Лекція 3 Відношення й операції

План лекції

- 1. Поняття відношення
- 2. Визначення відношення
- 3. Область визначення й множина значень
- 4. Зріз відношення через елемент
- 5. Способи задавання бінарних відношень
- 5.1. Задавання перерахуванням і предикатом
- 5.2. Задавання графом
- 5.3. Задавання матрицею (таблично)

6. Операції над відношеннями

- 6.1. Об'єднання, перетин, різниця, доповнення
- 6.2. Операції об'єднання й перетину довільних сімейств відношень

7. Додаткові операції

- 7.1. Обернене відношення
- 7.2. Композиція відношень (Множення відношень)
 - 7.2.1. Властивості композиції відношень

Поняття відношення

Відношення між парою об'єктів називається бінарним. Бінарне відношення використовують для того, щоб вказати характер виду зв'язку між парою об'єктів, які розглядають у певному порядку. При цьому відношення дає критерій для визначення відмінності одних упорядкованих пар від інших. Таким чином, поняття «відношення» є подальшим розвитком понять упорядкованої множини, «відповідності» і «відображення».

У математиці для позначення зв'язку між об'єктами або поняттями часто користуються терміном «відношення».

Приклад. Такі неповні речення (або так звані предикати, твердження) можуть розглядатися як відношення:

- X менше (або більше), ніж Y,
- X вище (або нижче), ніж Y,
- X ділиться на Y,
- X відбувається раніше (або пізніше), ніж Y,
- X включено (або входить) в Y,
- Х паралельно (або перпендикулярно) до Ү,
- X дорівнює (або еквівалентне) Y ,
- X ϵ братом Y,
- X зв'язаний (електрично або іншим способом) з Y и т. ін.

Визначення вілношення

Відношенням R множин X і Y називають довільну підмножину $X \times Y$. Якщо $(x,y) \in R$, то це записують як xRy; при цьому говорять, що x і y перебувають у відношенні R, або просто, що x знаходиться у відношенні з y. ЯкщоX = Y, то відношення є підмножиною $X \times X$. Таке відношення називають **бінарним відношенням** на X.

Приклади бінарних відношень.

- 1. Вся множина $X \times Y$ є відношенням множин X і Y.
- 2. Якщо X множина дійсних чисел, то відношення

$$\left\{ \left(a,b\right) \in X \times X \middle| a^2 + b^2 = 4 \right\}$$

 ϵ бінарним відношенням на X.

- 3. Нехай X множина товарів у магазині, а Y множина дійсних чисел. Тоді $\{(a,b)\in X\times Y\,\big|\, a\; price\, b\,\}$ відношення множин X і Y.
- 4. Нехай X множина жінок, а Y множина чоловіків, тоді $\{\,(a,b)\big|b$ ϵ чоловіком $a\,\}$ ϵ відношення множин X і Y .
- 5. Якщо A множина людей, то відношення

$$\{(a,b)\in A^2 | b \in$$
родичем $a\}$

 ϵ бінарним відношенням на A .

Область визначення й множина значень

Область визначення відношення R на X і Y — це множина всіх $x \in X$ таких, що для деяких $y \in Y$ маємо $(x,y) \in R$. Інакше кажучи, область визначення R є множиною всіх перших координат упорядкованих пар з R.

Множина значень відношення R на X і Y — це множина всіх $y \in Y$ таких, що $(x,y) \in R$ для деяких $x \in X$. Інакше кажучи, множина значень R є множиною всіх других координат упорядкованих пар з R.

3 кожним відношенням R на $X \times Y$ зв'язане відношення R^{-1} на $Y \times X$.

Способи задавання бінарних відношень

1. Бінарне відношення можна задати, перераховуючи всі пари, які в нього входять (якщо відношення складається зі скінченної кількості пар) або вказавши загальну властивість пар, що належать цьому відношенню, тобто предикатом (згадайте способи задавання множин).

Приклад. Нехай дана множина $X = \{p, r, s, q\}$. Задамо відношення $R \subseteq X \times X$ перерахуванням пар: $R = \{(p, r), (s, q), (r, p), (p, p), (s, r), (p, s)\}$

Приклад. Нехай дано N — множина натуральних чисел. Задамо відношення, вказавши загальну властивість пар, що належать відношенню:

$$R_1 = \{(n, m) \in N \times N \mid n \in \text{дільником } m\}$$

2. Спосіб задавання бінарного відношення за допомогою графа. Нехай R — бінарне відношення на множині X. Зобразимо елементи множини X у вигляді точок на площині (їх називають вершинами графа). Для двох точок x_i, x_j проводимо стрілку \to з x_i у x_j тоді й тільки тоді, коли $\left(x_i, x_j\right) \in R$. При цьому, якщо одночасно $\left(x_i, x_j\right) \in R$ та $\left(x_j, x_i\right) \in R$, то точки x_i і x_j з'єднують стрілкою \leftrightarrow , а якщо $\left(x_j, x_j\right) \in R$, то в точці x_j зображують петлю. На рисунку зображено граф бінарного відношення:

$$R = \{ (p,r), (s,q), (r,p), (p,p), (s,r), (p,s) \}.$$

3. Спосіб задавання бінарного відношення за допомогою булевых матриць. Нехай $R\subseteq X\times Y$, де $X=\left\{x_1,x_2,x_3,...,x_n\right\}$; $Y=\left\{y_1,y_2,y_3,...,y_m\right\}$. Розглянемо $n\times m$ -матрицю (таблицю), у якій в перший стовпець виписані елементи множини X , а в перший рядок — елементи множини Y . На перетині рядка елемента x_i й стовпця елемента y_j записують 1, якщо пара $\left(x_i,y_j\right)\in R$, і 0, якщо $\left(x_i,y_j\right)\not\in R$. Таку таблицю називають **булевою матрицею відношення.** Булева матриця відношення

$$R=\left\{ \left(\,p,r\,
ight), \left(\,s,q\,
ight), \left(\,r,p\,
ight), \left(\,p,p\,
ight), \left(\,s,r\,
ight), \left(\,p,s\,
ight)
ight\}$$
 має вигляд:

			, -	
R	p	q	r	S
p	1	0	1	1
\overline{q}	0	0	0	0
r	1	0	0	0
S	0	1	1	0

Зріз відношення через елемент

Нехай R — довільне бінарне відношення між елементами множин X і Y, $x \in X$. Множину тих елементів, з якими елемент x перебуває у відношенні R, називають **зрізом** (або **перетином**) відношення R через елемент x і позначають R(x). Якщо бінарне відношення R представлено за допомогою графа, то R(x) складається з тих вершин, у які з вершини x іде стрілка. Підкреслимо, що зріз відношення через елемент — це деяка множина, яка може містити кілька елементів, один елемент і жодного елемента (бути порожньою).

Приклад задавання зрізу відношення R через елемент x_i

Нехай дано множини $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2, y_3, y_4, y_5, y_6\}$ і відношення $R \subset X \times Y$, яке задане графом:

Зріз відношення R через елемент x_1 : $R(x_1) = \{y_1, y_2, y_3, y_6\}$ Зріз відношення R через x_2 : $R(x_2) = \{\emptyset\}$

Зріз відношення R через x_3 : $R(x_3) = y_3$

Зріз відношення R через x_4 : $R(x_4) = \{y_1, y_4\}$

Операції над відношеннями

Оскільки бінарні відношення представляють множини (пар), то до них застосовні поняття рівності, включення, а також операції об'єднання, перетину і доповнення.

Для двох бінарних відношень R і S визначимо такі операції:

Включення $R \subset S$ розуміють таким чином, що будь-яка впорядкована пара елементів, яка належить відношенню R, належить і відношенню S.

Рівність R = S означає, що відношення R і S складаються з тих самих упорядкованих пар.

Об'єднання $R \cup S$ відношень R і S складається з упорядкованих пар, що належать хоча б одному із цих відношень.

Перетин $R \cap S$ відношень R і S є нове відношення, що складається з упорядкованих пар, які належать одночасно обом відношенням.

Різниця R - S відношень R і S є множина впорядкованих пар, що належать відношенню R і не належать відношенню S.

Доповнення. Якщо R — бінарне відношення між елементами множин X і Y, то його **доповненням** (відносно $X \times Y$) називають різницю $(X \times Y) - R$

Операції об'єднання й перетину довільних сімейств відношень

Якщо $(R_i)_{i\in I}$ — сімейство відношень, то **об'єднання цього сімейства** є відношенням $\bigcup_{i\in I} R_i$, що складається з упорядкованих пар, які належать хоча б одному з відношень R_i .

Перетин цього сімейства — відношення $\bigcap_{i \in I} R_i$, що складається з упорядкованих пар, які належать одночасно усім відношенням R_i .

Додаткові операції

Для відношень задають деякі додаткові операції, які пов'язані з їх специфічною структурою, яка проявляється в тому, що всі елементи відношень є упорядкованими парами. Розглянемо дві такі операції.

1. Обернене відношення

Якщо в кожній упорядкованій парі, що належить відношенню R, поміняти місцями перший і другий компонент, то одержимо нове відношення, яке називають оберненим до відношення R і позначають через R^{-1} .

Наприклад, для відношення R

$$R = \{(p,r),(s,q),(r,p),(p,p),(s,r),(p,s)\}$$

обернене відношення R^{-1} має вигляд:

$$R^{-1} = \{(r,p), (q,s), (p,r), (p,p), (r,s), (s,p)\}$$

Ясно, що тоді й граф відношення R^{-1} одержують з графа відношення R шляхом переорієнтації всіх стрілок.

Якщо ж відношення R задане за допомогою булевої матриці, то, помінявши в ній рядки та стовпці, одержимо булеву матрицю відношень R^{-1} .

Нехай $R \subseteq X \times Y$ є відношенням на $X \times Y$. Тоді відношення R^{-1} на $Y \times X$ визначається в такий спосіб:

$$R^{-1} = \{(y,x) | (x,y) \in R\}.$$

Інакше кажучи, $(y,x) \in R^{-1}$ тоді й тільки тоді, коли $(x,y) \in R$ або, що рівнозначно, $yR^{-1}x$ тоді й тільки тоді, коли xRy.

Відношення R^{-1} називають *оберненим відношенням* до даного відношення R.

Приклади прямих та обернених відношень

Нехай
$$R = \{(1,r),(1,s),(3,s)\}$$
, тоді $R^{-1} = \{(r,1),(s,1),(s,3)\}$. Нехай $R = \{(a,b)|b$ є чоловіком $a\}$, тоді $R^{-1} = \{(b,a)|a$ є дружиною $b\}$

Нехай

$$R = \{(a,b)|b \in \text{родичем } a\}, \text{ тоді } R = R^{-1}$$

Нехай

$$R$$
 — відношення $\{(a,b)|a^2+b^2=4\}$, тоді також $R^{-1}=R$.

2. Композиція відношень (Множення відношень)

Нехай
$$R \subseteq X \times Y$$
 — відношення на $X \times Y$, а $S \subseteq Y \times Z$ — відношення на $Y \times Z$.

Композицією відношень S і R називають відношення $T \subseteq X \times Z$,

визначене в такий спосіб:

$$T = \{ (x,z) | \text{ існує такий елемент } y \in Y, \text{ що } (x,y) \in R \text{ i } (y,z) \in S \}.$$

Цю множину позначають $T = S \circ R$.

Приклад.

Нехай
$$X = \{1,2,3\}, Y = \{a,b\} i Z = \{\alpha,\beta,\lambda,\mu\}.$$

Також задані відношення

$$R = X \times Y$$
 и. $S = Y \times Z$ $R = \{(1,a),(2,b),(3,b)\}$,

$$S = \{(a,\alpha),(a,\beta),(b,\lambda),(b,\mu)\},\$$

Тоді
$$S \circ R = \{(1, \alpha), (1, \beta), (2, \lambda), (2, \mu), (3, \lambda), (3, \mu)\}$$
 оскільки

з
$$(1,a) \in R$$
 $i(a,\alpha) \in S$ випливає, що $(1,\alpha) \in S \circ R$,

$$3(1,a) \in R \ i(a,\beta) \in S \ випливає, що $(1,\beta) \in S \circ R$,$$

. . . .

$$(3,b) \in R \ i(b,\mu) \in S \ випливає, що $(3,\mu) \in S \circ R$.$$

Властивості композиції відношень

Композиція відношень **асоціативна**; тобто, якщо X , Y , Z , D — множини і якщо $R \subseteq X \times Y$, $S \subseteq Y \times Z$ і $T \subseteq Z \times D$.

Тоді
$$R \circ (S \circ T) = (R \circ S) \circ T$$
.