Lista Ejercicios Análisis Matemático IV

Cristo Daniel Alvarado

20 de junio de 2024

Índice general

1. Lista 4 2

Capítulo 1

Lista 4

Ejercicio 1.0.1

Haga lo siguiente:

i. Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Defina $P : \mathbb{R}^n \to \mathbb{R}$ como:

$$P(x_1, ..., x_n) = e^{-\sum_{k=1}^n |x_k|}, \quad \forall x \in \mathbb{R}^n$$

Fije $\nu \in \mathbb{N}$, **demuestre** la fórmula:

$$\int_{\mathbb{R}^n} \mathcal{F}f(x) P\left(\frac{x}{\nu}\right) dx = (2\nu)^n \int_{\mathbb{R}^n} \frac{f(x_1, ..., x_n)}{(1 + \nu^2 x_1^2) \cdots (1 + \nu^2 x_n^2)} dx_1 \cdots dx_n$$

ii. **Deduzca** que si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C}) \cap \mathcal{L}_{\infty}(\mathbb{R}^n, \mathbb{C})$ y $\mathcal{F}f \geqslant 0$, entonces $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Sugerencia. Aplique el teorema de Beppo-Levi.

Demostración:

De (i): Defina $g(x) = P\left(\frac{x}{\nu}\right)$, para todo $x \in \mathbb{R}^n$. Veamos que $g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. En efecto, se tiene que

$$\int_{\mathbb{R}^{n}} g(x) dx = \int_{\mathbb{R}^{n}} P\left(\frac{x}{\nu}\right) dx$$

$$= \int_{\mathbb{R}^{n}} P\left(\frac{x_{1}}{\nu}, ..., \frac{x_{1}}{\nu}\right) dx_{1} \cdots dx_{n}$$

$$= \int_{\mathbb{R}^{n}} e^{-\sum_{k=1}^{n} \left|\frac{x_{k}}{\nu}\right|} dx_{1} \cdots dx_{n}$$

$$= \int_{\mathbb{R}^{n}} e^{-\frac{1}{\nu} \sum_{k=1}^{n} |x_{k}|} dx_{1} \cdots dx_{n}$$

$$= \int_{\mathbb{R}^{n}} e^{-\frac{|x_{1}|}{\nu}} \cdot ... \cdot e^{-\frac{|x_{n}|}{\nu}} dx_{1} \cdots dx_{n}$$

$$= \underbrace{\left(\int_{\mathbb{R}} e^{-\frac{|x_{1}|}{\nu}} dx_{1}\right) \cdots \left(\int_{\mathbb{R}} e^{-\frac{|x_{n}|}{\nu}} dx_{n}\right)}_{n \text{-veces}}$$

$$= \left(\int_{\mathbb{R}} e^{-\frac{|t|}{\nu}} dt\right)^{n}$$

$$< \infty$$

Usando Fubini para funciones medibles no negativas. Por tanto, por el Teorema de transferencia se sigue que

$$\int_{\mathbb{R}^n} \mathcal{F}f(x)P\left(\frac{x}{\nu}\right) dx = \int_{\mathbb{R}^n} \mathcal{F}f(x)g(x) dx$$
$$= \int_{\mathbb{R}^n} f(x)\mathcal{F}g(x) dx$$

Calculemos $\mathcal{F}g(x)$. Como $g(x)=P\left(\frac{x}{\nu}\right)$ para todo $x\in\mathbb{R}^n$, entonces

$$\mathcal{F}g(x) = \nu^n \mathcal{F}P(\nu x)$$

(por una proposición), donde

$$\mathcal{F}P(x) = \int_{\mathbb{R}^{n}} e^{-i\langle x|y\rangle} P(y) \, dy$$

$$= \int_{\mathbb{R}^{n}} e^{-i\sum_{k=1}^{n} x_{k}y_{k}} e^{-\sum_{k=1}^{n} |y_{k}|} \, dy$$

$$= \int_{\mathbb{R}^{n}} e^{-\sum_{k=1}^{n} (|y_{k}| + ix_{k}y_{k})} \, dy$$

$$= \int_{\mathbb{R}^{n}} e^{-|y_{1}| - ix_{1}y_{1}} \cdot \dots \cdot e^{-|y_{n}| - ix_{n}y_{n}} \, dy_{1} \cdot \dots \cdot dy_{n}$$

$$= \underbrace{\left(\int_{-\infty}^{\infty} e^{-|y_{1}| - ix_{1}y_{1}} \, dy_{1}\right) \cdot \dots \left(\int_{-\infty}^{\infty} e^{-|y_{n}| - ix_{n}y_{n}} \, dy_{n}\right)}_{n\text{-veces}}$$

$$= \underbrace{\left(\int_{-\infty}^{\infty} e^{-|t| - ix_{1}t} \, dt\right) \cdot \dots \left(\int_{-\infty}^{\infty} e^{-|t| - ix_{n}t} \, dt\right)}_{n\text{-veces}}$$

$$= \mathcal{F}h(x_{1}) \cdot \dots \mathcal{F}h(x_{n})$$

donde $h: \mathbb{R} \to \mathbb{R}$ es la función tal que $t \mapsto e^{-|t|}$ y, se sabe que

$$\mathcal{F}h(x) = \frac{2}{1+x^2}$$

Por tanto,

$$\mathcal{F}P(x) = \frac{2^n}{(1 + x_1^2) \cdots (1 + x_n^2)}$$

$$\Rightarrow \mathcal{F}P(\nu x) = \frac{2^n}{(1 + \nu^2 x_1^2) \cdots (1 + \nu^2 x_n^2)}$$

Se sigue que

$$\int_{\mathbb{R}^{n}} \mathcal{F}f(x) P\left(\frac{x}{\nu}\right) dx = \nu^{n} \int_{\mathbb{R}^{n}} f(x) \mathcal{F}P(\nu x) dx
= \nu^{n} \int_{\mathbb{R}^{n}} \frac{2^{n} f(x_{1}, ..., x_{n})}{(1 + \nu^{2} x_{1}^{2}) \cdots (1 + \nu^{2} x_{n}^{2})} dx_{1} \cdots dx_{n}
= (2\nu)^{n} \int_{\mathbb{R}^{n}} \frac{f(x_{1}, ..., x_{n})}{(1 + \nu^{2} x_{1}^{2}) \cdots (1 + \nu^{2} x_{n}^{2})} dx_{1} \cdots dx_{n}$$

De (ii): Para cada $\nu \in \mathbb{N}$ defina la función $g_{\nu} : \mathbb{R}^n \to \mathbb{C}$ como sigue:

$$g_{\nu}(x) = \mathcal{F}f(x)P\left(\frac{x}{\nu}\right), \quad \forall x \in \mathbb{R}^n$$

Esta es una sucesión creciente de funciones en $\mathcal{L}_1(\mathbb{R}^n,\mathbb{C})$, pues si $\nu \in \mathbb{N}$:

$$\frac{1}{\nu+1} \sum_{k=1}^{n} |x_k| \leqslant \frac{1}{\nu} \sum_{k=1}^{n} |x_k|, \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow -\frac{1}{\nu} \sum_{k=1}^{n} |x_k| \leqslant -\frac{1}{\nu+1} \sum_{k=1}^{n} |x_k|, \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow e^{\frac{1}{\nu} \sum_{k=1}^{n} |x_k|} \leqslant e^{-\frac{1}{\nu+1} \sum_{k=1}^{n} |x_k|}, \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow P\left(\frac{x}{\nu}\right) \leqslant P\left(\frac{x}{\nu+1}\right), \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow \mathcal{F}f(x) P\left(\frac{x}{\nu}\right) \leqslant \mathcal{F}f(x) P\left(\frac{x}{\nu+1}\right), \quad \forall x \in \mathbb{R}^n$$

$$\Rightarrow g_{\nu} \leqslant g_{\nu+1}$$

pues, $\mathcal{F}f \geqslant 0$. Además, como $f \in \mathcal{L}_{\infty}(\mathbb{R}^n, \mathbb{C})$, entonces

$$f \leqslant \mathcal{N}_{\infty}(f)$$
 c.t.p. en \mathbb{R}^n

luego,

$$\int_{\mathbb{R}^n} g_{\nu}(x) dx = \int_{\mathbb{R}^n} \mathcal{F}f(x) P\left(\frac{x}{\nu}\right) dx$$
$$= (2\nu)^n \int_{\mathbb{R}^n} \frac{f(x_1, ..., x_n)}{(1 + \nu^2 x_1^2) \cdots (1 + \nu^2 x_n^2)} dx_1 \cdots dx_n$$

Hagamos el cambio de variable $(y_1,...,y_n)=(\frac{x_1}{\nu},...,\frac{x_n}{\nu})$, se tiene que

$$(2\nu)^{n} \int_{\mathbb{R}^{n}} \frac{f(x_{1}, ..., x_{n})}{(1 + \nu^{2}x_{1}^{2}) \cdots (1 + \nu^{2}x_{n}^{2})} dx_{1} \cdots dx_{n} = (2\nu)^{n} \int_{\mathbb{R}^{n}} \frac{f(\nu y_{1}, ..., \nu y_{n})}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})} \frac{dy_{1} \cdots dy_{n}}{\nu^{n}}$$

$$= 2^{n} \int_{\mathbb{R}^{n}} \frac{f(\nu y_{1}, ..., \nu y_{n})}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})} dy_{1} \cdots dy_{n}$$

$$= 2^{n} \int_{\mathbb{R}^{n}} \frac{\mathcal{N}_{\infty}(f)}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})} dy_{1} \cdots dy_{n}$$

$$= 2^{n} \mathcal{N}_{\infty}(f) \int_{\mathbb{R}^{n}} \frac{dy_{1} \cdots dy_{n}}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})}$$

$$\Rightarrow \left| \int_{\mathbb{R}^{n}} g_{\nu}(x) \right| = 2^{n} \mathcal{N}_{\infty}(f) \int_{\mathbb{R}^{n}} \frac{dy_{1} \cdots dy_{n}}{(1 + y_{1}^{2}) \cdots (1 + y_{n}^{2})}$$

pues $\int_{\mathbb{R}^n} \frac{dy_1 \cdots dy_n}{(1+y_1^2)\cdots(1+y_n^2)} < \infty$ y $\int_{\mathbb{R}^n} g_{\nu}(x) \ge 0$. Por tanto, por Beppo-Levi se sigue que existe una función $g \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$ tal que

$$\lim_{\nu \to \infty} g_{\nu} = g$$
 c.t.p. en \mathbb{R}^n

Pero, también se tiene que

$$\lim_{\nu \to \infty} g_{\nu}(x) = \lim_{\nu \to \infty} \mathcal{F}f(x) P\left(\frac{x}{\nu}\right)$$

$$= \mathcal{F}f(x) \lim_{\nu \to \infty} P\left(\frac{x}{\nu}\right)$$

$$= \mathcal{F}f(x) P\left(0, ..., 0\right)$$

$$= \mathcal{F}f(x), \quad \forall x \in \mathbb{R}^{n}$$

Entonces $\mathcal{F}f = g$ c.t.p. en \mathbb{R}^n , luego $\mathcal{F}f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Más aún,

$$\int_{\mathbb{R}^n} \mathcal{F}f(x) dx = \lim_{\nu \to \infty} 2^n \mathcal{N}_{\infty}(f) \int_{\mathbb{R}^n} \frac{dy_1 \cdots dy_n}{(1 + y_1^2) \cdots (1 + y_n^2)}$$
$$= 2^n \mathcal{N}_{\infty}(f) \int_{\mathbb{R}^n} \frac{dy_1 \cdots dy_n}{(1 + y_1^2) \cdots (1 + y_n^2)}$$

Ejercicio 1.0.2 (Problema 2 Lista 6 Análisis Matemático II)

Pruebe que si $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$, entonces

$$\left| \int_{\mathbb{R}^n} f \right| = \int_{\mathbb{R}^n} |f|$$

si y sólo si existe $\alpha \in \mathbb{R}$ fijo tal que $f = e^{i\alpha} |f|$ c.t.p. en \mathbb{R}^n .

Sugerencia. Suponiendo que $\left|\int_{\mathbb{R}^n} f\right| = \int_{\mathbb{R}^n} |f|$, existe $\alpha \in \mathbb{R}$ tal que $\int_{\mathbb{R}^n} f = e^{i\alpha} \int_{\mathbb{R}^n} |f|$. Escriba

$$e^{-i\alpha}f = g + ih$$

donde g y h son funciones reales.

Demostración:

Ejercicio 1.0.3

Sea $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C})$. Se supone que f(x) > 0, para todo $x \in \mathbb{R}^n$. **Pruebe** que si $x \neq 0$, entonces

$$\mathcal{F}f(0) > |\mathcal{F}f(x)|$$

Sugerencia. Una vez que ha demostrado $|\mathcal{F}f(x)| \leq \mathcal{F}f(0)$, para todo $x \in \mathbb{R}^n$, Para demostrar la desigualdad estricta para $x \neq 0$ proceda por reducción al absurdo y use el Problema 2 de la Lista 6 de Análisis Matemático II.

Demostración:

Notemos que como f(x) > 0 para todo $x \in \mathbb{R}$, se tiene en particular que $f : \mathbb{R}^n \to \mathbb{R}$.

Sea $x \in \mathbb{R}^n$. Primero probaremos que

$$\mathcal{F}f(0) \geqslant |\mathcal{F}f(x)|$$

es decir:

$$\int_{\mathbb{R}^n} e^{-i\langle 0|y\rangle} f(y) \, dy \geqslant \left| \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy \right|$$

$$\iff \int_{\mathbb{R}^n} f(y) \, dy \geqslant \left| \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy \right|$$

$$\iff \int_{\mathbb{R}^n} |f(y)| \, dy \geqslant \left| \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy \right|$$

pues f(x) > 0 para todo $x \in \mathbb{R}^n$. Veamos que

$$\left| \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy \right| \leqslant \int_{\mathbb{R}^n} \left| e^{-i\langle x|y\rangle} f(y) \right| \, dy$$

$$= \int_{\mathbb{R}^n} \left| e^{-i\langle x|y\rangle} \right| |f(y)| \, dy$$

$$= \int_{\mathbb{R}^n} |f(y)| \, dy$$
(1.1)

lo que prueba el resultado. Para la desigualdad estricta suponga que existe $x \in \mathbb{R}^n$ no cero tal que

$$\mathcal{F}f(x) = \mathcal{F}f(0)$$

esto es

$$\left| \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy \right| = \int_{\mathbb{R}^n} f(y) \, dy$$
$$= \int_{\mathbb{R}^n} |f(y)| \, dy$$
$$= \int_{\mathbb{R}^n} \left| e^{-i\langle x|y\rangle} f(y) \right| \, dy$$

Por el ejercicio anterior existe $\alpha \in \mathbb{R}$ fijo tal que

$$e^{-i\langle x|y\rangle}f(y) = e^{i\alpha}|f(y)| = e^{i\alpha}f(y)$$

para casi todo $y \in \mathbb{R}^n$. En particular, tenemos que

$$f(y)\left(e^{-i\langle x|y\rangle} - e^{i\alpha}\right) = 0$$

para casi todo $y \in \mathbb{R}^n$. Como f(y) > 0 para todo $y \in \mathbb{R}^n$, entonces

$$e^{-i\langle x|y\rangle} - e^{i\alpha} = 0$$

nuevamente para casi todo $y \in \mathbb{R}^n$. Como las dos funciones involucradas son continuas y coinciden c.t.p. en \mathbb{R}^n , debe tenerse pues que

$$e^{-i\langle x|y\rangle} = e^{i\alpha}, \quad \forall y \in \mathbb{R}^n$$

lo cual ocurre si y sólo si

$$e^{i(\langle x|y\rangle + \alpha)} = 1, \quad \forall y \in \mathbb{R}^n$$

es decir que

$$\langle x|y\rangle + \alpha = 0, \quad \forall y \in \mathbb{R}^n$$

como $x \neq 0$ en particular se tiene que

$$\langle x|x\rangle = -\alpha$$

y, además (tomando y = 2x):

$$2\langle x|x\rangle = -\alpha$$

pero esto sólo puede suceder si $\langle x|x\rangle = 0$, es decir que $x = 0\#_c$. Luego entonces

$$|\mathcal{F}f(x)| < \mathcal{F}f(0)$$

Ejercicio 1.0.4

Haga lo siguiente:

i. Sean a > 0 y $\lambda \in \mathbb{R}$. **Pruebe** que la función $x \mapsto (\cos \lambda x)/(x^2 + a^2)$ es integrable en $[0, \infty[$. **Muestre** que si $\lambda \neq 0$, la función $x \mapsto (x \sin \lambda x)/(x^2 + a^2)$ no es integrable en $[0, \infty[$, pero existe la integral impropia

$$\int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} \, dx$$

Sugerencia. Muestre que

$$\left| \frac{x \sin \lambda x}{x^2 + a^2} \right| \underset{x \to \infty}{\sim} \left| \frac{\sin \lambda x}{x} \right|$$

Para probar la existencia de la integral impropia use los criterios de Abel.

ii. Recuerde que la función $x \mapsto (2a)/(x^2 + a^2)$ es la transformada de Fourier de la función $x \mapsto e^{-a|x|}$. Usando el teorema de inversión de Fourier, **demuestre** que

$$\int_0^\infty \frac{\cos \lambda x}{x^2 + a^2} \, dx = \frac{\pi}{2a} e^{-a|\lambda|}$$

iii. Usando el inciso (ii), calcule la integral impropia

$$\int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} \, dx$$

Sugerencia. Para $\lambda \neq 0$ defina

$$\Phi(\lambda) = \int_0^{-\infty} \frac{\cos \lambda x}{x^2 + a^2} \, dx$$

Calcule $\Phi'(\lambda)$ primero suponiendo $\lambda > \lambda_0$, donde $\lambda_0 > 0$ es arbitrario fijo, de forma análoga para $\lambda < 0$ y finalmente para $\lambda = 0$.

Demostración:

De (i): Para todo $x \in \mathbb{R}^n$ defina

$$f(x) = \frac{\cos \lambda x}{x^2 + a^2}$$

Afirmamos que f es integrable en $[0, \infty[$. Para ello, veamos que

$$\int_0^\infty |f| = \int_0^\infty \frac{|\cos \lambda x|}{x^2 + a^2} \, dx$$

$$\leqslant \int_0^\infty \frac{dx}{x^2 + a^2}$$

donde la función de la derecha es integrable en tal invervalo. Por tanto, $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{R})$.

Sea ahora $\lambda \in \mathbb{R}$ tal que $\lambda \neq 0$. Afirmamos que la función

$$g(x) = \frac{x \sin \lambda x}{x^2 + a^2}$$

para todo $x \in \mathbb{R}$ no es integrable en $[0, \infty[$. En efecto, veamos que

$$\lim_{x \to \infty} \frac{\left| \frac{x \sin \lambda x}{x^2 + a^2} \right|}{\left| \frac{\sin \lambda x}{x} \right|} = \lim_{x \to \infty} \left| \frac{x^2}{x^2 + a^2} \right|$$

$$= \lim_{x \to \infty} \left| \frac{1}{1 + \frac{a^2}{x^2}} \right|$$

$$= \frac{1}{1 + 0}$$

$$= 1$$

por tanto,

$$\left| \frac{x \sin \lambda x}{x^2 + a^2} \right| \underset{x \to \infty}{\sim} \left| \frac{\sin \lambda x}{x} \right|$$

Luego entonces, por la proposición 8.53 Análisis Matemático II:

$$\left| \frac{\sin \lambda x}{x} \right| \underset{x \to \infty}{=} O\left(\left| \frac{x \sin \lambda x}{x^2 + a^2} \right| \right)$$

donde la función $x \mapsto \left|\frac{\sin \lambda x}{x}\right|$ no es integrable en $[0, \infty[$, luego tampoco puede serlo g (siendo que ambas funciones son integrables en todo subconjunto acotado de \mathbb{R}).

Veamos que si existe la integral impropia

$$\int_0^{+\infty} \frac{x \sin \lambda x}{x^2 + a^2}$$

En efecto, defina para cada $x \in [0, \infty[$ las funciones:

$$G(x) = \int_0^x \sin \lambda x \, dx \quad \text{y} \quad f(x) = \frac{x}{x^2 + a^2}$$

se tienen dos cosas:

- $\lim_{x\to\infty} f(x) = 0$ (es claro de la definición de f).
- G es una función acotada en $[0, \infty[$, pues para cada $x \in [0, \infty[$:

$$\begin{aligned} |G(x)| &= \left| \int_0^x \sin \lambda x \, dx \right|, \text{ haciendo el cambio de variable } u = \lambda x \\ &= \left| \frac{1}{\lambda} \cdot \int_0^{\lambda x} \sin u \, du \right| \\ &= \left| \frac{1}{\lambda} \cdot \left[-\cos u \right|_0^{\lambda x} \right] \right| \\ &= \left| \frac{1}{\lambda} \cdot \left[-\cos \lambda x + \cos 0 \right] \right| \\ &\leqslant \frac{2}{|\lambda|} \end{aligned}$$

Por tanto, del primer criterio de Abel se sigue que la integral impropia

$$\int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2}$$

es convergente.

De (ii): Sea $h: \mathbb{R} \to \mathbb{R}$ la función dada por

$$h(x) = e^{-a|x|}, \quad \forall x \in \mathbb{R}$$

se sabe por un ejercicio de las notas que

$$\mathcal{F}h(x) = \frac{2a}{x^2 + a^2}$$

la función h cumple la condición de Dini en todo punto $\lambda \in \mathbb{R} \neq 0$ (también lo hace en cero, pero no es relevante), por lo cual se tiene que

$$h(\lambda) = \lim_{R \to \infty} \frac{1}{2\pi} \int_{-R}^{R} e^{i\lambda x} \mathcal{F}h(x) dx$$

es decir,

$$\begin{split} e^{-a|\lambda|} &= \lim_{R \to \infty} \frac{1}{2\pi} \int_{-R}^{R} e^{i\lambda x} \mathcal{F} h(x) \, dx \\ &= \frac{2a}{2\pi} \lim_{R \to \infty} \left[\int_{-R}^{R} \frac{\cos \lambda x}{x^2 + a^2} \, dx + i \int_{-R}^{R} \frac{\sin \lambda x}{x^2 + a^2} \, dx \right] \\ &= \frac{a}{\pi} \lim_{R \to \infty} \left[\int_{-R}^{0} \frac{\cos \lambda x}{x^2 + a^2} \, dx + \int_{0}^{R} \frac{\cos \lambda x}{x^2 + a^2} \, dx + i \int_{-R}^{0} \frac{\sin \lambda x}{x^2 + a^2} \, dx + i \int_{0}^{R} \frac{\sin \lambda x}{x^2 + a^2} \, dx \right] \\ &= \frac{a}{\pi} \lim_{R \to \infty} \left[\int_{0}^{R} \frac{\cos \lambda x}{x^2 + a^2} \, dx + \int_{0}^{R} \frac{\cos \lambda x}{x^2 + a^2} \, dx - i \int_{0}^{R} \frac{\sin \lambda x}{x^2 + a^2} \, dx + i \int_{0}^{R} \frac{\sin \lambda x}{x^2 + a^2} \, dx \right] \\ &= \frac{2a}{\pi} \lim_{R \to \infty} \int_{0}^{R} \frac{\cos \lambda x}{x^2 + a^2} \, dx \\ &= \frac{2a}{\pi} \int_{0}^{+\infty} \frac{\cos \lambda x}{x^2 + a^2} \, dx \end{split}$$

pero, de (i) se sabe que $x \mapsto \frac{\cos \lambda x}{x^2 + a^2}$ es integrable en $[0, \infty[$, por tanto coincide su valor con el de la integral impropia, así:

$$e^{-a|\lambda|} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{x^2 + a^2} dx$$
$$\Rightarrow \int_0^\infty \frac{\cos \lambda x}{x^2 + a^2} dx = \frac{\pi}{2a} e^{-a|\lambda|}$$

De (iii): Por la parte anterior, para todo $\lambda \in \mathbb{R} \setminus \{0\}$ tiene que

$$\Phi(\lambda) = \int_0^\infty \frac{\cos \lambda x}{x^2 + a^2} \, dx = \frac{\pi}{2a} e^{-a|\lambda|} = \frac{\pi}{2a} e^{-a|\lambda|}$$

Si todo funciona bien, por el Teorema de derivación para funciones definidas por integrales impropias, se tendría para $\lambda > 0$:

$$-\int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} dx = \Phi'(\lambda)$$

$$= -\frac{\pi}{2} e^{-a\lambda}$$

$$= -\frac{\pi}{2} e^{-a|\lambda|}$$

$$\Rightarrow \int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} dx = \frac{\pi}{2} e^{-a|\lambda|}$$

y, para $\lambda < 0$:

$$-\int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} dx = \Phi'(\lambda)$$

$$= \frac{d}{d\lambda} \left(\frac{\pi}{2a} e^{-a(-\lambda)} \right)$$

$$= \frac{\pi}{2} e^{a\lambda}$$

$$= \frac{\pi}{2} e^{-a|\lambda|}$$

$$\Rightarrow \int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} dx = -\frac{\pi}{2} e^{-a|\lambda|}$$

es decir que

$$\int_0^{-\infty} \frac{x \sin \lambda x}{x^2 + a^2} dx = \operatorname{Sgn}(\lambda) \cdot \frac{\pi}{2} e^{-a|\lambda|}$$

Ejercicio 1.0.5

Sea H una matriz simétrica real $n \times n$ positiva definida, es decir, la forma cuadrática $\langle x|Hx\rangle$ sobre \mathbb{R}^n es positiva definida. Sea $f:\mathbb{R}^n\to\mathbb{R}$ la función

$$f(x) = e^{-\langle Hx|x\rangle}, \quad \forall x \in \mathbb{R}^n$$

Demuestre que f es integrable y que

$$\mathcal{F}f(x) = \frac{\pi^{n/2}}{(\det H)^{1/2}} e^{-\frac{1}{4}\langle H^{-1}x|x\rangle}, \quad \forall x \in \mathbb{R}^n$$

Sugerencia. f es medible. Para ver que es integrable, pruebe que $\langle Hx|x\rangle\geqslant m\|x\|^2$, donde

$$m = \min_{x \in S} \left\{ \langle Hx | x \rangle \right\} > 0$$

con $S = \left\{x \in \mathbb{R}^n \middle| \|x\| = 1\right\}$. Se sabe de álgebra que existe una matriz ortogonal U tal que $U^{-1}HU = \mathrm{Diag}\left(\lambda_1,...,\lambda_n\right)$, donde $\lambda_1,...,\lambda_n$ son números estrictamente positivos. En la integral $\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} e^{-\langle Hy|y\rangle} \,dy$ haga el cambio de variable y = Uz siendo tal que $|\det U| = 1$, $\langle Ur|Us\rangle = \langle r|s\rangle$ (y lo análogo para U^{-1}) y observe que $(1/\lambda_1,...,1/\lambda_n) = U^{-1}H^{-1}U$.

Demostración:

Veamos que f es medible (más aún, es continua). En efecto, considere la matriz H dada por

$$H = \begin{bmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,n-1} & h_{1,n} \\ h_{2,1} & h_{2,2} & \dots & h_{2,n-1} & h_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ h_{n,1} & h_{n,2} & \dots & h_{n,n-1} & h_{n,n} \end{bmatrix}$$

Se tiene entonces que para cada $x=(x_1,...,x_n)\in\mathbb{R}^n$:

$$\langle Hx|x\rangle = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \sum_{k=1}^n y_k x_k$$

donde

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} & \dots & h_{1,n-1} & h_{1,n} \\ h_{2,1} & h_{2,2} & \dots & h_{2,n-1} & h_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ h_{n,1} & h_{n,2} & \dots & h_{n,n-1} & h_{n,n} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

es decir que

$$y_k = \sum_{i=1}^n h_{k,i} x_i$$

Por tanto,

$$\langle Hx|x\rangle = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} h_{k,i} x_i\right) x_k$$
$$= \sum_{k=1}^{n} \sum_{i=1}^{n} x_k x_i h_{k,i}$$

siendo la aplicación $x \mapsto \langle Hx|x \rangle$ una aplicación polinomial de *n*-variables, luego es continua. Así, la composición con $t \mapsto e^{-t}$ es continua, es decir que la función f es continua en \mathbb{R}^n , luego medible.

Ahora, sea ahora

$$m = \inf_{x \in S} \left\{ \langle Hx | x \rangle \right\}$$

donde $S = \{x \in \mathbb{R}^n | ||x|| = 1\}$. Afirmamos que m > 0. En el caso que m = 0, como la función $x \mapsto \langle Hx|x \rangle$ es continua de \mathbb{R}^n en \mathbb{R} , se tendría que alcanzaría su máximo y mínimo en el compacto S, luego existiría $x_0 \in S$ tal que

$$\langle Hx_0|x_0\rangle = 0$$

lo cual contradeciría el hecho de que H es positiva definida. Por tanto, m > 0. Más aún,

$$m = \inf_{x \in S} \{ \langle Hx | x \rangle \} = \min_{x \in S} \{ \langle Hx | x \rangle \}$$

Sea $x \in \mathbb{R}^n$ no cero, se tiene que

$$\langle Hx|x\rangle = \langle H\left(\|x\| \cdot \frac{x}{\|x\|}\right) |\|x\| \cdot \frac{x}{\|x\|}\rangle$$

$$= \|x\|^2 \langle H\left(\frac{x}{\|x\|}\right) |\frac{x}{\|x\|}\rangle$$

$$\geqslant m\|x\|^2$$

$$\Rightarrow -\langle Hx|x\rangle \leqslant -m\|x\|^2$$

Considere la función $x \mapsto e^{-m\|x\|^2}$ de \mathbb{R}^n en \mathbb{R} . Se tiene que

$$0 \leqslant f(x) = e^{-m\langle Hx|x\rangle} \leqslant e^{-m\|x\|^2}, \quad \forall x \in \mathbb{R}^n$$

siendo $x \mapsto e^{-m||x||^2}$ intergable en \mathbb{R}^n , luego f lo es en \mathbb{R}^n . Así, la transformada de Fourier $\mathcal{F}f$ está definida en todo \mathbb{R}^n .

Sea $x \in \mathbb{R}^n$, entonces

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} f(y) \, dy$$
$$= \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} \cdot e^{-\langle Hy|y\rangle} \, dy$$

Se sabe por un resultado de álgebra lineal que existen una matriz D $n \times n$ diagonal con entradas en la diagonal positivas, y una matriz ortogonal U (también $n \times n$) con $|\det U| = 1$ tal que

$$U^{-1}HU = D \Rightarrow HU = UD$$

siendo

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

Hagáse el cambio de variable y = Uz, se tiene en la integral anterior que

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} e^{-i\langle x|y\rangle} \cdot e^{-\langle Hy|y\rangle} \, dy$$

$$= \int_{\mathbb{R}^n} e^{-i\langle x|Uz\rangle} \cdot e^{-\langle HUz|Uz\rangle} \, dz$$

$$= \int_{\mathbb{R}^n} e^{-i\langle x|Uz\rangle} \cdot e^{-\langle UDz|Uz\rangle} \, dz$$

$$= \int_{\mathbb{R}^n} e^{-i\langle x|Uz\rangle} \cdot e^{-\langle Dz|z\rangle} \, dz$$

$$= \int_{\mathbb{R}^n} e^{-i\langle U^{-1}x|U^{-1}Uz\rangle} \cdot e^{-\langle Dz|z\rangle} \, dz$$

$$= \int_{\mathbb{R}^n} e^{-i\langle U^{-1}x|U^{-1}Uz\rangle} \cdot e^{-\langle Dz|z\rangle} \, dz$$

considere la función $g: \mathbb{R}^n \to \mathbb{R}$ tal que $x \mapsto e^{-\langle Dz|z\rangle}$ (esta función es integrable pues los elementos de la matriz diagonal D son números positivos), por lo anterior se tiene que

$$\mathcal{F}f(x) = \mathcal{F}g(U^{-1}x)$$

donde

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\langle x|z\rangle} g(z) dz$$
$$= \int_{\mathbb{R}^n} e^{-i\langle x|z\rangle} \cdot e^{-\langle Dz|z\rangle} dz$$

donde

$$Dz = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 z_1 \\ \lambda_2 z_2 \\ \vdots \\ \lambda_n z_n \end{bmatrix}$$

por tanto

$$\langle Dz|z\rangle = \lambda_1 z_1^2 + \dots + \lambda_n z^n$$

luego, usando Fubini se sigue que

$$\mathcal{F}g(x) = \int_{\mathbb{R}^n} e^{-i\sum_{k=1}^n x_k z_k - \sum_{k=1}^n \lambda_k z_k^2} dz_1 \cdots dz_n$$

$$= \left(\int_{-\infty}^{\infty} e^{-ix_1 z_1 - \lambda_1 z_1^2} dz_1 \right) \cdots \left(\int_{-\infty}^{\infty} e^{-ix_n z_n - \lambda_n z_n^2} dz_n \right)$$

$$= \prod_{i=1}^n \mathcal{F}g_i(x_i)$$

donde

$$g_i(u) = e^{-\lambda_i u^2}, \quad \forall u \in \mathbb{R}$$

para cada $i \in [1, n]$. Se sabe por un ejercicio de la las notas que

$$\mathcal{F}g_i(x_i) = \sqrt{\frac{\pi}{\lambda_i}} e^{-\frac{x_i^2}{4\lambda_i}}, \quad \forall x_i \in \mathbb{R}$$

para todo $i \in [1, n]$. Por tanto:

$$\mathcal{F}g(x) = \prod_{i=1}^{n} \sqrt{\frac{\pi}{\lambda_i}} e^{-\frac{x_i^2}{4\lambda_i}}$$
$$= \frac{\pi^{n/2}}{\sqrt{\lambda_1 \cdots \lambda_n}} e^{-\frac{1}{4} \sum_{k=1}^{n} \frac{x_k^2}{\lambda_k}}$$

recordemos que

$$D^{-1} = \begin{bmatrix} \frac{1}{\lambda_1} & 0 & \dots & 0 & 0\\ 0 & \frac{1}{\lambda_2} & \dots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \dots & \frac{1}{\lambda_{n-1}} & 0\\ 0 & 0 & \dots & 0 & \frac{1}{\lambda_n} \end{bmatrix}$$

y,

$$\det H = \det(UDU^{-1}) = \det U \cdot \det D \cdot \det U^{-1} = \lambda_1 \cdots \lambda_n$$

por ende

$$\langle D^{-1}x|x\rangle = \sum_{k=1}^{n} \frac{x_k^2}{\lambda_k}$$

así,

$$\mathcal{F}g(x) = \frac{\pi^{n/2}}{(\det H)^{1/2}} e^{-\frac{1}{4}\langle D^{-1}x|x\rangle}$$

Por lo tanto, recordando que

$$U^{-1}HU = D \Rightarrow U^{-1}H^{-1}U = D^{-1}$$

$$\Rightarrow U^{-1}H^{-1} = D^{-1}U^{-1}$$

$$\mathcal{F}f(x) = \mathcal{F}g(U^{-1}x)$$

$$= \frac{\pi^{n/2}}{(\det H)^{1/2}}e^{-\frac{1}{4}\langle D^{-1}U^{-1}x|U^{-1}x\rangle}$$

$$= \frac{\pi^{n/2}}{(\det H)^{1/2}}e^{-\frac{1}{4}\langle U^{-1}H^{-1}x|U^{-1}x\rangle}$$

$$= \frac{\pi^{n/2}}{(\det H)^{1/2}}e^{-\frac{1}{4}\langle H^{-1}x|x\rangle}$$

$$\Rightarrow \mathcal{F}f(x) = \frac{\pi^{n/2}}{(\det H)^{1/2}}e^{-\frac{1}{4}\langle H^{-1}x|x\rangle}$$

para todo $x \in \mathbb{R}^n$, como se quería demostrar.

Ejercicio 1.0.6

Recuerde que si $f = \chi_{[-a,a]}$, entonces

$$\mathcal{F}f(x) = \frac{2\sin ax}{x}, \quad \forall x \neq 0$$

Deduzca la fórmula

$$\int_{-\infty}^{\infty} \left(\frac{\sin ax}{x} \right)^2 dx = \pi a$$

Demostración:

Notemos que $f \in \mathcal{L}_1(\mathbb{R}^n, \mathbb{C}) \cap \mathcal{L}_2(\mathbb{R}^n, \mathbb{C})$, por lo cual

$$\mathcal{F}_2 f(x) = \frac{1}{(2\pi)^{1/2}} \mathcal{F} f(x)$$
$$= \frac{1}{(2\pi)^{1/2}} \cdot \frac{2\sin ax}{x}$$
$$= \sqrt{\frac{2}{\pi}} \cdot \frac{\sin ax}{x}$$

así, por la identidad de Parseval se cumple

$$\int_{-\infty}^{\infty} (\mathcal{F}_2 f)^2(x) \, dx = \langle \mathcal{F}_2 f | \mathcal{F}_2 f \rangle$$

$$= \langle f | f \rangle$$

$$= \int_{-\infty}^{\infty} \chi_{[-a,a]}(x) \, dx$$

$$= 2a$$

$$\Rightarrow \frac{2}{\pi} \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x} \right)^2 \, dx = 2a$$

$$\Rightarrow \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x} \right)^2 \, dx = \pi a$$

Ejercicio 1.0.7

Haga lo siguiente:

i. Sea $f(x) = \left(1 - \frac{|x|}{a}\right) \chi_{[-a,a]}(x)$, para todo $x \in \mathbb{R}$. Pruebe que

$$\mathcal{F}f(x) = a \left(\frac{\sin\frac{ax}{2}}{\frac{ax}{2}}\right)^2$$

ii. Usando $\mathcal{F}_2 f$ muestre la fórmula

$$\int_{-\infty}^{\infty} \left(\frac{\sin ax}{x} \right)^4 dx = \frac{2}{3} \pi a^3$$

iii. Calcule la integral

$$\int_{-\infty}^{\infty} \left(\frac{\sin ax}{x} \right)^3 dx$$

Sugerencia. Escriba $f(x)=\left(1-\frac{|x|}{a}\right)\chi_{[-a,a]}(x)$ y $g(x)=\chi_{[-a,a]}(x)$, para todo $x\in\mathbb{R}$. Aplique la identidad de Parseval

$$\int_{\mathbb{R}} \mathcal{F}_2 f \mathcal{F}_2 g = \langle \mathcal{F}_2 f | \mathcal{F}_2 g \rangle = \langle f | g \rangle = \int_{\mathbb{R}} f g$$

para deducir el resultado.

Solución:

De (i): Sea $x \in \mathbb{R} \setminus \{0\}$, tenemos que

$$\mathcal{F}f(x) = \int_{-\infty}^{\infty} e^{-ixy} f(y) \, dy$$

$$= \int_{-\infty}^{\infty} e^{-ixy} \left(1 - \frac{|y|}{a} \right) \chi_{[-a,a]}(y) \, dy$$

$$= \int_{-a}^{a} e^{-ixy} \left(1 - \frac{|y|}{a} \right) \, dy$$

$$= \int_{-a}^{0} e^{-ixy} \left(1 - \frac{|y|}{a} \right) \, dy + \int_{0}^{a} e^{-ixy} \left(1 - \frac{|y|}{a} \right) \, dy$$

$$= \int_{-a}^{0} e^{-ixy} \left(1 + \frac{y}{a} \right) \, dy + \int_{0}^{a} e^{-ixy} \left(1 - \frac{y}{a} \right) \, dy$$

$$= -\int_{a}^{0} e^{ixy} \left(1 - \frac{u}{a} \right) \, du + \int_{0}^{a} e^{-ixy} \left(1 - \frac{y}{a} \right) \, dy$$

$$= \int_{0}^{a} e^{ixy} \left(1 - \frac{y}{a} \right) \, dy + \int_{0}^{a} e^{-ixy} \left(1 - \frac{y}{a} \right) \, dy$$

$$= \int_{0}^{a} \left(e^{ixy} + e^{-ixy} \right) \cdot \left(1 - \frac{y}{a} \right) \, dy$$

$$= 2 \int_{0}^{a} \left(1 - \frac{y}{a} \right) \cos xy \, dy$$

$$= 2 \left[\int_{0}^{a} \cos xy \, dy - \frac{1}{a} \int_{0}^{a} y \cos xy \, dy \right]$$

donde

$$\int_0^a \cos xy \, dy = \frac{1}{x} \int_0^{ax} \cos u \, du$$
$$= \frac{1}{x} \sin u \Big|_0^{ax}$$
$$= \frac{\sin ax}{x}$$

y,

$$\int_0^a y \cos xy \, dy = \int_0^{ax} \frac{u}{x} \cos u \, \frac{du}{x}$$
$$= \frac{1}{x^2} \int_0^{ax} u \cos u \, du$$
$$= \frac{1}{x^2} \left[ax \sin ax + \cos ax - 1 \right]$$

Por tanto,

$$\mathcal{F}f(x) = 2\left[\int_0^a \cos xy \, dy - \frac{1}{a} \int_0^a y \cos xy \, dy\right]$$

$$= 2\left[\frac{\sin ax}{x} - \frac{ax \sin ax}{ax^2} - \frac{\cos ax}{ax^2} + \frac{1}{ax^2}\right]$$

$$= 2\left[\frac{\sin ax}{x} - \frac{\sin ax}{x} + \frac{1 - \cos ax}{ax^2}\right]$$

$$= \frac{1 - \cos ax}{\frac{ax^2}{2}}$$

$$= a \cdot \frac{2\sin^2\left(\frac{ax}{2}\right)}{\frac{a^2x^2}{2}}$$

$$= a \cdot \frac{\sin^2\frac{ax}{2}}{\frac{a^2x^2}{4}}$$

$$= a \cdot \left(\frac{\sin\frac{ax}{2}}{\frac{ax}{2}}\right)^2$$

De (ii): Notemos que $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{R}) \cap \mathcal{L}_2(\mathbb{R}, \mathbb{R})$, por lo cual

$$\mathcal{F}_2 f(x) = \frac{1}{\sqrt{2\pi}} \mathcal{F} f(x)$$
$$= \frac{a}{\sqrt{2\pi}} \cdot \left(\frac{\sin \frac{ax}{2}}{\frac{ax}{2}}\right)^2$$

por lo cual, usando la identidad de Parseval se sigue que

$$\frac{a^2}{2\pi} \int_{-\infty}^{\infty} \left(\frac{\sin\frac{ax}{2}}{\frac{ax}{2}}\right)^4 dx = \int_{-\infty}^{\infty} \left(\frac{a}{\sqrt{2\pi}}\right)^2 \left(\frac{\sin\frac{ax}{2}}{\frac{ax}{2}}\right)^4 dx$$

$$= \langle \mathcal{F}_2 f | \mathcal{F}_2 f \rangle$$

$$= \langle f | f \rangle$$

$$= \int_{-\infty}^{\infty} \left(1 - \frac{|x|}{a}\right)^2 \chi_{[-a,a]}(x) dx$$

$$= \int_{-a}^{a} \left(\frac{a - |x|}{a}\right)^2 dx$$

$$= 2\int_{0}^{a} \left(\frac{a - x}{a}\right)^2 dx$$

cambiemos de variable la primera integral, haciendo $u = \frac{x}{2} \Rightarrow 2du = dx$, por tanto:

$$\frac{a^2}{2\pi} \int_{-\infty}^{\infty} \left(\frac{\sin\frac{ax}{2}}{\frac{ax}{2}}\right)^4 dx = \frac{a^2}{\pi} \int_{-\infty}^{\infty} \left(\frac{\sin ax}{ax}\right)^4 dx$$
$$= \frac{1}{a^2\pi} \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x}\right)^4 dx$$

y, haciendo el cambio de variable en la última integral a $y = a - x \Rightarrow dy = -dx$, se tiene que

$$\int_0^a \left(\frac{a-x}{a}\right)^2 dx = -\int_a^0 \frac{y^2}{a^2} dy$$
$$= \frac{1}{a^2} \int_0^a y^2 dy$$
$$= \frac{1}{a^2} \left[\frac{y^3}{3}\Big|_0^a\right]$$
$$= \frac{a^3}{3a^2}$$
$$= \frac{a}{3}$$

por tanto

$$\frac{1}{a^2\pi} \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x}\right)^4 dx = \frac{2a}{3}$$

$$\Rightarrow \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x}\right)^4 dx = \frac{2}{3}\pi a^3$$

De (iii): Sea $g: \mathbb{R} \to \mathbb{R}$ la función $g = \chi_{[-a,a]}$. Se sabe por el inciso anterior que

$$\mathcal{F}_2 g(x) = \sqrt{\frac{2}{\pi}} \frac{\sin ax}{x}, \quad \forall x \in \mathbb{R}$$

y, del inciso (i) y considere la función $h: \mathbb{R} \to \mathbb{R}$ tal que $h(x) = f(2x) = f\left(\frac{x}{\frac{1}{2}}\right)$. Entonces

$$\mathcal{F}_2 f(2x) = \frac{1}{2} \mathcal{F}_2 f(x)$$

$$\Rightarrow 2\mathcal{F}_2 f(2x) = \mathcal{F}_2 f(x)$$

$$\Rightarrow 2\mathcal{F}_2 h(x) = \mathcal{F}_2 f(x)$$

Notemos además que

$$\langle \mathcal{F}_{2}f|\mathcal{F}_{2}g\rangle = 2\langle \mathcal{F}_{2}h|\mathcal{F}_{2}g\rangle$$

$$= 2\int_{-\infty}^{\infty} \mathcal{F}_{2}h(x)\mathcal{F}_{2}g(x) dx$$

$$= 2\int_{-\infty}^{\infty} \mathcal{F}_{2}f(2x)\mathcal{F}_{2}g(x) dx$$

$$= 2\int_{-\infty}^{\infty} \frac{a}{\sqrt{2\pi}} \left(\frac{\sin\frac{2ax}{2}}{\frac{2ax}{2}}\right)^{2} \cdot \sqrt{\frac{2}{\pi}} \frac{\sin ax}{x} dx$$

$$= \frac{2}{\pi a} \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x}\right)^{3} dx$$

y, por la identidad de Parserval

$$\langle \mathcal{F}_2 f | \mathcal{F}_2 g \rangle = \langle f | g \rangle$$

$$= \int_{-\infty}^{\infty} f(x) g(x) \, dx$$

$$= \int_{-a}^{a} \left(1 - \frac{|x|}{a} \right) \, dx$$

$$= 2 \int_{0}^{a} \left(1 - \frac{|x|}{a} \right) \, dx$$

$$= 2 \int_{0}^{a} \left(1 - \frac{x}{a} \right) \, dx$$

$$= 2 \left[x - \frac{x^2}{2a} \Big|_{0}^{a} \right]$$

$$= 2 \left[a - \frac{a^2}{2a} \right]$$

$$= 2 \left[\frac{a}{2} \right]$$

$$= a$$

Por ende,

$$\frac{2}{\pi a} \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x}\right)^3 dx = a$$

$$\Rightarrow \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x}\right)^3 dx = \frac{\pi a}{2}$$

(falta multiplicar por un factor de 2/3 según Wolfram).

Ejercicio 1.0.8

Sea $n \ge 2$ y $r : \mathbb{R}^n \to \mathbb{R}$ la función $x \mapsto r(x) = ||x|| = \sqrt{x_1^2 + \ldots + x_n^2}$. Sea $f : [0, \infty[\to \mathbb{C}$ una función tal que $f \circ r$ es integrable en \mathbb{R}^n .

i. Pruebe que la transformada de Fourier $\mathcal{F}(f \circ r)$ es una función radial.

Sugerencia. Si U es una matriz ortogonal $n \times n$, se tiene que $\mathcal{F}(f \circ r)(Ux) = \mathcal{F}(f \circ r)(x)$. Dados $x, y \in \mathbb{R}^n$ tales que ||x|| = ||y||, siempre existe una matriz ortogonal U tal que Ux = y.

ii. Muestre que se cumple la fórmula de Bochner

$$\mathcal{F}(f \circ r)(x) = 2(n-1)\omega_{n-1} \int_0^\infty v_n(u(\|x\|))f(u)u^{n-1} du, \quad \forall x \in \mathbb{R}^n$$

donde ω_{n-1} es el volumen de la bola euclideana de radio uno en \mathbb{R}^{n-1} y v_n se define por la fórmula

$$v_n(t) = \int_0^{\frac{\pi}{2}} \cos(t\cos\theta)\sin^{n-2}\theta \ d\theta$$

Sugerencia. Según el inciso (i),

$$\mathcal{F}(f \circ r)(x) = \mathcal{F}(f \circ r)(\|x\|, 0, ..., 0) = \int_{\mathbb{R}^n} f(\|y\|) e^{-i\|x\|y_1} dy_1 \cdots dy_n$$

Transforme esta integral por el Teorema de Fubini y exprese la integral con respecto a $y_2, ..., y_n$ como una integral simple. La doble integral resultante se transforma a coordenadas polares.

Solución:

De (i): Ya se sabe que $f \circ r$ es una función radial (de la definición es claro este hecho). Como $f \circ r$ es integrable en \mathbb{R}^n , entonces la transformada de Fourier de $f \circ r$ está definida para todo $x \in \mathbb{R}^n$.

Sean $x, y \in \mathbb{R}^n$ tales que ||x|| = ||y||. Para probar que $\mathcal{F}(f \circ r)$ es una función radial, basta con ver que

$$\mathcal{F}(f \circ r)(x) = \mathcal{F}(f \circ r)(y)$$

En efecto, como ||x|| = ||y|| por álgebra lineal se sabe que existe una matriz ortogonal $n \times n$ con determinante 1 tal que x = Uy. Por lo cual, por el teorema de cambio de variable haciendo z = Uw, se sigue que:

$$\mathcal{F}(f \circ r)(x) = \int_{\mathbb{R}^n} e^{-i\langle x|z\rangle} f \circ r(z) dz$$

$$= \int_{\mathbb{R}^n} e^{-i\langle x|Uw\rangle} f \circ r(Uw) dw$$

$$= \int_{\mathbb{R}^n} e^{-i\langle UU^{-1}x|Uw\rangle} f \circ r(w) dw$$

$$= \int_{\mathbb{R}^n} e^{-i\langle y|w\rangle} f \circ r(w) dw$$

$$= \mathcal{F}(f \circ r)(y)$$

por tanto, $\mathcal{F}(f \circ r)$ es una función radial.

De (ii): Sea $x \in \mathbb{R}^n$, veamos que

$$\mathcal{F}(f \circ r)(x) = \mathcal{F}(f \circ r)(\|x\|, 0, ..., 0)$$

$$= \int_{\mathbb{R}^n} e^{-i\langle(\|x\|, 0, ..., 0)|(y_1, ..., y_n)\rangle} f \circ r(y_1, ..., y_n) dy_1 \cdots dy_n$$

$$= \int_{\mathbb{R}^n} e^{-i\|x\|y_1} f(\|y\|) dy_1 \cdots dy_n$$

Cambiando a coordenadas polares, resulta que

$$\mathcal{F}(f \circ r)(x) = \int_{\mathbb{R}^n} e^{-i\|x\|y_1} f(\|y\|) \, dy_1 \cdots dy_n$$
$$= \int_{\Omega} e^{-i\|x\|r\cos\varphi_1} f(r) r^{n-1} \sin^{n-2} \varphi_1 \cdots \sin\varphi_{n-2} \, dr d\varphi_1 \cdots d\varphi_{n-1}$$

donde

$$\Omega = \left\{ (r, \varphi_1, ..., \varphi_{n-1}) \in \mathbb{R}^n \middle| r \geqslant 0, 0 \leqslant \varphi_1, ..., \varphi_{n-2} \leqslant \pi, -\pi \leqslant \varphi_{n-1} \leqslant \pi \right\}$$

Ejercicio 1.0.9

Haga lo siguiente:

i. Sea $h:[0,\infty[\to\mathbb{C}$ una función integrable en $[0,\infty[$. Sea a>0, **demuestre** que existe la integral impropia

$$\int_{a}^{+\infty} \frac{dx}{x} \int_{0}^{\infty} h(y) \sin xy \, dy$$

Sugerencia. Justifique la inversión del orden de las integraciones.

ii. Sea $f: \mathbb{R} \to \mathbb{R}$ la función

$$f(x) = \begin{cases} \frac{1}{e} x & \text{si} \quad |x| < e \\ \frac{\text{Sgn}(x)}{\log|x|} & \text{si} \quad |x| \geqslant e \end{cases}, \quad \forall x \in \mathbb{R}$$

Muestre que, para a > 0 no existe la integral impropia

$$\int_{a}^{+\infty} \frac{f(x)}{x} \, dx$$

De este hecho y del inciso (i) **deduzca** que no existe $g \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ tal que $f = \mathcal{F}g$. Así pues, la transformación de Fourier no es una aplicación suprayectiva de $L_1(\mathbb{R}, \mathbb{C})$ en $\mathcal{C}_0(\mathbb{R}, \mathbb{C})$.

Solución:

De (i): Considere la función $f:[a,\infty]\times[0,\infty]\to\mathbb{R}$ dada por:

$$f(x,y) = \frac{h(y)\sin xy}{x}, \quad \forall (x,y) \in [a,\infty[\times[0,\infty[$$

Veamos que se cumplen tres condiciones:

• $\forall \beta \in [a, \infty], f$ es integrable en $[a, \beta] \times [0, \infty[$, pues

$$|f(x,y)| = \left| \frac{h(y)\sin xy}{x} \right|$$

$$\leqslant \frac{1}{a} |h(y)| \cdot |\sin xy|$$

$$\leqslant \frac{1}{a} |h(y)|, \quad \forall (x,y) \in [a,\beta] \times [0,\infty[$$

donde la función $(x,y) \mapsto \frac{1}{a} |h(y)|$ es integrable en $[a,\beta] \times [0,\infty[$ ya que h es integrable y $[a,\beta]$ es un conjunto de medida finita.

• Sea $y \in [0, \infty[$. Afirmamos que la integral impropia

$$\int_{a}^{+\infty} f(x,y) \, dx$$

es convergente. En efecto, si y=0 el resultado se tiene pues f(x,0)=0 para todo $x\in [a,\infty[$. Para M>a y y>0 tenemos que

$$\int_{a}^{M} f(x,y) dx = \int_{a}^{M} \frac{h(y) \sin xy}{x} dx$$

$$= h(y) \int_{a}^{M} \frac{\sin xy}{x} dx, \text{ haciendo el cambio de variable } u = xy$$

$$= h(y) \int_{ay}^{My} \frac{\sin u}{\frac{u}{y}} \frac{du}{y}$$

$$= h(y) \int_{ay}^{My} \frac{\sin u}{u} du$$

como la integral impropia

$$\int_0^{-\infty} \frac{\sin u}{u} \, du$$

es convergente, en particular lo es

$$\int_{a}^{+\infty} \frac{\sin u}{u} \, du$$

se sigue que también lo es $\int_a^{\to\infty} f(x,y) dx$.

■ Tomemos $\beta_0 > a$, se tiene que para todo $\beta > \beta_0$:

$$\left| \int_{a}^{\beta} f(x, y) \, dx \right| \leq \left| \int_{a}^{\beta} \frac{h(y) \sin xy}{x} \, dx \right|$$

$$\leq \left| h(y) \int_{ya}^{y\beta} \frac{\sin u}{u} \, du \right|$$

$$\leq |h(y)| \left| \int_{ya}^{y\beta} \frac{\sin u}{u} \, du \right|$$

como

$$\int_{ua}^{\to \infty} \frac{\sin u}{u} \, du$$

es convergente para todo y > 0, entonces para $\varepsilon = 1$ existe M > a tal que

$$\left| \int_{ua}^{yM} \frac{\sin u}{u} \, du - \frac{\pi}{2} \right| < 1 \Rightarrow \left| \int_{ua}^{yM} \frac{\sin u}{u} \, du \right| < 1 + \frac{\pi}{2}$$

Luego, si $\beta_0 = M$, tenemos que

$$\beta > \beta_0 \Rightarrow \left| \int_a^\beta f(x, y) \, dx \right| < \left(1 + \frac{\pi}{2} \right) |h(y)|$$

para todo $y \in [0, \infty[$ (en particular cuando y = 0, el valor de la integral de la derecha es cero), donde la función de la derecha es integrable en $[0, \infty[$.

Por el teorema de intercambio de integrales impropias, se sigue que

$$\int_{a}^{+\infty} \frac{dx}{x} \int_{0}^{\infty} h(y) \sin xy \, dy = \int_{a}^{+\infty} dx \int_{0}^{\infty} \frac{h(y) \sin xy}{x} \, dy$$

$$= \int_{0}^{+\infty} dy \int_{a}^{+\infty} \frac{h(y) \sin xy}{x} \, dx$$

$$= \int_{0}^{+\infty} h(y) \, dy \int_{ya}^{+\infty} \frac{\sin u}{u} \, du$$

$$\Rightarrow \left| \int_{a}^{+\infty} \frac{dx}{x} \int_{0}^{+\infty} h(y) \sin xy \, dy \right| \leqslant \int_{0}^{+\infty} \left| h(y) \, dy \int_{ya}^{+\infty} \frac{\sin u}{u} \, du \right|$$

$$= \int_{0}^{+\infty} |h(y)| \left| \int_{ya}^{+\infty} \frac{\sin u}{u} \, du \right| \, dy$$

Donde la función

$$y \mapsto \int_{ua}^{-\infty} \frac{\sin y}{u} du, \quad \forall y \in [0, \infty[$$

es acotada (probar). Luego, se sigue que existe la integral impropia:

$$\int_{a}^{\infty} \frac{dx}{x} \int_{0}^{\infty} h(y) \sin xy \, dy$$

De (ii): Sea a > 0. Veamos primero que la función $x \mapsto f(x)$ es continua en \mathbb{R} , más aún, se tiene que

$$\lim_{|x| \to \infty} f(x) = 0$$

(es inmediato de la definición de f), por lo cual $f \in \mathcal{C}_0(\mathbb{R}, \mathbb{C})$. Por esta razón, basta con analizar el caso en que $a \ge e$. Veamos que para M > a

$$\int_{a}^{M} \frac{f(x)}{x} dx = \int_{a}^{M} \frac{dx}{x \log x}, \text{ haciendo el cambio de variable } u = \log x \Rightarrow dx = x du$$

$$= \int_{\log a}^{\log M} \frac{du}{u}$$

$$= \log |u| \Big|_{\log a}^{\log M}$$

$$= \log |\log M| - \log |\log a|$$

por tanto,

$$\int_{a}^{+\infty} \frac{f(x)}{x} dx = \lim_{M \to \infty} \int_{a}^{M} \frac{f(x)}{x} dx = \infty$$

Ahora, suponga que existe $g \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ tal que

$$f = \mathcal{F}g$$

Entonces,

$$f(x) = \int_{-\infty}^{\infty} e^{-ixy} g(y) \, dy$$
$$= \int_{-\infty}^{\infty} g(y) \cos xy \, dy + i \int_{-\infty}^{\infty} g(y) \sin xy \, dy$$

en particular, para $x \neq 0$:

$$\frac{f(x)}{x} = \int_{-\infty}^{\infty} \frac{g(y)\cos xy}{x} \, dy + i \int_{-\infty}^{\infty} \frac{g(y)\sin xy}{x} \, dy$$

$$= \int_{-\infty}^{0} \frac{g(y)\cos xy}{x} \, dy + \int_{0}^{\infty} \frac{g(y)\cos xy}{x} \, dy + i \left(\int_{-\infty}^{0} \frac{g(y)\sin xy}{x} \, dy + \int_{0}^{\infty} \frac{g(y)\sin xy}{x}\right)$$

$$= \int_{0}^{\infty} \frac{g(-y)\cos -xy}{x} \, dy + \int_{0}^{\infty} \frac{g(y)\cos xy}{x} \, dy + i \left(\int_{0}^{\infty} \frac{g(-y)\sin -xy}{x} \, dy + \int_{0}^{\infty} \frac{g(y)\sin xy}{x}\right)$$

veamos que q impar casi en todo \mathbb{R} . Se tiene que

$$f(x) = f(-x), \quad \forall x \in \mathbb{R}$$

$$\Rightarrow \int_{-\infty}^{\infty} e^{-ixy} g(y) \ dy = \int_{-\infty}^{\infty} e^{ixy} g(y) \ dy, \quad \forall x \in \mathbb{R}$$

$$\Rightarrow \int_{-\infty}^{\infty} e^{-ixy} g(y) \ dy = \int_{-\infty}^{\infty} e^{-ixy} g(-y) \ dy, \quad \forall x \in \mathbb{R}$$

$$\Rightarrow \int_{-\infty}^{\infty} e^{-ixy} \left[g(y) - g(-y) \right] \ dy = 0, \quad \forall x \in \mathbb{R}$$

en particular, se cumple para todo $k \in \mathbb{Z}$. Como el sistema $\{e^{-ixk}\}_{k \in \mathbb{Z}}$ es total en $\mathcal{L}_1(\mathbb{R}, \mathbb{C})$, debe suceder que g(y) - g(-y) = 0 para casi todo $y \in \mathbb{R}$. Por tanto, g es impar c.t.p. en \mathbb{R} . Luego,

$$\begin{split} \frac{f(x)}{x} &= \int_0^\infty \frac{g(-y)\cos{-xy}}{x} \, dy + \int_0^\infty \frac{g(y)\cos{xy}}{x} \, dy + i \left(\int_0^\infty \frac{g(-y)\sin{-xy}}{x} \, dy + \int_0^\infty \frac{g(y)\sin{xy}}{x} \right) \\ &= -\int_0^\infty \frac{g(y)\cos{xy}}{x} \, dy + \int_0^\infty \frac{g(y)\cos{xy}}{x} \, dy + i \left(\int_0^\infty \frac{g(y)\sin{xy}}{x} \, dy + \int_0^\infty \frac{g(y)\sin{xy}}{x} \right) \\ &= 2i \int_0^\infty \frac{g(y)\sin{xy}}{x} \, dy \end{split}$$

Para a > 0 se tiene que

$$\int_{a}^{+\infty} \frac{f(x)}{x} \, dx$$

no es convergente, pero por (i), se tiene que

$$\int_{a}^{+\infty} 2i \, dx \int_{0}^{\infty} \frac{g(y) \sin xy}{x} \, dy = 2i \int_{a}^{+\infty} \, dx \int_{0}^{\infty} \frac{g(y) \sin xy}{x} \, dy$$

si lo es, pues la función g es integrable en $[0, \infty[$, lo cual contradice la igualdad a la que se llegó anteriormente. Por tanto, f no puede ser la transformada de Fourier de ninguna función en $\mathcal{L}_1(\mathbb{R}, \mathbb{C})$.

Ejercicio 1.0.10

Haga lo siguiente:

i. Sea $f: \mathbb{R} \to \mathbb{C}$ una función integrable en \mathbb{R} . Se supone que existe una función $\varphi: \mathbb{R} \to \mathbb{C}$ localmente integrable en \mathbb{R} tal que

$$f(x) = f(0) + \int_0^x \varphi, \quad \forall x \in \mathbb{R} \quad y \quad |\varphi(x)| \underset{|x| \to \infty}{=} O\left(\frac{1}{|x|^m}\right)$$

donde m > 2. **Pruebe** que

$$|f(x)| \underset{|x| \to \infty}{=} O\left(\frac{1}{|x|^{m-1}}\right)$$

y que, para todo $x \in \mathbb{R}$, existen las sumas

$$\Phi(x) = \sum_{k \in \mathbb{Z}} \varphi(x+k)$$
 y $F(x) = \sum_{k \in \mathbb{Z}} f(x+k)$

siendo la convergencia absoluta y uniforme en [-1,1], luego en \mathbb{R} . Muestre finalmente que

$$F(x) = F(0) + \int_0^x \Phi, \quad \forall x \in \mathbb{R}$$

ii. F es una función periódica de periodo uno. **Demuestre** que los coeficientes de Fourier de F respecto al sistema O.N. $(e^{2\pi int})_{n\in\mathbb{Z}}$ son

$$\int_0^1 F(x)e^{-2\pi inx} dx = \mathcal{F}f(2\pi n), \quad \forall n \in \mathbb{Z}$$

Deduzca la fórmula Sumatoria de Poisson

$$\sum_{k \in \mathbb{Z}} f(x+k) = \sum_{k \in \mathbb{Z}} \mathcal{F}f(x+k), \quad \forall x \in \mathbb{R}$$

iii. Aplicando la fórmula sumatoria de Poisson a la función $x\mapsto e^{-\alpha|x|}$ para $\alpha>0,$ obtenga el desarrollo

$$\coth x = \frac{1}{x} + 2x \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2 \pi^2}, \quad \forall x \geqslant 0$$

Se define la **función theta** por

$$\Theta(x) = \sum_{n = -\infty}^{\infty} e^{-\pi n^2 x}, \quad \forall x > 0$$

Aplicando la fórmula sumatoria de Poisson a la función $x\mapsto e^{-\alpha x^2}$ para $\alpha>0$, **pruebe** la identidad

$$\Theta(x) = \sqrt{\frac{1}{x}}\Theta\left(\frac{1}{x}\right), \quad \forall x > 0$$

Solución:

De (i): Como

$$|\varphi(x)| \underset{|x| \to \infty}{=} O\left(\frac{1}{|x|^m}\right)$$

entonces existen $M \ge 0$ y A > 0 tales que

$$|x| > M \Rightarrow |\varphi(x)| \leqslant \frac{A}{|x|^m}$$

Al ser f integrable, se tiene que

$$\lim_{|x| \to \infty} f(x) = 0$$

entonces

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$$

Por tanto, de la definición de f tenemos que

$$0 = \lim_{u \to \infty} \left(f(0) + \int_0^u \varphi(t) \, dt \right)$$
$$= f(0) + \lim_{u \to \infty} \int_0^u \varphi(t) \, dt$$
$$\Rightarrow f(0) = -\lim_{u \to \infty} \int_0^u \varphi(t) \, dt$$

у,

$$0 = \lim_{u \to -\infty} \left(f(0) + \int_0^u \varphi(t) \, dt \right)$$
$$= f(0) - \lim_{u \to \infty} \int_u^0 \varphi(t) \, dt$$
$$\Rightarrow f(0) = -\lim_{u \to -\infty} \int_u^0 \varphi(t) \, dt$$

por ende,

$$f(x) = -\lim_{u \to \infty} \int_0^u \varphi(t) dt + \int_0^x \varphi(t) dt$$
$$= \lim_{u \to \infty} \left[-\int_0^u \varphi(t) dt + \int_0^x \varphi(t) dt \right]$$
$$= \lim_{u \to \infty} \int_x^u \varphi(t) dt$$

si $x \ge 0$. Si x < 0 tenemos

$$\begin{split} f(x) &= -\lim_{u \to -\infty} \int_{u}^{0} \varphi(t) \; dt + \int_{0}^{x} \varphi(t) \; dt \\ &= \lim_{u \to -\infty} \left(-\int_{u}^{0} \varphi(t) \; dt - \int_{x}^{0} \varphi(t) \; dt \right) \\ &= -\lim_{u \to -\infty} \int_{u}^{x} \varphi(t) \; dt \end{split}$$

Si |x| > M, tenemos dos casos:

• x > M, se tiene

$$|f(x)| = \left| \lim_{u \to \infty} \int_{x}^{u} \varphi(t) \, dt \right|$$

$$= \lim_{u \to \infty} \left| \int_{x}^{u} \varphi(t) \, dt \right|$$

$$\leqslant \lim_{u \to \infty} \int_{x}^{u} |\varphi(t)| \, dt$$

$$\leqslant A \lim_{u \to \infty} \int_{x}^{u} \frac{dt}{|t|^{m}}$$

$$= A \lim_{u \to \infty} \int_{x}^{u} t^{-m} \, dt$$

$$= A \lim_{u \to \infty} \frac{t^{1-m}}{1-m} \Big|_{x}^{u}$$

$$= \frac{A}{1-m} \lim_{u \to \infty} t^{1-m} \Big|_{x}^{u}$$

$$= \frac{A}{1-m} \lim_{u \to \infty} \left[u^{1-m} - x^{1-m} \right]$$

$$= \frac{A}{m-1} x^{1-m}$$

$$= \frac{A}{m-1} \cdot \frac{1}{|x|^{m-1}}$$

$$\therefore |f(x)| \leqslant \frac{A}{m-1} \cdot \frac{1}{|x|^{m-1}}$$

• -x < -M, de forma análoga se sigue que

$$|f(x)| \leqslant \frac{A}{m-1} \cdot \frac{1}{|x|^{m-1}}$$

De los dos incisos anteriores se concluye que

$$|x| > M \Rightarrow |f(x)| \leqslant \frac{A}{m-1} \cdot \frac{1}{|x|^{m-1}}$$

por ende,

$$|f(x)| \underset{|x| \to \infty}{=} O\left(\frac{1}{|x|^{m-1}}\right)$$

La convergencia absoluta de ambas sumas se sigue de forma inmediata de el hecho que

$$|f(x)| \stackrel{=}{\underset{|x|\to\infty}{=}} O\left(\frac{1}{|x|^{m-1}}\right) \quad \text{y} \quad |\varphi(x)| \stackrel{=}{\underset{|x|\to\infty}{=}} O\left(\frac{1}{|x|^m}\right)$$

veamos que es uniforme en [-1,1]. En efecto, sea $\varepsilon > 0$, debemos encontrar un $N \in \mathbb{N}$ tal que $n \ge N$ implique

$$\sup_{x \in [-1,1]} \left| \Phi(x) - \sum_{k=-n}^{n} \varphi(x+k) \right| \leqslant \varepsilon$$

en otras palabras

$$\sup_{x \in [-1,1]} \left| \sum_{k \in U_n} \varphi(x+k) \right| \leqslant \varepsilon$$

donde

$$U_n = \left\{ y \in \mathbb{Z} \middle| y \leqslant -n \text{ \'o } n \leqslant y \right\}$$
$$= (] - \infty, -n] \cup [n, \infty[) \cap \mathbb{Z}$$

es decir que

$$\sup_{x \in [-1,1]} \left| \sum_{k=-\infty}^{-n} \varphi(x+k) + \sum_{k=n}^{\infty} \varphi(x+k) \right| \leqslant \varepsilon$$

En efecto, existe $M_1 \geqslant 0$ tal que

$$|x| \geqslant M_1 \Rightarrow \frac{A}{|x|^m} \leqslant \varepsilon$$

sea $N \in \mathbb{N}$ tal que $N \ge \max\{M, M_1\}$, entonces si $n \ge N$ (la idea está en ver la convergencia absoulta de $\sum_{k=-\infty}^{-n} \varphi(x+k)$).

De (ii): Veamos primero que

$$\begin{split} \int_0^1 F(x) e^{-2\pi i n x} \, dx &= \int_0^1 \left(F(0) + \int_0^x \Phi(y) \, dy \right) e^{-2\pi i n x} \, dx \\ &= \int_0^1 \left(F(0) + \int_0^x \Phi(y) \, dy \right) e^{-2\pi i n x} \, dx \\ &= \int_0^1 F(0) \, dx + \int_0^1 \, dx \int_0^x \Phi(y) e^{-2\pi i n x} \, dy \\ &= F(0) + \int_0^1 \, dx \int_0^x \Phi(y) e^{-2\pi i n x} \, dy \\ &= \sum_{k \in \mathbb{Z}} f(k) + \int_0^1 \, dx \int_0^x \Phi(y) e^{-2\pi i n x} \, dy \\ &= \sum_{k \in \mathbb{Z}} f(k) + \int_0^1 \, dy \int_{1-y}^1 \Phi(y) e^{-2\pi i n x} \, dx \\ &= \sum_{k \in \mathbb{Z}} f(k) + \int_0^1 \Phi(y) \, dy \int_{1-y}^1 e^{-2\pi i n x} \, dx \\ &= \sum_{k \in \mathbb{Z}} f(k) + \int_0^1 \Phi(y) \, dy \int_{1-y}^1 e^{-2\pi i n x} \, dx \\ &= \sum_{k \in \mathbb{Z}} f(k) + \int_0^1 \Phi(y) \left[\frac{e^{-2\pi i n x}}{-2\pi i n} \Big|_{1-y}^1 \right] \, dy \\ &= \sum_{k \in \mathbb{Z}} f(k) + \int_0^1 \Phi(y) \left[\frac{e^{-2\pi i n x}}{-2\pi i n} \right] \, dy \\ &= \sum_{k \in \mathbb{Z}} f(k) + \int_0^1 \Phi(y) \left[\frac{1 - e^{-2\pi i n y}}{-2\pi i n} \right] \, dy \\ &= \sum_{k \in \mathbb{Z}} f(k) - \frac{1}{2\pi i n} \int_0^1 \Phi(y) \left[1 - e^{-2\pi i n y} \right] \, dy \\ &= \sum_{k \in \mathbb{Z}} f(k) - \frac{1}{2\pi i n} \int_0^1 \Phi(y) \left[1 - e^{-2\pi i n y} \right] \, dy \\ &= \sum_{k \in \mathbb{Z}} f(k) - \frac{1}{2\pi i n} \int_0^1 \Phi(y) \left[1 - e^{-2\pi i n y} \right] \, dy \end{split}$$

(suponiendo que todo sale bien) y,

$$\mathcal{F}f(2\pi n) = \int_{-\infty}^{\infty} e^{-2\pi i n x} f(x) dx$$

$$= \sum_{k \in \mathbb{Z}} \int_{k}^{k+1} e^{-2\pi i n x} f(x) dx$$

$$= \sum_{k \in \mathbb{Z}} \int_{k}^{k+1} \left(f(0) + \int_{0}^{x} \varphi(y) dy \right) e^{-2\pi i n x} dx$$

$$= \sum_{k \in \mathbb{Z}} \int_{k}^{k+1} f(0) e^{-2\pi i n x} dx + \sum_{k \in \mathbb{Z}} \int_{k}^{k+1} dx \int_{0}^{x} \varphi(y) e^{-2\pi i n x} dy$$

De (iii): Considere la función $h_1: \mathbb{R} \to \mathbb{R}$ dada por $x \mapsto e^{-\alpha|x|}$, se sabe que

$$\mathcal{F}h_1(x) = \frac{2\alpha}{\alpha^2 + x^2}, \quad \forall x \in \mathbb{R}$$

Ejercicio 1.0.11

Haga lo siguiente:

i. Sea $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ tal que f(x) = 0 para todo x < 0. Para todo $z \in \mathbb{C}$ tal que $\Im z \leqslant 0$ se define

 $\mathcal{F}f(z) = \int_0^\infty e^{-izx} f(x) \, dx$

Pruebe que esta definción tiene sentido, que $\mathcal{F}f$ es continua en el semiplano cerrado $\left\{z\in\mathbb{C}\left|\Im z\leqslant0\right\}\right\}$ y holomorfa en el semiplano abierto $\left\{z\in\mathbb{C}\left|\Im z<0\right.\right\}$.

Sugerencia. El teorema de derivación de funciones defindas por integrales continúa siendo válido al sustituir el intervalo I por un abierto de \mathbb{C} .

ii. Sean $f, g \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ tales que f(x) = g(x) = 0, $\forall x < 0$. Muestre que para todo $z \in \mathbb{C}$ tal que $\Im z \leq 0$ se tiene

$$\mathcal{F}(f*g)(z) = \mathcal{F}f(z)\mathcal{F}g(z)$$

iii. Sean f, g como en el inciso (ii). Se supone además que $\mathcal{F}(f*g) = 0$ c.t.p. en \mathbb{R} . **Demuestre** que f = 0 c.t.p. en \mathbb{R} o bien g = 0 c.t.p. en \mathbb{R} .

Sugerencia. Deduzca de (i) y (ii) que $\mathcal{F}f = 0$ o bien $\mathcal{F}g = 0$.

Solución:

De (i): Sea $z \in \mathbb{C}$ tal que $\Im z \leqslant 0$. Se tiene que

$$\begin{split} \int_0^\infty \left| e^{-izx} f(x) \right| \; dx &= \int_0^\infty \left| e^{-ix(\Re z + i\Im z)} f(x) \right| \; dx \\ &= \int_0^\infty \left| e^{-ix(\Re z + i\Im z)} f(x) \right| \; dx \\ &= \int_0^\infty \left| e^{-ix\Re z} e^{x\Im z} f(x) \right| \; dx \\ &= \int_0^\infty \left| e^{x\Im z} \right| \left| f(x) \right| \; dx \end{split}$$

donde $x \ge 0$ y $\Im z \le 0$, luego $e^{x\Im z} \le 1$, para todo $x \in [0, \infty[$. Así

$$\int_0^\infty \left| e^{-izx} f(x) \right| dx \leqslant \int_0^\infty |f(x)| dx$$
$$= \int_{-\infty}^\infty |f(x)| dx$$

pues f(x) = 0 para todo x < 0. Como f es integrable, se sigue entonces que $\mathcal{F}f(z)$ está bien definida, para todo $z \in \mathbb{C}$ tal que $\Im z \leq 0$.

Veamos que $\mathcal{F}f$ es una función continua en el semiplano cerrado

$$\mathcal{I} = \left\{ z \in \mathbb{C} \middle| \Im z \leqslant 0 \right\}$$

En efecto, considere la función $g: \mathbb{R} \times \mathcal{I} \to \mathbb{C}$ dada por

$$g(x,z) = e^{-izx} f(x)$$

para todo $(x,z) \in \mathbb{R} \times \mathcal{I}$. Claramente g está bien definida. Se tiene lo siguiente:

■ Para todo $z \in \mathbb{C}$, $g^z(x) = e^{-izx} f(x)$ es integrable en \mathbb{R} (se probó en el punto anterior), se define así

$$\Phi(z) = \mathcal{F}f(z)$$

$$= \int_{\mathbb{R}} g^{z}(x) dx$$

$$= \int_{0}^{\infty} e^{-izx} f(x) dx$$

- Para toda $x \in \mathbb{R}$, la función $g_x : \mathcal{I} \to \mathbb{C}$ tal que $z \mapsto e^{-izx} f(x)$ es continua en $z_0 \in \mathcal{I}$, para todo z_0 .
- Existe $f \in \mathcal{L}_1(\mathbb{R}, \mathbb{C})$ tal que

$$|g(x,z)| = |e^{-izx}f(x)|$$

 $\leq |f(x)|$

para todo $(x, z) \in \mathbb{R} \times \mathcal{I}$.

entonces, por el teorema de continuidad de funciones definidas por integrales, se sigue que Φ es continua en $z_0 \in \mathcal{I}$, para todo z_0 , esto es que $\mathcal{F}f$ es continua en \mathcal{I} .

Para ver que es holomorfa en el semiplano abierto

$$\mathring{\mathcal{I}} = \left\{ z \in \mathbb{C} \middle| \Im z < 0 \right\}$$

considere nuevamente a la función $g: \mathbb{R} \times \mathring{\mathcal{I}} \to \mathbb{C}$ tal que

$$g(x,z) = e^{-izx} f(x)$$

Veamos que

 \bullet Para toda $z\in \mathring{\mathcal{I}},$ la función $x\mapsto g^z(x)=g(x,z)$ es integrable, se define así

$$\Phi(z) = \mathcal{F}f(z)$$

$$= \int_{\mathbb{R}} g(x, z) dx$$

$$= \int_{0}^{\infty} e^{-izx} f(x) dx$$

para todo $z \in \mathring{\mathcal{I}}$.

■ Sea $x \in \mathbb{R}$, como $z \mapsto e^{-izx}$ es holomorfa en $\mathring{\mathcal{I}}$, entonces existe la derivada de la función $g_x : \mathring{\mathcal{I}} \to \mathbb{C}$, dada por

$$g'_{x}(z) = \lim_{w \to z} \frac{g_{x}(z) - g_{x}(w)}{z - w}$$

$$= \lim_{w \to z} \frac{e^{-izx} f(x) - e^{-iwx} f(x)}{z - w}$$

$$= f(x) \lim_{w \to z} \frac{e^{-izx} - e^{-iwx}}{z - w}$$

$$= -ixf(x)e^{-izx}$$

• Para todo $(x,z) \in \mathbb{R} \times \mathring{\mathcal{I}}$ se cumple que

$$|g'_x(z)| = |-ixf(x)e^{-izx}|$$

$$= |xe^{-izx}| |f(x)|$$

$$= |xe^{-ix\Re z + i\Im z}| |f(x)|$$

$$= |xe^{-ix\Re z}e^{x\Im z}| |f(x)|$$

$$= |xe^{x\Im z}| |f(x)|$$

donde

$$\lim_{x \to \infty} x e^{x\Im z} = \lim_{x \to \infty} \frac{x}{e^{-x\Im z}}$$

que es de la forma $\frac{\infty}{\infty}$, por L'Hopital se sigue que

$$\lim_{x \to \infty} x e^{x\Im z} = \lim_{x \to \infty} \frac{x}{e^{-x\Im z}}$$

$$= \lim_{x \to \infty} \frac{1}{-\Im z e^{-z\Im z}}$$

$$= 0$$

pues el segundo límite existe. Así, existe M>0 tal que

$$x \geqslant M \Rightarrow \left| x e^{x\Im z} \right| < 1$$

y, como la función $x\mapsto \left|xe^{x\Im z}\right|$ es continua en [0,M], es acotada, luego existe $A_0\geqslant 1$ tal que

$$\left| xe^{x\Im z} \right| \leqslant A_0, \quad \forall x \in [0, M]$$

Por ende,

$$\left|xe^{x\Im z}\right| \leqslant \max\left\{A_0, 1\right\} = B_0, \quad \forall x \in [0, \infty[$$

se sigue entonces que

$$|g_x'(z)| \leqslant B_0 |f(x)|$$

(pues f es nula fuera de $[0, \infty[$), siendo f integrable.

Por los tres incisos anteriores y el teorema de derivación de funciones definidas por integrales, se sigue que Φ es holomorfa en $\mathring{\mathcal{I}}$ y su valor es

$$\Phi'(z) = -i \int_0^\infty x e^{-izx} f(x) \, dx$$

De (ii):

De (iii):
$$\Box$$

Ejercicio 1.0.12

Haga lo siguiente:

i. Sea $f \in \mathcal{L}_2(\mathbb{R}, \mathbb{C})$. Se define para todo $z \in \mathbb{C}$,

$$F(z) = \int_{-\infty}^{\infty} e^{-izx - \frac{x^2}{2}} \overline{f(x)} \, dx$$

Pruebe que F es holomorfa en \mathbb{C} y que, para todo $n \in \mathbb{N}$ y para todo $z \in \mathbb{C}$,

$$F^{(n)}(z) = (-i)^n \int_{-\infty}^{\infty} x^n e^{-izx - \frac{x^2}{2}} \overline{f(x)} \, dx$$

Sugerencia. La misma que la del Problema 11.

ii. Se supone que f es ortogonal a todas las funciones de Hermite. Muestre que F=0 y **deduzca** que f=0 c.t.p. en \mathbb{R}^n .

Así pues, el sistema de funciones de Hermite normalizadas es un sistema ortonormal maximal en $L_2(\mathbb{R}, \mathbb{C})$.

Sugerencia. Observe que $F^{(n)}(0) = 0$, para todo $n \in \mathbb{N}$. La condición F = 0 implica que la transformada de Fourier de la función integrable $x \mapsto e^{-\frac{x^2}{2}} \overline{f(x)}$ es cero.

Solución:

De (i): \Box

Ejercicio 1.0.13

Haga lo siguiente:

i. Demuestre la fórmula.

$$D_x^n \int_{-\infty}^{\infty} e^{-y^2} e^{\frac{1}{2}(y-ix)^2} dy = (-1)^n \int_{-\infty}^{\infty} e^{-y^2} D_x^n e^{\frac{1}{2}(y-ix)^2} dy$$

ii. Se consideran las funciones de Hermite

$$\varphi(x) = (-1)^n e^{\frac{x^2}{2}} D^n e^{-x^2}$$

Pruebe que $\mathcal{F}_2\varphi_n=(-1)^n\varphi_n$. Así pues, las funciones de Hermite son vectores propios para el operador \mathcal{F}_2 .

Sugerencia. Tranforme $\mathcal{F}_2\varphi_n$ por la "fórmula de integración por partes de orden n".

$$\int_{a}^{b} f^{(n)}g = \left[\sum_{k=0}^{n-1} (-1)^{k} f^{(n-k-1)} g^{(k)} \right] + (-1)^{n} \int_{a}^{b} f g^{(n)}$$

(al suponer $f^{(n)}$ y $g^{(n)}$ continuas en [a,b]). Después, use la fórmula del inciso (i).

Solución:

Considere la función $f: \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ dada por

$$f(y,x) = e^{-y^2} e^{\frac{1}{2}(y-ix)^2}$$

Se cumple para f lo siguiente:

■ Sea $y \in \mathbb{R}$, entonces la función $x \mapsto f_y(x) = f(x,y) = e^{-y^2} e^{\frac{1}{2}(y-ix)^2}$ es de clase C^{∞} en \mathbb{R} (por ser composición de funciones clases C^{∞}). Más aún, se tiene que

$$D_x^n \left(e^{-y^2} e^{\frac{1}{2}(y-ix)^2} \right) = e^{-y^2} D_x^n e^{\frac{1}{2}(y-ix)^2}$$

- Para todo $x \in \mathbb{R}$, las funciones $y \mapsto e^{-y^2} D_x^n e^{\frac{1}{2}(y-ix)^2}$ son integrables en \mathbb{R} , con $n \in \mathbb{N} \cup \{0\}$. En efecto, procederemos por inducción sobre n. Sea $x \in \mathbb{R}$:
 - El caso n=0 y n=1 son inmediatos, pues para todo $y \in \mathbb{R}$:

$$\begin{split} e^{-y^2}D_x^0 e^{\frac{1}{2}(y-ix)^2} &= e^{-y^2 + \frac{1}{2}(y-ix)^2} \\ &= e^{-y^2 + \frac{1}{2}(y^2 - 2iyx - x^2)} \\ &= e^{-y^2 + \frac{1}{2}y^2 - iyx - \frac{1}{2}x^2} \\ &= e^{-\frac{y^2}{2} - iyx - \frac{x^2}{2}} \\ &= e^{-\frac{y^2}{2} - \frac{x^2}{2}} e^{-iyx} \\ \Rightarrow \left| e^{-y^2}D_x^0 e^{\frac{1}{2}(y-ix)^2} \right| \leqslant e^{-\frac{y^2}{2} - \frac{x^2}{2}} \\ &= e^{-\frac{x^2}{2}} e^{-\frac{y^2}{2}} \end{split}$$

donde la función $y\mapsto e^{-\frac{x^2}{2}}e^{-\frac{y^2}{2}}$ es integrable en \mathbb{R} . y,

$$e^{-y^2}D_x^1e^{\frac{1}{2}(y-ix)^2} =$$

• Suponga que para algún $n \in \mathbb{N}$, las funciones

$$y \mapsto e^{-y^2} D_r^n e^{\frac{1}{2}(y-ix)^2}$$
 $y \mapsto e^{-y^2} D_r^{n-1} e^{\frac{1}{2}(y-ix)^2}$

son integrables en \mathbb{R} . Veamos que se cumple para n+1. En efecto, se tiene que

$$\begin{split} D_x^{n+1} \left(e^{-y^2} e^{\frac{1}{2}(y-ix)^2} \right) &= e^{-y^2} D_x^{n+1} e^{\frac{1}{2}(y-ix)^2} \\ &= D_x^n \left(D_x e^{\frac{1}{2}(y-ix)^2} \right) \\ &= e^{-y^2} D_x^n \left(e^{\frac{1}{2}(y-ix)^2} D_x \left[\frac{1}{2} \left(y - ix \right)^2 \right] \right) \\ &= e^{-y^2} D_x^n \left(e^{\frac{1}{2}(y-ix)^2} D_x \left[\frac{1}{2} \left(y - ix \right)^2 \right] \right) \\ &= e^{-y^2} D_x^n \left(e^{\frac{1}{2}(y-ix)^2} (-i) [y - ix] \right) \\ &= e^{-y^2} \left[(-i) D_x^n \left([y - ix] e^{\frac{1}{2}(y-ix)^2} \right) \right] \\ &= e^{-y^2} \left[(-i) y D_x^n \left(e^{\frac{1}{2}(y-ix)^2} \right) - D_x^n \left(x e^{\frac{1}{2}(y-ix)^2} \right) \right] \\ &= e^{-y^2} \left[(-i) y D_x^n \left(e^{\frac{1}{2}(y-ix)^2} \right) - \sum_{k=1}^n \binom{n}{k} D_x^{n-k} \left(e^{\frac{1}{2}(y-ix)^2} \right) D_x^k (x) \right] \\ &= e^{-y^2} \left[(-i) y D_x^n \left(e^{\frac{1}{2}(y-ix)^2} \right) - x D_x^n e^{\frac{1}{2}(y-ix)^2} - D_x^{n-1} e^{\frac{1}{2}(y-ix)^2} \right] \end{split}$$

usando la fórmula de Leibniz para la derivada de un producto.