Compton Telescope

Sereres Johnston and Clayton Davis May, 2013

Compton Telescope

- Detector measures E, x, y, z for each sites
- Compton telescope determines source location given cluster locations and Compton scattering formula

$$\phi = \arccos\left[1 - m_e c^2 \left(\frac{1}{E_{\gamma} - E_1} - \frac{1}{E_{\gamma}}\right)\right]$$

Now we have two separate
Compton Telescope methods

Why New Telescope?

- Questionable physics results, for wk Th S5:
 - z position ~2cm more negative than other methods
 - Radial position closer to 20 than 25 cm
- Code architecture sub-optimal
 - Compton Imager without access to utilities common to other analysis scripts.
 - Code inefficiencies force cap on pipeline statistics.
 - Opaque error propagation.
 - 2,000+ lines of 3 tiered structure: Compton Module, Imager and root scripts, nearly impossible to debug
- Now: ~250 lines of nicely commented python script. Plus a third party "uncertainties" package which transparently handles error propagation.

Crucial New CT Points

- Fully 3D location, rather than 2D
- We can locate each run independently
 - Plenty of statistics in one run
 - No methodological dependence on multiple source positions
 - Consider precision of deployment method
 - Possible lateral movements within tube
- Still promising avenues for further improvement
 - Cluster calibration not applied
 - MC independent of current method
 - Could be used to correct systematic effects

Compton Telescope vs Ratio Method

Jan 18 to May 6

S5 Wk Th Z position

Compton Telescope Position Mean -22.744 mm RMS 4.3541 mm

Monte Carlo Test

- Brian simulated 1000 files of wk Th at S5
 - Each had 10,000 total events
 - ~200 pass cuts and used in Compton Telescope
 - I chained groups of 10 files together
 - Still less than half the events which are used from a typical source run
- Source Position
 - Y= 4 mm, Z= -20 mm, X= 250 mm,
- Summed PCD's smeared
 - Resolution taken from run over data

Fit = 4.035 (1.398)

Sim = 4.0

Simulated bead size = .5 mm

Fit = -19.97 (.9988)

Sim = -20 mm

Simulated bead size = .5 mm

Fit = 257.5 (2.579)

Sim = 250 mm

Source Runs over 2 years

Mean: 258.11 mm

RMS: 2.2711 mm

Weak Thorium S5 X position

MC Comparison suggests the true position is 251-258 mm

Source Runs over 2 years

Mean: 8.57 mm

RMS: 1.08 mm

Weak Thorium S5 Y position

MC Comparison suggests the true position is this position

Source Runs over 2 years

Mean: -27.41 mm

RMS: 10.6 mm

Weak Thorium S5 Z position

MC Comparison suggests the true position varies by run

Source Tube Diameter?

- Took 2 year mean for X and Y
 - 8.57 mm
 - 258.11 mm
- 9 runs, each run split into 45 mins
 - Distance in x/y plane between run pos and mean pos plotted
 - 2.413 mm Tube IR

Precision Check

- run to run variation in true source position:
 - lateral or vertical movements within inner diameter of calibration tube
 - Shift-to-shift variations with z deployment
- I broke up each run into small "runs"
 - normalized by finding difference between CT position determination on small "run" and full run
 - I used 8 time lengths from 9 separate runs
 - Not every run has every time length

Y position sigma vs time Sigma (mm) 1.6 1.4 1.2 X position sigma vs time Time Length (min) Sigma (mm) ...

Time Length (min)

2.5

1.5

Separated Coordinates

Runs Still Combined

30 35 40 45 Time Length (min)

Z position sigma vs time

MC / Data Efficiency Check

- Measured by fraction CT accepts out of the entire number of entries / triggers in file
 - 2.05 % MC acceptance
 - 1.72 % Data acceptance
- Possibly from muon rate, noise, etc. being rejected by CT in data

Other Sources and Positions

S2	wTh	4449-4451	-26.632	3.1035	-286.01
	wCo	4442-4444	-27.03	2.4	-287.85
S5	wTh	4758, 4766, 482	258.49	8.689	-22.263
	wCo	4439	258.75	7.947	-23.072
	wCs	4777-4781	243.07	6.4781	-23.45

Other Sources and Positions

S 8	wTh	4769	27.609	1.2353	289.47
	wCo	4785-4786	24.103	1.8639	294
S11	wTh	4771-4772	1.8205	256.72	20.1
	wCo	4789-4790	1.5377	256.91	20.899

Systematic check / correction from MC not complete, errors not complete

Other Sources and Positions

Other	•		X		y		Z
S5+6	wTh	4828		262.58		6.1476	41.878
S5+4	wTh	4829		258.07		8.449	22.822
S5-2	wTh	4835		259.57		8.851	-41.348
S5-4	wTh	4836 and 4841		256.13		8.2947	-57.0765
S5+2	wTh	4839		254.86		8.3545	0.50538

Systematic check / correction from MC not complete, errors not complete

Further Work

- Get systematic and cross check from MC
 - Run on MC positions other than S5 wk Th
- Finish error assignment on positions

- Finish calibration, possibly need entirely new flavor, for clusters, if SS or MS does not work
- Correct z energy dependence
- Fine Tune cluster ordering, add 3 cluster event
- Check dependence on fiducial cut
 - We use larger cut than standard

Extra Slides

Systematics Check

runs 4758, 4766, 4824, 4840, 4852, 4859

	TPC1		TPC2	
X	253.1	1.98	255.5	2.576
У	9.008	1.541	8.505	.4147
Z	-17.49	1.877	-24.53	1.439

- All entries in mm
- Value, then RMS
- 7 mm disagreement in z position
- Further work needed to determine cause
- Saw similar effect with cut along Z

Statistics Check

runs 4758, 4766, 4824, 4840, 4852, 4859

	Even		Odd		
X	258.8	2.61	257.9	1.72	
У	8.07	.767	9.358	.759	
Z	-22.42	1.82	-22.11	1.33	

- All entries in mm
- Value, then RMS
- Script assigned error smaller than RMS in all cases

Sigma vs Time Length

Note: data from 9 runs is combined

Notable Differences

- Position determination
- Error Propagation
- Energy cut

- Ordering
- "Bad Events"
- Coord system
- Cluster Multiplicity

Position determination

- New CT chi squared optimization
 - Nominal source position used as initial guess
 - Each Event evaluated for discrepancy between the assumed position and the Compton scattering formula.
 - BFGS method used to optimize search along gradient.
- Old CT is pixel based
 - created Compton cones and evaluated on a defined surface the number of overlaps in a bin.
 - This does not scale to 3d very well at all, however, for LB studies, the lack of an initial guess could be helpful.

Error Propagation

- New CT uses imported uncertainties package
 - Provides a python class dealing with numbers with associated errors, propagating correctly when these values are used in calculations.
 - See details: http://pythonhosted.org/uncertainties/user_guide.html
- Old CT generated a variable, but high, number of cones for each event distributing the values for each from a Gaussian distribution around the central value given the error
 - Very slow, not transparent

Energy cut

 New CT uses calibrated, rotated energy space, Old CT used charge only, did not access calib DB or cut on combined energy

Ordering

 New CT tries both orderings of the two cluster events, Old CT orders two cluster events by energy, three cluster optimizes a figure of merit

"Bad Events"

- New CT weights events more dynamically, adding to chi-squared for an event with the weighting of how many sigma away from agreement
- Old CT had hard cuts angle error, etc. to eliminate events which would be unlikely to improve resolution.

Cluster Coord system

 New CT uses UVZ, Old CT uses XYZ, also, the error applied to XYZ is archaic

Cluster Multiplicity

 New CT only uses two cluster events because the ordering problem is simpler to solve, Old CT trending uses 2 and 3 cluster events