Dodatek A

Celem dodatku jest przypomnienie podstawowych elementarnych pojęć matematycznych oraz wyjaśnienie ewentualnych wątpliwości co do terminologii i notacji stosowanych w podręczniku.

1. Zbiory

Przypomnimy podstawowe pojęcia teorii mnogości. Pojęcie "zbioru" oraz "należenie elementu do zbioru" są pojęciami pierwotnymi teorii mnogości. Zbiory oznaczamy z reguły dużymi literami np. X,Y,Z,A,B,C. Zdanie "element x należy do zbioru A", zapisujemy symbolicznie jako $x \in A$. Zdanie "element x nie należy do zbioru A", zapisujemy symbolicznie jako $x \notin A$.

Jeśli każdy element zbioru A jest elementem zbioru B, to mówimy, że A jest podzbiorem B lub B jest nadzbiorem A, co zapisujemy w postaci $A \subset B$. Symbol \subset nazywamy *znakiem inkluzji*.

Niech A,B,X będą dowolnymi zbiorami takimi, że $A \subset X$ i $B \subset X$. W teorii mnogości, a ściślej, w jej działe o nazwie *algebra zbiorów* wprowadza się działania dodawania zbiorów $A \cup B$, mnożenia: $A \cap B$, odejmowania: $A \setminus B$ oraz dopełnienia zbioru: $-A = X \setminus A$.

Niech X będzie dowolnym zbiorem niepustym. *Funkcją zdaniową* nazywamy wyrażenie $\varphi(x)$, w którym występuje zmienna x i które staje się zdaniem prawdziwym lub fałszywym, jeśli zamiast zmiennej x podstawimy dowolny element zbioru X.

Jeśli $\varphi(x)$ jest funkcją zdaniową to $\{x \in X; \varphi(x)\}$ jest z definicji zbiorem tych wszystkich elementów x zbioru X dla, których zdanie $\varphi(x)$ (jak mówimy czasem warunek $\varphi(x)$) jest prawdziwe.

By zdefiniować zbiór często po prostu wyliczamy jego elementy w nawiasach klamrowych. Np. $\{a,b,c\}$ oznacza zbiór złożony z 3 elementów a,b i c. Symbolem N oznaczamy zbiór liczb naturalnych $\{1,2,3,...\}$ a symbolem Z zbiór liczb całkowitych $\{...,-3,-2,-1,01,2,3,...\}$. Symbolem < m,n> oznaczamy zbiór wszystkich liczb całkowitych większych równych m i mniejszych równych n.

2. Para uporządkowana

Niech a i b będą dowolnymi przedmiotami (czasem mówimy obiektami). Parq uporządkowaną nazywamy zbiór $\{a, \{a, b\}\}$. Parę uporządkowaną oznaczamy symbolem (a,b) przy czym a nazywa się pierwszą współrzędną (lub poprzednikiem) pary uporządkowanej (a,b) a b drugą współrzędną (lub następnikiem) pary uporządkowanej (a,b). Para uporządkowana umożliwia wprowadzenie pojęcia trójki uporządkowanej (czy ogólniej pojęcia n-tki uporządkowanej) jako pary uporządkowanej.

Trójkę uporządkowaną definiujemy rekurencyjnie jako $(a,b,c) \stackrel{df}{=} ((a,b),c)$, a *n-tkę uporządkowaną* jako $(x_1,x_2,...,x_n) \stackrel{df}{=} ((x_1,x_2,...,x_{n-1}),x_n)$.

Czasami nie precyzujemy jakie jest *n* w *n*-tce uporządkowanej i nazywamy taką n-tkę uporządkowaną układem uporządkowanym.

Przykład: Wiele pojęć matematycznych definiujemy jako pary uporządkowane np. liczba wymierna jest z definicji parą uporządkowaną liczb całkowitych. Liczba zespolona jest parą uporządkowaną liczb rzeczywistych. Automat skończony (będziemy mówić o atomatach skończonych w rozdziale 3) to piątka uporządkowana. Algebra Boole'a (będziemy mówić o algebrach Boole'a w rozdziale 2) to 6-stka uporządkowana. ■

Tak więc elementarne w swej treści pojęcie pary uporządkowanej i *n*-tki uporządkowanej jest użytecznym często wykorzystywanym pojęciem.

3. Relacja i relacja n-argumentowa, system relacyjny

Niech $X_1, X_2, ..., X_n$ będą zbiorami. *Relacja n-argumentowa* $(n \ge 2)$ to dowolny podzbiór ρ produktu $X_1 \times X_2 \times ... \times X_n$. Jeśli n=2 to relację $\rho \subset X_1 \times X_2$ nazywamy relacją dwuargumentową lub krótko relacją i fakt , że $(x,y) \in \rho$ zapisujemy nieco krócej jako $x \rho y$. Jeśli $X_1 = X_2 = ... = X_n$ to relację n argumentowa nazywamy relacją w X.

System relacyjny to para uporządkowana (X, ρ) gdzie ρ jest relacją w X. *Dziedziną relacji* $\rho \subset X_1 \times X_2$ nazywamy zbiór

$$\{x \in X_1; istnieje \ takie \ y \in X_2, ze(x, y) \in \rho\}$$

Przeciwdziedziną relacji $\rho \subset X_1 \times X_2$ nazywamy zbiór

$$\{y \in X, \text{ istnieje takie } x \in X, \text{ ze } (x, y) \in \rho\}$$

Relacja ρ w X jest zwrotna, jeśli dla każdego $x \in X$ spełniony jest warunek $x \rho x$.

Relacja ρ w X jest przechodnia, jeśli dla każdego $x, y, z \in X$ spełniony jest warunek

$$(x\rho y \land y\rho z) \Rightarrow (x\rho z)$$
.

Relacja ρ w X jest symetryczna, jeśli dla każdego $x, y \in X$ spełniony jest warunek

$$x\rho y \Rightarrow y\rho x$$

Relacja jest *antysymetryczna*, jeśli dla każdego $x, y \in X$ spełniony jest warunek

$$(x\rho y \land y\rho x) \Rightarrow (x\rho y)$$

Szczególnie ważne typy relacji to relacja funkcji czyli funkcja, relacja równoważności, relacja quasiporządku, relacja częściowego porządku i relacja liniowego porządku. Relacja funkcji omówiona jest w następnym punkcie (punkt 4).

Relacją quasiporządku w zbiorze *X* nazywamy relację zwrotną i przechodnią. Relacją quasiporządku oznaczamy najczęściej symbolem ≤.

Relacją porządku w zbiorze *X* nazywamy relację zwrotną, antysymetryczną i przechodnią. Relacją porządku oznaczamy podobnie jak relację quasiporządku najczęściej symbolem ≤.

Relacją liniowego porządku w zbiorze X nazywamy relację zwrotną, antysymetryczną i przechodnią (a więc relację porządku) spełniającą warunek dla każdego $x, y \in X$ mamy $x \le y$ lub $y \le x$, gdzie symbol \le oznacza relacją liniowego porządku.

Niech X będzie dowolnym niepustym zbiorem. *Relacja równoważności* lub krótko *równoważność* w X, to relacja \sim w X zwrotna, symetryczna i przechodnia. Relacja równoważności spełnia więc z definicji następujące warunki: dla każdego $a,b,c\in X$

- $a \sim a$ (zwrotność)
- jeśli $a \sim b$, to $b \sim a$ (symetryczność)
- jeśli $a \sim b$ i $b \sim c$, to $a \sim c$ (przechodniość).

Przykład: Przykładem relacji równoważności jest relacja przystawania liczb całkowitych modulo liczba $n \in N$. Mówimy, że dwie liczby całkowite $a,b \in Z$ przystają do siebie modulo m jeśli dają tę samą resztę z dzielenia przez m. Jeśli liczby $a,b \in Z$ przystają do siebie modulo n to fakt ten zapisujemy jako

$$a \equiv b \pmod{m}$$

i nazywamy kongruencją.

Twierdzenie (*zasada abstrakcji*): Dowolna relacja równoważności \sim w zbiorze niepustym X wyznacza jednoznacznie rozbicie tego zbioru na parami rozłączne niepuste podzbiory $(K_t)_{t\in T}$ (które nazywamy klasami równoważności rozważanej relacji) w taki sposób, że dowolne dwa elementy $x,y\in X$ należą do tej samej klasy równoważności K_t wtedy i tylko wtedy, gdy $x\sim y$.

Z drugiej strony jeśli mamy rozbicie niepustego zbioru X na parami rozłączne niepuste podzbiory $(K_t)_{t \in T}$ to takie rozbicie wyznacza jednoznacznie relację równoważności w zbiorze X przy czy zdefiniowana jest ona tak:

 $x \sim y$ wtedy i tylko wtedy, gdy istnieje takie $t \in T$, $x, y \in K_t$

4. Funkcje

Niech X, Y będą ustalonymi zbiorami. Funkcją nazywamy dwuargumentową relację $f \subset X \times Y$ taką, że dla każdego $x \in X$ i dla każdego $x, y \in Y$ mamy

$$((x, y) \in f \land (x, z) \in f) \Rightarrow y = z$$

a ponadto dla każdego $x \in X$ istnieje $y \in Y$ takie, że $(x, y) \in f$. Zbiór X nazywamy dziedziną funkcji f lub zbiorem argumentów funkcji f a zbiór Y przeciwdziedziną funkcji f.

Jeśli dla każdego $y \in Y$ istnieje takie $x \in X$,że $(x, y) \in f$, to funkcję nazywamy "na" lub *suriekcją*.

Jeśli dla każdego $(x_1, y_1), (x_2, y_2) \in f$ zachodzi implikacja $(y_1 = y_2) \Rightarrow (x_1 = x_2)$, to funkcję f nazywamy funkcją różnowartościową lub iniekcją.

Fakt, że f jest funkcją z dziedziną X i przeciwdziedziną Y, zapisujemy jako $f: X \to Y$ lub $f: X \ni x \to y \in Y$. Jeśli $(x,y) \in f$, to x nazywamy argumentem funkcji, a y wartością funkcji i tradycyjnie zapisujemy ten fakt w postaci f(x) = y. Zapis f(x) oznacza wartość funkcji, nie funkcję.

Funkcję (ang. function) nazywamy również inaczej *odwzorowaniem* (ang. mapping) lub *przeksztalceniem* (ang. transformation).

Przeciwobraz zbioru $B \subset Y$ przy odwzorowaniu f to z definicji podzbiór zbioru X zdefiniowany jako $\{x \in X; \text{ istnieje takie } y \in B, \text{ ze } f(x) = y\}$. Przeciwobraz zbioru A oznaczamy symbolem f(A).

Funkcję określoną na zbiorze N nazywamy *ciągiem*, a określoną na Z *ciągiem dwustronnym*. Ciąg zapisujemy wyliczając jego kolejne elementy w postaci $a_1, a_2, a_3, ..., a_n, ...$ lub oznaczamy symbolem $(a_n)_{n=1}^{\infty}$ lub $(a_n)_{n\in N}$. Funkcję określoną na zbiorze <1,m>, gdzie $m\in Z$ nazywamy *ciągiem skończonym*.

5. Bijekcje, permutacje i inwolucje

Bijekcja to dowolne odwzorowanie różnowartościowe i "na". Jeśli A jest dowolnym niepustym zbiorem, to dowolna bijekcja $f:A\to A$ nazywa się *permutacją* zbioru A Najprostszą permutacją zbioru A jest tożsamość $id:A\to A$ zdefiniowana wzorem id(x)=x dla każdego $x\in A$.

Zbiór wszystkich permutacji zbioru niepustego A stanowi (wraz z działaniem superpozycji funkcji) grupę (na ogół nieprzemienną). Elementem odwrotnym do danego elementu f jest funkcja odwrotna f^{-1} , a elementem jednostkowym jest tożsamość id: $A \to A$.

Jeśli A jest n-elementowym zbiorem skończonym, to liczba wszystkich różnych permutacji $f: A \to A$ jest równa n!

Z reguły mówiąc "permutacja", mamy na myśli skończony zbiór A. Wygodnie jest ponumerować elementy skończonego n – elementowego zbioru A liczbami ze zbioru <1,n> lub utożsamić zbiór A ze zbiorem liczb <1,n>.

Permutacje są bardzo często wykorzystywane w kryptografii (np. w szyfrach przestawieniowych permutacje są kluczami).

Tę samą permutację $f:A\to A$ można zdefiniować w różny sposób. Często stosowanym sposobem jest wpisywanie w nawiasach argumentów funkcji f wraz z wartościami funkcji według schematu:

$$f = \begin{pmatrix} 1 & 2 & 3 & n \\ f(1) f(2) f(3) \dots f(n) \end{pmatrix}$$

Przykład: Niech $A = \{1,2,3,4,5\}$. Odwzorowanie zdefiniowane tak f(1) = 3, f(2) = 5, f(3) = 4, f(4) = 2, f(5) = 1 jest permutacją. Można je zapisać jako

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix} \tag{*}$$

Przy takim zapisie łatwo można znaleźć element odwrotny do f, czyli f^{-1} . Zamieniamy wiersze miejscami a następnie porządkujemy kolumny wg rosnącej współrzędnej, górnej współrzędnej. Uzyskujemy w tej sytuacji

$$f^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix}$$

Inwolucja to taka permutacja $f: A \to A$, że $f = f^{-1}$ lub co na jedno wychodzi $f \cdot f = id$, czyli f(f(x)) = x dla każdego $x \in A$.

6. Działania i algebry

Niech A będzie niepustym zbiorem a n liczbą naturalną. Działanie n-argumentowe (lub operacja n-argumentowa) w zbiorze A, to dowolne odwzorowanie $f: \underbrace{A \times A \times ... \times A}_{n} \to A$. Element $f(a) \in A$ dla $a \in A^{n}$ nazywamy wynikiem tego działania.

Dodatkowo przez działanie 0 – argumentowe rozumiemy dowolny wyróżniony element zbioru A. Najczęściej mamy do czynienia z działaniami 0, 1 i 2 argumentowymi.

Mówimy, że podzbiór $B \subset A$ jest zamknięty ze względu na działanie $f: \underbrace{A \times A \times ... \times A}_{p} \to A$

jeśli dla każdego $(a_1, a_2, ..., a_n) \in B^n$ mamy $f(a_1, a_2, ..., a_n) \in B$.

Działania dwuargumentowe nazywamy krótko działaniami i oznaczamy zwykle takimi symbolami jak $+, \circ, \otimes, \oplus, /$ itp., a wynik działania na parze $(a_1, a_2) \in A^2$ oznaczamy symbolem $a_1 + a_2, a_1 \circ a_2, a_1 \otimes a_2$ itd.

Działanie dwuargumentowe o nazywamy przemiennym, jeśli dla każdego $a,b \in A$ mamy

$$a \circ b = b \circ a$$

Działanie dwuargumentowe o nazywamy łącznym, jeśli dla każdego $a,b,c \in A$ mamy

$$a \circ (b \circ c) = (a \circ b) \circ c$$

Element $1 \in A$ nazywamy *elementem neutralnym* lub *jedynką* lub też *elementem jednostkowym* działania \circ jeśli $1 \circ a = a \circ 1 = a$ dla każdego $a \in A$.

Fakt: Element jednostkowy ustalonego działania dwuargumentowego o może być tylko jeden.

Dowód: Załóżmy, że istnieją dwa różne takie elementy. Prowadzi to do sprzeczności, a więc może istnieć tylko jeden element jednostkowy dla danego działania. ■

Działania zdefiniowane wyżej nazywają się również działaniami wewnętrznymi. Jeśli mamy dwa niepuste zbiory K i A to dowolne odwzorowanie $o_e: K \times A \to A$ nazywamy działaniem zewnętrznym.

Układ uporządkowany $(A,o_1,o_2,...,o_n)$, gdzie A jest zbiorem, a $o_1,o_2,...,o_n$ działaniami, nazywa się *algebrą*. Algebry nazywamy też "*algebrami ogólnymi* lub "*algebrami abstrakcyjnymi*". Z pojęciem algebry związane są ściśle pojęcia *podalgebry*, *homomorfizmu algebr* i *izomorfizmu algebr*.

Niech $(A, o_1, o_2, ..., o_n)$ będzie algebrą a zbiór $B \subset A$ niech będzie zamknięty ze względu na działania $o_1, o_2, ..., o_n$ oraz niech $o_i = o_i | B^{n_i}$ dla $i \in <1, n>$ (gdzie n_i jest liczbą argumentów działania o_i). W tej sytuacji algebrę $(B, o_1, o_2, ..., o_n)$ nazywamy *podalgebrą* algebry $(A, o_1, o_2, ..., o_n)$. Mówimy też często w uproszczeniu, że B jest podalgebrą algebry A.

Oczywiście każdy podzbiór $B \subset A$ zamknięty ze względu na działania $o_1, o_2, ..., o_n$ wyznacza podalgebrę algebry $(A, o_1, o_2, ..., o_n)$.

Niech będą dane 2 algebry $(A,o_1,o_2,...,o_n)$ i $(A,o_1,o_2,...,o_n)$ tego samego typu tzn. takie, że dla każdego $i \in <1,n>$ liczby argumentów działania o_i oraz o_i są jednakowe. Odwzorowanie $h:A_1 \to A_2$ nazywamy *homomorfizmem* algebr $(A,o_1,o_2,...,o_n)$ i $(A,o_1,o_2,...,o_n)$ jeśli dla każdego $i \in <1,n>$ i dla każdego $(a_1,a_2,...,a_{n_i}) \in A_1^{n_i}$ (gdzie n_i jest liczbą argumentów działania i) mamy

$$h(o_i(a_1, a_2, ..., a_n)) = o'_i(h(a_1), h(a_2), ..., h(a_n))$$

Szczególnymi przypadkami algebry są półgrupa, monoid, grupa, grupa abelowa, pierścień, ciało i algebra Boole'a, którą zajmiemy się szczegółowo w rozdziale 2.

Czasami wprowadza się (bardzo bliskie pojęciowo algebrze abstrakcyjnej, ale nieco ogólniejsze) pojęcie *struktury algebraicznej* jako n-tki uporządkowanej (w skład tej n-tki wchodzi rodzina zbiorów niepustych oraz rodzina działań wewnętrznych i zewnętrznych). Przykładem struktury algebraicznej jest przestrzeń liniowa $(V, K, +, \cdot)$, gdzie V jest zbiorem wektorów, K ciałem, plus oznacza dodawanie wektorów a kropka oznacza działanie mnożenia przez skalar.

Zbiór A z działaniem łącznym nazywa się *półgrupą*. Dokładniej jest to para uporządkowana (A, o_1) taka, że działanie $o_1: A \times A \to A$ jest działaniem dwuargumentowym łącznym, tzn. dla każdego $a, b, c \in A$ mamy

$$a \circ (b \circ c) = (a \circ b) \circ c$$

Półgrupę z jedynką nazywamy *monoidem*. Istnienie jedynki oznacza, że istnieje taki element $1 \in A$, że $1 \circ a = a \circ 1 = a$ dla każdego $a \in A$.

Fakt (który warto znać): W dowolnej półgrupie (A, \circ) wartość $(...((a_1 \circ a_2) \circ a_3) \circ ... a_{n-1}) \circ a_n$ dla $a_1, a_2, ..., a_n \in A$ nie zależy od rozmieszczenia nawiasów. Możemy więc pisać: $a_1 \circ a_2 \circ ... \circ a_n$.

Dowód: Dowód tego faktu jest indukcyjny. ■

7. Grupy

Monoid (G, \circ) posiadający tę własność, że dla każdego $a \in A$ istnieje taki element $b \in A$, że $a \circ b = b \circ a = 1$ nazywamy *grupą*. Upraszczając mówimy, że G jest grupą.

Element b z powyższej definicji nazywamy elementem odwrotnym do a i oznaczamy symbolem a^{-1} tzn. $b=a^{-1}$.

Grupę nazywamy grupą skończoną jeśli ma skończoną liczbę elementów. Ilość elementów w grupie nazywamy *rzędem grupy* i oznaczamy symbolem |G|. Podzbiór grupy G, który jest grupą ze względu na to samo działanie grupowe nazywamy *podgrupą* grupy G.

Generator grupy to taki element $g \in G$, $\dot{z}e \ G = \{g^k; \ k \in N\}$

Grupy cykliczne to grupy mające generator.

Rząd elementu grupy to najmniejsza liczba naturalna taka, że $a^n = 1$

Jeśli działanie grupowe jest przemienne to taką grupę nazywamy grupą abelową.

Twierdzenie (Lagrange'a): Dla grup skończonych rząd podgrupy jest dzielnikiem rzędu grupy.

Wniosek: Rząd elementu grupy jest dzielnikiem rzędu grupy.

Przykład: Zbiór liczb całkowitych Z z działaniem dodawania jako działaniem grupowym jest grupą abelową. Podobnie zbiór liczb Q wymiernych z dodawaniem, zbiór liczb rzeczywistych R z dodawaniem i zbiór liczb zespolonych C z dodawaniem są grupami apelowymi.

Przykład: Zbiór liczb $Z_n = \{0,1,2,...,n-1\}$ z działaniem dodawania modulo n jako działaniem grupowym jest grupą abelową. Jest to tzw. grupa reszt modulo n.

Przykład: Zbiór liczb $Z_p^* = \{1, 2, ..., p-1\}$, z działaniem mnożenia modulo p jest grupą apelową.

Przykład: Przykładem grupy nieabelowej jest (S_n, \circ) , gdzie S_n jest zbiorem wszystkich permutacji zbioru n elementowego a działanie " \circ " superpozycją odwzorowań.

Przykład: Zbiory Q\{0}, R\{0}, C\{0} z działaniem mnożenia liczb są grupami abelowymi. \blacksquare

Niech P będzie podgrupą grupy G. Jeśli $|P|=p^k$ dla pewnego $k\in N$ i liczby pierwszej p, to mówimy, że P jest p podgrupą grupy G. Każdą grupę mającą p^k elementów nazywamy p-grupą.

Jeśli $g \in G$ jest generatorem grupy G to liczbę $n \in N \cup \{0\}$ taką, że $g^n = a$, nazywamy logarytmem dyskretnym z a przy podstawie g i piszemy $\log_a a = n$.

8. Pierścienie

Niech w niepustym zbiorze P będą określone 2 działania, "+" i zwane odpowiednio dodawaniem i mnożeniem oraz niech będą wyróżnione 2 elementy 0 i 1 zwane zerem i *jedynką pierścienia*. Układ $(P,+,\cdot,0,1)$ czyli czwórkę uporządkowaną nazywamy *pierścieniem*, jeśli spełnione są dla każdego $a,b,c \in P$ następujące warunki:

- 1. a+b=b+a (przemienność dodawania)
- 2. a+(b+c)=(a+b)+c (łączność dodawania)
- 3. a + 0 = 0 + a = a (0 jest elementem zerowym pierścienia)
- 4. dla każdego $a \in P$ istnieje $a' \in P$, że a + a' = a' + a = 0 (istnienie elementu przeciwnego)
- 5. $a \cdot b = b \cdot a$ (przemienność mnożenia)
- 6. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ (łączność mnożenia)
- 7. $a \cdot 1 = 1 \cdot a = a$ (1 jest jedynka pierścienia)
- 8. $a(b+c) = a \cdot b + a \cdot c$ oraz (b+c)a = ba + ca (rozdzielność mnożenia względem dodawania)

Ściślej, układ $(P,+,\cdot,0,1)$ spełniający powyższe warunki nazywamy zwykle *pierścieniem przemiennym z jednością*, a pierścieniem nazywa się układ $(P,+,\cdot,0)$ spełniający tylko warunki 1, 2, 3, 4, 7 i 8. Innymi słowy pierścień to grupa abelowa z mnożeniem spełniającym warunki 6 i 8.

Ponieważ w dalszym ciągu będziemy mieli do czynienia tylko z pierścieniami przemiennymi z jedynką będziemy je krótko nazywać pierścieniami.

Krótko: pierścieniem nazywamy algebrę $(P,+,\cdot,0)$ taką, że (P,0,+) jest grupą abelową, a działanie mnożenia $\cdot: P \times P \to P$ jest łączne i rozdzielne względem dodawania (prawostronnie i lewostronnie), tzn. spełnione są aksjomaty grupy abelowej i następujące 2 warunki: $a(b+c) = a \cdot b + a \cdot c$ oraz (b+c)a = ba + ca dla każdego $a,b,c \in P$.

Jeśli $a \cdot b = 0$ i $a, b \neq 0$ to a i b nazywamy dzielnikami zera.

Dziedzina całkowitości to pierścień bez dzielników 0.

Przykład: Zbiór liczb całkowitych Z ze zwykłymi działaniami dodawania i mnożenia jest pierścieniem (przemiennym z 1).

Przykład: Zbiór liczb $Z_m = \{0,1,...,m-1\}$ $(m \in N, m \ge 2)$ jest pierścieniem z działaniami sumy modulo m i mnożenia modulo m. Jest to tzw. pierścień reszt modulo m. Sumę modulo m oznaczamy symbolem \oplus lub \oplus_m . Zapis $x \oplus_m y$ oznacza resztę z dzielenia zwykłej sumy x+y liczb całkowitych przez m. Podobnie iloczyn modulo m oznaczamy symbolem \otimes lub \otimes_m . Zapis $x \otimes_m y$ oznacza resztę z dzielenia zwykłego iloczynu liczb całkowitych przez m. Wprowadza się też często 2 zapisy na oznaczenie reszty z dzielenia przez liczby całkowitej x przez m: x (mod m) oraz $[x]_m$. \blacksquare

9. Ciała, ciała skończone

W tym punkcie zdefiniujemy pojęcie ciała (ang. field, fran. le corp, nm. Korp) i omówimy podstawowe własności ciał. Ciała oznacza się z reguły symbolem K a tzw. ciała skończone o q elementach symbolem F_q lub GF(q) (litera K sugeruje wykorzystanie francuskiej lub niemieckiej nazwy ciała, F nazwy angielskiej a GF jest skrótem od Galois field).

Ciało może mieć skończoną albo nieskończoną ilość elementów. Mówimy krótko "ciała skończone" i "ciała nieskończone". Szczególną uwagę zwrócimy na ciała skończone czyli ciała o skończonej ilości elementów. Szczególnie ważne są ciała skończone w kryptografii, kodach korekcyjnych i cyfrowym przetwarzaniu sygnałów. W niniejszym podrozdziale zostaną również omówione pierwiastki z jedności i pierwiastki pierwotne z jedności.

Pierścień przemienny z jednością 1 ≠ 0 spełniający warunek

$$\forall \exists_{x \in K, x \neq 0} \exists_{y \in K} xy = 1$$

nazywa się ciałem.

Inaczej mówiąc ciało to z definicji taki pierścień przemienny z jednością $1 \neq 0$, w którym dla każdego niezerowego elementu istnieje element odwrotny. Jeśli ciało K ma skończoną ilość elementów, to nazywamy je ciałem skończonym, jeśli nieskończoną, to nazywamy je ciałem nieskończonym . Z definicji ciała wynika, że ciało ma co najmniej 2 elementy.

Niech K będzie ciałem. Podzbiór L ciała K nazywamy *podciałem* ciała K, jeśli $0,1 \in L$ i w podzbiorze L są wykonalne działania dodawania, odejmowania, mnożenia i dzielenia przez elementy różne od 0.

Przykład: Jeżeli p jest liczbą pierwszą to pierścień Z_p jest ciałem. Oczywiście jest to ciało skończone.

Przykład: Zbiór liczb wymiernych Q jest ciałem nieskończonym.

Przykład: Zbiór liczb rzeczywistych R jest ciałem nieskończonym.

Charakterystyka ciała to najmniejsza taka liczba $n \in N$, że $\underbrace{1+1+...+1}_{n} = 0$. Jeśli takiej

liczby nie ma, to mówimy, ż ciało ma charakterystykę 0. Charakterystyka ciała jest liczbą pierwszą lub zerem. Charakterystyka ciała skończonego jest zawsze liczbą pierwszą. Ciało o charakterystyce 0 jest zawsze nieskończone.

Twierdzenie: Każde ciało skończone ma zawsze p^n elementów, tzn. dla każdego ciała skończonego istnieje taka liczba pierwsza p i naturalna $k \in N$, że liczba elementów ciała jest równa p^n .

Ciało skończone o $q = p^n$ elementach oznacza się symbolami F_q lub $GF(p^n)$.

Mówimy, że zbiór $L \subset K$ wraz z działaniami sumy i iloczynu jest *podciałem* ciała K, jeśli jest zamknięty ze względu na te działania. Z kolei ciało K nazywamy *rozszerzeniem* ciała L.

Cialo proste to takie cialo, które nie zawiera żadnego ciala właściwego.

Grupa addytywna ciała $(K,+,\cdot,0,1)$ to grupa (K,+), a *grupa multiplikatywna ciała* to grupa $(K\setminus\{0\},\cdot)$.

Wielomian o współczynnikach w dowolnym ciele K definiujemy analogicznie, jak w przypadku ciała liczb rzeczywistych lub zespolonych. Zbiór wszystkich wielomianów wielomianów o współczynnikach w ciele K oznaczamy symbolem K[x]. Można pokazać, że ma on strukturę pierścienia przemiennego z jednością.

10. Przestrzenie liniowe

Pojęcie przestrzeni liniowej i bazy przestrzeni liniowej przyjmujemy za znane.

Przykład: Przestrzeń $\{0,1\}^n = Z_2^n$ jest przestrzenią liniową nad $Z_2 = \{0,1\}$. Ten istotny fakt wynika z ogólniejszego faktu następującego:

Fakt: Przestrzeń K^n z działaniami dodawania po współrzędnych i mnożeniem przez skalar po współrzędnych jest przestrzenią liniową nad K.

11. Odległość Hamminga

Żeby wyjaśnić czym jest odległość Hamminga wprowadzimy najpierw wprowadzić pojęcie przestrzeni metrycznej i produktu przestrzeni metrycznych.

Przestrzeń metryczna to para uporządkowana, (X, ρ) gdzie X jest niepustym zbiorem a ρ funkcją $\rho: X \times X \to R$ spełniającą dla każdego $x, y, z \in X$ następujące 3 warunki:

- 1. $\rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x, y) = \rho(y, x)$ (symetria)
- 3. $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ (nierówność trójkąta lub tzw. warunek trójkąta)

Elementy zbioru X nazywamy *punktami*. Funkcja ρ nazywa się *metryką* (lub *odległością*) *przestrzeni* X, a wartość $\rho(x,y)$ *odległością punktów* $x,y \in X$. Z warunków 1, 2, 3 wynika, że metryka $\rho: X \times X \to R$ jest funkcją rzeczywistą nieujemną, zatem zawsze mamy $\rho: X \times X \to R^+$. Jeśli wiadomo, jaką metrykę rozważamy, to przestrzeń metryczną (X,ρ)

oznacza się dla uproszczenia pojedynczym symbolem X i mówi, że X jest przestrzenią metryczną.

Kulq otwartą o środku w punkcie $x \in X$ i promieniu $r \in R^+ \setminus \{0\}$ nazywamy zbiór $K(x,r) = \{y \in X; \rho(x,y) < r\}$, a *kulą domkniętą* zbiór $\overline{K(x,r)} = \{y \in X; \rho(x,y) \le r\}$.

Przykład: Zbiór liczb rzeczywistych R z funkcją $\rho: R \times R \to R^+$ zdefiniowaną wzorem : dla każdego $x, y \in R$, $\rho(x, y) = |y - x|$ jest przestrzenią metryczną.

Twierdzenie: Niech będzie danych n przestrzeni metrycznych (X_1, ρ_1) , (X_2, ρ_2) ,..., (X_n, ρ_n) . Rozważmy iloczyn kartezjański $X = X_1 \times X_2 \times ... \times X_n$ i zdefiniujmy funkcję $\rho: X \times X \to R^+$ następująco: dla każdego $x = (x_1, x_2, ..., x_n) \in X$ i każdego $y = (y_1, y_2, ..., y_n) \in X$

$$\rho(x,y) = \sum_{i=1}^{n} \rho_i(x_i, y_i)$$
 (1)

wówczas (X, ρ) jest przestrzenią metryczną.

Dowód: Dowód polega na sprawdzeniu własności 1, 2, 3 z definicji przestrzeni metrycznej. Szczegółowy dowód można znaleźć w pracy [2] (K.Maurin; Analiza).■

Przestrzeń (X, ρ) występującą w powyższym twierdzeniu nazywamy *iloczynem kartezjańskim* (lub *produktem kartezjańskim*) przestrzeni metrycznych (X_1, ρ_1) , (X_2, ρ_2) ,..., (X_n, ρ_n) .

Uwaga: Czasami definiujemy produkt przestrzeni metrycznych (X_1, ρ_1) , (X_2, ρ_2) ,..., (X_n, ρ_n) jako parę uporządkowaną $(X, \widetilde{\rho})$, gdzie funkcja $\widetilde{\rho}: X \times X \to R^+$ jest zadana wzorem

$$\tilde{\rho}(x,y) = \left(\sum_{i=1}^{n} \rho_i(x_i, y_i)^2\right)^{1/2} \tag{3}$$

Można wykazać, że funkcja $\widetilde{\rho}$ jest metryką w zbiorze $X=X_1\times X_2\times ...\times X_n$. Obie metryki ρ i $\widetilde{\rho}$ są równoważne w ty sensie, że dla dowolnego ciągu $(x_n)_{n=1}^{\infty}$ elementów przestrzeni X i dowolnego $x\in X$ mamy

$$\rho(x_n, x) \to 0$$
 wtedy i tylko wtedy gdy $\tilde{\rho}(x_n, x) \to 0$ (4)

Uwaga: Łatwo zauważyć, że jeśli $(X_1, \rho_1), (X_2, \rho_2), ..., (X_n, \rho_n)$ są przestrzeniami metrycznymi i $X_1 = X_2 = ... = X_n \stackrel{ozn}{=} Y$ to funkcja $\rho_s : Y \times Y \to R^+$ zdefiniowana wzorem: dla każdego $x, y \in Y$

$$\rho_s(x,y) = \sum_{i=1}^n \rho_i(x,y) \tag{5}$$

jest metryką w Y. Mimo podobieństwa wzorów (1) i (5) definiują one zupełnie inne metryki

Przykład: Z twierdzenia 1 wynika, że R^n $(R^n = \underbrace{R \times R \times R ... \times R}_n)$ z funkcją $\rho: R^n \times R^n \to R^+$ zdefiniowaną dla każdego $(x_1, x_2, ... x_n), (y_1, y_2, ..., y_n) \in R^n$ wzorem

$$\rho(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$
 (6)

jest przestrzenią metryczną.■

W każdym niepustym zbiorze X można wprowadzić metrykę czyli jak mówimy zbiór X można zmetryzować, wprowadzają w nim tzw. metrykę dyskretną $\rho_d: X \times X \to R^+$ zdefiniowaną wzorem:

$$\rho_d(x, y) = \begin{cases} 1 & \text{gdy } x \neq y \\ 0 & \text{gdy } x = y \end{cases}$$

Sprawdzenie, że ρ_d jest metryką w X, jest bardzo proste. Tak zdefiniowana przestrzeń metryczna (X, ρ_d) nazywa się przestrzenią metryczną dyskretną.

Niech V będzie dowolnym ustalonym alfabetem. Wprowadźmy w tym alfabecie metrykę dyskretną $\rho_d: V \times V \to R^+$. Z twierdzenia 1 wynika, że funkcja $\rho_H: V^n \times V^n \to R^+$ zdefiniowana wzorem: dla każdego $x,y \in V^n$

$$\rho_H(x,y) = \sum_{i=1}^n \rho_d(x_i, y_i)$$

jest metryką nazywamy ją *metryką lub odległością Hamminga* w przestrzeni V^n (V^n jest to przestrzeń wszystkich słów o długości n nad alfabetem V). Najczęściej rozważamy metrykę Hamminga dla $V^n = \{0,1\}^n$. Oczywiście $\rho_H : V^n \times V^n \to N \cup \{0\}$ czyli ρ_H jest funkcją o wartościach w zbiorze liczb całkowitych nieujemnych.

Uwaga: Wartość $\rho_H(x,y) = \sum_{i=1}^n \rho_d(x_i,y_i)$ dla 2 słów $x,y \in V^n$ (czyli 2 słów o długości n nad alfabetem V) jest równa liczbie pozycji na, których słowa x i y się różnią. Jeśli np. przesyłamy słowo x przez kanał telekomunikacyjny i na wyjściu tego kanału otrzymujemy słowo y to $\rho_H(x,y)$ podaje liczbę błędów transmisji słowa x.

Przykład: Jeśli $V = \{0,1\}$ oraz x=01110000 i y=10001111 to odległość Hamminga tych 2 słów jest równa 8.

Wagą słowa binarnego z przestrzeni $\{0,1\}^n$ (lub ogólniej z $\{0,1\}^*$) nazywamy liczbą jedynek w tym słowie. W ten sposób definiujemy na $\{0,1\}^*$ funkcję $w:\{0,1\}^* \to N \cup \{0\}$. Oczywiście dla $a \in \{0,1\}^n$ mamy $w(a) = \rho_H(0,a)$ gdzie ρ_H jest metryką Hamminga. Można wyrazić metrykę Hamminga ρ_H w $\{0,1\}^n$ za pomocą funkcji wagi w.

Niech $x, y \in \{0,1\}^n$, $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$, wówczas mamy

$$\rho(x,y) = \sum_{i=1}^{n} \rho_d(x_i, y_i) = \sum_{i=1}^{n} w(x_i - y_i) = w(x - y) = w(x + y)$$

gdzie $x_i -_2 y_i$ oznacza różnicę modulo 2, x - y oznacza różnicę modulo 2 po współrzędnych a x + y sume modulo 2 po współrzednych.

Przykład: Waga słowa 11111111 jest równa 8 tzn. w(11111111)=8, w(00)=0, w(001)=1. ■

12. Grafy

Graf (nieskierowany) to para uporządkowana (V,E), gdzie V jest dowolnym skończonym niepustym zbiorem tzw. zbiorem wierzchołków grafu a E skończoną rodziną nieuporządkowanych par elementów (niekoniecznie różnych) zbioru V, które to pary nazywają się krawędziami grafu.

Graf skierowany (nazywany też *digrafem*) to para uporządkowana (V, E), gdzie V jest dowolnym skończonym niepustym zbiorem tzw. zbiorem wierzchołków grafu a E skończoną rodziną par uporządkowanych elementów zbioru V, które to pary nazywają się krawędziami grafu.

Intuicyjnie jasne pojęcie grafu jest często wykorzystywane w teorii układów logicznych do opisu automatów skończonych, układów sekwencyjnych, a również w minimalizacji wyrażeń boolowskich.

Rząd wierzchołka v grafu to liczba krawędzi grafu schodzących się w danym wierzchołku.

Marszrutą w grafie nazywamy skończony ciąg krawędzi postaci $v_0v_1, v_1v_2, ..., v_{m-1}v_m$ wierzchołek v_0 nazywamy wierzchołkiem początkowym marszruty, a v_m wierzchołkiem końcowym marszruty.

Marszrutę, której wszystkie krawędzie są różne nazywamy łańcuchem.

Droga nazywamy łańcuch, w którym wszystkie wierzchołki $v_0, v_1, v_2, ..., v_{m-1}, v_m$ są różne, za wyjątkiem być może v_0 i v_m .

Drogę zamkniętą zawierająca przynajmniej jedną krawędź nazywamy cyklem

Lasem nazywamy graf, który nie zawiera cykli

Las spójny nazywamy *drzewem*.

Korzeń to każdy wierzchołek drzewa o rzędzie większym od 1.

Liściem nazywamy każdy wierzchołek drzewa o rzędzie równym 1.