Modelos de Computação CC1004

2016/2017

duração: 2h30

1º Teste - 22/03/2017

N.º		Nome	
-----	--	------	--

1. O diagrama seguinte foi obtido de um automáto finito, de alfabeto $\Sigma = \{a, b\}$, após algumas iterações do método de eliminação de estados. Desenhe o diagrama que se obtém no **passo seguinte** se se eliminar s_5 .

Não simplifique as expressões que obtiver e ilustre como efetuou a eliminação de s_5 .

2. Seja $A = (S, \Sigma, \delta, s_0, F)$ o AFND- ε representado abaixo, com $\Sigma = \{a, b\}$.

- a) Indique o valor de $\delta(s_0, \varepsilon)$, $\delta(s_5, a)$, $Fecho_{\varepsilon}(s_3)$ e $Fecho_{\varepsilon}(s_1)$.
- **b)** Dê exemplo de $x, y \in \Sigma^*$ tais que $x \in \mathcal{L}(A)$ e $y \notin \mathcal{L}(A)$. Explique.
- c) Desenhe o diagrama de transição do AFD que resulta de *A* por aplicação do método de conversão. Indique apenas estados acessíveis do *estado inicial do AFD* e use *conjuntos* para designar os estados.
- **d**) Que significado têm tais conjuntos no método de conversão? Quantos estados tem o AFD se se indicar os estados não acessíveis do seu estado inicial? Por que razão esses estados não são relevantes?
- **3.** Seja r_1 a expressão regular $(((bb) + b)^*)$ e r_2 a expressão regular $(\varepsilon + (aa))$ sobre $\Sigma = \{a, b\}$.
- a) Desenhe o diagrama de transição do AFND- ε que resulta da aplicação do método de Thompson às expressões r_1 e r_2 , de acordo com a construção dada nas aulas.
- **b)** Descreva informalmente as linguagens $\mathcal{L}(r_1)$, $\mathcal{L}(r_2)$, $\mathcal{L}((r_1r_2))$ e $\mathcal{L}((r_1+r_2))$.
- c) Diga, justificando, se $\mathcal{L}((r_1r_2)^*) = \{aa,b\}^*$. Na justificação, use diretamente a definição de linguagem descrita por uma expressão regular e a definição das operações sobre linguagens.
- **4.** Seja L a linguagem das palavras de $\{a,b\}^*$ que terminam em bbb e não têm outras ocorrências da subpalavra bbb que não essa. Note que bbbb não pertence a L.
- ${\bf a}$) Indique uma expressão regular (abreviada) que descreva a linguagem L.
- b) Apresente o diagrama de transição de um AFD que reconheça L e **não seja mínimo**. Descreva informalmente o conjunto das palavras que levam tal AFD do estado inicial a cada um dos estados.
- ${f c}$) Por aplicação do corolário do teorema de Myhill-Nerode determine o ${f AFD}$ mínimo que reconhece L. Justifique todos os passos intermédios.
- 5. Seja $A=(S,\Sigma,\delta,s_0,F)$ um AFD. O que representa a tabela que construimos no algoritmo de Moore para A? Que significado têm os pares (s_i,s_j) que colocamos em algumas entradas? Como e quando são usados? Como se obtém o AFD mínimo equivalente a A, no fim? Que relação existe entre a caraterização do AFD mínimo que aceita $\mathcal{L}(A)$, dada pelo corolário do teorema de Myhill-Nerode, e a noção de estados equivalentes/não equivalentes explorada no algoritmo de Moore? (FIM)