ARMCHAIR QUANTUM

Learning Quantum Computational Chemistry (QCC) Without Leaving Your Seat by Jens Cheung

1. Why QCC

If we can simulate **better** chemistry model with quantum computers, we can build **better quantum computers** with those simulations.

2. Hurdles

1) Limited education resources

for **cross-disciplinary** research.

#Chemistry #QuantumPhysics #ComputerScience #Mathematics #ElectricalEngineering #Industry #StateInvestment #AcademicFunding #Privatisation

2) Different hardware designs meaning different algorithms.

3) Scarce **cloud-based** computing for open access

#IBMQiskit #NearTermSimulators #FiveQubits #LocalHardware #EducationalAssistant

#AcademicCommunication #

3. Research Aim

Apply cloud-based superconducting qubits to open-source pedagogy for practicing online learning and infrastructure in quantum computation chemistry.

4. Learning With Narratives

5. Infrastructural Findings

This project implement IBM Qiskit library on Jupyter Lab with Python language and coordinate users with Slack, Discord, GitHub issue and resources from Quantum Open Source Foundation.

6. Educational Findings

1. Second Curriculum

#EinsteinianPhysics #LackQComputing #LackProgrammingSkills #SlowReform

2. Open Resources

#InstitutionalAccess #RegionalLimit #IndustryBridges #QualityCurating

3. Microcredentials

#NoUniversalCertification #MOOC

#LackOfConsistency #Recognition

7. Result & Future Work

Browse the **learning prototype** with web-based environment. Implementation of superconducting qubit with python **library** will be the next stage.

8. Reference

or https://bit.ly/2SmTsjG