Basis flavio (EFT WET-4)

Sectors

The effective Lagrangian is defined as

$$\mathcal{L}_{\text{eff}} = -\mathcal{H}_{\text{eff}} = \sum_{O_i = O_i^{\dagger}} C_i O_i + \sum_{O_i \neq O_i^{\dagger}} \left(C_i O_i + C_i^* O_i^{\dagger} \right).$$

sdsd

WC name	Operator	Type
CVLL_sdsd	$(\bar{d}_L \gamma^\mu s_L)(\bar{d}_L \gamma_\mu s_L)$	С
CVRR_sdsd	$(\bar{d}_R \gamma^\mu s_R)(\bar{d}_R \gamma_\mu s_R)$	\mathbf{C}
CSLL_sdsd	$(ar{d}_R s_L)(ar{d}_R s_L)$	\mathbf{C}
CSRR_sdsd	$(ar{d}_L s_R)(ar{d}_L s_R)$	\mathbf{C}
CTLL_sdsd	$(\bar{d}_R \sigma^{\mu\nu} s_L)(\bar{d}_R \sigma_{\mu\nu} s_L)$	\mathbf{C}
CTRR_sdsd	$(\bar{d}_L \sigma^{\mu\nu} s_R)(\bar{d}_L \sigma_{\mu\nu} s_R)$	\mathbf{C}
CVLR_sdsd	$(\bar{d}_L \gamma^\mu s_L)(\bar{d}_R \gamma_\mu s_R)$	\mathbf{C}
CSLR_sdsd	$(ar{d}_R s_L)(ar{d}_L s_R)$	\mathbf{C}

cucu

WC name	Operator	Type
CVLL_ucuc	$(\bar{c}_L \gamma^\mu u_L)(\bar{c}_L \gamma_\mu u_L)$	С
CVRR_ucuc	$(\bar{c}_R \gamma^\mu u_R)(\bar{c}_R \gamma_\mu u_R)$	\mathbf{C}
CSLL_ucuc	$(\bar{c}_R u_L)(\bar{c}_R u_L)$	\mathbf{C}
CSRR_ucuc	$(\bar{c}_L u_R)(\bar{c}_L u_R)$	\mathbf{C}
CTLL_ucuc	$(\bar{c}_R \sigma^{\mu\nu} u_L)(\bar{c}_R \sigma_{\mu\nu} u_L)$	\mathbf{C}
CTRR_ucuc	$(\bar{c}_L \sigma^{\mu\nu} u_R)(\bar{c}_L \sigma_{\mu\nu} u_R)$	\mathbf{C}
CVLR_ucuc	$(\bar{c}_L \gamma^\mu u_L)(\bar{c}_R \gamma_\mu u_R)$	\mathbf{C}
CSLR_ucuc	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	С

sd

WC name	Operator	Type
C9_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}e)$	C
C9p_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{e}\gamma_{\mu}e)$	\mathbf{C}
C10_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_sdee	$rac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{e}e)$	\mathbf{C}

WC name	Operator	Type
CSp_sdee	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{e}e)$	C
CP_sdee	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{s}(\bar{d}_{L}s_{R})(\bar{e}\gamma_{5}e)$	\mathbf{C}
CPp_sdee	$\frac{4\tilde{Q}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}m_{s}(\bar{d}_{R}s_{L})(\bar{e}\gamma_{5}e)$	\mathbf{C}
C9_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C9p_sdmumu	$\frac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}\mu)$	\mathbf{C}
C10_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\mu}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
C10p_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}\gamma_5\mu)$	\mathbf{C}
CS_sdmumu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{\mu}\mu)$	$^{\mathrm{C}}$
CSp_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\mu)$	C
CP_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}\gamma_5\mu)$	C
CPp_sdmumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\gamma_5\mu)$	C
C9_sdtautau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{ au}\gamma_{\mu} au)$	C
C9p_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\tau}\gamma_{\mu}\tau)$	C
C10_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^\mu s_L)(\bar{\tau}\gamma_\mu\gamma_5 au)$	C
C10p_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\tau}\gamma_{\mu}\gamma_5\tau)$	C
CS_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\tau)$	C
CSp_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{ au} au)$	\mathbf{C}
CP_sdtautau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\gamma_5\tau)$	\mathbf{C}
CPp_sdtautau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Rs_L)(ar{ au}\gamma_5 au)$	\mathbf{C}
C7_sd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e}{16\pi^2}m_s(\bar{d}_L\sigma^{\mu\nu}s_R)F_{\mu\nu}$	\mathbf{C}
C7p_sd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^* \frac{e}{16\pi^2}m_s(\bar{d}_R\sigma^{\mu\nu}s_L)F_{\mu\nu}$	\mathbf{C}
C8_sd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{g_s}{16\pi^2}m_s(d_L\sigma^{\mu\nu}T^as_R)G_{\mu\nu}^a$	\mathbf{C}
C8p_sd	$\frac{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{g_s}{16\pi^2}m_s(\bar{d}_R\sigma^{\mu\nu}T^as_L)G_{\mu\nu}^a}{\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^{\mu}s_L)(\bar{s}_L\gamma_{\mu}s_L)}$	\mathbf{C}
CVLL_sdss	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\gamma^\mu s_L)(ar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLR_sdss	$\frac{4G_F}{\sqrt{s}}V_{ts}V_{td}^*(d_L\gamma^{\mu}s_L)(\bar{s}_R\gamma_{\mu}s_R)$	$^{\mathrm{C}}$
CVRL_sdss	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^{\mu}s_R)(ar{s}_L\gamma_{\mu}s_L) \ rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^{\mu}s_R)(ar{s}_R\gamma_{\mu}s_R)$	С
CVRR_sdss		С
CSLL_sdss	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{s}_Rs_L)$	С
CSLR_sdss	$\frac{16F}{\sqrt{2}}V_{ts}V_{td}^*(d_Rs_L)(s_Ls_R) \ 4G_FV_{td}V_{td}^*(ar{t}_L)(s_Ls_R)$	С
CSRL_sdss CSRR_sdss	$\frac{1}{\sqrt{2}}V_{ts}V_{td}(a_Ls_R)(s_Rs_L)$ $4G_FV_{\bullet}V^*(\bar{d}_{\bullet}s_R)(\bar{s}_{\bullet}s_R)$	C C
CTLL_sdss	$\frac{\sqrt{2}}{\sqrt{2}} v_{ts} v_{td} (\omega_L \circ R) (\circ_L \circ R)$ $\frac{4G_F}{\sqrt{2}} V_t V_t^* (\bar{d}_D \sigma^{\mu\nu} s_L) (\bar{s}_D \sigma_L s_L)$	C
CTRR_sdss	$\sqrt{2} v_{ts}v_{td}(\omega_{KO} - s_L)(s_{KO}\mu_{V}s_L)$ $\frac{4G_F}{2}V_{ts}V_{ts}^*(\bar{d}_L\sigma^{\mu\nu}s_R)(\bar{s}_L\sigma_{}s_R)$	C
CVLL sddd	$\frac{\sqrt{2}}{\sqrt{2}} V_{ts} V_{td}^*(d_R s_L) (\bar{s}_L s_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L s_R) (\bar{s}_R s_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L s_R) (\bar{s}_R s_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L s_R) (\bar{s}_L s_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R \sigma^{\mu\nu} s_L) (\bar{s}_R \sigma_{\mu\nu} s_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \sigma^{\mu\nu} s_R) (\bar{s}_L \sigma_{\mu\nu} s_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma_{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} d_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} s_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L \gamma^{\mu} s_L) (\bar{d}_L \gamma^{\mu} s_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} $	C
CVLR_sddd	$\frac{\sqrt{2}}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^{\mu}s_L)(\bar{d}_R\gamma_{\mu}d_R)$	C
-	$\sqrt{2}$ $\sim \iota u \setminus \Sigma = \Sigma / (10/\mu) = \iota v / (10/\mu)$	

		Type
CVRL_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^\mu s_R)(\bar{d}_L\gamma_\mu d_L)$	С
CVRR_sddd	$rac{4ar{Q}_F^2}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CSLL_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_Rs_L)(d_Rd_L)$	\mathbf{C}
CSLR_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{d}_Ld_R)$	\mathbf{C}
CSRL_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L s_R)(ar{d}_R d_L)$	$^{\mathrm{C}}$
CSRR_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{d}_Ld_R)$	$^{\mathrm{C}}$
CTLL_sddd	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{d}_R\sigma_{\mu\nu}d_L)$	$^{\mathrm{C}}$
CTRR_sddd	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CVLL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVLR_sduu	$\frac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{u}_R\gamma_\mu u_R)$	\mathbf{C}
CVRL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^\mu s_R)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVRR_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R\gamma^\mu s_R)(ar{u}_R\gamma_\mu u_R)$	С
CSLL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(d_Rs_L)(\bar{u}_Ru_L)$	С
CSLR_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R s_L)(\bar{u}_L u_R)$	С
CSRL_sduu	$\frac{4 \overline{G_F}}{\sqrt{2}} V_{ts} V_{td}^* (\bar{d_L} s_R) (\bar{u}_R u_L)$	С
CSRR_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{u}_Lu_R)$	С
CTLL_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{u}_R\sigma_{\mu\nu}u_L)$	С
CTRR_sduu	$rac{4ar{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{u}_L\sigma_{\mu u}u_R)$	С
CVLLt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^\alpha\gamma^\mu s_L^\beta)(\bar{u}_L^\beta\gamma_\mu u_L^\alpha)$	С
CVLRt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^\alpha\gamma^\mu s_L^\beta)(\bar{u}_R^\beta\gamma_\mu u_R^\alpha)$	С
CVRLt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^\alpha\gamma^\mu s_R^\beta)(\bar{u}_L^\beta\gamma_\mu u_L^\alpha)$	С
CVRRt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^\alpha\gamma^\mu s_R^\beta)(\bar{u}_R^\beta\gamma_\mu u_R^\alpha)$	\mathbf{C}
CSLLt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}s_L^{eta})(\bar{u}_R^{eta}u_L^{lpha})$	$^{\mathrm{C}}$
CSLRt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}s_L^{eta})(\bar{u}_L^{eta}u_R^{lpha})$	\mathbf{C}
CSRLt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{\alpha}s_R^{\beta})(\bar{u}_R^{\beta}u_L^{\alpha})$	\mathbf{C}
CSRRt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{\alpha}s_R^{\beta})(\bar{u}_L^{\beta}u_R^{\alpha})$	\mathbf{C}
CTLLt_sduu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{\alpha}\sigma^{\mu\nu}s_L^{\beta})(\bar{u}_R^{\beta}\sigma_{\mu\nu}u_L^{\alpha})$	\mathbf{C}
CTRRt_sduu	$\frac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L^{\alpha}\sigma^{\mu\nu}s_R^{\beta})(\bar{u}_L^{\beta}\sigma_{\mu\nu}u_R^{\alpha})$	\mathbf{C}
CVLL_sdcc	$\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L\gamma^\mu s_L)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVLR_sdcc	$rac{4 \breve{G_F}}{\sqrt{2}} V_{ts} V_{td}^* (ar{d}_L \gamma^\mu s_L) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
CVRL_sdcc	$\frac{4G_F}{\overline{c}}V_{ts}V_{ts}^*(\bar{d}_B\gamma^{\mu}s_B)(\bar{c}_I\gamma_{\mu}c_I)$	\mathbf{C}
CVRR_sdcc	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\gamma^\mu s_R)(\bar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CSLL_sdcc	$\begin{array}{c} \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R \gamma^\mu s_R) (\bar{c}_R \gamma_\mu c_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) (\bar{c}_R c_L) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_R s_L) (\bar{c}_L c_R) \\ \frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^*(\bar{d}_L s_R) (\bar{c}_R c_L) \end{array}$	\mathbf{C}
CSLR_sdcc	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Rs_L)(\bar{c}_Lc_R)$	\mathbf{C}
CSRL_sdcc	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_Ls_R)(\bar{c}_Rc_L)$	\mathbf{C}
CSRR_sdcc	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_L s_R)(\bar{c}_L c_R)$	$^{\mathrm{C}}$

WC name	Operator	Type
CTLL_sdcc	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R\sigma^{\mu\nu}s_L)(\bar{c}_R\sigma_{\mu\nu}c_L)$	C
CTRR_sdcc	$rac{4reve{G_F}}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L\sigma^{\mu u}s_R)(ar{c}_L\sigma_{\mu u}c_R)$	\mathbf{C}
CVLLt_sdcc	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{c}_L^eta\gamma_\mu c_L^lpha)$	\mathbf{C}
CVLRt_sdcc	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\gamma^\mu s_L^eta)(ar{c}_R^eta\gamma_\mu c_R^lpha)$	\mathbf{C}
CVRLt_sdcc	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{lpha}\gamma^{\mu}s_R^{eta})(\bar{c}_L^{eta}\gamma_{\mu}c_L^{lpha})$	\mathbf{C}
CVRRt_sdcc	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(\bar{d}_R^{\alpha}\gamma^{\mu}s_R^{\beta})(\bar{c}_R^{\beta}\gamma_{\mu}c_R^{\alpha})$	\mathbf{C}
CSLLt_sdcc	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSLRt_sdcc	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha s_L^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CSRLt_sdcc	$rac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{c}_R^eta c_L^lpha)$	\mathbf{C}
CSRRt_sdcc	$rac{4\ddot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha s_R^eta)(ar{c}_L^eta c_R^lpha)$	\mathbf{C}
CTLLt_sdcc	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_R^lpha\sigma^{\mu u}s_L^eta)(ar{c}_R^eta\sigma_{\mu u}c_L^lpha)$	\mathbf{C}
CTRRt_sdcc	$rac{4ar{C}_F}{\sqrt{2}}V_{ts}V_{td}^*(ar{d}_L^lpha\sigma^{\mu u}s_R^eta)(ar{c}_L^eta\sigma_{\mu u}c_R^lpha)$	С

cu

WC name	Operator	Type
C9_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{e}\gamma_{\mu}e)$	С
C9p_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_R\gamma^{\mu}c_R)(\bar{e}\gamma_{\mu}e)$	$^{\mathrm{C}}$
C10_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_cuee	$\frac{4\dot{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_R\gamma^{\mu}c_R)(\bar{e}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}m_c(\bar{u}_Lc_R)(\bar{e}e)$	$^{\mathrm{C}}$
CSp_cuee	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}m_c(\bar{u}_Rc_L)(\bar{e}e)$	$^{\mathrm{C}}$
CP_cuee	$\frac{4 \check{G}_F}{\sqrt{2}} V_{cb}^* V_{ub} \frac{e^2}{16\pi^2} m_c(\bar{u}_L c_R) (\bar{e} \gamma_5 e)$	$^{\mathrm{C}}$
CPp_cuee	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{R}c_{L})(\bar{e}\gamma_{5}e)$	$^{\mathrm{C}}$
C9_cumumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{\mu}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C9p_cumumu	$rac{4 { m G}_F}{\sqrt{2}} V_{cb}^* V_{ub} rac{e^2}{16 \pi^2} (ar{u}_R \gamma^\mu c_R) (ar{\mu} \gamma_\mu \mu)$	$^{\mathrm{C}}$
C10_cumumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{\mu}\gamma_{\mu}\gamma_5\mu)$	$^{\mathrm{C}}$
C10p_cumumu	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}rac{e^{2}}{16\pi^{2}}(ar{u}_{R}\gamma^{\mu}c_{R})(ar{\mu}\gamma_{\mu}\gamma_{5}\mu)$	$^{\mathrm{C}}$
CS_cumumu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}m_c(\bar{u}_Lc_R)(\bar{\mu}\mu)$	$^{\mathrm{C}}$
CSp_cumumu	$\frac{4 \check{G}_F}{\sqrt{2}} V_{cb}^* V_{ub} \frac{e^2}{16\pi^2} m_c(\bar{u}_R c_L)(\bar{\mu}\mu)$	$^{\mathrm{C}}$
CP_cumumu	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{L}c_{R})(\bar{\mu}\gamma_{5}\mu)$	\mathbf{C}
CPp_cumumu	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{R}c_{L})(\bar{\mu}\gamma_{5}\mu)$	\mathbf{C}
C9_cutautau	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{\tau}\gamma_{\mu}\tau)$	\mathbf{C}
C9p_cutautau	$rac{4Q_F^2}{\sqrt{2}}V_{cb}^*V_{ub}rac{e^2}{16\pi^2}(ar{u}_R\gamma^{\mu}c_R)(ar{ au}\gamma_{\mu} au)$	\mathbf{C}
C10_cutautau	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}rac{e^2}{16\pi^2}(\bar{u}_L\gamma^{\mu}c_L)(\bar{ au}\gamma_{\mu}\gamma_5 au)$	С

WC name	Operator	Type
C10p_cutautau	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}rac{e^2}{16\pi^2}(ar{u}_R\gamma^{\mu}c_R)(ar{ au}\gamma_{\mu}\gamma_5 au)$	С
CS_cutautau	$\frac{4\tilde{G}_{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}\frac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{L}c_{R})(\bar{\tau}\tau)$	\mathbf{C}
CSp_cutautau	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e^2}{16\pi^2}m_c(\bar{u}_Rc_L)(\bar{\tau}\tau)$	\mathbf{C}
CP_cutautau	$rac{4 ilde{G}_{c}}{\sqrt{2}} V_{cb}^* V_{ub} rac{e^2}{16 \pi^2} m_c (ar{u}_L c_R) (ar{ au} \gamma_5 au)$	\mathbf{C}
CPp_cutautau	$rac{4G_{r}^{2}}{\sqrt{2}}V_{cb}^{*}V_{ub}rac{e^{2}}{16\pi^{2}}m_{c}(\bar{u}_{R}c_{L})(\bar{ au}\gamma_{5} au)$	\mathbf{C}
C7_cu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e}{16\pi^2}m_c(\bar{u}_L\sigma^{\mu\nu}c_R)F_{\mu\nu}$	\mathbf{C}
C7p_cu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{e}{16\pi^2}m_c(\bar{u}_R\sigma^{\mu\nu}c_L)F_{\mu\nu}$	\mathbf{C}
C8_cu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{g_s}{16\pi^2}m_c(\bar{u}_L\sigma^{\mu\nu}T^ac_R)G_{\mu\nu}^a$	\mathbf{C}
C8p_cu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}\frac{g_s}{16\pi^2}m_c(\bar{u}_R\sigma^{\mu\nu}T^ac_L)G_{\mu\nu}^a$	\mathbf{C}
CVLL_cucc	$rac{4 \widetilde{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (\bar{u}_L \gamma^\mu c_L) (\bar{c}_L \gamma_\mu c_L)$	\mathbf{C}
CVLR_cucc	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CVRL_cucc	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVRR_cucc	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{c}_R\gamma_\mu c_R)$	\mathbf{C}
CSLL_cucc	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{c}_Rc_L)$	\mathbf{C}
CSLR_cucc	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_Rc_L)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRL_cucc	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{c}_Rc_L)$	$^{\mathrm{C}}$
CSRR_cucc	$\frac{4GF}{\sqrt{s}}V_{ch}^*V_{ub}(u_Lc_R)(c_Lc_R)$	$^{\mathrm{C}}$
CTLL_cucc	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R\sigma^{\mu u}c_L)(ar{c}_R\sigma_{\mu u}c_L)$	$^{\mathrm{C}}$
CTRR_cucc	$\frac{4G_F}{G}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{c}_L\sigma_{\mu\nu}c_R)$	$^{\mathrm{C}}$
CVLL_cuuu	$\frac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVLR_cuuu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{u}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CVRL_cuuu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{u}_L\gamma_\mu u_L)$	$^{\mathrm{C}}$
CVRR_cuuu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{u}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CSLL_cuuu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{u}_Ru_L)$	$^{\mathrm{C}}$
CSLR_cuuu	$\frac{4G_F}{2}V_{**}^*V_{***}(\bar{u}_Dc_T)(\bar{u}_Tu_D)$	\mathbf{C}
CSRL_cuuu	$\frac{\sqrt{2}}{\sqrt{2}}V_{cb}^{cb}V_{ub}(\bar{u}_L c_R)(\bar{u}_R u_L)$	\mathbf{C}
CSRR_cuuu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{u}_Lu_R)$	\mathbf{C}
CTLL_cuuu	$\frac{4G_{-}}{\sqrt{2}}V_{cb}^{*}V_{ub}(\bar{u}_{R}\sigma^{\mu\nu}c_{L})(\bar{u}_{R}\sigma_{\mu\nu}u_{L})$	\mathbf{C}
CTRR_cuuu	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	\mathbf{C}
CVLL_cudd	$\frac{4\dot{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLR_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\gamma^\mu c_L)(\bar{d}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CVRL_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVRR_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{d}_R\gamma_\mu d_R)$	\mathbf{C}
CSLL_cudd	$rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_Rc_L)(ar{d}_Rd_L) \ rac{4ar{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_Rc_L)(ar{d}_Ld_R)$	\mathbf{C}
CSLR_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Rc_L)(\bar{d}_Ld_R)$	\mathbf{C}
CSRL_cudd	$rac{4 ar{G_F}}{\sqrt{2}} V_{cb}^* V_{ub} (ar{u}_L c_R) (ar{d}_R d_L)$	\mathbf{C}

WC name	Operator	Type
CSRR_cudd	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{d}_Ld_R)$	C
CTLL_cudd	$rac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R\sigma^{\mu u}c_L)(ar{d}_R\sigma_{\mu u}d_L)$	\mathbf{C}
CTRR_cudd	$rac{4rac{Q_F}{\sqrt{2}}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L\sigma^{\mu u}c_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CVLLt_cudd	$rac{4ar{Q}_{F}^{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}(ar{u}_{L}^{lpha}\gamma^{\mu}c_{L}^{eta})(ar{d}_{L}^{eta}\gamma_{\mu}d_{L}^{lpha})$	\mathbf{C}
CVLRt_cudd	$rac{4 ilde{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\gamma^\mu c_L^eta)(ar{d}_R^eta\gamma_\mu d_R^lpha)$	\mathbf{C}
CVRLt_cudd	$rac{4ar{Q}_{F}^{F}}{\sqrt{2}}V_{cb}^{*}V_{ub}(ar{u}_{R}^{lpha}\gamma^{\mu}c_{R}^{eta})(ar{d}_{L}^{eta}\gamma_{\mu}d_{L}^{lpha})$	\mathbf{C}
CVRRt_cudd	$rac{4ar{Q}_F^F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\gamma^\mu c_R^eta)(ar{d}_R^eta\gamma_\mu d_R^lpha)$	\mathbf{C}
CSLLt_cudd	$rac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^{lpha}c_L^{eta})(ar{d}_R^{eta}d_L^{lpha})$	\mathbf{C}
CSLRt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha c_L^eta)(ar{d}_L^eta d_R^lpha)$	\mathbf{C}
CSRLt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha c_R^eta)(ar{d}_R^eta d_L^lpha)$	$^{\mathrm{C}}$
CSRRt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha c_R^eta)(ar{d}_L^eta d_R^lpha)$	$^{\mathrm{C}}$
CTLLt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\sigma^{\mu u}c_L^eta)(ar{d}_R^eta\sigma_{\mu u}d_L^lpha)$	$^{\mathrm{C}}$
CTRRt_cudd	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\sigma^{\mu u}c_R^eta)(ar{d}_L^eta\sigma_{\mu u}d_R^lpha)$	\mathbf{C}
CVLL_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L\gamma^\mu c_L)(ar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVLR_cuss	$rac{4G_F^2}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L\gamma^\mu c_L)(ar{s}_R\gamma_\mu s_R)$	\mathbf{C}
CVRL_cuss	$\frac{4\check{G}_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{s}_L\gamma_\mu s_L)$	$^{\mathrm{C}}$
CVRR_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R\gamma^\mu c_R)(\bar{s}_R\gamma_\mu s_R)$	$^{\mathrm{C}}$
CSLL_cuss	$rac{4ar{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_Rc_L)(ar{s}_Rs_L)$	$^{\mathrm{C}}$
CSLR_cuss	$rac{4ar{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_Rc_L)(ar{s}_Ls_R)$	\mathbf{C}
CSRL_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_Lc_R)(\bar{s}_Rs_L)$	\mathbf{C}
CSRR_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_Lc_R)(ar{s}_Ls_R)$	\mathbf{C}
CTLL_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R\sigma^{\mu u}c_L)(ar{s}_R\sigma_{\mu u}s_L)$	\mathbf{C}
CTRR_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L\sigma^{\mu\nu}c_R)(\bar{s}_L\sigma_{\mu\nu}s_R)$	С
CVLLt_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha\gamma^\mu c_L^eta)(ar{s}_L^eta\gamma_\mu s_L^lpha)$	С
CVLRt_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha\gamma^\mu c_L^\beta)(\bar{s}_R^\beta\gamma_\mu s_R^\alpha)$	\mathbf{C}
CVRLt_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha\gamma^\mu c_R^\beta)(\bar{s}_L^\beta\gamma_\mu s_L^\alpha)$	\mathbf{C}
CVRRt_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\gamma^\mu c_R^eta)(ar{s}_R^eta\gamma_\mu s_R^lpha)$	\mathbf{C}
CSLLt_cuss	$\frac{{}^{4G_F}_{c}}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_R^\alpha c_L^\beta)(\bar{s}_R^\beta s_L^\alpha)$	\mathbf{C}
CSLRt_cuss	$rac{4\widetilde{G_F}}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^{lpha}c_L^{eta})(ar{s}_L^{eta}s_R^{lpha})$	$^{\mathrm{C}}$
CSRLt_cuss	$\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha c_R^\beta)(\bar{s}_R^\beta s_L^\alpha)$	\mathbf{C}
CSRRt_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_L^lpha c_R^eta)(ar{s}_L^eta s_R^lpha)$	\mathbf{C}
CTLLt_cuss	$rac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(ar{u}_R^lpha\sigma^{\mu u}c_L^eta)(ar{s}_R^eta\sigma_{\mu u}s_L^lpha)$	\mathbf{C}
CTRRt_cuss	$\frac{\frac{4G_F}{\sqrt{2}}V_{cb}^*V_{ub}(\bar{u}_L^\alpha\sigma^{\mu\nu}c_R^\beta)(\bar{s}_L^\beta\sigma_{\mu\nu}s_R^\alpha)}{2}$	\mathbf{C}

sdnunu

WC name	Operator	Type
CL_sdnuenue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	С
CL_sdnumunumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CL_sdnutaunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CL_sdnuenumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CL_sdnumunue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CL_sdnumunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^\mu d_L)(\bar{\nu}_\tau \gamma_\mu (1-\gamma_5)\nu_\mu)$	\mathbf{C}
CL_sdnutaunumu	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^\mu d_L)(\bar{\nu}_\mu \gamma_\mu (1-\gamma_5)\nu_\tau)$	\mathbf{C}
CL_sdnuenutau	$rac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*rac{e^2}{16\pi^2}(\bar{s}_L\gamma^{\mu}d_L)(\bar{ u}_{ au}\gamma_{\mu}(1-\gamma_5) u_e)$	\mathbf{C}
CL_sdnutaunue	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^* \frac{e^2}{16\pi^2} (\bar{s}_L \gamma^\mu d_L)(\bar{\nu}_e \gamma_\mu (1-\gamma_5) \nu_\tau)$	\mathbf{C}
CR_sdnuenue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnumunumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_sdnutaunutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau})$	\mathbf{C}
CR_sdnuenumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnumunue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_sdnumunutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\mu})$	\mathbf{C}
CR_sdnutaunumu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\mu}\gamma_{\mu}(1-\gamma_5)\nu_{ au})$	\mathbf{C}
CR_sdnuenutau	$\frac{4G_F}{\sqrt{2}}V_{td}V_{ts}^*\frac{e^2}{16\pi^2}(\bar{s}_R\gamma^{\mu}d_R)(\bar{\nu}_{\tau}\gamma_{\mu}(1-\gamma_5)\nu_e)$	\mathbf{C}
CR_sdnutaunue	$\frac{{}^{4}\!$	\mathbf{C}

sdemu

WC name	Operator	Type
C9_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\mu}\gamma_{\mu}e)$	С
C9p_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}e)$	\mathbf{C}
C10_sdemu	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
CS_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}e)$	\mathbf{C}
CSp_sdemu	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}e)$	\mathbf{C}
CP_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\mu}\gamma_5 e)$	\mathbf{C}
CPp_sdemu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\gamma_5e)$	\mathbf{C}

sdmue

WC name	Operator	Type
C9_sdmue	$\frac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* \frac{e^2}{16\pi^2} (\bar{d}_L \gamma^{\mu} s_L) (\bar{e} \gamma_{\mu} \mu)$	C
C9p_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{e}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C10_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}\gamma_5\mu)$	$^{\mathrm{C}}$
C10p_sdmue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{e}\gamma_{\mu}\gamma_5\mu)$	$^{\mathrm{C}}$
CS_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{e}\mu)$	$^{\mathrm{C}}$
CSp_sdmue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{e}\mu)$	$^{\mathrm{C}}$
CP_sdmue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{e}\gamma_5\mu)$	$^{\mathrm{C}}$
CPp_sdmue	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{e}\gamma_5\mu)$	С

sdetau

WC name	Operator	Type
C9_sdetau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\tau}\gamma_{\mu}e)$	$\overline{\mathbf{C}}$
C9p_sdetau	$\frac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{R}\gamma^{\mu}s_{R})(\bar{\tau}\gamma_{\mu}e)$	\mathbf{C}
C10_sdetau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_L\gamma^{\mu}s_L)(ar{ au}\gamma_{\mu}\gamma_5 e)$	\mathbf{C}
C10p_sdetau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\tau}\gamma_{\mu}\gamma_5 e)$	$^{\mathrm{C}}$
CS_sdetau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}e)$	$^{\mathrm{C}}$
CSp_sdetau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\tau}e)$	$^{\mathrm{C}}$
CP_sdetau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\gamma_5 e)$	$^{\mathrm{C}}$
CPp_sdetau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\tau}\gamma_5 e)$	C

sdtaue

WC name	Operator	Type
C9_sdtaue	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{e}\gamma_{\mu}\tau)$	С
C9p_sdtaue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{e}\gamma_{\mu} au)$	\mathbf{C}
C10_sdtaue	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} (ar{d}_L \gamma^\mu s_L) (ar{e} \gamma_\mu \gamma_5 au)$	\mathbf{C}
C10p_sdtaue	$rac{4G_F^2}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^\mu s_R)(ar{e}\gamma_\mu\gamma_5 au)$	\mathbf{C}
CS_sdtaue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Ls_R)(ar{e} au)$	\mathbf{C}
CSp_sdtaue	$rac{4 G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16 \pi^2} m_s (ar{d}_R s_L) (ar{e} au)$	\mathbf{C}
CP_sdtaue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Ls_R)(ar{e}\gamma_5 au)$	\mathbf{C}
CPp_sdtaue	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_Rs_L)(ar{e}\gamma_5 au)$	C

${\tt sdmutau}$

WC name	Operator	Type
C9_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_L\gamma^{\mu}s_L)(\bar{\tau}\gamma_{\mu}\mu)$	С
C9p_sdmutau	$\frac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{R}\gamma^{\mu}s_{R})(\bar{\tau}\gamma_{\mu}\mu)$	$^{\mathrm{C}}$
C10_sdmutau	$rac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}rac{e^{2}}{16\pi^{2}}(ar{d}_{L}\gamma^{\mu}s_{L})(ar{ au}\gamma_{\mu}\gamma_{5}\mu)$	$^{\mathrm{C}}$
C10p_sdmutau	$rac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}(ar{d}_R\gamma^{\mu}s_R)(ar{ au}\gamma_{\mu}\gamma_5\mu)$	$^{\mathrm{C}}$
CS_sdmutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\mu)$	\mathbf{C}
CSp_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\tau}\mu)$	$^{\mathrm{C}}$
CP_sdmutau	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_L s_R)(\bar{\tau}\gamma_5\mu)$	\mathbf{C}
CPp_sdmutau	$\frac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_R s_L)(\bar{\tau}\gamma_5\mu)$	С

sdtaumu

WC name	Operator	Type
C9_sdtaumu	$rac{4G_F}{\sqrt{2}} V_{ts} V_{td}^* rac{e^2}{16\pi^2} (ar{d}_L \gamma^\mu s_L) (ar{\mu} \gamma_\mu au)$	С
C9p_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}\tau)$	\mathbf{C}
C10_sdtaumu	$\frac{4\dot{G}_{F}}{\sqrt{2}}V_{ts}V_{td}^{*}\frac{e^{2}}{16\pi^{2}}(\bar{d}_{L}\gamma^{\mu}s_{L})(\bar{\mu}\gamma_{\mu}\gamma_{5}\tau)$	$^{\mathrm{C}}$
C10p_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}(\bar{d}_R\gamma^{\mu}s_R)(\bar{\mu}\gamma_{\mu}\gamma_5\tau)$	\mathbf{C}
CS_sdtaumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(\bar{d}_Ls_R)(\bar{\mu} au)$	$^{\mathrm{C}}$
CSp_sdtaumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_R s_L)(ar{\mu} au)$	$^{\mathrm{C}}$
CP_sdtaumu	$rac{4\dot{G}_F}{\sqrt{2}}V_{ts}V_{td}^*rac{e^2}{16\pi^2}m_s(ar{d}_L s_R)(ar{\mu}\gamma_5 au)$	$^{\mathrm{C}}$
CPp_sdtaumu	$\frac{4G_F}{\sqrt{2}}V_{ts}V_{td}^*\frac{e^2}{16\pi^2}m_s(\bar{d}_Rs_L)(\bar{\mu}\gamma_5\tau)$	C

usenu

WC name	Operator	Type
CVL_suenue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	C
CVR_suenue	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_suenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_Ls_R)(ar{e}_R u_{eL})$	\mathbf{C}
CSL_suenue	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{e}_R u_{eL})$	\mathbf{C}
CT_suenue	$-rac{4ar{G}_F}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_suenumu	$-rac{4ar{Q}_F^2}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_suenumu	$-rac{4ar{Q}_F^C}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_suenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{e}_R u_{\mu L})$	\mathbf{C}
CSL_suenumu	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{e}_R u_{\mu L})$	\mathbf{C}

WC name	Operator	Type
CT_suenumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\mu L})$	
CVL_suenutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^\mu s_L)(\bar{e}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CVR_suenutau	$-rac{4\widetilde{G}_F^c}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_suenutau	$-\frac{4\tilde{G_F}}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{e}_R \nu_{\tau L})$	\mathbf{C}
CSL_suenutau	$-rac{4reve{G_F}}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{e}_R u_{ au L})$	\mathbf{C}
CT_suenutau	$-\frac{4\bar{G}_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\tau L})$	$^{\mathrm{C}}$

csenu

WC name	Operator	Type
CVL_scenue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	C
CVR_scenue	$-\frac{4\check{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^\mu s_R)(\bar{e}_L\gamma_\mu \nu_{eL})$	\mathbf{C}
CSR_scenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{e}_R \nu_{eL})$	\mathbf{C}
CSL_scenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_R s_L)(\bar{e}_R \nu_{eL})$	\mathbf{C}
CT_scenue	$-rac{4\check{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu u}s_L)(\bar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_scenumu	$-rac{4reve{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_scenumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^\mu s_R)(\bar{e}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CSR_scenumu	$-\frac{4\tilde{G}_{F}^{r}}{\sqrt{2}}V_{cs}(\bar{c}_{L}s_{R})(\bar{e}_{R}\nu_{\mu L})$	\mathbf{C}
CSL_scenumu	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{e}_R\nu_{\mu L})$	\mathbf{C}
CT_scenumu	$-rac{4\check{G}_F^c}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu u}s_L)(\bar{e}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_scenutau	$-rac{4\check{G}_F^c}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^\mu s_L)(\bar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_scenutau	$-rac{4\check{G}_F^c}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^\mu s_R)(\bar{e}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CSR_scenutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{e}_R u_{\tau L})$	\mathbf{C}
CSL_scenutau	$-rac{4\check{G}_F^c}{\sqrt{2}}V_{cs}(\bar{c}_Rs_L)(\bar{e}_R u_{\tau L})$	\mathbf{C}
CT_scenutau	$-rac{4G_F^2}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{e}_R\sigma_{\mu u} u_{ au L})$	C

cdenu

WC name	Operator	Type
CVL_dcenue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{e}_L\gamma_\mu\nu_{eL})$	
CVR_dcenue	$-rac{4G_F^c}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dcenue	$-rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_L d_R)(ar{e}_R u_{eL}) \ -rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_R d_L)(ar{e}_R u_{eL})$	\mathbf{C}
CSL_dcenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{e}_R\nu_{eL})$	\mathbf{C}
CT_dcenue	$-rac{4\check{G_F}}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu u}d_L)(\bar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
${\tt CVL_dcenumu}$	$-rac{4\check{G_F}}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_dcenumu	$-rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}

WC name	Operator	Type
CSR_dcenumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{e}_R\nu_{\mu L})$	C
CSL_dcenumu	$-rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_L d_R)(ar{e}_R u_{\mu L}) \ -rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_R d_L)(ar{e}_R u_{\mu L})$	\mathbf{C}
CT_dcenumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_dcenutau	$-rac{4G_F^c}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dcenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_dcenutau	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{e}_R\nu_{\tau L})$	\mathbf{C}
CSL_dcenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cd}(ar{c}_Rd_L)(ar{e}_R u_{ au L})$	\mathbf{C}
CT_dcenutau	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{e}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

usmunu

WC name	Operator	Type
CVL_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	C
CVR_sumunue	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\mu}_R \nu_{eL})$	\mathbf{C}
CSL_sumunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R s_L)(\bar{\mu}_R \nu_{eL})$	\mathbf{C}
CT_sumunue	$-rac{4ar{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_sumunumu	$-rac{4ar{G}_F}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_sumunumu	$-rac{4 ilde{G_F}}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_sumunumu	$-rac{4rac{ec{G}_F}}{\sqrt{2}}V_{us}(ar{u}_L s_R)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CSL_sumunumu	$-rac{4rac{ec{G}_F}}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CT_sumunumu	$-rac{4ar{G}_F}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_sumunutau	$-rac{4ar{G}_F}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_sumunutau	$-rac{4rac{ec{G}_F}}{\sqrt{2}}V_{us}(ar{u}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_sumunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{us}(ar{u}_Ls_R)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_sumunutau	$-rac{4ar{G}_F}{\sqrt{2}}V_{us}(ar{u}_Rs_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_sumunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{us}(ar{u}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

csmunu

WC name	Operator	Type
CVL_scmunue	$-rac{4G_F}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{eL})$	C
CVR_scmunue	$-\frac{4\overline{G_F}}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^{\mu}s_R)(\bar{\mu}_L\gamma_{\mu}\nu_{eL})$	\mathbf{C}
CSR_scmunue	$-\frac{4\bar{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\mu}_R \nu_{eL})$	\mathbf{C}
CSL_scmunue	$-rac{4ar{G}_F}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{\mu}_R u_{eL})$	\mathbf{C}
CT_scmunue	$-rac{4 \widetilde{G_F}}{\sqrt{2}} V_{cs} (ar{c}_R \sigma^{\mu u} s_L) (ar{\mu}_R \sigma_{\mu u} u_{eL})$	$^{\mathrm{C}}$

WC name	Operator	Type
CVL_scmunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{\mu}_L\gamma_{\mu}\nu_{\mu L})$	C
CVR_scmunumu	$-rac{4G_F}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_scmunumu	$-rac{4\widetilde{G}_F^c}{\sqrt{2}}V_{cs}(ar{c}_L s_R)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CSL_scmunumu	$-rac{4\widetilde{G}_F^c}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CT_scmunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_scmunutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{\mu}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_scmunutau	$-rac{4 \widetilde{G_F}}{\sqrt{2}} V_{cs}(ar{c}_R \gamma^\mu s_R) (ar{\mu}_L \gamma_\mu u_{ au L})$	\mathbf{C}
CSR_scmunutau	$-rac{4ar{G}_F}{\sqrt{2}}V_{cs}(ar{c}_L s_R)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CSL_scmunutau	$-rac{4G_F}{\sqrt{2}}V_{cs}(ar{c}_Rs_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_scmunutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{\mu}_R\sigma_{\mu u} u_{ au L})$	С

${\tt cdmunu}$

WC name	Operator	Type
CVL_dcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	С
CVR_dcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	$^{\mathrm{C}}$
CSR_dcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\mu}_R\nu_{eL})$	$^{\mathrm{C}}$
CSL_dcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\mu}_R\nu_{eL})$	$^{\mathrm{C}}$
CT_dcmunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{eL})$	$^{\mathrm{C}}$
CVL_dcmunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	$^{\mathrm{C}}$
CVR_dcmunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CSR_dcmunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\mu}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CSL_dcmunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\mu}_R\nu_{\mu L})$	$^{\mathrm{C}}$
CT_dcmunumu	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\mu L})$	$^{\mathrm{C}}$
CVL_dcmunutau	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{\tau L})$	$^{\mathrm{C}}$
CVR_dcmunutau	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu\nu_{\tau L})$	$^{\mathrm{C}}$
CSR_dcmunutau	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{\mu}_R\nu_{\tau L})$	$^{\mathrm{C}}$
CSL_dcmunutau	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{\mu}_R\nu_{\tau L})$	$^{\mathrm{C}}$
CT_dcmunutau	$-rac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu u}d_L)(\bar{\mu}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

ustaunu

WC name	Operator	Type
CVL_sutaunue	$-rac{4G_F}{\sqrt{2}}V_{us}(ar{u}_L\gamma^\mu s_L)(ar{ au}_L\gamma_\mu u_{eL})$	С
CVR_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL}) -\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^{\mu}s_R)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	$^{\mathrm{C}}$
CSR_sutaunue	$-rac{4\overset{Q^2_F}{\sqrt{2}}}{\sqrt{2}}V_{us}(ar{u}_Ls_R)(ar{ au}_R u_{eL})$	$^{\mathrm{C}}$

WC name	Operator	Type
CSL_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{\tau}_R\nu_{eL})$	
CT_sutaunue	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_sutaunumu	$-rac{4G_F^2}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^\mu s_L)(\bar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{\tau}_L\gamma_\mu\nu_{\mu L})$	\mathbf{C}
CSR_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\tau}_R \nu_{\mu L})$	\mathbf{C}
CSL_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_Rs_L)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CT_sutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_sutaunutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L\gamma^\mu s_L)(\bar{\tau}_L\gamma_\mu\nu_{\tau L})$	\mathbf{C}
CVR_sutaunutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R\gamma^\mu s_R)(\bar{\tau}_L\gamma_\mu\nu_{\tau L})$	\mathbf{C}
CSR_sutaunutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_L s_R)(\bar{\tau}_R \nu_{\tau L})$	\mathbf{C}
CSL_sutaunutau	$-\frac{4G_F}{\sqrt{2}}V_{us}(\bar{u}_R s_L)(\bar{\tau}_R \nu_{\tau L})$	\mathbf{C}
CT_sutaunutau	$-\frac{4\bar{G}_F}{\sqrt{2}}V_{us}(\bar{u}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

${\tt cstaunu}$

WC name	Operator	Type
CVL_sctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	C
CVR_sctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^{\mu}s_R)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	\mathbf{C}
CSR_sctaunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\tau}_R \nu_{eL})$	\mathbf{C}
CSL_sctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R s_L)(\bar{\tau}_R \nu_{eL})$	\mathbf{C}
CT_sctaunue	$-rac{4G_F}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{ au}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_sctaunumu	$-rac{4G_F}{\sqrt{2}}V_{cs}(ar{c}_L\gamma^\mu s_L)(ar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_sctaunumu	$-rac{4G_F}{\sqrt{2}}V_{cs}(ar{c}_R\gamma^\mu s_R)(ar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_sctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\tau}_R \nu_{\mu L})$	\mathbf{C}
CSL_sctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R s_L)(\bar{\tau}_R \nu_{\mu L})$	\mathbf{C}
CT_sctaunumu	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\sigma^{\mu\nu}s_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_sctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L\gamma^{\mu}s_L)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CVR_sctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R\gamma^{\mu}s_R)(\bar{\tau}_L\gamma_{\mu}\nu_{\tau L})$	\mathbf{C}
CSR_sctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_L s_R)(\bar{\tau}_R \nu_{\tau L})$	\mathbf{C}
CSL_sctaunutau	$-\frac{4G_F}{\sqrt{2}}V_{cs}(\bar{c}_R s_L)(\bar{\tau}_R \nu_{\tau L})$	\mathbf{C}
CT_sctaunutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{cs}(ar{c}_R\sigma^{\mu u}s_L)(ar{ au}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

${\tt cdtaunu}$

WC name	Operator	Type
CVL_dctaunue	$-rac{4G_F}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{ au}_L\gamma_\mu u_{eL})$	\overline{C}

WC name	Operator	Type
CVR_dctaunue	$-\frac{4G_F}{\sqrt{2}}V_{cd}(\bar{c}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu\nu_{eL})$	C
CSR_dctaunue	$-rac{4\ddot{G}_F}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{ au}_R u_{eL})$	\mathbf{C}
CSL_dctaunue	$-rac{4\ddot{G}_F^2}{\sqrt{2}}V_{cd}(\bar{c}_Rd_L)(\bar{ au}_R u_{eL})$	\mathbf{C}
CT_dctaunue	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{ au}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_dctaunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_dctaunumu	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_dctaunumu	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{cd}(\bar{c}_Ld_R)(\bar{ au}_R u_{\mu L})$	\mathbf{C}
CSL_dctaunumu	$-rac{4\overset{\circ}{G_F}}{\sqrt{2}}V_{cd}(ar{c}_Rd_L)(ar{ au}_R u_{\mu L})$	\mathbf{C}
CT_dctaunumu	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(ar{c}_R\sigma^{\mu u}d_L)(ar{ au}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_dctaunutau	$-rac{4\widetilde{G}_F}{\sqrt{2}}V_{cd}(ar{c}_L\gamma^\mu d_L)(ar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dctaunutau	$-rac{4\overset{V}{G_F}}{\sqrt{2}}V_{cd}(ar{c}_R\gamma^\mu d_R)(ar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_dctaunutau	$-rac{4\overset{V}{G_F}}{\sqrt{2}}V_{cd}(ar{c}_Ld_R)(ar{ au}_R u_{ au L})$	\mathbf{C}
CSL_dctaunutau	$-rac{4\overset{V}{G_F}}{\sqrt{2}}V_{cd}(ar{c}_Rd_L)(ar{ au}_R u_{ au L})$	\mathbf{C}
CT_dctaunutau	$-\frac{4\tilde{G}_F^2}{\sqrt{2}}V_{cd}(\bar{c}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	$^{\mathrm{C}}$

udenu

WC name	Operator	Type
CVL_duenue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{e}_L\gamma_\mu\nu_{eL})$	C
CVR_duenue	$-\frac{4\overset{\zeta}{Q_F}}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^{\mu}d_R)(\bar{e}_L\gamma_{\mu}\nu_{eL})$	\mathbf{C}
CSR_duenue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{e}_R\nu_{eL})$	\mathbf{C}
CSL_duenue	$-\frac{4\overset{.}{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{e}_R\nu_{eL})$	\mathbf{C}
CT_duenue	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
CVL_duenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_duenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_duenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Ld_R)(ar{e}_R u_{\mu L})$	\mathbf{C}
CSL_duenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{e}_R u_{\mu L})$	\mathbf{C}
CT_duenumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{\mu L})$	\mathbf{C}
CVL_duenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_duenutau	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{e}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CSR_duenutau	$-\frac{4\check{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{e}_R u_{ au L})$	\mathbf{C}
CSL_duenutau	$-\frac{4\widetilde{G}_F^2}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{e}_R\nu_{\tau L})$	\mathbf{C}
CT_duenutau	$-rac{4G_F^c}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{e}_R\sigma_{\mu u} u_{ au L})$	\mathbf{C}

udmunu

WC name	Operator	Type
CVL_dumunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu\nu_{eL})$	C
CVR_dumunue	$-rac{4G_F}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{\mu}_L\gamma_\mu u_{eL})$	$^{\mathrm{C}}$
CSR_dumunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R\nu_{eL})$	\mathbf{C}
CSL_dumunue	$-rac{4ar{G}_F}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{\mu}_R u_{eL})$	\mathbf{C}
CT_dumunue	$-rac{4ar{G}_F}{\sqrt{2}}V_{ud}(ar{u}_R\sigma^{\mu u}d_L)(ar{\mu}_R\sigma_{\mu u} u_{eL})$	\mathbf{C}
$CVL_dumunumu$	$-rac{4ar{G}_F}{\sqrt{2}}V_{ud}(ar{u}_L\gamma^\mu d_L)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_dumunumu	$-rac{4ar{G_F}}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{\mu}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_dumunumu	$-rac{4ar{G}_F}{\sqrt{2}}V_{ud}(ar{u}_Ld_R)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CSL_dumunumu	$-rac{4ar{G}_F}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{\mu}_R u_{\mu L})$	\mathbf{C}
CT_dumunumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_dumunutau	$-\frac{4\tilde{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{\mu}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CVR_dumunutau	$-\frac{4\tilde{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\mu}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CSR_dumunutau	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\mu}_R\nu_{\tau L})$	\mathbf{C}
CSL_dumunutau	$-rac{4ar{G}_F}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{\mu}_R u_{ au L})$	\mathbf{C}
CT_dumunutau	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\mu}_R\sigma_{\mu\nu}\nu_{\tau L})$	С

${\tt udtaunu}$

WC name	Operator	Type
CVL_dutaunue	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^{\mu}d_L)(\bar{\tau}_L\gamma_{\mu}\nu_{eL})$	
CVR_dutaunue	$-rac{4\widetilde{G}_F^2}{\sqrt{2}}V_{ud}(ar{u}_R\gamma^\mu d_R)(ar{ au}_L\gamma_\mu u_{eL})$	\mathbf{C}
CSR_dutaunue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\tau}_R\nu_{eL})$	\mathbf{C}
CSL_dutaunue	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{\tau}_R u_{eL})$	\mathbf{C}
CT_dutaunue	$-\frac{4\tilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{eL})$	\mathbf{C}
CVL_dutaunumu	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CVR_dutaunumu	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{ au}_L\gamma_\mu u_{\mu L})$	\mathbf{C}
CSR_dutaunumu	$-\frac{4G_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\tau}_R\nu_{\mu L})$	\mathbf{C}
CSL_dutaunumu	$-rac{4\ddot{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_Rd_L)(\bar{ au}_R u_{\mu L})$	\mathbf{C}
CT_dutaunumu	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\mu L})$	\mathbf{C}
CVL_dutaunutau	$-rac{4\widetilde{G_F}}{\sqrt{2}}V_{ud}(\bar{u}_L\gamma^\mu d_L)(\bar{ au}_L\gamma_\mu u_{ au L})$	\mathbf{C}
CVR_dutaunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_R\gamma^\mu d_R)(\bar{\tau}_L\gamma_\mu u_{\tau L})$	\mathbf{C}
CSR_dutaunutau	$-\frac{4\widetilde{G}_F}{\sqrt{2}}V_{ud}(\bar{u}_Ld_R)(\bar{\tau}_R\nu_{\tau L})$	\mathbf{C}
CSL_dutaunutau	$-rac{4\overset{V}{G_F}}{\sqrt{2}}V_{ud}(ar{u}_Rd_L)(ar{ au}_R u_{ au L})$	\mathbf{C}
CT_dutaunutau	$-\frac{4\tilde{G}_F^2}{\sqrt{2}}V_{ud}(\bar{u}_R\sigma^{\mu\nu}d_L)(\bar{\tau}_R\sigma_{\mu\nu}\nu_{\tau L})$	C

dF=0

WC name	Operator	Type
CG	$rac{4G_F}{\sqrt{2}}f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	R
CGtilde	$rac{\sqrt[4]{G_F}}{\sqrt{2}}f^{ABC}\widetilde{G}_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$	R
C7_uu	$rac{4igvee_F^2}{\sqrt{2}}rac{e}{16\pi^2}m_uar{u}_L\sigma^{\mu u}u_RF_{\mu u}$	\mathbf{C}
C7_cc	$rac{4G_F}{\sqrt{2}}rac{e}{16\pi^2}m_car{c}_L\sigma^{\mu u}c_RF_{\mu u}$	\mathbf{C}
C7_dd	$rac{4Q_F^2}{\sqrt{2}}rac{e}{16\pi^2}m_dar{d}_L\sigma^{\mu u}d_RF_{\mu u}$	$^{\mathrm{C}}$
C7_ss	$rac{4 \overset{\sim}{G_F}}{\sqrt{2}} rac{e}{16\pi^2} m_s ar{s}_L \sigma^{\mu u} s_R F_{\mu u}$	$^{\mathrm{C}}$
C7_ee	$rac{4 G_F}{\sqrt{2}} rac{e}{16\pi^2} m_e ar{e}_L \sigma^{\mu u} e_R F_{\mu u}$	$^{\mathrm{C}}$
C7_mumu	$\frac{4G_F}{\sqrt{2}}\frac{e}{16\pi^2}m_\muar{\mu}_L\sigma^{\mu\nu}\mu_R F_{\mu\nu}$	$^{\mathrm{C}}$
C7_tautau	$rac{4G_F}{\sqrt{2}}rac{e}{16\pi^2}m_ auar{ au}_L\sigma^{\mu u} au_RF_{\mu u}$	$^{\mathrm{C}}$
C8_uu	$rac{4 \widetilde{G_F}}{\sqrt{2}} rac{g_s}{16\pi^2} m_u ar{u}_L \sigma^{\mu u} T^A u_R G^A_{\mu u}$	$^{\mathrm{C}}$
C8_cc	$rac{4 G_F^2}{\sqrt{2}} rac{g_s}{16\pi^2} m_c ar{c}_L \sigma^{\mu u} T^A c_R G_{\mu u}^A$	$^{\mathrm{C}}$
C8_dd	$rac{4 \check{G}_F^c}{\sqrt{2}} rac{g_s}{16\pi^2} m_d ar{d}_L \sigma^{\mu u} T^A d_R \dot{G}_{\mu u}^A$	$^{\mathrm{C}}$
C8_ss	$rac{4G_F}{\sqrt{2}}rac{g_s}{16\pi^2}m_sar{s}_L\sigma^{\mu u}T^As_RG^A_{\mu u}$	\mathbf{C}
CTRR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\sigma^{\mu\nu}e_R)(\bar{u}_L\sigma_{\mu\nu}u_R)$	$^{\mathrm{C}}$
CTRR_mumuuu	$rac{4reve{G_F}}{\sqrt{2}}(ar{\mu}_L\sigma^{\mu u}\mu_R)(ar{u}_L\sigma_{\mu u}u_R)$	$^{\mathrm{C}}$
CTRR_tautauuu	$rac{4ar{G_F}}{\sqrt{2}}(ar{ au}_L\sigma^{\mu u} au_R)(ar{u}_L\sigma_{\mu u}u_R)$	$^{\mathrm{C}}$
CTRR_eedd	$rac{4ar{G_F}}{\sqrt{2}}(ar{e}_L\sigma^{\mu u}e_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_eess	$rac{4 \widetilde{G_F}}{\sqrt{2}} (ar{e}_L \sigma^{\mu u} e_R) (ar{s}_L \sigma_{\mu u} s_R)$	$^{\mathrm{C}}$
CTRR_mumudd	$rac{4ar{G_F}}{\sqrt{2}}(ar{\mu}_L\sigma^{\mu u}\mu_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_mumuss	$rac{4ar{G_F}}{\sqrt{2}}(ar{\mu}_L\sigma^{\mu u}\mu_R)(ar{s}_L\sigma_{\mu u}s_R)$	$^{\mathrm{C}}$
CTRR_tautaudd	$rac{4ar{G_F}}{\sqrt{2}}(ar{ au}_L\sigma^{\mu u} au_R)(ar{d}_L\sigma_{\mu u}d_R)$	$^{\mathrm{C}}$
CTRR_tautauss	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ au}_L \sigma^{\mu u} au_R) (ar{s}_L \sigma_{\mu u} s_R)$	$^{\mathrm{C}}$
CS1RR_uuuu	$\frac{4\check{G}_F}{\sqrt{2}}(ar{u}_L u_R)(ar{u}_L u_R)$	$^{\mathrm{C}}$
CS8RR_uuuu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{u}_L T^A u_R)$	$^{\mathrm{C}}$
CS1RR_uudd	$rac{4\check{G}_F}{\sqrt{2}}(ar{u}_L u_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CS1RR_uuss	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L u_R)(\bar{s}_L s_R)$	$^{\mathrm{C}}$
CS8RR_uudd	$\frac{\frac{4\tilde{G}_F^c}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{d}_L T^A d_R)}{\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{s}_L T^A s_R)}$	$^{\mathrm{C}}$
CS8RR_uuss	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS1RR_dddd	$\frac{4G_F}{\sqrt{2}}(\bar{d}_L d_R)(\bar{d}_L d_R)$	$^{\mathrm{C}}$
CS1RR_ddss	$rac{4\overset{\sim}{G_F}}{\overset{\sim}{\sqrt{2}}}(ar{d}_Ld_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CS1RR_dssd	$rac{4\check{G_F}}{\sqrt{2}}(ar{d}_L s_R)(ar{s}_L d_R)$	$^{\mathrm{C}}$
CS1RR_ssss	$rac{4ar{G}_F}{\sqrt{2}}(ar{s}_L s_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CS8RR_dddd	$\frac{4\ddot{G_F}}{\sqrt{2}}(\bar{d}_L T^A d_R)(\bar{d}_L T^A d_R)$	\mathbf{C}
CS8RR_ddss	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{d}_LT^Ad_R)(\bar{s}_LT^As_R)$	$^{\mathrm{C}}$
CS8RR_dssd	$\frac{4\ddot{G}_F}{\sqrt{2}}(\bar{d}_L T^A d_R)(\bar{s}_L T^A s_R)$ $\frac{4G_F}{\sqrt{2}}(\bar{d}_L T^A s_R)(\bar{s}_L T^A d_R)$	\mathbf{C}
CS8RR_ssss	$rac{rac{4G_F}{\sqrt{2}}}{\sqrt{2}}(ar{s}_L T^A s_R)(ar{s}_L T^A s_R) \ rac{4G_F}{\sqrt{2}}(ar{u}_L d_R)(ar{d}_L u_R)$	\mathbf{C}
CS1RR_uddu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L d_R)(\bar{d}_L u_R)$	\mathbf{C}

WC name	Operator	Type
CS1RR_ussu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L s_R)(\bar{s}_L u_R)$	C
CS8RR_uddu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L T^A d_R)(\bar{d}_L T^A u_R)$	\mathbf{C}
CS8RR_ussu	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L T^A s_R)(\bar{s}_L T^A u_R)$	\mathbf{C}
CS1RR_cccc	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{c}_Lc_R)(\bar{c}_Lc_R)$	\mathbf{C}
CS1RR_ccdd	$rac{4\ddot{G}_F}{\sqrt{2}}(ar{c}_L c_R)(ar{d}_L d_R)$	\mathbf{C}
CS1RR_ccss	$\frac{4\ddot{G}_F}{\sqrt{2}}(\bar{c}_L c_R)(\bar{s}_L s_R)$	\mathbf{C}
CS1RR_cddc	$rac{4G_F}{\sqrt{2}}(ar{c}_L d_R)(ar{d}_L c_R)$	$^{\mathrm{C}}$
CS1RR_cssc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L s_R)(\bar{s}_L c_R)$	$^{\mathrm{C}}$
CS1RR_uccu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L c_R)(\bar{c}_L u_R)$	$^{\mathrm{C}}$
CS1RR_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L u_R)(\bar{c}_L c_R)$	$^{\mathrm{C}}$
CS8RR_cccc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L T^A c_R)(\bar{c}_L T^A c_R)$	$^{\mathrm{C}}$
CS8RR_ccdd	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L T^A c_R)(\bar{d}_L T^A d_R)$	$^{\mathrm{C}}$
CS8RR_ccss	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L T^A c_R)(\bar{s}_L T^A s_R)$	$^{\mathrm{C}}$
CS8RR_cddc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L T^A d_R)(\bar{d}_L T^A c_R)$	$^{\mathrm{C}}$
CS8RR_cssc	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L T^A s_R)(\bar{s}_L T^A c_R)$	$^{\mathrm{C}}$
CS8RR_uccu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L T^A c_R)(\bar{c}_L T^A u_R)$	$^{\mathrm{C}}$
CS8RR_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L T^A u_R)(\bar{c}_L T^A c_R)$	$^{\mathrm{C}}$
CSRL_eecc	$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{c}_R c_L)$	\mathbf{C}
CSRL_eedd	$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{d}_R d_L)$	\mathbf{C}
CSRL_eess	$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{s}_R s_L)$	\mathbf{C}
CSRL_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{u}_R u_L)$	\mathbf{C}
CSRL_mumucc	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSRL_mumudd	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{d}_Rd_L)$	$^{\mathrm{C}}$
CSRL_mumuss	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{s}_Rs_L)$	\mathbf{C}
CSRL_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{u}_Ru_L)$	\mathbf{C}
CSRL_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{c}_Rc_L)$	\mathbf{C}
CSRL_tautaudd	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{d}_Rd_L)$	\mathbf{C}
CSRL_tautauss	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{s}_Rs_L)$	$^{\mathrm{C}}$
CSRL_tautauuu	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{u}_Ru_L)$	\mathbf{C}
CSRR_eecc	$\frac{4\overline{G}_F}{\sqrt{2}}(ar{e}_L e_R)(ar{c}_L c_R)$	$^{\mathrm{C}}$
CSRR_eedd	$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(d_L d_R)$	\mathbf{C}
CSRR_eeee	$\frac{2}{\sqrt{2}}(e_L e_R)(e_L e_R)$	$^{\mathrm{C}}$
CSRR_eemumu	$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{\mu}_L \mu_R)$	\mathbf{C}
CSRR_eess	$rac{4G_F}{\sqrt{2}}(ar{e}_L e_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CSRR_eetautau	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L e_R)(\bar{\tau}_L \tau_R)$	$^{\mathrm{C}}$
CSRR_eeuu	$\frac{4\tilde{G}_F}{\sqrt{2}}(ar{e}_L e_R)(ar{u}_L u_R)$	\mathbf{C}
CSRR_emumue	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{e}_L\mu_R)(\bar{\mu}_Le_R)$	$^{\mathrm{C}}$

WC name	Operator	Type
CSRR_etautaue	$rac{4G_F}{\sqrt{2}}(ar{e}_L au_R)(ar{ au}_Le_R)$	$^{\mathrm{C}}$
CSRR_mumucc	$\frac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRR_mumudd	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRR_mumumumu	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{\mu}_L\mu_R)$	\mathbf{C}
CSRR_mumuss	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{s}_Ls_R)$	\mathbf{C}
CSRR_mumutautau	$\frac{4G_F}{\sqrt{2}}(ar{\mu}_L\mu_R)(ar{ au}_L au_R)$	$^{\mathrm{C}}$
CSRR_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\mu_R)(\bar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_mutautaumu	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L au_R)(ar{ au}_L\mu_R)$	$^{\mathrm{C}}$
CSRR_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRR_tautaudd	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{d}_Ld_R)$	$^{\mathrm{C}}$
CSRR_tautauss	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_tautautauta	u $rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{ au}_L au_R)$	$^{\mathrm{C}}$
CSRR_tautauuu	$rac{4G_F}{\sqrt{2}}(ar{ au}_L au_R)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CTRR_eecc	$\frac{4G_F}{\sqrt{2}}(ar{e}_L\sigma^{\mu u}e_R)(ar{c}_L\sigma_{\mu u}c_R)$	$^{\mathrm{C}}$
CTRR_mumucc	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\sigma^{\mu u}\mu_R)(ar{c}_L\sigma_{\mu u}c_R)$	$^{\mathrm{C}}$
CTRR_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\sigma^{\mu u} au_R)(ar{c}_L\sigma_{\mu u}c_R)$	$^{\mathrm{C}}$
CV1LL_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{d}_L\gamma_\mu d_L)$	R
CV1LL_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{s}_L\gamma_\mu s_L)$	R
CV1LL_uudd	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{d}_L\gamma_\mu d_L)$	R
CV1LL_uuss	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{s}_L\gamma_\mu s_L)$	R
CV1LR_cccc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{c}_R\gamma_\mu c_R)$	R
CV1LR_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(d_R\gamma_\mu d_R)$	R
CV1LR_ccss	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu c_L)(ar{s}_R\gamma_\mu s_R)$	R
CV1LR_ccuu	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1LR_cddc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu d_L)(ar{d}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CV1LR_cssc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu s_L)(ar{s}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CV1LR_ddcc	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{c}_R\gamma_\mu c_R)$	R
CV1LR_dddd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_ddss	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{s}_R\gamma_\mu s_R)$	R
CV1LR_dduu	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{u}_R\gamma_\mu u_R)$	R
CV1LR_dssd	$rac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu s_L)(ar{s}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CV1LR_sscc	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{c}_R\gamma_\mu c_R)$	R
CV1LR_ssdd	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{d}_R\gamma_\mu d_R)$	R
CV1LR_ssss	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{s}_R\gamma_\mu s_R)$	R
CV1LR_ssuu	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{u}_R\gamma_\mu u_R)$	R
CV1LR_uccu	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu c_L)(ar{c}_R\gamma_\mu u_R)$	\mathbf{C}
CV1LR_uddu	$\begin{array}{l} \frac{\sqrt{2}}{\sqrt{2}}(\bar{s}_{L}\gamma^{\mu}s_{L})(\bar{c}_{R}\gamma_{\mu}c_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{s}_{L}\gamma^{\mu}s_{L})(\bar{d}_{R}\gamma_{\mu}d_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{s}_{L}\gamma^{\mu}s_{L})(\bar{s}_{R}\gamma_{\mu}s_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{s}_{L}\gamma^{\mu}s_{L})(\bar{s}_{R}\gamma_{\mu}u_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{s}_{L}\gamma^{\mu}s_{L})(\bar{u}_{R}\gamma_{\mu}u_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}\gamma^{\mu}c_{L})(\bar{c}_{R}\gamma_{\mu}u_{R}) \\ \frac{4G_{F}}{\sqrt{2}}(\bar{u}_{L}\gamma^{\mu}d_{L})(\bar{d}_{R}\gamma_{\mu}u_{R}) \end{array}$	$^{\mathrm{C}}$

$\begin{array}{c} \operatorname{CV11R_ussu} & \frac{4G_F}{4G_F}(\bar{u}_L\gamma^\mu s_L)(\bar{s}_R\gamma_\mu u_R) & \operatorname{C} \\ \operatorname{CV11R_uucc} & \frac{4G_F}{4G_F}(\bar{u}_L\gamma^\mu u_L)(\bar{c}_R\gamma_\mu c_R) & \operatorname{R} \\ \operatorname{CV11R_uudd} & \frac{4G_F}{4G_F}(\bar{u}_L\gamma^\mu u_L)(\bar{s}_R\gamma_\mu c_R) & \operatorname{R} \\ \operatorname{CV11R_uuss} & \frac{4G_F}{4G_F}(\bar{u}_L\gamma^\mu u_L)(\bar{s}_R\gamma_\mu c_R) & \operatorname{R} \\ \operatorname{CV11R_uuss} & \frac{4G_F}{4G_F}(\bar{u}_L\gamma^\mu u_L)(\bar{s}_R\gamma_\mu s_R) & \operatorname{R} \\ \operatorname{CV11R_uuu} & \frac{4G_F}{4G_F}(\bar{u}_L\gamma^\mu u_L)(\bar{u}_R\gamma_\mu u_R) & \operatorname{R} \\ \operatorname{CV11R_ccdd} & \frac{4G_F}{4G_F}(\bar{c}_R\gamma^\mu c_R)(\bar{s}_R\gamma_\mu d_R) & \operatorname{R} \\ \operatorname{CV11R_ccss} & \frac{4G_F}{4G_F}(\bar{c}_R\gamma^\mu c_R)(\bar{s}_R\gamma_\mu d_R) & \operatorname{R} \\ \operatorname{CV1R_uuss} & \frac{4G_F}{4G_F}(\bar{a}_R\gamma^\mu u_R)(\bar{d}_R\gamma_\mu d_R) & \operatorname{R} \\ \operatorname{CV1R_uuss} & \frac{4G_F}{4G_F}(\bar{a}_R\gamma^\mu u_R)(\bar{d}_R\gamma_\mu d_R) & \operatorname{R} \\ \operatorname{CVIR_uuss} & \frac{4G_F}{4G_F}(\bar{a}_R\gamma^\mu u_R)(\bar{d}_R\gamma_\mu d_R) & \operatorname{R} \\ \operatorname{CV3LL_ccdd} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_L\gamma_\mu T^A d_L) & \operatorname{R} \\ \operatorname{CV3LL_uuss} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_L\gamma_\mu T^A d_L) & \operatorname{R} \\ \operatorname{CV3LL_uuss} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A d_L) & \operatorname{R} \\ \operatorname{CV3LL_uuss} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_L\gamma_\mu T^A d_L) & \operatorname{R} \\ \operatorname{CV3LR_cccs} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A c_R) & \operatorname{R} \\ \operatorname{CV3LR_ccss} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A d_R) & \operatorname{R} \\ \operatorname{CV3LR_ccss} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A c_R) & \operatorname{R} \\ \operatorname{CV3LR_ccuu} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A d_R) & \operatorname{R} \\ \operatorname{CV3LR_ccuu} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A c_R) & \operatorname{C} \\ \operatorname{CV3LR_ddc} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \operatorname{C} \\ \operatorname{CV3LR_ddc} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \operatorname{C} \\ \operatorname{CV3LR_dds} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \operatorname{R} \\ \operatorname{CV3LR_dds} & \frac{4G_F}{4G_F}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \operatorname{R} \\ \operatorname{CV3LR_dds} & \frac{4G_F}{4G_F}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \operatorname{R} \\ \operatorname{CV3LR_dsd} & \frac{4G_F}{4G_F}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \operatorname{R} \\ \operatorname{CV3LR_ddu} & \frac{4G_F}{4G_F}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) & \operatorname{R} \\ \operatorname{CV3LR_ssu} & \frac{4G_F}{4G_F}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T$	WC name	Operator	Type
$\begin{array}{c} \text{CV1LR_uudd} & \frac{\partial \widetilde{G}_F}{\partial Z} (\widetilde{u}_L \gamma^\mu u_L) (\widetilde{d}_R \gamma_\mu d_R) & R \\ \text{CV1LR_uuus} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_L \gamma^\mu u_L) (\widetilde{s}_R \gamma_\mu s_R) & R \\ \text{CV1LR_uuuu} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_L \gamma^\mu u_L) (\widetilde{u}_R \gamma_\mu u_R) & R \\ \text{CV1RR_ccdd} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_R \gamma^\mu c_R) (\widetilde{d}_R \gamma_\mu d_R) & R \\ \text{CV1RR_ccss} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_R \gamma^\mu c_R) (\widetilde{d}_R \gamma_\mu d_R) & R \\ \text{CV1RR_uudd} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_R \gamma^\mu u_R) (\widetilde{d}_R \gamma_\mu d_R) & R \\ \text{CV1RR_uudd} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_R \gamma^\mu u_R) (\widetilde{d}_R \gamma_\mu d_R) & R \\ \text{CV1RR_uudd} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_R \gamma^\mu u_R) (\widetilde{d}_R \gamma_\mu r_A d_L) & R \\ \text{CV3LL_ccdd} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_R \gamma^\mu u_R) (\widetilde{d}_R \gamma_\mu T_A d_L) & R \\ \text{CV3LL_cudd} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_L \gamma^\mu T_A c_L) (\widetilde{d}_L \gamma_\mu T_A d_L) & R \\ \text{CV3LL_uudd} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_L \gamma^\mu T_A u_L) (\widetilde{d}_L \gamma_\mu T_A d_L) & R \\ \text{CV3LL_uuss} & \frac{\partial G_F}{\partial Z} (\widetilde{u}_L \gamma^\mu T_A u_L) (\widetilde{d}_L \gamma_\mu T_A r_A r_L) & R \\ \text{CV3LL_ccsc} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_L \gamma_\mu T_A r_A r_L) & R \\ \text{CV3LR_cccc} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_L \gamma_\mu T_A r_A r_L) & R \\ \text{CV3LR_cccd} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_ccss} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_ccss} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_cssc} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_ddd} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_dddd} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_ddsd} & \frac{\partial G_F}{\partial Z} (\widetilde{c}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_ddsd} & \frac{\partial G_F}{\partial Z} (\widetilde{d}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_ddsd} & \frac{\partial G_F}{\partial Z} (\widetilde{d}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_ddsd} & \frac{\partial G_F}{\partial Z} (\widetilde{d}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_sscd} & \frac{\partial G_F}{\partial Z} (\widetilde{d}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A r_R) & R \\ \text{CV3LR_ssdd} & \frac{\partial G_F}{\partial Z} (\widetilde{d}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma_\mu T_A u_R) & R \\ \text{CV3LR_suudd} & \frac{\partial G_F}{\partial Z} (\widetilde{d}_L \gamma^\mu T_A u_L) (\widetilde{d}_R \gamma$	CV1LR_ussu		\mathbf{C}
$\begin{array}{c} \text{CV1LR_uuus} & \frac{4G_F^C}{\sqrt{2}} (\bar{u}_L \gamma^\mu u_L) (\bar{s}_R \gamma_\mu s_R) \\ \text{CV1LR_uuu} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu u_L) (\bar{u}_R \gamma_\mu u_R) \\ \text{CV1RR_ccdd} & \frac{4G_F}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CV1RR_ccss} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CV1RR_uudd} & \frac{4G_F^C}{\sqrt{2}} (\bar{u}_R \gamma^\mu u_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CV1RR_uuss} & \frac{4G_F^C}{\sqrt{2}} (\bar{u}_R \gamma^\mu u_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CV1RR_uuss} & \frac{4G_F^C}{\sqrt{2}} (\bar{u}_R \gamma^\mu u_R) (\bar{d}_R \gamma_\mu d_R) \\ \text{CV3LL_ccdd} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_L \gamma_\mu T^A d_L) \\ \text{CV3LL_cudd} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_L \gamma_\mu T^A d_L) \\ \text{CV3LL_uudd} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A u_L) (\bar{d}_L \gamma_\mu T^A d_L) \\ \text{CV3LL_uuss} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A u_L) (\bar{d}_L \gamma_\mu T^A d_L) \\ \text{CV3LL_uuss} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_cccc} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_ccdd} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_ccss} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_ccss} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_ccdd} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_cddc} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_cddc} & \frac{4G_F^C}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_dddd} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_dddd} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_ddss} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_ssc} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_ssc} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A c_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_ssc} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_sss} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_sus} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A c_R) \\ \text{CV3LR_uucu} & \frac{4G_F^C}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A s_L) $	CV1LR_uucc		R
CV1LR_uuuu $\frac{4C_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{u}_R\gamma_\mu u_R) \qquad R$ CV1RR_ccdd $\frac{4C_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{d}_R\gamma_\mu d_R) \qquad R$ CV1RR_ccss $\frac{4C_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu c_R)(\bar{d}_R\gamma_\mu d_R) \qquad R$ CV1RR_uudd $\frac{4C_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{d}_R\gamma_\mu d_R) \qquad R$ CV1RR_uuss $\frac{4C_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{d}_R\gamma_\mu d_R) \qquad R$ CV1RR_uuss $\frac{4C_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{d}_R\gamma_\mu d_R) \qquad R$ CV8LL_ccdd $\frac{4C_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu T^\mu c_L)(\bar{d}_L\gamma_\mu T^\mu d_L) \qquad R$ CV8LL_ccss $\frac{4C_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^\mu c_L)(\bar{d}_L\gamma_\mu T^\mu d_L) \qquad R$ CV8LL_uudd $\frac{4C_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^\mu d_L)(\bar{d}_L\gamma_\mu T^\mu d_L) \qquad R$ CV8LL_uuss $\frac{4C_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^\mu d_L)(\bar{d}_L\gamma_\mu T^\mu d_L) \qquad R$ CV8LL_uuss $\frac{4C_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^\mu d_L)(\bar{d}_L\gamma_\mu T^\mu d_L) \qquad R$ CV8LR_cccc $\frac{4C_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_ccdd $\frac{4C_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_ccss $\frac{4C_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_ccss $\frac{4C_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_cddc $\frac{4C_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_cddc $\frac{4C_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_dddc $\frac{4C_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_dddd $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_dddd $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_ddss $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_ddss $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_dssd $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_sscc $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_sscs $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_ssuu $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_susu $\frac{4C_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad C$ CV8LR_uucu $\frac{4C_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad C$ CV8LR_uucu $\frac{4C_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) \qquad R$ CV8LR_uucu $\frac{4C_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^\mu T^\mu d_L)(\bar{d}_R\gamma_\mu T^\mu d_R) $	CV1LR_uudd		R
$\begin{array}{c} \text{CV1RR_ccdd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_R \gamma^\mu c_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CV1RR_ccss} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_R \gamma^\mu c_R) (\bar{s}_R \gamma_\mu s_R) & \text{R} \\ \text{CV1RR_uudd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{u}_R \gamma^\mu u_R) (\bar{d}_R \gamma_\mu d_R) & \text{R} \\ \text{CV1RR_uuss} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{u}_R \gamma^\mu u_R) (\bar{s}_R \gamma_\mu s_R) & \text{R} \\ \text{CV8LL_ccdd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{u}_R \gamma^\mu u_R) (\bar{s}_R \gamma_\mu s_R) & \text{R} \\ \text{CV8LL_ccss} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{d}_L \gamma_\mu T^A d_L) & \text{R} \\ \text{CV8LL_uudd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_L \gamma_\mu T^A s_L) & \text{R} \\ \text{CV8LL_uudd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_L \gamma_\mu T^A d_L) & \text{R} \\ \text{CV8LL_uuss} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{u}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_cccc} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_cccd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ccss} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ccss} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ccss} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_cddc} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_ddcc} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_dddc} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A d_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ddso} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A d_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ddso} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A d_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_sscc} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A d_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_sscd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A d_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_sscd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A d_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_sscd} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{s}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_sscu} & \frac{4\hat{C}_F}{\hat{Q}^2} (\bar{c}_L \gamma^\mu T^A c_L) (\bar{c}_R \gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_susu} &$	CV1LR_uuss		R
$\begin{array}{c} \text{CV1RR_ccss} & \frac{4G_F^c}{\sqrt{2}}(\bar{e}_R\gamma^\mu e_R)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CV1RR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{d}_R\gamma_\mu d_R) & \text{R} \\ \text{CV1RR_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CV8LL_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu T^A c_L)(\bar{d}_L\gamma_\mu T^A d_L) & \text{R} \\ \text{CV8LL_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_L\gamma_\mu T^A s_L) & \text{R} \\ \text{CV8LL_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A u_L)(\bar{d}_L\gamma_\mu T^A d_L) & \text{R} \\ \text{CV8LL_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_L\gamma_\mu T^A d_L) & \text{R} \\ \text{CV8LL_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L) & \text{R} \\ \text{CV8LR_cccc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{c}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_ccuu} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_cssc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A a_R) & \text{R} \\ \text{CV8LR_dssd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A a_R) & \text{C} \\ \text{CV8LR_sscc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A a_R) & \text{C} \\ \text{CV8LR_sscd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A a_R) & \text{C} \\ \text{CV8LR_sscs} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A a_R) & \text{R} \\ \text{CV8LR_ssuu} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A a_R) & \text{R} \\ \text{CV8LR_susu} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A a_R) & \text{C} \\ \text{CV8LR_susu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A a_R) & \text{C} \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu $	CV1LR_uuuu	$rac{4G_F}{\sqrt{2}}(ar{u}_L\gamma^\mu u_L)(ar{u}_R\gamma_\mu u_R)$	R
$\begin{array}{c} \text{CV1RR_uudd} & \frac{dG_F^{\perp}}{dF_c}(\bar{u}_R\gamma^\mu u_R)(\bar{d}_R\gamma_\mu d_R) \\ \text{CV1RR_uuss} & \frac{dG_F^{\perp}}{dF_c}(\bar{u}_R\gamma^\mu u_R)(\bar{s}_R\gamma_\mu s_R) \\ \text{CV8LL_ccdd} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_L\gamma_\mu T^A d_L) \\ \text{CV8LL_ccss} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_L\gamma_\mu T^A d_L) \\ \text{CV8LL_uudd} & \frac{dG_F^{\perp}}{dF_c}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_L\gamma_\mu T^A d_L) \\ \text{CV8LL_uuss} & \frac{dG_F^{\perp}}{dF_c}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L) \\ \text{CV8LL_uuss} & \frac{dG_F^{\perp}}{dF_c}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L) \\ \text{CV8LR_cccc} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{c}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_ccdd} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ccss} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A s_R) \\ \text{CV8LR_ccuu} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{u}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_cddc} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_cddc} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_ddcc} & \frac{dG_F^{\perp}}{dF_c}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_dddd} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_dddd} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_dssd} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_sscc} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_sscd} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ssuu} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_susu} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uucc} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uuudd} & \frac{dG_F^{\perp}}{dF_c}(\bar{d}_L\gamma^\mu T^A s_L)(d$	CV1RR_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_R\gamma^\mu c_R)(ar{d}_R\gamma_\mu d_R)$	R
$\begin{array}{c} \text{CV1RR_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{s}_R\gamma_\mu s_R) & \text{R} \\ \text{CV8LL_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_L\gamma_\mu T^A d_L) & \text{R} \\ \text{CV8LL_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_L\gamma_\mu T^A d_L) & \text{R} \\ \text{CV8LL_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_L\gamma_\mu T^A d_L) & \text{R} \\ \text{CV8LL_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L) & \text{R} \\ \text{CV8LL_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L) & \text{R} \\ \text{CV8LR_cccc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{c}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ccuu} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_dssd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{C} \\ \text{CV8LR_sscc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_sscd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_sscd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ssuu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_susu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{C} \\ \text{CV8LR_uucu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s$	CV1RR_ccss	VZ	R
$\begin{array}{c} \text{CV8LL_ccdd} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_L\gamma_\mu T^A d_L) \\ \text{CV8LL_ccss} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_L\gamma_\mu T^A s_L) \\ \text{CV8LL_uudd} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_L\gamma_\mu T^A s_L) \\ \text{CV8LL_uuss} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A u_L)(\bar{d}_L\gamma_\mu T^A d_L) \\ \text{CV8LL_uuss} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L) \\ \text{CV8LR_cccc} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_ccdd} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ccss} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_ccss} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_ccsu} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_cddc} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_cssc} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_ddcc} & \frac{4G_F}{2}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_dddd} & \frac{4G_F}{2}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{4G_F}{2}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{4G_F}{2}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_dsdd} & \frac{4G_F}{2}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_sscc} & \frac{4G_F}{2}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_sscd} & \frac{4G_F}{2}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_sssdd} & \frac{4G_F}{2}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ssuu} & \frac{4G_F}{2}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uccu} & \frac{4G_F}{2}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uudd} & \frac{4G_F}{2}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uudd} & \frac{4G_F}{2}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uudd} & \frac{4G_F}{2}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uudd} & \frac{4G_F}{2}(\bar$	CV1RR_uudd	$rac{4G_F}{\sqrt{2}}(ar{u}_R\gamma^\mu u_R)(ar{d}_R\gamma_\mu d_R)$	R
$\begin{array}{c} \text{CV8LL_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_L\gamma_\mu T^A s_L) \\ \text{CV8LL_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_L\gamma_\mu T^A d_L) \\ \text{CV8LL_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L) \\ \text{CV8LR_cccc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{c}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_cccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_ccsu} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_cssc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_dssd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_sscc} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ssdd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_sssd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ssuu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uccu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uusu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uuuc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ CV8LR_$	CV1RR_uuss	VZ	R
$\begin{array}{c} \text{CV8LL_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{d}_L\gamma_{\mu}T^Ad_L) & \text{R} \\ \text{CV8LL_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{s}_L\gamma_{\mu}T^As_L) & \text{R} \\ \text{CV8LR_cccc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ac_L)(\bar{c}_R\gamma_{\mu}T^Ac_R) & \text{R} \\ \text{CV8LR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ac_L)(\bar{d}_R\gamma_{\mu}T^Ad_R) & \text{R} \\ \text{CV8LR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ac_L)(\bar{s}_R\gamma_{\mu}T^Ad_R) & \text{R} \\ \text{CV8LR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ac_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_ccuu} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ac_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ad_L)(\bar{d}_R\gamma_{\mu}T^Ac_R) & \text{C} \\ \text{CV8LR_cssc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}T^Ad_L)(\bar{s}_R\gamma_{\mu}T^Ac_R) & \text{C} \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}T^Ad_L)(\bar{s}_R\gamma_{\mu}T^Ac_R) & \text{R} \\ \text{CV8LR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}T^Ad_L)(\bar{d}_R\gamma_{\mu}T^Ad_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}T^Ad_L)(\bar{s}_R\gamma_{\mu}T^Ad_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}T^Ad_L)(\bar{s}_R\gamma_{\mu}T^Ad_R) & \text{C} \\ \text{CV8LR_sscc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^Ad_R) & \text{C} \\ \text{CV8LR_sscd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^Ad_R) & \text{R} \\ \text{CV8LR_sssd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^Ad_R) & \text{R} \\ \text{CV8LR_ssuu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_susu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{C} \\ \text{CV8LR_uccu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{C} \\ \text{CV8LR_uusu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{C} \\ \text{CV8LR_uusu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^As_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_uusd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_uusd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{s}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{u}_R\gamma_{\mu}T^Au_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma$	CV8LL_ccdd	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A c_L)(ar{d}_L\gamma_\mu T^A d_L)$	R
$\begin{array}{c} \text{CV8LL_uuss} & \frac{4\tilde{G}_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_L\gamma_\mu T^A s_L) & \text{R} \\ \text{CV8LR_cccc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{c}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_ccsu} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_cssc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{u}_R\gamma_\mu T^A d_R) & \text{C} \\ \text{CV8LR_dssd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{u}_R\gamma_\mu T^A d_R) & \text{C} \\ \text{CV8LR_sscc} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_sssdd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_sssu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_susu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uccu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uusu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uusu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uusu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uusu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uusu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(u$	CV8LL_ccss	V 2	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LL_uudd		R
$\begin{array}{c} \text{CV8LR_ccdd} & \frac{4\tilde{G}_F}{\sqrt{2}} (\bar{c}_L\gamma^\mu T^A c_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ccss} & \frac{4G_F}{\sqrt{2}} (\bar{c}_L\gamma^\mu T^A c_L) (\bar{s}_R\gamma_\mu T^A s_R) \\ \text{CV8LR_ccuu} & \frac{4G_F}{\sqrt{2}} (\bar{c}_L\gamma^\mu T^A c_L) (\bar{u}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}} (\bar{c}_L\gamma^\mu T^A c_L) (\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}} (\bar{c}_L\gamma^\mu T^A d_L) (\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_cssc} & \frac{4G_F}{\sqrt{2}} (\bar{c}_L\gamma^\mu T^A d_L) (\bar{d}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}} (\bar{d}_L\gamma^\mu T^A d_L) (\bar{c}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_dddd} & \frac{4G_F}{\sqrt{2}} (\bar{d}_L\gamma^\mu T^A d_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}} (\bar{d}_L\gamma^\mu T^A d_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}} (\bar{d}_L\gamma^\mu T^A d_L) (\bar{u}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_dsdd} & \frac{4G_F}{\sqrt{2}} (\bar{d}_L\gamma^\mu T^A d_L) (\bar{u}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_dssd} & \frac{4G_F}{\sqrt{2}} (\bar{d}_L\gamma^\mu T^A s_L) (\bar{s}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_sscc} & \frac{4G_F}{\sqrt{2}} (\bar{d}_L\gamma^\mu T^A s_L) (\bar{s}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ssdd} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L\gamma^\mu T^A s_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ssuu} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L\gamma^\mu T^A s_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ssuu} & \frac{4G_F}{\sqrt{2}} (\bar{s}_L\gamma^\mu T^A s_L) (\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uccu} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A s_L) (\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_usu} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A s_L) (\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_usu} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A s_L) (\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A s_L) (\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A u_L) (\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A u_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A u_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A u_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A u_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uuud} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A u_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A u_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}} (\bar{u}_L\gamma^\mu T^A u_L) (\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uuuu} & 4G_F$	CV8LL_uuss		R
$\begin{array}{c} \text{CV8LR_ccss} & \frac{AG_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_ccuu} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_cddc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{u}_R\gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_cssc} & \frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A c_R) & \text{C} \\ \text{CV8LR_ddcc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{c}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_dddd} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ddss} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_ddsu} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_dsuu} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A d_L)(\bar{s}_R\gamma_\mu T^A d_R) & \text{C} \\ \text{CV8LR_sscc} & \frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A d_R) & \text{C} \\ \text{CV8LR_sscc} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_sssdd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_ssuu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_suu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uccu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_usu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_usu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uuud} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uuudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uuudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uuudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uuudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uuud} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uuudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uuudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(u$	CV8LR_cccc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^Ac_L)(ar{c}_R\gamma_\mu T^Ac_R)$	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_ccdd		R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_ccss	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu T^A c_L)(\bar{s}_R\gamma_\mu T^A s_R)$	R
$\begin{array}{c} \text{CV8LR_cssc} & \frac{4 \overline{G_F}}{\sqrt{2}} (\bar{c}_L \gamma^\mu T^A s_L) (\bar{s}_R \gamma_\mu T^A c_R) \\ \text{CV8LR_ddcc} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{c}_R \gamma_\mu T^A c_R) \\ \text{CV8LR_dddd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{d}_R \gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{d}_R \gamma_\mu T^A d_R) \\ \text{CV8LR_ddss} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{s}_R \gamma_\mu T^A s_R) \\ \text{CV8LR_dsul} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A d_L) (\bar{u}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_dssd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A s_L) (\bar{s}_R \gamma_\mu T^A d_R) \\ \text{CV8LR_sscc} & \frac{4 G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu T^A s_L) (\bar{c}_R \gamma_\mu T^A d_R) \\ \text{CV8LR_ssdd} & \frac{4 G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A d_R) \\ \text{CV8LR_ssss} & \frac{4 G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ssul} & \frac{4 G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_uccu} & \frac{4 G_F}{\sqrt{2}} (\bar{s}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ucdu} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ussu} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A d_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A s_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_uudd} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A d_R) \\ \text{CV8LR_uudd} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A d_R) \\ \text{CV8LR_uuss} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A d_R) \\ \text{CV8LR_uuuu} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_uuuu} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_uuuu} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ccdd} & \frac{4 G_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ccdd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ccdd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ccdd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ccdd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ \text{CV8LR_ccdd} & \frac{4 G_F}{\sqrt{2}} (\bar{d}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A u_R) \\ CV8LR_ccd$	CV8LR_ccuu	$\sqrt{2}$	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_cddc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A d_L)(ar{d}_R\gamma_\mu T^A c_R)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_cssc	$rac{4G_F}{\sqrt{2}}(ar{c}_L\gamma^\mu T^A s_L)(ar{s}_R\gamma_\mu T^A c_R)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_ddcc	V 2	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_dddd		R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_ddss		R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_dduu		R
$\begin{array}{c} \text{CV8LR_ssdd} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_ssss} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A s_R) \\ \text{CV8LR_ssuu} & \frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{u}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uccu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A c_L)(\bar{c}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uddu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_ussu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{c}_R\gamma_\mu T^A c_R) \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A d_R) \\ \text{CV8LR_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_R\gamma_\mu T^A s_R) \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R) \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R) \\ \text{CV8RR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{d}_R\gamma_\mu T^A d_R) \\ \end{array} \text{R} \end{array}$	CV8LR_dssd	$\frac{4G_F}{\sqrt{2}}(ar{d}_L\gamma^\mu T^A s_L)(ar{s}_R\gamma_\mu T^A d_R)$	\mathbf{C}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_sscc	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{c}_R\gamma_\mu T^A c_R)$	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_ssdd	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu T^A s_L)(\bar{d}_R\gamma_\mu T^A d_R)$	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CV8LR_ssss		R
$\begin{array}{cccc} \text{CV8LR_uddu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A d_L)(\bar{d}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_ussu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{c}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8RR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \end{array}$	CV8LR_ssuu	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^{\mu}T^As_L)(\bar{u}_R\gamma_{\mu}T^Au_R)$	R
$\begin{array}{cccc} \text{CV8LR_ussu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{c}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8RR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \end{array}$	CV8LR_uccu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Ac_L)(\bar{c}_R\gamma_{\mu}T^Au_R)$	\mathbf{C}
$\begin{array}{cccc} \text{CV8LR_ussu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R) & \text{C} \\ \text{CV8LR_uucc} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{c}_R\gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8RR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \end{array}$	CV8LR_uddu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Ad_L)(\bar{d}_R\gamma_{\mu}T^Au_R)$	\mathbf{C}
$\begin{array}{lll} \text{CV8LR_uucc} & \frac{4 \overline{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{c}_R \gamma_\mu T^A c_R) & \text{R} \\ \text{CV8LR_uudd} & \frac{4 \overline{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{d}_R \gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_uuss} & \frac{4 \overline{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{s}_R \gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4 \overline{G}_F}{\sqrt{2}} (\bar{u}_L \gamma^\mu T^A u_L) (\bar{u}_R \gamma_\mu T^A u_R) & \text{R} \\ \text{CV8RR_ccdd} & \frac{4 \overline{G}_F}{\sqrt{2}} (\bar{c}_R \gamma^\mu T^A c_R) (\bar{d}_R \gamma_\mu T^A d_R) & \text{R} \\ \text{CV8RR_ccss} & \frac{4 \overline{G}_F}{\sqrt{2}} (\bar{c}_R \gamma^\mu T^A c_R) (\bar{s}_R \gamma_\mu T^A s_R) & \text{R} \\ \end{array}$	CV8LR_ussu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A s_L)(\bar{s}_R\gamma_\mu T^A u_R)$	\mathbf{C}
$\begin{array}{lll} \text{CV8LR_uudd} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8LR_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8RR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8RR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \end{array}$	CV8LR_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{c}_R\gamma_\mu T^A c_R)$	R
$\begin{array}{lll} \text{CV8LR_uuss} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \\ \text{CV8LR_uuuu} & \frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R) & \text{R} \\ \text{CV8RR_ccdd} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{d}_R\gamma_\mu T^A d_R) & \text{R} \\ \text{CV8RR_ccss} & \frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{s}_R\gamma_\mu T^A s_R) & \text{R} \end{array}$	CV8LR_uudd	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{d}_R\gamma_{\mu}T^Ad_R)$	R
CV8LR_uuuu $\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu T^A u_L)(\bar{u}_R\gamma_\mu T^A u_R) \qquad \qquad R$ CV8RR_ccdd $\frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{d}_R\gamma_\mu T^A d_R) \qquad \qquad R$ CV8RR_ccss $\frac{4G_F}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^A c_R)(\bar{s}_R\gamma_\mu T^A s_R) \qquad \qquad R$	CV8LR_uuss	$\frac{4\bar{G_F}}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{s}_R\gamma_{\mu}T^As_R)$	R
CV8RR_ccdd $\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\overline{c}_R \gamma^\mu T^A c_R) (\overline{d}_R \gamma_\mu T^A d_R) \qquad \qquad \mathbf{R}$ CV8RR_ccss $\frac{4 G_F}{\sqrt{2}} (\overline{c}_R \gamma^\mu T^A c_R) (\overline{s}_R \gamma_\mu T^A s_R) \qquad \qquad \mathbf{R}$	CV8LR_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^{\mu}T^Au_L)(\bar{u}_R\gamma_{\mu}T^Au_R)$	R
CV8RR_ccss $\frac{4\ddot{G}_F}{\sqrt{2}}(\bar{c}_R\gamma^{\mu}T^Ac_R)(\bar{s}_R\gamma_{\mu}T^As_R)$ R	CV8RR_ccdd	$\frac{4\ddot{G_F}}{\sqrt{2}}(\bar{c}_R\gamma^\mu T^Ac_R)(\bar{d}_R\gamma_\mu T^Ad_R)$	R
	CV8RR_ccss	$\frac{4\bar{G_F}}{\sqrt{2}}(\bar{c}_R\gamma^{\mu}T^Ac_R)(\bar{s}_R\gamma_{\mu}T^As_R)$	R

WC name	Operator	Type
CV8RR_uudd	$\frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^{\mu}T^Au_R)(\bar{d}_R\gamma_{\mu}T^Ad_R)$	R
CV8RR_uuss	$\frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu T^A u_R)(\bar{s}_R\gamma_\mu T^A s_R)$	${ m R}$
CVLL_cccc	$\frac{\sqrt{2}}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}c_L)(\bar{c}_L\gamma_{\mu}c_L)$	\mathbf{R}
CVLL_dddd	$\frac{4\ddot{G}_F^2}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{d}_L\gamma_\mu d_L)$	\mathbf{R}
CVLL_ddss	$rac{4\ddot{Q}_F^2}{\sqrt{2}}(ar{d}_L\gamma^\mu d_L)(ar{s}_L\gamma_\mu s_L)$	\mathbf{R}
CVLL_dssd	$\frac{4\overset{\sim}{G_F}}{\sqrt{2}}(\bar{d}_L\gamma^\mu s_L)(\bar{s}_L\gamma_\mu d_L)$	\mathbf{R}
CVLL_eecc	$\frac{4\widetilde{G}_F^2}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{c}_L\gamma_\mu c_L)$	${ m R}$
CVLL_eedd	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{d}_L\gamma_\mu d_L)$	${ m R}$
CVLL_eeee	$\frac{4\check{G}_F^2}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_L\gamma_\mu e_L)$	${ m R}$
CVLL_eemumu	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{\mu}_L\gamma_\mu\mu_L)$	\mathbf{R}
CVLL_eess	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{s}_L\gamma_{\mu}s_L)$	\mathbf{R}
CVLL_eetautau	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\tau}_L\gamma_{\mu}\tau_L)$	\mathbf{R}
CVLL_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{u}_L\gamma_{\mu}u_L)$	\mathbf{R}
CVLL_mumucc	$rac{4G_F}{\sqrt{2}}(ar{\mu}_L\gamma^\mu\mu_L)(ar{c}_L\gamma_\mu c_L)$	\mathbf{R}
CVLL_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{d}_L\gamma_\mu d_L)$	\mathbf{R}
CVLL_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_L\gamma_\mu\mu_L)$	\mathbf{R}
CVLL_mumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_L\gamma_\mu s_L)$	\mathbf{R}
\mathtt{CVLL} _mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_L\gamma_\mu au_L)$	${ m R}$
CVLL_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_L\gamma_\mu u_L)$	${ m R}$
CVLL_ssss	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{s}_L\gamma_\mu s_L)$	R
CVLL_tautaucc	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{c}_L\gamma_\mu c_L)$	${ m R}$
CVLL_tautaudd	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{d}_L\gamma_\mu d_L)$	${ m R}$
CVLL_tautauss	$\frac{4G_F}{\sqrt{2}}(\bar{ au}_L\gamma^\mu au_L)(\bar{s}_L\gamma_\mu s_L)$	\mathbf{R}
CVLL_tautautautau	$4 \frac{4G_F}{\sqrt{2}} (ar{ au}_L \gamma^\mu au_L) (ar{ au}_L \gamma_\mu au_L)$	${ m R}$
CVLL_tautauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{u}_L\gamma_\mu u_L)$	${ m R}$
CVLL_uccu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu c_L)(\bar{c}_L\gamma_\mu u_L)$	R
CVLL_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{c}_L\gamma_\mu c_L)$	R
CVLL_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{u}_L\gamma_\mu u_L)$	\mathbf{R}
CVLR_ccee	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{e}_R\gamma_\mu e_R)$	${ m R}$
CVLR_ccmumu	$\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^\mu c_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_cctautau	$\frac{\frac{4G_F}{\sqrt{2}}(\bar{c}_L\gamma^{\mu}c_L)(\bar{\tau}_R\gamma_{\mu}\tau_R)}{\frac{4G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{e}_R\gamma_{\mu}e_R)}$	${ m R}$
CVLR_ddee	$\frac{4G_F}{\sqrt{2}}(d_L\gamma^\mu d_L)(\bar{e}_R\gamma_\mu e_R)$	${ m R}$
CVLR_ddmumu	$\frac{4G_F}{G}(d_L\gamma^{\mu}d_L)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVLR_ddtautau	$\frac{4G_F}{\sqrt{2}}(d_L\gamma^\mu d_L)(\bar{ au}_R\gamma_\mu au_R)$	${ m R}$
CVLR_eecc	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{c}_R\gamma_{\mu}c_R)$	${ m R}$
CVLR_eedd	$\begin{array}{c} \frac{\sqrt{4}G_F}{\sqrt{2}}(\bar{d}_L\gamma^{\mu}d_L)(\bar{\tau}_R\gamma_{\mu}\tau_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{c}_R\gamma_{\mu}c_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{d}_R\gamma_{\mu}d_R) \\ \frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{e}_R\gamma_{\mu}e_R) \end{array}$	${ m R}$
CVLR_eeee	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu e_L)(\bar{e}_R\gamma_\mu e_R)$	R

WC name	Operator	Type
CVLR_eemumu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVLR_eess	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{s}_R\gamma_{\mu}s_R)$	\mathbf{R}
CVLR_eetautau	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{\tau}_R\gamma_{\mu}\tau_R)$	\mathbf{R}
CVLR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_L\gamma^{\mu}e_L)(\bar{u}_R\gamma_{\mu}u_R)$	\mathbf{R}
CVLR_emumue	$\frac{4\ddot{G}_F}{\sqrt{2}}(\bar{e}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu e_R)$	\mathbf{C}
CVLR_etautaue	$rac{4G_F}{\sqrt{2}}(ar{e}_L\gamma^\mu au_L)(ar{ au}_R\gamma_\mu e_R)$	\mathbf{C}
CVLR_mumucc	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{c}_R\gamma_\mu c_R)$	\mathbf{R}
CVLR_mumudd	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{d}_R\gamma_\mu d_R)$	R
CVLR_mumuee	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_mumumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	\mathbf{R}
CVLR_mumuss	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{s}_R\gamma_\mu s_R)$	\mathbf{R}
CVLR_mumutautau	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{\tau}_R\gamma_\mu\tau_R)$	R
CVLR_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\mu_L)(\bar{u}_R\gamma_\mu u_R)$	R
CVLR_mutautaumu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_L\gamma^\mu\tau_L)(\bar{\tau}_R\gamma_\mu\mu_R)$	$^{\mathrm{C}}$
CVLR_ssee	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_ssmumu	$\frac{4G_F}{\sqrt{2}}(\bar{s}_L\gamma^\mu s_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_sstautau	$rac{4G_F}{\sqrt{2}}(ar{s}_L\gamma^\mu s_L)(ar{ au}_R\gamma_\mu au_R)$	R
CVLR_tautaucc	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{c}_R\gamma_\mu c_R)$	R
CVLR_tautaudd	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{d}_R\gamma_\mu d_R)$	R
CVLR_tautauee	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{e}_R\gamma_\mu e_R)$	R
CVLR_tautaumumu	$\frac{4G_F}{\sqrt{2}}(\bar{\tau}_L\gamma^\mu\tau_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_tautauss	$rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{s}_R\gamma_\mu s_R)$	R
CVLR_tautautautau	$-rac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{ au}_R\gamma_\mu au_R)$	R
CVLR_tautauuu	$\frac{4G_F}{\sqrt{2}}(ar{ au}_L\gamma^\mu au_L)(ar{u}_R\gamma_\mu u_R)$	R
CVLR_uuee	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{e}_R\gamma_\mu e_R)$	R
CVLR_uumumu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVLR_uutautau	$\frac{4G_F}{\sqrt{2}}(\bar{u}_L\gamma^\mu u_L)(\bar{ au}_R\gamma_\mu au_R)$	R
CVRR_cccc	$rac{4G_F}{\sqrt{2}}(ar{c}_R\gamma^\mu c_R)(ar{c}_R\gamma_\mu c_R)$	R
CVRR_dddd	$rac{4G_F}{\sqrt{2}}(ar{d}_R\gamma^\mu d_R)(ar{d}_R\gamma_\mu d_R)$	R
CVRR_ddss	$rac{4G_F}{\sqrt{2}}(ar{d}_R\gamma^\mu d_R)(ar{s}_R\gamma_\mu s_R)$	R
CVRR_dssd	$rac{4G_F}{\sqrt{2}}(ar{d}_R\gamma^\mu s_R)(ar{s}_R\gamma_\mu d_R)$	R
CVRR_eecc	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{c}_R\gamma_{\mu}c_R)$	R
CVRR_eedd	$\frac{4G_F}{\sqrt{2}}(ar{e}_R\gamma^\mu e_R)(d_R\gamma_\mu d_R)$	R
CVRR_eeee	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{e}_R\gamma_{\mu}e_R)$	${ m R}$
CVRR_eemumu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{\mu}_R\gamma_{\mu}\mu_R)$	R
CVRR_eess	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{s}_R\gamma_{\mu}s_R)$	${ m R}$
CVRR_eetautau	$\begin{array}{c} \frac{\sqrt{2}}{\sqrt{2}} (\bar{a}_R \gamma^\mu a_R) (\bar{s}_R \gamma_\mu s_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{d}_R \gamma^\mu s_R) (\bar{s}_R \gamma_\mu d_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{e}_R \gamma^\mu e_R) (\bar{c}_R \gamma_\mu c_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{e}_R \gamma^\mu e_R) (\bar{d}_R \gamma_\mu d_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{e}_R \gamma^\mu e_R) (\bar{e}_R \gamma_\mu e_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{e}_R \gamma^\mu e_R) (\bar{\mu}_R \gamma_\mu \mu_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{e}_R \gamma^\mu e_R) (\bar{s}_R \gamma_\mu s_R) \\ \frac{4G_F}{\sqrt{2}} (\bar{e}_R \gamma^\mu e_R) (\bar{\tau}_R \gamma_\mu \tau_R) \end{array}$	R

WC name	Operator	Type
CVRR_eeuu	$\frac{4G_F}{\sqrt{2}}(\bar{e}_R\gamma^{\mu}e_R)(\bar{u}_R\gamma_{\mu}u_R)$	R
CVRR_mumucc	$\frac{4 \tilde{G}_F}{\sqrt{2}} (\bar{\mu}_R \gamma^\mu \mu_R) (\bar{c}_R \gamma_\mu c_R)$	R
CVRR_mumudd	$\frac{4\tilde{G}_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{d}_R\gamma_\mu d_R)$	R
CVRR_mumumumu	$\frac{4\tilde{G}_F^2}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{\mu}_R\gamma_\mu\mu_R)$	R
CVRR_mumuss	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{s}_R\gamma_\mu s_R)$	R
CVRR_mumutautau	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{\tau}_R\gamma_\mu\tau_R)$	R
CVRR_mumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\mu}_R\gamma^\mu\mu_R)(\bar{u}_R\gamma_\mu u_R)$	R
CVRR_ssss	$\frac{4G_F}{\sqrt{2}}(\bar{s}_R\gamma^{\mu}s_R)(\bar{s}_R\gamma_{\mu}s_R)$	R
CVRR_tautaucc	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ au}_R \gamma^\mu au_R) (ar{c}_R \gamma_\mu c_R)$	R
CVRR_tautaudd	$rac{4 \overleftarrow{G_F}}{\sqrt{2}} (ar{ au}_R \gamma^\mu au_R) (ar{d}_R \gamma_\mu d_R)$	R
CVRR_tautauss	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{ au}_R \gamma^\mu au_R) (\bar{s}_R \gamma_\mu s_R)$	R
CVRR_tautautautau	$1 rac{4 G_F}{\sqrt{2}} (ar{ au}_R \gamma^\mu au_R) (ar{ au}_R \gamma_\mu au_R)$	R
CVRR_tautauuu	$\frac{4G_F}{\sqrt{2}}(ar{ au}_R\gamma^\mu au_R)(ar{u}_R\gamma_\mu u_R)$	R
CVRR_uccu	$\frac{4 \overleftarrow{G_F}}{\sqrt{2}} (\bar{u}_R \gamma^\mu c_R) (\bar{c}_R \gamma_\mu u_R)$	R
CVRR_uucc	$\frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{c}_R\gamma_\mu c_R)$	R
CVRR_uuuu	$\frac{4G_F}{\sqrt{2}}(\bar{u}_R\gamma^\mu u_R)(\bar{u}_R\gamma_\mu u_R)$	R

${\tt mue}$

WC name	Operator	Type
Cgamma_mue	$\bar{e}_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}$	C
Cgamma_emu	$ar{\mu}_L \sigma^{\mu u} e_R \dot{F}_{\mu u}$	$^{\mathrm{C}}$
CVLL_eemue	$(ar{e}_L\gamma^\mu e_L)(\dot{ar{e}}_L\gamma_\mu\mu_L)$	$^{\mathrm{C}}$
CVLL_muemumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_L \gamma_\mu \mu_L)$	$^{\mathrm{C}}$
CVLL_muetautau	$(ar{e}_L \gamma^\mu \mu_L) (ar{ au}_L \gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLL_mueuu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{u}_L \gamma_\mu u_L)$	$^{\mathrm{C}}$
CVLL_muecc	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{c}_L \gamma_\mu c_L)$	$^{\mathrm{C}}$
CVLL_muedd	$(ar{e}_L \gamma^\mu \mu_L) (ar{d}_L \gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLL_muess	$(ar{e}_L \gamma^\mu \mu_L) (ar{s}_L \gamma_\mu s_L)$	$^{\mathrm{C}}$
CVRR_eemue	$(ar{e}_R \gamma^\mu e_R) (ar{e}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVRR_muemumu	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVRR_muetautau	$(ar{e}_R \gamma^\mu \mu_R) (ar{ au}_R \gamma_\mu au_R)$	$^{\mathrm{C}}$
CVRR_mueuu	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{u}_R \gamma_\mu u_R)$	$^{\mathrm{C}}$
CVRR_muecc	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{c}_R \gamma_\mu c_R)$	$^{\mathrm{C}}$
CVRR_muedd	$(ar{e}_R \gamma^\mu \mu_R) (ar{d}_R \gamma_\mu d_R)$	$^{\mathrm{C}}$
CVRR_muess	$(ar{e}_R \gamma^\mu \mu_R) (ar{s}_R \gamma_\mu s_R)$	$^{\mathrm{C}}$
CVLR_eemue	$(ar{e}_L \gamma^\mu e_L)(ar{e}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_mueee	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{e}_R \gamma_\mu e_R)$	$^{\mathrm{C}}$
CVLR_muemumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_muetautau	$(ar{e}_L \gamma^\mu \mu_L) (ar{ au}_R \gamma_\mu au_R)$	$^{\mathrm{C}}$

WC name	Operator	Type
CVLR_tauemutau	$(\bar{e}_L \gamma^\mu \tau_L)(\bar{\tau}_R \gamma_\mu \mu_R)$	С
CVLR_mumumue	$(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_taumuetau	$(\bar{\mu}_L \gamma^\mu au_L)(\bar{ au}_R \gamma_\mu e_R)$	\mathbf{C}
CVLR_tautaumue	$(ar{ au}_L\gamma^\mu au_L)(ar{e}_R\gamma_\mu\mu_R)$	\mathbf{C}
CVLR_mueuu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{u}_R \gamma_\mu u_R)$	$^{\mathrm{C}}$
CVLR_muecc	$(ar{e}_L \gamma^\mu \mu_L) (ar{c}_R \gamma_\mu c_R)$	$^{\mathrm{C}}$
CVLR_muedd	$(\bar{e}_L \gamma^\mu \mu_L) (d_R \gamma_\mu d_R)$	$^{\mathrm{C}}$
CVLR_muess	$(ar{e}_L \gamma^\mu \mu_L) (ar{s}_R \gamma_\mu s_R)$	$^{\mathrm{C}}$
CVLR_uumue	$(\bar{u}_L \gamma^\mu u_L)(\bar{e}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_ccmue	$(ar{c}_L \gamma^\mu c_L) (ar{e}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_ddmue	$(ar{d}_L \gamma^\mu d_L) (ar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_ssmue	$(\bar{s}_L \gamma^\mu s_L)(\bar{e}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CSRL_mueuu	$(ar{e}_L\mu_R)(ar{u}_Ru_L)$	$^{\mathrm{C}}$
CSRL_muecc	$(ar{e}_L\mu_R)(ar{c}_Rc_L)$	$^{\mathrm{C}}$
CSRL_emuuu	$(ar{\mu}_L e_R)(ar{u}_R u_L)$	\mathbf{C}
CSRL_emucc	$(ar{\mu}_L e_R)(ar{c}_R c_L)$	\mathbf{C}
CSRL_muedd	$(ar{e}_L \mu_R)(d_R d_L)$	\mathbf{C}
CSRL_muess	$(ar{e}_L\mu_R)(ar{s}_Rs_L)$	\mathbf{C}
CSRL_emudd	$(ar{\mu}_L e_R)(ar{d}_R d_L)$	\mathbf{C}
CSRL_emuss	$(ar{\mu}_L e_R)(ar{s}_R s_L)$	\mathbf{C}
CSRR_eemue	$(ar{e}_L e_R)(ar{e}_L \mu_R)$	С
CSRR_eeemu	$(ar{e}_L e_R)(ar{\mu}_L e_R)$	\mathbf{C}
CSRR_muemumu	$(ar{e}_L\mu_R)(ar{\mu}_L\mu_R)$	\mathbf{C}
CSRR_muetautau	$(ar{e}_L\mu_R)(ar{ au}_L au_R)$	\mathbf{C}
CSRR_tauemutau	$(ar{e}_L au_R)(ar{ au}_L\mu_R)$	\mathbf{C}
CSRR_emumumu	$(ar{\mu}_L e_R)(ar{\mu}_L \mu_R)$	С
CSRR_emutautau	$(ar{\mu}_L e_R)(ar{ au}_L au_R)$	$^{\mathrm{C}}$
CSRR_taumuetau	$(ar{\mu}_L au_R)(ar{ au}_Le_R)$	$^{\mathrm{C}}$
CSRR_mueuu	$(ar{e}_L\mu_R)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_muecc	$(ar{e}_L\mu_R)(ar{c}_Lc_R)$	$^{\mathrm{C}}$
CSRR_emuuu	$(ar{\mu}_L e_R)(ar{u}_L u_R)$	$^{\mathrm{C}}$
CSRR_emucc	$(ar{\mu}_L e_R)(ar{c}_L c_R)$	$^{\mathrm{C}}$
CTRR_mueuu	$(ar{e}_L\sigma^{\mu u}\mu_R)(ar{u}_L\sigma_{\mu u}u_R)$	$^{\mathrm{C}}$
CTRR_muecc	$(\bar{e}_L \sigma^{\mu\nu} \mu_R)(\bar{c}_L \sigma_{\mu\nu} c_R)$	$^{\mathrm{C}}$
CTRR_emuuu	$(\bar{\mu}_L \sigma^{\mu\nu} e_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$	C
CTRR_emucc	$(\bar{\mu}_L \sigma^{\mu u} e_{\underline{R}})(\bar{c}_L \sigma_{\mu u} c_R)$	$^{\mathrm{C}}$
CSRR_muedd	$(ar{e}_L \mu_R)(d_L d_R)$	$^{\mathrm{C}}$
CSRR_muess	$(ar{e}_L\mu_R)(ar{s}_Ls_R)$	$^{\mathrm{C}}$
CSRR_emudd	$(ar{\mu}_L e_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CSRR_emuss	$(ar{\mu}_L e_R)(ar{s}_L s_{ar{R}})$	$^{\mathrm{C}}$
CTRR_muedd	$(ar{e}_L\sigma^{\mu u}\mu_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CTRR_muess	$(\bar{e}_L \sigma^{\mu u} \mu_R) (\bar{s}_L \sigma_{\mu u} s_R)$	$^{\mathrm{C}}$
CTRR_emudd	$(\bar{\mu}_L \sigma^{\mu u} e_R) (\bar{d}_L \sigma_{\mu u} d_R)$	С

WC name	Operator	Type
CTRR_emuss	$(\bar{\mu}_L \sigma^{\mu\nu} e_R)(\bar{s}_L \sigma_{\mu\nu} s_R)$	С

${\tt mutau}$

Operator	Type
$\bar{\mu}_L \sigma^{\mu\nu} \tau_R F_{\mu\nu}$	C
	\mathbf{C}
$(ar{e}_L \gamma^\mu e_L)(ar{\mu}_L \gamma_\mu au_L)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{\mu}_L \gamma_\mu \tau_L)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu au_L)(\bar{ au}_L \gamma_\mu au_L)$	$^{\mathrm{C}}$
$(\bar{\mu}_L \gamma^\mu au_L)(\bar{u}_L \dot{\gamma}_\mu u_L)$	$^{\mathrm{C}}$
$(\bar{\mu}_L \gamma^\mu au_L)(\bar{c}_L \gamma_\mu c_L)$	\mathbf{C}
$(ar{\mu}_L \gamma^\mu au_L) (ar{d}_L \gamma_\mu d_L)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu au_L) (\bar{s}_L \gamma_\mu s_L)$	$^{\mathrm{C}}$
$(\bar{e}_R \gamma^\mu e_R)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}
$(\bar{\mu}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}
$(\bar{\mu}_R \gamma^\mu au_R)(\bar{ au}_R \gamma_\mu au_R)$	$^{\mathrm{C}}$
$(\bar{\mu}_R \gamma^\mu \tau_R)(\bar{u}_R \gamma_\mu u_R)$	\mathbf{C}
$(ar{\mu}_R \gamma^\mu au_R) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
$(\bar{\mu}_R \gamma^\mu au_R)(\bar{d}_R \gamma_\mu d_R)$	\mathbf{C}
$(\bar{\mu}_R \gamma^\mu au_R)(\bar{s}_R \gamma_\mu s_R)$	\mathbf{C}
$(\bar{e}_L \gamma^\mu e_L)(\bar{\mu}_R \gamma_\mu au_R)$	\mathbf{C}
$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_R \gamma_\mu e_R)$	\mathbf{C}
$(\bar{e}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu e_R)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu au_L)(\bar{e}_R \gamma_\mu e_R)$	\mathbf{C}
	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu au_L)(\bar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
$(\bar{ au}_L \gamma^\mu au_L)(\bar{\mu}_R \gamma_\mu au_R)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{u}_R \gamma_\mu u_R)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu au_L)(\bar{c}_R \gamma_\mu c_R)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu au_L)(d_R \gamma_\mu d_R)$	\mathbf{C}
$(\bar{\mu}_L \gamma^\mu au_L)(\bar{s}_R \gamma_\mu s_R)$	\mathbf{C}
$(\bar{u}_L \gamma^\mu u_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}
$(ar{c}_L \gamma^\mu c_L) (ar{\mu}_R \gamma_\mu au_R)$	\mathbf{C}
$(\bar{d}_L \gamma^\mu d_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}
$(\bar{s}_L \gamma^\mu s_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	$^{\mathrm{C}}$
$(\bar{\mu}_L au_R)(\bar{u}_R u_L)$	\mathbf{C}
$(ar{\mu}_L au_R)(ar{c}_Rc_L)$	\mathbf{C}
$(ar{ au}_L \mu_R)(ar{u}_R u_L)$	\mathbf{C}
$(ar{ au}_L\mu_R)(ar{c}_Rc_L)$	\mathbf{C}
$(ar{\mu}_L au_R)(ar{d}_Rd_L)$	C
$(\bar{\mu}_L au_R)(\bar{s}_R s_L)$	$^{\mathrm{C}}$
	$\bar{\mu}_L \sigma^{\mu\nu} \tau_R F_{\mu\nu}$ $\bar{\tau}_L \sigma^{\mu\nu} \mu_R F_{\mu\nu}$ $(\bar{e}_L \gamma^{\mu} e_L) (\bar{\mu}_L \gamma_{\mu} \tau_L)$ $(\bar{\mu}_L \gamma^{\mu} \mu_L) (\bar{\mu}_L \gamma_{\mu} \tau_L)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\tau}_L \gamma_{\mu} \tau_L)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\tau}_L \gamma_{\mu} \tau_L)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\sigma}_L \gamma_{\mu} u_L)$ $(\bar{\mu}_R \gamma^{\mu} \tau_L) (\bar{\sigma}_R \gamma_{\mu} \tau_R)$ $(\bar{\mu}_R \gamma^{\mu} \tau_R) (\bar{\mu}_R \gamma_{\mu} \tau_R)$ $(\bar{\mu}_R \gamma^{\mu} \tau_R) (\bar{\tau}_R \gamma_{\mu} \tau_R)$ $(\bar{\mu}_R \gamma^{\mu} \tau_R) (\bar{\sigma}_R \gamma_{\mu} u_R)$ $(\bar{\mu}_R \gamma^{\mu} \tau_R) (\bar{\sigma}_R \gamma_{\mu} u_R)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\mu}_R \gamma_{\mu} \tau_R)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\mu}_R \gamma_{\mu} \tau_R)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\mu}_R \gamma_{\mu} \tau_R)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\tau}_R \gamma_{\mu} \tau_R)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\tau}_R \gamma_{\mu} u_R)$ $(\bar{\mu}_L \gamma^{\mu} \tau_L) (\bar{\tau}_R \gamma_{\mu} \tau_R)$ $(\bar{\tau}_L \gamma^{\mu} u_L) (\bar{\tau}_R \gamma_{\mu} \tau_R)$ $(\bar{\tau}_L \tau_R) (\bar{\tau}_R u_L)$

WC name	Operator	Type
CSRL_mutaudd	$(ar{ au}_L\mu_R)(ar{d}_Rd_L)$	С
CSRL_mutauss	$(ar{ au}_L \mu_R)(ar{s}_R s_L)$	$^{\mathrm{C}}$
CSRR_eetaumu	$(\bar{e}_L e_R)(\bar{\mu}_L au_R)$	$^{\mathrm{C}}$
CSRR_eemutau	$(ar{e}_L e_R)(ar{ au}_L \mu_R)$	$^{\mathrm{C}}$
CSRR_mueetau	$(ar{e}_L\mu_R)(ar{ au}_Le_R)$	$^{\mathrm{C}}$
CSRR_taueemu	$(ar{e}_L au_R)(ar{\mu}_Le_R)$	\mathbf{C}
CSRR_mumutaumu	$(ar{\mu}_L \mu_R)(ar{\mu}_L au_R)$	\mathbf{C}
CSRR_mumumutau	$(ar{\mu}_L \mu_R)(ar{ au}_L \mu_R)$	$^{\mathrm{C}}$
CSRR_taumutautau	$(ar{\mu}_L au_R)(ar{ au}_L au_R)$	$^{\mathrm{C}}$
${\tt CSRR_mutautautau}$	$(ar{ au}_L \mu_R)(ar{ au}_L au_R)$	\mathbf{C}
CSRR_taumuuu	$(ar{\mu}_L au_R)(ar{u}_Lu_R)$	$^{\mathrm{C}}$
CSRR_taumucc	$(ar{\mu}_L au_R)(ar{c}_Lc_R)$	\mathbf{C}
CSRR_mutauuu	$(ar{ au}_L \mu_R)(ar{u}_L u_R)$	$^{\mathrm{C}}$
CSRR_mutaucc	$(ar{ au}_L \mu_R)(ar{c}_L c_R)$	$^{\mathrm{C}}$
CTRR_taumuuu	$(\bar{\mu}_L \sigma^{\mu\nu} \tau_R)(\bar{u}_L \sigma_{\mu\nu} u_R)$	\mathbf{C}
CTRR_taumucc	$(\bar{\mu}_L \sigma^{\mu\nu} \tau_R)(\bar{c}_L \sigma_{\mu\nu} c_R)$	\mathbf{C}
CTRR_mutauuu	$(\bar{ au}_L \sigma^{\mu u} \mu_R)(\bar{u}_L \sigma_{\mu u} u_R)$	$^{\mathrm{C}}$
CTRR_mutaucc	$(\bar{ au}_L \sigma^{\mu u} \mu_R)(\bar{c}_L \sigma_{\mu u} c_R)$	\mathbf{C}
CSRR_taumudd	$(ar{\mu}_L au_R)(ar{d}_Ld_R)$	\mathbf{C}
CSRR_taumuss	$(ar{\mu}_L au_R)(ar{s}_Ls_R)$	\mathbf{C}
CSRR_mutaudd	$(ar{ au}_L \mu_R)(ar{d}_L d_R)$	$^{\mathrm{C}}$
CSRR_mutauss	$(ar{ au}_L \mu_R)(ar{s}_L s_R)$	$^{\mathrm{C}}$
CTRR_taumudd	$(\bar{\mu}_L \sigma^{\mu u} au_R) (\bar{d}_L \sigma_{\mu u} d_R)$	$^{\mathrm{C}}$
CTRR_taumuss	$(\bar{\mu}_L \sigma^{\mu\nu} \tau_R)(\bar{s}_L \sigma_{\mu\nu} s_R)$	$^{\mathrm{C}}$
CTRR_mutaudd	$(ar{ au}_L \sigma^{\mu u} \mu_R) (ar{d}_L \sigma_{\mu u} d_R)$	$^{\mathrm{C}}$
CTRR_mutauss	$(\bar{ au}_L \sigma^{\mu u} \mu_R) (\bar{s}_L \sigma_{\mu u} s_R)$	\mathbf{C}

taue

WC name	Operator	Type
Cgamma_taue	$\bar{e}_L \sigma^{\mu u} au_R F_{\mu u}$	C
Cgamma_etau	$ar{ au}_L \sigma^{\mu u} e_R F_{\mu u}$	\mathbf{C}
CVLL_eetaue	$(ar{e}_L\gamma^\mu e_L)(\dot{ar{e}}_L\gamma_\mu au_L)$	\mathbf{C}
CVLL_muetaumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_L \gamma_\mu \tau_L)$	\mathbf{C}
CVLL_tauetautau	$(ar{e}_L \gamma^\mu au_L) (ar{ au}_L \gamma_\mu au_L)$	\mathbf{C}
CVLL_taueuu	$(\bar{e}_L \gamma^\mu au_L)(\bar{u}_L \gamma_\mu u_L)$	\mathbf{C}
CVLL_tauecc	$(ar{e}_L \gamma^\mu au_L) (ar{c}_L \gamma_\mu c_L)$	C
CVLL_tauedd	$(ar{e}_L \gamma^\mu au_L) (ar{d}_L \gamma_\mu d_L)$	\mathbf{C}
CVLL_tauess	$(\bar{e}_L \gamma^\mu au_L)(\bar{s}_L \gamma_\mu s_L)$	\mathbf{C}
CVRR_eetaue	$(\bar{e}_R \gamma^\mu e_R)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVRR_muetaumu	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVRR_tauetautau	$(\bar{e}_R \gamma^\mu au_R)(\bar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
CVRR_taueuu	$(\bar{e}_R \gamma^\mu \tau_R)(\bar{u}_R \gamma_\mu u_R)$	\mathbf{C}

WC name	Operator	Type
CVRR_tauecc	$(\bar{e}_R \gamma^\mu \tau_R)(\bar{c}_R \gamma_\mu c_R)$	C
CVRR_tauedd	$(ar{e}_R \gamma^\mu au_R) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVRR_tauess	$(ar{e}_R \gamma^\mu au_R) (ar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVLR_eetaue	$(ar{e}_L \gamma^\mu e_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_muetaumu	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\mu}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_taueee	$(ar{e}_L \gamma^\mu au_L) (ar{e}_R \gamma_\mu e_R)$	\mathbf{C}
CVLR_tauemumu	$(\bar{e}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_tauetautau	$(ar{e}_L \gamma^\mu au_L) (ar{ au}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_mumutaue	$(ar{\mu}_L \gamma^\mu \mu_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_taumumue	$(\bar{\mu}_L \gamma^\mu au_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_tautautaue	$(ar au_L\gamma^\mu au_L)(ar e_R\gamma_\mu au_R)$	\mathbf{C}
CVLR_taueuu	$(\bar{e}_L \gamma^\mu au_L)(\bar{u}_R \gamma_\mu u_R)$	\mathbf{C}
CVLR_tauecc	$(ar{e}_L \gamma^\mu au_L) (ar{c}_R \gamma_\mu c_R)$	\mathbf{C}
CVLR_tauedd	$(ar{e}_L \gamma^\mu au_L) (ar{d}_R \gamma_\mu d_R)$	\mathbf{C}
CVLR_tauess	$(ar{e}_L \gamma^\mu au_L) (ar{s}_R \gamma_\mu s_R)$	\mathbf{C}
CVLR_uutaue	$(\bar{u}_L \gamma^\mu u_L)(\bar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_cctaue	$(ar{c}_L \gamma^\mu c_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_ddtaue	$(ar{d}_L \gamma^\mu d_L) (ar{e}_R \gamma_\mu au_R)$	\mathbf{C}
CVLR_sstaue	$(ar s_L \gamma^\mu s_L) (ar e_R \gamma_\mu au_R)$	\mathbf{C}
CSRL_taueuu	$(\bar{e}_L au_R)(\bar{u}_R u_L)$	\mathbf{C}
CSRL_tauecc	$(\bar{e}_L au_R)(\bar{c}_R c_L)$	\mathbf{C}
CSRL_etauuu	$(\bar{ au}_L e_R)(\bar{u}_R u_L)$	\mathbf{C}
CSRL_etaucc	$(ar{ au}_L e_R)(ar{c}_R c_L)$	\mathbf{C}
CSRL_tauedd	$(ar{e}_L au_R)(ar{d}_Rd_L)$	\mathbf{C}
CSRL_tauess	$(\bar{e}_L au_R)(\bar{s}_R s_L)$	\mathbf{C}
CSRL_etaudd	$(ar{ au}_L e_R)(ar{d}_R d_L)$	\mathbf{C}
CSRL_etauss	$(ar{ au}_L e_R)(ar{s}_R s_L)$	\mathbf{C}
CSRR_eetaue	$(\bar{e}_L e_R)(\bar{e}_L au_R)$	\mathbf{C}
CSRR_eeetau	$(ar{e}_L e_R)(ar{ au}_L e_R)$	\mathbf{C}
CSRR_muetaumu	$(ar{e}_L\mu_R)(ar{\mu}_L au_R)$	\mathbf{C}
CSRR_tauemumu	$(ar{e}_L au_R)(ar{\mu}_L\mu_R)$	\mathbf{C}
CSRR_tauetautau	$(ar{e}_L au_R)(ar{ au}_L au_R)$	\mathbf{C}
CSRR_emumutau	$(ar{\mu}_L e_R)(ar{ au}_L \mu_R)$	\mathbf{C}
CSRR_mumuetau	$(ar{\mu}_L\mu_R)(ar{ au}_Le_R)$	\mathbf{C}
CSRR_etautautau	$(ar{ au}_L e_R)(ar{ au}_L au_R)$	\mathbf{C}
CSRR_taueuu	$(\bar{e}_L au_R)(\bar{u}_L u_R)$	\mathbf{C}
CSRR_tauecc	$(\bar{e}_L au_R)(\bar{c}_L c_R)$	\mathbf{C}
CSRR_etauuu	$(ar{ au}_L e_R)(ar{u}_L u_R)$	\mathbf{C}
CSRR_etaucc	$(ar{ au}_L e_R)(ar{c}_L c_R)$	\mathbf{C}
CTRR_taueuu	$(\bar{e}_L \sigma^{\mu u} au_R) (\bar{u}_L \sigma_{\mu u} u_R)$	\mathbf{C}
CTRR_tauecc	$(ar{e}_L\sigma^{\mu u} au_R)(ar{c}_L\sigma_{\mu u}c_R)$	\mathbf{C}
CTRR_etauuu	$(\bar{ au}_L \sigma^{\mu u} e_R) (\bar{u}_L \sigma_{\mu u} u_R)$	\mathbf{C}
CTRR_etaucc	$(\bar{ au}_L \sigma^{\mu u} e_R)(\bar{c}_L \sigma_{\mu u} c_R)$	\mathbf{C}
CSRR_tauedd	$(ar{e}_L au_R)(ar{d}_Ld_R)$	\mathbf{C}

WC name	Operator	Type
CSRR_tauess	$(\bar{e}_L au_R)(\bar{s}_L s_R)$	C
CSRR_etaudd	$(ar{ au}_L e_R)(ar{d}_L d_R)$	\mathbf{C}
CSRR_etauss	$(ar{ au}_L e_R)(ar{s}_L s_R)$	C
CTRR_tauedd	$(ar{e}_L\sigma^{\mu u} au_R)(ar{d}_L\sigma_{\mu u}d_R)$	C
CTRR_tauess	$(ar{e}_L\sigma^{\mu u} au_R)(ar{s}_L\sigma_{\mu u}s_R)$	C
CTRR_etaudd	$(ar{ au}_L\sigma^{\mu u}e_R)(ar{d}_L\sigma_{\mu u}d_R)$	\mathbf{C}
CTRR_etauss	$(ar{ au}_L \sigma^{\mu u} e_R) (ar{s}_L \sigma_{\mu u} s_R)$	\mathbf{C}

nunumue

WC name	Operator	Type
CVLL_nuenuemue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{e}_{L}\gamma_{\mu}\mu_{L})$	C
CVLL_numunueemu	$(\bar{ u}_{eL}\gamma^{\mu} u_{\mu L})(\bar{\mu}_{L}\gamma_{\mu}e_{L})$	\mathbf{C}
CVLL_numunuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{\mu L})(\bar{e}_{L}\gamma_{\mu}\mu_{L})$	$^{\mathrm{C}}$
CVLL_numunumumue	$(\bar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (\bar{e}_L \gamma_{\mu} \mu_L)$	$^{\mathrm{C}}$
CVLL_nutaunueemu	$(\bar{ u}_{eL}\gamma^{\mu} u_{ au L})(\bar{\mu}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_nutaunuemue	$(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu}\mu_{L})$	$^{\mathrm{C}}$
CVLL_nutaunumuem	$\mathrm{u}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_nutaunumumu	e $(ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{e}_L \gamma_{\mu} \mu_L)$	$^{\mathrm{C}}$
CVLL_nutaunutaum	$u ullet ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{e}_L \gamma_{\mu} \mu_L)$	$^{\mathrm{C}}$
CVLR_nuenuemue	$(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{e}_{R}\gamma_{\mu}\mu_{R})$	$^{\mathrm{C}}$
CVLR_numunueemu	$(\bar{\nu}_{eL}\gamma^{\mu} u_{\mu L})(\bar{\mu}_R\gamma_{\mu}e_R)$	$^{\mathrm{C}}$
CVLR_numunuemue	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{e}_R\gamma_{\mu}\mu_R)$	$^{\mathrm{C}}$
CVLR_numunumumue	$(\bar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (\bar{e}_R \gamma_{\mu} \mu_R)$	$^{\mathrm{C}}$
CVLR_nutaunueemu	$(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\tau L})(\bar{\mu}_R\gamma_{\mu}e_R)$	$^{\mathrm{C}}$
CVLR_nutaunuemue	$(\bar{ u}_{eL}\gamma^{\mu} u_{ au L})(\bar{e}_{R}\gamma_{\mu}\mu_{R})$	$^{\mathrm{C}}$
CVLR_nutaunumuem	$\mathrm{u}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_{R}\gamma_{\mu}e_{R})$	C
CVLR_nutaunumumu	e $(ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{e}_R \gamma_{\mu} \mu_R)$	$^{\mathrm{C}}$
CVLR_nutaunutaum	$\mathbf{u} \stackrel{\leftarrow}{\mathbf{e}} \bar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (\bar{e}_R \gamma_{\mu} \mu_R)$	C

nunumutau

WC name	Operator	Type
CVLL_nuenuetau	ımu $(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{\mu}_{L}\gamma_{\mu} au_{L})$	C
CVLL_numunuemu	$ au(ar u_{eL}\gamma^\mu u_{\mu L})(ar au_L\gamma_\mu\mu_L)$	\mathbf{C}
CVLL_numunueta	aumu $(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$
CVLL_numunumut	$ au_{\mu L} \gamma^{\mu} u_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{\mu}_L \gamma_{\mu} au_L)$	\mathbf{C}
	$ au$ nuta $(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu}\mu_{L})$	\mathbf{C}
CVLL_nutaunuet	$ au_{ m m} (ar{ u}_{eL} \gamma^{\mu} u_{ au L}) (ar{\mu}_{L} \gamma_{\mu} au_{L})$	\mathbf{C}
CVLL_nutaunumu	\mathtt{imut}	\mathbf{C}
	$\mathrm{itaum} ar{m{u}}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{\mu}_{L} \gamma_{\mu} au_{L})$	\mathbf{C}

WC name	Operator	Type
CVLL_nutaunutauta $(\bar{\mu}_{\mu L}\gamma^{\mu} u_{ au L})(\bar{\mu}_{L}\gamma_{\mu} au_{L})$		C
CVLR_nuenuetaum	u $(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_numunuemut	au $(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{R}\gamma_{\mu}\mu_{R})$	$^{\mathrm{C}}$
CVLR_numunuetau	mu $(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_numunumuta	um($ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{\mu}_R \gamma_{\mu} au_R)$	$^{\mathrm{C}}$
CVLR_nutaunuemu	tan $ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{R}\gamma_{\mu}\mu_{R})$	$^{\mathrm{C}}$
CVLR_nutaunueta	um($ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{\mu}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_nutaunumum	ut $(ar{m{u}}_{\mu L}\gamma^{\mu} u_{ au L})(ar{ au}_{R}\gamma_{\mu}\mu_{R})$	$^{\mathrm{C}}$
CVLR_nutaunumut	aum $ar{m{u}}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{\mu}_R \gamma_{\mu} au_R)$	$^{\mathrm{C}}$
CVLR_nutaunutau	ta $(ar{m} \mu_L \gamma^\mu u_{ au L})(ar{\mu}_R \gamma_\mu au_R)$	\mathbf{C}

nunutaue

WC name	Operator	Type
CVLL_nuenuetaue	$(\bar{ u}_{eL}\gamma^{\mu} u_{eL})(\bar{e}_{L}\gamma_{\mu} au_{L})$	C
CVLL_numunueetau	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_numunuetaue	$e^{-(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_{L}\gamma_{\mu} au_{L})}$	$^{\mathrm{C}}$
CVLL_numunumutau	Le $(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_L \gamma_{\mu} au_L)$	$^{\mathrm{C}}$
CVLL_nutaunueeta	$\sin(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu}e_{L})$	$^{\mathrm{C}}$
CVLL_nutaunuetau	Le $(ar u_{eL}\gamma^\mu u_{ au L})(ar e_L\gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLL_nutaunumuet	$ auar u_{\mu L}\gamma^\mu u_{ au L})(ar au_L\gamma_\mu e_L)$	$^{\mathrm{C}}$
CVLL_nutaunumuta	$\mathrm{u} ullet ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{e}_L \gamma_{\mu} au_L)$	$^{\mathrm{C}}$
CVLL_nutaunutaut	$ auar{ar{e}}_{ au L}\gamma^{\mu} u_{ au L})(ar{e}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$
CVLR_nuenuetaue	$(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_numunueetau	$(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{ au}_{R}\gamma_{\mu}e_{R})$	$^{\mathrm{C}}$
CVLR_numunuetaue	$e^{-}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_numunumutau	Le $(ar{ u}_{\mu L} \gamma^{\mu} u_{\mu L}) (ar{e}_R \gamma_{\mu} au_R)$	$^{\mathrm{C}}$
CVLR_nutaunueeta	$\sin{(ar{ u}_{eL}\gamma^{\mu} u_{ au L})}(ar{ au}_{R}\gamma_{\mu}e_{R})$	$^{\mathrm{C}}$
CVLR_nutaunuetau	Le $(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_nutaunumuet	$ auar u_{\mu L}\gamma^\mu u_{ au L})(ar au_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
CVLR_nutaunumuta	$\mathrm{u} ullet ar{ u}_{\mu L} \gamma^{\mu} u_{ au L}) (ar{e}_R \gamma_{\mu} au_R)$	$^{\mathrm{C}}$
CVLR_nutaunutaut	$\mathrm{a}(ar{ar{e}}_{ au L}\gamma^{\mu} u_{ au L})(ar{e}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$

ffnunu

WC name	Operator	Type
CVLL_nuenuecc	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{c}_L\gamma_{\mu}c_L)$ $\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{d}_L\gamma_{\mu}d_L)$ $\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{e}_L\gamma_{\mu}e_L)$	R
CVLL_nuenuedd	$rac{4\ddot{G_F}}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{d}_L\gamma_{\mu}d_L)$	\mathbf{R}
CVLL_nuenueee	$\frac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{e}_L\gamma_\mu e_L)$	R
CVLL_nuenuemumu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{eL})(\bar{\mu}_L\gamma_{\mu}\mu_L)$	R
CVLL_nuenuess	$rac{4reve{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{s}_L\gamma_\mu s_L)$	\mathbf{R}

WC name	Operator	Type
CVLL_nuenuetautau	$1 \frac{4G_F}{\sqrt{2}} (\bar{\nu}_{eL} \gamma^{\mu} \nu_{eL}) (\bar{\tau}_L \gamma_{\mu} \tau_L)$	R
CVLL_nuenueuu	$\frac{4 \tilde{Q}_F}{\sqrt{2}} (\bar{\nu}_{eL} \gamma^\mu \nu_{eL}) (\bar{u}_L \gamma_\mu u_L)$	R
CVLL_nuenumucc	$rac{4 \overset{C}{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^{\mu} u_{\mu L}) (ar{c}_L \gamma_{\mu} c_L)$	\mathbf{C}
CVLL_nuenumudd	$rac{4 ilde{Q}_F^2}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{\mu L}) (ar{d}_L \gamma_\mu d_L)$	\mathbf{C}
CVLL_nuenumuee	$rac{4reve{G_F}}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{e}_L\gamma_{\mu}e_L)$	\mathbf{C}
CVLL_nuenumumumu	$\frac{4\check{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{\mu}_L\gamma_\mu\mu_L)$	\mathbf{C}
CVLL_nuenumuss	$rac{4\check{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{s}_L\gamma_\mu s_L)$	\mathbf{C}
CVLL_nuenumutauta	$\sinrac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{ au}_L\gamma_\mu au_L)$	\mathbf{C}
CVLL_nuenumuuu	$\frac{4\check{G}_F}{\sqrt{2}}(\bar{ u}_{eL}\gamma^\mu u_{\mu L})(\bar{u}_L\gamma_\mu u_L)$	\mathbf{C}
CVLL_nuenutaucc	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{c}_L\gamma_\mu c_L)$	\mathbf{C}
CVLL_nuenutaudd	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{d}_L\gamma_\mu d_L)$	\mathbf{C}
CVLL_nuenutauee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{e}_L\gamma_\mu e_L)$	$^{\mathrm{C}}$
CVLL_nuenutaumumu	$1 rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{ au L}) (ar{\mu}_L \gamma_\mu \mu_L)$	$^{\mathrm{C}}$
CVLL_nuenutauss	$rac{4 G_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{ au L}) (ar{s}_L \gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLL_nuenutautaut	$\Xi_{\sqrt{2}}^{4G_F}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{L}\gamma_{\mu} au_{L})$	$^{\mathrm{C}}$
CVLL_nuenutauuu	$rac{4 \check{G}_F}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{ au L}) (ar{u}_L \gamma_\mu u_L)$	$^{\mathrm{C}}$
CVLL_numunumucc	$rac{4 \check{G_F}}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{\mu L}) (ar{c}_L \gamma_\mu c_L)$	${ m R}$
${\tt CVLL_numunumudd}$	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{\mu L}) (ar{d}_L \gamma_\mu d_L)$	R
CVLL_numunumuee	$rac{4 G_F}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{\mu L}) (ar{e}_L \gamma_\mu e_L)$	R
CVLL_numunumumumumumumumumumumumumumumumumum	$1 rac{4 G_F}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{\mu L}) (ar{\mu}_L \gamma_\mu \mu_L)$	R
CVLL_numunumuss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{s}_L\gamma_\mu s_L)$	R
CVLL_numunumutaut	$\Xi_{\sqrt{2}}^{4G_F}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{ au}_L\gamma_{\mu} au_L)$	R
CVLL_numunumuuu	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{u}_L\gamma_\mu u_L)$	R
CVLL_numunutaucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{c}_L\gamma_{\mu}c_L)$	$^{\mathrm{C}}$
${\tt CVLL_numunutaudd}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{d}_L\gamma_\mu d_L)$	$^{\mathrm{C}}$
CVLL_numunutauee	$rac{4 G_F}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{ au L}) (ar{e}_L \gamma_\mu e_L)$	$^{\mathrm{C}}$
CVLL_numunutaumun	$\sinrac{dG_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{\mu}_L\gamma_{\mu}\mu_L)$	$^{\mathrm{C}}$
CVLL_numunutauss	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{ au L}) (ar{s}_L \gamma_\mu s_L)$	$^{\mathrm{C}}$
CVLL_numunutautau	$it rac{dG_F}{d\Omega_T} (ar{ u}_{\mu L} \gamma^\mu u_{ au L}) (ar{ au}_L \gamma_\mu au_L)$	$^{\mathrm{C}}$
CVLL_numunutauuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\tau L})(\bar{u}_L\gamma_{\mu}u_L)$ $=\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{c}_L\gamma_{\mu}c_L)$	$^{\mathrm{C}}$
CVLL_nutaunutauco	$\epsilon rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{c}_L \gamma_\mu c_L)$	R
CVLL_nutaunutaudo	$d\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(d_L\gamma_{\mu}d_L)$	R
CVLL_nutaunutaue	$e^{rac{4G_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^{\mu} u_{ au L})(ar{e}_L\gamma_{\mu}e_L)}$	R
CVLL_nutaunutaum	$\lim_{\sqrt{2}} \frac{4G_F}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{\mu}_L \gamma_\mu \mu_L)$	R
	$s rac{4 \widetilde{G_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{s}_L \gamma_\mu s_L)$	R
CVLL_nutaunutauta	$\Delta V_{TL} (ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{ au}_{L} \gamma_{\mu} au_{L})$	R
CVLL_nutaunutauu	$1 \frac{4 \overset{2}{G_{2}}}{\sqrt{2}} (\bar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (\bar{u}_{L} \gamma_{\mu} u_{L})$	R

WC name	Operator	Type
CVLR_nuenuecc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{eL})(ar{c}_R\gamma_{\mu}c_R)$	R
CVLR_nuenuedd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{d}_R\gamma_\mu d_R)$	R
CVLR_nuenueee	$rac{4 \check{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{e}_R \gamma_\mu e_R)$	R
CVLR_nuenuemumu	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{\mu}_R \gamma_\mu \mu_R)$	R
CVLR_nuenuess	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{s}_R \gamma_\mu s_R)$	R
CVLR_nuenuetautau	$1 rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{eL}) (ar{ au}_R \gamma_\mu au_R)$	R
CVLR_nuenueuu	$rac{4\dot{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{eL})(ar{u}_R\gamma_\mu u_R)$	\mathbf{R}
CVLR_nuenumucc	$rac{4 \overline{G_F}}{\sqrt{2}} (ar{ u}_{eL} \gamma^\mu u_{\mu L}) (ar{c}_R \gamma_\mu c_R)$	$^{\mathrm{C}}$
CVLR_nuenumudd	$rac{4ar{G}_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{d}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CVLR_nuenumuee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{e}_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
${\tt CVLR_nuenumumumu}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{\mu}_R\gamma_\mu\mu_R)$	$^{\mathrm{C}}$
CVLR_nuenumuss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^{\mu} u_{\mu L})(ar{s}_R\gamma_{\mu}s_R)$	$^{\mathrm{C}}$
CVLR_nuenumutauta	$\sinrac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{\mu L})(ar{ au}_R\gamma_\mu au_R)$	$^{\mathrm{C}}$
CVLR_nuenumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{eL}\gamma^{\mu}\nu_{\mu L})(\bar{u}_R\gamma_{\mu}u_R)$	$^{\mathrm{C}}$
CVLR_nuenutaucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{c}_R\gamma_\mu c_R)$	$^{\mathrm{C}}$
CVLR_nuenutaudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{d}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CVLR_nuenutauee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{e}_R\gamma_\mu e_R)$	\mathbf{C}
CVLR_nuenutaumumu	$1 \frac{4G_F}{\sqrt{2}} (\bar{\nu}_{eL} \gamma^\mu \nu_{\tau L}) (\bar{\mu}_R \gamma_\mu \mu_R)$	$^{\mathrm{C}}$
CVLR_nuenutauss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{s}_R\gamma_\mu s_R)$	$^{\mathrm{C}}$
CVLR_nuenutautaut	$\Xi_{\sqrt{2}}^{4G_F}(ar{ u}_{eL}\gamma^{\mu} u_{ au L})(ar{ au}_{R}\gamma_{\mu} au_{R})$	$^{\mathrm{C}}$
CVLR_nuenutauuu	$rac{4G_F}{\sqrt{2}}(ar{ u}_{eL}\gamma^\mu u_{ au L})(ar{u}_R\gamma_\mu u_R)$	$^{\mathrm{C}}$
CVLR_numunumucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{c}_R\gamma_\mu c_R)$	R
CVLR_numunumudd	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{d}_R\gamma_\mu d_R)$	R
CVLR_numunumuee	$\frac{4G_F}{\sqrt{2}}(\bar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(\bar{e}_R\gamma_{\mu}e_R)$	R
CVLR_numunumumumumumumumumumumumumumumumumum	$1 \frac{4G_F}{\sqrt{2}} (ar{ u}_{\mu L} \gamma^\mu u_{\mu L}) (ar{\mu}_R \gamma_\mu \mu_R)$	R
CVLR_numunumuss	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{\mu L})(ar{s}_R\gamma_\mu s_R)$	R
CVLR_numunumutaut	$\Xi_{\sqrt{2}}^{4G_F}(ar{ u}_{\mu L}\gamma^{\mu} u_{\mu L})(ar{ au}_R\gamma_{\mu} au_R)$	R
CVLR_numunumuuu	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\mu L})(\bar{u}_R\gamma_{\mu}u_R)$	R
CVLR_numunutaucc	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^{\mu} u_{ au L})(ar{c}_R\gamma_{\mu}c_R)$	$^{\mathrm{C}}$
${\tt CVLR_numunutaudd}$	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{d}_R\gamma_\mu d_R)$	$^{\mathrm{C}}$
CVLR_numunutauee	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{e}_R\gamma_\mu e_R)$	$^{\mathrm{C}}$
	$\sinrac{4G_F}{\sqrt{2}}(ar u_{\mu L}\gamma^\mu u_{ au L})(ar\mu_R\gamma_\mu\mu_R)$	$^{\mathrm{C}}$
	$rac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{s}_R\gamma_\mu s_R)$	$^{\mathrm{C}}$
	$1t\frac{4G_F}{\sqrt{2}}(ar{ u}_{\mu L}\gamma^\mu u_{ au L})(ar{ au}_R\gamma_\mu au_R)$	$^{\mathrm{C}}$
	$\frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\mu L}\gamma^{\mu}\nu_{\tau L})(\bar{u}_R\gamma_{\mu}u_R)$	$^{\mathrm{C}}$
	$\approx rac{4G_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{c}_R\gamma_\mu c_R)$	R
CVLR_nutaunutaudo	${ m d}rac{4G_F}{\sqrt{2}}(ar u_{ au L}\gamma^\mu u_{ au L})(ar d_R\gamma_\mu d_R)$	R

WC name	Operator	Type
CVLR_nutaunutaue	$=rac{4G_F}{\sqrt{2}}(ar{ u}_{ au L}\gamma^\mu u_{ au L})(ar{e}_R\gamma_\mu e_R)$	R
CVLR_nutaunutaum	$\lim_{N \to \infty} \frac{4 \vec{r_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{\mu}_R \gamma_\mu \mu_R)$	R
CVLR_nutaunutaus	s $rac{4 \widetilde{G_F}}{\sqrt{2}} (ar{ u}_{ au L} \gamma^\mu u_{ au L}) (ar{s}_R \gamma_\mu s_R)$	R
CVLR_nutaunutaut	au $(ar{ u}_{ au L} \gamma^{\mu} u_{ au L}) (ar{ au}_{R} \gamma_{\mu} au_{R})$	R
CVLR_nutaunutauu	$\begin{array}{l} = \frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{e}_R\gamma_{\mu}e_R) \\ = \frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{\mu}_R\gamma_{\mu}\mu_R) \\ = \frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{s}_R\gamma_{\mu}s_R) \\ = \frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{\tau}_R\gamma_{\mu}\tau_R) \\ = \frac{4G_F}{\sqrt{2}}(\bar{\nu}_{\tau L}\gamma^{\mu}\nu_{\tau L})(\bar{u}_R\gamma_{\mu}u_R) \end{array}$	R

${\tt muemutau}$

WC name	Operator	Type
CVLL_muemutau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_L \gamma_\mu \mu_L)$	С
CVRR_muemutau	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{\tau}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_muemutau	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{\tau}_R \gamma_\mu \mu_R)$	\mathbf{C}
CVLR_taumuemu	$(\bar{\mu}_L \gamma^\mu \tau_L)(\bar{\mu}_R \gamma_\mu e_R)$	\mathbf{C}
CSRR_muemutau	$(\bar{e}_L \mu_R)(\bar{\tau}_L \mu_R)$	\mathbf{C}
CSRR_emutaumu	$(\bar{\mu}_L e_R)(\bar{\mu}_L \tau_R)$	\mathbf{C}

${\tt etauemu}$

WC name	Operator	Type
CVLL_muetaue	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{e}_L \gamma_\mu \tau_L)$	С
CVRR_muetaue	$(\bar{e}_R \gamma^\mu \mu_R)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_muetaue	$(\bar{e}_L \gamma^\mu \mu_L)(\bar{e}_R \gamma_\mu \tau_R)$	\mathbf{C}
CVLR_tauemue	$(\bar{e}_L \gamma^\mu \tau_L)(\bar{e}_R \gamma_\mu \mu_R)$	\mathbf{C}
CSRR_muetaue	$(\bar{e}_L \mu_R)(\bar{e}_L \tau_R)$	\mathbf{C}
CSRR_emuetau	$(\bar{\mu}_L e_R)(\bar{ au}_L e_R)$	\mathbf{C}