Programming Paradigms

Lecture 7

Slides are from Prof. Chin Wei-Ngan from NUS

Tupled Recursion and Exceptions

Reminder of Last

- Computing with procedures
 - lexical scoping
 - closures
 - procedures as values
 - procedure call
- Higher-Order Programming
 - proc. abstraction
 - lazy arguments
 - genericity
 - loop abstraction
 - folding

Declarative Programming

Declarative Programming

- We are exploring declarative programming
 - declarative programming model
 - declarative programming techniques
- We used "declarative" variables for singleassignment variables

...what does declarative mean?

Declarative means...

Programs returns
 same result
 for
 same arguments

Always, always, always...
 regardless of any other computations

Declarative Programming Properties

- Independence
 - write programs independently
 - test and debug independently
 - other components of program do not matter
- Simple reasoning
 - declarative programs only compute values
 - no hidden state, no history, ...
- This means simple development...

Is Everything Declarative?

No, it is not...
 ...there is no silver bullet

Why bother then?

Be as Declarative as You Can

- Many program components can be written in a declarative style
 - use the benefits as much as possible
- For the rest, use other techniques
 - concurrency
 - state
 - objects

Significance

- Some languages are better than others at declarative programming (Oz versus C++)
- Declarative programming techniques are useful whatever language you program in
 - this course wants to sharpen your mind
 - this course uses a language that is good at declarative programming and the other techniques to come

Tupled Recursion

Functions with multiple results

Computing Average

```
fun {SumList Ls}
    case Ls of nil then 0
    [] X|Xs then X+{SumList Xs} end
End
fun {Length Ls}
    case Ls of nil then 0
    [] X|Xs then 1+{Length Xs} end
end
fun {Average Ls} {Sum Ls}/{Length Ls} end
```

What is the Problem?

Problem?

Traverse the same list multiple traversals.

Solution : compute multiple results in a single traversal!

Tupling - Computing Two Results

```
fun {CPair Ls}
   {Sum Ls}#{Length Ls}
end
fun {CPair Ls}
    case Ls of nil then 0#0
    [] X|Xs then case {CPair Xs}
               of S\#L then (X+S)\#(1+L) end
    end
end
```

Using Tupled Recursion

```
fun {Average Ls}
    case {CPair Ls} of S#L then S/L end
end
```

Inefficient Fibonacci

Time complexity of {Fibo N} is proportional to 2^N.

```
fun {Fibo N}
    case N of
        1 then 1
    [] 2 then 1
    [] M then {Fibo (M-1)} + {Fibo (M-2)}
    end
end
```

A Call Tree of Fibo

Many repeated calls!

A Call Graph of Fibo

No repeated call through reuse of identical calls

Tupling - Computing Two Results

```
fun {FPair N}
    {Fibo N}#{Fibo N-1}
end
```

Compute two calls from next two:

Tupling - Computing Two Results

```
fun {FPair N}
   {Fibo N}#{Fibo N-1}
end
fun {FPair N}
    case N of
       2 then 1#1
    [] M then case {FPair M-1}
                of S#L then (S+L) #S end
    end
end
```

Using the Tupled Recursion

end

```
fun {Fibo N}
  case {FPair N+1} of A#B then B end
```

Linear Recursion

```
{Fibo 6}

{Fibo 5}

fun {FPair N}

case N of 2 then 1#1

[] M then case {FPair M-1}

of S#L then (S+L)#S end

end

end

{Fibo 1}
```

To Iteration

Tail-Recursive Fibonacci

```
fun {FPair N} {FPairIt (N-2) 1#1} end

fun {FPairIt N P}
  case N of
     0 then P
  [] M then {FPairIt N-1 {H P}} end
end
```

Summary So Far

- Tupled Recursion
 - Eliminate multiple traversals
 - Eliminate redundant calls
- Eureka find suitable tuple of calls.

Exceptions

Exceptions

- Error = Actual behavior Desired behavior.
- Type of errors:
 - Internal: invoking an operation with an illegal type/value
 - External: opening a nonexisting file
- Detect and handle these errors without stopping the program execution.
- Solution Transfer to an exception handler, and pass a value that describes the error.

Exceptions handling

- Oz program = interacting "components"
- Exception causes a "jump" from inside the component to its boundary.
- Able to exit arbitrarily levels of nested contexts.
- A context is an entry on the semantic stack.
- Nested contexts are created by procedure calls and sequential compositions.

Exceptions handling

Exceptions (Example)

```
fun {Eval E}
  if {IsNumber E} then E
  else
    case E
    of plus(X Y) then {Eval X}+{Eval Y}
    [] times(X Y) then {Eval X}*{Eval Y}
    else raise illFormedExpression(E) end
   end
  end
end
try
  {Browse {Eval plus(plus(5 5) 10)}}
  {Browse {Eval times (6 11)}}
  {Browse {Eval minus(7 10)}}
catch illFormedExpression(E) then
  {Browse '*** Illegal expression '#E#' ***'}
end
```

Exceptions (Example)

Exceptions. try and raise

- try: creates an exception-catching context together with an exception handler.
- raise: jumps to the boundary of the innermost exception-catching context and invokes the exception handler there.
- try <S> catch <X> then <S>1 end:
 - if <S> does not raise an exception, then execute <s>.
 - if <S> raises an exception, then the (still ongoing) execution of <S> is aborted. All information related to <S> is popped from the semantic stack. Control is transferred to <S>1, passing it a reference to the exception in <X>.

Exceptions. Full Syntax

- A try statement can specify a finally clause which is always executed, whether or not the statement raises an exception.
- try <S>₁ finally <S>₂ end is equivalent to:

where an identifier x is chosen that is not free in <s>2

Exceptions. Full Syntax (Example)

- An example with catch and finally.
- try

```
{ProcessFile F}
catch X then
{Browse '*** Exception '#X#
  ' when processing file ***'}
finally {CloseFile F} end
```

Similar with two nested try statements!

System Exceptions

- Raised by Mozart system
- failure: attempt to perform an inconsistent bind operation in store ("unification failure");
- error: run-time error inside a program, like type or domain errors;
- system: run-time condition in the environment of the Mozart, like failure to open a connection between two processes.

System Exceptions (Example)

```
functor
import
  Browser
define
  fun {One} 1 end
  fun {Two} 2 end
  try
    \{One\} = \{Two\}
  catch
    failure (...) then
       {Browser.browse 'We caught the failure'}
  end
end
```

Summary

- Recursion vs Iteration
- Tupled Recursion
- Exceptions

Reverse

Reversing a list

How to reverse the elements of a list

```
{Reverse [a b c d]}
```

returns

[d c b a]

Reversing a List

- Reverse of nil is nil
- Reverse of x|xr is z, where reverse of xr is yr, and append yr and [x] to get z

```
{Rev [a b c d]} = [d c b a]
{Rev a|[b c d]} = {Append {Rev [b c d]} [a]} = [d c b a]
{Rev b|[c d]} = {Append {Rev [c d]} [b]} = [d c b]
{Rev c|[d]} = {Append {Rev [d]} [c]} = [d c]
{Rev d|nil} = {Append {Rev nil} [d]} = [d]
nil
```

Question

What is correct

```
{Append {Reverse Xr} X}
```

or

```
{Append {Reverse Xr} [X]}
```

Naive Reverse Function

```
fun {NRev Xs}
    case Xs of
        nil then nil
    [] X|Xr then {Append {NRev Xr} [X]}
    end
end
```

Question

- What is the problem with the naive reverse?
- Possible answers
 - not tail recursive
 - Append is costly:
 - there are O{|L1|} calls

```
fun {Append L1 L2}
  case L1 of
    nil then L2
  [] H|T then H|{Append T L2}
  end
end
```

Cost of Naive Reverse

- Suppose a recursive call {NRev Xs}
 - where {Length Xs}=n
 - assume cost of {NRev Xs} is c(n)

number of function calls

- then c(0) = 0 $c(n) = c(\{Append \{NRev Xr\} [X]\}) + c(n-1)$ = (n-1) + c(n-1)= (n-1) + (n-2) + c(n-3) = ... = n-1 + (n-2) + ... + 1
- this yields: $c(n) = \frac{n(n-1)}{2}$
- For a list of length n, NRev uses approx. n² calls!

Doing Better for Reverse

 Use an accumulator to capture currently reversed list

Some abbreviations

```
Image: Imag
```

Computing NRev

```
{NRev [a b c]} =
{NRev [b c]}++[a] =
({NRev [c]}++[b])++[a] =
(({NRev nil}++[c])++[b])++[a] =
((nil++[c])++[b])++[a] =
([c]++[b])++[a] =
[c b]++[a] =
[c b a]
```

Computing IterRev (IR)

```
{IR [a b c] nil} =
{IR [b c] a|nil } =
{IR [c] b|a|nil} =
{IR nil c|b|a|nil} =
[c b a]
```

The general pattern:

```
{IR X|Xr Rs} \Rightarrow {IR Xr X|Rs}
```

Why is Iteration Possible?

Associative Property

```
{Append {Append RL [a]} [b]}
= {Append RL {Append [a] [b]}}
```

More Generally

```
{Append {Append RL [a]} Acc}

= {Append RL {Append [a] Acc}}

= {Append RL a|Acc}
```

IterRev Intermediate Step

```
fun {IterRev Xs Ys}
    case Xs of
        nil then Ys
    [] X|Xr then {IterRev Xr X|Ys}
    end
end
```

Is tail recursive now

IterRev Properly Embedded

```
local
   fun {IterRev Xs Ys}
      case Xs
      of nil then Ys
      [] X|Xr then {IterRev Xr X|Ys}
      end
   end
in
   fun {Rev Xs} {IterRev Xs nil} end
end
```

State Invariant for IterRev

Unroll the iteration a number of times, we get:

```
{IterRev [X_1 \dots X_n] W}
=
{IterRev [X_{i+1} \dots X_n] [X_i \dots X_1] + + W}
```

Reasoning for IterRev and Rev

Correctness:

```
{Rev Xs} iS {IterRev Xs nil}
```

Using the state invariant, we have:

```
{IterRev [X_1 \dots X_n] nil}=
= {IterRev nil [X_n \dots X_1]}
= [X_n \dots X_1]
```

- Thus: {Rev $[x_1 ... x_n]$ } = $[x_n ... x_1]$
- Complexity:
- The number of calls for {IterRev L nil}, where list L has N elements, is c(N)=N

Summary So Far

- Use accumulators
 - yields iterative computation
 - find state invariant
- Loop = Tail Recursion and is a special case of general recursion.
- Exploit both kinds of knowledge
 - on how programs execute

(abstract machine)

on application/problem domain