

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

Programa de Pós-Graduação em Modelagem Matemática e Computacional

Otimização Linear

Professor: Sérgio Ricardo de Souza

Sumário

1	Inti	rodução	4		
	1.1	Otimização de sistemas	4		
	1.2	Pesquisa Operacional	6		
	1.3	Otimização Linear (História)	9		
	1.4				
	1.1	zação	11		
2	$\mathbf{E}\mathbf{x}\epsilon$	emplos de Problemas de Otimização Li-			
	nea	${f r}$	14		
3	Est	rutura de um Problema de PL	34		
4	Formato do Problema de Otimização Linear 3				
5	Ma	nipulação do Problema Linear	37		
	5.1	Transformar desigualdades em igual-	37		
	5.9	Transformer igualdades em designal	31		
	5.2	Transformar igualdades em desigualdades	39		
	5.3	Eliminação de Variável irrestrita em sinal	39		
	5.4	Variável com limitante inferior			
		Variável com limitante superior			
6	For	mato Matricial de um PL	43		
7	Sol	ução Geométrica do Problema de PL	47		

8 Tipos de solução de Problemas de PPL (Pro				
	blema de Min)	48		
9	Espaço das Restrições	52		
10	Otimalidade no Espaço de Restrições	5 6		

1 Introdução

1.1 Otimização de sistemas

Problema de Tomada de Decisões

Modelagem Matemática de um sistema com a finalidade de tomar decisões

Problemas Reais do Cotidiano

Características:

- * Variáveis inter-relacionadas;
- * Vários objetivos, conflitantes entre si;
- * Escassez de recursos;
- * Grande número de variáveis.

⇒ Buscar o melhor desempenho de um sistema, tendo em vista as diversas restrições que dificultam a escolha desse resultado.

Complexidade dos Problemas Reais

X

Problemas cuja solução seja possível de ser determinada

Significado de Solução $\begin{cases} & \text{Ferramentas de Análise} \\ & X \\ & \text{Solução Correta} \end{cases}$

1.2 Pesquisa Operacional

- "A Pesquisa Operacional é uma ciência aplicada, voltada para a resolução de problemas reais. Tendo como foco a tomada de decisões, aplica conceitos e métodos de outras áreas científicas para concepção, planejamento ou operação de sistemas para atingir seus objetivos. Através de desenvolvimentos de base quantitativa, a Pesquisa Operacional visa também introduzir elementos de objetividade e racionalidade nos processos de tomada de decisão, sem descuidar, no entanto, dos elementos subjetivos e de enquadramento organizacional que caracterizam os problemas."
- Metodologia para a análise e tomada de decisões.

• Problemas Típicos

- * Filas
- * Estoques
- * Ordenação de Tarefas
- * Distribuição, Transporte e Alocação
- * Redes, Grafos
- * Localização
- * Plano de Produção, etc

• Técnicas usadas em PO

- * Otimização Linear
- * Otimização Não Linear
- * Otimização Inteira
- * Otimização Dinâmica
- * Otimização Estocástica
- * Otimização Geométrica
- * Otimização Heurística
- * Simulação, etc

1.3 Otimização Linear (História)

- \bullet Fonte inicial \longrightarrow Modelos empíricos e teóricos de sistemas econômicos
 - * François Quesnay, "Tableau Economique" (1758)
 - * Leon Walras, "Elements d'Économie Pure" (1874)
 - * Wassily Leontief, "Modelos de Input-Output de Interligação Tecnológica entre Setores da Indústria" (1936)
 - * John Von Neumann, "Modelos Dinâmicos de Equilíbrio Econômico" (1937)
 - * Leonid Kantorovich, "Modelos Matemáticos na Organização e Planejamento da Produção" (1939)

- II Guerra Mundial
 - Problemas de fornecimento
 - Problemas de manutenção
 - Treinamento de pessoal
 - Problemas de transporte
 - ⇒ Problemas de como tomar uma decisão
 - ⇒ Inspiração militar
- Otimização Linear → George B. Dantzig (1947)
 - Método Simplex: Dantzig (1949);
 - Advento do Computador;
 - Ampla classe de aplicações, devido a:
 - * Simplicidade do código;
 - * Grande número de problemas práticos podem ser descritos como problemas lineares;
 - * Possibilidade de se encontrar soluções em um número máximo de iterações;
 - * Utilização como parte do algoritmo em diversos métodos de otimização não-linear.

1.4 Classificação dos Problemas de Otimização

min
$$f(x)$$
 sujeito a $g(x) \le 0$
$$h(x) = 0$$

$$x \ge 0$$

- Quanto à existência de restrições:
 - Problemas sem restrições ou irrestritos;
 - Problemas com restrições.
- Quanto à natureza das variáveis de projeto:
 - Problema de Otimização Estática ou Paramétrica;
 - Problema de Otimização Dinâmica ou de Otimização de Trajetórias.

- Quanto à estrutura física do problema:
 - Problema de Controle Ótimo;
 - Problema de Controle Não-Ótimo.
- Quanto à natureza da formulação matemática:
 - Problema de Otimização Não-Linear;
 - * Problema de Otimização Geométrica;
 - * Problema de Otimização Quadrática.
 - Problema de Otimização Linear.
- Quanto aos valores permitidos para as variáveis de projeto:
 - Problema de Otimização Inteira;
 - Problema de Otimização Real.

- Quanto à natureza determinística das variáveis:
 - Problema de Otimização Determinística;
 - Problema de Otimização Estocástica.
- Quanto à possibilidade de separação das funções envolvidas:
 - Problema de Otimização Separável;
 - Problema de Otimização Não-Separável.
- Quanto ao número de objetivos a serem satisfeitos:
 - Problema de Otimização Mono-Objetivo;
 - Problema de Otimização Multi-Objetivo.

2 Exemplos de Problemas de Otimização Linear

Exemplo 1 Planejamento do Fornecimento.

Uma fábrica de alimentos congelados produz batatinhas fritas, picadinho de batatas e flocos para purê de batata.

- Fases da produção:
 - 1. Compra da batata a partir de duas fontes produtoras;
 - 2. Classificação das batatas por comprimento e qualidade;
 - 3. Distribuição pelas linhas de produção.
- As fontes diferem na qualidade das batatas fornecidas:

Produto	Produtor 1	Produtor 2
Batatinha Frita	0, 2	0,3
Picadinho de Batata	0,2	0,1
Flocos de Purê	0,3	0,3

• Refugo equivalente a 30% para a batata comprada de cada produtor.

• Lucro por tonelada das batatas advindas de cada fonte produtora:

	Produtor 1 (\$/ton)	Produtor 2 (\$/ton)
Lucro	5	6

• Limitação de mercado:

Produto	Limite de Vendas (ton)
Batatinha Frita	1,8
Picadinho de Batata	1, 2
Flocos de Purê	2,4

• **Problema:** Quantas toneladas de batatas devem ser compradas de cada fonte produtora?

• Modelamento:

 x_1 : quantidade em toneladas que será comprada da fonte produtora 1;

 x_2 : quantidade em toneladas que será comprada da fonte produtora 2.

Os valores a serem determinados para x_1 e x_2 são restringidos pelas inequações lineares:

$$0, 2x_1 + 0, 3x_2 \le 1, 8$$
 (batatinha frita)
 $0, 2x_1 + 0, 1x_2 \le 1, 2$ (picadinho de batata) (1)
 $0, 3x_1 + 0, 3x_2 \le 2, 4$ (flocos de purê)

O problema somente terá sentido se:

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$(2)$$

Objetivo do Problema : Aumentar o lucro da empresa.

A função que expressa o lucro da empresa é dada por:

$$f(x_1, x_2) = 5x_1 + 6x_2$$

Então, o problema de otimização é:

max
$$f(x_1 + x_2) = 5x_1 + 6x_2$$
 (função de lucro)
sujeito a $0, 2x_1 + 0, 3x_2 \le 1, 8$ (batatinha frita)
 $0, 2x_1 + 0, 1x_2 \le 1, 2$ (picadinho de batata)
 $0, 3x_1 + 0, 3x_2 \le 2, 4$ (flocos de purê)
 $x_1 \ge 0$ (fornecedor 1)
 $x_2 \ge 0$ (fornecedor 2)

Solução ótima (gráfica):

$$x_1 = 4,5 \ ton$$
$$x_2 = 3 \ ton$$

⇒ Problema de Otimização Linear

Exemplo 2 Companhia de Mineração

A companhia de mineração Mais Nada Resta possui duas minas de extração de minério de ferro que, após beneficiado, é classificado em três categorias: alto grau, médio grau e baixo grau. A companhia venceu a concorrência para o fornecimento de matéria-prima para uma Usina de Aço, de modo que deve entregar, por semana, 24 ton. de minério de grau baixo, 8 ton. de minério de médio grau e 12 ton. de minério de alto grau. As características de produção das minas são mostradas abaixo:

		Pro	dução ((ton/dia)
Mina	Custo/Dia (US\$)	Alta	Média	Baixa
X	180	6	4	4
Y	160	1	1	6

Quantos dias por semana cada mina deve ser operada para garantir o contrato de fornecimento?

Algumas formas de tratamento desse problema:

• Trabalhar um dia por semana nas minas X e Y.

Resultado: Tipo Produção Alto 7 M'edio 4 Baixo 10

Insuficiente para atender as exigências do contrato \Rightarrow Infactível.

• Trabalhar 4 dias por semana na mina X e 3 dias por semana na mina Y.

Resultado:	Tipo	Produção
	\overline{Alto}	27
	$M\'edio$	15
	\overline{Baixo}	34

Suficiente para atender as exigências do $contrato \Rightarrow \mathbf{Factível}$.

Problema: É o menor custo ?

Exemplo 3 Árvore de Decisão

Deseja-se contratar um novo funcionário entrevistando-se no máximo três candidatos à vaga.

A partir de experiências anteriores, verificou-se que é possível determinar, a partir da entrevista, se um dado candidato será um funcionário excelente, bom ou regular.

A tabela abaixo mostra os pesos atribuídos a cada um dos casos:

Expectativa de Desempenho	Peso
Excelente	3
Bom	2
Regular	1

A experiência anterior também informa a respeito das chances de se encontrar um funcionário com as especificações desejadas:

Expectativa de Desempenho	Chances
Excelente	$0,\!2$
Bom	$0,\!5$
	,
Regular	0,3

A decisão deve ser rápida, pois sabe-se que os candidatos também estão concorrendo ao mesmo cargo em outras empresas.

Problema: Selecionar o melhor candidato, no menor tempo possível.

- Modelamento ⇒ Árvore de Decisão
 - nós com círculos: candidatos entrevistados;
 - ramos: eventos incertos e suas probabilidades de ocorrência;
 - quadrados: pontos de tomada de decisão;
 - número no fim de um ramo: valor encontrado caso se interrompa o processo de decisão naquele ponto.
- Técnica de solução: Otimização Dinâmica via Indução Reversa.

Exemplo 4 Planejamento da Produção

Matéria Prima	Sapato	Botina	Disponibilidade
Couro	2	1	8
Borracha	1	2	7
Cola	0	1	3
Lucro por unidade	1	1	_

 x_1 : quantidade de sapatos fabricados;

 x_2 : quantidade de botinas fabricadas;

Logo:

$$2x_1 + x_2 \le 8
x_1 + 2x_2 \le 7
x_2 \le 3$$

Função de lucro:

$$z = x_1 + x_2$$

Portanto:

(PL)
$$\max z = x_1 + x_2$$

 $suj. \ a \qquad 2x_1 + x_2 \le 8$
 $x_1 + 2x_2 \le 7$
 $x_2 \le 3$
 $x_1 \ge 0$
 $x_2 \ge 0$

Exemplo 5 Problema de Transporte

Uma empresa fabrica latas de conserva em 2 fábricas e as vende através de 3 depósitos.

 a_i : Capacidade de produção da fábrica i.

 b_j : Demanda de produtos no depósito j.

 c_{ij} : Custo por produto transportado da fábrica i para o depósito j.

A empresa deseja saber como distribuir a produção pela rede de modo a:

- 1. Respeitar as capacidades produtivas de cada fábrica.
- 2. Respeitar as demandas de cada depósito.
- 3. Minimizar o custo total de transporte.

Defina x_{ij} como a quantidade de produto transportado da fábrica i para o depósito j.

Logo:

$$\begin{cases} x_{11} + x_{12} + x_{13} \le a_1 \\ x_{21} + x_{22} + x_{23} \le a_2 \end{cases} Produção$$

$$\begin{vmatrix} x_{11} + x_{21} & \ge b_1 \\ x_{12} + x_{22} & \ge b_2 \\ x_{13} + x_{23} & \ge b_3 \end{vmatrix} Demanda$$

$$x_{ij} \ge 0, i = 1, 2, j = 1, 2, 3$$

Função de custo:

$$z = c_{11}x_{11} + c_{12}x_{12} + c_{13}x_{13} + c_{21}x_{21} + c_{22}x_{22} + c_{23}x_{23}$$

Porém, surge um transportador, propondo a terceirização deste serviço, na forma:

- 1. Transportar toda a mercadoria, respeitando capacidades de produção e de demanda.
- 2. Pagar ao fabricante π_1 e π_2 reais por unidade a produção das fábricas 1 e 2 e, em seguida, lhe vender por η_1 , η_2 e η_3 reais por unidade em cada um dos depósitos, garantindo, porém, que:

$$\eta_j - \pi_i \le c_{ij}, \quad i = 1, 2 \quad j = 1, 2, 3$$

$$\eta_j \ge 0$$

$$\pi_i \ge 0$$

De sua parte, o transportador vai procurar estabelecer os preços de modo a maximizar o seu lucro:

Função de receita e despesa do transportador:

$$\phi = \underbrace{(b_1n_1 + b_2n_2 + b_3n_3)}_{(Receita)} - \underbrace{(a_1\pi_1 + a_2\pi_2)}_{(Despesa)}$$

Qual das duas alternativas é mais conveniente ao fabricante?

* A solução ótima entre o problema 1 e o problema 2, para o fabricante, será aquela que maximiza o seu lucro, ou seja:

$$z \le \phi$$

* Portanto, se o custo com o transporte no problema do transportador for maior que o custo do transporte pelo próprio fabricante, então a solução 1 é a ideal, do ponto de vista do fabricante.

Exemplo 6 Problema de transporte: Uma aplicação ao planejamento de Redes Telefônicas.

 $a_i = N$ úmero de assinantes na área i.

 $b_j = Capacidade da central j.$

 $c_{ij} = Custo para conectar um assinante da área i à central j.$

O problema consiste em alocar assinantes à centrais de modo a minimizar o custo de ligação assinante-central. Trata-se, assim, de um sub-problema do problema-master de localização de centrais. x_{ij} : número de assinantes da área i conectados à central j

$$\min z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

$$\sup_{i} a \qquad \sum_{j} x_{ij} \ge a_{i} \quad , \forall_{i}$$

$$\sum_{i} x_{ij} \le b_{j} \quad , \forall_{j}$$

$$x_{ij} \ge 0 \quad , \forall_{i}, \forall_{j}$$

Exemplo 7 Problema da Dieta

Dispõe de 5 tipos de alimentos, com diferentes composições de nutrientes (proteínas e sais minerais). Uma vez conhecido o custo de cada alimento, deseja-se determinar a dieta que satisfaz os padrões nutritivos desejados e que tenha o mínimo custo.

Nutriente	-	Ali	mer	itos	3	Quant. Mínima
	1	2	3	4	5	
Proteínas	3	4	5	3	6	42
Sais Minerais	2	3	4	3	3	24
Custo	25	35	50	33	36	_

 x_i : quantidade de alimento i presente na dieta.

(PL) min
$$z = 25x_1 + 35x_2 + 50x_3 + 33x_4 + 36x_5$$

 $suj. a$ $3x_1 + 4x_2 + 5x_3 + 3x_4 + 6x_5 \ge 42$
 $2x_1 + 3x_2 + 4x_3 + 3x_4 + 3x_5 \ge 24$
 $x_i \ge 0, i = 1, ..., 5$

Variações: Problema da ração

Exemplo 8 O setor de transporte de carga de uma empresa aérea, operando em São Paulo, dispõe de 8 aviões B-727, 15 aviões ELECTRA e 12 aviões Bandeirante para vôos amanhã. Há cargas para remeter para o Rio de Janeiro (150 ton) e Porto Alegre (100 ton). Os custos operacionais de cada avião e suas capacidades são:

	B-727	ELECTRA	Bandeirante
$SP \longrightarrow Rio$	23	5	1,4
$SP \longrightarrow PA$	58	10	3,8
Capacidade	45	γ	4

Quantos e quais aviões devem ser mandados para o Rio e Porto Alegre a fim de satisfazer a demanda e minimizar os custos? $x_{ij} = avi\tilde{a}o \ de \ modelo \ i \ na \ rota \ j.$

$$i=1,\ 2,\ 3$$

$$\begin{cases} i=1\ o\ B-727 \\ i=2\ o\ ELECTRA \\ i=3\ o\ Bandeirante \end{cases}$$

$$j=1,\ 2 \quad \left\{ \begin{array}{l} j=1 \rightarrow Rio \\ j=2 \rightarrow Porto\ Alegre \end{array} \right.$$

Total de aviões:

$$x_{11} + x_{12} \le 8$$

$$x_{21} + x_{22} \le 15$$

$$x_{31} + x_{32} \le 12$$

Restrições de demanda:

$$45x_{11} + 7x_{21} + 4x_{31} \ge 150$$
$$45x_{21} + 7x_{22} + 4x_{32} \ge 100$$

Custo a ser minimizado:

$$z = 23x_{11} + 5x_{21} + 1,4x_{31} + 58x_{12} + 10x_{22} + 3,8x_{32}$$

3 Estrutura de um Problema de PL

A partir dos exemplos apresentados, a estrutura de um problema de Otimização linear é na forma:

$$\begin{array}{rcl}
\min & z &= c'x \\
\text{suj. a } Ax & \geq b \\
x &> 0
\end{array}$$

ou seja:

onde

 $z = c'x \rightarrow \text{função objetivo, linear em x.}$

 $c \rightarrow \text{vetor de custo.}$

 $c_i \rightarrow \text{coeficiente de custo.}$

 $x \rightarrow \text{vetor de variáveis de decisão ou de variáveis}$ de estrutura ou de níveis de atividade.

 $x_i \rightarrow \text{variável de decisão}.$

 $a_{ij} \rightarrow \text{coeficiente tecnológico.}$

 $A \rightarrow \text{matriz de restrições}.$

 $b_i \rightarrow \text{exigência a ser satisfeita}.$

 $b \rightarrow \text{vetor do lado direito}.$

 $x_j \geq 0 \rightarrow \text{restrição de não negatividade ou de sinal.}$

$$a_{i1}x_1 + a_{i2}x_2 + \dots, a_{in}x_n \ge b_i \rightarrow \text{i-ésima restrição}$$

O problema de programação linear, então, pode ser escrito como:

Otimizar uma função objetivo <u>linear</u> tendo em vista um conjunto de restrições <u>lineares</u>.

Definição 1 (Ponto Factível) Um conjunto de valores x_1, \ldots, x_n que satisfaça (atenda) a todas as restrições é denominado um ponto factível ou um vetor factível do problema.

Definição 2 Espaço ou região de factibilidade: conjunto de pontos factíveis.

Problema de Otimização Linear: determinar, dentro do região de factibilidade, o vetor que otimiza a função objetivo.

4 Formato do Problema de Otimização Linear

• Formato Padrão:

- Restrições de igualdade.
- Todas as variáveis são não-negativas.
- O método simplex só pode ser aplicado a este formato:

$$\begin{array}{rcl}
\min & z &= c'x \\
\text{suj. a } Ax &= b \\
x &\geq 0
\end{array}$$

• Forma Canônica:

- Todas as restrições na forma maior ou igual (problema de minimização).
- Todas as variáveis são não-negativas:

$$\begin{array}{rcl}
\min & z &= c'x \\
\text{suj. a } Ax &\geq b \\
& x &\geq 0
\end{array}$$

5 Manipulação do Problema Linear

Alteração do formato do problema original, reduzindo-o ou à forma padrão ou à forma canônica.

5.1 Transformar desigualdades em igualdades

Portanto:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n + y_1 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n + y_2 = b_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n + y_m = b_m$

$$\begin{bmatrix} A & I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = b$$

$$x \ge 0$$

$$y \ge 0$$

De forma equivalente:

Portanto:

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n - y_1 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n - y_2 = b_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n - y_m = b_m$

$$\begin{bmatrix} A & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = b$$

$$x \ge 0$$

$$y \ge 0$$

5.2 Transformar igualdades em desigualdades

5.3 Eliminação de Variável irrestrita em sinal

1. Considere x_j irrestrita em sinal. Então:

$$x_j = u_j - v_j$$

$$u_j \ge 0$$

$$v_j \ge 0$$

Em seguida, substituir x_j em todas as equações.

2. Considere um conjunto x_1, \ldots, x_k de variáveis irrestritas. Então, para $j = 1, \ldots, k$:

$$x_j = u_j - v$$

$$u_j \ge 0,$$

$$v \ge 0$$

v: variável mais negativa.

⇒ Introdução de redundância.

- 3. Expressar a variável irrestrita em função das variáveis restritas em sinal, substituindo-a no conjunto de equações e descartando a equação utilizada.
 - ⇒ Eliminação da variável irrestrita.
 - ⇒ Difícil aplicação prática.
 - ⇒ Diminui o número de variáveis do problema.

Exemplo 9 Seja o problema de Otimização linear:

$$\min \left[1 \ 3 \ 4 \right] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$suj. \ a \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

$$x_2 \geq 0$$

$$x_3 \geq 0$$

 x_1 : variável irrestrita.

Portanto, para eliminar x_1 :

$$x_1 = -2x_2 - x_3 + 5$$

 $\downarrow \downarrow$

min
$$x_2 + 3x_3$$

 $suj. \ a \ x_2 + x_3 = 4$
 $x_2 \ge 0$
 $x_3 \ge 0$

 $\downarrow \downarrow$

5.4 Variável com limitante inferior

$$x_j \ge l_j$$

$$\downarrow t_j = x_j - l_j$$

$$t_j \ge 0$$

⇒ Aumento do número de variáveis.

5.5 Variável com limitante superior

$$x_j \leq u_j$$

$$\downarrow t_j = u_j - x_j$$

$$t_j \geq 0$$

⇒ Aumento do número de variáveis.

6 Formato Matricial de um PL

$$\min z = c'x$$

$$\sup a Ax = b$$

$$x \ge 0$$

$$\min z = \sum_{j=1}^{n} c_j x_j$$

$$\sup a \sum_{j=1}^{n} A_j x_j = b$$

$$x_j \ge 0, \quad j = 1, \dots, n$$

$$c \in \Re^n$$
, $x \in \Re^n$

$$A \in \Re^{mxn}$$
, $b \in \Re^m$

$$c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Seja I um conjunto ordenado de índices tal que:

$$I \subseteq \{1, 2, \dots, n\}$$

e seja o vetor x, na forma:

$$x = \left| \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right|$$

Se I contiver p elementos, então x^I será o vetor p-coluna cujos componentes são $x_i, i \in I$.

Exemplo 10 Seja o vetor:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

e seja o conjunto ordenado:

$$I = \{2, 4, 5\}$$

Então:

$$x^I = \begin{bmatrix} x_2 \\ x_4 \\ x_5 \end{bmatrix}$$

Seja então a matriz A na forma:

$$A = \begin{bmatrix} A^1 \\ \vdots \\ A^m \end{bmatrix}$$
$$= \begin{bmatrix} A_1 \dots A_n \end{bmatrix}$$

e sejam os conjuntos ordenados de índices:

$$I \subseteq \{1, 2, \dots, m\}$$
$$J \subseteq \{1, 2, \dots, n\}$$

de modo que:

 A^i : i-ésima linha de A.

 A_j : j-ésima coluna de A.

 a_{ij} : elemento da linha i e coluna j.

 A^{I} : matriz obtida pela união das linhas $A^{i}, i \in I$.

 A_J : matriz obtida pela união das colunas $A_j, j \in J$.

 A_J^I : sub-matriz cujos elementos são $a_{ij}, i \in I, j \in J$.

Exemplo 11 Seja a matriz:

$$A = \begin{bmatrix} 1 & 7 & 4 & 1 & 10 \\ 3 & 8 & 3 & 5 & 11 \\ 5 & 9 & 2 & 2 & 9 \end{bmatrix}$$

e sejam os conjuntos ordenados:

$$I = \{1, 2\}$$

$$J = \{2, 3, 5\}$$

Então:

$$A^{I} = \begin{bmatrix} 1 & 7 & 4 & 1 & 10 \\ 3 & 8 & 3 & 5 & 11 \end{bmatrix}$$

$$A_J = \begin{bmatrix} 7 & 4 & 10 \\ 8 & 3 & 11 \\ 9 & 2 & 9 \end{bmatrix}$$

$$A_J^I = \left[\begin{array}{ccc} 7 & 4 & 10 \\ 8 & 3 & 11 \end{array} \right]$$

7 Solução Geométrica do Problema de PL

Exemplo 12 Escala de produção da fábrica de sapato.

$$Solução \'otima: \begin{cases} x_1^* = 3 \\ & \Longrightarrow z^* = 5 \\ x_2^* = 2 \end{cases}$$

8 Tipos de solução de Problemas de PPL (Problema de Min)

1. Solução ótima finita e única:

 \Rightarrow Ocorre em um ponto extremo do conjunto dos pontos factíveis.

2. Solução ótima finita e múltipla:

⇒ Curvas de nível da função objetivo paralelas a uma das arestas do conjunto dos ponto factíveis.

3. Solução ilimitada:

- 4. Não existe solução ótima
 - ⇒ Região de factibilidade vazia.

min
$$z = -2x_1 + 3x_2$$

suj. a $-x_1 + 2x_2 \le 2$
 $2x_2 - x_2 \le 3$
 $x_2 \ge 4$
 $x_1 \ge 0$
 $x_2 \ge 0$

- \Rightarrow Problema Infactível ou Inconsistente
- \Rightarrow Não possui solução.

Espaço das Restrições 9

• Restrições de Igualdade:

Seja o problema:

$$\begin{array}{cccc} \min & z = c'x \\ \text{suj. a} & Ax = b \\ & x \ge 0 \end{array}$$

$$\lim_{n \to \infty} z = \sum_{j=1}^n c_j x_j$$
 suj. a $\sum_{j=1}^n A_j x_j = b$ $x_j \geq 0, \ j=1,\ldots,n$ ema formado por:

O sistema formado por:

$$\sum_{j=1}^{n} A_j x_j \quad \text{para} \quad x_j \ge 0, j = 1, \dots, n$$

Cone das Restrições

$$\begin{cases} 2x_1 + x_2 + x_3 = -1 \\ -x_1 + 3x_2 + x_4 = 2 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ -1 & 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$x \ge 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix} x_1 + \begin{bmatrix} 1 \\ 3 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \end{bmatrix} x_3 + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x_4 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

 $x \ge 0$

$$\begin{cases} 2x_1 + x_2 + x_3 = 2 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ -1 & 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$x \ge 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix} x_1 + \begin{bmatrix} 1 \\ 3 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \end{bmatrix} x_3 + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x_4 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

 $x \geq 0$

• Restrições de Desigualdade:

$$\sum_{j=1}^{n} A_j x_j \le b$$

$$x_j \ge 0, \quad j = 1, \dots, n$$

10 Otimalidade no Espaço de Restrições

min
$$z = \sum_{j=1}^{n} c_j x_j$$

suj. a $\sum_{j=1}^{n} A_j x_j = b$

Determinar escalares não-negativos x_1, x_2, \ldots, x_n tais que:

$$\begin{bmatrix} c_1 \\ A_1 \end{bmatrix} x_1 + \begin{bmatrix} c_2 \\ A_2 \end{bmatrix} x_2 + \ldots + \begin{bmatrix} c_n \\ A_n \end{bmatrix} x_n = \begin{bmatrix} z \\ b \end{bmatrix}$$

e z seja o menor possível.

Representar o vetor $\begin{bmatrix} z \\ b \end{bmatrix}$ no cone gerado pelos vetores $\begin{bmatrix} c_j \\ A_j \end{bmatrix}$, $j=1,\ldots,n$ para o menor valor possível de z.

$$x^* = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

