TRIGONOMETRY Chapter 22

Signos de las razones trigonométricas

SI TE RINDES CUANDO LAS COSAS SE EMPIEZAN A PONER DIFÍCILES, NUNCA LOGRARÁS ALGO QUE VALGA LA PENA

SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Los signos de las razones trigonométricas dependen de los signo de la abscisa (x) y la ordenada (y), ya que el radio vector siempre es positivo(r).

Si $\alpha \in IC$

 \rightarrow 0°< α < 90°

$$sen \alpha = \frac{y}{r} = \frac{(+)}{(+)} = (+)$$
 $cos \alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-)$

- \triangleright Si $\alpha \in IIC$
 - → 90°< α < 180°

$$\cos \alpha = \frac{x}{r} = \frac{(-)}{(+)} = (-)$$

- \triangleright Si $\alpha \in IIIC$
- → 180°< α < 270°

$$\tan \alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+)$$

- \triangleright Si $\alpha \in IVC$
- → 270°< α < 360°

$$\tan \alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+)$$
 $\csc \alpha = \frac{r}{y} = \frac{(+)}{(-)} = (-)$

RESUMEN ESTRATÉGICO DE LOS SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Ejemplos:

$$sen84^{\circ} = (+)$$

$$IC$$

$$\cos 150^{\circ} = (-)$$

$$\sec 300^{\circ} = (+)$$
IVC

Del gráfico, indique el signo de tanß

X

Recuerda:

Resolución:

Como $\beta \in IIIC$

Del gráfico, indique el signo de cscα y cos∅

Recuerda:

Resolución:

Como $\alpha \in IIIC$

 $csc\alpha$ es negativa

Como ∅ ∈ IIC

cosø es negativa

Del gráfico, determine el signo de: F = cosθ.tanβ.cscα

Resolución:

$$F = (-) (+) (-)$$

$$\mathbf{F} = (-)(-)$$

$$\mathbf{F} = (+)$$

Recuerda:

Del gráfico, determine el signo de: $M = \frac{sec\theta}{csc\alpha}$ y $N = \frac{cot\alpha}{cos\theta}$

Resolución:

∈ IIC

∈ IIC

$$N = \frac{\cot \alpha}{\cos \theta} = \frac{(-)}{(+)} = (-)$$

$$\in IVC$$

Recuerda:

Si $\theta \in IIc$, indique el signo de:

$$M = \sec\theta . \tan\theta$$

$$N = \cot\theta.\cos\theta.sen\theta$$

$$\mathbf{P} = \frac{\csc\theta}{\tan\theta}$$

Recuerda:

Resolución:

$$M = \sec\theta \cdot \tan\theta = (-)(-) = (+)$$

$$(-)$$

$$N = \cot\theta \cdot \cos\theta \cdot \sin\theta = (-)(-)(+) = (+)$$

$$(-)(-)(+)$$

$$\mathbf{M} = \frac{\mathbf{csc}\theta}{\mathbf{tan}\theta} = \frac{(+)}{(-)} = (-)$$

$$(-)$$

(+)

¡Muy bien!

Determine el signo de $sec(\frac{\theta}{2})$ si se tiene el siguiente gráfico:

Resolución:

$$\theta \in IIIC$$

$$180^{\circ} < \theta < 270^{\circ}$$

/2
$$90^{\circ} < \frac{\theta}{2} < 135^{\circ}$$

$$\rightarrow \frac{\theta}{2} \in IIC$$

$$\therefore \sec\left(\frac{\theta}{2}\right) = (-)$$

Recuerda:

Dos estudiantes Zamir y Sonia están explicando a su compañero Sebastián el tema realizado en clase, mediante un ejemplo, por eso cada uno plantea una condición para determinar el cuadrante al que pertenece un ángulo trigonométrico.

- Zamir dice: $sen 132^{\circ}$. $tan \alpha < 0$
- Sonia dice: $cos225^{\circ}$. $cos\alpha > 0$

Con estas condiciones. ¿Cuál es el cuadrante al que pertenece el ángulo?

```
Resolución:
(+) \quad (-)
sen132^{\circ}. tan\alpha < 0 \implies tan\alpha \in IIC \lor IVC
\in IIC
(-) \quad (-)
cos225^{\circ}. cos\alpha > 0 \implies cos\alpha \in IIC \lor IIIC
\in IIIC
```

El ángulo pertenece al IIC