Лабораторная работа №4 Тема «ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ»

Пусть на отрезке a, b задана функция y = f(x). Разобьем отрезок на элементарные отрезки (рис. 1).

Рис. 1. Разбиение отрезка

На каждом из этих отрезков выберем произвольную точку: $x_{i-1} \le \varepsilon_i \le x_i$. Найдем произведение S_i значения функции в точке ε_i на длину элементарного отрезка:

$$S_i = f(\varepsilon_i)(x_i - x_{i-1}) \tag{1}$$

Составим сумму всех таких произведений:

$$S_n = S_1 + S_2 + \dots + S_n = \sum_{i=1}^n f(\varepsilon_i) \Delta x_i$$
 (2)

 S_n – называется интегральной суммой.

Определенным интегралом от функции f(x) на [a;b] называется предел интегральной суммы при неограниченном увеличении числа точек разбиения, или при $\Delta x_i \to 0$ (максимального из отрезков)

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_{i} \to 0} \sum_{i} f(\varepsilon_{i}) \Delta x_{i}$$
(3)

Геометрический смысл

Выражение (1) при i=1, 2,..., n описывает площадь элементарных прямоугольников $S_1, S_2,...,S_n$ а выражение (2) интегральной суммы – является суммой всей ступенчатой фигуры (рис. 2).

Рис. 2. Геометрический смысл

При неограниченном увеличении числа точек деления или $\Delta x \to 0$, верхняя граница фигуры (ломаная линия) переходит в кривую y=f(x). Площадь полученной фигуры (криволинейной трапеции) – определенный интеграл.

Во многих случаях, когда подынтегральная функция задана в аналитическом виде, определенный интеграл удается вычислить непосредственно с помощью определенного (с помощью первообразной) используя формулу Ньютона-Лейбница. Она состоит в том, что определенный интеграл равен приращению первообразной F(x) на отрезке интегрирования [a;b].

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a)$$

$$\tag{4}$$

Однако, на практике этой формулой часто нельзя воспользоваться по двум основным причинам:

- вид подынтегральной функции f(x) не допускает непосредственного интегрирования (т.е. первообразную нельзя выразить в элементарной функции);
- значение f(x) задано на фиксированном множестве точек, т.е. в виде таблицы.

Тогда используются методы численного интегрирования. Они основаны на аппроксимации подынтегральной функции (замене ее некоторым более простым выражением).

В дальнейшем будем использовать кусочную (локальную) интерполяцию. Это позволяет приближенно заменить определенный интеграл (3) интегральной суммой (2). В зависимости от способа интерполяции подынтегральные функции различают разные методы численного интегрирования (методы прямоугольников, трапеций, парабол и др.).

К вычислению определенного интеграла сводится большое количество задач (вычисление площадей фигур, определение работы переменной силы и т.п.). Решение задач с использованием кратных интегралов тоже может быть в конечном итоге сведено к вычислению определенного интеграла.

Метод прямоугольников

Метод непосредственно использует замену определенного интеграла (3) интегральной суммой (2). В качестве точек ε_i может выбираться любая точка в промежутке $[x_{i-1};x_i]$. В зависимости от выбора этой точки различают методы левых, правых и центральных прямоугольников.

- 1. $\varepsilon_i = x_{i-1}$ левая граница интервала метод левых;
- 2. $\varepsilon_i = x_i$ правая граница интервала метод правых;
- 3. $\varepsilon_i = \frac{x_i + x_{i-1}}{2}$ середина интервала метод центральных

Обычно, когда рассматривают метод прямоугольников, разбивают [a,b] на правных отрезков $\Delta x_i = h = const$.

В этом случае получаем следующие формулы для разных методов (рис. 3-5).

$$\int_{a}^{b} f(x)dx \approx h \sum_{k=0}^{n-1} y_{k}, \ y_{k} = f(\varepsilon_{k}) \qquad (\text{ оля левых})$$
 (5)

Рис. 3. Метод левых прямоугольников

Рис. 4. Метод правых прямоугольников

Заметим, что в пределах одного шага подынтегральная функция заменяется (аппроксимация) отрезком горизонтальной прямой т.е. первым членом полинома $y = a_0$.

Коэффициент a_0 ищется из условия прохождения кривой через точки ε_i , т.е. в случае левых прямоугольников $y_i = y(x_i - 1)$, а в случае правых $y_i = y(x_i)$.

Широко распространенным и более точным является вид формулы прямоугольников, использующий значения функции в средних точках элементарных отрезков, т.е.

$$y(\varepsilon_i) = y_i = y\left(\frac{x_i + x_{i+1}}{2}\right) = y\left(x_{i-\frac{1}{2}}\right)$$

В этом случае формула прямоугольника имеет вид:

Рис. 5. Метод центральных прямоугольников

Пример №1: Вычислить приближенное значение интеграла методом прямоугольников:

$$I = \int_{0}^{1} \frac{1}{x^2 + 1} dx$$
 c marom h=0,2.

Решение

1. Метод левых прямоугольников

а) Ручной счет

k	X	$F_k(x)$
1	0	1
2	0.2	0.9615
3	0.4	0.8620
4	0.6	0.7353
5	0.8	0.6098

$$I_{JI} = h \cdot \sum_{k=1}^{5} f_k(x) = 0.2 \cdot 4.169 \approx 0.834$$

б) Реализация в Microsoft Excel

Вычисление интеграла методом левых прямоугольников				
К	х	F _k (x)	h=	0,2
1	0	1		
2	0,2	0,961538462		
3	0,4	0,862068966		
4	0,6	0,735294118		
5	0,8	0,609756098		
	=	0,833731528		

c) Реализация в Mathcad

$$i := 0... \, n-1 \qquad x_i := a+i \cdot hx \qquad y_i := f\left(x_i\right)$$

$$I_{w} := \int_{0}^{1} \frac{1}{x^2+1} \, dx \qquad f(x) := \frac{1}{x^2+1}$$

$$x := \begin{pmatrix} 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \end{pmatrix} \qquad y := \begin{pmatrix} 1 \\ 0.962 \\ 0.862 \\ 0.735 \\ 0.61 \end{pmatrix} \qquad \lim_{i \to \infty} 5 \qquad \lim_{i \to \infty} \frac{b-a}{n}$$

$$ILP := hx \cdot \left(\sum_{i} f\left(x_i\right)\right)$$

$$ILP = 0.834$$

d) Реализация в Microsoft Visual C++

```
#include "stdafx.h"
#include "iostream.h"
#include "math.h"

double f(double x)
{
    return 1/(pow(x,2)+1);
}

int main(int argc, char* argv[])
{
    double s,h,a=0,b=1;
    s=0;
    h=0.1;
    while(a<b)
    {
        s=s+f(a)*h;
        a=a+h;
    }
    cout<<"iintegral="<<s<endl;
    return 0;
}</pre>
```

Результат

integral=0.859981 Press any key to continue

2. Метод правых прямоугольников

а) Ручной счет

k	X	$F_k(x)$
1	0.2	0.9615
2	0.4	0.8620
3	0.6	0.7353
4	0.8	0.6098
5	1	0.5

$$I_{IIP} \approx 0.733$$

b) Реализация в Microsoft Excel

	Вычисление интеграла методом правых					
	прямоугольников					
К	κ χ $F_k(\chi)$ $h=0,2$					
1	0,2	0,961538462				
2	0,4	0,862068966				
3	0,6	0,735294118				
4	0,8	0,609756098				
5	5 1 0,5					
	= 0,733731528					

c) Реализация в Mathcad

2. Метод правых прямоугольников

$$i := 1 ... n \qquad x_{\hat{1}} := a + i \cdot h x \qquad \quad y_{\hat{1}} := f \Big(x_{\hat{1}} \Big)$$

$$x = \begin{pmatrix} 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \end{pmatrix} \qquad y = \begin{pmatrix} 1 \\ 0.962 \\ 0.862 \\ 0.735 \\ 0.61 \\ 0.5 \end{pmatrix}$$

$$I_{w} = \int_{0}^{1} \frac{1}{x^{2} + 1} dx \qquad f(x) := \frac{1}{x^{2} + 1}$$

$$a_{w} = 0 \qquad b_{w} := 1$$

$$n_{w} = 5$$

$$b_{w} = \frac{b - a}{n}$$

IPP :=
$$hx \cdot \left(\sum_{i} f(x_{i})\right)$$
IPP = 0.734

d) Реализация в Microsoft Visual C++

#include "stdafx.h"

#include "iostream.h" #include "math.h"

double f(double x)

```
return 1/(pow(x,2)+1);
}
int main(int argc, char* argv[])
{
    double s,h,a=0,b=1;
    s=0;
    h=0.1;
    while(a<=b)
    {
        s=s+f(a+h)*h;
        a=a+h;
    }
    cout<<"iintegral="<<s<endl;
    return 0;
}</pre>
```

Результат

■ "F:\2 [[[[[[\[[\][[[[[[[[[[[[[[[[]]]]

integral=0.80523 Press any key to continue_

3. Метод центральных прямоугольников

а) Ручной счет

k	X	$F_k(x)$
1	0.1	0.99
2	0.3	0.917
3	0.5	0.8
4	0.7	0.671
5	0.9	0.552

 $I_{II} \approx \overline{0.786}$

b) Реализация в Microsoft Excel

Вы	Вычисление интеграла методом центральных прямоугольников			
К	x	$F_k(x)$	h=	0,2
1	0,1	0,99009901		
2	0,3	0,917431193		
3	0,5	0,8		
4	0,7	0,67114094		
5	0,9	0,552486188		·
	l=	0,786231466		

c) Реализация в Mathcad

d) Реализация в Microsoft Visual C++

```
#include "stdafx.h"
#include "iostream.h"
#include "math.h"

double f(double x)
{
    return 1/(pow(x,2)+1);
}

int main(int argc, char* argv[])
{
    double s,h,a=0,b=1;
    s=0;
    h=0.1;
    while(a<=b)
    {
        s=s+f(a+h/2)*h;
        a=a+h;
    }
    cout<<"iintegral="<<s<endl;
    return 0;
}</pre>
```

Результат

integral=0.833169 Press any key to continue

Метод трапеций

Отличается от метода прямоугольников способом аппроксимации отрезка Δx_i . В методе прямоугольников аппроксимация осуществлялась отрезком горизонтальной прямой, а в методе трапеций — прямой общего вида, т.е. полиномом 1-й степени:

$$y = a_0 + a_1 x.$$

Коэффициенты вычисляются из условия прохождения этой прямой через две точки (значения подынтегральной функции на краях интервала Δx_i).

График функции y = f(x) представляется в виде ломаной, соединяющей точки (x_i, y_i) (рис. 6).

Рис. 6. Метод трапеций

Площадь всей фигуры складывается из элементарных прямоугольных трапеций. Площадь каждой элементарной трапеции может быть записана в виде:

$$S_i = \frac{y_{i-1} + y_i}{2} \Delta x_i \quad (i = 1, 2, ...)$$

$$\int_{a}^{b} f(x)dx = \frac{1}{2} \sum_{i=1}^{n} h_{i}(y_{i-1} + y_{i}) - \text{площадь всей фигуры.}$$

Если $\Delta x_i = h_i = h = const$ (интегрирование с постоянным шагом), то формула трапеций принимает вид:

$$\int_{a}^{b} f(x)dx = h(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n} y_i).$$
 (8)

Пример №2: Вычислить приближенное значение интеграла методом прямоугольников:

$$I = \int_{0}^{1} \frac{1}{x^2 + 1} dx$$
 c marom h=0,2.

1. Ручной счет

k	X	$y_k(x)$
0	0	1
1	0.2	0.9615
2	0.4	0.8620
3	0.6	0.7353
4	0.8	0.6098
5	1	0.5

$$I_{mp} = h(\frac{y_0 + y_5}{2} + \sum_{i=1}^{n} y_i) = 0.783$$

2. Реализация в Microsoft Excel

<u>, </u>	J					
	Вычисление интеграла методом трапеции					
k	x	$y_k(x)$	h=	0,2		
0	0	1				
1	0,2	0,961538				
2	0,4	0,862069				
3	0,6	0,735294				
4	0,8	0,609756				
5	1	0,5				
	Интеграл=		0,783731528			

3. Реализация в Mathcad

4. Метод трапеций

$$\begin{split} i &\coloneqq 1..\,n-1 & x_i \coloneqq a+i\cdot hx \end{split}$$

$$ITR &\coloneqq hx \cdot \left(\frac{f(a)+f(b)}{2} + \sum_i f(x_i)\right)$$

$$ITR &= 0.784 \end{split}$$

$$I := \int_0^1 \frac{1}{x^2 + 1} dx \qquad f(x) := \frac{1}{x^2 + 1}$$

$$a := 0 \qquad b := 1$$

$$n := 5$$

$$hx := \frac{b - a}{b}$$

4. Реализация в Microsoft Visual C++

```
#include "stdafx.h"
#include "iostream.h"
#include "math.h"

double f(double x)
{
    return 1/(pow(x,2)+1);
}

int main(int argc, char* argv[])
{
    double s,h,a=0,b=1;
    s=0;
    h=0.1;
```

Результат

integral=0.832606 Press any key to continue

Метод Симпсона

Разобьем отрезок [a,b] на четно число n равных частей с шагом h на каждом отрезке (рис.7).

Рис. 7. Метод Симпсона

Возьмем отрезки, равные двум шагам: $[x_0, x_2], [x_{2,}x_4], ..., [x_{i-1}, x_{i+1}], ..., [x_{n-2}, x_n]$. На каждом из них подынтегральную функцию заменим интерполяционным полиномом второй степени:

$$f(x) = \varphi_i(x) = a_i x^2 + b_i x + c_i$$

 $x_{i-1} \le x \le x_{i+1}$ (на каждом отрезке)

Коэффициенты a_i, b_i, c_i могут быть найдены из условий равенства многочлена в точках x_i соответствующим табличным значениям $f(x_i)$

В качестве $\varphi_i(x)$ можно взять интерполяционный многочлен Лагранжа, проходящий через точки

$$M_{i-1}(x_{i-1}, y_{i-1}), M_{i}(x_{i}, y_{i}), M_{i+1}(x_{i+1}, y_{i+1})$$

$$\phi_{i}(x) = \frac{(x - x_{i})(x - x_{i+1})}{(x_{i-1} - x_{i})(x_{i-1} - x_{i+1})} y_{i-1} + \frac{(x - x_{i-1})(x - x_{i+1})}{(x_{i} - x_{i-1})(x_{i} - x_{i+1})} y_{i} + \frac{(x - x_{i-1})(x - x_{i})}{(x_{i+1} - x_{i-1})(x_{i+1} - x_{i})} y_{i+1}$$

$$\mathbf{Y} \qquad \mathbf{M}_{i+1} \qquad \mathbf{M}_{i} \qquad \mathbf{M}_{i+1} \qquad \mathbf{S}_{i} \qquad \mathbf{S}_{i} \qquad \mathbf{S}_{i+1} \qquad \mathbf{X}_{i+1} \qquad \mathbf{X}_{i+1$$

Рис. 8. Криволинейная трапеция

Элементарная функция S_i - площадь криволинейной трапеции (рис. 8) вычисляется с помощью определенного интеграла, подынтегральной функцией которого является многочлен Лагранжа:

$$S_{i} = \int_{x_{i-1}}^{x_{i+1}} \varphi_{i}(x) dx = \frac{1}{2h^{2}} \int_{x_{i-1}}^{x_{i+1}} [(x - x_{i})(x - x_{i+1})y_{i-1} - 2(x - x_{i-1})] dx$$

$$S_{i} = \frac{h}{3} (y_{i-1} + 4y_{i} + y_{i+1})$$

$$S = \frac{h}{3} (y_{0} + 4y_{1} + 2y_{2} + 4y_{3} + 2y_{4} + \dots + 2y_{n-2} + 4y_{n-1} + y_{n})$$

Данное выражение принимается в качестве значения определенного интеграла:

$$\int_{a}^{b} f(x)dx = \frac{h}{3}(y(a) + 4y(a+h) + 2y(a+2h) + 4y(a+3h) + \dots$$

$$\dots + 2y(b-2h) + 4y(b-h) + y(b)$$

Это - формула Симпсона.

Пример №3: Вычислить приближенное значение интеграла методом прямоугольников:

$$I = \int_{0}^{I} \frac{1}{x^2 + I} dx$$
 c marom h=0,1.

Решение

1. Ручной счет

x_i	${\cal Y}_i$
0	1
0,1	0,990099
0,2	0,961538
0,3	0,917431

0,4	0,862069
0,5	0,800000
0,6	0,735294
0,7	0,671141
0,8	0,609756
0,9	0,552486
1	0,500000

$$\begin{split} I_{\text{\tiny moчнoe}} &= 0.785398 \\ I_{\text{\tiny CUMCOHa}} &= \frac{0.1}{3} (y_0 + 4(y_1 + y_3 + y_5 + y_7 + y_9) + \\ 2(y_2 + y_4 + y_6 + y_8) + y_{10}) &= 0.785398 \end{split}$$

Таким образом, метод Симпсона является наиболее точным, поэтому его чаще всего используют при работе на ЭВМ. На ЭВМ есть стандартные программы, вычисляющие значения определенного интеграла методом Симпсона.

2. Реализация в Microsoft Excel

Вычисление интеграла методом Симпсона				
i	Xi	yi		
0	0	1		
1	0,1	0,990099		
2	0,2	0,961538		
3	0,3	0,917431		
4	0,4	0,862069		
5	0,5	0,8		
6	0,6	0,735294		
7	0,7	0,671141		
8	0,8	0,609756		
9	0,9	0,552486		
10	1	0,5		
	Интеграл=		0,785398153	

3. Реализация в Mathcad

5. Метод Симпсона

IPR = 0.667

$$\begin{split} i &:= 1,3...n-1 & \text{I.} := \int_0^1 \frac{1}{x^2+1} \, dx & \text{f.}(x) := \frac{1}{x^2+1} \\ \text{S1} &:= \sum_i f(x_i) & \text{i.} := 0 & \text{i.} := 1 \\ i &:= 2,4...n-2 & \text{i.} := 5 & \text{i.} := 5 \\ \text{S2} &:= \sum_i f(x_i) & + \\ \text{IPR} &:= \frac{hx \cdot (f(a) + f(b) + 4 \cdot S1 + 2 \cdot S2)}{3} \end{split}$$

5. Реализация в Microsoft Visual C++

```
#include "stdafx.h"
#include "iostream.h"
#include "math.h"

double f(double x)
{
    return 1/(pow(x,2)+1);
}

int main(int argc, char* argv[])
{
    double s,h,a=0,b=1;
    s=0;
    h=0.1;
    while(a<=b)
    {
        s=s+(f(a)+4*f(a+h/2)+f(a+h))*(h/3);
        a=a+h;
    }
    cout<<"iintegral="<<s<endl;
    return 0;
}</pre>
```

Результат