STAT 245 HW1 Solution

Yuguan Wang

January 2023

$\mathbf{Q}\mathbf{1}$

The MGF for Poisson(λ) is $M(t) = \exp(\lambda(e^t - 1))$. By definition by MGF,

$$E[X^4] = \frac{d^4}{dt^4} M(t) \Big|_{t=0}$$

$$= \left(\lambda^4 e^{\lambda e^t - \lambda + 4t} + 6\lambda^3 e^{\lambda e^t - \lambda + 3t} + 7\lambda^2 e^{\lambda e^t - \lambda + 2t} + \lambda e^{\lambda e^t - \lambda + t} \right) \Big|_{t=0}$$

$$= \lambda^4 + 6\lambda^3 + 7\lambda^2 + \lambda.$$

 $\mathbf{Q2}$

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}.$$

$\mathbf{Q3}$

Exact:

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Normal approximation: $\frac{X-np}{\sqrt{np(1-p)}} \approx Z$, equivalently $X \approx \sqrt{np(1-p)}Z + np$.

$$P(X = k) \approx P(|\sqrt{np(1-p)}Z + np - k| \le 0.5) = P\left(\frac{k - 0.5 - np}{\sqrt{np(1-p)}} \le Z \le \frac{k + 0.5 - np}{\sqrt{np(1-p)}}\right).$$

Possion Approximation: $Bin(n, p) \approx Poisson(\lambda)$ with $\lambda = np$.

$$P(X = k) = e^{-np} \frac{(np)^k}{k!}.$$

	Exact	Normal	Poisson
(a)	0.2269	0.2466	0.1890
(b)	0.0357	0.0353	0.0496
(c)	0.1842	0.2418	0.1839

- (a): Normal approximation works better than Poisson approximation, but none of them gives very close approximation.
- (b): Normal approximation works well because n is large and p is close to 0.5; or np is large.
 - (c): Poisson approximation works well because p is small.

$\mathbf{Q4}$

(a) Log-likelihood of p is

$$l(p) = \sum_{i} x_i \log p + (n - \sum_{i} x_i) \log(1 - p).$$

Take derivative and set it to 0,

$$\frac{\sum_{i} x_{i}}{p} - \frac{n - \sum_{i} x_{i}}{1 - p} = 0 \Rightarrow \hat{p} = \bar{x}.$$

(b) $E[\hat{p}] = p, Var(\hat{p}) = p(1-p)/n.$

$$MSE(\hat{p}) = Var(\hat{p}) + (Bias(\hat{p}))^2 = p(1-p)/n + 0 = p(1-p)/n.$$

(c) By CLT, $\frac{\sqrt{n}(\bar{X}-p)}{\sqrt{p(1-p)}} \to N(0,1)$, so

$$\sqrt{n}(\hat{p}-p) \rightarrow N(0, p(1-p)).$$

- (d) Because $\frac{\sqrt{n}(\hat{p}-p)}{\sqrt{\hat{p}(1-\hat{p})}} \approx N(0,1)$, the Wald confidence-interval can be constructed as $\hat{p} \pm z_{0.975} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.
- (e) If we solve $\left|\frac{\sqrt{n}(\hat{p}-p)}{\sqrt{p(1-p)}}\right| \leq z_{0.975}$, we will get

$$(1+z_{0.975}^2/n)p^2 - (2\hat{p} + z_{0.975}^2/n)p + \hat{p}^2 \le 0,$$

the roots are

$$\frac{\hat{p} + \frac{z_{0.975}^2 \pm z_{0.975} \sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{z_{0.975}^2}{4n}}}{1 + z_{0.975}^2/n}$$

which give the Wilson's confidence interval.

(f) (By Courtesy, Adi Ramen)

- 1. $(\hat{p}_{\mathrm{left}},\hat{p}_{\mathrm{right}})$ is the same as Wilson's confidence interval.
- 2. Both \hat{p}_{left} , \hat{p}_{right} are in the interval (0,1).

Other reasonable observations are also acceptable.

- (g) If $\hat{p} < 1/2$, then $\hat{p}_{\text{right}} \hat{p} > \hat{p} \hat{p}_{\text{left}}$.
 - If $\hat{p} = 1/2$, then $\hat{p}_{right} \hat{p} = \hat{p} \hat{p}_{left}$.
 - If $\hat{p} > 1/2$, then $\hat{p}_{\text{right}} \hat{p} < \hat{p} \hat{p}_{\text{left}}$.