Algebre Lineaire II

David Wiedemann

Table des matières

1	Polynomes		2
	1.1	Division avec reste	4
	1.2	Factorisation des polynomes sur un corps	5
\mathbf{L}	\mathbf{ist}	of Theorems	
	1	Definition (Centre d'un anneau)	2
	2	Definition (Diviseurs de 0)	2
	3	Definition (Anneau integre)	2
	1	Theorème	2
	4	Definition (Polynome)	2
	2	Theorème	2
	5	Definition (Degre d'un polynome)	3
	3	Theorème	3
	4	Theorème	3
	5	Theorème	4
	6	Corollaire	4
	7	Theorème	4
	6	Definition (Diviseurs de polynomes)	5
	7	Definition (Racine)	5
	8	Theorème	5
	8	Definition (Multiplicite d'une racine)	6
	9	Theorème (Theoreme fondamental de l'algebre)	6

Lecture 1: Introduction

Tue 23 Feb

1 Polynomes

Definition 1 (Centre d'un anneau)

Le centre Z(R) est l'ensemble des elements x satisfaisant

$$\{x \in R | ra = ar \forall a \in R\}$$

Definition 2 (Diviseurs de 0)

a est un element non nul d'un anneau R satisfaisant qu'il existe $b \in R$ tel que ab = 0 ou ba = 0.

Definition 3 (Anneau integre)

 $Si\ un\ anneau\ est\ commutatif\ et\ n'a\ pas\ de\ diviseurs\ de\ 0,\ alors\ l'anneau\ est\ integre.$

Theorème 1

Soit R un anneau, alors il existe un anneau $S \supseteq R$ (R est un sous-anneau) et $\exists x \in S \setminus R$ tel que

$$-ax = xa, \forall a \in R$$

—
$$Si \ a_0 + \ldots + a_n x^n = 0 \ et \ a_i \in R \forall i \ alors \ a_i = 0 \forall i$$

 $Cet\ x\ est\ appele\ indeterminee\ ou\ variable.$

Definition 4 (Polynome)

Un polynomer sur R est une expression de la forme

$$p(x) = a_0 + \ldots + a_n x^n$$

ou a_i est le i-eme coefficient de p(x).

R[x] est l'ensemble des polynomes sur R.

Theorème 2

R[X] est un sous-anneau. R est sans diviseurs de $0 \Rightarrow R[X]$ est sans diviseurs de 0.

De meme, si R est commutatif, R[x] aussi.

Preuve

Soit $f(x) = \sum a_i x_i, g(x) = \sum b_i x^i$ de degre n resp. m.

$$f(x) + g(x) = \sum_{i=1}^{\max(m,n)} (a_i + b_i)x^i$$

De meme, on a

$$f(x) \cdot g(x) = a_0 b_0 + \dots = \sum_{k=0}^{m+n} \left(\sum_{i+j=k} a_i b_j \right) x^k$$

Donc R[X] est stable pour +, \cdot et donc immediatement pour -, donc R[X] est un sous-anneau de S.

Soient $f(x), g(x) \neq 0$ et $n = \max\{i : a_i = 0\}$, le m + n-ieme coefficient de f(x)g(x) est a_nb_m et donc si R est integre, R[x] l'est aussi.

Definition 5 (Degre d'un polynome)

Soit $f(x) = a_0 + \ldots \in R[X]$, $f(x) \neq 0$. On definit

$$\deg(f) = \max\{i : a_i = 0\}$$

Ce dernier terme s'appelle le coefficient dominant de f, de plus on definit

$$f(x) = 0 : \deg(f) = -\infty$$

 $Si \deg(f) = 0$, alors f est une constante.

Theorème 3

Soit R un anneau, $f,g \in R[X] \neq 0$ tel que au moins un de leur coefficients dominants de f ou de g ne sont pas des diviseurs de 0. Alors $\deg(f \cdot g) = \deg(f) + \deg(g)$

Preuve

Soit $f(x) = a_0 + \dots, g(x) = b_0 + \dots, \deg f = n, \deg g = m$. Le n + m ieme coefficient de $f \cdot g = a_n \cdot b_m \neq 0$

Soit $p(x) \in R[x]$, ce polynome induit une application $f_p : R \to R$, on ecrit aussi p(r)

Theorème 4

Soit K un corps et $r_0, r_1, \ldots, r_n \in K$ des elements distincts et soient $g_0, \ldots, g_n \in K$.

Il existe un seul polynome $f \in K[x]$ tel que

- 1. $\deg f \leq n$
- 2. $f(r_i) = g_i$

Preuve

On cherche $a_0, \ldots a_n$ tel que

$$a_0 + a_1 r_i + \dots a_n r_i^n = g_i$$

Donc, on cherche

$$\begin{pmatrix} 1 & r_0 & \dots & r_0^n \\ \vdots & \dots & \dots \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \dots \end{pmatrix} = \begin{pmatrix} g_1 \\ \dots \\ \dots \end{pmatrix}$$

 ${\it Il faut \ donc \ montrer \ que \ la \ matrice \ ci-dessus \ a \ un \ determinant \ non \ nul.}$

On le montre par induction sur n.

Dans le cas n = 0, le determinant vaut trivialement 1. Dans le cas n > 0, on a

$$\det\begin{pmatrix} 1 & 0 \dots \\ 1(r_1 - r_0) & \dots \\ \dots & \ddots \\ 1(r_n - r_0) & \dots \end{pmatrix} = (r_1 - r_0)(r_2 - r_0) \dots \det(V(r_1, \dots, r_n)) \neq 0 \quad \Box$$

Lecture 2: Polynomes

Wed 24 Feb

Theorème 5

Soit K un corps fini de characteristique q, alors $K \supseteq \mathbb{Z}_q$.

De plus K est un espace vectoriel de \mathbb{Z}_q de dimension finie.

Corollaire 6

 $Soit\ K\ un\ corps\ infini.\ Deux\ polynomes\ sont\ egaux\ si\ et\ seulement\ si\ leurs\ evaluations\ sont\ les\ memes.$

Preuve

Une direction est triviale.

L'autre suit immediatement du theoreme 1.6

1.1 Division avec reste

Theorème 7

Soit R un anneau, $f,g\in R[x], g\neq 0$ et soit le coefficient de $g\in R^*$ Il existe $q,r\in R[x]$ uniques tel que

1.
$$f(x) = q(x)g(x) + r(x)$$

2.
$$\deg r < \deg g$$

Preuve

 $Si \deg f < \deg g$, on a fini.

Soit donc deg $f \geq g$, donc

$$f(x) = a_0 + \ldots + a_n x^n$$

et

$$g(x) = b_0 + \dots b_m x^m$$

 $et \ b_m^{-1} \ existe.$

On procede par induction sur n.

 $Si \ n = m :$

On note que

$$f(x) - \frac{a_n}{b_m}g(x)$$

est un polynome de degre < n Si n > m:

 $On\ note\ que$

$$f(x) - \frac{a_n}{b_m} x^{n-m} g(x)$$

 $est \ un \ polynome \ de \ degre < n.$

Par hypothese d'induction il existe q(x), r(x) tel que

$$- f(x) - \frac{a_n}{b_m} x^{n-m} g(x) + r(x)$$

$$- \deg r < \deg g$$

et donc on a fini de montrer l'existence.

Supposons maintenant qu'il existe r' et q' satisfaisant les memes proprietes que q et g, alors on a

$$q(x)g(x) + r(x) = q'(x)g(x) + r'(x)$$

Donc

$$r' \neq r \ et \ q' \neq q$$

en comparant les degre, on a une contradiction.

1.2 Factorisation des polynomes sur un corps

Definition 6 (Diviseurs de polynomes)

Soit $q(x) \in K[x]$.

q divise f si il existe g(x) tel que

$$q(x)g(x) = f(x)$$

On dit que q est un diviseur de f, on ecrit q(x)|f(x)

Definition 7 (Racine)

Soit $p(x) \in K[x]$, et soit $\alpha \in K$ tel que $p(\alpha) = 0$

Theorème 8

Soit $f(x) \in K[x] \setminus \{0\}$, alors $\alpha \in K$ est une racine de f si et seulement si (x-a)|f(x)

Preuve

 $Si(x-\alpha)q(x)=f(x)$, alors on a fini.

sinon, la division de f(x) par $x - \alpha$ avec reste donne

$$f(x) = q(x)(x - \alpha) + r \text{ ou } r \in K$$

Si
$$r \neq 0$$
, alors $f(\alpha) = g(\alpha)(\alpha - \alpha) + r = r = 0$ et donc $(x - a)|f(x)$

Definition 8 (Multiplicite d'une racine)

La multiplicite d'une racine α de $p(x) \in K[x]$ est le plus grand $i \geq 1$ tel que

$$(x-\alpha)^i|p(x)$$

Theorème 9 (Theoreme fondamental de l'algebre)

Tout polynome $p(x) \in \mathbb{C}[x] \setminus \{0\}$ de degre ≥ 1 possede une racine complexe.