2.2. CYCLIC GROUPS

35

Proposition 2.12 is called the first isomorphism theorem.

A useful way to construct groups is the *direct product* construction.

Definition 2.12. Given two groups G an H, we let $G \times H$ be the Cartestian product of the sets G and H with the multiplication operation \cdot given by

$$(q_1, h_1) \cdot (q_2, h_2) = (q_1 q_2, h_1 h_2).$$

It is immediately verified that $G \times H$ is a group called the *direct product* of G and H.

Similarly, given any n groups G_1, \ldots, G_n , we can define the direct product $G_1 \times \cdots \times G_n$ is a similar way.

If G is an abelian group and H_1, \ldots, H_n are subgroups of G, the situation is simpler. Consider the map

$$a: H_1 \times \cdots \times H_n \to G$$

given by

$$a(h_1,\ldots,h_n)=h_1+\cdots+h_n,$$

using + for the operation of the group G. It is easy to verify that a is a group homomorphism, so its image is a subgroup of G denoted by $H_1 + \cdots + H_n$, and called the *sum* of the groups H_i . The following proposition will be needed.

Proposition 2.13. Given an abelian group G, if H_1 and H_2 are any subgroups of G such that $H_1 \cap H_2 = \{0\}$, then the map a is an isomorphism

$$a: H_1 \times H_2 \to H_1 + H_2.$$

Proof. The map is surjective by definition, so we just have to check that it is injective. For this, we show that Ker $a = \{(0,0)\}$. We have $a(a_1,a_2) = 0$ iff $a_1 + a_2 = 0$ iff $a_1 = -a_2$. Since $a_1 \in H_1$ and $a_2 \in H_2$, we see that $a_1, a_2 \in H_1 \cap H_2 = \{0\}$, so $a_1 = a_2 = 0$, which proves that Ker $a = \{(0,0)\}$.

Under the conditions of Proposition 2.13, namely $H_1 \cap H_2 = \{0\}$, the group $H_1 + H_2$ is called the *direct sum* of H_1 and H_2 ; it is denoted by $H_1 \oplus H_2$, and we have an isomorphism $H_1 \times H_2 \cong H_1 \oplus H_2$.

2.2 Cyclic Groups

Given a group G with unit element 1, for any element $g \in G$ and for any natural number $n \in \mathbb{N}$, we define g^n as follows:

$$g^0 = 1$$
$$g^{n+1} = g \cdot g^n.$$