Microeconomic Theory I: A Notebook

With Jonathan Libgober

Sai Zhang

Check the Github Page of this project, or email me!

September 13, 2021

HERE WE GO!

This is my learning notebook of Microeconomic Theory I (Course number: ECON601 at USC Economics). As one of the core courses in an economic Ph.D. curriculum, Microeconomic Theory I is beyond important to my research. Therefore, I would love to use this notebook as a commitment mechanism, to document lecture notes, discuss session and office hour intuitions, reading summaries, my personal questions regarding the topics and more. By building a file from scratch, hopefull I could have a more systematic and sophisticated understanding on the content of this course.

I thank Prof. Jonathan Libgober at USC Economics for leading the discussion of the course and providing intuitive ways to understand microeconomic theory. Please check his webpage here, he is such fun.

I also appreciate the time and effort my TA Qitong Wang put into this course, guiding me through discussing sessions and problem sets. When I have questions, he is always there to help.

Following the structure of the course, this notebook will cover three aspects of microeconomic theories: (a) individual decision making, (b) game theory, (c) mechanism design and contract theory. Apart from Jonathan's lecture notes, I will also summarize the reading materials, including: Mas-Colell et al. (1995)'s Microeconomic Theory, Mailath (2018)'s Modelling Strategic Behavior¹, Fudenberg and Tirole (1991)'s Game Theory, Myerson (1991)'s Game Theory: Analysis of Conflicts, Bolton and Dewatripont (2005)'s Contract Theory, Mailath and Samuelson (2006)'s Repeated Games and Reputation and Osborne and Rubinstein (1994)'s A Course in Game Theory. Other materials will also be referred to along the way.

Building this notebook is truly a memorable journey for me. I would love to share this review and all the related materials to anyone that finds them useful. And unavoidably, I would make some typos and other minor mistakes (hopefully not big ones). So I'd really appreciate any correction. If you find any mistakes, please send the mistakes to this email address saizhang.econ@gmail.com or start a branch on Github. BIG thanks in advance!

¹Latest version (May 2021) available here.

Contents

1	Individual Decision Making	4
1	Preferences and Choices, Utilities	5
	1.1 Preference Relations1.2 Choice Rules1.3 Linking Preferences with Choices1.4 Introducing Utility1.5 Commentary	6 9 10 14 17
2	Fundamentals of Consumer Theory	20
	 2.1 Preference Relations 2.2 Choice Rules 2.3 Linking Preferences with Choices 2.4 Introducing Utility 2.5 Commentary 	21 21 21 21 21
3	Lagrange Maximization and Duality	22
4	Monotone Comparative Statics	23
5	Expected Utility and Decisionmaking under Uncertainty	24
6	Aggregation and the Existence of a Representative Consumer 2	
7	Producer Theory	26
8	Stochastic Choice	27
II	Game Theory	28
9	Nash Equilibrium and Bayesian Nash Equilibrium	29
10	Rationalizability and DOminant Strategies	30
11	Correlated Equilibrium	31
12	Dynamic Games and Refinements	32

13 Repeated Games/Folk Theorem	33
14 Recursive Methods in Repeated Games	34
III Mechanism Design and Contract Theory	35
15 Arrow's Theorem and Social Choice	36
16 Boundaries of the Firm and Coase's Theorem	37
17 Implementation Concepts	38
18 The Revelation Principle	39
19 Auctions and Optimal Auctions	40
20 Efficient Implementation	41
21 Moral Hazard	42
22 Full Implementation	43
Bibliography	44

Part I Individual Decision Making

PREFERENCES AND CHOICES, UTILITIES

Contents

1.1	Preference Relations 6
1.2	Choice Rules
1.3	Linking Preferences with Choices
1.4	Introducing Utility
1.5	Commentary

The first chapter summarizes the basic setting of individual decision making: preferences, choices and utilities. The main reference is Chapter 1 of Mas-Colell et al. (1995).

In this chapter, we will focus on 3 domains:

choice	given a set A , what choice from A is made
preference	given alternatives x , y , which does the decision maker prefers
utility	given an object X , how much does the DM likes X (as a number)

The starting point of individual decision problem is a *set of possible (mutually exclusive) alternatives* from which the individual must choose. To model decision making process on this set of alternatives, one can:

- either start from the tastes, i.e., *preference relations* of individuals, and set up the patterns of decision making with preferences
- or, start from the actual actions of individuals, i.e. *choices*, to deduct a pattern of decision making

With this two major approaches in mind, we know what's coming: the *rationality* of preferences and the central assumption of choices, the *Weak Axiom of Revealed Preference (WARP)*. And of course, the two approaches and two basic assumptions are

parallel, so we need to figure out how link the (underlying) preferences and (observed) choices.

1.1 Preference Relations

We start from the basic: weak preference relation, \geq .

Definition 1.1.1. A weak preference relation \geq on a set X is a subset of $X \times X$. If $(x, y) \in \geq x$ is at least as good as y, written as $x \geq y$

A weak preference relation will induce two other types of relations on *X*:

Definition 1.1.2. With \geq defined by Def. 1.1.1, we have

- the *strict preference relation*, > can be induced from \gtrsim as: $x > y \Leftrightarrow x \gtrsim y \land y \not\gtrsim x$, or in words, x if preferred to y.
- the *indifference relation*, \sim can be induced from \gtrsim as: $x \sim y \Leftrightarrow x \gtrsim y \land y \gtrsim x$, or in words, x is indifferent to y.

With the definition of these relations, we now define the central assumption of relations: *rationality*.

Definition 1.1.3. A weak preference relation \geq is *rational* if it is:

- Complete: $\forall x, y \in X, x \gtrsim y \text{ or } y \gtrsim x \text{ or both}$
- Transitive: $\forall x, y, z \in X, x \gtrsim y \land y \gtrsim z \Rightarrow x \gtrsim z$

How to understand them? They are both strong assumptions:

- Completeness of ≥ means it is well-defined between any two possible alternatives. From the perspective of an individual, completeness means that she will make choices, and only meditated choices.
- Transitivity of ≥ implies that the decision maker will not have a preference cycle, since whoever has a preference cycle would suffer economically for it¹.

With the definition of rational \gtrsim in Def. 1.1.3, we can prove the following properites of > and \sim *induced* by \gtrsim :

Theorem 1.1.1. If \geq is rational, then:

- i. > is irreflexive (x > x never holds) and transitive ($x > y \land y > z \Rightarrow x > z$) Proof:
 - irreflexive: by Def. 1.1.2, $x > x \Rightarrow x \gtrsim x \land x \ngeq x$, self contracdiction.
 - transitive: $x > y \Rightarrow x \gtrsim y \land y \not\succsim x$, $y > z \Rightarrow y \gtrsim z \land z \not\succsim y$. By transitivity of \gtrsim , $x \gtrsim y \land y \gtrsim z \Rightarrow x \gtrsim z$. If $z \gtrsim x$, by transitivity of

¹There are 2 types of violations of transitivity: irrational and mechanical. Irrational violations are easy to understand: decision makers simply do not follow transivity assumption, many reasons have been raised, including mental account, framing, menu effect, attraction effect, etc. Mechanical violations means that decision makers are "forced" to violate transitivity. One example of this type of violation is aggregation of considerations: decision makers may aggregate several sub-preferences as together to make the choice, leading to violation of transitivity. Another example is when the preference is only defined for differences above a certain level (problem of perceptible differences). See Mas-Colell et al. (1995, Page 7-8), Rubinstein (2012, Page 4-5) for details

 \gtrsim and $x \gtrsim y$, we would have $z \gtrsim y$, contradicting y > z. Therefore $x \gtrsim z \land z \not\succsim x \Rightarrow x > z$.

ii. \sim is reflexive $(x \sim x, \forall x)$, transitive $(x \sim y \land y \sim z \Rightarrow x \sim z)$ and symmetric $(x \sim y \Rightarrow y \sim x)$

Proof:

- reflexive: by completeness of \gtrsim , $\forall x, x \gtrsim x \Rightarrow x \sim x$
- transitive: $x \sim y \Rightarrow x \gtrsim y \land y \gtrsim x$, $y \sim z \Rightarrow y \gtrsim z$, $z \gtrsim y$, by the transitivity of \gtrsim , we have $x \gtrsim z \land z \gtrsim x$, hen $x \sim z$
- symmetric: $x \sim y \Rightarrow x \gtrsim y \land y \gtrsim x \Leftrightarrow y \gtrsim x \land x \gtrsim y \Rightarrow y \sim x$
- iii. $x > y \gtrsim z \Rightarrow x > z$

<u>Proof</u>: $x > y \Rightarrow x \gtrsim y \land y \ngeq x$, hence $x > y \gtrsim z \Rightarrow x \gtrsim z$. If $z \gtrsim x$, by transitivity of \gtrsim , $y \gtrsim x$, contradicting x > y. Therefore, $z \ngeq x$

We can also directly define a *rational* > (see Kreps (1990, Page 19-21)):

Definition 1.1.4. A strict preference ralation > is rational if it is:

- asymmetric: $\nexists x, y \in X$ s.t. $x > y \land y > x$
- negatively transitive: $x > y \Rightarrow \forall z \in X \setminus \{x, y\}, x > z \lor z > y \lor \text{ both.}$

With Def. 1.1.4 and Def. 1.1.3, we can prove that \geq is rational iff > is rational:

Theorem 1.1.2. \geq is rational \Leftrightarrow > is rational, specifically:

- \geq is complete \Leftrightarrow > is asymmetric
- \gtrsim is transitive \Leftrightarrow > is negatively transitive

Now we prove this theorem:

Step 1 proof \gtrsim is rational \Rightarrow > is rational

- asymmetric

if $\exists x, y \text{ s.t. } x > y \text{ and } y > x$, then by the definition of induced strict preference, the pair x, y must satisfy

$$\begin{cases} x \gtrsim y \text{ and } y \not\gtrsim x & (x > y) \\ y \gtrsim x \text{ and } x \not\gtrsim y & (y > x) \end{cases}$$

which is, by completeness of rational \gtrsim , impossible. Therefore, such pair x, y don't exist. > is proved to be asymetric.

- negatively transitive

First, $\forall z \notin \{x, y\}$, by completeness of rational \geq , the relation between x and z is either $x \geq z$ or $z \geq x$. Similarly, the relation between y and z is either $y \geq z$ or $z \geq y$.

Second, given x > y, x, y satisfies $x \gtrsim y$ and $y \not\gtrsim x$.

Also, it is easy to prove that: $x > y \land y \gtrsim z \Rightarrow x > z, x > y \land z \gtrsim x \Rightarrow z > y;$ and $x > y \land z \sim x \Rightarrow z > y, x > y \land y \sim z \Rightarrow x > z$

Now we have the following scenarios:

- 1. if $z \gtrsim x$ and $y \gtrsim z$, by transitivity of rational \gtrsim , $y \gtrsim x$, contradicting the definition of x > y. This scenario doesn't exist.
- 2. if $x \gtrsim z$ and $y \gtrsim z$, since x > y, with the auxiliary result proved above, we have x > z

- 3. if $z \gtrsim x$ and $z \gtrsim y$, since x > y, with the auxiliary result proved above, we have z > y
- 4. if $x \gtrsim z$ and $z \gtrsim y$, since x > y, suppose:
 - (a) $z \gtrsim x$ as well, then $x \sim z$, in this case z > y;
 - (b) $z \not\gtrsim x$, then x > z
 - (c) $y \gtrsim z$ as well, then $y \sim z$, in this case x > z
 - (d) $y \not\gtrsim z$, then z > y

therefore, a complete summary of (a) to (d) would give:

	$z \gtrsim x$	$z \not \succeq x$
$y \gtrsim z$	z > y & x > z	x > z
$y \not\gtrsim z$	z > y	x > z & z > y

Combining all above, we have proved negative transitivity of >.

With asymmetry and negative transitivity proved, we've proved that \geq is rational \Rightarrow is rational

Step 2 proof > is rational ⇒ \gtrsim is rational.

- Complete: with a rational x > y, we know $\nexists x, y$ s.t. x > y and y > x by asymmetry. Therefore, $\forall x, y$, we have two possibilities.
 - x > y and $y \ne x$, which would naturally induce a weak preference $x \ge y$
 - y > x and x ≠ y, which would naturally induce a weak preference y ≳ x therefore, $\forall x, y$, either x ≳ y or y ≳ x completeness of ≳ is proven.
- Transitive: with a rational x > y, negative transivity gives $\forall z \notin \{x, y\}$, either x > z, z > y, or both. By negative transitivity, we have:
 - x > z: following same procedure, we know $x \gtrsim z$. If:
 - * $y \gtrsim z$, since $x > z \Rightarrow z \not\gtrsim x$, by completeness we have $x \gtrsim z$, thus $x \gtrsim y \land y \gtrsim z \Rightarrow x \gtrsim z$
 - * $z \gtrsim y$, since $x > y \Rightarrow x \not\gtrsim y$, by completeness we have $x \gtrsim y$, thus $x \gtrsim z \land z \gtrsim y \Rightarrow x \gtrsim y$
 - z > y: again, we know z ≿ y. If:
 - * $x \gtrsim z$, since $x > y \Rightarrow y \not\gtrsim x$, by completeness we have $x \gtrsim y$, thus $z \gtrsim y \land x \gtrsim z \Rightarrow x \gtrsim y$
 - * $z \gtrsim x$, with $x \gtrsim y$, suppose $y \gtrsim z$, this contradicts z > y, thus $z \gtrsim x \land x \gtrsim y \Rightarrow z \gtrsim y$
 - x > z and z > y: again we know $x \gtrsim z$ and $z \gtrsim y$. Suppose $y \gtrsim x$, this contradicts x > y, therefore $x \gtrsim z \land z \gtrsim y \Rightarrow x \gtrsim y$

In all three scenarios, transitivity is proved.

With completeness and transitivity proved, we've proved that > is rational $\Rightarrow \geq$ is rational.

Notice that negative positivity in Def. 1.1.4, is logically equivalent to its *contrapositive*: $\exists z \in X \setminus \{x, y\}$ s.t. $x \neq z \land z \neq y \Rightarrow x \neq y$. This is percisely why the definition is called negative transitivity.

1.2 Choice Rules

Next, we approach the theory of decision making from choice behavior itself. Formally, choice behavior is represented by means of a *choice structure* (\mathcal{B} , $C(\cdot)$). Now, we define choice structure (\mathcal{B} , $C(\cdot)$):

Definition 1.2.1. A choice structure $(\mathcal{B}, C(\cdot))$ has two ingredients:

- $\mathcal{B} \subset \mathcal{P}(X) \setminus \emptyset$, where $\mathcal{P}(X)$ is the power set of X. This means, every element $B \in \mathcal{B}$ is a subset of X^2 .
- $C(\cdot)$ is a *choice rule correspondence* that assigns a nonempty set of chosen elements $C(B) \subset B$, $\forall B \in \mathcal{B}^3$.

Now we discuss the CORE assumption in this section: the Weak Axiom of Revealed Preference (WARP):

Definition 1.2.2. A choice set $(\mathcal{B}, C(\cdot))$ satisfies WARP if:

-
$$\forall B, B'$$
 and $x, y \in B \cap B', x \in C(B), y \in C(B') \Rightarrow x \in C(B')$

Or in words, WARP requires that if x is chosen from some alternatives where y is also available, then there can be NO budget set containing both x and y but only y is chosen.

Following WARP, define the *reveal preference relation* \gtrsim * as:

```
Definition 1.2.3. Given a choice structure (\mathcal{B}, C(\cdot)), x \gtrsim^* y \Leftrightarrow \exists B \in \mathcal{B} s.t. x, y \in B \land x \in C(B)
```

In words, *x* is revealed at least as good as *y*.

With revealed preference defiend, we can rephrase WARP as: *If* x *is revealed at least as good as* y, *then* y *cannot be revealed preferred to* x. Hence, \gtrsim^* is not symmetric.

One thing to remember is that \geq^* need not be either complete or transitive. For \geq^* to be comparable, for a $B \in \mathcal{B}$ and $x, y \in B$, we must have either $x \in C(B)$, $y \in C(B)$ or both.

An example is:

```
Example 1.2.1. Consider a choice structure (\mathcal{B}, C(\cdot)) from X = \{x, y, z\}, where \mathcal{B} = \{\{x, y\}, \{x, y, z\}\}. Under WARP, C\{x, y\} = \{x\} \Rightarrow y \notin C\{x, y, z\}. BUT, we can have z \in C(\{x, y, z\}).
```

This is why the induced preference is called *revealed*: you don't know what else is going on.

There are 3 interesting properties of choice rules to keep in mind:

- Property α : $x \in A \subseteq B$, $x \in C(B) \Rightarrow x \in C(A)$.
- Property β : $x, y \in C(A)$, $A \subseteq B$, $y \in C(B) \Rightarrow x \in C(B)$

²The elements $B \in \mathcal{B}$ are so-called *budget sets*. The budget sets in \mathcal{B} should be thought of as an exhaustive listing of all the choice experiments that can be achieved, but it is possible that some subsets of X are not achievable.

³The choice set C(B) can contain a single element, which is the choice among the alternatives in B. BUT, C(B) can contain multiple elements, then elements of C(B) are the *acceptable alternatives* in B.

- Property γ : $x \in C(B_1), x \in C(B_2) \cdots x \in C(B_n) \Rightarrow x \in C(B_1 \cup B_2 \cup \cdots \cup B_n)$

For a rational preference relation \gtrsim , its induced choice function $C(\cdot, \geq)$ satisfies the three properties:

- α : For $x \in A \subseteq B$, $x \in C(B, \gtrsim)$, $x \gtrsim y$, $\forall y \in B$, and $A \subseteq B \Leftrightarrow \forall z \in A, z \in B$, hence $\forall z \in A, x \gtrsim z \Rightarrow x \in C(A, \gtrsim)$
- β: For x, y ∈ C(A, ≥), A ⊆ B, y ∈ C(B, ≥), x ≥ y and ∀z ∈ B, y ≥ z, by transitivity, ∀z ∈ B, x ≥ z ⇒ x ∈ C(B, ≥)
- $\gamma: x \in C(B_i, \gtrsim), i = 1, \cdots, n \Rightarrow \forall b_k^i \in B_i, x \gtrsim b_i \Rightarrow \forall b \in \{b_k^i\}, i = 1, \cdots, n, x_i \gtrsim b_i \Rightarrow x \in C(B_1 \cup B_2 \cup \cdots \cup B_n, \gtrsim)$

With Sen's α and β defined, we have:

Theorem 1.2.1. For a non-empty C, C satisfies α and $\beta \Leftrightarrow C$ satisfies WARP Now, let's prove this.

- **Sen's** α **and** β \Rightarrow **WARP**: Suppose $x, y \in A \cap B, x \in C(A), y \in C(B)$. Let $\tilde{A} = A \cap B$, since $\tilde{A} \subset A$ and $\tilde{A} \subset B$, Sen's α gives $x, y \in C(\tilde{A})$. Now we have $\tilde{A} \subset B$, $y \in C(B)$, $x, y \in C(\tilde{A})$, by Sen's β , $x \in C(B)$. Thus, WARP holds.
- **WARP** ⇒ **Sen's** α **and** β : WARP gives $x, y \in A \cap B, x \in C(B), y \in C(A) \Rightarrow x \in C(A)$, in the special case of $A \subset B$, WARP will be reduced to Sen's α and β .⁴

1.3 Linking Preferences with Choices

Now we have two major approaches of decision making process: preference relations in Section 1.1 and choice rules in Section 1.2, what we need to do is to link them. This linkage will emerge when we examine two central assumptions: **rationality** and **WARP**. So the major question here is:

rational
$$\gtrsim \stackrel{???}{\Longleftrightarrow} (\mathcal{B}, C(\cdot))$$
 satisfies WARP

And the answer is: YES! but not exactly. Now let's dig in.

Rational $\gtrsim \Rightarrow (\mathcal{B}, C(\cdot))$ satisfies WARP

First, **rational** $\gtrsim \Rightarrow$ (\mathcal{B} , $C(\cdot)$) **satisfies WARP** is a big YES. To prove this, we need to define *induced choice correspondence*:

Definition 1.3.1. Given a **rational** \geq on X, if the decision maker faces a nonempty subset of alternatives $B \subset X$, by maximizing her preference, she would choose any one of the elements in the *induced choice correspondence*: $C^*(B, \geq) = \{x \in B : x \geq y, \forall y \in B\}$

The induced choice correspondence $C^*(B, \geq)$ has an important property:

⁴Another way of proving this is to introduce rationalizing preference relation (Def.1.3.2). In fact, for \mathcal{B} includes all subsets of X of up to 3 elements, WARP $\Leftrightarrow C$ is rationalizable \Leftrightarrow Sen's α and β are satisfied.

Theorem 1.3.1. if *X* is finite, $C^*(B, \geq)$ will be **nonempty**.

A brief proof of this proposition is: If X is finite, B is finite as well. We will prove by induction. Starting from |B| = 1, the only element of B is in $C^*(B, \geq)$. Now suppose $C^*(B, \geq)$ is nonempty when $|B_n| = n$, let $x^* \in C^*(B_n, \geq)$; when $|B_{n+1}| = n + 1$, let the n + 1th element y ($\{y\} = B_{n+1} \setminus B_n$). By the completeness of a rational \geq , either $y \geq x^*$ or $x^* \geq y$:

- i. $y \gtrsim x^*$: since $x^* \in C^*(B_n, \gtrsim) \Rightarrow x^* \gtrsim x$, $\forall x \in B_n$. By transitivity of \gtrsim , $y \gtrsim x$, $\forall \in B_n$. By completeness, $y \gtrsim y$ as well. Hence, $y \in C^*(B_{n+1}, \gtrsim)$.
- ii. $x^* \gtrsim y$: since $x^* \in C^*(B_n, \gtrsim) \Rightarrow x^* \gtrsim x$, $\forall x \in B_n$, hence $x^* \gtrsim x$, $\forall x \in B_n \cup y \Rightarrow x^* \in C^*(B_{n+1}, \gtrsim)$

Notice that when B is finite, a stronger condition of \geq being acyclic and complete is equilavent to an induced choice rule $C^*(B, \geq) \neq \emptyset$:

Theorem 1.3.2. For a finite B, \geq is complete and **acyclic** $\Leftrightarrow C^*(B, \geq) \neq \emptyset$

 \gtrsim is acyclic mean that: $b_1 \gtrsim b_2, b_2 \gtrsim b_3, \cdots, b_{n-1} \gtrsim b_n \Rightarrow b_n \not\gtrsim b_1$. An example of transitive but not *acyclic* relations is indifference \sim : $a_1 \sim a_2 \sim \cdots \sim a_n \Rightarrow a_n \sim a_1$. A brief proof of Theorem 1.3.2 is:

- i. $\operatorname{acyclic} \gtrsim \Rightarrow C^*(B, \gtrsim) \neq \varnothing$: Suppose if $C^*(B, \gtrsim) = \varnothing$, for $b_1 \in B$, $b_1 \notin C^*(B, \gtrsim) \Rightarrow \exists b_2$ s.t. $b_2 \gtrsim b_1$. Continue this process, we can generate a sequence of $\cdots \gtrsim b_2 \gtrsim b_1$, since B is finite, this sequence must end at b_n . If \gtrsim is acyclic, $b_1 \not\gtrsim b_n$, this gives $b_n > b_1$, which would mean b_n must be in $C^*(B, \gtrsim)$, contradicting.
- ii. $C^*(B, \gtrsim) \neq \emptyset \Rightarrow$ acyclic \gtrsim : Suppose \gtrsim is not acyclic, then there exists $b_1 \gtrsim b_2 \gtrsim \cdots \gtrsim b_n \gtrsim b_1$, then for set $B = \{b_1, b_2, \cdots, b_n\}, \not\exists b^* \text{ s.t. } b^* \gtrsim b_i \forall b_i \in B$, i.e., $C^*(B, \gtrsim) = \emptyset$.

Of course, we want to extend this to the situation where B is infinite. However, in general, it is possible that $C^*(B, \gtrsim)$ is empty (if you set the most preferred side of B open, it would be impossible to choose based on the preferences). However, we can add some assumptions to finite non-emptiness and choice coherence, to ensure that choice function $C(\cdot)$ is well-behaved on infinite sets as well.⁵

With induced choice correspondence $C^*(B, \geq)$ defined and non-emptyness proved, we can then say:

Theorem 1.3.3. If \gtrsim is a rational preference relation, then the choice structure generated by \gtrsim , $(\mathcal{B}, C^*(\cdot, \gtrsim))$, satisfies WARP

$$x\in A\subseteq NBT_{\gtrsim_C}(x)\Longrightarrow C(A)\neq\emptyset$$

This means that if everything in A is revealed to be no better than x and x is also in A, *some* choice will be made out of A. This assumption is equivalment to the conclusion that for the infinite set A, we also have $C(\cdot) \equiv C(\cdot)_{\geq C}$. And of course, if we reverse the assumption above, we would have:

$$\forall x \in A, A \nsubseteq NBT_{\geq_C}(x) \Rightarrow C(A) = \emptyset$$

. This is easy to understand: in this case, x is the least preferred one in A, since A is infinite, you can never find an alternative that is preferred over all others.

⁵ The simplest assumption is: For a choice function $C(\cdot)$ that satisfies finite non-emptiness and choice coherence, let the corresponding preference relation be \gtrsim_C , this preference will generate a no-better-than subset for x: $NBT_{\gtrsim_C}(x) = \{x' \in X : x \gtrsim_C x'\}$. With this setting, we can have:

We can prove this theorem quite easily: $\forall B, B'$ suppose we have $x, y \in B \cap B'$ and $x \in C^*(B, \geq)$, $y \in C^*(B', \geq)$, then $x \geq a$, $\forall a \in B$ and $y \geq b$, $\forall b \in B'$. Naturally, we have $x \geq y$ since $y \in B$. By rationality (transitivity) of \geq , we have $x \geq y \geq b$, $\forall b \in B'$, which means $x \in C^*(B', \geq)$. This is precisely the definition of WARP

$(\mathcal{B}, \mathcal{C}(\cdot))$ satisfies WARP \Rightarrow Rational \gtrsim

The proof of this direction is more subtle, and is NOT necessarily a yes. Again, we start from a auxiliary definition:

Definition 1.3.2. For a choice structure $(\mathcal{B}, C(\cdot))$, a rational preference relation \succeq **rationalizes** $C(\cdot)$ relative to \mathcal{B} if $C(B) = C^*(B, \succeq)$, $\forall B \in \mathcal{B}$.

In words, if for all budget sets $B \in \mathcal{B}$, the choices generated by a rational \geq , is just the choice rule $C(\cdot)$, $C(\cdot)$ is rationalized by \geq . This is, in a sense, constructing an explanation of decision making behavior with preferences.

We already proved that $C^*(B, \gtrsim)$ satisfies WARP, which means that if a rationalizing preference relation to exist, WARP must be satisfied. However, if WARP is satisfied, a rationalizing preference relation does **NOT** necessarily exist.⁶ Intuitiviely, more budget sets $B \in \mathcal{B}$ would mean that, to satisfy WARP, choice behavior would be restricted more, and it is easier to be self-contradicting. Therefore, to pin down a rational preference relation to rationalize $C(\cdot)$ relative to \mathcal{B} , we need to put some **restrictions on** \mathcal{B} .

Theorem 1.3.4. If $(\mathcal{B}, C(\cdot))$ is a choice structure that:

- i. WARP is satisfied
- ii. \mathcal{B} includes **all** subsets of X of **up to 3** elements

then there exists a rational preference relation \geq s.t. $C(B) = C^*(B, \geq)$, $\forall B \in \mathcal{B}$. And this rational \geq is the **only** preference relation that can rationalize $(\mathcal{B}, C(\cdot))^7$.

Now let's prove it, by examing the natural candidate for a rationalizing preference relation: the **revealed preference relation** \gtrsim *:

Step 1 Prove that \geq^* is rational

- Completeness: By (ii) of Def.1.3.2, all binary subsets of X are in \mathcal{B} . Hence, $\{x,y\} \in \mathcal{B}$. For this binary menu, $C(\{x,y\})$ must contain either x or y, therefore, $x \gtrsim^* y$ or $y \gtrsim^* x$ or both. Completeness proved.
- Transitivity: $\forall \{x, y, z\} \in \mathcal{B}$, $C(\{x, y, z\}) \neq \emptyset$. Suppose $x \gtrsim^* y, y \gtrsim^* z$, which implies that $x \in C(\{x, y\})$, $y \in C(\{y, z\})$, we then have three cases for $C(\{x, y, z\})$:
 - a. $x \in C(\{x, y, z\})$, WARP gives that $x \in C(\{x, z\}) \Rightarrow x \gtrsim^* z$

⁶A simple example is: $X = \{x, y, z\}$, $\mathcal{B} = \{\{x, y\}, \{y, z\}, \{x, z\}\}$. Since \mathcal{B} contains 3 binary menus, the choice structure $C(\{x, y\}) = \{x\}, C(\{y, z\}) = \{y\}, C(\{x, z\}) = \{z\}$ vacuously satisfy WARP. But, this choice structure cannot be rationalized since it contradicts transitivity.

⁷The existence of a rationalizing preference relation \gtrsim brings many interesting properties, one of them is *path-invariance*: $\forall B_1, B_2 \in \mathcal{B}, B_1 \cup B_2 \in \mathcal{B} \land C(B_1) \cup C(B_2) \in \mathcal{B} \Rightarrow C(B_1 \cup B_2) = C(C(B_1) \cup C(B_2))$, meaning that the decision problem can safely be subdivided. A proof is: for $x \in C(B_1 \cup B_2)$ and $y \in C(B_1) \cup C(B_2)$, since $C(B_1) \cup C(B_2) \subset B_1 \cup B_2$, thus $x \in C(B_1 \cup B_2) \Rightarrow x \in C(C(B_1) \cup C(B_2))$; for $x \in C(C(B_1) \cup C(B_2))$ and $y \in B_1 \cup B_2$, we have $x \gtrsim z, \forall z \in C(B_1), C(B_2) \Rightarrow x \gtrsim w, \forall w \in B_1 \cup B_2 \Rightarrow x \in C(B_1 \cup B_2)$

- b. $y \in C(\{x, y, z\})$, we have $x \in C(\{x, y\})$. WARP gives $x \in C(\{x, y, z\})$ $\Rightarrow x \gtrsim^* z$
- c. $z \in C(\{x, y, z\})$, we have $y \in C(\{y, z\})$. WARP gives $y \in C(\{x, y, z\})$, and $x \in C(\{x, y\})$, WARP gives $x \in C(\{x, y, z\}) \Rightarrow x \gtrsim^* z$

Hence, $x \gtrsim^* y$, $y \gtrsim^* z \Rightarrow x \gtrsim^* z$

Step 2 Prove that \gtrsim^* rationalizes $C(\cdot)$ on \mathcal{B}

Now, we need to show $\forall B \in \mathcal{B}, C(B) = C^*(B, \geq^*)$. Logically, this means the revealed preference \geq^* inferred from $C(\cdot)$ actually generates $C(\cdot)$. Formally, we prove it in 2 steps:

- a. Suppose $x \in C(B)$, which means that $\forall y \in B, x \gtrsim^* y$ (by Def.1.2.3), hence $x \in C^*(B, \gtrsim^*)$ (by Def.1.3.1). This proves $C(B) \subseteq C^*(B, \gtrsim^*)$
- b. Suppose $x \in C^*(B, \succeq^*)$, which means that $\forall y \in B, x \succeq^* y$ (by Def.1.3.1). Therefore, $\forall y \in B$, there must exist a set $B_y \in \mathcal{B}$ s.t. $x, y \in B_y \Rightarrow x \in C(B_y)$. Since $C(B) \neq \emptyset$, suppose $z \in C(B)$, since $x \in C(B_z)$, WARP implies that $x \in C(B)$. This proves $C^*(B, \succeq^*) \subseteq C(B)$

Together, we have $C(B) = C^*(B, \geq^*)$.

Step 3 Prove \gtrsim^* is the unique choice

Since \mathcal{B} includes all two-element subsets of X, the choice behavior in $C(\cdot)$ completely determines the pairwise preference relations over X of any rationalizing preference.

Now, it is **proved**! Notice that the main assumption(restriction) here is \mathcal{B} **includes all subsets of** X **of up to 3 elements**, this gives completeness, which is fundamental.

Things to keep in mind

We have proved the twoway links of preferences and choices:

- Rational $\gtrsim \Rightarrow (\mathcal{B}, C^*(\cdot, \geq))$ satisfies WARP (see Thm.1.3.3)
- A WARP-satisfying, up-to-3-element $(\mathcal{B}, C(\cdot))$ can be uniquely rationalized by a rational \gtrsim (see Thm.1.3.4)

However, there are still something to keep in mind.

First, for a given choice structure $(\mathcal{B}, C(\cdot))$, there may be **more than one** rationalizing preference relation \geq in general. Here is the simplest example: For $X = \{x, y\}, \mathcal{B}\{\{x\}, \{y\}\}$ and the choice structure $C(\{x\}) = \{x\}, C(\{y\} = \{y\})$. In this case, **ANY** relation preference relation of X can rationalize $C(\cdot)$ This is related to both Def.1.3.2 and (ii) of Thm.1.3.4. Thm.1.3.4 gives that if \mathcal{B} contains **ALL binary** menus of X, then there could be at most one rationalizing preference relation.

Second, the restriction for WARP \Rightarrow rational \gtrsim , namely $\mathcal B$ containing all subsets of up to 3 elements, is too strong. For many economic problems, we will not consider all possible subsets, or limit ourselves to up-to-3-element ones. A strengthened version of WARP will be introduced later for that purpose.

Finally, up till now, we define a rationalizing preference as one: $C(B) = C^*(B, \geq)$ (Def.1.3.2). A common alternative would be to require only $C(B) \subset C^*(B, \geq)$: if C(B) is a **subset** of the most preferred choices generated by \geq , i.e., $C^*(B, \geq)$. This will allow

indifferences to be more than the situation of anything might be picked. And it is empirically intuitive in a sense that observed choices will never fully reveal decision makers' entire preferencing maximizing choice set. Naturally, $C(B) \subset C^*(B, \gtrsim)$ is weaker than $C(B) = C^*(B, \gtrsim)$. But $C(B) \subset C^*(B, \gtrsim)$ has an interesting property: the all-indifferent preference will be able to rationalize *any* choice behavior. Therefore, when $C(B) \subset C^*(B, \gtrsim)$ is used, you would always need to put some additional restrictions on the rationalizing preference relation for the specific economic context.

1.4 Introducing Utility

Now, with preferences and choices defined, and the linkage between the two established, we need to transfer these concepts into math for analytic studies. This is exactly why utility functions are introduced: to assign a number and rank the elements in X according to preferences.

Definition 1.4.1. A function $u: X \to \mathbb{R}$ is a utility function representing relation $\geq if \ \forall x, y \in X, x \geq y \Leftrightarrow u(x) \geq u(y)$

Notice that a utility function representing a preference relation \gtrsim is NOT unique. **Rank-preserving** is the only requirement, hence, any strictly increasing function $f: \mathbb{R} \to \mathbb{R}$, v(x) = f(u(x)) will also represent \gtrsim as $u(\cdot)$. The logic is quite straight forward: for $x, y \in X$ and $u(\cdot)$ represents \gtrsim , then $x \gtrsim y \Leftrightarrow u(x) \ge u(y)$, for a strictly increasing $f(\cdot)$, $u(x) \ge u(y) \Leftrightarrow f(u(x)) \ge f(u(y)) \Leftrightarrow v(x) \ge v(y)$, hence $v(\cdot)$ represents \gtrsim as well. The major requirement here is **strictly increasing** $f(\cdot)$.

Two concepts to keep in mind:

- 1. **Ordinal** properties of utility functions: the **invariant** properties of $u(\cdot)$ across all of its strictly increasing transformations $f(u(\cdot))$. Ranking (i.e. the preference represented by utility functions) is ordinal.
- 2. **Cardinal** properties of utility functions: the **variant** properties of $u(\cdot)$ across all of its strictly increasing transformation $f(u(\cdot))$. Numerical values associated with the alternatives in X (i.e. the magnitude of the differences between alternatives) is cardinal.

The numerical value, or even the size of relative differences have no particular meaning. Only ranking is "real", since the "level of utility" is **unobservable** and anything required to know the "level of utility" is **untestable**.

The central theorem of utility functions is closely linked to rationality:

Theorem 1.4.1. A preference relation \gtrsim can be represented by a utility function $\Rightarrow \gtrsim$ is rational

The proof is

- *Completeness*. Since $u(\cdot)$ represents preference relations between alternatives, and $u: X \to \mathbb{R}$, thus $\forall x, y \in X$, either $u(x) \ge u(y)$ or $u(y) \ge u(x)$. By Def.1.4.1, we have either $x \gtrsim y$ or $y \gtrsim x$, hence \gtrsim is complete.
- Transitivity. For $x \gtrsim y, y \gtrsim z$. By Def.1.4.1, $u(x) \geq u(y), u(y) \geq u(z)$, hence $u(x) \geq u(z) \Rightarrow x \gtrsim z$.

What about the other way? It is true, subject to some prerequisites:

Theorem 1.4.2. \gtrsim is rational and X is **finite** \Rightarrow there is a utility function representing \gtrsim .

The major prerequisite here is X being **finite**. The proof is done by induction: Suppose there are N elements in X:

- When N = 1, any number could be assigned to that element as its utility.
- Suppose a rational \geq on $X = x_1, x_2, \dots, x_{N-1}$ could be represented by a utility function $u(\cdot)$. Without losing generality, we can assume $u(x_1) \leq u(x_2) \leq \dots \leq u(x_{N-1})$. For the Nth element x_N , by the rationality of \geq , we have three scenarios:
 - i $\forall i \in 1, \dots, N-1, x_N \geq x_i$: by Def.1.4.1, $u(x_N) \geq u(x_i)$.
 - ii $\forall i \in 1, \dots, N-1, x_i \gtrsim x_N$:, $u(x_N) \leq u(x_i)$.
 - iii $\exists i, j \in 1, \dots, N-1, i \neq j, x_j \gtrsim x_N \gtrsim x_i$: $u(x_j) \geq u(x_N) \geq u(x_i)$. By completeness and transitivity, x_1, x_2, \dots, x_{N-1} can be "divided" by x_N , meaning that for $I = \{i : x_N \gtrsim x_i\}$ and $J = \{j : s_j \gtrsim x_N\}$, $I \cup J = \{1, \dots, N-1\}$. Note that we have assumed the index as the ranking, hence let $i^* = \max I, j^* = \min J, i^*+1 = j^*$, hence we must have $u(x_i) \leq u(x_{i^*}) \leq u(x_j) \leq u(x_j)$

In all 3 scenarios, $u(\cdot)$ represents \geq on $X = \{x_1, \dots, x_{N-1}, x_N\}$ as well.

With this induction, we prove Thm.1.4.28.

Now extend Thm.1.4.2 from finite *X* to countable infinite *X*:

Theorem 1.4.3. \gtrsim is rational and X is **countable** \Rightarrow there is a utility function representing \gtrsim .

To prove Thm.1.4.3, we can construct a utility function: for any set S, its emuneration $\{s_1, s_2, \cdots\}$ (which exists if S is countable), define an auxiliary function $d: S \to \mathbb{R}$ as $d(s_i) = \left(\frac{1}{2}\right)^n$, then for a countable set $X = \{x_1, x_2, \cdots\}$, the utility of any element $\tilde{x} \in X$ can be defined as

$$u(x^*) = \sum_{\tilde{x}_i \in NBT(x^*)} d(\tilde{x}_i)$$

⁹ where $NBT(x^*)$ is the set of all elements that are **not b**etter than x^* , i.e. $NBT(x^*) = \{\tilde{x}_i : \tilde{x}_i \in X \land x^* \gtrsim \tilde{x}_i\}$. It is easy to see that $NBT(x^*)$ is a countable subset of X. Suppose $NBT(x^*)$ has k elements (k < n), we can calculate the utility $u(x^*) = \sum_{i=1}^k \left(\frac{1}{2}\right)^i$. After this construction, rest of the proof is trivial: $\forall x, y \in X, x \gtrsim y \Rightarrow NBT(x) \supseteq NBT(y)$, which means that NBT(x) has at least as many elements as NBT(y), by the constructed utility function, it is easy to see $u(x) \ge u(y)$; Conversely, $u(x) \ge u(y)$ simply means that NBT(x) contains at least as many elements as NBT(y) does, which directly leads to $x \gtrsim y$.

Now, let's figure out the difficult question: what about uncountable sets? Here is a very general proposition:

Theorem 1.4.4. For a rational preference \geq on a set X, \geq can be represented

⁸Another way of proof is: Start with $x^{start} \in X$, define $W_x = \{y : y < x^{start}\}$ then W_x is either empty or not: If not empty, pick $\tilde{x} \in W_x$, shrink W_x to $\{y : y < \tilde{x}\}$ and repeat this procedure till $a \sim x^{stop}$ where u(a) = 0, then x^{stop} is the "lower bound" of the set. With this process, we can generate a utility function for any finite set X that is rational.

⁹Notice that $\lim_{n\to\infty} \sum_{i=1}^n \frac{1}{2^i} = 1$, utility is bounded to [0, 1).

by $u(\cdot)$ if and only if some countable set X^* of X has the property that $\forall x, y \in X, x > y \Rightarrow \exists x^* \in X^*$ s.t. $x \gtrsim x^* > y$.

The proof of Thm.1.4.4 is not that difficult:

Step 1: such X^* exists \Rightarrow rational \gtrsim can be represented by $u(\cdot)$.

- Given such X^* , $x \gtrsim y \Rightarrow u(x) \geq u(y)$ Suppose X^* exists, let it be $X^* = \{x_1^*, x_2^*, \cdots\}$. Again, define $d(x_n^*) = \frac{1}{2^n}$, we can then construct a utility function as

$$\forall x \in X, u(x) = \sum_{\tilde{x}_i^* \in X^* \cap NBT(x)} d(\tilde{x}_i^*)$$

Since $x \gtrsim y \Leftrightarrow NBT(x) \supseteq NBT(y)$, hence $NBT(x) \cap X^* \supseteq NBT(y) \cap X^*$, which, by the construction of $\sum \frac{1}{2^n}$, leading to $u(x) \ge u(y)$.

- Given such X^* , $u(x) \ge u(y) \Rightarrow x \ge y$ We can prove the contrapositive: $y \not\gtrsim x \Rightarrow u(y) \not\ge u(x)$. Given the rationality of \ge , $y \not\gtrsim x \Rightarrow x > y$, then $\exists x^* \in X^*$ s.t. $x \ge x^* > y$, hence we know NBT(x) is strictly larger then NBT(y) (NBT(x) includes x^*), therefore, by definition, $u(x) > u(y) \Rightarrow u(y) \not\ge u(x)$.
- Step 2: rational \geq can be represented by $u(\cdot) \Rightarrow$ such X^* exists We want to prove this, but it is very difficult to prove in general, so we construct a special case: Let $\{I_n\}$ be a set of all closed intervals with rantional endpoints, that is, each I_n is an interval of $[\underline{q}_n, \bar{q}_n]$ where $\bar{q}_n > \underline{q}_n$ are rational numbers. The set of rational numbers is countable, the cross product of two countable sets is also countable, hence $\{I_n\}$ is countable as well. Let u(X) denote the set of real numbers $\{r \in \mathbb{R} : \exists x \in X, r = u(x)\}$, there will be 3 possible scenarios:
 - i. $u(X) \cap I_n \neq \emptyset$: for each I_n , pick one $x \in X$ s.t. $u(x) \in I_n$ and name it x_n
 - ii. $u(X) \cap I_n = \emptyset$: let $\bar{r}_n = \inf\{r \in u(X) : r > \bar{q}_n\}$. If $\exists x \in X$ s.t. $u(x) = \bar{r}_n$, choose one such x and name it x_n
 - iii. $u(X) \cap I_n = \emptyset \land \forall x \in X, \bar{r}_n \neq u(x)$, no x will be defined as x_n

If we define X^* as the collection of all x_n in case i) and ii). Notice there is less than one x_n for each I_n and I_n is countable, hence X^* is countable as well.

Suppose x > y for $x, y \in X$, we have $u(\cdot)$ representing \geq , hence u(x) > u(y). Choose some rational number q in the open interval (u(y), u(x)) and let $\bar{r} = \inf\{r \in u(X) : r > q\}$. Given this setup, we have $u(x) \geq \bar{r}$ since u(x) > q. If:

- $u(x) > \bar{r}$: we can always find a rational number q' s.t. $u(x) > q' > \bar{r}$. Let n be the index of the interval [q, q'], since $q < \bar{r} < q'$, $\bar{r} \in u(X) \cap [q, q'] \Rightarrow u(X) \cap [q, q'] \neq \emptyset$. Therefore, $\exists x^* \in X^*$, namely x_n , s.t. $u(x^*) \in [q, q']$, leading to $u(x) > u(x^*) > u(y)$.
- $u(x) = \bar{r}$: we can always find a rational number q' s.t. q > q' > u(y). Let n be the index of the interval [q, q']. If $u(X) \cap [q', q] \neq \emptyset$, then $\exists x^* \in X^*$ s.t. $u(x) \geq q \geq u(x) \geq q' \geq u(y)$, then $x \gtrsim x^* > y$. If $u(X) \cap [q, q'] = \emptyset$, then [q, q'] fits into category (ii) above, and $\exists x^* \in X^*$, namely x_n , such that $u(x^*) = \bar{r} = u(x)$. With this x^* , we have $u(x^*) = u(x) > u(y) \Rightarrow x \gtrsim x^* > y$.

This is a very smart proof, and it is very general as well. However, you would have to make sure that the countable seubset X^* exists, which is not very practical. This

problem leads to topological ≿, which will be covered later.

It is natural that if we start from \gt , we would have the same logic (See Kreps, 1990, Page 30):

- similar definition: $x > y \Leftrightarrow u(x) > u(y)$
- similar theorems:
 - i $\exists u(\cdot)$ representing $> \Rightarrow$ rational > (asymmetric and negatively transitive)
 - ii If X is finite or at least countably infinite, $\exists u(\cdot)$ representing $> \Leftrightarrow$ rational >

1.5 Commentary

In this section, I discuss some of common commentaries on the standard preference model presented above.

Preference model as a descriptive model

A common complaint about the standard utility maximization/preference ranking model is that no one in reality actually calculates a number as utility before making choices. This comment has a lot of sense to it since we rarely care about utility, let alone doing some math, before grocery shopping. But this observation does NOT invalidate the usefulness of preference/utility model.

The standard model does NOT regulate agents to consciously maximize utility, instead, it assumes individuals act *as if* they maximize utility. Mathematically, we have already proven that if choice behavior satisfies finite nonemptiness and WARP, then something will be chosen, and agents' choice behavior is just *as if* it were preference driven, or the choice behavior can be linked to a preference. If the set of choices is countable, then the preference-driven choice can be indexed by numbers, hence, becomes a mathematical question.

Utility/preference/choice system is considered as a description of choice behavior. Long as people do make a choice, and that choice satisfies WARP, we can always find a numerical way to *describe* the behavioral pattern.

Empirical limits

To verify utility maximization as a model of choices over the choice space X, we need to check every subset A of it. And we also need to know all of C(A). Of course we have already managed to verify the two-way link between preference, utility and choice for all choice menus with no more than 3 elements, but above that, it would be extremely difficult. Empirically, we will observe (at best) C(A) for finitely many subsets of X, we would most likely observe only the *one* element that is selected out of C(A) while failing to identify equally-preferred alternatives simply because they are not observed to be chosen. In these scenarios, how can we tell whether our observations are aligned with utility maximization? In later chapters, we will come back to this problem.

Framing

The way bundles are framed/presented can affect how they are perceived, hence influce individuals' decision making process. One of the most cited economic research by Kahneman and Tversky (1979) discussed this problem in a very clear and innovative fashion. Framing will be a problem if it induces violence of WARP: a is picked when comparing to b, but when c is available as well, b will be chosen instead. This may look silly and will never happen in real life but numerous examples of violation of WARP can be raised due to the framing problem. Designers/publicists are actually trained to take advantage of this "irrationality" to influence consumers' decision making process. A hugh strand of literature in behavioral economics discuss and explore the framing problem, limited attention, heuristics, impatience are introduced to explain such phenomena.

Indecision

Another big problem is that agents may just NOT be able to make a decision. Sometimes the differences between alternatives are trivial or too complicated to measure, the problem of indecision could rise. Rational preferences gives that for each pair of objects x and y, an agent can choose between: x is better than y, y is better than x, x and y are equal. However, if we add another option I can't tell which is better, the transitivity would be violated quite easily. Consider it this way, the choice of "I can't decide" allows $C(A) = \emptyset$ even for a finite set of alternatives, this simply goes against the model we have built up.

Inconsistency and probabilistic choice

It is widely documented that an agent could be inconsistent about her choices. This could be an issue of framing, anchoring, indecision, or just unjustifiable inconsistency. This brings the stochastic side of choices: agents' choices may be subject to many random factors hence not deterministic. This will be discussed more thoroughly in later chapters.

Determinants of preference

Since the model is a description of choice behavior, it does not provide any intuition on how a decision is made and what are the determinants of preferences. Later, we will talk about dynamic choice, where an agent's experiences affect her subsequent choices. The standard model needs to be adjusted to incorporating the evolving decision making process through time. Another situation is welfare analysis. Institutional factors would need to be included in the models: preferences could be partially determined socially, different social classes, countries, religions, cultures will likely lead agents to have different preferences. This has been examined more and more by institutional economists, I will include some inspiring works later.

Range of choices as a value

Nobel Laureate Amartya Sen is very vocal on standard theories being too ends-oriented and not attentive enough to process. In standard theory, suppose $x \in C(A)$, then the individual is equally well off between choosing x from A and being given a x directly. The opportunity to choose (or the ordeal of choosing in the opposite sense) has been ignored. A sufficient amount of psychological evidence has suggested that the right to choose is indeed valuable. The benefit/cost of the choosing process certainly deserves to be considered. Later, in the discussion of random choice, we will consider an example of what would happen with the choosing process taken into consideration.

For the content of this chapter, my main reference is Chapter 1 of Mas-Colell et al. (1995). Section 1, Chapter 2 of Kreps (1990) covers similar content but starts from strict preference >, it is a very good complement to Mas-Colell et al. (1995). Chapter 1 of Kreps (2013) explores choice and preferences on infinite sets. Lecture 1 and 2 of Rubinstein (2012) give a well organized, lecture-structured summary of these contents, it is a very good read.

FUNDAMENTALS OF CONSUMER THEORY

Contents

2.1	Preference Relations	21
2.2	Choice Rules	21
2.3	Linking Preferences with Choices	21
2.4	Introducing Utility	21
2.5	Commentary	21

The second chapter focuses on the most fundamental decision unit of microeconomic theory: *consumer*. The main reference is Chapter 2 and 3 of Mas-Colell et al. (1995).

The basic setting of consumer demand study is *market economy*, where the goods and services that the consumer may acquire and consume are available for purchase at known prices (or trade for other goods at know exchange rates).

In this chapter, we will focus on 2 major aspects of the consumer theory: choice and demand.

choice	individual decision making based on choice
demand	individual decision making induced by preference

The starting point of individual decision problem is a *set of possible (mutually exclusive) alternatives* from which the individual must choose. To model decision making process on this set of alternatives, one can:

- either start from the tastes, i.e., *preference relations* of individuals, and set up the patterns of decision making with preferences
- or, start from the actual actions of individuals, i.e. *choices*, to deduct a pattern of decision making

With this two major approaches in mind, we know what's coming: the *rationality* of preferences and the central assumption of choices, the *Weak Axiom of Revealed Preference (WARP)*. And of course, the two approaches and two basic assumptions are parallel, so we need to figure out how link the (underlying) preferences and (observed) choices.

- 2.1 Preference Relations
- 2.2 Choice Rules
- 2.3 Linking Preferences with Choices
- 2.4 Introducing Utility
- 2.5 Commentary

For the content of this chapter, my main reference is Chapter 1 of Mas-Colell et al. (1995). Section 1, Chapter 2 of Kreps (1990) covers similar content but starts from strict preference >, it is a very good complement to Mas-Colell et al. (1995). Chapter 1 of Kreps (2013) explores choice and preferences on infinite sets. Lecture 1 and 2 of Rubinstein (2012) give a well organized, lecture-structured summary of these contents, it is a very good read.

LAGRANGE MAXIMIZATION AND DUALITY

MONOTONE COMPARATIVE STATICS

EXPECTED UTILITY AND DECISIONMAKING UNDER UNCERTAINTY

AGGREGATION AND THE EXISTENCE OF A REPRESENTATIVE CONSUMER

PRODUCER THEORY

STOCHASTIC CHOICE

Part II Game Theory

NASH EQUILIBRIUM AND BAYESIAN NASH EQUILIBRIUM

RATIONALIZABILITY AND DOMINANT STRATEGIES

CORRELATED EQUILIBRIUM

DYNAMIC GAMES AND REFINEMENTS

REPEATED GAMES/FOLK THEOREM

RECURSIVE METHODS IN REPEATED GAMES

Part III Mechanism Design and Contract Theory

ARROW'S THEOREM AND SOCIAL CHOICE

BOUNDARIES OF THE FIRM AND COASE'S THEOREM

IMPLEMENTATION CONCEPTS

THE REVELATION PRINCIPLE

AUCTIONS AND OPTIMAL AUCTIONS

EFFICIENT IMPLEMENTATION

MORAL HAZARD

FULL IMPLEMENTATION

BIBLIOGRAPHY

- Patrick Bolton and Mathias Dewatripont. *Contract Theory*, volume 1. The MIT Press, 2005. URL https://ideas.repec.org/b/mtp/titles/0262025760.html.
- Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.
- Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. *Econometrica*, 47(2):363–391, 1979.
- David M. Kreps. A Course in Microeconomic Theory. Princeton University Press, 1990.
- David M Kreps. *Microeconomic foundations I: choice and competitive markets*, volume 1. Princeton university press, 2013.
- George J Mailath. *Modeling Strategic Behavior: A Graduate Introduction to Game Theory and Mechanism Design*, volume 6. World Scientific, 2018.
- George J. Mailath and Larry Samuelson. Repeated Games and Reputations: Long-Run Relationships. Oxford University Press, 2006. URL https://ideas.repec.org/b/oxp/obooks/9780195300796.html.
- Andreu Mas-Colell, Michael Dennis Whinston, et al. *Microeconomic theory*, volume 1. New York: Oxford university press, 1995.
- Roger B. Myerson. *Game Theory: Analysis of Conflict*. Harvard University Press, 1991. ISBN 9780674341166. URL http://www.jstor.org/stable/j.ctvjsf522.
- Martin J. Osborne and Ariel Rubinstein. *A Course in Game Theory*. The MIT Press, 1994. URL https://ideas.repec.org/b/mtp/titles/0262650401.html.
- Ariel Rubinstein. *Lecture Notes in Microeconomic Theory: The Economic Agent Second Edition*. Princeton University Press, rev revised, 2 edition, 2012.