Ensemble/ Optimise your Neural Network

Tianchu.Zhao@uts.edu.au

Bias and Variance

- bias: measures the difference between model prediction and real world value
- variance: measures how much a model's performance will be affected when change happens in the data

Types of ensemble

Bagging

- Stands for bootstrap aggregation
- decrease variance through generating data from original data
- the data is generated through combination with repetition to produce multiple sets of data that's the same size of your original data

Boosting

- first produce multiple models from subsets of the original data
- then combine the prediction output from models (e.g. majority vote)

Stacking

 similar to boosting but your predicted results are then added back to the original data for further training/prediction (blending).

Why ensemble works

- Ensemble averages bias -> Unlikely to overfit
- Ensemble reduce variance

How to optimise your neural network

- Data split
- Regularization
- Gradient Descent
- Hyperparameter

Data Split

- Traditionally what we learn
 - Data are split into training, development(validation), testing set
 - in a 60%/20%/20% configuration
- In Big Data world, due to the size of data
 - a 98%/1%/1% configuration is more appropriate

Model fit

- underfitting will result in high bias -> unable to well calssify the data
- overfitting will result in high variance -> unable to adapt to new data
- we need to find the optimal point between the two:

Find out the problem

- training set low error, validation set big error
 - -> high variance, overfitting
- training set and development set have similar error, not low
 - -> high bias, underfitting
- training set high error, development set even higher
 - -> high variance, high bias, bad model
- training set low error, development set low error, low difference between two
 - -> low variance and bias, good model

Solve the problem

- high variance:
 - bigger network, more layers, more neuron in layers
 - suitable network architecture, hyperparameters
 - longer training time, better optimization algorithms
- high bias:
 - more data
 - regularization
 - suitable network architecture

Regularization 1 – regularization term

penalise model complexity by adding regularization to the Cost function

originally we have cost function

$$C = \frac{1}{m} \sum_{j=1}^{m} (o_j^L - \gamma_j)$$

now we add a regularization term

$$C = \frac{1}{m} \sum_{j=1}^{m} (o_j^L - \gamma_j) + \lambda$$

- The regularization is defined as
- for L2

$$L_2: \lambda = \frac{\lambda}{2m} W^2 = \frac{\lambda}{2m} \sum_{j=1}^{m} w_j^2 = \frac{\lambda}{2m} W^T w$$

for L1

$$L_1: \lambda = \frac{\lambda}{2m} |w| = \frac{\lambda}{2m} \frac{\sum |w_j|}{j \in I}$$

- Regularization penalise for large weight
 - eg the regularization term will have a large value if the weight is large thus increase the cost
- This reduces the impact of individual weight
- Makes the sigmoid function closer to linear

$$z'' = w'_{2}a'' + b'$$

$$\alpha' = \alpha'(z'_{1})$$

Regularization 2 – Dropout

- initialise mask with probability that a neuron will be 0
- without dropout

with dropout with 0.6 probability of keeping weights of neuron at a layer

input &

Intuition

 when the weight in the neural network converges, the neural network is not replying on any single weight

In prediction

 the mask is replace by expectation instead of binary (eg 0.6 in this case)

Regularization 3 – Data Augmentation

- Introduces variance in to the data, makes it better adapt to future changes
- https://github.com/aleju/imgaug

Regularization 4 – Early Stopping

stop training when validation error start to diverge from training error

Gradient Descent

- Gradient Descent Strategy
 - Types
 - Normalisation
 - Momentum
 - RMSProp
 - Adam
 - Weight Decay

- Types
 - Batch
 - run through the whole training data, then take a step
 - this can be very slow if you have a large amount of data
 - minibatch
 - take a step gradient descent after calculating through a portion of the whole data
 - the unit of each run through of the whole data is epoch
 - within 1 epoch we can have multiple mini batches descent
 - stochastic
 - take a step gradient descent for every training data point

• batch:

- every descent takes through the whole data, takes a long time, slow
- unaffected by the noise within data, step is bigger
- lost always face the lowest direction

• stochastic:

- every descent takes through 1 data sample,
- lots of noise, smaller learning rate is more suitable
- lost overall face lowest direction
- minibatch takes the benefit of the two

minibatch Stochastic

Normalisation

- data normalisation
- batch normalisaiton

• data normalization

$$x = \frac{1}{m} \sum_{i=1}^{m} (x^i - M)$$

 normalization can perform with larger learning rate requires less iteration to reach minimum

without normalisation

batch normalization

$$\mu = rac{1}{m} \sum_i z^{(i)}$$

$$\sigma^2 = \frac{1}{m} \sum_i (z_i - \mu)^2$$

$$z_{norm}^{(i)} = rac{z^{(i)} - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

- normalisation stablise gradient direction in Cost function
- the weight change from the previous layer has less effect to the current layer, more stablise network
 - eg it introduce noise because the normalisation and make later layer less dependeng on the current layer

Exponentially weighted averages

$$\theta_{1} = 30^{\circ}C$$
 $\theta_{2} = 30^{\circ}C$
 $\theta_{2} = 30^{\circ}C$
 $\theta_{365} = 30^{\circ}C$
 $\theta_{365} = 30^{\circ}C$

compute the trend (moving average)

$$V_{0} \leq 0$$
 $V_{1} = 0.9 V_{0} + 0.1 A_{1}$
 $V_{2} = 0.9 V_{1} + 0.1 A_{2}$
 \vdots
 $V_{t} = 0.9 V_{t-1} + 0.1 A_{t}$

• general form

Vt is the approximately average over

$$B = 0.9: \approx 10 \text{ days}$$

$$B = 0.9: \approx 10 \text{ days}$$

$$B = 0.9: \approx 50 \text{ days}$$

Use bias correction to correct to fix the shifted line problem

$$\frac{Vt}{1-B^{t}} \qquad t=2: 1-B^{t}=1-(0.98)^{2}=0.03\%$$

$$t=20: 1-B^{t}=1-(0.98)^{2}=0.03\%$$

$$t=20: 1-B^{t}=1-(0.98)^{2}=0.03\%$$

$$t=0.3324$$

$$t=20: =0.9824$$

Momentum

for l = 1, .. , L:

$$egin{align} v_{dW}^{\;\;[l]} &= eta v_{dW}^{\;\;[l]} + (1-eta) dW^{\;[l]} \ &v_{db}^{\;\;[l]} &= eta v_{db}^{\;\;[l]} + (1-eta) db^{\;\;[l]} \ &W^{\;\;[l]} := W^{\;\;[l]} - lpha v_{dW}^{\;\;[l]} \ &b^{\;\;[l]} := b^{\;\;[l]} - lpha v_{db}^{\;\;[l]} \ \end{pmatrix}$$

RMSProp (Root mean square propagation)

- e is usually 10^-8, it is use for preventing divide by 0 error
- when db/dw is large,
- (db)^2/(dw)^2 is large,
- Sdw/Sdb is large,
- dw/sqrt(Sdw+e) is small
- db/sqrt(Sdb+e) is small

$$s_{dw} = \beta s_{dw} + (1 - \beta)(dw)^2$$

$$s_{db} = \beta s_{db} + (1 - \beta)(db)^2$$

$$w := w - lpha rac{dw}{\sqrt{s_{dw} + \epsilon}}$$

$$b := b - \alpha \frac{db}{\sqrt{s_{db} + \epsilon}}$$

• drawing dw holding Sdw constant

Adam (momentum + RMSprop)

• in RMSprop replace db with Vdb

Learning rate decay

- if using a fix learning rate, at near minimum, due to the noise in batch, it won't converge accurately, and will bounce within a large range of cost values
- a strategy to overcom this is leanning rate decay,
- such that we use a larger learning rate at the beginning for faster descent,
- and use a smaller learning rate as the training time increase
- common learning rate decay formula

$$\alpha = \frac{1}{1 + decay_rate * epoch_num} * \alpha_0$$

Hyperparameters

Parameters (the information that the model will figure out itself)

• w: weight

• b: bias

Hyper parameters (tunable)

- a: learning speed
- N: number of iteration
- •
- size of minibatch
- B: momentum (set)
- (noted when B closer to 1, even a small change will result in large sensitivity change, consider (1/(1-B))
- B1, B2, e: Adam parameter: 0.9, 0.999, 10^-8
- decay_rate
- droppout
- adam parameters (set)
- •
- L: number of layer
- n: number of neurons within each layer
- a/g(z): activation function

Activation functions

- this introduces the nonlinearity within the model,
- from the lecture, if we don't have actication function, the neural network is simply multiple matrices chaining together, this is no different to a linear model.

• Four kinds of common activation functions

- Tanh almost always better than sigmoid
- but both tanh and sigmoid have problem when z is very large or very small
- when z is very large or very small, the gradient is almost 0 and this slows down the gradient calculation
- That's why we hae ReLU, ReLU stands for rectified linear unit
- when z>0, the gradient is always 1, thus dramatically speeds up the computation.
- although when z<0 the gradient is 0, this doesn't have huge impact to the model

Grand Plan (besides the lecture material)

- (√) Neural Network Foundation
- (√) Ensemble/Optimise your neural network
- (□) Convolution Neural Network
- (□) Recurrent Neural Network
- (□) Generative Adversarial Network (+ unsupervised + symmetric nn)
- (□) Reinforcement Learning
- (□) Big data
- (□) Timeseries/Natural Language Processing