基础地质学

第一章 地 球

王洪涛 清华大学环境学院 htwang@tsinghua.edu.cn

第一章 地 球

- § 1.1 地球概况 2节
 - 一、地球的位置
 - 二、地球的大小与形状
 - 三、地球的物理性质
 - 四、地球演化
 - 五、地球的圈层
- § 1.2 地球的大气环境
- § 1.3 地球的构造

一、地球在宇宙中的位置

银河系结构示意图

太阳系行星参数

行星	名称	赤道半径 ×10 ⁴ km	质量 地球=1	密度 g/cm³	公转一周 年	公转半径 ×10 ⁶ km
水星	Mercury	0.244	0.05	5.46	0.241	58
金星	Venus	0.605	0.82	5.26	0.616	109
地球	Earth	0.6378	1.0	5.52	1.0	150
火星	Mars	0.3395	0.11	3.96	1.88	229
木星	Jupiter	7.14	317.94	1.33	11.99	779
土星	Saturn	6.0	95.18	0.70	29.50	1427
天王星	Uranus	2.59	14.63	1.24	84.00	2871
海王星	Neptune	2.475	17.22	1.66	165.00	4496
太阳	Sun	69.6×10 ⁴	33×10 ⁴	1.409	表面温度5770K 内部1500×10 ⁴ K	
月亮	Moon	0.17382	1/81	3.34	月地平均距离 3.88×10 ⁴ km	

太阳大吗?

八大行星比太阳

▶ 太阳质量占太阳系: 99.85%

▶ 地球质量比太阳: 33万分之一

▶ 地球体积比太阳: 130万分之一

太阳大吗?

二、地球的大小与形状

1. 地球的大小

南极 (据1975年第16届国际大地测量和地球物理协会)

2. 地球的表面形态 (第五章地貌中讲解)

最大空间尺度上,分为<u>陆地</u>和<u>海洋</u>

- ✓ 陆地: 占地球表面积的29.2%; 平均高度825m; 最高 珠穆朗玛峰8844m
- ✓ 海洋: 占70.8%, 连成一片; 平均深度3795m; 最深菲律宾海沟11515m

次一级尺度上,

- ✓ 陆地有 山地、高原、平原、盆地;
- ✓海洋有 大陆架、大陆坡、大洋盆地、大洋中脊、海沟 更次一级尺度上,山地可分为分水岭、坡地、谷地 最小尺度上,谷地可分为河床、河漫滩、阶地

2.1 陆地地形

盆地:四川盆地

2.1 陆地地形

裂谷: 东非大裂谷

2.2 海底地形

三、地球的物理性质

四个基本性质

- > 密度
- > 重力
- ▶温度
- > 磁性

1. 地球的密度

- ➤ 地球理论平均密度: 5.5 g/cm³
 - ✓地球的质量: 6亿³kg(5.9742×10²⁴kg)
- ▶ 地表岩石平均密度: 2.6~2.8 g/cm³, 仅为地球平均密度的一半。
- ▶ 根据地震波在地球内部传播速度与密度的关系, 说明地球的密度随着深度的增加而逐渐增加。

1. 地球的密度 (錄)

2. 地球的重力

地球表面的重力是地心引力和地球自转离心力的合力。因自转离心力很小(赤道1/189),所以:重力≈地心引力

万有引力定律与牛顿二定律

$$F = G \frac{mM}{r^2} = ma$$

即

$$a = g = G\frac{M}{r^2}$$

F: 引力/重力, N;

G: 万有引力常数,

 $6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$

a: 加速度, m/s²

M: 地球质量, kg

m: 物体质量, kg

r:物体离地心距离, m

g: 重力加速度, m/s²

2. 地球的重力 (续)

地球表面重力加速度度

- ➤ 赤道: 9.78 m/s²;
- ➤ 两级: 9.832 m/s²;
- ➤ 北纬45度线: 9.806 m/s²。

地球内部重力加速度度

- ➤ 地表: 9.8 m/s²;
- \geq 2891km: 10.68 m/s²;
- ▶ 地心: g = 0

2. 地球的重力(续)

重力异常

- ▶由于地面起伏、内部物质密度不均、成分和结构差异等, 使得实测的重力值与理论值之间有明显的偏离。
- ▶利用重力异常找矿的方法称为重力探矿法。并且对研究地球的形状,地壳的物质组成,地壳的构造,地壳运动和地震等都是有很高的价值。

正异常

▶实测重力值大于理论值,一般为金属矿区,由于物质密度大,对地面物质的引力较大。

负异常

➤ 实测重力值小于理论值,一般为石油、煤、石膏等非金属矿区,物质密度小,引力小。

3. 地球的温度

▶热能来源

太阳辐射和地球内热放射性衰变

>变温层(外热层)

受太阳辐射能影响的岩层,十几 米,最大几十米。

▶恒温层

温度常年不变的层位,温度≈当 地年平均温度;恒温层的下界面深 度 20 - 30m_{埋深}。

▶增温层

受内热影响,温度向地球内部升高,存在地温梯度(大陆°C/100m=3)。

4. 地球的磁性

磁性: 围绕地球存在着一个具有南北两极的磁力场- 地磁场。

4. 地球的磁性(续)

地磁场的组成

- ▶正常磁场: 主体稳定, 占95%以上;
- ▶磁异常: 受地球浅部具有磁性的矿物或岩石影响而产生的局部磁场变化,可用于磁法找矿。正异常: 磁强度>正常,如含铁镍; 负异常: 磁强度<正常,如含金、铜、石油。</p>

剩余磁性

在地球磁场的作用下,岩石中的磁性矿物被磁化,从而保存了它们形成时所在地点的地球磁场方向,这种现象称为剩余磁性。剩余磁性是研究地磁极倒转、大陆漂移等的重要依据。

四、地球的演化

- ➤ 一般认为地球作为一个行星,起源于46亿年以前的原始太阳星云。
- 46亿年前,太阳星云在加速旋转的过程中分化出原始地球。原始地球温度较低,轻、重元素浑然一体,是一个相对均匀、尚无分层结构的行星。
- 当原始地球内部物质升温达到熔融状态时,比重大的亲铁元素向地心下沉,成为铁镍地核;比重小的亲石元素上浮组成地幔和地壳,更轻的液态和气态成分,通过火山喷发等溢出地表,与原始逃逸水和大气形成原始的水圈和大气圈。最终在水、气的相互作用下诞生了生命。

地质年代表

- 地质年代的建立:为了反映地球发展的历史和阶段性以及地质事件的先后顺序,需要有一个世界统一的时间系统——地质年代表。
- 地质年代分为两类:相对地质年代(先后顺序) 和绝对地质年代(同位素测年)。

渐变论与突变论

国际地质年代表

中↓ 生↓ 代↓ (Mz)+	白垩纪· (侏罗纪· 三迭纪·	K J T	43	1.37亿 1.95亿 2.30亿		ARREST .	裸子植物和↓ 爬行动物时代↩	
古。	二选组 [•] 石炭纪•	P C		2.85亿	*****		蕨类和↓ 两栖类时代₽	
生₩	泥盆纪· 志留纪·	D S		4.05亿	YY.	-	课蕨植物↓ 鱼类时代₽	
(<u>P</u> z)-	奥陶纪∢ 寒武纪∢	€		5.00亿 6.00亿	¥.		真核藻类和↓ 无脊椎动物时代↩	
元↓	震旦纪◆	Z		13.0亿				
古や代や	Pt ⁴⁻³ Ar		25.0 亿。		C. C	细菌藻类时代₽		
太√ 古↓ 代₽			46.0亿4		地球形成与4	上学进化期₽		

国际地质年代表(续)

代中	纪₽	代号₹	#.₽	距今年数	生物的进化₽				
新↩	第四纪∢	Q	全新世₽	1万	1		人类 现代动物 现 代植物₽		
			更新世₽	200万			₽		
生业	新近纪	N	上新世₽	600万					
			中新世₽	2200万					
(Cz)4		Е	渐新世₽	3800万			被子植物和↓ 哺乳动物时代₽		
	古近纪		始新世↩	5500万					
			古新世↩	6500万					
中↓	白垩纪。	K		1.37亿		No.			
単 生↓	侏罗纪◆	t J		1.95亿	-the		课子植物和↓		
(Mz)+	三迭纪 T	Т		2.30亿					

五、地球的圈层

▶四大圈层:大气圈、水圈、生物圈、岩石圈

外部圈层: 大气圈、水圈、生物圈

内部圈层:岩石圈为主,以及其他内部圈层

各圈层间并非孤立,它们相互联系、影响、渗透、作用 共同促进地球外部环境的演化。

1. 大气圈

大气圈: 是因地球引力而聚集在地球表层周围的气体圈层, 是由气体和悬浮物组成的流体系统。

范围: 上至2000~3000 km 高空;

质量: 5300万亿吨, 相当于地球质量的百万分之一。

组分: 恒定组分: 大气中基本保持不变的组分, 如氮, 氧。

可变组分: 随季节、气象和人类活动影响而变化的成分, 如二氧化碳、臭氧和水蒸气。

不定组分:一般来源于火山爆发、森林大火、地震等 灾害及人类活动,如尘埃、硫化氢、硫氧化物等。

1. 大气圈 (续)

▶ 大气圈气体组成: 自然状态下, 大气是多种气体的混合气体: 氮、氧、二氧化碳、水及一些微量惰性气体。

气体名称	分子式	体积含量 (%)	气体名称	分子式	体积含量 (%)
氮	N_2	78.08	氦	He	0.0005
氧	O_2	20.95	甲烷	CH ₄	0.00017
水	H_2O	0–4	氢	H_2	0.00005
氩	Ar	0.93	一氧化二氮	N_2O	0.00003
二氧化碳	CO ₂	0.036	臭氧	O_3	0.000004
氖	Ne	0.0018			

▶ 影响生物圈健康的主要气体:氮、氧、水蒸气、二氧化碳、甲烷、一氧化二氮和臭氧。

2. 水圈

水圈: 是由地球表层水体所构成的连续圈层,包括海洋,湖泊,河流,冰川,沼泽,地下水等

2. 水圈 (续)

人类比较容易利用的淡水资源包括江河、淡水湖泊、浅层地下水等,仅占总水量的0.3%。且:

2. 水圈 (续)

水的类型:海水,陆地水,大气水

海水: 存在于海洋中。海洋是地球表面最大的积水盆地,是水圈的主体,包括海和洋。

最大特点: 咸,含盐,主要为 NaCl 及 MgCl₂、MgSO₄等;

标准盐度:35‰,高者为咸化海(红海、地中海),低者为淡化海(波罗的海、渤海)。淡水盐度<1‰

海水的运动:主要表现为波浪、洋流、潮汐、浊流。

2. 水圈 (续)

陆地水:

- ▶ 地面流水:沿地表流动的水,如洪流、河流;
- ▶ 地下水: 埋藏在地表以下岩石空隙中的水。例如,泉是地下水的天然露头,井水,矿泉水,温泉
- ➢ 湖泊: 陆地上较大的集水洼地中的水,补给源主要为地面流水、大气降水和地下水。
- > 沼泽: 陆地上洼地积水淤塞的湿地是喜湿植物的乐土
- 冰川: 积雪形成的缓慢移动的巨大冰体。

大气水:

- > 以气态形式存在于大气圈中的水,主要在对流层中。
- 来源于海水和陆地水的蒸发、植物蒸腾、火山活动。

水循环

自然界的水在太阳辐射能、重力及地热能的作用下不断地循环着

大循环:海、空、陆、海 小循环:海、空、海,或陆、空、陆

我国人均水资源分布图

3. 生物圈

- 生物圈: 地球表层由生命物质构成的圈层, 生命物质包括动物、植物、微生物。
- ▶ 范围: 广泛,下至地下 3km、深海海底,上至10 km的高空;90%以上的生物生活在地表上下200m的范围。
- ▶ 与其它圈层关系:与大气圈、水圈、岩石圈相互渗透, 无明显的界面。
- ▶ 生物密度: 阳光、空气、水分充足、温度适宜的地区生物密度大; 反之则少。
- ▶ 元素组成:碳、氢、氧、氮可占99.6%;其次钙、钾、硅、镁、硫。

3. 生物圈 (续)

生物组成:

- ▶ 人类认识的生物有上百万种;目前存在的生物估计 有上千万种;地球上存在过的生物有上亿种。
- ▶目前世界上已知的动物、植物大约有250万种,其中动物约占200万种,植物约占34万种,微生物约有3.7万种。
- ▶ 生物的分类: 界、门、纲、目、科、属、种。

3. 生物圈 (续)

形成: 水圈形成后为生命的孕育创造了条件

- ▶ 最早的生命记录: 在格陵兰发现的变质岩中的生物合成的有机碳, 其年龄有38亿年。
- ▶ 生命演化经历:原核细胞→真核细胞;单细胞→多细胞; 无脊椎动物→脊椎动物;水生动物→陆生动物。

三类关键生物

- ▶ 蓝绿藻 (35-7亿年前): 为生物向海水表层及陆地发展创造 条件;
- ▶ 维管植物 (约4.5亿年前): 适应性强、生产能力大,带动陆生动物的繁盛,形成包括海洋和陆地的完整生物圈;
- 人类:对自然的影响和改造是主动的,其能力也是其他两种所不能比肩的。

白垩纪生物大绝天与小行星撞击地球说

陆地上灭绝生物:以恐龙为代表。

海洋中灭绝生物:以浅海浮游生物最突出。

6500万年前的壮烈一幕:有一天,恐龙们还在地球乐园中无忧无虑地尽情吃喝,突然天空中出现了一道刺眼的白光,一颗直径10km的巨石从天而降。那是一颗小行星,它以每秒40km的速度一头撞进大海,在海底撞出一个巨大的深坑,海水被迅速气化,蒸气向高空喷射达数万米,随即掀起的海啸高达 5 km,并以极快的速度扩散,横扫陆地上的一切。撞击还引发了强烈的火山喷发。

陨石撞击地球产生了铺天盖地的灰尘,极地冰雪融化,植物毁灭了,火山灰也充满天空。在以后的数月乃至数年里,天空依然尘烟翻滚,乌云密布,地球因终年不见阳光而进入低温中,苍茫大地一时间沉寂无声。生物史上的一个时代——恐龙时代就这样结束了。

白垩纪生物大绝天与小行星撞击地球说

证据: 1980年,美国科学家在6500万年前(白垩纪末)的地层中发现了高浓度的铱,其含量超过正常含量的几十甚至数百倍。这样浓度的铱只有在陨石中可以找到。根据铱的含量推算出撞击物体是相当于直径10km的一颗小行星。撞击产生的陨石坑直径应超过 100 km。

4. 岩石圈

地球的内部圈层: 圈层同心,包括地壳、地幔和地核三大圈层

非梨亦非球 — "乃煮熟之鸭蛋也?"

4. 岩石圈

岩石圈: 由地壳和上地幔盖层的固态岩石组成的圈层, 平均深度为80km。其下为软流圈。

