Problem Statement

A hospital wants to determine whether there is any difference in the average Turn Around Time (TAT) of reports of the laboratories on their preferred list. They collected a random sample and recorded TAT for reports of 4 laboratories. TAT is defined as sample collected to report dispatch. Analyze the data and determine whether there is any difference in average TAT among the different laboratories at 5% significance level.

```
import pandas as pd
import numpy as np
import scipy as sc
from scipy import stats
```

In [2]:

lab = pd.read_csv("D:/DataScience/Class/assignment working/Hypothesis/lab_tat_updated.csv")

In [3]:

lab.head()

Out[3]:

	Laboratory_1	Laboratory_2	Laboratory_3	Laboratory_4
0	185.35	165.53	176.70	166.13
1	170.49	185.91	198.45	160.79
2	192.77	194.92	201.23	185.18
3	177.33	183.00	199.61	176.42
4	193.41	169.57	204.63	152.60

In [4]:

lab.shape

Out[4]:

(120, 4)

In [5]:

lab.describe()

Out[5]:

	Laboratory_1	Laboratory_2	Laboratory_3	Laboratory_4
count	120.000000	120.000000	120.000000	120.00000
mean	178.257333	178.902917	200.210167	163.68275
std	13.919668	14.957114	15.794801	15.08508
min	140.250000	140.550000	170.580000	124.06000
25%	170.267500	168.025000	190.182500	154.05000
50%	179.055000	178.870000	198.610000	164.42500
75%	187.222500	189.112500	211.197500	172.88250
max	216.390000	217.860000	238.700000	205.18000

Normality test

```
In [8]:
```

```
stats.shapiro(lab.Laboratory_1)
```

Out[8]:

ShapiroResult(statistic=0.9886691570281982, pvalue=0.42317795753479004)

In [9]:

```
stats.shapiro(lab.Laboratory_2)
```

Out[9]:

ShapiroResult(statistic=0.9936322569847107, pvalue=0.8637524843215942)

In [10]:

```
stats.shapiro(lab.Laboratory_3)
```

Out[10]:

ShapiroResult(statistic=0.9796067476272583, pvalue=0.06547004729509354)

Tn [11] •

```
stats.shapiro(lab.Laboratory 4)
```

Out[11]:

ShapiroResult(statistic=0.9913753271102905, pvalue=0.6618951559066772)

from above re sults we failed to reject null hypothesis, so we can say data is normal.

One way ANOVA

Variance Test

```
In [19]:
```

levene test to check variance of population with more than two groups

In [13]:

stats.levene(lab.Laboratory_1,lab.Laboratory_2,lab.Laboratory_3,lab.Laboratory_4)

Out[13]:

LeveneResult(statistic=1.025294593220823, pvalue=0.38107781677304564)

failed to reject null hypothesis as p value is greater than 0.05, so we can coclude that the deta have equal variance

We have following Hypothesis for the test:

Null Hypothesis: TAT1= TAT2= TAT3 = TAT4

Alternate Hypothese: atleast TAT for one lab is different

In [20]:

F, p = stats.f_oneway(lab.Laboratory_1,lab.Laboratory_2,lab.Laboratory_3,lab.Laboratory_4)

In [22]:

print(F)
print(p)

121.39264646442368 2.143740909435053e-58

Summary and inference

from above results we can say that all above group have different population mean.

we can conclude that all the above laboratories have different mean time