

Surabhi Narayan

Department of Computer Science & Engineering

DECREASE AND CONQUER

Surabhi Narayan

Department of Computer Science & Engineering

Decrease and Conquer

Combinatorial Objects

- > Permutations
- **Combinations**
- ➤ Subsets of a given set

Decrease and Conquer

Generating Permutations

- > Underlying set elements are to be permuted
- ➤ Decrease and conquer approach
- > Satisfies the minimal change requirement
- Example: Johnson- Trotter algorithm

Decrease and Conquer

Generating Permutations

```
ALGORITHM JohnsonTrotter(n)
    //Implements Johnson-Trotter algorithm for generating permutations
    //Input: A positive integer n
    //Output: A list of all permutations of \{1, \ldots, n\}
    initialize the first permutation with 1 \ \dot{2} \dots \dot{n}
    while the last permutation has a mobile element do
        find its largest mobile element k
        swap k with the adjacent element k's arrow points to
        reverse the direction of all the elements that are larger than k
        add the new permutation to the list
```

Decrease and Conquer

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4 2 3	4123
$\leftarrow \rightarrow \leftarrow \leftarrow$	$\leftarrow \leftarrow \rightarrow \leftarrow$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\leftarrow\leftarrow\leftarrow\leftarrow$	$\leftarrow\leftarrow\leftarrow\leftarrow$	$\frac{1}{4}$ $\frac{3}{3}$ $\frac{2}{1}$ $\frac{4}{2}$
$\rightarrow \rightarrow \leftarrow \leftarrow$	$\rightarrow \leftarrow \rightarrow \leftarrow$	$\frac{3}{3} \stackrel{\cancel{2}}{\cancel{2}} \stackrel{\cancel{2}}{\cancel{1}} \stackrel{\cancel{2}}{\cancel{4}}$
$\leftarrow \rightarrow \leftarrow \leftarrow$	$\leftarrow\leftarrow\rightarrow\leftarrow$	$42\overrightarrow{3}1$
$\frac{23}{2413}$	$\frac{2}{2}$ $\frac{1}{4}$ $\frac{3}{3}$	$2\overline{134}$
	$ \begin{array}{c} 1243 \\ 1432 \\ 3142 \\ 3421 \\ 2341 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Permutations in Lexicographic order

ALGORITHM *LexicographicPermute(n)*

//Generates permutations in lexicographic order

//Input: A positive integer *n*

//Output: A list of all permutations of $\{1, \ldots, n\}$ in lexicographic order initialize the first permutation with $12 \ldots n$

while last permutation has two consecutive elements in increasing order **do** let i be its largest index such that $a_i < a_{i+1}$ $//a_{i+1} > a_{i+2} > \cdots > a_n$ find the largest index j such that $a_i < a_j$ $//j \ge i + 1$ since $a_i < a_{i+1}$ swap a_i with a_j $//a_{i+1}a_{i+2} \ldots a_n$ will remain in decreasing order reverse the order of the elements from a_{i+1} to a_n inclusive add the new permutation to the list

Decrease and Conquer

Generating Subsets:

Knapsack problem needed to find the most valuable subset of items that fits a knapsack of a given capacity.

Powerset: set of all subsets of a set. Set $A=\{1, 2, ..., n\}$ has 2^n subsets.

Generate all subsets of the set $A=\{1, 2, ..., n\}$.

Any **decrease-by-one** idea? # of subsets of $\{ \} = 2^0 = 1$, which is $\{ \}$ itself Suppose, we know how to generate all subsets of $\{ 1,2,...,n-1 \}$ Now, how can we generate all subsets of $\{ 1,2,...,n \}$?

Decrease and Conquer

Generating Subsets:

```
All subsets of \{1,2,...,n-1\}: 2^{n-1} such subsets
```

```
All subsets of \{1,2,...,n\}:
 2^{n-1} subsets of \{1,2,...,n-1\} and
 another 2^{n-1} subsets of \{1,2,...,n-1\} having 'n' with them.
```

That adds up to all 2^n subsets of $\{1,2,...,n\}$

Decrease and Conquer

Alternate way of Generating Subsets:

Knowing the binary nature of either having **n**th element or not, any idea involving binary numbers itself?

One-to-one correspondence between all 2^n bit strings $b_1b_2...b_n$ and 2^n subsets of $\{a_1, a_2, ..., a_n\}$.

Each bit string $b_1b_2...b_n$ could correspond to a subset. In a bit string $b_1b_2...b_n$, depending on whether b_i is 1 or 0, a_i is in the subset or not in the subset.

000 001 010 011 100 101 110 111
$$\varnothing$$
 { a_3 } { a_2 } { a_2 , a_3 } { a_1 } { a_1 , a_3 } { a_1 , a_2 } { a_1 , a_2 , a_3 }

Decrease and Conquer

Generating Subsets in Squashed order:

Squashed order: any subset involving a_j can be listed only after all the subsets involving $a_1, a_2, ..., a_{j-1}$

Both of the previous methods does generate subsets in squashed order.

000 001 010 011 100 101 110 111
$$\varnothing$$
 { a_3 } { a_2 } { a_2 , a_3 } { a_1 } { a_1 , a_3 } { a_1 , a_2 } { a_1 , a_2 , a_3 }

Decrease and Conquer

Generating Subsets in Squashed order:

Squashed order: any subset involving a_j can be listed only after all the subsets involving $a_1, a_2, ..., a_{i-1}$

Can we do it with minimal change in bit-string (actually, just one-bit change to get the next bit string)? This would mean, to get a new subset, just change one item (remove one item or add one item).

Binary reflected gray code:

000 001 011 010 110 111 101 100

THANK YOU

Surabhi Narayan

Department of Computer Science & Engineering

surabhinarayan@pes.edu