Combinational Circuit Design

Combinational Circuit

Design Procedure

- 1. From the specifications of the circuit, determine the required number of inputs and outputs and assign a symbol to each.
- 2. Derive the truth table that defines the required relationship between inputs and outputs.
- 3. Obtain the simplified Boolean functions for each output as a function of the input variables.
- 4. Draw the logic diagram and verify the correctness of the design

Binary Adder

Half Adder

X	y	C	S
0	0	0	0
0	1	$\begin{array}{c} 0 \\ 0 \end{array}$	1
1	0	0	1
1	1	1	0

$$S = x'y + xy'$$
$$C = xy$$

Full Adder

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C = xy + xz + yz$$

x^{yz}	00	01	11	10
0	m_0	m ₁ 1	m_3	m ₂ 1
1	m ₄ 1	<i>m</i> ₅	m ₇ 1	m_6

$$S = z \oplus (x \oplus y)$$

$$= z'(xy' + x'y) + z(xy' + x'y)'$$

$$= z'(xy' + x'y) + z(xy + x'y')$$

$$= xy'z' + x'yz' + xyz + x'y'z$$

Full Adder

Full Adder using two Half Adder

Binary Adder

1011+0011

Subscript <i>i</i> :	3	2	1	0	
Input carry	0	1	1	0	C_{i}
Augend	1	0	1	1	A_i
Addend	0	0	1	1	B_i
Sum	1	1	1	0	S_i
Output carry	0	0	1	1	C_{i+1}

Propagation Delay

Carry Look ahead Adder (CLA)

$$C_o = AB + (A \oplus B)C_i$$
$$C_o = G + PC_i$$

Α	В	C _i	C _o
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

CLA

$$C_{i} = G_{i-1} + P_{i-1}C_{i-1}$$

$$C_{1} = G_{0} + P_{0}C_{0}$$

$$C_{2} = G_{1} + P_{1}C_{1} = G_{1} + P_{1}(G_{0} + P_{0}C_{0}) = G_{1} + P_{1}G_{0} + P_{0}P_{1}C_{0}$$

$$C_{3} = G_{2} + P_{2}C_{2} = G_{2} + P_{2}(G_{1} + P_{1}G_{0} + P_{0}P_{1}C_{0}) = G_{2} + P_{2}G_{1} + P_{1}P_{2}G_{0} + P_{0}P_{1}P_{2}C_{0})$$

$$C_{4} = G_{3} + P_{3}C_{3} = G_{3} + P_{3}(G_{2} + P_{2}G_{1} + P_{1}P_{2}G_{0} + P_{0}P_{1}P_{2}C_{0})$$

$$= G_{3} + P_{3}G_{2} + P_{2}P_{3}G_{1} + P_{1}P_{2}P_{3}G_{0} + P_{0}P_{1}P_{2}P_{3}C_{0})$$

CLA Logic

Parity Generation and Checking

Even parity Generator

Three	e-Bit Me	Parity Bit	
X	y	Z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$P = x \oplus y \oplus z$$

Parity Checking

		· Bits eived		Parity Error Check	
x	y	z	P	С	$C = x \oplus y \oplus z \oplus P$
0 0 0 0 0 0 0 0 1 1 1 1	0 0 0 0 1 1 1 1 0 0 0	0 0 1 1 0 0 1 1 0 0 1 1 1 0	0 1 0 1 0 1 0 1 0 1 0	0 1 1 0 1 0 0 1 1 0 0	$C = x \oplus y \oplus z \oplus P$ z z P C
1 1 1	1 1 1	0 1 1	1 0 1	1 1 0	

Code Converters

- Convenience
- Security reasons
- Hardware reasons

Examples

- ASCII code
- BCD (Binary coded decimal)
- Excess 3 code
- Gray code

BCD to Excess 3 Converter

b ₃	b ₂	b ₁	b ₀	e ₃	e ₂	e ₁	e ₀
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	Х	X	Х
1	0	1	1	Х	Х	Х	Х
1	1	0	0	Х	Х	Х	Х
1	1	0	1	Х	Х	Х	Х
1	1	1	0	Х	Х	Х	Х
1	1	1	1	X	X	Х	Х

$$e_{3} = b_{3} + b_{2}b_{1} + b_{2}b_{0}$$

$$e_{2} = \overline{b}_{2}b_{1} + \overline{b}_{2}b_{0} + b_{2}\overline{b}_{1}\overline{b}_{0}$$

$$e_{1} = \overline{b}_{1}\overline{b}_{0} + b_{1}b_{0} = b_{1} \odot b_{0}$$

$$e_{0} = \overline{b}_{0}$$

Binary to Gray code

	Bin	ary		(Gray	Cod	е
b_3	b_2	b_1	b_0	g ₃	g_2	g ₁	g_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

Magnitude Comparator

	Inp	uts		Outputs		
$\mathbf{A_1}$	\mathbf{A}_0	B ₁	\mathbf{B}_0	A>B	A <b< th=""></b<>	
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Decoder

Eg. 3 to 8 line decoder

2 to 4 line Decoder

3 to 8 line Decoder

3 to 8 line Decoder

Truth Table

	Inputs		Outputs							
X	y	Z	D ₀	D ₁	D ₂	D ₃	D_4	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoder with Enable

NAND gate based

E	A	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	1

Connecting Decoders

When w = 0, top decoder is enabled, bottom decoder is disabled. Generates output for input 0000 to 0111

When w = 1, top decoder is disabled, bottom decoder is enabled. Generates output for input 1000 to 1111

Combinational Logic Implementation using Decoder

Full Adder using 3 x 8 Decoder

$$S(x, y, z) = \Sigma(1, 2, 4, 7)$$

$$C(x, y, z) = \Sigma(3, 5, 6, 7)$$

BCD to 7 segment Decoder

BCD – Binary coded Decimal

Decimal	Binay (BCD)
	8 4 2 1
0	0 0 0 0
1	0001
1 2	0 0 1 0
3	0 0 1 1
4	0 1 0 0
5	0 1 0 1
6	0 1 1 0
7	0 1 1 1
8	1000
9	1 0 0 1

10 - 00010000 99 - 10011001 100 - 000100000000

BCD to 7 segment Decoder

Α	В	С	D	а	b	С	d	e	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

K Map for 'a'

K Map for 'b'

AB\CD00 01 11 10							
00	1	0	1	1			
01	0	1	1	1			
11	Χ	X	Χ	Х			
10	1	1	Χ	Χ			

$$a = A + C + AD + \overline{A}\overline{D}$$

$$b = \bar{B} + \bar{C}\bar{D} + CD$$

Encoders

Eg. 8 to 3 line encoder

8 to 3 Line Encoder (Octal to Binary Encoder)

Truth Table of an Octal-to-Binary Encoder

	Inputs								utput	S
D_0	D ₁	D ₂	D_3	D ₄	D ₅	D ₆	D ₇	X	y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$z = D_1 + D_3 + D_5 + D_7$$

$$y = D_2 + D_3 + D_6 + D_7$$

$$x = D_4 + D_5 + D_6 + D_7$$

Priority Encoder

	Inputs			C	utput	s
D_0	D ₁	D ₂	D ₃	x	y	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

$$x = D_2 + D_3$$

 $y = D_3 + D_1 D_2'$
 $V = D_0 + D_1 + D_2 + D_3$

4 to 2 line priority Encoder

Multiplexers

 selects binary information from one of many input lines and directs it to a single output line

2 X 1 Multiplexer

4 X 1 Multiplexer

S_1	S_0	Y
0 0 1 1	0 1 0 1	$I_0 \\ I_1 \\ I_2 \\ I_3$

Boolean Function Implementation

$$F(x, y, z) = \Sigma(1, 2, 6, 7)$$

x	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

\setminus C	'D			
\overrightarrow{AB}	00	01	11	10
00	m_0	1^{m_1}	m_3	m_2
01	1 1	m_5	m_7	m_6
11	<i>m</i> ₁₂ 1	m_{13} 1	m_{15} 1	1 1
10	m_8	<i>m</i> ₉	<i>m</i> ₁₁ 1	m_{10}

\boldsymbol{A}	\boldsymbol{B}	C	D	F	
0	0	0	0	0	F = D
0	0	0	1	1	
0	$\begin{array}{c} 0 \\ 0 \end{array}$	1 1	0 1	0 1	F = D
0	1	0	0	1	F = D'
0	1	0	1	0	
0	1	1	0	0	F = 0
0	1	1	1	0	
1 1	0	0	0 1	0	F = 0
1	0	1	0	0	F = D
1	0	1	1	1	
1 1	1 1	0	0 1	1 1	<i>F</i> = 1
1	1	1	0	1	<i>F</i> = 1
1	1	1	1	1	

$$F(w, x, y, z) = \sum (1,4,5,7,9,12,13)$$

wx yz	00	01	11	10
00	m_0	1 1	m_3	m_2
01	m ₄ 1	m_5 1	<i>m</i> ₇ 1	m_6
11	<i>m</i> ₁₂ 1	m_{13} 1	m_{15}	m_{14}
10	m_8	m ₉ 1	m_{11}	m_{10}

Mux Trees

Three State Gates

2X1 Mux using Three state gates

Three State Gates

4X1 Mux using Three state gates