TỔNG QUAN:

- 1. Tất cả các bài tập đều có dữ liệu vào/ra ở tệp.
- 2. Phía sau tên của mỗi bài đều có quy định <tên bài>.* Trong đó tên bài là tên chung cho tên tệp chương trình, tệp input, tệp output, dấu * là CPP hoặc PAS với tên chương trình, INP với tệp input, OUT với tệp output.
 - 3. Có 4 bài, thời gian làm bài từ 13h40 đến 15h10.
 - 4. Chấm bài lúc 15h21, chỉ chấm duy nhất 1 lần.

LẬP TRÌNH GIẢI CÁC BÀI TOÁN SAU:

Bài 1: Mfriend (mfriend.*)

Có n thành phố được đánh số từ 1 đến n và n-1 con đường nối liền n thành phố. Bishu sống ở thành phố 1, anh ta có m người bạn sống ở các thành phố khác nhau (khác thành phố 1). Ngày chủ nhật Bishu muốn đi thăm 1 người bạn ở thành phố có khoảng cách gần anh ta nhất, nếu có nhiều người bạn có cùng khoảng cách gần nhất thì anh ta sẽ thăm người bạn ở thành phố có số thứ tự nhỏ nhất.

Biết rằng khoảng cách giữa hai thành phố u,v là số lượng con đường trên đường đi ngắn nhất từ u đến v.

Hãy giúp Bishu tìm ra số hiệu thành phố của người bạn có khoảng cách gần nhất.

Dữ liệu vào:

- + Dòng đầu tiên ghi số nguyên dương n ($1 \le n \le 1000$)
- +n-1 dòng tiếp theo mỗi dòng ghi 2 số u,v thể hiện có 1 con đường nối liền hai thành phố u,v ($1 \le u,v \le n$).
 - + Dòng tiếp theo ghi số nguyên $m \ (1 \le m \le n)$.
- + m dòng tiếp theo, mỗi dòng ghi 1 số nguyên x cho biết x là số hiệu thành phố có bạn của Bishu sống.

Kết quả: Một số nguyên duy nhất là kết quả của bài toán.

Ví dụ:

Input	Output
6	3
12	
13	
14	
2 5	
2 6	
4	
5	
6	
6 3 4	
4	

Bài 2: Circle Graph (Circleg.*)

Cho đồ thị có hướng gồm n đỉnh và m cung. Hãy cho biết trong đồ thị có chu trình hay không?

Dữ liêu vào:

- + Dòng đầu ghi số nguyên t là số bộ dữ liệu, tiếp theo là thông tin về t bộ dữ liệu, mỗi bộ bao gồm:
 - Dòng đầu ghi 2 số nguyên dương n và m cho biết số đỉnh và số cung của đồ thị.
 - m dòng tiếp theo mỗi dòng ghi 2 số u, v cho biết một cung của đồ thị

Kết quả: với mỗi bộ dữ liệu tương ứng trong input ghi số 0 nếu đồ thị không có chu trình, ngược lại ghi 1. Mỗi số được ghi trên một dòng

Giới hạn:

$$+1 \le t \le 5$$

 $+1 \le n \le 10^5$
 $+1 \le m \le 10^5$

Ví dụ:

Input	Output
2	0
3 2	1
1 2	
23	
2 2	
12	
2 1	

Bài 3: Browse Graph (browseg.*)

Cho đồ thị vô hướng liên thông gồm n đỉnh và n-1 cạnh, các đỉnh được đánh số từ 1 đến n. Hãy cho biết có bao nhiều cặp đỉnh u,v ($u\neq v$) trong đó đường đi ngắn nhất từ u đến v không chứa đỉnh y sau đỉnh x. Giả sử đường đi ngắn nhất từ u đến v là $u \to v_1 \to v_2 \to x \to v_3 \to v_4 \to \cdots \to v_k \to v$ thì đường đi $v_3 \to v_4 \to \cdots \to v_k \to v$ không được chứa y.

Dữ liệu vào:

+ Dòng đầu tiên ghi 3 số nguyên dương n, x, y.

+ n - 1 dòng tiếp theo, mỗi dòng ghi 2 số u, v là một cạnh trọng đồ thị.

Kết quả: một số nguyên duy nhất cho biết số lượng cặp đỉnh tìm được.

Giới han:

 $1 \le n \le 300000$

 $1 \le x, y \le n$

Ví dụ:

Input	output
3 1 3	5
1 2	
2 3	

Các cặp đỉnh tìm được là: (1,2); (2,1); (2,3); (3,2); (3,1)

Bài 4: Words And Trees (wat.*)

Cho một cây có n nút, các nút được đánh số từ 1 đến n, nút 1 là nút gốc của cây. Mỗi nút trên cây có giá trị là 1 chữ cái tiếng anh in thường. Có q truy vấn, mỗi truy vấn dạng:

x s: trong đó x là gốc cây con và s là một xâu.

Với mỗi truy vấn, gọi t là xâu được xây dựng bằng cách lấy tất cả các ký tự trong cây con gốc x, mỗi nút được lấy chính xác 1 lần. Yêu cầu tính số lượng ký tự nhỏ nhất thêm vào xâu t để từ t xây dựng được xâu s.

Dữ liệu vào:

- + Dòng đầu tiên ghi 2 số nguyên n, q.
- + Dòng thứ 2 ghi n ký tự chữ cái in thường, trong đó ký tự thứ $i(i=1\dots n)$ là giá trị của nút thứ i trên cây, các chữ cái cách nhau 1 dấu cách.
 - + n 1 dòng tiếp theo, mỗi dòng ghi 2 số nguyên x, y cho biết một cạnh trên cây.
 - + Tiếp theo là q dòng, mỗi dòng là 1 truy vấn dạng u, s.

Kết quả: ghi trên q dòng, mỗi dòng một số nguyên là câu trả lời cho truy vấn tương ứng trong input.

Giới han:

$$+2 \le n \le 10^{5}$$

 $+1 \le q \le 10^{5}$
 $+1 \le u, v \le n; u \ne v$
 $+1 \le x \le n$

Tổng độ dài của các xâu trong truy vấn không vượt quá $10^6\,$

Ví du:

Input	Output
83	6
ovslvpdi	7
13	2
8 3	
48	
6 1	
5 3	
7 6	
2 3	
7 ifwrxl	
4 eyljywnm	
3 llvse	

Bài 5: firework (firework.*)

Bạn được cho một lưới hình vuông có kích thước $n \times n$, các hàng và các cột được đánh số từ 1 đến n. Giao giữa hàng i cột j được gọi là \hat{o} (i,j). Trên \hat{o} (i,j) có thể là pháo hoa hoặc \hat{o} trống. Nếu pháo hoa ở \hat{o} (i,j) nổ nó sẽ phá hủy \hat{o} (i,j) và các \hat{o} trống được kết nối với \hat{o} (i,j). Hai \hat{o} được được gọi là kết nối với nhau nếu chúng liền kề nhau (chung cạnh) hoặc kết nối qua \hat{o} số \hat{o} khác.

Hãy tính tổng số lượng các ô bị phá hủy nếu tất cả các ô pháo hoa đều nổ độc lập nhau.

Dữ liệu vào:

- + Dòng đầu ghi số nguyên dương n
- + n dòng tiếp theo ghi thông tin về lưới ô vuông trong đó ô (i,j) ghi ký tự '*' nếu ô đó có pháo hoa, ghi ký tự '.' nếu đó là ô trống.

 ${\it K\'et}$ quả: Một số nguyên duy nhất là tổng số ô bị phá hủy.

Ví dụ:

Input	Output
4	66
* *	
.*.	
* *	
* *	