Лабораторная работа 5

Шибко Татьяна

Вариант 5

Условие

- 1. Построить сетевой график для максимальной $t_{\rm nec}$ продолжительности всех его работ, рассчитать наиболее ранние и наиболее поздние сроки наступления событий, найти критический путь, определить полные и независимые резервы времени всех работ и коэффициенты напряженности некритических дуг.
- 2. Для трехпараметрической модели найти ожидаемое время выполнения проекта, определить вероятность выполнения проекта не позднее заданного срока, найти интервал гарантированного (с вероятностью P=0,9973) времени выполнения проекта, оценить максимально возможный срок выполнения проекта с заданной надежностью. Выполнить те же расчеты для двухпараметрической модели. Сравнить результаты.
- 3. Считая $t_{\text{пес}}$ продолжительностью работы с минимальной допустимой интенсивностью ($t_{\text{пес}} = t_{\text{max}}$), а $t_{\text{опт}}$ продолжительностью работы с максимальной возможной интенсивностью ($t_{\text{опт}} = t_{\text{min}}$), найти оптимальный по стоимости вариант выполнения проекта. Минимизировать стоимость проекта при минимально возможном сроке его исполнения.

Работа	Описывается на работы	$t_{\rm nec}$	$t_{\rm sep}$	$t_{\text{опт}}$	Стоимость сокращения работы на один день, s_k
b_1	-	9	4	3	3
b_2	-	7	5	4	7
b_3	-	13	6	2	5
b_4	b_1	8	6	3	8
b_5	b_2	6	5	2	10
b_6	b_2	10	8	3	2
b_7	b_3	9	4	3	6
b_8	b_4,b_5	13	7	5	4
b_9	b_6, b_7	9	6	2	8
b_{10}	b_6, b_7, b_8	11	5	3	3
b_{11}	b_9	9	5	2	5

Таблица 1: Данные для сетевого графика

Директивный (заданный) срок выполнения проекта T=25 Заданная надежность $\gamma=0,90.$ Стоимость одного дня проекта равна 11 денежным единицам: S=12.

Задание 1

Построить сетевой график для максимальной $t_{\rm nec}$ продолжительности всех его работ, рассчитать наиболее ранние и наиболее поздние сроки наступления событий, найти критический путь, определить полные и независимые резервы времени всех работ и коэффициенты напряженности некритических дуг.

Начнём с построения сетевого графика:

Теперь нужно рассчитать наиболее ранние сроки наступления событий, которые находим по формуле:

$$T_p(i) = \max_{j \subset i} \left\{ T_p(j) + t_{ji} \right\}$$

Начинаем с Tp(0) = 0.

$$Tp(1) = Tp(0) + t_{01} = 0 + 9 = 9;$$

$$Tp(2) = Tp(0) + t_{02} = 0 + 7 = 7;$$

$$Tp(3) = Tp(0) + t_{03} = 0 + 13 = 13;$$

$$Tp(4) = \max\{T(1) + t_{14}, Tp(2) + t_{24}\} = \max\{9 + 8, 7 + 6\} = 17, 15 = 17;$$

$$Tp(5) = Tp(4) + t_{45} = 17 + 13 = 30;$$

$$Tp(6) = max\{T(2) + t_{26}, Tp(3) + t_{36}\} = max\{7 + 10, 13 + 9\} = 17, 22 = 22;$$

$$Tp(7) = Tp(6) + t_{67} = 22 + 9 = 31;$$

$$\mathrm{Tp}(8) = \max\{T(5) + t_{58}, \mathrm{Tp}(7) \, + \, t_{78}\} = \max\{30 + 11, 31 + 9\} = 41, 40 = 41;$$

Получаем $T_{\rm kp} = 41$.

Теперь нужно рассчитать наиболее поздние сроки наступления собы тий, которые находим по формуле:

$$T_{\pi}(i) = \min_{j \supset i} \left\{ T_{\pi}(j) - t_{ji} \right\}$$

Начинаем с $T_{\pi}(8) = T_{\kappa p} = 41$.

$$T_{\Pi}(7) = T_{\Pi}(8) - t_{78} = 41 - 9 = 32;$$

$$T\pi(6) = T\pi(8) - t_{68} = 41 - 9 = 32;$$

$$T\pi(5) = T\pi(8) - t_{58} = 41 - 11 = 30;$$

$$T\pi(4) = T\pi(5) - t_{54} = 30 - 13 = 17;$$

$$T\pi(3) = T\pi(6) -t_{36} = 32 - 9 = 23;$$

$$T\pi(2) = \min\{T(4) - t_{24}, T\pi(6) - t_{26}\} = \min\{17 - 6, 32 - 10\} = 9, 22 = 9;$$

$$T\pi(1) = T\pi(4) -t_{14} = 17 - 8 = 9;$$

 $T\pi(0) = \min\{T(3) - t_{03}, T\pi(2) - t_{02}, T\pi(1) - t_{01}\} = \min\{13 - 13, 9 - 9, 9 - 9\} = 0, 0, 0 = 0;$ Внесём данные в таблицу:

Событие	Ранний срок, $T_{\rm p}(i)$	Поздниц срок, $T_{\pi}(i)$	Резерв времени, $R(i)$
0	0	0	0
1	9	9	0
2	7	9	2
3	13	23	0
4	17	17	0
5	30	30	0
6	22	32	10
7	31	32	1
8	41	41	0

Критический путь проходит через события с нулевым резервом времени, т.е. через события 0,1,3,4,5,8.

Теперь найдём резервы времени работ. Наиболее ранний возможный срок начала работы $b_{\bf k}=({\bf i},{\bf j})$ равен наиболее раннему сроку наступления события ${\bf i}: S_{\bf p}(b_{\bf k})=T_{\bf p}({\bf i}),$ а наиболее поздний допустимый срок окончания работы $b_{\bf k}=({\bf i},{\bf j})$ равен наиболее позднему сроку наступления события ${\bf j}: E_{\bf n}(b_{\bf k})=T_{\bf n}({\bf j}).$

$$r_{\pi}(b_k) = r_{\pi}(i,j) = T_{\pi}(j) - T_{p}(i) - t_{ij} = E_{\pi}(b_k) - S_{p}(b_k) - t_{ij}$$

Независимый резерв времени работ найдем по формуле:

$$r_{\text{H}}(b_k) = r_{\text{H}}(i,j) = T_{\text{p}}(j) - T_{\text{ff}}(i) - t_{ij}$$

Получим следующие данные:

Работа, $\mathbf{b}_k = (i, j)$	Продолжительность работы, $t(b_k) = t_{ij}$	$S_{p}(b_{k})$	$\mathrm{E}_{\mathrm{\pi}}(b_k)$	$r_{\Pi}(b_k)$	$r_{\scriptscriptstyle H}$
$b_1 = (0,1)$	9	0	9	0	0
$b_2 = (0, 2)$	7	0	9	2	0
$b_3 = (0,3)$	13	0	23	23	0
$b_4 = (1,4)$	8	9	17	0	0
$b_5 = (2,4)$	6	7	32	19	0
$b_6 = (2, 6)$	10	7	32	15	3
$b_7 = (3,6)$	9	13	32	10	0
$b_8 = (4,5)$	13	17	30	0	0
$b_9 = (6,7)$	9	22	32	1	-10
$b_{10} = (5,8)$	11	30	41	0	0
$b_{11} = (7.8)$	9	31	41	1	0
$\phi = (6, 5)$	0	22	30	8	-2

Осталось найти коэффициенты напряженности некритических дуг. Для начала определим критические работы (резервы времени работ равны нулю): b_1, b_4, b_8, b_{10} .

Резерв времени некритической дуги b находим как разность между длиной самой некритической дуги и длиной самой длиной некритической дуги:

$$R(b) = a - b$$

Коэффициент напряженности некритической дуги определим по формуле:

$$N(b) = \frac{b}{a} = 1 - \frac{R(b)}{a}$$

Выделим критический путь двойными стрелками.

Резервы времени и коэффициенты напряженности некритических дуг:

Некритические дуги	a	b	Резерв времени дуги, R(b)	Коэффициент напряженности дуги, N(b)
(0,2,4)	17	13	4	$13/17 \approx 0,76$
(0,2,6,5)	30	17	13	$17/30 \approx 0,56$
(0,3,6,5)	30	22	8	$22/30 \approx 0,73$
(0,2,6,7,8)	41	35	6	$35/41 \approx 0.85$
(0,3,6,7,8)	41	40	1	$40/41 \approx 0,97$

Получаем, что в критической зоне (N(b)>0.8), кроме критического пути, также находятся дуги (0,3,6,7,8) и (0,2,6,7,8).

В подкритической зоне $(0.6 \le N(b) \le 0.8)$ находится дуга (0,2,4) и (0,3,6,5). В резервной зоне (N(b) < 0.6) дуга (0,2,6,5).

Задание 2

Для трехпараметрической модели найти ожидаемое время выполнения проекта, определить вероятность выполнения проекта не позднее заданного срока, найти интервал гарантированного (с вероятностью P=0,9973) времени выполнения проекта, оценить максимально возможный срок выполнения проекта с заданной надежностью.

Директивный (заданный) срок выполнения проекта $T_{\rm дир}=25$ дней. Заданная надежность $\gamma=0,90.$

Выполнить те же расчеты для двухпараметрической модели. Сравнить результаты.

Вернёмся к нашей таблице:

Работа	Опирается на работы	$t_{\rm nec}$	$t_{\rm sep}$	$t_{\text{опт}}$
b_1	-	9	4	3
b_2	-	7	5	4
b_3	-	13	6	2
b_4	b_1	8	6	3
b_5	b_2	6	5	2
b_6	b_2	10	8	3
b_7	b_3	9	5	3
b_8	b_4,b_5	13	7	5
b_9	b_{6}, b_{7}	9	5	2
b_{10}	b_6, b_7, b_8	11	5	3
b_{11}	b_9	9	5	2

Найдём ожидаемую продолжительность работ для трехпараметрической модели по формуле:

$$t_{\text{ож}} = \frac{t_{\text{пес}} + 4t_{\text{вер}} + t_{\text{опт}}}{6}$$

А для двухпараметрической модели найдём ожидаемую продолжительность по формуле:

$$t_{\text{ож}}^* = \frac{3t_{\text{пес}} + 2t_{\text{опт}}}{5}$$

Результаты для упрощения нужно округлить.

Также нам потребуется найти дисперсию продолжительностей работ по формуле:

$$\sigma^2(t_{\text{ож}}) = \left(\frac{t_{\text{пес}} - t_{\text{онт}}}{6}\right)^2$$

Теперь можно дополнить таблицу:

Работа	Опирается на работы	$t_{ m nec}$	$t_{\rm sep}$	$t_{\text{опт}}$	$t_{\text{ож}}$	$t_{\text{ож}}^*$	σ^2
b_1	-	9	4	3	5	7	1
b_2	-	7	5	4	5	6	0,25
b_3	-	13	6	2	7	9	3,36
b_4	b_1	8	6	3	6	6	0,69
b_5	b_2	6	5	2	5	4	0,4
b_6	b_2	10	8	3	8	7	1,36
b_7	b_3	9	4	3	5	7	1
b_8	b_4, b_5	13	7	5	8	10	1,7
b_9	b_6, b_7	9	6	2	6	6	1,36
b_{10}	$b_4, b_5 \ b_6, b_7 \ b_6, b_7, b_8$	11	5	3	6	8	1,7
b_{11}	b_9	9	5	2	5	6	1,36

Теперь построим сетевой график.

Ожидаемое критическое время $T_{\rm kp}=25$. На критическом пути лежат работы: $b_1,\,b_4,b_8,\,b_{10}$. Найдём дисперсию критического пути:

$$\sigma_{\text{Kp}}^2 = \sigma^2(b_1) + \sigma^2(b_4) + \sigma^2(b_8) + \sigma^2(b_{10}) = 1 + 0,69 + 1,7 + 1,7 = 5,09$$

Среднеквадратическое отклонение критического пути:

$$\sigma_{\text{kp}} = \sqrt{5,09} = 2,25$$

Теперь найдём вероятность выполнения проекта не позднее $T_{\rm dir}=25$ дней:

$$P(t_{\text{kp}} \le 25) = 0, 5 + \Phi\left(\frac{25 - 25}{2, 25}\right) = 0, 5 + \Phi(0) = 0, 5 + 0 = 0, 5$$

Значит шансов выполнить проект не позднее заданного срока 50%.

Теперь найдём интервал гарантированного времени выполнения проекта. Воспользуемся правилом "трех сигм": $3\sigma_{\rm kp}=6,75\approx7$, т.е. с вероятностью P=0.9973 проект будет выполнен за 25 ± 7 дней.

Оценим максимально возможный срок T выполнения проекта с заданной надежностью $\gamma=0.90$. По таблице значений функции Лапласа найдем доверительный коэффициент z_{γ} для заданной надежности γ . Так как:

$$P(|t_{\text{kp}} - T_{\text{kp}}| \le z_{0.90}\sigma_{\text{kp}}) = 2\Phi(z_{0.90}) = 0.90,$$

то из $2\Phi(z_{0.90})=0.90\Rightarrow\Phi(z_{0.90})=0.45$ и $z_{0.90}=1.64$. Теперь, получим:

$$P(|t_{\text{KD}} - 25| \le 1,64 \cdot 2,25) = P(21,31 \le t_{\text{KD}} \le 28,69)$$

это значит, что с надежностью 0.90 проект будет завершен в период от 21 до 29 дней.

Теперь рассмотрим двухпараметрическую модель. Для начала построим структурный сетевой график.

Критический путь не изменился, а значит критическое время $T_{\rm kp}=31$. На критическом пути лежат всё те же работы: $b_1,\,b_4,b_8,\,b_{10}$. И дают ту же дисперсию $\sigma_{\rm kp}^2=5,09$ Среднеквадратическое отклонение: $\sigma_{\rm kp}\approx 2,25$

Теперь найдём вероятность выполнения проекта не позднее $T_{\rm dir}=25$ дней:

$$P(t_{\rm kp} \le 25) = 0.5 + \Phi\left(\frac{25 - 31}{2,25}\right) \approx 0, 5 - 0,4953 = 0,0047$$

Значит шансов выполнить проект в заданный срок крайне мала.

Теперь найдём интервал гарантированного времени выполнения проекта. Воспользуемся правилом "трех сигм": $3\sigma_{\rm KP}=6,75\approx7$, т.е. с вероятностью P=0,9973 проект будет выполнен за 31 ± 7 дней.

Оценим максимально возможный срок T выполнения проекта с заданной надежностью $\gamma=0,90.$ Используя прежде найденный $z_{0,90}=1.64,$ получим:

$$P(|t_{\text{kp}} - 31| \le 1,64 \cdot 2,25) = P(27,31 \le t_{\text{kp}} \le 34,69)$$

это значит, что с надежностью 0,90 проект будет завершен в период от 27 до 35 дней.

Задание 3

Считая $t_{\text{пес}}$ продолжительностью работы с минимальной допустимой интенсивностью ($t_{\text{пес}} = t_{\text{max}}$), а $t_{\text{опт}}$ – продолжительностью работы с максимальной возможной интенсивностью ($t_{\text{опт}} = t_{\text{min}}$), найти оптимальный по стоимости вариант выполнения проекта.

Минимизировать стоимость проекта при минимально возможном сроке его исполнения.

Стоимость одного дня проекта равна 12 денежным единицам: S=12.

Для решения задачи воспользуемся следующими данными:

Составим сетевой график для работ с максимальной продолжительностью:

Работа	Описывается на работы	$t_{ m nec}$	$t_{\text{опт}}$	Стоимость сокращения работы на один день, s_k
b_1	-	9	3	3
b_2	-	7	4	7
b_3	-	13	2	5
b_4	b_1	8	3	8
b_5	b_2	6	2	10
b_6	b_2	10	3	2
b_7	b_3	9	3	6
b_8	b_4,b_5	13	5	4
b_9	b_6, b_7	9	2	8
b_{10}	b_6, b_7, b_8	11	3	3
b_{11}	b_9	9	2	5

Критический путь проходит через работы $b_1,\,b_4,\,b_8,\,b_{10}$ и его длина составляет $T_{\rm \kappa p}=41$ дней.

 $T_{
m kp} = 41$. Стоимость проекта $S_{
m max} = 41*12 = 492$ ден.ед.

Вспомним резервы некритичных дуг:

$$R(0,2,4) = 4$$

$$R(0,2,6,7,8) = 6$$

$$R(0,3,6,7,8) = 1$$

Следующие дуги включают фиктивную работу:

$$R(0,2,6,5) = 13$$

$$R(0,3,6,5) = 8$$

Наименьший резерв имеет дуга (0,3,6,7,8). Он равен 1 дню.

Рассмотрим варианты сокращения работ на нашем критическом пути. Обозначим через Δ_k величину сокращения стоимости проекта при сокращении продолжительности работы b_k на 1 день, через t_k^c - количество дней, на которое можно сократить работу b_k , а через $\Sigma \Delta_k$ - суммарное сокращение стоимости проекта при сокращении продолжительности работы b_k на t_k^c дней.

$$\Delta_k = S - s_k, \, S = 12$$

Работа	t_{max}	t_{min}	s_k	$\Delta_k = S - s_k$	t_k^c	$\Sigma \Delta_k = \Delta_k \cdot t_k^c$
b_1	9	3	3	9	1	9
b_4	8	3	8	4	-	0
b_8	13	5	4	8	-	0
b_{10}	11	3	5	7	-	0

 b_1 сокращать выгоднее, поэтому эту работу сократим на 1 день. Общее сокращение составит 9 единиц.

Критическое время этого варианта – 80 дней. Рассмотрим резервы новых некритических дуг.

$$R(0,2,4) = 3$$

$$R(0,2,6) = 5$$

Наименьший резерв имеет дуга (0,2,4). Он равен 3 дням.

Эта дуга опирается на следующую часть критического пути: (0,1,4). Она опирается на работы b1 и b4, однако, если сокращать работу b1 или b4, то вместе с этим придется сокращать и работы b3, b7, b9, b11, т.к. они лежат на параллельном критичном пути.

Работа	Резерв сокражения	s_k	$\Delta_k = S - s_k$	t_k^c	$\Sigma \Delta_k = \Delta_k \cdot t_k^c$
$b_1 + b_3$	$\min\{8 - 3, 13 - 2\}$	8	4	3	12
b_1+b_7	$\min\{8-3,9-3\}$	9	3	-	0
b_1+b_9	$\min\{8-3,9-2\}$	11	1	-	0
$ \ b_1 + b_{11} $	$\min\{8-3,9-2\}$	8	4	-	0
$b_4 + b_3$	$\min\{8 - 3, 13 - 2\}$	15	-3	-	0
$b_4 + b_7$	$\min\{8-3,9-3\}$	14	-2	-	0
b_4+b_9	$\min\{8-3,9-2\}$	16	-4	-	0
b_4+b_{11}	$\min\{8-3,9-2\}$	13	-1	-	0

Отсюда видно, что стоит сократить работу b1+b3 на 3 дня, что сократит общую стоимость на 12 единиц. Обновим наш график:

Проверим резервы некритичных дуг:

$$R(2,6) = 2$$

$$R(2,6,5) = 9$$

Наименьший резерв имеет дуга (2,6). Он равен 2 дням.

Эта дуга опирается на следующую часть критического пути: (0,3,6), так как еявляется частью (0,2,6). Она опирается на работы b_3 и b_7 . Одну из них надо сократить. Длина пути (0,3,6)=19, а длина (0,2,6)=17. Параллельные дуги для пути (0,3,6,7,8): (0,2,4,5,8) и (0,1,4,5,8). Если мы сократим (4,5) или (5,8), то оба пути сократяться. Но если сокращать (0,2) или (2,4), то нужно будет сократить (0,1) или (1,4), чтобы второй путь сократился.

Работа	Резерв сокражения	s_k	$\Delta_k = S - s_k$	t_k^c	$\Sigma \Delta_k = \Delta_k \cdot t_k^c$
b_3+b_8	$\min\{10-2, 13-5\}$	9	3	-	-
b_3+b_{10}	$\min\{10-2, 11-3\}$	8	4	2	8

Уменьшаем b_3 и b_10 на 2.

И так, у нас параллельные критические пути: (0,1,4,5,8), (0,2,4,5,8), (0,2,6,7,8), (0,3,6,7,8) Мы хотим сократить b_8 =(4,5).

Значит нужно найти ещё способ одновременно сократить пути (0,2,6,7,8) и (0,3,6,7,8).

Можно взять (6,7) или (7,8), или ((2,6) и ((0,3) или (3,6))).

Если переводить на работы, то это b_9 или b_{11} или $b_6+(b_3$ или $b_7).$

Для пути (0, 2, 6, 5, 8) резерв будет равен 9.

Работа	Резерв сокражения	s_k	$\Delta_k = S - s_k$	t_k^c	$\Sigma \Delta_k = \Delta_k \cdot t_k^c$
b_8+b_9	$\min\{8,7\} = 7$	12	0	-	0
b_8+b_{11}	$\min\{8,7\} = 7$	9	3	7	21
$b_8 + b_6 + b_3$	$\min\{8, 7, 6\} = 6$	11	1	1	1
$b_8 + b_6 + b_7$	$\min\{8, 7, 6\} = 6$	12	0	-	0

Теперь сокращаем на 7, b_8 и b_11 , а потом на 1 b_8 , b_6 и b_3 .

И так, у нас параллельные критические пути: (0,1,4,5,8), (0,2,4,5,8), (0,2,6,7,8), (0,3,6,7,8). Теперь попробуем тоже самое сделать с $b_{10}=(5,8)$.

Работа	Резерв сокражения	s_k	$\Delta_k = S - s_k$	t_k^c	$\Sigma \Delta_k = \Delta_k \cdot t_k^c$
$b_{10}+b_9$	$\min\{9-3, 9-2\} = 6$	11	1	-	0
$b_{10}+b_{11}$	$\min\{9-3, 2-2\} = 0$	8	4	-	0
$b_{10}+b_{6}+b_{3}$	$\min\{9-3, 9-3, 7-2\} = 5$	10	2	5	10
$b_{10} + b_6 + b_7$	$\min\{9-3, 9-3, 7-3\} = 4$	11	1	1	1

Мы получили оптимальную стоимость пути. Минимальный срок выполнения =25 дням. Стоимость выполнения: 492 - 9 - 12 - 8 - 21 - 1 - 5 - 1 =435 денежных единиц.