信号与系统第一次测试题 (1、2章)

姓名:

学号:

1. 以下三个系统

系统 A: $y(t) = x(t-2)\sin(\omega t + 1)$

系统 B: $y[n] = (\frac{1}{3})^n x[n]$

系统 C: $y[n] = \sum_{k=0}^{n} x[k+1]x[k]$

其中 x 和 y 分别是系统的输入和输出, 请对下表选择正确答案

	系统 A	系统 B	系统 C
线性系统	是一否	是一否,	是 否/
时不变系统	是一个	是。查	(2) []
因果系统	是否	是一否	是
稳定系统	是/ 否	是	是《杏/

2. 已知一线性时 不变系统, 其单位冲激响应 h(t) 如图所示

如果输入信号x(t)如下图所示,画出输出响应y(t)的波形。

3. 已知一线性时 不变系统,如果输入信号 x(t) 为图 A 所示,则输出信号 y(t) 为图 B 所示。请画出当输入信号 x(t) 为图 C 所示时,输出信号 y(t)。

4. 给定常系数微分方程

$$\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{d(t)} + 12y(t) = f(t)$$

求当 $f(t)=2e^{-2t}u(t)$, $y(0_+)=3$, $y'(0_+)=2$ 时, 此微分方程的自由响应、强迫响应、零输入响应、零状态响应。

强鱼.
$$Ae^{-t}uH$$
),代入
$$\frac{7}{4}e^{-t} - \frac{7}{4}Ae^{-t} + \frac{1}{2}Ae^{-t} = 2e^{-t} \\
2Ae^{-t} = 2e^{-t} \implies A = 1$$
選題所定 e^{-t}

$$\frac{3}{2}UH = C_1e^{-3t} + C_2e^{-4t} + e^{-t} \\
C_1 + C_2 + 1 = 3 \implies C_2 = -10$$

2

要输入
$$y(t) = (12e^{-3t} - 10e^{-4t} + e^{-2t})u(t)$$

零输入 $y(t) = C_1e^{-3t} + c_2e^{-4t}$
 $(C_1 + c_2 = 3) \Rightarrow (C_1 = 14)$
 $(C_1 + c_2 = 3) \Rightarrow (C_2 = -11)$
 $y(t) = (14e^{-3t} + 11e^{-4t})u(t)$
 $y(t) = (14e^{-3t} + 11e^{-4t})u(t)$

圏状态.
$$g(t) = C_1e^{-3t} + C_1e^{-4t} + e^{-2t}$$

$$\begin{cases} C_1 + C_2 + \phi = 0 \\ -3C_1 - 4C_2 - 2 = 0 \end{cases} \Rightarrow \begin{cases} C_1 = -2 \\ C_2 = 1 \end{cases}$$

$$g(t) = \left(-2e^{-3t} + e^{-4t} + e^{-2t}\right) u(t)$$

5.证明:
$$f(t)s'(t) = f(0)s'(t) - f'(0)s(t)$$

证明: $f(t)s'(t) = f(t)s'(t)$

$$= -\underbrace{\chi(t)f(t)}_{\infty} = \int_{\infty}^{\infty} \frac{\chi(t)f(t)}{\int_{-\infty}^{\infty} \chi(t)f(t)} = \int_{\infty}^{\infty} \frac{\chi(t)f(t)}{\int_{\infty}^{\infty} \chi(t)} = \int_{\infty}$$