Sujet IMT-1

I - Représentation binaire des nombres

- Q1) Rappeler le système de complément à deux pour enregistrer des nombres négatifs en mémoire.
- **Q2)** Comment déterminer la parité d'un nombre à partir de sa représentation binaire ? En déduire ce que retourne ce code:

```
int fonction_mystere(int arg){
  return arg&(-arg);
}

int main() {
  int nombre;
  scanf("%d", &nombre);
  printf("%d\n", fonction_mystere(arg));
}
```

Q3) On se propose de manipuler des sous-ensembles d'un ensemble $A=\{a_1,a_2,...,a_n\}$ pour $n\in\mathbb{N}$.

Pour cela, on va représenter un sous ensemble $\{a_i \mid i \in J\}$ avec $J \in \mathcal{P}(\llbracket 1, n \rrbracket)$, où $\mathcal{P}(\llbracket 1, n \rrbracket)$ correspond aux parties de l'ensemble $\llbracket 1, n \rrbracket$, par un nombre binaire $b = b_1b_2...b_n$ où $b_i = 1$ si $i \in J$, et $b_i = 0$ sinon. Par exemple, si n = 5, l'ensemble $\{a_2, a_3\}$ est représenté par b = 01100. Expliquer avec quels opérateurs binaires on peut effectuer:

- L'union de deux sous-ensembles.
- L'intersection de deux sous-ensembles.
- Le complémentaire d'un sous-ensemble.

II - Décidabilité

Définition: PCP

- Soit Σ un alphabet tel que $|\Sigma| \geq 2$
- Soit $N \in \mathbb{N}$
- Soit $\alpha_1,...,\alpha_N$ et $\beta_1,...,\beta_N$ de listes de mots (finis) sur Σ .

Existe-t-il une suite $(i_k)_{1 < k < K} \in [\![1,N]\!]^K$ avec $K \in \mathbb{N}^*$ tels que $\alpha_{i_1}...\alpha_{i_K} = \beta_{i_1}...\beta_{i_K}$?

On admet que PCP est indécidable.

1. Que dire des instances suivantes?

```
1. Soit \Sigma = \{a, b\}

• (\alpha_i) = a, ab, bba

• (\beta_i) = \text{baa}, aa, bb

2. Soit \Sigma = \{a, b\}

• (\alpha_i) = a, ab, bba

• (\beta_i) = \text{baa}, bb, aa
```

3. Soit $\Sigma = \{a, b, c\}$

• $(\alpha_i) = a, b, c$

• $(\beta_i) = \text{bac}, \text{ca}, \text{bca}$

2. Exhiber un algorithme donnant pour tout instance l'existence d'une solution (de taille bornée).

Définition: *INTER-G*

IMT-1 1 of 2

Soit (G,G') un couple de grammaires sans contextes, existe-t-il un mot w engendré par les deux grammaires ?

3. Quel est le type du problème *INTER-G* ?

Soit $N \in \mathbb{N}$. Soit Σ l'alphabet sur lequel sont définies $(u_k)_{0 \leq k \leq N}$ et $(v_k)_{0 \leq k \leq N}$ deux listes de mots. Soit $A = \{a_0, ..., a_{N-1}\}$ des caractères disjoints de Σ (càd $\Sigma \cap A = \emptyset$). On définit les langages suivant, $\forall n \in \mathbb{N}$:

- $\begin{array}{l} \bullet \ L_U = \left\{a_{i_0}..a_{i_{n-1}}u_{i_{n-1}}...u_{i_0}, \forall k \in [\![0,n-1]\!], i_k \in [\![0,N]\!]\right\} \\ \bullet \ L_V = \left\{a_{i_0}..a_{i_{n-1}}v_{i_{n-1}}...v_{i_0}, \forall k \in [\![0,n-1]\!], i_k \in [\![0,N]\!]\right\} \end{array}$
- 4. Montrer que ${\cal L}_U$ et ${\cal L}_V$ sont des langages sans contextes.
- 5. Montrer que *INTER-G* est indécidable.

IMT-1 2 of 2