

Europäisches Patentamt European Patent Office Office européen des brevets

11) Publication number:

0 644 267 A2

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 94111298.9

2 Date of filing: 20.07.94

(5) Int. Cl.⁶: C12Q 1/02, C12N 9/02, C12N 15/53, C12N 15/81, //C12Q1/26

Priority: 20.07.93 JP 201120/9321.07.93 JP 180246/9330.07.93 JP 208279/93

Date of publication of application: 22.03.95 Bulletin 95/12

Designated Contracting States:
CH DE FR GB LI

Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
Kitahama 4-chome 5-33
Chuo-ku
Osaka 541 (JP)

Inventor: Hayashi, Koji 14-7, Mefu 2-chome Takarazuka-shi, Hyogo-ken (JP)

Inventor: Sakaki, Toshiyuki 1-30-68, Higashitoyonaka-cho

Toyonaka-shi, Osaka-fu (JP) Inventor: Yabusaki, Yoshiyasu 6-2-1, Minatojimanakamachi, Chuo-ku

Kobe-shi, Hyogo-ken (JP)

Inventor: Komai, Koichiro 4-9-17, Sakuragaoka

Minoo-shi, Osaka-fu (JP)

Inventor: Kaneko, Hideo 63, Koyamaitakura-cho, Kita-ku Kyoto-shi, Kyoto-fu (JP) Inventor: Nakatsuka, Iwao 3-8-14, Hinomine,

Kita-ku Kobe-shi, Hyogo-ken (JP)

Representative: VOSSIUS & PARTNER Postfach 86 07 67
D-81634 München (DE)

Method for safety evaluation of chemical compound using recombinant yeast expressing human cytochrome P450.

(3) There is disclosed a method for evaluation of the safety of a chemical compound, which includes the steps of: (a) reacting a chemical compound with recombinant yeast cells expressing, or in other words producing, human cytochrome P450 molecular species P450 1A2, P450 2C9, P450 2E1 and P450 3A4 together with a yeast NADPH-P450 reductase, which may be in the form of a fused enzyme with each of said human cytochrome P450 molecular species, or with the cell free extracts of the yeast cells; and (b) analyzing the resulting metabolite to determine the safety of the compound. According to this method, it can be determined whether a test compound will be converted into a carcinogenic or mutagenic form through the metabolism in the human liver, and whether the test compound or its metabolite has mutagenicity.

o 644 267 A2

The present invention relates to a method for evaluation of the safety of a chemical compound using recombinant yeasts expressing human cytochrome P450.

The cytochrome P450 is an enzyme catalyzing the mono-oxygenation of a substance in the human liver.

It is known that recombinant human cells expressing heterogeneous human cytochrome P450 species have been used for determination of metabolisms and toxicities of chemical substances. However, this method is unsatisfactory as a method of evaluation of the safety of chemical compounds partly because the kinds of the human cytochrome P450 species expressed by the cells and the levels of the expression are so limited that the amount of metabolite obtained is not enough for determination of the metabolism and toxicity, and partly because it requires not only a high density culture technique but a high cultivation cost. Accordingly, there has been a great demand for developing an advantageous method.

As a result of the extensive study, the present inventors have found that yeasts are particularly suitable as hosts for production of human cytochrome P450 and yeast NADPH-P450 reductase to be used in in vitro determination of metabolisms and toxicities of chemical substances because yeasts grow so rapidly and can stably express both the human cytochrome P450 and yeast NADPH-P450 reductase at high expression levels to provide sufficient amounts of the metabolites in a short period of time, thereby enabling a precise and quick analysis of the metabolites.

Moreover, they have also found that, despite that there are a considerable number of human cytochrome P450 molecular species, the human metabolic system for chemical compounds can be reproduced in vitro when at least four human cytochrome P450 molecular species, i.e., human cytochrome P450 1A2, P450 2C9, P450 2E1 and P450 3A4, are combined.

Thus, the present invention provides a method for evaluation of the safety of a chemical compound, which comprises the steps of:

- (a) reacting a chemical compound with recombinant yeast cells expressing, or in other words producing, human cytochrome P450 molecular species P450 1A2, P450 2C9, P450 2E1 and P450 3A4 together with a yeast NADPH-P450 reductase, which may be in the form of a fused enzyme with each of said human cytochrome P450 molecular species, or with the cell free extracts of the yeast cells; and
- (b) analyzing the resulting metabolite to determine the safety of the compound.

The present invention further provides a method for determination of the human metabolite of a chemical compound, which comprises the steps of:

- (a) reacting a chemical compound with recombinant yeast cells producing human cytochrome P450 molecular species P450 1A2, P450 2C9, P450 2E1 and P450 3A4 together with a yeast NADPH-P450 reductase, which may be in the form of a fused enzyme with each of said human cytochrome P450 molecular species, or with cell free extracts of the yeast cells; and
- (b) identifying the resulting metabolite.

5

25

35

40

- Figs. 1 to 4 show various primers for cloning human P450 genes.
- Fig. 5 shows a synthetic linker for human P450 gene cloning.
- Fig. 6 shows a method of constructing yeast expression plasmids for human P450 1A2.
- Fig. 7 shows a method of constructing yeast expression plasmids for human P450 2C9.
- Fig. 8 shows a method of constructing yeast expression plasmids for human P450 2E1.
- Fig. 9 shows a method of constructing yeast expression plasmids for human P450 3A4.
- Fig. 10 shows a method of constructing yeast expression plasmids for human P450 1A1.
- Fig. 11 shows a method of constructing yeast expression plasmids for human P450 2A6.
- Fig. 12 shows a method of constructing yeast expression plasmids for human P450 2B6.
- Fig. 13 shows a method of constructing yeast expression plasmids for human P450 2C8.
- Fig. 14 shows a method of constructing yeast expression plasmids for human P450 2C18.
- Fig. 15 shows a method of constructing yeast expression plasmids for human P450 2C19.
- Fig. 16 shows a method of constructing yeast expression plasmids for human P450 2D6.
- Fig. 17 shows a method of constructing a yeast expression plasmid containing an artificial fused enzyme gene.
 - Fig. 18 shows a method of constructing a yeast expression plasmid using a GAPDH promoter.

According to the present invention, it can be determined whether a test compound will be converted into a carcinogenic or mutagenic form through the metabolism in the human liver, and whether the test compound or its metabolite has mutagenicity.

Thus, the present invention provides a method for evaluation of safety of a chemical compound, and a method for determination of the human metabolite of a chemical compound.

Human Cytochrome P450 and Their Genes

The yeasts capable of expressing, or producing, said enzymes can be obtained by transforming them with expression plasmids containing genes encoding said enzymes with a conventional recombinant DNA method.

The human P450 molecular species to be used in the present invention include at least four human cytochrome P450 molecular species, i.e., human cytochrome P450 1A2, P450 2C9, P450 2E1 and P450 3A4. The genes encoding these essential human cytochrome P450 molecular species and yeast NADPH-P450 reductase are reported in Nucleic Acids Res., 14, 6773-6774, 1986; J. Biochem., 102, 1075-1082, 1987; J. Biol. Chem., 261, 16689-16697, 1986; DNA, 7, 79-86, 1988; and J. Biochem., 103, 1004-1010, 1988.

Although the kinds of P450 molecular species present in human liver vary among the race and individuals, the combination of said human P450 molecular species includes at least about 85% (molar ratio) of the total amount of the human P450 molecular species present in the human liver. Hence, the present method using the said combination of human P450 molecular species can accurately reproduce the human liver metabolism in vitro.

The combination of these P450 molecular species may optionally be varied, taking into account of the amounts of these P450 molecular species in the liver: the amount of P450 3A4 present in the human liver is about 35±10% of the total amount of the human P450 molecular species; P450 2C9 about 25±10%; P450 1A2 about 23±10%; and P450 2E1 about 17±10%.

In addition to the above-mentioned combination, human P450 molecular species P450 2A6, P450 2C19 and/or P450 2D6 (Biochemistry, 29, 1322-1329, 1990; Biochemistry, 30, 3247-3255, 1991; Am. J. Hum. Genet., 45, 889-904, 1989) may also be added. In this case, the combined human P450 molecular species covers at least 90% of the total amount of the human P450 molecular species present in the human liver.

The in vitro human metabolic system that reproduces accurately the human metabolism of a chemical compound, and can represent the differences among races and individuals can be obtained when these human P450 molecular species are properly combined, taking into account of the amounts of these species in the liver.

Furthermore, at least one human cytochrome P450 molecular species selected from the group of P450 1A1, P450 2B6, P450 2C8 and P450 2C18 (Science, 228, 80-83, 1985; Biochemistry, 28, 7340-7348, 1989; Nucleic Acids Res., 15, 10053-10054, 1987; Biochemistry, 30, 3247-3255, 1991) may be added to said human cytochrome P450 molecular species to reproduce in vitro the metabolism of the human liver more accurately.

The nucleotide sequences coding for the human P450 molecular species are disclosed in SEQ ID NOs: 1 to 38.

Cloning of Genes

The genes coding for the human cytochrome P450 molecular species are known and can be obtained by the conventional cloning methods.

For example, they may be obtained by:

- (i) preparing a mRNA fraction containing the mRNA of the gene coding for human cytochrome P450 molecular species;
- (ii) preparing a cDNA from the mRNA fraction using reverse transcriptase;
- (iii) preparing a cDNA library by inserting said cDNA into a pharge vector or a plasmid vector; and
- (iv) cloning the gene coding for the human cytochrome P450 molecular species from the cDNA library obtained above or from a commercially available human liver-derived cDNA library using a DNA fragment having an identical sequence to some part of the desired gene or an antibody reactive to the protein produced by the gene.

The gene may also be obtained from the above-described cDNA library by the PCR method.

The gene coding for yeast NADPH-P450 reductase may be obtained by the same method as used for cloning of the genes coding for human P450 molecular species. More specifically, the gene may be obtained by such a known method as described in the Japanese Patent Laid-open Publication No. 62-19085.

55

50

45

25

Construction of Yeast Expression Plasmids

The yeasts capable of expressing said enzymes can be obtained by transforming them with expression plasmids containing genes encoding said enzymes with a conventional recombinant DNA method.

The yeast expression plasmid having a gene coding for human P450 molecular species and a gene coding for the yeast NADPH-P450 reductase can be constructed by using a conventional recombinant DNA method.

As to the promoter to be used for construction of the expression plasmids for the yeast of the present invention, there is no particular restriction so long as the promoter can be used in usual expression systems for yeasts, and a promoter of a yeast alcohol dehydrogenase gene (hereinafter referred to as ADH promoter), glyceraldehyde-3-phosphate dehydrogenase promoter (hereinafter referred to as GAPDH promoter), and phosphoglycerate kinase (hereinafter referred to as PGK promoter) are preferably used in the present invention.

The ADH promoter can be prepared by a usual genetic engineering method, for example, from a yeast expression vector pAAH5 possessing a yeast ADH1 promoter and terminator ("Methods in Enzymology" by Ammerer et al., vol.101, pp.192-201). The yeast ADH1 promoter is described in the U.S. Patent No. 299,733 to Washington Research Foundation and it requires patent license from the patentee in a case of using the same for an industrial or commercial purpose.

The yeast expression plasmid having both a gene coding for human P450 molecular species and a gene coding for the yeast NADPH-P450 reductase can be constructed by, for example, inserting an Notl fragment prepared from yeast expression vector pAAH5N possessing the ADH promoter and terminator (Japanese Patent Laid-open Publication No. 2-211880) to an Notl site of plasmid pARRN possessing a gene coding for yeast NADPH-P450 reductase (Japanese Patent Laid-open Publication No. 2-211880) and then inserting cDNA coding for the human P450 molecular species to the HindIII site of the thus obtained plasmid pAHRR. Moreover, a vector obtained by exchanging a Hind III site of pAAH5N with other restriction enzyme site may be used for the same purpose.

In the present invention a gene coding for an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase can also be used. The artificial fused enzyme can catalyze mono-oxygenation reaction and the efficiency of the electron transfer from NADPH is so improved that the activity of the mono-oxygenation reaction is much enhanced. Accordingly, a great amount of metabolic products can be obtained in a shorter period of time, enabling accurate analysis.

The fused gene comprises a gene coding for the human cytochrome P450 molecule on the 5'-terminal and a gene coding for the yeast NADPH-P450 reductase on 3'-terminal.

The gene coding for such an artificial fused enzyme can be constructed by ligating a gene coding for a human cytochrome P450 species and a gene coding for yeast NADPH-P450 reductase by a conventional recombinant DNA method, and the constructed gene is usually inserted to the Hind III site of the yeast expression vector pAAH5N having ADH promoter and ADH terminator described in the Japanese Patent Laid-open Publication No. 2-211880.

40 Transformation of Yeast

The yeast cells expressing the human P450 molecular species and yeast NADPH-P450 reductase or yeast cells expressing an artificial fused enzyme comprising human P450 molecular species and NADPH-P450 reductase can be obtained by introducing the thus constructed yeast expression plasmid into a yeast by a known method such as a protoplast method or a method using alkaline metal salt (LiCl).

In the present invention, two or more expression plasmids may optionally be introduced into a single strain of yeast so that the yeast can express two or more molecular species simultaneously.

As the hosts, Saccharomyces cerevisiae is used in the method of the present invention, in particular, Saccharomyces cerevisiae AH22 (ATCC 38626) is preferably used.

Reaction of Test Compound

In the method of the present invention, a test compound is reacted with a mixture of at least said four human P450 molecular species, or separately with each of the said four human P450 molecular species in the presence of the yeast NADPH-P450 reductase.

Alternatively, it may be first reacted with one or more of the essential human P450 molecular species, and then with a mixture of, or separately with the rest of them; each of the reactions is carried out in the presence of the yeast NADPH-P450 reductase.

The reaction is carried out by reacting a test compound with the yeast obtained by the transformation with an expression plasmid containing a gene encoding a human P450 molecular species and a gene encoding yeast NADPH-P450 reductase, or a fused gene encoding a fused enzyme of a human P450 molecular species and a yeast NADPH-P450 reductase, or with the cell free extracts of the yeast cells.

In the reaction of a test compound with the enzymes of the present invention, living yeast cells and their cell free extracts are usually used.

As the cell free extracts, subcellular fraction of cells containing microsomal fractions, or fractions containing both microsome and cytoplasm is used. The cell free extracts or fractions can be prepared, for example, by a known method (DNA, Vol.4, No. 3, pp.203-210 (1985)).

However, the present invention can be preferably carried out with the cell free extracts, especially with microsomal fractions of the cells. But, when biological analytic method is used to determination of the mutagenicity or carcinogenicity, fractions containing microsome and cytoplasm are preferably used.

The reaction can be conducted by adding a test compound to a culture solution or a buffer solution of yeast cells or cell free extracts, and the resultant solution is usually incubated at a temperature, for example, at about 10 °C to 40 °C, for about 0.1 to 48 hours.

The amounts of the yeast cells or cell free extracts and the compound vary depending on the conditions such as reaction temperature, reaction time and the kind of the test compound to be used.

For instance, the amount of the yeast cells to be used in the solution is preferably from about 10⁵ to about 10¹⁰ per 1 ml of the solution, preferably, from about 10⁷ to about 10⁸ per 1 ml of the solution. When cell free extracts are used, from about 10¹⁰ to about 10¹⁵ of P450 molecules per 1 ml of the solution, preferably from about 10¹² to about 10¹³ of P450 molecules per 1 ml of the solution is usually used.

The amount of the compound to be added is preferably within a range of from about 0.01 µmol to about 1µmol per 1 ml of the solution.

The above ranges may be optionally varied, if necessary.

Determination of Metabolites

10

25

35

50

55

The metabolites present in the reaction solution can then be subjected to elucidation of the chemical structures and the measurement of their amounts. The analysis of the chemical structure can be conducted by known methods ("Guide to Apparatus Analysis (2)", edited by Jiro Shiokawa et al., (revised edition) first print, issued from Kagaku Dojin (1985); "Spectral Identification for Organic Compound" by R.M. Silverstein, fourth edition, third print, issued from Tokyo Kagaku Dojin (1984)).

From the results of the analysis of the metabolites, it can be determined whether the tested compound will be detoxicated or metabolized into a carcinogen in the human liver when administered.

Determination of Toxic Effects of Metabolites

The toxic effects, in particular mutagenicity, of the resulting metabolites can be determined by a conventional biological analytic method such as the Ames Test. For example, the metabolites present in the reaction solution are allowed to react with mutant bacteria such as histidine requiring Salmonella strain (Salmonella typhimurium (his-)), or tryptophan requiring Escherichia coil (Escherichia coil (trp-)), and then determine whether the metabolites cause the back mutation of the bacteria whether the colonies of revertant which is not requiring the amino acid (His+ or Trp+) are formed, and, if formed, how many colonies. In place of the bacteria, mammalian cells such as MCL-5 cells, which are sensitive to cell toxicity of a chemical compound (U.S. Patent No. 4,532,204), can be used.

In this method, the compounds that cause the back mutation will be judged to be mutagenicity test-positive.

It is also possible to simultaneously proceed the step (a) of reacting the test compound with the yeast cells or the cell free extracts, and the step (b) of analyzing the metabolites present in the reaction solution.

The mutagenicity of arylamine derivatives, which are known to be metabolized by the liver into a mutagens, can be examined by the biological analytic method. For example, the mutagenicity of 2-aminoanthrathene can be detected at the concentration of about 0.1 µg of 2-aminoanthrathene when 20 pmol of P450 1A2, which is active specifically to 2-aminoanthrathene, is used (Table 1).

In the present invention, a metabolic probe for a human P450 molecular species can be obtained.

If a certain chemical compound is converted by a particular human P450 molecular species into a specific metabolite, the amount of such a human P450 molecular species can be determined by detecting such a metabolite in excretions such as blood or urine of a living body who has been administered the compound, and such a compound is called a metabolic probe.

In the present invention, such a metabolic probe can be obtained by screening the metabolites obtained by reacting chemical compounds with the yeasts of the present invention.

Examples

5

10

20

25

30

The present invention will be further illustrated by the following examples, which are not to be construed to limit the scope thereof.

Preparation of cDNA coding for human P450 molecular species

cDNA coding for human P450 molecular species were obtained from commercially available human liver cDNA library (Clontech Co.) by the PCR method using primers for cloning human P450 genes as shown in Figs. 1 to 4, and a method using a synthetic linker for human P450 gene cloning as shown in Fig. 5. Thus obtained nucleotide sequences for the cDNA and the deduced amino acid sequences are shown in the sequence listing.

Relationship between SEQ ID NOs and human P450 molecular species are as follows:

1. The essential human cytochrome P450 molecular species for the present invention.

(1) SEQ ID NO: 1 1A2 (2) SEQ ID NO: 3 2C9 (3) SEQ ID NO: 5 2E1 (4) SEQ ID NO: 7 3A4

2. Auxiliary Human cytochrome P450 molecular species

(1) SEQ ID NOs: 9, 11 and 13 1A1 (2) SEQ ID NOs: 15 and 17 2A6 (3) SEQ ID NO: 19 2B6 (4) SEQ ID NOs: 21, 23 and 25 2C8 (5) SEQ ID NO: 27 2C18 (6) SEQ ID NO: 29 2C19 (7) SEQ ID NOs: 31, 33, 35 and 37 2D6

35

Construction of yeast expression plasmids: p1A2 and p1A2R

Fig. 6 shows a method of constructing yeast expression plasmids for human P450 1A2. The protein coding region of P450 1A2 gene of about 1.5 kb excluding about 40 bp at the 5'-terminal was amplified by the PCR method using the primers shown in Fig. 1. The resultant fragment of about 1.5 kb was cleaved with Sacl and sub-cloned to a pUC118 vector. About 40 bp at the 5'-terminal was chemically synthesized as the linkers shown in Fig. 5 and sub-cloned between the HindIII and SacI sites of the pUC118 vector. The plasmid having the 1.5 kb fragment was digested by HindIII, blunted, and then ligated with an EcoRI linker. The EcoRI-SacI fragment was prepared from the resulting plasmid and ligated into the plasmid containing the 5'-terminal 40 bp. Then, it was treated with EcoRI and blunted. A HindIII linker was inserted into the blunted fragment. The obtained fragment then cleaved with HindIII was inserted into pAAH5N and pAHRR to construct a yeast expression plasmid p1A2 for human P450 1A2, and a yeast expression plasmid p1A2R for simultaneous expression of human P450 1A2 and yeast NADPH-P450 reductase.

50

Construction of yeast expression plasmids: p2C9 and p2C9R

Fig. 7 shows a method of constructing yeast expression plasmids for human P450 2C9. The protein coding region of 450 2C9 gene was divided into two fragments of about 0.9 kb and about 0.6 kb, and the fragments were amplified by the PCR method using the primers shown in Fig. 1. The resultant fragment of about 0.9 kb was cleaved with Pstl and sub-cloned to a pUC B vector, which was prepared by exchanging the cloning site located between the two Hind III sites, one of which was obtained by converting the EcoRI site of pUC19, with the following cloning sites:

Ec	CORI	SpeI	PstI	Baml	łI	KpnI	Hir	ndIII
HindIII	Xba]	[SphI		SalI	Sma I		SacI	
]

The fragment of about 0.6 kb was incorporated between the Xbal and Pstl sites of the plasmid having the 0.9 kb fragment to ligate the two segments. The Kpnl site of the plasmid was blunted. An Xbal linker was inserted to the blunted plasmid. The Xbal fragment containing the coding region was cut out from the resultant fragment. A modified pUC vector, pUCAN, was constructed by replacing the EcoRl and HindIII sites with Notl sites, followed by insertion of the Notl fragment prepared from pAAH5N between the two Notl sites. The HindIII site of pUCAN vector having the ADH promoter and terminator regions in the pUC vector was blunted and inserted into pUCANX introduced with the Xbal linker. The obtained plasmid was cleaved with Notl and inserted into pAAH5N and pAHRR treated in a similar manner with Notl to construct a yeast expression plasmid p2C9 for human P450 2C9, and a yeast expression plasmid p2C9R for simultaneous expression of human P450 2C9 and yeast NADPH-P450 reductase.

Construction of yeast expression plasmids: p2E1 and p2E1R

5

Fig. 8 shows a method of constructing yeast expression plasmids for human P450 2E1. The protein coding region of P450 2E1 gene was divided into two fragments of about 0.5 kb and about 1.0 kb, both of which were amplified by the PCR method using the primers shown in Fig. 1. The resultant fragment of about 0.5 kb was cleaved with EcoRI and BamHI and sub-cloned to a pUC118 vector. Then the fragment of about 1.0 kb was incorporated between the BamHI and SphI sites to ligate the two fragments. This was cleaved with EcoRI, and SphI, and inserted into pUC B first and then cut out with HindIII. The resultant fragment was inserted into pAAH5N and pAHRR vectors to construct a yeast expression plasmid p2E1 for human P450 2E1, and a yeast expression plasmid p2E1R for simultaneous expression of human P450 2E1 and yeast NADPH-P450 reductase.

Construction of yeast expression plasmids: p3A4 and p3A4R

Fig. 9 shows a method of constructing yeast expression plasmids for human P450 3A4. The protein coding region of P450 3A4 gene was divided into two fragments of about 0.6 kb and about 0.9 kb, both of which were amplified by the PCR method using the primers shown in Fig. 2. The resultant fragment of about 0.6 kb was cleaved with SacI and sub-cloned to a puC118 vector. Subsequently, it was cleaved with EcoRI and blunted. An XbaI linker was ligated to the blunted fragment. The fragment of 0.9 kb was cleaved with XbaI and SacI, and incorporated to the resultant fragment above, thus the two fragments were ligated. After cleaving the plasmid with SphI, it was blunted. An XbaI linker was ligated to the blunted fragment, from which the XbaI segment was cut out and inserted to an XbaI site of pUCANX. This was cut out with NotI and inserted into pAAH5N and pAHRR treated in a similar manner with NotI. Thus a yeast expression plasmid p3A4 for human P450 3A4, and a yeast expression plasmid p3A4R for simultaneous expression of human P450 3A4 and yeast NADPH-P450 reductase were constructed.

Construction of yeast expression plasmids: p1A1 and p1A1R

Fig. 10 shows a method of constructing yeast expression plasmids for human P450 1A1. The coding region for P450 1A1 protein was divided into two fragments of about 1.0 kb and about 0.5 kb and the resultant fragments were amplified by the PCR method using the primers shown in Fig. 2. Thus obtained fragment of about 1.0 kb was cleaved with Xbal and Sacl and sub-cloned to a PUCA vector, which was prepared by exchanging the cloning site located between the two HindIII sites, one of which was obtained by converting the EcoRI site of pUC19, with the following cloning sites:

	Xba	ıΙ	SpeI	PstI	Ва	mHI	KpnI	HindI:	ΙĮ
r.r	HindIII	EcoRI	SphI		SalI	SmaI		SacI	
55									

The amplified fragment of about 0.5 kb was sub-cloned into the HincII site of a pUC 19 vector and the resultant plasmid was then cleaved with Sacl. The cleaved fragment was ligated with the plasmid having the 1.0 kb fragment. After cutting out the coding region from the thus obtained 1A1 gene with HindIII, the fragment was inserted to the HindIII site of the yeast expression vector pAAH5N having ADH promoter and terminator regions, and to the same site of vector pAHRR for simultaneous expression of P450 and yeast NADPH-P450 reductase of which gene is located upstream of the P450 gene. Thus yeast expression plasmid p1A1 for human P450 1A1 and yeast expression plasmid p1A1R for simultaneous expression of human P450 1A1 and yeast NADPH-P450 reductase were constructed.

In addition two kinds of human P450 1A1 gene fragments which were different only in a small portion of the nucleotide sequence were obtained in a similar manner and used to construct two kinds of yeast expression plasmid for human P450 1A1, p1A1 Variant 1 and p1A1 Variant 2, and two kinds of plasmids for simultaneous expression of human P450 1A1 and yeast NADPH-P450 reductase, p1A1R Variant 1 and p1A1R Variant 2.

Construction of yeast expression plasmids: p2A6 and p2A6R

Fig. 11 shows a method of constructing yeast expression plasmids for human P450 2A6. A protein coding region of P450 2A6 gene was divided into two fragments of about 0.6 kb and about 0.9 kb, both of which were amplified by the PCR method using the primers shown in Fig. 2 to yield two kinds of human P450 2A6 gene fragments which were different only in a small portion of the nucleotide sequence. The resultant fragment of about 0.6 kb was cleaved with Xbal and HincII, and sub-cloned to a pUC A vector. Then the fragment of 0.9 kb was incorporated between the HincII and KpnI sites to ligate the two fragments. The obtained fragment was cleaved with HindIII and inserted into pAAH5N and pAHRR to construct two kinds of yeast expression plasmid for human P450 2A6, p2A6 and p2A6 Variant 1, and two kinds of yeast expression plasmid for simultaneous expression of human P450 2A6 and yeast NADPH-P450 reductase, p2A6R and p2A6R Variant 1.

Construction of yeast expression plasmids: p2B6 and p2B6R

30

Fig. 12 shows a method of constructing yeast expression plasmids for human P450 286. The entire protein coding region of P450 286 gene was amplified by the PCR method using the primers shown in Fig. 3. The resultant fragment was cleaved with Xbal and BamHI and sub-cloned to pUC A. The resulting plasmid was partially digested with HindIII, and inserted into pAAH5N and pAHRR vectors to construct a yeast expression plasmid p286 for human P450 286, and a yeast expression plasmid p286R for simultaneous expression of human P450 286 and yeast NADPH-P450 reductase.

Construction of yeast expression plasmids: p2C8 and p2C8R

Fig. 13 shows a method of constructing yeast expressed plasmids for human P450 2C8. The entire protein coding region of the P450 2C8 gene was amplified by the PCR method using the primers shown in Fig. 3 to yield three kinds of P450 2C8 genes which were different only in a small portion of the nucleotide sequence. The resultant fragments were partially digested with Xbal, and sub-cloned to pUC A. The fragment was cleaved with HindIII and inserted into pAAH5N and pAHRR vectors to construct three kinds of yeast expression plasmids p2C8, p2C8 Variant 1 and p2C8 Variant 2 for human P450 2C8, and three kinds of yeast expression plasmids, p2C8R, p2C8R Variant 1 and p2C8R Variant 2 for simultaneous expression of human P450 2C8 and yeast NADPH-P450 reductase.

Construction of yeast expression plasmids: p2C18 and p2C18R

Fig. 14 shows a method of constructing yeast expression plasmids for human P450 2C18. The protein coding region of P450 2C18 gene was divided into two segment of about 1.4 kb and about 0.9 kb, then the both fragments were amplified by the PCR method using the primers shown in Fig. 3. The amplified fragment of about 1.4 kb was cleaved with Pstl and sub-cloned to a pUC A vector. The fragment of about 0.9 kb was incorporated between the Xbal and Pstl sites to ligate the two fragments. After cleaving the plasmid with Smal, an Xbal linker was introduced. Then an Xbal fragment was prepared and inserted into the Xbal site of pUCANX. It was cleaved with Notl and inserted into pAAH5N and pAH6R treated in a similar manner with Notl to construct a yeast expression plasmid p2C18 for human P450 2C18, and a yeast expression plasmid p2C18R for simultaneous expression of human P450 2C18 yeast and NADPH-P450

reductase.

Construction of yeast expression plasmids: p2C19 and p2C19R

Fig. 15 shows a method of constructing yeast expression plasmids for human P450 2C19. Fragments a, b and c for the protein coding region of P450 2C19 gene were amplified by the PCR method using the primers No. 1, No. 2, No. 3 and No. 4, No.5 and No. 6, and No.5 and No.7 defined by SEQ ID NOs: 39-45, respectively.

Fragments e and f for the protein coding region of human cytochrome P450 2C19 were also amplified against human cytochrome P450 2C9 gene by the PCR method using the primers No. 8 to 21 having nucleotide sequences with some mutations shown by SEQ ID NOs: 46 to 59. A fragment d for the linker Nos. 1 and 2 having nucleotide sequences shown by SEQ ID NOs: 60 and 61 was obtained by directly synthesizing the DNA to cover the rest of the protein coding region of the human P450 2C19 gene. Thus the fragments covering the whole protein coding region of the human cytochrome P450 2C19 were obtained.

After the fragments a and b were treated with Xhol and BamHI, and with BamHI and PstI, both fragments were simultaneously inserted between the XhoI and PstI sites of the Blue Script(+). The fragment e was treated with Xbal and Xhol and inserted to the Xbal and Xhol sites of the plasmid having the fragments a and bito give a plasmid having the fragments a, b and e.

After the fragment c was treated with Pstl and Kpnl, the resulting fragment was simultaneously inserted with the linker fragment d between the Pstl and EcoRl sites of the Blue Script(+). The resultant plasmid was cut with Pstl and EcoRI to give a fragment containing the fragments c and d. Then this fragment was simultaneously inserted between the fragment f treated with EcoRI to the Pstl and HincII sites of the aforementioned plasmid containing the fragment a, b and e. Thus a plasmid having the whole coding region of the human cytochrome P450 2C19 gene was constructed. The constructed plasmid was cut with HindIII and the resultant fragment was inserted to pAAH5N and pAHRR both of which were treated with HindIII to give a yeast expression plasmid p2C19 for expressing the human P450 2C19 and a yeast expression plasmid p2C19R for simultaneous expression of the human P450 2C19 and yeast NADPH-P450 reductase.

SEQ ID NOs and primer Nos. are as follows:

	SEQ ID No: 39	Primer No. 1
	SEQ ID NO: 40	Primer No. 2
35	SEQ ID NO: 41	Primer No. 5
	SEQ ID NO: 42	Primer No. 4
	SEQ ID NO: 43	Primer No. 5
	SEQ ID NO: 44	Primer No. 6
_	SEQ ID NO: 45	Primer No. 7
40	SEQ ID NO: 46	Primer No. 8
	SEQ ID NO: 47	Primer No. 9
	SEQ ID NO: 48	Primer No. 10
	SEQ ID NO: 49	Primer No. 11
	SEQ ID NO: 50	Primer No. 12
45	SEQ ID NO: 51	Primer No. 13
	SEQ ID NO: 52	Primer No. 14
	SEQ ID NO: 53	Primer No. 15
	SEQ ID NO: 54	Primer No. 16
	SEQ ID NO: 55	Primer No. 17
50	SEQ ID NO: 56	Primer No. 18
	SEQ ID NO: 57	Primer No. 19
	SEQ ID NO: 58	Primer No. 20
	SEQ ID NO: 59	Primer No. 21
	SEQ ID NO: 60	Linker No. 1
5 5	SEQ ID NO: 61	Linker No. 2

Construction of yeast expression plasmids: p2D6 and p2D6R

Fig. 16 shows a method of constructing yeast expression plasmids for human P450 2D6. The protein coding region of 1.3 kb excluding about 200 bp at the 5'-terminal of P450 2D6 gene was divided into two fragments of about 0.4 kb and about 0.9 kb, and the both fragments were amplified by the PCR method. The resultant fragment of about 0.9 kb was cleaved with KpnI and sub-cloned to pUC A. For the 200 bp on the 5'-terminal, three synthetic linkers shown in Fig. 5 were used and two linkers on the 5'-terminal were incorporated into XbaI and PstI sites of a Blue Script(+) vector and then other linkers were incorporated into SmaI and PstI sites. Then fragment of about 0.4 kb obtained by the PCR method was incorporated into the PstI and HincII sites of the plasmid and then cleaved with NspV and XbaI. The resultant fragment was inserted into the plasmid containing the 0.9 kb fragment to ligate the coding region. This was cleaved with HindIII and inserted into pAAH5N and pAHRR vectors to construct a yeast expression plasmid p2D6 for human P450 2D6, and a yeast expression plasmid p2D6R for simultaneous expression of human P450 2D6 and yeast NADPH-P450 reductase.

Then three kinds of human P450 2D6 gene fragments which were different only in a small portion of the nucleotide sequence were obtained in a similar manner as described above and used to construct two kinds of yeast expression plasmids for human P450 2D6, p2D6 Variant 1, p2D6 Variant 2 and p2D6 Variant 3, and three kinds of yeast expression plasmid 2D6R for simultaneous expression of human P450 2D6 yeast and NADPH-P450 reductase, p2D6R Variant 1, p2D6R Variant 2 and p2D6R Variant 3.

Construction of yeast expression plasmid containing artificial fused enzyme gene

An expression plasmid was constructed in accordance with Fig. 17. The Xbal-Xhol fragment was amplified with plasmid p3A4 by using the primers shown in Fig. 4. On the other hand, the Xhol-HindIII fragment of about 2.1 kb was obtained from the plasmid pBFCRI (Japanese Patent Application No. 4-209226) and inserted between the Xhol and HindIII sites of a commercial vector Blue Script(+), followed by digestion with restriction enzymes Xhol and Xbal. These two fragments were simultaneously inserted to the Xbal site of the vector pUCAN, which was then digested with Notl to give a fragment of about 5.6 kb. The desired yeast expression plasmid pF3A4 was obtained by ligating the fragment with the Notl fragment of about 10.5 kb obtained from vector pAAH5N (Japanese Patent Laid-open Publication No. 2-211880). The artificial fused enzyme consists of 1156 amino acid residues of which sequence structure comprising, successively, from the N-terminal end, an entire amino acid sequence (503 residues) of human liver cytochrome P450 3A4, a linker-derived sequence (Ala-Arg-Ala), and a sequence of from the 42nd residue to C-terminal of yeast NADPH-cytochrome P450 reductase.

Preparation of transformed yeast cell

15

35

Saccharomyces cerevisiae AH 22 was inoculated to 1.0 ml of YPD culture medium (1% yeast extract, 2% polypeptone, 2% glucose). After shaken at 30 °C for 18 hours, the yeast cells were collected by centrifugation (5000 x g, 10 min). The resultant cells were suspended in 10 ml of 0.2 M LiCl solution and then centrifuged again (5000 x g, 10 min) to obtain pellets. Then 20 µl of 1 M LiCl solution, 30 µl of 70% polyethylene glycol 4000 and each 10 µ1 solution containing about 1.0 µg of various kinds of yeast expression plasmids for the human P450 molecular species and yeast NADPH-reductase constructed as above were added to the resultant pellets. After sufficiently mixing them, they were incubated at 30 °C for one hour and further stirred after the addition of 140 µl of sterilized water. The solution was plated on SD synthetic culture medium (2.0% glucose, 0.67% nitrogen base w/o amino acids, manufactured by Difco Co., 20 µg/ml of histidine, 2.0% agar) and incubated at 30 °c for three days. Then transformed yeast cells possessing the yeast expression plasmid described above were selected. In this way, various kinds of yeast cells expressing the human P450 molecular species were prepared.

Quantitative measurement of human P450 expressed in yeast

Each 200 ml of culture broth of each kind of yeast cells expressing human P450 molecular species and yeast NADPH-reductase simultaneously or expressing an artificial fused enzyme comprising human P450 molecular species and yeast NADPH-reductase prepared as above (SD synthetic culture medium, cell concentration: about 1.5×10^7 cells/ml) was used to collect the cells. The collected cells were then suspended in 10 ml of 100 mM potassium phosphate buffer solution (pH 7.0) and centrifuged (5000 x g, 10 min) to obtain pellets. Thus obtained pellets were resuspended in 2.0 ml of 100 mM potassium phosphate

buffer solution (pH 7.0) and 1 ml of each of the solutions were poured into two cuvettes. After bubbling carbon monoxide to a sample cuvette, 5 to 10 mg of dithionite was added to both of the cuvettes, and stirred and then difference spectrum at 400-500 nm was measured to calculate the concentration of P450 present in the yeast. The amount of each kind of human P450 species or an artificial fused enzyme in each kind of transformed yeast cells was at a level from about 10⁵ to about 10⁶ molecules/cell.

Preparation of yeast S-9 Mix fraction, cytoplasmic fraction and microsomal fraction

First, 3.8 liter of each kind of culture broth (SD synthetic culture medium, cell concentration: about 1.0 x 10³ cells/ml) of yeast cells expressing human P450 molecular species and yeast NADPH-reductase simultaneously or an artificial fused enzyme comprising human P450 molecular species and yeast NADPH-reductase prepared as above was collected and the resultant cells were suspended in 400 ml of a buffer solution A (10 mM Tris-HCI (pH 7.5), 2 M sorbitol, 0.1 mM DTT, 0.2 mM EDTA), to which 160 mg of Zymolyase 100,000 (Zymolyase 100T) was added, and the obtained solution was incubated at 30 °C for 60 min. Spheroplast obtained by centrifugation (5000 x g, 10 min) was suspended in 100 ml of the buffer solution A and then centrifuged (5000 x g, 10 min). Washing the spheroplast by repeating the same centrifugal operation once again, the spheroplast was finally suspended in 200 ml of a buffer solution (10 mM Tris-HCI (pH 7.5), 0.65 M sorbitol, 0.1 mM DTT), which was then subjected to ultrasonic pulverization (50 W, for 5 min). The cell free extracts were centrifuged (9000 x g, 20 min) and supernatants were recovered to obtain a yeast S-9 Mix fraction. Further, the fraction was centrifuged (125,000 x g, 70 min) to collect precipitates which were suspended again into 10 ml of 0.1 M potassium phosphate buffer solution (pH 7.4) to obtain a microsomal fraction. On the other hand, a cytoplasmic fraction was obtained by recovering the supernatants.

Construction of yeast expression plasmid using GAPDH promoter and its expression in yeast

Fig. 18 shows a method of constructing a yeast expression plasmid using a GAPDH promoter. A HindIII fragment (about 3.0 kb) obtained from pARRN (described in the Japanese Patent Laid-open Publication No. 2-211880) was inserted into a HindIII site of plasmid pUN, which was obtained by cleaving pUC19 with EcoIRI, blunt-ending and ligation with an Notl linker to give pUR. On the other hand, after blunting an Xhol site of plasmid pAAH5 and inserting an Xbal linker, it was cleaved with restriction enzymes Xbal and Sall and the resultant fragment (about 2.2 kb) was inserted to Xbal and Sall sites of pUC19. The three fragments, namely, a fragment (about 2.2 kb) obtained by cleaving the resultant plasmid with Xbal and Pstl, the Xbal-Pstl fragment (about 1.3 kb) cut out from 2 µm DNA of Saccharomyces cerevisiae AH22, and a fragment obtained by cleaving pUR with Pstl were ligated to give a plasmid pURL. Further, the pURL was cleaved with HindIII, blunted and ligated to remove the HindIII site. Then, an NotI fragment (about 1.6 kb) containing GAPDH promoter and terminator (obtained by the method as described in Agric. Biol. Chem., 51, 1641-1647 (1987) and J. Biol. Chem., 267, 16497-16502 (1992)) was ligated to the Notl site of pURL to give a plasmid pURLG. Human P450 2D6 cDNA obtained by the method used for the construction of p2D6 was inserted to a HindIII site of pURLG to obtain a yeast expression plasmid pG2D6R for simultaneous expression of human P450 2D6 and yeast NADPH-P450 reductase. When the plasmid was introduced by the method used in the preparation of transformed yeast cells as above to Saccharomyces cerevisiae AH22, production of human P450 2D6 was observed.

Metabolism of 7-ethoxycoumarin using transformed yeast cells

7-Ethoxycoumarin was added to each 2 ml of the culture media of the transformed yeast cells expressing (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase (SD synthetic culture medium, cell concentration: about 2.0 x 10⁷ cells/ml) so that the final concentration of 7-ethoxycoumarin was 0.5 mM. After incubation at 30 °C for 2 or 5 hours, supernatants were obtained by centrifugation (5000 x g, 10 min). To the supernatants 62.5 µl of 15% TCA (trichloroacetic acid) and 2 ml of chloroform were added and, after well stirring, a chloroform layer was recovered by centrifugation (5000 x g, 10 min), to which 4 ml of 0.01 N NaOH containing 0.1 M NaCl was added and stirred sufficiently and then centrifuged (5000 x g, 10 min). After recovering the supernatants, fluorescence was measured for the supernatant fraction (ex. 366 nm, em 452 nm) to quantitatively measure the reaction product 7-hydroxycoumarin. As a result, 0-deethylation activity for 7-ethoxycoumarin can be observed for all of 11 kinds of the yeast cells expressing the human P450 molecular species. P450 1A1 and P450 286

showed strong activity; and P450 1A2, P450 2E1, P450 2A6 and P450 2D6 showed good activity, while P450 2C8, P450 2C9, P450 3A4, P450 2C18 and P450 2C19 showed moderate activity.

Metabolism of tolbutamide using transformed yeast cells

In the same manner as above, tolbutamide was added to each of the culture solutions of the transformed yeast cells expressing (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase so that the concentration of the compound was 1.0 mM. After incubation at 30 °C for 15 hours, the culture supernatant was then obtained by centrifugation (5000 x g, 10 min). To the supernatant, 2 ml of dichloromethane was added. After sufficient stirring, the dichloromethane layer was recovered by centrifugation (5000 x g, 10 min), and the solvent was evaporated under reduced pressure. The resultant residue was dissolved in 100 µl of acetonitrile, and the solution was analyzed by HPLC under the following conditions. As a result, hydroxylated tolbutamide was detected in the solution of yeast cells expressing human P450 2C8, P450 2C9, P450 2C18 and P450 2C19. The human P450 2C9 showed high activity and 2C19 showed good activity. On the other hand, hydroxylated tolbutamide was not detected in the solution of yeast cells expressing other human P450 than described above.

Conditions for HPLC

Column:

5

ங்Вondapak C18 (manufactured by Waters Co.)

20 Carrier:

10-70% acetonitrile-distilled water (linear concentration gradient for 20 min)

Temperature:

50 ° C

Detection: Injection amount: UV 230 nm 50 μl

5 Metabolism of testosterone using transformed yeast cells

In the same manner as above, testosterone was added to each of the culture solutions of the transformed yeast cells expressing (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase so that the concentration of the compound was 0.05 mM. After incubation at 30 °C for 15 hours, the supernatant was obtained by centrifugation (5000 x g, 10 min). Then 2 ml of dichloromethane was added. After sufficient stirring, the solution was centrifuged again (5000 x g, 10 min). The dichloromethane layer was recovered from the separated layer and the solvent was evaporated under reduced pressure. The resultant residue was dissolved in 100 µl of acetonitrile, and the solution was analyzed by HPLC under the following conditions. As a result, hydroxylated testosterone was detected for yeast cells expressing human P450 1A1, P450 2C8 and P450 3A4. On the other hand, hydroxylate testosterone was not detected for yeast cells expressing other human P450 than described above.

Conditions for HPLC

Column:

μBondapak C18 (manufactured by Waters Co.)

Carrier:

20-70% acetonitrile-distilled water (linear concentration gradient for 25 min)

Temperature:

50 ° C

Detection:

UV 254 nm

Injection amount:

50 μl

Metabolism of chlorzoxazone using transformed yeast cells and microsomal fractions thereof

Chlorzoxazone was added to each of the culture solutions of the transformed yeast cells expressing (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase as above so that the concentration of the compound was 0.5 mM. After incubation at 30 °C for 15 hours, the supernatant was obtained by centrifugation (5000 x g, 10 min). Then 2 ml of dichloromethane was added to the supernatant and vigorously stirred and centrifuged (5000 x g, 10 min). The dichloromethane layer was recovered from the separated layer, then evaporated under reduced pressure. The obtained residue was dissolved in 100 μ l of acetonitrile, and the solution was analyzed by HPLC under the following conditions.

NADPH and chlorzoxazone were added to a microsomal fraction of yeasts expressing (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase prepared as above so that the concentrations of NADPDH and chlorzoxazone were 0.5 mM and 250 μM. Then the

solutions were incubated at 37 °C for 10 min. After that, trichloroacetic acid was added to the solutions so that the concentration of the trichloroacetic acid was about 10% (v/v). Then 2 ml of dichloromethane was added to the solution, and the solution was stirred vigorously and centrifuged (15,000 x g, 5 min). The dichloromethane layer was recovered, and the solvent was removed under reduced pressure. The obtained residue was dissolved in 100 µl of acetonitrile and the solution was subjected to analysis by HPLC under the same conditions as above.

All of the yeast cells expressing eleven human P450 molecular species gave hydroxylated chlorzox-azone. P450 2E1 showed high activity, and P450 1A1, P450 1A2, P450 2A6, P450 2D6 showed good activity, while P450 2C8, 2C9, 2B6, 2C18, 2C19 and 3A4 showed moderate activity.

Ames test using yeast S-9 Mix fraction and microsomal fraction

The Ames test method was in accordance with the customary method described, for example, in Mutat. Res., (1975) 31, 347. 2-Aminoanthrathene which is an arylamine type compound was used as a specimen compound. (1) Rat S-9 Mix supernatant fraction (obtained by homogenizing liver and then subjected to centrifugation (9000 x g. 10 min), manufactured by Kikkoman) containing each kind of rat P450 molecular species at the concentration of 1200 pmol per 1 sample and (2) Yeast S-9 Mix fraction obtained from each kind of yeast cells expressing human P450 or a microsomal fraction prepared from the yeast S-9 Mix fraction were used as a metabolic activation source in the Ames test. As a result, more than 1000 revertant colonies were detected for the compound at 1 µg/plate (90 mm dia.) only in the case of using the yeast S-9 Mix fraction obtained from the yeast cells expressing human P450 1A2 (Saccharomyces cerevisiae AH22/p1A2R) and yeast cells expressing human P450 2E1 (Saccharomyces cerevisiae AH22/p2E1R) and a microsomal fraction prepared from the yeast S-9 Mix fraction, while the amounts of the human P450 molecules of these fractions were only one five hundredth and one thirtieth of the human P450 molecules present in the Rat S-9 mixture.

The human cytochrome P450 1A2 showed high activity, and human P450 2E1 showed only moderate activity. But the revertant colonies were not found for the human cytochrome P450 3A4, 2C8 and 2A6.

Metabolism of acetanilide using transformed yeast cells

Acetanilide was added to each of the culture solutions of the transformed yeast cells expressing (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase, so that the concentration of the compound was 5 mM, and the solution was incubated at 30 °C for 15 hours. Then the solution was centrifuged (5000 x g, 10 min) to give a supernatant. The obtained supernatant solution was subjected to the HPLC analysis under the following conditions. The hydroxylated acetanilide was found for all of the tested eleven human P450 molecular species.

Among them, P450 1A2 and 2D6 showed high activity and P450 1A1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19 and 2E1 showed good activity, while 3A4 showed moderate activity.

Conditions for HPLC

Column:

 $\mu Bondapak$ C18 (manufactured by Waters Co.)

Carrier:

10

30

40

45

Methanol:water:acetic acid = 15:84:1

Temperature:

30 · C

Detection:

UV 254 nm

Injection amount:

50 µl

Metabolism of coumarin using transformed yeast cells

Coumarin was added to 6 ml of each of the culture solutions (SDS synthetic culture medium, cell concentration of about 2.0 x 10⁷ cells/ml) of the transformed yeast cells expressing (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase prepared as above, so that the concentration of the compound was 5 mM, and the solution was incubated at 30 °C for 2 or 5 hours. Then the solution was centrifuged (5000 x g, 10 min) to give a supernatant. 62.5 μ l of 15% trichloroacetic acid and 2 ml of chloroform were added to the obtained supernatant solution, and the resultant solution was stirred well. The chloroform layer was recovered from the separated layer. Then 4 ml of sodium hydroxide solution containing 0.1 M NaCl was added to the solution and centrifuged again (5000 x g, 10 min). The supernatant fraction was recovered and subjected to fluorescence analysis (ex. 366 nm, em. 452 nm) to

measure the 7-hydroxycoumarin formed. The hydroxylation activity was specifically found only for the yeast cells expressing the human P450 2A6, while other yeast cells showed no activity.

Metabolism of debrisoquine using the microsomal fraction of transformed yeast whole cells

NADPDH and [¹⁴C]debrisoquine were added to each microsomal fraction solution of (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase prepared as above, so that the concentration of the compound was 100 µM and that of NADPH is 6 mM, and the solution was incubated at 30 °C for 30 minutes. Then perchlorate was added to the solution, so that the final concentration of the perchlorate was 10% (v/v). The solution was sufficiently stirred and centrifuged (15,000 x g, 15 min) to give the supernatant. The obtained supernatant was subjected to HPLC analysis according to the following conditions.

Microsomal fractions of yeasts expressing P450 1A1 and 2D6 showed good activity for the hydroxylation of the debrisoquine, while those of yeast cells expressing other human P450 molecular species showed no activity.

Conditions for HPLC

Column:

COSMOSIL 5C18 (manufactured by Nakarai Tesq Co.)

Carrier:

A(acetonitrile)/B(20mM Sodium Perchlorate, pH = 2.5)

20

5

Time (minute)	A/B
0-15	9/91
15-30	9/91-25/75 (linear gradient)
30-32	100/0
32-42	9/91

25

30

Temperature:

room temperature

Detector:

RI 14 C

Injection amount:

100 µl

Metabolism of S-mephenytoin using the microsomal fraction of transformed yeast cells

NADPH and [¹⁴C]S-mephenytoin were added to each microsomal fraction solution of (i) human cytochrome P450 molecular species and yeast NADPH-P450 reductase; or (ii) an artificial fused enzyme comprising human cytochrome P450 molecular species and yeast NADPH-P450 reductase prepared as above, so that the concentration of the compound was 25 µM and that of NADPH was 3 mM, and the solution was incubated at 30 °C for 30 minutes. Then the solution was diluted with equal volume of methanol, sufficiently stirred and centrifuged (15,000 x g, 5 min) to give the supernatant. The obtained supernatant was subjected to HPLC analysis according to the following conditions.

Microsomal fractions of yeasts expressing P450 2C19 showed good activity for the hydroxylation of the S-mephenytoin, while those of yeast cells expressing other human P450 molecular species showed no activity.

Conditions for HPLC

Column:

COSMOSIL 5C18 (manufactured by Nakarai Tesq Co.)

Carrier:

A:(Methanol)/(20 mM Potassium phosphate buffer, pH = 7.0) = 40/60

B:Methanol

50

45

Time (minute)	A/B
0-18	100/0
18-20	0/100
20-35	100/0

55

Temperature:

room temperature

Detector:

RI 14 C

Specimen amount:

100 山

1. Results of the hydroxylation activity using human P450 molecular species	286 286		:	- + +++ ++	++ +		+ +	*	++ ++ ++			+++	
	246 286 2C8	2A6 2B6 2C8	:			. + .		*	+	•	•		
	286 286	2A6 2B6	:			+		*					
	246	2A6	:					*	++				
	ואר			++		,					•	•	
		זעז					+		+	+ + +	ı		
	7 4 6		 '	+ + +	ı	+	+	*	‡	1	+ +	ı	
	`	3V4		+	•	¥++ +	+	1	+	ι	1	,	
	136	2E1		+	ı	ı	+++	<u>+</u>	++	1	,	•	
	000	2C9		+	+ + +	1	+	*	÷ +	ı	Þ	•	
Table		142		++	1	,	++	+ + +	++++	ı	1	•	
<u>1</u>				7-Ethoxycoumarin				2.Aminoanthracene		Coumarin	Debrisoguine	S-Mephenytoin	

Metabolism of chlorzoxazone using a mixture of microsomal fractions of transformed yeast cells

Microsomal fractions of yeast expressing cytochrome P450 prepared as above were mixed in the following molar ratios, and the hydroxylation activities of the mixed solutions were measured using

chlorzoxazone.

10

15

System A	System B
35%	33%
25%	5.8%
	5.8%
	5.8%
	5.8%
23%	19%
17%	15%
	2.4%
	3.0%
	2.4%
	2.4%
	35% 25% 23%

The substrate, [14C]chlorzoxazone and NADPH were added to the mixed yeast microsomal fractions, so that the concentrations of the compound and NADPH were 382 μM and 3 mM. The solutions were incubated at 37 °C for 30 min, and then 1 ml of dichloromethane was added thereto to stop the reaction. After stirring, dichloromethane layer was recovered by centrifugation (10,000 x g, 5 min). Then the solvent was evaporated by the stream of nitrogen gas. The obtained residue was dissolved in 54 µl of acetonitrile and 146 µI of water, the solution was subjected to HPLC analysis under the following conditions.

Conditions for HPLC

Column:

COSMOSIL 5C18 (manufactured by Nakarai Tesq Co.)

Carrier:

A(Acetonitrile/Water = 27/73)

B(Acetonitrile)

30

25

Time (minute)	, A/B
0-15	100/0
15-17	0/100
17-25	100/0

Temperature: 35

room temperature

Detector:

RI 14 C

100 µl Injection amount:

The metabolites of chlorzoxazone observed by each of the mixed systems A and B were similar to those metabolites which Guengerich reported based on their experimental results by using human liver microsomal fractions (Guengerich, F.P., Chem. Toxicil., Vol.3, pp.566-573, 1990).

Furthermore, the metabolic turnover numbers were calculated for the human liver microsomal fraction (by Guengerich) and for the present yeast microsomal fractions.

The turnover numbers were calculated to be 1.8 and 1.6 in the mixed systems A and B, respectively. The turnover V for the human liver microsomal fraction was calculated using V_{max}, K_m and substrate concentration [S] described in the literature according to the following manner. The results are shown in Table 2. The values somewhat varied due to the difference of individuals, the lowest value being 1.0 and the highest value being 5.9. The values of V for the mixed system B and A fell within this range, both of which were the same level. It was confirmed that the four kinds of molecular species in system A can well reproduce the metabolic system in human liver in vitro.

A turnover V for human cytochrome P450 at an optional substrate concentration can be calculated by substituting V_{max} and K_{m} described in the literature and substrate concentration [S] of the present example into the Michaelis-Menten's equation:

$$V = (V_{max} \cdot [S])/(K_m + [S])$$

5

10

15

20

25

30

35

40

55

Table 2

Liver sample	Metabolic turnover V (product nmol/nmo P450/min)							
#1001	5.9							
KDL 14	2.2							
KDL 21	1.7							
KDL 23	3.0							
KDL 27	5.0							
H 10	1.1							
H 11	1.0							
H 12	4.2							
H 13	3.3							
H 14	2.1							
H 15	4.3							
H 16	4.0							
H 17	3.6							
i H 18	3.4							

Metabolism of debrisoquine using mixture of microsomal fractions of transformed yeast cells

Microsomal fractions of yeasts expressing human cytochrome P450 were mixed, and the hydroxylation activity of the mixed fraction was measured using debrisoquine. The mixing molar ratio of the human cytochrome P450 molecular species were as follows:

P450	Molar ratio
3A4	33%
2C9	5.8%
2C8	5.8%
2C18	5.8%
2C19	5.8%
1A2	19%
2E1	15%
1A1	2.4%
2B6	2.4%
2D6	2.4%

The substrate debrisoquine and NADPH were added to the mixed microsomal fraction solutions, so that the concentrations were 100 μ M for the NADPH and 6 mM for the compound. After the mixture was incubated at 37 °C for 30 min, 50 μ I of 60% perchlorate was added to the solution to stop the reaction. The concentration of the perchlorate was finally 12.5% (v/v). After vigorous stirring, the mixture was centrifuged (15,000 x g, 5 min) to recover the supernatant, which was subjected to HPLC analysis under the same conditions used for analyzing the metabolites of debrisoquine.

The metabolites well coincided with the metabolites which Kronbach reported based on the experiments to metabolize the debrisoquine using the human liver microsome (Methods in Enzymology, Vol.206, pp.509-517, 1991).

Metabolism of S-mephenytoin using mixture of microsomal fractions of transformed yeast cells

Microsomal fractions of yeasts expressing various human cytochrome P450 prepared were mixed, and the hydroxylation activity of the mixed fraction was measured for S-mephenytoin. The mixing ratio of the human cytochrome P450 molecular species was the same as that of the mixing system B as described above.

The substrate, [14 C]S-mephenytoin and NADPH were added to the mixed microsomal fraction solutions, so that the concentrations were 28 μ M for the NADPH and 6 mM for the compound. After the mixture was incubated at 37 °C for 30 min, 250 μ I of methanol was added to the solution to stop the reaction. After vigorous stirring, the mixture was centrifuged (15,000 x g, 5 min) to recover the supernatant, which was subjected to HPLC analysis under the same conditions used for the hydroxylation of S-mephenytoin using microsomal fraction. The metabolites obtained well coincided with the metabolites which Goldstein reported based on the experiments to metabolize the S-mephenytoin using the human liver microsome (Biochemistry, Vol.33, pp.1743-1752, 1994).

10 SEQUENCE LISTING (1) GENERAL INFORMATION: (i) APPLICANT: 15 (A) NAME: Sumitomo Chemical Company, Limited (B) STREET: 5-33, Kitahama 4-chome, Chuo-ku, (C) CITY: Osaka-shi, Osaka-fu (E) COUNTRY: Japan (F) POSTAL CODE (ZIP): none 20 (ii) TITLE OF INVENTION: METHOD FOR SAFETY EVALUATION OF CHEMICAL COMPOUND USING RECOMBINANT YEAST EXPRESSING HUMAN CYTOCHROME P450 (iii) NUMBER OF SEQUENCES: 61 25 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO) (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: JP 201120/1993 (B) FILING DATE: 20-JUL-1993 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: JP 180246/1993 35 (B) FILING DATE: 21-JUL-1993 (vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: JP 208279/1993 (B) FILING DATE: 30-JUL-1993 40 (2) INFORMATION FOR SEQ ID NO: 1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1551 base pairs (B) TYPE: nucleic acid 45 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ix) FEATURE: (A) NAME/KEY: CDS 50 (B) LOCATION: 1..1548 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATG GCA TTG TCC CAG TCT GTT CCC TTC TCG GCC ACA GAG CTC CTC CTG

Met Ala Leu Ser Gln Ser Val Pro Phe Ser Ala Thr Glu Leu Leu

5

55

1

	GCC Ala	TCT Ser	GCC Ala	ATC Ile 20	TTC Phe	TGC Cys	CTG Leu	GTA Val	TTC Phe 25	TGG Trp	GTG Val	CTC Leu	AAG Lys	GGT Gly 30	TTG Leu	AGG Arg		96
5	CCT Pro	CGG Arg	GTC Val 35	CCC Pro	AAA Lys	GGC GGC	CTG Leu	AAA Lys 40	AGT Ser	CCA Pro	CCA Pro	GAG Glu	CCA Pro 45	TGG Trp	GGC Gly	TGG Trp		144
10	CCC Pro	TTG Leu 50	CTC Leu	GGG Gly	CAT His	GTG Val	CTG Leu 55	ACC Thr	CTG Leu	GGG Gly	AAG Lys	AAC Asn 60	CCG Pro	CAC His	CTG Leu	GCA Ala		192
	CTG Leu 65	TCA Ser	AGG Arg	ATG Met	AGC Ser	CAG Gln 70	CGC Arg	TAC Tyr	GGG Gly	GAC Asp	GTC Val 75	CTG Leu	CAG Gln	ATC Ile	CGC Arg	ATT Ile 80		240
15	GGC Gly	TCC Ser	ACG Thr	CCC Pro	GTG Val 85	CTG Leu	GTG Val	CTG Leu	AGC Ser	CGC Arg 90	CTG Leu	GAC Asp	ACC Thr	ATC Ile	CGG Arg 95	CAG Gln		288
20	GCC Ala	CTG Leu	GTG Val	CGG Argi	CAG Gln	GGC Gly	GAC Asp	GAT Asp	TTC Phe 105	AAG Lys	GGC Gly	CGG Arg	CCT Pro	GAC Asp 110	CTC Leu	TAC Tyr	٠	336
	ACC Thr	TCC Ser	ACC Thr 115	CTC Leu	ATC Ile	ACT Thr	GAT Asp	GGC Gly 120	CAG Gln	AGC Ser	TTG Leu	ACC Thr	TTC Phe 125	AGC Ser	ACA Thr	GAC Asp		384
25	TCT Ser	GGA Gly 130	CCG Pro	GTG Val	TGG Trp	GCT Ala	GCC Ala 135	CGC Arg	CGG Arg	CGC Arg	CTG Leu	GCC Ala 140	CAG Gln	AAT Asn	GCC Ala	CTC Leu		432
30	AAC Asn 145	ACC Thr	TTC Phe	TCC Ser	ATC Ile	GCC Ala 150	TCT Ser	GAC Asp	CCA Pro	GCT Ala	TCC Ser 155	TCA Ser	TCC Ser	TCC Ser	TGC Cys	TAC Tyr 160		480
	CTG Leu	GAG Glu	GAG Glu	CAT His	GTG Val 165	AGC Ser	AAG Lys	GAG Glu	GCT Ala	AAG Lys 170	GCC Ala	CTG Leu	ATC Ile	AGC Ser	AGG Arg 175	TTG Leu		528
35	CAG Gln	GAG Glu	CTG Leu	ATG Met 180	GCA Ala	GGG Gly	CCT Pro	GGG Gly	CAC His 185	TTC Phe	GAC Asp	CCT Pro	TAC Tyr	AAT Asn 190	CAG Gln	GTG Val		576
40	GTG Val	GTG Val	TCA Ser 195	GTG Val	GCC Ala	AAC Asn	GTC Val	ATT Ile 200	GGT Gly	GCC Ala	ATG Met	TGC Cys	TTC Phe 205	GGA Gly	CAG Gln	CAC His		624
	TTC Phe	CCT Pro 210	GAG Glu	AGT Ser	AGC Ser	GAT Asp	GAG Glu 215	ATG Met	CTC Leu	AGC Ser	CTC Leu	GTG Val 220	AAG Lys	AAC Asn	ACT Thr	CAT His		672
45	GAG Glu 225	TTC Phe	GTG Val	GAG Glu	ACT Thr	GCC Ala 230	TCC Ser	TCC Ser	GGG Gly	AAC Asn	CCC Pro 235	CTG Leu	GAC Asp	TTC Phe	TTC Phe	CCC Pro 240		720
	ATC Ile	CTT Leu	CGC Arg	TAC Tyr	CTG Leu 245	CCT Pro	AAC Asn	CCT Pro	GCC Ala	CTG Leu 250	Gln	AGG Arg	TTC Phe	AAG Lys	GCC Ala 255	Phe		768

55

	AAC Asn	CAG Gln	AGG Arg	TTC Phe 260	CTG Leu	TGG Trp	TTC Phe	CTG Leu	CAG Gln 265	AAA Lys	ACA Thr	GTC Val	CAG Gln	GAG Glu 270	CAC His	TAT Tyr		816
5	CAG Gln	GAC Asp	TTT Phe 275	GAC Asp	AAG Lys	AAC Asn	AGT Ser	GTC Val 280	CGG Arg	GAC Asp	ATC Ile	ACG Thr	GGT Gly 285	GCC Ala	CTG Leu	TTC Phe		864
10	AAG Lys	CAC His 290	AGC Ser	AAG Lys	AAG Lys	GGG Gly	CCT Pro 295	AGA Arg	GCC Ala	AGC Ser	GGC Gly	AAC Asn 300	CTC Leu	ATC Ile	CCA Pro	CAG Gln		912
	GAG Glu 305	AAG Lys	ATT Ile	GTC Val	AAC Asn	CTT Leu 310	GTC Val	AAT Asn	GAC Asp	ATC Ile	TTT Phe 315	GGA Gly	GCA Ala	GGA Gly	TTT Phe	GAC Asp 320		960
15	ACA Thr	GTC Val	ACC Thr	ACA Thr	GCC Ala 325	ATC Ile	TCC Ser	TGG Trp	AGC Ser	CTC Leu 330	ATG Met	TAC Tyr	CTT Leu	GTG Val	ACC Thr 335	AAG Lys		1008
20	CCT Pro	GAG Glu	ATA Ile	CAG Gln 340	AGG Arg	AAG Lys	ATC Ile	CAG Gln	AAG Lys 345	GAG Glu	CTG Leu	GAC Asp	ACT Thr	GTG Val 350	ATT Ile	GGC Gly		1056
20	AGG Arg	GAG Glu	CGG Arg 355	CGG Arg	CCC Pro	.CGG Arg	CTC Leu	TCT Ser 360	GAC Asp	AGA Arg	CCC Pro	CAG Gln	CTG Leu 365	CCC Pro	TAC Tyr	TTG Leu		1104
25	GAG Glu	GCC Ala 370	TTC Phe	ATC Ile	CTG Leu	GAG Glu	ACC Thr 375	TTC Phe	CGA Arg	CAC His	TCC Ser	TCC Ser 380	TTC Phe	TTG Leu	CCC Pro	TTC Phe		1152
30	ACC Thr 385	ATC Ile	CCC Pro	CAC His	AGC Ser	ACA Thr 390	ACA Thr	AGG Arg	GAC Asp	ACA Thr	ACG Thr 395	CTG Leu	AAT Asn	GGC Gly	TTC Phe	TAC Tyr 400	P. gov	1200
30	ATC Ile	CCC Pro	AAG Lys	AAA Lys	TGC Cys 405	Cys	GTC Val	TTC Phe	GTA Val	AAC Asn 410	CAG Gln	TGG Trp	CAG Gln	GTC Val	AAC Asn 415	CAT His		1248
35	GAC Asp	CCA Pro	GAG Glu	CTG Leu 420	Trp	GAG Glu	GAC Asp	CCC Pro	TCT Ser 425	GAG Glu	TTC Phe	CGG Arg	CCT Pro	GAG Glu 430	CGG Arg	TTC Phe		1296
40	CTC Leu	ACC Thr	GCC Ala 435	Asp	GGC Gly	ACT Thr	GCC Ala	ATT Ile 440	Asn	AAG Lys	CCC Pro	TTG Leu	AGT Ser 445	Glu	AAG Lys	ATG Met		1344
40	ATG Met	CTG Leu 450	Phe	GGC Gly	ATG Met	GGT Gly	AAG Lys 455	Arg	CGG Arg	TGT Cys	ATC Ile	GGG Gly 460	Glu	GTC Val	CTG Leu	GCC Ala		1392
45	AAG Lys 465	Trp	GAG Glu	ATC Ile	TTC Phe	CTC Leu 470	Phe	CTG Leu	GCC Ala	ATC Ile	CTG Leu 475	Leu	CAG Gln	CAA Gln	CTG Leu	GAG Glu 480		1440

										GAC Asp 490							1488
5										CAT His							1536
10			ATC Ile 515		TGA												1551
	(2)	INFO	ORMAT	поп	FOR	SEQ	ID N	10: 2	2:								
15			() ()	A) LE 3) TY	ENGTI (PE :		l6 an	mino cid	rics acid								
		(ii)	MOI	LECUI	LE TY	PE:	prot	cein								•	
20		(xi)) SE(QUENC	CE DE	ESCRI	[PTIC	ON: 3	SEQ :	ID NO): 2	:					
	Met 1	Ala	Leu	Ser	Gln 5	Ser	Val	Pro	Phe	Ser 10	Ala	Thr	Glu	Leu	Leu 15	Leu	
25	Ala	Ser	Ala	Ile 20	Phe	Cys	Leu	Val	Phe 25	Trp	Val	Leu	Lys	Gly 30	Leu	Arg	
	Pro	Arg	Val 35	Pro	Lys	Gly	Leu	Lys 40	Ser	Pro	Pro	Glu	Pro 45	Trp	Gly	Trp	
30		50		-			55			Gly	-	60					
	65					70				Asp	75					80	
35	_				85					Arg 90					95		
	Ala	Leu	Val	Arg 100	Gln	Gly	Asp	Asp	Phe 105	Lys	Gly	Arg	Pro	Asp 110	Leu	Tyr	
40	Thr	Ser	Thr 115	Leu	Ile	Thr	Asp	Gly 120	Gln	Ser	Leu	Thr	Phe 125	Ser	Thr	Asp	
	Ser	Gly 130	Pro	Val	Trp	Ala	Ala 135	Arg	Arg	Arg	Leu	Ala 140	Gln	Asn	Ala	Leu	
45	Asn 145	Thr	Phe	Ser	Ile	Ala 150	Ser	Asp	Pro	Ala	Ser 155	Ser	Ser	Ser	Cys	Tyr 160	
	Leu	Glu	Glu	His	Val 165	Ser	Lys	Glu	Ala	Lys 170	Ala	Leu	Ile	Ser	Arg 175	Leu	
50	Gln	Glu	Leu	Met 180	Ala	Gly	Pro	Gly	His 185	Phe	Asp	Pro	Tyr	Asn 190	Gln	Val	

	Val	Val	Ser 195	Val	Ala	Asn	Val	Ile 200	Gly	Ala	Met	Cys	Phe 205	Gly	Gln	His
5	Phe	Pro 210	Glu	Ser	Ser	qaA	Glu 215	Met	Leu	Ser	Leu	Val 220	Lys	Asn	Thr	His
	Glu 225	Phe	Val	Glu	Thr	Ala 230	Ser	Ser	Gly	Asn	Pro 235	Leu	Asp	Phe	Phe	Pro 240
10	Ile	Leu	Arg	Tyr	Leu 245	Pro	Asn	Pro	Ala	Leu 250	Gln	Arg	Phe	Lys	Ala 255	Phe
	Asn	Gln	Arg	Phe 260	Leu	Trp	Phe	Leu	Gln 265	Lys	Thr	Val	Gln	Glu 270	His	Tyr
15	Gln	Asp	Phe 275	Asp	Lys	Asn	Ser	Val 280	Arg	Asp	Ile	Thr	Gly 285	Ala	Leu	Phe
	Lys	His 290	Ser	ГÀ	Lys	Gly	Pro 295	Arg	Ala	Ser	Gly	Asn 300	Leu	Ile	Pro	Gln
20	Glu 305	Lys	Ile	Val	Asn	Leu 310	Val	Asn	Asp	Ile	Phe 315	Gly	Ala	Gly	Phe	Asp 320
25	Thr	Val	Thr	Thr	Ala 325	Ile	Ser	Trp	Ser	Leu 330	Met	Tyr	Leu	Val	Thr 335	Lys
	Pro	Glu	Ile	Gln 340	Arg	Lys	Ile	Gln	Lys 345	Glu	Leu	Asp	Thr	Val 350	Ile	Gly
30	Arg	Glu	Arg 355	Arg	Pro	Arg	Leu	Ser 360	Asp	\Arg	Pro	Gln	Leu 365	Pro	Tyr	Leu
	Glu	Ala 370	Phe	Ile	Leu	Glu	Thr 375	Phe	Arg	His	Ser	Ser 380	Phe	Leu	Pro	Phe
35	Thr 385	Ile	Pro	His	Ser	Thr 390	Thr	Arg	Asp	Thr	Thr 395	Leu	Asn	Gly	Phe	Tyr 400
					405			Phe		410					415	
40				420				Pro	425					430		
	Leu	Thr	Ala 435		Gly	Thr	Ala	Ile 440		Lys	Pro	Leu	Ser 445	Glu	Lys	Met,
45	Met	Leu 450		Gly	Met	Gly	Lys 455	Arg	Arg	Cys	Ile	Gly 460	Glu	Val	Leu	Ala
	Lys 465		Glu	Ile	Phe	Leu 470		. Leu	Ala	Ile	475	Leu	Gln	Gln	Leu	Glu 480
50	Phe	Ser	· Val	. Pro	Pro 485		val	Lys	. Val	. Asp	Leu)	Thr	Pro	Ile	Tyr 495	Gly

	Leu	Thr	Met	Lys 500	His	Ala	Arg	Cys	Glu 505	His	Val	Gln	Ala	Arg 510	Leu	Arg	
5	Phe	Ser	Ile 515	Asn	١,												
	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	10: 3	3:								
10		(i)	(E	L) LE 3) TY 2) SI	NGTH PE: RANI	i: 14 nucl EDNE	_	ase acio doub	pair i	rs							
15		(ix)		A) NA	ME/I	KEY:	CDS 1	L 4 70									
		(xi)	SEC	UENC	CE DI	ESCR	PTIC	ом: 5	SEQ 1	D NO): 3	:				٠	
20	ATG Met 1	GAT Asp	TCT Ser	ATT Ile	GTG Val	TCC Ser	CTT Leu	GTG Val	CTC Leu	TGT Cys 10	CTC Leu	TCA Ser	TGT Cys	TTG Leu	CTT Leu 15	CTC Leu	48
25	CTT Leu	TCA Ser	CTC Leu	TGG Trp 20	AGA Arg	CAG Gln	AGC Ser	TCT Ser	GGG Gly 25	AGA Arg	GGA Gly	AAA Lys	CTC Leu	CCT Pro 30	CCT Pro	GGC	96
23	CCC Pro	ACT Thr	CCT Pro 35	CTC Leu	CCA Pro	GTG Val	ATT Ile	GGA Gly 40	AAT Asn	ATC Ile	CTA Leu	CAG Gln	ATA Ile 45	GGT Gly	ATT Ile	AAG Lys 🏑	144
30	GAC Asp	ATC Ile 50	AGC Ser	AAA Lys	TCC Ser	TTA Leu	ACC Thr 55	AAT Asn	CTC Leu	TCA Ser	AAG Lys	GTC Val 60	TAT Tyr	GGC Gly	CCT Pro	GTG Val	192
25	TTC Phe 65	ACT Thr	CTG Leu	TAT Tyr	TTT Phe	GGC Gly 70	CTG Leu	AAA Lys	CCC Pro	ATA Ile	GTG Val 75	GTG Val	CTG Leu	CAT His	GGA Gly	TAT Tyr 80	240
35	GAA Glu	GCA Ala	GTG Val	AAG Lys	GAA Glu 85	GCC Ala	CTG Leu	ATT Ile	GAT Asp	CTT Leu 90	GGA Gly	GAG Glu	GAG Glu	TTT Phe	TCT Ser 95	GGA Gly	288
40	AGA Arg	Gly	Ile	Phe	Pro	Leu	Ala	Glu	AGA Arg 105	Ala	Asn	Arg	Gly	P'ne	GGA Gly	ATT Ile .	336
	GTT Val	TTC Phe	AGC Ser 115	AAT Asn	GGA Gly	AAG Lys	AAA Lys	TGG Trp 120	AAG Lys	GAG Glu	ATC Ile	CGG Arg	CGT Arg 125	Phe	TCC Ser	CTC Leu	384
45	ATG Met	ACG Thr 130	Leu	CGG Arg	AAT Asn	TTT Phe	GGG Gly 135	Met	GGG Gly	AAG Lys	AGG Arg	AGC Ser 140	ATT	GAG Glu	GAC Asp	CGT Arg	432
50																	

											GAG Glu 155							480
5	GCC Ala	TCA Ser	CCC Pro	TGT Cys	GAT Asp 165	CCC Pro	ACT Thr	TTC Phe	ATC Ile	CTG Leu 170	GGC Gly	TGT Cys	GCT Ala	CCC Pro	TGC Cys 175	AAT Asn		528
10	GTG Val	ATC Ile	TGC Cys	TCC Ser 180	ATT Ile	ATT Ile	TTC Phe	CAT His	AAA Lys 185	CGT Arg	TTT Phe	GAT Asp	TAT Tyr	AAA Lys 190	GAT Asp	CAG Gln		576
											GAA Glu							624
15	AGC Ser	AGC Ser 210	CCC Pro	TGG Trp	ATC Ile	CAG Gln	ATC Ile 215	TGC Cys	AAT Asn	AAT Asn	TTT Phe	TCT Ser 220	CCT Pro	ATC Ile	ATT Ile	GAT Asp		672
20	TAC Tyr 225	TTC Phe	CCG Pro	GGA Gly	ACT Thr	CAC His 230	AAC Asn	AAA Lys	TTA Leu	CTT Leu	AAA Lys 235	AAC Asn	GTT Val	GCT Ala	TTT Phe	ATG Met 240		720
											CAC His							768
25											TTC Phe							816
30	AAG Lys	GAA Glu	AAG Lys 275	CAC His	AAC Asn	CAA Gln	CCA Pro	TCT Ser 280	GAA Glu	TTT Phe	ACT Thr	ATT Ile	GAA Glu 285	AGC Ser	TTG Leu	GAA Glu	r.	864
											ACA Thr							912
35	ACC Thr 305	CTG Leu	AGA Arg	TAT Tyr	GCT Ala	CTC Leu 310	CTT Leu	CTC Leu	CTG Leu	CTG Leu	AAG Lys 315	CAC His	CCA Pro	GAG Glu	GTC Val	ACA Thr 320		960
40	GCT Ala	AAA Lys	GTC Val	CAG Gln	GAA Glu 325	GAG Glu	ATT Ile	GAA Glu	CGT Arg	GTG Val 330	ATT Ile	GGC Gly	AGA Arg	AAC Asn	CGG Arg 335	AGC Ser		1008
											TAC Tyr							1056
45	CAC His	GAG Glu	GTC Val 355	CAG Gln	AGA Arg	TAC Tyr	ATT Ile	GAC Asp 360	CTT Leu	CTC Leu	CCC Pro	ACC Thr	AGC Ser 365	CTG Leu	CCC Pro	CAT His		1104
	GCA Ala	GTG Val 370	ACC Thr	TGT Cys	GAC Asp	ATT Ile	AAA Lys 375	TTC Phe	AGA Arg	AAC Asn	TAT Tyr	CTC Leu 380	Ile	CCC Pro	AAG Lys	GGC Gly		1152

	ACA Thr 385	ACC Thr	ATA Ile	TTA Leu	ATT Ile	TCC Ser 390	CTG Leu	ACT Thr	TCT Ser	GTG Val	CTA Leu 395	CAT His	GAC Asp	AAC Asn	AAA Lys	GAA Glu 400		1200
5	TTT Phe	CCC Pro	AAC Asn	CCA Pro	GAG Glů 405	ATG Met	TTT Phe	GAC Asp	CCT Pro	CAT His 410	CAC His	TTT Phe	CTG Leu	GAT Asp	GAA Glu 415	GGT Gly		1248
10	GGC Gly	AAT Asn	TTT Phe	AAG Lys 420	AAA Lys	AGT Ser	AAA Lys	TAC Tyr	TTC Phe 425	ATG Met	CCT Pro	TTC Phe	TCA Ser	GCA Ala 430	GGA Gly	AAA Lys		1296
•		ATT Ile																1344
15	CTG Leu	ACC Thr 450	TCC Ser	ATT Ile	TTA Leu	CAG Gln	AAC Asn 455	TTT Phe	AAC Asn	CTG Leu	AAA Lys	TCT Ser 460	CTG Leu	GTT Val	GAC Asp	CCA Pro		1392
20	AAG Lys 465	AAC Asn	CTT Leu	GĄÇ Asp	ACC Thr	ACT Thr 470	CCA Pro	GTT Val	GTC Val	AAT Asn	GGA Gly 475	TTT Phe	GCC Ala	TCT Ser	GTG Val	CCG Pro 480	•	1440
		TTC Phe									TGA							1473
25	(2)	INFO	ORMA'	NOI	FOR	SEQ	ID N	NO: 4	l :									
30			(<u>)</u>	A) LE 3) T	ENGTI YPE :	H: 49 amir		nino cid	rics acio								<i>6</i>	
		(ii)) MOI	LECUI	LE T	YPE:	prot	ein										
				-					SEQ :								•	
35	Met 1	Asp	Ser	Ile	Val 5	Ser	Leu	Val	Leu	Cys 10	Leu	Ser	Cys	Leu	Leu 15	Leu		
	Leu	Ser	Leu	Trp 20	Arg	Gln	Ser	Ser	Gly 25	Arg	Gly	Lys	Leu	Pro 30	Pro	Gly		
40	Pro	Thr	Pro 35	Leu	Pro	Val	Ile	Gly 40	Asn	Ile	Leu	Gln	Ile 45	Gly	Ile	Lys		
	Asp	Ile 50	Ser	Lys	Ser	Leu	Thr 55	Asn	Leu	Ser	Lys	Val 60	Tyr	Gly	Pro	Val		:
45	Phe 65	Thr	Leu	Tyr	Phe	Gly 70	Leu	Lys	Pro	Ile	Val 75	Val	Leu	His	Gly	Tyr 80		
	Glu	Ala	Val	Lys	Glu 85	Ala	Leu	Ile	Asp	Leu 90	Gly	Glu	Glu	Phe	Ser 95	Gly		

5

	Arg	Gly	Ile	Phe 100	Pro	Leu	Ala	Glu	Arg 105	Ala	Asn	Arg	Gly	Phe 110	Gly	Ile
5	Val	Phe	Ser 115	Asn	Gly	Lys 	Lys	Trp 120	Lys	Glu	Ile	Arg	Arg 125	Phe	Ser	Leu
	Met	Thr 130	Leu	Arg	Asn	Phe	Gly 135	Met	Gly	Lys	Arg	Ser 140	Ile	Glu	Asp	Arg
10	Val 145	Gln	Glu	Glu	Ala	Arg 150	Cys	Leu	Val	Glu	Glu 155	Leu	Arg	Lys	Thr	Lys 160
·	Ala	Ser	Pro	Cys	Asp 165	Pro	Thr	Phe	Ile	Leu 170	Gly	Cys	Ala	Pro	Cys 175	Asn
15	Val	Ile	Cys	Ser 180	Ile	Ile	Phe	His	Lys 185	Arg	Phe	Asp	Tyr	Lys 190	Asp	Gln
	Gln	Phe	Leu 195	Asn i	Leu	Met	Glu	Lys 200	Leu	Asn	Glu	Asn	Ile 205	Lys	Ile	Leu
20	Ser	Ser 210	Pro	Trp	Ile	Gln	Ile 215	Cys	Asn	Asn	Phe	Ser 220	Pro	Ile	Ile	Asp
	Tyr 225	Phe	Pro	Gly	Thr	His 230	Asn	Lys	Leu	Leu	Lys 235	Asn	Val	Ala	Phe	Met 240
25	Lys	Ser	Tyr	Ile	Leu 245	Glu	Lys	Val	Lys	Glu 250	His	Gln	Glu	Ser	Met 255	qaA
	Met	Asn	Asn	Pro 260	Gln	Asp	Phe	Ile	Asp 265	Cys	Phe	Leu	Met	Lys 270	Met	Glu
30	Lys	Glu	Lys 275	His	Asn	Gln	Pro	Ser 280	Glu	Phe	Thr	Ile	Glu 285	Ser	Leu	Glu
	Asn	Thr 290	Ala	Val	Asp	Leu	Phe 295	Gly	Ala	Gly	Thr	Glu 300	Thr	Thr	Ser	Thr
35	Thr 305		Arg	Tyr	Ala	Leu 310	Leu	Leu	Leu	Leu	Lys 315	His	Pro	Glu	Val	Thr 320
	Ala	Lys	Val	Gln	Glu 325	Glu	Ile	Glu	Arg	Val 330	Ile	Gly	Arg	Asn	Arg 335	Ser
40	Pro	Cys	Met				Ser	His	Met 345	Pro	Tyr	Thr	Asp	Ala 350	Val	Val
	His	Glu	Val 355	Gln	Arg	Tyr	Ile	Asp 360	Leu	Leu	Pro	Thr	Ser 365	Leu	Pro	His
4 5	Ala	Val 370		Cys	Asp	Ile	Lys 375		Arg	Asn	Tyr	Leu 380	Ile	Pro	Lys	Gly
	Thr 385		Ile	Ľеu	Ile	Ser 390		Thr	Ser	Val	Leu 395		Asp	Asn	Lys	Glu 400
50	Phe	Pro	Asn	Pro	Glu 405		Phe	Asp	Pro	His 410		Phe	Leu	Asp	Glu 415	Gly

	Gly	Asn	Phe	Lys 420	Lys	Ser	Lys	Tyr	Phe 425	Met	Pro	Phe	Ser	Ala 430	Gly	Lys	
5	Arg	Ile	Cys 435	Val	Gly ""	Glu	Ala	Leu 440	Ala	Gly	Met	Glu	Leu 445	P'ne	Leu	Phe	
	Leu	Thr 450	Ser	Ile	Leu	Gln	Asn 455	Phe	Asn	Leu	Lys	Ser 460	Leu	Val	Asp	Pro	
10	Lys 465	Asn	Leu	Asp	Thr	Thr 470	Pro	Val	Val	Asn	Gly 475	Phe	Ala	Ser	Val	Pro 480	
٠	Pro	Phe	Tyr	Gln	Leu 485	Cys	Phe	Ile	Pro	Val 490							
15	(2)		SEC (1	TION QUENC A) LE B) TY C) ST C) TO	CE CI ENGTI (PE: [RANI	IARAC I: 14 nucl	CTERI 182 l Leic ESS:	STIC pase acid doub	CS: pair	rs							
20			(<i>I</i>	ATURI A) NA B) LO	AME/I	ON:	11										
25	ΔTG			-					SEQ :				TGG	GCG	GCC	TTC ·;	48
									Ala								
30									CAG Gln 25								96
35									ATC Ile								144
									TTC Phe								192
40									GGC Gly								240
45									GCG Ala								288
									GCG Ala 105								336
50																	

	GGA Gly	ATC Ile	ATT Ile 115	TTT Phe	AAT Asn	AAT Asn	GGA Gly	CCT Pro 120	ACC Thr	TGG Trp	AAG Lys	GAC Asp	ATC Ile 125	CGG Arg	CGG Arg	TTT Phe		384
5	TCC Ser	CTG Leu 130	ACC Thr	ACC Thr	CTC Leu	CGG Arg	AAC Asn 135	TAT Tyr	GGG Gly	ATG Met	GGG Gly	AAA Lys 140	ČAG Gln	GGC Gly	AAT Asn	GAG Glu		432
10	Ser 145	Arg	Ile	Gln	Arg	Glu 150	Ala	His	Phe	CTG Leu	Leu 155	Glu	Ala	Leu	Arg	Lys 160		480
	ACC Thr	CAA Gln	GGC Gly	CAG Gln	CCT Pro 165	TTC Phe	GAC Asp	CCC Pro	ACC Thr	TTC Phe 170	CTC Leu	ATC Ile	GGG Gly	TGC Cys	GCG Ala 175	CCC Pro		528
15	TGC Cys	AAC Asn	GTC Val	ATA Ile 180	GCC Ala	GAC Asp	ATC Ile	CTC Leu	TTC Phe 185	CGC Arg	AAG Lys	CAT His	TTT Phe	GAC Asp 190	TAC Tyr	AAT Asn		576
20	GAT Asp	GAG Glu	AAG Lys 195	TTT Phe	ĊTA Leu	AGG Arg	CTG Leu	ATG Met 200	TAT Tyr	TTG Leu	TTT Phe	AAT Asn	GAG Glu 205	AAC Asn	TTC Phe	CAC His		624
	CTA Leu	CTC Leu 210	AGC Ser	ACT Thr	CCC Pro	TGG Trp	CTC Leu 215	CAG Gln	CTT Leu	TAC Tyr	AAT Asn	AAT Asn 220	TTT Phe	CCC Pro	AGC Ser	TTT Phe		672
25	CTA Leu 225	CAC His	TAC Tyr	TTG Leu	CCT Pro	GGA Gly 230	AGC Ser	CAC His	AGA Arg	AAA Lys	GTC Val 235	ATA Ile	AAA Lys	AAT Asn	GTG Val	GCT Ala 240	ģ.	720
30	GAA Glu	GTA Val	AAA Lys	GAG Glu	TAT Tyr 245	GTG Val	TCT Ser	GAA Glu	AGG Arg	GTG Val 250	AAG Lys	GAG Glu	CAC His	CAT His	CAA Gln 255	TCT Ser		768
	CTG Leu	GAC Asp	CCC Pro	AAC Asn 260	TGT Cys	CCC Pro	CGG Arg	GAC Asp	CTC Leu 265	ACC Thr	GAC Asp	TGC Cys	CTG Leu	CTC Leu 270	GTG Val	GAA Glu		816
35	ATG Met	GAG Glu	AAG Lys 275	GAA Glu	AAG Lys	CAC His	AGT Ser	GCA Ala 280	GAG Glu	CGC Arg	TTG Leu	TAC Tyr	ACA Thr 285	ATG Met	GAC Asp	GGT Gly		864
40	ATC Ile	ACC Thr 290	Val	ACT Thr	GTG Val	GCC Ala	GAC Asp 295	CTG Leu	TTC Phe	TTT Phe	GCG Ala	GGG Gly 300	ACA Thr	GAG Glu	ACC Thr	ACC Thr		912
	AGC Ser 305	Thr	ACT Thr	CTG Leu	AGA Arg	TAT Tyr 310	Gly	CTC Leu	CTG Leu	ATT	CTC Leu 315	ATG Met	AAA Lys	TAC Tyr	CCT Pro	GAG Glu 320		960
45	ATC Ile	GAA Glu	GAG Glu	AAG Lys	CTC Leu 325	His	GAA Glu	GAA Glu	ATT Ile	GAC Asp 330	Arg	GTG Val	ATT Ile	GGG Gly	CCA Pro 335	Ser		1008

	CGA Arg	ATC Ile	CCT Pro	GCC Ala 340	ATC Ile	AAG Lys	GAT Asp	AGG Arg	CAA Gln 345	GAG Glu	ATG Met	CCC Pro	TAC Tyr	ATG Met 350	GAT Asp	GCT Ala	1056
5															AAC Asn		1104
10	CCC Pro	CAT His 370	GAA Glu	GCA Ala	ACC Thr	CGA Arg	GAC Asp 375	ACC Thr	ATT Ile	TTC Phe	AGA Arg	GGA Gly 380	TAC Tyr	CTC Leu	ATC Ile	CCC Pro	1152
•	AAG Lys 385	GGC Gly	ACA Thr	GTC Val	GTA Val	GTG Val 390	CCA Pro	ACT Thr	CTG Leu	GAC Asp	TCT Ser 395	GTT Val	TTG Leu	TAT Tyr	GAC Asp	AAC Asn 400	1200
15															CTG Leu 415		1248
20	GAA Glu	AAT Asn	GGA Gly	AAG Lys 420	TTC Phe	AAG Lys	TAC Tyr	AGT Ser	GAC Asp 425	TAT Tyr	TTC Phe	AAG Lys	CCA Pro	TTT Phe 430	TCC Ser	ACA Thr	1296
•															TTG Leu		1344
25															CTC Leu		1392
30	GAC As p 465	CCA Pro	AAG Lys	GAT Asp	ATC Ile	GAC Asp 470	CTC Leu	AGC Ser	CCT Pro	ATA Ile	CAT His 475	ATT Ile	GGG Gly	TTT Phe	GGC Gly	TGT Cys 480	1440
										ATT Ile 490				TGA			1482
35	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO: 6	5 :								
40			(,	SEQUI A) L! B) T'	ENGTI YPE :	i: 49	93 ar	mino cid									
40		(ii) MO	LECUI	LE T	YPE:	pro	tein									
		(xi) SE	QUEN	CE DI	ESCR:	IPTI	ON: S	SEQ :	ID NO	D: 6	:					
45	Met 1		Ala	Leu	Gly 5	Val	Thr	Val	Ala	Leu 10	Leu	Val	Trp	Ala	Ala 15	Phe	
	Leu	Leu	Leu	Val 20	Ser	Met	Trp	Arg	Gln 25	Val	His	Ser	Ser	Trp 30	Asn	Leu	

	Pro	Pro	Gly 35	Pro	Phe	Pro	Leu	Pro 40	Ile	Ile	Gly	Asn	Leu 45	Phe	Gln	Leu
5	Glu	Leu 50	Lys	Asn	Ile	Pro	Lys 55	Ser	Phe	Thr	Arg	Leu 60	Ala	Gln	Arg	Phe
	Gly 65	Pro	Val	Phe	Thr	Leu 70	тут	Val	Gly	Ser	Gln 75	Arg	Met	Val	Val	Met 80
10	His	Gly	Tyr	Lys	Ala 85	Val	Lys	Glu	Ala	Leu 90	Leu	Asp	Tyr	Lys	Asp 95	Glu
٠	Phe	Ser	Gly	Arg 100	Gly	Asp	Leu	Pro	Ala 105	Phe	His	Ala	His	Arg 110	Asp	Arg
15	Gly	Ile	Ile 115	Phe	Asn	Asn	Gly	Pro 120	Thr	Trp	Lys	.Asp	Ile 125	Arg	Arg	Phe
	Ser	Leu 130	Thr	Thr	Leu	Arg	Asn 135	Tyr	Gly	Met	Gly	Lys 140	Gln	Gly	Asn	Glu
20	145		Ile			150					155					160
			Gly		165					170					175	
25	Cys	Asn	Val	Ile 180	Ala	Asp	Ile	Leu	Phe 185	Arg	Lys	His	Phe	Asp 190	Tyr	Asn
	-		Lys 195					200					205			·.•
30		210	Ser				215					220				
	225		Tyr			230					235					240
35			Lys		245					250					255	
		_	Pro	260					265					270		
40			Lys 275					280				-	285			
		290					295					300				Thr
45	305		Thr			310					315					320
			Glu		325					330					335	
50	Arg	Ile	Pro	Ala 340	Ile	Lys	Asp	Arg	Gln 345	Glu	Met	Pro	Tyr	Met 350	qaA	Ala

	Val	Val	His 355	Glu	Ile	Gln	Arg	Phe 360	Ile	Thr	Leu	Val	Pro 365	Ser	Asn	Leu		
5	Pro	His 370	Glu	Ala	Thr	Arg	Asp 375	Thr	Ile	Phe	Arg	Gly 380	Tyr	Leu	Ile	Pro		
	Lys 385	Gly	Thr	Val	Val	Val 390	Pro	Thr	Leu	Asp	Ser 395	Val	Leu	Tyr	Asp	Asn 400		
10	Gln	Glu	Phe	Pro	Asp 405	Pro	Glu	Lys	Phe	Lys 410	Pro	Glu	His	Phe	Leu 415	Asn		
•	Glu	Asn	Gly	Lys 420	Phe	Lys	Tyr	Ser	Asp 425	Tyr	Phe	Lys	Pro	Phe 430	Ser	Thr		
15	Gly	Lys	Arg 435	Val	Cys	Ala	Gly	Glu 440	Gly	Leu	Ala	Arg	Met 445	Glu	Leu	Phe		
	Leu	Leu 450	Leu	Cys	Ala	Ile	Leu 455	Gln	His	Phe	Asn	Leu 460	Lys	Pro	Leu	Val		
20	4sp 465	Pro	Lys	Asp	Ile	Asp 470	Leu	Ser	Pro	Ile	His 475	Ile	Gly	Phe	Gly	Cys 480		
	Ile	Pro	Pro	Arg	Tyr 485	Lys	Leu	Cys	Val	Ile 490	Pro	Arg	Ser					
25	(2)		SE(QUENC A) LE B) TY	CE CI ENGTI YPE: IRANI	LARAC H: 15 nucl	CTER: 512 h leic	acio doul	CS: pain	cs ;							4	
30		(ix)	()	ATURI A) NI B) LO	AME/I		CDS	1509										
35											0: 7							
	ATG Met 1	GCT Ala	CTC Leu	ATC Ile	CCA Pro 5	GAC Asp	TTG Leu	GCC Ala	ATG Met	GAA Glu 10	ACC Thr	TGG Trp	CTT Leu	CTC Leu	CTG Leu 15	GCT Ala		4.8
40	GTC Val	AGC Ser	CTG Leu	GTG Val 20	CTC Leu	CTC Leu	TAT Tyr	CTA Leu	TAT Tyr 25	GGA Gly	ACC Thr	CAT His	TCA Ser	CAT His 30	GGA Gly	CTT Leu		96
45	TTT Phe	AAG Lys	AAG Lys 35	Leu	GGA Gly	ATT Ile	CCA Pro	GGG Gly 40	CCC Pro	ACA Thr	CCT Pro	CTG Leu	CCT Pro 45	TTT Phe	TTG Leu	GGA Gly		144
	AAT Asn	ATT Ile 50	TTG Leu	TCC Ser	TAC Tyr	CAT His	AAG Lys 55	GGC Gly	TTT Phe	TGT Cys	ATG Met	TTT Phe 60	Asp	ATG Met	GAA Glu	TGT Cys		19:
50																		

	CAT His	AAA Lys	AAG Lys	TAT Tyr	GGA Gly	AAA Lys 70	GTG Val	TGG Trp	GGC Gly	TTT Phe	TAT Tyr 75	GAT Asp	GGT Gly	CAA Gln	CAG Gln	CCT Pro 80		240
5	GTG Val	CTG Leu	GCT Ala	ATC Ile	ACA Thr 85	GAT Asp	CCT Pro	GAC Asp	ATG Met	ATC Ile 90	AAA Lys	ACA Thr	GTG Val	CTA Leu	GTG Val 95	AAA Lys		288
10	GAA Glu	TGT Cys	TAT Tyr	TCT Ser 100	GTC Val	TTC Phe	ACA Thr	AAC Asn	CGG Arg 105	AGG Arg	CCT Pro	TTT Phe	GGT Gly	CCA Pro 110	GTG Val	GGA Gly		336
	TTT Phe	ATG Met	AAA Lys 115	AGT Ser	GCC Ala	ATC Ile	TCT Ser	ATA Ile 120	GCT Ala	GAG Glu	GAT Asp	GAA Glu	GAA Glu 125	TGG Trp	AAG Lys	AGA Arg		384
15	TTA Leu	CGA Arg 130	TCA Ser	TTG Leu	CTG Leu	TCT Ser	CCA Pro 135	ACC Thr	TTC Phe	ACC Thr	AGT Ser	GGA Gly 140	AAA Lys	CTC Leu	AAG Lys	GAG Glu	÷	432
20	ATG Met 145	GTC Val	CCT Pro	ATC Ile	ATT Ile	GCC Ala 150	CAG Gln	TAT Tyr	GGA Gly	GAT Asp	GTG Val 155	TTG Leu	GTG Val	AGA Arg	AAT Asn	CTG Leu 160		480
	AGG Arg	CGG Arg	GAA Glu	GCA Ala	GAG Glu 165	ACA Thr	GGC Gly	AAG Lys	CCT Pro	GTC Val 170	ACC Thr	TTG Leu	AAA Lys	GAC Asp	GTC Val 175	TTT Phe		528
25	GGG Gly	GCC Ala	TAC Tyr	AGC Ser 180	ATG Met	GAT Asp	GTG Val	ATC Ile	ACT Thr 185	AGC Ser	ACA Thr	TCA Ser	TTT Phe	GGA Gly 190	GTG Val	AAC Asn	6	576
30	ATC Ile	GAC Asp	TCT Ser 195	CTC Leu	AAC Asn	AAT Asn	CCA Pro	CAA Gln 200	GAC Asp	CCC Pro	TTT Phe	GTG Val	GAA Glu 205	AAC Asn	ACC Thr	AAG Lys		624
	AAG Lys	CTT Leu 210	TTA Leu	AGA Arg	TTT Phe	GAT Asp	TTT Phe 215	TTG Leu	GAT Asp	CCA Pro	TTC Phe	TTT Phe 220	CTC Leu	TCA Ser	ATA Ile	ACA Thr		672
35	GTC Val 225	TTT Phe	CCA Pro	TTC Phe	CTC Leu	ATC Ile 230	CCA Pro	ATT Ile	CTŢ Leu	GAA Glu	GTA Val 235	TTA Leu	AAT Asn	ATC Ile	TGT Cys	GTG Val 240		720
40	TTT Phe	CCA Pro	AGA Arg	GAA Glu	GTT Val 245	ACA Thr	AAT Asn	TTT Phe	TTA Leu	AGA Arg 250	AAA Lys	TCT Ser	GTA Val	AAA Lys	AGG Arg 255	ATG Met		768
	AAA Lys	GAA Glu	AGT Ser	CGC Arg 260	CTC Leu	GAA Glu	GAT Asp	ACA Thr	CAA Gln 265	AAG Lys	CAC His	CGA Arg	GTG Val	GAT Asp 270	TTC Phe	CTT Leu		816
45	CAG Gln	CTG Leu	ATG Met 275	ATT Ile	GAC Asp	TCT Ser	CAG Gln	AAT Asn 280	TCA Ser	AAA Lys	GAA Glu	ACT Thr	GAG Glu 285	TCC Ser	CAC His	AAA Lys		864

									GCC Ala									912
5									GTT Val									960
10									CAG Gln									1008
	GCA Ala								CCC Pro 345							_		1056
15	ATG Met	GAG Glu	TAT Tyr 355	CTT Leu	GAC Asp	ATG Met	GTG Val	GTG Val 360	AAT Asn	GAA Glu	ACG Thr	CTC Leu	AGA Arg 365	TTA Leu	TTC Phe	CCA Pro		1104
20									TGC C ys								•	1152
20									GTG Val							_		1200
25									ACA Thr									1248
									GAC Asp 425						_		9	1296
30									AAC Asn									1344
35									ATC Ile									1392
									ATC Ile									1440
40									GTT Val									1488
45				GTA Val 500				TGA			•							1512

	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO: 8	8:							
5	(D) TOPOLOGY: linear															
		(ii)	MOI	LECUI	LE T	YPE:	pro	tein								
10		(xi	SE(QUEN	CE DI	ESCR:	IPTI	: NC	SEQ :	ID N	D: 8	:				
	Met 1	Ala	Leu	Ile	Pro 5	Asp	Leu	Ala	Met	Glu 10	Thr	Trp	Leu	Leu	Leu 15	Ala
15	Val	Ser	Leu	Val 20	Leu	Leu	Tyr	Leu	Tyr 25	Gly	Thr	His	Ser	His 30	Gly	Leu
	Phe	Lys	Lys 35	Leu	Gly	Ile	Pro	Gly 40	Pro	Thr	Pro	Leu	Pro 45	Phe	Leu	Gly
20	Asn	Ile 50	Leu	Ser	Tyr	His	Lys 55	Gly	Phe	Cys	Met	Phe 60	Asp	Met	Glu	Cys
	His 65	Lys	Lys	Tyr	Gly	Lys 70	Val	Trp	Gly	Phe	Tyr 75	Asp	Gly	Gln	Gln	Pro 80
25	Val	Leu	Ala	Ile	Thr 85	Asp	Pro	Asp	Met	Ile 90	Lys	Thr	Val	Leu	Val 95	Lys
	Glu	Cys	Tyr	Ser 100	Val	Phe	Thr	Asn	Arg 105	Arg	Pro	Phe	Gly	Pro 110	Val	Gly
30	Phe	Met	Lys 115	Ser	Ala	Ile	Ser	Ile 120	Ala	Glu	Asp	Glu	Glu 125	Trp	Lys	Arg
	Leu	Arg 130	Ser	Leu	Leu	Ser	Pro 135	Thr	Phe	Thr	Ser	Gly 140	Lys	Leu	Lys	Glu
35	Met 145	Val	Pro	Ile	Ile	Ala 150	Gln	Tyr	Gly	Asp	Val 155	Leu	Val	Arg	Asn	Leu 160
	Arg	Arg	Glu	Ala	Glu 165	Thr	Gly	Lys	Pro	Val 170	Thr	Leu	Lys	Asp	Val 175	Phe
40	Gly	Ala	Tyr	Ser 180	Met	Asp	Val	Ile	Thr 185	Ser	Thr	Ser	Phe	Gly 190	Val	Asn
	Ile	Asp	Ser 195	Leu	Asn	Asn	Pro	Gln 200	Asp	Pro	Phe	Val	Glu 205	Asn	Thr	Lys
45	Lys	Leu 210	Leu	Arg	Phe	Asp	Phe 215	Leu	Asp	Pro	Phe	Phe 220	Leu	Ser	Ile	Thr
	Val 225	Phe	Pro	Phe	Leu	Ile 230	Pro	Ile	Leu	Glu	Val 235	Leu	Asn	Ile	Cys	Val 240

55

Phe Pro Arg Glu Val Thr Asn Phe Leu Arg Lys Ser Val Lys Arg Met 245 250 255

	Lys	Glu	Ser	Arg 260	Leu	Glu	Asp	Thr	Gln 265	Lys	His	Arg	Val	Asp 270		Leu
5	Gln	Leu	Met 275	Ile	Asp •	Ser	Gln	Asn 280	Ser	Lys	Glu	Thr	Glu 285	Ser	His	Lys
	Ala	Leu 290	Ser	Asp	Leu	Glu	Leu 295	Val	Ala	Gln	Ser	Ile 300	Ile	Phe	Ile	Phe
10	Ala 305	Gly	Tyr	Glu	Thr	Thr 310	Ser	Ser	Val	Leu	Ser 315	Phe	Ile	Met	Tyr	Glu 320
4.5	Leu	Ala	Thr	His	Pro 325	Asp	Val	Gln	Gln	Lys 330	Leu	Gln	Glu	Glu	Ile 335	Asp
15	Ala	Val	Leu	Pro 340	Asn	Lys	Ala	Pro	Pro 345	Thr	Tyr	Asp	Thr	Val 350	Leu	Gln
20	Met	Glu	Tyri 355	Leu	Asp	Met	Val	Val 360	Asn	Glu	Thr	Leu	Arg 365	Leu	Phe	Pro
	Ile	Ala 370	Met	Arg	Leu	Glu	Arg 375	Val	Cys	Lys	Lys	Asp 380	Val	Glu	Ile	Asn
25	Gly 385	Met	Phe	Ile	Pro	Lys 390	Gly	Trp	Val	Val	Met 395	Ile	Pro	Ser	Tyr	Ala 400
	Leu	His	Arg	Asp	Pro 405	Lys	Tyr	Trp	Thr	Glu 410	Pro	Glu	Lys	Phe	Leu 415	Pro
30	Glu	Arg	Phe	Ser 420	Lys	Lys	Asn	Lys	Asp 425	Asn	Ile	Asp	Pro	Tyr 430	Ile	Tyr
	Thr	Pro	Phe 435	Gly	Ser	Gly	Pro	Arg 440	Asn	Cys	Ile	Gly	Met 445	Arg	Phe	Ala
35	Leu	Met 450	Asn	Met	Lys	Leu	Ala 455	Leu	Ile	Arg	Val	Leu 460	Gln	Asn	Phe	Ser
	Phe 465	Lys	Pro	Cys	Lys	Glu 470	Thr	Gln	Ile	Pro	Leu 475	Lys	Leu	Ser	Leu	Gly 480
40	Gly	Leu	Leu	Gln	Pro 485	Glu	Lys	Pro	Val	Val 490			Val		Ser 495	
45	Asp	Gly	Thr	Val 500	Ser	Gly	Ala									
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	O: 9	:							
50		(i)	(A (B (C) LE) TY) ST	NGTH PE:	: 15 nucl EDNE	39 b eic SS:	STIC ase acid doub ar	pair	S						

(ix) FEATURE:
(A) NAME/KEY: CDS
(B) LOCATION: 1..1536

5		(xi) SE	QUEN [,]	CE DI	ESÇR:	IPTI	: : NC	SEQ :	ID N	D: 9	:						
10	ATG Met 1	CTT Leu	TTC Phe	CCA Pro	ATC Ile 5	TCC Ser	ATG Met	TCG Ser	GCC Ala	ACG Thr 10	GAG Glu	TTT Phe	CTT Leu	CTG Leu	GCC Ala 15	TCT Ser		48
	GTC Val	ATC Ile	TTC Phe	TGT Cys 20	CTG Leu	GTA Val	TTC Phe	TGG Trp	GTA Val 25	ATC Ile	AGG Arg	GCC Ala	TCA Ser	AGA Arg 30	CCT Pro	CAG Gln		96
15	GTC Val	CCC Pro	AAA Lys 35	GGC Gly	CTG Leu	AAG Lys	AAT Asn	CCA Pro 40	CCA Pro	GGG Gly	CCA Pro	TGG Trp	GGC Gly 45	TGG Trp	CCT Pro	CTG Leu		144
	ATT Ile	GGG Gly 50	CAC His	ATG Met	CTG Leu ;	ACC Thr	CTG Leu 55	GGA Gly	AAG Lys	AAC Asn	CCG Pro	CAC His 60	CTG Leu	GCA Ala	CTG Leu	TCA Ser		192
20	AGG Arg 65	ATG Met	AGC Ser	CAG Gln	CAG Gln	TAT Tyr 70	GGG Gly	GAC Asp	GTG Val	CTG Leu	CAG Gln 75	ATC Ile	CGA Arg	ATT Ile	GGC Gly	TCC Ser 80		240
25	ACA Thr	CCC Pro	GTG Val	GTG Val	GTG Val 85	CTG Leu	AGC Ser	GGC Gly	CTG Leu	GAC Asp 90	ACC Thr	ATC Ile	CGG Arg	CAG Gln	GCC Ala 95	CTG Leu		288
										CGG Arg								336
30	ACC Thr	CTC Leu	ATC Ile 115	AGT Ser	AAT Asn	GGT Gly	CAG Gln	AGC Ser 120	ATG Met	TCC Ser	TTC Phe	AGC Ser	CCA Pro 125	GAC Asp	TCT Ser	GGA Gly		384
35										GCC Ala						AGT Ser	:	432
										TCA Ser								480
40										CTG Leu 170								528
. 45										CCC Pro								576
	TCA Ser	GTG Val	ACC Thr 195	AAT Asn	GTC Val	ATC Ile	TGT Cys	GCC Ala 200	ATT Ile	TGC Cys	TTT Phe	GGC Gly	CGG Arg 205	CGC Arg	TAT Tyr	GAC Asp		624

55

	CAC His	AAC Asn 210	CAC His	CAA Gln	GAA Glu	CTG Leu	CTT Leu 215	AGC Ser	CTA Leu	GTC Val	AAC Asn	CTG Leu 220	AAT Asn	AAT Asn	AAT Asn	TTC Phe		672
5	GGG Gly 225	GAG Glu	GTG Val	GTT Val	GGC Gly	TCT Ser	GGA Gly	AAC Asn	CCA Pro	GCT Ala	GAC Asp 235	TTC Phe	ATC Ile	CCT Pro	ATT Ile	CTT Leu 240		720
10	Arg	Tyr	Leu	Pro	Asn 245	Pro	Ser	Leu	Asn	Ala 250	Phe	AAG Lys	qsA	Leu	Asn 255	Glu		768
	AAG Lys	TTC Phe	TAC Tyr	AGC Ser 260	TTC Phe	ATG Met	CAG Gln	AAG Lys	ATG Met 265	GTC Val	AAG Lys	GAG Glu	CAC His	TAC Tyr 270	AAA Lys	ACC Thr		816
15	TTT Phe	GAG Glu	AAG Lys 275	GGC Gly	CAC His	ATC Ile	CGG Arg	GAC Asp 280	ATC Ile	ACA Thr	GAC Asp	AGC Ser	CTG Leu 285	ATT Ile	GAG Glu	CAC His		864
20	TGT Cys	CAG Gln 290	GAG Glu	AAG Lys _į	CAG Gln	CTG Leu	GAT Asp 295	GAG Glu	AAC Asn	GCC Ala	AAT Asn	GTC Val 300	CAG Gln	CTG Leu	TCA Ser	GAT Asp	•	912
	GAG Glu 305	AAG Lys	ATC Ile	ATT Ile	AAC Asn	ATC Ile 310	GTC Val	TTG Leu	GAC Asp	CTC Leu	TTT Phe 315	GGA Gly	GCT Ala	GGG Gly	TTT Phe	GAC Asp 320		960
25	ACA Thr	GTC Val	ACA Thr	ACT Thr	GCT Ala 325	ATC Ile	TCC Ser	TGG Trp	AGC Ser	CTC Leu 330	ATG Met	TAT Tyr	TTG Leu	GTG Val	ATG Met 335	AAC Asn		1008
30	CCC Pro	AGG Arg	GTA Val	CAG Gln 340	AGA Arg	AAG Lys	ATC Ile	CAA Gln	GAG Glu 345	GAG Glu	CTC Leu	GAC Asp	ACA Thr	GTG Val 350	ATT Ile	GGC Gly	'	1056
	AGG Arg	TCA Ser	CGG Arg 355	CGG Arg	CCC Pro	CGG Arg	CTC Leu	TCT Ser 360	GAC Asp	AGA Arg	TCC Ser	CAT His	CTG Leu 365	CCC Pro	TAT Tyr	ATG Met		1104
35	GAG Glu	GCC Ala 370	TTC Phe	ATC Ile	CTG Leu	GAG Glu	ACC Thr 375	TTC Phe	CGA Arg	CAC His	TCT Ser	TCC Ser 380	TTC Phe	GTC Val	CCC Pro	TTC Phe	•	1152
40	ACC Thr 385	ATC Ile	CCC Pro	CAC His	AGC Ser	ACA Thr 390	ACA Thr	AGA Arg	GAC Asp	ACA Thr	AGT Ser 395	TTG Leu	AAA Lys	GGC Gly	TTT Phe	TAC Tyr 400		1200
	ATC Ile	CCC Pro	AAG Lys	GGG Gly	CGT Arg 405	TGT Cys	GTC Val	TTT Phe	GTA Val	AAC Asn 410	CAG Gln	TGG Trp	CAG Gln	ATC Ile	AAC Asn 415	CAT His		1248
45	GAC Asp	CAG Gln	AAG Lys	CTA Leu 420	TGG Trp	GTC Val	AAC Asn	Pro	TCT Ser 425	GAG Glu	TTC Phe	CTA Leu	CCT Pro	GAA Glu 430	CGG Arg	TTT Phe		1296
50	CTC Leu	ACC Thr	CCT Pro 435	GAT Asp	GGT Gly	GCT Ala	Ile	GAC Asp 440	AAG Lys	GTG Val	TTA Leu	AGT Ser	GAG Glu 445	AAG Lys	GTG Val	ATT Ile		1344

	ATC Ile	TTT Phe 450	GGC Gly	ATG Met	GGC Gly	AAG Lys	CGG Arg 455	AAG Lys	TGT Cys	ATC Ile	GGT Gly	GAG Glu 460	ACC Thr	ATT Ile	GCC Ala	AGC Ser		1392
5	TGG Trp 465	GAG Glu	GTC Val	TTT Phe	CTC Leu	TTC Phe 470	CTG Leu	GCT Ala	ATC Ile	CTG Leu	CTG Leu 475	CAA Gln	CGG Arg	GTG Val	GAA Glu	TTC Phe 480		1440
10											ACC Thr							1488
	ACC Thr	ATG Met	AAG Lys	CAT His 500	GCC Ala	TGC Cys	TGT Cys	GAG Glu	CAC His 505	TTC Phe	CAA Gln	ATG Met	CAG Gln	CTG Leu 510	CGC Arg	TCT Ser		1536
15	TAG																	1539
	(2)	INFO	ORMA:	rion	FOR	SEQ	ID 1	NO: 1	LO:									
20			(1	SEQUE A) LE B) T'(C) T(ENGTI PE :	H: 57 amin	12 an	nino cid										
		(ii)	MOI	LECUI	SE TY	YPE:	prot	ein										
25): 10							
25	Met 1										O: 10 Glu		Leu	Leu	Ala 15	Ser		
	1 Val	Leu Ile	Phe Phe	Pro Cys 20	Ile 5 Leu	Ser	Met Phe	Ser Trp	Ala Val 25	Thr 10 Ile	Glu Arg	Phe Ala	Ser	Arg 30	15 Pro	Gln	6	
25 30	1 Val	Leu Ile	Phe Phe	Pro Cys 20	Ile 5 Leu	Ser	Met Phe	Ser Trp	Ala Val 25	Thr 10 Ile	Glu Arg	Phe Ala	Ser	Arg 30	15 Pro	Gln	6	
30	1 Val Val	Leu Ile Pro	Phe Phe Lys 35	Pro Cys 20 Gly	Ile 5 Leu Leu	Ser Val Lys	Met Phe Asn	Ser Trp Pro	Ala Val 25 Pro	Thr 10 Ile Gly	Glu Arg	Phe Ala Trp	Ser Gly 45	Arg 30 Trp	15 Pro Pro	Gln Leu	ų	· ·
	Val Val Ile	Leu Ile Pro Gly 50	Phe Phe Lys 35	Pro Cys 20 Gly Met	Ile 5 Leu Leu	Ser Val Lys Thr	Met Phe Asn Leu 55	Ser Trp Pro 40 Gly	Ala Val 25 Pro	Thr 10 Ile Gly Asn	Glu Arg	Phe Ala Trp His 60	Ser Gly 45 Leu	Arg 30 Trp Ala	15 Pro Pro Leu	Gln Leu Ser	ų.	
30	Val Val Ile Arg 65	Leu Ile Pro Gly 50 Met	Phe Phe Lys 35 His	Pro Cys 20 Gly Met Gln	Ile 5 Leu Leu Leu	Val Lys Thr	Met Phe Asn Leu 55 Gly	Ser Trp Pro 40 Gly Asp	Ala Val 25 Pro Lys Val	Thr 10 Ile Gly Asn Leu	Glu Arg ', Pro Pro	Phe Ala Trp His 60	Ser Gly 45 Leu Arg	Arg 30 Trp Ala Ile	15 Pro Pro Leu Gly	Gln Leu Ser Ser 80		
30	Val Val Ile Arg 65 Thr	Leu Ile Pro Gly 50 Met	Phe Phe Lys 35 His Ser Val	Pro Cys 20 Gly Met Gln Val	Ile 5 Leu Leu Gln Val 85	Ser Val Lys Thr Tyr 70 Leu	Met Phe Asn Leu 55 Gly Ser	Ser Trp Pro 40 Gly Asp Gly Lys	Ala Val 25 Pro Lys Val Leu	Thr 10 Ile Gly Asn Leu Asp 90	Glu Arg Pro Pro Gln 75	Phe Ala Trp His 60 Ile Ile	Ser Gly 45 Leu Arg	Arg 30 Trp Ala Ile Gln	Pro Pro Leu Gly Ala 95	Gln Leu Ser Ser 80 Leu	Ú,	
30 35	Val Val Ile Arg 65 Thr	Leu Ile Pro Gly 50 Met Pro	Phe Lys 35 His Ser Val	Pro Cys 20 Gly Met Gln Val Gly 100	Ile 5 Leu Leu Gln Val 85 Asp	Val Lys Thr Tyr 70 Leu	Met Phe Asn Leu 55 Gly Ser Phe	Ser Trp Pro 40 Gly Asp Gly Lys	Ala Val 25 Pro Lys Val Leu Gly 105	Thr 10 Ile Gly Asn Leu Asp 90 Arg	Glu Arg , Pro Pro Gln 75 Thr	Phe Ala Trp His 60 Ile Ile Asp	Ser Gly 45 Leu Arg Arg	Arg 30 Trp Ala Ile Gln Tyr 110	Pro Pro Leu Gly Ala 95 Thr	Gln Leu Ser Ser 80 Leu		

	Phe 145	Ser	Ile	Ala	Ser	Asp 150		Ala	Ser	Ser	Thr 155	Ser	Cys	Tyr	Leu	Glu 160
5	Glu	His	Val	Ser	Lys 165	Glu	Ala	Glu	Val	Leu 170	Ile	Ser	Thr	Leu	Gln 175	
	Leu	Met	Ala	Gly 180	Pro	Gly	His	Phe	Asn 185	Pro	Tyr	Arg	Tyr	Val 190	Val	Val
10	Ser	Val	Thr 195	Asn	Val	Ile	Cys	Ala 200	Ile	Cys	Phe	Gly	Arg 205	Arg	Tyr	ązA
•	His	Asn 210	His	Gln	Glu	Leu	Leu 215	Ser	Leu	Val	Asn	Leu 220	Asn	Asn	Asn	Phe
15	Gly 225	Glu	Val	Val	Gly	Ser 230	Gly	Asn	Pro	Ala	Asp 235	Phe	Ile	Pro	Ile	Leu 240
	Arg	Tyr	Leu į	Pro	Asn 245	Pro	Ser	Leu	Asn	Ala 250	Phe	Lys	Asp	Leu	Asn 255	Glu
20	Lys	Phe	Tyr	Ser 260	Phe	Met	Gln	Lys	Met 265	Val	Lys	Glu	His	Tyr 270	Lys	Thr
	Phe	Glu	Lys 275	Gly	His	Ile	Arg	Asp 280	Ile	Thr	Asp	Ser	Leu 285	Ile	Glu	His
25	Cys	Gln 290	Glu	Lys	Gln	Leu	Asp 295	Glu	Asn	Ala	Asn	Val 300	Gln	Leu	Ser	Asp
	Glu 305	Lys	Ile	Ile	Asn	Ile 310	Val	Leu	Asp	Leu	Phe 315	Gly	Ala	Gly	Phe	Asp 320
30	Thr	Val	Thr	Thr	Ala 325	Ile	Ser	Trp	Ser	Leu 330	Met	Tyr	Leu	Val	Met 335	Asn
	Pro	Arg	Val	Gln 340	Arg	Lys	Ile	Gln	Glu 345	Glu	Leu	Asp	Thr	Val 350	Ile	Gly
35	Arg	Ser	Arg 355	Arg	Pro	Arg	Leu	Ser 360	Asp	Arg	Ser	His	Leu 365	Pro	Tyr	Met ,
	Glu	Ala 370	Phe	Ile	Leu	Glu	Thr 375	Phe	Arg	His	Ser	Ser 380	Phe	Val	Pro	Phe
40	Thr 385	Ile	Pro	His	Ser	Thr 390	Thr	Arg	Asp	Thr	Ser 395	Leu	Lys	Gly	Phe	Tyr 400
	Ile	Pro	Lys	Gly	Arg 405	Cys	Val	Phe	Val	Asn 410	Gln	Trp	Gln	Ile	Asn 415	Hiş
45	Asp	Gln	Lys	Leu 420	Trp	Val	Asn	Pro	Ser 425	Glu	Phe	Leu	Pro	Glu 430	Arg	Phe
	Leu	Thr	Pro 435	Asp	Gly	Ala	Ile	Asp 440	Lys	Val	Leu	Ser	Glu 445	Lys	Val	Ile
50	Ile	Phe 450	Gly	Met	Gly	Lys	Arg 455	Lys	Cys	Ile	Gly	Glu 460	Thr	Ile	Ala	Ser

	Trp 465	Glu	Val	Phe	Leu	Phe 470	Leu	Ala	Ile	Leu	Leu 475	Gln	Arg	Val	Glu	Phe 480		
5	Ser	Val	Pro	Leu	Gly 485		Lys	Val	Asp	Met 490	Thr	Pro	Ile	Tyr	Gly 495			
	Thr	Met	Lys	His 500		Ċys	Cys	Glu	His 505	Phe	Gln	Met	Gln	Leu 510	Arg	Ser		
10	(2)	INFO	ORMA!	rion	FOR	SEQ	ID I	NO: :	11:									
15	•	(i)	() (I ()	A) LI B) T' C) S'	CE CHENGTH YPE: TRANI	i: 19 nucl	39 l leic ESS:	oase acid dou!	pai:	cs								
20			() ()	3) LO	AME/I PCATI	ON:	1		SEO :	ID N	3. 1.	1.			,			
	N CC								SEQ :				com	000	222			
25									GCC Ala									48
									GTA Val 25								6	96
30									CCA Pro									144
35									AAG Lys									192
									GTG Val									240
40									CTG Leu									288
									GGC Gly 105									336
45									ATG Met									384

					GCC Ala													432
5					TCT Ser													480
10					AAG Lys 165													528
· ·	CTG Leu				CCT Pro													576
15					GTC Val													624
20					GAA Glu		-				-						٠	672
					GGC Gly													720
25					AAC Asn 245													768
30					TTC Phe											ACC Thr		816
					CAC His													864
35	TGT Cys	CAG Gln 290	GAG Glu	AAG Lys	CAG Gln	CTG Leu	GAT Asp 295	GAG Glu	AAC Asn	GCC Ala	AAT Asn	GTC Val 300	CAG Gln	CTG Leu	TCA Ser	GAT Asp		912
40					AAC Asn													960
					GCT Ala 325												:	1008
45					AGA Arg													1056
50					CCC Pro													1104

	GAG Glu	GCC Ala 370	TTC Phe	ATC Ile	CTG Leu	GAG Glu	ACC Thr 375	TTC Phe	CGA Arg	CAC His	TCT Ser	TCC Ser 380	TTC Phe	GTC Val	CCC	TTC Phe		1152
5	ACC Thr 385	ATC Ile	CCC Pro	CAC His	AGC Ser	ACA Thr 390	ACA Thr	AGA Arg	GAC Asp	ACA Thr	AGT Ser 395	TTG Leu	AAA Lys	GGC Gly	TTT Phe	TAC Tyr 400		1200
10	ATC Ile	CCC Pro	AAG Lys	GGG Gly	CGT Arg 405	TGT Cys	GTC Val	TTT Phe	GTA Val	AAC Asn 410	CAG Gln	TGG Trp	CAG Gln	ATC Ile	AAC Asn 415	CAT His		1248
	GAC Asp	CAG Gln	AAG Lys	CTA Leu 420	TGG Trp	GTC Val	AAC Asn	CCA Pro	TCT Ser 425	GAG Glu	TTC Phe	CTA Leu	CCT Pro	GAA Glu 430	CGG Arg	TTT Phe		1296
15	CTC Leu	ACC Thr	CCT Pro 435	GAT Asp	GGT Gly	GCT Ala	ATC Ile	GAC Asp 440	AAG Lys	GTG Val	TTA Leu	AGT Ser	GAG Glu 445	AAG Lys	GTG Val	ATT Ile		1344
20	ATC Ile	TTT Phe 450	GGC Gly	ATG Met	GGC Gly	AAG Lys	CGG Arg 455	AAG Lys	TGT Cys	ATC Ile	GGT Gly	GAG Glu 460	ACC Thr	ATT Ile	GCC Ala	CGC Arg	•	1392
	TGG Trp 465	GAG Glu	GTC Val	TTT Phe	CTC Leu	TTC Phe 470	CTG Leu	GCT Ala	ATC Ile	CTG Leu	CTG Leu 475	CAA Gln	CGG Arg	GTG Val	GAA Glu	TTC Phe 480		1440
25	AGC Ser	GTG Val	CCA Pro	CTG Leu	GGC Gly 485	GTG Val	AAG Lys	GTG Val	GAC Asp	ATG Met 490	ACC Thr	CCC Pro	ATC Ile	TAT Tyr	GGG Gly 495	CTA Leu		1488
30	ACC Thr	ATG Met	AAG Lys	CAT His 500	GCC Ala	TGC Cys	TGT Cys	GAG Glu	CAC His 505	TTC Phe	CAA Gln	ATG Met	CAG Gln	CTG Leu 510	CGC Arg	TCT Ser	· ·	1536
	TAG																	1539
35	(2)		i) s	EQUE	NCE	CHAR	ID N ACTE	RIST	ICS:									
			(B) TY	PE:	amin	2 am o ac line	id	acid	s								
40		(ii)	MOL	ECUL	E TY	PE:	prot	ein										
							PTIO											
	Met 1	Leu	Phe	Pro	Ile 5	Ser	Met	Ser	Ala	Thr 10	Glu	Phe	Leu	Leu	Ala 15	Ser		:
45	Val	Ile	Phe	Cys 20	Leu	Val	Phe	Trp	Val 25	Ile	Arg	Ala	Ser	Arg 30	Pro	Gln		
	Val	Pro	Lys 35	Gly	Leu	Lys	Asn	Pro 40	Pro	Gly	Pro	Trp	Gly 45	Trp	Pro	Leu		

	Ile	Gly 50	His	Met	Leu	Thr	Leu 55	Gly	Lys	Asn	Pro	His 60	Leu	Ala	Leu	Ser
5	Arg 65	Met	Ser	Gln	Gln `	Tyr 70	Gly	qzA	Val	Leu	Gln 75	Ile	Arg	Ile	Gly	Ser 80
	Thr	Pro	Val	Val	Val 85	Leu	Ser	Gly	Leu	qeA 0e	Thr	Ile	Arg	Gln	Ala 95	Leu
10	Val	Arg	Gln	Gly 100	Asp	Asp	Phe	Lys	Gly 105	Arg	Pro	Asp	Leu	Tyr 110	Thr	Phe
	Thr	Leu	Ile 115	Ser	Asn	Gly	Gln	Ser 120	Met	Ser	Phe	Ser	Pro 125	qzA	Ser	Gly
15	Pro	Val 130	Trp	Ala	Ala	Arg	Arg 135	Arg	Leu	Ala	Gln	Asn 140	Gly	Leu	Lys	Ser
20	Phe 145	Ser	Ile	Ala	Ser	Asp 150	Pro	Ala	Ser	Ser	Thr 155	Ser	Cys	Tyr	Leu-	Glu 160
20	Glu	His	Val	Ser	Lys 165	Glu	Ala	Glu	Val	Leu 170	Ile	Ser	Thr	Leu	Gln 175	
25	Leu	Met	Ala	Gly 180	Pro	Gly	His	Phe	Asn 185	Pro	Tyr	Arg	Tyr	Val 190	Val	Val
	Ser	Val	Thr 195	Asn	Val	Ile	Cys	Ala 200	Ile	Cys	Phe	Gly	Arg 205	Arg	Tyr	Asp
30	His	Asn 210	His	Gln	Glu	Leu	Leu 215	Ser	Leu	Val	Asn	Leu 220	Asn	Asn	Asn	Phe
	Gly 225	Glu	Val	Val	Gly	Ser 230	Gly	Asn	Pro	Ala	Asp 235	Phe	Ile	Pro	Ile	Leu. 240
35	Arg	Tyr	Leu	Pro	Asn 245	Pro	Ser	Leu	Asn	Ala 250	Phe	Lys	Asp	Leu	Asn 255	Glu
	Lys	Phe	Tyr	Ser 260	Phe	Met	Gln	Lys	Met 265	Val	Lys	Glu	His	Tyr 270	Lys	Thr
40	Phe	Glu	Lys 275	Gly	His	Ile	Arg	280	Ile	Thr	Asp	Ser	Leu 285	Ile	Glu	His
	Cys	Gln 290	Glu	Lys	Gln	Leu	Asp 295	Glu	Asn	Ala	Asn	Val 300	Gln	Leu	Ser	Asp
45	Glu 305	Lys	Ile	Ile	Asn	Ile 310	Val	Leu	Asp	Leu	Phe 315	Gly	Ala	Gly	Phe	Asp 320
	Thr	Val	Thr	Thr	Ala 325	Ile	Ser	Trp	Ser	Leu 330	Met	Tyr	Leu	Val	Met 335	Asn
50	Pro	Arg	Val	Gln 340	Arg	Lys	Ile	Gln	Glu 345	Glu	Leu	Asp	Thr	Val 350	Ile	Gly

	Arg	Ser	Arg 355	Arg	Pro	Arg	Leu	Ser 360	Asp	Arg	Ser	His	Leu 365	Pro	Tyr	Met		
5	Glu	Ala 370	Phe	Ile	Leu	Glu	Thr 375	Phe	Arg	His	Ser	Ser 380	Phe	Val	Pro	Phe		
	Thr 385	Ile	Pro	His	Ser	Thr 390	Thr	Arg	Asp	Thr	Ser 395	Leu	Lys	Gly	Phe	Tyr 400		
10	Ile	Pro	Lys	Gly	Arg 405	Cys	Val	Phe	Val	Asn 410	Gln	Trp	Gln	Ile	Asn 415	His		
	Asp	Gln	Lys	Leu 420	Trp	Val	Asn	Pro	Ser 425	Glu	Phe	Leu	Pro	Glu 430	Arg	Phe		
15	Leu	Thr	Pro 435	Asp	Gly	Ala	Ile	Asp 440	Lys	Val	Leu	Ser	Glu 445	Lys	Val	Ile		
	Ile	Phe 450	Gly	Met	Gly	Lys	Arg 455	Lys	Cys	Ile	Gly	Glu 460	Thr	Ile	Ala	Arg		
20	Trp 465	Glu	Val	Phe	Ļeu	Phe 470	Leu	Ala	Ile	Leu	Leu 475	Gln	Arg	Val	Glu	Phe 480		
	Ser	Val	Pro	Leu	Gly 485	Val	Lys	Val	Asp	Met 490	Thr	Pro	Ile	Tyr	Gly 495	Leu		
25	Thr	Met	Lys	His 500	Ala	Cys	Cys	Glu	His 505	Phe	Gln	Met	Gln	Leu 510	Arg	Ser		
	(2)	INFO	ORMAT	KOI	FOR	SEQ	ID N	io: 1	L3:								6	
30		(i)	(E	A) LE 3) TY C) ST	ENGTI (PE : (RANI	H: 15 nuc] DEDNE		ase acid doub	pair 1	rs	i.							٠
35		(ix)		A) NA	ME/F		CDS 11	.536										
		(xi)	SEÇ	ONEUÇ	CE DE	ESCRI	PTIC	N: S	SEQ I	D NO): 13	3:						
40	ATG Met 1	CTT Leu	TTC Phe	CCA Pro	ATC Ile 5	TCC Ser	ATG Met	TCG Ser	GCC Ala	ACG Thr 10	GAG Glu	TTT Phe	CTT Leu	CTG Leu	GCC Ala 15	TCT Ser		48
45	GTC Val	ATC Ile	TTC Phe	TGT Cys 20	CTG Leu	GTA Val	TTC Phe	TGG Trp	GTA Val 25	ATC Ile	AGG Arg	GCC Ala	TCA Ser	AGA Arg 30	CCT Pro	CAG Gln		96
	GTC Val	CCC Pro	AAA Lys 35	GGC Gly	CTG Leu	AAG Lys	AAT Asn	CCA Pro 40	CCA Pro	GGG Gly	CCA Pro	TGG Trp	GGC Gly 45	TGG Trp	CCT Pro	CTG Leu		144
50																		

	ATT Ile	GGG Gly 50	HIS	ATG Met	CTG Leu	ACC Thr	CTG Leu 55	GGA Gly	AAG Lys	AAC Asn	CCG Pro	CAC His	Leu	GCA Ala	CTC Leu	TCA Ser		192
5	AGG Arg 65	met	AGC Ser	CAG Gln	CAG Gln	TAT Tyr	GGG Gly	GAC Asp	GTG Val	CTG Leu	CAG Gln 75	ATC	CGA Arg	ATT	GGC	TCC Ser 80		240
10	Thr	Pro	Vai	Val	85	Leu	Ser	Gly	Leu	qeA 90	Thr	Ile	Arg	Gln	Ala 95			288
	·GTG Val	CGG Arg	CAG Gln	GGC Gly 100	GAT Asp	GAT Asp	TTC Phe	AAG Lys	GGC Gly 105	CGG Arg	CCC Pro	GAC Asp	CTC Leu	TAC Tyr 110	ACC Thr	TTC Phe		336
15	ACC Thr	CTC Leu	ATC Ile 115	AGT Ser	AAT Asn	GGT Gly	CAG Gln	AGC Ser 120	ATG Met	TCC Ser	TTC Phe	AGC Ser	CCA Pro 125	GAC Asp	TCT Ser	GGA Gly		384
20	CCA Pro	GTG Val 130	TGG Trp	GCT Alaį	GCC Ala	CGC Arg	CGG Arg 135	CGC Arg	CTG Leu	GCC Ala	CAG Gln	AAT Asn 140	GGC Gly	CTG Leu	AAA Lys	AGT Ser		432
	TTC Phe 145	TCC Ser	ATT Ile	GCC Ala	TCT Ser	GAC Asp 150	CCA Pro	GCC Ala	TCC Ser	TCA Ser	ACC Thr 155	TCC Ser	TGC Cys	TAC Tyr	CTG Leu	GAA Glu 160		. 480
25	GAG Glu	CAT His	GTG Val	AGC Ser	AAG Lys 165	GAG Glu	GCT Ala	GAG Glu	GTC Val	CTG Leu 170	ATA Ile	AGC Ser	ACG Thr	TTG Leu	CAG Gln 175	GAG Glu		528
30	CTG Leu	ATG Met	GCA Ala	GGG Gly 180	CCT Pro	GGG Gly	CAC His	TTT Phe	AAC Asn 185	CCC Pro	TAC Tyr	AGG Arg	TAT Tyr	GTG Val 190	GTG Val	GTA Val	4	576
	TCA Ser	GTG Val	ACC Thr 195	AAT Asn	GTC Val	ATC Ile	TGT Cys	GCC Ala 200	ATT Ile	TGC Cys	TTT Phe	GGC Gly	CGG Arg 205	CGC Arg	TAT Tyr	GAC Asp		624
35	CAC His	AAC Asn 210	CAC His	CAA Gln	GAA Glu	CTG Leu	CTT Leu 215	AGC Ser	CTA Leu	GTC Val	AAC Asn	CTG Leu 220	AAT Asn	AAT Asn	AAT Asn	TTC Phe	:	672
40	GGG Gly 225	GAG Glu	GTG Val	GTT Val	GGC Gly	TCT Ser 230	GGA Gly	AAC Asn	CCA Pro	GCT Ala	GAC Asp 235	TTC Phe	ATC Ile	CCT Pro	ATT Ile	CTT Leu 240		720
	CGC Arg	TAC Tyr	CTA Leu	5.0 CCC	AAC Asn 245	CCT Pro	TCC Ser	CTG Leu	AAT Asn	GCC Ala 250	TTC Phe	AAG Lys	GAC Asp	CTG Leu	AAT Asn 255	GAG Glu		768
45	AAG Lys	TTC Phe	TAC Tyr	AGC Ser 260	TTC Phe	ATG Met	CAG . Gln :	Lys	ATG Met 265	GTC Val	AAG Lys	GAG Glu	CAC His	TAC Tyr 270	AAA Lys	ACC Thr		816
50	TTT Phe	Glu	AAG Lys 275	GGC Gly	CAC His	ATC Ile	Arg .	GAC Asp 280	ATC Ile	ACA Thr	GAC Asp	AGC Ser	CTG Leu 285	ATT Ile	GAG Glu	CAC His		864

	TGT Cys	CAG Gln 290	GAG Glu	AAG Lys	CAG Gln	CTG Leu	GAT Asp 295	GAG Glu	AAC Asn	GCC Ala	AAT Asn	GTC Val 300	CAG Gln	CTG Leu	TCA Ser	GAT Asp	912
5	GAG Glu 305	AAG Lys	ATC Ile	ATT Ile	AAC Asn	ATC Ile 310	GTC Val	TTG Leu	GAC Asp	CTC Leu	TTT Phe 315	GGA Gly	GCT Ala	GGG Gly	TTT Phe	GAC Asp 320	960
10	ACA Thr	GTC Val	ACA Thr	ACT Thr	GCT Ala 325	ATC Ile	TCC Ser	TGG Trp	AGC Ser	CTC Leu 330	ATG Met	TAT Tyr	TTG Leu	GTG Val	ATG Met 335	AAC Asn	1008
	CCC Pro	AGG Arg	GTA Val	CAG Gln 340	AGA Arg	AAG Lys	ATC Ile	CAA Gln	GAG Glu 345	GAG Glu	CTC Leu	GAC Asp	ACA Thr	GTG Val 350	ATT Ile	GGC Gly	1056
15	AGG Arg	TCA Ser	CGG Arg 355	CGG Arg	CCC Pro	CGG Arg	CTC Leu	TCT Ser 360	GAC Asp	AGA Arg	TCC Ser	CAT His	CTG Leu 365	CCC Pro	TAT Tyr	ATG Met	1104
20	GAG Glu	GCC Ala 370	TTC Phe	ATC Ile	CTG Leu	GAG Glu	ACC Thr 375	TTC Phe	CGA Arg	CAC His	TCT Ser	TCC Ser 380	TTC Phe	GTC Val	CCC Pro	TTC Phe	1152
	ACC Thr 385	ATC Ile	CCC Pro	CAC His	AGC Ser	ACA Thr 390	ACA Thr	AGA Arg	GAC Asp	ACA Thr	AGT Ser 395	TTG Leu	AAA Lys	GGC Gly	TTT Phe	TAC Tyr 400	1200
25	ATC Ile	CCC Pro	AAG Lys	GGG Gly	CGT Arg 405	TGT Cys	GTC Val	TTT Phe	GTA Val	AAC Asn 410	CAG Gln	TGG Trp	CAG Gln	ATC Ile	AAC Asn 415	CAT His	1248
30	GAC Asp	CAG Gln	AAG Lys	CTA Leu 420	TGG Trp	GTC Val	AAC Asn	CCA Pro	TCT Ser 425	GAG Glu	TTC	CTA Leu	CCT Pro	GAA Glu 430	CGG Arg	TTT Phe	1296
	CTC Leu	ACC Thr	CCT Pro 435	GAT Asp	GGT Gly	GCT Ala	ATC Ile	GAC Asp 440	AAG Lys	GTG Val	TTA Leu	AGT Ser	GAG Glu 445	AAG Lys	GTG Val	ATT Ile	1344
35	ATC Ile	TTT Phe 450	GGC Gly	ATG Met	GGC Gly	AAG Lys	CGG Arg 455	AAG Lys	TGT Cys	ATC Ile	GGT Gly	GAG Glu 460	ACC Thr	GTT Val	GCC Ala	Arg	1392
40	TGG Trp 465	GAG Glu	GTC Val	TTT Phe	CTC Leu	TTC Phe 470	CTG Leu	GCT Ala	ATC Ile	CTG Leu	CTG Leu 475	CAA Gln	CGG Arg	GTG Val	GAA Glu	TTC Phe 480	1440
	AGC Ser	GTG Val	CCA Pro	CTG Leu	GGC Gly 485	GTG Val	AAG Lys	GTG Val	GAC Asp	ATG Met 490	ACC Thr	CCC Pro	ATC Ile	TAT Tyr	GGG Gly 495	CTA Leu	1488
45	ACC Thr	ATG Met	AAG Lys	CAT His 500	GCC Ala	TGC C ys	TGT Cys	GAG Glu	CAC His 505	TTC Phe	CAA Gln	ATG Met	CAG Gln	CTG Leu 510	CGC Arg	TCT Ser	1536
	TAG																1539 ·

	(2)	INF	ORMA	MOIT.	FOF	SEC	OI (NO:	14:							
5			(A) I B) T	ENCE ENGT YPE : OPOL	H: 5 ami	.no a	mino cid	STICS aci	S: lds						
		(ii) мо	LECU	LE I	YPE:	pro	tein	1							
		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0: 1	4:				
10	Met 1	Leu	Phe	Pro	Ile 5	Ser	Met	Ser	Ala	Thr 10		Phe	Leu	Leu	Ala 15	Ser
	Val	Ile	Phe	Cys 20	Leu	Val	Phe	Trp	Val 25	Ile	Arg	Ala	Ser	Arg 30		Gln
15	Val	Pro	Lys 35	Gly	Leu	Lys	Asn	Pro 40	Pro	Gly	Pro	Trp	Gly 45		Pro	Leu
	Ile	Gly 50	His i	Met	Leu	Thr	Leu 55	Gly	Lys	Asn	Pro	His 60	Leu	Ala	Leu	S <u>e</u> r
20	Arg 65	Met	Ser	Gln	Gln	Tyr 70	Gly	Asp	Val	Leu	Gln 75	Ile	Arg	Ile	Gly	Ser 80
	Thr	Pro	Val	Val	Val 85	Leu	Ser	Gly	Leu	Asp 90	Thr	Ile	Arg	Gln	Ala 95	Leu
25	Val	Arg	Gln	Gly 100	Asp	Asp	Phe	Lys	Gly 105	Arg	Pro	Asp	Leu	Tyr 110	Thr	Phe
	Thr	Leu	Ile 115	Ser	Asn	Gly	Gln	Ser 120	Met :	Ser	Phe	Ser	Pro 125	qaA	Ser	Gly
30	Pro	Val 130	Trp	Ala	Ala	Arg	Arg 135	Arg	Leu	Ala	Gln	Asn 140	Gly	Leu	Lys	Ser
	Phe 145	Ser	Ile	Ala	Ser	Asp 150	Pro	Ala	Ser	Ser	Thr 155	Ser	Cys	Tyr	Leu	Glu 160
35	Glu	His	Val	Ser	Lys 165	Glu	Ala	Glu	Val	Leu 170	Ile	Ser	Thr	Leu	Gln 175	Glu
		Met		180					185					190		
40			195					200					205			
		Asn : 210					215					220				•
45	Gly 225	Glu '	Val	Val	Gly	Ser 230	Gly	Asn	Pro		Asp 235	Phe	Ile	Pro	Ile	Leu 240
	Arg	Tyr :	Leu	Pro	Asn 245	Pro	Ser	Leu	Asn	Ala 250	Phe	Lys	Asp	Leu	Asn 255	Glu

	Lys	Phe	Tyr	Ser 260	Phe	Met	Gln	Lys	Met 265	Val	Lys	Glu	His	Tyr 270	Lys	Thr
5	Phe	Glu	Lys 275	Gly	His	Ile	Arg	Asp 280	Ile	Thr	Asp	Ser	Leu 285	Ile	Glu	His
	Cys	Gln 290	Glu	Lys	Gl'n	Leu	Asp 295	Glu	Asn	Ala	Asn	Val 300	Gln	Leu	Ser	Asp
10	Glu 305	Lys	Ile	Ile	Asn	Ile 310	Val	Leu	Asp	Leu	Phe 315	Gly	Ala	Gly	Phe	Asp 320
	Thr	Val	Thr	Thr	Ala 325	Ile	Ser	Trp	Ser	Leu 330	Met	Tyr	Leu	Val	Met 335	Asn
15	Pro	Arg	Val	Gln 340	Arg	Lys	Ile	Gln	Glu 345	Glu	Leu	Asp	Thr	Val 350	Ile	Gly
	Arg	Ser	Arg 355	Arg i	Pro	Arg	Leu	Ser 360	Asp	Arg	Ser	His	Leu 365	Pro	Tyr	Met
20	Glu	Ala 370	Phe	Ile	Leu	Glu	Thr 375	Phe	Arg	His	Ser	Ser 380	Phe	Val	Pro	Phe
25	Thr 385	Ile	Pro	His	Ser	Thr 390	Thr	Arg	Asp	Thr	Ser 395	Leu	Lys	Gly	Phe	Tyr 400
	Ile	Pro	Lys	Gly	Arg 405	Cys	Val	Phe	Val	Asn 410	Gln	Trp	Gln	Ile	Asn 415	
30	Asp	Gln	Lys	Leu 420	Trp	Val	Asn	Pro	Ser 425	Glu	Phe	Leu	Pro	Glu 430	Arg	Phe
	Leu	Thr	Pro 435	Asp	Gly	Ala	Ile	Asp 440	Lys	Val	Leu	Ser	Glu 445	Lys	Val	Ile
35	Ile	Phe 450	Gly	Met	Gly	Lys	Arg 455	Lys	Cys	Ile	Gly	Glu 460	Thr	Val	Ala	Arg
	Trp 465	Glu	Val	Phe	Leu	Phe 470	Leu	Ala	Ile	Leu	Leu 475	Gln	Arg	Val	Glu	Phe 480
40	Ser	Val	Pro	Leu	Gly 485	Val	Lys	Val	Asp	Met 490	Thr	Pro	Ile	Tyr	Gly 495	Leu
	Thr	Met	Lys	His 500	Ala	Cys	Cys	Glu	His 505	Phe	Gln	Met	Gln	Leu 510	Arg	Ser J.
45	(2)	INFC	RMAT	'ION	FOR	SEQ	ID N	:O: 1	5 :							
50		(i)	(A (B (C	.) LE	NGTH PE: RAND	: 14 nucl EDNE	85 b eic SS:	STIC ase acid doub ar	pair	s						

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..1482 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: ATG CTG GCC TCA GGG ATG CTT CTG GTG GCC TTG CTG GTC TGC CTG ACT 48 Met Leu Ala Ser Gly Met Leu Leu Val Ala Leu Leu Val Cys Leu Thr GTG ATG GTC TTG ATG TCT GTT TGG CAG CAG AGG AAG AGC AAG GGG AAG 96 Val Met Val Leu Met Ser Val Trp Gln Gln Arg Lys Ser Lys Gly Lys 25 CTG CCT CCG GGA CCC ACC CCA TTG CCC TTC ATT GGA AAC TAC CTG CAG 144 Leu Pro Pro Gly Pro Thr Pro Leu Pro Phe Ile Gly Asn Tyr Leu Gln CTG AAC ACA GAG CAG ATG TAC AAC TCC CTC ATG AAG ATC AGT GAG CGC 192 Leu Asn Thr Glu Gln Met Tyr Asn Ser Leu Met Lys Ile Ser Glu Arg 55 TAT GGC CCC GTG TTC ACC ATT CAC TTG GGG CCC CGG CGG GTC GTG GTG 240 Tyr Gly Pro Val Phe Thr Ile His Leu Gly Pro Arg Arg Val Val CTG TGT GGA CAT GAT GCC GTC AGG GAG GCT CTG GTG GAC CAG GCT GAG 288 Leu Cys Gly His Asp Ala Val Arg Glu Ala Leu Val Asp Gln Ala Glu 25 GAG TTC AGC GGG CGA GGC GAG CAA GCC ACC TTC GAC TGG GTC TTC AAA 336 Glu Phe Ser Gly Arg Gly Glu Gln Ala Thr Phe Asp Trp Val Phe Lys 100 105 GGC TAT GGC GTG GTA TTC AGC AAC GGG GAG CGC GCC AAG CAG CTC CGG 384 Gly Tyr Gly Val Val Phe Ser Asn Gly Glu Arg Ala Lys Gln Leu Arg 120 CGC TTC TCC ATC GCC ACC CTG CGG GAC TTC GGG GTG GGC AAG CGA GGC 432 Arg Phe Ser Ile Ala Thr Leu Arg Asp Phe Gly Val Gly Lys Arg Gly 35 135 140 ATC GAG GAG CGC ATC CAG GAG GAG GCG GGC TTC CTC ATC GAC GCC CTC 480 Ile Glu Glu Arg Ile Gln Glu Glu Ala Gly Phe Leu Ile Asp Ala Leu 150 CGG GGC ACT GGC GGC GCC AAT ATC GAT CCC ACC TTC TTC CTG AGC CGC 528 Arg Gly Thr Gly Gly Ala Asn Ile Asp Pro Thr Phe Phe Leu Ser Arg ACA GTC TCC AAT GTC ATC AGC TCC ATT GTC TTT GGG GAC CGC TTT GAC 576 Thr Val Ser Asn Val Ile Ser Ser Ile Val Phe Gly Asp Arg Phe Asp 45 180 TAT AAG GAC AAA GAG TTC CTG TCA CTG TTG CGC ATG ATG CTA GGA ATC

50

55

Tyr Lys Asp Lys Glu Phe Leu Ser Leu Leu Arg Met Met Leu Gly Ile 200

205

	TTC Phe	CAG Gln 210	TTC Phe	ACG Thr	TCA Ser	ACC Thr	TCC Ser 215	ACG Thr	GGG Gly	CAG Gln	CTC Leu	TAT Tyr 220	GAG Glu	ATG Met	TTC Phe	TCT Ser		672
5	TCG Ser 225	GTG Val	ATG Met	AAA Lys	CAC His	CTG Ļeu 230	CCA Pro	GGA Gly	CCA Pro	CAG Gln	CAA Gln 235	CAG Gln	GCC Ala	TTT Phe	CAG Gln	TTG Leu 240		720
10												GTG Val						768
	CGC Arg	ACG Thr	CTG Leu	GAT Asp 260	CCC Pro	AAT Asn	TCC Ser	CCA Pro	CGG Arg 265	GAC Asp	TTC Phe	ATT Ile	GAC Asp	TCC Ser 270	TTT Phe	CTC Leu		816
15	ATC Ile	CGC Arg	ATG Met 275	CAG Gln	GAG Glu	GAG Glu	GAG Glu	AAG Lys 280	AAC Asn	CCC Pro	AAC Asn	ACG Thr	GAG Glu 285	TTC Phe	TAC Tyr	TTG Leu		864
20	AAA Lys	AAC Asn 290	CTG Leu	GTG Val	ATG Met	ACC Thr	ACG Thr 295	TTG Leu	AAC Asn	CTC Leu	TTC Phe	ATT Ile 300	GGG Gly	GGC Gly	ACC Thr	GAG Glu		912
	ACC Thr 305	GTC Val	AGC Ser	ACC Thr	ACC Thr	CTG Leu 310	CGC Arg	TAT Tyr	GGC Gly	TTC Phe	TTG Leu 315	CTG Leu	CTC Leu	ATG Met	AAG Lys	CAC His 320		960
25												GAC Asp						1008
20	AAG Lys	AAC Asn	CGG Arg	CAG Gln 340	CCC Pro	AAG Lys	TTT Phe	GAG Glu	GAC Asp 345	CGG Arg	GCC Ala	AAG Lys	ATG Met	CCC Pro 350	TAC Tyr	ATG Met	9	1056
30	GAG Glu	GCA Ala	GTG Val 355	ATC Ile	CAC His	GAG Glu	ATC Ile	CAA Gln 360	AGA Arg	TTT Phe	GGA Gly	GAC Asp	GTG Val 365	ATC Ile	CCC Pro	ATG Met		1104
35	AGT Ser	TTG Leu 370	GCC Ala	CGC Arg	AGA Arg	GTC Val	AAA Lys 375	AAG Lys	GAC Asp	ACC Thr	AAG Lys	TTT Phe 380	CGG Arg	GAT Asp	TTC Phe	TTC Phe		1152
												GGC Gly						1200
40									Gln			AAT Asn					•	1248
45	CTG Leu	AAT Asn	GAG Glu	AAG Lys 420	GGG Gly	CAG Gln	TTT Phe	AAG Lys	AAG Lys 425	AGT Ser	GAT Asp	GCT Ala	TTT Phe	GTG Val 430	CCC Pro	TTT Phe		1296
												CTG Leu						1344

	CTC Leu	TTT Phe 450	CTC Leu	TTC Phe	TTC Phe	ACC Thr	ACC Thr 455	GTC Val	ATG Met	CAG Gln	AAC Asn	TTC Phe 460	CGC Arg	CTC Leu	AAG Lys	TCC Ser		1392
5	TCC Ser 465	CAG Gln	TCA Ser	CCT Pro	AAG Lys	GAC Asp 470	ATT Ile	GAC Asp	GTG Val	TCC Ser	CCC Pro 475	AGA Arg	CAC His	GTG Val	GGC Gly	TTT Phe 480		1440
10	GCC Ala	ACG Thr	ATC Ile	CCA Pro	CGA Arg 485	AAC Asn	TAC Tyr	ACC Thr	ATG Met	AGC Ser 490	TTC Phe	CTG Leu	CCC Pro	CGC Arg				1482
•	TGA																	1485
15	(2)	INFO	ORMAT	rion	FOR	SEQ	ID 1	NO: 1	16:									
			(1	A) LI 3) Ti	ENGTI YPE :	4: 49 amin		mino cid	FICS acio									
20		(ii)	MOI	LECUI	LE T	PE:	prot	ein										
		(xi)	SEC	QUENC	CE .DE	ESCRI	PTIC	ON: S	SEQ :	ID NO): 16	5:						
	Met 1	Leu	Ala	Ser	Gly 5	Met	Leu	Leu	Val	Ala 10	Leu	Leu	Val	Cys	Leu 15	Thr		
25	Val	Met	Val	Leu 20	Met	Ser	Val	Trp	Gln 25	Gln	Arg	Lys	Ser	Lys 30	Gly	Lys		
	Leu	Pro	Pro 35	Gly	Pro	Thr	Pro	Leu 40	Pro	Phe	Ile	Gly	Asn 45	Tyr	Leu	Gln		
30	Leu	Asn 50	Thr	Glu	Gln	Met	Tyr 55	Asn	Ser	Leu	Met	Lys 60	Ile	Ser	Glu	Arg		
	Tyr 65	Gly	Pro	Val	Phe	Thr 70	Ile	His	Leu	Gly	Pro 75	Arg	Arg	Val	Val	Val 80		
35	Leu	Cys	Gly	His	Asp 85	Ala	Val	Arg	Glu	Ala 90	Leu	Val	Asp	Gln	Ala 95	Glu		
	Glu	Phe	Ser	Gly 100	Arg	Gly	Glu	Gln	Ala 105	Thr	Phe	Asp	Trp	Val 110	Phe	Lys		
40	Gly	Tyr	Gly 115	Val	Val	Phe	Ser	Asn 120	Gly	Glu	Arg	Ala	Lys 125	Gln	Leu	Arg		
	Arg	Phe 130	Ser	Ile	Ala	Thr	Leu 135	Arg	Asp	Phe	Gly	Val 140	Gly	Lys	Arg	Gly	-	
45	Ile 145	Glu	Glu	Arg	Ile	Gln 150	Glu	Glu	Ala	Gly	Phe 155	Leu	Ile	Asp	Ala	Leu 160		
	Arg	Gly	Thr	Gly	Gly 165	Ala	Asn	Ile	qaA	Pro 170	Thr	Phe	Phe	Leu	Ser 175	Arg		

	Thr	Val	Ser	Asn 180	Val	Ile	Ser	Ser	Ile 185	Val	Phe	Gly	Asp	Arg 190	Phe	Asp
5	Tyr	Lys	Asp 195	Lys	Glu	Phe	Leu	Ser 200	Leu	Leu	Arg	Met	Met 205	Leu	Gly	Ile
	Phe	Gln 210	Phe	Thr	Ser	Thr	Ser 215	Thr	Gly	Gln	Leu	Tyr 220	Glu	Met	Phe	Ser
10	Ser 225	Val	Met	Lys	His	Leu 230	Pro	Gly	Pro	Gln	Gln 235	Gln	Ala	Phe	Gln	Leu 240
	Leu	Gln	Gly	Leu	Glu 245	Asp	Phe	Ile	Ala	Lys 250	Lys	Val	Glu	His	Asn 255	Gln
15	Arg	Thr	Leu	Asp 260	Pro	Asn	Ser	Pro	Arg 265	Asp	Phe	Ile	Asp	Ser 270	Phe	Leu
	Ile	Arg	Met 275	Gln i	Glu	Glu	Glu	Lys 280	Asn	Pro	Asn	Thr	Glu 285	Phe	Tyr	Leu
20	Lys	Asn 290	Leu	Val	Met	Thr	Thr 295	Leu	Asn	Leu	Phe	Ile 300	Gly	Gly	Thr	Glu
25	Thr 305	Val	Ser	Thr	Thr	Leu 310	Arg	Tyr	Gly	Phe	Leu 315	Leu	Leu	Met	Lys	His 320
	Pro	Glu	Val	Glu	Ala 325	Lys	Val	His	Glu	Glu 330	Ile	qzA	Arg	Val	Ile 335	Gly
30	Lys	Asn	Arg	Gln 340	Pro	Lys	Phe	Glu	Asp. 345	Arg	Ala	Lys	Met	Pro 350	Tyr	Met
	Glu	Ala	Val 355	Ile	His	Glu	Ile	Gln 360	Arg	Phe	Gly	Asp	Val 365	Ile	Pro	Met
35	Ser	Leu 370	Ala	Arg	Arg	Val	Lys 375	Lys	Asp	Thr	Lys	Phe 380	Arg	Asp	Phe	Phe
	385					Glu 390					395	_				400
40					405	Ser				410					415	
	Leu	Asn	Glu	Lys 420	Gly	Gln	Phe	Lys	Lys 425	Ser	Asp	Ala	Phe	Val 430	Pro	Phe
45	Ser	Ile	Gly 435	Lys	Arg	Asn	Cys	Phe 440	Gly	Glu	Gly	Leu	Ala 445	Arg	Met	Glu
	Leu	Phe 450	Leu	Phe	Phe	Thr	Thr 455	Val	Met	Gln	Asn	Phe 460	Arg	Leu	Lys	Ser
50	Ser 465	Gln	Ser	Pro	Lys	Asp 470	Ile	Asp	Val	Ser	Pro 475	Arg	His	Val	Gly	Phe 480

Ala Thr Ile Pro Arg Asn Tyr Thr Met Ser Phe Leu Pro Arg

	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:	17:									
5		(i	(A) L B) T C) S	ENGT YPE : TRAN	H: 1 nuc DEDN	CTER 485 leic ESS: lin	base aci dou	pai d	rs								
10		(ix	(AME/		CDS	1482										
15		(xi) SE	QUEN	CE D	ESCR	IPTI	: ИС	SEQ	ID N	0: 1	7:						
	ATG Met 1	Leu	GCC Ala	TCA Ser	GGG Gly 5	ATG Met	CTT Leu	CTG Leu	GTG Val	GCC Ala 10	TTG Leu	CTG Leu	GTC Val	TGC Cys	CTG Leu 15	ACT Thr		48
20	GTG Val	ATG Met	GTC Val	TTG Leu 20	ATG Met	TCT Ser	GTT Val	TGG Trp	CAG Gln 25	CAG Gln	AGG Arg	AAG Lys	AGC Ser	AAG Lys 30	GGG Gly	AAG Lys		96
25	CTG Leu	CCT Pro	CCG Pro 35	GGA Gly	CCC Pro	ACC Thr	CCA Pro	TTG Leu 40	CCC Pro	TTC Phe	ATT Ile	GGA Gly	AAC Asn 45	TAC Tyr	CTG Leu	CAG Gln		144
	CTG Leu	AAC Asn 50	ACA Thr	GAG Glu	CAG Gln	ATG Met	TAC Tyr 55	AAC Asn	TCC Ser	CTC Leu	ATG Met	AAG Lys 60	ATC Ile	AGT Ser	GAG Glu	CGC Arg '		192
30	TAT Tyr 65	GGC Gly	CCC Pro	GTG Val	TTC Phe	ACC Thr 70	ATT Ile	CAC His	TTG Leu	GĠG Gly	CCC Pro 75	CGG Arg	CGG Arg	GTC Val	GTG Val	GTG Val 80		240
35	CTG Leu	TGT Cys	GGA Gly	CAT His	GAT Asp 85	GCC Ala	GTC Val	AGG Arg	GAG Glu	GCT Ala 90	CTG Leu	GTG Val	GAC Asp	CAG Gln	GCT Ala 95	GAG Glu		288
	GAG Glu	TTC Phe	AGC Ser	GGG Gly 100	CGA Arg	GGC Gly	GAG Glu	CAA Gln	GCC Ala 105	ACC Thr	TTC Phe	GAC Asp	TGG Trp	GTC Val 110	TTC Phe	AAA Lys		336
40	GGC Gly	TAT Tyr	GGC Gly 115	GTG Val	GTA Val	TTC Phe	AGC Ser	AAC Asn 120	GGG Gly	GAG Glu	CGC Arg	GCC Ala	AAG Lys 125	CAG Gln	CTC Leu	CGG Arg		384
	CGC Arg	TTC Phe	TCC Ser	ATC Ile	GCC Ala	ACC Thr	CTG Leu	CGG Arg	GAC Asp	TTC Phe	GGG Gly	GTG Val	GGC Gly	AAG Lys	CGA Arg	GGC Gly	•	432

ATC GAG GAG CGC ATC CAG GAG GAG GCG GGC TTC CTC ATC GAC GCC CTC Ile Glu Glu Arg Ile Gln Glu Glu Ala Gly Phe Leu Ile Asp Ala Leu 145 150 155 160

	CGG Arg	GGC Gly	ACT Thr	GGC Gly	GGC Gly 165	GCC Ala	AAT Asn	ATC Ile	GAT Asp	CCC Pro 170	ACC Thr	TTC Phe	TTC Phe	CTG Leu	AGC Ser 175			528
5	ACA Thr	GTC Val	TCC Ser	AAT Asn 180	Val	ATC	AGC Ser	TCC Ser	ATT Ile 185	GTC Val	TTT Phe	GGG Gly	GAC Asp	CGC Arg 190	TTT Phe	GAC Asp		576
10	TAT Tyr	AAG Lys	GAC Asp 195	Lys	GAG Glu	TTC Phe	CTG Leu	TCA Ser 200	CTG Leu	TTG Leu	CGC Arg	ATG Met	ATG Met 205	CTA Leu	GGA Gly	ATC Ile		624
	TTC Phe	CAG Gln 210	TTC Phe	ACG Thr	TCA Ser	ACC Thr	TCC Ser 215	ACG Thr	GGG Gly	CAG Gln	CTC Leu	TAT Tyr 220	GAG Glu	ATG Met	TTC Phe	TCT Ser		672
15	TCG Ser 225	GTG Val	ATG Met	AAA Lys	CAC His	CTG Leu 230	CCA Pro	GGA Gly	CCA Pro	CAG Gln	CAA Gln 235	CAG Gln	GCC Ala	TTT Phe	CAG Gln	TTG Leu 240		720
20	CTG Leu	CAA Gln	GGG Gly	CTG Leu	GAG Glu 245	GAC Asp	TTC Phe	ATA Ile	GCC Ala	AAG Lys 250	AAG Lys	GTG Val	GAG Glu	CAC His	AAC Asn 255	CAG Gln		768
	CGC Arg	ACG Thr	CTG Leu	GAT Asp 260	CCC Pro	AAT Asn	TCC Ser	CCA Pro	CGG Arg 265	GAC Asp	TTC Phe	ATT Ile	GAC Asp	TCC Ser 270	TTT Phe	CTC Leu		816
25	ATC Ile	CGC Arg	ATG Met 275	CAG Gln	GAG Glu	GAG Glu	GAG Glu	AAG Lys 280	AAC Asn	CCC Pro	AAC Asn	ACG Thr	GAG Glu 285	TTC Phe	TAC Tyr	TTG Leu		864
30	AAA Lys	AAC Asn 290	CTG Leu	GTG Val	ATG Met	ACC Thr	ACG Thr 295	TTG Leu	AAC Asn	CTC Leu	TTC Phe	ATT Ile 300	GGG Gly	GGC Gly	ACC Thr	GAG Glu	·÷,	912
	ACC Thr 305	GTC Val	AGC Ser	ACC Thr	ACC Thr	CTG Leu 310	CGC Arg	TAT Tyr	GGC Gly	TTC Phe	TTG Leu 315	CTG Leu	CTC Leu	ATG Met	AAG Lys	CAC His 320		960
35	Pro	Glu	Val	Glu	Ala 325	Lys	GTC Val	His	Glu	Glu 330	Ile	Asp	Arg	Val	Ile 335	Gly		1008
40	гÀг	Asn	Arg	Gln 340	Pro	Lys	TTT Phe	Glu	Asp 345	Arg	Ala	Lys	Met	Pro 350	Tyr	Met		1056
	Glu	Ala	Val 355	Ile	His	Glu	ATC Ile	Gln 360	Arg	Phe	Gly	Asp	Val 365	Ile	Pro	Met		1104
45	AGT Ser	TTG Leu 370	GCC Ala	CGC Arg	AGA Arg	GTC Val	AAA Lys 375	AAG Lys	GAC Asp	ACC Thr	AAG Lys	TTT Phe 380	CGG Arg	GAT Asp	TTC Phe	TTC Phe		1152
50	CTC Leu 385	CCT Pro	AAG Lys	GGC Gly	ACC Thr	GAA Glu 390	GTG Val	TAC Tyr	CCT Pro	ATG Met	CTG Leu 395	GGC Gly	TCT Ser	GTG Val	CTG Leu	AGA Arg 400		1200

	GAC Asp	CCC Pro	AGT Ser	TTC Phe	TTC Phe 405	TCC Ser	AAC Asn	CCC Pro	CAG Gln	GAC Asp 410	Phe	AAT Asn	CCC	CAG Gln	CAC His 415			1248
5	CTG Leu	AAT Asn	GAG Glu	AAG Lys 420	Gly	CAG Gln	TTT Phe	AAG Lys	AAG Lys 425	AGT Ser	GAT Asp	GCT Ala	TTT Phe	GTG Val 430	CCC Pro	TTT Phe		1296
10	TCC Ser	ATC Ile	GGA Gly 435	Lys	CGG Arg	AAC Asn	TGT Cys	TTC Phe 440	GGA Gly	GAA Glu	GGC	CTG Leu	GCC Ala 445	AGA Arg	ATG Met	GAG Glu		1344
	CTC Leu	TTT Phe 450	CTC Leu	TTC Phe	TTC Phe	ACC Thr	ACC Thr 455	GTC Val	ATG Met	CAG Gln	AAC Asn	TTC Phe 460	CGC Arg	CTC Leu	AAG Lys	TCC Ser		1392
15	TCC Ser 465	CAG Gln	TCA Ser	CCT Pro	AAG Lys	GAC Asp 470	ATT Ile	GAC Asp	GTG Val	TCC Ser	CCC Pro 475	AAA Lys	CAC His	GTG Val	GGC Gly	TTT Phe 480		1440
20	GCC Ala	ACG Thr	ATC Ile	CCA Pro	CGA Arg 485	AAC Asn	TAC Tyr	ACC Thr	ATG Met	AGC Ser 490	TTC Phe	CTG Leu	CCC Pro	CGC Arg				1482
	TGA				:													1485
	(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:]	L8:									
25			(1		ENGTI YPE :	4: 49 amir	94 ar										ę.	
30		(ii)	MO	LECUI	LE TY	PE:	prot	ein		1								
		(xi)	SE	QUENC	CE DE	ESCRI	PTIC	ON: S	SEQ 1	D NO): 18	3:						
	Met 1	Leu	Ala	Ser	Gly 5	Met	Leu	Leu	Val	Ala 10	Leu	Leu	Val	Cys _.	Leu 15	Thr		
35	Val	Met	Val	Leu 20	Met	Ser	Val	Trp	Gln 25	Gln	Arg	Lys	Ser	Lys 30	Gly	Lys		
	Leu	Pro	Pro 35	Gly	Pro	Thr	Pro	Leu 40	Pro	Phe	Ile	Gly	Asn 45	Tyr	Leu	Gln		
40	Leu	Asn 50	Thr	Glu	Gln	Met	Tyr 55	Asn	Ser	Leu	Met	Lys 60	Ile	Ser	Glu	Arg		
	Tyr 65	Gly	Pro	Val	Phe	Thr 70	Ile	His	Leu	Gly	Pro 75	Arg	Arg	Val	Val	Val 80		
45	Leu	Cys	Gly	His	Asp 85	Ala	Val	Arg	Glu	Ala 90	Leu	Val	Asp	Gln	Ala 95	Glu	•	
	Glu	Phe	Ser	Gly 100	Arg	Gly	Glu	Gln	Ala 105	Thr	Phe	Asp	Trp	Val 110	Phe	Lys		

	Gly	Tyr	Gly 115	Val	Val	Phe	Ser	Asn 120	Gly	Glu	Arg	Ala	Lys 125	Gln	Leu	Arg
5	Arg	Phe 130	Ser	Ile	Ala	Thr	Leu 135	Arg	Asp	Phe	Gly	Val 140	Gly	Lys	Arg	Gly
	Ile 145	Glu	Glu	Arg	Ile	Gln 150	Glu	Glu	Ala	Gly	Phe 155	Leu	Ile	Asp	Ala	Leu 160
10	Arg	Gly	Thr	Gly	Gly 165	Ala	Asn	Ile	Asp	Pro 170	Thr	Phe	Phe	Leu	Ser 175	Arg
	Thr	Val	Ser	Asn 180	Val	Ile	Ser	Ser	Ile 185	Val	Phe	Gly	Asp	Arg 190	Phe	Asp
15	Tyr	Lys	Asp 195	Lys	Glu	Phe	Leu	Ser 200	Leu	Leu	Arg	Met	Met 205	Leu	Gly	Ile
20	Phe	Gln 210	Phe	Thr	Ser	Thr	Ser 215	Thr	Gly	Gln	Leu	Tyr 220	Glu	Met	Phe	Ser
	Ser 225	Val	Met	Lys	His	Leu 230	Pro	Gly	Pro	Gln	Gln 235	Gln	Ala	Phe	Gln	Leu 240
25	Leu	Gln	Gly	Leu	Glu 245	Asp	Phe	Ile	Ala	Lys 250	Lys	Val	Glu	His	Asn 255	Gln
	Arg	Thr	Leu	Asp 260	Pro	Asn	Ser	Pro	Arg 265	Asp	Phe	Ile	Asp	Ser 270	Phe	Leu
30	Ile	Arg	Met 275	Gln	Glu	Glu	Glu	Lys 280	Asņ	Pro	Asn	Thr	Glu 285	Phe	Tyr	Leu
	Lys	Asn 290	Leu	Val	Met	Thr	Thr 295	Leu	Asn	Leu	Phe	Ile 300	Gly	Gly	Thr	Glu
35	Thr 305	Val	Ser	Thr	Thr	Leu 310	Arg	Tyr	Gly	Phe	Leu 315	Leu	Leu	Met	Lys	His 320
	Pro	Glu	Val	Glu	Ala 325	Lys	Val	His	Glu	Glu 330	Ile	Asp	Arg	Val	Ile 335	Gly
40				340				Glu	345					350	-	
	Glu	Ala	Val 355	Ile	His	Glu	Ile	Gln 360	Arg	Phe	Gly	Asp	Val 365	Ile	Pro	Met
45	Ser	Leu 370	Ala	Arg	Arg	Val	Lys 375	Lys	Asp	Thr	Lys	Phe 380	Arg	Asp	Phe	Phe
	Leu 385	Pro	Lys	Gly	Thr	Glu 390	Val	Tyr	Pro	Met	Leu 395	Gly	Ser	Val	Leu	Arg 400
50	Asp	Pro	Ser	Phe	Phe 405	Ser	Asn	Pro	Gln	Asp 410	Phe	Asn	Pro	Gln	His 415	Phe

	Leu	Asn	Glu	Lys 420	Gly	Gln	?he	Lys	Lys 425	Ser	Asp	Ala	Phe	Val 430	Pro	Phe			
5	Ser	Ile	Gly 435	Lys	Arg	Asn	Cys	Phe 440	Gly	Glu	Gly	Leu	Ala 445	Arg	Met	Glu			
	Leu	Phe 450	Leu	Phe	Phe	Thr	Thr 455	Val	Met	Gln	Asn	Phe 460	Arg	Leu	Lys	Ser			
10	Ser 465	Gln	Ser	Pro	Lys	Asp 470	Ile	Asp	Val	Ser	Pro 475	Lys	His	Val	Gly	Phe 480			
	Ala	Thr	Ile	Pro	Arg 485	Asn	Tyr	Thr	Met	Ser 490	Phe	Leu	Pro	Arg					
	(2)	INFO	ORMA!	TION	FOR	SEQ	ID 1	10:	19:										
15		(i)	() [) ()	QUENCA) LI B) T' C) S' D) TC	engti (PE : [rani	i: 14 nucl DEDNE	176 l leic ESS:	ase acio doub	pai:	cs									
20			(<u>)</u>	ATURI A) NA B) LO	AME/I DCATI	: NO	1												
25		(xi)	SE	QUENC	CE DE	ESCRI	PTIC	ON: S	SEQ 1	D NO): 19	€:							
	ATG Met 1	GAA Glu	CTC Leu	AGC Ser	GTC Val 5	CTC Leu	CTC Leu	TTC Phe	CTT Leu	GCA Ala 10	CTC Leu	CTC Leu	ACA Thr	GGA Gly	CTC Leu 15	TTG Leu	4		4.8
30	CTA Leu	CTC Leu	CTG Leu	GTT Val 20	CAG Gln	CGC Arg	CAC His	CCT Pro	AAC Asn 25	ACC Thr	CAT His	GAC Asp	CGC Arg	CTC Leu 30	CCA Pro	CCA Pro			96
35	GGG Gly	CCC Pro	CGC Arg 35	CCT Pro	CTG Leu	CCC Pro	CTT Leu	TTG Leu 40	GGA Gly	AAC Asn	CTT Leu	CTG Leu	CAG Gln 45	ATG Met	GAT Asp	AGA Arg	7	:	144
	AGA Arg	GGC Gly 50	CTA Leu	CTC Leu	AAA Lys	TCC Ser	TTT Phe 55	CTG Leu	AGG Arg	TTC Phe	CGA Arg	GAG Glu 60	AAA Lys	TAT Tyr	GGG Gly	GAC Asp		:	192
10	GTC Val 65	TTC Phe	ACG Thr	GTA Val	CAC His	CTG Leu 70	GGA Gly	CCG Pro	AGG Arg	CCC Pro	GTG Val 75	GTC Val	ATG Met	CTG Leu	TGT Cys	GGA Gly 80		;	240
:5	GTA Val	GAG Glu	GCC Ala	ATA Ile	CGG Arg 85	GAG Glu	GCC Ala	CTT Leu	GTG Val	GAC Asp 90	AAG Lys	GCT Ala	GAG Glu	GCC Ala	TTC Phe 95	TCT Ser		:	288
	GGC Gly	CGG Arg	GGA Gly	AAA Lys 100	ATC Ile	GCC Ala	ATG Met	GTC Val	GAC Asp 105	CCA Pro	TTC Phe	TTC Phe	CGG Arg	GGA Gly 110	TAT Tyr	GGT Gly		;	336

		GCC Ala								384
5		ATG Met								432
10		GAG Glu								480
		CTC Leu								528
15		TGC Cys 180								576
20		CTG Leu							٠	624
		GTA Val								672
25		CCT Pro								720
30		TAC Tyr							i.	768
		GCC Ala 260								816
35		AAA Lys								864
40		ACG Thr								912
		CGC Arg								960
45		GTC Val							1	.008
50		CTT Leu 340							1	.056

		TAT Tyr																1104
5	CAC His	ATT Ile 370	GTC Val	ACC Thr	CAA Gln	CAC His	ACC Thr 375	AGC Ser	TTC Phe	CGA Arg	GGG Gly	TAC Tyr 380	ATC Ile	ATC Ile	CCC Pro	AAG Lys		1152
10	GAC Asp 385	ACA Thr	GAA Glu	GTA Val	TTT Phe	CTC Leu 390	ATC Ile	CTG Leu	AGC Ser	ACT Thr	GCT Ala 395	CTC Leu	CAT His	GAC Asp	CCA Pro	CAC His 400		1200
	TAC Tyr	TTT Phe	GAA Glu	AAA Lys	CCA Pro 405	GAC Asp	GCC Ala	TTC Phe	AAT Asn	CCT Pro 410	GAC Asp	CAC His	TTT Phe	CTG Leu	GAT Asp 415	GCC Ala		1248
15		GGG Gly																1296
20		CGG Arg																1344
		TTC Phe 450																1392
25		GAA Glu															, e	1440
30		CCA Pro										TGA					<u>4.</u>	1476
	(2)	INFO	RMAT	CION	FOR	SEQ	ID N	10: 2	:0:									
35		((A	L) LE	ENCE ENGTH PE: POLC	l: 49 amir	l am	ino id									. •	
		(ii)	MOL	ECUI	E TY	PE:	prot	ein										
40										D NC								
	Met 1	Glu	Leu	Ser	Val 5	Leu	Leu	Phe	Leu	Ala 10	Leu	Leu	Thr	Gly	Leu 15	Leu		
	Leu	Leu	Leu	Val 20	Gln	Arg	His	Pro	Asn 25	Thr	His	Asp	Arg	Leu 30	Pro	Pro	•	
45	Gly	Pro	Arg 35	Pro	Leu	Pro	Leu	Leu 40	Gly	Asn	Leu	Leu	Gln 45	Met	Asp	Arg		

	Arg	Gly 50	Leu	Leu	Lys	Ser	Phe 55	Leu	Arg	Phe	Arg	Glu 60	Lys	Tyr	Gly	Asp
5	Val 65	Phe	Thr	Val	His	Leu 70	Gly	Pro	Arg	Pro	Val 75	Val	Met	Leu	Cys	Gly 80
	Val	Glu	Ala	Ile	Arg 85	Glu	Ala	Leu	Val	Asp 90	Lys	Ala	Glu	Ala	Phe 95	Ser
10	Gly	Arg	Gly	Lys 100	Ile	Ala	Met	Val	Asp 105	Pro	Phe.	Phe	Arg	Gly 110	Tyr	Gly
·	Val	Ile	Phe 115	Ala	Asn	Gly	Asn	Arg 120	Trp	Lys	Val	Leu	Arg 125	Arg	Phe	Ser
15	Val	Thr 130	Thr	Met	Arg	Asp	Phe 135	Gly	Met	Gly	Lys	Arg 140	Ser	Val	Glu	Glu
	Arg 145	Ile	Gln	Glu	Glu	Ala 150	Gln	Cys	Leu	Ile	Glu 155	Glu	Leu	Arg	Lys	Ser 160
20	Lys	Gly	Ala	ⁱ Leu	Met 165	Asp	Pro	Thr	Phe	Leu 170	Phe	Gln	Ser	Ile	Thr 175	Ala
	Asn	Ile	Ile	Cys 180	Ser	Ile	Val	Phe	Gly 185	Lys	Arg	Phe	His	Туг 190	Gln	Asp
25	Gln	Glu	Phe 195	Leu	Lys	Met	Leu	Asn 200	Leu	Phe	Tyr	Gln	Thr 205	Phe	Ser	Leu
	Ile	Ser 210	Ser	Val	Phe	Gly	Gln 215	Leu	Phe	Glu	Leu	Phe 220	Ser	Gly	Phe	Leu
30	Lys 225	Tyr	Phe	Pro	Gly	Ala 230	His	Arg	Gln	Val	Tyr 235	Lys	Asn	Leu	Gln	Glu 240
	Ile	Asn	Ala	Tyr	Ile 245	Gly	His	Ser	Val	Glu 250	Lys	His	Arg	Glu	Thr 255	Leu
35	Asp	Pro	Ser	Ala 260	Pro	Lys	Asp	Leu	Ile 265	Asp	Thr	Tyr	Leu	Leu 270	His	Met ,
	Glu	Lys	Glu 275	Lys	Ser	Asn	Ala	His 280	Ser	Glu	Phe	Ser	His 285	Gln	Asn	Leu
40	Asn	Leu 290	Asn	Thr	Leu	Ser	Leu 295	Phe	Phe	Ala	Gly	Thr 300	Glu	Thr	Thr	Ser
	Thr 305	Thr	Leu	Arg	Tyr	Gly 310	Phe	Leu	Leu	Met	Leu 315	Lys	Tyr	Pro	His	Val 320:
45	Ala	Glu	Arg	Val	Tyr 325	Arg	Glu	Ile	Glu	Gln 330	Val	Ile	Gly	Pro	His 335	Arg
	Pro	Pro	Glu	Leu 340	His	qaA	Arg	Ala	Lys 345	Met	Pro	Tyr	Thr	Glu 350	Ala	Val
50	Ile	Tyr	Glu 355	Ile	Gln	Arg	Phe	Ser 360	qaA	Leu	Leu	Pro	Met 365	Gly	Val	Pro

	His	Ile 370	Val	Thr	Gln	His	Thr 375	Ser	Phe	Arg	Gly	Tyr 380	Ile	Ile	Pro	Lys		
5	Asp 385	Thr	Glu	Val	Phe	Leu 390	Ile	Leu	Ser	Thr	Ala 395	Leu	His	Asp	Pro	His 400		
	Tyr	Phe	Glu	Lys	Pro 405	Asp	Ala	Phe	Asn	Pro 410	Asp	His	Phe	Leu	Asp 415	Ala		
10	Asn	Gly	Ala	Leu 420	Lys	Lys	Thr	Glu	Ala 425	Phe	Ile	Pro	Phe	Ser 430	Leu	Gly		
	Lys	Arg	Ile 435	Cys	Leu	Gly	Glu	Gly 440	Ile	Ala	Arg	Ala	Glu 445	Leu	Phe	Leu		
15	Phe	Phe 450	Thr	Thr	Ile	Leu	Gln 455	Asn	Phe	Ser	Met	Ala 460	Ser	Pro	Val	Ala		
	Pro 465	Glu	Asp	Ile	Asp	Leu 470	Thr	Pro	Gln	Glu	Cys 475	Gly	Val	Gly	Lys	Ile 480		
20	Pro	Pro	Thr	Tyr	Gln 485	Ile	Arg	Phe	Leu	Pro 490	Arg							
20	(2)	INFO	ORMA	rion	FOR	SEQ	ID 1	NO: 2	21:									
25		(i)	(<i>I</i> (E	A) LI B) T? C) S?	ENGTI (PE : [RANI	H: 14 nucl	TER: 173 l leic ESS: line	oase acid doub	pai:	cs							4	
30		(ix)	(1		ME/I		CDS	1470			i.						<i>4</i> ,	Ţ
		(xi)	SEQ	QUENC	CE DI	ESCRI	PTIC	ON: S	SEQ I	D NO	D: 21	L:						
35													TTT Phe					48
													CTC Leu					96
40													ATA Ile 45					144
45													TAT Tyr					192

	TTC Phe 65	Thr	GTG Val	TAT	TTT Phe	GGC Gly 70	ATG Met	AAT Asn	CCC Pro	ATA Ile	GTG Val 75	Val	TTT Phe	CAT His	GGA Gly	TAT Tyr 80	240
5	GAG Glu	GCA Ala	GTG Val	AAG Lys	GAA Glu 85	Ala	CTG Leu	ATT Ile	GAT Asp	AAT Asn 90	Gly	GAG Glu	GAG Glu	TTT Phe	TCT Ser 95	GGA Gly	288
10	AGA Arg	GGC Gly	AAT Asn	TCC Ser 100	Pro	ATA Ile	TCT Ser	CAA Gln	AGA Arg 105	ATT Ile	ACT Thr	AAA Lys	GGA Gly	CTT Leu 110	GGA Gly	ATC Ile	336
	ATT Ile	TCC Ser	AGC Ser 115	Asn	GGA Gly	AAG Lys	AGA Arg	TGG Trp 120	AAG Lys	GAG Glu	ATC Ile	CGG Arg	CGT Arg 125	TTC Phe	TCC Ser	CTC Leu	384
15	ACA Thr	ACC Thr 130	Leu	CGG Arg	AAT Asn	TTT Phe	GGG Gly 135	ATG Met	GGG Gly	AAG Lys	AGG Arg	AGC Ser 140	ATT Ile	GAG Glu	GAC Asp	CGT Arg	432
20	GTT Val 145	CAA Gln	GAG Glu	GAA Glu	GCT Ala	CAC His 150	TGC Cys	CTT Leu	GTG Val	GAG Glu	GAG Glu 155	TTG Leu	AGA Arg	AAA Lys	ACC Thr	AAG Lys 160	480
	GCT Ala	TCA Ser	CCC Pro	TGT Cys	GAT Asp 165	CCC Pro	ACT Thr	TTC Phe	ATC Ile	CTG Leu 170	GGC Gly	TGT Cys	GCT Ala	CCC Pro	TGC Cys 175	AAT Asn	528
25	GTG Val	ATC Ile	TGC Cys	TCC Ser 180	GTT Val	GTT Val	TTC Phe	CAG Gln	AAA Lys 185	CGA Arg	TTT Phe	GAT Asp	TAT Tyr	AAA Lys 190	GAT Asp	CAG Gln	576
30	AAT Asn	TTT Phe	CTC Leu 195	ACC Thr	CTG Leu	ATG Met	AAA Lys	AGA Arg 200	TTC Phe	AAT Asn	GAA Glu	AAC Asn	TTC Phe 205	AGG Arg	ATT Ile	CTG Leu	624
	AAC Asn	TCC Ser 210	CCA Pro	TGG Trp	ATC Ile	CAG Gln	GTC Val 215	TGC Cys	AAT Asn	AAT Asn	TTC Phe	CCT Pro 220	CTA Leu	CTC Leu	ATT Ile	GAT Asp	672
35	TGT Cys 225	TTC Phe	CCA Pro	GGA Gly	ACT Thr	CAC His 230	AAC Asn	AAA Lys	GTG Val	CTT Leu	AAA Lys 235	AAT Asn	GTT Val	GCT Ala	CTT Leu	ACA Thr 240	720
40	CGA Arg	AGT Ser	TAC Tyr	ATT Ile	AGG Arg 245	GAG Glu	AAA Lys	GTA Val	AAA Lys	GAA Glu 250	CAC His	CAA Gln	GCA Ala	TCA Ser	CTG Leu 255	GAT Asp	768
	GTT Val	AAC Asn	AAT Asn	CCT Pro 260	CGG Arg	GAC Asp	TTT Phe	ATC Ile	GAT Asp 265	TGC Cys	TTC Phe	CTG Leu	ATC Ile	AAA Lys 270	ATG Met	GAG Glu	816
45	CAG Gln	GAA Glu	AAG Lys 275	GAC Asp	AAC Asn	CAA Gln	AAG Lys	TCA Ser 280	GAA Glu	TTC Phe	AAT Asn	ATT Ile	GAA Glu 285	AAC Asn	TTG Leu	GTT Val	864
50	GGC Gly	ACT Thr 290	GTA Val	GCT Ala	GAT Asp	Leu	TTT Phe 295	GTT Val	GCT Ala	GGA Gly	ACA Thr	GAG Glu 300	ACA Thr	ACA Thr	AGC Ser	ACC Thr	912

	ACT Thr 305	CTG Leu	AGA Arg	TAT Tyr	GGA Gly	CTC Leu 310	CTG Leu	CTC Leu	CTG Leu	CTG Leu	AAG Lys 315	CAC His	CCA Pro	GAG Glu	GTC Val	ACA Thr 320	96	0
5	GCT Ala	AAA Lys	GTC Val	CAG Gln	GAA Glu 325	GAG Glu	ATT Ile	GAT Asp	CAT His	GTA Val 330	ATT Ile	GCC	AGA Arg	CAC His	AGG Arg 335	AGC Ser	100	8
10							AGC Ser										105	5
	CAC	GAG Glu	ATC Ile 355	CAG Gln	AGA Arg	TAC Tyr	AGT Ser	GAC Asp 360	CTT Leu	GTC Val	CCC Pro	ACC Thr	GGT Gly 365	GTG Val	CCC Pro	CAT His	1104	1
15	GCA Ala	GTG Val 370	ACC Thr	ACT Thr	GAT Asp	ACT Thr	AAG Lys 375	TTC Phe	AGA Arg	AAC Asn	TAC Tyr	CTC Leu 380	ATC Ile	CCC Pro	AAG Lys	GGC Gly	1152	2
20	ACA Thr 385	ACC Thr	ATA Ile	ATG Me <u>t</u>	GCA Ala	TTA Leu 390	CTG Leu	ACT Thr	TCC Ser	GTG Val	CTA Leu 395	CAT His	GAT Asp	GAC Asp	AAA Lys	GAA Glu 400	1200)
	TTT Phe	CCT Pro	AAT Asn	CCA Pro	AAT Asn 405	ATC Ile	TTT Phe	GAC Asp	CCT Pro	GGC Gly 410	CAC His	TTT Phe	CTA Leu	GAT Asp	AAG Lys 415	AAT Asn	1248	3
25	GGC Gly	AAC Asn	TTT Phe	AAG Lys 420	AAA Lys	AGT Ser	GAC Asp	TAC Tyr	TTC Phe 425	ATG Met	CCT Pro	TTC Phe	TCA Ser	GCA Ala 430	GGA Gly	AAA Lys	1296	5
30	CGA Arg	ATT Ile	TGT Cys 435	GCA Ala	GGA Gly	GAA Glu	GGA Gly	CTT Leu 440	GCC Ala	CGC Arg	ATG Met	GAG Glu	CTA Leu 445	TTT Phe	TTA Leu	TTT Phe	1344	Ī
	CTA Leu	ACC Thr 450	ACA Thr	ATT Ile	TTA Leu	CAG Gln	AAC Asn 455	TTT Phe	AAC Asn	CTG Leu	AAA Lys	TCT Ser 460	GTT Val	GAT Asp	GAT Asp	TTA Leu	1392	2
35	AAG Lys 465	AAC Asn	CTC Leu	AAT Asn	ACT Thr	ACT Thr 470	GCA Ala	GTT Val	ACC Thr	AAA Lys	GGG Gly 475	ATT Ile	GTT Val	TCT Ser	CTG Leu	CCA Pro 480	1440)
40				_			TTC Phe				TGA						1473	ļ
	(2)	T.1700	ND 112 (1		505	070	7 n .		_									

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 490 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

55

45

50

		(xi)	SE(QUENC	CE DE	ESCR:	[PTI	ON: S	SEQ :	D NO): 23	2:				
5	Met 1	Glu	Pro	Phe	Val 5	Val	Leu	Val	Leu	Cys 10	Leu	Ser	Phe	Met	Leu 15	Leu
	Phe	Ser	Leu	Trp 20	Arg	Gln	Ser	Cys	Arg 25	Arg	Arg	Lys	Leu	Pro 30	Pro	Gly
10	Pro	Thr	Pro 35	Leu	Pro	Ile	Ile	Gly 40	Asn	Met	Leu	Gln	Ile 45	Asp	Val	Lys
:	Asp	Ile 50	Cys	Lys	Ser	Phe	Thr 55	Asn	Phe	Ser	Lys	Val 60	Tyr	Gly	Pro	Val
15	Phe 65	Thr	Val	Tyr	Phe	Gly 70	Met	Asn	Pro	Ile	Val 75	Val	P'ne	His	Gly	Tyr 80
	Glu	Ala	Val	Lys	Glu 85	Ala	Leu	Ile	Asp	Asn 90	Gly	Glu	Glu	Phe	Ser 95	Gly
20	Arg	Gly	Asn	Ser 100	Pro	Ile	Ser	Gln	Arg 105	Ile	Thr	Lys	Gly	Leu 110	Gly	Ile
	Ile	Ser	Ser 115	Asn	Gly	Lys	Arg	Trp 120	Lys	Glu	Ile	Arg	Arg 125	Phe	Ser	Leu
25	**• \	Thr 130	Leu	Arg	Asn	Phe	Gly 135	Met	Gly	Lys	Arg	Ser 140	Ile	Glu	Asp	Arg
	Val 145	Gln	Glu	Glu	Ala	His 150	Cys	Leu	Val	Glu	Glu 155	Leu	Arg	Lys	Thr	Lys 160
30	Ala	Ser	Pro	Cys	Asp 165	Pro	Thr	Phe	Ile	Leu 170	Gly	Cys	Ala	Pro	Cys 175	Asn
	Val	Ile	Cys	Ser 180	Val	Val	Phe	Gln	Lys 185	Arg	Phe	Asp	Tyr	Lys 190	Asp	Gln
35	Asn	Phe	Leu 195	Thr	Leu	Met	Lys	Arg 200	Phe	Asn	Glu	Asn	Phe 205	Arg	Ile	Leu
	Asn	Ser 210	Pro	Trp	Ile	Gln	Val 215	Cys	Asn	Asn	Phe	Pro 220	Leu	Leu	Ile	Asp
40	Cys 225	Phe	Pro	Gly	Thr	His 230	Asn	Lys	Val	Leu	Lys 235	Asn	Val	Ala	Leu	Thr 240
	Arg	Ser	Tyr	Ile	Arg 245	Glu	Lys	Val	Lys	Glu 250	His	Gln	Ala	Ser	Leu 255	Asp

290

45

50

55

Val Asn Asn Pro Arg Asp Phe Ile Asp Cys Phe Leu Ile Lys Met Glu

Gln Glu Lys Asp Asn Gln Lys Ser Glu Phe Asn Ile Glu Asn Leu Val 275 280 285

Gly Thr Val Ala Asp Leu Phe Val Ala Gly Thr Glu Thr Thr Ser Thr

300

	Thr 305	Leu	Arg	Tyr	Gly	Leu 310	Leu	Leu	Leu	Leu	Lys 315	His	Pro	Glu	Val	Thr 320	
5	Ala	Lys	Val	Gln	Glu 325	Glu	Ile	Asp	His	Val 330	Ile	Gly	Arg	His	Arg 335	Ser	
	Pro	Cys	Met	Gln 340	Asp	Arg	Ser	His	Met 345	Pro	Tyr	Thr	Asp	Ala 350	Val	Val	
10	His	Glu	Ile 355	Gln	Arg	Tyr	Ser	Asp 360	Leu	Val	Pro	Thr	Gly 365	Val	Pro	His	
	Ala	Val 370	Thr	Thr	Asp	Thr	Lys 375	Phe	Arg	Asn	Tyr	Leu 380	Ile	Pro	Lys	Gly	
15	Thr 385	Thr	Ile	Met	Ala	Leu 390	Leu	Thr	Ser	Val	Leu 395	His	Asp	Ąsp	Lys	Glu 400	
	Phe	Pro	Asn	Pro	Asn 405	Ile	Phe	Asp	Pro	Gly 410	His	Phe	Leu	Asp	Lys 415	Asn	
20	Gly	Asn	Phe	Ly i s 420	Lys	Ser	Asp	Tyr	Phe 425	Met	Pro	Phe	Ser	Ala 430	Gly	Lys	
	Arg	Ile	Cys 435	Ala	Gly	Glu	Gly	Leu 440	Ala	Arg	Met	Glu	Leu 445	Phe	Leu	Phe	
25	Leu	Thr 450	Thr	Ile	Leu	Gln	Asn 455	Phe	Asn	Leu	Lys	Ser 460	Val	Asp	Asp	Leu	
	Lys 465	Asn	Leu	Asn	Thr	Thr 470	Ala	Val	Thr	Lys	Gly 475	Ile	Val	Ser	Leu	Pro 480	
30	Pro	Ser	Tyr	Gln	Ile 485	Cys	Phe	Ile	Pro	Val 490						·	
	(2)					-	ID N										
35			()	3) TY	(PE : (RANI	nuc] DEDNI	173 h leic ESS: line	acio doub		.s							
40		(ix)		A) NA	ME/I	KEY: ION:	CDS 1]	L470									
		(xi)	SEC	QUENC	CE DI	ESCR	PTIC	ON: S	SEQ 1	D NO): 23	3:				1	
45									CTG Leu								4.8
50									AGG Arg 25								96

					AAT Asn					144
5					TTC Phe					192
10					CCC Pro					240
					GAT Asp					288
15					AGA Arg 105					336
20					AAG Lys					384
20				_	GGG Gly					432
25					GTG Val				-	480
20					ATC Ile	Gly			?	528
30					AAA Lys 185					576
35					TTC Phe					624
					AAT Asn					672
40					GTG Val					720
45					AAA Lys					768

	GTT Val	AAC Asn	AAT Asn	CCT Pro 260	CGG Arg	GAC Asp	TTT Phe	ATC Ile	GAT Asp 265	TGC Cys	TTC Phe	CTG Leu	ATC Ile	AAA Lys 270	ATG Met	GAG Glu		816
5	CAG Gln	GAA Glu	AAG Lys 275	GAC Asp	AAC Asn	CAA Gln	AAG Lys	TCA Ser 280	GAA Glu	TTC Phe	AAT Asn	ATT Ile	GAA Glu 285	AAC Asn	TTG Leu	GTT Val		864
10	GGC Gly	ACT Thr 290	GTA Val	GCT Ala	GAT Asp	CTA Leu	TTT Phe 295	GTT Val	GCT Ala	GGA Gly	ACA Thr	GAG Glu 300	ACA Thr	ACA Thr	AGC Ser	ACC Thr		912
	ACT Thr 305	CTG Leu	AGA Arg	TAT Tyr	GGA Gly	CTC Leu 310	CTG Leu	CTC Leu	CTG Leu	CTG Leu	AAG Lys 315	CAC His	CCA Pro	GAG Glu	GTC Val	ACA Thr 320		960
15	GCT Ala	AAA Lys	GTC Val	CAG Gln	GAA Glu 325	GAG Glu	ATT Ile	GAT Asp	CAT His	GTA Val 330	ATT Ile	GGC Gly	AGA Arg	CAC His	AGG Arg 335	AGC Ser		1008
20	CCC Pro	TGC Cys	ATG Met	CAG Gln 340	GAT Asp	AGG Arg	AGC Ser	CAC His	ATG Met 345	CCT Pro	TAC Tyr	ACT Thr	GAT Asp	GCT Ala 350	GTA Val	GTG Val	٠	1056
20	CAC His	GAG Glu	ATC Ile 355	CAG Gln	AGA Arg	TAC Tyr	AGT Ser	GAC Asp 360	CTT Leu	GTC Val	CCC Pro	ACC Thr	GGT Gly 365	GTG Val	CCC Pro	CAT His		1104
25	GCA Ala	GTG Val 370	ACC Thr	ACT Thr	GAT Asp	ACT Thr	AAG Lys 375	TTC Phe	AGA Arg	AAC Asn	TAC Tyr	CTC Leu 380	ATC Ile	CCC Pro	AAG Lys	GGC Gly		1152
	ACA Thr 385	ACC Thr	ATA Ile	ATG Met	GCA Ala	TTA Leu 390	CTG Leu	ACT Thr	TCC Ser	GTG Val	CTA Leu 395	CAT His	GAT Asp	GAC Asp	AGA Arg	GAA Glu 400	Ģ.	1200
30	TTT Phe	CCT Pro	AAT Asn	CCA Pro	AAT Asn 405	ATC Ile	TTT Phe	GAC Asp	CCT Pro	GGC Gly 410	CAC His	TTT Phe	CTA Leu	GAT Asp	AAG Lys 415	AAT Asn		1248
35	GGC Gly	AAC Asn	TTT Phe	AAG Lys 420	AAA Lys	AGT Ser	GAC Asp	TAC Tyr	TTC Phe 425	ATG Met	CCT Pro	TTC Phe	TCA Ser	GCA Ala 430	GGA Gly	AAA Lys		1296
	CGA Arg	ATT Ile	TGT Cys 435	GCA Ala	GGA Gly	GAA Glu	GGA Gly	CTT Leu 440	GCC Ala	CGC Arg	ATG Met	GAG Glu	CTA Leu 445	TTT Phe	TTA Leu	TTT Phe		1344
40			Thr						AAC Asn									1392
45	AAG Lys 465	Asn	CTC Leu	AAT Asn	ACT Thr	ACT Thr 470	GCA Ala	GTT Val	ACC Thr	AAA Lys	GGG Gly 475	ATT Ile	GTT Val	TCT Ser	CTG Leu	CCA Pro 480		1440
						Cys			CCT Pro		TGA							1473

50

	(2)	INFO	RMAT	CION	FOR	SEQ	ID 1	10: 2	24:							
5		((<i>F</i>	A) LE	ENGTI (PĘ :	1: 49 amir	0 an	nino cid	rics: acid							
		(ii)	MOI	LECÜI	LE TY	PE:	prot	cein								
10		(xi)	SEC	QUENC	CE DE	ESCRI	PTIC	ON: 5	SEQ :	D NO): 24	ł:				
	Met 1	Glu	Pro	Phe	Val 5	Val	Leu	Val	Leu	Cys 10	Leu	Ser	Phe	Met	Leu 15	Lev
15	Phe	Ser	Leu	Trp 20	Arg	Gln	Ser	Cys	Arg 25	Arg	Arg	Lys	Leu	Pro 30	Pro	Gly
	Pro	Thr	Pro 35	Leu	Pro	Ile	Ile	Gly 40	Asn	Met	Leu	Gln	Ile 45	Asp	Val	Lys
20	Asp	Ile 50	Cys	Lys	Ser	Phe	Thr 55	Asn	Phe	Ser	Lys	Val 60	Tyr	Gly	Pro	Val
	Fhe 65	Thr	Val	Tyr	Phe	Gly 70	Met	Asn	Pro	Ile	Val 75	Val	Phe	His	Gly	Ту: 80
25	Glu	Ala	Val	Lys	Glu 85	Ala	Leu	Ile	Asp	Asn 90	Gly	Glu	Glu	Phe	Ser 95	Gly
	Arg	Gly	Asn	Ser 100	Pro	Ile	Ser	Gln	Arg 105	Ile	Thr	Lys	Gly	Leu 110	Gly	Ίlε
30	Ile	Ser	Ser 115	Asn	Gly	Lys	Arg	Trp 120	Lys	Glu	Ile	Arg	Arg 125	Phe	Ser	Lev
	Thr	Thr 130	Leu	Arg	Asn	Phe	Gly 135	Met	Gly	Lys	Lys	Ser 140	Ile	Glu	Asp	Arg
35	Val 145	Gln	Glu	Glu	Ala	His 150	Cys	Leu	Val	Glu	Glu 155	Leu	Arg	Lys	Thr	Lys 160
40	Ala	Ser	Pro	Cys	Asp 165	Pro	Thr	Phe	Ile	Leu 170	Gly	Cys	Ala	Pro	Cys 175	Asr

55 .

45

50

Val Ile Cys Ser Val Val Phe Gln Lys Arg Phe Asp Tyr Lys Asp Gln

Asn Ser Pro Trp Ile Gln Val Cys Asn Asn Phe Pro Leu Leu Ile Asp

Cys Phe Pro Gly Thr His Asn Lys Val Leu Lys Asn Val Ala Leu Thr

235

215

230

185 Asn Phe Leu Thr Leu Met Lys Arg Phe Asn Glu Asn Phe Arg Ile Leu 200

	Arg	Ser	Tyr	Ile	Arg 245	Glu	Lys	Val	Lys	Glu 250	His	Gln	Ala	Ser	Leu 255	Asp
5	Val	Asn	Asn	Pro 260		Asp	Phe	Ile	Asp 265	Cys	Phe	Leu	Ile	Lys 270	Met	Glu
	Gln	Glu	Lys 275	Asp	Asn	Gln	Lys	Ser 280	Glu	P'ne	Asn	Ile	Glu 285	Asn	Leu	Val
10	Gly	Thr 290	Val	Ala	Asp	Leu	Phe 295	Val	Ala	Gly	Thr	Glu 300	Thr	Thr	Ser	Thr
	Thr 305	Leu	Arg	Tyr	Gly	Leu 310	Leu	Leu	Leu	Leu	Lys 315	His	Pro	Glu	Val	Thr 320
15	Ala	Lys	Val	Gln	Glu 325	Glu	Ile	Asp	His	Val 330	Ile	Gly	Arg	His	Arg 335	Ser
20	Pro	Cys	Met	Gln 340	Asp	Arg	Ser	His	Met 345	Pro	Tyr	Thr	Asp	Ala 350	Val	Val
	His	Glu	Ile 355	Gln.	Arg	Tyr	Ser	Asp 360	Leu	Val	Pro	Thr	Gly 365	Val	Pro	His
25	Ala	Val 370	Thr	Thr	Asp	Thr	Lys 375	Phe	Arg	Asn	Tyr	Leu 380	Ile	Pro	Lys	Gly
	Thr 385	Thr	Ile	Met	Ala	Leu 390	Leu	Thr	Ser	Val	Leu 395	His	Asp	Asp	Arg	Glu 400
30	Phe	Pro	Asn	Pro	Asn 405	Ile	Phe	Asp	Pro	Gly 410	His	Phe	Leu	Asp	Lys 415	Asn
	Gly	Asn	Phe	Lys 420	Lys	Ser	Asp	Tyr	Phe 425	Met	Pro	Phe	Ser	Ala 430	Gly	Lys
35	Arg	Ile	Cys 435	Ala	Gly	Glu	Gly	Leu 440	Ala	Arg	Met	Glu	Leu 445	Phe	Leu	Phe
	Leu	Thr 450	Thr	Ile	Leu	Gln	Asn 455	Phe	Asn	Leu	Lys	Ser 460	Val	Asp	Asp	Leu
40	Lys 465		Leu	Asn	Thr	Thr 470		Val	Thr	Lys	Gly 475	Ile	Val	Ser	Leu	Pro 480
45	Pro	Ser	Tyr	Gln	Ile 485		Phe	Ile	Pro	Val 490						-
43	(2)							NO:								
50		(i	(A) L B) T	ENGT YPE : TRAN	H: 1 nuc DEDN	473 leic ESS:	ISTI base aci dou ear	pai d	rs						

69 .

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..1470

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25: ATG GAA CCT TTT GTG GTC CTG GTG CTG TGT CTC TCT TTT ATG CTT CTC Met Glu Pro Phe Val Val Leu Val Leu Cys Leu Ser Phe Met Leu Leu TTT TCA CTC TGG AGA CAG AGC TGT AGG AGA AGG AAG CTC CCT CCT GGC 96 Phe Ser Leu Trp Arg Gln Ser Cys Arg Arg Arg Lys Leu Pro Pro Gly 25 CCC ACT CCT CTT CCT ATT ATT GGA AAT ATG CTA CAG ATA GAT GTT AAG 144 Pro Thr Pro Leu Pro Ile Ile Gly Asn Met Leu Gln Ile Asp Val Lys 15 GAC ATC TGC AAA TCT TTC ACC AAT TTC TCA AAA GTC TAT GGT CCT GTG 192 Asp Ile Cys Lys Ser Phe Thr Asn Phe Ser Lys Val Tyr Gly Pro Val TTC ACC GTG TAT TTT GGC ATG AAT CCC ATA GTG GTG TTT CAT GGA TAT 240 Phe Thr Val Tyr Phe Gly Met Asn Pro Ile Val Val Phe His Gly Tyr GTG GCA GTG AAG GAA GCC CTG ATT GAT AAT GGA GAG GAG TTT TCT GGA 288 Val Ala Val Lys Glu Ala Leu Ile Asp Asn Gly Glu Glu Phe Ser Gly 85 AGA GGC AAT TCC CCA ATA TCT CAA AGA ATT ACT AAA GGA CTT GGA ATC 336 Arg Gly Asn Ser Pro Ile Ser Gln Arg Ile Thr Lys Gly Leu Gly Ile 100 ATT TCC AGC AAT GGA AAG AGA TGG AAG GAG ATC CGG CGT TTC TCC CTC 384 Ile Ser Ser Asn Gly Lys Arg Trp Lys Glu Ile Arg Arg Phe Ser Leu ACA ACC TTG CGG AAT TTT GGG ATG GGG AAG AAG AGC ATT GAG GAC CGT 432 Thr Thr Leu Arg Asn Phe Gly Met Gly Lys Lys Ser Ile Glu Asp Arg 135 35 GTT CAA GAG GAA GCT CAC TGC CTT GTG GAG GAG TTG AGA AAA ACC AAG 480 Val Gln Glu Glu Ala His Cys Leu Val Glu Glu Leu Arg Lys Thr Lys 155 GCT TCA CCC TGT GAT CCC ACT TTC ATC CTG GGC TGT GCT CCC TGC AAT 528 40 Ala Ser Pro Cys Asp Pro Thr Phe Ile Leu Gly Cys Ala Pro Cys Asn 170 165 GTG ATC TGC TCC GTT GTT TTC CAG AAA CGA TTT GAT TAT AAA GAT CAG 576 Val Ile Cys Ser Val Val Phe Gln Lys Arg Phe Asp Tyr Lys Asp Gln 45 AAT TTT CTC ACC CTG ATG AAA AGA TTC AAT GAA AAC TTC AGG ATT CTG

50

55

Asn Phe Leu Thr Leu Met Lys Arg Phe Asn Glu Asn Phe Arg Ile Leu

												CCT Pro 220						672
5												AAT Asn						720
10	CGA Arg	AGT Ser	TAC Tyr	ATT Ile	AGG Arg 245	GAG Glu	AAA Lys	GTA Val	AAA Lys	GAA Glu 250	CAC His	CAA Gln	GCA Ala	TCA Ser	CTG Leu 255	GAT Asp		768
												CTG Leu						816
15												ATT Ile						864
20												GAG Glu 300					•	912
												CAC His						960
25												GGC Gly					6	1008
30												ACT Thr					÷	1056
												ACC Thr						1104
35												CTC Leu 380					•	1152
40												CAT His						1200
												TTT Phe						1248
45												TTC Phe						1296
50												GAG Glu						1344

	CTA Leu	ACC Thr 450	ACA Thr	ATT Ile	TTA Leu	CAG Gln	AAC Asn 455	TTT Phe	AAC Asn	CTG Leu	AAA Lys	TCT Ser 460	GTT Val	GAT Asp	GAT Asp	TTA Leu		1392
5	AAG Lys 465	AAC Asn	CTC Leu	AAT Asn	ACT Thr	ACT Thr 470	GCA Ala	GTT Val	ACC Thr	AAA Lys	GGG Gly 475	ATT Ile	GTT Val	TCT Ser	CTG Leu	CCA Pro 480		1440
10	CCC	TCA Ser	TAC Tyr	CAG Gln	ATC Ile 485	TGC Cys	TTC Phe	ATC Ile	CCT Pro	GTC Val 490	TGA							1473
	(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	10: 2	26:									
15		!	(E	L) LE	ENGTI (PE:	I: 49 amir	ACTE 00 an 10 ac 1ine	nino cid										
			MOI		į,													
20											D: 26		-1		•	•		
	Met 1	Glu	Pro	Phe	Val 5		Leu	Val	Leu	Cys 10	Leu	Ser	Pne	Met	15	Leu		
25	Phe	Ser	Leu	Trp 20	Arg	Gln	Ser	Cys	Arg 25	Arg	Arg	Lys	Leu	Pro 30	Pro	Gly		
	Pro	Thr	Pro 35	Leu	Pro	Ile	Ile	Gly 40	Asn	Met	Leu	Gln	Ile 45	Asp	Val	Lys	6	
30	Asp	Ile 50	Cys	Lys	Ser	Phe	Thr 55	Asn	Phe	Ser	Lys	Val 60	Tyr	Gly	Pro	Val		٠
00	Phe 65		Val	Tyr	Phe	Gly 70	Met	Asn	Pro	Ile	Val 75	Val	Phe	His	Gly	Tyr 80		
05	Val	Ala	Val	Lys	Glu 85	Ala	Leu	Ile	Asp	Asn 90	Gly	Glu	Glu	Phe	Ser 95	Gly		
35	Arg	Gly	Asn	Ser 100	Pro	.Ile	Ser	Gln	Arg 105	Ile	Thr	Lys	Gly	Leu 110	Gly	Ile		
	Ile	Ser	Ser 115	Asn	Gly	Lys	Arg	Trp 120		Glu	Ile	Arg	Arg 125	Phe	Ser	Leu		
40	Thr	Thr 130		Arg	Asn	Phe	Gly 135	Met	Gly	Lys	Lys	Ser 140	Ile	Glu	Asp	Arg		
	Val 145		Glu	Glu	Ala	His 150		Leu	Val	Glu	Glu 155	Leu	Arg	Lys	Thr	Lys 160		• -
45	Ala	Ser	Pro	Cys	Asp 165		Thr	Phe	Ile	Leu 170	Gly	Cys	Ala	Pro	Cys 175	Asn		

72 .

50 •

	Val .	Ile	Cys	Ser 180	Val	Val	Phe	Gln	Lys 185	Arg	Phe	Asp	Tyr	Lys 190	Asp	Gln
5	Asn :	Phe	Leu 195	Thr	Leu	Met	Lys	Arg 200	Phe	Asn	Glu	Asn	Phe 205	Arg	Ile	Leu
	Asn	Ser 210	Pro	Trp	Ile	Gln	Val 215	Cys	Asn	Asn	Phe	Pro 220	Leu	Leu	Ile	Asp
10	Cys 225	Phe	Pro	Gly	Thr	His 230	Asn	Lys	Val	Leu	Lys 235	Asn	Val	Ala	Leu	Thr 240
:	Arg	Ser	Tyr	Ile	Arg 245	Glu	Lys	Val	Lys	Glu 250	His	Gln	Ala	Ser	Leu 255	Asp
15	Val	Asn	Asn	Pro 260	Arg	Asp	Phe	Ile	Asp 265	Cys	Phe	Leu	Ile	Lys 270	Met	Glu
	Gln	Glu	Lys 275	Asp	Asn	Gln	Lys	Ser 280	Glu	Phe	Asn	Ile	Glu 285	Asn	Leu	Val
20	Gly	Thr 290	Va ^l l	Ala	Asp	Leu	Phe 295	Val	Ala	Gly	Thr	Glu 300	Thr	Thr	Ser	Thr
	Thr 305	Leu	Arg	Tyr	Gly	Leu 310	Leu	Leu	Leu	Leu	Lys 315	His	Pro	Glu	Val	Thr 320
25	Ala	Lys	Val	Gln	Glu 325	Glu	Ile	Asp	His	Val 330	Ile	Gly	Arg	His	Arg 335	Ser
	Pro	Cys	Met	Gln 340	Asp	Arg	Ser	His	Met 345	Pro	Tyr	Thr	Asp	Ala 350	Val	Val
30	His	Glu	Ile 355	Gln	Arg	Tyr	Ser	Asp 360	Leu	Val	Pro	Thr	Gly 365	Val	Pro	His
	Ala	Val 370	Thr	Thr	Asp	Thr	Lys 375	Phe	Arg	Asn	Tyr	Leu 380	Ile	Pro	Lys	Gly
35	Thr 385	Thr	Ile	Met	Ala	Leu 390	Leu	Thr	Ser	Val	Leu 395	His	Asp	qsA	Arg	Glu 400
	Phe	Pro	Asn	Pro	Asn 405	Ile	Phe	Asp	Pro	Gly 410	His	Phe	Leu	Asp	Lys 415	Asn
40	Gly	Asn	Phe	Lys 420	Lys	Ser	Asp	Tyr	Phe 425	Met	Pro	Phe	Ser	Ala 430	Gly	Lys
	Arg	Ile	Cys 435		Gly	Glu	Gly	Leu 440	Ala	Arg	Met	Glu	Leu 445	Phe	Leu	P.he
45	Leu	Thr 450		Ile	Leu	Gln	Asn 455	Phe	Asn	Leu	Lys	Ser 460	Val	Asp	Asp	Leu
	Lys 465	Asn	Leu	Asn	Thr	Thr 470	Ala	Val	Thr	Lys	Gly 475		Val	Ser	Leu	Pro 480
50	Pro	Ser	Tyr	Gln	Ile 485		Phe	Ile	Pro	Val 490						

	(2)	INFO	ORMA	NOIT	FOR	SEQ	ID I	NO: :	27:							
5		(i)	() ()	A) L1 B) T1 C) S'	CE CI ENGTI YPE: IRANI OPOLO	H: 14 nuci DEDNI	173 leic ESS:	base acio doul	pai: d	rs						
10	•.	(ix)	()		E: AME/I OCATI			1470								
		(xi)	SE	QUEN	CE DI	ESCR:	PTI	: : MC	SEQ :	ID N): 2	7:				
15								_	CTC Leu							48
					Arg				GGA Gly 25						•	96
20									AAT Asn							144
25									TTC Phe							192
									CCC Pro						Ą.	240
30									GAT Asp							288
35									AAA Lys 105							336
									AAG Lys							384
40									GGG Gly							432
45									GTG Val							480

	GCC Ala	TCA Ser	CCC Pro	TGT Cys	GAT Asp 165	CCC Pro	ACT Thr	TTC Phe	ATC Ile	CTG Leu 170	GGC Gly	TGT Cys	GCT Ala	CCC Pro	TGC Cys 175	AAT Asn		528
5	GTG Val	ATC Ile	TGC Cys	TCT Ser 180	GTT Val	ATT (Ile	TTC Phe	CAT His	GAT Asp 185	CGA Arg	TTT Phe	GAT Asp	TAT Tyr	AAA Lys 190	GAT Asp	CAG Gln		576
10	AGG Arg	TTT Phe	CTT Leu 195	AAC Asn	TTG Leu	ATG Met	GAA Glu	AAA Lys 200	TTC Phe	AAT Asn	GAA Glu	AAC Asn	CTC Leu 205	AGG Arg	ATT Ile	CTG Leu		624
	AGC Ser	TCT Ser 210	CCA Pro	TGG Trp	ATC Ile	CAG Gln	GTC Val 215	TGC Cys	AAT Asn	AAT Asn	TTC Phe	CCT Pro 220	GCT Ala	CTC Leu	ATC Ile	GAT Asp		672
15	TAT Tyr 225	CTC Leu	CCA Pro	GGA Gly	AGT Ser	CAT His 230	AAT Asn	AAA Lys	ATA Ile	GCT Ala	GAA Glu 235	AAT Asn	TTT Phe	GCT Ala	TAC Tyr	ATT Ile 240		720
20	AAA Lys	AGT Ser	TAT Tyr	GTA Val	TTG Leu 245	GAG Glu	AGA Arg	ATA Ile	AAA Lys	GAA Glu 250	CAT His	CAA Gln	GAA Glu	TCC Ser	CTG Leu 255	GAC Asp		768
	ATG Met	AAC Asn	AGT Ser	GCT Ala 260	CGG Arg	GAC Asp	TTT Phe	ATT Ile	GAT Asp 265	TGT Cys	TTC Phe	CTG Leu	ATC Ile	AAA Lys 270	ATG Met	GAA Glu		816
25	CAG Gln	GAA Glu	AAG Lys 275	CAC His	AAT Asn	CAA Gln	CAG Gln	TCT Ser 280	GAA Glu	TTT Phe	ACT Thr	GTT Val	GAA Glu 285	AGC Ser	TTG Leu	ATA Ile		864
30	GCC Ala	ACT Thr 290	GTA Val	ACT Thr	GAT Asp	ATG Met	TTT Phe 295	GGG Gly	GCT Ala	GGA Gly	ACA Thr	GAG Glu 300	ACA Thr	ACG Thr	AGC Ser	ACC Thr		912
	ACT Thr 305	CTG Leu	AGA Arg	TAT Tyr	GGA Gly	CTC Leu 310	CTG Leu	CTC Leu	CTG Leu	CTG Leu	AAG Lys 315	TAC Tyr	CCA Pro	GAG Glu	GTC Val	ACA Thr 320		960
35	GCT Ala	AAA Lys	GTC Val	CAG Gln	GAA Glu 325	GAG Glu	ATT Ile	GAA Glu	TGT Cys	GTA Val 330	GTT Val	GGC Gly	AGA Arg	AAC Asn	CGG Arg 335	AGC Ser	1.	1008
40	CCC Pro	TGT Cys	ATG Met	CAG Gln 340	GAC Asp	AGG Arg	AGT Ser	CAC His	ATG Met 345	CCC Pro	TAC Tyr	ACA Thr	GAT Asp	GCT Ala 350	GTG Val	GTG Val		1056
						TAC Tyr												1104
45	GCA Ala	GTG Val 370	ACC Thr	TGT Cys	GAT Asp	GTT Val	AAA Lys 375	TTC Phe	AAA Lys	AAC Asn	TAC Tyr	CTC Leu 380	ATC Ile	CCC Pro	AAG Lys	GGC Gly		1152
50	ACG Thr 385	ACC Thr	ATA Ile	ATA Ile	ACA Thr	TCC Ser 390	CTG Leu	ACT Thr	TCT Ser	GTG Val	CTG Leu 395	CAC His	AAT Asn	GAC Asp	AAA Lys	GAA Glu 400		1200

	TTC Phe	CCC Pro	AAC Asn	CCA Pro	GAG Glu 405	ATG Met	TTT Phe	GAC Asp	CCT Pro	GGC Gly 410	CAC His	TTT Phe	CTG Leu	GAT Asp	AAG Lys 415	AGT Ser	1248
5								TAC Tyr									1296
10								CTG Leu 440									1344
								TTT Phe									1392
15								ATT Ile									1440
20								ATT Ile			TGA						· 1473
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	10: 2	28:								
25			() ()	A) LE 3) TY		i: 49	90 an										·
		(ii)	MOI	LECUI	LE TY	PE:	prot	ein									
30				-				ON: S									
	Met 1	Asp	Pro	Ala	Val 5	Ala	Leu	Val	Leu	Cys 10	Leu	Ser	Cys	Leu	Phe 15	Leu	
35	Leu	Ser	Leu	Trp 20	Arg	Gln	Ser	Ser	Gly 25	Arg	Gly	Arg	Leu	Pro 30	Ser	Gly '	
	Pro	Thr	Pro 35	Leu	Pro	Ile	Ile	Gly 40	Asn	Ile	Leu	Gln	Leu 45	Asp	Val	Lys	
40	Asp	Met 50	Ser	Lys	Ser	Leu	Thr 55	Asn	Phe	Ser	Lys	Val 60	Tyr	Gly	Pro	Val	
40	Phe 65	Thr	Val	Tyr	Phe	Gly 70	Leu	Lys	Pro	Ile	Val 75	Val	Leu	His	Gly	Tyr 80	
	Glu	Ala	Val	Lys	Glu 85	Ala	Leu	Ile	Asp	His 90	Gly	Glu	Glu	Phe	Ser 95	Gly	•
45	Arg	Gly	Ser	Phe 100	Pro	Val	Ala	Glu	Lys 105	Val	Asn	Lys	Gly	Leu 110	Gly	Ile	

50

55

76 .

	Leu	Phe	Ser 115	Asn	Gly	Lys	Arg	Trp 120	Lys	Glu	Ile	Arg	Arg 125	Phe	Cys	Leu
5	Met	Thr 130	Leu	Arg	Asn	Phe	Gly 135	Met	Gly	Lys	Arg	Ser 140	Ile	Glu	Asp	Arg
	Val 145	Gln	Glu	Glu	Ala	Arg 150	Cys	Leu	Val	Glu	Glu 155	Leu	Arg	Lys	Thr	Asn 160
10	Ala	Ser	Pro	Cys	Asp 165	Pro	Thr	Phe	Ile	Leu 170	Gly	Cys	Ala	Pro	Cys 175	Asn
,	Val	Ile	Cys	Ser 180	Val	Ile	Phe	His	Asp 185	Arg	Phe	Asp	Tyr	Lys 190	Asp	Gln
15	Arg	Phe	Leu 195	Asn	Leu	Met	Glu	Lys 200	Phe	Asn	Glu	Asn	Leu 205	Arg	Ile	Leu
	Ser	Ser 210	Pro	Trp	Ile	Gln	Val 215	Cys	Asn	Asn	Phe	Pro 220	Ala	Leu	Ile	Asp
20	Tyr 225	Leu	Pro	Gly	Ser	His 230	Asn	Lys	Ile	Ala	Glu 235	Asn	Phe	Ala	Tyr	Ile 240
	Lys	Ser	Tyr	Val	Leu 245	Glu	Arg	Ile	Lys	Glu 250	His	Gln	Glu	Ser	Leu 255	Asp
25	Met	Asn	Ser	Ala 260	Arg	Asp	Phe	Ile	Asp 265	Cys	Phe	Leu	Ile	Lys 270	Met	Glu
	Gln	Glu	Lys 275	His	Asn	Gln	Gln	Ser 280	Glu	Phe	Thr	Val	Glu 285	Ser	Leú:	Ile
30	Ala	Thr 290	Val	Thr	Asp	Met	Phe 295	Gly	Ala	Gly	Thr	Glu 300	Thr	Thr	Ser	Thr
	Thr 305	Leu	Arg	Tyr	Gly	Leu 310	Leu	Leu	Leu	Leu	Lys 315	Tyr	Pro	Glu	Val	Thr 320
35	Ala	Lys	Val	Gln	Glu 325	Glu	Ile	Glu	Cys	Val 330	Val	Gly	Arg	Asn	Arg 335	Ser
	Pro	Cys	Met	Gln 340	Asp	Arg	Ser	His	Met 345	Pro	Tyr	Thr	Asp	Ala 350	Val	Val
40	His	Glu	Ile 355	Gln	Arg	Tyr	Ile	Asp 360	Leu	Leu	Pro	Thr	Asn 365	Leu	Pro	His
	Ala	Val 370	Thr	Cys	Asp	Val	Lys 375	Phe	Lys	Asn	Tyr	Leu 380	Ile	Pro	Lys	Glý
45	Thr 385	Thr	Ile	Ile	Thr	Ser 390	Leu	Thr	Ser	Val	Leu 395	His	Asn	Asp	Гàг	Glu 400
	Phe	Pro	Asn	Pro	Glu 405	Met	Phe	Asp	Pro	Gly 410	His	Phe	Leu	qaA	Lys 415	Ser
50	Gly	Asn	Phe	Lys 420	Lys	Ser	Asp	Tyr	Phe 425	Met	Pro	Phe	Ser	Ala 430	Gly	Lys

	Arg	Met	Cys 435	Met	Gly	Glu	Gly	Leu 440	Ala	Arg	Met	Glu	Leu 445	Phe	Leu	Phe		
5	Leu	Thr 450	Thr	Ile	Leu	Gln ,	Asn 455	Phe	Asn	Leu	Lys	Ser 460	Gln	Val	Asp	Pro		
	Lys 465	Asp	Ile	Asp	Ile	Thr 470	Pro	Ile	Ala	Asn	Ala 475	Phe	Gly	Arg	Val	Pro 480		
10	Pro	Leu	Tyr	Gln	Leu 485	Cys	Phe	Ile	Pro	Val 490								
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	10: 2	29:									
15		(i)	(E	QUENC A) LE B) TY C) ST O) TO	NGTH PE: RANE	H: 14 nucl	173 k Leic ESS:	ase acid	pair 1	:s								
20		(ix)		ATURE A) NA B) LC	ME/I			1470										
		(xi) SE(QUENC	CE DE	ESCR	PTIC	ON: S	SEQ I	ID NO): 29) :						
25	ATG Met 1	GAT Asp	CCT Pro	TTT Phe	GTG Val 5	GTC Val	CTT Leu	GTG Val	CTC Leu	TGT Cys 10	CTC Leu	TCA Ser	TGT Cys	TTG Leu	CTT Leu 15	CTC Leu		48
30	CTT Leu	TCA Ser	CTC Leu	TGG Trp 20	AGA Arg	CAG Gln	AGC Ser	TCT Ser	GGG Gly 25	AGA Arg	GGA Gly	AAA Lys	CTC Leu	CCT Pro 30	CCT Pro	GGC Gly	Ą	96
			CCT Pro 35															144
35			AGC Ser															192
	TTC Phe 65	ACT Thr	CTG Leu	TAT Tyr	TTT Phe	GGC Gly 70	CTC Leu	GAG Glu	CGC Arg	ATG Met	GTG Val 75	GTG Val	CTG Leu	CAT His	GGA Gly	TAT Tyr 80		240
40	GAA Glu	GTG Val	GTG Val	AAG Lys	GAA Glu 85	GCC Ala	CTG Leu	ATT Ile	GAT Asp	CTT Leu 90	GGA Gly	GAG Glu	GAG Glu	TTT Phe	TCT Ser 95	GGA Gly		288
45	AGA Arg	GGC Gly	CAT His	TTC Phe 100	CCA Pro	CTG Leu	GCT Ala	GAA Glu	AGA Arg 105	Ala	AAC Asn	AGA Arg	GGA Gly	TTT Phe 110	GGA Gly	ATC Ile		336

									AAG Lys									384
5									GGG Gly									432
10	GTT Val 145	CAA Gln	GAG Glu	GAA Glu	GCC Ala	CGC Arg 150	TGC Cys	CTT Leu	GTG Val	GAG Glu	GAG Glu 155	TTG Leu	AGA Arg	AAA Lys	ACC Thr	AAG Lys 160		480
70									ATC Ile									528
15									AAA Lys 185									576
									TTG Leu									624
20									AAT Asn									672
25									TTA Leu									720
									AAA Lys								٠ <u>.</u>	768
30									GAT Asp 265									816
35									GAA Glu								•	864
									GCT Ala									912
40									CTG Leu									960
45									CGT Arg									1008
									ATG Met 345									1056

50

										ATC Ile								1104
5										AAC Asn								1152
10										GTG Val								1200
										CGT Arg 410								1248
15										ATG Met								1296
20										CGC Arg								1344
20										CTG Leu								1392
25										AAT Asn								1440
30									CCT Pro	GTC Val 490							ć.	1473
	(2)	INFO	ORMA:	rion	FOR	SEQ	ID 1	10: 3	30:									
35			(Z	A) LE B) TY	ENGTI PE :		90 an	nino cid	rics: acid							•		
		(ii)	MOI	LECUI	E TY	PE:	prot	ein										
40		(xi)	SE(QUENC	CE DE	ESCRI	PTIC	ON: S	SEQ I	D NO): 30) :						
40	Met 1	Asp	Pro	Phe	Val 5	Val	Leu	Val	Leu	Cys 10	Leu	Ser	Cys	Leu	Leu 15	Leu		
	Leu	Ser	Leu	Trp 20	Arg	Gln	Ser	Ser	Gly 25	Arg	Gly	Lys	Leu	Pro 30	Pro	Gly		1
45	Pro	Thr	Pro 35	Leu	Pro	Val	Ile	Gly 40	Asn	Ile	Leu	Gln	Ile 45	Asp	Ile	Lys		

	Asp		Ser	Lys	Ser	Leu		Asn	Leu	Ser	Lys		Tyr	Gly	Pro	Val
		50					55				_	60				
5	Phe 65	Thr	Leu	Tyr	Phe	Gly 70	Leu	Glu	Arg	Met	Val 75	Val	Leu	His	Gly	Tyr 80
	Glu	Val	Val	Lys	Glu 85	Ala	Leu	Ile	Asp	Leu 90	Gly	Glu	Glu	Phe	Ser 95	Gly
10	Arg	Gly	His	Phe 100	Pro	Leu	Ala	Glu	Arg 105	Ala	Asn	Arg	Gly	Phe 110	Gly	Ile
•	Val	Phe	Ser 115	Asn	Gly	Lys	Arg	Trp 120	Lys	Glu	Ile	Arg	Arg 125	Phe	Ser	Leu
15	Met	Thr 130	Leu	Arg	Asn	Phe	Gly 135	Met	Gly	Lys	Arg	Ser 140	Ile	Glu	Asp	Arg
	Val 145	Gln	Glu	Glu	Ala	Arg 150	Cys	Leu	Val	Glu	Glu 155	Leu	Arg	Lys	Thr	Lys 160
20	Ala	Ser	Pro	Cys	Asp 165	Pro	Thr	Phe	Ile	Leu 170	Gly	Cys	Ala	Pro	Cys 175	Asn
	Val	Ile	Cys	Ser 180	Ile	Ile	Phe	Gln	Lys 185	Arg	Phe	Asp	Tyr	Lys 190	Asp	Gln
25	Gln	Phe	Leu 195	Asn	Leu	Met	Glu	Lys 200	Leu	Asn	Glu	Asn	Ile 205	Arg	Ile	Val
	Ser	Thr 210	Pro	Trp	Ile	Gln	Ile 215	Cys	Asn	Asn	Phe	Pro 220	Thr	Ile	Ile	Asp
30	Tyr 225	Phe	Pro	Gly	Thr	His 230	Asn	Lys	Leu	Leu	Lys 235	Asn	Leu	Ala	Phe	Met 240
	Glu	Ser	Asp	Ile	Leu 245	Glu	Lys	Val	Lys	Glu 250	His	Gln	Glu	Ser	Met 255	Asp
35	Ile	Asn	Asn	Pro 260	Arg	Asp	Phe	Ile	Asp 265	Cys	Phe	Leu	Ile	Lys 270	Met	Glu
	Lys	Glu	Lys 275	Gln	Asn	Gln	Gln	Ser 280	Glu	Phe	Thr	Ile	Glu 285	Asn	Leu	Val
40	Ile	Thr 290	Ala	Ala	Asp	Leu		Gly		•				Thr	Ser	Thr
	Thr 305	Leu	Arg	Tyr	Ala	Leu 310	Leu	Leu	Leu	Leu	Lys 315	His	Pro	Glu	Val	Thr 320
45	Ala	Lys	Val	Gln	Glu 325	Glu	Ile	Glu	Arg	Val 330	Val	Gly	Arg	Asn	Arg 335	Ser
	Pro	Cys	Met	Gln 340	Asp	Arg	Gly	His	Met 345	Pro	Tyr	Thr	Asp	Ala 350	Val	Val
50	His	Glu	Val 355	Gln	Arg	Tyr	Ile	Asp 360	Leu	Ile	Pro	Thr	Ser 365	Leu	Pro	His

	Ala	Val 370	Thr	Cys	Asp	Val	Lys 375	Phe	Arg	Asn	Tyr	Leu 380	Ile	Pro	Lys	Gly		
5	Thr 385	Thr	Ile	Leu	Thr	Ser 390	Leu	Thr	Ser	Val	Leu 395	His	Asp	Asn	Lys	Glu 400		
	Phe	Pro	Asn	Pro	Glu 405	Met	Phe	Asp	Pro	Arg 410	His	Phe	Ĺeu	Asp	Glu 415	Gly		
10	Gly	Asn	Phe	Lys 420	Lys	Ser	Asn	Tyr	Phe 425	Met	Pro	Phe	Ser	Ala 430	Gly	Lys		
	Arg	Ile	Cys 435	Val	Gly	Glu	Gly	Leu 440	Ala	Arg	Met	Glu	Leu 445	Phe	Leu	Phe		
15	Leu	Thr 450	Phe	Ile	Leu	Gln	Asn 455	Phe	Asn	Leu	Lys	Ser 460	Leu	Ile	Asp	Pro		
	Lys 465	Asp	Leu	Asp	Thr	Thr 470	Pro	Val	Val	Asn	Gly 475	Phe	Ala	Ser	Val	Pro 480		
20	Pro	Phe	Tyr	Gln	Leu 485	Cys	Phe	Ile	Pro	Val 490							•	
	(2)	INFO	RMAT	NOIT	FOR	SEQ	ID N	10: 3	31:									
25		(i)	(E	A) LE 3) TY 2) ST	E CHENGTH PE: TRANI POLC	I: 14 nucl EDNE	94 b eic SS:	ase acid	pair l	:s								
30		(ix)	(P		E: ME/K CATI			.491			1						4	·
		(xi)	SEC	QUENC	E DE	SCRI	PTIC	N: S	EQ 1	D NC): 31	L:						
35					GCA Ala 5													48
40					GAC Asp													96
					CCC Pro													144
45					AAC Asn													192

											TGG Trp 75						240
5											CTG Leu						288
10											ACC Thr						336
	GGG Gly										CGC						384
15											TTG Leu						432
20	GGC Gly 145	AAG Lys	AAG Lys	TCG Set	CTG Leu	GAG Glu 150	CAG Gln	TGG Trp	GTG Val	ACC Thr	GAG Glu 155	GAG Glu	GCC Ala	GCC Ala	TGC Cys	CTT Leu 160	480
											CCC Pro						528
25											GCC Ala						576
30											CTC Leu					CTA : Leu	624
											TTT Phe					CTG Leu _.	672
35											GCG Ala 235						720
40											CTG Leu						768
											CCC Pro						816
45											AAG Lys						864
50											GTG Val						912

									ACG Thr									960
5									CGC Arg									1008
10	GAC qeA	GTG Val	ATA Ile	GGG Gly 340	CAG Gln	GTG Val	CGG Arg	CGA Arg	CCA Pro 345	GAG Glu	ATG Met	GGT Gly	GAC Asp	CAG Gln 350	GCT Ala	CAC His		1056
									CAT His									1104
15									ATG Met									1152
20	CAG Gln 385	GGC Gly	TTC Phe	CGC Arg	ATC Ile	CCT Pro 390	AAG Lys	GGA Gly	ACG Thr	ACA Thr	CTC Leu 395	ATC Ile	ACC Thr	AAC Asn	CTG Leu	TCA Ser 400		1200
									TGG Trp									1248
25									GGC Gly 425								· .	1296
30									CGT Arg								÷.	1344
									TTC Phe									1392
35									CCC Pro									1440
40									CCC Pro									1488
	CGC Arg	TAG.																1494

45 (2) INFORMATION FOR SEQ ID NO: 32:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 497 amino acids
(B) TYPE: amino acid

50

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

5		1	٠	0000							_					
·				```	CE D											
	Met 1	Gly	Leu	Glu	Ala 5	Leu	Val	Pro	Leu	Ala 10		Ile	Val	Ala	Ile 15	Phe
10	Leu	Leu	Leu	Val 20	Asp	Leu	Met	His	Arg 25		Gln	Arg	Trp	Ala 30	Ala	Arg
•	Tyr	Pro	Pro 35	Gly	Pro	Leu	Pro	Leu 40	Pro	Gly	Leu	Gly	Asn 45	Leu	Leu	His
15	Val	Asp 50	Phe	Gln	Asn	Thr	Pro 55	Tyr	Cys	Phe	Asp	Gln 60	Leu	Arg	Arg	Arg
	Phe 65	Gly	Asp	Val	Phe	Ser 70	Leu	Gln	Leu	Ala	Trp 75	Thr	Pro	Val	Val	Val · 80
20	Leu	Asn	Gly	Leu	Ala 85	Ala	Val	Arg	Glu	Ala 90	Leu	Val	Thr	His	Gly 95	Glu
	Asp	Thr	Ala	Asp 100	Arg	Pro	Pro	Val	Pro 105	Ile	Thr	Gln	Ile	Leu 110	Gly	Phe
25	Gly	Pro	Arg 115	Ser	Gln	Gly	Val	Phe 120	Leu	Ala	Arg	Tyr	Gly 125	Pro	Ala	Trp
	Arg	Glu 130	Gln	Arg	Arg	Phe	Ser 135	Val	Ser	Thr	Leu	Arg 140	Asn	Leu	Glý	Leu
30	Gly 145	Lys	Lys	Ser	Leu	Glu 150	Gln	Trp	Val	Thr	Glu 155	Glu	Ala	Ala	Cys	Leu 160
	Cys	Ala	Ala	Phe	Ala 165	Asn	His	Ser	Gly	Arg 170	Pro	Phe	Arg	Pro	Asn 175	Gly
35	Leu	Leu	Asp	Lys 180	Ala	Val	Ser	Asn	Val 185	Ile	Ala	Ser	Leu	Thr 190	Cys	Gly ,
	Arg	Arg	Phe 195	Glu	Tyr	Asp	qsA	Pro 200	Arg	Phe	Leu	Arg	Leu 205	Leu	Asp	Leu
40	Ala	Gln 210	Glu	Gly	Leu	Lys	Glu 215	Glu	Ser	Gly	Phe	Leu 220	Arg	Glu	Val	Leu
	Asn 225	Ala	Val	Pro	Val	Leu 230	Leu	His	Ile	Pro	Ala 235	Leu	Ala	Gly	Lys	Val 240
45	Leu	Arg	Phe	Gln	Lys 245	Ala	Phe	Leu	Thr	Gln 250	Leu	Asp	Glu	Leu	Leu 255	Thr
	Glu	His	Arg	Met 260	Thr	Trp	Asp	Pro	Ala 265	Gln	Pro	Pro	Arg	Asp 270	Leu	Thr
50	Glu	Ala	Phe 275	Leu	Ala	Glu	Met	Glu 280	Lys	Ala	Lys		Asn 285	Pro	Glu	Ser

	Ser	Phe 290	Asn	Asp	Glu	Asn	Leu 295	Cys	Ile	Val	Val	Ala 300	Asp	Leu	Phe	Ser
5	Ala 305	Gly	Met	Val	Thr	Thr 310	Ser	Thr	Thr	Leu	Ala 315	Trp	Gly	Leu	Leu	Leu 320
	Met	Ile	Leu	His	Pro 325	Asp	Val	Gln	Arg	Arg 330	Val	Gln	Gln	Glu	Ile 335	Asp
10	Asp	Val	Ile	Gly 340	Gln	Val	Arg	Arg	Pro 345	Glu	Met	Gly	Asp	Gln 350	Ala	His
15	Met	Pro	Tyr 355	Thr	Thr	Ala	Val	Ile 360	His	Glu	Val	Gln	Arg 365	Phe	Gly	Asp
	Ile	Val 370	Pro	Leu	Gly	Val	Thr 375	His	Met	Thr	Ser	Arg 380	Asp	Ile	Glu	Val
20	Gln 385	Gly	Phe	Arįg	Ile	Pro 390	Lys	Gly	Thr	Thr	Leu 395	Ile	Thr	Asn	Leu	Ser 400
	Ser	Val	Leu	Lys	Asp 405	Glu	Ala	Val	Trp	Glu 410	Lys	Pro	Phe	Arg	Phe 415	His
25	Pro	Glu	His	Phe 420	Leu	Asp	Ala	Gln	Gly 425	His	Phe	Val	Lys	Pro 430	Glu	Ala
	Phe	Leu	Pro 435	Phe	Ser	Ala	Gly	Arg 440	Arg	Ala	Cys	Leu	Gly 445	Glu	Pro	Leu
30	Ala	Arg 450	Met	Glu	Leu	Phe	Leu 455	Phe	Phe	Thr	Ser	Leu 460	Leu	Gln	His	Phe
	Ser 465	Phe	Ser	Val	Pro	Thr 470	Gly	Gln	Pro	Arg	Pro 475	Ser	His	His	Gly	Val 480
35	Phe	Ala	Phe	Leu	Val 485	Thr	Pro	Ser	Pro	Tyr 490	Glu	Leu	Cys	Ala	Val 495	Pro
·	Arg															
40	(2)	INFO	RMAT	'ION	FOR	SEQ	ID N	IO: 3	3:							
45		(i)	(A (B (C	UENC .) LE .) TY .) ST .) TO	NGTH PE: RAND	: 14 nucl EDNE	94 b eic SS:	ase acid doub	pair	s						<i>:</i>
50		(ix)	(A	TURE) NA) LO	ME/K			491								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

5	ATG Met 1	GGG Gly	CTA Leu	GAA Glu	GCA Ala 5	CTG Leu	GTG Val	CCC Pro	CTG Leu	GCC Ala 10	GTG Val	ATA Ile	GTG Val	GCC Ala	ATC Ile 15	TTC Phe		48
	CTG Leu	CTC Leu	CTG Leu	GTG Val 20	GAC Asp	CTG Leu	ATG Met	CAC His	CGG Arg 25	CGC Arg	CAA Gln	CGC Arg	TGG Trp	GCT Ala 30	GCA Ala	CGC Arg		96
10	TAC Tyr	CCA Pro	CCA Pro 35	GGC Gly	CCC Pro	CTG Leu	CCA Pro	CTG Leu 40	CCC Pro	GGG Gly	CTG Leu	GGC Gly	AAC Asn 45	CTG Leu	CTG Leu	CAT His		144
15	GTG Val	GAC Asp 50	TTC Phe	CAG Gln	AAC Asn	ACA Thr	CCA Pro 55	TAC Tyr	TGC Cys	TTC Phe	GAC Asp	CAG Gln 60	TTG Leu	CGG Arg	CGC Arg	CGC Arg		192
								CAG Gln										240
20								CGC Arg										288
25								GTG Val										336
	GGG Gly	CCG Pro	CGT Arg 115	TCC Ser	CAA Gln	GGG Gly	GTG Val	TTC Phe 120	CTG Leu	GCG Ala	CGC Arg	TAT Tyr	GGG Gly 125	CCC Pro	GCG Ala	TGG Trp	4	384
30	CGC Arg	GAG Glu 130	CAG Gln	AGG Arg	CGC Arg	TTC Phe	TCC Ser 135	GTC Val	TCC Ser	ACC Thr	TTG Leu	CGC Arg 140	AAC Asn	TTG Leu	GGC Gly	CTG Leu		432
35	GGC Gly 145	AAG Lys	AAG Lys	TCG Ser	CTG Leu	GAG Glu 150	CAG Gln	TGG Trp	GTG Val	ACC Thr	GAG Glu 155	GAG Glu	GCC Ala	GCC Ala	TGC Cys	CTT Leu 160		480
	TGT Cys	GCC Ala	GCC Ala	TTC Phe	GCC Ala 165	AAC Asn	CAC His	TCC Ser	GGA Gly	CGC Arg 170	CCC Pro	TTT Phe	CGC Arg	CCC Pro	AAC Asn 175	GGT Gly	•	528
40	CTC Leu	TTG Leu	GAC Asp	AAA Lys 180	GCC Ala	GTG Val	AGC Ser	AAC Asn	GTG Val 185	ATC Ile	GCC Ala	TCC Ser	CTC Leu	ACC Thr 190	TGC Cys	GGG Gly		576
								CCT Pro 200										· 624
45	GCT Ala	CAG Gln 210	GAG Glu	GGA Gly	CTG Leu	AAG Lys	GAG Glu 215	GAG Glu	TCG Ser	GGC Gly	TTT Phe	CTG Leu 220	CGC Arg	GAG Glu	GTG Val	CTG Leu		672

50

	AAT Asn 225	GCT Ala	GTC Val	CCC Pro	GTC Val	CTC Leu 230	CTG Leu	CAT His	ATC Ile	CCA Pro	GCG Ala 235	CTG Leu	GCT Ala	GGC Gly	AAG Lys	GTC Val 240		720
5	CTA Leu	CGC Arg	TTC Phe	CAA Gln	AAG Lys 245	GCT Ala	TTC Phe	CTG Leu	ACC Thr	CAG Gln 250	CTG Leu	GAT Asp	GAG Glu	CTG Leu	CTA Leu 255	ACT Thr		768
10	GAG Glu	CAC His	AGG Arg	ATG Met 260	ACC Thr	TGG Trp	GAC Asp	CCA Pro	GCC Ala 265	CAG Gln	CCC Pro	CCC Pro	CGA Arg	GAC Asp 270	CTG Leu	ACT Thr		816
	GAG Glu	GCC Ala	TTC Phe 275	CTG Leu	GCA Ala	GAG Glu	ATG Met	GAG Glu 280	AAG Lys	GCC Ala	AAG Lys	GGG Gly	AAC Asn 285	CCT Pro	GAG Glu	AGC Ser		864
15	AGC Ser	TTC Phe 290	AAT Asn	GAT Asp	GAG Glu	AAC Asn	CTG Leu 295	CGC Arg	ATA Ile	GTG Val	GTG Val	GCT Ala 300	GAC Asp	CTG Leu	TTC Phe	TCT Ser		912
20							TCG Ser											960
20	ATG Met	ATC Ile	CTA Leu	CAT His	CCG Pro 325	GAT Asp	GTG Val	CAG Gln	CGC Arg	CGT Arg 330	GTC Val	CAA Gln	CAG Gln	GAG Glu	ATC Ile 335	GAC Asp		1008
25							CGG Arg											1056
	ATG Met	CCC Pro	TAC Tyr 355	ACC Thr	ACT Thr	GCC Ala	GTG Val	ATT Ile 360	CAT His	GAG Glu	GTG Val	CAG Gln	CGC Arg 365	TTT Phe	GGG Gly	GAC Asp	<i>4</i>]	1104
30	ATC Ile	GTC Val 370	CCC Pro	CTG Leu	GGT Gly	GTG Val	ACC Thr 375	CAT His	ATG Met	ACA Thr	TCC Ser	CGT Arg 380	GAC Asp	ATC Ile	GAA Glu	GTA Val		1152
35							AAG Lys									TCA Ser 400		1200
	TCG Ser	GTG Val	CTG Leu	AAG Lys	GAT Asp 405	GAG Glu	GCC Ala	GTC Val	TGG Trp	GAG Glu 410	AAG Lys	CCC Pro	TTC Phe	CGC Arg	TTC Phe 415	CAC His		1248
40							GCC Ala											1296
45	TTC Phe	CTG Leu	CCT Pro 435	TTC Phe	TCA Ser	GCA Ala	GGC Gly	CGC Arg 440	CGT Arg	GCA Ala	TGC Cys	CTC Leu	GGG Gly 445	GAG Glu	CCC Pro	CTG Leu		1344
							CTC Leu 455											1392

	AGC Ser 465	TTC Phe	TCG Ser	GTG Val	CCC Pro	ACT Thr 470	GGA Gly	CAG Glr	CCC Pro	CGG Arg	CCC Pro 475	AGC Ser	CAC His	CAT His	GGT Gly	GTC Val 480		1440
5	TTT Phe	GCT Ala	TTC Phe	CTG Leu	GTG Val 485	ACC Thr	CCA Pro	TCC Ser	CCC Pro	TAT Tyr 490	GAG Glu	CTT Leu	TGT Cys	GCT Ala	GTG Val 495	CCC Pro		1468
10	CGC Arg	TAG																1494
	(2)	INFO	ORMA'	rion	FOR	SEQ	ID 1	10: 3	34:									
15			(1	A) LI 3) T		H: 49	97 ar	mino cid	rics acio									
		(ii)	MO	recdi	LE TY	YPE:	prot	cein									•	
20		(xi)	SE	QUEN	CE DI	ESCR	PTIC	ON: 8	SEQ I	D NO): 34	1:			٠			
	Met 1	Gly	Leu	Glu	Ala 5	Leu	Val	Pro	Leu	Ala 10	Val	Ile	Val	Ala	Ile 15	Phe		
25	Leu	Leu	Leu	Val 20	Asp	Leu	Met	His	Arg 25	Arg	Gln	Arg	Trp	Ala 30	Ala	Arg		
	Tyr	Pro	Pro 35	Gly	Pro	Leu	Pro	Leu 40	Pro	Gly	Leu	Gly	Asn 45	Leu	Leu	His	6	
30	Val	Asp 50	Phe	Gln	Asn	Thr	Pro 55	Tyr	Cys	Phè	qzA	Gln 60	Leu	Arg	Arg	Arg		•
	Phe 65	Gly	Asp	Val	Phe	Ser 70	Leu	Gln	Leu	Ala	Trp 75	Thr	Pro	Val	Val	Val 80		
35	Leu	Asn	Gly	Leu	Ala 85	Ala	Val	Arg	Glu	Ala 90	Leu	Val	Thr	His	Gly 95	Glu	,	
	Asp	Thr	Ala	Asp 100	Arg	Pro	Pro	Val	Pro 105	Ile	Thr	Gln	Ile	Leu 110	Gly	Phe		
40	Gly	Pro	Arg 115	Ser	Gln	Gly	Val	Phe 120	Leu	Ala	Arg	Tyr	Gly 125	Pro	Ala	Trp		
	Arg	Glu 130	Gln	Arg	Arg	Phe	Ser 135	Val	Ser	Thr	Leu	Arg 140	Asn	Leu	Gly	Leu		
45	Gly 145	Lys	Lys	Ser	Leu	Glu 150	Gln	Trp	Val	Thr	Glu 155	Glu	Ala	Ala	Cys	Leu 160		
	Cys	Ala	Ala	Phe	Ala 165	Asn	His	Ser	Gly	Arg 170	Pro	Phe	Arg	Pro	Asn 175	Gly		

	Leu	Leu	Asp	Lys 180	Ala	Val	Ser	Asn	Val 185	Ile	Ala	Ser	Leu	Thr 190	Cys	Gly
5	Arg	Arg	Phe 195	Glu	Tyr	Asp	Asp	Pro 200	Arg	Phe	Leu	Arg	Leu 205	Leu	Asp	Leu
	Ala	Gln 210	Glu	Gly	Leu	Lys	Glu 215	Glu	Ser	Gly	Phe	Leu 220	Arg	Glu	Val	Leu
10	Asn 225	Ala	Val	Pro	Val	Leu 230	Leu	His	Ile	Pro	Ala 235	Leu	Ala	Gly	Lys	Val 240
	Leu	Arg	Phe	Gln	Lys 245	Ala	Phe	Leu	Thr	Gln 250	Leu	Asp	Glu	Leu	Leu 255	Thr
15	Glu	His	Arg	Met 260	Thr	Trp	Asp	Pro	Ala 265	Gln	Pro	Pro	Arg	Asp 270	Leu	Thr
	Glu	Ala	Phe 275	Leu į	Ala	Glu	Met	Glu 280	Lys	Ala	Lys	Gly	Asn 285	Pro	Glu	Ser
20	Ser	Phe 290	Asn	Asp	Glu	Asn	Leu 295	Arg	Ile	Val	Val	Ala 300	Asp	Leu	Phe	Ser
	Ala 305	Gly	Met	Val	Thr	Thr 310	Ser	Thr	Thr	Leu	Ala 315	Trp	Gly	Leu	Leu	Leu 320
25	Met	Ile	Leu	His	Pro 325	Asp	Val	Gln	Arg	Arg 330	Val	Gln	Gln	Glu	Ile 335	Asp
	Asp	Val	Ile	Gly 340	Gln	Val	Arg	Arg	Pro 345	Glu	Met	Gly	Asp	Gln 350	Ala	His
30	Met	Pro	Tyr 355	Thr	Thr	Ala	Val	Ile 360	His	Glu	Val	Gln	Arg 365	Phe	Gly	Asp
35	Ile	Val 370	Pro	Leu	Gly	Val	Thr 375	His	Met	Thr	Ser	Arg 380	Asp	Ile	Glu	Val
	Gln 385	Gly	Phe	Arg	Ile	Pro 390	Lys	Gly	Thr	Thr	Leu 395	Ile	Thr	Asn	Leu	Ser 400
40	Ser	Val	Leu	Lys	Asp 405	Glu	Ala	Val	Trp	Glu 410	Lys	Pro	Phe	Arg	Phe 415	His
	Pro	Glu	His	Phe 420	Leu	Asp	Ala	Gln	Gly 425	His	Phe	Val	Lys	Pro 430	Glu	Ala
45	Phe	Leu	Pro 435	Phe	Ser	Ala	Gly	Arg 440	Arg	Ala	Cys	Leu	Gly 445	Glu	Pro	Leu
	Ala	Arg 450	Met	Glu	Leu		Leu 455	Phe	Phe	Thr	Ser	Leu 460	Leu	Gln	His	Phe
50	Ser 465	Phe	Ser	Val	Pro	Thr 470	Gly	Gln	Pro	Arg	Pro 475	Ser	His	His	Gly	Val 480

	Phe	Ala	Phe	Leu	Val 485	Thr	Pro	Ser	Pro	Tyr 490	Glu	Leu	Cys	Ala	Val 495	Pro		
_	Arg																	
5	(2)	INFO	ORMA'	rion	FOR	SEQ	ID I	NO: 3	35:									
10		(i)	() () ()	QUENCA) LE B) T' C) S' C) T'	ENGTI YPE : IRANI	f: 14 nucl	194 l leic ESS:	oase acid doul	pai:	rs								
15		(ix)	(2	ATURI A) NI B) LO	AME/			1491										
	ልጥር									ID NO			стс	GCC	ልፐር	ጥጥር	-	48
20		_					_			Ala 10								40
										CGC Arg								96
25										GGG Gly							6	144
30										TTÇ Phe							•	192
										GCC Ala							•	240
35										GCG Ala 90								288
40										ATC Ile								336
										GCG Ala								384
45										ACC Thr								432
50																		

	GGC Gly 145	Lys	AAG Lys	TCG Ser	CTG Leu	GAG Glu 150	CAG Gln	TGG Trp	GTG Val	ACC Thr	GAG Glu 155	GAG Glu	GCC Ala	GCC Ala	TGC Cys	CTT Leu 160		•	480
5	TGT Cys	GCC Ala	GCC Ala	TTC Phe	GCC Ala 165	AAC Asn	CAC His	TCC Ser	GGA Gly	CGC Arg 170	CCC Pro	TTT Phe	CGC Arg	CCC Pro	AAC Asn 175	GGT Gly		!	528
10									GTG Val 185									!	576
									CGC Arg									(624
15									TCG Ser									•	572
20	AAT Asn 225	GCT Ala	GTC Val	CCC Pro	GTC Ņal	CTC Leu 230	CTG Leu	CAT His	ATC Ile	CCA Pro	GCG Ala 235	CTG Leu	GCT Ala	GGC Gly	AAG Lys	GTC Val 240			720
									ACC Thr									٠	768
25									GCC Ala 265										316
30	GAG Glu	GCC Ala	TTC Phe 275	CTG Leu	GCA Ala	GAG Glu	ATG Met	GAG Glu 280	AAG Lys	GCC Ala	AAG Lys	GGG Gly	AAC Asn 285	CCT Pro	GAG Glu	AGC Ser	Ą	8	364
	AGC Ser	TTC Phe 290	AAT Asn	GAT Asp	GAG Glu	AAC Asn	CTG Leu 295	CGC Arg	ATA Ile	GTG Val	GTG Val	GCT Ala 300	GAC Asp	CTG Leu	TTC Phe	TCT Ser		9	912
35	GCC Ala 305	GGG Gly	ATG Met	GTG Val	ACC Thr	ACC Thr 310	TCG Ser	ACC Thr	ACG Thr	CTG Leu	GCC Ala 315	TGG Trp	GGC Gly	CTC Leu	CTG Leu	CTC Leu 320		9	960
40							_	_	CGC Arg									10	800
40									CCA Pro 345									10	56
45	ATG Met	CCC Pro	TAC Tyr 355	ACC Thr	ACT Thr	GCC Ala	GTG Val	ATT Ile 360	CAT His	GAG Glu	GTG Val	CAG Gln	CGC Arg 365	TTT Phe	GGG Gly	GAC Asp		11	104
	ATC Ile	GTC Val 370	CCC Pro	CTG Leu	GGT Gly	GTG Val	ACC Thr 375	CAT His	ATG Met	ACA Thr	TCC Ser	CGT Arg 380	GAC Asp	ATC Ile	GAA Glu	GTA Val		11	152

										ACA Thr							1200
5	TCG Ser	GTG Val	CTG Leu	AAG Lys	GAT Asp 405	GAG Glu	GCC Ala	GTC Val	TGG Trp	GAG Glu 410	AAG Lys	CCC Pro	TTC Phe	CGC Arg	TTC Phe 415	CAC His	1248
10										CAC His							1296
										GCA Ala							1344
15										ACC Thr							1392
20										CGG Arg							1440
										TAT Tyr 490							1488
25	CGC Arg	TAG															1494
	(2)	INFO	ORMAT	rion	FOR	SEQ	ID N	10: 3	86 :	,						4	
30		ı	(A	SEQUE A) LE B) TY	ENGTI PE:	4: 49 amir	97 an	mino cid									
35		(ii)	MOI	ECUI	E TY	PE:	prot	ein									
		(xi)	SEC	UENC	CE DE	ESCRI	PTIC	ON: S	SEQ I	D NC): 36	5 :					
	Met 1	Gly	Leu	Glu	Ala 5	Leu	Val	Pro	Leu	Ala 10	Val	Ile	Val	Ala	Ile 15	Phe	
40	Leu	Leu	Leu	Val 20	qaA	Leu	Met	His	Arg 25	Arg	Gln	Arg	Trp	Ala 30	Ala	Arg	
	Tyr	Pro	Pro 35	Gly	Pro	Leu	Pro	Leu 40	Pro	Gly	Leu	Gly	Asn 45	Leu	Leu	His	
45	Val	Asp 50	Phe	Gln	Asn	Thr	Pro 55	Tyr	Cys	Phe	Asp	Gln 60	Leu	Arg	Arg	Arg	
	2he 65	Gly	Asp	Val	Phe	Ser 70	Leu	Gln	Leu	Ala	Trp 75	Thr	Pro	Val	Val	Val 80	

55

	Leu	Asn	Gly	Leu	Ala 85	Ala	Val	Arg	Glu	Ala 90	Leu	Val	Thr	His	Gly 95	Glu
5	Asp	Thr	Ala	Asp 100	Arg	Pro	Pro	Val	Pro 105	Ile	Thr	Gln	Ile	Leu 110	Gly	Phe
	Gly	Pro	Arg 115	Ser	Gln	Gly	Val	Phe 120	Leu	Ala	Arg	Tyr	Gly 125	Pro	Ala	Trp
10	Arg	Glu 130	Gln	Arg	Arg	Phe	Ser 135	Val	Ser	Thr	Leu	Arg 140	Asn	Leu	Gly	Leu
	Gly 145	Lys	Lys	Ser	Leu	Glu 150	Gln	Trp	Val	Thr	Glu 155	Glu	Ala	Ala	Cys	Leu 160
15	Cys	Ala	Ala	Phe	Ala 165	Asn	His	Ser	Gly	Arg 170	Pro	Phe	Arg	Pro	Asn 175	Gly
20	Leu	Leu	Asp	Lys 180	Ala	Val	Ser	Asn	Val 185	Ile	Ala	Ser	Leu	Thr 190	Cys	Gly
	Arg	Arg	Phe 195	Glu	Tyr	Asp	Asp	Pro 200	Arg	Phe	Leu	Arg	Leu 205	Leu	Asp	Leu
25	Ala	Gln 210	Glu	Gly	Leu	Lys	Glu 215	Glu	Ser	Gly	Phe	Leu 220	Arg	Glu	Val	Leu
	Asn 225	Ala	Val	Pro	Val	Leu 230	Leu	His	Ile	Pro	Ala 235	Leu	Ala	Gly		Val 240
30	Leu	Arg	Phe	Gln	Lys 245	Ala	Phe	Leu	Thr	Gln 250	Leu	Asp	Glu	Leu	Leu 255	Thr
	Glu	His	Arg	Met 260	Thr	Trp	Asp	Pro	Ala 265	Gln	Pro	Pro	Arg	Asp 270	Leu	Thr
35	Glu	Ala	Phe 275	Leu	Ala	Glu	Met	Glu 280	Lys	Ala	Lys	Gly	Asn 285	Pro	Glu	Ser
	Ser	Phe 290	Asn	Asp	Glu	Asn	Leu 295	Arg	Ile	Val	Val	Ala 300	Asp	Leu	Phe	Ser
40	Ala 305	Gly	Met	Val	Thr	Thr 310	Ser	Thr	Thr	Leu	Ala 315	Trp	Gly		Leu	Leu 320
	Met	Ile	Leu	His	Pro 325	Asp	Val	Gln	Arg	Arg 330	Val	Gln	Gln	Glu	Ile 335	Asp
45	qsA	Val	Ile	Gly 340	Gln	Val	Arg	Arg	Pro 345	Glu	Met	Gly	Asp	Gln 350	Ala	His
50	Met	Pro	Tyr 355	Thr	Thr	Ala	Val	Ile 360	His	Glu	Val	Gln	Arg 365	Phe	Gly	Asp
50	Ile	Val 370	Pro	Leu	Gly	Val	Thr 375	His	Met	Thr	Ser	Arg 380	Asp	Ile	Glu	Val

	Gln 385	Gly	Phe	Arg	Ile	Pro 390	Lys	Gly	Thr	Thr	Leu 395	Ile	Thr	Asn	Leu	Ser 400		
5	Ser	Val	Leu	Lys	Asp 405	Glu	Ala	Val	Trp	Glu 410	Lys	Pro	Phe	Arg	Phe 415	His		
	Pro	Glu	His	Phe 420	Leu`	Asp	Ala	Gln	Gly 425	His	Phe	Val	Lys	Pro 430	Glu	Ala		
10	Phe	Leu	Pro 435	Phe	Ser	Ala	Gly	Arg 440	Arg	Ala	Cys	Leu	Gly 445	Glu	Pro	Leu		
•	Ala	Arg 450	Met	Glu	Leu	Phe	Leu 455	Phe	Phe	Thr	Ser	Leu 460	Leu	Gln	His	Phe		
15	Ser 465	Phe	Ser	Val	Pro	Thr 470	Gly	Gln	Pro	Arg	Pro 475	Ser	His	His	Gly	Val 480		
	Phe	Ala	Phe	Leu	Val 485	Ser	Pro	Ser	Pro	Tyr 490	Glu	Leu	Cys	Ala	Val 495	Pro		
20	Arg			į														
	(2)	INFO	ORMAT	NOIT	FOR	SEQ	ID N	10: 3	37:									
25		(i)	() ()	QUENCA) LE B) TY C) ST C) TC	engti Pe : Prani	i: 14 nucl	194 k Leic ESS:	ase acio doul	pair i	rs								
30		(ix)	(2	ATURE A) NA B) LO	ME/F			.491		ì							G.	
		(xi)	SEÇ	QUENC	CE DE	ESCRI	PTIC	ON: 9	SEQ I	D NO	D: 37	7:						
35				GAA Glu														48
40				GTG Val 20														96
	_	_		GGC Gly						_		_					į.	144
45				CAG Gln														192
50				GTG Val														240

		AAT Asn																288
5		ACC Thr																336
10		CCG Pro																384
	CGC Arg	GAG Glu 130	CAG Gln	AGG Arg	CGC Arg	TTC Phe	TCC Ser 135	GTC Val	TCC Ser	ACC Thr	TTG Leu	CGC Arg 140	AAC Asn	TTG Leu	GGC Gly	CTG Leu		432
15		AAG Lys																480
		GCC Ala		Phe													,	528
20		TTG Leu																576
25		CGC Arg																624
		CAG Gln 210															K,	672
30		GCT Ala																720
35		CGC Arg																768
						maa	~~~	003	000	CAC	ccc	CCC	CCA	GAC	СТС	A CT		816
		His	AGG Arg															
40	Glu GAG		Arg TTC	Met 260 CTG	Thr	Trp	Asp ATG	Pro GAG	Ala 265 AAG	Gln GCC	Pro AAG	Pro GGG	Arg AAC	Asp 270 CCT	Leu GAG	Thr		864

						ACC Thr 310												960
5						GAT Asp												1008
10						GTG Val												1056
						GCC Ala												1104
15						GTG Val												1152
20						CCT Pro 390												1200
						GAG Glu												1248
25						GAT Asp												1296
20	TTC Phe	CTG Leu	CCT Pro 435	TTC Phe	TCA Ser	GCA Ala	GGC Gly	CGC Arg 440	CGT Arg	GCA Ala	TGC Cys	CTC Leu	GGG Gly 445	GAG Glu	CCC Pro	CTG Leu	Ġ.	1344
30						TTC Phe												1392
35						ACT Thr 470												1440
						AGC Ser												1488
40	CGC Arg	TAG																1494

(2) INFORMATION FOR SEQ ID NO: 38:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 497 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

50

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:	38:

5	Met 1	Gly	Leu	Glu	Ala . 5	Leu	Val	Pro	Leu	Ala 10	Val	Ile	Val	Ala	Ile 15	Phe
	Leu	Leu	Leu	Val 20	Asp	Leu	Met	His	Arg 25	Arg	Gln	Arg	Trp	Ala 30	Ala	Arg
10	Tyr	Pro	Pro 35	Gly	Pro	Leu	Pro	Leu 40	Pro	Gly	Leu	Gly	Asn 45	Leu	Leu	His
15	Val	Asp 50	Phe	Gln	Asn	Thr	Pro 55	Tyr	Cys	Phe	Asp	Gln 60	Leu	Arg	Arg	Arg
	Phe 65	Gly	Asp	Val	Phe	Ser 70	Leu	Gln	Leu	Ala	Trp 75	Thr	Pro	Val	Val	Val 80
20	Leu	Asn	Gly	I _į eu	Ala 85	Ala	Val	Arg	Glu	Ala 90	Leu	Val	Thr	His	Gly 95	Ġlu
	Asp	Thr	Ala	Asp 100	Arg	Pro	Pro	Val	Pro 105	Ile	Thr	Gln	Ile	Leu 110	Gly	Phe
25	Gly	Pro	Arg 115	Ser	Gln	Gly	Val	Phe 120	Leu	Ala	Arg	Tyr	Gly 125	Pro	Ala	Trp
	Arg	Glu 130	Gln	Arg	Arg	Phe	Ser 135	Val	Ser	Thr	Leu	Arg 140	Asn	Leu	Gly	Leu
30	Gly i45	Lys	Lys	Ser	Leu	Glu 150	Gln	Trp	Val	Thr	Glu 155	Glu	Ala	Ala	Cys	Leu 160
	Cys	Ala	Ala	Phe	Ala 165	Asn	His	Ser	Gly	Arg 170	Pro	Phe	Arg	Pro	Asn 175	Gly
35	Leu	Leu	Asp	Lys 180	Ala	Val	Ser	Asn	Val 185	Ile	Ala	Ser	Leu	Thr 190	Cys	Gly
	Arg	Arg	Phe 195	Glu	Tyr	Asp	Asp	Pro 200	Arg	Phe	Leu	Arg	Leu 205	Leu	Asp	Leu
40	Ala	Gln 210	Glu	Gly	Leu	Lys	Glu 215	Glu	Ser	Gly	Phe	Leu 220	Arg	Glu	Val	Leu
	Asn 225	Ala	Val	Pro	Val	Leu 230	Leu	His	Ile	Pro	Ala 235	Leu	Ala	Gly	Lys	Val 240
45	Leu	Arg	Phe	Gln	Lys 245	Ala	Phe	Leu	Thr	Gln 250	Leu	Asp	Glu	Leu	Leu 255	Thr
	Glu	His	Arg	Met 260	Thr	Trp	Asp	Pro	Ala 265	Gln	Pro	Pro	Arg	Asp 270	Leu	Thr
50	Glu	Ala	Phe 275	Leu	Ala	Glu	Met	Glu 280	Lys	Ala	Lys	Gly	Asn 285	Pro	Glu	Ser

	Ser	Phe 290	Asn	Asp	Glu	Asn	Leu 295	Cys	Ile	Val	Val	Ala 300	Asp	Leu	Phe	Ser
5	Ala 305	Gly	Met	Val	Thr	Thr 310	Ser	Thr	Thr	Leu	Ala 315	Trp	Gly	Leu	Leu	Leu 320
	Met	Ile	Leu	His	Pro 325	`Asp	Val	Gln	Arg	Arg 330	Val	Gln	Gln	Glu	Ile 335	Asp
10	Asp	Val	Ile	Gly 340	Gln	Val	Arg	Arg	Pro 345	Glu	Met	Gly	Asp	Gln 350	Ala	His
	Met	Pro	Tyr 355	Thr	Thr	Ala	Val	Ile 360	His	Glu	Val	Gln	Arg 365	Phe	Gly	Asp
15	Ile	Val 370	Pro	Leu	Gly	Val	Thr 375	His	Met	Thr	Ser	Arg 380	Asp	Ile	Glu	Val
	Gln 385	Gly	Phe	Arg	Ile	Pro 390	Lys	Gly	Thr	Thr	Leu 395	Ile	Thr	Asn	Leu	Ser 400
20	Ser	Val	Leu	Lys _į	Asp 405	Glu	Ala	Val	Trp	Glu 410	Lys	Pro	Phe	Arg	Phe 415	His
	Pro	Glu	His	Phe 420	Leu	Asp	Ala	Gln	Gly 425	His	Phe	Val	Lys	Pro 430	Glu	Ala
25	Phe	Leu	Pro 435	Phe	Ser	Ala	Gly	Arg 440	Arg	Ala	Cys	Leu	Gly 445	Glu	Pro	Leu
	Ala	Arg 450	Met	Glu	Leu	Phe	Leu 455	Phe	Phe	Thr	Ser	Leu 460	Leu	Gln	His	Phe
30	Ser 465	Phe	Ser	Val	Pro	Thr 470	Gly	Gln	Pro		Pro 475	Ser	His	His	Gly	Val 480
	Phe	Ala	Phe	Leu	Val 485	Ser	Pro	Ser	Pro	Tyr 490	Glu	Leu	Cys	Ala	Val 495	Pro
	Arg															
35	(2)	INFC	RMAT	CION	FOR	SEQ	ID N	10: 3	9:							
40		(i)	(A (B (C	L) LE	NGTH PE: RAND	: 34 nucl EDNE	bas eic SS:	STIC se pa acid sing ar	irs							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

GGAACGCATG GTGGTGCTGC ATGGATATGA AGTG 34

	(2) INFORMATION FOR SEQ ID NO: 40:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 56 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40: CTCAAAGATC TATGGCCCTG TGTTCACTCT GTATTTTGGC CTCGAGCGCA TGGTGG	56
	(2) INFORMATION FOR SEQ ID NO: 41:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	L.	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	CCACCATGCG CTCGAGGCCA AAATACAG	28
	(2) INFORMATION FOR SEQ ID NO: 42:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
	GGGTTCCCGG GAAATAATCA ATGATAGTGG G	31
35	(2) INFORMATION FOR SEQ ID NO: 43:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		:
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
45	GGATTGTAAG CACCCCTGG ATCCAGATAT GC	32
50		

	(2) INFORMATION FOR SEQ ID NO: 44:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
	.CCCAGCTCCA AGTAAGTCAG CTGCAGTGAT TACC	34
	(2) INFORMATION FOR SEQ ID NO: 45:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	4	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	GGTGGTACCC TTGGGAATGA GGTAGTTTCT GAATTTAACG TC	42
	(2) INFORMATION FOR SEQ ID NO: 46:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
35	AGTCTAGAAT GGATCCTTTT GTGGTCCTTG TGC	33
55	(2) INFORMATION FOR SEQ ID NO: 47:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
	CCCAGAGCTC TGTCTCCAGA GTGAAAGGAG	30
50		
50		

	(2) INFORMATION FOR SEQ ID NO: 48:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
	ACAGAGCTCT GGGAGAGGAA AACTCCCTCC	30
	(2) INFORMATION FOR SEQ ID NO: 49:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	CCATAGATTT TTGAGAGATT GGTTAAGGAT TTGCTGACAT CCTTAATATC TATC	54
25	(2) INFORMATION FOR SEQ ID NO: 50:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	6
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
35	GACCCTCGTC ACTTTCTGGA TGAAGGTGGA	30
	(2) INFORMATION FOR SEQ ID NO: 51:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
	GAAGTAGTTA CTTTTCTTAA AATTTCCACC TTCATC	36
50		

	(2) INFORMATION FOR SEQ ID NO: 52:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
	AAAGAATTCC CCAACCCAGA GATGTTTGAC CCTCGTC	37
	(2) INFORMATION FOR SEQ ID NO: 53:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 59 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<u>.</u>	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
	GGCCAGGCCC TCTCCCACAC AAATCCGTTT TCCTGCTGAG AAAGGCATGA AGTAGTTAC	59
	(2) INFORMATION FOR SEQ ID NO: 54:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
	GAGAGGGCCT GGCCCGCATG GAGCTGTTTT TATTCCTGAC CTTC	44
35	(2) INFORMATION FOR SEQ ID NO: 55:	44
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs	
40	(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
45	CAGGAGTTGT GTCAAGGTCC TTTGGGTCAA TCAG	34
50		
		į.
55		

	(2) INFORMATION FOR SEQ ID NO: 56:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56: TTGTCAATGG ATTTGCTTCT GTCCCGCCCT TCTATCAGCT GTGCTTCATT CCTGTCTGAG GATC	60 64
15	(2) INFORMATION FOR SEQ ID NO: 57: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 55 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(B) 1010B011 11HCd1	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57: CAGAAGCAAA TCCATTGACA ACAGGAGTTG TGTCAAGGTC CTTTGGGTCA ATCAG	55
30	(2) INFORMATION FOR SEQ ID NO: 58: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 60 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58: CTCAGACAGG AATGAAGCAC AGCTGATAGA AGGGCGGGAC AGAAGCAAAT CCATTGACAA	60
40	(2) INFORMATION FOR SEQ ID NO: 59: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid	
45	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	:
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
	GCAGCCAGAC CATCTGTGCT TCTTCAGACA GG	32
50		

(2) INFORMATION FOR SEQ ID NO: 60: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs 5 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60: CACCATATTA ACTTCCCTCA CTTCTGTGCT ACATGACAAC AAAG 44 (2) INFORMATION FOR SEQ ID NO: 61: (i) SEQUENCE CHARACTERISTICS: 15 (A) LENGTH: 52 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61: AATTCTTTGT TGTCATGTAG CACAGAAGTG AGGGAAGTTA ATATGGTGGT AC 52 25 Claims 1. A method for evaluation of the safety of a chemical compound, which comprises the steps of: 30 (a) reacting a chemical compound with recombinant yeast cells producing human cytochrome P450 molecular species P450 1A2, P450 2C9, P450 2E1 and P450 3A4 together with a yeast NADPH-P450 reductase, which may be in the form of a fused enzyme with each of said human cytochrome P450 molecular species, or with the cell free extracts of the yeast cells; and (b) analyzing the resulting metabolite to determine the safety of the compound. 35 2. The method according to claim 1, wherein the recombinant yeast cells are yeast cells transformed with plasmids having a gene coding for human cytochrome P450 1A2, P450 2C9, P450 2E1 or P450 3A4 together with a gene coding for yeast NADPH-P450 reductase. The method according to claim 1 or 2, wherein the recombinant yeast cells are yeast cells transformed with plasmids each of which has a fused gene comprising a gene coding for the human cytochrome P450 molecule on the 5'-terminal and a gene coding for the yeast NADPH-P450 reductase on 3'terminal. 4. The method according to any one of claims 1 to 3, wherein the analyzing of the metabolite is carried out by the Ames Test. 5. The method according to claim 4, wherein the test is carried out using His- Salmonella or Trp-Escherichia coli. 50 6. The method according to any one of claims 1 to 5, wherein the recombinant yeast cells further produce at least one additional human cytochrome P450 molecular species selected from a group of human cytochrome P450 2A6, P450 2C19 and P450 2D6.

105

cytochrome P450 1A1, P450 2B6, P450 2C8 and P450 2C18.

7. The method according to any one of claims 1 to 6, wherein the recombinant yeast cells further produce at least one additional human cytochrome P450 molecular species selected from a group of human

- 8. An artificial fused enzyme, which comprises human cytochrome p450 3A4 and yeast NADPH-P450 reductase.
- 9. A yeast expression plasmid having a fused gene comprising a gene coding for human P450 3A4 and a gene coding for the yeast NADPH-P450 reductase.
- 10. A method of determining in vitro the human metabolite of a chemical compound, which comprises the steps of:
 - (a) reacting a chemical compound with recombinant yeast cells producing human cytochrome P450 molecular species P450 1A2, P450 2C9, P450 2E1 and P450 3A4 together with a yeast NADPH-P450 reductase, which may be in the form of a fused enzyme with each of said human cytochrome P450 molecular species, or with the cell free extracts of the yeast cells; and
 - (b) identifying the resulting metabolite.

į

1 1 2	5'-CACAGAGCTCCTCCTGGCCTCTGCCATCTTC-3' 5'-TTACAGGCCCTGCACTTGGCTAAAGCTGC-3'	Primer for amplifying P4501A2 1.5Kb fragment
5 C 9	5' - AGTCTAGAATGGATTCTATTGTGTCCCTTGTGCTC-3' 5' - CTCCAAACAAGTCAACTGCAGTGTTTTCCAAGC-3'	Primer for amplifying P450209 0.9Xb fragment
	5' - GCTTGGAAAACACTGCAGTTGACTTGTTTGGAG-3' 5' - ACTGAGCAGCAAGCCATCTGCTGTTC-3'	Primer for amplifying P4502C9 0.6Kb fragment
2 2 1	5'-CCCCAGAATTCAATGTCTGCCCTCGGAGTG-3' 5'-CCTCTGGATCCGGCTCTCATTGCCCTGTTTC-3'	Primer for amplifying P4502E1 0.5Kb fragment
	5'-GAAACAGGGCAATGAGAGCCGGATCCAGAGG-3' 5'-GAAAACTTGTTTGCATGCGGGGGGTTCAGG-3'	Primer for amplifying P450281 1.08b fragment

Fig. 1

314	5'-AGTAAGGAATCTAGAAATGGCTCTCATCCCAG-3' 5'-ACGAGCTCCAGATCGGAAAGGTTTG-3'	Primer for amplifying PY50314 0.61b fragment
	5'-CAAAGCTCTGTCCGATCTGGAGCTCGT-3' 5'-CAAAGCTATTTGAGGTACCTGGTGTTTTCAGGC-3'	Primer for amplifying ?* P4503A4 0.9Kb fragment
141	5' - CCTCTAGAAATGCTTTTCCCAATCTCCATG-3' 5' - CCAATCACTGTGTGGAGCTCCTCTTGGATC-3'	Primer for amplifying P4501A1 1.0Xb fragment
	5'-GATCCAAGAGGAGCTCGACACAGTGATTGG-3' 5'-GGGCTCTCAAGCACCTAAGAGCGCAGCTGC-3'	Primer for amplifying P4501AI 0.5Kb fragment
2 Y 6	5' -GCTTCTAGAATGCTGGCCTCAGGGATGCTTC-3' 5' -CGTGGAGGTTGACGTGAACTGGAAGATTC-3'	Primer for amplifying P4502A6 0.6Kb fragment
	5'-GAATCTTCCAGTTCACGTCAACCTCCACG-3' 5'-AGACCTGGTACCGCACAGCCTCGCTCAG-3'	Primer for amplifying P4502A6 0.9Xb fragment

Fig. 2

288 2C8	286 5'-CCTCTAGAAATGGAACTCAGCGTCCTCCT-3' 5'-GGGGATCCTGAATGACCCTGGAATCCTTTG-3' 2C8 5'-GAAGAAGTCTAGAATGGAACCTTTTGTGGTCC-3' 5'-ATAGCAGATCGGCAGCAATGGGCTAGCATTC-3'	P4502B6 1.5Kb fragment Primer for amplifying P4502C8 1.5Kb fragment
2 C 1 8	2C18 5'-AGTCTAGAATGGTACCAGCTGTGGCTCTGG-3' 5'-CCCCAAACATATCAGTTACAGTGGCTATCAAGG-3'	Primer for amplifying P4502C18 0.9Kb fragment
	5' -CCCGATTATTGGAAATATCCTGCAGTTAGATG-3' 5' -ACAGCACAGGAGCAGCCAAACTATCTGCC-3'	Primer for amplifying P4502C18 1.4Kb fragment

Fig. 3

· .

Primer for amplifying P(50206 0.41b frayment Primer for amplifying P450200 0.91b fragment Primer for amplifying P4503A4 Xb1-Xhol fragment 2019 The sequence shown by 5'-..-3' is described In SEQ ID Nos: 20 to 40. ٠ د 5' - AATCTAGAAATGGCTCTCATCCCAG - 3' 5' - AGGACTCGAGCGGCTCCACTTACGGTGCCATCCC -S'-GCTTCGAATACGACGACCCTCGCTTCCTC-3'
S'-ACTAGGTACCCCATTCTAGGGGGGCACAG-3' 3A4 (An artificial fused enzyme) 5' - IGITCAGCCTGCAGCTGGCCTGGAC-3'
5' - AAGCGAGGGTCGTCGTATTCGAAGCG-3' 208

.

Fig. 4

(1) Linker for cloning 1A2

i :

5' - AGCTTAAAAAAAAGGCATTGTCCCAGTGTGTTCCCTTCTCGGCCACAGAGCT-3'
3' - attititakcgtaakcagggcagaakaaggaaaggcggtgtc - 5'

(2) Linker for cloning 2D6

5' -CTAGATAIGGGGCTAGAAGCACTGGTGCCCCTGGCGGTGATAGTGG-3'
3' - TAIACCCCGATCTTGTGACCACGGGACCGGCACTATCACC-5'

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18