$$C = \begin{pmatrix} 1 & 3 & 0 \\ 0 & -1 & 1 \\ 2 & 0 & -2 \end{pmatrix}$$

Así, de acuerdo con el teorema 5.6.2, la matriz de transición A de B_1 a B_2 es

$$A = C^{-1} = \frac{1}{8} \begin{pmatrix} 2 & 6 & 3 \\ 2 & -2 & -1 \\ 2 & 6 & -1 \end{pmatrix}$$

Por ejemplo, si $(\mathbf{x})_{B_1} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$, entonces

$$(\mathbf{x})_{B_2} = \frac{1}{8} \begin{pmatrix} 2 & 6 & 3 \\ 2 & -2 & -1 \\ 2 & 6 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} = \frac{1}{8} \begin{pmatrix} 2 \\ 2 \\ -14 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{4} \\ -\frac{7}{4} \end{pmatrix}$$

Para verificar, observe que

$$\frac{1}{4} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix} + \frac{7}{4} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

EJEMPLO 5.6.2 Expresión de polinomios en \mathbb{P}_2 en términos de una nueva base

En \mathbb{P}_2 , la base canónica en $B_1 = \{1, x, x^2\}$. Otra base es $B_2 = \{4x - 1, 2x^2 - x, 3x^2 + 3\}$. Si $p = a_0 + a_1x + a_2x^2$, escriba p en términos de los polinomios en B_2 .

SOLUCIÓN Primero verifique que B_2 es una base. Si $c_1(4x-1) + c_2(2x^2-x) + c_3(3x^2+3) = 0$ para toda x, entonces al reacomodar los términos se obtiene

$$(-c_1 + 3c_3)1 + (4c_1 - c_2)x + (2c_2 + 3c_3)x^2 = 0$$

Pero como $\{1, x, x^2\}$ es un conjunto linealmente independiente, se debe tener

$$-c_1 + 3c_3 = 0$$

$$4c_1 - c_2 = 0$$

$$2c_2 + 3c_3 = 0$$

El determinante de este sistema homogéneo es $\begin{vmatrix} -1 & 0 & 3 \\ 4 & -1 & 0 \\ 0 & 2 & 3 \end{vmatrix} = 27 \neq 0$, lo que significa que $c_1 = c_2 = 0$

$$c_3 = 0$$
 es la única solución. Ahora $(4x - 1)_{B_1} = \begin{pmatrix} -1\\4\\0 \end{pmatrix}$, $(2x^2 - x)_{B_1} = \begin{pmatrix} 0\\-1\\2 \end{pmatrix}$ y $(3 + 3x^2)_{B_1} = \begin{pmatrix} 3\\0\\3 \end{pmatrix}$.