Teoretické základy informatických vied Regulárne gramatiky

Mgr. Martin Bobák, PhD.

2022/2023

Pôvodný autor: doc. Mgr. Daniela Chudá, PhD. Teoretické základy informatických vied, FIIT STU, 2020.

$$L(A) = \{xababay | x, y \in \{a, b\}^*\}$$

Prevod NFA na DFA

Rozpoznávanie (pod)reťazcov

$$L(A) = \{xababay | x, y \in \{a, b\}^*\}$$

Poznámka:

- Automat, ktorý rozpoznáva podreťazec s t.j. rozpoznáva jazyk $L = \{x s y | x, y \in \Sigma^*\}$, má počet stavov rovný $|s| + 1^1$, ak je dĺžka $s > 1^2$.
- V tomto prípade platí pre NFA a DFA, že sa nelíšia stavmi, ale iba prechodovými funkciami.
- 1+1 pre počiatočný stav
- ²pre $s = \varepsilon$ potrebujeme dva stavy t.j. počet stavov je |s| + 2

Oznamy

- prvý test na 4. cvičení:
 - čas: 20 minút.
 - témy: 1. 3. cvičenie (množiny, jazyky a konečné automaty)
 - bodové hodnotenie: 8 bodov
 - prevažne vyriešenie podobných úloh ako na cvičení, okrajovo teória

Teória formálnych jazykov

Reprezentácia jazyka:

- Matematický opis jazyka množina.
- Systematické generovanie slov z jazyka (generovanie jazyka) gramatika.
- Zostrojenie algoritmu, ktorý určí, či dané slovo patrí do jazyka (rozpoznanie jazyka) – automat

Teória jazykov:

 štúdium množín znakov, reťazcov, ich reprezentácií, štruktúr a vlastností

Definícia (Definícia frázovej gramatiky)

Frázová gramatika je štvorica G = (N, T, P, S), kde N a T sú abecedy terminálnych resp. neterminálnych symbolov, pričom platí: $(N \cap T) = \emptyset$ $P \subseteq_{KON} (N \cup T)^* N(N \cup T)^* \times (N \cup T)^*$ a $S \in N$ je počiatočný (štartovací) neterminálny symbol.

^amnožina pravidiel je konečná

Poznámky:

- l'avá strana pravidla musí obsahovať aspoň jeden neterminál
- $(u,v) \in P$ môžeme zapisovať $u \to_P v, u \to_G v$, prípadne len $u \to v$ (ak vieme, o akú množinu pravidiel P, resp. gramatiku G ide).
- Pravidlá $u \to v_1, \ u \to v_2, ... \ u \to v_n$ s rovnakou ľavou stranou zapisujeme skrátene $u \to v_1 | v_2 | ... | v_n$.

Frázová gramatika Príklad

$$G = (\mathsf{N}, \, \mathsf{T}, \, \mathsf{P}, \, \mathsf{A}), \, \mathsf{kde} \, \, \mathsf{N} = \{\mathsf{A}, \, \mathsf{B}\}, \, \mathsf{T} = \{\mathsf{a}, \, \mathsf{b}\},$$

$$P = \{A \rightarrow aA | B \\ B \rightarrow bB | \varepsilon\}$$

$$L(G) = \{a^i b^j | i, j \in \mathbb{N}\}$$

$$A \quad \mathsf{pou}\check{\mathsf{z}}\mathsf{i}\mathsf{t}\acute{\mathsf{e}} \, \mathsf{pravidlo};$$

$$\mathsf{a}\mathsf{A} \quad A \rightarrow \mathsf{a}\mathsf{A}$$

$$\mathsf{a}\mathsf{a}\mathsf{A} \quad A \rightarrow \mathsf{a}\mathsf{A}$$

$$\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{A} \quad A \rightarrow \mathsf{a}\mathsf{A}$$

$$\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{B} \quad A \rightarrow \mathsf{B}$$

$$\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{B} \quad B \rightarrow \mathsf{b}\mathsf{B}$$

$$\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{b}$$

$$\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{b}$$

$$\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{b}$$

$$\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{b}$$

$$\mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{b}$$

$$\mathsf{b}\mathsf{b}$$

$$\mathsf{b}\mathsf{b}\mathsf{b}$$

$$\mathsf{b}\mathsf{c}\mathsf{b}\mathsf{c}$$

Definícia (Definícia odvodenia)

Odvođenie $S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow ... \Rightarrow w_n$ je postupnosť krokov odvođení. **Dĺžka odvođenia** je počet takýchto krokov.

Definícia (Definícia vetnej formy)

Vetná forma je slovo z $(N \cup T)^*$, ktoré môžeme získať odvodením zo začiatočného neterminálu.

Definícia (Definícia kroku odvodenia)

Krok odvodenia v gramatike G je binárna relácia \Rightarrow_G na množine $(N \cup T)^* \times (N \cup T)^*$ definovaná nasledovne:

$$x \Rightarrow_{\mathsf{G}} y$$
,

ak existujú $w_1, w_2 \in (N \cup T)^*$ a pravidlo $(u \to v) \in P$ také, že $x = w_1 u w_2$ a $y = w_1 v w_2$.

Poznámky:

- binárna relácia
- operácie: mocniny, tranzitívny (⇒+), reflexívno-tranzitívny uzáver (⇒*), atď.
 u ⇒² v, ak ∃w také, že u ⇒ w a w ⇒ v. Znamená to, že z vetnej formy u vieme na 2 kroky odvodiť vetnú formu v.
- u ⇒* v znamená, že z u vieme v vygenerovať konečným počtom krokov.

Definícia (Definícia jazyka generovaného gramatikou)

Jazyk generovaný gramatikou G je množina L(G) daná nasledovne:

$$L(G) = \{ w \in T^* | S \Rightarrow_G^* w \},$$

 $\operatorname{pri\check{c}om} \Rightarrow_{G}^{*} \operatorname{je} \operatorname{reflexivno-tranzitivny} \operatorname{uz\'{a}ver} \operatorname{rel\'{a}cie} \Rightarrow_{G}^{*}.$

Treba ukázať obe inklúzie:

- Každé slovo, ktoré gramatika generuje, patrí do L (gramatika negeneruje nič navyše) $L(G) \subseteq L$.
- Každé slovo z množiny L má v gramatike odvodenie $L \subseteq L(G)$.

Definícia (Definícia ekvivalencie gramatík)

Gramatiky G_1 a G_2 sú ekvivalentné, ak $L(G_1) = L(G_2)$.

Gramatika

- Gramatika prostriedok na opis nekonečného jazyka konečným spôsobom
- Opis jazyka generatívnou paradigmou
- Široké uplatnenie pri definovaní umelých (najmä počítačových) jazykov

Gramatika

- Gramatika je konečný objekt (lebo všetky množiny/prvky tvoriace gramatiku, hlavne množina pravidiel, sú konečné).
 Gramatikám jedno-jednoznačne priradiť prirodzené čísla, a teda rôznych gramatík je spočítateľne veľa.
- množina {a, b}* je nekonečná spočítateľná, a teda množina jej podmnožín (jazykov nad abecedou {a,b}) je nespočítateľná.
 Rôznych jazykov je nespočítateľne veľa.
- k väčšine jazykov neexistuje gramatika, ktorá ich generuje.

Klasifikácia gramatík

Definícia (Definícia klasifikácie gramatík (Chomsky))

Nech G = (N, T, P, S) je gramatika. Potom hovoríme, že gramatika G je:

- frázová (typu 0), ak sa na tvar prepisovacích pravidiel nekladú žiadne obmedzenia
- kontextová (typu 1), ak každé prepisovacie pravidlo z P má tvar u \rightarrow v, kde $|u| \le |v|$
- bezkontextová (typu 2), ak každé prepisovacie pravidlo z P má tvar $A \to w$, kde $A \in N$, $w \in (N \cup T)^*$
- regulárna (typu 3), ak každé prepisovacie pravidlo z P má jeden z tvarov $A \to wB$ alebo $A \to w$, kde $A, B \in N$, $w \in T^*$

Klasifikácia gramatík

Poznámky:

- V pôvodnej Chomského definícii kontextových gramatík mali ich pravidlá tvar uAv → uwv, kde u, v ∈ (N ∪ T)*, w ∈ (N ∪ T)+, A ∈ N. (neterminál A sa mohol prepísať na w len vtedy, ak sa vyskytoval v správnom kontexte odtiaľ názov kontextová gramatika). Dá sa ukázať, že tieto dve definície sú ekvivalentné.
- Bezkontextová gramatika má pravidlá, ktorých ľavú stranu tvorí práve jeden neterminál. Názov bezkontextová pochádza teda zo skutočnosti, že príslušný neterminál môžeme prepísať bez ohľadu na kontext (okolie), v ktorom sa nachádza.
- Regulárna gramatika má navyše (oproti bezkontextovej) obmedzenú aj pravú stranu pravidiel – tá môže obsahovať najviac jeden neterminál a ten musí byť posledný. Vďaka tomu regulárna gramatika generuje slovo zľava doprava.

Vlastnosti regulárnych jazykov a gramatík

Veta

Každý konečný jazyk je regulárny.

Dôsledok: Umelé jazyky C, C++, Pascal, UML sú nekonečné.

Poznámka: Platnosť tohto dôsledku sa dá rozšíriť aj pre mnoho iných umelých jazykov.

Vlastnosti regulárnych jazykov a gramatík Normálne tvary

Veta

Ku každej regulárnej gramatike G existuje regulárna gramatika G' taká, že platí:

- dĺžka pravej strany každého pravidla v G' je nanajvýš 2
- $\bullet \ L(G') = L(G)$

Silnejšie normálne tvary regulárnych gramatík:

- v každom kroku generuje regulárna gramatika najviac jeden terminál $P \subseteq_{KON} N \times (T \cup \{\varepsilon\})(N \cup \{\varepsilon\})$
- $P \subseteq_{KON} N \times (T \cup T(N \setminus \{S\})) \cup \{S \rightarrow \varepsilon\}$

Neformálna idea dôkazu:

 ak pravidlo generuje viacej (ne)terminálov rozbijeme ho na viacej pravidiel. Pridaním nových neterminálov zabezpečíme, aby sme nové pravidlá museli použiť v správnom poradí a dosiahli rovnakú vetnú formu ako v pôvodnej gramatike.

Normálne tvary regulárnych gramatík

$$L = \left\{a^{3n} \middle| n \in \mathbb{N}\right\}$$

$$G = (N, T, P, S)$$

$$N = \{S\},$$

$$T = \{a\},$$

$$P = \left\{S \rightarrow aaaS \middle| \varepsilon\right\}$$

$$G = (N, T, P, S)$$

$$N = \{S, S_1, S_2\},$$

$$T = \{a\},$$

$$P = \{S \rightarrow aS_1 \middle| \varepsilon\}$$

$$S_1 \rightarrow aS_2$$

$$S_2 \rightarrow aS\}$$

Normálne tvary regulárnych gramatík Príklad

$$L = \left\{b^{3k}c^{2} \middle| k \in \mathbb{N}\right\}$$

$$G = (N, T, P, S)$$

$$N = \left\{S, U, V, Z\right\},$$

$$T = \left\{b, c\right\},$$

$$T = \left\{b, c\right\},$$

$$P = \left\{S \to cc\middle| bbbS\right\}$$

$$U \to c$$

$$S \to bV$$

$$V \to bZ$$

$$Z \to bS$$

Regulárna gramatika:

- normálne tvary gramatík zabezpečujú, že vetná forma je buď terminálne slovo, alebo obsahuje práve jeden neterminál, ktorý sa nachádza na jej konci
- generuje slovo zľava doprava
- prenos informácie je zabezpečený zmenou neterminálu

Konečný automat:

- číta slovo zľava doprava
- pamätá si konečnú informáciu v stave

Veta

K ľubovoľnému nedeterministickému konečnému automatu A existuje regulárna gramatika G taká, že L(G)=L(A).

- generovanie slova v gramatike G simuluje výpočet v automate
 A
- neterminál na konci vetnej formy zodpovedá stavu, v ktorom sa nachádza automat A po prečítaní zodpovedajúcej časti slova.
- odvodenie ukončíme, keď aktuálny neterminál zodpovedá akceptačnému stavu

Veta

K ľubovoľnému nedeterministickému konečnému automatu A existuje regulárna gramatika G taká, že L(G)=L(A).

Nech
$$A=(K,\Sigma,\delta,q_0,F)$$
, potom $G=(K,\Sigma,P,q_0)$, kde
$$P=\{q\to ap|\delta(q,a)=p\}\cup\{q_f\to\varepsilon|q_f\in F\}$$

Veta

K ľubovoľnému nedeterministickému konečnému automatu A existuje regulárna gramatika G taká, že L(G)=L(A).

$$A(L_1) = \{ \ w \in \{a,b\}^* \mid \#_b w = 2k+1, \ k \in \mathbb{N} \ \}$$

G = (N, T, P, S) N = {S, U} T = {a,b}
P: **S** -> a**S** | b**U**
U -> a**U** | b**S** |
$$\epsilon$$

Zdroj: Daniela Chudá: Teoretické základy informatických vied, FIIT STU, 2020.

Veta

K ľubovoľnej regulárnej gramatike G existuje nedeterministický konečný automat A taký, že L(A)=L(G).

Nech G má pravidlá v normálovom tvare³, potom zostrojme ekvivalentný NKA A nasledovne:

$$A = (N \cup \{q_f\}, T, \delta, S, F = \{q_f\})$$
, pričom:

$$\forall A \in N, \forall a \in T \cup \{\varepsilon\}$$
:

$$\delta(A,a) = \{B | (A \rightarrow aB) \in P\} \cup \{q_f | (A \rightarrow a) \in P\}$$

³Gramatika vie v jednom kroku vygenerovať veľa znakov, zatiaľ čo automat ich musí čítať po jednom.

Príklad 3.3.2 Vzťah konečných automatov a regulárnych gramatík. Majme regulárnu gramatiku G₈.

Nech
$$G_8 = (N, T, P, A)$$
, $kde\ N = \{A, B, C\}$, $T = \{a, b\}$, $P = \{A, B, C\}$, $A \rightarrow aA \mid bB$
 $A \rightarrow aB \mid bC$
 $C \rightarrow aC \mid bA$
 $B \rightarrow E$

}. Gramatika G_8 generuje jazyk $L(G_8) = \{ w \in \{a,b\}^* \mid \#_b w = 3k+1, k \in \mathbb{N} \}$. Skonštruujme konečný automat A_8 , taký že $L(A_8) = L(G_8)$.

Zdroj: Daniela Chudá: Teoretické základy informatických vied, FIIT STU, 2020.

Definícia

Trieda jazykov L je uzavretá vzhľadom na operáciu $\square:\mathcal{L}\times\mathcal{L}\to\mathcal{L}$ ak platí:

$$\forall L_1, L_2 \in \mathcal{L} : (L_1 \square L_2) \in \mathcal{L}$$

Trieda regulárnych jazykov je uzavretá na nasledujúce operácie:

- zjednotenie
- zreťazenie,
- prienik,
- Kleeneho (kladnú) iteráciu,
- doplnok,
- zrkadlový obraz
- (nevymazávací) homomorfizmus

Veta

 ${\cal R}$ je uzavretá na zjednotenie.

Zdroj: Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison Wesley. 2nd Edition. 2006.

Veta

 ${\cal R}$ je uzavretá na zjednotenie.

- z gramatík pre pôvodné jazyky zostrojíme regulárnu gramatiku pre ich zjednotenie.
- v prvom kroku odvodenia sa rozhodne, či vygeneruje slovo z L₁ alebo z L₂.
- Majme $L_1, L_2 \in \mathcal{R}$. K nim existujú regulárne gramatiky G_1, G_2 , ktoré ich generujú. Nech $G_1 = (N_1, T_1, P_1, S_1)$, $G_2 = (N_2, T_2, P_2, S_2)$. Môžeme predpokladať, že množiny $N_1, N_2, T_1 \cup T_2$ sú po dvoch disjunktné⁴.
- $G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}, S)$

⁴neterminály vieme vhodne preznačiť

Veta

 ${\cal R}$ je uzavretá na zreťazenie.

• Majme $L_1, L_2 \in \mathcal{R}$. K nim existujú NKA v normálnom tvare $A_i = (K_i, \Sigma, \delta_i, q_{0i}, \{q_{fi}\})$. Nech majú disjunktné množiny stavov $(K_1 \cap K_2 = \emptyset)$. Zostrojme potom automat $A = (K_1 \cup K_2, \Sigma, \delta, q_{01}, \{q_{f2}\})$, kde δ obsahuje obe δ_i a navyše definujeme $\delta(q_{f1}, \varepsilon) = \{q_{02}\}$.

Zdroj: Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison Wesley. 2nd Edition. 2006.

Veta

R je uzavretá na Kleeneho iteráciu.

• Podobne ako pre zreťazenie – zoberieme automat pre L v normálnom tvare a pridáme mu ε -hranu z akceptačného stavu do počiatočného stavu.

Poznámka:

ullet Keďže $L^+=L\cdot L^*$, potom ${\mathcal R}$ je uzavretá aj na kladnú iteráciu.

Veta

R je uzavretá na komplement.

- Ak $A = (K, \Sigma, \delta, q_0, F)$ je DKA akceptujúci jazyk L, tak $A' = (K, \Sigma, \delta, q_0, K \setminus F)$ je DKA akceptujúci jazyk $L^C = \Sigma^* \setminus L$.
- ak v A výpočet na w nebol akceptačný, v A' bude a naopak.

Veta

 \mathcal{R} je uzavretá na prienik.

- pomocou konštrukcie kartézskym súčinom.
- konečný automat bude naraz simulovať viacero iných konečných automatov – v svojom stave pamätá stavy všetkých simulovaných automatov (počet stavov automatu je len konečne veľa).
- Nech $L_1, L_2 \in \mathcal{R}$, nech $A_i = (K_i, \Sigma, \delta_i, q_{0i}, F_i)$ sú DKA také, že $L(A_i) = L_i$. Potom zostrojme automat $A = (K, \Sigma, \delta, q_0, F)$, kde $K = K_1 \times K_2, q_0 = [q_{01}, q_{02}], F = F_1 \times F_2$ a $\delta([q_x, q_y], a) = [\delta_1(q_x, a), \delta_2(q_y, a)]$
- A je po prečítaní w v stave $[q_x,q_y] \iff A_1$ je po prečítaní w v stave q_x a A_2 v q_y
- vlastnosť vyplýva aj z de Morganovych zákonov $L_1 \cap L_2 = (L_1^C \cup L_2^C)^C$.

Veta

 \mathcal{R} je uzavretá na homomorfizmus.

- Pravidlá regulárnej gramatiky pre daný jazyk upravíme tak, že každý terminál nahradíme jeho homomorfným obrazom.
- Výsledná gramatika bude generovať homomorfný obraz pôvodného jazyka
- Majme $L \in \mathcal{R}, h: T^* \to U^*$ nech je ľubovoľný homomorfizmus. Vieme, že existuje regulárna gramatika G = (N,T,P,S) taká, že L(G) = L.
- Definujme nový homomorfizmus h' nasledovne: $\forall A \in \mathbb{N} : h'(A) = A$ a $\forall a \in \mathbb{T} : h'(a) = h(a)$. (h' sa správa rovnako ako h, len navyše vie zobraziť aj neterminály gramatiky G a necháva ich na pokoji.)
- G'= (N, U, h'(P),S). Množina h'(P) sú všetky pravidlá z P zobrazené homomorfizmom h' -

$$h'(P) = \{A \to h'(w) | A \to w \in P\}.$$

Veta

R je uzavretá na zrkadlový obraz.

- zoberieme NKA v normálnom tvare, vymeníme akceptačný stav so začiatočným stavom a obrátime smer šípok.
- Nech $L \in \mathcal{R}, L = L(A)$, kde $A = (K, \Sigma, \delta, q_0, \{q_f\})$ je v normálnom tvare. Potom zostrojme $A' = (K, \Sigma, \delta', q_f, \{q_0\})$, kde $p \in \delta'(q, x) \iff q \in \delta(p, x)$.

Úplný algebraický systém:

 pomocou operácií: ∪, ., * zadefinujeme akýkoľvek regulárny jazyk.

Zovšeobecnenia konečných automatov

Viachlavé automaty

Definícia

Viachlavý NKA je 6-ica $A=(K,\Sigma,\delta,q_0,F,k)$, kde K,Σ,q_0,F sú ako pri NKA, k>0 je počet hláv a $\delta:K\times(\Sigma\cup\{\varepsilon\})^k\to 2^k$ je prechodová funkcia.

Definícia

Konfiguráciou viachlavého NKA nazveme (k+1)-ticu $(q, w_1, ..., w_k)$, kde $q \in K$ je aktuálny stav a $w_i \in \Sigma^*$ je časť slova, ktorú ešte neprečítala i-ta hlava.

Zovšeobecnenia konečných automatov

Viachlavé automaty

Definícia

Krokom výpočtu viachlavého NKA A nazveme binárnu reláciu \vdash_A , definovanú na množine konfigurácií nasledovne:

$$(q, a_1w_1, ..., a_kw_k) \vdash_A (p, w_1, ..., w_k) \iff p \in \delta(q, a_1, ..., a_k)$$

kde $p, q \in K, a_i \in (\Sigma \cup \{\varepsilon\}), w_i \in \Sigma^*$

Definícia

Jazyk akceptovaný viachlavým NKA A je množina

$$L(A) = \{w | \exists q_f \in F : (q_0, \underbrace{w, ..., w}_{k}) \vdash_A^* (q_f, \underbrace{\varepsilon, ..., \varepsilon}_{k})\}$$

Viachlavé automaty

Výpočtová sila viachalvých automatov:

- nie je menšia, ako sila obyčajných konečných automatov (s jednou hlavou).
- už dvojhlavý automat dokáže akceptovať napr. jazyk $L1=\{a^nb^n|n>0\}$, ktorý nie je regulárny ostrá nadmnožina regulárnych jazykov
- vedia akceptovať aj jazyky, ktoré nie sú bezkontextové $L_2 = \{w \sharp w | w \in \{a,b\}^*\}$ neporovnateľné s triedou bezkontextových jazykov
- ostrou podmnožinou (rozšírených) kontextových jazykov
- pre každé k je trieda jazykov, pre ktoré existuje k-hlavý konečný automat, je vlastnou podmnožinou triedy jazykov, pre ktoré existuje (k+ 1)-hlavý konečný automat.

Dvojsmerné automaty

Definícia

Dvojsmerným (nedeterministickým konec**ným) automatom** (2NKA) nazývame 5-icu $A = (K, \Sigma, \delta, q_0, F)$, kde K, Σ, q_0, F sú rovnaké ako pri DKA, $\phi, \$ \notin \Sigma, \delta : K \times (\Sigma \cup \{\phi, \$\}) \to 2^{K \times \{-1, 0, 1\}}$ je prechodová funkcia, pričom platí:^a

$$\forall q \in K : \delta(q, \phi) \subseteq K \times \{0, 1\}$$
$$\forall q \in K : \delta(q, \$) \subseteq K \times \{-1, 0\}$$

^aAk je automat na niektorom konci slova, nesmie ho prekročiť

Definícia

Konfiguráciou 2NKA A nazývame trojicu (q, cw\$, i), kde $q \in K$ je aktuálny stav, $w \in \Sigma^*$ je vstupné slovo a $i \in \{0, ..., |w| + 1\}$ je pozícia hlavy.

Poznámka: 2NKA nečíta slovo deštruktívne ako KA.

Dvojsmerné automaty

Definícia

Nech w_i je i-ty znak slova w, pričom definujeme $w_0 = c$ a $w_{|w|+1} = s$. Potom **krokom výpočtu** 2NKA A nazývame binárnu reláciu \vdash_A na množine konfigurácií definovanú nasledovne:

$$(q, cw\$, i) \vdash_A (p, cw\$, i+j) \iff (p, j) \in \delta(q, w_i)$$

Definícia

Jazyk akceptovaný 2NKA A je množina

$$L(A) = \{ w | \exists q_f \in F : (q_0, c w \$, 1) \vdash_A^* (q_f, c w \$, |w| + 1) \}$$

Poznámka: Analogicky vieme definovať aj deterministické dvojsmerné automaty (2DKA).

Dvojsmerné automaty

Akceptovanie slova:

 automat prekročí pravý koniec vstupného slova w a skončí v akceptačnom stave.

Zamietnutie slova:

- automat prekročí ľavý koniec vstupného slova w
- automat prekročí pravý koniec vstupného slova w a neskončí v akceptačnom stave.
- zacyklí sa
- zasekne sa

Dvojsmerné automaty

Veta

Ku každému DKA A existuje ekvivalentný 2NKA A'.

Vyzerá identicky, len δ -funkcia navyše vracia vždy 1, teda pohyb doprava.

Veta

Ku každému 2NKA A existuje ekvivalentný NKA A'.

Dôsledok: Dvojsmerné konečné automaty nie sú výpočtovo silnejšie ako jednosmerné konečné automaty.

lch prínos spočíva v zjednodušení dokazovania, že niektoré jazyky sú regulárne.

Regulárne výrazy

Regulárne výrazy (ang. Regular expression \rightarrow Regex)

- postupnosť znakov definujúcich vzor
- vzor, ktorý používame: find / replace

Použitie regulárnych výrazov

Zdroj: Daniela Chudá: Teoretické základy informatických vied, FIIT STU, 2020.

Regulárne výrazy

Definícia

Regulárny výraz (syntakticky) môžeme rekurzívne definovať nasledovne:

- ullet je regulárny výraz, predstavujúci jazyk \emptyset .
- Nech x ∈ Σ ∪ {ε}, potom x̄ je regulárny výraz, predstavujúci jazyk {x}.
- Nech $\overline{R}_1, \overline{R}_2$ sú regulárne výrazy, predstavujúce jazyky L_1, L_2 , potom $\overline{(R_1|R_2)}$ je regulárny výraz, predstavujúci jazyk $L_1 \cup L_2$.
- Nech $\overline{R}_1, \overline{R}_2$ sú regulárne výrazy, predstavujúce jazyky L_1, L_2 , potom $\overline{R}_1 \overline{R}_2$ je regulárny výraz, predstavujúci jazyk $L_1 \cdot L_2$.
- Nech \overline{R} je regulárny výraz, predstavujúci jazyk L, potom $\overline{(R)^*}$ je regulárny výraz, predstavujúci jazyk L*.
- Nič iné nie je regulárny výraz a žiaden regulárny výraz nepredstavuje žiaden iný jazyk.

Regulárne výrazy

- Regulárny výraz slúži na opis regulárneho jazyka Notácia pozostáva z:
 - Reťazce a symboly z abecedy Σ
 - Zátvorky
 - Operátory |, ·, *

Príklad: $a* \cdot (a \mid b)$

- Jazyk L(r) opísaný reg. výrazom r je definovaný pravidlami (sémantika, význam):
 - lacktriangledown je reg. výraz opisujúci prázdnu množinu $L(\emptyset)=\emptyset$
 - 2 ε je reg. výraz opisujúci množinu slov $L(\varepsilon) = \{\varepsilon\}$
 - 3 Pre každé $a \in \Sigma$, a je reg. výraz opisujúci $L(a) = \{a\}$
- Ak r_1 a r_2 sú regulárne výrazy, potom

 - 2 $L(r_1 \cdot r_2) = L(r_1) L(r_2)$
 - **3** $L((r_1)) = L(r_1)$

Regulárne výrazy

Veta

Každý regulárny výraz predstavuje regulárny jazyk.

Jazyky \emptyset a $\{x\}$ (pre $x \in \Sigma$) sú regulárne. Regulárne jazyky sú uzavreté na zjednotenie, zreťazenie a iteráciu.

Veta

Ku každému regulárnemu jazyku existuje regulárny výraz, ktorý ho predstavuje.

```
r = a*· (a | b)

L(r) = ?

L(r) = L(a^*)L(a|b)
L(r) = (L(a))^*(L(a) \cup L(b))
L(r) = \{\varepsilon, a, aa...\}\{a, b\}
L(r) = \{a, aa, aaa, ..., b, ab, aab...\}
```

$$r = (aa)^*(bb)^*b$$

 $L(r) = ?$

$$L(r) = a^{2n}b^{2m+1}, n \ge 0, m \ge 0$$

- NIE: $a^{2n}b^{2n+1}$!
- Nedá sa, pretože regulárny výraz nedokáže opísať bezkontextový jazyk

 $L = \{w \in \{0,1\}^* | \text{ w obsahuje aspoň jednu dvojícu po sebe idúcich núl} \}$ r=?

$$r = (0|1)*00(0|1)*$$

Spojitosť s regulárnymi jazykmi

- Pre každý reg. výraz r je možné zostrojiť konečný automat, ktorý akceptuje jazyk L(r) ⇒ r opisuje regulárny jazyk.
- Pri konštrukcií automatu vieme každú operáciu v regulárnom výraze reprezentovať v stavovom diagrame konečného automatu.

Konštrukcia konečného automatu

Zdroj: Daniela Chudá:Teoretické základy informatických vied, FIIT STU, 2020.

Konštrukcia konečného automatu

Zdroj: Daniela Chudá:Teoretické základy informatických vied, FIIT STU, 2020.

Konštrukcia konečného automatu – Algoritmicky

- najprv zostrojíme NKA
- ten sa prevedie na DKA

Zdroj: Daniela Chudá:Teoretické základy informatických vied, FIIT STU, 2020.

Konštrukcia konečného automatu

Zdroj: Daniela Chudá: Teoretické základy informatických vied, FIIT STU, 2020.

```
∧ -začiatok reťazca
$ -koniec reťazca
. - jeden ľubovoľný znak
* -opakovanie ľubovoľne krát
+ -opakovanie aspoň raz
? -opakovanie najviac raz
{min, max} -opakovanie od min do max
\{n\} -opakovanie práve n-krát
(podvýraz) -vytvorenie podvýrazu
[abc] -výpis znakov (znaky a,b,c)
[a-zA-Z] -výpis znakov (všetky písmena)
[\land 0-9] -negácia výpisu (všetko okrem číslic)
[[:<:]] -začiatok slova
[[:>:]] -koniec slova
[[: trieda]] - iba znaky danej triedy
```

```
alnum - trieda: písmená anglickej abecedy + číslice
alpha - trieda: písmená anglickej abecedy
blank - trieda: medzera + tabulátor
cntrl - trieda: riadiace znaky
digit - trieda: číslice
graph - trieda: znaky s grafickým znázornením
lower - trieda: malé písmená anglickej abecedy
print - trieda: tlačiteľné znaky + medzera
punct - trieda: interpunkčné a pomocné znaky (@...)
space - trieda: medzera (+ tabulátor, nový riadok,...)
upper - trieda: veľké písmená anglickej abecedy
xdigit - trieda: číslice + písmena a - f, A - F
```

- [hc] + at
- hat, cat, hhat, chat, hcat, cchchat,
- at

- [hc]?at
- hat, cat, at
- chat

- [hc] * at
- hat, cat, hhat, chat, hcat, cchchat, at

- https://regex101.com/
- https://rubular.com/

- cat dog
- "cat"
- "dog"

- Pe(t|p)a
- "Peta"
- "Pepa"

- Ba*f
- "Bf", "Baf", "Baaf", "Baaaf"...

- Implementácie v rôznych programovacích jazykoch s rôznou syntaxou
- Existuje štandard podľa IEEE POSIX používa sa napr. v unixových programoch grep, egrep
- Knižnica PCRE (Perl Compatible Regular Expressions) založená na reg. výrazoch v jazyku Perl
- Regex-y"majú podporu aj pre rozoznávanie vyšších jazykov ako regulárnych (⇒ nejde o reálne regulárne výrazy)

Egrep

Program, ktorý hľadá v súbore vzor (vypíše riadky)

• Použitie: egrep '[hc] + at' file.txt

Špeciálny znak	Význam
•	ľubovoľný znak
[]	Jeden zo znakov obsiahnutý v zátvorkách Napr. [abc] alebo [a-c] zodpovedá <i>a, b</i> alebo <i>c</i>
[^]	Znak iný ako uvedený v zátvorkách Napr. [^abc] znamená iný znak ako <i>a, b, c</i>
^	Začiatok riadku
\$	Koniec riadku
*	Opakovanie bloku 0 a viac krát Napr. (ab)* značí "", "ab", "abab",
+	Opakovanie bloku 1 a viac krát
?	Opakovanie bloku 0 alebo 1 krát
	Výber

Zdroj: Daniela Chudá:Teoretické základy informatických vied, FIIT STU, 2020.

Ďakujem vám za pozornosť.

Dotazník k prednáške:

https://forms.gle/gPpbqYUYSnGfbG9X9

