The Secant Method

The Secant method begins by finding two points on the curve of f(x), hopefully near to the root we seek.

The intersection of the line with the x-axis is not at x = r but that it should be close to it. From the obvious similar triangles we can write

$$\frac{(x_1 - x_2)}{f(x_1)} = \frac{(x_1 - x_0)}{f(x_1) - f(x_0)}$$

And from this solve for x_2 :

$$x_2 = x_1 - f(x_1) \frac{(x_1 - x_0)}{f(x_1) - f(x_0)}$$

Because f(x) is not exactly linear, x_2 is not equal the root, but it should be closer than either of the two points we began with.

If we repeat this, we have:

$$x_{n+1} = x_n - f(x_n) \frac{(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

The technique is known as the secant method because the line through two points on the curve is called the secant line.

Newton Method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0,1,2...$$

Approximation to the derivative gives <u>Secant</u> <u>Method</u>

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n) - f(x_{n-1})}, \quad n = 0,1,2...$$

$$x_n - x_{n-1}$$

An algorithm for the Secant Method

```
To determine a root of f(x) = 0, given two values, x_0 and x_1, that are near the
root .
If |f(x_0)| < |f(x_1)| Then
Swap x_0 with x_1.
Repeat
Set x_2 = x_1 - f(x_1) * \frac{x_0 - x_1}{f(x_0) - f(x_1)}
   Set x_0 = x_1
Until |f(x_2)| < Tolerance Value.
End If.
Note: If f(x) is not continuous, the method may fail.
MATLAR M-File
function
[x1,err,k,y] = secant(f,x0,x1,delta,epsilon,maxit)
%Input - f is the object function
              - x0 and x1 are the initial
approximations to a zero of f
               - delta is the tolerance for x2
              - epsilon is the tolerance for the
function values y
               - maxit is the max. number of iterations
%Output - p1 is the secant method approximation to the
zero
              - err is the error estimate for p1
               - k is the number of iterations
               - y is the function value f(p1)
    x2=x1-f(x1)*(x1-x0)/(f(x1)-f(x0));
    err=abs(x2-x1);
    relerr=2*err/(abs(x2)+delta);
    x0=x1;
    x1=x2;
    y=f(x1);
    X = [k, x0, x1, x2, y]
    if
(err<delta) | (relerr<delta) | (abs(y) <epsilon), break, end
```

end

Example:

Secant Method on
$$f(x) = 3x + \sin(x) - e^x = 0$$
.

Step	\mathbf{X}_{0}	X ₁	X ₂	f (x ₂)
1	1	0	0.4709896	0.2651558
2	0	0.4709896	0.3722771	2.953367E-02
3	0.4709896	0.3722771	0.3599043	-1.294787E-03
4	0.3722771	0.3599043	0.3604239	5.552969E-06
5	0.3599043	0.3604239	0.3604217	3.554221E-08

Example

When Secant method is applied to

$$f(x) = x - \cos(x)$$

>> f=inline('x-cos(x)')

f = **Inline function:**

 $\mathbf{f}(\mathbf{x}) = \mathbf{x}\text{-}\mathbf{cos}(\mathbf{x})$

>> secant(f,0,1,0.001,0.001,10)

 $X = 1.0000 \quad 1.0000 \quad 0.6851 \quad 0.6851 \quad -0.0893$

 $X = 2.0000 \quad 0.6851 \quad 0.7363 \quad 0.7363 \quad -0.0047$

 $X = 3.0000 \quad 0.7363 \quad 0.7391 \quad 0.7391 \quad 0.0001$

ans = 0.7391

Linear Interpolation Method (False Position-Regula Falsi)

The Secant method begins by finding two points on the curve of f(x), hopefully near to the root we seek.

A way to avoid such pathology is to ensure that the root is <u>bracketed between the two starting values</u> and <u>remains</u> between the successive pairs. When this is done, the method is known as <u>linear</u> interpolation, or more often, as the method of false position.

This technique is similar to bisection except the next iterate is taken at the intersection of a line between the pair of x-values and the x-axis rather than at the mid point.

We assume that $f(x_0)$ and $f(x_1)$ have opposite signs the bisection method used the mid point of the interval $[x_0, x_1]$ as the next iterate.

A better approximation is obtained if we find the point $(x_2, 0)$ where the secant line L joining the points $((x_0, f(x_0)), (x_1, f(x_1))$ crosses the x-axis.

To find the value of x_2 , we write down two versions of the slope m of the line L:

$$m = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Where the points $((x_0, f(x_0))$ and $(x_1, f(x_1))$ are used, and

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{0 - f(x_1)}{x_2 - x_1}$$

Where the points $((x_1, f(x_1))$ and $(x_2, f(x_2))$ are used.

Equating the slopes

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{0 - f(x_1)}{x_2 - x_1}$$

which is easily solved for x_2 to get

$$x_2 = x_1 - \frac{(x_1 - x_0)}{f(x_1) - f(x_0)} f(x_1)$$

or

$$x = b - \frac{(b-a)}{f(b) - f(a)} f(b)$$

The regula falsi method, or the rule of false position, proceeds as the in bisection to find the subinterval $[x_0, x_2]$ or $[x_2, x_1]$ that contains the zero by testing for a change of sign of the function, i.e., testing whether

$$f(x_0)f(x_2) < 0$$

Or

$$f(x_0)f(x_2) < 0$$
$$f(x_1)f(x_2) < 0.$$

The three possibilities

- 1. If $f(x_0)$ and $f(x_2)$ have opposite signs a zero lies in $[x_0, x_2]$.
- 2. If $f(x_2)$ and $f(x_1)$ have opposite signs a zero lies in $[x_2, x_1]$
- 3. If $f(x_2) = 0$ then the zero is x_2 .

Example:

To find a numerical approximation to $\sqrt[3]{2}$, we find the zero of $f(x) = x^3 - 2$. Since f(1) = -1 and f(2) = 6 we take as our starting bounds on the zero $x_0 = 1$ $x_1 = 2$.

Calculations of $\sqrt[3]{2}$ using regula falsi

Step	x_0	x_1	x_2	$f(x_2)$
1	1.0000	2.0000	1.1429	-0.50729
2	1.1429	2.0000	1.2097	-0.22986
3	1.2097	2.0000	1.2388	-0.098736
4	1.2388	2.0000	1.2512	-0.041433
5	1.2512	2.0000	1.2563	-0.017216
6	1.2563	2.0000	1.2584	-0.0071239
7	1.2584	2.0000	1.2593	-0.0029429
8	1.2593	2.0000	1.2597	-0.0012148
9	1.2597	2.0000	1.2598	-0.00050134
10	1.2598	2.0000	1.2599	-0.00020687

$$x_2 = 2 - \frac{(2-1)}{6+1}(6) = 2 - \frac{6}{7} = \frac{8}{7} = 1.1429$$

An algorithm for the Method of False Position (regula falsi)

To determine a root of f(x) = 0, given two values, x_0 and x_1 , that is $f(x_0)$ and $f(x_1)$ are of opposite sign.

Set
$$x_2 = x_1 - \frac{(x_1 - x_0)}{f(x_1) - f(x_0)} f(x_1)$$

If $f(x_2)$ is opposite sign to $f(x_0)$

Set $x_1=x_2$

Else

Set $x_0=x_2$

Until $|f(x_2)| < Tolerance Value$.

End If.

Note: If f(x) is not continuous, the method may fail.

MATLAB M-File

```
function [c,err,vc]=regulafalsi(f,x0,x1,delta,epsilon,max1)
%Input - f is the function
%
           - x0 and x1 are the left and right endpoints
%
           - delta is the tolerance for the zero
           - epsilon is the tolerance for the value of f at the zero
           - max1 is the maximum number of iterations
%Output - x2 is the zero
           -vc=f(x2)
%
           - err is the error estimate for x2
0/0
%If f is defined as an M-file function use the @ notation
% call [c,err,vc]=regula(@f,a,b,delta,epsilon,max1)
%If f is defined as an anonymous function use the
% call [c.err,vc]=regulafalsi(f,a,b,delta,epsilon,max1)
va=f(x0);
vb=f(x1);
if va*vb>0
     disp('Note: f(x0)*f(x1) > 0'),
     return,
end
for k=1:max1
     dx=vb*(x1-x0)/(vb-va);
     x2=x1-dx:
     ac=x2-x0;
     vc=f(x2);
     if vc==0.break:
     elseif yb*yc>0
           x1=x2;
           yb=yc;
     else
           x0=x2;
           ya=yc;
      end
      dx=min(abs(dx),ac);
     if abs(dx)<delta,break,end
     if abs(yc)<epsilon, break,end
  X=[k,x0,x1,x2,ya,yb,yc]
end
\mathbf{x2}
err=abs(x1-x0)/2
vc=f(x2)
```

Example:

Regula Falsi Method on $f(x) = 3x + \sin(x) - e^x = 0$

```
>> f=inline('3*x+sin(x)-exp(x)')
f =
    Inline function:
    f(x) = 3*x+sin(x)-exp(x)
>> fplot(f,[0 2]);grid on
```


With $x_0=0$ and $x_1=1$

```
regulafalsi(f,0,1,0.001,0.001,10)
```

```
X =
                                            0.2652
                                                    0.2652
  1.0000
              0
                 0.4710
                          0.4710 -1.0000
                                                    0.0295
  2.0000
                0.3723
                          0.3723 -1.0000
                                            0.0295
             0
                          0.3616 -1.0000
  3.0000
                0.3616
                                           0.0029
                                                    0.0029
x_2 = 0.3605
       0.1803
err =
vc = 2.8945e-004
With x_0=1 and x_1=2
>> regulafalsi(f,1,2,0.001,0.001,10)
\mathbf{X} =
  1.0000
          1.7007
                   2.0000
                            1.7007
                                     0.6159 -0.4798
                                                       0.6159
  2.0000
          1.8689
                   2.0000
                            1.8689
                                     0.0813 -0.4798
                                                       0.0813
                            1.8879
  3.0000
          1.8879
                   2.0000
                                     0.0083 -0.4798
                                                       0.0083
                    We obtain Second ROOT
      1.8898
\mathbf{x}_2 =
       0.0551
vc = 8.1430e-004
```

Example

When Regula Falsi Method is applied to

$$f(x) = x - \cos(x)$$

With $x_0=0$ and $x_1=1$

>> f=inline('x-cos(x)') f =

Inline function: $f(x) = x - \cos(x)$

>> regulafalsi(f,0.0,1.0,0.001,0.001,10)

X =

1.0000 0.6851 1.0000 0.6851 -0.0893 0.4597 -0.0893 2.0000 0.7363 1.0000 0.7363 -0.0047 0.4597 -0.0047

 $x_2 = 0.7389$

err = 0.1305

Muller's Method

Most of the roots finding methods that we have considered so far have approximated the function in the neighbored of the root by a <u>straight line</u>. Muller's Method is based on approximating the function in the neighborhood of the root by a <u>quadratic polynomial</u>. This gives a much closer match to the actual curve.

A second degree polynomial is made to fit three points near a root, at x_0, x_1, x_2 with x_0 between x_1 and x_2 .

The procedure for Muller's method is developed by writing a quadratic equation that first through three points in the <u>around of the root</u>, in the form

$$av^2 + bv + c$$

The development is simplified if we transform axes to pass through the middle point, by letting $v = x - x_0$.

Let

and b:

$$h_1 = x_1 - x_0$$
 and $h_2 = x_0 - x_2$.

We evaluate the coefficients by evaluating quadratic polynomial $P_2(v)$ at three points:

$$v = 0$$
: $a(0)^{2} + b(0) + c = f_{0}$;
 $v = h_{1}$: $ah_{1}^{2} + bh_{1} + c = f_{1}$;
 $v = -h_{2}$: $ah_{2}^{2} - bh_{2} + c = f_{2}$.

From the first equation

$$c = f_0$$
,

Letting $\frac{h_2}{h_1} = \lambda$ we can solve the other two equations for a

$$a = \frac{\lambda f_1 - f_0(1+\lambda) + f_2}{\alpha h_1^2(1+\lambda)}, \quad b = \frac{f_1 - f_0 - ah_1^2}{h_1},$$

After computing a, b and c, we solve for the root of $av^2 + bv + c = 0$ by the quadratic formula, choosing the root nearest to the middle point x_0 this value is

$$root = x_0 - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$

with the sign in the denominator taken to give the largest absolute value of the denominator

that is, if b > 0, choose plus if b < 0, choose minus if b = 0 choose either.

We always reset the subscripts to make x_0 be in the middle of the three values.

Algorithm for Muller's Method

Given the points x_2 , x_0 and x_1 in increasing value.

Evaluate the corresponding function values: f_2 , f_0 and f_1 .

Repeat

(Evaluate the coefficients of the parabola, $ax^2 + bx + c$, determined by the three points. $\{(x_2, f(x_2), (x_0, f(x_0), (x_1, f(x_1))\};$

Set
$$h_1 = x_1 - x_0$$
; $h_2 = x_0 - x_2$; $\lambda = \frac{h_2}{h_1}$

Set $c=f_0$

Set
$$a = \frac{\lambda f_1 - f_0(1+\lambda) + f_2}{\lambda h_1^2(1+\lambda)}$$
, $b = \frac{f_1 - f_0 - ah_1^2}{h_1}$,

(next compute the roots of the polynomial.)

Set
$$root = x_0 - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$

Choose root x_r , closest to x_0 by making he denominator as large as possible; i.e. if b> 0, choose plus; otherwise choose minus If $x_r > x_0$

Then rearrange to x_0 , x_1 and the root

Else rearrange to x_0 , x_2 and the root

End If.

(In either case; reset subscripts so that x_0 is in the middle.)

Until $|f(x_r)| < TOLERANCE$

Example:

Find a root between 0 and 1 of the same transcendental

function as before
$$f(x) = 3x + \sin(x) - e^x$$

Let

$$x_0 = 0.5,$$
 $f(x_0) = 0.330704$ $h_1 = 0.5$
 $x_1 = 1.0,$ $f(x_1) = 1.123489$ $h_2 = 0.5$
 $x_2 = 0,$ $f(x_2) = -1$ $\lambda = 1.0$

 x_2, x_0 and x_1 in increasing value

$$c = f(x_0) = 0.33074$$

$$a = \frac{(1.0)(1.123189) - 0.330704(2.0) + (-1)}{1.0(0.5)^2(2.0)} = -1.07644,$$

$$b = \frac{1.123189 - 0.33074 - (11.07644)(0.5)^2}{0.5} = 2.12319$$

and

$$root = 0.5 - \frac{2(0.330704)}{2.12319 + \sqrt{(2.12319)^2 - 4(-1.07644)(0.330704)}}$$
$$= 0.354914$$

RULE:

x_0 be in the middle of the three values

$$x_0 = 0.5$$
, $x_1 = 1.0$, $x_2 = 0.0$ and root = 0.354914

For the next step

If $root(x_r) > x_0$

Then rearrange to

 x_0 , x_1 and the root

Else rearrange to x_0 , x_2 and the root

For the next iteration we have $(x_r < x_0)$

0.5, 0.0, 0.354914

Set middle number as x_0

 $x_0 = 0.354914$, $x_1 = 0.5$, $x_2 = 0.0$

 $x_0 = 0.354914$, $f(x_0) = -0.0138066$ $h_1 = 0.145086$ $x_1 = 0.5$, $f(x_1) = 0.330704$ $h_2 = 0.354914$ $x_2 = 0$, $f(x_2) = -1$ $\lambda = 2.44623$.

Then

$$a = \frac{(2.44623)(0.330704) - (-0.0138066)(3.44623) + (-1)}{2.44623(0.145086)^{2}(3.44623)}$$

$$= -0.808314,$$

$$b = \frac{0.330704 - (-0.0138066) - (-0.808314)(0.145086)^{2}}{0.145086}$$

$$= 2.49180,$$

$$c = -0.0138066.$$

and

$$root = 0.354914 - \frac{2(-0.0138066)}{2.49180 + \sqrt{(2.49180)^2 - 4(-0.808314)(-0.013866)}}$$
$$= 0.360465.$$

$$x_0 = 0.354914$$
, $x_1 = 0.5$, $x_2 = 0$, root = 0.360465

For the next iteration we have $(x_r > x_0)$

Complete the following and compute the new root

$$x_0 = \dots$$
, $f(x_0) = \dots$ $h_1 = \dots$
 $x_1 = \dots$, $f(x_1) = \dots$ $h_2 = \dots$
 $x_2 = \dots$, $f(x_2) = \dots$ $\lambda = \dots$

After a third iteration, we get 0.3604217 as the value for the root, which is identical to that from Newton's method after three iterations.

MATLAB M-File (MULLER METHOD)

```
function [x,y,err]=muller(f,x0,x1,x2,delta,epsilon,maxit)
%Input - f is the object function
            - x0, x1, and x2 are the initial approximations
%
%
        - delta is the tolerance for x0, x1, and x2
%
            - epsilon the the tolerance for the function values v
        - max1 is the maximum number of iterations
%Output- p is the Muller approximation to the zero of f
        - y is the function value y = f(x)
        - err is the error in the approximation of x.
%If f is defined as an M-file function use the @ notation
% call [p.v.err]=muller(@f.x0.x1.x2.delta.epsilon.maxit).
%If f is defined as an anonymous function use the
% call [p.v.err]=muller(f.x0.x1.x2.delta.epsilon.maxit).
%Initalize the matrices P and Y
P=[x0 x1 x2];
Y=f(P);
for k=1:maxit
 h0=P(1)-P(3);h1=P(2)-P(3);e0=Y(1)-Y(3);e1=Y(2)-Y(3);c=Y(3);
 denom=h1*h0^2-h0*h1^2;
 a=(e0*h1-e1*h0)/denom;
 b=(e1*h0^2-e0*h1^2)/denom;
  %Suppress any complex roots
 if b^2-4*a*c > 0
   disc=sqrt(b^2-4*a*c);
 else
   disc=0;
 end
   %Find the smallest root of (17)
 if b < 0
   disc=-disc;
 end
 z=-2*c/(b+disc);
 x=P(3)+z;
 X=[k,a,b,c,x]
 %Sort the entries of P to find the two closest to p
 if abs(x-P(2)) < abs(x-P(1))
   Q=[P(2) P(1) P(3)];
   P=O;
   Y=f(P);
 if abs(x-P(3)) < abs(x-P(2))
   R=[P(1) P(3) P(2)];
   P=R:
   Y=f(P);
 end
  %Replace the entry of P that was farthest from p with p
 P(3)=x;
 Y(3) = f(P(3));
 y=Y(3);
   err=abs(z);
 relerr=err/(abs(x)+delta):
 if (err<delta)|(relerr<delta)|(abs(y)<epsilon)
   break
 end
end
```

Example:

Muller Method on
$$f(x) = 3x + \sin(x) - e^x = 0$$

>> f = inline('3*x + sin(x) - exp(x)')

f = Inline function:

 $f(x) = 3*x + \sin(x) - \exp(x)$

>> fplot(f,[0 2]);grid on


```
With x_0=0.5 and x_1=1.0 and x_2=0.0
>> f = inline('3*x + sin(x) - exp(x)')
f =
  Inline function:
  f(x) = 3*x + \sin(x) - \exp(x)
>> muller(f,0.5,1.0,0.0,0.001,0.001,10)
\mathbf{X} =
    T
                      b
                               c
                                      root
            a
  1.0000 -1.0764 3.1996 -1.0000
                                      0.3549
  2.0000 -0.8083 2.4918 -0.0138 0.3605
ans = 0.3605
With x_0=0.5 and x_1=1.0 and x_2=0.0 and high tolerance
>> muller(f,0.5,1.0,0.0,0.00001,0.00001,10)
X =
    I
             a
                      b
                                c
                                       root
  1.0000 -1.0764 3.1996 -1.0000
                                      0.3549
  2.0000 -0.8083
                                      0.3605
                   2.4918 -0.0138
  3.0000 -0.9471 2.5014 0.0001
                                      0.3604
ans = 0.3604
```

vc = 8.1430e-004

Example

When Muller is applied to

$$f(x) = x - \cos(x)$$


```
f=inline('x-cos(x)')
f =
Inline function:
f(x) = x-\cos(x)
>> muller(f,0.5,1.0,0.0,0.00001,0.00001,10)
X =

I a b c root
1.0000 0.4297 1.0300 -1.0000 0.7415
2.0000 0.3649 1.6684 0.0040 0.7391
3.0000 0.3943 1.6735 -0.0000 0.7391
ans = 0.7391
```