3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2020

Corrections and suggestions should be emailed to N.Dorey@damtp.cam.ac.uk.

- 1. Show directly that if $\phi(x)$ satisfies the Klein-Gordon equation, then $\phi(\Lambda^{-1}x)$ also satisfies this equation for any Lorentz transformation Λ .
- 2. The motion of a complex field $\psi(x)$ is governed by the Lagrangian density

$$\mathcal{L} = \partial_{\mu} \psi^* \partial^{\mu} \psi - m^2 \psi^* \psi - \frac{\lambda}{2} (\psi^* \psi)^2.$$

Write down the Euler-Lagrange field equations for this system. Verify that the Lagrangian is invariant under the infinitesimal transformation

$$\delta\psi = i\alpha\psi, \qquad \delta\psi^* = -i\alpha\psi^*.$$

Derive the Noether current associated with this transformation and verify explicitly that it is conserved using the field equations satisfied by ψ .

3. Verify that the Lagrangian density

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_a \partial^{\mu} \phi_a - \frac{1}{2} m^2 \phi_a \phi_a$$

for a triplet of real fields ϕ_a , where $a \in \{1, 2, 3\}$ is invariant under the infinitesimal SO(3) rotation by θ

$$\phi_a \to \phi_a + \theta \epsilon_{abc} \eta_b \phi_c$$

where η_a is a unit vector. Compute the Noether current j^{μ} . Deduce that the three quantities

$$Q_a = \int d^3x \; \epsilon_{abc} \dot{\phi}_b \phi_c$$

are all conserved and verify this directly using the field equations satisfied by ϕ_a .

4* A Lorentz transformation $x^{\mu} \to x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$ is such that it preserves the Minkowski metric $\eta_{\mu\nu}$, meaning that $\eta_{\mu\nu} x^{\mu} x^{\nu} = \eta_{\mu\nu} x'^{\mu} x'^{\nu}$ for all x. Show that this implies that

$$\eta_{\mu\nu} = \eta_{\sigma\tau} \Lambda^{\sigma}_{\ \mu} \Lambda^{\tau}_{\ \nu} \,.$$

Use this result to show that an infinitesimal transformation of the form

$$\Lambda^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} + \alpha \omega^{\mu}_{\ \nu}$$

is a Lorentz transformation when $\omega^{\mu\nu}$ is antisymmetric: i.e. $\omega^{\mu\nu} = -\omega^{\nu\mu}$ (α is considered to be infinitesimal).

Write down the matrix form for ω^{μ}_{ν} that corresponds to a rotation through an infinitesimal angle θ about the x^3 -axis. Do the same for a boost along the x^1 -axis by an infinitesimal velocity v.

5* Consider the infinitesimal form of the Lorentz transformation derived in the previous question: $x^{\mu} \to x^{\mu} + \alpha \omega^{\mu}_{\nu} x^{\nu}$. Show that a scalar field transforms as

$$\phi(x) \to \phi'(x) = \phi(x) - \alpha \omega^{\mu}{}_{\nu} x^{\nu} \partial_{\mu} \phi(x)$$

and hence show that the variation of the Lagrangian density is a total derivative

$$\delta \mathcal{L} = -\alpha \partial_{\mu} (\omega^{\mu}_{\ \nu} x^{\nu} \mathcal{L}).$$

Using Noether's theorem, deduce the existence of the conserved current

$$j^{\mu} = -\omega^{\rho}_{\ \nu} [T^{\mu}_{\rho} x^{\nu}].$$

The three conserved charges arising from spatial rotational invariance define the *total* angular momentum of the field. Show that these charges are given by

$$Q_i = \frac{1}{2} \epsilon_{ijk} \int d^3x \, \left(x^j T^{0k} - x^k T^{0j} \right).$$

Derive the conserved charges arising from invariance under Lorentz boosts. Show that they imply

$$\frac{d}{dt} \int d^3x \ \left(x^i T^{00}\right) = \text{constant}$$

and interpret this equation.

6. Maxwell's Lagrangian for the electromagnetic field is

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu},$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ and A_{μ} is the 4-vector potential. Show that \mathcal{L} is invariant under gauge transformations

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \xi$$
,

where $\xi = \xi(x)$ is a scalar field with arbitrary (differentiable) dependence on x.

Using Noether's theorem, and the spacetime translational invariance of the action, to construct the energy momentum tensor $T^{\mu\nu}$ for the electromagnetic field. Show that the resulting object is neither symmetric nor gauge invariant. Consider a new tensor given by

$$\Theta^{\mu\nu} = T^{\mu\nu} - F^{\rho\mu} \partial_{\rho} A^{\nu}.$$

Show that this object also defines four currents. Moreover, show that it is symmetric, gauge invariant and traceless.

7. The Lagrangian density for a massive vector field C_{μ} is given by

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 C_{\mu} C^{\mu},$$

where $F_{\mu\nu} = \partial_{\mu}C_{\nu} - \partial_{\nu}C_{\mu}$. Derive the equations of motion and show that when $m \neq 0$ they imply

$$\partial_{\mu}C^{\mu}=0.$$

Further show that C_0 can be eliminated completely in terms of other fields by

$$\partial_i \partial^i C_0 + m^2 C_0 = \partial^i \dot{C}_i. \tag{1}$$

Construct the canonical momenta Π_i conjugate to C_i where $i \in \{1, 2, 3\}$ and show that the canonical momentum conjugate to C_0 is vanishing. Construct the Hamiltonian density \mathcal{H} in terms of C_0 , C_i and Π_i (NB: don't be concerned that the canonical momentum for C_0 is vanishing. C_0 is non-dynamical; it is determined entirely in terms of the other fields using Eq. (1)).

8. A class of interesting theories is invariant under the simultaneous scaling of all lengths by

$$x^{\mu} \to (x')^{\mu} = \lambda x^{\mu} \text{ and } \phi(x) \to \phi'(x) = \lambda^{-D} \phi(\lambda^{-1} x).$$
 (2)

Here, D is called the *scaling dimension* of the field. Consider the action for a real scalar field given by

$$S = \int d^4x \, \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 - g \phi^p.$$

Find the scaling dimension D such that the derivative terms remain invariant. For what values of m and p is the scaling in Eq. (2) a symmetry of the theory? How do these conclusions change for a scalar field living in an (n+1)-dimensional spacetime instead of a 3+1 dimensional spacetime?

In 3+1 dimensions, use Noether's theorem to construct the conserved current D^{μ} associated with scaling invariance.