Working with Priors in the rstanarm package

Bayesian Data Analysis Steve Buyske

Coding priors in rstanarm

- In rstanarm, you can specify arguments for
 - prior_intercept, model intercept, after centering predictors
 - prior_aux, used in linear regression for σ
 - prior, used for all the (overall) regression coefficients
 - prior_covariance, used for covariance matrices in hierarchical models with varying slopes and intercepts

Defaults in rstanarm

The defaults in stan_glm() and stan_glmer() are
prior_intercept = normal(mean of y, 2.5, autoscale = TRUE)
prior_aux = exponential(rate = 1, autoscale = TRUE)
prior = normal(0, 2.5, autoscale = TRUE)
prior_covariance = decov(regularization = 1, concentration = 1, shape = 1, scale = 1)
All but the last are scaled (that's what autoscale = TRUE does)

3/22

To get the unscaled version of the default priors

- For prior_intercept, multiply by sd(y)
- For prior, multiply by sd(y)/sd(x)
- For prior_aux, divide by sd(y)

You can examine these by using prior_summary():

```
prior_summary(gini_stan)
## Priors for model 'gini stan'
## Intercept (after predictors centered)
     Specified prior:
       ~ normal(location = 73, scale = 2.5)
     Adjusted prior:
       ~ normal(location = 73, scale = 18)
##
##
## Coefficients
     Specified prior:
       ~ normal(location = 0, scale = 2.5)
     Adjusted prior:
       ~ normal(location = 0, scale = 2.3)
##
##
## Auxiliary (sigma)
     Specified prior:
```

Or with $describe_prior()$, which does not include the priors for σ or for the group covariance.

```
describe_prior(gini_stan)

## Parameter Prior_Distribution Prior_Location Prior_Scale

## 1 (Intercept) normal 72.92203 17.927098

## 2 gini normal 0.00000 2.340514
```

 And you can compare the posterior and the prior with posterior_vs_prior()

posterior_vs_prior(gini_stan, par = "gini")

7/22

Specifying priors in rstanarm functions.

· As a running example, we will use the sleep study example from Week 4.

```
sleep2 <- stan_glmer(Reaction ~ Days + (Days | Subject), data = sleepstudy, iter = 7500, cores = 4)</pre>
```

• If you want a flat prior, just use **NULL** as the value to the argument from a few slides back.

```
sleep2b <- stan glmer(Reaction ~ Days + (Days | Subject), data = sleepstudy, iter = 7500, cores = 4, prior = NULL)
```

describe_prior(sleep2)

```
## Parameter Prior_Distribution Prior_Location Prior_Scale
## 1 (Intercept) normal 298.5079 140.82189
## 2 Days normal 0.0000 48.89151
```

describe_prior(sleep2b)

```
## Parameter Prior_Distribution Prior_Location Prior_Scale
## 1 (Intercept) normal 298.5079 140.8219
## 2 Days uniform NA NA
```

describe posterior(sleep2)

```
## # Description of Posterior Distributions
##
## Parameter | Median | 89% CI | pd | 89% ROPE | % in ROPE | Rhat | ESS
## (Intercept) | 251.480 | [241.168, 262.273] | 100.00% | [-5.633, 5.633] | 0 | 1.000 | 8615.117
## Days | 10.475 | [ 7.812, 13.345] | 100.00% | [-5.633, 5.633] | 0 | 1.000 | 5506.912
describe posterior(sleep2b)
## # Description of Posterior Distributions
## Parameter | Median | 89% CI | pd | 89% ROPE | % in ROPE | Rhat | ESS
## (Intercept) | 251.364 | [240.567, 261.996] | 100.00% | [-5.633, 5.633] | 0 | 1.000 | 8232.685
## Days | 10.458 | [ 7.669, 13.258] | 100.00% | [-5.633, 5.633] | 0 | 1.001 | 4920.429
```

- You can see that in this case the choice of a prior makes virtually no difference.
- · One prior is weakly informative while the other is uninformative, but the similar posteriors suggest that the posterior is not sensitive to the prior.

- Suppose you had wanted to use a strong prior that the regression coefficient for Days was close to zero.
- To use a normal prior, the syntax is normal(location, scale); for Student's t prior, the syntax is student_t(df, location, scale)
- So you might fit a model with

describe_prior(sleep2)

```
## Parameter Prior_Distribution Prior_Location Prior_Scale
## 1 (Intercept) normal 298.5079 140.82189
## 2 Days normal 0.0000 48.89151
```

describe_prior(sleep2c)

```
## Parameter Prior_Distribution Prior_Location Prior_Scale
## 1 (Intercept) normal 298.5079 140.8219
## 2 Days normal 0.0000 3.0000
```

describe posterior(sleep2)

```
## # Description of Posterior Distributions
##
## Parameter | Median | 89% CI | pd | 89% ROPE | % in ROPE | Rhat | ESS
## (Intercept) | 251.480 | [241.168, 262.273] | 100.00% | [-5.633, 5.633] | 0 | 1.000 | 8615.117
## Days | 10.475 | [ 7.812, 13.345] | 100.00% | [-5.633, 5.633] | 0 | 1.000 | 5506.912
describe posterior(sleep2c)
## # Description of Posterior Distributions
## Parameter | Median | 89% CI | pd | 89% ROPE | % in ROPE | Rhat | ESS
## (Intercept) | 252.523 | [241.291, 264.011] | 100.00% | [-5.633, 5.633] | 0.000 | 1.001 | 4924.608
## Days | 7.627 | [ 4.767, 10.466] | 99.94% | [-5.633, 5.633] | 8.224 | 1.001 | 4227.010
```

- · You can see that the normal(0, 3) prior had a noticeable effect on the posteror.
- The figure below (not shown in the video) shows how the informative prior, with a much smaller spread, has shifted the posterior to the left. The shapes are otherwise pretty similar.

The autoscale argument

- What's going on with the autoscale argument?
- The default in rstanarm is to rescale the priors, by multiplying the scale for slope coefficients by sd(y)/sd(x), for example.
 - This is convenient—once you know the default is scale = 2.5, you can change how informative you want the prior to be by changing that without any more calculation.
- If however, you already know the scale that you want, you can use autoscale
 FALSE to prevent any rescaling.

Multiple regression terms

If you have multiple regression terms and want different priors for each, you
can supply a vector for the location and scale arguments (where I've just
made up the AM_PM variable):

The covariance prior

- The prior for related to any group-specific parameters is a bit complicated.
- Think of the varying slopes and intercepts as a random vector.
 - We assume that the distribution of that random vector is multivariate normal
 - with mean 0 (that is, the 0 vector)
 - and unknown covariance matrix that will need to be estimated.

The covariance prior cont.

- The default prior for that covariance matrix is prior_covariance =
 decov(regularization = 1, concentration = 1, shape = 1, scale =
 1)
 - this is a combination of uniform distribution on correlation matrices and an exponential distribution on the the standard deviations.

- Hierarchical models sometimes have trouble converging. I have found that changing the covariance prior often helps: prior_covariance = decov(shape = 5)
 - The standard deviation of the group-level parameters might be getting too close to zero. This prior pulls it a bit away from 0.

Concluding remarks

- If you don't have a good sense of what prior to use for a particular analysis, stick with the defaults for stan_glm() and stan_glmer()
 - The defaults are good choices of weakly informative priors
- · If you do have particular priors you want to use, use them. You can leave everything else as the default.
- · Changing pprior_covariance, even as little as to
 - prior_covariance = decov(shape = 2)
 - can help with convergence
- Type priors into the help box for lots more choices or read https://cran.r-project.org/web/packages/rstanarm/vignettes/priors.html for more detail.