

Molecular dynamics simulations

- ▶ a technique for computing equilibrium and transport properties of a classical many-body system
- very similar to real experiments in many aspects
- involves preparing a system (a sample), equilibrating it (wait), and computing observables (measurement).
- common mistakes are very similar to those made in real experiments, such as: the system is not prepared correctly, the measurement is too short, or we are not measuring the right thing.

Outline

Initialization

Integrating the equation of motion

Receipe for molecular dynamics simulations

- common workflow of a molecular dynamics simulation:
 - 1. initialize the system including the positions and velocities of the particles
 - 2. run the simulation by integrating the equations of motion
 - 3. compute the observables of interest
- all three steps are crucial for a successful simulation
- ▶ the second step is often the most time-consuming part of a simulation

Initialization

- assign the initial positions and velocities for all particles
- initial positions should be compatible with the structure that we want to simulate
- should not have particles overlapping with each other, which is often achieved by initially placing the particles on a cubic lattice
- ► for molecules such as proteins with known structures, we could use the known structure as the initial configuration

Initialization

- ▶ initial velocities need to be compatible with the temperature of the system
- ► from statistical mechanics, we know that the average kinetic energy per degree of freedom is given by

$$\left\langle \frac{1}{2}mv_{\alpha}^{2}\right\rangle =\frac{1}{2}k_{B}T$$

more specifically, the velocity components of a particle follow the Boltzmann distribution

$$p(v_{\alpha}) = \frac{1}{\sqrt{2\pi k_B T/m}} e^{-mv_{\alpha}^2/2k_B T}$$

- ▶ we can assign the initial velocities by sampling from the Boltzmann distribution
- what is the average speed of a water molecule at room temperature?

Outline

Initialization

Integrating the equation of motion

The equation of motion

the equation of motion is given by Newton's second law

$$m_i \frac{d^2 \mathbf{r}_i}{dt^2} = -\nabla_i U(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$$

▶ an equivalent form is the Hamiltonian equations of motion

$$\frac{d\mathbf{q}_i}{dt} = \frac{\partial H}{\partial \mathbf{p}_i}, \quad \frac{d\mathbf{p}_i}{dt} = -\frac{\partial H}{\partial \mathbf{q}_i}$$

where $\mathbf{q}_i = \mathbf{r}_i$, $\mathbf{p}_i = m_i \mathbf{v}_i$, and

$$H(\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N, \mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N) = K(\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N) + U(\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N)$$
$$= \sum_i \frac{\mathbf{p}_i^2}{2m_i} + U(\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N)$$

The Hamiltonian equations of motion

► Hamiltonian equations

$$\begin{split} \frac{d\mathbf{q}_i}{dt} &= \frac{\partial H}{\partial \mathbf{p}_i} = \frac{\mathbf{p}_i}{m_i} \\ \frac{d\mathbf{p}_i}{dt} &= -\frac{\partial H}{\partial \mathbf{q}_i} = -\nabla_i U(\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_N) \end{split}$$

in vector form, we have

$$\frac{d}{dt} \begin{pmatrix} \mathbf{q} \\ \mathbf{p} \end{pmatrix} = \begin{pmatrix} 0 & \mathbf{I} \\ -\mathbf{I} & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial H}{\partial \mathbf{q}} \\ \frac{\partial H}{\partial \mathbf{p}} \end{pmatrix}$$

- a set of first-order differential equations and equivalent to Newton's second law
- provides a more useful framework for understanding the dynamics of a system

Integrating the Hamiltonian equations of motion

- **a** solution of the Hamiltonian equations of motion is a trajectory in the phase space of (\mathbf{q}, \mathbf{p})
- example: a harmonic oscillator

$$H(q,p)=\frac{p^2}{2m}+\frac{1}{2}kq^2$$

when m=1 and k=1

$$\begin{split} \frac{dq}{dt} &= \frac{\partial H}{\partial p} = p \\ \frac{dp}{dt} &= -\frac{\partial H}{\partial q} = -q \end{split}$$

Integrating the Hamiltonian equations of motion

- most Hamiltonian systems are not solvable analytically
- need numerical methods to integrate the Hamiltonian equations of motion
- the naive method is the Euler method, which is not a good choice
- a much better method is the leap-frog Verlet method

The Euler method

naive Euler method

$$p(t+\epsilon) = p(t) + \epsilon \frac{dp}{dt} = p(t) - \epsilon \frac{\partial U}{\partial q}(q(t))$$
$$q(t+\epsilon) = q(t) + \epsilon \frac{dq}{dt} = q(t) + \epsilon \frac{p(t)}{m}$$

modified Euler method

$$p(t + \epsilon) = p(t) - \epsilon \frac{\partial U}{\partial q}(q(t))$$
$$q(t + \epsilon) = q(t) + \epsilon \frac{p(t + \epsilon)}{m}$$

The Euler method

numerical trajectory for the 1-d harmonic oscillator

The leap-frog Verlet method

integration scheme

$$p(t + \epsilon/2) = p(t - \epsilon/2) - 2\frac{\partial U}{\partial q}(q(t))$$
$$q(t + \epsilon) = q(t) + \epsilon \frac{p(t + \epsilon/2)}{m}$$

- is called the leap-frog method because the position and momentum are updated in a staggered fashion
- is a symplectic integrator which preserves the phase space volume
- has better energy conservation properties than the Euler method

The leap-frog Verlet method

numerical trajectory for the 1-d harmonic oscillator

