Logik I Übungsblatt 5

Sei \mathcal{L} eine Sprache und \mathcal{A} ein \mathcal{L} -Struktur. Für jedes $a \in A$ sei injektiv eine neue Konstante $c_a \notin \mathcal{L}$ gewählt. Dann bezeichnet \mathcal{A}_A die $\mathcal{L}(A) = (\mathcal{L} \cup \{c_a \mid a \in A\})$ -Struktur mit Universum A die jedes Symbol aus \mathcal{L} so wie \mathcal{A} interpretiert und jede neue Konstante c_a durch a. Die Menge $\{\varphi \mid \mathcal{A}_A \models \varphi\}$ der $\mathcal{L}(A)$ -Aussagen, die in \mathcal{A}_A gelten, heißt elementares Diagramm von \mathcal{A} .

Aufgabe 1. Sei T eine beliebige \mathcal{L} -Theorie und \mathcal{A} eine \mathcal{L} -Struktur. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- a) Es gibt einen \mathcal{L} Struktur \mathcal{B} , so dass $\mathcal{A} \preceq \mathcal{B}$ und $\mathcal{B} \vDash T$.
- b) Die Vereinigung von T und dem elementaren Diagramm von A ist konsistent.

Aufgabe 2. Zeigen Sie, dass das Paarmengenaxiom aus dem Ersetzungsaxiom, Potenzmengenaxiom und der Existenz der leeren Menge folgt.

Aufgabe 3. Sei $P_{<\omega}(\mathbb{N})$ die Menge der endlichen Teilmengen von \mathbb{N} und $\beta: \mathbb{N} \to P_{<\omega}(\mathbb{N})$ eine Bijektion. Wir machen \mathbb{N} zu einer $\{\varepsilon\}$ -Struktur $\mathcal{N} = \mathcal{N}_{\beta}$ durch $i \varepsilon^{\mathcal{N}} j \Leftrightarrow i \in \beta(j)$.

- a) Welche Axiome von ZFC (ohne Fundierung) gelten in \mathcal{N}_{β} ?
- b) Finden Sie jeweils eine Bijektion β , so dass das Fundierungaxiom in \mathcal{N}_{β} gilt. Hinweis: Um eine fundierte Struktur zu erhalten, betrachte man die Bijektion β mit $\beta^{-1}(\{n_1,\dots,n_k\})=2^{n_1}+\dots+2^{n_k}$.
- c) Geben Sie ein β an, für das \mathcal{N}_{β} nicht das Fundierungsaxiom erfüllt.
- d) Geben Sie ein β an, für das \mathcal{N}_{β} das Fundierungsaxiom erfüllt, aber trotzdem *nicht* fundiert ist; d.h. es enthält eine unendliche absteigende ε -Kette.

Hinweis: Ersetzen Sie \mathbb{N} durch \mathbb{Z} und finden Sie eine geeignete Bijektion $\beta: \mathbb{Z} \to P_{<\omega}(\mathbb{Z})$, so dass für $m, n \in \mathbb{Z}$ gilt: $m \in \beta(n) \Rightarrow m < n$.

Aufgabe 4. Zeigen Sie, dass wenn ZFC konsistent ist, ZFC auch ein Modell besitzt das nicht fundiert ist (obwohl es ja das Fundierungsaxiom erfüllt!). Warum ist das kein Widerspruch?

Hinweis: Kompaktheit.

Abgabe bis Donnerstag, den 09.05, 10:00 Uhr, in Briefkasten 177. Die Übungsblätter sollen zu zweit bearbeitet und abgegeben werden. Web-Seite: https://www.uni-muenster.de/IVV5WS/WebHop/user/bboisson/de/L1/