Simulation of a Novel MAC Protocol on the NS-3 Platform

Douglas Dziedzorm Agbeve

Computer Science University of Rome, La Sapienza.

March 30, 2020

Outline

- Introduction
- Objectives
- NS-3 An Introduction
- Governing Algorithm
- Tag-Augmented Nodes
- Simulation of Readers
- Results
- Conclusions and Future Work
- References

APT-MAC Sim. in NS-3 (MSc. Thesis)

Introduction

Smart Home

- Home appliances controlled remotely
- Fuelled by IoT technologies
- Battery usage increased in IoT era
- Cons of excessive battery usage
 - environmental degradation
 - stress in changing dead batteries

Figure: 1. Smart Home Visual (source: www.bemi.fi).

APT-MAC Sim. in NS-3 (MSc. Thesis)

Introduction (contd...)

Battery-free Smart Home

 Home electronics still dependent on batteries?

Figure: 2. Battery-free Smart Home

Objectives

- Introduce the NS-3 library.
- Understanding the Novel MAC protocol.
- Simulate the various battery-free home electronic devices.
- Simulate the Novel MAC protocol on the reader.
- Performance analysis of the MAC protocol.

NS-3 - An Introduction¹

The NS-3 Library

- A discrete event network simulator
- C++ and Python
- Waf build system
- Abstractions :
 - Node
 - Application
 - Channel
 - Transport
 - Network
 - Data Link
- Helpers

¹NS-3 Project. NS-3: Conceptual Overview. URL:
https://www.nsnam.org/docs/release/3.30/tutorial/html/conceptualoverview.html.

Governing Algorithm

Multi-Arm Bandit Problem²

- Multiple actions with unknown reward to choose from
- Goal is to maximize reward margin through series of actions
- Example: Website advertisement to visitors
- Exploitation and Exploration
- Action-Reward function:

$$\theta^* = Q(a^*) = \max_{a \in A} Q(a) \tag{1}$$

Where:

$$Q(a_t) = \mathbb{E}[R|A = a] = \theta$$
 θ^* optimal probability

²Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, An Introduction Second. Cambridge, Massachusetts London, England: The MIT Press; 2018. ₹

Governing Algorithm (contd...)

APT-MAC Protocol³

- Translates into Multi-Arm Bandit as:
 - Reader: agent performing actions
 - Set of Actions: query tag_i, query tag_i...
 - State set: ready to perform new query
 - Computing expected reward of each action
 - Keep record of the reward of each action

³Gaia Maselli, Mauro Piva, and John A. Stankovic. "Adaptive Communication" Battery-Free Devices in Smart Homes". In: IEEE Internet of Things (2019). ■

Governing Algorithm (contd...) I

Algorithm 1: APT-MAC pseudocode

1: Master M

▶ Reader▶ Devices

2: Set D

▶ Reward Devices Map

3: Map R:(d∈D) →float4: Set MinQD

⊳ Minimum Query Delay

5: Maximum Query Delay MaxQD

Data Loss Threshold

- 6: Set DLTH
- 7: **for** $d \in D$ **do**
- 8: R[d] = 1.0
- 9: Set MaxQD
- 10: end for
- 11: R = softmax(R)
- 12: **while** true **do**

Governing Algorithm (contd...) II

```
Device next = chooseNext(R)
13:
       Bool goodQuery = M.query(next)
14:
       if goodQuery then
15:
          R[next] = updateReward(next,bonus)
16:
          if getDataLoss < DLTH then
17:
              updateMaxQD
18:
          end if
19:
20:
      else
          R[next] = updateReward(next,malus)
21:
22:
       end if
       R = softmax(R)
23:
24: end while
```


Governing Algorithm (contd...)

APT-MAC Protocol

• Reward is updated with function:

$$Q(a_i)(n+1) = Q(a_i)(n) + \alpha(Reward - Q(a_i)(n))$$
 (2)

Where:

 $\alpha =$ learning rate

Tag-Augmented Nodes

Markov Representation

Figure: Temperature Sensor model

Figure: Presence Sensor model

Tag-Augmented Nodes (contd...)

Markov Representation

Figure: TV Remote model

Figure: Joystick model

Tag-Augmented Nodes (contd...)

Packet Header

<u>Tag-Aug</u>mented Nodes (contd...)

Devices Simulation

Tag-Augmented Nodes (contd...)

Devices Simulation

- Enumeration of some functions :
 - StartApplication
 - StopApplication
 - HandleBroadcast
 - HandleDataQuery
 - GeneratePacket
 - SchedulePacketGenerate
 - NextState
 - Send
 - UpdateNewDataSent
 - UpdateNewDataProduced
 - GetQueryCounter

Simulation of Readers

APT-MAC Reader

Simulation of Readers (contd...)

TDMA Reader


```
QuerierHelper

-m.factory: ObjectFactory

-TDMAQuerierHelper()
-TDMAQuerierHelper(p: Address) port: uinti6.t)
-TDMAQuer
```


Simulation of Readers (contd...)

Run Configuration.

- Data rate of the net-device and channel set to 640 kbps.
- Tag memory 256 bits

Results

Performance Metrics

• Packet Delay:

the difference in time between generating a packet data and sending to the reader.

Data Loss:

this is the percentage of generated data that is not delivered to the reader.

Table: WORKLOAD SCENARIOS DESCRIPTION

No. of Sensors	Scenario	Joystick	Remote	Env. Sensors
20	Case 1	1	2	17
	Case 2	2	3	15
	Case 3	3	3	14
	Case 4	4	4	12
30	Case 1	1	2	27
	Case 2	2	3	25
	Case 3	3	3	24
	Case 4	4	4	22
40	Case 1	1	2	37
	Case 2	2	3	35
	Case 3	3	3	34 🙉 🖓
	Case 4	4	4	32 W UNIVE

Transient time:

duration for APT-MAC device to get into optimum performance of reduced data loss.

Transient time

- approximately 50ms to get the data loss of a joystick to less than 15%
- 0.283s for presence sensor
- temperature sensor took approximately a milli of a second.

Performance based on uptime - 20 Devices

Figure: Data Loss Short Run

Figure: Data Loss

March 30, 2020

Figure: 20 Devices : Packet Delay

Figure: 30 Devices: Data Loss

Figure: 30 Devices: Packet Delay

Figure: 40 Devices: Data Loss

Figure: 40 Devices: Packet Delay

Conclusions and Future Work

Conclusion

- Objectives met
- APT-MAC outperforms TDMA

Future Work

- Mobility of the devices with respect to APT-MAC
- other variants of reinforcement algorithms

References

- Maselli, Gaia, Mauro Piva, and John A. Stankovic. "Adaptive Communication for Battery-Free Devices in Smart Homes". In: IEEE Internet of Things (2019).
- Project, NS-3. NS-3: Conceptual Overview. URL: https://www.nsnam.org/docs/release/3.30/tutorial/html/ conceptual-overview.html.
- Sutton, Richard S. and Andrew G. Barto. Reinforcement Learning, An Introduction. Second. Cambridge, Massachusetts London, England: The MIT Press, 2018.

