

Aprendizaje automático Introducción

Varios

- Programa del curso
- Herramientas y lenguaje de programación
 - Python con Pytorch y otras bibliotecas
 - [}] Anaconda
 - https://colab.research.google.com/
- Administrativos:
 - Contacto: <u>maria.mora@itcr.ac.cr</u>
 - Asistente: Ricardo Víquez (<u>rychield@gmail.com</u>)
 - TecDigital
 - No se reciben tareas por otro medio
 - El asistente tiene 10 días para entregar resultados de una tarea.
 - Sitio alterno para materiales (por si hay problemas con el TecDigital)
 - https://drive.google.com/drive/folders/
 1Fmi7Zin_0GjXpNlGnDLvkQGM5MWUDgMe?usp=sharing

Contenidos

- Introducción
- Formas de aprendizaje
- Flujo de trabajo

Aprendizaje automático (ML)

Parte fundamental de las Ciencia de Datos

 Mezcla de aplicación de conocimientos en matemática, estadística, y computación, usando grandes cantidades de datos, en un dominio específico.

Source: Palmer, Shelly. Data Science for the C-Suite. New York: Digital Living Press, 2015. Print.

Aprendizaje automático (ML)

Definición

Aprendizaje automático es el estudio de algoritmos que:

- Mejoran su desempeño P
- Al realizar una tarea T
- La mejora se basa en experiencia E

Una tarea de aprendizaje bien definida viene dada por <P,T,E>

Tom Mitchell (1998)

Tipos de aprendizaje automático (supervisado)

- Clasificación: Proceso de asignar una muestra \overrightarrow{x}_i una etiqueta j, y en general para un conjunto de muestras X, obtener un conjunto de etiquetas T
- Si todas las etiquetas $j \in \mathbb{N}$ se realiza una clasificación y si $j \in \mathbb{R}$ se realiza una regresión

Experiencia: Conjunto de muestras

Conjunto de muestras X: Conjunto de M muestras de un arreglo de características:

$$X = \{\overrightarrow{x}_1, \overrightarrow{x}_2, \dots, \overrightarrow{x}_M\}$$

Por ejemplo, ¿cual es el patrón para las muestras de la verdosidad $(\dim(\overrightarrow{x}_i) = 1 = N)$?:

$$X = \{\overrightarrow{x}_1 = 253, \overrightarrow{x}_2 = 254, \overrightarrow{x}_3 = 100, \overrightarrow{x}_4 = 255\}$$

Verdad conocida (target)

Conjunto de etiquetas T para un conjunto de muestrasX: Para un conjunto de M muestras

$$X = \{\overrightarrow{x}_1, \overrightarrow{x}_2, \dots, \overrightarrow{x}_M\}$$

existe un conjunto de etiquetas «correctas»:

$$\boldsymbol{T} = \{t_1, t_2, \dots, t_M\}$$

Clasificación: las clases se codifican

- Clase: Para facilitar su representación una clase C_j tiene asociada una etiqueta $j=1,2,\ldots,J$
- **Ejemplo 1**: la clase «banano» tiene etiqueta j=1, la clase «sandía» la etiqueta j=2...
- **Ejemplo 2**: la clase «uva verde» j=1, «uva morada»j=2 y «uva roja» j=3

Ejemplo: Un clasificador estadístico simple

Clasificador de uvas verdes, moradas y rojas

Se define el conjunto de muestras de entrenamiento (ground truth) $m{X}_e$ con sus correspondientes etiquetas $m{T}_e$

Momentos estadísticos para cada clase:

$$\mu_1=254$$
 $\sigma_1=1$ Media y desviación estándar $\mu_2=102,5$ $\sigma_2=3,53$

Si se recibe una nueva muestra, p. ej. con valor $\overrightarrow{x}_6 = 252$, el clasificador hace para todas las clases C_j :

$$\begin{array}{l} |\mu_1 - \overrightarrow{x}_6| = 2 < 3\sigma_1 \\ |\mu_2 - \overrightarrow{x}_6| = 149, 5 > 3\sigma_2 \end{array} \Rightarrow t_6 = 1$$

Etapas básicas de un sistema de aprendizaje automático

- Modificación de datos de entrada para facilitar el aprendizaje (Transformaciones)
 - Estandarización y escalamiento
 - Procesamiento de datos faltantes
 - Eliminación de sesgos
 - Redundancia
 - Ruido
 - Discretización

El preprocesamiento consiste en aplicar a un conjunto de datos, representado matricialmente como $X \in \mathbb{R}^{n \times m}$, una transformación:

$$X_{p} = T\left(X\right)$$

- La cual modifique la información en cada observación o muestra $\overrightarrow{x}_i \in \mathbb{R}^n$
- y/o modifique la cantidad de muestras m con el fin de mejorar el desempeño de etapas posteriores.

Tipos básicos de atributos:

<u>Atributos numéricos:</u> Los atributos numéricos son atributos que toman una serie de valores discretos o continuos.

- Por ejemplo, atributos como temperatura, humedad o fecha pueden tomar infinidad de valores, por lo que son entonces **continuos**.
- Atributos numéricos discretos son aquellos que toman valores naturales, como por ejemplo cantidad_clientes.
- Las operaciones matemáticas están definidas en estos atributos, tal como la moda, media y mediana y las distancias.

Tipos básicos de atributos (continuación):

<u>Atributos ordinales:</u> atributos con un conjunto de valores que pueden ser ordenados, aunque las magnitudes de tales valores no sea conocida.

- Por ejemplo, **satisfaccion_usuario** el cual puede tomar los valores muy_satisfecho, poco_satisfecho, o insatisfecho, a los cuales se les pueden asignar los valores 3, 2 y 1 respectivamente.
- Pueden derivarse a partir de un atributo numérico, partiendo el dominio de tal atributo en intervalos, como por ejemplo el atributo **temperatura** puede tomar los valores 0-15, 16-25, 25-50.
- Para los atributos ordinales se puede calcular la moda (valor más frecuente),
 o mediana, con significado matemático, no así la media.

Tipos básicos de atributos (continuación):

<u>Atributos binarios</u>: Un atributo binario es un atributo cualitativo que puede tomar únicamente dos valores (Booleano), usualmente codificados como 0 o 1.

• Un ejemplo de atributo binario es **identificacion_nacional** el cual es 0 si la identificación es extranjera, y 1 de lo contrario.

Tipos básicos de atributos (continuación):

<u>Atributos binarios.</u> Existen dos tipos de atributos binarios:

- Atributos binarios simétricos: son atributos cuyos valores presentan usualmente igual probabilidad. Por ejemplo el atributo de **sexo** puede ser masculino o femenino con igual probabilidad usualmente.
- Atributos binarios asimétricos: se refiere así a los atributos cuyos valores pueden presentar probabilidades distintas.
- Ejemplo, pruebas de laboratorio
- Convención: asignar 1 al mas importante (p.e., VIH positivo)

Tipos básicos de atributos (continuación):

Atributos categóricos.

- Son atributos cualitativos que se refieren a símbolos o nombres de elementos.
- Cada valor representa algún tipo de categoría, código o estado, con valores sin ningún tipo de relación de precedencia.
- También se les conoce como enumeraciones.
- Por ejemplo:
 - contextura_cuerpo: delgado, grueso, muy delgado, etc.
 - estado_civil: soltero, casado o divorciado.

Definiciones: Clasificación

Muestra	Características			Clase
	Peso	Forma	Tamaño	
•	liviano	redondo	pequeño	uva
	mediano	alargado	mediano	banano
	pesado	ovalada	grande	sandía

Preprocesamiento - Imágenes

- Leer la imagen
- Escalarla
- Eliminar ruido
- Segmentar (de ser necesario)

¿Hasta donde preprocesar los datos?

Normalización / Estandarización

- Existen algoritmos susceptibles a escala
 - Estas técnicas permiten tener todas las características en el mismo orden de magnitud (o cercano)
- Puede invisibilizar valores muy extremos
- Difieren en bandas de acotación de los datos
- Ambas deben "traducirse" de vuelta para interpretación humana

2. Extracción características

- No todos los atributos en un conjunto de datos son "tipos básicos" (númericos o categóricos)
- Describir tipos de datos complejos en categorías o valores numéricos
- Las características se convierten en columnas del conjunto de datos

Etapas básicas: Extracción de características

Ejemplo de los róbalos (sea-bass) y salmones empacados.

- Entrada: conjunto de datos preprocesados $V = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_M\}$, con dim $(\overrightarrow{u}_i) = 307200$
- Salida: El funcional $G(\overrightarrow{v}_i) = \overrightarrow{x}_i = \langle x_1, x_2 \rangle$ extrae características de ancho del pescado, y a la «claridad» del color del pescado

Figura: Diagrama de dispersión del espacio de muestras con dimensión ${\cal N}=2$

3. Predicción

- Problema: Partiendo de un conjunto de datos de ejemplo, donde se tienen todas las variables de entrada X y todas las variables de salida Y, determinar una función h que aproxime la verdadera función Y = f(X)
- Hipótesis: La función aproximada que estamos aprendiendo
- Aprendizaje: Explorar el espacio de funciones h de manera que encontremos una con buen desempeño
 - No sólo en datos de entrenamiento sino en ejemplos nuevos (datos de prueba)
 - Si tiene buen rendimiento fuera de los datos de entrenamiento,
 "generaliza bien"

Tipos de predicción

- Clasificación
 - Cuando la Y proviene de un número finito de alternativas
- Regresión
 - Cuando la Y es un número (posiblemente) real
- Cuando f es estocástica buscamos aprender una distribución condicional de probabilidad P(Y | X). La probabilidad de Y dado X.

4. Validación / Evaluación

- Premisa: Existe una distribución desde la que se pueden muestrear todos los atributos y etiquetas/resultados
- Los ejemplos de "hoy" nos pueden permitir inferir una hipótesis que se acerque lo suficiente para predecir ejemplos "futuros"
- Podemos conectar el pasado al futuro si los ejemplos son independientes y distribuidos idénticamente (i.i.d. assumption)

Evaluación de hipótesis

- Debemos determinar qué tan cerca está nuestra hipótesis de la realidad
- Tasa de errores
 - Proporción de ocasiones donde h(x) != y para un (x, y)
 particular
- Se evalúa en subdivisiones de los datos para asegurarse que se consideran datos no incorporados durante el entrenamiento

Algunos ejemplos de algoritmos

Clasificación, no paramétrica

- **K vecinos más cercanos:** Para un punto nuevo \overrightarrow{x}_a , se calculan los K=6 vecinos más cercanos, usando la distancia Euclidiana,
- En este caso $t_a = 1$ (C_1 corresponde a la clase salmón)

Clasificación, paramétrica lineal

- Dado un conjunto de muestras de entrenamiento $\rm X_e$, construye un hiperplano o función que minimice el error de clasificación
- Error cuadrático medio, discriminante lineal de Fisher, RN de perceptrón, entre otros.

Figura: Espacio de muestras de entrenamiento X_e , con N=2

Clasificación con superficie no lineal

 Clasificadores más sofisticados generan superficies de decisión no lineales (máquinas de soporte vectorial, redes neuronales, convolucionales, Bayesianas, etc)

Figura: Sobre ajuste: Una superficie que se sobreajusta, confía al 100 % en $X_{_{\alpha}}$ lo cual no es aconsejable...

Clasificación con superficie no lineal (regularizada)

 Clasificadores más sofisticados generan superficies de decisión no lineales (máquinas de soporte vectorial, redes neuronales, convolucionales, Bayesianas, etc)

Figura: Mejores resultados con superficies regularizadas, para evitar sobre ajuste

Clasificación no supervisada: clustering

- Los **clasificadores anteriores** necesitan un conjunto de muestras etiquetadas X_e , por lo que se les dice supervisados.
- No supervisados: agrupan los datos para encontrar por sí solos las muestras de cada clase.

(A). Random selection of k centers

Iteration 1: (B). Cluster assignment

(C). Re-compute centroids

Funcionamiento del algoritmo K-medias, (Bing Liu, 2019)

Ciclo de vida de un Sistema de aprendizaje automático

CIENCIA DE DATOS

De forma más amplia Operaciones de Machine Learning (MLOps)

Referencias

