Cryptography and Network Security

Fourth Edition by William Stallings

RatnaKumari Challa Asst. Prof. Dept of CSE

Ratna Challa Asst Prof CSE

Introduction

Background

- Information Security requirements have changed in recent times
- traditionally provided by physical and administrative mechanisms
- computer use requires automated tools to protect files and other stored information
- use of networks and communications links requires measures to protect data during transmission

Definitions

- Computer Security generic name for the collection of tools designed to protect data and to thwart hackers
- Network Security measures to protect data during their transmission
- Internet Security measures to protect data during their transmission over a collection of interconnected networks

Aim of Course

- our focus is on Network Security
- which consists of measures to deter, prevent, detect, and correct security violations that involve the transmission & storage of information

OSI Security Architecture

- ITU-T X.800 "Security Architecture for OSI"
- defines a systematic way of defining and providing security requirements
- for us it provides a useful, if abstract, overview of concepts we will study

Aspects of Security

- consider 3 aspects of information security:
 - security attack
 - security mechanism
 - security service

Security Attack

- any action that compromises the security of information owned by an organization
- security is about how to prevent attacks, or failing that, to detect attacks on informationbased systems
- often threat & attack used to mean same thing
- have a wide range of attacks
- can focus of generic types of attacks
 - passive
 - active

Passive Attacks

- ❖ Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions
 - Release of Message content Interception
- Darth read contents of message from Bob to Alice

 Internet or other comms facility

 Bob

 Alice

- Traffic Analysis -
 - We have masking the contents
 - -opponent might still be able to observe the pattern of these messages
 - -determine the location and identity, observe the frequency and length of messages
- very difficult to detect because they do not involve any alteration of the data
- it is feasible to prevent the success of these attacks, by means of encryption.
- •Thus, the emphasis in dealing with passive attacks is on prevention rather than detection.

 Ratna Challa Asst Prof CSF

Active Attacks

- involve some modification of the data stream
- subdivided into four categories:
 - i) Masquerade –Message Fabrication
 - ii) Replay,
 - iii) Modification of messages Alteration
 - iv) Denial of service --- disruption of an entire network, services

Active Attacks (Conti...)

- Active attacks present the opposite characteristics of passive attacks
- It is quite difficult to prevent active attacks absolutely, because of the wide variety of potential physical, software, and network vulnerabilities
- the goal is to detect active attacks and to recover from any disruption or delays caused by them

Security Service

- enhance security of data processing systems and information transfers of an organization
- intended to counter security attacks
- using one or more security mechanisms
- often replicates functions normally associated with physical documents
 - which, for example, have signatures, dates; need protection from disclosure, tampering, or destruction; be notarized or witnessed; be recorded or licensed

Security Services

• X.800:

"a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers"

• RFC 2828:

"a processing or communication service provided by a system to give a specific kind of protection to system resources"

Security Services (X.800)

- Authentication assurance that the communicating entity is the one claimed
 - Peer Entity Authentication on connection
 - Data Origin Authentication on connection less
- Access Control prevention of the unauthorized use of a resource
- Data Confidentiality protection of data from unauthorized disclosure
- Data Integrity assurance that data received is as sent by an authorized entity
 - Connection Integrity with Recovery users on connection
 - Connection Integrity without Recovery users on connection
 - Selective-Field Connection Integrity on selective portion of data to all users on connection
 - Connectionless Integrity: connectionless data block
 - Selective-Field Connectionless Integrity: selected fields within a single connectionless data block
- Non-Repudiation protection against denial by one of the parties in a communication

Security Mechanism

- feature designed to detect, prevent, or recover from a security attack
- no single mechanism that will support all services required
- however one particular element underlies many of the security mechanisms in use:
 - cryptographic techniques
- hence our focus on this topic

Security Mechanisms • specific security mechanisms:

- - encipherment, digital signatures, access controls, data integrity, authentication exchange, traffic padding, routing control, notarization
- pervasive security mechanisms:
 - trusted functionality, security labels, event detection, security audit trails, security recovery

specific security mechanisms

- mechanisms
 Encipherment: transformation and subsequent recovery of the data depend on an algorithm using keys
- **Digital Signature:** Data appended to, or a cryptographic transformation protect against forgery **Access Control:** A variety of mechanisms that enforce access rights to resources.
- **Data Integrity:** A variety of mechanisms used to assure the integrity of a data unit or stream of data units.
- Authentication Exchange: A mechanism intended to ensure the identity of an entity by means of information exchange.
- Traffic Padding: insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.
- Routing Control: Enables selection of particular physically secure routes for certain data and allows routing changes – when suspicious
- Notarization: The use of a trusted third party to assure certain properties of a data exchange.

Model for Network Security

Model for Network Security

- using this model requires us to:
 - 1. design a suitable algorithm for the security transformation
 - 2. generate the secret information (keys) used by the algorithm
 - 3. develop methods to distribute and share the secret information
 - 4. specify a protocol enabling the principals to use the transformation and secret information for a security service

Model for Network Access Security

Information System

Model for Network Access Security

- using this model requires us to:
 - 1. select appropriate gatekeeper functions to identify users
 - 2. implement security controls to ensure only authorised users access designated information or resources
- trusted computer systems may be useful to help implement this model

Classical Encryption Techniques

Types of Encryption

- Symmetric key Single key
 - conventional / private-key / secret-key
 - Asymetric key two different keys
 - Public key

Some Basic Terminology

- plaintext original message
- ciphertext coded message
- cipher algorithm for transforming plaintext to ciphertext
- key info used in cipher known only to sender/receiver
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering ciphertext from plaintext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) study of principles/ methods of deciphering ciphertext without knowing key
- cryptology field of both cryptography and cryptanalysis

Ratna Challa Asst Prof CSE

Symmetric Cipher Model

Requirements

- two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver
- mathematically have:

$$Y = E_{\kappa}(X)$$

 $X = D_{\kappa}(Y)$

- assume encryption algorithm is known
- implies a secure channel to distribute key

Cryptography

- characterize cryptographic system by:
 - type of encryption operations used
 - substitution / transposition / product
 - number of keys used
 - single-key or private / two-key or public
 - way in which plaintext is processed
 - block / stream

Cryptanalysis

- objective to recover key not just message
- general approaches:
 - cryptanalytic attack
 - brute-force attack

Cryptanalytic Attacks

ciphertext only

 only know algorithm & ciphertext, is statistical, know or can identify plaintext

known plaintext

– know/suspect plaintext & ciphertext

chosen plaintext

select plaintext and obtain ciphertext

chosen ciphertext

select ciphertext and obtain plaintext

chosen text

select plaintext or ciphertext to en/decrypt

More Definitions

unconditional security

 no matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

computational security

 given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

Brute Force Search

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs		Time required at 10 ⁶ decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ μs	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2127 μs	$= 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ μs	$= 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s$	$= 6.4 \times 10^{12} \text{ years}$	6.4×10^6 years

Ratna Challa Asst Prof CSE

Classical Substitution Ciphers

- where letters of plaintext are replaced by other letters or by numbers or symbols
- or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns
 - Caesar cipher
 - Mono Alphabetic Cipher
 - Playfair
 - Hill Cipher
 - PolyAlphabetic Cipher

Caesar Cipher

- earliest known substitution cipher
- by Julius Caesar
- first attested use in military affairs
- replaces each letter by 3rd letter on
- example:

```
meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB
```

Caesar Cipher

can define transformation as:

```
abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC
```

 mathematically give each letter a number

```
abcdefghij k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
```

then have Caesar cipher as:

$$c = E(p) = (p + k) \mod (26)$$

$$p = D(c) = (c - k) \mod (26)$$

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
 - A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext
- eg. break ciphertext "GCUA VQ DTGCM"

Monoalphabetic Cipher

- rather than just shifting the alphabet
- could shuffle (jumble) the letters arbitrarily
- each plaintext letter maps to a different random ciphertext letter
- hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

Monoalphabetic Cipher Security

- now have a total of 26! = 4 x 1026 keys
- with so many keys, might think is secure
- but would be !!!WRONG!!!
- problem is language characteristics

Language Redundancy and Cryptanalysis

- human languages are redundant
- eg "th Ird s m shphrd shll nt wnt"
- letters are not equally commonly used
- in English E is by far the most common letter
 - followed by T,R,N,I,O,A,S
- other letters like Z,J,K,Q,X are fairly rare
- have tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Use in Cryptanalysis

- key concept monoalphabetic substitution ciphers do not change relative letter frequencies
- discovered by Arabian scientists in 9th century
- calculate letter frequencies for ciphertext
- compare counts/plots against known values
- if caesar cipher look for common peaks/troughs
 - peaks at: A-E-I triple, NO pair, RST triple
 - troughs at: JK, X-Z
- for monoalphabetic must identify each letter
 - tables of common double/triple letters help

Example Cryptanalysis

given ciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMO

- count relative letter frequencies (see text)
- guess P & Z are e and t
- guess ZW is th and hence ZWP is the
- proceeding with trial and error finally get:

it was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

Playfair Cipher

- not even the large number of keys in a monoalphabetic cipher provides security
- one approach to improving security was to encrypt multiple letters
- the Playfair Cipher is an example of Digram
- invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

Playfair Key Matrix

- a 5X5 matrix of letters based on a keyword
- fill in letters of keyword (sans duplicates)
- fill rest of matrix with other letters
- eg. using the keyword MONARCHY

M	0	N	A	R
C	Н	Y	В	D
E	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	X	Z
	Ratna Challa	Asst Prof CS	E	

Encrypting and Decrypting

- plaintext is encrypted two letters at a time
 - 1. if a pair is a repeated letter, insert filler like 'X'
 - 2. if both letters fall in the same row, replace each with letter to right (wrapping back to start from end)
 - 3. if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)
 - 4. otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

Security of Playfair Cipher

- security much improved over monoalphabetic
- since have $26 \times 26 = 676$ digrams
- would need a 676 entry frequency table to analyse (verses 26 for a monoalphabetic)
- and correspondingly more ciphertext
- was widely used for many years
 - eg. by US & British military in WW1
- it can be broken, given a few hundred letters
- since still has much of plaintext structure

Polyalphabetic Ciphers

- polyalphabetic substitution ciphers
- improve security using multiple cipher alphabets
- make cryptanalysis harder with more alphabets to guess and flatter frequency distribution
- use a key to select which alphabet is used for each letter of the message
- use each alphabet in turn
- repeat from start after end of key is reached

Vigenère Cipher

- simplest polyalphabetic substitution cipher
- effectively multiple caesar ciphers
- key is multiple letters long $K = k_1 k_2 ... k_d$
- ith letter specifies ith alphabet to use
- use each alphabet in turn
- repeat from start after d letters in message
- decryption simply works in reverse

Example of Vigenère Cipher

- write the plaintext out
- write the keyword repeated above it
- use each key letter as a caesar cipher key
- encrypt the corresponding plaintext letter
- eg using keyword deceptive

```
key: deceptivedeceptive
```

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Security of Vigenère Ciphers

- have multiple ciphertext letters for each plaintext letter
- hence letter frequencies are obscured
- but not totally lost
- start with letter frequencies
 - see if look monoalphabetic or not
- if not, then need to determine number of alphabets, since then can attach each

Kasiski Method

- method developed by Babbage / Kasiski
- repetitions in ciphertext give clues to period
- so find same plaintext an exact period apart
- which results in the same ciphertext
- of course, could also be random fluke
- eg repeated "VTW" in previous example
- suggests size of 3 or 9
- then attack each monoalphabetic cipher individually using same techniques as before

Autokey Cipher

- ideally want a key as long as the message
- Vigenère proposed the autokey cipher
- with keyword is prefixed to message as key
- knowing keyword can recover the first few letters
- use these in turn on the rest of the message
- but still have frequency characteristics to attack
- eg. given key deceptive

key: deceptivewearediscoveredsav

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

Ratna Challa Asst Prof CSE

One-Time Pad

- if a truly random key as long as the message is used, the cipher will be secure
- called a One-Time pad
- is unbreakable since ciphertext bears no statistical relationship to the plaintext
- since for any plaintext & any ciphertext there exists a key mapping one to other
- can only use the key once though
- problems in generation & safe distribution of key

Transposition Ciphers

- now consider classical transposition or permutation ciphers
- these hide the message by rearranging the letter order
- without altering the actual letters used
- can recognise these since have the same frequency distribution as the original text

Rail Fence cipher

- write message letters out diagonally over a number of rows
- then read off cipher row by row
- eg. write message out as:

```
mematrhtgpry
etefeteoaat
```

giving ciphertext

MEMATRHTGPRYETEFETEOAAT

Row Transposition Ciphers

- a more complex transposition
- write letters of message out in rows over a specified number of columns
- then reorder the columns according to some key before reading off the rows

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Product Ciphers

- ciphers using substitutions or transpositions are not secure because of language characteristics
- hence consider using several ciphers in succession to make harder, but:
 - two substitutions make a more complex substitution
 - two transpositions make more complex transposition
 - but a substitution followed by a transposition makes a new much harder cipher
- this is bridge from classical to modern ciphers

Steganography

- an alternative to encryption
- hides existence of message
 - using only a subset of letters/words in a longer message marked in some way
 - using invisible ink
 - hiding in LSB in graphic image or sound file
- has drawbacks
 - high overhead to hide relatively few info bits

Summary

- have considered:
 - classical cipher techniques and terminology
 - monoalphabetic substitution ciphers
 - cryptanalysis using letter frequencies
 - Playfair cipher
 - polyalphabetic ciphers
 - transposition ciphers
 - product ciphers and rotor machines
 - stenography tha Challa Asst Prof CSE

Thank you