Capitolo 100

Richiami di algebra elementare

100.1 Proprietà dedotte dagli assiomi sulle operazioni

Proposizione 100.1 (Legge di annullamento del prodotto) $Per\ ogni\ a,b\in\mathbf{R}$

$$a \cdot b = 0 \Longrightarrow a = 0 \lor b = 0.$$

Dunque, tenuto conto della Proposizione ..., risulta che

$$a \cdot b = 0 \iff a = 0 \lor b = 0.$$

Proposizione 100.2 Per ogni $a \in \mathbf{R}$

$$-(-a)=a$$
.

Proposizione 100.3 Per ogni $a, b \in \mathbf{R}$

$$(-a)b = -ab = a(-b)$$

e quindi

$$(-a)(-b) = ab.$$

Osservazione 100.4 Si potrebbe pensare alla ben nota regola dei segni; in realtà dobbiamo ricordare che -x non denota un numero negativo, ma l'opposto di x, quale che sia $x \in \mathbf{R}$.

Proposizione 100.5 Per ogni $a \in \mathbb{R}$, $a \neq 0$

$$(a^{-1})^{-1} = a.$$

Osservazione 100.6 Si dimostra immediatamente che, per ogni $a,b \in \mathbf{R},\ ab \neq 0$

$$(ab)^{-1} = a^{-1}b^{-1}$$

da cui si deduce che

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$

Osservazione 100.7 È un errore abbastanza frequente scrivere uguaglianze del tipo:

$$\frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}.$$

Proposizione 100.8 Per ogni $a \in \mathbb{R}$, $a \neq 0$

$$-(a^{-1}) = (-a)^{-1}$$
.

Dimostrazione. Abbiamo

$$(-a)(-a^{-1}) = a a^{-1} = 1$$

e quindi $-(a^{-1})$ è l'inverso di -a.

100.2 Manipolazione di uguaglianze

Proposizione 100.9 (manipolazione di uguaglianze) $Per \ ogni \ a,b,c \in \mathbf{R}$

$$a+b=c \iff a=c-b.$$

In oltre, se $b \neq 0$,

$$a \ b = c \iff a = c/b.$$

Osservazione 100.10 Si tratta dei cosiddetti principi di risoluzione delle equazioni:

- si può trasportare un addendo da un membro all'altro cambiandolo di segno;
- si può trasportare un fattore (o il divisore) da un membro all'altro portandolo dal numeratore al denominatore (e viceversa).

Quando diciamo "si può" non ci riferiamo semplicemente ad una possibilità materiale: questo modo di dire contiene un sottinteso "ottenendo un'equazione equivalente".

Osservazione 100.11 Questi principi sono alla base della risoluzione dell'equazione algebrica di primo grado

$$ax + b = 0.$$

Supponendo ovviamente $a \neq 0$, la soluzione di () è unica x = -b/a.

Allo stesso modo si dimostrano alcune regole di semplificazione:

$$\begin{array}{ccc} a\pm b=c\pm b &\Longrightarrow & a=c\\ ab=cb,\; b\neq 0 &\Longrightarrow & a=c\\ \frac{a}{b}=\frac{c}{b} &\Longrightarrow & a=c \end{array}$$

100.3 Proprietà delle disuguaglianze

Proposizione 100.12 Per ogni $a, b \in \mathbf{R}$

$$a+b \le c \iff a \le c-b;$$

 $a \le b+c \iff a-c \le b.$

In particolare

$$\begin{array}{rcl} a & \leq & b \iff -b \leq -a \\ 0 & \leq & a \iff -a \leq 0 \\ a & \leq & 0 \iff 0 \leq -a. \end{array}$$

Osservazione 100.13 Si tratta di un principio di risoluzione delle disequazioni: si può trasportare ...

Dimostrazione. Basta sommare ad ambo i membri -b (risp -a).

Osservazione 100.14 Una regola di semplificazione è ovvia

$$a \pm b \le c \pm b \Longrightarrow a \le c$$

(basta sommare ad ambo i membri $\mp b$).

Proposizione 100.15 Per ogni $a, b, c \in \mathbb{R}$ con $c \leq 0$ risulta che

$$a \le b \Longrightarrow ac \ge bc$$

Dimostrazione. Abbiamo $-c \ge 0$. Per l'Assioma abbiamo

$$a(-c) \le b(-c)$$

e quindi

$$-ac \le -bc$$

da cui segue la tesi. \blacksquare

Proposizione 100.16 (regola dei segni) $Per \ ogni \ a,b \in \mathbb{R}$

$$\begin{array}{rcl} 0 & \leq & a, \; 0 \leq b \Longrightarrow 0 \leq ab, \\ a & \leq & 0, \; 0 \leq b \Longrightarrow ab \leq 0, \\ a & \leq & 0, \; b \leq 0 \Longrightarrow 0 \leq ab. \end{array}$$

Introduciamo una notazione: per ogni $x \in \mathbf{R}$ poniamo

$$x^2 = x \cdot x$$
.

Proposizione 100.17 Per ogni $x \in \mathbf{R}$ risulta $x^2 \ge 0$. Inoltre $x^2 = 0$ se e solo se x = 0.

Corollario 100.18 Risulta 1 > 0.

Proposizione 100.19 Per ogni $a \in \mathbb{R}$, $a \neq 0$ risulta

$$a > 0 \iff 1/a > 0,$$

 $a < 0 \iff 1/a < 0.$

Dimostrazione. Osservato che

$$a\frac{1}{a} = 1 > 0$$

si deduce che $a \in 1/a$ hanno lo stesso segno

Proposizione 100.20 Per ogni $a, b, c \in \mathbb{R}$ con c > 0, risulta che

$$a \le b \Longrightarrow \frac{a}{c} \le \frac{b}{c}$$
.

Osservazione 100.21 In questo modo, tenuto conto dell'Assioma... si completa il secondo principio di risoluzione delle disequazioni: si possono moltiplicare o dividere ambo i membri di una disequazione per un numero strettamente positivo, conservando il verso della disuguaglianza.

Proposizione 100.22 Per ogni $a, b, c \in \mathbb{R}$ con c < 0 risulta che

$$a \le b \Longrightarrow \frac{a}{c} \ge \frac{b}{c}$$

Osservazione 100.23 La .. e la .. esprimono il terzo principio di risoluzione delle disequazioni: si possono moltiplicare o dividere ambo i membri di una disuguaglianza per un numero negativo, "cambiando il verso" alla disuguaglianza stessa.

Corollario 100.24 Per ogni $a, b \in \mathbf{R}$ risulta

$$0 < a \le b \implies 0 < \frac{1}{b} \le \frac{1}{a}$$
$$a \le b < 0 \implies \frac{1}{b} \le \frac{1}{a} < 0$$

Proposizione 100.25 (somma di disuguaglianze) $Per\ ogni\ a,b,c,d\in\mathbf{R}$

$$\begin{array}{lll} a & \leq & b, \; c \leq d \Longrightarrow a+c \leq b+d. \\ a & < & b, \; c \leq d \Longrightarrow a+c < b+d. \end{array}$$

Dimostrazione. Nel secondo caso, se fosse a + c = b + d si otterrebbe la contraddizione

$$b = a + c - d \le a < b$$

Osservazione 100.26 Ovviamente la proposizione precedente si generalizza alla somma di più disuguaglianze. Corollario 100.27 Per ogni $a,b \in \mathbf{R}$

$$\begin{array}{lll} 0 & \leq & a, \; 0 \leq b \Longrightarrow 0 \leq a+b, \\ 0 & < & a, \; 0 \leq b \Longrightarrow 0 < a+b. \end{array}$$

 $Consegue\ che$

$$0 \le a, \ 0 \le b, \ a+b=0 \Longrightarrow a=b=0.$$

Osservazione 100.28 Ovviamente questa proposizione si generalizza al caso di più addendi.