Generación de música mediante redes neuronales profundas

Trabajo de fin de grado

Antonio Martín Ruiz

Universidad de Granada

17 de septiembre de 2020 Curso 2019-2020

Índice

Aprendizaje profundo

Aproximación por superposición de funciones sigmoidales

Tratamiento de secuencias

Aprendizaje de características

MusicVAE

AutoLoops

Redes neuronales profundas

$$f^*(\mathbf{x}) \approx f(\mathbf{x}; \theta) = (f_1 \circ f_2 \circ \dots \circ f_N)(\mathbf{x})$$
$$f_i(\mathbf{x}; \mathbf{W}_i, \mathbf{b}_i) = \sigma(\mathbf{W}_i^T \mathbf{x} + \mathbf{b}_i)$$

Figura: Ejemplo de red neuronal prealimentada con dos capas ocultas

Teorema de Hahn Banach

Teorema de extensión de Hahn-Banach. X espacio normado, M subespacio de X, $g \in M^*$ entonces $\exists f \in X^*$ que extiende a g con ||f|| = ||g||.

Teorema de Hahn Banach

Teorema de extensión de Hahn-Banach. X espacio normado, M subespacio de X, $g \in M^*$ entonces $\exists f \in X^*$ que extiende a g con $\|f\| = \|g\|$.

Corolario. X espacio normado, M un subespacio de X. Si $x_0 \notin \overline{M}$, \exists $f \in X^*$ tal que $f(x) = 0 \ \forall x \in M, f(x_0) = 1$, y $||f|| = \frac{1}{d}$, donde d es la distancia de x_0 a M.

Teorema de Hahn Banach

Teorema de extensión de Hahn-Banach. X espacio normado, M subespacio de X, $g \in M^*$ entonces $\exists f \in X^*$ que extiende a g con $\|f\| = \|g\|$.

Corolario. X espacio normado, M un subespacio de X. Si $x_0 \notin \overline{M}$, \exists $f \in X^*$ tal que $f(x) = 0 \ \forall x \in M, f(x_0) = 1$, $y \ ||f|| = \frac{1}{d}$, donde d es la distancia de x_0 a M.

Demostración. $y = x + ax_0$. $f(x + ax_0) = a$ lineal, $||f|| = \frac{1}{d}$. Aplicar extensión.

Teorema de representación de Riesz

Teorema. X un espacio de Hausdorff localmente compacto, T funcional lineal acotado sobre $C_0(X)$. $\exists \mathcal{M} \sigma$ -álgebra en X que contiene todos los conjuntos de Borel en X y $\exists ! \mu$ medida con signo regular sobre \mathcal{M} tal que

$$T(f) = \int_X f d\mu$$

para cada $f \in C_0(X)$. Además

$$||T|| = |\mu|(X).$$

Teorema para funciones discriminatorias

Definición. $\sigma: \mathbb{R} \to \mathbb{R}$ es *discriminatoria* si, cuando para una medida $\mu \in \mathcal{M}(I^n)$ se tiene que

$$\int_{I^n} \sigma(\mathbf{y}^T \mathbf{x} + \theta) d\mu(\mathbf{x}) = 0$$

para todo $\mathbf{y} \in \mathbb{R}^n$, $\theta \in \mathbb{R}$ implica que $\mu = 0$.

Teorema para funciones discriminatorias

Definición. $\sigma: \mathbb{R} \to \mathbb{R}$ es *discriminatoria* si, cuando para una medida $\mu \in \mathcal{M}(I^n)$ se tiene que

$$\int_{I^n} \sigma(\mathbf{y}^T \mathbf{x} + \theta) d\mu(\mathbf{x}) = 0$$

para todo $\mathbf{y} \in \mathbb{R}^n$, $\theta \in \mathbb{R}$ implica que $\mu = 0$.

Teorema. σ continua discriminatoria. Entonces

$$S = \left\{ g : g(\mathbf{x}) = \sum_{j=1}^{k} \alpha_j \sigma(\mathbf{y}_j^T \mathbf{x} + \theta_j) \right\}$$

es denso en $C(I^n)$.

Teorema para funciones discriminatorias

Definición. $\sigma: \mathbb{R} \to \mathbb{R}$ es *discriminatoria* si, cuando para una medida $\mu \in \mathcal{M}(I^n)$ se tiene que

$$\int_{I^n} \sigma(\mathbf{y}^T \mathbf{x} + \theta) d\mu(\mathbf{x}) = 0$$

para todo $\mathbf{y} \in \mathbb{R}^n$, $\theta \in \mathbb{R}$ implica que $\mu = 0$.

Teorema. σ continua discriminatoria. Entonces

$$S = \left\{ g : g(\mathbf{x}) = \sum_{j=1}^{k} \alpha_j \sigma(\mathbf{y}_j^\mathsf{T} \mathbf{x} + \theta_j) \right\}$$

es denso en $C(I^n)$.

Demostración. Si $\overline{S} \neq C(I^n)$, aplicar corolario de H-B para obtener funcional, que por Riezs es $F(h) = \int_{I^n} h(\mathbf{x}) d\mu(\mathbf{x})$, nulo. Contradicción.

Lema de funciones sigmoidales

Lema. Las funciones sigmoidales continuas son discriminatorias.

Lema de funciones sigmoidales

Lema. Las funciones sigmoidales continuas son discriminatorias. Demostración.

$$\sigma(\lambda(\mathbf{y}^T\mathbf{x}+\theta)+\phi) \left\{ \begin{array}{ll} \rightarrow 1 & \textit{si} \quad \mathbf{y}^T\mathbf{x}+\theta>0 \; \text{cuando} \; \lambda \rightarrow +\infty, \\ \rightarrow 0 & \textit{si} \quad \mathbf{y}^T\mathbf{x}+\theta<0 \; \text{cuando} \; \lambda \rightarrow +\infty, \\ = \sigma(\phi) & \textit{si} \quad \mathbf{y}^T\mathbf{x}+\theta=0 \; \text{para todo} \; \lambda. \end{array} \right.$$

converge puntualmente a

$$\gamma(\mathbf{x}) = \begin{cases} 1 & si \quad \mathbf{y}^T \mathbf{x} + \theta > 0 \\ 0 & si \quad \mathbf{y}^T \mathbf{x} + \theta < 0 \\ \sigma(\phi) & si \quad \mathbf{y}^T \mathbf{x} + \theta = 0 \end{cases}$$

Por convergencia dominada,

$$0 = \lim_{\lambda \to \infty} \int_{m} \sigma(\lambda(\mathbf{y}^{\mathsf{T}}\mathbf{x} + \theta) + \phi) d\mu(\mathbf{x}) = \sigma(\phi)\mu(\Pi_{\mathbf{y},\theta}) + \mu(H_{\mathbf{y},\theta})$$

$$F(h) = \int_{\mathbb{R}^n} h(\mathbf{y}^T \mathbf{x}) d\mu(\mathbf{x}), h \in L^{\infty}(\mathbb{R})$$

Tomando h función indicadora en $[\theta, +\infty)$.

$$F(h) = \int_{\mathbb{R}} h(\mathbf{y}^{\mathsf{T}} \mathbf{x}) d\mu(\mathbf{x}) = \mu(\Pi_{\mathbf{y}, -\theta}) + \mu(H_{\mathbf{y}, -\theta}) = 0 \Rightarrow F = 0$$

Tomando $s(u) = \sin(m \cdot u), c(u) = \cos(m \cdot u),$

$$F(s+ic) = \int_{I^n} (\cos(m^T x) + i\sin(m^T x)) d\mu(x) = \int_{I^n} exp(im^T x) d\mu(x) = 0$$
$$\Rightarrow \mu = 0$$

Teorema para funciones sigmoidales

Teorema. σ sigmoidal continua. Entonces

$$S = \left\{ g : g(\mathbf{x}) = \sum_{j=1}^{k} \alpha_j \sigma(\mathbf{y}_j^T \mathbf{x} + \theta_j) \right\}$$

es denso en $C(I^n)$.

Otros resultados

- Generalización para funciones acotadas no constantes.
- Generalización para funciones Riemann-integrables no polinomiales.
- Anchura fija y profundidad arbitraria.

Redes neuronales recurrentes

Figura: Desenrollado de una red recurrente

Redes recurrentes bidireccionales y profundas

Figura: Red recurrente bidireccional

Redes recurrentes con puertas

Figura: Bloque LSTM (Long short-term memory)

Autoencoder

Figura: Estructura de un autoencoder como red prealimentada profunda

Autoencoder variacional

$$p_{ heta}(\mathbf{z}|\mathbf{x}) = rac{p_{ heta}(\mathbf{x}|\mathbf{z})p_{ heta}(\mathbf{z})}{p_{ heta}(\mathbf{x})}$$
 $p_{ heta}(\mathbf{z}|\mathbf{x}) pprox q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{x};oldsymbol{\mu},oldsymbol{\sigma}^2\mathbf{I})$ $oldsymbol{x}$

Figura: Estructura de un autoencoder variacional

Función de coste del VAE

Definición. P y Q distribuciones sobre el mismo espacio de probabilidad, se define la divergencia de Kullback-Leibler como

$$D_{KL}(Q \parallel P) = E_Q \left[\log \frac{Q(x)}{P(x)} \right].$$

Proposición. Dadas las distribuciones de probabilidad $p(\mathbf{x}) = N(\mathbf{x}; \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ y $q(\mathbf{x}) = N(\mathbf{x}; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$, ambas de dimensión k, se cumple que $D_{KL}(p(\mathbf{x}) \parallel q(\mathbf{x})) = \frac{1}{2} \left(\log \frac{|\boldsymbol{\Sigma}_1|}{|\boldsymbol{\Sigma}_2|} - k + tr(\boldsymbol{\Sigma}_2^{-1}\boldsymbol{\Sigma}_1) + (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1)^T \boldsymbol{\Sigma}_2^{-1} (\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1) \right)$.

$$egin{aligned} D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{ heta}(\mathbf{z}|\mathbf{x})) = \ E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{ heta}(\mathbf{z}|\mathbf{x})
ight] = \end{aligned}$$

$$\begin{split} D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})) &= \\ E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{z}|\mathbf{x}) \right] &= \\ E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}{p_{\theta}(\mathbf{x})} \right] &= \\ E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \log p_{\theta}(\mathbf{z}) + \log p_{\theta}(\mathbf{x}) \right]. \end{split}$$

$$\begin{aligned} D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})) &= \\ E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{z}|\mathbf{x}) \right] &= \\ E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}{p_{\theta}(\mathbf{x})} \right] &= \\ E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \log p_{\theta}(\mathbf{z}) + \log p_{\theta}(\mathbf{x}) \right]. \end{aligned}$$

$$\begin{aligned} D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})) - \log p_{\theta}(\mathbf{x}) = \\ E_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \log p_{\theta}(\mathbf{z}) \right] = \end{aligned}$$

$$egin{aligned} D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{ heta}(\mathbf{z}|\mathbf{x})) = \ E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{ heta}(\mathbf{z}|\mathbf{x})
ight] = \end{aligned}$$

$$E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})}{p_{\theta}(\mathbf{x})} \right] =$$

$$E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \log p_{\theta}(\mathbf{z}) + \log p_{\theta}(\mathbf{x}) \right].$$

$$\begin{aligned} &D_{\mathit{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z}|\mathbf{x})) - \log p_{\theta}(\mathbf{x}) = \\ &E_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{x}|\mathbf{z}) - \log p_{\theta}(\mathbf{z}) \right] = \end{aligned}$$

$$\begin{aligned} -E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] + E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log q_{\phi}(\mathbf{z}|\mathbf{x}) - \log p_{\theta}(\mathbf{z}) \right] = \\ -E_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] + D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x}) \parallel p_{\theta}(\mathbf{z})). \end{aligned}$$

Truco de reparametrización

$$L(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}) = -E_{z \sim q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}) \right] + \frac{1}{2} \sum_{i=1}^{k} \left(-\log(\sigma_{j}^{2}) - 1 + \sigma_{j}^{2} + \mu_{j}^{2} \right).$$

$$\tilde{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}) = -\frac{1}{\mathcal{L}} \sum_{l=1}^{\mathcal{L}} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}^{(i,l)}) + \frac{1}{2} \sum_{l=1}^{k} \left(-\log(\sigma_j^2) - 1 + \sigma_j^2 + \mu_j^2 \right).$$

MusicVAE

Figura: Estructura del modelo MusicVAE

MusicVAE 19 / 20

AutoLoops

AutoLoops 20 / 20