

12. Tutorium Algorithmen in Graphen, Quantitative Aspekte von Algorithmen

Grundbegriffe der Informatik, Tutorium #30 Alexander Klug | 22. Januar 2018

FAKULTÄT FÜR INFORMATIK

Roadmap

1 Algorithmen in Graphen

2 Quantitative Aspekte von Algorithmen

Roadmap

Algorithmen in Graphen

2 Quantitative Aspekte von Algorithmen

Quantitative Aspekte von Algorithmen

Wdh.: Adjazenzmatrix

Def.: Adjazenzmatrix

Sei $G = (V_G, E_G)$ gerichteter Graph.

Adjazenzmatrix

$$A \in \{0,1\}^{|V_G| \times |V_G|}$$

$$A_{ij} = \begin{cases} 1, & \text{falls } (i,j) \in E_G \\ 0, & \text{falls } (i,j) \notin E_G \end{cases}$$

Sei $U = (V_U, E_U)$ ungerichteter Graph.

Adjazenzmatrix

$$A \in \{0,1\}^{|V_U| \times |V_U|}$$

$$A_{ij} = \begin{cases} 1, & \text{falls } \{i, j\} \in E_U \\ 0, & \text{falls } \{i, j\} \notin E_U \end{cases}$$

Wdh.: Adjazenzmatrix

Def.: Adjazenzmatrix

Sei
$$G = (V_G, E_G)$$
 gerichteter Graph.

Adjazenzmatrix

$$A \in \{0,1\}^{|V_G| \times |V_G|}$$

Sei
$$U = (V_U, E_U)$$
 ungerichteter Graph.

Adjazenzmatrix

$$A \in \{0,1\}^{|V_U| \times |V_U|}$$

$$A_{ij} = \begin{cases} 1, & \text{falls } (i,j) \in E_G \\ 0, & \text{falls } (i,j) \notin E_G \end{cases}$$

$$A_{ij} = \begin{cases} 1, & \text{falls } \{i, j\} \in E_U \\ 0, & \text{falls } \{i, j\} \notin E_U \end{cases}$$

Besondere Eigenschaften der Adjazenzmatrix

- Schlingen lassen sich an einer 1 auf der Diagonalen erkennen (Wert von A_{ii})
- Bei ungerichteten Graphen ist A immer symmetrisch (also $A_{ii} = A_{ii}$).

Wdh.: Wegematrix

Def.: Wegematrix

Sei $G = (V_G, E_G)$ gerichteter Graph.

Wegematrix $W \in \{0, 1\}^{|V_G| \times |V_G|}$

$$W_{ij} = \begin{cases} 1, & \text{falls es in } E_G \text{ Pfad von } i \text{ nach } j \text{ gibt.} \\ 0, & \text{sonst} \end{cases}$$

Kantenrelation

Kantenmenge als Relation

Sei G ein gerichteter Graph mit der Knotenmenge V. Die Kantenmenge ist wie folgt definiert:

Sei $E \subseteq V \times V$ eine Relation auf V definiert durch $x, y \in E \Leftrightarrow$ es gibt eine Kante vonx nach y in G.

Beobachtungen

• Was gilt für E^2 ?

Kantenrelation

Kantenmenge als Relation

Sei G ein gerichteter Graph mit der Knotenmenge V. Die Kantenmenge ist wie folgt definiert:

Sei $E \subseteq V \times V$ eine Relation auf V definiert durch $x, y \in E \Leftrightarrow \text{es gibt eine Kante von } x \text{ nach } y \text{ in } G.$

Beobachtungen

- Was gilt für E^2 ? \Rightarrow Knoten, die über einen Pfad der Länge 2 verbunden sind
- Analog E^3 , E^4 , ...
- Also $(x, y) \in E^*$ genau dann, wenn es einen Pfad (beliebiger Länge) von x nach y gibt.

Berechnung der Erreichbarkeitsrelation

Erreichbarkeitsrelation

$$E^* = \bigcup_{i=0}^{\infty} E^i = \bigcup_{i=0}^{n-1} E^i$$

Matrizen für die Relation E^k

Sei G ein gerichteter Graph mit Adjazenzmatrix A. Für alle $k \in \mathbb{N}_0$ gilt:

$$sgn((A^k)_{ij}) := \begin{cases} 1 & \text{falls in } G \text{ ein Pfad der Länge } k \text{ von } i \text{ nach } j \text{ existiert} \\ 0 & \text{falls in } G \text{ kein Pfad der Länge } k \text{ von } i \text{ nach } j \text{ existiert} \end{cases}$$

Algorithmen in Graphen

00000

Berrechnung der Wegematrix

Berrechnung der Wegematrix

Es sei G ein gerichteter Graph mit Adjazenzmatrix A. Dann gilt für alle k > n - 1:

$$W = \operatorname{sgn}\left(\sum_{i=0}^k A^i\right)$$

ist die Wegematrix des Graphen G.

Alexander Klug - Algorithmen in Graphen, Quantitative Aspekte von Algorithmen

Roadmap

1 Algorithmen in Graphen

2 Quantitative Aspekte von Algorithmen

Laufzeit


```
public int algorithm (int[] a) {
   int sum = 0;
   for (int i=0; i<a.length; i++)
      if (a[i]>0)
            sum += a[i];
   return sum;
}
```

Aufgabe

Wie viele Instruktionen werden aufgerufen?

Laufzeit


```
public int algorithm (int[] a) {
    int sum = 0;
    for (int i=0; i<a.length; i++)
        if (a[i]>0)
            sum += a[i];
    return sum;
}
```

Aufgabe

Wie viele Instruktionen werden aufgerufen? Im worst case? Im best case? Im average case?

Def. Asymptotisches Wachstum ≍

Seien $f, g: \mathbb{N}_0 \to \mathbb{R}_0^+$. Dann gilt

$$f \asymp g \Leftrightarrow \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : cf(n) \leq g(n) \leq c'f(n)$$

Man sagt auch g wächst genauso schnell wie f. \approx ist eine Äquivalenzrelation.

Beispiele

- $42n^6 33n^3 + 222n^2 15 \approx 66n^6 + 55555n^5$
- $n^{3+1} + 5n^2 \approx 3n^3 n$

Θ-Kalkül

$$\Theta(f) = \{g \mid f \asymp g\}
= \{g \mid \exists c, c' \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : cf(n) \le g(n) \le c'f(n)\}$$

Bemerkungen

- Im Θ -Kalkül von f(n) sind genau die Funktionen enthalten, die asymptotisch gleich schnell wachsen wie f(n).
- Schreibe $g(n) \in \Theta(f(n))$, wenn g(n) asymptotisch gleichschnell wächst wie g(n).
- Ist f ein Polynom, so sind insbesondere in $\Theta(f(n))$ alle Polynome enthalten, die den gleichen Grad wie f haben.
- Es gilt $\log_b(n) \in \Theta(\log_a(n))$. Die Basis ist also egal und man kann auch $\Theta(\log n)$ schreiben.

Def.: O-Kalkül

$$O(f) = \{g \mid \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : g(n) \leq cf(n)\}$$
 $g(n) \in O(f(n))$ (oder $g \leq f$) genau dann, wenn g asymptotisch höchstens so schnell wächst wie f .

Def.: Ω-Kalkül

$$\Omega(f) = \{g \mid \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : g(n) \geq cf(n)\}$$
 $g(n) \in \Omega(f(n)) \text{ (oder } g \succeq f) \text{ genau dann, wenn } g \text{ asymptotisch}$ höchstens so schnell wächst wie f .

Beobachtung: $\Theta(f) = O(f) \cap \Omega(f)$

22. Januar 2018

12/24

Aufgabe

- **1** Für welches $c \in \mathbb{R}_+$ gilt $5n^4 \in O(n^c)$ bzw $5n^4 \in \Omega(n^c)$?
- **2** Für welches $c \in \mathbb{R}_+$ gilt $5n^4 \in O(c^n)$ bzw $5n^4 \in \Omega(c^n)$?
- **3** Für welches $c \in \mathbb{R}_+$ gilt $2^n \in O(c^n)$ bzw $2^n \in \Omega(c^n)$?
- **4** Zeige oder widerlege: $n \in \Theta(\sqrt{n})$

Aufgabe

- **1** Für welches $c \in \mathbb{R}_+$ gilt $5n^4 \in O(n^c)$ bzw $5n^4 \in \Omega(n^c)$?
- **2** Für welches $c \in \mathbb{R}_+$ gilt $5n^4 \in O(c^n)$ bzw $5n^4 \in \Omega(c^n)$?
- **3** Für welches $c \in \mathbb{R}_+$ gilt $2^n \in O(c^n)$ bzw $2^n \in \Omega(c^n)$?
- **4** Zeige oder widerlege: $n \in \Theta(\sqrt{n})$

Lösung

- **I** Es gilt: $\forall c \geq 4$ bzw. $\forall c \leq 4$.
- **2** Es gilt: $\forall c > 1$ bzw. $\forall c \leq 1$.
- **3** Es gilt: $\forall c \geq 2$ bzw. $\forall c < 2$.
- 4 Annahme: Die Behauptung ist richtig.
- Dann gilt: $n \in O(\sqrt{n})$ $n \in \Omega(\sqrt{n})$, insbesondere $n \in \Omega(\sqrt{n})$.

$$\Rightarrow \exists c \in \mathbb{R}_+ : \exists n_0 \in \mathbb{N}_0 : \forall n \geq n_0 : n \leq c\sqrt{n} \Leftrightarrow \frac{n}{\sqrt{n}} \leq c \Leftrightarrow \sqrt{n} \leq c.$$

Widerspruch.

Aufgabe

Zeige oder widerlege:

$$f(n)+g(n)\in O(g(f(n)))$$

Aufgabe

Zeige oder widerlege:

$$f(n) + g(n) \in O(g(f(n)))$$

Lösung

Die Behauptung stimmt nicht. Wähle z.B. $f(n) = n^2$ und $g(n) = \sqrt{n}$ und führe dies zu einem Widerspruch.

ullet Θ entspricht nicht dem average case.

- ullet Θ entspricht nicht dem average case.
- *O*(1) bedeutet konstante Laufzeit

- ullet Θ entspricht nicht dem average case.
- *O*(1) bedeutet konstante Laufzeit
- Beachtet den Trick mit den Limites¹

15/24

¹Ich weiß nicht, ob ihr den als Beweis in der Klausur oder auf dem Blättern verwenden dürft. Zur Kontrolle sollte man ihn aber kennen.

Problemstellung:

Gegeben sei eine rekursiv definierte Funktion *T*. Frage: Welche Laufzeit hat *T*?

Beispiel:

$$T(n) = 8T\left(\frac{n}{2}\right) + 1000n^2$$

 \Rightarrow Mastertheorem

Def.: Mastertheorem

Seien $a \ge 1$ und b > 1 Konstanten, $f : \mathbb{N} \to \mathbb{R}_0^+$ und T(n) eine Laufzeitfunktion der Form

$$T = aT\left(\frac{n}{b}\right) + f$$

Dann gilt nach dem Mastertheorem:

• Fall 1:

Wenn $f \in O(n^{\log_b a - \varepsilon})$ für ein $\varepsilon > 0$ ist, dann ist $T \in \Theta(n^{\log_b a})$.

Fall 2:

Wenn $f \in \Theta(n^{\log_b a})$ ist, dann ist $T \in \Theta(n^{\log_b a} \log n)$.

• Fall 3:

Wenn $f \in \Omega(n^{\log_b a + \varepsilon})$ für ein $\varepsilon > 0$ ist, und wenn es eine Konstante d gibt mit 0 < d < 1, so dass für alle hinreichend großen n gilt $af\left(\frac{n}{n}\right) \leq df$, dann ist $T \in \Theta(f)$.

Beispiel zum 1. Fall

Sei
$$T(n) = 8T(\frac{n}{2}) + 1000n^2$$
.

Aus der Formel lässt sich ablesen:

$$a = 8, b = 2, f(n) = 1000n^2$$

• $n^{\log_b a}$ bestimmen:

$$\log_b a = \log_2 8 = 3 \Rightarrow n^{\log_b a} = n^3$$

- $n^{\log_b a}$ mit f(n) vergleichen: $1000n^2 \in O(n^3 \varepsilon)$? Ja, für $\varepsilon = 1$ gilt $1000n^2 \in O(n^2)$.
- Mit dem Mastertheorem folgt:

$$T(n) = \Theta(n^3)$$

Beispiel zum 2. Fall

Sei
$$T(n) = 2T\left(\frac{n}{2}\right) + 10n$$
.

Aus der Formel lässt sich ablesen:

$$a = 2, b = 2, f(n) = 10n$$

• $n^{\log_b a}$ bestimmen:

$$\log_b a = \log_2 2 = 1 \Rightarrow n^{\log_b a} = n^1$$

- $n^{\log_b a}$ mit f(n) vergleichen: $10n \in \Theta(n)$? Ja!
- Mit dem Mastertheorem folgt:

$$T(n) = \Theta(n \log n)$$

Beispiel zum 3. Fall

Sei
$$T(n) = 2T\left(\frac{n}{2}\right) + n^2$$
.

Aus der Formel lässt sich ablesen:

$$a = 2, b = 2, f(n) = n^2$$

n $\log_b a$ bestimmen: $\log_b a = \log_2 2 = 1 \Rightarrow n^{\log_b a} = n^1$

$$n^{\log_b a}$$
 mit $f(n)$ vergleichen: $n^2 \in \Omega(n^{1+\varepsilon})$?

Ja, für
$$\varepsilon = 1$$
 gilt $n^2 \in \Omega(n^2)$.

■ Zusatzbedingung überprüfen: Ist
$$af\left(\frac{n}{n}\right) \leq df$$
?

Ja, für $d = \frac{1}{2}$ gilt $\forall n \geq 1 : \frac{1}{2}n^2 \leq \frac{1}{2}n^2$

$$T(n) = \Theta(n^2)$$

Was ihr jetzt kennen und können solltet...

- Von der Adjazenzmatrix zur Wegematrix
- Laufzeiten von Algorithmen angeben und abschätzen
- Mit dem O-Kalkül arbeiten
- Die Laufzeit rekursiver Algorithmen mit dem Mastertheorem bestimmen

Ausblick

- Erste Nutzung von Graphen: endliche Automaten
- Neue Möglichkeiten mit formalen Sprachen: reguläre Ausdrücke und rechtslineare Grammatriken

Fragen?

Vielen Dank für Eure Aufmerksamkeit! Bis nächste Woche :)