CPSC 418 / MATH 318 — Introduction to Cryptography ASSIGNMENT 3 Problems 1-5

Name: Theodore Yamit

Student ID: 30141383 (replace by your ID number)

Problem 1 — Pre-image resistance versus collision resistance (14 marks)

(a) i. From the question, we know that h is pre-image resistant, such that given a hash x and H(M) = x, it is computationally infeasible to find M. We now want to prove that the new hash function H is also pre-image resistant.

Proof by Contradiction:

Let's assume that H is NOT pre-image resistant.

This means that we can find a pre-image of x, such that we can find M for H(M) = x.

Since we are able to find a pre-image of x under H, and H(M) = h(M'), then this means we are also able to find a pre-image under h. However, since h is a pre-image resistant has function, then this leads to a contradiction (since if H is no pre-image resistant, then h must also not be pre-image resistant).

Thus, our initial assumption of H not being pre-image resistant must be wrong, making H pre-image resistant.

ii. To prove that H is not collision resistant, we can provide a counter example. Note: We will be proving this for strong collisions (since this will prove H is not weak-collision resistant by definition as well).

Since we a proving for strong collision resistance, it is sufficient to show that it is computationally infeasible to find two distinct M_1 and M_2 such that $H(M_1) = H(M_2)$.

Counterexample:

Let M_1 equal any bit string of length n, but have the last bit be a 0.

Let M_2 be another unique bit string of length n, where the first n-1 bits are the same n-1 bits of M_1 , except for the last bit, which is a 1. From the description of this question, M' agrees with M, except for the last bit, which is changed from 1 to a 0 (in the case it is 1).

Thus, we have:

$$M_1' = M_1$$
 $M_2' = M_2$ (Where the last bit of M_2 is changed from a 1 to a 0)

We can see that $M'_1 = M'_2$, since the first n-1 bits of both messages are the same, and M_2 's last bit was changed from a 1 to a 0, matching M_1 .

Since $M'_1 = M'_2$, we have $h(M_1) = h(M_2)$, and thus, $H(M_1) = H(M_2)$.

Since we have found a collision, and $M_1 \neq M_2$, we have proven that H is not a strongly collision resistant hash function (which also makes it not a weakly collision resistant hash function either).

(b) i. We want to prove that H is collision resistant (strongly collision resistant, since this proves it is also weakly collision resistant). H being strongly collision resistant means that it is computationally infeasiable to find two distinct messages M_1 and M_2 , such that $H(M_1) = H(M_2)$.

Proof by Contradiction: Let's assume that H is NOT collision resistant. This means that it is computationally feasible to find two messages M_1 and M_2 , where $M_1 \neq M_2$, such that $H(M_1) = H(M_2)$.

Suppose we have two messages M_1 and M_2 .

There are two cases to consider such that they land on the same case (since one case prepends 0, and the other cases prepends 1):

- 1. When M_1 and M_2 are both 0 (both are just the 0 bit).
- 2. When M_1 and M_2 are both distinct and not just the 0 bit.

1st case (Both M_1 and M_2 are both the 0 bit):

While this results in the same hash of $1||0^n$, which showcases a collision $(H(M_1) = H(M_2))$, $M_1 = M_2$, meaning they aren't distinct messages. This leads to a contradiction.

2nd case (Both M_1 and M_2 are both distinct and not just the 0 bit):

Then $H(M_1) = 0||h(M_1)|$ and $H(M_2) = 0||h(M_2)$. Since $M_1 \neq M_2$, we want it such that there is a collision for $h(M_1)$ and $h(M_2)$, such that $h(M_1) = h(M_2)$. However, since h is a collision resistant hash function, this can't happen, and thus we have another contradiction.

Since both cases lead to a contradiction, our initial assumption of H not being collision resistant must be wrong, and thus, H is a collision resistant hash function.

ii. Pre-image resistance means that given a hash x, such that H(M) = x, it is computationally infeasible to find M. So we can make a counterexample with a specific x.

Thus, given a hash x, such that H(M) = x, suppose that x's string starts with 1. Then we instantly obtain M. This is because for x to start with 1, M must be the 0 bit (since 1 is prepended in this case, while 0 is prepended if M is not the 0 bit). Since it is not computationally infeasible in this case, where the hash x starts with 1, then it is possible to find M such that H(M) = x (namely, M = 0), which proves that H is not pre-image resistant.

Problem 2 — CBC-MAC and one-register CFB-MAC (6 marks)

(a) First, let's state definitions from both CBC-MAC and CFB-MAC. For CBC-MAC:

$$C_0 = 0^n$$
 (Initial State) (1)

$$C_i = E_K(M_i \oplus C_{i-1}) \text{ (For } 1 \le i \le L)$$

$$CBC-MAC(M) = C_L \text{ (Final State)} \tag{3}$$

For CFB-MAC:

$$C_0' = M_1$$
 (Initial State) (4)

$$C'_{i} = M_{i+1} \oplus E_{K}(C'_{i-1}) \text{ (For } 1 \le i \le L-1)$$
 (5)

$$CFB-MAC(M) = E_K(C'_{L-1}) \text{ (Final State)}$$
(6)

Let's use induction on i to prove that $C_i = C'_i \oplus M_{i+1}$ for $0 \le i \le L-1$.

Base Case - i = 0:

$$C_0 = C_0' \oplus M_{0+1}$$
 By our assumption $C_0 = M_1 \oplus M_1$ By definition of CFB-MAC (5) $C_0 = 0^n$ XOR laws: $\mathbf{A} \oplus \mathbf{A} = \mathbf{0}^{\mathbf{n}} : (\mathbf{n} = |\mathbf{A}|)$

Since $C_0 = 0^n$, by definition in (1), $C_i = C'_i \oplus M_{i+1}$ is true for the base case.

Inductive Hypothesis: Suppose that $C_k = C'_k \oplus M_{k+1}$ holds true for some k, where $0 \le k \le L - 1$.

Inductive Step: Thus, it is sufficient to show that $C_{k+1} = C'_{k+1} \oplus M_{k+2}$ holds true for k+1, where $0 \le k \le k+1 \le L-1$.

Note: k is different from K (K is the key and not really apart of the proof)

Proof by induction:

$$C_{k+1} = E_K(M_{k+1} \oplus C_k)$$
 By definition for CBC-MAC (2)
 $C_{k+1} = E_K(M_{k+1} \oplus C_k' \oplus M_{k+1})$ By our inductive hypothesis
 $C_{k+1} = E_K(M_{k+1} \oplus M_{k+1} \oplus C_k')$ Property of XOR: Commutative
 $C_{k+1} = E_K(C_k')$ XOR rule: $A \oplus A = 0$

Now.

$$C'_{k+1} = M_{k+2} \oplus E_K(C'_k)$$
 By definition for CFB-MAC (5)
 $C'_{k+1} = M_{k+2} \oplus C_{k+1}$ From previous step $C_{k+1} = E_K(C'_k)$
 $C_{k+1} = C'_{k+1} \oplus M_{k+2}$ XOR property: $A = B \oplus C \rightarrow C = A \oplus B$

We have shown that if this statement holds for k, then this statement also holds for k+1, proving our inductive hypothesis.

Thus, using induction on i, we have proven that $C_i = C'_i \oplus M_{i+1}$ for $0 \le i \le L-1$.

(b) Let M be any message, and K be a given key. We want to show that CBC-MAC(M) = CFB-MAC(M).

Direct proof:

For i = L - 1 (the second last block), we have:

$$C_{L-1} = C'_{L-1} \oplus M_L$$
 By our inductive proof in part (a)

For i = L (The last block), we have:

$$\begin{array}{ll} \operatorname{CBC-MAC}(M) = C_L & \text{By definition of CBC-MAC (3)} \\ = E_K(M_L \oplus C_{L-1}) & \text{By definition of CBC-MAC (2)} \\ = E_K(M_L \oplus C_{L-1}' \oplus M_L) & \text{From our previous step on C_{L-1}} \\ = E_K(M_L \oplus M_L \oplus C_{L-1}') & \text{Property of XOR: Commutative} \\ = E_K(C_{L-1}') & \text{XOR rule: $A \oplus A = 0$} \\ \operatorname{CBC-MAC}(M) = \operatorname{CFB-MAC}(M) & \operatorname{By definition of CFB-MAC (6)} \end{array}$$

Thus, we have proven that CBC-MAC(M) = CFB-MAC(M).

Problem 3 — Flawed MAC designs (14 marks)

- (a) Let's list what we know so far:
 - The attacker has a message/PHMAC pair $(M_1, PHMAC_K(M_1))$
 - X is an n-bit block and $M_2 = M_1 || X$ We want to compute PHMAC_K(M_2) without the key K.

Notice that $M_2 = M_1 || X$, or more specifically, that M_2 starts with M_1 .

From the ITHASH function, we know that this is an iterated hash function that works on a message M, consisting of L blocks.

We are given a message/PHMAC pair $(M_1, \text{PHMAC}_K(M_1))$. We can see from the ITHASH function, when the input is M_1 , such that $\text{PHMAC}_K(M_1)$, the returned $\text{PHMAC}_K(M_1)$ is the final state when i = L.

We are given $PHMAC_K(M_1)$ already, which would have already have had the key K appended at the start of the ITHASH algorithm. Since we don't have the key, we can just start the algorithm ITHASH again but starting from the final state of $PHMAC_K(M_1)$, and then just continue processing from the block X (Which makes sense because $M_2 = M_1||X|$).

(b)

Problem 4 — El Gamal is not semantically secure (12 marks)

Problem 5 — An IND-CPA, but not IND-CCA secure version of RSA (12 marks)