

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level In Mathematics Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WST03_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

June 2018 WST03/01 Statistics 3 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2018 IAL - WST03/01 Statistics 3

Question			<u> </u>	. 201	Sche		<u> </u>		700013	cics .		Marks
Number	F - 41-11-	4	В		1	_	F	C	7.7	7		TVILLING
1. (a)	Footballe Rank <i>x</i>	r <i>A</i>	<i>B</i> 2	<i>C</i> 3	D 4	<i>E</i> 5	<i>F</i> 6	<i>G</i> 7	<i>H</i> 8	<i>I</i> 9		
	Rank y	6	9	8	2	5	4	7	3	1		
	Rank x	9	8	7	6	5	4	3	2	1		M1
	Rank y	4	1	2	8	5	6	3	7	9		
	$\mathring{a}d^2 = 25$	5 + 49 + 2	25 + 4 +	- 0 + 4	+ 0 + 2	25 + 64	= 196					M1 A1
	$r_{\rm S} = 1 - \frac{60}{900}$	$\frac{(196)}{(196)^2 - 1)}$;=	- 0.633	33333.	or	$-\frac{19}{30}$						dM1; A1
(b)	$H_0: \rho_s = 0$	$H_1: \rho_s$	s < 0									[5] B1
	Critical Va	lue = - (0.6000	or -0.6	or C	$^{L}R: r_{S} \leq$	≤-0.60	000				B1
	Since $r_{\rm S} =$					·			ect H ₀			M1
	Either cond • Ru		aim is <u>t</u>	rue							Conclusion in context	A1
												[4]
(c)	Both Critic								$\underline{H_0}$ (or a	.ccept F	I_0)	M1
	Conclude t	hat there	is <u>no n</u>	egative	correla	ation oe	2			Contex	t not required here.	A1
(d)	The relation is non-line		tween	BMI ar	nd time	taken t	o comp	olete th	e obsta	cle cou	rse)	[2] B1
	13 11011-11110	<u></u>										[1] 12
							iestion					
1. (a)	1st M1	-				-				,	reverse rankings)	
	2 nd M1		_								$d d^2$	
											0 + 0 + 16 + 1 + 0 =	= 44
	3rd dM1	is depend	dent on	ı 1 st M1	for us	e of 1	$-\frac{6("19)}{9(9^2)}$	<u>6")</u> wi -1)	th their	$\dot{a} d^2$		
		awrt - 0.										
(b)	1st B1	Both hyp		20				_				
	Note 2 nd B1	One tail Critical v			mpatib	le with	their ra	ınking.				
	M1 For a correct statement relating their $r_S(r_S < 1)$ with their c.v. where their c.v. < 1											
	A1		ntextua	lised co	mmen	t which	is reje	cting H	I ₀ , whic	h must	mention either "neg	gative
	Note	Follow th						i				
(c)	M1	Allow ± Use of -	0.5822	I	gnore l	nypothe						
	1722					-J P 0 0110		PWI				

Question Number				Scheme	:			Marks
2. (a)	$\hat{p} = \frac{7(3) + 12}{12}$	8(5) +	9(18) + 10(18 + 28 + 1	(28) +11(17 17 + 4) or 1	$\frac{7}{2(75)} + 12(4) = \frac{7}{9}$	$\left \frac{38}{00} \right = 0.82(*)$	Answer is given. See notes.	M1 A1cso
		(-		, , ,	(12)			[2]
(b)	r = 75	$^{12}C_{9}($	$0.82)^9 (0.18)$	$(8)^3 = 16.12$	296941} (for	mula)		
	s = 75 - (2	2.80 + 7	.97 + their	r + 22.04 -	+ 18.26 + 6.93)			M1
	r = 16.129				/	r = awrt	16.13; $s = awrt 0.87$	A1; A1
	7 10.129		, 5 0.07.					[3]
(c)	H ₀ : Binom				or good) model le model	(or fit)		B1
	#	O_i	E_{i}	Comb	Comb	$\frac{(O_i - E_i)^2}{E_i}$	$\frac{O_i^2}{E_i}$	
	π	O_i	L_i	O_i	E_{i}	$\overline{E_i}$	$\overline{E_i}$	
	≤ 6	0	0.87					
	7	3	2.80	8	11.64	1.1383	5.4983	
	8 9	5 18	7.97 16.13	18	16.13	0.2168	20.0868	M1
	10	28	22.04	28	22.04	1.6117	35.5717	
	11	17	18.26	17	18.26	0.0869	15.8269	M1
	12	4	6.93	4	6.93	1.2388	2.3088	
	$X^2 = awrt$	4.2			Totals	4.2925	79.2925	A1
	v = 5 - 1 -							
			CD 37	2 > 6051				B1 ft
	$\chi_3^2(0.10) =$							B1 ft
	[does not li	e in the	CR/not sig	- 	o not reject H ₀ /A			
	Binomial d	istribut	ion is a sui			*	equired here) which	A1
	model.			i	s based on <i>their</i>	X ² -value and <i>the</i>	$ir \chi^2$ -critical value.	
								[7] 12
					Question 2	2 Notes		12
2. (a)	M1				s on the numera	tor and correct divis	sion for their method	
	A1 cso	.L		-	ith no incorrect	_		
(b)	M1					sion) for finding ei	ther <i>r</i> or <i>s</i> .	
(0)	A1; A1 1 st B1			s = awrt 0.8		nomial at least once		
(c)	1 1			• 1		but condone in con-		
	1 st M1					ating seeds ONLY.		
	2 nd M1			t the test start truncated	·	correct expressions	s/values	
	1 st A1	awrt 4	4.3					
	2 nd B1ft						tract 2 from their <i>n</i> .	
	3 rd B1ft	+				eir degrees of freed		
	Note For 0.10 significance: $\chi_6^2 = 10.645$ $\chi_5^2 = 9.236$ $\chi_4^2 = 7.779$ $\chi_2^2 = 4.605$							
	Final A1				od mark only.			
	NT _ 4					which is accepting		
	Note Note					ey are stated the wr significant, do not r		
	Note				12, 0.82) in con		0,000 110 .	
	1	1			• • •			

Question Number		Scheme		Mar	ks
3. (a)	$\left\{\hat{m}_{x} = \overline{x} = \overline$	$=\frac{92.0}{20} \Rightarrow \overline{x} = 4.6 \text{ (cm)}$	4.6	B1	
	$\left\{\hat{S}_{x}^{2}=\right\}$	$s_x^2 = \frac{433.4974 - 20(4.6)^2}{20 - 1} = 0.541968 \text{ (cm)}^2$	Applies $\frac{a^2 - 20(\text{their } \overline{x})^2}{20 - 1}$	M1	
		20 - 1	awrt <u>0.542</u>	A1	
					[3]
(b)	Combine	ed Sample: Mean = $\frac{92.0 + 142.5}{20 + 30} = 4.69$	4.69 Can be implied.	B1	
	. 433	4974 + 689 5078 - 50(4 69) ²		M1;	
	$s^2 = \frac{133}{}$	$\frac{.4974 + 689.5078 - 50(4.69)^2}{20 + 30 - 1}; = 0.4734734694$	awrt 0.473 or 0.4735	A 1	
			(can be implied) For use of $s/\sqrt{50}$	M1;	
	$\frac{S}{} = \frac{\sqrt{0}}{\sqrt{0}}$	$\frac{0.4734734694}{\sqrt{50}}; = 0.09731119868$	awrt 0.0973	A1	
	\sqrt{n}	√50	awit <u>0.0973</u>	A1 	
	TT	4.5 II 4.5			[5]
(c)	\mathbf{H}_0 : /// =	$4.5 ext{ } ext{H}_1: m > 4.5$	Correct hypotheses	B1	
	"4.6	69"- 4.5 ±	$\frac{\text{their } 4.69 - 4.5}{0.71} \text{ or equivalent.}$	3.54	
	z =	$\frac{69"-4.5}{0.71}$; = 1.892257583		M1;	
		√50	$\sqrt{50}$		
			awrt <u>1.89</u>	A1	
		d c.v. $Z = 1.6449$ or CR: $Z \ge 1.6449$	Critical value of 1.6449 or a correct probability	B1	
	or p-valu	$ae = awrt \ 0.029 \ or \ awrt \ 0.029 < 0.05$	comparison.	Di	
	[in the C]	R/significant/Reject $H_0/0.029 < 0.05$]			
			A correct conclusion which is		
	Conclude		rejecting H_0 in context and is based on <i>their z</i> -value		
		is evidence to support the farmer's claim	and is based on <i>their</i> z-value and <i>their</i> critical value,	A 1	
	• that t	the mean width of duck eggs is greater than 4.5 cm.	where $ c.v. > 1$.		
					[5]
					13
		Question 3 Notes			
3. (a)	M1	Also allow M1 for applying $\frac{20}{(20-1)} \left(\frac{\sum x^2}{20} - \text{(their } 50) \right)$	$\left(\overline{\mathfrak{r}}\right)^2$		
(b)	1 st M1	Also allow 1 st M1 for applying $\frac{50}{(50-1)} \left(\frac{\sum x^2 + \sum y^2}{20+30}\right)$	- (their \overline{x}_{comb}) ²		
	Note	Award B1M1A1M1A1 for awrt 0.0973 which follow	,		
(2)	1 St 74 # 4	Condone was of A C for this M1 and to			
(c)	1 st M1 2 nd A1	Condone use of 4.6 for this M1 mark. Conclusion must refer to either "farmer's claim" oe of	or "mean width" and "eggs"		
	_ 111				

Question Number					Scheme		Mar	ks	
4. (a)	 H₀: Mean number of reported first-aid incidents per 1000 employees is the same at each warehouse. H₁: Mean number of reported first-aid incidents per 1000 employees is not the same. 								
	Warehous	+	-	Expected Some attempt at using the correct formula to find their sexpected values (expected					
	A	$ \begin{array}{c c} & \underline{(2)(11)} \\ & 12 \\ \hline & (1)(114) \end{array} $		19		number of incidents). Can be implied by at least one	M1		
	C	12 (3.8)(1	_	9.5		correct E_i .			
	D	(3)(11- 12	4)	28.5		All expected frequencies are correct.			
	E	(2.2)(114)		V 0 0					
	Observed	Expected	<u>(O -</u>	$\frac{E^2}{E}$	$\frac{O^2}{E}$	$\frac{O^2}{E}$ Dependent upon previous M1			
	15 10	19 9.5	0.842	1	11.8421 10.5263	At least 3 correct terms for $\frac{(O-E)^2}{F} \text{ or } \frac{O^2}{F}$	dM1		
	26	36.1 28.5	0.421	3	44.3213	E E E Accept 2 sf accuracy for the dM1 mark.	9 -1-1-1		
l	23	Totals	0.211 1.720		25.3110 115.72				
	$X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 114 = \text{awrt } 1.72$ awrt $\underline{1.72}$								
	$n = 5 - 1 = 4 \ \triangleright \chi_4^2(0.05) = 9.488 \Rightarrow CR: \ X^2 \geqslant 9.488$ [not in the CR/not significant/Do not Reject H_0 /Accept H_0]								
	• that t	her: ager's claim in the <mark>mean</mark> num ents per 1000 warehouse.	nber of	reporte		A correct conclusion in context which is based on <i>their</i> X^2 value and <i>their</i> χ^2 -critical value.	A1 ft		
(b)	Select every	4 th record from	m ware	ehouse (7.		B1	[7]	
(0)		en the first re	cord b				dB1	[2]	
	Question 4 Notes								

(a) SC 1

Expected values of 9.5 used

Expected values of 7.5 used						
Observed	Expected	$\frac{(O-E)^2}{E}$				
7.5	9.5	0.4210				
10	9.5	0.0263				
10.5	9.5	0.1108				
8.6	9.5	0.0730				
10.4	9.5	0.0959				
	Totals	0.727				

Can score B1M1A0M1A0B1A1ft (5 out of 7)

SC 2

Expected values of 9.43... used

Observed	Expected	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$
7.5	9.43	0.3948	5.965
10	9.43	0.0345	10.6050
10.5	9.43	0.1275	11.7507
8.6	9.43	0.0617	7.9655
10.4	9.43	0.1114	11.5910
	Totals	0.729	47.877

Can score B1M1A0M1A0B1A0 (4 out of 7)

(b) Use of 3800 in part (b) is B0B0

Question Number		Scheme		Marks
5.	95% CI f	for m is $(30.612, 31.788)$; $c\%$ CI for	<i>m</i> is (30.66, 31.74)	
(a)	2(1.96)s	- = 31.788 - 30.612 {= 1.176}	$\frac{2"z"s}{\sqrt{25}} = 31.788 - 30.612$	M1 oe
	V23		1.96	B1
	$\left\{ \Rightarrow S = \cdot \right\}$	$\frac{(1.176)(5)}{2(1.96)} \Rightarrow $ $S = 1.5$	S = 1.5	A1
				[3]
(b)	$\frac{2z(1.5)}{\sqrt{25}} =$	= 31.74 - 30.66 {= 1.08}	$\frac{2z("1.5")}{\sqrt{25}} = 31.74 - 30.66$	M1 oe
	$z = \frac{(1.08)}{2("1)}$	$\frac{8)(5)}{.5"} \to z = 1.8$	z = 1.8	A1ft
	$\left\lfloor \frac{c}{100} = \right\rfloor$	2(0.9641) –1	2F(their "1.8") - 1 oe	M1
	$\triangleright c = 92$	2.8 (3sf)	awrt <u>92.8</u>	A1
				[4]
		0-		7
			nestion 5 Notes	
5. (a)	M1	Also allow M1 (oe) for 31.2 + $\frac{\text{their}}{\sqrt{2}}$	$\frac{2}{25}$ = 31.778, where 31.2 = $\frac{30.612 + 31.778}{2}$	
(b)	1st M1	Also allow M1 (oe) for $31.2 + \frac{z(\text{the})}{2}$	$\frac{\text{ir "1.5"}}{\sqrt{25}} = 31.74$, where $31.2 = \frac{30.66 + 31.74}{2}$	
	1st A1ft	For a correct (ft) expression using the	eir value of σ	
	2 nd M1	awrt 0.928 implies this mark		
	Note	Use of 1.6449 gives $\sigma = 1.787$ and	I leads to $z = 1.51$ and $c = 86.9$ (3sf) (M1A1)	ftM1A0)

Question Number	Scheme	Marks
6.	Y has a continuous uniform distribution $[a-3, a+6]$	
(a)	$E(Y) = \frac{a+6+a-3}{2} \left\{ = \frac{(2a+3)}{2} \text{ or } a+\frac{3}{2} \right\}$	M1
	$Var(Y) = \frac{(a+6-a+3)^2}{12} \left\{ = \frac{81}{12} \text{ or } \frac{27}{4} \text{ or } 6.75 \right\}$ May be implie	d M1
	$\overline{Y} \sim N\left(a + \frac{3}{2}, \frac{9}{80}\right)$ $N\left(a + \frac{3}{2}, \frac{9}{80}\right)$	A1
		[3]
(b)	$13.4 - 2.3263\sqrt{\frac{9}{80}}$ < m < $13.4 + 2.3263\sqrt{\frac{9}{80}}$) M1
(0)	$13.4 - 2.3203\sqrt{80}$ < < 13.4 + 2.3203 $\sqrt{80}$ 2.326	3 B1
	$13.4 - 2.3263\sqrt{\frac{9}{80}} < a + \frac{3}{2} < 13.4 + 2.3263\sqrt{\frac{9}{80}}$	
	$13.4 - 2.3263\sqrt{\frac{9}{80}} + 4.5 < a + 6 < 13.4 + 2.3263\sqrt{\frac{9}{80}} + 4.5 $ $13.4 \pm z'' \text{ (their } SE_{\bar{y}}) + 4.$	5 M1
	17.11973576 < a + 6 < 18.68026474 awrt (17.1, 18.7) A1
		[4]
	Alternative Method for part (b)	
(1.)) M1
(b)	$13.4 - 2.3263\sqrt{\frac{9}{80}} < m < 13.4 + 2.3263\sqrt{\frac{9}{80}}$ $\frac{13.4 \pm "z" \text{(their } SE_{\overline{y}})}{2.326}$	
	11.11973526 < <i>a</i> < 12.68026474	
	11.11973526 + 6 < a + 6 < 12.68026474 + 6 13.4 ± " z "(their $SE_{\overline{v}}$) - 1.5 +	6 M1
	17.11973576 < a + 6 < 18.68026474 awrt (17.1, 18.7)	
	<u> </u>	[4]
		7
	Question 6 Notes	
(b)	1 st M1 The inequalities may be seen separately. For only considering 1-tail of confidence into (usually the upper tail) allow access to 1 st M1 only (so M1B1M0A0 is possible).	erval
(0)	A second division of their SE by 60 is 1 st M0	

Question Number	Scheme	Marks
7. (i)	$A = N(21, 2^2)$, $B = N(32, 7^2)$ and $C = N(45, 9^2)$ A, B, C are independent.	
(a)	T = A + B + C	
	$E(T) = 21 + 32 + 45$ or $Var(T) = 2^2 + 7^2 + 9^2$ A fully correct method of finding $E(T)$ or $Var(T)$	M1
	E(T) = 98 and $Var(T) = 134$ Both $E(T) = 98$ and $Var(T) = 134$	A1
	{So <i>T</i> ∼ N(98,134)}	
	$\{P(T > 90) = \}$ $P\left(Z > \frac{90 - 98}{\sqrt{134}}\right)$ Standardising (\pm) with their mean and their standard deviation	M1
	= P(Z > -0.69109)	
	= 0.7549 (or 0.75525) awrt 0.755	A1
		[4]
(b)	$\left\{ P(A > B) = P(A - B > 0) \right\}$	
	$E(A-B) = 21-32$ or $Var(T) = 2^2 + 7^2$ A fully correct method of finding $E(A-B)$ or $Var(A-B)$	M1
	E(A - B) = -11 and $Var(A - B) = 53$ Both $E(A - B) = -11$ and $Var(A - B) = 53$	A1
	$\{So\ A - B\ N(-11,53)\}$	
	$\{P(A-B>0)\} \Rightarrow P\left(Z > \frac{0-11}{\sqrt{53}}\right)$ Standardising (\pm) with their mean	M1
	$(1(31-B)^{2}) \rightarrow (1(2)^{2})$ and their standard deviation	1V11
	= P(Z > 1.510966)	
	= 0.06539855 % (or 0.0655) or awrt <u>0.0654</u>	A1
		[4]
(ii)	$\left\{ P\left(X_1 > \overline{X} + kS\right) = 0.1 \ \triangleright \ P\left(X_1 - \overline{X} > kS\right) = 0.1 \right\}$	
	$X_{1} - \overline{X}; \left\{ = X_{1} - \frac{(X_{1} + X_{2} + X_{3} + X_{4})}{4} = \frac{3X_{1} - (X_{2} + X_{3} + X_{4})}{4} \right\}$ For attempting to find the distribution of $X_{1} - \overline{X}$	M1
	$E(X_1 - \overline{X}) = 0$ Correct mean	A1
		dM1
	$\operatorname{Var}(X_{1} - \overline{X}) = \frac{9\sigma^{2} + 3\sigma^{2}}{4^{2}}; \implies X_{1} - \overline{X} \sim \operatorname{N}(0, 0.75\sigma^{2}) \xrightarrow{\text{Correct expression for } \operatorname{Var}(X_{1} - \overline{X})}{X_{1} - \overline{X} \operatorname{N}(0, 0.75s^{2})}$	A1
	$\left\{ P\left(X_1 - \overline{X} > kS\right) = 0.1 \Rightarrow P\left(Z > \frac{kS - 0}{\sqrt{0.75S^2}}\right) = 0.1 \right\}$	
	Standardising using their $\sqrt{\operatorname{Var}(X_1 - \overline{X})}$.	
	So, $\frac{k}{\sqrt{0.75}} = 1.2816$ Note that S must cancel and equating to a z-value, $ z > 1$.	M1
	1.2816	B1
	$\left\{k = \sqrt{0.75} \text{ (1.2816)}\right\} \bowtie k = 1.109898157$ awrt <u>1.11</u>	A1
		[7]
	Ougstion 7 Notes	15
7. (i) (a)	Question 7 Notes 1^{st} M1Can be implied by either a correct $E(T)$ or $Var(T)$	
(i) (b)	Allow equivalent method using $B - A < 0$	
(ii)	Final Dependent upon all previous M marks in (ii)	
	A1	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom