Sunniva Indrehus

A lavterskel talk

May 21, 2021

► Credit

- ► The software engineer team of the Community Terrestrial Systems Model (CTSM)-group at the National Center for Atmospheric Research (NCAR) for discussions and ideas
- ► The Nordic-RSE (Research Software Engineer) community
- ► Consultants and engineers in Cognite and BearingPoint

Good scientific software

Best practices for scientific computing

How to get "good" scientific software?

Good scientific software

Best practices for scientific computing

How to get "good" scientific software?

Good scientific software Question

What is good scientific software? [1], [2], [3], [4], [5]

^[1] Greg Wilson et al. "Best practices for scientific computing". In: PLoS Biol 12.1 (2014), e1001745

^[2] Ask HN: Why aren't more programmers in academia? https://news.ycombinator.com/item?id=19475588. Retrieved 09:01, April 21, 2021.

^[3] Programming In Academia Vs Industry. https://medium.com/@rdasxy/programming-in-academia-vs-industry-5fb52852ea39. Retrieved 09:04. April 21, 2021.

^[4] On the quality of academic software. https://lemire.me/blog/2012/06/18/on-the-quality-of-academic-software/. Retrieved 09:07,
April 21, 2021.

^[5] THE LOW QUALITY OF SCIENTIFIC CODE. https://techblog.bozho.net/the-astonishingly-low-quality-of-scientific-code/.
Retrieved 09:27, April 21, 2021.

Good scientific software

► My answer

- ► Something that works
- ► Standardized
- ▶ Understandable
- ► Reproducible [6]
- ► Maintainable [**]

^[6] Neural Information Processing Systems: The Machine Learning Reproducibility Checklist. https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf. Retrieved 08:57, April 21, 2021.

Good scientific software

Best practices for scientific computing

How to get "good" scientific software?

Best practices for scientific computing My point of view

Learning from success stories [8], [9]:

- ► Version control
- ► Workflow optimization
- ► Documentation

- ► Containerization
- ► (Modern) editor

^[8] Greg Wilson et al. "Best practices for scientific computing". In: PLoS Biol 12.1 (2014), c1001745

▶ My point of view

► Version control

- ► Workflow optimization
- ▶ Documentation
- ► Containerization
- ► (Modern) editor

▶ My point of view

- ► Version control
- ► Workflow optimization
- ► Documentation

- ► Containerization
- ► (Modern) editor

Credit: https://www.i.programmer.info/programming/theory/1332-goto-spaghetti-and-velociraptor.html

What happens when using spaghetti code

▶ My point of view

- ► Version control
- ► Workflow optimization
- Documentation
- ► Containerization
- ► (Modern) editor

▶ My point of view

► Version control

- ► Workflow optimization
- **▶** Documentation
- ► Containerization
- ► (Modern) editor

 $Credit:\ https://www.pinterest.co.uk/pin/536\,20\,98\,99\,3\,56\,89\,00\,25\,/$

▶ My point of view

► Version control

- ► Workflow optimization
- **▶** Documentation
- ► Containerization
- ► (Modern) editor

Credit: https://i.redd.it/798myjzkwmjz.jpg

The fight of the editors

Best practices for scientific computing A typical project

General purpose frameworks for scientific computing (e.g. Galaxy, scikit-learn, pandas) our guide fits here Research code with custom implementations 2 of data processing or computational methods, typically involving methodological experimentation or innovation. Small scripts/programs for biological data analysis using pre-existing software tools and packages.

Typical computational projects

Credit: https://doi.org/10.1371/journal.pcbi.1008549.g001

Good scientific software

Best practices for scientific computing

How to get "good" scientific software?

How to get "good" scientific software? ► Clarification of expectations

Credit: Radovan Bast, adapted from "Simple Made Easy" by Rich Hickey

How to get "good" scientific software?

► Establish a common mindset

This user will "tack-on" code or assets, without working through how it fits in the whole picture. Or, won't have team-members or staff helping them improve the code.

Result: shanty town or slowly degrading/regressing code/infrastructure

This user will have a team of peers, who all care about each other's work, and will be open working through review with the team/staff, because they see the whole mission, and feel valued.

Credit: Ryan Knox

Extreams of community mindsets

How to get "good" scientific software?

► Choose 'good enough' practices

Credit: https://www.action-engineering.com/blog/agile-acceptance-criteria/

Unwanted stages of software development [10]

How to get "good" scientific software?

► Some practical tips to achive goals in a team

- ► Common onboarding of team in the beginning of the project
- ▶ Identification of community goals and priorizations
- ▶ Decide on a platform for collaboration
- ▶ Pair programming and sprints

Good scientific software

Best practices for scientific computing

How to get "good" scientific software?

Conclusion • Question

Why should we care about 'good enough' software engineering practices?

Conclusion
Answer

The quality of the software results will at best be as good as the software itself