Project_3

February 18, 2022

1 Project 3 - Recommender Systems

Gorkem Camli (105709280)

Library imports

1.1 Dataset

Data Exploration

Ratings Raws length: 100836

Data preview:

	userId	${ t movieId}$	rating	timestamp
0	496	112852	3.0	1415520462
1	391	1947	4.0	1030945141
2	387	1562	1.5	1095041022
3	474	2716	4.5	1053020930
4	483	88125	4.5	1311337237

Number of users: 610 Number of movies: 9724

1.1.1 Question 1

Question 1.A Compute the sparsity of the movie rating dataset:

```
Sparsity = \frac{Total\ number\ of\ available\ ratings}{Total\ number\ of\ possible\ ratings}
```

Total number of users: 610 Total number of movies: 9724

Total number of available ratings: 100836

Total number of possible ratings = number of movies x number of users = 5931640

The sparsity of the movie rating dataset is: 0.016999683055613623

Question 1.B Plot a histogram showing the frequency of the rating values: Bin the raw rating values into intervals of width 0.5 and use the binned rating values as the horizontal axis. Count the number of entries in the ratings matrix R that fall within each bin and use this count as the height of the vertical axis for that particular bin. Comment on the shape of the histogram.

Ratings Scale:

[0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]

Text(0, 0.5, 'Number of Ratings (Frequency)')

The ratings are within the 0.5 to 5.0 range. Users who gave ratings tends to give higher rating scores since the trend of the histogram is towards the higher ratings. Around 81% of the ratings are 3 and above and 21.5% is 4.5 and above. One possible interpretation is that users may tend to give ratings to the movies they like or they liked the movies they watched.

Ratings Count:

4.0 26816 3.0 20046 5.0 13211 3.5 13136 4.5 8553 2.0 7551 2.5 5551 1.0 2811 1.5 1791 0.5 1370

Name: rating, dtype: int64 Ratings Count normalized:

4.0 0.265937

```
3.0
       0.198798
5.0
       0.131015
3.5
       0.130271
4.5
       0.084821
2.0
       0.074884
2.5
       0.055050
1.0
       0.027877
       0.017762
1.5
0.5
       0.013586
```

Name: rating, dtype: float64

Question 1.C Plot the distribution of the number of ratings received among movies: The X-axis should be the movie index ordered by decreasing frequency and the Y -axis should be the number of ratings the movie has received; ties can broken in any way. A monotonically decreasing trend is expected.

Top 10 movies with most ratings

	0	1	2	3	4	5	6	7	8	9
movieId	356	318	296	593	2571	260	480	110	589	527
rating_count	329	317	307	279	278	251	238	237	224	220

Text(0, 0.5, 'Number of Ratings')


```
25%
                                                                       50%
                count
                                mean
                                                std
                                                      min
movieId
               9724.0
                       42245.024373
                                       52191.137320
                                                      1.0
                                                           3245.5
                                                                    7300.0
rating_count
               9724.0
                           10.369807
                                          22.401005
                                                      1.0
                                                               1.0
                                                                       3.0
                    75%
                               max
               76739.25
                          193609.0
movieId
                   9.00
                             329.0
rating_count
```

Rating Count Normalized Value Counts:

```
1
       0.354381
2
       0.133484
3
       0.082271
4
       0.054504
5
       0.039284
203
       0.000103
       0.000103
211
251
       0.000103
215
       0.000103
307
       0.000103
```

Name: rating_count, Length: 177, dtype: float64

As expected we observe a monotonically decreasing trend. Majority of the movies rated very few or 1 times only. This shows that there a few popular movies that are rated among many users and majority of the movies rated by few users. This points out that there is sparsity in the data.

Question 1.D Plot the distribution of ratings among users: The X-axis should be the user index ordered by decreasing frequency and the Y-axis should be the number of movies the user has rated. The requirement of the plot is similar to that in Question C.

Top 10 users with most ratings

```
0
                           1
                                 2
                                        3
                                               4
                                                      5
                                                             6
                                                                    7
                                                                           8
                                                                                  9
                 414
                        599
                               474
                                      448
                                             274
                                                    610
                                                            68
                                                                  380
                                                                         606
userId
                                                                                288
rating_count
                2698
                       2478
                              2108
                                     1864
                                            1346
                                                   1302
                                                          1260
                                                                 1218
                                                                        1115
                                                                               1055
```

Text(0, 0.5, 'Number of Ratings')

	count	mean	std	min	25%	50%	75%	\
userId	610.0	305.500000	176.236111	1.0	153.25	305.5	457.75	
rating_count	610.0	165.304918	269.480584	20.0	35.00	70.5	168.00	

max userId 610.0 rating_count 2698.0

Rating Count Normalized Value Counts:

20	0.022951
21	0.024590
22	0.022951
23	0.021311
24	0.011475
	•••
1346	0.001639
1864	0.001639
1864 2108	0.001639 0.001639
	0.002000
2108	0.001639

Name: rating_count, Length: 261, dtype: float64

Rating Count Normalized Value Counts after cumsum from lines 45-51:

```
66  0.483607

67  0.486885

68  0.488525

69  0.496721

70  0.500000

71  0.501639

Name: rating_count, dtype: float64
```

Again we see a decreasing trend with a tailed curve. There are some users who did a lot of ratings but majority seems to rate low number of movies. The minimum number of ratings among the users is 20. Half of the users rated 70 or less movies out of 9724 movies, which again shows that

there is an uneven distribution and sparsity in the ratings given by users.

Question 1.E Discuss the salient features of the distributions from Questions C,D and their implications for the recommendation process.

In 1.C, the number of ratings given to movies has a monotonically decreasing trend with a long tail on the right. This means majority of the movies get very low number of ratings where few of the movies get majority of the ratings. Around 35.4% movies get only 1 rating. Similarly, in 1.D, the number of ratings given by users has a monotonically decreasing trend with a long tail as well. This means majority of the users gave few ratings, and there are few users with very high number of ratings. Half of the users gave at least 20 and at most 70 movie ratings. Given that we have 610 users and 9724 movies, the ratings matrix R is a sparse matrix. The sparsity we calculate in Q1.A with 0.0169 confirms this. Having a sparse matrix makes recommendation systems job harder, as there are few links between users and movies. This means if there is a low number rating for a specific movie, it will be harder to rate that movie based on similar users, or if the user has a low number of rating it will be hard to learn about what users might like or not. Given the sparsity of matrix finding the similarities between users or movies will be challenging because we will have to work on small number of ratings, given that majority of the values are 0. This might cause problems such as overfitting or false predictions on the ratings. As described in the page 6 of the specification part, we might need to regularize our models to avoid overfitting.

Question 1.F Compute the variance of the rating values received by each movie: Bin the variance values into intervals of width 0.5 and use the binned variance values as the horizontal axis. Count the number of movies with variance values in the binned intervals and use this count as the vertical axis. Briefly comment on the shape of the resulting histogram.

Movie based stats table preview:

	0	1	2	3	4	\
movieId	1.00000	2.000000	3.000000	4.000000	5.000000	
max_rating	5.00000	5.000000	5.000000	3.000000	5.000000	
min_rating	0.50000	0.500000	0.500000	1.000000	0.500000	
rating_variance	0.69699	0.777419	1.112651	0.726190	0.822917	
rating_count	215.00000	110.000000	52.000000	7.000000	49.000000	
rating_mean	3.92093	3.431818	3.259615	2.357143	3.071429	
	5	6	7	8	9	

movieId	6.000000	7.000000	8.000000	9.000	10.000000
max_rating	5.000000	5.000000	5.000000	5.000	5.000000
min_rating	1.000000	1.000000	1.000000	1.500	0.500000
rating_variance	0.670841	0.955625	1.267857	0.950	0.738535
rating_count	102.000000	54.000000	8.000000	16.000	132.000000
rating_mean	3.950980	3.185185	2.875000	3.125	3.496212

Description of Movie based stats table:

	movieId	${\tt max_rating}$	min_rating	rating_variance	rating_count	\
count	9724.000000	9724.000000	9724.000000	6278.000000	9724.000000	
mean	42245.024373	3.912999	2.416495	0.857169	10.369807	
std	52191.137320	1.056532	1.241600	0.795839	22.401005	
min	1.000000	0.500000	0.500000	0.000000	1.000000	
25%	3245.500000	3.500000	1.500000	0.395833	1.000000	
50%	7300.000000	4.000000	2.500000	0.702111	3.000000	
75%	76739.250000	5.000000	3.500000	1.105310	9.000000	
max	193609.000000	5.000000	5.000000	10.125000	329.000000	

	rating_mean
count	9724.000000
mean	3.262448
std	0.869874
min	0.500000
25%	2.800000
50%	3.416667
75%	3.911765
max	5.000000

Text(0.5, 1.0, 'Histogram of Rating Values (Unbiased) Variance per movie')

Movies percentage that has variance less than or equal 1: 44.94% Movies percentage that has variance less than or equal 1.5: 56.78%

I used unbiased variance to calculate variance values. From the histogram, we can see that majority of the movies variance are in the range of 0 to 1.5. almost 44.94% of the movies has a variance <= 1 and 56.78% movies has a variance of <=1.5. This means that most of the movies min and max rating range is close to each other, and the ratings given by users are similar and could be relied for the recommendations. There are few movies where the variance range is very high and even extreme cases where variance is more than 5. From our observation those movies are the ones that received few ratings and the ratings are very different. For example for the movieId 2068, there are 2 ratings: [5.0, 0.5] - variance is 10.125. For these few extreme cases and movies with high variances, we can commment that the ratings given by users are inconsistent and not very reliable.

1.2 Neighborhood-based collaborative filtering

1.2.1 Question 2

Question 2.A Write down the formula for u in terms of I_u and r_{uk}

 $\mu_u = \frac{\text{Sum of ratings given by user u}}{\text{Number of ratings given by user u}}$

$$\mu_u = \frac{\sum_{k \in I_u} r_{uk}}{|I_u|}$$

 μ_u represents the mean of the ratings given by user u.

Question 2.B In plain words, explain the meaning of

$$I_u I_v$$
 (1)

. Can

$$I_u I_v = \tag{2}$$

? (Hint: Rating matrix R is sparse)

$$I_u I_v$$
 (3)

are the set of movies where both user u and user v rated. Because R matrix is sparse, it is very likely that for some user u and user v, they don't have any common movies they rated, hence the intersection of them is empty:

$$I_u I_v = \tag{4}$$

•

1.2.2 Question 3

Understanding the Prediction function: Can you explain the reason behind mean-centering the raw ratings $(r_{vj}-v)$ in the prediction function? (Hint: Consider users who either rate all items highly or rate all items poorly and the impact of these users on the prediction function.)

Ratings can be subjective for every person, some people might be more prone to give higher scores and some prone to give lower scores. Therefore, score distribution of users also could be very different. We are not interested in the absolute rating for a movie from a user, because let's say an average rating for user A is 4 and he gave a movie rating 2.5 to movie X, thinks movie is bad, and user B has an average rating of 2. Then when we try to predict User B's rating, if we use absolute score, user B will think like user A liked the movie (user B's avg was 2) and become prone to like movie X. If both users have similar tastes, B should have dislike the movie as well. Similarly these things can happen when there are users who rate high or low all the time. This cause biases during the prediction of ratings.

To reduce subjectivity and bias, we should interpret the score given by users relatively rather than absolute rating, and standardize them. Otherwise we might end up biasing our predicted rating and misinterpreting the score given by other users. To standardize user ratings we do mean centering around each user. In this way, mean centering can reduce the user bias, and help us predict more accurate and unbiased rating scores.

1.2.3 Question 4

Design a k-NN collaborative filter to predict the ratings of the movies in the original dataset and evaluate its performance using 10-fold cross validation. Sweep k (number of neighbors) from 2 to 100 in step sizes of 2, and for each k compute the average RMSE and average MAE obtained by averaging the RMSE and MAE across all 10 folds. Plot average RMSE (Y-axis) against k (X-axis) and average MAE (Y-axis) against k (X-axis).

I used KNNwithMeans model from surprise library to for the KNN collaborative filter because the prediction calculation made by KNNwithMeans was the one corresponding to Equation 3 in the project description pdf. The plots below shows that Average RMSE and MAE results across 10-fold for each k from 2 to 100, with step sizes 2.

RMSE: Root Mean Square Error, takes the square root of average of the squared differences between true ratings and predicted ratings. RMSE penalize more when the difference between true and predicted rating is higher (takes square of the error). Therefore, it is affected more by bad predictions and outliers.

MAE: Mean Average Error, is the average of absolute difference between true rating and predicted rating. Therefore, it is not biased towards big errors (bad predictions) as RMSE and it penalizes all predictions equally.


```
0
                                                              2
k
avg_rmse
                                                         1.0184
                                                       0.785199
avg_mae
cv_results {'test_rmse': [1.0064455149967226, 1.031740256...
                                                              1
k
                                                              4
                                                       0.943863
avg_rmse
                                                       0.725791
avg_mae
cv_results {'test_rmse': [0.9361455127443382, 0.936461550...
                                                             2
k
                                                              6
                                                       0.919774
avg_rmse
avg_mae
                                                       0.704725
cv_results {'test_rmse': [0.9167145310841434, 0.912939917...
                                                             3
                                                                 \
k
                                                              8
avg_rmse
                                                       0.907544
                                                       0.693875
avg_mae
cv_results {'test_rmse': [0.8955187655975912, 0.896143192...
                                                             4
                                                                  \
k
                                                             10
avg_rmse
                                                       0.903836
                                                       0.690233
avg_mae
cv_results {'test_rmse': [0.9004002958024331, 0.906640460...
                                                             5
                                                                  \
k
                                                              12
                                                       0.897336
avg_rmse
avg_mae
                                                       0.684864
cv_results {'test_rmse': [0.8920181051105353, 0.904678838...
                                                             6
                                                                  \
                                                             14
k
                                                       0.895703
avg_rmse
                                                       0.682759
avg_mae
cv_results {'test_rmse': [0.8984940103116476, 0.884587799...
                                                             7
                                                                 \
k
                                                             16
                                                       0.894728
avg_rmse
avg_mae
                                                        0.68196
cv_results {'test_rmse': [0.8944573838012619, 0.894354533...
```

```
8
k
                                                               18
                                                        0.892995
avg_rmse
                                                        0.680934
avg_mae
cv_results {'test_rmse': [0.8964935529488661, 0.891298673...
                                                               9
                                                                   \
                                                               20
k
                                                        0.892148
avg_rmse
avg_mae
                                                        0.680044
cv_results {'test_rmse': [0.8999086243769336, 0.887705797...
                                                               10
                                                                   \
                                                               22
k
avg_rmse
                                                        0.891058
                                                        0.678801
avg_mae
cv_results {'test_rmse': [0.8803154535306453, 0.903646226...
                                                               11
                                                               24
k
                                                        0.891069
avg_rmse
avg_mae
                                                        0.678574
cv_results {'test_rmse': [0.8995998966443965, 0.891611505...
                                                               12
k
                                                               26
avg_rmse
                                                        0.890236
avg_mae
                                                        0.678228
cv_results {'test_rmse': [0.8849716486009225, 0.897649236...
                                                               13
k
                                                               28
avg_rmse
                                                        0.891363
                                                        0.678474
avg_mae
cv_results {'test_rmse': [0.8772238268582336, 0.891535332...
                                                               14
k
                                                               30
                                                        0.890353
avg_rmse
                                                        0.677846
avg mae
cv_results
            {'test_rmse': [0.8844422049951735, 0.891825697...
```

From the above plot, we can observe that both RMSE and MAE curves start with high error values, follow a decreasing trend and plateus after certain k. As expected, RMSE Errors is higher than MAE. At first by increasing k values, we decrease the error a lot, probably because the neighbors we look at are not enough to do correct predictions, and as we increase k values, the model starts to perform better as it learns from more neighbors. However, after a moment increasing k doesn't

change our results too much and the errors stabilizes. The reeason for that might be the new added neighbors, become less similar to the user, which causes the Pearson Correlation to be small and the new neighbors doesn't effect too much the rating prediction (Equation 3).

1.2.4 Question 5

Use the plot from question 4, to find a 'minimum k'. Note: The term 'minimum k' in this context means that increasing k above the minimum value would not result in a significant decrease in average RMSE or average MAE. If you get the plot correct, then 'minimum k' would correspond to the k value for which average RMSE and average MAE converges to a steady-state value. Please report the steady state values of average RMSE and average MAE.

```
avg_rmse
                      avg_mae
0
      2
         1.018401
                    0.785199
1
         0.943863
                    0.725791
2
      6
         0.919774
                    0.704725
3
      8
         0.907544
                    0.693875
4
     10
         0.903836
                    0.690233
5
         0.897336
     12
                    0.684864
6
         0.895703
     14
                    0.682759
7
     16
         0.894728
                    0.681960
8
         0.892995
                    0.680934
9
     20
         0.892148
                    0.680044
10
         0.891058
                    0.678801
     22
11
     24
         0.891069
                    0.678574
12
         0.890236
                    0.678228
     26
13
     28
         0.891363
                    0.678474
14
     30
         0.890353
                    0.677846
15
     32
         0.891130
                    0.678485
16
         0.890795
                    0.677920
17
         0.890675
                    0.677728
     36
18
         0.890613
                    0.678016
     38
19
     40
         0.891130
                    0.678335
20
         0.889944
                    0.677095
     42
21
     44
         0.890013
                    0.677464
22
     46
         0.890212
                    0.677373
23
     48
         0.889950
                    0.677807
24
     50
         0.889922
                    0.677653
25
         0.890722
                    0.677890
     52
26
     54
         0.889569
                    0.677479
27
         0.889263
                    0.677460
     56
28
     58
         0.890463
                    0.677916
29
     60
         0.889603
                    0.677471
30
     62
         0.890063
                    0.677636
31
         0.890237
                    0.677866
32
         0.889732
                    0.677505
     66
33
     68
         0.890697
                    0.678320
34
     70
         0.890405
                    0.678065
```

```
35
     72
         0.890330
                    0.677988
36
         0.890654
                    0.677950
37
     76
         0.889695
                     0.677687
38
     78
         0.889682
                    0.677690
39
     80
         0.890029
                    0.677669
40
         0.890504
                    0.677934
     82
41
         0.890039
                    0.677317
     84
42
     86
         0.889870
                    0.677732
43
         0.891276
                    0.678926
     88
44
     90
         0.890423
                    0.677864
45
     92
         0.890149
                    0.677949
46
     94
         0.890485
                    0.678085
47
     96
         0.889529
                    0.677449
48
     98
         0.889831
                     0.677874
49
    100
         0.891120
                    0.679005
```

After checking the plot in Question 4, both RMSE and MAE curves starts to plateau somewhere close to k=20. When we check above table to further investigate, we can see 2 points where the errors starts to stabilizes after reaching k=12, both RMSE and MAE results loses its momentum to decrease, and changes starts to happen in 3rd decimal points. However, if we look further another decrease happens in k=22, then the error starts to change mostly around 4th decimal point, and stays in a steady state until the end of the experiment.

```
Errors when k=22 - RMSE = 0.891058 - MAE = 0.678801
```

I chose minimum k as k=22 for KNN.

1.2.5 Question 6

For EACH of the 3 subsets in the test set, design:

A k-NN collaborative filter to predict the ratings of the movies in the test subset (i.e Popular, Unpopular or High-Variance) and evaluate each of the three models' performance using 10-fold cross validation: - Sweep k (number of neighbors) from 2 to 100 in step sizes of 2, and for each k compute the average RMSE obtained by averaging the RMSE across all 10 folds. Plot average RMSE (Y-axis) against k (X-axis). Also, report the minimum average RMSE. - Plot the ROC curves for the k-NN collaborative filters for threshold values [2.5, 3, 3.5, 4]. For each of the plots, also report the area under the curve (AUC) value.

I first created 3 movie id lists to be used in the questions where we create custom test set: popular movies, unpopular movies and high variance movies following the rules given for each trimming type.

```
Number of popular movies: 4980
Number of unpopular movies: 4744
Number of high variance movies: 87
```

Methods

Results of KNN on Original Test set and Popular, Unpopular, High Variance Trimmed Test Sets For each trimming option I created test sets and repeated the a similar experiment as in question 4. For different neighbor numbers, I trained a KNNwithMeans model, and then evaluated the results in popular, unpopular and high variance test sets for 10-fold, averaged the RMSE results of 10-fold validation.

To be able to compare I also added the original test set in the plots. Original test set in this report refers to as no trimming applied to the test set. I also added the MAE scores out of curiosity.

	avg_mae_high_variance	avg_mae_original	avg_mae_popular \
k			
2	0.849334	0.786651	0.780330
4	0.778469	0.725708	0.719788
6	0.773789	0.704645	0.700055
8	0.763165	0.694420	0.691886
10	0.758136	0.689355	0.686463
12	0.745751	0.685317	0.682259
14	0.745432	0.682974	0.680355
16	0.752689	0.681653	0.677975
18	0.744441	0.681203	0.676511
20	0.747583	0.678903	0.676736
22	0.744823	0.678490	0.675874
24	0.744016	0.678930	0.674972
26	0.745330	0.678211	0.674548
28	0.761454	0.677856	0.675173
30	0.746899	0.676724	0.674102
32	0.753008	0.677604	0.674062
34	0.749480	0.677422	0.674048
36	0.747882	0.677567	0.675127
38	0.751217	0.677462	0.673628
40	0.760170	0.676396	0.673472
42	0.748603	0.677288	0.674594
44	0.755604	0.677406	0.673429
46	0.743674	0.677833	0.674259
48	0.755417	0.678177	0.674143
50	0.741425	0.676198	0.673492
52	0.744389	0.676405	0.674055
54	0.754895	0.677689	0.673206
56	0.744301	0.677176	0.673656
58	0.743961	0.677501	0.674829
60	0.745902	0.677084	0.674537
62	0.739239	0.677460	0.675055
64	0.756075	0.677241	0.674147
66	0.747105	0.677606	0.673744
68	0.746221	0.678341	0.674361
70	0.745223	0.677986	0.674512
72	0.750958	0.676945	0.674874
74	0.751619	0.677983	0.673913
76	0.758635	0.678236	0.674780
78	0.743913	0.677914	0.674953
80	0.754924	0.678190	0.674743
82	0.745413	0.677651	0.674479
84	0.751456	0.677875	0.674691
86	0.743885	0.678007	0.675167
88	0.745621	0.678056	0.674261

90	0.746	350 0.6	78255	0.675234	
92	0.748	157 0.6	77875	0.675651	
94	0.744	738 0.6	78085	0.675258	
96	0.750	525 0.6	77615	0.674361	
98	0.751	0.6	78046	0.674735	
100	0.752	332 0.6	78980	0.674207	
	avg_mae_unpopular	avg_rmse_high_v	ariance	avg_rmse_original	\
k	0 1 1	0 0 _		0 0	
2	0.804224	1	.067826	1.019113	
4	0.744675	0	.988268	0.944187	
6	0.724103	0	.973215	0.920493	
8	0.710823	0	.968007	0.907706	
10	0.704164		.965289	0.902073	
12	0.703050		.945798	0.897826	
14	0.700153		.948333	0.895068	
16	0.696647		.958898	0.893794	
18	0.695994		.945616	0.893812	
20	0.694625		.951085	0.891884	
22	0.697524		.949105	0.890808	
24	0.694471		.948070	0.891313	
26	0.692740		.946224	0.889926	
28	0.692344		.965575	0.890507	
30	0.694146		.948489	0.888361	
32	0.693821		.959835	0.889932	
34	0.690703		.954097	0.890425	
36	0.691374		.948619	0.890208	
38	0.691290		.953159	0.889913	
40	0.692000		.965518	0.888623	
42	0.690132		.953565	0.889337	
44	0.690396		.959140	0.889812	
46	0.690297		.945907	0.890406	
48	0.691714		.960577	0.890190	
50	0.692309		.946601	0.888374	
52	0.691701		.944038	0.887919	
54	0.691424		.957238	0.890168	
56	0.690861		.945291	0.889474	
58	0.692205		.945370	0.889811	
60	0.689486		.952109	0.889560	
62	0.690539		.943163	0.889882	
64	0.691117		.954999	0.889345	
66	0.692024		.949751	0.889778	
68	0.691966		.948236	0.890870	
70	0.691544		.948599	0.889843	
72	0.692047		.956078	0.889235	
74	0.690759		.953125	0.890479	
76	0.691938		.965101	0.890356	
78	0.691987		.947834	0.890124	
	0.031301	O	.011001	0.000124	

80	0.689857	0.963460	0.890440
82	0.691387	0.946842	0.889772
84	0.690735	0.955535	0.890124
86	0.691412	0.945390	0.889980
88	0.692337	0.950473	0.890802
90	0.692730	0.946001	0.891320
92	0.691798	0.951957	0.890688
94	0.690343	0.946360	0.890343
96	0.691498	0.954699	0.889925
98	0.691070	0.954109	0.890391
100	0.691504	0.954344	0.891376

avg_rmse_popular avg_rmse_unpopular

k		
2	1.012025	1.043699
4	0.937513	0.964471
6	0.914251	0.941319
8	0.904517	0.925878
10	0.899090	0.916294
12	0.894258	0.917615
14	0.891897	0.914878
16	0.889224	0.910009
18	0.888245	0.909444
20	0.888322	0.907289
22	0.887748	0.912324
24	0.886617	0.906864
26	0.886685	0.903328
28	0.886422	0.904601
30	0.885011	0.905621
32	0.886263	0.906945
34	0.885466	0.902974
36	0.887516	0.904518
38	0.884985	0.903591
40	0.884798	0.904831
42	0.886391	0.900764
44	0.885144	0.903144
46	0.885586	0.903547
48	0.885258	0.903835
50	0.885359	0.904768
52	0.886210	0.904741
54	0.884409	0.903233
56	0.885246	0.903244
58	0.886699	0.904557
60	0.886029	0.901251
62	0.886747	0.903457
64	0.885264	0.903462
66	0.885147	0.904022
68	0.886078	0.904595

70	0.885769	0.903183	
72	0.886792	0.905840	
74	0.885538	0.903276	
76	0.886173	0.904738	
78	0.887258	0.905562	
80	0.886529	0.901093	
82	0.886193	0.905314	
84	0.886330	0.902513	
86	0.886759	0.904241	
88	0.886508	0.905413	
90	0.887697	0.905030	
92	0.887401	0.905464	
94	0.887369	0.902905	
96	0.886680	0.904979	
98	0.886278	0.903811	
100	0.885365	0.903884	
	h:		\
	avg_mae_high_varian		
count	50.0000		50.000000
mean	0.7522		0.679014
std	0.0159		0.016575
min	0.7392		0.673206
25%	0.7452		0.674144
50%	0.7480		0.674713
75%	0.7544		0.675252
max	0.8493	0.786651	0.780330
	_		
		avg_rmse_high_variance	_
count	50.000000	50.000000	
mean	0.696960	0.955938	
std	0.018062	0.018347	
min	0.689486	0.943163	
25%	0.691160	0.947090	
50%	0.691952	0.952033	
75%	0.694065	0.958483	
max	0.804224	1.067826	1.019113
	_	_	
		vg_rmse_unpopular	
count	50.000000	50.000000	
mean	0.891301	0.910447	
std	0.019481	0.021964	
min	0.884409	0.900764	
25%	0.885550	0.903458	
50%	0.886465	0.904670	
75%	0.887487	0.906608	
75% max	0.887487 1.012025	0.906608 1.043699	
max	1.012025	1.043699	
max Min Av	1.012025 g RMSE and Avg MAE f	1.043699	

```
      avg_mae_original
      0.676198

      avg_mae_popular
      0.673206

      avg_mae_unpopular
      0.689486

      avg_rmse_high_variance
      0.943163

      avg_rmse_original
      0.887919

      avg_rmse_popular
      0.884409

      avg_rmse_unpopular
      0.900764
```

dtype: float64

The minimum average RMSE for each test set:

- Original test min AVG RMSE: 0.887919
- Popular test set min AVG RMSE: 0.884409
- Unpopular test set min AVG RMSE: 0.900764
- High variance test set min AVG RMSE: 0.943163

When we look at the RMSE plots, we see that the best RMSE curve belongs to popular test set, even better than original one. This makes perfect sense, since populat test set only contains the movies that have ratings > 2. This means that models, can learn from at least 3 ratings and give good or at least closer predictions to the true rating hence lower the errors. The second best is original test set, which is everything included and unpopular and high variance test sets perform worse. This is again makes sense: for unpopular movie, the number of ratings movies received doesn't really help to predict ratings, and since it is very sparse may be causing overfitting and for the high variance case, this time the problem is that movies got very different ratings, and the big differences between the ratings, causes more trouble and confuses the model. The curve shapes has decreasing trend for original, popular and unpopular ones and reaches to plataeu. For unpopular one however curve is less steady compared the other two, and still has some changes. High variance curve on the other hand, is basically follows a zigzag trend, where the error rates ups and downs very quickly with the change of k. The min AVG. RMSE ratings for each model also shows that high variance set performs the worst.

KNN ROC Curves for each test set For 4 different threshold values [2.5, 3, 3.5, 4], I plotted the ROC curve of each test set. The model used in KNNwithMeans and the number of neighbors (k) is the chosen value in question 5, k=22.

I also added the results for original test set as a reference point.

The Area Under Curve results for each curve in each plot is stated in the legend of the plots.

From the results, for popular test set the threshold with best AUC is threshold=2.5 and 3 with AUC:0.779. The ROC curves and AUC scores for each tresholds for popular movies set are very close to each other. The threshold doesn't seem to make too much difference. For unpopular set, the AUC results are higher, around 0.8-0.82 range. Threshold 2.5 has the highes AUC 0.825, the curves are again similar, though less smoother compared the curves on popular set. For High variance test set, the ROC curves are kind of rectangular shape. The reason for this could be because there is a very low number of samples, 87, in the high variance set (popular and unpopular has more than 4.5K+). Because we are having very few samples for high variance set, the results might not be very reliable. The AUC range is from 0.79-0.838, best threshold is 3 with AUC 0.838.

1.3 Model-based Collaborative Filtering

1.3.1 Question 7

Understanding the NMF cost function: Is the optimization problem given by equation 5 convex? Consider the optimization problem given by equation 5. For U fixed, formulate it as a least-squares problem.

The optimization problem is not convex [1]. But it is rather a biconvex optimization problem, this means if we keep U fixed, than the problem is convex for V and we can minimize for V and if we keep V fixed, problem is convex again for U and we can minimize for U. Alternating Least Squares method helps us to iterate between keeping U fixed and solve for V and keeping V and solving for you, until the convergence reached.

For U fixed:

We optimize for V.

Least-square problem in Equation 5 becomes:

$$\min_{V} \sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij} (r_{ij} - (UV^{T})_{ij})^{2}$$
(5)

subject to
$$V \ge 0$$
 (6)

Equation 7 becomes:

$$\min_{V} \sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij} (r_{ij} - (UV^{T})_{ij})^{2} + \lambda \|U\|_{F}^{2} + \lambda \|V\|_{F}^{2}$$
(7)

subject to
$$V \ge 0$$
 (8)

Given that U is fixed, U doesn't change and we apply non-negativity constraint on U when V fixed and we optimize for U. [1]: Algorithms for Non-negative Matrix Factorization, Daniel D. Lee and H. Sebastian Seung, NIPS,2000.

We can show non-covexity of the optimization problem by a counter example:

Assume scalar case where m=n=k=1 and W, r, U and V all scalars. Let's assume also W=1, then the problem in equation 5 becomes

$$\min_{u,v \ge 0} (r - uv)^2 \tag{9}$$

. By taking the Hessian of the equation we want to minimize, and using u=2, v=1 values, we can show that the hessian is not positive semidefinite for all u,v,r>=0 and hence not convex.

1.3.2 Question 8

Question 8.A Design NMF- Based Collaborative Filter Design a NMF-based collaborative filter to predict the ratings of the movies in the original dataset and evaluate it's performance using 10-fold cross-validation. Sweep k (number of latent factors) from 2 to 50 in step sizes of 2, and for each k compute the average RMSE and average MAE obtained by averaging the RMSE and MAE across all 10 folds. If NMF takes too long, you can increase the step size. Increasing it too much will result in poorer granularity in your results. Plot the average RMSE (Y-axis) against k (X-axis) and the average MAE (Y-axis) against k (X-axis). For solving this question, use the default value for the regularization parameter.

I used NMF model from surprise library to for the NMF collaborative filter. The plots below shows that Average RMSE and MAE results across 10-fold for each k from 2 to 50, with step sizes 2.


```
0
                                                              2
k
                                                        1.14788
avg_rmse
                                                       0.964758
avg_mae
cv_results {'test_rmse': [1.1582446282333843, 1.148348636...
                                                             1
                                                                 \
                                                              4
k
                                                        1.03832
avg_rmse
                                                       0.848743
avg_mae
cv_results {'test_rmse': [1.0388716477142774, 1.035961110...
                                                             2
k
                                                              6
                                                        0.98351
avg_rmse
                                                       0.786312
avg_mae
cv_results {'test_rmse': [0.9914079911858433, 0.989344772...
                                                             3
                                                                 \
                                                              8
k
avg_rmse
                                                       0.952192
                                                       0.750722
avg_mae
cv_results {'test_rmse': [0.947944592380377, 0.9382680841...
```

```
4
                                                             10
k
avg_rmse
                                                       0.934551
                                                       0.727739
avg_mae
cv_results {'test_rmse': [0.9274059360624644, 0.936343560...
                                                             5
                                                                  \
                                                             12
k
                                                       0.922999
avg_rmse
avg_mae
                                                       0.713942
cv_results {'test_rmse': [0.9271611637207541, 0.918365858...
                                                             6
                                                                 \
                                                             14
k
                                                       0.913905
avg_rmse
                                                       0.700955
avg_mae
cv_results {'test_rmse': [0.8984714837001442, 0.915702042...
                                                             7
                                                                 \
k
                                                             16
                                                       0.912593
avg_rmse
                                                       0.697028
avg_mae
cv_results {'test_rmse': [0.9145143320746897, 0.913201285...
                                                             8
                                                                  \
k
                                                             18
avg_rmse
                                                       0.913035
                                                       0.695412
avg_mae
cv_results {'test_rmse': [0.9109177142377667, 0.899319397...
                                                             9
                                                                 \
                                                             20
k
                                                       0.917021
avg_rmse
                                                       0.695784
avg_mae
cv_results {'test_rmse': [0.9238080510847194, 0.926809043...
                                                             10
                                                                 \
k
                                                             22
                                                       0.915043
avg_rmse
avg_mae
                                                       0.692744
cv_results {'test_rmse': [0.9192749622044434, 0.904355120...
                                                             11 \
k
                                                             24
                                                       0.919551
avg_rmse
                                                       0.694595
avg_mae
cv_results {'test_rmse': [0.9314006561385201, 0.914919993...
```

```
12 \
k
                                                             26
                                                       0.923659
avg_rmse
                                                       0.697309
avg_mae
cv_results {'test_rmse': [0.9460442651764495, 0.922322856...
                                                             13
                                                                 \
                                                             28
k
avg_rmse
                                                        0.92563
                                                       0.697638
avg_mae
cv_results {'test_rmse': [0.9245103333272665, 0.944730195...
                                                             14
                                                                 \
k
                                                             30
                                                       0.928382
avg_rmse
                                                       0.699715
avg_mae
cv_results {'test_rmse': [0.9134075627315653, 0.933350827...
                                                             15
k
                                                             32
                                                       0.934531
avg_rmse
avg_mae
                                                       0.703823
cv_results {'test_rmse': [0.948791476853621, 0.9433635199...
                                                             16
k
                                                             34
                                                        0.93666
avg_rmse
avg_mae
                                                       0.705695
cv_results {'test_rmse': [0.9382978335686227, 0.929346941...
                                                             17 \
                                                             36
k
                                                       0.941402
avg_rmse
                                                       0.709069
avg_mae
cv_results {'test_rmse': [0.9313377266396836, 0.927886527...
                                                             18
k
                                                             38
                                                       0.944926
avg_rmse
                                                       0.711432
avg mae
cv_results {'test_rmse': [0.9536855353334757, 0.944631422...
                                                             19
                                                             40
k
                                                        0.94981
avg_rmse
                                                       0.715143
avg_mae
```

```
cv_results {'test_rmse': [0.9468920277983701, 0.956834960...
```

For NMF, we see that both MAE and RMSE curves follow similar trends, at first starts decreasing with increasing k, then starts to increase again after certain number of latent factors. The minimum error rates are when k is in 15-20 range.

Question 8.B Use the plot from the previous part to find the optimal number of latent factors. Optimal number of latent factors is the value of k that gives the minimum average RMSE or the minimum average MAE. Please report the minimum average RMSE and MAE. Is the optimal number of latent factors same as the number of movie genres?

Min Avg RMSE and MAE values for each k:

```
k avg_rmse
                   avg_mae
0
     2
       1.147880
                 0.964758
1
       1.038320
                 0.848743
2
     6 0.983510
                 0.786312
3
    8 0.952192
                 0.750722
4
   10 0.934551
                 0.727739
5
                 0.713942
   12 0.922999
6
   14 0.913905
                 0.700955
7
   16 0.912593
                 0.697028
8
   18 0.913035
                 0.695412
9
   20 0.917021
                 0.695784
10
   22 0.915043
                 0.692744
11
   24 0.919551
                 0.694595
12
   26
       0.923659
                 0.697309
   28
13
       0.925630
                 0.697638
14
   30
       0.928382
                 0.699715
15
   32 0.934531
                 0.703823
16
   34 0.936660
                 0.705695
17
   36 0.941402
                 0.709069
18
   38 0.944926
                 0.711432
19
   40 0.949810
                 0.715143
20
   42 0.951334
                 0.716143
21
   44
       0.956123
                 0.720651
22
   46
                 0.724703
       0.962112
23
   48
       0.966273
                 0.727780
24
   50
       0.968055
                 0.729805
```

Number of Genres in the dataset:

```
20
{'Horror', '(no genres listed)', 'Documentary', 'Film-Noir', 'Thriller',
'Drama', 'Western', 'Fantasy', 'Crime', 'War', 'Adventure', 'Musical',
'Romance', 'Mystery', 'Sci-Fi', 'Animation', 'IMAX', 'Action', 'Comedy',
'Children'}
```

From the Q8-A plot and the values in the above table, we can see that the minimum errors happen:

- min Avg. RMSE = 0.912593 at k=16
- min Avg. MAE = 0.692744 at k=22

The optimal k value should be around 16-22 range. If we compare k=16 and k=22, k=22 seems to be a better choice since MAE is the lowest, and the difference of RMSE value at k=22 and minimum at k=16 is lower compared to choosing k=16 and having min RMSE and a higher difference between MAE scores between two k values. On the other hand, if we care RMSE error more than MAE, k=16 can be chosen as optimal number of latent factors.

For the following questions we will take k=22, since it has lowest MAE and a close to lowest RMSE score, and proceed with that.

The number of movie genres in the dataset is 20 (counting "no genres listed" as a genre, if not 19). The chosen number of latent factors is close but not same.

Question 8.C Performance on trimmed Test set subsets: For each of Popular, Unpopular and High- Variance test subsets - Design a NMF collaborative filter to predict the ratings of the movies in the trimmed test subset and evaluate it's performance using 10-fold cross validation. Sweep k (number of latent factors) from 2 to 50 in step sizes of 2, and for each k compute the average RMSE obtained by averaging the RMSE across all 10 folds. - Plot average RMSE (Y-axis) against k (X-axis); item Report the minimum average RMSE. - Plot the ROC curves for the NMF-based collaborative filter designed in part A for threshold values [2.5, 3, 3.5, 4]. For the ROC plotting use the optimal number of latent factors found in question B. For each of the plots, also report the area under the curve (AUC) value.

Results of NMF on Original Test set and Popular, Unpopular, High Variance Trimmed Test Sets NMF with different values of latent factors fromm 2 to 50 with step size 2 is applied for each trimming type (popular, unpopular and high variance). For different latent factors 10-fold cross validation is applied and avg rmse is created by averaging the RMSE results of 10-fold validations.

To be able to compare I also added the original test set in the plots. Original test set in this report refers to as no trimming applied to the test set. I also added the MAE scores out of curiosity.

	avg_mae_high_variance	avg_mae_original	avg_mae_popular	\
k				
2	0.947279	0.962131	0.951110	
4	0.851653	0.849588	0.842741	
6	0.810168	0.785723	0.782470	
8	0.779758	0.748722	0.745895	
10	0.766303	0.730156	0.722066	

12	0.736401	0.714199	0.704848	
14	0.763918	0.701502	0.697903	
16	0.767553	0.695109	0.692760	
18	0.758670	0.698148	0.690224	
20	0.753115	0.694522	0.690149	
22	0.747522	0.694757	0.691335	
24	0.744663	0.696569	0.690839	
26	0.749132	0.697358	0.693549	
28	0.749015	0.699315	0.695531	
30	0.762490	0.700725	0.694482	
32	0.749963	0.703780	0.697783	
34	0.749613	0.707228	0.701128	
36	0.756203	0.708344	0.702982	
38	0.755763	0.711509	0.710244	
40	0.773141	0.713939	0.710176	
42	0.760433	0.715762	0.715895	
44	0.768223	0.720501	0.716056	
46	0.785471	0.722339	0.718925	
48	0.783918	0.725963	0.721569	
50	0.786843	0.729507	0.723993	
	31,000 20	011.20001	0112000	
	avg_mae_unpopular avg_r	mse high variance	avg rmse original	\
k				•
2	0.989477	1.143929	1.145154	
4	0.872891	1.045634	1.040371	
6	0.804304	1.011401	0.982511	
8	0.766223	0.986427	0.949962	
10			0.936710	
10 12	0.742107	0.970860	0.936710 0.924625	
12	0.742107 0.727309	0.970860 0.937976	0.924625	
12 14	0.742107 0.727309 0.718906	0.970860 0.937976 0.972358	0.924625 0.915820	
12 14 16	0.742107 0.727309 0.718906 0.716717	0.970860 0.937976 0.972358 0.974399	0.924625 0.915820 0.910265	
12 14 16 18	0.742107 0.727309 0.718906 0.716717 0.709980	0.970860 0.937976 0.972358 0.974399 0.971958	0.924625 0.915820 0.910265 0.917291	
12 14 16 18 20	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859	0.924625 0.915820 0.910265 0.917291 0.914112	
12 14 16 18 20 22	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080	
12 14 16 18 20 22 24	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007	
12 14 16 18 20 22 24 26	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338 0.713745	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424	
12 14 16 18 20 22 24 26 28	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338 0.713745 0.707249	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797	
12 14 16 18 20 22 24 26 28 30	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338 0.713745 0.707249 0.721488	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008	
12 14 16 18 20 22 24 26 28 30 32	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628	
12 14 16 18 20 22 24 26 28 30 32 34	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659 0.722198	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083 0.964864	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628 0.938772	
12 14 16 18 20 22 24 26 28 30 32 34 36	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659 0.722198 0.719960	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083 0.964864 0.974138	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628 0.938772 0.939989	
12 14 16 18 20 22 24 26 28 30 32 34 36 38	0.742107 0.727309 0.718906 0.716717 0.709980 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659 0.722198 0.719960 0.723915	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083 0.964864 0.974138 0.959729	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628 0.938772 0.939989 0.945133	
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659 0.722198 0.719960 0.723915 0.727668	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083 0.964864 0.974138 0.959729 0.998117	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628 0.938772 0.939989 0.945133 0.949049	
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42	0.742107 0.727309 0.718906 0.716717 0.709980 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659 0.722198 0.719960 0.723915 0.727668 0.725214	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083 0.964864 0.974138 0.959729 0.998117 0.975090	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628 0.938772 0.939989 0.945133 0.949049 0.949700	
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44	0.742107 0.727309 0.718906 0.716717 0.709980 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659 0.722198 0.719960 0.723915 0.727668 0.725214 0.732731	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083 0.964864 0.974138 0.959729 0.998117 0.975090 0.986727	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628 0.938772 0.939989 0.945133 0.949049 0.949700 0.956298	
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46	0.742107 0.727309 0.718906 0.716717 0.709980 0.709356 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659 0.722198 0.719960 0.723915 0.727668 0.725214 0.732731 0.734404	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083 0.964864 0.974138 0.959729 0.998117 0.975090 0.986727 0.999007	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628 0.938772 0.939989 0.945133 0.949049 0.949700 0.956298 0.958532	
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44	0.742107 0.727309 0.718906 0.716717 0.709980 0.709707 0.710338 0.713745 0.707249 0.721488 0.717659 0.722198 0.719960 0.723915 0.727668 0.725214 0.732731	0.970860 0.937976 0.972358 0.974399 0.971958 0.965859 0.947326 0.957279 0.961990 0.967574 0.981581 0.962083 0.964864 0.974138 0.959729 0.998117 0.975090 0.986727	0.924625 0.915820 0.910265 0.917291 0.914112 0.916080 0.922007 0.923424 0.926797 0.929008 0.933628 0.938772 0.939989 0.945133 0.949049 0.949700 0.956298	

	avg_rmse_popular avg	_rmse_unpopular			
k					
2	1.135025	1.160615			
4	1.033962	1.054709			
6	0.979526	0.992989			
8	0.948411	0.963353			
10	0.928538	0.943703			
12	0.915972	0.935643			
14	0.912307	0.932804			
16	0.908325	0.933305			
18	0.908033	0.930619			
20	0.911642	0.932290			
22	0.914037	0.936286			
24	0.914585	0.938120			
26	0.918445	0.944404			
28	0.921439	0.938046			
30	0.921592	0.958296			
32	0.926317	0.951502			
34	0.930013	0.960029			
36	0.932942	0.959558			
38	0.942671	0.965734			
40	0.942443	0.969618			
42	0.950051	0.968288			
44	0.950033	0.977222			
46	0.953617	0.980914			
48	0.956356	0.983345			
50	0.959855	0.987695			
	avg_mae_high_varia	nce avg_mae_or	iginal	avg_mae_popular	\
coui	· · · · · · · · · · · · · · · · · · ·	-	000000	25.000000	
mean	o.774	288 0.	729096	0.724186	
std	0.043	327 0.	059175	0.058044	
min	0.736	401 0.	694522	0.690149	
25%	0.749	963 0.	699315	0.694482	
50%	0.762	490 0.	711509	0.704848	
75%	0.779	758 0.	725963	0.721569	
max	0.947	279 0.	962131	0.951110	
	_				٠,
	avg_mae_unpopular	-		e avg_rmse_origi	
coui			5.000000		
mean			0.985288		
std	0.062308		0.040364		
min	0.707249		0.937976		
25%	0.716717		0.964864		
50%	0.723915		0.974138		
75%	0.736040		0.998117		
max	0.989477		1.143929	9 1.145	154

	avg_rmse_popular	avg_rmse_unpopular
count	25.000000	25.000000
mean	0.944646	0.967963
std	0.048360	0.048629
min	0.908033	0.930619
25%	0.915972	0.938046
50%	0.930013	0.959558
75%	0.950051	0.977222
max	1.135025	1.160615
Min Avg	g RMSE and Avg MAl	E for each test set:
avg_mae	e_high_variance	0.736401
avg_mae	e_original	0.694522
avg_mae	e_popular	0.690149
avg_mae	e_unpopular	0.707249

dtype: float64

avg_rmse_popular

avg_rmse_unpopular

avg_rmse_high_variance
avg_rmse_original

The minimum average RMSE for each test set:

- Original test min AVG RMSE: 0.910265
- Popular test set min AVG RMSE: 0.908033
- Unpopular test set min AVG RMSE: 0.930619
- High variance test set min AVG RMSE: 0.937976

0.937976

0.910265

0.908033

0.930619

In RMSE plots, the best RMSE curve belongs to popular test set, even better than original one. This makes sense, since popular test set only contains the movies that have ratings > 2, since this test set has lower sparsity compared to others, it helps to have better predictions. The second best is original test set, which is everything included and followed by unpopular and then high variance test sets being the worst one. For unpopular movie, the number of ratings for movies are really sparse, and for the high variance case, movie ratings given were very diverse, and the big differences between the ratings, causes more trouble to the model.

The high level curve trends are similar for all 4 test set: first quick decrease in the error, then slower decrease in the error with higher ks, reaching a minimum error and then starting to have an increasing trend with the increase of k. The smoothness of the curves though is very different. Popular test set curve seems to be more stable and smooth, whereas unpopular one, has small up-down quick changes in the error trend, toward k=30 and the remaining of the experiment. The high variance test set though is very unstable error rates and not smooth after around k=10. trend, then after certain k has decreasing trend for all original, popular and unpopular ones and reaches to plataeu. The min AVG. RMSE ratings for each model also shows that high variance set has the worst min AVG RMSE.

NMF ROC Curves for each test set For 4 different threshold values [2.5, 3, 3.5, 4], I plotted the ROC curve of each test set. The model used in NMF and the number of latent factors (k) is the chosen value in question 8.B, k=22.

I also added the results for original test set as a reference point.

ROC Curves for NMF on different test sets

The Area Under Curve results for each curve in each plot is stated in the legend of the plots.

From the results, for popular test set the threshold with best AUC is threshold=2.5 with AUC:0.783. The ROC curves and AUC scores for the rest of the tresholds for popular movies set are around 0.762-0.767 range. The threshold 2.5 AUC and curve seems better but without too much difference. For unpopular set, the AUC results are higher, around 0.771-0.804 range. Threshold 2.5 has the highest AUC 0.804, the curves are not similar, the main difference in the curves happen when the FPR rate is less than 0.4 and TPR less than around 0.8. The curves are also less smooth. For High variance test set, the ROC curves are in staircase shape. The reason for this could be because there is a very low number of samples, 87, in the high variance set (popular and unpopular has more than

4.5K+). Because we are having very few samples for high variance set, the results might not be very reliable. The AUC range is the most different between the other sets, showing thresholding is more important for high variance case compared to the other ones. The AUC range is from 0.684-0.840, best threshold is 3 with AUC 0.84.

1.3.3 Question 9

Interpreting the NMF model: Perform Non-negative matrix factorization on the ratings matrix R to obtain the factor matrices U and V , where U represents the user-latent factors interaction and V represents the movie-latent factors interaction (use k=20). For each column of V , sort the movies in descending order and report the genres of the top 10 movies. Do the top 10 movies belong to a particular or a small collection of genre? Is there a connection between the latent factors and the movie genres?

I performed NMF k=20 for the whole dataset. In surprise library. model.pu is U (user-latent factors) and model.qi is V (movie/item latent factors). For each 20 column of V, I sort the movies by descending order and report the genre of the top 10 movies. Given movies belong to multiple genres, for each column's top 10 movies, I also counted the genre appearance and showed the counts.

V movie-latent factor interaction matrix preview:

```
0
                     1
                                2
                                                      4
                                           3
                                                                 5
                                                                            6
                                                                               \
0
  0.447124
              0.606963
                        0.278229
                                   0.832767
                                              0.179741
                                                         0.022801
                                                                    0.777665
  0.430486
              0.108222
1
                        0.035439
                                   0.205902
                                              0.922796
                                                         1.236152
                                                                    0.530992
2
  0.420501
              0.030282
                        0.593468
                                   0.119453
                                              0.136894
                                                         0.166774
                                                                    0.060199
3
  0.478775
              0.440989
                        0.523445
                                   0.254507
                                              0.440463
                                                         0.539556
                                                                    0.084055
   0.415930
              0.924954
                        0.325614
                                   0.487063
                                              0.329309
                                                         0.620628
                                                                    0.576291
          7
                     8
                                9
                                                        12
                                                                   13
                                             11
                                                                              14
   0.434236
                                      0.523433
0
              0.865774
                        0.371291
                                                 0.934755
                                                            0.467175
                                                                       0.431383
1
  0.077147
              0.191823
                        0.453131
                                       0.832344
                                                 0.060312
                                                            0.249052
                                                                       0.637275
2
  0.143417
              0.043376
                        0.261782
                                      0.267348
                                                 0.374297
                                                            0.483580
                                                                       0.301037
3
  0.345769
              0.688219
                        0.289270
                                       0.132848
                                                 0.659976
                                                            0.320904
                                                                       0.718022
   0.512560
              0.199223
                        0.034173
                                      0.471218
                                                 0.562448
                                                            0.553170
                                                                       1.011701
         15
                                                     19
                                                          movId
                    16
                               17
                                          18
                                   0.244243
  0.336084
              0.594957
                        0.459337
                                              0.390941
                                                         112852
0
              0.395213
  0.781580
                        0.500689
                                   0.345827
                                              0.551321
                                                           1947
1
2
  0.440614
              0.160132
                        0.316761
                                   0.382887
                                              0.360784
                                                           1562
3
  0.259715
              0.647911
                        0.387552
                                   0.568249
                                              0.729041
                                                           2716
   0.647172
              0.442863
                        0.427108
                                   0.277184
                                              0.191529
                                                          88125
```

[5 rows x 21 columns]

Show first 3 V columns' top 10 movies id, title and genres:

---- Column 0 top 10 movies genres: ----

```
movieId title \
0 70946 Troll 2 (1990)
1 7116 Diabolique (Les diaboliques) (1955)
```

```
2
      7564
                                       Kwaidan (Kaidan) (1964)
3
    130634
                                               Furious 7 (2015)
4
     80126
                                          American, The (2010)
5
      2488
                                             Peeping Tom (1960)
6
      3223
                                   Zed & Two Noughts, A (1985)
7
      1173
             Cook the Thief His Wife & Her Lover, The (1989)
      1606
8
                                     Kull the Conqueror (1997)
      4794
                                                   Opera (1987)
                      genres
             Fantasy|Horror
0
   Horror|Mystery|Thriller
1
2
                      Horror
3
     Action | Crime | Thriller
4
             Drama|Thriller
5
     Drama | Horror | Thriller
6
                       Drama
7
               Comedy | Drama
8
           Action | Adventure
      Crime | Horror | Mystery
---- Column 1 top 10 movies genres: ----
   movieId
                                                             title
0
      5480
                                          Stuart Little 2 (2002)
1
       305
                           Ready to Wear (Pret-A-Porter) (1994)
2
      2149
                              House II: The Second Story (1987)
                                               Fever Pitch (2005)
3
     32598
4
                           Star Trek IV: The Voyage Home (1986)
      1376
5
             Ivan's Childhood (a.k.a. My Name is Ivan) (Iva...
     32892
6
       283
                                         New Jersey Drive (1995)
7
    140711
                                            American Ultra (2015)
8
     54734
                                              Sydney White (2007)
     34332
9
                                                  Sky High (2005)
                               genres
                      Children | Comedy
0
                               Comedy
1
2
               Comedy | Fantasy | Horror
3
                       Comedy | Romance
             Adventure | Comedy | Sci-Fi
4
5
                            Drama|War
6
                          Crime | Drama
7
      Action|Comedy|Sci-Fi|Thriller
8
                                Comedy
   Action | Adventure | Children | Comedy
```

All V columns' top 10 movies genres:

	V_column_0	V_column_1	
movie_0	Fantasy Horror	Children Comedy	
movie_1	Horror Mystery Thriller	Comedy	
movie_2	Horror	Comedy Fantasy Horror	
movie_3	Action Crime Thriller	Comedy Romance	
movie_4	Drama Thriller	Adventure Comedy Sci-Fi	
movie_5	Drama Horror Thriller	Drama War	
movie_6	Drama	Crime Drama	
movie_7	Comedy Drama	Action Comedy Sci-Fi Thriller	
movie_8	Action Adventure	Comedy	
movie_9	Crime Horror Mystery	Action Adventure Children Comedy	
_		•	
	V_column_2	\	
movie_0	Comedy Drama Romance		
movie_1	Comedy Crime		
movie_2	Action Sci-Fi Thriller		
movie_3	Documentary		
movie_4	Documentary		
movie_5	Romance Thriller		
movie_6	Action Children		
movie_7	Comedy		
movie_8	Comedy Romance		
movie_9	Drama War		
		<pre>V_column_3 \</pre>	
movie_0		Action Sci-Fi	
movie_1		Sci-Fi	
movie_2		Horror Sci-Fi	
movie_3		Comedy Drama	
movie_4		Comedy	
movie_5		Action Drama Fantasy	
movie_6		Horror Sci-Fi	
movie_7	Action Adventure Animati	on Children Comedy Rom	
movie_8		Drama	
movie_9	Drama Romance Western		
		V_column_4 \	
movie_0	Action Fantasy Horror Sc	ci-Fi Thriller	
movie_1	C	Comedy Romance	
movie_2		Drama	
movie_3	Drama Horror Thriller		
movie_4		Action Drama	
movie_5	C	Comedy Fantasy	
movie_6		Thriller	
movie_7	Horror Sc	ci-Fi Thriller	
movie_8	Comed	ly Documentary	
movie_9		Comedy Crime	

	V_column_5 \	•
movie_0	Animation Children Comedy Musical	
movie_1	Adventure Animation Children Comedy IMAX	
movie_2	Horror Thriller	
movie_3	Comedy Romance	
movie_4	Animation Children Comedy	
movie_5	Horror	
movie_6	Action Comedy Crime	
movie_7	Comedy Drama Romance	
movie_8	Action Comedy	
movie_9	Comedy Drama	
_	·	
	V_column_6 \	
movie_0	Children Comedy Fantasy Romance	
movie_1	Action Adventure Animation	
movie_2	Action Comedy Crime Fantasy	
movie_3	Comedy Drama	
movie_4	Children Comedy Drama	
movie_5	Comedy	
movie_6	Action Comedy Crime Thriller	
movie_7	Drama	
movie_8	Action Comedy	
movie_9	Horror Mystery	
movie_9	HollollMyStely	
	V_column_7 \	
movie_0	Action Adventure Sci-Fi	
movie_1	Drama Romance	
movie_2	Documentary	
movie_3	Action Drama	
movie_4	Animation Comedy	
movie_5	Drama Mystery	
movie_6	Comedy Fantasy Horror Musical Thriller	
movie_7	Comedy Tantasy Horror Hustcar Hirring	
movie_8	Comedy Drama Romance	
movie_8 movie_9	Drama Romance	
movie_a	DI aliia itoliialice	
	V_column_8 \	
movie_0	Action Horror Thriller	
_	Children Comedy	
movie_1 movie_2	v	
_	Comedy	
movie_3	Comedy	
movie_4	Comedy	
movie_5	Drama Romance	
movie_6	Action Adventure Animation Fantasy	
movie_7		
movie_8	${ t Fantasy Romance Thriller IMAX} \ { t Horror}$	

movie_9	Adventure Drama	a		
	V_column_9		V_column_10	\
movie_0	Fantasy Western		Drama	
movie_1	Comedy Romance		Drama Thriller	
movie_2	Action Crime Sci-Fi Thriller		Fantasy Horror	
movie_3	Adventure Children		Drama Romance Thriller	
movie_4	Action Adventure Children Fantasy	Comed	y Crime Mystery Romance	
movie_5	Comedy Drama		dventure Fantasy Sci-Fi	
movie_6	Comedy		Drama Mystery Romance	
movie_7	Drama Mystery Sci-Fi		Action Adventure Sci-Fi	
movie_8	Children Comedy Fantasy		Horror	
movie_9	Comedy Drama		Action Crime Thriller	
_	•			
	V_column_11	\		
movie_0	Horror Thriller			
movie_1	Animation Comedy			
movie_2	Comedy Drama			
movie_3	Comedy Drama Romance			
movie_4	Adventure Drama			
movie_5	Drama War			
movie_6	Drama Horror			
movie_7	Action Adventure Sci-Fi Thriller			
movie_8	Crime Drama			
movie_9	Drama Horror Thriller			
	V_column	_		
movie_0	Drama Sci-			
movie_1	Crime Drama Fantasy Mystery Thrill			
movie_2	Horror Thril	ler		
movie_3	Come	•		
movie_4	Come	•		
movie_5	Comedy Dra	ama		
movie_6	Action Dra	ama		
movie_7	Dra			
movie_8	Horror Thril	ler		
movie_9	Come	edy		
		column_13	V_column_14	\
movie_0		/ Romance	Comedy Romance	
movie_1		a Romance	Drama	
movie_2		dy Horror	Crime Horror Mystery	
movie_3		Film-Noir	Drama	
movie_4	Action Adventure Animation Childre	•	Horror Mystery Thriller	
movie_5	Horror	Thriller	Drama	
movie_6		Comedy	Comedy Drama Horror	
movie_7	Adventure	Thriller	Drama Thriller	

```
movie_8
                                  Drama | Fantasy | Romance
                                                                       Comedy | Horror
                                    Crime | Drama | Mystery
                                                                       Drama | Romance
movie_9
                      V_column_15
                                                                 V_column_16 \
          Drama | Fantasy | Mystery
                                    Action|Fantasy|Horror|Sci-Fi|Thriller
movie_0
movie_1
                           Sci-Fi
                                                                        Drama
movie_2
                    Comedy | Drama
                                                                       Horror
                  Drama | Thriller
movie_3
                                                                Comedy | Drama
movie 4
                   Drama | Romance
                                                             Crime | Drama | War
movie_5
           Action|Drama|Fantasy
                                    Animation | Comedy | Drama | Fantasy | Sci-Fi
            Comedy | Drama | Horror
movie 6
                                                                Drama | Sci-Fi
movie_7
           Drama | Mystery | Sci-Fi
                                                                Action|Drama
movie 8
                  Comedy | Romance
                                                                       Comedy
movie_9
                  Comedy | Romance
                                                                        Drama
                          V_column_17
                                                     V_column_18
movie_0
                                 Drama
                                                   Drama | Romance
movie_1
                                Comedy
                                                    Comedy | Drama
movie_2
                                Comedy
                                                           Sci-Fi
movie_3
                Action | Comedy | Sci-Fi
                                         Drama | Romance | Thriller
          Adventure | Children | Comedy
movie_4
                                                   Action|Sci-Fi
movie 5
             Action|Sci-Fi|Thriller
                                                   Action | Comedy
movie_6
                        Action|Sci-Fi
                                                 Drama|Thriller
                 Crime | Drama | Romance
                                            Action | Comedy | Drama
movie 7
movie_8
                       Comedy | Musical
                                                            Drama
movie 9
                        Drama | Romance
                                             Comedy | Documentary
                                 V column 19
movie_0
                      Action | Comedy | Western
          Action | Adventure | Drama | Thriller
movie_1
movie_2
                         Comedy | Documentary
movie_3
                                      Comedy
movie_4
                                      Comedy
movie_5
                                      Comedy
movie_6
                        Action|Drama|Sci-Fi
movie_7
                                      Comedy
movie 8
                             Comedy | Romance
movie_9
                    Comedy | Fantasy | Romance
Genre counts for top 10 movies for all 20 V columns:
Column 0:
        Distinct Genres: 9
        Horror: 5 Thriller: 4 Drama: 4 Mystery: 2 Action: 2 Crime: 2 Fantasy: 1
Comedy:1 Adventure:1
Column 1:
        Distinct Genres: 12
        Comedy: 8 Children: 2 Adventure: 2 Sci-Fi: 2 Drama: 2 Action: 2 Fantasy: 1
```

```
Horror:1 Romance:1 War:1 Crime:1 Thriller:1
Column 2:
        Distinct Genres: 10
        Comedy: 4 Romance: 3 Drama: 2 Action: 2 Thriller: 2 Documentary: 2 Crime: 1
Sci-Fi:1 Children:1 War:1
Column 3:
        Distinct Genres: 11
        Sci-Fi:4 Drama:4 Action:3 Comedy:3 Horror:2 Romance:2 Fantasy:1
Adventure: 1 Animation: 1 Children: 1 Western: 1
Column 4:
        Distinct Genres: 10
        Thriller:4 Comedy:4 Horror:3 Drama:3 Action:2 Fantasy:2 Sci-Fi:2
Romance:1 Documentary:1 Crime:1
Column 5:
        Distinct Genres: 12
        Comedy:8 Animation:3 Children:3 Horror:2 Romance:2 Action:2 Drama:2
Musical: 1 Adventure: 1 IMAX: 1 Thriller: 1 Crime: 1
Column 6:
        Distinct Genres: 12
        Comedy:7 Action:4 Drama:3 Children:2 Fantasy:2 Crime:2 Romance:1
Adventure:1 Animation:1 Thriller:1 Horror:1 Mystery:1
Column 7:
        Distinct Genres: 13
        Drama: 5 Romance: 4 Comedy: 4 Action: 2 Adventure: 1 Sci-Fi: 1 Documentary: 1
Animation:1 Mystery:1 Fantasy:1 Horror:1 Musical:1 Thriller:1
Column 8:
        Distinct Genres: 11
        Comedy:4 Action:2 Horror:2 Thriller:2 Drama:2 Romance:2 Adventure:2
Fantasy: 2 Children: 1 Animation: 1 IMAX: 1
Column 9:
        Distinct Genres: 12
        Comedy: 5 Fantasy: 3 Children: 3 Drama: 3 Action: 2 Sci-Fi: 2 Adventure: 2
Western: 1 Romance: 1 Crime: 1 Thriller: 1 Mystery: 1
Column 10:
        Distinct Genres: 11
        Drama: 4 Thriller: 3 Romance: 3 Action: 3 Fantasy: 2 Horror: 2 Crime: 2
Mystery: 2 Adventure: 2 Sci-Fi: 2 Comedy: 1
Column 11:
        Distinct Genres: 11
        Drama: 7 Horror: 3 Thriller: 3 Comedy: 3 Adventure: 2 Animation: 1 Romance: 1
War:1 Action:1 Sci-Fi:1 Crime:1
Column 12:
        Distinct Genres: 9
        Drama: 5 Comedy: 4 Thriller: 3 Horror: 2 Sci-Fi: 1 Crime: 1 Fantasy: 1
Mystery:1 Action:1
Column 13:
        Distinct Genres: 13
        Comedy: 4 Drama: 4 Romance: 3 Horror: 2 Adventure: 2 Thriller: 2 Film-Noir: 1
```

```
Action:1 Animation:1 Children:1 Fantasy:1 Crime:1 Mystery:1
Column 14:
        Distinct Genres: 7
        Drama:6 Horror:4 Comedy:3 Romance:2 Mystery:2 Thriller:2 Crime:1
Column 15:
        Distinct Genres: 9
        Drama:7 Comedy:4 Romance:3 Fantasy:2 Mystery:2 Sci-Fi:2 Thriller:1
Action:1 Horror:1
Column 16:
        Distinct Genres: 10
        Drama:7 Sci-Fi:3 Comedy:3 Action:2 Fantasy:2 Horror:2 Thriller:1 Crime:1
War:1 Animation:1
Column 17:
        Distinct Genres: 10
        Comedy:5 Drama:3 Action:3 Sci-Fi:3 Romance:2 Adventure:1 Children:1
Thriller:1 Crime:1 Musical:1
Column 18:
        Distinct Genres: 7
        Drama: 6 Comedy: 4 Action: 3 Romance: 2 Sci-Fi: 2 Thriller: 2 Documentary: 1
Column 19:
        Distinct Genres: 10
        Comedy:8 Action:3 Drama:2 Romance:2 Western:1 Adventure:1 Thriller:1
Documentary:1 Sci-Fi:1 Fantasy:1
```

Do the top 10 movies belong to a particular or a small collection of genre? For V columns, latent factors, Top 10 movies doesn't belong to a particular genre but majority indeed belongs to a small collection of genres. For example, in column 0 (first column of V) we can see that the top 10 movies are tagged with 9 distinct genres but the top 3 genres are Horror:5 Thriller:4 Drama:4. We can see that the column 0 latent factor can be represented by a small collection of genres: Horror, Thriller and Drama movies. Similarly column 1 (second column of V) has 9 comedy movie tags out of 10 movies, which can also show second latent factor has a connection with comedy genre. We can see the similar small collection of genres for each latent factor in the above results.

Is there a connection between the latent factors and the movie genres? One of the advantages of NMF is being interpretable, in this specific case, I cannot see a one-to-one mapping with movie genres and latent factors. However, from the above observation, we can say that latent factors have a close connection between a small collection of genres. This shows that NMF with the use of latent factors, aggregate movies with similar genres together, and this can improve the recommendations, since this means that model implicitly finds and groups movies with similar collection of genres together and then use latent factors found to do recommendations accordingly.

1.3.4 Question 10

Question 10.A Design MF with bias Collaborative Filter Design a MF-based collaborative filter to predict the ratings of the movies in the original dataset and evaluate it's performance using 10-fold cross-validation. Sweep k (number of latent factors) from 2 to 50 in step sizes of 2, and for each k compute the average RMSE and average MAE obtained by averaging the RMSE and MAE across all 10 folds. Plot the average RMSE (Y-axis) against k (X-axis) and the average MAE

(Y-axis) against k (X-axis). For solving this question, use the default value for the regularization parameter.

I used MF with bias=True model from surprise library for the MF with bias collaborative filter. The plots below shows that Average RMSE and MAE results across 10-fold for each k from 2 to 50, with step sizes 2.


```
0
                                                              2
k
                                                       0.866823
avg_rmse
                                                       0.666068
avg_mae
cv_results {'test_rmse': [0.8505212855376368, 0.859773023...
                                                              1
                                                                  \
k
avg_rmse
                                                       0.867044
                                                         0.6664
avg_mae
cv_results {'test_rmse': [0.8566202719465758, 0.884161999...
                                                              2
                                                                  \
k
                                                              6
avg_rmse
                                                       0.866519
                                                       0.666005
avg_mae
cv_results {'test_rmse': [0.869473175027997, 0.8640233258...
                                                             3
                                                                  \
                                                              8
k
                                                       0.866155
avg_rmse
                                                       0.665472
avg_mae
cv_results {'test_rmse': [0.8657014393352603, 0.862854542...
                                                              4
                                                                  \
k
                                                              10
                                                       0.867397
avg_rmse
avg_mae
                                                       0.666448
cv_results {'test_rmse': [0.8560840212279571, 0.868503524...
                                                             5
                                                                  \
                                                             12
k
                                                       0.865453
avg_rmse
                                                        0.66453
avg_mae
cv_results {'test_rmse': [0.8832030677119755, 0.866466465...
                                                              6
                                                                  \
k
                                                              14
avg_rmse
                                                       0.867622
                                                       0.666491
avg_mae
cv_results {'test_rmse': [0.860445987482174, 0.8637839273...
                                                              7
k
                                                              16
```

```
avg_rmse
                                                       0.865814
                                                       0.665311
avg_mae
cv_results {'test_rmse': [0.858549808253296, 0.8663017184...
                                                             8
                                                                 \
k
                                                             18
                                                          0.865
avg_rmse
avg_mae
                                                       0.664633
cv_results {'test_rmse': [0.8557297531947884, 0.866998337...
                                                             9
k
                                                             20
avg_rmse
                                                       0.866463
avg_mae
                                                       0.665285 ...
cv_results {'test_rmse': [0.866497367725416, 0.8648418851... ...
                                                             15
                                                                 \
                                                             32
k
                                                       0.865451
avg_rmse
                                                       0.664568
avg_mae
cv_results {'test_rmse': [0.8621914707139953, 0.863649863...
                                                             16
                                                             34
k
avg_rmse
                                                       0.867351
avg mae
                                                       0.665889
cv_results {'test_rmse': [0.8630598507035923, 0.876562045...
                                                             17
k
                                                             36
                                                       0.866278
avg_rmse
                                                       0.665083
avg_mae
cv_results {'test_rmse': [0.864160098123739, 0.8675364609...
                                                             18
                                                                 \
k
                                                             38
avg_rmse
                                                       0.865669
                                                       0.664484
avg_mae
cv_results {'test_rmse': [0.8758539930195344, 0.867151063...
                                                             19
k
                                                             40
                                                        0.86633
avg_rmse
avg_mae
                                                       0.665496
cv_results {'test_rmse': [0.8667798957130418, 0.850439021...
                                                             20 \
```

```
k
                                                               42
                                                        0.865399
avg_rmse
avg_mae
                                                        0.664479
            {'test_rmse': [0.8735050572975925, 0.860401127...
cv_results
                                                               21
                                                               44
k
                                                        0.866054
avg_rmse
                                                        0.664755
avg mae
cv results
           {'test rmse': [0.858892899775938, 0.8716084419...
                                                               22
k
                                                               46
                                                        0.867464
avg_rmse
                                                        0.666031
avg_mae
cv_results {'test_rmse': [0.8789551673500143, 0.865186731...
                                                               23
k
                                                               48
                                                        0.866658
avg_rmse
avg_mae
                                                         0.66547
cv results {'test rmse': [0.8720384805525286, 0.870047159...
                                                               24
k
                                                               50
                                                        0.867559
avg_rmse
                                                        0.666422
avg_mae
cv results {'test rmse': [0.8684046427135248, 0.878614088...
[4 rows x 25 columns]
```

For MF with bias, we again see that both MAE and RMSE curves follow similar trends. However, this time the error curves are very different than the previous models we saw. The curve has up and downs and follows a zig zag trend in the error values for different k values. However, if we look closely we can see that the y axis range is very small. The error range for MAE changes between 0.6665-0.6645 which means in the third decimal point and for RMSE curve, the error values are changing between 0.8675-0.8650 which is again in the third decimal point. By taking this into account, we can say that the error ranges are very small, compared to the KNN and NMF models, and MF with Bias also starts with very low error values even in the low k values. It also performs better compared to the other models given that even from start the AVG error metrics were way lower than the min AVG metrics we saw for the previous models.

Question 10.B Use the plot from the previous part to find the optimal number of latent factors. Optimal number of latent factors is the value of k that gives the minimum average RMSE or the minimum average MAE. Please report the minimum average RMSE and MAE. Is the optimal number of latent factors same as the number of movie genres?

Min Avg RMSE and MAE values for each k:

```
avg_rmse
                     avg_mae
0
     2
        0.866823
                    0.666068
1
     4
        0.867044
                    0.666400
2
     6
        0.866519
                    0.666005
3
     8
        0.866155
                   0.665472
4
    10
        0.867397
                    0.666448
5
    12
        0.865453
                    0.664530
6
        0.867622
                    0.666491
7
    16
        0.865814
                   0.665311
8
    18
        0.865000
                    0.664633
9
    20
        0.866463
                   0.665285
10
    22
        0.866194
                   0.665669
    24
11
        0.865812
                   0.664981
12
    26
        0.866400
                   0.665629
13
    28
        0.866676
                    0.665615
14
    30
        0.867061
                   0.666293
15
    32
        0.865451
                    0.664568
16
    34
        0.867351
                    0.665889
17
    36
        0.866278
                   0.665083
18
    38
        0.865669
                   0.664484
19
    40
        0.866330
                    0.665496
20
    42
        0.865399
                    0.664479
21
    44
        0.866054
                   0.664755
22
        0.867464
                    0.666031
    46
23
    48
        0.866658
                    0.665470
24
    50
        0.867559
                   0.666422
```

From the Q10-A plot and the values in the above table, we can see that the minimum errors happen:

```
• min Avg. RMSE = 0.865000 at k = 18
```

• min Avg. MAE = 0.664479 at k = 42

The optimal k value chosen is 18, since it falls in the min avg RMSE and its corresponding MAE score is also very close to min AVG MAE. For the following questions I will take chosen k as k=18 for MF with Bias model.

From Question 8.B we know that the number of genres in the dataset is 20 (if we count "no genres listed" as a genre), the chosen number of latent factors is close 18 but not the same.

Question 10.C Performance on Test set subsets: For each of Popular, Unpopular and High-Variance test subsets

- Design a MF collaborative filter to predict the ratings of the movies in the trimmed test subset and evaluate it's performance using 10-fold cross validation. Sweep k (number of latent factors) from 2 to 50 in step sizes of 2, and for each k compute the average RMSE obtained by averaging the RMSE across all 10 folds.
- Plot average RMSE (Y-axis) against k (X-axis); item Report the minimum average RMSE.

Plot the ROC curves for the NMF-based collaborative filter designed in part A for threshold values [2.5, 3, 3.5, 4]. For the ROC plotting use the optimal number of latent factors found in question

B. For each of the plots, also report the area under the curve (AUC) value.

Results of MF with bias on Original Test set and Popular, Unpopular, High Variance Trimmed Test Sets For MF with bias model, I used different values of latent factors fromm 2 to 50 with step size 2 and applied them for each trimming type (popular, unpopular and high variance). For different latent factors 10-fold cross validation is applied and avg rmse is created by averaging the RMSE results of 10-fold validations.

To be able to compare I also added the original test set in the plots. Original test set in this report refers to as no trimming applied to the test set. I also added the MAE scores out of curiosity.


```
avg_mae_high_variance
                             avg_mae_original
                                                avg_mae_popular
k
2
                  0.711792
                                      0.666488
                                                         0.659876
4
                  0.709859
                                      0.666520
                                                         0.659712
6
                  0.711074
                                      0.664332
                                                         0.659431
8
                  0.707949
                                      0.666491
                                                         0.658691
10
                  0.709473
                                      0.665546
                                                         0.659237
12
                  0.715006
                                      0.665097
                                                         0.658746
14
                  0.709709
                                      0.666092
                                                         0.658801
                  0.708228
16
                                      0.664878
                                                         0.657918
18
                  0.712462
                                      0.665537
                                                         0.658470
20
                  0.709264
                                      0.665851
                                                         0.657829
22
                  0.712424
                                      0.664988
                                                         0.657901
24
                  0.708924
                                      0.664865
                                                         0.657943
26
                  0.711678
                                      0.665368
                                                         0.657672
28
                  0.708135
                                      0.665266
                                                         0.658567
30
                  0.708958
                                      0.664943
                                                         0.657930
32
                  0.717161
                                      0.664939
                                                         0.658065
34
                  0.707954
                                      0.664614
                                                         0.658327
                  0.708418
36
                                      0.664731
                                                         0.657554
38
                  0.705815
                                      0.664915
                                                         0.658059
40
                  0.714578
                                      0.666000
                                                         0.658461
42
                  0.709397
                                      0.664664
                                                         0.658270
44
                  0.707090
                                      0.664658
                                                         0.657070
46
                  0.709348
                                      0.665928
                                                         0.658178
48
                  0.721616
                                      0.665345
                                                         0.660735
50
                  0.705447
                                      0.664649
                                                         0.658470
    avg_mae_unpopular
                         avg_rmse_high_variance
                                                   avg_rmse_original
k
2
              0.686406
                                        0.909938
                                                             0.866971
4
              0.687134
                                        0.909964
                                                             0.867009
6
              0.686160
                                        0.910214
                                                             0.864992
8
              0.685348
                                        0.909756
                                                             0.867000
10
                                        0.906505
              0.686512
                                                             0.866183
12
              0.686485
                                        0.915025
                                                             0.865148
14
              0.686286
                                        0.909334
                                                             0.867340
16
              0.684772
                                        0.909682
                                                             0.865345
18
              0.685101
                                        0.911751
                                                             0.866820
20
              0.686689
                                        0.913777
                                                             0.866685
22
              0.680774
                                        0.909950
                                                             0.866370
24
              0.685144
                                                             0.865560
                                        0.908488
26
              0.685483
                                                             0.866533
                                        0.913278
28
              0.686369
                                        0.907208
                                                             0.865676
30
              0.682665
                                        0.906868
                                                             0.866264
```

```
32
              0.687974
                                        0.913880
                                                             0.866154
34
              0.685499
                                        0.906439
                                                             0.865700
36
              0.687810
                                        0.901176
                                                             0.865160
38
              0.685311
                                        0.906518
                                                             0.865717
40
              0.687315
                                        0.915030
                                                             0.866934
42
              0.685666
                                        0.912335
                                                             0.866157
44
              0.686357
                                        0.907510
                                                             0.865790
46
              0.685765
                                        0.908631
                                                             0.867131
48
              0.684865
                                        0.919087
                                                             0.866431
50
              0.688922
                                        0.903480
                                                             0.865217
    avg_rmse_popular
                        avg_rmse_unpopular
k
2
             0.860473
                                   0.888600
4
             0.859735
                                   0.888946
6
             0.859657
                                   0.887904
8
             0.858402
                                   0.885574
10
             0.859322
                                   0.888142
12
             0.858662
                                   0.886870
14
             0.859228
                                   0.886406
16
             0.858095
                                   0.884748
18
             0.859193
                                   0.886218
20
             0.858013
                                   0.888193
22
             0.858061
                                   0.881535
24
             0.857441
                                   0.885876
26
             0.858087
                                   0.887287
28
             0.858845
                                   0.888149
30
             0.858061
                                   0.885205
32
             0.858827
                                   0.889561
34
             0.858775
                                   0.888404
36
             0.859170
                                   0.889025
38
             0.858189
                                   0.886663
40
             0.858364
                                   0.888884
42
             0.858640
                                   0.888109
44
             0.857422
                                   0.888240
46
             0.858397
                                   0.887857
48
             0.861115
                                   0.886585
50
             0.858513
                                   0.888795
       avg_mae_high_variance
                                 avg_mae_original
                                                    avg_mae_popular
count
                     25.000000
                                        25.000000
                                                           25.000000
                     0.710470
                                         0.665308
                                                            0.658477
mean
std
                     0.003617
                                         0.000650
                                                            0.000815
min
                     0.705447
                                         0.664332
                                                            0.657070
25%
                     0.708228
                                         0.664865
                                                            0.657930
50%
                     0.709397
                                         0.665097
                                                            0.658327
75%
                                         0.665851
                                                            0.658746
                     0.711792
                     0.721616
                                         0.666520
                                                            0.660735
max
```

	avg_mae_unpopular	<pre>avg_rmse_high_variance</pre>	avg_rmse_original	\
count	25.000000	25.000000	25.000000	
mean	0.685872	0.909833	0.866171	
std	0.001635	0.003911	0.000709	
min	0.680774	0.901176	0.864992	
25%	0.685311	0.907208	0.865676	
50%	0.686160	0.909756	0.866183	
75%	0.686512	0.912335	0.866820	
max	0.688922	0.919087	0.867340	
	avg_rmse_popular	avg_rmse_unpopular		
count	25.000000	25.000000		
mean	0.858747	0.887271		
std	0.000864	0.001769		
min	0.857422	0.881535		
25%	0.858095	0.886406		
50%	0.858640	0.887904		
75%	0.859193	0.888404		
max	0.861115	0.889561		
Min Av	g RMSE and Avg MAE	for each test set:		
avg_ma	e_high_variance	0.705447		
avg_ma	e_original	0.664332		
avg_ma	e_popular	0.657070		
avg_mae_unpopular		0.680774		
avg_rmse_high_variance		0.901176		
avg_rmse_original		0.864992		
avg_rm	se_popular	0.857422		
avg_rm	se_unpopular	0.881535		
dtype:	float64			

The minimum average RMSE for each test set:

- Original test min AVG RMSE: 0.864992
- Popular test set min AVG RMSE: 0.857422
- Unpopular test set min AVG RMSE: 0.881535
- High variance test set min AVG RMSE: 0.901176

For the test sets we again see the same order popular has best results with lowest min avg RMSE with 0.857422 and overall curve. Followed by original set, unpopular and then high variance set. One difference in the RMSE and MAE plots above from the other models is actually MF with Bias, starts with relatively lower error values and curves have a very small decreasing slope, even like plateau since the error changes mostly happens in 2nd-3rd decimal points. The popular and original plots are more stable where unpopular and high variance sets follow more zigzags during the experiment.

MF with Bias ROC Curves for each test set For 4 different threshold values [2.5, 3, 3.5, 4], I plotted the ROC curve of each test set. The model used in MF with bias and the number of

latent factors (k) is the chosen value in question 10.B, k=18.

I also added the results for original test set as a reference point.

ROC Curves for MF on different test sets

The Area Under Curve results for each curve in each plot is stated in the legend of the plots.

From the results, Popular set again has the smoother curves and the difference between the AUC of the thresholds are not too different in the range of 0.784-0.803. This means for popular set any threshold may result in similar results but threshold 2.5 is the best (similar to previous models). Unpopular threshold curve differences are more clear compared to previous models ranging from 0.790 to 0.822. The best threshold for unpopular test set in again 2.5 with AUC 0.822. For high variance set the curves are drastically different and staircase shaped. The best threshold seems like

3 with AUC 0.31 and the worst one is 2.5 with 0.672 AUC. However, as we stated in the previous questions high variance test set has very few samples, 87, which might explain the stair-like curve appearance and the threshold choice and ROC curve might not be very reliable.

1.4 Naive collaborative filtering

1.4.1 Question 11

Designing a Naive Collaborative Filter:

- Design a naive collaborative filter to predict the ratings of the movies in the original dataset and evaluate it's performance using 10-fold cross validation. Compute the average RMSE by averaging the RMSE across all 10 folds. Report the average RMSE. Note that in this case, when performing the cross-validation, there is no need to calculate 's i for the training folds each time. You are only asked to use a single set of 's calculated on i the entire dataset and validate on 10 validation folds.
- Performance on Test set subsets: For each of Popular, Unpopular and High-Variance test subsets -
 - Design a naive collaborative filter to predict the ratings of the movies in the popular movie trimmed test set and evaluate it's performance using 10-fold cross validation.
 - Compute the average RMSE by averaging the RMSE across all 10 folds. Report the average RMSE.

For Naive Collaborative filter, I created a ratings_per_user pandas dataframe shown below, ratings_per_user is raw ratings data grouped by users and rating shows the mean rating for each user calculated on the entire dataset. I also created a get_naive_predictions_from_test function where it takes the ratings_per_user dataframe and test set, it returns the average user rating for each user in the test set. The result of this function is used as the predictions of the test set.

ratings per user preview 10 predictions:

calculates mean ratings for each user which will be used as naive collab. filter predictions

	0	1	2	3	4	5	\
userId	1.000000	2.000000	3.000000	4.000000	5.000000	6.000000	
mean_rating	4.368534	3.948276	2.435897	3.555556	3.636364	3.493631	
	6	7	8	9			
userId	7.000000	8.000000	9.00000	10.000000			
mean_rating	3.230263	3.574468	3.26087	3.278571			

Some stats on the ratings per user dataframe

As seen from below the mean prediction is 3.65 where min assigned prediction is 1.275 and max is 5

	count	mean	std	min	25%	50%	\
userId	610.0	305.500000	176.236111	1.000	153.25	305.500000	
mean_rating	610.0	3.657226	0.480641	1.275	3.36	3.694385	

75% max

```
userId 457.7500 610.0 mean_rating 3.9975 5.0
```

For all 4 test set, original (no trim), popular, unpopular and high_variance, I performed Naive Colab. Filter with 10-fold cross validation, average RMSE is calculated for each by averaging the RMSE results across all 10 folds. The results are following:

```
Naive Collaborative Filter on Original Average RMSE: 0.934663052844902
Naive Collaborative Filter on Original Average MAE: 0.7289328699138828
Naive Collaborative Filter on Popular Average RMSE: 0.9250802897934453
Naive Collaborative Filter on Popular Average MAE: 0.7214231849077074
Naive Collaborative Filter on Unpopular Average RMSE: 0.9705068660276013
Naive Collaborative Filter on Unpopular Average MAE: 0.7561299367998391
Naive Collaborative Filter on High_variance Average RMSE: 0.9211233251598134
Naive Collaborative Filter on High variance Average MAE: 0.7192754474476302
```

Naive Collab Filter:

- Original set Average RMSE: 0.934663052844902
- Popular set Average RMSE: 0.9250802897934453
- Unpopular set Average RMSE: 0.9705068660276013
- High Variance set Average RMSE: 0.9211233251598134

The Average RMSE results are mostly worse than the previous models min AVG RMSE results, but the results are not too different. This shows that even using this simple idea of averaging users previous ratings and used that as a recommended rating can give somewhat acceptable performance. The most interesting thing in this result if the Avg. RMSE of high variance set, in all the previous models, this set was the worst error rates, however in this model it is even better than the original set. My guess is that when the variance is too high between movie ratings, the mean find by the naive algorithm will be in the middle ratings, 3ish, showing moderate interest in the movie rather than strong preference, which will decrease the squared error of RMSE. For example, let's say we have a movie with 0.5 and 5, 2 total ratings, the recommended mean will be 2.75, which is moderate interest, there is no strong preference. So, even if the prediction is wrong the squared difference for different movies, will stay lower, compared than guessing 0.5 for a 5, high true rating.

1.5 Performance Comparison

1.5.1 Question 12

Comparing the most performant models across architecture: Plot the best ROC curves (threshold = 3) for the k-NN, NMF, and MF with bias based collaborative filters in the same figure. Use the figure to compare the performance of the filters in predicting the ratings of the movies.

I plotted the best ROC curves with threshold 3 for performant models on KNN, NMF and MF with their chosen k values: 22, 22, 18 respectively.

The ROC curves are close together and smooth, we can see that yellow one, NMF is slightly worse than the other two. MF with bias has the best AUC with 0.79, hence best at predicting movie ratings among the rest of the models, followed by KNN with 0.788, followed by NMF with 0.769. The differences between KNN and MF with bias is very low and either model could be a good choice for movie ratings.

1.6 Ranking

1.6.1 Question 13

Understanding Precision and Recall in the context of Recommender Systems: Precision and Recall are defined by the mathematical expressions given by equations 12 and 13 respectively. Please explain the meaning of precision and recall in your own words.

Relevant items to the user is where ground truth is positive, which means movies liked by user.

Precision:

$$Precision(t) = \frac{|S(t) \cap G|}{|S(t)|}$$

Precision is the amount of movies where intersection of recommended movies by system and ground truth positives (liked by user) over number of recommended movies. The metrics meaning is: what rate (percentage) of the recommended items is also liked by the user. In another words, it checks how relevant the recommended items to the user by comparing it against the ground truth positives. This metric helps us to understand how good the recommended items.

Recall:

$$Recall(t) = \frac{|S(t) \cap G|}{|G|}$$

Recall is the amount of movies where intersection of recommended movies by system and ground truth positives (liked by user) over grounf truth positives. It tells what rate (percentage) of movies liked by the user is in recommended items list. In another words, it checks the percentage of relevant items being recommended to the user. Recall helps us understand how good the recommender model in finding/recommending items liked by the user.

1.6.2 Question 14

Understanding Precision and Recall in the context of Recommender Systems: Precision and Recall are defined by the mathematical expressions given by equations 12 and 13 respectively. Please explain the meaning of precision and recall in your own words.

In this question, I used KNN, NMF and MF with bias models with their chosen ks (22,22,18) respectively) to plot individual and combined Precision vs t, Recall vs t and Precision Recall curves. I thresholded the Ground Truth values with 3, and assigned 1 for the movies higher than 3 and 0 for the ones lower or equal to 3. When creating the ground truth positives (G) list, for test set, I discarded the users whose |G| = 0, they didn't like any movie. I also dropped the users who rated less than t movies, for the test set on t.

The experiment is ran t from 1 to 25 by stepsizes 1. I applied 10 cross validation for each t and average the Precision and Recall values. The Precision and Recall is calculated for each t by using precision_recall_at_t_per_user method I wrote. What the method does, given predictions, t value and a threshold, it returns a average user precision and average user recall.

To show better how precision_recall_at_t_per_user do its work, I ran a sample KNN model with k=20, did some predictions on 10% of the data and feed it to the precision_recall_at_t_per_user. Below shows the dataframe created within the function:

rec_order_items: ordered ids of the movies based on given highest predictions for the user (the list of all the movies ordered by recommendation preference of the model) rec_t_items: the first t items in the rec_order_items (given a t, returns t movies with highest predicted ratings for that user) liked_items: G, ground truth positives of the user user_precision_at_t: user precision at t, uses the precision formula in Q13 user_recall_at_t: user recall at t, uses the recall formula in Q13

t value is 5 in below sample run and threshold is 3.

```
uid
                                            rec_order_items
        [1136, 101, 3703, 1291, 2395, 1408, 1240, 2657...
0
     1
     2
                [6874, 112552, 99114, 68157, 80906, 79132]
1
2
     4
        [319, 2019, 162, 3358, 1265, 171, 902, 2186, 1...
3
        [536, 475, 490, 47, 216, 151, 165, 2, 628, 371...
        [1270, 260, 48516, 1220, 1517, 588, 4874, 4927...
4
     7
5
     9
                                [187, 922, 1198, 223, 5507]
6
    10
        [70183, 8970, 73017, 119145, 6942, 86548, 1247...
7
    11
                        [1408, 153, 1385, 1687, 1586, 511]
8
    15
        [318, 1200, 2571, 2150, 1198, 1653, 7438, 1270...
        [858, 1267, 260, 7361, 58559, 3741, 4993, 47, ...
9
    16
                            rec_t_items
0
         [1136, 101, 3703, 1291, 2395]
1
   [6874, 112552, 99114, 68157, 80906]
2
          [319, 2019, 162, 3358, 1265]
3
               [536, 475, 490, 47, 216]
4
        [1270, 260, 48516, 1220, 1517]
5
            [187, 922, 1198, 223, 5507]
6
    [70183, 8970, 73017, 119145, 6942]
7
         [1408, 153, 1385, 1687, 1586]
         [318, 1200, 2571, 2150, 1198]
8
9
         [858, 1267, 260, 7361, 58559]
                                           liked_items user_precision_at_t \
   [349, 3033, 1136, 101, 2985, 2116, 2450, 3703,...
                                                                        1.0
0
          [99114, 80906, 6874, 112552, 68157, 79132]
                                                                           1.0
1
2
   [1219, 176, 1265, 1266, 902, 1449, 2692, 106, ...
                                                                        0.6
   [248, 367, 314, 60, 475, 450, 47, 46, 93, 43, ...
3
                                                                        0.6
4
          [1270, 5445, 49272, 1517, 1220, 260, 2717]
                                                                          0.8
5
                                      [1198, 223, 922]
                                                                          0.6
6
               [1784, 49286, 6942, 7458, 7375, 72737]
                                                                          0.2
7
                                     [511, 1408, 1586]
                                                                          0.4
   [1270, 2012, 296, 2150, 1653, 2571, 85414, 318...
8
                                                                        1.0
            [3741, 47, 3174, 4993, 1267, 58559, 7361]
                                                                           0.6
   user recall at t
0
           0.312500
1
           0.833333
2
           0.150000
3
           0.187500
4
           0.571429
5
           1.000000
6
           0.166667
7
           0.666667
8
           0.416667
9
           0.428571
```

Avg Precision at t per user: 0.7567307692307691 Avg Recall at t per user: 0.5041367878300609

Then the average precision at t for all users is the average of user_precision_at_t and the average recall at t for all users is the average of user_recall_at_t. These two values are returned by method. In the experiment I did for this question, since we do 10-folds cross validation, we repeat the procedure for 10 times for each t and take average of the 10 precision and recall values found for each t and use those results in our plots.

Resulting data frame of the t from 1 to 25, precision-recall experiment:

	$avg_precision_KNN$	$avg_precision_MF$	$avg_precision_NMF$	avg_recall_KNN	\
t					
1	0.831868	0.841300	0.812111	0.230972	
2	0.791983	0.799967	0.783713	0.365116	
3	0.774855	0.786536	0.770202	0.438964	
4	0.768327	0.774579	0.763638	0.485876	
5	0.764198	0.768870	0.758205	0.510270	
6	0.762171	0.766397	0.754364	0.520674	
7	0.757455	0.763874	0.753792	0.537494	
8	0.756103	0.763794	0.754950	0.547400	
9	0.758818	0.761600	0.750980	0.556838	
10	0.756222	0.759600	0.748847	0.570113	
11	0.756098	0.756379	0.748343	0.586192	
12	0.752369	0.754978	0.747223	0.589309	
13	0.755360	0.758462	0.748443	0.600971	
14	0.750557	0.757257	0.748520	0.600555	
15	0.755203	0.756398	0.752352	0.613024	
16	0.754985	0.754282	0.750478	0.621862	
17	0.746986	0.753730	0.744982	0.624278	
18	0.748288	0.750632	0.746139	0.628209	
19	0.747310	0.750711	0.743896	0.635878	
20	0.744195	0.748451	0.738054	0.643450	
21	0.739896	0.749442	0.738697	0.649982	
22	0.738127	0.741284	0.735933	0.653876	
23	0.736931	0.739676	0.732784	0.665538	
24	0.734440	0.735565	0.730945	0.666905	
25	0.726969	0.734443	0.723822	0.667597	
	<pre>avg_recall_MF avg</pre>	_recall_NMF			
t					
1	0.233830	0.228701			
2	0.369130	0.364565			
3	0.447517	0.438111			
4	0.484154	0.481287			
5	0.509054	0.499875			
6	0.521323	0.515219			
7	0.538607	0.526829			

0.550214	0.542325
0.557049	0.556715
0.569562	0.563418
0.579185	0.575528
0.587800	0.586970
0.593623	0.593982
0.604341	0.602353
0.613780	0.604805
0.623956	0.615179
0.622911	0.613696
0.634852	0.627447
0.634722	0.631101
0.639297	0.636246
0.645882	0.635310
0.653296	0.646143
0.658665	0.649880
0.665920	0.656017
0.669018	0.662987
	0.557049 0.569562 0.579185 0.587800 0.593623 0.604341 0.613780 0.623956 0.622911 0.634852 0.634722 0.639297 0.645882 0.653296 0.658665 0.665920

Individual Plots for each model Precision vs t, recall vs t and precision-recall plots for each model drawn separately in below:

Precision vs t plots:

In all precision vs t plots, we can see the non-monotonic decreasing trends. As t increase the precision mostly decrease and this shows an inverse relation between t and average precision. For KNN, there is a smooth decreasee until the middle of t=5 and 10, and then the curve becomes less smooth, during the experiment from start to end precision lowers more than 0.08. For NMF, we again see similar curve but the smoothness is preserved longer, around until t=12-13. For MF with bias, the precision vs t plot is the smoothest one, and the one that has highest precision range, it starts from 0.84 and drops until below 0.74.

Recall vs t plots:

The recall vs t relationship is positive. As t increase recall also increases, which makes sense, the more movie we recommend the more of the liked movies by the user we can cover. The curves for all 3 models follows the same trend.

Avg Precision vs Avg Recall plots:

There is an inverse relationship between precision and recall. As recall increases the precision decrease for all 3 plots. The trends for the curves same for all 3 models. MF with bias has the highest precision rate when the recall is smallest among the models. Also for all 3 plots, the curves become less smooth for the recall values above 0.5. We can also clearly see the precision-recall tradeoff from these plots since these two metrics are in inverse relationship. We need to find an optimal t point where both recall and precision is acceptable.

Combined Plots I also plotted the combined plots for each type of plots, to be able to compare the models better:

Average Precision against t

From the above plot, we can see that MF with bias overall has the best and smoothest precision vs t plot. It starts and finish with higher precision values for different ts. If we want to have high precision generally it seems best to keep the t lower. KNN is the second best model in terms of precision and NMF is the worst one.

Average Recall against t

The recall curves for each model are more similar to each other compared to precision curves. From the above plot it is very hard to tell which model is better in terms of recall because the marginal differences are very close. NMF looks slighlt worse then the other 2 models though.

Given that we saw precision and recall tradeoff in individual plots, and seeing no high difference in terms of recall in these models, the model selection can be made based on the model which has good precision. In this case, MF with bias would be a better model compared the others for the recommendation system of the given data.

Precision - Recall Curve Combined

All three models has inverse precision-recall relationship as described above plots. From combined recall plots, we saw that there is not much difference of the recall against different t's in the models, hence the main driver and difference we see in this plot is coming from the precision differences of the models. In precision-recall curves the closer the line to the upper right side, the better model for recommendation for this dataset is, in this case the best model for this dataset is MF with bias. Since the slope of the green line is also smaller (closer to the right upper side), we can do the precision-recall trade-off better because increasing recall would decrease the precision less than the other models. So, we can minimize the trade-off by choosing MF with bias as our best model. The second best choice seems to be KNN and the worst one is NMF.