

On Reconfiguration Graph of Independent Sets under Token Sliding

David Avis **Duc A. Hoang**

Graduate School of Informatics, Kyoto University arXiv:2203.16861

TS-Reconfiguration Graph of Independent Sets

Given a graph G = (V, E) and a positive integer k.

	G	Token Graph $F_k(G)$	TS_k -(Reconfiguration) Graph $TS_k(G)$	
Vertex	V(G)	k-Vertex Subsets of $V(G)$	<i>Independent k</i> -Vertex Subsets of $V(G)$	
Edge	E(G)	Token Sliding	Token Sliding	

 $F_2(G)$ [Alavi, Behzad, Erdős, and Lick 1991]

[This Poster]

- Each vertex of G contains at most *one unlabeled* token.
- Token Sliding (TS) involves moving a token from one vertex to one of its unoccupied adjacent vertices.

Figure 1. $TS_2(P_4) \subseteq F_2(P_4)$

We focus on two graphs:

- \blacksquare TS_k(G) whose nodes are independent sets of size k, and
- \blacksquare TS(G) whose nodes are independent sets of *arbitrary size*.

Motivation

Most of the known research on $\mathsf{TS}_k(G)$ have been focused on *designing efficient algorithms* and showing computational hardness of several reconfiguration questions [Nishimura 2018].

- Reachability/Shortest Transformation: Is there a (shortest) path between two given nodes of $\mathsf{TS}_k(G)$?
- and so on.

We look at $TS_k(G)$ from a purely graph-theoretic viewpoint.

(Q1) Is G a TS_k -reconfiguration graph $(k \ge 2)$, i.e., does there exist H such that $G \simeq TS_k(H)$? (Q2) If G satisfies some property \mathcal{P} , does $\mathsf{TS}(G)/\mathsf{TS}_k(G)$ also satisfy \mathcal{P} , and vice versa?

(Q1) Given G and $k \ge 2$, is G a TS_k-graph?

Line Graph L(G) and TS_2 -Graph $TS_2(G)$

 \blacksquare TS₂(G) is a (spanning) subgraph of L(G).

■ $\mathsf{TS}_2(G) \simeq L(G)$ if and only if G is *triangle-free*.

Complete Graph K_n , Path P_n , and Cycle C_n Are TS_k -Graphs

■ Given H and let $G = \mathsf{TS}_{\alpha(H)}(H)$. Then, for every $k \geq \alpha(H)$, G is a TS_k -graph. $k - \alpha(H)$

 $\alpha(H) = \max$. size of an independent set of H

Figure 3. A graph H' s.t. $G = \mathsf{TS}_{\alpha(H)}(H) \simeq \mathsf{TS}_k(H')$ for $k \geq \alpha(H)$.

- Since $\alpha(K_n) = 1$, the graph $K_n = \mathsf{TS}_1(K_n)$ is a TS_k -graph for all $k \ge \alpha(K_n) = 1$.
- For k = 2, we have $P_n = L(P_{n+1}) \simeq \mathsf{TS}_2(\overline{P_{n+1}})$. For $k \geq 3$, since $\alpha(\overline{P_{n+1}}) = 2$, the graph P_n is a TS_k -graph for all $k \ge \alpha(P_{n+1}) = 2$.
- $C_3 \simeq K_3$ is clearly a TS_k-graph. For C_n $(n \ge 4)$, apply similar arguments as in the case of P_n .

Complete Bipartite Graph $K_{m,n}$ $(m \le n)$ Is a TS_k -Graph \Leftrightarrow Either m=1 and $n \leq k$ or m=n=2

(⇐) The case m = n = 2 is clear, since $K_{2,2} \simeq C_4$. For m = 1 and $n \leq k$, we construct a graph G such that $K_{m,n} \simeq \mathsf{TS}_k(G)$.

Figure 4. A graph G such that $K_{1,n} \simeq \mathsf{TS}_k(G)$ where $n \leq k$.

 (\Rightarrow) Suppose to the contrary that there exists G such that $K_{m,n} \simeq \mathsf{TS}_k(G)$, where either (a) m=1and $n \ge k+1$ or (b) m=2 and n>2 ($m \le n$). Can we label vertices of $K_{m,n}$ by independent sets of G in each case?

Our Answers For Selected Properties $\mathcal P$

\mathcal{P}	G	$\boxed{\mathcal{P}(G) \Rightarrow \mathcal{P}(TS(G))}$	$\mathcal{P}(TS(G)) \Rightarrow \mathcal{P}(G)$	$\mathcal{P}(G) \Rightarrow \mathcal{P}(TS_k(G))$	$\mathcal{P}(TS_k(G)) \Rightarrow \mathcal{P}(G)$		
s-partite	general	yes			no		
planar	P_n	yes, iff $n \leq 8$		yes, iff $k = 2, n \ge 3$ or $k \ge 3, n \le 8$			
	tree	yes, iff $n \leq 7$					
	C_n	yes, iff $n \le 6$					
	connected	yes, iii $n \leq 0$					
Eulerian	C_n	no	yes	yes, iff $1 \le k < n/2$			
	general	no	yes	no	no		
acyclic	P_n	yes, iff $n \le 4$					
non-acyclic	C_n	no yes, iff $1 \le k < n/2$					
having K_s	general	yes		no	yes		

Table 1. Some properties of (reconfiguration) graphs. Here n = |V(G)|. $(\mathcal{P}(G) \Rightarrow \mathcal{P}(H))$ means if G satisfies property \mathcal{P} then H satisfies \mathcal{P} .)

The Clique's Size

 \blacksquare G has a $K_s \Leftrightarrow \mathsf{TS}(G)$ has a K_s $(s \ge 3)$. The key observation is: *If* $\mathsf{TS}(G)$ has a K_3 , so does G.

 \blacksquare There exists a graph G such that Ghas a K_s and $\mathsf{TS}_k(G)$ $(k \ge 2)$ does not.

Some Results and Questions for $TS_2(G)$

■ If $TS_2(G)$ is acyclic, G must not contain any of the following graphs as an induced subgraph:

Consequently, G must be a weakly chordal graph, i.e., G is (C_n, C_n) -free for $n \ge 5$. $(C_4$ -free \Rightarrow C_n -free for $n \geq 6$.)

- Question: If $TS_2(G)$ has a cycle, does it contain one of the above graphs as an induced subgraph?
- Given a forest G, the graph $\mathsf{TS}_2(G)$ is a forest $\Leftrightarrow G$ is $(2K_2, H)$ -free.

 (\Rightarrow) TS₂(2 K_2) $\simeq C_4$ and TS₂(H) $\simeq C_8 + 2K_1$.

 (\Leftarrow) If G has a cycle and is $2K_2$ -free, it contains an induced H-graph.

References

- Nishimura, N. (2018). "Introduction to Reconfiguration". In: Algorithms 11.4, p. 52. DOI: 10.3390/a11040052.
- Alavi, Y., M. Behzad, P. Erdős, and D. R. Lick (1991). "Double Vertex Graphs". In: Journal of Combinatorics, Information & System Sciences 16.1, pp. 37–50.