MAT0206/MAP0216 - Análise Real - IME - 2007 Prof. Gláucio Terra P1 - 07/05/2007

Nome:	Nota:
No. USP:RG:	
Assinatura:	

ESCOLHA 5 QUESTÕES. CADA QUESTÃO VALE 2 PONTOS. BOA PROVA!!

- 1-) Um subconjunto $X \subset \mathbb{R}$ diz-se denso em \mathbb{R} se todo intervalo aberto de \mathbb{R} contém algum ponto de X. Um número real diz-se algébrico se for raiz de algum polinômio não identicamente nulo e com coeficientes inteiros, e diz-se transcendente se não for algébrico. Mostre que: (a) o conjunto dos números algébricos é enumerável e denso em \mathbb{R} ; (b) o conjunto dos números transcendentes é não-enumerável e denso em \mathbb{R} .
 - Demonstração: (a) Denote por $P_n(\mathbb{Z})$ o conjunto dos polinômios com coeficientes inteiros de grau menor ou igual a n. Então $P_n(\mathbb{Z})$ é enumerável; com efeito, a aplicação $(a_0,\ldots,a_n)\in\mathbb{Z}^{n+1}\mapsto p(x)=a_0+a_1x+\cdots a_nx^{n+1}\in P_n(\mathbb{Z})$ é uma bijeção de \mathbb{Z}^{n+1} sobre $P_n(\mathbb{Z})$, e \mathbb{Z}^{n+1} é enumerável (por ser \mathbb{Z} enumerável e por ser enumerável o produto cartesiano finito conjuntos enumeráveis, conforme demonstrado em aula). Assim, o conjunto $P(\mathbb{Z})$ formado por todos os polinômios com coeficientes inteiros é enumerável, pois $P(\mathbb{Z})=\cup_{n\in\mathbb{N}}P_n(\mathbb{Z})$, ou seja, é a reunião de uma família enumerável de conjuntos enumeráveis. Associe, a cada polinômio $p\in P(\mathbb{Z})$, o conjunto $R_p\subset\mathbb{R}$ formado por todas as raízes reais de p; então R_p é um conjunto finito (em particular, enumerável), pois todo polinômio tem um número finito de raízes. Ora, o conjunto dos números algébricos é a reunião da família $(R_p)_{p\in P(\mathbb{Z})}$, portanto é enumerável, por ser a reunião de uma família enumerável de conjuntos enumeráveis. Além disso, tal conjunto é denso em \mathbb{R} , pois contém o conjunto \mathbb{Q} dos racionais, que já demonstramos ser denso em \mathbb{R} .
 - (b) Todo intervalo aberto não-vazio contém algum número transcendente; caso contrário, um tal intervalo conteria apenas números algébricos, portanto seria enumerável (e já demonstramos que todo intervalo não-degenerado é não-enumerável).

2-) Prove o *critério de Abel*: se $\sum a_n$ é convergente e $(b_n)_{n\in\mathbb{N}}$ é uma seqüência decrescente de termos positivos, então $\sum a_n b_n$ é convergente.

DEMONSTRAÇÃO: A seqüência $(b_n)_{n\in\mathbb{N}}$ é decrescente e limitada inferiormente (pois, por hipótese, $b_n \geq 0$ para todo $n \in \mathbb{N}$). Assim, tomando-se $c \doteq \inf\{b_n : n \in \mathbb{N}\}$, tem-se $b_n \to c$. Portanto, $n \in \mathbb{N} \mapsto (b_n - c)$ é uma seqüência decrescente, de termos positivos, e converge para zero. Como a seqüência das reduzidas da série $\sum a_n$ é limitada (uma vez que a referida série é convergente, por hipótese), segue-se do critério de Dirichlet (demonstrado em aula) que a série $\sum (b_n - c)a_n$ é convergente. Ora, sendo $\sum c a_n$ convergente (pois $\sum a_n$ o é), segue-se que $\sum a_n b_n = \sum (b_n - c)a_n + \sum c a_n$ é convergente.

- 3-) Um conjunto $X \subset \mathbb{R}$ diz-se discreto se todos os seus pontos forem isolados. Demonstre que:
 - (a) Todo conjunto discreto é enumerável.
 - (b) Se $X \subset \mathbb{R}$ é compacto e discreto, então X é finito.

DEMONSTRAÇÃO: (a) Seja X um conjunto discreto. Tome $E \subset X$ um subconjunto enumerável denso em X (existe, pois, conforme demonstrado em aula, todo subconjunto de \mathbb{R} possui um subconjunto enumerável denso). Afirmo que E = X; com efeito, dado $a \in X$, existe $\delta > 0$ tal que $(a - \delta, a + \delta) \cap X = \{a\}$, portanto $a \in E$ (caso contrário E não seria denso em X), donde $X \subset E$.

- (b) Para cada $x \in X$, tome $\delta_x > 0$ tal que, pondo $A_x \doteq (x \delta_x, x + \delta_x)$, tem-se $A_x \cap X = \{x\}$. Assim, $(A_x)_{x \in X}$ é uma cobertura aberta do compacto X, da qual se pode extrair (por Borel-Lebesgue) uma subcobertura finita $(A_{x_i})_{1 \leqslant i \leqslant n}$. Ora, para cada $i \in \{1, \ldots, n\}$, $A_{x_i} \cap X = \{x_i\}$, portanto $X = (\bigcup_{1 \leqslant i \leqslant n} A_{x_i}) \cap X = \bigcup_{1 \leqslant i \leqslant n} (A_{x_i} \cap X) = \bigcup_{1 \leqslant i \leqslant n} \{x_i\} = \{x_1, \ldots, x_n\}$ é finito.
- **4-)** Uma função $\phi:[a,b] \to \mathbb{R}$ diz-se uma função escada se existirem $a=a_0 < a_1 < \cdots < a_n=b$ tais que $\phi|_{]a_{i-1},a_i[}$ é constante $(=c_i)$, para $1 \le i \le n$. Prove que, se $f:[a,b] \to \mathbb{R}$ é uma função contínua, para todo $\epsilon > 0$ existe $\phi:[a,b] \to \mathbb{R}$ escada tal que $(\forall x \in [a,b]) \ 0 \le f(x) \phi(x) < \epsilon$.

Demonstração: A função $f:[a,b] \to \mathbb{R}$ é contínua no compacto [a,b], portanto é uniformemente contínua (conforme já demonstrado em aula). Assim, dado $\epsilon > 0$, existe $\delta > 0$ tal que, dados $x, y \in [a,b]$ com $|x-y| < \delta$, tem-se $|f(x)-f(y)| < \epsilon$. Tome $a=a_0 < a_1 < \cdots < a_n = b$ tais que $|a_i-a_{i-1}| < \delta$ para $1 \le i \le n$, e $\phi:[a,b] \to \mathbb{R}$ dada por: (i) $(\forall i \in \{1,\ldots,n\}) \phi|_{[a_{i-1},a_i[} = cte. = f(c_i),$ onde $c_i \in [a_{i-1},a_i]$ é um ponto de mínimo de f em $[a_{i-1},a_i]$ (que existe, pelo teorema de Weierstrass) e (ii) $\phi(b) = f(b)$. Então ϕ é uma função escada e, dado $x \in [a,b]$, tem-se: (i) ou existe $i \in \{1,\ldots,n\}$ tal que $x \in [a_{i-1},a_i[$, portanto $\phi(x) = f(c_i) \le f(x) = f(x) - \phi(x) = |f(x) - \phi(x)| = |f(x) - f(c_i)| < \epsilon$, pois $|x-c_i| < |a_i-a_{i-1}| < \delta$; (ii) ou x=b, portanto $\phi(x) = f(x)$.

5-) Sejam $K, F \subset \mathbb{R}$ não-vazios, K compacto e F fechado. Mostre que existem $x_0 \in K$ e $y_0 \in F$ tais que $(\forall x \in K, \forall y \in F) |x_0 - y_0| \leq |x - y|$. Dê um exemplo de dois conjuntos fechados e disjuntos F, G tais que $\inf\{|x - y| \mid x \in F, y \in G\} = 0$.

Demonstração:

- (a) O conjunto $\{|x-y|:x\in K\ e\ y\in F\}\subset\mathbb{R}$ é limitado inferiormente (por zero), portanto existe $d\doteq\inf\{|x-y|:x\in K\ e\ y\in F\}\geqslant 0$. Verifiquemos que este ínfimo é um mínimo, i.e. existem $x_0\in K$ e $y_0\in F$ tais que $|x_0-y_0|=d$. Para cada $n\in\mathbb{N}$, pela definição de ínfimo segue-se que d+1/n não é cota inferior do referido conjunto, portanto existem $x_n\in K$ e $y_n\in F$ tais que $d\leqslant |x_n-y_n|< d+1/n$. Como $1/n\to 0$, segue-se do teorema do confronto que as seqüências $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ são tais que $|x_n-y_n|\to d$. Além disso, por ser $(x_n)_{n\in\mathbb{N}}$ uma seqüência no compacto K, podemos supor, passando a uma sua subseqüência, se necessário, que a mesma converge para $x_0\in K$ (i.e. se a referida seqüência não fosse convergente, poderíamos substituí-la por uma sua subseqüência convergente, com limite em K, cuja existência é assegurada pela propriedade de Bolzano-Weierstrass). Segue-se da definição de seqüência convergente que existe $n_0\in\mathbb{N}$ tal que $|x_n-x_0|\leqslant 1$ para $n\geqslant n_0$; assim, pela desigualdade triangular, segue-se $(\forall\,n\geqslant n_0)\,|y_n-x_0|\leqslant|y_n-x_n|+|x_n-x_0|\leqslant 1/n+1<2$. Conseqüentemente, $(y_n)_{n\geqslant n_0}$ é uma seqüência no conjunto $F\cap[x_0-2,x_0+2]$, que é compacto (é fechado, por ser a intersecção de dois fechados, e limitado, por estar contido no conjunto limitado $[x_0-2,x_0+2]$). Por Bolzano-Weierstrass, tal seqüência possui uma subseqüência $(y_{n_k})_{k\in\mathbb{N}}$ convergente para $y_0\in F$. Ora, $x_{n_k}\to x_0$ e $y_{n_k}\to y_0$ implica $|x_{n_k}-y_{n_k}|\to |x_0-y_0|$; como também $|x_{n_k}-y_{n_k}|\to d$, segue-se que $d=|x_0-y_0|$, por unicidade do limite.
- (b) Tome $F \doteq \mathbb{N}$ e $G \doteq \{n+1/n \mid n \in \mathbb{Z}\}$. Então F e G são fechados, disjuntos, e $\inf\{|x-y| \mid x \in F, y \in G\} = 0$, pois $(n+1/n) n = 1/n \to 0$.
- 6-) Seja $f: \mathbb{R} \to \mathbb{R}$ contínua. Se $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$, então f tem um ponto de mínimo x_0 (i.e. existe $x_0 \in \mathbb{R}$ tal que $f(x_0) = \min f(\mathbb{R})$).

Demonstração: Seja $a \in \mathbb{R}$. Como $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty$, existe M > 0 tal que f(x) > f(a) se $x \in (M, +\infty)$ ou $x \in (-\infty, -M)$. Podemos tomar M > |a|. Pelo teorema de Weierstrass, $f|_{[-M,M]}$ tem um ponto de mínimo $x_0 \in [-M,M]$. Então x_0 é ponto de mínimo de f, pois, $(\forall x \in [-M,M]) f(x) \geqslant f(x_0)$ e $(\forall x \in (-\infty, -M) \cup (M, +\infty)) f(x) > f(a) \geqslant f(x_0)$ (a última desigualdade deve-se ao fato de que M > |a|, portanto $a \in [-M,M]$).

7-) Sejam $X \subset \mathbb{R}$ e $f: X \to \mathbb{R}$ tal que, para todo $\epsilon > 0$, existe $g: X \to \mathbb{R}$ contínua tal que $(\forall x \in X) |f(x) - g(x)| < \epsilon$. Então f é contínua.

Demonstração: Sejam $x_0 \in X$ e $\epsilon > 0$. Por hipótese, existe $g: X \to \mathbb{R}$ contínua tal que $(\forall x \in X) |f(x)-g(x)| < \epsilon/3$. Sendo g contínua em x_0 , existe $\delta > 0$ tal que, para todo $x \in X$ tal que $|x-x_0| < \delta$, tem-se $|g(x)-g(x_0)| < \epsilon/3$. Assim, aplicando-se a desigualdade triangular, conclui-se que para todo $x \in X$ tal que $|x-x_0| < \delta$, tem-se $|f(x)-f(x_0)| \le |f(x)-g(x)| + |g(x)-g(x_0)| + |g(x_0)-f(x_0)| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon$.