(11)

EP 1 231 654 A1

(12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 14.08.2002 Bulletin 2002/33

(21) Application number: 00969916.6

(22) Date of filing: 20.10.2000

(51) Int CI.7: H01M 4/66, H01M 4/02, H01M 4/04, H01M 4/38, H01M 4/48, H01M 4/58, H01M 10/40

(86) International application number: PCT/JP00/07296

(87) International publication number: WO 01/31724 (03.05.2001 Gazette 2001/18)

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 22.10.1999 JP 30164699 16.12.1999 JP 365780899 22.12.1999 JP 36530699 28.12.1999 JP 37451299 17.02.2000 JP 2000039454

24.02.2000 JP 2000047675 29.03.2000 JP 2000090583 25.04.2000 JP 2000124305 07.07.2000 JP 2000207274

(71) Applicant: Sanyo Electric Co., Ltd. Moriguchi-shi, Osaka 570-8677 (JP)

(72) Inventors:

 IKEDA, Hiroaki, Sanyo Electric Co., Ltd. Moriguchi-shi, Osaka 570-8677 (JP)

 FUJIMOTO, Masahisa, Sanyo Electric Co., Ltd. Moriguchi-shi, Osaka 570-8677 (JP)

 FUJITANI, Shin, Sanyo Electric Co., Ltd. Moriquchi-shi. Osaka 570-8677 (JP) SHIMA, Masaki, Sanyo Electric Co., Ltd.

Moriguchi-shi, Osaka 570-8677 (JP)

• YAGI, Hiromasa, Sanvo Electric Co., Ltd.

Moriguchi-shi, Osaka 570-8677 (JP)

 TARUI, Hisaki, Sanyo Electric Co., Ltd. Moriguchi-shi, Osaka 570-8677 (JP)

 KUROKAWA, Hiroshi, Sanyo Electric Co., Ltd. Moriguchi-shi, Osaka 570-8677 (JP)

ASAOKA, Kenji, Sanyo Electric Co., Ltd.

Moriguchi-shi, Osaka 570-8677 (JP)

MATSUTA, Shigeki, Sanyo Electric Co., Ltd.

Moriguchi-shi, Osaka 570-8677 (JP)

 DOMOTO, Yoichi, Sanyo Electric Co., Ltd. Moriguchi-shi, Osaka 570-8677 (JP)

OHSHITA, Ryuji, Sanyo Electric Co., Ltd.

Moriguchi-shi, Osaka 570-8677 (JP)

• KATO, Yoshio, Sanyo Electric Co., Ltd.

Moriguchi-shi, Osaka 570-8677 (JP)

NAKAJIMA, Hiroshi, Sanyo Electric Co., Ltd.

Moriguchi-shi, Osaka 570-8677 (JP)

(74) Representative: Merkle, Gebhard TER MEER STEINMEISTER & PARTNER GbR, Patentanwälte, Mauerkircherstrasse 45 81679 München (DE)

(54) ELECTRODE FOR LITHIUM CELL AND LITHIUM SECONDARY CELL

(57) An electrode for lithium batteries, in which a thir film of active material capable of storage and release of lithium, such as a microcrystaline or amorphous silicon thin film. is provided, through an interlayer, on a current collector, the electrode being characterized in that the interlayer comprises a material alloyable with the thin film of active material.

FIG. 1

Printed by Jouve, 75001 PARIS (FR)

Description

TECHNICAL FIELD

5 [0001] The present invention relates to a novel electrode for use in lithium battery, a lithium battery and a rechargeable lithium battery utilizing the electrode.

BACKGROUND ART

- 10 [0022] The battery performance of rechargeable lithium batteries recently under intensive research and development, such as charge-discharge vollage, cycle life characteristics or storage characteristics, depends largely upon the types of the electrodes used. This has led to the attempts to better battery performance by improving electrode active materials.
 - [0003] The use of metallic lithium for the negative active material, although possible to construct a battery with high energy density per weight and volume, presents a problem that the lithium deposited on charge grows into dendrite which could cause internal short-circuiting.
 - [0004] Rechargeable lithium batteries are reported (Solid State lonics, 113-115, p57 (1998)) which use an electrode consisting of aluminum, silicon, tin or the like that is electrochemically alloyed with lithium on charge. Among these, a silicon electrode provides a particularly high theoretical capacity and is promising as a high-capacity negative electrode.
- For this reason, various rechargeable batteries using silicon for the negative electrode are proposed (Japanese Patent Laying-Opon N. Hei 10-255768). However, such alloying negative electrodes fall to provide sufficient cycle characteristics since alloys, as electrode active materials, are themselves pulverized on charge and discharge to reduce current-collecting capabilities.

25 DISCLOSURE OF THE INVENTION

- [0005] The inventors of this application have discovered that an electrode including a thin film composed of active material, such as a microcrystalline or amorphous silicon thin film, deposited on a current collector by a thin film-forming process such as a sputtering or CVD process exhibits improved charge-discharge cycle characteristics when incorporated in rechargeable lithium batteries, as demonstrated in Reference Experiments 1 8 which will be later described. [0006] They have also found the importance of adhesion between the thin film of active material and the current collector when satisfactory charge-discharge cycle characteristics are pursued for such an electrode.
- [0007] It is an object of the present invention to provide an electrode for lithium batteries, in which a thin film of active material capable of storage and release of lithium is provided on a current collector and which can obtain the imposed charge-discharge cycle characteristics by the enhanced adhesion of the thin film of active material to the current collector.
 - [0008] The present invention is an electrode for ithium batteries, in which a thin film of active material capable of storage and release of lithium is provided on a current collector through an interlayer and which is characterized in that the interlayer comprises a material alloyable with the thin film of active material.
- 40 [0009] The use of the interlayer that comprises a material alloyable with the thin film of active material improves achesion of the thin film of active material to the current collector. This construction prevents the thin film from being separated from the current collector as it expands and shrinks during a charge-discharge reaction, resulting in obtaining improved charge-discharge oxcling characteristics.
- [0010] In one preferred embodiment in accordance with the present invention, a metal or alloy foil which is higher in mechanical strength than the interfayer material is used to constitute the current collector.

 [0011] In the present invention, since the thin film of active material expands and shrinks as it stores and releases
 - lithlum, a stress is caused in the current collector during a charge-discharge reaction. This stress causes formation of winkles in the current collector as a result of irreversible, that is, plastic deformation. This wriths formation not only increases a volume of the battery but also disturbs uniformity of an electrode reaction, resulting in the reduction of an energy density, in order to suppress formation of such wrinkles, the use of a material superior in mechanical strength, such as in tensile strength and tensile medulus, is preferred. However, if the thin film of active material is deposited directly on such a material serving as a current collector, the adhesion therebetween becomes occasionally insufficient to result in the failure to obtain satisfactory charge-discharge (cyting. In this case, the interposition of the afore-stated interfayer comprised of a material alloyable with the thin film of active material between the current collector and the film film provents separation of the thin film during the charge-discharge reaction as well as suppresses formation of
 - [0012] Accordingly, the use of a metal or alloy foil, which is higher in mechanical strength than the interlayer material, for the current collector is effective to suppress formation of wrinkles in the current collector while maintaining satis-

factory charge-discharge cycling characteristics.

active material.

[0013] Also in the present invention, it is preferred that the interlayer has irregularities on its surface. The presence of such irregularities on the interlayer surface increases an interfacial contact area between the interlayer and the film of active material, resulting in the increased adhesion between the thin film of active material and the interlayer and thus between the thin film of active material and the current collector.

[0014] These irregulanties can be imparted onto the surface of the interlayer, for example, by using the current collector having surface irregulanties. In this case, the irregulanties defined on the interlayer surface correspond to these on the current collector.

[0015] In the above case, a surface roughness Ra (roughness average) of the current collector is preferably in the property of the current collector is preferably in the range of 0.01 - 1 µm. The surface roughness Ra is specified in Japanese industrial Standards (JIS 8 0601-1994) and can be determined by a surface roughness meter, for example.

[0016] In the present invention, the surface roughness Ra of the current collector preferably satisfies the relationship Ra ≦ t, where t is a thickness of the active material. Also preferably, the surface roughness Ra of the current collector and a mean spacing of local peaks of profile S satisfy the relationship 100Ra ≧ S. The mean spacing of local peaks of profile S satisfy the relationship 100Ra ≥ S. The mean spacing of local peaks of profile S is specified in Japanese Industrial Standards (JIS B 0601-1994) and can be determined by a surface roughness meter, for example.

[0017] The shape of projections of the irregularities on the current collector surface is not particularly specified, but may preferably be a conical form, for example.

[0018] In the present invention, the thin film of active material can be formed from a material which can produce a compound or solid solution with lithium, for example. Such a material can be liulisertated by at least one selected from elements from Groups IIB, IIIB, IVB and VB of the periodic table, and oxides and sulfides of transition metal elements from Periods 4, 5 and 6 of the periodic table.

[0019] In the present invention, examples of elements from Groups IIB, IIB, IVB and VB of the periodic table islain can produce compounds or solid solutions with lithium include carbon, aluminum, silicon, phosphorus, zinc, gallium, germanium, arsenic, cadmium, indium, ilin, antimony, mercury, thallium, lead and bismuth. Specific examples of transition metal elements from Periods 4, 5 and 6 of the periodic table include scandium, litanium, varadium, chromium, manganese, iron, cocalit, incikel, copper, zinc, yfutium, zironoium, nicibium, molybdenum, technetium, ruthenium, rimadum, palladium, silver, cadmium, lanthanum series elements, hafnium, tantatum, tungsten, rhenium, osmium, iridium, piatinum, gold and mercury.

30 [0020] Preferred among the above-listed elements is at least one selected from carbon, silicon, germanium, tin, lead, aluminum, indium, zinc, cadmium, bismuth and mercury. Silicon and/or germanium is more preferred.

[0021] In general, silicon is roughly classified by its crystallinity into amorphous silicon, microcrystalline silicon, polycrystalline silicon and single cystal silicon. The term 'moncrystalline silicon and single crystal silicon. The term 'moncrystalline silicon and single crystal silicon. Silicon is identified as the amorphous silicon when Raman spectroscopy detects substantial absence of a peak around 520 cm⁻¹ which characterizes a crystalline region, and as the microcrystalline silicon when Raman spectroscopy detects the substantial presence of a peak around 520 cm⁻¹ which corresponds to the crystalline region and a peak around 480 cm⁻¹ which indicates an amorphous region. Hence, the microcrystalline silicon consists substantially of a crystalline region and an amorphous region. Silicon is identified as the single crystall silicon or polycrystalline silicon when Raman spectroscopy detects the substantial absence of a peak around 480 cm⁻¹ which corresponds to the amorphous region. G0022] in the present invention, a microcrystalline or amorphous silicon thin filing preferably serves as the thin filing preferably serves as the thin filing more and the present invention, a microcrystalline or amorphous silicon thin filing preferably serves as the thin filing the silicon control in the present invention, a microcrystalline or amorphous silicon thin filing preferably serves as the thin filing the present invention, a microcrystalline or amorphous silicon thin filing preferably serves as the thin filing the proper invention.

[0023] In addition to the above-described silicon thin film, a germanium thin film or a silicon-germanium alloy thin film may also be preferably used for the thin film of active material in the present invention. The germanium thin film in the amorphous or microcrystalline form is preferably used. The preferred silicon-germanium alloy thin film has the microcrystalline or amorphous form. The above-described procedure applied to the silicon thin film can be similarly utilized to determine the microcrystalline or amorphous nature of the germanium and silicon-germanium alloy thin film. The use of silicon and germanium provides good results as evidenced by Examples which will be described hereinafter. Since silicon and germanium can be mixed with each other in arbitraty proportions to produce solid solutions, similar results are expected for the silicon-germanium alloy.

or esuits are expected for the silicon-germanium alloy thin film serves as the thin film of active material, copper may be chosen as the material capable of alloy formation therewith. It is accordingly preferred that the interlayer is formed from copper when such thin films are used. The tensile strength of copper is 212.7 f/mrm² (21.7 kg/mrm², "Data Book of Metals, Revised 2m Ed.", published by Maruzen Co.). A metal or alloy that has the higher tensile strength of 12.2 kg/mrm², "Data Book of Metals, Revised 2m Ed.", published by Maruzen Co.). A condralpy, a nickel foil may preferably be used for the current collector when copper forms the interlayer. Other types of materials useful for the current collector when copper froms the interlayer. Other types of materials useful for the current collector when copper florms the interlayer. Other types of materials useful for the current collector when copper florms the interlayer. Other types of materials useful for the current collector includes copper alloys such as its horizer (phosphor horizer), slicen horizer and aluminum horizer, include alloys, iron and iron.

alloys, and stainless steel. Molybdenum, tungsten and tantalum can also be used to form the current collector. [0025] In the present invention, the interlayer comprises a material which is alloyable with the thin film of active material. Preferably, the interlayer component is allowed to diffuse into the thin film of active material. The diffusion of the interlayer component into the thin film of active material not only improves adhesion between the interlayer and the thin film of active material, but also effectively prevents the film film of active material from separating from the current collector. As a result, the charge-discharge cycle characteristics are further improved.

[0026] In the case where the thin film is composed of active material capable of alloy formation with lithium and the interlayer comprising material incapable of alloy formation with lithium is provided on the current collector, the diffusion of the interlayer component lessens expansion and shrinkage of a thin film portion located in the vicinity of the interlayer during storage and release of lithium. Thus, the thin film of active material can be kept adhered more effectively to the interlayer.

[0027] Preferably, a concentration of the interlayer component in the thin film of active material is higher in the vicinity of the interlayer and is lower at a location closer to the surface of the thin film of active material. Due to the presence of such a concentration gradient, expansion and shrinkage of the thin film in the vicinity of the interlayer is suppressed so that the thin film can be kept adhered to the interlayer. Also, the thin film is allowed to contain a relatively lager amount of active material in the vicinity of its surface so that is high charge-discharge capacity is assured.

[0028] It is preferred that the interlayer component, when diffused in the thin film, forms a solid solution, instead of an intermetallic compound, with a thin film component. The intermetallic compound, as used herein, refers to a compound which has a specific propostal structure formed via combination of metals in specific proportions. The formation of solid solution, instead of intermetallic compound, between the thin film component and the interlayer component improves adhesion between the thin film and the interlayer, resulting in obtaining the increased charge-discharge capacity.

[0029] The current collector preferably has a small thickness and is preferably in the form of a metal foil. The current collector is preferably composed of a material which does not allow with lithium. In the above-described case where the interlayer is a copper layer, the current collector is preferably comprised of a nickel fold.

[0030] When a nickel foil is used as the current collector, it is possible to use a nickel foil having irregularities on its surface, e.g., an electrolytic nickel foil.

[0031] The electrolytic nickel foil can be obtained, for example, by immersing a metal drum in a liquid electrolyte containing nickel ions dissolved therein, rotating the drum and applying a current to the drum while being rotated so that nickel is deposited on a surface of the drum, and then removing the deposited nickel from the drum surface. Either one or both sides of the electrolytic incide the may be subjected to surface roundening or other surface retained.

[0032] Alternatively, the nickel foil may be coated at its surface with a surface-roughened copper layer by depositing copper on a rolled nickel foil using an electrolytic process.

[0033] In the present invention, it is preferred that the thin film of active material is divided into columns by gaps formed therein in a manner to extend in its thickness direction and the columnar protions are at their bottoms adversed closely to the interlayer. It is also preferred that a thickness portion of the thin film that occupies at least a half of its thickness is orderably divided into columns by such asps.

[0034] Preferably, the gaps are formed by the expansion and shrinkage of the thin film, which may be caused to occur by a charge-discharge reaction, for example. Accordingly, the gaps may be formed by the charge-discharge reaction either after or before the electrode is assembled into a battery. Illustrating one possible method of forming such gaps in the thin film of active materials before it is subjected to a charge-discharge process, the thin film of active material in the electrode before being assembled into a battery is allowed to store and then release filthium or the kes ot hat the thin film of active material undergoes expansion and subsequent shrinkage in volume, thereby forming the gaps. Alternatively, the thin film of active material may be deposited in the form of distinct columns using a photo-lithographically patterned resist film to provide the thin film of active material that is divided by gaps into columns.

[0035] In the case where the thin film of active material has irregularities on its surface, the aforementioned gaps may be formed therein to extend in a thickness direction from valleys of the irregularities on the thin film surface toward the current collector. The irregularities on the thin film surface may be formed to correspond in shape to those on the interlayer. That is, providing the interlayer has parface irregularities and then depositing the thin film of active material on the interlayer results in the formation of the corresponding irregularities on the surface of the thin film of active material.

45

[0036] The columnar portions of the thin film of active material may have various top shapes, but preferably have a round top shape.

[0037] The gaps may be formed in a thickness direction of the thin film of active material along low-density regions formed in advance therein. Such low-density regions any be connected to each other like a network in a planar direction and extend in the thickness direction toward the current collector, for example.

[0038] In the present invention, the thin film of active material can be deposited on the interlayer by various methods, including, for example, CVD, sputtering, vapor evaporation, spraying and plating processes. Particularly preferred

- among such thin-film forming methods are CVD, sputtering and vapor evaporation processes.

 [0039] In the present invention, the thin film of active material may be doped with an impurity. Examples of such impurities include elements of the periodic Groups IIIB, IVB, VB and VIB, such as phosphorus, aluminum, arsenic, antimony, boron, gaillium, indium, oxygen and introon, boron, gaillium, indium, oxygen and introon, boron.
- 5 [0040] Also, the thin film of active material in the present invention may be made up of a sequence of superimposed layers. These layers may differ from each other in terms of composition, crystallimity, impurity concentration or the like. Such layers may provide a thin film structure graded in its thickness direction. For example, such layers, if properly arranged, can provide a thin film structure wherein the composition, crystallimity, impurity concentration or the like is varied in its hickness direction.
- 10 [0041] Preferably, the thin film of active material in the present invention stores lithium via formation of an alloy with lithium
 - [0042] Lithium may be previously stored or incorporated in the thin film of active material in the present invention. Lithium may be added during deposition of the thin film of active material. That is, lithium may be introduced via formation of allthium-containing thin film. Alternatively, Ithium may be added or stored after deposition of the thin film of active material. One possible method is to use an electrochemical mechanism whereby lithium is added or stored in the thin film of active material.
 - [0043] The thickness of the thin film of active material in the present invention is preferably 1 µm or above, for the purpose of obtaining a high charge-discharge capacity.
- [0044] In the present invention, the technique used to form the interlayer on the current collector is not particularly see specified. Illustrative techniques include CVD, sputtering, vapor evaporation, spraying and electrolytic (plating) proc-
 - [0045] In the present invention, the thickness of the interlayer is not particularly specified, so long as it is sufficient to improve achiesion thereof to the thin film of active material. The thickness is preferably in the range of 0.01 10 μ m, which range cenerally permits efficient formation of the interlayer by the above-listed techniques.
- 25 [0046] The interlayer material is preferably compatible with the current collector material and thus preferably alloyable therewith.
 - [0047] The lithium battery of the present invention is characterized as including a negative electrode comprised of the above-described electrode of the present invention, a positive electrode and an electrolyte.
 - [0048] The term "lithium battery", as used herein, encompasses a lithium primary battery and a lithium secondary battery. Accordingly, the electrode of the present invention is applicable to lithium primary batteries as well as to lithium secondary batteries.
 - [0049] The rechargeable lithium battery (lithium secondary battery) of the present invention is characterized as including a negative electrode comprised of the above-described electrode of the present invention, a positive electrode and a nonaqueous electrothet.
- 39 [0050] An electrolyte solvent for use in the rechargeable battery of the present invention is not particularly limited in type but can be illustrated by a mixed solvent which contains cyclic activance such as ethylene carbonate, propyiene carbonate or butylene carbonate and also contains chain carbonate such as dimethyl carbonate, methyl ethyl carbonate or diethyl carbonate. Also applicable is a mixed solvent of the above-listed cyclic carbonate and an ether solvent such as 1,2-direntoxyethane or a chain ester such as y-butyrolactone, sulfolane or methyl acetale.
- 40 Illustrative electrolyte solutes are LIPF₆. LIBF₁, LICF₃SO₃, LIN(CF₃SO₃), LIN(CF₃SO₃),

Ides such as LiCoO2, LiNiO2, LiMnO2, LiMnO2, LiCo05Ni05O2 and LiNi07Co02Mn01O2; lithium-free metal oxides

such as MnO₂; and the like. Other substances can also be used, without limitation, if they are capable of electrochemical insersion and release of lithium.

BRIEF DESCRIPTION OF THE DRAWINGS

[0052]

55

Figure 1 is a schematic sectional view of a rechargeable lithium battery fabricated in Reference Examples: Figure 2 is a photomicrograph (at a magnification of 2,000X) taken using a scanning electron microscope, showing an electrode in Reference Example in its state before charge and discharge;

- Figure 3 is a photomicrograph (at a magnification of 5,000X) taken using a scanning electron microscope, showing an electrode in Reference Example in its state before charge and discharge:
- Figure 4 is a photomicrograph (at a magnification of 500X) taken using a scanning electron microscope, showing an electrode in Reference Example in its state after charges and discharges;
- Figure 5 is a photomicrograph (at a magnification of 2,500X) taken using a scanning electron microscope, showing an electrode in Reference Example in its state after charges and discharges;
 - Figure 6 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a silicon thin film of an electrode in Reference Example when viewed from above;
- Figure 7 is a photomicrograph (at a magnification of 5,000X) taken using a scanning electron microscope, showing a silicon thin film of an electrode in Reference Example when viewed from above;
 - Figure 8 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a sillcon thin film of an electrode in Reference Example when viewed from a slight angle;
- Figure 9 is a photomicrograph (at a magnification of 5,000X) taken using a scanning electron microscope, showing a silicon thin film of an electrode in Reference Example when viewed from a slight angle; Figure 10 is a schematic sectional view, showing a slilicon thin film in the process of being divided by gaps into
- columns in Reference Examples;
 Figure 11 a photomicrograph (at a magnification of 12.500X) taken using a transmission electron microscope.
 - showing a section of a silicon thin film of an electrode a3 in Reference Example;
 Figure 12 a photomicrograph (at a magnification of 25,000X) taken using a transmission electron microscope,
- showing a section of a silicon thin film of an electrode a6 in Reference Example;
 Figure 13 is a diagrammatic representation of the photomicrograph of Figure 11:

30

40

- Figure 14 is a diagrammatic representation of the photomicrograph of Figure 12;
- Figure 15 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a silicon thin film surface of an electrode a3 in Reference Example when viewed from above:
- 25 Figure 16 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a silicon thin film surface of an electrode a6 in Reference Example when viewed from above;
 - Figure 17 is a graphical representation illustrating concentration profiles of constituent elements in a silicon thin film of an electrode at in Reference Example along the depth of the film:
 - Figure 18 is a schematic view, showing a construction of an apparatus which is employed when a thin film is formed by a vacuum vapor evaporation technique in Reference Examples;
- Figure 19 is a photomicrograph (at a magnification of 2,000X) taken using a scanning electron microscope, showing an electrode a7 in Reference Example in its state before charge and discharge;
 - Figure 20 is a photomicrograph (at a magnification of 10,000X) taken using a scanning electron microscope, showing the electrode a7 in Reference Example in its state before charge and discharge;
- Figure 21 is a photomicrograph (at a magnification of 2,000X) taken using a scanning electron microscope, showing an electrode a8 in Reference Example in its state before charge and discharge; Fluure 22 is a photomicrograph (at a magnification of 10,000X) taken using a scanning electron microscope, show
 - ing the electrode a8 in Reference Example in its state before charge and discharge;
 Figure 23 is a photomicrograph (at a magnification of 500X) taken using a scanning electron microscope, showing
 - the electrode a7 in Reference Example in its state after charges and discharges; Figure 24 is a photomicrograph (at a magnification of 2,500X) taken using a scanning electron microscope, showing
 - the electrode a7 in Reference Example in its state after charges and discharges;
 Figure 25 is a photomicrograph (at a magnification of 500X) taken using a scanning electron microscope, showing
- the electrode a8 in Reference Example in its state after charges and discharges;

 Figure 26 is a photomicrograph (at a magnification of 2,500X) taken using a scanning electron microscope, showing
- the electrode a8 in Reference Example in its state after charges and discharges: Figure 27 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a germanium thin liftin of the electrode a7 in Reference Example in its state after charges and discharges, when
- viewed from above;

 Figure 28 is aphotomicrograph (at a magnification of 5,000X) taken using a scanning electron microscope, showing a germanium thin film of the electrode a7 in Reference Example in its state after charges and discharges, when
 - Figure 29 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a germanium thin film of the electrode a7 in Reference Example in its state after charges and discharges, when viewed from a slight angle:
 - Figure 30 is a photomicrograph (at a magnification of 5,000X) taken using a scanning electron microscope, showing a germanium thin film of the electrode a7 in Reference Example in its state after charges and discharges, when viewed from a slight angle;

- Figure 31 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a germanium thin film of the electrode a8 in Reference Example in its state after charges and discharges, when viewed from above:
- Figure 32 is a photomicrograph (at a magnification of 5,000X) taken using a scanning electron microscope, showing a germanium thin film of the electrode a8 in Reference Example in its state after charges and discharges, when viewed from above:
 - Figure 33 is a photomicrograph (at a magnification of 1,000%) taken using a scanning electron microscope, showing a germanium thin film of the electrode a8 in Reference Example in its state after charges and discharges, when viewed from a slight angle:
- Figure 34 is a photomicrograph (at a magnification of 5,000X) taken using a scanning electron microscope, showing a germanium thin film of the electrode a8 in Reference Example in its state after charges and discharges, when viewed from a slight anole:
 - Figure 35 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a germanium thin film of the electrode a7 in Reference Example in its state before charge and discharge, when viewed from above:
 - Figure 36 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a germanium thin film of the electrode a8 in Reference Example in its state before charge and discharge, when viewed from above;
 - Figure 37 is a graphical representation illustrating concentration profiles of constituent elements in a germanium thin film of the electrode a7 in Reference Example along the depth of the film;
 - Figure 38 is a graphical representation, illustrating concentration profiles of constituent elements in a germanium thin film in the electrode a8 in Reference Example along the depth of the film;
 - Figure 39 is a photomicrograph (at a magnification of 2,000X) taken using a scanning electron microscope, showing a section of an electrode a-11 in Reference Example before charge and discharge;
- 25 Figure 40 is a photomicrograph (at a magnification of 10,000X) taken using a scanning electron microscope, showing a section of the electrode a-11 in Reference Example before charge and discharge;
 - Figure 41 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a silicon thin film of the electrode a-11 in Reference Example before charge and discharge, when viewed from
- Figure 42 is a photomicrograph (at a magnification of 1,000X) taken using a scanning electron microscope, showing a silloon thin film of the electrode a-11 in Reference Example after charges and discharges, when viewed from above;
 - Figure 43 is a photomicrograph (at a magnification of 500,000X) taken using a transmission electron microscope, showing an interface between a copper foll and a silicon thin film and its vicinities:
- 35 Figure 44 is a photomicrograph (at a magnification of 1,000,000X) taken using a transmission electron microscope, showing an interface between a copper foil and a silicon thin film and its vicinities;
 - Figure 45 is a graphical representation, illustrating concentration profiles of copper and hydrogen in a mixed layer in an electrode c1 along the depth of the layer; and
 - Figure 46 is a graphical representation, illustrating concentration profiles of copper and hydrogen in a mixed layer in an electrode c3 along the depth of the layer.
 - Figure 47 graphically shows evaluation results for charge-discharge cycle characteristics in the Experiment A in accordance with the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

- [0053] The present invention is below described in more detail by way of examples. It will be recognized that the following examples merely illustrate the practice of the present invention but are not intended to be limiting thereof. Suitable changes and modifications can be effected without departing from the scope of the present invention.
- [0054] The following Reference Experiments 1 8 demonstrate that a microcrystalline slicon thin film, an armorphous of slicon thin film and an amorphous germanium thin film, each formed on a current collector such as a copper foil by a CVD or sputtering process, provide good charge-discharge cycle characteristics when they are used for the electrode for rechargeable lithium batteries.

(REFERENCE EXPERIMENT 1)

20

40

(Fabrication of Negative Electrode)

[0055] A microcrystalline silicon thin film was formed on a rolled copper foil (18 µm thick) by a CVD method, using

the rolled copper foil as a substrate, silane (SiH₂) as a source gas and a hydrogen gas as a carrier gas. Specifically, the copper foil as a substrate was placed on a heater within a reaction chamber. An interior of the reaction chamber was evacuated by a vacuum evacuator to a pressure of 1 Pa or lower. The silane gas as a source gas and the hydrogen (H₂) gas as a carrier gas were introduced via a source gas sinlet port. The substrate was heated to 180° co in the heater. A degree of vacuum was adjusted by the vacuum pumping apparatus to a reaction pressure. An RF power supply was operated to excite a radio frequency wave which is introduced via an electrode to induce a glow discharge. Defailed infinifing conditions are islited in Table 1, a volumetric unit, scern, indicates a volumetric flow rate (cm³/minute) of a fluid at 0 °C at 1 atmospheric pressure (101.33 kPa) per minute and is an abbreviation of standard cubic centifineters per minute.

Table 1

Conditions	During Film Formation		
Source Gas (SiH ₄) Flow Rate	10sccm		
Carrier Gas (H ₂) Flow Rate	200sccm		
Substrate Temperature	180°C		
Reaction Pressure	40Pa		
RF Power	555W		

[0056] The microcrystalline silicon thin film was deposited under the above-specified conditions to a thickness of about 10 µm. Observation by an electron microscope (at 2,000,000X magnification) ascertained noncrystallinity of the thin film in the way that an amorphous region was arranged to surround a crystalline region consisting of microffine crystal grains. A 17 mm diameter piece was punched out from the resulting sample to provide an electrode at 1.A piece identical to the electrode at vas sublected to hard treatment at 40 or °C for 3 hours to provide an electrode at 2.

[0057] For comparative purposes, 90 parts by weight of commercially available single crystal silicon powder (particle diameter of 10 µm) and 10 parts by weight of polyeterafluorethylene as a binder were mixed. This mixture was pressed in a 17 mm diameter mold to obtain a pellet-form electrode b1.

(Fabrication of Positive Electrode)

20

30

40

45

[0058] Starting materials, Li₂CO₃ and CoCO₃, were weighed such that the atomic ratio of Li and Co, Li₂Co, was brought to 1;1, and then mixed in a motar. The mixture was pressed in a 17 mm diameter motid and calcined in the air at 800 °C for 24 hours to obtain a calcined product consisting of LiCoO₂. This was subsequently ground into particles with a mean particle diameter of 20 µm.

[0059] 80 parts by weight of the resulting LiCoO₂ powder, 10 parts by weight of acetylene black as a conducting material and 10 parts by weight of polytotrafluoroethylene as a binder were mixed. The mixture was pressed in a 17 mm diameter mold to obtain a pellet-form positive electrode.

(Preparation of Electrolyte Solution)

[0060] 1 mole/liter of LiPF₆ was dissolved in a mixed solvent containing equi-volumes of ethylene carbonate and diethyl carbonate to prepare an electrolyte solution for use in the following battery construction.

(Construction of Battery)

[0061] A coin type rechargeable lithium battery was constructed using the above-fabricated electrode a1, a2 or b1 for the negative electrode, and the above-fabricated positive electrode and the above-prepared electroly

includes a positive electrode 1, a negative electrode 2, a separator 3, a positive can 4, a negative can 5, a positive current collector 6, a negative current collector 7 and an insulating gasket 8 made of polypropylene. [0063] The positive electrode 1 and negative electrode 2 are disposed on opposite sides of the separator 3. These

juosaj i ne positive executour a municipative electroduc 2 and usignose on opposite sides of the separation 3. These are enclosed in a battery case composed of the positive can 4 and negative can 5. The positive electrode 1 is connected to the positive can 4 by the positive current collector 6. The negative electrode 2 is connected to the negative can 5 by the negative current collector 7. Such construction enables charge and discharge as a secondary battery.

[0064] As a result, batteries A1, A2 and B1 were constructed using the electrodes a1, a2 and b1 for the negative electrode, respectively.

(Measurement of Charge-Discharge Cycle Life Characteristics)

[0055] Each batteny, excepting the batteny B1, was charged at a current of 100 µA at 25 °C until a negative electrode capacity reached 2,000 mAh/g, and then discharged. This was recorded as a unit charge discharge cycle. Cycling was effected to measure a 50th-cycle capacity retention rate for each battery. The battery B1 which could not be charged to 2,000 mAh/g, was subjected to a cycle test wherein it was charged to 4.2 V and then discharged. The results are given in Table 2.

[0066] In Table 2, a hydrogen concentration obtained from SIMS measurement, a ratio of peak intensities around 480 cm⁻¹ and 520 cm⁻¹ as determined by Raman spectral analysis, and a crystal grain size calculated from an X-ray diffraction spectrum and the Scherrer's equation, all for the negative active material of each battery, are also given. Also, the crystal grain size of the negative active material of the battery B1 is given by the particle diameter of the powder since both are considered to be almost equal in value to each other.

Table 2

15	Battery	50th-Cycle Capacity Retention Rate	Hydrogen Content	Ratio of Peak Intensities (480cm ⁻¹ /520cm ⁻¹)	Crystal Grain Size
	A1	85%	4%	0.1	1nm
	A2	78%	0.01%	0.1	1nm
20	B1	5%	0%	0	10μm

[0067] As can be clearly seen from the results shown in Table 2, the batterles A1 and A2 in accordance with the present invention both exhibit markedly higher capacity retention rates compared to the comparative battery B1. [0068] As such, the use of the microcrystalline silicon thin film for the negative active material results in the marked improvement of charge-discharge cycle characteristics of the rechargeable lithium battery. This is believed due to the following reason: in the microcrystalline silicon thin film, the moderation of expension and shrinkinge which occurs when lithium is stored and released prevents the negative active material from being pulvertzed and thereby suppresses the possible reduction of current collecting capability.

(REFERENCE EXPERIMENT 2)

[0069] The procedure used in Reference Experiment 1 to construct the battery A1 was followed, except that an electrolytic copper foil (19 \(\mu\) mitch) was used for the current collector as a substate. That is, a microcrystalline sillicon thin film (about 10 \(\mu\) mitch(x) was deposited on the electrolytic copper foil to fabricate an electrode a3. Using this electrode, a battery A3 was constructed.

[0070] Also, the rolled copper foil used in Reference Experiment 1 was subjected to a one-minute griding treatment with a #400 or #120 emery paper to provide a ground copper foil. The procedure used in Reference Experiment 1 to construct the battery A1 was followed, except that such a ground copper foil was used for the current collector as a substrate. That is, a microcrystalline silicon thin film (about 10 jum thick) was deposited on the copper foil to fabricate an electrode. The electrode fabricated using the copper foil ground with a #120 emery paper was designated as an electrode a4 and the electrode fabricated using the copper foil ground with a #120 emery paper was designated as an electrode a5. These electrodes were used to construct batteries A4 and A5 in the same manner as in Reference Experiment 1.

[0071] These batteries A3 - A5 and the batteries A1 and B1 constructed in Reference Experiment 1 were subjected to a charge-discharge-cycle test under the same conditions used in Reference Experiment 1 to obtain a 10th-cycle capacity retention rate for each. The results are given in Table 3. Also given in Table 3 are a surface roughness Ra and a mean spacing of local peaks 5 for othe copper foil, as a current collector, of each of the batteries A1, B1 and A3 - A5. [0072] The surface roughness Ra and the mean spacing of local peaks 5 for each copper foil were measured using a stylus profiler Dektak ST (available from ULVAC Inc.) with a scanning distance of 2.0 mm. The surface roughness Ra was calculated after correction of a delicetion portion. The deflection profile was offered using the correction values with a low pass = 200 µm and a high pass = 20 µm. The surface roughness Ra was automatically calculated after coreal peaks S was read from the charge.

Table 3

Battery	10th-Cycle Capacity Retention Rate	Current Collector (Copper Foil)
		Surface Roughness Ra (μm)	Mean Spacing S (μm)
A1	97%	0.037	14
A3	99%	0.188	11
A4	98%	0.184	9
A5	99%	0.223	8
B1	20%	0.037	14

10073] As can be clearly seen from the results given in Table 3, the batteries A3 - A5 using the copper folls with higher values of surface roughness Ra for the current collector exhibit improved 10th-cycle capacity retention rates compared to the battery A1 using the copper foll with the lowest value of surface roughness Ra. This is considered due to the following reason: The copper foll with a higher value of surface roughness Ra, when used for the current collector, improves adhesion between the current collector, improvement reduces the influence of structural change, such as falling-off of the active material that occurs when it expands or shrinks during storage or release of lithium.

(REFERENCE EXPERIMENT 3)

30

45

[0074] The batteries A1 and A3 respectively constructed in Reference Experiments 1 and 2 were further subjected to a charge-discharge cycle test under the same test conditions as used in the Reference Experiment 1 to measure a 30th-cycle capacity retention rate. The results are shown in Table 4.

Table 4

Battery	30th-Cycle Capacity Retention Rate
A1	91%
A3	97%

[0075] As can be clearly seen from the results given in Table 4, the batteries A1 and A3 exhibit good capacity retention rates even on the 30th-cycle. Particularly, the battery A3 using the copper foll with a higher value of surface roughness Ra for the current collector exhibits good capacity retention rate.

[0076] The electrode as incorporated in the battery A3 was viewed under an electron microscope to observe a condition of its silicon thin film. First, the electrode a3 in its state prior to being incorporated in the battery, i.e., before charge and discharge, was observed using a scanning electron microscope. Figures 2 and 3 are photomicrographs (secondary electron miages) taken with a scanning electron microscope, both showing the electrode a3 in its state before charge and discharge. Figures 2 and 3 are taken at 2000X and 5,000X manifications, respectively.

[0077] The electrode was embedded in a resin and then sliced to provide a sample. The layers of the embedding resin are found in upper and lower end portions of Figure 2 and in an upper end portion of Figure 3.

[0078] In Figures 2 and 3, a portion that appears slightly light indicates the copper foil. The deposited slicon thin film (about 10 µm thick) is found as a dark portion on the copper foil. As shown in Figures 2 and 3, irregularitiles are formed on a surface of the copper foil. Particularly, projections have a generally conical shape. Similar irregularities are formed on a surface of the silicon thin film deposited on the copper foil. Accordingly, the surface irregularities of the slicon thin film appears to generally conform in shape to those formed on the copper foil surface.

[0079] Next, the electrode a3 was removed from the battery A3 after 30 cycles, embedded in a resin, and then subjected to observation under a scanning electron microscope in the same manner as described previously. Here, the electrode a3 was removed after discharace. Thus, the observed electrode a3 was in its state after discharace.

[0080] Figures 4 and 5 are photomicrographs (secondary electron images) taken with a scanning electron microscope, each showing the electrode a3 after discharge. Figures 4 and 5 are taken at 500X and 2,500X magnifications, respectively.

[0081] As shown in Figures 4 and 5, the silicon thin film has gaps that extend in its thickness direction and divide the silicon thin film into columns. Gaps are barely found to extend in a planar direction. A bottom of each columnar portion is found to adhere well to the copper foil as a current collector. Also, each columnar portion has a round top.

It is thus understood that these gaps are formed to originate from the valleys of irregularities that were found on the surface of the silicon thin film in its state before charge and discharge.

[0082] Further, the surface of the silicon thin film of the electrode a3 after charges and discharges was observed with a scanning electron microscope. Figures 6 and 7 are photomicrographs (secondary electron images) taken with a scanning electron microscope, each showing the surface of the silicon thin film when viewed from above. Figures 6 and 7 are taken at 1,000X and 5,000X magnifications, respectively. Figures 8 and 9 are photomicrographs (secondary electron images) taken with a scanning electron microscope, each showing the surface of the silicon thin film when viewed at a sloth and is. Figures 8 and 9 are add 5,000X magnifications, respectively.

[0083] As shown in Figures 6 - 9, the gaps are formed in such a way to surround the columnar portions of the silicon thin film so that spaces are defined between neighboring columnar portions. When the silicon thin film stores lithium on charge, the columnar portions will expand and increase in volume. This increment in volume, however, is believed to be accommodated by those spaces provided around the columnar portions. On discharge, the columnar portions of the silicon thin film release the lithium and shrink to decrease in volume. This decrement in volume is believed to restore the spaces around the columnar portions. Such a columnar structure of the silicon thin film is effective to relax a stress caused by expansion and shrinkage of the active material on charge and discharge, so that falling-off of the active silicon thin film from the current collector can be prevented.

[0084] The formation of the gaps which divide the silicon thin film into columns results in a marked increase in contact area thereof with the electrolyte solution. Also, the columnar portions are almost comparable in size to each other. These are believed to allow efficient occurrence of a charge-discharge reaction accompanying storage and release of lithium in the thin film of active material.

[0085] Since the individual columnar portions of the silicon thin film adhere to the current collector, as shown in Figures 4 and 5, good electrical connection is provided between the active material and the current collector. This is believed to allow effection occurrence of the charge-recharge reaction.

[0086] As also shown in Figures 6 - 9, each columnar portion has a round top. This provides an electrode structure which prevents localized current concentration and reduces the occurrence such as of a deposition reaction of a lithium metal.

[0087] Figure 10 is a schematic sectional view, illustrating a process whereby the silicon thin film deposited on a copper foil is divided into columns by the gaps formed therein.

[0088] As shown in Figure 10(a), the copper foil 10 has irregularities on its surface 10a. The copper foil with the increased value for surface roughness Ra has the larger irregularities.

[0089] Figure 10(b) illustrates a noncrystalline silloon thin layer 11 deposited on a rough surface 10a of the copper foil 10. The surface 11a of the soliton thin fill it is influenced by the irregularities on the surface 10a of the copper oil 10 to have similar irregularities. Before charge and discharge, the silloon thin film 11 remains undivided, as shown in Figure 10(b). When charge, the silloon thin film 11 appears to expand in both thickness and planar directions of the thin film, although the detail is not clear. During the subsequent discharge reaction, the silloon thin film 11 eleases lithium therefrom and whinks in volume. At this time, a tensile stress is produced in the silloon thin film 11 releases lithium therefrom and whinks in volume. At this time, a tensile stress is produced in the silloon thin film 11. Probably, such a stress concentrates at valleys 11b of the irregularities on the surface 11a of the silloon thin film 11 to result in the formation of gaps 12 the date of the silloon thin film 11 to result in the formation of gaps 12 the gaps 12 such formed relax the stress to allow the silloon thin film 11 to shrink without occurrence of falling-off from the copper foil 10.

[0090] In the silicon thin film divided into columns in the fashion as described above, the spaces provided around the columnar portions serve to relax the stress resulting from expansion and shrinkage of the active material during the succeeding charge-discharge cycles. This appears to assure repetitive charge-discharge cycling while preventing falling-off of the active material from the current collector.

[0091] Further, the electrode a3 incorporating an about 10 µm thick, microcrystalline silicon thin film deposited on an electrolytic copper foil was observed under a transmission electron microscope to study a mechanism whereby the gaps are formed in the silicon thin film. Figure 11 is a photomicrograph (at a magnification of 12,500X) taken with a transmission electron microscope, showing a section of the electrode a3 before charge and discharge. The observation sample was prepared by slicing the resin-embedded electrode.

[0092] Figure 13 is a diagrammatic representation of the photomicrograph of Figure 11. In the photomicrograph of Figure 11 taken with a transmission electron microscope, the silicon thin film 11 is deposited on the surface 10 at 0 the electrolytic copper foil 10, as diagrammatically shown in Figure 13. The silicon thin film 11 appears light relative to the copper foil 10 in the photomicrograph taken with a transmission electron microscope. In the silicon thin film shown in Figure 11, light portions are observed in the regions extending between respective valleys 11 and 10 bot for irregularities on the surfaces 11a and 10a of the silicon thin film 11 and copper foil 10. These light portions are indicated by single-dotted chain lines A, B and C in Figure 13. Particularly, the light portion is observed more clearly in the region indicated by A. These regions are considered to be low in density, i.e., low-density regions of the silicon thin film 11.

For the purpose of observing such low-density regions in more detail, an electrode a6 was fabricated by depositing an about 2 µm thick, microcrystalline silicon thin film on an electrolytic copper foil under the same conditions as used in the fabrication of the electrode a3.

[0083] Figure 12 is a photomicrograph taken by a transmission electron microscope, showing the electrode a6 when observed in the same manner as described above. Figure 12, is taken at a magnification of 25,000X. Figure 14 is a diagrammatic representation of the photomicrograph of Figure 12. As clear from Figure 12, a low-density region is also observed in the region D of the electrode as flat extends between the respective valleys 11b, 106 of the irregularities on the surfaces 11a 10a of the silicon thin film 11 and the copper foil 10. A detailed observation of the photomicrograph of Figure 12 reveals a number of fine lines extending in directions shown by the arrows in Figure 14. It seems very likely that such lines are formed as the silicon thin film grows. It accordingly appears that the silicon thin film grows used to the compared to the compared to the copper foil 10. It also appears that the silicon thin film layer grows in such a direction to collide at the region D with an adjacent silicon thin film give being deposited and growing on the adjacent inclined surface of the copper foil. Thus the formation of the low-density region be very likely to have resulted from such a collision at the region D. It also appears that the collision of the ingrews with each other is continued till the end of thin film formation, and formation of the low-density region also continues until reaching the surface of the silicon thin film formation, and formation of the low-density region also continues until reaching the surface of the silicon thin film formation.

[0094] Figure 15 is a photomicrograph (secondary electron image) taken with a scanning electron microscope, showing a surface of a silicon thin film of an electrode a3 when observed from above. The electrode a3 shown in Figure 15 is list state before charge and discharge. Figure 15 is viewed at 1,000X magnification. In Figure 15, portions appearing lightened indicate projections on a surface of the silicon thin film and the surrounding portions appearing darkned indicate veltipes on the surface of the silicon thin film. As shown in Figure 15, the valleys on the surface of the silicon thin film. As shown in Figure 15, the valleys on the surface of the silicon thin film. As shown in Figure 11 and 13, such a reticulated low-density regions define a continuous network in a plane of the silicon thin film. As shown in Figure 11 and 13, such a reticulated low-density region also extends in a thickness direction toward the current collector. The dark portions in Figure 15 do not indicate the gaps (spaces). This is apparent from the fact that no gap (space) is observed which extends in the thickness direction of the thin film (the potential parts 2 and 3 taken by a seaning electron microscope.)

[0095] Figure 16 is a photomicrograph (secondary electron image) taken at a magnification of 1,000 using a scanning electron microscope, showing a surface of a silicon thin film, when observed from above, of an electrod a6 in its state before charge and discharge. As apparent from Figure 16, the valleys in the electrode a6 are also connected to each other like a network. It is accordingly found that the low-density regions are arranged like a network continuous in a planar direction.

10989 Figure 17 is a graph showing concentration profiles of constituent elements along the thickness of the silicon thin film in the electrode a6. The concentration profiles of constituent elements were obtained via measurement of concentrations of copper (*Gur*) and silicon (S(**) by SIMS using O_S* as a sputtering source. In Figure 17, the abscissa indicates a depth (µm) from a surface of the silicon thin film and the ordinate indicates an intensity (count) of each constituent element.

[0097] As apparent from Figure 17, a constituent element of the current collector, copper (Cu), is found to diffuse in the silicon thin film at locations adjacent to the current collector. The copper (Cu) concentration decreases at a location closer to the surface of the silicon thin film. The copper (Cu) concentration is also found to vary in a continuor slashion. This demonstrates that a solid solution of silicon and copper, instead of an intermetallic compound thereof, is formed in the cooner(Cu)-diffused region.

[0089] In view of the provious discussion, the following is very likely to explain a machanism whereby the gaps are formed in the sillicon thin film to extend in list thickness direction as it expands and shrinks during charge and discharge. That is, a stress caused by expansion or shrinkage in volume of the silicon thin film concentrates at valleys of the irregularities on the silicon thin film surface, as previously explained by referring to Figure 10. Also, in the silicon thin film, there intitly exists low-density regions which are relatively low in mechanical strength, extending from the valleys toward the current collector. As the result of the above-mentioned situations, the gaps (spaces) are likely to be formed along these low-density regions.)

[0099] Also, as shown in Figure 17, the diffusion of copper, a constituent element of the current collector, into the silicon thin film creates a concentration gradient of copper therein, so that the copper concentration is higher at a location closer to the current collector and lower at a location closer to the surface of the silicon thin film. Accordingly, a higher concentration of copper nonreactive with lithium and a lower concentration of silicon reactive with lithium exist at location closer to the current collector. In the vicinity of the current collector, the silicon thin film is believed to store and release less lithium, undergo less expansion and shrinkage, and thus produce a lower level of stress which leads to the reduced formation of the ages (speace) which may occasion separation or removal of the silicon thin film the term the current collector. As a result, the bottoms of the columnar portions of the silicon thin film can be kept adherent to

[0100] The silicon thin film divided by such gaps into columns keeps a strong adhesion to the current collector even

during charge-discharge cycles. Also, the spaces provided to surround the columnar portions serve to relax the stress caused by expansion and shrinkage of the thin film that occur with charge-discharge cycling. These are believed to be contributors to excellent charge-discharge cycle characteristics.

(REFERENCE EXPERIMENT 4)

(Fabrication of Electrode a7)

[0101] An electrolytic copper foil similar to that for use in the fabrication of the electrode a3 was used for a current of collector as a substrate. An amorphous germanium thin film (about 2 µm thick) was formed on this copper foil by an RF soutletring technique to fabricate an electrode a7.

[0102] The thin film was formed using germanium as a target, at a sputtering gas (Ar) flow rate of 100 sccm, an ambient substrate temperature (not heated), a reaction pressure of 0.1 Pa, and 200 W RF power.

[0103] The resulting germanium thin film was analyzed by Raman spectroscopy which detected the presence of a peak around 274 cm⁻¹ and the absence of a peak around 300 cm⁻¹. This revealed an amorphous nature of the germanium thin film.

(Fabrication of Electrode a8)

- 70 [1044] An amorphous germanium thin film (about 2 µm thick) was formed on an electrolytic copper foil, similar in type to the current collector of the electrode ar. 7, by using a vapor evaporation technique to fauthicate an electrosia as. [1015] Specifically, the germanium thin film was deposited on the substrate by utilizing an apparatus of the construction shown in Figure 18. Referring to Figure 14, an ECP plasma source 21 includes a plasma generator chamber 22 to winch a microwave power 25 and an Ar gas 26 are supplied, An Ar plasma for generated when the microwave power.
- to which a microwave power 25 and an Ar gas 26 are supplied. An Ar plasma is generated when the microwave power 25 is supplied to the plasma generation chamber 22. This Ar plasma 23 is directed to exsit from the plasma generation chamber 22 and bombard a substrate 20. The germanium thin film can be deposited on the substrate 20 by utilizing an electron beam from an electron beam (EB) gun disposed below the substrate 20.

 [1016] The electrovitic cospor foil substrate was protreated by Ar olasma Irradiation before the germanium thin film
- was deposited thereon. A degree of vacuum within the reaction chamber was adjusted to about 0.05 Pa (about 5 x o 10⁴ Torr). The substrate was exposed to the Ar plasma under conditions of an Ar gas flow rate of 40 scorn and a supplied microwave power of 200 W. During the Ar plasma tradiation, an bias voltage of -100 V was applied to the substrate. The pretreatment was accomplished by exposing the substrate to the Ar plasma for 15 minutes. [0107] Next, the germanium thin film was deposited at a deposition rate of 1 mm/sec (10 A/sec) using an electron beam oun. The substrate temperature was ambient temperature (not heated).
- 35 [0108] The resulting germanium thin film was analyzed by Raman spectroscopy which revealed an amorphous nature of the germanium thin film, as similar to the electrode a7.

(Fabrication of Electrode b2)

100 [0109] 80 parts by weight of germanium powder with a mean particle diameter of 10 µm, 10 parts by weight of acetylene black as an electroconductive material, and 10 parts by weight of polytetrallucroethylene as a binder were mixed. This mixture was pressed in a 17 mm diameter mold to fabricate a pellet-form electrode b2.

(Construction of Batteries)

[0110] The procedure of Experiment was repeated, except that the above-fabricated electrodes a7, a8 and b2 were used for the negative electrode, to construct batteries A7, A8 and B2.

(Evaluation of Charge-Discharge Cycle Characteristics)

[0111] Each battery was charged at a current of 0.1 mA at 25 °C to 4.2 V, and then discharged to 2.75 V. This standard charge-discharge cycling was repeated to measure a capacity retention rate on the 10th cycle. The measurement results are given in Table 5.

55

Table 5

Battery	10th-Cycle Capacity Retention Rate
A7	96%
A8	93%
B2	39%

[0112] As apparent from Table 5, the batteries A7 and A8 using the electrodes in accordance with this invention, i. e., the electrodes incorporating the germanium thin film formed on the current collector, for the negative electrode exhibit markedly improved capacity retention rates compared to the battery B2 using the germanium powder for the negative electrode.

(Observation With Electron Microscope)

5

[0113] Figures 19 and 20 are photomicrographs (reflection electron images) taken with a scanning electron microscope, each showing a section of the electrode a7 in its state before being charged and discharged. Figures 19 and 20 were taken at magnifications of 2,000X and 10,000X, respectively.

[0114] Each electrode was resin embedded and then sliced to provide a sample. The embedding resin is observed as layers located in upper and lower end portions of Figure 19 and in an upper end portion of Figure 20.

[0115] In Figures 19 and 20, the copper foil and the germanium thin film appear lightened relative to the rest. A thin layer overlying the copper foil is the germanium thin film. Irregularities are defined on a surface of the copper foil. Smilar irregularities are also found on a surface of the germanium thin film. This suggests that the irregularities on the germanium thin film surface were formed to conform in shape to those defined on the copper foil surface.

5 [0116] In Figure 20, there is observed a dark portion that is located in a germanium thin film region overlying a leftmost valley of the copper foil and extends in a thickness direction of the thin film. This portion is very likely to indicate a region of low density, i.e., a low-density region of the germanium thin film.

[0117] Figures 21 and 22 are photomicrographs (reflection electron images) taken with a scanning electron microscope, each showing a section of the electrode a8 in its state before being charged and discharged. Figures 21 and 22 are taken at magnifications of 2,000X and 10,000X, respectively. Like the electrode a7 shown in Figures 19 and 20, a sample of this electrode is embedded in a resin.

[0118] In Figures 21 and 22, a lightnened portion indicates a copper foil and a slightly darker portion carried thereon is a germanium thin film (about 2 µm thick). Irregularities are defined on both surfaces of the germanium thin film and the copper foil of the electrode a8, as analocous to the electrode a7.

[0119] Figures 23 and 24 are photomicrographs (reflection electron images) taken with a scanning electron microscope, each showing a section of the electrode a7 removed from the battery A7 after 10 cycles. Figures 25 and 26 are photomicrographs (reflection electron images) taken with a scanning electron microscope, each showing a section of the electrode a8 removed from the battery A8 after 10 cycles. In either case, the electrode was resin embedded and then sliced to provide a sample. Figures 23 and 25 are both taken at a magnification of 500X. Figures 24 and 26 are both taken at a magnification of 2.500X.

[0120] In Figures 23 - 26, a portion which appears white on the surface of the germanium thin film is gold coated thereon before it is embedded in a resin. The coating of gold is provided to prevent any reaction which may occur between the germanium thin film and the resin and also define a clear boundary therebetween.

[0121] As can be clearly seen from Figures 23 - 26, charge-discharge cycling causes formation of gaps which extend in a thickness cirection of the germanium thin film and divide the thin film into columns, as similar to the case of the silicon thin film. Although a small difference in contrast between the copper foil, as a current collector, and the germanium thin film makes it difficult to distinguish a boundary therebetween, the carried ubservation reveals the presence of columnar portions of the germanium thin film over projections of the current collector and thus good adhesion of the germanium thin film to the current collector.

[0122] Unlike the case of silicon thin film, laterally-extending gaps are also observed in the germanium thin film. It is very likely, however, that such gaps were formed when the germanium thin film was polished before proceeding to sectional observation.

[0123] Also, the width of a gap (space) between neighboring columnar portions is found to be larger in the germanium thin film than in the silicon thin film. After charge-discharge cycling, the height of the columnar portions measured about 6 µm, which is about three times the initial film thickness of the germanium thin film, 2 µm, before the charge-discharge cycling. This is considered to indicate that when the thin film shrinks on discharge after it has expaneded due to storage of lithium during charge, the shrinkage occurs mainly in a lateral direction, i.e., in a planar direction. It is accordingly

believed that the wide gaps (spaces) between the columnar portions result from a small percent shrinkage of the germanium thin film in its thickness direction.

[0124] Figures 27 and 28 are photomicrographs (secondary electron images) taken with a scanning electron microscope, each showing a germanium thin film of the electrode a? in its state after charges and discharges, when observed from above. Figures 27 and 28 are taken at margnifications of 1,000X and 5,000X, respectively. Figures 28 and 30 are photomicrographs (secondary electron images) taken with a scanning electron microscope, each showing the germanium thin film of the electrode a? in its state after charges and discharges, when observed at a slight angle. Figures 28 and 30 are taken at meanifications of 1,000X and 5,000X. respectively.

[0125] Figures 31 and 32 are photomicrographs (secondary electron images) taken with a scanning electron microscope, each showing a germanium thin film of the electrode a8 in its state after charges and discharges, when observed from above. Figures 31 and 32 are taken at magnifications of 1,000X and 5,000X, respectively. Figures 33 and 34 are photomicrographs (secondary electron images) taken with a scanning electron microscope, each showing the germanium thin film of the electrode a8 in its state after charges and discharges, when observed at a slight angle. Figures 33 and 34 are taken at magnifications of 1,000X and 5,000X, respectively.

[0126] As shown in Figures 27 - 34, gaps (spaces) are formed in such a fashion to surround the columnar portions of the germanium thin film to thereby define spaces between the neighboring columnar portions. It is believed that these spaces serve to relax the stress caused by expansion and shrinkage of the active material during charge and discharge, as also described in the previous case of silicon thin film.

[0127] Figures 35 is a photomicrograph (secondary electron images) taken with a scanning electron microscope, showing a surface of the germanium thin film of the electrode a7 in its state before charge and discharge, when observed from above. Figures 36 is a photomicrograph (secondary electron images) taken with a scanning electron microscope, showing a surface of the germanium thin film of the electrode a8 in its state before charge and discharge, when observed from above. Figures 55 and 36 are both taken at a magnification of 1,000X.

[0128] As shown in Figures 35 and 36, the germanium thin film has irregularities on its surface that foliow the profit of those defined on the underlying electrylity copper foil. The valleys of the germanium thin film are connected to each other like a network, it is understood that the gaps extend along the depth of such valleys to define columnar portions in the ceremanium thin film.

(SIMS Analysis of Concentration Profile Along Depth)

[0129] Figure 37 is a graphical representation illustrating concentration profiles of constituent elements in the electrode a? along its depth before it is incorporated in a battery i.e., before charge and discharge. Figure 38 is a graphical representation illustrating concentration profiles of constituent elements in the electrode a8 along its depth before charge and discharge. The concentration profiles of constituent elements were obtained by a secondary ion mass spectrometry (SIMS) wherein copper (*SCU) and germanium (*TGe) concentrations were measured along the depth from a surface of the thin film using O₂* as a sputtering source. The abscissa indicates a depth (µm) from a surface of the germanium thin film and the ordinate indicates an intensity (count) of each constituent element.

[0130] As can be clearly seen from Figures 37 and 38, copper (Cu), as a current collector constituent, diffuses into the germanium thin lime in the vicinity of the current collector and shows a lower concentration at a location closer to the surface of the germanium thin film.

[0131] As discussed above, the germanium thin film contains a current collector constituent, copper, diffused that it as coper concentration in the vicinity of the current collector, and has a concentration gradient such that a copper concentration becomes lower at a location closer to its surface. Hence, the germanium thin film in the vicinity of the current collector contains a higher concentration of copper unreactive with lithium and a lower concentration of germanium reactive with lithium, in the vicinity of the current collector, the germanium thin film is thus believed to store and release less lithium, undergo less expansion and shrinkage, and produce a lower level of stross. This probably results in the reduced formation of gaps (specsoe) which may cause separation or removal of the germanium thin film from the current collector, so that the bottoms of the columnar portions of the germanium thin film can be kept adhered to the current collector.

[0132] As stated above, the germanium thin film in conditions of being divided in columns maintains strong afterior to the current collector even during charge-desharge cycling. Also, the gaps formed in a fashion to surround the colomnar portions serve to relax the stress caused by expansion and shrinkage during charge-discharge cycles. The excellent charge-discharge cycle characteristics are thus obtained.

55

(REFERENCE EXPERIMENT 5)

(Fabrication of Electrode a9)

- [0133] An electrolytic copper foil (18 µm thirdx) was used for a current collector as a substrate. A silicon thin film was formed on this electrolytic copper foil by an Fa puttering technique. The sputtering was effected at a sputtering gas (Ar) flow rate of 100 sccm, an ambient substrate temperature (not heated), a reaction pressure of 0.1 Pa (1.0 x 10⁻³ Torn) and a 200 W FF power. The silicon thin film was decosed to a thickness of about 2 um.
- [0134] The resulting silicon thin film was analyzed by Raman spectroscopy which detected the presence of a peak a around 480 cm⁻¹ and the absence of a peak around 520 cm⁻¹. This reveals an amorphous nature of the silicon thin film. [0135] The electrolytic copper foil after silicon thin film deposition thereon was cut into a 2 cm x 2 cm size to prepare an electrode a9.
- [0136] The surface roughness Ra and the mean spacing S of the electrolytic copper foil used were measured using a stylus profiler Dektati²ST (available from ULVAC linc.) with a scanning distance of 2.0 mm. The surface roughness Ra and the mean spacino S were determined to be 0.188 up and 11 um, respectively.

(Fabrication of Electrode a10)

25

40

55

- [0137] An electrolytic copper foil similar to that used in the fabrication of the electrode a9 was used for a current of collector as a substrate. A silicon thin film was formed on the electrolytic copper foil under the same conditions as used in the fabrication of the electrode at of Reference Experiment 1 to a thickness of about 2 µm. The procudere used to prepare the electrode at was followed to prepare an electrode at 0.
 - [0138] The resulting silicon thin film was analyzed by Raman spectroscopy which detected the presence of peaks around 480 cm⁻¹ and 520 cm⁻¹. This reveals a microcrystalline nature of the silicon thin film.

(Fabrication of Comparative Electrode b3)

- [0139] A rolled copper foil for use in the above Reference Experiment 1 was utilized for a current collector as a substrate. The procedure used to fabricate the electrode a9 was followed to form an amorphous silicon thin film (about 2 um thick) on the rolled copper foil by an RF souttering technique.
- [0140] The resulting amorphous silicon thin film was subjected to one-hour annealing at 650 °C. The annealed silicon thin film was then analyzed by Raman spectroscopy which revealed disappearance of a peak around 480 orm! and detected a sole peak around 520 cm². This demonstrates that the annealing results in the formation of a polycrystalline silicon thin film?
- 5 [0141] The procedure used to prepare the electrode a9 was followed to prepare an electrode b3 from the polycrystalline silicon thin limit formed on the rolled copper foil.
 [0142] The above-described procedure was utilized to measure the surface roughness Ra and the mean spacing S
 - [U142] I ne acover-described procedure was utilized to measure the surface roughness ha and the mean spacing S for the rolled copper foil. The rolled copper foil exhibited the surface roughness Ra of 0.037 μm and the mean spacing S of 14 μm.

(Measurement of Charge-Discharge Characteristics)

- [0143] Each of the above-fabricated electrodes a9, a10 and b3 was used as a work electrode. Metaille lithium was used for both a counter electrode and a reference electrode. Using these electrodes, experimental cells were constructed. The electrolyte solution was identical to that used in the above Reference Experiment 1. In a single electrode cell, reduction of the work electrode is a charge reaction and oxidation thereof is a disphare reaction.
- [0144] Each experimental cell was charged at a constant current of 0.5 mA at 25 °C until a potential relative to the reference electrode reached 0 V, and then discharged to 2 V. This was recorded as a unit charge-discharge cycle. Cycling was effected to measure 1st- and 5th-cycle discharge capacities and charge-discharge efficiencies. The results or civicin in Table 6.

Table 6

	Electrode a9	Electrode a10	Electrode b3
Substrate	Electrolytic Copper Foil	Electrolytic Copper Foil	Rolled Copper Foil
Thickness of Silicon Thin Film	2μm	2μm	2μm

Table 6 (continued)

				ic o (continued)		
				Electrode a9	Electrode a10	Electrode b3
5		Substrate		Electrolytic Copper Foil	Electrolytic Copper Foil	Rolled Copper Foil
	Annealing			Absent	Absent	650°C, 1h
	Crystallin	ity of Silicon	Thin Film	Amorphous	Microcrystalline	Polycrystalline
10	Charge- Discharge Characteristics	1st Cycle	Discharge Capacity (mAh/ g)	3980	4020	1978
15			Charge- Discharge Efficiency (%)	100	96	83
		5th Cycle	Discharge Capacity (mAh/ g)	3990	4020	731
20			Charge- Discharge Efficiency(%)	100	100	75

[0145] As apparent from the results shown in Table 6, the electrode a9 using the amorphous silicon thin film for the electrode active material and the electrode a10 using the microcrystalline silicon thin film for the electrode active material, in accordance with the present invention, exhibit higher discharge capacities and superior charge-discharge efficiencies even on the 5th cycle, relative to the comparative electrode b3.

(REFERENCE EXPERIMENT 6)

(REFERENCE EXAMPLES 1 - 7 AND REFERENCE COMPARATIVE EXAMPLES 1 - 2)

(Fabrication of Current Collector)

40

45

[0146] Samples 1 - 4 specified in Table 7 were used for a current collector as a substrate. Sample 1 was similar to the rolled copper foil used for the current collector of the electrode b3. Samples 2 - 4 were prepared in accordance with the following procedure: A rolled copper foil was ground with a #100, #400 or #1000 emery paper to roughen its surface, washed with a purified water and then dried.

Sample No.	1	2	3	4
Copper Foil Thickness (µm)	18	18	18	18
Surface Roughness Ra (μm)	0.037	0.1	0.18	1

[0147] Each of the above copper folls was used as a substrate. A silicon thin film was deposited on the substrate under the conditions specified in Tables 8-10 by means of an RF argon sputtering apparatus. In Reference Comparative Example 2, the deposited thin film was subsequently subjected to a healt treatment (annealing). In Reference Examples 1-7 and Reference Comparative Example 1, each substrate was pretreated prior to thin film deposition. The pretreatment was performed by generating an ECR plasma in a separately-insalted plasma generation and directing the plasma to bornbard the substrate for 10 minutes at a 200 W microwave power and an argon gas partial pressure of 0.08 Pa. [0148]

The nature of each silicon thin film was identified via analysis by Raman spectroscopy. The results are shown in Tables 8-10.

65 (Measurement of Charge-Discharge Characteristics)

[0149] The silicon-deposited copper foils obtained in Reference Examples 1 - 7 and Reference Comparative Exam-

ples 1 - 2 were cut into 2 cm x 2 cm pieces and then utilized to construct experimental cells in the same manner as in the above Reference Experiment 5. For each cell, the charge-discharge test was performed in the same manner as in the above Reference Experiment 5 to measure 1st-, 5th- and 20th-cycle discharge capacities and charge-discharge efficiencies. The results are shown in Tables 8 - 10.

Table 8

	annai	0			
		Ref.Ex.1	Ref.Ex.2	Ref.Ex.3	Ref.Ex.4
	Substrate type	Sample 2	Sample 3	Sample 4	Sample 3
Substrate	Surface Roughness Ra	0.1	0.18	1	0.18
	Substrate Thickness	18µm	18µm	18µm	18µm
	Thickness of Silicon Thin Film	2 pm	2µm	2µm	2pm
	Film-Forming Process	Sputtering	Sputtering	Sputtering	Sputtering
	Sputtering Gas	Argon	Argon	Argon	Argon
	Ar Flow Rate	100sccm	100sccm	100sccm	100sccm
Thin Film Forming	Target	99.999% Si Single Crystal	99.999% Si Single Crystal	99.999% Si Single Crystal	99.999% Si Single Crystal
conditions	Sputtering Atomosphere	0.10Pa	0.10Pa	0.10Pa	0.10Pa
	Sputtering Power	Z00W	200W .	Z00W	200W
	Substrate Temperature	20°C	20℃	20℃	2000
	Pretreatment	Present	Present	Present	Present
	Sputtering Time	2h	2h	2h	2h
Treatment	Heat Treatment	Absent	Absent	Absent	Absent
Conditions	Heat Treating Time	I	ı	1	1
Identification	Raman Peak at 480cm ⁻¹	Present	Present	Present	Present
Jo Totall	Raman Peak at 520cm ⁻¹	Absent	Absent	Absent	Absent
Cr yscarring cy	Crystallinity	Amorphous	Amorphous	Amorphous	Amorphous
1st Cycle	Discharge Capacity(mAh/g)	3980	3978	3975	3980
222	Charge-Discharge Efficiency(%)	100	100	100	100
5th Cycle	Discharge Capacity(mAh/g)	3990	3981	3980	3990
7	Charge-Discharge Efficiency(%)	100	100	100	100
20th Cycle	Discharge Capacity(mAh/g)	3990	3980	3981	3990
22.5	Charge-Discharge Efficiency(%)	100	100	100	100

Table 9

			Table 9		
			Ref.Ex.5	Ref.Ex.6	Ref.Ex 7
Ì		Substrate type	Sample 3	Sample 3	Sample 3
Ì	Substrate	Surface Roughness Ra	0.18	0.18	0.18
	Thin Film Forming Conditions	Substrate Thickness	18μm	18µm	18µm
		Thickness of Silicon Thin Film	2µт	2μm	2µm
		Film-Forming Process	Sputtering	Sputtering	Sputtering
		Sputtering Gas	Argon	Argon	Argon
		Ar Flow Rate	100sccm	100sccm	100sccm
		Target	99.999% Si Single Crystal	99.999% Si Single Crystal	99.999% Si Single Crystal
		Sputtering Atmosphere	0.10Pa	1.0Pa	10Pa
		Sputtering Power	200W	200 W	200W
		Substrate Temperature	50°C	20°C	20°C
		Pretreatment	Present	Present	Present
		Sputtering Time	2h	1.5h	2.5h
ĺ	Heat Treatment	Heat Treatment	Absent	Absent	Absent
	Conditions	Heat Treating Time	-	-	-
	Identification of Crystallinity	Raman Peak at 480cm ⁻¹	Present	Present	Present
		Raman Peak at 520cm ⁻¹ .	Absent	Absent	Absent
		Crystallinity	Amorphous	Amorphous	Amorphous
ĺ	1st Cycle	Discharge Capacity (mAh/g)	4060	3585	2500
		Charge-Discharge Efficiency(%)	100	100	100
ĺ	5th Cycle	Discharge Capacity	4060	3592	2505
		(mAh/g) Charge- Discharge Efficiency(%)	100	100	100
Ì	20th Cycle	Discharge Capacity (mAh/g)	4060	3590	2505
		Charge-Discharge Efficiency(%)	100	100	100

TABLE 10

			Ref.Comp.Ex.1	Ref.Comp.Ex.2
5	Substrate	Substrate type	Sample 3	Sample 1
		Surface Roughness Ra	0.18	0.037
		Substrate Thickness	18µm	18µm
0	Thin Film Forming Conditions	Thickness of Silicon Thin Film	2μm	2μm
		Film-Forming Process	Sputtering	Sputtering
		Sputtering Gas	Argon	Argon
5		Ar Flow Rate	10 0 sccm	100sccm
,		Target	99.999% Si Single Crystal	99.999% Si Single Crystal
		Sputtering Atomosphere	0.10Pa	0.10Pa
		Sputtering Power	200W	200W
9		Substrate Temperature	450°C	20°C
		Pretreatment	Present	Absent
		Sputtering Time	2h	2h
5	Heat Treatment	Heat Treatment	Absent	650°C
,	Conditions	Heat Treating Time	-	1h
	Identification of	Raman Peak at 480cm ⁻¹	Absent	Absent
	Crystallinity	Raman Peak at 520cm ⁻¹	Present	present
9		Crystallinity	Polycrystalline	Polycrystalline
	1st Cycle	Discharge Capacity(mAh/ g)	1250	1978
5		Charge-Discharge Efficiency(%)	81	83
	5th Cycle	Discharge Capacity(mAh/ g)	900	731
,		Charge-Discharge Efficiency(%)	75	75
	20th Cycle	Discharge Capacity(mAh/ g)	700	350
5		Charge-Discharge Efficiency(%)	69	59

[0150] As can be clearly seen from the results shown in Tables 8 - 10, the increased discharge capacities and improved charge-discharge cycle characteristics are obtained by utilizing the electrodes obtained via Reference Examples 1 - 7 that use the amorphous silicon thin film for the electrode active material in accordance with the present invention, relative to utilizing the electrodes obtained via Reference Comparative Examples 1 - 2 that use the polycrystalline silicon thin film for the electrode active material.

(REFERENCE EXPERIMENT 7)

55 [0151] An amorphous silicon thin film (about 3 μm thick) was formed on an electrolytic copper foil (18 μm thick, surface roughness Ra = 0.188 μm, mean spacing S = 6 μm) by an RF sputtering technique to fabricate an electrode a-11. The thin film was deposited using single-crystal silicon as a target, at a sputtering gas (Ar) flow rate of 100 sccm, an ambient substrate temperature (not heated), a reaction pressure of 0.1 Pa, and 200 W RF power.

[0152] The resulting silicon thin film was analyzed by Raman spectroscopy which detected the presence of a peak around 480 cm⁻¹ and the absence of a peak around 520 cm⁻¹. This revealed an amorphous nature of the silicon thin film. [0153] The electrode a-11 thus obtained was used to construct a battery A11 in the same manner as in the above Reference Experiment 1. The battery was subjected to a charge-discharge cycle test under the same conditions as in the above Reference Experiment 1 to measure a capacity retention rate on the 30th-cycle. The result is shown in Table 11. In Table 11, he result for the batters A1 and A3 are also short.

Table 11

Battery	30th-Cycle Capacity Retention Rate
A1	91%
A3	97%
A11	97%

[0154] As apparent from the results shown in Table 11, the battery A11 using the sputter deposited amorphous silicon thin film for the active material also exhibits a good capacity retention rate comparable to those of the batteries A1 and A3 using the microcrystalline silicon thin film for the active material.

[0155] The condition of the silicon thin film in the electrode a-11 was observed using an electron microscope. First, a section of the electrode a-11 in its state before charge and discharge was observed with a scanning electron microscope. Figures 39 and 40 are photomicrographs (secondary electron images) taken with a scanning electron microscope, each showing a section of the electrode a-11 before charge and discharge. Figures 39 and 40 are taken at magnifications 0f 2,000X and 10,000X, respectively. A sample was prepared by following the procedure used to prepare the samples shown in Figures 2 and 3, i.e., by embedding the electrode in a rosin and then silicing the rosin-embedded electrode.

[0156] In Figures 39 and 40, a portion that appears relatively light indicates the electrolytic copper foil. The deposited silicon thin film (about 3 µm thick) is found as a dark portion on the copper foil. As shown in Figures 39 and 40, irregularities are defined on a surface of the electrolytic copper foil. Particularly projections have a generally collect shape. Similar irregularities with such conical projections are also formed on a surface of the silicon thin film deposited on the copper foil. Accordingly, the surface irregularities of the silicon thin film appear to conform in shape to those defined on the copper foil surface.

[0157] Equation (1915) [1915] In a sift continue of the simulation of the simulation

[0158] Figure 42 is a photomicrograph (reflection electron image) taken with a scanning electron microscope, showing a surface of the electrode a-11 removed from the battery A11 after 30 cycles in the charge-discharge test. Figure 42 is a photograph taken at a magnification of 1,000X.

[0159] As shown in Figure 42, gaps (spaces) are formed in the silicon thin fillin to extend in its thickness direction and these gaps (spaces) divide the silicon thin film into columns. In the silicon thin film shown in Figures 6 - 9, the gaps are formed in such a way as to define columnar portions each encompassing a single projection on the thin film. On the other hand, in the silicon thin film shown in Figure 42, the gaps are formed in such a way as to define columnar portions each encompassing plural projections on the thin film. It is also found that the gaps (spaces) are wider in the silicon thin film shown in Figure 42 than in the silicon thin film shown in Figures 6 - 9.

[0160] The battery A11 exhibits a good capacity retention in a manner similar to the battery A3. This is believed to demonstrate that the spaces provided in a way to surround the columnar portions serve to relax the stress caused by expansion and shrinkage of the active material so that charge-discharge cycling can be repeated without occurred of separation of the active material from the current collector, even in the case where each columnar portion is defined to encompass plural projections on the thin film surface.

(REFERENCE EXPERIMENT 8)

[0161] An about 2 µm thick, microcrystalline silicon thin film was formed on both a rolled copper foil and an electrolytic copper foil (18 µm thick) under the same thin film-forming conditions as used in the fabrication of electrod at 1 in Reference Experiment 1. Then, a 17 mm diameter piece was punched out from each sample to provide an electrode c1 incorporating the silicon thin film formed on the rolled copper foil and an electrode c3 incorporating the silicon thin film formed on the electrode is denoted by the electrode c3 incorporating the silicon thin film formed on the electrode c3 incorporating the silicon thin film formed on the electrode c3 incorporating the silicon thin film formed on the electrode c3 incorporating the silicon thin film formed on the electrodes c1 and c3 were heat treated at 400 °C for 3 hours to provide electrodes c2 and c4, respectively.

[0162] The procedure of Reference Experiment 1 was followed, except that the electrodes c1 - c4 were used for the negative electrode, to construct rechargeable lithium batteries C1 - C4. These batteries were measures discharge cycle life characteristics in the same manner as in Reference Experiment 1. Also, a hydrogen content, a ratio of Raman peak intensities (480 cm²/520 cm²) and a crystal grain size were measured for the silicon thin film of each electrode in the same manner as in Reference Experiment 1. The results are shown in Table 12.

Table 12

10	Battery	50th-Cycle Capacity Retention Rate	Hydrogen Content	Ratio of Peak Intensities (480cm ⁻¹ /520cm ⁻¹)	Crystal Grain Size
	C1	90%	4%	0.1	1nm
	C2	85%	0.01%	0.1	1nm
	C3	91%	4%	0.1	1nm
15	C4	87%	0.01%	0.1	1nm

[0163] As demonstrated by the results shown in Table 12, the markedly high capacity retention rates are also obtained for the batteries C1 - C4 with the about $2 \mu m$ thick microcrystalline silicon thin film.

[0164] The electrode c1 incorporating the microcrystalline silicon thin film formed on the rolled copper foil was sliced of in its thickenss direction to provide a sample which was subsequently observed with a transmission electron micro-

[0163] Figures 43 and 44 are photomicrographs taken with a transmission electron microscope, showing an interface between the copper foil and the silicon thin film and its vicinities in the electrode c1. Figures 43 and 44 are taken at magnifications of 500,000X and 1,000,000X. The copper foil is found in a lower portion and the silicon thin film in an upper portion of each photomicrograph.

[0166] In Figures 43 and 44, a lightened lower portion appears to be a copper foil portion. A portion located in the vicinity of the interface between the copper foil and sillicon thin film appears dark-need toward the above. This portion (about 30 nm - about 100 nm) seems to be a part of a mixed layer where diffusion of copper from the copper foil into silicon is particularly significant. In this mixed layer, copper (Cu) is probably alloyed with silicon (Si). Also in Figures 43 and 44, a particulate portion is observed in the vicinity of an interface between the seeming mixed layer and the copper foil. This particulate portion is found to define an irregular profile along the interface as a result of the diffusion of copper (Cu) into silicon (Si).

[0167] Next, concentration profiles of constituent elements along the depth of the mixed layer were observed. For this purpose, the concentrations of copper (⁵⁵Cu¹) and hydrogen (⁷¹⁺) were measured by SIMS using O₂* as a sputtering source. Figure 45 shows a concentration profile of each constituent element. The abscissa indicates a depth (um) and the ordinate indicates an atomic density (number of atoms/cm⁵).

[0168] As shown in Figure 45, the concentration of copper (Cu) in the mixed layer increases at a deeper caction, i. e., at a location noiser to the copper foil. If the mixed layer is defined as a layer in the sillion thin film that contains at least 1% (10⁹⁰ atoms/cm², if expressed in atomic density) of a current collector material, the mixed layer is found to exist in a thickness readon which extends from a death of about 2.7 u.1. 9 um to a denth of about 2.7 u.1.

[0169] Similarly, a concentration profile of each constituent element along the depth of the mixed layer were observed using SIMS for the the electrode of incorporating the about 2 µm thick microcrystalline silicon thin film formed on the electrolytic copper foil. The results are shown in Figure 46. As shown in Figure 46, the atomic density of copper already exceeds 10⁵⁰ atoms/cm³ at the surface of the silicon thin film in the electrode c3. This clearly indicates that the copper diffused across the the silicon thin film to its surface to render the silicon thin film into the form of mixed layer in its entirety. Also, the battery C3 using this electrode c3 exhibits good charage-discharge cycle characteristics. This demonstrates that the silicon thin film still serves as electrode active material, even if it is rendered into the form of mixed layer in its entirety.

[0170] As can be clearly seen from Figures 45 and 46, the copper concentration varies continuously across the silicon thin film. This accordingly demonstrates that copper exists in the silicon thin film not in the form of an intermetallic compound with silicon but in the form of a solid solution with silicon.

[0171] As discussed above, it is ascertained that the mixed layer where copper in the copper foil is mixed with silcon in the silicon thin film is formed at the interface between the copper foil and silicon thin film. The presence of this mixed layer is believed to improve adhesion of the silicon thin film to the copper foil, prevent separation of the silicon thin film to the copper foil, as a substrate even if the silicon thin film is subjected to expansion and shrinkage on charge and discharge, and provide good charge-discharge cycle characteristics.

(EXPERIMENT A)

[0172] The following example illustrates an electrode in accordance with the present invention, which results from formation of an interlayer on a current collector and subsequent deposition of a thin film of active material on the interlayer.

[0173] An electrode d1 is the electrode in accordance with the present invention and electrode d2 and d3 are comparative electrodes.

(Fabrication of Electrode d1)

(i abilication of Liections of

[0174] A 0.3 µm thick copper layer, as an interlayer, was formed on a roughened surface of an electrolytic nickel foil (20 µm thick) alwing a surface roughness Ra of 0.072 µm in an argon (Ar) atmosphere by an RF sputtering technique. The following thin-film forming conditions were used; an RF power of 200 W, an argon (Ar) gas flow rate of 60 sccm, an in-chamber or ressure of 0.1 Pa. and an ambient substrate temperature (not heated).

[0175] Subsequently, a silicon thin film was deposited on the copper layer under an argon (Ar) atmosphere using an RF sputtering technique. The thin film was deposited using single crystal silicon as a target, at 300 W RF power, an argon (Ar) gas flow rate of 50 sccm, an in-chamber pressure of 0.1 Pa, and an ambient substrate temperature (not heated). The deposited silicon thin film was analyzed by Raman spectroscopy which revealed an amorphous nature thereof. The silicon thin film was found to have a thickness of 2 µm.

⁹ [0176] The resulting silicon thin film, along with the nickel foil, was cut into a size of 2 cm x 2 cm to provide an electrode d1.

(Fabrication of Electrode d2)

[0177] An electrolytic copper foil (18 μm thick) having a surface roughness Ra of 0.188 μm was used. Not a copper layer but a silicon thin film was sputter deposited on a roughnend surface of the electrolytic copper foil under the men thin-film forming conditions as specified above. The silicon thin film was found to be 2 μm thick. In the same manner as described above, the resulting silicon thin film was cut into an electrode dc.

30 (Fabrication of Electrode d3)

35

[0178] The procedure used to fabricate the electrode d1 was followed, except that the silicon thin film was deposited directly on the roughened surface of the electrolytic nickel foil without interposition of the copper layer, to fabricate an electrode d3.

(Measurement of Charge-Discharge Cycle Characteristics)

[0179] Test cells were constructed using the above-obtained electrodes d1, d2 and d3 for the work electrode and metallial lithium for both the counter and reference electrodes. The electrolyte solution prepared in the Reference Experiment 1 was used for the liquid electrolyte. In such single-electrode test cells, reduction of the work electrode takes piace during charge and oxidation thereof takes piace during discharge.

[0180] Each test cell was charged at 25 °C at a constant current of 0.5 mA until its potential relative to the reference electrode reached 0 V, and then discharged to 2 V. This unit charge-discharge cycle was repeated to measure a capacity retention rate on each cycle, from the 1st to the 8th cycle. The results are given in Figure 47.

(1811) As indicated in Figure 47, the electrode of thaving the silicon thin film deposited on the electroyic nickel foil through the copper interlayer exhibits cycle performances comparable to those of the electrode d2 having the silicon thin film deposited directly on the electrolytic copper foil. In contrast, the electrode d3 having the silicon thin film deposited directly on the electrolytic nickel foil, without the interposition of the copper interlayer, is found to exhibit an abrupt capacity drop on the 2nd cycle. This is most likely use to separation of the silicon thin film from the control of copper, which is alloyable with the silicon thin film, is thus proved to prevent separation of the silicon thin film and consequently provide good charge-discharge cycles.

[0182] Although described in the above Example as being roughened at its one surface, the current collector may be roughened at its both surfaces. In such a case, the thin film of active material may be deposited on the opposite roughened surfaces of the current collector to provide an electrode.

[0183] Although a sputtering technique is utilized in the above Example to form the copper interlayer, the present invention is not limited thereto. Other techniques can also be utilized, including vapor-phase thin-limit norming techniques such as CVO, spraying and vapor evaporation, and electrochemical techniques such as plating.

LITH ITY IN INDUSTRY

[0184] In accordance with the present invention, an interlayer composed of a material alloyable with a thin film of active material is formed on a current collector and then the thin film of the active material is deposited on the interlayer. This electrode construction prevents the thin film of active material from being separated from the current collector, increases a current collecting capability, and provides satisfactory charge-discharge cycles. Therefore, the electrode for fithium batteries, in accordance with the present invention, is useful for an electrode for rechargeable lithium batteries.

Claims

- An electrode for a lithium battery, in which a thin film of active material capable of storage and release of lithium is provided, through an interlayer, on a current collector, said electrode being characterized in that said interlayer comprises a material allowable with said thin film of active material.
 - The electrode for a lithium battery as recited in claim 1, characterized in that said current collector comprises a foil made of a matal or alloy which is higher in mechanical strength than said interlayer material.
- The electrode for a lithium battery as recited in claim 1 or 2, characterized in that said interlayer has irregularities
 on its surface in contact with said thin film of active material.
 - The electrode for a lithium battery as recited in any one of claims 1 3, characterized in that said current collector
 has irregularities on its surface and said interleyer has the surface irregularities corresponding to those of said
 current collector.
 - The electrode for a lithium battery as recited in any one of claims 1 4, characterized in that said current collector
 has a surface roughness Ra in the range of 0.001 1 um.
- The electrode for a lithium battery as recited in any one of claims 1 4, characterized in that said current collector
 has a surface roughness Ra in the range of 0.01 1 um.
 - The electrode for a lithium battery as recited in any one of claims 1 6, characterized in that said thin film of active material is a silicon, germanium or silicon-germanium alloy thin film.
 - The electrode for a lithium battery as recited in any one of claims 1 7, characterized in that said thin film of active material is a microcrystalline or amorphous silicon thin film.
 - The electrode for a lithium battery as recited in any one of claims 1 7, characterized in that said thin film of
 active material is a microcrystalline or amorphous germanium thin film.
 - 10. The electrode for a lithium battery as recited in any one of claims 1 7, characterized in that said thin film of active material is a microcrystalline or amorphous silicon-germanium alloy thin film.
- 45 11. The electrode for a lithium battery as recited in any one of claims 1 10, characterized in that said current collector comprises at least one selected from copper, copper alloy, nickel, nickel alloy, iron, iron alloy, stainless steel, molybdenum, tungsten and tantalum.
- 12. The electrode for a lithium battery as recited in any one of claims 1 11, characterized in that said interlayer is a copper layer.
 - 13. The electrode for a lithium battery as recited in any one of claims 1 12, characterized in that a component of said interlayer is diffused into said thin film of active material.
- 14. The electrode for a lithium battery as recited in claim 13, characterized in that a concentration of said interlayer component in the thin film of active material is higher in the vicinity of the interlayer and is lower at a location closer to the surface of said thin film of active material.

- 15. The electrode for a lithium battery as recited in claim 13 or 14, characterized in that, in said thin film of active material, the diffused interlayer component forms a solid solution with a component of the thin film of active material.
- 16. The electrode for a lithium battery as recited in any one of claims 1 15, characterized in that said thin film of active material is divided into columns by gaps formed therein in a manner to extend in its thickness direction, and said columnar portions are at their bottoms adhered to said interlayer.
- 17. The electrode for a lithium battery as recited in claim 16, characterized in that said gaps are formed via a charge-discharge reaction of said thin film of active material.
- 18. The electrode for a lithium battery as recited in any one of claims 1 17, characterized in that said thin film of active material is deposited by a CVD, sputtering, vapor evaporation, spraying or plating process.
- The electrode for a lithium battery as recited in any one of claims 1 18, characterized in that said thin film of active material stores lithium via formation of an alloy with lithium.
 - 20. The electrode for a lithium battery as recited in any one of claims 1 19, characterized in that lithium is previously stored or incorporated in said thin film of active material.
- 20 21. A lithium battery including a negative electrode comprised of the electrode as recited in any one of claims 1 20, a positive electrode and an electrolyte.
- 22. A rechargeable lithium battery including a negative electrode comprised of the electrode as recited in any one of claims 1 20, a positive electrode and a nonaqueous electroive.

25

35

an

- 23. The rechargeable lithium battery as recited in claim 22, characterized in that said positive electrode contains, as active material, an oxide capable of storage and release of lithium.
- 24. The rechargeable lithium battery as recited in claim 22, characterized in that said positive electrode contains, as active material, a lithium-containing oxide.
 - 25. A rechargeable lithium battery including a negative electrode having a thin film of active material that is capable of storage and release of lithium and deposited on a negative current collector, a positive electrode and a non-aqueous electroyle, said rechargebal Rithium battery being characterized in that an interlayer comprising a material alloyable with said thin film of active material is provided on said negative current collector and the thin film of active material stopostoled on said interlayer.
 - 26. The rechargeable lithium battery as recited in claim 25, characterized in that said thin film of active material is deposited by a CVD, sputtering, vapor evaporation or spraying process.
 - 27. The rechargeable lithium battery as recited in claim 25 or 26, characterized in that said thin film of active material is a silicon, germanium or silicon-germanium alloy thin film.
- 28. The rechargeable lithium battery as recited in claim 27, characterized in that said silicon thin film is a microcrystalline or amorphous silicon thin film.
 - 29. The rechargeable lithium battery as recited in any one of claims 25 28, characterized in that said interlayer is a copper layer.
- 30. The rechargeable lithium battery as recited in any one of claims 25 29, characterized in that said current collector comprises a foil made of a matal or alloy which is higher in mechanical strength than said interlayer material.
 - 31. The rechargeable lithium battery as recited in any one of claims 25 30, characterized in that said current collector has irregularities on its surface and said interlayer has the surface irregularities corresponding to those of said current collector.
 - 32. The rechargeable lithium battery as recited in any one of claims 25 31, characterized in that said current collector has a surface roughness Ra in the range of 0.001 - 1 μm.

EP 1 231 654 A1 33. The rechargeable lithium battery as recited in any one of claims 25 - 31, characterized in that said current collector

has a surface roughness Ra in the range of 0.01 - 1 µm.

34. The rechargeable lithium battery as recited in any one of claims 25 - 33, characterized in that said current collector comprises at least one selected from copper, copper alloy, nickel, nickel alloy, fron, fron alloy, stanless steel, molybdenum, tungsten and tantalum.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 15

FIG. 16

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 39

FIG. 40

FIG. 41

FIG. 42

FIG. 43

50nm

FIG. 44

20nm

55

FIG. 47

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP00/07296

A. CLASS Int.	SIFICATION OF SUBJECT MATTER .Cl ⁷ H01M 4/66, 4/02, 4/04, 4/	38, 4/48, 4/58, 10/40			
	According to International Patent Classification (IPC) or to both national classification and IPC				
	S SEARCHED				
Int.	ocumentation searched (elassification system followed C1 ⁷ H01M 4/66, 4/02, 4/04, 4/3	38, 4/48, 4/58, 10/40			
Jits Koka	ion searched other than minimum documentation to the company of th	Toroku Jitsuyo Shinan K Jitsuyo Shinan Toroku K	Soho 1994-2000 Soho 1996-2000		
	ata base consulted during the international search (nar	me of data base and, where practicable, sea	rch terms used)		
	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a		Relevant to claim No.		
EX	JP, 2000-12088, A (Fuji Photo 14 January, 2000 (14.01.00), Claims 1, 2; Par. Nos. 0005, 0 (Family: none)		1-11,13-15, 19-25,27,28, 30-34		
EX	JP, 2000-11997, A (Fuji Photo 14 January, 2000 (14.01.00), Claims 1 to 7; Far. Nos. 000 (Family: none)		1,2,7-11, 13-15,19-25, 27,28,30,34		
EX	JP, 2000-100429, A (Canon Inc. 07 April, 2000 (07.04.00), Claims 1 to 16; Par. Nos. 00 (Family: none)		1,2,11-15, 18-25,30,34		
X Y	JP, 9-213339, A (Fuji Photo Fi 15 August, 1997 (15.08.97), Claims 1 to 7; Far. Nos. 0009, (Family: none)		1-6,11-15, 19-25,30-34 7-10,16-18, 26-29		
х	JP, 11-283628, A (Puji Photo F: 15 Cctober, 1999 (15.10.99),	ilm Co., Ltd.),	1,2,7-11, 13-15,19-25,		
Further	documents are listed in the continuation of Box C.	See patent family annex.			
Special categories of a first documents. **Observation failing the general sixtue of the sat which is not considered to be of particular prelevance. **British of the prelevance of the statement of the statement of the statement of the published one on other the instrument of the statement of the published and one of moder citation or other of position of the published and the of moder citation or other of course or period in reason (or a specified). **Observation of the published state of moder citation or other of course or period in the published state of the statement of		"The later document published after the international filing date or program of the common published after the international filing date or program of the common published after with the application but cited to with the application for the common published published after the considered for the common published published for cause to considered for involve an invention of the common published for the common published for th			
Date of the actual completion of the international search 12 December, 2000 (12.12.00)		Date of mailing of the international search report 26 December, 2000 (26.12.00)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No		Telephone No.			
orm PCf/IS	SA/210 (second sheet) (July 1992)				

57

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP00/07296

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Par. Nos. 0009 to 0018, 0037 to 0038, etc. (Family: none)	27,28,30,34 3-6,12,16-18 26,29,31-33
X Y	JP, 11-233116, A (Canon Inc.), 27 August, 1999 (27.08.99), Claims I to 41; Par. Nos. 0012 to 0027, 0033, 0038, 0042, 0043, 0056 to 0061, example, etc. (Family: none)	1,2,7-30,34 3-6,31-33
¥	EP, 855752, A (CANON KABUSHIKI KAISHA), 29 July, 1996 (29.07.98), Claims 1-135; page 7, lines 20-34; page 8, lines 13-28, page 10. line 49 to page 11, line 3, section of "FORMATION OF ELECTRODS MATERIAL LAYER" (6 UP, 11-242954, A CLAIMS 1 to 135; Par. Mos. 0030 to 0036, 0058 to 0115, 8 CA, 2220955, A & CM, 1194472. A	2,3,7-10,18, 26-29,31
	& KR, 98070935, A)	
Y	JP, 11-273683, A (The Furukawa Electric Co., Ltd.), 08 October, 1999 (08.10.99), Claims I to 4; Table 1; Par. No. 0047, etc. (Family: none)	5,6,32,33
Y	JP, 11-135130, A (Mitsubishi Aluminum Co., Ltd.), 21 May, 1999 (21.05.99), Calams to 3, 5, 6; Par. Nos. 0003 to 0007, 0021 to 0026, etc. (Family: none)	5,6,32,33
¥	US, 5531100, A (Akira Yoshino, et al.), 20 May, 1997 (20.05.97), Claim 1, column 5, line 24 - column 6,line 17 (& JP, 5-226004, Fer. Mos. 0029 to 0033, etc. Claims 1 to 8; Per. Mos. 0029 to 0033, etc. & WO, 9306628, A & EP, 603397, A & CM, 1092208, A)	5,6,32,33
Y	JP, 5-74479, A (Asahi Chemical Industry Co., Ltd.), 26 March, 1993 (26.03.93), Claim 1; Par. Nos. 0007 to 0020; example, etc. (Family: none)	5,6,32,33
Y	RP, 9:0131, A (MOX. INSULATORS, LID.), 21 April, 1999 (21 04.99) Claims 1-5; Pax. Non. [0010], [0019] (c JF, 11-12999, A Claims 1 to 5; Pax. Now. 0009, 0015, etc. 6 CA, 2249935, A)	16,17
Y	JP, 10-294098, A (YUASA CORPORATION), 04 November, 1998 (04.11.98), Claims 1 to 5; Par. No. 0010; example, etc. (Family: none)	16,17
Y	JP, 60-175375, A (Hitachi Maxell, Ltd.), 09 September, 1985 (09.09.85) Claims 1, 2; (Hatsumei no Gaiyou) etc. (Family: nome)	1,2,11-15, 19-25,29,30,34

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/07296

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
А	JP, 10-326628, A (Mitsubishi Electric Corporation), 08 December, 1998 (08.12.98), Claims 1 to 10; Figs, etc. (Family: none)	16,17
Α	JP, 10-208740, A (YUASA CORPORATION), 07 August, 1998 (07.08.98), Claims 1 to 3, etc. (Family: none)	7-10,19-24,2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)