- Os três processadores possuem o mesmo conjunto de instruções
- Qual tem o melhor desempenho?
- Se em cada um, cada programa demora 10 seg. para executar, qual a qtde de instruções?

Processor	Clock rate	CPI
P1	2 GHz	1.5
P2	1.5 GHz	1.0
Р3	3 GHz	2.5

- Desempenho: considerando I qtde de instruções
 - P1: 2ghz → $5x10^{-9}$ s → CPU Time=I* 1.5 * $5x10^{-9}$ s=I*7, $5x10^{-9}$ S → **I*7,5E-10**
 - P2: 1.5 GHz → 2 x 10⁻⁹ s → CPU Time=I* 1.0 * $2x10^{-9}$ s=I*2x10⁻⁹ S → **I*2E-10**
 - P3: 3 GHz → 3.3 x 10^{-9} s → CPU Time=I* 2.5 * $3.3x10^{-9}$ s=I*8,25 x 10^{-9} S → I*8,3E-10
 - P2 tem menor CPU Time, de I*2E-10.

- Considerando cada programa demora 10 segundos
- P1: $10=I*7,5E-9 S \rightarrow I=1E10$
- P2: $10=I*2E-9 S \rightarrow I=10E10$
- P3: $10=I*8,3E-9 s \rightarrow I=1E10$
- No mesmo intervalo de tempo, P2 executa uma qtde de instruções 10 vz maior que P1 e P3

- Considere dois processadores P1 e P2, que implementam o mesmo conjunto de instruções, divididos nas classes A,B,C,D.
- P1 e P2 tem os seguintes clocks e CPIs médio para cada classe:

	Clock rate	CPI Class A	CPI Class B	CPI Class C	CPI Class D
P1	1.5 GHz	1	2	3	4
P2	2 GHz	2	2	2	2

- Considere um programa que tenha 10E6 instruções, sendo 10% classe A, 20% classe B, 50% classe C e 20% classe D. Qual processador será mais rápido?
- Qual clock cycle?

	Clock rate	CPI Class A	CPI Class B	CPI Class C	CPI Class D
P1	1.5 GHz	1	2	3	4
P2	2 GHz	2	2	2	2

Primeiro identificar o clock cycle geral

CPU clock cycles =
$$\sum_{i=1}^{n} (CPI_i \times C_i)$$

- CPI_i de cada classe, C_i qtde de instruções
- P1: 1*(0,10*10E6) + 2 *(0,20*10E6) +3* (0,50 * 10E6) + 4 * (0,20 * 10E6)=28 **x10**⁶ ciclos de clock
- P2: 2*(0,10*10E6) + 2 *(0,20*10E6) +2* (0,50
 * 10E6) + 2 * (0,20 * 10E6)= 20 x 10⁶ ciclos
 de clock

- P1: clock= 1.5GHz, rate= 700 x 10-¹² s (pico segundos)
- P1: 28 x10⁶ ciclos de clock * 700E-12 = 18**E-3 s**
- P2: clock = 2GHz, rate= 500 x 10-12 s (pico segundos)
- P2: 20 x10⁶ ciclos de clock * 500E-12 = 10E-3 s
- P2 possui o melhor desempenho. P2 é 1,8 vezes mais rápido que P1 para o programa escolhido.

 Considere um programa que utilize as seguintes quantidades de instruções:

Arith	Store	Load	Branch	Total
500	50	100	50	700

- Assumindo que instruções do tipo Arith gastam 1 ciclo de clock, load e store gastam 5 ciclos e branch gastam 2 ciclos, qual o tempo de execução em um processador de 2GHz?
- Qual o CPI de todo programa?
- Se acontecer uma melhoria de 50% na velocidade das instruções load e store, qual o speed up e o CPI final?

- Ciclos de clock= 500*1 + 50 * 5 + 100 * 5 + 50 * 2= 1350. Tempo total= 1350 * 500E-12 s = 6,75E-9 s.(6,75 nanoS)
- CPI Médio do programa = 1350/700 = 1.9
- Melhorando load e store em 50%, CPI= 2 ciclos de clock:
 - C.C.=500*1 + 50 * 2 + 100 * 2 + 50 * 2 = 900. Tmp = 900 * 500E-12 = 4,45 nanoS.
 - CPI Médio do programa = 900/700=1.3
- Speedup= 6,75/4,45 = 1.5 vezes mais rápido

 Lei de Amdahl: medida do impacto de determinada melhoria no desempenho

```
Execution time after improvement =

Execution time affected by improvement
Amount of improvement + Execution time unaffected
```

Identifica o limite de determinada melhoria.

- Outra métrica: MIPS
 - Usar somente o clock é uma métrica ruim de comparação
 - Outra métrica ruim é o MIPS: Milhoes de instruções por segundo.
 - Fácil de compreender: computador mais rápido possui MIPS maior....

Contudo:

- MIPS não leva em conta a capacidade das instruções. Dois computadores com instruções diferentes não podem ser comparados pelo MIPS.
- MIPS pode variar com programas diferentes dentro de um mesmo computador. Um programa pode usar instruções que tem CPI maior ou menor

	Clock rate	CPI Class A	CPI Class B	CPI Class C	CPI Class D
P1	1.5 GHz	1	2	3	4
P2	2 GHz	2	2	2	2

Componentes da medida de desempenho

Componentes	Unidade
Tempo de execução na CPU	Segundos para o programa
Contagem de instruções	Instruções executadas no programa
CPI	Número média de ciclos de clock por instrução
Ciclo do clock	Segundos para ciclo do clock

- Algoritmo: A escolha do algoritmo afeta a contagem das instruções de máquina gerada e o CPI.
- Um algoritmo que usa ponto flutuante, irá gerar uma instrução cuja qtde de ciclo de clock seja maior do que uma operação de cálculos sobre inteiros

Linguagem de Programação: O tipo da linguagem implica na geração de mais instruções para a CPU.

Quanto maior a abstração dos dados de uma linguagem, maior o CPI, devido as chamadas indiretas aos dados.

- Compilador: a eficiência do compilador afeta na quantidade final de instruções geradas.
- Além disso, existem várias estratégias de otimização que o compilador pode usar para diminuir o CPI médio do programa

- Conjunto de instruções: o conjunto de instruções da CPU afetam a taxa do clock, o CPI e mesmo a quantidade de instruções que são usadas pelos programas
- Implementação interna do conjunto de instruções do processador afeta a taxa de clock e o CPI

 Evolução dos processadores. Clock vs Energia

Product	AMD Opteron X4 (Barcelona)	Intel Nehalem	IBM Power 6	Sun Ultra SPARC T2 (Niagara 2)
Cores per chip	4	4	2	8
Clock rate	2.5 GHz	~ 2.5 GHz ?	4.7 GHz	1.4 GHz
Microprocessor power	120 W	~ 100 W ?	~ 100 W ?	94 W

- Múltiplos cores: avanços na vazão em detrimento ao tempo de resposta
- No passado, programadores contavam com a Lei de Moore para garantir a velocidade de seus programas "A velocidade aumenta a cada 18 meses"
- Devido a barreira da potência, o tempo de resposta não é mais o referencial

 Hoje, os programadores precisam compreender a arquitetura dos multiplos processadores para aproveitar o ganho em processamento

Contudo:

- Não é trivial desenvolver códigos "paralelos"
- Nem todo algoritmo tem uma implementação paralela eficiente
- Os programas antigos, e mais comuns, não utilizam multiplos processadores

Exercicios

- 1.5, 1.6, 1.10,1.12,1.13,1.14, 1.15,1.16
- → (dois deles serão cobrados na prova!)