DATA PACKET EVOLUTION

Presented by: Mohamed Sahl

Agenda

• What is GSM?

• GSM / GPRS.

• EDGE.

• UMTS.

· HSPA.

• LTE.

What is GSM?

- Global System for Mobile communications.
- First and most successful digital cellular system (2G).
- Services:
 - Voice.
 - SMS.
 - Circuit switched data.

GSM network architecture

— — — Air Interface (Um) — — — - Interface (BSC to MSC)

GSM network architecture

— — — Air Interface (Um) — — — - Interface (BSC to MSC)

GSM Data services shortcomings

- Low data rates: 9.6 kbps ceiling.
- Circuit switched services are expensive for bursty applications.
- Inefficient use of radio resources.
- Displeased customers.

Introduction of Packet switched

Circuit switched	Packet switched
End-to-end connection (call) establishment needed	No connection needed
<u>Dedicated resources</u> for one user are reserved during call establishment	Resources are shared between different user sessions, Not dedicated
Only 30-40% of resources are efficiently used for speech transfer	Resources are requested <u>on demand</u> , more efficient use
Speech is transferred in <u>real time</u>	Packets are not sent in real time
Speech doesn't accept delays	Packets accept buffering and delays
Errors in transmission are not so critical for speech	Error correction and detection possible
Charging is usually based on <u>time</u>	Charging is usually based on <u>volume</u> (number of packets)

Introduction of GPRS [2.5G]

- Technology which permits mobile data communication using packet switching techniques.
- GPRS designed as an extension to digital cellular networks.
- Connectionless packet switched (PS) data services.
- Radio resources shared between CS & PS data.
- New terminals are required.
- Data rates: 181 kbps.

GPRS Advantages

• For users:

- Charging based on amount of data transferred (volume).
- Higher transmission speeds.

For Operators:

- Fast network roll-out with minimum investments.
- Excess voice capacity used for GPRS data.
- Smooth path to 3G services.

GPRS Architecture

GPRS Architecture

SGSN & GGSN functions

SGSN functions:

- Signaling evaluation (IP header).
- Packet Routing: delivery of data packets from & to MS.
- GPRS Mobility Management (attach, de-attach, authentication & authorization).
- Location register (current cell, current VLR, user profile IMSI).
- Session Management (PDP context management).

GGSN functions:

- Interrogation with HLR.
- Interfaces external networks.
- Allocates dynamic or static IP addresses to mobile either by itself or the help of DHCP.

PDP context

- A data structure present on both the SGSN & the GGSN which contains the subscriber's session information when the subscriber has an active session. When a mobile wants to use GPRS, it must first attach and then activate a PDP context.
- The data recorded includes
 - Subscriber's IP address.
 - Subscriber's IMSI.
 - Subscriber's Tunnel Endpoint ID (TEID) at the GGSN.
 - Subscriber's Tunnel Endpoint ID (TEID) at the SGSN.
- PDP context activation.

GPRS Tunneling Protocol (GTP)

- Defining IP-based protocol of the GPRS core network.
- Allows end users to move from place to place while continuing to connect to the Internet as if from one location at the GGSN.
- It does this by carrying the subscriber's data from the subscriber's current SGSN to the GGSN which is handling the subscriber's session

GTP types

GTP-U

 For transfer of user data in separated tunnels for each Packet Data Protocol (PDP) context.

GTP-C

- Setup and deletion of PDP contexts.
- Verification of GSN reachability.
- Updates (as subscribers move from one SGSN to another).

GTP Prime (GTP')

For transfer of charging data from GSNs to the CG.

GPRS components

- PCU: (Packet Control Unit)
 - Decides dynamically which resources are allocated to CS & PS.
 - Based on priority & operator set rules.
- CG: (Charging Gateway)
 - Collects GPRS CDRs data together, processes it & passes it to billing system.
- BG: (Boarder Gateway)
 - Interconnects the operator's GPRS backbone networks via secure connection.
 - Supports roaming.

GPRS components

- EIR: (Equipment Identity Register)
 - Centralized database for IMEI.
 - Contains 3 lists:
 - White list: for valid MS equipments.
 - Black list: for stolen or denied MS.
 - Gray list: for mal-performance MS (faulty software).

GPRS components

- LIG: (Lawful Interception Gateway)
 - Obtaining communications network data pursuant to lawful authority for the purpose of analysis or evidence.
- LEA: (Law Enforcement Agency)
- DNS: (Domain Name Service)
 - Converts IP names to IP addresses.
- FW: (Fire Wall)
 - Protects IP network against external attacks.
 - Can be configured to reject all packets that are not part of GPRS subscriber initiated connection.
 - Can also include NAT & NAPT.

Charging Data Records (CDRs)

- GGSN CDR: (G-CDR)
 - Start collection: PDP context activation.
 - Stop collection: PDP context de-activation.
 - Collected info:
 - Traffic volumes (uplink / downlink).
 - QoS negotiation.
 - Duration.
 - SGSN & GGSN address.
 - Access Point Name.
- SGSN CDR: (SCDR)
- Mobility Management: CDR (M-CDR)
 - Collected data: Location changes.

GPRS Interfaces

- Gb SGSN to BSS.
- Gn between GSNs (GTP).
- Gr between SGSN & HLR.
- Gs SGSN to MSC.
- Gi GGSN to external network.
- Gf between SGSN & EIR.

GPRS Identities

- Where:
 - CGI (Cell Global Identity).
 - RAI (Routing Area Identity). [Stored in SGSN]
 - SGSN number in HLR.
- Who:
 - IMSI (International Mobile Subscriber Identity).
 - P-TMSI (Packet Temporary Mobile Subscriber Identity).
- What:
 - APN (Access Point Name).
 - QoS (Quality of Service).
 - PDP (Packet Data Protocol).

GPRS attach / de-attach scenario

Attach procedure:

- MS sends an attachment request to SGSN.
- MS & SGSN perform the security functions.
- SGSN update the location in HLR.
- HLR insert the subscriber's data in SGSN.
- SGSN sends to MS that the GPRS attach Is accepted.

De-attach procedure:

- MS sends a de-attach request to SGSN.
- The SGSN sends a delete PDP context request to GGSN.
- The GGSN delete the PDP context.
- SGSN send to MS that the de-attach is accepted.

Roaming

- Roaming has 2 scenarios.
 - Outbound roaming.
 - Inbound roaming.
- Roaming icon examples.

DHCP function in GGSN

EDGE [2.75 G]

- Bandwidth efficient.
- Higher data rates: 384 kbps.
- Can be used with GPRS
 - EGPRS (Enhanced GPRS) = EDGE + GPRS

UMTS [3 G]

- Universal Mobile Telecommunications System.
- Data rates: 2 Mbps.
- Uses WCDMA (Wide Code Division Multiple Access).
- While not an evolutionary upgrade on the airside, it uses the same core network as the 2G GSM networks deployed worldwide, allowing dual mode mobile operation along with GSM/EDGE.
- Applications:
 - Global Positioning System (GPS).
 - Mobile TV.
 - Video Call.

UMTS components

- Node B:
 - The same function as BTS in GSM.
 - Uses WCDMA as air transport technology (Freq: 2100 MHz).
 - Contains radio frequency transmitters & receivers.
- RNC: (Radio Network Controllers)
 - Control of the Node B's.
 - Radio resources management.
 - Mobility Management.
 - Encryption.
- GERAN (GSM EDGE Radio Access Network).
- UTRAN (UMTS Terrestrial Radio Access Network).

UMTS components

- The major advantages of 3G-SGSN over 2G-SGSN are:
 - More powerful processor.
 - Routing for high speed & real time services.
 - Mobility Management (MM) is handled by SGSN & RAN.
 - Compression & Ciphering handled by RAN.
 - Support for multimedia traffic.
 - Support for VoIP traffic through the mobile packet core network.

HSPA [3.5 G] / HSPA+ [3.75 G]

HSPA

- 14.4 Mbit/s down.
- 5.76 Mbit/s up.
- Is backward-compatible with and uses the same frequencies as W-CDMA.

HSPA+

- Further revision and upgrade of HSPA.
- 168 Mbit/s in the downlink (Theoretical peak data rates).
- 22 Mbit/s in the uplink.
- MIMO.

UMTS attach / de-attach scenario

Attach procedure:

- UE send an attach request to the new SGSN.
- The new SGSN identifies the subscriber from old SGSN.
- Security functions are performed by UE, new SGSN & HLR.
- The new SGSN update the location area at HLR.
- The new SGSN send to UE that the attach is accepted.

De-attach procedure:

- MS sends to SGSN a detach request.
- SGSN request the GGSN to delete PDP context.
- SGSN indicate the MSC with IMSI & GPRS detachment.
- SGSN send to MS that detach is accepted.

4G

- Provides mobile broadband Internet access.
- All IP packet switched network (IPV6).
- Applications:
 - IP telephony.
 - Gaming services.
 - High-Definition mobile TV.
 - Video conferencing.
 - Cloud computing.
- Uses OFDMA.
- The peak bit rate is further improved by smart antenna arrays for MIMO communications.
- Actual Data rates of 300 Mbit/s (Release 8)

Long Term Evolution (LTE)

- The LTE standard supports only packet switching with its all-IP network. Voice calls in GSM, UMTS are circuit switched, so with the adoption of LTE, carriers will have to re-engineer their voice call network.
 - Voice over LTE (VoLTE).
 - Circuit-Switched FallBack (CSFB).
 - Simultaneous Voice and LTE (SVLTE).

System Architecture Evolution (SAE)

- SAE is the core network architecture of 3GPP's LTE wireless communication standard.
- SAE is the evolution of the GPRS Core Network, with some differences:
 - Simplified architecture.
 - All-IP Network (AIPN).
 - Support for higher throughput and lower latency radio access networks (RANs).
 - Support for, and mobility between, multiple heterogeneous access networks, including E-UTRA (LTE and LTE Advanced air interface), 3GPP legacy systems (for example GERAN or UTRAN, air interfaces of GPRS and UMTS respectively), but also non-3GPP systems.

SAE Architecture

SAE Intefaces

SAE Architecture

SAE Architecture

- E-UTRAN:
 - No RNC is provided anymore.
 - The evolved Node Bs take over all radio management functionality.
- IP transport layer:
 - EUTRAN exclusively uses IP as transport layer.

- MME (Mobility Management Entity):
 - Responsable for idle mode UE paging and tagging procedure including retransmissions.
 - Bearer activation/deactivation process.
 - Responsible for choosing the SGW for a UE at the initial attach.
 - Responsible for authenticating the user (by interacting with the HSS).
 - Checks the authorization of the UE to camp on the service provider's PLMN & enforces UE roaming restrictions.
 - Supports Lawful interception of signaling.
- SGW (Serving Gateway):
 - Routes and forwards user data packets.
 - Terminates the downlink data path and triggers paging when downlink data arrives for the UE.
 - Manages and stores UE contexts.

- PGW (PDN Gateway):
 - Provides connectivity from the UE to external packet data networks.
 - A UE may have simultaneous connectivity with more than one PGW for accessing multiple PDNs.
 - Performs policy enforcement, packet filtering for each user, charging support, lawful interception and packet screening.
- HSS (Home Subscriber Server):
 - Central database that contains user-related and subscription-related information.
 - Mobility management, call and session establishment support, user authentication and access authorization.

- ANDSF (Access Network Discovery and Selection Function):
 - Provides information to the UE about connectivity to 3GPP and non-3GPP access networks (such as Wi-Fi).
 - Assist the UE to discover the access networks in their vicinity and to provide rules (policies) to prioritize and manage connections to these networks.
- ePDG (Evolved Packet Data Gateway):
 - Secure the data transmission with a UE connected to the EPC over an untrusted non-3GPP access.
 - For this purpose, the ePDG acts as a termination node of IPsec tunnels established with the UE.

SAE Multiple Access Networks

 The UE can connect to the EPC using several access technologies.

- 3GPP accesses:
 - GPRS, UMTS, EDGE, HSPA, LTE and LTE Advanced.
- non-3GPP accesses:
 - Trusted accesses: can accesses interface directly with the network.
 - (CDMA 2000)
 - Untrusted accesses: connected to the network via an ePDG, which provide additional security mechanisms (IPsec tunneling).
 - WIFI.

Thank you ©