第6章 关系数据库模式设计

本章主要内容

- 关系模式的设计问题
- ■函数依赖
- 关系模式的分解
- 关系模式的范式

三、模式分解

- ■概念
- 无损连接(Lossless Join)
- 保持函数依赖(Preserve Dependency)

1、模式分解的概念

- □ 设有关系模式R(U)和R1(U1), R2(U2), ..., Rk(Uk), 其中U=U1∪U2...∪Uk, 设ρ={R1, R2,..., Rk}, 则称ρ 为R的一个分解
- 模式分解的含义
 - 属性集的分解
 - 函数依赖集的分解
 - ◆R(A,B,C), F={A→B, C→B}, 则分解为R1(A,B), R2(A,C)丢失了C→B

2、模式分解的标准

- 具有无损连接
- 要保持函数依赖
- 既具有无损连接,又要保持函数依赖

3、无损连接

- ■动机
- ■概念
- 无损连接的测试

(1) 动机

S#StatusCityS330ParisS530Athens

■ 模式分解的过程应是可逆的,R的 所有数据在分解后应没有丢失

S#	Status
S 3	30
S5	30

Status	City
30	Paris
30	Athens

S#	Status	City
S 3	30	Paris
S 3	30	Athens
S5	30	Paris
S5	30	Athens

信息丢失

分解后要不能得到S3的 City是Paris

(2) 概念

- 设R是关系模式,分解成关系模式
 ρ={R1,R2,...,Rk},F是R上的一个FD集,若对R中满足F的每个关系r,都有:
 - $r = \pi_{R1}(r) \bowtie \pi_{R2}(r) \bowtie ... \bowtie \pi_{Rk}(r)$,则称这个分解p相对于F是"无损连接分解"
 - R的每个关系r是它在R_i上的投影的自然连接
 - 无损连接保证R分解后还可以通过R_i恢复

(2) 概念

我们记
$$m_{\rho}(r) = \sum_{i=1}^{k} \pi_{Ri}(r)$$

■ 则对于关系模式R关于F的无损连接条件是r=m_ρ(r)

(2) 概念

 $r ≠ m_p(r)$ 所以不是无损连接

(1)Select * From R

(2)Select * From R1,R2 where R1.Status=R2.Status

返回结果不一致

S#	Status	City
S 3	30	Paris
S3	30	Athens
S5	30	Paris
S5	30	Athens

$$m_{\rho}(r) = \pi_{R1}(r) \infty \pi_{R2}(r)$$

(3) 无损连接的测试

- 方法1: Chase
 - 输入:关系模式R(A1,A2,...,An),R上的函数依赖集F,R的一个分解p={R1,...,Rk}
 - 输出:判断p相对于F是否具有无损连接性
 - 算法: Chase

1) Chase过程

- 构造一个k行n列的表格,每行对应一个模式 R_i ($1 \le i \le k$),每列对应一个属性 A_j ($1 \le i \le n$),若 A_j 在 A_i 中,则在表格的第i行第i列处填上 A_j ,否则填上符号 A_i
- 检查F的每个FD,并修改表格中的元素,方法如下:
 - o 对于F中的函数依赖X→Y, 若表格中有两行在X分量上相等, 在Y分量上不相等, 则修改Y:
 - ◆ 若Y的分量中有一个a_i,则另一个也修改为a_i;
 - ◆ 如果没有a_i,则用其中一个b_{ii}替换另一个符号(i是所有b中最小的行数),一直到表格不能修改为止
- 若修改后,表格中有一行是全a,即a₁a₂…a_n,则p相对于F是无损连接的分解,否则不是

1) Chase过程

- 扫描一次F后,若表格中未出现全a的行,则进行下一次扫描
 - 由于每次扫描F至少能减少一个符号,而符号有限,因此算法最后必然终止
 - 终止条件
 - ◆全a行
 - ◆表格扫描后不再发生任何修改

2) Chase示例

- \blacksquare R(A,B,C,D,E)
 - R1(A,D), R2(A,B), R3(B,E), R4(C,D,E), R5(A,E)
 - \bullet F={A \rightarrow C, B \rightarrow C, C \rightarrow D, DE \rightarrow C, CE \rightarrow A}
- 判断R分解为p={R1,R2,R3,R4,R5}是否是无损连接的分解

2) Chase示例

1、构造初始表格

R1(A,D), R2(A,B), R3(B,E), R4(C,D,E), R5(AE)

	Α	В	С	D	<u>E</u>
AD	a1	b12	b13	a4	b15
AB	a1	a2	b23	b24	b25
BE	b31	a2	b33	b34	a5
CDE	b41	b42	a3	a4	a5
AE	a1	b52	b53	b54	a5

2、处理表格

A→C: 将b23, b53改为b13

B→C: 将b33改为b13

C→D: 将b24, b34, b54改为a4

DE→C: 将第3行和第5行的C改为a3

CE→A: 将第3行和第4行的A改为a1

2) Chase示例

1、构造初始表格

R1(A,D), R2(A,B), R3(B,E), R4(C,D,E), R5(AE)

<u>E</u>

b15

b25

	Α	В	С	D
AD	a1	b12	b13	a4
AB	a1	a2	b13	a4
BE	a1	a2	a3	a4
CDE	a1	b42	a3	a4
AE	a1	b52	a3	a4

2、处理表格

A→C: 将b23, b53改为b13

B→C: 将b33改为b13

C→D: 将b24, b34, b54改为a4

DE→C: 将第3行和第5行的C改为a3

CE→A:将第3行和第4行的A改为a1

3) 方法2

- 当R分解为两个关系模式R1和R2时,有一种简便的方法可以测试无损 连接性
 - $p = \{R1, R2\}$
 - p是无损连接的分解当且仅当下面之一满足
 - $\bullet \quad (R1 \cap R2) \rightarrow (R1-R2)$
 - \bullet (R1 \cap R2) \rightarrow (R2-R1)
 - ◆ 其中R1 ∩ R2指模式的交, 返回公共属性
 - ◆ R2-R1表示模式的差集,返回属于R2但不属于R1的属性集
- 例 R(A,B,C), F={A→B}
 - $\rho 1 = \{R1(A,B),R2(B,C)\}, \rho 2 = \{R1(A,B),R2(A,C)\}$
 - ρ2是无损连接, ρ1不是

4、保持函数依赖

- 关系模式R的FD集在分解后仍在数据库模式中保持不变
 - 给定R和R上的一个FD集F, ρ ={R1,R2,...,Rk}的分解应使F被Ri 上的函数依赖逻辑蕴含
- 定义:设F是属性集U上的FD集,Z是U的子集,F在Z上的投影用 π_z (F)表示,定义为: π_z (F)={X→Y | X→Y∈F⁺ \wedge XY \subseteq Z}。对于R(U)上的一个分解 ρ ={R1,R2,..., Rk},若满足下面条件,则称分解 ρ 保持函数依赖集F:

$$\left(\bigcup_{i=1}^k \pi_{R_i}(F)\right)^+ = F^+$$

(1) 例子

- R(city, street, zip), F={(city, street)→zip, zip→city}
- 分解为ρ={R1(street,zip),R2(city,zip)}
- 是否无损连接?
 - R1 \cap R2={zip}, R2-R1={city}, zip \rightarrow city
 - 无损连接
- 是否保持函数依赖?
 - π_{R1}(F)={按自反律推出的平凡FD}
 - $\pi_{R2}(F) = \{zip \rightarrow city, 以及按自反律推出的平凡FD\}$
 - $\pi_{R1}(F) \cup \pi_{R2}(F) = \{zip \rightarrow city\}^+ \neq F^+$
 - 不保持函数依赖

(2) 不保持函数依赖带来的问题

- R(city, street, zip), F={(city, street)→zip, zip→city}
- 分解为p={R1(street, zip), R2(city, zip)}
- 在R1中插入('a','100081')和('a','100082')
- R2中插入('Beijing','100081')和('Beijing','100082')
- R1 × R2:得到

City	Street	Zip
Beijing	a	100081
Beijing	а	100082

■ 违反了(city,street)→zip, 因为它被丢失了, 语义完整性被破坏

模式分解小结

■ 三种准则

- 无损连接
 - ◆若R分解为n(n>2)个关系模式,使用Chase方法判断是否无损连接
 - ◆若R分解为R1和R2, 使用(R1 ∩ R2) → (R1-R2)或(R1 ∩ R2) → (R2-R1) 判断
- 保持函数依赖

$$\left(\bigcup_{i=1}^k \pi_{R_i}(F)\right)^+ = F^+$$

• 既无损连接,又保持函数依赖