本文件是 SolusMan-LADR4e 的二进制版本,同时也是一份文档

- 针对程序源码: Copyright (C) 2024 Songbingzhi628. Email: 13012057210@163.com. Under GNU Affero General Public License. SolusMan-LADR4e is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see https://www.gnu.org/licenses/>.
- 针对本文档: Copyright (C) 2024 Songbingzhi628. Email: 13012057210@163.com. Under GNU Free Documentation License. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the file named "COPYING".

简介

这是我个人用于复习的「Linear Algebra Done Right 3E/4E, by Sheldon Axler」笔记,一本习题选答与课文补注。因为使用中文会给我编撰这份笔记带来额外的中英文输入法切换的工作成本,况且对于专业学习者,直接使用英文不会造成任何困扰。但英文词句的冗长性拖慢我复习的效率,所以我对许多常用术语作了简写。这份笔记的内容范围和标识说明,我已经在自述中写得很清楚,不再赘述。这份笔记尚处于缓慢的编撰进度中。

我目前还没有能力和资格评论原书好坏以及线性代数课程教材选用的问题。但作为原书的学习者,我可以说,这本书作为初学线性代数的第一教材,虽然不需要其他辅助教材,但要求学习者有足够的耐心和毅力:课文一次看不懂就多看几遍,一天看不懂就分三天看;习题一个小时做不出来,隔六个小时再尝试,一天做不出来,就隔天再尝试。我虽然没有学过除此以外的其他任何线性代数教材,但我认为这样钻研原书是值得的。

				G	OTO				
1	2	3	4	5	6	7	8	9	10
A	A	A		A	A	A	A	A	Α
В	В	В		B^{I}	В	В	В	В	В
				\mathbf{B}^{II}					
C	C	C		C	C	C	C		
		D			D	D	D		
		E		E*					
		F				F*			

ABBREVIATION TABLE

def	definition	vec	vector
vecsp	vector space	subsp	subspace
add	addition/additive	multi	multiplication/multiplicative/multiple
assoc	associative/associativity	distr	distributive properties/property
inv	inverse	existns	existence
uniqnes	uniqueness	linely inde	linearly independent/independence
linely dep	linearly dependent/dependence	dim	dimension(al)
req	require(d)	B_V	basis of <i>V</i>
inje	injective	surj	surjective
col	column	with resp	with respect
standard basis	std basis	iso	isomorphism/isomorphic
correspd	correspond(ing)	poly	polynomial
eigval	eigenvalue	eigvec	eigenvector
mini poly	minimal polynomial	char poly	characteristic polynomial

1 Prove that $\forall v \in V, -(-v) = v$.

SOLUTION:

$$-(-v)+(-v)=0$$
 $v+(-v)=0$ \Rightarrow By the uniques of add inv, we are done.

Or.
$$-(-v) = (-1)((-1)v) = ((-1)(-1))v = 1 \cdot v = v$$
.

2 Suppose $a \in \mathbf{F}, v \in V$, and av = 0. Prove that a = 0 or v = 0.

SOLUTION:

Suppose
$$a \neq 0$$
, $\exists a^{-1} \in \mathbf{F}$, $a^{-1}a = 1$, hence $v = 1 \cdot v = (a^{-1}a)v = a^{-1}(av) = a^{-1} \cdot 0 = 0$.

3 Suppose $v, w \in V$. Explain why $\exists ! x \in V, v + 3x = w$.

SOLUTION:

[Existns] Let
$$x = \frac{1}{3}(w - v)$$
.

[*Uniques*] Suppose
$$v + 3x_1 = w$$
,(I) $v + 3x_2 = w$ (II). Then (I) $-$ (II) $: 3(x_1 - x_2) = 0 \Rightarrow x_1 = x_2$.

Or.
$$v + 3x = w \Leftrightarrow 3x = w - v \Leftrightarrow x = \frac{1}{3}(w - v)$$
.

5 *Show that in the def of a vecsp, the add inv condition can be replaced by* [1.29].

Hint: Suppose V satisfies all conds in the def, except we've replaced the add inv cond with [1.29]. Prove that the add inv is true.

Using [1.31].
$$0v = 0$$
 for all $v \in V \iff (1 + (-1))v = 1 \cdot v + (-1)v = v + (-v) = 0$.

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in R.

Define an add and scalar multi on $\mathbb{R} \cup \{\infty, -\infty\}$ *as you could guess.*

The operations of real numbers is as usual. While for $t \in \mathbb{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} -\infty & \text{if } t > 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t < 0, \end{cases}$$

(I)
$$t + \infty = \infty + t = \infty + \infty = \infty$$
,

(II)
$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty$$
,

(III)
$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of add and scalar multi, is $R \cup \{\infty, -\infty\}$ a vecsp over R? Explain.

SOLUTION:

Not a vecpsp, since the add and scalar mult is not assoc and distr.

By Assoc:
$$(a + \infty) + (-\infty) \neq a + (\infty + (-\infty))$$
.

Or. By Distr:
$$\infty = (2 + (-1))\infty \neq 2\infty + (-\infty) = \infty + (-\infty) = 0$$
.

• Tips: About the Field F: Many choices.

Example:
$$\mathbf{F} = \mathbf{Z}_m = \{K_0, K_1, ..., K_{m-1}\}, \forall m-1 \in \mathbf{N}^+$$
. (See Euler's Theorem.)

7 Give a nonempty $U \subseteq \mathbb{R}^2$,

U is closed under taking add invs and under add, but is not a subsp of \mathbb{R}^2 .

SOLUTION: $(0 \in U; v \in U \Rightarrow -v \in U)$. And operations on U are the same as \mathbb{R}^2 . Let \mathbb{Z}^2 , \mathbb{Q}^2 .

8 Give a nonempty $U \subseteq \mathbb{R}^2$, U is closed under scalar multi, but is not a subsp of \mathbb{R}^2 .

SOLUTION: Let $U = \{(x,y) \in \mathbb{R}^2 : x = 0 \lor y = 0\}.$

9 A function $f: \mathbf{R} \to \mathbf{R}$ is called periodic if $\exists p \in \mathbf{N}^+$, f(x) = f(x+p) for all $x \in \mathbf{R}$. Is the set of periodic functions $\mathbf{R} \to \mathbf{R}$ a subsp of $\mathbf{R}^{\mathbf{R}}$? Explain.

SOLUTION: Denote the set by S.

Suppose $h(x) = \cos x + \sin \sqrt{2}x \in S$, since $\cos x$, $\sin \sqrt{2}x \in S$.

Assume $\exists p \in \mathbb{N}^+$ such that h(x) = h(x+p), $\forall x \in \mathbb{R}$. Let $x = 0 \Rightarrow h(0) = h(\pm p) = 1$.

Thus $1 = \cos p + \sin \sqrt{2}p = \cos p - \sin \sqrt{2}p$

$$\Rightarrow \sin \sqrt{2}p = 0$$
, $\cos p = 1 \Rightarrow p = 2k\pi$, $k \in \mathbb{Z}$, while $p = \frac{m\pi}{\sqrt{2}}$, $m \in \mathbb{Z}$.

Hence $2k = \frac{m}{\sqrt{2}} \Rightarrow \sqrt{2} = \frac{m}{2k} \in \mathbb{Q}$. Contradiction!

OR. Because [I] : $\cos x + \sin \sqrt{2}x = \cos (x + p) + \sin (\sqrt{2}x + \sqrt{2}p)$. By differentiating twice, [II] : $\cos x + 2\sin \sqrt{2}x = \cos (x + p) + 2\sin (\sqrt{2}x + \sqrt{2}p)$.

$$[II] - [I] : \sin \sqrt{2}x = \sin \left(\sqrt{2}x + \sqrt{2}p\right)$$

$$2[I] - [II] : \cos x = \cos (x + p)$$

$$\Rightarrow \text{Let } x = 0, \ p = \frac{m\pi}{\sqrt{2}} = 2k\pi. \text{ Contradicts.}$$

ullet Suppose U, W, V_1, V_2, V_3 are subsps of V.

15
$$U + U \ni u + w \in U$$
. **16** $U + W \ni u + w = w + u \in W + U$.

17
$$(V_1 + V_2) + V_3 \ni (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3) \in V_1 + (V_2 + V_3).$$

•
$$(U+W)_{\mathcal{C}} \ni (u_1+w_1) + \mathrm{i}(u_2+w_2) = (u_1+\mathrm{i}u_2) + (w_1+\mathrm{i}w_2) \in U_{\mathcal{C}} + W_{\mathcal{C}}.$$

18 Does the add on the subsps of V have an add identity? Which subsps have add invs? **SOLUTION**: Suppose Ω is the unique add identity.

(a) For any subsp U of V. $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$.

(b) Now suppose *W* is an add inv of $U \Rightarrow U + W = \Omega$.

Note that $U + W \supseteq U, W \Rightarrow \Omega \supseteq U, W$. Thus $U = W = \Omega = \{0\}$.

11 Prove that the intersection of every collection of subsps of V is a subsp of V.

SOLUTION: Suppose $\{U_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of subsps of V; here Γ is an arbitrary index set.

We show that $\bigcap_{\alpha \in \Gamma} U_{\alpha}$, which equals the set of vecs that are in U_{α} for each $\alpha \in \Gamma$, is a subsp of V.

- (-) $0 \in \bigcap_{\alpha \in \Gamma} U_{\alpha}$. Nonempty.
- $(\underline{\hspace{0.1cm}})\ u,v\in\bigcap_{\alpha\in\Gamma}U_{\alpha}\Rightarrow u+v\in U_{\alpha},\ \forall \alpha\in\Gamma\Rightarrow u+v\in\bigcap_{\alpha\in\Gamma}U_{\alpha}.$ Closed under add.
- $(\equiv) \ u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}, \lambda \in \mathbb{F} \Rightarrow \lambda u \in U_{\alpha}, \ \forall \alpha \in \Gamma \Rightarrow \lambda u \in \bigcap_{\alpha \in \Gamma} U_{\alpha}.$ Closed under scalar multi.

Thus $\bigcap_{\alpha \in \Gamma} U_{\alpha}$ is nonempty subset of V that is closed under add and scalar multi.

12 Suppose U, W are subsps of V. Prove that $U \cup W$ is a subsp of $V \iff U \subseteq W$ or $W \subseteq U$. **SOLUTION**: (a) Suppose $U \subseteq W$. Then $U \cup W = W$ is a subsp of V. (b) Suppose $U \cup W$ is a subsp of V. Assume that $U \subseteq W$, $U \supseteq W$ ($U \cup W \neq U$ and W). Then $\forall a \in U \land a \notin W$, $\forall b \in W \land b \notin U$, we have $a + b \in U \cup W$. $a + b \in U \Rightarrow b = (a + b) + (-a) \in U$, contradicts $\Rightarrow W \subseteq U$. | Contradicts the $a + b \in W \Rightarrow a = (a + b) + (-b) \in W$, contradicts $\Rightarrow U \subseteq W$. assumption. **13** *Prove that the union of three subsps of V is a subsp of V* if and only if one of the subsps contains the other two. This exercise is not true if we replace **F** with a field containing only two elements. **SOLUTION:** Suppose U_1 , U_2 , U_3 are subsps of V. Denote $U_1 \cup U_2 \cup U_3$ by \mathcal{U} . (a) Suppose that one of the subsps contains the other two. Then $\mathcal{U} = U_1, U_2$ or U_3 is a subsp of V. (b) Suppose that $U_1 \cup U_2 \cup U_3$ is a subsp of V. Distinctively notice that $A \cup B \cup C = (A \cup B) \cup (B \cup C) = (A \cup C) \cup (B \cup C) = (A \cup B) \cup (A \cup C)$. Also note that, if $U \cup W = V$ is a vecsp, then in general U and W are not subsps of V. Hence this literal trick is invalid. (I) If any U_i is contained in the union of the other two, say $U_1 \subseteq U_2 \cup U_3$, then $\mathcal{U} = U_2 \cup U_3$. By applying Problem (12) we conclude that one U_i contains the other two. Thus we are done. (II) Assume that no U_i is contained in the union of the other two, and no U_j contains the union of the other two. Say $U_1 \not\subseteq U_2 \cup U_3$ and $U_1 \not\supseteq U_2 \cup U_3$. $\exists\,u\in U_1\wedge u\notin U_2\cup U_3;\ v\in U_2\cup U_3\wedge v\notin U_1.\,\mathrm{Let}\,W=\big\{v+\lambda u:\lambda\in\mathbf{F}\big\}\subseteq\mathcal{U}.$ Note that $W \cap U_1 = \emptyset$, for if any $v + \lambda u \in W \cap U_1$ then $v + \lambda u - \lambda u = v \in U_1$. Now $W \subseteq U_1 \cup U_2 \cup U_3 \Rightarrow W \subseteq U_2 \cup U_3$. $\forall v + \lambda u \in W, v + \lambda u \in U_i, i = 2,3$. If $U_2 \subseteq U_3$ or $U_2 \supseteq U_3$, then $\mathcal{U} = U_1 \cup U_i$, i = 2, 3. By Problem (12) we are done. Otherwise, both U_2 , $U_3 \neq \{0\}$. Because $W \subseteq U_2 \cup U_3$ has at least three elements. There must be some U_i that contains at least two elements of W. \exists distinct $\lambda_1, \lambda_2 \in \mathbb{F}, v + \lambda_1 u, v + \lambda_2 u \in U_i, i \in \{2,3\}.$ Then $u \in U_i$ while $u \notin U_2 \cup U_3$. Contradicts. **EXAMPLE:** Let $\mathbf{F} = \mathbf{Z}_2$. $U_1 = \{u, 0\}$, $U_2 = \{v, 0\}$, $U_3 = \{v + u, 0\}$. While $\mathcal{U} = \{0, u, v, v + u\}$ is a subsp. • Example: Suppose $U = \{(x, x, y, y) \in \mathbb{F}^4\}, W = \{(x, x, x, y) \in \mathbb{F}^4\}.$ Prove that $U + W = \{(x, x, y, z) \in \mathbb{F}^4\}.$

21 Suppose $U = \{(x, y, x + y, x - y, 2x) \in \mathbf{F}^5\}$. Find a W such that $\mathbf{F}^5 = U \oplus W$. Solution: Let $W = \{(0, 0, z, w, u) \in \mathbf{F}^5\}$. Then $U \cap W = \{0\}$. And $\mathbf{F}^5 \ni (x, y, z, w, u) \Rightarrow (x, y, x + y, x - y, 2x) + (0, 0, z - x - y, w - x - y, u - 2x) \in U + W$.

And $T \ni (x, x, y, z) \Rightarrow (0, 0, y - x, y - x) + (x, x, x, -y + x + z) \in U + W$. Hence $T \subseteq U + W$.

Let T denote $\{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F}\}$. By def, $U + W \subseteq T$.

23 Give an example of vecsps V_1, V_2, U such that $V_1 \oplus U = V_2 \oplus U$, but $V_1 \neq V_2$. S OLUTION: $V = \mathbb{F}^2, U = \{(x, x) \in \mathbb{F}^2\}, V_1 = \{(x, 0) \in \mathbb{F}^2\}, V_2 = \{(0, x) \in \mathbb{F}^2\}.$	
• Tips: Suppose $V_1 \subseteq V_2$ in Exercise (23). Prove or give a counterexample: $V_1 = V_2$. Solution: Because the subset V_1 of vecsp V_2 is closed under add and scalar multi, V_1 is a subspace of V_2 . Suppose W is such that $V_2 = V_1 \oplus W$. Now $V_2 \oplus U = (V_1 \oplus W) \oplus U = (V_1 \oplus U) \oplus W = V_1 \oplus U$. If $W \neq \{0\}$, then $V_1 \oplus U \subsetneq (V_1 \oplus U) \oplus W$, contradicts. Hence $W = \{0\}$, $V_1 = V_2$.	
• Suppose V_1, V_2, U_1, U_2 are vecsps, $V_1 \oplus U_1 = V_2 \oplus U_2, V_1 \subseteq V_2, U_2 \subseteq U_1$. Prove or give a counterexample: $V_1 = V_2, U_1 = U_2$. Solution: A counterexample: $V_1 = V_2, U_1 = U_2$. Let $V = F^3, B_V = (e_1, e_2, e_3), V_1 = \operatorname{span}(e_1), U_1 = \operatorname{span}(e_2, e_3), V_2 = \operatorname{span}(e_1, e_2), U_2 = \operatorname{span}(e_3)$ Now $V_1 \subseteq V_2, U_2 \subseteq U_1$ and $V_1 \oplus U_1 = V_2 \oplus U_2$. But $V_1 \neq V_2, U_1 \neq U_2$.	
24 Let $V_E = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is even} \}, V_O = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is odd} \}.$ Show that $V_E \oplus V_O = \mathbb{R}^{\mathbb{R}}$.	
Solution: (a) $V_E \cap V_O = \{ f \in \mathbb{R}^R : f(x) = f(-x) = -f(-x) \} = \{ 0 \}.$	
(b) $ \left \begin{array}{l} \operatorname{Let} f_{e}(x) = \frac{1}{2} \big[g(x) + g(-x) \big] \Longrightarrow f_{e} \in V_{E} \\ \operatorname{Let} f_{o}(x) = \frac{1}{2} \big[g(x) - g(-x) \big] \Longrightarrow f_{o} \in V_{O} \end{array} \right \Rightarrow \forall g \in \mathbb{R}^{\mathbb{R}}, g(x) = f_{e}(x) + f_{o}(x). $	
End	ED
2·A 1 2 6 10 11 14 16 17 4E: 3,14	
	Q] O1
Solution:	∠]
(a) $Q \stackrel{1}{\Rightarrow} P : v \neq 0 \Rightarrow \text{if } av = 0 \text{ then } a = 0 \Rightarrow (v) \text{ linely inde.}$	
$P \stackrel{2}{\Rightarrow} Q : (v)$ linely inde $\Rightarrow v \neq 0$, for if $v = 0$, then $av = 0 \Rightarrow a = 0$.	
OR. $ \begin{vmatrix} \neg Q \stackrel{3}{\Rightarrow} \neg P : v = 0 \Rightarrow av = 0 \text{ while we can let } a \neq 0 \Rightarrow (v) \text{ is linely dep.} \\ \neg P \stackrel{4}{\Rightarrow} \neg Q : (v) \text{ linely dep} \Rightarrow av = 0 \text{ while } a \neq 0 \Rightarrow v = 0. $	
$P \stackrel{4}{\Rightarrow} Q : (v) \text{ linely dep} \Rightarrow av = 0 \text{ while } a \neq 0 \Rightarrow v = 0.$	
COMMENT: (1) with (3) and (2) with (4) will do as well.	
(b) $P \stackrel{1}{\Rightarrow} Q : (v, w)$ linely inde \Rightarrow if $av + bw = 0$, then $a = b = 0 \Rightarrow$ no scalar multi.	
$Q \stackrel{2}{\Rightarrow} P$: no scalar multi \Rightarrow if $av + bw = 0$, then $a = b = 0 \Rightarrow (v, w)$ linely inde.	
$P \Rightarrow C : (v, w)$ linely dep \Rightarrow if $av + bw = 0$, then a or $b \neq 0 \Rightarrow$ scalar multi	
O_{R}	
OR. $P \stackrel{3}{\Rightarrow} Q : (v, w)$ linely dep \Rightarrow if $av + bw = 0$, then a or $b \neq 0 \Rightarrow$ scalar multi $Q \stackrel{4}{\Rightarrow} P :$ scalar multi $A = 0$, then $A = 0$ or $A = 0$ linely dep. Comment: (1) with (3) and (2) with (4) will do as well.	

SOLUTION: Notice that $V = \text{span}(v_1, \dots, v_n) \iff \forall v \in V, \exists a_1, \dots, a_n \in F, v = a_1v_1 + \dots + a_nv_n$. Assume that $\forall v \in V, \exists a_1, \dots, a_4, b_1, \dots, b_4 \in F$, (that is, if $\exists a_i$, then we are to find b_i , vice versa) $v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4$ $= b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4$ $=b_1v_1+(b_2-b_1)v_2+(b_3-b_2)v_3+(b_4-b_3)v_4.$ Now we can let $b_i = \sum_{r=1}^{i} a_r$ if we are to prove Q with P already assumed; or let $a_i = b_i - b_{i-1}$ with $b_0 = 0$, if we are to prove P with Q already assumed. **6** Prove that [P] (v_1, v_2, v_3, v_4) is linely inde \iff $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ is linely inde. [Q] **SOLUTION:** $P \Rightarrow Q : a_1(v_1 - v_2) + a_2(v_2 - v_3) + a_3(v_3 - v_4) + a_4v_4 = 0$ $\Rightarrow a_1v_1 + (a_2 - a_1)v_2 + (a_3 - a_2)v_3 + (a_4 - a_3)v_4 = 0 \Rightarrow a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0$ $Q \Rightarrow P : a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$ $\Rightarrow a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + (a_1 + a_2 + a_3)(v_3 - v_4) + (a_1 + \dots + a_4)v_4 = 0$ \Box $\Rightarrow a_1 = a_1 + a_2 = a_1 + a_2 + a_3 = a_1 + \dots + a_4 = 0.$ • Suppose (v_1, \ldots, v_m) is a list of vecs in V. For each k, let $w_k = v_1 + \cdots + v_k$. (a) Show that span $(v_1, ..., v_m) = \text{span}(w_1, ..., w_m)$. (b) Show that $[P](v_1, ..., v_m)$ is linely inde $\iff (w_1, ..., w_m)$ is linely inde [Q]. **SOLUTION:** (a) Assume $a_1v_1 + \dots + a_mv_m = b_1w_1 + \dots + b_mw_m = b_1v_1 + \dots + b_k(v_1 + \dots + v_k) + \dots + b_m(v_1 + \dots + v_m)$. Then $a_k = b_k + \dots + b_m$; $a_{k+1} = b_{k+1} + \dots + b_m \Rightarrow b_k = a_k - a_{k+1}$; $b_m = a_m$. Similar to Problem (1). (b) $P \Rightarrow Q: b_1 w_1 + \dots + b_m w_m = 0 = a_1 v_1 + \dots + a_m v_m$, where $0 = a_k = b_k + \dots + b_m$. $Q \Rightarrow P: \ a_1v_1 + \dots + a_mv_m = 0 = b_1w_1 + \dots + b_mw_m = 0, \text{ where } 0 = b_m = a_m, \ 0 = b_k = a_k - a_{k+1}.$ Or. Because $W = \operatorname{span}(v_1, \dots, v_m) = \operatorname{span}(w_1, \dots, w_m)$. By [2.21](b), a list of length (m-1) spans W, then by [2.23], (w_1, \dots, w_m) linely dep $\Longrightarrow (v_1, \dots, v_m)$ linely dep. Conversely it is true as well. **10** Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. *Prove that if* $(v_1 + w, ..., v_m + w)$ *is linely depe, then* $w \in \text{span}(v_1, ..., v_m)$. **SOLUTION:** Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0$, $\exists a_i \neq 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = -(a_1 + \cdots + a_m)w$. Then $a_1 + \cdots + a_m \neq 0$, for if not, $a_1v_1 + \cdots + a_mv_m = 0$ while $a_i \neq 0$ for some i, contradicts. OR. By contrapositive: Prove that $w \notin \text{span}(v_1, \dots, v_m) \Longrightarrow (v_1 + w, \dots, v_m + w)$ is linely inde. Suppose $a_1(v_1 + w) + \cdots + a_m(v_m + w) = 0 \Rightarrow a_1v_1 + \cdots + a_mv_m = -(a_1 + \cdots + a_m)w$. Now by assumption, $a_1 + \cdots + a_m = 0$. Then $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow a_1 = \cdots = a_m = 0$. Or. $\exists j \in \{1, ..., m\}, v_i + w \in \text{span}(v_1 + w, ..., v_{i-1} + w)$. If j = 1 then $v_1 + w = 0$ and we are done. If $j \ge 2$, then $\exists a_i \in F$, $v_i + w = a_1(v_1 + w) + \dots + a_{i-1}(v_{i-1} + w) \iff v_i + \lambda w = a_1v_1 + \dots + a_{i-1}v_{i-1}$. Where $\lambda = 1 - (a_1 + \dots + a_{i-1})$. Note that $\lambda \neq 0$, for if not, $v_i + \lambda w = v_i \in \text{span}(v_1, \dots, v_{i-1})$, contradicts. Now $w = \lambda^{-1}(a_1v_1 + \dots + a_{j-1}v_{j-1} - v_j) \Rightarrow w \in \text{span}(v_1, \dots, v_m).$

1 Prove that $[P](v_1, v_2, v_3, v_4)$ spans $V \iff (v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V[Q].

11 Suppose $(v_1, ..., v_m)$ is linely inde in V and $w \in V$. Show that $[P](v_1, ..., v_m, w)$ is linely inde $\iff w \notin \text{span}(v_1, ..., v_m)[Q]$. **14** Prove that [P] V is infinite-dim \iff [Q] there is a sequence (v_1, v_2, \dots) in V such that (v_1, \dots, v_m) is linely inde for each $m \in \mathbb{N}^+$. **SOLUTION:** $P \Rightarrow Q$: Suppose *V* is infinite-dim, so that no list spans *V*. Step 1 Pick a $v_1 \neq 0$, (v_1) linely inde. Step m Pick a $v_m \notin \text{span}(v_1, ..., v_{m-1})$, by Problem (11), $(v_1, ..., v_m)$ is linely inde. This process recursively defines the desired sequence $(v_1, v_2, ...)$. $\neg P \Rightarrow \neg Q$: Suppose *V* is finite-dim and $V = \text{span}(w_1, ..., w_m)$. Let $(v_1, v_2, ...)$ be a sequence in V, then $(v_1, v_2, ..., v_{m+1})$ must be linely dep. Or. $Q \Rightarrow P$: Suppose there is such a sequence. Choose an m. Suppose a linely inde list $(v_1, ..., v_m)$ spans V. Similar to [2.16]. $\exists v_{m+1} \in V \setminus \text{span}(v_1, \dots, v_m)$. Hence no list spans V. **16** Prove that the vecsp of all continuous functions in $\mathbf{R}^{[0,1]}$ is infinite-dim. **SOLUTION**: Denote the vecsp by U. Choose one $m \in \mathbb{N}^+$. Suppose $a_0, \dots, a_m \in \mathbb{R}$ are such that $p(x) = a_0 + a_1 x + \dots + a_m x^m = 0$, $\forall x \in [0, 1]$. Then *p* has infinitely many roots and hence each $a_k = 0$, otherwise deg $p \ge 0$, contradicts [4.12]. Thus $(1, x, ..., x^m)$ is linely inde in $\mathbb{R}^{[0,1]}$. Similar to [2.16], U is infinite-dim. Or. Note that $\frac{1}{1} > \frac{1}{2} > \dots > \frac{1}{m}$, $\forall m \in \mathbb{N}^+$. Suppose $f_m = \begin{cases} x - \frac{1}{m}, & x \in \left(\frac{1}{m}, 1\right) \\ 0, & x \in \left[0, \frac{1}{m}\right] \end{cases}$ Then $f_1\left(\frac{1}{m}\right) = \cdots = f_m\left(\frac{1}{m}\right) = 0 \neq f_{m+1}\left(\frac{1}{m}\right)$. Hence $f_{m+1} \notin \operatorname{span}(f_1, \dots, f_m)$. By Problem (14). **17** Suppose $p_0, p_1, ..., p_m \in \mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0, ..., m\}$. *Prove that* $(p_0, p_1, ..., p_m)$ *is not linely inde in* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION:** Suppose $(p_0, p_1, ..., p_m)$ is linely inde. Define $p \in \mathcal{P}_m(\mathbf{F})$ by p(z) = z. NOTICE that $\forall a_i \in \mathbb{F}, z \neq a_0 p_0(z) + \dots + a_m p_m(z)$, for if not, let z = 2. Thus $z \notin \text{span}(p_0, p_1, \dots, p_m)$. Then span $(p_0, p_1, ..., p_m) \subseteq \mathcal{P}_m(\mathbf{F})$ while the list $(p_0, p_1, ..., p_m)$ has length (m + 1). Hence $(p_0, p_1, ..., p_m)$ is linely depe in $\mathcal{P}_m(\mathbf{F})$. For if not, then because $(1, z, ..., z^m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$, by the steps in [2.23] trivially, $(p_0, p_1, ..., p_m)$ of length (m + 1) spans $\mathcal{P}_m(\mathbf{F})$. Contradicts. OR. Note that $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(\underbrace{1, z, \dots, z^m}_{\text{of length }(m+1)})$. Then $(p_0, p_1, \dots, p_m, z)$ of length (m+2) is linely dep. As shown above, $z \notin \text{span}(p_0, p_1, \dots, p_m)$. And hence by [2.21](a), (p_0, p_1, \dots, p_m) is linely dep.

7 Prove or give a counterexample: If (v_1, v_2, v_3, v_4) is a basis of V and U is a subsp of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then (v_1, v_2) is a basis of U.

SOLUTION: A counterexample:

Let $V = \mathbb{R}^4$ and e_j be the j^{th} std basis.

Let $v_1 = e_1, v_2 = e_2, v_3 = e_3 + e_4, v_4 = e_4$. Then (v_1, \dots, v_4) is a basis of \mathbb{R}^4 .

Let $U = \operatorname{span}(e_1, e_2, e_3) = \operatorname{span}(v_1, v_2, v_3 - v_4)$. Then $v_3 \notin U$ and (v_1, v_2) is not a basis of U.

• Note For " $\mathbf{C}_V U \cup \{0\}$ ": " $\mathbf{C}_V U \cup \{0\}$ " is supposed to be a subsp W such that $V = U \oplus W$.

But if we let $u \in U \setminus \{0\}$ and $w \in W \setminus \{0\}$, then $\begin{cases} w \in C_V U \cup \{0\} \\ u \pm w \in C_V U \cup \{0\} \end{cases} \} \Rightarrow u \in C_V U \cup \{0\}$. Contradicts.

To fix this, denote the set $\{W_1, W_2, \cdots\}$ by $\mathcal{S}_V U$, where for each $W_i, V = U \oplus W_i$. See also in (1.C.23).

• Tips: Suppose V is finite-dim with $\dim V = n$ and U is a subsp of V with $U \neq V$. Prove that $\exists B_V = (v_1, ..., v_n)$ such that each $v_k \notin U$.

Note that $U \neq V \Rightarrow n \geqslant 1$. We will construct B_V via the following process.

Step 1. $\exists v_1 \in V \setminus U \Rightarrow v_1 \neq 0$. If span $(v_1) = V$ then we stop.

Step k. Suppose $(v_1, ..., v_{k-1})$ is linely inde in V, each of which belongs to $V \setminus U$.

Note that $\operatorname{span}(v_1, \dots, v_{k-1}) \neq V$. And if $\operatorname{span}(v_1, \dots, v_{k-1}) \cup U = V$, then by (1.C.12),

[because span $(v_1, \dots, v_{k-1}) \nsubseteq U$,] $U \subseteq \text{span}(v_1, \dots, v_{k-1}) \Rightarrow \text{span}(v_1, \dots, v_{k-1}) = V$.

Hence because span $(v_1, \dots, v_{k-1}) \neq V$, it must be case that span $(v_1, \dots, v_{k-1}) \cup U \neq V$.

Thus $\exists v_k \in V \setminus U$ such that $v_k \notin \text{span}(v_1, \dots, v_{k-1})$.

By (2.A.11), $(v_1, ..., v_k)$ is linely inde in V. If span $(v_1, ..., v_k) = V$, then we stop.

Because V is finite-dim, this process will stop after n steps.

OR. Suppose $U \neq \{0\}$. Let $B_U = (u_1, \dots, u_m)$. Extend to a basis (u_1, \dots, u_n) of V.

Then let $B_V = (u_1 - u_k, \dots, u_m - u_k, u_{m+1}, \dots, u_k, \dots, u_n)$.

1 Find all vecsps on whatever **F** that have exactly one basis.

Solution: The trivial vecsp $\{0\}$ will do. Indeed, the only basis of $\{0\}$ is the empty list ().

Now consider a field containing only the add identity 0 and the multi identity 1,

and 1 + 1 = 0. Hence the vecsp $\{0, 1\}$ will do, the list (1) is the unique basis. Comment: All vecsp on such F of dim 1 will do.

And more generally, consider $\mathbf{F} = \mathbf{Z}_m$, $\forall m - 1 \in \mathbf{N}^+$. For each $s, t \in \{1, ..., m\}$,

 $\mathbf{F} = \mathrm{span}(K_s) = \mathrm{span}(K_t)$. More than one basis. So are \mathbf{Q} , \mathbf{R} , \mathbf{C} and all vecsps on such \mathbf{F} .

Consider other F. Note that this F contains at least and strictly more than 0 and 1. Failed. \Box

• (4E 9) Suppose (v_1, \ldots, v_m) is a list of vecs in V. For $k \in \{1, \ldots, m\}$, let $w_k = v_1 + \cdots + v_k$. Show that [P] $B_V = (v_1, \ldots, v_m) \iff B_W = (w_1, \ldots, w_m)$. [Q]

SOLUTION:

Notice that $B_U = (u_1, ..., u_n) \iff \forall u \in U, \exists ! a_i \in F, u = a_1 u_1 + \cdots + a_n u_n$.

 $P\Rightarrow Q: \forall v\in V, \exists !\, a_i\in \mathbb{F},\ v=a_1v_1+\cdots+a_mv_m\Rightarrow v=b_1w_1+\cdots+b_mv_m, \exists !\, b_k=a_k-a_{k+1}, b_m=a_m.$

 $Q \Rightarrow P: \forall v \in V, \exists ! b_i \in \mathbf{F}, \ v = b_1 w_1 + \dots + b_m w_m \Rightarrow v = a_1 v_1 + \dots + a_m v_m, \exists ! a_k = \sum_{j=k}^m b_j.$

• (4E 5) Suppose U, W are finite-dim, V = U + W, $B_U = (u_1, ..., u_m)$, $B_W = (w_1, ..., w_n)$. *Prove that* $\exists B_V$ *consisting of vecs in* $U \cup W$. **SOLUTION:** Because $V = \operatorname{span}(u_1, \dots, u_m) + \operatorname{span}(w_1, \dots, w_n) = \operatorname{span}(u_1, \dots, u_m, w_1, \dots, w_n)$. By [2.31], B_V can be reduced from $(u_1, ..., u_m, w_1, ..., w_n)$. **8** Suppose $V = U \oplus W$, $B_{II} = (u_1, ..., u_m)$, $B_W = (w_1, ..., w_n)$. *Prove that* $B_V = (u_1, ..., u_m, w_1, ..., w_n).$ **SOLUTION**: $\forall v \in V, \exists ! u \in U, w \in W \Rightarrow \exists ! a_i, b_i \in F, v = u + w = (a_1u_1 + \dots + a_mu_m) + (b_1w_1 + \dots + b_nw_n).$ Or. $V = \operatorname{span}(u_1, \dots, u_m) \oplus \operatorname{span}(w_1, \dots, w_n) = \operatorname{span}(u_1, \dots, u_m, w_1, \dots, w_n)$. Note that $\sum_{i=1}^{m} a_i u_i + \sum_{i=1}^{n} b_i w_i = 0 \Rightarrow \sum_{i=1}^{m} a_i u_i = -\sum_{i=1}^{n} b_i w_i \in U \cap W = \{0\}.$ • (9.A.2,3 Or 4E 11) Suppose V is on R, and $v_1, ..., v_n \in V$. Let $B = (v_1, ..., v_n)$. (a) Show that [P] B is linely inde in $V \iff B$ is linely inde in V_C . [Q] (b) Show that [P] B spans $V \iff B$ spans V_C . [Q] **SOLUTION**: (a) Note that each $v_k \in V_C$. Thus $P \Rightarrow Q$. And $\neg P \Rightarrow \neg Q : \exists v_i = a_{i-1}v_{i-1} + \cdots + a_1v_1 \in V_C$. (b) $P \Rightarrow Q$: $\forall u + iv \in V_C, u, v \in V \Rightarrow \exists a_i, b_i \in \mathbb{R}, u = \sum_{i=1}^n a_i v_i, v = \sum_{i=1}^n b_i v_i$ $\Rightarrow \exists a_i + ib_i \in C, u + iv = \sum_{i=1}^n (a_i + ib_i)v_i.$ $\neg P \Rightarrow \neg Q : \exists u + iv \in V_C, u + iv \notin \operatorname{span}(B) \Rightarrow u \text{ or } v \notin \operatorname{span}(B). \text{ Note that } u, v \in V. \square$ • Note For *linely inde sequence and* [2.34]: " $V = \text{span}(v_1, ..., v_n, ...)$ " is an invalid expression. If we allow using "infinite list", then we must guarantee that (v_1, \dots, v_n, \dots) is a spanning "list" such that $\forall v \in V$, \exists smallest $n \in \mathbb{N}^+$, $v = a_1v_1 + \cdots + a_nv_n$. Moreover, given a list $(w_1, \cdots, w_n, \cdots)$ in W, we can prove that $\exists ! T \in \mathcal{L}(V, W)$ with each $Tv_k = w_k$, which has less restrictions than [3.5]. But the key point is, how can we guarantee that such a "list" exists. TODO: More details. **ENDED** 2·C 1 7 9 10 14,16 15 17 | 4E: 10 14,15 16 **15** Suppose V is finite-dim and dim $V = n \ge 1$. Prove that \exists one-dim subsps V_1, \dots, V_n of V such that $V = V_1 \oplus \dots \oplus V_n$. **SOLUTION**: Suppose $B_V = (v_1, ..., v_n)$. Define V_i by $V_i = \text{span}(v_i)$ for each $i \in \{1, ..., n\}$. Then $\forall v \in V, \exists ! a_i \in F, v = a_1 v_1 + \dots + a_n v_n \Rightarrow \exists ! u_i \in V_i, v = u_1 + \dots + u_n$ • NOTE FOR Problem (15): Suppose $v \in V \setminus \{0\}$, and dim $V = n \ge 1$. Prove that $\exists B_V = (v_1, \dots, v_n), v = v_1 + \dots + v_n$. **SOLUTION**: If n = 1 then let $v_1 = v$ and we are done. Suppose n > 1. Extend (v) to a basis (v, v_1, \dots, v_{n-1}) of V. Let $v_n = v - v_1 - \dots - v_{n-1}$. $\mathbb{Z} \operatorname{span}(v, v_1, \dots, v_{n-1}) = \operatorname{span}(v_1, \dots, v_n)$. Hence (v_1, \dots, v_n) is also a basis of V. **COMMENT:** Let $B_V = (v_1, ..., v_n)$ and suppose $v = u_1 + ... + u_n$, where each $u_i = a_i v_i \in V_i$. But $(u_1, ..., u_n)$ might not be a basis, because there might be some $u_i = 0$.

```
• Let v_1, \ldots, v_n \in V and dim span(v_1, \ldots, v_n) = n. Then (v_1, \ldots, v_n) is a basis of span(v_1, \ldots, v_n).
  Notice that (v_1, ..., v_n) is a spanning list of \operatorname{span}(v_1, ..., v_n) of length n = \dim \operatorname{span}(v_1, ..., v_n).
7 (a) Let U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}. Find a basis of U.
   (b) Extend the basis in (b) to a basis of \mathcal{P}_{4}(\mathbf{F}).
   (c) Find a subsp W of \mathcal{P}_4(\mathbf{F}) such that \mathcal{P}_4(\mathbf{F}) = U \oplus W.
SOLUTION: Using Problem (10).
   NOTICE that \nexists p \in \mathcal{P}(\mathbf{F}) of deg 1 and 2, while p \in U. Thus dim U \leq \dim \mathcal{P}_4(\mathbf{F}) - 2 = 3.
   (a) Consider B = (1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)).

Let a_0 + a_3(z-2)(z-5)(z-6) + a_4z(z-2)(z-5)(z-6) = 0 \Rightarrow a_0 = a_3 = a_4 = 0.
        Thus the list B is linely inde in U. Now dim U \ge 3 \Rightarrow \dim U = 3. Thus B_U = B.
   (b) Extend to a basis of \mathcal{P}_4(\mathbf{F}) as (1, z, z^2, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)).
   (c) Let W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbb{F}\}, so that \mathcal{P}_4(\mathbb{F}) = U \oplus W.
                                                                                                                                        9 Suppose (v_1, \ldots, v_m) is linely inde in V and w \in V.
   Prove that dim span(v_1 + w, ..., v_m + w) \ge m - 1.
SOLUTION: Using the result of (2.A.10, 11).
   Note that v_i - v_1 = (v_i + w) - (v_1 + w) \in \text{span}(v_1 + w, ..., v_n + w), for each i = 1, ..., m.
   (v_1, \dots, v_m) linely inde \Rightarrow (v_1, v_2 - v_1, \dots, v_m - v_1) linely inde \Rightarrow (v_2 - v_1, \dots, v_m - v_1) linely inde.
   \mathbb{Z} If w \notin \operatorname{span}(v_1, \dots, v_m). Then (v_1 + w, \dots, v_m + w) is linely inde.
   Hence m \ge \dim \operatorname{span}(v_1 + w, \dots, v_m + w) \ge m - 1.
                                                                                                                                        • (4E 16) Suppose V is finite-dim, U is a subsp of V with U \neq V. Let n = \dim V, m = \dim U.
  Prove that \exists (n-m) subsps U_1, \ldots, U_{n-m}, each of dim (n-1), such that \bigcap_{i=1}^{n-m} U_i = U.
SOLUTION: Let B_U = (v_1, ..., v_m), B_V = (v_1, ..., v_m, u_1, ..., v_{n-m}).
                Define U_i = \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_{i-1}, u_{i+1}, \dots, u_{n-m}) for each i. Then U \subseteq U_i for each i.
                And because \forall v \in \bigcap_{i=1}^{n-m} U_i, v = v_0 + b_1 u_1 + \dots + b_{n-m} u_{n-m} \in U_i \Rightarrow b_i = 0 for each i \Rightarrow v \in U.
                Hence \bigcap^{n-m} U_i \subseteq U.
                                                                                                                                        • Note For Problem 10: Each nonconst p \in \text{span}(1, z, ..., z^m), \exists \text{ smallest } m \in \mathbb{N}^+, which is \deg p.
  (a) If p_0, p_1, \dots, p_m are such that each
       p_k = a_{0,k} + a_{1,k}z + \dots + a_{k,k}z^k, with a_k \neq 0.
       Then \mathcal{M}\left(\xi, (p_0, p_1, \dots, p_m), (1, z, \dots, z^m)\right) = \begin{pmatrix} 0 & a_{1,1} & \cdots & a_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{m,m} \end{pmatrix}, which is upper-trig.
```

 $p_k = a_{k,k}x^k + \dots + a_{m,k}x^m, \text{ with } a_{k,k} \neq 0.$ Then $\mathcal{M}\left(\xi, \left(p_0, p_1, \dots, p_m\right), \left(1, z, \dots, z^m\right)\right) = \begin{pmatrix} a_{0,0} & 0 & \cdots & 0 \\ a_{1,0} & a_{1,1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$, which is lower-trig.

(b) If p_0, p_1, \dots, p_m are such that each

 $p_k = a_{k,k} x^k + \dots + a_{m,k} x^m$, with $a_{k,k} \neq 0$.

1 [Corollary for [2.38,39]] Suppose U is a subsp of V such that $\dim V = \dim U$. Then V = U.

10 Suppose $m \in \mathbb{N}^+$, $p_0, p_1, \dots, p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k. *Prove that* $(p_0, p_1, ..., p_m)$ *is a basis of* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION**: Using mathematical induction on *m*. (i) k = 0, 1. $\deg p_0 = 0$; $\deg p_1 = 1 \Rightarrow \operatorname{span}(p_0, p_1) = \operatorname{span}(1, x)$. (ii) $k \in \{1, ..., m-1\}$. Assume that span $(p_0, p_1, ..., p_k) = \text{span}(1, x, ..., x^k)$. Then span $(p_0, p_1, ..., p_k, p_{k+1}) \subseteq \text{span}(1, x, ..., x^k, x^{k+1})$. $\mathbb{Z} \operatorname{deg} p_{k+1} = k+1, \ p_{k+1}(x) = a_{k+1}x^{k+1} + r_{k+1}(x); \ a_{k+1} \neq 0, \ \operatorname{deg} r_{k+1} \leqslant k.$ $\Rightarrow x^{k+1} = \frac{1}{a_{k+1}} \Big(p_{k+1}(x) - r_{k+1}(x) \Big) \in \text{span}(1, x, \dots, x^k, p_{k+1}) = \text{span}(p_0, p_1, \dots, p_k, p_{k+1}).$ $\therefore x^{k+1} \in \text{span}(p_0, p_1, ..., p_k, p_{k+1}) \Rightarrow \text{span}(1, x, ..., x^k, x^{k+1}) \subseteq \text{span}(p_0, p_1, ..., p_k, p_{k+1}).$ Thus $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m).$ Or. 用比较系数法. Denote the coefficient of x^k in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_k(p)$. Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$ We show that $a_m = \cdots = a_0 = 0$ via the following process. So that (p_0, p_1, \dots, p_m) is linely inde. **Step 1.** For k = m, $\xi_m(L) = a_m \xi_m(p_m) = \xi_m(R) = 0 \ \ \, \exists \ \ \, \deg p_m = m$, $\xi_m(p_m) \neq 0 \Rightarrow a_m = 0$. Now $L = a_{m-1}p_{m-1}(x) + \dots + a_0p_0(x)$. **Step k.** For $0 \le k \le m$, we have $a_m = \cdots = a_{k+1} = 0$. Now $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \mathbb{Z} \deg p_k = k$, $\xi_k(p_k) \neq 0 \Rightarrow a_k = 0$. Now if k = 0, then we are done. Otherwise, we have $L = a_{k-1}p_{k-1}(x) + \cdots + a_0p_0(x)$. • Tips: Suppose $m \in \mathbb{N}^+$, $p_0, p_1, \dots, p_m \in \mathcal{P}_m(\mathbb{F})$ are such that the lowest term of each p_k is of deg k. Prove that $(p_0, p_1, ..., p_m)$ is a basis of $\mathcal{P}_m(\mathbf{F})$. **SOLUTION**: Using mathematical induction on *m*. Let each p_k be defined by $p_k(x) = a_{k,k}x^k + \cdots + a_{m,k}x^m$, where $a_{k,k} \neq 0$. (i) k = 0, 1. $p_m(x) = a_{m,m}x^m$; $p_{m-1}(x) = a_{m-1,m-1}x^{m-1} + a_{m,m-1}x^m \Longrightarrow \operatorname{span}(x^m, x^{m-1}) = \operatorname{span}(p_m, p_{m-1})$. (ii) $k \in \{1, ..., m-1\}$. Assume that span $(x^m, ..., x^{m-k}) = \text{span}(p_m, ..., p_{m-k})$. Then span $(p_m, \dots, p_{m-(k+1)}) \subseteq \operatorname{span}(x^m, \dots, x^{m-(k+1)})$. $\mathbb{Z} p_{m-(k+1)}$ has the form $a_{m-(k+1),m-(k+1)} x^{m-(k+1)} + r_{m-(k+1)}(x)$; where the lowest term of $r_{m-(k+1)} \in \mathcal{P}_m(\mathbf{F})$ is of deg (m-k). $\Rightarrow x^{m-(k+1)} = \frac{1}{a_{m-(k+1),m-(k+1)}} \Big(p_{m-(k+1)}(x) - r_{m-(k+1)}(x) \Big) \in \operatorname{span}(x^m, \dots, x^{m-k}, p_{m-(k+1)}) \\ = \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)}).$ $\therefore x^{m-(k+1)} \in \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)})$ $\Rightarrow \operatorname{span}(x^m, \dots, x^{m-k}, x^{m-(k+1)}) \subseteq \operatorname{span}(p_m, \dots, p_{m-k}, p_{m-(k+1)}).$ Thus $\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(x^m, \dots, x, 1) = \operatorname{span}(p_m, \dots, p_1, p_0).$ Or. 用比较系数法. Denote the coefficient of x^k in $p \in \mathcal{P}(\mathbf{F})$ by $\xi_k(p)$. Suppose $L = a_m p_m(x) + \dots + a_1 p_1(x) + a_0 p_0(x) = 0 \cdot x^m + \dots + 0 \cdot x + 0 \cdot 1 = R, \forall x \in \mathbf{F}.$ We show that $a_m = \cdots = a_0 = 0$ via the following process. So that (p_0, p_1, \dots, p_m) is linely inde. **Step 1.** For k = 0, $\xi_0(L) = a_0 \xi_0(p_0) = \xi_0(R) = 0 \ \ \ \deg p_0 = 0$, $\xi_0(p_0) \neq 0 \Rightarrow a_0 = 0$. Now $L = a_1 p_1(x) + \dots + a_m p_m(x)$. **Step k.** For $0 \le k \le m$, we have $a_{k-1} = \cdots = a_0 = 0$. Now $\xi_k(L) = a_k \xi_k(p_k) = \xi_k(R) = 0 \ \mathbb{Z} \deg p_k = k$, $\xi_k(p_k) \neq 0 \Rightarrow a_k = 0$.

Now if k = m, then we are done. Otherwise, we have $L = a_{k+1}p_{k+1}(x) + \cdots + a_mp_m(x)$.

- Note For [2.11]: Good definition for a general term always aviods undefined behaviours. If deg p=0, then $p(z)=a_0\neq 0$, but not literally a_0z^0 , by which if p is defined, then it comes to 0^0 . To make it clear, we specify that $in \mathcal{P}(\mathbf{F})$, $a_0z^0=a_0$, where z^0 appears just for notational convenience. Because by definition, the term a_0z^0 in a poly only represents the const term of the poly, which is a_0 . So z^0 doesn't make sense at all.
- (4E 10) Suppose m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k(1-x)^{m-k}$. Show that (p_0, \ldots, p_m) is a basis of $\mathcal{P}_m(\mathbf{F})$.

SOLUTION: (We may see that 0 is not a zero of p_0 , and that $p_m(x) = x^m$, by the expansion below, and by the NOTE FOR [2.11] above.)

Note that each
$$p_k(x) = \sum_{j=0}^{m-k} C^j_{m-k}(-1)^j \cdot x^{j+k} \cdot 1^j = \underbrace{(-1)^0 \cdot x^k \cdot 1^0}_{\text{of deg k}} + \underbrace{\sum_{j=1}^{m-k} C^j_{m-k}(-1)^j \cdot x^{j+k} \cdot 1^j}_{\text{of deg m; denote it by } q_k(x)}$$

Or. Similar to the Tips above. We will recursively prove that each $x^{m-k} \in \text{span}(p_m, ..., p_{m-k})$.

(i)
$$k = 0, 1$$
. $p_m(x) = x^m$; $p_{m-1}(x) = x^{m-1} - x^m \Longrightarrow x^{m-1}$. Now $x^m \in \text{span}(p_m)$, $x^{m-1} \in \text{span}(p_{m-1}, p_m)$.

(ii)
$$k \in \{1, \dots, m-1\}$$
. Suppose for each $k \in \{0, \dots, k\}$, we have $x^{m-k} \in \text{span}(p_{m-k}, \dots, p_m)$, $\exists ! a_m \in \mathbf{F}$. Note that $x^{m-(k+1)} = p_{m-(k+1)}(x) + \sum_{j=1}^{k+1} C_{k+1}^j (-1)^{j+1} x^{m-(k+1)+j} \in \text{span}(p_{m-(k+1)}, x^{m-k}, \dots, x^m)$. Thus $x^{m-(k+1)} \in \text{span}(p_{m-(k+1)}, p_{m-k}, \dots, p_m)$.

COMMENT: The base step and the inductive step can be independent.

OR. For any $m,k \in \mathbb{N}^+$ such that $k \leq m$. Define $p_{k,m}$ by $p_{k,m}(x) = x^k (1-x)^{m-k}$. Define the statement S(m) by $S(m):(p_{0,m},\ldots,p_{m,m})$ is linely inde (and therefore is a basis). We use induction on to show that S(m) holds for all $m \in \mathbb{N}^+$.

(i)
$$m = 1$$
. Let $a_0(1-x) + a_1x = 0$, $\forall x \in \mathbf{F}$. Then take $x = 1$, $x = 0 \Rightarrow a_1 = a_0 = 0$. $m = 2$. Let $a_0(1-x)^2 + a_1(1-x)x + a_2x^2$, $\forall x \in \mathbf{F}$. Then
$$\begin{cases} x = 0 \Rightarrow a_0 + a_1 = 0; \\ x = 1 \Rightarrow a_2 = 0; \\ x = 2 \Rightarrow a_0 + 2a_1 = 0. \end{cases}$$

(ii) $2 \le m$. Assume that S(m) holds.

Suppose
$$\sum_{k=0}^{m+2} a_k p_{k,m+2}(x) = \sum_{k=0}^{m+2} a_k [x^k (1-x)^{m+2-k}] = 0, \forall x \in \mathbf{F}.$$

Now
$$a_0(1-x)^{m+2} + \sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k} + a_{m+2} x^{m+2} = 0, \forall x \in \mathbf{F}.$$

While
$$\underline{x} = 0 \Rightarrow a_0 = 0$$
; $x = 1 \Rightarrow a_{m+2} = 0$. Then $\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k} = 0$;

And note that
$$\sum_{k=1}^{m+1} a_k x^k (1-x)^{m+2-k}$$

$$= x(1-x) \sum_{k=1}^{m+1} a_k x^{k-1} (1-x)^{m+1-k}$$

= $x(1-x) \sum_{k=0}^{m} a_{k+1} x^k (1-x)^{m-k} = x(1-x) \sum_{k=0}^{m} a_{k+1} p_{k,m}(x).$

Hence
$$x(1-x)\sum_{k=0}^{m} a_{k+1}p_{k,m}(x) = 0, \forall x \in \mathbb{F} \Rightarrow \sum_{k=0}^{m} a_{k+1}p_{k,m}(x) = 0, \forall x \in \mathbb{F} \setminus \{0,1\}.$$

Because $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x)$ has infinitely many zeros. We have $\sum_{k=0}^{m} a_{k+1} p_{k,m}(x) = 0$, $\forall x \in \mathbb{F}$.

By assumption, $a_1 = \dots = a_m = a_{m+1} = 0$, while $a_0 = a_{m+2} = 0$,

Thus $(p_{0,m+2},...,p_{m+2,m+2})$ is linely inde and S(m+2) holds.

Since
$$\forall m \in \mathbb{N}^+, S(m) \Rightarrow S(m+2)$$
. We have $\begin{cases} \forall k \in \mathbb{N}, S(2k+1) \text{ holds} \\ \forall k \in \mathbb{N}^+, S(2k) \text{ holds} \end{cases} \Rightarrow S(m) \text{ holds.}$

17 Suppose V_1 , V_2 , V_3 are subsps of a finite-dim vecsp, then $\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$ $-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$ Explain why you might think and prove the formula above or give a counterexample. **SOLUTION:** [*Similar to*] Given three sets *A*, *B* and *C*. Because $|X + Y| = |X| + |Y| - |X \cap Y|$; $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$. Now $|(A \cup B) \cup C| = |A \cup B| + |C| - |(A \cup B) \cap C|$. And $|(A \cup B) \cap C| = |(A \cap C) \cup (B \cap C)| = |A \cap C| + |B \cap C| - |A \cap B \cap C|$. Hence $|(A \cup B) \cup C| = |A| + |B| + |C| + |A \cap B \cap C| - |A \cap B| - |A \cap C| - |B \cap C|$. Because $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$. $\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$ (1) $= \dim(V_2 + V_3) + \dim(V_1) - \dim((V_2 + V_3) \cap V_1)$ (2) $= \dim(V_1 + V_3) + \dim(V_2) - \dim((V_1 + V_3) \cap V_2)$ (3)Notice that in general, $(X + Y) \cap Z \neq X \cap Z + Y \cap Z$. For example, $X = \{(x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\}, Y = \{(0,y) \in \mathbb{R}^2 : y \in \mathbb{R}\}, Z = \{(z,z) \in \mathbb{R}^2 : z \in \mathbb{R}\}.$ • Corollary: Suppose V_1 , V_2 and V_3 are finite-dim vecsps, then $\frac{(1)+(2)+(3)}{2}$: $\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$ $\frac{\dim(V_1 \cap V_2) + \dim(V_1 \cap V_3) + \dim(V_2 \cap V_3)}{2}$ $-\frac{\dim \left(\left(V_1+V_2\right)\cap V_3\right)+\dim \left(\left(V_1+V_3\right)\cap V_2\right)+\dim \left(\left(V_2+V_3\right)\cap V_1\right)}{3}.$ • TIPS: Because dim $(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim(V_2 \cap V_3) - \dim(V_1 + (V_2 \cap V_3))$. And $\dim(V_2 \cap V_3) = \dim V_2 + \dim V_3 - \dim(V_2 + V_3)$. We have (1), and (2), (3) similarly. $(1) \dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)).$ (2) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 + V_3) - \dim(V_2 + (V_1 \cap V_3)).$ (3) $\dim(V_1 \cap V_2 \cap V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \dim(V_1 + V_2) - \dim(V_3 + (V_1 \cap V_2)).$ • Suppose V is a 10-dim vecsp and V_1, V_2, V_3 are subsps of V with (a) dim $V_1 = \dim V_2 = \dim V_3 = 7$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$. By Tips, $\dim(V_1 \cap V_2 \cap V_3) \ge \dim V_1 + \dim V_2 + \dim V_3 - 2\dim V > 0$. (b) dim V_1 + dim V_2 + dim V_3 > 2 dim V. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$. By Tips, $\dim(V_1 \cap V_2 \cap V_3) \ge 2\dim V - \dim(V_2 + V_3) - \dim(V_1 + (V_2 \cap V_3)) \ge 0$. **14** Suppose V_1, \ldots, V_m are finite-dim. Prove that $\dim(V_1 + \cdots + V_m) \leq \dim V_1 + \cdots + \dim V_m$. **SOLUTION**: Choose a basis \mathcal{E}_i of $V_i \Rightarrow V_1 + \dots + V_m = \operatorname{span}(\mathcal{E}_1 \cup \dots \cup \mathcal{E}_m)$; dim $V_i = \operatorname{card} \mathcal{E}_i$. Now dim $(V_1 + \cdots + V_m)$ = dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m)$. **COROLLARY:** $V_1 + \cdots + V_m$ is direct \iff For each k, $(V_1 + \cdots + V_k) \cap V_{k+1} = \{0\}$, $(\mathcal{E}_1 \cap \cdots \cap \mathcal{E}_{k-1}) \cap \mathcal{E}_k = \emptyset$ \iff dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) = \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m$

 \iff dim $(V_1 + \dots + V_m) = \dim V_1 + \dots + \dim V_m$.

```
• TIPS 1: T: V \to W is linear \iff \begin{vmatrix} (-) \ \forall v, u \in V, T(v+u) = Tv + Tu; \\ (-) \ \forall v, u \in V, \lambda \in F, T(\lambda v) = \lambda(Tv). \end{vmatrix} \iff T(v+\lambda u) = Tv + \lambda Tu.
```

• (9.A.2,6 Or 4E 3.B.33) Suppose that V, W are on R, and $T \in \mathcal{L}(V,W)$. Show that

(a)
$$T_{\rm C} \in \mathcal{L}(V_{\rm C}, W_{\rm C})$$
. (b) $\operatorname{null}(T_{\rm C}) = (\operatorname{null} T)_{\rm C}$, $\operatorname{range}(T_{\rm C}) = (\operatorname{range} T)_{\rm C}$. (c) $T_{\rm C}$ is $\operatorname{inv} \iff T$ is inv .

SOLUTION: (a)
$$T_{\mathbf{C}}((u_1 + \mathrm{i}v_1) + (x + \mathrm{i}y)(u_2 + \mathrm{i}v_2)) = T(u_1 + xu_2 - yv_2) + \mathrm{i}T(v_1 + xv_2 + yu_2)$$

= $T_{\mathbf{C}}(u_1 + \mathrm{i}v_1) + (x + \mathrm{i}y)T_{\mathbf{C}}(u_2 + \mathrm{i}v_2)$.

(b)
$$u + iv \in \text{null } (T_{\mathbf{C}}) \iff u, v \in \text{null } T \iff u + iv \in (\text{null } T)_{\mathbf{C}}.$$

 $w + ix \in \text{range } (T_{\mathbf{C}}) \iff w, x \in \text{range } T \iff w + ix \in (\text{range } T)_{\mathbf{C}}.$

(c)
$$\forall w, x \in W, \exists ! u, v \in V, T_{\mathcal{C}}(u + iv) = w + ix \iff Tu = w, Tv = x$$
. Or. By (b).

• (9.A.5) Suppose V is on R, and S, $T \in \mathcal{L}(V, W)$. Prove that $(S + \lambda T)_C = S_C + \lambda T_C$.

SOLUTION:
$$(S + \lambda T)_{\mathbf{C}}(u + iv) = (S + \lambda T)(u) + i(S + \lambda T)(v)$$

= $Su + iSv + \lambda(Tu + iTv) = (S_{\mathbf{C}} + \lambda T_{\mathbf{C}})(u + iv)$.

- (4E 1.B.7) Suppose $V \neq \emptyset$ and W is a vecsp. Let $W^V = \{f : V \rightarrow W\}$.
 - (a) Define a natural add and scalar multi on W^V .
 - (b) Prove that W^V is a vecsp with these definitions.

SOLUTION:

(a)
$$W^V \ni f + g : x \to f(x) + g(x)$$
; where $f(x) + g(x)$ is the vec add on W . $W^V \ni \lambda f : x \to \lambda f(x)$; where $\lambda f(x)$ is the scalar multi on W .

(b) Commutativity:
$$(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)$$
.

Associativity:
$$((f+g)+h)(x) = (f(x)+g(x))+h(x)$$

$$= f(x) + (g(x) + h(x)) = (f + (g + h))(x).$$

Additive Identity: (f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x).

Additive Inverse:
$$(f + g)(x) = f(x) + g(x) = f(x) + (-f(x)) = 0 = 0(x)$$
.

Distributive Properties:

$$(a(f+g))(x) = a(f+g)(x) = a(f(x) + g(x))$$

= $af(x) + ag(x) = (af)(x) + (ag)(x) = (af + ag)(x).$

Similarly,
$$((a+b)f)(x) = (af+bf)(x)$$
.

So far, we have used the same properties in W.

Which means that *if* W^V *is a vecsp, then* W *must be a vecsp.*

Multiplication Identity: (1f)(x) = 1f(x) = f(x). (Notice that the smallest **F** is $\{0,1\}$.)

```
• TIPS 2: T \in \mathcal{L}(V, W) \iff T \in \mathcal{L}(V, \text{range } T) \iff T \in \mathcal{L}(V, U), if range T is a subsp of U.
             COROLLARY: \{T \in \mathcal{L}(V, W) : \text{range } T \subseteq U\} = \{T \in \mathcal{L}(V, U)\} = \mathcal{L}(V, U).
5 Because \mathcal{L}(V, W) = \{T : V \to W \mid T \text{ is linear}\}\ is a subsp of W^V, \mathcal{L}(V, W) is a vecsp.
3 Suppose T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m). Prove that \exists A_{j,k} \in \mathbf{F} such that for any (x_1, \dots, x_n) \in \mathbf{F}^n,
                                 T(x_1, ..., x_n) = \begin{pmatrix} A_{1,1}x_1 + \cdots + A_{1,n}x_n, \\ \vdots & \ddots & \vdots \\ A_{m,1}x_1 + \cdots + A_{m,n}x_n \end{pmatrix}
SOLUTION:
   Let T(1,0,0,\ldots,0,0)=(A_{1,1},\ldots,A_{m,1}), Note that (1,0,\ldots,0,0),\cdots,(0,0,\ldots,0,1) is a basis of \mathbf{F}^n.
        T(0,1,0,\dots,0,0)=\big(A_{1,2},\dots,A_{m,2}\big),
                                                         Then by [3.5], we are done.
                                                                                                                                      T(0,0,0,\dots,0,1) = (A_{1,n},\dots,A_{m,n}).
4 Suppose T \in \mathcal{L}(V, W), and v_1, \dots, v_m \in V such that (Tv_1, \dots, Tv_m) is linely inde in W.
   Prove that (v_1, ..., v_m) is linely inde.
SOLUTION: Suppose a_1v_1 + \cdots + a_mv_m = 0. Then a_1Tv_1 + \cdots + a_mTv_m = 0. Thus a_1 = \cdots = a_m = 0.
                                                                                                                                      7 Show that every linear map from a one-dim vecsp to itself is a multi by some scalar.
   More precisely, prove that if dim V = 1 and T \in \mathcal{L}(V), then \exists \lambda \in \mathbf{F}, Tv = \lambda v, \forall v \in V.
SOLUTION: Let u be a nonzero vec in V \Rightarrow V = \operatorname{span}(u). Because Tu \in V \Rightarrow Tu = \lambda u for some \lambda.
                Suppose v \in V \Rightarrow v = au, \exists ! a \in F. Then Tv = T(au) = \lambda au = \lambda v.
                                                                                                                                      8 Give a map \varphi: \mathbb{R}^2 \to \mathbb{R} such that \forall a \in \mathbb{R}, v \in \mathbb{R}^2, \varphi(av) = a\varphi(v) but \varphi is not linear.
SOLUTION: Define T(x,y) = \begin{cases} x+y, & \text{if } (x,y) \in \text{span}(3,1), \\ 0, & \text{otherwise.} \end{cases}
                                                                                   Or. Define T(x,y) = \sqrt[3]{(x^3 + y^3)}.
                                                                                                                                      9 Give a map \varphi: \mathbb{C} \to \mathbb{C} such that \forall w, z \in \mathbb{C}, \varphi(w+z) = \varphi(w) + \varphi(z) but \varphi is not linear.
SOLUTION: Define \varphi(u+iv) = u = \text{Re}(u+iv) OR. Define \varphi(u+iv) = v = \text{Im}(u+iv).
                                                                                                                                      • Prove that if q \in \mathcal{P}(R) and T : \mathcal{P}(R) \to \mathcal{P}(R) is defined by Tp = q \circ p, then T is not linear.
                                                                                             composition
SOLUTION: Composition and product are not the same in \mathcal{P}(F).
   NOTICE that (p \circ q)(x) = p(q(x)), while (pq)(x) = p(x)q(x) = q(x)p(x).
   Because in general, \left[q\circ (p_1+\lambda p_2)\right](x)=q\left(p_1(x)+\lambda p_2(x)\right)\neq (qp_1)(x)+\lambda (qp_2)(x).
   EXAMPLE: Let q be defined by q(x) = x^2, then q \circ (1 + (-1)) = 0 \neq q(1) + q(-1) = 2.
                                                                                                                                      10 Suppose U is a subsp of V with U \neq V. Suppose S \in \mathcal{L}(U, W) with S \neq 0
     (which means that \exists u \in U, Su \neq 0). Define T: V \to W by Tv = \begin{cases} Sv, \text{ if } v \in U, \\ 0, \text{ if } v \in V \setminus U. \end{cases}
    Prove that T is not a linear map on V.
SOLUTION: Suppose T is a linear map. And v \in V \setminus U, u \in U such that Su \neq 0.
                Then v + u \in V \setminus U, for if not, v = (v + u) - u \in U;
                while T(v + u) = 0 = Tv + Tu = 0 + Su \Rightarrow Su = 0. Contradicts.
```

In other words, every linear map on a subsp of V and $S \in \mathcal{L}(U,W)$. In other words, every linear map on a subsp of V can be extended to a linear map on the entire V . Solution: Suppose W is such that $V = U \oplus W$. Then $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $T \in \mathcal{L}(V,W)$ by $T(u_v + w_v) = Su_v$. Or. $[Finite-dim\ Req\]$ Define by $T\left(\sum_{i=1}^m a_i u_i\right) = \sum_{i=1}^n a_i Su_i$. Let $B_V = \left(\overbrace{u_1, \ldots, u_n, \ldots, u_m}\right)$. \square
12 Suppose nonzero V is finite-dim and W is infinite-dim. Prove that $\mathcal{L}(V,W)$ is infinite-dim.
SOLUTION: Using (2.A.14).
Let $B_V = (v_1,, v_n)$ be a basis of V . Let $(w_1,, w_m)$ be linely inde in W for any $m \in \mathbb{N}^+$.
Define $T_{x,y}: V \to W$ by $T_{x,y}(v_z) = \delta_{z,x} w_y$, $\forall x \in \{1,, n\}, y \in \{1,, m\}$, where $\delta_{z,x} = \begin{cases} 0, & z \neq x, \\ 1, & z = x. \end{cases}$ $\forall v = \sum_{i=1}^n a_i v_i, \ u = \sum_{i=1}^n b_i v_i, \ \lambda \in F, T_{x,y}(v + \lambda u) = (a_x + \lambda b_x) w_y = T_{x,y}(v) + \lambda T_{x,y}(u).$
Linearity checked. Now suppose $a_1T_{x,1} + \cdots + a_mT_{x,m} = 0$.
Then $(a_1T_{x,1} + \cdots + a_mT_{x,m})(v_x) = 0 = a_1w_1 + \cdots + a_mw_m \Rightarrow a_1 = \cdots = a_m = 0$. \mathbb{Z} m arbitrary. Thus $(T_{x,1}, \dots, T_{x,m})$ is a linely inde list in $\mathcal{L}(V, W)$ for any x and length m . Hence by (2.A.14).
13 Suppose $(v_1,, v_m)$ is linely depe in V and $W \neq \{0\}$. Prove that $\exists w_1,, w_m \in W, \nexists T \in \mathcal{L}(V, W)$ such that $Tv_k = w_k, \forall k = 1,, m$.
FOLUTION: We prove by contradiction. By linear dependence lemma, $\exists j \in \{1,, m\}, v_j \in \operatorname{span}(v_1,, v_{j-1}).$ Fix j . Let $w_j \neq 0$, while $w_1 = \cdots = w_{j-1} = w_{j+1} = w_m = 0$. Define $T \in \mathcal{L}(V, W)$ by $Tv_k = w_k$ for each k . Suppose $a_1v_1 + \cdots + a_mv_m = 0$, where $a_j \neq 0$.
Then $T(a_1v_1 + \dots + a_mv_m) = 0 = a_1w_1 + \dots + a_mw_m = a_jw_j$ while $a_j \neq 0$ and $w_j \neq 0$. Contradicts. \square
OR. We prove the contrapositive: Suppose $\forall w_1, \dots, w_m \in W, \exists T \in \mathcal{L}(V, W), Tv_k = w_k$ for each w_k . Now we show that (v_1, \dots, v_n) is linely inde. Suppose $\exists a_i \in F, a_1v_1 + \dots + a_nv_n = 0$. Choose one $w \in W \setminus \{0\}$. By assumption, for $(\overline{a_1}w, \dots, \overline{a_m}w), \exists T \in \mathcal{L}(V, W), Tv_k = \overline{a_k}w$ for each v_k .
Now we have $0 = T\left(\sum_{k=1}^{m} a_k v_k\right) = \sum_{k=1}^{m} a_k T v_k = \sum_{k=1}^{m} a_k \overline{a_k} w = \left(\sum_{k=1}^{m} a_k ^2\right) w$.
Then $\sum_{k=1}^{m} a_k ^2 = 0 \Longrightarrow \operatorname{each} a_k = 0$. Hence (v_1, \dots, v_n) is linely inde.
• (4E 3.A.17) Suppose V is finite-dim. Show that all two-sided ideals of $\mathcal{L}(V)$ are $\left\{0\right\}$ and $\mathcal{L}(V)$.
A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}, ET \in \mathcal{E}, \ \forall E \in \mathcal{E}, T \in \mathcal{L}(V)$.
SOLUTION: Let $B_V = (v_1,, v_n)$. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Let $S \in \mathcal{E} \setminus \{0\}$. Suppose $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \cdots + a_nv_n$, where $a_k \neq 0$.
Define $R_{x,y} \in \mathcal{L}(V)$ by $R_{x,y}: v_x \mapsto v_y, v_z \mapsto 0$ ($z \neq x$). Or. $R_{x,y}v_z = \delta_{z,x}v_y$.
Then $(R_{1,1} + \cdots + R_{n,n})v_j = v_j \Rightarrow \sum_{r=1}^n R_{r,r} = I$. Assume that each $R_{x,y} \in \mathcal{E}$.
Hence $\forall T \in \mathcal{L}(V), I \circ T = T \circ I = T \in \mathcal{E} \Rightarrow \mathcal{E} = \mathcal{L}(V)$. Now we prove the assumption.
Notice that $\forall x, y \in \mathbf{N}^+$, $(R_{k,y}S)(v_i) = a_k v_y \Rightarrow ((R_{k,y}S) \circ R_{x,i})(v_z) = \delta_{z,x}(a_k v_y)$.
Thus $R_{k,y}SR_{x,i} = a_kR_{x,y}$. Now $S \in \mathcal{E} \Rightarrow R_{k,y}S \in \mathcal{E} \Rightarrow R_{x,y} \in \mathcal{E}$.

Show that if $\varphi : \mathcal{L}(V) \to \mathbf{F}$ is linear and $\forall S, T \in \mathcal{L}(V), \varphi(ST) = \varphi(S) \cdot \varphi(T)$, then $\varphi = 0$. **SOLUTION:** Using notations in (4E 3.A.17). Using the result in NOTE FOR [3.60]. Suppose $\varphi \neq 0 \Rightarrow \exists i, j \in \{1, ..., n\}, \ \varphi(R_{i,j}) \neq 0$. Because $R_{i,j} = R_{x,j} \circ R_{i,x}, \ \forall x = 1, ..., n$ $\Rightarrow \varphi(R_{i,i}) = \varphi(R_{x,i}) \cdot \varphi(R_{i,x}) \neq 0 \Rightarrow \varphi(R_{x,i}) \neq 0 \text{ and } \varphi(R_{i,x}) \neq 0.$ Again, because $R_{i,x} = R_{y,x} \circ R_{i,y}$, $\forall y = 1, ..., n$. Thus $\varphi(R_{y,x}) \neq 0$, $\forall x, y = 1, ..., n$. Let $k \neq i, j \neq l$ and then $\varphi(R_{i,j} \circ R_{l,k}) = \varphi(R_{l,k} \circ R_{i,j}) = \varphi(0) = 0 = \varphi(R_{l,k}) \cdot \varphi(R_{i,j})$ $\Rightarrow \varphi(R_{l,k}) = 0 \text{ or } \varphi(R_{i,i}) = 0.$ Contradicts. Or. Note that by (4E 3.A.17), $\exists S, T \in \mathcal{L}(V), ST - TS \neq 0$. Then $\varphi(ST - TS) = \varphi(S)\varphi(T) - \varphi(T)\varphi(S) = 0 \Rightarrow ST - TS \in \text{null } \varphi \neq \{0\}.$ Note that $\forall E \in \operatorname{null} \varphi, T \in \mathcal{L}(V), \varphi(ET) = \varphi(TE) = 0 \Rightarrow ET, TE \in \operatorname{null} \varphi$. Hence null φ is a nonzero two-sided ideal of $\mathcal{L}(V)$. • Suppose V is finite-dim. $T \in \mathcal{L}(V)$ is such that $\forall S \in \mathcal{L}(V), ST = TS$. *Prove that* $\exists \lambda \in \mathbf{F}, T = \lambda I$. **SOLUTION**: If $V = \{0\}$, then we are done. Now suppose $V \neq \{0\}$. Assume that $\forall v \in V, (v, Tv)$ is linely depe, then by (2.A.2.(b)), $\exists \lambda_v \in F, Tv = \lambda_v v$. To prove that λ_v is independent of v, we discuss in two cases: $(-) \text{ If } (v,w) \text{ is linely inde, } \lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \\ \Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0 \\ \Rightarrow \lambda_w = \lambda_v.$ (=) Otherwise, suppose w=cv, $\lambda_w w=Tw=cTv=c\lambda_v v=\lambda_v w\Rightarrow (\lambda_w-\lambda_v)w$ Now we prove the assumption. Assume that $\exists v \in V, (v, Tv)$ is linely inde. Let $B_V = (v, Tv, u_1, \dots, u_n)$. Define $S \in \mathcal{L}(V)$ by $S(av + bTv + c_1u_1 + \cdots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Contradicts. \square Or. Let $B_V = (v_1, ..., v_m)$. Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_1) = \cdots = \varphi(v_m) = 1$. Let $\lambda = \varphi(Tv_1) \in \mathbf{F}$. For any $v \in V$, define $S_v \in \mathcal{L}(V)$ by $S_v u = \varphi(u)v$. Then $Tv = T(\varphi(v_1)v) = T(S_v v_1) = S_v(Tv_1) = \varphi(Tv_1)v = \lambda v$. Or. For each $k \in \{1, \dots, n\}$, define $S_k \in \mathcal{L}(V)$ by $S_k v_j = \left\{ \begin{array}{l} v_k, \, j = k, \\ 0, \, \, j \neq k. \end{array} \right.$ Or. $S_k v_j = \delta_{j,k} v_k$ Note that $S_k\left(\sum_{i=1}^n a_i v_i\right) = a_k v_k$. Then $S_k v = v \iff \exists ! a_k \in \mathbf{F}, v = a_k v_k$. Hence $S_k(Tv_k) = T(S_kv_k) = Tv_k \Rightarrow Tv_k = a_kv_k$. Define $A^{(j,k)} \in \mathcal{L}(V)$ by $A^{(j,k)}v_j = v_k$, $A^{(j,k)}v_k = v_j$, $A^{(j,k)}v_x = 0$, $x \neq j$, k. Then $\begin{vmatrix} A^{(j,k)}Tv_j = TA^{(j,k)}v_j = Tv_k = a_kv_k \\ A^{(j,k)}Tv_j = A^{(j,k)}a_jv_j = a_jA^{(j,k)}v_j = a_jv_k \end{vmatrix} \Rightarrow a_k = a_j. \text{ Hence } a_k \text{ is inde of } v_k.$ • Tips 3: Suppose $T \in \mathcal{L}(V, W)$. Prove that $Tv \neq 0 \Rightarrow v \neq 0$.

SOLUTION: Assume that v = 0. Then $Tv = T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$.

Or. $T(0) = T(0+0) = T(0) + T(0) \Rightarrow T(0) = 0$. Contradicts.

• (4E 3.B.32) Suppose V is finite-dim with $n = \dim V > 1$.

• Given the fact that $\mathcal{L}(V, W)$ is a vecsp. Prove or give a counterexample: V, W are vecsps. We can guarantee that $\{0\} \subseteq \mathcal{L}(V,W), \{0\} \subseteq V, \{0\} \subseteq W$. And by [3.2], the additivity and homogeneity imply that V is closed under add and scalar multi. (We cannot even guarantee that W^V is a vecsp.) SOLUTION: TODO: Too tricky to be answered by AI. (I) If $W^V = \{0\}$. Then $\mathcal{L}(V, W) = \{0\}$. And $W = \{0\}$, for if not, $\exists w \in W \setminus \{0\}$, define a map f by f(x) = w, $\forall x \in V$. And *V* might not be a vecsp. Example: ??? (II) If W^V is a nonzero vecsp. Then W is a vecsp. (a) If $\mathcal{L}(V, W) = \{0\}$, then we cannot guarantee that V is a vecsp. Example: ??? (b) If not, then $\exists T \in \mathcal{L}(V, W)$, $T \neq 0$. Which means $\exists v \in V, Tv \neq 0 \Rightarrow v \neq 0$. Then both *W* and *V* have a nonzero element. (i) If \exists inje $T \in \mathcal{L}(V, W)$, then $T(u + v) = T(v + u) \Rightarrow u + v = v + u$. etc. Hence V is a vecsp. (ii) If not, then we cannot guarantee that *V* is a vecsp. Example: ??? (III) If W^V is not a vecsp, then W is not a vecsp. Example: ??? **ENDED** 3.B 3 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 25 26 28 29 30 4E: 21 24 27 32 33 **3** Suppose (v_1, \ldots, v_m) in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m$. (a) The surj of T correspds to $(v_1, ..., v_m)$ spanning V. (b) The inje of T correspds to $(v_1, ..., v_m)$ being linely inde. **COMMENT:** Let $(e_1, ..., e_m)$ be the std basis of \mathbf{F}^m . Then $Te_k = v_k$. (a) range $T = \text{span}(v_1, ..., v_m) = V$; (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje. **7** Suppose V is finite-dim with $2 \le \dim V$. And $\dim V \le \dim W = m$, if W is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{null } T \neq \{0\} \}$ is not a subsp of $\mathcal{L}(V, W)$. **SOLUTION**: The set of all inje $T \in \mathcal{L}(V, W)$ is a not subsp either. Let (v_1, \ldots, v_n) be a basis of V, (w_1, \ldots, w_m) be linely inde in W. $[2 \le n \le m]$ Define $T_1 \in \mathcal{L}(V, W)$ as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$.

Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1$, $v_2 \mapsto 0$, $v_i \mapsto w_i$, i = 3, ..., n.

Thus $T_1 + T_2 \notin U$. \square **COMMENT:** If dim V = 0, then $V = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T \text{ is inje. Hence } U = \emptyset$. If dim V = 1, then $V = \text{span}(v_0)$. Thus $U = \text{span}(T_0)$, where $\forall v \in V, T_0 v = 0 \Rightarrow T_0 = 0$. **8** Suppose W is finite-dim with dim $W \ge 2$. And $n = \dim V \ge \dim W$, if V is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : \text{range } T \neq W \}$ is not a subsp of $\mathcal{L}(V, W)$. **SOLUTION**: The set of all surj $T \in \mathcal{L}(V, W)$ is not a subsp either. **Using the generalized version of** [3.5]. Let (v_1, \ldots, v_n) be linely inde in V, (w_1, \ldots, w_m) be a basis of W. $n \in \{m, m+1, \ldots\}$; $2 \le m \le n$. Define $T_1 \in \mathcal{L}(V, W)$ as $T_1: v_1 \mapsto 0$, $v_2 \mapsto w_2$, $v_i \mapsto w_i$, $v_{m+i} \mapsto 0$. Define $T_2 \in \mathcal{L}(V, W)$ as $T_2: v_1 \mapsto w_1, v_2 \mapsto 0, v_i \mapsto w_i, v_{m+i} \mapsto 0.$ (For each $j=2,\ldots,m;\ i=1,\ldots,n-m,$ if V is finite, otherwise let $i\in\mathbb{N}^+$.) Thus $T_1+T_2\notin U$. **COMMENT:** If dim W = 0, then $W = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T \text{ is surj. Hence } U = \emptyset$. If dim W = 1, then $W = \text{span}(w_0)$. Thus $U = \text{span}(T_0)$, where each $T_0v_i = 0 \Rightarrow T_0 = 0$.

```
9 Suppose (v_1, ..., v_n) is linely inde. Prove that \forall inje T, (Tv_1, ..., Tv_n) is linely inde.
SOLUTION: a_1Tv_1 + \cdots + a_nTv_n = 0 = T\left(\sum_{i=1}^n a_iv_i\right) \iff \sum_{i=1}^n a_iv_i = 0 \iff a_1 = \cdots = a_n = 0.
                                                                                                                                                 10 Suppose span(v_1, ..., v_n) = V. Show that span(Tv_1, ..., Tv_n) = \text{range } T.
SOLUTION: (a) range T = \{Tv : v \in \text{span}(v_1, \dots, v_n)\} \Rightarrow Tv_1, \dots, Tv_n \in \text{range } T. By [2.7].
                      Or. span(Tv_1, \dots, Tv_n) \ni a_1Tv_1 + \dots + a_nTv_n = T(a_1v_1 + \dots + a_nv_n) \in \text{range } T.
                 (b) \forall w \in \text{range } T, w = Tv, \exists v \in V \Rightarrow \exists a_i \in F, v = \sum_{i=1}^n a_i v_i, w = a_1 T v_1 + \dots + a_n T v_n.
11 Suppose S_1, ..., S_n \in \mathcal{L}(V) and S = S_1S_2 ... S_n makes sense. Then using induction:
     (a) range S_1 \supseteq \text{range } (S_1 S_2) \supseteq \cdots \supseteq \text{range } (S); (b) null S_n \subseteq \text{null } (S_{n-1} S_n) \subseteq \cdots \subseteq \text{null } (S).
• Define X_p = \{T \in \mathcal{L}(V) : p(T) \text{ holds}\}; P_p : X_p \text{ is closed under vec multi; } Q_p : X_p \text{ is a group.}
  (1) S \operatorname{surj} \iff \operatorname{each} S_k \operatorname{surj}. P_{surj} holds. (2) S \operatorname{inje} \iff \operatorname{each} S_k \operatorname{inje}. P_{inje} holds.
  (3) P_{inv} and Q_{inv} hold. Q_p in (1) and (2) holds \iff V is finite-dim.
  (4) P_{inje\ or\ surj} holds \iff V is finite-dim \iff Q_{inje\ or\ surj} holds.
• Suppose S, T \in \mathcal{L}(V). Prove or give a counterexample:
  (a) \operatorname{null} S \subseteq \operatorname{null} T \Rightarrow \operatorname{range} T \subseteq \operatorname{range} S; (b) \operatorname{range} T \subseteq \operatorname{range} S \Rightarrow \operatorname{null} S \subseteq \operatorname{null} T.
SOLUTION: Let B_V = (v_1, v_2, v_3). Counterexamples:
   (a) Let S: v_1 \mapsto 0; v_2 \mapsto 0; v_3 \mapsto v_2.
                                                              Then \operatorname{null} S = \operatorname{null} T, but
                T: v_1 \mapsto 0; \ v_2 \mapsto 0; \ v_3 \mapsto v_3. range T = \operatorname{span}(v_3) \not\subseteq \operatorname{span}(v_2) = \operatorname{null} T.
   (b) Let S: v_1 \mapsto v_2; v_2 \mapsto v_2; v_3 \mapsto v_2. Then range T = \text{range } S, but
                T: v_1 \mapsto 0; \ v_2 \mapsto 0; \ v_3 \mapsto v_2. \text{null } S = \text{span}(v_1 - v_2, v_2 - v_3, v_3 - v_1) \not\subseteq \text{span}(v_1, v_2) = \text{null } T.
16 Suppose T \in \mathcal{L}(V) such that null T, range T are finite-dim. Prove that V is finite-dim.
SOLUTION: Let B_{\text{range }T} = (Tv_1, \dots, Tv_n), B_{\text{null }T} = (u_1, \dots, u_m).
                 \forall v \in V, \exists ! a_i \in \mathbf{F}, T(v - a_1v_1 - \dots - a_nv_n) = 0 \Rightarrow \exists ! b_i \in \mathbf{F}, v - \sum_{i=1}^n a_iv_i = \sum_{i=1}^m b_iu_i.
                                                                                                                                                 17 Suppose V, W are finite-dim. Prove that \exists inje T \in \mathcal{L}(V, W) \iff \dim V \leqslant \dim W.
SOLUTION: (a) Suppose \exists inje T. Then dim V = \dim \operatorname{range} T \leqslant \dim W.
                 (b) Suppose dim V \leq \dim W. Let B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).
                       Define T \in \mathcal{L}(V, W) by Tv_i = w_i, i = 1, ..., n ( = dim V ).
                                                                                                                                                 18 Suppose V, W are finite-dim. Prove that \exists surj T \in \mathcal{L}(V, W) \iff \dim V \geqslant \dim W.
SOLUTION: (a) Suppose \exists surj T. Then dim V = \dim W + \dim \operatorname{null} T \Rightarrow \dim W \leqslant \dim V.
                 (b) Suppose dim V \ge \dim W. Let B_V = (v_1, \dots, v_n), B_W = (w_1, \dots, w_m).
                      Define T \in \mathcal{L}(V, W) by T(a_1v_1 + \dots + a_mv_m + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m.
                                                                                                                                                 19 Suppose V, W are finite-dim, U is a subsp of V.
     Prove that \exists T \in \mathcal{L}(V, W), \text{null } T = U \iff \underline{\dim U} \geqslant \underline{\dim V} - \underline{\dim W}.
SOLUTION:
   (a) Suppose \exists T \in \mathcal{L}(V, W), null T = U. Then dim U + \dim \operatorname{range} T = \dim V \leq \dim U + \dim W.
   (b) Let B_U = (u_1, ..., u_m), B_V = (u_1, ..., u_m, v_1, ..., v_n), B_W = (w_1, ..., w_p). Suppose that p \ge n.
        Define T \in \mathcal{L}(V, W) by T(a_1v_1 + \dots + a_nv_n + b_1u_1 + \dots + b_mu_m) = a_1w_1 + \dots + a_nw_n.
```

• Tips 1: Suppose U is a subsp of V . Prove that $\forall T \in \mathcal{L}(V,W), U \cap \operatorname{null} T = \operatorname{null} T _{U}$. Solution: Note that $U \cap \operatorname{null} T \subseteq \operatorname{null} T _{U}$. On the other hand, suppose $u \in \operatorname{null} T _{U} \subseteq U$. Then $T _{U}(u) = 0$ makes sense and equals Tu . Now $Tu = 0 \Rightarrow u \in \operatorname{null} T$.	
· · · · · · · · · · · · · · · · · · ·	
• Tips 2: Suppose $T \in \mathcal{L}(V, W)$ and $T _U : U \to \text{range } T$ is an iso. Let $U = X + Y$. (a) Show that range $T = \text{range } T _X + \text{range } T _Y$.	
(b) Show that if $X \cap Y = \{0\}$, then range $T _X \cap \text{range } T _Y = \{0\}$.	
SOLUTION: (a) Because $\forall v \in V, \exists ! u \in U, u_0 \in \text{null } T \Rightarrow \exists x \in X, y \in Y, v = (x + y) + u_0.$	
Now $Tv = Tx + Ty \Rightarrow \text{range } T = \text{range } T _X + \text{range } T _Y$.	
(b) Assume that for some $v \in V$, there exist two distinct pairs $(x_1, y_1), (x_2, y_2)$ in $X \times Y$ such that $Tv = Tx_1 + Ty_1 = Tx_2 + Ty_2$. Because $\forall v \in X \oplus Y, \exists ! (x, y) \in X \times Y, v = x$	
Now $T(x_1 + y_1) = T(x_2 + y_2) \Rightarrow x_1 + y_1 = x_2 + y_2 \Rightarrow x_1 = x_2, y_1 = y_2$. Contradicts.	
Thus $\forall Tv \in \text{range } T, \exists ! Tx \in \text{range } T _X, Ty \in \text{range } T _Y, Tv = Tx + Ty.$	
12 Prove that $\forall T \in \mathcal{L}(V, W), \exists subsp U of V such that$	
$U \cap \text{null } T = \text{null } T _U = \{0\}, \text{ range } T = \{Tu : u \in U\} = \text{range } T _U.$	
Which is equivalent to $T _U: U \to \text{range } T$ being an iso.	
SOLUTION: By [2.34] (note that V can be infinite-dim), \exists subsp U of V such that $V = U \oplus \text{null } T$. $\forall v \in V, \exists ! w \in \text{null } T, u \in U, v = w + u$. Then $Tv = T(w + u) = Tu \in \{Tu : u \in U\}$.	
COROLLARY: $[P]$ $T _U: U \to \text{range } T \text{ is an iso} \iff U \oplus \text{null } T = V.$ $[Q]$	
We have shown $Q \Rightarrow P$. Now we show that $\neg Q \Rightarrow \neg P$ to complete the proof.	
Because $U \oplus \text{null } T \subsetneq V$. We show range $T \neq \text{range } T _U$ by contradiction.	
Let $X \oplus (U \oplus \text{null } T) = V$. Now range $T = \text{range } T _X \oplus \text{range } T _U$. And X is nonzero.	
Assume that range $T = \text{range } T _U$. Then range $T _X = \{0\}$. While $T _X$ is inje. Contradic	_
Or. range $T _X \subseteq \text{range } T _U \Rightarrow \forall x \in X, Tx \in \text{range } T _U, \exists u \in U, Tu = Tx \Rightarrow x = 0.$	
• Tips 3: Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp such that $V = U \oplus \text{null } T$.	
Now $\forall v \in V, \exists ! u_v \in U, w_v \in \text{null } T, v = u_v + w_v.$ Define $i \in \mathcal{L}(V, U)$ by $i(v) = u_v.$	
Then $T = T \circ i$. Because $\forall v \in V, T(v) = T(u_v + w_v) = T(u_v) = T(i(v)) = (T \circ i)(v)$.	
• TIPS 4: Suppose $T \in \mathcal{L}(V, W), T \neq 0$. Let $B_{\text{range }T} = (Tv_1,, Tv_n)$.	
By (3.A.4), $R = (v_1,, v_n)$ is linely inde in V . Let span $R = U$. We will prove that $U \oplus \text{null } T = V$	•
(a) $T\left(\sum_{i=1}^{n} a_i v_i\right) = 0 \Rightarrow \sum_{i=1}^{n} a_i T v_i = 0 \Rightarrow a_1 = \dots = a_n = 0 \Rightarrow U \cap \text{null } T = \{0\}.$	
(b) $\forall v \in V, Tv = \sum_{i=1}^{n} a_i Tv_i \Rightarrow Tv - \sum_{i=1}^{n} a_i Tv_i = T(v - \sum_{i=1}^{n} a_i v_i) = 0$	
$\Rightarrow v - \sum_{i=1}^{n} a_i v_i \in \operatorname{null} T \Rightarrow v = \left(v - \sum_{i=1}^{n} a_i v_i\right) + \left(\sum_{i=1}^{n} a_i v_i\right) \Rightarrow U + \operatorname{null} T = V.$	
Or. range $T = \{Tu : u \in U\} = \text{range } T _{U}$. Then by the Corollary in Problem (12).	
• Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, $B_{\text{range }T} = (Tv_1, \dots, Tv_n)$, $B_V = (v_1, \dots, v_n, u_1, \dots)$ Prove or give a counterexample: (u_1, \dots, u_m) is a basis of null T .	.,u _m).
SOLUTION : Always notice that \mathcal{S}_V span $(v_1, \dots, v_n) = \{U_1, \dots, \text{null } T, \dots, U_n, \dots\}$.	
A counterexample: Let dim $V=3$, $Tv_1=Tv_2=Tv_3=w_1$. Then span $(Tv_1,Tv_2,Tv_3)=\operatorname{span}(w_1)$	•
Extend (v_i) to (v_1, v_2, v_3) for each i . But none of (v_1, v_2) , (v_1, v_3) , (v_2, v_3) is a basis of null T .	

• (4E 21) Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, Y is a subsp of W. Let $\{v \in V : Tv \in Y\}$. (a) Prove that $\{v \in V : Tv \in Y\}$ is a subsp of V. (b) Prove that $\dim\{v \in V : Tv \in Y\} = \dim \operatorname{null} T + \dim(Y \cap \operatorname{range} T)$. **SOLUTION**: Let $\mathcal{K}_Y = \{v \in V : Tv \in Y\}$. (a) $\forall u, w \in \mathcal{K}_{Y}$, $[Tu, Tw \in Y]$, $\lambda \in \mathbb{F}$, $T(u + \lambda w) = Tu + \lambda Tw \in Y \Longrightarrow \mathcal{K}_{Y}$ is a subspoof V. (b) Define the range-restricted map R of T as Rv = Tv for all $v \in \mathcal{K}_{\gamma}$. Obviously $R = T|_{\mathcal{K}_Y} : \mathcal{K}_Y \to Y$ is linear. Now range $R = Y \cap \text{range } T$. And $v \in \text{null } T \iff Tv = 0 \in Y \iff Rv = 0 \in \text{range } T \iff v \in \text{null } R$. By [3.22]. **COMMENT:** Now span $(v_1, ..., v_m) \oplus \text{null } T = \mathcal{K}_Y$. Where $B_{Y \cap \text{range } T} = (Tv_1, ..., Tv_m)$. In particular, dim $\mathcal{K}_{\text{range }T} = \dim \text{null } T + \dim \text{range } T \Longrightarrow \mathcal{K}_{\text{range }T} = V$. **28** Suppose $T \in \mathcal{L}(V, W)$. Let $B_{\text{range } T} = (w_1, \dots, w_m)$. Prove that $\exists \varphi_1, \dots, \varphi_m \in \mathcal{L}(V, \mathbf{F})$ such that $\forall v \in V, Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$. **SOLUTION**: Suppose $v_1, \dots, v_m \in V$ such that $Tv_i = w_i$ for each v_i . Then (v_1, \dots, v_m) is linely inde. Then span $(v_1, \dots, v_m) \oplus \text{null } T = V$. And $\forall v \in V, v = \sum_{i=1}^m a_i v_i + u, \exists ! a_i \in F, u \in \text{null } T$. Define $\varphi_i \in \mathcal{L}(V, \mathbf{F})$ by $\varphi_i(v_i) = \delta_{i,i}$, $\varphi_i(u) = 0$ for all $u \in \text{null } T$. Linearity: $\forall v, w \in V \left[\exists ! a_i, b_i \in \mathbf{F} \right], \lambda \in \mathbf{F}, \varphi_i(v + \lambda w) = a_i + \lambda b_i = \varphi(v) + \lambda \varphi(w).$ **29** Suppose $\varphi \in \mathcal{L}(V, \mathbf{F})$. Suppose $\varphi(u) \neq 0$. Prove that $V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}$. **SOLUTION:** Let $B_{\text{range }\varphi} = (\varphi(u))$. Then by Tips (4), $\text{span}(u) \oplus \text{null } \varphi = V$. Or. (a) $v = cu \in \text{null } \varphi \cap \text{span}(u) \Rightarrow c\varphi(u) = 0 \Rightarrow v = 0$. Now $\text{null } \varphi \cap \text{span}(u) = \{0\}$. (b) $\forall v \in V, v = \underbrace{\left(v - \frac{\varphi(v)}{\varphi(u)}u\right)}_{v \in V} + \frac{\varphi(v)}{\varphi(u)}u \Longrightarrow V = \text{null } \varphi + \text{span}(u).$ **30** Suppose $\varphi_1, \varphi_2 \in \mathcal{L}(V, \mathbf{F})$ and $\text{null } \varphi_1 = \text{null } \varphi_2 = \text{null } \varphi$. Prove that $\exists c \in \mathbf{F}, \varphi_1 = c\varphi_2$ **SOLUTION:** If null $\varphi = V$, then $\varphi_1 = \varphi_2 = 0$, we are done. Suppose $\varphi(u) \neq 0 \Rightarrow \varphi_1(u), \varphi_2(u) \neq 0$. By Problem (29), $V = \text{null } \varphi \oplus \text{span}(u)$. Hence $\forall v \in V, \exists ! w \in \text{null } \varphi, a \in F, v = w + a_v u$. Now $\varphi_1(v) = a\varphi_1(u)$, $\varphi_2(v) = a\varphi_2(u) \Rightarrow a = \frac{\varphi_1(v)}{\varphi_1(u)} = \frac{\varphi_2(v)}{\varphi_2(u)} \Longrightarrow \frac{\varphi_1(u)}{\varphi_2(u)} = \frac{\varphi_1(v)}{\varphi_2(v)} = c \in \mathbf{F}$. • (4E 31) Suppose V is finite-dim, X is a subsp of V, and Y is a finite-dim subsp of W. *Prove that if* dim X + dim Y = dim V, then $\exists T \in \mathcal{L}(V, W)$, null T = X, range T = Y. **SOLUTION:** Let $V = U \oplus X$, $B_U = (v_1, ..., v_m)$, $B_Y = (w_1, ..., w_m)$. Define $T \in \mathcal{L}(V, W)$ by $Tv_i = w_i, Tx = 0$ for each v_i and all $x \in X$. Because $\forall v \in V, \exists ! a_i \in F, x \in X, v = \sum_{i=1}^m a_i v_i + x$. Now $v \in \operatorname{null} T \Longleftrightarrow Tv = a_1w_1 + \dots + a_mw_m = 0 \Longleftrightarrow v = x \in X$. Hence $\operatorname{null} T = X$. And $Y \ni w = a_1 w_1 + \dots + a_m w_m = a_1 T v_1 + \dots + a_m T v_m \in \text{range } T$. Hence range T = Y. OR. NOTICE that $V = U \oplus \text{null } T$. By the COROLLARY in Problem (12), range $T = \text{range } T|_{U}$. \mathbb{X} dim range $T|_U = \dim U = \dim Y$; range $T \subseteq Y$. Or. Let $B_X = (x_1, \dots, x_n)$. Now range $T = \operatorname{span}(Tv_1, \dots, Tv_m, Tx_1, \dots, Tx_n) = \operatorname{span}(w_1, \dots, w_m) = Y$. \square

• OR (5.B.4) Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$. Prove that $V = \text{null } P \oplus \text{range } P$. **SOLUTION:** (a) If $v \in \text{null } P \cap \text{range } P \Rightarrow Pv = 0$ and $\exists u \in V, v = Pu$. Then $v = Pu = P^2u = Pv = 0$. (b) Note that $\forall v \in V, v = Pv + (v - Pv)$ and $P(v - Pv) = 0 \Rightarrow v - Pv \in \text{null } P$. Or. [Only in Finite-dim] Let $B_{\text{range }P^2}=(P^2v_1,\ldots,P^2v_n)$. Then (Pv_1,\ldots,Pv_n) is linely inde. Let $U = \operatorname{span}(Pv_1, \dots, Pv_n) \Rightarrow V = U \oplus \operatorname{null} P^2$. While $U = \operatorname{range} P = \operatorname{range} P^2$; $\operatorname{null} P = \operatorname{null} P^2$. \square **20, 21** (a) Prove that if $ST = I \in \mathcal{L}(V)$, then T is inje and S is surj. (b) Suppose $T \in \mathcal{L}(V, W)$. Prove that if T is inje, then $\exists S \in \mathcal{L}(W, V)$, ST = I. (c) Suppose $S \in \mathcal{L}(W, V)$. Prove that if S is surj, then $\exists T \in \mathcal{L}(V, W)$, ST = I. **SOLUTION:** (a) $Tv = 0 \Rightarrow S(Tv) = 0 = v$. Or. null $T \subseteq \text{null } ST = \{0\}$. $\forall v \in V, ST(v) = v \in \text{range } S \Rightarrow \text{range } S = V. \text{ Or. } V = \text{range } ST \subseteq \text{range } S.$ (b) $\lceil Req \text{ range } T \text{ } OR \text{ } V \text{ } Finite\text{-}dim \text{ } \rceil \text{ } Let B_{\text{range } T} = (Tv_1, \dots, Tv_n).$ Then span $(v_1, \dots, v_n) \oplus \text{null } T = V \Rightarrow B_V = (v_1, \dots, v_n)$. Let $U \oplus \text{range } T = W$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$, Su = 0 for each v_i and all $u \in U$. Thus ST = I. OR. Define $S \in \mathcal{L}(\text{range } T, V)$ by $Sw = T^{-1}w$, where T^{-1} is the inv of $T \in \mathcal{L}(V, \text{range } T)$. Then extend it to $S \in \mathcal{L}(W, V)$ by (3.A.11). Now $\forall v \in V, STv = T^{-1}Tv = v$. (c) $\lceil Req \ V \ Finite-dim \rceil$ Let $B_{range \ S} = B_V = (Sw_1, \dots, Sw_n)$. Then $span(w_1, \dots, w_n) \oplus null \ S = W$. Define $T \in \mathcal{L}(V, W)$ by $T(Sw_i) = w_i$. Now $ST(a_1Sw_1 + \cdots + a_nSw_n) = (a_1Sw_1 + \cdots + a_nSw_n)$. OR. By Problem (12), \exists subsp U of W, $W = U \oplus \text{null } S$, range $S = \text{range } S|_{U} = V$. Note that $S|_U: U \to V$ is an iso. Define $T = (S|_U)^{-1}$, where $(S|_U)^{-1}: V \to U$. Then $ST = S \circ (S|_{U})^{-1} = S|_{U} \circ (S|_{U})^{-1} = I_{V}$. **COROLLARY:** For (b), if *T* is inje and $\exists S$, ST = I, then by (a), this *S* is surj. Similar for (c). **24** Suppose $S, T \in \mathcal{L}(V, W)$, and null $S \subseteq \text{null } T$. Prove that $\exists E \in \mathcal{L}(W), T = ES$. **SOLUTION:** Define E: range $S \to W$ by E(Sv) = Tv for all Sv. Linearity: $E(Sv + \lambda Su) = E(S(v + \lambda u)) = T(v + \lambda u) = Tv + \lambda Tu = E(Sv) + \lambda E(Su)$. Checked. Then extend $E \in \mathcal{L}(\text{range } S, W)$ to $E \in \mathcal{L}(W)$. Or. Let $V = U \oplus \text{null } S \Rightarrow S|_U : U \to \text{range } S \text{ is an iso. Extend } T(S|_U)^{-1} \in \mathcal{L}(\text{range } S, W) \text{ to } E \in \mathcal{L}(W).$ **COROLLARY:** If null S = null T. Then by (3.D.3), we can extend $T(S|_U)^{-1}$ to inv $E \in \mathcal{L}(W)$. OR. [Req range S Finite-dim] Let $B_{\text{range }S} = (Sv_1, ..., Sv_n)$. Then $V = \text{span}(v_1, ..., v_n) \oplus \text{null } S$. Define $E \in \mathcal{L}(W)$ by $E(Sv_i) = Tv_i$, Eu = 0 for all $u \in \text{null } S$ and each v_i . Hence $\forall v \in V$, $(\exists! a_i \in F, u \in \text{null } S)$, $Tv = a_1Tv_1 + \dots + a_nTv_n = E(a_1Sv_1 + \dots + a_nSv_n) \Rightarrow T = ES$. Notice that $\forall v \in V, \exists ! a_i \in F, v - (a_1v_1 + \dots + a_nv_n) \in \text{null } S \subseteq \text{null } T \Rightarrow Tv = a_1Tv_1 + \dots + a_nTv_n \square$ **COROLLARY:** $\lceil Req\ W\ Finite-dim\ \rceil$ Suppose null $S=\operatorname{null} T.$ We show that $\exists \operatorname{inv} E\in \mathcal{L}(W), T=ES.$ Define $E \in \mathcal{L}(W)$ by $E(Tv_i) = Sv_i$, $E(w_i) = x_i$, for each Tv_i and w_i . Where: Let $B_{\text{range }T} = (Tv_1, ..., Tv_m), B_W = (Tv_1, ..., Tv_m, w_1, ..., w_n), B_U = (v_1, ..., v_m).$ Now null $S = \text{null } T \Rightarrow V = U \oplus \text{null } T = U \oplus \text{null } S \Rightarrow \text{span}(Sv_1, \dots, Sv_m) = \text{range } S$. \mathbb{Z} dim range $T = \dim \operatorname{range} S = m$. Let $B_{\operatorname{range} S} = (Sv_1, \dots, Sv_m), B'_W = (Sv_1, \dots, Sv_m, x_1, \dots, x_n)$.

```
25 Suppose S, T \in \mathcal{L}(V, W), and range T \subseteq \text{range } S. Prove that \exists E \in \mathcal{L}(V), T = SE.
SOLUTION:
   Let V = U \oplus \text{null } S \Rightarrow S|_U : U \rightarrow \text{range } S \text{ is an iso. Because } (S|_U)^{-1} : \text{range } S \rightarrow U.
    Define E = (S|_{U})^{-1}T \in \mathcal{L}(V, U). Then write E \in \mathcal{L}(V).
                                                                                                                                                                          Or. [ Req range T Finite-dim ] Let B_{\text{range }T} = (Tv_1, ..., Tv_n). Then V = \text{span}(v_1, ..., v_n) \oplus \text{null } T.
    Let S(u_i) = Tv_i for each Tv_i. Define E by Ev_i = u_i, Ex = 0 for all x \in \text{null } T and each v_i.
    COROLLARY: [Req\ V\ Finite-dim\ ] If range T=\operatorname{range} S, then \dim\operatorname{null} T=\dim\operatorname{null} S=p.
                          Let B_{\text{null }T}=(x_1,\ldots,x_p), B_{\text{null }S}=(y_1,\ldots,y_p). Note that (u_1,\ldots,u_n) is linely inde.
                         Define E by Ev_i = u_i, Ex_i = y_i for each v_i and x_i. Then E \in \mathcal{L}(V) is inv.
   Hence \forall v \in V, (\exists ! a_i \in \mathbb{F}, x \in \text{null } T), Tv = a_1 T v_1 + \dots + a_n T v_n = S(E(a_1 v_1 + \dots + a_n v_n + x)). \square
22 Suppose U and V are finite-dim vecsps and S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V).
      Prove that dim null ST \leq \dim \text{null } S + \dim \text{null } T.
SOLUTION: Define R \in \mathcal{L}(\text{null } ST, V) by Ru = Tu for all u \in \text{null } ST \subseteq U.
                      S(Tu) = 0 = S(Ru) \Rightarrow \operatorname{range} R \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} R \leqslant \operatorname{dim} \operatorname{null} S

Tu = 0 = Ru \Rightarrow \operatorname{null} R \supseteq \operatorname{null} T \Rightarrow \operatorname{dim} \operatorname{null} R = \operatorname{dim} \operatorname{null} T \Rightarrow By [3.22].
                                                                                                                                                                          OR. NOTICE that u \in \text{null } ST \iff S(Tu) = 0 \iff Tu \in \text{null } S.
                    Thus \operatorname{null} ST = \mathcal{K}_{\operatorname{null} S \cap \operatorname{range} T} = \{ u \in U : Tu \in \operatorname{null} S \}. By Problem (4E 21),
                    \dim \operatorname{null} ST = \dim \operatorname{null} T + \dim (\operatorname{null} S \cap \operatorname{range} T) \leq \dim \operatorname{null} T + \dim \operatorname{null} S.
                                                                                                                                                                          COROLLARY: (1) T \text{ surj} \Rightarrow \text{range } R = \text{null } S \Rightarrow \text{dim null } ST = \text{dim null } S + \text{dim null } T.
                      (2) T \text{ inv} \Rightarrow \dim \text{null } ST = \dim \text{null } S \Rightarrow \text{null } ST = \text{null } T.
                      (3) S \text{ inje} \Rightarrow \operatorname{range} R = \{0\} \Rightarrow \operatorname{dim} \operatorname{null} ST = \operatorname{dim} \operatorname{null} R = \operatorname{dim} \operatorname{null} T.
23 Suppose U and V are finite-dim vecsps and S \in \mathcal{L}(V, W) and T \in \mathcal{L}(U, V).
      Prove that dim range ST \leq \min \{ \dim \text{ range } S, \dim \text{ range } T \}.
SOLUTION: NOTICE that range ST = \{Sv : v \in \text{range } T\} = \text{range } S|_{\text{range } T}.
                    Let range ST = \text{span}(Su_1, ..., Su_{\dim \text{range } T}), where B_{\text{range } T} = (u_1, ..., u_{\dim \text{range } T}).
                    \dim \operatorname{range} ST \leqslant \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leqslant \dim \operatorname{range} S.
                                                                                                                                                                          OR. dim range ST = \dim \operatorname{range} S|_{\operatorname{range} T} = \dim \operatorname{range} T - \dim \operatorname{null} S|_{\operatorname{range} T} \leqslant \operatorname{range} T.
                                                                                                                                                                          COROLLARY: (1) S inje \Rightarrow dim range ST = \dim \operatorname{range} T; (2) T surj \Rightarrow dim range ST = \dim \operatorname{range} S.
• (a) Suppose dim V = 5, and ST = 0 where S, T \in \mathcal{L}(V). Prove that dim range TS \leq 2.
   (b) Suppose dim V = n. Prove that in (a), dim range TS \leq \left\lceil \frac{n}{2} \right\rceil.
SOLUTION:
                                                                               5 - \dim \text{null } T 5 - \dim \text{null } S
    (a) By Problem (23), dim range TS \leq \min \{ \overline{\dim \operatorname{range} S}, \overline{\dim \operatorname{range} T} \}.
          We show that dim range TS \leq 2 by contradiction. Assume that dim range TS \geq 3.
          Then \min\{5 - \dim \operatorname{null} T, 5 - \dim \operatorname{null} S\} \ge 3 \Rightarrow \max\{\dim \operatorname{null} T, \dim \operatorname{null} S\} \le 2.
          \dim \operatorname{null} S = 5 - \dim \operatorname{range} S \\ \dim \operatorname{range} TS \leqslant \dim \operatorname{range} S \end{cases} \Rightarrow \dim \operatorname{null} S \leqslant 5 - \dim \operatorname{range} TS.
          And ST = 0 \Rightarrow \text{range } T \subseteq \text{null } S \Rightarrow \text{dim range } T \leqslant \text{dim range } T \leqslant \text{dim null } S.
```

```
(b) By Problem (23), dim range TS \leq \min\{\underbrace{\frac{n-\dim \operatorname{null} T}{\dim \operatorname{range} S}}, \underbrace{\frac{n-\dim \operatorname{null} S}{\dim \operatorname{range} T}\}. We prove by contradiction.
          Assume that dim range TS \geqslant \left| \frac{n}{2} \right| + 1. Then
          \min\{n - \dim \operatorname{null} T, n - \dim \operatorname{null} S\} \ge \left\lfloor \frac{n}{2} \right\rfloor + 1 \Longrightarrow \max\{\dim \operatorname{null} T, \dim \operatorname{null} S\} \le n - \left\lfloor \frac{n}{2} \right\rfloor - 1.
           \mathbb{Z} dim null ST = n \le \dim \operatorname{null} S + \dim \operatorname{null} T \le 2\left(n - \left|\frac{n}{2}\right| - 1\right) \Rightarrow \left|\frac{n}{2}\right| + 1 \le \frac{n}{2}. Contradicts. \square
          Or. dim null S = n - \dim \operatorname{range} S \leq n - \dim \operatorname{range} TS.
           And ST = 0 \Rightarrow \dim \operatorname{range} TS \leqslant \dim \operatorname{range} T \leqslant \dim \operatorname{null} S \leqslant n - \dim \operatorname{range} TS
                                \implies 2 dim range TS \leqslant n. Thus dim range TS \leqslant \frac{n}{2} \Rightarrow dim range TS \leqslant \left\lfloor \frac{n}{2} \right\rfloor.
                                                                                                                                                                            • TIPS 5: Suppose S \in \mathcal{L}(U, V) is surj. Define \mathcal{B} \in \mathcal{L}(\mathcal{L}(V, W), \mathcal{L}(U, W)) by \mathcal{B}(T) = TS.
                Then \mathcal{B} is inje. Because \mathcal{B}(T) = TS = 0 \Longleftrightarrow T|_V = T|_{\text{range }S} = 0.
26 Suppose D \in \mathcal{L}(\mathcal{P}(\mathbf{R})) and \forall p, \deg(Dp) = (\deg p) - 1. Prove that D \in \mathcal{P}(\mathbf{R}) is surj.
SOLUTION: [D \text{ might not be } D: p \mapsto p'.] Notice that the following proof is wrong:
                    Because span(Dx, Dx^2, Dx^3, \dots) \subseteq \text{range } D, and \deg Dx^n = n - 1.
                     \nabla By (2.C.10), span(Dx, Dx^2, Dx^3, ...) = span(1, x, x^2, ...) = \mathcal{P}(\mathbf{R}).
   Let D(C) = 0, Dx^k = p_k of deg (k-1), for all C \in \mathbb{R} = \mathcal{P}_0(\mathbb{R}) and for each k \in \mathbb{N}^+.
   Because B_{\mathcal{P}_m(\mathbf{R})} = (p_1, \dots, p_m, p_{m+1}). And for all p \in \mathcal{P}(\mathbf{R}), \exists ! m = \deg p \in \mathbf{N}^+.
   So that \exists ! a_i \in \mathbb{R}, p = \sum_{i=1}^{m+1} a_i p_i \Rightarrow \exists q = \sum_{i=1}^{m+1} a_i x^i, Dq = p.
                                                                                                                                                                             OR. We will recursively define a sequence of polys (p_k)_{k=0}^{\infty} where Dp_0 = 1, Dp_k = x^k for each k \in \mathbb{N}^+.
   So that \forall p = \sum_{k=0}^{\deg p} a_k x^k \in \mathcal{P}(\mathbf{R}), Dq = p, \exists q = \sum_{k=0}^{\deg p} a_k p_k.
    (i) Because \deg Dx = (\deg x) - 1 = 0, Dx = C \in \mathbb{F} \setminus \{0\}. Let p_0 = C^{-1}x \Rightarrow Dp_0 = C^{-1}Dx = 1.
    (ii) Suppose we have defined p_0, \dots, p_n such that Dp_0 = 1, Dp_k = x^k for each k \in \{1, \dots, n\}.
           Because deg D(x^{n+2}) = n+1. Let D(x^{n+2}) = a_{n+1}x^{n+1} + a_nx^n + \dots + a_1x + a_0, with a_{n+1} \neq 0.
```

 $\Rightarrow x^{n+1} = D[a_{n+1}^{-1}(x^{n+2} - a_np_n - \dots - a_1p_1 - a_0p_0)]$. Thus defining p_{n+1} , so that $Dp_{n+1} = x^{n+1}$.

Then $a_{n+1}^{-1}D(x^{n+2}) = x^{n+1} + a_{n+1}^{-1}(a_nDp_n + \dots + a_1Dp_1 + a_0Dp_0)$

Now we have $(p_k)_{k=0}^{\infty}$ by recursion.

ENDED

• Note For [3.47]:
$$(AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,r})_{1,r} (C_{\cdot,k})_{r,1} = (A_{j,r} C_{\cdot,k})_{1,1} = A_{j,r} C_{\cdot,k}.$$

• Note For [3.49]:
$$[(AC)_{.,k}]_{i,1} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} A_{j,r} (C_{.,k})_{r,1} = (AC_{.,k})_{j,1}$$

• Exercise 10:
$$\left[\left(AC \right)_{j,\cdot} \right]_{1,k} = \left(AC \right)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} \left(A_{j,\cdot} \right)_{1,r} C_{r,k} = \left(A_{j,\cdot} C \right)_{1,k}$$

• Note For [3.52]: $A \in \mathbf{F}^{m,n}, c \in \mathbf{F}^{n,1} \Rightarrow Ac \in \mathbf{F}^{m,1}$

• Exercise 11: $a \in \mathbf{F}^{1,n}, C \in \mathbf{F}^{n,p} \Rightarrow aC \in \mathbf{F}^{1,p}$

• [4E 3.51] Suppose $C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,p}$.

(a) For
$$k = 1, ..., p$$
, $(CR)_{.,k} = CR_{.,k} = C_{.,.}R_{.,k} = \sum_{r=1}^{c} C_{.,r}R_{r,k} = R_{1,k}C_{.,1} + \cdots + R_{c,k}C_{.,c}$

(b) For
$$j = 1, ..., m$$
, $(CR)_{j,\cdot} = C_{j,\cdot}R = C_{j,\cdot}R_{\cdot,\cdot} = \sum_{r=1}^{c} C_{j,r}R_{r,\cdot} = C_{j,1}R_{1,\cdot} + \cdots + C_{j,c}R_{c,\cdot}$

• **EXAMPLE**: m = 2, c = 2, p = 3.

$$(AB)_{.,2} = AB_{.,2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} = A_{.,1}B_{1,2} + A_{.,2}B_{2,2} = 6 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 9 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 24 \\ 54 \end{pmatrix};$$

$$(AB)_{1,.} = A_{1,.}B = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = A_{1,1}B_{1,.} + A_{1,2}B_{2,.} = 1 \begin{pmatrix} 5 & 6 & 7 \end{pmatrix} + 2 \begin{pmatrix} 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} 21 & 24 & 27 \end{pmatrix};$$

• COLUMN-ROW FACTORIZATION (CR Factorization) Suppose $A \in \mathbf{F}^{m,n}$, $A \neq 0$. Prove, with p specified below, that $\exists C \in \mathbf{F}^{m,p}$, $R \in \mathbf{F}^{p,n}$, A = CR.

(a) Suppose
$$S_c = \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) \subseteq \mathbf{F}^{m,1}$$
, dim $S_c = c$, the col rank. Let $p = c$.

(b) Suppose
$$S_r = \text{span}(A_{1,r}, ..., A_{m,r}) \subseteq \mathbf{F}^{1,n}$$
, dim $S_r = r$, the row rank. Let $p = r$.

SOLUTION: Using [4E 3.51]. Notice that $A \neq 0 \Rightarrow c, r \geqslant 1$.

(a) Let
$$(C_{\cdot,1},\ldots,C_{\cdot,c})$$
 be a basis of S_c , forming $C \in \mathbb{F}^{m,c}$. Then $\forall k \in \{1,\ldots,n\}$, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$, $\exists \,!\, R_{1,k},\ldots,R_{c,k} \in \mathbb{F}$, forming $R \in \mathbb{F}^{c,n}$. Thus $A = CR$.

(b) Let (R_1, \dots, R_r) be a basis of S_r , forming $R \in \mathbf{F}^{r,n}$. Then $\forall j \in \{1, \dots, m\}$,

$$A_{j,\cdot} = C_{j,1}R_{1,\cdot} + \dots + C_{j,r}R_{r,\cdot} = (CR)_{j,\cdot}, \exists ! C_{j,1}, \dots, C_{j,r} \in \mathbf{F}, \text{ forming } C \in \mathbf{F}^{m,r}. \text{ Thus } A = CR. \qquad \Box$$

Example:
$$A = \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \xrightarrow{\underline{(I)}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \xrightarrow{\underline{(II)}} \begin{pmatrix} 7 & 4 \\ 19 & 12 \\ 33 & 20 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}$$

$$\text{(I)} \ \left(46\ 33\ 20\ 7 \right) = 2 \left(10\ 7\ 4\ 1 \right) + \left(26\ 19\ 12\ 5 \right) = \left(2\ 1 \right) \left(\begin{matrix} 10\ 7\ 4\ 1 \\ 26\ 19\ 12\ 5 \end{matrix} \right) \text{, using } \left[4\text{E } 3.51(\text{b}) \right].$$

$$\left(46\ 33\ 20\ 7 \right) \in \text{span} \left(A_{1,\cdot}, A_{2,\cdot} \right) \text{, and } \left(A_{1,\cdot}, A_{2,\cdot} \right) \text{ is linely inde. Thus } B_{S_r} = \left(A_{1,\cdot}, A_{2,\cdot} \right).$$

(II)
$$\begin{pmatrix} 10\\26\\46 \end{pmatrix} = 2 \begin{pmatrix} 7\\19\\33 \end{pmatrix} - \begin{pmatrix} 4\\12\\20 \end{pmatrix}; \quad \begin{pmatrix} 1\\5\\7 \end{pmatrix} = -\begin{pmatrix} 7\\19\\33 \end{pmatrix} + 2 \begin{pmatrix} 4\\12\\20 \end{pmatrix}. \text{ Thus } B_{S_c} = (A_{\cdot,2}, A_{\cdot,3}).$$

For each $A_{i,.} \in S_r$, $A_{i,.} = (CR)_{i,.} = C_{i,.}R = C_{i,1}R_{1,.} + \cdots + C_{i,c}R_{c,.}$ For each $A_{.k} \in S_{c}$, $A_{.k} = (CR)_{.k} = CR_{.k} = R_{1,k}C_{.1} + \cdots + R_{c,k}C_{.c}$ \Rightarrow span $(A_{1,r}, \dots, A_{n,r}) = S_r = \text{span}(R_{1,r}, \dots, R_{c,r}) \Rightarrow \dim S_r = r \leqslant c = \dim S_c$. \Rightarrow span $(A_{\cdot,1}, \dots, A_{\cdot,m}) = S_r = \text{span}(C_{\cdot,1}, \dots, C_{\cdot,r}) \Rightarrow \dim S_c = c \leqslant r = \dim S_r$. OR. Apply the result to $A^t \in \mathbf{F}^{n,m} \Rightarrow \dim S_r^t = \dim S_c = c \leqslant r = \dim S_r = \dim S_c^t$. • Suppose $A \in \mathbb{F}^{m,n} \setminus \{0\}$. Prove that [P] rank $A = 1 \iff \exists c_i, d_k \in \mathbb{F}$, each $A_{i,k} = c_i \cdot d_k$. [Q]**SOLUTION**: [*Using CR Factorization*] $P \Rightarrow Q : \text{ Immediately.}$ $Q \Rightarrow P : \text{ Because } A = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \begin{pmatrix} d_1 \cdots d_n \end{pmatrix} = \begin{pmatrix} c_1 d_1 \cdots c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 \cdots c_m d_n \end{pmatrix} \Longrightarrow S_r = \text{span} \left\{ \begin{pmatrix} c_1 d_1 \cdots c_1 d_n \\ \vdots & \ddots & \vdots \\ c_m d_1 \cdots c_m d_n \end{pmatrix}, \begin{pmatrix} c_2 d_1 \cdots c_2 d_n \\ \vdots & \vdots \\ c_m d_1 \cdots c_m d_n \end{pmatrix} \right\}.$ Or. $S_c = \operatorname{span}\left\{ \begin{pmatrix} c_1 d_1 \\ \vdots \\ c_r d_r \end{pmatrix}, \begin{pmatrix} c_1 d_2 \\ \vdots \\ c_r d_r \end{pmatrix}, \dots, \begin{pmatrix} c_1 d_n \\ \vdots \\ c_r d_r \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} c_1 \\ \vdots \\ c_r \end{pmatrix} \right\}.$ [*Not Using CR Factorization*] $Q \Rightarrow P$: Using [4E 3.51(a)]. Each $A_{\cdot,k} \in \text{span} \left\{ \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \right\}$. Then rank $A = \dim S_c \leqslant 1$. $X \land A \neq 0 \Rightarrow \dim S_c \geqslant 1$. $P \Rightarrow Q$: Because dim $S_c = \dim S_r = 1$. Let $c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \dots = \frac{A_{j,n}}{A_{1,n}}, \quad d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \dots = \frac{A_{m,k}}{A_{m,1}}.$ $\Rightarrow A_{i,k} = d'_k A_{i,1} = c_i A_{1,k} = c_i d'_k A_{1,1} = c_i d_k$, where $d_k = d'_k A_{1,1}$. • [4E 17, OR 3.F.32] Suppose $T \in \mathcal{L}(V)$ and $(u_1, \dots, u_n), (v_1, \dots, v_n)$ are bases of V. Prove that the following are equi. Here $A = \mathcal{M}(T) = \mathcal{M}(T, (u_1, ..., u_n), (v_1, ..., v_n))$. (a) T is inje; (b) $(A_{\cdot,1},\ldots,A_{\cdot,n})$ is a basis of $\mathbf{F}^{n,1}$; (c) $(A_{1,\cdot},\ldots,A_{n,\cdot})$ is a basis of $\mathbf{F}^{1,n}$. **SOLUTION**: T is inje \iff dim $V = \dim \operatorname{range} T = n$ $\Delta \left\{ \begin{array}{l} \Longleftrightarrow \big(Tu_1,\ldots,Tu_n\big) \text{ is a basis of } V; \ \dim \operatorname{span}\big(\mathcal{M}\big(Tu_1\big),\ldots,\mathcal{M}\big(Tu_n\big)\big) = n \\ \Longleftrightarrow \big(\mathcal{M}\big(Tu_1\big),\ldots,\mathcal{M}\big(Tu_n\big)\big) \text{ is a basis of } \mathbf{F}^{n,1}, \text{ as well as } \big(A_{\cdot,1},\ldots,A_{\cdot,n}\big) \end{array} \right.$ NOTICE that dim $S_c = \dim \operatorname{span}(A_{\cdot,1}, \dots, A_{\cdot,n}) = \dim \operatorname{span}(A_{1,\cdot}, \dots, A_{n,\cdot}) = \dim S_r = n.$ **TIPS 1:** $b_1 T u_1 + \dots + b_n T u_n = b_1 (A_{11} v_1 + \dots + A_{n1} v_n) + \dots + b_n (A_{1n} v_1 + \dots + A_{nn} v_n)$ $= (b_1 A_{1,1} + \dots + b_n A_{1,n}) v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n}) v_n$ **TIPS 2:** $b_1 \mathcal{M}(Tu_1) + \cdots + b_n \mathcal{M}(Tu_n) = b_1 A_{...} + \cdots + b_n A_{...}$ $=b_1\binom{A_{1,1}}{\vdots}+\cdots+b_n\binom{A_{1,n}}{\vdots}=\binom{b_1A_{1,1}+\cdots+b_nA_{1,n}}{\vdots}\\b_1A_{n,1}+\cdots+b_nA_{n,n}\end{pmatrix}.$ Now we show $\Delta : [P](Tu_1, ..., Tu_n)$ linely inde $\iff (\mathcal{M}(Tu_1), ..., \mathcal{M}(Tu_n))$ linely inde. [Q] $P \Rightarrow Q$: Suppose $b_1 A_{\cdot,1} + \dots + b_n A_{\cdot,n} = 0$. Let $u = b_1 u_1 + \dots + b_n u_n$. Then $Tu = (b_1 A_{1,1} + \dots + b_n A_{1,n})v_1 + \dots + (b_1 A_{n,1} + \dots + b_n A_{n,n})v_n = 0v_1 + \dots + 0v_n$. Now $b_1 T u_1 + \dots + b_n T u_n = 0$. Then each $b_k = 0$. Thus $(A_{.1}, \dots, A_{.n})$ is linely inde. $Q\Rightarrow P: \text{ Because } b_1Tu_1+\cdots+b_nTu_n=0 \Rightarrow b_1A_{1,1}+\cdots+b_nA_{1,n}=\cdots=b_1A_{n,1}+\cdots+b_nA_{n,n}=0.$ Which is equi to $b_1A_{\cdot,1} + \cdots + b_nA_{\cdot,n} = 0$. Thus each $b_k = 0 \Rightarrow \text{null } T = \{0\}$.

• COLUMN RANK EQUALS ROW RANK Using notation and result above.

1 Suppose $T \in \mathcal{L}(V,W)$. Show that for each pair of B_V and B_W , $A = \mathcal{M}(T,B_V,B_W)$ has at least $n = \dim \operatorname{range} T$ nonzero entries. Solution: Using $[3.B \operatorname{Tips}(4)]$. Let $U \oplus \operatorname{null} T = V$; $B_U = (v_1,\ldots,v_n)$, $B_V = (v_1,\ldots,v_m)$. For each $k \in \{1,\ldots,n\}$, $Tv_k \neq 0 \Longleftrightarrow A_{\cdot,k} \neq 0$. Hence every such $A_{\cdot,k}$ has at least one nonzero entry. Or. We prove by contradiction. Suppose A has at most $(n-1)$ nonzero entries. Then by Pigeon Hole Principle, at least one of $A_{\cdot,1},\ldots,A_{\cdot,n}$ equals 0 . Thus there are at most $(n-1)$ nonzero vecs in Tv_1,\ldots,Tv_n . \mathbb{X} range $T = \operatorname{span}(Tv_1,\ldots,Tv_n) \Rightarrow \dim \operatorname{range} T = \dim \operatorname{span}(Tv_1,\ldots,Tv_n) \leqslant n-1$. Contradicts.	
3 Suppose V and W are finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $\exists B_V, B_W$ such that $[letting A = \mathcal{M}(T, B_V, B_W)] A_{k,k} = 1, A_{i,j} = 0$, where $1 \leqslant k \leqslant \dim \operatorname{range} T, i \neq j$. Solution: Using $[3.B \operatorname{Tips}(4)]$. Let $B_{\operatorname{range} T} = (Tv_1, \ldots, Tv_n), B_V = (v_1, \ldots, v_n, u_1, \ldots, u_m)$. Comment: Let each $Tv_k = w_k$. Extend $B_{\operatorname{range} T}$ to $B_W = (w_1, \ldots, w_n, \ldots, w_p)$. See $[3.D \operatorname{NOTE} \operatorname{For} [3.60]]$.	
4 Suppose $B_V = (v_1,, v_m)$ and W is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that $\exists B_W = (w_1,, w_n)$, $\mathcal{M}(T, B_V, B_W)_{\cdot, 1}^t = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & \cdots & 0 \end{pmatrix}$. Solution: If $Tv_1 = 0$, then we are done. If not then extend (Tv_1) to B_W .	
5 Suppose $B_W=(w_1,\ldots,w_n)$ and V is finite-dim. Suppose $T\in\mathcal{L}(V,W)$. Prove that $\exists B_V=(v_1,\ldots,v_m),\mathcal{M}\big(T,B_V,B_W\big)_{1,\cdot}=\left(0\ \cdots\ 0\right)$ or $\left(1\ 0\ \cdots\ 0\right).$ Solution: See also in (3.F). Let (u_1,\ldots,u_n) be a basis of V . Denote $\mathcal{M}\big(T,(u_1,\ldots,u_n),B_W\big)$ by A . If $A_{1,\cdot}=0$, then $B_V=(u_1,\ldots,u_n)$ and we are done. Otherwise, suppose $A_{1,k}\neq 0$. Let $v_1=\frac{u_k}{A_{1,k}}$, so that $Tv_1=1w_1+\frac{A_{2,k}}{A_{1,k}}w_2+\cdots+\frac{A_{n,k}}{A_{1,k}}w_n.$ Let $v_j=u_{j-1}-A_{1,j-1}v_1$ for each $j\in\{2,\ldots,k\}$. Let $v_i=u_i-A_{1,i}v_1$ for $i\in\{k+1,\ldots,n\}$. Notice that $Tu_i=A_{1,i}w_1+\cdots+A_{n,i}w_n.$	
6 Suppose V and W are finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $\dim \operatorname{range} T = 1 \iff \exists B_V, B_W, all \ entries \ of \ A = \mathcal{M}\left(T, B_V, B_W\right) \ equal \ 1.$ Solution: (a) Suppose $B_V = (v_1, \dots, v_n), B_W = (w_1, \dots, w_m)$ are the bases such that all entries of A equal 1 . Then $Tv_i = w_1 + \dots + w_m$ for all $i = 1, \dots, n$. Because w_1, \dots, w_n is linely inde, $w_1 + \dots + w_n \neq 0$. (b) Suppose $\dim \operatorname{range} T = 1$. Then $\dim \operatorname{null} T = \dim V - 1$. Let $B_{\operatorname{null} T} = (u_2, \dots, u_n)$. Extend to a basis (u_1, u_2, \dots, u_n) of V . Let $w_1 = Tv_1 - w_2 - \dots - w_m$. Extend to B_W . Let $v_1 = u_1, v_i = u_1 + u_i$. Extend to B_V .	
OR. Suppose range T has a basis (w) . By $[2.C \text{ NOTE FOR } (15)]$, $\exists B_W = (w_1, \dots, w_m)$ such that $w = w_1 + \dots + w_m$. By $[2.C \text{ TIPS}]$, \exists a basis (u_1, \dots, u_n) of V such that each $u_k \notin \text{null } T$. Now each $Tu_k \in \text{range } T = \text{span}(w) \Rightarrow Tu_k = \lambda_k w$, $\exists \lambda_k \in F \setminus \{0\}$. Let $v_k = \lambda_k^{-1} u_k \neq 0$, so that each $Tv_k = w = w_1 + \dots + w_m$. Thus $B_V = (v_1, \dots, v_n)$ will do.	

• Tips: Suppose p is a poly of n variables in \mathbf{F} .

Prove that $\mathcal{M}\left(p(T_1,\ldots,T_n)\right)=p\left(\mathcal{M}(T_1),\ldots,\mathcal{M}(T_n)\right)$.

Where the linear maps T_1,\ldots,T_n are such that $p(T_1,\ldots,T_n)$ makes sense. See [5.16,17,20].

Solution: Suppose the poly p is defined by $p(x_1,\ldots,x_n)=\sum_{k_1,\ldots,k_n}\alpha_{k_1,\ldots,k_n}\prod_{i=1}^n x_i^{k_i}$.

Note that $\mathcal{M}(T^xS^y)=\mathcal{M}(T)^x\mathcal{M}(S)^y; \ \mathcal{M}(T^x+S^y)=\mathcal{M}(T)^x+\mathcal{M}(S)^y$.

Then $\mathcal{M}\left(p(T_1,\ldots,T_n)\right)=\mathcal{M}\left(\sum_{k_1,\ldots,k_n}\alpha_{k_1,\ldots,k_n}\prod_{i=1}^n T_i^{k_i}\right)$ $=\sum_{k_1,\ldots,k_n}\alpha_{k_1,\ldots,k_n}\prod_{i=1}^n \mathcal{M}\left(T_i^{k_i}\right)=p\left(\mathcal{M}(T_1),\ldots,\mathcal{M}(T_n)\right)$.

• Corollary: Suppose τ is an algebraic property.

Then τ holds for matrices $\iff \tau$ holds for linear maps.

13 *Prove that the distr holds for matrix add and matrix multi.*

Suppose A, B, C are matrices such that A(B+C) make sense, we prove the left distr.

SOLUTION: Suppose $A \in \mathbb{F}^{m,n}$ and $B, C \in \mathbb{F}^{n,p}$.

Note that
$$[A(B+C)]_{j,k} = \sum_{r=1}^{n} A_{j,r}(B+C)_{r,k} = \sum_{r=1}^{n} (A_{j,r}B_{r,k} + A_{j,r}C_{r,k}) = (AB+AC)_{j,k}\Box$$

OR. Define T, S, R such that $\mathcal{M}(T) = A, \mathcal{M}(S) = B, \mathcal{M}(R) = C$.

$$A(B+C) = \mathcal{M}(T(S+R)) \stackrel{[3.9]}{=} \mathcal{M}(TS+TR) = AB + AC.$$

Or
$$T(S+R) = TS + TR \Rightarrow \mathcal{M}(T(S+R)) = \mathcal{M}(TS+TR) \Rightarrow A(B+C) = AB + AC$$
.

14 *Prove that matrix multi is associ.*

Suppose A, B, C are matrices such that (AB)C makes sense, we prove that (AB)C = A(BC).

SOLUTION: Suppose
$$A \in \mathbf{F}^{m,n}$$
 and $B, C \in \mathbf{F}^{n,p}$. We show that $LHS = [(AB)C]_{j,k} = [A(BC)]_{j,k} = RHS$. $LHS = (AB)_{j,\cdot}C_{\cdot,k} = \sum_{s=1}^{n} (A_{j,s}B_{s,\cdot})C_{\cdot,k} = \sum_{s=1}^{n} A_{j,s}(B_{s,\cdot}C_{\cdot,k}) = \sum_{s=1}^{n} A_{j,s}(BC)_{s,k} = RHS$. \square

OR. Define T, S, R such that $\mathcal{M}(T) = A$, $\mathcal{M}(S) = B$, $\mathcal{M}(R) = C$.

$$(AB)C = \mathcal{M}(T(SR)) \xrightarrow{\underline{[3.9]}} \mathcal{M}(TSR) \xrightarrow{\underline{[3.9]}} \mathcal{M}((TS)R) = A(BC).$$

Or.
$$(TS)R = T(SR) \Rightarrow \mathcal{M}((TS)R) = \mathcal{M}(T(SR)) \Rightarrow (AB)C = A(BC)$$
.

15 Suppose $A \in \mathbf{F}^{n,n}$, $j,k \in \{1,\ldots,n\}$. Show that $(A^3)_{j,k} = \sum_{p=1}^n \sum_{r=1}^n A_{j,p} A_{p,r} A_{r,k}$.

SOLUTION:
$$(AAA)_{j,k} = (AA)_{j,k} A_{\cdot,k} = \sum_{p=1}^{n} (A_{j,p}A_{p,\cdot})A_{\cdot,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p}A_{p,r}A_{r,k}$$

OR.
$$(AAA)_{j,k} = \sum_{r=1}^{n} (AA)_{j,r} A_{r,k} = \sum_{r=1}^{n} \left(\sum_{p=1}^{n} A_{j,p} A_{p,r} \right) A_{r,k}$$

$$= \underbrace{\sum_{r=1}^{n} \left[A_{j,1} (A_{1,r} A_{r,k}) + \dots + A_{j,n} (A_{n,r} A_{r,k}) \right]}_{= A_{j,1} \sum_{r=1}^{n} A_{1,r} A_{r,k} + \dots + A_{j,n} \sum_{r=1}^{n} A_{n,r} A_{r,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}}.$$

• Prove that the commutativity does not hold in
$$\mathbf{F}^{m,n}$$
.

SOLUTION: Suppose dim V = n, dim W = m and the commutativity holds in $\mathbf{F}^{n,m}$.

$$\forall T \in \mathcal{L}(V,W), S \in \mathcal{L}(W,V), \mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(ST).$$

Hence
$$ST = TS$$
. Which in general does not hold.

2 *Suppose V is finite-dim and* dim V > 1.

Prove that the set U of non-inv operators on V is not a subsp of $\mathcal{L}(V)$ *.*

The set of inv operators is not either. Although multi identity/inv, and commutativity for vec multi hold.

SOLUTION: Let $B_V = (v_1, ..., v_n)$. [If dim V = 1, then $U = \{0\}$ is a subsp of $\mathcal{L}(V)$.]

Define $S, T \in \mathcal{L}(V)$ by $S(a_1v_1 + \dots + a_nv_n) = a_1v_1$, $T(a_1v_1 + \dots + a_nv_n) = a_2v_1 + \dots + a_nv_n$.

Hence $S, T \in U$ while $S + T \notin U$.

3 Suppose V is finite-dim, U is a subsp of V, and $S \in \mathcal{L}(U, V)$.

Prove that \exists *inv* $T \in \mathcal{L}(V)$, Tu = Su, $\forall u \in U \iff S$ *is inje.* [Compare this with (3.A.11).]

SOLUTION: (a) $\forall u \in U, u = T^{-1}Su \Rightarrow T^{-1}S = I \in \mathcal{L}(U) \Longrightarrow S$ is inje, by (3.B.20). Or. null $S = \text{null } T|_{U} = \text{null } T \cap U = \{0\}.$

Ok. $\operatorname{null} S = \operatorname{null} T|_{U} = \operatorname{null} T \cap U = \{0\}.$

(b) Let $B_U = (u_1, ..., u_m)$. Then S inje $\Longrightarrow (Su_1, ..., Su_m)$ linely inde. Extend these to bases of V as $(u_1, ..., u_m, v_1, ..., v_n)$ and $(Su_1, ..., Su_m, w_1, ..., w_n)$.

Define $T \in \mathcal{L}(V)$ by $T(u_i) = Su_i$; $Tv_j = w_j$, for each u_i and v_j .

- Suppose $S, T \in \mathcal{L}(V, W)$. [For Problem (4) and (5), see the Corollary in (3.B.24, 25).]
- **6** Suppose V and W are finite-dim. dim null $S = \dim \text{null } T = n$. Prove that $S = E_2TE_1$, $\exists inv E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W)$.

SOLUTION: Define $E_1: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Define $E_2: Tv_i \mapsto Sr_i$; $x_j \mapsto y_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where:

Let
$$B_{\text{range }T} = (Tv_1, ..., Tv_m); \ B_{\text{range }S} = (Sr_1, ..., Sr_m).$$

Let $B_W = (Tv_1, ..., Tv_m, x_1, ..., x_p); \ B'_W = (Sr_1, ..., Sr_m, y_1, ..., y_p).$
Let $B_{\text{null }T} = (u_1, ..., u_n); \ B_{\text{null }S} = (s_1, ..., s_n).$
Thus $B_V = (v_1, ..., v_m, u_1, ..., u_n); \ B'_V = (r_1, ..., r_m, s_1, ..., s_n).$ $\therefore E_1, E_2 \text{ are inv}$
and $S = E_2 T E_1.$

- (a) Suppose T = ES and $E \in \mathcal{L}(W)$ is inv. Prove that null S = null T.
 - (b) Suppose T = SE and $E \in \mathcal{L}(V)$ is inv. Prove that range $S = \operatorname{range} T$.
 - (c) Suppose $T = E_2SE_1$ and $E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W)$ are inv. Prove that dim null $S = \dim \text{null } T$.

SOLUTION: (a) $v \in \text{null } T \iff Tv = 0 = E(Sv) \iff Sv = 0 \iff v \in \text{null } S$.

- (b) $w \in \operatorname{range} T \iff \exists v \in V, Tv = S(Ev) \iff \exists u \in V, w = Su \iff w \in \operatorname{range} S.$
- (c) Using (3.B.22). dim null $E_2SE_1 = \frac{E_2}{\text{inv}} \dim \text{null } SE_1 = \frac{E_1}{\text{inv}} \dim \text{null } S = \dim \text{null } T$.

8 Suppose V is finite-dim and $T \in \mathcal{L}(V, W)$ is **surj**.

Prove that there is a subsp U *of* V *such that* $T|_{U}$ *is an iso of* U *onto* W.

SOLUTION: Let $B_{\text{range }T} = B_W = (Tv_1, \dots, Tv_m), B_U = (v_1, \dots, v_m).$

Then dim $U = \dim W$. Thus $T|_U$ is an iso of U onto W.

OR. By (3.B.12), there is a subsp U of V such that

 $U \cap \text{null } T = \{0\} = \text{null } T|_{U}, W = \text{range } T = \{Tu : u \in U\} = \text{range } T|_{U}.$

COMMENT: See (3.B.12), (4E 3.B.21), (3.B TIPS).

• Note For [3.69]: Suppose V, W are finite-dim, $T \in \mathcal{L}(V, W)$. And dim $W = \dim V = \dim \operatorname{range} T + \dim \operatorname{null} T$. Then T is inv $\iff T$ is inje $\iff T$ is surj. **9** [OR 1] Suppose U, V, W are iso and finite-dim, $S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$. *Prove that ST is inv* \iff *S*, *T are inv*. **COMMENT**: If any two of U, V, W are not iso or finite-dim, then S, T are inv $\Longrightarrow ST$ is inv. **SOLUTION**: Suppose S, T are inv. Then $(ST)(T^{-1}S^{-1}) = I_W$, $(T^{-1}S^{-1})(ST) = I_U$. Hence ST is inv. Suppose ST is inv. Let $R = (ST)^{-1} \Rightarrow R(ST) = I_U, (ST)R = I_W$. $Tv = 0 \Rightarrow v = R(ST)v = RS(Tv) = 0.$ T is inje, S is surj. $\forall v \in V, v = (ST)Rv = S(TRv) \in \text{range } S. \mid \mathbb{X} \dim U = \dim V = \dim W.$ OR. By (3.B.23), dim $W = \dim \operatorname{range} ST \leq \min \{\operatorname{range} S, \operatorname{range} T\} \Rightarrow S, T \text{ are surj.}$ **13** Suppose U, V, W, X are iso and finite-dim, $R \in \mathcal{L}(W, X), S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$. Suppose RST is surj. Prove that S is inje. **SOLUTION**: Using Problem (9). Notice that *U*, *X* are finite-dim, so that *RST* is inv. Let $X = (RST)^{-1} \mid Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is inje.}$ $\forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surj.} \end{cases} \Rightarrow S = R^{-1}(RST)T^{-1}.$ Or. $(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}$. **10** Suppose V is finite-dim and $S,T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$. **SOLUTION**: (a) Suppose ST = I. By $(3.B\ 20, 21)(a)$, $ST = I \Rightarrow T$ is inje and S is surj. X V is finite-dim. S, T are inv. OR. By Problem (9), V is finite-dim and ST = I is inv $\Rightarrow S$, T are inv. Then $\forall v \in V, S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v \Rightarrow TS = I$. Or. $S^{-1} = T \ \ \ \ \ S = S \Rightarrow TS = S^{-1}S = I$. (b) Reversing the roles of *S* and *T*, we conclude that $TS = I \Rightarrow ST = I$. **11** Suppose V is finite-dim, $S, T, U \in \mathcal{L}(V)$ and STU = I. Show that T is inv and $T^{-1} = US$. **SOLUTION:** Using Problem (9) and (10). This result can fail without the hypothesis that *V* is finite-dim. $(ST)U = U(ST) = (US)T = I \Rightarrow T^{-1} = US.$ Or. $(ST)U = S(TU) = I \Rightarrow U, S$ are inv $\Rightarrow TU = S^{-1}$. $\not \subseteq U^{-1} = U^{-1} \Rightarrow T = S^{-1}U^{-1}$. **EXAMPLE:** $V = \mathbb{R}^{\infty}$, $S(a_1, a_2, ...) = (a_2, ...)$; $T(a_1, ...) = (0, a_1, ...)$; $U = I \Rightarrow STU = I$ but T is not inv. • (4E 3) $T \in \mathcal{L}(V) \mid (Tv_1, ..., Tv_n)$ is a basis of V for some basis $(v_1, ..., v_n)$ of $V \Longleftrightarrow T$ is surj V is finite-dim $V \Leftrightarrow T$ is a basis of V for every basis $(v_1, ..., v_n)$ of $V \Leftrightarrow T$ is inje • (4E 15) Suppose $T \in \mathcal{L}(V)$ and $V = \text{span}(Tv_1, ..., Tv_m)$. Prove that $V = \text{span}(v_1, ..., v_m)$. **SOLUTION**: Because $V = \text{span}(Tv_1, ..., Tv_m) \Rightarrow T$ is surj, and therefore is inv $\Rightarrow T^{-1}$ is inv. $\forall v \in V, \exists a_i \in \mathbf{F}, v = \sum_{i=1}^m a_i T v_i \Rightarrow T^{-1} v = \sum_{i=1}^m a_i v_i \Rightarrow \operatorname{range} T^{-1} \subseteq \operatorname{span}(v_1, \dots, v_m).$ OR. Reduce the spanning list $(Tv_1, ..., Tv_m)$ of V to a basis $(Tv_{\alpha_1}, ..., Tv_{\alpha_k})$ of V. Where $k = \dim V$ and each $\alpha_i \in \{1, ..., k\}$. Then by Problem (4E 3), $(v_{\alpha_1}, \dots, v_{\alpha_k})$ is also a basis of V, contained in the list (v_1, \dots, v_m) .

```
In other words, prove that if T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1}), then \exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}.
SOLUTION: Let B_1 = (E_1, \dots, E_n), B_2 = (R_1, \dots, R_m) be the std bases of \mathbf{F}^{n,1} and \mathbf{F}^{m,1}.
                    \forall k = 1, ..., n, suppose T(E_k) = A_{1,k}R_1 + ... + A_{m,k}R_m, \exists A_{i,k} \in \mathbb{F}, forming A = A_{i,k}
                   OR. Let A = \mathcal{M}(T, B_1, B_2). Note that \mathcal{M}(x, B_1) = x, \mathcal{M}(Tx, B_2) = Tx.
                    Hence Tx = \mathcal{M}(Tx, B_2) = \mathcal{M}(T, B_1, B_2)\mathcal{M}(x, B_1) = Ax, by [3.65].
                                                                                                                                                                         • NOTE FOR [3.62]: \mathcal{M}(v) = \mathcal{M}(I, (v), B_V).
• Note For [3.65]: \mathcal{M}(Tv) = \mathcal{M}(I, (Tv), B_W) = \mathcal{M}(T, B_V, B_W) \mathcal{M}(I, (v), B_V) = \mathcal{M}(T, (v), B_W).
                                 If v = 0, then span(v) = \text{span}(), we replace (v) by B = (); similar for Tv = 0.
• (4E 23, Or 10.A.4) Suppose that (\beta_1, ..., \beta_n) and (\alpha_1, ..., \alpha_n) are bases of V.
  Let T \in \mathcal{L}(V) be such that T\alpha_k = \beta_k, \forall k. Prove that \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha)
  For ease of notation, let \mathcal{M}(T, \alpha \to \beta) = \mathcal{M}(T, (\alpha_1, ..., \alpha_n), (\beta_1, ..., \beta_n)), \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(T, (\alpha_1, ..., \alpha_n)).
SOLUTION:
    Denote \mathcal{M}(T, \alpha \to \alpha) by A and \mathcal{M}(I, \beta \to \alpha) by B.
    \forall k \in \{1, \dots, n\}, Iu_k = u_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n = Tv_k = A_{1,k}\alpha_1 + \dots + A_{n,k}\alpha_n \Rightarrow A = B.
                                                                                                                                                                         OR. Note that \mathcal{M}(T, \alpha \to \beta) = I. Hence \mathcal{M}(T, \alpha \to \alpha) = \mathcal{M}(I, \beta \to \alpha) \underbrace{\mathcal{M}(T, \alpha \to \beta)}_{=\mathcal{M}(I, \beta \to \beta)} = \mathcal{M}(I, \beta \to \alpha).
                                                                                                                                                                         Or. Note that \mathcal{M}(T, \beta \to \beta)\mathcal{M}(I, \alpha \to \beta) = \mathcal{M}(T, \alpha \to \beta) = I.
   \mathcal{M}(T,\alpha \to \alpha) = \mathcal{M}(I,\alpha \to \beta)^{-1} \Big( \underbrace{\mathcal{M}(T,\beta \to \beta)\mathcal{M}(I,\alpha \to \beta)}_{=\mathcal{M}(T,\alpha \to \beta)} \Big) = \mathcal{M}(I,\beta \to \alpha).
                                                                                                                                                                         COMMENT: Let A' = \mathcal{M}(T, \beta \to \beta).
    u_k = Iu_k = B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n, \ \forall \ k \in \{1,\dots,n\}.
    \nabla Tu_k = T(B_{1,k}\alpha_1 + \dots + B_{n,k}\alpha_n) = B_{1,k}\beta_1 + \dots + B_{n,k}\beta_n = A'_{1,k}\beta_1 + \dots + A'_{n,k}\beta_n \Rightarrow A' = B.
   Or. \mathcal{M}(T, \beta \to \beta) = \mathcal{M}(T, \alpha \to \beta)\mathcal{M}(I, \beta \to \alpha) = B.
• TIPS: When using \mathcal{M}^{-1}, you must first declare bases and the purpose for using \mathcal{M}^{-1}.
            That is, to declare B_{II}, B_{V}, B_{W}, \mathcal{M} : \mathcal{L}(V, W) \mapsto \mathbf{F}^{m,n}, or \mathcal{M} : v \mapsto \mathbf{F}^{n,1}.
            So that \mathcal{M}^{-1}(AC, B_{II}, B_{W}) = \mathcal{M}^{-1}(A, B_{V}, B_{W}) \mathcal{M}^{-1}(C, B_{II}, B_{V});
            Or \mathcal{M}^{-1}(Ax, B_W) = \mathcal{M}^{-1}(A, B_V, B_W) \mathcal{M}^{-1}(x, B_V). Where everything is well-defined.
• (4E 22, OR 10.A.1) Suppose T \in \mathcal{L}(V). Prove that \mathcal{M}(T, B_V) is inv \iff T itself is inv.
SOLUTION: Notice that \mathcal{M}: T \mapsto \mathcal{M}(T, B_V) is an iso. And that \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(TS).
    (a) T^{-1}T = TT^{-1} = I \Rightarrow \mathcal{M}(T^{-1})\mathcal{M}(T) = \mathcal{M}(I) = \mathcal{M}(T)\mathcal{M}(T^{-1}) \Rightarrow \mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}.
    (b) \mathcal{M}(T)\mathcal{M}(T)^{-1} = \mathcal{M}(T)^{-1}\mathcal{M}(T) = I, \exists ! S \in \mathcal{L}(V) such that \mathcal{M}(T)^{-1} = \mathcal{M}(S)
          \Rightarrow \mathcal{M}(TS) = \mathcal{M}(T)\mathcal{M}(S) = I = \mathcal{M}(S)\mathcal{M}(T) = \mathcal{M}(ST)
          \Rightarrow \mathcal{M}^{-1}\mathcal{M}(TS) = \mathcal{M}^{-1}\mathcal{M}(ST) = I = TS = ST \Rightarrow S = T^{-1}.
                                                                                                                                                                         • (4E 24, OR 10.A.2) Suppose A, B \in \mathbf{F}^{n,n}. Prove that AB = I \iff BA = I.
                                                                                                                                        [Using Problem (10, 15).]
SOLUTION: Define T, S \in \mathcal{L}(\mathbf{F}^{n,1}) by Tx = Ax, Sx = Bx for all x \in \mathbf{F}^{n,1}. Now \mathcal{M}(T) = A, \mathcal{M}(S) = B.
```

 $AB = I \Leftrightarrow A(Bx) = x \Leftrightarrow T(Sx) = x \Leftrightarrow TS = I \Leftrightarrow ST = I \Leftrightarrow \mathcal{M}(S)\mathcal{M}(T) = BA = I.$ Or. Because $\mathcal{M} : \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{n,1}) \to \mathbf{F}^{n,n}$ is an iso. $\mathcal{M}^{-1}(AB) = TS = ST = \mathcal{M}^{-1}(BA) = I.$

15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multi.

• Note For [3.60]: Suppose $B_V = (v_1, ..., v_n), B_W = (w_1, ..., w_m).$

Define $E_{i,j} \in \mathcal{L}(V,W)$ by $E_{i,j}(v_x) = \delta_{i,x}w_j$. Corollary: $E_{l,k}E_{i,j} = \delta_{j,l}E_{i,k}$.

Denote
$$\mathcal{M}(E_{i,j})$$
 by $\mathcal{E}^{(j,i)}$. And $(\mathcal{E}^{(j,i)})_{l,k} = \begin{cases} 1, & \text{if } (i,j) = (l,k); \\ 0, & \text{otherwise.} \end{cases}$

NOTICE that $\mathcal{M}: \mathcal{L}(V, W) \to \mathbf{F}^{m,n}$ is an iso. And $E_{i,j} = \mathcal{M}^{-1}\mathcal{E}^{(j,i)}$.

$$\text{Thus } A = \begin{pmatrix} A_{1,1} \mathcal{E}^{(1,1)} \ + \ \cdots \ + \ A_{1,n} \mathcal{E}^{(1,n)} \\ + \ \cdots \ + \\ \vdots \ \ddots \ \vdots \\ + \ \cdots \ + \\ A_{m,1} \mathcal{E}^{(m,1)} \ + \cdots + A_{m,n} \mathcal{E}^{(m,n)} \end{pmatrix} \Longleftrightarrow \begin{pmatrix} A_{1,1} E_{1,1} \ + \ \cdots \ + \ A_{1,n} E_{n,1} \\ + \ \cdots \ + \\ A_{m,1} E_{1,m} \ + \cdots \ + A_{m,n} E_{n,m} \end{pmatrix} = T.$$

By [2.42] and [3.61],
$$B_{\mathcal{L}(V,W)} = \begin{pmatrix} E_{1,1}, & \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots, E_{n,m} \end{pmatrix}; B_{\mathbf{F}^{m,n}} = \begin{pmatrix} \mathcal{E}^{(1,1)}, & \cdots, \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots, \mathcal{E}^{(m,n)} \end{pmatrix}.$$

TIPS: Let $B_{\text{range }T} = (Tv_1, ..., Tv_p), B_V = (v_1, ..., v_p, ..., v_n)$. Let each $w_k = Tv_k; B_W = (w_1, ..., w_p, ..., w_m)$. Then $T = E_{1,1} + \dots + E_{p,p}$, $\mathcal{M}(T, B_V, B_W) = \mathcal{E}^{(1,1)} + \dots + \mathcal{E}^{(p,p)}$.

17 Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subsp \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}, ET \in \mathcal{E}, \forall E \in \mathcal{E}, T \in \mathcal{L}(V)$.

SOLUTION: See also in (3.A). Using NOTE FOR [3.60].

Let $B_V = (v_1, ..., v_n)$. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$.

Then $\forall E_{i,j} \in \mathcal{E}$, by assumption, $\forall x, y \in \{1, ..., n\}$, $E_{j,x}E_{i,j} = E_{i,x} \in \mathcal{E}$, $E_{i,j}E_{y,i} = E_{y,j} \in \mathcal{E}$. Again, $\forall x, x', y, y' \in \{1, \dots, n\}$, $E_{y,x'}, E_{y',x} \in \mathcal{E}$. Thus $\mathcal{E} = \mathcal{L}(V)$.

• (4E 10) Suppose V, W are finite-dim, U is a subsp of V.

Let
$$\mathcal{E} = \{ T \in \mathcal{L}(V, W) : U \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V, W) : T|_U = 0 \}.$$

- (a) Show that \mathcal{E} is a subsp of $\mathcal{L}(V, W)$.
- (b) Find a formula for dim \mathcal{E} in terms of dim V, dim W and dim U.

Hint: Define $\Phi : \mathcal{L}(V, W) \to \mathcal{L}(U, W)$ by $\Phi(T) = T|_U$. What is null Φ ? What is range Φ ?

SOLUTION:

- (a) $\forall S, T \in \mathcal{E}, \lambda \in \mathbf{F}, \forall u \in U, Su = \lambda Tu = (S + \lambda T)u = 0 \Rightarrow (S + \lambda T) \in \mathcal{E}.$
- (b) Define Φ as in the hint. Φ is linear because $(T + \lambda S)|_U = T|_U + \lambda S|_U$.

 $\forall T \in \text{null } \Phi, \Phi(T) = 0 \iff \forall u \in U, Tu = 0 \iff T \in \mathcal{E}. \text{ Thus null } \Phi = \mathcal{E}.$

 $\forall S \in \mathcal{L}(U, W)$, extend to $T \in \mathcal{L}(V, W)$, then $\Phi(T) = S \in \text{range } \Phi$. Thus range $\Phi = \mathcal{L}(U, W)$.

Thus dim null $\Phi = \dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim \operatorname{range} \Phi = (\dim V - \dim U) \dim W$.

Or. Let $B_U = (u_1, ..., u_m)$, $B_V = (u_1, ..., u_m, v_1, ..., v_n)$. Let $p = \dim W$. [See Note For [3.60].]

$$\forall \ T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{array}{l} E_{1,1}, \cdots, E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, \cdots, E_{m,p} \end{array} \right\} \cap \mathcal{E} = \{0\}.$$

$$\not\boxtimes W = \operatorname{span} \left\{ \begin{array}{l} E_{m+1,1}, \cdots, E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{m+1,p}, \cdots, E_{n,p} \end{array} \right\} \subseteq \mathcal{E}. \quad \overrightarrow{Denote it by R}$$

$$Where \mathcal{L}(V, W) = R \oplus W \Rightarrow \mathcal{L}(V, W) = R + \mathcal{E}.$$

Then $\dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim R - \dim(R \cap \mathcal{E}) = (\dim V - \dim U) \dim W$. \square

```
SOLUTION: (a) \forall T \in \mathcal{L}(V), ST = 0 \iff \text{range } T \subseteq \text{null } S.
                                        Thus \operatorname{null} A = \{ T \in \mathcal{L}(V) : \operatorname{range} T \subseteq \operatorname{null} S \} = \mathcal{L}(V, \operatorname{null} S).
                               (b) \forall R \in \mathcal{L}(V), range R \subseteq \text{range } S \iff \exists T \in \mathcal{L}(V), R = ST, by (3.B 25).
                                         Thus range \mathcal{A} = \{R \in \mathcal{L}(V) : \text{range } R \subseteq \text{range } S\} = \mathcal{L}(V, \text{range } S).
                                                                                                                                                                                                                                                                  OR. Using Note For [3.60]. Let B_{\text{range }S} = (\overline{w_1, \dots, w_m}), B_U = (v_1, \dots, v_m).
     Let (w_1, ..., w_n), (v_1, ..., v_n) be bases of V. Now S = E_{1,1} + ... + E_{m,m}. \mathcal{M}(S, v \to w) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
     Define R_{i,j} \in \mathcal{L}(V) by R_{i,j} : w_x \mapsto \delta_{i,x} v_i. Let E_{j,k} R_{i,j} = Q_{i,k}, R_{i,k} E_{i,j} = G_{i,k}.
     Where E_{i,k}: v_x \mapsto \delta_{i,x}w_k, Q_{i,k}: w_x \mapsto \delta_{i,x}w_k, and G_{i,k}: v_x \mapsto \delta_{i,x}v_k.

For any T \in \mathcal{L}(V), \exists ! A_{i,j} \in \mathbf{F}, T = \sum_{i=1}^n \sum_{j=1}^n A_{i,j}R_{j,i} \Longrightarrow \mathcal{M}(T, w \to v) = \begin{pmatrix} A_{1,1} & \cdots & A_{1,m} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,m} & \cdots & A_{m,n} \end{pmatrix}.

\Longrightarrow \mathcal{A}(T) = ST = \left(\sum_{r=1}^m E_{r,r}\right) \left(\sum_{i=1}^n \sum_{j=1}^n A_{i,j}R_{j,i}\right) = \sum_{i=1}^m \sum_{j=1}^n A_{i,j}Q_{j,i}.
     \mathcal{M}(S,v\to w)\mathcal{M}(T,w\to v)=\mathcal{M}(ST,w)=\begin{pmatrix}A_{1,1}&\cdots &A_{1,m}&\cdots &A_{1,n}\\\vdots &\ddots &\vdots &\ddots &\vdots\\A_{m,1}&\cdots &A_{m,m}&\cdots &A_{m,n}\\\vdots &\ddots &\vdots &\ddots &\vdots\\0 &\cdots &0 &\cdots &0\end{pmatrix} \ \mathcal{X}\,\mathcal{M}(T,R)=\mathcal{M}\big(T,w\to v\big). Let T=I, we have \mathcal{M}\big(\mathcal{A},R\to Q\big)=\mathcal{M}\big(S,v\to w\big).
     \operatorname{range} \mathcal{A} = \operatorname{span} \left\{ \begin{matrix} Q_{1,1}, \cdots, Q_{n,1}, \\ \vdots & \ddots & \vdots \\ Q_{1,m}, \cdots, Q_{n,m} \end{matrix} \right\}, \ \operatorname{null} \mathcal{A} = \operatorname{span} \left\{ \begin{matrix} R_{1,m+1}, \cdots, R_{n,m+1}, \\ \vdots & \ddots & \vdots \\ R_{1,n}, & \cdots, R_{n,n} \end{matrix} \right\}. \quad \text{(a) dim null } \mathcal{A} = n \times (n-m);
\left\{ \begin{matrix} \vdots & \ddots & \vdots \\ R_{1,n}, & \cdots, R_{n,n} \end{matrix} \right\}. \quad \text{(b) dim range } \mathcal{A} = n \times m.
• Note For Problem (4E 17): Define \mathcal{B} \in \mathcal{L}(\mathcal{L}(V)) by \mathcal{B}(T) = TS.
    (a) Show that dim null \mathcal{B} = (\dim V)(\dim \operatorname{null} S).
    (b) Show that dim range \mathcal{B} = (\dim V)(\dim \operatorname{range} S).
SOLUTION: (a) \forall T \in \mathcal{L}(V), TS = 0 \iff \text{range } S \subseteq \text{null } T.
                                        Thus null \mathcal{B} = \{ T \in \mathcal{L}(V) : \text{range } S \subseteq \text{null } T \} = \{ T \in \mathcal{L}(V) : T|_{\text{range } S} = 0 \}.
                               (b) \forall R \in \mathcal{L}(V), null S \subseteq \text{null } R \iff \exists T \in \mathcal{L}(V), R = TS, by (3.B.24).
                                        Thus range \mathcal{B} = \{ R \in \mathcal{L}(V) : \text{null } S \subseteq \text{null } R \} = \{ R \in \mathcal{L}(V) : R|_{\text{null } S} = 0 \}.
                              Using [3.22] and Problem (4E 10).
    UR. Using NOTE FOR [3.60] and notation in Problem (4E 17). \mathcal{B}(T) = TS = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} R_{j,i}\right) \left(\sum_{r=1}^{m} E_{r,r}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{i,j} G_{j,i} \Longrightarrow \mathcal{M}(TS, v) = \begin{pmatrix} A_{1,1} & \cdots & A_{1,m} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,m} & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ A_{n,1} & \cdots & A_{n,m} & \cdots & 0 \end{pmatrix}. range \mathcal{B} = \operatorname{span} \begin{Bmatrix} G_{1,1}, & \cdots & G_{m,1}, \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ G_{1,n}, & \cdots & G_{m,n} \end{Bmatrix}, null \mathcal{B} = \operatorname{span} \begin{Bmatrix} R_{m+1,1}, & \cdots & R_{n,1}, \\ \vdots & \ddots & \vdots & \vdots \\ R_{m+1,n}, & \cdots & R_{n,n} \end{Bmatrix}. (a) dim null \mathcal{B} = n \times (n-m); (b) dim range \mathcal{B} = n \times m.
      OR. Using NOTE FOR [3.60] and notation in Problem (4E 17).
• (4E 20) Suppose q \in \mathcal{P}(\mathbf{R}). Prove that \exists p \in \mathcal{P}(\mathbf{R}), q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3).
SOLUTION: Note that deg[(x^2 + x)p''(x) + 2xp'(x) + p(3)] = deg p.
                              Define T_n \in \mathcal{L}(\mathcal{P}_n(\mathbf{R})) by T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3).
                              And note that T_n(p) = 0 \Rightarrow \deg T_n(p) = -\infty = \deg p \Rightarrow p = 0. Thus T_n is inv.
                               \forall q \in \mathcal{P}(\mathbf{R}), if q = 0, let n = 0; if q \neq 0, let n = \deg q, we have q \in \mathcal{P}_n(\mathbf{R}).
                              Now \exists p \in \mathcal{P}_n(\mathbf{R}), q(x) = T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3) for all x \in \mathbf{R}.
```

• (4E 17) Suppose V is finite-dim and $S \in \mathcal{L}(V)$. Define $\mathcal{A} \in \mathcal{L}(\mathcal{L}(V))$ by $\mathcal{A}(T) = ST$.

(a) Show that dim null $A = (\dim V)(\dim \operatorname{null} S)$.

(b) *Show that* dim range $A = (\dim V)(\dim \operatorname{range} S)$.

```
19 Suppose T \in \mathcal{L}(\mathcal{P}(\mathbf{R})) is inje. And deg Tp \leq \deg p for every nonzero p \in \mathcal{P}(\mathbf{R}).
     (a) Prove that T is surj;
                                            (b) Prove that for every nonzero p, \deg Tp = \deg p.
SOLUTION: (a) T is inje \iff \forall n \in \mathbb{N}^+, T|_{\mathcal{P}_n(\mathbb{R})} \in \mathcal{L}(\mathcal{P}_n(\mathbb{R})) is inje, so is inv \iff T is surj.
                 (b) Using mathematical induction.
                 (i) \deg p = -\infty \geqslant \deg Tp \iff p = 0 = Tp. And \deg p = 0 \geqslant \deg Tp \iff p = C \neq 0.
                 (ii) Assume that \forall s \in \mathcal{P}_n(\mathbf{R}), \deg s = \deg Ts.
                       Suppose \exists r \in \mathcal{P}_{n+1}(\mathbf{R}), \deg Tr \leqslant n < n + 1 = \deg r.
                       Then by (a), \exists s \in \mathcal{P}_n(\mathbf{R}), T(s) = (Tr).
                       \not T is inje \Rightarrow s = r. While \deg s = \deg Ts = \deg Tr < \deg r.
                      Contradicts. Thus \forall p \in \mathcal{P}_{n+1}(\mathbf{R}), \deg Tp = \deg p.
                                                                                                                                                 16 Suppose V is finite-dim and S \in \mathcal{L}(V) such that \forall T \in \mathcal{L}(V), ST = TS.
     Prove that \exists \lambda \in \mathbf{F}, S = \lambda I.
                                                                        [Using notation in Problem (4E 17). See also in (3.A).]
SOLUTION: If S = 0, we are done. Now suppose S \neq 0.
   Let S = E_{1,1} + \cdots + E_{m,m} \Rightarrow \mathcal{M}(S, B_U) = \mathcal{M}(I, B_{\text{range } S}, B_U). Note that R_{k,1} : w_x \mapsto \delta_{k,x} v_1.
   Then \forall k \in \{1, ..., n\}, 0 \neq SR_{k,1} = R_{k,1}S. Hence dim null S = 0, dim range S = m = n.
   Notice that G_{i,j} = R_{i,j}S = SR_{i,j} = Q_{i,j}. Where G_{i,j} : v_x \mapsto \delta_{i,x}v_j; Q_{i,j} : w_x \mapsto \delta_{i,x}w_j.
   For each w_i, \exists ! a_{k,i} \in \mathbf{F}, w_i = a_{1,i}v_1 + \dots + a_{n,i}v_n. Where a_{k,i} = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n))_{k,i}.
   Then fix one i. Now for each j \in \{1, ..., n\}, Q_{i,j}(w_i) = w_i = a_{i,i}v_j = G_{i,j}(\sum_{k=1}^n a_{k,i}v_k).
   Let \lambda = a_{i,i}. Hence each w_j = \lambda v_j. Now fix one j, we have a_{1,1}v_j = \cdots = a_{n,n}v_j, then all a_{i,i} are equal.
   Thus each w_i = \lambda v_i \Longrightarrow \mathcal{M}(S, B_U) = \mathcal{M}(\lambda I).
                                                                                                                                                 • (10.A.3, Or 4E 3.D.19) Suppose V is finite-dim and T \in \mathcal{L}(V).
                                                                                                                      See also in (3.A).
  Prove that \forall B_V \neq B_V', \mathcal{M}(T, B_V) = \mathcal{M}(T, B_V') \Longrightarrow T = \lambda I, \exists \lambda \in \mathbf{F}.
SOLUTION: Suppose \forall B_V \neq B_V', \mathcal{M}(T, B_V) = \mathcal{M}(T, B_V'). If T = 0, then we are done.
                 Suppose T \neq 0, and v \in V \setminus \{0\}. Assume that (v, Tv) is linely inde.
                 Extend (v, Tv) to B_V = (v, Tv, u_3, ..., u_n). Let B = \mathcal{M}(T, B_V).
                 \Rightarrow Tv = B_{1,1}v + B_{2,1}(Tv) + B_{3,1}u_3 + \dots + B_{n,1}u_n \Rightarrow B_{2,1} = 1, B_{i,1} = 0, \forall i \neq 2.
                 By assumption, A = \mathcal{M}(T, B'_V) = B, \forall B'_V = (v, w_2, ..., w_n). Then A_{2,1} = 1, A_{i,1} = 0, \forall i \neq 2.
                 \Rightarrow Tv = w_2, which is not true if w_2 = u_3, w_3 = Tv, w_j = u_j, \forall j \in \{4, ..., n\}. Contradicts.
                 Hence (v, Tv) is linely depe \Rightarrow \forall v \in V, \exists \lambda_v \in F, Tv = \lambda_v v.
                 Now we show that \lambda_v is independent of v, that is, for all distinct v, w \in V \setminus \{0\}, \lambda_v = \lambda_w.
                 (v, w) linely inde \Rightarrow T(v+w) = \lambda_{v+w}(v+w) = \lambda_v v + \lambda_w w = Tv + Tw \Rightarrow T = \lambda I.
                (v, w) linely depe, w = cv \Rightarrow Tw = \lambda_w w = \lambda_w cv = c\lambda_v v = T(cv)
   Or. Let A = \mathcal{M}(T, B_V), where B_V = (u_1, ..., u_m) is arbitrary.
   Fix one B_V = (v_1, \dots, v_m) and then (v_1, \dots, \frac{1}{2}v_k, \dots, v_m) is also a basis for any given k \in \{1, \dots, m\}.
   Fix one k. Now we have T(\frac{1}{2}v_k) = A_{1,k}v_1 + \dots + A_{k,k}(\frac{1}{2}v_k) + \dots + A_{m,k}v_m
   \Rightarrow Tv_k = 2A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + 2A_{m,k}v_m = A_{1,k}v_1 + \dots + A_{k,k}v_k + \dots + A_{m,k}v_m.
   Then A_{j,k} = 2A_{j,k} \Rightarrow A_{j,k} = 0 for all j \neq k. Thus Tv_k = A_{k,k}v_k, \forall k \in \{1, ..., m\}.
   Now we show that A_{k,k} = A_{i,j} for all j \neq k. Choose j,k such that j \neq k.
   Consider B'_{V} = (v'_{1}, ..., v'_{i}, ..., v'_{m}), where v'_{i} = v_{k}, v'_{k} = v_{i} and v'_{i} = v_{i} for all i \in \{1, ..., m\} \setminus \{j, k\}.
   Now T(v'_k) = A_{1,k}v'_1 + \dots + A_{k,k}v'_k + \dots + A_{m,k}v'_m = A_{k,k}v'_k = A_{k,k}v_i, while T(v'_k) = T(v_i) = A_{i,i}v_i. \square
```

18 Show that V and $\mathcal{L}(\mathbf{F}, V)$ are iso vecsps. Solution: Define $\Psi \in \mathcal{L}(V, \mathcal{L}(\mathbf{F}, V))$ by $\Psi(v) = \Psi_v$; wh

Define $\Psi \in \mathcal{L}(V, \mathcal{L}(F, V))$ by $\Psi(v) = \Psi_v$; where $\Psi_v \in \mathcal{L}(F, V)$ and $\Psi_v(\lambda) = \lambda v$.

- (a) $\Psi(v) = \Psi_v = 0 \Rightarrow \forall \lambda \in \mathbf{F}, \Psi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0$. Hence Ψ is inje.
- (b) $\forall T \in \mathcal{L}(\mathbf{F}, V)$, let $v = T(1) \Rightarrow T(\lambda) = \lambda v = \Psi_v(\lambda)$, $\forall \lambda \in \mathbf{F} \Rightarrow T = \Psi(T(1))$. Hence Ψ is surj. \square

Or. Define $\Phi \in \mathcal{L}(\mathcal{L}(\mathbf{F}, V), V)$ by $\Phi(T) = T(1)$.

- (a) Suppose $\Phi(T) = 0 = T(1) = \lambda T(1) = T(\lambda)$, $\forall \lambda \in \mathbb{F} \Rightarrow T = 0$. Thus Φ is inje.
- (b) For any $v \in V$, define $T \in \mathcal{L}(\mathbf{F}, V)$ by $T(\lambda) = \lambda v$. Then $\Phi(T) = T(1) = v$. Thus Φ is surj. \Box

Comment: $\Phi = \Psi^{-1}$.

ENDED

3.E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 | 4E: 8 14

1 A function $T: V \to W$ is linear \iff The graph of T is a subspace of $V \times W$.

2 Suppose $V_1 \times \cdots \times V_m$ is finite-dim. Prove that each V_i is finite-dim.

SOLUTION:

For any $k \in \{1, ..., m\}$, define $S_k \in \mathcal{L}(V_1 \times \cdots \times V_m, V_k)$ by $S_k(v_1, ..., v_m) = v_k$.

Then S_k is linear map. By [3.22], range $S_k = V_k$ is finite-dim.

Or. Denote $V_1 \times \cdots \times V_m$ by U. Denote $\{0\} \times \cdots \{0\} \times V_i \times \{0\} \cdots \times \{0\}$ by U_i .

We show that each U_i and V_i are iso. Then U is finite-dim \Longrightarrow its subsp U_i is finite-dim, so is V_i .

$$\operatorname{Let} B_U = (v_1, \dots, v_M) \mid \operatorname{Define} R_i \in \mathcal{L}(V_i, U_i) \text{ by } R_i(u_i) = (0, \dots, 0, u_i, 0, \dots, 0) \\ \operatorname{Define} S_i \in \mathcal{L}(U, V_i) \text{ by } S_i(u_1, \dots, u_i, \dots, u_m) = u_i \end{cases} \Rightarrow \left\{ \begin{array}{l} R_i S_j|_{U_j} = \delta_{i,j} I_{U_j}, \\ S_i R_j = \delta_{i,j} I_{V_j}. \end{array} \right. \square$$

4 Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are iso.

SOLUTION: Using notation in Problem (2): $R_i: u_i \mapsto (0, ..., u_i, ..., 0)$; $S_i: (u_1, ..., u_m) \mapsto u_i$.

Note that $T(u_1, ..., u_m) = T(u_1, 0, ..., 0) + ... + T(0, ..., u_m)$.

Define $\varphi: T \mapsto (T_1, \dots, T_m)$ by $\varphi(T) = (TR_1, \dots, TR_m)$. Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1S_1 + \dots + T_mS_m$. $\} \Rightarrow \psi = \varphi^{-1}$.

Define $\psi: (I_1, \dots, I_m) \mapsto I$ by $\psi(I_1, \dots, I_m) = I_1 S_1 + \dots + I_m S_m$.

5 Prove that $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ and $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ are iso.

SOLUTION: Using notation in Problem (2):
$$R_i: u_i \mapsto (0, \dots, u_i, \dots, 0); S_i: (u_1, \dots, u_m) \mapsto u_i.$$
Note that $T_i: v \mapsto w_i$, Define $\varphi: T \mapsto (T_1, \dots, T_m)$ by $\varphi(T) = (S_1T, \dots, S_mT).$
 $T: v \mapsto (w_1, \dots, w_m).$ Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = R_1T_1 + \dots + R_mT_m.$

6 For $m \in \mathbb{N}^+$, define V^m by $\underbrace{V \times \cdots \times V}_{m \text{ times}}$. Prove that V^m and $\mathcal{L}(\mathbf{F}^m, V)$ are iso. Solution:

Define $T:(v_1,\ldots,v_m)\to \varphi$, where $\varphi:(a_1,\ldots,a_m)\mapsto v$ is defined by $\varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m$.

- (a) Suppose $T(v_1, ..., v_m) = 0$. Then $\forall (a_1, ..., a_n) \in \mathbf{F}^m$, $\varphi(a_1, ..., a_m) = a_1v_1 + \cdots + a_mv_m = 0$ For each k, let $a_k = 1$, $a_j = 0$ for all $j \neq k$. Then each $v_k = 0 \Rightarrow (v_1, ..., v_m) = 0$. Thus T is inje.
- (b) Suppose $\psi \in \mathcal{L}(\mathbf{F}^m, V)$. Let (e_1, \dots, e_m) be the std basis of \mathbf{F}^m . Then $\forall (b_1, \dots, b_n) \in \mathbf{F}^m$, $\left[T \left(\psi(e_1), \dots, \psi(e_m) \right) \right] (b_1, \dots, b_m) = b_1 \psi(e_1) + \dots + b_m \psi(e_m) = \psi \left(b_1 e_1 + \dots + b_m e_m \right) = \psi(b_1, \dots, b_m).$ Thus $T(\psi(e_1), \dots, \psi(e_m)) = \psi$. Hence T is surj. \square

3 Give an example of a vecsp V and its two subsps U_1, U_2 such that $U_1 \times U_2$ and $U_1 + U_2$ are iso but $U_1 + U_2$ is not a direct sum. [V must be infinite-dim.] Solution: Note that at least one of U_1, U_2 must be infinite-dim. And at least one must be finite-dim?? Let $V = \mathbf{F}^{\infty} = U_1, \ U_2 = \{(x,0,\cdots) \in \mathbf{F}^{\infty} : x \in \mathbf{F}\}$. Then $V = U_1 + U_2$ is not a direct sum. Define $T \in \mathcal{L}(U_1 \times U_2, U_1 + U_2)$ by $T((x_1, x_2, \cdots), (x,0,\cdots)) = (x, x_1, x_2, \cdots)$ $\Rightarrow S = T^{-1}$. Define $S \in \mathcal{L}(U_1 + U_2, U_1 \times U_2)$ by $S(x, x_1, x_2, \cdots) = ((x_1, x_2, \cdots), (x,0,\cdots))$
8 Suppose A is a nonempty subset of V . Prove that A is a translate of some subsp of $V \Leftrightarrow \lambda v + (1 - \lambda)w \in A$, $\forall v, w \in A, \lambda \in F$.
Solution: Suppose $A = a + U$. Then $\forall v, w \in A, \lambda \in F, \lambda(a + u_1) + (1 - \lambda)(a + u_2) = a + (\lambda(u_1 - u_2) + u_2) \in A$. Suppose $\lambda v + (1 - \lambda)w \in A, \forall v, w \in A, \lambda \in F$. Suppose $a \in A$ and let $A' = \{x - a : x \in A\}$. Then $0 \in A'$ and $\forall x - a, y - a \in A'$, $(\forall x, y \in A), \lambda \in F$, $(I) \lambda(x - a) = [\lambda x + (1 - \lambda)a] - a \in A'$. $(II) \lambda(x - a) + (1 - \lambda)(y - a) = \frac{1}{2}(x - a) + \frac{1}{2}(y - a) = \frac{1}{2}x + (1 - \frac{1}{2})y - a \in A'$.
OR. By (I), $2 \times \left[\frac{1}{2}(x-a) + \frac{1}{2}(y-a)\right] = (x-a) + (y-a) \in A'$. Thus A' is a subsp of V . Hence $a + A' = \{(x-a) + a : x \in A\} = A$ is a translate. OR. Suppose $x - a, y - a \in A', \lambda \in F$. Note that $x, a \in A \Rightarrow \lambda x + (1 - \lambda)a = 2x - a \in A$. Similarly $2y - a \in A$. (I) $(x - \frac{1}{2}a) + (y - \frac{1}{2}a) = x + y - a \in A \Rightarrow x + y - 2a = (x - a) + (y - a) \in A'$. (II) $\lambda(x - a) = (\lambda x + (1 - \lambda)a) - a \in A'$.
Thus $-x + A$ is a subsp of V . Hence $A = x + (-x + A)$ is a translate of the subsp $(-x + A)$. \Box
9 Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subsps U_1, U_2 of V . Prove that the intersection $A_1 \cap A_2$ is either a translate of some subsp of V or is \emptyset . Solution: Suppose $v + u_1, w + u_2 \in A_1 \cap A_2 \neq \emptyset$. By Problem (8), $\forall \lambda \in F, \lambda(v + u_1) + (1 - \lambda)(w + u_2) \in A_1 \cap A_2$. Thus $A_1 \cap A_2$ is a translate of some subsp of V . \square OR. Let $A_1 = v + U_1, A_2 = w + U_2$. Suppose $x \in (v + U_1) \cap (w + U_2) \neq \emptyset$. Then $\exists u_1 \in U_1, x = v + u_1 \Rightarrow x - v \in U_1, \ \exists u_2 \in U_2, x = w + u_2 \Rightarrow x - w \in U_2$. Note that by [3.85], $A_1 = v + U_1 = x + U_1, A_2 = w + U_2 = x + U_2$. We show that $A_1 \cap A_2 = x + (U_1 \cap U_2)$. (a) $y \in A_1 \cap A_2 \Rightarrow \exists u_1 \in U_1, u_2 \in U_2, y = x + u_1 = x + u_2 \Rightarrow u_1 = u_2 \in U_1 \cap U_2 \Rightarrow y \in x + (U_1 \cap U_2)$. (b) $y = x + u \in x + (U_1 \cap U_2) = (x + U_1) \cap (x + U_2) \Rightarrow y \in A_1 \cap A_2$.
10 Prove that the intersection of any collection of translates of subsps is either a translate or \emptyset . Solution: Suppose $\{A_{\alpha}\}_{\alpha \in \Gamma}$ is a collection of translates of subsps of V , where Γ is an index set. Suppose $x, y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset$. Then by Problem (8), $\forall \lambda \in F, \lambda x + (1 - \lambda)y \in A_{\alpha}$ for each $\alpha \in \Gamma$. OR. Let each $A_{\alpha} = w_{\alpha} + V_{\alpha}$. Suppose $x \in \bigcap_{\alpha \in \Gamma} (w_{\alpha} + V_{\alpha}) \neq \emptyset$. Then for each A_{α} , $\exists v_{\alpha} \in V_{\alpha}$, $x = w_{\alpha} + v_{\alpha} \Rightarrow x - w_{\alpha} \in V_{\alpha} \Rightarrow A_{\alpha} = w_{\alpha} + V_{\alpha} = x + V_{\alpha}$. (a) $y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \Rightarrow \forall \alpha \in \Gamma, \exists v_{\alpha}, y = x + v_{\alpha} \Rightarrow \forall \alpha, \beta \in \Gamma, v_{\alpha} = v_{\beta} \Rightarrow y \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$. (b) $y = x + v \in x + \bigcap_{\alpha \in \Gamma} V_{\alpha} = \bigcap_{\alpha \in \Gamma} (x + V_{\alpha}) \Rightarrow y \in \bigcap_{\alpha \in \Gamma} A_{\alpha}$. Hence $\bigcap_{\alpha \in \Gamma} A_{\alpha} = x + \bigcap_{\alpha \in \Gamma} V_{\alpha}$. □

- **11** Suppose $A = \{\lambda_1 v_1 + \dots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1\}$, where each $v_i \in V, \lambda_i \in F$.
 - (a) *Prove that A is a translate of some subsp of V*
 - (b) Prove that if B is a translate of some subsp of V and $\{v_1, ..., v_m\} \subseteq B$, then $A \subseteq B$.
 - (c) Prove that A is a translate of some subsp of V of dim less than m.

SOLUTION:

(a) By Problem (8),
$$\forall u, w \in A, \lambda \in \mathbf{F}, \lambda u + (1 - \lambda)w = \left(\lambda \sum_{i=1}^{m} a_i + (1 - \lambda) \sum_{i=1}^{m} b_i\right)v_i \in A.$$

(b) Suppose
$$B = v + U$$
, where $v \in V$ and U is a subsp of V . Let each $v_k = v + u_k \in B$, $\exists ! u_k \in U$. $\forall w \in A$, $w = \sum_{i=1}^m \lambda_i v_i = \sum_{i=1}^m \lambda_i (v + u_i) = \sum_{i=1}^m \lambda_i v + \sum_{i=1}^m \lambda_i u_i = v + \sum_{i=1}^m \lambda_i u_i \in v + U = B$. \square

OR. Let $v = \lambda_1 v_1 + \dots + \lambda_m v_m \in A$. To show that $v \in B$, use induction on m by k.

(i)
$$k=1, v=\lambda_1v_1\Rightarrow \lambda_1=1$$
. $\boxtimes v_1\in B$. Hence $v\in B$.
$$k=2, v=\lambda_1v_1+\lambda_2v_2\Rightarrow \lambda_2=1-\lambda_1. \ \boxtimes v_1, v_2\in B. \ \text{By Problem (8)}, v\in B.$$

(ii)
$$2 \le k \le m$$
, we assume that $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $(\forall \lambda_i \text{ such that } \sum_{i=1}^k \lambda_i = 1)$

For $u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$. $\forall i = 1, \dots, k, \exists \mu_i \neq 1$, fix one such i by ι .

Then
$$\sum_{i=1}^{k+1} \mu_i - \mu_i = 1 - \mu_i \Rightarrow \left(\sum_{i=1}^{k+1} \frac{\mu_i}{1 - \mu_i}\right) - \frac{\mu_i}{1 - \mu_i} = 1.$$

Let
$$w = \underbrace{\frac{\mu_1}{1 - \mu_i} v_1 + \dots + \frac{\mu_{i-1}}{1 - \mu_i} v_{i-1} + \frac{\mu_{i+1}}{1 - \mu_i} v_{i+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_i} v_{k+1}}_{k \ terms}.$$

Let
$$\lambda_i = \frac{\mu_i}{1 - \mu_i}$$
 for $i = 1, \dots, i - 1$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_i}$ for $j = i, \dots, k$. Then,

$$\sum_{i=1}^{k} \lambda_i = 1 \Rightarrow w \in B$$
$$v_i \in B \Rightarrow u' = \lambda w + (1 - \lambda)v_i \in B$$
 \Rightarrow Let \lambda = 1 - \mu_i. Thus \(u' = u \in B \Rightarrow A \subseteq B\).

(c) If m = 1, then let $A = v_1 + \{0\}$ and we are done.

Fix one
$$k \in \{1, \dots, m\}$$
. Given $\lambda_1, \dots, \lambda_{k-1}, \lambda_{k+1}, \dots, \lambda_m \in \mathbf{F}$. Let $\lambda_k = 1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m$

$$\Rightarrow \lambda_1 v_1 + \dots + \lambda_k v_k + \dots + \lambda_m v_m = v_k + \sum_{i=1}^m \lambda_i (v_i - v_k). \quad A = v_k + \operatorname{span}(v_1 - v_k, \dots, v_m - v_k). \quad \Box$$

7 Suppose $v, x \in V$ and U and W are subsps of V. Prove that $v + U = x + W \Rightarrow U = W$.

SOLUTION: (a)
$$\forall u_1 \in U$$
, $\exists w_1 \in W$, $v + u_1 = x + w_1$. Let $u_1 = 0$, then $v = x + w_1' \Rightarrow v - x \in W$.

(b)
$$\forall w_2 \in W$$
, $\exists u_2 \in U$, $v + u_2 = x + w_2$. Let $w_2 = 0$, then $x = v + u_2' \Rightarrow x - v \in U$.

Thus
$$\pm (v - x) \in U \cap W \Rightarrow \begin{cases} u_1 = (x - v) + w_1 \in W \Rightarrow U \subseteq W \\ w_2 = (v - x) + u_2 \in U \Rightarrow W \subseteq U \end{cases} \Rightarrow U = W.$$

- **14** Suppose $U = \{(x_1, x_2, \dots) \in \mathbb{F}^{\infty} : x_k \neq 0 \text{ for only finitely many } k\}.$ (a) Show that U is a subsp of \mathbf{F}^{∞} . [Do it in your mind] (b) Prove that \mathbf{F}^{∞}/U is infinite-dim. **SOLUTION**: For ease of notation, denote the p^{th} term of $u = (x_1, \dots, x_p, \dots) \in \mathbb{F}^{\infty}$ by u[p]. $\text{For each } r \in \mathbb{N}^+, \text{let } e_r\big[p\big] = \left\{ \begin{array}{l} 1 \text{, } (p-1) \equiv 0 \text{ } (\text{mod } r) \\ 0 \text{, otherwise} \end{array} \right| \quad \text{simply } e_r = \left(1, \underbrace{0, \ \cdots, \ 0}_{(p-1) \text{ } times}, 1, \underbrace{0, \ \cdots, \ 0}_{(p-1) \text{ } times}, 1, \cdots\right).$ Choose one $m \in \mathbb{N}^+$. Let $a_1(e_1 + U) + \dots + a_m(e_m + U) = 0 + U \Rightarrow \exists u \in U, a_1e_1 + \dots + a_me_m = u$. Suppose $u = (x_1, \dots, x_L, 0, \dots)$, where *L* is the largest such that $u[L] \neq 0$. Let $s \in \mathbb{N}^+$ be such that $h = s \cdot m! + 1 > L$ and $e_1[h] = \cdots = e_m[h] = 1$. Note that by definition, $e_r[s \cdot m! + 1 + p] = e_r[p + 1] = 1 \iff p \equiv 0 \pmod{r} \iff r \mid p$. Now for any $p \in \{1, ..., m\}$, $u[h+p] = \left(\sum_{r=1}^{m} a_r e_r\right)[p+1] = \sum_{k=1}^{\tau(p)} a_{p_k} = 0$ (Δ) where $1 = p_1 \leqslant \cdots \leqslant p_{\tau(p)} = p$ are all the distinct factors of p. Let $q = p_{\tau(v)-1}$. Notice that $\tau(q) = \tau(p) - 1$ and $q_k = p_k, \forall k \in \{1, ..., \tau(q)\}$. Again by (Δ), $\left(\sum_{r=1}^{m} a_r e_r\right) [h+q] = \sum_{k=1}^{\tau(p)-1} a_{p_k} = 0$. Thus $a_{p_{\tau(p)}} = a_p = 0$ for any $p \in \{1, ..., m\}$. Hence $\forall m \in \mathbb{N}^+, (e_1, \dots, e_m)$ is linely inde in \mathbb{F}^{∞} , so is $(e_1 + U, \dots, e_m + U)$ in \mathbb{F}^{∞}/U . By (2.A.14). \square Or. For each $r \in \mathbb{N}^+$, let $e_r[p] = \begin{cases} 1, & \text{if } 2^r | p \\ 0, & \text{otherwise} \end{cases}$ Similarly, let $m \in \mathbb{N}^+$ and $a_1(e_1 + U) + \cdots + a_m(e_m + U) = 0 \Rightarrow a_1e_1 + \cdots + a_me_m = u \in U$. Suppose *L* is the largest such that $u[L] \neq 0$. And *l* is such that $2^{ml} > L$.

Then
$$\forall k \in \{1, ..., m\}, u[2^{ml} + 2^k] = \left(\sum_{r=1}^m a_r e_r\right)[2^k] = a_1 + \dots + a_k = 0.$$

Thus $a_1 = \cdots = a_m = 0$ and (e_1, \dots, e_m) is linely inde. Similarly.

- (4E8) Suppose $T \in \mathcal{L}(V, W)$, $w \in \text{range } T$. Prove that $\{u \in V : Tu = w\} = w + \text{null } T$.
- **SOLUTION:** Let $\mathcal{K}_w = \{u \in V : Tu = w\}$. Suppose $u \in \mathcal{K}_w$.

 $\forall u + u_0 \in u + \text{null } T \ (\forall u_0 \in \text{null } T), \ u + u_0 \in \mathcal{K}_w. \text{ Hence } u + \text{null } T \subseteq \mathcal{K}_w.$

 $\forall u' \in \mathcal{K}_w, \ u' - u \in \text{null } T \Rightarrow u' = u + (u' - u) \in u + \text{null } T. \text{ Hence } \mathcal{K}_w \subseteq u + \text{null } T.$

Comment: \mathcal{K}_w is not a vecsp.

18 Suppose $T \in \mathcal{L}(V, W)$ and U is a subsp of V. *Prove that* $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi \iff U \subseteq \text{null } T.$

SOLUTION: Note that $\pi: V \to V/U$ and that null $\pi = U$ because $u \in U \iff \pi(u) = u + U = 0$.

(a) Suppose null $\pi \subseteq \text{null } T$. By (3.B.24), we are done.

OR. Define $S \in \mathcal{L}(V/U, W)$ by S(v + U) = Tv. Then $S \circ \pi = T$. Now we show that S is well-defined. $v_1 + U = v_2 + U \Longleftrightarrow (v_1 - v_2) \in U \Longleftrightarrow S((v_1 - v_2) + U) = T(v_1 - v_2) = 0 \Longleftrightarrow Tv_1 = Tv_2.$

(b) Suppose $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi$. Then $U = \text{null } \pi \subseteq \text{null } (S \circ \pi) = \text{null } T$.

COROLLARY: Define $\Gamma: S \mapsto S \circ \pi$. Then Γ is inje, range $\Gamma = \{T \in \mathcal{L}(V, W) : U \subseteq \text{null } T\}$.

• Note For [3.79, 3.83]: If $U = \{0\}$, then $v + U = v + \{0\} = \{v\}$, $V/U = V/\{0\} = \{\{v\} : v \in V\}$.

```
Because \forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v. Define T \in \mathcal{L}(V) by T(v) = w_v.
  Hence null T = U, range T = W, range T \oplus \text{null } T = V.
  Then \tilde{T} \in \mathcal{L}(V/\text{null } T, V) is defined by \tilde{T}(v + U) = Tw_v = w_v.
  Now \pi \circ \tilde{T} = I_{V/U}, \tilde{T} \circ \pi = I_W = T|_W. Hence \tilde{T} is an iso of V/U onto W.
• COMMENT: Note that v = u_v + w_v = (u_v - u') + (w'_v + u'), where w'_v \notin W \iff u' \neq 0.
  Define S \in \mathcal{L}(V/U, V) by S(v + U) = v. Hence null S = \{0\}, range S \in \mathcal{S}_V U, range S \oplus U = V.
  Let E = S \circ \pi. Now null E = \text{null } \pi = U. Because \pi is surj. range E = \text{range } S.
  Then range E \oplus \text{null } E = V. Notice that E : V \to \text{range } S is a pure eraser. Now we explain why:
  EXAMPLE: Suppose B_V = (v_1, v_2, v_3), U = \text{span}(v_1). Then it is uniquely fixed that range S = \text{span}(v_2, v_3).
  While we might have range T = \text{span}(v_2 - 2v_1, v_3) = W, depending on the choice of W.
  Now E: v_2 \mapsto v_2; v_2 - 2v_1 \mapsto v_2. While T: v_2 \mapsto v_2 - 2v_1; v_2 - 2v_1 \mapsto v_2 - 2v_1.
12 Suppose U is a subsp of V such that V/U is finite-dim. Prove that is V is iso to U \times (V/U).
SOLUTION:
   Let (v_1 + U, ..., v_n + U) be a basis of V/U.
  Note that \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^n a_i (v_i + U) = \left(\sum_{i=1}^n a_i v_i\right) + U
   \Rightarrow (v - a_1 v_1 - \dots - a_n v_n) \in U \Rightarrow \exists ! u \in U, v = \sum_{i=1}^n a_i v_i + u.
  Thus define \varphi \in \mathcal{L}(V, U \times (V/U)) by \varphi(v) = (u, v + U),
             and \psi \in \mathcal{L}(U \times (V/U), V) by \psi(u, v + U) = v + u, where \exists ! a_i \in F, v = \sum_{i=1}^n a_i v_i + U.
                                                                                                                                   Or. \lceil V/U, U \text{ and } V \text{ can be infinite-dim } \rceil Define S \in \mathcal{L}(V/U, V) by S(v + U) = v.
   By the Note For [3.88,3.90,3.91], range S \oplus U = V. Thus \forall v \in V, \exists ! u \in U, w \in \text{range } S, v = u + w.
  Define T \in \mathcal{L}(U \times (V/U), V) by T(u, v + U) = u + S(v + U) = u + w = v. Then T is surj.
  And T(u, v + U) = u + S(v + U) = 0 \Longrightarrow \pi(T(u, v + U)) = v + U = 0, and u = -S(v + U) = 0.
  Or. Define R \in \mathcal{L}(V, U \times (V/U)) by R(v) = (u, (w + U)). Now R \circ T = I_{U \times (V/U)}, T \circ R = I_V.
                                                                                                                                   • (4E 3.E.14) Suppose V = U \oplus W, (w_1, ..., w_m) is a basis of W.
  Prove that (w_1 + U, ..., w_m + U) is a basis of V/U.
SOLUTION: \forall v \in V, \exists ! u \in U, w \in W, v = u + w. \ \exists ! c_i \in F, w = \sum_{i=1}^m c_i w_i \Rightarrow v = \sum_{i=1}^m c_i w_i + u.
               Hence \forall v + U \in V/U, \exists ! c_i \in F, v + U = \sum_{i=1}^m c_i w_i + U.
                                                                                                                                    13 Suppose (v_1 + U, ..., v_m + U) is a basis of V/U and (u_1, ..., u_n) is a basis of U.
    Prove that (v_1, ..., v_m, u_1, ..., u_n) is a basis of V.
SOLUTION: Notice that (v_1, ..., v_m) is linely inde.
  By Problem (12), U and V/U are finite-dim \Longrightarrow U \times (V/U) is finite-dim, so is V.
  \dim V = \dim(U \times (V/U)) = m + n. \mathbb{Z} Each v_i = S(v_i + U), where we define S(v + U) = v.
  Note that \sum_{i=1}^{m} a_i v_i \in U \iff \left(\sum_{i=1}^{m} a_i v_i\right) + U = 0 + U \iff a_1 = \dots = a_m = 0.
  Hence span(v_1, ..., v_m) \cap U = \{0\} \Rightarrow \text{span}(v_1, ..., v_m) \oplus U = V. By (2.B.8), we are done.
                                                                                                                                   Or. Note that \forall v \in V, \exists ! a_i \in F, v + U = \sum_{i=1}^m a_i v_i + U \Rightarrow \exists ! b_i \in F, v - \sum_{i=1}^m a_i v_i = \sum_{i=1}^m b_i u_i \in U
                     \Rightarrow \forall v \in V, \exists ! a_i, b_i \in F, v = \sum_{i=1}^m a_i v_i + \sum_{i=1}^m b_i u_i.
```

• Note For [3.88, 3.90, 3.91]: Suppose $W \in \mathcal{S}_V U$. Then V/U and W are iso.

15 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Prove that dim $V/(\text{null }\varphi) = 1$. **SOLUTION:** By (3.B.29), $\exists u \in V, V = \text{null } \varphi \oplus \{au : a \in F\}$. By (4E 3.E.14), $(u + \text{null } \varphi)$ is a basis of $V/\text{null } \varphi$. Or. By [3.91] (d), dim range $\varphi = 1 = \dim V / (\operatorname{null} \varphi)$. **16** Suppose dim V/U=1. Prove that $\exists \varphi \in \mathcal{L}(V, \mathbf{F})$ such that null $\varphi=U$. **SOLUTION:** Suppose V_0 is a subsp of V such that $V = U \oplus V_0$. Then V_0 and V/U are iso. dim $V_0 = 1$. Define $\varphi \in \mathcal{L}(V, \mathbf{F})$ by $\varphi(v_0) = 1$, $\varphi(u) = 0$, where $v_0 \in V_0$, $u \in U$. Or. Let (w + U) be a basis of V/U. Then $\forall v \in V, \exists ! a \in F, v + U = aw + U$. Define $\varphi: V \to \mathbf{F}$ by $\varphi(v) = a$. Assume that φ is linear. Then $u \in U \iff u + U = 0w + U \iff \varphi(u) = 0 \iff u \in \text{null } \varphi$. Thus $U = \text{null } \varphi$. Now we prove the assumption. $\forall x, y \in V, \lambda \in \mathbb{F}, \exists ! a, b \in \mathbb{F}, x + U = aw + U, \lambda y + U = \lambda bw + U \Rightarrow (x + \lambda y) + U = (a + \lambda b)w + U.$ Then $\varphi(x + \lambda y) = a + \lambda b = \varphi(x) + \lambda \varphi(y)$. **17** Suppose V/U is finite-dim. W is a subsp of V. (a) Show that if V = U + W, then dim $W \ge \dim V/U$. (b) Find a W such that dim $W = \dim V/U$ and $V = U \oplus W$. **SOLUTION:** Let $(w_1, ..., w_n)$ be a basis of W(a) $\forall v \in V, \exists u \in U, w \in W \text{ such that } v = u + w \Rightarrow v + U = w + U$ And $\exists ! a_i \in \mathbb{F}, v + U = (a_1 w_1 + \dots + a_n w_n) + U$. Then $V/U \subseteq \operatorname{span}(w_1 + U, \dots, w_n + U)$. Hence dim $V/U = \dim \operatorname{span}(w_1 + U, \dots, w_n + U) \leq \dim W$. (b) Let $W \in \mathcal{S}_V U$. In other words, reduce $(w_1 + U, ..., w_n + U)$ to a basis $(w_1 + U, ..., w_m + U)$ of V/U and let $W = \text{span}(w_1, ..., w_m)$. OR. Let $(v_1 + U, ..., v_m + U)$ be a basis of V/U and define $\tilde{T} \in \mathcal{L}(V/U, V)$ by $\tilde{T}(v_k + U) = v_k$. Note that $\pi \circ \tilde{T} = I$. By (3.B.20), \tilde{T} is inje. And (v_1, \dots, v_m) is linely inde. Let $W = \operatorname{range} \tilde{T} = \operatorname{span}(v_1, \dots, v_m)$. Then $\tilde{T} \in \mathcal{L}(V/U, W)$ is an iso. Thus dim $W = \dim V/U$. And $\forall v \in V, \exists ! a_i \in F, v + U = a_1 v_1 + \dots + a_m v_m + U$ $\Rightarrow v - (a_1v_1 + \dots + a_mv_m) \in U \Rightarrow \exists! w \in W, u \in U, v = w + u.$

ENDED

3.F 4 5 6 7 8 9 12 13 15 16 17 18 19 20 21 22 23 24 25 26 28 29 30 31 32 33 34 35 36 37 | 4E: 5 6 8 17 23 24 25

20, 21 Suppose U and W are subsets of V. Prove that $U \subseteq W \iff W^0 \subseteq U^0$.

SOLUTION:

- (a) Suppose $U \subseteq W$. Then $\forall \varphi \in W^0, u \in U \subseteq W, \varphi(w) = 0 \Rightarrow \varphi \in U^0$. Thus $W^0 \subseteq U^0$.
- (b) Suppose $W^0 \subseteq U^0$. Then $\varphi \in W^0 \Rightarrow \varphi \in U^0$. Hence $\text{null } \varphi \supseteq W \Rightarrow \text{null } \varphi \supseteq U$. Thus $W \supseteq U$.

OR. For a subsp U of V, let $A_U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = U$, by Problem (25).

Suppose $W^0 \subseteq U^0$. Then $\forall \varphi \in W^0, v \in A_U, \varphi(v) = 0 \Rightarrow v \in A_W$. Thus $A_U \subseteq A_W$.

Corollary: $W^0 = U^0 \iff U = W$.

22 Suppose U and W are subsps of V. Prove that $(U + W)^0 = U^0 \cap W^0$. **SOLUTION:** (a) $U \subseteq U + W \ W \subseteq U + W$ $\Rightarrow (U + W)^0 \subseteq U^0 \ (U + W)^0 \subseteq W^0$ $\Rightarrow (U + W)^0 \subseteq U^0 \cap W^0.$ Or. Suppose $\varphi \in (U+W)^0$. Then $\forall u \in U, w \in W, \varphi(u) = \varphi(w) = 0 \Rightarrow \varphi \in U^0 \cap W^0$. (b) Suppose $\varphi \in U^0 \cap W^0 \subseteq V'$. Then $\forall u \in U, w \in W, \varphi(u+w) = 0 \Rightarrow \varphi \in (U+W)^0$. **23** Suppose U and W are subsets of V. Prove that $(U \cap W)^0 = U^0 + W^0$. **SOLUTION:** $\begin{array}{c} U \cap W \subseteq U \\ U \cap W \subseteq W \end{array} \right\} \Rightarrow \begin{array}{c} (U \cap W)^0 \supseteq U^0 \\ (U \cap W)^0 \supseteq W^0 \end{array} \right\} \Rightarrow (U \cap W)^0 \supseteq U^0 + W^0 \ \big[\supseteq U^0 \cap W^0 = (U + W)^0. \big]$ Or. Suppose $\varphi = \psi + \beta \in U^0 + W^0$. Then $\forall v \in U \cap W$, $\varphi(v) = (\psi + \beta)(v) = 0 \Rightarrow \varphi \in (U \cap W)^0$. (b) [*Only in Finite-dim; Req U, W are subsps*] Using Problem (22). $\dim(U^0 + W^0) = \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$ $= 2\dim V - \dim U - \dim W - (\dim V - \dim(U+W)) = \dim V - \dim(U\cap W).$ Or. Suppose $\varphi \in (U \cap W)^0$. Let X, Y be such that $V = U \oplus X = W \oplus Y$. Define $\psi \in U^0, \beta \in W^0$ by $\psi(u + x) = \frac{1}{2}\varphi(x), \beta(w + y) = \frac{1}{2}\varphi(y)$. $\forall v = u + x = w + y \in V, \varphi(v) = \varphi(x) = \varphi(y). \text{ Now } \varphi(v) = \frac{1}{2}\varphi(x) + \frac{1}{2}\varphi(y) = \psi(v) + \beta(v).$ Hence $\varphi \in U^0 + W^0$. Now $(U \cap W)^0 \subseteq U^0 + W^0$. • COROLLARY: (a) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsets of V. Then $(\bigcap_{\alpha_i \in \Gamma} V_{\alpha_i})^0 = \sum_{\alpha_i \in \Gamma} (V_{\alpha_i}^0)$. (b) Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subsps of V. Then $\Big(\sum_{\alpha_i \in \Gamma} V_{\alpha_i}\Big)^0 = \bigcap_{\alpha_i \in \Gamma} (V_{\alpha_i}^0)$. (c) Suppose $V=U\oplus W.$ Then $V'=U^0\oplus W^0.$ And $U_V^{'}=W^0,\ W_V^{'}=U^0.$ Where $U_V' = \{ \varphi \in V' : \varphi = \varphi \circ \iota \}$. And $\iota \in \mathcal{L}(V, U)$ is defined by $\iota(u_v + w_v) = u_v$. • (4E 3.F.23) Suppose $\varphi_1, \ldots, \varphi_m \in V'$. Prove that the following sets are the same. (a) span($\varphi_1, \dots, \varphi_m$) (b) $((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m))^0 \stackrel{(c)}{=} \{ \varphi \in V' : (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) \subseteq \operatorname{null} \varphi \}$ **SOLUTION:** By Problem (17), (c) holds. By Problem (26) [May req Finite-dim] and the COROLLARY in Problem (23), Or. Note that by Corollary in Problem (4E 6), for each φ_i , we have $\forall c \in \mathbb{F} \setminus \{0\}, \psi = c\varphi_i \in \operatorname{span}(\varphi_i) \iff \operatorname{null} \psi = \operatorname{null} \varphi_i \iff \psi \in (\operatorname{null} \psi)^0 = (\operatorname{null} \varphi_i)^0.$ And $0 \in \text{span}(\varphi_i)$, $0 \in (\text{null } \varphi_i)^0$. Hence $\text{span}(\varphi_i) = (\text{null } \varphi_i)^0$. Similarly.

OR. [Only in Finite-dim] Suppose $\varphi \in V'$. Note that dim(null φ)⁰ = dim range φ = dim span(φ).

And because $\forall c \in \mathbf{F}, v \in \text{null } \varphi, c\varphi(v) = 0 \Rightarrow \text{span}(\varphi) \subseteq (\text{null } \varphi)^0$. Similarly.

Then $\dim((\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)) = (\dim V) - m$.

COROLLARY: 30 Suppose *V* is finite-dim and $\varphi_1, \dots, \varphi_m$ is a linely inde list in *V'*.

31 Suppose V is finite-dim and $B_{V'} = (\varphi_1, ..., \varphi_n)$. Show that the correspond B_V exists. **SOLUTION:** Using (3.B.29). Let $\varphi_i(u_i) = 1$ and then $V = \text{null } \varphi_i \oplus \text{span}(u_i)$ for each φ_i . Suppose $a_1u_1 + \cdots + a_nu_n = 0$. Then $0 = \varphi_i(a_1u_1 + \cdots + a_nu_n) = a_i$ for each i. Thus $B_V = (\varphi_1, \dots, \varphi_n)$. And $\varphi_i(u_x) = \delta_{i,x}$. Or. For each $k \in \{1, ..., n\}$, define $\Gamma_k = \{1, ..., k-1, k+1, ..., n\}$ and $U_k = \bigcap_{j \in \Gamma_k} \operatorname{null} \varphi_j$. By Problem (30) OR (4E 2.C.16), dim $U_k = 1$. Thus $\exists u_k \in V, U_k = \operatorname{span}(u_k) \neq 0$. \mathbb{X} By Problem (30), (null φ_1) $\cap \cdots \cap$ (null φ_n) = $\{0\} = U \cap \text{null } \varphi_k$. Then if $\varphi_k(u_k) = 0 \Rightarrow u_k \in \text{null } \varphi_k \text{ while } u_k \in U \Rightarrow u_k \in \{0\}, \text{ contradicts.}$ Thus $\varphi_k(u_k) \neq 0$. Let $v_k = (\varphi_k(u_k))^{-1}u_k \Rightarrow \varphi_k(v_k) = 1$. Now for $j \neq k$, $u_k \in \text{null } \varphi_j \Rightarrow \varphi_j(v_k) = 0$. Similarly, suppose $a_1v_1 + \cdots + a_nv_n = 0 \Rightarrow a_1 = \cdots = a_n = 0$. $B_V = (v_1, \dots, v_n)$. And $\varphi_i(v_k) = \delta_{i,k}$. **25** Suppose U is a subsp of V. Explain why $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}$. **SOLUTION**: Note that $U = \{v \in V : v \in U\}$ is a subsp of V; And $v \in U \iff \varphi(v) = 0, \forall \varphi \in U^0$. COROLLARY: $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. **COMMENT:** $\{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\} = ((\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m) \cap \cdots), \text{ where } \varphi_k \in U^0,$ always remains a subsp, whether the subset *U* is a subsp or not. **26** Suppose Ω is a subsp of V'. Prove that $\Omega = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. **SOLUTION:** Suppose $U = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}$, which is the set of vecs that each $\varphi \in \Omega$ sends to zero in common. Then $U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in \Omega\}^0$. $X U^0 = \{v \in V : \varphi(v) = 0, \forall \varphi \in U^0\}^0$. Immediately by the Corollary in Problem (20,21), we may conclude that $\Omega = U^0$. Or. $\lceil Req \Omega \text{ finite-dim} \rceil$ Let $(\varphi_1, ..., \varphi_m)$ be a basis of Ω . Then by def, $U \subseteq (\text{null } \varphi_1) \cap \cdots \cap (\text{null } \varphi_m)$. $\forall \varphi \in \Omega, \exists ! a_i \in \mathbb{F}, \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m \Rightarrow \forall v \in (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m), \varphi(v) = 0 \Rightarrow v \in U.$ Hence $(\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = U$. $\mathbb{X} \operatorname{span}(\varphi_1, \dots, \varphi_m) = \Omega$. By Problem (23), we are done. **Corollary:** For every subsp Ω of V', \exists ! subsp U of V such that $\Omega = U^0$. **COMMENT**: [Only in Finite-dim] Using Problem (31) and the COROLLARY(c) in Problem (22, 23). Let $B_{\Omega} = (\varphi_1, ..., \varphi_m), B_{V'} = (\varphi_1, ..., \varphi_m, ..., \varphi_n), B_{V} = (v_1, ..., v_m, ..., v_n).$ $V' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \stackrel{\text{(I)}}{=\!\!\!=} \operatorname{span}(v_{m+1}, \dots, v_n)^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0.$ $\Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m) \xrightarrow{\text{(II)}} \operatorname{span}(v_{m+1}, \dots, v_n)^0 = U^0; \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \xrightarrow{\text{(III)}} \operatorname{span}(v_1, \dots, v_m)^0.$ $\iff U = \operatorname{span} \big(v_{m+1}, \dots, v_n \big) = \big(\operatorname{null} \varphi_1 \big) \cap \dots \cap \big(\operatorname{null} \varphi_m \big). \ \big[\ \textit{Another proof of } [\textbf{3.106}] \ \text{Or. Problem (24)} \ \big]$ (I) Using the COROLLARY(c), immediately. (II) Notice that each null $\varphi_k = \operatorname{span}(v_1, \dots, v_{k-1}, v_{k+1}, \dots, v_n) = U_k$; dim $U_k = \dim V - 1$. By (4E 2.C.16), $U = (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m) = \bigcap_{k=1}^m U_k = \operatorname{span}(v_{m+1}, \dots, v_n).$ Hence span $(v_{m+1}, \dots, v_n)^0 = U^0 = \Omega = \operatorname{span}(\varphi_1, \dots, \varphi_m)$. (III) Notice that $V' = \Omega \oplus \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) = U^0 \oplus \operatorname{span}(v_1, \dots, v_m)^0$. And that span($\varphi_{m+1}, \dots, \varphi_n$) \subseteq span(v_1, \dots, v_m)⁰. By (1.C TIPS), span($\varphi_{m+1}, \dots, \varphi_n$) = span(v_1, \dots, v_m). OR. Similar to (II), let $\Omega = \text{span}(\varphi_{m+1}, ..., \varphi_n)$, immediately.

```
• Suppose T \in \mathcal{L}(V, W), \varphi_k \in V', \psi_k \in W'.
28 Prove that null T' = \text{span}(\psi_1, \dots, \psi_m) \iff \text{range } T = (\text{null } \psi_1) \cap \dots \cap (\text{null } \psi_m).
29 Prove that range T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m).
SOLUTION: Using [3.107], [3.109], Problem (23) and the COROLLARY in Problem (20, 21).
    (28) (range T)^0 = \operatorname{null} T' = \operatorname{span}(\psi_1, \dots, \psi_m) = ((\operatorname{null} \psi_1) \cap \dots \cap (\operatorname{null} \psi_m))^0.
    (29) (\operatorname{null} T)^0 = \operatorname{range} T' = \operatorname{span}(\varphi_1, \dots, \varphi_m) = ((\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m))^0.
                                                                                                                                                                                       COROLLARY: Using the COMMENT in Problem (26).
    \operatorname{null} T = \operatorname{span}(v_1, \dots, v_m) \iff \operatorname{null} T = (\operatorname{null} \varphi_{m+1}) \cap \dots \cap (\operatorname{null} \varphi_n) \iff \operatorname{range} T' = \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n).
           -Where B_V = (v_1, \dots, v_m, \dots, v_n) \iff B_{V'} = (\varphi_1, \dots, \varphi_m, \dots, \varphi_n).
    \operatorname{range} T = \operatorname{span}(w_1, \dots, w_m) \Longleftrightarrow \operatorname{range} T = (\operatorname{null} \psi_{m+1}) \cap \dots \cap (\operatorname{null} \psi_n) \Longleftrightarrow \operatorname{null} T' = \operatorname{span}(\psi_{m+1}, \dots, \psi_n).
            Where B_W = (w_1, \dots, w_m, \dots, w_n) \iff B_{W_i} = (\psi_1, \dots, \psi_m, \dots, \psi_n).
9 Let B_V = (v_1, ..., v_n), B_{V'} = (\varphi_1, ..., \varphi_n). Then \forall \psi \in V', \psi = \psi(v_1)\varphi_1 + ... + \psi(v_n)\varphi_n.
    COROLLARY: For other B'_V = (u_1, \dots, u_n), B'_{V'} = (\rho_1, \dots, \rho_n), \forall \psi \in V', \psi = \psi(u_1)\rho_1 + \dots + \psi(u_n)\rho_n.
SOLUTION:
    \psi(v) = \psi\left(\sum_{i=1}^{n} a_{i} v_{i}\right) = \sum_{i=1}^{n} a_{i} \psi(v_{i}) = \sum_{i=1}^{n} \psi(v_{i}) \varphi_{i}(v) = \left[\psi(v_{1}) \varphi_{1} + \dots + \psi(v_{n}) \varphi_{n}\right](v).
    Or. \left[\psi(v_1)\varphi_1 + \dots + \psi(v_n)\varphi_n\right]\left(\sum_{i=1}^n a_i v_i\right) = \psi(v_1)\varphi_1\left(\sum_{i=1}^n a_i v_i\right) + \dots + \psi(v_n)\varphi_n\left(\sum_{i=1}^n a_i v_i\right).
13 Define T: \mathbb{R}^3 \to \mathbb{R}^2 by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z).
      Let (\varphi_1, \varphi_2), (\psi_1, \psi_2, \psi_3) denote the dual basis of the std basis of \mathbb{R}^2 and \mathbb{R}^3.
       (a) Describe the linear functionals T'(\varphi_1), T'(\varphi_2) \in \mathcal{L}(\mathbb{R}^3, \mathbb{R})
             For any (x, y, z) \in \mathbb{R}^3, (T'(\varphi_1))(x, y, z) = 4x + 5y + 6z, (T'(\varphi_2))(x, y, z) = 7x + 8y + 9z.
       (b) Write T'(\varphi_1) and T'(\varphi_2) as linear combinations of \psi_1, \psi_2, \psi_3.
              T'(\varphi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, \ T'(\varphi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3.
       (c) What is null T'? What is range T'?
            T(x,y,z) = 0 \Longleftrightarrow \begin{cases} 4x + 5y + 6z = 0 \\ 7x + 8y + 9z = 0 \end{cases} \Longleftrightarrow \begin{cases} x + y + z = 0 \\ y = 2z = 0 \end{cases} \Longleftrightarrow (x,y,z) \in \operatorname{span}(e_1 - 2e_2 + e_3).
             Where (e_1, e_2, e_3) is std basis of \mathbb{R}^3.
             Let (e_1 - 2e_2 + e_3, -2e_2, e_3) be a basis, with the correspd dual basis (\varepsilon_1, \varepsilon_2, \varepsilon_3).
             Thus span(e_1 - 2e_2 + e_3) = \text{null } T \Rightarrow \text{span}(e_1 - 2e_2 + e_3)^0 = \text{span}(\varepsilon_2, \varepsilon_3) = \text{range } T'.
            Note that \varepsilon_k = \varepsilon_k(e_1)\psi_1 + \varepsilon_k(e_2)\psi_2 + \varepsilon_k(e_3)\psi_3.
             And \begin{vmatrix} \varepsilon_{2}(e_{2}) = -\frac{1}{2}, \varepsilon_{2}(e_{1}) = \varepsilon_{2}(e_{1} - 2e_{2} + e_{3}) + \varepsilon_{2}(2e_{2}) - \varepsilon_{2}(e_{3}) = 1, \\ \varepsilon_{3}(e_{2}) = 0, \varepsilon_{3}(e_{3}) = \varepsilon_{3}(e_{1} - 2e_{2} + e_{3}) + \varepsilon_{3}(2e_{2}) - \varepsilon_{3}(e_{3}) = -1. \end{vmatrix}
             Hence \varepsilon_2 = \psi_1 - \frac{1}{2}\psi_2, \varepsilon_3 = -\psi_1 + \psi_3. Now range T' = \text{span}(\psi_1 - \frac{1}{2}\psi_2, -\psi_1 + \psi_3).
             OR. range T' = \text{span}(T'(\varphi_1), T'(\varphi_2)) = \text{span}(4\psi_1 + 5\psi_2 + 6\psi_3, 7\psi_1 + 8\psi_2 + 9\psi_3).
             Suppose T'(x\varphi_1 + y\varphi_2) = (4x + 7y)\varphi_1 + (5x + 8y)\varphi_2 + (6x + 9y)\varphi_3 = 0.
             Then x + y = 4x + 7y = x = y = 0. Hence null T' = \{0\}.
             OR. null T = \operatorname{span}(e_1 - 2e_2 + e_3) \Rightarrow V = \operatorname{span}(-2e_2, e_3) \oplus \operatorname{null} T.
             \Rightarrow range T = \{Tx : x \in \text{span}(-2e_2, e_3)\} = \text{span}(T(-2e_2), T(e_3))
             = \operatorname{span}(-10f_1 - 16f_2, 6f_1 + 9f_2) = \operatorname{span}(f_1, f_2) = \mathbb{R}^2. Now null T' = (\operatorname{range} T)^0 = \{0\}.
```

24 Suppose V is finite-dim and U is a subsp of V . Prove, using the pattern of $[3.104]$, that dim U + dim U^0 = dim V .	
Solution: By Problem (31) and the Comment in Problem (26), $B_U = (v_1, \dots, v_m) \iff B_{U^0} = (\varphi_{m+1}, \dots, \varphi_n)$. 🗆
37 Suppose U is a subsp of V and π is the quotient map. Thus $\pi' \in \mathcal{L}((V/U)', V')$. (a) Show that π' is inje: Because π is surj. Use [3.108]. (b) Show that range $\pi' = U^0$: By [3.109](b), range $\pi' = (\text{null } \pi)^0 = U^0$. (c) Conclude that π' is an iso from $(V/U)'$ onto U^0 : Immediately. SOLUTION: OR Using (3.E.18), also see (3.E.20).	
(a) $\pi'(\varphi) = 0 \iff \forall v \in V (\forall v + U \in V), \varphi(\pi(v)) = \varphi(v + U) = 0 \iff \varphi = 0.$ (b) $\psi \in \text{range } \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \text{null } \psi \supseteq U \iff \psi \in U^0. \text{ Hence range } \pi' = 0$	U^0 . \square
• Suppose U is a subsp of V . Prove that $(V/U)'$ and U^0 are iso. [Another proof of [3.1] Solution:	.06]]
Define $\xi: U^0 \to (V/U)'$ by $\xi(\varphi) = \tilde{\varphi}$, where $\tilde{\varphi} \in (V/U)'$ is defined by $\tilde{\varphi}(v+U) = \varphi(v)$.	
We show that ξ is inje and surj. Inje: $\xi(\varphi) = 0 = \widetilde{\varphi} \Rightarrow \forall v \in V \ (\forall v + U \in V/U \), \widetilde{\varphi}(v + U) = \varphi(v) = 0 \Rightarrow \varphi = 0.$ Surj: $\Phi \in (V/U)' \Rightarrow \forall u \in U, \Phi(u + U) = \Phi(0 + U) = 0 \Rightarrow U \subseteq \text{null} \ (\Phi \circ \pi) \Rightarrow \xi(\Phi \circ \pi) = \Phi.$	
Or. Define $\nu:(V/U)'\to U^0$ by $\nu(\Phi)=\Phi\circ\pi.$ Now $\nu\circ\xi=I_{U^0},\ \xi\circ\nu=I_{(V/U)'}\Rightarrow\xi=\nu^{-1}.$	
4 Suppose U is a subsp of V and $U \neq V$. Prove that $\exists \varphi \in V' \setminus \{0\}, \varphi(u) = 0$ for all $u \in V'$	Ξ U.
SOLUTION: $\Leftrightarrow U_V^0 \neq \{0\}$. Let X be such that $V = U \oplus X$. Then $X \neq \{0\}$. Suppose $s \in X$ and $x \neq 0$. Let Y be such that $X = \operatorname{span}(s) \oplus Y$. Now $V = U \oplus (\operatorname{span}(s) \oplus Y)$. Define $\varphi \in V'$ by $\varphi(u + \lambda s + y) = \lambda$. Hence $\varphi \neq 0$ and $\varphi(u) = 0$ for all $u \in U$.	
Or. [Req V Finite-dim] By [3.106], dim $U^0 = \dim V - \dim U > 0$. Then $U^0 \neq \{0\}$. Or. Let $B_V = (\underbrace{u_1, \dots, u_m}_{B_U}, v_1, \dots, v_n)$ with $n \geqslant 1$. Let $B_V = (\psi_1, \dots, \psi_m, \varphi_1, \dots, \varphi_n)$. Let $\varphi = \varphi_i$	
OR. Define $\varphi \in V'$ by $\varphi(u_1) = \cdots = \varphi(u_m) = 0$ and $\varphi(v_1) = \cdots = \varphi(v_n) = 1$. Comment: Another proof of [3.108]: T is surj $\iff T'$ is inje. (a) Suppose T' is inje. Note that $T'(\psi) = 0 \Rightarrow \psi = 0$. Then $\nexists \psi \in W' \setminus \{0\}, (T'(\psi))(v) = \psi(Tv) = 0$ for all $w \in \operatorname{range} T \ (\forall v \in V)$. Thus if we assume that $\operatorname{range} T \neq W$ then contradicts. Hence $\operatorname{range} T = W$. (b) Suppose T is surj. Then $(\operatorname{range} T)^0 = W_W^0 = \{0\} = \operatorname{null} T'$.	
• Suppose V is a vecsp and U is a subsp of V . 17 $U^0 = \{ \varphi \in V' : U \subseteq null \varphi \}$. Noticing $\varphi \in V'$, $U \subseteq null \varphi \iff \forall u \in U, \varphi(u) = $ 18 $U^0 = V' \iff \forall \varphi \in V', U \subseteq null \varphi \iff U = \{0\}$. [Which means $\{0\}_V^0 = V'$.]	0.

19 $U_V^0 = \{0\} = V_V^0 \iff U = V$. By the inverse and contrapositive of Problem (4). Or. By [3.106].

• Suppose $V = U \oplus W$. Define $\iota : V \to U$ by $\iota(u + w) = u$. Thus $\iota' \in \mathcal{L}(U', V')$. (a) Show that $\operatorname{null} \iota' = U_U^0 = \{0\}$: $\operatorname{null} \iota' = (\operatorname{range} \iota)_U^0 = U_U^0 = \{0\}$. (b) Prove that $\operatorname{range} \iota' = W_V^0$: $\operatorname{range} \iota' = (\operatorname{null} \iota)_V^0 = W_V^0$. (c) Prove that $\widetilde{\iota}'$ is an iso from $U'/\{0\}$ onto W^0 : By (a), (b) and [3.91](d). Solution: (a) $\iota'(\psi) = \psi \circ \iota = 0 \iff U \subseteq \operatorname{null} \psi$. (b) Note that $W = \operatorname{null}(\iota) \subseteq \operatorname{null}(\psi \circ \iota)$. Then $\psi \circ \iota \in W^0 \Rightarrow \operatorname{range} \iota' \in W^0$.	
Suppose $\varphi \in W^0$. Because null $\iota = W \subseteq \text{null } \varphi$. By $[3.B \text{ Tips } (3)]$, $\varphi = \varphi \circ \iota = \iota'(\varphi)$.	
36 Suppose U is a subsp of V . Define $i: U \to V$ by $i(u) = u$. Thus $i' \in \mathcal{L}(V', U')$. (a) Show that $\operatorname{null} i' = U^0$: $\operatorname{null} i' = (\operatorname{range} i)^0 = U^0 \Leftarrow \operatorname{range} i = U$. (b) Prove that $\operatorname{range} i' = U'$: $\operatorname{range} i' = (\operatorname{null} i)^0_U = \{0\}^0_U = U'$. (c) Prove that $\widetilde{i'}$ is an iso from V'/U^0 onto U' : By (a), (b) and [3.91](d).	
Solution: (a) $\forall \varphi \in V', i'(\varphi) = \varphi \circ i = \varphi _U$. Thus $i'(\varphi) = 0 \iff \forall u \in U, \varphi(u) = 0 \iff \varphi \in U^0$. (b) Suppose $\psi \in U'$. By (3.A.11), $\exists \varphi \in V', \varphi _U = \psi$. Then $i'(\varphi) = \psi$.	
• Suppose $T \in \mathcal{L}(V,W)$. Prove that range $T' = (\operatorname{null} T)^0$. $\left[\text{Another proof of } [3.109](\mathbf{b}) \right]$ Solution: Suppose $\Phi \in (\operatorname{null} T)^0$. Because by $(3.B.12)$, $T _U : U \to \operatorname{range} T$ is an iso; $V = U \oplus \operatorname{null} T$. And $\forall v \in V, \exists ! u_v \in U, w_v \in \operatorname{null} T, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V,U)$ by $\iota(v) = u_v$. Let $\psi = \Phi \circ \left(T _{\operatorname{range} T}^{-1}\right)$. Then $T'(\psi) = \psi \circ T = \Phi \circ \left(T^{-1} _{\operatorname{range} T} \circ T _V\right)$. Where $T^{-1} _{\operatorname{range} T} : \operatorname{range} T \to U$; $T : V \to \operatorname{range} T$. Note that $T^{-1} _{\operatorname{range} T} \circ T _V = \iota$. By $\left[3.B \text{ Tips } (3)\right]$, $\Phi = \Phi \circ \iota$. Thus $T'(\psi) = \psi \circ T = \Phi \circ \iota = \Phi$.	
• Suppose $T \in \mathcal{L}(V, W)$. Using [3.108], [3.110]. Now T is $inv \iff \begin{cases} \text{null } T = \{0\} \iff (\text{null } T)^0 = V' = \text{range } T' \\ \text{range } T = W \iff (\text{range } T)^0 = \{0\} = \text{null } T' \end{cases} \iff T'$ is inv .	
15 Suppose $T \in \mathcal{L}(V, W)$. Prove that $T' = 0 \iff T = 0$. Solution: Suppose $T = 0$. Then $\forall \varphi \in W', T'(\varphi) = \varphi \circ T = 0$. Hence $T' = 0$. Suppose $T' = 0$. Then null $T' = W' = (\operatorname{range} T)^0$, by $[3.107](a)$. [W can be infinite-dim] By Problem (25), range $T = \{w \in W : \varphi(w) = 0, \forall \varphi \in (\operatorname{range} T)^0\} = \{w \in W : \varphi(w) = 0, \forall \varphi \in W'\}$. Now we prove that if $\forall \varphi \in W', \varphi(w) = 0$, then $w = 0$. So that range $T = \{0\}$ and we are done. Assume that $w \neq 0$. Then let U be such that $W = U \oplus \operatorname{span}(w)$. Define $\psi \in W'$ by $\psi(u + \lambda w) = \lambda$. So that $\psi(w) = 1 \neq 0$. OR. [Only if W is finite-dim] By $[3.106]$, dim range $T = \dim W - \dim(\operatorname{range} T)^0 = 0$.]
12 Notice that $I_{V'}: V' \to V'$. Now $\forall \varphi \in V', I_{V'}(\varphi) = \varphi = \varphi \circ I_V = I_V'(\varphi)$. Thus $I_{V'} = I_V'$.	

```
16 Suppose V, W are finite-dim. Define \Gamma by \Gamma(T) = T' for any T \in \mathcal{L}(V, W).
      Prove that \Gamma is an iso of \mathcal{L}(V, W) onto \mathcal{L}(W', V').
SOLUTION: By [3.101], \Gamma is linear.
    Suppose \Gamma(T) = T' = 0. By Problem (15), T = 0. Thus \Gamma is inje.
    Because V, W are finite-dim. dim \mathcal{L}(V,W) = \dim \mathcal{L}(W',V'). Now Γ inje \Rightarrow inv.
                                                                                                                                                                             COMMENT: Let X = \{T \in \mathcal{L}(V, W) : \text{range } T \text{ is finite-dim} \}.
                   Let Y = \{ \mathcal{T} \in \mathcal{L}(W', V') : \text{range } \mathcal{T} \text{ is finite-dim} \}.
                   Then \Gamma|_X is an iso of X onto Y, even if V and W are infinite-dim.
    The inje of \Gamma|_X is equiv to the inje of \Gamma, as shown before.
    Now we show that \Gamma|_X is surj without the cond that V or W is finite-dim.
   Suppose \mathcal{T} \in \mathcal{Y}. Let B_{\text{range }\mathcal{T}} = (\varphi_1, \dots, \varphi_m), with the correspond (v_1, \dots, v_m). Let \varphi_k = \mathcal{T}(\psi_k).
   Let \mathcal{K} be such that W' = \mathcal{K} \oplus \text{null } \mathcal{T}. Let B_{\mathcal{K}} = (\psi_1, \dots, \psi_m), with the correspond (w_1, \dots, w_m).
   Define T \in \mathcal{L}(V, W) by Tv_k = w_k, Tu = 0; k \in \{1, ..., m\}, u \in U.
    \forall \psi \in \operatorname{null} \mathcal{T}, \left[ T'(\psi) \right](v) = \psi(Tv) = \psi(a_1 w_1 + \dots + a_n w_n) = 0 = \left[ \mathcal{T}(\psi) \right](v).
    \forall k \in \{1, \dots, m\}, \lceil T'(\psi_k) \rceil(v) = \psi_k(Tv) = \psi_k(a_1w_1 + \dots + a_mw_m) = a_k = \varphi_k(v) = \lceil \mathcal{T}(\psi) \rceil(v).
                                                                                                                                                                             COMMENT: This is another proof of [3.109(a)]: dim range T = \dim \operatorname{range} T'.
• (4E 3.F.6) Suppose \varphi, \beta \in V'. Prove that \text{null } \varphi \subseteq \text{null } \beta \Longleftrightarrow \beta = c\varphi, \exists c \in \mathbf{F}.
  COROLLARY: null \varphi = null \beta \iff \beta = c\varphi, \exists c \in \mathbb{F} \setminus \{0\}.
SOLUTION:
    Using (3.B.29, 30).
    (a) Suppose \operatorname{null} \varphi \subseteq \operatorname{null} \beta. Suppose u \notin \operatorname{null} \beta, then u \notin \operatorname{null} \varphi.
          Now V = \text{null } \beta \oplus \text{span}(u) = \text{null } \varphi \oplus \text{span}(u). By (1.C Tips), \text{null } \beta = \text{null } \varphi. Let c = \frac{\beta(u)}{\varphi(u)}.
          OR. We discuss in two cases. If \operatorname{null} \varphi = \operatorname{null} \beta, then we are done.
          Otherwise, \operatorname{null} \beta \neq \operatorname{null} \varphi. Then \exists u' \in \operatorname{null} \beta \setminus \operatorname{null} \varphi.
          Now V = \operatorname{null} \varphi \oplus \operatorname{span}(u') = \operatorname{null} \varphi \oplus \operatorname{span}(u). \forall v \in V, v = w + au = w' + bu', \exists ! w, w' \in \operatorname{null} \varphi.
          Thus \beta(v) = a\beta(u), \varphi(v) = b\varphi(u'). Let c = \frac{a\beta(u)}{b\varphi(u')}. We are done.
          Notice that by (b) below, we have null \beta \subseteq \text{null } \varphi, u = u'. Thus contradicts the assumption.
    (b) Suppose \beta = c\varphi for some c \in \mathbb{F}. If c = 0, then null \beta = V \supseteq \text{null } \varphi, we are done.
          Otherwise,  \begin{cases} \forall v \in \operatorname{null} \varphi, \varphi(v) = 0 = \beta(v) \Rightarrow \operatorname{null} \varphi \subseteq \operatorname{null} \beta \\ \forall v \in \operatorname{null} \beta, \beta(v) = 0 = \varphi(v) \Rightarrow \operatorname{null} \beta \subseteq \operatorname{null} \varphi \end{cases} \Rightarrow \operatorname{null} \varphi = \operatorname{null} \beta. 
                                                                                                                                                                             OR. By (3.B.24), null \varphi \subseteq \text{null } \beta \iff \exists E \in \mathcal{L}(\mathbf{F}), \beta = E \circ \varphi. ( if E is inv, then null \varphi = \text{null } \beta)
    Now we show that [P] \exists E \in \mathcal{L}(F), \beta = E \circ \varphi \iff \exists c \in F, \beta = c\varphi. [Q].
   [P] \Rightarrow [Q]: Let c = E(1). Then \forall v \in V, \beta(v) = E(\varphi(v)) = \varphi(v)E(1) = c\varphi(v). (E(1) \neq 0)
    [Q] \Rightarrow [P]: Define E \in \mathcal{L}(\mathbf{F}) by E(x) = cx. Then \forall v \in V, \beta(v) = c\varphi(v) = E(\varphi(v)). (c \neq 0)
                                                                                                                                                                             5 Prove that (V_1 \times \cdots \times V_m)' and V'_1 \times \cdots \times V'_m are iso.
                                                                                                                              Using notations in (3.E.2).
  Define \varphi: (V_1 \times \cdots \times V_m)' \to V'_1 \times \cdots \times V'_m
          by \varphi(T) = (T \circ R_1, ..., T \circ R_m) = (R'_1(T), ..., R'_m(T)).
  Define \psi: {V'}_1 \times \cdots \times {V'}_m \to (V_1 \times \cdots \times V_m)'
          by \psi(T_1, ..., T_m) = T_1 S_1 + \cdots + T_m S_m = S'_1(T_1) + \cdots + S'_m(T_m)
```

32 Let $B_{\alpha} = (\alpha_1, ..., \alpha_m), B_{\alpha}' = (\varphi_1, ..., \varphi_m), B_{\beta} = (v_1, ..., v_m), B_{\beta}' = (\psi_1, ..., \psi_m).$ Prove that $\forall T \in \mathcal{L}(V)$, T is inv \iff the rows of $A = \mathcal{M}(T, B_{\alpha}, B_{\beta})$ form a basis of $\mathbf{F}^{1,n}$. **SOLUTION**: Note that T is invertible \iff T' is inv. And $A^t = \mathcal{M}(T', B_{\beta}', B_{\alpha}')$. (a) Suppose *T* is inv, so is *T'*. Because $(T'(\varphi_1), ..., T'(\varphi_m))$ is linely inde. Notice that $T'(\varphi_i) = A_{1,i}^t \psi_1 + \dots + A_{m,i}^t \psi_m$. By the (Δ) part in (4E 3.C.17), the cols of A^t , namely the rows of A, are linely inde. (b) Suppose the rows of A are linely inde, so are the cols of A^t . NOTICE that A^t has dim V' cols. Then $B_{\text{range }T'} = B_{V'} = (T'(\varphi_1), \dots, T'(\varphi_m))$. Thus T' is surj. Hence T' is inv, so is T. **33** Suppose $A \in \mathbf{F}^{m,n}$. Define $T: A \to A^t$. Prove that T is an iso of $\mathbf{F}^{m,n}$ onto $\mathbf{F}^{n,m}$ **SOLUTION**: By [3.111], T is linear. Note that $(A^t)^t = A$, $T \circ T = I$. • Define $T \in \mathcal{L}(\mathbf{F}^{1,n})$ by Tx = xA, where $A \in \mathbf{F}^{n,n}$, for all $x \in \mathbf{F}^{1,n}$. Let $B_e = (e_1, \dots, e_n)$ be the std basis of $\mathbf{F}^{1,n}$, with the dual basis $B_{\varphi} = (\varphi_1, \dots, \varphi_n)$. What is $\mathcal{M}(T)$? Because $Te_k = e_k A = \sum_{j=1}^n A_{k,j} e_j = \sum_{j=1}^n A_{j,k}^t e_j$. Now $\mathcal{M}(T) = A^t$. Note that $A = \mathcal{M}(A, B_e) \in \mathbf{F}^{n,n}$, $\mathcal{M}(Te_k) = \mathcal{M}(Te_k, B_e) \in \mathbf{F}^{n,1}$, $\mathcal{M}(e_k) = \mathcal{M}(e_k, B_e) \in \mathbf{F}^{n,1}, \ \mathcal{M}(e_k A) = \mathcal{M}(e_k A, B_e) \in \mathbf{F}^{n,1}.$ Now $\mathcal{M}(Te_k) = \mathcal{M}(T)_{\cdot,k} = \mathcal{M}(e_k A) = A^t_{\cdot,k} \Longrightarrow \mathcal{M}(T)\mathcal{M}(e_k) = \mathcal{M}(T)_{\cdot,k} = \mathcal{M}(e_k)\mathcal{M}(A).$ Then $\mathcal{M}(e_k)\mathcal{M}(A)$ does not make sense. And now??? FIXME: BASIS NOT AGREED • (4E 3.F.8) Suppose $B_V = (v_1, ..., v_n), B_{V'} = (\varphi_1, ..., \varphi_n).$ Define $\Gamma: V \to \mathbf{F}^n$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_n(v))$. Define $\Lambda: \mathbf{F}^n \to V$ by $\Lambda(a_1, \dots, a_n) = a_1v_1 + \dots + a_nv_n$. $\rbrace \Rightarrow \Lambda = \Gamma^{-1}$. • (4E 3.F.5) Suppose $T \in \mathcal{L}(V, W)$. $B_{\text{range }T} = (w_1, \dots, w_m)$. Hence $\forall v \in V$, $Tv = \varphi_1(v)w_1 + \cdots + \varphi_m(v)w_m$, $\exists ! \varphi_1(v), \ldots, \varphi_m(v)$, thus defining $\varphi_i: V \to \mathbf{F}$ for each $i \in \{1, ..., m\}$. Show that each $\varphi_i \in V'$.

SOLUTION:

$$\forall u,v \in V, \lambda \in \mathbf{F}, T(u+\lambda v) = \sum_{i=1}^m \varphi_i(u+\lambda v)w_i$$

$$= Tu + \lambda Tv = \left(\sum_{i=1}^m \varphi_i(u)w_i\right) + \lambda \left(\sum_{i=1}^m \varphi_i(v)w_i\right) = \sum_{i=1}^m \left(\varphi_i(u) + \lambda \varphi_i(v)\right)w_i. \quad \Box$$
OR. For each w_i , $\exists v_i \in V$, $Tv_i = w_i$, then (v_1, \dots, v_m) is linely inde.
Now we have $Tv = a_1 Tv_1 + \dots + a_m Tv_m$, $\forall v \in V, \exists ! a_i \in \mathbf{F}$. Let $B_{(\mathrm{range}\,T)'} = (\psi_1, \dots, \psi_m)$.
Then $\left(T'(\psi_i)\right)(v) = \psi_i \circ T(v) = a_i$. Where $T: V \to \mathrm{range}\,T$; $T': (\mathrm{range}\,T)' \to V'$.

Thus for each $i \in \{1, ..., m\}$, $\varphi_i = \psi_i \circ T = T'(\psi_i) \in V'$.

6 Define $\Gamma: V' \to \mathbf{F}^m$ by $\Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m))$, where $v_1, \dots, v_m \in V$. (a) Show that span $(v_1, ..., v_m) = V \iff \Gamma$ is inje. (b) Show that $(v_1, ..., v_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (a) Notice that $\Gamma(\varphi) = 0 \iff \varphi(v_1) = \dots = \varphi(v_m) = 0 \iff \text{null } \varphi = \text{span}(v_1, \dots, v_m).$ If Γ is inje, then $\Gamma(\varphi) = 0 \iff V = \text{null } \varphi = \text{span}(v_1, \dots, v_m)$. If $V = \operatorname{span}(v_1, \dots, v_m)$, then $\Gamma(\varphi) = 0 \iff \operatorname{null} \varphi = \operatorname{span}(v_1, \dots, v_m)$, thus Γ is inje. (b) Suppose Γ is surj. Then let $\Gamma(\varphi_i) = e_i$ for each i, where $(e_1, ..., e_m)$ is the std basis of \mathbf{F}^m . Then by (3.A.4), $(\varphi_1, \dots, \varphi_m)$ is linely inde. Now $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow 0 = \varphi_i(a_1v_1 + \cdots + a_mv_m) = a_i$ for each i. Suppose $(v_1, ..., v_m)$ is linely inde. Let $U = \text{span}(\varphi_1, ..., \varphi_m)$, $B_{U'} = (\varphi_1, ..., \varphi_m)$. Thus $\forall (a_1, \dots, a_m) \in \mathbf{F}^m, \exists ! \varphi = a_1 \varphi_1 + \dots + a_m \varphi_m$. Let W be such that $V = U \oplus W$. Now $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $\iota \in \mathcal{L}(V, U)$ by $\iota(v) = u_v$. So that $\Gamma(\varphi \circ i -) = (a_1, ..., a_m)$. OR. Let $(e_1, ..., e_m)$ be the std basis of \mathbf{F}^m and let $(\psi_1, ..., \psi_m)$ be the correspd dual basis. Define $\Psi : \mathbf{F}^m \to (\mathbf{F}^m)'$ by $\Psi(e_k) = \psi_k$. Then Ψ is an iso. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $Te_k = v_k$. Now $T(x_1, \dots, x_m) = T(x_1e_1 + \dots + x_me_m) = x_1v_1 + \dots + x_mv_m$. $\forall \varphi \in V', k \in \{1, \dots, m\}, \lceil T'(\varphi) \rceil(e_k) = \varphi(Te_k) = \varphi(v_k) = \lceil \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m \rceil(e_k)$ Now $T'(\varphi) = \varphi(v_1) \circ \psi_1 + \dots + \varphi(v_m) \circ \psi_m = \Psi(\varphi(v_1), \dots, \varphi(v_m)) = \Psi(\Gamma(\varphi))$. Hence $T' = \Psi \circ \Gamma$. By (3.B.3), (a) range $T = \operatorname{span}(v_1, \dots, v_m) = V \iff T' = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje. (b) $(v_1, ..., v_m)$ is linely inde $\iff T$ is inje $\iff T' = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj. • (4E 3.F.25) Define $\Gamma: V \to \mathbf{F}^m$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v))$, where $\varphi_1, \dots, \varphi_m \in V'$. (c) Show that span($\varphi_1, ..., \varphi_m$) = $V' \iff \Gamma$ is inje. (d) Show that $(\varphi_1, ..., \varphi_m)$ is linely inde $\iff \Gamma$ is surj. **SOLUTION:** (c) Notice that $\Gamma(v) = 0 \Longleftrightarrow \varphi_1(v) = \cdots = \varphi_m(v) = 0 \Longleftrightarrow v \in (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m).$ By Problem (4E 23) and (18), $\operatorname{span}(\varphi_1, \dots, \varphi_m) = V' \iff (\operatorname{null} \varphi_1) \cap \dots \cap (\operatorname{null} \varphi_m) = \{0\}.$ And $\operatorname{null} \Gamma = (\operatorname{null} \varphi_1) \cap \cdots \cap (\operatorname{null} \varphi_m)$. Hence Γ inje \iff $\operatorname{null} \Gamma = \{0\} \iff \operatorname{span}(\varphi_1, \dots, \varphi_m) = V'$. (d) Suppose $(\varphi_1, ..., \varphi_m)$ is linely inde. Then by Problem (31), $(v_1, ..., v_m)$ is linely inde. Thus $\forall (a_1, \dots, a_m) \in \mathbf{F}, \exists ! v = \sum_{i=1}^m a_i v_i \in V \Rightarrow \varphi_i(v) = a_i, \Gamma(v) = (a_1, \dots, a_m)$. Hence Γ is surj. Suppose Γ is surj. Let (e_1, \dots, e_m) be the std basis of \mathbf{F}^m . Suppose $v_i \in V$ such that $\Gamma(v_i) = (\varphi_1(v_i), \dots, \varphi_m(v_i)) = e_i$, for each i. Then $(v_1, ..., v_m)$ is linely inde. And $\varphi_i(v_k) = \delta_{i,k}$. Now $a_1 \varphi_1 + \dots + a_m \varphi_m = 0 \Rightarrow 0(v_i) = a_i$ for each i. Hence $(\varphi_1, \dots, \varphi_m)$ is linely inde. Or. Let $\operatorname{span}(v_1,\ldots,v_m)=U$. Then $B_{U'}=(\varphi_1|_U,\ldots,\varphi_m|_U)$. Hence $(\varphi_1,\ldots,\varphi_m)$ is linely inde. OR. Similar to Problem (6), we get (e_1, \dots, e_m) , (ψ_1, \dots, ψ_m) and the iso Ψ . $\forall (x_1,\ldots,x_m) \in \mathbf{F}^m, \Gamma'(\Psi(x_1,\ldots,x_m)) = \Gamma'(\Psi(x_1e_1+\cdots+x_me_m)) = (x_1\psi_1+\cdots+x_m\psi_m) \circ \Gamma.$ $\forall v \in V, \left[\Gamma'\big(\Psi\big(x_1,\ldots,x_m\big)\big)\right]\big(v\big) = \left[x_1\psi_1 + \cdots + x_m\psi_m\right]\big(\Gamma(v)\big) = \left[x_1\varphi_1 + \cdots + x_m\varphi_m\right]\big(v\big).$ Now $\Gamma'(\Psi(x_1,\ldots,x_m)) = x_1\varphi_1 + \cdots + x_m\varphi_m$. Define $\Phi: \mathbf{F}^m \to (\mathbf{F}^m)'$ by $\Phi = \Psi \circ \Gamma$. $\Phi(x_1, \dots, x_m) = x_1 \varphi_1 + \dots + x_m \varphi_m$. Thus by (4E 3.B.3), (c) the inje of Φ correspds to $(\varphi_1, \dots, \varphi_m)$ spanning V'; $\nabla \Phi = \Psi \circ \Gamma$ inje $\iff \Gamma$ inje. (d) the surj of Φ corresponds to $(\varphi_1, \dots, \varphi_m)$ being linely inde; $\chi \Phi = \Psi \circ \Gamma$ surj $\iff \Gamma$ surj.

35 Prove that $(\mathcal{P}(F))'$ and F^{∞} are iso.

SOLUTION:

Define
$$\theta \in \mathcal{L}((\mathcal{P}(\mathbf{F}))', \mathbf{F}^{\infty})$$
 by $\theta(\varphi) = (\varphi(1), \varphi(z), \dots, \varphi(z^n), \dots)$.

Inje:
$$\theta(\varphi) = 0 \Rightarrow \forall z^k$$
 in the basis $(1, z, \dots, z^n)$ of $\mathcal{P}_n(\mathbf{F})$ $(\forall n)$, $\varphi(z^k) = 0 \Rightarrow \varphi = 0$.

NOTICE that
$$\forall p \in \mathcal{P}(\mathbf{R}), \exists ! a_i \in \mathbf{F}, m = \deg p, \ p = a_0 z + a_1 z + \dots + a_m z^m \in \mathcal{P}_m(\mathbf{F}).$$

Surj:
$$\forall (a_k)_{k=1}^{\infty} \in \mathbf{F}^{\infty}$$
, let ψ be such that $\forall k, \psi(z^k) = a_k$ [by [3.5]] and thus $\theta(\psi) = (a_k)_{k=1}^{\infty}$.

Comment: Notice that $\mathcal{P}(F)$ and F^{∞} are not iso, so are $\mathcal{P}(F)$ and $(\mathcal{P}(F))'$

But if we let
$$\mathbf{F}^{\infty} = \{(a_1, \dots, a_n, \underbrace{0, \dots, 0, \dots}_{\text{all zero}}) \in \mathbf{F}^{\infty} \mid \exists ! n \in \mathbf{N}^+ \}$$
. Then $\mathcal{P}(\mathbf{F})$ and \mathbf{F}^{∞} are iso.

7 Show that the dual basis of $(1, x, ..., x^m)$ of $\mathcal{P}_m(\mathbf{R})$ is $(\varphi_0, \varphi_1, ..., \varphi_m)$, where $\varphi_k(p) = \frac{p^{(k)}(0)}{k!}$. Here $p^{(k)}$ denotes the k^{th} derivative of p, with the understanding that the 0^{th} derivative of p is p.

SOLUTION:

$$\forall j, k \in \mathbf{N}, \ (x^{j})^{(k)} = \begin{cases} j(j-1) \dots (j-k+1) \cdot x^{(j-k)}, & j \ge k. \\ j(j-1) \dots (j-j+1) = j! & j = k. \\ 0, & j \le k. \end{cases}$$
Then $(x^{j})^{(k)}(0) = \begin{cases} 0, \ j \ne k. \\ k!, \ j = k. \end{cases}$

OR. Because
$$\forall j, k \in \{1, ..., m\}$$
 such that $j \neq k$, $\varphi_k(x^j) = \frac{(x^j)^{(k)}(0)}{k!} = \frac{0}{k!} = 0$; $\varphi_k(x^k) = \frac{(x^k)^{(k)}(0)}{k!} = 1$.

Thus $\frac{p^{(k)}(0)}{k!}$ act exactly the same as φ_k on the same basis $(1,\ldots,x^m)$, hence is just another def of φ_k .

EXAMPLE: Suppose $m \in \mathbb{N}^+$. By [2.C.10], $B = (1, x - 5, ..., (x - 5)^m)$ is a basis of $\mathcal{P}_m(\mathbb{R})$.

Let
$$\varphi_k = \frac{p^{(k)}(5)}{k!}$$
 for each $k = 0, 1, ..., m$. Then $(\varphi_0, \varphi_1, ..., \varphi_m)$ is the dual basis of B .

- **34** The double dual space of V, denoted by V'', is defined to be the dual space of V'. In other words, $V'' = \mathcal{L}(V', \mathbf{F})$. Define $\Lambda : V \to V''$ by $(\Lambda v)(\varphi) = \varphi(v)$.
 - (a) Show that Λ is a linear map from V to V''.
 - (b) Show that if $T \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$, where T'' = (T')'.
 - (c) Show that if V is finite-dim, then Λ is an iso from V onto V''.

Suppose V is finite-dim. Then V and V' are iso, and finding an iso from V onto V' generally requires choosing a basis of V. In contrast, the iso Λ from V onto V'' does not require a choice of basis and thus is considered more natural.

SOLUTION:

(a)
$$\forall \varphi \in V', v, w \in V, a \in F, (\Lambda(v+aw))(\varphi) = \varphi(v+aw) = \varphi(v) + a\varphi(w) = (\Lambda v)(\varphi) + a(\Lambda w)(\varphi).$$

Thus $\Lambda(v+aw) = \Lambda v + a\Lambda w$. Hence Λ is linear.

(b)
$$(T''(\Lambda v))(\varphi) = ((\Lambda v) \circ T')(\varphi) = (\Lambda v)(T'(\varphi))$$

= $(T'(\varphi))(v) = (\varphi \circ T)(v) = \varphi(Tv) = (\Lambda(Tv))(\varphi).$

Hence
$$T''(\Lambda v) = (\Lambda(Tv)) \Rightarrow T'' \circ \Lambda = \Lambda \circ T$$
.

(c) Suppose
$$\Lambda v = 0$$
. Then $\forall \varphi \in V'$, $(\Lambda v)(\varphi) = \varphi(v) = 0 \Rightarrow v = 0$. Thus Λ is inje. \mathbb{Z} Because V is finite-dim. dim $V = \dim V'$. Hence Λ is an iso.