Презентация по лабораторной работе №3

Модель боевых действий

Хусаинова Д.А. 23 февраля 2024

Российский университет дружбы народов, Москва, Россия

Цель работы

Изучить модели боевых действий Ланчестера. Применить их на практике для решения задания лабораторной работы, использовав Julia и OpenModelica.

Регулярная армия X против регулярной армии Y

$$\frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t)$$
$$\frac{dy}{dt} = -c(t)x(t) - h(t)y(t) + Q(t)$$

Регулярная армия против партизанской армии

$$\frac{dx}{dt} = -a(t)x(t) - b(t)y(t) + P(t)$$

$$\frac{dy}{dt} = -c(t)x(t)y(t) - h(t)y(t) + Q(t)$$

Решение с помощью программ. Julia

```
PS C:\Windows\system2> cd C:\Users\zusai\WATHMOO\work\study\2023-2024\"MaremaTuческое моделирование"\mathmod\labs\lab3
PS C:\Users\zusai\WATHMOO\work\study\2023-2024\WaremaTuvecкое моделирование\mathmod\labs\lab3-ebh hello > lab3.jl
PS C:\Users\zusai\WATHMOO\work\study\2023-2024\WaremaTuveckoe моделирование\mathmod\labs\lab3>
```

Рис. 1: Создание файла lab3.jl

using Plots;

```
using DifferentialEquations;

function first(du, u, p, t)
   du[1] = - 0.354*u[1] - 0.765*u[2] + abs(sin(du))
   du[2] = - 0.679*u[1] - 0.845*u[2] + abs(cos(du))
```

```
end function second(du, u, p, t) du[1] = -0.505*u[1] - 0.77*u[2] + \sin(2*t) + 2 du[2] = -0.6*u[1]*u[2] - 0.404*u[2] + \cos(5*t) + 2 du[2] = -0.6*u[1]*u[2] - 0.404*u[2] + cos(5*t) + 2 du[2] + 2 du
```

```
prob1 = ODEProblem(first, people, prom1)
prob2 = ODEProblem(second, people, prom2)
sol1 = solve(prob1, dtmax=0.1)
sol2 = solve(prob2, dtmax=0.000001)
A1 = [u[1] \text{ for } u \text{ in soll.} u]
A2 = [u[2] \text{ for u in soll.u}]
T1 = [t \text{ for t in soll.t}]
A3 = [u[1] \text{ for } u \text{ in sol2.u}]
A4 = [u[2] \text{ for u in sol2.u}]
T2 = [t \text{ for t in sol2.t}]
```

```
plt1 = plot(dpi = 300, legend= true, bg =:white) plot!(plt1, xlabel="Время", ylabel="Численность" plot!(plt1, T1, A1, label="Численность армии X", plot!(plt1, T1, A2, label="Численность армии Y", savefig(plt1, "lab03_1.png")
```

```
plt2 = plot(dpi = 1200, legend= true, bg =:white plot!(plt2, xlabel="Время", ylabel="Численность" plot!(plt2, T2, A3, label="Численность армии X", plot!(plt2, T2, A4, label="Численность армии Y", savefig(plt2, "lab03_2.png")
```

Запуск

```
In expression starting at C:\Users\usesI\MINEOO\unrik\study\2023-2024Varemarmerscoe mognampomame\mathmod\\abs\lab3\lab3\lab3.jl:1
°S C:\Users\usesI\MINEOO\unrik\study\2023-2024Varemarmerscoe mognampomame\mathmod\labs\lab3-julia lab3.jl
°S C:\Users\usesI\MINEOO\unrik\study\2023-2024Varemarmerscoe mognampomame\mathmod\labs\lab3\lab3\)
"S C:\Users\usesI\mineo\unrik\usesI\mineoo\unrik\usesI\mineoo\unrik\usesI\mineoo\unrik\usesI\mineoo\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unrik\unr
```

Рис. 2: Запуск julia

Результат работы с Julia. График для первого случая

Рис. 3: Модель боевых действий между регулярными войсками

График для второго случая

Рис. 4: Модель боевых действий между регулярной армией и партизанской

OpenModelica

Скачаем OpenModelica

13/19

Откроем OpenModelica и создадим модель для первого случая

Рис. 6: OpenModelica

Код для первого случая

```
model lab3 1
Real x;
Real y;
Real a = 0.354:
Real b = 0.765;
Real c = 0.679;
Real h = 0.845;
Real t = time:
initial equation
x = 87700;
v = 91400;
equation
der(x) = -a*x - b*y + abs(sin(t+10));
```

Код для второго случая

```
model lab3 2
Real x;
Real y;
Real a = 0.505:
Real b = 0.77:
Real c = 0.6;
Real h = 0.404;
Real t = time;
initial equation
x = 87700;
v = 91400;
equation
der(x) = -a*x - b*y + sin(2*t) + 2;
```

Результат работы OpenModelica для модели боевых действий между регулярными войсками

Рис. 7: Модель боевых действий между регулярными войсками

Результат работы OpenModelica для модели боевых действий между регулярной армией и партизанской армией

Рис. 8: Модель боевых действий между регулярной армией и партизанской армией

Выводы

По итогам лабораторной работы я построила по две модели на языках Julia и OpenModelica. В ходе проделанной работы можно сделать вывод, что OpenModelica лучше приспособлен для моделирование процессов, протекающих во времени. Построение моделей боевых действий на языке OpenModelica занимает гораздо меньше строк и времени, чем аналогичное построение на языке Julia.