TUMOR TYPE Brain anaplastic astrocytoma COUNTRY CODE

REPORT DATE 07 Sep 2021 ORDERED TEST # ORD-1173008-01

ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

OUNDATIONONE®CDx

PATIENT

DISEASE Brain anaplastic astrocytoma NAME Ou, Yueh-Hsing

DATE OF BIRTH 01 April 1962

SFX Female

MEDICAL RECORD # 10184506

PHYSICIAN

ORDERING PHYSICIAN Hsu, Pin-Chuan MEDICAL FACILITY Taipei Veterans General Hospital ADDITIONAL RECIPIENT None

MEDICAL FACILITY ID 205872 PATHOLOGIST Not Provided

SPECIMEN

SPECIMEN SITE Brain SPECIMEN ID \$110-16112 A (PF21005) SPECIMEN TYPE Slide Deck DATE OF COLLECTION 08 May 2021 SPECIMEN RECEIVED 27 August 2021

Biomarker Findings

Microsatellite status - MS-Stable Tumor Mutational Burden - 0 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

EGFR amplification, EGFR-FAM19A2 rearrangement, rearrangement intron 24

CDK4 amplification MDM2 amplification **PTEN** D116fs*18

2 Therapies with Clinical Benefit

27 Clinical Trials

O Therapies with Resistance

BIOMARKER FINDINGS

Microsatellite status - MS-Stable

Tumor Mutational Burden - 0 Muts/Mb

GENOMIC FINDINGS

EGFR - amplification, EGFR-FAM19A2 rearrangement, rearrangement intron 24

5 Trials see p. 9

CDK4 - amplification

10 Trials see p. 7

MDM2 - amplification

4 Trials see p. 10

PTEN - D116fs*18

10 Trials see p. 11

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. see Biomarker Findings section

No therapies or clinical trials. see Biomarker Findings section	
THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
none	Cetuximab
	Panitumumab
none	none
none	none
none	none

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and exhaustive. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies.

Therapies contained in this report may have been approved by the US FDA

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

MS-Stable

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and

experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

MSI-High has been reported in 3-8% of adult or pediatric astrocytomas and was generally not associated with Lynch syndrome⁶⁻⁸. Low-level MSI has been reported in 5-9% of glioblastoma (GBM) samples⁹⁻¹¹. A large-scale study did not find high-level microsatellite instability (MSI-H) in any of 129 GBM samples⁹, although a small-scale study reported MSI-H in 4 of 15 pediatric GBMs and 1 of 12 adult GBMs¹². The frequency of MSI has been reported to be increased in relapsed compared to primary GBM⁹, in GBMs with a previous lower grade astrocytoma¹⁰, and in giant cell GBM compared to classic GBM¹¹.

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹³. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH₂, MSH₆, or PMS₂¹³⁻¹⁵. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers¹⁶⁻¹⁸. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins13,15,17-18.

BIOMARKER

Tumor Mutational Burden

RESULT 0 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1¹⁹⁻²¹, anti-PD-1 therapies¹⁹⁻²², and combination nivolumab and ipilimumab²³⁻²⁸. In glioma, a lack of association between TMB and clinical benefit from immune checkpoint inhibitors has been reported^{19,29-30}. However, multiple case studies have reported that patients with ultramutated gliomas driven by POLE

mutations have benefited from treatment with anti-PD-1³¹⁻³² or anti-PD-L1³³ therapies. Therefore, although increased TMB alone may not be a strong biomarker for PD-1 or PD-L1 inhibitors in this cancer type, these agents may have efficacy for patients with glioma harboring both high TMB and POLE mutation.

FREQUENCY & PROGNOSIS

Anaplastic astrocytoma harbors a median TMB of 1.8 mutations per megabase (muts/Mb), and 2% of cases have high TMB (>20 muts/Mb)³⁴. For pediatric patients, high TMB has been reported in a subset of high-grade gliomas, frequently in association with mutations in mismatch repair or proofreading genes and in TP53, whereas BRAF alterations or other oncogene fusions were observed more frequently in brain tumors harboring low TMB³⁵⁻³⁶. Increased TMB has been reported to correlate with higher tumor grade in glioma³⁷ and glioblastoma (GBM) tissue samples with biallelic mismatch repair deficiency

(bMMRD)³¹, as well as with shorter OS of patients with diffuse glioma³⁸.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma³⁹⁻⁴⁰ and cigarette smoke in lung cancer⁴¹⁻⁴², treatment with temozolomide-based chemotherapy in glioma⁴³⁻⁴⁴, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁴⁵⁻⁴⁹, and microsatellite instability (MSI)^{45,48-49}. This sample harbors a TMB below levels that would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents^{19,29-33}.

GENOMIC FINDINGS

GENE

EGFR

ALTERATION

amplification, EGFR-FAM19A2 rearrangement, rearrangement intron 24

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

A patient with multiple glioblastoma (GBM) tumors, one of which harbored EGFRvIII, experienced progression of the EGFRvIII-positive tumor during treatment with osimertinib50 Clinical studies of the second-generation EGFR TKIs afatinib and dacomitinib for patients with EGFR-amplified gliomas have shown limited efficacy⁵¹⁻⁵⁵; however, a small subset of patients has experienced clinical benefit⁵¹⁻⁵³. The secondgeneration EGFR TKIs afatinib and dacomitinib have shown minimal efficacy for patients with EGFRvIII glioblastoma (GBM)^{51,53-54,56}. A Phase 1/ 2 study of afatinib, temozolomide, or the combination for patients with GBM reported clinical benefit, including for patients with EGFRvIII; however, temozolomide alone and in combination exhibited better responses than afatinib monotherapy^{54,56}. A Phase 2 trial of dacomitinib for patients with EGFR-amplified GBM reported a DCR of 26% (5/19) among patients with EGFR amplification and EGFRvIII; however, the trial failed to meet its primary endpoint of 6-month PFS⁵¹. A retrospective biomarker analysis of another Phase 2 study of dacomitinib for patients with GBM found no association between EGFRvIII and clinical benefit⁵³. A Phase 1 trial of ABT-414, an EGFRtargeted antibody-drug conjugate with a toxic payload, in patients with GBM reported 2 complete responses (CR) and 5 partial responses (PR) in 18 patients with EGFR amplification (39% response rate); no CR or PR were observed in 28 patients without EGFR amplification⁵⁷. A clinical study of patients with GBM treated with gefitinib or erlotinib found no correlation between EGFR amplification or mutation and response to the therapy, but sensitivity to EGFR kinase inhibitors was associated with the co-expression of the EGFRvIII alteration and PTEN58. Activation of multiple ERBB family receptors or activation of the PI3K pathway may be responsible for resistance to EGFR-targeted therapy in GBM;

therefore, inhibition of ERBB family members or treatment with PI₃K/AKT inhibitors or mTOR inhibitors such as everolimus or temsirolimus in combination with an EGFR-targeted treatment, may be a the rapeutic option $^{59\text{-}60}\!$. In multiple glioblastoma (GBM) studies, the presence of EGFRvIII has not predicted clinical benefit from first-generation EGFR TKIs such as erlotinib61-66 or gefitinib64,67. However, case reports have described patients with EGFRvIII-positive GBM responding to erlotinib⁶⁸⁻⁷¹. In a retrospective study of patients with GBM treated with erlotinib or gefitinib, co-expression of EGFRvIII with PTEN protein was the strongest predictor of response (P<0.001)58, suggesting that activity in this setting is dependent on PTEN status⁷²⁻⁷³. However, a prospective Phase 2 trial testing erlotinib monotherapy for patients with EGFRvIII and PTEN-positive recurrent glioblastoma reported minimal efficacy and was terminated⁶⁶. Multiple studies have failed to find a positive association between increased EGFR expression and clinical benefit from erlotinib or gefitinib for patients with glioblastoma^{58,74-76}. Case studies of patients with cancers harboring EGFR rearrangements treated with osimertinib have reported mixed results. Of 3 patients with non-small cell lung cancer (NSCLC) with EGFR kinase domain duplication (KDD), 2 attained PRs with osimertinib, whereas the third experienced PD77. A patient with multiple glioblastoma (GBM) tumors, one of which harbored EGFRvIII, experienced progression of the EGFRvIII-positive tumor during treatment with osimertinib⁵⁰. Thirdgeneration EGFR inhibitors, such as osimertinib, selectively target mutated EGFR, including EGFR T790M78-79. EGFR amplification or expression may be associated with benefit from anti-EGFR antibodies, such as cetuximab80-83, panitumumab⁸¹, or necitumumab⁸⁴. Necitumumab is an anti-EGFR antibody that is approved to treat metastatic squamous NSCLC in combination with gemcitabine and cisplatin85-86 that has also shown benefit in patients with CRC and melanoma⁸⁷⁻⁸⁸. Irreversible EGFR inhibitors, as well as HSP90 inhibitors, may be appropriate for patients with de novo or acquired resistance to EGFR-targeted therapy $^{89\text{-}9\bar{2}}.$ Preclinical studies have reported that EGFR-mutant cells⁸⁹⁻⁹¹, including cells with exon 20 insertions⁹³, are sensitive to HSP90 inhibitors. Consistent with preclinical data demonstrating that the EGFR inhibitor AZD3759 is capable of penetrating the blood-brain barrier and reducing the volume of brain and leptomeningeal

metastases, preliminary results from a Phase 1 trial evaluating single-agent AZD3759 reported a reduction in the volume of brain metastases in 40.0% (8/20) of patients with previously treated NSCLC harboring either EGFR L858R or EGFR exon 19 deletion, including 3 confirmed PRs and 3 unconfirmed PRs94-95. In a Phase 1/2 trial for advanced NSCLC, the brain-penetrant thirdgeneration EGFR TKI lazertinib enabled ORRs of 54.3% (69/127) for all evaluable patients and 44.4% (8/18, intracranial) for patients with brain metastases⁹⁶. The reovirus Reolysin targets cells with activated RAS signaling⁹⁷⁻⁹⁹ and is in clinical trials for patients with some tumor types. Reolysin has demonstrated mixed clinical efficacy, with the highest rate of response reported for patients with head and neck cancer¹⁰⁰⁻¹⁰⁸.

FREQUENCY & PROGNOSIS

Across several genomic studies of CNS tumors, EGFR alterations have been reported in 13.2% of anaplastic astrocytomas, 5.3-15.9% of glioblastoma multiformes (GBMs), and 0% of pilocytic astrocytomas¹⁰⁹⁻¹¹². Across several genomic studies of CNS tumors, EGFR amplification has been reported in 16.9% of anaplastic astrocytomas, and 39.7% of glioblastoma multiformes (GBMs)¹⁰⁹⁻¹¹². EGFR amplification and/or EGFR expression in glioma has been correlated with poor overall survival in patients under 60 years of age, prolonged survival in patients over the age of 60, and tumor grade¹¹³⁻¹¹⁶.

FINDING SUMMARY

EGFR encodes the epidermal growth factor receptor, which belongs to a class of proteins called receptor tyrosine kinases. In response to signals from the environment, EGFR passes biochemical messages to the cell that stimulate it to grow and divide117. Amplification of EGFR has been associated with increased expression of EGFR mRNA and protein in several cancer types¹¹⁸⁻¹²⁰. Disruption of the EGFR C-terminal region through deletion¹²¹⁻¹²³, truncation^{121-122,124}, splicing errors^{121,124}, or gene fusion¹²⁵⁻¹²⁶, has been demonstrated to be activating and is likely to be oncogenic. These mutations have been shown to cause cellular transformation and tumor formation and to be sensitive to EGFR-targeting therapies, including erlotinib, lapatinib, and cetuximab121-123,125-126. One or more of the alterations observed here are predicted to be activating.

GENOMIC FINDINGS

GENE

CDK4

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

CDK4 amplification or activation may predict sensitivity to CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib¹²⁷⁻¹³⁰. Clinical benefit has been reported for limited tumor types including patients with CDK4-amplified liposarcoma and sarcoma in response to treatment with abemaciclib¹³¹, palbociclib^{127,132}, and ribociclib¹³³.

Potential Resistance

On the basis of a Phase 1b study, PTEN loss of expression may be associated with resistance to combination therapy with CDK4/6 inhibitors such as ribociclib and aromatase inhibitors such as letrozole¹³⁴.

FREQUENCY & PROGNOSIS

Across TCGA and MKSCC studies, CDK4 amplification has been reported in 4.0-9.4% of glioma cases and 14% of glioblastoma multiforme cases (cBioPortal, Sep 2021)^{109-111,135-136}. A study has reported amplification of the 12q14-15 region, where CDK4 and MDM2 reside, in 5% (2/42) of glioblastomas¹³⁷. Amplification of CDK4 and corresponding increased CDK4 protein expression has been reported to be associated with a poorer patient outcome in anaplastic astrocytoma and

glioblastoma¹³⁸⁻¹⁴¹.

FINDING SUMMARY

CDK4 encodes the cyclin-dependent kinase 4, which regulates the cell cycle, senescence, and apoptosis¹⁴². CDK4 and its functional homolog CDK6 are activated by D-type cyclins and promote cell cycle progression by inactivating the tumor suppressor Rb¹⁴³⁻¹⁴⁴. Amplification of the chromosomal region that includes CDK4 has been reported in multiple cancer types, including lung cancer, glioblastoma, and liposarcoma, and has been associated with overexpression of CDK4 protein^{127,145-151}.

GENE

MDM2

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

MDM2 antagonists disrupt the MDM2-p53 interaction, thereby stabilizing p53152. Preclinical studies have suggested that the amplification of MDM2, in the absence of concurrent TP53 mutations, may increase sensitivity to these agents¹⁵³⁻¹⁵⁴. Preliminary Phase 1 studies of the MDM2-p53 antagonist alrizomadlin (APG-115) reported a PR in a patient with liposarcoma harboring an MDM2 amplification and wildtype for TP53 and SD in 21%-38% (6/28 and 5/13, respectively) of patients in genomically unselected solid tumors¹⁵⁵⁻¹⁵⁶ . A Phase 2 trial of alrizomadlin in combination with pembrolizumab reported a PR in 1 of 3 patients with malignant peripheral nerve sheath tumor that had failed standard therapy, as well as PRs in patients with multiple

types of solid tumors that had failed immunotherapy, including 1 out of 14 patients with non-small cell lung cancer; 1 out of 5 patients with urothelial carcinoma; and 2 out of5, 1 out of 5, and 1 out of 11 patients with mucosal, uveal, and cutaneous melanoma, respectively¹⁵⁷. Phase 1b studies of the MDM2 inhibitor idasanutlin for refractory AML in combination with cytarabine or venetoclax reported anti-leukemic response rates of 33% (25/75) and 37% (11/30), respectively $^{158\text{-}159}$; clinical benefit (58% ORR, 7/12) with idasanutlin monotherapy has been reported for patients with polycythemia vera 160 . The dual MDM2/MDM4 inhibitor ALRN-6924 led to an ORR of 27% (4/15) for patients with TP53 wildtype peripheral T-cell lymphoma in a Phase 2 study161; responses have also been observed in TP53 wildtype AML, MDS, Merkel cell carcinoma, colorectal cancer, and liposarcoma¹⁶²⁻¹⁶³.

FREQUENCY & PROGNOSIS

In the Glioblastoma Multiforme (GBM) TCGA dataset, amplification of MDM2 has been found in 8% of cases ¹¹⁰. A study has reported amplification of the 12q14–15 region, where MDM2 and CDK4 reside, in 5% (2/42) of GBMs ¹³⁷. Amplification of

MDM2 has been associated with poor survival in patients with glioblastoma^{137,164}.

FINDING SUMMARY

MDM2 encodes an E3 ubiquitin protein ligase, which mediates the ubiquitination and subsequent degradation of p53, Rb1, and other proteins165-167. MDM2 acts to prevent the activity of the tumor suppressor p53; therefore, overexpression or amplification of MDM2 may be oncogenic 168-169. Overexpression or amplification of MDM2 is frequent in cancer¹⁷⁰. Although two retrospective clinical studies suggest that MDM2 amplification may predict a short time-to-treatment failure on anti-PD-1/PD-L1 immune checkpoint inhibitors, with 4/5 patients with MDM2 amplification¹⁷¹ and 2/3 patients with MDM2 or MDM4 amplification¹⁷² experiencing tumor hyperprogression, amplification of MDM2 or MDM4 was not associated with shorter progression-free survival (PFS) in a retrospective analysis of non-small cell lung cancer (NSCLC) outcomes with immune checkpoint inhibitors (hazard ratio of 1.4, p=0.44)¹⁷³. The latter study reported PFS of >2 months for 5/8 patients with MDM₂/MDM₄ amplification¹⁷³.

GENOMIC FINDINGS

GENE PTEN

ALTERATION D116fs*18

TRANSCRIPT ID

CODING SEQUENCE EFFECT

346delG

VARIANT ALLELE FREQUENCY (% VAF) 45.1%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

PTEN loss or mutation leads to activation of the PI₃K-AKT-mTOR pathway and may predict sensitivity to inhibitors of this pathway¹⁷⁴⁻¹⁷⁷. Across various tissues, most clinical studies have not observed an association between PTEN deficiency and response to inhibitors of the PI₃K-AKT-mTOR pathway. However, limited studies in prostate cancer¹⁷⁸⁻¹⁸¹, renal cell carcinoma¹⁸², breast cancer¹⁸³⁻¹⁸⁴, and colorectal cancer¹⁸⁵ have reported an association between PTEN deficiency and response to inhibitors targeting the PI₃K-AKTmTOR pathway. Preclinical data indicate that PTEN loss or inactivation may predict sensitivity to PARP inhibitors 186-190, and clinical benefit has been observed for patients with PTEN-altered breast cancer including triple negative breast cancer¹⁹¹, ovarian cancer¹⁹², uterine leiomyosarcoma¹⁹³, and endometrial cancer¹⁹⁰ treated with PARP inhibitors. However, some studies have reported a lack of association

between PTEN mutation and PARP inhibitor sensitivity¹⁹⁴⁻¹⁹⁵.

Potential Resistance —

On the basis of a Phase 1b study. PTEN loss of expression may be associated with resistance to combination therapy with CDK4/6 inhibitors such as ribociclib and aromatase inhibitors such as letrozole¹³⁴. Limited clinical evidence in glioblastoma29, leiomyosarcoma196, and melanoma¹⁹⁷ suggests that PTEN alterations may predict a lack of response to anti-PD-1 therapy. In an analysis of 39 patients with metastatic melanoma treated with pembrolizumab or nivolumab, patients with PTEN-expressing tumors achieved significantly greater reduction of tumor size than those with reduction or loss of PTEN expression¹⁹⁷. In a retrospective analysis of 66 patients with glioblastoma, tumors from nivolumab or pembrolizumab non-responders were significantly enriched for PTEN mutations29. In a patient with uterine leiomyosarcoma treated with pembrolizumab monotherapy, a treatmentresistant tumor arose that harbored PTEN loss196.

FREQUENCY & PROGNOSIS

Studies in the literature have indicated that PTEN alterations (mutation or homozygous deletion) occur most frequently in glioblastoma (GBM), less frequently in anaplastic astrocytoma, and rarely in lower grade glioma subtypes including low grade astrocytoma, oligodendroglioma, oligoastrocytoma, and ependymoma^{113,198-204}. One study detected PTEN mutation in 42% (97/232) and loss in 10% (24/232) of IDH-wildtype GBM samples analyzed²⁰⁵. In the TCGA dataset, PTEN

mutation was observed in 23% of GBM cases and PTEN deletion was reported in 7% of cases¹¹⁰, while in the Lower Grade Glioma TCGA dataset, PTEN mutation was observed in 4% of cases and homozygous deletion observed in 1.2% of cases²⁰⁶. Loss of PTEN correlated with significantly worse prognosis in all grades of gliomas^{201,207}.

FINDING SUMMARY

PTEN encodes an inositol phosphatase that functions as a tumor suppressor by negatively regulating the PI₃K-AKT-mTOR pathway; loss of PTEN can lead to uncontrolled cell growth and suppression of apoptosis¹⁷⁵. Alterations such as seen here may disrupt PTEN function or expression^{60,203,208-246}.

POTENTIAL GERMLINE IMPLICATIONS

PTEN mutations underlie several inherited disorders, collectively termed PTEN hamartoma tumor syndrome (PHTS), which include Cowden syndrome (CS) and its variant Lhermitte-Duclos disease (LD), Bannayan-Riley-Ruvalcaba syndrome (BRRS), PTEN-related Proteus $syndrome\ (PS), and\ Proteus-like\ syndrome^{247\text{-}248}.$ The mutation rate for PTEN in these disorders ranges from 20 to 85% of patients^{247,249}. The estimated incidence of Cowden syndrome is 1/ 200,000, which may be an underestimate due to the high variability of this disorder²⁴⁷. Given the association between PTEN and these inherited syndromes, in the appropriate clinical context, germline testing for mutations affecting PTEN is recommended.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Cetuximab

Assay findings association

EGFR

amplification, EGFR-FAM19A2 rearrangement, rearrangement intron 24

AREAS OF THERAPEUTIC USE

Cetuximab is a monoclonal antibody that targets EGFR. It is FDA approved for the treatment of head and neck squamous cell carcinoma (HNSCC) and KRAS-wild-type, EGFR-expressing metastatic colorectal cancer (CRC). Please see the drug label for full prescribing information.

GENE ASSOCIATION

For patients with metastatic CRC receiving cetuximab or panitumumab as mono- or combination therapy, increased EGFR copy number associated with improved OS (HR=0.62) in a meta-analysis, although increased survival was not seen in populations that received first-line treatment with EGFR antibodies⁸¹.

SUPPORTING DATA

A clinical trial of cetuximab with bevacizumab (an anti-VEGF monoclonal antibody) in patients with glioblastoma (GBM) did not show improved efficacy compared with bevacizumab alone²⁵⁰. In preclinical trials, cetuximab, matuzumab, and panitumumab were reported to be ineffective at blocking EGFR dimerization and activation in GBM cells expressing EGFR extracellular domain mutations²⁵¹. However, another study demonstrated that in patients with GBM harboring EGFR amplification but lacking expression of the EGFRvIII variant, treatment with cetuximab resulted in significantly better progression-free survival (PFS) and numerical (although not statistically significant) improvement in overall survival (OS)²⁵².

Panitumumab

Assay findings association

FGFR

amplification, EGFR-FAM19A2 rearrangement, rearrangement intron 24

AREAS OF THERAPEUTIC USE

Panitumumab is a monoclonal antibody that targets EGFR. It is FDA approved to treat KRAS wild-type and NRAS wild-type metastatic colorectal cancer (CRC) combined with chemotherapy or as monotherapy for patients who have progressed on prior chemotherapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

For patients with metastatic CRC receiving cetuximab or panitumumab as mono- or combination therapy, increased EGFR copy number associated with improved OS (HR=0.62) in a meta-analysis, although increased survival was not seen in populations that received first-line treatment with EGFR antibodies⁸¹.

SUPPORTING DATA

A Phase 1 trial of EnGeneIC delivery vehicle (EDV) targeting EGFR with panitumumab in combination with doxorubicin for 14 patients with glioblastoma (GBM) reported no responses and 28% (4/14) SDs²⁵³. Two Phase 2 studies of panitumumab and chemotherapy in biliary tract cancer, including cholangiocarcinoma, reported encouraging efficacy and manageable toxicity²⁵⁴⁻²⁵⁵. In a Phase 2 trial of advanced NSCLC, the addition of panitumumab to paclitaxel/carboplatin did not result in improved clinical benefit²⁵⁶. A Phase 1 study of panitumumab for patients with metastatic renal cell carcinoma resulted in a response rate of 6% and stable disease in 50% of patients²⁵⁷.

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require

medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomic-testing#support-services.

CDK4

RATIONALE

CDK4 amplification may predict sensitivity to

CDK₄/6 inhibitors.

ALTERATION amplification

NCT03239015	PHASE 2
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event	TARGETS EGFR, ERBB2, ERBB4, PARP, mTOR, MET, RET, ROS1, VEGFRS, BRAF, CDK4, CDK6

LOCATIONS: Shanghai (China)

NCT03099174	PHASE 1
This Study in Patients With Different Types of Cancer (Solid Tumours) Aims to Find a Safe Dose of Xentuzumab in Combination With Abemaciclib With or Without Hormonal Therapies. The Study Also Tests How Effective These Medicines Are in Patients With Lung and Breast Cancer.	TARGETS CDK4, CDK6, IGF-1, IGF-2, Aromatase, ER

LOCATIONS: Seoul (Korea, Republic of), Goyang (Korea, Republic of), Aichi, Nagoya (Japan), Kanagawa, Isehara (Japan), Tokyo, Chuo-ku (Japan), Tokyo, Koto-ku (Japan), Chiba, Kashiwa (Japan), Helsinki (Finland), Tampere (Finland), Turku (Finland)

NCT04594005	PHASE 1/2
CDK4/6 Tumor, Abemaciclib, Paclitaxel	TARGETS CDK4, CDK6
LOCATIONS: Seoul (Korea, Republic of)	

NCT03834740	PHASE NULL
Ph0/2 Ribociclib & Everolimus	TARGETS CDK6, CDK4, mTOR
LOCATIONS: Arizona	

NCT02933736	PHASE NULL
Ribociclib (LEEO11) in Preoperative Glioma and Meningioma Patients	TARGETS CDK6, CDK4

© 2021 Foundation Medicine, Inc. All rights reserved.

LOCATIONS: Arizona

CLINICAL TRIALS

NCT04801966	PHASE NULL
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF
LOCATIONS: Melbourne (Australia)	
NCT03994796	PHASE 2
Genetic Testing in Guiding Treatment for Patients With Brain Metastases	TARGETS ALK, ROS1, TRKA, TRKB, TRKC, CDK4, CDK6, PI3K, mTOR
LOCATIONS: Alaska, Washington	
NCTO4116541	PHASE 2
A Study Evaluating the Activity of Anti-cancer Treatments Targeting Tumor Molecular Alterations/Characteristics in Advanced / Metastatic Tumors.	TARGETS CDK6, CDK4, MDM2, MET, RET, ROS1, VEGFRS
LOCATIONS: Nice (France), Lyon (France), Marseille (France), Toulouse (France), Bordeaux (France)	
NCT02981940	PHASE 2
A Study of Abemaciclib in Recurrent Glioblastoma	TARGETS CDK4, CDK6
LOCATIONS: Utah, California, Massachusetts	
NCT02896335	PHASE 2
Palbociclib In Progressive Brain Metastases	TARGETS CDK4, CDK6
LOCATIONS: Massachusetts	

CLINICAL TRIALS

EGFR

ALTERATION
amplification, EGFR-FAM19A2

rearrangement, rearrangement intron 24

RATIONALE

EGFR activating mutations, rearrangements, or amplification may predict sensitivity to EGFR-targeted therapies. Strategies to overcome

resistance to current agents include next-generation EGFR inhibitors and combination therapies.

NCT03829436 PHA	ASE 1
	RGETS -1, PPARalpha, EGFR

LOCATIONS: California, Michigan, Oklahoma, Pennsylvania, New York, Tennessee, Maryland, North Carolina, Florida

NCT02800486	PHASE 2
Super Selective Intra-arterial Repeated Infusion of Cetuximab (Erbitux) With Reirradiation for Treatment of Relapsed/Refractory GBM, AA, and AOA	TARGETS EGFR

LOCATIONS: New York

NCT03783403	PHASE 1
A Study of CC-95251, a Monoclonal Antibody Directed Against SIRP α , in Subjects With Advanced Solid and Hematologic Cancers	TARGETS CD20, EGFR, SIRP-alpha

LOCATIONS: Heidelberg (Australia), Melbourne (Australia), Edmonton (Canada), California, Colorado, Arizona, Toronto (Canada), Oklahoma, Texas, Pennsylvania

NCT02451553	PHASE 1
Afatinib Dimaleate and Capecitabine in Treating Patients With Advanced Refractory Solid Tumors, Pancreatic Cancer or Biliary Cancer	TARGETS EGFR, ERBB2, ERBB4
LOCATIONS: Washington	

NCT01552434	PHASE 1
Bevacizumab, Temsirolimus Alone and in Combination With Valproic Acid or Cetuximab in Patients With Advanced Malignancy and Other Indications	TARGETS VEGFA, HDAC, mTOR, EGFR
LOCATIONS: Texas	

CLINICAL TRIALS

MDM2

RATIONALE

Inhibitors of the MDM2-p53 interaction are being tested in clinical trials. Overexpression or

amplification of MDM2 may increase sensitivity to these agents, but more data are required.

ALTERATION amplification

NCT04589845	PHASE 2
Tumor-Agnostic Precision Immuno-Oncology and Somatic Targeting Rational for You (TAPISTRY) Platform Study	TARGETS ALK, ROS1, TRKA, TRKB, TRKC, RET, PD-L1, AKTs, ERBB2, MDM2, PI3K- alpha

NCT03449381	PHASE 1
This Study Aims to Find the Best Dose of BI 907828 in Patients With Different Types of Advanced Cancer (Solid Tumors)	TARGETS MDM2
LOCATIONS: Tokyo, Chuo-ku (Japan), Ottawa (Canada), Connecticut, New York, Tennessee, Florida	
NCT03611868	PHASE 1/2
A Study of APG-115 in Combination With Pembrolizumab in Patients With Metastatic Melanomas or Advanced Solid Tumors	TARGETS MDM2, PD-1
LOCATIONS: Brisbane (Australia), California, Arizona, Missouri, Arkansas, Pennsylvania, New York, T	ennessee, Texas
NCT03725436	PHASE 1
ALRN-6924 and Paclitaxel in Treating Patients With Advanced, Metastatic, or Unresectable Solid Tumors	TARGETS MDM2, MDM4
LOCATIONS: Texas	

CLINICAL TRIALS

GENE PTEN

ALTERATION D116fs*18

RATIONALE

PTEN loss or inactivating mutations may lead to increased activation of the PI₃K-AKT-mTOR pathway and may indicate sensitivity to inhibitors

of this pathway. PTEN loss or inactivation may also predict sensitivity to PARP inhibitors.

NCT04337463	PHASE NULL
ATG-008 Combined With Toripalimab in Advanced Solid Tumors	TARGETS mTORC1, mTORC2, PD-1
LOCATIONS: Chongqing (China), Chengdu (China)	
NCT02264678	PHASE 1/2
Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents	TARGETS ATR, PARP, PD-L1
LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Cambridge (United Kingdom), Sutton (United Kingdom), Villejuif (France), Saint Herblain (France), California	om), Withington (United Kingdom), London (United
NCT04740190	PHASE 2
Talazoparib - Carboplatin for Recurrent High-grade Glioma With DDRd	TARGETS PARP
LOCATIONS: Hong Kong (Hong Kong)	
NCT04001569	PHASE 1/2
AZD8186 and Paclitaxel in Advanced Gastric Cancer	TARGETS PI3K-beta
LOCATIONS: Seongnam-si (Korea, Republic of)	
NCT04635631	PHASE 1
STUDY OF TALAZOPARIB MONOTHERAPY IN CHINESE PARTICIPANTS WITH ADVANCED SOLID TUMORS	TARGETS PARP
LOCATIONS: Beijing (China), Changchun (China)	
NCT03772561	PHASE 1
Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid Tumor Malignancies	TARGETS PARP, AKTs, PD-L1

CLINICAL TRIALS

NCT04801966	PHASE NULL		
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF		
LOCATIONS: Melbourne (Australia)			
NCT03994796	PHASE 2		
Genetic Testing in Guiding Treatment for Patients With Brain Metastases	TARGETS ALK, ROS1, TRKA, TRKB, TRKC, CDK4, CDK6, PI3K, mTOR		
LOCATIONS: Alaska, Washington			
NCT04632992	PHASE 2		
A Study Evaluating Targeted Therapies in Participants Who Have Advanced Solid Tumors With Genomic Alterations or Protein Expression Patterns Predictive of Response	TARGETS ALK, ROS1, TRKA, TRKB, TRKC, PD-L1, ERBB2, ERBB3, PI3K-alpha, RET, AKTs		
LOCATIONS: Alaska, Washington, Oregon, California, Montana			
NCT04497116	PHASE 1/2		
Study of RP-3500 in Advanced Solid Tumors	TARGETS PARP		
LOCATIONS: Copenhagen (Denmark), Newcastle Upon Tyne (United Kingdom), Manchester (Unite	ed Kingdom), London (United Kingdom), Toronto		

TUMOR TYPE
Brain anaplastic astrocytoma

REPORT DATE 07 Sep 2021

ORDERED TEST # ORD-1173008-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

ATM EGFR MDM2 NOTCH3
Q95K rearrangement rearrangement and R1175W

rearrangement

PDCD1LG2 (PD-L2) STK11 F336L F354L

APPENDIX

Genes Assayed in FoundationOne®CDx

FoundationOne CDx is designed to include genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 324 genes as well as introns of 36 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B)	
AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6
BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2
BTK	C11orf30 (EMSY)	C17orf39 (GID4)	CALR	CARD11	CASP8	CBFB	CBL	CCND1
CCND2	CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73
CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1
DDR2	DIS3	DNMT3A	DOT1L	EED	EGFR	EP300	EPHA3	EPHB1
EPHB4	ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2
FAM46C	FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12
FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3
FGFR4	FH	FLCN	FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3
GATA4	GATA6	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3F3A
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNK1	MLH1	MPL	MRE11A	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	NOTCH3
NPM1	NRAS	NSD3 (WHSC1L1)	NT5C2	NTRK1	NTRK2	NTRK3	P2RY8	PALB2
PARK2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)	
PDGFRB	PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIM1	PMS2
POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI	PTCH1
PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51	RAD51B	RAD51C
RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	REL	RET
RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC	SDHD	SETD2
SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1
SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3	STK11	SUFU
SYK	TBX3	TEK	TET2	TGFBR2	TIPARP	TNFAIP3	TNFRSF14	TP53
TSC1	TSC2	TYRO3	U2AF1	VEGFA	VHL	WHSC1	WT1	XPO1
XRCC2	ZNF217	ZNF703						, . .
	-	,						
DNA GENE LIST:	FOR THE DETEC	TION OF SELECT	REARRANGEME	NTS				
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)
145110	141/0	141/6	NOTCHO	NITOKA	NTDKO	AU 17444	DD CED 4	DAFI

NTRK1

SDC4

NTRK2

SLC34A2

NUTM1

TERC*

MSH2

MYB

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

MYC

ROS1

NOTCH2

RSPO2

Loss of Heterozygosity (LOH) score Microsatellite (MS) status Tumor Mutational Burden (TMB)

© 2021 Foundation Medicine, Inc. All rights reserved.

PDGFRA

TERT**

RAF1

TMPRSS2

RARA RET *TERC is an NCRNA

^{**}Promoter region of TERT is interrogated

APPENDIX

About FoundationOne®CDx

FoundationOne CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

ABOUT FOUNDATIONONE CDX

FoundationOne CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details: www.rochefoundationmedicine.com/f1cdxtech.

INTENDED USE

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI), tumor mutational burden (TMB), and for selected forms of ovarian cancer, loss of heterozygosity (LOH) score, using DNA isolated from formalin-fixed, paraffinembedded (FFPE) tumor tissue specimens. The test is intended as a companion diagnostic to identify patients who may benefit from treatment with therapies in accordance with approved therapeutic product labeling. Additionally, F1CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with solid malignant neoplasms.

TEST PRINCIPLES

FoundationOne CDx will be performed exclusively as a laboratory service using DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples. The proposed assay will employ a single DNA extraction method from routine FFPE biopsy or surgical resection specimens, 50-1000 ng of which will undergo whole-genome shotgun library construction and hybridization-based capture of all coding exons from 309 cancer-related genes, one promoter region, one non-coding (ncRNA), and select intronic regions from 34 commonly rearranged genes, 21 of which also include the coding exons. The assay therefore includes detection of alterations in a total of 324 genes.

Using an Illumina® HiSeq platform, hybrid capture–selected libraries will be sequenced to high uniform depth (targeting >500X median coverage with >99% of exons at coverage >100X). Sequence data will be processed using a customized analysis pipeline designed to accurately detect all classes of genomic alterations, including base substitutions, indels, focal copy number amplifications, homozygous gene deletions, and selected genomic rearrangements (e.g.,gene fusions). Additionally, genomic signatures including loss of heterozygosity (LOH), microsatellite instability (MSI) and tumor mutational burden (TMB) will be reported.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. The F1CDx report may be used as an aid to inform molecular eligibility for clinical trials. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne CDx identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne CDx for identifying a copy number amplification is four (4) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne CDx analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table
Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials

Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK* (NCCN*) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Limitations

- 1. The MSI-H/MSS designation by FMI F1CDx test is based on genome wide analysis of 95 microsatellite loci and not based on the 5 or 7 MSI loci described in current clinical practice guidelines. The threshold for MSI-H/MSS was determined by analytical concordance to comparator assays (IHC and PCR) using uterine, cecum and colorectal cancer FFPE tissue. The clinical validity of the qualitative MSI designation has not been established. For Microsatellite Instability (MSI) results, confirmatory testing using a validated orthogonal method should be considered.
- 2. TMB by F1CDx is determined by counting all synonymous and non-synonymous variants present at 5% allele frequency or greater (after filtering) and the total number is reported as mutations per megabase (mut/Mb) unit. Observed TMB is dependent on characteristics

APPENDIX

About FoundationOne®CDx

of the specific tumor focus tested for a patient (e.g., primary vs. metastatic, tumor content) and the testing platform used for the detection; therefore, observed TMB results may vary between different specimens for the same patient and between detection methodologies employed on the same sample. The TMB calculation may differ from TMB calculations used by other assays depending on variables such as the amount of genome interrogated, percentage of tumor, assay limit of detection (LoD), filtering of alterations included in the score, and the read depth and other bioinformatic test specifications. Refer to the SSED for a detailed description of these variables in FMI's TMB calculation https://www.accessdata.fda.gov/cdrh_docs/ pdf17/P170019B.pdf. The clinical validity of TMB defined by this panel has been established for TMB as a qualitative output for a cut-off of 10 mutations per megabase but has not been established for TMB as a quantitative score.

- 3. The LOH score is determined by analyzing SNPs spaced at 1Mb intervals across the genome on the FoundationOne CDx test and extrapolating an LOH profile, excluding armand chromosome-wide LOH segments. Detection of LOH has been verified only for ovarian cancer patients, and the LOH score result may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas. The LOH score will be reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine LOH. Performance of the LOH classification has not been established for samples below 35% tumor content. There may be potential interference of ethanol with LOH detection. The interfering effects of xylene, hemoglobin, and triglycerides on the LOH score have not been demonstrated.
- 4. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- 5. Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine whether the patient is a candidate for biopsy.
- 6. Reflex testing to an alternative FDA approved companion diagnostic should be performed for patients who have an *ERBB2* amplification result detected with copy number equal to 4 (baseline ploidy of tumor +2) for confirmatory testing. While this result is considered negative by FoundationOne®CDx (F1CDx), in a clinical concordance study with an FDA approved FISH test, 70% (7 out of 10 samples) were positive,

and 30% (3 out of 10 samples) were negative by the FISH test with an average ratio of 2.3. The frequency of *ERBB2* copy number 4 in breast cancer is estimated to be approximately 2%. Multiple references listed in

https://www.mycancergenome.org/content/disease/breast-cancer/ERBB2/238/ report the frequency of HER2 overexpression as 20% in breast cancer. Based on the F1CDx HER2 CDx concordance study, approximately 10% of HER2 amplified samples had copy number 4. Thus, total frequency is conservatively estimated to be approximately 2%.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may vary.

Precision of VAF for base substitutions and indels

BASE SUBSTITUTIONS	%CV*
Repeatability	5.11 - 10.40
Reproducibility	5.95 - 12.31
INDELS	%CV*
INDELS Repeatability	%CV*

^{*}Interquartile Range = 1st Quartile to 3rd Quartile

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE,

RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne CDx.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating

APPENDIX

About FoundationOne®CDx

physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. FoundationOne CDx is performed using DNA derived from tumor, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
TKI	Tyrosine kinase inhibitor

MR Suite Version 5.0.0

The median exon coverage for this sample is 468x

APPENDIX

References

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- 6. Alonso M, et al. Cancer Res. (2001) pmid: 11280776
- 7. Rodríguez-Hernández I, et al. PLoS ONE (2013) pmid: 24073290
- 8. Vladimirova V, et al. Neuropathol. Appl. Neurobiol. (2008) pmid: 18053027
- 9. Martinez R, et al. Oncology (2004) pmid: 15331927
- 10. Martinez R, et al. J. Cancer Res. Clin. Oncol. (2005) pmid: 15672285
- 11. Martinez R, et al. Cancer Genet. Cytogenet. (2007) pmid: 17498554
- 12. Szybka M, et al. Clin. Neuropathol. () pmid: 12908754
- 13. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 14. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 15. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- 16. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 17. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 18. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 19. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 20. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- 21. Goodman AM, et al. Cancer Immunol Res (2019) pmid:
- 22. Cristescu R, et al. Science (2018) pmid: 30309915
- 23. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 24. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 25. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128 26. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 27. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 28. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 29. Zhao J, et al. Nat. Med. (2019) pmid: 30742119 30. Touat M, et al. Nature (2020) pmid: 32322066
- 31. Bouffet E, et al. J. Clin. Oncol. (2016) pmid: 27001570 32. Johanns TM, et al. Cancer Discov (2016) pmid:
- 33. Lukas RV, et al. J. Neurooncol. (2018) pmid: 30073642
- 34. Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 35. Patel RR, et al. Pediatr Blood Cancer (2020) pmid: 32386112
- 36. Johnson A, et al. Oncologist (2017) pmid: 28912153
- 37. Draaisma K, et al. Acta Neuropathol Commun (2015) pmid: 26699864
- 38. Wang L, et al. BMC Cancer (2020) pmid: 32164609
- 39. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 40. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 41. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 42. Rizvi NA, et al. Science (2015) pmid: 25765070
- 43. Johnson BE, et al. Science (2014) pmid: 24336570
- 44. Choi S, et al. Neuro-oncology (2018) pmid: 29452419 45. Cancer Genome Atlas Research Network, et al. Nature
- (2013) pmid: 23636398 46. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 47. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 48. Nature (2012) pmid: 22810696

- 49. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 50. Makhlin I, et al. CNS Oncol (2019) pmid: 31769726
- 51. Sepúlveda-Sánchez JM, et al. Neuro-oncology (2017) pmid: 28575464
- 52. Tanaka S, et al. Sci Rep (2019) pmid: 30644426
- 53. Chi AS, et al. JCO Precis Oncol (2020) pmid: 32923886
- 54. Reardon DA, et al. Neuro-oncology (2015) pmid: 25140039
- 55. Blumenthal DT, et al. J. Neurooncol. (2016) pmid: 27531351
- 56. Alshami J, et al. Oncotarget (2015) pmid: 26423602
- 57. Gan et al., 2015: ASCO Abstract 2016
- 58. Mellinghoff IK, et al. N. Engl. J. Med. (2005) pmid: 16282176
- 59. Clark PA, et al. Neoplasia (2012) pmid: 22745588
- Fenton TR, et al. Proc. Natl. Acad. Sci. U.S.A. (2012) pmid: 22891331
- 61. van den Bent MJ, et al. J Clin Oncol (2009) pmid: 19204207
- 62. Haas-Kogan DA, et al. J Natl Cancer Inst (2005) pmid: 15956649
- 63. Brown PD, et al. J Clin Oncol (2008) pmid: 18955445
- 64. Preusser M, et al. J Neurooncol (2008) pmid: 18458820
- 65. Wen PY, et al. Neuro-oncology (2014) pmid: 24470557
- 66. Gallego O, et al. J Neurooncol (2014) pmid: 24352766
- 67. Uhm JH, et al. Int J Radiat Oncol Biol Phys (2011) pmid: 20510539
- 68. Doyle SP, et al. Oxf Med Case Reports (2018) pmid: 30410775
- 69. D'Alessandris QG, et al. Acta Neurochir (Wien) (2013) pmid: 23132371
- Custodio A, et al. Clin Transl Oncol (2010) pmid: 70. 20462843
- 71. D'Alessandris QG, et al. Acta Neurochir (Wien) (2018) pmid: 30306271
- 72. Mellinghoff IK, et al. Clin Cancer Res (2007) pmid: 17255257
- 73. Arif SH, et al. Asian J Neurosurg () pmid: 29492119
- 74. Franceschi E, et al. Br. J. Cancer (2007) pmid: 17353924
- 75. Chakravarti A, et al. Int. J. Radiat. Oncol. Biol. Phys. (2013) pmid: 23182702
- 76. Hegi ME, et al. Mol. Cancer Ther. (2011) pmid: 21471286
- 77. Wang J, et al. Int. J. Cancer (2019) pmid: 30255937
- 78. Jänne PA, et al. N. Engl. J. Med. (2015) pmid: 25923549
- **79.** Soria JC, et al. N. Engl. J. Med. (2018) pmid: 29151359
- 80. Pirker R, et al. Lancet Oncol. (2012) pmid: 22056021
- 81. Jiang Z, et al. PLoS ONE (2013) pmid: 23441167
- 82. Licitra L, et al. Ann. Oncol. (2011) pmid: 21048039
- 83. Herbst RS, et al. Lancet Oncol. (2018) pmid: 29169877
- 84. Paz-Ares L, et al. Ann. Oncol. (2016) pmid: 27207107
- 85. Thatcher N, et al. Lancet Oncol. (2015) pmid: 26045340
- 86. Paz-Ares L, et al. Lancet Oncol. (2015) pmid: 25701171
- 87. Elez E, et al. Br. J. Cancer (2016) pmid: 26766738 88. Kuenen B, et al. Clin. Cancer Res. (2010) pmid:
- 89. Shimamura T, et al. Cancer Res. (2005) pmid: 16024644
- 90. Shimamura T, et al. Cancer Res. (2008) pmid: 18632637
- 91. Sawai A, et al. Cancer Res. (2008) pmid: 18199556
- 92. Bernardes CE, et al. J Phys Condens Matter (2015) pmid: 25923649
- 93. Xu W, et al. Br. J. Cancer (2007) pmid: 17712310
- 94. Zeng Q, et al. J. Med. Chem. (2015) pmid: 26313252
- 95. Yang Z, et al. Sci Transl Med (2016) pmid: 27928026
- 96. Ahn et al., 2019; ASCO 31587882
- 97. Strong JE, et al. EMBO J. (1998) pmid: 9628872

- 98. Coffey MC, et al. Science (1998) pmid: 9812900
- 99. Gong J, et al. Front Oncol (2014) pmid: 25019061
- 100. Forsyth P, et al. Mol. Ther. (2008) pmid: 18253152 101. Vidal L, et al. Clin. Cancer Res. (2008) pmid: 18981012
- 102. Gollamudi R, et al. Invest New Drugs (2010) pmid: 19572105
- 103. Harrington KJ, et al. Clin. Cancer Res. (2010) pmid: 20484020
- 104. Comins C, et al. Clin. Cancer Res. (2010) pmid: 20926400
- 105. Lolkema MP, et al. Clin. Cancer Res. (2011) pmid:
- 21106728 106. Galanis E. et al. Mol. Ther. (2012) pmid: 22871663
- 107. Karapanagiotou EM, et al. Clin. Cancer Res. (2012) pmid: 22316603
- 108. Morris DG, et al. Invest New Drugs (2013) pmid: 22886613
- 109. Jonsson P, et al. Clin. Cancer Res. (2019) pmid: 31263031
- 110. Brennan CW, et al. Cell (2013) pmid: 24120142
- 111. Ceccarelli M, et al. Cell (2016) pmid: 26824661
- 112. Thomas AA, et al. Neuro-oncology (2017) pmid:
- 113. Smith JS, et al. J. Natl. Cancer Inst. (2001) pmid: 11504770
- 114. Shinoiima N. et al. Cancer Res. (2003) pmid: 14583498
- 115. Ambroise MM, et al. Asian Pac. J. Cancer Prev. (2010) pmid: 21133628
- 116. Hobbs J, et al. Am. J. Surg. Pathol. (2012) pmid: 22472960
- 117. Ciardiello F, et al. N. Engl. J. Med. (2008) pmid: 18337605
- 118. Liang Z, et al. BMC Cancer (2010) pmid: 20637128
- 119. Bhargaya R. et al. Mod. Pathol. (2005) pmid: 15920544
- 120. Yang YL, et al. Chin. Med. J. (2012) pmid: 22490401
- 121. Cho J, et al. Cancer Res. (2011) pmid: 22001862
- 122. Imielinski M, et al. Cell (2012) pmid: 22980975
- 123. Pines G. et al. Oncogene (2010) pmid: 20676128
- 124. Wang Q, et al. Exp. Cell Res. (2007) pmid: 17643422
- 125. Frattini V, et al. Nat. Genet. (2013) pmid: 23917401 126. Konduri K, et al. Cancer Discov (2016) pmid: 27102076
- 127. Dickson MA, et al. J. Clin. Oncol. (2013) pmid: 23569312 128. Flaherty KT, et al. Clin. Cancer Res. (2012) pmid:
- 22090362
- 129. Patnaik A, et al. Cancer Discov (2016) pmid: 27217383 130. Infante JR, et al. Clin. Cancer Res. (2016) pmid: 27542767
- 131. Dickson et al., 2019; ASCO Abstract 11004 132. Dickson MA, et al. JAMA Oncol (2016) pmid: 27124835
- 133. Peguero et al., 2016; ASCO Abstract 2528 134. Costa C. et al. Cancer Discov (2019) pmid: 31594766
- 135. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 136. Gao J, et al. Sci Signal (2013) pmid: 23550210
- 137. Zheng S, et al. Genes Dev. (2013) pmid: 23796897
- 138. Kim H, et al. Proc. Natl. Acad. Sci. U.S.A. (2010) pmid:
- 139. Ruano Y, et al. Am. J. Clin. Pathol. (2009) pmid: 19141386
- 140. Fischer U, et al. Mol. Cancer Res. (2008) pmid: 18403636
- 141. Bäcklund LM, et al. Br. J. Cancer (2005) pmid: 15970925
- 142. Choi YJ, et al. Oncogene (2014) pmid: 23644662
- 143. Cell (1995) pmid: 7736585 144. Musgrove EA, et al. Nat. Rev. Cancer (2011) pmid: 21734724
- 145. Wikman H, et al. Genes Chromosomes Cancer (2005) pmid: 15543620 146. Rao SK, et al. J. Neurooncol. (2010) pmid: 19609742

APPENDIX References

- **147.** Chung L, et al. Am. J. Surg. Pathol. (2009) pmid: 19574885
- **148.** Ragazzini P, et al. Histol. Histopathol. (2004) pmid: 15024701
- 149. Dujardin F, et al. Mod. Pathol. (2011) pmid: 21336260
- 150. Zhang K, et al. Cancer Res. (2013) pmid: 23393200
- 151. Horvai AE, et al. Mod. Pathol. (2009) pmid: 19734852
- **152.** Cheok CF, et al. Nat Rev Clin Oncol (2011) pmid: 20975744
- **153.** Ohnstad HO, et al. Cancer (2013) pmid: 23165797
- 154. Gamble LD, et al. Oncogene (2012) pmid: 21725357
- 155. Zhang et al., 2019; ASCO Abstract 3124
- 156. Rasco et al., 2019; ASCO Abstract 3126
- 157. Tolcher et al., 2021; ASCO Abstract 2506
- 158. Martinelli et al., 2016; EHA21 Abstract S504
- **159.** Daver et al., 2018; ASH Abstract 767
- 160. Mascarenhas et al., 2019; ASH Abstract 134
- 161. Shustov et al., 2018; ASH Abstract 1623
- 162. Sallman et al., 2018; ASH Abstract 4066
- **163.** Meric-Bernstam et al., 2017; ASCO Abstract 2505
- 164. Fischer U. et al. Int. J. Cancer (2010) pmid: 19839052
- **165.** Sdek P, et al. Mol. Cell (2005) pmid: 16337594
- 166. Brady M, et al. Mol. Cell. Biol. (2005) pmid: 15632057
- **167.** Li M, et al. Mol. Cell (2004) pmid: 15053880
- 168. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675
- 169. Cordon-Cardo C, et al. Cancer Res. (1994) pmid: 8306343
- 170. Beroukhim R, et al. Nature (2010) pmid: 20164920
- 171. Kato S, et al. Clin. Cancer Res. (2017) pmid: 28351930
- 172. Singavi et al., 2017; ESMO Abstract 1140PD
- 173. Rizvi H, et al. J. Clin. Oncol. (2018) pmid: 29337640
- 174. Courtney KD, et al. J. Clin. Oncol. (2010) pmid: 20085938
- 175. Simpson L, et al. Exp. Cell Res. (2001) pmid: 11237521
- 176. Patnaik A, et al. Ann. Oncol. (2016) pmid: 27672108
- **177.** Milella M, et al. Sci Rep (2017) pmid: 28220839
- 178. Templeton AJ, et al. Eur. Urol. (2013) pmid: 23582881
- 179. Sweeney C, et al. Lancet (2021) pmid: 34246347
- **180.** de Bono JS, et al. Clin. Cancer Res. (2019) pmid: 30037818
- 181. Saura C, et al. Cancer Discov (2017) pmid: 27872130
- 182. Voss MH, et al. Clin. Cancer Res. (2018) pmid: 30327302
- **183.** André F, et al. J. Clin. Oncol. (2016) pmid: 27091708 **184.** Schmid P, et al. J. Clin. Oncol. (2019) pmid: 31841354
- 185. Weldon Gilcrease G, et al. Invest New Drugs (2019) pmid: 30302599
- 186. Mendes-Pereira AM, et al. EMBO Mol Med (2009)

- pmid: 20049735
- 187. Shen Y, et al. Clin. Cancer Res. (2013) pmid: 23881923
- 188. Chatterjee P, et al. PLoS ONE (2013) pmid: 23565244
- **189.** McCormick A, et al. Int. J. Gynecol. Cancer (2016) pmid: 26905328
- 190. Forster MD, et al. Nat Rev Clin Oncol (2011) pmid: 21468130
- 191. Eikesdal HP, et al. Ann Oncol (2021) pmid: 33242536
- 192. Dougherty et al., 2014; ASCO Abstract 5536
- 193. Pan M, et al. Perm J (2021) pmid: 33970096
- 194. Sandhu SK, et al. Lancet Oncol. (2013) pmid: 23810788
- 195. Romero I, et al. Gynecol Oncol (2020) pmid: 32988624
- 196. George S, et al. Immunity (2017) pmid: 28228279
- 197. Peng W, et al. Cancer Discov (2016) pmid: 26645196
- 198. Zhou XP, et al. Int. J. Cancer (1999) pmid: 10096247
- **199.** Rasheed BK, et al. Cancer Res. (1997) pmid: 9331072
- 200. Davies MP, et al. Br. J. Cancer (1999) pmid: 10188904
- **201.** Lin H, et al. Clin. Cancer Res. (1998) pmid: 9796977
- **202.** Schmidt EE, et al. J. Neuropathol. Exp. Neurol. (1999) pmid: 10560660
- 203. Kato H, et al. Clin. Cancer Res. (2000) pmid: 11051241
- **204.** Furnari FB, et al. Genes Dev. (2007) pmid: 17974913
- 205. Yan et al. 2020; DOI:10.1200/PO.19.00385
- Cancer Genome Atlas Research Network, et al. N. Engl. J. Med. (2015) pmid: 26061751
- 207. Srividya MR, et al. Neuropathology (2011) pmid: 21134002
- 208. Campbell RB, et al. J. Biol. Chem. (2003) pmid: 12857747
- 209. Rodríguez-Escudero I, et al. Hum. Mol. Genet. (2011) pmid: 21828076
- 210. He X, et al. Cancer Res. (2013) pmid: 23475934
- 211. Han SY, et al. Cancer Res. (2000) pmid: 10866302
- 212. Myers MP, et al. Proc. Natl. Acad. Sci. U.S.A. (1998) pmid: 9811831
- 213. Pradella LM, et al. BMC Cancer (2014) pmid: 24498881
- 214. Kim JS, et al. Mol. Cell. Biol. (2011) pmid: 21536651
- **215.** Denning G, et al. Oncogene (2007) pmid: 17213812
- 216. Hlobilkova A, et al. Anticancer Res. () pmid: 16619501
- **217.** Redfern RE, et al. Protein Sci. (2010) pmid: 20718038
- Shenoy S, et al. PLoS ONE (2012) pmid: 22505997
 Wang Y, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19329485
- 220. Okumura K, et al. J. Biol. Chem. (2006) pmid: 16829519
- 221. Lee JO, et al. Cell (1999) pmid: 10555148
- 222. Maxwell GL, et al. Cancer Res. (1998) pmid: 9635567
- 223. Risinger JI, et al. Clin. Cancer Res. (1998) pmid: 9865913
- 224. Ngeow J, et al. J. Clin. Endocrinol. Metab. (2012) pmid:

- 23066114
- 225. Lobo GP, et al. Hum. Mol. Genet. (2009) pmid: 19457929
- 226. Liu J, et al. Oncogene (2014) pmid: 23995781
- **227.** Maehama T, et al. Annu. Rev. Biochem. (2001) pmid: 11395408
- 228. De Vivo I, et al. J. Med. Genet. (2000) pmid: 10807691
- 229. Ramaswamy S, et al. Proc. Natl. Acad. Sci. U.S.A. (1999) pmid: 10051603
- 230. Liu JL, et al. Mol. Cell. Biol. (2005) pmid: 15988030
- 231. Karoui M, et al. Br. J. Cancer (2004) pmid: 15026806
- 232. Gil A, et al. PLoS ONE (2015) pmid: 25875300
- 233. Furnari FB, et al. Cancer Res. (1998) pmid: 9823298
- 234. Spinelli L, et al. J. Med. Genet. (2015) pmid: 25527629
- **235.** Mingo J, et al. Eur. J. Hum. Genet. (2018) pmid: 29706633
- 236. Wang Q, et al. J. Mol. Graph. Model. (2010) pmid:
- 237. Andrés-Pons A, et al. Cancer Res. (2007) pmid: 17942903
- 238. Butler MG, et al. J. Med. Genet. (2005) pmid: 15805158
- 239. Georgescu MM, et al. Proc. Natl. Acad. Sci. U.S.A. (1999) pmid: 10468583
- 240. Staal FJ. et al. Br. J. Cancer (2002) pmid: 12085208
- 241. Nguyen HN, et al. Oncogene (2014) pmid: 24292679
- **242.** Rahdar M, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19114656
- 243. Das S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12808147
- 244. Wang X, et al. Biochem. J. (2008) pmid: 18498243
- **245.** Valiente M, et al. J. Biol. Chem. (2005) pmid: 15951562
- 246. Nguyen HN, et al. Oncogene (2015) pmid: 25263454
- **247.** Blumenthal GM, et al. Eur. J. Hum. Genet. (2008) pmid: 18781191
- 248. Orloff MS. et al. Oncogene (2008) pmid: 18794875
- **249.** Zbuk KM, et al. Nat. Rev. Cancer (2007) pmid: 17167516
- 250. Hasselbalch B, et al. Neuro-oncology (2010) pmid: 20406901
- **251.** Gajadhar AS, et al. Mol. Cancer Res. (2012) pmid: 22232519
- 252. Lv S, et al. Int. J. Oncol. (2012) pmid: 22752145
- 253. Whittle JR, et al. J Clin Neurosci (2015) pmid: 26279503
- 254. Jensen LH, et al. Ann. Oncol. (2012) pmid: 22367707
- 255. Sohal DP, et al. Ann. Oncol. (2013) pmid: 24146220
- Crawford J, et al. J Thorac Oncol (2013) pmid: 24389433
 Rowinsky EK, et al. J. Clin. Oncol. (2004) pmid:

15210739