

3. REPRESENTACIÓN DE LA ORIENTACIÓN

3.2 MATRICES DE ROTACIÓN EN 3D (CONT.)

3.2.1 Composiciones de rotaciones

Las matrices de rotación pueden componerse para expresar la aplicación continua de varias rotaciones:

- Rotación α en OX
- Rotación Φ en OY
- Rotación θ en OZ

$$\mathbf{T} = \mathbf{R}(\mathbf{z}, \theta) \mathbf{R}(\mathbf{y}, \phi) \mathbf{R}(\mathbf{x}, \alpha) = \begin{bmatrix} C\theta & -S\theta & 0 \\ S\theta & C\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C\phi & 0 & S\phi \\ 0 & 1 & 0 \\ -S\phi & 0 & C\phi \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\alpha & -S\alpha \\ 0 & S\alpha & C\alpha \end{bmatrix} = \begin{bmatrix} C\theta C\phi & -S\theta C\alpha + C\theta S\phi S\alpha & S\theta S\alpha + C\theta S\phi C\alpha \\ S\theta C\phi & C\theta C\alpha + S\theta S\phi S\alpha & -C\theta S\alpha + S\theta S\phi C\alpha \\ -S\phi & C\phi S\alpha & C\phi C\alpha \end{bmatrix}$$

Hernando

Robática

4. ANGULOS DE EULER

Definición: Todo sistema OUVW móvil, puede definirse con respecto al sistema OXYZ inercial a través de tres ángulos Φ , θ , ψ , denominados ángulos de Euler .

4.1 Angulos de Euler ZXZ (313)

Es una de las representaciones más habituales entre las que realizan los giros sobre ejes previamente girados. Se le suele asociar con los movimientos básicos de un giróscopo. Si se parte de los sistemas OXYZ y OUVW, inicialmente coincidentes, se puede colocar al sistema OUVW en cualquier orientación siguiendo los siguientes pasos.

M. Hernando

4.1 ANGULOS DE EULER (ROLL PITCH YAW)

Angulos de Euler XYZ - Roll, Pitch, Yaw

Visto desde el punto de vista de la robótica:

Es también la más habitual de entre las que se aplican a los giros sobre los ejes del sistema fijo denominándose entonces como ángulos de Cardan.

R=Rot(x,roll)Rot(y,pitch)Rot(z,yaw)

- Girar el sistema OUVW un ángulo θ con respecto al eje
 OV. Es el denominado Pitch.
- Girar el sistema OUVW un ángulo y con respecto al eje
 OW. Es el denominado Yaw.
- Girar el sistema OUVW un ángulo y con respecto al eje OZ. Es el denominado Yaw.
- Girar el sistema OUVW un ángulo θ con respecto al eje OY.
 Es el denominado Pitch.
- Girar el sistema OUVW un ángulo on respecto al eje OX. Es el denominado Roll.

M. Hernando

Robótica

5. OTRAS REPRESENTACIONES

Se utilizan a menudo otros sistemas de representación de la orientación:

•Par de rotación $\mathbf{k} = \begin{bmatrix} k_x & k_y & k_z \end{bmatrix}$ θ

•Quaternios $Q = \{q_0 \mid q_1 \mid q_2 \mid q_3 / q_0 e + q_1 i + q_2 j + q_3 k\} = Q(s, \mathbf{v})$ $Q = Rot(\mathbf{k}, \theta) = \left(\cos \frac{\theta}{2}, \mathbf{k} \sin \frac{\theta}{2}\right)$

M. Hernando

7. MATRICES DE TRANSFORMACIÓN HOMOGÉNEA

Ninguno de los métodos anteriores por sí solo permite una representación conjunta de la posición y la orientación (localización).

Para solventar este problema se introdujeron las denominadas coordenadas homogéneas

Definición de Coordenadas Homogéneas.

La representación mediante coordenadas homogéneas de la localización de sólidos en un espacio *n-dimensional* se realiza a través de coordenadas de un espacio (*n*+1)dimensional

coordenadas homogéneas Aumentan la dimensión en 1

$$\mathbf{p} = \begin{bmatrix} x & y & z \end{bmatrix} \Rightarrow \mathbf{p} = \begin{bmatrix} w_x & w_y & w_z & w \end{bmatrix}$$

w tiene un valor arbitrario y representa un factor de escala

Hernando Robótio

De forma general, un vector $\mathbf{p} = \mathbf{ai} + \mathbf{bj} + \mathbf{ck}$, donde \mathbf{i} , \mathbf{j} , \mathbf{k} son los versores del sistema de referencia OXYZ, se representa en coordenadas homogéneas mediante el vector columna:

$$\mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} aw \\ hw \\ cw \\ w \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix}$$

Definición de Matriz Homogénea.

Se define como matriz de transformación homogénea **T** a una matriz de dimensión **4x4** que representa la transformación de un vector de coordenadas homogéneas de un sistema de coordenadas a otro:

$$\mathbf{T} = \begin{bmatrix} \mathbf{R}_{3\times3} & \mathbf{p}_{3\times1} \\ \mathbf{f}_{1\times3} & \mathbf{w}_{1\times1} \end{bmatrix} = \begin{bmatrix} \text{Rotación} & \text{Traslación} \\ \text{Perspectiva} & \text{Escalado} \end{bmatrix}$$

En robótica interesa conocer el valor de \mathbf{R}^{3x3} y de \mathbf{p}^{3x1} , considerándose las componentes de \mathbf{f} nulas y la de w=1.

Hernando Rob

En robótica, la matriz T tiene la forma:

$$\mathbf{T} = \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{p}_{3x1} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \text{Rotación} & \text{Traslación} \\ \mathbf{0} & 1 \end{bmatrix}$$

T representa la <u>orientación y posición</u> de un sistema **O'UVW** rotado y trasladado con respecto al sistema de referencia **OXYZ**.

Dado un vector $\mathbf{r} = [\mathbf{r}_u, \mathbf{r}_v, \mathbf{r}_w]$ en el sistema OUVW, se puede conocer su localización ($\mathbf{r} = [\mathbf{r}_x, \mathbf{r}_v, \mathbf{r}_z]$) en el sistema OXYZ a través de T:

M. Hernando

Robátic:

Por lo tanto, una matriz de transformación homogénea se puede aplicar para:

- 1. **Representar la posición y orientación de un sistema** girado y trasladado O'UVW con respecto a un sistema fijo de referencia OXYZ, que es lo mismo que representar una rotación y traslación realizada sobre un sistema de referencia.
- Transformar un vector expresado en coordenadas con respecto a un sistema O'UVW, a su expresión en coordenadas del sistema de referencia OXYZ.
- **3. Rotar y trasladar un vector** con respecto a un sistema de referencia fijo OXYZ

M. Hernando

7.1 TRASLACIÓN

Supóngase que el sistema O'UVW únicamente se encuentra trasladado un vector **p** con respecto al sistema OXYZ.

$$\mathbf{p} = p_x \, \dot{i} + p_y \, \dot{j} + p_z \, \dot{k}$$

La matriz T entonces corresponderá a una matriz homogénea de traslación:

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz Básica de Traslación

pando Rot

Un vector cualquiera \mathbf{r} , representado en el sistema **O'UVW** por \mathbf{r}_{uvw} , tendrá como componentes del vector con respecto al sistema **OXYZ**:

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_u \\ r_v \\ r_w \\ 1 \end{bmatrix} = \begin{bmatrix} p_x + r_u \\ p_y + r_v \\ p_z + r_w \\ 1 \end{bmatrix}$$

Y a su vez, un vector \mathbf{r}_{xyz} desplazado según \mathbf{T} tendrá como componentes \mathbf{r}_{xyz} :

ernando

Se parte de un sistema OUVW coincidente con OXYZ al que se va a aplicar una traslación según un vector $\mathbf{p}_{\mathbf{x},\mathbf{y},\mathbf{z}}$ y una rotación de $\mathbf{180^o}$ alrededor del eje OZ.

Si primero se rota y después se traslada se obtiene un sistema final **O'U'V'W**'. Si primero se traslada y después se rota se obtiene un sistema final **O'U'V'W'**

Hernando Robó

$$T(\mathbf{p},(\mathbf{x},\alpha)) = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & \cos\alpha & -\sec\alpha & p_x \cos\alpha - p_z \sec\alpha \\ 0 & \sec\alpha & \cos\alpha & p_y \sec\alpha + p_z \cos\alpha \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(\mathbf{p},(\mathbf{y},\phi)) = \begin{bmatrix} \cos\phi & 0 & \sec\phi & p_x \cos\phi + p_z \sec\phi \\ 0 & 1 & 0 & p_y \\ -\sec\phi & 0 & \cos\phi & p_z \cos\phi - p_x \sec\phi \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T(\mathbf{p},(\mathbf{z},\phi)) = \begin{bmatrix} \cos\phi & -\sec\phi & 0 & p_x \cos\phi - p_x \sec\phi \\ \cos\phi & \cos\phi & 0 & p_x \cos\phi - p_y \sec\phi \\ \cos\phi & \cos\phi & 0 & p_x \sec\phi + p_y \cos\phi \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Hernando

Robbits

M. Hernando

EL PROBLEMA CINEMÁTICO DIRECTO

RESOLUCIÓN GEOMÉTRICA

Obtenemos la posición y orientación del extremo del robot apoyándonos en las relaciones geométricas:

- No es un método sistemático.
- Es usado cuando tenemos pocos grados de libertad.

$$x = l_1 \cos(q_1) + l_2 \cos(q_1 + q_2)$$
$$y = l_1 \sin(q_1) + l_2 \sin(q_1 + q_2)$$

M. Hernando

o hática.

EL PROBLEMA CINEMÁTICO DIRECTO

RESOLUCIÓN MEDIANTE LAS MATRICES DE TRANSFORMACIÓN HOMOGÉNEA

- A cada eslabón se le asocia un sistema de referencia solidario.
- Es posible representar las traslaciones y rotaciones relativas entre los distintos eslabones.
- La matriz ⁱ⁻¹A_i representa la posición y orientación relativa entre los sistemas asociados a dos eslabones consecutivos del robot.
- Representación total o parcial de la cadena cinemática del robot:

$${}^{0}\mathbf{A}_{3} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3}$$

$$\mathbf{T} = {}^{0}\mathbf{A}_{6} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3} {}^{3}\mathbf{A}_{4} {}^{4}\mathbf{A}_{5} {}^{5}\mathbf{A}_{6}$$

• Existen métodos sistemáticos para situar los sistemas de coordenadas asociados a cada eslabón y obtener la cadena cinemática del robot. Método de **Denavit-Hartenberg** (D-H)

M. Hernando

EL PROBLEMA CINEMÁTICO DIRECTO

MÉTODO DE DENAVIT - HARTENBERG

- Permite el paso de un eslabón al siguiente mediante 4 transformaciones básicas, que dependen exclusivamente de las características constructivas del robot.
- Las transformaciones básicas que relacionan el sistema de referencia del elemento *i* con el sistema del elemento son:
- 1. Rotación θ_i alrededor del eje z_{i-1}
- 2. Traslación d_i a lo largo del eje z_{i-1}
- 3. Traslación a_i a lo largo del eje x'_i
- 4. Rotación α_i alrededor del eje x'_i

$$^{i-1}\mathbf{A}_i = \mathbf{T}(z,\theta_i)\mathbf{T}(0,0,\mathbf{d}_i)\mathbf{T}(a_i,0,0)\mathbf{T}(x,\alpha_i)$$

Hernando

Robótica

EL PROBLEMA CINEMÁTICO DIRECTO

MÉTODO DE DENAVIT - HARTENBERG

- 1) Numerar los eslabones comenzando con *1* (primer eslabón móvil de la cadena) y acabando con *n* (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.
- 2) Numerar cada articulación comenzando por *I* (la correspondiente al primer grado de libertad) y acabando en *n*.
- 3) Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática, será el eje a lo largo del cual se produce el desplazamiento.
- 4) Para i de 0 a n-1 situar el eje z_i sobre el eje de la articulación i+1.
- 5) Situar el origen del sistema de la base $\{S_0\}$ en cualquier punto del eje z_0 . Los ejes x_0 e y_0 se situarán de modo que formen un sistema dextrógiro con z_0 .

6) Para *i* de *I* a *n-1*, situar el sistema {**S**_i} (solidario al eslabón *i*) en la intersección del eje z_i con la línea normal común a z_{i-1} y z_i. Si ambos ejes se cortasen se situaría {**S**_i} en el punto de corte. Si fuesen paralelos {**S**_i} se situaría en la articulación *i+1*.

rnando Robótica

EL PROBLEMA CINEMÁTICO DIRECTO

MÉTODO DE DENAVIT - HARTENBERG

- 7) Para i de l a n-l, situar x_i en la línea normal común a z_{i-1} y z_i .
- 8) Para i de 1 a n-1, situar y_i de modo que forme un sistema dextrógiro con x_i y z_i .
- 9) Situar el sistema $\{S_n\}$ en el extremo del robot de modo que z_n coincida con la dirección de z_{n-1} y x_n sea normal a z_{n-1} y z_n .
- 10) Obtener θ_i como el ángulo que hay que girar en torno a z_{i-1} para que x_{i-1} y x_i queden paralelos.
- 11) Obtener d_i como la distancia, medida a lo largo de z_{i-1} , que habría que desplazar $\{S_{i-1}\}$ para que x_i y x_{i-1} quedasen alineados.
- 12) Obtener a_i como la distancia medida a lo largo de x_i , que ahora coincidiría con x_i , que habría que desplazar el nuevo $\{S_{i-1}\}$ para que su origen coincidiese con $\{S_i\}$.

13) Obtener α_i como el ángulo que habría que girar en torno a x_i , que ahora coincidiría con x_{i-1} , para que el nuevo $\{S_{i-1}\}$ coincidiese totalmente con $\{S_i\}$.

M. Hernando

Pohática

EL PROBLEMA CINEMÁTICO DIRECTO

MÉTODO DE DENAVIT - HARTENBERG

- 14) Obtener las matrices de transformación i-1 A_i.
- 15) Obtener la matriz de transformación que relaciona el sistema de la base con el del extremo del robot:

$$\mathbf{T} = {}^{0}\mathbf{A}_{1}{}^{1}\mathbf{A}_{2} \dots {}^{n-1}\mathbf{A}_{n}$$

16) La matriz **T** define la orientación (submatriz de rotación) y posición (submatriz de traslación) del extremo referidas a la base en función de las *n* coordenadas articulares.

M. Hernando

EL PROBLEMA CINEMÁTICO INVERSO

LA JACOBIANA INVERSA

- Inversión simbólica de la matriz Jacobiana:
 - Gran complejidad: matriz 6x6 de funciones trigonométricas.
- Evaluación e inversión numérica de la matriz Jacobiana:
 - Necesidad de recómputo continuo.
 - En ocasiones J no es cuadrada (Matriz pseudoinversa (J J^T)-1.
 - En ocasiones el determinante de J es nulo: configuraciones singulares.
- A partir del modelo cinemático inverso:

M. Hernando

CONFIGURACIONES SINGULARES

DETERMINADAS POR LA JACOBIANA

- Jacobiano (determinante de la matriz jacobiana) nulo.
- Incremento infinitesinal en coordenadas cartesianas implica incremento infinito en coordenadas articulares.
- Implica pérdida de algún grado de libertad.
- Tipos:
 - En los límites del espacio de trabajo del robot.
 - En el interior del espacio de trabajo del robot.

Requieren su estudio y eliminación.

rnando Rob