Author: Asher Voris

Description: Requirement Specifications

| Table of Contents                          |   |
|--------------------------------------------|---|
| Revision History                           | 3 |
| List of Acronyms and Terms                 | 4 |
| 1.1 References                             | 5 |
| 1.2 Purpose                                |   |
| 1.3 Scope                                  |   |
| 1.4 Overview of Document                   |   |
| 2.1 Product Perspective                    |   |
| 2.2 System Interfaces                      |   |
| 2.3 Software Interfaces                    |   |
| 2.4 Hardware Interfaces                    |   |
| 2.5 Single System Diagram                  |   |
| 2.6 Function Priority                      |   |
| 2.7 User Characteristics                   |   |
| 2.8 Design Constraints                     |   |
| 2.8.1 Developer Imposed Design Constraints |   |
| 2.9 Assumptions and Dependencies           |   |
| 3.1 Marketing Requirements                 |   |
| 3.2 Engineering Requirements               |   |
| 3.2.1 Power System Specification           |   |
| 3.2.2 Display System Specification         |   |
| 3.2.3 Sensor System Specification          |   |
| 3.2.4 Control System Specification         |   |

# Requirement Specifications pg. 2

| 3.2.5 User Interface System Specification           |  |
|-----------------------------------------------------|--|
| 3.2.6 PCB Specification                             |  |
| 4.1 Use Case 1: General Usage                       |  |
| 4.1.1 Use Case 1 extension: Power On                |  |
| 4.1.2 Use Case 1 extension: Temperature Acquisition |  |
| 4.1.3 Use Case 1 extension: Unit Conversion         |  |

| Revision History |                  |
|------------------|------------------|
| 12/05/2021       | Initial Creation |

| List of Acronyms and Terms |  |  |
|----------------------------|--|--|
|                            |  |  |

### 1.0 References, Purpose, Scope and Overview of Document

#### 1.1 References

### 1.2 Purpose

The purpose of this document is to outline the various system requirements for the Electronic Business Card (EBC) Project. It is intended to be a brief overview to developers or any party interested in the project.

### 1.3 Scope

Traditional business cards are an effective way of giving a potential client, employer or important person one's contact information as well as a brief description of one's profession. However, traditional business cards can easily be forgotten or lost in a large amount of business cards. A successful business card should not only successfully and concisely relay information to the recipient, it should also be a memorable card. The scope of this project is to create a product that does exactly that: concisely relays information in an unforgettable manner.

#### 1.4 Document Overview

This document is split into the following sections. The current section, section one, outlines the document and product. Section two outlines the system at a broad level overview. Section three details the marketing and engineering requirements of the product. Section four delineates potential use cases of the product.

### 2.0 System Overview, Function Priority, User Characteristics, and Design Constraints

## **2.1 Product Perspective**

The Electronic Business Card can be viewed as a set of four primary subsystems with an optional fifth subsystem. These subsystems are as follows: the power subsystem, the display subsystem, the sensor subsystem, the control system, and the optional user interface subsystem. The EBC will implement a low power design incorporating a temperature sensor, low power segmented LCD, and solar power functionality to create a memorable solar powered thermometer business card. The system will be powered purely by solar to eliminate the need for a bulky battery and excessive user interaction.

### 2.2 System Interfaces

| System Interfaces        |                                                                                               |
|--------------------------|-----------------------------------------------------------------------------------------------|
| Power System Interface   | Gathers energy from ambient light to power the system                                         |
| Display System Interface | Displays temperature data to the user                                                         |
| Sensor System Interface  | Gathers temperature information from the air around the user or from the user's skin directly |
| Control System Interface | FPGA driven control system                                                                    |
| User System Interface    | Allows the user to change the data output from imperial to metric units                       |

### 2.3 Software Interfaces

| Software Interfaces |  |
|---------------------|--|
| Not Applicable      |  |

### 2.4 Hardware Interfaces

| Hardware Interfaces    |                                                                                    |
|------------------------|------------------------------------------------------------------------------------|
| Power System Interface | The [TBD] solar cells will gather energy from ambient light. [TBD] boost converter |

|                          | will boost this voltage to a level the rest of the system can use.                                                                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Display System Interface | The [TBD] direct drive segmented LCD will be used to display the temperature data to the user. The silkscreen of the product will be used to display the business card information to the user. |
| Sensor System Interface  | The [TBD] temperature sensor will communicate with the control system over I2C.                                                                                                                 |
| Control System Interface | The [TBD] FPGA will drive the system arbitrating interactions between the sensor, display, and user interfaces while being powered by the power system.                                         |
| User Interface           | PCB based capacitive buttons will be implemented using the [TBD] FPGA's differential inputs to create a method for the user to switch the display output between imperial and metric units.     |

## 2.5 Single System Diagram



# 2.6 Function Priority

| Function                    | Priority  |
|-----------------------------|-----------|
| Solar Powered Functionality | Very High |
| Low Power Display System    | Very High |
| Temperature Sensor System   | Very High |
| Control System              | Very High |
| User Interface              | Moderate  |

## 2.7 User Characteristics

The user characteristic can be split into two coequal groups: the distributor and the recipient. The distributor is the person who hands out the product and does not need to interact with the product aside from specifying the information the product should display at the time of production. The recipient is a potential client, employer, or otherwise and important person as deemed by the distributor. They interact with the product by gathering information from the product. The product's solar powered thermometer system creates a more memorable business card and distinguishes the distributor from other potential service providers or potential employees.

| Users              | Distributor                                                    | Recipient                                                                       |
|--------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|
| Required Knowledge | What knowledge should be put on the silkscreen of the product. | None                                                                            |
| Responsibilities   | None                                                           | Must provide the product with sufficient ambient lighting to power the product. |
| Success Criteria   | Delivers the product to the recipients.                        | Remembers the distributor's business card over other business cards.            |
| Deliverables       | None                                                           | Product Provides Distributor Information and Temperature                        |
| User Benefits      | Card is more easily remembered than others                     | Card displays temperature                                                       |

### 2.8 Design Constraints

### **Design Constraints**

The product must be size constrained to 3.5x2 inches since that is the standard dimensions of a business card.

The product must not have a greater nominal thickness than  $3\pm1$ mm to keep the product marginally thin compared to other business cards.

The product's price per unit in quantities of 10 must not exceed  $35\pm5$  dollars.

## 2.8.1 Developer Imposed Design Constraints

**Developer Imposed Design Constraints** 

The product must make use of an FPGA as its core control system.

The product must make use of at least one BGA package with a greater pin footprint than 4x4.

The PCB must not exceed four layers in thickness.

At least one instance of I2C, SPI, or UART must be implemented on the FPGA.

A low power segmented LCD must be directly driven with the FPGA.

An external memory may not be used to house the configuration file for the FPGA, the internal NVM block must be used.

### 2.9 Assumptions and Dependencies

- 2.9.1 It is assumed the final product will meet the specified dimensions and cost constraints.
- 2.9.2 The device's functioning is dependent on the ambient light provided to the device as well as the range of temperature presented to the sensor.

# 3.0 Requirement Specifications

# 3.1 Marketing Requirements

| Marketing Requirements |                                                                                                           |
|------------------------|-----------------------------------------------------------------------------------------------------------|
| 1                      | Device must be 3.5 by 2 inches in size to meet the same form factor as a standard business card           |
| 2                      | Device must be no thicker than 4mm in order to not be substantially thicker than a standard business card |
| 3                      | Device must not exceed \$40 per unit in quantities of 10.                                                 |
| 4                      | User's business card information must be easily readable on the product.                                  |

# 3.2 Engineering Requirements

# **3.2.1 Power System Requirements**

| Power System Requirements                                                  |                                                                                                                       |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Specification                                                              | Justification                                                                                                         |
| System must be capable of providing 3.3V                                   | Standard component maximum voltage is 3.3V                                                                            |
| System must be capable of providing 25mA of current                        | Preliminary feasibility suggests that low power FPGAs need at least 25mA of current to operate                        |
| System must be capable of providing other sufficient voltages for the FPGA | FPGAs typically require core and IO voltages                                                                          |
| System must be capable of operating in at least bright office environments | For the device to function from purley solar power it is necessary that it operates in its typical indoor environment |

# **3.2.2 Display System Requirements**

| Display System Requirements |
|-----------------------------|
|-----------------------------|

| Specification                                                           | Justification                                                                                 |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Display must be low power                                               | A high power display is not suitable for a solar powered application                          |
| Display must be able to display at least three digits and one character | The temperature and unit must be displayed as well as the sign if the measurement is negative |
| Display must operate at or below 3.3V                                   | Display needs to operate at maximum power system voltage                                      |

# **3.2.3** Sensor System Requirements

| Sensor System Requirements                              |                                                               |  |
|---------------------------------------------------------|---------------------------------------------------------------|--|
| Specification                                           | Justification                                                 |  |
| Sensor must be accurate within two degrees Fahrenheit   | The sensor needs to be reasonably accurate                    |  |
| Sensor must be able to measure from 0 to 110 Fahrenheit | The sensor should have a reasonable operating range           |  |
| Sensor must communicate over I2C, UART, or SPI          | One of these protocols is required by the design constraints. |  |
| Sensor must operate at or below 3.3V                    | Sensor needs to operate at maximum power system voltage       |  |

# **3.2.4** Control System Requirements

| Control System Requirements     |                                                                                           |  |
|---------------------------------|-------------------------------------------------------------------------------------------|--|
| Specification                   | Justification                                                                             |  |
| System must use and FPGA        | Specified by the design constraints                                                       |  |
| A low power FPGA should be used | Since system is solar powered a large high power FPGA is not suitable for the application |  |
| FPGA must have a NVM block      | The design constraints specify not external memory may be used                            |  |

| FPGA must have at least one differential input         | Since the optional user interface will use a capacitive button, a differential input must be present |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| FPGA must operate at or below 3.3V                     | FPGA needs to operate at or below maximum power system voltage                                       |
| Peak current draw may not exceed 15mA during operation | FPGA cannot overdraw the power system                                                                |

# **3.2.5** User Interface System Requirements

| User Interface System Requirements                              |                                                                                                   |  |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Specification                                                   | Justification                                                                                     |  |
| Interface will be implemented using an on PCB capacitive button | Minimal component cost if added to the design                                                     |  |
| System must change the units from Farenheit to Celsius          | Depending on the target recipient, the user may wish to view the temperature in a different unit. |  |

# 3.2.6 PCB Requirements

| PCB Requirements                                |                                                                                          |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Specification                                   | Justification                                                                            |  |
| The PCB must not exceed four layers             | A PCB with more than four layers is substantially expensive                              |  |
| A BGA package of at least 4x4 must be used      | Specified by the design constraints                                                      |  |
| One side of the PCB should house the components | The distributor's information will need to be present on the reverse side of the product |  |
| PCB should not exceed 3.5x2 inches              | Must meet the size requirements                                                          |  |

#### 4.0 Use Cases

#### 4.1 General Use Case

Scope:

Normal Operation

Level:

User Level

Primary Actors:

User, Device

Stakeholders/Interests:

User

Preconditions:

User is in an environment with suitable lighting condition and with temperature within range of the sensor

Success Guarantee:

User is able to view the information on the card as well as seeing the ambient (or their body) temperature displayed on the device's display.

Main Success Scenario:

#### **4.1.1 Power On**

- -User brings the device into an environment with suitable lighting conditions.
- -Buck/Boost/Buck-Boost converter regulates solar voltage to appropriate level.
- -The FPGA successfully configures
- -The sensor is successfully configured by the FPGA master

### **4.1.2** Temperature Acquisition

- -The sensor acquires the temperature of the environment it is exposed to.
- -The sensor asserts an interrupt to the FPGA master.
- -The FPGA master acknowledges the interrupt and initiates a data transfer between itself and the slave.
- -The FPGA receives the temperature from the slave and stores it in local registers.

### **4.1.3 Displaying Temperature**

- -The FPGA drives the display appropriately to show the measured temperature
- -If the temperature is out of range "XXX" (or similar) is displayed.
- -The user can then view the temperature

#### Extensions:

### 4.1.4 Unit Conversion

- -When the user desires to change the unit of measurement they may interact with the User Interface System to change the unit of measurement
- -The user presses the capacitive button
- -The FPGA interprets this press using one of its differential inputs
- -The FPGA initiates a data transfer to the sensor

- -The FPGA requested the sensor to change its configuration to match the other unit (for example if current unit if F and user presses button unit becomes C and vice versa)
- -Flow 4.1.2 is executed
- -Flow 4.1.3 is executed with the change reflected in the displayed unit