VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

Modelování a simulace Vliv počasí na trajektorii balistických střel 9. Balistika ve vojenství

Obsah

1	Úvod	2
	1.1 Zdroje	2
	1.2 Ověření validity	2
2	Koncepce modelu	3
	2.1 Výpočet trajektorie	3
	2.1.1 Činitel odporu	4
	2.1.2 Závislost tlaku vzduchu na nadmořské výšce	4
	2.2 Výpočet hustoty vzduchu	4
	2.3 Zjednodušení oproti reálnému světu	5
3	Popis programu	5
	3.1 Spouštění programu	5
	3.2 Výstup programu	5
4	Experimenty	5
	4.1 Experiment č.1	5
	4.1.1 Zkoumání závislosti dostřelu na teplotě vzduchu	6
	4.2 Experiment č.2	6
	4.3 Experiment č.3	7
5	Závěr	8

1 Úvod

Studie se zabývá tím, jakým způsobem a do jaké míry je neřízená střela ovlivněna fyzikálními faktory, teplotou a vlhkostí vzduchu, které ovlivňují hustotu vzduchu. Koncepce modelu počítá s konstantní teplotou i vlhkostí, tyto veličiny jsou zadány konstantně pro daný běh simulace a v průběhu simulace se nemění.

Pro experimenty byly použity hodnoty projektilu M107[[5], str. 494].

1.1 Zdroje

Mezi potřebné informace při vytváření projektu patří specifikace vybrané střely, např. její hmotnost, činitel odporu nebo obsah průměru [[2], str. 13], ale také hodnoty hustoty či teploty vzduchu především čerpaných ze zdroje Ventusky.

Pro výpočet hustoty vzduchu jsme použili výpočty z online kalkulátorů Omnicalculator a Calctool.

1.2 Ověření validity

Ověřování validity modelu probíhalo zejména porovnáváním výsledků s existujícími modely. Vzhledem ke zvolenému tématu je téměř nemožné porovnávat výsledky s reálnými daty (získanými v terénu). Proto jsme výsledky simulace porovnávali s existujícími simulátory, které jsou dostupné na internetu. Naše výsledky byly dostatečně přesné a proto jsme model prohlásili za dostatečně validní.

Validitu jsme ověřovali především na jednoduchém simulátoru dostupném na http://www.physics.smu.edu/fattarus/ballistic.html.

Při ověřování výpočtu tlaku vzduchu v různých nadmořských výškách jsme porovnávali graf závislosti výšky na tlaku s referenčím grafem. Námi zjištěné výsledky jsou dostatečně podobné těm referenčním, a tím jsme ověřili validitu výpočtu tlaku vzduchu.

Obrázek 1: Porovnání závisloti nadmořské výšky s atmosférickým tlakem. Data z naší simulace.

Atmospheric Pressure vs. Elevation

The Engineering ToolBox
www.EngineeringToolBox.com

Obrázek 2: Referenční graf[3] závosloti nadmořské výšky a atmosférického tlaku. Zdroj: Engineering ToolBox

2 Koncepce modelu

Model představuje trajektorii projektilu ovlivněnou odporem prostředí, tedy zejména hustotu vzduchu. U projektilu se modeluje pouze tzv. vnější balistika. U té se počítá s plochou průměru, hmotností, rychlostí a činitelem odporu daného projektilu. Vítr v modelu neuvažujeme, protože to není veličina kterou chceme sledovat.

2.1 Výpočet trajektorie

Při modelování trajektorie bereme v úvahu odpor prostředí tzv. drag. V rámci výpočtu odporu prostředí započítáváme pouze hustotu vzduchu, plochu průřezu střely a činitel odporu (drag coefficient).

Pro výpočet síly odporu prostředí používáme vzorec:

$$\vec{F_d} = 1/2 * C_d * \rho * \vec{v}^2 * A$$

kde C_d je činitel odporu,

 ρ je hustota vzduchu2.2,

 ${\cal A}$ je plocha průřezu,

v je rychlost.

Dále započítáváme gravitační sílu působící na projektil, která působí směrem dolů (tedy k zemi):

$$F_q = m * \vec{g}$$

kde m je hmotnost a

|g| je gravitační zrychlení (9, 80665 m/s).

Z předešlých rovnic následně můžeme sestavit výsledné rovnice použité v modelu:

$$D = 1/2 * C_d * A * \rho$$

$$\frac{d^2 y_x}{dt^2} = (-D * |\vec{v}| * v_x)/m$$

$$\frac{d^2 y_z}{dt^2} = (-D * |\vec{v}| * v_z)/m$$

$$\frac{d^2 y_y}{dt^2} = (-D * |\vec{v}| * v_y)/m - g$$

2.1.1 Činitel odporu

V praxi je velice obtížné vypočítat činitel odporu a často se určuje experimentálně[1], proto je obtížné nalézt spolehlivé hodnoty pro daný projektil.

Z důvodu zjednodušení a taky obtížnosti nalézt spolehlivé hodnoty byl pro náš model použit statický činitel odporu. Ten byl odvozen z balistického matematického modelu G7, který je podobný pro námi zvolený projektil M107 a proto se pro výpočet jeho trajektorie používá[7].

2.1.2 Závislost tlaku vzduchu na nadmořské výšce

Tlak vzduchu je závislý na nadmořské výšce. Tento vztah je v modelu vypočítaný pomocí rovnice:

$$P = P_0 * e^{\frac{-g*M*h}{R*T}}$$

kde P_0 je tlak v nadmořské výšce (101,325 KPa),

M je molární hmotnost vzduchu $(0,0289644 \, kg/mol)$,

h je nadmořská výška,

R je univerzální plynová konstanta (8, 31423 $m^3 * Pa * K^-1 * mol^-1$),

T je teplota vzduchu.

2.2 Výpočet hustoty vzduchu

Pro výpočet hustoty vzduchu je potřeba znát tlak2.1.2, teplotu, vlhkost vzduchu a konstanty týkající se výpočtu. Použité rovnice pro výpočet hustoty vzduchu jsou[6]:

$$\rho = \frac{P_d}{R_d * T} + \frac{P_v}{R_v * T}$$

$$P_d = P - P_v$$

kde P_d je parciální tlak suchého vzduchu2.1.2,

 R_d je plynová konstanta suchého vzduchu (287, 05 J/(kg * K)),

 P_v je parciální tlak vodní páry¹,

 R_v je plynová konstanta vodní páry (461, 495 J/(kg * K)),

T je teplota.

Pro výpočet parciálního tlaku vodní páry (P_v) byl použit polynom převzatý ze zdroje https://www.calctool.org/atmospheric-thermodynamics/air-density.

¹Překlad z anglického "water vapor pressure"

2.3 Zjednodušení oproti reálnému světu

V našem modelu neuvažujeme Coriolisovu sílu (uvažujeme trajektorii ve směru rotace Země) ani zakřivení Země, které nemá velký vliv při experimentování s malým doletem projektilu (zakřivení země na 10km vzdálenosti je přibližně 8m). Dále používáme pouze statickou hodnotu činitele odporu2.1.1.

Dalším zjednodušením je, že v našem modelu uvažujeme bezvětří a konstantní teplotu i vlhkost vzduchu ve všech výškách.

3 Popis programu

Program je napsán v jazyce c++ s použitím knihovny SIMLIB².

3.1 Spouštění programu

Program lze přeložit příkazem make. Přeložený program je třeba spouštět s několika argumenty:

- -a úhel svíraný hlavní houfnice se zemí, tzn. úhel vystřeleného projektilu [°],
- -c činitel odporu,
- -m hmotnost projektilu [kg],
- -o nepovinný argument, kterým lze zadat vlastní název výstupního souboru,
- -s obsah plochy průřezu projektilu [m²],
- -t teplota [°C],
- -v výchozí rychlost projektilu [m/s]

Všechny argumenty kromě argumentu −o přijímají celá či desetinná čísla. Argument −o je také jako jedinný nepovinný.

3.2 Výstup programu

Výstupem je soubor trajectory. dat (v případě spuštění s parametrem –o je soubor pojmenován dle názvu zvoleného uživatelem) obsahující hodnoty trajektorie dané střely.

Formátem výstupního souboru jsou 3 hodnoty na řádek - souřadnice X, Y a Z projektilu ve vzorkovaném čase. Formát je přizpůsobený tak, aby se daly jednoduše vykreslovat grafy pomocí programu gnuplot³.

Lze generovat 2D grafy příkazem make plot, či 3D grafy make plot3d. Grafy jsou generovány z výstupních hodnot posledního spuštění programu.

4 Experimenty

Pro experimenty byly použity parametry střely M107[5] (Váha 43.2 kg, odhadnutý činitel odporu2.1.1 0,3, plocha průřezu projektilu 0.0765 m²) a úsťová rychlost houfnice M777 howitzer[8] (827 m/s), která tento náboj používá.

4.1 Experiment č.1

První experiment zkoumá, jak je dráha střely ovlivněna teplotou vzduchu.

Vstupní hodnoty jsou (kromě zkoumané teploty) stejné.

²knihovna dostupná z: https://www.fit.vutbr.cz/~peringer/SIMLIB/

³http://www.gnuplot.info/

Obrázek 3: Dolet projektilů vzhledem k měnící se teplotě

Z výsledného grafu lze vyčíst, že při stoupající teplotě vzduchu projektil urazí delší dráhu. Z hodnot v grafu 3 lze odhadovat, že rozdíl dostřelu mezi jednotlivými trajektoriemi by mohl být lieární.

4.1.1 Zkoumání závislosti dostřelu na teplotě vzduchu

Obrázek 4: Závislost vzdálenosti dostřelu na teplotě

V grafu 4 lze vidět, že dostřel je téměř lineárně závislý na teplotě vzduchu., čímž se může zjednodušit odhad trajektorie střely při korekcích.

4.2 Experiment č.2

Druhý experiment se zabývá vlivem vlhkosti vzduchu na dráhu střely.

Vstupem jsou data balistických křivek projektilů s desetiprocentními přírustky hodnot vlhkosti vzduchu.

Obrázek 5: Dráha projektilů vzhledem k měnící se vlhkosti vzduchu

Obrázek 6: Detail rozdílů

Graf ukazuje, že rozdíl dráh projektilů je v podstatě zanedbatelný. Z grafu je vidět, že mezi 0 % a 100 % vlhkosti je rozdíl v dostřelu zhruba 25m. To v tomto experimentu znamená 0.36% chybu.

4.3 Experiment č.3

Ve třetím experimentu bylo pozorováno chování balistické křivky při různých kombinacích teploty a relativní vlhkosti vzduchu. Data pro tento experiment byla převzata z reálných naměřených teplot a vlhkostí z internetové stranky Ventusky.

Obrázek 7: Dráha projektilů

5 Závěr

Cílem 3. experimentu bylo zjistit zda kombinace faktoru teploty a relativní vlhkosti vzduchu budou odlišné od 1.4.1 a 2.4.2 experimentu. V grafu můžeme vidět že ani kombinace těchto faktorů neprodukuje výrazně odlišné výsledky než v 1. experimentu, tedy že vlhkost vzduchu ani v tomto případě nemá velký vliv na trajektorii.

Z výstupů experimentů tedy lze vypozorovat, že teplota vzduchu má velký dopad na trajektorii a tudíž ji nelze zanedbat. Ovšem vlhkost, hlavně u neřízených střel s krátkým doletem, lze zanedbat, aniž by to výrazně ovlivnilo přesnost výpočtu trajektorie.

Reference

- [1] Benson, T.: The Drag Equation. [online], 13. květen 2021, [cit. 3. 12. 2022]. URL https://www.grc.nasa.gov/www/k-12/rocket/drageq.html
- [2] Christopher Kenyon, T. D.: Study of the Bistatic Radar Cross Section of a 155-mm Artillery Round. [online], červen 2017, [cit. 1. 12. 2022].
 URL https://apps.dtic.mil/sti/pdfs/AD1035373.pdf
- [3] Engineering ToolBox, .: Atmospheric Pressure vs. Elevation above Sea Level. [online], [cit. 4. 12. 2022].

 URL https://www.engineeringtoolbox.com/air-altitude-pressure-d_462.

 html
- [4] Fattaruso, J.: Ballistic JavaScript Simulator. [online], [cit. 3. 12. 2022]. URL http://www.physics.smu.edu/fattarus/ballistic.html
- [5] Gander, T. J.: Jane's Ammunition Handbook 2002-2003. [online], 2002.
 URL https://archive.org/details/Janes_Ammunition_Handbook/page/n2163/mode/2up
- [6] Hoyos, L.: Air Density Calculator. [online], [cit. 4. 12. 2022].

 URL https://www.calctool.org/atmospheric-thermodynamics/air-density
- [7] Magier, M.; Tomasz, M.: The Estimation of the Drag Shape for Supersonic Mortar Projectiles. *Fluid Dynamics Research*, leden 2017: s. 45–49.
- [8] Verdict Media Limited: M777 155mm Ultralightweight Field Howitzer. [online], 3. únor 2020, [cit. 30.11.2022].
 URL https://www.army-technology.com/projects/ufh/
- [9] Wooding, S.: Air Pressure at Altitude Calculator. [online], [cit. 4. 12. 2022]. URL https://www.omnicalculator.com/physics/air-pressure-at-altitude