Introduction to Machine Learning

Factor Analysis Models

Mingchen Gao

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA mgao8@buffalo.edu Slides Adapted from Varun Chandola

Outline

Latent Linear Models

Factor Analysis Models

Marginalized Probabilities in Factor Models Intepreting Latent Factors Issue of Unidentifiability with Factor Analysis Model Learning Factor Analysis Model Parameters

Extending Factor Analysis

Moving Beyond Mixture Models

Mixture Models

One latent variable

$$z_{i} \in \{1, 2, ..., K\}$$

$$P(z_{i} = k) = \pi_{k}$$

$$p(\mathbf{x}_{i}|\theta) = \sum_{k=1}^{K} p(z_{i} = k) p_{k}(\mathbf{x}_{i}|\theta)$$

Moving Beyond Mixture Models

Mixture Models

One latent variable

$$z_i \in \{1, 2, \dots, K\}$$

$$P(z_i = k) = \pi_k$$

$$p(\mathbf{x}_i | \boldsymbol{\theta}) = \sum_{k=1}^{K} p(z_i = k) p_k(\mathbf{x}_i | \boldsymbol{\theta})$$

What if $\mathbf{z}_i \in \mathbb{R}^L$?

$$p(\mathbf{z}_i) = \mathcal{N}(\mathbf{z}_i|\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$

$$p(\mathbf{x}_i|\boldsymbol{\theta}) = \int_{\mathbf{z}_i} \mathbf{p}(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i$$

Factor Analysis Models

- **Assumption**: x_i is a multivariate Gaussian random variable
- ▶ Mean is a function of **z**_i
- Covariance matrix is fixed

$$ho(\mathsf{x}_i|\mathsf{z}_i, heta) = \mathcal{N}(\mathsf{Wz}_i + oldsymbol{\mu}, oldsymbol{\Psi})$$

- **W** is a $D \times L$ matrix (loading matrix)
- $lackbox\Psi$ is a $D\times D$ covariance matrix
 - Assumed to be diagonal
- ▶ What does W do?

What is the Probability of \mathbf{x}_i

$$\begin{aligned} \rho(\mathbf{x}_i|\boldsymbol{\theta}) &= \int_{\mathbf{z}_i} \rho(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) \rho(\mathbf{z}_i) d\mathbf{z}_i \\ &= \int_{\mathbf{z}_i} \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \boldsymbol{\Psi}) \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) d\mathbf{z}_i \\ &= \mathcal{N}(\mathbf{W}\boldsymbol{\mu}_0 + \boldsymbol{\mu}, \boldsymbol{\Psi} + \mathbf{W}\boldsymbol{\Sigma}_0 \mathbf{W}^\top) \end{aligned}$$

- \triangleright Every \mathbf{x}_i is a multivariate distribution with same parameters!!
- ▶ What is the mean and covariance of x?

CSE 4/574 5 / 13

Simplifying Effect of Factor Analysis Model

- ▶ Often μ_0 is set to **0** and $\Sigma_0 = \mathbf{I}$
- ▶ How many parameters needed to specify the covariance?

$$mean(\mathbf{x}) = \mu \\ cov(\mathbf{x}) = \Psi + \mathbf{W} \mathbf{W}^{\top}$$

Simplifying Effect of Factor Analysis Model

- $lackbox{ Often }\mu_0$ is set to $oldsymbol{0}$ and $oldsymbol{\Sigma}_0=oldsymbol{\mathsf{I}}$
- ▶ How many parameters needed to specify the covariance?

$$mean(\mathbf{x}) = \mu$$
 $cov(\mathbf{x}) = \Psi + \mathbf{W} \mathbf{W}^{\top}$

- ► Original: D²
- lacktriangledown Factor analysis model: LD+D (remember Ψ is a diagonal matrix)

Estimating posterior for z_i

- ▶ What is the original intent behind Latent Variable Models?
 - ightharpoonup Richer models of p(x)
- ▶ But they can also be used as a lower dimensional representation of x.
- ► Factor analysis model?
 - ▶ What is $p(\mathbf{z}_i|\mathbf{x}_i, \boldsymbol{\theta})$?

Estimating posterior for z_i

- ▶ What is the original intent behind Latent Variable Models?
 - ▶ Richer models of p(x)
- ▶ But they can also be used as a lower dimensional representation of x.
- ► Factor analysis model?
 - ▶ What is $p(\mathbf{z}_i|\mathbf{x}_i, \boldsymbol{\theta})$?

$$\begin{array}{rcl} \rho(\mathbf{z}_i|\mathbf{x}_i,\boldsymbol{\theta}) & = & \mathcal{N}(\mathbf{m}_i,\boldsymbol{\Sigma}) \\ \boldsymbol{\Sigma} & \triangleq & (\boldsymbol{\Sigma}_0^{-1} + \mathbf{W}^{\top}\boldsymbol{\Psi}^{-1}\mathbf{W})^{-1} \\ \mathbf{m}_i & \triangleq & \boldsymbol{\Sigma}(\mathbf{W}^{\top}\boldsymbol{\Psi}^{-1}(\mathbf{x}_i - \boldsymbol{\mu}) + \boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0) \end{array}$$

Interpreting Latent Factors

- \triangleright Each \mathbf{x}_i has a corresponding \mathbf{z}_i
- ▶ Each \mathbf{z}_i is a multivariate Gaussian random variable with mean \mathbf{m}_i (A $L \times 1$ vector)
- ▶ One can "embed" \mathbf{x}_i ($D \times 1$ vector) into a $L \times 1$ space

Issue of Unidentifiability

Consider an orthogonal rotation matrix R

$$RR^{\top} = I$$

- ▶ Let $\widehat{\mathbf{W}} = \mathbf{WR}$
- ► The FA model with $\widehat{\mathbf{W}}$ will also have the same result, i.e., the pdf of observed \mathbf{x} will still be the same
- ▶ Thus FA model can have multiple solutions
- ▶ The predictive power of the model does not change
- ▶ But intepreting latent factors can be an issue

Learning Parameters

- lacktriangle FA model parameters: $f W, \Psi, \mu$
- ► A simple extension of the mixture model EM algorithm will work here

Factor Analysis - A Real World Example

- 2004 Cars Data
- ▶ Original 11 features
- ► Factor analysis results in 2 factors

Variants of Factor Analysis

- ▶ If we use a non-gaussian distribution for $p(\mathbf{z}_i)$ we arrive at Independent Component Analysis.
- ▶ If $\Psi = \sigma^2 \mathbf{I}$ and \mathbf{W} is orthonormal \Rightarrow FA is equivalent to **Probabilistic Principal Components Analysis** (PPCA)
- ▶ If $\sigma^2 \rightarrow 0$, FA is equivalent to PCA
- ▶ What is PCA?

References

Murphy book Chapter 20.2