Isokinetic Dynamometer Ironman

Ludwig Birk, Thrainn Thorisson, Boyang Chen, Timothy Linusson, Sanna Öberg

Content

- Introduction
- Problem Statement
- Technical Approach
- User Interaction
- Results
- Methodology

Introduction

- A small prototype
- Is the data somewhat relevant and practical
- Measure muscle strength for a continuous extension
- The goal with this project
- The intended user are hospitals and clinics

Problem Statement

- Large and expensive
- Targeted area limitations
- Decreased Accessibility
- Limited Research
- Sub-Optimal Rehabilitation Outcomes

Technical Approach

Sensors, Components and Software:

- Arduino microcontroller
 - Open source
 - Load cell (+Amplifier), Stepper motor (+driver), Magnetic Encoder, SD-card module
 - Encoder is commonly used and accurate
- Coded in C
 - Takes values from Load Cell and Encoder and saves data to SD-card
- 3D designed gear-driven system
 - Mounted with a Load Cell
- OLED-display
 - Displaying angles and force in real-time

Key features to achieving Isokinetic Control:

- Encoder Measurement
 - Continuous measurement of angular position
- Software Implementation
 - Tracks total rotation
 - Updating measurements in real-time
- Data Collection
 - Load Cell measuring applied force

User Interaction

- Users finger is placed along the load cell
- Physical interaction with resistive motion
- Data is collected during process
- Straightforward user experience
 - Easy setup
 - Clear feedback
 - No complexity
 - More accessible in use and cost
- Rounded edges for ergonomic comfort

Results

Project Methodology

Parallel and Modular design methodology(GitHub Projects)

- Mechanical structure
- Electronic control
- Software design

To Improve

- Structured and detailed planning approach
- Deeper preliminary research
- time-efficient solution

Thank you for listening!