An Algorithm for the Generalized Symmetric Tridiagonal Eigenvalue Problem

Kuiyuam Li, Tien-Yien Li, Zhonggang Zeng

Giulio Masetti

Università di Pisa Corso Metodi di Approssimazione 2012-2013

July 26, 2013

Generalized Eigenvalue Problem

```
Def
```

 $T, S \in \mathbb{R}^{n \times n}$. We call (T, S) pencil.

We consider *only*

symmetric and tridiagonal

pencil.

Generalized Eigenvalue Problem

Def

$$T, S \in \mathbb{R}^{n \times n}$$
. We call (T, S) pencil.

We consider *only* and

tridiagonal

pencil.

Def (Problem)

Find λ such that $Tv = \lambda Sv$.

T,S symmetric implies $\lambda \in \mathbb{R}$.

Algorithm philosophy

We find zeros of the polynomial equation

$$\mathcal{F}_{(T,S)}(\lambda) = \det(T - \lambda S) = 0$$

using an iterative method, living on real line.

Brainstorming

We want:

Fast and secure iterative method.

Starting points for our method.

Scalability.

We have: Lague

Laguerre's method.

Cuppen's divide and conquer method.

Symmetric tridiagonal matrices.

We add:

Unreducible condition.

Dynamic programming (Bottom-up).

Efficient matrix storing.

Rapid tour

We want:

Fast and secure iterative method.

Starting points for our method.

Scalability.

We have: | Laguerre's method.

Cuppen's divide and conquer method.

Symmetric tridiagonal matrices.

We add: Unreducible condition.

Dynamic programming (Bottom-up).

Efficient matrix storing.

Unreducible pencil

```
Def ( as in [1] ) (T, S) is an unreducible pencil if t_{i,i+1}^2 + s_{i,i+1}^2 \neq 0 for i = 1, 2, \ldots, n-1.
```

Matrix storin

$$T = trid(sub, diag, super)$$
 But T is symmetric, so $sub = super$. We define and use integer , parameter :: dp = kind(1.d0) real(dp), dimension(1:n,0:1) :: T, S with $T(:,0) = diag$ and $T(:,1) = super$. Oss We don't use $T(n,1)$ and $S(n,1)$.

We want: Fast and secure iterative method.

Starting points for our method.

Scalability.

We have: Laguerre's method.

Cuppen's divide and conquer method.

Symmetric tridiagonal matrices.

We add: Unreducible condition.

Dynamic programming (Bottom-up).

Efficient matrix storing.

 $\mathcal{F}_{T,S}(\lambda)$ is a polynomial with only real zeros; we call them

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$

where we count with multiplicity.

If λ_m and λ_{m+1} are simple zeros (mlt=1), then we consider the quadric

$$g_u(X) = (x - X)^2 \sum_{i=1}^n \frac{(u - \lambda_i)^2}{(x - \lambda_i)^2} - (u - X)^2$$

if $u \neq x$ then $g_u(x) < 0$ and $g_u(\lambda_m) > 0$.

So we have two sign change.

Bolzano's Theorem tell us that there are two zeros of g_u between λ_m and λ_{m+1} . We call them X_-, X_+ .

$$\lambda_m < X_- < x < X_+ < \lambda_{m+1}$$

We have one freedom: the u parameter.

Calling $\hat{X}_{-} = min_u X_{-}$ and $\hat{X}_{+} = max_u X_{+}$ we can obtain

$$\lambda_m \approx \hat{X}_- < x < \hat{X}_+ \approx \lambda_{m+1}$$

and with algebraic manipulations:

$$\hat{X}_{-}, \hat{X}_{+} = L_{\pm}(x) = x + \frac{n}{-\frac{f'}{f} \pm \sqrt{(n-1)[(n-1)(-\frac{f'}{f}) - n\frac{f''}{f}]}}$$

with
$$\frac{f'}{f} = \frac{(\mathcal{F}_{\mathcal{T},S}(\lambda))'}{\mathcal{F}_{\mathcal{T},S}(\lambda)}$$
.

It's clear how we use $\lambda_m \approx \hat{X}_- < x < \hat{X}_+ \approx \lambda_{m+1}$:

It's clear how we use
$$\lambda_m \approx \hat{X}_- < x < \hat{X}_+ \approx \lambda_{m+1}$$
 :
$$x_-^{(1)} \qquad x_0 \qquad x_+^{(1)} \qquad \cdots$$

It's clear how we use $\lambda_m \approx \hat{X}_- < x < \hat{X}_+ \approx \lambda_{m+1}$:

$$\begin{array}{cccc}
\lambda_m & \chi_0 & \lambda_{m+1} \\
\hline
 & \bigcirc & \bigcirc
\end{array}$$

Def (Laguerre's iteration)
 If
$$mlt(\lambda_m) = mlt(\lambda_{m+1}) = 1$$
 then
$$x_+^{(k)} = L_+^k(x) = L_+(L_+(\dots(x_0)))$$

$$x_-^{(k)} = L_-^k(x) = L_-(L_-(\dots(x_0)))$$

else we have a similar expression.

Def (Laguerre's iteration)

If
$$mlt(\lambda_m) = mlt(\lambda_{m+1}) = 1$$
 then

$$x_{+}^{(k)} = L_{+}^{k}(x) = L_{+}(L_{+}(\dots(x_{0})))$$

 $x_{-}^{(k)} = L_{-}^{k}(x) = L_{-}(L_{-}(\dots(x_{0})))$

else we have a similar expression.

We can prove that

$$\lambda_m \leftarrow \dots x_-^{(2)} < x_-^{(1)} < x_0 < x_+^{(1)} < x_+^{(2)} \cdots \rightarrow \lambda_{m+1}$$

Def (Laguerre's iteration)

If $mlt(\lambda_m) = mlt(\lambda_{m+1}) = 1$ then

$$x_{+}^{(k)} = L_{+}^{k}(x) = L_{+}(L_{+}(\dots(x_{0})))$$

 $x_{-}^{(k)} = L_{-}^{k}(x) = L_{-}(L_{-}(\dots(x_{0})))$

else we have a similar expression.

We can prove that

$$\lambda_m \leftarrow \dots x_-^{(2)} < x_-^{(1)} < x_0 < x_+^{(1)} < x_+^{(2)} \cdots \rightarrow \lambda_{m+1}$$

So Laguerre's method is secure.

We also have un important property:

Teo

If we choose* $\lambda_m < x_0$ s.t. $sign(\frac{f'(x_0)}{f(x_0)}) = sign(\lambda_m - x_0)$ then $\{x_-^{(k)}\}_{k=1,\dots}$ converge monotonically in asymptotically cubic rate to λ_m .

mon. cubic to λ_{m+1}

^{*}for $x_0 < \lambda_{m+1}$ s.t. $sign(\frac{f^{'}(x_0)}{f(x_0)}) = sign(\lambda_m - x_0)$ we have $\{x_+^{(k)}\}_{k=1,...}$ conv.

We also have un important property:

Teo

If we choose* $\lambda_m < x_0$ s.t. $sign(\frac{f'(x_0)}{f(x_0)}) = sign(\lambda_m - x_0)$ then $\{x_-^{(k)}\}_{k=1,\dots}$ converge monotonically in asymptotically cubic rate to λ_m .

So we can exactly define a neighborood "near" λ and in it we have cubic rate convergence (much, much faster then bisection)

^{*}for $x_0 < \lambda_{m+1}$ s.t. $sign(\frac{f'(x_0)}{f(x_0)}) = sign(\lambda_m - x_0)$ we have $\{x_+^{(k)}\}_{k=1,\dots}$ conv. mon. cubic to λ_{m+1}

We also have un important property:

Teo

If we choose* $\lambda_m < x_0$ s.t. $sign(\frac{f'(x_0)}{f(x_0)}) = sign(\lambda_m - x_0)$ then $\{x_{-}^{(k)}\}_{k=1...}$ converge monotonically in asymptotically cubic rate to λ_m .

So we can exactly define a neighborood "near" λ and in it we have cubic rate convergence (much, much faster then bisection) The Laguerre's method is fast.

^{*}for $x_0 < \lambda_{m+1}$ s.t. $sign(\frac{f'(x_0)}{f(x_0)}) = sign(\lambda_m - x_0)$ we have $\{x_+^{(k)}\}_{k=1,...}$ conv. mon. cubic to λ_{m+1}

It's clear that we need a powerfull method to obtain x_0 and an algorithm to estimate $mlt(\lambda_m)$.

Overstimate $mlt(\lambda_m)$ (as we can read in [2]) causes no trouble, so the most importan aspects of our calculation are:

Good x_0 .

Good evaluation of $L_{\pm}(x)$.

For a generic $x \in \mathbb{R}$ we call $\rho_n(x) = \det(T_n - xS_n)$, and $\rho_{n-1}(x) = \det(T_{n-1} - xS_{n-1})$, with T_{n-1} leading principal submatrix.

We have

$$\rho_0 := 1, \ \rho_1 := t_{1,1} - x s_{1,1}$$

$$\rho_i := (t_{i,i} - x s_{i,i}) \rho_{i-1} - (t_{i-1,i} - x s_{i-1,i})^2 \rho_{i-2}, \ i = 2, 3, \dots, n$$

We can proove it with the Laplace expansion (e.g. n = 4)

$$T_{4} - xS_{4} = \begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & e & f \\ 0 & 0 & f & g \end{pmatrix}$$

$$det (T_{4} - \lambda S_{4}) = g \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & d & e \end{bmatrix} - f \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & 0 & f \end{bmatrix}$$

$$= g \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & d & e \end{bmatrix} - f^{2} \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

We can proove it with the Laplace expansion (e.g. n = 4)

$$T_{4} - xS_{4} = \begin{pmatrix} a & b & 0 & 0 \\ b & c & d & 0 \\ 0 & d & e & f \\ 0 & 0 & f & g \end{pmatrix}$$

$$det(T_{4} - \lambda S_{4}) = g \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & d & e \end{bmatrix} - f \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & 0 & f \end{bmatrix}$$

$$= g \begin{bmatrix} a & b & 0 \\ b & c & d \\ 0 & d & e \end{bmatrix} - f^{2} \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

Oss

If
$$x = \lambda$$
 then $\rho_n(\lambda) = \mathcal{F}_{(T_n, S_n)}(\lambda) = f$

Oss

 $\rho_0, \rho_1, \dots, \rho_n$ i a *Sturm sequence* of polynomials so, $\forall x \in \mathbb{R}$, we have

$$\kappa(x) := \#$$
 eigenvalues less then x
 $\kappa(x) = \#$ consecutive sign changes in $\{\rho_i\}_{i=0,\dots,n}$

Searching x_0

We want:

Fast and secure iterative method.

Starting points for our method.

Scalability.

We have: Laguerre's method.

Cuppen's divide and conquer method.

Symmetric tridiagonal matrices.

We add: Unreducible condition.

Dynamic programming (Bottom-up).

Efficient matrix storing.

If n=1 we have $t\cdot v=\lambda\cdot s\cdot v.$ $s\neq 0$, so $\lambda=\frac{t}{s}$.

If
$$n=1$$
 we have $t\cdot v=\lambda\cdot s\cdot v$. $s\neq 0$, so $\lambda=\frac{t}{s}$. If $n=2$ we have $\begin{bmatrix} t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \lambda \begin{bmatrix} s_{1,1} & s_{1,2} \\ s_{2,1} & s_{2,2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

If n=1 we have $t\cdot v=\lambda\cdot s\cdot v$. $s\neq 0$, so $\lambda=\frac{t}{s}$. If n=2 we have $\begin{bmatrix} t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \lambda \begin{bmatrix} s_{1,1} & s_{1,2} \\ s_{2,1} & s_{2,2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ calling*

$$S^{-1}T = \delta^{-1} \cdot \begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix}$$

we resolve $det[S^{-1}T - \lambda I] = 0$ with

$$\lambda_{1,2} = \frac{1}{2\delta} \left(\alpha + \beta \pm \sqrt{\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta} \right)$$

And if
$$n = 4$$
?

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Consider (\hat{T}, \hat{S}) with

$$\hat{T} = \begin{bmatrix} T_0 & 0 \\ 0 & T_1 \end{bmatrix}$$

$$\hat{S} = \begin{bmatrix} S_0 & 0 \\ 0 & S_1 \end{bmatrix}$$

and let be

$$\hat{\lambda}_1 \leq \hat{\lambda}_2 \leq \cdots \leq \hat{\lambda}_n$$

eigenvalues of (\hat{T}, \hat{S}) , then

Teo (A sort of "interlacing")

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with i = 2, 3, ..., n - 1.

Oss

It's possible that

Teo (A sort of "interlacing")

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with i = 2, 3, ..., n - 1.

Oss

It's possible that

Teo (A sort of "interlacing")

$$-\infty < \lambda_1 \le \hat{\lambda}_1$$
$$\hat{\lambda}_{i-1} \le \lambda_i \le \hat{\lambda}_{i+1}$$
$$\hat{\lambda}_n \le \lambda_n < \infty$$

with i = 2, 3, ..., n - 1.

Oss

It's possible that

Grazie per l'attenzione.