Conceptos Básicos

1. Defina la integral definida y explique su interpretación geométrica.

Sea
$$\int_a^b f(x) dx$$
 la integral definida de $f(x)$ desde a hasta b ,
$$\int_a^b f(x) dx = [F(x)]_a^b \qquad donde \quad \frac{d}{dx} F(x) = f(x)$$

la integral definida se puede entender como el área bajo la curva f(x) en el intervalo [a,6].

En los signientes ejercicios se pude ver el gráfico en Geogebra.

2. Calcule $\int_0^3 (2x+1)dx$ y explique su significado.

3. Explique la diferencia entre integral definida e indefinida.

La integral definida calcula el área bajo la curva o función flul, la integral indefinida calcula la antiderivada o primitira de flul que es FCxI+C.

Nonde
$$\frac{d}{dx} F(x) = F(x)$$

F(x)=F(x)+C Nonde la grimitiva es la familia de funitores F(x) que difieren de la constante C.

Ejercicios de Rutina

Cálculo de Áreas y Volúmenes

1. Determine el área bajo la curva $y = x^3 - 2x + 1$ en el intervalo [0, 2].

2. Encuentre el volumen del sólido generado por la rotación de la región delimitada por $y = x^2$ y x = 2 alrededor del eje x.

3. Calcule el volumen del sólido obtenido al rotar $y=\sqrt{x}$ en [0,4] alrededor del eje x.

Región :
$$q(x,y)$$
: $0 \le x \le 4$, $0 \le y \le \sqrt{x}$ | $q(x) = 0$ $x_1 = 0$ $x_2 = 4$ $y = 1$ $x = 1$

Ejercicios No Rutinarios

1. Use integración para demostrar la fórmula del área de un círculo.

$$x^2+y^2=p^2$$

$$A = 4r^2 \int \cos^2(u) du \qquad \cos^2(w) = \frac{17(\cos 2u)}{2}$$

$$A = 4n^2 \left[\frac{1}{2} \left(\int du + \int (\cos(2u) du \right) \right]$$

$$A = 2r^{2} \left[u + \frac{1}{2} Sen(2u) \right]_{x_{1}=0}^{x_{2}=0}$$

$$A = 2n^2 \left(0 + \frac{\pi}{2}\right) + \left(\frac{1}{2} \sin(2.0) - \frac{1}{2} \sin(2.0)\right)$$

A=1112

 $Sen^{2}(x) + (os^{2}(x) = 1$ u= arcsen(X) X=rSonlu]

dx=rcos(u)du

$$(r(os(x))^2 = r^2 - (rsen(x))^2$$

$$r^2(os^2(x) - r^2(1 - 5en^2(x))$$

$$0 = \cos(u)$$
 $n = r\cos(u)$ $u = -\pi \cos(x)$

$$x = r(0)(u)$$
 $x_2 = r(0)(u)$
 $x_1 = 0$ $x_2 = r$
 $x_3 = 0$
 $x_4 = 0$
 $x_4 = r(0)(u)$
 $x_4 = r(0)(u)$
 $x_4 = r(0)(u)$
 $x_4 = r(0)(u)$
 $x_4 = r(0)(u)$

3. Determine la convergencia o divergencia de la integral $\int_1^\infty \frac{dx}{x^2}$

$$\int_{1}^{\infty} \frac{d\chi}{\chi^{2}} = \lim_{b \to 0} \chi^{-c} = \lim_{b \to 0} \left[\frac{-1}{\chi} \right]_{1}^{b} = \lim_{b \to 0} \left[\frac{-1}{\lambda} \right]_{1}^{b} = \lim_{b$$

Ejercicios de Aplicación en Ingeniería

1. En un sistema de refrigeración, la tasa de transferencia de calor está dada por Q(t)5t + 3. Determine el calor total transferido en 10 segundos.

$$\int_{0}^{10} t dt + 3 dt = \left[\frac{5}{2} t^{2} + 3t \right]_{0}^{10} = \frac{5}{2} (10^{2}) + 3(10) = 280$$

2. En mecánica, la distancia recorrida por un objeto con velocidad v(t) = 2t + 1 en el intervalo [0, 5].

$$2\int_{0}^{1} + \int_{0}^{1} dt = \left[t^{2} + t\right]_{0}^{1} = 5^{2} + 5 = 30$$

3. En probabilidades, la función de densidad de probabilidad de una variable aleatoria es $f(x) = e^{-x}$ en $[0, \infty)$. Calcule la probabilidad de que $X \le 2$.

$$\int_{0}^{2} e^{-x} dx \qquad du = -x \qquad dx = du$$

$$= \int_{0}^{2} e^{y} du = [-e^{y}]_{0}^{2} = [-e^{-x}]_{0}^{2} = -e^{-x} + e^{0} = 1 - e^{-x} = 0.8647$$

Análisis Numérico usando Python

- 1. Escriba un código en Python que aproxime $\int_0^1 e^x dx$ usando el método del trapecio con n=10
- 2. Compare la precisión del método del trapecio y el método de Simpson para $\int_0^{\pi} \sin x dx$.

```
Inserte el valor de n: 10
Inserte el valor de a: 0
Inserte el valor de b: 1

Menú de funciones:
{1: 'sinx', 2: 'cosx', 3: 'e^x', 4: 'polinomio', 5: 'Raiz cuadrada'}

Elija la opción que desea del menú de funciones: 3

Sumas de Riemann:
Aproximación por izquierda: 1.6337993999663625
Aproximación por derecha: 1.805627582812267
Aproximación por punto medio: 1.7175660864611277

Método del Trapecio:
Aproximación: 1.7197134913893146

Método de Simpson:
Aproximación: 1.7182827819248236

Método de MonteCarlo:
Aproximación: 1.745073797194146
```

Inserte el valor de n: 100000
Inserte el valor de a: 0
Inserte el valor de b: pi

Menú de funciones:
{1: 'sinx', 2: 'cosx', 3: 'e^x', 4: 'polinomio', 5: 'Raiz cuadrada'}

Elija la opción que desea del menú de funciones: 1

Sumas de Riemann:
Aproximación por izquierda: 1.999999998354792
Aproximación por derecha: 1.999999998354792
Aproximación por punto medio: 2.000000000822573

Método del Trapecio:
Aproximación: 1.999999998354792

Método de Simpson:
Aproximación: 2.00000000000138

Método de MonteCarlo:
Aproximación: 1.9972003861642635

3. Use Monte Carlo para aproximar $\int_0^1 \sqrt{1-x^2} dx$.

```
Inserte el valor de n: 100000000
Inserte el valor de a: 0
Inserte el valor de b: 1

Menú de funciones:
{1: 'sinx', 2: 'cosx', 3: 'e^x', 4: 'polinomio', 5: 'Raiz cuadrada'}

Elija la opción que desea del menú de funciones: 5

Suponiendo que la raíz tiene un polimomio dentro

Inserte el grado del polinomio: 2
Inserte el coeficiente de x^2: -1
Inserte el coeficiente de x^2: 0
Inserte el coeficiente de x^0: 1

Sumas de Riemann:
Aproximación por izquierda: 0.785398213388178
Aproximación por derecha: 0.7853981133881781
Aproximación por punto medio: 0.7853981634000865

Método del Trapecio:
Aproximación: 0.7853981633881781

Método de Simpson:
Aproximación: 0.7853981633938383

Método de MonteCarlo:
Aproximación: 0.7853828383917574
```

Puede acceder al repositorio y al código mediante: https://github.com/johanP051/aplicaciones_integral