellitus Clinics

Activity Diagram for Primary Care Office

Delayed activities in the workflow

Verify insurance details from insurance company

Collate patient chart by nurse

Document progress notes, billing encounters, orders by physician

Ramaiah M, et.al. Workflow and electronic health records in small medical practices. Perspect Health Inf Manag. 2012; 9: 1d

www.amia.org

Traditional Workflow Modeling

Methods

- Questionnaire, interview, & observation in clinics

Their Goals

- Develop an in-depth understanding of workflow in disease care
- Facilitate development of informatics tools (e.g., EHR system) to manage workflows

Limitations

- High cost of human effort
- Limited to a small number of patient population

Automated Learning of Workflow

Learn workflows from EHR systems

- "Reverse Engineering" learn clinical workflow via EHR systems to refine process
 - Knowledge generated by healthcare workers
 - Study workflow in a wide range of patient populations

What Can We Learn From EHR Data?

User access data (e.g., a user invoked an action at a patient's record at 9:am, Nov, 15, 2015)

Diagnosis data (e.g., ICD-9 codes, medications, lab tests, and notes)

Example of a Learned Phenotype

Diagnosis	Probability	
Child Birth		
Short gestation; low birth weight; and fetal growth retardation	0.25	
Other perinatal conditions	0.18	
Perinatal jaundice; isoimmunization	0.16	
Endocrine and metabolic disturbances of fetus and newborn	0.10	
Cardiac shunt; heart septal defect	0.06	

Y Chen, et.al. Building bridges across electronic health record systems through inferred phenotypic topics. Journal of Biomedical informatics. 2015; 55: 482-493.

Example of a Learned Workflow

9

www.amia.org

Inferring Workflow Through Utilization of an EHR

How Can We Learn Workflow From EHR?

Using stable strong relation to construct workflow

Learning the Ordered Relations of Events

Window size matters

 e_1 has an order relation with e_2 and e_3 , but not with e_4 or e_5

Distance matters

 e_1 has a stronger relation with e_2 than e_3

Learning the Ordered Relation of Events

Window size set as 1

position(
$$e_1$$
)=1

position(e_2)=2

$$r_1(e_1, e_2) = \frac{1}{(2-1)^2}$$

position(
$$e_1$$
)=3
position(e_2)=4

$$r_2(e_1, e_2) = \frac{1}{(4-3)^2}$$

$$R(e_1, e_2) = r_1(e_1, e_2)$$

$$+r_2(e_1, e_2)$$

$$+r_3(e_1, e_2)$$

$$+r_4(e_1, e_2)$$

$$= 4$$

Keep Strong Relations

Sequences

$$S_7 \stackrel{\bullet}{\underset{e_7}{\bullet}} \stackrel{\bullet}{\underset{e_3}{\bullet}} \stackrel{\bullet}{\underset{e_3}{\bullet}} e_3$$

Event Relation ≥ 2

$$e_1 \stackrel{\bullet}{e}_2 \stackrel{\bullet}{e}_2$$
 (4)

$$\stackrel{\bullet}{e_2}\stackrel{\bullet}{e_1}(3)$$

$$e_3 \stackrel{\bullet}{e}_4 (3)$$

$$e_5^{\bullet \to \bullet} e_6^{(2)}$$

$$e_7 \stackrel{\bullet}{e}_6$$
 (2)

Using Blocks to Represent Sequences

Sequences

$$S_2 \stackrel{\bullet}{e_2} \stackrel{\bullet}{e_1} \stackrel{\bullet}{e_1} \stackrel{\bullet}{e_2} \stackrel{\bullet}{e_1}$$

$$S_3 \stackrel{\bullet}{e_1} \stackrel{\bullet}{e_2} \stackrel{\bullet}{e_1} \stackrel{\bullet}{e_3} \stackrel{\bullet}{e_4}$$

$$S_4 \stackrel{\bullet}{e_3} \stackrel{\bullet}{e_4} \stackrel{\bullet}{e_1} \stackrel{\bullet}{e_2}$$

$$s_5 \stackrel{\bullet}{e_5} \stackrel{\bullet}{e_6}$$

$$S_6 \stackrel{\bullet}{e_7} \stackrel{\bullet}{e_6} \stackrel{\bullet}{e_5} \stackrel{\bullet}{e_6}$$

$$S_7 \stackrel{\bullet}{e_7} \stackrel{\bullet}{e_6}$$

Blocks

$$e_3 e_4$$

$$e_2 \quad e_1$$

$$e_1 \quad e_2 \quad e_1$$

$$e_5 \rightarrow e_6$$

$$e_7 e_6$$

Grouping Co-Common Blocks

Sequences

Topics

Transform Topic into Workflow

Block

www.amia.org

Attending Phys/Prov -> Physician-CPOE	0.04076
Physician-CPOE -> Patient Care Staff Nurse - Lactation	0.01873
RAD - Technologist -> Physician Hospitalist-CPOE	0.01765
Physician Hospitalist-CPOE -> RAD - Technologist	0.01726
Patient Care Staff Nurse - Lactation -> Physician-CPOE	0.01711

17

Measuring the Efficiency of Inferred Workflows

A Block can Exist in Different Sequences for Different Reasons with Different Durations

Sequences

$$S_2 \stackrel{\bullet}{e_2} \stackrel{\bullet}{e_1} \stackrel{\bullet}{e_1} \stackrel{\bullet}{e_2} \stackrel{\bullet}{e_1}$$

$$s_5 \stackrel{\bullet}{e_5} \stackrel{\bullet}{e_6}$$

$$s_6 \stackrel{\bullet}{e_7} \stackrel{\bullet}{e_6} \stackrel{\bullet}{e_5} \stackrel{\bullet}{e_6}$$

$$S_7 \stackrel{\bullet}{e_7} \stackrel{\bullet}{e_6}$$

Radiology Manager and Resource Coordinator (includes scheduling and patient experience issues)

Physician-CPOE

Radiology Mgr/RC \rightarrow Resident- Inpatient Consulting Service (Half hour)

Radiology Mgr/RC → Approved Quality or Peer Review Process (Half hour)

Radiology Mgr/RC → Patient Care (associated with nursing roles) (5 Hours)

Can We Manage Effectiveness of Blocks through Their Duration (and Variances)?

Effectiveness of Topic Workflow Can Be Utilized to Manage Complex Patients

Several blocks with long durations, whereas others with short durations, which indicates a patient condition is associated with a combination of long processes and short processes

An Example of Complex Patients Associated with Multiple Workflow Topics

Oncology and Diabetes: multiple myeloma, diabetes mellitus, esophageal reflux, urinary tract infection, and personal history of malignant neoplasm of breast

Number of topics charactering a patient

Summary & Next Steps

- A pilot study of workflow modeling through EHR data
- Future steps
 - Inferred workflows need further investigations

 Gap measurement between inferred workflow and workflow utilized in clinical practice

Acknowledgements

Vanderbilt

- Bradley Malin, Ph.D
- Wei Xie, M.S.

UIUC

Carl Gunter, Ph.D.

Northwestern

- David Liebovitz, M.D.
- Sanjay Mehotra, Ph.D.
- He Zhang, Ph.D.

Funding

- National Institutes of Health
 - K99LM011933
 - R01LM010207
- NSF
 - 09-64392
- CNS
 - 13-30491

Questions?

Thank you!

you.chen@Vanderbilt.edu
http://hiplab.org/~ychen

Association between Workflow and Phenotype

w: workflow

p: phenotype

