BAREM CULEGERE ONLINE BACALAUREAT LA MATEMATICĂ 2012

Modele de subiecte cu bareme realizate după modelului oficial

www.mateinfo.ro & www.bacmatematica.ro

Toate drepturile prezentei ediții aparțin site-ului <u>www.mateinfo.ro</u> & <u>www.bacmatematică.ro</u> reprezentate prin prof. Andrei Octavian Dobre

Culegerea este oferită GRATUIT doar pe site-ul <u>www.mateinfo.ro</u> și <u>www.bacmatematica.ro</u> și nicio parte a acestei ediții nu poate fi reprodusă fară acordul scris al <u>www.mateinfo.ro</u> și <u>www.bacmatematica.ro</u> (Andrei Octavian Dobre)

Dacă observați apariția acestei culegeri sau părți din aceasta culegere pe alt site (sau culegeri) vă rugăm să ne anunțati pe dobre.andrei@yahoo.com sau office@mateinfo.ro pentru a face demersurile legale.

Varianta 1

Prof: Andone Elena.

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	1 0 (015072)	3p
	$\frac{1}{63}$ =0,(015873)	
	Stabilanta a 2012 a maissally as Sin I 1	
	Stabilește a 2012-a zecimală ca fiind 1	2p
2.	f(2) = -3	1p
	$(f \circ f)(2) = f(f(2)) = f(-3)$	2p
	11	2p
	$f(-3) = -\frac{11}{2}$	
3.	Notăm 3 ^x =t	1p
		2p
	Ecuația devine $5t^2$ -2t-3=0 cu soluțiile t_1 =1, t_2 = $-\frac{3}{5}$	
	$3^{x}=1 \rightarrow x=0$, $3^{x}=-\frac{3}{5}$ nu are soluții în mulțimea numerelor reale	2p
	3	
4.	$6!=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6=720$	2p
		3p
5.		2n
٦.	$m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{0 - 4}{-1 - 2} = \frac{4}{3}$	2p
	$\lambda_B - \lambda_A = -1 - 2 = 3$	3p
6.	raza cercului circumscris unui triunghi dreptunghic este egală cu jumătate din ipotenuză	2p

Se calculează ipotenuza cu ajutorul teoremei lui Pitagora→i=10	1p
R=5	2p

1.	$A^2 = \begin{pmatrix} -3 & 4 \\ 1 & 2 \end{pmatrix}$	2p
a)	$\left(-4, -3\right)$	2p
	$\begin{vmatrix} A^2 - 2A + 5I_2 = \begin{pmatrix} -3 & 4 \\ -4 & -3 \end{pmatrix} - \begin{pmatrix} 2 & 4 \\ -4 & 2 \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = O_2$	1p
b)	det A=5 → A este inversabilă	3p
	$A = \frac{1}{\det A} A^*, A^* = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}, A^{-1} = \begin{pmatrix} \frac{1}{5} & -\frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} \end{pmatrix}$	2p
c)	$(A - I_2)^2 = A^2 - 2A + 5I_2 - 4I_2 =$	3p
	$O_2 - 4I_2 = \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix}$	2p
2.	$x \circ y = xy - x - y + 7 =$	1p
a)	$x(y-1) - (y-1) + 6 = (x-1)(y-1) + 6 \rightarrow$	3p
	$x \circ y = (x-1)(y-1) + 6$	1p
b)	Relația ce trebuie demonstrată reprezintă asociativitatea legii de compoziție	3p
	$x \circ (y \circ z) = (x-1)(y-1)(z-1) + 5x + 1$	
	$(x \circ y) \circ z = (x-1)(y-1)(z-1) + 5z + 1$	
	Egalitatea celor două expresii nu se realizează pentru orice numere reale $x, y, z \rightarrow$ legea nu este asociativă	2p
c)	x o x=31	2p
	$x \circ x = (x-1)^2 + 6 \rightarrow (x-1)^2 = 25 \rightarrow$	2p

	x=6 sau x=- 4	1p	
1			

1. a)	$\lim_{x \to \infty} f(x) = \infty \to graficul\ funcției\ nu\ admite\ asimptotă\ orizontală\ la + \infty$	2p
	Studiem existenţa asimptotei oblice y=mx+n şi n	
	$m=n=1 \rightarrow$	2p
	y= x+1 este asimptotă oblică la +∞	1p
b)	$f'(x) = \frac{x^2 - 2x}{(x - 1)^2}$	1p
	$f'(x)=0 \rightarrow x=0, x=2$	1p
	se realizeză tabelul de variație al funcției	1p
		2p
	funcția f este strict crescătoare pe intervalul $(-\infty,0)$ și pe intervalul $(0,\infty)$;	
	funcția f este strict descrescătoare pe intervalul $(0,1)$ și pe intervalul $(1,2)$.	
c)	Se calculează derivata a doua	1p
	$f'' = \frac{2}{(x-1)^3}$	1p
	$(x-1)^3$	1p
	se realizează tabelul de semn al derivatei a doua	2p
	pe intervalul (-∞, 1) f'' este negativă deci funcția f va fi concavă	7
2.	$l_s(0)=l_d(0)=f(0)=0 \rightarrow f$ este continuă în punctul x=0	2p
a)	Pe mulțimea numerelor reale nenule f este continuă fiind compunere de funcții elementare→f	2p
	continuă pe $\mathbb{R} \to f$ admite primitive pe \mathbb{R}	1p

b)	$E(x) = \int \frac{1}{2} \ln(x^2 + 1) + c_1, x > 0$	1p
	$F(x) = \begin{cases} \frac{1}{2}\ln(x^2 + 1) + c_1, x > 0\\ e^x - x + c_2, x \le 0 \end{cases}$	
	Din continuitatea funcției F în punctul $x=0 \rightarrow c_1=1+c_2$	1p
	$F(1)=0 \to \frac{1}{2} \ln 2 + c_1 = 0 \to c_1 = -\frac{1}{2} \ln 2$	1p
	$F(x) = \begin{cases} \frac{1}{2}\ln(x^2 + 1) - \frac{1}{2}\ln 2, x > 0\\ e^x - x - \frac{1}{2}\ln 2 - 1, x \le 0 \end{cases}$	2p
c)	$\int_{-2}^{3} f(x) dx = \int_{-2}^{0} f(x) dx + \int_{0}^{3} f(x) dx =$	2p
	$\begin{bmatrix} \mathbf{j} & \mathbf{i} & \mathbf{j} & \mathbf{j} & \mathbf{i} \\ -2 & -2 & 0 \end{bmatrix}$	1p
	$= \left(e^{x} - x\right)\Big _{-2}^{0} + \frac{1}{2}\ln\left(x^{2} + 1\right)\Big _{0}^{3} = 1 - e^{-2} - 2 + \frac{1}{2}\ln 10 =$	2p
	$= \frac{1}{2} \ln 10 - e^{-2} - 1$	

Varianta 2

Prof: Andone Elena.

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	1<2011<2012	3p
	$\log_{2012} 1 < \log_{2012} 2011 < \log_{2012} 2012$	2p
	$0 < \log_{2012} 2011 < 1$	
	Partea întreagă va fi 0	
2.	Pentru a determina imaginea funcției f, impunem condiția ca ecuația f(x)=y să admită	1p
	soluții reale.	2p
	$x^2 - 4x + 5 = y \rightarrow x^2 - 4x + 5 - y = 0$	
		20
	$\Delta \ge 0 \to y - 1 \ge 0, \text{Im } f = [1, \infty)$	2p
3.	Scriem relațiile lui Viete	1p
	$x_1 + x_2 = -3, x_1 x_2 = -8$	2p
	2 . 2 0 . 16 25	2p
	$x_1^2 + x_2^2 = 9 + 16 = 25$	
		2
4.	${a,b,c},{a,b,d},{a,c,d},{b,c,d}$	2p
		3p

5.	$\frac{y - y_B}{y_A - y_B} = \frac{x - x_B}{x_A - x_B} \to \frac{y - 0}{1 - 0} = \frac{x - 2}{5 - 2} \to 3y = x - 2$	2p 3p
6.	$\cos(180^{0}-x) = -\cos x = -\frac{2}{3}$	2p 1p
		2p

		1 _
1. a)	$\begin{bmatrix} x & y & 1 \end{bmatrix}$	2p
<i>a)</i>	Ecuația dreptei A_2A_3 este: $\begin{vmatrix} 4 & 9 & 1 \\ 8 & 27 & 1 \end{vmatrix} = 0$	
	8 27 1	2p
	Dezvoltând determinantul se obține 9x-2y-18=0	
	Dezvoitana determinantui se oojine 9x-2y-10-0	1p
b)	aria triunghiului A.A.A. este egală cu	1p
	aria triunghiului $A_2A_4A_6$ este egală cu $\frac{1}{2} \Delta $	
	$\begin{vmatrix} 2^2 & 3^2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	
	$\begin{vmatrix} 2 & 3 & 1 \\ 1 & 2^4 & 3^4 & 1 \end{vmatrix} = 36\begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 4320$	3p
	$\Delta = \begin{vmatrix} 2^2 & 3^2 & 1 \\ 2^4 & 3^4 & 1 \\ 2^6 & 3^6 & 1 \end{vmatrix} = 36 \begin{vmatrix} 1 & 1 & 1 \\ 4 & 9 & 1 \\ 16 & 81 & 1 \end{vmatrix} = 4320$	
		1p
	A=2160	1
c)	$\begin{vmatrix} 2^n & 3^n & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$	1p
	Calculăm $\Delta = \begin{vmatrix} 2^n & 3^n & 1 \\ 2^{n+1} & 3^{n+1} & 1 \\ 2^{n+2} & 3^{n+2} & 1 \end{vmatrix} = 2^n \cdot 3^n \cdot \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 4 & 9 & 1 \end{vmatrix} 2^n \cdot 3^n \cdot 2 \neq 0, (\forall) n \in \mathbb{N}$	2p
	$\begin{vmatrix} 2^{n+2} & 3^{n+2} & 1 \end{vmatrix}$ $\begin{vmatrix} 4 & 9 & 1 \end{vmatrix}$	
		2p
	→cele trei puncte un sunt coliniare	
2.	x * y = 2xy + 4x + 4y + 3 = 2x(y + 2) + 4(y + 2) - 5 =	1p
۵)	=2(x+2)(y+2)-5	
a)		3p
		1p
b)	Să verificăm dacă există e, număr real astfel încât x*e=e*x=x, oricare ar fi x număr real	3p
ĺ		•

	x*e= 2xe+4x+4e+3	
	Dacă $x*e=x$, oricare ar fi x număr real $\rightarrow 2xe+3x+4e+3=0$, oricare ar fi x număr real	
	$x(2e+3) + 4e+3=0$, oricare ar fi x număr real \rightarrow 2e+3=0 și 4e+3=0 contradicție	2p
9	→nu există element neutru	
c)	$x * x = 2(x+2)^2 - 5$	2p
	$x * x * x = 4(x+2)^3 - 6(x+2) - 5$	
	Ecuația cerută devine :	2p
	$4(x+2)^3 - 6(x+2) - 5 = -7 \rightarrow 4(x+2)^3 - 6(x+2) + 2 = 0 \rightarrow$	
	$2(x+2)^3 - 3(x+2) + 1 = 0$	
	Notăm x+2=t, ecuația	1p
	$2t^3 - 3t + 1 = 0$ are soluțiile $t=1 \rightarrow x=-1$, $t = \frac{-1 - \sqrt{3}}{2} \rightarrow x = \frac{-5 - \sqrt{3}}{2}$ și	
	$t = \frac{-1 + \sqrt{3}}{2} \to x = \frac{-5 + \sqrt{3}}{2}$	

1. a)	$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (x^2 \ln x) = \lim_{x \to \infty} \frac{\ln x}{1} = 0$, se aplică regula lui L'Hospital	2p	
	$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^2 \ln x) = \lim_{x \to 0} \frac{\ln x}{\frac{1}{x^2}} = 0$, se aplică regula lui L'Hospital	2p	
		1p	
b)	Se aplică regula de derivare a unui produs	1p	
	$(\ln x)' = \frac{1}{x}$	1p	
		1p	
	$(x^2)'=2x$	2p	
	$f'(x) = 2x \ln x + x$		
c)	$f'(x) = 2x\ln x + x = x(2\ln x + 1)$	1p	
	$f'(x)=0 \to x=0 \text{ si } x=e^{-\frac{1}{2}}$	1p	
	se realizeză tabelul de variație al funcției	1p	
	se realizeza acestar de variație ai raneșiei		

	pe intervalul $(0, e^{-\frac{1}{2}})$ f este monoton descrescătoare și pe intervalul $(e^{-\frac{1}{2}}, \infty)$ f este monoton crescătoare	2p
2. a)	$\int_{0}^{1} f(x)dx = \int_{0}^{1} \frac{1}{x+2} dx = \ln(x+2) \Big _{0}^{1} =$	2p 2p
	$\ln 3 - \ln 2 = \ln \frac{3}{2}$	1p
b)	$V = \pi \int_{0}^{2} \frac{1}{(x+2)^{2}} dx = \pi \left(-\frac{1}{x+2}\right) \Big _{0}^{2} = \frac{\pi}{4}$	3p 2p
c)	Fie F o primitivă a funcției f.	2p
	$F'(x)=f(x)=\frac{1}{x+2}>0, \text{ oricare } x \ge 0$	1p 2p
	→F strict crecătoare	r

Varianta 3

Prof: Andone Elena

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\log_{\frac{1}{2}} 8 = \log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{-3} = -3$	1p
		1p
	$\sqrt[3]{-\frac{27}{64}} = -\sqrt[3]{\left(\frac{3}{4}\right)^3} = -\frac{3}{4}$	1p
	$\left(-\frac{1}{2}\right)^3 = -\frac{1}{8}$ $-3 < -\frac{3}{4} < -\frac{1}{8}$	2p
	$-3 < -\frac{3}{4} < -\frac{1}{8}$	
2.	f este bijectivă deci este inversabilă	1p
	pentru a determina inversa procedăm astfel: $f(x)=y \rightarrow -2x+3=y$	2p
	$x = \frac{3-y}{2}$	
		2p
	$x = \frac{3 - y}{2}$ $f^{-1}(x) = \frac{3 - y}{2}$	
3.	Impunem condițiile de existență : $x-1>0$, $x-1\neq 1$, $x+2>0 \rightarrow x \in (1, \infty) - \{2\}$	1p
	$\log_{x-1}(x+2) = 2 \leftrightarrow \log_{x-1}(x+2) = \log_{x-1}(x-1)^2$	2p
	Utilizând injectivitatea funcției logaritm \rightarrow x+2=(x-1) ²	2p
	Soluția convenabilă este $x = \frac{3 + \sqrt{13}}{2}$	

4.	$A_5^3 + C_4^2 - P_4 = 60 + 6 - 24 = 42$	2p
		3p
5.	Fie M mijlocul segmentului AB, M(0,1);	2p
	$m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{0 - 2}{-1 - 1} = 1$, panta mediatoarei va fi -1	3p
	Ecuația mediatoarei : y-1= - x	
6.	$\sin x = \frac{1}{3} \rightarrow \cos x = -\frac{2\sqrt{2}}{3}$	2p
	3 3	1p
	$tgx = \frac{\sin x}{\cos x}$	2p
	$tgx = -\frac{1}{2\sqrt{2}}$	

1. a)	$A+B=\begin{pmatrix} 1 & 8 \\ 0 & 4 \end{pmatrix}$	2p
(a)	$\begin{pmatrix} 0 & 4 \end{pmatrix}$	2p
	det (A+B)=4	1p
b)	$det A=8 \rightarrow A$ este inversabilă	3p
	$A^* = \begin{pmatrix} 4 & -5 \\ 0 & 2 \end{pmatrix} \rightarrow A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{5}{8} \\ 0 & \frac{1}{4} \end{pmatrix}$	2p
c)	înmulțim egalitatea AX=B,la stânga cu A ⁻¹	1p
	$X = A^{-1}B$	2p
	$\mathbf{X} = \begin{pmatrix} -\frac{1}{2} & \frac{3}{2} \\ 0 & 0 \end{pmatrix}$	2p

2.	f(2)=0, f(1)=2	1p
a)	- 2a+b= - 5, a-b=1	3p
	a=4, b=3	1p
b)	$\frac{1}{x_1 + x_2 + x_3} = \frac{x_1 + x_2 + x_3}{x_1 + x_2 + x_3} = -\frac{a}{x_1 + x_2 + x_3}$	3p
	$x_1 \cdot x_2 x_2 \cdot x_3 x_1 \cdot x_3 x_1 x_2 x_3 2$	2p
*	Din relațiile lui Viete, $x_3 + x_2 + x_1 = a$ și $x_1x_2x_3 = -2$	
c)	$f(X) = X^3 - 4X^2 + 3X + 2$	2p
	împărțim polinomul f la x-2 și obținem câtul $C(X)=X^2-2X-1$	2p
	ecuația de gradul al doilea asociată polinomul C are discriminantul pozitiv → polinomul f are	1p
	toate rădăcinile reale.	

SUI	BIECTUL al III-lea (30 de puncte)	
1. a)	$\lim_{x \to 0} f(x) = -\infty$	2p
(a)	$\lim f(x) = 0$	2p
	$x\rightarrow 0$	1p
	(se aplică regula lui L'Hospital)	
b)	Ecuația tangentei: y- $f(x_0)=f'(x_0)(x-x_0)$	1p
	$f(x_0)=0$	1p
	$f'(x) = \frac{1 - \ln x}{x^2}$, $f'(x_0) = 1$	1p
	x^{2} , x^{2}	2p
	y=x-1	
c)	$1-\ln x$	1p
	$f'(x) = \frac{1 - \ln x}{x^2} = 0$	1p
	$lnx-1=0 \rightarrow x=e$	1p
	se întocmește tabelul de variație al funcției	2p

	din tabel se observă că punctul de coordonate $(e, \frac{1}{e})$ este punct de maxim	
2	e	2
2. a)	$I = \int f(x)dx = \int x^{2} \sqrt{x^{2} + 64} dx = x\sqrt{x^{2} + 64} - \int \frac{x^{2} + 64 - 64}{\sqrt{x^{2} + 64}} dx =$	2p 2p
a)	$= x\sqrt{x^2 + 64} - I + 64\ln(x + \sqrt{x^2 + 64})$	2p
	$2I = x\sqrt{x^2 + 64} + 64\ln(x + \sqrt{x^2 + 64})$ $I = \frac{1}{2}(x\sqrt{x^2 + 64} + 64\ln(x + \sqrt{x^2 + 64}))$	1p
	$I = \frac{1}{2} \left(x \sqrt{x^2 + 64} + 64 \ln(x + \sqrt{x^2 + 64}) \right)$	•
b)	Utilizăm metoda schimbării de variabilă:	1p
	$x^2 + 64 = t$	1p
	2xdx=dt	1p
	$\int xf(x)dx = \int x\sqrt{x^2 + 64}dx = \frac{1}{2}\int \sqrt{t}dt = \frac{1}{3}t\sqrt{t} =$	2p
	$\frac{1}{3}(x^2+64)\sqrt{x^2+64}$	
c)	$V = \pi \int_{0}^{1} (x^{2} + 64) dx = \pi \left(\frac{x^{3}}{3} + 64x\right) \Big _{0}^{1} = \frac{193\pi}{3}$	2p
	\int_{0}^{3}	1p
		2p

Varianta 4

Prof: Andone Emanuel

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$a_{10} = a_1 + 9r = 7 + 27 = 34$	2n
1.		3p
	$S_{10} = \frac{(a_1 + a_{10}) \cdot 10}{2} = 205$	2p
	$S_{10} = \frac{(c_1 + c_{10})^{2/2}}{2} = 205$	1
2.	O ecuație de gradul al doilea are rădăcini reale distincte dacă și numai dacă Δ>0	1p
	$\Delta = 4 \text{m}^2 + 1$	2p
	<u>D-4111+1</u>	2p
	4m ² +1>0 oricare ar fi m număr real, deoarece reprezintă o sumă de pătrate	2p
		_
3.	$G_f \cap Oy: f(0) = 5^{-2} - 1 = -\frac{24}{25}$	1p
	25	2p
	C = 0 $C = 0$ $C = 0$ $C = 0$ $C = 0$	- P
	$G_f \cap Ox$: rezolvăm ecuația $f(x)=0 \rightarrow 5^{x-2}=1 \rightarrow x-2=0 \rightarrow x=2$	2p
	24	
	$A(0, -\frac{24}{25})$, B(2,0)	
	25	
4.	P ₃ =3!=6	2p
		-r
	A^{2} 4! 12 A^{2} 2D 12 19 6	3p
	$A_4^2 = \frac{4!}{2!} = 12, \ A_4^2 - 3P_3 = 12 - 18 = -6$	
5.	Doi vectori sunt perpendiculari dacă produsul lor scalar este 0→ 2(5+a)+ 2a=0	2p
] .	Doi vectori sunt perpendiculari daca produsari for scalar este o 12(3+a)+2a o	² P
	5	3p
	$a=-\frac{5}{2}$	

6.
$$A_{ABC} = \frac{AB \cdot AC \cdot \sin A}{2} \rightarrow$$

$$32\sqrt{3} = \frac{8 \cdot 16 \cdot \sin A}{2} \rightarrow \sin A = \frac{\sqrt{3}}{2}$$

$$Măsura unghiului A este egală cu 60° sau 120°$$

$$\cos A = \frac{1}{2} sau \cos A = -\frac{1}{2}$$

1.	O matrice este inversabilă dacă și numai dacă determinantul său este nenul, det A=3a ⁴ -a ²	2p
a)	$\frac{1}{1}$	2p
	$\det A = 3a^3 - a^2 \det a \in R - \{0, \frac{1}{3}\}$	1p
	A este inversabilă pentru orice a $a \in R - \{0, \frac{1}{3}\}$	•
	A este inversabila pentru orice a $a \in K - \{0, -\frac{1}{3}\}$	
b)	$(-2 \ 4 \ -12)$	3p
	$A^{2} = A \cdot A = \begin{pmatrix} -2 & 4 & -12 \\ 0 & -2 & -18 \\ -6 & 4 & 8 \end{pmatrix}$	2p
	$\begin{pmatrix} -6 & 4 & 8 \end{pmatrix}$	
	$\begin{pmatrix} -2 & 0 & -6 \end{pmatrix}$	
	$ (A^2)^{\mathrm{T}} = \begin{pmatrix} -2 & 0 & -6 \\ 4 & -2 & 4 \\ -12 & 18 & 8 \end{pmatrix} $	
	(-12 18 8)	
c)	$\begin{pmatrix} 0 & 3a & -3a \end{pmatrix}$	1p
	$3A = \begin{pmatrix} 0 & 3a & -3a \\ -9 & 12 & -9a \\ -3a & 3a & 0 \end{pmatrix}$	
	$\begin{pmatrix} -3a & 3a & 0 \end{pmatrix}$	2p
	$(a^2-3a -a^2+4a -3a^2)$	
	$A^{2} = \begin{pmatrix} a^{2} - 3a & -a^{2} + 4a & -3a^{2} \\ 3a^{2} - 12 & -3a^{2} - 3a + 16 & -9a \\ -3a & -a^{2} + 4a & -2a^{2} \end{pmatrix}$	2p
	$\left(-3a \qquad -a^2 + 4a \qquad -2a^2 \right)$	
	$(a^2-3a+2 -a^2+a -3a^2+3a)$	
	$\begin{bmatrix} A^2 - 3A + 2I_3 = \begin{pmatrix} a^2 - 3a + 2 & -a^2 + a & -3a^2 + 3a \\ 3a^2 - 3 & -3a^2 - 3a + 6 & 0 \\ 0 & -a^2 + a & 2 - 2a^2 \end{bmatrix} = O_3 \text{ , deci, a=1}$	

2.	$a*(-b) = -ab + a^2 + b^2$	1p
a)	$a^*(-b)-ab = -ab+a^2+b^2-ab=(a-b)^2$	3p
	finalizare	1p
b)	Din definiția monoidului → legea "* " trebuie săfie asociativă	3p
	Din relația $x^*(y^*z)=(x^*y)^*z$, oricare ar fi x,y,z numere reale rezultă $xz(a+b)+x(a^2-a)-zb(b+1)=0$, oricare ar fi x,y,z numere reale \rightarrow	
	$a+b=0$, $a^2-a=0$ şi $b(b+1)=0 \rightarrow a=b=0$ sau $a=1$ şi $b=-1$	2
		2p
c)	Utilizând rezultatul obținut la punctul anterior, se disting două cazuri	2p
	$a=b=0$ → $x*y=xy$, mulţimea elementelor inversabile fiind \mathbb{R}^*	2p
	$a=1$ și $b=-1 \rightarrow x*y=xy+x+y$	
	elementul neutru al acestei legi este 0	
	mulțimea elementelor inversabile este $\mathbb{R}-\{-1\}$	1p

1. a)	$f'(x) = \frac{2-x}{x}$	2p
(a)	e^{λ}	2p
	$f(x)+f'(x)=1 \Leftrightarrow \frac{1}{e^x}=1 \to$	1p
	x=0	
b)	$f'(x) = \frac{2-x}{e^x} = 0 \rightarrow x = 2$	1p
	e^x	1p
	Se realizează tabelul de variație al funcției	1p
	Se precizează semnul primei derivate	2p
	Pe intervalul $(-\infty, 2)$ f este strict crecătoare și pe intervalul $(2, \infty)$ f este monoton descrescătoare	

c)	f(0) = -1	1p
	f'(0)=2	1p
	1 (0)– 2	тр
	ecuația tangentei :y- $f(0)=f'(0)(x-0)$	1p
	y+1=2x	2p
	1	
	4.3	
2.	$g(x)=(x-1)^3$	2p
a)	$\int g(x)dx = \int (x-1)^3 dx = \frac{(x-1)^4}{4} + C$	2p
	$\int g(x)dx - \int (x-1)^{2} dx - \frac{1}{4} + C$	1p
1)		1
b)	$f(x) = x + a + \frac{bx + c}{x^2 + x + 1} \Rightarrow$	1p
		1p
	$x^3-3x^2+3x-1=x^3+(a+1)x^2+x(a+b+1)+a+c \rightarrow$	1p
	$a+1=-3$; $a+b+1=3$; $a+c=-1 \rightarrow$	2p
	a= -4; b=6; c=3	
c)	$\int x - 4 + \frac{3(2x+1)}{x^2 + x + 1} dx = \frac{x^2}{2} - 4x + 3\ln(x^2 + x + 1) + C$	2p
	$\int x^2 + x + 1 \qquad 2$	1p
	$(x^2+x+1)'=2x+1 \rightarrow$	
	$\int (2x+1) dx = \ln(x^2+x+1) + C$	2p
	$\int \frac{(2x+1)}{x^2+x+1} dx = \ln(x^2+x+1) + C$	-r
	$\int_{0}^{1} \int_{0}^{1} \int_{0$	
	$\int x - 4 + \frac{3(2x+1)}{x^2 + x + 1} dx = \frac{x^2}{2} - 4x + 3\ln(x^2 + x + 1) + C$	

Varianta 5

Prof: Andone Emanuel.

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\log_{5} 25$ 2	3p
	$\log_7 25 = \frac{\log_5 25}{\log_5 7} = \frac{2}{\log_5 7}$	
		2p
	log ₅ 7·log ₇ 25=2,deci este număr natural	
2.	$x^2 + x + m \ge -4 \iff x^2 + x + m + 4 \ge 0$	1p
	o funcție de gradul al doilea are semn constant, semnul coeficientului lui x^2 , pe $\mathbb R$ dacă și	2p
	numai dacă $\Delta \le 0, \Delta = -4m - 15$	•
	manufacture 2 = 0,2 mm 12	
	$-4m-15 \le 0 \to m \in \left[-\frac{15}{4}, \infty\right)$	2p
	$-4m-13 \le 0 \rightarrow m \in [-\frac{1}{4}, \infty)$	
3.	1	1p
	$\frac{1}{5^x} = 5^{-x}$	2
		2p
	Ecuația devine $5^{-x} = 5^{-4}$	2p
	x=4	
4.	$A_n^2 = n(n-1) = 56$	2p
		3p
	Se rezolvă ecuația de gradul doi și se alege soluția naturală n=8	Эр
5.	Se calculează fiecare latură a triunghiului cu formula $AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$	2p
		3p
	$AB=AC=1, BC=\sqrt{2}$	
	$P_{ABC}=2+\sqrt{2}$	

6.	$\frac{BC}{\sin A} = 2R$	2p
	$\sin A$	1p
6	$\cos A = \frac{1}{2} \rightarrow \sin A = \frac{\sqrt{3}}{2}$	2p
	$R = \frac{8\sqrt{3}}{3}$	_

1.		2p
a)	$A^2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	2p
	$2I_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$	
	$2I_2 = \begin{pmatrix} 0 & 2 \end{pmatrix}$	
	$A^2 = 2I_2$	1p
b)	$A - xI_2 = \begin{pmatrix} 1 - x & 1 \\ 1 & -1 - x \end{pmatrix}$	2p
	$\det(A - xI_2) = x^2 - 2 = 0$	2p
	$x = \pm \sqrt{2}$	1p
c)	$A^4 \cdot X = (A^2)^2 \cdot X = (2I_2)^2 X = 4X$	2p
	$X \cdot A^4 = X \cdot (A^2)^2 = X(2I_2)^2 = 4X$	2p
	$A^4 \cdot X = X \cdot A^4$	1p
2.	$\sqrt{2}$ este rădăcină a polinomului $f \rightarrow f(\sqrt{2}) = 0$	1p
a)	$f(\sqrt{2}) = 16 + 4\sqrt{2} - a\sqrt{2} = 0$	3p
		1p
	$a=4+8\sqrt{2}$	
b)	Se scriu relațiile lui Viete	3p
	$x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 = \frac{a}{3}$	

	$x_1 x_2 x_3 x_4 = \frac{2}{3}$	2p
0	$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \frac{1}{x_4} = \frac{a}{2}$	
	1	
c)	$(x-1)^2 = x^2 - 2x + 1$	2p
Ì	Câtul este $3x^2+8x+14$ și	2p
	restul este x(20-a)-12	1p

1. a)	$\lim_{\substack{x\to 0\\x>0}} f(x) = -\infty \to x = 0 \text{ este asimptotă verticală la dreapta}$	2p
	0 <x< td=""><td>2p</td></x<>	2p
	$\lim_{x\to\infty} f(x) = \infty \to \text{graficul funcției nu admite asimptotă orizontală}$	1p
	f(x)	
	$\lim_{x \to \infty} \frac{f(x)}{x} = \infty \to \text{graficul funcției nu admite asimptotă oblică}$	
b)		2n
0)	$\lim_{x \to \infty} \frac{f(x)}{x^3} = \lim_{x \to \infty} \frac{(x^2 - x + 1) \ln x}{x^3} =$	2p
		3p
	$=\lim_{x\to\infty}\frac{(x^2-x+1)}{x^2}\cdot\frac{\ln x}{x}=0$	
	1,400	
c)	Ecuația tangentei : $y-y_0=f'(x_0)(x-x_0)$	1p
	$x_0=1, y_0=f(1)=0$	1p
	$(r^2 - r + 1)$	2p
	$f'(x)=(2x-1)\ln x + \frac{(x^2-x+1)}{x}, f'(1)=1$	
		1p
	y=x-1	
2.	Explicitând cele două module se obține	
a)		

_			
		$(-x+2)e^{-x}, x \in (-\infty,0)$	2p
		$f(x) = \begin{cases} (-x+2)e^{-x}, & x \in (-\infty, 0) \\ (-x+2)e^{x}, & x \in [0, 2] \\ (x-2)e^{x}, & x \in (2, \infty) \end{cases}$	
		$(x-2)e^x, x \in (2,\infty)$	2p
		se studiază continuitatea funcției f în punctele 0 și 2, în rest f fiind continuă deoarece este compunere	
1		de funcții elementare	1p
		$l_s(0) \!\!=\! l_d(0) \!\!=\! f(0) \!\!=\! 2; l_s(2) \!\!=\! l_d(2) \!\!=\! f(2) \!\!=\! 0 \longrightarrow f \text{ este continuă în punctele x=2 și x=0}$	1
		f admite primitive pe mulțimea numerelor reale deoarece orice funcție continuă admite primitive	
	b)	Utilizând integrarea prin părți se obține	
		$\int (-x+2)e^{-x}dx = (x-1)e^{-x}$	1p
		$\int (-x+2)e^x dx = (3-x)e^x + c_1$	1p
		$\int (-x+2)e^{-x}dx = (x-1)e^{-x}$ $\int (-x+2)e^{x}dx = (3-x)e^{x} + c_{1}$ $\int (x-2)e^{x}dx = (x-3)e^{x} + c_{2}$	1p
		Din continuitatea primitivei $\rightarrow c_1 = -4$ și $c_2 = 2e^2 - 4$	
		Deci primitiva funcției f va fi	
		$\int (x-1)e^{-x}, x \in (-\infty,0)$	
		$F(x) = \begin{cases} (x-1)e^{-x}, x \in (-\infty, 0) \\ (3-x)e^{x} - 4, x \in [0, 2] \\ (x-3)e^{x} + 2e^{2} - 4, x \in (2, \infty) \end{cases}$	2p
		$(x-3)e^{x} + 2e^{2} - 4, x \in (2,\infty)$	
		Primitiva care trece prin origine este $G(x)=F(x)+c$, $G(0)=0\rightarrow c=1$	
	c)	$\int_{1}^{5} f(x)dx = (x-3)e^{x} \Big _{1}^{5} = e^{4}(2e-1) \ge 32$	2p
		$\int_{4}^{J} (x) dx - (x^{-3})^{e} \left 4 \right ^{-e} \left(2e^{-1} \right) \leq 32$	1p
		$2 < e < 3 \rightarrow 3 < 2e - 1 < 5$	2p
		16 <e<sup>4<81</e<sup>	
		e ⁴ (2e-1)>3·16=48>32	
- 1			

Varianta 6

Prof: ANDONE EMANUEL

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$10\sqrt{3} = \sqrt{300}$	3p
	$289 < 300 < 324 \rightarrow \sqrt{289} < \sqrt{300} < \sqrt{324}$	
	$\rightarrow 17 < \sqrt{300} < 18$	2p
	partea întreagă a numărului $\sqrt{300}$ este 17	
2.	Se impune condiția de existență $x^2 - 3x + 2 > 0$	1p
	Se rezolvă ecuația de gradul al doilea și se obțin soluțiile $x_1=1$ și $x_2=2$	2p
	Utilizând semnul funcției de gradul al doilea se obține $x \in (-\infty, 1) \cup (2, \infty)$	2p
3.	Se impune condiția de existență $x+1 \ge 0 \rightarrow x \ge -1$	1p
	Se ridică egalitatea la pătrat și se obține $x^2+x=0$	2p
	Soluțiile vor fi $x_1=0$ și $x_2=-1$	2p
)
4.	$A_n^k = \frac{n!}{(n-k)!}, 0 \le k \le n, k, n \in \mathbb{N}$	2p
	(n-k)!	3p
	$A_4^2 = 12$	

5.	Ecuația unei drepte de pantă cunoscută, care trece printr-un punct cunoscut este: $y-y_0=m(x-x_0)$	2p
	$m=5, x_0=2, y_0=1$	3p
	y-1=5(x-2)	
9	y=5x-9	
6.	AC fiind cea mai mare latură a triunghiului, ei i se va opune unghiul cel mai mare→cel mai mare	2p
	unghi al triunghiului este unghiul B	1p
	Aplicăm teorema cosinusului	2p
	$AB^2 + BC^2 - AC^2 \qquad \qquad 1$	2p
	$\cos B = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC}, \cos B = -\frac{1}{2}$	

1.	Determinantul poate fi calculat fie cu regula lui Saruss fie utilizând proprietățile determinanților	2p
a)	$\det A = a^3 - 3a + 2 = (a+2)(a-1)^2$	2p
		1p
b)	Înlocuind în fiecare ecuație a sistemului pe x =2, y=1, z=0	3p
	se obține a=0	2p
c)	Pentru a=4 detA≠0, deci sistemul se rezolvă cu regula lui Cramer	1p
	det A=54, $\Delta_x = 0, \Delta_y = 18, \Delta_z = 36$	2p
	soluția sistemului va fi x=0, y= $\frac{1}{3}$, z= $\frac{2}{3}$	2p
2.	$P(x) = (x^{4}+1)(x^{2}+1)(x-1)(x+1)+10 = x^{8}-1+10 = x^{8}+9$	1p
a)	$P(2)=P(-2)=2^8+9=265$	3p
	$Q(x)=(x-1)(x+1)+10=x^2+9$, se observă că polinomul $Q(x)>0$, oricare ar fi x număr real \rightarrow	
	Q(a) = Q(a), oricare ar fi a număr real	1p
b)	Câtul împărțirii este x ⁶ -9x ⁴ +81x ² -729 și	3p
	restul 6570	2p
c)	$x^2+9=x^2-9i^2=$	2p
		1

=(x-3i)(x+3i)	2p

1. a)	$l_s(1) = \sqrt{a^2 + a + 1}, l_d(1) = a , f(1) = \sqrt{a^2 + a + 1}$	2p
(a)	f este continuă în punctul $x=1$ dacă $l_s(1)=l_d(1)=f(1)$	2p
		1p
	$\sqrt{a^2 + a + 1} = a $ \rightarrow ridicând la pătrat se obține : $a^2 + a + 1 = a^2$	
	a= - 1	
b)	Pentru a= -1 funcția f devine: $f(x) = \begin{cases} \sqrt{x^2 - x + 1}, & x \le 1 \\ \sqrt{x - 1} + \sqrt{x}, & x > 1 \end{cases}$	1p
	Pentru a= -1 Tuncția 1 devine. $f(x) = \sqrt{x-1} + \sqrt{x}, x > 1$	
	1	1p
	$f'_{s}(1) = \frac{1}{2}$	1p
	$f'_{d}(1) = \infty$	2p
	f nu este derivabila în punctul x=1, acesta fiind punct unghiular pentru graficul funcției f	
	That este derivabila in panetar x 1, acesta finia panet anginara pentra granear faneçici f	
c)	$\lim_{x \to \infty} \frac{f(x)}{\sqrt{x+2}} = \lim_{x \to \infty} \frac{\sqrt{x-1} + \sqrt{x}}{\sqrt{x+2}} = 2$	1p
	$\int_{-\infty}^{-\infty} \sqrt{x+2} \xrightarrow{x\to\infty} \sqrt{x+2}$	2p
		2p
2.	$\int_{-1}^{1} (x+3) f(x) dx = \int_{-1}^{1} x+3 dx = \int_{-1}^{1} 2(x+3) dx = 0$	2p
a)	$\int_{0}^{1} (x+3)f(x)dx = \int_{0}^{1} \frac{x+3}{(x+3)^{2}+1} dx = \frac{1}{2} \int_{0}^{1} \frac{2(x+3)}{(x+3)^{2}+1} dx =$	2p
	$ = \frac{1}{2}\ln(x^2 + 6x + 10) \Big _{0}^{1} = \frac{1}{2}(\ln 17 - \ln 10) = \frac{1}{2}\ln\frac{17}{10} $	1p
b)	$\int_{0}^{1} f'(x)f''(x)dx = \frac{1}{2} \int_{0}^{1} \{ [f'(x)]^{2} \} dx = \frac{1}{2} [f'(x)]^{2} \Big _{0}^{1}$	1p
		1p

	$f'(x) = -\frac{2x+6}{(x^2+6x+10)^2}, f'(1) = -\frac{8}{289}, f'(0) = -\frac{3}{50}$	1p
	$f'(x) = \frac{-2x+6}{(x^2+6x+10)^2}$	1p
	$f'(1) = \frac{4}{289}$; $f'(0) = \frac{3}{50}$;	TP
	$\int_{0}^{1} f'(x)f''(x)dx = \frac{1}{2}\left[\left(-\frac{8}{289}\right)^{2} - \left(\frac{3}{50}\right)^{2}\right]$	1p
c)	$\int_{0}^{2} (x+3)^{1/2} dx = \int_{0}^{2} (x+3)^{1/2} dx$	2p
	$\int_{1}^{2} f(x)dx = \int_{1}^{2} \frac{(x+3)'}{(x+3)^{2}+1} dx = arctg(x+3) \Big _{1}^{2} = arctg - arctg = 4$	1p 2p
		2p

Varianta 7

Prof: Andrei Lenuța

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$8 = \frac{x - 3 + x + 3}{x - 3 + x + 3}$	3p
	$\begin{vmatrix} 2 \\ 16 = 2x \Rightarrow x = 8 \end{vmatrix}$	2p
2.	f(0) = 0 - 2012 = -2012, f(1) = 1 - 2012 = -2011	2p
	f(2012) = 2012 - 2012 = 0	2p
	p = 0	1p
3.	$3^{2x} = 3^{3x-3}$	1p
	2x = 3x - 3	2p 2p
	x=3	∠p

4.	p=numărul cazurilor favorabile/numărul cazurilor posibile Avem trei cazuri favorabile și cinci cazuri posibile (prin verificări , se obțin propoziții adevărate pentru n= 1,2,3) $p = \frac{3}{5}$	1p 2p 2p
5.	$A_{\Delta ABC} = \frac{1}{2} \Delta , \text{ unde } \Delta = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$ $\Delta = \begin{vmatrix} 0 & -2 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{vmatrix} = 8, A_{\Delta ABC} = 4$	2p 3p
6.		2p
	Ținând cont de relația de mai sus obținem $\cos^2 20^0 + \sin^2 20^0 = 1$	2p

1. a)	Folosim relația $x_1 + x_2 + x_3 = -\frac{b}{a}$	2p
	$x_1 + x_2 + x_3 = 0$	3p
b)	$x_i \left(i = \overline{1,3} \right)$ rădăcină a ecuației $\Rightarrow x_i^3 - 4x_i + 3 = 0 \Rightarrow x_i^3 = 4x_i - 3, i = \overline{1,3}$	3p
	$x_1^3 + x_2^3 + x_3^3 = 4(x_1 + x_2 + x_3) - 9 = 4 \cdot 0 - 9 = -9$	2p
c)	$d = 3x_1x_2x_3 - \left(x_1^3 + x_2^3 + x_3^3\right)$	3p
	$x_1 x_2 x_3 = -3$	1p
	$d = 3 \cdot \left(-3\right) + 9 = 0$	1p
	Obs. Determinantul se poate rezolva usor folosind proprietățile determinanților, și anume se adună toate liniile (coloanele) se obține suma rădăcinilor care este egală cu 0 și astfel determinantul este egal cu 0.	
2. a)	$A_{x} \cdot A_{y} = \begin{pmatrix} 2012^{x} & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2012^{y} & 0 \\ 0 & 1 \end{pmatrix}$	2p
	$A_{x} \cdot A_{y} = \begin{pmatrix} 2012^{x} \cdot 2012^{y} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2012^{x+y} & 0 \\ 0 & 1 \end{pmatrix} = A_{x+y}$	3p
b)	(M,\cdot) grup abelian (comutativ) dacă sunt îndeplinite următoarele axiome asociativitate, comutativitate, element neutru, elemente simetrizabile	1p
	Asociativitate $(A_x \cdot A_y) \cdot A_z = A_x \cdot (A_y \cdot A_z), \forall A_x, A_y, A_z \in M$	1p
	$\left(A_x \cdot A_y \right) \cdot A_z = A_{x+y} \cdot A_z = A_{(x+y)+z} = A_{x+(y+z)} = A_x \cdot \left(A_y \cdot A_z \right)$	
	Comutativitate $A_x \cdot A_y = A_y \cdot A_x, \forall A_x, A_y \in M$	1p
	$A_{x} \cdot A_{y} = A_{x+y} = A_{y+x} = A_{y} \cdot A_{x}$	
	Element neutru $(\exists)A_e \in M$ astfel încât $A_x \cdot A_e = A_x$, $\forall A_x \in M$	1p

	$A_{x+e} = A_x \Longrightarrow x + e = x \Longrightarrow e = 0$, deci elemental neutru este A_0	1
	Elemente simetrizabile $A_x \cdot A_{x'} = A_e \Rightarrow A_{x+x'} = A_0 \Rightarrow x+x'=0 \Rightarrow x'=-x$	lp
c)	$f(x+y) = A_{x+y}$	2p
	$f(x+y) = A_{x+y}$ $A_{x+y} = A_x \cdot A_y$ $A_x \cdot A_y = f(x) \cdot f(y)$	2p
	$A_{x} \cdot A_{y} = f(x) \cdot f(y)$	1p

1. a)		2p
(a)	$\left(\frac{1}{x+1}\right) = -\frac{1}{\left(x+1\right)^2}$	
	$f'(x) = \left(x+1+\frac{1}{x+1}\right)' = x'+1' + \left(\frac{1}{x+1}\right)' = 1 - \frac{1}{\left(x+1\right)^2}$	2p
	$f'(x) = \frac{x^2 + 2x}{(x+1)^2}$	1p
b)	Monotonia funcției este dată de semnul derivatei întâi	1p
	$f'(x) = 0 \Rightarrow \frac{x^2 + 2x}{(x+1)^2} = 0 \Rightarrow x^2 + 2x = 0$	1p
	$x_1 = -2, x_2 = 0, f'(x) \ge 0 \text{ pentru } x \in (-\infty, -2] \cup [0, +\infty), f'(x) \le 0 \text{ pentru } x \in [-2, 0] - \{-1\}$	2p
	Pentru $x \in (-\infty, -2] \cup [0, +\infty)$ f este crescătoare, iar pentru $x \in [-2, 0] - \{-1\}$ f este	1p
	descrescătoare	
c)	$l_{s}\left(-1\right) = \lim_{\substack{x \to -1 \\ x < 1}} f\left(x\right) = -\infty$	2p
	A - 1	2p
	$l_d\left(-1\right) = \lim_{\substack{x \to -1 \\ x \to 1}} f\left(x\right) = +\infty$	
	Ecuația asimptotei verticale este $x = -1$	1p
2.	$\left(\sqrt{x^2+5}\right)' = \frac{x}{\sqrt{x^2+5}}$	2p
a)	$\sqrt{x^2+5}$	
	$\int_{0}^{2} \frac{x}{f(x)} dx = \int_{0}^{2} \frac{x}{\sqrt{x^{2} + 5}} dx = \int_{0}^{2} \left(\sqrt{x^{2} + 5} \right)' dx = \sqrt{x^{2} + 5} \Big _{0}^{2}$	2p
	$\left \sqrt{x^2 + 5} \right _0^2 = 3 - \sqrt{5}$ $V = \pi \int_0^4 f^2(x) dx$	1p
b)	$V = \pi \int_{0}^{4} f^{2}(x) dx$	1p
	$V = \pi \int_{2}^{4} \left(\sqrt{x^{2} + 5}\right)^{2} dx = \pi \int_{2}^{4} \left(x^{2} + 5\right) dx$	2p
		2p
	I	-P

	$V = \pi \left(\frac{x^3}{3} + 5x\right)\Big _{2}^{4} = \pi \left(\frac{64}{3} + 20 - \frac{8}{3} - 10\right) = \frac{86\pi}{3}$	
c)	$\int_{-2}^{2} x\sqrt{x^2 + 5} dx = \int_{-2}^{0} x\sqrt{x^2 + 5} dx + \int_{0}^{2} x\sqrt{x^2 + 5} dx$	2p
	$\int_{-2}^{0} x\sqrt{x^2 + 5} dx = -\int_{0}^{2} x\sqrt{x^2 + 5} dx$	2p
	$\int_{-2}^{2} x\sqrt{x^2 + 5} dx = \int_{-2}^{0} x\sqrt{x^2 + 5} dx + \int_{0}^{2} x\sqrt{x^2 + 5} dx = -\int_{0}^{2} x\sqrt{x^2 + 5} dx + \int_{0}^{2} x\sqrt{x^2 + 5} dx = 0$	1p

Varianta 8

Prof: Andrei Lenuța

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$C_5^3 = 10$	3p
	10-10=0	2p
2.	$5x+6>0 \Rightarrow x>-\frac{6}{5} \Rightarrow x \in \left(-\frac{6}{5},+\infty\right)$	1p
	$5x+6=36 \Rightarrow x=6$	2p
	$6 \in \left(-\frac{6}{5}, +\infty\right)$, deci soluția ecuației este $x = 6$	2p
3.	Ecuația are rădăcini reale egale dacă $\Delta=0$	1p
	$\Delta = b^2 - 4ac = (3m+2)^2 - 4 = 9m^2 + 24m + 4 - 4 = 9m^2 + 24m$	2p
	$9m^2 + 12m = 0 \Rightarrow m_1 = 0, m_2 = -\frac{4}{3}$ şi $m_2 = 0$	2p
4.	Fie x prețul inițial al produsului, atunci $x - \frac{5}{100}x = 190$	2p
		1p
	$\frac{95}{100}x = 190$	
	190·100	1p
	95	1p
5.	$x = 200 \mathrm{lei}$	_
J.	$\frac{x-x_1}{x} = \frac{y-y_1}{x} \Rightarrow \frac{x-5}{x} = \frac{y-4}{x}$	2p
	$x_2 - x_1$ $y_2 - y_1$ $0 - 5$ $2 - 4$	3p

	$2(x-5) = 5(y-4) \Rightarrow 2x-5y+10=0$	
6.	Formula pentru aria triunghiului este $A_{\Delta DEF} = \frac{DE \cdot DF \cdot \sin D}{2}$	2p
	$12\cdot 6\cdot \sin 60^{\circ}$	1p
\bigcirc	Z	-r
	$A_{\Delta DEF} = 36 \cdot \frac{\sqrt{3}}{2} = 18\sqrt{3}$	2p

1. a)	$A^2 = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 12 & 12 \end{pmatrix}$	2p
	$\begin{pmatrix} 4 & 4 \\ 12 & 12 \end{pmatrix} = 4 \cdot \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} = 4A$	3p
b)	$X(a) \cdot X(b) = (aA + I_2)(bA + I_2) = abA^2 + aA + bA + I_2$	3p
	Ținând cont că $A^2 = 4A$	
	$\Rightarrow X(a) \cdot X(b) = 4abA + aA + bA + I_2 = (4ab + a + b)A + I_2 = X(a + b + 4ab)$	2p
c)	$X(a)$ inversabilă $X(a) \Leftrightarrow \det(X(a)) \neq 0$	1p
	$\det(X(a)) = \begin{vmatrix} a+1 & a \\ 3a & 3a+1 \end{vmatrix} = (a+1)(3a+1) - 3a^2$	2p
	$\det(X(a)) = 3a^2 + a + 3a + 1 - 3a^2 = 4a + 1 \neq 0$, pentru orice $a \in \mathbb{Z}$	2p
2. a)	Aplicăm relațiile lui Viete $x_1 + x_2 + x_3 = -4$ și $x_1x_2 + x_1x_2 + x_2x_3 = -10$	1p
(a)	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_2 + x_2x_3) = (-4)^2 - 2(-10)$	3p
	$x_1^2 + x_2^2 + x_3^2 = 16 + 20 = 36$, este o constantă, deci nu depinde de m	1p
b)	$x_i \left(i = \overline{1,3} \right)$ rădăcină a lui $f \Rightarrow f\left(x_i \right) = 0 \Rightarrow x_i^3 = -4x_i^2 + 10x_i - m$	3p
	$\Rightarrow x_1^3 + x_2^3 + x_3^3 = -4\left(x_1^2 + x_2^2 + x_3^2\right) + 10\left(x_1 + x_2 + x_3\right) - 3m$	
	Înlocuind $x_1 + x_2 + x_3 = -4$ și $x_1^2 + x_2^2 + x_3^2 = 26$ se obține	2p
	$-144 - 3m = -9 \Rightarrow 3m = -135 \Rightarrow m = -45$	
c)	$x_1 + x_2 + x_3 = -4, x_1 x_2 + x_2 x_3 + x_3 x_2 = -10, x_1 x_2 x_3 = -m$	2p
	$\begin{vmatrix} x_1 + x_2 + x_3 & x_2 & x_3 \end{vmatrix}$ $\begin{vmatrix} 1 & x_2 & x_3 \end{vmatrix}$	
	$d = \begin{vmatrix} x_1 + x_2 + x_3 & x_2 & x_3 \\ x_1 + x_2 + x_3 & x_3 & x_1 \\ x_1 + x_2 + x_3 & x_1 & x_2 \end{vmatrix} = (x_1 + x_2 + x_3) \begin{vmatrix} 1 & x_2 & x_3 \\ 1 & x_3 & x_1 \\ 1 & x_1 & x_2 \end{vmatrix} = 1$	2p
	$(x_1 + x_2 + x_3)(x_1x_2 + x_1x_3 + x_3x_2 - x_1^2 - x_2^2 - x_3^2)$	
	$d = -4(-10 - 26) = -4(-36) = 144 \in \mathbb{N}$	1p

1. a)	$f'(x) = (\sqrt{x^2 + 2})' = \frac{(x^2 + 2)'}{2\sqrt{x^2 + 2}}$	3p
	2 \(\lambda \) + 2	2p
	$= \frac{2x}{2\sqrt{x^2 + 2}} = \frac{x}{\sqrt{x^2 + 2}}$	
b)	$\lim_{x \to \infty} f(x) = +\infty \Rightarrow \text{funcția nu admite asimptotă orizontală}$	1p
	$y = mx + n$, $m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\sqrt{x^2 + 2}}{x} = 1$	1p
	$n = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} (\sqrt{x^2 + 2} - x)^{\infty - \infty} = \lim_{x \to \infty} \left(\frac{x^2 + 2 - x^2}{\sqrt{x^2 + 2} + x} \right) = \lim_{x \to \infty} \left(\frac{2}{\sqrt{x^2 + 2} + x} \right) = 0$	2p
	Ecuația asimptotei ablice este $y = x$	1p
c)	f convexă dacă $f''(x) \ge 0, \forall x \in \mathbb{R}$	1p
	$f''(x) = \left(\frac{x}{\sqrt{x^2 + 2}}\right)'' = \frac{x'\sqrt{x^2 + 2} - x(\sqrt{x^2 + 2})'}{\left(\sqrt{x^2 + 2}\right)^2} = \frac{\sqrt{x^2 + 2} - x \cdot \frac{x}{\sqrt{x^2 + 2}}}{x^2 + 2}$	2p
	$\frac{x^2 + 2 - x^2}{\left(x^2 + 2\right)\sqrt{x^2 + 2}} = \frac{2}{\left(x^2 + 2\right)\sqrt{x^2 + 2}} \ge 0, \forall x \in \mathbb{R}$	2p
2. a)	$\int (x+9)^2 \cdot \frac{1}{x+9} dx = \int (x+9) dx$	2p
	$\int xdx + 9\int dx = \frac{x^2}{2} + 9x + C$	3p
b)	$f_2(x) = \frac{1}{x^2 + 9}$	1p
	$\int_{0}^{1} \frac{x}{x^{2} + 9} dx = \frac{1}{2} \int_{0}^{1} \frac{\left(x^{2} + 9\right)'}{x^{2} + 9} dx$	2p
	$=\frac{1}{2}\ln\left(x^2+9\right)\Big _0^1$	1p
	$= \frac{1}{2} \left(\ln \left(1 + 9 \right) - \ln \left(0 + 9 \right) \right) = \frac{1}{2} \ln \frac{10}{9}$	2p
c)	Aria este egală cu $\int_{0.012}^{1} f_{2012}(x) dx$	1p
	$0 \le x \le 1 \Leftrightarrow 0 \le x^{2012} \le 1 \Leftrightarrow 9 \le x^{2012} + 9 \le 10$	2p
	$\Leftrightarrow \frac{1}{10} \le \frac{1}{x^{2012} + 9} \le \frac{1}{9} \Leftrightarrow \frac{1}{10} \le f_{2012}(x) \le \frac{1}{9} \Leftrightarrow$	1p
	$\left \frac{1}{10} \le \int_{0}^{1} f_{2012}(x) dx \le \frac{1}{9} \right $	1p
	10 0	

Varianta 9

1.	a=3	2p
	$b = \sqrt[3]{64} = \sqrt[3]{4^3} = 4$	2p
	a <b< td=""><td>1p</td></b<>	1p
2.	$\Delta = b^2 - 4ac = 9 - 8 = 1$	1p
	$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \Rightarrow x_1 = \frac{1}{2}, x_2 = 1$	2p
	$x \in \left[\frac{1}{2}, 1\right] \cap \mathbb{Z} = \{1\}$	2p
3.	$\frac{10}{100} \cdot 150 = 15 \text{lei}$	2p
	100 150 lei+15 lei=165 lei prețul obiectului	3p
4.	$A_n^k = \frac{n!}{(n-k)!}, n, k \in \mathbb{N}, n \ge k$	2p
	$A_5^3 = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 60$	3p
5.	$A(m^2, 4m+1)$ se află pe dreapta d dacă și numai dacă coordonatele punctului A verifică ecuația	2p
	dreptei d.	
	În ecuația dreptei punem $x = m^2$ și $y = 4m + 1$, obținem	3p
	$m^2 + 4m + 4 = 0 \Rightarrow (m+2)^2 = 0 \Rightarrow m = -2$	
6.	$\sin^2 x + \cos^2 x = 1$	1p
		3p

$$\cos^2 x = 1 - \sin^2 x = 1 - \frac{1}{25} = \frac{24}{25} \Rightarrow \cos x = \pm \frac{\sqrt{24}}{5} = \pm \frac{2\sqrt{6}}{5}$$
Cum x este măsura unui unghi ascuțit, rezultă $\cos x = \frac{2\sqrt{6}}{5}$

1. a)	$\det A = \begin{vmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix}$	1p
	$\det A = 8 + 0 + 0 - 0 - 0 - 0$	3p
	$\det A = 8$	1p
b)	A^{-1} este inversa lui A dacă $A^{-1} \cdot A = I_3$	2p
	$A^{-1} \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$	3p
c)	Am văzut la punctul a că A^{-1} este inversa lui A	1p
	Deci, $X = A^{-1} \cdot \begin{pmatrix} 2 & 2 & 2 \\ 4 & 4 & 4 \\ 6 & 6 & 6 \end{pmatrix}$	2p
	$\begin{pmatrix} -2 & -2 & -2 \end{pmatrix}$	2p
	$X = \begin{pmatrix} -2 & -2 & -2 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$	
2.	$\sqrt{2012} \cdot \sqrt{2012} = 2012$	1p
a)	$\sqrt{2012} * \sqrt{2012} = \sqrt{2012} \cdot \sqrt{2012} - \sqrt{2012} \cdot \sqrt{2012} - \sqrt{2012} \cdot \sqrt{2012} + 2012 + \sqrt{2012}$	3p

	Rezultatul final $\sqrt{2012} * \sqrt{2012} = \sqrt{2012}$	1p
b)	$x * y = xy - x\sqrt{2012} - y\sqrt{2012} = x\left(y - \sqrt{2012}\right) - \sqrt{2012}\left(y - \sqrt{2012}\right) + \sqrt{2012}$	3p
\$	$x * y = (x - \sqrt{2012})(y - \sqrt{2012}) + \sqrt{2012}$	2p
c)	$x * a = a \Leftrightarrow \left(x - \sqrt{2012}\right)\left(a - \sqrt{2012}\right) + \sqrt{2012} = a$	2p
	$\left(x - \sqrt{2012}\right)\left(a - \sqrt{2012}\right) + \sqrt{2012} - a = 0 \Leftrightarrow \left(a - \sqrt{2012}\right)\left(x - \sqrt{2012} - 1\right) = 0$	2p
	Cum x este un număr real oarecare $\Rightarrow a = \sqrt{2012}$	1p

-		1 .
1. a)	f continuă în $x_0 = 1 \Leftrightarrow l_s(1) = l_d(1) = f(1)$	1p
	$l_{s}(1) = \lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} (2x - 1) = 1, \ l_{d}(1) = \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} \left(\frac{2}{x^{2} + 1}\right) = 1, \ f(1) = \frac{2}{1^{2} + 1} = 1$	3p
	Deci f este continuă în $x_0 = 1$	1p
b)	$\lim_{x \to \frac{1}{2}} \frac{f(x)}{4x^2 - 1} = \lim_{x \to \frac{1}{2}} \frac{2x - 1}{4x^2 - 1}, \text{ avem cazul de excepție } \frac{0}{0}$	2p
	$\lim_{x \to \frac{1}{2}} \frac{2x-1}{4x^2 - 1} = \lim_{x \to \frac{1}{2}} \frac{2x-1}{(2x-1)(2x+1)} = \lim_{x \to \frac{1}{2}} \frac{1}{2x+1}$	2p
	Deci, limita este egală cu $\frac{1}{2}$	1p
c)	Ecuația tangentei la graficul funcției f este $y - f(x_0) = f'(x_0)(x - x_0)$	1p
	Calculăm $f'(x)$, $f'(x) = \left(\frac{2}{x^2 + 1}\right)' = \frac{-4x}{\left(x^2 + 1\right)^2}$, $f'(2) = -\frac{8}{25}$	2p
	Ecuația este	2p
	$y - \frac{2}{5} = -\frac{8}{25}(x - 2)$	
	8x + 25y - 26 = 0	
2.	$f_1(x) = -3x^2 + 4x + 2012$	1p
a)	$F(x) = \int f_1(x) dx = \int (-3x^2 + 4x + 2012) dx = -3\frac{x^3}{3} + 4\frac{x^2}{2} + 2012x + C$	3p
	$F(x) = -x^3 + x^2 + 2012x + C$	1p

	b)	$f_2(x) = 8x + 2012$	1p
		Aria este egală cu $A = \int_{0}^{1} f_{2}(x) dx$	1p
		$A = \int_{0}^{1} (8x + 2012) dx = 8 \frac{x^{2}}{2} \Big _{0}^{1} + 2012 x \Big _{0}^{1} = 4 - 0 + 2012 - 0$	2p
		A = 2016	1p
	c)	$\int_{1}^{e^{2}} \frac{f_{2}(x) - 2012}{x} \cdot \ln x dx = \int_{1}^{e^{2}} \frac{8x + 2012 - 2012}{x} \cdot \ln x dx = \int_{1}^{e^{2}} \frac{8x}{x} \cdot \ln x dx = 8\int_{1}^{e^{2}} \ln x dx$	1p
		Integrala obținută se rezolvă prin părți $8\int_{1}^{e^{2}} \ln x dx = 8\int_{1}^{e^{2}} (x)' \ln x dx = 8\left(x \ln x\Big _{1}^{e^{2}} - \int_{1}^{e^{2}} x (\ln x)' dx\right)$	2p
		$8\left(e^{2} \ln e^{2} - \int_{1}^{e^{2}} x \cdot \frac{1}{x} dx\right) = 8\left(2e^{2} - x\Big _{1}^{e^{2}}\right) = 8\left(2e^{2} - e^{2} + 1\right) = 8\left(e^{2} + 1\right)$	2p
L			

Varianta 10

Prof . Badea Daniela

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\sqrt{5-2\sqrt{6}} = \sqrt{3}-\sqrt{2}$	2p
	$\sqrt{\left(1-\sqrt{2}\right)^2} = \sqrt{2}-1$	2p
	$N=0\in\mathbb{N}$	1p
2.	$\Delta = m^2 - 12$	1p
	$\Delta \ge 0 \Leftrightarrow m^2 - 12 \ge 0 \Leftrightarrow$	2p
	$m \in \left(-\infty, -2\sqrt{3}\right] \cup \left[2\sqrt{3}, \infty\right)$	2p

3.	$2 \cdot 9^x = 3^{x+1} + 5 \cdot 3^x - 6$	2p
	$3^x = t \Rightarrow 2t^2 = 3t + 5t - 6 \Leftrightarrow t^2 - 4t + 3 = 0$	1p
	$t_1 = 1 \Longrightarrow x_1 = 0$	1p
	$t_2 = 3 \Longrightarrow x_2 = 1$	1p
4.	Nr. cazuri posibile =12	1p
	$C_{11}^0 = C_{11}^{11} = 1$	1p
	$C_{11}^k : 11(\forall)k \in \{1, 2,, 10\}$	1p
	Nr. cazuri favorabile =10	1p
	$P = \frac{5}{6}$	1p
5.		
3.	$AB = \sqrt{5}, AC = \sqrt{20}, BC = 5$	2p
	$\triangle ABC$ dreptunghic în A (R.T.P)	1p
	M centrul cercului circumscris \Rightarrow M mijlocul lui (BC)	10
	(1, 1)	1p
	$\Rightarrow M\left(\frac{1}{2},0\right)$	1p
6.	$m = 0 \Rightarrow \vec{u}$ și \vec{v} necoliniari	1p
	$m \neq 0 \Rightarrow \frac{m^2 - 1}{m} = 2$	2p
	$\Leftrightarrow m^2 - 2m - 1 = 0 \Leftrightarrow m_{1,2} = 1 \pm \sqrt{2}$	2p

1.	$\det A = 5$	1p
a)	$A^2 = \begin{pmatrix} -1 & 8 \\ -4 & 7 \end{pmatrix}$	2p
	$A^{3} = \begin{pmatrix} -9 & 22 \\ -11 & 13 \end{pmatrix}.$	2p
b)	$A^2 = 4A - 5I_2$ se verifică prin calcul direct	2p
	$A^{n+1}=4A^n-5A^{n-1}, \ (\forall)n\in\mathbb{N}, n\geq 2$ se demonstrează prin inducție matematică	3p
c)	Presupunem că $(\exists) m \in \mathbb{N}^*$ astfel încât $A^m = I_2 \Rightarrow \det A^m = 1 \Leftrightarrow$	2p
	$\Leftrightarrow (\det A)^m = 1 \Leftrightarrow 5^m = 1 \text{ fals}$	3p
2.	$f = g \cdot h + r$ $h = X^4 - X^3 + X$	1p
a)	$h = X^4 - X^3 + X$	2p
	$r = -X^3 + 1$	2p
b)	Relațiile lui Viette $\begin{cases} s = x_1 + x_2 = -1 \\ p = x_1 \cdot x_2 = 1 \end{cases}$	1p
	$\left x_1^2 + x_2^2 = s^2 - 2p = -1 \right $	1p

	$ \begin{vmatrix} x_1 & \text{si } x_2 & \text{rădăcinile lui } g \Rightarrow \begin{cases} x_1^2 + x_1 + 1 = 0 / \cdot x_1 \\ x_2^2 + x_2 + 1 = 0 / \cdot x_2 \end{cases} \Rightarrow \begin{cases} x_1^3 = -x_1^2 - x_1 \\ x_2^3 = -x_2^2 - x_2 \end{cases} $ $ \Rightarrow x_1^3 + x_2^3 = 1 + 1 = 2 $	2p 1p
c)	$f(x_1^2) + f(x_2^2) = (x_1^{16} + x_1^8 + 1) + (x_2^{16} + x_2^8 + 1) =$	2p
	$= (x_1 + x_2) + (x_1^2 + x_2^2) + 2 =$	2p
	$=-1-1+2=0\in\mathbb{N}$	1p

1.	$\lim_{x\to\infty}f(x)=0$	2p
a)		
	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1}{\sqrt{3+x} + 2} = \frac{1}{4}$	3p
b)	$f^{2}(x) = -2f'(x) \cdot \sqrt{3+x} \Leftrightarrow -\frac{f'(x)}{f^{2}(x)} = \frac{1}{2\sqrt{3+x}} \Leftrightarrow \left(\frac{1}{f(x)}\right)' = \frac{1}{2\sqrt{3+x}}$	1p
	$\frac{1}{f(x)} = \sqrt{3+x} + 2 \Leftrightarrow \left(\frac{1}{f(x)}\right) = \frac{1}{2\sqrt{3+x}} \Rightarrow \text{relația adevărată}$	1p
	$f'(x) = -\frac{f^2(x)}{2\sqrt{3+x}} < 0 \ (\forall) x \in (-3,1) \cup (1,\infty), f_s(1) = f_d(1) = \frac{1}{4}$	2p
	$\Rightarrow f$ strict descrescătoare pe D	1p
c)	Ecuația tangentei la grafic într-un punct	1p
	$f(-2) = \frac{1}{3}, f'(-2) = -\frac{f^2(-2)}{2} = -\frac{1}{18}$	2p
	$\Rightarrow y - f(-2) = f'(-2)(x+2) \Leftrightarrow$	1p
	$\Leftrightarrow x + 18y - 4 = 0$	1p
2. a)	F derivabilă pe \mathbb{R} (1)	1p
(a)	$F'(x) = \left(e^{\cos x} + \sin x - x + 1\right)' = -\sin x \cdot e^{\cos x} + \cos x - 1 = f(x) (\forall) x \in \mathbb{R} $ (2)	2p
	(1) și $(2) \Rightarrow F$ primitivă pentru f	2p
b)	$\int_{0}^{\frac{\pi}{2}} f(x)dx = F(x)\Big _{0}^{\frac{\pi}{2}} =$	2p
	$= \left(e^{\cos x} + \sin x - x\right)\Big _0^{\frac{\pi}{2}} =$	1p
	$=2-e-\frac{\pi}{2}$	2p

c)	$\int_{0}^{\frac{\pi}{4}} \frac{f(x) - \cos x + 1}{(\sin^{2} x - 1)e^{\cos x}} dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos^{2} x} dx =$	2p
	$=\frac{1}{4}=\frac{\pi}{4}$	2p
7	$\cos x^{10}$ $= \sqrt{2} - 1$	1p

Varianta 11

Prof . Badea Daniela

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1. $N = \frac{\left(-\frac{1}{3}\right)^{2012} - 1}{-\frac{1}{3} - 1} : \frac{3^{2012} - 1}{3^{2012}} = \frac{2}{3}$ 2. $a \le b \text{ sunt soluțiile ecuației } x^2 - x - 12 = 0$ $\Rightarrow \text{ numerele sunt } - 3 \le i \text{ 4}$ 3. $2 \log_2 x - 1 \le 3$ $\Leftrightarrow \log_2 x \le 2$ $\Leftrightarrow x \le 4$ $\Rightarrow x \in \{1, 2, 3, 4\}$ 4. $x - \frac{20}{100}x = \frac{4}{5}x$ $\frac{110}{100} \cdot \frac{4}{5}x = 1760$ $x = 2000$	
2. $a ext{ si } b ext{ sunt soluţiile ecuaţiei} x^2 - x - 12 = 0$ $\Rightarrow \text{ numerele sunt} - 3 ext{ si } 4$ 3. $2 \log_2 x - 1 \le 3$ $\Leftrightarrow \log_2 x \le 2$ $\Leftrightarrow x \le 4$ $\Rightarrow x \in \{1, 2, 3, 4\}$ 4. $x - \frac{20}{100}x = \frac{4}{5}x$ $\frac{110}{100} \cdot \frac{4}{5}x = 1760$ $x = 2000$	3p 2p
$\Rightarrow \text{numerele sunt } -3 \text{ si } 4$ 3. $2\log_2 x - 1 \le 3$ $\Leftrightarrow \log_2 x \le 2$ $\Leftrightarrow x \le 4$ $\Rightarrow x \in \{1, 2, 3, 4\}$ 4. $x - \frac{20}{100}x = \frac{4}{5}x$ $\frac{110}{100} \cdot \frac{4}{5}x = 1760$ $x = 2000$	_
$\Leftrightarrow \log_2 x \le 2$ $\Leftrightarrow x \le 4$ $\Rightarrow x \in \{1, 2, 3, 4\}$ 4. $x - \frac{20}{100}x = \frac{4}{5}x$ $\frac{110}{100} \cdot \frac{4}{5}x = 1760$ $x = 2000$	3p 2p
$\Leftrightarrow x \le 4$ $\Rightarrow x \in \{1, 2, 3, 4\}$ 4. $x - \frac{20}{100}x = \frac{4}{5}x$ $\frac{110}{100} \cdot \frac{4}{5}x = 1760$ $x = 2000$	1p
$\Rightarrow x \in \{1, 2, 3, 4\}$ 4. $x - \frac{20}{100}x = \frac{4}{5}x$ $\frac{110}{100} \cdot \frac{4}{5}x = 1760$ $x = 2000$	1p
4. $x - \frac{20}{100}x = \frac{4}{5}x$ $\frac{110}{100} \cdot \frac{4}{5}x = 1760$ $x = 2000$	2p
$x - \frac{20}{100}x = \frac{1}{5}x$ $\frac{110}{100} \cdot \frac{4}{5}x = 1760$ $x = 2000$	1p
$\frac{110}{100} \cdot \frac{4}{5} x = 1760$ $x = 2000$	>
x = 2000	1p
x = 2000	2p
	2p
T 75 114 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	_P
5. M mijlocul lui (AB) \Rightarrow M(1,2)	1p
	1p

	$m_{AB} = \frac{1}{2}$	1p 2p
	d mediatoarea $\Rightarrow m_d = -2$	- P
6.	d: 2x + y - 4 = 0 $\sin 0^0 = 0, \sin 90^0 = 1$	1p
	$\sin^2 15^0 + \sin^2 75^0 = \sin^2 15^0 + \cos^2 15^0 = 1$	1 1p
1	$\sin^2 30^0 + \sin^2 60^0 = 1$ $\sin^2 45^0 = \frac{1}{2}$	1p
	$\sin^2 45^\circ = \frac{1}{2}$	1p
	$S = \frac{7}{2}$	1p

1.	$\det A = 4 + m^2 - m^2 + 2m - 2m - m^2$	3p
a)	$=4-m^2$	2p
b)	(S)sistemul este compatibil determinat \Leftrightarrow det $A \neq 0$	2p
	$4 - m^2 \neq 0 \Leftrightarrow m \in \mathbb{R} \setminus \{\pm 2\}$	3p
c)	$m = 0 \Rightarrow \det A = 4$	1p
	$d_x = 4, d_y = 4, d_z = -4 \Longrightarrow$	3p
	$\Rightarrow (x, y, z) \in \{(1, 1, -1)\}$	1p
2. a)	$f_{a,b}$: $(X-1) \Leftrightarrow f_{a,b}(1) = 0$	1p
(a)	$f_{a,b}(1) = 2a^2 - 2ab + b^2 + 2a + 1 = (a-b)^2 + (a-1)^2$	2p
	$(a-b)^{2} + (a-1)^{2} = 0 \Leftrightarrow \begin{cases} (a-b)^{2} = 0 \\ (a-1)^{2} = 0 \end{cases}$	2p
	$\Rightarrow a = b = 1$	1p
b)	x_1, x_2, x_3 rădăcinile polinomului $f_{1,1} = 2X^3 - 2X^2 + X - 1 \Rightarrow$	1p
	$\begin{cases} s_1 = x_1 + x_2 + x_3 = 1; \ s_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 = \frac{1}{2}; \ s_3 = x_1 x_2 x_3 = \frac{1}{2} \\ S_2 = x_1^2 + x_2^2 + x_3^2 = s_1^2 - 2s_2 = 0 \\ \left[2x_1^3 - 2x_1^2 + x_1 - 1 = 0 \right] \left[2x_1^3 = 2x_1^2 - x_1 + 1 \right] \end{cases}$	1p
	$\left\{2x_2^3 - 2x_2^2 + x_2 - 1 = 0 \iff \left\{2x_2^3 = 2x_2^2 - x_2 + 1\right\}\right\}$	TP
	$2x_3^3 - 2x_3^2 + x_3 - 1 = 0 2x_3^3 = 2x_3^2 - x_3 + 1$	
	$x_1^3 + x_2^3 + x_3^3 = \frac{1}{2}(2S_2 - S_1 + 3) = 1$	1p
		1p

c)	$2 \cdot 8^{x} - 2^{2x+1} + 2^{x} - 1 = 0 \Leftrightarrow 2 \cdot 2^{3x} - 2 \cdot 2^{2x} + 2^{x} - 1 = 0$	2p
	Notăm $2^x = t \Rightarrow 2t^3 - 2t^2 + t - 1 = 0$	1p
	$\Rightarrow (t-1)(2t^2+1) = 0 \Rightarrow t = 1$	1p
	$2^x = 1 \Longrightarrow x = 0$	1p

		1
1. a)	$f'(x) = \left(x\sqrt{3} - 2\right)^3$	1p
	$f'(x) = (x\sqrt{3} - 2)^3$ $f'(x) = 0 \Leftrightarrow x = \frac{2\sqrt{3}}{3}$	2p
	$\Rightarrow f$ strict descrescătoare pe $\left[-2, \frac{2\sqrt{3}}{3}\right]$ și strict crescătoare pe $\left[\frac{2\sqrt{3}}{3}, 2\right]$	2p
b)	Fie m_1 și m_2 pantele celor două tangente	1p
	$m_1 = f'\left(\frac{\sqrt{3}}{3}\right) = -1$	1p
	$m_2 = f'\left(\sqrt{3}\right) = 1$	1p
	$m_1 \cdot m_2 = -1 \Rightarrow$ cele două tangente sunt perpendiculare	2p
c)	$\lim_{x \to \sqrt{3}} \left(f'(x) \right)^{\frac{1}{x - \sqrt{3}}} \stackrel{\binom{1^{\infty}}{=}}{=} \lim_{x \to \sqrt{3}} \left[\left(1 + \left(f'(x) - 1 \right) \right)^{\frac{1}{f'(x) - 1}} \right]^{\frac{f'(x) - 1}{x - \sqrt{3}}} =$	2p
	$=e^{\lim_{x\to\sqrt{3}}\frac{\left(x\sqrt{3}-2\right)^{3}-1}{x-\sqrt{3}}} = e^{\lim_{x\to\sqrt{3}}\frac{\left(x\sqrt{3}-3\right)\left[\left(\left(x\sqrt{3}-2\right)^{2}+\left(x\sqrt{3}-2\right)+1\right)\right]}{x-\sqrt{3}}} =$	2p
	$= e^{\lim_{x \to \sqrt{3}} \sqrt{3} \left((x\sqrt{3} - 2)^2 + (x\sqrt{3} - 2) + 1 \right)} = e^{3\sqrt{3}}$	1p
2. a)	$\int_{-1}^{1} (x+2) f_1(x) dx = \int_{-1}^{1} (x-1) dx =$	1p
	$=\left(\frac{x^2}{2}-x\right)\Big _{-1}^1=$	2p
	=-2	2p
b)	$I_1 = \int_{-1}^{1} \frac{x-1}{x+2} dx = \int_{-1}^{1} \left(1 - \frac{3}{x+2}\right) dx =$	3p
	$= x \Big _{-1}^{1} - 3\ln x + 2 \Big _{-1}^{1} = 2 - 3\ln 3$	2p

c)
$$\Leftrightarrow I_{n+1} + 3I_n = \int_{-1}^{1} \frac{(x-1)^{n+1} + 3(x-1)^n}{x+2} dx =$$

$$= \int_{-1}^{1} (x-1)^n dx = \frac{(x-1)^{n+1}}{n+1} \Big|_{-1}^{1} =$$

$$= \frac{(-2)^{n+2}}{n+1}, (\forall) n \in \mathbb{N}^*$$
1p

Varianta 12

Prof . Badea Daniela

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	r=3	1p
	$a_1 = -15$	1p
	$S_n = 0 \Leftrightarrow n = 11$	3p
2.	$x \neq 1$	1p
	$\left \frac{x^2 - x - 6}{x - 1} \le 0 \right $	1p
	$x \in (-\infty, -2] \cup (1,3]$	2p
	$A = \{2,3\}$	1p

3.	$\boxed{\frac{2}{3} \cdot \left(\frac{2}{3}\right)^x + \frac{2}{3} \cdot \left(\frac{2}{3}\right)^{-x} = \frac{13}{9}}$	1p
	$\left(\frac{2}{3}\right)^x = t \Rightarrow \frac{2}{3} \cdot t + \frac{2}{3} \cdot \frac{1}{t} = \frac{13}{9}$	1p
	$\Leftrightarrow 6t^2 - 13t + 6 = 0 \Rightarrow t_1 = \frac{3}{2}, t_2 = \frac{2}{3}$	1p
	$\left(\frac{2}{3}\right)^x = \frac{3}{2} \Rightarrow x = -1$	1p
	$\left(\frac{2}{3}\right)^x = \frac{2}{3} \Rightarrow x = 1$	1p
4.	$A_5^3 - A_4^2 =$	3p
	=60-12=48	2p
5.	$B'\left(\frac{5}{2},1\right)$, $O(0,0)$ mijloacele laturilor	2p
	ecuația dreptei determinate de două puncte	1p
	OB': $2x - 5y = 0$	2p
6.	p=9	1p
	$S = \sqrt{9 \cdot 4 \cdot 3 \cdot 2} = 6\sqrt{6}$	2p
	$r = \frac{S}{p} = \frac{2\sqrt{6}}{3}$	2p

1. a)	$\det A = \begin{vmatrix} a^2 & a & -1 \\ b^2 & b & -1 \\ c^2 & c & -1 \end{vmatrix} =$	2p
	=(b-a)(c-b)(c-a)	3p
b)	$d_x = (b-a)(c-b)(c-a)(a+b+c)$	3p 2p
	$d_y = -(b-a)(c-b)(c-a)(ab+bc+ac)$	
	$d_z = -abc(b-a)(c-b)(c-a)$	
	$\Rightarrow x = a + b + c, y = -(ab + bc + ac), z = -abc$	

c)	Fie t_1, t_2, t_3 rădăcinile ecuației date	1p
	$\int t_1 + t_2 + t_3 = x = a + b + c$	
	Fie \Rightarrow $\begin{cases} t_1t_2 + t_1t_3 + t_2t_3 = -y = ab + bc + ac \end{cases}$	
	$t_1 t_2 t_3 = -z = abc$	2p
	$\int t_1 = a$	
	$\Leftrightarrow \begin{cases} t_2 = b \\ t_1 = c \end{cases}$	2p
	$t_3 = c$	1
2. a)	Suma coficienților polinomului f este egală cu $f(1)$	2p
(a)	$f(1) = 7^{2012} + 14 \Leftrightarrow$	1p
	$f(1) = 7(7^{2011} + 2):7$	2p
b)	g = (x+2)(x+3)	1p
	$f = (x+2)(x+3) \cdot q + r$, grad $r < 2 \Rightarrow r = ax + b$	1p
	$ \begin{cases} f(-2) = 1^{2012} - 8 + 10 = 3 \\ f(-2) = -2a + b \end{cases} \Rightarrow -2a + b = 3; \begin{cases} f(-3) = (-1)^{2012} - 12 + 10 = -1 \\ f(-3) = -3a + b \end{cases} \Rightarrow -3a + b = -1 $	2p
	$\begin{cases} -2a+b=3 \\ -3a+b=-1 \end{cases} \Leftrightarrow \begin{cases} a=4 \\ b=11 \end{cases} \Rightarrow r=4x+11$	1p
c)	$g(x) = (x+2)(x+3) \Rightarrow \frac{1}{g(x)} = \frac{1}{x+2} - \frac{1}{x+3}, (\forall) x \in \mathbb{N} \Rightarrow$	2p
	$\Rightarrow S = \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \dots + \frac{1}{2015} - \frac{1}{2016} \Leftrightarrow$	2p
	$\Leftrightarrow S = \frac{1}{2} - \frac{1}{2016} = \frac{1007}{2016}$	1p

1. a)	$f'(x) = 2 \cdot e^{2x} + 2x = 2(e^{2x} + x)$ $f'(x) > 0(\forall) x \in [0,1]$	2p
	$f'(x) > O(\forall) x \in [0,1]$	2p
	$\Rightarrow f$ strict crescătoare pe [0,1]	1p
b)	$f(0) = -1 < 0, f(1) = e^2 - 1 > 0$	1p
	f continuă pe $[0,1]$	1p
	$\Rightarrow f$ are cel puţin o rădăcină în $(0,1)$ (1)	1p
	f strict crescătoare pe $[0,1]$ (2)	1p
	$(1),(2) \Rightarrow f$ are o singură rădăcină în $(0,1)$	1p

c)	$f''(x) = 2(2e^{2x} + 1), f'''(x) = 2^3 e^{2x} \Rightarrow P_3(A)$ (I)	2p
	$P_{_k}ig(Aig)\! \Rightarrow\! P_{_{k+1}}ig(Aig)$	
	$f^{(k+1)}(x) = (f^{(k)}(x))^{k} = (2^{k}e^{2x})^{k} = 2^{k+1}e^{2x} (A) (II)$	2p
	Din (I) și (II) $\Rightarrow P_n$ (A)(\forall) $n \in \mathbb{N}, n \ge 3$	1p
2. a)	$\int_{0}^{x} f(t)dt \qquad \frac{\left(x+1\right)^{3}}{2} - \frac{1}{2}$	
X	$\lim_{x \to \infty} \frac{0}{x^3} = \lim_{x \to \infty} \frac{3}{x^3} = =$	3p
	$= \lim_{x \to \infty} \frac{(x+1)^3 - 1}{3x^3} = \frac{1}{3}$	2p
b)	$\int \frac{x}{(x+1)^2} dx = \int \frac{(x+1)-1}{(x+1)^2} dx =$	1p
	$\int \frac{1}{(x+1)} - \frac{1}{(x+1)^2} dx = \ln(x+1) + \frac{1}{x+1} + C$	1p
	Fie $H(x) = \ln(x+1) + \frac{1}{x+1} + c$,	1p
	$H(0) = -1 \Leftrightarrow 1 + c = -1 \Leftrightarrow c = -2$	1p
	$\Rightarrow H(x) = \ln(x+1) + \frac{1}{x+1} - 2$	1p
c)	$V = \int_0^1 \pi f^2(x) dx =$	1p
	$=\pi \frac{(x+1)^5}{5}\Big _0^1=$	2p
	$=\frac{31\pi}{5}$	2p

Varianta 13

Prof: Badea Ion

- ◆ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

_		
1.	$ 2x-1 \le 3 \Leftrightarrow -3 \le 2x-1 \le 3$	2p
	$-1 \le x \le 2$	1p
	$dar x \in \mathbb{Z} \Rightarrow A = \{-1, 0, 1, 2\}$	1p
	\Rightarrow card $A = 4$	1p
2.	$A(0,3) \in G_f \Leftrightarrow f(0) = 3 \Leftrightarrow b = 3$	2p
	$-\frac{a}{2} = 1 \Leftrightarrow a = -2$	2p
	$\Rightarrow f(x) = x^2 - 2x + 3$	1p
3.	CE: $x^2 - 2x > 0 \Leftrightarrow x \in (-\infty, 0) \cup (2, \infty)$	1p
	$x^2 - 2x - 3 = 0$	2p
	$x_1 = -1, \ x_2 = 3 \Longrightarrow S = \{-1, 3\}$	2p
4.	$C_{10}^3 =$	3p
	=120	2p
5.	$x_1 x_2 + y_1 y_2 = 0 \Longrightarrow$	2p
	$m^2 - 2m + 1 = 0$	2p
	m = 1	1p
6.	$\cos\left(180^{0}-x\right)=-\cos x$	2p
	$\cos 90^0 = 0$	1p
	S = 0	2p

1.	$A^2 = 2I_2$	3p
a)	$A^{2012} = 2^{1006} \cdot I_2 \; ;$	2p
b)	$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}; XA = AX$	1p
	$\Rightarrow \begin{cases} t = x \\ y = 2z \end{cases}$	3p
	finalizare	1p
c)	$A^{2k} = 2^k I_2, (\forall) k \in \mathbb{N}^*$	1p
	$A^{2k+1} = 2^k A, (\forall) k \in \mathbb{N}$	1p
	$A+A^3+A^5++A^{2011} = A+2A+2^2A++2^{1005}A =$	2p
	$= (1+2+2^2++2^{1005})A = (2^{1006}-1)A$	
	$A^{2} + A^{4} + A^{6} + \dots + A^{2012} = (2 + 2^{2} + \dots + 2^{1006})I_{2} = 2(2^{1006} - 1)I_{2}.$	1p
2.	Definiția elementului neutru	2p

a)	$e = 5 \in \mathbb{Z}$	3p
b)	Definiția elementului simetrizabil	2p
	$3'=3\in\mathbb{Z}$	3p
c)	x * y = (x-4)(y-4)+4	2p
	S = (a*4)*b = 4*b = 4	3p

4		
1. a)	$f(x) = \frac{xe^x}{(x+1)^2}, f(1) = \frac{e}{4}$	2p
	$t: y - \frac{e}{2} = \frac{e}{4}(x-1) \Leftrightarrow ex - 4y + e = 0$	3p
b)	$\lim_{x\to\infty}f(x)=\infty$	3p
	$\lim_{\substack{x \to -1 \\ x > -1}} f\left(x\right) = \infty$	2p
c)	concluzia $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4p
		1p
2. a)	Fie $F : \mathbb{R} \to \mathbb{R}$ primitivă pentru $f \Rightarrow$ $\Rightarrow F$ derivabilă pe \mathbb{R} şi $F'(x) = f(x)$	2p
	$F'(x) = 3x^2 + 1 > 0 (\forall) x \in \mathbb{R} \Rightarrow$ $\Rightarrow F \text{ strict crescătoare pe } \mathbb{R}$	2p 1p
b)	$\int f(x)dx = x^3 + x + C$	2p
	Fie $F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^3 + x + c$	1p
	$A(1,3) \in G_F \Leftrightarrow F(1) = 3 \Leftrightarrow 2 + c = 3 \Leftrightarrow c = 1$	1p
	$F(x) = x^3 + x + 1$	1p
c)	$g:[0,1] \to \mathbb{R}, g(x)=(x+1)e^x$	1p
	$\int_{0}^{1} g(x) dx = (x+1)e^{x} \Big _{0}^{1} - e^{x} \Big _{0}^{1} =$	3p
	=2e-1-e+1=e	1p

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 14

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$(a_n)_{n\in\mathbb{N}^*}$ progresie aritmetică, $a_1=2, r=3$	1p
	$S_n = 155 \Leftrightarrow 3n^2 + n - 310 = 0, n \in \mathbb{N}^* \Rightarrow n = 10$	3p
	$x = a_{10} = 29.$	1p
2.	$\int x_1 + x_2 = 1$	
		2p
	$\begin{cases} x_1 \cdot x_2 = m \implies \\ x_1 - x_2 = 1 \end{cases}$	
	$\int x_1^2 + x_2^2 = 1 - 2m$	
	$\begin{cases} x_1^2 + x_2^2 = 1 - 2m \\ x_1^2 + x_2^2 - 2x_1 \cdot x_2 = 1 \end{cases}$	2p
	$1 - 2m - 2m = 1 \Leftrightarrow m = 0$	1p
3.	$\begin{bmatrix} x-1 \ge 0 & \begin{bmatrix} 5 \end{bmatrix} \end{bmatrix}$	
	$\begin{cases} x - 1 \ge 0 \\ 5 - 2x \ge 0 \end{cases} \Rightarrow x \in \left[1, \frac{5}{2}\right]$	1p
	Prin ridicare la pătrat se obține $4x^2 - 21x + 26 = 0$	1p
	$x_1 = 2 \in \left[1, \frac{5}{2}\right]$	
		1p
	$x_2 = \frac{13}{4} \notin \left[1, \frac{5}{2}\right]$	1
	$\Rightarrow S = \{2\}$	1p
	$\rightarrow 5 - \{2\}$	1p
4.	$A_{10}^2 = 10 \cdot 9 = 90$	1p
	$C_{10}^2 = 5 \cdot 9 = 45$	1p
	$3P_3 = 3 \cdot 6 = 18$	1p
	$N = 9 \cdot 17 \stackrel{\cdot}{\cdot} 17$	2p
5.		
	$\begin{vmatrix} \Delta \begin{vmatrix} 2x & -1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = -3x$	2p
	$\left \frac{ \Delta }{2} = 3 \Longrightarrow x = 2 \right $	2p
	$\begin{vmatrix} 2 \\ x_{1,2} = \pm 2 \end{vmatrix}$	1p
	· · · 1,2	

6.	$\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BN} =$	1p
	$= \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC} =$	2p
6	$= \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\left(-\overrightarrow{AB} + \overrightarrow{AC}\right) =$	1p
	$= -\frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}.$	1p

1. a)	Demonstrarea relației	5p
b)	$A^{n}(a,b) = A(a^{n},na^{n-1}b), (\forall) n \in \mathbb{N}^{*}$	3p
	Demonstrarea prin inducție sau cu metoda binomială	2p
c)	$a^{2012} = 1 \Longrightarrow a = \pm 1$	2p
	$2012a^{2011}b = 2012$	1p
	$a = 1 \Rightarrow b = 1 \Rightarrow A(1,1)$	1p
	$a = -1 \Rightarrow b = -1 \Rightarrow A(-1, -1)$	1p
2.	$\begin{cases} f(1) = 0 \\ f(-1) = -4 \end{cases} \Leftrightarrow$	2p
a)	$\int f(-1) = -4$	2p
	$\Leftrightarrow \begin{cases} a+b=0 \\ a-b=-2 \end{cases} \Leftrightarrow \begin{cases} a=-1 \\ b=1 \end{cases}$	3p
	a-b=-2 $b=1$	
b)	Relațiile lui Viette	2p
	$\frac{1}{y} + \frac{1}{y} + \frac{1}{y} = \frac{s_2}{s} = 1$	1p
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$x_1^2 + x_2^2 + x_3^2 = a^2 - 2$	1p
	$a^2 - 2 = 1 \Leftrightarrow a_{1,2} = \pm \sqrt{3}$	1p
c)	$\Delta = s_1 \left[s_2 - \left(x_1^2 + x_2^2 + x_3^2 \right) \right] =$	3p
	=1(1+1)=2	2p

1. a)
$$f(x) = \begin{cases} x^2 - x - 2; & x \in (-\infty, -1] \cup [2, \infty) \\ -x^2 + x + 2; & x \in (-1, 2) \end{cases}$$
 1p
$$f \text{ derivabilă pe } \mathbb{R} \setminus \{-1, 2\} \text{ (funcții elementare) și}$$
 1p

_			
		$f'(x) = \begin{cases} 2x - 1; & x \in (-\infty, -1) \cup (2, \infty) \\ -2x + 1; & x \in (-1, 2) \end{cases}$	1p
		$\int_{-2x+1}^{\infty} \left(-2x+1; x \in \left(-1,2\right)\right)$	1p
		$f_s(-1) = -3$, $f_d(-1) = 3$, $\Rightarrow f$ nu e derivabilă în -1	1p
		ana $\log f$ nu e derivabilă în 2	
		\Rightarrow D' = $\mathbb{R} \setminus \{-1, 2\}$	
	b)		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3p
		f(x) + + + + + + + + + + + + + + + + + + +	
		$f(x)$ \circ $\frac{9}{4}$	
			2p
	c)	Concluzia conform tabelului	2p 1p
		$\lim_{x \to \infty} h(x) = \infty \Rightarrow h \text{ nu are asimptotă orizontală}$	
		$m = \lim_{x \to \infty} \frac{h(x)}{x} = 1$	1p
		$n = \lim_{x \to \infty} \left(h(x) - x \right) = -\frac{1}{2}$	2p
		$d: y = x - \frac{1}{2}$ asimptotă oblică spre ∞	1p
-	2.	Z.	2p
		f continuă pe $(0,e) \cup (e,\infty)$ - funcții elementare $f_s(e) = f(e) = f_d(e) = 1 \Rightarrow f$ continuă în e	1p
	a)		2p
_	b)	⇒ f continuă pe $(0, \infty)$ ⇒ f admite primitive pe $(0, \infty)$	1p
	-,	$h(x) \le 0(\forall) x \in \left[e^{-1}, 1\right]$	
		$A = -\int x \ln x dx$	1p
		$\frac{1}{e}$	
		Integrând prin părți $\Rightarrow A = \left(\frac{x^2}{4} - \frac{x^2}{2} \ln x\right) \Big _{\frac{1}{a}}^{1} =$	2p
		$=\frac{e^2-3}{4e^2}$	1
-	c)	$\frac{4e^{2}}{\ln x \le x - 1 \ (\forall) x \in [1, 2]}$	1p 1p
		$ \sin x \ge x - 1 \ (\forall) x \in [1, 2] \sin x > 0, \ x - 1 > 0 \ (\forall) x \in [1, 2] $	
		$\Rightarrow \ln^{2012} x \le (x-1)^{2012} \ (\forall) x \in [1,2]$	1p
		prin integrare pe $[1,2]$ \Rightarrow	1p
			1p
		$\Rightarrow \int_{1}^{2} f^{2012}(x) dx \le \frac{1}{2013}$	1p
L		I	

Varianta 15

Prof: Badea Ion

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1		2
1.	$\log_2(5-\sqrt{3}) + \log_2(5+\sqrt{3}) - \log_2 11 = \log_2 22 - \log_2 11 =$	3p
	$= \log_2 2 = 1$	2p
2.	S = 2(1+2+3++2012)-2012 =	2p
	$=2\cdot\frac{2012\cdot2013}{2}-2012=$	2p
	$=2012^{2}$	1p
3.	$2^{x^2+x+0,5}=2^{\frac{5}{2}} \Leftrightarrow$	1p
	$x^2 + x - 2 = 0 \Leftrightarrow$	2p
	$\Leftrightarrow x \in \{-2,1\}$	2p
4.	$x \in \mathbb{N}, 2 \le x \le 10$	1p
	Formula de calcul a combinărilor	1p
	$x \ge 6$	2p
	$\Rightarrow x \in \{6,7,8,9,10\}$	1p
5.	Formula pentru coordonatele mijlocului unui segment	2p
	A(2,2), B(-2,-2) și $C(4,0)$	3p
6.	$\cos^2 \alpha = 1 - \sin^2 \alpha =$	1p
	$= \left(\frac{5}{13}\right)^2$	1p
	$\alpha \in \left(\frac{\pi}{2}, \pi\right) \Rightarrow \cos \alpha < 0$	1p
	$\Rightarrow \cos \alpha = -\frac{5}{13}$	2p
	13 RIFCTIII, al II-lea (30 de puncto)	

1	$\det A(x) = x(x^2 + 3)$	3p	
a	$A(x)$ inversabilă $\Leftrightarrow x \in \mathbb{R}^*$	2p	

b)	$\det A(1) = 4 \Rightarrow A(1)$ inversabilă	1p
	$A^*(1) = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 2 & 2 \\ 2 & 0 & 2 \end{pmatrix}$	2p
	$A^{-1}(1) = \frac{1}{d}A^{*}(1) = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$	2p
c)	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \begin{pmatrix} 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	2p
2.	$U(\mathbb{Z}_6) = \left\{\hat{1}, \hat{5}\right\}$	2p
a)	$\mathbb{Z}_6 - \mathrm{U}(\mathbb{Z}_6) = \left\{\hat{0}, \hat{2}, \hat{3}, \hat{4}\right\}$	1p
	$S = \hat{3}$	2p
b)	$\det A = \hat{3}x + \hat{4}$	2p
	$\det A = \hat{1} \Leftrightarrow \hat{3}x + \hat{4} = \hat{1} \Leftrightarrow \hat{3}x = \hat{3} \Leftrightarrow x \in \{\hat{1}, \hat{3}, \hat{5}\}$	1p
	$\det A = \hat{5} \Leftrightarrow \hat{3}x + \hat{4} = \hat{5} \Leftrightarrow \hat{3}x = \hat{1} \Leftrightarrow x \in \Phi$	1p
	$\Rightarrow x \in \left\{\hat{1}, \hat{3}, \hat{5}\right\}$	1p
c)	$(x,y) \in \left\{ \left(\hat{1},\hat{2}\right)\right\}$	5p

1. a)	$l = \lim_{x \to -\infty} f(x) = \lim_{x \to \infty} \frac{x^2 + 5x + 7}{e^x}$	1p
	Se aplică regula lui l'Hospital de două ori și se obține	2p
	$l=0 \Rightarrow$	1p
	$\Rightarrow d: y = 0$ asimptotă orizontală spre $-\infty$	1p
b)	F derivabilă pe \mathbb{R} şi $f'(x) = e^x(x^2 - 3x + 2)$	1p
	F derivabilă pe \mathbb{R} şi $f'(x) = e^x (x^2 - 3x + 2)$ $f'(x) = 0 \Leftrightarrow x \in \{1, 2\}, f(1) = 3e, f(2) = e^2$	1p

	$x - \infty$ 0 1 2 $+ \infty$	
	f(x)' + + + + + + + + + + + + + + + + + + +	2p
9	$f(x) = 0 \qquad 7 \qquad 3e \qquad e^2 \qquad +\infty$	
	\Rightarrow 1 – maxim local, 2 – minim local	1p
c)	$f(0) = 7, f(1) = 3e, f(2) = e^{2}$	1p
	$7 \le e^2$	1p
	Conform tabelului de la b) \Rightarrow $7 \le f(x) \le 3e$, $(\forall)x \in [0,2]$	3p
2.	f continuă	1p
a)	$\int_{1}^{0} \sin x dx = -1 + \cos 1$	1p
	$\int_{0}^{1} \frac{x}{x+2} dx = x \Big _{0}^{1} - 2 \ln (x+2) \Big _{0}^{1} =$	1p
	$= 1 - 2\ln\frac{3}{2}$ $I = \cos 1 - 2\ln\frac{3}{2}$	1p
b)	$I = \int_{0}^{0} \sin^2 x dx$	2p
	$-\pi$	
	$I = \frac{\pi}{2}$	1p
	$V = \pi \int_{-\pi}^{0} f^{2}(x) dx = \pi \int_{-\pi}^{0} \sin^{2} x dx = \frac{\pi^{2}}{2}$	2p
c)	$\int_{0}^{x} f(t)dt = x - 2\ln(x+2) + 2\ln 2$	2p
	$\lim_{x \to \infty} \frac{1}{x} \int_{0}^{x} f(t) dt = 1$	3p

Varianta 16

Prof:Bășcău Cornelia

♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.

- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

		T .
1.	$\left(\frac{1}{4}\right)^{-2} = 16, \sqrt[3]{-\frac{1}{8}} = -\frac{1}{2}, \log_3 \sqrt{3} = \frac{1}{2}$	3p 2p
	$16 - \left(-\frac{1}{2}\right) - \frac{1}{2} = 16 \in \mathbb{N}$	2p
2.	$a,a+2,a+8$ în prog. geom. rezultă $(a+2)^2 = a(a+8)$	1p
	a,a+2,a+0 in prog. goom. rezaita (a+2) a(a+0)	1
	$a^2 + 4a + 4 = a^2 + 8a, 4a = 4$	2p
	a = 1	2p
	42.	
3.	$(f \circ f)(x) = 3(3x-2)-2 = 9x-8$	2p
	$(f \circ f)(x) - f(x) = 6x - 6$	2p
	6x - 6 = 0, x = 1	1p
4.	C_{10}^2	2p
	$\frac{10!}{2!(10-2)!} = 45$	3р
	2!(10-2)!	
		2
5.	$\begin{cases} 3x - 2y = 0 \end{cases}$	2p
	$\begin{cases} 3x - 2y = 0 \\ 2x - 3y = 5 \end{cases}$	3p
	A(-2,-3)	
6.	$\cos 60^{\circ} = \frac{1}{2} \cos 45^{\circ} = \frac{\sqrt{2}}{2}$	2p
	2	2p
		1p
	$\cos 60^{\circ} + \cos 45^{\circ} + \cos 120^{\circ} = \frac{\sqrt{2}}{2}$	1h
	2	

1.	$A_1(-1.1), A_2(-2.2)$:2p
a)		2p
		1

	$\begin{vmatrix} A_1 A_2 : \begin{vmatrix} x & y & 1 \\ x_{A_1} & y_{A_1} & 1 \\ x_{A_2} & y_{A_2} & 1 \end{vmatrix} = 0$ $A_1 A_2 : x = -y$	1p
b)	$A_{AA_{2}A_{3}} = \frac{1}{2} \Delta , \Delta = \begin{vmatrix} x_{A} & y_{A} & 1 \\ x_{A_{2}} & y_{A_{2}} & 1 \\ x_{A_{3}} & y_{A_{3}} & 1 \end{vmatrix}$ $A_{AA_{2}A_{3}} = \frac{3}{2}$	3p
	$\begin{vmatrix} A & = \frac{1}{ \Lambda } & \Lambda & = \begin{vmatrix} x_A & y_A & 1 \\ x & y & 1 \end{vmatrix}$	2n
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	2p
	$\begin{vmatrix} x_{A_3} & y_{A_3} & 1 \end{vmatrix}$	
	$A_{AA,A_2} = \frac{3}{2}$	
c)	A ₂₀₁₁ (-2011,2011),A ₂₀₁₂ (-2012,2012)	1p
		2p
	$\begin{bmatrix} x_o & y_o & 1 \end{bmatrix}$	2p
	$\begin{vmatrix} x_{A_{2011}} & y_{A_{2011}} & 1 \\ \end{vmatrix} = 0$	
	$\begin{bmatrix} x_O & y_O & 1 \\ x_{A_{2011}} & y_{A_{2011}} & 1 \\ x_{A_{2012}} & y_{A_{2012}} & 1 \end{bmatrix} = 0$	2p
		r
	Deci O, A ₂₀₁₁ ,A ₂₀₁₂ coliniare	
2.	$2012 \circ (-2012) = 2012^{2012-2012} =$	5p
a)	$2012^0 = 1$	
<i>a)</i>		
b)	$x^2 \circ 2x = 2012^{x^2 + 2x}$	3p
	$2012^{x^2+2x} = 2012^{-1}$	2p
	$x^2 + 2x = -1, x = -1$	
c)	$x \circ y \circ z = 2012^{2012^{x+y}+z}$	2p
	$2012^{2012^{x+y}+z} = 2012^{z+2012}$	2p
	x + y = 1	
		1p
<u> </u>		<u> </u>

1. a)	$(2x-1)$ $(2x-1)'(x^2-2x+1)-(2x-1)(x^2-2x+1)'$	3p
(a)	$\left \left(\frac{(2x-1)}{(x^2-2x+1)} \right)' = \frac{(2x-1)' \left(x^2 - 2x + 1 \right) - (2x-1) \left(x^2 - 2x + 1 \right)'}{\left(x^2 - 2x + 1 \right)^2} = \right $	
	$\frac{2(x-1)^2 - 2(2x-1)(x-1)}{(x-1)^4} = \frac{(x-1)(2x-2-4x+2)}{(x-1)^4} = \frac{-2x}{(x-1)^3}$	2p
7	$ (x-1)^4 \qquad (x-1)^3 $	
b)	$f'(x) = \frac{-2x}{\left(x-1\right)^3}$	1p
	(x-1)	
	$f'(x) = 0 \Rightarrow \frac{-2x}{(x-1)^3} = 0 \Rightarrow x = 0$	1p
	$f'(x) \ge 0, x \in [0,1), f'(x) < 0, x \in (-\infty,0) \cup (1,\infty)$	1p
	$\lim_{x\to\infty}f(x)=0,$	2p
	$x = 1 \min, f(1) = -1 \Rightarrow f(x) \ge -1$	
c)	$\lim_{x \to 1} f(x) = \infty, \lim_{x \to 1} f(x) = \infty \Rightarrow x = 1 \text{ asimptotă verticală spre } \infty$	2p
	$\lim_{x \to \infty} f(x) = 0, \lim_{x \to \infty} f(x) = 0 \Rightarrow y = 0 \text{ asimptotă orizontală spre } \pm \infty$	2p
	Funcția admite asimptotă verticală, asimptotă orizontală și nu admite asimptotă oblică.	1p
2		1
2.	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -1$	1p
a)	$\lim_{x \to 0} f(x) = -1$	1p
	f(x) = -1	1p
	$fcont. \Rightarrow fad.prim.$	2p
b)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} (2x+1)dx + \int_{0}^{1} (2x^{2}+2x+1)dx$	2p
	$\int_{-1}^{1} f(x) dx = \int_{-1}^{0} (2x+1) dx + \int_{0}^{1} (3x^{2} + 2x - 1) dx =$	2p
	$\left \left(x^2 - x \right) \right _{-1}^0 + \left(x^3 + x^2 - x \right) \right _0^1 =$	1p
	=-2+1=-1	
c)	$\int_{0}^{2} f(x) dx = \int_{0}^{2} (3x^{2} + 2x - 1) dx = (x^{3} + x^{2} - x) \Big _{a}^{2} = 9 \Leftrightarrow$	2p
	$\begin{bmatrix} 3 & & & & \\ a & & & & \\ 10 - a^3 - a^2 + a = 9 \Leftrightarrow & & & \\ & & & & & \\ \end{bmatrix}$	1p
	$\begin{vmatrix} 10-a & -a & +a = 9 \Leftrightarrow \\ a^3 + a^2 - a - 1 = 0 \Leftrightarrow (a-1)(a+1)^2 = 0 \Leftrightarrow \end{vmatrix}$	1p
		1p
	$a = 1; a = -1, a \in \left[\frac{1}{3}, 2\right] \Rightarrow a = 1$	

Varianta 17

Prof:Bășcău Cornelia

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\left \frac{2x}{5} - \frac{1}{3} \right = \frac{14}{3}$	2p 2p
	$\frac{2x}{5} - \frac{1}{3} = \pm \frac{14}{3}$	
	$x \in \left\{ \frac{25}{2}, -\frac{65}{6} \right\}$	1p

$(f \circ f)(-1) = -1 \Leftrightarrow -a^2 - 3a - 3 = -1 \Leftrightarrow a^2 + 3a + 2 = 0 \Leftrightarrow$ $a \in \{-2, -1\}$ $3. a = -1$ $b = -\frac{1}{2}$ $c = -\frac{1}{3}$ $d = 0$ $a < b < c < d$ $4. P = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posibile}}$ $\text{nr.caz.posibile} = 90$ $\text{nr.caz.fav} = 6$ $P = \frac{1}{15}$ $5. \frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $6. MN^2 = 40$ $NP^2 = 40$ $MN = NP \rightarrow \Delta MNPis$			
$a \in \{-2, -1\}$ $a = -1$ $b = -\frac{1}{2}$ $c = -\frac{1}{3}$ $d = 0$ $a < b < c < d$ $4. P = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posibile}}$ $\text{nr.caz.posibile} = 90$ $\text{nr.caz.fav} = 6$ $P = \frac{1}{15}$ $5. \frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $6. MN^2 = 40$ $NP = NP \rightarrow \Delta MNP$	2.	$(f \circ f)(x) = a(ax-3)-3 = a^2x-3a-3$	2p
3. $a = -1$ $b = -\frac{1}{2}$ $c = -\frac{1}{3}$ $d = 0$ $a < b < c < d$ 4. $P = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posibile}}$ $\text{nr.caz.posibile} = 90$ $\text{nr.caz.fav} = 6$ $P = \frac{1}{15}$ 5. $\frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ 6. $MN^2 = 40$ $NP \Rightarrow \Delta MNPis$		$(f \circ f)(-1) = -1 \Leftrightarrow -a^2 - 3a - 3 = -1 \Leftrightarrow a^2 + 3a + 2 = 0 \Leftrightarrow$	2p
$b = -\frac{1}{2}$ $c = -\frac{1}{3}$ $d = 0$ $a < b < c < d$ $1p$ $4. P = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posibile}}$ $\text{nr.caz.posibile} = 90$ $\text{nr.caz.fav} = 6$ $P = \frac{1}{15}$ $5. \frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $6. MN^2 = 40$ $NP^2 = 40$ $MN = NP \Rightarrow \Delta MNPis$		$a \in \{-2, -1\}$	1p
$c = -\frac{1}{3}$ $d = 0$ $a < b < c < d$ $1p$ $4. P = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posibile}}$ $\text{nr.caz.posibile} = 90$ $\text{nr.caz.fav} = 6$ $P = \frac{1}{15}$ $5. \frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $2p$ $MN = NP \rightarrow \Delta MNP is$	3.	a = -1	1p
$c = -\frac{1}{3}$ $d = 0$ $a < b < c < d$ $1p$ $4. P = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posibile}}$ $\text{nr.caz.posibile} = 90$ $\text{nr.caz.fav} = 6$ $P = \frac{1}{15}$ $5. \frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $2p$ $MN = NP \rightarrow \Delta MNP is$		$b = -\frac{1}{2}$	1p
$a < b < c < d$ $a < b < c < d$ $1p$ $4. P = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posibile}}$ $\text{nr.caz.posibile} = 90$ $\text{nr.caz.fav} = 6$ $P = \frac{1}{15}$ $5. \frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $2p$ $MN = NP \Rightarrow \Delta MNPis$		1	1p
4. $P = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posibile}}$ $\text{nr.caz.posibile} = 90$ $\text{nr.caz.fav} = 6$ $P = \frac{1}{15}$ 1p 5. $\frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ 2p 6. $MN^2 = 40$ $NP^2 = 40$ $MN = NP \Rightarrow \Delta MNPis$		d = 0	1p
In r. caz. posibile in r. caz. posibile in r. caz. posibile in r. caz. fav = 6 $P = \frac{1}{15}$ Ip $\frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ 2p $MN^2 = 40$ $MN = NP \Rightarrow \Delta MNPis$		a < b < c < d	1p
In r. caz. posibile in r. caz. posibile in r. caz. posibile in r. caz. fav = 6 $P = \frac{1}{15}$ Ip $\frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ 2p $MN^2 = 40$ $MN = NP \Rightarrow \Delta MNPis$	4.	$p = \frac{\text{nr.caz.fav.}}{}$	1p
nr.caz.posibile = 90 nr.caz.fav = 6 $P = \frac{1}{15}$ 1p $\frac{NP}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ 2p $NP^2 = 40$ $NP = NP \rightarrow \Delta MNPis$		nr.caz.posibile	1p
$P = \frac{1}{15}$ $\frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $\frac{3}{1/2} = 40$ $NP^2 = 40$ $MN = NP \Rightarrow \Delta MNPis$			-
5. $\frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ 1p 6. $MN^2 = 40$ $NP^2 = 40$ $MN = NP \rightarrow \Delta MNPis$		$\operatorname{nr.caz.fav} = 6$	2p
$\frac{3}{\sin P} = \frac{NR}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $6. MN^2 = 40$ $NP^2 = 40$ $MN = NP \rightarrow \Delta MNPis$ $2p$ $2p$		$P = \frac{1}{15}$	1p
$\frac{3}{\sin P} = \frac{NP}{\sin M} = 2R$ $\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $6. MN^2 = 40$ $NP^2 = 40$ $MN = NP \rightarrow \Delta MNPis$ $2p$ $2p$		`O'>	
$\frac{3}{1/2} = \frac{NP}{\sqrt{2}/2} = 2R$ $NP = 3\sqrt{2}, R = 3$ $6. MN^2 = 40$ $NP^2 = 40$ $MN = NP \rightarrow \Delta MNPis$ $2p$ $2p$ $2p$	5.	$\frac{MN}{\sin P} = \frac{NP}{\sin M} = 2R$	2p
$NP = 3\sqrt{2}, R = 3$ $NP = 3\sqrt{2}, R = 3$ $NN^{2} = 40$ $NP^{2} = 40$ $NP = 40$ $NP \rightarrow \Delta MNPis$ $NP \rightarrow \Delta MNPis$			2p
$NP = 3\sqrt{2}, R = 3$ 6. $MN^{2} = 40$ $NP^{2} = 40$ $MN = NP \rightarrow \Delta MNPis$ 2p			1p
$NP^{2} = 40$ $MN = NP \rightarrow \Delta MNPis$		$NP = 3\sqrt{2}, R = 3$	-r
$MN = NP \rightarrow \Lambda MNPis$	6.	$MN^2 = 40$	2p
$MN = NP \Rightarrow \Delta MNPis$		$NP^2 = 40$	2p
		$MN = NP \Rightarrow \Delta MNPis$	1p

1. a)	$\det A = \begin{vmatrix} 3 & 2 & 1 \\ a & 1 & 1 \\ 1 & -a & 2 \end{vmatrix}$ $\det A = -a^2 - a + 7$	2p 3p
b)	$\det A = 5 \neq 0$	1p
	$d_{x} = 5, d_{y} = 5, d_{z} = 5$ $S = \{1, 1, 1\}$	3p
	$S = \{1, 1, 1\}$	1p

c)	$\det A = -a^2 - a + 7$	1p
	$a^2 + a - 7 = 0 \Rightarrow \Delta = 29 \neq p.p.$	2p
	$a_{1,2} \in \mathbb{R} - \mathbb{Q} \Rightarrow \det A \neq 0, \forall a \in \mathbb{Q}$	2p
2.	$x \circ y = x(y-2012)-2012(y-2012)+2012 =$	3p
a)	(x-2012)(y-2012)+2012	2p
	$\exists e \in \mathbb{R} a.i. x \circ e = e \circ x = x, \forall x \in \mathbb{R}$	1p
	$x \circ e = x \Longrightarrow (x - 2012)(e - 2012) + 2012 = x \Longrightarrow$	2p
b)	$e = 2013 \in \mathbb{R}$	2p
c)	$x \circ 2012 = 2012 \circ x = 2012, \forall x \in \mathbb{R}$	3p
	$1 \circ 2 \circ \dots \circ 2012 \circ 2013 = x \circ 2012 \circ 2013 = 2012$	2p
		2P

1.	$(x^{2012})' = 2012x^{2011}$	2p
a)	$(2012^x)' = 2012^x \ln 2012$	2p
	$f'(x) = 2012x^{2011} + 2012^x \ln 2012$	1p
b)	$y - y_0 = f'(x_0)(x - x_0)$	1p
	$x_0 = 1, y_0 = 1$	1p
	$f'(1) = 2012(1 + \ln 2012) = a$	1p
	ax - y - a + 1 = 0	2p
c)	$f''(x) = 2012 \cdot 2011x^{2010} + 2012^{x} \ln^{2} 2012$	2p
	$x^{2010} \ge 0,2012^x > 0$	1p
	$f''(x) > 0 \Rightarrow fconv.pe\mathbb{R}$	2p
2.	$\int_{2}^{4} (f(x) - \frac{1}{x}) dx = \int_{2}^{4} \frac{1}{x+2} dx =$	2p
a)		2p
	$=\ln\left x+2\right _{2}^{4}=$	1p
	$= \ln 6 - \ln 4 = \ln \frac{3}{2}$	1
	L L	

b)	$Fprim.f \Rightarrow F'(x) = f(x), \forall x \in [1, \infty)$	2p
	$F''(x) = f'(x) = -\frac{1}{x^2} - \frac{1}{(x+2)^2} < 0$	2p
	$F''(x) < 0 \Rightarrow Fconc.pe[1, \infty)$	1p
c)	$\int_{1}^{2} (\frac{1}{x} + \frac{1}{x+2}) dx =$	2p
	$ \frac{ J_1 \setminus x + 2}{(\ln x + \ln x + 2) _1^2} = $	2p
		1p
	$\ln \frac{8}{3}$	

Varianta 18

Prof:Bășcău Cornelia

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	[-2.5] = -3	1p
	$\{-2,5\} = 0,5$	1p
	-2,5 = 2,5	1p
	[-2,5]+{-2,5}+ -2,5 =-3+0,5+2,5=0	2p
2.	$ \div a + 1, 1 - a, 5a - 3 \Rightarrow 2(1 - a) = (a + 1) + (5a - 3) $	3p
	$8a = 4 \Rightarrow a = \frac{1}{2}$	2p

3.	$s = -\frac{13}{12}, p = -10$	1p
	$x, y - sol.ec.: t^2 - st + p = 0$	1p
	*	
6	$t^2 + \frac{13}{12}t - 10 = 0$	1p
	13 _ 77	
	$\Delta = \left(\frac{77}{12}\right)^2, t_{1,2} = \frac{-\frac{13}{12} \pm \frac{77}{12}}{2}$	1p
	g(8 15)(15 8)	
	$S = \left\{ \left(\frac{8}{3}, -\frac{15}{4} \right), \left(-\frac{15}{4}, \frac{8}{3} \right) \right\}$	1p
4.	$cond.: x > 0, x - 1 > 0 \Rightarrow x \in (1, \infty)$	1p
	$\log_2 x(x-1) = 1$	1p
	x(x-1) = 2	1p
	$x \in \{-1, 2\}$	1p
	$S = \{2\}$	1p
5.	A(2,0), B(4,2), C(6,-4)	2p
	$x_G = \frac{x_A + x_B + x_C}{3}, y_G = \frac{y_A + y_B + y_C}{3}$	2p
	3 3 3	1p
	$G(4, -\frac{2}{3})$	1
6.	$AB = \sqrt{(-2-a)^2 + (1-a-4)^2}$	2p
	$2a^2 + 10a + 13 = 13$	2p
	a = 0, a = -5	1p

c)	$\begin{pmatrix} r^2 & 0 \end{pmatrix}$	1p
	$f(x) \cdot f(x) = \begin{pmatrix} x^2 & 0 \\ 0 & x^2 \end{pmatrix}$	1p
	$(f(x))^n = \begin{pmatrix} x^n & 0 \\ 0 & x^n \end{pmatrix}, \forall n \in \mathbb{N}^*$	1
	$f(2) + + (f(2))^{2012} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + + \begin{pmatrix} 2^{2012} & 0 \\ 0 & 2^{2012} \end{pmatrix} =$	1p
×	$\begin{pmatrix} 2++2^{2012} & 0 \\ 0 & 2++2^{2012} \end{pmatrix} =$	1p
	$\begin{pmatrix} 2^{2013} - 2 & 0 \\ 0 & 2^{2013} - 2 \end{pmatrix}$	1p
	$\left(0 2^{2013} - 2 \right)$	
2.	$g = 0 \Rightarrow x^2 + \hat{3}x + \hat{2} = \hat{0}$	1p
a)	$x = \hat{3}$	2p
	$x = \hat{4}$	2p
b)	$g \mid f \Rightarrow f = g \cdot c \Rightarrow f(\hat{3}) = \hat{0}, f(\hat{4}) = \hat{0}$	2p
	$\hat{3}^4 = \hat{1}, \hat{4}^4 = 1$	2p
	$\hat{1} + a = \hat{0} \Rightarrow a = \hat{4}$	1p
c)	$f = x^4 + \hat{1}$	1p
	$\hat{a}^4 \in \left\{\hat{0}, \hat{1}\right\}, \forall a \in \mathbb{Z}_5$	2p
	$f(\hat{a}) \in \left\{\hat{1}, \hat{2}\right\}, \forall a \in \mathbb{Z}_5$	2p

1.	$\lim \frac{f(x) - f(0)}{1 - f(0)} = f'(0)$	2p
a)	$f'(x) = \ln 2012(2012^{x} + 2012^{-x})$	2p
	$f'(0) = 2\ln 2012$	1p
b)	$2012^x > 0, \forall x \in \mathbb{R}$	2p
	$f'(x) = \ln 2012(2012^{x} + 2012^{-x}) > 0, \forall x \in \mathbb{R}$	3p
c)	$D = \mathbb{R} \Rightarrow f$ nu admite as.vericale	1p
c)	$D = \mathbb{R} \Rightarrow f$ nu admite as.vericale	1p

	$\lim_{x \to \infty} f(x) = \infty, \lim_{x \to -\infty} f(x) = -\infty \text{ deci fcț.nu admite asimptote orizontale}$	2p
	$\lim_{x \to \infty} \frac{f(x)}{x} = \infty, \lim_{x \to -\infty} \frac{f(x)}{x} = -\infty \text{ deci fcț.nu admite as.oblice}$	2p
2.	$\int_{e}^{e+1} \frac{1}{x^2 - 1} dx =$	2p
a)	$\int_{e}^{e} x^{2} - 1$ $= \frac{1}{2} \ln \left \frac{x - 1}{x + 1} \right _{e}^{e + 1} =$	2p
	$\frac{1}{2} \ln \frac{e(e+1)}{(e+2)(e-1)}$	1p
b)	$g(x) = (x-1)^2$	2p
	$g(x) = (x-1)^{2}$ $\int g(x)dx = \frac{x^{3}}{3} - x^{2} + x + C$	3p
c)	$\frac{3}{6}$ 1 .	1p
	$\int_{2}^{3} 2x \cdot \frac{1}{\left(x^2 - 1\right)^n} dx =$	2p
	$\int_{2}^{3} \frac{1}{(x^{2}-1)^{n}} \cdot (x^{2}-1)^{n} dx =$	
	$= \frac{1}{(-n+1)(x^2-1)^{n-1}}\Big _2^3 = -\frac{1}{n-1}\left(\frac{1}{8^{n-1}} - \frac{1}{3^{n-1}}\right), (\forall) n \in \mathbb{N}, n \ge 2$	2p

Varianta 19

Prof: Brabeceanu Silvia

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\left \frac{x+3}{2} \right \le 1 \Leftrightarrow -1 \le \frac{x+3}{2} \le 1$	3p
	$ \begin{vmatrix} -5 \le x \le -1 \\ x \in \mathbb{Z} \end{vmatrix} \Rightarrow x \in \{-5, -4, -3, -2, -1\} $	2p
2.	$A \in G_f \Rightarrow f(0) = 0 \Rightarrow c = 0$	1p
	$V \in G_f \Rightarrow \begin{cases} \frac{-b}{2a} = 2\\ \frac{-\Delta}{4a} = -4 \end{cases} \Rightarrow \begin{cases} a = 1\\ b = -4 \end{cases}$	3p
	Finalizare $f(x) = x^2 - 4x$	1p
3.	Condiții $\begin{cases} 2x+5 \ge 0 \\ x+3 \ge 0 \end{cases} \Rightarrow x \in \left[\frac{-5}{2}, +\infty \right)$	1p
	$2x+5 = (x+3)^2 \Rightarrow x^2 + 4x + 4 = 0$	2p
	$x = -2 \in \left[\frac{-5}{2}, +\infty \right)$	2p
4.	$C_4^2 = \frac{4!}{2!(4-2)!} = 6$	2p
	$A_5^2 = \frac{5!}{(5-2)!} = 20$ Fig. 13. (2.5.5.20118)	2p
	Finalizare $3 \cdot 6 + 5 \cdot 20 = 118$	1p
5.	$\overrightarrow{v_1}$ şi $\overrightarrow{v_2}$ sunt coliniari $\Leftrightarrow \frac{3}{a-1} = \frac{a}{2}$	2p
	$a^{2} - a - 6 = 0 \Rightarrow \begin{cases} a_{1} = 3 \\ a_{2} = -2 \end{cases}; \ a > 0 \Rightarrow a = 3$	3p
6.	$\cos B = \frac{BC^2 + BA^2 - AC^2}{2 \cdot BC \cdot BA}$	3p
	$\cos B = \frac{9}{16}$	2p

1. a)	$A - 2I_3 = \begin{pmatrix} -1 & 2 & 3 \\ 1 & -1 & -4 \\ 2 & 3 & -1 \end{pmatrix}$	2p
	$\det\left(A - 2I_3\right) = -12$	3p
b)	$\det(A) = -2$	3p
	$\det(A) = -2 \neq 0 \Rightarrow rang(A) = 3$	2p
	$dot(\Pi) \longrightarrow rang(\Pi) \longrightarrow$	
c)	Din b). $det(A) = -2 \neq 0 \Rightarrow \exists A^{-1}$ inversa matricei A	2p
	$A^{-1} \cdot A \cdot X = A^{-1} \cdot I_3 \Longrightarrow X = A^{-1},$	1p
	$A^{-1} = -\frac{1}{2} \begin{pmatrix} 13 & 7 & -11 \\ -9 & -5 & 7 \\ 1 & 1 & -1 \end{pmatrix}$	1p
	Soluția ecuației este inversa matricei A	1p
2.	$e=6$ elementul neutru al legii de compoziție dacă $x*6=6*x=x, \forall x \in \mathbb{R}$	3p
a)	$x*6=x+6-6=x, \ \forall x \in \mathbb{R}$	1p
	$6 * x = 6 + x - 6 = x \forall x \in \mathbb{R}$	1p
b)	$(x^{2}+3x-1)*(2x^{2}-x+6) \ge 0 \Rightarrow 3x^{2}+2x-1 \ge 0$ $3x^{2}+2x-1=0 \Rightarrow \Delta=16 \Rightarrow \begin{cases} x_{1}=\frac{1}{3} \\ x_{2}=-1 \end{cases}$	2p 2p
	Folosind semnul funcției de gradul doi, soluția inecuației este $x \in (-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$	1p
c)	$\frac{1}{2} * \frac{1}{2^2} * \dots * \frac{1}{2^7} = \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^7} - 6 \cdot 6$	2p
		1p

Formula $S_n = a_1 \frac{q^n - 1}{q - 1}, q \ne 1$ a progresiei geometrice de rație $q = \frac{1}{2}$	2p
Calcule care vor conduce la $\frac{\frac{1}{2} \left[\left(\frac{1}{2} \right)^7 - 1 \right]}{\frac{1}{2}} - 36 = -\frac{1}{2^7} - 35 = -\left(\frac{1}{2^7} + 35 \right) < 0$	

1.	Condiția ca o funcție să fie continuă într-un punct x_0	2p
a)		2p
	$\lim_{x \to 0} f(x) = \frac{2}{3}; \lim_{x \to 0} f(x) = \frac{2}{3}$	
	$f(0) = \frac{2}{3} \Rightarrow f$ continuă în $x_0 = 0$	1p
	3	
b)	$\left(\frac{-1}{x^2}, x < 0\right)$	
	$f'(x) = \begin{cases} (x-3)^2 \\ 1 \end{cases}$	3p
	$f'(x) = \begin{cases} \frac{-1}{(x-3)^2}, & x < 0\\ \frac{1}{(x+3)^2}, & x > 0 \end{cases}$	
	(x+3)	2p
	f descrescătoare pe intervalul $(-\infty,0)$ și crescătoare pe intervalul $(0,+\infty)$	
c)	$\lim_{x \to +\infty} f(x) = 1; \lim_{x \to -\infty} f(x) = 1; f(0) = \frac{2}{3}$	2p
	Din tabelul de variație al funcției: $f(x) \in \left[\frac{2}{3}, 1\right], \ \forall x \in \mathbb{R}$	3p
2.	$n=1 \Rightarrow f_1(x) = 4x^2 + 8x + 16$	1p
a)	3	
	$\int f_1(x)dx = \int (4x^2 + 8x + 16)dx = 4\frac{x^3}{3} + 4x^2 + 16x + c$	4p
	3	
b)	$A = \int_{0}^{1} f_{1}(x) dx = \int_{0}^{1} (4x^{2} + 8x + 16) dx$	2p
		3p

	$A = \left(\frac{4x^3}{3} + 4x^2 + 16x\right)\Big _0^1 = \frac{64}{3}$	
c)	$\int_{1}^{2} \frac{f_{2}(x) - 16}{x} \cdot e^{x} dx = \int_{1}^{2} \frac{16x^{2} + 16x}{x} \cdot e^{x} dx$	2p
	$16\int_{1}^{2} (x+1)e^{x} dx = 16\left[(x+1)e^{x} \Big _{1}^{2} - \int_{1}^{2} e^{x} dx \right] = 16e(2e-1)$	3p

Varianta 20

Prof: Brabeceanu Silvia

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$a_4 = 54$, $q = 3$ și $a_1 = 2$	7	3p
	$S_6 = \frac{a_1 \left(q^6 - 1 \right)}{q - 1} = 728$	50)	2p
2.	Ecuaţia $mx^2 - (m+1)x + m = 0$ are soluţii reale egale $\Leftrightarrow \Delta = 0$.		1p
	$b^2 - 4ac = 0 \Rightarrow (m+1)^2 - 4 \cdot m \cdot m = 0$		1p
			3p

	$-3m^{2} + 2m + 1 = 0 \Longrightarrow \begin{cases} m_{1} = 1\\ m_{2} = \frac{-1}{3} \end{cases}$	
3.	$\left(x+3>0, x\in\left(-3,+\infty\right)\right)$	2p
	Condiții $\begin{cases} x+3 > 0, x \in (-3, +\infty) \\ 2x-1 > 0, x \in \left(\frac{1}{2}, +\infty\right) \Rightarrow x \in \left(\frac{1}{2}, +\infty\right) \end{cases}$	
	$\binom{2x-1>0,x\in(2,10)}{2}$	1p
	$\log_2(x+3) + \log_2(2x-1) = 2 \Rightarrow (x+3)(2x-1) = 4$	1P
	$\log_2(x+3) + \log_2(2x-1) - 2 \Rightarrow (x+3)(2x-1) - 4$	
	$2x^2 + 5x - 7 = 0 \Longrightarrow \begin{cases} x_1 = 7 \\ x_2 = 1 \end{cases}$	2p
	$x_2 = 1$	
4.		3p
4.	Numerele naturale abc scrise cu cifrele 1 și 2, corespund funcțiilor $f:\{a,b,c\} \rightarrow \{1,2\}$ care sunt în	Эр
	total $2^3 = 8$, deci sunt 8 numere: 111, 112, 121, 122, 211, 212, 221, 222.	
	Favorabile cerinței de a fi divizibile cu 4 sunt doar două dintre ele: 112 și 212.	1p
	43	1p
	Probabilitatea cerută este $p = \frac{2}{8} = 0,25$	•
5.	CM - mediatoarea segmentului $\mathit{AB} \Rightarrow \mathit{C}$ mijlocul segmentului și $\mathit{CM} \perp \mathit{AB}$.	1p
	$x_{C} = \frac{x_{A} + x_{B}}{2} = \frac{1}{2}$ $y_{C} = \frac{y_{A} + y_{B}}{2} = \frac{1}{2}$ $\Rightarrow C\left(\frac{1}{2}, \frac{1}{2}\right)$	1p
	$CM \perp AB \Rightarrow m_{CM} \cdot m_{AB} = -1 \Rightarrow m_{CM} = \frac{1}{3}$	1p
	$CM: y - y_C = m_{CM}(x - x_C) \Longrightarrow CM: x - 3y + 1 = 0$	2p
6.	Se utilizează formula lui Heron: $S = \sqrt{p(p-a)(p-b)(p-c)}$ unde $p = \frac{a+b+c}{2}$ este	2p
	semiperimetrul triunghiului.	7
		1p
	$p = \frac{6+7+11}{2} = 12$	
	_	
	$S = \sqrt{12(12-7)(12-11)(12-6)} = 6\sqrt{10}$	2p

_	. 1		
	1. a)	$A^{2} = \begin{pmatrix} 4 & -4 \\ -12 & 12 \end{pmatrix} \text{ si } 2A = \begin{pmatrix} 2 & -2 \\ -6 & 6 \end{pmatrix}$	2p
		$A^2 - 2A = 2 \begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix}$	2p
	7	$2\begin{pmatrix} 1 & -1 \\ -3 & 3 \end{pmatrix} = 2A$	1p
	b)	Din a). $\Rightarrow A^2 = 4A$	1p
		$X(a) \cdot X(b) = (I_2 + aA) \cdot (I_2 + bA) = I_2 + aA + bA + abA^2$	2p
		$X(a) \cdot X(b) = I_2 + aA + bA + ab(4A) = I_2 + (a+b+4ab)A = X(a+b+4ab)$	2p
	c)	$X(a)$ este inversabilă $\Leftrightarrow \det(X(a)) \neq 0$	2p
		$X(a) = I_2 + aA = \begin{pmatrix} 1+a & -a \\ -3a & 1+3a \end{pmatrix}$	1p
		$\det(X(a)) = \begin{vmatrix} 1+a & -a \\ -3a & 1+3a \end{vmatrix} = 1+4a$	1p
		$\forall a \in \mathbb{Z}, \ 1 + 4a \neq 0 \Rightarrow X(a)$ inversabilă	1p
	2.	$m = 3 \Rightarrow f = X^3 + X^2 - 15X + 4$	1p
	a)	Împărțirea obișnuită sau schema lui Horner	3p
		$q = X^2 + 3X - 9$, $r = -14$	1p
	b)	Efectuarea împărțirii	2p
		f divizibil cu $X + 4 \Leftrightarrow r = 0$	1p
		$r = 0 \Rightarrow 17m - 35 = 0 \Rightarrow m = \frac{35}{17}$	2p
	c)	Relațiile lui Viete $\begin{cases} S_1 = 1 \\ S_2 = -15 \\ S_3 = -2 \end{cases}$	1p
		$S_3 = -2$	•
_			

$$x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = S_{1}^{2} - 2S_{2} = 31$$

$$x_{1}^{3} + x_{2}^{3} + x_{3}^{3} - (x_{1}^{2} + x_{2}^{2} + x_{3}^{2}) - 15(x_{1} + x_{2} + x_{3}) + 6 = 0,$$

$$x_{1}^{3} + x_{2}^{3} + x_{3}^{3} = (x_{1}^{2} + x_{2}^{2} + x_{3}^{2}) + 15(x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3}) - 6 = 40$$

$$2p$$

$$x_{1}^{3} + x_{2}^{3} + x_{3}^{3} = (x_{1}^{2} + x_{2}^{2} + x_{3}^{2}) + 15(x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3}) - 6 = 40$$

1. a)	$f'(x) = \left(2^x - x \ln 2\right)'$	2p
	$f'(x) = (2^x - 1)\ln 2$	3p
b)	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$	2p
	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = \ln 2$	3p
c)	$f'(x) = 0 \Rightarrow (2^x - 1) \ln 2 = 0$	1p
	$\ln 2 > 0$	2p
	$2^x - 1 = 0 \Longrightarrow x = 0$	2p
2. a)	$I_0 = \int_0^1 \sqrt{1 - x} dx \cdot \text{Subst.} \sqrt{1 - x} = t \Rightarrow \begin{cases} x = 0 \Rightarrow t = 1 \\ x = 1 \Rightarrow t = 0 \end{cases}; dx = -2\sqrt{1 - x} dt \Rightarrow I_0 = 2\int_0^1 t^2 dt = \frac{2}{3}$	3p
	$I_{1} = \int_{0}^{1} x \sqrt{1 - x} dx = 2 \int_{0}^{1} (t^{2} - t^{4}) dt = \frac{4}{15}$	2p
b)	Se aplică metoda integrării prin părți	1p
	$I_{n} = \int_{0}^{1} x^{n} \sqrt{1 - x} dx = \frac{2n}{3} \int_{0}^{1} x^{n-1} \sqrt{1 - x} dx - \frac{2n}{3} \int_{0}^{1} x^{n} \sqrt{1 - x} dx$	2p
	$I_{n} = \frac{2n}{3} I_{n-1} - \frac{2n}{3} I_{n}$	1p
	$I_n \left(1 + \frac{2n}{3} \right) = \frac{2n}{3} I_{n-1} \Rightarrow I_n = \frac{2n}{2n+3} I_{n-1}$	1p

c)
$$I_{n+1} = \int_{0}^{1} x^{n+1} \sqrt{1-x} dx$$

$$\forall x \in [0,1] \Rightarrow x^{n+1} \le x^{n} \text{ si cum } 0 \le 1-x \le 1 \Rightarrow x^{n+1} \sqrt{1-x} \le x^{n} \sqrt{1-x}$$

$$Deci \int_{0}^{1} x^{n+1} \sqrt{1-x} dx \le \int_{0}^{1} x^{n} \sqrt{1-x} dx \Rightarrow I_{n+1} \le I_{n} \Rightarrow (I_{n})_{n \ge 0} \text{ descrescător}$$

$$2p$$

Varianta 21

Prof: Brabeceanu Silvia

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	Raţionalizarea fiecărei fracţii sau aducerea la acelaşi numitor		1p
	$\frac{\left(2+\sqrt{3}\right)^2+\left(2-\sqrt{3}\right)^2}{4-3}=14$	50	3p
	Finalizare $14 \in \mathbb{N}$		1p
			1
2.	Pentru ca să existe intervalul I se pune condiția: $\frac{x^2+1}{2} \le \frac{3x+4}{4}$		lp
	2 4		3p

	$2x^2 - 3x - 2 \le 0$	
	Finalizare $x \in \left[\frac{-1}{2}, 2\right]$	1p
3.	$A(-1,1) \in G_f \Rightarrow f(-1) = 1 \text{ si } B\left(\frac{1}{3}, \frac{1}{2}\right) \in G_f \Rightarrow f\left(\frac{1}{3}\right) = \frac{1}{2}$	2p
	Rezolvarea sistemului $\begin{cases} -3a + 2b = 1 \\ 2a + 4b = 3 \end{cases} \Rightarrow S = \left\{ \left(\frac{1}{8}, \frac{11}{16} \right) \right\}$	3p
4.	Fie x - prețul inițial. $x-18\%$ din $x=820$.	20
4.	File x - preşul illiştat. $x - 18\%$ dili $x = 820$.	2p
	$x - \frac{18}{100}x = 820 \Rightarrow \frac{41}{50}x = 820$	2p
	x = 1000	1p
5.	$\overrightarrow{BC} - 2\overrightarrow{BA} + 2\overrightarrow{u} - 3\overrightarrow{v} = \overrightarrow{BC} + 2\overrightarrow{AB} + 2\overrightarrow{AB} - 3\overrightarrow{AC}$	2p
	$(\overrightarrow{BC} + \overrightarrow{CA}) + 2\overrightarrow{AB} + 2(\overrightarrow{AB} + \overrightarrow{CA}) = -\overrightarrow{AB} + 2\overrightarrow{AB} + 2\overrightarrow{CB} = \overrightarrow{AB} + 2\overrightarrow{CB}$	3p
6.	$m(\hat{C}) = 30^{\circ} \Rightarrow BC = 2 \cdot AB = 40\sqrt{3}$	1p
	Din to summe setata: $AB^2 - BC - BD \rightarrow BD - 10\sqrt{2}$	2p
	Din teorema catetei $AB^2 = BC \cdot BD \Rightarrow BD = 10\sqrt{3}$	1p
	$CD = BC - BD = 30\sqrt{3}$	
	Se aplică teorema înălțimii $AD^2 = BD \cdot DC = 30$	1p

1.	$A_1(1,2)$ și $A_2(2,5)$	1p
a)	$x-x_1$ $y-y_1$	2p
	Ecuația dreptei $A_1 A_2 : \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$	
	$A_1 A_2 : 3x - y - 1 = 0$	2p
		l

b)	Punctele A_1, A_2, A_n sunt coliniare dacă determinantul $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 5 & 1 \\ n & n^2 + 1 & 1 \end{vmatrix} = 0$	2p
9	$n^2 - 3n + 2 = 0 \Longrightarrow \begin{cases} n_1 = 1 \\ n_2 = 2 \end{cases}$	3p
c)	$A_{{\scriptscriptstyle \Delta} A_1 A_2 A_3} = rac{1}{2} ig \Delta ig $	2p
	$\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 5 & 1 \\ 3 & 10 & 1 \end{vmatrix} = 2$	2p
	$A_{\Delta A_1 A_2 A_3} = \frac{1}{2} 2 = 1$	1p
2.	$\forall x, y \in \mathbb{R}$ $x \perp y = \frac{1}{2}(xy - x - y + 1 + 2) = \frac{1}{2}(xy - x - y + 1) + 1$	2p
	$\forall x, y \in \mathbb{R} \frac{1}{2} (xy - x - y + 1) + 1 = \frac{1}{2} [x(y - 1) - (y - 1)] + 1 = \frac{1}{2} (x - 1)(y - 1) + 1$	3p
b)	$5^{x} \perp 3^{x-3} = 1 \Rightarrow \frac{1}{2} \left(5^{x} - 1 \right) \left(3^{x-1} - 1 \right) + 1 = 1 \Rightarrow \frac{1}{2} \left(5^{x} - 1 \right) \left(3^{x-1} - 1 \right) = 0$	3p
	$5^x - 1 = 0 \Longrightarrow x = 0$	1p
	$3^{x-3} - 1 = 0 \Longrightarrow x = 3$	1p
c)	$x \perp x \perp x \perp x \perp x \perp x = (x \perp x) \perp (x \perp x) \perp x = \left[\frac{1}{2}(x-1)^2 + 1\right] \perp \left[\frac{1}{2}(x-1)^2 + 1\right] \perp x$	2p
	Se aplică în continuare a).	2p
	Finalizare $x \perp x \perp x \perp x \perp x = \frac{1}{2^4} (x-1)^5 + 1$	1p

1.	Asimptota oblică are ecuația $y = mx + n, m \neq 0$	1p	l
a)			

	$m = \lim_{x \to +\infty} \frac{f(x)}{x} = 1$	2p
		1p
	$n = \lim_{x \to +\infty} \left[f(x) = mx \right] = 1$	1p
	y = x + 1	
b)	$f'(x) = \frac{x^2 + 6x + 8}{(x+3)^2}$	2p
	$(x+3)^2$	
	$f'(x) = 0 \Rightarrow x^2 + 6x + 8 = 0 \Rightarrow \begin{cases} x_1 = -4 \\ x_2 = -2 \end{cases}$	1p
	$(x_2 = -2)$	2p
	Din tabloul de variație al funcției rezultă că x_1, x_2 sunt puncte de extrem	
(c)	$L = \lim_{x \to +\infty} \left(\frac{f(x)}{x} \right)^x = \lim_{x \to +\infty} \left(\frac{x^2 + 4x + 4}{x^2 + 3x} \right)^x \text{ caz except at } 1^\infty$	1p
	$L = e^l = e^1 = e$	3p
	$L = e^{l} = e^{1} = e$ $l = \lim_{x \to +\infty} \frac{x^{2} + 4x}{x^{2} + 3x} = 1$	1p
2.	$\frac{6}{9+x^2} \le \frac{1}{x} \Leftrightarrow 6x \le 9+x^2$	1p
a)	$0 \le 9 + x^2 - 6x \Leftrightarrow 0 \le (3 - x)^2$	2p
	$(3-x)^2 \ge 0$ adevărat pentru $\forall x \in (0, +\infty)$	2p
b)	$\int_{1}^{\sqrt{3}} f(x)dx = 6 \int_{1}^{\sqrt{3}} \frac{1}{9+x^{2}} dx = 6 \cdot \frac{1}{3} \arctan \left(\frac{x}{3} \right)_{1}^{\sqrt{3}}$	3p
	$\int_{1}^{\sqrt{3}} f(x)dx = 2\left(\frac{\pi}{6} - arctg\frac{1}{3}\right)$	2p
	$\int_{1}^{3} f(x) dx = 2 \left(\frac{1}{6} - \operatorname{arctg} \frac{1}{3} \right)$	
c)	Integrând relația de la punctul a). avem $\int_{1}^{e} f(x) dx \le \int_{1}^{e} \frac{1}{x} dx = \ln x \Big _{1}^{e} = 1$	2p
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		2p
	· ·	

Folosind punctul b). avem $2\left(arctge - arctg\frac{1}{3}\right) \le 1$	1p
Finalizare $arctge \le \frac{1}{2} + arctg \frac{1}{3}$	

Varianta 22

Prof: Ciocănaru Viorica

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	Termenul general al progresiei aritmetice $a_n = a_1 + (n - 1) \cdot r$, precizarea valorilor lui a_1 , n , r .	3p
	Calculul lui $a_{11} = 2 + (11 - 1) \cdot 3$ de unde rezultă $a_{11} = 32$	2p
2.	Formula $log_a a = 1, 0 < a < 1, a > 1$ și $log_3 3 = 1$	1p

	Formulele $m \log_a A = \log_a A^m$, $0 < a < 1, a > 1, A > 0$	2p
	$log_a A + log_a B - log_a C = log_a \frac{AB}{C}, \ 0 < a < 1, a > 1, A, B, C > 0$	
2	Calculele $log_3 3 + 3 log_3 2 - 2 log_3 4 = 1 + log_3 \frac{2^3}{4^2} = 1 - log_3 2$	2p
3.	Intersecția G_f cu Ox înseamnă rezolvarea ecuației $f(x) = 0$	1p
	Rezolvarea ecuației x^2 - $5x + 6 = 0$, $\Delta = b^2 - 4ac$, $x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$	2p
	Calculele $\Delta = 1$, $x_{I,2} = \frac{5 \pm 1}{2}$ deci $G_f \cap Ox = \{A, B\}$, $A(3, 0)$, $B(2, 0)$.	2p
4.	Formule $C_n^k = \frac{n!}{k!(n-k)!}, A_n^k = \frac{n!}{(n-k)!}, 0 \le k \le n, P_n = n!$	2p
	Calculele $C_5^2 = 10$, $A_5^2 = 20$, $P_3 = 6$ și finalizarea $2C_5^2 - A_5^2 + P_3 = 2 \cdot 10 - 20 + 6 = 6$	3p
5.	Înmulțirea unui vector $\overrightarrow{t} = a \overrightarrow{i} + b \overrightarrow{j}$ cu un scalar s real, $s \overrightarrow{t} = sa \overrightarrow{i} + sb \overrightarrow{j}$	2p
	Calculele $2\vec{v} - 3\vec{u} = 2(2\vec{i} + 3\vec{j}) - 3(3\vec{i} - 2\vec{j}) = -5\vec{i} + 12\vec{j}$.	3p
6.	Formula pentru aria triunghiului $A_{\Delta ABC} = \frac{1}{2} AB \cdot AC \cdot sin A$.	2p
	$\sin A = \sin 30^0 = \frac{1}{2}.$	1p
	Calculul ariei $A_{\Delta ABC} = \frac{1}{2} \cdot 8 \cdot 10 \cdot \frac{1}{2} = 20.$	2p

1.	Matricea sistemului este inversabilă dacă $D(a) \neq 0$.	2p
a)		
	$D(a) = \begin{vmatrix} 1 & 1 & 1 \\ a & 3 & 1 \\ a^2 & 9 & 1 \end{vmatrix}$ determinant Vandermonde sau se aplică una din regulile uzuale pentru	2p

	calculul lui $D(a)$ $D(a) = -2(a - 1)(a - 3)$.	
	$a \neq 1, a \neq 3$.	1p
b)	(1 2)	3p
0)	$A^{t} = \begin{pmatrix} 1 & a & a^{2} \\ 1 & 3 & 9 \\ 1 & 1 & 1 \end{pmatrix}, \det A^{t} = \det A$	Эр
	$\begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 1 \end{bmatrix}$, $\det H = \det H$	
	Din punctul a) $D(a) = -2(a - 1)(a - 3)$	
	D(2) = -2(2-1)(2-3) = 2	2p
c)	Din punctul a) $D(a) = -2(a - 1)(a - 3)$, $D(4) = -2(4 - 1)(4 - 3) = -6$	1p
		2p
	Cu metoda lui Cramer se calculează $D_x = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 3 & 1 \\ 1 & 9 & 1 \end{vmatrix}, D_y = \begin{vmatrix} 1 & 1 & 1 \\ 4 & -1 & 1 \\ 16 & 1 & 1 \end{vmatrix}, D_z = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 16 & 9 & 1 \end{vmatrix}.$	
	1 9 1 16 1 1 16 9 1	
	Calculele conduc la $D_x = -16$, $D_y = 30$, $D_z = -20$ și $x = \frac{D_x}{D(4)}$, $y = \frac{D_y}{D(4)}$, $z = \frac{D_z}{D(4)}$ deci	2p
	Calculate collidate in $D_x = -10$, $D_y = 30$, $D_z = -20$ 31 $x = D(4)$ $D(4)$ $D(4)$ $D(4)$	_
	$S = \{(\frac{8}{3}, -5, \frac{10}{3})\}.$	
	$3 - \{(\frac{1}{3}, -3, \frac{1}{3})\}.$	
2.	Din relațiile lui Viète $x_1 + x_2 + x_3 + x_4 = 0$, $x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4 = -8$,	1p
a)	$x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3$ $x_4 = 0$, $x_1x_2x_3$ $x_4 = 16$ se determină $S = 0$, $f(S) = 16$, $P = 16$,	3p
		1p
	f(S)+ P = 16 + 16 = 32.	
b)	Polinomul $f = X^4 - 8X^2 + 16$ se restrânge în $(X^2 - 4)^2 = (X - 2)^2 (X + 2)^2$.	3p
	Unul din factorii lui f este polinomul g deci g divide f .	2p
c)	Din punctul b) rădăcinile polinomului f sunt $x_1 = x_2 = 2$, $x_3 = x_4 = -2$.	2p
	$x_1^4 = x_2^4 = 2^4 = 16$, $x_3^4 = x_4^4 = (-2)^4 = 16$.	2p
	$x_1^4 + x_2^4 + x_3^4 + x_4^4 = 16 + 16 = 32.$	1p

	1. a)	Formula $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$.	2p
		Calculul lui $\left(\frac{2x}{x^2+3}\right)^2 = \frac{(2x)!(x^2+3)-2x(x^2+3)!}{(x^2+3)^2} = \frac{-2(x^2-3)}{(x^2+3)^2}, \text{ deci } f'(x) = \frac{-2(x^2-3)}{(x^2+3)^2}.$	2p
		Calculul lui $f'(0) = \frac{2}{3}$.	1p
	b)	Rezolvarea ecuației $f'(x) = 0$ conduce la aflarea punctelor de extrem.	1p
		Din punctul a) $f'(x) = \frac{-2(x^2 - 3)}{(x^2 + 3)^2}$ şi $f'(x) = 0$ rezultă $\frac{-2(x^2 - 3)}{(x^2 + 3)^2} = 0$.	1p
		$x^2 - 3 = 0$ şi $x_{1,2} = \pm \sqrt{3}$.	1p
		$f(\pm\sqrt{3}) = \pm\frac{\sqrt{3}}{3}$ de unde rezultă punctele de extrem de coordonate $(\pm\sqrt{3},\pm\frac{\sqrt{3}}{3})$.	2p
•	c)	Notarea $\lim_{x \to \infty} (f(x) - x) = \lim_{x \to \infty} (\frac{2x}{x^2 + 3} - x) = L.$	1p
		$x \rightarrow \infty$ $x \rightarrow \infty$ $x^2 + 3$	
		Aducerea la același numitor $L = \lim_{x \to \infty} \frac{2x - x(x^2 + 3)}{x^2 + 3}$.	1p
		Calculele $L = \lim_{x \to \infty} \frac{-x^3 - x}{x^2 + 3}$.	1p
		Observarea nedeterminării $\frac{\infty}{\infty}$ și găsirea limitei L = $-\infty$.	2p
•	2. a)	Orice funcție continuă admite primitive, f este contină pe \mathbb{R} - $\{1\}$, pentru continuitatea lui f în $x_0 = 1$ se calculează limitele laterale și $f(1)$.	2p
		$l_s = \lim_{\substack{x \to 1 \\ x < 1}} (-x^2 + 3x - 2) = 0$, $l_d = \lim_{\substack{x \to 1 \\ x > 1}} (x + 3) \ln x = 0$, $f(1) = (1+3) \ln 1 = 0 \Rightarrow f$ continuă în $x_0 = 1$.	2p
		f admite primitive pe \mathbf{R} .	1p
	b)	$\frac{1}{2}$ $\frac{1}{2}$	1p
		$0 \text{ si } \frac{1}{2} < 1 \text{ deci } \int_{0}^{2} f(x) dx = \int_{0}^{2} (-x^{2} + 3x - 2) dx.$	
		x^{n+1}	1p
		$\int x^n dx = \frac{x^{n+1}}{n+1} + c$	

	$\int (-x^2 + 3x - 2)dx = -\frac{x^3}{3} + 3\frac{x^2}{2} - 2x + c.$	1p
9	$\int_{0}^{\frac{1}{2}} (-x^{2} + 3x - 2) dx = \left(-\frac{x^{3}}{3} + 3\frac{x^{2}}{2} - 2x\right) \Big _{0}^{\frac{1}{2}} = -\frac{\left(\frac{1}{2}\right)^{3}}{3} + 3\frac{\left(\frac{1}{2}\right)^{2}}{2} - 2\left(\frac{1}{2}\right) = -\frac{2}{3}.$	2p
c)	$1, e^{2} \ge 1 \det \int_{1}^{e^{2}} \frac{f(x)}{x+3} dx = \int_{1}^{e^{2}} \frac{(x+3)\ln x}{x+3} dx = \int_{1}^{e^{2}} \ln x dx.$	2p
	Formula de integrare prin părți $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$ f, g derivabile cu	1p
	derivatele continue.	
	$\int_{1}^{e^{2}} \ln x dx = x \ln x \Big _{1}^{e^{2}} - \int_{1}^{e^{2}} dx = x \ln x \Big _{1}^{e^{2}} - x \Big _{1}^{e^{2}} = e^{2} + 1.$	2p

Varianta 23

Prof: Ciocănaru Viorica

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1. Termenul general al progresiei aritmetice $a_n = a_1 + (n-1) \cdot r$, precizarea valorilor lui a_I , n, r.

Suma primilor n termeni ai progresiei aritmetice $S_n = \frac{(a_1 + a_n)n}{2}$.

	(2 45) 25	2n
	Calculele $a_{25} = 3 + (25 - 1) \cdot (-2) = 3 - 48 = -45$, $S_{25} = \frac{(3 - 45) \cdot 25}{2} = -21 \cdot 25 = -525$.	2p
2.	Ecuația de gradul al II-lea are soluții reale egale pentru $\Delta = 0$.	1p
	$\Delta = b^2 - 4ac \implies \Delta = (m-1)^2 - 4 \cdot 2m = m^2 - 10m + 1.$	2p
	$\Delta = 0 \implies m^2 - 10m + 1 = 0, \ \Delta_{\rm m} = 100 - 4 = 96, \ m_{1,2} = \frac{-b \pm \sqrt{\Delta_{\rm m}}}{2a}$ $m_{1,2} = 5 \pm 2\sqrt{6}.$	2p
3.	Intersecția G_f cu Ox înseamnă rezolvarea ecuației $f(x) = 0$.	1p
	$\Rightarrow 3^{2x+1}-1=0 \leftrightarrow 3^{2x+1}=1 \leftrightarrow 2x+1=0 \leftrightarrow x=-\frac{1}{2}\operatorname{deci} G_f \cap Ox=\{A\}, \ A(-\frac{1}{2},0).$	2p
	Intersecția G_f cu Oy înseamnă $f(0)$, $f(0) = 3^{2 \cdot 0 + 1} - 1 = 2 deci G_f \cap Oy = \{B\}, B(0, 2).$	2p
4.	Formulele $C_n^k = \frac{n!}{k!(n-k)!}$, $0 \le k \le n$, $P_n = n!$	2p
	Calculele $C_n^2 = \frac{n(n-1)}{2}$, $P_3 = 6$ conduc la ecuația $n(n-1) = 12 \Rightarrow n = 4$.	3p
5.	Condiția ca doi vectori $\overrightarrow{t} = a \overrightarrow{i} + b \overrightarrow{j}$ și $\overrightarrow{r} = c \overrightarrow{i} + d \overrightarrow{j}$ să fie coliniari $\frac{a}{c} = \frac{b}{d}$	2p
	Calculele pentru ca vectorii \overrightarrow{v} și \overrightarrow{u} să fie coliniari $\frac{a+2}{3} = \frac{a-3}{-2} \leftrightarrow 3(a-3) + 2(a+2) = 0$	3p
	$\leftrightarrow 5a = 5 \leftrightarrow a = 1$	
6.	$\sin(a+b) = \sin a \cos b + \sin b \cos a, \ a, b \in \mathbf{R}$	2p
	$75^0 = 45^0 + 30^0$	1p
	$\sin 75^0 = \sin 45^0 \cos 30^0 + \sin 30^0 \cos 45^0$, valorile remarcabile $\sin 45^0 = \cos 45^0 = \frac{\sqrt{2}}{2}$,	2p
	$\sin 30^0 = \frac{1}{2}, \cos 30^0 = \frac{\sqrt{3}}{2} \implies \sin 75^0 = \frac{\sqrt{2}}{2} \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) = \frac{\sqrt{2}}{4} (\sqrt{3} + 1).$	
CITT	RIECTIII, al II-lea (30 de nuncte)	

1. a)	Ecuația dreptei $BC: \begin{vmatrix} x & y & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0 \leftrightarrow \begin{vmatrix} x & y & 1 \\ 1 & 2 & 1 \\ -3 & -2 & 1 \end{vmatrix} = 0, B(1, 2) $ şi $C(-3, -2)$	2p
	Colonlele 2n 2 2n + 6 + 2n n = 0 (n n n + 1 = 0	2p
7	Calculele $2x - 2 - 3y + 6 + 2x - y = 0 \leftrightarrow x - y + 1 = 0$.	1p
	Ecuația dreptei BC : $x - y + 1 = 0$.	
b) \	A(3, a), B(a, 2) și $C(-3, -2)$ pentru $a = -2$ devin $A(3, -2), B(-2, 2)$ și $C(-3, -2)$	3p
	$A_{\Delta ABC} = \begin{vmatrix} \frac{1}{2} \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} , A_{\Delta ABC} = \begin{vmatrix} \frac{1}{2} \begin{vmatrix} 3 & -2 & 1 \\ -2 & 2 & 1 \\ -3 & -2 & 1 \end{vmatrix} $	
	Calculul determinantului conduce la $A_{\Delta ABC} = 12$	2p
c)	$\begin{bmatrix} x_A & y_A & 1 \end{bmatrix}$	1p
	$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0 \text{ pentru ca A, B, C să fie coliniare.}$	
	$\begin{vmatrix} 3 & a & 1 \end{vmatrix}$	2p
	$\begin{vmatrix} 3 & a & 1 \\ a & 2 & 1 \\ -3 & -2 & 1 \end{vmatrix} = 6 - 2a - 3a + 6 + 6 - a^2 = -a^2 - 5a + 18, a^2 + 5a - 18 = 0.$	
	$a_{1,2} = \frac{-5 \pm \sqrt{25 + 72}}{2}$, se reţine valoarea pozitivă deci $S = \{\frac{-5 + \sqrt{97}}{2}\}$.	2p
2.	$\hat{2}x + \hat{3} = \hat{1} \leftrightarrow \hat{2}x + \hat{3} + \hat{2} = \hat{1} + \hat{2}$.	1p
a)	$\leftrightarrow \hat{2} x = \hat{3} \leftrightarrow x = \hat{4} \text{ în } \mathbf{Z}_5.$	3p
	$S = {\hat{4}}$	1p
b)		3p
	$\begin{vmatrix} \hat{1} & \hat{2} & \hat{3} \\ \hat{2} & \hat{3} & \hat{1} \\ \hat{3} & \hat{1} & \hat{2} \end{vmatrix} = \hat{1} \cdot \hat{2} \cdot \hat{3} + \hat{1} \cdot \hat{2} \cdot \hat{3} + \hat{1} \cdot \hat{2} \cdot \hat{3} - (\hat{3} \cdot \hat{3} \cdot \hat{3} + \hat{1} \cdot \hat{1} + \hat{2} \cdot \hat{2} \cdot \hat{2})$	
	$\begin{vmatrix} \hat{1} \cdot \hat{2} \cdot \hat{3} = \hat{1}, & \hat{3} \cdot \hat{3} \cdot \hat{3} = \hat{2}, & \hat{2} \cdot \hat{2} = \hat{3} \text{ de unde rezultă valoarea determinantului } \hat{3} - (\hat{2} + \hat{1} + \hat{3}) \\ = \hat{2} \end{vmatrix}$	2p
c)	Prin adunarea membru cu membru a celor două ecuații se obține $\hat{3}x = \hat{4} \leftrightarrow x = \hat{3}$.	2p
	Prin înlocuirea în prima ecuație a sistemului se obține $\hat{1} + y = \hat{1} \leftrightarrow y = \hat{0}$.	2p

Soluția sistemului în \mathbb{Z}_5 este $S = \{(\hat{3}, \hat{0})\}.$

1. a)	$(f \cdot g)' = f'g + fg', (f(x) \cdot g(x))' = (\ln x + \frac{x^2}{2})'(x^2 - 3x) + (\ln x + \frac{x^2}{2})(x^2 - 3x)', x > 0.$	2p
	$(f(x) \cdot g(x))' = (\frac{1}{x} + x)(x^2 - 3x) + (\ln x + \frac{x^2}{2})(2x - 3)$	2p
	$(f(x) \cdot g(x))' = x^3 - 3x^2 + x - 3 + (\ln x + \frac{x^2}{2})(2x - 3).$	1p
b)	Curbura funcției se stabilește folosind f " (x) .	1p
	Din punctul a) $f'(x) = (\ln x + \frac{x^2}{2})' = \frac{1}{x} + x$.	1p
	$f''(x) = (\frac{1}{x} + x)' = -\frac{1}{x^2} + 1 = \frac{x^2 - 1}{x^2}.$	1p
	$f''(x)=0 \iff x^2-1=0 \implies x_{1,2}=\pm 1.$	2p
	Funcția f este convexă pe intervalele $(-\infty, -1) \cup (1, +\infty)$ și concavă pe intervalul $(-1, 1)$.	
c)	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\ln x + \frac{x^2}{2}}{x^2 - 3x}.$	1p
	$\lim_{x \to \infty} (\ln x + \frac{x^2}{2}) = +\infty, \lim_{x \to \infty} (x^2 - 3x) = +\infty.$	1p
	Nedeterminarea $\frac{\infty}{\infty}$ se rezolvă cu regula lui l'Hopital.	1p
	Din punctual a) $(\ln x + \frac{x^2}{2})' = \frac{1}{x} + x$, $(x^2 - 3x)' = 2x - 3 \Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$, pentru care	2p
	se aplică iar regula lui l'Hopital $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = \lim_{x\to\infty} \frac{f''(x)}{g''(x)} = \lim_{x\to\infty} \frac{-\frac{1}{x}+1}{2} = \frac{1}{2}$.	

2. a)	Pentru $x \in [1, 3]$ $\int f(x)dx = \int (x^2 + x + \frac{2}{x})dx$, formulele $\int x^n dx = \frac{x^{n+1}}{n+1} + c$, $\int \frac{1}{x}dx = \ln x + c$	2p
0	Calculele $\int x^2 dx = \frac{x^3}{3} + c$, $\int x dx = \frac{x^2}{2} + c$, $\int \frac{2}{x} dx = 2 \ln x + c$.	2p
	Finalizarea $\int (x^2 + x + \frac{2}{x})dx = \frac{x^3}{3} + \frac{x^2}{2} + 2\ln x + c$, $\forall x \in [1, 3]$.	1p
b)	$\int_{1}^{3} (f(x) - x^{2} - \frac{2}{x})e^{x} dx = \int_{1}^{3} xe^{x} dx.$	1p
	Formula de integrare prin părți $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$ f, g derivabile cu	1p
	derivatele continue.	
	$\int_{1}^{3} xe^{x} dx = xe^{x} \Big _{1}^{3} - \int_{1}^{3} e^{x} dx.$	1p
	$\int_{1}^{3} xe^{x} dx = xe^{x} _{1}^{3} - e^{x} _{1}^{3} = 2e^{3}.$	2p
c)	Formula $V = \pi \int_{1}^{2} g^{2}(x)dx$, $g(x) = f(x) - x = x^{2} + \frac{2}{x}$.	2p
	$g^{2}(x) = (x^{2} + \frac{2}{x})^{2} = x^{4} + 4x + \frac{4}{x^{2}}.$	1p
	Calculele $V = \pi \int_{1}^{2} (x^4 + 4x + \frac{4}{x^2}) dx = \pi (\frac{x^5}{5} + 2x^2 - \frac{4}{x}) _{1}^{2} = (\frac{31}{5} + 8)\pi = \frac{71}{5}\pi$.	2p

Varianta 24

Prof: Ciocănaru Viorica

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

2p

2p

SUBIECTUL I (30 de puncte)

1	Formula termenului general al progresiei geometrice $b_n = b_1 \cdot q^{n-1}$, $(b_n > 0 \text{ din enunt})$, aplicarea ei	3p
	în relațiile din enunț $b_1 - b_1 q = 4$, $b_1 - b_1 q^3 = 7$ conduce la $4(1 + q + q^2) = 7 \leftrightarrow 4 q^2 + 4q - 3 = 0$ cu	
	soluțiile $q_{1,2} = \frac{-4 \pm \sqrt{16 + 48}}{8}$, $q_1 = \frac{1}{2}$, $q_2 = \frac{-3}{2}$.	

Pentru
$$q_2 = \frac{-3}{2}$$
 termenii progresiei geometrice nu vor fi toți pozitivi.

Pentru
$$q_1 = \frac{1}{2}$$
 se calculează $b_1 = 8$ și $b_{12} = 8 \cdot (\frac{1}{2})^{11} = (\frac{1}{2})^8$.

2. Condiția de existență pentru
$$\frac{x+2}{x-1}$$
 este $x-1 \neq 0$.

$$5^{\frac{x+2}{x-1}} = 125 \leftrightarrow 5^{\frac{x+2}{x-1}} = 5^3 \leftrightarrow \frac{x+2}{x-1} = 3.$$

$$\leftrightarrow x + 2 = 3x - 3 \iff x = \frac{5}{2}, \quad \frac{5}{2} \text{ verifică } x - 1 \neq 0 \text{ şi deci } S = \{\frac{5}{2}\}.$$

3. Condițiile de existență pentru logaritmi
$$x > 0$$
, $2x - 1 > 0$, $x + 1 > 0$ conduc la $x > \frac{1}{2}$

$$log_{3}x + log_{3}(2x-1) = 2 log_{3}(x+1) \leftrightarrow log_{3}x(2x-1) = log_{3}(x+1)^{2} \leftrightarrow x(2x-1) = (x+1)^{2} \leftrightarrow 2x^{2} - x = x^{2} + 2x + 1 \leftrightarrow x^{2} - 3x - 1 = 0.$$

Rezolvarea ecuației de gr. al II-lea duce la soluțiile
$$x_{1,2} = \frac{3 \pm \sqrt{13}}{2}$$
, $\frac{3 + \sqrt{13}}{2} > \frac{1}{2}$

Mulţimea soluţiilor ecuaţiei logaritmice este
$$S = \{\frac{3 + \sqrt{13}}{2}\}.$$

4.
$$V(\frac{-b}{2a}, \frac{-\Delta}{4a})$$
, intersecția G_f cu Oy se obține calculând $f(0)$.

$$\frac{-b}{2a} = \frac{3}{2}, \frac{-\Delta}{4a} = \frac{7}{4} \implies V(\frac{3}{2}, \frac{7}{4}) \quad \text{si } f(0) = 4 \implies G_f \cap Oy = \{(0, 4)\}.$$

Condițiile ca doi vectori
$$\overrightarrow{t} = a \overrightarrow{i} + b \overrightarrow{j}$$
 și $\overrightarrow{r} = c \overrightarrow{i} + d \overrightarrow{j}$ să fie egali sunt $a = c$, $b = d$.

$$\overrightarrow{v} = \overrightarrow{u}$$
 dacă $5a + 1 = 3,5$ şi $2b - 3 = 2,4$ de unde $a = 0,5$ şi $b = 2,7$ deci $S = \{(0,5; 2,7)\}.$

6. Teorema cosinusului
$$a^2 = b^2 + c^2 - 2bc \cos A$$
, cu $a = BC$, $b = AC$, $c = AB$.

$$b = 10, c = 8, \cos A = \cos 60^0 = \frac{1}{2}.$$

$$a^2 = 10^2 + 8^2 - 2 \cdot 10 \cdot 8 \cos 60^0 = 100 + 64 - 80 = 84 \implies a = \sqrt{84} = 2\sqrt{21}.$$

2p

2p

1.
$$A - B = \begin{cases} 1 & 1 & -1 \\ -2 & 0 & 0 \\ 0 & 2 & -1 \end{cases}$$
 det $(A - B) = 4 - 2 = 2$.

Tr $(A - B) = 1 + 0 + (-1) = 0$

1. $A^1 = \begin{cases} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 0 & 1 \end{cases}$, formula $A^{-1} = \frac{1}{\det A} A^*$, A^* matricea complemenților algebrici ai lui A^t .

Calculele $A_{11} = 1$, $A_{12} = 1$, $A_{13} = -2$, $A_{21} = -2$, $A_{22} = -5$, $A_{23} = 4$, $A_{31} = 1$, $A_{32} = 7$, $A_{33} = -5$

2. $A^{-1} = \frac{1}{-3} \begin{pmatrix} 1 & 1 & -2 \\ 2 & -5 & 4 \\ 1 & 7 & -5 \end{pmatrix}$

1. Primul element al produsului $A \cdot B = 18$.

Fiecare din cele 4 puncte se acordă dacă se calculează corect câte două elemente ale matricei produs după relația $a_{11}b_{1j} + a_{12}b_{2j} + a_{13}b_{3j}$ cu $i, j \in \{1, 2, 3\}$.

2. $(x * y) * z = x * (y * z)$, $\forall x, y, z \in \mathbb{R}$.

a) $(x * y) * z = (xy - 3x - 3y + 12) * z = (xy - 3x - 3y + 12)z - 3(xy - 3x - 3y + 12) - 3z + 12$
 $x * (y * z) = x * (yz - 3y - 3z + 12) = x(yz - 3y - 3z + 12) - 3x - 3(yz - 3y - 3z + 12) + 12$

	După desfacerea parantezelor și reducerea termenilor asemenea în cele două expresii se obține	1p
	$(x * y) * z = x * (y * z) \Rightarrow$ "* "este asociativă.	
b)	Relația $x * y = xy - 3x - 3y + 12$ se transformă după înlocuirea lui y cu 5 în	3p
9	$x*5 = x \cdot 5 - 3x - 3 \cdot 5 + 12 = 2x - 3$	
	$x*5=1 \Rightarrow 2x-3=1 \leftrightarrow x=2 \text{ deci } S=\{2\}.$	2p
c)	Relația $x * y = xy - 3x - 3y + 12$ se transformă după înlocuirea lui x cu 2 în	2p
	$2 * C_n^2 = 2C_n^2 - 3 \cdot 2 - 3C_n^2 + 12 = -C_n^2 + 6$	
	$2 * C_n^2 > 1 \implies -C_n^2 + 6 > 1 \iff -C_n^2 > -5, n \ge 2 \implies C_n^2 < 5 \iff n(n-1) < 10$	2p
	Mulțimea soluțiilor inecuației $2*C_n^2 > 1$ este $S = \{2, 3\}$	1p
1	9/h.	•
SUI	BIECTUL al III-lea (30 de puncte)	
1		222

1. a)	$l_{s} = \lim_{\substack{x \to 0 \\ x < 0}} \frac{x - 3}{x - 4} = \frac{3}{4}.$	2p
	$l_{\rm d} = \lim_{x \to 0} \frac{x+3}{x+4} = \frac{3}{4}$ și a valorii funcției în $x_0 = 0, f(0) = \frac{3}{4}$.	2p
	$ls = ld = f(0) \implies f \text{ este continuă în } x_0 = 0.$	1p
1)		1
b)	$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.$	1p
	Dacă $2 > 0$ se alege pentru derivare $f(x) = \frac{x+3}{x+4}$.	1p
	$\left(\frac{x+3}{x+4}\right)' = \frac{(x+3)'(x+4) - (x+3)(x+4)'}{(x+4)^2}.$	1p
	$f'(x) = \frac{1}{(x+4)^2}$ și $f'(2) = \frac{1}{(2+4)^2} = \frac{1}{36}$.	2p
c)	Asimptota orizontală se determină pentru $x \to \pm \infty$.	1p

	$\lim_{x \to \infty} f(x) = l, l \text{ finit.}$	1p
	$\lim_{x\to\infty}\frac{x+3}{x+4}=1.$	1p
9	$\lim_{x \to -\infty} \frac{x-3}{x-4} = 1 \implies f \text{ admite asimptotă orizontală de ecuație } y = 1 \text{ la } \pm \infty.$	2p
2. a)	$f_0(x) = \frac{1}{x^2 + 1}, \ \int f_0(x) dx = \int \frac{1}{x^2 + 1} dx.$	2p
	$\int \frac{1}{x^2 + 1} dx = \arctan x + c \ \text{si} \int_{1}^{2} \frac{1}{x^2 + 1} dx = \arctan x _{1}^{2}.$	2p
	$ arctg x _1^2 = arctg 2 - \frac{\pi}{4}.$	1p
b)	$I_{2010} = \int_{0}^{1} f_{2010}(x) dx = \int_{0}^{1} \frac{x^{2010}}{x^{2} + 1} dx.$	1p
	$I_{2012} = \int_{0}^{1} f_{2012}(x) dx = \int_{0}^{1} \frac{x^{2012}}{x^{2} + 1} dx.$	1p
	$I_{2010} + I_{2012} = \int_{0}^{1} (f_{2010}(x) + f_{2012}(x)) dx = \int_{0}^{1} \frac{x^{2010} + x^{2012}}{x^{2} + 1} dx.$	1p
	$I_{2010} + I_{2012} = \int_{0}^{1} \frac{x^{2010} (1 + x^{2})}{x^{2} + 1} dx = \int_{0}^{1} x^{2010} dx = \frac{x^{2011}}{2011} \Big _{0}^{1} = \frac{1}{2011}.$	2p
c)	$f_2(x) = \frac{x^2}{x^2 + 1}$, $A(\Gamma_f) = \int_0^1 \frac{x^2}{x^2 + 1} dx$.	2p
	Calculul $\frac{x^2}{x^2+1} = \frac{x^2+1-1}{x^2+1} = 1 - \frac{1}{x^2+1}$.	1p
	$A(\Gamma_f) = \int_0^1 f_2(x) dx = \int_0^1 (1 - \frac{1}{x^2 + 1}) dx = (x - arctg \ x) _1^2 = 1 - arctg \ 2 + \frac{\pi}{4}.$	2p
L_		1

Varianta 25

(ascuns - pentru teste)

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 26

Prof: Dogaru Ion

SUBIECTUL I (30 de puncte)

1.	$\Delta = 169$	1p
	$x_1 = \frac{1}{7}$; $x_2 = 2$	2p
	$x \in [\frac{1}{7}, 2]$	2p
2.	$N = Numărul submulțimilor cu 3 elemente ale mulțimii A care conține elementul 5 este egal cu numărul submulțimilor cu 2 elemente ale mulțimii A \setminus \{5\};$	3p
	$N = C_9^2 = 36$	2p
3.	Nr.caz.fav. = 81;	2p
	Nr.caz.posib.= 90;	2p
	nr.caz.fav.	
	$p = \frac{\text{nr.caz.fav.}}{\text{nr.caz.posib.}} = 0.9$	1p
4.		
	$\begin{cases} x-1>0\\ 6x-5>0 \end{cases} \Rightarrow x \in (1,+\infty);$	1p
	$6x^2 - 11x - 95 = 0;$	1,5
	$\Delta = 2401$;	1p
	$x_1 = 5 \in (1, +\infty);$	1p
	_19	1p
	$x_2 = \frac{-19}{6} \notin (1, +\infty)$ $d^2(A,B) = (m+5)^2 + (-m-7)^2 = 100;$	1p
5.	$\frac{0}{d^2(A P) - (m + 5)^2 + (-m 7)^2 - 100}$	
٦.	$m^2 + 12m - 13 = 0; \Delta = 196;$	2p 2p
6.	$m_1 = -13$; $m_2 = 1$	1p
0.	$\vec{\mathbf{u}} + \vec{\mathbf{v}} = 6\vec{\mathbf{i}} - 3\vec{\mathbf{j}};$	2p
	$\left \vec{\mathbf{u}} + \vec{\mathbf{v}}\right = 3\sqrt{5}$	3p

1		$\operatorname{rang} A \ge 2 \Leftrightarrow x \in \mathbb{R} \setminus \{1\};$	1p
a	.)	$rang A \ge 2 \Leftrightarrow \det A \ne 0$;	2p
		$rang A = 2 \iff x = -2$	2p
b	($(3 \ 3 \ 3)$	
		Pentru $x = -2 \Rightarrow A^* = \begin{vmatrix} 3 & 3 & 3 \end{vmatrix}$;	3p
		$\begin{pmatrix} 3 & 3 & 3 \end{pmatrix}$	

	$\det A^* = 0$	2p
c)	$Y \in M_{1,3}(\mathbb{R}) \Leftrightarrow Y = (x y z); x, y, z \in \mathbb{R};$	2p
	$x = -1$ şi $YA = B \Rightarrow x = y = z = 1$, $Y = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	3p
2.	$f = x^3 - 9x^2 - x + 9 = (x^2 - 1)(x - 9);$	3p
a)	q = x - 9; $r = 0$	2p
b)	$x_1, x_2, x_3 \text{ rădăcini} \Rightarrow f(x_1) = f(x_2) = f(x_3) = 0 \text{ și } x_1 + x_2 + x_3 = 9;$	2p
	$x_1^3 + x_2^3 + x_3^3 = 9(x_1^2 + x_2^2 + x_3^2) + (x_1 + x_2 + x_3) - 27 = 9(x_1^2 + x_2^2 + x_3^2) - 18$	3p
c)_	$f(3^{x}) = 0 \Rightarrow (3^{x} - 1)(3^{x} + 1)(3^{x} - 9) = 0;$	2p
ì	$3^{x}-1=0 \Rightarrow x=0;$	1p
	$3^{x} + 1 = 0 \implies$ ecuație imposibilă;	1p
	$3^{x} - 9 = 0 \Rightarrow x = 2$	1p

301	BIECTUL al III-lea (30 de puncte)	
1. a)	$\lim_{x \to \pm \infty} \sqrt[3]{x^3 + 3x - 4} = \pm \infty \Longrightarrow G_f \text{ nu are AO}$	1p
(a)	$\lim_{x\to\pm\infty}\frac{f(x)}{x}=1;$	1p
	$\lim[f(x)-x]=1;$	1p
	y = x + 1, asimptotă oblică;	1p
	f cotinuă pe R \Rightarrow G _f nu are AV	1p
b)	$x^3 + 3x^2 - 4 = 0 \Rightarrow x = 1, x = -2;$	1p
	$f'(x) = \frac{x^2 + 2x}{\sqrt[3]{x^3 + 3x^2 - 4}}, \forall x \in \mathbb{R} \setminus \{-2, 1\};$	2p
	$f(x) \cdot f'(x) = x^2 + 2x, \forall x \in \mathbb{R} \setminus \{-2, 1\}$	2p
c)	$f(-2) = 0 \implies f$ nu este derivabilă în $x_0 = -2$;	1p
	$d_{s} = \lim_{x \nearrow -2} \frac{\sqrt[3]{x^{3} + 3x^{2} - 4}}{x + 2} = \lim_{x \nearrow -2} \sqrt[3]{\frac{x - 1}{x + 2}} = +\infty;$	2p
	$d_{d} = \lim_{x \searrow -2} \frac{\sqrt[3]{x^3 + 3x^2 - 4}}{x + 2} = \lim_{x \searrow -2} \sqrt[3]{\frac{x - 1}{x + 2}} = -\infty$	2p
2.	$f'(x) = 3(x^2 - 1); f'(x) = 0 \Rightarrow x = \pm 1;$	1p
a)	f este strict cresc. \Leftrightarrow f'(x)>0 \Leftrightarrow x \in ($-\infty$, -1), respectiv(1, $+\infty$);	2p
	f este strict descresc. \Leftrightarrow f'(x) < 0 \Leftrightarrow x \in (-1,1)	2p
b)	$I = \int_{2}^{3} \frac{f(x)}{x - 1} dx = \int_{2}^{3} (x^{2} + x - 2) dx ;$	2p
	$I = \frac{x^3}{3} + \frac{x^2}{2} - 2x \Big _{2}^{3} = \frac{41}{6}$	3p
c)	$\frac{x^2 - 13}{f(x)} = \frac{2}{x - 1} - \frac{4}{(x - 1)^2} - \frac{1}{x + 2}, \forall x \in [-1, 0];$	
	$\frac{1}{f(x)} - \frac{1}{x-1} - \frac{1}{(x-1)^2} - \frac{1}{x+2}, \forall x \in [-1,0],$	2p
	$I = \int_{-1}^{0} \frac{x^2 - 13}{f(x)} dx = 2\ln x - 1 + \frac{4}{x - 1} - \ln x + 2 \Big _{-1}^{0};$	2p
	$I = -2 - 3\ln 2$	1p

Varianta 27

Prof: Dogaru Ion

SUBIECTUL I (30 de puncte)

201	BIECTUL I (30 de puncte)	
1.	$(1+i)^4 = -4$;	1p
	$(1-i)^4 = -4$;	1p
	$(1+i)^{2012} - (1-i)^{2012} = (-4)^{503} - (-4)^{503} = 0$	3p
2.	$\int 11x + 4 \ge 0$	
	$\begin{cases} 11x + 4 \ge 0 \\ x - 2 \ge 0 \end{cases} \Rightarrow x \ge 2;$	2p
	$x^2 - 15x = 0 \iff x = 0 \text{ si } x = 15;$	2p
	Soluția ecuației: $x = 15$	1p
3.	$a_6 = a_3 + 3r;$	1p
	$a_{16} = a_{19} - 3r;$	1p
	$a_3 + a_{19} = a_6 + a_{16} = 2012$	3p
4.	$x^2 - 1 = 0 \Leftrightarrow x = \pm 1 ; x + 2 = 0 \Leftrightarrow x = -2;$	2p
	$x -\infty$ -2 -1 1 + ∞	
	x + 2	
	$x^2 - 1$	2p
	$(x+2)(x^2-1)$ 0 + + + 0 0 + + + + +	
	$\mathbf{x} \in [-2, -1] \cup [1, +\infty]$	1p
5.	Fie M mijlocul segmentului [AB] \Rightarrow M(-1,2);	1p
	$m_{AB} = -1 \implies m' = 1$	2p
	Ecuația mediatoarei lui [AB]: $x - y + 3 = 0$	2p
6.	$\sin^2 x - \cos^2 x = \cos x \Leftrightarrow 2\cos^2 x + \cos x - 1 = 0;$	1p
	$\cos x = -1 \Rightarrow x \in \{\pi + 2k\pi, k \in Z\};$	1p
	$\lim_{n\to\infty} \frac{1}{n} = \lim_{n\to\infty} \frac{\pi}{n} + 2\lim_{n\to\infty} \frac{\pi}{n} = \frac{\pi}{n}$	
	$\cos x = \frac{1}{2} \Rightarrow x \in \{\pm \frac{\pi}{3} + 2k\pi, k \in Z\};$	2p
	$x \in [0, 2\pi] \Rightarrow x \in \{\pi, \frac{\pi}{3}, \frac{5\pi}{3}\}$	1p
	$X \subseteq [0,2n] \rightarrow X \subseteq [n,3,3]$	-1

~ ~ .	Bille 1 of an in ica (50 de panete)	
1. a)	$\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -1, \Rightarrow \operatorname{rang} M \ge 2, \forall m \in \mathbb{R};$	2p
	$det M = m^2 - 6m + 5;$	2p
	$rangM = 2 \Leftrightarrow detM = 0 \Leftrightarrow m = 1 \text{ sau } m = 5$	1p
b)	A,B,C sunt necoliniare $\Leftrightarrow \det M \neq 0$;	3p
	$m^2 - 6m + 5 \neq 0 \iff m \in \mathbb{R} \setminus \{1, 5\}$	2p
c)	$A_{ABC} = \frac{1}{2} \det M = \frac{1}{2} m^2 - 6m + 5 ;$	2p 2p
	$m \in [1,5] \Rightarrow 0 \ge m^2 - 6m + 5 \ge -4$;	2p
	A_{ABC} maximă = 2	1p

c)

a)

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (x+1)e^x = \lim_{x \to \infty} \frac{x+1}{e^{-x}} = 0;$

y = 0; AO spre $-\infty$ $F(x) = 3x^2 + 2\ln x + C$; $\forall x \in [1, +\infty)$;

 $F(1) = 2012 \implies C = 2009;$ $F(x) = 3x^2 + 2\ln x + 2009$ 3p

2p

2p

2p 1p

2. a)	Observăm că $x * y = \frac{1}{5} [(5x+6)(5y+6) - 6]; \forall x, y \in \mathbb{Z};$	1p
a)	$(x * y) * z = \frac{1}{5} [(5x + 6)(5y + 6)(5z + 6) - 6] = x * (y * z), \forall x, y, z \in \mathbb{Z};$	3p
	3	1p
b)	\Leftrightarrow * este asociativă Elementul neutru al operației * este e = - 1 \in \mathbb{Z} ;	1p
	$x * x' = e = \frac{1}{5}[(5x+6)(5x'+6) - 6] = -1;$	1p
	$\Rightarrow 5x' + 6 = \frac{1}{5x + 6}$	1p
	Cum $x' \in \mathbb{Z} \Rightarrow \frac{1}{5x+6} \in \mathbb{Z} \Rightarrow 5x+6 \in \{-1,1\};$	1p
	$\Rightarrow 5x \in \{-7, -5\}. \text{Deci } x = -1 \text{ este simetrizabil } \text{\vec{y}i } x' = -1$	1p
c)	Observăm că $x * x = \frac{1}{5} [(5x+6)^2 - 6]; \forall x \in \mathbb{Z};$	1p
	Inductiv obţinem $\underbrace{x * x * * x}_{\text{de 2012 ori}} = \frac{1}{5} \Big[(5x + 6)^{2012} - 6 \Big];$	2p
	$\left[\frac{1}{5} \left[(5x+6)^{2012} - 6 \right] = -1 ;$	1p
	$\Leftrightarrow 5x + 6 = 1 \Leftrightarrow x = -1 \in \mathbb{Z}$	1p
SU	BIECTUL al III-lea (30 de puncte)	
1.	$f'(x) = (x+2)e^x, \forall x \in R;$	2p
a)	$f'(x) = 0 \Rightarrow x = -2;$	1p
	Pe $(-\infty, -2]$ f este strict descrescătoare;	1p
	Pe [-2,+∞) f este strict crescătoare	1p
b)	$f''(x) = (x+3)e^x, \forall x \in \mathbb{R};$	1p
	$f''(x) = 0 \Rightarrow x = -3;$	1
	Pe $(-\infty, -3]$ f este concavă;	2p
	Pe $[-3, +\infty)$ f este convexă	2p
		2

Varianta 28

Prof: Dogaru Ion

SU.	BIECTUL 1 (30 de puncte)	
1.	$(1+i)^4 = -4$;	1p
	$(1+i)^4 = -4$;	1p
	$(1+i)^{2012} - (1-i)^{2012} = (-4)^{503} - (-4)^{503} = 0$ Notăm $3^x = y \implies 3y^2 - 10y + 3 = 0 \implies y_1 = 3; y_2 = 1/3;$	3p
2.	Notăm $3^x = y \implies 3y^2 - 10y + 3 = 0 \implies y_1 = 3; y_2 = 1/3;$	3p
	$3^{x}=3 \implies x=1;$	1p
	$3^{x} = 1/3 \implies x = -1$	1p
3.	$a_6 = a_3 + 3r;$	1p
	$a_{16} = a_{19} - 3r;$	1p
	$a_3 + a_{19} = a_6 + a_{16} = 2012$	3p
4.	$C_{n+1}^1 + C_{n+1}^2 = 36 \Rightarrow (n+1)(n+2) = 72;$	3p
	$n+1=8 \Rightarrow n=7$	2p
5.	Fie M mijlocul segmentului [AB] \Rightarrow M(-1,1);	2p
	$m_{AB} = -3/4 \implies m' = 4/3$	1p
	Ecuația mediatoarei lui [AB]: $4x - 3y + 7 = 0$	2p
6.	$\sin^2 x - \cos^2 x = \cos x \Leftrightarrow 2\cos^2 x + \cos x - 1 = 0;$	1p
	$\cos x = -1 \Rightarrow x \in \{\pi + 2k\pi, k \in Z\};$	1p
	1 (π, π) 21 1 π	
	$\cos x = \frac{1}{2} \Rightarrow x \in \{\pm \frac{\pi}{3} + 2k\pi, k \in Z\};$	2p
	$x \in [0, 2\pi] \Rightarrow x \in \{\pi, \frac{\pi}{3}, \frac{5\pi}{3}\}$	1p
	J J	

1. a)	$H^*(t) = \begin{pmatrix} t & -t \ln t & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{pmatrix}; \forall t > 0;$	3p
	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	2
	$\det H^*(t) = t^2$	2p
b)	$\begin{pmatrix} 1 & \ln x + \ln y & 0 \end{pmatrix}$	
	$H(x) \cdot H(y) = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{vmatrix}; \ \forall x, y \in (0, +\infty);$	3p
	$\begin{pmatrix} 0 & 0 & xy \end{pmatrix}$	
	Deci $H(x) \cdot H(y) = H(xy); \forall x, y \in (0, +\infty)$	2p

		1
c)	$\begin{pmatrix} 10 & \ln(1\cdot 2\cdot \dots \cdot 10) & 0 \end{pmatrix}$	
	H(1)+H(2)+H(3)++H(10) =	3р
	$\begin{bmatrix} 0 & 0 & 55 \end{bmatrix}$	Эр
	det[H(1)+H(2)+H(3)++H(10)] = 5500	2p
2.	$x > 2 \Rightarrow x - 2 > 0$	1
a)	$ \begin{vmatrix} x > 2 \Rightarrow x - 2 > 0 \\ y > 2 \Rightarrow y - 2 > 0 \end{vmatrix} \Rightarrow xy - 2x - 2y + 4 > 0; $	3p
	$x * y = xy - 2x - 2y + 6 \in G; \forall x, y \in G;$	1
~	G este parte stabilă față de operația *	1p 1p
b)	Observăm că operația * este comutativă;	1p
	Elementul neutru: e = 3;	1p
	$x * x' = 3 \Rightarrow x'(x-2) = 2x-3, \forall x \in G;$	1p
		1
	$x' = 2 + \frac{1}{x-2} > 0, \forall x \in G$	2p
c)	$x' = 2 + \frac{1}{x - 2} > 0, \forall x \in G$ $x * y * z = (x - 2)(y - 2)(z - 2) + 2, \forall x, y, z \in G$	2p
		1
	$\frac{1}{2} * \frac{2}{3} * \dots * \frac{8}{9} = \frac{-3}{2} \cdot \frac{-4}{3} \cdot \dots \cdot \frac{-10}{9} + 2 = 7$	3p
SU	BIECTUL al III-lea (30 de puncte)	
1.	$f'(x) = 2012x^{2011} + 2012, \forall x \in \mathbb{R} ;$	2p
a)	f(1) = 0;	1p
	f'(0) = 2012;	1p
	f(1) + f'(0) = 2012	1p
b)	y-f(1)=f'(1)(x-1);	3p
	y = 4024(x - 1)	2p
c)	$f''(x) = 2012 \cdot 2011x^{2010}, \forall x \in \mathbb{R}$;	3p
	$f''(x) > 0, \forall x \in \mathbb{R} \Leftrightarrow f \text{ este convex} $	2p
2.	$f(x) = x^3 + 3x, \ \forall \ x \in R \ (1)$	1p
a)	$\begin{bmatrix} x & c^1 & c & c & c^1 & c & c & c & c & c & c & c & c & c & $	
	$I = \int_0^1 f(x)dx = \int_0^1 (x^3 + 3x)dx = \frac{x^4}{4} + \frac{3x^2}{2} \Big _0^1;$	3p
	10	1p
	$I = \frac{7}{4}$	10
b)	$f^{5}(-x) = [(-x)^{3} + 3(-x)]^{5} = -f^{5}(x), \ \forall \ x \in \mathbb{R};$	3p
	f ⁵ este funcție impară $\Rightarrow \int_{-1}^{1} f^{5}(x) dx = 0$	1
	V-1	2p
c)	$\int_{-\infty}^{x} f(t-1) dt = (t-1)^4 + 3(t-1)^2 \Big _{-\infty}^{x} (x-1)^4 + 6(x-1)^2 - 7$	2
	$\int_0^x f(t-1)dt = \frac{(t-1)^4}{4} + \frac{3(t-1)^2}{2} \bigg _0^x = \frac{(x-1)^4 + 6(x-1)^2 - 7}{4};$	3p
	10	
	$\lim_{x \to \infty} \frac{\int_0^x f(t-1)dt}{x^4} = \lim_{x \to \infty} \frac{(x-1)^4 + 6(x-1)^2 - 7}{4x^4} = \frac{1}{4}$	1p
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_

Varianta 29

Prof: Gaga Loghin

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	Se observă că, în șirul $1,5,9,\cdots$, între oricare 3 termeni a_{k-1},a_k,a_{k+1} ai șirului există relația	3p
	$a_k=\frac{a_{k-1}+a_{k+1}}{2}=\frac{a_{k-1}+a_{k-1}+8}{2}=a_{k-1}+4=a_k \text{ , deci șirul reprezintă o progresie aritmetică, cu}$	
	$a_1 = 1, r = 4$.	
	$S = \frac{a_1 + a_n}{2} \cdot n = \frac{1 + 61}{2} \cdot n; a_n = a_1 + (n - 1)r \Rightarrow 61 = 1 + 4(n - 1) \Rightarrow n = 16. \text{ Deci } S = 31 \cdot 16 = 496$	2p
2.	Se vede că obținem $f(4)$ dacă facem $x = \frac{1}{2}$	2p
	$\Rightarrow f(4) = 2 \cdot \left(\frac{1}{2}\right)^2 - 3 \cdot \frac{1}{2} + 5 = \frac{2}{4} - \frac{3}{2} + 5 = 4$	3p
3.	$\log_{x-2} 2 + \log_{x-2} 8 = \log_{x-2} 2 + 3\log_{x-2} 2 = 4\log_{x-2} 2.$	3p
	Deci $4\log_{x-2} 2 = 4 \Rightarrow \log_{x-2} 2 = 1 \Rightarrow 2 = x - 2 \Rightarrow x = 4$	
		2p
4.	Dacă elementul 1 intră în toate submulțimile, numărul de submulțimi va fi format din combinările de	3p
	9 luate câte k, unde $k = \{0, 1, 2, \dots, 9\}$.	
	Deci numărul de submulțimi este $C_9^0 + C_9^1 + \cdots + C_9^9 = 2^9 = 512$.	2p
5.	Doi verctori sunt perpendiculari dacă produsul lor scalar este nul, adică $\overline{v}_1 \cdot \overline{v}_2 = \overline{0}$	2p
	$\overline{v}_1 \cdot \overline{v}_2 = \overline{0} \Rightarrow 4(m-2)-3(m+1) = 0 \Leftrightarrow m = 11.$	3p
6.	$A_{ABC} = \frac{AB \cdot BC \cdot \sin B}{2}; \ A_{ABC} = \sqrt{p(p-a)(p-b)(p-c)}, \ unde \ p = \frac{AB + BC + AC}{2} = 9$	2p
	$\Rightarrow A_{ABC} = \sqrt{9(9-8)(9-6)(9-4)} = 3\sqrt{15}$	1p

Deci,
$$\sin B = \frac{2A_{ABC}}{AB \cdot BC} = \frac{6\sqrt{15}}{32} = \frac{3\sqrt{15}}{16}$$

1. a)	$M^{2} = M \cdot M = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3^{2} & 0 \\ 0 & 1 \end{pmatrix}. \text{ Observăm că } M^{n} = \begin{pmatrix} 3^{n} & 0 \\ 0 & 1 \end{pmatrix}, n \in \mathbb{N}^{*}. \text{ Demonstrăm}$	2p
	prin inducție. Presupunem adevărat că $M^k = \begin{pmatrix} 3^k & 0 \\ 0 & 1 \end{pmatrix}$ și demonstrăm $M^{k+1} = \begin{pmatrix} 3^{k+1} & 0 \\ 0 & 1 \end{pmatrix}$	2p
	$M^{k+1} = M^{k} \cdot M = \begin{pmatrix} 3^{k} & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3^{k+1} & 0 \\ 0 & 1 \end{pmatrix}. \text{ Deci } M^{n} = \begin{pmatrix} 3^{n} & 0 \\ 0 & 1 \end{pmatrix}, n \in \mathbb{N}^{*}$	1p
b)	$ \det\begin{pmatrix} 3^n & 0 \\ 0 & 1 \end{pmatrix} = \begin{vmatrix} 3^n & 0 \\ 0 & 1 \end{vmatrix} = 3^n $	2p
	$7 \cdot \det\left(M^{n}\right) - 4 \cdot 3^{n} = 729 \Leftrightarrow 7 \cdot 3^{n} - 4 \cdot 3^{n} = 729 \Leftrightarrow 3^{n+1} = 3^{6} \Rightarrow n = 5$	3p
c)	$M + M^{2} + \dots + M^{2012} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 3^{2} & 0 \\ 0 & 1 \end{pmatrix} + \dots + \begin{pmatrix} 3^{2012} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 + 3^{2} + \dots + 3^{2012} & 0 \\ 0 & 2012 \end{pmatrix}$	2p
	$3+3^2+\cdots+3^{2012}=3\cdot\frac{3^{2012}-1}{3-1}=3\cdot\frac{3^{2012}-1}{2}$, fiind suma unei progresii geometrice cu rația 3 și	2p
	primul termen 3. $Deci S = \begin{pmatrix} \frac{3(3^{2012} - 1)}{2} & 0\\ 0 & 2012 \end{pmatrix}$	1p
2. a)	$\begin{cases} f(-1) = 0 \\ f(2) = 0 \end{cases} \Rightarrow \begin{cases} -2 - (m+1) + 2n = 0 \\ 16 - 4(m+1) + 2n = 0 \end{cases} \Leftrightarrow \begin{cases} -m + 2n = 3 \\ 4m - 2n = 12 \end{cases} \Rightarrow \begin{cases} m = 5 \\ n = 4 \end{cases}$	5p
b)	$x_1^2 + x_2^2 + x_3^3 = 4 \Leftrightarrow (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = 4$	2p
	$\begin{cases} x_1 + x_2 + x_3 = \frac{m+1}{2} \\ x_1 x_2 + x_1 x_3 + x_2 x_3 = 0 \end{cases}$	1p

	$\Rightarrow \frac{(m+1)^2}{4} = 4 \Rightarrow (m+1)^2 = 4^2 \Rightarrow (m-3)(m+5) = 0 \Rightarrow m=3$	2p
c)	$2 \cdot 625^{x} - 6 \cdot 25^{x} + 8 = 0 \Leftrightarrow 2 \cdot 5^{4x} - 6 \cdot 5^{2x} + 8 = 0 \Rightarrow 5^{4x} - 3 \cdot 5^{2x} + 4 = 0$	2p
	Notez $5^{2x} = t > 0 \Rightarrow t^2 - 3t + 4 = 0; \Delta = 9 - 16 < 0$	2p
	Ecuația nu admite soluții reale.	1p

5 p
, unde 2
p
2
p
p
$dx = \begin{bmatrix} 5 \\ p \end{bmatrix}$
p

b)	$f'(x) = \frac{1}{x+2} - 1 = \frac{1-x-2}{x+2} = \frac{-x-1}{x+2};$	2 p
	$f''(x) = \left(\frac{-x-1}{x+2}\right)' = \frac{-x-2+x+1}{(x+2)^2} = -\frac{1}{(x+2)^2} < 0$	2
7	Deci funcția este concavă pe $\left(-2,\infty\right)$	p
		1 p
c)	$A = \int_{1}^{e} g(x) = \int_{1}^{e} \ln(x+2) dx = \int_{1}^{e} (x)' \cdot \ln(x+2) dx = x \cdot \ln(x+2) \Big _{1}^{e} - \int_{1}^{e} \frac{x}{x+2} dx =$	2 p
	$e \ln(e+2) - \ln 3 - x \Big _{1}^{e} + 2 \ln(x+2) \Big _{1}^{e} = e \ln(e+2) - \ln 3 - e + 1 + 2 \ln(e+2) - 2 \ln 3 = (e+2) \ln(e+2) - 2 \ln(e+2) $	3 p
	$+1-3\ln 3$	P

Varianta 30

Prof: Gaga Loghin

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$z = (1 - i\sqrt{3})^3 = (1 - i\sqrt{3})^2 \cdot (1 - i\sqrt{3}) = (-2 - 2i\sqrt{3})(1 - i\sqrt{3}) = -2(1 + i\sqrt{3})(1 - i\sqrt{3}) = -8$	4p
	$\Rightarrow \operatorname{Im} z = 0$	1p
2.	$x_1^2 + x_2^2 = 16 \Rightarrow (x_1 + x_2)^2 - 2x_1x_2 = 16$	2p
	$\begin{cases} x_1 + x_2 = m - 2 \\ x_1 \cdot x_2 = m - 3 \end{cases}$	1p
	$\Rightarrow (m-2)^{2} - 2(m-3) = 16 \Leftrightarrow m^{2} - 4m + 4 - 2m + 6 = 16$ $\Leftrightarrow m^{2} - 6m - 6 = 0 \Rightarrow m_{1} = 3 + \sqrt{15}, m_{2} = 3 - \sqrt{15}$	2p
3.	$C_{2012}^7 - C_{2012}^{2005} = C_{2012}^7 - C_{2012}^{2012-2005} = C_{2012}^7 - C_{2012}^7 = 0$	5p
4.	$p = \frac{c_f}{c_p}$, unde c_f reprezintă numărul cazurilor favorabile și c_p numărul cazurilor posibile.	2p
	Avem $c_p = 2013$, iar $c_f = \frac{2013}{3} = 671$	2p
	$p = \frac{c_f}{c_p} = \frac{671}{2013} = \frac{1}{3}$	1p
5.	$(m+2)\sqrt{2} = 6\sqrt{2}$	3p
	\Rightarrow m = 3	2p
6.	Observăm că $BC^2 = 25 = AB^2 + AC^2 = 9 + 16 = 25$ \Longrightarrow ΔABC este dreptunghic, cu ipotenuza BC.	2p
	Știm că, într-un triunghi dreptunghic, mediana din vârful unghiului drept este egală cu jumătate din ipotenuză. Notăm cu M mijlocul ipotenuzei BC	2p
		2p
	$\Rightarrow AM = \frac{BC}{2} = \frac{5}{2}$	1p

1. a)	$\det A = \begin{vmatrix} x+5 & 4\\ 4 & x+5 \end{vmatrix}.$	2p
	$\det A = 0 \Rightarrow (x+5)^2 - 16 = 0 \Leftrightarrow (x-11)(x+21) = 0 \Rightarrow x_1 = 11, x_2 = -21 \text{ (se înlocuiește cu:}$	3p
	$(x+5)^2 - 16 = 0 \Leftrightarrow (x+1)(x+9) = 0 \Rightarrow x_1 = -1, x_2 = -9$	
b)	$A^{2} = \begin{pmatrix} x+5 & 4 \\ 4 & x+5 \end{pmatrix} \cdot \begin{pmatrix} x+5 & 4 \\ 4 & x+5 \end{pmatrix} = \begin{pmatrix} (x+5)^{2}+16 & 8(x+5) \\ 8(x+5) & (x+5)^{2}+16 \end{pmatrix}$	1p
	(3(x+3)+10)	
	$(2x+10) \cdot A = \begin{pmatrix} 2(x+5)^2 & 8(x+5) \\ 8(x+5) & 2(x+5)^2 \end{pmatrix}$	
	(2)	1p
	$ (x^2 + 10x + 9)I_2 = \begin{pmatrix} x^2 + 10x + 9 & 0 \\ 0 & x^2 + 10x + 9 \end{pmatrix} = \begin{pmatrix} (x+5)^2 - 16 & 0 \\ 0 & (x+5)^2 - 16 \end{pmatrix} $	
	$A^{2} - (2x+10)A + (x^{2}+10x+9)I_{2} =$	1p
	$ \begin{pmatrix} (x+5)^2 + 16 & 8(x+5) \\ 8(x+5) & (x+5)^2 + 16 \end{pmatrix} - \begin{pmatrix} 2(x+5)^2 & 8(x+5) \\ 8(x+5) & 2(x+5)^2 \end{pmatrix} + \begin{pmatrix} (x+5)^2 - 16 & 0 \\ 0 & (x+5)^2 - 16 \end{pmatrix} = $	2p
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	
c)	Pentru x=-1 $\Rightarrow A = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix} = 4 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}; A^2 = 4^2 \cdot \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 8A = 2^3 \cdot A;$	2p
	$A^3 = A^2 \cdot A = 2^3 \cdot A^2 = 2^6 A;$	
	Presupunem $A^n = 2^{3(n-1)}A$ și demonstrăm $A^{n+1} = 2^{3n}A$;	
	$A^{n+1} = A^n \cdot A = 2^{3(n-1)} A \cdot A = 2^{3(n-1)} A^2 = 2^{3(n-1)} \cdot 2^3 A = 2^{3n} A$	2p
	Deci $A^n = 2^{3(n-1)}A, \forall n \in \mathbb{N}^*$	
		1p
2.	$g = \hat{0} \Rightarrow x + \hat{4} = \hat{0} \Rightarrow x = \hat{1}$.	2p
a)	Trebuie să avem $f(\hat{1}) = \hat{0} \Rightarrow \hat{1} + a + \hat{1} + \hat{2} = \hat{0} \Rightarrow a + \hat{4} = \hat{0} \Rightarrow a = \hat{1}$	3p
b)	Pentru $a = \hat{1} \Rightarrow f(X) = X^3 + X^2 + X + \hat{2}$ și $x = \hat{1}$ este soluție a polinomului.	2p
		1p
-		

	Se verifică faptul că $x = \hat{1}$ este singura soluție.	
	Împărțind, sau folosind schema lui Horner, obținem	2p
Ò	$f(X) = (X + \hat{4})(X^2 + \hat{2}X + \hat{3})$	
c)	$f(\hat{0}) = \hat{2}; f(\hat{1}) = \hat{0}; f(\hat{2}) = \hat{3} + \hat{4} + \hat{2} + \hat{2} = \hat{1}; f(\hat{3}) = \hat{2} + \hat{4} + \hat{3} + \hat{2} = \hat{1};$	4p
	$f(\hat{4}) = \hat{4} + \hat{1} + \hat{4} + \hat{2} = \hat{1}$	
	$f(\hat{0}) + f(\hat{1}) + \dots + f(\hat{4}) = \hat{2} + \hat{1} + \hat{1} + \hat{1} = \hat{0}$	1p

1. a)	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1 - \ln^2 x}{1 + \ln^2 x} = 1$	5p
b)	$f'(x) = \frac{\left(-\frac{2}{x} \cdot \ln x\right) \cdot \left(1 + \ln^2 x\right) - \left(1 - \ln^2 x\right) \cdot \left(\frac{2}{x} \cdot \ln x\right)}{\left(1 + \ln^2 x\right)^2} =$	2p
	$= \frac{\frac{2}{x} \cdot \ln x \cdot \left(-1 - \ln^2 x - 1 + \ln^2 x\right)}{\left(1 + \ln^2 x\right)^2} = -\frac{4}{x\left(1 + \ln^2 x\right)^2}$	3p
c)	Asimptotă verticală. Se caută în x=0: $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1 - \ln^2 x}{1 + \ln^2 x} = \frac{\infty}{\infty} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{-\frac{2}{x} \ln x}{\frac{2}{x}} = -1. \text{ Nu există}$	2p
	asimptotă verticală pentru f.	2p
	Asimptotă orizontală. Se caută la $+\infty$. $\lim_{x \to \infty} \frac{1 - \ln^2 x}{1 + \ln^2 x} = \frac{\infty}{\infty} = \lim_{\substack{x \to 0 \ x > 0}} \frac{-\frac{2}{x} \ln x}{\frac{2}{x} \ln x} = -1$. Deci $y = -1$	2p
	este asimptotă orizontală la +∞.	
	Asimptotă oblică. Nu există	1p

2. a)	$I_{1} = \int_{0}^{1} \frac{x+1}{x^{2}+1} dx = \frac{1}{2} \int_{0}^{1} \frac{2x}{x^{2}+1} dx + \int_{0}^{1} \frac{1}{x^{2}+1} dx = \frac{1}{2} \ln\left(x^{2}+1\right) \Big _{0}^{1} + \operatorname{arctgx}\Big _{0}^{1} = \ln\sqrt{2} + \frac{\pi}{4}$	5p
b)	$I_3 = \int_0^1 \frac{x^3 + 1}{x^2 + 1} dx = \int_0^1 \frac{x^3 + x - x + 1}{x^2 + 1} dx = \int_0^1 \frac{x(x^2 + 1) - x + 1}{x^2 + 1} dx =$	2p
N. C.	$= \int_{0}^{1} \left(x + \frac{-x+1}{x^2+1} \right) dx = 1 - \frac{1}{2} \ln 2 + \frac{\pi}{4} = 1 - \ln \sqrt{2} + \frac{\pi}{4}$	2p
	$I_1 - I_3 = \ln 2 - 1 < 0$	1p
c)	$I_n + I_{n+2} = \int_0^1 \frac{x^n + 1}{x^2 + 1} dx + \int_0^1 \frac{x^{n+2} + 1}{x^2 + 1} dx = \int_0^1 \frac{x^{n+2} + x^n + 2}{x^2 + 1} dx =$	2p
	$= \int_{0}^{1} \frac{x^{n} (x^{2} + 1)}{x^{2} + 1} dx + 2 \int_{0}^{1} \frac{1}{x^{2} + 1} dx = \frac{1}{n + 1} + \frac{\pi}{2}$	3p

Varianta 31

Prof: Ionescu Maria.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\log_2 6 + \log_2 10 - \log_2 15 = \log_2 \frac{6 \cdot 10}{15} = \log_2 4 = 2$	2p 3p
2.	Din $9x^2 - 16 \le 0$ obţinem $x_1, x_2 = \pm \frac{4}{3}$.	1p
	Din tabelul de semn se obține $x \in \left[-\frac{4}{3}, \frac{4}{3} \right]$.	2p

	$Cum \ x \in Z \Rightarrow x \in \{-1, 0, 1\}$	
		2p
3.	$a_1 = 7$, $a_1 + a_2 = 17$	1p
	r = 3	2p
	$a_7 = a_1 + 6r \Rightarrow a_7 = 25$	2p
		2p
4.	$A_4^3 =$	2p
	$\frac{4!}{(4-3)!} = 24$	3p
	(4-3)!	
5.	Fie M mijlocul segmentului BC , obținem $M(1,-1)$.	2p
	$\Delta M = \sqrt{(x - x)^2 + (y - y)^2} =$	1p
	$AM = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2} = \sqrt{(1-2)^2 + (-1-3)^2} = \sqrt{17}$	2p
	$\sqrt{(1-2)^2 + (-1-3)^2} = \sqrt{17}$	- P
6.	$\sin 120^0 = \sin 60^0 = \frac{\sqrt{3}}{2}$	2p
	2	
	$A_{\Delta ABC} = \frac{AB \cdot AC \cdot \sin\left(\ll BAC\right)}{2}$	1
		1
	$A_{\Delta ABC} = \frac{6 \cdot 8 \cdot \frac{\sqrt{3}}{2}}{2} = 12\sqrt{3}$	
	$A_{\Delta ABC} = \frac{2}{2} = 12\sqrt{3}$	2p

1.		1 - 2 + 3 = 2	adev.	1p
a)	Se verifică în sistemul de ecuații astfel:	2+2-3=1	adev.	1p
	se verifica în sistemui de ecuații astrei.	m-6+6=3		1p
		$\Rightarrow m = 3$		2p
b)	1 -1 1			2p
	$\begin{vmatrix} 2 & 1 & -1 \end{vmatrix} = -3$			
	$\begin{vmatrix} m & -3 & 2 \end{vmatrix}$,
	$\Rightarrow m^2 - 5m + 1 = -3 \Rightarrow m^2 - 5m + 4 = 0$			1p
				2p
	Obţinem $m \in \{1, 4\}$.			

c)	2 -1 1	1p
	$\begin{vmatrix} 1 & 1 & -1 \\ 3 & -3 & 2 \end{vmatrix} = -3$	
	Calculând 2 1 -1 - 3m + 3 si stiam din nunctul a) că determinantul sistemului este -3	1p
	Calculând $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \\ m & 3 & 2 \end{vmatrix} = -3m+3$ şi ştiam din punctul a) că determinantul sistemului este -3	•
		1p
	$\begin{vmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \\ m & -3 & 3 \end{vmatrix} = -3m$	-r
	m -3-3	2p
	obţinem soluţia $x = 1, y = m - 1, z = m \Rightarrow S : \{(1, m - 1, m)\}, m \in R$	-r
2.	$f(\hat{1}) = \hat{2} + \hat{4} + \hat{3} + \hat{1} = \hat{0}$	2p
a)		
	$g(\hat{0}) = \hat{3}$	2p
	$\Rightarrow f(\hat{1}) + g(\hat{0}) = \hat{3}$	1p
b)	Calculăm: $f(\hat{0}) = \hat{1}, f(\hat{1}) = \hat{0}, f(\hat{2}) = \hat{0}, f(\hat{3}) = \hat{0}, f(\hat{4}) = \hat{0}$	4p
	$\Rightarrow x \in \left\{\hat{1}, \hat{2}, \hat{3}, \hat{4}\right\}$	1p
c)	A A	3p
	Conform algoritmului împărțirii a două polinoame obținem câtul $q = X^2 + 3X + 2$ și	⁵ P
	restul $r = 0$	2p
		2p

	Conform algoritmului imparţirii a doua polinoame obţinem catul $q = x + 5x + 2$ şi	
	restul $r = 0$	2p
SU:	BIECTUL al III-lea (30 de puncte)	
1.	Funcția f este derivabilă pe R , fiind sumă de funcții derivabile pe R și	5p
a)	$f'(x) = 2012x^{2011} + 2012^x \ln 2012 + 2012, \forall x \in \mathbb{R}$	(2,2,1)
b)	Punctul de abscisă nulă are $x_0 = 0$.	1p
	Ecuația tangentei este : $y - f(x_0) = f'(x_0)(x - x_0)$	1p

	$f(0) = 1 + 2012 = 2013, f'(0) = \ln 2012 + 2012$	2p
	$y - 2013 = (\ln 2012 + 2012)x \Rightarrow (\ln 2012 + 2012)x - y + 2013 = 0$	1p
c)	$f''(x) = 2012 \cdot 2011x^{2010} + 2012^x \ln^2 2012, \forall x \in \mathbb{R}$	2p
7	$\Rightarrow f'(x) > 0, \forall x \in R \Rightarrow f \text{ este convexă pe } R$	3p
2.	$\int f(x)dx = \int \left(\frac{1}{x + 2012} + x + 2012\right) dx =$	2p
a)	(= 3.1	3p
	$= \ln\left(x + 2012\right) + \frac{x^2}{2} + 2012x + C$	
b)	Cum $g:[1,2] \to R$, $g(x) = f(x) - \frac{1}{x + 2012} = x + 2012$	1p
	$V = \pi \int_{1}^{2} g^{2}(x) dx =$	1p
	$=\pi \int_{1}^{2} (x+2012)^{2} dx = \pi \frac{(x+2012)^{3}}{3} \Big _{1}^{2} =$	2p
	$=\frac{2014^3-2013^3}{3}\pi$	1p
c)	$\int_{1}^{2} f(x^{2}) dx = \int_{1}^{2} \left(\frac{1}{x^{2} + 2012} + x^{2} + 2012 \right) dx =$	2p
	$= \left(\frac{1}{\sqrt{2012}} \operatorname{arctg} \frac{x}{2012} + \frac{x^3}{3} + 2012x\right)\Big _{1}^{2} =$	2p
	$= \frac{1}{\sqrt{2012}} \left(arctg \frac{2}{2012} - arctg \frac{1}{2012} \right) + \frac{6043}{3}$	1p

Varianta 32

Prof: Ionescu Maria.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10. SUBIECTUL I (30 de puncte)

1.	$ 2x-5 \le 3 \Leftrightarrow -3 \le 2x-5 \le 3 \Leftrightarrow 1 \le x \le 4$	3p
	$x \in Z \Rightarrow x \in \{1, 2, 3, 4\}$	2p
2.	Se pun condițiile de existență : $x-5 \ge 0 \Rightarrow x \in [5, +\infty)$	2p
	$2 - x \ge 0 \Rightarrow x \in (-\infty, 2]$	2p
	De unde se deduce că ecuația nu are soluții reale.	1p
3.	Cum $f(3) = 0$ și $f(4) = 0$	2p
	$\Rightarrow f(1) \cdot f(2) \cdot \dots \cdot f(10) = 0$	3p
4.	Notăm $5^x = t$, $t > 0$ și ecuația devine $t^2 - 6t + 5 = 0$	1p
	$t_1 = 1, t_2 = 5$	2p
	$5^x = 1 \Rightarrow x = 0$	1p
	$5^x = 5 \Rightarrow x = 1$	1p

	5.	$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC}$	2p		
		$2 \cdot AB \cdot AC$			
		$\cos A = \frac{25 + 49 - 64}{2 \cdot 5 \cdot 7} = \frac{1}{7}$	3р		
	6.	Ecuația dreptei MN: $\frac{x - x_M}{x_N - x_M} = \frac{y - y_M}{y_N - y_M}$	2p		
		$x_N - x_M$ $y_N - y_M$			
		$\frac{x-2}{x-2} = \frac{y-3}{x-2}$	2p		
		-5 -5	1p		
		$\Rightarrow x - y + 1 = 0$ este ecuația dreptei MN.	1р		
	SUBIECTUL al II-lea (30 de puncte)				
ı		2 ₂ .	 1		
	1	$(1 \ 2 \ 2) (1 \ 2 \ 2) (6 \ 2 \ 5)$	5n		

1. a)	$A^{2} = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -1 & 1 \\ 3 & -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & 3 \\ 2 & -1 & 1 \\ 3 & -1 & -2 \end{pmatrix} = \begin{pmatrix} 6 & -3 & -5 \\ 3 & -2 & 3 \\ -5 & -2 & 12 \end{pmatrix}$	5p
b)	$\begin{pmatrix} 2 & -2 & 3 \\ 2 & 0 & 1 \end{pmatrix}$	2p
	$I_3 + A = \begin{pmatrix} 2 & -2 & 3 \\ 2 & 0 & 1 \\ 3 & -1 & -1 \end{pmatrix}$	
		3p
	De unde se obţine $det(I_3 + A) = -14$	
c)	$\det(A) = -8 \neq 0 \Rightarrow \exists A^{-1}$	1p
	-1 $\begin{pmatrix} 3 & -7 & 1 \end{pmatrix}$	
	$A^{-1} = \frac{-1}{8} \begin{pmatrix} 3 & -7 & 1 \\ 7 & -11 & 5 \\ 1 & -5 & 3 \end{pmatrix}$	4p
	(1 3 3)	
2.	$x \circ 5 = (x-5)(5-5)+5=0+5=5$	2p
a)	$5 \circ x = (5-5)(x-5) + 5 = 0 + 5 = 5$	2p
	$\Rightarrow x \circ 5 = 5 \circ x = 5, \forall x \in \mathbb{Z}$	1p
		117
b)	Căutăm $e \in Z$ a.î. $x \circ e = e \circ x = x$, $\forall x \in Z$. Se verifică $x \circ e = e \circ x$.	2p
		3p

	Din $x \circ e = x \Rightarrow (x-5)(e-5)+5-x=0 \Rightarrow (x-5)(e-6)=0 \Rightarrow e=6 \in \mathbb{Z}$	
c)	$x \circ x \circ x \circ x \circ x = x \Leftrightarrow (x-5)^5 + 5 = x \Leftrightarrow$	1p
	$\Leftrightarrow (x-5)^5 - (x-5) = 0 \Leftrightarrow (x-5) \Big[(x-5)^4 - 1 \Big] = 0 \Leftrightarrow$	1p
	$\left(x-5\right) = 0 \Rightarrow x = 5$	1p
	$\Leftrightarrow \begin{cases} (x-5)^4 = 1 \Rightarrow (x-5) = \pm 1 \Rightarrow \begin{cases} x = 6 \\ x = 4 \end{cases}$	1p
	$\chi = 4$	1p

Funcția f este derivabilă pe R , fiind produs de funcții derivabile pe R și	
$f'(x) = (x^2 - 2012x + 2011) e^x + (x^2 - 2012x + 2011) (e^x)$	2p
$f'(x) = (2x-2012)e^x + (x^2-2012x+2011)e^x =$	2p
$f'(x) = (x^2 - 2010x - 1)e^x$	1p
$\lim_{x \to 0} \frac{f(x) - f(0)}{f(0)} = f'(0) = -1$	3p
	2p
f'(0) = -1	
Din punctul a) se obține că funcția f este descrescătoare pe intervalul $[0,2]$	1p
$\Rightarrow f(2) \le f(1) \le f(0)$	1p
$f(2) = -2009e^2, f(0) = 2011$	2p
$\Rightarrow -2009e^2 \le f(1) \le 2011$	1p
	$f'(x) = (x^{2} - 2012x + 2011) e^{x} + (x^{2} - 2012x + 2011) (e^{x})$ $f'(x) = (2x - 2012) e^{x} + (x^{2} - 2012x + 2011) e^{x} =$ $f'(x) = (x^{2} - 2010x - 1) e^{x}$ $\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0) = -1$ $f'(0) = -1$ Din punctul a) se obține că funcția f este descrescătoare pe intervalul $[0,2]$ $\Rightarrow f(2) \le f(1) \le f(0)$ $f(2) = -2009e^{2}, f(0) = 2011$

2.	$I_2 = \int_0^1 \frac{x^2}{x+2} dx$	1p
	$I_2 = \int_0^1 \frac{x^2 - 4 + 4}{x + 2} dx = \int_0^1 \frac{(x - 2)(x + 2)}{x + 2} dx + \int_0^1 \frac{4}{x + 2} dx$	2p
	$I_2 = \left[\frac{x^2}{2} - 2x + 4\ln(x+2)\right] \Big _0^1 = 4\ln\frac{3}{2} - \frac{3}{2}$	2p
b)	$I_{n+1} + 2I_n = \int_0^1 \frac{x^{n+1}}{x+2} dx + 2\int_0^1 \frac{x^n}{x+2} dx$	1p
	$I_{n+1} + 2I_n = \int_0^1 \frac{x^n(x+2)}{x+2} dx = \int_0^1 x^n dx$	2p
	$I_{n+1} + 2I_n = \frac{x^{n+1}}{n+1} \Big _{0}^{1} = \frac{1}{n+1}$	2p
c)	$\operatorname{Din} \frac{1}{3} \le \frac{1}{x+2} \le \frac{1}{2}, \forall x \in [0,1], \Rightarrow \frac{x^n}{3} \le \frac{x^n}{x+2} \le \frac{x^n}{2}, \forall x \in [0,1], \forall n \in \mathbb{N}^* \text{ şi deci}$	1p
	$\int_{0}^{1} \frac{x^{n}}{3} dx \le I_{n} \le \int_{0}^{1} \frac{x^{n}}{2} dx \Leftrightarrow \frac{1}{3(n+1)} \le I_{n} \le \frac{1}{2(n+1)}$	2p
	Pentru n=2011 se obține $\frac{1}{3} \le 2012 \cdot I_{2011} \le \frac{1}{2}$	2p

Varianta 33

Prof: Ionescu Maria.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$V\left(\frac{-b}{2a},\frac{-\Delta}{4a}\right)$	1p
		2p
	Vârful parabolei este: $\frac{-b}{2a} = 4$, $\frac{-\Delta}{4a} = -4$	
9	$V\left(4,-4 ight)$	2p
2.	Din ecuația $x^2 - (m+1)x + 2m = 0$ obținem $x_1 + x_2 = -\frac{b}{a} = m+1$, $x_1 \cdot x_2 = \frac{c}{a} = 2m$	2p
	Înlocuim în relație și obținem $3[(m+1)^2 - 4m] = 2m - 2 \Leftrightarrow 3m^2 - 8m + 5 = 0$	2p
	De unde $m_1 = 1$, $m_2 = \frac{5}{3}$.	1p
	De unde $m_1 - 1$, $m_2 - \frac{1}{3}$.	
3.	Dobânda : $d = 700 \cdot \frac{5.5}{100} = 38.5 \text{ lei}$	3p
		2p
	Suma finală: $S = 700 + 38,5 = 738,5$ lei	
4.	$C_{2012}^{2010} = \frac{2012!}{2010! \cdot 2!} = 2012 \cdot 2011$	2p
	$C_{2012}^2 = \frac{2012!}{2! \cdot 2010!} = 2012 \cdot 2011$	2p
	2!2010!	
	$C_{2012}^{2010} - C_{2012}^2 = 0$ (sau folosirea formulei $C_n^k = C_n^{n-k}, n \ge k$)	1p
5.	Dreptele $d_1: 2mx + 3y - 7 = 0$ și $d_2: 3x - 8y + 2 = 0$ sunt perpendiculare $\Leftrightarrow a_1 \cdot a_2 + b_1 \cdot b_2 = 0$	2p
	$\Leftrightarrow 2m \cdot 3 + 3 \cdot (-8) = 0$	
	$\Leftrightarrow m=4$	2p
		1p
6.	$\cos\frac{5\pi}{6} = -\cos\frac{\pi}{6}$	2p
		3p
	$\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$	
	RIFCTIII, al II las (20 de nuneto)	

1.	$A_1(6,-1), A_3(8,3)$	2p
a)		

	Ecuația dreptei este : $\frac{x - x_1}{x_3 - x_1} = \frac{y - y_1}{y_3 - y_1}$	1p
	$\frac{x-6}{2} = \frac{y+1}{4}$	1p
	$\Rightarrow 2x - y - 13 = 0$ este ecuația dreptei $A_1 A_3$.	1p
b)	$A_{\Delta OA_{1}A_{2}} = \frac{1}{2} \begin{vmatrix} x_{0} & y_{0} & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \end{vmatrix} \Rightarrow A_{\Delta OA_{1}A_{2}} = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 6 & -1 & 1 \\ 7 & 1 & 1 \end{vmatrix}$	3p
	$A_{\Delta OA_1A_2} = \frac{1}{2} \cdot 13$	2p
c)	Considerăm punctele $A_n(n+5,2n-3), A_m(m+5,2m-3), A_p(p+5,2p-3), \forall n, m, p \in N^*$	1p
	Calculăm $\begin{vmatrix} n+5 & 2n-3 & 1 \\ m+5 & 2m-3 & 1 \\ p+5 & 2p-3 & 1 \end{vmatrix} = 0$ folosind proprietățile determinanților și se obțin punctele	4p
	$A_n(n+5,2n-3)$ coliniare $\forall n \in N^*$	
2. a)	Din relațiile lui Viete obținem $x_1 + x_2 + x_3 = -\frac{b}{a} = 3$ și $x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = \frac{c}{a} = -13$	2p
	Folosim $(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2(x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3)$ şi obţinem	1p
	$x_1^2 + x_2^2 + x_3^2 = 9 + 26 = 35$	2p
b)	Se determină rădăcinile : $x_1 = -3$, $x_2 = 1$, $x_3 = 5$	3p
	Care verifică relația : $x_2 = \frac{x_1 + x_3}{2} \Leftrightarrow 1 = \frac{-3 + 5}{2}$	2p
c)	Ecuația $25^x - 3 \cdot 5^x - 13 + 15 \cdot 5^{-x} = 0$ se rezolvă folosind notația $5^x = t$, $t > 0$.	1p
	Ecuația devine: $t^2 - 3t - 13 + \frac{15}{t} = 0 \Leftrightarrow t^3 - 3t^2 - 13t + 15 = 0$ care are soluțiile determinate anterior.	2p
	Revenind la notație obținem soluția ecuației inițiale: $x \in \{0,1\}$	2p

1. a)	$f'(x) = \frac{(x^2 - 4)(x^2 + 4) - (x^2 - 4)(x^2 + 4)}{(x^2 + 4)^2}$	2p
7		25
	Funcția f este derivabilă pe R și $f'(x) = \frac{2x(x^2+4)-(x^2-4)2x}{(x^2+4)^2}$	2p
		1p
	$f'(x) = \frac{16x}{\left(x^2 + 4\right)^2}$	
b)	Coloulăm $\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 - 4 = 1$	3p
	Calculăm $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 4}{x^2 + 4} = 1$	2p
	Rezultă $y=1$ este ecuația asimptotei orizontale la $+\infty$ la graficul funcției f .	
c)	$\lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = f''(0)$	1p
	$f''(x) = \left(\frac{16x}{(x^2+4)^2}\right) = \frac{(16x)(x^2+4)^2 - (16x)((x^2+4)^2)}{(x^2+4)^4}$	2p
	$f''(0) = \frac{16 \cdot 16 - 0}{4^4} = 1$	2p
	$\int_{0}^{1} \int_{0}^{1} \int_{0$	
2.	f continuă pe $(-\infty,0)$ fiind funcție elementară	2p
a)	f continuă pe $(0, +\infty)$ fiind compunere de funcții elementare	2p
	f continuă în $x_0 = 1 \Leftrightarrow l_S = l_D = f(0) \Leftrightarrow 1 = 1 = 1$ adevărat	1p
	$\Rightarrow f$ continuă pe $R \Rightarrow f$ admite primitive pe R .	
b)	$\int_{-2}^{1} f(x)dx = \int_{-2}^{0} (x^2 + x + 1)dx + \int_{0}^{1} (e^x + x)dx$	2p
	$ \left = \left(\frac{x^3}{3} + \frac{x^2}{2} + x \right) \right _{-2}^{0} + \left(e^x + \frac{x^2}{2} \right) \left _{0}^{1} = e + \frac{13}{6} \right _{0}^{1} $	3p
c)	$\int_{0}^{e} f(\ln x)dx = \int_{0}^{e} \left(e^{\ln x} + \ln x\right)dx = \int_{0}^{e} (x + \ln x)dx = \int_{0}^{e} xdx + \int_{0}^{e} \ln xdx$	2p

	$\int_{1}^{e} \ln x dx = \left(x \cdot \ln x - x\right) \begin{vmatrix} e \\ 1 \end{vmatrix} = 1$	2p
b	$\int_{1}^{e} f(\ln x) dx = \frac{e^{2}}{2} - \frac{1}{2} + 1 = \frac{e^{2}}{2} + \frac{1}{2}$	1p

Varianta 34

Prof:Isofache Cătălina Anca, C.N.Al.. Cuza Ploiești

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$1+2^{2}+2^{4}+2^{6}+2^{8}+2^{10}+2^{12}=\frac{\left(2^{2}\right)^{7}-1}{2^{2}-1}.$	3p
	Deci S=5461	2p
2.	$f(x)=0 \Rightarrow x^2 +6x-7=0$ cu soluțiile $x_1 = 1; x_2 = -7$. Deci A(1;0) și B(-7;0)	3p
	$f(0) = -7 \Rightarrow C(0; -7)$	2p
3.	Condiții de existență: $\begin{cases} x+7>0 \\ x-2>0 \end{cases} \Leftrightarrow x \in (2;\infty)$	1p
	$\begin{cases} x-2>0 \end{cases} \Rightarrow x \in (2, 1)$	

	$\lg(x+7)-\lg(x-2)=1 \iff \lg\frac{x+7}{x-2}=1 \iff \frac{x+7}{x-2}=10$	3p
	$x=10 \in (2;\infty)$	1p
4.	P=\frac{nr.cazuri favorabile}{nr.cazuri posibile}.	1p
~	nr.cazuri posibile	1p
×	Nr.cazuri posibile=2012:2=1006	1p
	2012:6=335,rest 2.Deci 335 numere divizibile cu 6.	
	c.m.m.m.c.al numerelor 4 si 6=12	
	2012:12=167,rest 8.	
	335-167=168 numere divizibile cu 6,nedivizibile cu 4.	1p
	$P = \frac{168}{1006} = \frac{84}{503}$	1p
5.	Din reciproca teoremei lui Pitagora ,rezultă că triunghiul ABC este dreptunghic în A.	2p
	$\cos \mathbf{B} = \frac{AB}{BC}. \text{Deci } \cos \mathbf{B} = \frac{10}{26} = \frac{5}{13}.$	3p
6.	$\sin(360^{0}-\mathrm{x}) = -\sin\mathrm{x}, \ \forall x \in R$	2p
	Aplicând proprietatea de mai sus pentru $x=1^{\circ};2^{\circ};;179^{\circ};\sin 180^{\circ}=0$ şi $\sin 360^{\circ}=0$ \Rightarrow	2p
	S=0	1p

1. a)	$A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	3p
	detA=0	2p
b)	$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; XA = \begin{pmatrix} 0 & a \\ 0 & c \end{pmatrix}; AX = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix}.$	3p
		2p

	Rezultă că c=0 și a=d. Deci $X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$.	
c)	Inmulțim la stânga și la dreapta ecuația Y² =A cu Y,obținem YA=AY.	1p
	$(a \ b) (a^2 \ ab) \qquad (0 \ 0)$	2p
	$\mathbf{Y} = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}. \mathbf{Y}^2 = \begin{pmatrix} a^2 & ab \\ 0 & a^2 \end{pmatrix}. \text{Rezultă a=0,deci Y}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}. \text{Fals.}$	2p
	Ecuația nu are soluții.	
2.	$x \circ y = 2xy + 2x + 2y + 1 = 2xy + 2x + 2y + 2 - 1 =$	2p
a)	=2(xy+x+y+1)-1=2(x+1)(y+1)-1	3p
b)	$(x \circ y) \circ z = 4(x+1)(y+1)(z+1)-1$	2p
	$x \circ (y \circ z) = 4(x+1)(y+1)(z+1)-1$	2p
	$(x \circ y) \circ z = x \circ (y \circ z), \ \forall \ x;y ; z \in \mathbf{R}.$	1p
c)	$x \circ (-1) = -1 \text{ și } (-1) \circ x = -1 \text{ ; } \forall x \in R$	2p
	[(-2012) ° (-2011)] ° (-1) ° [0 ° 1 ° ° ° ° 2012]= -1 <0	3p

	$f'(x)=(x^2-4)'(x^2-1)+(x^2-4)(x^2-1)'$	3p
a)	$f'(x)=2x(2x^2-5)$	2p
b)	$\lim_{x \to \infty} \frac{f(x) - f(0)}{x} = \lim_{x \to \infty} \frac{(x^2 - 4)(x^2 - 1) - 4}{x}$	2p
	$\lim_{x \to \infty} \frac{f(x) - f(0)}{x} = \infty.$	3p
c)	$f''(x)=12 x^2-10$.	1p
	f''(x)=0 \Rightarrow 12 $x^2 - 10 = 0 \Rightarrow x_{1;2} = \pm \sqrt{\frac{5}{6}}$.	1p
	$\begin{bmatrix} x \\ -\infty \end{bmatrix} - \frac{5}{6} + \sqrt{\frac{5}{6}} + \infty$	2p

	f''(x) ++++++++++++++++++++++++++++++++++++	
	f(x) $f\left(-\sqrt{\frac{5}{6}}\right)$ concavă $f\left(+\sqrt{\frac{5}{6}}\right)$ convexă	
9	Deci, funcția are 2 puncte de inflexiune.	_ 1p
2. a)	$I_0 = \left(\frac{1}{4}\ln(4x+3)\right)_0^1 \Longrightarrow I_0 = \frac{1}{4}\ln\frac{7}{3}.$	3p
	$I_{1} = \frac{1}{4} \int_{0}^{1} \left(1 - \frac{3}{4x + 3} \right) dx \Rightarrow I_{1} = \left(\frac{1}{4} x \right) \Big _{0}^{1} - \left(\frac{3}{16} \ln(4x + 3) \right) \Big _{0}^{1} \Rightarrow I_{1} = \frac{1}{4} - \frac{3}{16} \ln \frac{7}{3}.$	2p
b)	$4I_{n+1} + 3I_n = 4\int_0^1 \frac{x^{n+1}}{4x+3} dx + 3\int_0^1 \frac{x^n}{4x+3} dx = \int_0^1 \frac{4x^{n+1} + 3x^n}{4x+3} dx = \int_0^1 \frac{x^n (4x+3)}{4x+3} dx = \int_0^1 x^n dx$	1p
	$4I_{n+1} + 3I_n = x^{n+1}\Big _0^1 = \frac{1}{n+1}$	1p
	n+1	2p
c)	$I_{n+1} - I_n \le 0 \implies (I_n)_n$ descrescător.	1p
	$4I_{n+1} + 3I_n \le 7I_n \Rightarrow I_n \ge \frac{1}{7(n+1)} ; 4I_{n+1} + 3I_n \ge 7I_{n+1} \Rightarrow I_{n+1} \ge \frac{1}{7(n+1)}.$	2p
	Deci $\frac{1}{7n} \le I_n \le \frac{1}{7(n+1)} \mid n$.	1p
	Rezultă $7 \le I_n \le \frac{7n}{n+1}$. Obținem $\lim_{n\to\infty} nI_n := \frac{1}{7}$.	1p

Varianta 35

Prof: IVĂNESCU-GLIGA LILIANA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$x - x = 3 \iff 0 = 3$	2p
	$-x-x=3 \Rightarrow x=-1,5$	2p
	$S = \{-1,5\}$	1p
2.	$\Delta = 25$	1p
	$x_1 = 2, x_2 = -3$	2p
	$x_1^3 + x_2^3 = -19$	2p
3.	$A_6^5 - A_6^4 = 6.5.4.3$	2p
	$A_5^4 - A_5^3 = 5.4.3$	2p
		1p
	E = 6	
4.		1p
٦.	$\mathbb{Z}_5 = \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}\}$	
	Verificarea elementelor din \mathbb{Z}_5	2p
	$S = \emptyset \Rightarrow P = 0$	2p
	$3-30 \Rightarrow 1-0$	
5.	$\overrightarrow{OA} = (-5, 0)$	1p
	$\overrightarrow{AB} = (3, 2)$	2p
	$\overrightarrow{OM} = (-\frac{7}{2}, 1)$	2p
6.	$m(\hat{A}) = 120^{\circ}$, fie AD \perp BC	1p
	În \triangle ABD: $\frac{AD}{\sin B} = \frac{BD}{\sin A} \Rightarrow AD = \frac{3\sqrt{3}}{2}$	2p

	$S_{ABC} = 9\sqrt{3}$	
		2p
SUI	BIECTUL al II-lea (30 de puncte)	

1.	$a_{12}a_{21} = -3$	2p
a)	$a_{11}a_{22} = 2m$	2p
	$u_{11}u_{22} - 2\Pi t$	1
	S = -(3 + 2m)	1p
•		
b)	$\det A = -1 = -S$	2p
	m = -2	3p
c)	$A^{-1} = 1$ $A *$	
	$A^{-1} = \frac{1}{\det A} A^*$	1p
	$m = -1 \Longrightarrow \det A = 1$	10
	$m = 1 \rightarrow \text{det } A = 1$	1p
	$m = -1 \Rightarrow \det A = 1$ $A^* = \begin{pmatrix} -1 & 1 \\ 2 & 2 \end{pmatrix} = A^{-1}$	
	$A^* = \begin{pmatrix} -1 & 1 \\ -3 & 2 \end{pmatrix} = A^{-1}$	
		3p
2.	r = 0	2p
a)	Verificare $f(-2) = 0$	3p
b)	$f = (X^2 - 2)(X^2 - 4)$	3p
		2p
	$f = (X^2 - 2)(X - 2)(X + 2)$	2P
c)	$f = (X - \sqrt{2})(X + \sqrt{2})(X - 2)(X + 2)$	1p
	$J = (\Lambda - \sqrt{2})(\Lambda + \sqrt{2})(\Lambda - 2)(\Lambda + 2)$	_
	$x_1 = \sqrt{2}$, $x_2 = -\sqrt{2}$, $x_3 = 2$, $x_4 = -2$	4p
	v=,2 v=,3 =,4 =	

1.	$f'(x) = e^{-x} (1 - x)$	3p
a)	f'(0) = 1	2p
b)	$\lim_{x \to \infty} f(x) = \infty \cdot 0 =$	2p
	$\underset{x\to\infty}{\longrightarrow}$	
	$-\lim_{x\to\infty} \frac{x}{-\infty} = -$	
	$=\lim_{x\to\infty}\frac{x}{e^x}=\frac{\infty}{\infty}=$	1p
	1	
	$=\lim_{x\to\infty}\frac{1}{e^x}=0$	2p
c)	$f''(x) = e^{-x}(x-2)$	3p
	x = 2 un singur punct de inflexiune	2p
2.	2^x 3	
	$F(x) = \frac{2^{x}}{\ln 2} + \frac{x^{3}}{3} + e^{x} + C$	
a)		2p
	$F_1(0) = 1 \Longrightarrow C = -\frac{1}{\ln 2}$	
	$\ln 2$	2p
	$\sum_{x} \sum_{x} \sum_{x$	1
	$F_1: \mathbb{R} \to \mathbb{R}, F_1(x) = \frac{2^x}{\ln 2} + \frac{x^3}{3} + e^x - \frac{1}{\ln 2}$	
		1p
b)		
	$\int_{0}^{\infty} f(x)dx = F(x)\Big _{0}^{1} =$	3p
		ЭР
	$=\frac{1}{\ln 2} - \frac{2}{3} + e$	
	$\ln 2$ 3	2p
c)	2	
	Aria $\int_{1}^{2} g(x) dx =$	1p
		тр
	$=\int_{1}^{2}x^{2}dx$	
	$Aria\left(\Gamma_{g}\right) = \frac{7}{3}$	2p
	Aria $(1_g) = \frac{1}{3}$	r
		2p
		•

Varianta 36

Prof: IVĂNESCU-GLIGA LILIANA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$a_n = a_1 + (n-1)r$	1p
	2012 = 1 + 3(n-1)	1p
	$n = \frac{2014}{3} \notin \mathbb{N}$	
		2p
	$\Rightarrow 2012 \notin (a_n)_{n\geq 1}$	1p

2.	1 - x = 0	2p
	$x \in \{-1, 1\}$	3p
3.	$C_n^0 + C_n^1 + \dots + C_n^n = 2^n$	2p
	$2^{n} = 64$	2p
	$n = 6, n \in \mathbb{N}, n \ge 1$	1p
4.	Formula lui P	1p
	Cazuri favorabile = 7	2p
	Cazuri posibile = 7	1p
	P=1	1p
5.	m = -1	2p
	d: $y - 1 = -(x - 1)$	2p
	d: $x + y - 2 = 0$	1p
6.	$A_{OAO'B} = 2A_{ABO}$	2p
	$A_{ABO} = 6$	2p
	$A_{OAO'B} = 12$	1p

1. a)	$ \begin{aligned} ^{t}A &= \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix} \\ \det (^{t}A) &= -3 \end{aligned} $	2p
		3p
b)	$2A = \begin{pmatrix} 6 & 0 \\ 2 & -2 \end{pmatrix}$	2p
	$B = \begin{pmatrix} 3 & -1 \\ 2 & -1 \end{pmatrix} \Rightarrow b_{22} = -1$	3p

c)	$A^2 = \begin{pmatrix} 9 & 0 \\ 2 & 1 \end{pmatrix}$	2p
	$A^3 = A^2 \cdot A = \begin{pmatrix} 27 & 0 \\ 7 & -1 \end{pmatrix}$	2p
	S = 26	
		1p
2.	$\mathbf{a}_0 = f(0)$	2p
a)	$f\left(0\right)=-1$	3p
b)	$a_0 + + a_{15} = f(1)$	3p
	f(1) = 1	2p
c)	$X^2 - 1 = (X - 1)(X + 1)$	1p
	$f(1) = 1 \neq 0$	2p
	$f(-1) = -1 \neq 0$	2p

1. a)	$f'(x) = \frac{2x}{\left(x^2 + 1\right)^2}$	2p
	$f(1) = \frac{1}{2}, f'(1) = \frac{1}{2}, f(1) + f'(1) = 1$	3p
b)	$\lim_{x \to \pm \infty} f(x) = 1 \text{ (gradele sunt egale)}$	3p
	y = 1 as. orizontală	2p
c)	$f'(\mathbf{x}) = 0$ și monotonia lui f	3p
	\Rightarrow x = 0 un singur punct de extrem pentru f	2p

2.	f continuă pe $\left(-\infty,0\right)$ și pe $\left(0,\infty\right)$ pt. că sunt funcții elementare	2p
a)	f continuă în $0 \Leftrightarrow l_s(0) = l_d(0) = f(0) = 1$	2p
0	f continuă pe $\mathbb{R} \Rightarrow f$ admite primitive pe \mathbb{R}	1p
b)	$\int_{-1}^{1} x \cdot f(x) dx = \int_{-1}^{0} x \cdot e^{x} dx + \int_{0}^{1} x \cdot (1 - x) dx = \frac{12 - 5e}{6e}$	3p
	$\int_{-1}^{0} x \cdot e^{x} dx = \frac{2 - e}{e}$ $\int_{0}^{1} x \cdot (1 - x) dx = \frac{1}{6}$	1p
	$\int_{0}^{x} x \cdot (1-x) dx = \frac{1}{6}$	1p
c)	$V_{(Cg)} = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} (1 - x)^{2} dx =$	2p
	$=\pi\left(x-x^2+\frac{x^3}{3}\right)\Big _0^1$	2p
	$V(c_g) = \frac{\pi}{3}$	1p

Varianta 37

Prof: IVĂNESCU-GLIGA LILIANA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\Delta = 0$	1p
	$\Delta = (m-1)(5m-9)$	2p
1		
Y	$m \in \left\{1, \frac{9}{5}\right\}$	2
		2p
2.	$\frac{-3x-2}{x^2+x+1} > 0$	2p
	$x^2 + x + 1 > 0, \forall x \in \mathbb{R}$	1p
	$x < -\frac{2}{3} \Rightarrow A = \emptyset$	2p
		2p
3.	$T_{k+1} = C_n^k \cdot a^{n-k} \cdot b^k$, n = 6, k = 3	2p
	$T_4 = 20$	3p
4.	$x^2 = t, \ t^2 - 10t + 9 = 0$	1p
	$t_1 = 1, t_2 = 9$	2p
	$x_1 = -1, x_2 = 1, x_3 = -3, x_4 = 3$	2p
5.	(AB): $x + 4y - 9 = 0$	2p
	$1 = \frac{4}{3} \Rightarrow a = 4$	3p
	a	
6.	$BC^2 = AC^2 + AB^2 - 2AC \cdot AB \cdot \cos 60^\circ$	2p
	$BC = \sqrt{39}$	3p
	DIECTIII al II las (20 de nuncto)	

1.	(1)	
a)	$\begin{pmatrix} m & m & -1 \end{pmatrix}$	
(a)	$d = \begin{vmatrix} 3 & -2 & 2 \end{vmatrix}$	
	$\mathbf{d} = \begin{bmatrix} 3 & -2 & 2 \\ 2 & 2 & -2 \end{bmatrix}$	
		2p
	d = 10m - 10	
1		3p
b)	$d \neq 0$	2p
		2P
	\Rightarrow m \neq 1	2p
	$m \in \mathbb{R} - \{1\}$	1p
	$m \in \mathbb{R} - \{1\}$	10
c)	$m = 2 \Longrightarrow d = 10$	1p
		2
	$d_x = 14, d_y = -24, d_z = -20$	3p
	x = 1,4; y = -2,4; z = -2	1p
2.	$2^{x} = 16$	3p
a)	x = 4	2p
		-P
b)	e = 1	2p
	$2 \circ 2' = 1$	1p
	$z \circ z - 1$	тр
	$2' = 0 \in \mathbb{R}$	2p
	$x^2 + x - 2 \le 0$	2=
c)	$X + X - Z \ge 0$	2p
	$x_1 = 1, x_2 = -2$	2p
	$x \in [-2; 1]$ adevarat	1p

1. a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0) = -3$	3p
	$x \to 0$ χ	
	$f'(x) = 6x^2 - 3$	2p

b)	$f'(x) = 0, x_1 = \frac{\sqrt{2}}{2}, x_2 = -\frac{\sqrt{2}}{2}$	3p
5	f cresc. pentru $x \in \left(-\infty, \frac{\sqrt{2}}{2}\right] \cup \left[\frac{\sqrt{2}}{2}, \infty\right)$, f descresc. pentru $x \in \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$	2p
	7.	
c)	$f''(x) = 12x, f(x) - f'(x) + f''(x) = 2x^3 - 6x^2 + 9x + 3$	2p
	$(x-3)(2x^2+9)=0$	2p
	$\mathbf{x} = 3 \in \mathbb{R}$	1p
2. a)	$\int \frac{f(x)}{x^2} dx = \int \ln x dx =$	
a)		2p
	$=x(\ln x-1)+C$	3p
b)	$\int_{1}^{e} \frac{f(x)}{x^{3}} dx = \int_{1}^{e} \frac{\ln x}{x} dx$	1p
	$\ln x = t \Longrightarrow \int_{1}^{e} \frac{\ln x}{x} dx = \int_{0}^{1} t dt =$	2p
	$=\frac{1}{2}>0$	
		2p
c)	$\int_{2}^{4} \frac{5f(x^{2})}{\ln x} dx = 10 \int_{2}^{4} x^{4} dx =$	3p
	$=2^{6}(2^{5}-1)$ adevărat	2p

Varianta 38

Prof: LEFTERIU IOANA.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$(2+\sqrt{3})^2 = 7+4\sqrt{3} \qquad (1-2\sqrt{3})^2 = 13-4\sqrt{3}$	3p
	$(2+\sqrt{3})^2 + (1-2\sqrt{3})^2 = 20, 20 \in \mathbb{N}$	2p
	$(2+\sqrt{3})^2 + (1-2\sqrt{3}) = 20, 20 \in \mathbb{N}$	
2.	8+2	2p
	$a = \frac{8+2}{2} = 5$ (orice termen al unei progresii aritmetice,începând cu al doilea,este media	1
	aritmetica a termenilor vecini)	
	r = 5 - 2 = 3, b = 8 + 3 = 11	2p
	b-a=11-5=6	1p
3.	$\Rightarrow 2^{x+3} = 2^{2x-1}$	2p
	Din injectivitatea funcției exponențiale $\Rightarrow x+3=2x-1$	2p
	$\Rightarrow x = 4$	1p
4		2
4.	$\log_3^1 = 0; \log_3^3 = 1; \log_3^9 = 2$	3p
	$p = \frac{num\check{a}rul}{num\check{a}rul} \frac{cazurilor}{cazurilor} \frac{favorabile}{pozibile}; p = \frac{3}{5}$	
	numărul cazurilor pozibile 'P 5	2p
5.	$x_R + x_C$ $y_{R+}y_{C-1}$ $y_{R+}y_{C-1}$	3p
	$x_M = \frac{x_B + x_C}{2} = 4; y_M = \frac{y_{B+} y_C}{2} = 1 \Rightarrow M(4,1)$	•
	x-x, $y-y$,	
	$AM: \frac{x - x_A}{x_M - x_A} = \frac{y - y_A}{y_M - y_A} \Rightarrow y - 1 = 0 \Rightarrow y = 1$	2p
6.	. 1100 (1000 . 700) 700	2n
0.	$\sin 110^{\circ} = \sin (180^{\circ} - 70^{\circ}) = \sin 70^{\circ};$	2p
	$\cos 110^{\circ} = \cos \left(180^{\circ} - 70^{\circ}\right) = -\cos 70^{\circ}$	
		2p
	$\sin 110^{\circ} + \cos 110^{\circ} - x = \sin 70^{\circ} - \cos 70^{\circ} - x = x - x = 0$	1p

1.	(2) $(2 -4 6)$	2p
a)	$C = A \cdot B' = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \cdot (1 -2 3) = \begin{bmatrix} 2 & -4 & 0 \\ 3 & -6 & 9 \\ 4 & -8 & 12 \end{bmatrix}$	
	$\begin{bmatrix} 3 & 1 & 2 & 3 \\ 4 & 4 & 4 & 12 \end{bmatrix}$	2p
P	(.)	1p
b)	Coloanele a doua și a treia sunt proporționale cu prima.	3p
0)	Coloanete a doua și a treia sunt proporționale cu prima.	Эр
	2 -4 6	2p
	$\det \mathbf{C} = \begin{vmatrix} 2 & -4 & 6 \\ 3 & -6 & 9 \\ 4 & -8 & 12 \end{vmatrix} = 0$	
	4 -8 12	
		1
c)	$D(x)=xC+I_3 = \begin{pmatrix} 1+2x & -4x & 6x \\ 3x & 1-6x & 8x \\ 4x & -8x & 1+12x \end{pmatrix}; D(0) = I_3. Matricea D(x) \text{ este inversabilă, dacă}$	1p
	$D(x)=xC+I_3 = \begin{bmatrix} 3x & 1-6x & 8x \\ \end{bmatrix}$; $D(0)=I_3$. Matricea $D(x)$ este inversabilă, dacă	
	$\begin{pmatrix} 4x & -8x & 1+12x \end{pmatrix}$	
	$\exists x' \in \mathbb{R}$, astfel încât $D(x) \cdot D(x') = I_3 = D(0) \Rightarrow D(8x \cdot x' + x + x') = D(0)$	
	$\exists x \in \mathbb{R}, \text{ distribute } D(x) D(x) = I_3 = D(0) \Rightarrow D(0x x + x + x) = D(0)$	2p
	$\begin{bmatrix} x_1 & y_1 & y_2 & y_3 & y_4 & y_5 & y_$	
	$8x \cdot x + x + x = 0; x = \frac{-x}{8x+1}; x \neq -\frac{1}{8} \Rightarrow x \in \mathbb{R} \setminus \left\{ -\frac{1}{8} \right\}$	2-
		2p
2.	x * y = xy - 7x - 7y + 49 + 7	3p
a)	=(x-7)(y-7)+7	2p
		_F
b)	$x * x = (x-7)^2 + 7$; din asociativitate: $x * x * x = (x-7)^3 + 7$	2p
		3p
	$Din x * x * x = x \Rightarrow (x-7)^3 + 7 = x; (x-7)(x-6)(x-8) = 0; x_1 = 6; x_2 = 7; x_3 = 8$	J.P
c)	$x*a = (x-7)(a-7)+7 = (a-7)(x-7)+7 = a*x; \forall x \in \mathbb{Z}$	2p
	$x * a = a \Rightarrow (a-7)(x-8) = 0, \forall x \in \mathbb{Z} \Rightarrow a = 7 \Rightarrow x * 7 = 7 * x = 7$	
		2p
	Din asociativitate: $E = ((-10)*(-9)**6)*7*(8**10) = 7$	1p
		F

4		
a)	$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x + a}{x^2 + 4} = 0;$	3p
	$y = 0$ este ecuația asimptotei orizontale la $+\infty$	2p
		- P
b)	a=1; $f(x) = \frac{2x+1}{x^2+4}$;	1p
	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0) = \frac{1}{2}$ $f'(x) = \frac{-2x^2 - 2x + 8}{(x^2 + 4)^2}$	2p
		2p
c)	a=3; $f(x) = \frac{2x+3}{x^2+4}$	1p
	a=3; $f(x) = \frac{2x+3}{x^2+4}$ $f'(x) = \frac{-2x^2 - 6x + 8}{(x^2+4)^2}$;	1p
	$-2x^{2}-6x+8=0; x_{1}=-4; x_{2}=1; f(-4)=-\frac{1}{4}; f(1)=1$	1p
	Din tabel, $A_1\left(-4, -\frac{1}{4}\right)$ este punct de minim; $A_2\left(1, 1\right)$ este punct de maxim	2p
2.	Funcția f este continuă pentru $x \in (-\infty,0) \cup (0,\infty)(1)$	2p
a)	$\hat{\ln} x = 0; \lim_{x \to 0} f(x) = \lim_{x \to 0} (x^2 - 3x + 5) = 5 \lim_{x \to 0} f(x) = \lim_{x \to 0} (e^x + x + 4) = 5; f(0) = 5 (2)$	2p
	Din (1) şi(2) functia f este continuă pe Ratunci, f admite primitive pe R	1p
b)	$\int_{-1}^{1} f(x)dx = \int_{-1}^{0} (x^2 - 3x + 5)dx + \int_{0}^{1} (e^x + x + 4)dx$	2p
	-1 -1 0	7
	$=e+\frac{31}{3}$	3p
c)		
	$\int_{0}^{1} 2xf(x^{2})dx = \int_{0}^{1} 2x(e^{x^{2}} + x^{2} + 4)dx =$	2p
		2n
		3p

 _	
7	
9+-	
2	
-	

Varianta 39

Prof: LEFTERIU IOANA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\sqrt{36} - \sqrt{9} + \sqrt{81} - 3\sqrt[3]{64}$	2p
	=0	3p
2.	$\left 3x-2\right \le 4; -\frac{2}{3} \le x \le 2, x \in \mathbb{Z}$	3p
		2p
	A={0,1,2}	
3.	$-2x+1 = -2x^2 + 3x - 1;$	1p
	$2x^2 - 5x + 2 = 0$	2p
	1 2	2p
	$x_1 = \frac{1}{2}$; $x_2 = 2$	

4.	Condiții de existență: $\begin{cases} x > 0 \\ x - 2 > 0 \end{cases}; x \in (2, +\infty)$	1p
	x-2>0	
	Din proprietățile logaritmilor: $\log_2^{x(x-2)} = 3 \Rightarrow x^2 - 2x - 8 = 0$; $x_1 = -2$; $x_2 = 4$;	3p
	$-2 \notin (2, \infty) \Rightarrow S = \{4\}$	1p
	7	
5.	$\vec{a} = 3(2\vec{i} + 3\vec{j}) - 2(3\vec{i} - 2\vec{j})$	2p
	$\vec{a} = 13\vec{j}$	3p
	Y Y X	
6.	$A_{\triangle ABC} = \frac{AB \cdot AC \cdot \sin \widehat{BAC}}{2}$	2p
	$A_{\triangle ABC} = 9$	
	$A_{\triangle ABC} = 9$	3p
SUI	BIECTUL al II-lea (30 de puncte)	
1.	$(a \ b \ c) (3 \ 0 \ 0) (0 \ 0 \ 0)$	2p

1. a)	$A + 3I_3 = O_3 \Rightarrow \begin{pmatrix} a & b & c \\ x & y & z \\ u & v & w \end{pmatrix} + \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	2p
	$\begin{bmatrix} a+3 & b & c \\ x & y+3 & z \\ u & v & w+3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	2p
	a = -3, b = 0, c = 0; x = 0, y = -3, z = 0; u = 0, v = 0, w = -3.	1p
b)	$A^{t} = \begin{pmatrix} a & x & u \\ b & y & v \\ c & z & w \end{pmatrix}$	1p
	$B = A - A^{t} = \begin{pmatrix} 0 & b - x & c - u \\ x - b & 0 & z - v \\ u - c & v - z & 0 \end{pmatrix}$	2p
		2p

	$\det B = \begin{vmatrix} 0 & b-x & c-u \\ x-b & 0 & z-v \\ u-c & v-z & 0 \end{vmatrix} = (x-b)(v-z)(c-u) - (x-b)(v-z)(c-u) = 0.$	
c)	$a = y = w = 0; b = c = x = z = u = v = 1 \Rightarrow A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$	2p
	$A^2 = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	3p
2.	$a = 3, b = -1 \Rightarrow f = x^4 + 3x^3 - x^2 - 5x + 4$	1p
a)	$c = x^3 + 5x^2 + 9x + 13$	2p
	r = 30	2p
b)	$x_1 = -1, x_2 = 1 \text{ rădăcini} \Rightarrow f(-1) = 0; f(1) = 0$	1p
	$f(-1) = (-1)^4 + a(-1)^3 + b(-1)^2 - 5(-1) + 4 = -a + b + 10$ $f(1) = (1)^4 + a(1)^3 + b(1)^2 - 5(1) + 4 = a + b$	2p
	$\Rightarrow \begin{cases} -a+b+10=0 \\ a+b=0 \end{cases} \Rightarrow a=5; b=-5.$	2p
c)	$a = 3, b = -1 \Rightarrow f = x^4 + 3x^4 - x^2 - 5x + 4$	
	Din x_1, x_2, x_3, x_4 rădăcini, $f(x) = (x - x_1)(x - x_2)(x - x_3)(x - x_4) \Rightarrow$	2p
	$P = (1 - x_1)(1 - x_2)(1 - x_3)(1 - x_4) = f(1) = 2$	3p

1. a)	$\exists \lim_{x \to x_0} f(x) \Leftrightarrow \lim_{x \nearrow x_0} f(x) = \lim_{x \searrow x_0} f(x)$	1p
		3p

		$\lim_{x \nearrow -1} f(x) = \lim_{x \nearrow -1} \frac{x^2 + x - 6}{x + 1} = \infty$	
		$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x^2 + x - 6}{x + 1} = -\infty$	1p
		$\lim_{x \nearrow -1} f(x) \neq \lim_{x \searrow -1} f(x) \Longrightarrow f \text{ nu are limită în } x = -1$	
1	b)	Ecuația asimptotei oblice: $y = mx + n$	1p
		$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 + x - 6}{x(x+1)} = 1$	2p
		$n = \lim_{x \to \infty} \left[f(x) - mx \right] = \lim_{x \to \infty} \frac{-6}{x+1} = 0$	
		m = 1; n = 0 ; ecuația asimptotei : $y = x$	1p
			1p
(c)	$x^2 + 2x + 7$	1p
		$f'(x) = \frac{x^2 + 2x + 7}{(x+1)^2} ;$	
		$f''(x) = \frac{-12}{\left(x+1\right)^3}$	2p
		$x \in (-\infty, -1) \Rightarrow f''(x) > 0 \Rightarrow f = \text{funcție convexă}$	1p
		$x \in (-1, \infty) \Rightarrow f''(x) < 0 \Rightarrow f = \text{funcție concavă}$	1p
- /	2.	$\frac{1}{c}f(x)$ $\frac{1}{c}\sqrt{2}$	1p
á	2. a)	$\int_{0}^{1} \frac{f(x)}{e^{x}} dx = \int_{0}^{1} \sqrt{x^{2} + 25} =$	
		$=\frac{\sqrt{26}}{2} + \frac{25}{2} \ln \frac{1 + \sqrt{26}}{5}$	4p
1	b)	$g(x) = \frac{f(x)}{e^x} = \sqrt{x^2 + 25}$	1p
			20
		$V = \pi \int_0^1 g^2(x) dx =$	2p
			2p
			•

	$=\pi \int_{0}^{1} \left(x^{2}+1\right) dx = \frac{76\pi}{3}$	
c)	$\int_{0}^{1} \sqrt{x^{2} + 25} f(x) dx = \int_{0}^{1} (x^{2} + 25) e^{x} dx =$	1p
	$= (x^{2} + 25)e^{x}\Big _{0}^{1} - 2xe^{x}\Big _{0}^{1} + 2e^{x}\Big _{0}^{1}$	2p
	=26e-27	2p

Varianta 40

Prof:LEFTERIU IOANA.

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	Din ecuația: $t^2 - St + p = o$, unde $S = x + y = 4$, $p = x \cdot y = -32$, avem	1p
	$t^2 - 4t - 32 = 0$; $x_1 = -4$; $x_2 = 8$;	2p
	$S = \{(-4,8); (8,-4)\}.$	2p
2.	Elementele mulțimii A sunt termenii consecutivi ai unei progresii aritmetice:	1p
	$a_1 = 3, a_2 = 5, a_3 = 13, a_4 = 18, \dots, a_n = 98$,	-17

$\mathbf{r} = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 5$	2p
$a_n = a_1 + (n-1)r$; $98 = 3 + (n-1)5 \implies n = 20$	2p
Din proprietățile logaritmilor: $\log_5^{(2+\sqrt{3})} + \log_5^{(2-\sqrt{3})} = \log_5^{(2+\sqrt{3})(2-\sqrt{3})} =$	2p
$=\log_5^1=0$	3p
$A_n^3 = n(n-1)(n-2) \Rightarrow$	1p
$n^3 - 3n^2 - 4n = 0$: $n = 0$: $n = -1$: $n = 4$	3p
$n \in N, n \ge 3 \Longrightarrow n = 4$	1p
$\overrightarrow{OA}, \overrightarrow{OC}$ sunt vectori opuşi,la fel: \overrightarrow{OB} şi $\overrightarrow{OD} \Rightarrow \overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{0}$; $\overrightarrow{OB} + \overrightarrow{OD} = \overrightarrow{0}$	3p
$\left(\overrightarrow{OA} + \overrightarrow{OC}\right) + \left(\overrightarrow{OB} + \overrightarrow{OC}\right) = \vec{0}$	2p
$\cos 120^{\circ} = \cos (180^{\circ} - 60^{\circ}) = -\cos 60^{\circ}$	3p
$S = \sin^2 60^\circ + \cos^2 120^\circ = \sin^2 60^\circ + \cos^2 60^\circ = 1 \text{ (din formula fundamentală)}$	2p
	$a_n = a_1 + (n-1)r; 98 = 3 + (n-1)5 \Rightarrow n = 20$ Din proprietățile logaritmilor: $\log_5^{(2+\sqrt{3})} + \log_5^{(2-\sqrt{3})} = \log_5^{(2+\sqrt{3})}(2-\sqrt{3}) = \log_5^1 = 0$ $A_n^3 = n(n-1)(n-2) \Rightarrow$ $n^3 - 3n^2 - 4n = 0; n_1 = 0; n_2 = -1; n_3 = 4$ $n \in N, n \ge 3 \Rightarrow n = 4$ $\overrightarrow{OA}, \overrightarrow{OC} \text{ sunt vectori opuși, la fel: } \overrightarrow{OB} \text{ și } \overrightarrow{OD} \Rightarrow \overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{0}; \overrightarrow{OB} + \overrightarrow{OD} = \overrightarrow{0}$ $(\overrightarrow{OA} + \overrightarrow{OC}) + (\overrightarrow{OB} + \overrightarrow{OC}) = \overrightarrow{0}$ $\cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ$

$$\begin{vmatrix}
1. \\ a) & \det(A) = 1 \Rightarrow \begin{vmatrix}
1 & m & -2 \\ -1 & 1 & 2 \\ m-1 & -1 & 3
\end{vmatrix} = 2m^2 + 3m + 1$$

$$2p$$

$$2m^2 + 3m + 1 = 1 \Rightarrow m_1 = -\frac{3}{2}; m_2 = 0$$

$$b) (S) \text{ are soluție unică dacă det } (A) \neq 0$$

$$2m^2 + 3m + 1 = 0 \Rightarrow m_1 = -\frac{1}{2}, m_2 = -1 \Rightarrow$$

$$2p$$

$$m \in \mathbb{R} \setminus \left\{ -\frac{1}{2}; -1 \right\}$$

$$1p$$

C)
$$m = 1 \Rightarrow (S) = \begin{cases} x + y - 2z = 1 \\ -x + y + 2z = -5; \det(A) = 6 \end{cases}$$

$$d_x = \begin{vmatrix} 1 & 1 & -2 \\ -5 & 1 & 2 \\ -1 & -1 & 3 \end{vmatrix} = 6; d_y = \begin{vmatrix} 1 & 1 & -2 \\ -1 & -5 & 2 \\ 0 & -1 & 3 \end{vmatrix} = -12; d_z = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & -5 \\ 0 & -1 & -1 \end{vmatrix} = -6$$

$$x = \frac{d_x}{\det(A)} = 1; y = \frac{d_y}{\det(A)} = -2; z = \frac{d_z}{\det(A)} = -1; S = \{1, -2, -1\}$$

$$2p$$

$$a) f(2) = 2m - 22; m = 11.$$

$$b) f(\sqrt{3}) = (\sqrt{3})^3 + m(\sqrt{3})^2 - 15(\sqrt{3}) - 2m = m - 12\sqrt{3}$$

$$2p$$

$$f(\sqrt{3}) = 0 \Rightarrow m = 12\sqrt{3}$$

$$2p$$

$$c) m = 1; f = x^3 + x^2 - 15x - 2$$

$$1p$$

$$Din relațiile lui Vie'te: \begin{cases} x_1 + x_2 + x_3 = -1 \\ x_1x_2 + x_1x_3 + x_2x_3 = -15 \\ x_1x_2 + x_3x_3 + x_2x_3 = 2 \end{cases}$$

$$2p$$

$$S_2 = x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = 31$$

$$2p$$

1. a)	$f = \text{continu} \text{în } x_0 = 0 \Leftrightarrow \lim_{x \nearrow 0} f(x) = \lim_{x \searrow 0} f(x) = f(0)$	2p
	$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^3 - 5x^2 + 7x + 1 + a) = 1 + a$	
	$\lim_{x \to 0} f(x) = \lim_{x \to 0} (xe^{x} + 2x - 2e^{x}) = -2; f(0) = -2$	2p

	1. 2. 2	1
	$1 + a = -2 \Rightarrow a = -3$	1p
b)	$a = -3, f(x) = \begin{cases} x^3 - 5x^2 + 7x - 2, x > 0 \\ xe^x + 2x - 2e^x, x \le 0 \end{cases}$	1p
	$(xe^{x} + 2x - 2e^{x}, x \le 0)$	
	Equation to a graph $f(x) = f'(x)(x, y)$	1n
	Ecuația tangentei în $x = x_0$; $y - f(x_0) = f'(x_0)(x - x_0)$	1p
	$f'(x) = 3x^2 - 10x + 7 \Rightarrow f'(2) = -1$	2p
		1p
	x + y - 2 = 0 este ecuția tangentei.	
c)	$f'(x) = 3x^2 - 10x + 7; \forall x \in (0, \infty)$	
		2p
	$f'(x) = 0$; $3x^2 - 10x + 7 = 0$; $x_1 = 1$; $x_2 = \frac{7}{2}$	-r
	3	
	Pentru $x \in (0,1] \cup \left[\frac{7}{3}, \infty\right), f' \ge 0 \Longrightarrow f$ este crescătoare	2p
		1p
	pentru $x \in \left[1, \frac{7}{3}\right]$ $f' \le 0 \Rightarrow$ f este descrescătoare.	
	pentitu $x \in \begin{bmatrix} 1, \frac{1}{3} \end{bmatrix}$ $f \le 0 \Rightarrow f$ este descrescatoare.	
2.	$m=1 \Rightarrow f_1(x) = 3x^2 + 4x + 4$	2p
a)	$\int f_1(x)dx = \int (3x^2 + 4x + 4)dx = x^3 + 2x^2 + 4x + C$	2p
		1p
b)	$m = 0$; $f_0(x) = x^2 + 3x + 4$	1p
	$\int_{0}^{1} e^{x} f_{0}(x) dx = \int_{0}^{1} e^{x} (x^{2} + 3x + 4) dx =$	
		1p
	$r(2, \ldots, 2)^{l}$ $= 2$	3p
	$= e^{x} \left(x^{2} + x + 3 \right) \Big _{0}^{1} = 5e - 3$	
c)	$\frac{1}{5}$ $8m^2 - m + 35$	2p
	$\int_{0}^{1} f_{m}(x) dx = \frac{8m^{2} - m + 35}{6}$	
		1p
	$8m^2 - m = 0; m_1 = 0; m_2 = \frac{1}{8}; m \in \mathbb{R}^* \Rightarrow m = \frac{1}{8}$	2p
	8 8	

Varianta 41

Prof:LICA ROXANA

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	1 $\sqrt{5}+2$	3p
	$\frac{1}{\sqrt{5}-2} = \frac{\sqrt{5}+2}{5-4} = 2 + \sqrt{5} \approx 4,2$	
	$\sqrt{3-2}$ $\sqrt{3-4}$	2p
	Pratea intreaga a numarului este 4.	
		1
2.	$a_5 = a_1 + 4r$	1p
	$a_1 + a_1 + 4r = 8 \implies a_1 + 2r = 4$	2p
	$u_1 + u_1 + v_2 \rightarrow u_1 + 2v_1 + v_2 \rightarrow v_1 + v_2 \rightarrow v_1 + v_2 \rightarrow v_2 \rightarrow v_1 + v_2 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2$	2p
	$a_3 = a_1 + 2r = 4$	- P
3.	$x_1 = 0$, $x_2 = -2$	1p
		25
	Solutiile in \mathbb{R} sunt $x \in [-2,0]$	2p
		2p
	Solutiile intregi $\{-2,-1,0\}$	
4.	$x_1 + x_2 = 2m + 1$	1p
	$x_1 x_2 = 3m$	1p
	2m+1+3m=11	2p
	m=2	2p
		1p
5.	$\frac{n(n-1)}{2} - 3n = -3$	2p
		3p
	$n^2 - 7n + 6 = 0, n = 6$	

6.	$7^2 = 5^2 + (2\sqrt{6})^2$, deci triunghiul este dreptunghic.	2p
	Ipotenuza triunghiului are lungimea 7.	1p
		2p
	Raza cercului circumscris unui triunghi dreptunghic este egala cu jumatate din ipotenuza, deci	
	R=3,5.	

1.	2 - 1 - 1	2p
a)		
	$\begin{vmatrix} \text{Det A} = & 1 & 1 & 2 \\ 3 & -1 & -1 \end{vmatrix} =$	
		2p
	-2-6+1+3+4-1=	
	-1	1p
b)	Det $A = -2 - 3m + 1 + 3 + 2m - 1$	3p
	Det A=0 \Rightarrow -m+1=0 \Rightarrow m=1	2p
c)	Scazand ecuatiile 3 si 1 obtinem $x = 1$	1p
	$\int y + z = 2$	2p
	$\begin{cases} y+z=2\\ y+2z=3 \end{cases}$	2p
	z=1, y=1	
2.	Fie $x, y \in \mathbb{R}$	1p
a)	$\left(x + \frac{1}{3}\right)\left(y + \frac{1}{3}\right) - \frac{1}{3} = xy + \frac{1}{3}x + \frac{1}{3}y + \frac{1}{9} - \frac{1}{3} = xy + \frac{1}{3}x + \frac{1}{3}y - \frac{2}{9} = x \circ y$	4p
b)	Fie $x \in \mathbb{R}$. $a \circ x = a \Rightarrow \left(a + \frac{1}{3}\right)\left(x + \frac{1}{3}\right) - \frac{1}{3} = a \Rightarrow \left(a + \frac{1}{3}\right)\left(x + \frac{1}{3}\right) - \left(a + \frac{1}{3}\right) = 0$	3p
	$\left(a + \frac{1}{3}\right)\left(x + \frac{1}{3} - 1\right) = 0 \implies a = -\frac{1}{3}$	2p
c)		3p
	$\alpha \circ \left(-\frac{1}{3}\right) = -\frac{1}{3}$	2p

$$\left(-\frac{2012}{3}\right) \circ \left(-\frac{2011}{3}\right) \circ \left(-\frac{2010}{3}\right) \circ \dots \circ \left(-\frac{1}{3}\right) = \alpha \circ \left(-\frac{1}{3}\right) = -\frac{1}{3}$$

1.	$f'(x) = 1 - \ln x - x \frac{1}{1} = -\ln x$	3p
a)	$f'(x) = 1 - \ln x - x \frac{1}{x} = -\ln x$ $f'(1) = -\ln 1 = 0$	2p
	$f'(1) = -\ln 1 = 0$	
b)	$f'(e) = -\ln e = -1$	1p
	Ecuatia tangentei la grafic in punctul de abscisa α este $y - f(\alpha) = f'(\alpha)(x - \alpha)$	1p
		2p
	Asadar ecuatia tangentei la graficul functiei este $y-0=-1(x-e)$	1p
	adica $x + y - e = 0$	
c)	$f'(x) = 0 \Rightarrow -\ln x = 0 \Rightarrow x = 1$	2p
	$x = 0$ ∞	
	f'(x) + + + + 0	2p
	f(x)	
	Un singur punct de extrem, $A(1,1)$	1p
2.	$I_0 = \int_0^1 \cos x dx =$	3p
a)		2p
	$=\sin x\big _0^1=\sin 1.$	
b)	_ f1	3p
	$I_{1} = \int_{0}^{1} x \cos x dx = x \sin x \Big _{0}^{1} - \int_{0}^{1} \sin x dx$	2
	$= \sin 1 + \cos x \Big _{0}^{1} = \sin 1 + \cos 1 - 1$	2p
	Į ^v	

c)	$x \in [0,1] \Rightarrow \cos x \le 1 \Rightarrow$	1p
	$x^{2012}\cos x \le x^{2012} \Longrightarrow$	2p
0	$\int_0^1 x^{2012} \cos x dx \le \int_0^1 x^{2012} dx = \frac{1}{2013}$	2p

Varianta 42

Prof: LICA ROXANA

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\lg 100\sqrt{10} = 2,5$	3p
	${2,5} = 0,5$	2p

2.	f(1)+f(2)+f(3)++f(2012)=0+1+2++2011=	3p
	2012 · 2011	2p
	2	
3.	$x_1 = -1, x_2 = -6$	3p
	$E = (-1)^3 + (-6)^3 = -1 - 216 = -217$	2p
×		
4.	C.E. $x^3 + 1 > 0 \implies x > -1$	1p
	$x^3 + 1 = 3^2$	2p
	$x^{3} = 8$	2p
	x = 0 $x = 2$	
		2
5.	$\sin 15^\circ = \sin \left(45^\circ - 30^\circ\right) =$	2p
	$\sin 45^{\circ} \cos 30^{\circ} - \sin 30^{\circ} \cos 45^{\circ} =$	2p
	$\frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2} - \frac{1}{2}\frac{\sqrt{2}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$	1p
6.	$A_{\Delta ABC} = \frac{AB \cdot AC \sin \hat{A}}{2} =$	2p
		2p
	$\frac{18 \cdot 18 \cdot \sin 120^{\circ}}{2} = \frac{324 \cdot 2 \sin 60^{\circ} \cos 60^{\circ}}{2} =$	1p
	2	14
	$\frac{324\sqrt{3}}{4} = 81\sqrt{3}$	

$$\begin{pmatrix}
1. \\
a
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}^{2}$$

$$= \begin{pmatrix}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix}$$

$$2p$$

b)	$\begin{pmatrix} 2 & 3 & 0 \end{pmatrix}$	3p
	$M(2,3) = \begin{pmatrix} 2 & 3 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix}$	2p
	$Det(M(2,3)) = 8 \Rightarrow (M(2,3))^{-1} = \frac{1}{Det(M(2,3))} (M(2,3))^*$	
	(4 -6 9)	
	$M(2,3)^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -6 & 9 \\ 0 & 4 & -6 \\ 0 & 0 & 4 \end{pmatrix}$	
c)	$(a \ b \ 0)$	1p
	$M(a,b) = \begin{pmatrix} a & b & 0 \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$	
		2p
	$Det(M(a,b)) = a^3$	2p
	$Det(M(a,b)) \neq 0 \Rightarrow a \in \mathbb{R}^*$	_
	$b\in\mathbb{R}$	2p
2.	f(-1) = -1 + 1 - 1 + 1	4p
a)	= 0	1p
b)	$f(-1) = 0 \Rightarrow (X+1) f$	1p
	$f = (V + 1)(V^2 + 1)$	2p
	$f = (X+1)(X^2+1) =$	2p
	(X+1)(X+i)(X-i)	
c)	x_i radacina pentru $f \Rightarrow x_i^3 + x_i^2 + x_i + 1 = 0, \forall i \in \{1, 2, 3\}$	2p
	$(x_i - 1)(x_i^3 + x_i^2 + x_i + 1) = 0 \Rightarrow x_i^4 = 1 \ \forall i \in \{1, 2, 3\}$	2p
	$(\lambda_i - 1)(\lambda_i + \lambda_i + 1) - 0 \rightarrow \lambda_i - 1 \forall t \in \{1, 2, 3\}$	1p
	$x_1^4 + x_2^4 + x_3^4 = 1 + 1 + 1 = 3$	

		1. a)	Asimptota orizontala: $\lim_{x\to\infty} \frac{x^2}{x^2 + 2012} = 1 \Rightarrow f$ admite asimptota orizontala la ∞ dreapta $y = 1$	2p	
--	--	----------	--	----	--

	$\lim_{x \to -\infty} \frac{x^2}{x^2 + 2012} = 1 \Rightarrow f \text{ admite asimptota orizontala la } -\infty \text{ dreapta } y = 1$	2p 1p
	Functia nu admite asimptote oblice sau verticale.	
b	$f'(x) = \frac{2x^3 + 4024x - 2x^3}{\left(x^2 + 2012\right)^2} =$	3p
	$(x^2 + 2012)^2$	2p
	$\frac{4024x}{\left(x^2+2012\right)^2}$	
	(x + 2012)	
c)	$f'(1) = \frac{4024}{2013^2}$	2p
		1p
	Ecuatia tangentei la grafic in punctul de abscisa α este $y - f(\alpha) = f'(\alpha)(x - \alpha)$	
	Asadar ecuatia tangentei devine $y - \frac{1}{2013} = \frac{4024}{2013^2}(x-1)$	2p
	·	
2	$f_2(x) = (x-1)^2 \Rightarrow$	1p
(a)	$\int_{0}^{1} (x-1)^{2} dx = \frac{(x-1)^{3}}{3} \Big _{0}^{1} =$	3p
	$\left \frac{1}{3} \right $	1p
b	$f_{2012}(x) \ge 0, \forall x \in [0,1]$	1p
	$f_{2012}(x) \ge 0, \forall x \in [0,1]$ $A = \int_0^1 (x-1)^{2012} dx = \frac{(x-1)^{2013}}{2013} \Big _0^1 =$	3p
	$\frac{1}{2013}$	1p
c)	$\int_0^1 x(x-1)^n dx = \int_{-1}^0 (t+1)t^n dt =$	2p
	$\int_{0}^{1} x(x-1)^{n} dx = \int_{-1}^{0} (t+1)t^{n} dt =$ $\int_{-1}^{0} t^{n+1} dt + \int_{-1}^{0} t^{n} dt = \frac{t^{n+2}}{n+2} \Big _{-1}^{0} + \frac{t^{n+1}}{n+1} \Big _{-1}^{0} =$	2p 1p
	$\frac{\left(-1\right)^{n+2}}{\left(n+1\right)\left(n+2\right)}$	
	$\binom{(n+1)(n+2)}{n}$	
_		

Varianta 43

Prof: Viorica Lungana

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$x_{\cdot}=2\in\mathbb{Z}$	3p
	$\begin{vmatrix} x^2 - 5x + 6 = 0 \Rightarrow x_1 = 2 \in \mathbb{Z} \\ x_2 = 3 \in \mathbb{Z} \end{vmatrix}$	•
	$x_2 = 3 \in \mathbb{Z}$	
		_
	Deci mulțimea de adevăr este: {2;3}	2p
2.	$a_n = a_1 + (n-1)r, n \ge 1$	1p
		2p
	$a_{10} = a_1 + 9r$	2p
		2p
	$a_{10} = 131 \text{ și } r = 12 \Rightarrow a_1 + 9 \cdot 12 = 131 \Leftrightarrow a_1 = 131 - 108 \Leftrightarrow a_1 = 32$	_
3.	$lg 288 = lg(2^5 \cdot 3^2) =$	1p
		2
	$= \lg 2^5 + \lg 3^2 =$	2p
		2p
	$= 5 \lg 2 + 2 \lg 3 = 5A + 2B$	2p
4.	$n-2 \ge 0 \Rightarrow n \ge 2, n \in \mathbb{N}$	2p
	$\frac{n!}{(n-2)!} = 2 \Leftrightarrow \frac{(n-2)!(n-1)n}{(n-2)!} = 2 \Leftrightarrow n(n-1) = 2$	
	$\frac{(n-2)!}{(n-2)!} = 2 \Leftrightarrow \frac{n(n-1)-2}{(n-2)!}$	
	$n^2 - n - 2 = 0 \Rightarrow n_1 = 2 \in \mathbb{N}, \ n_2 = -1 \notin \mathbb{N}.$	3p
	Deci $n=2$	
5.	$\overrightarrow{AC} - 2\overrightarrow{AB} = (x_C - x_A)\overrightarrow{i} + (y_C - y_A)\overrightarrow{j} - 2\left[(x_B - x_A)\overrightarrow{i} + (y_B - y_A)\overrightarrow{j}\right] =$	2p
	$\begin{bmatrix}2 & & (-1)C & -1A/J & &$	

	$=10\vec{i} + \vec{j} - 2(3\vec{i} - 3\vec{j}) = 4\vec{i} + 7\vec{j}$	3p
6.	$f\left(\frac{\pi}{6}\right) = \sin\frac{\pi}{6} + \cos\frac{\pi}{6} = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1+\sqrt{3}}{2}, (1)$	2p
7	$f\left(\frac{\pi}{3}\right) = \sin\frac{\pi}{3} + \cos\frac{\pi}{3} = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3}+1}{2}, (2)$	2p
	Din relațiile (1) și (2) rezultă $f\left(\frac{\pi}{6}\right) = f\left(\frac{\pi}{3}\right)$.	1p

$$\begin{vmatrix}
1. \\ a) & \begin{cases}
2X + 3Y = A \\
X + 2Y = B | \cdot (-2) \Rightarrow
\end{cases}
\begin{cases}
2X + 3Y = A \\
-2X - 4Y = -2B \Rightarrow
\end{cases}
\begin{cases}
X = B - 2Y \\
Y = 2B - A
\end{cases}
\Rightarrow
\begin{cases}
X = 2A - 3B \\
Y = 2B - A
\end{cases}$$

$$X = 2A - 3B = 2 \cdot \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & -1 \end{pmatrix} - 3 \cdot \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 4 & -2 \\ 4 & -2 & 4 \\ -2 & 4 & -2 \end{pmatrix} + \begin{pmatrix} -3 & -6 & -3 \\ -6 & -3 & -6 \\ -3 & -6 & 3 \end{pmatrix} = \begin{pmatrix} -5 & -2 & -5 \\ -2 & -5 & -2 \\ -5 & -2 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 2 \\ 4 & 2 & 4 \\ 2 & 4 & -2 \end{pmatrix} + \begin{pmatrix} 1 & -2 & 1 \\ -2 & 1 & -2 \\ 1 & -2 & 1 \end{pmatrix} = 1p$$

$$= \begin{pmatrix} 3 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & 2 \\ -5 & -2 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 0 \end{pmatrix}$$

$$A - B = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & -1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & -1 \end{pmatrix} + \begin{pmatrix} -1 & -2 & -1 \\ -2 & -1 & -2 \\ -1 & 2 & -1 \end{pmatrix} = 2p$$

3p

	$= \begin{pmatrix} -2 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 0 \end{pmatrix}$	
	Deci X + Y = A - B	
c)	$\det(X+Y) = \begin{vmatrix} -2 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 0 \end{vmatrix} = $ $= 8 \in \mathbb{N}$	3p 2p
2.	$x * y = xy - 5x - 5y + 30 = (x - 5)(y - 5) + 5, (\forall)x, y \in G$	1p
a)	Legea este asociativă dacă $(x * y) * z = x * (y * z), (\forall) x, y, z \in G$	
	(x*y)*z = (x*y-5)(z-5)+5 = [(x-5)(y-5)+5-5](z-5)+5 =	
	$= (x-5)(y-5)(z-5) + 5, (\forall)x, y, z \in G, (1)$	2p
	x*(y*z) = (x-5)(y*z-5) + 5 = (x-5)[(y-5)(-5) + 5-5] + 5 =	2p
	$= (x-5)(y-5)(z-5) + 5, (\forall)x, y, z \in G, (2)$	
	Din relațiile (1) și (2), rezultă legea este asociativă.	
b)	Legea are element neutru dacă există $e \in G$ astfel încât $x * e = e * x = x, (\forall)x \in G$.	
	$x * e = x, (\forall)x \in G \Leftrightarrow (x - 5)(e - 5) + 5 = x, (\forall)x \in G \Leftrightarrow (x - 5)(e - 6) = 0, (\forall)x \in G \Rightarrow$	3p
	$\Rightarrow e = 6 \in (5, \infty), (\forall) x \in G.$	
	Oricare ar fi $x \in G$ există $x' \in G$ astfel încât $x * x' = x' * x = 6$.	2p
	$x * x^{\cdot} = 6, (\forall)x \in G \Leftrightarrow (x - 5)(x^{\cdot} - 5) + 5 = 6, (\forall)x \in G \Leftrightarrow x^{\cdot} - 5 = \frac{1}{x - 5}, (\forall)x \in G \Leftrightarrow$	7
	$\Leftrightarrow x' = 5 + \frac{1}{x - 5} > 5, (\forall) x \in (5, \infty).$	
	Deci orice element din mulțimea G este inversabil.	
c)	Din asociativitatea legii, dacă $x = y = z$, atunci $x * x * x = 6 \Leftrightarrow (x-5)^3 + 5 = 6 \Leftrightarrow$	2p

$$\Leftrightarrow (x-5)^3 = 1 \Rightarrow x-5 = 1 \Rightarrow x = 6 \in (5,\infty)$$

1.	$1 - x \neq 0 \Leftrightarrow x \neq 1 \Rightarrow$	2p
a) <	$D=\mathbb{R}-\{1\}$	3p
b)	$(f)'$ $f' \cdot g = f \cdot g'$	1p
	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$	1p
		_
	$f'(x) = \frac{1-x-1-x}{(1-x)^2} = -\frac{2x}{(1-x)^2}$	1p
		2p
	$f'(x) = 0 \Leftrightarrow -\frac{2x}{(1-x)^2} = 0 \Rightarrow x = 0$	
	$(1-x)^2$	
	$f''(x) = -2 \cdot \frac{(1-x)^2 + 2(1-x)}{(1-x)^4} = \frac{-2(1-x)(1-x+2)}{(1-x)^4} = \frac{2(x-3)}{(1-x)^3}$	
	$f''(x) = -2 \cdot \frac{1}{(1-x)^4} = \frac{1}{(1-x)^4} = \frac{1}{(1-x)^3}$	
	2(x-3)	
	$f''(x) = 0 \Leftrightarrow \frac{2(x-3)}{(1-x)^3} = 0 \Rightarrow x = 3$	
	$\begin{bmatrix} x & -\infty & 0 & 1 & 3 & +\infty \end{bmatrix}$	
	f'(x) + + + + + + + 0	
	f''(x) + + + + + 0	
	f(x)	
	x = 0 punct de maxim	
	x = 3 punct de inflexiune	
c)	Ecuația tangentei la graficul funcției f în punctul $M(x_0, y_0)$ este $y - f(x_0) = f'(x_0)(x - x_0)$	1p
	f(2) = 2	1p
	f(2) = -3 $f'(2) = -\frac{4}{1} = -4$	1p
	$f'(2) = -\frac{4}{3} = -4$	-1
Ь		

	$y+3=-4(x-2) \Leftrightarrow 4x+y-5=0$	2p
2.	$I_1 = \int_0^1 \frac{x}{x^2 + 1} dx = \frac{1}{2} \int_0^1 \frac{2x}{x^2 + 1} dx =$	2p
a)		2p
	$=\frac{1}{2} \cdot \ln(x^2 + 1)\Big _0^1 =$	1p
	$= \frac{1}{2} (\ln 2 - \ln 1) = \frac{\ln 2}{2}$	
b)	$\frac{x^2}{x^2+1} - \frac{x}{x^2+1} = \frac{x^2-x}{x^2+1} \le 0, (\forall)x \in [0,1], \text{ atunci}$	2p
	$I_2 - I_1 = \int_0^1 \left(\frac{x^2 - x}{x^2 + 1} \right) dx \le 0 \iff I_2 \le I_1$	3p
c)	1	2p
	$I_{n+2} + I_n = \int_0^1 \frac{x^{n+2}}{x^2 + 1} dx + \int_0^1 \frac{x^n}{x^2 + 1} dx = \int_0^1 \frac{x^n (x^2 + 1)}{x^2 + 1} dx =$	2p
	$\int_{-\infty}^{1} x^n dx =$	1p
	$=\int_{0}^{\infty}x^{n}dx=$	
	$=\frac{x^{n+1}}{n+1}\bigg _0^1=\frac{1}{n+1},\big(\forall\big)n\in\mathbb{N}^*.$	2p
	$n+1\big _0$ $n+1$, (*) $n=1$	

Varianta 44

Prof: Viorica Lungana

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1	$\sqrt{\frac{3}{2} + 2\sqrt{\frac{1}{2}}} + \sqrt{\frac{3}{2} - 2\sqrt{\frac{1}{2}}} = \sqrt{\frac{3}{2} + \sqrt{2}} + \sqrt{\frac{3}{2} - \sqrt{2}} = \sqrt{\frac{\frac{3}{2} + \frac{1}{2}}{2}} + \sqrt{\frac{\frac{3}{2} - \frac{1}{2}}{2}} + \sqrt{\frac{\frac{3}{2} + \frac{1}{2}}{2}} - \sqrt{\frac{\frac{3}{2} - \frac{1}{2}}{2}}$ $= 1 + 1 = 2$	3p
	Am folosit formula radicalilor dubli $\sqrt{A\pm\sqrt{B}}=\sqrt{\frac{A+C}{2}}\pm\sqrt{\frac{A-C}{2}}$, unde $C^2=A^2-B$.	2p
2	$ 2x-1 = x+2 \Leftrightarrow 2x-1 = \pm(x+2)$	1p
	Dacă $2x-1=x+2 \Leftrightarrow x=3$.	2.
	Dacă $2x-1=-x-2 \Leftrightarrow x=-\frac{1}{2}$	2p
		2p
3	$\left(\frac{3}{5}\right)^{x+1} + \left(\frac{5}{3}\right)^{x-1} = 2 \Leftrightarrow \left(\frac{3}{5}\right)^{x+1} + \left(\frac{3}{5}\right)^{1-x} = 2 \Leftrightarrow \left(\frac{3}{5}\right)^{x} \cdot \frac{3}{5} + \left(\frac{3}{5}\right)^{-x} \cdot \frac{3}{5} = 2$	1p
	Notăm $\left(\frac{3}{5}\right)^x = y$ și ecuația devine $y + \frac{1}{y} = \frac{10}{3} \Leftrightarrow 3y^2 - 10y + 3 = 0 \Rightarrow \frac{y_1 = 3}{y_2 = \frac{1}{3}}$	1p
	$\left(\frac{3}{5}\right)^{x} = 3 \Rightarrow x \log_{3} \frac{3}{5} = 1 \Rightarrow x_{1} = \frac{1}{1 + \log_{3} 5}$	2p
	$\left(\frac{3}{5}\right)^{x} = \frac{1}{3} \Rightarrow x \log_{3} \frac{3}{5} = -1 \Rightarrow x_{2} = -\frac{1}{1 + \log_{3} 5}$ $x_{1} + x_{2} = 0$	1p
4	$C_x^y = C_y^x \Rightarrow \begin{cases} x \ge y \\ y \ge x \end{cases} \Rightarrow x = y; \ (x+y)! < 1000 \Rightarrow (2x)! < 1000$	2p
	$x = 0 \Rightarrow 0! = 1 < 1000$ este soluție. $x = 1 \Rightarrow 2! = 2 < 1000$ este soluție.	
	$x = 2 \Rightarrow 4! = 24 < 1000$ este soluție. $x = 3 \Rightarrow 6! = 720 < 1000$ este soluție.	3p
	$x = 4 \Rightarrow 8! = 8 \cdot 7 \cdot 720 > 1000$ nu este soluție.	
	Deci $M = \{(1,1), (2,2), (3,3), (0,0)\} \Rightarrow cardM = 4$.	
5	$P = AB + BC + CA$; $MN = \sqrt{(x_N - x_M)^2 + (y_N - y_M)^2}$	2p

	$AB = \sqrt{37}$, $BC = \sqrt{61}$, $CA = 4$. $P = \sqrt{37} + \sqrt{61} + 4$	3p
6	$E = \frac{\sin^6 x + \cos^6 x}{\sin^4 x + \cos^4 x} = \frac{\cos^6 x (tg^6 x + 1)}{\cos^4 x (tg^4 x + 1)} = \cos^2 x \cdot \frac{1 + tg^6 x}{1 + tg^4 x} = \frac{1}{1 + tg^2 x} \cdot \frac{1 + tg^6 x}{1 + tg^4 x}$	3p
7	$E = \frac{1}{1+4} \cdot \frac{1+64}{1+16} = \frac{65}{5 \cdot 17} = \frac{13}{17}$	2p

1.	$\begin{vmatrix} 2x^2 & 1-x^3 & -2x-a \end{vmatrix}_{I_1+I_2} = 0 = 1 = 0$	2p
a)	$\det A = \begin{vmatrix} 2x^2 & 1-x^3 & -2x-a \\ -2x^2 & x^3 & 2x+a \\ 1 & -1 & x-2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ -2x^2 & x^3 & 2x+a \\ 1 & -1 & x-2 \end{vmatrix} =$	
	$\begin{vmatrix} 1 & -1 & x-2 \end{vmatrix} = \begin{vmatrix} 1 & -1 & x-2 \end{vmatrix}$	
	$ -2x^2 - 2x + a $	2p
	$= - \begin{vmatrix} -2x^2 & 2x + a \\ 1 & x - 2 \end{vmatrix} = -(-2x^3 + 4x^2 - 2x - a) =$	-F
	$=2x^3 - 4x^2 + 2x + a$	1p
b)	$a = 0 \Rightarrow 2x^3 - 4x^2 + 2x = 0 \Leftrightarrow 2x(x^2 - 2x + 1) = 0 \Rightarrow x_1 = 0$ şi	3p
	$x_2 = x_3 = 1$	2p
	$x_2 - x_3 = 1$	
c)	$f(\alpha) = 0$	
	Fie $f(x) = 2x^3 - 4x^2 + 2x + a$. $x = \alpha$ rădăcină dublă $\Leftrightarrow \begin{cases} f'(\alpha) = 0 \\ f''(\alpha) \neq 0 \end{cases}$	1p
	$(f''(\alpha) \neq 0$	
	$f'(x) = 6x^2 - 8x + 2$	1p
	$f'(\alpha) = 0 \Leftrightarrow 2(3\alpha^2 - 4\alpha + 1) = 0 \Rightarrow \alpha_1 = 1; \alpha_2 = \frac{1}{3}$	
		1p
	$\alpha_1 = 1 \Rightarrow a_1 = 0$	1p
	1 8	
	$\alpha_2 = \frac{1}{3} \Rightarrow a_2 = -\frac{8}{27}$	
	8	1p
	$S = a_1 + a_2 = -\frac{8}{27}$	
2.	Se calculează elementele neutre ale celor două legi de compoziție.	

$x * e = x, (\forall) x \in \mathbb{Z} \iff x + e + 3 = x, (\forall) x \in \mathbb{Z} \iff e = -3 \in \mathbb{Z}, (\forall) x \in \mathbb{Z}.$	
$r_0 y = ry + 3r + 3y + 6 = (r + 3)(y + 3) - 3$	1p
$\begin{cases} x \circ y = xy + 3x + 3y + 0 = (x + 3)(y + 3) = 3 \end{cases}$	
$x \circ e' = x, (\forall) x \in \mathbb{Z} \iff (x+3)(e'+3) - 3 = x, (\forall) x \in \mathbb{Z} \iff (x+3)(e'+2) = 0, (\forall) x \in \mathbb{Z}$	1p
$\Leftrightarrow e' = -2 \in \mathbb{Z}, (\forall) x \in \mathbb{Z}.$	
Din $x \circ y = (x+3)(y+3)-3 = (y+3)(x+3)-3 = y \circ x, (\forall) x, y \in \mathbb{Z}$, rezultă inelul $(\mathbb{Z}, *, \cdot)$ este inel comutativ.	1p
Fie $x \neq -3$, $y \neq -3$. Să arătăm că $x \circ y \neq -3$.	
Programmer $y : y = 2 \Rightarrow (y + 2)(y + 2) = 2 \Rightarrow (y + 2)(y + 2) = 0 \Rightarrow y = 2 \text{ sol}$	2p
şi iara divizori ar iui zero.	
Fie $x, x' \in \mathbb{Z}$. Să arătăm că x' este inversul lui x .	
$x \circ x' = -2 \Leftrightarrow (x+3)(x'+3) - 3 = -2 \Leftrightarrow (x+3)(x'+3) = 1 \Leftrightarrow x'+3 = \frac{1}{x+3} \Leftrightarrow$	3p
$x' = -3 + \frac{1}{x+3} \in \mathbb{Z} \iff x+3 \in \{-1,1\}.$	
Dacă $x+3=-1 \Rightarrow x=-4$.	2p
Dacă $x+3=1 \Rightarrow x=-2$.	2p
Deci, elementele inversabile sunt $x = -4$ și $x = -2$.	
$(\mathbb{Z},^*,\cdot)$ este corp dacă orice element $x \in \mathbb{Z}$, $x \neq -3$ este inversabil în raport cu legea "°".	2p
În acest caz, conform punctului b), numai 2 elemente sunt inversabile.	2p
Deci $(\mathbb{Z}, *, \cdot)$ nu este corp.	1p
	$x \circ y = xy + 3x + 3y + 6 = (x + 3)(y + 3) - 3$ $x \circ e' = x, (\forall) x \in \mathbb{Z} \Leftrightarrow (x + 3)(e' + 3) - 3 = x, (\forall) x \in \mathbb{Z} \Leftrightarrow (x + 3)(e' + 2) = 0, (\forall) x \in \mathbb{Z}$ $\Leftrightarrow e' = -2 \in \mathbb{Z}, (\forall) x \in \mathbb{Z}.$ Din $x \circ y = (x + 3)(y + 3) - 3 = (y + 3)(x + 3) - 3 = y \circ x, (\forall) x, y \in \mathbb{Z}$, rezultă inclul $(\mathbb{Z}, *, \cdot)$ este incl comutativ. Fie $x \neq -3, y \neq -3$. Să arătăm că $x \circ y \neq -3$. Presupunem $x \circ y = -3 \Rightarrow (x + 3)(y + 3) - 3 = -3 \Rightarrow (x + 3)(y + 3) = 0 \Rightarrow x = -3$ sau $y = -3$, ceea ce contrazice ipoteza, deci $x \circ y \neq -3$, adică inclul $(\mathbb{Z}, *, \cdot)$ este incl comutativ și fără divizori ai lui zero. Fie $x, x' \in \mathbb{Z}$. Să arătăm că x' este inversul lui x . $x \circ x' = -2 \Leftrightarrow (x + 3)(x' + 3) - 3 = -2 \Leftrightarrow (x + 3)(x' + 3) = 1 \Leftrightarrow x' + 3 = \frac{1}{x + 3} \Leftrightarrow$ $x' = -3 + \frac{1}{x + 3} \in \mathbb{Z} \Leftrightarrow x + 3 \in \{-1,1\}.$ Dacă $x + 3 = 1 \Rightarrow x = -4$. Dacă $x + 3 = 1 \Rightarrow x = -4$. Dacă $x + 3 = 1 \Rightarrow x = -2$. Deci, elementele inversabile sunt $x = -4$ și $x = -2$. [$\mathbb{Z}, *, \cdot$] este corp dacă orice element $x \in \mathbb{Z}, x \neq -3$ este inversabil în raport cu legea $x \in \mathbb{Z}$.

1.	f'(x) = 2x - 7	3p
	$f'(x) = -5 \Leftrightarrow 2x - 7 = -5 \Leftrightarrow x = 1$	2p

b)	$y = -5x + 3 \Rightarrow m = -5$	1p
	Coeficientul unghiular al tangentei la graficul funcției în $x = \alpha$ este $f^{-}(\alpha)$.	1p
7	Tangenta la graficul funcției f este paralelă cu dreapta $y = -5x + 3$ dacă	
	$f'(\alpha) = -5 \Leftrightarrow \alpha = 1$	1p
X	$f(1) = 2 + 3 - 7 = -2 \Rightarrow T(1,-2)$ este punctul de tangență.	2p
c)	$y - f(\alpha) = f'(\alpha)(x - \alpha)$	2p
	$y+2=-5(x-1) \Leftrightarrow 5x+y-3=0$	3p
2.	$I = \int_{1}^{1} \frac{1}{(1+x^2)^1} dx = \ln(1+\sqrt{2})$	2p
a)	$I_0 = \int_0^1 \frac{1}{\sqrt{1+x^2}} dx = \ln\left(x + \sqrt{1+x^2}\right)\Big _0^1 = \ln\left(1 + \sqrt{2}\right)$	
	$I_1 = \int_0^1 \frac{x}{\sqrt{1+x^2}} dx = \sqrt{1+x^2} \Big _0^1 = \sqrt{2} - 1$	3p
b)	$0 \le x^n \le 1$	1p
	$0 \le \frac{x^n}{\sqrt{1+x^2}} \le \frac{1}{\sqrt{1+x^2}}, \forall x \in [0,1]$	2p
		2p
	$0 \le I_n \le \frac{\pi}{4}$	
c)	$I_n = \int_0^1 \frac{x^n}{\sqrt{1+x^2}} dx = \int_0^1 x^{n-1} \cdot \left(\sqrt{1+x^2}\right)^n dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} \Big _0^1 - \left(n-1\right) \int_0^1 x^{n-2} \cdot \sqrt{1+x^2} dx = x^{n-1} \cdot \sqrt{1+x^2} dx = x^{n-1$	2p
	$= \sqrt{2} - (n-1) \int_{0}^{1} \frac{x^{n-2}(1+x^{2})}{\sqrt{1+x^{2}}} dx =$	2p
	$= \sqrt{2} - (n-1)I_{n-2} - (n-1)I_n \Rightarrow nI_n = \sqrt{2} - (n-1)I_{n-2}$	1p

Varianta 45

Prof: Viorica Lungana

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$[x-2] = 3 \Leftrightarrow 3 \le x-2 < 4 \Leftrightarrow$	3p
	$\Leftrightarrow \begin{cases} x - 2 \ge 3 \\ x - 2 < 4 \end{cases} \Leftrightarrow \begin{cases} x \ge 5 \\ x < 6 \end{cases} \Rightarrow x \in [5,6)$	2p
2.	$a=1>0 \Rightarrow \operatorname{Im} f = \left[-\frac{\Delta}{4a}, \infty\right)$	2p
	$\Delta = b^2 - 4ac = 1 - 8 = -7 \Rightarrow -\frac{\Delta}{4a} = -\frac{7}{4} = \frac{7}{4}$	2p
	$\operatorname{Im} f = \left[\frac{7}{4}, \infty\right)$	1p
	L ⁺ /	4
3.	Folosim formula $\log_a N = \frac{\log_b N}{\log_b a}$	1p
	$\log_2 2 \log_2 4 \log_2 5$ $\log_2 64 \log_2 5 \log_2 64$	2p
	$\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \dots \cdot \log_{63} 64 = \log_2 3 \cdot \frac{\log_2 4}{\log_2 3} \cdot \frac{\log_2 5}{\log_2 4} \cdot \dots \cdot \frac{\log_2 64}{\log_2 63} =$	2p
	$=\log_2 64 = 6$	
4.	$k \cdot k! = [(k+1)-1] \cdot k! = (k+1) \cdot k! - k! = (k+1)! - k!$	1p

	Calculăm fiecare termen din sumă și obținem:	
	$1 \cdot 1! = 2! - 1!$	3p
	$2 \cdot 2! = 3! - 2!$	
9	$3 \cdot 3! = 4! - 3!$	
	$10 \cdot 10! = 11! - 10!$	
	$\Rightarrow 1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + 9 \cdot 9! + 10 \cdot 10! = 11! - 1$	1p
5.	$\vec{v} = (\vec{a} + 2\vec{b})(2\vec{a} - \vec{b}) = 2\vec{a}^2 - \vec{a} \cdot \vec{b} + 4\vec{b} \cdot \vec{a} - 2\vec{b}^2 =$	2p
	$= 2 \cdot 4 + 3(-4) - 2 \cdot 9 = 8 - 12 - 18 = -22$	3p
6.	Folosim formula $\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$	2p
	$\sin 75^{\circ} + \sin 15^{\circ} = 2\sin \frac{75^{\circ} + 15^{\circ}}{2}\cos \frac{75^{\circ} - 15^{\circ}}{2} =$	1p
	$= 2\sin 45^{\circ} \cos 30^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$	2p

1. a)
$$A^{2} = A \cdot A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_{3}$$

$$B^{3p} = (A^{3})^{p} = I_{3}^{p} = I_{3}$$

$$A^{3p+1} = A^{3p} \cdot A = I_{3} \cdot A = A$$

$$A^{3p+2} = A^{3p} \cdot A^{2} = I_{3} \cdot A^{2} = A^{2}$$

$$1p$$

	Deci $A^n = \begin{cases} I_3, & n = 3p \\ A, & n = 3p + 1, & p \in \mathbb{N}^*. \\ A^2, & n = 3p + 2 \end{cases}$	1p
(c)	$2012 = 3 \cdot 670 + 2$	1p
	$A^{2012} = A^{3 \cdot 670 + 2} = A^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$	2p
	Suma elementelor matricei A^{2012} este $1+1+1=3$	2p
2.	$x * y = x^{\ln y} = e^{\ln x^{\ln y}} =$	1p
a)		3р
	$=e^{\ln y \ln x}=e^{\ln x \ln y}=e^{\ln y^{\ln x}}=$	
	$= y^{\ln x} = y * x, \forall x, y \in (0, \infty) \Rightarrow$ "*" este comutativă.	1p
b)	Legea "*" admite element neutru \Leftrightarrow $(\exists)E \in (0,\infty)$ astfel încât	
	$x * E = E * x = x, (\forall) x \in (0, \infty).$	
	$x * E = x, (\forall) x \in (0, \infty) \Leftrightarrow x^{\ln E} = x, (\forall) x \in (0, \infty) \Leftrightarrow \ln E = 1, (\forall) x \in (0, \infty) \Rightarrow$ $\Rightarrow E = e \in (0, \infty), (\forall) x \in (0, \infty)$	3p
	Deci e (numărul "e") este elementul neutru al legii.	
	Să arătăm că $(\forall)x \in (0,\infty), (\exists)x^{\cdot} \in (0,\infty)$ astfel incat $x*x' = x'*x = e$	2p
	$x * x' = e, (\forall) x \in (0, \infty) \Leftrightarrow x^{\ln x'} = e, (\forall) x \in (0, \infty) \Leftrightarrow \ln x' \ln x = 1, (\forall) x \in (0, \infty) \Leftrightarrow$	
	$\Leftrightarrow \ln x' = \frac{1}{\ln x}, (x \neq 1) \Leftrightarrow x' = e^{\frac{1}{\ln x}} \in (0, \infty), (\forall) x \in (0, \infty) \text{ deci, orice element din G este}$	
	simetrizabil în raport cu această lege.	
c)	Simetricul numărului e în raport cu legea ,,*" este $e' = e^{\frac{1}{\ln e}} = e^{\frac{1}{1}} = e$.	2p
	Simetricul numărului $\frac{1}{e}$ în raport cu legea ,,*" este $\left(\frac{1}{e}\right)' = e^{\frac{1}{\ln\frac{1}{e}}} = e^{\frac{1}{\ln e^{-1}}} = e^{\frac{1}{-1}} = e^{-1} = \frac{1}{e}$	3p

1	2 2 2	3p
a)	$f'(x) = \frac{3x^2 - 2x}{3 \cdot \sqrt[3]{(x^3 - x^2)^2}}$	Эр
\$	$f'(x) = 0 \Rightarrow 3x^2 - 2x = 0 \Rightarrow x_1 = 0$ $x_2 = \frac{3}{2}$	2p
	7	2
b)	$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt[3]{x^3 - x^2}}{x} = \lim_{x \to -\infty} \frac{x \cdot \sqrt[3]{1 - \frac{1}{x}}}{x} = 1$	2p
	$n = \lim_{x \to -\infty} [f(x) - mx] = \lim_{x \to -\infty} (\sqrt[3]{x^3 - x^2} - x)^{-\infty + \infty} = \lim_{x \to -\infty} \frac{x^3 - x^2 - x^3}{\sqrt[3]{(x^3 - x^2)^2} + x \cdot \sqrt[3]{x^3 - x^2} + x^2} =$	1p
	$= \lim_{x \to -\infty} \frac{-x^2}{x^2 \left(\sqrt[3]{\left(1 - \frac{1}{x}\right)^2} + \sqrt[3]{1 - \frac{1}{x}} + 1 \right)} = -\frac{1}{3}$	1p
	Deci $y = x - \frac{1}{3}$.	1p
c)	Pentru $m = 1$ și $n = -\frac{1}{3}$	1p
	$\frac{m^2}{n^2} = \frac{1}{\frac{1}{9}} = 9$	1p
	$(m-n)^2 = \left(1+\frac{1}{3}\right)^2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$	1p
	$\frac{m^2}{n^2} + (m-n)^2 = 9 + \frac{16}{9} = \frac{81+16}{9} = \frac{97}{9}$	2p
2. a)	Pentru $x \in \left[0, \frac{1}{4}\right)$, $f(x) = g(x) \Leftrightarrow -\sqrt{x} = \sqrt{x} \Leftrightarrow 2\sqrt{x} = 0 \Leftrightarrow x = 0 \in \left[0, \frac{1}{4}\right)$	2p
	Pentru $x \in \left[\frac{1}{4}, 1\right]$, $f(x) = g(x) \Leftrightarrow \sqrt{x} = 2x - 1 \Rightarrow 4x^2 - 5x + 1 = 0 \Rightarrow \begin{cases} x = 1 \in \left[\frac{1}{4}, 1\right] \\ x = \frac{1}{4} \in \left[\frac{1}{4}, 1\right] \end{cases}$	2p

	Soluția $S = \left\{0, \frac{1}{4}, 1\right\}$.	1p
b)	$\sqrt{x} \ge -\sqrt{x}$, $(\forall)x \in \left[0, \frac{1}{4}\right)$	1p
	Pentru $x \in \left[\frac{1}{4}, \frac{1}{2}\right] \Rightarrow 2x - 1 < 0 \Rightarrow \sqrt{x} \ge 2x - 1, (\forall)x \in \left[\frac{1}{4}, \frac{1}{2}\right]$	1p
	Pentru $x \in \left[\frac{1}{2}, 1\right] \Rightarrow \sqrt{x} \ge 2x - 1 \Rightarrow x \ge 4x^2 - 4x + 1 \Rightarrow 4x^2 - 5x + 1 \le 0 \Rightarrow$	
	$x \in \left[\frac{1}{4}, 1\right] \cap \left[\frac{1}{2}, 1\right] = \left[\frac{1}{2}, 1\right]$	1p
	Deci pentru $x \in [0,1] \Rightarrow f(x) \ge g(x)$, funcțiile f și g sunt funcții continue.	
	$Aria(\Gamma_{f,g}) = \int_{0}^{1} [f(x) - g(x)] dx = \int_{0}^{\frac{1}{4}} (\sqrt{x} + \sqrt{x}) dx + \int_{\frac{1}{4}}^{1} (\sqrt{x} - 2x + 1) dx = 2 \cdot \frac{2}{3} x^{\frac{3}{2}} \Big _{0}^{\frac{1}{4}} + \frac{2}{3} x^{\frac{3}{2}} \Big _{\frac{1}{4}}^{1} - \frac{2}{3} x^{\frac{3}{2}} \Big _{0}^{1}$	
	$-x^{2}\Big _{\frac{1}{4}}^{1} + x\Big _{\frac{1}{4}}^{1} = \frac{4}{3}x\sqrt{x}\Big _{0}^{\frac{1}{4}} + \frac{2}{3}x\sqrt{x}\Big _{\frac{1}{4}}^{1} - 1 + \frac{1}{16} + 1 - \frac{1}{4} = \frac{4}{3} \cdot \frac{1}{4} \cdot \frac{1}{2} + \frac{2}{3} - \frac{2}{3} \cdot \frac{1}{4} \cdot \frac{1}{2} - \frac{3}{16} =$	2
	$= \frac{1}{6} + \frac{2}{3} - \frac{1}{12} - \frac{3}{16} = \frac{8 + 32 - 4 - 9}{48} = \frac{27}{48} = \frac{9}{16}$	2p
c)	$\int_{0}^{\pi} \left(\frac{1}{2\sqrt{x}} \sin x + \sqrt{x} \cos x \right) dx = \int_{0}^{\pi} \left[\left(\sqrt{x} \right) \cdot \sin x + \sqrt{x} \cdot (\sin x) \right] dx =$	2p
	$= \int_{0}^{\pi} \left(\sqrt{x} \sin x \right) dx =$	1p
	$=\sqrt{x}\sin x\Big _0^\pi = \sqrt{\pi}\sin \pi - 0 = 0$	2p

Varianta 46

Prof: Viorica Lungana

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	Scriem relațiile lui Viéte pentru ecuația $x^2 + (m+2)x + 4 = 0$	
	$x_1 + x_2 = -m - 2$; $x_1 x_2 = 4$.	
	$x_1^2 + x_2^2 + x_1 x_2 = (x_1 + x_2)^2 - 2x_1 x_2 + x_1 x_2 = (x_1 + x_2)^2 - x_1 x_2 = m^2 + 4m + 4 - 4 = m^2 + 4m$	3p
	Dar $x_1^2 + x_2^2 + x_1 x_2 = 0 \Leftrightarrow m^2 + 4m = 0 \Rightarrow m = 0 \Rightarrow m = -4 \Rightarrow m \in \{-4,0\}$	2p
2.	Fie $x_1, x_2 \in \sqrt{5}, \infty$ cu $x_1 < x_2 \Rightarrow x_2 - x_1 > 0$; $x_1 \ge \sqrt{5} \Rightarrow x_1^2 \ge 5$, analog $x_2^2 \ge 5$.	1p
	$f(x_2) - f(x_1) = \frac{x_2^2 + 5}{2x_2} - \frac{x_1^2 + 5}{2x_1} = \frac{x_1 x_2^2 + 5x_1 - x_1^2 x_2 - 5x_2}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1) - 5(x_2 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1) - 5(x_1 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1) - 5(x_1 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1) - 5(x_1 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1) - 5(x_1 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1) - 5(x_1 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_2 - x_1) - 5(x_1 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_1 - x_1) - 5(x_1 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_1 - x_1) - 5(x_1 - x_1)}{2x_1 x_2} = \frac{x_1 x_2 (x_1 - x_1)}{2x_1 x_1} = \frac{x_1 x_2 (x_1 - x_1)}{2x_1 $	2p
	$= \frac{(x_2 - x_1)(x_1 x_2 - 5)}{2x_1 x_2} \ge 0 \Rightarrow f(x_2) > f(x_1) \Rightarrow f \text{ strict crescătoare pe } \left[\sqrt{5}, \infty\right), \text{ deoarece}$	2p
	$\dim x_1 x_2 \ge 5 \Longrightarrow x_1 x_2 - 5 \ge 0.$	
3.	cardA = 10 = 7 + 3	1p
	cardB = 7 = 4 + 3	2p
	$card(A \cup B) = 7 + 3 + 4 = 14$	2p
	Sau $card(A \cup B) = cardA + cardB - card(A \cap B) = 10 + 7 - 3 = 14$	
4.	$x^2 - 3x + 5 > 0$, deoarece $\Delta = 9 - 20 = -11 < 0 \Rightarrow x \in \mathbb{R}$.	2p
	$\log_3(x^2 - 3x + 5) = 1 \Leftrightarrow x^2 - 3x + 5 = 3 \Leftrightarrow$	3p

$\Leftrightarrow x^2 - 3x + 2 = 0 \Rightarrow \begin{cases} x_1 = 1 \in \mathbb{R} \\ x_2 = 2 \in \mathbb{R} \end{cases}.$	
$x_2 = 2 \in \mathbb{R}$	

 $\sin 6x = \sin 3x \Leftrightarrow \sin 6x - \sin 3x = 0 \Leftrightarrow 2\sin \frac{3x}{2}\cos \frac{9x}{2} = 0 \Leftrightarrow \sin \frac{3x}{2} = 0 \text{ sau }\cos \frac{9x}{2} = 0$

$$\sin \frac{3x}{2} = 0 \Leftrightarrow \frac{3x}{2} = k\pi \Leftrightarrow x_k = \frac{2k\pi}{3}, k \in \mathbb{Z}$$

Pentru
$$k = 0 \Rightarrow x_0 = 0 \in [0, \pi].$$

Pentru
$$k = 1 \Rightarrow x_1 = \frac{2\pi}{3} \in [0, \pi].$$

Pentru
$$k = 2 \Rightarrow x_2 = \frac{4\pi}{3} \notin [0, \pi].$$

$$\cos \frac{9x}{2} = 0 \Leftrightarrow \frac{9x}{2} = \frac{(2k+1)\pi}{2} \Leftrightarrow x_k' = \frac{(2k+1)\pi}{9}, k \in \mathbb{Z}.$$

$$\cos \frac{1}{2} = 0 \Leftrightarrow \frac{1}{2} = \frac{\pi}{2} \Leftrightarrow x_k = \frac{\pi}{9}, k$$
Pentru $k = 0 \Rightarrow x_0 = \frac{\pi}{9} \in [0, \pi].$
Pentru $k = 1 \Rightarrow x_1 = \frac{\pi}{9} \in [0, \pi].$

Pentru
$$k = 1 \Rightarrow x_1 = \frac{\pi}{3} \in [0, \pi].$$

Pentru
$$k = 2 \Rightarrow x_2 = \frac{5\pi}{9} \in [0, \pi].$$

Pentru
$$k = 3 \Rightarrow x_3 = \frac{7\pi}{9} \in [0, \pi].$$

Pentru
$$k = 4 \Rightarrow x_4 = \pi \in [0, \pi].$$

Deci soluția ecuației este
$$S = \left\{0, \frac{\pi}{9}, \frac{\pi}{3}, \frac{5\pi}{9}, \frac{2\pi}{3}, \frac{7\pi}{9}, \pi\right\}.$$

6.
$$aria = \frac{1}{2} \cdot |\Delta|$$
, unde $\Delta = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \\ 2 & 0 & 1 \end{vmatrix}$

$$=-1+2+2+1=4 \Rightarrow aria = \frac{1}{2} \cdot 4 = 2$$

2p

2p

2p

3p

$$\begin{bmatrix} 1.\\ a) \end{bmatrix} A^2 = A \cdot A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 6 \\ 4 & 9 & 8 \\ 2 & 6 & 8 \end{pmatrix}$$

$$2p$$

$$3A = 3 \cdot \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 6 & -3 \\ 0 & 3 & 12 \\ 3 & 6 & 3 \end{pmatrix}$$

$$f(A) = A^2 - 3A + I_3 = \begin{pmatrix} 0 & 2 & 6 \\ 4 & 9 & 8 \\ 2 & 6 & 8 \end{pmatrix} + \begin{pmatrix} -3 & -6 & 3 \\ 0 & -3 & -12 \\ -3 & -6 & -3 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -4 & 9 \\ 4 & 7 & -4 \\ -1 & 0 & 6 \end{pmatrix}$$

$$b) \quad 1 \le rangA \le 3$$

$$c) \quad det A = \begin{vmatrix} 1 & 2 & -1 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{vmatrix} = 1 + 8 + 1 - 8 = 2 \neq 0 \Rightarrow$$

$$\Rightarrow rangA = 3$$

$$c) \quad det f(A) = \begin{vmatrix} -2 & -4 & 9 \\ 4 & 7 & -4 \\ -1 & 0 & 6 \end{vmatrix} = -84 - 16 + 63 + 96 = 59$$

$$c) \quad a) \quad x \circ y = \frac{xy}{4} - 2x - 2y + 24 = \frac{1}{4}(xy - 8x - 8y + 96) = \frac{1}{4}(x - 8)(y - 8) + 8x(\forall)x, y \in \mathbb{Q}$$

$$x \circ y = \frac{1}{4}(x - 8)(y - 8) + 8 = \frac{1}{4}(y - 8)(x - 8) + 8 = y \circ x, (\forall)x, y \in \mathbb{Q}$$

$$(x \circ y) \circ z = \frac{1}{4}(x \circ y - 8)(z - 8) + 8 = \frac{1}{4}\left[\frac{1}{4}(x - 8)(y - 8) + 8 - 8\right](z - 8) + 8 = \frac{1}{16}(x - 8)(y - 8) + 8 - 8$$

	$x \circ (y \circ z) = \frac{1}{4}(x-8)(y \circ z - 8) + 8 = \frac{1}{4}(x-8)\left[\frac{1}{4}(y-8)(z-8) + 8 - 8\right] + 8 =$	2p
	$= \frac{1}{16} (x-8)(y-8)(z-8) + 8, (\forall) x, y, z \in \mathbb{Q}, (2)$	
	Din relațiile (1) și (2) rezultă că legea este asociativă.	
c)	Din asociativitatea legii, pentru $x = y = z \Rightarrow x \circ x \circ x = 12 \Leftrightarrow \frac{1}{16}(x-8)^3 + 8 = 12 \Leftrightarrow$	2p
	$\Leftrightarrow (x-8)^3 = 64 \Rightarrow x-8 = 4 \Rightarrow x = 12$	3p

1. a)	Fie $x \in [-1,1]$. $f'(x) = 5x^4 - 3x^2 + 1$	2p
a)	Notăm $x^2 = y$ și obținem $f'(y) = 5y^2 - 3y + 1 = 5\left(y - \frac{3}{10}\right)^2 + \frac{11}{20} \Rightarrow$	
	$f'(x) = 5\left(x^2 - \frac{3}{10}\right)^2 + \frac{11}{20} > 0 \Rightarrow$	2p
	$\Rightarrow f$ este strict crescătoare pe $[-1,1]$.	1p
b)		
	x -1 1	
	$f \cdot (x)$ + + + + + + + + +	3p
	f(x) 1 3	
	Puncte de extrem ale funcției sunt: $x = -1$ și $x = 1$.	2p
c)	f(-1)=1	1p
	f(1) = 3	1p
		3p
	f(1)-f(-1)=3-1=2	

$I_{1} = \int_{0}^{1} \frac{x+1}{x+1} dx$	2p
$\left \mathcal{X} \right _0^1 = 1$	3p
$x^2 + 1$ $x + 1$ $\forall x \in [0, 1]$	2p
$\frac{x^2 + 1}{x + 1} \le \frac{x + 1}{x + 1}, \forall x \in [0, 1];$	2p
$\int_{0}^{1} \frac{x^{2} + 1}{x + 1} dx \le \int_{0}^{1} \frac{x + 1}{x + 1} dx, \forall x \in [0, 1];$ $I_{2} \le I_{1}$	
$I_2 \leq I_1$	1p
$(x^{n+1} + 1) = (x^n + 1)$	2p
$I_{n+1} + I_n = \int_0^1 \frac{x^{n+1} + 1}{x + 1} dx + \int_0^1 \frac{x^n + 1}{x + 1} dx =$	
$= \int_{0}^{1} \frac{x^{n}(x+1) + 2}{x+1} dx =$	1p
$\int_{0}^{1} x^{n} dx + \int_{0}^{1} \frac{2}{x+1} dx =$	1p
$\frac{1}{n+1} + 2\ln 2$	1p

Varianta 47

Prof: Marcu Ştefan Florin

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	2	3n
1.	$\left 5x-1\right < 4 \Leftrightarrow -4 < 5x-1 < 4 \Leftrightarrow -\frac{3}{5} < x < 1$	3p
	5	
	x = 0 și numărul de elemente este egal cu 1.	
	x = 0 şi numarul de elemente este egal cu 1.	2p
		1
	`O'>	
2.	$a_n = a_1 + (n-1)r$	1p
		2-
	$a_{2012} = a_1 + 2011r$; r=3	2p
		2p
	$a_{2012} = -5 + 2011 \cdot 3 = 6028$	2P
3.	5x-1>0	1p
	Punerea condițiilor de existență a logaritmilor : $\begin{cases} 3x & 1 > 0 \\ 3x + 3 > 0 \end{cases}$	
	5x-1=3x+3	2p
		2p
	x=2 este soluția ecuației.	2p
		1
4.	$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$	2p
		2
	$C_{2012}^3 = C_{2011}^3 + C_{2011}^2 \Rightarrow C_{2012}^3 - C_{2011}^3 - C_{2011}^2 = 0$	3p
5.	$A(3,5) \in d \Leftrightarrow x = 3, y = 5$	2p
		1
		3p

	$3 \cdot 3 - 2 \cdot 5 + a = 0 \Rightarrow a = 1$	
6.	$\sin(90^{\circ} - x) = \cos x$	2p
	$\sin 85^{\circ} = \cos 5^{\circ}$	1p
7	$\sin^2 5^\circ + \sin^2 85^\circ = \sin^2 5^\circ + \cos^2 5^\circ = 1$	2p

	$A^2 = A \cdot A = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}$	2p
	$A^2 = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}$	2p
	$A^2 = A$	1p
b)	$A + xI_2 = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} + x \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2+x & -1 \\ 2 & -1+x \end{pmatrix}$	3p
	$\det(A + xI_2) = x^2 + x = 0 \Rightarrow x = 0, x = -1$	2p
c)	$A^n = A(\forall) n \in N^*$	1p
	$A + A^2 + + A^{2012} = A + A + + A = 2012 \cdot A$	2p
	(4024 -2012)	2p
	$2012 \cdot A = \begin{pmatrix} 4024 & -2012 \\ 4024 & -2012 \end{pmatrix}$	
2.	(x-4)(y-4)+4=	1p
a)	= xy - 4x - 4y + 16 + 4 =	3p
	$=xy-4x-4y+20=x\circ y$	1p
b)	$\underbrace{x \circ x \circ \dots \circ x}_{2012-ori} = (x-4)^{2012} + 4$	3p
	2012 <i>-on</i>	2p

	$(x-4)^{2012} + 4 = 5 \Rightarrow (x-4)^{2012} = 1 \Rightarrow x = 3, x = 5$	
c)	Se observă că : $x \circ 4 = 4$, $(\forall) x \in R$	2p
	Se observa ca : $x \circ 4 = 4$, ($\sqrt{x} \in \mathbb{R}$	-
	Folosind asociativitatea avem : $E = [(-2012) \circ (-2011) \circ] \circ 4 \circ [\circ 2011 \circ 2012]$	2p
7	Deci E=4	1p

1. a)	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$	2p
	$f'(x) = 2012x^{2011} - 2012$	2p
	f'(1)=0	1p
b)	$f'(x) = 0 \Leftrightarrow 2012x^{2011} - 2012 = 0$	1p
	$2012(x^{2011} - 1) = 0$	1p
	$x^{2011} = 1$	1p
	x=1 este unica soluţie	2p
c)	f este strict descrescătoare pe $(-\infty,1)$ și strict crescătoare pe $(1,+\infty)$	1p
	Deci: $f(x) \ge f(1), (\forall) x \in R$	1p
	Dar $f(1) = -2010$	1p
	Obţinem: $x^{2012} - 2012x + 2011 \ge 0, (\forall) x \in R$	2p
2.	$\int (x^2 + 1) \cdot f(x) dx = \int (x^2 + 5x + 1) dx =$	2p
a)	$\int (x^2 + 1) \cdot f(x) dx = \int (x^2 + 5x + 1) dx =$ $= \int x^2 dx + \int 5x dx + \int dx =$	
	- J x ux + J 3xux + J ux -	2p
		<u> </u>

	$=\frac{x^3}{3} + \frac{5x^2}{2} + x + C$	1p
b)	$\int_{0}^{1} f(x)dx = \int_{0}^{1} \frac{x^{2} + 5x + 1}{x^{2} + 1} dx =$	1p
~	$= \int_{0}^{1} (1 + \frac{5x}{x^2 + 1}) dx =$	1p
	$= \int_{0}^{1} dx + 5 \int_{0}^{1} \frac{x}{x^2 + 1} dx =$	1p
	$=1+\frac{5}{2}\ln 2$	2p
c)	$\int_{0}^{1} e^{f(x)} \cdot f'(x) dx = e^{f(1)} - e^{f(0)}$	2p
	$e^{f(1)} = e^{\frac{7}{2}}, e^{f(0)} = e$	1p
	$\int_{0}^{1} e^{f(x)} \cdot f'(x) dx = \sqrt{e^{7}} - e = e^{3} \sqrt{e} - e .$	2p

Varianta 48

Prof:Marcu Ştefan Florin

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$x^{2} - 16 = 0 \Rightarrow x_{1} = 4, x_{2} = -4 \Rightarrow x \in [-4, 4] \cap Z$	3p
	$x \in \{-4, -3,, 3, 4\}$	2p
2.	$f(1) + f(2) + + f(2012) = (2 \cdot 1 + 1) + (2 \cdot 2 + 1) + + (2 \cdot 2012 + 1) =$	1p
	$=2 \cdot (1+2++2012) + 2012 =$	2p
	=2012 •2014	2p
3.	$2^{2x+4} = 4^{3x-1} \Leftrightarrow 2^{2x+4} = 2^{6x-2}$	1p
	2x + 4 = 6x - 2	2p
	3	2p
	$x = \frac{3}{2}$	
4.	Sunt 5 cazuri posibile, din care avem 2 cazuri favorabile	2p
	Deci $P = \frac{2}{5}$	3p
	5	
5.	$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(2 - 2)^2 + (a - 3)^2}$	2p
	^ ^ ^ ^ ^	
	$ a-3 = 1 \Rightarrow a = 4 \text{ sau } a = 2 S = \hat{0} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6}$	3p
6.	$A \cap A \cap$	2p
	$A[ABC] = \frac{AB \cdot AC \cdot \sin(\Delta BAC)}{2}$	•

$$\sin 135^{\circ} = \sin 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$1p$$

$$A[ABC] = \frac{4 \cdot 4 \cdot \frac{\sqrt{2}}{2}}{2} = 4\sqrt{2}$$

1.	Punctele sunt : $A_1(2,3)$ respectiv $A_2(4,5)$	2p
a)		
	$\begin{bmatrix} x & y & 1 \\ 2 & 2 & 1 \end{bmatrix}$	
	Ecuația dreptei A_1A_2 este : $\begin{vmatrix} x & y & 1 \\ 2 & 3 & 1 \\ 4 & 5 & 1 \end{vmatrix} = 0$	2p
	x - y + 1 = 0	1p
1	`9>	
b)		3p
	Avem $A_3(6,7)$, iar condiția de coliniaritate este : $\begin{vmatrix} 4 & 5 & 1 \\ 6 & 7 & 1 \end{vmatrix} = 0$	
	6 7 1	2p
	Verificarea condiției	-r
c)	Avem $A_n(2n, 2n+1)$ respectiv $A_{n+1}(2n+2, 2n+3)$	1p
		2p
	$A[OA_n A_{n+1}] = \frac{1}{2} \bullet \Delta $	1
	$\Delta = \begin{vmatrix} 0 & 0 & 1 \\ 2n & 2n+1 & 1 \\ 2n+2 & 2n+3 & 1 \end{vmatrix} \Rightarrow \Delta = -2 \Rightarrow \text{Aria} = 1$	2p
	$\Delta = \begin{vmatrix} 2n & 2n+1 & 1 \\ 2n & 2n+1 & 2n \end{vmatrix} \Rightarrow \Delta = -2 \Rightarrow Aria = 1$	
	2n+2 2n+3	
2.		1n
	$S = \hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5} + \hat{6} =$	1p
a)		
	$= (\hat{1} + \hat{6}) + (\hat{2} + \hat{5}) + (\hat{3} + \hat{4})$	3p
		•

	$\mathbf{S} = \hat{0}$	1p
b)	Elementele inversabile sunt : $\hat{1}, \hat{2}, \hat{3}, \hat{4}, \hat{5}, \hat{6}$	3p
	Produsul lor este egal cu 6	2p
c)	$\begin{cases} x + \hat{2}y = \hat{3} \\ \hat{3}x + \hat{4}y = \hat{0} \end{cases} \Leftrightarrow \begin{cases} \hat{3}x + \hat{6}y = \hat{2} \\ \hat{3}x + \hat{4}y = \hat{0} \end{cases}$	2p
	$\hat{\vec{2}} y = \hat{\vec{2}} \Rightarrow y = \hat{\vec{1}}$	2p
	$x = \hat{\hat{1}}$	1p

1.	f(x) - f(0)	2p
a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	_P
	1,→0	
	$f'(x) = 1 + e^x$	2p
	f'(0) = 2	1p
b)	$f'(x) = 1 + e^x$	1p
		1
	$1+e^x>0$	1p
	f'(x) > 0	
	$\int \int \int \int \int \int \partial u du d$	
	f este strict crescătoare pe R .	1p
		2p

c)	Aplic Teorema lui Lagrange pe intervalul [2011,2012]	1p
	$(\exists)c \in (2011, 2012)$ cu $f(2012) - f(2011) = f'(c)$	1p
	$f'(c) = e^{2012} - e^{2011} + 1$	1p
7		
	Unicitatea lui c este demonstrată prin faptul că : $f''(x) = e^x > 0 \Rightarrow f'$ este strict crescătoare	2p
	pe R	
2.	$\int_{1}^{1} \int_{1}^{2} x^{2} - 1$	2p
a)	$I_2 = \int_0^1 \frac{x^2 - 1}{x + 1} dx$	
	$I = \int_{-\infty}^{1} (v_1 + v_2) dv_1$	
	$I_2 = \int_0^1 (x-1)dx$	2p
	$I_2 = -\frac{1}{2}$	
		1p
	Q x	
b)	Arătăm că : $I_n > I_{n+1}, (\forall) n \in N$	1p
	$I_{n+1} = \int_{0}^{1} \frac{x^{n+1} - 1}{x + 1} dx$	1p
	$x \in (0,1) \Longrightarrow x^n > x^{n+1}$	1p
	Dar, atunci: $\frac{x^n-1}{x+1} > \frac{x^{n+1}-1}{x+1}$, de unde prin integrare de la 0 la 1, se obține cerința	
	x+1 $x+1$	2p
		2
c)	$I_{n+2} - I_n = \int_{-\infty}^{1} \frac{x^{n+2} - x^n}{x+1} dx =$	2p
	$I_{n+2} - I_n = \int_0^1 \frac{x^{n+2} - x^n}{x+1} dx =$ $= \int_0^1 \frac{x^n \cdot (x^2 - 1)}{x+1} dx =$	15
		1p
	$= \int_{0}^{1} (x^{n+1} - x^{n}) dx = -\frac{1}{(n+1)(n+2)}, (\forall) n \in \mathbb{N}$	25
	V '\ '	2p

Varianta 49

Prof: Marcu Ştefan Florin

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$a_1 = 2, a_n = 222, r = 10$	3p
	Aflăm n=23 , aplicând formula : $a_n = a_1 + (n-1)r$	
	Atunci $S_n = \frac{n(a_1 + a_n)}{2} \Rightarrow S_{23} = 2576$	2p
		2p
	2 0 0	1
2.	$x^2 - 9 \ge 0$	1p
	$x^2 - 9 = 16$	2p
	$x^2 = 25 \Rightarrow x = 5saux = -5$	2p

3.	$A(m,5) \in G_f \Rightarrow f(m) = 5$	1p
	$f(m) = 2m^2 - 3m + 5$	2p
	$\Rightarrow 2m^2 - 3m = 0 \Rightarrow m = 0 \text{ sau } m = \frac{3}{2}$	2p
4.	Numărul numerelor este A_4^3	2p
	4!	3p
	$A_4^3 = \frac{4!}{(4-3)!} = 24$	
5.	Dacă notăm cu n,n+1,n+2 lungimile laturilor , atunci din Teorema lui Pitagora , avem :	2p
	$(n+2)^2 = n^2 + (n+1)^2$	
	$\Rightarrow n^2 - 2n - 3 = 0 \Rightarrow n = 3$. Deci lungimile laturilor sunt 3,4,5.	3p
6.	$\sin(\pi - x) = \sin x, \cos(\pi - x) = -\cos x$	2p
	$\sin 155^{\circ} = \sin 25^{\circ}, \cos 155^{\circ} = -\cos 25^{\circ}$	1p
	$\sin 25^{\circ} + \cos 25^{\circ} - \sin 155^{\circ} + \cos 155^{\circ} = 0$	2p

1.	Înlocuim x=1, y=2, z=3 în ultima ecuație a sistemului	2p
a)	$1 - 3 \cdot 2 + m \cdot 3 = 4$	2p
	m=3	1p
b)	1 2 3	3p
	Calculăm determinantul matricei sistemului : $d = \begin{vmatrix} 2 & -1 & 1 \\ 1 & -3 & m \end{vmatrix} = -5m - 10$	
	$d \neq 0 \Rightarrow m \neq -2$	2p
c)	$\int x + 2y + 3z = 14$	1p
	Pentru m=-2, sistemul devine : $\begin{cases} 2x - y + z = 3 \\ x - 3y - 2z = 4 \end{cases}$	
	$\int x-3y-2z=4$	

	Dacă scădem din ecuația (2) , ecuația (1) $\Rightarrow x-3y-2z=-11$	2p
	Se obține o contradicție cu ecuația (3)	2p
2.	f este divizibil cu X-1 \Rightarrow $f(1) = 0$	1p
a)	1	3p
(a)	f(1) = 2 + a	
	$2 + a = 0 \Rightarrow a = -2$	1p
b)	Pentru a=-2 $\Rightarrow f = X^3 - 2X^2 + 1 = (X - 1)(X^2 - X - 1)$	3p
	Rădăcinile reale ale lui f sunt : $x_1 = 1, x_2 = \frac{1+\sqrt{5}}{2}, x_3 = \frac{1-\sqrt{5}}{2}$	2p
c)	Din relațiile lui Viete avem: $x_1 + x_2 + x_3 = -a$ și $x_1x_2 + x_1x_3 + x_2x_3 = 0$	2p
	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)$	2p
	Atunci $x_1^2 + x_2^2 + x_3^2 = a^2$ este un număr natural pătrat perfect, $(\forall)a \in Z$	1p

1. a)	$\lim_{x\to 0} f(x) = -\infty$, deci dreapta x=0 este asimptotă verticală	2p
	$\lim_{x\to +\infty} f(x) = +\infty \text{ , deci nu există asimptote orizontale}$	2p
	Aflăm dacă există asimptote oblice . Avem : $m = \lim_{x \to +\infty} \frac{f(x)}{x} = 1$, dar	1p
	$n = \lim_{x \to +\infty} (f(x) - mx) = +\infty$	
	deci nu există asimptote oblice .	
b)	$f'(x) = 1 + \frac{1}{x}$	1p

	$x > 0 \Rightarrow 1 + \frac{1}{x} > 0$	1p
		1p
	$\Rightarrow f'(x) > 0$	2p
P	Deci f este strict crescătoare pe $(0,+\infty)$.	
c)	Aplic Teorema lui Lagrange pe intervalul [a,b] $\Rightarrow f(b) - f(a) = (b-a)f'(c)$, $c \in (a,b)$	1p
×		
	$f'(c) = 1 + \frac{\ln b - \ln a}{b - a}$	1p
	$f'(c) = 1 + \frac{\ln b - \ln a}{b - a}$ $f'(c) = 1 + \frac{1}{c}$	19
	$f(c) = 1 + \frac{1}{c}$	1
		1p
	$\Rightarrow c = \frac{b-a}{\ln b - \ln a}$. Dar a <c </c de unde rezultă inegalitatea .	
	$\ln b - \ln a$	2p
2.	Verific dacă : $F'(x) = f(x), (\forall) x \in R$	2p
a)	$F'(x) = e^x + 6x^2 + 1 = f(x)$	2p
	Deci F este o primitivă a lui f .	1p
b)	$\int_{0}^{1} x \cdot f(x) dx = \int_{0}^{1} x(e^{x} + 6x^{2} + 1) dx =$	1p
	$= \int_{0}^{1} xe^{x} dx + 6 \int_{0}^{1} x^{3} dx + \int_{0}^{1} x dx =$	1p
	$-\int_{0}^{\infty} xe^{-t} dx + \int_{0}^{\infty} x dx + \int_{0}^{\infty} x dx = 0$	
		1p
	$\int_{0}^{\infty} xe^{x} dx = 1$	
	f 6 1	2p
	Finalizare: $\int_{0}^{6} x \cdot f(x) dx = 1 + \frac{6}{4} + \frac{1}{2} = 3$.	
c)		2p
	$\int_{0}^{1} f(x) \cdot F(x) dx = \int_{0}^{1} F(x) \cdot F'(x) dx =$	

	$=\frac{F^2(1)}{2} - \frac{F^2(0)}{2} =$	1p
5	$=\frac{(e+2015)^2-2013^2}{2}=\frac{(e+2)(e+4028)}{2}$	2p

Varianta 50

Prof: Marcu Ştefan Florin

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\left 5x-1\right < 4 \Leftrightarrow -4 < 5x-1 < 4 \Leftrightarrow -\frac{3}{5} < x < 1$	3p
	x = 0 şi numărul de elemente este egal cu 1 .	2p
2.	$a_n = a_1 + (n-1)r$	1p
	$a_{2012} = a_1 + 2011r$; r=3	2p
	$a_{2012} = -5 + 2011 \cdot 3 = 6028$	2p
3.	Punerea condițiilor de existență a logaritmilor : $\begin{cases} 5x-1>0\\ 3x+3>0 \end{cases}$	1p
	5x-1=3x+3	2p

	x=2 este soluţia ecuaţiei.	2p
4.	$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$	2p
7	$C_{2012}^3 = C_{2011}^3 + C_{2011}^2 \Rightarrow C_{2012}^3 - C_{2011}^3 - C_{2011}^2 = 0$	3p
5.	$A(3,5) \in d \Leftrightarrow x = 3, y = 5$	2p
	$3 \cdot 3 - 2 \cdot 5 + a = 0 \Rightarrow a = 1$	3p
6.	$\sin(90^\circ - x) = \cos x$	2p
	$\sin 85^{\circ} = \cos 5^{\circ}$	1p
	$\sin^2 5^\circ + \sin^2 85^\circ = \sin^2 5^\circ + \cos^2 5^\circ = 1$	2p

1. a)	$A^{2} = A \cdot A = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}$	2p
	$A^2 = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}$	2p
	$A^2 = A$	1p
b)	$A + xI_2 = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix} + x \bullet \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 + x & -1 \\ 2 & -1 + x \end{pmatrix}$	3p
	$\det(A + xI_2) = x^2 + x = 0 \Rightarrow x = 0, x = -1$	2p
c)	$A^n = A(\forall) n \in N^*$	1p
	$A + A^2 + + A^{2012} = A + A + + A = 2012 \cdot A$	2p

	$2012 \bullet A = \begin{pmatrix} 4024 & -2012 \\ 4024 & -2012 \end{pmatrix}$	2p
	(4024 –2012)	
2.	(x-4)(y-4)+4=	1p
a)	= xy - 4x - 4y + 16 + 4 =	3p
	$=xy-4x-4y+20=x\circ y$	1p
b)	$\underbrace{x \circ x \circ \dots \circ x}_{} = (x-4)^{2012} + 4$	3p
	2012– <i>ori</i>	2p
	$(x-4)^{2012} + 4 = 5 \Rightarrow (x-4)^{2012} = 1 \Rightarrow x = 3, x = 5$	
c)	Se observă că : $x \circ 4 = 4, (\forall) x \in R$	2n
	Se observa ca. $x \circ 4 = 4, (\forall) x \in K$	2p
	Folosind asociativitatea avem : $E = [(-2012) \circ (-2011) \circ] \circ 4 \circ [\circ 2011 \circ 2012]$	2p
	Deci E=4	1p

1. a)	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$	2p
	$f'(x) = 2012x^{2011} - 2012$	2p
	f'(1) = 0	1p
b)	$f'(x) = 0 \Leftrightarrow 2012x^{2011} - 2012 = 0$	1p
	$2012(x^{2011} - 1) = 0$	1p
	$x^{2011} = 1$	1p
	x=1 este unica soluţie	2p
c)	f este strict descrescătoare pe $(-\infty,1)$ și strict crescătoare pe $(1,+\infty)$	1p
		1p

ſ		Deci: $f(x) \ge f(1), (\forall) x \in R$	1p
		Dar $f(1) = -2010$	2p
			-r
		Obţinem: $x^{2012} - 2012x + 2011 \ge 0, (\forall) x \in R$	
	2.	$\int (x^2 + 1) \cdot f(x) dx = \int (x^2 + 5x + 1) dx =$	2p
	a)	$= \int x^2 dx + \int 5x dx + \int dx =$	
		x^{3} $5x^{2}$	2p
		$= \frac{x^3}{3} + \frac{5x^2}{2} + x + C$	
			1p
•	b)	$\int_{0}^{1} f(x)dx = \int_{0}^{1} \frac{x^{2} + 5x + 1}{x^{2} + 1} dx =$	1p
		$\int_{0}^{3} x^{2} + 1$	
		$= \int_{0}^{1} (1 + \frac{5x}{x^2 + 1}) dx =$	1p
		$\int_{0}^{\infty} (x^2 + 1)^{-nx}$	
		$= \int_{0}^{1} dx + 5 \int_{0}^{1} \frac{x}{x^{2} + 1} dx =$	1p
		$\int_{0}^{1} x^{2} + 1$	
		$=1+\frac{5}{2}\ln 2$	2p
		2	
-	c)	$\int_{0}^{1} e^{f(x)} \cdot f'(x) dx = e^{f(1)} - e^{f(0)}$	2p
		$e^{f(1)} = e^{\frac{7}{2}}, e^{f(0)} = e$	1p
		$\int_{0}^{1} e^{f(x)} \cdot f'(x) dx = \sqrt{e^{7}} - e = e^{3} \sqrt{e} - e .$	2p

Varianta 51

Prof:Marcu Ştefan Florin

- ◆ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$x^{2} - 16 = 0 \Rightarrow x_{1} = 4, x_{2} = -4 \Rightarrow x \in [-4, 4] \cap Z$	3p
	$x \in \{-4, -3,, 3, 4\}$	2p
2	(1) + (2) + + (2012) + (2.1+1) + (2.2+1) + + + (2.2012+1)	1
2.	$f(1) + f(2) + + f(2012) = (2 \cdot 1 + 1) + (2 \cdot 2 + 1) + + (2 \cdot 2012 + 1) =$	1p
	$=2 \cdot (1+2++2012) + 2012 =$	2p
	=2012 •2014	2p
3.	$2^{2x+4} = 4^{3x-1} \Leftrightarrow 2^{2x+4} = 2^{6x-2}$	1p
	2x + 4 = 6x - 2	2p
	$x=\frac{3}{2}$	2p
4.	Sunt 5 cazuri posibile, din care avem 2 cazuri favorabile	2p
	Deci $P = \frac{2}{5}$	3p
	5	
5.	$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(2 - 2)^2 + (a - 3)^2}$	2p

	$ a-3 =1 \Rightarrow a=4 \text{ sau } a=2 S=\hat{0}+\hat{2}+\hat{3}+\hat{4}+\hat{5}+\hat{6}$	3p
6.	$A[ABC] = \frac{AB \cdot AC \cdot \sin(\angle BAC)}{2}$	2p
	$\sin 135^\circ = \sin 45^\circ = \frac{\sqrt{2}}{2}$	1p
	$A[ABC] = \frac{4 \cdot 4 \cdot \frac{\sqrt{2}}{2}}{2} = 4\sqrt{2}$	2p

1.	Punctele sunt : $A_1(2,3)$ respectiv $A_2(4,5)$	2p
a)	Ecuația dreptei A_1A_2 este : $\begin{vmatrix} x & y & 1 \\ 2 & 3 & 1 \\ 4 & 5 & 1 \end{vmatrix} = 0$	2p
	x - y + 1 = 0	1p
b)	Avem $A_3(6,7)$, iar condiția de coliniaritate este : $\begin{vmatrix} 2 & 3 & 1 \\ 4 & 5 & 1 \\ 6 & 7 & 1 \end{vmatrix} = 0$	3p
	Verificarea condiției	2p
c)	Avem $A_n(2n, 2n+1)$ respectiv $A_{n+1}(2n+2, 2n+3)$	1p
	$A[OA_nA_{n+1}] = \frac{1}{2} \cdot \Delta $	2p
	$\Delta = \begin{vmatrix} 0 & 0 & 1 \\ 2n & 2n+1 & 1 \\ 2n+2 & 2n+3 & 1 \end{vmatrix} \Rightarrow \Delta = -2 \Rightarrow \text{Aria} = 1$	2p

1
1p
3p
1p
3p
2p
29
2p
2p
F
1p

1. a)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0)$	2p
	$f'(x) = 1 + e^x$	2p
	f'(0) = 2	2p 1p
b)	$f'(x) = 1 + e^x$	1p
	$1+e^x>0$	1p
	f'(x) > 0	

	f este strict crescătoare pe R .	1p
	Teste street dieseatoure perk.	
		2p
(c)	Aplic Teorema lui Lagrange pe intervalul [2011,2012]	1p
	Aprile Teorema iui Lagrange pe intervatur [2011,2012]	тр
	$(\exists)c \in (2011, 2012)$ cu $f(2012) - f(2011) = f'(c)$	1p
	$f'(c) = e^{2012} - e^{2011} + 1$	1p
		2p
	Unicitatea lui c este demonstrată prin faptul că : $f''(x) = e^x > 0 \Rightarrow f'$ este strict crescătoare	-r
	pe R	
2.	$\int_{0}^{1} x^{2} - 1$.	2p
a)	$I_2 = \int_0^1 \frac{x^2 - 1}{x + 1} dx$	
	$I_2 = \int_1^1 (x-1)dx$	
	$I_2 - \int_0^{\cdot} (\lambda - 1) d\lambda$	2p
	$I_2 = \int_0^1 (x-1)dx$ $I_2 = -\frac{1}{2}$	
	$I_2 = -\frac{1}{2}$	
		1p
b)	A = X + X + X + X + X + X + X + X + X + X	1n
0)	Arătăm că : $I_n > I_{n+1}, (\forall) n \in N$	1p
	$\int_{0}^{1} x^{n+1} - 1$	1p
	$I_{n+1} = \int_{0}^{1} \frac{x^{n+1} - 1}{x + 1} dx$	
		1p
	$x \in (0,1) \Rightarrow x^n > x^{n+1}$	10
	$x^{n}-1$ $x^{n+1}-1$	
	Dar , atunci : $\frac{x^n-1}{x+1} > \frac{x^{n+1}-1}{x+1}$, de unde prin integrare de la 0 la 1 , se obţine cerinţa	2p
c)	$I_{n+2} - I_n = \int_0^1 \frac{x^{n+2} - x^n}{x+1} dx =$	2p
	$\int_{0}^{n+2} x+1$	

$$= \int_{0}^{1} \frac{x^{n} \cdot (x^{2} - 1)}{x + 1} dx =$$

$$= \int_{0}^{1} (x^{n+1} - x^{n}) dx = -\frac{1}{(n+1)(n+2)}, (\forall) n \in \mathbb{N}$$

$$2p$$

Varianta 52

Prof: Marcu Ştefan Florin

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- \blacklozenge Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$a_1 = 2, a_n = 222, r = 10$	3p
	Aflăm n=23 , aplicând formula : $a_n = a_1 + (n-1)r$	
	Atunci $S_n = \frac{n(a_1 + a_n)}{2} \Rightarrow S_{23} = 2576$	2p
2.	$x^2 - 9 \ge 0$	1p
	$x^2 - 9 = 16$	2p
	$x^2 = 25 \Rightarrow x = 5saux = -5$	2p

3.	$A(m,5) \in G_f \Rightarrow f(m) = 5$	1p
	$f(m) = 2m^2 - 3m + 5$	2p
	$\Rightarrow 2m^2 - 3m = 0 \Rightarrow m = 0 \text{ sau } m = \frac{3}{2}$	2p
4.	Numărul numerelor este A_4^3	2p
	4!	3p
	$A_4^3 = \frac{4!}{(4-3)!} = 24$	
5.	Dacă notăm cu n,n+1,n+2 lungimile laturilor , atunci din Teorema lui Pitagora , avem :	2p
	$(n+2)^2 = n^2 + (n+1)^2$	
	$\Rightarrow n^2 - 2n - 3 = 0 \Rightarrow n = 3$. Deci lungimile laturilor sunt 3,4,5.	3p
6.	$\sin(\pi - x) = \sin x, \cos(\pi - x) = -\cos x$	2p
	$\sin 155^{\circ} = \sin 25^{\circ}, \cos 155^{\circ} = -\cos 25^{\circ}$	1p
	$\sin 25^{\circ} + \cos 25^{\circ} - \sin 155^{\circ} + \cos 155^{\circ} = 0$	2p

1.	Înlocuim x=1, y=2, z=3 în ultima ecuație a sistemului	2p
a)	$1 - 3 \cdot 2 + m \cdot 3 = 4$	2p
	m=3	1p
b)	$\begin{vmatrix} 1 & 2 & 3 \end{vmatrix}$	3p
	Calculăm determinantul matricei sistemului : $d = \begin{vmatrix} 2 & -1 & 1 \\ 1 & -3 & m \end{vmatrix} = -5m - 10$	
	$d \neq 0 \Rightarrow m \neq -2$	2p
c)	$\int x + 2y + 3z = 14$	1p
	Pentru m=-2, sistemul devine : $\begin{cases} 2x - y + z = 3 \\ x - 3y - 2z = 4 \end{cases}$	
	x-3y-2z=4	

	Dacă scădem din ecuația (2) , ecuația (1) $\Rightarrow x-3y-2z=-11$	2p
	Se obține o contradicție cu ecuația (3)	2p
2.	f este divizibil cu X-1 \Rightarrow $f(1) = 0$	1p
a)	f(1) = 2 + a	3p
	$2+a=0 \Rightarrow a=-2$	1p
b)	Pentru a=-2 $\Rightarrow f = X^3 - 2X^2 + 1 = (X - 1)(X^2 - X - 1)$	3p
	Rădăcinile reale ale lui f sunt : $x_1 = 1, x_2 = \frac{1+\sqrt{5}}{2}, x_3 = \frac{1-\sqrt{5}}{2}$	2p
c)	Din relațiile lui Viete avem: $x_1 + x_2 + x_3 = -a$ și $x_1x_2 + x_1x_3 + x_2x_3 = 0$	2p
	$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)$	2p
	Atunci $x_1^2 + x_2^2 + x_3^2 = a^2$ este un număr natural pătrat perfect, $(\forall)a \in Z$	1p

1. a)	$\lim_{x\to 0} f(x) = -\infty$, deci dreapta x=0 este asimptotă verticală	2p
	$\lim_{x\to +\infty} f(x) = +\infty \text{ , deci nu există asimptote orizontale}$	2p
	Aflăm dacă există asimptote oblice . Avem : $m = \lim_{x \to +\infty} \frac{f(x)}{x} = 1$, dar	1p
	$n = \lim_{x \to +\infty} (f(x) - mx) = +\infty$	
	deci nu există asimptote oblice .	
b)	$f'(x) = 1 + \frac{1}{x}$	1p

	$x > 0 \Rightarrow 1 + \frac{1}{x} > 0$	1p
		1p
	$\Rightarrow f'(x) > 0$	2p
P	Deci f este strict crescătoare pe $(0,+\infty)$.	
c)	Aplic Teorema lui Lagrange pe intervalul [a,b] $\Rightarrow f(b) - f(a) = (b-a)f'(c)$, $c \in (a,b)$	1p
×		
	$f'(c) = 1 + \frac{\ln b - \ln a}{b - a}$	1p
	$f'(c) = 1 + \frac{\ln b - \ln a}{b - a}$ $f'(c) = 1 + \frac{1}{c}$	19
	$f(c) = 1 + \frac{1}{c}$	1
		1p
	$\Rightarrow c = \frac{b-a}{\ln b - \ln a}$. Dar a <c </c de unde rezultă inegalitatea .	
	$\ln b - \ln a$	2p
2.	Verific dacă : $F'(x) = f(x), (\forall) x \in R$	2p
a)	$F'(x) = e^x + 6x^2 + 1 = f(x)$	2p
	Deci F este o primitivă a lui f .	1p
b)	$\int_{0}^{1} x \cdot f(x) dx = \int_{0}^{1} x(e^{x} + 6x^{2} + 1) dx =$	1p
	$= \int_{0}^{1} xe^{x} dx + 6 \int_{0}^{1} x^{3} dx + \int_{0}^{1} x dx =$	1p
	$-\int_{0}^{\infty} xe^{-t} dx + \int_{0}^{\infty} x dx + \int_{0}^{\infty} x dx = 0$	
		1p
	$\int_{0}^{\infty} xe^{x} dx = 1$	
	f 6 1	2p
	Finalizare: $\int_{0}^{6} x \cdot f(x) dx = 1 + \frac{6}{4} + \frac{1}{2} = 3$.	
c)		2p
	$\int_{0}^{1} f(x) \cdot F(x) dx = \int_{0}^{1} F(x) \cdot F'(x) dx =$	

$$= \frac{F^{2}(1)}{2} - \frac{F^{2}(0)}{2} =$$

$$= \frac{(e+2015)^{2} - 2013^{2}}{2} = \frac{(e+2)(e+4028)}{2}$$
2p

Varianta 53

Prof: Nicolaescu Nicolae.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

	$2^{\log_2 3} = 3$	2p
	$\left(\frac{1}{5}\right)^{-1} = 5$	2p
1.	$\left(\frac{1}{5}\right)^{-1} = 5$	1p
	3+5=8	
	$\frac{x_1^2}{x_2} + \frac{x_2^2}{x_1} = \frac{x_1^3 + x_2^3}{x_1 x_2} = \frac{S^3 - 3SP}{P}$	2p
	S=-1	
2.	P=3	1p
	$\begin{vmatrix} x_1^2 & x_2^2 & 8 \end{vmatrix}$	1p
	$\frac{x_1^2}{x_2} + \frac{x_2^2}{x_1} = \frac{8}{3}$	1p
	Condiția de existență a radicalului: $x^2 - 3x + 2 \ge 0 \Rightarrow x \in (-\infty, 1] \cup [2, \infty)$ (1)	
3.	Ridicând la pătrat obținem $x^2 - 3x + 2 = 12 \Rightarrow x^2 - 3x - 10 = 0$	2p

	$x_1 = 5, x_2 = -2$ ambele soluții îndeplinind condiția (1)	1p
		2p
	$\left 3x+1\right \le \frac{1}{2} \Leftrightarrow -\frac{1}{2} \le 3x+1 \le \frac{1}{2}$	2p
4.	$x \in \left[-\frac{3}{6}, -\frac{1}{6} \right]$	2p
	$A = \phi$	1p
5.	$\left \overrightarrow{AM} \right = \frac{6\sqrt{3}}{2} = 3\sqrt{3}$	5p
	$p = \frac{a+b+c}{2} = \frac{5+6+9}{2} = 10$	2p
6.	$S = \sqrt{p(p-a)(p-b)(p-c)} = \sqrt{10(10-5)(10-6)(10-9)}$	2p
	$S = 10\sqrt{2} \text{ cm}^2$	1p
	DIFFCENT LINE (20.1	

1.	$B^2 = B \cdot B = \begin{pmatrix} 2 & -3 \\ 6 & -1 \end{pmatrix}$	2p
	$-4B = \begin{pmatrix} -8 & 4 \\ -8 & -4 \end{pmatrix}$	2p
a)	$B^2 - 4B = \begin{pmatrix} -6 & 1 \\ -2 & -5 \end{pmatrix}$	1p
	$\det A = \begin{vmatrix} 2a & 1 \\ -1 & 3b \end{vmatrix} = 6ab + 1$	
	$\begin{vmatrix} -1 & 3b \end{vmatrix}$	2p
b)	$\det A = 0 \Rightarrow ab = -\frac{1}{6}$ imposibil pentru a,b $\in Z$	2p
	O	1p

	Deci, det $A \neq 0, \forall a, b \in \mathbb{Z}$ și A inversabilă	
	$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \ A^2 = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}, \ A^4 = \begin{pmatrix} -4 & 0 \\ 0 & -4 \end{pmatrix} = -4I_2$	2p
c)	$A^{2012} = (A^4)^{503} = (-4I_2)^{503} = -4^{503}I_2 = \begin{pmatrix} -4^{503} & 0\\ 0 & -4^{503} \end{pmatrix}$	3p
2.	$f(1) \cdot f(-1) = 2^5 \cdot (-2)^5 = (-4)^5 = -1024$	5p
a)		
	$(x+1)^5 + (x-1)^5 = (x^2 + 4x + 3) \cdot q + (ax+b)$	1p
	$x = -1 \Rightarrow -32 = -a + b$	1p
b)		1p
	$x = -3 \Rightarrow -1056 = -3a + b$	2p
	a=512, b=480	
	$f(0) = 0 \Rightarrow f : x$	3p
c)	$f = x \cdot h$, cu $h \in R[X]$	2p

1. a)	$f'(x) = \frac{3}{2\sqrt{x}}$	$\frac{1}{x} - \frac{2}{x} = \frac{3\sqrt{x} - 4}{2x}$	5p
	$f'(x) = 0 \Longrightarrow$	$3\sqrt{x} - 4 = 0 \Rightarrow x = \frac{16}{9}$	2p
	х	$0 \qquad \frac{16}{9} \qquad \infty$	
b)	f '(x)	0 + + + + + + + + + +	2p
	f(x)		-r

	$f(x) \ge f\left(\frac{16}{9}\right) = 4 - 2\ln\frac{16}{9} = 4 - 4\ln\frac{4}{3}$	1p
	$\lim_{x \to \infty} \left(\frac{f(x)}{\sqrt{x}} - 2 \right)^x = \lim_{x \to \infty} \left(\frac{3\sqrt{x} - 2\ln x}{\sqrt{x}} - 2 \right)^x = \lim_{x \to \infty} \left(1 - \frac{2\ln x}{\sqrt{x}} \right)^x, \text{ cazul } 1^\infty$	2p
c)	$\lim_{x \to \infty} \left(\frac{f(x)}{\sqrt{x}} - 2 \right)^x = \lim_{x \to \infty} \left(\frac{3\sqrt{x} - 2\ln x}{\sqrt{x}} - 2 \right)^x = \lim_{x \to \infty} \left(1 - \frac{2\ln x}{\sqrt{x}} \right)^x, \text{ cazul } 1^\infty$ $= \lim_{x \to \infty} \left(1 - \frac{2\ln x}{\sqrt{x}} \right)^{\frac{-\sqrt{x}}{2\ln x}} = e^{\lim_{x \to \infty} -2\ln x \cdot \sqrt{x}} = e^{-\infty} = 0$	3p
2.	Funcția f este continuă pe $(-\infty,1),(1,\infty)$	1p
a)	$l_s = \lim_{\substack{x \to 1 \\ x < 1}} \left(2^x - 1 \right) = 2 - 1 = 1 \text{si} l_d = \lim_{\substack{x \to 1 \\ x > 1}} \left(x^2 + \ln x \right) = 1 , \ f(1) = 1$	3p
		1p
	f continuă în punctul $x_0 = 1 \implies$ f continuă pe R \implies f admite primitive pe R	1.1
b)	$\int_{2}^{3} f(x)dx = \int_{2}^{3} \left(x^{2} + \ln x\right) dx = \int_{2}^{3} x^{2} dx + \int_{2}^{3} \ln x dx = \left(\frac{x^{3}}{3} + x \ln x - x\right) \Big _{2}^{3} = \frac{16}{3} + \ln \frac{27}{4}$	5p
	Fie $F: R \to R$ o primitivă a funcției f. Atunci $F''(x) = f'(x)$	2p
c)	Pe intervalul $(-\infty,1)$, $F''(x) = f'(x) = 2^x \ln 2 > 0$, deci F convexă	3p

Varianta 54

Prof: Nicolaescu Nicolae.

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

		10
	$a_{10} = a_3 + 7r \Rightarrow r = 3$	2p
	$a_3 = a_1 + 2r \Rightarrow a_1 = 1$	2p
1.		1p
	$a_{10} = a_3 + 7r \Rightarrow r = 3$ $a_3 = a_1 + 2r \Rightarrow a_1 = 1$ $S_{10} = \frac{(1+28)10}{2} = 145$	
	Notăm $x + y = S$, $xy = P$	
	(S=3)	3p
2.	Sistemul devine $\begin{cases} S = 3 \\ S^2 - 2P = 5 \end{cases}$ cu soluția S=3,P=2	
2.		
	x,y sunt soluțiile ecuației $x^2 - 3x + 2 = 0$ adică $\begin{cases} x = 1 \\ y = 2 \end{cases}$ sau $\begin{cases} x = 2 \\ y = 1 \end{cases}$	2p
	y = 2 and y = 1	
	Notăm $4^x = y > 0$. Ecuația devine $y^2 - 2y + 1 = 0$	2p
		1p
	Soluția ecuației este y=1	
3.	Revenim la notație, $4^x = 1 \Rightarrow x = 0$	2p
	$r = \frac{1}{1} \rightarrow P = r r = 1$	2p
	$x_1 = \frac{1}{x_2} \Longrightarrow P = x_1 x_2 = 1$	
4.	5m + 1 1	3p
4.	$P = \frac{5m+1}{m} = 1 \Longrightarrow m = -\frac{1}{4}$	Эр
	$\sin 70^{\circ} \cos 20^{\circ} + \sin 20^{\circ} \cos 70^{\circ} \qquad \sin \left(70^{\circ} + 20^{\circ}\right) \sin 90^{\circ}$	
5.	$\frac{\sin 70^{\circ} \cos 20^{\circ} + \sin 20^{\circ} \cos 70^{\circ}}{\cos 70^{\circ} \cos 25^{\circ} + \sin 70^{\circ} \sin 25^{\circ}} = \frac{\sin \left(70^{\circ} + 20^{\circ}\right)}{\cos \left(70^{\circ} - 25^{\circ}\right)} = \frac{\sin 90^{\circ}}{\cos 45^{\circ}}$	3p

	$=\frac{1}{\frac{\sqrt{2}}{2}}=\sqrt{2}$	2p
7	$d(A,h) = \frac{\left 3 \cdot 1 + 4 \cdot (-2) - 7\right }{\sqrt{3^2 + 4^2}}$	3p
6.	$d(A,h) = \frac{12}{5}$	2p
SU	SUBIECTUL al II-lea (30 de puncte)	

1.	$\begin{vmatrix} 2 & m & -3 \end{vmatrix}$	
	$\begin{vmatrix} 2 & m & -3 \\ m & 2 & 1 \\ 3 & -1 & 2 \end{vmatrix} = -2m^2 + 6m + 28$	2p
	$\begin{vmatrix} 3 & -1 & 2 \end{vmatrix}$	2p
a)	$\det A = 0 \Rightarrow \Delta = 260 \Rightarrow \sqrt{\Delta} = 2\sqrt{65} \det m \notin Q$	-
	Deci $\forall m \in Q$ sistemul este compatibil determinat	1p
	Deci $\forall m \in \mathcal{Q}$ sistemal este compation determinat	1P
	$-2m^2 + 6m + 28 < 33 \Leftrightarrow -2m^2 + 6m - 5 < 0$	2p
b)	$\Delta_m = 36 - 40 = -4 < 0$	1p
	Atunci $-2m^2 + 6m - 5 < 0 \ \forall m \in R$	2p
	Titule 2m on 5 vo vii Cit	
	$\det A = 32$	1p
c)		
	$\Delta_{1} = \begin{vmatrix} 1 & 1 & -3 \\ 2 & 2 & 1 \\ -1 & -1 & 2 \end{vmatrix} = 0, \ \Delta_{2} = \begin{vmatrix} 2 & 1 & -3 \\ 1 & 2 & 1 \\ 3 & -1 & 2 \end{vmatrix} = 32, \ \Delta_{3} = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 2 \\ 3 & -1 & -1 \end{vmatrix} = 0$	3p
	$\begin{vmatrix} -1 & -1 & 2 \end{vmatrix}$ $\begin{vmatrix} 3 & -1 & 2 \end{vmatrix}$ $\begin{vmatrix} 3 & -1 & -1 \end{vmatrix}$	1p
	x=0, y=1,z=0	
2.	Sunt inversabile clasele \hat{a} astfel încât (a,9)=1	2p
a)	Suit inversuone enusere it astrer meat (a,7)-1	3p
۳)		- P

	Sunt inversabile $\hat{1}, \hat{2}, \hat{4}, \hat{5}, \hat{7}, \hat{8}$ deci 6 elemente	
	$\hat{5}x + \hat{3} = \hat{0} \Rightarrow \hat{5}x = -\hat{3} = \hat{6}$	2p
b)	$x = \frac{\hat{6}}{\hat{5}} = \hat{6} \cdot \hat{5}^{-1} = \hat{6} \cdot \hat{2} = \hat{3}$	3p
	$x = \frac{1}{5} = 6.5 = 6.2 = 3$	
	$\begin{vmatrix} \hat{3} & \hat{1} \\ \hat{1} & \hat{3} \end{vmatrix} = \hat{3} - \hat{1} = \hat{2}$	2p
c)	$\begin{vmatrix} \hat{1} & \hat{4} \end{vmatrix}^{-3-1-2}$	
	$\begin{vmatrix} \hat{1} & \hat{2} & \hat{3} \end{vmatrix}$	
	$\begin{vmatrix} \hat{1} & \hat{2} & \hat{3} \\ \hat{3} & \hat{1} & \hat{2} \\ \hat{1} & \hat{1} & \hat{7} \end{vmatrix} = \hat{7} + \hat{0} + \hat{4} - \hat{3} - \hat{2} - \hat{6} = \hat{0}$	2p
	$\begin{vmatrix} \hat{1} & \hat{1} & \hat{7} \end{vmatrix}$	
	$\begin{vmatrix} \hat{3} & \hat{1} \\ \hat{1} & \hat{4} \end{vmatrix} + \begin{vmatrix} \hat{1} & \hat{2} & \hat{3} \\ \hat{3} & \hat{1} & \hat{2} \\ \hat{1} & \hat{1} & \hat{7} \end{vmatrix} = \hat{2}$	1p
	$\begin{vmatrix} \hat{1} & \hat{4} \end{vmatrix} + \begin{vmatrix} 3 & 1 & 2 \\ \hat{1} & \hat{1} & \hat{7} \end{vmatrix} = 2$	

a)	$f'(x) = \frac{(x+3)'\sqrt{x} - (x+3)\left(\sqrt{x}\right)'}{x} = \frac{\sqrt{x} - (x+3)\frac{1}{2\sqrt{x}}}{x} = \frac{2x - x - 3}{2x\sqrt{x}} = \frac{x - 3}{2x\sqrt{x}}$ Pentru $x \in [3, \infty)$, obţinem că $f'(x) \ge 0$, deci f este crescătoare.	3p 2p
b)	Deoarece f este crescătoare pe $[3, \infty)$, rezultă că f(2012)>f(2011) $\Rightarrow \frac{2015}{\sqrt{2012}} > \frac{2014}{\sqrt{2011}} \Rightarrow 2015\sqrt{2011} > 2014\sqrt{2012}$	3p 2p
c)	Ecuația tangentei este $y - y_0 = f'(x_0)(x - x_0)$ $f'(4) = \frac{1}{16}$	2p 1p

	$y - \frac{7}{2} = \frac{1}{16}(x - 4) \Rightarrow x - 16y + 52 = 0$	2p
2. a)	$\int f_1(x)dx = \int \frac{1+x}{x}dx = \ln x + x + C$	5p
~	$\int_{1}^{2} f_{n}(x)dx - \int_{1}^{2} f_{n-1}(x)dx = \int_{1}^{2} \left[\frac{(1+x)^{n}}{x} - \frac{(1+x)^{n-1}}{x} \right] dx = \int_{1}^{2} (1+x)^{n-1} dx$	3p
b)	$= \frac{\left(1+x\right)^n}{n}\Big _1^2 = \frac{3^n - 2^n}{n}$	2p
	$V = \pi \int_{1}^{2} \frac{(1+x)^{4}}{x^{2}} dx = \pi \int_{1}^{2} \left(\frac{1}{x^{2}} + 2 + x^{2}\right) dx = \pi \left(\frac{x^{3}}{3} + 2x - \frac{1}{x}\right) \Big _{1}^{2}$	3p
c)	$V = \frac{29\pi}{6}$	2p

Varianta 55

Prof: Nicolaescu Nicolae.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.
$$b_{6} = b_{3} \cdot q^{3} \Rightarrow \frac{3}{32} = \frac{3}{4} \cdot q^{3} \Rightarrow q = \frac{1}{2}$$

$$b_{1} = b_{3} : q^{2} = \frac{3}{4} : \frac{1}{4} = 3$$

$$2p$$

2.	Elementele raționale sunt $\sqrt[3]{1}, \sqrt[3]{8}, \sqrt[3]{27}$. Probabilitatea $P = \frac{nr. cazuri \ favorabile}{nr. cazuri \ posibile} = \frac{3}{50}$	2p 3p
	Condiția de existență a logaritmului $x^2 + 2x > 0 \Rightarrow x \in (-\infty, -2) \cup (0, \infty)$	2p
3.	Ecuația devine $x^2 + 2x = 9^{\frac{1}{2}} = 3$ cu soluțiile $x_1 = 1, x_2 = -3$ Ambele soluții aparțin mulțimii $(-\infty, -2) \cup (0, \infty)$, deci $S = \{1, -3\}$	2p 1p
4.	$C_n^3 = \frac{n!}{(n-3)! \cdot 3!} = \frac{n(n-1)(n-2)}{6}$	2p
	Ecuația devine $\frac{n(n-1)(n-2)}{6} = n(n-1) \Rightarrow n-2 = 6 \Rightarrow n = 8 \in \mathbb{N}$	3p
5.	$G\left(\frac{-2+5+0}{3}, \frac{3+1-4}{3}\right) \Rightarrow G(1,0)$	2p
	$AG: \frac{x+2}{1+2} = \frac{y-3}{0-3} \Rightarrow AG: x+y-1=0$	3p
6.	$\sin x = \pm \sqrt{1 - \cos^2 x} = \pm \sqrt{\frac{7}{16}} = \pm \frac{\sqrt{7}}{4}$	3p
	$x \in \left(0, \frac{\pi}{2}\right) \Rightarrow \sin x > 0 \Rightarrow \sin x = \frac{\sqrt{7}}{4}$	2p

1.
$$A^{2} = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 49 \end{pmatrix}$$
2p

a)	$3I_2 = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$	1p
	$A^2 + 3I_2 = \begin{pmatrix} 7 & 0 \\ 0 & 52 \end{pmatrix}$	
	$\det\left(A^{n}\right) = \left(\det A\right)^{n} = 14^{n}$	3p
b)		2p
	$14/14^n = \det\left(A^n\right)$	
	Fie $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)$	1p
c)	$AX=XA \Rightarrow \begin{pmatrix} 2a & 2b \\ 7c & 7d \end{pmatrix} = \begin{pmatrix} 2a & 7b \\ 2c & 7d \end{pmatrix} \text{deci } b = c = 0$	2p
	$a,d \in R \Rightarrow X = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$ deci ecuația are o infinitate de soluții în $M_2(R)$	2p
2.	Legea de compoziție fiind comutativă, rezolvăm ecuația $x*e=x$	1p
a)	$xe - 8x - 8e + 72 = x \Rightarrow e(x - 8) = 9(x - 8) \Rightarrow e = 9$	4p
	Fie $x, y \in [8, \infty) \implies x - 8 \ge 0, y - 8 \ge 0$	2p
b)	$(x-8)(y-8) \ge 0 \Rightarrow xy - 8(x+y) + 64 \ge 0$	2p
	$xy - 8(x + y) + 72 \ge 8 \Rightarrow x * y \in [8, \infty)$	1p
	$2^{x} * 2^{x} = 72 \Rightarrow 2^{2x} - 16 \cdot 2^{x} + 72 = 72$	2p
c)	$2^{x}(2^{x}-16) = 0$ şi deoarece $2^{x} > 0 \implies 2^{x}-16 = 0 \implies x = 4$	3p

1.	$I = \lim_{x \to \infty} (2^{x-1} + 1) = 2$	
	$l_s = \lim_{\substack{x \to 1 \\ x \neq 1}} (2^{x-1} + 1) = 2$	
		1p

	3x-1	1p
a)	$l_d = \lim_{\substack{x \to 1 \\ x > 1}} \frac{3x - 1}{x} = 2$	1p
	f(1)=2	
\Diamond	Deoarece $l_s = l_d = f(1)$, rezultă că f este continuă în punctul $x_0 = 1$	2p
	7 ×	
	Calculăm derivata funcției pe $[1,\infty)$.	
		1p
b)	$f'(x) = \frac{(3x-1)'x - (3x-1)x'}{x^2} = \frac{1}{x^2} > 0 \ \forall x \in [1, \infty)$	3p
	Deoarece $f'(x) > 0 \ \forall x \in [1, \infty)$ rezultă că f este strict crescătoare pe $[1, \infty)$	1p
	92.	
	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (2^{x-1} + 1) = 1$	3p
c)	Graficul funcției f admite asimptotă orizontală spre - ∞ , dreapta de ecuație y=1	2p
	, aroupon as country of	
2.	$\int f(x) \cdot (x+1) dx = \int x^4 dx = \frac{x^5}{5} + C$	5p
a)	$\int \int (x)^{2}(x+1)dx = \int x dx = \frac{1}{5} + C$	
	$\frac{x^4}{x+1} = x^3 - x^2 + x - 1 + \frac{1}{x+1}$	
b)	x+1 $x+1$	2p
	$\int_{0}^{1} \frac{x^{4}}{x+1} dx = \int_{0}^{1} \left(x^{3} - x^{2} + x - 1 + \frac{1}{x+1} \right) dx = -\frac{7}{12} + \ln 2$	
	${}^{\circ}_{0}X+1$ ${}^{\circ}_{0}($ $X+1)$ 12	3p
	$f'(x) = \frac{\left(x^4\right)'(x+1) - x^4(x+1)'}{\left(x+1\right)^2} = \frac{3x^4 + 4x^3}{\left(x+1\right)^2} > 0, \ \forall x \in [1,2] \text{ deci f este crescătoare pe } [1,2]$	2p
c)		3p
	Atunci $f(1) \le f(x) \le f(2) \Rightarrow \frac{1}{2} \le \int_{1}^{2} f(x) dx \le \frac{16}{3}$	

Varianta 56

Prof:Oláh Csaba.

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$a = \frac{2^{11} - 1}{2 - 1} = 2^{11} - 1$	2p
	$b = \frac{\frac{1}{2^{11}} - 1}{\frac{1}{2} - 1} = \frac{2^{11} - 1}{2^{10}} \Rightarrow \frac{a}{b} = \frac{2^{11} - 1}{2^{10}} = 2^{10} = 1024.$	
	$b = \frac{2}{\frac{1}{2} - 1} = \frac{2^{10}}{2^{10}} \Rightarrow \frac{a}{b} = \frac{2^{11}}{2^{11} - 1} = 2^{10} = 1024.$	3p
	$\frac{1}{2^{10}}$	
2.	$y = 2x + 4 \Rightarrow x = \frac{y - 4}{2}, \ f^{-1}(x) = \frac{x - 4}{2}$	1p
	$f^{-1}(2) = \frac{2-4}{2} = -1, \ f(3) = 2 \cdot 3 + 4 = 10 \Rightarrow$	2p
	$\Rightarrow f^{-1}(2) \cdot f(3) = -10.$	
		2p
3.	$x > 0$, $\log_3 x = t \Rightarrow$	
	$t^2 - 3t + 2 = 0, t_1 = 1, t_2 = 2$	2p
	$\log_3 x = 1 \Rightarrow x = 3$, $\log_3 x = 2 \Rightarrow x = 9$	
		2p
	$x \in \{3,9\}.$	1p
4.	Numărul submulțimilor cu 3 elemente $C_5^3 = \frac{5!}{2!3!} = \frac{4 \cdot 5}{2} = 10$.	5p
	2!3! 2	
5.	$\frac{a+1}{a-1} = \frac{1}{a+5} \Rightarrow (a+1)(a+5) = a-1 \Rightarrow a^2 + 5a + 6 = 0$	2p
	$a_1 = -2, a_2 = -3 \Rightarrow a \in \{-3, -2\}.$	3p

6.
$$\sin x = -\sqrt{1 - \cos^2 x} = -\sqrt{\frac{8}{9}} = -\frac{2\sqrt{2}}{3}$$
4p

1. a)	Dacă $x = 0$, $A(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3$.	5p
b)	$A(x) \cdot A(y) = \begin{pmatrix} a^{x} & 0 & 0 \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a^{y} & 0 & 0 \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a^{x} \cdot a^{y} & 0 & 0 \\ 0 & 1 & x + y \\ 0 & 0 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} a^{x+y} & 0 & 0 \\ 0 & 1 & x+y \\ 0 & 0 & 1 \end{pmatrix} = A(x+y).$	2p
c)	$(A(r))^{2012} - A(r) \cdot A(r) \cdot A(r) = A(r) + x + x + x - A(2012r) =$	3p
	$(A(x))^{2012} = \underline{A(x) \cdot A(x) \cdot \dots \cdot A(x)}^{b)} = A(x) \cdot \underbrace{A(x) \cdot \dots \cdot A(x)}^{b)} = A(2012x) = A(2012x)$	
	$(a^{2012x} \ 0 \ 0)$	
		•
	$= \begin{pmatrix} a^{2012x} & 0 & 0 \\ 0 & 1 & 2012x \\ 0 & 0 & 1 \end{pmatrix}.$	2p
2.	(x-4)(y-4)+4=xy-4x-4y+20.	5p
a)		
b)	$a*x = a \Rightarrow (a-4)(x-4)+4 = a \Rightarrow (a-4)(x-4) = a-4 \Rightarrow$	2p
	$\begin{vmatrix} u \cdot x - u \rightarrow (u - 4)(x - 4) + 4 - u \rightarrow (u - 4)(x - 4) = u - 4 \rightarrow u$	-r
	$\Rightarrow (a-4)(x-4)-(a-4)=0 \Rightarrow (a-4)(x-5)=0$	
	$ \begin{vmatrix} -4 & (u-4)(x-4) - (u-4)(x-3) - 0 \end{vmatrix} $	2p
	a=4.	
		1p
c)	Din b) se știe că $4*x = x*4 = 4$	2p
		*

$$\sqrt{1} * \sqrt{2} * ... * \sqrt{100} = \sqrt{1} * \sqrt{2} * ... * \sqrt{15} * \underbrace{\sqrt{16}}_{=4} * \sqrt{17} * ... * \sqrt{100} = 4 .$$

$$\frac{-4}{=4}$$

1. a)	$f(x) = \frac{x^3 + 3x^2 + 3x}{x^2 + 2x + 1} = \frac{x^3 + 3x^2 + 3x + 1 - 1}{x^2 + 2x + 1} = \frac{(x+1)^3}{(x+1)^2} - \frac{1}{(x+1)^2} = \frac{(x+1)^3}{(x+1)^2} = \frac{1}{(x+1)^2}$	3p
	$=x+1-\frac{1}{\left(x+1\right)^{2}}.$	2p
b)	$y = x + 1$ ecuația asimptotei oblice spre $\pm \infty$	2p
	Asimptota orizontală nu este	1p
	Asimptotă verticală $x = -1$.	2p
c)	$f'(x) = \left[x + 1 - \frac{1}{(x+1)^2}\right]' = 1 + \frac{2}{(x+1)^3} > 0, x \in R_+ \Rightarrow$	3p
	$\Rightarrow f$ e crescătoare pe R_+ .	2p
2. a)	$\int_{-\pi}^{\pi} f_0(x) dx = \int_{-\pi}^{\pi} \cos x dx = \sin x \Big _{-\pi}^{\pi} = 0.$	5p
b)	$\int_{-\pi}^{\pi} f_1(x) dx = \int_{-\pi}^{\pi} (x+2) \cos x dx = \int_{-\pi}^{\pi} x \cos x dx + 2 \int_{-\pi}^{\pi} \cos x dx, \ g(x) = x \cos x \text{ e funcție impară,}$ integrând pe un interval simetric, $[-\pi, \pi]$, devine zero, $\int_{-\pi}^{\pi} \cos x dx = 0 \text{ din a}$).	2p
	$\int_{-\pi}^{\pi} f_1(x) dx = 0 + 0 = 0.$	3p
c)	$\pi \int_{0}^{\pi} g^{2}(x) dx = \pi \int_{0}^{\pi} \left[(x+2)\cos x - x\cos x \right]^{2} dx = 4\pi \int_{0}^{\pi} \cos^{2} x dx =$	2p

$$=2\pi \int_{0}^{\pi} \left(1+\cos 2x\right) dx = 2\pi \left(x+\frac{\sin 2x}{2}\right)\Big|_{0}^{\pi} = 2\pi \left(\pi+\frac{\sin 2\pi}{2}-0-\frac{\sin 0}{2}\right) = 2\pi^{2}.$$

Varianta 57

Prof:Oláh Csaba.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1		1
1.	$\log_2 3 = a$, $\log_6 9 = \frac{\log_2 9}{\log_2 6} = \frac{\log_2 3^2}{\log_2 2 \cdot 3} = \frac{2\log_2 3}{1 + \log_2 3} = \frac{2a}{1 + a}$, în mod similar	1p
	$\log_2 3 - a$, $\log_6 3 - \frac{1}{\log_2 6} - \frac{1}{\log_2 2 \cdot 3} - \frac{1}{1 + \log_2 3} - \frac{1}{1 + a}$, in mod similar	
	$\log 27$ $2\log 2$ $2+2\log 2$ $2+2\pi$	
	$1 + \log_4 27 = 1 + \frac{\log_2 27}{\log_2 4} = 1 + \frac{3\log_2 3}{2} = \frac{2 + 3\log_2 3}{2} = \frac{2 + 3a}{2}$	
	$\log_2 4$ 2 2	2p
		2p
	2a	
	$\frac{\log_6 9}{1 + \log_4 27} = \frac{\overline{1 + a}}{\underline{2 + 3a}} = \frac{4a}{(a+1)(3a+2)}.$	
	$\frac{26}{1+\log_2 27} = \frac{1+\alpha}{2+3\alpha} = \frac{1+\alpha}{(\alpha+1)(2\alpha+2)}$.	2p
	$\frac{1+\log_4 27}{2} = \frac{2+3u}{2} = \frac{(u+1)(3u+2)}{2}$	r
		_
2.	Numerele raționale din mulțime: $\pm \sqrt[3]{8}$, $\pm \sqrt[3]{1}$, 0, adică 5 la număr	2p
		1
	Numărul de elemente al mulțimii: 21	1p
	Drobabilitatea ea ex alagam la întâmplara un număr rational n	
	Probabilitatea ca să alegem la întâmplare un număr rațional $p = \frac{3}{21}$.	2p
		-P
3.	$ (2x + 2)^2$	3p
	Ecuația poate fi scrisă așa $2^{2x} - 2 \cdot 2^x + 1 = 0 \Leftrightarrow (2^x - 1)^2 = 0$,	-1
	$2^x = 1 \Rightarrow x = 0$.	
		2p
		_
4.	$x_1, x_2 \in (1, \infty), f(x_1) = 2^{x_1-1} + 1, f(x_2) = 2^{x_2-1} + 1$	1p

$f(x_1) = f(x_2) \Rightarrow 2^{x_1-1} + 1 = 2^{x_2-1} + 1 \Rightarrow x_1 - 1 = x_1 - 1 \Rightarrow$	2p
$\Rightarrow x_1 = x_2$, deci f e injectivă.	
	2p
$\cos B = \frac{AB^2 + BC^2 - AC^2}{B^2 + BC^2 - AC^2} = \frac{81 + 100 - 36}{B^2 + BC^2} = \frac{81 + 100 - 36}{B^2 + BC^2} = \frac{81 + 100 - 36}{B^2 + BC^2} = $	3p
$2AB \cdot BC \qquad 2 \cdot 9 \cdot 10$	
$=\frac{145}{100}=\frac{29}{100}$.	2p
180 36	
$\overrightarrow{AM} = \overrightarrow{AB} + 2\overrightarrow{AC}$	5p
3	
	$\Rightarrow x_1 = x_2, \text{ deci } f \text{ e injectivă.}$ $\cos B = \frac{AB^2 + BC^2 - AC^2}{2AB \cdot BC} = \frac{81 + 100 - 36}{2 \cdot 9 \cdot 10} =$ $= \frac{145}{180} = \frac{29}{36}.$

$\begin{vmatrix} 1 & & & & 2 & 1 & -1 & & 0 & 0 & -1 \end{vmatrix}$		3p
$\begin{vmatrix} 1. \\ a \end{vmatrix} \det A = \begin{vmatrix} 2 & 1 & -1 \\ 1 & a & -2 \\ a & -1 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 0 & -1 \\ -3 & a - 2 & -2 \\ a + 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & a & -1 \\ a & -1 & 1 \end{vmatrix}$		
$\begin{bmatrix} a & 1 & 1 \\ a & 1 & 1 \end{bmatrix} \begin{bmatrix} c_2 + c_3 \\ a + 2 & 0 \end{bmatrix} \begin{bmatrix} a + 2 & 0 \\ 1 & 1 \end{bmatrix}$		
$\begin{vmatrix} -3 & a-2 \\ a+2 & 0 \end{vmatrix} = (a-2)(a+2).$		2p
a+2		
b) $\det A = (a-2)(a+2), \exists A^{-1}(a) \Leftrightarrow a \in R \setminus \{-1\}$	2,2}.	5p
c) $a = 4$		
$\int 2x + y - z = 3$		
$\begin{cases} x + 4y - 2z = 6, \text{ se adună prima ecuație cu a tr} \end{cases}$	eia, și se obține $6x = 12 \Rightarrow x = 2$	2p
4x - y + z = 9		
Se înlocuiește $x = 2$ in prima și a doua ecuație și	se obține	1p
$\begin{vmatrix} y-z=-1 \end{vmatrix}$		
$\begin{cases} y-z=-1\\ 2y-z=2 \end{cases} (-) \Rightarrow y=3 \Rightarrow z=4, \text{ deci } \begin{cases} x=2\\ y=3\\ z=4 \end{cases}$		2p
z=4		
2. $X^2 - 2X - 15 = (X + 3)(X - 5)$		1p
(a)		
$f:(X^2-2X-15) \Leftrightarrow f \text{ e divizibil cu } (X-5)$	(X+3), adică	

	are două rădăcini reale $x_1 = 5$, $x_2 = -3$, se verifică prin schema lui <i>Horner</i> .	4p
b)	Folosind schema lui $Horner$, f se poate scrie	
5	$f = (X-5)(X+3)(X^2-3X+2) =$	2p
	$=(X-5)(X+3)(X-1)(X-2)$, rezultă că celelalte două rădăcini sunt $x_3=1$ și $x_4=2$	- P
~	Adică toate rădăcinile sunt reale.	3p
c)	Fie $u(a)$ ultima cifră a numărului a , un număr se îmăparte la $10\mathrm{dac}$ ă se termină în $0\mathrm{dac}$	1p
	Fie $a = x_1^n + x_2^n + x_3^n + x_4^n$, $n \in \mathbb{N}^*$	
	$n=1 \Rightarrow u(a)=u(5-3+1+2)=5$	
	$n = 2 \Rightarrow u(a) = u(25+9+1+4) = 9$	
	$n = 3 \Rightarrow u(a) = u(125 - 27 + 1 + 8) = 7$	3p
	$n=4 \Rightarrow u(a)=u(625+81+1+16)=3$, cum ultimele cifre ale puterilor se repetă din 4 în 4 (in	
	cazul numerelor 3 si 2) sau nu se schimba deloc (5 şi 1), se poate deduce ca acest număr a nu se va termina în 0 , deci	
	$\left(x_1^n + x_2^n + x_3^n + x_4^n\right) / 10, \ n \in \mathbb{N}^*.$	1p

1. a)	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$		2p
	$f'(x) = \frac{(e^x + e^{-x})x - e^x + e^{-x}}{x^2} \Rightarrow f'(1) = \frac{(e^x + e^{-1})x + e^{-1}}{1} = \frac{2}{e}.$	50	3p
b)	$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{e^x - e^{-x}}{x} = \lim_{x \to \infty} \frac{e^x}{x} - \lim_{x \to \infty} \frac{1}{xe^x} =$		2p
	$=\infty-0=\infty$, nu există asimptotă orizontală în $+\infty$.		3p

- (-	1	
c)	$\lim_{x \to \infty} f(\ln x) = \lim_{x \to \infty} \frac{e^{\ln x} - \frac{1}{e^{\ln x}}}{\ln x} =$	2p
	$= \lim_{x \to \infty} \frac{x - \frac{1}{x}}{\ln x} = \lim_{x \to \infty} \frac{x}{\ln x} - \lim_{x \to \infty} \frac{1}{x \ln x} = \infty - 0 = \infty.$	3p
2.	$x^3 - x^2 - x - 2 = (x - 2)(x^2 + x + 1)$ se verifică prin desfacerea parantezelor si efectuarea operațiilor	5p
a)	de pe partea dreapta.	
b)	$\int f(x)dx = \int \frac{(x-2)(x^2+x+1)}{(x-2)(x^2+1)}dx = \int \frac{x^2+x+1}{x^2+1}dx =$	2p
	$= \int \frac{x^2 + 1}{x^2 + 1} dx + \frac{1}{2} \int \frac{2x}{x^2 + 1} dx = x + \frac{1}{2} \ln(x^2 + 1) + C.$	3p
c)	$\int_{0}^{1} (x-1) f(x) dx = \int_{0}^{1} \frac{(x-1)(x^{2}+x+1)}{x^{2}+1} dx = \int_{0}^{1} \frac{x^{3}-1}{x^{2}+1} dx =$	2p
	$= \int_{0}^{1} \frac{\frac{-x(x^{2}+1)}{x^{3}+x}}{x^{2}+1} dx - \frac{1}{2} \int_{0}^{1} \frac{2x}{x^{2}+1} dx - \int_{0}^{1} \frac{1}{x^{2}+1} dx = \left(\frac{x^{2}}{2} - \frac{1}{2} \ln(x^{2}+1) - arctgx\right)\Big _{0}^{1} =$	2p
	$= \frac{1}{2} - \frac{1}{2} \ln 2 - arctg \cdot 1 - 0 + \frac{1}{2} \ln 1 + arctg \cdot 0 = \frac{1}{2} \ln \frac{e}{2} - \frac{\pi}{4}.$	1p

Varianta 58

Prof: Oláh Csaba.

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	Se cunoaște formula $C_n^k = C_n^{n-k} \Rightarrow$	1p
	$\Rightarrow C_{16}^7 = C_{16}^9 \text{ și } C_{16}^{12} = C_{16}^4 \Rightarrow$	2p
	$\Rightarrow a - b = C_{16}^7 - C_{16}^9 + C_{16}^{12} - C_{16}^4 = 0.$	2p
2.	$\Delta = (2m+3)^2 - 12m = 4m^2 + 9$	1p
	$\min_{x \in R} f(x) = -\frac{\Delta}{4a} = -\frac{4m^2 + 9}{4m}, \ \min_{x \in R} f(x) = -3 \Rightarrow$	2p
	$\Rightarrow \frac{4m^2 + 9}{4m} = 3 \Rightarrow 4m^2 - 12m + 9 = 0 \Rightarrow (2m - 3)^2 = 0 \Rightarrow$	
	$\Rightarrow m = \frac{3}{2}.$	2p
3.	$x > 1, \sqrt{2} - 1 = \frac{1}{\sqrt{2} + 1}$, trecem în baza $\sqrt{2} + 1$	1p
	$\log_{\sqrt{2}+1}(x+1) + \frac{\log_{\sqrt{2}+1}(x-1)}{\log_{\sqrt{2}+1}(\sqrt{2}-1)_{=-1}} = 1 \Leftrightarrow \log_{\sqrt{2}+1}(x+1) - \log_{\sqrt{2}+1}(x-1) = 1$	
	$\log_{\sqrt{2}+1} \frac{x+1}{x-1} = \log_{\sqrt{2}+1} \left(\sqrt{2}+1\right), \text{ deci } \frac{x+1}{x-1} = \sqrt{2}+1$	2p
	$x+1 = \sqrt{2}x + x - \sqrt{2} - 1 \Rightarrow x = \frac{\sqrt{2} + 2}{\sqrt{2}} = \frac{2 + 2\sqrt{2}}{2} = \sqrt{2} + 1 > 1.$	2p

4.	$b_3 = b_1 q^2, \ b_7 = b_1 q^6 \Rightarrow \frac{54}{6} = \frac{b_7}{b_3} = q^4 \Rightarrow q^4 = 9 \Rightarrow q = \pm \sqrt{3}$	3p
	$b_1 = \frac{b_3}{q^2} = \frac{6}{3} = 2.$	2p
5.	$d: 2x - y + 4 = 0, \ y = 2x + 4 \Rightarrow m_d = 2$	1p
	$d_1: y - 2 = m_{d_1}(x - 1), \ m_d \cdot m_{d_1} = -1 \Rightarrow m_{d_1} = \frac{-1}{m_d} = -\frac{1}{2}$ $d_1: y - 2 = -\frac{1}{2}(x - 1) \Leftrightarrow x + 2y - 5 = 0.$	1p 3p
6.	$\frac{BC}{\sin A} = \frac{AC}{\sin B} \text{ (teorema sinusurilor)} \Rightarrow BC = \frac{AC \cdot \sin A}{\sin B} =$	2p
	$= \frac{10 \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}} = \frac{10\sqrt{6}}{3}.$	3p

1. a)	$\det A = \begin{vmatrix} 1 & 2 & -a \\ 0 & 1 & 5 \\ a & 1 & 0 \end{vmatrix} = a^2 + 10a - 5, \ a^2 + 10a - 5 = 0 \Rightarrow x \in \left\{ -5 - \sqrt{30}, -5 + \sqrt{30} \right\}$	3p
	A este inversabilă $\Rightarrow a \in R \setminus \{-5 - \sqrt{30}, -5 + \sqrt{30}\}$.	2p
b)	$a = 1, A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 5 \\ 1 & 1 & 0 \end{pmatrix}$, calculând A^* , se obține	1p
	$A^* = \begin{pmatrix} -5 & -1 & 11 \\ 5 & 1 & -5 \\ -1 & 1 & 1 \end{pmatrix}, \text{ de unde } A^{-1} = \frac{1}{\det A} \cdot A^* = \frac{1}{6} \cdot \begin{pmatrix} -5 & -1 & 11 \\ 5 & 1 & -5 \\ -1 & 1 & 1 \end{pmatrix}.$	4p
c)	$A \cdot X = B \Rightarrow$	1p

	$\Rightarrow X = A^{-1} \cdot B = \frac{1}{6} \cdot \begin{pmatrix} -5 & -1 & 11 \\ 5 & 1 & -5 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} -10 & -1 & 22 \\ 10 & 1 & -10 \\ -2 & 1 & 2 \end{pmatrix}.$	4p
2.	Utilizând relațiile lui <i>Viete</i> $x_1 + x_2 + x_3 = -1$, $x_1x_2 + x_2x_3 + x_3x_1 = 1$, atunci	1p
a)	$(x_1^2 + x_2^2 + x_3^2) = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_3x_1) = (-1)^2 - 2 \cdot 1 = 0$	2p
7	=-1<0 rezultă că f nu are toate rădăcinile reale.	2p
b)	Se opoate observa ușor că $f(1) = 0 \Rightarrow x = 1$ este o rădăcină reală a polinomului.	5p
c)	Rădăcinile polinomului satisfac ecuația $f(x) = 0$.	1p
	$x_1^3 + x_1^2 + x_1 - 3 = 0$ $x_2^3 + x_2^2 + x_2 - 3 = 0$ $x_3^3 + x_3^2 + x_3 - 3 = 0$, adunând cele trei relații, obținem	2p
	$x_1^3 + x_2^3 + x_3^3 + \underbrace{x_1^2 + x_2^2 + x_3^2}_{=-1} + \underbrace{x_1 + x_2 + x_3}_{=-1} - 9 = 0$, de unde $x_1^3 + x_2^3 + x_3^3 = 11$.	2p

1. a)	$f(x) = \frac{x^2 - 1}{x^2} = \frac{x^2}{x^2} - \frac{1}{x^2} = 1 - \frac{1}{x^2}.$	5p
b)	$f'(x) = \left(1 - \frac{1}{x^2}\right)' = \frac{2}{x^3} \Rightarrow \begin{cases} f'(x) < 0, \text{ dacă } x < 0 \\ f'(x) > 0 \text{ dacă } x > 0 \end{cases} \Rightarrow$ $\Rightarrow f \text{ e descrescătoare, dacă } x < 0 \text{ şi e crescătoare dacă } x > 0.$	3p 2p
c)	$f(k) = \frac{k^2 - 1}{k^2} = \frac{(k - 1)(k + 1)}{k \cdot k}$	1p

	$\lim_{n\to\infty} \left[f(2) \cdot f(3) \cdot \dots \cdot f(n) \right] = \lim_{n\to\infty} \frac{1 \cdot 3}{2 \cdot 2} \cdot \frac{2 \cdot 4}{3 \cdot 3} \cdot \dots \cdot \frac{(n-1)(n+1)}{n} = \frac{1}{n} \cdot \frac{3}{n} \cdot \frac{2}{n} $	2p
	$=\lim_{n\to\infty}\frac{n+1}{2n}=\frac{1}{2}.$	2p
2.	$F'(x) = f(x) = 2^x + x^2 > 0 \Longrightarrow$	3p
a)	$\Rightarrow F$ este o funcție crescătoare.	2p
b)	$\int_{1}^{2} f(x) dx = \int_{1}^{2} (2^{x} + x^{2}) dx = \left(\frac{2^{x}}{\ln 2} + \frac{x^{3}}{3}\right)\Big _{1}^{2} = \frac{4}{\ln 2} + \frac{8}{3} - \frac{2}{\ln 2} - \frac{1}{3} =$	3p
	$=\frac{2}{\ln 2}+\frac{7}{3}.$	2p
c)	$\int_{1}^{2} (f(x) + f(2x)) dx = \int_{1}^{2} f(x) dx + \int_{1}^{2} f(2x) dx$ $\int_{1}^{2} f(2x) dx = \int_{1}^{2} (4^{x} + 4x^{2}) dx = \left(\frac{4^{x}}{\ln 4} + \frac{4x^{3}}{3}\right)\Big _{1}^{2} = \frac{16}{\ln 4} + \frac{4 \cdot 8}{3} - \frac{4}{\ln 4} - \frac{4 \cdot 1}{3} = \frac{12}{\ln 4} + \frac{28}{3},$ Din b) $\int_{1}^{2} f(x) dx = \frac{2}{\ln 2} + \frac{7}{3}, \text{ atunci}$	3p
	Din b) $\int_{1}^{2} f(x)dx = \frac{1}{\ln 2} + \frac{7}{3}$, attinct $\int_{1}^{2} (f(x) + f(2x))dx = \frac{2}{\ln 2} + \frac{7}{3} + \frac{12}{\ln 4} + \frac{28}{3} = \frac{2}{\ln 2} + \frac{12}{\ln 4} + \frac{35}{3}.$	2p

Varianta 59

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	Aplică formula $a_n = a_1 + (n-1)r$ pentru $n = 4$: $a_4 = a_1 + 3r$	3p
	Obține $a_4 = 11$	2p
	Outlie $u_4 = 11$	
2.	Pune condiția $\Delta = 0$	1p
	Calculează $\Delta = 16 - 4m$	2p
		2p
	Obţine $m = 4$	2p
3.	Scrie forma echivalentă $3^{6x-12} = 3^6$	1p
	4)-	2p
	Folosește injectivitatea funcției exponențiale și ajunge la ecuația $6x-12=6$	2p
	Finalizare $x = 3$	2p
4.	Cantitatea de magneziu este $2^0/_{00} \cdot 2,5$	2p
	Obține $5g$ de magneziu	3p
5.	Lungimea segmentului $AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$	2p
	$AB = \sqrt{(1-2)^2 + (3-1)^2}$ $AB = \sqrt{5}$	2p
	$AB = \sqrt{5}$	1p
6.	Aria triunghiului ABC este $A_{\triangle ABC} = \frac{AC \cdot AB \cdot \sin(\angle ABC)}{2}$	2p
	2	
		1p

$$A_{\triangle ABC} = \frac{3 \cdot 5 \cdot \sin 30^{\circ}}{2}$$
Finalizare $A_{\triangle ABC} = \frac{15}{4}$

1. a)	Pentru $x = 1$ și $y = 0$ se obține $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in G$	2p
	Pentru $x = y = 0$ se obţine $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in G$	2p
	Finalizare	1p
b)	Fie $A = \begin{pmatrix} x & y \\ 5x & y \end{pmatrix}$ și $B = \begin{pmatrix} t & z \\ 2z & t \end{pmatrix}, x, y, t, z \in R$	1p
	$A + B = \begin{pmatrix} x+t & y+z \\ 2(y+z) & x+t \end{pmatrix} \in G$	2p
	$AB = \begin{pmatrix} xt + 5yz & xz + yt \\ 5(xt + yt) & xt + 5yz \end{pmatrix} \in G$	2p
c)	A inversabilă dacă $det(A) \neq 0$.	1p
	$det(A) = x^2 - 5y^2 \neq 0 deci \ A^{-1} = \frac{1}{det(A)} A^*$	1p
	Calculează $A^* = \begin{pmatrix} x & -y \\ -5y & x \end{pmatrix}$	1p
	Scrie $A^{-1} = \begin{pmatrix} \frac{x}{x^2 - 5y^2} & -\frac{y}{x^2 - 5y^2} \\ -\frac{5y}{x^2 - 5y^2} & \frac{x}{x^2 - 5y^2} \end{pmatrix}$	2p
2.	Scrie $x \circ y = 4xy + 4x + 4y + 4 - 1$	1p
a)		3p

	$x \circ y = 4(xy + x + y + 1) - 1 =$	
	$=4\left\lceil x(y+1)+(y+1)\right\rceil -1=$	
	= 4(x+1)(y+1) - 1	1p
	Finalizare	1p
b)	Legea " \circ " asociativă dacă $(x \circ y) \circ z = x \circ (y \circ z) \forall x, y, z \in R$. Calculează	3p
	$(x \circ y) \circ z = (4xy + 4x + 4y + 3) \circ z = \dots = 16xyz + 16xy + 16xz + 16yz + 16x + 16y + 16z + 15$	
	Calculează	
	$x \circ (y \circ z) = x \circ (4yz + 4y + 4z + 3) = \dots = 16xyz + 16xy + 16xz + 16yz + 16x + 16y + 16z + 15.$	2p
c)	Scrie ecuația $x \circ x \circ \circ x = -1$ sub forma $4^{2011}(x+1)^{2012} - 1 = -1$ care este echivalentă cu	2p
	de 2012 ori	2p
	$4^{2011}(x+1)^{2012} = 0$	
	Obține soluția $x = -1$	1p

1.	Calculează $f(1) = 1 + a$	2p
a)	Scrie ecuația $f(1) = 2$ sub forma $1 + a = 2$	2p
	Obţine $a=1$	1p
b)	Observă că $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$	1p
	Calculează $f'(x) = \frac{(x^2+1)'x - (x^2+1)x'}{x^2}$	1p
	Obţine $f'(x) = \frac{x^2 - 1}{x^2}$	1p
	Calculează $f'(1) = 0$ și deduce că $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 0$	2p
c)	f este strict crescătoare pe $\left[\sqrt{a}, +\infty\right)$ dacă $f'(x) > 0 \ \forall \ x \in \left[\sqrt{a}, +\infty\right)$.	1p

	Calculează $f'(x) = \frac{x^2 - a}{x^2}$	1p
	^	1p
	Observă că pentru $x > \sqrt{a} \Rightarrow x^2 > a \Rightarrow x^2 - a > 0, x^2 > 0$	
9	Rezultă că $f'(x) > 0 \ \forall \ x \in [\sqrt{a}, +\infty)$ ceea ce implică f este strict crescătoare pe $[\sqrt{a}, +\infty)$	2p
2.	Pentru a calcula $\int_{0}^{1} f(x)dx = \int_{0}^{1} xe^{x}dx$ aplicăm metoda de integrare prin părți.	2p
a)		
	$\int_{0}^{1} x(e^{x})' dx = xe^{x} \Big _{0}^{1} - \int_{0}^{1} e^{x}(x)' dx = e - \int_{0}^{1} e^{x} dx$	2p
	1	1p
	Obţine $\int_{0}^{1} xe^{x} dx = 1$	Тр
b)	Calculează $f(x)g'(x) = 2x^2e^x$	1p
		1p
	$\int_{0}^{1} 2x^{2}e^{x}dx = 2\int_{0}^{1} x^{2}(e^{x})'dx =$	1p
	$=2x^{2}e^{x}\Big _{0}^{1}-2\int_{0}^{1}(x^{2})'e^{x}dx=$	
	$= 2e - 4 \int_{0}^{1} xe^{x} dx = 2e - 4$	2p
	O O	
c)	Calculează $h(x) = f(x) + g(x) = xe^x + x^2 + 2$	2p
		1p
	$A = \int_{0}^{1} h(x)dx$	
	Scrie formula pentru arie $A = \int_{1}^{1} \left(xe^x + x^2 + 2\right) dx = \int_{1}^{1} xe^x dx + \int_{1}^{1} x^2 dx + \int_{1}^{1} 2dx$	2p
	0 0 0	
	$A = \frac{10}{3}$	

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	Ecuația are rădăcini reale dacă $\Delta \ge 0 \ \forall x \in R$.	1p
	Calculează $\Delta = 5m^2 - 10m + 5$	2p
		2p
	Scrie expresia pentru $\Delta = 5(m-1)^2$ și observă că $\Delta \ge 0 \ \forall m \in R$	
2.	Numărul submulțimilor cu 8 elemente ale unei mulțimi cu 10 elemente este C_{10}^8	2p
	$C_n^k = \frac{n!}{k!(n-k)!}$	1p
	Calculează $C_{10}^8 = 45$	2p
3.	Scrie $\frac{2}{7} = 0$, (285714)	2p
	7 7	1p
	Observă că $2012 = 6.335 + 2$	
	$a_{2012} = 8$	2p
4.	$C.E \begin{cases} x^2 - 7x + 17 > 0 \\ 3x + 8 > 0 \end{cases} \Rightarrow x \in \left(-\frac{8}{3}, +\infty \right)$	2p
	Folosește faptul că funcția logaritmică este injectivă și obține $x^2 - 7x + 17 = 3x + 8$. Găsește	
	$x_1 = 1 \in C.E \text{ si } x_2 = 9 \in C.E$	3p
5.	Foloseşte formula $\cos(180^{\circ} - x) = -\cos x$ şi obţine $\cos 130^{\circ} = -\cos 50^{\circ}$	2p
	Obține $\cos 50^{0} + \cos 130^{0} = 0$	3p
6.	Fie d ' dreapta căutată. Din condiția d // d ' se obține $m_d = m_{d}$. Deci panta dreptei d ' este	2p

	1p
trece prin punctul A și este paralelă cu d 'este: $y - y_A = m_{d} \cdot (x - x_A)$	2p
ecuația pentru $d': 5x+12y-17=0$	

1.	Scrie $A^2 = A \cdot A$ și $A^3 = A^2 \cdot A$	1p
a)	$(6^2 \ 0)$	2p
	Calculează $A^2 = \begin{pmatrix} 6^2 & 0 \\ 0 & 1 \end{pmatrix}$	
	$(6^3 0)$	2p
	Calculează $A^3 = \begin{pmatrix} 6^3 & 0 \\ 0 & 1 \end{pmatrix}$	
b)	C_{-1} A_{-1} A_{-1} A_{-1} A_{-1} A_{-1}	3p
	Calculează $\det(A^n) = 6^n$	
	Rezolvă ecuația $6^n = 1296$ și obține $n = 4$	2p
c)	Scrie $B_{2012} = A + A^2 + + A^{2012}$	1p
	$(6.16^2 + 16^{2012})$	2p
	$B_{2012} = \begin{pmatrix} 6+6^2++6^{2012} & 0\\ 0 & 2012 \end{pmatrix}$	
	$B_{2012} = \begin{pmatrix} \frac{6}{5} (6^{2012} - 1) & 0\\ 0 & 2012 \end{pmatrix}$	2p
	$\begin{bmatrix} D_{2012} - \\ 0 \end{bmatrix}$ 0 2012	2p
2.	$x_1 + x_2 + x_3 = 3$	3p
a)	Scrie relațiile lui Viete pentru ecuatia data. $\begin{cases} x_1x_2 + x_1x_3 + x_2x_3 = 1 \end{cases}$	
	$\left(x_1 x_2 x_3 = -1\right)$	
	Obține că $x_1 + x_2 + x_3 = 3$	2p
b)		2r
b)	Scrie $x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3)$	3p
		2p
L		

	Obţine $x_1^2 + x_2^2 + x_3^2 = 3^2 - 2 \cdot 1 = 7$	
		2
c)	$\left \begin{array}{ccc} 1 & 1 & 1 \\ \end{array}\right $	2p
	$\begin{bmatrix} x_1 & x_2 & x_3 \\ 1 & 1 & 1 & r & r \end{bmatrix}$	
	$\begin{vmatrix} x_3 & x_1 & x_2 \end{vmatrix} = \frac{1}{r} + \frac{1}{r} + \frac{1}{r} - \frac{x_1}{r} - \frac{x_2}{r} - \frac{x_3}{r} = $	
	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 & \lambda_2 \lambda_3 & \lambda_1 \lambda_2 \\ \lambda_1 & \lambda_2 & \lambda_3 & \lambda_2 \lambda_3 & \lambda_1 \lambda_2 \end{bmatrix}$	
	$\begin{vmatrix} \frac{1}{x_1} & \frac{1}{x_2} & \frac{1}{x_3} \\ x_3 & x_1 & x_2 \\ \frac{1}{x_2} & \frac{1}{x_3} & \frac{1}{x_1} \end{vmatrix} = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} - \frac{x_1}{x_2 x_3} - \frac{x_2}{x_1 x_3} - \frac{x_3}{x_1 x_2} =$	
4	$\frac{x_2x_3 + x_1x_3 + x_1x_2 - \left(x_1^2 + x_2^2 + x_3^2\right)}{} =$	2p
		2p
	$x_1x_2x_3$	
	$=\frac{1-7}{1}=6$	1p
	-1	19
SUI	BIECTUL al III-lea (30 de puncte)	
1.	Anlică formula $(x^n)' = nx^{n-1}$	2p

1. a)	Aplică formula $(x^n)' = nx^{n-1}$	2p
<i>u)</i>	Calculează $f'(x) = 2012x^{2011}$	3p
b)	Observă că $\lim_{x \to \pi} \frac{x^{2012} - \pi^{2012}}{x - \pi} = f'(\pi)$	2p
	Calculează $f'(\pi) = 2012\pi^{2011}$	2p
	Finalizează $\lim_{x \to \pi} \frac{x^{2012} - \pi^{2012}}{x - \pi} = 2012\pi^{2011}$	1p
c)	Intervalele de concavitate si convexitate le stabilim cu ajutorul semnului funcției f "	1p
	Calculează $f''(x) = (f'(x))'$	1p
	$f''(x) = 2012 \cdot 2011x^{2010}$	1p
	Observă că $x^{2012} \ge 0$, $\forall x \in R$ deci $f''(x) \ge 0$, $\forall x \in R$ ceea ce implică faptul că f este convexă pe R	2p
2.	Scrie $I_1 = \int_1^1 xe^{-x} dx$ și aplică metoda de integrare prin părți.	2p
a)	O .	

	$I_{1} = -\int_{0}^{1} x(e^{-x})' dx = -xe^{-x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} - e^{-x} \begin{vmatrix} 1 \\ 0 \end{vmatrix}$	2p
0	Finalizează $I_1 = -\frac{2}{e} + 1$	1p
b)	$I_n = \int_0^1 x^n e^{-x} dx = -\int_0^1 x^n \left(e^{-x} \right)' dx$	1p
	$I_{n} = -x^{n} e^{-x} \Big _{0}^{1} + \int_{0}^{1} (x^{n})' e^{-x} dx$	1p
	$I_n = -\frac{1}{e} + n \int_0^1 x^{n-1} e^{-x} dx$	1p
	$I_{n} = -\frac{1}{e} + nI_{n-1}, \forall n \in \mathbb{N}, n \ge 2$	2p
c)	Integrând inegalitatea dată de la zero la unu se obține $\int_{0}^{1} x^{n} \cdot \frac{1}{e} dx \le \int_{0}^{1} x^{n} e^{-x} dx \le \int_{0}^{1} x^{n} dx$	2p
	$\frac{1}{e} \frac{x^{n+1}}{n+1} \left \frac{1}{0} \le I_n \le \frac{x^{n+1}}{n+1} \right 0$	1p
	Din relația de mai sus ajunge la $\frac{1}{(n+1)e} \le I_n \le \frac{1}{n+1}, \forall n \in \mathbb{N}^*$	2p

Varianta 61

Prof:Opriță Elena

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	1 120 1 27 1 1 7 2 (1)	3p
	$\log_2 128 - \log_3 27 + \log_4 \frac{1}{4} = 7 - 3 + (-1)$	
	1	
2	Finalizează $\log_2 128 - \log_3 27 + \log_4 \frac{1}{4} = 3$	2p
	4	
2.	Suma elementelor mulțimii A este $1+4+7++37$	1p
	Observă că termenii sumei formează o progresie aritmetică cu primul termen 1 și rația 3. Termenul	2p
	general al unei progresii aritmetice este $a_n = a_1 + (n-1)r$. Numărul de termeni îl află din relația	
	$1 + (n-1) \cdot 3 = 37 \Rightarrow n = 13$	
	Calculează suma $S_{13} = \frac{(1+37)}{2} \cdot 13 \Rightarrow S_{13} = 249$	2p
	2 2 2 7 2 13	
3.	Scrie ecuația sub forma $2^{x^2+3x} = 2^4$	1p
		20
	Folosind injectivitatea funcției exponențiale obținem $x^2 + 3x = 4 \Rightarrow x^2 + 3x - 4 = 0$	2p
	Rezolvă ecuația și obține soluțiile $x_1 = 1$ și $x_2 = -4$	2p
4.	Înălțimea copacului după o lună $10 + 4\% \cdot 10 = = 10,4m$	2p
	Înălțimea copacului după două luni $10,4+4\%\cdot 10,4==10,816m$	3p
	marimea copacatat dapa doda tani 10,1111/0 10,121=10,010m	
5.	A ' este simetricul punctului A în raport cu $B \Rightarrow B$ este mijlocul segmentului A ' A	2p
	(x_1+x_2, y_1+y_2)	3p
	$B\left(\frac{x_A + x_{A'}}{2}, \frac{y_A + y_{A'}}{2}\right) \text{deci } x_{A'} = 2x_B - x_A = -14 \text{ si } y_{A'} = 2y_B - y_A = -6. \text{ Obtinem } A'(-14, -6).$	•
6.	Folosește formula $BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos(\angle BAC)$	2p
		1p
	$BC^2 = 5^2 + 8^2 - 2 \cdot 5 \cdot 8 \cdot \frac{1}{2}$	
		2p
	Obţine $BC = 7$	
	RIFCTIII, al II-laa (30 da nuncta)	

1.	Scrie $A^2 = A \cdot A$	2p
a)		2p
		_

	Calculează și obține $A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
	Finalizează $A^2 = O_2$	1p
b)	Calculează $(I_3 - A)(I_3 + A) = I_3^2 + I_3 A - AI_3 - A^2$.	3p
7	Folosind proprietățile matricei unitate si punctul a) obținem $I_3 = (I_3 - A)(I_3 + A)$	2p
c)	Folosim punctul b) și definiția funcției inversabile obținem	1p
	$\left(I_3 - A\right)^{-1} = I_3 + A$	2p
		2p
	$(I_3 - A)^{-1} = I_3 + A$ Scrie $(I_3 - A)^{-1} = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 3 & -2 \\ 3 & 3 & -2 \end{pmatrix}$	
2.	Restul împărțirii polinomului f la $X+2$ se obține folosind teorema restului	1p
a)	Restul este $f(-2) = (-2)^2 + (-2) + 1$	3p
	Finalizează $f(-2) = 3$	1p
b)	Scrie relațiile lui Viete $\begin{cases} x_1 + x_2 = -1 \\ x_1 x_2 = 1 \end{cases}$ și calculează $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1 x_2 = -1$	3p
	$(x_1x_2 - 1)$ $x_1^3 + x_2^3 = (x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2) = \dots = 2$	2p
c)	$g(x) - f(x) = 1 \Rightarrow x^3 + 2x^2 + 2x + 1 = 0$	2p
	Scrie ecuația sub forma $(x+1)(x^2+x+1)=0$	2p
	Obţine $x = -1$ soluţie.	1p

1.	$f'(x) = x' + 3' + (3^x)'$	2p
a)		1
		ii

b) f este crescătoare pe R dacă $f'(x) > 0$, $\forall x \in R$		$f'(x) = 1 + 0 + 3^x \ln 3$	2p
$f'(x) = 1 + 3^{x} \ln 3$ $3^{x} > 0, \forall x \in R \text{ si } \ln 3 > 0 \text{ implică } f'(x) > 0, \forall x \in R$ $Concluzia: f \text{ este strict crescătoare pe } R.$ $c) \qquad f'(1) + f'(2) + + f'(2012) = 1 + 3 \ln 3 + 1 + 3^{2} \ln 3 + + 1 + 3^{2012} \ln 3$ $= 2012 + \left(3 + 3^{2} + 3^{3} + + 3^{2012}\right) \ln 3$ $Calculează suma \left(3 + 3^{2} + 3^{3} + + 3^{2012}\right) = 3 \frac{3^{2012} - 1}{2}$ $Finalizează f'(1) + f'(2) + f'(3) + + f'(2012) = 2012 + \frac{3}{2}\left(3^{2012} - 1\right) \ln 3$ $2p$ $c) \qquad 2p$ $c) \qquad F \text{ este derivabilă deoarece este sumă de funcții elementare și } F'(x) = \left(e^{x}\right)^{2} + \left(x^{3}\right)^{2} + \left(2x\right)^{2} - 2^{2} = e^{x} + 4x^{3} + 3x^{2} + 2$ $Deci \qquad F'(x) = f(x)$ $b) \qquad \int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{F^{2}(x)}{2} \Big _{0}^{1} = \frac{\left(e^{x} + x^{4} + x^{2} + 2x - 2\right)^{2}}{2} \Big _{0}^{1} = \frac{\left(e^{x} + x^{4} + x^{2} + 2x - 2\right)^{2}}{2} = \frac{\left(e - 2\right)^{2}}{2} = \left(e - 2\right)^{$		$f'(x) = 1 + 3^x \ln 3$	1p
$3^{3} > 0, \forall x \in R \text{ si } \ln 3 > 0 \text{ implică } f'(x) > 0, \forall x \in R$ $\text{Concluzia: } f \text{ este strict crescătoare pe } R.$ $c) \qquad f'(1) + f'(2) + + f'(2012) = 1 + 3 \ln 3 + 1 + 3^{2} \ln 3 + + 1 + 3^{2012} \ln 3$ $= 2012 + (3 + 3^{2} + 3^{3} + + 3^{2012}) \ln 3$ $\text{Calculează suma } (3 + 3^{2} + 3^{3} + + 3^{2012}) = 3 \frac{3^{2012} - 1}{2}$ $\text{Finalizează } f'(1) + f'(2) + f'(3) + + f'(2012) = 2012 + \frac{3}{2} (3^{2012} - 1) \ln 3$ $2p$ $2. \qquad \text{Funcția } F \text{ este o primitivă pentru funcția } f \text{ dacă } F \text{ este derivabilă și } F'(x) = f(x).$ $2p$ $a) \qquad F \text{ este derivabilă deoarece este sumă de funcții elementare și } F'(x) = (e^{x})^{1} + (x^{3})^{1} + (2x)^{1} - 2^{1} = e^{x} + 4x^{3} + 3x^{2} + 2$ $\text{Deci} \qquad F'(x) = f(x)$ $b) \qquad \int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{F^{2}(x)}{2} \Big _{0}^{1} = \frac{1}{2} \left[$	b)	f este crescătoare pe R dacă $f'(x) > 0, \forall x \in R$	1p
$\begin{array}{c} 3^{2} > 0, \ \forall x \in R \ \ \text{si ln } 3 > 0 \ \ \text{implicia} \ \ f'(x) > 0, \ \forall x \in R \\ \\ \text{Concluzia:} \ f \ \text{ este strict crescătoare pe } R \ . \end{array}$		$f'(x) = 1 + 3^x \ln 3$	1p
Concluzia: f este strict crescătoare pe R .		$3^x > 0, \forall x \in R \text{ si } \ln 3 > 0 \text{ implică } f'(x) > 0, \forall x \in R$	2p
c) $f'(1)+f'(2)++f'(2012)=1+3\ln 3+1+3^2\ln 3++1+3^{2012}\ln 3$			1p
$= 2012 + \left(3 + 3^{2} + 3^{3} + \dots + 3^{2012}\right) \ln 3$ $\text{Calculează suma } \left(3 + 3^{2} + 3^{3} + \dots + 3^{2012}\right) = 3 \frac{3^{2012} - 1}{2}$ $\text{Finalizează } f'(1) + f'(2) + f'(3) + \dots + f'(2012) = 2012 + \frac{3}{2}\left(3^{2012} - 1\right) \ln 3$ $2p$ $2. \text{Funcția } F \text{ este o primitivă pentru funcția } f \text{ dacă } F \text{ este derivabilă și } F'(x) = f(x).$ $2p$ $a) F \text{ este derivabilă deoarece este sumă de funcții elementare și } F'(x) = \left(e^{x}\right)' + \left(x^{3}\right)' + \left(2x\right)' - 2' = e^{x} + 4x^{3} + 3x^{2} + 2$ $\text{Deci} F'(x) = f(x)$ $1p$ $b) \int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{F^{2}(x)}{2} \Big _{0}^{1} = \frac{\left(e^{x} + x^{4} + x^{3} + 2x - 2\right)^{2}}{2} \Big _{0}^{1} = \frac{\left(e^{x} + x^{4} + x^{3} + 2x - 2\right)^{2}}{2} - \frac{\left(e - 2\right)^{2}}{2} = \frac{\left(e + 1 + 1 + 2 - 2\right)^{2}}{2} - \frac{\left(e - 2\right)^{2}}{2} = \frac{1}{2}$		Concluzia. J'este su let elescatoare pe A.	
$= 2012 + \left(3 + 3^{2} + 3^{3} + \dots + 3^{2012}\right) \ln 3$ $\text{Calculează suma } \left(3 + 3^{2} + 3^{3} + \dots + 3^{2012}\right) = 3 \frac{3^{2012} - 1}{2}$ $\text{Finalizează } f'(1) + f'(2) + f'(3) + \dots + f'(2012) = 2012 + \frac{3}{2}\left(3^{2012} - 1\right) \ln 3$ $2p$ $2. \text{Funcția } F \text{ este o primitivă pentru funcția } f \text{ dacă } F \text{ este derivabilă și } F'(x) = f(x).$ $2p$ $a) F \text{ este derivabilă deoarece este sumă de funcții elementare și } F'(x) = \left(e^{x}\right)' + \left(x^{3}\right)' + \left(2x\right)' - 2' = e^{x} + 4x^{3} + 3x^{2} + 2$ $\text{Deci} F'(x) = f(x)$ $1p$ $b) \int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{F^{2}(x)}{2} \Big _{0}^{1} = \frac{\left(e^{x} + x^{4} + x^{3} + 2x - 2\right)^{2}}{2} \Big _{0}^{1} = \frac{\left(e^{x} + x^{4} + x^{3} + 2x - 2\right)^{2}}{2} - \frac{\left(e - 2\right)^{2}}{2} = \frac{\left(e + 1 + 1 + 2 - 2\right)^{2}}{2} - \frac{\left(e - 2\right)^{2}}{2} = \frac{1}{2}$	- \		1
$= 2012 + (3 + 3^{2} + 3^{3} + + 3^{2012}) \ln 3$ $\text{Calculează suma } (3 + 3^{2} + 3^{3} + + 3^{2012}) = 3\frac{3^{2012} - 1}{2}$ $\text{Finalizează } f'(1) + f'(2) + f'(3) + + f'(2012) = 2012 + \frac{3}{2}(3^{2012} - 1) \ln 3$ $2p$ $2. \text{Funcția } F \text{ este o primitivă pentru funcția } f \text{ dacă } F \text{ este derivabilă și } F'(x) = f(x).$ $2p$ $a) F \text{ este derivabilă deoarece este sumă de funcții elementare și } F'(x) = (e^{x})^{1} + (x^{4})^{1} + (x^{3})^{1} + (2x)^{1} - 2^{1} = e^{x} + 4x^{3} + 3x^{2} + 2$ $\text{Deci} F'(x) = f(x)$ $1p$ $b) \int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{F^{2}(x)}{2} \Big _{0}^{1} = \frac{(e^{x} + x^{4} + x^{3} + 2x - 2)^{2}}{2} \Big _{0}^{1} = \frac{(e^{x} + x^{4} + x^{3} + 2x - 2)^{2}}{2} = \frac{(e^{x} + x^{4} + x^{4$	()	$f'(1)+f'(2)++f'(2012)=1+3\ln 3+1+3^2\ln 3++1+3^{2012}\ln 3$	
Finalizează $f'(1) + f'(2) + f'(3) + + f'(2012) = 2012 + \frac{3}{2}(3^{2012} - 1) \ln 3$ 2p 2. Funcția F este o primitivă pentru funcția f dacă F este derivabilă și $F'(x) = f(x)$. 2p a) F este derivabilă deoarece este sumă de funcții elementare și $F'(x) = (e^x) + (x^4) + (x^3) + (2x) - 2 = e^x + 4x^3 + 3x^2 + 2$ Deci $F'(x) = f(x)$ 1p b) $ \int_0^1 f(x)F(x)dx = \int_0^1 F'(x)F(x)dx = \frac{F^2(x)}{2}\Big _0^1 = \frac{(e^x + x^4 + x^3 + 2x - 2)^2}{2}\Big _0^1 = \frac{(e^x + x^4 + x^3 + 2x - 2)^2}{2}\Big _0^1 = \frac{(e + 1 + 1 + 2 - 2)^2}{2} - \frac{(e - 2)^2}{2} = \frac{(e - 2)^2}{2} = \frac{(e - 2)^2}{2} = \frac{(e - 2)^2}{2}$		$= 2012 + \left(3 + 3^2 + 3^3 + \dots + 3^{2012}\right) \ln 3$	1p
Finalizează $f'(1) + f'(2) + f'(3) + + f'(2012) = 2012 + \frac{3}{2}(3^{2012} - 1) \ln 3$ 2p 2. Funcția F este o primitivă pentru funcția f dacă F este derivabilă și $F'(x) = f(x)$. 2p a) F este derivabilă deoarece este sumă de funcții elementare și $F'(x) = (e^x) + (x^4) + (x^3) + (2x) - 2 = e^x + 4x^3 + 3x^2 + 2$ Deci $F'(x) = f(x)$ 1p b) $ \int_0^1 f(x)F(x)dx = \int_0^1 F'(x)F(x)dx = \frac{F^2(x)}{2}\Big _0^1 = \frac{(e^x + x^4 + x^3 + 2x - 2)^2}{2}\Big _0^1 = \frac{(e^x + x^4 + x^3 + 2x - 2)^2}{2}\Big _0^1 = \frac{(e + 1 + 1 + 2 - 2)^2}{2} - \frac{(e - 2)^2}{2} = \frac{(e - 2)^2}{2} = \frac{(e - 2)^2}{2} = \frac{(e - 2)^2}{2}$		(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	1
2. Funcția F este o primitivă pentru funcția f dacă F este derivabilă și $F'(x) = f(x)$. 2p a) F este derivabilă deoarece este sumă de funcții elementare și $F'(x) = (e^x)' + (x^4)' + (x^3)' + (2x)' - 2' = e^x + 4x^3 + 3x^2 + 2$ Deci $F'(x) = f(x)$ 1p b) $\int_0^1 f(x)F(x)dx = \int_0^1 F'(x)F(x)dx = \frac{F^2(x)}{2} \Big _0^1 = \frac{(e^x + x^4 + x^3 + 2x - 2)^2}{2} \Big _0^1 = (e^x + x^4 + x^4$		Calculează suma $(3+3^2+3^3++3^{2012})=3-\frac{1}{2}$	1р
2. Funcția F este o primitivă pentru funcția f dacă F este derivabilă și $F'(x) = f(x)$. 2. Funcția F este derivabilă deoarece este sumă de funcții elementare și $F'(x) = (e^x)' + (x^4)' + (x^3)' + (2x)' - 2' = e^x + 4x^3 + 3x^2 + 2$ Deci $F'(x) = f(x)$ 1p 1p 1p		Finalizează $f'(1) + f'(2) + f'(3) + + f'(2012) = 2012 + \frac{3}{2012} - \frac{3}{201$	2n
a) F este derivabilă deoarece este sumă de funcții elementare și $F'(x) = (e^x)' + (x^4)' + (x^3)' + (2x)' - 2' = e^x + 4x^3 + 3x^2 + 2$ Deci $F'(x) = f(x)$ 1p $ \begin{vmatrix} $			2p
a) F este derivabilă deoarece este sumă de funcții elementare și $F'(x) = (e^x)' + (x^4)' + (x^3)' + (2x)' - 2' = e^x + 4x^3 + 3x^2 + 2$ Deci $F'(x) = f(x)$ 1p $ \begin{vmatrix} $			
a) F este derivabilă deoarece este sumă de funcții elementare și $F'(x) = (e^x)' + (x^4)' + (x^3)' + (2x)' - 2' = e^x + 4x^3 + 3x^2 + 2$ Deci $F'(x) = f(x)$ 1p $ \begin{vmatrix} $			
$F'(x) = (e^{x})' + (x^{4})' + (x^{3})' + (2x)' - 2' = e^{x} + 4x^{3} + 3x^{2} + 2$ $Deci F'(x) = f(x)$ $\begin{vmatrix} \int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{F^{2}(x)}{2} \Big _{0}^{1} = \frac{(e^{x} + x^{4} + x^{3} + 2x - 2)^{2}}{2} \Big _{0}^{1} = \frac{(e + 1 + 1 + 2 - 2)^{2}}{2} - \frac{(e - 2)^{2}}{2} = 1$ $1p$	2.	Funcția F este o primitivă pentru funcția f dacă F este derivabilă și $F'(x) = f(x)$.	2p
Deci $F'(x) = f(x)$ b) $ \int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{F^{2}(x)}{2} \Big _{0}^{1} = \frac{\left(e^{x} + x^{4} + x^{3} + 2x - 2\right)^{2}}{2} \Big _{0}^{1} = \frac{\left(e + 1 + 1 + 2 - 2\right)^{2}}{2} - \frac{\left(e - 2\right)^{2}}{2} = $ 1p 1p	a)		2p
b) $\int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{F^{2}(x)}{2} \Big _{0}^{1} = \frac{\left(e^{x} + x^{4} + x^{3} + 2x - 2\right)^{2}}{2} \Big _{0}^{1} = \frac{\left(e + 1 + 1 + 2 - 2\right)^{2}}{2} - \frac{\left(e - 2\right)^{2}}{2} = $ $1p$ $1p$		$F'(x) = (e^x)' + (x^3)' + (x^3)' + (2x)' - 2' = e^x + 4x^3 + 3x^2 + 2$	
$\int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{1 - (x)}{2} \Big _{0}^{1} =$ $= \frac{\left(e^{x} + x^{4} + x^{3} + 2x - 2\right)^{2}}{2} \Big _{0}^{1} =$ $= \frac{\left(e + 1 + 1 + 2 - 2\right)^{2}}{2} - \frac{\left(e - 2\right)^{2}}{2} =$ $1p$		Deci $F'(x) = f(x)$	1p
$= \frac{\left(e^{x} + x^{4} + x^{3} + 2x - 2\right)^{2}}{2} \Big _{0}^{1} =$ $= \frac{\left(e + 1 + 1 + 2 - 2\right)^{2}}{2} - \frac{\left(e - 2\right)^{2}}{2} =$ $1p$	b)	$\int_{1}^{1} f(x)F(x)dx - \int_{1}^{1} F'(x)F(x)dx - \frac{F^{2}(x)}{1} - \frac{1}{2} \int_{1}^{1} f(x)F(x)dx - \frac{F^{2}(x)}{1} - F^{2$	1p
$= \frac{(e+x+x+2x-2)}{2} \Big _{0}^{1} =$ $= \frac{(e+1+1+2-2)^{2}}{2} - \frac{(e-2)^{2}}{2} =$		$\int_{0}^{\infty} \int_{0}^{\infty} (x) I(x) dx = \int_{0}^{\infty} \int_{0}^{\infty} (x) I(x) dx = \frac{1}{2} \Big _{0}^{\infty}$	
$= \frac{(e+1+1+2-2)^2}{2} - \frac{(e-2)^2}{2} =$		$(e^x + x^4 + x^3 + 2x - 2)^2 1$	1p
$=\frac{(e+1+1+2-2)^2}{2}-\frac{(e-2)^2}{2}=$		$=\frac{1}{2}$ $\left _{0}\right $	
		$(e+1+1+2-2)^2 (e-2)^2$	1p
2p		$=\frac{(c+1+2-2)}{2}-\frac{(c-2)}{2}=$	
			2p

	$=\frac{(e+2)^2-(e-2)^2}{2}=4e$	
c)	Calculează $xf(x) + F(x) = = xe^x + 5x^4 + 4x^3 + 4x - 2$	2p
	$\int_{0}^{1} (xe^{x} + 5x^{4} + 4x^{3} + 4x - 2) dx =$ $= \int_{0}^{1} xe^{x} dx + \int_{0}^{1} 5x^{4} dx + \int_{0}^{1} 4x^{3} dx + \int_{0}^{1} 4x dx - \int_{0}^{1} 2dx = \dots = 3$	1p 2p

Varianta 62

Prof: Păcurar Cornel-Cosmin

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$ 2x-3 \le 3 \Leftrightarrow -3 \le 2x-3 \le 3 \Leftrightarrow 0 \le x \le 3$	3p
	$A = \{0,1,2,3\}$	2p
2.	$S = f(1) + f(2) + \dots + f(10) = 2 \cdot 1 + 3 + 2 \cdot 2 + 3 + \dots + 2 \cdot 10 + 3$	1p
	$S = 2 \cdot (1 + 2 + \dots + 10) + 3 \cdot 10$	2p
	S = 140	2p
	5-140	
3.	$3^{2x+4} = 3^{x+2}$	1p

	2x + 4 = x + 2	2p
	x = -2	2p
4.	$C_3^1 = 3$	2p
	$A_3^2=6$	2p
	$3C_3^1 - 2A_3^2 = -3$	1p
	$3C_3 - 2A_3 = -3$	
5.	$AB = 4\sqrt{2}, BC = 2\sqrt{10}, AC = 2\sqrt{10}$	3p
	$P_{\triangle ABC} = 4\sqrt{2} + 4\sqrt{10}$	2p
6.	$A_{\Delta MNP} = \frac{MN \cdot NP \cdot \sin\left(\ll MNP\right)}{2}$	2p
	$A_{\Delta MNP} = 2$	
	$\sin\left(\ll MNP\right) = \frac{1}{2}$	1p
	$A_{\Delta MNP} = 12$	2p
	ΔMNP ——	

1. a)	$A_{1}(2,1), A_{2}(4,4)$	2p
	$A_1 A_2 : \begin{vmatrix} x & y & 1 \\ 2 & 1 & 1 \\ 4 & 4 & 1 \end{vmatrix} = 0$	2p
	$A_1 A_2 : 3x - 2y - 4 = 0$	1p
b)		2p
	$\Delta = \begin{vmatrix} 2 & 1 & 1 \\ 4 & 4 & 1 \end{vmatrix}$	
	$\Delta = 4$	1p

	1	2p
	$A_{\Delta OA_1A_2} = \frac{1}{2} \cdot \left \Delta \right = 2$	2p
c)	$\begin{vmatrix} 2n & 3n-2 & 1 \end{vmatrix}$	3p
	Justificarea faptului că $\begin{vmatrix} 2p & 3p-2 & 1 \end{vmatrix} = 0$	
	$\begin{vmatrix} 2q & 3q-2 & 1 \end{vmatrix}$	
	1	2p
	$\Rightarrow A_m, A_n, A_p$ coliniare	
2.	$m = -3 \Rightarrow f = x^3 - 5x^2 + 2x + 8$	1p
a)	$C = v^2 - 3v - 4$	3p
	$C = x^2 - 3x - 4$	
	R = 0	1p
b)	$f:(x+1) \Leftrightarrow f(-1)=0$	2p
		ı
	f(1) = -1 + m - 2 - 2 + 2m + 14 = 3m + 9	
		1p
	$3m+9=0 \Leftrightarrow m=-3$	2p
		2p
	`CO \	
c)	Cu notația $2^x = t > 0 \Rightarrow t^3 - 5t^2 + 2t + 8 = 0 \Leftrightarrow (t - 2)(t + 1)(t - 4) = 0$	2p
		1p
	t = -1 < 0	
	$t = 2 \Leftrightarrow x = 1$	1p
	$t = 4 \Leftrightarrow x = 2$	1p

1.	$\lim_{x \to 0} f(x) = -5, \lim_{x \to 0} f(x) = -5, f(0) = -5$	3p
(a)	f este continuă în punctul $x_0 = 0$	2p

	b)	$\lim_{x \to 5} \frac{f(x)}{25 - x^2} = \lim_{x \to 5} \frac{x - 5}{(5 - x)(5 + x)} = \lim_{x \to 5} \frac{-1}{5 + x}$	3p
		$\lim_{x \to 5} \frac{f(x)}{25 - x^2} = -\frac{1}{10}$	2p
4		1	
	c)	Ecuația tangentei este $y - f(-2) = f'(-2)(x+2)$	2p
	X		
		Pentru $x < 0$, $f(x) = \frac{-5}{x^2 + 1} \Rightarrow f'(x) = \frac{10x}{(x^2 + 1)^2}$, oricare ar fi $x < 0$	2p
		4 13	
		Ecuația tangentei este $y = -\frac{4}{5}x - \frac{13}{5}$	1,5
			1p
-	2.	F e elementară ⇒F e derivabilă	2p
	a)	$F'(x) = f(x), \forall x \in \mathbb{R}$	2p
		$\Rightarrow F$ e primitivă pentru f	1p
	b)	$\int_{1}^{2} F(x) \cdot f(x) dx = \int_{2}^{4 + \ln 2} y dy$	2p
		$\int_{1}^{2} F(x) \cdot f(x) dx = \frac{y^{2}}{2} \Big _{2}^{4 + \ln 2}$	2p
		$\int_{0}^{2} F(x) \cdot f(x) dx = \frac{\ln^{2} 2 + 8 \ln 2 + 12}{2}$	1p
		i Z	
	c)	$A = \int_{1}^{e} F(x)dx = 2\int_{1}^{e} xdx + \int_{1}^{e} \ln xdx$	2p
		$\int_{1}^{e} x dx = \frac{e^{2} - 1}{2}, \int_{1}^{e} \ln x dx = 1$	2p
			1p
		$A = e^2$	
		n-c	
			The second

Varianta 63

Prof: Păcurar Cornel-Cosmin

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$S_5 = \frac{b_1 \left(q^5 - 1\right)}{q - 1}$	3p
	q-1	2p
	$S_5 = 31$	
	92.	
2.	$S = f(-3) + f(-2) + \dots + f(2) + f(3) = (-3)^{2} + (-2)^{2} + \dots + 2^{2} + 3^{2}$	2p
	S = 0	3p
3.	$x^3 - x^2 + 1 = x^3 + 3x^2 + 3x + 1$	2p
	$4x^2 + 3x = 0$	2p
		1p
	$x \in \left\{0, -\frac{3}{4}\right\}$	
4		
4.	Fie x prețul inițial $\Rightarrow \frac{1}{10} \cdot x$ reprezintă reducerea	2p
	$\frac{9}{10} \cdot x$ reprezintă prețul după reducere	1p
	$\frac{9}{10} \cdot x = 180 \Leftrightarrow x = 200$	2p
		-P
5.	$\frac{2}{a+2} = \frac{a+3}{3}$	1p
	$\begin{vmatrix} a+2 & 5 \end{vmatrix}$	2p
	$(a+2)(a+3) = 2 \cdot 3 \Leftrightarrow a^2 + 5a = 0$	
	a=0 sau $a=-5$	1p
		1p

	$a < 0 \Rightarrow a = -5$	
6.	Fie AD ⊥ BC, cu D∈BC	1p
	BD=6	1p
	AD=8	1p
	$A_{\triangle ABC} = \frac{AD \cdot BC}{2} = 48$	2p

1.	$A^2 = 4A$	3p
a)	$A^2 - 4A = O_2$	2p
b)	$X(a) \cdot X(b) = (I_2 + aA) \cdot I_2 + (I_2 + aA) \cdot bA$	1p
	$A(u) \cdot A(v) - (I_2 + uA) \cdot I_2 + (I_2 + uA) \cdot vA$	r
	$X(a) \cdot X(b) = I_2 + aA + bA + abA^2 = I_2 + aA + bA + 4abA$	
		2p
	$X(a) \cdot X(b) = I_2 + (a+b+4ab)A$	1p
		•
	$\Rightarrow X(a) \cdot X(b) = X(a+b+4ab)$	1p
c)	(1+a -3a)	1p
	$X(a) = \begin{pmatrix} 1+a & -3a \\ -a & 1+3a \end{pmatrix}$	
	$\begin{pmatrix} -u & 1 + 3u \end{pmatrix}$	
	$\det X(a) = 1 + 4a$	1p
	$\det X(a) = 0 \Leftrightarrow a = -\frac{1}{4} \notin \mathbb{Z}$	
	4	1p
	$\Rightarrow \det X(a) \neq 0, \ \forall a \in \mathbb{Z}$	1p
		1p
	$\Rightarrow X(a)$ e inversabilă pentru $\forall a \in \mathbb{Z}$	
2		200
2.	2(x+3)(y+3)-3=2xy+6x+6y+15	3p
a)	$\Rightarrow x * y = 2(x+3)(y+3)-3, \forall x, y \in \mathbb{R}$	2p
	$-x \cdot y - 2(x + 3)(y + 3) 3, \forall x, y \in \mathbb{R}$	
b)	(x*y)*z=4(x+3)(y+3)(z+3)-3	2p

	x*(y*z) = 4(x+3)(y+3)(z+3)-3	2p
	Rezultă că "*" este asociativă	1p
c)	x*(-3) = -3, (-3)*x = -3	2p
	(-2012)*(-2011)**(2011)*(2012) = -3	3p

1.	$f'(x) = 2012x^{2012-1} + 2012^x \ln 2012$	3p
a)	a'() 2012 2011 2012 2012	2p
	$f'(x) = 2012x^{2011} + 2012^x \ln 2012$	
b)	$f''(x) = 2012 \cdot 2011x^{2010} + 2012^x \ln^2 2012$	2p
	$f''(x) \ge 0, \forall x \in \mathbb{R} \Rightarrow f \text{ convexă pe } \mathbb{R}$	3p
c)	$\lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = f''(0)$	3p
	$\lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = \ln^2 2012$	2p
2. a)	$V_g = \pi \int_0^5 \left(\sqrt{x^4 + 4}\right)^2$	2p
	$V_g = \pi \cdot \left(\frac{x^5}{5} + 4x\right)\Big _0^5$	2p
	$V_{g} = 645\pi$	1p
b)	Justificarea faptului că $F'(x) = f(x), \forall x \in \mathbb{R}$	2p
	$\Rightarrow F'(x) = \sqrt{x^4 + 4} \ge 0, \forall x \in \mathbb{R}$	2p
	\Rightarrow F este crescătoare pe $\mathbb R$	1p

c)	$\int_{-4}^{4} f(x) dx = \int_{-4}^{0} f(x) dx + \int_{0}^{4} f(x) dx$	2p
	Justificarea faptului că $\int_{-4}^{0} f(x) dx = \int_{0}^{4} f(x) dx$	2p
	$\int_{-4}^{4} f(x) dx = 2 \cdot \int_{0}^{4} f(x) dx$	1p
	-4 0	

Varianta 64

Prof: Păcurar Cornel-Cosmin

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$x + 2 = \frac{x - 2 + 3x + 4}{2}$	3p
	1	2p
	x = 1	
2.	$f(6) = 0 \Rightarrow$	3p
	$f(1) \cdot f(2) \cdot \dots f(9) = 0$	2p

$5-x \succ 0 \Leftrightarrow x \in (-\infty,5)$	1p
$\log_2(5-x) = \log_2 3^2$	2p
$5-x=9 \Leftrightarrow x=-4$	
	2p
$P = \frac{nr.caz.favorabile}{}$	2p
nr.caz.posibile	3p
p = 6 = 1	
90 15	
M mijlocul lui $[AB] \Leftrightarrow x_M = 3, y_M = 2$	1p
$m_{AB} = -1$	1p
$m_d = 1$	1 1p
$d: v = 2 - 1, (v = 3) \Leftrightarrow v = v = 1 - 0$	_
$a \cdot y = 2 - 1 (x - 3) \Leftrightarrow x - y = 1 - 0$	2p
$\frac{b}{1-R} = 2R$	2p
sin B	1p
$\sin 150^{\circ} = \sin 30^{\circ} = \frac{1}{2}$	2p
R = 8	
	$P = \frac{nr.caz.favorabile}{nr.caz.posibile}$ $P = \frac{6}{90} = \frac{1}{15}$ M mijlocul lui $[AB] \Leftrightarrow x_M = 3, y_M = 2$ $m_{AB} = -1$ $m_d = 1$ $d: y - 2 = 1 \cdot (x - 3) \Leftrightarrow x - y - 1 = 0$ $\frac{b}{\sin B} = 2R$ $\sin 150^\circ = \sin 30^\circ = \frac{1}{2}$

$$\begin{array}{c|ccccc}
1. \\
a) & A(1) = \begin{pmatrix} 5 & -3 \\ 8 & -5 \end{pmatrix}, A(-1) = \begin{pmatrix} -3 & 3 \\ -8 & 7 \end{pmatrix} \\
& A(1) \cdot A(-1) = \begin{pmatrix} 9 & -6 \\ 16 & -11 \end{pmatrix} \\
\hline
b) & (A(x))^2 = \begin{pmatrix} 1+8x-8x^2 & -6x+6x^2 \\ 16x-16x^2 & 1-12x+12x^2 \end{pmatrix} \\
& 2p \\
& 2p \\
\end{array}$$

	$\Rightarrow A(x) = \begin{pmatrix} 1+4(-2x^2+2x) & -3(-2x^2+2x) \\ 8(-2x^2+2x) & 1-6(-2x^2+2x) \end{pmatrix}$	
5	$\Rightarrow A(x) = A(-2x^2 + 2x)$	1p
c)	$\det A(1) = -1 \neq 0 \Rightarrow A \text{ este inversabil} $	1p
	$A^* = \begin{pmatrix} -5 & 3 \\ -8 & 5 \end{pmatrix}$ $A^{-1} = \begin{pmatrix} 5 & -3 \\ 8 & -5 \end{pmatrix}$	2p
	$A^{-1} = \begin{pmatrix} 3 & 5 \\ 8 & -5 \end{pmatrix}$	2p
2.	$x_1 + x_2 + x_3 + x_4 = a$	3p
a)	$\Leftrightarrow a = -5$	2p
b)	$a = 1 \Rightarrow x^4 - x^3 + 2x - 2 = 0 \Leftrightarrow (x - 1)(x^3 + 2) = 0$	3p
	$x \in \left\{1, -\sqrt[3]{2}\right\}$	2p
c)	Rădăcinile întregi ale ecuației se găsesc printre divizorii lui −2,care sunt ±1,±2	2p
	$x = 1 \Rightarrow a = 1 \in \mathbb{Z}, x = -1 \Rightarrow a = -1 \in \mathbb{Z}, x = 2 \Rightarrow a = \frac{7}{2} \notin \mathbb{Z}, x = -2 \Rightarrow a = -\frac{7}{2} \notin \mathbb{Z}$	3p

1.	$f'(x) = 3x^2 - 2x + 1 + 2012^x \ln 2012$	3p
a)	$\Rightarrow f'(0) = 1 + \ln 2012$	2p
b)	$f'(x) = 2x^2 + (x-1)^2 + 2012^x \ln 2012 \ge 0, \forall x \in \mathbb{R}$	3p
	$\Rightarrow f$ este crescătoare pe $\mathbb R$	2p

c)	$a \le b, f$ crescătoare pe $\mathbb{R} \Rightarrow f(a) \le f(b)$	3p
	$\Rightarrow a^3 - a^2 + a - b^3 + b^2 - b \le 2012^b - 2012^a$	2p
2.	$f_0(x) = 4$	3p
a)	$\Rightarrow \int f_0(x) dx = 4x + C$	2p
b)	$f_1(x) = 4x^2 + 4x + 4 > 0, \forall x \in [0,1]$	1p
	$\Rightarrow A = \int_{0}^{1} f_{1}(x) dx = \left(\frac{4x^{3}}{3} + \frac{4x^{2}}{2} + 4x\right)\Big _{0}^{1}$	2p
	$\Rightarrow A = \frac{22}{3}$	2p
c)	$f_2(x) = 16x^2 + 8x + 4$	1p
	$I = \int_{1}^{2} \left(\frac{f_{2}(x) - 4}{x} \right) \cdot e^{x} dx = \int_{1}^{2} (16x + 8) \cdot e^{x} dx = 8 \int_{1}^{2} (2x + 1) \cdot e^{x} dx$	1p
	$\int_{1}^{2} (2x+1) \cdot e^{x} dx = (2x+1) \cdot e^{x} \Big _{1}^{2} - 2e^{x} \Big _{1}^{2} = 3e^{2} - e$	2p
	$\Rightarrow I = 8 \cdot \left(3e^2 - e\right)$	1p

Varianta 65

Prof: PODUMNEACĂ DANIELA

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$a_1 = 1, r = 2, n = 10$ în progresie aritmetică $S_{10} = \frac{(a_1 + a_{10}) \cdot 10}{2} = 100, a_{10} = x$	3p
	2	2p
	$\frac{(1+x)10}{2} = 100, x = 19$	
	1	
2.	$(x-7)^2 - (7-x) \le 0,$ $(x-7)(x-6) \le 0,$	1p
		2p
	$x \in \{6, 7\}$	2p
2		1
3.	$x+8>0 \Rightarrow x \in (-8,\infty)$	1p
	$\log_2 \frac{x^2 + 8}{x + 8} = 0, \frac{x^2 + 8}{x + 8} = 1$	2p
	x+8 $x+8$ $x+8$	2p
	$(x-1)x = 0 \Rightarrow x \in \{0;1\}$	
4.	A_5^3	2p
	60 numere	3p
~		
5.	$\frac{a-3}{5} = \frac{8}{10a}, \ a(a-3) = 4$	2p
		3p
	$a^2 - 3a - 4 = 0 \Rightarrow a \in \{-1, 4\}$	
6.	$d \parallel MN \Rightarrow m_d = m_{MN}$	2p
	_ 1	1p
	$m_{MN} = -\frac{1}{2}$	
	d: x + 2y + 1 = 0	2p
SUI	BIECTUL al II-lea (30 de puncte)	
1	5 -2	3n

1. a)	$\det A = \begin{vmatrix} 5 & -2 \\ 3 & 0 \end{vmatrix} = 5 \cdot 0 - 3 \cdot (-2)$	3p 2p	
	$\det A = 6$		

$A^{-1} = \frac{1}{\det A} A^*$	2p
Calcul $A^* = \begin{pmatrix} 0 & 2 \\ -3 & 5 \end{pmatrix}$	2p
$A^{-1} = \begin{pmatrix} 0 & \frac{1}{3} \\ -\frac{1}{2} & \frac{5}{6} \end{pmatrix}$	1p
$A^{2} = \begin{pmatrix} 19 & -10 \\ 15 & -6 \end{pmatrix}, A \cdot A^{-1} = I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, 3A = \begin{pmatrix} 15 & -6 \\ 9 & 0 \end{pmatrix}$	3p
$A^{2} + A \cdot A^{-1} + 3A = \begin{pmatrix} 35 & -16 \\ 24 & -5 \end{pmatrix}.$	2p
x * y = 3xy + 6x + 6y + 12 + 2	1p
x * y = 3x(y-2) - 6(y-2) + 2	3p
$x * y = 3(x-2)(y-2) + 2, \forall x, y \in \mathbb{R}$	1p
$3(2^{x}-2)(\lg x-2)+2=2 \Rightarrow (2^{x}-2)(\lg x-2)=0$	3p
$2^x = 2 \Rightarrow x = 1 \notin (2, \infty)$ şi lg $x = 2 \Rightarrow x = 100 \in (2, \infty)$, $S = \{100\}$	2p
$x \in (2, \infty) \Leftrightarrow x > 2 \Leftrightarrow x - 2 > 0$ $\Rightarrow (x - 2)(y - 2) > 0$	2p
$y \in (2, \infty) \Leftrightarrow y > 2 \Leftrightarrow y - 2 > 0$	
$(x-2)(y-2)+2>2 \Leftrightarrow$	2p
$x * y \in (2, \infty)$	1p
	Calcul $A^* = \begin{pmatrix} 0 & 2 \\ -3 & 5 \end{pmatrix}$ $A^{-1} = \begin{pmatrix} 0 & \frac{1}{3} \\ -\frac{1}{2} & \frac{5}{6} \end{pmatrix}$ $A^2 = \begin{pmatrix} 19 & -10 \\ 15 & -6 \end{pmatrix}, A \cdot A^{-1} = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, 3A = \begin{pmatrix} 15 & -6 \\ 9 & 0 \end{pmatrix}$ $A^2 + A \cdot A^{-1} + 3A = \begin{pmatrix} 35 & -16 \\ 24 & -5 \end{pmatrix}.$ $x * y = 3xy + 6x + 6y + 12 + 2$ $x * y = 3x(y - 2) - 6(y - 2) + 2$ $x * y = 3(x - 2)(y - 2) + 2, \forall x, y \in \mathbb{R}$ $3(2^x - 2)(\lg x - 2) + 2 = 2 \Rightarrow (2^x - 2)(\lg x - 2) = 0$ $2^x = 2 \Rightarrow x = 1 \notin (2, \infty) \text{ si } \lg x = 2 \Rightarrow x = 100 \in (2, \infty), S = \{100\}$ $x \in (2, \infty) \Leftrightarrow x > 2 \Leftrightarrow x - 2 > 0$ $y \in (2, \infty) \Leftrightarrow y > 2 \Leftrightarrow y - 2 > 0$ $(x - 2)(y - 2) + 2 > 2 \Leftrightarrow$

1. a)
$$f'(x) = \frac{3x^2}{3} - 1 + \frac{(x^2 + 1)'}{x^2 + 1}$$
 2p

	$f'(x) = x^2 - 1 + \frac{2x}{x^2 + 1},$	1p
	$f'(x) = \frac{x^4 + 2x - 1}{x^2 + 1}$	
b)	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$	2p
	f'(1) = 1	2p
	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 1$	1p
c)	Ecuația tangentei este $y - f(0) = f'(0)(x - 0)$	2p
	f'(0) = -1	1p
	Ecuația tangentei este $x + y = 0$.	2p
2.	$\lim_{x \nearrow 0} f(x) = \lim_{x \searrow 0} f(x) = f(0) = 6 \Rightarrow f \text{ continuă în punctul } 0,$	2p
a)		
	f funcție elementară \Rightarrow f continuă pe \mathbb{R}^*	2p
	funcția f este continuă pe $\mathbb{R}^- \Rightarrow$ f admite primitive pe \mathbb{R}^- .	1p
b)	Pentru $x > 0$, $\int_{1}^{1} f(x)dx = \int_{1}^{2} (x^{2} - 2x + 6)dx$	2p
	$\int_{1}^{2} f(x) = \left(\frac{x^{3}}{3} - x^{2} + 6x\right) \Big _{1}^{2}$	2p
	$\int_{1}^{2} f(x) = -\frac{2}{3}$	1p
c)	$A = \int_{-1}^{0} g(x)dx = \int_{-1}^{0} x(e^{x} + 5)dx =$	1p
	$= \int_{-1}^{0} x e^{x} dx + \int_{-1}^{0} 5x dx =$	1p
	$= xe^{x} \Big _{-1}^{0} - e^{x} \Big _{-1}^{0} + 5\frac{x^{2}}{2} \Big _{-1}^{0} =$	2p

$=\frac{4-7e}{}$	1p
-2e	

Varianta 66

Prof: PODUMNEACĂ DANIELA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\log_3 \frac{15 \cdot 6}{18} =$	3p
	18	2p
	$= \log_5 5 = 1$	
2.	Soluții reale distincte dacă $\Delta > 0$	1p
	$\Delta = (-2m - 1)^2 - 4m = 4m^2 + 1$	2p
	$4m^2 + 1 > 0$ pentru $\forall m \in \mathbb{R}$	2p
3.	Conform injectivității $1 + \sqrt{2x+1} = x \Leftrightarrow \sqrt{2x+1} = x-1 \Leftrightarrow$	1p
	Condiții pentru rezolvarea ecuației iraționale $ \frac{2x+1 \ge 0}{x-1 \ge 0} \} \Rightarrow x \ge 1 \Leftrightarrow x \in [1,\infty) $	1p
	$\Leftrightarrow x^2 - 4x = 0 \Rightarrow \begin{cases} x = 0 \notin [1, \infty) \\ x = 4 \in [1, \infty) \end{cases}$	2p
	Mulţimea soluţiilor $S = \{4\}$	1p
4.	Numărul tuturor submulțimilor este $2^4 = 16$	1p
	Numărul submulțimilor cu 2 elemente $C_4^2 = 6$	2p
		2p

	Probabilitatea $P = \frac{6}{16} = \frac{3}{8}$	
5.	Din $y = 7x - 3 \Rightarrow m_d = 7 \text{ si } m_{PQ} = \frac{3m - 2}{-3 - m}$	2p
	Din $d \parallel PQ \Rightarrow m_d = m_{PQ} \Leftrightarrow 7 = \frac{3m-2}{-3-m} \Rightarrow$	2p
	$m = -\frac{19}{10}$	1p
6.	$AC^2 = AB^2 + BC^2 - 2AB \cdot BC \cdot \cos B \Longrightarrow$	1p
	Prin calcul $\Rightarrow AC = \sqrt{37}$,	
	Perimetrul este $P = AB + BC + AC = 11 + \sqrt{37}$	2p
	Perimetrul este $F = AB + BC + AC = 11 + \sqrt{3}$	2p

1	(,	2
1.	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	2p
a)	Dacă matricea sistemului este $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 2 & -1 & a \end{bmatrix}$ atunci,	
	$\begin{pmatrix} 2 & -1 & a \end{pmatrix}$	
	$\det A = 2a + 2$	
		3p
b)	Prin calcul direct $M(1,1,0)$ verifică toate ecuațiile,	3p
	Tim calculation of (1,1,0) verifical coate octangino,	Р
	Din ecuația trei ⇒soluția nu depinde de a	2p
c)	$d_{x} = \begin{vmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & a \end{vmatrix} = 2a + 2, \ d_{y} = \begin{vmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \\ 2 & 1 & a \end{vmatrix} = 2a + 2, \ d_{z} = \begin{vmatrix} 1 & 1 & 2 \\ -1 & 1 & 0 \\ 2 & -1 & 1 \end{vmatrix} = 0$	3p
	$d_{11} = \begin{vmatrix} 0 & 1 & 1 \end{vmatrix} = 2a + 2$, $d_{12} = \begin{vmatrix} -1 & 0 & 1 \end{vmatrix} = 2a + 2$, $d_{13} = \begin{vmatrix} -1 & 1 & 0 \end{vmatrix} = 0$	
	$\begin{vmatrix} 1 & -1 & a \end{vmatrix}$ $\begin{vmatrix} 2 & 1 & a \end{vmatrix}$ $\begin{vmatrix} 2 & -1 & 1 \end{vmatrix}$	
	$x = \frac{d_x}{\det A} = 1$, $y = \frac{d_y}{\det A} = 1$, $z = \frac{d_z}{\det A} = 0$, soluția sistemului este $S = \{(1,1,0)\}$.	2p
	$\det A \qquad \det A \qquad \det A \qquad \det A$	
2.	Restul este $r = f(-3) =$	2p
a)	= 7.	3p
/	- <i>i</i> .	- r
b)	-2	3p
- /	Suma rădăcinilor este $S_1 = \frac{-2}{1}$	- 1
	1	
		l

	= -2.	2p
c)	$(1-x_1)(1-x_2)(1-x_3) = 1-S_1+S_2-S_3 =$	3p
\Diamond	= -1.	2p

1. a)	Asimptota este $y = \lim_{x \to \infty} \frac{e^x}{6^x - 1} =$	1p
	$= \lim_{x \to \infty} \frac{e^x}{6^x (1 - \frac{1}{6^x})} = \lim_{x \to \infty} \left(\frac{e}{6}\right)^x \frac{1}{(1 - \frac{1}{6^x})} = 0$	3p
	$y=0$ asimptotă orizontală la $+\infty$.	1p
b)	Funcția $g(x) = \frac{f(x)}{e^x} = \frac{1}{6^x - 1}$,	2p
	$g'(x) = \frac{-6^x \ln 6}{(6^x - 1)^2}$	3р
c)	$6^{x} \ln 6 > 0, \forall x \in \mathbb{R}$	1p
	Cum $(6^x - 1)^2 \ge 0, \forall x \in \mathbb{R}$	1p
	Rezultă că $g'(x) = \frac{-6^x \ln 6}{(6^x - 1)^2} < 0, \forall x \in \mathbb{R}^*, \Rightarrow$	1p
	$\Rightarrow g(x)$ descrescătoare pe \mathbb{R}^* .	2p
2. a)	$F(x) = \frac{1}{2} \int \frac{2x}{1+x^2} dx = \frac{1}{2} \ln(1+x^2) + c$	2p
	$F(0) = \frac{1}{2}\ln 1 + c = 5 \Longrightarrow c = 5$	2p

	O primitivă a funcției este $F(x) = \frac{1}{2}\ln(1+x^2) + 5$.	1p
b)	$\int_0^1 \frac{1}{x} f(x) dx = \int_0^1 \frac{1}{1+x^2} dx =$	2p
	$= arctgx\Big _0^1 =$	2p
	$=\frac{\pi}{4}$	1p
c)	$\int_0^1 x f'(x) dx = x \cdot f(x) \Big _0^1 - \int_0^1 f(x) dx =$	2p
	$\int_0^1 x f'(x) dx = x \cdot f(x) \Big _0^1 - \int_0^1 f(x) dx =$ $= \frac{1}{2} - \frac{1}{2} \ln(1 + x^2) \Big _0^1 =$	2p
	$=\frac{1}{2}\ln\frac{e}{2}.$	1p
		ı

Varianta 67

Prof: PODUMNEACĂ DANIELA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\sqrt[3]{2 \cdot 32} - 1 = \sqrt[3]{64} - 1 =$	3p
	=4-1=3	2p
2.	$f(3^0) = 2 + 3^0$; $f(3^1) = 2 + 3^1$; $f(3^2) = 2 + 3^2$;: $f(3^{10}) = 2 + 3^{10}$	1p

	$11 \cdot 2 + 3^{0} + 3^{1} + 3^{2} + \dots + 3^{10} = 11 \cdot 2 + 1 \cdot \frac{3^{11} - 1}{3 - 1} = \dots$ Suma lor este	2p
	$=\frac{3^{11}+43}{2}$	2p
3.	$x+3 \ge 0, 5-x \ge 0 \Rightarrow x \in [-3;5]$	1p
	Ecuația echivalentă $x + 3 = (5 - x)^2 \Leftrightarrow x^2 + 11x + 22 = 0 \Rightarrow$	2p
	$\Rightarrow x_1 = \frac{11 - \sqrt{33}}{2} \in [-3; 5] \text{ si } \Rightarrow x_1 = \frac{11 + \sqrt{33}}{2} \notin [-3; 5] \text{, soluția } S = \{\frac{11 - \sqrt{33}}{2}\}.$	2p
4.	$P_5 = 5! =$	2p
	= 720	3p
5.	$\overrightarrow{MN} + \overrightarrow{NP} + \overrightarrow{PQ} + \overrightarrow{QM} = \vec{0}$	2p
	Cum $\overrightarrow{NP} = -\overrightarrow{PN}$ și $\overrightarrow{QM} = -\overrightarrow{MQ}$, atunci	2p
	$\overrightarrow{MN} - \overrightarrow{PN} + \overrightarrow{PQ} - \overrightarrow{MQ} = \vec{0}$	1p
6.	$\sin 45^{\circ} \cdot \cos 30^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} =$	3p
	$=\frac{\sqrt{6}}{4}$	2p

1. a)	$\Delta(1,-1) = \begin{vmatrix} 1 & -1 & 1 \\ 3 & 0 & 2 \end{vmatrix} =$	2p
	$\Delta(1,-1) = \begin{vmatrix} 3 & 0 & 2 \\ 0 & 1 & 3 \end{vmatrix} = $ $= 3 - 2 + 9 = 10$	3p
b)	$\Delta(x,y) = \begin{vmatrix} x & y & 1 \\ 3 & 0 & 2 \\ 0 & 1 & 3 \end{vmatrix} = x - 9y + 3.$	2p
	Atunci $\begin{cases} x+y=-6 \\ x-9y+3=7 \end{cases} \Rightarrow \begin{cases} x=-5 \\ y=-1 \end{cases}$	3p
c)	$\Delta(x, y) = x - 9y + 3 \Rightarrow \Delta(x, x) = -8x + 3$	1p

	$\Delta(x,x) = 0 \Longrightarrow -8x + 3 = 0 \Longrightarrow$	2p
	$\Rightarrow x = \frac{3}{8} \notin \mathbb{Z} \Rightarrow \Delta(x, x) \neq 0, \forall x \in \mathbb{Z}$	2p
2.	$f:(x-2) \Leftrightarrow f(2) = 0 \Rightarrow$	3p
a)	$\Rightarrow -a + 2 = 0 \Rightarrow a = 2 \in \mathbb{R}$	2p
b)	D-1-424- 28 28 2 4	1n
0)	Relația este $3S_3 - 2S_1 = 3 \Leftrightarrow$	1p
	$S_1 = a; S_3 = -(a-6)$, atunci	2p
		2p
	Relația devine $-5a + 18 = 3 \Rightarrow a = 3$	- P
c)	Dacă a = 6 atunci polinomul este de forma $f = X^3 + 6X^2 + 6X =$	1p
	$=X(X^2+6X+6)=$	2p
	$= X(X - 3 + \sqrt{3})(X + 3 - \sqrt{3})$	2p
	7/h.	

1.	Funcția admite asimptote verticale în punctele $x = 0$ și $x = 2$.	1p
a)	$\lim_{x \to 0} f(x) = +\infty, \lim_{x \to 0} f(x) = -\infty \Rightarrow x = 0$	
	$\lim_{n \to \infty} f(n) = \lim_{n \to \infty} f(n) = \lim_{n \to \infty} f(n) = 0$	2p
	$\lim_{x \nearrow 2} f(x) = -\infty, \lim_{x \searrow 2} f(x) = +\infty \Longrightarrow x = 2$	2p
b)	$f'(x) = \frac{-2(x^2 + x - 1)}{(x^2 - 2x)},$	2p
	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) =$	2p
	$\begin{vmatrix} x-y & x-1 \\ =-2 \end{vmatrix}$	1p
		2
c)	$f'(x) = 0 \Leftrightarrow$ $\Leftrightarrow x^2 + x - 1 = 0 \Rightarrow$	2p
	$\Leftrightarrow x^2 + x - 1 = 0 \Rightarrow$	1p
	$\Rightarrow x_{1,2} = \frac{-1 \pm \sqrt{5}}{2} \neq 0; \neq 2$	2p

		1
2.	$A = \int_{1}^{2} f(x)dx =$	2p
a)	$\left x^4\right ^2$	
	$=\left(x-\frac{x^4}{4}\right)\Big _{1}^{2}=$	2p
	$=\frac{-13}{4}$	1p
	4	
b)	$\int_{-1}^{1} x^{5} \cdot f(x) dx = \int_{-1}^{1} (x^{5} - x^{8}) dx =$	2p
	$=\left(\frac{x^{6}}{6}-\frac{x^{9}}{9}\right)\Big _{-1}^{1}=$	
	$=(\frac{6}{6}-\frac{9}{9}) _{-1}$	2p
	$=-\frac{2}{3}$	1p
	9	
c)	$\int_0^1 x \cdot f''(x) dx = \int_0^1 x \cdot (-6x) dx =$	2p
	$\int_0^1 x \cdot f''(x) dx = \int_0^1 x \cdot (-6x) dx =$ $= -6 \int_0^1 x^2 dx =$	2p
	= -2	1p

Varianta 68

Prof: PODUMNEACĂ DANIELA

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

_		
1.	$a_2 = a_1 + r \Leftrightarrow -1 = a_1 + r$	1p
	$a_6 = a_1 + 5r \Leftrightarrow -17 = a_1 + 5r$ \Longrightarrow	1p
	$\Rightarrow a_1 = 3, r = -4$	2p
	$a_{10} = a_1 + 9r = -33$	2p
7		1p
2.	x+2>0	1p
,	$ \begin{vmatrix} x+2>0 \\ x-6>0 \end{vmatrix} \Rightarrow x \in (6,\infty) $	
		2
	$\log_4 \frac{x+2}{x-6} = 1 \Rightarrow \frac{x+2}{x-6} = 4 \Rightarrow$	2p
	$\Rightarrow -3x = -26 \Rightarrow x = \frac{26}{3} \in (6, \infty)$	2p
2		25
3.	$x_{v} = \frac{3}{4}$ $y_{v} = \frac{17}{9}$ \Rightarrow	2p
	17 }⇒	
	$y_{\nu} = \frac{1}{9}$	2p
	$\Rightarrow V(\frac{3}{4}, \frac{17}{9})$	1p
	4'9'	1
4.	n! -2 $n!$	2p
	$\frac{n!}{(n-3)! \cdot 3!} = 2 \frac{n!}{(n-2)!} \Leftrightarrow$	3p
	$\Leftrightarrow n-2=12 \Rightarrow n=14 \in \mathbb{N}$	
5.	$AB = \sqrt{(2+1)^2 + (-3-m)^2} \Rightarrow$	2p
	$\Rightarrow \sqrt{9 + (3 + m)^2} = 3 \Leftrightarrow$	2p
	$\Leftrightarrow 3+m=0 \Rightarrow m=-3$	1p
6.	$tg45^{\circ} - 2\cos 180^{\circ} = 1 - 2 \cdot (-1) =$	3p
	= 3	2p
		_

1.	$A_0(1,0):A_2(4,4)$	1p
a)		
		2p
		2p

	$A_0 A_2 : \begin{vmatrix} x & y & 1 \\ 1 & 0 & 1 \\ 4 & 4 & 1 \end{vmatrix} = 0 \Leftrightarrow$ $\Leftrightarrow -4x + 3y + 4 = 0$	
b)	$A_{1}(2,1)$	1p
	$\begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 4 & 4 & 1 \end{vmatrix} = 1 \neq 0 \Longrightarrow$	3p
	$\Rightarrow A_0, A_1, A_2$ nu sunt coliniare	1p
	07 17 2	
c)	$A_n(2^n, n^2); A_{n+1}(2^{n+1}, (n+1)^2); A_n(2^{n+2}, (n+2)^2)$	1p
	$\begin{vmatrix} 2^n & n^2 & 1 \end{vmatrix}$	
	$\begin{vmatrix} 2^{n} & n^{2} & 1 \\ 2^{n+1} & (n+1)^{2} & 1 \\ 2^{n+2} & (n+2)^{2} & 1 \end{vmatrix} = 2^{n} \cdot (-2n+1)$	2p
	$\begin{vmatrix} 2 & (n+1) & 1 \\ 2^{n+2} & (n+2)^2 & 1 \end{vmatrix}$	1
	$ 2^{n-2} (n+2)^2 1 $	
	$2^n \cdot (-2n+1) \neq 0, \forall n \in \mathbb{N} \Rightarrow \text{punctele nu sunt coliniare.}$	2p
2.	$x \circ y = xy - 5x - 5y + 25 + 5 =$	1p
	= x(y-5)-5(y-5)+5=	
a)	$= (x-5)(y-5)+5, \forall x, y \in \mathbb{R}$	2p
	$-(x-3)(y-3)+3, \forall x, y \in \mathbb{R}$	2p
		-r
b)	$\exists e \in \mathbb{R}, a.i.x \circ e = e \circ x = x, \forall x \in \mathbb{R}$	1p
		20
	$x \circ e = x \Longrightarrow e = 6, x \neq 5$ $e \circ x = x \Longrightarrow e = 6, x \neq 5$	2p
	$e \circ x = x \Rightarrow e = 6, x \neq 5$	
	$\Rightarrow e = 6 \in \mathbb{R}$	2p
(2)	So observit of u. 5 – 5 Hu s ID	25
c)	Se observă că $x \circ 5 = 5, \forall x \in \mathbb{R}$	2p
	$(-2012) \circ (-2011) \circ \circ 4 \circ 5 \circ 6 \circ \circ 2012 = a \circ 5 \circ b =$	2p
	$\underbrace{(-2012)\circ(-2011)\circ\circ 4}_{a}\circ 5\circ \underbrace{6\circ\circ 2012}_{b} = a\circ 5\circ b =$	
	$=5 \circ b = 5$	1p

1	$\Gamma_{\text{const.}} \leftarrow \Gamma_{\text{const.}} = \Gamma_{\text{const.}$	1
1. a)	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, cum $f(1) = 3$	1p
α)	$C(C) = \frac{1}{2} \cdot 2^{x} \cdot 2^{x}$	
	$f'(x) = \frac{1}{x} + 3^x \ln 3$	1p
		10
	și panta dreptei $f'(1) = \ln 27e$	1p
	ecuația tangentei este $(\ln 27e)x - y + 3 - \ln 27e = 0$	2p
		-r
b)	$\lim_{x \to \infty} \frac{f(x)}{x+3} = \lim_{x \to \infty} \frac{\ln x + 3^x}{x+3} =$	2p
	$\lim_{x \to \infty} x + 3 \xrightarrow{x \to \infty} x + 3 = -1$	
	$\frac{1}{2} + 3^x \ln 3$	
	$=\lim_{x\to\infty}\frac{x}{1}=\infty$	3p
	$x \rightarrow \infty$ 1	
		1
c)	Funcția f este crescătoare pe $(0,\infty)$ dacă $f'(x) > 0$	1p
	$\frac{1}{x} > 0, \forall x \in (0, \infty)$	1,5
	$\frac{1}{x} > 0, \forall x \in (0, \infty)$ $3^{x} > 0, \forall x \in (0, \infty)$ \Rightarrow	1p
		1p
	$\Rightarrow f'(x) > 0, \forall x \in (0, \infty) \Rightarrow$ $\Rightarrow \text{f crescătoare pe } (0, \infty)$	1p
	\rightarrow former steems as $(0, 1)$	1p
	\Rightarrow f crescătoare pe $(0,\infty)$	1p
2.		2p
	$\int_{1}^{1} (f(x) - \frac{1}{x+3}) dx = \int_{1}^{1} \frac{1}{x+5} dx = 0$	•
a)	$\int_{1}^{e} (f(x) - \frac{1}{x+3}) dx = \int_{1}^{e} \frac{1}{x+5} dx =$ $= \ln(x+5)\Big _{1}^{e} =$	
		2p
	$= \ln \frac{e+5}{e+1}$	1
	e+1	1p
b)	$\int_{0}^{2} f'(x) dx = f(x)^{2}$	2p
	$\int_{1}^{2} f'(x)dx = f(x)\Big _{1}^{2} =$	3p
	$=-\frac{31}{420}$] Jp
	420	
c)	1 1	1p
	$g(x) = f(x) - \frac{1}{x+5} = \frac{1}{x+3}$	TP
	X 1 3	
		1p
		2p
		1p

$$V = \pi \int_{1}^{2} g^{2}(x) dx =$$

$$= \pi \int_{1}^{2} (\frac{1}{x+3})^{2} dx = \int_{1}^{2} (x+3)^{-2} dx =$$

$$= -\pi \left(\frac{1}{x+3}\right) \Big|_{1}^{2} = \frac{\pi}{4}$$

Varianta 69

Prof: PODUMNEACĂ DANIELA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

1.	$\log_n 32 = a \in \mathbb{N} \Rightarrow 32 = n^a \Rightarrow$	3p
	$\Rightarrow n=2, n=32$	2p
2.	$f = \frac{-\Delta}{\Delta}$	1p
	$f_{\text{max}} = \frac{-\Delta}{4a} \Leftrightarrow$	2p
	$\Leftrightarrow \frac{1}{8} = \frac{9 + 8a}{8} \Rightarrow$	2p
	$\Rightarrow a = -1$	
3.	$\left(\frac{3}{5}\right)^{x-2} = \left(\frac{3}{5}\right)^{2(3-x)} \Rightarrow$	1p
	$ \begin{array}{c} (5) & (5) \\ \Rightarrow x - 2 = 2(3 - x) \Rightarrow \end{array} $	
		2p
	$\Rightarrow x = \frac{8}{3}$	2p
4.	$x+12\% x=3920 \Leftrightarrow$	2p
	$\Leftrightarrow x \cdot \frac{28}{25} = 3920 \Rightarrow x = 3500$	3p
	25	

5.	$l^2 - l^2$	3p
	$A_{\Delta} = \frac{1}{2} \frac{\sqrt{3}}{\sqrt{3}}$	
	4	
	$=\frac{4}{\sqrt{3}}=\frac{4\sqrt{3}}{\sqrt{3}}$	
	$\sqrt{3}$ 3	2p
4		
6.	Din teorema cosinusului $\Rightarrow \cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC} =$	3p
	Diff teoretila cosmusului $\Rightarrow \cos A = \frac{1}{2 \cdot AB \cdot AC}$	
	$16+8-27 5\sqrt{2}$	
	$=\frac{1}{2\cdot 4\cdot 2\sqrt{2}}=\frac{1}{32}$	25
		2p

1.		1p
a)	$\det A = \begin{vmatrix} 2x - \sqrt{3} & 2x \\ 2x & 2x + \sqrt{3} \end{vmatrix} =$	1p
(u)	$2x 2x + \sqrt{3}$	
	$(2x-\sqrt{3})(2x+\sqrt{3})-4x^2 =$	2p
		2p
	$=4x^2 - 3 - 4x^2 = -3$	2p
b)	$(8r^2-4\sqrt{3}r+3 8r^2)$	2p
	$A(x) \cdot A(X) = \begin{pmatrix} 8x^2 - 4\sqrt{3}x + 3 & 8x^2 \\ 8x^2 & 8x^2 + 4\sqrt{3}x + 3 \end{pmatrix}, (1)$	
	$\left(\begin{array}{ccc} 8x & 8x + 4\sqrt{3}x + 3\right)$	
	(9, 2, 4, 5, 9, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	
	$4x \cdot A(x) + 3I_2 = \begin{pmatrix} 8x^2 - 4\sqrt{3}x & 8x^2 \\ 8x^2 & 8x^2 + 4\sqrt{3}x \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, (2)$	2p
	$8x^2 8x^2 + 4\sqrt{3}x$ (0 3)	2p
	Din calcul direct $(1) = (2)$	1p
	Diffication direct $(1) = (2)$	
c)	$A^{2}(x) = 4x \cdot A(x) + 3I_{2}$	1p
		2p
	$A^{2}(2) - 8 \cdot A(2) = 8 \cdot A(2) + 3I_{2} - 8 \cdot A(2) =$	
	$(3 \ 0)$	
	$=3I_2=\begin{pmatrix}3&0\\0&3\end{pmatrix}$	2p
2.	$(x \circ y) \circ z = x \circ (y \circ z), \forall x, y, z \in \mathbb{R}$	1p
a)	$(x \circ y) \circ z = (x + y - 4) \circ z = x + y + z - 8 = x \circ (y + z - 4) = x \circ (y \circ z)$	3p
",	$(x \circ y) \circ \zeta - (x + y - 4) \circ \zeta - x + y + \zeta - \delta - x \circ (y + \zeta - 4) - x \circ (y \circ \zeta)$	P
	Legea " \circ " este asociativă $\forall x, y, z \in \mathbb{R}$.	1p

b)	$(2 \perp 3) \circ (4 \perp 5) = (12) \circ (30) - 4 =$	3p
	=12+30-4=38	2p
c)	Ecuație echivalentă cu $(x^2 + 2x + 1) \circ (3 - 2x) = 5 \Leftrightarrow$	2p
	$\Leftrightarrow x^2 = 5 \Rightarrow$	2p
	$\Rightarrow x = \pm \sqrt{5}$	1p
~		

1. a)	$x^2 - 4x + 5a = $ pătrat perfect dacă $a = \frac{4}{5}$	3p
	Atunci $f(x) = \frac{x-5}{(x-2)^2} \Rightarrow f: \mathbb{R} - \{2\} \to \mathbb{R} \Rightarrow f \text{ are o singură asimptotă.}$	2p
b)	Funcția devine $f(x) = \frac{x-5}{(x-2)^2}, f: \mathbb{R} - \{2\} \to \mathbb{R}$	2p
	$f'(x) = \frac{-(x-8)}{(x-2)^3}$	3p
c)	Conform (b) $f'(x) < 0, \forall x \in (8, \infty) \Rightarrow$	3p
	\Rightarrow f descrescătoare pe intervalul $(8, \infty)$	2p
2.	Funcția f este o primitivă a funcției g dacă $f'(x) = g(x)$	2p
a)	(2x-7)' $(2x-7)'$ 1	
	$f'(x) = \left(\sqrt{2x - 7}\right)' = \frac{\left(2x - 7\right)'}{2\sqrt{2x - 7}} = \frac{1}{\sqrt{2x - 7}} = g(x)$	3p
b)	$\int_{4}^{5} g(x)dx = f(x)\Big _{4}^{5} =$	3p
	$= f(5) - f(4) = \sqrt{3} - 1$	2p

$$V = \pi \int_{4}^{6} h^{2}(x) dx = \pi \int_{4}^{6} (\sqrt{2x - 7})^{2} dx =$$

$$= \pi \int_{4}^{6} (2x - 7) dx =$$

$$= \pi \left(\frac{2x^{2}}{2} - 7x \right) \Big|_{4}^{6} = 6\pi$$

$$2p$$

Varianta 70

Prof: RICU ILEANA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracţiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parţiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului obţinut la10.

1.	$\begin{cases} a_1 = 2 \\ a_5 = 14 \end{cases} \Leftrightarrow \begin{cases} a_1 = 2 \\ a_1 + 4r = 14 \end{cases} \Leftrightarrow \begin{cases} a_1 = 2 \\ r = 3 \end{cases}$	3p
	$\Rightarrow a_{100} = a_1 + 99r = 299$	1p
	$\Rightarrow S_{100} = \frac{\left(a_1 + a_{100}\right) \cdot 100}{2} = 15050$	
		1p
2.	$\begin{cases} x_1 + x_2 = m - 1 \\ x_1 x_2 = m - 1 \end{cases}$	1p
	Rel.devine: $\sqrt{m-1} + \sqrt{9 - (m-1)} = 3 \Leftrightarrow \sqrt{m-1} + \sqrt{10 - m} = 3(*)$	
	Cond.: $\begin{cases} m-1 \ge 0 \\ 10-m \ge 0 \end{cases} \Leftrightarrow \begin{cases} m \ge 1 \\ m \le 10 \end{cases} \Rightarrow m \in [1;10]$	1p

	Ridicand la pătrat în ambii membri,ecuatia (*)devine:	
	$m-1+2\sqrt{m-1}\cdot\sqrt{10-m}+10-m=9 \Leftrightarrow \sqrt{m-1}\cdot\sqrt{10-m}=0$	
		1p
	$\sqrt{m-1} = 0 \Rightarrow m = 1 \in [1;10] \text{ sau } \sqrt{10-m} = 0 \Rightarrow m = 10 \in [1;10]$	
		2p
3.	Cond.ca logaritmii sa fie corect definiti:	1p
	.5	
	$\begin{cases} 2x - 5 > 0 & x \in (\frac{\pi}{2}; +\infty) \end{cases}$	
	$\begin{cases} 2x - 5 > 0 \\ x^2 - 8 > 0 \\ \log_2(x^2 - 8) \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \in (\frac{5}{2}; +\infty) \\ x \in (-\infty; -2\sqrt{2}) \cup (2\sqrt{2}; +\infty) \Rightarrow D = (2\sqrt{2}; +\infty) - \{10\} \\ x \neq \pm 10 \end{cases}$	
	$\log_{x}(x^{2}-8) \neq 0 \qquad x \neq \pm 10$	
	Ec. devine $2\log_2(2x-5) = \log_2(x^2-8) \Leftrightarrow \log_2(2x-5)^2 = \log_2(x^2-8) \Leftrightarrow (2x-5)^2 = x^2-8$	2p
	$\Rightarrow 3x^2 - 20x + 33 = 0 \Rightarrow x_1 = 3 \in D \text{ si } x_2 = \frac{11}{3} \in D$	
	3	
		2p
		•
4.	$f(1) = m^2 - m + m + 1 = m^2 + m$	1p
		2n
	$m^2 + m \ge -\frac{1}{4}$	2p
	$4m^2 + 4m + 1 \ge 0$	1p
	$(2m+1)^2 \ge 0(A) \ \forall m \in \mathbb{R}$	1p
		יף
5.	$C_{12}^3 = C_{12}^9 \left(combinari complementare \right)$	3р
	Finalizare: $C_{12}^3 - C_{12}^9 = 0$	
		2p
,	No. 1 Annual Control of the American DO	1
6.	Notăm cu h înălţimea dusă din A pe latura BC $\Rightarrow m_h \cdot m_{BC} = -1$	1p

$$m_{BC} = \frac{y_B - y_C}{x_B - x_C} = \frac{3+2}{-4-6} = \frac{5}{-10} = -\frac{1}{2} \Rightarrow m_h \cdot \left(-\frac{1}{2}\right) = -1 \Rightarrow m_h = 2$$

$$y - y_0 = m(x - x_0) \Rightarrow y - 6 = 2(x-2)$$
2p

1. a)	Fie $A = \begin{pmatrix} \hat{a} & \hat{b} \\ \hat{2} \cdot \hat{b} & \hat{a} \end{pmatrix} \in M, \hat{a}, \hat{b} \in Z_5$; luam $\hat{a} = \hat{1}$ si $\hat{b} = \hat{0} \Rightarrow A = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix} = I_2$	2p
	Daca luam $\hat{a} = \hat{b} = \hat{0} \Rightarrow A = \begin{pmatrix} \hat{0} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix} = O_2$	
	\Rightarrow I ₂ , O ₂ \in M.	2p
		1p
b)	Fie $A = \begin{pmatrix} \hat{a} & \hat{b} \\ \hat{2} \cdot \hat{b} & \hat{a} \end{pmatrix} \in M, \hat{a}, \hat{b} \in Z_5 \text{ si } B = \begin{pmatrix} \hat{c} & \hat{d} \\ \hat{2} \cdot \hat{d} & \hat{c} \end{pmatrix} \in M; \hat{c}, \hat{d} \in Z_5$	2p
	$A + B = \begin{pmatrix} \hat{a} + \hat{c} & \hat{b} + \hat{d} \\ \hat{a} + \hat{c} & \hat{b} + \hat{d} \\ \hat{2} \cdot \hat{b} + \hat{2} \cdot \hat{d} & \hat{a} + \hat{c} \end{pmatrix} = \begin{pmatrix} \hat{a} + \hat{c} & \hat{b} + \hat{d} \\ \hat{2} \cdot \begin{pmatrix} \hat{b} + \hat{d} \\ \hat{b} + \hat{d} \end{pmatrix} & \hat{a} + \hat{c} \end{pmatrix} = \begin{pmatrix} \hat{m} & \hat{n} \\ \hat{m} & \hat{n} \\ \hat{2} \cdot \hat{n} & \hat{m} \end{pmatrix} \in M, \text{ unde } \hat{m} = \hat{a} + \hat{c} \in \mathbb{Z}_5 \text{ si}$	
	$\hat{n} = \hat{b} + \hat{d} \in \mathbb{Z}_5$	
	$A \cdot B = \begin{pmatrix} \hat{a} \hat{c} + \hat{2} \hat{b} \hat{d} & \hat{a} \hat{d} + \hat{b} \hat{c} \\ \hat{2} \hat{b} \hat{c} + \hat{2} \hat{a} \hat{d} & \hat{a} \hat{c} + \hat{2} \hat{b} \hat{d} \end{pmatrix} = \begin{pmatrix} \hat{a} \hat{c} + \hat{2} \hat{b} \hat{d} & \hat{a} \hat{d} + \hat{b} \hat{c} \\ \hat{2} \cdot \begin{pmatrix} \hat{a} \hat{d} + \hat{b} \hat{c} \end{pmatrix} & \hat{a} \hat{c} + \hat{2} \hat{b} \hat{d} \end{pmatrix} = \begin{pmatrix} \hat{p} & \hat{q} \\ \hat{p} & \hat{q} \\ \hat{p} & \hat{q} \end{pmatrix} \in M, \text{ unde}$	
	$\hat{p} = \hat{a} \hat{c} + \hat{2} \hat{b} \hat{d} \in \mathbb{Z}_5 \text{ si } \hat{q} = \hat{a} \hat{d} + \hat{b} \hat{c} \in \mathbb{Z}_5$	

_		
		3p
c)	$A \in M$ este inversabilă $\Leftrightarrow \det(A) \neq \hat{0}$	1p
	$a^{2} - 2b^{2} \neq 0 \Leftrightarrow a^{2} \neq 2b^{2}$	
	Pentru $\hat{a} = \hat{0} \Rightarrow \hat{2}\hat{b}^2 \neq \hat{0} \Rightarrow \hat{b} \in \{\hat{1}, \hat{2}, \hat{3}, \hat{4}\} \Rightarrow$ se construiesc 4 matrice inversabile	
	Pentru $\hat{a} = \hat{1} \Rightarrow \hat{2}\hat{b}^2 \neq \hat{1} \Rightarrow \hat{b} \in \left\{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}\right\} \Rightarrow$ se construiesc 5 matrice inversabile	2p
	Pentru $\hat{a} = \hat{2} \Rightarrow \hat{2}\hat{b}^2 \neq \hat{2}^2 \Rightarrow \hat{2}\hat{b}^2 \neq \hat{4} \Rightarrow \hat{b} \in \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}\} \Rightarrow \text{se construiesc 5 matrice inversabile}$	
	Pentru $\hat{a} = \hat{3} \Rightarrow \hat{2}\hat{b}^2 \neq \hat{3}^2 \Rightarrow \hat{2}\hat{b}^2 \neq \hat{4} \Rightarrow \hat{b} \in \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}\} \Rightarrow \text{se construiesc 5 matrice inversabile}$	
	Pentru $\hat{a} = \hat{4} \Rightarrow \hat{2}\hat{b}^2 \neq \hat{4}^2 \Rightarrow \hat{2}\hat{b}^2 \neq \hat{1} \Rightarrow \hat{b} \in \{\hat{0}, \hat{1}, \hat{2}, \hat{3}, \hat{4}\} \Rightarrow \text{se construiesc 5 matrice inversabile}$	
	Deci mulţimea $U(M) = \{A \in M \mid \text{ există } A^{-1} \in M \}$ are 24 elemente	
		2p
2.	$\left(X^{2} - \frac{1}{2}\right)^{2} + \left(X + \frac{1}{2}\right)^{2} + \frac{1}{2} = X^{4} - X^{2} + \frac{1}{4} + X^{2} + X + \frac{1}{4} + \frac{1}{2} = X^{4} - X^{2} + \frac{1}{4} + X^{2} + X + \frac{1}{4} + \frac{1}{4} = X^{2} + X^{2} $	4p
a)	$ \begin{vmatrix} (X & 2) & (X & 2) & 2 & X & 4 & X & 4 & 2 \\ = X^4 + X + 1 = f & & & & & & & & & & & & & & & & & &$	1p
b)	x_1 rădăcină a polin. $f \Rightarrow f(x_1) = 0 \Rightarrow x_1^4 + x_1 + 1 = 0(1)$	3p
	x_2 rădăcină a polin. $f \Rightarrow f(x_2) = 0 \Rightarrow x_2^4 + x_2 + 1 = 0(2)$	
	x_3 rădăcină a polin. $f \Rightarrow f(x_3) = 0 \Rightarrow x_3^4 + x_3 + 1 = 0(3)$	

	x_4 rădăcină a polin. $f \Rightarrow f(x_4)=0 \Rightarrow x_4^4 + x_4 + 1 = 0(4)$	
	Însumând cele 4 relaţii \Rightarrow $(x_1^4 + x_2^4 + x_3^4 + x_4^4) + (x_1 + x_2 + x_3 + x_4) + 4 = 0$, dar cf.rel. Viete ştim că	1p
	$x_1 + x_2 + x_3 + x_4 = 0 \implies x_1^4 + x_2^4 + x_3^4 + x_4^4 = -4$	1p
c)	$(2,1)^2 (1)^2 1$	3p
	Conform pct.a) $f = \left(x^2 - \frac{1}{2}\right)^2 + \left(x + \frac{1}{2}\right)^2 + \frac{1}{2} > 0, \forall x \in \mathbb{R}$	
	$\stackrel{\smile}{\geq} 0$ $\stackrel{\smile}{\geq} 0$	
	Polinomul f nu admite rădăcini reale.	
		2p
SU	JBIECTUL al III-lea (30 de puncte)	
1	1: C() x 1 2n	

1. a)	$\lim_{x\to\pm\infty} f(x) = +\infty \text{ ;f este continuă pe R,derivabilă pe R şi } f'(x) = e^x - 1$	2p
	x	
	$f'(x) \qquad \qquad \cdots $	
	$f(x) \qquad +\infty \qquad \qquad \searrow \searrow \searrow \searrow \qquad \qquad 0 \qquad \nearrow \nearrow \nearrow \nearrow \qquad +\infty$	2p
	finalizare	1p
b)	Din tabelul de la punctul a) se observă că f are un minim global egal cu 0 atins pentru x=0	3р
	$\Rightarrow f(x) \ge 0, \forall x \in \mathbb{R}$	2p
c)	Din b) $\Longrightarrow f(x) \ge 0, \forall x \in \mathbb{R} \implies e^x \ge x+1, \forall x \in \mathbb{R}(1);$	2p
	Cf.rel.(1) $\Rightarrow e^{x^2} \ge x^2 + 1, \forall x \in [0;1] \Rightarrow \frac{1}{x^2 + 1} \ge \frac{1}{e^{x^2}} = e^{-x^2}$ (2)	
	Deoarece $x \in [0;1] \Leftrightarrow 0 \le x \le 1 \Rightarrow x-1 \le 0/\cdot (x+1) > 0 \Rightarrow$	
	$x^2 - 1 \le 0 \Leftrightarrow x^2 \le 1/\cdot (-1) \Rightarrow -x^2 \ge -1$	
	$\Rightarrow e^{-1} \leq e^{-x^2} (3);$	

	Din (2)si (3) $\Rightarrow e^{-1} \le e^{-x^2} \le \frac{1}{x^2 + 1}$ (prin integrare) $\Rightarrow \int_0^1 e^{-1} dx \le \int_0^1 e^{-x^2} dx \le \int_0^1 \frac{1}{x^2 + 1} dx \Rightarrow$	2p
	$\frac{1}{e} \cdot x \Big _{0}^{1} \le \int_{0}^{1} e^{-x^{2}} dx \le \arctan \left(\frac{1}{e} \right) = \frac{1}{e} \le \int_{0}^{1} e^{-x^{2}} dx \le \frac{\pi}{4}$	
		1p
2. a)	Funcţia f are minim(a=1>0) şi $V_f\left(\frac{a}{2};-\frac{a}{4}\right)$	2p
	Funcţia g are maxim (a= -1<0) şi $V_g\left(\frac{3a}{2};\frac{9a^2}{4}\right)$	3p
		'
b)	Studiem semnul diferenței $f(x) - g(x) = 2x^2 - 4ax$	
	$\Rightarrow \qquad \qquad (r - 0 \Rightarrow f(0) - g(0) - 0 \Rightarrow g(0, 0)$	
	$f(x)-g(x)=0 \Leftrightarrow 2x^2-4ax=0 \Rightarrow \begin{cases} x_1=0 \Rightarrow f(0)=g(0)=0 \Rightarrow O(0,0) \\ x_2=2a \Rightarrow f(2a)=g(2a)=2a^2 \Rightarrow P(2a,2a^2) \end{cases}$	
	$\left(x_2 = 2a \Rightarrow f\left(2a\right) = g\left(2a\right) = 2a^2 \Rightarrow P\left(2a, 2a^2\right)$	2p
	x 0 2a	
	f(x) - g(x) ++++++++++++++++++++++++++++++++++++	
	$\Rightarrow f(x) - g(x) \le 0, \forall x \in [0, 2a] \Rightarrow g(x) \ge f(x), \forall x \in [0, 2a]$	2p
	Calculăm $S = \int_{0}^{2a} (g(x) - f(x)) dx = \int_{0}^{2a} (-2x^2 + 4ax) dx = \left(-2\frac{x^3}{3} + 4a\frac{x^2}{2}\right)\Big _{0}^{2a} = \frac{8a^3}{3}$	

		1р
c)	Ecuatia dreptei OP: $\begin{vmatrix} x & y & 1 \\ 0 & 0 & 1 \\ 2a & 2a^2 & 1 \end{vmatrix} = 0 \Rightarrow y - ax = 0 \Rightarrow y = ax = h(x)$	1p
	Notăm cu S_1 suprafața cuprinsă între curba lui g și dreapta OP	
	Notăm cu S_2 suprafața cuprinsă între curba lui f și dreapta OP	
	$\Rightarrow S_1 = \int_0^{2a} \left(g(x) - h(x) \right) dx = \int_0^{2a} \left(2ax - x^2 \right) dx = \left(2a \cdot \frac{x^2}{2} - \frac{x^3}{3} \right) \Big _0^{2a} = \frac{4a^3}{3} (1)$	
	$S_2 = \int_0^{2a} (h(x) - f(x)) dx = \int_0^{2a} (2ax - x^2) dx = \frac{4a^3}{3} (2)$	2р
		2p

Varianta 71

Prof: RICU ILEANA

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracţiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parţiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului obţinut la10.

1.	$100^{\lg 2} \stackrel{notam}{=} a \Rightarrow (folosim\ operatia\ de\ \log aritmare) \Rightarrow \lg 2 \cdot \lg 100 = \lg a \Rightarrow$	3р
	$2\lg 2 = \lg a \Rightarrow \lg(2^2) = \lg a \Rightarrow a = 2^2 = 4$	
	$\sqrt[3]{-27} = -3$	
	Finalizare: $A=4-3=1 \in \mathbb{N}$	1p
		1p
2.	Ecuatia devine $\sqrt{1-x^2} = 1-x(*)$	
	Cond.ca radicalul sa fie corect definit: $\begin{cases} 1 - x^2 \ge 0 \\ 1 - x \ge 0 \end{cases} \Leftrightarrow \begin{cases} x \in [-1;1] \\ x \in (-\infty;1] \end{cases} \Rightarrow x \in [-1;1]$	1р
	Ridicând la pătrat în ambii membri ai ec. (*) obţinem $1 - x^2 = 1 - 2x + x^2$	
	$\Rightarrow 2x^2 - 2x = 0 \Rightarrow S = \{0,1\}$	2p
		2р
3.	Graficul ei taie axa Oy în punctul 1 \Leftrightarrow $f(0) = 1 \Leftrightarrow c = 1$	2p
	$x_V = -\frac{b}{2a} \Rightarrow x_V = -\frac{4}{2a} \Rightarrow -\frac{4}{2a} = -\frac{2}{3} \Rightarrow 4a = 12 \Rightarrow a = 3$	2p
	Finalizare: $f(x) = 3x^2 + 4x + 1$	1p
4.	Avem coordonatele punctelor A(2;0);B(1;-1);C(1;1) $\Rightarrow \overrightarrow{AC} = -\overrightarrow{i} + \overrightarrow{j}$; $\overrightarrow{AB} = -\overrightarrow{i} - \overrightarrow{j}$	2p
	Produsul scalar $\overrightarrow{AC} \cdot \overrightarrow{AB} = (-\vec{i} + \vec{j}) \cdot (-\vec{i} - \vec{j}) = (-1) \cdot (-1) + 1 \cdot (-1) = 1 - 1 = 0 \Rightarrow \overrightarrow{AC} \perp \overrightarrow{AB}$	2p
		۷۲

	Calculăm laturile: $BA = \sqrt{(2-1)^2 + (0-1)^2} = \sqrt{2}$; $BA = \sqrt{(2-1)^2 + (0+1)^2} = \sqrt{2}$	1p
	4 1	2n
5.	$\frac{4}{m-1} = \frac{m+1}{2} \Longrightarrow$	2p 3p
	$m^2 - 1 = 8 \Rightarrow m^2 - 9 = 0 \Rightarrow m_{1,2} = \pm 3$	
6.	$y - y_0 = m(x - x_0)$	2p
	$m = tg30 = \frac{\sqrt{3}}{3}$	2p
	$m = tg30 = \frac{1}{3}$	1p
	$y-6=\frac{\sqrt{3}}{3}(x-2)$	

1. a)	$A^2 = \begin{pmatrix} 10 & 30 \\ 5 & 15 \end{pmatrix}$	2p
	$5A = \begin{pmatrix} 10 & 30 \\ 5 & 15 \end{pmatrix}$ Finalizare	2p
	Titiditzare	1p
b)	Verificare: $A^2 = 5A$ (conform pct.a); $A^3 = A^2 \cdot A = 5A \cdot A = 5A^2 = 5 \cdot 5A = 5^2 \cdot A$	2p
	$P(k) \Rightarrow P(k+1): A^{k+1} = A^k \cdot A = 5^{k-1} A \cdot A = 5^{k-1} A^2 = 5^{k-1} \cdot 5A = 5^k \cdot A$ $\Rightarrow P(n) \text{ adevarata } \forall n \in \mathbb{N}^*$	3р
c)	$A - A^2 + A^3 - \dots + (-1)^{99} A^{100} = A - 5A + 5^2 A - 5^3 A + \dots + (-1)^{99} 5^{99} A =$	2p
	$= A \left(1 - 5 + 5^2 - 5^3 + \dots + \left(-1\right)^{99} 5^{99}\right) = A \cdot \frac{\left(-5\right)^{100} - 1}{-5 - 1} = A \frac{5^{100} - 1}{-6} = -\frac{5^{100} - 1}{6} \cdot A$ Finalizare: toate elementele matricei devin strict negative prin inmultirea elementelor din A cu o fractie negativa	2p

		1p
2.	Calculăm $ \frac{2(x-3)(y-3)+3=2(xy-3x-3y+9)+3=2xy-6x-6y+18+3=2xy-6x-6y+21=}{=x\circ y, \forall x,y\in\mathbb{R}} $	3p
a)	$-x \circ y, \forall x, y \in \mathbb{R}$	2p
b)	$(x \circ y) \circ z = (2xy - 6x - 6y + 21) \circ z = a \circ z = 2az - 6a - 6z + 21 =$	2p
	= 2(2xy - 6x - 6y + 21)z - 6(2xy - 6x - 6y + 21) - 6z + 21 = (1)	
	$=4xyz-12xy-12xz-12yz+36x+36y+36z-105, \forall x, y \in \mathbb{R}$	
	$x \circ (y \circ z) = x \circ \left(2yz - 6y - 6z + 21\right) = x \circ b = 2xb - 6x - 6b + 21 =$	
	=2x(2yz-6y-6z+21)-6x-6(2yz-6y-6z+21)+21= (2)	
	$=4xyz-12xy-12xz-12yz+36x+36y+36z-105, \forall x, y \in \mathbb{R}$	
	Din (1) şi (2) ⇒asociativitatea	
		2p
		1p
c)	$x \circ x = 2(x-3)(x-3) + 3 = 2(x-3)^2 + 3$	1p
	$x \circ x \circ x = (x \circ x) \circ x = (2(x-3)^2 + 3) \circ x = 2(2(x-3)^2 + 3 - 3)(x-3) + 3 =$	1p
	$= 2 \cdot 2(x-3)^{2}(x-3) + 3 = 2^{2}(x-3)^{3} + 3$	
	$\Rightarrow \underbrace{x \circ x \circ \dots \circ x}_{denori} = 2^{n-1} (x-3)^n + 3 \text{ (dem.prin inducţie matematică)(propozitia P(n))}$	
	$P(k) \Rightarrow P(k+1)$	
	P(k+1): $\underbrace{x \circ x \circ \dots \circ x}_{de k+1 ori} = \left(\underbrace{x \circ x \circ \dots \circ x}_{de k ori}\right) \circ x = \left(2^{k-1} \left(x-3\right)^k + 3\right) \circ x = a \circ x = 2\left(a-3\right)\left(x-3\right) + 3 = 2\left(a$	
	$=2(2^{k-1}(x-3)^k+3-3)(x-3)+3=2\cdot 2^{k-1}(x-3)^k(x-3)+3=2^k(x-3)^{k+1}+3$	
	⇒ propozitia P(n) este adevărată	2p

	Ecuaţia devine: $\frac{x \circ x \circ \dots \circ x}{de^{2012 \circ ri}} = 3 \Leftrightarrow 2^{2012-1} (x-3)^{2012} + 3 = 3 \Leftrightarrow 2^{2011} (x-3)^{2012} = 0 \Leftrightarrow (x-3)^{2012} = 0 \Rightarrow x_1 = x_2 = \dots = x_{2012} = 3 \Rightarrow$	
	Valoarea de adevar:fals	
/ /		
		1
		1p

1.	, ,	$a^{x}\left(4-e^{x}\right)+e^{x}\left(-e^{x}\right)=$	3р			
a)	$=e^{x}(4-\epsilon)$	$(e^{x} - e^{x}) = e^{x} (4 - 2e^{x}) = 2e^{x} (2 - e^{x})$				
			2p			
			_p			
b)	Not.cu d ta	angenta la curba $\mathcal C$ a funcției f în punctul P ;cum $d \boxdot Ox \Longrightarrow m_d = m_{Ox} = 0$	2p			
	Dar $m_d = 0$	$0 \Rightarrow f'(x) = 0 \Rightarrow 2 \cdot e^{x} (2 - e^{x}) = 0$				
	$\Rightarrow e^x = 0$	(ecuatia nu are solutii reale)				
	Sau $2 - e^x = 0 \Rightarrow e^x = 2 \Rightarrow x = \ln 2$					
	Calculăm $f(\ln 2) = e^{\ln 2} (4 - e^{\ln 2}) = 2(4 - 2) = 4 \Rightarrow P(\ln 2; 4)$					
			1p			
c)	Studiem m	nonotonia funcției $f:$				
	$f'(x) = 2e^{x}(2 - e^{x}) \Longrightarrow f'(x) = 0 \Leftrightarrow x = \ln 2$					
	$\lim_{x \to -\infty} f(x) = 0(4-0) = 0 \text{Si} \lim_{x \to +\infty} f(x) = \infty(4-\infty) = \infty \cdot (-\infty) = -\infty$					
	V	-∞ In2 +∞	2p			
	<i>X</i>	-∞ In2 +∞				
	f'(x)	++++++++++++++++++++0				

	f(x)	0///	<i> </i>	74\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	∞- √√√√√	2p
	maxim					
	→III0II0((oriia iui <i>i —,</i>	$f(x) \le 4, \forall x \in \mathbb{R}$			1n
						1p
2. a)	$f_1(x) - f_2(x) = \frac{\ln x (1 - \ln x)}{x^2} \stackrel{\text{not.F}}{=} F(x) \text{ ;studiem semnul lui F pe domeniul } (0; +\infty)$ $f(x) = 0 \Rightarrow x = 1; x = e$					
	Х	0	1	е	+∞	-
	Inx		0+++	+++++++++++++++++	+++++++	
	1-lnx		++++++++++++	+++++++++0		
	x ²		++++++++++++	***************************************	++++++	2p
	F(x)			+++++++++0		
	$\Rightarrow f_1(x)$	$-f_2(x) =$	$F(x) \ge 0, \forall x \in [1]$	[e]		1
						1р
b)	Din a) ⇒	$f_1(x) \ge f_2$	$(x), \forall x \in [1; e] =$	>		
	$A_{\Gamma_{f_1:f_2}} = \int_{1}^{e} \left(f_1(x) - f_2(x) \right) dx = \int_{1}^{e} \frac{\ln x}{x^2} dx - \int_{1}^{e} \frac{\ln^2 x}{x^2} dx = I_1 - I_2(*)$ Folosim metoda integrarii prin parti $\Rightarrow I_1 = -\frac{2}{e} + 1$; $I_2 = -\frac{5}{e} + 2$;					
			$I_1 - I_2 = \frac{3}{a} - 1$	e e	3	2р
			C			
						1p
c)	$V_{C_g} = \pi \int_1^e \xi$	$g^2(x)dx =$	$=\pi \int_{1}^{e} \frac{\left(\ln x - \ln^2 x\right)^2}{x}$	$-dx = \pi \int_{1}^{e} \left(\frac{\ln^2 x}{x} - 2\frac{\ln^3 x}{x}\right)$	$(1 + \frac{\ln^4 x}{x}) dx = \pi (I_3 - 2I_4 + \frac{1}{x}) dx$	2p
	Folosim m	etoda integ	grarii prin parti⇒	$I_3 = \frac{1}{3}; I_4 = \frac{1}{4}; I_5 = \frac{1}{5} =$	⇒	

$V_{C_g} = \pi \left(I_3 - 2I_4 + I_5 \right) = \frac{\pi}{30}$	3р

Varianta 72

Prof: RICU ILEANA

- > Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parţiale, în limitele punctajului indicat în barem.
- > Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărţirea punctajului obţinut la10.

SUBIECTUL I (30 de puncte)

1.	$\overline{z_1 = \overline{z_2}} \Longrightarrow (x+1) + yi = (y-1) - (x-4)i \Leftrightarrow$	2p
	$z_{1} = \overline{z_{2}} \Longrightarrow (x+1) + yi = (y-1) - (x-4)i \Leftrightarrow$ $\begin{cases} x+1 = y-1 \\ y = -x+4 \end{cases} \Leftrightarrow \begin{cases} x-y = -2 \\ x+y = 4 \end{cases}$	
	$y = -x + 4 \qquad x + y = 4$	2p
	$\Rightarrow \begin{cases} x=1 \\ y=3 \end{cases}$	26
	(y-3)	1р
2.	Stim ca functia de grad I este bijectiva ⇒f este inversabila	
	f surjectiva $\Leftrightarrow \forall y \in \mathbb{R}, \exists x \in \mathbb{R} \text{ astfel } \hat{i} \text{ ncât } f(x) = y \Leftrightarrow 3x + 6 = y \Leftrightarrow x = \frac{y - 6}{3}$	2p
	$\Rightarrow f^{-1}(y) = \frac{y - 6}{3} \text{ sau } f^{-1}(x) = \frac{x - 6}{3} \Rightarrow f^{-1}(x) = \frac{1}{3}x - 2$	
	$\Rightarrow 2m - 1 = \frac{1}{3} \Rightarrow m = \frac{2}{3}$	2p
		1p
		ıμ
3.	Cond.ca logaritmii sa fie corect definiti:	1p
	257	

	$\begin{cases} x+1>0 \\ x+2>0 \end{cases} \Leftrightarrow \begin{cases} x>-1 \\ x>-2 \end{cases} \Rightarrow x \in (-1,\infty)$	
	$\log_2(x+1) + \log_2(x+2) = 1 \Leftrightarrow \log_2 \frac{x+1}{x+2} = 1 \Leftrightarrow \frac{x+1}{x+2} = 2$	2р
	$x+1=2(x+2) \iff x=-3 \notin (-1;\infty)$	2р
	P _A	
4.	$T_5 = C_n^4 \left(\sqrt[3]{x}\right)^{n-4} \cdot \left(\frac{1}{x}\right)^4 = C_n^4 x^{\frac{n-4}{3}} \cdot x^{-4} = C_n^4 x^{\frac{n-16}{3}};$	2р
	$\Rightarrow \frac{n-16}{3} = 0 \Rightarrow n = 16$	2p
	Finalizare: $A_{16}^2 = 16 \cdot 15 = 240$	ΣΡ
		1р
5.	Notăm $\vec{b} = x\vec{i} + y\vec{j}; x, y \in \mathbb{R}$	
	$\left \vec{b}\right = 30 \Leftrightarrow \sqrt{x^2 + y^2} = 30 \Leftrightarrow x^2 + y^2 = 900(1)$	2p
	\vec{b} coliniar cu $\vec{a} \Leftrightarrow \frac{x}{2\sqrt{2}} = \frac{y}{-1} \Rightarrow x = -2\sqrt{2}y(2)$	
	Înlocuim (2) în (1) $\Rightarrow y = \pm 10 \Rightarrow x = \mp 20\sqrt{2}$	2р
	Finalizare: $\vec{b_1} = -20\sqrt{2} \ \vec{i} + 10\vec{j}$ si $\vec{b_2} = 20\sqrt{2} \ \vec{i} - 10\vec{j}$	
		1р
6.	$f(n+2) = \cos 2(n+2) + 2\cos^2(n+2) + 2\cos^2(n+2) + 2\cos^2(n+2) + \cos^2(n+2) + \cos^2(n+2)$	2p
0.	$f(x+\pi) = \cos 2(x+\pi) = 2\cos^2(x+\pi) - 1 = 2\cos^2 x - 1 = \cos 2x = f(x)$	
	$\Rightarrow f(x) - f(x + \pi) = f(x) - f(x) = 0.$	3p

Not.cu $A \in G, A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{R} \text{ si } AJ = JA \Leftrightarrow \begin{pmatrix} -b & a \\ -d & c \end{pmatrix} = \begin{pmatrix} c & d \\ -a & -b \end{pmatrix}$	3p
$\Rightarrow \begin{cases} -b = c \\ a = d \\ -d = -a \end{cases} \Leftrightarrow \begin{cases} c = -b \\ d = a \end{cases} \Rightarrow A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \mathbb{R}$	
c = -b	2p
Fie $A \in G \Rightarrow A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \mathbb{R}$ (conform pct.a)	2p
	3p
$\operatorname{Cum} X \in G \Rightarrow X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b \in \mathbb{R}(cf.pct.a) \Rightarrow X^2 = \begin{pmatrix} a^2 - b^2 & 2ab \\ -2ab & a^2 - b^2 \end{pmatrix}$	1p
Ecuaţia $X^2 + J = O_2 \Leftrightarrow \begin{pmatrix} a^2 - b^2 & 2ab + 1 \\ -2ab - 1 & a^2 - b^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow$	
$\begin{cases} a^2 - b^2 = 0 \\ 2ab + 1 = 0 \end{cases} \Rightarrow \begin{cases} (a+b)(a-b) = 0 \\ 2ab + 1 = 0 \end{cases}$	
⇒a=b sau a= -b	
Pentru a=b \Rightarrow 2 b^2 +1 = 0 (ec.nu are solutii reale)	2p
Pentru a= -b \Rightarrow - 2 b^2 + 1 = 0 \Rightarrow $\begin{cases} b_1 = \frac{\sqrt{2}}{2} \Rightarrow a_1 = -\frac{\sqrt{2}}{2} \\ b_2 = -\frac{\sqrt{2}}{2} \Rightarrow a_2 = \frac{\sqrt{2}}{2} \end{cases}$	
Avem $X_1 = \begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}; X_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$	2p
	$\begin{cases} -b = c \\ a = d \\ -d = -a \end{cases} \Leftrightarrow \begin{cases} c = -b \\ d = a \end{cases} \Rightarrow A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \mathbb{R} \end{cases}$ File $A \in G \Rightarrow A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \mathbb{R}$ (conform pct.a) $\begin{aligned} \text{Calculăm } a \cdot I_2 + b \cdot J = a \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = A \end{aligned}$ $\begin{aligned} \text{Cum } X \in G \Rightarrow X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b \in \mathbb{R} (cf.pct.a) \Rightarrow X^2 = \begin{pmatrix} a^2 - b^2 & 2ab \\ -2ab & a^2 - b^2 \end{pmatrix} \end{aligned}$ $\begin{aligned} \text{Ecuația } X^2 + J = O_2 \Leftrightarrow \begin{pmatrix} a^2 - b^2 & 2ab + 1 \\ -2ab - 1 & a^2 - b^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow $ $\begin{cases} a^2 - b^2 = 0 \\ 2ab + 1 = 0 \end{cases} \Rightarrow \begin{cases} (a + b)(a - b) = 0 \\ 2ab + 1 = 0 \end{aligned}$ $\Rightarrow a = b \text{ sau } a = -b $ $\end{aligned} \text{Pentru } a = b \Rightarrow 2b^2 + 1 = 0 \text{ (ec.nu are solutii reale)}$ $\end{aligned} Pentru a = b \Rightarrow 2b^2 + 1 = 0 \Rightarrow \begin{cases} b = \sqrt{2} \\ b_1 = -\sqrt{2} \\ 2 \Rightarrow a_1 = -\sqrt{2} \\ b_2 = -\sqrt{2} \Rightarrow a_2 = \sqrt{2} \end{aligned}$

2.	x*2 = 2x - 2x - 4 + 6 = 2	2p
a)	$3 \circ x = 3x - 3(3+x) + 12 = 3$	2p
	$(x*2) - (3 \circ x) = 2 - 3 = -1$	1p
b)	$e_1 * x = x * e_1 = x, \forall x \in \mathbb{R} \Leftrightarrow e_1(x-2) = 3(x-2), \forall x \in \mathbb{R} \Rightarrow e_1 = 3$	2p
	$e_2 \circ x = x \circ e_2 = x, \forall x \in \mathbb{R} \iff e_2(x-3) = 4(x-3), \forall x \in \mathbb{R} \implies e_2 = 4$	2p
		1p
	$e_1 * e_2 + e_1 \circ e_2$. $e_1 * e_2 + e_1 \circ e_2 = (3 \cdot 4 - 2 \cdot 3 - 2 \cdot 4 + 6) + (12 - 3(3 + 4) + 12) = 4 + 3 = 7$	
c)	((-1,-1),(-1	2p
()	f(x*y) = a(x*y) + 1 = a(xy - 2x - 2y + 6) + 1 = axy - 2ax - 2ay + 6a + 1(1)	ΖΡ
	$f(x) \circ f(y) = f(x) \cdot f(x) - 3(f(x) + f(y)) + 12 = (ax + 1)(ay + 1) - 3(ax + 1 + ay + 1) + 3$	
	$= a^2xy - 2ax - 2ay + 7(2)$	
		2p
	Din (1)şi (2) \Rightarrow $\begin{cases} a^2 = a \\ 6a + 1 = 7 \end{cases} \Rightarrow \begin{cases} a_1 = 0; a_2 = 1 \\ a = 1 \end{cases} \Rightarrow a = 1$	_p
		1p

1. a)	$f'(x) = \frac{1}{2}$	$\frac{1 - \ln x}{x^2}$				Ò	2p
	X	- ∞	0	e	+ ∞		
	$1-\ln x$			+++++++0		1-0	
	x^2			+++++++++++++++	+++++++++++++++++		
	f'(x)			++++++++0			
	f(x)			$PPPP$ $\frac{1}{e}$	<i>ררררררר</i> ררר		2р

		1
	⇒monotonia lui <i>f</i>	
P		1p
b)	Asimptota orizontală: $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{1}{x} = 0 \implies$ ecuatia asimptotei orizontale spre + ∞	
	este y=0 $(x)_{l'Hospital} \xrightarrow{x \to \infty} 1$ $(x)_{l'Hospital} \xrightarrow{x \to \infty} x$	2p
	Asimptota verticala: $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} \cdot \lim_{\substack{x \to 0 \\ x > 0}} \ln x = +\infty \cdot (-\infty) = -\infty \implies \text{ecuatia asimptotei verticale}$	
	este x=0	3р
c)	Conform punctului a) \Rightarrow	2p
	$f(x) \le \frac{1}{e}, \forall x \in (0, +\infty)$	
	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	2p
	Conform punctului b) unde y=0 este ecuatia asimptotei orizontale spre $\infty \Rightarrow$	
	$f(x) > 0, \forall x \in (e, +\infty)$	
	$\Rightarrow 0 < f(x) \le \frac{1}{e}, \forall x \in (e, +\infty)$	
		1p
2.	$F'(x) = (x \cdot e^x)' = x' \cdot e^x + x \cdot (e^x)' = e^x + x \cdot e^x =$	3р
a)	$=e^{x}(1+x)=f(x), \forall x \in \mathbb{R}$	
		2p
b)	Observăm că $F(x) \ge 0$, $\forall x \in [0;1]$	1p
		2p
	$S = \int_{0}^{1} F(x)dx = \int_{0}^{1} x \cdot e^{x} dx = \frac{1}{prin parti}$	
	$= x \cdot e^{x} \Big _{0}^{1} - \int_{0}^{1} e^{x} dx = 1 \cdot e - 0 - e^{x} \Big _{0}^{1} = e - (e - 1) = e - e + 1 = 1$	
		2p

c)	$\int_{0}^{1} \frac{F(x) - f(x)}{e^{x} + 1} dx = \int_{0}^{1} \frac{x \cdot e^{x} - (x + 1)e^{x}}{e^{x} + 1} dx = -\int_{0}^{1} \frac{e^{x}}{e^{x} + 1} dx =$	3p
9	$= -\ln\left e^{x} + 1\right _{0}^{1} = -\ln\left(e + 1\right) + \ln 2 = \ln\frac{2}{e + 1}$	2p

Varianta 73

Prof: Soare Constantin

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$2x^2 + 8 = 24$	3p
	$x = \pm 2\sqrt{2}$	2p
2.	$1 - 5x \ge x \Leftrightarrow 1 \ge 6x$	1p
	$x \le \frac{1}{6}$	2p
	$x \in (-\infty, \frac{1}{6}]$	2p
3.	$3^x(1+3+9+27)=40$	1p
	$3^x = 1$	2p
	x = 0	2p

4.	C.E x > 0.	2p
	Notăm $lgx=y \Rightarrow y^2 - 10y + 21 = 0 \Rightarrow y_1 = 3, y_2 = 7$	3p
	$lgx = 3 \Leftrightarrow x = 10^3$	
	$lgx = 7 \Leftrightarrow x = 10^7$	
5.	$\overrightarrow{AB}(x_B - x_A, y_B - y_A)$	2p
	\overrightarrow{AB} (1,2)	3p
6.	$cosA = -\frac{\sqrt{2}}{2}$	2p
	$BC^2 = AB^2 + AC^2 - 2AB \cdot AC \cdot cosA$	1p
	$BC = \sqrt{61 + 30\sqrt{2}}$	2p

1. a)	$\begin{vmatrix} 2a & b & c \\ a & 2b & c \\ a & b & 2c \end{vmatrix} = abc \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} =$	2p
(a)	$\begin{bmatrix} a & 2b & c \\ a & b & 2c \end{bmatrix} \begin{array}{c} abb & 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$	2p
	=abc(8+1+1-2-2-2)=	1p
	=4abc	
b)	Pentru $x = y = z = 1$ \Rightarrow $\begin{cases} 2a + b + c = 4 \\ a + 2b + c = 4 \\ a + b + 2c = 4 \end{cases}$	3p
	Obţinem $a = 1, b = 1, c = 1$	2p
c)	Pentru <i>abc</i> ≠ 0 sistemul are soluție unică și se rezolvă cu regula lui Cramer.	1p
	$\Delta_{x} = 4bc; \Delta_{y} = 4ac; \Delta_{z} = 4ab.$	2p
	$x = \frac{1}{a}; y = \frac{1}{b}; z = \frac{1}{c}$	2p

2	2.	x * y = xy - 10x - 10y + 100 + 10	1p
a	a)	x * y = x(y - 10) - 10(y - 10) + 10	3p
		x * y = (x - 10)(y - 10) + 10	1p
7	o)	$x * x * x = (x - 10)^3 + 10$	3p
		$(x-10)^3 + 10 = 1010 \Leftrightarrow x = 20$	2p
(c)	Dem prin inducție matematică. Verificare	2p
		$P(k) \Rightarrow P(k+1)$	2p
		Concluzie.	1p
SUBIECTUL al III-lea (30 de puncte)			
	1.	$(2x+1)(x+2)-(x^2+x+1)$	2p

1.	$f'(x) = \frac{(2x+1)(x+2) - (x^2 + x + 1)}{(x+2)^2} =$	2p
a)	$(x+2)^2$	2p
	$= \frac{2x^2 + 4x + x + 2 - x^2 - x - 1}{(x+2)^2} = \frac{x^2 + 4x + 1}{(x+2)^2}$	1p
b)	$f'(x) = 0 \Leftrightarrow \frac{x^2 + 4x + 1}{(x+2)^2} = 0$	1p
	$(x+2)^2$	1p
	$x_1 = -2 - \sqrt{3}$	1p
	$x_2 = -2 + \sqrt{3}$	
	f este strict crescătoare pe $\left(-\infty, -2 - \sqrt{3}\right] \cup \left[-2 + \sqrt{3}, \infty\right)$	2p
	f este strict descrescătoare pe $\left(-2-\sqrt{3},-2\right)\cup\left(-2,-2+\sqrt{3}\right)$	
c)	Studiem semnul derivatei a doua .	1p
	$f''(x) = \frac{6}{(x+2)^3}$	1p
		1p
	$f''(x) \neq 0, \forall x \in IR - \{-2\}$	2p
	f este concavă pe intervalul ($-\infty$,-2) și f este convexă pe intervalul (-2 , ∞)	

2.	$f(x) = \frac{x+1-x}{x(x+1)}$	2p
a)	$\lambda(\lambda + 1)$	2p
	$f(x) = \frac{x+1}{x(x+1)} - \frac{x}{x(x+1)}$	
3	$f(x) = \frac{1}{x} - \frac{1}{x+1}$	1p
b)	c^2 c^2 d 1 .	1.0
(0)	$\int_{1}^{2} f(x) dx = \int_{1}^{2} \left(\frac{1}{x} - \frac{1}{x+1} \right) dx =$	1p
	51 51 51 51	1p
	$= \int_{1}^{2} \frac{1}{x} dx - \int_{1}^{2} \frac{1}{x+1} dx =$	1p
	$=lnx _1^2-ln(x+1) _1^2=$	
	$= ln2 - ln1 - ln3 + ln2 = ln\frac{4}{3}$	2p
c)	$aria\left(\Gamma_{f}\right) = \int_{2}^{3} f(x)dx = \int_{2}^{3} \left(\frac{1}{x} - \frac{1}{x+1}\right)dx =$	2p
	J_2 J_2 $(\lambda - \lambda + 1)$	1p
	$= \int_{2}^{3} \frac{1}{x} dx - \int_{2}^{3} \frac{1}{x+1} dx =$	2p
	$=lnx _2^3-ln(x+1) _2^3=$	
	$= ln3 - ln2 - ln4 + ln3 = ln\frac{9}{8}$	

Varianta 74

Prof: Soare Constantin

♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.

- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\begin{cases} a_7 = 17 \\ a_{17} = 37 \end{cases} \Leftrightarrow \begin{cases} a_1 + 6r = 17 \\ a_1 + 16r = 37 \end{cases} \Leftrightarrow$	3p
1	$(a_{17} = 3)$ $(a_1 + 16r = 3)$	2p
X	$\Leftrightarrow \begin{cases} a_1 = 5 \\ r = 2 \end{cases}$	1
	CI = 2	
2.	f(2)=0	3p
	$f(1) \cdot f(2) \cdot \dots \cdot f(2012) = 0$	2p
		r
3.	Notăm $5^x = y > 0$. se obține ecuația $y^2 - 6y + 5 = 0$.	1p
	Soluțiile ecuației sunt $y_1=1, y_2=5$.	2p
	$5^x = 1 \Leftrightarrow x = 0$	2p
	$5^x = 5 \Leftrightarrow x = 1$	
4.	$A_n^2 \le 20 \Leftrightarrow n(n-1) \le 20$	2p
	Se obţine $n \in \{2,3,4,5\}$.	3p
	Y.44YD	2
5.	Fie M mijlocul segmentului [AB]. Atunci $x_M = \frac{x_A + x_B}{2}$; $y_M = \frac{y_A + y_B}{2}$	2p
	Obţinem M(1,4)	3p
6.	$AB \cdot AC \cdot sinA$	2p
	$S_{\Delta ABC} = \frac{100 \text{ solution}}{2}$	
	$7 \cdot 8 \cdot \frac{\sqrt{3}}{2}$	1
	$S_{\Delta ABC} = \frac{7 \cdot 8 \cdot \frac{\sqrt{3}}{2}}{2}$	1p
	$S_{\Delta ABC} = 14\sqrt{3}$	2p
	$S_{\Delta ABC} = 14 \text{ V} \text{ S}$	

1.	$A_1(1,3)$	2p
a)	$A_{2}(2,9)$	
	$A_1 A_2 : \frac{x-1}{2-1} = \frac{y-3}{9-3} \iff A_1 A_2 : x - 1 = \frac{y-3}{6}$	2p
	$A_1 A_2 : 6x - y - 3 = 0.$	1p
b)	$A_3(3,27)$	1p
	$S=\frac{1}{2} \Delta \;,$	2p
	unde $\Delta = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 9 & 1 \\ 3 & 27 & 1 \end{vmatrix} = 9 + 54 + 9 - 27 - 27 - 6 = 12$ de unde S=6	2p
c)	$A_{n+1}(n+1,3^{n+1}),A_{n+2}(n+2,3^{n+2})$	2p
	Calculăm $\Delta = \begin{vmatrix} n & 3^n & 1 \\ n+1 & 3^{n+1} & 1 \\ n+2 & 3^{n+2} & 1 \end{vmatrix}$	1p
	$\binom{n+1}{n+2} \binom{n+1}{n+2} \binom{3^{n+2}}{1}$	2p
	$\Delta = 4 \cdot 3^n > 0$, deci pentru nicio valoare a lui $n \in IN$, punctele	
	$A_n(n,3^n)$, $A_{n+1}(n+1,3^{n+1})$, $A_{n+2}(n+2,3^{n+2})$ nu sunt coliniare.	
2.	x * y = xy - 9x - 9y + 81 + 9	1p
a)	x * y = x(y - 9) - 9(y - 9) + 9	3p
	x * y = (x - 9)(y - 9) + 9	1p
b)	G parte stabilă	1p
	Asociativitate	1p
	Comutativitate	1p
	Element neutru e=10	1p
	Element simetrizabil $x' = 9 + \frac{1}{x-9}$	1p
c)	Dem prin inducție matematică. Verificare	2p
	$P(k) \Rightarrow P(k+1)$	2p
	Concluzie .	1p

1.	$\lim_{x \to \infty} f(x) = \infty, \lim_{x \to -\infty} f(x) = -\infty$	2p
a)	$y=x$ asimptotă oblică spre $\pm \infty$	2p
	x=-1 asimptotă verticală	1p
b)	$f'(x) = \frac{x^2 + 2x}{(x+1)^2}$	2p
	$f'(x) = 0 \Leftrightarrow x_1 = -2, x_2 = 0,$	1p
	de unde deducem f strict crescătoare pe $(-\infty, -2) \cup (0, \infty)$	2p
	f strict descrescătoare pe (-2,-1)U (-1,0)	-
c)	$A \text{vem} \frac{x^2 + x + 1}{x + 1} \le -3 \Leftrightarrow$	1p
	$\Leftrightarrow \frac{x^2 + x + 1}{x + 1} + 3 \le 0 \Leftrightarrow$	1p
		1p
	$\Leftrightarrow \frac{x^2 + 4x + 4}{x + 1} \le 0 \Leftrightarrow$	2p
	$\Leftrightarrow \frac{(x+2)^2}{x+1} \le 0 \text{ adevărat , pentru că } (x+2)^2 \ge 0 \text{ și } x+1 < 0$	
2.	$\int_{1}^{2} \frac{f_{2}(x)}{x^{2}} dx = \int_{1}^{2} \frac{x^{2} e^{x}}{x^{2}} dx = \int_{1}^{2} e^{x} dx =$	2p
a)	$=e^{x} _{1}^{2}=$	2p
	$=e^{x} _{1}^{2}=$ $=e(e-1)$	1p
b)	$\int_0^x te^t dt = te^t \Big _0^x - \int_0^x e^t dt = te^t \Big _0^x - e^t \Big _0^x = xe^x - e^x + 1 = xe^x - (e^x - 1)$	3p
	$\lim_{x \to 0} \frac{xe^x - (e^x - 1)}{x} = 1 - 1 = 0$	
)
		2p
c)	$aria\left(\Gamma_{f}\right) = \int_{0}^{1} x^{2} e^{x} dx = x^{2} e^{x} \Big _{0}^{1} - 2 \int_{0}^{1} x e^{x} dx =$	2p

$=x^{2}e^{x} _{0}^{1}-2xe^{x} _{0}^{1}+2e^{x} _{0}^{1}=$	1p
=e-2e+2e-2=e-2	2p

Varianta 75

Prof: Soare Constantin

• Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.

- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
 - ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\begin{cases} b_1 q^3 = 16 \\ b_1 q^9 = 1024 \end{cases} \Rightarrow q^6 = 64 \text{ de unde deducem} :$	3p
	$(b_1q^9 = 1024)$	2p
	$q = 2, b_1 = 2 \text{ sau } q = -2, b_1 = -2$	
2.	Δ= 1	1p
	$x_1 = 3, x_2 = 4$	2p
	a [2.4]	
	$x \in [3,4]$	2p
	The	
3.	Numărul de submulțimi ordonate este $A_{10}^3 =$	1p
	$=\frac{10!}{7!}=$	2p
	$=\frac{1}{7!}$	
	= 720	2p
4.	C. E. $x>0$. Notăm $log_2x = y$ și obținem ecuația :	2p
	$y(y^2 - 8y + 15) = 0$ cu soluțiile $y_1 = 0$, $y_2 = 3$, $y_3 = 5$ de unde se obțin soluțiile $x_1 = 1$,	3p
	$x_2 = 8, x_3 = 32.$	
5.	OA=3, OB=4,	2p
	AB=5	3p
	Fie OC $\perp AB \Rightarrow OC = \frac{12}{5}$	
6.	$AB = \sqrt{5}, AC = \sqrt{8}, BC = 1$	3p
	$cosA = \frac{5 + 8 - 1}{4\sqrt{10}} = \frac{3\sqrt{10}}{10}$	
		2p

	1. a)	$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & m \\ 4 & 9 & m^2 \end{pmatrix}$	2p
		$\det \mathbf{A} = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & m \\ 4 & 9 & m^2 \end{vmatrix} = 3m^2 + 18 + 4m - 12 - 9m - 2m^2$	2p
		$\det A = m^2 - 5m + 6$	1p
	b)	$\det A = 0 \Leftrightarrow m^2 - 5m + 6 = 0$	1p
		$\Delta = b^2 - 4ac = 25 - 24 = 1$	2p
		$m_1 = 2, m_2 = 3.$	2p
	c)	Pentru m=5 se obține sistemul : $\begin{cases} x + y + z = 3 \\ 2x + 3y + 5z = 10 \end{cases}$	1p
		4x + 9y + 25z = 38	
		$\det A=6, \Delta_x=6, \Delta_y=6, \Delta_z=6,$	2p
		x = 1, y = 1, z = 1	2p
	2.	Scriem relațiile lui Viete.	
	a)	$x_1 + x_2 + x_3 = m + 1$	1p
		$x_1x_2 + x_2x_3 + x_1x_3 = 2m + 1$	1p
		$x_1x_2x_3=6$	1p
		$x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_2x_3 + x_1x_3) =$	1p
		$=m^2-2m-1$	1p
	b)	Pentru $x_1 = 1 \Rightarrow 1 - m - 1 + 2m + 1 - 6 = 0 \Leftrightarrow$	3p
		\Leftrightarrow m-5=0 \Leftrightarrow m=5.	2p
	c)	Pentru m=5, relațiile lui Viete devin:	2p
		$1 + x_2 + x_3 = 6$	
L			

$x_2 + x_2 x_3 + x_2 = 11$	
$x_2x_3=6$	
$\operatorname{Deci} x_2 = 2, x_3 = 3$	2p
$x_1^3 + x_2^3 + x_3^3 = 1 + 8 + 27 = 36$	
7	1p

1.	$f(2x+1) = \sqrt{4x^2 + 4x + 2}$	1p
a)	$f(x+1) = \sqrt{x^2 + 2x + 2}$	1p
	$f(x+1) = \sqrt{x^2 + 2x + 2}$	r
	$\lim_{x\to\infty}\frac{f(2x+1)}{f(x+1)}=2$	
	$\lim_{x\to\infty} f(x+1) = 2$	3p
b)	$\lim_{x\to\infty} f(x) = \infty \Rightarrow$ f nu admite asimptotă orizontală spre ∞	1p
	$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$	1p
		1p
	$n = \lim_{x \to \infty} [f(x) - mx] = \lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right)$	1p
	n = 0	1p
	$y = x$ este asimptotă oblică spre ∞	
c)	Fie F: $IR \rightarrow IR$ o primitivă a funcției f.	1p
	Atunci F este derivabilă pe IR	1p
	$F'(x) = f(x), \forall x \in \mathbb{R}$	1p
	$f(x) = \sqrt{x^2 + 1} > 0, \forall x \in IR \Rightarrow F'(x) = f(x) > 0, \forall x \in IR \Rightarrow F \text{ este strict crescătoare pe IR.}$	2p
2.	$f'(x) = \frac{(\ln x)' \cdot x - x' \cdot \ln x}{x^2} =$	2p
a)	x^2	2p
	$=\frac{\frac{1}{x}\cdot x-1\cdot lnx}{\frac{1}{x^2}}=$	•
	$=\frac{x}{x^2} = \frac{x^2}{x^2}$	

	$=\frac{1-lnx}{x^2}$	1p
b)	$aria\left(\Gamma_{f}\right) = \int_{e}^{e^{2}} \frac{\ln x}{x} dx = \frac{\ln^{2} x}{2} \Big _{e}^{e^{2}} =$	3p
	$=\frac{\ln^2 e^2}{2} - \frac{\ln^2 e}{2} = 2 - \frac{1}{2} = \frac{3}{2}$	2p
c)	Avem $f'(x) = 0 \Leftrightarrow x = e$. Din monotonia funcției f deducem $f(x) \leq \frac{1}{e}, \forall x \in (0, \infty)$.	2p
	Avem $\int_{1}^{2012} f(x) dx \le \int_{1}^{2012} \frac{1}{e} dx =$	1p
	$= \frac{1}{e}(2012 - 1) = \frac{2011}{e} \Rightarrow \int_{1}^{2012} f(x) dx \le \frac{2011}{e}$	2p

Varianta 76

Prof: Szöcs Ana

♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.

- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

$x \in \{-1005,1006\}, cardA = 2012$ 2. $f(1-m)=1$	2p 1p 2p
2. $f(1-m)=1$	
2. f(1-m)=1	
	2p
$1 - m^2 + 2m - 1 = 1$	
m=1	2p
3. $\sqrt{x+4+x-2}$	1p
$\sqrt{4x+1} = \frac{x+4+x-2}{2}$	
$4x + 1 = x^2 + 2x + 1$	2p
$x \in \{0,2\}$	2p
4	2p
$m_g = 72$	3p
5. O –mijlocul segmentului AC \Rightarrow $O(-1,2)$	2p
	3p
O-mijlocul segmentului BD $\Rightarrow D(-3,5)$	
6. $\sin B = \frac{b}{a}, \cos B = \frac{c}{a}$	2p
$ac \cdot \left(\frac{b}{c}\right)^2 = b^2 \cdot \frac{c}{c}$	1p
$ac \cdot \left(\frac{b}{a}\right)^2 = b^2 \cdot \frac{c}{a}$ $\frac{b^2c}{a} = \frac{b^2c}{a}$	2p

1.	$A^2 = A \cdot A = A$	2p
a)	$A^3 = A^2 \cdot A = A \cdot A$	2p
	$A^3 = A$	1p
b)	$(X(m))^2 = (mA + I_2)^2 = m^2A + 2mA + I_2 = (m^2 + 2m)A + I_2$	3p
	Finalizare	2p
c)	$X(1)+X(2)++X(2012)=(A+I_2)+(2A+I_2)++(2012A+I_2)$	1p
	$X(1)+X(2)++X(2012)=(1+2++2012)A+2012I_2$	2p
	$X(1) + X(2) + + X(2012) = 1006 \cdot 2013A + 2012I_2$	2
		2p
2.	$(x \perp y) \perp z = x \perp (y \perp z)$	1p
a)		3p
	a=6	1p
b)	$x \perp y = (x+2)(y-2) + 2 \Rightarrow e_1 = 3, x * y = (x-3)(y-3) + 3 \Rightarrow e_2 = 4$	3p
	$(e_1 \perp e_2) + (e_2 * e_1) = 7$	2p
c)	Notăm $\left(-\sqrt{2012}\right) \perp \left(-\sqrt{2011}\right) \perp \dots \perp 1 \text{ cu } x \Rightarrow x \perp 2 = 2$	2p
	Norăm $\sqrt{10} * \sqrt{11} * * \sqrt{2012}$ cu y $\Rightarrow 3 * y = 3$	2p
	Finalizare	1p

	1. a)	$\lim_{x \to e} \frac{f(x) - f(e)}{x - e} = f'(e)$	2p
		$f'(e) = \frac{1}{e} - \frac{1}{x}$	2p
		f'(e)=0	1p
	b)	$\frac{x}{e} - \ln x \ge 0$	1p
		Se observă că $\frac{x}{e} - \ln x = f(x)$	1p
		f(e) = 0	1p
		Punctul (e,0) este punct de minim $\Rightarrow f(x) \ge 0, x \in (0,\infty)$	
			2p
ŀ	c)		1p
		$f''(x) = \left(\frac{x - e}{ex}\right)$	-1
		$f''(x) = \left(\frac{x - e}{ex}\right)^{n}$ $f''(x) = \frac{1}{x^{2}}$	1p
		$\frac{1}{x^2} \ge 0, x \in (0, \infty)$	1p
		$f^{"}$ pozitivă $\Rightarrow f$ convexă	
			2p
-	2		2-5
	2.	$f_1 = 2\sqrt{x}$	2p
	a)	$f_{1} = 2\sqrt{x}$ $\int_{1}^{3} 2\sqrt{x} = \frac{4}{3}x^{\frac{3}{2}}\Big _{1}^{3}$ $\int_{1}^{3} f_{1}(x) = 4\sqrt{3} - \frac{4}{3}$	2p
		$\frac{3}{6}$	
		$\int_{1}^{3} f_{1}(x) = 4\sqrt{3} - \frac{4}{3}$	1p
L			l

b)	$f_2(x) = \sqrt{x^2 + 3x}$	1p
	$f_2(x) = \sqrt{x^2 + 3x}$ $f_2(x) = x^2 + 3x$	1p
þ	$I = \int_{1}^{3} \frac{2x+3}{x^2+3x}$, schimbare de variabilă $t = x^2 + 3x$	1p
	$I = \ln \frac{9}{2}$	2p
c)	$V = \pi \int_{1}^{3} \left(\frac{1}{\sqrt{x^2 + 3x}} \right)^2 = \pi \int_{1}^{3} \frac{1}{x^2 + 3x}$	2p
	$\int_{1}^{3} \frac{1}{x^{2} + 3x} = \frac{1}{3} \left(\frac{1}{x} - \frac{1}{x + 3} \right)$ $V = \frac{\pi}{3} \ln 2$	1p
	$V = \frac{\pi}{3} \ln 2$	2p

Varianta 77

Prof: Szöcs Ana

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1	. 1	3p
1.	$E = 9^{\log_9 \frac{1}{9}}$	Эр
	F _ 1	
	$E = \frac{1}{9}$	2p
2.	f(x)=1	1p
	f(x)=1 (x+1)(x+2)=0 (-1,2);(-2,1)	2p
	(-1,2);(-2,1)	2p
		- P
3.	Notând prețul inițial cu $x \Rightarrow$ prețul după reducere 70%x	1p
	$\frac{70}{100}x = 2800$	
		2p
	x = 4000	
		2p
4.	$2a_1 + 19r = 20$	2p
	$S_{20} = \frac{(2a_1 + 19r) \cdot 20}{2} = 200$	3p
5.	BC: $x+3y-15=0$	2p
	$A \in BC \Rightarrow m=12$	3p
6.	$\frac{2\sqrt{3}}{\sin 45} = \frac{c}{\sin 60}$	2p
	$\frac{1}{\sin 45} = \frac{1}{\sin 60}$	
	$2\sqrt{3}$ c	
	$\frac{2\sqrt{3}}{\sqrt{2}} = \frac{c}{\sqrt{3}}$ $c = 3\sqrt{2}$	1p
	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$	
	$c = 3\sqrt{2}$	2p
		_F
~		

1. a)	$Y^t = \begin{pmatrix} 2 & 1 \end{pmatrix}$	2p
	$A = \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix}$	2p

		_
	$2A = \begin{pmatrix} 4 & 2 \\ 8 & 4 \end{pmatrix}$	1p
b)	1.(4) 2 1	3p
	$\det\left(A\right) = \begin{vmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix} = 2 \cdot 2 - 4 \cdot 1$	2p
	Fig. 1.	
	Finalizare	
c)	B (a) este inversabilă dacă $det(B(a)) \neq 0$	1p
	$\det(B(a)) = (2a+1)^2 - 4a^2$	2p
		2p
	$a \neq -\frac{1}{4}$	2p
2.	$x_1 + x_2 + x_3 = 0$	1p
a)	$ x_1 + x_2 + x_3 x_3 x_3 $	
	$D = \begin{vmatrix} x_1 + x_2 + x_3 & x_2 & x_3 \\ x_3 + x_1 + x_2 & x_1 & x_2 \\ x_2 + x_3 + x_1 & x_3 & x_1 \end{vmatrix} = \begin{vmatrix} 0 & x_2 & x_3 \\ 0 & x_1 & x_2 \\ 0 & x_3 & x_1 \end{vmatrix}$	3p
	$\begin{vmatrix} x_2 + x_3 + x_1 & x_3 & x_1 \end{vmatrix} = \begin{vmatrix} 0 & x_3 & x_1 \end{vmatrix}$	
	D=0	1p
b)	$x_1^3 - 2x_1 + 3 = 0$	3p
	$x_2^3 - 2x_2 + 3 = 0$	
	$x_3^3 - 2x_3 + 3 = 0$	
	$\overline{x_1^3 + x_2^3 + x_3^3 - 2x_1 - 2x_2 - 2x_3 + 9} = 0$	
	E = -9	2p
c)		2p
	$A = \begin{pmatrix} x_1^2 + x_2^2 + x_3^2 & x_1 x_3 + x_1 x_2 + x_2 x_3 & x_1 x_2 + x_2 x_3 + x_1 x_3 \\ x_1 x_3 + x_1 x_2 + x_2 x_3 & x_1^2 + x_2^2 + x_3^2 & x_2 x_3 + x_1 x_3 + x_1 x_2 \\ x_1 x_2 + x_2 x_3 + x_1 x_3 & x_2 x_3 + x_1 x_3 + x_1 x_2 & x_2^2 + x_3^2 + x_1^2 \end{pmatrix}$	2p
	$A = \begin{bmatrix} x_1 x_3 + x_1 x_2 + x_2 x_3 & x_1^2 + x_2^2 + x_3^2 & x_2 x_3 + x_1 x_3 + x_1 x_2 \\ 2 & 2 & 2 & 2 \end{bmatrix}$	
	$(x_1x_2 + x_2x_3 + x_1x_3 x_2x_3 + x_1x_3 + x_1x_2 x_2^2 + x_3^2 + x_1^2)$	
	$x_1x_2 + x_2x_3 + x_1x_3 = -2 \implies x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3) - 2(x_1x_2 + x_2x_3 + x_1x_3) = 4$	2p
	(4 -2 -2)	1p
	$A = \begin{bmatrix} 7 & -2 & 2 \\ -2 & 4 & -2 \end{bmatrix}$	
	$A = \begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{pmatrix}$	

1. a)	$_{s}(0)=\frac{1}{4}$	2p
	$l_d(0) = \frac{1}{4}$	
7	T	2p
	$l_s(0) = l_d(0) = f(0) = \frac{1}{4}$	1p
b)	y-f(1)=f'(1)(x-1)	1p
		1p
	$f'(x) = \frac{-2x}{\left(x^2 + 4\right)^2}$	
	$f'(1) = \frac{-2}{25}, f(1) = \frac{1}{5}$	1p
	$y = \frac{-2}{25}x + \frac{7}{25}$	2p
c)	25 25	1p
	$-2x < 0$ pentru $x \in (0, \infty)$	10
	$x^2 + 4 > 0$	1p
	$(x^2+4)^2>0$	1p 1p
	$f'(x) < 0 \Rightarrow f$ este descrescătoare pe intervalul $(0, \infty)$	2p
2.	Funcția g este primitivă a funcției f dacă g = f	2p
a)	$g' = e^x + 4x^3 + 2 \cdot 3x + 3 \cdot 1$	2p
	Finalizare	1p
b)	$\int_{a}^{b} f(x)g'(x) = f(x) \cdot g(x) \Big _{a}^{b} - \int_{a}^{b} f'(x)g(x)$	1p
	$\int_{0}^{1} f(x)g(x)dx = \int_{0}^{1} g'(x)g(x)dx$	
		1p
	$I = g^{2}(x)\Big _{0}^{1} - \int_{0}^{1} g'(x)g(x)dx$	1p
	$I = \frac{1}{2}(e+5)(e+9)$	2p
		-P

c)	$\int_{0}^{1} \left(xf\left(x\right) + g\left(x\right) \right) dx = \int_{0}^{1} \left(xg'\left(x\right) + x'g\left(x\right) \right) dx$	2p
	$I = \int_{0}^{1} (xg(x))^{dx}$	1p
	$I = \int_{0}^{\infty} (x_{0}(x_{0})) dx$ $I = e + 7$	2p

Varianta 78

Prof: Szöcs Ana

- ♦ Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- ♦ Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- ♦ Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	Se face schimbare în aceeași bază	
	$\frac{\lg 3}{\lg 4} \cdot \frac{\lg 4}{\lg 5} \cdot \frac{\lg 5}{\lg 6} \cdot \frac{\lg 6}{\lg 7} \cdot \frac{\lg 7}{\lg 8} \cdot \frac{\lg 8}{\lg 9} = \frac{1}{2}$	3p
	$\lg 3 \cdot \frac{1}{\lg 3^2} = \frac{1}{2}$	2p
2.	3+2m=0	1p
	2m = -3	2p
	$m=-\frac{3}{2}$	2p

3.	$x_1 + x_2 = \frac{m-1}{m}; x_1 \cdot x_2 = -2$	1p
	-2m = 3m - 3	2p
	$m = \frac{3}{5}$	2p
	5	
4.	$C_{ m o}^6$	2p
\ \		3p
	Numărul posibilităților =84	ЭР
5.	$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$	2p
	$\overrightarrow{BC} = 7\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow (7, -5)$	3p
6.	Fie AM mediana corespunzătoare ipotenuzei	
	$AM = \frac{BC}{2}$	2p
		1p
	$m(\prec B) = 30^{0}$ $BC = 8 \Rightarrow AM = 4$	2p
	$BC = 0 \rightarrow AW = 4$	2p

1. a)	$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -2 \end{pmatrix}$	2p
	(1 -1 2)	
	$\det A = 2-2-2-1-2-4$ $\det A = -9$	2p
	det A= -9	1p
b)	$D_x = -9; D_y = 0; D_z = 0$	3p
	x = 1, y = 0, z = 0	2p

c)	x = y + z	1p
	$\left[2(y+z)=1\right]$	
	$\begin{cases} 3y = 2 \end{cases}$	
	3z = a	2p
		2p
	$a = -\frac{1}{2}$	
2.		1p
	$f(\hat{4}) = \hat{0}$	
a)		3p
	$\hat{4} + m + \hat{4} + \hat{1} = 0$	1p
	$m = \hat{1}$	r
b)	$f = x^3 + x^2 + x + \hat{1} \Longrightarrow f = \left(x^2 + \hat{1}\right)\left(x + \hat{1}\right)$	3p
		2p
	$f = \left(x + \hat{1}\right)\left(x + \hat{2}\right)\left(x + \hat{3}\right)$	
c)	$g = x\left(x + \hat{3}\right)$	2p
		2p
	$d = x + \hat{3}$	
	$x = \hat{2}$	1p
	x=2	

1.	$x^2 + 7x + 10 \neq 0$	2p
a)	$(x+2)(x+5) \neq 0$	2p
	$x \in \mathbb{R} - \{-2, -5\}$	1p

		_
b)	$f(x) = \frac{(ax+b)(x^2+7x+10)+cx+d}{x^2+7x+10}$ $f(x) = \frac{ax^3+7ax^2+10ax+bx^2+7bx+10b+cx+d}{x^2+7x+10}$	
	$x^2 + 7x + 10$	1p
	$f(x) = \frac{ax^3 + 7ax^2 + 10ax + bx^2 + 7bx + 10b + cx + d}{ax^3 + 7ax^2 + 10ax + bx^2 + 7bx + 10b + cx + d}$	
	$f(x) = \frac{ax^3 + (7a+b)x^2 + (10a+7b+c)x + 10b+d}{x^2 + 7x + 10}$	1p
	$\begin{cases} a=1 \\ 7 + 1 = 0 \end{cases}$	
	$\begin{cases} 7a+b=8\\ 10a+7b+c=12 \end{cases} \Rightarrow a=b=1, c=d=-5$	1p
		2p
	10b+d=5	
c)	y = mx + n	1p
	$m = \lim_{x \to \infty} \frac{f(x)}{x} = 1$	1p
		тр
	$n = \lim_{x \to \infty} (f(x) - x) = \lim_{x \to \infty} \frac{x^3 + 8x^2 + 12x + 5 - x^3 - 7x^2 - 10x}{x^2 + 7x + 10}$	1p
		2p
	$n=1 \Rightarrow y=x+1$	
2.	f este continuă pe $\mathbb{R} - \{0\}$ fiind formată din funcții elementare	2p
a)		2p
	$l_s(0) = l_d(0) = f(0) = \frac{1}{2}$	
		1p
	Finalizare	
b)		1p
	$\int_{1}^{1} f(x) dx = \int_{1}^{0} \frac{x+1}{2} dx + \int_{0}^{1} \left(\frac{1}{x+2} - \sqrt{x} \right) dx$	
	$\begin{bmatrix} -1 & 1- & 0 \\ 0 & 1 & 1 \\ 2 & 1 \end{bmatrix}^0$	
	$\int_{1}^{0} \frac{x+1}{2} dx = \frac{1}{2} \left(\frac{x^{2}}{2} + x \right)^{0}$	1p
	1	
	$\int_{0}^{1} \left(\frac{1}{x+2} - \sqrt{x} \right) dx = \left(\ln\left(x+2\right) - \frac{2}{3}\sqrt{x^{3}} \right) \Big _{0}^{1}$	1p
	$I = \ln \frac{3}{2} - \frac{5}{12}$	2p
	2 12	r

c)	$g\left(x\right) = x^2 - \frac{x}{x^2 + 2}$	2p
	$A = \int_{1}^{2} \left(x^2 - \frac{x}{x^2 + 2} \right)$	1p
9	$A = \frac{1}{6} (14 - 3 \ln 2)$	2p
	6	