Algorytmy optymalizacji dyskretnej $_{\rm Lista~1}$

Piotrt Hernik

October 2024

1 DFS i BFS

Dane są grafy skierowane A, B, C i D. Z każdego z nich utworzymy graf nieskierowany, zamieniając krawędź (v, w) na $\{v, w\}$.

Table 1: DFS

Graf	Skierowanie	Czas $[\mu s]$	Kolejność
A	Skierowany	545	1, 2, 3, 5, 6, 4
A	Nieskierowany	832	1, 2, 3, 5, 4, 6
В	Skierowany	282	1, 2, 3, 4, 8, 7, 6, 5
В	Nieskierowany	860	1, 2, 3, 4, 8, 5, 6, 7
С	Skierowany	250	1, 2, 5, 6, 7, 4, 8, 9, 3
С	Nieskierowany	663	1, 2, 5, 3, 6, 7, 4, 8, 9
D	Skierowany	578	1, 2, 3, 4, 8, 12, 16, 7, 11, 15, 6, 10, 14, 5, 9, 13
D	Nieskierowany	709	1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, 16, 15, 14, 13

Table 2: BFS

Graf	Skierowanie	Czas $[\mu s]$	Kolejność
A	Skierowany	2899	1, 2, 3, 4, 5, 6
A	Nieskierowany	874	1, 2, 3, 5, 4, 6
В	Skierowany	792	1, 2, 4, 3, 6, 8, 5, 7
В	Nieskierowany	218	1, 2, 4, 5, 3, 6, 8, 7
С	Skierowany	354	1, 2, 3, 5, 4, 6, 8, 7, 9
С	Nieskierowany	134	2, 3, 5, 4, 6, 7, 8, 9
D	Skierowany	188	1, 2, 5, 6, 3, 7, 9, 10, 11, 4, 8, 12, 13, 14, 15, 16
D	Nieskierowany	155	1, 2, 5, 6, 3, 7, 9, 10, 11, 4, 8, 12, 13, 14, 15, 16

Wnioski

Kolejność przejścia w algorytmach DFS i BFS jest różna dla grafu skierowanego i nieskierowanego. Różnice w czasach pracy są pomijalne w małych grafach. Można również poddać pod krytykę sposób mierzenia czasu pracy programu. Oba algorytmy mają złożoność $\Theta(|V|+|E|)$.

2 Topologiczne sortowanie

(a) Graf acykliczny

(b) Graf cykliczny

Table 3: Topological sort

Graf	V	E	Czas $[ms]$	Cykliczność
Własny "a"	16	33	0.27	Acykliczny
Własny "b"	16	33	0.24	Cykliczny
g2a-1	16	33	0.29	Acykliczny
g2a-2	100	261	0.31	Acykliczny
g2a-3	1600	4641	5.12	Acykliczny
g2a-4	10000	29601	34.49	Acykliczny
g2a-5	160000	478401	602.19	Acykliczny
g2a-6	1000000	2996001	4152.18	Acykliczny
g2b-1	16	34	0.14	Cykliczny
g2b-2	100	262	0.46	Cykliczny
g2b-3	1600	4642	8.25	Cykliczny
g2b-4	10000	29602	36.15	Cykliczny
g2b-5	160000	478402	524.04	Cykliczny
g2b-6	1000000	2996002	4075.54	Cykliczny

Table 4: Porządek topologiczny dla grafów $|V| \leq 200$

Graf	Porządek topologiczny
Własny "a"	1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16
g2a-1	1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15, 4, 8, 12, 16
g2a-2	1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 2, 12, 22, 32, 42, 52, 62, 72,
	82, 92, 3, 13, 23, 33, 43, 53, 63, 73, 83, 93, 4, 14, 24, 34, 44, 54,
	64, 74, 84, 94, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 6, 16, 26, 36,
	46, 56, 66, 76, 86, 96, 7, 17, 27, 37, 47, 57, 67, 77, 87, 97, 8, 18,
	28, 38, 48, 58, 68, 78, 88, 98, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99,
	10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Wnioski

Czas pracy algorytmu wydaje się być liniowy względem wielkości grafu. Nie zaobserwowano różnicy w czasie między cyklicznym, a acyklicznym grafem. Może wynikać to w sposobie implementacji i przerywania wykonywania algorytmu, jeśli dany graf będzie posiadał cykl.

3 Silnie spójne składowe

Dla znalezienia silnie spójnych składowych zostanie zastosowane fakt, że węzeł, który otrzymuje najwyższy numer w przeszukiwaniu w głąb (DFS), musi znajdować się w źródłowej silnie spójnej składowej. Dlatego, aby znaleźć silnie spójne składowe, należy:

- stworzyć graf G^{-1} ;
- przeprowadzić procedurę DFS na tym grafie;
- $\bullet\,$ użyć DFS na Gw kolejności wierzchołków malejącej względem post. Nieodwiedzone wierzchołki wraz z ich drzewem DFS stanowić będą kolejną komponentę.

Złożoność algorytmu: stworzenie grafu G^{-1} to $\Theta(|V|+|E|)$, procedura DFS również ma taką złożoność, więc algorytm zachowuje założenia zadania.

Graf	V	E	Czas [ms]	Liczba SSC	Wielkość SSC
Własny a	12	17	0.253	5	6, 2, 2, 1, 1
Własny b	12	20	0.158	1	12
g3-1	16	39	0.341	5	1, 4, 2, 4, 5
g3-2	107	185	0.670	5	1, 40, 24, 36, 6
g3-3	1008	1609	3.467	5	1, 400, 200, 400, 7
g3-4	10009	15943	21.990	5	1, 4000, 2400, 3600, 8
g3-5	100010	159679	165.128	5	1, 40000, 20000, 40000, 9
g3-6	1000011	1598897	1156.12	5	1, 400000, 240000, 360000, 10

Wnioski

Czas trwania jest linowy względem wielkości grafu tak jak powinien. Kolejność znajdowania silnie spójnych składowych nie zależy od ich wielkości.

4 Dwudzielność

Nieznacznie modyfikując algorytm BFS można sprawdzić czy dany graf jest dwudzielny. Wspomniana zmiana polega na wprowadzeniu kolorowaniu sąsiadów. Wybieramy dwa kolory i gdy wierzchołek v pokolorujemy na pierwszy z nich to wszystkich jego sąsiadów (v,u - dla nieskierowanego oraz (v,u) - dla skierowanego) kolorujemy na drugi kolor. Powtarzamy tę czynność dla kolejnych wierzchołków. Jeśli w pewnym momencie pewien wierzchołek zostanie przekolorowany z pierwszego koloru na drugi to oznacza, ze graf nie jest dwudzielny. Kolory oznaczają przynależność do danej partycji.

Graf	Skierowanie	V	E	Czas [ms]	Dwudzielny?
własny a	Skierowany	12	17	0.102	Nie
własny b	Skierowany	11	11	0.200	Tak
własny c	Nieskierowany	12	13	0.106	Tak
własny d	Nieskierowany	11	11	0.107	Nie
d4a-1	Skierowany	16	24	0.218	Tak
d4a-2	Skierowany	100	180	0.366	Tak
d4a-3	Skierowany	1600	3120	2.856	Tak
d4a-4	Skierowany	10000	19800	10.541	Tak
d4a-5	Skierowany	160000	319200	152.123	Tak
d4a-6	Skierowany	1000000	1998000	907.925	Tak
d4b-1	Skierowany	16	25	0.245	Nie
d4b-2	Skierowany	100	181	0.348	Nie
d4b-3	Skierowany	1600	3121	2.645	Nie
d4b-4	Skierowany	10000	19801	8.037	Nie
d4b-5	Skierowany	160000	319201	134.42	Nie
d4b-6	Skierowany	1000000	1998001	785.7	Nie
u4a-1	Nieskierowany	15	22	0.268	Tak
u4a-2	Nieskierowany	127	190	0.465	Tak
u4a-3	Nieskierowany	1023	1534	2.177	Tak
u4a-4	Nieskierowany	16383	24574	19.5	Tak
u4a-5	Nieskierowany	131071	196606	127.7	Tak
u4a-6	Nieskierowany	1048575	1572862	1000.7	Tak
u4b-1	Nieskierowany	15	22	0.198	Nie
u4b-2	Nieskierowany	127	190	0.39	Nie
u4b-3	Nieskierowany	1023	1534	2.07	Nie
u4b-4	Nieskierowany	16383	24574	18.5	Nie
u4b-5	Nieskierowany	131071	196606	107.7	Nie
u4b-6	Nieskierowany	1048575	1572862	820.7	Nie

Wnioski

Algorytm jest nieznacznie szybszy dla grafów niedwódzielnych, jednak przy tych rozmiarach grafów różnica ta, nie jest znaczna.

Table 5: Podział na partycje dla grafów $|V| \leq 200$

Graf	Podział
Własny "c"	$\{1, 3, 5, 8, 9, 10\}, \{2, 4, 6, 7, 11, 12\}$
Własny "b"	$\{1, 2, 3, 4, 5\}, \{6, 7, 8, 9, 10, 11\}$
d4a-1	$\{1, 3, 6, 8, 9, 11, 14, 16\}, \{2, 4, 5, 7, 10, 12, 13, 15\}$
d4a-2	{1, 3, 5, 7, 9, 12, 14, 16, 18, 20, 21, 23, 25, 27, 29, 32, 34, 36, 38,
	40, 41, 43, 45, 47, 49, 52, 54, 56, 58, 60, 61, 63, 65, 67, 69, 72, 74,
	$76, 78, 80, 81, 83, 85, 87, 89, 92, 94, 96, 98, 100$, $\{2, 4, 6, 8, 10, 90, 90, 90, 90, 90, 90, 90, 90, 90, 9$
	11, 13, 15, 17, 19, 22, 24, 26, 28, 30, 31, 33, 35, 37, 39, 42, 44, 46,
	48, 50, 51, 53, 55, 57, 59, 62, 64, 66, 68, 70, 71, 73, 75, 77, 79, 82,
	84, 86, 88, 90, 91, 93, 95, 97, 99}
u4a-1	1, 4, 5, 6, 7, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15
u4a-2	$\{1, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,$
	30, 31, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
	80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
	98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
	112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
	$125, 126, 127$, $\{2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 32, 33, 34, 35, 126, 126, 127\}$
	36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
	54, 55, 56, 57, 58, 59, 60, 61, 62, 63}