Projet IA

Corentin - Robin - Noé

Rapide

Visualisation sur carte Clustering maritime

Regroupe les navires

Schémas de navigation similaires

Visualisation sur carte

K-Means

Pour k = 4

Visualisation sur carte

Agglomerative

Est un algorithme de CAH

Visualisation sur carte

Agglomerative

Est un algorithme de CAH

Visualisation sur carte Agglomerative

Avantages	Inconvenients
Facilement	Lent si beaucoup
compréhensible	de points

Visualisation sur carte DBSCAN

Density-Based Spatial Clustering

2 paramètres

- Epsilon (rayon)
- min_sample (nb dans le groupe minimum)

Silhouette

-1 < x < 1

Si 1 = loin des autres clusters, proche du centre du sien

0 = pile entre 2 clusters

Calinski-Harabasz

Compare la dispersion entre les clusters et à l'intérieur des clusters

Il faut le score le plus **élevé** possible

Davies-Bouldin

Regarde la similarité entre chaque cluster et son voisin le plus proche

Il faut le score le plus **BAS** possible

Méthode Composite

0.4 * silhouette + 0.3 * calinski + 0.3 * davies

Coude pour K-mean

Pourquoi y a-t-il un coude?

Quand il y a peu de clusters, l'inertie diminue rapidement,

Quand il y a beaucoup de clusters, l'inertie diminue lentement.

Regarde la variance inter-cluster en fonction du nombre de clusters

Visualisation sur carte Résultat

Prédiction du type d'un navire Première version de la prédiction

- 1. Avec les données brutes
- 2. Sélection des variables explicatives pertinentes
 - 3. Normalisation et encodage
- 4. On split train/test en veillant à ce que les bateaux soient différents
 - 5. Supervisé : Random Forest, SVM, Nearest Neighbor

Prédiction du type d'un navire Résultat de la première version

RandomForest: 86.5% de recall

Sur la grande BDD (1200 navires au lieu de 110)

Prédiction du type d'un navire Super-paramétrage

Données brutes nettoyées ~> Segmentation + quelques pré-calculs

Computing des features additionnelles:

Prédiction du VesselType avec les nouvelles variables explicatives

- mean_dist_travel
- stderr_dist_travel
- mean_duration_stop
- stderr_duration_stop
- mean_cruise_speed
- stderr_cruise_speed
- mean_dist_coast_travel
- stderr_dist_coast_travel
- mean_draft
- stderr_draft
- number_occurence_travel
- number_occurence_significative_draft_variation_onshore
- number_occurence_significative_draft_variation_offshore
- duration_onshore_ratio
- ratio_length_width
- ratio_directionnal_coherence

Prédiction du type d'un navire Seconde version de la prédiction VesselType

Méthodes durant l'entraînement?

- 1. Encodage Prepocessing
 - 2. **SMOTE**: Équilibrage
 - 3. VIF Multicolinéarité
 - 4. GridSearchCV
- 5. Cross-validation stratifiée
- 6. Optimisation des hyperparamètres

Prédiction du type d'un navire Résultat de la seconde version

LightGBM: 87.5% de recall

Sur la grande BDD (1200 navires au lieu de 110)

Prédiction de la trajectoire des navires Techniques utilisées

Prédiction de la trajectoire des navires Techniques utilisées

Valeurs -> deltas Angles -> Sin/Cos

Prédiction de la trajectoire des navires Modèles de régression

Prédiction de la trajectoire des navires Modèles de régression

Prédiction de la trajectoire des navires Neural networks (LSTM & GRU)

Diagrammes blocs

Merci de votre écoute

Démonstration des scripts!

