Parallel Programming

N-Body Simulation in CUDA

Slides based on Martin Burtscher's tutorial

Outline

- Review: GPU programming
- N-body example
- Porting and tuning

CUDA Programming Model

- Non-graphics programming
 - Uses GPU as massively parallel co-processor

- SIMT (single-instruction multiple-threads) model
 - Thousands of threads needed for full efficiency

- C/C++ with extensions
 - Function launch
 - Calling functions on GPU
 - Memory management
 - GPU memory allocation, copying data to/from GPU
 - Declaration qualifiers
 - Device, shared, local, etc.
 - Special instructions
 - Barriers, fences, etc.
 - Keywords
 - threadIdx, blockIdx

Calling GPU Kernels

- Kernels are functions that run on the GPU
 - Callable by CPU code
 - CPU can continue processing while GPU runs kernel KernelName<<<m, n>>>(arg1, arg2, ...);
- Launch configuration (programmer selectable)
 - GPU spawns m blocks of n threads per block (i.e., m*n threads total) that run a copy of the same function
 - Normal function parameters: passed conventionally
 - Different address space

GPU Architecture

 GPUs consist of Streaming Multiprocessors (SMs) - 1 to 30 SMs per chip (run blocks) SMs contain Processing Elements (PEs) - 8, 32, or 192 PEs per SM (run threads) Shared **Global Memory** Adapted from NVIDIA

Block Scalability

- Hardware can assign blocks to SMs in any order
 - A kernel with enough blocks scales across GPUs
 - Not all blocks may be resident at the same time

GPU Memories

- Separate from CPU memory
 - CPU can access GPU's global
 & constant mem. via PCIe bus
 - Requires slow explicit transfer
- Visible GPU memory types
 - Registers (per thread)
 - Local mem. (per thread)
 - Shared mem. (per block)
 - Software-controlled cache
 - Global mem. (per kernel)
 - Constant mem. (read only)

Slow communic. between blocks

SM Internals (Fermi and Kepler)

Caches

- Software-controlled shared memory
- Hardware-controlled incoherent L1 data cache
- 64 kB combined size, can be split 16/48, 32/32, 48/16
- Synchronization support
 - Fast hardware barrier within block (__syncthreads())
 - Fence instructions: memory consistency & coherency
- Special operations
 - Thread voting (warp-based reduction operations)

Block and Thread Allocation Limits

- Blocks assigned to SMs
 - Until first limit reached
- Threads assigned to PEs

- Hardware limits
 - 8/16 active blocks/SM
 - 1024, 1536, or 2048
 resident threads/SM
 - 512 or 1024 threads/blk
 - 16k, 32k, or 64k regs/SM
 - 16 kB or 48 kB shared memory per SM
 - $-2^{16}-1$ or $2^{31}-1$ blks/kernel

Warp-based Execution

- 32 contiguous threads form a warp
 - Execute same instruction in same cycle (or disabled)
 - Warps are scheduled out-of-order with respect to each other to hide latencies
- Thread divergence
 - Some threads in warp jump to different PC than others
 - Hardware runs subsets of warp until they re-converge
 - Results in reduction of parallelism (performance loss)

Thread Divergence

Non-divergent code

```
if (threadID >= 32) {
    some_code;
} else {
    other_code;
}
```


Divergent code

```
if (threadID >= 13) {
    some_code;
} else {
    other_code;
}
```


Parallel Memory Accesses

- Coalesced main memory access
 - Under some conditions, HW combines multiple (half) warp memory accesses into a single coalesced access
- Bank-conflict-free shared memory access
 - No superword alignment or contiguity requirements

Warnings for GPU Programming

- GPUs can only execute some types of code fast
 - Need lots of data parallelism, data reuse, & regularity
- GPUs are harder to program and tune than CPUs
 - poor tool support
 - architecture
 - poor support for irregular code

N-body Simulation

- Time evolution of physical system
 - System consists of bodies
 - "n" is the number of bodies
 - Bodies interact via pair-wise forces

- Many systems can be modeled in this way
 - Star/galaxy clusters (gravitational force)
 - Particles (electric force, magnetic force)

Simple N-body Algorithm

Algorithm

```
Initialize body masses, positions, and velocities
Iterate over time steps {
    Accumulate forces acting on each body
    Update body positions and velocities based on force
}
Output result
```

- More sophisticated n-body algorithms exist
 - Barnes Hut algorithm
 - Fast Multipole Method (FMM)

Key Loops (Pseudo Code)

```
bodySet = ...; // input
for timestep do { // sequential
  foreach Body b1 in bodySet \{ // O(n^2) \text{ parallel} \}
    foreach Body b2 in bodySet {
      if (b1 != b2) {
        bl.addInteractionForce(b2);
  foreach Body b in bodySet { // O(n) parallel
    b.Advance();
   output result
```

Force Calculation C Code

```
struct Body {
 float mass, posx, posy, posz; // mass and 3D position
 float velx, vely, velz, accx, accy, accz; // 3D velocity & accel
} *body;
for (i = 0; i < nbodies; i++) {
 for (j = 0; j < nbodies; j++) {
    if (i != j) {
     dx = body[j].posx - px; // delta x
     dy = body[j].posy - py; // delta y
     dz = body[j].posz - pz; // delta z
     dsq = dx*dx + dy*dy + dz*dz; // distance squared
     dinv = 1.0f / sqrtf(dsq + epssq); // inverse distance
      scale = body[j].mass * dinv * dinv * dinv; // scaled force
     ax += dx * scale; // accumulate x contribution of accel
      ay += dy * scale; az += dz * scale; // ditto for y and z
```

N-body Algorithm Suitability for GPU

- Lots of data parallelism
 - Force calculations are independent
 - Should be able to keep SMs and PEs busy
- Sufficient memory access regularity
 - All force calculations access body data in same order
 - Should have lots of coalesced memory accesses
- Sufficient code regularity
 - All force calculations are identical
 - There should be little thread divergence
- Plenty of data reuse
 - $O(n^2)$ operations on O(n) data
 - CPU/GPU transfer time is insignificant

C to CUDA Conversion

- Two CUDA kernels
 - Force calculation
 - Advance position and velocity
- Benefits
 - Force calculation requires over 99.9% of runtime
 - Primary target for acceleration
 - Advancing kernel unimportant to runtime
 - But allows to keep data on GPU during entire simulation
 - Minimizes GPU/CPU transfers

C to CUDA Conversion

```
global void ForceCalcKernel(int nbodies, struct Body *body, ...) {
 global void AdvancingKernel(int nbodies, struct Body *body, ...) {
int main(...) {
 Body *body, *bodyl;
 cudaMalloc((void**)&bodyl, sizeof(Body)*nbodies);
 cudaMemcpy(bodyl, body, sizeof(Body)*nbodies, cuda...HostToDevice);
 for (timestep = ...) {
   ForceCalcKernel<<<1, 1>>>(nbodies, bodyl, ...);
   AdvancingKernel <<<1, 1>>> (nbodies, bodyl, ...);
  cudaMemcpy(body, bodyl, sizeof(Body)*nbodies, cuda...DeviceToHost);
 cudaFree(bodyl);
```

Evaluation Methodology

- Systems and compilers
 - CC 1.3: Quadro FX 5800, nvcc 3.2
 - 30 SMs, 240 PEs, 1.3 GHz, 30720 resident threads
 - CC 2.0: Tesla C2050, nvcc 3.2
 - 14 SMs, 448 PEs, 1.15 GHz, 21504 resident threads
 - CC 3.0: GeForce GTX 680, nvcc 4.2
 - 8 SMs, 1536 PEs, 1.0 GHz, 16384 resident threads
- Input and metric
 - 1k, 10k, or 100k star clusters (Plummer model)
 - Median runtime of three experiments, excluding I/O

1-Thread Performance

Problem size

- n=10000, step=1
- n=10000, step=1
- n=3000, step=1

Slowdown rel. to CPU

- CC 1.3: 72.4
- CC 2.0: 36.7
- CC 3.0: 68.1

(Note: comparing different GPUs to different CPUs)

Performance

 1 thread is one to two orders of magnitude slower on GPU than CPU

Reasons

- No caches (CC 1.3)
- Not superscalar
- Slower clock frequency
- No SMT latency hiding

Using N Threads

- Approach
 - Eliminate outer loop
 - Instantiate n copies of inner loop, one per body
- Threading
 - Blocks can only hold 512 or 1024 threads
 - Up to 8/16 blocks can be resident in an SM at a time
 - SM can hold 1024, 1536, or 2048 threads
 - Use 256 threads per block (works for all three GPUs)
 - Need multiple blocks
 - Last block may not need all of its threads

Using N Threads

```
global void ForceCalcKernel(int nbodies, struct Body *body, ...) {
 for (i = 0; i < nbodies; i++) {</pre>
 i = threadIdx.x + blockIdx.x * blockDim.x; // compute i
  if (i < nbodies) { // in case last block is only partially used</pre>
    for (j = ...) {
 global void AdvancingKernel(int nbodies,...) // same changes
#define threads 256
int main(...) {
  int blocks = (nbodies + threads - 1) / threads; // compute block cnt
 for (timestep = ...) {
   ForceCalcKernel<<<1, 1blocks, threads>>>(nbodies, bodyl, ...);
   AdvancingKernel<<<1, 1blocks, threads>>>(nbodies, bodyl, ...);
```

N Thread Speedup

- Relative to 1 GPU thread
 - CC 1.3: 7781 (240 PEs)
 - CC 2.0: 6495 (448 PEs)
 - CC 3.0: 12150 (1536 PEs)
- Relative to 1 CPU thread
 - CC 1.3: 107.5
 - CC 2.0: 176.7
 - CC 3.0: 176.2

- Performance
 - Speedup much higher
 than number of PEs
 (32, 14.5, and 7.9 times)
 - Due to SMT latency hiding
- Per-core performance
 - CPU core delivers up to
 4.4, 5, and 8.7 times as
 much performance as a
 GPU core (PE)

Using Scalar Arrays

- Data structure conversion
 - Arrays of structs are bad for coalescing
 - Bodies' elements (e.g., mass fields) are not adjacent
- Optimize data structure
 - Use multiple scalar arrays, one per field (need 10)
 - Results in code bloat but often much better speed

Using Scalar Arrays

```
_global__ void ForceCalcKernel(int nbodies, float *mass, ...) {
 // change all "body[k].blah" to "blah[k]"
 global void AdvancingKernel(int nbodies, float *mass, ...) {
 // change all "body[k].blah" to "blah[k]"
int main(...) {
 float *mass, *posx, *posy, *posz, *velx, *vely, *velz, *accx, *accy, *accz;
  float *massl, *posxl, *posyl, *poszl, *velxl, *velyl, *velzl, ...;
 mass = (float *)malloc(sizeof(float) * nbodies); // etc
  cudaMalloc((void**)&massl, sizeof(float)*nbodies); // etc
  cudaMemcpy(massl, mass, sizeof(float)*nbodies, cuda...HostToDevice); // etc
  for (timestep = ...) {
   ForceCalcKernel<<<blooks, threads>>>(nbodies, massl, posxl, ...);
   AdvancingKernel << blocks, threads>>> (nbodies, massl, posxl, ...);
  cudaMemcpy(mass, massl, sizeof(float)*nbodies, cuda...DeviceToHost); // etc
```

Scalar Array Speedup

- Problem size
 - n=100000, step=1
 - n=100000, step=1
 - n=300000, step=1
- Relative to struct
 - CC 1.3: 0.83
 - CC 2.0: 0.96
 - CC 3.0: 0.82

- Performance
 - Threads access same memory locations, not adjacent ones
 - Always combined but not really coalesced access
 - Slowdowns may be due to DRAM page/TLB misses
- Scalar arrays
 - Still needed (see later)

Constant Kernel Parameters

- Kernel parameters
 - Lots of parameters due to scalar arrays
 - All but one parameter never change their value
- Constant memory
 - "Pass" parameters only once
 - Copy them into GPU's constant memory
- Performance implications
 - Reduced parameter passing overhead
 - Constant memory has hardware cache

Constant Kernel Parameters

```
constant int nbodiesd:
 constant float dthfd, epssqd, float *massd, *posxd, ...;
 global void ForceCalcKernel(int step) {
 // rename affected variables (add "d" to name)
__global__ void AdvancingKernel() {
 // rename affected variables (add "d" to name)
int main(...) {
  cudaMemcpyToSymbol(massd, &massl, sizeof(void *)); // etc
  for (timestep = ...) {
   ForceCalcKernel<<<1, 1>>>(step);
   AdvancingKernel<<<1, 1>>>();
```

Constant Mem. Parameter Speedup

Problem size

- n=1000, step=10000
- n=1000, step=10000
- n=3000, step=10000

Speedup

- CC 1.3: 1.015
- CC 2.0: 1.016
- CC 3.0: 0.971

Performance

- Minimal perf. impact
- May be useful for very short kernels that are often invoked

Benefit

 Less shared memory used on CC 1.3 devices

Using the RSQRTF Instruction

- Slowest kernel operation
 - Computing one over the square root is very slow
 - GPU has slightly imprecise but fast 1/sqrt instruction
 (frequently used in graphics code to calculate inverse of distance to a point)
- IEEE floating-point accuracy compliance
 - CC 1.x is not entirely compliant
 - CC 2.x and above are compliant but also offer faster non-compliant instructions

Using the RSQRT Instruction

```
for (i = 0; i < nbodies; i++) {
  for (j = 0; j < nbodies; j++) {
    if (i != j) {
     dx = body[j].posx - px;
     dy = body[j].posy - py;
     dz = body[j].posz - pz;
     dsq = dx*dx + dy*dy + dz*dz;
     dinv = 1.0f / sqrtf(dsq + epssq);
     dinv = rsqrtf(dsq + epssq);
      scale = body[j].mass * dinv * dinv * dinv;
      ax += dx * scale;
      ay += dy * scale;
      az += dz * scale;
```

RSQRT Speedup

Problem size

- n=100000, step=1
- n=100000, step=1
- n=300000, step=1

Speedup

- CC 1.3: 0.99

- CC 2.0: 1.83

- CC 3.0: 1.64

Performance

- Little change for CC 1.3
 - Compiler automatically uses less precise RSQRTF as most FP ops are not fully precise anyhow
- 83% speedup for CC 2.0
 - Over entire application
 - Compiler defaults to precise instructions
 - Explicit use of RSQRTF indicates imprecision okay

Using 2 Loops to Avoid If Statement

- "if (i != j)" creates code divergence
 - Break loop into two loops to avoid if statement

```
for (j = 0; j < nbodies; j++) {
   if (i != j) {
      dx = body[j].posx - px;
      dy = body[j].posy - py;
      dz = body[j].posz - pz;
      dsq = dx*dx + dy*dy + dz*dz;
      dinv = rsqrtf(dsq + epssq);
      scale = body[j].mass * dinv * dinv * dinv;
      ax += dx * scale;
      ay += dy * scale;
      az += dz * scale;
   }
}</pre>
```

Using 2 Loops to Avoid If Statement

```
for (j = 0; j < i; j++) {
 dx = body[j].posx - px;
 dy = body[j].posy - py;
 dz = body[i].posz - pz;
 dsq = dx*dx + dy*dy + dz*dz;
 dinv = rsqrtf(dsq + epssq);
  scale = body[j].mass * dinv * dinv * dinv;
 ax += dx * scale:
 ay += dy * scale;
 az += dz * scale;
for (j = i+1; j < nbodies; j++) {
 dx = body[j].posx - px;
 dy = body[j].posy - py;
 dz = body[j].posz - pz;
 dsq = dx*dx + dy*dy + dz*dz;
 dinv = rsqrtf(dsq + epssq);
  scale = body[j].mass * dinv * dinv * dinv;
 ax += dx * scale;
  ay += dy * scale;
 az += dz * scale;
```

Loop Duplication Speedup

Problem size

- n=100000, step=1
- n=100000, step=1
- n=300000, step=1

Speedup

- CC 1.3: 0.55

- CC 2.0: 1.00

- CC 3.0: 1.00

Performance

- No change for 2.0 & 3.0
 - Divergence moved to loop
- 45% slowdown for CC 1.3
 - Unclear reason

Discussion

- Not a useful optimization
- Code bloat
- A little divergence is okay (only 1 in 3125 iterations)

Blocking using Shared Memory

- Code is memory bound
 - Each warp streams in all bodies' masses and positions
- Use shared memory in inner loop
 - Read block of mass & position info into shared mem
 - Requires barriers (fast hardware barrier within SM)
- Advantage
 - A lot fewer main memory accesses
 - Remaining main memory accesses are fully coalesced (due to usage of scalar arrays)

Blocking using Shared Memory

```
shared float posxs[threads], posys[threads], poszs[...], masss[...];
i = 0;
for (j1 = 0; j1 < nbodiesd; j1 += THREADS) { // first part of loop</pre>
 idx = tid + i1;
 if (idx < nbodiesd) { // each thread copies 4 words (fully coalesced)</pre>
   posxs[id] = posxd[idx]; posys[id] = posyd[idx];
   poszs[id] = poszd[idx]; masss[id] = massd[idx];
  syncthreads(); // wait for all copying to be done
 bound = min(nbodiesd - j1, THREADS);
 for (j2 = 0; j2 < bound; j2++, j++) { // second part of loop}
   if (i != j) {
     dx = posxs[j2] - px; dy = posys[j2] - py; dz = poszs[j2] - pz;
     dsq = dx*dx + dy*dy + dz*dz;
     dinv = rsqrtf(dsq + epssqd);
      scale = masss[j2] * dinv * dinv * dinv;
     ax += dx * scale; ay += dy * scale; az += dz * scale;
   syncthreads(); // wait for all force calculations to be done
```

Blocking Speedup

Problem size

- n=100000, step=1
- n=100000, step=1
- n=300000, step=1

Speedup

- CC 1.3: 3.7
- CC 2.0: 1.1
- CC 3.0: 1.6

Performance

- Great speedup for CC 1.3
- Some speedup for others
 - Has hardware data cache

Discussion

- Very important optimization for memory bound code
- Even with L1 cache

Loop Unrolling

- CUDA compiler
 - Generally good at unrolling loops with fixed bounds
 - Does not unroll inner loop of our example code
- Use pragma to unroll (and pad arrays)

```
#pragma unroll 8
for (j2 = 0; j2 < bound; j2++, j++) {
   if (i != j) {
      dx = posxs[j2] - px;      dy = posys[j2] - py;      dz = poszs[j2] - pz;
      dsq = dx*dx + dy*dy + dz*dz;
      dinv = rsqrtf(dsq + epssqd);
      scale = masss[j2] * dinv * dinv * dinv;
      ax += dx * scale;      ay += dy * scale;      az += dz * scale;
   }
}</pre>
```

Loop Unrolling Speedup

Problem size

- n=100000, step=1
- n=100000, step=1
- n=300000, step=1

Speedup

- CC 1.3: 1.07
- CC 2.0: 1.16
- CC 3.0: 1.07

Performance

- Insignificant speedup
- All three GPUs

Discussion

- Can be useful
- May increase register
 usage, which may lower
 maximum number of
 threads per block and
 result in slowdown

CC 2.0 Absolute Performance

- Problem size
 - n=100000, step=1
- Runtime
 - 612 ms
- FP operations
 - 326.7 GFlop/s
- Main mem throughput
 - $1.035 \, GB/s$

- Not peak performance
 - Only 32% of 1030 GFlop/s
 - Peak assumes FMA every cycle
 - 3 sub (1c), 3 fma (1c), 1 rsqrt (8c), 3 mul (1c), 3 fma (1c) =20c for 20 Flop
 - 63% of realistic peak of 515.2
 GFlop/s
 - Assumes no non-FP operations
 - With int ops = 31c for 20 Flop
 - 99% of actual peak of 330.45
 GFlop/s

Eliminating the If Statement

- Algorithmic optimization
 - Potential softening parameter avoids division by zero
 - If-statement is not necessary and can be removed
 - Eliminates thread divergence

If Elimination Speedup

- Problem size
 - n=100000, step=1
 - n=100000, step=1
 - n=300000, step=1
- Speedup
 - CC 1.3: 1.38
 - CC 2.0: 1.54
 - CC 3.0: 1.64

- Performance
 - Large speedup
 - All three GPUs
- Discussion
 - No thread divergence
 - Allows compiler to schedule code much better

Rearranging Terms

- Generated code is suboptimal
 - Compiler does not emit as many fused multiplyadd (FMA) instructions as it could
 - Rearrange terms in expressions to help compiler
 - Need to check generated assembly code

```
for (j2 = 0; j2 < bound; j2++, j++) {
   dx = posxs[j2] - px;   dy = posys[j2] - py;   dz = poszs[j2] - pz;
   dsq = dx*dx + dy*dy + dz*dz;
   dinv = rsqrtf(dsq + epssqd);
   dsq = dx*dx + (dy*dy + (dz*dz + epssqd));
   dinv = rsqrtf(dsq);
   scale = masss[j2] * dinv * dinv * dinv;
   ax += dx * scale;   ay += dy * scale;   az += dz * scale;
}</pre>
```

FMA Speedup

- Problem size
 - n=100000, step=1
 - n=100000, step=1
 - n=300000, step=1
- Speedup
 - CC 1.3: 1.03
 - CC 2.0: 1.05
 - CC 3.0: 1.06

- Performance
 - Small speedup
 - All three GPUs

- Discussion
 - Seemingly needless transformations may make a difference

Higher Unroll Factor

- Problem size
 - n=100000, step=1
 - n=100000, step=1
 - n=300000, step=1
- Speedup
 - CC 1.3: 1.01
 - CC 2.0: 1.04
 - CC 3.0: 0.93

- Unroll 128 times
 - Avoid looping overhead
 - Now that there are no ifs
- Performance
 - Little speedup/slowdown
- Discussion
 - Carefully choose unroll factor (manually tune)

Compiler Flags

- Problem size
 - n=100000, step=1
 - n=100000, step=1
 - n=300000, step=1
- Speedup
 - CC 1.3: 1.00
 - CC 2.0: 1.18
 - CC 3.0: 1.15

- -use_fast_math
 - "-ftz=true" suffices(flush denormals to zero)
 - Makes SP FP operations faster except on CC 1.3
- Performance
 - Significant speedup
- Discussion
 - Use faster but less precise operations when prudent

Final Absolute Performance

- CC 2.0 Fermi GTX 480
 - Problem size
 - n=100000, step=1
 - Runtime
 - 296.1 ms
 - FP operations
 - 675.6 GFlop/s (SP)
 - 66% of peak performance
 - 261.1 GFlops/s (DP)
 - Main mem throughput
 - 2.139 GB/s

- CC 3.0 Kepler GTX 680
 - Problem size
 - n=300000, step=1
 - Runtime
 - 1073 ms
 - FP operations
 - 1677.6 GFlop/s (SP)
 - 54% of peak performance
 - 88.7 GFlops/s (DP)
 - Main mem throughput
 - 5.266 GB/s

Hybrid Execution

- CPU always needed for program launch and I/O
 - CPU much faster on serial program segments
- GPU 10 times faster than CPU on parallel code
 - Running 10% of problem on CPU is hardly worthwhile
 - Complicates programming and requires data transfer
 - Best CPU data structure is often not best for GPU
- PCIe bandwidth much lower than GPU bandwidth
 - 1.6 to 6.5 GB/s versus 192 GB/s
 - But can send data while CPU & GPU are computing
 - Merging CPU and GPU on same die (e.g., AMD's Fusion APU) makes finer grain switching possible

Summary

- Step-by-step porting and tuning of CUDA code
 - Example: n-body simulation
- GPUs have very powerful hardware
 - But only exploitable with some code
 - Harder to program and optimize than CPU hardware