What's Cooking

Siyu Chen

Xi'an Shiyou University

(None)

Overview

Problem Definition

Problem Description

Description

Asks you to predict the category of a dish's cuisine given a list of its ingredients.

- 1. Dish data loading;
- 2. Preprocess seasoning and visualization data set structure;
- 3. Loading Logistic Regression Model and Ensemble Model training;
- 4. Test and submit the results to see the experimental score.

Read Data

- train.tsv: The data used for training that contains ID, cuisine, and ingredients.
- test.tsv: After training the model with the training data set, use the test data set to generate a file similar to sample_submission.csv.
- sampleSubmission.csv : A
 submission that meets the purpose.

Infer the characteristics of its cuisine by the seasonings used:

- ID: Each data sequence number
- ingredients: The reason for classification is also the most important feature.
- cuisine: It's the target of the classification, The total dish coefficient is 20, such as'brazilian' 'british' 'chinese' 'filipino'.

Analysing Data

Data Statistics

Statistic the data in the training set.

Table 1: Statistic the data in the training set

	ID	Cuisine	Ingredients
0	10259	greek	[romaine lettuce, black olives, grape tomatoes
1	25693	southern_us	[plain flour, ground pepper, salt, tomatoes, g
2	20130	filipino	[eggs, pepper, salt, mayonaise, cooking oil, g
3	22213	indian	[water, vegetable oil, wheat, salt]
4	13162	indian	[black pepper, shallots, cornflour, cayenne pe

Dataframe Analysis

■ To better process the data, we need to do the following:

◆ Count the total data of training set and test set.

train shape: 39774

test shape: 9944

◆ Maximum Number of Ingredients in a Dish: 65

◆ Minimum Number of Ingredients in a Dish: 1

train: 8529

test: 3310

Visualization and Data Preprocessing

Number of receipes by Cuisine

- Look at the graphs below
 - ◆ Italian cuisine dominates all cuisine.

Figure 1: number of receipes by cuisine

Ingredients in a Dish

- Look at the graphs below
 - ◆ Ingredients in a dish distribution.

Figure 2: distribution

Main Ingredients

- Look at the graphs below
 - ◆ Salt is the largest share of all the Greek ingredients.

Figure 3: top 15 ingredients

Ingredients in Each Cuisine

■ The proportion of ingredients in Mexican cuision.

■ The proportion of ingredients in Chinese cuision.

Figure 4: Mexican cuisine

Figure 5: Chinese cuisine

NLP Analysis

TF-IDF Algorithm

■ Model of TF-IDF algorithm

$$TF - IDF(d, w) = TF(d, w) * IDF(w)$$

- $lacktriangledown TF(d,w) \Leftrightarrow$ Frequency of occurrence of w in document d.
- $\bullet \quad IDF(w) = log \frac{N}{N(w)}$
- \bullet N \Leftrightarrow The total number of documents in a corpuss.
- \bullet N(w) \Leftrightarrow How many documents does the w appear in.

TfidfVectorizer Grammar

- Steps.
 - ◆ The counting matrix of words is converted to TF-IDF representation, and then normalized.
 - ◆ Scikit-learn provides a TfidfVectorizer class, which has the ability to remove common stop words (like a, the, and, or).
 - ◆ TF-IDF tends to filter out common words and retain important words.

Modeling

Logistic Regression and Ensemble Model

Logistic Regression

- ◆ Random seeds are not fixed and generate random sequences.
- ◆ Use the logistic regression model in sklearn.
- ◆ Score:0.787711182622687.

■ Ensemble Model

- ◆ Ensemble in Sklearn is called to integrate the two classifiers, logistic regression and SVM.
- in the way of soft voting, to show the accuracy
- Score: 0.8119469026548672.

Create Submission

Table 2: Predictions from first level models

	ID	Cuisine
0	18009	british
1	28583	southern_us
2	41580	italian
3	29752	cajun_creole
4	35687	italian
5	38527	southern_us

Reflection and Summary

- Dishes can contain a variety of ingredients, and the same ingredients may vary in number and number, so the integredients need to be filtered.
- KNN mainly depends on the surrounding limited adjacent samples, rather than on the method of discriminating class domain to determine the category.
- KNN basically does not learn, resulting in a slower prediction speed than logistic regression and other algorithms.

Contact Information

Thank you for listening! Siyu Chen Xi'an Shiyou University

 $785987165@\mathtt{QQ.COM}$