CSE4203: Computer Graphics Chapter – 10 Surface Shading

Outline

- Diffuse Shading
- Lambertian Model

Shading

- To make objects appear to have more volume, it can help to use shading
 - i.e., the surface is "painted" with light.
- This chapter presents the most common heuristic shading methods.

Diffuse Shading (1/2)

- Many objects in the world have a surface appearance loosely described as "matte," indicating that the object is not at all shiny.
 - Examples include paper, unfinished wood, and dry, unpolished stones.
- To a large degree, such objects do not have a color change with a change in viewpoint.

Diffuse Shading (2/2)

- For example, if you stare at a particular point on a piece of paper
 - move while keeping your gaze fixed on that point,
 the color at that point will stay relatively constant.
- Such matte objects can be considered as behaving as Lambertian objects.

Lambertian Shading Model (1/10)

- A Lambertian object obeys Lambert's cosine law.
 - color c of a surface is proportional to the cosine of the angle between the surface normal (n) and the direction to the light source (l).

Lambertian Shading Model (2/10)

$$c \propto \cos \theta$$
,

$$c \propto \mathbf{n} \cdot \mathbf{l}$$

Color on the surface will vary according to the cosine of the angle between the surface normal and the light direction

Lambertian Shading Model (3/10)

- Vector I is typically assumed not to depend on the location of the object.
 - light is "distant".
- Such a "distant" light is often called a directional light
 - because its position is specified only by a direction.

Lambertian Shading Model (4/10)

- A surface can be made lighter or darker by changing the intensity of:
 - the reflectance of the surface.
 - light source

Lambertian Shading Model (5/10)

- Diffuse reflectance:
 - $-c_r$ is the fraction of light reflected by the surface.
 - will be different for different color components.
 - For example, a surface is red if it reflects a higher fraction of red incident light.

Lambertian Shading Model (6/10)

- Diffuse reflectance:
 - an RGB color
 - The diffuse reflectance c_r must also be included:

$$c \propto c_r \mathbf{n} \cdot \mathbf{l}$$
.

Lambertian Shading Model (7/10)

- Light intensity:
 - an RGB color

$$c = c_r c_l \mathbf{n} \cdot \mathbf{l}$$
.

Lambertian Shading Model (8/10)

- Light intensity:
 - an RGB color
- it can produce RGB components for c that are outside the range [0, 1]
 - because the dot product can be negative.

Lambertian Shading Model (9/10)

- Light intensity:
 - an RGB color

$$c = c_r c_l \max(0, \mathbf{n} \cdot \mathbf{l})$$

Lambertian Shading Model (10/10)

 Another way to deal with the "negative" light is to use an absolute value:

$$c = c_r c_l |\mathbf{n} \cdot \mathbf{l}|$$

- may seem physically implausible
 - it actually corresponds with two lights in opposite directions.

$$c = c_r c_l \max(0, \mathbf{n} \cdot \mathbf{l})$$

 For this reason it is often called twosided lighting.

Disadvantages of Diffuse Shading (1/2)

- One problem with the diffuse shading:
 - any point whose normal faces away from the light will be black.
- In real life, light is reflected all over, and some light is incident from every direction.

Disadvantages of Diffuse Shading (2/2)

- One way to handle this:
 - 1. Use several light sources.
 - 2. Always put a dim source at the eye so that all visible points will receive some light.
 - 3. Use two-sided lighting

Ambient Shading (1/2)

A more common approach is to add an ambient term.

$$c = c_r \left(c_a + c_l \max \left(0, \mathbf{n} \cdot \mathbf{l} \right) \right)$$

Ambient Shading (2/2)

A more common approach is to add an ambient term.

$$c = c_r \left(c_a + c_l \max \left(0, \mathbf{n} \cdot \mathbf{l} \right) \right)$$

• If you want to ensure that the computed RGB color stays in the range $[0,1]^3$

$$c_a + c_l \le (1, 1, 1)$$

 Otherwise your code should "clamp" RGB values above one to have the value one.

Vertex-Based Diffuse Shading (1/5)

If we apply equation $c = c_r (c_a + c_l \max (0, \mathbf{n} \cdot \mathbf{l}))$ to an object made up of triangles:

it will typically have a faceted appearance.

Vertex-Based Diffuse Shading (2/5)

 Drastic changes of normals from surface to surface.

Vertex-Based Diffuse Shading (3/5)

 We can place surface normal vectors at the vertices of the triangles and interpolate.

Vertex-Based Diffuse Shading (4/5)

• Problem:

- Many models will come with normals.
- compute normals by a variety of heuristic methods.

Vertex-Based Diffuse Shading (5/5)

Solution:

 average the normals of the triangles that share each vertex and use this average normal at the vertex.

should convert it to a unit vector before using it for shading.

Additional Reading

- 10.2: Phong Shading
- 10.2.2: Surface Normal Vector Interpolation
- 10.3.2: Cool-to-Warm Shading