Q1

1 Point

Which of the following best defines a Bernoulli distribution?

- A distribution representing multiple trials with two possible outcomes
- A distribution representing a single trial with two possible outcomes
- A distribution that models continuous outcomes
- A distribution that represents the sum of outcomes from multiple trials

Q2

1 Point

Which of the following scenarios is best modeled by a binomial distribution?

- Flipping a coin 10 times and counting the number of heads
- O Guessing if a student will pass or fail an exam
- O Choosing 5 random cards from a deck
- Measuring the height of a randomly chosen individual

Q3

1 Point

For a binomial distribution with parameters n and p, its variance σ^2 is:

- $\bigcirc n(1-p)$
- **●** np(1-p)
- $\bigcirc n/p$
- $\bigcirc np$

Q4

1 Point

The graph of a normal distribution is:

- O Uniformly flat
- Symmetric and bell-shaped
- O Skewed to the right
- Skewed to the left

Q5

1 Point

The Z-score represents: Which of the following best defines a random variable?

- O The variance of the distribution
- The probability of a given event
- The skewness of a distribution
- The number of standard deviations that an observation falls above or below the mean

Q6

1 Point

When approximating a binomial distribution with a normal distribution, which of the following conditions is NOT strictly necessary?

- \bigcirc $np \ge 10$
- \bigcirc The mean μ is known
- $\bigcirc n(1-p) \geq 10$

Q7 1 Point
The Law of Large Numbers states that:
 The sum of many independent and identically distributed random variables will be normally distributed
Larger samples always give more accurate results than smaller samples
\bigcirc As the number of trials in an experiment increases, the variance of the results also increases
Q8 1 Point
The Central Limit Theorem primarily asserts that:
 The distribution of a sample mean approaches a normal distribution as the sample size increases
 The sum of a large number of independent and identically distributed random variables is always equal to the population mean
The mean of a large number of independent and identically distributed random variables is normally distributed
O The variance of a sample becomes zero as the sample size becomes infinitely large
Q9 1 Point

If $Z_1, Z_2, ..., Z_k$ are independent standard normal random variables, then the sum of their squares is distributed as:

- O T-distribution
- O F-distribution
- Chi-squred distribution with k degrees of freedom
- O Normal distribution

Q10 1 Point

The t-distribution is used instead of the normal distribution when:

- The sample size is small and population variance is unknown
- O There are no outliers in the data
- O The sample size is large
- The population variance is known

Q11

1 Point

If S_1^2 and S_2^2 are the variances of two independent samples from chi-squared distributions with d_1 and d_2 degrees of freedom, respectively, then the ratio S_1^2/S_2^2 follows:

- A chi-squared distribution
- lacktriangle An F-distribution with d_1 and d_2 degrees of freedom
- A standard normal distribution
- A t-distribution