

Floating Point

Today: Floating Point

- **■** Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers 二进制小数

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k imes 2^k$

Fractional Binary Numbers: Examples

Value

Representation

$$5 \frac{3}{4} = \frac{23}{4}$$

$$= 4 + 1 + 1/2 + 1/4$$

$$27/8 = 23/8$$

$$10.111_2$$

$$= 2 + 1/2 + 1/4 + 1/8$$

$$17/16 = 23/16$$

$$1.0111_{2}$$

$$= 1 + 1/4 + 1/8 + 1/16$$

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

```
    Value Representation
    1/3 0.01010101[01]...2
    1/5 0.001100110011[0011]...2
    1/10 0.0001100110011[0011]...2
```

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Some CPUs don't implement IEEE 754 in full e.g., early GPUs, Cell BE processor

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

Example: $15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$

 $(-1)^{s} M 2^{E}$

- Sign bit s determines whether number is negative or positive
- **Significand M** normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two 阶码(指数)

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

Single precision: 32 bits

 \approx 7 decimal digits, $10^{\pm 38}$

Double precision: 64 bits

 \approx 16 decimal digits, $10^{\pm 308}$

Other formats: half precision, quad precision

Three "kinds" of floating point numbers

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: $E = \exp Bias$
 - exp: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (exp: 1...254, E: -126...127)
 - Double precision: 1023 (exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when **frac**=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

$$v = (-1)^s M 2^E$$

 $E = \exp - Bias$

- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$

Significand

$$M = 1.101101101_2$$

frac= $101101101101_000000000_2$

Exponent

$$E = 13$$
 $Bias = 127$
 $exp = 140 = 10001100_{2}$

Result:

0 10001100 1101101101101000000000

s exp

frac

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- **Condition:** exp = 000...0
- **Exponent value:** E = 1 Bias (instead of exp Bias) (why?)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - *xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced平均间隔

Special Values

- Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

C float Decoding Example

float: 0xC0A00000

$$v = (-1)^s M 2^E$$

 $E = \exp - Bias$

$$Bias = 2^{k-1} - 1 = 127$$

binary:

23-bits

E =

S =

M =

 $v = (-1)^s M 2^E =$

Ho	O	Q .
0	0	0000
1	1	0001
1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
	9	1001
Α	10	1010
В	11	1000 1001 1010 1011
B C D	12	1100
D	13	1101
E	14	1110
ਸ਼	15	1111

C float Decoding Example

 $v = (-1)^s M 2^E$ $E = \exp - Bias$

float: 0xC0A00000

1 1000 0001 010 0000 0000 0000 0000

1 8-bits 23-bits

E =

S =

M = 1.

 $v = (-1)^s M 2^E =$

Hex Decimary

0	0	0000
1	1	0001
2 3	2 3	0010
3	3	0011
4 5 6	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

18

C float Decoding Example

float: 0xC0A00000

$$v = (-1)^s M 2^E$$

 $E = \exp - Bias$

$$Bias = 2^{k-1} - 1 = 127$$

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits

23-bits

$$E = exp - Bias = 129 - 127 = 2$$
 (decimal)

S = **1** -> negative number

M = 1.010 0000 0000 0000 0000 0000= 1 + 1/4 = 1.25

$$v = (-1)^s M 2^E = (-1)^1 * 1.25 * 2^2 = -5$$

Hex Decimanary

0	0	0000
1	1	0001
2	2	0010
1 2 3 4	1 2 3 4	0011
4	4	0100
5	5	0101
6 7 8	6	0110
7	7	0111
8		1000
9	9	1001
Α	10	1010
ВС	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- float single precision
- double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Floating Point Puzzles

■ For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
• x == (int)(float) x
• x == (int) (double) x
f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications

programmers

教材阅读

■ 第2章 2.4.1-2.4.2、2.4.6