6/1/24, 1:47 PM 3SAT NPC

Il problema 3SAT è NP-completo

 $\mathcal{I}_{3SAT} = \{ \langle f, X \rangle : X \text{ è un insieme di variabili booleane } \wedge f \text{ e un predicato su } X \text{ in } 3CNF \}$

$$S_{3SAT}(X, f) = \{ a : X \rightarrow \{ vero, falso \} \}$$

$$\pi_{3SAT}(\mathcal{S}_{3SAT}(X,f),X,f) = \exists a \in \mathcal{S}_{3SAT}(X,f) : f(a(x)) = vero$$

Osserviamo immediatamente che l'unica differenza fra i due problemi è nella definizione dell'insieme delle istanze.

In effetti, essi sono legati dalla relazione di inclusione: $\mathcal{I}_{3SAT} \subseteq \mathcal{I}_{SAT}$.

Sappiamo che $SAT \in \mathbf{NP}$ e, poichè, come abbiamo appena osservato, le istanze di 3SAT costituiscono un sottoinsieme dell'insieme delle istanze di SAT, anche $3SAT \in \mathbf{NP}$.

Dimostriamo, ora, la completezza di 3SAT mediante una riduzione da SAT

Sia $f \in \mathcal{I}_{SAT}$ una istanza di SAT; indichiamo con $X = \{x_1, ..., x_n\}$ l'insieme delle variabili booleane che compaiono in f. Poichè f è in forma congiuntiva normale, possiamo considerare f come un insieme di clausole che devono essere tutte soddisfatte affinchè f sia soddisfacibile, ossia, $f = \{c_1, ..., c_m\}$.

Mostreremo, in quanto segue, come trasformare ciascuna clausola $c_j \in f$ in un insieme C_j di clausole a 3 variabili, in cui compaiono le stesse variabili che compaiono in c_j e, in alcuni casi, variabili che non compaiono in f, in modo tale

che un'assegnazione di verità soddisfa c_j se e soltanto se la stessa assegnazione alle variabili che compaiono anche in C_j soddisfa anche tutte le clausole in C_j , per ogni j=1,...,m.

Una volta definiti gli insiemi C_j , poniamo $\bar{f} = C_1 \cup C_2 \cup ... \cup C_m : \bar{f}$ è un predicato in forma 3-congiuntiva normale e,dunque, è una istanza di 3SAT.

Inoltre, per costruzione degli insiemi C_j , una assegnazione di verità soddisfa tutte le clausole in \bar{f} se e soltanto la stessa assegnazione alle variabili che compaiono anche in \bar{f} soddisfa tutte le clausole in

 $ar{f}$, ossia, $ar{f} \in SAT$ se e soltanto se $ar{f} \in 3SAT$.

Caso 1)

```
c_j contiene 1 letterale, ossia c_j = \ell , con \ell = x_i o \ell = \neg x allora, C_j = (\ell \lor y_{j1} \lor y_{j2}) \land (\ell \lor \neg y_{j1} \lor y_{j2}) \land (\ell \lor y_{j1} \lor \neg y_{j2}) \land (\ell \lor \neg y_{j1} \lor \neg y_{j2})
```

La clausola $c_j=\ell$ è soddisfatta solo dall'assegnazione $\ell=vero$ ed è immediato verificare che tutte le clausole in C_j sono soddisfatte se e soltanto se $\ell=vero$.

Caso 2)

 c_j contiene 2 letterali, ossia $c_j = \ell_1 \vee \ell_2$,

allora $C_j=(\ell_1\vee\ell_2\vee y_j)\wedge (\neg y_j\vee\ell_1\vee\ell_2)$ dove y_j è una nuova variabile.

Se viene assegnato valore vero a ℓ_1 oppure a ℓ_2 allora C_j assume valore vero qualunque valore di verità si assegni a y_j se viene assegnato valore falso sia a ℓ_1 che a ℓ_2 allora C_j assume valore falso qualunque valore di verità si assegni a y_j

Caso 3)

 c_j contiene 3 letterali, ossia $c_j=\ell_1\lor\ell_2\lor\ell_3$, allora $C_j=c_j=\ell_1\lor\ell_2\lor\ell_3$, è il caso più facile!

Caso 4)

 c_j contiene 4 letterali, ossia $c_j = \ell_1 \lor \ell_2 \lor \ell_3 \lor \ell_4$, allora $C_j = (\ell_1 \lor \ell_2 \lor y_j) \land (\neg y_j \lor \ell_3 \lor \ell_4)$ dove y_j è una nuova variabile. Se viene assegnato valore vero a ℓ_1 , oppure a ℓ_2 , oppure a ℓ_3 , oppure a ℓ_4 allora esiste una assegnazione di verità a y_j che fa assumere a C_j valore vero.

Se viene assegnato valore falso sia a ℓ_1 che a ℓ_2 che a ℓ_3 che a ℓ_4 allora C_i assume valore falso qualunque valore di verità si assegni a y

6/1/24, 1:47 PM 3SAT_NPC

Caso 5,...,n)

Se c_j contiene $k \geq 4$ letterali, ossia, $c_j = \ell_1 \vee \ell_2...\ell_k$: sia $Y_j = \{y_{j1},...,y_{jk-3}\}$ un nuovo insieme di variabili booleane; allora, $C_j = \{(\ell_1 \vee \ell_2 \vee \ell_{y_j1}), (\neg y_{j1} \vee \ell 3 \vee y_{j2}),..., (\neg y_{ji} \vee \ell_{i+2} \vee y_{ji+1}),..., (\neg y_{jk-3} \vee \ell_{k-1} \vee \ell_k)\}.$

La clausola c_j è soddisfatta dalle assegnazioni tali che, per almeno un indice i=1,...,k, $\ell_i=vero$ ed è immediato verificare che le k-3 clausole in C_j sono soddisfatte se e soltanto se $\ell_i=vero$ per almeno un indice i=1,...,k.

Costruire l'insieme C_j a partire dalla clausola c_j richiede tempo lineare nel numero di letterali in c_j : poichè tale numero non può essere maggiore di 2n, è possibile costruire C_j in tempo lineare in n.

Allora costruiamo $ar{f}$ a partire da f in tempo proporzionale a nm, e dunque in tempo in $O(|f|^2)$