Discrete Optimization

Local Search: Part VIII

Goal of the Lecture

- Local search
 - meta-heuristics
 - multi-start search
 - -simulated annealing
 - -tabu search

Escaping Local Minima

Escaping Local Minima

- Execute multiple local search from different starting configuration
 - generic
 - can be combined with other metaheuristics
 - multistarts or restarts

- Execute multiple local search from different starting configuration
 - -generic
 - can be combined with other metaheuristics
 - multistarts or restarts

```
1. function ITERATEDLOCALSEARCH(f, N, L, S) {
2. s := GENERATEINITIALSOLUTION();
3. s^* := s;
4. for k := 1 to MaxSearches do
5. s := LocalSearch(f, N, L, S, s);
6. if f(s) < f(s^*) then
7. s^* := s;
8. s := GENERATENEWSOLUTION(s);
9. return s^*;
10. }
```

Basic idea

- accept a move if it improves the objective value or, in case it does not, with some probability
- the probability depends on how "bad" the move is
- inspired by statistical physics

- Basic idea
 - accept a move if it improves the objective value or, in case it does not, with some probability
 - the probability depends on how "bad" the move is
 - -inspired by statistical physics
- ► How is the probability chosen?
 - -t is a temperature
 - $-\Delta$ is the difference f(n) f(s)
 - a degrading move is accepted with probability,

$$\exp(\frac{-\Delta}{t})$$

```
1. function S-METROPOLIS[t](N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) \leq f(s) then

4. return n;

5. else with probability exp(\frac{-(f(n)-f(s))}{t})

6. return n;

7. else

8. return s;
```

```
1. function S-METROPOLIS[t](N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) \leq f(s) then

4. return n;

5. else with probability exp(\frac{-(f(n)-f(s))}{t})

6. return n;

7. else

8. return s;
```

► What happens for a large $\Delta = f(n) - f(s)$?

```
1. function S-METROPOLIS[t](N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) \leq f(s) then

4. return n;

5. else with probability exp(\frac{-(f(n)-f(s))}{t})

6. return n;

7. else

8. return s;
```

- ► What happens for a large $\Delta = f(n) f(s)$?
 - the probability of accepting the move becomes very small

```
1. function S-METROPOLIS[t](N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) \leq f(s) then

4. return n;

5. else with probability exp(\frac{-(f(n)-f(s))}{t})

6. return n;

7. else

8. return s;
```

What happens for a large t?

```
1. function S-METROPOLIS[t](N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) \leq f(s) then

4. return n;

5. else with probability exp(\frac{-(f(n)-f(s))}{t})

6. return n;

7. else

8. return s;
```

- What happens for a large t?
 - the probability of accepting a degrading move is large

```
1. function S-METROPOLIS[t](N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) \leq f(s) then

4. return n;

5. else with probability exp(\frac{-(f(n)-f(s))}{t})

6. return n;

7. else

8. return s;
```

What happens for a small t?

```
1. function S-METROPOLIS[t](N,s)

2. select n \in N with probability 1/\#N;

3. if f(n) \leq f(s) then

4. return n;

5. else with probability exp(\frac{-(f(n)-f(s))}{t})

6. return n;

7. else

8. return s;
```

- What happens for a small t?
 - the probability of accepting a degrading move is small

- Based on statistical physics
 - heating and cooling schedules to produce crystals with few defects

- Based on statistical physics
 - heating and cooling schedules to produce crystals with few defects
- Key idea

- Based on statistical physics
 - heating and cooling schedules to produce crystals with few defects
- Key idea
 - Use Metropolis algorithm but adjust the temperature dynamically

- Based on statistical physics
 - heating and cooling schedules to produce crystals with few defects
- Key idea
 - Use Metropolis algorithm but adjust the temperature dynamically
 - -start with a high temperature
 - essentially a random walk

- Based on statistical physics
 - heating and cooling schedules to produce crystals with few defects
- Key idea
 - Use Metropolis algorithm but adjust the temperature dynamically
 - -start with a high temperature
 - essentially a random walk
 - decrease the temperature progressively

- Based on statistical physics
 - heating and cooling schedules to produce crystals with few defects
- Key idea
 - Use Metropolis algorithm but adjust the temperature dynamically
 - start with a high temperature
 - essentially a random walk
 - decrease the temperature progressively
 - -when the temperature is low
 - essentially a local improvement search

```
1. function SIMULATEDANNEALING(f, N) {
2. s := \text{GENERATEINITIALSOLUTION}();
3. t_1 := \text{INITTEMPERATURE}(s);
4. s^* := s;
5. for k := 1 to MaxSearches do
6. s := \text{LocalSearch}(f, N, \text{L-All}, \text{S-Metropolis}[t_k], s);
7. if f(s) < f(s^*) then
8. s^* := s;
9. t_{k+1} := \text{UPDATETEMPERATURE}(s, t_k);
10. return s^*;
11. }
```

- guaranteed to converge to a global optimum
 - -connected neighborhood
 - -slow schedule
 - slower than exhaustive search

- guaranteed to converge to a global optimum
 - -connected neighborhood
 - -slow schedule
 - slower than exhaustive search
- ► In practice
 - some excellent results on some hard benchmarks
 - e.g., TTP, minimizing tardiness in scheduling
 - -reasonably fast schedule

$$t_{k+1} = \alpha t_k$$

- Various additional techniques
 - restarts
 - -reheats
 - -see also tabu search later

Simulated Annealing

- Various additional techniques
 - restarts
 - -reheats
 - -see also tabu search later
- Restarts
 - like in multi-start procedure

Simulated Annealing

- Various additional techniques
 - restarts
 - -reheats
 - -see also tabu search later
- Restarts
 - like in multi-start procedure
- Reheat
 - increase the temperature

- Key abstract idea
 - maintain the sequence of nodes already visited
 - tabu list and tabu nodes

```
1. function LocalSearch(f, N, L, S, s_1) {
2. s^* := s_1;
3. \tau := \langle s_1 \rangle;
4. for k := 1 to MaxTrials do
5. if satisfiable(s) \wedge f(s_k) < f(s^*) then
6. s^* := s_k;
7. s_{k+1} := S(L(N(s_k), \tau), \tau);
8. \tau := \tau :: s_{k+1};
9. return s^*;
10. }
```

- Basic abstract tabu-search
 - select the best configurations that is not tabu,i.e., has not been visited before

- Basic abstract tabu-search
 - select the best configurations that is not tabu, i.e., has not been visited before
 - 1. **function** TabuSearch(f,N,s)2. **return** LocalSearch(f,N,L-NotTabu,S-Best);
 - where
 - 1. **function** L-NotTabu (N,τ)
 - 2. return $\{ n \in N \mid n \notin \tau \};$

Metaheuristics

Many others

- -variable neighborhood search
- -guided local search
- ant-colony optimization
- hybrid evolutionary algorithms
- -scatter search

— ...

Until Next Time