BabyChem 基础有机化学

讲解视频

https://www.bilibili.com/video/BV11U4y1x7GL

笔记的 github 项目地址

https://github.com/Benzyl-titanium/BabyChem

手写笔记下载

github

https://github.com/Benzyl-titanium/BabyChem/releases/tag/organic-chemistry

百度网盘

https://pan.baidu.com/s/1IuL5xB4cNHcO-oXTphjq_g?pwd=73va

进度表

2025年5月16日

☑ 第一章

■ 第二章

2.4

 \square 2.5

目录

第一章		1		1.2.1	什么是轨道 (orbital)	3
1.1	确定一个物质的 Lewis 结构式	1		1.2.2	价层电子互斥理论	5
	1.1.1 简单分子	1		1.2.3	定量地描绘空间结构	5
	1.1.2 简单自由基		1.3	价键组	型论,分子轨道理论	6
	1.1.3 简单离子	1	1.0		充满轨道与空轨道	
	1.1.4 标记形式电荷	2				
	1.1.5 "复杂"分子的 Lewis 结构式	2		1.3.2	孤对电子的分子轨道	7
	1.1.6 总结	2		1.3.3	σ 轨道与 π 轨道 \dots	7
1.2	原子轨道,价层 e^- ,杂化轨道	3		1.3.4	简单的轨道能量关系	8

1.1 确定一个物质的 Lewis 结构式

确定一个物质的 lewis 结构式 → 机理: 载体 自由基 (中性): 特殊自由基 Cl 氯自由基 形成过程中发生了 e- 的转移/迁移

1.1.1 简单分子

依据: 简单原子核外的电子排布 +Lewis电子配对 学说 氧 $\frac{+8}{\text{原子实}}$ $\frac{6}{\text{你层电子}}$ = 原子核 + 核外电子 八隅体规则: 尽量配出 8e- 稳定结构 (II 周期)

$$O$$
 H \rightarrow $\left\{ egin{aligned} O & \mathbb{R} \rightarrow \mathbb{R} & \mathbb{R} \\ H & H & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ egin{aligned} A & \mathbb{R} & \mathbb{R} \\ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ egin{aligned} A & \mathbb{R} & \mathbb{R} \\ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{aligned} \right.$ $\left\{ \mathbf{R} & \mathbb{R} & \mathbb{R} &$

1.1.2 简单自由基

1.1.3 简单离子

1.1.4 标记形式电荷

$$-C^{\oplus} -C^{*} -C^{\ominus}-$$

形式电荷 (与真实电荷有区别),某些情况真的只是"形式电荷"

公式: 形式电荷 = 主族序数-不包括单电子的未共享电子数 $-\frac{1}{5}$ 成键电子数

$$\frac{1}{-C} \xrightarrow{A=2-4=0} \xrightarrow{\frac{4p e^{-}}{4-2-4=0}} \xrightarrow{-C^{\ominus}} \xrightarrow{-: 4-2-3=-1} \xrightarrow{\frac{4}{4-2-4=0}} \xrightarrow{-C^{\ominus}} \xrightarrow{-: 4-0-3=+1} \xrightarrow{-C^{\ominus}} \xrightarrow{-: 4-0-3=+1} \xrightarrow{-C^{\ominus}} \xrightarrow{-C^{\ominus}} \xrightarrow{-: 4-0-3=+1} \xrightarrow{-C^{\ominus}} \xrightarrow{-C^{\frown}} \xrightarrow{$$

1.1.5 "复杂"分子的 Lewis 结构式

$$C$$
 不满足八隅体规则
$$CO: C-O \longrightarrow C=O \longrightarrow O^{\oplus} \stackrel{==}{\longrightarrow} C^{\ominus} \quad 配位键: \begin{array}{c} \delta^- == \delta^+ \\ C \longleftarrow O \\ \delta_+/\delta_- \text{ 部分电荷中心} \end{array}$$
 NO(长命自由基): $\begin{array}{c} 7e^- \\ N = O \\ 8e^- \end{array}$

1.1.6 总结

书写 Lewis 结构
$$\to$$
 配对电子 $+$ 标志形式电荷
$$\begin{cases} & e^- \\ & \text{知道自由基} \end{cases} \begin{cases} e^- \\ & \text{失 } e^- \end{cases}$$
 1. 公式法
$$\begin{cases} & e^- \\ & \text{化学键数} \end{cases}$$
 2. 灵活性
$$\begin{cases} & e^- \\ & \text{失 } e^- \end{cases}$$
 中性分子
$$\begin{cases} & \text{异裂思想} \\ & \text{(化学键)} \end{cases}$$
 中性分子
$$\begin{cases} & \text{配位键} \end{cases} \end{cases}$$
 进攻: 形式电荷 $+1$ 被进攻: 形式电荷 -1

$$0 \to +1$$
 $0 \to C : \ominus$
进攻者 被进攻者

形式电荷 & 部分电荷中心

形式电荷
$$\oplus$$
 / \ominus $\left\{ egin{array}{ll} 在 ext{ @ A constant of the points of the points$

1.2 原子轨道, 价层 e^- , 杂化轨道

原子轨道简述, 价层电子互斥理论, 杂化轨道理论

1.2.1 **什么是轨道** (orbital)

Bohr: 电子围绕原子核的稳定 轨道 上运动

现代意义 解 Schrödinger 方程 → 轨道 → 分布

$$H = \frac{T}{$$
 动能 $} + \frac{V}{$ 势能 $}$ $H \left| \Psi \right\rangle = E \left| \Psi \right\rangle$

 Ψ :波函数 \rightarrow 描述电子的"运动"

1.2.1.1 轨道的分布

图 1.1: s 轨道的几何分布

图 1.2: p 轨道的几何分布

1.2.1.2 轨道的能量

单原子: $E_{1s} < E_{2s} < E_{2p} < E_{3s} < E_{3d} \dots$

1.2.2 价层电子互斥理论

互斥: 用定性的手段去解释空间结构

斥: 远离配基 (基团)→ 满足斥力协调

1.2.3 定量地描绘空间结构

$$\frac{\pi^{-1}}{\text{价层电子对数}} = \frac{1}{2}$$
 (中心原子主族序数 +配体数 + 阴正阳负)

$$m \begin{cases} m = 4, sp^{3} \\ m = 3, sp^{2} \\ m = 2. sp \end{cases}$$

$$\stackrel{\oplus}{CH_{3}} = \frac{1}{2}(4+3-1) = 3 \Rightarrow sp^{2}$$

$$\stackrel{\ominus}{CH_{3}} = \frac{1}{2}(4+3+1) = 4 \Rightarrow sp^{3}$$

$$AX_n: {}^nLp = {}^{ extstyle ext$$

按实际成键方式填电子

1.3 价键理论,分子轨道理论

杂化轨道理论只解决了中心原子的杂化问题,化学键的本质仍然没有说明 提论 $\begin{cases} VBT & \text{价键理论} \Rightarrow \text{"交换电子"} \rightleftarrows 共振 \to 共振论 \leftarrow \text{Lewis 结构式} \\ MOT & \text{分子轨道理论} \end{cases}$

在有机中,往往把 VBT 与 MOT 结合起来,并侧重于 MOT 的应用

原子之间通过共享电子成键 → 为什么倾向成键 ^{本质} 成键后能量降低

由于组合生成的轨道已经包含于分子中 : 叫"分子轨道"

$$E_{\Psi_2'} > E_{\Psi_1'} \begin{cases} e^- \text{在 } \Psi_1 \text{ 中,能量有降低倾向} \rightarrow \text{CH 拱享电子} \rightarrow \text{形成 C-H 键} \\ e^- \text{在 } \Psi_2 \text{ 中,能量有升高倾向} \rightarrow \overline{\text{LK C-H}} \text{ 键} \end{cases}$$

 $\Psi_1: \sigma_{C-H}(\text{C-H}$ 成键 σ 轨道)

 $\Psi_2: \sigma_{C-H}^*(C-H 反键\sigma轨道)$

如何重新组合 ⇒ 原波函数线性组合 (LCAO)

推论: 若 e^- 填到了 σ 上,有形成化学键的倾向 (成键本质)

若 e^- 填到了 σ^* 上,有瓦解化学键的倾向 (断键本质)

$$\begin{cases} \Psi_2 + \Psi_1 = \Psi_1' & \longrightarrow \sigma \\ \Psi_2 - \Psi_1 = \Psi_2' & \longrightarrow \sigma^* \end{cases}$$
 轨道有效重叠的程度越高,整体能量越低

关于分子轨道理论的几大概念

注: 一个分子有几条化学键 ⇒ 几组分子轨道 我们一般分析"某条化学键"的分子轨道

1.3.1 充满轨道与空轨道

Eorb
$$\Psi_4$$
 $\Psi_1\Psi_2$ 为充满轨道 $\Psi_3\Psi_4$ 为充满轨道 $\Psi_3\Psi_4$ 为充满轨道 $\Psi_4\Psi_2$ Ψ_1 Ψ_2 Ψ_3 Ψ_4 Ψ_5 Ψ_5 Ψ_6 Ψ_7

1.3.2 孤对电子的分子轨道

孤对电子的分子轨道 → 孤对电子不参与成键,可以叫做"非键"

1.3.3 σ 轨道与 π 轨道

$$\sigma 轨道与 \pi 轨道 \begin{cases} 成 \ \sigma \ \text{键} \begin{cases} \sigma_{A-B}^* & \text{#$rac{v}{\sigma}$} \\ \sigma_{A-B} & \text{f} \ \text{f} \end{cases} & \text{f} \ \text{f} \\ \kappa \ \pi \ \text{f} \ \text{f} \ \pi_{A-B} & \pi_{A-B} \end{cases}$$

1.3.4 简单的轨道能量关系

该关系为之后介绍某些反应为什么能量能够发生提供理论基础

