5 - Equi-continuità

Premesse

> Insieme delle funzioni continue

Siano X e Y due spazi topologici. $C^0(X,Y)$ denota l'insieme delle funzioni continue da X in Y.

Q Insieme delle funzioni continue su un compatto a valori in uno spazio metrico

Sia X uno spazio topologico compatto.

Sia (Y, d) uno spazio metrico.

Sia b(X,Y) l'insieme delle funzioni limitate da X a Y.

Si hanno i seguenti fatti:

- 1. $C^0(X,Y) \subseteq b(X,Y)$
- 2. $C^0(X,Y)$ è chiuso in b(X,Y) rispetto alla metrica ρ_d .

Infatti, vale la 1. in quanto funzioni continue su un compatto sono limitate in quanto hanno immagine compatta.

Vale la 2. In quanto il limite uniforme di funzioni continue è anch'essa una funzione continua.

> Uniforme continuità

Siano (X, ρ) e (Y, d) due spazi metrici.

Una funzione $f: X \rightarrow Y$ si dice uniformemente continua quando

$$orall arepsilon > 0, \ \exists \delta > 0: orall x, y \in X:
ho(x,y) < \delta, \ d(f(x),f(y)) < arepsilon.$$

L'uniforme continuità non è definibile su spazi topologici, in quanto è necessaria la nozione di distanza.

Le funzioni uniformemente continue sono continue; il viceversa generalmente non vale.

Equi-continuità

□ Equi-continuità

Siano (X, ρ) e (Y, d) due spazi metrici.

Sia
$$\mathcal{F} \subseteq C^0(X,Y)$$
.

Le funzioni in \mathcal{F} si dicono equi-continue quando

$$orall x \in X, \ orall arepsilon > 0, \ \exists \delta_x > 0: orall y \in X: d(x,y) < \delta_x, \ orall f \in \mathcal{F}, \ d(f(x),f(y)) < arepsilon.$$

☐ Equi-uniforme continuità

Siano (X, ρ) e (Y, d) due spazi metrici.

Sia \mathcal{F} una famiglia di funzioni da X in Y.

Le funzioni in \mathcal{F} si dicono equi-uniformemente continue quando

$$orall arepsilon>0, \ \exists \delta>0: orall x,y\in X:
ho(x,y)<\delta, orall f\in \mathcal{F}, \ d(f(x),g(x))$$

Q Osservazione

Ogni funzione in un insieme di funzioni equi-(uniformemente) continue è (uniformemente) continua.

🗂 Equi-continuità di funzioni su un compatto implica la equi-uniforme continuità

Siano (X, ρ) e (Y, d) due spazi metrici, con X compatto. Sia $\mathcal{F} \subseteq C^0(X, Y)$ una famiglia di funzioni equi-continue.

Allora, esse sono anche equi-uniformemente continue.

Dimostrazione

Sia $\varepsilon > 0$.

Per equicontinuità delle funzioni in \mathcal{F} , per ogni $x \in X$ esiste $\delta_x > 0$ per cui valga d(f(x), f(y)) per ogni $y \in X$ con $\rho(x,y) < \delta_x$ e per ogni $f \in \mathcal{F}$.

Si consideri l'insieme $\left\{B\left(x,rac{\delta_x}{2}
ight)\mid x\in X
ight\}$;

questo è un ricoprimento di aperti per X, che è compatto.

Allora, esistono $x_1,\dots,x_n\in X$ tali che $X=igcup\limits_{i=1}^n B\left(x_i,rac{\delta_{x_i}}{2}
ight)$.

Sia $\delta^* = \frac{1}{2} \min_{i \in \{1, \dots, n\}} \delta_{x_i}$; si provi che tale valore è valido per far valere la condizione della definizione di equi-uniforme continuità.

Siano dunque $x,y\in X$ con $ho(x,y)<\delta^*$, e sia $f\in \mathcal{F}$; si valuti d(f(x),f(y)).

Sia $i\in\{1,\dots,n\}$ tale che $x\in B\left(x_i,rac{\delta_{x_i}}{2}
ight)$, che esiste essendo $\left\{B\left(x_i,rac{\delta_{x_i}}{2}
ight)
ight\}_{i\in\{1,\dots,n\}}$ un ricoprimento di X.

Si osservi che

$$ho(x_i,y) \leq
ho(x_i,x) +
ho(x,y)$$
 Disuguaglianza triangolare $< rac{\delta_{x_i}}{2} + \delta^*$ In quanto $x \in B\left(x_i, rac{\delta_{x_i}}{2}
ight)$ e $ho(x,y) < \delta^*$ $\leq \delta_{x_i}$ In quanto $\delta^* = rac{1}{2} \min_{i \in \{1,\dots,n\}} \delta_{x_i}$

Allora,

$$d(f(x),f(y))\leq d(f(x),f(x_i))+d(f(x_i),f(y))$$
 Disuguaglianza triangolare $<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon$ Per definizione di δ_{x_i} , in quanto $x,y\in B(x_i,\delta_{x_i})$

Segue dunque la tesi.

П