Programmation Linéaire Algorithme du simplexe primal-dual

Fabian Bastin DIRO Université de Montréal

Motivations:

- Exploiter d'avantage la complémentarité entre le primal et le dual.
- Comme pour le simplexe dual, on part d'une solution dual-réalisable.
- Primal restreint : on va forcer la condition de complémentarité

$$x_i > 0 \Rightarrow \lambda^T a_i = c_i$$

en faisant entrer dans la base primale les x_i correspondant aux contraintes duales actives.

 Dual restreint : on optimise le dual. Si celui-ci est réalisable, augmenter (strictement) la valeur de l'objectif dual va conduire à transformer au moins une contrainte duale inactive en contrainte duale active.

L'idée est de travailler simultanément sur le primal et le dual.

Principales idées :

- trouver une solution réalisable pour le dual;
- l'améliorer à chaque étape en optimisant un problème primal restreint associé;
- essayer de satisfaire les conditions d'écart de complémentarité.

Il s'agit de la variante du simplexe la plus efficace pour les problèmes de flots dans les réseaux.

Considérons à nouveau le primal

$$\min_{x} c^{T} x$$
t.q. $Ax = b$

$$x \ge 0.$$

et son dual

$$\max_{\lambda} \lambda^T b$$
 t.q. $\lambda^T A \leq c^T$

Étant donné λ réalisable pour le dual, définissons l'ensemble actif

$$P = \{i \mid \lambda^T a_i = c_i\}.$$

Vu que λ est supposé réalisable, cela implique

$$\lambda^T a_i < c_i, i \notin P.$$

Correspondant à λ et P, nous définissons le problème *primal* restreint associé

$$\min_{x, y} \mathbf{1}^{T} y$$
t.q. $Ax + y = b$

$$x \ge 0, x_{i} = 0 \text{ pour } i \notin P$$

$$y \ge 0$$

où ${\bf 1}$ designe the vecteur $(1,1,\ldots,1)$. Nous pouvons réécrire le problème comme

$$\min_{y \geq 0, x_i \in P} \mathbf{1}^T y$$

$$\text{t.q. } \sum_{i \in P} a_i x_i + y = b$$

$$x_i \geq 0, \ i \in P$$

Le dual associé est appelé dual restreint associé

$$\begin{aligned} \max_{u} \ u^{T} b \\ \text{t.q. } u^{T} a_{i} \leq 0, \ i \in P \\ u \leq \mathbf{1}. \end{aligned}$$

Théorème d'optimalité primale-duale

Supposons que λ est réalisable pour le dual et que (x,y) est réalisable pour le primal restreint associé, avec y=0 (de sorte que (x,y) est une solution optimale). Alors, x et λ sont optimaux pour les programmes primal et dual originaux respectifs.

Démonstration.

x est clairement réalisable pour le primal : Ax = b. Nous avons aussi, par définition de P, $\lambda^T a_i = c_i$, si $x_i \neq 0$, de sorte que

$$c^T x = \lambda^T A x.$$

En combinant ces deux observations, nous avons

$$c^T x = \lambda^T b$$
,

impliquant l'optimalité de x et λ .

Algorithme primal-dual

Etape 1 Étant donnée une solution réalisable λ_0 pour le dual, déterminer le primal restreint associé.

Etape 2 Optimiser le primal restreint associé. Si la valeur optimale de ce primal restreint associé est nulle (impliquant y=0), la solution correspondante est optimale pour le primal original, en vertu du théorème d'optimalité primale-duale; arrêt.

Etape 3 Si la valeur optimale du primal restreint associé est strictement positive (i.e. if $y \neq 0$), la solution optimale de ce primal restreint associé n'est pas réalisable pour le primal, et on cherche à améliorer la solution réalisable du dual avant de déterminer un nouveau primal restreint associé.

Algorithme primal-dual

Etape 3 (suite) Obtenir du tableau du simplexe du primal restreint la solution u_0 du dual restreint associé. S'il n'y a pas de j pour lequel $u_0^T a_j > 0$, le primal n'a pas de solution réalisable ; arrêt. Sinon, construire le nouveau vecteur dual réalisable

$$\lambda = \lambda_0 + \epsilon_0 u_0,$$

οù

$$\epsilon_0 = \min_{j} \left\{ \frac{c_j - \lambda_0^T a_j}{u_0^T a_j} \, \middle| \, u_0^T a_j > 0 \right\}.$$

Retour à l'étape 1, en utilisant ce λ .

$$\min_{x} 2x_1 + x_2 + 4x_3$$
soumis à $x_1 + x_2 + 2x_3 = 3$

$$2x_1 + x_2 + 3x_3 = 5$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

Comme tous les coefficients dans l'objectifs sont non-négatifs, le vecteur $\lambda = (0,0)$ est réalisable pour le dual.

En effet, les contraintes du dual sont

$$\lambda^T A \leq c$$
.

Avec $\lambda = (0,0)$, aucune contrainte du dual n'est active, et donc $P = \emptyset$.

Algorithme primal-dual

Le primal restreint est donc

min
$$y_1 + y_2$$

t.q. $x_1 + x_2 + 2x_3 + y_1 = 3$
 $2x_1 + x_2 + 3x_3 + y_2 = 5$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$
 $y_1, y_2 \ge 0$
 $x_1 = x_2 = x_3 = 0$.

Tableau du simplexe pour le primal restreint associé :

Algorithme primal-dual : calcul de $u^T a_i$

Pour $i \notin P$, x_i est fixé à 0 et est hors base. Nous pouvons calculer son coût réduit à l'optimalité du primal restreint comme

$$0 - u^T a_i$$
.

En effet, l'objectif du primal restreint étant $\mathbf{1}^T y$, les coefficients dans l'objectif associés aux x_i sont tous nuls. Dès lors, les valeurs de $u^T a_i$, $i \notin P$, peuvent être directement identifiées en prenant l'opposé des valeurs dans la ligne des coûts réduits du tableau final du primal restreint, pour les colonnes associées aux x_i correspondants.

Algorithme primal-dual : calcul de $u^T a_i$

Pour les variables de base x_j (> 0), nous avons $j \in P$, et les coûts réduits sont nuls.

À nouveau, le coefficient de x_j dans l'objectif restreint étant nul, et son coût réduit se calcule comme

$$0-u^Ta_j$$
.

On en tire $u^T a_i = 0$.

On peut aboutir à la même observation en invoquant les écarts de complémentarité : comme $x_j > 0$, la contrainte duale associée, $u^T a_j \leq 0$ est active, i.e. $u^T a_j = 0$.

Comme aucune contrainte duale n'est active (il n'y a pas de zéro dans la dernière ligne), $P = \emptyset$.

Dès lors, x_1 , x_2 et x_3 sont fixées à zéro. Il n'y a pas de coût réduit négatif pour les variables restantes, y_1 et y_2 . La solution

est donc optimale pour le primal restreint associé.

Le dual restreint associé s'écrit comme

$$\max_{u} u^{T} b$$

t.q. $u \leq 1$,

et $u_0 = (1,1)$ est solution optimale.

Les quantités $-u_0^T a_i$, i = 1, 2, 3, sont égales aux trois premiers éléments de la troisième ligne.

Pour trouver ϵ , nous prenons dès lors le minimum des rapport

$$\frac{2}{3}, \frac{1}{2}, \frac{4}{5}$$
.

Le minimum étant 1/2, x_2 entre dans la base, et on annule l'entrée correspondante sur la quatrième ligne, ce qui revient à rendre la seconde contrainte duale active pour le problème dual initial.

Pour ce faire, on ajoute ϵ fois la troisième ligne à la dernière. En effet, le nouveau vecteur dual est $\lambda + \epsilon u$ et nous avons comme nouvelles valeurs des contraintes duales

$$c_i - \lambda^T a_i - \epsilon u^T a_i = c_i - (\lambda + \epsilon u)^T a_i.$$

Ceci donne

On doit à présent minimiser le nouveau primal restreint, avec $P = \{2\}.$

Note : on retrouve $u^T a_2 = 0$.

En calculant les rapports de la dernière ligne sur l'avant-dernière, on obtient $\epsilon=1/2$, et comme colonne entrante a_1 .

On ajoute ϵ fois la troisième ligne à la dernière, pour obtenir

$$P = \{1, 2\}.$$

Résolution du primal restreint associé.

Le primal est réalisable : stop. La solution est

$$x_1 = 2$$
, $x_2 = 1$, $x_3 = 0$.

Dans l'étape 3, il est indiqué que $u_0^T a_j \le 0$ pour tout j implique que le primal n'a pas de solution réalisable.

Si $u_0^T a_j \leq 0$ pour tout j, le vecteur $\lambda_\epsilon = \lambda_0 + \epsilon u_0$ conduit à

$$\lambda_{\epsilon}^T A = \lambda_0^T A + \epsilon u_0^T A \le c^T.$$

De plus, comme

$$u_0^T b = \mathbf{1}^T y > 0,$$

nous voyons que la quantité

$$\lambda_{\epsilon}^T b = \lambda_0^T b + \epsilon u_0^T b,$$

est non bornée, lorsque nous augmentons ϵ . Du théoreme de dualité forte, le primal n'est pas réalisable.

Supposons à présent que pour au moins un j, $u_0^T a_j > 0$.

À nouveau, définissons

$$\lambda_{\epsilon} = \lambda_0 + \epsilon u_0$$

Par construction,

$$u_0^T a_i \leq 0, \ \forall i \in P.$$

Pour un ϵ positif assez petit, λ_ϵ est réalisable pour le dual, et nous pouvons augmenter ϵ jusqu'à transformer une des inégalités

$$\lambda_{\epsilon}^{T} a_{j} < c_{j}, \ j \notin P$$

en égalité. Ceci détermine ϵ_0 et un indice k correspondant.

Le nouveau vecteur λ correspond à une valeur accrue de la fonction objectif duale :

$$\lambda^T b = \lambda_0^T b + \epsilon u_0^T b.$$

De plus, le nouvel ensemble correspondant P inclut l'indice k.

Pour tout autre indice i t.q. $x_i > 0$ est dans P aussi, comme en vertu de l'écart de complémentarité,

$$u_0^T a_i = 0,$$

pour un tel i, nous avons

$$\lambda^T a_i = \lambda_0^T a_i + \epsilon_0 u_0^T a_i = c_i.$$

Ceci signifie que l'ancienne solution optimale (du primal restreint) est réalisable pour le nouveau problème primal restreint associé, et que a_k peut entrer dans la base. Puisque $u_0^T a_k > 0$, pivoter sur a_k va décroître la valeur du primal restreint associé.

Donc,

- soit la valeur du primal décroît (strictement sous l'hypothèse de non-dégénérescence),
- soit le problème est déclaré non réalisble.

Sous l'hypothèse de non-dégénérescence, l'algorithme se termine en un nombre fini d'étapes comme il y a un nombre fini de bases réalisables.