Grenoble | images | parole | signal | automatique | laboratoire

Optimal Laplacian regularization for sparse spectral community detection

ICASSP 2020

Lorenzo Dall'Amico

Romain Couillet, Nicolas Tremblay

Laboratoire Gipsa-lab, UMR 5216, CNRS, UGA 11 rue des mathématiques 38420 Grenoble, France lorenzo.dall-amico@gipsa-lab.fr

April 15, 2020

UMR 5216

Community detection

The non-backtracking matrix

Community detection

Problem position

The non-backtracking matrix

Figure: A representation of the dolphin network (Lusseau 2003)

4/31

More formally

Given a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with $|\mathcal{V}| = n$ nodes and k communities, assign to each node the correct class label.

More formally

Given a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with $|\mathcal{V}| = n$ nodes and k communities, assign to each node the correct class label.

The problem

A representation of the adjacency matrix $A_{ii} = 0$ (black) if i, jare not connected and $A_{ii} = 1$ (white) if they are connected

Community detection

Spectral clustering

The non-backtracking matrix

Node embedding to low dimensional space

Node embedding to low dimensional space \rightarrow *k-means*

Node embedding to low dimensional space \rightarrow *k-means* $D = \operatorname{diag}(A\mathbf{1})$

Node embedding to low dimensional space $\rightarrow k$ -means

 $D = \operatorname{diag}(A\mathbf{1})$

Spectrum of $D^{-1}A$

Node embedding to low dimensional space \rightarrow *k-means* $D = \operatorname{diag}(A1)$

Spectrum of $D^{-1}A$

Node embedding to low dimensional space \rightarrow *k-means*

 $D = \operatorname{diag}(A1)$

Spectrum of $D^{-1}A$

Community detection

The generative model

The non-backtracking matrix

Dealing with sparsity and heterogeneous degree distributions

n: number of nodes

- n: number of nodes
- k = 2: number of communities

- n: number of nodes
- k = 2: number of communities
- $ightharpoonup \sigma_i \in \{-1,1\}$: label of node i

- n: number of nodes
- k=2: number of communities
- $ightharpoonup \sigma_i \in \{-1,1\}$: label of node i
- $C = \begin{pmatrix} c_{\text{in}} & c_{\text{out}} \\ c_{\text{out}} & c_{\text{in}} \end{pmatrix} : \text{ class affinity matrix}$

Dealing with sparsity and heterogeneous degree distributions

- n: number of nodes
- k=2: number of communities
- $ightharpoonup \sigma_i \in \{-1,1\}$: label of node i
- $ightharpoonup C = \begin{pmatrix} c_{
 m in} & c_{
 m out} \\ c_{
 m out} & c_{
 m in} \end{pmatrix}$: class affinity matrix

Degree-corrected stochastic block model

$$\mathbb{P}(A_{ij} = 1 | \theta_i, \theta_j, \sigma_i, \sigma_j) = \theta_i \theta_j \frac{C_{\sigma_i, \sigma_j}}{n}$$

Theoretical bounds

Define

- $ightharpoonup c = \frac{c_{\rm in} + c_{\rm out}}{2}$, expected average degree
- $\Phi = \sum_{i} \theta_{i}^{2}$

Theoretical bounds

Define

- $c = \frac{c_{\text{in}} + c_{\text{out}}}{2}$, expected average degree
- $\Phi = \sum_{i} \theta_{i}^{2}$

Detectability threshold

Non-trivial reconstruction iff $\alpha = \frac{c_{\rm in} - c_{\rm out}}{\sqrt{c}} > \frac{2}{\sqrt{b}}$.

¹Gulikers et.al., An impossibility result for reconstruction in the degree-corrected stochastic block model

State of the art

A unified framework

The non-backtracking matrix

A unified framework

The non-backtracking matrix

13/31

$$B_{(ij),(kl)} = \delta_{jk}(1 - \delta_{il}), \quad \forall \ (ij),(kl) \in \mathcal{E}^d$$

$$B_{(ij),(kl)} = \delta_{jk}(1 - \delta_{il}), \quad \forall \ (ij),(kl) \in \mathcal{E}^d$$

$$B_{(ij),(kl)} = \delta_{jk}(1 - \delta_{il}), \quad \forall \ (ij),(kl) \in \mathcal{E}^d$$

$$B_{(ij),(kl)} = \delta_{jk}(1 - \delta_{il}), \quad \forall \ (ij),(kl) \in \mathcal{E}^d$$

Linearization of BP

$$B\boldsymbol{\delta} = \zeta_{\alpha}\boldsymbol{\delta} \tag{1}$$

$$\zeta_{\alpha} = \frac{c_{\text{in}} + c_{\text{out}}}{c_{\text{in}} - c_{\text{out}}} = \frac{2\sqrt{c}}{\alpha}$$
 (2)

To recap

✓ Detects communities down to the threshold

To recap

- ✓ Detects communities down to the threshold
- ✓ An informative eigenvalue *inside* the bulk of B

To recap

- ✓ Detects communities down to the threshold
- ✓ An informative eigenvalue *inside* the bulk of B Introduces the parameter ζ_{α}

A unified framework

A unified framework

The non-backtracking matrix

The Bethe-Hessian matrix

The Bethe-Hessian matrix

Ihara-Bass formula

$$B\mathbf{g} = \zeta_{\alpha}\mathbf{g}$$
$$[(\zeta_{\alpha}^{2} - 1)I_{n} + D - \zeta_{\alpha}A]\mathbf{x} = 0$$

The Bethe-Hessian matrix

Ihara-Bass formula

$$B\mathbf{g} = \zeta_{lpha}\mathbf{g}$$

$$[(\zeta_{lpha}^2 - 1)I_n + D - \zeta_{lpha}A]\mathbf{x} = 0$$
Bethe-Hessian $H_{\zeta_{lpha}}$

The Bethe-Hessian matrix

Ihara-Bass formula

$$Boldsymbol{g} = \zeta_{lpha}oldsymbol{g}$$

$$[(\zeta_{lpha}^2 - 1)I_n + D - \zeta_{lpha}A]oldsymbol{x} = 0$$
 Bethe-Hessian $H_{\zeta_{lpha}}$

We showed, for all D

$$\mathbb{E}[x] = \sigma$$

Optimal value
$$r = \zeta_{\alpha} = \frac{c_{\rm in} + c_{\rm out}}{c_{\rm in} - c_{\rm out}}$$

⁶Saade (2014) Spectral clustering of graphs with the Bethe Hessian \triangleright \triangleleft \bigcirc \triangleright \triangleleft \bigcirc \triangleright \triangleleft

To recap

 $H_{\zeta_{\alpha}}$

✓ The second smallest eigenvalue is zero and is informative

To recap

$H_{\zeta_{\alpha}}$

- ✓ The second smallest eigenvalue is zero and is informative
- ✓ Detects communities down to the threshold

To recap

$H_{\zeta_{\alpha}}$

- ✓ The second smallest eigenvalue is zero and is informative
- ✓ Detects communities down to the threshold
- ✓ The eigenvector is resilient to the degree distribution

A unified framework

$$L_{\tau} = D_{\tau}^{-1/2} A D_{\tau}^{-1/2}$$

 $L_{\tau}^{\text{rw}} = D_{\tau}^{-1} A$

Where $D_{\tau} = D + \tau I_n$.

 $^{^{1}\}mathrm{Qin}$ (2013) Regularized spectral clustering under the degree-corrected stochastic blockmodel

$$L_{\tau} = D_{\tau}^{-1/2} A D_{\tau}^{-1/2}$$

 $L_{\tau}^{\text{rw}} = D_{\tau}^{-1} A$

Where $D_{\tau} = D + \tau I_n$. ¹Proposed (heuristic) regularization : $\tau = c$.

 $^{^{1}}$ Qin (2013) Regularized spectral clustering under the degree-corrected stochastic blockmodel

$$L_{\tau} = D_{\tau}^{-1/2} A D_{\tau}^{-1/2}$$

 $L_{\tau}^{\text{rw}} = D_{\tau}^{-1} A$

Where $D_{\tau} = D + \tau I_n$. Proposed (heuristic) regularization : $\tau = c$.

From $H_{C_{\alpha}}$ to L_{τ}

$$H_{\zeta_{\alpha}} \mathbf{x} = [(\zeta_{\alpha}^2 - 1)I_n + D - \zeta_{\alpha}A]\mathbf{x} = 0$$
$$[D + (\zeta_{\alpha}^2 - 1)I_n]^{-1}A\mathbf{x} = \frac{1}{\zeta_{\alpha}}\mathbf{x}$$

¹Qin (2013) Regularized spectral clustering under the degree-corrected stochastic blockmodel

$$L_{\tau} = D_{\tau}^{-1/2} A D_{\tau}^{-1/2}$$

 $L_{\tau}^{\text{rw}} = D_{\tau}^{-1} A$

Where $D_{\tau} = D + \tau I_n$. ¹Proposed (heuristic) regularization : $\tau = c$.

From $H_{C_{\alpha}}$ to L_{τ}

$$H_{\zeta_{\alpha}} \mathbf{x} = [(\zeta_{\alpha}^2 - 1)I_n + D - \zeta_{\alpha}A]\mathbf{x} = 0$$
$$[D + (\zeta_{\alpha}^2 - 1)I_n]^{-1}A\mathbf{x} = \frac{1}{\zeta_{\alpha}}\mathbf{x}$$

So

$$\tau = \zeta_{\alpha}^2 - 1 \le c\Phi - 1 \approx c$$

¹Qin (2013) Regularized spectral clustering under the degree-corrected stochastic blockmodel

$$L^{\mathrm{rw}}_{\zeta^2_{\alpha}-1}$$

✓ Explains why $\tau = c$ is a good choice, in practice

$$L_{\zeta_{\alpha}^2-1}^{\mathrm{rw}}$$

- ✓ Explains why $\tau = c$ is a good choice, in practice
- $\checkmark \tau = \zeta_{\alpha}^2 1$: minimal regularization for detection down to the threshold

Dall'Amico, Spectral clustering - ICASSP 2020

A unified framework

Dall'Amico, Spectral clustering - ICASSP 2020

A unified framework

The non-backtracking matrix

The classical Laplacians

25/31

The classical Laplacians

For easy detection problems: $\zeta_{lpha}
ightarrow 1$

The classical Laplacians

For easy detection problems: $\zeta_{lpha}
ightarrow 1$

$$[(\zeta_{\alpha}^{2}-1)I_{n}+D-\zeta_{\alpha}A] \rightarrow D-A$$
$$[D+(\zeta_{\alpha}^{2}-1)I_{n}]^{-1}A \rightarrow D^{-1}A$$

A unified framework

イロト イ団ト イミト イミト 一部

Performance on real networks

Dataset	n	С	Ф	k	Alg	$H_{\sqrt{c\Phi}}$	В	L ^{rw}	$\mathcal{L}_{ au}^{ ext{sym}}$
Karate	34	4.6	1.7	2	0.37	0.37	0.37	0.37	0.37
Dolphins	62	5	1.3	2	0.38	0.34	0.22	0.38	0.38
Polbooks	105	8.4	1.4	<u>3</u>	0.50	0.50	0.45	0.50	0.50
Football	115	10.7	1	<u>12</u>	0.60	0.60	0.60	0.60	0.60
Mail	1133	9.6	1.9	21	0.50	0.40	0.37	0.48	0.50
Polblogs	1222	27,4	3	2	0.43	0.27	0.23	0.00	0.43
Tv	3892	8.9	3	41	0.85	0.56	0.55	0.55	0.78
Facebook	4039	43.7	2.4	55	0.79	0.49	0.48	0.70	0.58
GrQc	4158	6.5	2.8	29	0.80	0.51	0.51	0.33	0.79
Power grid	4941	2.7	1.5	25	0.92	0.33	0.31	0.92	0.85
Politicians	5908	14.1	3	62	0.85	0.54	0.51	0.74	0.74
GNutella P2P	6299	6.6	2.7	4	0.40	0.14	0.14	0.00	0.35
Wikipedia	7066	28.3	5.1	22	0.27	0.18	0.16	0.34	0.27
HepPh	11204	21.0	6.2	60	0.57	0.42	0.42	0.27	0.52
Vip	11565	11.6	4.4	53	0.65	0.32	0.32	0.16	0.54

イロト イ部ト イミト イミト

The non-backtracking matrix

Conclusion

Contributions

 \checkmark A unified framework for spectral clustering in sparse graphs

Contributions

- ✓ A unified framework for spectral clustering in sparse graphs
- \checkmark Sparsity and heterogeneity are properly taken into account

Contributions

- ✓ A unified framework for spectral clustering in sparse graphs
- ✓ Sparsity and heterogeneity are properly taken into account
- ✓ Best performing algorithm

Contributions

- ✓ A unified framework for spectral clustering in sparse graphs
- ✓ Sparsity and heterogeneity are properly taken into account
- ✓ Best performing algorithm

Future perspectives

✓ More structured graphs (time-evolving, multi-modal...)

Contributions

- ✓ A unified framework for spectral clustering in sparse graphs
- ✓ Sparsity and heterogeneity are properly taken into account
- ✓ Best performing algorithm

Future perspectives

- ✓ More structured graphs (time-evolving, multi-modal...)
- ✓ Is hardness-dependent regularization more general? (SSL kernel methods, weighted graphs...)

Main references (Dall'Amico, Couillet, Tremblay)

- Optimal Laplacian regularization for sparse spectral community detection. ICASSP 2020
- A unified framework for spectral clustering in sparse graphs, arXiv:2003.09198
- Revisiting the Bethe-Hessian: improved community detection in sparse heterogeneous graphs, NeurIPS 2019.

Main references (Dall'Amico, Couillet, Tremblay)

- Optimal Laplacian regularization for sparse spectral community detection. ICASSP 2020
- A unified framework for spectral clustering in sparse graphs, arXiv:2003.09198
- Revisiting the Bethe-Hessian: improved community detection in sparse heterogeneous graphs, NeurIPS 2019.

Thank you!