

Ghulam Ishaq Khan Institute of Engineering Sciences and Technology

AC47

Hamza Hasan Ellahie, Mujtaba Omar, Syed Basim Mehmood

The 2023 ICPC Asia West Continent Final Contest March 30, 2024

7 lines

$\underline{\text{Contest}}$ (1)

templateSmall.cpp

```
12 lines
#include<bits/stdc++.h>
using namespace std;
#define nl cout<<"\n"
#define fastio ios_base::sync_with_stdio(false);    cin.tie(NULL);
  cout.tie(NULL)
  'll nl dd vi vll vc vb reps all, pb, pii, fi, se, mp, mod
// gcd po
void solve(){}
int32_t main() {
    tcs{
        solve();nl;
}
templateExtras.cpp
template <class K, class V> ostream &operator<<(ostream &s, const</pre>
  pair<K, V> &p)
{
    s << '<' << p.first << ", " << p.second << '>';
    return s;
template <class T, class = typename T::value_type, class = typename</pre>
    enable_if<!is_same<T, string>::value>::type>
ostream & operator << (ostream &s, const T &v)
{
    s << "[";
    for (auto &x : v)
        s << x << ", ";
    if (v.size())
        s << "\b\b";
    s << "]";
    return s;
}
void _print() { cerr << "]\n"; }</pre>
template <typename T, typename... V> void _print(T t, V... v)
{
    cerr << t;
    if (sizeof...(v))
        cerr << ", ";
    _print(v...);
}
#define dbb(x...)
    cerr << "\e[91m" << __func__ << ":" << __LINE__ << " [" << #x
       << "] = ["; _print(x); cerr << "\e[39m" << flush;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
int rand(int lo, int hi){if(lo > hi) swap(lo,hi); return lo + rng()
    % (hi - lo + 1);} //returns in the range [lo, hi]
solverX.py
```

```
import threading # kaizo
setrecursionlimit(10**6+100)
threading.stack_size(10**6)
t=threading.Thread(target=solve)
t.start()
t.join()
```

Mathematics (2)

2.1 Geometry

2.1.1 Triangles

Circumradius:
$$R = \frac{abc}{4A}$$

Inradius: $r = \frac{A}{p}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):
$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of tangents:
$$\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$$

Data structures (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null_type.

Time: $\mathcal{O}\left(\log N\right)$

SegmentTree.h

Description: 1-indexed seg-tree. Bounds are inclusive to the left and right.

Time: $\mathcal{O}(\log N)$

```
template < class T >
struct segTree {
   int n; vector < T > t; T init;
   segTree (int _n, T _init) {
        n = _n; t.resize (2*n); init = _init; for (auto & tt:t) tt = init;
   }void update (int i, T k) {
        i += n; t[i] = k;
        while (i>1) {i>>=1; t[i] = merge (t[i<<1], t[(i<<1)|1]);}
}</pre>
```

```
}T query(int 1,int r){
    l+=n;r+=n;T res=init;
    while(l<r){
        if(l&1){res=merge(res,t[l]);l++;}
        if(!(r&1)){res=merge(res,t[r]);r--;}
        l>>=1;r>>=1;
    }if(l==r)res=merge(res,t[l]);
    return res;
}T merge(T a,T b){
    T res;
    // merge here
    return res;
};
}
```

LazySegmentTree.h

Description: Segment tree with ability to add or set values of large intervals, and compute range sum of intervals. Can be changed to other things.

Time: $\mathcal{O}(\log N)$.

ba60ad, 35 lines

```
const int N=1000;
const int L=1024;
vector<int>tree(2*L);
vector<int>lazy(2*L);
void update(int l,int r,int k,int u=1,int ul=1,int ur=N) {
    tree [u] += lazy [u] * (ur-ul+1);
    if(ul!=ur){
         lazy[u << 1] += lazy[u];
         lazy[(u << 1) | 1] += lazy[u];
    \{lazy[u]=0;
    if(ur<1 || r<u1) return;</pre>
    if(1<=ul && r>=ur){
         tree [u] += k * (ur-ul+1);
         if(ul!=ur){
              lazy[u << 1] += k;
              lazy[(u << 1) | 1] += k;
         }return;
    }
    int mid=(ul+ur)/2;
    update(l,r,k,u << 1,ul,mid);
    update(1, r, k, (u << 1) | 1, mid + 1, ur);
    tree[u]=tree[u<<1]+tree[(u<<1)|1];
int query(int l,int r,int u=1,int ul=1,int ur=N) {
    tree [u] += lazy[u] * (ur-ul+1);
    if(ul!=ur){
         lazy[u << 1] += lazy[u];
         lazy[(u << 1) | 1] += lazy[u];
    \{ \text{lazy}[u] = 0; 
    if (ur<1 || r<ul) return 0;</pre>
    if(1<=ul && r>=ur){
         return tree[u];
    } int mid=(ul+ur)/2;
    return query(1,r,u<<1,u1,mid)+query(1,r,(u<<1)|1,mid+1,ur);
}
```

UnionFindRollback.h

Description: Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().

```
Usage: int t = uf.time(); ...; uf.rollback(t);
```

Time: $\mathcal{O}(\log(N))$

```
de4ad0, 21 lines
struct RollbackUF {
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
  int size(int x) { return -e[find(x)]; }
  int find(int x) { return e[x] < 0 ? x : find(e[x]); }
  int time() { return sz(st); }
 void rollback(int t) {
    for (int i = time(); i --> t;)
      e[st[i].first] = st[i].second;
    st.resize(t);
 bool join(int a, int b) {
    a = find(a), b = find(b);
    if (a == b) return false;
    if (e[a] > e[b]) swap(a, b);
    st.push_back({a, e[a]});
    st.push_back({b, e[b]});
    e[a] += e[b]; e[b] = a;
```

LineContainer.h

};

return true;

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

Time: $\mathcal{O}(\log N)$

8ec1c7, 30 lines

```
struct Line {
  mutable ll k, m, p;
  bool operator<(const Line& o) const { return k < o.k; }</pre>
  bool operator<(ll x) const { return p < x; }</pre>
};
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b) static const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
return a / b - ((a ^ b) < 0 && a % b); }</pre>
  bool isect(iterator x, iterator y) {
    if (y == end()) return x->p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p)
      isect(x, erase(y));
  }
  11 query(ll x) {
    assert(!empty());
    auto 1 = *lower_bound(x);
    return l.k * x + l.m;
  }
};
```

Numerical (4)

4.1 Polynomials and recurrences

PolyInterpolate.h

Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + ... + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1)*\pi), k = 0...n-1$.

Time: $\mathcal{O}(n^2)$

08bf48, 13 lines

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

BerlekampMassey.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size < n.

```
Usage: berlekampMassey(\{0, 1, 1, 3, 5, 11\}) // \{1, 2\} Time: \mathcal{O}(N^2)
```

96548b. 20 lines

```
"../number-theory/ModPow.h"
vector<ll> berlekampMassey(vector<ll> s) {
  int n = sz(s), L = 0, m = 0;
  vector<ll> C(n), B(n), T;
  C[0] = B[0] = 1;
  11 b = 1;
  rep(i, 0, n) \{ ++m;
    ll d = s[i] % mod;
    rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
    if (!d) continue;
    T = C; ll coef = d * modpow(b, mod-2) % mod;
    rep(j, m, n) C[j] = (C[j] - coef * B[j - m]) % mod;
    if (2 * L > i) continue;
    L = i + 1 - L; B = T; b = d; m = 0;
  C.resize(L + 1); C.erase(C.begin());
  for (11& x : C) x = (mod - x) % mod;
  return C;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp–Massey.

Usage: linearRec($\{0, 1\}, \{1, 1\}, k$) // k'th Fibonacci number

Time: $\mathcal{O}(n^2 \log k)$

```
f4e444, 26 lines
typedef vector<ll> Poly;
ll linearRec(Poly S, Poly tr, ll k) {
  int n = sz(tr);
  auto combine = [&](Poly a, Poly b) {
    Poly res(n \star 2 + 1);
    rep(i,0,n+1) rep(j,0,n+1)
      res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
      res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res;
  };
  Poly pol(n + 1), e(pol);
  pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
    if (k % 2) pol = combine(pol, e);
    e = combine(e, e);
  }
  11 \text{ res} = 0;
  rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
  return res;
}
```

4.2 Matrices

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

Time: $\mathcal{O}(N^3)$

3313dc, 18 lines

```
const 11 mod = 12345;
ll det(vector<vector<ll>>& a) {
  int n = sz(a); ll ans = 1;
  rep(i,0,n) {
    rep(j, i+1, n) {
      while (a[j][i] != 0) { // gcd step}
        ll t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
          a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *=-1;
      }
    }
    ans = ans * a[i][i] % mod;
    if (!ans) return 0;
  return (ans + mod) % mod;
}
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

Time: $\mathcal{O}(n^3)$

```
ebfff6, 35 lines
int matInv(vector<vector<double>>& A) {
  int n = sz(A); vi col(n);
  vector<vector<double>> tmp(n, vector<double>(n));
  rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
  rep(i, 0, n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
      if (fabs(A[j][k]) > fabs(A[r][c]))
        r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j,i+1,n) {
      double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k,i+1,n) A[j][k] -= f*A[i][k];
      rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
    rep(j, i+1, n) A[i][j] /= v;
    rep(j, 0, n) tmp[i][j] /= v;
    A[i][i] = 1;
  }
  for (int i = n-1; i > 0; --i) rep(j, 0, i) {
    double v = A[j][i];
    rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
  rep(i, 0, n) rep(j, 0, n) A[col[i]][col[j]] = tmp[i][j];
  return n;
```

4.3 Fourier transforms

FastFourierTransform.h

}

Description: fft(a) computes $\hat{f}(k) = \sum_{x} a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv (a, b) = c, where $c[x] = \sum_{i} a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum_{i} a_i^2 + \sum_{i} b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod.

Time: $O(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$)

00ced6, 35 lines

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
  int n = sz(a), L = 31 - __builtin_clz(n);
  static vector<complex<long double>> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k *= 2) {
    R.resize(n); rt.resize(n);
    auto x = polar(1.0L, acos(-1.0L) / k);
    rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
  }
  vi rev(n);
  rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;</pre>
```

```
rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
      Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
      a[i + j + k] = a[i + j] - z;
      a[i + j] += z;
    }
vd conv(const vd& a, const vd& b) {
  if (a.empty() || b.empty()) return {};
  vd res(sz(a) + sz(b) - 1);

int L = 32 - __builtin_clz(sz(res)), n = 1 << L;
  vector<C> in(n), out(n);
  copy(all(a), begin(in));
  rep(i, 0, sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x *= x;
  rep(i,0,n) out[i] = in[-i & (n-1)] - conj(in[i]);
  fft (out);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
  return res;
}
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_{x} a[x]g^{xk}$ for all k, where $g = \operatorname{root}^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form $2^ab + 1$, where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. conv (a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$

```
"../number-theory/ModPow.h"
                                                                   ced03d, 33 lines
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<ll> v1;
void ntt(vl &a) {
  int n = sz(a), L = 31 - \underline{builtin_clz(n)};
  static v1 rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
    rt.resize(n);
    ll z[] = \{1, modpow(root, mod >> s)\};
    rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
      ll z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
      a[i + j + k] = ai - z + (z > ai ? mod : 0);
      ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
  if (a.empty() || b.empty()) return {};
  int s = sz(a) + sz(b) - 1, B = 32 - __builtin_clz(s), n = 1 << B;
int inv = modpow(n, mod - 2);</pre>
  vl L(a), R(b), out(n);
  L.resize(n), R.resize(n);
  ntt(L), ntt(R);
```

```
rep(i,0,n) out[-i & (n - 1)] = (ll)L[i] * R[i] % mod * inv % mod;
ntt(out);
return {out.begin(), out.begin() + s};
}
```

Number theory (5)

5.1 Modular arithmetic

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is a prime.

6f684f, 3 lines

```
const 11 mod = 1000000007, LIM = 200000;
11* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

5.2 Primality

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
bool isPrime(ull n) {
    if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;
    ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
        s = __builtin_ctzll(n-1), d = n >> s;
    for (ull a : A) { // ^ count trailing zeroes}
        ull p = modpow(a%n, d, n), i = s;
        while (p != 1 && p != n - 1 && a % n && i--)
            p = modmul(p, p, n);
        if (p != n-1 && i != s) return 0;
    }
    return 1;
}
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}(n^{1/4})$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                                   a33cf6, 18 lines
ull pollard(ull n) {
  auto f = [n] (ull x) { return modmul(x, x, n) + 1; };
  ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
  while (t++ % 40 || \underline{gcd}(prd, n) == 1) {
    if (x == y) x = ++i, y = f(x);
    if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
    x = f(x), y = f(f(y));
  }
  return __gcd(prd, n);
vector<ull> factor(ull n) {
  if (n == 1) return {};
  if (isPrime(n)) return {n};
  ull x = pollard(n);
  auto l = factor(x), r = factor(n / x);
  1.insert(1.end(), all(r));
  return 1;
}
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in __gcd instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$. gcd can be negative

33ba8f, 5 lines

```
ll euclid(ll a, ll b, ll &x, ll &y) {
  if (!b) return x = 1, y = 0, a;
  ll d = euclid(b, a % b, y, x);
  return y -= a/b * x, d;
}
```

CRT.h

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey $0 \le x < \text{lcm}(m, n)$. Assumes $mn < 2^{62}$.

Time: $\log(n)$

```
"euclid.h"

ll crt(ll a, ll m, ll b, ll n) {
   if (n > m) swap(a, b), swap(m, n);
   ll x, y, g = euclid(m, n, x, y);
   assert((a - b) % g == 0); // else no solution
   x = (b - a) % n * x % n / g * m + a;
   return x < 0 ? x + m*n/g : x;
}</pre>
```

5.4 Estimates

 $\sum_{d|n} d = O(n \log \log n).$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

Combinatorial (6)

6.1 Permutations

6.1.1 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

$$\frac{n \mid 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 20 \ 50 \ 100}{p(n) \mid 1 \ 1 \ 2 \ 3 \ 5 \ 7 \ 11 \ 15 \ 22 \ 30 \ 627 \sim 2e5 \sim 2e8}$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

6.3 General purpose numbers

6.3.1 Labeled unrooted trees

on n vertices: n^{n-2}

```
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2} # with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.2 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- permutations of [n] with no 3-term increasing subseq.

$\underline{\text{Graph}}$ (7)

7.1 Network flow

MinCostMaxFlow.h

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: Approximately $\mathcal{O}\left(E^2\right)$

fe85cc, 81 lines

```
#include <bits/extc++.h>
const ll INF = numeric limits<ll>::max() / 4;
typedef vector<ll> VL;
struct MCMF {
  int N;
  vector<vi> ed, red;
  vector<VL> cap, flow, cost;
  vi seen;
  VL dist, pi;
  vector<pii> par;
 MCMF (int N) :
    N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
    seen(N), dist(N), pi(N), par(N) {}
 void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
    red[to].push_back(from);
  }
 void path(int s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
    dist[s] = 0; ll di;
    __gnu_pbds::priority_queue<pair<11, int>> q;
    vector<decltype(q)::point_iterator> its(N);
    q.push({0, s});
```

```
auto relax = [&](int i, ll cap, ll cost, int dir) {
      ll\ val = di - pi[i] + cost;
      if (cap && val < dist[i]) {
        dist[i] = val;
        par[i] = \{s, dir\};
        if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
        else q.modify(its[i], {-dist[i], i});
      }
    };
    while (!q.empty()) {
      s = q.top().second; q.pop();
      seen[s] = 1; di = dist[s] + pi[s];
      for (int i : ed[s]) if (!seen[i])
        relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      for (int i : red[s]) if (!seen[i])
        relax(i, flow[i][s], -cost[i][s], 0);
    rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
  pair<11, 11> maxflow(int s, int t) {
    11 totflow = 0, totcost = 0;
    while (path(s), seen[t]) {
      ll fl = INF;
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
        fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
      totflow += fl;
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
        if (r) flow[p][x] += fl;
        else flow[x][p] -= fl;
    rep(i,0,N) rep(j,0,N) totcost += cost[i][j] * flow[i][j];
    return {totflow, totcost};
  // If some costs can be negative, call this before maxflow:
  void setpi(int s) { // (otherwise, leave this out)
    fill(all(pi), INF); pi[s] = 0;
    int it = N, ch = 1; ll v;
    while (ch-- && it--)
      rep(i,0,N) if (pi[i] != INF)
        for (int to : ed[i]) if (cap[i][to])
          if ((v = pi[i] + cost[i][to]) < pi[to])
            pi[to] = v, ch = 1;
    assert(it >= 0); // negative cost cycle
};
Dinic.h
Description: Flow algorithm with complexity O(VE \log U) where U = \max |\operatorname{cap}|.
O(\min(E^{1/2}, V^{2/3})E) if U = 1; O(\sqrt{V}E) for bipartite matching.
                                                                 d7f0f1, 42 lines
struct Dinic {
  struct Edge {
    int to, rev;
    11 c, oc;
    ll flow() { return max(oc - c, OLL); } // if you need flows
  };
  vi lvl, ptr, q;
```

```
vector<vector<Edge>> adj;
 Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
 void addEdge(int a, int b, ll c, ll rcap = 0) {
    adj[a].push_back({b, sz(adj[b]), c, c});
    adj[b].push\_back({a, sz(adj[a]) - 1, rcap, rcap});
 11 dfs(int v, int t, ll f) {
    if (v == t || !f) return f;
    for (int& i = ptr[v]; i < sz(adj[v]); i++) {</pre>
      Edge& e = adj[v][i];
      if (lvl[e.to] == lvl[v] + 1)
        if (ll p = dfs(e.to, t, min(f, e.c))) {
          e.c -= p, adj[e.to][e.rev].c += p;
          return p;
   return 0;
 ll calc(int s, int t) {
    11 flow = 0; q[0] = s;
   rep (L, 0, 31) do { // int L=30' maybe faster for random data
      lvl = ptr = vi(sz(q));
      int qi = 0, qe = lvl[s] = 1;
      while (qi < qe && !lvl[t]) {</pre>
        int v = q[qi++];
        for (Edge e : adj[v])
          if (!lvl[e.to] && e.c >> (30 - L))
            q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
      while (ll p = dfs(s, t, LLONG MAX)) flow += p;
    } while (lvl[t]);
   return flow;
 bool leftOfMinCut(int a) { return lvl[a] != 0; }
};
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

7.2 Matching

DFSMatching.h

}

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

```
int dfsMatching(vector<vi>& g, vi& btoa) {
  vi vis;
  rep(i,0,sz(g)) {
    vis.assign(sz(btoa), 0);
    for (int j : g[i])
       if (find(j, g, btoa, vis)) {
        btoa[j] = i;
        break;
    }
}
return sz(btoa) - (int)count(all(btoa), -1);
}
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Requires $N \leq M$. **Time:** $\mathcal{O}(N^2M)$

1e0fe9, 31 lines pair<int, vi> hungarian(const vector<vi> &a) { **if** (a.empty()) **return** {0, {}}; **int** n = sz(a) + 1, m = sz(a[0]) + 1; vi u(n), v(m), p(m), ans(n-1);rep(i,1,n) { p[0] = i;int j0 = 0; // add "dummy" worker 0vi dist(m, INT_MAX), pre(m, -1); vector<bool> done(m + 1); **do** { // dijkstradone[j0] = true; int i0 = p[j0], j1, delta = INT_MAX;
rep(j,1,m) if (!done[j]) { **auto** cur = a[i0 - 1][j - 1] - u[i0] - v[j];**if** (cur < dist[j]) dist[j] = cur, pre[j] = j0; **if** (dist[j] < delta) delta = dist[j], j1 = j; rep(j,0,m) { if (done[j]) u[p[j]] += delta, v[j] -= delta; else dist[j] -= delta; j0 = j1;} while (p[j0]); while (j0) { $// update alternating path}$ int j1 = pre[j0]; p[j0] = p[j1], j0 = j1;rep(j,1,m) **if** (p[j]) ans[p[j] - 1] = j - 1;return $\{-v[0], ans\}; // min cost$

7.3 DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice versa.

```
Usage: scc(graph, [\&](vi\& v) \{ ... \}) visits all components
in reverse topological order. comp[i] holds the component
index of a node (a component only has edges to components with
lower index). ncomps will contain the number of components.
Time: \mathcal{O}\left(E+V\right)
                                                                   76b5c9, 24 lines
vi val, comp, z, cont;
int Time, ncomps;
template < class G, class F > int dfs(int j, G& g, F& f) {
  int low = val[j] = ++Time, x; z.push_back(j);
  for (auto e : g[j]) if (comp[e] < 0)</pre>
    low = min(low, val[e] ?: dfs(e,g,f));
  if (low == val[j]) {
    do {
      x = z.back(); z.pop_back();
      comp[x] = ncomps;
      cont.push_back(x);
    } while (x != j);
    f(cont); cont.clear();
    ncomps++;
  }
  return val[j] = low;
template < class G, class F > void scc(G& g, F f) {
  int n = sz(g);
  val.assign(n, 0); comp.assign(n, -1);
  Time = ncomps = 0;
  rep(i, 0, n) if (comp[i] < 0) dfs(i, g, f);
}
Articulation-Bridges.h
Description: finds all articulation points and bridges
Usage: init(n, 1);
Time: \mathcal{O}(V+E)
                                                                   430b0b, 36 lines
vector<int> tn, lw;
vector<vector<pii>>adj;
int tr;
void dfs (int v, int p = -1) {
    tn[v] = lw[v] = ++tr;
    int ch=0;
    for (auto [to, id] : adj[v]) {
        if (id == p) continue;
        if (tn[to]) {
             lw[v] = min(lw[v], tn[to]);
         } else {
             dfs(to, id);
             lw[v] = min(lw[v], lw[to]);
             ++ch;
             if (lw[to] >= tn[v] \&\& p!=-1) {
                 // v is articulation point
             if (lw[to] > tn[v]) {
                 //v, to is bridge
             }
         }
    if(p == -1 \&\& ch > 1) {
        //v is articulation point
```

```
}
}
void init(int n, int start = 1) {
    tr = 0;
    tn.resize(start+n);
    lw.resize(start+n);
    for (int i = start; i < start+n; ++i) {</pre>
         if (!tn[i])
              dfs(i);
    }
}
2sat.h
Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem,
so that an expression of the type (a|||b)\&\&(!a|||c)\&\&(d|||!b)\&\&... becomes true, or reports that
it is unsatisfiable. Negated variables are represented by bit-inversions (\sim x). 0-indexed
Usage: TwoSat ts(number of boolean variables);
ts.either(0, \sim3); // Var 0 is true or var 3 is false
ts.setValue(2); // Var 2 is true
ts.atMostOne({0,\sim1,2}); // <= 1 of vars 0, \sim1 and 2 are true
ts.solve(); // Returns true iff it is solvable
ts.values[0..N-1] holds the assigned values to the vars
Time: \mathcal{O}(N+E), where N is the number of boolean variables, and E is the number of clauses.
struct TwoSat {
  int N;
  vector<vi> gr;
  vi values; // 0 = false, 1 = true
  TwoSat(int n = 0) : N(n), gr(2*n) {}
  int addVar() { // (optional)
    gr.emplace_back();
    gr.emplace_back();
    return N++;
  }
  void either(int f, int j) {
    f = \max(2 * f, -1 - 2 * f);
    j = \max(2*j, -1-2*j);
    gr[f].push_back(j^1);
    gr[j].push_back(f^1);
  void setValue(int x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
    if (sz(li) <= 1) return;</pre>
    int cur = \simli[0];
    rep(i,2,sz(li)) {
       int next = addVar();
       either(cur, ~li[i]);
       either(cur, next);
       either(~li[i], next);
       cur = \sim next;
    }
```

either(cur, ~li[1]);

```
vi val, comp, z; int time = 0;
 int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
    for(int e : gr[i]) if (!comp[e])
      low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
      x = z.back(); z.pop_back();
      comp[x] = low;
      if (values[x >> 1] == -1)
        values[x>>1] = x&1;
    } while (x != i);
    return val[i] = low;
  }
 bool solve() {
    values.assign(N, -1);
    val.assign(2*N, 0); comp = val;
    rep(i,0,2*N) if (!comp[i]) dfs(i);
    rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1;
  }
};
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret.

Time: $\mathcal{O}(V+E)$

```
vi eulerWalk(vector<vector<pii>>>& gr, int nedges, int src=0) {
   int n = sz(gr);
   vi D(n), its(n), eu(nedges), ret, s = {src};
   D[src]++; // to allow Euler paths, not just cycles
   while (!s.empty()) {
      int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
      if (it == end) { ret.push_back(x); s.pop_back(); continue; }
      tie(y, e) = gr[x][it++];
      if (!eu[e]) {
        D[x]--, D[y]++;
        eu[e] = 1; s.push_back(y);
      }}
   for (int x : D) if (x < 0 || sz(ret) != nedges+1) return {};
   return {ret.rbegin(), ret.rend()};
}</pre>
```

7.4 Math

7.4.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sgn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
  typedef Point P;
  Тх, у;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d);
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
 P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate (double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {</pre>
    return os << "(" << p.x << "," << p.y << ")"; }
};
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist on the result of the cross product.

55 Product.
...
f6bf6b, 4 lines

```
template < class P>
double lineDist(const P& a, const P& b, const P& p) {
  return (double) (b-a).cross(p-a)/(b-a).dist();
}
SegmentDistance.h
Description:
```

Returns the shortest distance between point p and the line segment from point As s to e.

```
Usage: Point<double> a, b(2,2), p(1,1);
bool onSegment = segDist(a,b,p) < 1e-10;
"Point.h"
                                                                     5c88f4, 6 lines
typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
  if (s==e) return (p-s).dist();
  auto d = (e-s).dist2(), t = min(d, max(.0, (p-s).dot(e-s)));
  return ((p-s)*d-(e-s)*t).dist()/d;
}
ClosestPair.h
Description: Finds the closest pair of points.
Time: \mathcal{O}(n \log n)
                                                                    ac41a6, 17 lines
typedef Point<ll> P;
pair<P, P> closest(vector<P> v) {
  assert(sz(v) > 1);
  set<P> S;
  sort(all(v), [](P a, P b) { return a.y < b.y; });</pre>
  pair<11, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
  int i = 0;
  for (P p : v) {
    P d{1 + (ll)sqrt(ret.first), 0};
    while (v[j].y \le p.y - d.x) S.erase(v[j++]);
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
      ret = min(ret, \{(*lo - p).dist2(), \{*lo, p\}\});
    S.insert(p);
  }
  return ret.second;
}
      Circles
8.2
CirclePolygonIntersection.h
Description: Returns the area of the intersection of a circle with a ccw polygon.
Time: \mathcal{O}(n)
"../../content/geometry/Point.h"
typedef Point<double> P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
  auto tri = [&](P p, P q) {
    auto r2 = r * r / 2;
    P d = q - p;
    auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
    auto det = a * a - b;
    if (det <= 0) return arg(p, q) * r2;
    auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
    if (t < 0 || 1 <= s) return arg(p, q) * r2;</pre>
    P u = p + d * s, v = p + d * t;
    return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
  };
```

MinimumEnclosingCircle.h

auto sum = 0.0; rep(i, 0, sz(ps))

return sum;

}

Description: Computes the minimum circle that encloses a set of points.

sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);

9706dc, 9 lines

Time: expected $\mathcal{O}(n)$

```
"circumcircle.h"
                                                                   09dd0a, 17 lines
pair<P, double> mec(vector<P> ps) {
  shuffle (all (ps), mt19937 (time (0));
  P \circ = ps[0];
  double r = 0, EPS = 1 + 1e-8;
  rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
    o = ps[i], r = 0;
    rep(j, 0, i) if ((o - ps[j]).dist() > r * EPS) {
      o = (ps[i] + ps[j]) / 2;
      r = (o - ps[i]).dist();
      rep(k,0,j) if ((o - ps[k]).dist() > r * EPS) {
        o = ccCenter(ps[i], ps[j], ps[k]);
        r = (o - ps[i]).dist();
    }
  }
  return {o, r};
}
```

8.3 Polygons

PolygonCenter.h

Description: Returns the center of mass for a polygon.

Time: $\mathcal{O}(n)$

"Point.h"

```
typedef Point < double > P;
P polygonCenter(const vector < P > & v) {
    P res(0, 0); double A = 0;
    for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
        res = res + (v[i] + v[j]) * v[j].cross(v[i]);
        A += v[j].cross(v[i]);
    }
    return res / A / 3;
}</pre>
```

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counter-clockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

Time: $\mathcal{O}(n \log n)$

typedef Point<11> P;
vector<P> convexHull(vector<P> pts) {

```
vector<P> convexHull(vector<P> pts) {
   if (sz(pts) <= 1) return pts;
   sort(all(pts));
   vector<P> h(sz(pts)+1);
   int s = 0, t = 0;
   for (int it = 2; it--; s = --t, reverse(all(pts)))
      for (P p : pts) {
      while (t >= s + 2 && h[t-2].cross(h[t-1], p) <= 0) t--;
      h[t++] = p;
   }
   return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
}</pre>
```

Strings (9)

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

Time: $\mathcal{O}(n)$

```
d4375c, 16 lines
```

```
vi pi(const string& s) {
    vi p(sz(s));
    rep(i,1,sz(s)) {
        int g = p[i-1];
        while (g && s[i] != s[g]) g = p[g-1];
        p[i] = g + (s[i] == s[g]);
    }
    return p;
}

vi match(const string& s, const string& pat) {
    vi p = pi(pat + '\0' + s), res;
    rep(i,sz(p)-sz(s),sz(p))
        if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
    return res;
}
```

Zfunc.h

Description: z[x] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301)

Time: $\mathcal{O}(n)$

ee09e2, 12 lines

```
vi Z(const string& S) {
  vi z(sz(S));
  int l = -1, r = -1;
  rep(i,1,sz(S)) {
    z[i] = i >= r ? 0 : min(r - i, z[i - l]);
    while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
    z[i]++;
  if (i + z[i] > r)
    l = i, r = i + z[i];
}
return z;
}
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, <math>p[1][i] = longest odd (half rounded down).

Time: $\mathcal{O}(N)$

e7ad79, 13 lines

```
array<vi, 2> manacher(const string& s) {
  int n = sz(s);
  array<vi,2> p = {vi(n+1), vi(n)};
  rep(z,0,2) for (int i=0,l=0,r=0; i < n; i++) {
    int t = r-i+!z;
    if (i<r) p[z][i] = min(t, p[z][l+t]);
    int L = i-p[z][i], R = i+p[z][i]-!z;
    while (L>=1 && R+1<n && s[L-1] == s[R+1])
        p[z][i]++, L--, R++;
    if (R>r) l=L, r=R;
  }
  return p;
}
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string.

```
Usage: rotate(v.begin(), v.begin()+minRotation(v), v.end()); Time: \mathcal{O}(N)
```

d07a42, 8 lines

```
int minRotation(string s) {
  int a=0, N=sz(s); s += s;
  rep(b,0,N) rep(k,0,N) {
    if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;}
    if (s[a+k] > s[b+k]) { a = b; break; }
  }
  return a;
}
```

SuffixArray.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes.

Time: $\mathcal{O}(n \log n)$

```
struct SuffixArray {
  vi sa, lcp;
  SuffixArray(string& s, int lim=256) { // or basic_string < int >
    int n = sz(s) + 1, k = 0, a, b;
    vi x(all(s)+1), y(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
      p = j, iota(all(y), n - j);
rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
       fill(all(ws), 0);
      rep(i, 0, n) ws[x[i]] ++;
      rep(i, 1, lim) ws[i] += ws[i - 1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
      rep(i,1,n) a = sa[i - 1], b = sa[i], x[b] = (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;
    rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
      for (k \& \& k--, j = sa[rank[i] - 1];
           s[i + k] == s[j + k]; k++);
  }
};
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with AhoCorasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(-, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where $N = \text{sum of length of patterns. find(x) is } \mathcal{O}(N)$, where $N = \text{length of x. findAll is } \mathcal{O}(NM)$.

```
struct AhoCorasick {
  enum {alpha = 26, first = 'A'}; // change this!
  struct Node {
```

GIKI 23

```
// (nmatches is optional)
  int back, next[alpha], start = -1, end = -1, nmatches = 0;
  Node(int v) { memset(next, v, sizeof(next)); }
};
vector<Node> N;
vi backp;
void insert(string& s, int j) {
  assert(!s.empty());
  int n = 0;
  for (char c : s) {
    int& m = N[n].next[c - first];
    if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
    else n = m;
  if (N[n].end == -1) N[n].start = j;
  backp.push_back(N[n].end);
  N[n].end = j;
  N[n].nmatches++;
AhoCorasick (vector<string>& pat) : N(1, -1) {
  rep(i, 0, sz(pat)) insert(pat[i], i);
  N[0].back = sz(N);
  N.emplace_back(0);
  queue<int> q;
  for (q.push(0); !q.empty(); q.pop()) {
    int n = q.front(), prev = N[n].back;
    rep(i,0,alpha) {
      int &ed = N[n].next[i], y = N[prev].next[i];
      if (ed == -1) ed = y;
      else {
        N[ed].back = y;
        (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
          = N[y].end;
        N[ed].nmatches += N[y].nmatches;
        q.push (ed);
    }
  }
vi find(string word) {
  int n = 0;
  vi res; // ll count = 0;
  for (char c : word) {
    n = N[n].next[c - first];
    res.push_back(N[n].end);
    // count \neq N/n/.nmatches;
  }
  return res;
vector<vi> findAll(vector<string>& pat, string word) {
  vi r = find(word);
  vector<vi> res(sz(word));
  rep(i, 0, sz(word)) {
    int ind = r[i];
    while (ind ! = -1) {
      res[i - sz(pat[ind]) + 1].push_back(ind);
      ind = backp[ind];
  }
  return res;
```

```
}
};
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

Time: $\mathcal{O}(\log N)$

```
edce47, 23 lines
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
  if (L == R) return is.end();
  auto it = is.lower bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {
    R = max(R, it->second);
    before = it = is.erase(it);
  if (it != is.begin() && (--it)->second >= L) {
    L = min(L, it->first);
    R = max(R, it->second);
    is.erase(it);
  return is.insert(before, {L,R});
}
void removeInterval(set<pii>& is, int L, int R) {
  if (L == R) return;
  auto it = addInterval(is, L, R);
  auto r2 = it->second;
  if (it->first == L) is.erase(it);
  else (int&)it->second = L;
  if (R != r2) is.emplace (R, r2);
```

10.2 Optimization tricks

10.2.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))
 if (i & 1 << b) D[i] += D[i^(1 << b)]; computes all sums of subsets.