

SEM0104 - Aula 2 Graus de Liberdade em Cadeias Cinemáticas

SEM - EESCE USP Prof. Dr. Marcelo Becker

Sumário da Aula

- Introdução
- Graus de Liberdade
- Cadeias Cinemáticas
- Exercícios Recomendados
- Bibliografia Recomendada

Introdução

• O que são mecanismos?

• O que são Máquinas? Prof. Dr. Marcelo Becker

EESC-USP

Sumário da Aula

• Introdução

Graus de Liberdade

- Cadeias Cinemáticas
- Exercícios Recomendados
- Bibliografia Recomendada

- GDL ou DOF (Degree Of Freedom)
- O que significa Grau de Liberdade?

<u>Definição</u>: é o número de parâmetros independentes que são necessários para se definir a posição de um corpo no espaço em qualquer instante.

Prof. Dr. Marcelo

• No Plano: 3 GDL

EESC-USP

Corpo Rígido ou Link

<u>Definição</u>: Corpo que não sofre deformações em nenhuma de suas direções e une 2 ou mais juntas

EESC-USP

Tipos de Movimento

- Rotação Pura
- Translação Pura
- Movimento Complexo
 - Rotação + Translação

- Movimento Complexo
 - Pode ser descrito como a combinação de rotação e translação

Juntas (Joints)

<u>Definição</u>: elemento que conecta 2 corpos e que permite a transmissão de força ou torque. Atuam como restrições geométricas.

Rotacional

Prismática

Cilíndrica

Esférica

Juntas (Joints)

Juntas (Joints)

EESC-USP

Mecanismos Planares

• Critério de Kutzbach

$$N = 3.(B-1) - 2.n_{J1} - n_{J2}$$

• Onde:

N: Número de GDLs

B: Número de Total de Corpos (incluindo o solo)

n₁₁: Número de Juntas com 1 GDL

n_{J2}: Número de Juntas com 2 GDLs

Mecanismos Planares

Critério de Kutzbach

$$N = 3.(B-1) - 2.n_{J1} - n_{J2}$$

Se:

Se:

N = 0: Sistema Estático

N > 0: Sistema com "N" graus de liberase

N < 0 : Sistema Hiperestático

Mecanismos Planares

Critério de Kutzbach

Mecanismos Planares - Exemplos

Pêndulo Simples

B = 2
$$n_{J1} = 1 n_{J2} = 0$$

N = 3.(2-1) - 2.(1) - (0) = 1 GDL

$$B = 3$$
 $n_{J1} = 2$ $n_{J2} = 0$

• Pêndulo Duplo

$$B = 3 \quad n_{J1} = 2 \quad n_{J2} = 0$$
• N = 3.(3-1) - 2.(2) - (0) = 2 GDL

EESC-USP © M. Becker 2014

Mecanismos Planares – Pêndulo Simples

• Equações de Posição:

Mecanismos Planares – Pêndulo Duplo

• Equações de Posição:

$$\overrightarrow{P} = L_1.e^{i\theta_1} + L_2.e^{i\theta_2}$$

$$\overrightarrow{P} = L_1.(\sin \theta_1 \overrightarrow{i} + \cos \theta_1 \overrightarrow{j}) + L_2.(\sin \theta_2 \overrightarrow{i} + \cos \theta_2 \overrightarrow{j})$$

Mecanismos Planares – Observações

(1) Contagem do solo

19

(2) Existem exceções ao Critério de Kutzbach

Mecanismos Planares – Observações

(3) Molas

(4) Sistemas Hidráulicos e Pneumáticos

EESC-USP

Sumário da Aula

- Introdução
- Graus de Liberdade
- Cadeias Cinemáticas
- Exercícios Recomendados
- Bibliografia Recomendada

EESC-USP

Cadeias Cinemáticas Topologias

- Cadeias Abertas
 - A trajetória entre 2 corpos é única
 - Excluindo o solo, o número de corpos é igual ao número de juntas

22

Cadeias Cinemáticas

Topologias

- Cadeias Fechadas
 - Loops

$$n_L = n_J - n_B$$

n_J: Número de Juntas Número de O n_B: Número de Corpos (excluindo o solo)

Cadeias Cinemáticas Topologias

Cadeias Fechadas - Exemplos

$$n_L = n_J - n_B$$

Cadeias Cinemáticas Topologias

Cadeias Parcialmente Fechadas

Cadeias Cinemáticas

Graus de Liberdade

Não considerando o solo:

$$N = 3.n_B - \sum_{i=1}^{n_J} (3 - f_i)$$

• Onde:

N: Número de GDLs

n_B: Número de Corpos (excluindo o solo)

n_L: Número de Loops Marcelo Becker f_i: GDL da junta i

Mecanismos Planares – Exemplos

EESC-USP

DOF = 1

Graus de Liberdade Mecanismos Planares – Exemplos Dr. Marcelo Becker SEM - EF

EESC-USP © M. Becker 2014

Mecanismos Planares – Exemplos

EESC-USP

Mecanismos Planares – Exemplos

EESC-USP

Mecanismos Planares – Exemplos

EESC-USP

Mecanismos Planares – Exemplos

EESC-USP

Graus de Liberdade Pergunta da Aula Passada

Quantos GDLs possui uma mão?

EESC-USP

Pergunta da Aula Passada

22 DOFs

Junta Universal

Junta Rotacional

Próxima Aula

- Mecanismos Simples
- Mecanismos Complexos

Pergunta:

E o conjunto braço, ante-braço e mão, quantos GDLs possui?

Sumário da Aula

- Introdução
- Graus de Liberdade
- Cadeias Cinemáticas
- Exercícios Recomendados
- Bibliografia Recomendada

EESC-USP

Mecanismos Planares – Exercícios

EESC-USP

Mecanismos Planares – Exercícios

EESC-USP

Mecanismos Planares – Exercícios

EESC-USP

EESC-USP

Mecanismos Planares – Exercícios

EESC-USP

Mecanismos Planares – Exercícios

EESC-USP

Mecanismos Planares – Exercícios

EESC-USP

Mecanismos Planares – Exercícios

(a) Parallelogram form

(b) Antiparallelogram form

(d) Deltoid or kite form

Mecanismos Planares – Exercícios

EESC-USP

Mecanismos Planares – Exercícios

EESC-USP

Sumário da Aula

- Introdução
- Graus de Liberdade
- Cadeias Cinemáticas
- Exercícios Recomençacións
- Bibliografia Recomendada

Prof. Dr. Marce

Bibliografia Recomendada

- Shigley, JE. e Uicker, JJ., 1995, "Theory of Machines and Mechanisms".
- MABIE, H.H., OCVIRK, F.W. "Mecanismos e dinâmica das máquinas".
- MARTIN, G.H. "Cinematics and dynamics of machines".
- NORTON, R. L. "Design of Machinery An Introduction to the Synthesis and Analysis of Mechanisms and Machines".
- Notas de Aula