Brief summary on the RSP calculation by Valentina Giacometti

Steps to calculate the RSP of a material m, knowing its composition (R. Schulte, 2013):

1. Relationship between electron density and physical density of a material made of a mixture of elements:

$$\rho_{em} = \rho_m N_A \left[\sum_i \left(w_i \frac{Z_i}{A_i} \right) \right]$$

 N_A is the Avogadro's number, w_i is the fraction by weight of the element i, Z_i is the atomic number of the element i, A_i is the mass number of the element i, ρ_m is the density of the material m.

2. Relative electron density of a material:

$$RED_m = \frac{\rho_{em}}{\rho_{ew}}$$

 ρ_{em} is the electron density of the material m and ρ_{ew} is the electron density of water $(\rho_{ew} = 3.34 \cdot 10^{23} (g/cm^3))$.

3. Relative stopping power:

$$RSP_m(E) = RED_m \left[\frac{ln\left(\frac{2m_ec^2}{I_m} \frac{\beta^2}{1 - \beta^2}\right) - \beta^2}{ln\left(\frac{2m_ec^2}{I_w} \frac{\beta^2}{1 - \beta^2}\right) - \beta^2} \right]$$

 m_e is the electron mass, $\beta = \sqrt{1 - \left(\frac{E_p}{E + E_p}\right)^2}$, I_m is the mean excitation energy of the material m and I_w is the mean excitation energy of the water (it can be calculated - see below - or $I_w = 75eV$ from NIST).

The problem is the definition of I_m for material that are not "common" and cannot be find in the NIST database (e.g. 5-year-old cortical bone v.s. NIST standard cortical bone from ICRP).

To calculate the mean excitation energy of a compound or mixture of elements, according to the Bethe theory, the following formula can be used (Radioactivity: Introduction and Early History, by L'Annunziata, Michael F.):

$$< I > = exp \left[\frac{\sum_{j} w_{j}(Z_{j}/A_{j}) ln I_{j}}{\sum_{j} w_{j}(Z_{j}/A_{j})} \right]$$

 w_j , Z_j , A_j and I_j are respectively the fraction by weight, the atomic number, the mass number and the mean excitation energy of the element j.