Appendix - A multi-objective approach for the protein structure prediction problem

Sebastián Aliaga-Rojas

Departamento de Ingeniería Informática Universidad de Santiago de Chile, USACH Santiago, Chile sebastian.aliaga.r@usach.cl

Manuel Villalobos-Cid

Departamento de Ingeniería Informática Universidad de Santiago de Chile, USACH Santiago, Chile manuel.villalobos@usach.cl

Marcio Dorn

Institute of Informatics
Federal University of Rio Grande do Sul
Porto Alegre, Brazil
mdorn@inf.ufrgs.br

Algorithm 1 Local Search 1

end while

22: **end function Output** *pop*

21:

Mario Inostroza-Ponta

Departamento de Ingeniería Informática Universidad de Santiago de Chile, USACH Santiago, Chile mario.inostroza@usach.cl

I. APPENDIX

I. AITENDIA

1: **function** LS1(pop,res_num,end_condition,energy_evals)

```
stop\_condition \leftarrow energy\_evals < end\_condition
        while energy\_evals < end\_condition do
3:
            for i \leftarrow 1 to length(pop) do
 4:
                for j \leftarrow 1 to res\_num do
 5:
                    res \leftarrow \text{SELECT-RANDOM-RESIDUE}
 6:
                    for k \leftarrow 1 to 2 do //for phi and psi
 7:
                        continue \leftarrow True
8:
                        while continue & stop_condition do
9:
                                      \leftarrowCHANGE_ANGLE(pop[i],
10:
    res_k
                            result \leftarrow COMPARE(pop[i], sol)
11:
                            if result == dominates then
12:
                                pop[i] = sol
13:
                            else
14:
                                continue = False
15:
                            end if
16:
                        end while
17:
                    end for
18:
                end for
19:
            end for
20:
```

Algorithm 2 Local Search 2

```
1: function LS2(pop,end_condition, energy_evals)
       stop\_condition \leftarrow energy\_evals < end\_condition
2:
       while stop\_condition do
3:
           for i \leftarrow 1 to length(pop) do
4:
5:
               continue \leftarrow True
               while continue & stop_condition do
6:
                   sol \leftarrow CHANGE\_ANGLES(pop[i])
7:
                   result \leftarrow COMPARE(sol, pop[i])
8:
                   if result == dominates then
9:
                       pop[i] = sol
10:
                   else
11:
                       continue = False
12:
                   end if
13:
               end while
14:
15:
           end for
       end while
16:
17: end function
    Output pop
```

TABLE 1: Second stage parametrisation results

	RMSD											
		NSG	A-II		NSGA-I	I + PLS						
Protein	Run	Best	AV (STD)	Run	Best	AV (STD)						
1AB1	3	4.49	7.58 (1.5)	12	2.90	8.14 (1.9)						
1ACW	6	3.21	5.47 (1.5)	27	2.51	5.51 (1.3)						
1CRN	17	3.62	8.01 (1.5)	28	3.02	8.06 (1.7)						
1D5Q	12	2.15	4.84 (1.5)	31	1.99	4.52 (1.4)						
1ENH	28	3.26	8.07 (2.2)	10	3.19	8.28 (2.0)						
1K43	25	0.84	2.73 (1.3)	6	1.14	2.64 (1.1)						
1Q2K	10	2.59	5.53 (1.8)	29	2.40	5.22 (1.3)						
1WQC	9	2.71	5.16 (0.9)	13	2.70	4.88 (1.0)						
2MR9	25	3.02	6.54 (1.8)	29	2.85	6.56 (1.8)						
2MTW	29	2.13	5.50 (1.1)	22	2.37	5.45 (1.0)						
2P5K	7	3.33	10.20 (2.2)	27	5.71	10.57 (1.6)						
2P81	24	3.61	8.83 (1.2)	23	2.87	8.64 (1.3)						
			GI	DT								
		NSG	A-II	NSGA-II + PLS								
Protein	Run	Best	AV (STD)	Run	Best	AV (STD)						
1AB1	16	57.83	40.25 (6.0)	12	63.91	40.25 (6.3)						
1ACW	21	67.59	47.97 (6.6)	27	73.79	47.02 (6.9)						
1CRN	16	62.17	40.70 (6.1)	3	60.87	40.17 (6.3)						
1D5Q	27	78.52	55.63 (8.5)	10	80.74	57.10 (9.1)						
1ENH	28	64.44	39.37 (6.8)	22	64.81	38.62 (6.2)						
1K43	25	90.00	71.20 (8.8)	7	90.00	70.19 (9.6)						
1Q2K	10	79.35	53.47 (6.9)	29	75.48	54.10 (6.5)						
1WQC	9	75.38	51.83 (5.9)	13	72.31	53.39 (5.2)						
2MR9	19	71.82	46.29 (7.3)	6	74.09	46.29 (7.9)						
2MTW	8	85.00	51.07 (10.3)	4	83.00	51.78 (10.5)						
2P5K	7	62.22	31.78 (5.3)	4	46.35	30.88 (3.5)						
2P81	1	68.64	42.42 (7.2)	23	72.27	43.00 (7.4)						

TABLE 2: Hypervolume results of second stage parametrisation

Top 5 Hypervolume Configurations											
LS Position	Energy eval. %	Res. mod. %	HV AVG	HV Variance							
End	60	40	3.2609	0.0023							
Intermediate	70	10	3.2600	0.0022							
End	70	20	3.2592	0.0025							
End	70	30	3.2608	0.0035							
End	80	70	3.2612	0.0030							

TABLE 3: Best RMSD and GDT Results

		Best RN	ISD	Best GDT						
Protein	Run	RMSD	AV(STD)	Run	GDT	AV(STD)				
1AB1	11b	4.19	7.72 (1.5)	26b	57.83	41.26 (5.7)				
1ACW	27b	2.85	5.27 (1.5)	27b	73.79	48.50 (8.0)				
1CRN	23a	4.19	8.01 (1.7)	3a	61.74	40.33 (6.2)				
1D5Q	22a	2.03	4.29 (1.5)	21a	79.26	58.62 (9.5)				
1ENH	14a	2.81	7.90 (2.0)	1a	64.44	39.25 (6.8)				
1K43	4a	1.05	2.39 (0.9)	13a	88.57	72.10 (7.9)				
1L2Y	16a	1.20	3.19 (1.0)	26a	91.00	67.42 (9.2)				
1Q2K	26a	2.21	5.26 (1.6)	26a	81.94	55.14 (7.6)				
1ROP	16a	2.33	5.68 (2.4)	16a	74.29	48.45 (7.1)				
1UTG	5a	3.61	10.13 (2.3)	5a	54.29	31.90 (4.7)				
1WQC	2a	2.15	4.69 (1.0)	3a	80.00	55.65 (6.9)				
1ZDD	17a	2.85	6.06 (1.2)	17a	69.41	45.59 (6.7)				
2MR9	3b	2.70	6.66 (1.7)	3b	72.27	45.89 (7.1)				
2MTW	26b	2.33	5.40 (1.0)	26b	81.00	52.48 (10.1)				
2P5K	7b	5.30	10.59 (1.8)	2b	46.67	32.30 (3.9)				
2P6J	1b	3.93	7.70 (2.2)	1b	62.31	38.20 (5.3)				
2P81	24b	3.33	8.65 (1.1)	6b	69.09	42.68 (7.1)				
2PMR	23b	3.50	8.58 (3.5)	23b	64.21	38.39 (6.3)				
3V1A	26b	2.14	5.71 (2.2)	26b	75.00	46.28 (7.6)				

TABLE 4: Best Talaris2013 Results

	Best Talaris2013											
Protein	Run	Talaris	SASA	RMSD	GDT							
1AB1	22b	2996.68	3632.25	11.28	31.30							
1ACW	12b	2337.38	2786.70	10.04	35.86							
1CRN	6a	2940.83	3854.56	11.40	32.61							
1D5Q	28a	-14.06	2955.70	7.57	54.07							
1ENH	8b	1544.07	6100.20	17.28	35.93							
1K43	19a	2.88	1951.53	2.10	75.71							
1L2Y	24a	1683.07	1678.09	4.66	49.00							
1Q2K	18a	12.17	3594.09	10.71	52.26							
1ROP	6a	63.84	5791.26	21.76	47.50							
1UTG	1a	8731.70	6841.96	18.95	28.29							
1WQC	14a	1745.45	2957.19	8.14	48.46							
1ZDD	27a	1347.83	3743.88	9.00	50.59							
2MR9	3b	2351.47	4237.64	9.05	45.91							
2MTW	6b	-6.90	2336.00	2.48	77.00							
2P5K	28b	2236.27	6894.15	18.04	28.25							
2P6J	7b	578.22	5915.96	16.18	32.69							
2P81	22b	192.40	5351.45	14.68	39.09							
2PMR	6b	556.72	7772.89	21.01	35.53							
3V1A	14b	1451.38	4982.18	14.91	43.75							

TABLE 5: Best SASA Results

	Best SASA												
Protein	Run	Talaris	SASA	RMSD	GDT								
1AB1	3b	149253.56	1420.41	9.02	28.26								
1ACW	15b	56975.89	1328.49	6.22	39.31								
1CRN	21a	140885.90	1470.26	8.99	34.35								
1D5Q	30a	47754.19	1109.76	4.80	52.59								
1ENH	6a	291005.76	1572.09	9.35	33.70								
1K43	26a	38320.48	895.70	3.20	67.14								
1L2Y	1a	41493.60	967.32	5.22	54.00								
1Q2K	24a	64140.67	1295.78	8.03	44.52								
1ROP	18a	149993.75	2224.37	5.36	50.71								
1UTG	14b	333410.11	2004.18	10.40	29.43								
1WQC	25a	47000.00	1201.27	5.21	51.54								
1ZDD	24a	68512.43	1443.07	7.78	35.29								
2MR9	22b	122916.37	1443.22	7.58	38.18								
2MTW	18b	38763.87	1080.14	8.48	34.00								
2P5K	4b	250678.41	1848.32	9.22	26.67								
2P6J	19b	203751.83	1591.80	7.87	33.08								
2P81	13b	136546.05	1536.45	10.06	29.55								
2PMR	29b	324657.27	2344.35	5.66	36.05								
3V1A	3b	85568.72	1797.34	10.61	38.33								

TABLE 6: Evaluated configurations in the first stage of parametrisation. Configurations without letter b in their names, start the LS at the first generation, and configurations with letter b in their names, start at 80% of energy evaluations (The value of this parameter is actually defined in the third parametrisation stage)

Configuration	Crossover	Mutation	Local Search	Residues Modified
1	0.5	0.1	None	0
2	0.5	0.1	LS1	0.5
3	0.5	0.1	LS2	0.5
4	0.5	0.1	PLS	0.5
5	0.9	0.1	None	0
6	0.9	0.1	LS1	0.5
7	0.9	0.1	LS2	0.5
8	0.9	0.1	PLS	0.5
9	0.5	0.2	None	0
10	0.5	0.2	LS1	0.5
11	0.5	0.2	LS2	0.5
12	0.5	0.2	PLS	0.5
13	0.9	0.2	None	0
14	0.9	0.2	LS1	0.5
15	0.9	0.2	LS2	0.5
16	0.9	0.2	PLS	0.5
2b	0.5	0.1	LS1	0.5
3b	0.5	0.1	LS2	0.5
4b	0.5	0.1	PLS	0.5
6b	0.9	0.1	LS1	0.5
7b	0.9	0.1	LS2	0.5
8b	0.9	0.1	PLS	0.5
10b	0.5	0.2	LS1	0.5
11b	0.5	0.2	LS2	0.5
12b	0.5	0.2	PLS	0.5
14b	0.9	0.2	LS1	0.5
15b	0.9	0.2	LS2	0.5
16b	0.9	0.2	PLS	0.5

Г	e.		<u>∞</u>		<u></u>	- 2	<u>∞</u>	60	ω		- 6	<u>∞</u>		- 2	<u></u>	<u></u>	4	9	9	ċ			2	6	4	_ 0	4	-	7
	Score	3.77	8 6.28	4.77	8.53	5 2.02	5.78	4.53		3.77	8.29					5.53	5 11.04	3.66	3.66		3 2.67	8 0.67	0.42	3.39	3.94	3.40	3.14	5 0.92	5 4.17
	STD	0.03	0.03	0.04	0.04	0.05	0.04	0.07	0.05	0.05	0.06	0.06	0.04	0.06	0.04	0.07	0.05	0.62	0.60	0.78	0.68	0.68	99.0	0.53	0.71	0.58	0.55	0.65	0.65
	Total Ranking 1 Total Ranking 2 total HV	3.08	3.04	3.06	3.04	3.09	3.04	3.06	3.03	3.09	3.03	3.06	3.02	3.11	3.03	3.07	3.02	3.09	3.09	3.10	3.10	3.10	3.10	3.09	3.08	3.09	3.09	3.10	3.09
	2 tot		.,	.,					.,	.,	(-,	.,	.,								(-,	(-,		.,	.,	.,		.,	.,
se	ıking					_																							
Totales	ıl Rar	3	0	0	0	10	0	0	0	ж	0	0	0	18	0	_	0	4	4	13	∞	16	17	5	æ	S	9	15	2
	l Tota																												
	king																												
	l Ran	0	7	-	16	0	5	0	4	0	15	5	25	0	14	5	26	0	0	0	0	0	0	0	0	0	0	0	0
	Tota																												
	cing 2	3	0	0	0	5	0	0	0	_	0	0	0	∞	0	0	0	3	3	~	_	10	11	5	3	_	_	∞	_
	ranking																												
2P81	ranking	0	7	_	16	0	2	0	2	0	2	2	7	•	11	2	11	0	0	0	0	0	•	0	0	0	0	0	0
2) ran	~	~	_	~	4	~	10	4	4	10	~	10	.	4	~	~	~	10	_	2	~	•	2	7	4	4	•	2
	STD	7 0.03	2 0.03	4 0.01	1 0.03	8 0.04	4 0.03	5 0.05	3 0.04	7 0.04	3 0.05	3 0.03	2 0.05	8 0.04	1 0.04	3 0.03	2 0.03	7 0.88	7 0.65	8 1.21	7 1.12	9 0.78	68.0	99.0 /	7 1.07	7 0.64	7 0.64	8 0.79	7 0.82
L	2 HV	3.2	3.22	3.2	3.21	3.28	3.24	3.25	3.23	3.27	3.23	3.23	3.22	3.28	3.21	3.23	3.22	3.27	3.27	3.28	3.27	3.29	3.29	3.27	3.27	3.27	3.27	3.28	3.27
	ranking 2	0	0	0	0	_	0	0	0	_	0	0	0	9	0	_	0	0	0	_	9	9	7	0	0	0	_	3	-
	1 ran																												
2MTW	STD ranking 1	0	0	0	0	0	33	0	5	0	ϵ	0	11	0	ϵ	0	4	0	0	0	0	0	0	0	0	0	0	0	0
2	D ran	4	4	9	9	6	5	2	9	7	_	0	5	0	4	3	7	5	65	ė,	9	5	63	4	0	έ	2	0	6
		2 0.04	88 0.04	0.00	88 0.06	3 0.09	36 0.05	0 0.12	34 0.06	3 0.07	6 0.07	01.0 2	34 0.05	7 0.10	7 0.04	4 0.13	5 0.07	4 0.35	3 0.33	5 0.43	9 0.26	7 0.35	5 0.33	0.34	0.40	4 0.43	5 0.32	0.50	5 0.39
	2 HV	2.92	2.88	2.90	2.88	2.93	2.86	2.90	2.84	2.93	2.86	2.92	2.84	2.97	2.87	2.94	2.85	2.94	2.93	2.95	2.99	2.97	2.95	2.94	2.91	2.94	2.95	2.96	2.95
	ranking	0	0	0	0	4	0	0	0	_	0	0	0	4	0	0	0	_	-	4	_	0	4	0	0	4	4	4	0
	-																												
1WQC	ranking	0	0	0	0	0	0	0	7	0	7	0	7	0	0	0	Ξ	0	0	0	0	0	0	0	0	0	0	0	0
=	STD ra	0.03	0.03	0.03	0.04	0.04	0.04	0.03	03	05	05	40	03	90	94	4	05	62	84	20	29.0	06.0	87.0	0.59	0.64	89.0	89.0	0.65	0.75
		-	_	_					1 0.03	6 0.05	0 0.05	5 0.04	1 0.03	90.0 2	2 0.04	38 0.041	0 0.05	6 0.62	6 0.84	0.70				_					
	. HV	3.05	3.02	3.04	3.02	3.07	3.03	3.04	3.01	3.06	3.00	3.05	3.01	3.07	3.02	3.038	3.00	3.06	3.06	3.06	3.06	3.04	3.07	3.06	3.05	3.07	3.07	3.06	3.05
	Config.	1	2	Э	4	5	9	7	∞	6	10	11	12	13	14	15	16	2p	3b	4b	99	76	8 p	10b	11b	12b	14b	15b	16b

TABLE 7: Hypervolume results of first stage parametrisation