Contents

1	Spa	tial Derivatives	2
	1.1	Definition and elementary properties of spatial deriva-	
		tives	2

Chapter 1

Spatial Derivatives

Spatial derivatives were introduced by A. Connes in [1]. In this chapter, we give an alternative definition (equivalent to that given in [1]) suggested to us by U. Haagerup, based on the notion of the extended positive part of a von Neumann algebra. This definition permits us to obtain very easily some elementary properties of spatial derivatives. After this, we recall their main modular properties and the characterization as (-1)-homogeneous operators.

1.1 Definition and elementary properties of spatial derivatives

Let M be a von Neumann algebra acting on a Hilbert space H, and let ψ be a normal faithful semifinite weight on the commutant M' of M.

We shall use the following standard notation: $n_{\psi} = \{y \in M' | \psi(y^*y) < \infty\}$, H_{ψ} the Hilbert space completion of n_{ψ} with respect to the inner product $(y_1, y_2) \mapsto \psi(y_2^*y_1)$, Λ_{ψ} the canonical injection of n_{ψ} into H_{ψ} , π_{ψ} the canonical representation of M' on H_{ψ} .

Definition 1. For each $\xi \in H$, we denote by $R^{\psi}(\xi)$ the (densely defined) operator from H_{ψ} to H defined by

$$R^{\psi}(\xi)\Lambda_{\psi}(y) = y\xi, y \in n_{\psi}. \tag{1}$$

Proposition 2. For all $\xi, \xi_1, \xi_2 \in H$, $x \in M$, and $y \in M'$ we have

(i)
$$R^{\psi}(\xi_1 + \xi_2) = R^{\psi}(\xi_1) + R^{\psi}(\xi_2),$$

(ii)
$$R^{\psi}(x\xi) = xR^{\psi}(\xi)$$
,

(iii)
$$yR^{\psi}(\xi) \subset R^{\psi}(\xi)\pi_{\psi}(y)$$
,

and

$$(i)^* R^{\psi}(\xi_1)^* + R^{\psi}(\xi_2)^* \subset R^{\psi}(\xi_1 + \xi_2)^*,$$

$$(ii)^* R^{\psi}(x\xi)^* = R^{\psi}(\xi)^* x^*,$$

$$(iii)^* \pi_{\psi}(y)R^{\psi}(\xi)^* \subset R^{\psi}(\xi)^*y.$$

Proof. (i) and (ii) are immediate from Definition 1. (iii): For all $z \in n_{\psi}$, we have $yR^{\psi}(\xi)\Lambda_{\psi}(z) = yz\xi = R^{\psi}(\xi)\Lambda_{\psi}(yz) = R^{\psi}(\xi)\pi_{\psi}(y)\Lambda_{\psi}(z)$.

(i)*, (ii)*, and (iii)* follow from (i), (ii), and (iii) using $R^{\psi}(\xi_1) + R^{\psi}(\xi_2) \subset (R^{\psi}(\xi_1) + R^{\psi}(\xi_2))^*$, $(xR^{\psi}(\xi))^* = R^{\psi}(\xi)^*x^*$, and $(y^*R^{\psi}(\xi))^* = R^{\psi}(\xi)^*y^*$.

Definition 3. A vector $\xi \in H$ is called ψ -bounded if the operator $R^{\psi}(\xi)$ is bounded. The set of ψ -bounded vectors is denoted $D(H, \psi)$.

Notation. If $\xi \in D(H, \psi)$, $R^{\psi}(\xi)$ extends to a bounded operator $H_{\psi} \to H$ which we shall also denote $R^{\psi}(\xi)$.

Proposition 4. The set $D(H, \psi)$ is an M-invariant dense subspace of H.