Systèmes dynamiques

TD n°10

Yann Chaubet

24 novembre 2020

On a pour tout $x \in X$ tel que $\sigma^d(x) = x$ avec d > 0 minimal, en notant $n = d\ell_n + r_n$ avec $r_n < d$

$$\frac{1}{n} \sum_{k=1}^{n} f(\sigma^k(x)) = \sum_{j=1}^{\ell_n} \left(\sum_{y \in \mathcal{O}(x)} f(y) \right) + \frac{1}{n} \sum_{k=d\ell_n+1}^{n} f(\sigma^k(x))$$

$$= \frac{1}{n} \ell_n \left(\sum_{y \in \mathcal{O}(x)} f(y) \right) + o(1/n)$$

$$= \frac{1}{d} \left(\sum_{y \in \mathcal{O}(x)} f(y) \right) + o(1).$$

On sait que l'on a $S_n\varphi \to \psi$, μ -presque partout pour une certaine fonction $\psi \in L^1(\mu)$. On note G l'ensemble des points de X telle que $\lim_n S_n\varphi(x)$ existe.

Si $x, x' \in X$ on a, puisque φ est uniformément continue,

$$|S_n\varphi(x) - S_n\varphi(x')| \le \frac{1}{n} \sum_{k=1}^n |\varphi(f^k(x)) - \varphi(f^k(x'))| \le C\varepsilon \left(d(x, x')\right)$$

où $\varepsilon(t) \to 0$ quand $t \to 0$. Comme G est dense dans X (car $\mu(U) > 0$ pour tout ouvert non vide U), on peut définir ψ partout par $\psi(x) = \lim_k \psi(x_k)$ où $x_k \in G$ et $x_k \to x$.

Ainsi $S_n \varphi \to \psi$ partout, avec ψ continue.

Montrons que la convergence est uniforme. Soit $\varepsilon > 0$ et $x_1, \ldots, x_N \in X$ tels que $\inf_{i=1,\ldots,N} \operatorname{d}(x,x_i) < \delta$ pour tout $x \in X$,où $\delta > 0$ est choisi de sorte que

$$|\varphi(x) - \varphi(x')| \le \varepsilon, \quad d(x, x') < \delta, \quad x, x' \in X.$$

Soit n_0 assez grand tel que $|S_n\varphi(x_i) - \psi(x_i)| < \varepsilon$ pour tout $n > n_0$ et tout i = 1, ..., N.

Soit $x \in X$ et i tel que $d(x, x_i) < \delta$. Alors

$$|S_n \varphi(x) - \psi(x)| \leq |S_n \varphi(x) - S_n \varphi(x_i)| + |S_n \varphi(x_i) - \psi(x_i)| + |\psi(x_i) - \psi(x)|$$

$$\leq 3\varepsilon.$$

Soit (φ_j) une suite de $C^0(X)$ qui est dense. Pour tout j, il existe $G_j \subset X$ de mesure totale telle que la limite $\lim_n S_n \varphi_j(x)$ existe pour tout $x \in G_j$.

On définit G l'ensemble de mesure totale par

$$G = \bigcap_{j} G_{j}$$
.

Soit maintenant $\varphi \in C^0(X)$, et $x \in G$. Soit $\varepsilon > 0$. On prend j tel que $\|\varphi_j - \varphi\|_{\infty} < \varepsilon$. Alors pour tous m, n,

$$|S_n\varphi(x) - S_m\varphi(x)| \leq |S_n \varphi(x) - S_n\varphi_j(x)| + |S_n\varphi_j(x) - S_m\varphi_j(x)| + |S_m\varphi_j(x) - S_m\varphi(x)|$$

$$\leq 2\varepsilon + |S_n\varphi_j(x) - S_m\varphi_j(x)|.$$

Si m, n sont assez grands alors $|S_n \varphi_j(x) - S_m \varphi_j(x)| \leq \varepsilon$ puisque $(S_n \varphi_j(x))_n$ converge car $x \in G \subset G_j$.

Ainsi, $S_n \varphi(x)$ converge quand $n \to +\infty$ par le critère de Cauchy.

Soit $x \in X$. On considère

$$\mu_n = \frac{1}{n} \sum_{k=1}^n \delta_{f^k(x)}, \quad n \geqslant 1.$$

Alors par le TD n°9, il existe une suite n_k et une mesure de probabilités f-invariante μ' telle que

$$\mu_{n_k}(\varphi) \to \mu'(\varphi), \quad \varphi \in C^0(X).$$

Alors $\mu' = \mu$ par unicité et μ' est de support total. Par conséquent, on a pour tout ouvert non vide $A \subset X$

$$\#\{n \in \mathbb{N}, \ f^n(x) \in A\} = +\infty.$$

1. Pour tout n on a

$$\int_X |S_n \varphi|^2 \mathrm{d}\mu = \int_X |\varphi|^2 \mathrm{d}\mu.$$

Par conséquent on a $\int_X |\bar{\varphi}|^2 d\mu \leqslant \int_X |\varphi|^2 d\mu$ par Fatou, et donc $\bar{\varphi} \in L^2(\mu)$.

2. Si $|\varphi| \in L^{\infty}(\mu)$ on a $\int_X |S_n \varphi - \bar{\varphi}|^2 d\mu \to 0$ par le théorème de convergence dominée.

Posons $\varphi_k = \varphi 1_{\{|\varphi| \leqslant k\}}$. Alors

$$\int_X |\varphi|^2 \mathrm{d}\mu \geqslant \int_X |\varphi - \varphi_k|^2 \mathrm{d}\mu \geqslant k^2 \mu(\{|\varphi| > k),$$

de sorte que

$$\mu(\{|\varphi| > k\}) \leqslant \frac{\|\varphi\|_{L^2(\mu)}^2}{k^2}, \quad k > 0.$$

Il suit que $\varphi_k \to \varphi$ μ presque partout et donc $\varphi_k \to \varphi$ dans $L^2(\mu)$ par convergence dominée.

Soit $\varepsilon > 0$ et k assez grand de sorte que $\|\varphi - \varphi_k\|_{L^2(\mu)} < \varepsilon$. On a

$$\|S_n\varphi-S_m\varphi\|_2\leqslant \|S_n\varphi-S_n\varphi_k\|_2+\|S_n\varphi_k-S_m\varphi_k\|_2+\|S_m\varphi_k-S_m\varphi\|_2.$$

On a pour tout ℓ

$$||S_{\ell}\varphi - S_{\ell}\varphi_k||_2 \leqslant \frac{1}{\ell} \sum_{j=1}^{\ell} ||(\varphi - \varphi_k) \circ f^j||_2 \leqslant ||\varphi - \varphi_k|| < \varepsilon.$$

D'autre part, comme φ_k est bornée on sait que $S_n\varphi_k$ converge dans $L^2(\mu)$; on obtient que si m, n sont assez grands,

$$||S_n\varphi - S_m\varphi||_2 < 3\varepsilon.$$

Ainsi $(S_n\varphi)$ converge dans $L^2(\mu)$, vers $\bar{\varphi}$.

1. On raisonne par récurrence sur n. Pour n=1 on a $T_n\varphi(x)=\varphi(x)\geqslant \varepsilon\chi_{A_\varepsilon}(x)$.

On suppose que
$$T_n\varphi(x)\geqslant \varepsilon\sum_{k=0}^{n-1}\chi_{A_\varepsilon}(f^k(x))$$
. On a $\varphi(f^n(x))\geqslant \varepsilon\chi_{A_\varepsilon}(f^n(x))$ par ce qui précède. Ainsi
$$T_{n+1}\varphi(x)=T_n\varphi(x)+\varphi(f^n(x))$$

$$\geqslant \varepsilon\sum_{k=0}^n\chi_{A_\varepsilon}(f^k(x)).$$

2. La question précédente donne

$$\bar{\varphi} \geqslant \varepsilon \bar{\chi}_{A_{\varepsilon}} \quad \mu$$
-presque partout sur A_{ε}

où $\bar{\varphi}$ et $\bar{\chi}_{A_{\varepsilon}}$ sont les fonctions associées à φ et $\chi_{A_{\varepsilon}}$ données par le théorème ergodique.

Puisque $\bar{\varphi} \circ f = \bar{\varphi} \mu$ -presque partout, l'inégalité précédente est vraie μ -pp sur B_{ε} .

Par définition pour tout $x \in \mathcal{C}B_{\varepsilon}$, on a $\chi_{A_{\varepsilon}}(f^k(x)) = 0$ pour tout $k \in \mathbb{N}$. Il suit que $\chi_{A_{\varepsilon}} = 0$ sur $\mathcal{C}B_{\varepsilon}$.

D'autre part on a $\bar{\varphi}$ par hypothèse puisque $T_n\varphi(x)\to +\infty$ pour μ -presque tout x. Ainsi

$$\mu(A_{\varepsilon}) = \int_{X} \chi_{A_{\varepsilon}} d\mu$$

$$= \int_{X} \bar{\chi}_{A_{\varepsilon}} d\mu$$

$$= \int_{B_{\varepsilon}} \bar{\chi}_{A_{\varepsilon}}$$

$$\leqslant \frac{1}{\varepsilon} \int_{B_{\varepsilon}} \bar{\varphi} d\mu$$

$$\leqslant \frac{1}{\varepsilon} \int_{X} \bar{\varphi} d\mu$$

$$\leqslant \frac{1}{\varepsilon} \int_{X} \varphi d\mu$$

$$\leqslant 0.$$

On obtient $\mu(A_{\varepsilon}) = 0$ et donc $\mu(B_{\varepsilon}) = \mu\left(\bigcup_{k} f^{-k}(A_{\varepsilon})\right) = 0$ puisque f préserve μ .

3. On a le

Lemme

Soit (a_n) une suite réelle telle que $\sum_{n=0}^{N} a_n \to +\infty$ quand $N \to +\infty$. Alors il existe $\varepsilon > 0$ et $N_0 > 0$ tels que

$$\sum_{n=N_0}^N a_n \geqslant \varepsilon, \quad N \geqslant N_0.$$

Admettant le lemme, on obtient que pour tout $x \in X$ tel que $T_N \varphi(x) \to +\infty$ quand $N \to +\infty$, il existe $\varepsilon(x), N_0(x) > 0$ tels que

$$\sum_{n=N_0(x)}^N \varphi(f^n(x)) \geqslant \varepsilon, \quad N \geqslant N_0(x).$$

Autrement dit, on a $x \in f^{-N_0(x)}(A_{\varepsilon}(x)) \subset B_{\varepsilon(x)}$.

Ceci implique que l'ensemble $\bigcup_{k>0} B_{1/k}$ est de mesure totale, puisque presque tout x vérifie $T_N \varphi(x) \to +\infty$.

Ainsi, par la question **2.**, il existe k tel que $B_{1/k}$ est de mesure strictement positive, et donc $\int_{\varphi} d\mu > 0$.

Il reste à montrer le lemme; soit (a_n) une suite réelle telle que

$$\sum_{n=0}^{N} a_n \to +\infty, \quad N \to +\infty.$$

On raisonne par l'absurde et on suppose que pour tout $\varepsilon > 0$ et tout $N \ge 0$, il existe $N' \ge N$ tel que

$$\sum_{n=N}^{N'} a_n < \varepsilon.$$

Posons $N_0 = 0$ et $\varepsilon_0 = 1$. Alors il existe $N' \ge 0$ tel que,

$$\sum_{n=N_0}^{N'} a_n < 1.$$

On pose $N_1 = N' + 1$. Alors il existe $N' \ge N_1$ tel que

$$\sum_{n=N_1+1}^{N'} a_n < \frac{1}{4}.$$

En itérant ce processus, on construit une suite $N_0 < N_1 < \cdots$ telle que

$$\sum_{n=N_k}^{N_{k+1}-1} a_n < \frac{1}{(k+1)^2}, \quad k \geqslant 0.$$

On obtient que

$$\limsup_{k} \sum_{n=0}^{N_k - 1} a_n < +\infty,$$

ce qui est absurde.