

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	justificaciones)
Cancún, Q. Roo 28 de Abril de 2010/	M.C. David Flores Granados Ing. Mónica Patricia René M.C. José Enrique Alvarez	Se actualizó la bibliografía. Se reestructuró el contenido de algunas unidades, recortando incisos innecesariamente detallados.

Relación con otras asignaturas

Anteriores	Posteriores
No aplica	No aplica

Nombre de la asignatura	Departamento o Licenciatura

Programación de sistemas embebidos Ingeniería en Telemática

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	IT3478	6	Licenciatura Elección Libre

Tipo de asignatura	Horas	de estudio)	
	HT	HP	TH	HI
Seminario	32	16	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Asociar el funcionamiento de los microprocesadores y microcontroladores básicos para el diseño de sistemas embebidos.

Objetivo procedimental

Ensamblar un sistema embebido simple para su incorporación en un dispositivo.

Objetivo actitudinal

Fomentar la disciplina en el análisis y solución de problemas para el diseño e implementación de sistemas embebidos.

Unidades y temas

Unidad I. INTRODUCCIÓN A LOS SISTEMAS EMBEBIDOS

Diferenciar los tipos de Microprocesadores y Microntroladores para el diseño de Sistemas Embebidos

- 1) Definición de Sistemas embebidos y de tiempo real
- 2) Microprocesadores y Microcontroladores
- 3) Bloques de Memoria
- 4) Puertos de Entrada y Salida
- 5) Desarrollo de software embebido

Unidad II. FUNDAMENTOS DE LENGUAJE NATIVO

Usar los lenguajes que sustentan la programación de los sistemas embebidos para su implementación

- 1) Programa básico
- 2) Estructuras de control
- 3) Programación modular
- 4) Ejecución y depuración

Unidad III. INTERRUPCIONES

Emplear las principales interrupciones para el manejo de señales.

Docente	Estudiante	
Actividades que promueven el aprendizaje		
4) Red IEEE 802.15.4		
3) Convertidores de energía		
2) Fuentes de energía		
1) Gestión de potencia		
Estimar las consideraciones de diseño para la	implementación de Sistemas Embebidos	
Unidad V. CONSIDERACIONES DE D	ISEÑO	
3) Selección de arquitectura		
2) Planificación por encolado de func	iones	
1) Round Robin		
Bosquejar las principales arquitecturas para el	diseño de Sistemas Embebidos	
Unidad IV. ARQUITECTURAS DE SOF	FTWARE	
3) Latencia		
2) Fundamentos de las interrupciones	S	

Moderar el Trabajo en equipo Coordinar la Discusión de casos prácticos Prácticas Foro Participar en el Trabajo en equipo Exposición Proyecto Integral

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal

www.marcombo.com
Resolución y consulta de aplicaciones

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Prácticas	30
Exámenes	30
Proyecto Integrador	20
Participación en Clase	20
Total	100

Fuentes de referencia básica

Bibliográficas

Burns, A., Wellings, A. (2003). Sistemas de Tiempo Real y Lenguajes de Programacion, , Pearson Educacion, ISBN: 8478290583.

Labrosse, J. (2002). MicroC OS II: The Real Time Kernel, CMP Books, ISBN: 1578201039

Lewis, Daniel W. (2001). Fundamentals of Embedded Software: Where C and Assembly Meet. Prentice Hall, ISBN: 0130615897

Simon, David E. An Embedded Software Primer. Addison-Wesley Professional, ISBN: 020161569X.

Web gráficas

www.marcombo.com

Fuentes de referencia complementaria

Bibliográficas

No aplica

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Ingeniería, licenciatura o posgrado en Ciencias de la Computación, Sistemas, Eléctrica o Electrónica

Docentes

2 años de experiencia impartiendo asignaturas afines en instituciones de educación superior o posgrado.

Profesionales

Experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos