TMLE for continuous-time survival analysis

1 Simulation plan

We consider a setting in which we have observations on a bounded interval of time $[0, \tau]$ of the following:

- $L_0 \in \mathbb{R}$, is a uniformly distributed baseline covariate.
- $A \in \{0,1\}$ is binary baseline treatment.
- $L(t) \in \mathbb{R}^p$ is a time-varying covariate $L(t) \in \mathbb{R}^p$ with corresponding univariate counting process $N^{\ell}(t)$. We denote the times where $N^{\ell}(t)$ jumps by $T_1^{\ell}, T_2^{\ell}, \dots$ (with $T_0^{\ell} = 0$).
- $C(t) \in \{0, 1\}$ is a censoring indicator: Represented as a binary variable that jumps only once and only at a jump time of the corresponding counting process $N^c(t)$. We denote by T^c the time where C(t) jumps from 0 to 1.
- $Y(t) \in \{0,1\}$ is the event indicator: Represented as a binary variable that jumps only once and only at a jump time of the corresponding counting process $N^y(t)$. Denote by T^y the time where Y(t) jumps from 0 to 1.

Potentially the setting should also include:

• An indicator of death (or other competing risk), $D(t) \in \{0,1\}$, represented as a binary variable that jumps only once and only at a jump time of a corresponding counting process $N^d(t)$. Then we also denote by T^d the time where D(t) jumps from 0 to 1.

In Section 3 we describe the simulation scheme in detail.

2 Statistical estimation problem

3 Simulation scheme

We let $\Delta(T_k) = \mathbb{1}\{T_k = T_k^\ell\} + 2 \cdot \mathbb{1}\{T_k = T^c\}$, i.e., $\Delta(T_k)$ is an indicator, at time k, of what event happened at time T_k (a bit odd now, since $\Delta(T_k) = 0$ indicates event of interest, $\Delta(T_k) = 1$ indicates monitoring of covariates and $\Delta(T_k) = 2$ indicates censoring, but whatever, this can of course be changed). Table 1 gives an overview of how the simulations were done. We present more detail in the following. For the simulations we have used $\tau = 365.24$. Table 2 shows an example of simulated data for a subject. Figure 1 plots monitoring times (jumps of $N^\ell(t)$), censoring times (jumps of $N^\ell(t)$) or $\tau = 365.24$) and event times (jumps of $N^\ell(t)$).

3.1 Baseline variables

We draw the baseline covariate L_0 and the treatment as follows:

$$L_0 \sim \text{unif}(0,1),$$

 $A \sim \text{Bern}(\text{expit}(\beta_0^A + \beta_1^A L_0)).$

```
L_0 \sim \operatorname{unif}(0,1)
Draw:
                            A \sim \text{Bern}(\text{expit}(\beta_0^A + \beta_1^A L_0))
                            L_1(0) \sim \text{unif}(0,1)
                            L_2(0) \sim \text{unif}(0,1)
                            L_3(0) \sim \text{unif}(0,1)
                            T_0 = 0, \, \Delta = 1
Initialize:
From k to k+1: V \sim \text{unif}(0,1)
                            W_{k+1} \mid T_k = t \sim \tilde{\Lambda}_t^{-1}(-\log V, A, L_0, L_1(T_k), L_2(T_k), L_3(T_k))
                            T_{k+1} = T_k + W_{k+1}
                            p^y = \phi^y(A, L_0, L_1(T_k), L_2(T_k), L_3(T_k), k)
                            p^{\ell} = \phi^{\ell}(A, L_0, L_1(T_k), L_2(T_k), L_3(T_k), k)
                            p^c = \phi^c(A, L_0, L_1(T_k), L_2(T_k), L_3(T_k), k)
                            p' = p^y + p^\ell + p^c
                            \Delta \sim (\{0,1,2\}, p = (p^y/p', p^\ell/p', p^c/p'))
                            L_1(T_{k+1}) \sim N(\mu = 0.05L_0 + L_1(T_k), \sigma = 0.1)
if \Delta = 1:
                            L_2(T_{k+1}) \sim N(\mu = 0.02A + 0.025L_0 + L_2(T_k), \sigma = 0.1)
                            L_3(T_{k+1}) \sim N(\mu = 0.04A + 0.0167L_0 + L_3(T_k), \sigma = 0.1)
if \Delta \in \{0, 2\}:
                            Stop.
if \Delta \in \{0, 2\}:
                            Stop.
```

Table 1: Simulation overview.

3.2 Weibull intensities

For $x = \ell, y, c$, we define,

$$\lambda_k^x(t \,|\, \mathcal{F}_{t-}) = \eta \nu t^{\nu - 1} \phi^x(t \,|\, \mathcal{F}_{t-}), \tag{1}$$

where η is a scale parameter and ν is a shape parameter. For instance, the Weibull distribution allows the baseline to increase ($\nu > 1$) or decrease ($\nu < 1$).

For each subject, T_k denotes the time between the origin and the kth monitoring. We have that $T_0 = 0$. Now define $W_k = T_k - T_{k-1}$, the kth waiting time between two consecutive events. We simulate these waiting times.

Notably, we need the conditional intensity $\tilde{\lambda}_k$ for $W_k \mid T_{k-1} = t$. This is derived by,

$$\tilde{\lambda}_k(u \,|\, T_{k-1} = t)du = \lambda(u+t)du,$$

where λ is the intensity for the original times. The corresponding cumulative hazard is now,

$$\tilde{\Lambda}_{k}(u \,|\, T_{k-1} = t) = \int_{0}^{u} \tilde{\lambda}_{k}(s \,|\, T_{k-1} = t) ds = \int_{0}^{u} \lambda(s+t) ds = \Lambda(u+t) - \Lambda(t)$$

id	$_{ m time}$	Δ	L_1	L_2	L_3	A	L_0
9	0	1	0.996	0.79	0.566	1	0.556
9	134	1	0.939	0.932	0.577	1	0.556
9	163	0	0.939	0.932	0.577	1	0.556

Table 2: Simulated data for id=9.

Figure 1: Plot showing simulated data (monitoring and event times).

And then we can use that,

$$W_k | T_{k-1} = t \sim \tilde{\Lambda}_t^{-1}(-\log V),$$

where $V \sim \text{unif}(0, 1)$.

The cumulative intensities of the waiting times corresponding to (1) are given as,

$$\tilde{\Lambda}_{t}^{x}(u) = \eta \, \phi^{x}(t \, | \, \mathcal{F}_{t-}) \, ((t+u)^{\nu} - t^{\nu}), \tag{2}$$

so that the cumulative hazard of T is,

$$\tilde{\Lambda}_{t}(u) = \tilde{\Lambda}_{t}^{\ell}(u) + \tilde{\Lambda}_{t}^{y}(u) + \tilde{\Lambda}_{t}^{c}(u) = \left\{ \phi^{\ell}(t \mid \mathcal{F}_{t-}) + \phi^{y}(t \mid \mathcal{F}_{t-}) + \phi^{c}(t \mid \mathcal{F}_{t-}) \right\} \eta \left((t+u)^{\nu} - t^{\nu} \right)$$
(3)

Note that for (2) we have that,

$$\tilde{\Lambda}_t^x(u) = \eta \, \phi^x(t \, | \, \mathcal{F}_{t-}) \, ((t+u)^{\nu} - t^{\nu}),$$

$$\tilde{\Lambda}_t^{-1}(u) = \left(\frac{u + \eta t^{\nu}}{\eta}\right)^{1/\nu} - t,$$

and similarly for (3) by substituting $\eta \left(\phi^{\ell}(t \mid \mathcal{F}_{t-}) + \phi^{y}(t \mid \mathcal{F}_{t-}) + \phi^{c}(t \mid \mathcal{F}_{t-}) \right)$ for η .

We simulate the monitoring times T_1, T_2, \ldots At each monitoring time we determine the type of event by drawing Δ from $\{0, 1, 2\}$ with probability $p = (p^y/p', p^\ell/p', p^c/p')$, where, at the kth time,

$$p^{x} = \lambda_{k}^{x}(t \mid \mathcal{F}_{t-}), \quad x = \ell, y, c,$$

$$p' = p^{\ell} + p^{y} + p^{c},$$

where, notably, the $(\eta \nu t^{\nu-1})$ factors out. In our simulations, we let,

$$\phi^{y}(A, L_{0}, L_{1}(T_{k}), L_{2}(T_{k}), L_{3}(T_{k}), k) = \eta_{y} \alpha_{y}^{\mathbb{I}\{k>3\}} \exp(\beta_{y, L_{0}} L_{0} + \beta_{y, L}^{\mathsf{T}} L(T_{k-1}) + \beta_{y, A} A),$$

$$\phi^{\ell}(A, L_{0}, L_{1}(T_{k}), L_{2}(T_{k}), L_{3}(T_{k}), k) = \eta_{\ell} \alpha_{\ell}^{\min(k, K_{\max})} \exp(\beta_{\ell, L_{0}} L_{0} + \beta_{\ell, A} A),$$

$$\phi^{c}(A, L_{0}, L_{1}(T_{k}), L_{2}(T_{k}), L_{3}(T_{k}), k) = \eta_{c} \alpha_{c}^{\mathbb{I}\{k>3\}} \exp(\beta_{c, L_{0}} L_{0} + \beta_{c, A} A).$$

Note that we include α to adjust dependence on the number of previous events ($\alpha > 1$ ($\alpha < 1$) causes the rate to increase (decrease) with the number of previous events)

3.3 Time-varying covariates

At time $T_0 = T_0^{\ell}$ we draw:

$$L_1(0) \sim \text{unif}(0, 1),$$

 $L_2(0) \sim \text{unif}(0, 1),$
 $L_3(0) \sim \text{unif}(0, 1),$

and at all following monitoring times T_k^{ℓ} , k = 1, 2, ..., we draw covariates $L_1(T_k), L_2(T_k), L_3(T_k)$ as follows:

$$L_1(T_{k+1}) \sim N(\mu = 0.05L_0 + L_1(T_k),$$

 $L_2(T_{k+1}) \sim N(\mu = 0.02A + 0.025L_0 + L_2(T_k), \sigma = 0.1),$
 $L_3(T_{k+1}) \sim N(\mu = 0.04A + 0.0167L_0 + L_3(T_k), \sigma = 0.1).$