CSE 181403

Roll No. of candidate	
-----------------------	--

2022

B.Tech. 4th Semester End-Term Examination

Computer Science and Engineering

OPERATING SYSTEM

(New Regulation & New Syllabus)

Full Marks - 70

Time - Three hours

			Т	ie figures	on the ma	rgın ınd question		ll marks			
			A			•		the ree			
			Ansv	ver ques	tion No. 1 a	and any	lour 100	m the res	L.		
1.	Ans	swer the following: (Choose the correct option) \cdot (10 x 1									
	(i)	System call is just a bridge between user programs and ———————————————————————————————————									or
		(a)	System	program	ıs	DOM!	Os'				
		(c)	Users		-ch	(d)	None				
	(ii)		first ph		ctor on a b	asic disl	contain	ns a data	struc	ture known	as
		(a)	Partitio	on sector		(b)	boot re	cord			
		(c)	Basic s	ector		(d)	master	boot reco	rd	*	
	(iii)	The	CPU is	a ———	- resource	.					
		(a)	non-pre	eemtive		(b)	preem	ptive			
		(c)	consum	ıable		(d)	none				
	(iv)				sources and structure			of a proce	ess ne	ed to be stor	ed
		(a)	status	block		(b)	PCB				
		(c)	resoure	e block		(d)	none				
	(v)	Wh	What is the UNIX command for terminating a process abnormally?								
		(a)	fork			(b)	susper	ıd			
		(c)	kill			(d)	none				
										[Turn or	ver

	, (ri) W to	hen a running the running pro	process is inte ocess and tran	errupted isfers co	l and the AS assigns an ntrol to it, it is known as	other process
		(a)	context swite	hing	(b)	interrupt handling	
		(c)	PCB switching	ıg	(d)	process switching	
	(v	ii) Th	c total time spe	nt by a proces	ss in the	system is called	
		(a)	turnaround t	ime	(b)	response time	
		(c)	waiting time	•	(d)	none	
	(v		en a process d resource and v			the resource, it loops c is known as	ontinually for
		(a)	deadlock		(b)	spin lock	
		(c)	live lock		(d)	none	· ,
	(ix) An	edge from a pr	cess to a reso	ource in	RAG is known as	
		(a)	assignment e	dge	(b)	claim edge	
		(c)	request edge		(d)	none	
	(x)	Wh	at is the minim	um number o	of memo	ry access needed in pag	ing?
		(a)	Three		(b)	Four	
		(c)	Two		(d)	Five	
2.	(a)		it is race con hronization pr		e a pro	ogram that shows the	data access (5)
	(b)					in memory managem	ent. How is it (10)
3.	(a)	Cons	emented using ider the follow Process	ing scenario	of proce	D.C.	(10) +
	/		Process	Arrivat Ti	me	Execution Time	
	•		Pl	760		8	
			P2	1		4	
	540		P3	2		3	
			P4	3		5	
		Draw		art for the ex	ecution	of the processes, show	ing their start
		time Calcu	and end tim	e, using Sh nd time, wa	ortest	Remaining Time Neime for each process	xt scheduling.

(b) Calculate the number of page faults for the following reference string using Optimal algorithm with frame size 3. (5)

5, 0, 2, 1, 0, 3, 0, 2, 4, 3, 0, 3, 2, 1, 3, 0, 1, 5

- 4. (a) Define the critical section problem. What is semaphore? Explain its implementation. (10)
 - (b) How do you use deadlock detection algorithm with a single instance of resource type? (5)
- 5. (a) Differentiate between long term and short-term scheduler. (3)
 - (b) Consider the following snapshot of a system:

(8+4)

Allocation					Max				
	A	В	\mathbf{C}_{i}	D		Α	В	C	D
$\mathbf{P_0}$	3	0	1	4		5	1	1	7
$\mathbf{P_{1}}$	2	2	0	1	,	3	2	1	1
P_2	3	1	2	1		3	3	2	1
P_3	0	5	1	0		4	6	1	2
P_4	4	. 2	1	2		6	3	2	5

Using Banker's algorithm, determine whether or not the following state is unsafe. If the state is unsafe illustrate the order in which the processes may complete.

- (c) Illustrate why the state is unsafe. Consider that Available = (0, 4, 0, 3).
- 6. (a) Prove that all the CS protocol requirements are satisfied in Perterson's solution for process synchronization. (10)
 - (b) There is a system with 64 pages of 112 bytes page size and a physical memory of 32 frames. How many bits are required in the logical and physical address? (5)
- 7. (a) What is a file? Write its different attributes and file operations. (10)
 - (b) In a system, the following state of processes and resources is given:
 (5)
 R2 → P1, P1 → R2, P2 → R3, R1 → P2, R3 → P3, P3 → R4, P4 → R3, R4 → P4, P4 → R1, R1 → P5

Draw a RAG and wait-for graph for the system, and check deadlock condition.