RANDOM BROADCAST BASED DISTRIBUTED CONSENSUS CLOCK SYNCHRONIZATION FOR MOBILE NETWORKS

Wanlu Sun

Erik G. Ström

Fredrik Brännström

Mohammad Reza Gholami

Presented by Golnaz Salehi

OBJECTIVE

 Bring all virtual clocks to a consensus via a linear function of the nodes' own local clocks.

PROBLEM FORMULATION

• $T_i(t) = f_i t + \theta_i \rightarrow \text{Absolute time representation}$

Where T_i represents the local time of node i, f_i represents the rate of node i, and θ_i represents the offset of node i.

• $C_i(t) = \alpha_i T_i(t) + \beta_i = \alpha_i f_i t + \alpha_i \theta_i + \beta_i = \hat{f}_i t + \hat{\theta}_i \rightarrow \text{Virtual clock estimation as a linear function}$ Where \hat{f}_i represents virtual clock frequency estimate and $\hat{\theta}_i$ represents virtual clock offset estimate.

SOLUTION: RBDS SCHEME

- Suppose node i receives a timing message at the time $t_\ell + \delta_\ell$. Here, t_ℓ is the perfect time when the message was sent during the ℓ th SR and δ_ℓ is the transmission delay, which includes the PHY layer delay and the propagation delay.
- We denote the transmitting node by $\widetilde{j(\ell)}$. Hence, the received time stamp at the time $t_\ell + \delta_\ell$ is $C_{\widetilde{j(\ell)}}(t_\ell)$.
- Next we present the two update rules.

PARTIAL UPDATE RULE

• The aim of the partial update rule at time t_ℓ is to achieve the update (I) when $\hat{f}_{\tilde{I}(\ell)} = \hat{f}_i^{(\ell)}$ which implies that:

$$\hat{\theta}_i^{\ell+1} = \frac{1}{2} \left(\hat{\hat{\theta}}_{\tilde{\jmath}(\ell)} + \hat{\theta}_i^{\ell} \right) + \frac{1}{2} \left(\hat{f}_{\tilde{\jmath}(\ell)} - \hat{f}_i^{(\ell)} \right) t_{\ell}$$

COMPLETE UPDATE RULE

- Suppose node i receives a timestamp from node $j=\tilde{\jmath}(\ell)$ at time t_ℓ . Furthermore, suppose the last time node i received a timestamp from node j was t_n . Hence $t_n < t_\ell$ and $j=\tilde{\jmath}(\ell)=\tilde{\jmath}(n)$. Node i will perform a complete update if the following two conditions are satisfied
- a) Node j has not performed a **partial** or **complete update** in the interval $(t_n, t_\ell]$.
- b) Node i has not performed a **complete update** in the interval $(t_n, t_\ell]$.

Update (I):
$$\hat{\theta}_i^{\ell+1} = \frac{1}{2} (\hat{\theta}_i^{\ell} + \hat{\theta}_j^{\ell})$$

From Fig. I, it is clear that:

$$\frac{\hat{f}_{j}}{\hat{f}_{i}^{(\ell)}} = \frac{C_{j}(t_{\ell}) - C_{j}(t_{n})}{C_{i}(t_{\ell}) - \sum_{m=n}^{l-1} \Delta_{i}^{(m)} - C_{i}(t_{n})} \text{ where } \Delta_{i}^{(\ell)} = \frac{1}{2} \Big(C_{j}(t_{\ell}) - C_{i}(t_{\ell}) \Big)$$

Therefore, α_i and β_i get updated as following:

$$\alpha_i^{(\ell+1)} = \frac{1}{2} \alpha_i^{(\ell)} (1 + \frac{\hat{f}_j}{\hat{f}_i^{(\ell)}})$$

$$\beta_i^{(\ell+1)} = \frac{1}{2} \left(C_j(t_\ell) - \frac{\hat{f}_j}{\hat{f}_i^{(\ell)}} C_i(t_\ell) \right) + \frac{1}{2} \left(1 + \frac{\hat{f}_j}{\hat{f}_i^{(\ell)}} \right) \beta_i^{(\ell)}$$

Fig. 1: Evolution of a logical clock

RESULTS (10 NODES)

Fig. 2: Node connections

Strongly connected Consumed time: 0.022423 secs

Periodically Strongly connected Consumed time: 0.031185 secs

Asynchronous Gossip Scheme Consumed time: 0.074220 secs

Centralized
Consumed time: 0.001173 secs

Stochastic metrics
Consumed time: 0.027255 secs

Varying stochastic metrics
Consumed time: 0.082036 secs

Doubly Stochastic Matrix
Consumed time: 0.020477 secs