Lecture-05

Feature Extraction

Introduction

- Feature detection and matching are an essential component of many computer vision applications.
- kinds of features
 - key-point features or interest points
 - Edges

key-point features

key-point features usage Example

Edge Detection?

"The ability to measure gray-level transitions in a meaningful way."

(R.C. Gonzales & R. E. Woods – Digital Image Processing,
 2nd Edition, Prentice-Hall, 2001)

Gray-Level Transition

Ideal

Ramp

Detecting the Edge (1)

Detecting the Edge (2)

Gradient Operators

 The gradient of the image I(x,y) at location (x,y), is the vector:

• The magnitude of the gradient:

$$\overline{\nabla I} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial I(x, y)}{\partial x} \\ \frac{\partial I(x, y)}{\partial y} \end{bmatrix}$$

$$\nabla I = \left\| \overline{\nabla I} \right\| = \sqrt{\left[G_x^2 + G_y^2 \right]}$$

• The direction of the gradient vector:

$$\theta(x,y) = \tan^{-1} \begin{pmatrix} G_x \\ G_y \end{pmatrix}$$

The Meaning of the Gradient

• It represents the direction of the strongest variation in intensity

The direction of the edge at location (x,y) is perpendicular to the gradient vector at that point

Calculating the Gradient

 For each pixel the gradient is calculated, based on a 3x3 neighborhood around this pixel.

The Sobel Edge Detector

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

$$G_{x}$$

$$\approx (z_{7} + 2z_{8} + z_{9})$$

$$- (z_{1} + 2z_{2} + z_{3})$$

$$G_y$$

$$\approx (z_3 + 2z_6 + z_9)$$

$$- (z_1 + 2z_4 + z_7)$$

The Prewitt Edge Detector

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

$$G_{x}$$

$$\approx (z_{7} + z_{8} + z_{9})$$

$$- (z_{1} + z_{2} + z_{3})$$

$$G_y$$

$$\approx (z_3 + z_6 + z_9)$$

$$- (z_1 + z_4 + z_7)$$

The Roberts Edge Detector

0	0	0
0	-1	0
0	0	1

$$G_{x} \approx z_{9} - z_{5}$$

$$G_y \approx z_8 - z_6$$

The Roberts Edge Detector is in fact a 2x2 operator

The Canny Method

Two Possible Implementations:

1. The image is convolved with a Gaussian filter before gradient evaluation

$$h(r) = -e^{-\frac{r^2}{2\sigma^2}} \longleftarrow$$

$$r = \sqrt{x^2 + y^2}$$

2. The image is convolved with the gradient of the Gaussian Filter.

The Edge Detection Algorithm

- The gradient is calculated (using any of the four methods described in the previous slides), for each pixel in the picture.
- If the absolute value exceeds a threshold, the pixel belongs to an edge.
- The Canny method uses two thresholds, and enables the detection of two edge types: strong and weak edge. If a pixel's magnitude in the gradient image, exceeds the high threshold, then the pixel corresponds to a strong edge. Any pixel connected to a strong edge and having a magnitude greater than the low threshold corresponds to a weak edge.