```
Вариант 1
```

$$(\overline{a}\,\overline{c}d+bc)(\overline{c}\,\overline{b}+ab)\overline{(ac+ab+d)}= (\text{избавляемся от инверсии по теореме Де Моргана})$$

$$=(\overline{a}\,\overline{c}d+bc)(\overline{c}\,\overline{b}+ab)\overline{ac}\,\overline{ab}\,\overline{d}=$$

$$=(\overline{a}\,\overline{c}d+bc)(\overline{c}\,\overline{b}+ab)(\overline{a}+\overline{c})(\overline{a}+\overline{b})\,\overline{d}=$$
Так как
$$a+bc=(a+b)(a+c)$$
тогда
$$=(\overline{c}+bc)(d+bc)(\overline{a}+bc)(\overline{b}+ab)(\overline{c}+ab)(\overline{a}+\overline{c})(\overline{a}+\overline{b})\,\overline{d}=$$

$$=(\overline{c}+bc)(d+bc)(d+b)(d+c)(\overline{a}+c)(\overline{a}+b)(\overline{b}+b)(\overline{b}+a)(\overline{c}+a)(\overline{c}+b)(\overline{a}+\overline{c})(\overline{a}+\overline{b})\,\overline{d}=$$
Так как
$$\overline{c}+c=1\qquad \overline{b}+b=1$$
Тогда
$$=(\overline{c}+b)(d+b)(d+c)(\overline{a}+c)(\overline{a}+b)(\overline{b}+a)(\overline{c}+a)(\overline{c}+b)(\overline{a}+\overline{c})(\overline{a}+\overline{b})\,\overline{d}=$$
Так как
$$d\overline{d}=0\ ,\ \text{то}\ (d+b)\overline{d}=d\overline{d}+b\overline{d}=b\overline{d}$$
тогда
$$=(\overline{c}+b)(\overline{a}+c)(\overline{a}+b)(\overline{b}+a)(\overline{c}+a)(\overline{c}+b)(\overline{a}+\overline{c})(\overline{a}+\overline{b})\,bc\,\overline{d}=$$
Как было выше можно с помощью b упростить выражение

Если идти по пути получения ДНФ, то выражение тоже обращается в 0

$$= (\overline{a} \, \overline{c} \, d + bc)(\overline{c} \, \overline{b} + ab)(\overline{a} + \overline{c})(\overline{a} + \overline{b}) \, \overline{d} =$$

$$\overline{d}bc(\overline{c} \, \overline{b} + ab)(\overline{a} + \overline{c})(\overline{a} + \overline{b}) =$$

$$= \overline{d}bca\overline{a}(\overline{a} + \overline{b}) = 0$$

 $=(\overline{c}+b)(\overline{a}+c)(\overline{a}+b)(\overline{c}+a)(\overline{c}+b)(\overline{a}+\overline{c})a\overline{a}\ bc\ \overline{d}=0$

Данное выражение имеет 16 импликант СКНД и ни одной у СДНФ Вариант 2

$$(\overline{a}\,\overline{c}\,d + bc)(\overline{c}\,\overline{b} + ab)(\overline{ac} + ab + \overline{d})$$
= (избавляемся от инверсии по теореме Де Моргана) = $(\overline{a}\,\overline{c}\,d + bc)(\overline{c}\,\overline{b} + ab)\overline{ac}\,\overline{ab}\,d =$ = $(\overline{a}\,\overline{c}\,d + bc)(\overline{c}\,\overline{b} + ab)(\overline{a} + \overline{c})(\overline{a} + \overline{b})d =$ Так как $a + bc = (a + b)(a + c)$

$$= (\overline{c} + bc)(d + bc)(\overline{a} + bc)(\overline{b} + ab)(\overline{c} + ab)(\overline{a} + \overline{c})(\overline{a} + \overline{b})d =$$

$$= (\overline{c} + b)(\overline{c} + c)(d + b)(d + c)(\overline{a} + c)(\overline{a} + b)(\overline{b} + b)(\overline{b} + a)(\overline{c} + a)(\overline{a} + \overline{c})(\overline{a} + \overline{b})d =$$

Так как

$$\overline{c} + c = 1$$
 $\overline{b} + b = 1$
Тогла

 $= (\overline{c} + b)(d + b)(d + c)(\overline{a} + c)(\overline{a} + b)(\overline{b} + a)(\overline{c} + a)(\overline{a} + \overline{c})(\overline{a} + \overline{b})d =$

$$(\overline{c} + a)(\overline{a} + \overline{c}) = c + \overline{a}a = c$$

= $(\overline{c} + b)(d + b)(d + c)(\overline{a} + c)(\overline{a} + b)(\overline{b} + a)(\overline{a} + \overline{b})cd =$

$$(\overline{b} + a)(\overline{a} + \overline{b}) = \overline{b} + \overline{a}a = \overline{b}$$

$$= (\overline{c} + b)(d + b)(d + c)(\overline{a} + c)(\overline{a} + b)\overline{b} cd =$$

$$= (\overline{b}\overline{c} + \overline{b}b)(d + b)(d + c)(\overline{a} + c)(\overline{a} + b)\overline{c} cd =$$

$$= (d + b)(d + c)(\overline{a} + c)(\overline{a} + b)\overline{b}\overline{c} cd = 0$$

Вариант 3

 $(\overline{a}\,\overline{c}d + bc)(\overline{c}\,\overline{b} + ab)(\overline{ac} + \overline{ab} + \overline{d})$ = (избавляемся от инверсии по теореме Де Моргана)

$$=(\overline{a}\,\overline{c}d+bc)(\overline{c}\,\overline{b}+ab)\overline{ac}\,\overline{ab}\,d=$$

$$=(\overline{a}\overline{c}d+bc)(\overline{c}\overline{b}+ab)(\overline{a}+c)(a+\overline{b})d=$$

Так как

$$a + bc = (a + b)(a + c)$$

тогла

$$= (\overline{c} + bc)(d + bc)(\overline{a} + bc)(\overline{b} + ab)(\overline{c} + ab)(\overline{a} + c)(a + \overline{b})d =$$

$$= (\overline{c} + b)(\overline{c} + c)(d + b)(d + c)(\overline{a} + c)(\overline{a} + b)(\overline{b} + b)(\overline{b} + a)(\overline{c} + a)(\overline{a} + c)(a + \overline{b})d =$$

Так как

$$\overline{c} + c = 1$$
 $\overline{b} + b = 1$

Тогда

$$= (\overline{c} + b)(d + b)(d + c)(\overline{a} + c)(\overline{a} + b)(\overline{b} + a)(\overline{c} + a)(\overline{a} + c)(a + \overline{b})d =$$

Удалим одинаковые

$$=(\overline{c}+b)(d+b)(d+c)(\overline{a}+c)(\overline{a}+b)(\overline{b}+a)(\overline{c}+a)d$$

Так как (d+b)d=d, выражение сокращается

$$=(\overline{c}+b)(\overline{a}+c)(\overline{a}+b)(\overline{b}+a)(\overline{c}+a)d$$

и получим КНФ

Дальше или надо добавлять недостающие буквы.

Первая импликанта даст следующее выражение

$$\overline{c} + b = (\overline{c} + b + a + d)(\overline{c} + b + a + \overline{d})(\overline{c} + b + \overline{a} + d)(\overline{c} + b + \overline{a} + \overline{d})$$

Так следует поступить с каждым членом, а потом исключить одинаковые.

Или воспользоваться таблице1 истинности. Если какой из членов дает ноль, то общее выражение становится тоже нуль. Свободный элемент d позволяет заполнить следующие клеточки

$$(\overline{c}+b)(\overline{a}+c)(\overline{a}+b)(\overline{b}+a)(\overline{c}+a)d$$

Out	0		0		0		0		0		0		0		0	
a	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
b	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
c	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
d	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

импликанта $(\overline{c} + b)$ позволяет добавить два нуля

Out	0		0	0	0		0	0	0		0		0		0	
a	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
b	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
c	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
d	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

импликанта $(\bar{a} + c)$ позволяет добавить два нуля

Out 0	0	0	0		0	0	0	0	0		0	0	0	
-------	---	---	---	--	---	---	---	---	---	--	---	---	---	--

a	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
b	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
c	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
d														1		
имп.	импликанта $(\overline{a}+b)$ позволяет добавить еще один нуля															
Out	0		0	0	0		0	0	0	0	0	0	0	0	0	
a	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
b	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
c	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
d	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
импликанта $(\overline{b} + a)$ позволяет добавить еще один нуля																
Out 0 0 0 0 0 0 0 0 0 0 0 0 0 0																
a	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
b	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
c	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
d	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
имп.	импликанта $(\overline{c} + a)$ позволяет добавить ни одного нового нуля. Остальные клетки 1															
Out	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
a	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
b	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
c	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
d	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
CKH					\		-)/	_		V	_	-1/	_		`	
•		, ,			, ,		, ,			, ,		, ,	$a + \overline{b}$ -		,	
(a +	\overline{b} + \overline{c}	$+ \overline{d}$	$\overline{a} + b$	+c+c	$d)(\overline{a} +$	b+c	$+ \overline{d}$	$\overline{a} + b$	$+\overline{c}$ +	$d)(\overline{a} +$	$-b+\overline{c}$	$(\overline{d} + \overline{d})$	$(\overline{a} + b)$	+ c +	d)	
$(\overline{a}+b+c+\overline{d})(\overline{a}+b+\overline{c}+d)$																
Получение СДНФ																
$(\bar{a}\bar{c}d + bc)(\bar{c}\bar{b} + ab)(\bar{a}\bar{c} + \bar{a}b + \bar{d})$ = (избавляемся от инверсии по теореме Де Моргана)																
$= (\overline{a}\overline{c}d + bc)(\overline{c}\overline{b} + ab)\overline{ac}\overline{\overline{ab}}d =$																
$= (\overline{a} \overline{c} d + b c)(\overline{c} \overline{b} + a b)(\overline{a} + c)(a + \overline{b})d =$																
$=(\overline{a}\overline{a}$	$\overline{c}d\overline{c}b$	$+bc\overline{c}$	$b + \overline{a}$	$\overline{c}dab$	+ bcal	b)(āa ∙	+ <i>ca</i> +	$-\overline{a}b$ +	· cb)d	=						
Так	как <i>d</i>	$\overline{d} = 0$														
$=(\overline{a}\overline{a}$	$\bar{c}d\bar{b}$ +	cab)	$ca + \bar{c}$	$\bar{i}\bar{b}+c$	\overline{b}) $d =$											
$=(\overline{a}\overline{a}$	$\bar{c}d\bar{b}$ +	cab	c(a +	\overline{b})+ \overline{a}	$(\overline{b})d =$											
:			•	bc(a +	΄.		$\overline{a}\overline{b} + c$	$cab\overline{a}\overline{b}$	$d = \frac{1}{2}$							
	c(a +				, , ,)							
	`	,		' .												
= (ab)	vca + 0	лосо - _	+ a ca	$d\overline{b}$ $d =$												

В данном случае никаких больше преобразований не требуется. Мы сразу получили СДНФ. Но так бывает редко.

 $=abcd+\overline{a}\,\overline{c}d\overline{b}$