hw2, PART A: due on iLearn by 12:30pm on Thursday, February 17

1. List five vectors in Span $\{v_1, v_2\}$. For each vector, show the weights on v_1 , v_2 used to generate the vector and list the three entries of the vector. Do not make a sketch.

$$\mathbf{v_1} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$$

2. Decide whether the following sets of vectors are linearly independent or linearly dependent. Give reasons for your choices.

$$a) \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} -3\\2\\-7 \end{bmatrix}, \begin{bmatrix} 2\\-11\\-8 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} -3\\2\\-7 \end{bmatrix}, \begin{bmatrix} 2\\-11\\-8 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} -3\\2\\-7 \end{bmatrix}, \begin{bmatrix} 2\\-11\\-8 \end{bmatrix}, \begin{bmatrix} 9\\12\\13 \end{bmatrix} \right\}$$

$$\mathbf{d} \left\{ \begin{bmatrix} 1\\4\\9\\10 \end{bmatrix}, \quad \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \quad \begin{bmatrix} 5\\7\\1\\0 \end{bmatrix} \right\}$$

3. Determine if the columns of the matrix form a linearly independent set. Justify each answer.

a)
$$\begin{bmatrix} -4 & -3 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & 3 \\ 5 & 4 & 6 \end{bmatrix}$$
, b)
$$\begin{bmatrix} 1 & -3 & 3 & -2 \\ -3 & 7 & -1 & 2 \\ 0 & 1 & -4 & 3 \end{bmatrix}$$

4. Let
$$\mathbf{v_1} = \begin{bmatrix} 1 \\ -5 \\ -3 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} -2 \\ 10 \\ 6 \end{bmatrix}$, and $\mathbf{v_3} = \begin{bmatrix} 2 \\ -9 \\ h \end{bmatrix}$.

- a) For what values of h is $\mathbf{v_3}$ in Span $\{\mathbf{v_1}, \mathbf{v_2}\}$?
- b) For what values of h is $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ linearly dependent?
- 5. Given $A = \begin{bmatrix} 4 & 1 & 6 \\ -7 & 5 & 3 \\ 9 & -3 & 3 \end{bmatrix}$, observe that the first column plus twice the second column equals the third column. Find a nontrivial solution of $A\mathbf{x} = \mathbf{0}$.

6. Could a set of three vectors in \mathbb{R}^4 span all of \mathbb{R}^4 ? Explain. What about n vectors in \mathbb{R}^m when n is less than m?

7. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$$
 and $A = \begin{bmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A ? Why or why not?

8. Let
$$A = \begin{bmatrix} 1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Show that the equation $A\mathbf{x} = \mathbf{b}$ does not have a solution for all possible \mathbf{b} , and describe the set of all \mathbf{b} for which $A\mathbf{x} = \mathbf{b}$ does have a solution.

9. Let
$$B = \begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 1 & 1 & -5 \\ 1 & 2 & -3 & 7 \\ -2 & -8 & 2 & -1 \end{bmatrix}$$
. Do the columns of B span \mathbb{R}^4 ? Does the equation $B\mathbf{x} = \mathbf{y}$

have a solution for each $\mathbf{y} \in \mathbb{R}^4$?

PART B: due on Gradescope by 12:30pm on Thursday, February 17

Please remember you can submit your code several times before the deadline.

A few must-dos:

- Complete your code in the template hw2.py.
- Do not change the name of the template. You must submit it as hw2.py
- Do not change the name of the procedures or their inputs.

Complete the procedure bitter_rivals, to find which two senators disagree the most. The description of the inputs and outputs are provided in the template hw2.py.