

UNIVERSIDADE DE ITAÚNA

Aprendizado de Máquina Aplicado à Valoração de Redações

Graduando: Eugênio Cunha

Orientador: Dr. Marco Túlio Alves N Rodrigues

19 de Junho de 2017

Departamento de Ciência da Computação Bacharelado em Ciência da Computação

Aprendizado de Máquina Aplicado à Valoração de Redações

1. Introdução

Problema de Pesquisa

Objetivos

Motivação

- 2. Trabalhos Relacionados
- 3. Metodologia
- 4. Resultados Preliminares
- 5. Plano de Trabalho

Introdução

O decreto 79.298, de 24 de Fevereiro de 1977 definiu a "inclusão obrigatória da prova ou questão de redação em língua portuguesa" nos concursos e vestibulares (Art. 1 o , alínea d).

No ENEM cada redação é avaliada por, pelo menos, dois avaliadores, de forma independente [4].

Dados da avaliação de redações do ENEM 2016 [1].

Dado um corpus de redações, classificar as competências exigidas em um texto de redação.

Objetivos

Induzir um modelo de Aprendizado de Máquina a classificar as competências exigidas em um texto de redação.

Motivação

Aprendizado de Máquina está no centro de muitos avanços tecnológicos, alcançado áreas antes exclusivas de seres humanos.

7

Trabalhos Relacionados

Matriz de Competências

Silva (2017) cita em seu estudo, que à prova de redação do ENEM é avaliada levando em conta uma matriz de referência elaborada pelo INEP [2].

I	Demonstrar domínio da norma padrão da língua escrita.	200				
	Compreender a proposta de redação e aplicar conceitosdas					
ш	varias áreas de conhecimento para desenvolver o tema, dentro					
''	dos limites estruturais do textodissertativo-argumentativo em	200				
	prosa.					
Ш	Selecionar, relacionar, organizar e interpretar informações,					
	fatos, opiniões e argumentos em defesa de um ponto de vista.					
IV	Demonstrar conhecimento dos mecanismos linguísticos					
IV	necessários para a construção da argumentação.					
V	Elaborar proposta de intervenção para o problema abordado,					
	espeitando os direitos humanos.					

Segundo Monard (2003), de uma forma geral o aprendizado indutivo pode ser dividido em supervisionado e não-supervisionado [5].

Freitas (2005), cita que o aprendizado supervisionado exige como entrada um corpus de treino, com exemplos corretamente rotulados [3].

Supervisionado ou não-supervisionado?

Tema	Direitos em conflito: liberdade de expressão e
Título	Os limites da informação
Texto	Analisando todo um conjunto de fatos importantes
Competência I	50
Competência II	100
Competência III	50
Competência IV	50
Competência V	50
Nota Total	300

Tabela 1: Propriedades de uma redação.

De acordo com o estudo de Monard (2003) o aprendizado supervisionado pode ser induzido a resolver problemas de classificação ou regressão [5].

O autor ainda cita, "Para rótulos de classe discretas, esse problema é conhecido como classificação e para valores contínuos como regressão."

Classificação ou Regressão?

	Competência		Subitens	Valor/Classes	
			0	0	
			1	50	
ı	Demonstrar domínio da norma padrão da língua escrita.	200	2	100	
			3	150	
			4	200	

Tabela 2: Competência I da matriz de referência.

Problema de classificação.

Boost -> AdaBoost

O AdaBoost é um algoritmo de aprendizado supervisionado do tipo *Boost*, que combina um conjunto de funções simples de classificação, denominadas classificadores fracos para formar um classificador forte.

Em cada iteração, o procedimento de atualização aumenta os pesos das amostras classificadas incorretamente, fornecendo desta forma a característica adaptativa do AdaBoost.

Ferramentas

Wahbeh et al. (2011) realizou um estudo comparativo entre quatro ferramentas para mineração de dados: KMINE, Orange, Tanagra e Weka [6].

Segundo seu trabalho, ferramenta Weka apresentou o melhor desempenho, seguido pela *Orange*.

Orange Data Mining

Figura 1: Orange Data Mining

Metodologia

Coleta de Dados

Coletar textos de redações avaliadas segundo a matriz de referência do INEP, normalizar os textos sem alterar o seu valor textual e armazená-lo de forma estruturada, separando o tema, título, texto e nota.

Orange Data Mining

Desenvolver uma representação do domínio do problema com auxílio da ferramenta *Orange Data Mining*, induzir o classificado *AdaBoost* sobre a base de conhecimento rotulada, avaliar as métricas de desempenho e repetir o ciclo se necessário.

Resultados Preliminares

Adversidades

Trabalhar com dados desbalanceados tende à produzir regras de classificação que beneficiam as classes majoritárias, resultando em uma baixa taxa de predição para o grupo minoritário.

Gráfico 1: Amostra de 30% dos dados no *dataset*.

Métricas de Desempenho

A Tabela 3 exibe os resultados das principais métricas de desempenho para classificadores e a média geral de cada métrica.

	Resultado da avaliação								
Classes	ROC	Acurácia	F-Score	Precision	Recall				
0.00	0.498	0.828	0.096	0.845	0.828				
0.50	0.552	0.640	0.349	0.653	0.640				
1.00	0.499	0.509	0.422	0.506	0.509				
1.50	0.549	0.579	0.222	0.755	0.759				
2.00	0.541	0.915	0.140	0.899	0.915				
Média	0.529	0.694	0.246	0.737	0.730				

Tabela 3: Resultado das métricas de desempenho do classificador AdaBoost.

Matriz de Confusão

A Tabela 4 exibe ao longo da diagonal em tons de cinza as decisões corretas: número de verdadeiros positivos TP e verdadeiros negativos TN;

		Predição								
		0.00	0.50	1.00	1.50	2.00	\sum			
	0.00	4	18	13	2	0	37			
Atual	0.50	13	42	44	14	1	114			
	1.00	18	51	78	32	11	190			
	1.50	7	14	31	15	2	69			
	2.00	4	2	14	3	3	26			
	\sum	46	127	180	66	17	436			

Tabela 4: Matriz de confusão resultante da indução do classificador AdaBoost.

Plano de Trabalho

Plano de Atividades

	Atividade	Fevereiro - 2017	Março - 2017	Abril - 2017	Maio - 2017	Junho - 2017	Julho - 2017	Agosto - 2017	Setembro - 2017	Outubro - 2017	Novembro - 2017
1	Revisão Bibliográfica	1	1	1							
2	Coleta de Dados				1						
3	Tratamento dos Dados				1						
4	Domínio do Problema					1	1	1	1		
5	Indução do Classificador					1	1	1	1		
6	Métricas de Desempenho					1	1	1	1	1	
7	Escrita da Monografia	1	1	1	1	1	1	1	1	1	1
8	Entrega da Monografia										1

References L

CFBRASPF.

CENTRO BRASILEIRO DE PESQUISA EM AVALIAÇÃO E SELEÇÃO E DE PROMOÇÃO DE EVENTOS (CEBRASPE) PROGRAMA DE ATUALIZAÇÃO, QUALIFICAÇÃO E SELEÇÃO DE AVALIADORES DAS REDAÇÕES DO ENEM 2016 . 2016.

Online: acessado 07 Abril 2017.

S. R. da Silva and T. L. Carvalho.

Produção de texto escrito no ensino médio: Competências requeridas pela avaliação de redação do enem em (des)uso no livro didático de português.

Caminhos em linguística aplicada, 16(1):1–25, 2017.

References II

M. C. de Freitas, M. Uzeda-Garrão, C. Oliveira, C. N. dos Santos, and M. C. Silveira.

A anotação de um corpus para o aprendizado supervisionado de um modelo de sn.

In Proceedings of the III TIL/XXV Congresso da SBC, 2005.

INEP.

Edital no 10, de 14 de abril de 2016, 2016.

Online; acessado 05 Junho 2017.

M. C. Monard and J. A. Baranauskas.

Conceitos sobre aprendizado de máquina.

Sistemas Inteligentes-Fundamentos e Aplicações, 1(1), 2003.

References III

A. H. Wahbeh, Q. A. Al-Radaideh, M. N. Al-Kabi, and E. M. Al-Shawakfa.

A comparison study between data mining tools over some classification methods.

International Journal of Advanced Computer Science and Applications, 8(2):18–26, 2011.