GAN-based Inpainting

Final Project

Datasets

	Train	Test	Validation	Segmentation Masks
Places	1.8 M	45,000	36,500	0
Open Images	1.7 M	125,000	41,620	13,524

Researchers have to make their own (random) masks for Places

Library Contents

Adapter.py

Bridges GAN code with analysis and mask making

- Different naming convention for photos, masks, and outputs
- Different directory hierarchy.
- Some use black-on-white masks, others use white-on-black.
- Some have limitations on image size (e,g., 256 x 256)
- Some have assumptions on file types (jpeg, png, etc.)
- For each GAN, I write an adapter subclass.
- Subclasses have 5-10 lines of code.
- So to support another paper, just write a small subclass!

Mask-Maker.py

Generate and Match Masks from Open Images

- For Open Images, match photos to their segmentation masks. If multiple objects detected, composite masks into a single mask. If photo has no masks, skip it.
- For Places, randomly assign Open Image composite masks to photos (akin to random mask generation currently done)
- Scales mask to source image size, inverts mask if needed.
- Final output: directory of photos to repair, directory of masks that match those, and directory of composite masks.
- Now the GAN can be run using my desired dataset and masks.

Workflow

How to integrate the library

Select a GAN

Determine storage format and file patterns for input, mask, and outputs

Write adapter subclass (5-10 lines)

Use the maskmaker.py or use your own masks

Process the CSV for custom charts and graphs

View the output, animated gifs

Run analysis.py

Run the GAN

Mask Composite (Open Images)

Animated GIF - some impressive results

Animated GIF - Lots of terrible results

The downside of image synthesis

Statistics

- LPIPS: Perceptual Similarity
- SSIM: Structural Similarity
- FID: How similar the generated images are to the "real images"

CSV to Graphs (Excel)

Sample Results

MI-GAN	SSIM ↑	LPIPS ↓	FID↓
Places	0.822	0.148	3.487
Open Images	0.795	0.219	36.469

CoModGAN	SSIM 1	LPIPS ↓	FID↓
Places	0.821	0.148	2.755
Open Images	0.792	0.220	34.410

Random masks did better on Places (the training dataset) than objects on the unseen dataset => some element of overtraining.

"That's all, Folks!"