Forging Page 1 of 3

Description

Process schematic

Figure caption

Closed die

The process

In forging a metal ingot is squeezed to shape by dies that subject it to large plastic deformation. Nearly 90% of all steel products are either forged or rolled. In hot die forging a heated blank is formed between open or closed dies in a single compressive stroke. Often a succession of dies is used to create the final shape. In cold rolling and forging the metal blank is initially cold, although deformation causes some heating.

The greatest precision and shape complexity is given by closed-die forging, illustrated below, but the size of component is limited to about 20 kg. Open-die forging is less precise, but can be applied to much larger components (up to 5000 kg).

Material compatibility

Metals - ferrous	✓
Metals - non-ferrous	✓

Shape

Non-circular prismatic	✓
Solid 3-D	✓

Economic compatibility

Relative tooling cost	high
Relative equipment cost	high

Labor intensity	low
Economic batch size (units)	1e3 - 1e5

Physical and quality attributes

Mass range	0.022	-	1.1e4	lb
Range of section thickness	118	-	9.84e3	mil
Tolerance	7.87	-	39.4	mil
Roughness	0.126	-	0.492	mil
Surface roughness (A=v. smooth)	Α			

Process characteristics

Primary shaping processes	✓
Discrete	✓

Cost model and defaults

Relative cost index (per unit) * 16.5 32.3

Parameters: Material Cost = 3.63USD/lb, Component Mass = 2.2lb, Batch Size = 1e3, Overhead Rate = 150USD/hr, Discount Rate = 5%, Capital Write-off Time = 5yrs, Load Factor = 0.5

Material Cost=3.63USD/lb, Component Mass=2.2lb, Overhead Rate=150USD/hr, Capital Write-off Time=5yrs, Load Factor=0.5, Discount Rate=5%

Capital cost	3.28e5	-	8.2e5	USD
Material utilization fraction	0.85	-	0.95	
Production rate (units)	100	-	500	/hr
Tooling cost	4.92e3	-	1.48e4	USD
Tool life (units)	* 1e3	-	1e6	

Supporting information

Design guidelines

Forging Page 3 of 3

Forging produces components with particularly good mechanical properties because of the way in which the deformation refines the structure and reduces the porosity. During hot forging the metal recrystallizes, remaining relatively soft, and its surface may oxidize. Cold forging, by contrast, impart a high surface finish and cause extreme work hardening, raising the strength of the product but limiting the extent of deformation. Complex shapes. Re-entrant angles, undercuts and inserts are not possible.

Technical notes

Most metals can be forged, but forgeability varies widely. The most easily forged include aluminum, magnesium, copper alloys and steels. Closed die forging allows more complex shapes and closer tolerances than does open die forging.

Typical uses

Forging is used to shape highly stressed mechanical parts such as aircraft components, connecting rods, crankshafts, gear blanks, hand and machine tools, valve bodies, tube and hose bodies.

The economics

Dies for forging have to be made from exceptionally hard materials and are expensive, meaning that shape rolling and closed die forging are suitable only for large batches.

The environment

The lubricants used in rolling and forging generate oil mist, and unpleasant vapors, requiring good

Links

MaterialUniverse

Reference