Algebraic Topology

Kexing Ying

January 13, 2022

Contents

1 Introduction 2

1 Introduction

Let us introduce/recall some basic definitions which will be used throughout this course.

Definition 1.1 (Path). A path in a topological space X is a continuous map $\gamma : [0,1] \subseteq \mathbb{R} \to X$. In the case that $\gamma(0) = \gamma(1)$, we call γ a loop/closed path.

Definition 1.2 (Homotopy). Given two paths $\gamma_0, \gamma_1 : [0,1] \to X$ with the same end points (i.e. $\gamma_0(0) = \gamma_1(0)$ and $\gamma_0(1) = \gamma_1(1)$ are said to be homotopic with fixed endpoints if there exists a continuous map

$$H: [0,1] \times [0,1] \to X$$

such that

- $H(t,0) = \gamma_0(t)$ for all $t \in [0,1]$;
- $H(t,1) = \gamma_1(t)$ for all $t \in [0,1]$;
- for all $u \in [0,1]$, $H(0,u) = \gamma_0(0) = \gamma_1(0)$ and $H(1,u) = \gamma_0(1) = \gamma_1(1)$.

Thus, graphically, two paths are homotopic if you can continuously deform a path into the other without moving the starting and ending points (see second year complex analysis for more details).

Definition 1.3 (Free Homotopy). The loops γ_0, γ_1 in X is said to be freely homotopic if there exists a continuous $H: [0,1] \times [0,1] \to X$ such that

- $H(t,0) = \gamma_0(t)$ for all $t \in [0,1]$;
- $H(t,1) = \gamma_1(t)$ for all $t \in [0,1]$;
- for all $u \in [0,1]$, H(0,u) = H(1,u).

Definition 1.4 (Simply Connected). X is said to be simply connected if any loop in X is freely homotopic to a constant loop.

Thus, informally, in a simply connected space, any loop can be contracted into a single point.

Proposition 1.1. S^2 is simply connected.

Simply connectedness is a important notion and relates to many difficult problems in geometry

Theorem 1. S^2 and \mathbb{R}^2 are, up to homeomorphism, the only two simply-connected 2-dimensional manifolds.

Theorem 2 (Poincaré Conjecture). The only compact, simply connected 3-dimensional manifold is the sphere S^3 (up to homeomorphism).