Vortex shedding control by non-linear identification of low order model EFMC9 — Rome

Aurélien HERVÉ, Denis Sipp, Peter Schmid

Office Nationale d'Etudes et de Recherches Aérospatiales

Septembre 2012

Plan

- Introduction
- 2 Model Identification
- Control
- Conclusions

Configuration

NACA012, Re = 200, $30^{\circ}AoA$

Configuration

Method

- Identification of unforced dynamics, using POD trajectories
- 2 Temporal ARX model to include the external forcing effects

- Required
 - linearly unstable model, showing oscillations of right amplitude and frequencies
 - Existence of an equilibrium point, that fits the projection of the baseflow onto the reduced order basis
- 2 Required
 - Good prediction of a forced simulation

Method

- Identification of unforced dynamics, using POD trajectories
- 2 Temporal ARX model to include the external forcing effects

- Required
 - linearly unstable model, showing oscillations of right amplitude and frequencies
 - Existence of an equilibrium point, that fits the projection of the baseflow onto the reduced order basis
- Required
 - Good prediction of a forced simulation

Method

- Identification of unforced dynamics, using POD trajectories
- 2 Temporal ARX model to include the external forcing effects

- Required
 - linearly unstable model, showing oscillations of right amplitude and frequencies
 - Existence of an equilibrium point, that fits the projection of the baseflow onto the reduced order basis
- Required
 - Good prediction of a forced simulation

Method

- Identification of unforced dynamics, using POD trajectories
- 2 Temporal ARX model to include the external forcing effects

- Required
 - linearly unstable model, showing oscillations of right amplitude and frequencies
 - Existence of an equilibrium point, that fits the projection of the baseflow onto the reduced order basis
- Required
 - Good prediction of a forced simulation

Method

- 1 Identification of unforced dynamics, using POD trajectories
- 2 Temporal ARX model to include the external forcing effects

- Required
 - linearly unstable model, showing oscillations of right amplitude and frequencies
 - Existence of an equilibrium point, that fits the projection of the baseflow onto the reduced order basis
- Required
 - Good prediction of a forced simulation

Identification: Structure of the unforced model

Model structure

• POD computation, around Reynolds = 50 : $U = \bar{U}_{|Re=50} + \sum_{i} x_i \Phi_i$ $\varepsilon = \frac{1}{Ren} - \frac{1}{Re}$

② General structure of the model (dependency in Reynolds is kept):

$$x_i^{t+1} = \varepsilon A_i + \sum_j (B_{ij} + \varepsilon \beta_{ij}) x_j + \sum_{j,k} C_{ijk} x_j x_k$$
$$= f_i(X(t))$$

Identification: Structure of the unforced model

Model structure

9 POD computation, around Reynolds = 50 : $U = \bar{U}_{|Re=50} + \sum_{i} x_{i} \Phi_{i}$ $\varepsilon = \frac{1}{Ren} - \frac{1}{Re}$

② General structure of the model (dependency in Reynolds is kept):

$$x_i^{t+1} = \varepsilon A_i + \sum_j (B_{ij} + \varepsilon \beta_{ij}) x_j + \sum_{j,k} C_{ijk} x_j x_k$$
$$= f_i(X(t))$$

Model identification: Training dataset

Model equation:

$$x_i^{t+1}(X,\varepsilon) = \varepsilon A_i + \sum_j B_{ij}x_j + \sum_j \varepsilon \beta_{ij}x_j + \sum_{j,k} C_{ijk}x_jx_k$$

Training dataset. Seldom forcing peaks are used to trigger richer dynamics

Identification

Conclusions

Variations of Strouhal numbers

Testing Dataset

Training dataset simulation

Training dataset simulation

Prediction of the projected baseflow from the model dynamics

Comparison at Re = 200 between the exact projected base-flow and the model-identified base-flow. The iso-contours represent horizontal velocity.

ONERA
THE FRENCH AEROSPACE LAB

Modeling the external forcing effects

Identification of the external forcing effects onto the reduced order basis

- CFD computation of a random forced flow
- $\Delta(t) = X(t+1) f(X(t), \varepsilon(t))$
- ARX model : $\Delta(t) = \sum_{k} \alpha_k u(t-k)$

Modeling the external forcing effects

Identification of the external forcing effects onto the reduced order basis

- CFD computation of a random forced flow
- $\Delta(t) = X(t+1) f(X(t), \varepsilon(t))$
- ARX model : $\Delta(t) = \sum_{k} \alpha_k u(t-k)$

Modeling the external forcing effects

Identification of the external forcing effects onto the reduced order basis

- CFD computation of a random forced flow
- ARX model : $\Delta(t) = \sum_{k} \alpha_k u(t-k)$

Full forced dynamics prediction

Intro

Non linear control

Intro

Turbulent kinetic energy reduction

Control results. Contours of mean kinetic energy of the fluctuations around the baseflow $(vl_x^2 + vl_y^2)$ are plotted, as well as some streamlines of the averaged flows. The peak of fluctuation energy is reduced by 20%.

- Accurate modeling of the unforced dynamics using 5 pod modes, and over a large range of Reynolds numbers
- Deduction of the projected baseflow from the model dynamics
- Temporal ARX model to include the external forcing effects
- Efficient control to reduce the given objective

- Accurate modeling of the unforced dynamics using 5 pod modes, and over a large range of Reynolds numbers
- Deduction of the projected baseflow from the model dynamics
- Temporal ARX model to include the external forcing effects
- Efficient control to reduce the given objective

- Accurate modeling of the unforced dynamics using 5 pod modes, and over a large range of Reynolds numbers
- Deduction of the projected baseflow from the model dynamics
- Temporal ARX model to include the external forcing effects
- Efficient control to reduce the given objective

- Accurate modeling of the unforced dynamics using 5 pod modes, and over a large range of Reynolds numbers
- Deduction of the projected baseflow from the model dynamics
- Temporal ARX model to include the external forcing effects
- Efficient control to reduce the given objective

