A Closer Look at Few-shot Classification

Wei-Yu Che, Carnegie Mellon University

In ICLR 2019

2020-09-07 MI2RL Kyuri Kim

Introduction

- Few-Shot Learning and Meta-learning

Few-shot learning algorithms aim to Learn to recognize novel classes with a limited amount of labeled examples. And few-shot classification aims to learn a classifier to recognize unseen classes during training with limited labeled examples.

Contribution of this Paper

- 1. A consistent **comparative analysis** of several representative few-shot classification algorithms.
- 2. A modified **baseline** method that surprisingly achieves competitive performance.
- 3. A new experimental setting for **evaluating** the **cross-domain generalization** ability for few-shot classification algorithms.

Related Work

- Few-Shot Learning and Meta-learning

Related Work

- Few-Shot Learning and Meta-learning

Meta-Learning

"Learn to Learn" 학습을 위해서 학습한다

Common Approaches

	Key Idea	How Pθ(y x) is modeled?
Model-based	RNN; Memory	fθ(x ,S)
Metric-based	Metric Learning	Σ(xi,yi)∈ Skθ(x,xi)yi (*)
Optimization- based	Gradient descent	Pg φ (θ,SL)(y x)

Symposium talks-NIPS 2018 done by Oriol Vinyals

Few-shot Classification (in this Paper)

Related Work

- Mini ImageNet:

Method	Backbone	5way-1shot	5way-5shot
MatchingNet	ConvNet	43.56±0.84	55.31± 0.73
ProtoNet	ConvNet	49.42±0.78	68.20±0.66
RelationNet	ConvNet	50.44±0.82	65.32±0.70
MAML	ConvNet	48.70±1.84	55.31±0.73
GNN	ConvNet	50.33±0.36	66.41±0.63
TPN	ConvNet	55.51±0.86	69.86±0.65
Edge-label	ConvNet	59.63±0.52	76.34±0.48
DPGN	ConvNet	66.01±0.36	82.83±0.41
LEO	WRN	61.76±0.08	77.59±0.12
wDAE	WRN	61.07±0.15	76.75±0.11
DPGN	WRN	67.24±0.51	83.72±0.44

CloserLook	ResNet18	51.75±0.80	74.27±0.63
CTM	ResNet18	62.05±0.55	78.63±0.06
DPGN	ResNet18	66.63±0.51	84.07±0.42
MetaGAN	ResNet12	52.71±0.64	68.63±0.67
SNAIL	ResNet12	55.71±0.99	68.88±0.92
TADAM	ResNet12	58.50±0.30	76.70±0.30
Shot-Free	ResNet12	59.04±0.43	77.64±0.39
Meta-Transfer	ResNet12	61.20±1.80	75.53±0.80
FEAT	ResNet12	62.96±0.02	78.49±0.02
MetaOptNet	ResNet12	62.64±0.61	78.63±0.46
DPGN	ResNet12	67.77±0.32	84.60±0.43

- Baseline & Baseline++

- **Fine-tuning stage:** Fix the network parameters θ in the feature extractor fθ and train a new classifier C(.|Wn) with the given labeled examples in novel classes.
- The Baseline++ method differs from the baseline model in the use of cosine distances between the input feature and the weight vector for each class that aims to reduce intra-class variations.

- Comparing with Meta-learning Algorithms

- Comparing with Meta-learning Algorithms
 - ① Metric-based: Matching Network

- Comparing with Meta-learning Algorithms
 - 2 Metric-based: Prototypical Network

- Comparing with Meta-learning Algorithms
 - 3 Metric-based: Relation Network

- Comparing with Meta-learning Algorithms
 - 4 Optimization-based: Model-Agnostic Meta-Learning

Experiments

We address the few-shot classification problem under three scenarios: 1) generic object recognition, 2) fine-grained image classification, and 3) cross-domain adaptation.

- 5-way k shot classification for support set
- 5-way 16 shot classification for query set

Experiment Dataset

- mini-Image Net
- Subset of 100 classes from ImageNet
- Contains 600 images for each class
- Randomly select 64 base, 16 validation, 20 novel class
- CUB
- Contains 200 classes and 11,788 images in total
- Randomly split dataset into 100 base, 50 validation, 50 novel class

- 1. Few-shot classification results for both the *mini-Imagenet* and *CUB* datasets

	CUB		mini-ImageNet	
Method	1-shot	5-shot	1-shot	5-shot
Baseline	47.12 ± 0.74	64.16 ± 0.71	42.11 ± 0.71	62.53 ± 0.69
Baseline++	60.53 ± 0.83	79.34 ± 0.61	48.24 ± 0.75	66.43 ± 0.63
MatchingNet Vinyals et al. (2016)	61.16 ± 0.89	72.86 ± 0.70	48.14 ± 0.78	63.48 ± 0.66
ProtoNet Snell et al. (2017)	51.31 ± 0.91	70.77 ± 0.69	44.42 ± 0.84	64.24 ± 0.72
MAML Finn et al. (2017)	55.92 ± 0.95	72.09 ± 0.76	46.47 ± 0.82	62.71 ± 0.71
RelationNet Sung et al. (2018)	62.45 ± 0.98	76.11 ± 0.69	49.31 ± 0.85	66.60 ± 0.69

- 2. Few-shot classification accuracy vs. backbone depth

- 3. Effect of Domain Difference

	$mini$ -ImageNet \rightarrow CUB
Baseline	65.57±0.70
Baseline++	62.04 ± 0.76
MatchingNet	53.07±0.74
ProtoNet	62.02 ± 0.70
MAML	51.34 ± 0.72
RelationNet	57.71 ± 0.73

- Baseline outperforms all other methods under this scenario.
- The Baseline model performs relative well with larger domain differences.
- That is, as the domain difference grows larger, the adaptation based on a few novel class instances becomes more important.

- 4. Effect of Domain Difference

- learning how to adapt in the meta-training stage is important future direction
- Learning to learn adaptation in the meta-training stage would be an important direction for future meta-learning research in few-shot classification.

Conclusions

- 1. Our results show that the Baseline++ model is competitive to state of art under standard conditions
 - Baseline model achieves competitive performance with recent state-of-the-art meta-learning algorithms on both CUB and mini-ImageNet benchmark datasets when using a **deeper feature backbone**
- 2. Baseline compares favorably against all the evaluated meta-learning algorithms under a realistic scenario where there exists domain shift between the base and novel classes
 - Learning to learn adaptation in the meta-training stage would be an important direction for future meta-learning research in few-shot classification.