Homework 4 – 임용고시 기출문제(곡선론 최근 7개년)

Spring 2022, Differential Geometry I

[2022-A9] 단위속력곡선(unit speed curve) $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ 에 대하여 점 $\alpha(t)$ 에서의 곡률(curvature)과 비틀림률(열률, 꼬임률, torsion)을 각각 $\kappa_{\alpha}(t)$, $\tau_{\alpha}(t)$ 라 할 때, $\kappa_{\alpha}(t) \neq 0$ ($t \in \mathbb{R}$)이고 함수 $f \colon \mathbb{R} \to \mathbb{R}$ 는 $\tau_{\alpha}(t) = f(t)\kappa_{\alpha}(t)$, $f(1) = \sqrt{3}$, f'(1) = -2를 만족한다. 점 $\alpha(t)$ 에서 곡선 α 의 단위접벡터장 (unit tangent vector field) T(t)와 단위종법벡터장(unit binormal vector field) B(t)에 대하여 곡선 $\beta \colon \mathbb{R} \to \mathbb{R}^3$ 을

$$\beta(t) = \int_0^t \tau_{\alpha}(s)T(s) + \kappa_{\alpha}(s)B(s)ds$$

로 정의하고, 이 곡선 위의 점 $\beta(t)$ 에서의 곡률을 $\kappa_{\beta}(t)$ 라 하자. 이 때, 곡선 β 가 정칙곡선(정규곡선, regular curve)임을 보이고, $\tau_{\alpha}(1)\kappa_{\beta}(1)$ 의 값을 풀이 과정과 함께 쓰시오. [4점]

[2021-A4] 3차원 유클리드 공간 \mathbb{R}^3 에서 구

$$M = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$$

위에 단위속력곡선(arc-length parametrized curve) $\gamma\colon [0,1]\to M$ 이 있다. 각 $s\in [0,1]$ 에 대하여 점 $\gamma(s)$ 에서의 γ 의 종법선벡터(binormal vector)를 B(s), 점 $\gamma(s)$ 에서의 M의 법선벡터(normal vector)를 n(s)라 하자. 모든 $s\in [0,1]$ 에 대하여 $B(s)\cdot n(s)=\frac{1}{2}$ 을 만족할 때, $\gamma(s)$ 의 비틀림률(열률, 꼬임률, torsion) a(s)와 곡률(curvature) b(s)를 구하시오. [2점]

[2020-A3] 3차원 유클리드 공간 ℝ³에서 곡선

$$\gamma(t) = (2t - \cos t, t + \sin t, 2t + 1) \quad (0 < t < 2\pi)$$

위의 점 $\gamma(t_0)$ 에서의 접벡터(tangent vector)가 벡터 (6,2,4)와 평행하다. t_0 의 값과 $t=t_0$ 일 때 곡선 γ 의 비틀림률(열률, 꼬임률, torsion)을 각각 구하시오. [2점]

[2019-A6] 3차원 유클리드 공간 \mathbb{R}^3 에서 곡선 C가

$$C = \{(x, y, z) \in \mathbb{R}^3 | y = x^3 - ax + a, z = x - 1\}$$

일 때, 이 곡선의 비틀림률(열률, 꼬임률, torsion) τ 를 구하시오. 또한 점 (1,1,0)에서 곡선 C의 곡률 (curvature)이 3이 되도록 하는 a의 값을 구하시오. (단,a는 상수이다.) [2점]

[2018-A6] 3차원 유클리드 공간 \mathbb{R}^3 에서 $\alpha(2)=(0,0,0)$ 인 단위속력곡선 (unit speed curve) $\alpha:\mathbb{R}\to\mathbb{R}^3$ 에 대하여 곡선 $\beta:\mathbb{R}\to\mathbb{R}^3$ 을

$$\beta(t) = \int_{2}^{t} (\alpha(s) + s^{2}N(s))ds$$

라 하자. 두 벡터 $\alpha'(2)$, $\beta''(2)$ 가 서로 수직일 때, t=2에서 α 의 곡률(curvature) κ 의 값을 구하시오. (단, N(s)는 곡선 α 의 주법벡터장(principal normal vector field)이다.) [2점]

[2017-A8] 3차원 유클리드 공간 \mathbb{R}^3 의 한 평면에 있고 곡률(curvature)이 양인 단위속력곡선(unit speed curve) $\gamma:\mathbb{R}\to\mathbb{R}^3$ 에 대하여, 점 $\gamma(s)$ 에서의 접선벡터 (tangent vector)를 $\vec{\mathbf{T}}(s)$, 주법선벡터를 $\vec{\mathbf{N}}(s)$ 라 하자. 곡선 $\beta:\mathbb{R}\to\mathbb{R}^3$ 을 $\beta(s)=\frac{1}{2}\vec{\mathbf{T}}(s)+\vec{\mathbf{N}}(s)$ 로 정의할 때, 모든 양수 t에 대하여 s=0에서 s=t 까지 곡선 β 의 길이는 3t이다. s=1일 때, 곡선 γ 의 곡률을 구하시오. [2점]

[2016-A6] 3차원 유클리드 공간 \mathbb{R}^3 에서 단위속력곡선 (unit speed curve) $\gamma: \mathbb{R} \to \mathbb{R}^3$ 의 점 $\gamma(s)$ 에서의 곡률 (curvature) $\kappa(s)$ 는 $\sqrt{s^4+4s^2+3}$ 이다. 곡선 $\alpha: \mathbb{R} \to \mathbb{R}^3$ 을 $\alpha(t)=\gamma(t)+\gamma'(t)$ 로 정의할 때, t=0에서 t=1까지 곡선 α 의 길이를 구하시오. [2점]