

Algebraic Expressions and Identities Ex 6.3 Q20

Answer:

We have to find the product of the expression in order to express it as a monomial.

To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^m \times a^n = a^{m+n}$ and $(a^m)^n = a^{mn}$.

We have:

$$(5x^{4}) \times (x^{2})^{3} \times (2x)^{2}$$

$$= (5x^{4}) \times (x^{6}) \times (2^{2} \times x^{2})$$

$$= (5 \times 2^{2}) \times (x^{4} \times x^{6} \times x^{2})$$

$$= (5 \times 2^{2}) \times (x^{4+6+2})$$

$$= 20x^{12}$$

$$\therefore (5x^{4}) \times (x^{2})^{3} \times (2x)^{2} = 20x^{12}$$

Substituting x = 1 in LHS, we get:

LHS =
$$(5x^4) \times (x^2)^3 \times (2x)^2$$

= $(5 \times 1^4) \times (1^2)^3 \times (2 \times 1)^2$
= $(5 \times 1) \times (1^6) \times (2)^2$
= $5 \times 1 \times 4$
= 20

Put x =1 in RHS, we get:

RHS =
$$20x^{12}$$

= $20 \times (1)^{12}$
= 20×1
= 20

: LHS = RHS for x = 1; therefore, the result is correct.

Thus, the answer is $20x^{12}$.

Algebraic Expressions and Identities Ex 6.3 Q21

Answer:

We have to find the product of the expression in order to express it as a monomial.

To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^m \times a^n = a^{m+n}$ and $(a^m)^n = a^{mn}$.

We have:

$$(x^{2})^{3} \times (2x) \times (-4x) \times 5$$

$$= (x^{6}) \times (2x) \times (-4x) \times 5$$

$$= \{2 \times (-4) \times 5\} \times (x^{6} \times x \times x)$$

$$= \{2 \times (-4) \times 5\} \times (x^{6+1+1})$$

$$= -40x^{8}$$

$$(x^2)^3 \times (2x) \times (-4x) \times 5 = -40x^8$$

Substituting x = 1 in LHS, we get:

LHS =
$$(x^2)^3 \times (2x) \times (-4x) \times 5$$

= $(1^2)^3 \times (2 \times 1) \times (-4 \times 1) \times 5$
= $1^6 \times 2 \times (-4) \times 5$
= $1 \times 2 \times (-4) \times 5$
= -40

Putting x = 1 in RHS, we get:

RHS =
$$-40x^8$$

= $-40(1)^8$
= -40×1
= -40

: LHS = RHS for x = 1; therefore, the result is correct

Thus, the answer is $-40x^8$.

********* END *******