Cours 4

Opérations internes

Ressource R1.06 - Mathématiques Discrètes **Tiphaine Jézéquel, Mickaël Le Palud**2023-2024

 $(a + b) + (a \cdot b) \cdot c = a \cdot c$ a + b = b + a $(a + b) \cdot c = a \cdot c + b \cdot c$

Plan du cours

- 1 Propriétés d'une opération : commutativité, associativité
- 2 Éléments notables d'une opération : neutre, absorbant
- 3 Lien entre 2 éléments : éléments symétriques
- 4 Lien entre 2 opérations : distributivité
- Tables de Pythagore

Qu'est-ce qu'une opération interne?

Définition

Une opération interne \star (ou loi de composition interne) sur un ensemble E est une relation qui, à deux éléments x et $y \in E$, associe un unique élément noté $x \star y$ appartenant à E.

Exemples:

- L'addition sur l'ensemble \mathbb{N} : à deux entiers a et b (par exemple 2 et 3), l'opération + associe l'entier a+b (5 dans cet exemple).
- ...
- •
- . . .

Pourquoi étudier les opérations internes?

• Utilité théorique (en maths surtout) : si on démontre qu'un théorème est vrai dans le cas de l'opération addition, une autre opération qui aura les mêmes propriétés que l'addition vérifiera aussi ce théorème... pas besoin de le re-démontrer.

Exemple: $(a \oplus b) \otimes (a \oplus b) = a^2 \oplus 2a \otimes b \oplus b^2$ marche pour toutes les lois \oplus et \otimes qui sont *commutatives* et *distributives*.

- → vous le verrez dans la 2e ressource de maths avec les opérations sur les matrices (addition, multiplication, inversion,...)
- **Utilité en informatique,** pour le codage d'une opération : il faut dire à l'ordinateur les propriétés de l'opération qu'on introduit.
- → vous le verrez en BDD avec les opérations sur les bases de données (union, concaténation...)

3

1

)

1

1. Propriétés d'une opération : commutativité, associativité

Dans toute la suite on suppose que \star est une opération interne dans un ensemble E.

Définition : commutativité

L'opération \star est **commutative** dans E si :

$$\forall x, y \in E, \quad x \star y = y \star x$$

Exemples:

- ullet L'addition est commutative dans ${\mathbb R}$ mais pas la soustraction.
- 0

Définition : associativité

L'opération \star est **associative** dans E si :

$$\forall x, y, z \in E$$
, $(x \star y) \star z = x \star (y \star z)$.

Exemples:

- ullet L'addition et la multiplication dans ${\mathbb R}$ sont associatives.

Exercices:

- L'opération ET sur l'ensemble des propositions est-elle associative ?
- ullet La soustraction sur $\mathbb Z$ est-elle associative?

2. Éléments notables d'une opération : neutre, absorbant

Définition

L'élément e de E est appelé **élément neutre** pour l'opération \star si :

$$\forall x \in E, \quad x \star e = x = e \star x$$

Quand il existe un tel e dans E, on dit que l'opération \star **possède** un élément neutre.

Exemples:

ullet L'addition dans ${\mathbb R}$ possède un élément neutre : 0.

Exercices:

- La multiplication dans $\mathbb R$ a-t-elle un élément neutre, si oui lequel ?
- Plus difficile. Même question pour l'opération ET sur l'ensemble des propositions.

Définition

L'élément a de E est appelé **élément absorbant** de l'opération \star si :

$$\forall x \in E, \quad x \star a = a = a \star x$$

Quand il existe un tel a dans E, on dit que l'opération \star **possède** un élément absorbant dans E.

Exemples:

ullet La multiplication dans ${\mathbb R}$ possède un élément absorbant : 0.

Exercices:

- ullet L'addition dans ${\mathbb R}$ a-t-elle un élément absorbant, si oui lequel?
- Plus difficile. Même question pour l'opération ET sur l'ensemble des propositions.

7

3. Lien entre 2 éléments : éléments symétriques

Définition

On suppose que l'opération * possède un élément neutre e.

On dit que l'élément x de E admet un **symétrique** x' pour l'opération \star si : , ,

 $x \star x' = x' \star x = e$

Quand un élément x de E admet un symétrique x', on dit que x est un élément **symétrisable**.

Exemples:

- Tout réel possède un symétrique pour l'addition dans \mathbb{R} . Soit x un réel, le x' de la définition vaut alors $x' = \dots$ Ce symétrique est appelé
- Tout réel non nul est symétrisable pour la multiplication de \mathbb{R} . Soit x réel non nul, le x' de la définition vaut alors $x' = \dots$. Ce symétrique est appelé

4. Lien entre 2 opérations : distributivité

Définition

On suppose que \star et \circ sont deux opérations internes sur E. On dit que l'opération \star est **distributive** par rapport à l'opération \circ si :

$$\forall x, y, z \in E, \quad x \star (y \circ z) = (x \star y) \circ (x \star z)$$

Exemple:

ullet Dans \mathbb{R} , la multiplication est distributive par rapport à l'addition :

$$\forall x, y, z \in \mathbb{R}, \quad x \times (y + z) = (x \times y) + (x \times z)$$

5. Tables de Pythagore

(partie qui sera complétée en TD)

Propriétés d'une opération définie par sa table

Soit \star une opération interne sur un ensemble E, dont on connait la table de Pythagore.

- * est **commutative** si et seulement si sa table de Pythagore et symétrique par rapport à sa diagonale.
- e est un élément neutre pour * si la ligne et la colonne de e reprennent la liste des éléments de E dans l'ordre de la table.
- a est un élément absorbant pour \star si la ligne et la colonne de a sont remplies de a.

11

13

DS1

Le DS1 sera pendant votre TD situé entre le 3 et le 5/10.

- Durée : 30min (40min pour les tiers-temps).
- **Programme**: feuilles TD 1, 2 et 3.
- Sur 20 points, avec :
 - sur 16 points : exercices "types", sosies d'exercices faits en TD en dehors de la partie approfondissement,
 - sur 4 points : exercices "pas types".
- Calculatrices et documents non autorisés.

Rappel : le DS2 aura lieu le vendredi 10/11 de 15h45 à 17h15 (17h45 pour les tiers-temps).

Il portera sur tout ce que vous aurez vu en TD sur l'ensemble des Mathématiques Discrètes.

Ces informations apparaissent dans le cours Moodle, section *Evaluation*. Il y a des énoncés de DS des années précédentes dans la section *Annales*.

Interro Moodle sur le Cours 4 (et un peu 3)

Test à faire sur Moodle avant lundi 2/10 à 23h59.

Questions du Test sur le Cours 4 (et un peu 3) :

(sur le Cours 3) Je vous donne 2 ensembles E et F, vous devez dire combien il y a d'éléments dans $E \times F$.

Par exemple $\{1,2\}x\{b,c\}$ est l'ensemble $\{(1,b),(1,c),(2,b),(2,c)\}$, qui a 4 éléments (ce sont 4 couples).

- ② Je vous donne une opération interne sur un ensemble (une des opérations vues en exemples dans ce cours) : est-elle commutative? est-elle associative? (cases à cocher).
- 3 Je vous donne une opération interne sur un ensemble (une des opérations vues en exemples dans ce cours) : dire si cette opération a un élément neutre, et si oui lequel.
- Je vous donne une opération interne sur un ensemble (une des opérations vues en exemples dans ce cours) : dire si cette opération a un élément absorbant, et si oui lequel.

Τ.