

April 1999 Revised December 2005

LM7805 • LM7806 • LM7808 • LM7809 • LM7810 • LM7812 • LM7815 • LM7818 • LM7824 • LM7805A • LM7806A • LM7808A •LM7809A • LM7810A • LM7812A • LM7815A • LM7818A • LM7824A

3-Terminal 1A Positive Voltage Regulator

General Description

The LM78XX series of three terminal positive regulators are available in the TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 12, 15, 18, 24
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

Ordering Code:

Product Number	Output Voltage Tolerance	Package	Operating Temperature
LM7805CT			
LM7806CT			
LM7808CT			
LM7809CT			
LM7810CT	±4%		−40°C - +125°C
LM7812CT			
LM7815CT			
LM7818CT			
LM7824CT		TO-220	
LM7805ACT		10-220	
LM7806ACT			
LM7808ACT			
LM7809ACT			
LM7810ACT	±2%		0°C - +125°C
LM7812ACT			
LM7815ACT			
LM7818ACT			
LM7824ACT			

Internal Block Diagram

Absolute Maximum Ratings(Note 1)

Parameter	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V)	V _I	35	V
(for $V_O = 24V$)	V_{I}	40	V
Thermal Resistance Junction-Cases (TO-220)	$R_{ heta JC}$	5	°C/W
Thermal Resistance Junction-Air (TO-220)	$R_{ heta JA}$	65	°C/W
Operating Temperature Range	T _{OPR}	0 ~ +125	°C
LM78xx		−40 ~ +125	°C
LM78xxA		0 ~ +125	°C
Storage Temperature Range	T _{STG}	−65 ~ +150	°C

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Electrical Characteristics (LM7805)

(Refer to the test circuits. -40°C < T_J < 125°C, I_O = 500mA, V_I = 10V, C_I = 0.1 μ F, unless otherwise specified)

Parameter	Symbol		Conditions	Min	Тур	Max	Unit
Output Voltage	Vo	$T_J = +25^{\circ}C$		4.8	5.0	5.2	V
		$5mA \le I_O \le 1A, P_C$	$_{0} \le 15W, V_{I} = 7V \text{ to } 20V$	4.75	5.0	5.25	V
Line Regulation	Regline	$T_J = +25^{\circ}C$	V _O = 7V to 25V	-	4.0	100	mV
(Note 2)			V _I = 8V to 12V	-	1.6	50.0	mv
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	_	9.0	100	
			I _O = 250mA to 750mA	_	4.0	50.0	mV
Quiescent Current	IQ	$T_J = +25^{\circ}C$		-	5.0	8.0	mA
Quiescent Current Change	ΔI_Q	I _O = 5mA to 1A		_	0.03	0.5	4
		V _I = 7V to 25V	V _I = 7V to 25V		0.3	1.3	mA
Output Voltage Drift (Note 3)	$\Delta V_{O}/\Delta T$	I _O = 5mA		_	-0.8	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	_	42.0	-	μV/V _O
Ripple Rejection (Note 3)	RR	f = 120Hz, V _O = 8\	V to 18V	62.0	73.0	-	dB
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°	С	_	2.0	-	V
Output Resistance (Note 3)	rO	f = 1KHz	f = 1KHz		15.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	V _I = 35V, T _A = +25°C		230	-	mA
Peak Current (Note 3)	I _{PK}	T _J =+25°C		_	2.2	-	А

Note 2: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 3: These parameters, although guaranteed, are not 100% tested in production.

Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
Output Voltage	Vo	T _J = +25°C		5.75	6.0	6.25	V	
		$5mA \le I_O \le 1A, P_C$	$_{0} \le 15W$, $V_{I} = 8.0V$ to 21V	5.7	6.0	6.3	V	
Line Regulation	Regline	T _J = +25°C	V _I = 8V to 25V	=	5.0	120	\/	
(Note 4)			V _I = 9V to 13V	=	1.5	60.0	mV	
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	_	9.0	120		
(Note 4)			I _O = 250mA to 750mA	_	3.0	60.0	mV	
Quiescent Current	ΙQ	$T_J = +25^{\circ}C$		_	5.0	8.0	mA	
Quiescent Current Change	ΔI_{Q}	I _O = 5mA to 1A		_	-	0.5	mA	
		V _I = 8V to 25V	V _I = 8V to 25V		-	1.3		
Output Voltage Drift (Note 5)	$\Delta V_{O}/\Delta T$	I _O = 5mA		=	-0.8	-	mV/°C	
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	-	45.0	-	μV/V _O	
Ripple Rejection (Note 5)	RR	f = 120Hz, V _O = 8\	V to 18V	62.0	73.0	-	dB	
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°	С	_	2.0	-	٧	
Output Resistance (Note 5)	rO	f = 1KHz	f = 1KHz		19.0	-	mΩ	
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	V _I = 35V, T _A = +25°C		250	-	mA	
Peak Current (Note 5)	I _{PK}	T _J =+25°C		-	2.2	-	А	

Note 4: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 5: These parameters, although guaranteed, are not 100% tested in production.

 $\label{eq:local_local_local} \textbf{Electrical Characteristics (LM7808)} \\ \text{(Refer to the test circuits.} -40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 500\text{mA}, \text{ V}_{\text{I}} = 14\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\ \text{(Refer to the test circuits.} -40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 500\text{mA}, \text{ V}_{\text{I}} = 14\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\ \text{(Refer to the test circuits.} -40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 500\text{mA}, \text{ V}_{\text{I}} = 14\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\ \text{(Refer to the test circuits.} -40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 500 \text{mA}, \text{ V}_{\text{I}} = 14\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\ \text{(Refer to the test circuits.} -40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 500 \text{mA}, \text{ V}_{\text{I}} = 14\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\ \text{(Refer to the test circuits.} -40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{J}} = 14\text{V}, \text{ C}_{\text{I}} = 14\text{V}, \text{ C}_{\text$

Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
Output Voltage	Vo	T _J = +25°C		7.7	8.0	8.3	.,	
		$5mA \le I_O \le 1A, P_O$	≤ 15W, V _I = 10.5V to 23V	7.6	8.0	8.4	V	
Line Regulation	Regline	T _J = +25°C	V _I = 10.5V to 25V	ı	5.0	160		
(Note 6)			V _I = 11.5V to 17V	_	2.0	80.0	mV	
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	-	10.0	160	.,	
(Note 6)			I _O = 250mA to 750mA	_	5.0	80.0	mV	
Quiescent Current	ΙQ	$T_J = +25^{\circ}C$		_	5.0	8.0	mA	
Quiescent Current Change	ΔI_{Q}	I _O = 5mA to 1A		_	0.05	0.5	mA	
		V _I = 10.5V to 25V		_	0.5	1.0		
Output Voltage Drift (Note 7)	$\Delta V_O/\Delta T$	I _O = 5mA		_	-0.8	_	mV/°C	
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	_	52.0	_	μV/V _O	
Ripple Rejection (Note 7)	RR	f = 120Hz, V _O = 11	.5V to 21.5V	56.0	73.0	_	dB	
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°	С	_	2.0	_	V	
Output Resistance (Note 7)	rO	f = 1KHz	f = 1KHz		17.0	_	mΩ	
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25°C		1	230	-	mA	
Peak Current (Note 7)	I _{PK}	T _J =+25°C		-	2.2	-	Α	

Note 6: Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with

Note 7: These parameters, although guaranteed, are not 100% tested in production.

Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
Output Voltage	Vo	T _J = +25°C		8.65	9.0	9.35	V	
		$5mA \le I_O \le 1A, P_C$	$5mA \leq I_O \leq 1A,~P_O \leq 15W,~V_I = 11.5V$ to $24V$		9.0	9.4	V	
Line Regulation	Regline	T _J = +25°C	V _I = 11.5V to 25V	=	6.0	180	\/	
(Note 8)			V _I = 12V to 17V	_	2.0	90.0	mV	
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	_	12.0	180		
(Note 8)			I _O = 250mA to 750mA	_	4.0	90.0	mV	
Quiescent Current	IQ	$T_J = +25$ °C		_	5.0	8.0	mA	
Quiescent Current Change	ΔI_{Q}	I _O = 5mA to 1A		_	_	0.5	mA	
		V _I = 11.5V to 26V		_	_	1.3		
Output Voltage Drift (Note 9)	ΔV _O /ΔT	I _O = 5mA		_	-1.0	-	mV/°C	
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	_	58.0	-	μV/V _O	
Ripple Rejection (Note 9)	RR	f = 120Hz, V _O = 13	3V to 23V	56.0	71.0	-	dB	
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°	С	_	2.0	-	V	
Output Resistance (Note 9)	rO	f = 1KHz	f = 1KHz		17.0	-	mΩ	
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	V _I = 35V, T _A = +25°C		250	-	mA	
Peak Current (Note 9)	I _{PK}	T _J =+25°C		-	2.2	-	Α	

Note 8: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 9: These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7810)

(Refer to the test circuits. $-40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500^{\circ}\text{mA}$, $\text{V}_{\text{I}} = 16\text{V}$, $\text{C}_{\text{I}} = 0.33 \mu\text{F}$, $\text{C}_{\text{O}} = 0.1 \mu\text{F}$, unless otherwise specified)

Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
Output Voltage	Vo	T _J = +25°C		9.6	10.0	10.4	V	
		$5mA \le I_O \le 1A, P_C$	₀ ≤ 15W, V _I = 12.5V to 25V	9.5	10.0	10.5	V	
Line Regulation	Regline	T _J = +25°C	V _I = 12.5V to 25V	-	10.0	200	mV	
(Note 10)			V _I = 13V to 25V	-	3.0	100	mv	
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	-	12.0	200	mV	
(Note 10)			I _O = 250mA to 750mA	-	4.0	400	IIIV	
Quiescent Current	ΙQ	$T_J = +25^{\circ}C$		-	5.1	8.0	mA	
Quiescent Current Change	$\Delta I_{\mathbf{Q}}$	I _O = 5mA to 1A		-	-	0.5	mA	
		V _I = 12.5V to 29V		-	-	1.0		
Output Voltage Drift (Note 11)	ΔV _O /ΔΤ	I _O = 5mA		-	-1.0	-	mV/°C	
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	-	58.0	-	μV/V _O	
Ripple Rejection (Note 11)	RR	f = 120Hz, V _O = 13	3V to 23V	56.0	71.0	-	dB	
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°	С	-	2.0	-	V	
Output Resistance (Note 11)	rO	f = 1KHz	f = 1KHz		17.0	-	mΩ	
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	V _I = 35V, T _A = +25°C		250	-	mA	
Peak Current (Note 11)	I _{PK}	T _J =+25°C		-	2.2	-	А	

Note 10: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with

Note 11: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7812)} \\ (\text{Refer to the test circuits.} -40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{Q}} = 500\text{mA}, \text{ V}_{\text{I}} = 19\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{Q}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol		Conditions	Min	Тур	Max	Unit
Output Voltage	Vo	T _J = +25°C		11.5	12.0	12.5	V
		$5mA \le I_O \le 1A, P_O$	≤ 15W, V _I = 14.5V to 27V	11.4	12.0	12.6	ľ
Line Regulation	Regline	T _J = +25°C	V _I = 14.5V to 30V	=	10.0	240	mV
(Note 12)			V _I = 16V to 22V	=	3.0	120	mv
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	=	11.0	240	\/
(Note 12)		I _O = 250mA to 750mA – 5		5.0	120	mV	
Quiescent Current	ΙQ	$T_J = +25^{\circ}C$		=	5.1	8.0	mA
Quiescent Current Change	$\Delta I_{\mathbf{Q}}$	I _O = 5mA to 1A		=	0.1	0.5	mA
		V _I = 14.5V to 30V	V _I = 14.5V to 30V		0.5	1.0	
Output Voltage Drift (Note 13)	ΔV _O /ΔΤ	I _O = 5mA		=	-1.0	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	=	76.0	-	μV/V _O
Ripple Rejection (Note 13)	RR	f = 120Hz, V _I = 15	V to 25V	55.0	71.0	-	dB
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°	С	=	2.0	-	V
Output Resistance (Note 13)	rO	f = 1KHz	f = 1KHz		18.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25°C		=	230	-	mA
Peak Current (Note 13)	I _{PK}	T _J =+25°C		_	2.2	-	Α

Note 12: Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 13: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7815)} \\ (\text{Refer to the test circuits.} -40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{Q}} = 500\text{mA}, \text{ V}_{\text{I}} = 23\text{V}, \text{ C}_{\text{I}} = 0.33\mu\text{F}, \text{ C}_{\text{Q}} = 0.1\mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
Output Voltage	Vo	T _J = +25°C		14.4	15.0	15.6	V	
		$5mA \le I_O \le 1A, P_O$	≤ 15W, V _I = 17.5V to 30V	14.25	15.0	15.75	V	
Line Regulation	Regline	T _J = +25°C	V _I = 17.5V to 30V	_	11.0	300		
(Note 14)			V _I = 20V to 26V	_	3.0	150	mV	
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	_	12.0	300		
(Note 14)			I _O = 250mA to 750mA	_	4.0	150	mV	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		_	5.2	8.0	mA	
Quiescent Current Change	ΔI_{Q}	I _O = 5mA to 1A	I _O = 5mA to 1A		_	0.5	mA	
		V _I = 17.5V to 30V		_	_	1.0	IIIA	
Output Voltage Drift (Note 15)	$\Delta V_{O}/\Delta T$	I _O = 5mA		_	-1.0	-	mV/°C	
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	_	90.0	-	μV/V _O	
Ripple Rejection (Note 15)	RR	f = 120Hz, V _I = 18.	.5V to 28.5V	54.0	70.0	-	dB	
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°	С	_	2.0	-	V	
Output Resistance (Note 15)	rO	f = 1KHz		_	19.0	-	mΩ	
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	V _I = 35V, T _A = +25°C		250	_	mA	
Peak Current (Note 15)	I _{PK}	T _J =+25°C	T _{.1} =+25°C		2.2	-	Α	

Note 14: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with

Note 15: These parameters, although guaranteed, are not 100% tested in production.

Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
Output Voltage	Vo	T _J = +25°C		17.3	18.0	18.7	V	
		$5mA \le I_O \le 1A, P_C$	$5mA \le I_O \le 1A, P_O \le 15W, V_I = 21V \text{ to } 33V$		18.0	18.9	V	
Line Regulation	Regline	T _J = +25°C	V _I = 21V to 33V	-	15.0	360	\/	
(Note 12)			V _I = 24V to 30V	-	5.0	180	mV	
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	_	15.0	360		
(Note 12)			I _O = 250mA to 750mA	_	5.0	180	mV	
Quiescent Current	IQ	$T_J = +25$ °C		_	5.2	8.0	mA	
Quiescent Current Change	ΔI_{Q}	I _O = 5mA to 1A		_	_	0.5	mA	
		V _I = 21V to 33V		_	_	1.0		
Output Voltage Drift (Note 17)	$\Delta V_{O}/\Delta T$	I _O = 5mA		_	-1.0	-	mV/°C	
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	_	110	-	μV/V _O	
Ripple Rejection (Note 17)	RR	f = 120Hz, V _I = 22	V to 32V	53.0	69.0	-	dB	
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°	С	_	2.0	-	V	
Output Resistance (Note 17)	rO	f = 1KHz	f = 1KHz		22.0	-	mΩ	
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	V _I = 35V, T _A = +25°C		250	-	mA	
Peak Current (Note 17)	I _{PK}	T _J =+25°C		-	2.2	-	А	

Note 16: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with

Note 17: These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7824)

(Refer to the test circuits. $-40^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500^{\circ}\text{mA}$, $\text{V}_{\text{I}} = 33\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified)

Parameter	Symbol		Conditions	Min	Тур	Max	Unit	
Output Voltage	Vo	T _J = +25°C		23.0	24.0	25.0	V	
		$5mA \le I_O \le 1A, P_O$	o ≤ 15W, V _I = 27V to 38V	22.8	24.0	25.25	V	
Line Regulation	Regline	T _J = +25°C	V _I = 27V to 38V	-	17.0	480	mV	
(Note 18)			V _I = 30V to 36V	-	6.0	240	mv	
Load Regulation	Regload	T _J = +25°C	I _O = 5mA to 1.5mA	-	15.0	480	mV	
(Note 18)			I _O = 250mA to 750mA	-	5.0	240	mv	
Quiescent Current	ΙQ	$T_J = +25^{\circ}C$		-	5.2	8.0	mA	
Quiescent Current Change	$\Delta I_{\mathbf{Q}}$	$I_O = 5$ mA to 1A $V_I = 27V$ to 38V		-	0.1	0.5	mA	
				-	0.5	1.0		
Output Voltage Drift (Note 19)	ΔV _O /ΔΤ	I _O = 5mA		-	-1.5	-	mV/°C	
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	-	60.0	-	μV/V _O	
Ripple Rejection (Note 19)	RR	f = 120Hz, V _I = 28	V to 38V	50.0	67.0	-	dB	
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°	С	-	2.0	-	V	
Output Resistance (Note 19)	rO	f = 1KHz	f = 1KHz		28.0	-	mΩ	
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	V _I = 35V, T _A = +25°C		230	=	mA	
Peak Current (Note 19)	I _{PK}	T _J =+25°C		-	2.2	=	А	

Note 18: Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with

Note 19: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7805A)} \\ (\text{Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 1\text{A}, \text{ V}_{\text{I}} = 10\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol		Conditions	Min	Тур	Max	Unit
Output Voltage	Vo	T _J = +25°C		4.9	5.0	5.1	V
		$I_O = 5$ mA to 1A, P_C) ≤ 15W, V _I = 7.5V to 20V	4.8	5.0'	5.2	v
Line Regulation	Regline	V _I = 7.5V to 25V, I _C) = 500mA	-	5.0	50.0	
(Note 20)		V _I = 8V to 12V		-	3.0	50.0	.,
		T _J = +25°C	V _I = 7.3V to 20V	-	5.0	50.0	mV
			V _I = 8V to 12V	-	1.5	25.0	
Load Regulation	Regload	$T_J = +25^{\circ}C, I_O = 5r$	$T_J = +25^{\circ}C$, $I_O = 5mA$ to 1.5mA		9.0	100	
(Note 20)		I _O = 5mA to 1mA		-	9.0	100	mV
		I _O = 250mA to 750mA		-	4.0	50.0	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		-	5.0	6.0	mA
Quiescent Current Change	ΔI_{Q}	$I_O = 5mA \text{ to } 1A$ $V_I = 8V \text{ to } 25V, I_O = 500mA$		-	-	0.5	
				-	-	0.8	mA
		V _I = 7.5V to 20V, T	_J = +25°C	-	-	0.8	
Output Voltage Drift (Note 21)	$\Delta V_{O}/\Delta T$	I _O = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KHz	z, T _A = +25°C	-	10.0	-	μV/V _O
Ripple Rejection (Note 21)	RR	f = 120Hz, I _O = 500	0mA, V _I = 8V to 18V	-	68.0	-	dB
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°C		-	2.0	-	V
Output Resistance (Note 21)	rO	f = 1KHz	f = 1KHz		17.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25°	V _I = 35V, T _A = +25°C		250	-	mA
Peak Current (Note 21)	I _{PK}	T _J =+25°C		_	2.2	-	А

Note 20: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 21: These parameters, although guaranteed, are not 100% tested in production.

 $\label{eq:continuity} \textbf{Electrical Characteristics (LM7806A)} \\ \text{(Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{Q}} = 1\text{A}, \text{ V}_{\text{I}} = 11\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)}$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Output Voltage	Vo	$T_J = +25^{\circ}C$		5.58	6.0	6.12	V
		$I_O = 5$ mA to 1A, P_C	o ≤ 15W, V _I = 8.6V to 21V	5.76	6.0	6.24	V
Line Regulation	Regline	V _I = 8.6V to 25V, I _C	_O = 500mA	-	5.0	60.0	
(Note 22)		V _I = 9V to 13V		-	3.0	60.0	
		T _J = +25°C	V _I = 8.3V to 21V	-	5.0	60.0	mV
			V _I = 9V to 13V	-	1.5	30.0	
Load Regulation	Regload	$T_J = +25^{\circ}C, I_O = 5r$	mA to 1.5mA	-	9.0	100	
(Note 22)		I _O = 5mA to 1mA		-	4.0	100	mV
		I _O = 250mA to 750mA		-	5.0	50.0	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		-	4.3	6.0	mA
Quiescent Current Change	ΔI_{Q}	I _O = 5mA to 1A		-	-	0.5	
		V _I = 19V to 25V, I _O = 500mA		-	-	0.8	mA
		$V_1 = 8.5 V \text{ to } 21 V, T_1$	_J = +25°C	-	-	0.8	
Output Voltage Drift (Note 23)	$\Delta V_{O}/\Delta T$	I _O = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH;	z, T _A = +25°C	-	10.0	-	μV/V _O
Ripple Rejection (Note 23)	RR	f = 120Hz, I _O = 500	OmA, V _I = 9V to 19V	_	65.0	-	dB
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°C		_	2.0	-	V
Output Resistance (Note 23)	rO	f = 1KHz		_	17.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	°C	-	250	-	mA
Peak Current (Note 23)	I _{PK}	T _J =+25°C		-	2.2	-	Α

Note 22: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 23: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7808A)} \\ (\text{Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 1\text{A}, \text{ V}_{\text{I}} = 14\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Output Voltage	Vo	$T_J = +25^{\circ}C$		7.84	8.0	8.16	V
		$I_O = 5$ mA to 1A, P_C) ≤ 15W, V _I = 10.6V to 23V	7.7	8.0	8.3	v
Line Regulation	Regline	V _I = 10.6V to 25V,	I _O = 500mA	-	6.0	80.0	
(Note 24)		V _I = 11V to 17V		-	3.0	80.0	
1		T _J = +25°C	V _I = 10.4V to 23V	-	6.0	80.0	mV
			V _I = 11V to 17V	-	2.0	40.0	1
Load Regulation	Regload	$T_J = +25^{\circ}C, I_O = 5r$	mA to 1.5mA	-	12.0	100	
(Note 24)		I _O = 5mA to 1mA		-	12.0	100	mV
		I _O = 250mA to 750mA		-	5.0	50.0	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		-	5.0	6.0	mA
Quiescent Current Change	$\Delta I_{\mathbf{Q}}$	I _O = 5mA to 1A		-	_	0.5	
		V _I = 11V to 25V, I _O = 500mA		-	_	0.8	mA
		V _I = 10.6V to 23V,	T _J = +25°C	-	-	0.8	1
Output Voltage Drift (Note 25)	ΔV _O /ΔT	I _O = 5mA		-	-0.8	_	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH;	z, T _A = +25°C	-	10.0	-	μV/V _O
Ripple Rejection (Note 25)	RR	f = 120Hz, I _O = 500	0mA, V _I = 11.5V to 21.5V	-	62.0	-	dB
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°C		-	2.0	-	V
Output Resistance (Note 25)	rO	f = 1KHz		-	18.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	°C	-	250	-	mA
Peak Current (Note 25)	I _{PK}	T _J =+25°C		=	2.2	-	Α

Note 24: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 25: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7809A)} \\ (\text{Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{J} < 125^{\circ}\text{C}, \text{ I}_{O} = 1\text{A}, \text{ V}_{I} = 15\text{V}, \text{ C}_{I} = 0.33 \mu\text{F}, \text{ C}_{O} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Output Voltage	Vo	$T_J = +25^{\circ}C$		8.82	9.0	9.16	V
		$I_O = 5$ mA to 1A, P_C) ≤ 15W, V _I = 11.2V to 24V	8.65	9.0	9.35	V
Line Regulation	Regline	V _I = 11.7V to 25V, I	I _O = 500mA	-	6.0	90.0	
(Note 26)		V _I = 12.5V to 19V		-	4.0	45.0	
		T _J = +25°C	V _I = 11.5V to 24V	-	6.0	90.0	mV
			V _I = 12.5V to 19V	-	2.0	45.0	
Load Regulation	Regload	$T_J = +25^{\circ}C, I_O = 5r$	mA to 1.0mA	-	12.0	100	
(Note 26)		I _O = 5mA to 1mA		-	12.0	100	mV
		I _O = 250mA to 750	mA	-	5.0	50.0	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		-	5.0	6.0	mA
Quiescent Current Change	$\Delta I_{\mathbf{Q}}$	I _O = 5mA to 1A		-	_	0.5	
		V _I = 12V to 25V, I _O = 500mA		-	_	0.8	mA
		V _I = 11.7V to 25V,	T _J = +25°C	-	_	0.8	
Output Voltage Drift (Note 27)	ΔV _O /ΔΤ	I _O = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH;	z, T _A = +25°C	-	10.0	-	μV/V _O
Ripple Rejection (Note 27)	RR	f = 120Hz, I _O = 500mA, V _I = 12V to 22V		-	62.0	-	dB
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°C		-	2.0	-	V
Output Resistance (Note 27)	rO	f = 1KHz		-	17.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	°C	-	250	-	mA
Peak Current (Note 27)	I _{PK}	T _J =+25°C		-	2.2	-	А

Note 26: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 27: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7810A)} \\ (\text{Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 1\text{A}, \text{ V}_{\text{I}} = 16\text{V}, \text{ C}_{\text{I}} = 0.33 \mu\text{F}, \text{ C}_{\text{O}} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Output Voltage	Vo	$T_J = +25^{\circ}C$		9.8	10.0	10.2	V
		$I_O = 5$ mA to 1A, P_C) ≤ 15W, V _I = 12.8V to 25V	9.6	10.0	10.4	V
Line Regulation	Regline	V _I = 12.8V to 26V,	I _O = 500mA	-	8.0	100	
(Note 28)		V _I = 13V to 20V		-	4.0	50.0	
		T _J = +25°C	V _I = 12.5V to 25V	_	8.0	100	mV
			V _I = 13V to 20V	-	3.0	50.0	
Load Regulation	Regload	$T_J = +25^{\circ}C, I_O = 5r$	mA to 1.5mA	-	12.0	100	
(Note 28)		I _O = 5mA to 1mA		-	12.0	100	mV
		I _O = 250mA to 750mA		-	5.0	50.0	
Quiescent Current	ΙQ	$T_J = +25^{\circ}C$		-	5.0	6.0	mA
Quiescent Current Change	ΔI_{Q}	$I_O = 5 \text{mA to 1A}$ $V_I = 12.8 \text{V to 25V}, I_O = 500 \text{mA}$		-	_	0.5	
				-	_	0.8	mA
		V _I = 13V to 26V, T _J	_J = +25°C	-	-	0.5	
Output Voltage Drift (Note 29)	$\Delta V_{O}/\Delta T$	I _O = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH;	z, T _A = +25°C	-	10.0	-	μV/V _O
Ripple Rejection (Note 29)	RR	f = 120Hz, I _O = 500	0mA, V _I = 14V to 24V	_	62.0	-	dB
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°C		-	2.0	-	V
Output Resistance (Note 29)	rO	f = 1KHz		-	17.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25°C		-	250	-	mA
Peak Current (Note 29)	I _{PK}	T _J =+25°C		-	2.2	-	Α

Note 28: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 29: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7812A)} \\ (\text{Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{J} < 125^{\circ}\text{C}, \text{ I}_{O} = 1\text{A}, \text{ V}_{I} = 19\text{V}, \text{ C}_{I} = 0.33 \mu\text{F}, \text{ C}_{O} = 0.1 \mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Output Voltage	Vo	$T_J = +25^{\circ}C$		11.75	12.0	12.25	V
		$I_O = 5$ mA to 1A, P_C	o ≤ 15W, V _I = 14.8V to 27V	11.5	12.0	12.5	V
Line Regulation	Regline	V _I = 14.8V to 30V,	I _O = 500mA	-	10.0	120	
(Note 30)		V _I = 16V to 22V		-	4.0	120	
		T _J = +25°C	V _I = 14.5V to 27V	_	10.0	120	mV
			V _I = 16V to 22V	-	3.0	60.0	1
Load Regulation	Regload	$T_J = +25^{\circ}C, I_O = 5r$	mA to 1.5mA	-	12.0	100	
(Note 30)		I _O = 5mA to 1mA		-	12.0	100	mV
		I _O = 250mA to 750mA		_	5.0	50.0	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		-	5.1	6.0	mA
Quiescent Current Change	$\Delta I_{\mathbf{Q}}$	I _O = 5mA to 1A		-	_	0.5	
		V _I = 14V to 27V, I _O = 500mA		_	_	0.8	mA
		V _I = 15V to 30V, T _J	_J = +25°C	_	-	0.8	1
Output Voltage Drift (Note 31)	ΔV _O /ΔΤ	I _O = 5mA		_	-1.0	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	_	10.0	-	μV/V _O
Ripple Rejection (Note 31)	RR	f = 120Hz, I _O = 500mA, V _I = 14V to 24V		_	60.0	-	dB
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°C		_	2.0	-	٧
Output Resistance (Note 31)	rO	f = 1KHz		-	18.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25°C		-	250	-	mA
Peak Current (Note 31)	I _{PK}	T _J =+25°C		_	2.2	-	Α

Note 30: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 31: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7815A)} \\ (\text{Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 1\text{A}, \text{ V}_{\text{I}} = 23\text{V}, \text{ C}_{\text{I}} = 0.33\mu\text{F}, \text{ C}_{\text{O}} = 0.1\mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Output Voltage	Vo	T _J = +25°C	$T_{J} = +25^{\circ}C$		15.0	15.3	V
		$I_O = 5$ mA to 1A, P_C	o ≤ 15W, V _I = 17.7V to 30V	14.4	15.0	15.6	ľ
Line Regulation	Regline	V _I = 17.4V to 30V,	I _O = 500mA	-	10.0	150	
(Note 32)		V _I = 20V to 26V		_	5.0	150] ,,
		T _J = +25°C	V _I = 17.5V to 30V	_	11.0	150	mV
			V _I = 20V to 26V	_	3.0	75.0	
Load Regulation	Regload	T _J = +25°C, I _O = 5r	mA to 1.5mA	_	12.0	100	
(Note 32)		I _O = 5mA to 1mA		_	12.0	100	mV
		I _O = 250mA to 750mA		_	5.0	50.0	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		_	5.2	6.0	mA
Quiescent Current Change	ΔI_{Q}	$I_O = 5mA$ to 1A $V_I = 17.5V$ to 30V, $I_O = 500mA$		_	-	0.5	
				_	-	0.8	mA
		$V_I = 17.5V \text{ to } 30V,$	T _J = +25°C	_	-	0.8	
Output Voltage Drift (Note 33)	$\Delta V_{O}/\Delta T$	I _O = 5mA		_	-1.0	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH	z, T _A = +25°C	_	10.0	-	μV/V _O
Ripple Rejection (Note 33)	RR	f = 120Hz, I _O = 500mA, V _I = 18.5V to 28.5V		_	58.0	-	dB
Dropout Voltage	V _{DROP}	I _O = 1A, T _J = +25°C		_	2.0	-	V
Output Resistance (Note 33)	rO	f = 1KHz		-	19.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25°C		-	250	-	mA
Peak Current (Note 33)	I _{PK}	T _J =+25°C		_	2.2	-	Α

Note 32: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 33: These parameters, although guaranteed, are not 100% tested in production.

 $\begin{tabular}{ll} \textbf{Electrical Characteristics (LM7818A)} \\ (\text{Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{J} < 125^{\circ}\text{C}, \ \text{I}_{O} = 1\text{A}, \ \text{V}_{I} = 27\text{V}, \ \text{C}_{I} = 0.33\mu\text{F}, \ \text{C}_{O} = 0.1\mu\text{F}, \ \text{unless otherwise specified)} \\ \end{tabular}$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Output Voltage	Vo	$T_J = +25^{\circ}C$		17.64	18.0	18.36	V
		$I_O = 5$ mA to 1A, P_C	o ≤ 15W, V _I = 21V to 33V	17.3	18.0	18.7	v
Line Regulation	Regline	V _I = 21V to 33V, I _O	= 500mA	-	15.0	180	
(Note 34)		V _I = 21V to 33V		-	5.0	180	mV
		T _J = +25°C	V _I = 20.6V to 33V	-	15.0	180	mv
			V _I = 24V to 30V	-	5.0	90.0	
Load Regulation	Regload	$T_J = +25^{\circ}C, I_O = 5r$	mA to 1.5mA	-	15.0	100	
(Note 34)		I _O = 5mA to 1mA		-	15.0	100	mV
		I _O = 250mA to 750	mA	-	7.0	50.0	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		-	5.2	6.0	mA
Quiescent Current Change	$\Delta I_{\mathbf{Q}}$	I _O = 5mA to 1A		-	-	0.5	
		V _I = 12V to 33V, I _O = 500mA		-	_	0.8	mA
		V _I = 12V to 33V, T _J	_J = +25°C	-	_	0.8	
Output Voltage Drift (Note 35)	ΔV _O /ΔΤ	I _O = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH;	z, T _A = +25°C	-	10.0	-	μV/V _O
Ripple Rejection (Note 35)	RR	f = 120Hz, I _O = 500	0mA, V _I = 22V to 32V	-	57.0	-	dB
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°C		-	2.0	-	٧
Output Resistance (Note 35)	rO	f = 1KHz		-	19.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25	°C	-	250	-	mA
Peak Current (Note 35)	I _{PK}	T _J =+25°C		_	2.2	-	А

Note 34: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 35: These parameters, although guaranteed, are not 100% tested in production.

 $\textbf{Electrical Characteristics (LM7824A)} \\ (\text{Refer to the test circuits. } 0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}, \text{ I}_{\text{O}} = 1\text{A}, \text{ V}_{\text{I}} = 33\text{V}, \text{ C}_{\text{I}} = 0.33\mu\text{F}, \text{ C}_{\text{O}} = 0.1\mu\text{F}, \text{ unless otherwise specified)} \\$

Parameter	Symbol	Conditions		Min	Тур	Max	Units
Output Voltage	Vo	$T_{J} = +25^{\circ}C$		23.5	24.0	24.5	V
		$I_O = 5$ mA to 1A, P_C) ≤ 15W, V _I = 27.3V to 38V	23.0	24.0	25.0	v
Line Regulation	Regline	V _I = 27V to 38V, I _O	= 500mA	-	18.0	240	
(Note 36)		V _I = 21V to 33V		-	6.0	240	.,
		T _J = +25°C	V _I = 26.7V to 38V	-	18.0	240	mV
			V _I = 30V to 36V	-	6.0	120	
Load Regulation	Regload	$T_J = +25^{\circ}C, I_O = 5r$	mA to 1.5mA	-	15.0	100	
(Note 36)		I _O = 5mA to 1mA		-	15.0	100	mV
		I _O = 250mA to 750mA		-	7.0	50.0	
Quiescent Current	IQ	$T_J = +25^{\circ}C$		-	5.2	6.0	mA
Quiescent Current Change	ΔI_{Q}	$I_O = 5mA$ to 1A $V_1 = 27.3V$ to 38V, $I_O = 500mA$		-	-	0.5	mA
				-	-	0.8	
		V _I = 27.3V to 38V,	T _J = +25°C	-	-	0.8	
Output Voltage Drift (Note 37)	$\Delta V_{O}/\Delta T$	I _O = 5mA		-	-1.5	-	mV/°C
Output Noise Voltage	V _N	f = 10Hz to 100KH;	z, T _A = +25°C	-	10.0	-	μV/V _O
Ripple Rejection (Note 37)	RR	f = 120Hz, I _O = 500mA, V _I = 28V to 38V		-	54.0	-	dB
Dropout Voltage	V_{DROP}	I _O = 1A, T _J = +25°C		-	2.0	-	V
Output Resistance (Note 37)	rO	f = 1KHz		-	20.0	-	mΩ
Short Circuit Current	I _{SC}	V _I = 35V, T _A = +25°C		-	250	-	mA
Peak Current (Note 37)	I _{PK}	T _J =+25°C		_	2.2	-	А

Note 36: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 37: These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

FIGURE 1. Quiescent Current

FIGURE 3. Output Voltage

FIGURE 2. Peak Output Current

FIGURE 4. Quiescent Current

Typical Applications

FIGURE 5. DC Parameters

FIGURE 6. Load Regulation

FIGURE 7. Ripple Rejection

FIGURE 8. Fixed Output Regulator

Typical Applications (continued)

$$I_{O} = \frac{V_{XX}}{R_{1}} + I_{Q}$$

FIGURE 9.

Note: To specify an output voltage, substitute voltage value for "XX". A common ground is required between the Input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.

Note: C_I is required if regulator is located an appreciable distance from the power supply filter.

Note: C_O improves stability and transient response.

$$\begin{split} I_{RI} &\geq 5 \ I_Q \\ V_O &= V_{XX} \left(1 \ R_2 / R_1 \right) + I_Q \ R_2 \end{split}$$

FIGURE 10. Circuit for Increasing Output Voltage

$$\begin{split} I_{RI} \geq 5 \ I_Q \\ V_O = V_{XX} \ (1 \ R_2 / R_1) + I_Q \ R_2 \end{split}$$

FIGURE 11. Adjustable Output Regulator (7V to 30V)

Typical Applications (continued)

FIGURE 12. High Current Voltage Regulator

FIGURE 13. High Output Current with Short Circuit Protection

FIGURE 14. Tracking Voltage Regulator

www.fairchildsemi.com

Typical Applications (continued)

FIGURE 15. Split Power Supply (±15V - 1A)

FIGURE 16. Negative Output Voltage Circuit

FIGURE 17. Switching Regulator

Physical Dimensions inches (millimeters) unless otherwise noted

TO-220

Package Number TO-220

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use

provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of terms

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.			