Lecture 10 Applications/Deep Learning

COMP3204 & COMP6223 Computer Vision

Where is feature extraction used these days?

Department of Electronics and Computer Science

Content

- 1. Where is computer vision going?
- 2. Where and how is it used?

Where is computer vision used?

What you see depends on the viewpoint you take

Academics, but increasingly everyone

On learning

80's

Basis of a Deep Neural Network

Trained Example Neural Network

11 18 [1] 11 18 [0]

22	52	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
11	48	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

22	52	$\begin{bmatrix} 0 \end{bmatrix}$
45	24	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Alexnet architecture

VGG architecture

Resnet architecture

part of a database of face images (a)

features

level 3 (d) features

(e) level 4 features

(a) image with added noise

(b) denoising by transform domain

(c) denoising by modified VGG

Motivation: Murder case in Australia 2014

Bouchrika, Nixon, Carter, *J. Forensic Science* 2011, and *Eusipco* 2010

Automating eye witness statements

Eyewitness statement

"24 year old male average height wearing shirt"

Image of crime

Generate description

Subject	Gender	Age	Height	Nose W	Тор
?	M	24	171	2.4	Shirt

Database of images

Generate descriptions

Subject	Gender	Age	Height	Nose W	Тор
123456	М	25	172	2.3	Shirt
123457	F	36	156	2.2	Blouse
123458	М	58	182	1.2	T shirt

Database of descriptions

Gender estimation on PETA

• Gender?

Subject	1	2	3
PETA image			
PETA label	A B	A B	A. Male B. Female

Martinho-Corbishley, Nixon and Carter, *Proc. BTAS 2016*

Gait-based Age Estimation using a Wholegeneration Gait Database

How old is he/she?

Subject	1	2	3
Gait			
Age	A. 4 years old B. 14 years old C. 24 years old	A. 62 years oldB. 72 years oldC. 82 years old	A. 24 years old B. 34 years old C. 44 years old

Makihara, Okumura, Iwama, and Yagi, *Proc. IJCB 2011*

Traits and terms

Body Features

Samangooei, Guo and Nixon, *IEEE BTAS* 2008

- Based on whole body description stability analysis by MacLeod et al.
 - Features showing consistency by different viewers looking at the same subjects
- Mostly comprised of 5 point qualitative measures
 - e.g. very fat, fat, average, thin, very thin

This changed

Most likely candidate for fusion with gait

- Global
 - Sex
 - Ethnicity
 - Skin Colour
 - Age
- Body Shape
 - Figure
 - Weight
 - Muscle Build
 - Height
 - Proportions
 - Shoulder Shape
 - Chest Size
 - Hip size
 - Leg/Arm Length
 - Leg/Arm Thickness
- Head
 - Hair Colour
 - Hair Length
 - Facial Hair Colour/Length
 - Neck Length/Thickness

Human descriptions: recognition capability

First result

Samangooei and Nixon, *IEEE BTAS* 2008

Comparative human descriptions

- Compare one subject's attribute with another's
- Infer continuous relative measurements

Height correlation (with time)

Pairwise similarity comparisons on PETA

Gender distribution not binary
Can measure confidence

100

Conventional attribute-based analysis

Gender

Analysing gender (??!!)

• Gender?

Subject	1	2	3
			AOI:
Gender			A. Male B. Female

Ethnicity

Martinho-Corbishley, Nixon and Carter, IEEE TPAMI 2019

Takeaway time

- 1 computer vision works and has a great future
- 2 big difference between hand crafted and deep learning
- 3 some parts are the same (group operators/ templates)
- 4 what will happen in the future?

Jon Hare will happen in the future!

Beyond that, I can only speculate. Enjoy!

