PHM08 Prognostics Data Challenge

Joud AlFarra S20106605

Leena Alam S20106371

Lamar AlSobaihi S20106553

Content

- 1. Introduction & Problem Statement
- 2. Data
- 3. Imported Libraries
- 4. Loading the Data
- 5. Cleaning the Data
- 6. Visualization of Data
- 7. Calculating the RUL
- 8. Training
- 9. Prediction
- 10. Evaluation
- 11. Conclusion

Introduction & Problem Statement

- Predicting aircraft component life by using data to predict remaining operational cycles until failure is the problem statement addressed by the PHM 2008 Challenge.
- Our project aims to predict the remaining useful life of turbofan engines using machine learning.
- Our performance will be evaluated using the mean absolute error metric.

Data

- We will use the dataset provided by the PHM 2008 Challenge, which includes sensor measurements and failure times of 218 turbofan engines.
- The datasets are:
 - train.txt
 - test.txt
 - final_test.txt
- Each row is a snapshot of data taken during a single operational cycle.
- The columns correspond to:
 - unit number
 - time, in cycles
 - operational setting 1-3
 - sensor measurement 1-21

Imported Libraries

LIBRARY(TIDYVERSE)
LIBRARY(CARET)
LIBRARY(GGPLOT2)
LIBRARY(RANDOMFOREST)

Loading the Data

- train_data <- read.table("train.txt", header = TRUE)
- test_data <- read.table("test.txt", header = TRUE)
- final_test_data <- read.table("final_test.txt", header = TRUE)

Data		
Ofinal_test_data	55156 obs. of 26 variables	
① test_data	29820 obs. of 26 variables	
Otrain_data	45918 obs. of 26 variables	

Cleaning the Data

Checked for missing values using the sum(is.na()) function. If there are any missing values, they were removed.

sum(is.na(train_data))

Visualization of Data

Sensor Measurement 1 vs Time Cycles

Visualization of Data

Sensor Measurement 1 vs Time Cycles for Engine 1

Visualization of Data

Operational Setting 1 vs Time Cycles for All Engines

Calculating the RUL (Remaining Useful Life) for the train_data

Calculated the RUL for each engine and visualized it as a scatterplot

Training

Training the data using the Random Forest Machine Learning Algorithm

model <- randomForest(RUL ~ ., data = train_data)

```
```{r}
set.seed(123)
Train a random forest model
library(randomForest)
model <- randomForest(RUL ~ ., data = train_data)
```
```

Prediction

Trying to predict the RULs of the test_data

Make predictions on the testing data
predictions <- predict(model, newdata = test_data)</pre>

| _ | UnitNumber [‡] | predicted_RUL [‡] |
|---|-------------------------|----------------------------|
| 1 | 1 | 198.5743 |
| 2 | 2 | 197.8591 |
| 3 | 3 | 193.1419 |
| 4 | 4 | 177.8723 |
| 5 | 5 | 188.6867 |
| 6 | 6 | 197.3574 |
| 7 | 7 | 206.4155 |
| 8 | 8 | 195.1573 |
| 9 | 9 | 185.6197 |

Evaluation

After prediction of the RULs, we calculated the actual values and evaluated the accuracy of the prediction.

```
# Evaluate the model performance
MAE <- mean(abs(predictions - test_data$predicted_RUL))</pre>
```

MAE 46.

46.546851332746

Conclusion

- Our model predicts the remaining useful life of engines.
- The Random Forest method was used.
- We cleaned the data, trained our model, predicted, and evaluated our results.
- Key machine learning concepts were demonstrated.
- The code provides a framework for predictive model development.