Système Distribué

TD01: Horloges et Diffusion

1 Horloge de Lamport

L'horloge de Lamport a été inventée par Leslie Lamport en 1978. Il s'agit du premier type d'horloge logique introduit en informatique. L'horloge de Lamport respecte la dépendance causale $(e \to e' \Rightarrow H(e) < H(e'))$ mais non sa réciproque $(H(e) < H(e') \not\Rightarrow e \to e')$.

Sur chaque site S_i on trouve une variable entière H_i dite horloge locale. La date locale d'un événement E est notée d(E). Avec cette notation, l'algorithme de Lamport fonctionne comme suit :

- Pour chaque événement E qui correspond à un calcul local, le site S_i incrémente son horloge locale H_i et date l'évenement E par $d(E) = H_i$.
- Lors de l'émission d'un message M par S_i , S_i incrémente son horloge locale H_i et estampille le message M par (H_i,i) . Cet événement (l'envoi du message M) est daté par $d(E)=H_i$.
- Lors de la réception d'un message M estampillé (H_i, j) par S_i , S_i recale son horloge de la manière suivante :

$$H_i = Max(H_i, H_j); \ H_i = H_i + 1;$$

Cet événement (la réception du message M) est daté par $d(E) = H_i$

La date globale D(E) d'un évenement E est alors notée (d(E),i) où i est le numéro du site où à eu lieu l'événement et d(E) sa date locale sur ce site.

Exercices:

1. Appliquez cet algorithme à l'exemple illustré sur la figure 1. Donnez la date globale de chaque événement.

FIGURE 1 – Evénements répartis entre 3 sites avec dépendances causales

- 2. Donnez les événements qui précédent causalement l'événement E_4 , E_2 , puis E_0 .
- 3. Donnez deux événements qui vérifient la relation H(e) < H(e') mais qui n'ont pas de dépendance causale.
- 4. En vous basant sur les estampilles de Lamport, donnez un ordre total des événements illustrés sur la figure 1. Qu'en déduisez-vous ?

2 Horloge de Mattern

L'horloge de Mattern a été inventé par Mattern et Fidge dans les années 1989 - 1991. Ce type d'horloge assure la réciproque de la dépendance causale. Elle permet également de savoir si 2 événements sont parallèles (non dépendants causalement). Par contre elle ne définit pas un ordre total global.

Sur chaque site S_i avec i = 1, ..., n on définit une horloge vectorielle comme un vecteur $V_i[1...n]$ initialisé à 0. Á chaque événement E sur le site $i, V_i[i]$ est modifié de la manière suivante :

- $-V_i[i] = V_i[i] + 1$ (quel que soit l'événement : calcul local, émission ou récéption)
- si l'événement E correspond à l'envoi d'un message M par S_i , M est estampillé par V_m = valeur de l'horloge V_i au moment de l'envoi.
- si l'événement E correspond à la réception par S_i d'un message M estampillé par le vecteur V_m , S_i modifie son vecteur local comme suit :

$$V_i[k] = max(V_i[k], V_m[k])$$
 pour $k = 1, ..., n$

Dans tous les cas, l'événement E est daté par l'horloge V_i .

On considère les échanges entre 4 sites illustrés sur la figure 2.

FIGURE 2 – Evénements répartis entre 4 sites avec dépendances causales

Exercices:

- 1. Datez les événements E0 E21, puis montrez que les événements E10 et E15 sont indépendants. Qu'en est-il de E2 et E15 ?
- 2. Donnez l'équation permettant de déterminer si deux événements e_i et e_j , estampillés respectivement par les vecteurs V_i et V_j , respectent $e_i \rightarrow e_j$? $e_j \rightarrow e_i$? ou bien que e_i et e_j sont indépendants?
- 3. En vous basant sur les estampilles de Mattern, donnez l'arbre des dépendances causales en rapport avec la figure 2. Qu'en déduisez-vous ?

3 Protocole d'ordre causal

Un protocole d'ordre causal est un protocole qui assure que les messages reçus sur un même site sont délivrés en respectant les dépendances causales entre les événements d'émission de ces messages.

Pour un message m, on notera e_m son événement d'émission, r_m son événement de réception et d_m l'événement de délivrement du message, c'est-à-dire l'événement correspondant au moment où le message sera réellement délivré au processus récepteur (le délivrement peut être décalé dans le futur par rapport à la réception).

FIGURE 3 – Protocole d'ordre causal

Exercices:

- Mettez en évidence le non-respect des dépendances causales en émission pour le chronogramme exposé sur la figure 3. Placez les événements de délivrement des messages sur le chronogramme en respectant ces dépendances causales.
- 2. Déterminez la relation générale entre les événements associés à 2 messages pour que l'ordre causal de leur émission soit respecté lors de leur délivrement.
- 3. Montrez que les horloges de Mattern ou de Lamport ne permettent pas de détecter le non-respect des dépendances causales en émission et de bien ordonner les délivrances des messages.

4 Diffusion causale

On peut représenter sur un chronogramme la diffusion d'un message comme un ensemble de sous-messages ayant un événement commun d'émission et un événement de réception pour chaque processus (y compris celui qui a lancé la diffusion). Le chronogramme de la figure 4 représente 3 processus qui communiquent via de la diffusion (4 diffusions sont réalisées ici : messages m_1, m_2, m_3 et m_4). On considérera dans cet exercice des processus de communications fiables.

Un message m diffusé est caractérisé par les événements suivants :

- $-e_m$ qui est l'émission (la diffusion) du message;
- pour chaque processus P_i, r_m^i est la réception du message par le système de communication de P_i ;
- pour chaque processus P_i , d_m^i est le délivrement du message à P_i par le système de communication de P_i ;

FIGURE 4 – Diffusion de message

Le chronogramme illustré sur la figure 4 représente uniquement les événements d'émissions et le délivrement immédiat d'un message dès sa réception, sans se préoccuper d'assurer des contraintes au niveau de l'ordre de délivrement des messages.

La diffusion causale est une diffusion qui assure que si la diffusion (l'émission) d'un message m' dépend causalement de la diffusion d'un message m, alors tout processus délivre m avant m'.

Exercices:

- 1. Mettez en évidence sur le chronogramme de la figure 4 un non-respect des conditions de la diffusion causale.
- 2. Dans le cas des horloges verctorielles, déterminez la condition pour qu'un site S_j délivre un message m reçu, daté par V_m et envoyé par un site S_i , tout en respectant la diffusion causale.
- 3. Datez les événements du chronogramme selon l'algorithme **CBCAST** en remplissant le tableau suivant. Comment cette datation permet de déterminer si la diffusion causale est respectée et le cas échéant de retarder le délivrement d'un message ?

Evt	Site	H avant	Mess reçu	Action	Mess émis	H après
E11	S1					
E12	S 1					
E21	S2					
E31	S3					
E22	S2					
E23	S2					
E13	S 1					
E14	S 1					
E24	S2					
E32	S3					
E33	S3					
E34	S3					
E35	S3					
E25	S2					
E15	S 1					
E16	S1					

Rappel:

L'algorithme CBCAST (Causal Broadcast) fonctionne comme suit :

- Chaque site S_i utilise une horloge vectorielle $H_i[N]$ (N sites).
- Pour chaque message m à diffuser par S_i , S_i traite m puis incrémente son horloge vectorielle $H_i[i] + +$, et estampille m par $V_m = H_i$.
- À la réception d'un message m diffusé par S_i et estampillé par V_m , le récepteur S_j le met en attente avant délivrance jusqu'à ce que la condition (2) soit respectée.
- A la délivrance du message m envoyé par S_i , S_j incrémente son horloge vectorielle comme suit $H_j[i] + +$ (sauf si $S_j = S_i$ alors on fait rien).