Brett H. Andrews

$Curriculum\ Vitae$

Experience	Research Associate Professor Department of Physics and Astronomy, University of Pittsburgh	2022–present
	Research Assistant Professor Department of Physics and Astronomy, University of Pittsburgh	2017-2022
	Postdoctoral Associate Department of Physics and Astronomy, University of Pittsburgh	2014–2017
Education	Ph.D. Astronomy The Ohio State University "Decoding Galaxy Evolution with Gas-phase and Stellar Elemental Abundances" Advisors: David H. Weinberg & Jennifer A. Johnson	2014
	M.S. Astronomy The Ohio State University	2011
	B.S. Physics & Astronomy Yale University Nicolas Adamo Scholar-Athlete Prize (Silliman College)	2008
Publications	4 lead author; 11 significant contributing author; 58 contributing author; 3 additional publications. List attached.	
Presentations	4 invited; 28 contributed; 2 posters. List attached.	
Funding	PI: NASA Nancy Grace Roman Space Telescope Research and Support Participation Opportunities Exploiting Deep Learning to Improve Roman Photometric Redshifts \$287,881	2023–present
	Co-I: NASA Nancy Grace Roman Space Telescope Research and Support Participation Opportunities A Statistical Framework for Optimizing Roman Spectroscopic Training Sets \$291,061	2023–present
	Co-I: NASA Nancy Grace Roman Space Telescope Research and Support Participation Opportunities Maximizing Cosmological Science with the Roman High Latitude Imaging Survey \$19.5M (\$665,310 to Pitt)	2023–present

	Co-I: NASA Hubble Space Telescope Cycle 30 SNAP Proposal (409 orbits) Post-starbursts from DESI: Timing quenching and morphological transformation at $1 < z < 1.3$ \$202,893	2022-present
	Senior Personnel: NSF Major Research Instrumentation Program Acquisition of Cutting-Edge GPU and MPI Nodes for the Interdisciplinary Pitt Center for Research Computing \$1,187,606	2021-2024
	PI: NSF Astronomy and Astrophysics Research Grants Interpretable and Deblended Photometric Redshifts with a Deep Capsule Network \$535,578	2020-present
	Co-I: NASA Astrophysical Data Analysis Program Multiwavelength Milky Way Analogs \$504,949	2019-present
	Co-I: NASA Astrophysical Data Analysis Program (Funded Extension) Multiwavelength Milky Way Analogs \$33,707	2021
MENTORING Ph.D.	Finian Ashmead (University of Pittsburgh) "A Statistical Framework for Optimizing Roman Spectroscopic Training Sets for Roman Photometric Redshifts"	2023-present
	Yoquelbin Salcedo Hernandez (University of Pittsburgh) "DESI-2 Emission Line Galaxy Target Selection"	2022–present
	Ashod Khederlarian (University of Pittsburgh) "Data-driven Implementation of Emission Lines in Mock Galaxy Surveys for Improving Photometric Redshift Predictions"	2022-present
	Biprateep Dey (University of Pittsburgh) "Estimating Photometric Redshifts with Deep Neural Networks"	2018-present
	Troy Raen (University of Pittsburgh) "Toward the Study of Stars with LSST"	2019-2022
	Catherine Fielder (University of Pittsburgh) "Constraining the Milky Way's Ultraviolet to Infrared SED"	2018-2022
M.S.	Quanbin (Eric) Ma (Carnegie Mellon University Machine Learning Department) "Deep Dimensionality Reduction of MaNGA Data"	2017
Undergraduate	Emma Moran (University of Pittsburgh) "Improving the Physical Interpretation of Deep Neural Networks for Estimating Photometric Redshifts"	2023-present
	Zach Lewis (University of Pittsburgh) "The Gas-Phase Mass-Metallicity Relation for Massive Galaxies at $z\sim 0.7$ with the LEGA-C Survey"	2019–2022

	Katie Mack (University of Pittsburgh) "Comparing Stellar and Emission Line Dust Attenuation in the LEGA-C Survey"	2021–2022
	Ian Cooper (University of Pittsburgh) "SNIa Hosts in MaNGA"	2016
High School	Mariah Jones (Baldwin High School) "The Mass–Metallicity Relation at Intermediate Redshifts"	2020–2021
SERVICE TO	Invited Referee for ApJ , $MNRAS$, $A & A$, and $PASP$	
Profession	Invited Reviewer for NSF	
	Faculty Hiring Committee Department of Physics and Astronomy, University of Pittsburgh - LSST LINCC Research Assistant Professor - Astrophysics or Experimental High Energy Physics with Machine Learning (Tenure-stream)	2022–2023 2021–2022 2018–2019
	Faculty Peer Buddy University of Pittsburgh	2021–2023
TEACHING	ASTRON 3580: Galactic and Extragalactic Astronomy (University of Pittsburgh) Co-instructor with Jeff Newman.	Spring 2024
	Member of the Graduate Faculty (University of Pittsburgh)	2024–present
Workshops	AstroPGH Python Boot Camp and Summer Seminar Series (University of Pittsburgh and Carnegie Mellon University) • Intense three day workshop introducing the Python programming language for astrophysics graduate and undergraduate students. – Organizer. Presented lecture on Matplotlib. – Organizer. – Organizer. Presented lecture on Python and Jupyter. – Organizer. Presented two lectures on Numpy and Pandas. – Organizer. Presented eight lectures on Python basics, Astropy, Pandas, Git, and GitHub.	2024 2023 2022 2021 2020
	Writing Fridays Workshops (University of Pittsburgh) Led weekly writing workshops for astrophysics graduate students.	2023-present
	Professional Development Workshops (University of Pittsburgh) • Co-led workshops with Rachel Bezanson for astrophysics graduate students. — Webpage and CV Workshops — Webpage Workshop — CV, Resume, and Webpage Workshops	2022 2021 2020
	Data Science Group Meeting (University of Pittsburgh) Organized event series for astrophysics graduate students.	2018

	Marvin Workshops (SDSS-IV Collaboration Meetings) • Led introductory workshops for users of the Marvin software toolkit.	2015–2017
	Python Boot Camps (University of Pittsburgh) Led events for undergraduate and graduate students.	2015
OUTREACH	The Ellis School (First Grade STEM Class) – "How the Sun, Earth, and Moon align for a solar eclipse"	2024
	Shadyside Presbyterian Church Nursery School (Pre-K Class) – "A Few Beautiful Minutes: Experiencing a Solar Eclipse"	2024
	Allegheny Observatory Public Lecture Series – "The True Colors of the Milky Way"	2023
	Astronomy on Tap - "The Origin of the Elements" - "Indiana Jones and the Hidden Galaxy" w/ Courtney Epstein	2018 2014
	Learn & Earn Corporate Host Hosted intern for summer youth employment program delivered by Allegheny County, the City of Pittsburgh, and Partner4Work.	2021
	Science Olympiad Coached Grandview Heights (Ohio) Middle School team.	2011
Collab.	LSST Dark Energy Science Collaboration (DESC) Full Member	2023
	SDSS-IV/MaNGA Architect	2016
Software	flexCE Python package for modeling galactic chemical evolution.	

Marvin

Python package, RESTful API, and Flask web application for accessing, visualizing, and analyzing SDSS-IV MaNGA integral-field spectroscopic data.

Brett H. Andrews

Publications

LEAD AUTHOR

- 4. Andrews, B. H., et al., 2017, *The Astrophysical Journal*, 835, 224 Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
- 3. Andrews, B. H. & Martini, P., 2013, *The Astrophysical Journal*, 765, 140

 The Mass-Metallicity Relation with the Direct Method on Stacked Spectra of SDSS Galaxies
- Andrews, B. H., et al., 2012, Acta Astronomica, 62, 269
 Principal Component Abundance Analysis of Microlensed Bulge Dwarf and Subgiant Stars
- Andrews, B. H. & Thompson, T. A., 2011, The Astrophysical Journal, 727, 97
 Assessing Radiation Pressure as a Feedback Mechanism in Star-forming Galaxies

SIG. CONTRIB. AUTHOR

- 11. Khederlarian, A., Newman, J. A., Andrews, B. H., et al., 2024, Monthly Notices of the Royal Astronomical Society, 531, 1454
 Emission Line Predictions for Mock Galaxy Catalogues: a New Differentiable and
- Empirical Mapping from DESI 10. Lewis, Z., Andrews, B. H., et al., 2024, The Astrophysical Journal, 964, 59 The Gas-Phase Mass–Metallicity Relation for Massive Galaxies at $z\sim0.7$ with the LEGA-C Survey
- Fielder, C., Andrews, B. H., et al., 2023, Monthly Notices of the Royal Astronomical Society, 525, 1023
 Empirically Driven Multiwavelength K-corrections At Low Redshift
- 8. Kodra, D., **Andrews, B. H.**, et al., 2023, *The Astrophysical Journal*, 942, 36 Optimized Photometric Redshifts for the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS)
- Dey, B., Andrews, B. H., et al., 2022, Monthly Notices of the Royal Astronomical Society, 515, 4
 - Photometric Redshifts from SDSS Images with an Interpretable Deep Capsule Network
- 6. Dey, B., Zhao, D., Newman, J. A., **Andrews, B. H.**, et al., 2022, arXiv:stat/2205.14568 Calibrated Predictive Distributions via Diagnostics for Conditional Coverage
- Dey, B., Newman, J. A., Andrews, B. H., et al., 2021, arXiv:astro-ph/2110.15209
 Re-calibrating Photometric Redshift Probability Distributions Using Feature-space Regression
- Fielder, C. E., Newman, J. A., Andrews, B. H., et al., 2021, Monthly Notices of the Royal Astronomical Society, 508, 4459
 Constraining the Milky Way's ultraviolet-to-infrared SED with Gaussian process regression
- Cherinka, B., Andrews, B. H., et al., 2019, The Astronomical Journal, 158, 74
 Marvin: A Tool Kit for Streamlined Access and Visualization of the SDSS-IV MaNGA
 Data Set
- Weinberg, D. H., Andrews, B. H., & Freudenburg, J., 2017, The Astrophysical Journal, 837, 183
 Equilibrium and Sudden Events in Chemical Evolution
- Brown, J. S., Martini, P., & Andrews, B. H., 2016, Monthly Notices of the Royal Astronomical Society, 458, 1529
 - A recalibration of strong-line oxygen abundance diagnostics via the direct method and implications for the high-redshift universe

CONTRIBUTING AUTHOR

58. Moskowitz, I., et al., 2024, *The Astrophysical Journal Letters*, 967, L6
Improving Photometric Redshift Estimates with Training Sample Augmentation

- 57. Yantovski-Barth, M. J., et al., 2024, Monthly Notices of the Royal Astronomical Society, 531, 2285
 - The CluMPR Galaxy Cluster-Finding Algorithm and DESI Legacy Survey Galaxy Cluster Catalogue
- 56. Zhou, S., et al., 2023, Monthly Notices of the Royal Astronomical Society, 521, 5810 Are Milky-Way-like galaxies like the Milky Way? A view from SDSS-IV/MaNGA
- 55. Setton, D., et al., 2023, The Astrophysical Journal Letters, 947, 31 DESI Survey Validation Spectra Reveal an Increasing Fraction of Recently Quenched Galaxies at $z\sim 1$
- 54. Kartaltepe, J., et al., 2023, The Astrophysical Journal Letters, 946, 15 CEERS Key Paper. III. The Diversity of Galaxy Structure and Morphology at z=3-9 with JWST
- Boardman, N., et al., 2022, Monthly Notices of the Royal Astronomical Society, 514, 2298
 How well do local relations predict gas-phase metallicity gradients? Results from SDSS-IV MaNGA
- 52. Oyarzún, G. A., et al., 2022, *The Astrophysical Journal*, 933, 88 SDSS-IV MaNGA: How the Stellar Populations of Passive Central Galaxies Depend on Stellar and Halo Mass
- 51. Schaefer, A. L., et al., 2022, *The Astrophysical Journal*, 930, 2 SDSS-IV MaNGA: Exploring the Local Scaling Relations for N/O
- 50. Abdurro'uf, et al., 2021, The Astrophysical Journal Supplement Series, 259, 2 The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data
- Law, D., et al., 2020, The Astrophysical Journal, 915, 35
 SDSS-IV MaNGA: Refining Strong Line Diagnostic Classifications Using Spatially Resolved Gas Dynamics
- 48. Parikh, T., et al., 2021, Monthly Notices of the Royal Astronomical Society, 502, 5508 SDSS-IV MaNGA: radial gradients in stellar population properties of early-type and late-type galaxies
- 47. Greener, M., et al., 2021, Monthly Notices of the Royal Astronomical Society, 502, 95 SDSS-IV MaNGA: the 'G-dwarf problem' revisited
- 46. Luo, Y., et al., 2021, The Astrophysical Journal, 908, 183
 Evidence for the Accretion of Gas in Star-forming Galaxies: High N/O Abundances in Regions of Anomalously Low Metallicity
- 45. Mazzola, C., et al., 2020, Monthly Notices of the Royal Astronomical Society, 499, 1607 The close binary fraction as a function of stellar parameters in APOGEE: a strong anticorrelation with α abundances
- 44. Boardman, N., et al., 2020, Monthly Notices of the Royal Astronomical Society, 498, 4943
 Are the Milky Way and Andromeda unusual? A comparison with Milky Way and
 Andromeda analogues
- 43. Fraser-McKelvie, A., et al., 2020, Monthly Notices of the Royal Astronomical Society, 495, 4158
 - SDSS-IV MaNGA: spatially resolved star formation in barred galaxies
- 42. Ahumada, R., et al., 2020, *The Astrophysical Journal Supplement Series*, 249, 3

 The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra
- 41. Greener, M. J., et al., 2020, Monthly Notices of the Royal Astronomical Society, 495, 2305 SDSS-IV MaNGA: spatially resolved dust attenuation in spiral galaxies
- 40. Schaefer, A. L., et al., 2020, *The Astrophysical Journal*, 890, L3 SDSS-IV MaNGA: Variations in the N/O-O/H Relation Bias Metallicity Gradient Measurements
- 39. Boardman, N., et al., 2020, Monthly Notices of the Royal Astronomical Society, 491, 3672 Milky Way analogues in MaNGA: multiparameter homogeneity and comparison to the Milky Way
- 38. Westfall, K. B., et al., 2019, *The Astronomical Journal*, 158, 231

 The Data Analysis Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey: Overview

- 37. Fraser-McKelvie, A., et al., 2019, Monthly Notices of the Royal Astronomical Society, 488, L6
 - SDSS-IV MaNGA: stellar population gradients within barred galaxies
- 36. Pace, Z. J., et al., 2019, The Astrophysical Journal, 883, 83 Resolved and Integrated Stellar Masses in the SDSS-IV/MaNGA Survey. II. Applications of PCA-based Stellar Mass Estimates
- 35. Pace, Z. J., et al., 2019, *The Astrophysical Journal*, 883, 82
 Resolved and Integrated Stellar Masses in the SDSS-IV/MaNGA Survey. I. PCA Spectral Fitting and Stellar Mass-to-light Ratio Estimates
- 34. Zhang, K., et al., 2019, *The Astrophysical Journal*, 883, 63

 Machine-learning Classifiers for Intermediate Redshift Emission-line Galaxies
- 33. Oyarzún, G. A., et al., 2019, *The Astrophysical Journal*, 880, 111 Signatures of Stellar Accretion in MaNGA Early-type Galaxies
- 32. Parikh, T., et al., 2019, Monthly Notices of the Royal Astronomical Society, 483, 3420 SDSS-IV MaNGA: local and global chemical abundance patterns in early-type galaxies
- 31. Aguado, D. S., et al., 2019, *The Astrophysical Journal Supplement Series*, 240, 23

 The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
- 30. Hwang, H.-C., et al., 2019, *The Astrophysical Journal*, 872, 144

 Anomalously Low-metallicity Regions in MaNGA Star-forming Galaxies: Accretion Caught in Action?
- 29. Li, H., et al., 2019, *The Astrophysical Journal*, 872, 63

 Interpreting the Star Formation-Extinction Relation with MaNGA
- 28. Zasowski, G., et al., 2019, *The Astrophysical Journal*, 870, 138 APOGEE DR14/DR15 Abundances in the Inner Milky Way
- 27. Rowlands, K., et al., 2018, Monthly Notices of the Royal Astronomical Society, 480, 2544 SDSS-IV MaNGA: spatially resolved star formation histories and the connection to galaxy physical properties
- 26. Parikh, T., et al., 2018, Monthly Notices of the Royal Astronomical Society, 477, 3954 SDSS-IV MaNGA: the spatially resolved stellar initial mass function in \sim 400 early-type galaxies
- 25. Penny, S. J., et al., 2018, Monthly Notices of the Royal Astronomical Society, 476, 979 SDSS-IV MaNGA: evidence of the importance of AGN feedback in low-mass galaxies
- 24. Abolfathi, B., et al., 2018, *The Astrophysical Journal Supplement Series*, 235, 42

 The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment
- 23. Talbot, M. S., et al., 2018, Monthly Notices of the Royal Astronomical Society, 477, 195 SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies
- Wylezalek, D., et al., 2018, Monthly Notices of the Royal Astronomical Society, 474, 1499
 SDSS-IV MaNGA: identification of active galactic nuclei in optical integral field unit surveys
- 21. Badenes, C., et al., 2018, *The Astrophysical Journal*, 854, 147 Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View
- 20. Albareti, F. D., et al., 2017, The Astrophysical Journal Supplement Series, 233, 25 The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory
- Greene, J. E., et al., 2017, The Astrophysical Journal, 851, L33
 SDSS-IV MaNGA: Probing the Kinematic Morphology-Density Relation of Early-type Galaxies with MaNGA
- Zasowski, G., et al., 2017, The Astronomical Journal, 154, 198
 Target Selection for the SDSS-IV APOGEE-2 Survey
- 17. Zahid, H. J., et al., 2017, The Astrophysical Journal, 847, 18 Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

- 16. Martínez-Rodríguez, H., et al., 2017, The Astrophysical Journal, 843, 35 Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors
- 15. Blanton, M. R., et al., 2017, The Astronomical Journal, 154, 28 Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe
- 14. Linden, S. T., et al., 2017, The Astrophysical Journal, 842, 49

 Timing the Evolution of the Galactic Disk with NGC 6791: An Open Cluster with Peculiar High- α Chemistry as Seen by APOGEE
- 13. Zhang, K., et al., 2017, Monthly Notices of the Royal Astronomical Society, 466, 3217 SDSS-IV MaNGA: the impact of diffuse ionized gas on emission-line ratios, interpretation of diagnostic diagrams and gas metallicity measurements
- 12. Jones, A., et al., 2017, Astronomy and Astrophysics, 599, A141 SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra
- Yan, R., et al., 2016, The Astronomical Journal, 152, 197
 SDSS-IV MaNGA IFS Galaxy Survey—Survey Design, Execution, and Initial Data Quality
- Law, D. R., et al., 2016, The Astronomical Journal, 152, 83
 The Data Reduction Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey
- Holtzman, J. A., et al., 2015, The Astronomical Journal, 150, 148
 Abundances, Stellar Parameters, and Spectra from the SDSS-III/APOGEE Survey
- 8. Hayden, M. R., et al., 2015, *The Astrophysical Journal*, 808, 132 Chemical Cartography with APOGEE: Metallicity Distribution Functions and the Chemical Structure of the Milky Way Disk
- 7. Alam, S., et al., 2015, *The Astrophysical Journal Supplement Series*, 219, 12

 The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III
- 6. Nidever, D. L., et al., 2014, The Astrophysical Journal, 796, 38 Tracing Chemical Evolution over the Extent of the Milky Way's Disk with APOGEE Red Clump Stars
- 5. Bovy, J., et al., 2014, The Astrophysical Journal, 790, 127
 The APOGEE Red-clump Catalog: Precise Distances, Velocities, and High-resolution Elemental Abundances over a Large Area of the Milky Way's Disk
- 4. Ahn, C. P., et al., 2014, The Astrophysical Journal Supplement Series, 211, 17 The Tenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment
- 3. Leja, J., et al., 2013, *The Astrophysical Journal*, 778, L24
 Exploring the Chemical Link between Local Ellipticals and Their High-redshift
 Progenitors
- Zasowski, G., et al., 2013, The Astronomical Journal, 146, 81
 Target Selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)
- Ahn, C. P., et al., 2012, The Astrophysical Journal Supplement Series, 203, 21
 The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

Additional

- 3. Cherinka, B., et al., 2020, ASPC, 527, 743C
 - Marvin: A Toolkit for Streamlined Access and Visualisation of the SDSS-IV MaNGA Data Set
- 2. Wilson, J. C., et al., 2012, SPIE, 8446, 84460H

 Performance of the Apache Point Observatory Galactic Evolution Experiment
 (APOGEE) high-resolution near-infrared multi-object fiber spectrograph
- Andrews, B. H. & Thompson, T. A., 2011, EAS Publications Series, 52, 275
 Radiation Pressure Feedback in Galaxies

Brett H. Andrews

Presentations

Invited	Effective Plotting DESI Collaboration Meeting	2021
	Hidden in Plain Sight: a Deep Learning Approach to Finding Supernovae in Galaxy Maps	2018
	Science 2018, University of Pittsburgh The SDSS-IV MaNGA Survey: Galaxy Dissection on an Industrial Scale CMU Astro Seminar, Carnegie Mellon University	2017
	The Mass-Metallicity Relation in SDSS Using Electron Temperature Measurements Understanding Nebular Emission in High-Redshift Galaxies, The Carnegie Observatories	2015
Contributed	Jumpstart Your Paper	2022
	AstroCoffee Tips AstroCoffee Tips	2022
	AstroPGH Summer Seminar, University of Pittsburgh Leveraging Statistics and Machine Learning for Probing Galaxy Evolution and Measuring Galaxy Distances	2022
	AstroLunch Seminar, University of Pittsburgh Effective Plotting AstroPGH Summer Seminar, University of Pittsburgh	2021
	Effective Plotting AstroPGH Summer Seminar, University of Pittsburgh	2020
	Effective Plotting Astro Student Seminar, University of Pittsburgh	2018
	GitHub Flow Astro Student Seminar, University of Pittsburgh	2018
	MaNGA DAP	2017
	SDSS-IV Collaboration Meeting, Pontificia Universidad Católica de Chile Streamlining MaNGA Data with Marvin	2017
	AstroLunch, University of Pittsburgh The State of Marvin SDSS IV Collaboration Marting Hairweitz of Wisconsin	2016
	SDSS-IV Collaboration Meeting, University of Wisconsin AstroCoffee Presentation Advice	2016
	Astro Student Seminar, University of Pittsburgh Marvin-tools: Distilling DAP Measurements and & Stacking Spectra	2016
	MaNGA Collaboration Meeting (Cocoa Beach, FL) Global vs. Resolved Metallicities	2015
	Astro Student Seminar, University of Pittsburgh Global vs. Resolved Metallicities SDSS-IV Collaboration Meeting, Instituto Física Teórica Universidad Autónoma de	2015
	Madrid MaNGA Data Analysis Pipeline Quality Assessment MaNGA Callabaration Matting University of Mattackers	2015
	MaNGA Collaboration Meeting, University of Kentucky Principal Component Abundance Analysis: APOGEE and flexCE	2015
	Local Group Astrostatistics Conference, University of Michigan Understanding the Bimodality in [alpha/Fe] with a Chemical Evolution Model SDSS-III Collaboration Meeting (Park City, UT)	2014
	Applying Principal Component Analysis to APOGEE SDSS-IV Collaboration Meeting (Park City, UT)	2014
	Exploiting Large Multi-element Stellar Abundance Surveys AAS Winter Meeting	2014
	Decoding Galactic Chemical Evolution with Gas-phase and Stellar Abundances Colloquium, University of Wisconsin	2013

	Yields, Delays, and Mixing in Chemical Evolution Models	2013
	SDSS-II Collaboration Meeting, Johns Hopkins University	
	Decoding Galactic Chemical Evolution with Gas-phase and Stellar Abundances	2013
	Yale Center for Astronomy & Astrophysics Seminar, Yale University	
	The Mass-Metallicity Relation: A Window Into Galaxy Evolution	2013
	Seminar, National Radio Astronomical Observatory	
	The Galaxy Mass-Metallicity Relation: A Sensitive Diagnostic of the Processes That Drive	2013
	Galaxy Evolution	
	Edward F. Hayes Graduate Research Forum, The Ohio State University	
	Characterizing the Distribution of Stars in Chemical Abundance Space	2013
	APOGEE Collaboration Meeting, The Carnegie Observatories	
	Accounting for Stellar Abundance Uncertainties in Principal Component Abundance	2012
	Analysis	
	APOGEE Collaboration Meeting, Texas Christian University	
	Principal Component Abundance Analysis: Finding the Principal Components of Chemical	2011
	Abundance Space	
	SDSS-III Collaboration Meeting, Vanderbilt University	
	Radiation Pressure Feedback in Galaxies	2011
	Edward F. Hayes Graduate Research Forum, The Ohio State University	
D		2014
Posters	Principal Component Abundance Analysis and Chemical Evolution Models	2014
	The Near-Field Deep-Field Connection, University of California, Irvine	0011
	Assessing Radiation Pressure as a Feedback Mechanism in Star-forming Galaxies	2011
	The 5th Zermatt ISM Symposium	