Тема 6 Методи аналізу ієрархій при нечітких експертних оцінках

Постановка задачі

Дано:

$$A = \{a_i \, | \, i = 1, ..., n\}$$
 - множина альтернатив рішень C - критерій

$$D^{\mathit{fuz}} = \{(d_{\mathit{ij}}^{\mathit{fuz}}) \,|\, i,j = 1,...,n\}$$
 - нечітка МПП

Знайти:

$$w^{\mathit{fuz}} = \{(w^{\mathit{fuz}}_i) | i = 1,...,n\}$$
 - нечіткий вектор ваг альтернатив $w^{\mathit{fuz}}_i = (x,\mu_i(x))$ - нечітка множина, $x \in R$

Нечітка МПП

Нечітка матриця парних порівнянь (НМПП)

$$D^{\mathit{fuz}} = \{(d^{\mathit{fuz}}_{ij}) | i,j=1,...,n\}$$
 $d^{\mathit{fuz}}_{ij} = (x,\mu_{ij}(x))$ - нечітке число $\mu_{ij}(x)$ - ступінь виконання переваги $a_i \succeq a_j$

- □ **Нечітке число** нечітка множина, визначена на U=R $\mu_{A}: R \rightarrow [0,1]$, яка задовольняє умовам:
 - нечітка множина нормована
 - нечітка множина випукла

$$\mu_A(\lambda u_1 + (1 - \lambda)u_2) \ge \min(\mu_A(u_1), \mu_A(u_2)) \quad \forall u_1, u_2 \in U$$

 $\lambda \in [0,1]$

6.1. Декомпозиційний підхід

Декомпозиційний підхід

Розкладемо НМПП $D^{fuz} = \{(d_{ij}^{fuz}) | i, j = 1,...,n\}$ за множинами рівня:

$$D^{fuz} = \bigcup_{\alpha \in [0,1]} \alpha D(\alpha)$$

$$D(\alpha) = \{(d_{ij}(\alpha)) | i, j = 1,...,n\}$$

$$d_{ij}(\alpha) = \{x : \mu_{ij}(x) \ge \alpha\}$$

$$d_{ij}^{fuz} = \bigcup_{\alpha \in \{0,1\}} \alpha d_{ij}(\alpha) \quad \forall i, j = \overline{1,n}$$

$$d_{ij}(\alpha) = [l_{ij}(\alpha), u_{ij}(\alpha)]$$

$$l_{ij}(\alpha) = \alpha(m_{ij} - l_{ij}) + l_{ij}$$

$$u_{ij}(\alpha) = \alpha(m_{ij} - u_{ij}) + u_{ij}$$

Приклад

Нечітка множина A на X, множина рівня $A_{\alpha} = \{x : \mu_{A}(x) \ge \alpha\}$

$$A = \bigcup_{lpha \in [0,1]} lpha A_lpha$$
 - розкладення за множинами рівня

Приклад. $X = \{1, 2, 3, 4, 5\}$

X	1	2	3	4	5
$\mu_A(x)$	0	0.1	0.3	0.8	1.0

$$A_{0.1} = \{2,3,4,5\}$$
 $A_{0.3} = \{3,4,5\}$ $A_{0.8} = \{4,5\}$ $A_{1.0} = \{5\}$

Нечітку множину A можна представити у вигляді:

$$A = 0.1\{2,3,4,5\} \cup 0.3\{3,4,5\} \cup 0.8\{4,5\} \cup 1.0\{5\}$$

Узгоджена ІМПП

$$D = \{(d_{ij} = [l_{ij}, u_{ij}]) \mid 0 < l_{ij} \le u_{ij}, \ i, j = 1, ..., n\} - \mathsf{IM} \mathsf{\Pi} \mathsf{\Pi}$$

ІМПП - обернено симетрична інтервальна матриця:

$$l_{ij}u_{ji}=1$$
 $\forall i=\overline{1,n}$ $j=\overline{1,n}$

ІМПП A називається узгодженою, якщо

$$\exists \, \overline{w} \in R_n^+$$
 $\sum_i w_i = 1$, такий що $l_{ij} \leq w_i \, / \, w_j \leq u_{ij}$ $i < j$

ІМПП A узгоджена т.т.т.к. $\max_k (l_{ik} l_{kj}) \leq \min_k (u_{ik} u_{kj})$ $\forall i, j = 1,...,n$ i < j

1	[2, 5]	[2, 4]	[1, 3]
[1/5, 1/2]	1	[1, 3]	[1, 2]
[1/4, 1/2]	[1/3, 1]	1	[1/2, 1]
[1/3, 1]	[1/2, 1]	[1, 2]	1

$$w = (0.4 \quad 0.2 \quad 0.2 \quad 0.2)$$

Критерій узгодженості ІМПП Приклад

1	[2, 5]	[2, 4]	[1, 3]
[1/5, 1/2]	1	[1, 3]	[1, 2]
[1/4, 1/2]	[1/3, 1]	1	[1/2, 1]
[1/3, 1]	[1/2, 1]	[1, 2]	1

$$w = (0.4 \quad 0.2 \quad 0.2 \quad 0.2)$$

i	j	k	$l_{ik}l_{kj}$	$u_{ik}u_{kj}$	$\max_{k}(l_{ik}l_{kj}) \leq \min_{k}(u_{ik}u_{kj})$
1	2	3	2*1/3	4*1	
		4	1*1/2	3*1	так
1	3	2	2*1	5*3	
		4	1*1	3*2	так
1	4	2	2*1	5*2	
		3	2*1/2	4*1	так
		•••			

Нечіткі фундаментальні шкали

	Нечіткі числа								
Лінгвістична	ФП 1	ФП 2	ФП 3	ФП 4	ФП 5	ФП 6			
змінна	[6, 7]	[8]	[9]	[10]	[11]	[12]			
Рівна	$\widetilde{1} = (1,1,3)$	$\widetilde{1} = (1,1,1)$	$\widetilde{1} = (1,1,1)$	$\tilde{1} = (1,1,2)$	$\widetilde{1} = (1,1,1)$	$\widetilde{1} = (1/2,1,3/2)$			
важливість ї						, , , , ,			
Слабка	$\tilde{3} = (1,3,5)$	$\tilde{3} = (2,3,4)$	$\tilde{3} = (2,3,4)$	$\tilde{3} = (2,3,4)$	$\tilde{3} = (1,3,5)$	$\tilde{3} = (1, 3/2, 2)$			
перевага $\widetilde{3}$									
Сильна	$\tilde{5} = (3,5,7)$	$\tilde{5} = (4,5,6)$	$\tilde{5} = (4,5,6)$	$\tilde{5} = (4,5,6)$	$\tilde{5} = (3,5,7)$	$\tilde{5} = (3/2, 2, 5/2)$			
перевага 5									
Дуже сильна	$\tilde{7} = (5,7,9)$	$\tilde{7} = (6,7,8)$	$\tilde{7} = (6,7,8)$	$\tilde{7} = (6,7,8)$	$\tilde{7} = (5,7,9)$	$\tilde{7} = (2,5/2,3)$			
перевага 7									
Абсолютна	$\tilde{9} = (7,9,9)$	$\tilde{9} = (9,9,9)$	9 = (8,9,10)	9 = (8,9,9)	$\tilde{9} = (7,9,11)$	9 = (5/2,3,7/2)			
перевага 🥱									
Проміжні	$\tilde{2} = (1,2,4)$	$\tilde{2} = (1,2,3)$	$\tilde{2} = (1,2,3)$	$\tilde{2} = (1,2,3)$	$\tilde{2} = (1, 2, 4)$	$\tilde{2} = (3/4, 5/4, 7/4)$			
значення між									
двома	$\tilde{4} = (2,4,6)$	$\tilde{4} = (3,4,5)$	$\tilde{4} = (3,4,5)$	$\tilde{4} = (3,4,5)$	$\tilde{4} = (2,4,6)$	$\tilde{4} = (5/4, 7/4, 9/4)$			
сусідніми судженнями:									
2, 4, 6,8	6̃ = (4,6,8)	6̃ = (5,6,7)	6̃ = (5,6,7)	6̃ = (5,6,7)	6 = (4,6,8)	6 = (7/4,9/4,11/4)			
	ã − (6 S O)	Ĩ-729	ũ – <i>(</i> 7 2 0)	Ĩ-7720\	8 = (6,8,10)	8 = (9 / 4,11 / 4,13 / 4)			
	0 – (0,0,3)	0 - (1,0,3)	0 - (7,0,3)	0 - (1,0,3)	0 – (0,0,10)				

6.2. Нечіткий метод геометричної середньої

Постановка задачі

Дано:

$$D = \{(d_{ij} = [l_{ij}, m_{ij}, u_{ij}]) \, | \, i,j = 1,...,n \} \text{ - трикутна НМПП}$$

$$0 < l_{ij} \leq m_{ij} \leq u_{ij}$$

Знайти:

 $w = \{w_i \mid i = 1,...,n\}$ - вектор трикутних нечітких ваг альтернатив

$$W_i = [W_i^l, W_i^m, W_i^u]$$

Нечіткий метод геометричної середньої (Fuzzy Row Geometric Mean Method, FRGMM)

$$v_i = \left(\prod_{j=1}^n d_{ij}\right)^{1/n}$$
 $w_i = \frac{v_i}{\sum_{k=1}^n v_k}$

$$x = [x_1, x_2, x_3] x_i, y_i \in \Re$$

$$y = [y_1, y_2, y_3] x_1, y_1 > 0$$

$$x + y = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

$$x * y = (x_1 y_1, x_2 y_2, x_3 y_3)$$

$$x / y = (x_1 / y_3, x_2 / y_2, x_3 / y_1)$$

$$x^n = (x_1^n, x_2^n, x_3^n)$$

	a1	a2	a3	Ваги
a1	[1,1,3]	[1/5, 1/3, 1]	[1/5, 1/3, 1]	[0.06, 0.22, 1.05]
a2	[1, 3, 5]	[1/5, 1/3, 1]	[1, 3, 5]	[0.10, 0.46, 1.79]
а3	[1, 3, 5]	[1/5, 1/3, 1]	[1/5, 1/3, 1]	[0.08, 0.32, 1.37]

6.3. Метод FAHP

Метод FAHP. Постановка задачі

<u>Дано:</u>

$$D = \{(d_{ij} = [l_{ij}, m_{ij}, u_{ij}]) \, | \, i,j = 1,...,n \} \text{ - трикутна НМПП}$$

$$0 < l_{ij} \leq m_{ij} \leq u_{ij}$$

Знайти:

$$w = \{w_i \mid i = 1,...,n\}$$
 - вектор чітких ваг альтернатив $w_i \in \Re$ $w_i > 0$

1 етап
$$RS_i = \sum_{j=1}^n d_{ij} = \left| \sum_{j=1}^n l_{ij}, \sum_{j=1}^n m_{ij}, \sum_{j=1}^n u_{ij} \right|$$
 $i = 1, ..., n$

$$S_{i} = \frac{RS_{i}}{\sum_{k=1}^{n} RS_{k}} = \begin{bmatrix} \sum_{j=1}^{n} l_{ij} & \sum_{j=1}^{n} m_{ij} \\ \sum_{k=1}^{n} \sum_{j=1}^{n} u_{kj} & \sum_{k=1}^{n} \sum_{j=1}^{n} m_{kj} \end{bmatrix}$$

2 етап: Задамо нечітке відношення нестрогої переваги $S_i \geq S_j$

$$S_i = [l_i, m_i, u_i]$$
 $S_j = [l_j, m_j, u_j]$

$$V(S_i \ge S_j) = 0 \qquad (l_j > u_i)$$

$$V(S_{i} \geq S_{j}) = \begin{cases} 1, & m_{i} \geq m_{j} \\ \frac{u_{i} - l_{j}}{(u_{i} - m_{i}) + (m_{j} - l_{j})}, & (l_{j} \leq u_{i}) \wedge (m_{i} < m_{j}) \\ 0, & l_{j} > u_{i} \end{cases}$$

$$i, j = 1, \dots, n; \quad j \neq i$$

3 етап: Розраховується ступінь переваги S_i над усіма S_j , j=1,...,n

$$V(S_i) = V(S_i \ge S_j \mid j = \overline{1,n}) = \min_{j=1,n} V(S_i \ge S_j)$$

4 етап: Розраховується нормований вектор ваг

$$w_i = \frac{V(S_i)}{\sum_{k=1}^{n} V(S_k)} \qquad i = \overline{1, n}$$

Дано:

$$A = \{a_i \mid i=1,...,8\}$$
 - множина альтернатив рішень C - критерій
$$D = \{(d_{ij} = [l_{ij}, m_{ij}, u_{ij}]) \mid i,j=1,...,n\} \text{ - IMПП}$$

$$L = \{(l_{ij}) \mid i,j=1,...,8\}$$

$$M = \{(m_{ij}) \mid i,j=1,...,8\}$$

$$U = \{(u_{ij}) \mid i,j=1,...,8\}$$

$$L = \{(l_{ij}) \mid i, j = 1,...,8\}$$

1	4	6	1	7	2	5	3
0.167	1	3	0.2	5	0.25	2	0.333
0.125	0.2	1	0.143	2	0.167	0.333	0.2
0.333	3	5	1	6	1	4	2
0.111	0.143	0.25	0.125	1	0.143	0.2	0.143
0.25	2	4	0.333	5	1	3	1
0.143	0.25	1	0.167	3	0.2	1	0.25
0.2	1	3	0.25	5	0.333	2	1

$$M = \{(m_{ij}) \mid i, j = 1,...,8\}$$

1	5	7	2	8	3	6	4
1/5	1	4	1/4	6	1/3	3	1/2
1/7	1/4	1	1/6	3	1/5	1/2	1/4
1/2	4	6	1	7	2	5	3
1/4	1/6	1/3	1/7	1	1/6	1/4	1/6
1/3	3	5	1/2	6	1	4	2
1/6	1/3	2	1/5	4	1/4	1	1/3
1/4	2	4	1/3	6	1/2	3	1

$$U = \{(u_{ij}) | i, j = 1,...,8\}$$

1	6	8	3	9	4	7	5
1/4	1	5	1/3	7	1/2	4	1
1/6	1/3	1	1/5	4	1/4	1	1/3
1	5	7	1	8	3	6	4
1/7	1/5	1/2	1/6	1	1/5	1/3	1/5
1/2	4	6	1	7	1	5	3
1/5	1/2	3	1/4	5	1/3	1	1/2
1/3	3	5	1/2	7	1	4	1

$$S = \{(S_i) | i = 1,...,8\}$$

	L	М	U
a1	0.173	0.267	0.410
a2	0.071	0.113	0.182
аЗ	0.025	0.041	0.069
a4	0.134	0.211	0.334
a5	0.013	0.017	0.026
a6	0.099	0.162	0.262
а7	0.036	0.061	0.103
a8	0.076	0.127	0.208

$$V = \{(V(S_i \ge S_j)) | i, j = 1,...,8\}$$

_	1	1	1	1	1	1	1
0.052	-	1	0.330	1	0.630	1	0.888
0	0	-	0	1	0	0.619	0
0.742	1	1	-	1	1	1	1
0	0	0.049	0	-	0	0	0
0.458	1	1	0.722	1	-	1	1
0	0.376	1	0	1	0.034	-	0.287
0.198	1	1	0.468	1	0.756	1	-

 $w = (0.408 \quad 0.021 \quad 0 \quad 0.303 \quad 0 \quad 0.187 \quad 0 \quad 0.081)$

МЕТОДИ НЕЧІТКОГО МАТЕМАТИЧНОГО ПРОГРАМУВАННЯ

Надія І. Недашківська n.nedashkivska@gmail.com

ПІДХІД БЕЛМАНА-ЗАДЕ

Надія І. Недашківська n.nedashkivska@gmail.com

Підхід Белмана-Заде (досягнення нечіткої цілі)

Х - універсальна множина альтернатив

- Нечітка ціль прийняття рішень G нечітка підмножина X $\mu_G(x) \text{ступінь досягнення цілі при виборі альтернативи x}$
- Нечітке обмеження С нечітка підмножина Х
- lacksquare Розв'язок задачі нечітка підмножина $D = G \cap C$ $\mu_D(x) = \min(\mu_G(x), \mu_C(x))$

Підхід Белмана-Заде (продовження)

Вибір альтернативи з максимальним ступенем належності до нечіткого рішення:

$$x^* = \arg\max_{x} \mu_D(x)$$

Максимізуюча альтернатива

Приклад

X = {1, 2, ..., 10} - універсальна множина альтернатив

G - x близьке до 5 C1 - x близьке до 4 C2 - x близьке до 6

x	1	2	3	4	5	6	7	8	9	10
$\mu_G(x)$	0	0.1	0.4	0.8	1	0.7	0.4	0.2	0.1	0
$\mu_{C1}(x)$	0.3	0.6	0.7	1	0.9	0.8	0.5	0.3	0.2	0
$\mu_{C2}(x)$	0.2	0.4	0.6	0.7	0.9	1	0.8	0.6	0.4	0.2

x	1	2	3	4	5	6	7	8	9	10
$\mu_D(x)$	0	0.1	0.4	0.7	0.9	0.7	0.4	0.2	0.1	0

КЛАСИФІКАЦІЯ ЗАДАЧ НЕЧІТКОГО МАТЕМАТИЧНОГО ПРОГРАМУВАННЯ

Надія І. Недашківська n.nedashkivska@gmail.com

Задачі нечіткого математичного програмування

1) Максимізація звичайної функції

$$f(x) \to \max \qquad f(x) \ge 0$$

на $\mu_C(x)$ - нечіткій множині допустимих альтернатив

$$\tilde{f}(x) = \frac{f(x)}{\sup_{x} f(x)}$$
 - функція належності нечіткій множині цілі

Підхід Белмана-Заде $x_0 = \arg\max_x \min(\tilde{f}(x), \mu_C(x))$

$$\lambda \rightarrow \max$$

при обмеженнях $\mu_C(x) \ge \lambda$ та $\tilde{f}(x) \ge \lambda$

Задачі нечіткого математичного програмування

2) Нечіткий варіант стандартної задачі математичного програмування

$$f(x) \rightarrow \max$$

 $g_i(x) \le 0$ $x \in X$ $i = 1,...,m$

$$f(x) \geq z_0$$
 z_0 — задане значення $f(x) < z_0$ — сильне порушення умови $f(x) \geq z_0$ $g_i(x) \leq 0$ $x \in X$ допускаємо можливість порушення обмеження з певним ступенем $g_i(x) > b_i$ — сильне порушення умови $g_i(x) \leq 0$

Задачі нечіткого математичного програмування

$$f(x) < z_0 - a$$
 - сильне порушення умови $f(x) \ge z_0$ $g_i(x) > b_i$ - сильне порушення умови $g_i(x) \le 0$

$$\mu_{G}(x) = \begin{cases} 0, & f(x) \le z_{0} - a \\ \mu(x,a), & z_{0} - a < f(x) < z_{0} \\ 1, & f(x) \ge z_{0} \end{cases}$$

$$\mu_{C_{i}}(x) = \begin{cases} 0, & g_{i}(x) \ge b_{i} \\ v_{i}(x,b_{i}), & 0 < g_{i}(x) < b_{i} \\ 1, & g_{i}(x) \le 0 \end{cases}$$

За підходом Белмана-Заде:

$$x^* = \arg \max_{x} \min(\mu_G(x), \mu_{C_1}(x), ..., \mu_{C_m}(x))$$