1. Модели вычислений. Машины Тьюринга

Классическая машина Тьюринга:

 Σ - входной алфавит, $\Gamma \subset \Sigma$ - ленточный алфавит.

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, N\}$ - программа.

 q_1 - начальное состояние, q_a, q_r - принимающее и отвергающее состояния.

Варианты машин:

- 1. $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- 2. Лента, бесконечная лишь с одной стороны
- 3. Уменьшение алфавита Σ
- 4. Многоленточные машины $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, N\}^k$

Тезис Черча-Тьюринга

<u>Любой алгоритм можно</u> реализовать на MT.

Усиленный:

Любую вычислительную систему можно смоделировать на МТ с не более чем полиномиальным временем. Конфигурация - набор AqaB, где q - текущее состояние, a - текущий символ, A - слово слева от a, B - слово справа.

Кроме AaB на ленте только пробелы

Протокол - последовательность конфигураций в процессе работы.

Универсальная MT: $U(p,x) = M_p(x)$

Язык $L \subset \{0,1\}^*$

 $\underline{\mathrm{K}\mathrm{ласc}\ \mathbf{P}} = \cup_{k=1}^{\infty} DTIME(n^k),\, L \in DTIME(t(n)),\, \mathrm{если}\ \exists\ \mathbf{MT}\ M \colon$

- 1. Если $x \in L$, то M(x) = 1
- 2. Если $x \notin L$, то M(x) = 0
- 3. $\forall x \exists c$, если |x| = n, то M(x) работает $\leq ct(n)$ шагов.

Класс NP: $L \in NP$, если \exists алгоритм V(..):

- 1. $x \in L \to \exists s : |s| \le p(|x|), V(x, s) = 1$
- 2. $x \notin L \rightarrow \forall s : |s| \leq p(|x|), V(x,s) = 0$
- 3. $\forall x \forall s |s| \leq p(|x|), V$ работает не более чем за q|x| шагов.

 $\text{Th.}P \subset NP$

Док-во:V(x,s) = M(x)

2. Недетерминированные МТ

Может быть несколько команд с одной и той же $\Pi.И.\delta: Q \times \Gamma \Rightarrow Q \times \Gamma \times \{L, R, N\}$

Если несколько вариантов, вычисления разделяются на ветви.

Если на хотя бы на одной ветви q_a - ответ 1.

Если везде q_r - ответ 0.

Если есть бесконечная ветвь - ответа нет.

NTIME(t(n)) - класс языков L: \exists HMT M:

- 1. $x \in L \to M(x) = 1$
- 2. $X \notin L \to M(x) = 0$
- 3. $\exists c \forall x$ любая ветвь M(x) работает не более чем за ct(|x|) шагов.

<u>Класс NP</u> = $\bigcup_{k=1}^{\infty} NTIME(n^k)$