Scientific Programming: Algorithms (part B)

Programming paradigms - continued -

Luca Bianco - Academic Year 2020-21 luca.bianco@fmach.it [credits: thanks to Prof. Alberto Montresor]

Greedy

- Greedy approach: select the choice which appears "locally optimal"
- Area of application: optimization problems

finally, we need to prove that we obtain a GLOBAL optimal solution

Independent intervals

Input

Let $S = \{1, 2, ..., n\}$ be a set of interval of the real line. Each interval $[a_i, b_i]$, with $i \in S$, is closed on the left and open on the right.

- a_i : starting time
- b_i : finish time

Problem definition

Find a maximal independent subset, i.e. a subset that has maximal cardinality and it is composed by completely disjoint intervals.

i	a_i	b_i
1	1	4
2	3	5
3	0	6
4	5	7
5	3	8
6	5	9
7	6	10
8	8	11
9	8	12
10	2	13
11	12	14

Independent intervals

Input

Let $S = \{1, 2, ..., n\}$ be a set of interval of the real line. Each interval $[a_i, b_i]$, with $i \in S$, is closed on the left and open on the right.

- a_i : starting time
- b_i : finish time

Problem definition

Find a maximal independent subset, i.e. a subset that has maximal cardinality and it is composed by completely disjoint intervals.

i	a_i	b_i
1	1	4
2	3	5
3	0	6
4	5	7
5	3	8
6	5	9
7	6	10
8	8	11
9	8	12
10	2	13
11	12	14

these three intervals are independent but not maximal!

intervals are open on the right, hence these are disjoint

Independent intervals

Input

Let $S = \{1, 2, ..., n\}$ be a set of interval of the real line. Each interval $[a_i, b_i]$, with $i \in S$, is closed on the left and open on the right.

- a_i : starting time
- b_i : finish time

Problem definition

Find a maximal independent subset, i.e. a subset that has maximal cardinality and it is composed by completely disjoint intervals.

i	a_i	b_i
1	1	4
2	3	5
3	0	6
4	5	7
5	3	8
6	5	9
7	6	10
8	8	11
9	8	12
10	2	13
11	12	14

other equivalent solutions (same cardinality):

S1: {2,4, 8, 11}

S2: {1,4,9, 11}

Path to the solution

We start with dynamic programming

- Let's define the problem in a mathematical way
- Let's define the recursive definition

We move to greedy

- Let's search for a greedy choice
- Let's prove that the greedy choice is optimal
- Let's write an iterative algorithm

• Assume that the intervals are sorted by finish time:

$$b_1 \leq b_2 \leq \ldots \leq b_n$$

• Let the subproblem S[i, j] be the set of intervals that start after the end of i and finish before the start of j:

$$S[i, j] = \{k | b_i \le a_k < b_k \le a_j\}$$

- Let's add two "dummy" intervals
 - Interval 0: $b_0 = -\infty$
 - Interval n+1: $a_{n+1}=+\infty$
- The initial problem corresponds to problem S[0, n+1]

Theorem

Let A[i, j] be an optimal solution of S[i, j] and let k be an interval belonging to A[i, j]; then

- The problem S[i,j] is subdivided in two subproblems
 - S[i, k]: the intervals of S[i, j] that finish before k
 - S[k,j]: the intervals of S[i,j] that start after k
- A[i,j] contains the optimal solutions of S[i,k] e S[k,j]
 - $A[i,j] \cap S[i,k]$ is an optimal solution of S[i,k]
 - $A[i,j] \cap S[k,j]$ is an optimal solution of S[k,j]

optimal solution A[i,j]

once found k that belongs to the optimal solution A[i,j], we need to solve the two smaller intervals

Theorem

Let A[i, j] be an optimal solution of S[i, j] and let k be an interval belonging to A[i, j]; then

- The problem S[i,j] is subdivided in two subproblems
 - S[i, k]: the intervals of S[i, j] that finish before k
 - S[k,j]: the intervals of S[i,j] that start after k
- A[i,j] contains the optimal solutions of S[i,k] e S[k,j]
 - $A[i,j] \cap S[i,k]$ is an optimal solution of S[i,k]
 - $A[i,j] \cap S[k,j]$ is an optimal solution of S[k,j]

optimal solution A[i,j]

once found k that belongs to the optimal solution A[i,j], we need to solve the two smaller intervals

Proof

We want to prove that if A[i,j] contains the optimal solution of S[i,j] and k is in A[i,j] then it optimally solves S[i,k] and S[k,j]. By contradiction:

ex. if S[i,k] is better than the corresponding intervals in $A[i,j] \rightarrow A[i,j]$ is not optimal

Theorem

Let A[i, j] be an optimal solution of S[i, j] and let k be an interval belonging to A[i, j]; then

- The problem S[i,j] is subdivided in two subproblems
 - S[i, k]: the intervals of S[i, j] that finish before k
 - S[k,j]: the intervals of S[i,j] that start after k
- A[i,j] contains the optimal solutions of S[i,k] e S[k,j]
 - $A[i,j] \cap S[i,k]$ is an optimal solution of S[i,k]
 - $A[i,j] \cap S[k,j]$ is an optimal solution of S[k,j]

optimal solution A[i,j]

once found k that belongs to the optimal solution A[i,j], we need to solve the two smaller intervals

Proof

We want to prove that if A[i,j] contains the optimal solution of S[i,j] and k is in A[i,j] then it optimally solves S[i,k] and S[k,j]. By contradiction:

ex. if S[i,k] is better than the corresponding intervals in $A[i,j] \rightarrow A[i,j]$ is not optimal

Recursive formula

Recursive definition of the solution

$$A[i,j] = A[i,k] \cup \{k\} \cup A[k,j]$$

Recursive definition of the cost

- How to identify k? By trying all the possibilities
- Let D[i,j] the size of the largest subset $A[i,j] \subseteq S[i,j]$ of independent intervals

$$D[i,j] = \begin{cases} 0 & S[i,j] = \emptyset \\ \max_{k \in S[i,j]} \{D[i,k] + D[k,j] + 1\} & \text{otherwise} \end{cases}$$

because we chose interval K

Dynamic programming

```
import math
#gets intervals within startI (the interval) and endI
def S(intervals, startI, endI):
    return [x for x in intervals
            if x[0] >= startI[1] and x[1] < endI[0]
def disjointInt(intervals, i, j, DP):
    s = S(intervals, intervals[i], intervals[j])
    if len(s) == 0:
        return 0
    else:
        if (i, i) not in DP:
            m = 0
            start = intervals.index(s[0])
            end = intervals.index(s[-1])
            for k in range(start,end+1):
                if (i,k) not in DP:
                    DP[(i,k)] = disjointInt(intervals, i, k, DP)
                if (k, j) not in DP:
                    DP[(k, j)] = disjointInt(intervals,k, j, DP)
                m = max(m, DP[(i,k)] + DP[(k, j)] + 1)
            DP[(i,j)] = m
        return DP[(i,j)]
def disjoint intervals(intervals):
    D = dict()
    return disjointInt(intervals, 0, len(intervals)-1, D)
```

top-down: DP[0,n]

$$D[i,j] = \begin{cases} 0 & S[i,j] = \emptyset \\ \max_{k \in S[i,j]} \{D[i,k] + D[k,j] + 1\} & \text{otherwise} \end{cases}$$

Complexity

Dynamic programming

- The definition allows us to write an algorithm based on dynamic programming or memoization
- Complexity $O(n^3)$: we need to solve all potential problems with i < j, and it costs O(n) for each subproblem in the worst case.

Can we do better?

• Are we sure that we need to analyze all the values of k?

The DP matrix is n x n and for each cell we need to consider n subsets in the worst case

```
import math
#gets intervals within startI (the interval) and endI
def S(intervals, startI, endI):
    return [x for x in intervals
            if x[0]>=startI[1] and x[1] < endI[0]]</pre>
def disjointInt(intervals, i, j, DP):
    s = S(intervals, intervals[i], intervals[j])
    if len(s) == 0:
        return 0
    else:
        if (i,j) not in DP:
            m = 0
            start = intervals.index(s[0])
            end = intervals.index(s[-1])
            for k in range(start,end+1):
                if (i,k) not in DP:
                    DP[(i,k)] = disjointInt(intervals, i, k, DP)
                if (k, j) not in DP:
                    DP[(k, j)] = disjointInt(intervals,k, j, DP)
                m = max(m, DP[(i,k)] + DP[(k, j)] + 1)
            DP[(i,i)] = m
        return DP[(i,j)]
def disjoint intervals(intervals):
    D = dict()
    return disjointInt(intervals, 0, len(intervals)-1, D)
```

Greedy choice

Theorem

Let S[i, j] a non-empty subproblem, and let m be the interval of S[i, j] that has the smallest finish time, then:

- the subproblem S[i, m] is empty
- $oldsymbol{0}{0}$ m is included in some optimal solution of S[i,j]

Input

Let $S = \{1, 2, \dots, n\}$ be a set of interval of the real line. Each interval $[a_i, b_i[$, with $i \in S$, is closed on the left and open on the right.

- a_i : starting time
- b_i : finish time

Proof

We know that: $a_m < b_m$ (Interval definition)

We know that: $\forall k \in S[i, j] : b_m \leq b_k$ (m has smallest finish time)

Then: $\forall k \in S[i,j] : a_m < b_k$ (Transitivity)

If no interval in S[i,j] terminates before a_m , then $S[i,m] = \emptyset$

Greedy choice

Theorem

Let S[i, j] a non-empty subproblem, and let m be the interval of S[i, j] that has the smallest finish time, then:

- the subproblem S[i, m] is empty

Proof

- Let A'[i, j] an optimal solution of S[i, j]
- Let $m' \in A'[i, j]$ be the interval with smallest finish time A'[i, j]
- Let $A[i,j] = A'[i,j] \{m'\} \cup \{m\}$ be a new solution obtained by removing m' from and adding m to A'[i,j]
- A[i, j] is an optimal solution that contains m, because it has same size of A'[i, j]
- m can be the same as m' → we remove it and re-add it (A[i,i] is still an optimal solution)
- otherwise, m is compatible with all the intervals m' is compatible (i.e. finishes before) → is part of another optimal solution

Input

Let $S = \{1, 2, \dots, n\}$ be a set of interval of the real line. Each interval $[a_i, b_i[$, with $i \in S$, is closed on the left and open on the right.

- a_i : starting time
- b_i : finish time

Greedy choice

- Let A'[i,j] an optimal solution of S[i,j]
- Let $m' \in A'[i,j]$ be the interval with smallest finish time A'[i,j]
- Let $A[i,j] = A'[i,j] \{m'\} \cup \{m\}$ be a new solution obtained by removing m' from and adding m to A'[i,j]
- A[i,j] is an optimal solution that contains m, because it has same size of A'[i,j]

Consequences of the theorem

- \bullet It's not necessary to analyze all values of k
 - Let's do a "greedy" choice: let's select the activity m with the smallest finish time
- It is not necessary to analyze two subproblems
 - Remove all the activities that are not compatible with the greedy choice
 - We only get a subproblem: S[m, j]

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity?

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity

```
[0, 3, 7, 10]
(1, 4) (5, 8) (8, 11) (12, 14)
```


Complexity

Genome rearrangements

Transformation of mouse gene order into human gene order on Chr X (biggest synteny blocks)

Genome rearrangements

- Syntheny blocks (for a computer scientist: substrings)
- Re-arrangement: reversing the order of a group of syntheny block

$$\bullet \ \pi = \pi_1 \pi_2 \dots \pi_{i-1} \overrightarrow{\pi_i \pi_{i+1} \dots \pi_{j-1} \pi_j} \pi_{j+1} \dots \pi_{n-1} \pi_n$$

•
$$\pi \cdot \rho(i,j) = \pi_1 \pi_2 \dots \pi_{i-1} \overleftarrow{\pi_j \pi_{j-1} \dots \pi_{i+1} \pi_i} \pi_{j+1} \dots \pi_{n-1} \pi_n$$

• Example:
$$\pi = 12\overline{4375}6$$
, $\pi \cdot \rho(3,6) = 12\overline{5734}6$

Reversal Distance Problem

Given two permutations, find a shortest series of <u>reversals</u> that transforms one permutation into another

Greedy solution

Reversal Distance Problem

Given two permutations, find a shortest series of reversals that transforms one permutation into another

- We define $\operatorname{prefix}(\pi)$ to be the number of already-sorted elements of π
- A sensible strategy for sorting by reversals is to increase $prefix(\pi)$ at every step.
- This leads to an algorithm that sorts a permutation by repeatedly moving its *i*th element to the *i*th position.

Greedy solution

Reversal Distance Problem

L = [5,0,1,2,3,4]

[0, 1, 2, 4, 3] [0, 1, 2, 3, 4]

Given two permutations, find a shortest series of reversals that transforms one permutation into another

```
def simple_reversal_sorting(L):
    n= len(L)
    for i in range(0,n-1):
        j = L.index(i)
        if j != i:
            L[i:j+1] = L[i:j+1][::-1] # rho(i,j)
        print(L)
```

```
print("In list:\n{}\n".format(L))
simple_reversal_sorting(L)

L1 = [2, 4, 1, 3, 0]
print("\nIn list:\n{}\n".format(L1))
simple_reversal_sorting(L1)

In list:
[2, 4, 1, 3, 0]
[0, 3, 1, 4, 2]
[0, 1, 3, 4, 2]
```

Simple but not optimal!

Approximated algorithms exist...

```
In list:
[5, 0, 1, 2, 3, 4]

[0, 5, 1, 2, 3, 4]
[0, 1, 5, 2, 3, 4]
[0, 1, 2, 5, 3, 4]
[0, 1, 2, 3, 5, 4]
[0, 1, 2, 3, 4, 5]
```

Backtracking

Problem classes (decisional, search, optimization)

• Definition bases on the concept of admissible solution: a solution that satisfies a given set of criteria

Typical problems

- Build one or all admissible solution
- Counting the admissible solutions
- Find the admissible solution "largest", "smallest", in general "optimal"

Typical problems

Enumeration

- List algorithmically all possible solutions (search space)
- Example: list all the permutations of a set

Build at least a solution

- We use the algorithm for enumeration, stopping at the first solution found
- Example: identify a sequence of steps in the Fifteen game

we explore all possible solutions building/enumerating them and counting or stopping when we find one

Typical problems

Count the solutions

- In some cases, it is possible to count in analytical way
- Example: counting the number of subsets of k elements taken by a set of n elements

$$\frac{n!}{k! (n-k)!}$$

- In other cases, we build the solutions and we count them
- Example: number of subsets of a integer set S whose sum is equal to a prime number

Typical problems

Find optimal solutions

- We enumerate all possible solutions and evaluate them through a cost function
- Only if other techniques are not possible:
 - Dynamic programming
 - Greedy
- Example: Hamiltonian circuit (Traveling salesman)

Build all solutions

To build all the solutions, we use a "brute-force" approach

- Sometimes, it is the only possible way
- The power of modern computer makes possible to deal with problems medium-small problems
 - $10! = 3.63 \cdot 10^6$ (permutation of 10 elements)
 - $2^{20} = 1.05 \cdot 10^6$ (subsets of 20 elements)

these are still feasible, but 40+ start to be quite time consuming

• Sometimes, the space of all possible solutions does not need to be analyzed entirely

Backtracking

Approach

- Try to build a solution, if it works you are done else undo it and try again
- "keep trying, you'll get luckier"

Needs a systematic way to explore the search space looking for the admissible solution(s).

We will see a recursive way to explore the search space.

General scheme

General organization

- \bullet A solution is represented by a list S
- The content of element S[i] is taken from a set of choices C that depends on the problem

Examples

- C generic set, possible solutions permutations of C
- C generic set, possible solutions subsets of C
- C game moves, possible solutions a sequence of moves
- C edges of a graph, possible solutions paths

Partial solutions

- At each step, we start from a partial solution S where $k \geq 0$ choices have been already taken
- If S[0:k] is an admissible solution, we "process" it
 - E.g., we can print it
 - We can then decide to stop here or keep going by listing/printing all solutions
- If S[0:k] is not a complete solution:
 - If possible, we extended solution S[0:k] with one of the possible choices to get a solution S[0:k+1]
 - Otherwise, we "cancel" the element S[k] (backtrack) and we go back to to solution S[0:k-1]

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

process or ignore the solution

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

solution ignored

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

- Decision tree \equiv Search space
- Root \equiv Empty solution
- Internal nodes \equiv Partial solutions
- Leaves \equiv Admissible solutions

solution processed

Note:

I either stop when I find a solution or I explore the whole tree if I need to count all solutions

Pruning

- "Branches" of the trees that do not bring to admissible solutions can be "pruned"
- The evaluation is done in the partial solutions corresponding to internal nodes

Pruning

- "Branches" of the trees that do not bring to admissible solutions can be "pruned"
- The evaluation is done in the partial solutions corresponding to internal nodes

Even though the tree might be exponential, with pruning we might not need to explore it all

General schema to find a solution (modify as you like)

```
boolean enumeration(OBJECT[] S, int n, int i, ...)
                                                                             S is the list of choices
SET C = \text{choices}(S, n, i, ...) % Compute C based on S[0: i-1]
                                                                             n is the maximum number of
foreach c \in C do
                                                                             choices
                                                                             i is the index of the choice I am
   S[i] = c
                                                                             currently making
   if isAdmissible(S, n, i) then
                                                                             ... other inputs
       if processSolution(S, n, i, ...) then
         _ return True
   if enumeration (S, n, i + 1, ...) then
                                                                               The recursive call will
       return True
                                                                               test all solutions unless
                                                                               they return true
return False
```

- 1. We build a next choice with choices(...) based on the previous choices S[0:i-1]: the logic of the code goes here
- 2. For each possible choice, we memorize the choice in S[i]
- 3. If S[i] is admissible then we process it and we can either stop (if we needed at least one solution) or continue to the next one (return false)
- 4. In the latter case we keep going calling enumeration again to compute choice i+1

Enumeration

- S: list containing the partial solutions
- i: current index
- ...: additional information
- C: the set of possible candidates to extend the current solution
- isAdmissible(): returns **True** if S[0:i] is an admissible solution
- processSolution(): returns
 - True to stop the execution at the first admissible solution
 - False to explore the entire tree

Subsets problem

List all subsets of $\{0, \ldots, n-1\}$

```
def process solution(S):
    for i in range(len(S)):
        print(S[i], end = " ")
    print("")
                           False: we want all solutions
    return False
def subsets(S,n,i):
    \#print("subsets({},{},{})".format(S,n,i)) choice: keep or
    C = [1, 0] if i<n else []
                                                   discard element
    for c in C:
                             an admissible solution has decided if to
        S[i] = c
        if i == n-1: ←
                            keep or discard all elements
            #print("\t\tS:{} c:{} i:{}".format(S,c,i))
            if process solution(S):
                return True
        else:
            #print("\tCalling: subsets({},{},{})".format(S,n,i+1))
            subsets(S,n,i+1)
    return False
n = 5
S = [0]*n
subsets(S,n,0)
```

```
return False
11111
11110
1 1 1 0 0
                          subsets([0, 0, 0, 0, 0],5,0)
1 1 0 1 1
                                     Calling: subsets([1, 0, 0, 0, 0],5,1)
1 1 0 1 0
                          subsets([1, 0, 0, 0, 0],5,1)
1 1 0 0 1
                                     Calling: subsets([1, 1, 0, 0, 0],5,2)
1 1 0 0 0
10111
                          subsets([1, 1, 0, 0, 0],5,2)
1 0 1 1 0
                                     Calling: subsets([1, 1, 1, 0, 0],5,3)
10101
                          subsets([1, 1, 1, 0, 0],5,3)
1 0 1 0 0
                                     Calling: subsets([1, 1, 1, 1, 0],5,4)
10011
1 0 0 1 0
                          subsets([1, 1, 1, 1, 0],5,4)
1 0 0 0 1
                                                S:[1, 1, 1, 1, 1] c:1 i:4
1 0 0 0 0
                          11111
0 1 1 1 1
                                                S:[1, 1, 1, 1, 0] c:0 i:4
0 1 1 1 0
                          11110
0 1 1 0 1
0 1 1 0 0
                                     Calling: subsets([1, 1, 1, 0, 0],5,4)
0 1 0 1 1
                          subsets([1, 1, 1, 0, 0],5,4)
0 1 0 1 0
                                                S:[1, 1, 1, 0, 1] c:1 i:4
0 1 0 0 1
                          11101
0 1 0 0 0
                                                S:[1, 1, 1, 0, 0] c:0 i:4
0 0 1 1 0
                          11100
0 0 1 0 1
                                     Calling: subsets([1, 1, 0, 0, 0],5,3)
0 0 1 0 0
                          subsets([1, 1, 0, 0, 0],5,3)
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
```

boolean enumeration(OBJECT[] S, int n, int i, ...

if processSolution(S, n, i, ...) then

if enumeration (S, n, i + 1, ...) then

Set C = choices(S, n, i, ...)foreach $c \in C$ do |S[i] = c

if isAdmissible(S, n, i) then

L return True

_ return True

% Compute C based on S[0:i-1]

Subsets problem

List all subsets of $\{0, \ldots, n-1\}$

- There is no pruning. All the possible space is explored. But this is required by the definition of the problem
- Computational complexity $O(n2^n)$ (\Rightarrow i.e. 2ⁿ sets, printing each costs n)
- In which order sets are printed?
- Is it possible to think to an iterative version, ad-hoc for this problem?

 (non-backtracking)

```
def process solution(S):
    for i in range(len(S)):
        print(S[i], end = " ")
    print("")
    return False
def subsets(S,n,i):
    #print("subsets({}, {}, {})". format(S, n, i))
    C = [1, 0] if i<n else []
    for c in C:
        S[i] = c
        if i == n-1:
            #print("\t\tS:{} c:{} i:{}".format(S,c,i))
            if process solution(S):
                return True
        else:
            #print("\tCalling: subsets({},{},{})".format(S,n,i+1))
            subsets(S,n,i+1)
    return False
n = 5
S = [0]*n
subsets(S,n,0)
```

Subsets problem

List all subsets of $\{0, \ldots, n-1\}$

- There is no pruning. All the possible space is explored. But this is required by the definition of the problem
- Computational complexity $O(n2^n)$ (\Rightarrow i.e. 2ⁿ sets, printing each costs n)
- In which order sets are printed? (→ 11111 first and then values decrease...)
- Is it possible to think to an iterative version, ad-hoc for this problem?

 (non-backtracking)

```
def subsets(n):
    for i in range(0,2**n):
        #i is a bit mask!
        tmp_str = "{0:0"+ str(n)+ "b}"
        print(tmp_str.format(i))
```

[same complexity!]

def process_solution(S):
 for i in range(len(S)):
 print(S[i], end = " ")

C = [1, 0] if i<n else []

if i == n-1:

#print("subsets({}, {}, {})".format(S, n, i))

if process_solution(S):
 return True

subsets(S,n,i+1)

#print("\t\tS:{} c:{} i:{}".format(S,c,i))

#print("\tCalling: subsets({},{},{})".format(S,n,i+1))

print("")
 return False

def subsets(S,n,i):

for c in C: S[i] = c

else:

return False

subsets(S,n,0)

n = 5S = [0]*n

Subsets problem: iterative code

List all possible subsets of size k of a set $\{0, \ldots, n-1\}$

Subsets problem: iterative code

List all possible subsets of size k of a set $\{0, \ldots, n-1\}$

```
def subsets(n, k):
    for i in range(0,2**n):
        #i is a bit mask!
        str_tmp = "{0:0" + str(n) + "b}" (cost: O(2^n))
        b = str_tmp.format(i)
        sets = [x for x in range(len(b)) if int(b[x]) == 1]
        if len(sets) == k:
            print("{} --> subset: {}".format(b,sets))

subsets(5,3)
```

01101 --> subset: [1, 2, 4] 01110 --> subset: [1, 2, 3] 10011 --> subset: [0, 3, 4] 10101 --> subset: [0, 2, 4] 10110 --> subset: [0, 2, 3]

11001 --> subset: [0, 1, 4] 11010 --> subset: [0, 1, 3] 11100 --> subset: [0, 1, 2] What is the complexity of this iterative code?

$$O(n \cdot 2^n)$$

creation of the subsets (cost: O(n)) printing subsets (cost: O(n))

How many solutions are we testing?

no pruning... can we improve this?

Subsets problem: bactracking

List all possible subsets of size k of a set $\{0, \ldots, n-1\}$

```
def process solution(S):
    sets = []
   for i in range(len(S)):
       print(S[i], end = "")
       if S[i] == 1:
           sets.append(i)
    print(" -> {}".format(sets))
                                       we want all solutions
   return False
def subsets(S, k, n, i, count ):
   C = [1.0]
                                     count how many 1s
    for c in C:
       S[i] = c
                                     admissible solutions
       count = count + c
       if i == n-1:
                                     have k 1s
           if count == k: 4
               #print(S)
                                          11100 -> [0, 1, 2]
               process solution(S)
                                          11010 -> [0, 1, 3]
       else:
                                          11001 -> [0, 1, 4]
           subsets(S, k, n, i+1, count)
                                          10110 -> [0, 2, 3]
       #backtracking:
       #print(count)
                                          10101 -> [0, 2, 4]
       count = count -c
                                          10011 -> [0, 3, 4]
                                          01110 -> [1, 2, 3]
n = 5
                                          01101 -> [1, 2, 4]
k = 3
                                          01011 -> [1, 3, 4]
S = [0]*n
subsets(S, k, n, 0, 0)
                                          00111 -> [2, 3, 4]
```

Still generates 2ⁿ subsets, for each it will count how many 1s are present and finally print only the ones having a correct number of 1s.

What is the complexity of this backtracking code?

$$O(n \cdot 2^n)$$

How many solutions are we testing?

2"

no pruning... can we improve this?

Subsets problem: bactracking & pruning

11100 -> [0, 1, 2]

11010 -> [0, 1, 3]

11001 -> [0, 1, 4]

10110 -> [0, 2, 3]

10101 -> [0, 2, 4]

10011 -> [0, 3, 4]

01110 -> [1, 2, 3]

01101 -> [1, 2, 4]

01011 -> [1, 3, 4]

00111 -> [2, 3, 4]

List all possible subsets of size k of a set $\{0, \ldots, n-1\}$


```
#Pruning!
def subsets(S, k, n, i, count ):
    if count < k and count + (n-i) >= k:
        C = [1,0]
    else:
        C = []
    for c in C:
        S[i] = c
        count = count + c
        if count == k:
            #print(S)
            process solution(S)
        else:
            subsets(S, k, n, i+1, count)
        #backtracking:
        #print(count)
        count = count -c
        S[i] = 0
n = 5
k = 3
S = [0]*n
subsets(S, k, n, 0, 0)
```

generate only solutions that can potentially be admissible!

What is the complexity of this iterative code?

$$O(n \cdot 2^n)$$

Sudoku

2	5			9			7	6
			2		4			
		1	5		3	9		
	8	9	4		5	2	6	
1				2				4
197	2	5	6			7	3	
		8	3		2	1		
			9	3	7			
3	7			8			9	2

			No.			5	1.6	,
2	5	3	8	9	1	4	7	6
8	9	7	2	6	4	3	1	5
6	4	1	5	7	3	9	2	8
7	8	9	4	3	5	2	6	1
1	3	6	7	2	9	8	5	4
4	2	5	6	1	8	7	3	9
9	6	8	3	5	2	1	4	7
5	1	2	9	4	7	6	8	3
3	7	4	1	8	6	5	9	2

Sudoku: pseudocode

_	_	_		9								_	_
		7	6		2	5	3	8	9	1	4	7	6
4					8	9	7	2	6	4	3	1	5
3	9				6	4	1	5	7	3	9	2	8
5	2	6			7	8	9	4	3	5	2	6	1
			4		1	3	6	7	2	9	8	5	4
	7	3			4	2	5	6	1	8	7	3	9
2	1				9	6	8	3	5	2	1	4	7
7					5	1	2	9	4	7	6	8	3
		9	2		3	7	4	1	8	6	5	9	2

boolean sudoku(int[][] S, int i)

```
int x = i \mod 9
                                      int old = S[x, y]
int y = |i/9|
                                      foreach c \in C do
                                         S[x,y] = c
Set C = Set()
if i \le 80 then
                                         if i = 80 then
   if S[x,y] \neq 0 then
                                             processSolution(S, n)
       C.\mathsf{insert}(S[x,y])
                                           return True
                                         if sudoku(S, i + 1) then
   else
                                           _ return True
       for c = 1 to 9 do
          if check(S, x, y, c) then
                                      S[x, y] = old
            C.insert(c)
                                      return False
```

Sudoku: pseudocode


```
    7
    6

    8
    9
    7
    2
    6
    4
    3
    1
    5

    9
    6
    4
    1
    5
    7
    3
    9
    2
    8

    2
    6
    4
    1
    5
    7
    3
    9
    2
    8

    7
    8
    9
    4
    3
    5
    2
    6
    1

    1
    3
    6
    7
    2
    9
    8
    5
    4

    4
    2
    5
    6
    1
    8
    7
    3
    9

    1
    9
    6
    8
    3
    5
    2
    1
    4
    7

    5
    1
    2
    9
    4
    7
    6
    8
    3

    9
    2
    3
    7
    4
    1
    8
    6
    5
    9
    2
```

```
boolean check(int[][] S, int x, int y, int c)
for j = 0 to 8 do
   if S[x,j] = c then
       return False
                                                       % Column check
   if S[j, y] = c then
       return False
                                                          % Row check
int b_x = |x/3|
int b_y = |y/3|
for i_x = 0 to 2 do
   for int i_y = 0 to 2 do
                                                      % Subtable check
       if S[b_x \cdot 3 + i_x, b_y \cdot 3 + i_y] = c then \bot return False
return True
```

Sudoku: python code

```
#This function prints the sudoku matrix
def process solution(S):
   for i in range(0.9):
       if i > 0 and i % 3 == 0:
           print("-----")
       for i in range(0.9):
          if i % 3 == 0:
              print("|", end = "")
          print(S.get((i,j), "."), end = "\t")
       else:
           print("")
#Given a solution S, checks if c can go in (x,y)
def check sudoku(S,x,y, c):
   for j in range (0,9):
       #column check
       if S.get((x,j),"") == c:
          return False
       #row check
       if S.get((j,y),"") == c:
          return False
   #diagonal check
   bx = x //3
   by = y //3
   for ix in range(0,3):
       for iy in range(0,3):
          if S.get((bx*3 + ix, by*3+iy),"") == c:
              return False
   return True
```

```
#finds a backtracking solution to an input sudoku matrix S
#with brute force
def sudoku(S, i):
    x = i % 9
    v = i //9
    C = set()
    if i <= 81:
        if S[(x,y)] != 0:
             C.add(S[(x,y)])
         else:
             for c in range(1,10):
                 if check sudoku(S,x,y, c):
                      C.add(c)
    old = S.get((x,y), "")
    for c in C:
        S[(x,y)] = c
        if i == 80:
             process solution(S)
             return True
        if sudoku(S.i+1):
             return True
         #print(old)
        if old != "":
                                         Initial board:
             S[(x,y)] = old
    return False
                                                           i o
                                         10
                                                     0
                                                                 5
                                                                       0
              def initialize(S):
                                                           0
                                                                              0
                                         10
                                                                 0
                  for i in range(0,9):
                     for j in range(0,9):
                         S[(i,j)] = 0
                                         Solution:
              mat = dict()
                                              8
                                                           1
                                                                              8
                                                                 3
                                                                       5
              initialize(mat)
              for i in range(0,9):
                 mat[(i,i)] = i+1
              print("Initial board:")
                                         13
                                                           19
                                                                 5
                                                                       2
              process solution(mat)
              print("\n\nSolution:")
              sudoku(mat.0)
                                                                              5
                                         17
```

8 queens puzzle

Problem

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other

- History:
 - Introduced by Max Bezzel (1848)
 - Gauss found 72 of the 92 solutions

8 queens puzzle

Idea: every column must contain exactly one queen

$S[0:n]$ coordinates in $\{0\dots n-1\}$	permutations of $\{1 \dots n\}$				
isAdmissible()	i == n				
choices(S,n,i)	$\{0\dots n-1\}$				
pruning	removes diagonals				
# Solutions for $n = 8$	n! = 8! = 40320				

Comments

• Solutions actually visited = 15720

```
global cnt
cnt = 0
def print solution(S):
    global cnt
    cnt = cnt +1
    print("{}th solution {}".format(cnt,S))
    for i in range(len(S)):
        outSTR = ""
        for j in range(len(S)):
            if j == S[i]:
                outSTR += " | 0 "
            else:
                outSTR+= " | "
        print("----" * n)
        print(outSTR + "|")
    print("----" * n)
    print("")
def queens(n, S, i):
    #print("queens({},{},{})".format(n,S,i))
    if i == n:
        print solution(S)
    else:
        for j in range(0,n): #place the i-th queen in column j
            legal = True
            for k in range(0,i): #check all previous queens
                if S[k] == j or S[k] == j + i - k or S[k] == j - i + k:
                    legal = False
            if legal:
                S[i] = i
                queens(n, S, i+1)
n = 8 #12 --> 14200 solutions
S = [0]*n
queens (n, S, 0)
```

8 queens puzzle

when n = 8 we have 92 solutions

```
global cnt
cnt = 0
def print solution(S):
    global cnt
    cnt = cnt +1
    print("{}th solution {}".format(cnt,S))
    for i in range(len(S)):
        outSTR = ""
        for j in range(len(S)):
            if j == S[i]:
                outSTR += " | 0 "
            else:
                outSTR+= "
        print("----" * n)
        print(outSTR + "|")
    print("----" * n)
    print("")
def queens(n, S, i):
    #print("queens({},{},{})".format(n,S,i))
    if i == n:
        print solution(S)
    else:
        for j in range(0,n): #place the i-th queen in column j
            legal = True
            for k in range(0,i): #check all previous queens
                if S[k] == j or S[k] == j + i - k or S[k] == j - i + k:
                    legal = False
            if legal:
                S[i] = i
                queens(n, S, i+1)
n = 8 #12 --> 14200 solutions
S = [0]*n
queens (n, S, 0)
```