Aufgabe 1

Es ist jeweils **genau eine** Antwort korrekt: Für genau die richtige Antwort gibt es **drei** Punkte. Punktabzug bei falschen Antworten gibt es **nicht**. Wenn mehr als eine Antwort ausgewählt wird, werden **null Punkte** vergeben.

1.MC1 [3 Punkte] Seien $f: \mathbb{C} \to \mathbb{C}$ und $g: \mathbb{C} \to \mathbb{C}$ holomorph. Welche der folgenden Funktionen $h: \mathbb{C} \to \mathbb{C}$ ist immer holomorph?

- (A) $h(z) = f(\overline{g(z)}).$
- (B) $h(z) = f(z) \cdot \overline{g(z)}$.
- (C) $h(z) = i f(z) \cdot g(z)$.
- (D) $h(z) = |f(z)| \cdot |g(z)|$.

1.MC2 [3 Punkte] Gegeben sei die Funktion

$$f(z) = \frac{1}{z^3}.$$

Welche der folgenden Aussagen ist richtig?

- (A) f besitzt auf \mathbb{C} eine Stammfunktion.
- (B) Das Kurvenintegral $\int_{\delta} f(z) dz$ ist unabhängig vom Pfad $\delta : [0,1] \to \mathbb{C}$.
- (C) f besitzt auf $\{z \in \mathbb{C} \mid |z| < 1\}$ eine Stammfunktion.
- (D) Das Kurvenintegral $\int_{\delta} f(z) dz$ ist unabhängig vom Pfad $\delta : [0,1] \to \{z \in \mathbb{C} \mid \text{Re}z > 0\}.$

1.MC3 [3 Punkte] Sei $\gamma(t) := \pi e^{2\pi i t}$, $t \in [0,1]$. Der Wert des Integrals

$$\int_{\gamma} \frac{\sin(z^2)}{(z+\sqrt{\pi})^3} \mathrm{d}z$$

ist

- a) 0.
- b) $-2\pi i$.
- c) $4\pi^2 i$.
- d) $-8\pi^3 i$.

1.MC4 [3 Punkte] Die Funktion

$$f(z) = \frac{\sin(z)}{z + \pi}$$

hat in $z = -\pi$...

- (A) eine hebbare Singularität.
- (B) eine wesentliche Singularität.
- (C) einen Pol erster Ordnung.
- (D) einen Pol zweiter Ordnung.
- 1.MC5 [3 Punkte] Bestimmen Sie die Laurentreihe der Funktion

$$f(z) = \frac{1}{(z-1)(2-z)}$$

auf dem Gebiet $\{z \in \mathbb{C} \mid 0 < |z - 2| < 1\}.$

- (A) $\sum_{n=0}^{\infty} (-1)^n (z-2)^n$.
- (B) $\sum_{n=0}^{\infty} (z-1)^n$.
- (C) $\sum_{n=-1}^{\infty} (-1)^n (z-2)^n$.
- (D) $\sum_{n=-1}^{\infty} (z-1)^n$.
- **1.MC6** [3 Punkte] Eine stetige Funktion f(x) hat die Fourier-Transformation

$$\hat{f}(\omega) = \frac{-\pi i}{2} \omega e^{-|\omega|}.$$

Berechnen Sie f'(0).

- (A) $\sqrt{2\pi}$.
- (B) $2\sqrt{\pi}$.
- (C) $\frac{\pi}{2}$.
- (D) $\sqrt{\pi}$.
- **1.MC7** [3 Punkte] Finden Sie die Laplace-Transformation $\mathcal{L}[y(t)](s)$ der Lösung y(t) der folgenden Differentialgleichung:

$$\ddot{y}(t) + \dot{y}(t) - 2y(t) = 4\sin(2t), \quad y(0) = 0, \quad \dot{y}(0) = -1.$$

- (A) $\mathcal{L}[y(t)](s) = -\frac{1}{5} \left(\frac{s+6}{s^2+4} \frac{1}{s-1} \right).$
- (B) $\mathcal{L}[y(t)](s) = -\frac{1}{5} \left(\frac{s+3}{s^2+4} + \frac{2}{s+2} \right).$
- (C) $\mathcal{L}[y(t)](s) = -\frac{1}{5} \left(\frac{s+3}{s^2+4} + \frac{2}{s-1} \right).$
- (D) $\mathcal{L}[y(t)](s) = -\frac{1}{5} \left(\frac{s+6}{s^2+4} \frac{1}{s+2} \right).$
- **1.MC8** [3 Punkte] Finden Sie die Laplace-Transformation der Funktion $f(t) = t \sinh^2(2t) H(t)$.
 - (A) $\mathcal{L}[y(t)](s) = \frac{4(s+9)}{(s^2-16)^2s^2}$.
 - (B) $\mathcal{L}[y(t)](s) = \frac{8(3s^2-16)}{(s^2-16)^2s^2}$.
 - (C) $\mathcal{L}[y(t)](s) = \frac{s^2 + 4s 2}{(s^2 16)^2 s^2}$.
 - (D) $\mathcal{L}[y(t)](s) = \frac{2(s^2+12s)}{(s^2-16)^2s^2}$.

Aufgabe 2

Sei $f: \mathbb{R} \to \mathbb{R}$ die gerade 2π -periodische Funktion gegeben durch

$$f(t):=t-\frac{\pi}{2}, \qquad t\in [0,\pi].$$

2.A1 [2 Punkte] Skizzieren Sie f.

2.A2 [7 Punkte] Bestimmen Sie die reelle Fourierreihe von f.

2.A3 [3 Punkte] Bestimmen Sie den Wert der Reihe

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}.$$

Prüfungs-Nr.: 000 XX-XX-XX-000-000 Seite 4 von 7

Aufgabe 3

[12 Punkte] Berechnen Sie das Integral

$$\int_{-\infty}^{\infty} \frac{x \sin(2x)}{(x^2+4)^3} \mathrm{d}x$$

mit Hilfe des Residuensatzes.