Rohan Yadav

Education

2020-Present Ph.D. in Computer Science, Stanford University, Stanford, CA.

Advised by Alex Aiken and Fredrik Kjolstad

2015–2019 **BS in Computer Science**, Carnegie Mellon University, Pittsburgh, PA.

Advised by Umut Acar

Dean's List, University and SCS College Honors

Experience

- 2023- Research Intern, NVIDIA, Santa Clara, CA.
 - o Researching compilation-based techniques to compose parallel programs in the Legate framework.
- 2022 Research Intern, NVIDIA, Santa Clara, CA.
 - Developed legate.sparse, a distributed and accelerated drop-in replacement for scipy.sparse.
- 2019-2020 Software Engineer, Cockroach Labs, New York, NY.
 - o Improved stability and performance of CockroachDB's distributed SQL engine and schema management infrastructure.
 - o Contributed to development of a variety of large features in CockroachDB including ENUM types, User Defined Schemas, and Online Primary Key Changes.
 - 2018 Software Engineering Intern, Uber Advanced Technologies Group, San Francisco, CA.
 - o Developed infrastructure for a migration from an internal data center to AWS.
 - o Implemented a file access system within AWS for integration with existing data center services.
 - o Dramatically enhanced scalability of batch compute jobs processing internal data.
 - 2017 Software Engineering Intern, Facebook, Menlo Park, CA.
 - o Developed system to perform disruptive upgrades on network switches.
 - o Added packet subscription service for network switch agent debugging and maintenance.

Selected Research Projects

- 2023 Composing Distributed Computations Through Task and Kernel Fusion with Michael Bauer, Shiv Sundram, Wonchan Lee, Michael Garland, Alex Aiken, Fredrik Kjolstad
 - Developed dynamic program analysis techniques to fuse computations across library boundaries on distributed machines, enabling applications built through the composition of high-level libraries to approach the performance of hand-written code.
- 2022 **Legate Sparse** with Michael Bauer, Wonchan Lee, Manolis Papadakis, Melih Elibol, Michael Garland Developing legate.sparse a distributed and GPU-accelerated drop-in replacement for scipy.sparse, enabling supercomputer scale performance from high-level Python code.
- 2021-2022 **Compiling Tensor Computations to Supercomputers** *with Fred Kjolstad, Alex Aiken* Developed DISTAL, a compiler for sparse and dense tensor algebra that targets distributed systems.
 - 2020 **Automated Mapping of Computation and Data** *with Alexandra Henzinger, Thiago Teixeira, Alex Aiken*Developed system to automatically discover strategies for mapping computation and data onto different processors and memories in a heterogenous system.
- 2018-2019 **Disentanglement** *with Sam Westrick, Umut Acar*Designed efficient memory management systems for the memory access patterns of fork-join parallel programs.

Publications

- SC 2023 **Legate Sparse: Distributed Sparse Computing in Python** Rohan Yadav, Wonchan Lee, Melih Elibol, Manolis Papadakis, Taylor Lee-Patti, Michael Garland, Alex Aiken, Fredrik Kjolstad, Michael Bauer
- SC 2023 **Automated Mapping of Task-Based Programs onto Distributed and Heterogenous Machines** *Thiago S. F. X. Teixeira, Alexandra Henzinger, Rohan Yadav, Alex Aiken*
- SC 2022 SpDISTAL: Compiling Sparse Distributed Tensor Computations Rohan Yadav, Alex Aiken, Fredrik Kjolstad
- PLDI 2022 DISTAL: The Distributed Tensor Algebra Compiler Rohan Yadav, Alex Aiken, Fredrik Kjolstad
- OOPLSA **Compilation of Sparse Array Programming Models** Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, 2021 Kunle Olukotun, Saman Amarasinghe, Fredrik Kjolstad
- POPL 2020 **Disentanglement in Race-Free Nested Parallel Programs** Sam Westrick, Rohan Yadav, Matthew Fluet, Umut A. Acar

Thesis

SPAA 2019 Brief Announcement: A Parallel Algorithm for Subgraph Isomorphism Rohan Yadav, Umut A. Acar

Submitted for Publication (Under Review)

2023 Composing Distributed Computations Through Task and Kernel Fusion Rohan Yadav, Shiv Sundram, Wonchan Lee, Michael Garland, Michael Bauer, Alex Aiken, Fredrik Kjolstad

Awards

- 2023 NVIDIA Graduate Research Fellowship
- 2020 NSF Graduate Research Fellowship
- 2019 CRA Outstanding Undergraduate Researcher Nominee
- 2019 Carnegie Mellon Senior Leadership Recognition
- 2015 Presidential Scholar Semifinalist

Talks

Legate Sparse: Distributed and Accelerated Sparse Computing in Python

- o UW PLSE Seminar, December 2023
- o SC 2023, November 2023
- UIUC Compilers Seminar, October 2023
- o MIT Fast Code Seminar, October 2023
- o CMU Catalyst Group Meeting, October 2023
- o Berkeley Programming Systems Seminar, September 2023
- Stanford HPC-Al Advisory Council, February 2023

SpDISTAL: Compiling Sparse Distributed Tensor Computations

- o Legion Retreat, December 2022
- o AHA Affiliates Retreat, December 2022
- o SC 2022, November 2022
- o Stanford Software Research Lunch, April 2022

DISTAL: The Distributed Tensor Algebra Compiler

- o Google Research, November 2022 (Invited)
- o PLDI 2022, June 2022
- o Vienna University of Technology, April 2022 (Invited)
- o Stanford Agile Hardware Project Group Meeting, Jan 2022
- o Cerebras Systems, Dec 2021 (Invited)
- o Oxford Tensor Computations Seminar, Nov 2021
- o Stanford Software Research Lunch, Nov 2021

On the Automated Mapping of Computation and Data Onto Heterogenous Machines

- o Stanford Software Research Lunch, Feb 2021
- Legion Developer Meeting, Jan 2021

A Parallel Algorithm for Subgraph Isomorphism

o SPAA 2019, Jun 2019

Disentanglement, Theory and Practice

o CMU Meeting of the Minds, May 2019

Teaching

- 2023 Teaching Assistant Stanford CS143 Compilers
- 2021-2022 Teaching Assistant Stanford CS242 Programming Languages
- 2017-2018 Head Teaching Assistant CMU 15210 Parallel Algorithms and Data Structures
 - 2016 **Teaching Assistant** *CMU 15150* Functional Programming
- 2018-2020 **Diderot**

Developed and maintained a new course management platform, now used by 1500 students daily at CMU.