MOU.12/19

- · Corresponding LPF (BW, CU-1 order) H(s)
- We = 1 rod/s
- Get H(s)
- Transform H(s) desired Filter
 Frequency transform

Example 4.2

Design a three-pole Butterworth low-pass Filter with a bandwidth of 5 Hz.

Solution

Given:

$$H(s) = \frac{(s-2.)}{(s-p_1)(s-p_2)(s-p_3)}$$

H(5) = 25+1 $5^{3}+25^{2}+5+4$

. . MATLAB

Example 4.3

Design a 3-pole high-pass Filter with cutoff frequency W=4Hz

Solution :

Example 4.4

In example 4.2, a three-pole Butterworth lowpass Filter was transformed to a bandpass Filter with the passband centered at W=HHZ. The bandwidth is equal to 2 Hz.

Solution :

4.3 - Design of Digital Filters

1) Digital Filter

$$\xrightarrow{\chi(x)} \boxed{H(s)} \xrightarrow{g(x)}$$

· DTFT. (discrete time Fourier Horsform)

$$X(\Omega) = \sum_{n=0}^{\infty} X(n)e^{-s\Omega n}$$
; where $-\pi C \leq \Omega \leq \pi C$

(discrete fourier transform) . DFT

$$\times [K] = \sum_{n=0}^{\infty} \times [n]e^{-\frac{n}{2}(2\pi Kn})$$

 $X[K] = \sum_{n=0}^{\infty} X[n]e^{-\frac{n}{2}(2\pi Kn})$ where $\Omega = \frac{2\pi k}{N} \sim 2\pi i j(\frac{1}{N}) \sim \omega$

· 2T (2-transform)

$$(5) = \sum_{n=1}^{\infty} x[u] \leq_{-\infty}$$

 $X(z) = \sum_{n=0}^{N-1} X[n] z^{-n}$; where $z = e^{i\Delta} = e^{i\omega t} = e^{i\omega t}$

Input impulse

Finite number of steps

FIR: Finite impulse response sim

:nf:nite number of steps

JIR : infinite input response

- 2) Design of IIR
 - analog filter
 - digitization, Ha(z)

Design of IIR Filters

- analog filter prototype H(s), H(w)
- transform analog prototype
- digital Filter; Ha(2)
- 5 = YT h(2)

T = time data sample interval 1/55

Taylor: h7 = 2(2+23/3+25/5+...)

Bilinear transformation

5 = 1/T ln(z) 2 (2/T)(2-1/Z+1)

 $Ha(z) = H(z) = H\left(\frac{2}{T}\frac{z-1}{z-1}\right)$ H(s) ~ h(t) (approximate)

3) Worping Errors

Ha(Z)

LPF with cutoff freq. We

$$Hd(2)$$
 has culoff freq.
 $\Omega_{c} = 2 \tan^{-1} \left(\frac{W_{c}T}{a} \right) \neq W_{c}T$ warping error

approx. bilinear transformation

```
pre-warping

\Omega_c = 2 \tan^{-1} (w_c T/2)

\Omega_{c/2} = \tan^{-1} (w_c T/2)

\tan (\Omega_{c/2}) = (w_c T/2)

U_c = (2/T) \tan (\Omega_{c/2})

Cut-off freq. of analog prototype

U_p - (2/T) \tan (\Omega_{c/2}) = (2/T) \tan (w_c T/2)

to replace we see \Omega_c = \omega_c T
```

Example 4.8 Consider the two-pole Butterworth

Filter with transfer Function: $H(s) = \frac{We^2}{s^2 + \sqrt{2}Wes + We^2}$ Filter with Wc = 2, and T = 0.2

Filter with Wc = 2, and T = 0.2who 5s = 1/T = 5 Hzdigital Filter

 $H_{d}(z) = H(s) \left|_{s = (2/T)(z-1/3+1)} \right|$ $= \frac{\omega_{c^{2}}}{((2/T)(z-1/2+1))^{2}} + \sqrt{2}\omega_{c} \left(\frac{(2/T)(z-1)}{z+1} \right) + \omega_{c^{2}}$ $= \frac{0.0389 z^{2} + 0.0805 z + 0.0808}{z^{2} - 1.4514 z + 0.5724}$

 $\Omega_c = (2/T) t_{0-1} (w_c T/2) = 0.3948$ Desired: $\Omega_c = w_c T = 2 \times 0.2 = 0.4$ $W_p = (2/T) t_{0} (\frac{\Omega_c}{2}) = (\frac{2}{0.2}) t_{0} (0.4/2)$ = 2.027 rad(5)

 $\omega_{P} \rightarrow \omega_{c}$ (Prewarping) $H_{d} = 0.0309 (7^{2} + 37 + 1)$ $7^{2} - 1.4447 + 0.5682$ $\Omega_{c} = \omega_{c}T = 0.4$

Solution Hd(z) = -2 $\left(-\pi \wedge \pi\right)$

Design OF IIR Filters in MATLAB

- bilinear

- butter (prototype, Freq. transformation, pre-warping)

- Filter

$$\frac{\text{Solution}}{\mathbf{y}(t) = 1 + \cos t + \cos(5t)}$$

$$\omega = 1 \qquad \omega = 5$$

[H(w)]

1 L We L 5