From Verbal Theories to Computational Models

Klaus Oberauer

Verbal Theories and Computational Models

- Theories and Models = sets of data patterns they are compatible with
 - Possible worlds semantics

From Verbal Theories to Computational Models

- Need to specify many details
- n decision points → many computational models

Verbal Theories and Models

Verbal Theories and Models

- A verbal theory is worth ~2ⁿ models
- Negative: We don't say anything about the details
- Positive: We can say something general without knowing about the details
 - well, can we?

2 cases:

- Verbal theory allows general prediction
- Verbal theory predicts more or less anything, depending on implementation

The optimistic scenario

The pessimistic scenario

Why the pessimistic scenario is plausible

- Theories have to assume multiple mechanisms working together
 - e.g, decay, rehearsal, attention, interference, multiple buffers, multiple control processes...
- They interact in often unforseeable ways
- Can't test for individual mechanisms out of context
 - Allen Newell (1973): "You can't play 20 questions with nature and win"

The benefit of computational implementation

- We usually don't know in advance what a verbal theory predicts
 - intuition often fails!
- Implementation clarifies that
- Possible outcomes:
 - there is no consistent implementation (rare)
 - there are many consistent implementations that predict different things → testability issue
 - there is a limited set of consistent implementations, they all predict (in some regard) the same

An example: Implementing the TBRS

(Oberauer & Lewandowsky, 2011, PB&R)

- "Time-Based Resource-Sharing" model
 - Barrouillet, Camos, and colleagues

- Basic assumptions:
 - Traces in WM decay over time
 - They can be refreshed by general attention
 - general attention acts as a bottleneck, can do only one thing at a time

The complex span paradigm

 Alternate between encoding of memory items and steps on processing task

"Cognitive Load" in the TBRS

- CL = operation duration / total time
- Span declines (linearly) with CL

Empirical Support for TBRS

- Complex span more difficult than simple span
- Memory declines as pace of processing increases
- Memory declines as processing steps capture attention for longer
- No effect of number of operations when CL is constant (?)

Barrouillet et al., 2007, Exp. 3

How would you implement TBRS as a model?

- Modelling framework
 - symbolic (e.g., ACT-R)
 - concepts & features, propositions, productions
 - connectionist
 - units, connection weights
 - spatial (e.g., SIMPLE, GCM)
 - memory trace = point in space

- Modelling framework
 - symbolic, connectionist, spatial
- Representations of items
 - localist
 - each item = single unique unit
 - distributed
 - each item = pattern of activation over all units

- Modelling framework
 - symbolic, connectionist, spatial
- Representations of items
 - localist or distributed
- Representation of order
 - primacy gradient or position markers
- tbc...

Primacy gradient

- Successive items encoded with decreasing strength
- Recall = pick item with highest strength
- Response suppression → progress

Why a primacy gradient doesn't work with rehearsal or refreshing

- Refreshing = retrieval + re-encoding
 - → What to do with response suppression?

- Modelling framework
 - symbolic, connectionist, spatial
- Representations of items
 - localist or distributed
- Representation of order
 - primacy gradient or position markers
- Representation of position markers
 - localist
 - distributed: overlap declining with distance

- Modelling framework
 - symbolic, connectionist, spatial
- Representations of items
 - localist or distributed
- Representation of order
 - primacy gradient or position markers
- Representation of position markers
 - localist
 - distributed: overlap declining with distance

TBRS*: Architecture

- Items = localist representations
- Position markers: distributed, overlap declines exponentially with distance

Matrix representation

Encoding: Hebbian learning

Association between position markers and items:

$$w_{ij} = w_{ij} + \eta_e a_i a_j$$

TBRS*: Encoding

TBRS*: Encoding

TBRS*: Retrieval

- Activate position markers in forward order
 - > reproduce activation in item layer
- Pick the winner in item layer

TBRS*: Retrieval

TBRS*: Retrieval

- •
- Cumulative learning (e.g., refreshing):
 - bound: weights saturate
 - unbound: weights grow indefinitely

Trouble with unbound learning

- •
- Cumulative learning:
 - bound or unbound

$$w_{ij} = w_{ij} + \eta_e (1 - w_{ij}) a_i a_j$$

- •
- Cumulative learning:
 - bound or unbound
- How to select item to be recalled
 - pick the winner, select with probability = f(act), ...
- Retrieval threshold?
- Noise added to item layer?

In between encoding and retrieval

- Decay of weight matrix
 - exponential decline toward 0
- Refreshing
 - retrieve item + re-encode it

- •
- Refreshing schedule
 - only last item encoded
 - random selection
 - cumulative in forward order
 - start over after every interruption
 - start over only after new item

Refreshing the last item encoded

Serial Position Curves of Complex Span

Decisions to be made (3)

- •
- Refreshing schedule
 - only last item encoded
 - random selection
 - cumulative in forward order
 - start over after every interruption
 - start over only after new item
- Timing of refreshing: when to move on?
 - fixed time
 - fixed criterion of memory strength gained

Decisions to be made (3)

- •
- Refreshing schedule
 - only last item encoded
 - random selection
 - cumulative in forward order
 - start over after every interruption
 - start over only after new item
- Timing of refreshing: when to move on?
 - fixed time
 - fixed criterion of memory strength gained

The dynamics of (encoding and) refreshing

→ Variability in rate translates into variability in refreshing duration

Now we're done

- We have an implementation of TBRS
- So we can run it

Simulation 1: Big Complex Span Experiment

- Number of operations after each item:
 0, 1, 4, 8
- Operation durations: 0.3, 0.5, 0.7 s
- Free times: 0, 0.1, 0.6, 1.2, 2.0 s

Span over Load

The effect of number of operations

Remember the intuitive prediction:
 CL = operation duration / total time
 Span declines (linearly) with CL
 At constant CL, no effect of number of distractor operations.

The effect of number of operations

The equilibrium of decay and refreshing

- Decay is non-linear
- Refreshing gain is non-linear

The Actual Effect of Number of Operations

Retrieval threshold?

- Intuition associated with decay: Memory strength falls below threshold → ☺
- So far, threshold = 0.05
- What if we set it to 0?

Span over load with threshold = 0

Absolute and relative memory strength

- How can items be forgotten if they never fall below threshold?
- Recall of the right item depends on relative activation in item layer (must be the "winner"!)

Position overlap and co-activation of competitors

Position

Retrieval, Scenario 1: Equal association strength

Retrieval, Scenario 2: Unequal association strength

Position

Where does unequal strength come from?

Where does unequal strength come from?

Conclusion

- TBRS* produces the effect of cognitive load predicted by verbal TBRS
- But for a different reason than the intuition underlying verbal TBRS

From TBRS to TBRS*

- 10 decision points → many other models are possible
 - most of them predict very weird data patterns
- There is (at least) one implementation that "works", but
- It works for reasons not anticipated by intuition
- It makes in 1 case prediction different from intuitive prediction
- Through computational modelling you get to know your own theory

Trade-off btw. scope and precision

space of possible experiments

space of possible data patterns

Trade-off btw. scope and precision

space of possible experiments

space of possible data patterns