YELLOWSTONE RIVER COMPACT COMMISSION

WYOMING

MONTANA

NORTH DAKOTA

STATE DOCUMENTS COLLECTION

TEB 0: 1993

MONTANA STATE LIBRARY 1515 E. 6th AVE. HELENA, MONTANA 59620

FORTY-FIRST ANNUAL REPORT

1992

YELLOWSTONE RIVER
COMPACT COMMISSION

FORTY-FIRST ANNUAL REPORT

1992

YELLOWSTONE RIVER COMPACT COMMISSION 821 EAST INTERSTATE AVENUE BISMARCK, NORTH DAKOTA 58501

Honorable Mike Sullivan Governor of the State of Wyoming Cheyenne, Wyoming 82001

Honorable Marc Racicot Governor of the State of Montana Helena, Montana 59620

Honorable Edward T. Schafer Governor of the State of North Dakota Bismarck, North Dakota 58501

Dear Sirs:

Pursuant to Article III of the Yellowstone River Compact (Compact) the Commission submits the following forty-first annual report of activities for the period ending September 30, 1992.

On February 10, 1992, the Yellowstone River Compact Commission convened a meeting via a conference call. In attendance were Mr. W.F. Horak, Jr., Chairman and Federal Representative; Mr. Gordon W. Fassett, Wyoming State Engineer; and Mr. Gary Fritz, Administrator, Water Resources Division, Montana Department of Natural Resources and Conservation. Also in attendance were Ms. Sue Lowry, Wyoming State Engineer's Office; Mr. Milo Vukelich, Wyoming Attorney General's Office; Mr. Joe A. Moreland, U.S. Geological Survey; and Mr. Matthew McKinney, Montana Department of Natural Resources and Conservation.

Mr. Horak called the meeting to order and stated that the Yellowstone River Compact Commission had received a request from the Wyoming Board of Control to review and approve a water-right adjudication for the Pennoyer Ditch under the Compact Rules for Adjudicating Water Rights for Interstate Ditches. The rules state that the Commission will determine the amount of the right, the location, and the priority date, and return the record to the Board of Control for final action.

Mr. Horak noted a typographical error in the legal description of the project. Mr. Fassett said the error would be corrected in the final record. With the understanding that the typographical error would be corrected, Mr. Fassett made a motion for the Commission to approve the adjudication as submitted. Mr. Fritz seconded the motion. Mr. Horak abstained from voting and the motion was approved.

Mr. Fassett asked if other members of the Commission had any questions or comments regarding a request for water rights for the McCarthy Ditch. He stated that the original request was for a point of diversion in Wyoming to irrigate lands in both Wyoming and Montana. The project now plans to use multiple alternate points of diversion in Montana to irrigate plots in both States.

Ms. Lowry stated that she had provided maps for Mr. Kerbel to review. She stated that the project would require a permit from Montana if points of diversion were located in that State.

Mr. Fritz stated that Montana had reviewed the project and concurred that points of diversion in Montana would be required to service the land included in the project. He stated that any diversion in Montana would, indeed, require a Montana permit.

- Mr. Fassett commented that water used to irrigate lands in Wyoming would be a Wyoming allocation under the Compact regardless of the point of diversion.
 - Mr. Fritz asked when the alternative points of diversion would be used.
 - Ms. Lowry stated that she did not know at this time.
- Mr. Fassett commented that the Wyoming process would require specificity on when and where diversions would occur. He added that the alternative points of diversion in Montana would logically require a permit from Montana. Wyoming would not issue a permit that would allow diversions from points in Montana.
- Mr. Fritz suggested that the applicant contact the Montana Department of Natural Resources and Conservation to obtain an application for a permit. He stated that Montana would process the application as quickly as possible and would probably have the permit issued within 90 days.

Several questions were raised about which lands would be irrigated by the alternative points of diversion. The Commission decided that the application would need to be clarified but that it would eventually be submitted through the Compact Rules for Interstate Ditches for approval.

- ${\tt Mr.}$ Fassett asked ${\tt Mr.}$ Horak for an update on the issue of the Federal Representative's voting status.
- Mr. Horak stated that he will provide a copy of the Commission's annual report to Mr. Cohen and ask him to comment on the Commission's recent deliberations. He stated that Mr. Cohen probably would want to consider the Commission's proposed plan to resolve issues through a consensus-building process before responding.
- Mr. Fritz asked if Mr. Cohen might allow the Federal Representative to vote on matters that already had been thoroughly examined by the State Representatives through a formalized process designed to eliminate frivolous questions or questions not ripe for decision—a process designed to develop consensus on an issue before bringing it to a vote of the Commission.
- Mr. Horak stated that Mr. Cohen's position was clear on the issue of the voting status of the Federal Representative. He commented that Mr. Cohen might suggest that a neutral arbitrator be used to resolve issues that were unable to be resolved through the consensus process.
- Mr. McKinney asked what role the U.S. Geological Survey would accept in the issue resolution process.
- Mr. Horak stated that the U.S. Geological Survey would be willing to assist the Commission in reaching consensus by serving as a technical resource, but would not agree to arbitrate or formally endorse either State's point of view when differing positions on some issue were brought to the negotiating table.
- Mr. McKinney asked Mr. Horak to comment on the potential for future changes in the USGS position on the issue. He noted that a change in the USGS position could result in a reversal in Commission rulings if the Federal Representative were allowed to cast a deciding vote after an arbitrator had resolved an issue.
- Mr. Fassett observed that the consensus-building process developed by the Commission would have to include contingency plans to address potential changes in the USGS position.
- Mr. Horak noted that the consensus process should include a binding clause that would preclude the Federal Representative from overriding or otherwise affecting decisions developed and endorsed by both States through the process. Mr. Horak suggested that a consensus-building process be drafted and submitted to the Chief Hydrologist for review and comment. He offered to inform the Chief Hydrologist now about the Commission's plan to develop a process designed to reach consensus on issues before bringing them to a vote of the Commission. A provision of that process, in the event of failure to reach consensus on an issue, might be to use an

arbitrator to resolve differences. The USGS representative would serve as a technical resource under the proposed consensus-building and arbitration process. Mr. Horak reaffirmed, however, that a USGS representative would not be allowed to cast deciding votes. If such authority is considered to be an essential requirement of the Federal Representative's role on the Commission, a non-USGS representative should be appointed to serve as chairperson.

Mr. Fassett stated that he was hopeful that the USGS would reconsider the voting issue if an acceptable consensus process were developed.

Mr. Horak suggested that in the event the consensus-building process fails to prevent or dissolve an impasse between Wyoming and Montana on some issue, a 30- to 90-day waiting period might be invoked to allow the USGS representative time to gather additional information, weigh the facts, and offer alternative solutions that might allow consensus to be reached. In that way, the USGS representative could make a contribution to the consensus-building process and assist in the resolution of disagreements between the States without having to cast a tie-breaking vote. If the States still could not agree on an issue, perhaps an outside arbitrator could be contracted to bring about resolution of the issue.

Mr. Fritz stated that the suggested waiting period would be acceptable. He reaffirmed the Montana position that the Federal Representative does not represent the USGS while serving as chairperson of the Commission.

The Yellowstone River Compact Commission held its annual meeting in Billings, Montana, on December 1, 1992. Mr. Gordon W. (Jeff) Fassett, Wyoming State Engineer, the designated representative for Wyoming; Mr. Gary Fritz, Administrator, Water Resources Division, Montana Department of Natural Resources and Conservation, the designated representative for Montana; and Mr. W.F. Horak, Jr., U.S. Geological Survey, the designated Federal Representative and Chairperson, were present.

Others present included:

Craig Cooper, Wyoming State Board of Control, Riverton, Wyoming; Chuck Dalby, Montana Department of Natural Resources and Conservation, Helena, Montana;

Don Englert, Wyoming State Engineer's Office, Byron, Wyoming; Keith Kerbel, Montana Department of Natural Resources and Conservation, Billings, Montana;

Sue Lowry, Wyoming State Engineer's Office, Cheyenne, Wyoming; Glen McDonald, Montana Department of Natural Resources and Conservation, Helena, Montana;

Matthew McKinney, Montana Department of Natural Resources and Conservation, Helena, Montana;

Joe A. Moreland, U.S. Geological Survey, Helena, Montana; Michael Whitaker, Wyoming State Board of Control, Sheridan, Wyoming.

Mr. Horak called the meeting to order at 9:40 a.m. and introduced members and representatives, outlined the agenda for the meeting, and welcomed attendees to the meeting.

The following items of business were discussed:

1. BUDGET:

Mr. Moreland reported that the budget for fiscal year 1992 was \$40,700, which covered the cost of operating four streamflow-gaging stations specified in the Yellowstone River Compact plus preparation of the annual report. He estimated that the cost of operation and reporting would be \$42,900 for fiscal year 1993, \$45,200 for fiscal year 1994, and \$47,200 for fiscal year 1995.

Mr. Moreland noted that channel migration during periods of low flow has caused difficulty in obtaining accurate streamflow records for the Tongue River at the current gaging station location. An alternative site located closer to the mouth of the Tongue River was inspected during the last period of low flow and was considered to be a more suitable location. The cost of relocating the gaging station

to the alternate site was estimated to be \$13,000, which included cost of replacing the mercury manometer with a pressure transducer system. If the cost were included in the Federal/State cooperative program, each State's share would be \$3,250. The U.S. Geological Survey would provide \$6,500 of the total cost. The relocation could be accomplished at a lesser cost if existing equipment were salvaged and utilized in constructing the new gaging station. Cost under that scenario would be about \$5,000 and each State's share would be about \$1,250. He asked the State Representatives if funding could be made available to move the gage during the 1993 fiscal year.

Mr. Fritz expressed regret that Montana is facing severe financial problems and could not provide the necessary funds.

Mr. Fassett stated that Wyoming budgets 2 years in advance for cost of conducting Yellowstone River Compact business and, because of State budgetary problems, also is unable to fund the project. He suggested that a budget request be submitted for inclusion in the 1996 fiscal year.

Mr. Fritz concurred with Mr. Fassett's recommendation.

2. STREAMFLOW AND RESERVOIR REPORT:

Mr. Moreland distributed tabular summaries and graphical charts of streamflow records and reservoir contents for the water year ending September 30, 1992. Annual streamflow was 102 percent of average for the Clarks Fork Yellowstone River, 82 percent of average for the Bighorn River, 71 percent of average for the Tongue River, and 59 percent of average for the Powder River. All tributaries except for the Clarks Fork of the Yellowstone River experienced smaller annual streamflow in 1992 than in 1991. Annual streamflow in the Clarks Fork of the Yellowstone River at Edgar, Montana, minus diversions to the Whitehorse Canal was 761,100 acre-feet for the 1992 water year. Annual streamflow in the Bighorn River at Bighorn, Montana, minus flow in the Little Bighorn River near Hardin, Montana, (adjusted for change in contents in Bighorn Lake) was 2,099,000 acre-feet for the 1992 water year. Annual streamflow in the Tongue River at Miles City, Montana, was 215,000 acre-feet for the 1992 water year. Annual streamflow in the Powder River near Locate, Montana, was 246,300 acre-feet for the 1992 water year.

Reservoir contents at the end of the water year for reservoirs completed before 1950 were: Bull Lake, 51,510 acre-feet; Pilot Butte Reservoir, 12,520 acre-feet; Buffalo Bill Reservoir, 270,400 acre-feet; and Tongue River Reservoir, 27,840 acre-feet. Reservoir contents at the end of the water year for reservoirs completed after 1950 were: Boysen Reservoir, 525,500 acre-feet; Anchor Reservoir, 784 acre-feet; and Bighorn Lake, 1,026,000 acre-feet.

3. COMPACT ADMINISTRATION:

Mr. Horak commented that the question concerning voting status of the Federal Representative was still unresolved. He noted that Montana had offered to draft a plan for conflict resolution for the Commission's consideration. He asked if the plan was ready for review.

Mr. Fritz stated that Matt McKinney had prepared a plan but it was not ready for distribution. He stated that a copy would be made available for Commission review in July. He asked what effect the change in administration would have on the issue of the Federal Representative's voting status. The issue of conflict resolution might be most if the new administration changed policy and allowed the Federal Representative to cast tie-breaking votes.

Mr. Horak commented that a change in policy is not likely, even under the new administration. He asked if Montana could briefly outline the conflict resolution plan for the Commission.

Mr. McKinney stated that he and Sue Lowry had prepared a draft plan that consisted of three levels of activity. At the first level, the States would work together to reach consensus. At that level, the Federal Representative could play an important role in the process by serving as a technical advisor. If the consensus

process is unsuccessful, a mediation process could be implemented. At that level of conflict resolution, a mediator would be hired by the States to assist them in reaching an agreement. The mediation level of the process could be constrained by a 30-day time limit to encourage early resolution. In the event that resolution is not achieved by the end of the allotted time, several options could be considered. The Commission could request binding arbitration from the mediator, an alternate Federal Representative could be selected to cast a deciding vote, or a new Federal representative with voting authority could be named as the Chairperson of the Commission to replace the U.S. Geological Survey member.

Mr. McKinney's presentation generated considerable discussion about the problems associated with the Chairperson's inability to cast votes on questions before the Commission. The State Representatives both expressed chagrin that the Yellowstone River Compact cannot be used to resolve issues without developing a process to circumvent the Federal Representative's inability to vote. A number of options to select a Federal Representative with voting status were explored. Mr. Fassett and Mr. Fritz agreed to compile a list of potential candidates who could replace the current Federal Representative and Chairperson. Both State Representatives also agreed that Mr. McKinney should continue refining the conflict resolution process and submit a draft copy of a plan for the Commission's consideration.

Mr. Horak noted that Mr. Fritz had asked that the Commission consider the issue of quantification of appropriated and unappropriated water and asked him to elaborate.

Mr. Fritz stated that the Montana Department of Natural Resources and Conservation is frustrated by the absence of a methodology to administer the Compact. He reported that his staff had compiled information on pre- and post-1950 water use in Wyoming. Based on that information, he had concluded that pre-1950 use impacts Montana and evidence suggests that post-1950 use also affects Montana's utilization of water in the basin. He noted that the impacts do not occur every year but that they do occur. He stated that he was skeptical that the Commission would proactively establish an administrative method and process and, after years of attempting to have such a system adopted by the Commission, would no longer pursue such an action. He suggested that it would be appropriate, however, for the Commission to begin a good faith effort to quantify the availability of water for future development in terms of post-1950 water use. Some specific topics that the Commission could consider include Indian water rights, supplemental water rights in Wyoming, water-quality problems, and unperfected pre-1950 water rights. He suggested that the Commission consider these potential problems before they become major and urgent issues. Until these issues are investigated and resolved, neither State can proceed with water development planning activities.

Mr. Cooper asked if Montana had prepared a paper on their investigation that Wyoming could review.

Mr. Dalby stated that he hoped to have a releasable document completed within 6 months. He commented that the framers of the Compact envisioned construction of mid-basin reservoirs that would facilitate water apportionment between the States. Without reservoirs, allocation of water requires use of predictive runoff models that are difficult to develop. He also noted that the Compact allocates all of the water between the States which is not practical in terms of contemporary water resources management considerations such as protection of instream flows. He noted that these issues would be more easily addressed in a consensus-building process than they would be after problems arose.

 $\operatorname{Mr.}$ Horak asked if Montana could provide a compilation of the issues that concern them.

Mr. Fritz stated that a compilation could be prepared.

Mr. Fassett commented that he was not aware that the topic would be on the agenda of the meeting and, consequently, was not prepared to discuss it. He stated that he was worried about the issues that Montana raised. He asked if Montana could cite specific examples of injury. He stated that he saw little benefit from resolving issues in the abstract but agreed that real issues should be addressed.

After discussion concerning the issue of nonperfected, pre-1950 water rights and Montana's desire to quantify water use in the basin, Mr. Horak asked Mr. Fritz if he wanted to present the issue to the Commission.

Mr. Fritz stated that a proactive approach to resolving long-standing Compact issues seems prudent but the Commission has historically been unwilling to address issues other than in a crisis mode.

Mr. Fassett noted that some issues probably should be considered now and cited Montana's Federal Reserved Water Rights Compact Commission negotiations with the Crow Reservation as an example.

Mr. Fassett requested that Montana keep Wyoming apprised of negotiations with the Crow Tribe and give consideration to inviting Wyoming to participate in discussions.

4. WYOMING WATER DEVELOPMENT COMMISSION ACTIVITIES:

Mr. Fassett distributed a list of all projects that have been authorized by the Water Development Commission and noted that several of the projects are located in the Yellowstone River Basin and two are of interest to the Commission--Greybull Valley Dam and the Sheridan Area Water Supply Projects. The Greybull Valley Dam project involves construction of 25,000 acre-feet of off-stream storage. No new lands would be put into production. The sponsors of the project have requested authorization to fill the storage facility twice each year instead of once. This request raises new water rights questions in Wyoming that need to be resolved. The Sheridan Area Water Supply project will provide water for municipal supplies to satisfy U.S. Environmental Protection Agency requirements for replacement of raw water currently being supplied for domestic use. The project involves enlargement of the existing Twin Lakes Reservoirs from 3,500 to 5,000 acre-feet. The project has encountered problems in obtaining a 404 permit because of questions regarding protection of wetlands.

5. MISCELLANEOUS INFORMATION ITEMS:

Mr. Fassett provided a brief status report on coal bed methane activities in Wyoming. About 60 requests have been filed for permits to dewater coal beds but only about 20 projects are being pursued. One company has used water pumped from coal beds to produce a wetland to demonstrate beneficial use. Others have used water to supply stockwater to ranches.

Mr. Fassett reported that the Buffalo Bill Dam Rehabilitation project has been completed. The project involved enlargement of a U.S. Bureau of Reclamation project. Wyoming controls the marketing of the new storage.

Mr. Fassett reported that a 3 to 2 court decision on Wind River Indian Reservation litigation reversed a lower court decision and denies the tribal government permission to convert reserved water rights based on Practicably Irrigable Acres (PIA) to other uses. The tribes have decided not to appeal the decision. The decision provides a narrow answer to a narrow question concerning the conversion of unused water rights reserved for PIA's. A joint study involving the U.S. Bureau of Reclamation, U.S. Soil Conservation Service, U.S. Geological Survey, University of Wyoming, and the Bureau of Indian Affairs is being conducted to analyze water demands, irrigation efficiency, potential new reservoir sites, and feasibility of enlarging existing storage facilities. The joint study will hopefully help resolve water conflicts that will arise when the tribes begin exercizing their reserved water rights.

Mr. Fassett noted that a State district court awarded treaty-based water rights (Walton Right) to non-Indian water users with an Indian Reserved Water Right priority date of 1868. The tribes are opposed to the concept of Walton Rights and will appeal the decision. The court ordered the State of Wyoming to cancel all overlapping individual State-issued water rights on the reservation when the court awarded the tribes an 1868 tribal water right.

Mr. Fassett reported that the Little Bighorn Pumped Hydro project is still attempting to obtain a FERC permit. Several environmental issues have arisen, including elk habitat and fishery spawning grounds. No contracts have been obtained for sale of electric power to be generated.

Mr. Fritz reported that Montana's Reserved Water Rights Compact Commission is negotiating with Native American tribes in the Milk River basin. He stated that the Commission is negotiating reserved water rights for Yellowstone National Park. The negotiated settlement will probably include a controlled ground water area to protect geothermal features of the Park. He noted that the Church Universal and Triumphant drilled a geothermal well near the Park boundary. The well produces less than 35 gallons per minute. Montana plans to issue a certificate that recognizes the Church's use of the water for a therapeutic pool and irrigation.

Mr. Fritz reported that Congress has authorized funding for the Tongue River Reservoir Rehabilitation project. Montana and Wyoming have agreed on operation of the enlarged reservoir. He noted that the negotiated compact with the Northern Cheyenne Reservation can be dissolved by the tribes through a referendum process. An objector to the compact has secured a sufficient number of signatures to require a vote on overturning the agreement. The tribal government has 60 days to hold a referendum vote. The tribal constitution requires a 30 percent voter turnout plus a majority vote for the referendum to succeed.

Mr. McDonald stated that Montana is currently preparing an Environmental Impact Statement for the rehabilitation project. Cultural surveys have been completed and public scoping meetings are scheduled. Final design work should be completed between late 1994 and mid-1995. Construction activities hopefully will begin in 1995.

Mr. Fassett observed that the agreement on the operational model is a demonstration that the States can resolve issues in a timely fashion when the issues are ripe.

Ms. Lowry reported that the McCarthy Ditch issue remains unresolved. A Wyoming irrigator with land in Wyoming and Montana has requested a permit to divert water from the Tongue River in Wyoming with alternate points of diversion in Montana. Mr. Dalby, Mr. Kerbel, Mr. Whitaker, and Mr. Baccari visited the lands in question and agreed that the irrigator could irrigate lands in Montana and Wyoming using several points of diversion in both States. Mr. Fritz stated that any diversion in Montana would require a Montana permit. Mr. Fassett noted that the situation creates a potential for illegal diversion of water to irrigate new land in Montana using a Wyoming water right. The Commission ruled that the irrigator must modify his application to Wyoming by eliminating the proposed alternative points of diversion in Montana and submit a permit application to Montana for the alternate diversion points.

Mr. Fassett asked if Montana planned to respond to his request to participate in negotiations with the Crow Reservation on their reserved water rights. He noted that water rights issues related to the Crow Reservation are more critical to Wyoming than the issues related to the Northern Cheyenne Reservation.

Mr. Fassett reported that a group in Wyoming was exploring opportunities to market excess water from Lake DeSmet to Montana water users. He asked if Montana had considered how it would differentiate natural streamflow from the releases from Lake DeSmet to protect the buyers rights. Mr. Whitaker noted that the sellers hoped to market 10,000 acre-feet of water. Mr. Dalby stated that the most likely buyer is the first water user on the Powder River in Montana, although one potential purchaser is located several miles downstream.

Mr. Fassett asked Mr. Fritz to provide names of candidates to replace the current chairperson. Mr. Horak suggested that Montana and Wyoming provide their list of candidates to the Director of the U.S. Geological Survey for his consideration. Mr. Fassett observed that they may want to postpone their request for a replacement until the new administration has reappointed the incumbent Director or named a new Director.

Having no other business, the Commission adjourned the meeting at 2:15 p.m.

Gordon W. Fassett Commissioner for Wyoming

Gary Fritz Commissioner for Montana

Federal Representative

CONTENTS

Pag	ge
Cost of operation and budget	I 1 1 1 2 2 2 3 3
Little Bighorn River near Hardin, Mont	5 6 8
Monthly summary of contents for Compact reservoirs completed after January 1, 1950	2
Monthly summary of contents for Compact reservoirs existing on January 1, 1950	6 0 5
ILLUSTRATIONS	
Plate 1. Map showing locations of Compact stream-gaging and reservoir-content stations	0
Figures 1-4. Graphs showing comparison of discharge for water year 1992, water year 1991, and 10-year and 30-year averages for:	
2. Bighorn River above Tullock Creek, near Bighorn, Mont	4 7 9

GENERAL REPORT

Cost of operation and budget

The work funded by the Commission, which to date has been primarily concerned with the collection of required hydrologic data, has been financed through cooperative arrangements whereby Montana and Wyoming each bear one-fourth of the cost and the remaining one-half is borne by the United States. The salaries and necessary expenses of the State and U.S. Geological Survey representatives, and the cost to other agencies of collecting hydrologic data, are not considered as expenses of the Commission.

The expense of the Commission during fiscal year 1992 was \$40,700, in accordance with the budget adopted for the year.

The budgets for fiscal years 1993, 1994, and 1995 were tentatively adopted subject to the availability of appropriations.

The budgets for the four fiscal years are summarized as follows:

October 1, 1991, to September 30, 1992 (fiscal year 1992):

Continuation of existing stream-gaging programs	\$40,700
October 1, 1992, to September 30, 1993 (fiscal year 1993):	
Continuation of existing stream-gaging programs	\$42,900
October 1, 1993, to September 30, 1994 (fiscal year 1994):	
Estimate of continuation of existing stream-gaging programs	\$45,200
October 1, 1994, to September 30, 1995 (fiscal year 1995):	
Estimate of continuation of existing stream-gaging programs	\$47,500

Stream-gaging-station operation

Gaging stations at the measuring sites specified in the Compact were continued in operation and satisfactory discharge records were collected at each station. Locations of gaging and reservoir stations are shown on a map of the Yellowstone River Basin at the end of the report.

During water year 1992, annual streamflow was less than normal in two of the four tributaries of the Yellowstone River as given in the following table:

Station number	Measurement site	Percent of average
06208500	Clarks Fork Yellowstone River at Edgar, Mont., minus	102
06294500	diversions to Whitehorse Canal Bighorn River at Bighorn, Mont., minus Little Bighorn River near Hardin, Mont. Adjusted for change in contents in Bighorn Lake	82
06308500 06326500	Tongue River at Miles City, Mont. Powder River near Locate, Mont.	71 59

Tabulation of streamflow data for water year 1992 and graphical comparisons with average flows for the preceding year and for selected base periods are given in the section "Monthly summary of discharge for Compact stream-gaging stations."

Diversions

No diversions were regulated by the Commission during the year. The Commissioners considered the need to develop procedures to administer water in accordance with the provisions of the Compact.

Storage in reservoirs

Reservoirs completed after January 1, 1950

Bighorn Lake, a U.S. Bureau of Reclamation project on the Bighorn River, and the largest storage project in the basin, contained 1,046,000 acre-feet at the beginning of the year and 1,026,000 acre-feet at the close. It fluctuated from 803,500 acre-feet on May 6, 1992, to 1,079,000 acre-feet on July 27, 1992. Boysen Reservoir, located on the Wind River and operated by the U.S. Bureau of Reclamation, began the year with 646,900 acre-feet in storage and ended with 525,500 acre-feet. Monthend and yearend contents and a description of these reservoirs are given in the section "Monthly summary of contents for Compact reservoirs completed after January 1, 1950." The Commission is cognizant of other reservoirs in the Yellowstone River basin and considers their aggregate effect to be insufficient to warrant the collection of storage data at this time.

Reservoirs existing on January 1, 1950

As a matter of record and general information, monthend storage data are given later in the report for reservoirs in existence upstream from the points of measurement on January 1, 1950. These data are pertinent to allocation under Article V, Section C, Item 3 of the Compact.

¹ The "normal" range is 80 to 120 percent of average.

SUMMARY OF DISCHARGE FOR COMPACT STREAM-GAGING STATIONS

06208500 Clarks Fork Yellowstone River at Edgar, Mont.

LOCATION.--Lat 45°27′58°, long 108°50′35°, in SE1/4SE1/4SE1/4 sec.23, T.4 S., R.23 E., Carbon County, Hydrologic Unit 10070006, on right bank 400 ft downstream from county bridge, 0.5 mi east of Edgar, 6 mi upstream from Rock Creek, and at river mile 22.1.

DRAINAGE AREA.--2,032 mi².

PERIOD OF RECORD.--July 1921 to September 1969, October 1986 to current year.

REVISED RECORDS.--WSP 1509: 1924, 1932(M). WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 3,460 ft above National Geodetic Vertical Datum of 1929, from the property of the man.

GAGE.--Water-stage recorder. Elevation of gage is 3,460 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 31, 1953, recording gage at same site and datum.

REMARKS.--Estimated daily discharges: Oct. 27 to Nov. 7, Nov. 28 to Dec. 4, Jan. 14-31. Records good except those for the estimated daily discharges, which are poor. Diversions for irrigation of about 41,500 acres, of which about 840 acres lies downstream from the station. In addition, about 6,300 acres of land upstream from the station are irrigated by diversions from the adjoining Rock Creek basin. Several observations of water temperature and specific conductance were made during the year. Figures of discharge given herein have the flow of White Horse Canal subtracted.

		DISCHARG	E, CUBIC	FEET PER	SECOND, W	ATER YEA MEAN VA	R OCTOBER	1991 TO	SEPTEMBER	1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	585 581 572 564 563	430 e380 e430 e480 e540	e380 e400 e500 e620 617	424 415 449 443 463	385 365 358 356 339	344 354 366 377 365	405 432 459 530 666	2140 2010 1800 1830 2000	2890 2760 3010 3180 3100	3820 3310 2860 2620 2850	797 743 771 763 686	292 270 264 257 288
6 7 8 9	552 538 518 505 503	e640 e640 635 629	597 666 578 533 527	475 468 433 403 420	338 335 337 346 354	392 414 396 380 369	640 552 491 474 476	2330 2730 3250 3630 3360	3130 2740 2420 2360 2510	2710 2540 2350 2100 1890	626 567 512 521 466	365 495 572 582 522
11 12 13 14	499 491 466 463 458	619 597 582 607 604	543 517 496 527 527	462 462 447 e360 e300	354 373 350 344 339	353 349 358 377 404	512 544 513 681 814	2470 1970 1640 1380 1340	2910 3210 3360 3370 3840	1760 1760 1910 1760 1630	361 275 237 221 209	532 524 522 535 536
16 17 18 19 20	446 440 484 448 434	552 519 544 568 547	562 562 548 489 503	e320 e300 e330 e370 e400	335 336 328 325 327	428 455 450 438 412	885 930 1100 1000 877	1780 2060 2100 2840 3560	6290 4990 4290 4030 4010	1510 1400 1300 1220 1350	220 228 227 234 204	490 465 471 513 525
21 22 23 24 25	443 426 453 494 493	542 547 506 472 490	496 488 434 449 457	e400 e420 e400 e420 e410	333 335 337 335 331	398 390 376 368 379	726 701 741 731 587	4040 3930 3400 3660 4100	3900 3790 3840 3850 3910	1580 2150 1950 1770 1550	252 312 408 491 541	526 524 484 466 459
26 27 28 29 30 31	498 493 473 452 434 468	562 558 e500 e420 e350	489 472 459 445 449 426	e430 e430 e440 e450 e490 e410	326 331 334 340 	371 370 378 391 384 382	572 586 919 1290 1720	4310 4560 4710 3940 3480 3210	3800 3440 3290 3190 3710	1400 1260 1110 1020 948 897	493 469 416 366 341 325	490 523 545 552 499
TOTAL MEAN MAX MIN AC-FT e Est:	15237 492 585 426 30220 imated	16119 537 640 350 31970	15756 508 666 380 31250	12844 414 490 300 25480	9926 342 385 325 19690	11968 386 455 344 23740	21554 718 1720 405 42750	89560 2889 4710 1340 177600	105120 3504 6290 2360 208500	58285 1880 3820 897 115600	13282 428 797 204 26340	14088 470 582 257 27940
STATIST	rics of M	ONTHLY MEA	N DATA F	OR WATER	YEARS 1921	- 1992,	BY WATER	YEAR (WY	')			
MEAN MAX (WY) MIN (WY)	534 1010 1942 298 1956	501 777 1928 310 1936	406 583 1951 217 1937	356 779 1970 200 1922	354 616 1970 180 1922	362 554 1943 220 1924	557 1398 1943 123 1961	2084 5578 1928 757 1968	4043 6843 1927 1768 1987	2046 4771 1943 290 1988	628 1541 1951 49.5 1988	499 1395 1941 156 1988
SUMMAR	Y STATIST	ICS	FOR	1991 CALE	NDAR YEAR	F	OR 1992 W	ATER YEAR	L	WATER YE	EARS 1921	- 1992*
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL 10 PERC	MEAN I ANNUAL ANNUAL I ANNUAL I OAILY ME SEVEN-DA IANEOUS P IANEOUS P IANEOUS L RUNOFF (CENT EXCE	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) EDS		370264 1014 8020 131 157 734400 2930	Jun 6 Aug 27 Aug 26		383739 1048 6290 204 220 7190 7.61 189 761100 3180	Jun 16 Aug 20 Aug 14 Jun 16 0 Jun 16 Aug 20		1030 1558 668 10600 37 43 10900a 8.66 36 746500 2820	May Apr Jun 5 Jun	1943 1988 2 1936 11 1961 18 1961 2 1936 6 1991 22 1961
10 PERG 50 PERG		EDS EDS										

^{*--}During period of operation. a--Gage height, 8.62 ft.

CLARKS FORK YELLOWSTONE RIVER AT EDGAR, MONT. (Minus diversions to Whitehorse Canal)

Figure 1.--Comparison of discharge of the Clarks Fork Yellowstone River during water year 1992 with discharge during water year 1991 and with 10-year and 30-year average discharges.

LOCATION.--Lat 45°44′09", long 107°33′24", in SE1/4NE1/4NE1/4 sec.19, T.1 S., R.34 E., Big Horn County, Hydrologic Unit 10080016, on left bank 50 ft downstream from bridge on Sarpy Road, 0.2 mi upstream of terminal wasteway of Agency Canal, 0.6 mi upstream from mouth, and 2.3 mi east of Hardin.

DRAINAGE AREA.--1,294 mi².

PERIOD OF RECORD.--June 1953 to current year.

REVISED RECORDS.--WDR MT-86-1: 1978.

b--Site and datum then in use, backwater from ice.

c--Result of discharge measurement.

REVISED RECORDS.--WDR MT-86-1: 1978.

GAGE.--Water-stage recorder. Datum of gage is 2,882.29 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 7, 1953, nonrecording gage at site 0.4 mi downstream. Oct. 7, 1953, to May 6, 1963, water-stage recorder at site 0.3 mi downstream. May 6, 1963, to Nov. 6, 1963, nonrecording gage at site 0.4 mi downstream. All at different datums. Nov. 7, 1963, to Aug. 15, 1976, water-stage recorder at site 35 ft downstream at present datum. Aug. 15, 1976, to Sept. 30, 1979, water-stage recorders were located on each bank downstream of Sarpy Road bridge and were used depending on control conditions.

MARKS.--Estimated daily discharges: Oct. 29 to Nov. 11, Nov. 27 to Dec. 7, Dec. 14 to Jan 31. Records good except those for estimated daily discharges, which are poor. Flow partly regulated by Willow Creek Reservoir (capacity 23,000 acre-ft). Diversions for irrigation of 20,980 acres upstream from station. Figures of discharge given herein include flow of terminal wasteway of Agency Canal. Several observations of water temperature and specific conductance were made during the year. REMARKS.--Estimated daily discharges:

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		DISCHARGE	, CUBIC	FEET PER	DATLY	MEAN VA		1991 10 5	EPTEMBER	(1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	175 180 185 186 166	e80 e50 e80 e150 e130	e120 e130 e140 e140 e150	e160 e160 e150 e160	250 247 236 229 213	139 140 138 131 131	111 111 111 109 110	179 213 228 214 210	334 346 332 308 299	416 493 593 601 541	188 180 164 146 142	139 131 127 128 144
6 7 8 9 10	166 167 172 170 165	e110 e130 e140 e140 e160	e160 e180 190 211 192	e160 e160 e160 e160 e160	192 182 177 181 171	137 137 146 156 159	112 114 116 113 113	215 247 284 317 383	311 363 344 329 322	497 414 425 379 373	137 134 120 112 104	165 185 185 183 175
11 12 13 14 15	148 144 140 129 124	e170 186 174 166 174	158 157 172 e110 e110	e150 e140 e140 e120 e120	179 170 152 174 175	151 143 139 134 128	115 118 120 119 118	435 384 335 305 273	300 294 290 295 342	371 369 371 461 391	72 67 71 101 116	164 149 150 153 155
16 17 18 19 20	124 125 121 114 118	219 203 176 174 169	e120 e130 e150 e160 e170	e130 e120 e130 e150 e150	177 170 163 169 163	129 136 139 159 153	118 122 135 153 173	276 313 344 306 266	405 591 552 559 509	334 301 290 284 276	120 130 132 130 116	156 154 157 152 154
21 22 23 24 25	121 122 129 135 134	156 165 163 136 150	e170 e160 e160 e150 e150	e150 e150 e150 e160 e170	157 158 152 128 159	155 148 139 131 123	184 190 186 185 203	341 417 458 401 382	502 503 451 414 380	326 347 351 317 278	135 132 161 180 180	152 153 146 144 142
26 27 28 29 30 31	131 130 136 e120 e90 e100	178 e170 e150 e130 e110	e150 e150 e150 e150 e160	e160 e150 e140 e150 e200 e240	144 143 139 140	119 118 117 113 113	198 167 153 148 159	377 344 327 317 310 314	330 330 338 319 359	259 244 228 204 197 191	174 178 167 152 144 142	142 142 133 129 127
TOTAL MEAN MAX MIN AC-FT e Esti	4367 141 186 90 8660 mated	4489 150 219 50 8900	4760 154 211 110 9440	4760 154 240 120 9440	5090 176 250 128 10100	4214 136 159 113 8360	4184 139 203 109 8300	9715 313 458 179 19270	11351 378 591 290 22510	11122 359 601 191 22060	4227 136 188 67 8380	4516 151 185 127 8960
STATIST MEAN MAX (WY) MIN (WY)	ICS OF M 156 276 1979 67.6 1957	ONTHLY MEAN 156 248 1979 84.6 1986	DATA F 136 223 1979 68.7 1962	OR WATER 146 366 1975 71.6 1988	YEARS 1954 218 610 1971 70.3 1989	- 1992, 337 987 1972 92.7 1961	BY WATER 334 748 1965 54.8 1961	YEAR (WY) 634 2852 1978 71.9 1961	866 1981 1968 117 1961	279 1333 1975 8.50 1961	121 382 1975 2.46 1961	132 267 1978 19.1 1960
SUMMARY STATISTICS			FOR 1991 CALENDAR YEAR			FOR 1992 WATER YEAR			WATER YEARS 1954 - 1992			
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS aGage height, 11.20 ft.				88310 242 1310 46 51	Jun 9 Aug 15 Aug 10		72795 199 601 50 92 674 3.59	Jul 4 Nov 2 Aug 9 Jul 4 9 Jul 4		293 676 70.4 15800 .30 .40 22600a 11.78b .20c 212000	Aug Aug May 1 Mar 2	1975 1961 20 1978 5 1961 3 1961 19 1978 20 1960 7 1961
				605 150 62	von 100		348 160 118			650 167 76		

ATION.--Lat 46°07'29", long 107°28'06", in SE1/4SE1/4NE1/4 sec.3, T.4 N., R.34 E., Treasure County, Hydrologic Unit 10080015, on right bank, 1.9 ml upstream from Tullock Creek, 3.0 ml upstream from mouth, 3.6 ml southwest LOCATION. -- Lat

Unit 10080015, on right bank, 1.9 ml upstream from Tullock Creek, 3.0 ml upstream from mouth, 3.6 ml southwest of Bighorn, and 4.5 ml southeast of Custer.

DRAINAGE AREA.--22,414 ml². Area at site used Oct. 7, 1955, to Sept. 30, 1981, 22,885 ml².

PERIOD OF RECORD.--October 1981 to current year. Previously published as "06294700 Bighorn River at Bighorn, MT" 1956-81, and as "near Custer" 1945-55. Flows are equivalent at all sites.

GAGE.--Water-stage recorder. Elevation of gage is 2,700 ft above National Geodetic Vertical Datum of 1929, from topographic map. May 11, 1945 to Dec. 6, 1945, nonrecording gage, and Dec. 7, 1945, to Oct. 6, 1955, water-stage recorder 1.7 ml upstream at different datum. Oct. 7, 1955, to Sept. 30, 1981, at site 2.3 ml downstream at different datum. at different datum.

REMARKS.--Estimated daily discharges: Jan. 15, 16. Records good. Flow regulated by Bighorn Lake beginning November 1965 (usable capacity, 1,356,000 acre-ft). Major regulation prior to November 1965 by 14 reservoirs in Wyoming and 1 in Montana with combined usable capacity of about 1,400,000 acre-ft. Diversion for irrigation of about 445,200 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

JUL AUG	SEP	
0050 3490 0060 3530 9990 3500 230 3440 0080 3500	2450 2360 2320 2350 2370	
940 3520 7780 3520 7740 3550 7770 3570 8850 3640	2320 2350 2370 2320 2360	
2870 3660 2910 3550 2950 3270 2980 3090 2940 3110	2360 2360 2320 2280 2230	
2850 3150 2770 3100 2710 2990 2700 2990 2700 2970	2190 2140 2160 2150 2420	
2710 3000 3090 2810 3550 2630 3950 2670 3870 2690	2420 2390 2380 2340 2290	
8810 2720 3720 2700 8480 2620 8420 2540 8430 2490 8430 2480	2260 2220 2190 2160 2140	
3330 96490 3107 3113 3950 3660 2700 2480 1100 191400	68970 2299 2450 2140 136800	
5292 2758 9090 6567 1967 1978 707 868 1960 1961	2806 4952 1973 1009 1966	
WATER YEARS 1946 - 1992		
400 Apr 528 May 200a May 14.21b Apr 275c Nov 0000 6220	1947 1961 20 1978 4 1967 7 6 1961 20 1978 2 1965 7 15 1959	
	050 3490 060 3530 990 3530 990 3500 230 3440 080 3500 940 3520 780 3520 770 3570 850 3640 870 3660 910 3550 950 3270 980 3090 940 3110 8850 3150 770 3100 770 2990 770 2990 770 2970 8850 2670 870 2690 8810 2720 870 2690 8810 2720 8810 2750 8810 2480 8810 2490	

a--Gage height, 14.15 ft.

b--Ice jam.

c--About, result of freezeup.

BIGHORN RIVER ABOVE TULLOCK CREEK, NEAR BIGHORN, MONT. (Adjusted for change in contents in Bighorn Lake minus Little Bighorn River near Hardin, Mont.)

Figure 2.--Comparison of discharge of the Bighorn River during water year 1992 with discharge during water year 1991 and with 10-year and 30-year average discharges.

LOCATION.--Lat 46°20'44", long 105°48'10", in NE1/4NE1/4SE1/4 sec.23, T.7 N., R.47 E., Custer County, Hydrologic Unit 10090102, on right bank 4 mi south of Miles City and at river mile 8.1.

DRAINAGE AREA.--5,379 mi².

PERIOD OF RECORD. --April 1938 to April 1942, April 1946 to current year. Published as "near Miles City" April 1938 to April 1942. Not equivalent to records published as "near Miles City" May 1929 to October 1932. Monthly discharge only for some periods, published in WSP 1309.

REVISED RECORDS. -- WSP 1729: Drainage area.

REVISED RECORDS.--WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,375.76 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). April 1938 to April 1942, nonrecording gage at site 8 mi upstream at different datum. April 1946 to Sept. 30, 1963, at datum 1.00 ft higher.

REMARKS.--Estimated daily discharges: Oct. 28 to Nov. 15, Nov. 20 to Feb. 27. Water-discharge records fair except those for estimated daily discharges, which are poor. Flow regulation by Tongue River Reservoir (station 06307000), and many small reservoirs in Wyoming (combined capacity about 15,000 acre-ft). Diversions for irrigation of about 100,800 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station. station. DISCURDER CURIC PERT DED SECOND WATER VEND OCTOBER 1001 TO SERVICE 1000

		DISCHAF	RGE, CUBI	C FEET PER			EAR OCTOBER	1991 TO	SEPTEMBER	1992		
DAY	OCT	NOV	DEC	JAN	FEB	MEAN V. MAR	APR	MAY	JUN	JUL	AUG	SEP
1	232	e100	e300	e200	e250	269	114	82	71	1120	649	325
2	235	e100	e330	e210	e230	254	114	76	90	1210	663	320
3	231	e90	e330	e220	e230	244	114	73	76	1160	654	313
4 5	233 197	el20 el50	e320 e300	e230 e230	e220 e210	244 243	113 114	71	81	1190	641	321
J	197	6130	6300	e230	9210	243	114	126	96	1320	589	321
6	171	e130	e250	e220	e200	240	114	320	85	1420	560	329
7	157	e170	e230	e210	e190	240	111	352	74	1320	547	374
8 9	127 123	e200 e300	e220 e230	e200 e220	e200 e210	242 240	107 104	272 261	80 67	1210 1120	537	371
10	116	e350	e230	e250	e190	237	104	275	53	1120	517 503	329 335
	112	- 270	- 220	- 220	- 1 70	240	107	070				
11 12	113 112	e370 e370	e220 e210	e230 e220	e170 e190	240 233	107 110	278 283	43 43	1080 1030	498 487	332 329
13	106	e370	e200	e200	e200	232	112	279	58	969	466	349
14	103	e340	e200	e180	e200	233	112	272	67	917	452	377
15	101	e280	e200	e170	e210	233	111	270	76	906	452	384
16	106	270	e200	e190	e210	236	111	241	94	1000	435	378
17	102	232	e200	e220	e210	237	108	215	349	1040	508	383
18	98	236	e210	e230	e200	244	137	222	155	959	455	386
19	99	230	e220	e260	e190	240	684	148	112	857	459	390
20	96	e200	e220	e250	e180	237	704	117	139	793	300	402
21	95	e190	e230	e240	e190	225	340	84	411	776	268	391
22	94	e150	e230	e230	e200	181	187	57	429	733	238	383
23	102	el20	e230	e210	e210	157	134	48	422	705	426	384
24	153	e110	e230	e210	e220	144	139	43	408	783	513	381
25	156	e110	e220	e220	e250	136	148	41	428	771	402	375
26	159	e100	e230	e220	e300	133	113	24	439	710	352	376
27	165	e100	e220	e230	e300	129	115	15	438	689	315	381
28	e120	e150	e220	e240	307	123	98	12	538	672	303	381
29 30	e100 e90	e200 e250	e220 e210	e270 e270	281	121 119	96 90	2.2	727 966	668	309	381
31	e110		e200	e270		116		2.1	966	677 646	323 324	381
mom » r	4000	6000	7260	6050	6240	6400	1055					
TOTAL MEAN	4202 136	6088 203	7260 234	6950 224	6348 219	6402 207	4865 4 162	1563.9 147	7115 237	29571	14145	10862
MAX	235	370	330	270	307	269	704	352	966	954 1420	456 663	362 402
MIN	90	90	200	170	170	116	90	2.1	43	646	238	313
AC-FT	8330	12080	14400	13790	12590	12700	9650	9050	14110	58650	28060	21540
e Esti	mated											
STATIST	TICS OF M	ONTHLY MEA	AN DATA F	DR WATER Y	EARS 1938	- 1992	, BY WATER Y	(EAR (WY)				
MEAN	245	260	197	197	281	537	455	723	1311	468	181	204
MAX	694	585	423	502	1794	1783	1693	2983	3825	2207	700	599
(WY)	1972	1942	1950	1975	1971	1971	1965	1978	1978	1975	1975	1968
MIN (WY)	10.3 1961	60.9 1989	68.0 1990	78.6 1961	102 1961	79.8 1961	12.5 1961	29.2 1961	48.6	12.6	6.08	2.40
(11)	1 701	1303	1990	1901	1901	1901	1901	1901	1960	1960	1949	1938
	STATIST	rics	FOR :	1991 CALENI	DAR YEAR	1	FOR 1992 WAT	TER YEAR		WATER YE	ARS 1938	- 1992*
ANNUAL ANNUAL				149746 410			108371.9 296			410		
	ANNUAL	MEAN		410			296			418 986		1978
	ANNUAL M									57.2		1961
HIGHEST	DAILY M	EAN		2430	May 27		1420	Jul 6		9290	Jun	15 1962
	DAILY ME			32	Sep 5		2.1	May 30		.00		9 1940
		Y MINIMUM		37	Sep 3		14	May 25		.00		9 1940
		EAK FLOW EAK STAGE					1510 4.06	Jul 6 Jul 6		13300a		15 1962
INSTANI	THEOUS P	DAK JIMGE					4.06	001 6		13.27		19 1960 15 1971
	ANEOUS L									.00		9 1940
	RUNOFF (297000			215000			302800		
	ENT EXCE			968 200			650 230			970 230		
	ENT EXCE			103			96			70		
										. 0		

^{*--1938, 1942-1946} not used in computations, incomplete water years.
a--Gage height, 12.33 ft., from rating curve extended above 8,220 ft3/s on basis of float measurement.

c--Also occurred on several other days in 1940.

TONGUE RIVER AT MILES CITY, MONT.

Figure 3.--Comparison of discharge of the Tongue River during water year 1992 with discharge during water year 1991 and with 10-year and 30-year average discharges.

LOCATION.--Lat 46°26'56", long 105°18'44", in NW1/4SW1/4 sec.14, T.8 N., R.51 E., Custer County, Hydrologic Unit 10090209, on left bank 1.5 mi downstream from bridge on old U.S. Highway 12 at present site of Locate, 1.5 mi upstream from Locate Creek, 5 mi west of former site of Locate, 25 mi east of Miles City, and at river mile

DRAINAGE AREA.--13,194 mi². Drainage area of site 1.5 mi upstream, 13,189 mi².

PERIOD OF RECORD.--March 1938 to current year.

REVISED RECORDS.--WSP 926: 1939. WSP 1309: 1938-39 (M). WSP 1729: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 2,384.79 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to July 11, 1947, nonrecording gage at bridge 1.5 mi upstream, and July 11, 1947, to Sept. 30, 1965, water-stage recorder at site near upstream bridge at different datum. Oct. 1, 1965, to Oct. 4, 1966, nonrecording gage, and Oct. 5, 1966, to Mar. 21, 1978, water-stage recorder at present site and datum. Mar. 22, 1978, to Apr. 23, 1981, water-stage recorder 1.5 mi upstream at different datum, Apr. 24 to Aug. 20, 1981, water-stage recorder at present site and datum, and Aug. 21, 1981, to Sept. 30, 1981, water-stage recorder 1.5 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Oct. 28 to Nov. 15, Nov. 19 to Feb. 27, Mar. 28-31, Apr. 2-7. Water-discharge records poor. Some regulation by three reservoirs in Wyoming with combined usable capacity of 36,800 acre-ft. Diversions for irrigation of about 101,800 acres upstream from station. U.S. Army Corps of Engineers satellite telemeter at station.

DISCURDER CURIC FEET DED SECOND WATER VEAR OCTORER 1001 TO SERTEMBER 1002

		DISCHARG	E, CUBIC	FEET PER			R OCTOBER	1991 TO S	EPTEMBER	1992		
DAY	OCT	NOV	DEC	JAN	FEB	MEAN VA MAR	APR	MAY	JUN	JUL	AUG	SEP
1	180	e130	e250	e180	e190	584	e290	297	46	1460	649	96
2	176	e120	e200	e180	e180	494	e280	286	44	1470	601	106
3	171	e140	e170	e180	e180	469	e270	265	49	1260	514	106
4	169	e170	e200	e180	e180	451	e260	271	43	1220	530	99
5	166	e200	e210	e180	e180	449	e250	268	35	1440	464	108
6	165	e230	e230	e170	e180	454	e250	278	27	2260	399	103
7	170	e250	e250	e160	e180	440	e230	301	22	1560	350	96
8	173	e270	e240	e160	e180	429	255	311	20	1170	358	115
9 10	176 183	e300 e330	e240 e230	e170 e180	e180 e180	440 445	252 248	305 313	17 15	1000 898	341 329	101 98
10	103	6330	6230	6100	6180	443	240			090	329	96
11	196	e350	e220	e190 e200	e170	445 450	246 239	252	12	815	411	85
12 13	202 203	e350 e350	e210 e200	e190	e180 e180	441	249	215 185	11 15	824 717	352 249	85 128
14	206	e370	e190	e140	e170	400	270	171	27	650	214	133
15	212	e500	e190	e130	e180	398	298	138	29	573	202	121
16 17	216 213	435 439	e180 e170	e180 e180	e180 e180	380 366	326 341	131 140	53 86	566 628	185 167	235 173
18	207	388	e160	e180	e180	355	572	122	817	560	141	172
19	205	e410	e170	e200	e180	356	1640	114	2430	575	134	132
20	204	e450	e160	e200	e170	378	1290	92	2030	546	139	156
21	202	e400	e170	e180	e190	361	570	87	1420	503	139	142
22	203	e300	e170	e180	e200	348	485	81	1400	476	144	137
23	215	e350	e180	e180	e250	352	477	67	1660	440	279	140
24	222	e350	e180	e180	e300	343	581	60	1260	420	194	153
25	221	e370	e180	e180	e350	328	528	50	1080	912	117	136
26	223	e400	e190	e190	e400	330	450	46	1360	1410	124	138
27	219	e380	e190	e200	e500	339	400	40	1300	1200	113	147
28	e160	e350	e180	e210	623	e300	365	36	1380	861	98	144
29	e140 e120	e330 e300	e180 e180	e210 e210	571	e300 e300	345 309	37 39	1430 1320	695 695	88	145
30 31	e140		e180	e200		e300	309	54		772	88 86	139
mom > 7	5050	0712	COEO	5,050	COCA	12225	12566	5050	10420	20576	0100	20.00
TOTAL MEAN	5858 189	9712 324	6050 195	5650 182	6964 240	12225 394	12566 419	5052 163	19438 648	28576 922	8199 264	3869 129
MAX	223	500	250	210	623	584	1640	313	2430	2260	649	235
MIN	120	120	160	130	170	300	230	36	11	420	86	85
AC-FT	11620	19260	12000	11210	13810	24250	24920	10020	38560	56680	16260	7670
e Est	imated											
STATIST	TICS OF M	ONTHLY MEA	N DATA F	OR WATER	YEARS 1939	- 1992.	BY WATER	YEAR (WY)				
MEAN	235	206	145	138	436	1256	754	1139	1662	559	208	172
MAX	921	427	417	476	3850	4627	3062	5970	8045	2004	1096	898
(WY)	1941	1987	1942	1981	1943	1972	1965	1978	1944	1962	1941	1941
MIN	1.77	12.5	12.5	4.53	2.82	80.2	109	142	123	14.4	1.30	.19
(WY)	1961	1961	1961	1950	1950	1950	1961	1961	1966	1988	1988	1960
SUMMAR	Y STATIST	ICS	FOR	1991 CALE	NDAR YEAR	F	OR 1992 W	ATER YEAR		WATER Y	EARS 1939	- 1992
ANNUAL				164651.8			124159					
ANNUAL.		MODEL		451			339			576		1044
	I ANNUAL									1622		1944 1961
	ANNUAL M			3380	May 23		2430	Jun 19		79.4	Fob 1	
	T DAILY ME DAILY ME			3380 5.7	May 23 Sep 9		2430 11	Jun 19 Jun 12		26000		.9 1943 .6 1950
		Y MINIMUM		6.3	Sep 3		16	Jun 7		.0		6 1950
		EAK FLOW			•		2700	Jun 19		31000	Feb 1	9 1943
		EAK STAGE					4.95			12.2		6 1978
	TANEOUS I			326600			7.0	Jun 11		417000) b	
	RUNOFF (CENT EXCE			1250			649			1330		
	CENT EXCE			215			210			230		
	CENT EXCE			35			97			40		

a -- Backwater from ice. b--On many days in 1950, 1960-61, and 1988.

POWDER RIVER NEAR LOCATE, MONT.

Figure 4.--Comparison of discharge of the Powder River during water year 1992 with discharge during water year 1991 and with 10-year and 30-year average discharges.

06258900 Boysen Reservoir, Wyo.

LOCATION.--Lat 43°25'00", long 108°10'37", in NW1/4 NW1/4 sec. 16, T. 5 N., R. 6 E., Fremont County, Hydrologic Unit 10080005, at dam on Wind River and 13 minorth of Shoshoni, Wyoming.

DRAINAGE AREA. -- 7,700 mi2.

PERIOD OF RECORD. -- October 1951 to current year (monthend contents only).

GAGE.--Water-stage recorder. Datum of gage is referenced to National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation).

REMARKS.--Reservoir is formed by rock-fill dam completed in October 1951. Storage began Oct. 11, 1951. Usable capacity, 742,100 acre-ft between elevation 4,657.00 ft, invert of penstock pipe, and 4,725.00 ft, top of spillway gate. Dead storage, 59,880 acre-ft below elevation 4,657.00 ft. Prior to Jan. 1, 1966, usable capacity was 757,800 acre-ft and dead storage was 62,000 acre-ft at same elevations. Crest of dam is at elevation 4,758.00 ft. Figures given herein represent usable contents. Water used for irrigation, flood control, and power development.

COOPERATION .-- Elevations and capacity table furnished by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum usable daily contents, 862,500 acre-ft, July 6, 7, 1967, elevation, 4,730.83 ft; minimum usable daily since normal use of water started, 191,900 acre-ft, Mar. 18, 19, 1956, elevation, 4,684.18 ft, capacity table then in use.

EXTREMES FOR CURRENT YEAR.--Maximum usable contents, 646,000 acre-ft, Oct. 1, elevation, 4,719.86 ft; minimum usable, 475,300 acre-ft, May 25, elevation, 4,709.35 ft.

Month	Water-surface elevation, in feet	Usable contents, in acre-feet	Change in usable contents, in acre-feet
September 30, 1991	4,719.91	646,900	
October 31		621,900	-25,000
November 30		612,500	-9,400
December 31		566,500	-46,000
January 31, 1992	4,711.64	508,000	-58,500
February 29	4,710.39	490,700	-17,300
March 31	4,711.28	504,100	+13,400
April 30		496,700	-7,400
May 31		483,000	-13,700
June 30		526,900	+43,900
July 31		562,300	+35,400
August 31	4,713.49	538,400	-23,900
September 30, 1992		525,500	-12,900
1992 water year			-121,400

06260300 Anchor Reservoir, Wyo.

LOCATION.--Lat 43°39'50", long 108°49'27", in sec. 26, T. 43 N., R. 100 W., Hot Springs County, Hydrologic Unit 10080007, at dam on South Fork Owl Creek, 2 mi downstream from Middle Fork, 3 mi southeast of Anchor, and 32 mi west of Thermopolis.

DRAINAGE AREA. -- 131 mi2.

PERIOD OF RECORD. -- November 1960 to current year (monthend contents only).

GAGE.--Water-stage recorder. Datum of gage is referenced to National Geodetic Vertical Datum of 1929 (U.S. Bureau of Reclamation benchmark).

REMARKS.--Reservoir is formed by concrete arch dam completed in 1960. Usable capacity, 17,160 acre-ft between elevation 6,343.75 ft, invert of river outlet, and 6,441.00 ft, spillway crest, not including 68 acre-ft below elevation 6,343.75 ft. Prior to Oct. 1, 1971, usable capacity was 17,280 acre-ft not including 149 acre-ft below the invert. Figures given herein represent usable contents. Water is used for irrigation of land in Owl Creek basin.

COOPERATION .-- Records furnished by U.S. Bureau of Reclamation .

EXTREMES FOR PERIOD OF RECORD. --Maximum usable daily contents, 9,250 acre-ft, July 4, 1967, elevation, 6,418.52 ft; no storage on many days each year.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 7,830 acre-ft, July 23, elevation, 6,413.80 ft; minimum, 106 acre-ft, Feb. 21 to Mar. 1, elevation, 6,347.00 ft.

Month	Water-surface elevation, in feet	Usable contents, in <u>acre-feet</u>	Change in usable contents,in_acre-feet
September 30, 1991	6,360.00 6,362.00 6,351.00 6,347.80 6,347.00 6,350.00 6,359.60 6,366.40 6,405.00 6,411.80	610 414 492 170 117 106 148 400 701 5,420 7,240 3,270 784	 -196 +78 -322 -53 -11 +42 +252 +301 +4,719 +1,820 -3,970 -2,486
1992 water year	0,007.50	704	+174

06286400 Bighorn Lake near St. Xavier, Mont.

LOCATION.--Lat 45°18'27", long 107°57'26", in SW1/4 SE1/4 sec. 18, T. 6 S., R. 31 E., Big Horn County, Hydrologic Unit 10080010, in block 13 of Yellowtail Dam on Bighorn River, 1.3 mi upstream from Grapevine Creek, 15.5 mi southeast of St. Xavier, and at river mile 86.6.

DRAINAGE AREA. -- 19,626 mi2.

PERIOD OF RECORD.--November 1965 to current year (monthend contents only). Prior to October 1969, published as "Yellowtail Reservoir."

GAGE.--Water-stage recorder in powerhouse control room. Datum of gage is referenced to National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation).

REMARKS.--Reservoir is formed by thin concrete-arch dam; construction began in 1961; completed in 1967. Storage began Nov. 3, 1965. Usable capacity, 1,356,000 acre-ft between elevation 3,296.50 ft, river outlet invert, and 3,657.00 ft, top of flood control. Elevation of spill-way crest, 3,593.00 ft. Normal maximum operating level, 1,097,000 acre-ft, elevation, 3,640.00 ft. Minimum operating level, 483,400 acre-ft, elevation 3,547.00 ft. Dead storage, 16,010 acre-ft below elevation 3,296.50 ft. Figures given herein represent usable contents. Water is used for power production, flood control, irrigation, and recreation.

COOPERATION. -- Elevations and capacity table furnished by U.S. Bureau of Reclamation.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 1,346,000 acre-ft, July 6, 1967, elevation, 3,656.43 ft; minimum since first filling, 641,900 acre-ft, Apr. 14, 1989, elevation, 3,583.30 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,079,000 acre-ft, July 27, elevation, 3,641.92 ft; minimum, 803,500 acre-ft, May 6, elevation, 3,612.51 ft.

Month	Water-surface elevation, in_feet	Usable contents, in acre-feet	Change in usable contents,in_acre-feet
September 30, 1991	. 3,639.36	1,046,000	
October 31		1,021,000	-25,000
November 30		974,300	-46,700
December 31		915,600	-58,700
January 31, 1992		868,400	-47,200
February 29		851,800	-16,600
March 31		820,500	-31,300
April 30		804,700	-15,800
May 31		869,200	+64,500
June 30		1,006,000	+136,800
July 31	. 3,641.28	1,070,000	+64,000
August 31	. 3,636.82	1,016,000	-54,000
September 30, 1992	. 3,637.74	1,026,000	<u>+10,000</u>
1992 water year			-20,000

MONTHLY SUMMARY OF CONTENTS FOR COMPACT RESERVOIRS EXISTING ON JANUARY 1, 1950

The extent, if any, of the use of reservoirs in this section which may be subject to Compact allocations was not determined. As a matter of hydrologic interest the monthend contents in acre-feet of four reservoirs are given. The first three reservoirs are in the Bighorn River basin, Wyoming, and data on contents were furnished by the U.S. Bureau of Reclamation. The Tongue River Reservoir in Montana is operated under the supervision of the Water Resources Division of the Montana Department of Natural Resources and Conservation, which furnished the operating data.

Contents, in acre-feet

Month	06224500 a/Bull Lake	<u>b</u> /Pilot Butte <u>Reservoir</u>	06281500 c/Buffalo Bill Reservoir	06307000 d/Tongue River Reservoir
September 30, 1991	84,940	13,230	275,000	20,080
October 31	81,830	19,100	252,200	20,080
November 30	84,140	21,120	252,700	23,350
December 31	85,320	21,050	248,800	19,940
January 31, 1992	85,600	20,980	244,700	18,380
February 29	85,400	20,980	249,700	15,440
March 31	85,680	28,080	265,000	18,020
April 30	84,140	26,720	255,000	27,400
May 31	80,990	23,990	300,900	48,710
June 30	110,400	29,640	410,200	70,200
July 31	125,800	24,460	410,700	63,630
August 31	92,110	15,830	331,100	41,150
September 30, 1992	51,510	12,520	270,400	27,840
Change in contents				
during water year	-33,430	-710	-4,600	+7,760

a/ Usable contents, from revised capacity table effective October 1, 1965. Dead storage is 722 acre-ft.

b/ Usable contents. Dead storage is 5,360 acre-ft.

C/ Usable contents, from revised capacity table based on survey of 1959. Usable contents prior to October 1960 based on survey of 1941. Dead storage is negligible.

d/ Usable contents. Dead storage is 1,400 acre-ft. Contents based upon sedimentation surveys of October 1948.

RULES AND REGULATIONS FOR ADMINISTRATION OF THE YELLOWSTONE RIVER COMPACT

A compact, known as the Yellowstone River Compact, between the States of Wyoming, Montana, and North Dakota, having become effective on October 30, 1951, upon approval of the Congress of the United States, which apportions the waters of certain interstate tributaries of the Yellowstone River which are available after the appropriative rights existing in the States of Wyoming and Montana on January 1, 1950 are supplied, and after appropriative rights to the use of necessary supplemental water are also supplied as specified in the Compact, is administered under the following rules and regulations subject to the provisions for amendment revision or abrogation as provided herein.

Article I. Collection of Water Records

A. It shall be the joint and equal responsibility of the members of the States of Wyoming and Montana to collect, cause to be collected, or otherwise furnish records of tributary streamflow at the points of measurement specified in Article V (B) of the Compact, or as near thereto as is physically or economically feasible or justified.

1. Clarks Fork

The gaging station known as Clarks Fork near Silesia, Montana and located in NW1/4 SE1/4 sec. 1, T. 4 S., R. 23 E., shall be the point of measurement for the Clarks Fork.

2. Bighorn River (exclusive of Little Bighorn River)

The gaging station known as the Bighorn River above Tullock Creek, near Bighorn, Montana, and located in SE1/4 SE1/4 NE1/4 sec. 3, T. 4 N., R. 34 E., shall temporarily be the designated point of measurement on that stream. The flow of the Little Bighorn River as measured at the gaging station near Hardin, Montana, and located in SE1/4 NE1/4 NE1/4 sec. 19, T. 1 S., R. 34 E., shall be considered the point of measurement for that stream, except that if or when satisfactory records are not available, the records for the nearest upstream station with practical corrections for intervening inflow or diversion shall be used.

3. Tongue River

The gaging station known as the Tongue River at Miles City, Montana, and located in NE1/4 NE1/4 SE1/4 sec. 23, T. 7 N., R. 47 E., shall temporarily be the point of measurement for that stream.

4. Powder River

The gaging station known as the Powder River near Locate, Montana, and located in NW1/4 SW1/4 sec. 14, T. 8 N., R. 51 E., shall temporarily be the designated point of measurement for that stream.

- B. Records of total annual diversion in acre-feet above the points of measurement designated in the Compact for irrigation, municipal, and industrial uses developed after January 1, 1950, shall be furnished by the members of the Commission for their respective States, at such time as the Commission deems necessary for interstate administration as provided by the terms of the Compact. Providing that if it be acceptable to the Commission, reasonable estimates thereof may be substituted.
- C. Annual records of the net change in storage in all reservoirs, not excluded under Article V (E) of the Compact, above the point of measurement specified in the Compact and completed after January 1, 1950, and the annual net change in reservoirs existing prior to January 1, 1950, which is used for irrigation, municipal, and industrial purposes developed after January 1, 1950, shall be the primary responsibility of the member of the Commission in whose State such works are located; providing such data are not furnished by Federal agencies under the provisions of Article III (D) of the Compact, or collected by the Commission.

Article II. Office and Officers

- A. The office of the Commission shall be located at the office of the Chairman of the Commission.
- B. The Chairman of the Commission shall be the Federal representative as provided in the Compact.
- C. The Secretary of the Commission shall be as provided for in Article III of these rules.
- D. The credentials of each member of the Commission shall be placed on file in the office of the Commission.

Article III. Secretary

A. The Commission, subject to the approval of the Director of the United States Geological Survey, shall enter into cooperative agreements with the U.S. Geological Survey for such engineering and clerical services as may reasonably be necessary for the administration of the Compact. Said agreements shall provide that the Geological Survey shall:

- Maintain and operate gaging stations at or near the points of measurement specified in Article V (A) of the Compact.
- Assemble factual information on stream flow, diversion, and reservoir storage for the preparation of an annual report to the Governors of the signatory States.
- 3. Make such investigations and reports as may be requested by the Commission in aid of its administration of the Compact.
- B. The Geological Survey shall act as Secretary to the Commission.

Article IV. Budget

- A. At the annual meeting of each even-numbered year or prior thereto, the Commission shall adopt a budget for operation during the ensuing biennium beginning July first. Such budget shall set forth the total cost of construction, maintenance and operation of gaging stations, the cost of engineering and clerical aid, and other necessary expenses excepting the salaries and personal expenses of the Commissioners. On odd-numbered years revisions of the budget shall be considered.
- B. It shall be the obligation of the Commissioners of the States of Montana and Wyoming to endeavor to secure from the Legislature of their respective States sufficient funds with which to meet the obligations of this Compact, except insofar as provided by the Federal government.

Article V. Meetings

An annual meeting of the Commission shall be held each November at some mutually agreeable point in the Yellowstone River Basin for consideration of the annual report for the water year ending the preceding September 30th, and for the transaction of such other business consistent with its authority; provided that by unanimous consent of the Commission the date and place of the annual meeting may be changed. Other meetings as may be deemed necessary shall be held at a time and place set by mutual agreement, for the transaction of any business consistent with its authority.

No action of the Commission shall be effective until approval by the Commissioners for the States of Wyoming and Montana.

Article VI. Amendments, Revisions and Abrogations.

The Rules and Regulations of the Commission may be amended or revised by a unanimous vote at any meeting of the Commission.

Gary Fritz

Commissioner for Montana

George L. Christopulos

Commissioner for Wyoming

ATTESTED:

L. Grady Moore

Federal Representative

Adopted November 17, 1953 Amended December 16, 1986

RULES FOR ADJUDICATING WATER RIGHTS ON INTERSTATE DITCHES

Article I. Purpose

The purpose of this rule is to determine and adjudicate, in accordance with the laws of Montana and Wyoming, those pre-Compact (January 1, 1950) water rights diverting from the Powder, Tongue, Bighorn and Clarks Fork Rivers and their tributaries where the point of diversion is in one State and the place of use is in the other State which have not yet been adjudicated.

Article II. Authority

In accordance with the Yellowstone River Compact, the State of Montana and the State of Wyoming, being moved by consideration of interstate comity, desire to remove all causes of present and future controversy between the States and between persons in one State and persons in another State with respect to these interstate ditches. Article III (E) of the Compact provides the Yellowstone River Compact Commission with the authority "...to formulate rules and regulations and to perform any act which they may find necessary to carry out the provisions of this Compact..."

Article III. Definitions

The terms defined in the Yellowstone River Compact apply as well as the following definitions:

- 1. "Acre-feet" means the volume of water that would cover lacre of land to a depth of l foot.
- 2. "Cfs" means a flow of water equivalent to a volume of l cubic foot that passes a point in l second of time and is equal to 40 miners inches in Montana.
- 3. "Interstate Ditches" shall include ditches and canals which convey waters of the Bighorn, Tongue, Powder, and Clarks Fork Rivers and their tributaries across the Wyoming-Montana State line where the water is diverted in one State and the place of use is in the other State.
- 4. "Department of Natural Resources and Conservation," hereafter called the "Department," means the administrative agency and Department of the Executive Branch of the Government of Montana created under Title II, Chapter 15, MCA which has the responsibility for water administration in that State.

- 5. "Water Court" means a Montana District Court presided over by a water judge, as provided for in Title III, Chapter 7, MCA.
- 6. "State Engineer" shall be the current holder of the position created by the Wyoming Constitution as Chief Water Administration Official for the State of Wyoming.
- 7. "Board of Control," hereinafter called the "Board," is defined as the constitutionally created water management agency in Wyoming composed of the four Water Division Superintendents and the State Engineer.
- 8. "Superintendent" is the member of the Board who is the water administration official for the Water Division where the interstate ditch is located. (The two Water Divisions in the Yellowstone River drainage are Water Division Numbers Two and Three.)
- 9. "Date of Priority" shall mean the earliest date of actual beneficial use of water, unless evidence and circumstances pertaining to a particular claim establish an earlier date.
- 10. "Point of Diversion" is defined to be the legal land description by legal subdivision, section, township, and range of the location of the diversion structure for an interstate ditch from a natural stream channel.
- 11. "Place of Use" is defined to be the legal land description (legal subdivision, section, township, and range) of the lands irrigated by an interstate ditch.
- 12. "Person" is defined as an individual, a partnership, a corporation, a municipality or any other legal entity, public or private.
- 13. "Claimant" is defined as any person claiming the use of water from an interstate ditch as herein defined.

Article IV. Procedures

The procedures for determining and adjudicating water rights associated with interstate ditches shall be categorized as follows: (A) Where the point of diversion is in Wyoming and place of use in Montana, and (B) Where the point of diversion is in Montana and place of use in Wyoming.

A. Wyoming Procedure

- 1. The Yellowstone River Compact Commission will provide a claim form to be completed by the claimant that will describe the location and point of diversion and land being irrigated, the priority date claimed, method of irrigation and such other information required to describe the claim. (A sample form for this purpose is attached.)
- 2. The Yellowstone River Compact Commission will send the claim form to water users on the interstate ditches.
- 3. Water users will complete the claim form and file it with the Yellowstone Compact Commission, which, when found to be correct and complete, will be forwarded to the Board for verification.
- 4. Upon receipt of the form, the Board shall forward it to the appropriate Superintendent, who, in cooperation with the Department, will validate the information including the use that has been made of the water, the number of acres and location of lands being irrigated, the priority date, and all other relevant information. The Superintendent and the Department will utilize aerial photography and other information to have prepared a reproducible map showing the location of the ditch system, lands irrigated, point of diversion, etc., of the claim.
- After the validation procedure, the Superintendent 5. will hold a hearing, after appropriate notice and advertisement, at which time the claimant shall describe, in detail, the use that has been made of the water and the lands that are being irrigated, establish a priority date, etc. Costs incurred in advertising shall be paid by the claimant. If a single hearing is held to consider several claims, the costs of advertising shall be shared equally among the claimants. Anyone who opposes the claim shall appear and state the reasons, if any, for opposition to the claim. If there is no opposition to the claim, cost incurred in holding the hearing shall be paid by the claimant. protestants do appear and oppose the claim, hearing costs will be paid 50 percent by the claimant and 50 percent by the protestant, or if there is more than one protestant, the remaining 50 percent shall be shared equally among the protestants.
- 6. At the conclusion of the hearing, the Superintendent shall forward the record to the Yellowstone River Compact Commission with his findings and recommendations. The Yellowstone River Compact Commission will make the

determination of the amount of the right, the location, and the priority date, and then send the record to the Board.

- 7. The Board shall review the record and integrate it into its water rights system. Upon entry of the record by the Board, the information shall be forwarded to the Department and the Chairman of the Yellowstone River Compact Commission.
- 8. Upon the entry of the right into the Board's records, it will have the following attributes:
 - a. The right will be a Wyoming water right with a priority date as established by this procedure.
 - b. The amount of the right will be determined as provided by Wyoming law.

B. Montana Procedure

- 1. The Yellowstone River Compact Commission will provide a claim form to be completed by the claimant that will describe the location and point of diversion and land being irrigated, the priority date claimed, method of irrigation and such other information required to describe the claim.
- 2. The Commission will send the claim form to water users on the interstate ditches.
- 3. Water users will complete the claim form and file it with the Yellowstone River Compact Commission, which, when found to be correct and complete, will be forwarded to the Department for verification.
- 4. Upon receipt of the form, the Department, in cooperation with the Wyoming State Engineer's Office, will validate the information, including the use that has been made of the water, the number of acres and location of lands being irrigated, the priority date, and all other relevant information. The appropriate Superintendent and the Department will utilize aerial photographs and other information to have prepared a reproducible map showing the location of the ditch system, land irrigated, point of diversion, etc., of the claim.

- 5. The Department will then forward the record to the Yellowstone River Compact Commission with its findings and recommendations. Upon approval by the Commission, the record shall be submitted to the Montana Water Court for adjudication. A duplicate record will be forwarded to the Wyoming State Engineer's Office, the Board, and the Chairman of the Yellowstone River Compact Commission upon adjudication.
- 6. Upon adjudication of the right by the Montana Water Court, it will have the following attributes:
 - a) The right will be a Montana water right with a priority date as established by this procedure.
 - b) The amount of the right will be determined as provided by Montana law.

Article V. Exclusions

- A. These rules recognize the limitation in Article VI of the Yellowstone River Compact regarding Indian water rights.
- B. These rules shall not be construed to determine or interpret the rights of the States of Wyoming and Montana to the waters of the Little Bighorn River.

Article VI. Claim Form Submission Period

All claims must be submitted to the Yellowstone River Compact Commission, c/o District Chief, United States Geological Survey, 821 E. Interstate, Bismarck, ND 58501, within 90 calendar days after the claimant has received the claim form from the Commission. The blank claim form will be sent certified mail to the water user and the submission period of 90 calendar days will begin with the next day following receipt of the form, as evidenced by the certified mail receipt card. For good cause shown in writing, an extension of time beyond the 90 days for submittal may be obtained from the Commission.

YELLOWSTONE RIVER COMPACT COMMISSION

WYOMING

UNITED STATES

MONTANA

GORDON W. FASSETT
STATE ENGINEER
HERSCHIER BUILDING
4TH FLOOR EAST
CHEYENNE, WYOMING 82002
(307) 777-7354

WILLIAM F. HORAK
CHAIRMAN
U.S. GEOLOGICAL SURVEY
B21 E. INTERSTATE AVENUE
BISMARCK, NORTH DAKOTA 58501
(701) 250-4601

GARY FRITZ

ADMINISTRATOR, WATER RESOURCES DIVISION
DEPT. OF NATURAL RESOURCES & CONSERVATION
1520 EAST SIXTH AVENUE
HELENA, MONTANA 59620
(406) 444-6603

YELLOWSTONE RIVER COMPACT COMMISSION CLAIM FORM FOR INTERSTATE DITCHES

1.	Name	of ditch or canal:		
2.	Sourc	ce of water supply:		
	Tribu	ntary of		
3.	Name	of claimant:		
	Addre	ess		
				Zip Code
	Home	Phone No.	Business	Phone No.
4.	Perso	on completing form:		
	Addre	ess		
	City		State	Zip Code
	Home	Phone No.	Business	Phone No.
5.	Metho	od of irrigation: _		
6.	Point	of diversion: Co	unty	State
	Head	gate located in the		ction, TR
	(a)	Description of head	dgate: (Briefly	describe the materials
		and general featur	res, date cons	structed or last known
		work, general cond	ition.)	

	(b) Describe water measuring device:
	(c) If the point of diversion is in Montana:
	1. What flow rate has been claimed?
	cubic feet per second
	gallons per minute
	miner's inches
	2. What volume of water has been claimed?
	acre-feet
7.	Dimensions of ditch at headgate: Width at top (at waterline)
	feet; width at bottom feet; side slopes
	(vertical:horizontal); depth of water
	feet; grade feet per mile.
8.	Place of use and acres irrigated: County State
	Give legal subdivisions of land owned by you on which water
	is being used (acres claimed): An example field is shown in
	the first line.
r. R. SEC <u>.</u>	NE NE NW SW SE TOTAL E NW SW SE NE NE NW SW SE NE NW SE NE NW SE SE SE SE NE SE NE NW SE
N 18 18	E; NW; SW; SE; NE; MW; SW; SE; NE; NW; SW; SE; NW; SW; SW; SE; NW; SW; SW; SE; NW; SW; SW; SW; SW; SW; SW; SW; SW; SW; S
381 187 18	33.3

9.	Describe any additional uses of water claimed from the ditch:
10.	Date of first beneficial use of water (priority date) on lands described above for Ditch is (mo/day/yr) and shall be the same for all lands claimed on this form.
11.	Has irrigation water been diverted onto all lands shown in the above tabulation each year since completion of works? If not, state exceptions and reasons therefore:
12.	Attach documentary evidence or affidavits showing your ownership or control of the above lands, as well as the historic use of water on these lands.
13.	What permit or claim numbers have been assigned to known records filed with either the Wyoming State Engineer's Office or the Montana Department (DNRC) for irrigating the above lands?
14.	Have personnel in the Wyoming State Engineer's Office or the Montana Department (DNRC) been contacted to obtain the information given in No. 13? () Yes () No
15.	Describe any flumes or pipelines in the ditch conveyance system:

16. Describe ordinary annual period of use: to (mo/day)
17. Attach copies of aerial photographs, U. S. Geological Survey maps or other such documents showing the ditch and lands
irrigated that give evidence to this claim and may be useful to the Commission.
* * * * * * * *
State of) State of) State of)
I,, having been duly sworn, depose and
say that I, being of legal age and being the claimant of this claim
for a water right, and the person whose name is signed to it as the
claimant, know the contents of this claim and the matters and
things stated there are correct. ———————————————————————————————————
Subscribed and sworn before me, thisday of, 19
Notary Public
Residing at:
My commission expires:

CONVERSION TABLE

Multiply inch-pound unit	s By	To obtain SI units			
	Length				
feet (ft) miles (mi)	0.3048 1.609	<pre>meters (m) kilometers (km)</pre>			
	Area				
acres	4,047 0.4047 0.4047 0.004047	square meters (m ²) *hectares (ha) square hectometer (hm ²) square kilometers (km ²)			
square miles (mi ²)	2.590	square kilometers (km²)			
Volume					
cfs-day or second- foot day (ft ³ /s-day)	2,447 0.002447	cubic meters (m^3) cubic hectometers (hm^3)			
cubic feet	0.02832	cubic meters			
acre-feet (acre-ft)	1,233 0.001233 0.000001233	cubic meters (m ³) cubic hectometers (hm ³) cubic kilometers (km ³)			
	Flow				
cubic feet per second (ft ³ /s)	28.32	liters per second (L/s)			
(10 /3)	28.32	cubic decimeters per			
	0.02832	second (dm ³ /s) cubic meters per second (m ³ /s)			
acre-feet per year (acre-ft/yr)	1,233	cubic meters per year (m³/yr)			
(acto te/jt/	0.001233	cubic hectometers per			
	0.000001233	year (hm³/yr) cubic kilometers per year (km³/yr)			

*The unit hectare is approved for use with the International System (SI) for a limited time. See National Bureau of Standards Special Bulletin 330, p. 12, 1977 edition.

YELLOWSTONE RIVER COMPACT COMMISSION

YELLOWSTONE RIVER BASIN

EXPLANATION

COMPACT STREAM-GAGING STATION RESERVOIR-CONTENT STATION STATION NUMBER

MAP SHOWING LONS

