Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z projektu nr 5, zadanie nr 3

Sobolewski Konrad, Różański Antoni, Giełdowski Daniel

Spis treści

1.	Zada	anie 4:	Strojenie regulatorów													2
	1.1.	PID .													 	2
		1.1.1.	Konfiguracja												 	2
		1.1.2.	PID - konfiguracia pierwsz	za.											 	4

1. Zadanie 4: Strojenie regulatorów

Następnym zadaniem było wyznaczenie optymalnych parametrów algorytmów PID i DMC odpowiednio za pomocą metody inżynierskiej(PID) i eksperymentalnej(DMC). Jakość regulacji oceniana była wizualnie - na podstawie wykresów - oraz obliczeniowo na podstawie wskaźnika jakości regulacji. Wzór na ten wskaźnik znajduje się poniżej.

$$E = \sum_{k=1}^{k_{konc}} (Y^{zad}(k) - Y(k))^2$$
 (1.1)

1.1. PID

Nastawy PID dobieramy włączając w tym samym czasie tylko jeden tor regulacji z istniejących trzech i dobierając jego parametry. Na końcu łączymy 3 tory i korygujemy nastawy. Strojąc jeden tor nie będziemy się przejmować innymi, więc nie umieszczaliśmy ich wykresów, a pzredstawione wartości błędów będą sumą tylko z tego jednego toru.

1.1.1. Konfiguracja

Ponieważ posiadamy 4 wejścia i 3 wyjścia w celu napisania regulatora PID jedno z wejść będziemy musieli odrzucić. Pozostaje zdecydować które. W tym celu tworzymy macierz wzmocnień KKK zawierającą wzmocnienia statyczne wszystkich torów procesów (wersy odzwierciedlają kolejne sterowania, a kolumny kolejne wyjścia).

$$KKK = \begin{bmatrix} 0.5 & 1.5 & 1.3 \\ 1.25 & 1.1 & 0.4 \\ 0.9 & 0.1 & 0.3 \\ 1.2 & 0.45 & 1.15 \end{bmatrix}$$
 (1.2)

Oczywiście już na jej podstawie moglibyśmy wybrać niezłą konfigurację wyjść, jednakże my szukamy najlepszej. W tym celu dzielimy macierz KKK na cztery macierze KK $_i$ o wymiarach 3x3 usuwając za każdym razem inny wiersz (numer i nowej macierzy to numer usuniętego wiersza).

$$KK_1 = \begin{bmatrix} 1,25 & 1,1 & 0,4\\ 0,9 & 0,1 & 0,3\\ 1,2 & 0,45 & 1,15 \end{bmatrix}$$
 (1.3)

$$KK_2 = \begin{bmatrix} 0.5 & 1.5 & 1.3 \\ 0.9 & 0.1 & 0.3 \\ 1.2 & 0.45 & 1.15 \end{bmatrix}$$
 (1.4)

$$KK_3 = \begin{bmatrix} 0.5 & 1.5 & 1.3 \\ 1.25 & 1.1 & 0.4 \\ 1.2 & 0.45 & 1.15 \end{bmatrix}$$
 (1.5)

$$KK_4 = \begin{bmatrix} 0.5 & 1.5 & 1.3 \\ 1.25 & 1.1 & 0.4 \\ 0.9 & 0.1 & 0.3 \end{bmatrix}$$
 (1.6)

Następnie obliczamy w Matlabie wskaźniki uwarunkowania tych macierzy, które wynosza odpowiednio:

- cond(KK₁)=6,7173
- cond(KK₂)=11,1599
- cond(KK₃)=4,2242
- cond(KK₄)=6,9254

Następnie wybieramy ta, której wskaźnik jest najmniejszy (w naszym przypadku KK₃) i obliczamy dla niej (w matlabie) macierz KK_i .* (KK_i^{-1}) '. Następnie wybieramy z obliczonej macierzy 3 elementy, po jednym na każdy wiersz i kolumnę, mające wartości jak najbliższe jeden (wartości ujemne są wykluczone). Położenie tych elementów określa które sterowanie powinno odpowiadać któremu wyjściu. Poniżej przedstawiam wyniki tego równania dla wszystkich maicerzy KK_i.

$$Dla \quad KK_1: \begin{bmatrix} 0,0383 & 1,1362 & -0,1744 \\ 1,4943 & -0,1465 & -0,3477 \\ -0,5325 & 0,0103 & 1,5222 \end{bmatrix}$$
 (1.7)

$$Dla \quad KK_2 : \begin{bmatrix} 0.0153 & 1.5529 & -0.5683 \\ 1.5736 & 0.1511 & -0.7247 \\ -0.5890 & -0.7040 & 2.2929 \end{bmatrix}$$
(1.8)

$$Dla \quad KK_3: \begin{bmatrix} -0,2888 & 0,7646 & 0,5242 \\ 0,7586 & 0,5768 & -0,3354 \\ 0,5302 & -0,3414 & 0,8112 \end{bmatrix}$$
 (1.9)

$$Dla \quad KK_{1} : \begin{bmatrix} 0,0383 & 1,1362 & -0,1744 \\ 1,4943 & -0,1465 & -0,3477 \\ -0,5325 & 0,0103 & 1,5222 \end{bmatrix}$$

$$Dla \quad KK_{2} : \begin{bmatrix} 0,0153 & 1,5529 & -0,5683 \\ 1,5736 & 0,1511 & -0,7247 \\ -0,5890 & -0,7040 & 2,2929 \end{bmatrix}$$

$$Dla \quad KK_{3} : \begin{bmatrix} -0,2888 & 0,7646 & 0,5242 \\ 0,7586 & 0,5768 & -0,3354 \\ 0,5302 & -0,3414 & 0,8112 \end{bmatrix}$$

$$Dla \quad KK_{4} : \begin{bmatrix} -0,1447 & 0,0225 & 1,1223 \\ 0,3992 & 1,1198 & -0,5190 \\ 0,7455 & -0,1422 & 0,3967 \end{bmatrix}$$

$$(1.7)$$

Normalnie wybralibyśmy jedynie konfigurację uzyskaną z macierzy o najniższym wskaźniku uwarunkowania (KK₃), jednakże zadanie nakazuje przetestować różne konfiguracje regulatora PID. Z tego powodu zdecydowaliśmy się wybrać po jednej (najlepszej) konfiguracji z każdej z macierzy. Beda to:

- Dla KK1: y1-u3 y2-u2 y3-u4
- Dla KK2: y1-u3 y2-u1 y3-u4
- Dla KK3: y1-u2 y2-u1 y3-u4
- Dla KK4: v1-u3 v2-u2 v3-u1

1.1.2. PID - konfiguracja pierwsza

Pierwsza konfiguracja naszego PID'a zakłada, że wyjście pierwsze sterujemy wejściem trzecim, wyjście drugie wejściem drugim, a wyjście trzecie wejściem czwartym.

Tor pierwszy

Nastawy PID wyznaczamy metodą inżynierską. Oznacza to, że zaczynamy od wyznaczenia wzmocnienia K. Jego wartość ustawiamy na połowę wartości, dla której obiekt wpada w niekończące się i nierosnące oscylacje. Dla pierwszego toru $K_{osc}=13,3642$, co oznacza, że jako wartość K przyjmujemy K=6,6821. Oscylacje przedstawia poniższy wykres 1.1.

Następnie przystąpiliśmy do wyznaczenia czasu zdwojenia T_i . Po wielu testach zdecydowaliśmy się, że najlepszy przebieg oraz najniższa wartość błędu występuje dla $T_i=3$. Choć w przebiegu sterowania nie ma ona większej pzrewagi, to przebieg wyjścia jest o wiele lepszy od konkurentów. Na wykresie wyjście dosłownie stapia się w jednen przebieg z wartością zadaną. Poniżej w tabeli 1.2 przedstawiono wartości błędów dla różnych wartości T_i . Przebiegi dla tych wartości pokazano na wykresie 1.2.

Ostatnim dobieranym parametrem był czas wyprzedzenia T_d . Niemniej okazało się, że włączenie członu różniczkowego powoduje bardziej pogorszenie przebiegu niż jego polepszenie. Z tego powodu postanowiliśmy pozostać przy wartości $T_d = 0$. Wartości błędów dla wybranych wartości pzredstawione zostały w tabeli 1.3, a przebiegi na wykresie 1.3.

\boldsymbol{y}	\boldsymbol{u}
y_1	u_3
y_2	u_2
y_3	u_4

Tab. 1.1. Pierwsza konfiguracja

T_i	E1						
1	15,7016						
3	14,0000						
10	$15,\!6587$						
100	$34,\!8237$						

Tab. 1.2. Wartości błędu dla różnych wartości T_i

T_i	E1
0	14
0.01	14,0113
0.1	15,5293

Tab. 1.3. Wartości błędu dla różnych wartości T_d

Rys. 1.1. Przebieg wyjścia pierwszego i wejścia trzeciego dla wzmocnienia oscylacyjnego $K_{osc}=13,3642$

Rys. 1.2. Przebieg wyjścia pierwszego i wejścia trzeciego dla różnych wartości ${\cal T}_i$

Rys. 1.3. Przebieg wyjścia pierwszego i wejścia trzeciego dla różnych wartości ${\cal T}_d$

Tor drugi

Oczywiście zaczynamy od dobrania wzmocnienia K. Dla wyjścia drugiego sterowanego drugim wejściem wartość wzmocnienie dla którego wpada ono w oscylacje to K_{osc} =18,197. Oznacza to, że dla regulatora przyjmiemy wzmocnienie równe K=9,0985. Wykres zawierający przebiegi dla wzmocnienia oscylacyjnego umieściliśmy pod numerem 1.4.

Następną dobieraną wartością było T_i . Po kilku próbach doszliśmy do wniosku, że najlepszą wartością jest T_i =5. Dla tej wartości zarówno przebieg jak i wartość błędu są najmniejsze. Błędy dla różnych wartości znajdują się w tabeli 1.4. Przebiegi zamieściliśmy na wykresie 1.5.

Ostatnim dobieranym parametrem był czas wyprzedzenia T_d . Niemniej okazało się, że włączenie członu różniczkowego powoduje bardziej pogorszenie przebiegu niż jego polepszenie. Z tego powodu postanowiliśmy pozostać przy wartości $T_d=0$. Wartości błędów dla wybranych wartości przedstawione zostały w tabeli 1.5, a przebiegi na wykresie 1.6.

T_i	E1							
1	16,6367							
5	14,0000							
10	14,3245							
100	21,2770							

Tab. 1.4. Wartości błędu dla różnych wartości T_i

T_i	E1
0	14
0.01	14,0114
0.1	15,5409

Tab. 1.5. Wartości błędu dla różnych wartości T_d

Rys. 1.4. Przebieg wyjścia drugiego i wejścia drugiego dla wzmocnienia oscylacyjnego $K_{osc}=18,197\,$

Rys. 1.5. Przebieg wyjścia drugiego i wejścia drugiego dla różnych wartości ${\cal T}_i$

Rys. 1.6. Przebieg wyjścia drugiego i wejścia drugiego dla różnych wartości ${\cal T}_d$