

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No.	1460.1003
First Named Inventor or Application Identifier:	Hideyuki MIYATA et al.
Express Mail Label No.	

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

ADDRESS TO: **Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231**

1. Fee Transmittal Form
2. Specification, Claims & Abstract [Total Pages: 66]
3. Drawing(s) (35 USC 113) [Total Sheets: 22]
4. Oath or Declaration [Total Pages: 3]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 CFR 1.63(d)) (for continuation/divisional with Box 17 completed)
 - i. DELETION OF INVENTOR(S)
Signed statement attached deleting inventor(s) named in the prior application,
see 37 CFR 1.63(d)(2) and 1.33(b).
5. Incorporation by Reference (usable if Box 4b is checked)
The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
6. Microfiche Computer Program (*Appendix*)
7. Nucleotide and/or Amino Acid Sequence Submission (*if applicable, all necessary*)
 - a. Computer Readable Copy
 - b. Paper Copy (identical to computer copy)
 - c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

8. Assignment Papers (cover sheet & document(s))
9. 37 CFR 3.73(b) Statement (*when there is an assignee*) Power of Attorney
10. English Translation Document (*if applicable*)
11. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations
12. Preliminary Amendment
13. Return Receipt Postcard (MPEP 503) (*Should be specifically itemized*)
14. Small Entity Statement(s) Statement filed in prior application, status still proper and desired.
15. Certified Copy of Priority Document(s) (*if foreign priority is claimed*)
16. Other:

17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information:

Continuation Divisional Continuation-in-part (CIP) of prior application No: /

18. CORRESPONDENCE ADDRESS

STAAS & HALSEY LLP
Attn: H. J. Staas
700 Eleventh Street, N.W. Suite 500
Washington, DC 20001

Telephone: (202) 434-1500
Facsimile: (202) 434-1501

OPTICAL COMMUNICATION APPARATUS AND OPTICAL ADD/DROP APPARATUS

BACKGROUND OF THE INVENTION

5 1. Field of the Invention

The present invention, an optical communication apparatus which transmits wavelength-division multiplexed signal light, relates to an optical communication apparatus whose operation is stabilized irrespective of 10 presence/absence of input light or a modulated signal to be transmitted, as well as to an optical add/drop apparatus using such an optical communication apparatus as an addition apparatus.

15 2. Description of the Related Art

Ultra-long-distance and large-capacity optical communication apparatuses are now required to construct future multimedia networks. Concentrated studies are now being made of the wavelength-division multiplexing as a method for realizing large-capacity apparatuses in view of such 20 advantages that it can effectively utilize a wide bandwidth and a large capacity of an optical fiber.

In particular, studies are in progress about an optical add/drop apparatuses of the wavelength-division multiplexing method and optical modulators used in the addition section of 25 such an optical add/drop apparatus that is required in each node of the lightwave network.

In the Mach-Zehnder interferometer type optical modulators (hereinafter abbreviated as "MZ modulator") that are used as optical modulators in conventional optical 30 communication apparatuses, it is necessary to stabilize the output optical signal with respect to a variation and the variation with temperature and time. Japanese Patent Laid-Open No. 251815/1991 discloses an operating point control circuit for controlling the operating point of an MZ modulator 35 intended for this purpose.

FIG. 20 is a block diagram of an MZ modulator having this conventional operating point control circuit.

As shown in FIG. 20, light exit from a light source 310 such as a laser diode (hereinafter abbreviated as "LD") is entered to an MZ modulator 311. A modulation signal including information to be sent and a low-frequency signal of a predetermined frequency f_0 that is outputted from a low-frequency oscillator 324 are inputted to a variable gain amplifier 313. The variable gain amplifier 313 superimposes the low-frequency signal of the predetermined frequency f_0 on the modulation signal and outputs it, which is then inputted to one modulation-input terminal of the MZ modulator 311 via an amplifier 314 for obtaining a predetermined signal level and a coupling capacitor 315. A bias T circuit consisting of an inductor 316 and a capacitor 317 is connected to the other modulation-input terminal of the MZ modulator 311. The capacitor 317 is grounded via resistor 318. A portion consisting of the amplifier 314, the coupling capacitor 315, the bias T circuit, and the resistor 318 are equivalent to a drive circuit of the MZ modulator 311.

The MZ modulator 311 modulates light that is supplied from the light source 310 with a signal that is given by the drive circuit and outputs a resulting signal.

Part of an optical output of the MZ modulator 311 is branched and taken out by an optical coupler 312. The branched part of the optical output is detected by a photoelectric converter 319 such as a photodiode (hereinafter abbreviated as "PD"), and the detection signal is amplified by a buffer amplifier 320 that selectively amplifies a frequency component of f_0 and inputted to a multiplier 321. The low-frequency signal that is outputted from the low-frequency oscillator 324 is also inputted to the multiplier 321. The multiplier 321 compares the phases of the signal that is inputted from the buffer amplifier 320 and the low-frequency signal that is inputted from the low-frequency oscillator 324, and outputs a signal in accordance with a phase difference.

Therefore, the multiplier 321 can detect the low-frequency signal of the predetermined frequency f_0 that was superimposed by the variable gain amplifier 313.

An output signal of the multiplier 321 is inputted to one input terminal of a differential amplifier 323 via a low-pass filter (hereinafter abbreviated as "LPF") 322 that allows passage of a frequency component of the predetermined frequency f_0 or less. On the other hand, the other input terminal of the differential amplifier 323 is grounded. An output of the differential amplifier 323 is inputted to the inductor 316 of the bias T circuit as an error signal to be used for moving the operating point of the MZ modulator 311, whereby the bias value is variably controlled so as to correct the operating point.

In the MZ modulator having the above configuration, the superimposed low-frequency signal of the frequency f_0 does not appear in the output light when the bias value is in the optimum state.

FIG. 21 is a waveform diagram showing an operation in a state that the operating point drifts in the MZ modulator having the above circuit configuration. Part (a) of FIG. 21 shows input/output characteristics of the MZ modulator, in which curve B represents an input/output characteristic in a case where the operating point has drifted to the high-voltage side from that of curve A and curve C represents a case where the operating point has drifted to the low-voltage side from that of curve A. Part (b) of FIG. 21 shows a waveform of an input signal and parts (c), (c1), and (c2) of FIG. 21 show waveforms of output optical signals of the respective input/output characteristics.

As shown in FIG. 21, when the operating point has drifted to the high-voltage side or the low-voltage side, low-frequency signal of the frequency f_0 superimposed in output light appears with a phase that is inverted by 180° depending on the drift direction. Therefore, the bias voltage can be controlled by using a signal coming from the multiplier 321, whereby the drift of the operating point can be compensated for.

In this manner, a drift of the operating point can be compensated for by taking out a low-frequency signal from

output light that has been produced by modulating input light with a modulation signal and the low-frequency signal and then comparing its phase with the phase of the original low-frequency signal. Therefore, the operating point control 5 circuit described above can control the operating point to stabilize it in a case where input light (output light) and a modulation signal exist.

FIG. 22 is a block diagram showing a conventional optical add/drop apparatus.

As shown in FIG. 22, after wavelength-division multiplexed signal light transmitting through an optical transmission line is amplified to a predetermined light intensity, it is then entered to an OADM (optical add-drop multiplexer) node section 350 which adds/drops on the wavelength-division multiplexed signal light. Signal light beams of predetermined wavelengths are dropped by the OADM node section 350 and subjected to receiving operations in optical dropping sections 352 that are provided in the same number of signal light beams to be branched by an optical coupler 351. 10 15 Signal light beams to be added by the OADM node section 350 is generated by optical addition sections 355. The optical addition sections 355 are provided in the same number of signal light beams of respective wavelengths to be added by the OADM node section 350. The added signal light beams and the signal 20 25 light that has not been dropped in the OADM node section 350 are wavelength-division multiplexed, amplified, and then outputted to the optical transmission line.

In each optical addition section 355 of this optical add/drop apparatus, light that is exit from an LD 360 for 30 generating light of a particular wavelength is amplified by an optical amplifier 361. Output light of the optical amplifier 361 is modulated by an optical modulator 362 having the above-described operating point control circuit. The modulated optical signal is amplified by an optical amplifier 363 and then entered to an optical coupler 354. The optical 35 coupler 354 adds this optical signal to the OADM node section 350 together with optical signals of other wavelengths that

have been generated by other optical addition sections 355 having the same configuration.

Incidentally, in the MZ modulator 311 shown in FIG. 20, the following problem occurs when there is a short break in 5 which the input light entered to the MZ modulator 311 is temporarily non-existent and then recovers.

When the input light no longer exists, there is no light output to be branched by the optical coupler 312 and hence the operating point becomes indefinite. That is, in part (b) of 10 FIG. 21, it is impossible to judge whether the bias voltage V_b is (1) 0 V or less, (2) greater than 0 V and smaller than V_p , or (3) V_p or more.

If the input light recovers in such an indefinite state, 15 in case (2) the optimum operating point is established by the operation of the bias T circuit. However, the optimum operating point is not established in cases (1) and (3); V_b is predetermined at 0 V in case (1) and V_b is predetermined at V_p in case (3).

By these reasons, when a short break occurs in the input 20 light that is incident on the MZ modulator 311, the optimum operating point is not necessarily obtained.

Hitherto, the above problem did not occur because the MZ modulator 311 was used in terminal stations or the like where no short breaks occur on the input light. However, where the 25 MZ modulator 311 is used in each optical addition section 355 of the optical add/drop apparatus of FIG. 22, it is necessary to switch the wavelength of addition light to a wavelength that is not used in a wavelength-division multiplexed signal transmitting through the optical transmission line. This 30 necessarily causes, during such wavelength switching, a state where no input light exists. Therefore, the solving the problem of being in the above indefinite state is a particularly important issue.

On the other hand, in the optical add/drop apparatus of 35 FIG. 22, when there is no input light to the optical modulator 362, ASE (amplified spontaneous emission), which is a noise level spontaneously generated by the optical amplifiers 361

and 363, is outputted to the optical transmission line. Further, each optical addition section 355 does not always have a modulation signal to be added. When no such modulation signal exists, not only ASE but also input light that is not 5 modulated with any modulation signals are outputted to the optical transmission line.

Further, in optical communication networks, the judgement of malfunctions occurring therein is based on the light intensity. Therefore, the malfunction cannot be judged 10 if ASE or input light that is not modulated with a modulation signal is inputted to an optical transmission line.

SUMMARY OF THE INVENTION

The first object of the present invention is to provide 15 an optical communication apparatus for keeping the operating point of an optical modulator stable even when the input light or the modulation signal is temporarily non-existent in the optical communication apparatus.

The object is attained by the optical communication 20 apparatus for detecting the light intensity of light in an optical modulator or the intensity of a modulation signal and for controlling the operating point of the optical modulator based on the result of detection.

The second object of the present invention is to provide 25 an optical communication apparatus which does not exit ASE nor input light that is not modulated with an modulation signal even when the input light or the modulation signal is temporarily non-existent in the optical communication apparatus.

The object is attained by the optical communication apparatus for detecting the intensity of light in an optical modulator or the intensity of a modulation signal and for regulating the intensity of light transmitted to an optical transmission line from the optical modulator based on the 35 result of detection.

The regulation of the light intensity is regulated, for example, by an optical attenuator for attenuating the

intensity of light entered to the optical modulator or by an optical attenuator for attenuating the intensity of light exit from the optical modulator. As another example, switching the optical modulator regulates the regulation of the light
5 intensity.

As one of aspects of the present invention, the optical communication apparatus can be used in an optical add/drop apparatus for adding and dropping an optical signal to and from wavelength-division multiplexed optical signal.

10 As another aspect of the present invention, the optical add/drop apparatus, even when there are any unused communication apparatuses, since the input light or the output of the optical modulator of an unused addition apparatus and the modulation signal are monitored, the operating point of
15 the optical modulator is kept stable and neither ASE nor input light that is not modulated with a modulation signal is exit from such an addition apparatus.

20 Besides, another objects and characteristics of the present invention will be described specifically as follows referring to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the optical communication apparatus according to the first embodiment;

25 FIG. 2 is a block diagram of the optical communication apparatus according to the second embodiment;

FIG. 3 is a block diagram of the optical communication apparatus according to the third embodiment;

30 FIG. 4 is a block diagram of the optical communication apparatus according to the fourth embodiment;

FIG. 5 is a block diagram of the optical communication apparatus according to the fifth embodiment;

FIG. 6 is a block diagram of the optical communication apparatus according to the sixth embodiment;

35 FIG. 7 is a block diagram of the optical communication apparatus according to the seventh embodiment;

FIG. 8 is a block diagram of the optical communication

apparatus according to the eighth embodiment;

FIG. 9 is a block diagram of the optical communication apparatus according to the ninth embodiment;

FIG. 10 is a block diagram of the optical communication 5 apparatus according to the tenth embodiment;

FIG. 11 is a block diagram of the optical communication apparatus according to the eleventh embodiment;

FIG. 12 is a block diagram of the optical communication apparatus according to the twelfth embodiment;

10 FIG. 13 is a block diagram of the optical communication apparatus according to the thirteenth embodiment;

FIG. 14 is a block diagram of the optical add/drop apparatus according to the fourteenth embodiment;

15 FIG. 15 is a block diagram of the optical add/drop apparatus according to the fifteenth embodiment;

FIG. 16 is a block diagram of the optical add/drop apparatus according to the sixteenth embodiment;

FIG. 17 is a block diagram of the optical add/drop apparatus according to the seventeenth embodiment;

20 FIG. 18 is a block diagram of the optical add/drop apparatus according to the eighteenth embodiment;

FIG. 19 is a block diagram of the optical add/drop apparatus according to the nineteenth embodiment;

25 FIG. 20 is a block diagram of an MZ modulator having a conventional operating point control circuit;

FIG. 21 is a waveform diagram showing an operation in a state that the operating point drifts; and

FIG. 22 is a block diagram of a conventional optical add/drop apparatus.

30

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The embodiment of optical communication apparatuses according to the invention will be hereinafter described with reference to the accompanying drawings. Besides, the same reference numerals of each figure indicate that they have the same constructions and description thereof will be omitted in the following.

The optical communication apparatus according to the first embodiment will be explained based on the accompanying figure.

In FIG.1, this optical communication apparatus is composed of optical branching unit 10 and 12, an optical modulating unit 11, an operating point controlling unit 13, a controlling unit 14, and an optical detecting unit 15.

Light entered to an input port is branched by the optical branching unit 10 that branches light into two. The first branched input light that has been branched off by the optical branching unit 10 is modulated by the optical modulating unit 11 in accordance with a modulation signal to be transmitted. A modulated optical signal that is outputted from the optical modulating unit 11 is branched by the optical branching unit 12 that branches light into two.

The first optical signal branched off by the optical branching unit 12 is exit to an output port. On the other hand, the second optical signal branched off by the optical branching unit 12 is entered to the operating point controlling unit 13 that controls the operating point of the optical modulating unit 11 is entered.

The operating point controlling unit 13 can keep the operating point of the optical modulating unit 11 in the optimum state when receiving a part of the optical signal that is exit from the optical modulating unit 11.

On the other hand, the optical detecting unit 15 detects the intensity of the second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity. For example, the optical detecting unit 15 outputs a signal when the light intensity is a predetermined value or less. Alternatively, the optical detecting unit 15 outputs a signal when the light intensity is zero. So that the operating point controlling unit 13 can keep the operating point stable, the signal that is generated in accordance with the light intensity is inputted to the controlling unit 14 that controls the operation of the operating point controlling unit 13.

When receiving a signal from the optical detecting unit 15, the controlling unit 14 controls stopping the operation of the operating point controlling unit 13. Alternatively, the controlling unit 14 controls the operating point 5 controlling unit 13 so that it keeps the operating point in a limited range.

In this manner, the optical detecting unit 15 can detect whether the intensity of input light is a predetermined value or less. Therefore, when the intensity of the input light is 10 the predetermined value or less, the controlling unit 14 can control, in accordance with the output of the optical detecting unit 15, the operating point controlling unit 13 so that it can keep the operating point stable. As a result, in the 15 optical communication apparatus having the above configuration, the operating point can be kept stable even when input light is temporarily non-existent.

Naturally, the optical detecting unit 15 does not output any signals when the intensity of input light is larger than the predetermined value so as to use the optical modulating unit 11. Therefore, the operating point controlling unit 13 controls the operating point to the optimum value based only 20 on the output of the optical modulating unit 11 that is entered via the optical branching unit 12.

Next, the optical communication apparatus according to 25 the second embodiment will be explained based on the accompanying figure.

As shown in FIG. 2, the optical communication apparatus is composed of an optical modulating unit 11, an optical branching unit 21, an operating point controlling unit 13, a 30 controlling unit 14, and an optical detecting unit 23.

Light entered to an input port is modulated by the optical modulating unit 11. The modulated optical signal is branched by the optical branching unit 21 that branches light into three.

35 The first optical signal that has been branched off by the optical branching unit 21 is exit to an output port. On the other hand, the second optical signal that has been

branched off by the optical branching unit 21 is entered to the operating point controlling unit 13.

On the other hand, the optical detecting unit 23 detects the light intensity of the third optical signal branched off 5 by the optical branching unit 21, and outputs a signal in accordance with the detected light intensity. For example, the optical detecting unit 23 outputs a signal when the light intensity of the modulated optical signal is a predetermined value or less. Alternatively, the optical detecting unit 23 10 outputs a signal when the light intensity is zero. The signal that is generated in accordance with the light intensity is inputted to the controlling unit 14.

When the intensity of input light is a predetermined value or less, the intensity of a modulated optical signal that 15 is exit from the optical modulating unit 11 is also a predetermined value or less. Because of this, whether the intensity of the input light is the predetermined value or less can be detected by detecting the light intensity of the modulated optical signal with the optical detecting unit 23. 20 Therefore, the controlling unit 14 can control, in accordance with the output of the optical detecting unit 23, the operating point controlling unit 13 so that it can keep the operating point stable. As a result, in the optical communication apparatus having the above configuration, the operating point 25 can be kept stable even when input light is temporarily non-existent.

Naturally, the optical detecting unit 15 does not output any signals when the intensity of input light is larger than the predetermined value so as to use the optical modulating 30 unit 11. Therefore, the operating point controlling unit 13 controls the operating point to the optimum value only based on the output of the optical modulating unit 11 that is entered via the optical branching unit 21.

Next, the optical communication apparatus according to 35 the third embodiment will be explained based on the accompanying figure.

As shown in FIG. 3, the optical communication apparatus

is composed of an optical modulating unit 11, an optical branching unit 12, an operating point controlling unit 13, a controlling unit 25, and a modulation signal detecting unit 26.

5 Light entered to an input port is modulated by the optical modulating unit 11. A modulated optical signal is branched by the optical branching unit 12.

10 The first optical signal branched off by the optical branching unit 12 is exit to an output port. On the other hand, the second optical signal branched off by the optical branching unit 12 is entered to the operating point controlling unit 13.

15 A modulation signal to be transmitted is inputted to not only the optical modulating unit 11 but also the modulation signal detecting unit 26. The modulation signal detecting unit 26 detects the intensity of the modulation signal and outputs a signal in accordance with the detected signal intensity. For example, the modulation signal detecting unit 26 outputs a signal when the signal intensity becomes a predetermined value or less. Alternatively, the modulation 20 signal detecting unit 26 outputs a signal when the signal intensity becomes zero. The signal that is generated in accordance with the signal intensity is inputted to the controlling unit 25.

25 When receiving a signal from the modulation signal detecting unit 26, the controlling unit 25 stops the operation of the operating point controlling unit 13. Alternatively, the controlling unit 25 controls the operating point controlling unit 13 so that it keeps the operating point in a limited range.

30 In this manner, the modulation signal detecting unit 26 can detect whether the intensity of a modulation signal is a predetermined value or less. Therefore, when the intensity of the modulation signal is the predetermined value or less, the controlling unit 25 can control, in accordance with the 35 output of the modulation signal detecting unit 26, the operating point controlling unit 13 so that it keeps the operating point stable. As a result, in the optical

communication apparatus having the above configuration, the operating point can be kept stable even when modulation signal is temporarily non-existent.

Naturally, the modulation signal detecting unit 26 does not output any signals when there is information to send and the intensity of a modulation signal to be transmitted is larger than the predetermined value. Therefore, the operating point controlling unit 13 controls the operating point to the optimum value only based on the output of the optical modulating unit 11 that is entered via the optical branching unit 12.

Next, the optical communication apparatus according to the fourth embodiment will be explained based on the accompanying figure.

In FIG.4, this optical communication apparatus is composed of an optical branching unit 10, an optical modulating unit 11, an optical attenuating unit 31, an attenuation amount controlling unit 32, and an optical detecting unit 33.

FIG. 4 shows a configuration in which first branched input light that is exit from the optical branching unit 10 is exit to an output port via the optical attenuating unit 31 and the optical modulating unit 11.

On the other hand, as shown with broken lines in the same figure, the optical communication apparatus can be configured as the output light is exit to an output port via the optical modulating unit 11 and the optical attenuating unit 13.

Light entered to an input port is branched by the optical branching unit 10. The first branched input light that has been branched off by the optical branching unit 10 is entered, via the optical attenuating unit 31, to the optical modulating unit 11, where it is modulated. A modulated optical signal that is exit from the optical modulating unit 11 is exit to the output port.

The optical attenuating unit 31 trajects or attenuates it to predetermined light intensity (including zero). Alternatively, the optical attenuating unit 31 is a single input/plural output optical switch. When the optical

attenuating unit 31 is such an optical switch, one output terminal is connected to the optical modulating unit 11 and the other output terminal(s) are not connected to anything.

On the other hand, the optical detecting unit 33 detects the intensity of the second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity. For example, the optical detecting unit 33 outputs a signal when the light intensity is a predetermined value or less. Or, the optical detecting unit 33 outputs a signal when the light intensity is zero. The signal that is generated in accordance with the light intensity is inputted to the attenuation amount controlling unit 32.

The attenuation amount controlling unit 32 controls the optical attenuating unit 31. That is, in accordance with a signal that is outputted from the optical detecting unit 33, the attenuation amount controlling unit 32 controls the optical attenuating unit 31 so that it attenuates the input light to the predetermined intensity. Alternatively, where the optical attenuating unit 31 is an optical switch, in accordance with a signal that is outputted from the optical detecting unit 33, the attenuation amount controlling unit 32 switches the output of inputted light to an output terminal to which nothing is connected.

In this manner, the optical detecting unit 33 can detect whether the intensity of input light is a predetermined value or less. Therefore, when the intensity of the input light is the predetermined value or less, the attenuation amount controlling unit 32 can output inputted light to the optical modulating unit 11 attenuating it to predetermined light intensity by controlling the optical attenuating unit 31 in accordance with the output of the optical detecting unit 33. Alternatively, the attenuation amount controlling unit 32 can output the input light to a terminal that is not connected to the optical modulating unit 11. As a result, in the optical communication apparatus having the above configuration, ASE is not exit to the output port when no input light exists.

Naturally, the optical detecting unit 33 does not output any signals when the intensity of input light is larger than the predetermined value so as to use the optical modulating unit 11. At this time, the attenuation amount controlling unit 32 controls the optical attenuating unit 31 so as to trajectory the input light or switch to the terminal that is connected to the optical modulating unit 11.

Next, the optical communication apparatus according to the fifth embodiment will be explained based on the 10 accompanying figure.

In FIG. 5, this optical communication apparatus is composed of an optical branching unit 10, an optical modulating unit 11, an optical detecting unit 33, and a modulation controlling unit 35.

15 Light entered to an input port is branched by the optical branching unit 10. The first branched input light that has been branched off by the optical branching unit 10 is modulated by the optical modulating unit 11, and the modulated optical signal is exit to an output port.

20 On the other hand, the optical detecting unit 33 detects the intensity of the second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity. The signal that is generated in accordance with the light intensity 25 is inputted to the modulation controlling unit 35.

The modulation controlling unit 35 controls the optical modulating unit 11. That is, in accordance with the signal that is outputted from the optical detecting unit 33, the modulation controlling unit 35 controls the optical modulating 30 unit 11 so that it attenuates the input light to the predetermined intensity. For example, the modulation controlling unit 35 can prevent the optical modulating unit 11 from producing any output by not supplying any energy to the optical modulating unit 11. Alternatively, where the 35 optical modulating unit 11 is an MZ modulator, this can be done by shifting the phases of branched input light beams transmitting through two respective optical waveguides in the

MZ modulator by forming a phase difference of 180°. Alternatively, where the optical modulating unit 11 utilizes the acousto-optical effect, this can be done by applying to it an RF signal for selecting a wavelength other than the 5 wavelength of the input light.

In this manner, the optical detecting unit 33 can detect whether the intensity of input light is a predetermined value or less. Therefore, when the intensity of the input light is the predetermined value or less, the modulation controlling 10 unit 35 can prevent the optical modulating unit 11 from producing any output by controlling it in accordance with the output of the optical detecting unit 33. As a result, in the optical communication apparatus having the above configuration, neither ASE nor input light that is not modulated with a modulation signal is exit to the output port 15 even when input light exists but no modulation signal exists.

Naturally, the optical detecting unit 33 does not output any signals when the intensity of input light is larger than the predetermined value so as to use the optical modulating unit 11. At this time, the optical modulating unit 11 operates 20 normally as a modulating unit because it does not receive a signal from the modulation controlling unit 35.

Next, the optical communication apparatus according to the sixth embodiment will be explained based on the 25 accompanying figure.

In FIG. 6, this optical communication apparatus is composed of an optical attenuating unit 31, an optical modulating unit 11, an attenuation amount controlling unit 41, and a modulation signal detecting unit 42.

30 FIG. 6 shows a configuration in which light entered to an input port is exit to an output port via the optical attenuating unit 31 and the optical modulating unit 11.

On the other hand, as shown with broken lines in the same figure, the optical communication apparatus can be configured 35 as the output light is exit to an output port via the optical modulating unit 11 and the optical attenuating unit 13.

Light entered to the input port is entered, via the

optical attenuating unit 31, to the optical modulating unit 11, where it is modulated. A modulated optical signal that is exit from the optical modulating unit 11 is exit to the output port.

5 A modulation signal to be transmitted is inputted to not only the optical modulating unit 11 but also the modulation signal detecting unit 42. The modulation signal detecting unit 42 detects the intensity of the modulation signal and outputs a signal in accordance with the detected signal 10 intensity. For example, the modulation signal detecting unit 42 outputs a signal when the signal intensity becomes a predetermined value or less. Alternatively, the modulation signal detecting unit 42 outputs a signal when the signal intensity becomes zero. The signal that is generated in accordance with the signal intensity is inputted to the 15 attenuation amount controlling unit 41.

20 The attenuation amount controlling unit 41 controls the optical attenuating unit 31. That is, in accordance with a signal that is outputted from the modulation signal detecting unit 42, the attenuation amount controlling unit 41 controls the optical attenuating unit 31 so that it attenuates the input light to predetermined light intensity. Alternatively, where the optical attenuating unit 31 is an optical switch, in accordance with a signal that is outputted from the modulation 25 signal detecting unit 33, the attenuation amount controlling unit 41 switches the output of the inputted light to an output terminal to which nothing is connected.

30 In this manner, the modulation signal detecting unit 42 can detect whether the intensity of a modulation signal is a predetermined value or less. Therefore, when the intensity of the modulation signal is the predetermined value or less, the attenuation amount controlling unit 41 can exit inputted light to the optical modulating unit 11 attenuating it to predetermined light intensity by controlling the optical 35 attenuating unit 31 in accordance with the output of the modulation signal detecting unit 42. Alternatively, the attenuation amount controlling unit 41 can exit inputted light

to a terminal that is not connected to the optical modulating unit 11. As a result, in the optical communication apparatus having the above configuration, ASE is not exit to the output port when no input light exists. Further, neither ASE nor 5 input light that is not modulated with a modulation signal is exit to the output port even when input light exists but no modulation signal exists.

Naturally, the modulation signal detecting unit 42 does not output any signals when there is information to send and 10 the intensity of a modulation signal to be transmitted is larger than the predetermined value. At this time, the attenuation amount controlling unit 41 controls the optical attenuating unit 31 so that it trajects the input light or switches to the terminal that is connected to the optical 15 modulating unit 11.

The optical communication apparatus according to the seventh embodiment will be explained based on the accompanying figure.

In FIG.7, this optical communication apparatus is 20 composed of an optical modulating unit 11, a modulation signal detecting unit 42, and a modulation controlling unit 45.

Light entered to an input port is modulated by the optical modulating unit 11. A modulated optical signal is exit to an output port.

25 A modulation signal to be transmitted is inputted to not only the optical modulating unit 11 but also to the modulation signal detecting unit 42. The modulation signal detecting unit 42 outputs a signal in accordance with the intensity of the modulation signal. The signal that is outputted from the 30 modulation signal detecting unit 42 is inputted to the modulation controlling unit 45.

The modulation controlling unit 45 controls the optical modulating unit 11. That is, in accordance with a signal that is outputted from the modulation signal detecting unit 42, the 35 modulation controlling unit 45 controls the optical modulating unit 11 so that it attenuates the input light to the predetermined light intensity. For example, the modulation

controlling unit 45 can prevent the optical modulating unit 11 from producing any outputs by not supplying any energy to it. Alternatively, where the optical modulating unit 11 is an MZ modulator, this can be done by shifting the phases of
5 branched input light beams transmitting through two respective optical waveguides in the MZ modulator by forming a phase difference of 180°. As a further alternative, where the optical modulating unit 11 utilizes the acousto-optical effect, this can be done by applying to it an RF signal for selecting
10 a wavelength other than the wavelength of the input light.

In this manner, the modulation signal detecting unit 42 can detect whether the intensity of a modulation signal is a predetermined value or less. Therefore, when the intensity of the modulation signal is the predetermined value or less,
15 the modulation controlling unit 45 can prevent the optical modulating unit 11 from producing any outputs by controlling it. As a result, in the optical communication apparatus having the above configuration, neither ASE nor input light that is not modulated with a modulation signal is exit to the output
20 port even when input light exists but no modulation signal exists.

Naturally, the modulation signal detecting unit 42 does not output any signals when there is information to send and the intensity of a modulation signal to be transmitted is larger than the predetermined value. At this time, the optical
25 modulating unit 11 operates normally as a modulating unit because it does not receive a signal from the modulation controlling unit 45.

Next, the optical communication apparatus according to
30 the eighth embodiment will be explained based on the accompanying figure.

As shown in FIG. 8, this optical communication apparatus is composed of optical branching unit 10 and 12, an optical attenuating unit 50, an optical modulating unit 11, an
35 operating point controlling unit 13, a controlling unit 14, and an optical detecting unit 15.

Light entered to an input port is branched by the optical

branching unit 10. First branched input light is entered to the optical attenuating unit 50. Output light of the optical attenuating unit 50 is modulated by the optical modulating unit 11. A modulated optical signal is branched by an optical 5 branching unit 12. The first optical signal branched off by the optical branching unit 12 is exit to an output port. On the other hand, the second optical signal branched off by the optical branching unit 12 is entered to the operating point controlling unit 13.

10 The optical attenuating unit 50 trajects received input light or attenuates it to predetermined light intensity (including zero) in accordance with the intensity of the input light. Alternatively, the optical attenuating unit 50 is a single input/plural output optical switch. Where the optical 15 attenuating unit 50 is such an optical switch, one output terminal is connected to the optical modulating unit 11 and the other output terminal(s) are not connected to anything.

On the other hand, the optical detecting unit 15 detects the intensity of second branched input light that has been 20 branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity. The signal that is generated in accordance with the light intensity is inputted to the controlling unit 14.

The optical communication apparatus having the above 25 configuration not only operates in the same manner as the optical communication apparatus according to the first embodiment of the invention but also does not exit ASE to the output port when no input light exists.

That is, the optical attenuating unit 50 judges whether 30 the intensity of the light received is a predetermined value or less and attenuates the light received in accordance with the judgment result. Therefore, when the intensity of the light received is the predetermined value or less, the optical attenuating unit 50 attenuates it to predetermined intensity 35 and outputs resulting light. Alternatively, where the optical attenuating unit 50 is an optical switch, when the intensity of the light received is the predetermined value or

less, the optical attenuating unit 50 switches to outputting the light received to an output terminal to which nothing is connected. Therefore, the optical communication apparatus having the above configuration does not exit ASE to the output port when no input light exists.

Naturally, the optical attenuating unit 50 trajects input light and outputs it when the intensity of the input light is larger than the predetermined value so as to use the optical modulating unit 11. Alternatively, where the optical attenuating unit 50 is an optical switch, it switches to outputting the light received to the terminal that is connected to the optical modulating unit 11.

Note that, the optical attenuating unit 50 placed at the input of the optical modulating unit 11 in this optical communication apparatus as shown in FIG. 8 can also be placed at the output of the same.

Next, the optical communication apparatus according to the ninth embodiment will be explained based on the accompanying figure.

As shown in FIG. 9, this optical communication apparatus is composed of optical branching unit 10 and 12, an optical modulating unit 55, an operating point controlling unit 13, a controlling unit 14, and an optical detecting unit 15.

Light entered to an input port is branched by the optical branching unit 10. First branched input light is modulated by the optical modulating unit 55 in accordance with a modulation signal to be transmitted. The modulated optical signal that is exit from the optical modulating unit 55 is branched by the optical branching unit 12 that branches light into two beams.

The optical modulating unit 55 controls whether to output a modulated optical signal, in accordance with the intensity of the modulation signal or the intensity of the light received.

The first optical signal branched off by the optical branching unit 12 is exit to an output port. On the other hand, the second optical signal branched off by the optical branching

unit 12 is entered to the operating point controlling unit 13.

On the other hand, the optical detecting unit 15 detects the intensity of second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity. This signal is inputted to the controlling unit 14.

The optical communication apparatus having the above configuration not only operates in the same manner as the optical communication apparatus according to the first embodiment of the invention but also does not exit ASE to the output port when no input light exists.

The optical modulating unit 55 judges whether the intensity of the light received is a predetermined value or less or whether the intensity of the modulation signal is a predetermined value or less. As a result, the optical modulating unit 55 produces no output when the intensity of the light received is the predetermined value or less or the intensity of the modulation signal is the predetermined value or less. For example, it is possible to prevent the optical modulating unit 55 from producing any outputs by not supplying energy to it. Alternatively, where the optical modulating unit 11 is an MZ modulator, this can be done by shifting the phases of branched light beams transmitting through two respective optical waveguides in the MZ modulator by forming a phase difference of 180°. Alternatively, where the optical modulating unit 11 utilizes the acousto-optical effect, this can be done by applying to it an RF signal for selecting a wavelength other than the wavelength of the input light. Therefore, the optical communication apparatus having the above configuration does not exit ASE nor input light that is not modulated with a modulation signal even when input light exists but no modulation signal exists.

Naturally, the optical modulating unit 55 operates normally as a modulating unit when the intensity of the input light is larger than the predetermined value or when the intensity of the modulation signal is larger than the predetermined value so as to use the optical modulating unit

55.

Note that, the controlling unit 14 controlled by the optical communication apparatus according to the input light of the optical modulating unit 55 as shown in FIG. 9 can also 5 be controlled according to the output light of the optical modulating unit 55 or a modulation signal.

Next, the optical communication apparatus according to the tenth embodiment will be explained based on the accompanying figure.

10 In FIG.10, this optical communication apparatus is composed of optical branching unit 10 and 12, an optical modulating unit 11, an operating point controlling unit 13, a controlling unit 14, an optical detecting unit 15, an optical attenuating unit 31, an attenuation amount controlling unit 15 41, and a modulation signal detecting unit 42.

Light entered to an input port is branched by the optical branching unit 10. First branched input light is entered, via the optical attenuating unit 31, to the optical modulating unit 11, where it is modulated. A modulated optical signal is 20 branched by the optical branching unit 12.

The first optical signal branched off by the optical branching unit 12 is exit to an output port. On the other hand, the second optical signal branched off by the optical branching unit 12 is entered to the operating point controlling unit 13.

25 On the other hand, the optical detecting unit 15 detects the intensity of second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity. The signal that is generated in accordance with the light intensity 30 is inputted to the controlling unit 14.

A modulation signal to be transmitted is inputted to not only the optical modulating unit 11 but also the modulation signal detecting unit 42. The modulation signal detecting unit 42 detects the intensity of the modulation signal and 35 outputs a signal in accordance with the detected signal intensity, which is inputted to the attenuation amount controlling unit 41.

In this manner, the optical detecting unit 15 can detect whether the intensity of input light is a predetermined value or less. Therefore, when the intensity of the input light is the predetermined value or less, the controlling unit 14 can 5 control, in accordance with the output of the optical detecting unit 15, the operating point controlling unit 13 so that it keeps the operating point stable. As a result, in the optical communication apparatus having the above configuration, the operating point can be kept stable even when input light is 10 temporarily non-existent.

Naturally, the optical detecting unit 15 does not output any signals when the intensity of input light is larger than the predetermined value so as to use the optical modulating unit 11. Therefore, the operating point controlling unit 13 15 controls the operating point to the optimum value only based on the output of the optical modulating unit 11 that is entered via the optical branching unit 12.

Further, the modulation signal detecting unit 42 can detect whether the intensity of a modulation signal is a 20 predetermined value or less. Therefore, when the intensity of the modulation signal is the predetermined value or less, the attenuation amount controlling unit 41 can exit inputted light to the optical modulating unit 11 attenuating it to predetermined light intensity by controlling the optical 25 attenuating unit 31 in accordance with the output of the modulation signal detecting unit 42. Alternatively, the attenuation amount controlling unit 41 can exit the input light to a terminal that is not connected to the optical modulating unit 11. As a result, in the optical communication apparatus 30 having the above configuration, ASE is not exit to the output port when no input light exists. Further, neither ASE nor input light that is not modulated with a modulation signal is exit to the output port even when input light exists but no modulation signal exists.

35 Naturally, the modulation signal detecting unit 42 does not output any signals when there is information to send and the intensity of a modulation signal to be transmitted is

larger than the predetermined value. At this time, the attenuation amount controlling unit 41 controls the optical attenuating unit 31 so that it projects input light or causes the optical attenuating unit 11 to switch to supplying the 5 light received to the terminal that is connected to the optical modulating unit 11.

Note that, in this optical communication apparatus, the controlling unit 14 can be controlled according to the detection done by the optical detecting unit 15 on light output 10 from the optical modulating unit 11 together with having the optical attenuating unit 31 placed at the output of optical modulating unit 11, as shown in broken lines, instead of having the optical detecting unit 15 detect input light together with having the optical attenuating unit 31 placed at the input of 15 optical modulating unit 11, as shown in FIG. 10.

Next, the optical communication apparatus according to the eleventh embodiment will be explained based on the accompanying figure.

In FIG. 11, this optical communication apparatus is 20 composed of optical branching unit 10 and 12, an optical modulating unit 11, an operating point controlling unit 13, a controlling unit 14, an optical detecting unit 15, a modulation signal detecting unit 42, and a modulation controlling unit 45.

25 Light entered to an input port is branched by the optical branching unit 10. First branched input light is entered to the optical modulating unit 11, where it is modulated. A modulated optical signal is branched by the optical branching unit 12.

30 The first optical signal branched off by the optical branching unit 12 is exit to an output port. On the other hand, the second optical signal branched off by the optical branching unit 12 is entered to the operating point controlling unit 13.

35 On the other hand, the optical detecting unit 15 detects the intensity of second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity, which

is inputted to the controlling unit 14.

A modulation signal to be transmitted is inputted to not only the optical modulating unit 11 but also the modulation signal detecting unit 42. The modulation signal detecting unit 42 outputs a signal in accordance with the intensity of the modulation signal, and the signal that is outputted is inputted to the modulation controlling unit 45.

In this manner, the optical detecting unit 15 can detect whether the intensity of input light is a predetermined value or less. Therefore, when the intensity of the input light is the predetermined value or less, the controlling unit 14 can control, in accordance with the output of the optical detecting unit 15, the operating point controlling unit 13 so that it keeps the operating point stable. As a result, in the optical communication apparatus having the above configuration, the operating point can be kept stable even when input light is temporarily non-existent.

Naturally, the optical detecting unit 15 does not output any signals when the intensity of input light is larger than the predetermined value so as to use the optical modulating unit 11. Therefore, the operating point controlling unit 13 controls the operating point to the optimum value only based on the output of the optical modulating unit 11 that is entered via the optical branching unit 12.

Further, the modulation signal detecting unit 42 can detect whether the intensity of a modulation signal is a predetermined value or less. Therefore, when the intensity of the modulation signal is the predetermined value or less, the modulation controlling unit 45 can prevent the optical modulating unit 11 from producing any output by controlling the optical modulating unit 11. As a result, in the optical communication apparatus having the above configuration, neither ASE nor input light that is not modulated with a modulation signal is exit to the output port even when input light exists but no modulation signal exists.

Naturally, the modulation signal detecting unit 42 does not output any signals when there is information to send and

the intensity of a modulation signal to be transmitted is larger than the predetermined value. At this time, the optical modulating unit 11 operates normally as a modulating unit because it does not receive a signal from the modulation controlling unit 45.

Note that, the controlling unit 14 controlled by the optical communication apparatus according to the input light of the optical modulating unit 11 as shown in FIG.11 can also be controlled according to the output light of the optical modulating unit 11 or a modulation signal as shown with broken lines.

Next, the optical communication apparatus according to the twelfth embodiment will be explained based on the accompanying figure.

In FIG.12, this optical communication apparatus is composed of optical branching unit 10 and 12, an optical modulating unit 11, an operating point controlling unit 13, a controlling unit 14, an optical detecting unit 15, an optical attenuating unit 31, an attenuation amount controlling unit 61, and a modulation signal detecting unit 42.

Light entered to an input port is branched by the optical branching unit 10. First branched input light is entered, via the optical attenuating unit 31, to the optical modulating unit 11, where it is modulated. A modulated optical signal is branched by the optical branching unit 12.

The first optical signal branched off by the optical branching unit 12 is exit to an output port. On the other hand, the second optical signal branched off by the optical branching unit 12 is entered to the operating point controlling unit 13.

On the other hand, the optical detecting unit 15 detects the intensity of second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity, which is inputted to the controlling unit 14 and the attenuation amount controlling unit 61.

A modulation signal to be transmitted is inputted to not only the optical modulating unit 11 but also the modulation

signal detecting unit 42, where the intensity of the modulation signal is detected and a signal in accordance with the detected signal intensity is outputted. The output signal in accordance with the signal intensity is inputted to the 5 attenuation amount controlling unit 61.

The attenuation amount controlling unit 61 controls the optical attenuating unit 31. That is, the attenuation amount controlling unit 61 calculates the AND of the signal of the optical detecting unit 15 and the signal of the modulation 10 signal detecting unit 42, and controls the optical attenuating unit 31 so that it attenuates the light received to predetermined light intensity. Alternatively, where the optical attenuating unit 31 is an optical switch, in accordance with the signal of the optical detecting unit 15, the 15 attenuation amount controlling unit 61 switches the output of the inputted light to an output terminal to which nothing is connected.

In this manner, the optical detecting unit 15 can detect whether the intensity of input light is a predetermined value 20 or less. Therefore, when the intensity of the input light is the predetermined value or less, the controlling unit 14 can control, in accordance with the output of the optical detecting unit 15, the operating point controlling unit 13 so that it can keep the operating point stable. As a result, in the 25 optical communication apparatus having the above configuration, the operating point can be kept stable even when input light is temporarily non-existent.

Naturally, the optical detecting unit 15 does not output any signals when the intensity of input light is larger than 30 the predetermined value so as to use the optical modulating unit 11. Therefore, the operating point controlling unit 13 controls the operating point to the optimum value only based on the output of the optical modulating unit 11 that is entered via the optical branching unit 12.

35 Further, the modulation signal detecting unit 42 can detect whether the intensity of a modulation signal is a predetermined value or less. The attenuation amount

controlling unit 61 also receives a signal from the optical detecting unit 15 and calculates the AND of this signal and a signal of the modulation signal detecting unit 42. Therefore, when the intensity of the input light is the predetermined value or less or when the intensity of the modulation signal is the predetermined value or less, the attenuation amount controlling unit 61 can output inputted light to the optical modulating unit 11 after being attenuated to predetermined light intensity by controlling the optical attenuating unit 31. Alternatively, the attenuation amount controlling unit 61 can have the optical attenuating unit 31 exit the light received to a terminal that is not connected to the optical modulating unit 11. As a result, in the optical communication apparatus having the above configuration, ASE is not exit to the output port when no input light exists. Further, neither ASE nor input light that is not modulated with a modulation signal is exit to the output port even when input light exists but no modulation signal exists.

Naturally, when there is information to send, the intensity of a modulation signal to be transmitted is larger than the predetermined value, and the intensity of input light is larger than the predetermined value, the attenuation amount controlling unit 61 controls the optical attenuating unit 31 so that it trajects the input light or switches the output of the inputted light to the terminal that is connected to the optical modulating unit 11.

Note that, in this optical communication apparatus, the controlling unit 14 and attenuation amount controlling unit 61 can be controlled according to the detection done by the optical detecting unit 15 on light output from the optical modulating unit 11 together with having the optical attenuating unit 31 placed at the output of optical modulating unit 11, as shown in broken lines, instead of having the optical detecting unit 15 detect input light together with having the optical attenuating unit 31 placed at the input of optical modulating unit 11, as shown in FIG. 12.

Next, the optical communication apparatus according to

the thirteenth embodiment will be explained based on the accompanying figure.

In FIG.13, this optical communication apparatus is composed of optical branching unit 10 and 12, an optical modulating unit 11, an operating point controlling unit 13, a controlling unit 14, an optical detecting unit 15, a modulation signal detecting unit 42, and a modulation controlling unit 65.

Light entered to an input port is branched by the optical branching unit 10. First branched input light is entered to the optical modulating unit 11, where it is modulated. A modulated optical signal is branched by the optical branching unit 12.

The first optical signal branched off by the optical branching unit 12 is outputted to an output port. On the other hand, the second optical signal branched off by the optical branching unit 12 is entered to the operating point controlling unit 13.

On the other hand, the optical detecting unit 15 detects the intensity of second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity. The output signal in accordance with the light intensity is inputted to the controlling unit 14 and the modulation controlling unit 65.

A modulation signal to be transmitted is inputted to not only the optical modulating unit 11 but also the modulation signal detecting unit 42. The modulation signal detecting unit 42 outputs a signal in accordance with the intensity of the modulation signal, which is inputted to the modulation controlling unit 65.

The modulation controlling unit 65 controls the optical modulating unit 11. That is, the modulation controlling unit 65 calculates the AND of the signal from the optical detecting unit 15 and the signal from the modulation signal detecting unit 42, and controls the optical modulating unit 11 so that it attenuates the light received to a predetermined light

intensity. For example, the modulation controlling unit 65 can prevent the optical modulating unit 11 from producing any outputs by not supplying energy to it. Alternatively, where the optical modulating unit 11 is an MZ modulator, the 5 modulation controlling unit 65 can prevent the optical modulating unit 11 from producing any outputs by shifting the phases of branched input light beams transmitting through two respective optical waveguides in the MZ modulator so as to form a phase difference of 180°. As a further alternative, where 10 the optical modulating unit 11 utilizes the acousto-optical effect, the modulation controlling unit 65 can prevent the optical modulating unit 11 from producing any outputs by applying to it an RF signal for selecting a wavelength other than the wavelength of the input light.

15 In this manner, the optical detecting unit 15 can detect whether the intensity of input light is a predetermined value or less. Therefore, when the intensity of the input light is the predetermined value or less, the controlling unit 14 can control, in accordance with the output of the optical detecting 20 unit 15, the operating point controlling unit 13 so that it keeps the operating point stable. As a result, in the optical communication apparatus having the above configuration, the operating point can be kept stable even when input light is temporarily non-existent.

25 Naturally, the optical detecting unit 15 does not output any signals when the intensity of input light is larger than the predetermined value so as to use the optical modulating unit 11. Therefore, the operating point controlling unit 13 controls the operating point to the optimum value based only 30 on the output of the optical modulating unit 11 that is entered via the optical branching unit 12.

Further, the modulation signal detecting unit 42 can detect whether the intensity of a modulation signal is a predetermined value or less. The modulation controlling unit 35 65 also receives a signal from the optical detecting unit 15 and calculates the AND of this signal and a signal of the modulation signal detecting unit 42. Therefore, when the

intensity of the input light is the predetermined value or less or when the intensity of the modulation signal is the predetermined value or less, the modulation controlling unit 65 can prevent the optical modulating unit 11 from producing 5 outputs by controlling the optical modulating unit 11. As a result, in the optical communication apparatus having the above configuration, neither ASE nor input light that is not modulated with a modulation signal is outputted to the output port even when input light exists but no modulation signal 10 exists.

Naturally, neither the modulation signal detecting unit 42 nor the optical detecting unit 15 output a signal to the modulation controlling unit 65 when there is information to send, the intensity of a modulation signal to be transmitted 15 is larger than the predetermined value, and the intensity of input light is larger than the predetermined value. As a result, the optical modulating unit 11 operates normally as a modulating unit because it does not receive a signal from the modulation controlling unit 65.

20 Note that, the controlling unit 14 controlled by the optical communication apparatus according to the input light of the optical modulating unit 11 as shown in FIG.13 can also be controlled according to the output light of the optical modulating unit 11 or a modulation signal as shown with broken 25 lines.

Next, the optical communication apparatus according to the fourteenth embodiment will be explained based on the accompanying figure.

As shown in FIG. 14, this optical add/drop apparatus is 30 composed of an add/drop unit 70, an optical wavelength branching unit 73, and an optical adding unit 75.

Actually, the optical add/drop apparatus is provided with optical wavelength branching unit 73 and optical adding unit 75 in the number equivalent to the number of wavelengths 35 of light beams to be added or dropped. However, each optical wavelength branching unit 73 is the same in configuration and different only in the wavelength of light on which to perform

a receiving operation, and each optical adding unit 75 is the same in configuration and different only in the wavelength of light to be added. Therefore, in FIG. 14, only one of the plurality of optical wavelength branching unit 73 and only one of the plurality of optical adding unit 75 are shown by solid lines and the other unit are shown with broken lines.

The add/drop unit 70 is connected to an optical transmission line for transmitting through a wavelength-division multiplexed optical signal, and adds and drops optical signals of at least one wavelength to and from an optical signal transmitting through the optical transmission line. When dropping, optical signals are dropped to optical wavelength branching unit 73 via an optical distributing unit 72 that distributes optical signals in accordance with the number of optical wavelength branching unit 73. When adding, an optical multiplexing unit 74 multiplexes adding optical signals coming from respective optical adding unit 75 wavelength-division multiplexes the multiplexed addition light with an optical signal trajecting the optical add/drop apparatus and outputted to the optical transmission line.

The optical wavelength branching unit 73 performs receiving operations on distributed optical signals of respective wavelengths. On the other hand, the optical adding unit 75 generates addition light beams to be added to an optical signal on the optical transmission line.

The configuration of each optical adding unit 75 will be described below, which is composed of optical branching unit 10 and 12, an optical modulating unit 11, an operating point controlling unit 13, a controlling unit 14, and an optical detecting unit 15.

Input light of a particular wavelength that is entered to an input port is branched by the optical branching unit 10. First branched input light that has been branched off by the optical branching unit 10 is modulated by the optical modulating unit 11. A modulated optical signal is branched by the optical branching unit 12. Each particular wavelength is different among the respective optical adding unit 75.

The first optical signal branched off by the optical branching unit 12 is exit to an output port and entered to the optical multiplexing unit 74. On the other hand, the second optical signal branched off by the optical branching unit 12 is entered to the operating point controlling unit 13 that controls the operating point of the optical modulating unit 11.

On the other hand, the optical detecting unit 15 detects the intensity of second branched input light that has been branched off by the optical branching unit 10, and outputs a signal in accordance with the detected light intensity, which is inputted to the controlling unit 14.

In this manner, the optical detecting unit 15 can detect whether the intensity of input light is a predetermined value or less. Therefore, when the intensity of the input light is the predetermined value or less, the controlling unit 14 can control, in accordance with the output of the optical detecting unit 15, the operating point controlling unit 13 so that it can keep the operating point stable. As a result, in the optical add/drop apparatus having the above configuration, the operating point of the optical adding unit 75 can be kept stable even when the optical adding unit 75 has no input light because no addition light is to be supplied to the add/drop unit 70.

Naturally, the optical detecting unit 15 does not output any signals when the intensity of input light is larger than the predetermined value to generate addition light by the optical adding unit 75. Therefore, the operating point controlling unit 13 controls the operating point to the optimum value only based on the output of the optical modulating unit 11 that is entered via the optical branching unit 12.

Note that, the optical communication apparatus according to the first embodiment applied as optical adding unit 75 in the fourteenth embodiment can be replaced by the optical communication apparatuses in the second through the thirteenth embodiments.

Next, the fifteenth embodiment will be explained.

First, the configuration of the fifteenth embodiment

will be described.

In FIG. 15, this optical add/drop apparatus is composed of optical amplifiers 101 and 103, an OADM 102, an $1 \times M$ optical coupler 104, M optical wavelength branching circuits 105, an 5 $N \times 1$ optical multi/demultiplexer 106, and N optical addition circuits 107a.

Although this optical add/drop apparatus has the M optical wavelength branching circuits 105 and the N optical addition circuits 107a, in FIG. 15 only one of the M optical 10 wavelength branching circuits 105 and only one of the N optical addition circuits 107a are shown by solid lines and the other circuits are shown with broken lines because the circuits of each group have the same configuration.

A wavelength-division multiplexed optical signal 15 transmitting through an optical transmission line enters the optical add/drop apparatus and is amplified by the amplifier 101 that amplifies an optical signal to predetermined light intensity. The amplified optical signal is entered to the OADM 102 that adds or drops a wavelength-division multiplexed 20 optical signal. Signal light beams of predetermined wavelengths that have been dropped by the OADM 102 are entered to the $1 \times M$ optical coupler 104 that divides the optical signal(s) into as many optical wavelength branching circuits there are. The optical signal(s) distributed by the $1 \times M$ 25 optical coupler 104 are entered to and performed receiving operations on optical signals of respective wavelengths in the optical wavelength branching circuits 105. On the other hand, optical signals to be added in the OADM 102 are generated by the optical addition circuits 107a, which are provided in N , 30 that is, the number of optical signals to be added in the OADM 102. The optical signals to be added and an optical signal that has not been dropped in the OADM 102 are wavelength-division multiplexed with each other, and a resulting optical signal is amplified by the optical amplifier 103 and then 35 outputted to the optical transmission line.

Each optical addition circuit 107a is composed of a laser diode bank (hereinafter abbreviated as "LD bank") 110, optical

amplifiers 111 and 115, optical couplers 112 and 114, an MZ modulator 113, PDs 116 and 123, amplifiers 117 and 121, a comparator 118, a switch 119, a variable gain amplifier 120, a coupling capacitor 122, a buffer amplifier 124, a multiplier 5 125, an LPF 126, a differential amplifier 127, an inductor 128, a capacitor 129, a resistor 130, and a low-frequency oscillator 131.

The circuit composed of the variable gain amplifier 120, the amplifier 121, the coupling capacitor 122, the PD 123, the 10 buffer amplifier 124, the multiplier 125, the LPF 126, the differential amplifier 127, the inductor 128, the capacitor 129, the resistor 130, and the low-frequency oscillator 131 is called an operating point control circuit.

In FIG. 15, the LD bank 110 can exit laser beams of a 15 plurality of wavelengths L1-L8 corresponding to the wavelengths for wavelength-division multiplexing. The wavelength of light to be exited actually is selected in accordance with a detection signal that is generated by detecting available wavelengths of the optical transmission 20 line with a wavelength monitor (not shown in FIG. 15). For example, the LD bank 110 exits light of a wavelength L2, which is entered to the optical amplifier 111. Amplified light is branched into two beams by the optical coupler 112, and first branched light is entered to the MZ modulator 113.

A modulation signal and a low-frequency signal of a 25 predetermined frequency f_0 that is outputted from the low-frequency oscillator 131 are inputted to the variable gain amplifier 120. The variable gain amplifier 120 amplitude-modulates and outputs the signal received. The output signal is inputted to one modulation-input terminal of the MZ 30 modulator 113 via the amplifier 121 which gains a predetermined signal level and the coupling capacitor 122.

The resistor 130 and a bias T circuit that is composed of the inductor 128 and the capacitor 129 are connected to the 35 other modulation-input terminal of the MZ modulator 113.

The MZ modulator 113 modulates the light of the wavelength L2 that is exit from the LD bank 110 into an optical

signal with the signal supplied from the drive circuit and outputs it.

Part of the output light of the MZ modulator 113 is branched off by the optical coupler 114 and thereby taken out.

5 The other part of the output light is amplified by the optical amplifier 115 and then entered to the above-mentioned $N \times 1$ optical multi/demultiplexer 106. The branched part of the output light is detected by the PD 123. A detection signal is amplified by the buffer amplifier 124 that selectively 10 amplifies a frequency component of f_0 , and is inputted to the multiplier 125. The low-frequency signal that is outputted from the low-frequency oscillator 131 is also inputted to the multiplier 125. The multiplier 125 compares the phases of the 15 input signal supplied from the buffer amplifier 124 and the low-frequency signal supplied from the low-frequency oscillator 131, and outputs a signal in accordance with a phase difference. The multiplexer 125 detects the low-frequency signal of the predetermined frequency f_0 that was superimposed by the variable gain amplifier 120.

20 The output signal of the multiplier 125 is inputted to one input terminal of the differential amplifier 127 via the LPF 126 that allows passage of a frequency component of the predetermined frequency f_0 or less and the switch 119. The other input terminal of the differential amplifier 127 is 25 grounded. An output of the differential amplifier 127 is inputted to the inductor 128 of the bias T circuit as an error signal to be used for moving the operating point, and the bias value is variably controlled so as to correct the operating point.

30 On the other hand, second branched light that has been branched off by the optical coupler 112 is entered to the PD 116, which outputs an electrical signal that is in proportion to the average intensity of the second branched light. That is, the PD 116 detects the intensity of the light that is exit 35 from the LD bank 110.

The electrical signal that is outputted from the PD 116 is amplified by the amplifier 117 and then compared with a

reference voltage V_{ref} by the comparator 118. When the electrical signal is smaller than or equal to the reference voltage V_{ref} , the comparator 118 outputs a signal to the switch 119 and controls the on/off of switch 119.

5 When receiving a signal from the comparator 118, the switch 119 is turned off to disconnect the LPF 126 from the differential amplifier 127. During the period when no signals are received by the comparator 118, the switch 119 is turned on to connect the LPF 126 with the differential amplifier 127.

10 Next, functions and advantageous effects of the fifteenth embodiment will be described.

15 The optical add/drop apparatus having the above configuration can keep the operating point stable even if the input light does not exist during the period when the wavelength of light exit from the LD bank 110 is changed in the optical addition circuit 107a, for example, during the period when laser light of wavelength L2 is switched to laser light of wavelength L4.

20 This will be explained below in the case where the wavelength L2 is switched to the wavelength L4.

At first, since a wavelength-division multiplexed signal transmitting through the optical transmission line has an available wavelength L2, the LD bank 110 exits light of the wavelength L2. The exit light is modulated by the MZ modulator 25 113, added in the OADM102 as an addition light via the $N \times 1$ optical multi/demultiplexer 106, and inputted to the optical transmission line. The exit light is also entered to the operating point control circuit, where it is used to control the operating point of the MZ modulator 113. The exit light 30 is also photoelectrically converted by the PD 116, and an output signal of the PD 116 is judged as to whether it is smaller than or equal to the reference voltage V_{ref} by the comparator 118. That is, whether the intensity of the light of the wavelength L2 exit from the LD bank 110 is a predetermined value 35 or less can be judged by the comparator 118 as to whether the electrical signal that is outputted from the PD 116 is smaller than or equal to the predetermined reference voltage V_{ref} .

Since the light of the wavelength L2 exit from the LD bank 110 is used as addition light, its light intensity is larger than the predetermined value and hence the comparator 118 does not output any signals. Therefore, the switch 119 is kept on and LPF 126 is kept connected with differential amplifier 127. As a result, the operating point control circuit continues to operate normally.

Then, the available wavelength of a wavelength-division multiplexed signal transmitting through the optical transmission line is changed from L2 to L4, whereupon the LD bank 110 stops exiting the light of the wavelength L2.

At this time, the level of the output signal of the PD 116 decreases to approximately zero. Since the output signal is smaller than the reference voltage V_{ref} , the comparator 118 sends a signal to the switch 119. The switch 119 is turned off and the LPF 126 is disconnected from the differential amplifier 127. As a result, the operating point control circuit stops operating, and the operating point is put back to the initial state and kept in a range where it can be controlled by the operating point control circuit. Therefore, the operating point is never left in an unstable state.

Then, the LD bank 110 exits light of the wavelength L4. At this time, the output signal of the PD 116 increases to approximately the same level as in the case of the wavelength L2. Therefore, the output signal of the PD 116 becomes larger than the reference voltage V_{ref} and hence the comparator 118 does not send any signals. The switch 119 is turned on and the LPF 126 is connected to the differential amplifier 127. At this time, the operating point control circuit controls the operating point starting from the initial state and hence can operate normally.

While the above description is directed to the case where the LD bank 110 stops the light to exit temporally to change the wavelength of exit light, the operating point can be kept stable in a similar manner also in a case where the light exiting is stopped to use another optical addition circuit 107a in the optical add/drop apparatus.

Next, the sixteenth embodiment will be described.

At first, the sixteenth embodiment will be described starting from its configuration.

As shown in FIG. 16, this optical add/drop apparatus is 5 composed of optical amplifiers 101 and 103, an OADM 102, an 1 x M optical coupler 104, M optical wavelength branching circuits 105, an N x 1 optical multi/demultiplexer 106, and N optical addition circuits 107b.

Although this optical add/drop apparatus has the M 10 optical wavelength branching circuits 105 and the N optical addition circuits 107b, in FIG. 16 only one of the M optical wavelength branching circuits 105 and only one of the N optical addition circuits 107b are shown by solid lines and the other circuits are shown with broken lines because the circuits of 15 each group have the same configuration.

A wavelength-division multiplexed optical signal transmitting through an optical transmission line enters the optical add/drop apparatus and is entered to the OADM 102 via the optical amplifier 101. Signal light beams of 20 predetermined wavelengths that have been dropped by the OADM 102 are distributed by the 1 x M optical coupler 104 and then entered to the optical wavelength branching circuits 105, where they are received. On the other hand, WDM optical signals to be added in the OADM 102 are generated by the optical 25 addition circuits 107b, which are provided in N, that is, the number of WDM optical signals to be added in the OADM 102. The optical signals to be added and an optical signal that has not been dropped in the OADM 102 are wavelength-division multiplexed with each other, and a resulting WDM optical signal 30 is outputted to the optical transmission line via the optical amplifier 103.

Each optical addition circuit 107b is composed of an LD bank 110, optical amplifiers 111 and 115, an optical coupler 140, an MZ modulator 113, PDs 123 and 141, a buffer amplifier 35 124, amplifiers 121 and 142, a comparator 143, switches 144 and 148, a variable gain amplifier 120, a coupling capacitor 122, a multiplier 125, an LPF 126, a differential amplifier

127, an inductor 128, capacitors 129 and 151, resistors 130, 145, and 146, a low-frequency oscillator 131, field-effect transistors (hereinafter abbreviated as "FETs") 147 and 149, and operational amplifiers 150 and 152.

5 In FIG. 16, laser light exit from the LD bank 110 is entered to the MZ modulator 113 via the optical amplifier 111.

A modulation signal and a low-frequency signal of a predetermined frequency f_0 that is outputted from the low-frequency oscillator 131 are inputted to the variable gain amplifier 120. An output signal of the variable gain amplifier 120 is inputted to one modulation-input terminal of the MZ modulator 113 via the amplifier 121 and the coupling capacitor 122.

15 As for the other modulation-input terminal of the MZ modulator 113, to which the resistor 130 and a bias T circuit that is composed of the inductor 128 and the capacitor 129 are connected.

20 The MZ modulator 113 modulates the light of the LD bank, for example, a wavelength of λ_2 , with the signal supplied from the drive circuit, into an optical signal, and outputs it.

The output light of the MZ modulator 113 is branched into three beams by the optical coupler 140. First branched output light is entered to the PD 123. Second branched output light is entered to the PD 141. Third branched output light is entered to the above-mentioned $N \times 1$ optical multi/demultiplexer 106 via the optical amplifier 115. The first branched output light is detected by the PD 123, and a detection signal is inputted to the multiplier 125 via the buffer amplifier 124. The low-frequency signal that is outputted from the low-frequency oscillator 131 is also inputted to the multiplier 125. The multiplier 125 compares the phases of the input signal supplied from the buffer amplifier 124 and the low-frequency signal supplied from the low-frequency oscillator 131, and outputs a signal in accordance with a phase difference.

The output signal of the multiplier 125 is inputted to the LPF 126. An output of the LPF 126 is inputted to one input

terminal of the differential amplifier 127 via the switch 144 as well as to the non-inverting input terminal (+) of the operational amplifier 152. The other input terminal of the differential amplifier 127 is grounded. An output of the differential amplifier 127 is inputted to the inductor 128 of the bias T circuit, and the bias value is variably controlled so as to correct the operating point.

An output of the operational amplifier 152 is inputted to the drain terminal of the FET 147 and the source terminal of the FET 149.

The gate terminal of the FET 147, which is controlled by the switch 148, is connected to a voltage source Vcc via the switch 148. The source terminal of the FET 147 is connected to the inverting input terminal (-) of the operational amplifier 152 via the resistor 145 as well as to the inverting input terminal (-) of the operational amplifier 150 via the resistor 146.

The gate terminal of the FET 149, which is controlled by the switch 148, is connected to the voltage source Vcc via the switch 148. The drain terminal of the FET 149 is grounded via the capacitor 151 and connected to the non-inverting terminal (+) of the operational amplifier 150.

A circuit composed of the operational amplifiers 150 and 152, the FETs 147 and 149, the resistors 145 and 146, and the capacitor 151 is a holding circuit for holding the output voltage of the LPF 126.

On the other hand, the second branched output light is detected by the PD 141, which outputs an electrical signal that is in proportion to the average intensity of the second branched output light. That is, the PD 141 detects the intensity of the light that is exit from the LD bank 110 by monitoring the output light of the MZ modulator 113.

The electrical signal that is outputted from the PD 141 is amplified by the amplifier 142 and then compared with a reference voltage Vref by the comparator 143. When the electrical signal is smaller than or equal to the reference voltage Vref, the comparator 143 outputs a signal to the

switches 144 and 148 and thereby controls these switches.

The switch 144 can switch connecting the LPF 126 to the differential amplifier 127 and connecting the output terminal of the operational amplifier 150 to the differential amplifier 127. Usually, the switch 144 connects the LPF 126 to the differential amplifier 127, but upon reception of a signal from the comparator 143, the switch 144 switches to connecting the output terminal of the operational amplifier 150 to the differential amplifier 127. When it no longer receives the signal coming from the comparator 143, the switch 144 again connects the LPF 126 to the differential amplifier 127.

The switch 148 controls the on/off of the FETs 147 and 149 in accordance with a signal supplied from the comparator 143. That is, while a signal from the comparator 143 is not received, the switch 148 connects the voltage source Vcc to the gate terminal of the FET 149, thereby keeping the FET 149 on and keeping the FET 147 off. On the other hand, upon reception of a signal from the comparator 143, the switch 148 turns off the FET 149 and connects the voltage source Vcc to the gate terminal of the FET 147, thereby turning on the FET 147.

Next, functions and advantageous effects of the sixteenth embodiment will be described.

The optical add/drop apparatus having the above configuration can keep the operating point of the MZ modulator 113 stable even if the input light no longer exists during a period when the wavelength of light exit from the LD bank 110 is changed in the optical addition circuit 107b, for example, during a period laser light of a wavelength L2 is changed to laser light of a wavelength L4.

This will be explained below in the case when the wavelength L2 is changed to the wavelength L4.

At first, since a wavelength-division multiplexed signal transmitting through the optical transmission line has an available wavelength L2, the LD bank 110 exits light of the wavelength L2. The exit light is modulated by the MZ modulator 113, added by the OADM 102 as addition light via the N x 1 optical

multi/demultiplexer 106, and outputted to the optical transmission line. The exit light is also entered, via the optical modulator 113 etc., to the operating point control circuit, where it is used to control the operating point of the MZ modulator 113. The exit light is photoelectrically converted by the PD 141 via the MZ modulator 113 etc. An output signal of the PD 141 is judged by the comparator 143 as to whether it is smaller than or equal to the reference voltage V_{ref} . That is, whether the intensity of the light of the wavelength L2 exit from the LD bank 110 is a predetermined value or less can be judged by the comparator 143 as to whether the electrical signal that is outputted from the PD 141 is smaller than or equal to the predetermined reference voltage V_{ref} .

Since the light of the wavelength L2 exit from the LD bank 110 is used as addition light, its light intensity is larger than the predetermined value and hence the comparator 143 does not output any signals. Therefore, the switch 144 keeps connecting the LPF 126 to the differential amplifier 127. As a result, the operating point control circuit continues to operate normally. Further, the switch 148 turns the FETs 147 and 149 on and off, respectively. As a result, the output voltage of the LPF 126 is stored in the capacitor 151.

Then, the available wavelength of a wavelength-division multiplexed signal transmitting through the optical transmission line is changed from L2 to L4, whereupon the LD bank 110 stops exiting the light of the wavelength L2.

At this time, the level of the output signal of the PD 141 decreases to approximately zero. Since the output signal is smaller than the reference voltage V_{ref} , the comparator 143 sends a signal to the switches 144 and 148. The switch 144 switches from connecting the LPF 126 to the differential amplifier 127 to connecting the output terminal of the operational amplifier 150 to the differential amplifier 127. Further, the switch 148 turns the FET 147 on and turns the FET 149 off. Therefore, the output voltage of the LPF 126 which is as same as the voltage stored in the capacitor 151 is outputted to the output terminal of the operational amplifier

150. As a result, the differential amplifier 127 maintains the state just before the LD bank 110 stops exiting the light of the wavelength L2. Therefore, the operating point is never in an unstable state.

5 Then, the LD bank 110 exits light of the wavelength L4. At this time, the output signal of the PD 141 increases to approximately the same level as in the case of the wavelength L2. Therefore, the output signal of the PD 141 becomes larger than the reference voltage Vref and hence the comparator 143 10 does not send any signals. The switch 144 switches again from connecting the output terminal of the operational amplifier 150 with the differential amplifier 127 to connecting the LPF 126 with the differential amplifier 127. Therefore, the operating point control circuit controls normally the 15 operating point of the MZ modulator 113 based on the optical signal entered from the optical modulator 113.

 In addition, since the operating point control circuit holds the state just before switching the laser light of the wavelength L2 to the laser light of the wavelength L4, the 20 operating point can be compensated for more quickly than in a case where the control of the operating point is started from the initial state.

 While the above description is directed to the case where the LD bank 110 temporally stops the light to exit to change 25 the wavelength of exit light, the operating point can be kept stable in a similar manner also in a case where the light exiting is stopped to use another optical addition circuit 107b in the optical add/drop apparatus.

 Next, the seventeenth embodiment will be described. 30 At first the seventeenth embodiment will be described starting from its configuration.

 This optical add/drop apparatus is composed of optical amplifiers 101 and 103, an OADM 102, an $1 \times M$ optical coupler 104, M optical wavelength branching circuits 105, an $N \times 1$ 35 optical multi/demultiplexer 106, and N optical addition circuits 107c.

 Although this optical add/drop apparatus has the M

optical wavelength branching circuits 105 and the N optical addition circuits 107a, in FIG. 17 only one of the M optical wavelength branching circuits 105 and only one of the N optical addition circuits 107c are shown by solid lines and the other 5 circuits are shown with broken lines because the circuits of each group have the same configuration.

A wavelength-division multiplexed optical signal transmitting through an optical transmission line enters the optical add/drop apparatus, and is amplified by the amplifier 101 and then entered to the OADM 102. Signal light beams of predetermined wavelengths that have been dropped by the OADM 102 are entered to the 1 x M optical coupler 104. The optical signal(s) distributed by the 1 x M optical coupler 104 are entered to the optical wavelength branching circuits 105, 10 where they are subjected to receiving operations. On the other 15 hand, optical signals to be added by the OADM 102 are generated by the optical addition circuits 107c. The optical signals to be added and an optical signal that has not been dropped in the OADM 102 are wavelength-division multiplexed with each 20 other, and is amplified by the optical amplifier 103 and then outputted to the optical transmission line.

Each optical addition circuit 107c is composed of an LD bank 110, optical amplifiers 111 and 115, an optical coupler 114, an MZ modulator 113, a PD 123, a diode 160, amplifiers 25 121 and 162, a buffer amplifier 124, a comparator 163, a switch 164, a variable gain amplifier 120, a coupling capacitor 122, a multiplier 125, an LPF 126, a differential amplifier 127, an inductor 128, a capacitor 129, resistors 130 and 161, and a low-frequency oscillator 131.

30 In FIG. 17, laser light exit from the LD bank 110 is entered to the MZ modulator 113 via the optical amplifier 111.

A modulation signal and a low-frequency signal of a predetermined frequency f_0 that is outputted from the low-frequency oscillator 131 are inputted to the variable gain amplifier 35 120. An output signal of the variable gain amplifier 120 is inputted to one modulation-input terminal of the MZ modulator 113 via the amplifier 121 and the coupling capacitor

122.

The resistor 130 and a bias T circuit that is composed of the inductor 128 and the capacitor 129 are connected to the other modulation-input terminal of the MZ modulator 113.

5 The MZ modulator 113 modulates the light of the wavelength L2 that is exit from the LD bank 110 into an optical signal with the signal supplied from the drive circuit and outputs it.

10 Part of the output light of the MZ modulator 113 is branched off by the optical coupler 114 and thereby taken out. The other part of the output light is entered to the above-mentioned $N \times 1$ optical multi/demultiplexer 106 via the optical amplifier 115. The branched part of the output light is detected by the PD 123, and a detection signal is inputted 15 to the multiplier 125 via the buffer amplifier 124. The low-frequency signal that is outputted from the low-frequency oscillator 131 is also inputted to the multiplier 125. The multiplier 125 compares the phases of the input signal supplied from the buffer amplifier 124 and the low-frequency signal 20 supplied from the low-frequency oscillator 131, and outputs a signal in accordance with a phase difference.

The output signal of the multiplier 125 is inputted to one input terminal of the differential amplifier 127 via the LPF 126 and the switch 164. The other input terminal of the 25 differential amplifier 127 is grounded. An output of the differential amplifier 127 is inputted to the inductor 128 of the bias T circuit, and the bias value is variably controlled so as to correct the operating point.

On the other hand, the modulation signal is connected 30 to one terminal of the diode 160. The other terminal of the diode 160 is grounded via the resistor 161. The modulation signal is half-wave-rectified by the diode 160, whereby a voltage corresponding to the intensity of the modulation signal is detected at both ends of the resistor 161.

35 The voltage corresponding to the intensity of the modulation signal is amplified by the amplifier 162 and then compared with a reference voltage V_{ref} by the comparator 163.

If this voltage is smaller than or equal to the reference voltage V_{ref} , the comparator 163 outputs a signal to the switch 164 and controls it.

The switch 164 can switch between connecting the LPF 126 to the differential amplifier 127 and connecting a reference voltage V_1 to the differential amplifier 127. Normally, the switch 164 connects the LPF 126 to the differential amplifier 127. Upon reception of a signal from the comparator 163, the switch 164 switched to connecting the reference voltage V_1 to the differential amplifier 127. When the signal coming from the comparator 163 is terminated, the switch 164 again connects the LPF 126 to the differential amplifier 127.

The reference voltage V_1 has a value in a range where the operating point can be controlled by the operating point control circuit.

Next, functions and advantageous effects of the seventeenth embodiment will be described.

The optical add/drop apparatus having the above configuration can keep the operating point stable even during a period when there is no modulation signal to be transmitted in the optical addition circuit 107c.

For example, the optical addition circuit 107c operates in the following manner in a case where a modulation signal first exists, then loses its existence, and back in existence again.

At first, a modulation signal to be transmitted modulates input light that is supplied from the LD bank 110 with the MZ modulator 113. Modulated input light as addition light is added as addition light by the OADM 102 supplied via the $N \times 1$ optical multi/demultiplexer 106 and outputted to the optical transmission line.

The signal intensity of the modulation light is detected by the diode 160 and the resistor 161, and the comparator 163 judges whether a voltage corresponding to the intensity of the modulation signal is smaller than or equal to the predetermined reference voltage V_{ref} . That is, it is judged whether the intensity of the modulation signal is the predetermined value

or less.

At this point, since there exists a modulation signal to be transmitted, the comparator 163 does not send any signals to the switch 164. Therefore, the switch 164 connects the LPF 126 to the differential amplifier 127. The operation point control circuit operates normally, whereby the operating point of the MZ modulator 113 can be controlled by an optical signal entered from the MZ modulator 113.

Then, since the signal to be added does not exist in the optical add/drop apparatus, or an optical addition circuit of the N number of circuits other than the current optical addition circuit 107c is used, the modulation signal will no longer exist.

At this time, the voltage value of the resistor 161 decreases to approximately zero. Since the voltage value is smaller than the reference voltage V_{ref} , the comparator 163 sends a signal to the switch 164. The switch 164 switches from connecting the LPF 126 to the differential amplifier 127 to connecting the reference voltage V_1 to the differential amplifier 127. As a result, the operating point control circuit maintains the operating point at the reference voltage V_1 . Therefore, the operating point is never in an unstable state.

Then, a modulation signal to be transmitted generates again, whereupon a voltage is developed in the resistor 161. As a result, since the voltage value becomes larger than the reference voltage V_{ref} , the comparator 163 does not send any signals. The switch 164 switches connecting the reference voltage V_1 to the differential amplifier 127 to connecting the LPF 126 to the differential amplifier 127. Therefore, the operating point control circuit controls normally the operating point of the MZ modulator 113 based on an optical signal entered from the MZ modulator 113, shifting from the state of the reference voltage V_1 .

In this case, if the reference voltage V_1 is selected properly in consideration of the temperature of the MZ modulator 113 in operation and other factors, the operating

point can be compensated more quickly than in the case of starting the operating point control from the initial state.

Next, the eighteenth embodiment will be described.

At first, the eighteenth embodiment will be described
5 starting from its configuration.

In FIG. 18, this optical add/drop apparatus is composed of optical amplifiers 101 and 103, an OADM 102, an $1 \times M$ optical coupler 104, M optical wavelength branching circuits 105, an $N \times 1$ optical multi/demultiplexer 106, and N optical addition 10 circuits 107d.

Although this optical add/drop apparatus has the M optical wavelength branching circuits 105 and the N optical addition circuits 107d, in FIG. 18 only one of the M optical wavelength branching circuits 105 and only one of the N optical addition circuits 107d are shown by solid lines and the other circuits are shown with broken lines because the circuits of 15 each group have the same configuration.

A wavelength-division multiplexed optical signal transmitting through an optical transmission line enters the 20 optical add/drop apparatus, is amplified by the amplifier 101, and then entered to the OADM 102. Signal light beams of predetermined wavelengths that have been dropped by the OADM 102 are entered to the $1 \times M$ optical coupler 104. The optical signal(s) distributed by the $1 \times M$ optical coupler 104 are 25 entered to the optical wavelength branching circuits 105, where they are subjected to receiving operations. On the other hand, optical signals to be added in the OADM 102 are generated by the optical addition circuits 107d. The optical signals to be added and an optical signal that has not been dropped 30 in the OADM 102 are wavelength-division multiplexed with each other, and a resulting optical signal is amplified by the optical amplifier 103 and then outputted to the optical transmission line.

Each optical addition circuit 107d is composed of an LD 35 bank 110, optical amplifiers 111 and 115, optical couplers 112 and 114, an MZ modulator 113, PDs 116 and 123, amplifiers 117, 121, and 162, a buffer amplifier 124, comparators 118 and 163,

a switch 119, a variable gain amplifier 120, a coupling capacitor 122, a multiplier 125, an LPF 126, a differential amplifier 127, an inductor 128, a capacitor 129, resistors 130 and 161, a low-frequency oscillator 131, a diode 160, an adder 5 170, and an optical attenuator 171.

In FIG. 18, laser light exit from the LD bank 110 is entered to the optical amplifier 111. Amplified light is branched into two beams by the optical coupler 112, and first branched light is entered to the MZ modulator 113 via the 10 optical attenuator 171.

On the other hand, second branched light that has been branched off by the optical coupler 112 is entered to the PD 116. An electrical signal that is outputted from the PD 116 is amplified by the amplifier 117 and then compared with a 15 reference voltage V_{ref1} by the comparator 118. When the electrical signal is smaller than or equal to the reference voltage V_{ref1} , the comparator 118 outputs a signal to the switch 119 and the adder 170.

The switch 119 is controlled in accordance with the 20 output of the comparator 118. When receiving a signal from the comparator 118, the switch 119 is turned off and thereby disconnects the LPF 126 from the differential amplifier 127. During a period when no signal is received from the comparator 118, the switch 119 is kept on and thereby connects the LPF 25 126 to the differential amplifier 127.

A modulation signal and a low-frequency signal of a predetermined frequency f_0 that is outputted from the low-frequency oscillator 131 are inputted to the variable gain amplifier 120. An output signal of the variable gain amplifier 30 120 is inputted to one modulation-input terminal of the MZ modulator 113 via the amplifier 121 and the coupling capacitor 122.

The resistor 130 and a bias T circuit that is composed of the inductor 128 and the capacitor 129 are connected to the 35 other modulation-input terminal of the MZ modulator 113.

The MZ modulator 113 modulates light that is exited from the LD bank 110, for example, the light of a wavelength L_2 into

an optical signal, with the signal supplied from the drive circuit, and outputs it.

Part of the output light of the MZ modulator 113 is branched off by the optical coupler 114 and thereby taken out.

- 5 The other part of the output light is entered to the above-mentioned $N \times 1$ optical multi/demultiplexer 106 via the optical amplifier 115. The branched part of the output light is detected by the PD 123, and a detected signal is inputted to the multiplier 125 via the buffer amplifier 124. The
- 10 low-frequency signal that is outputted from the low-frequency oscillator 131 is also inputted to the multiplier 125. The multiplier 125 compares the phases of the input signal supplied from the buffer amplifier 124 and the low-frequency signal supplied from the low-frequency oscillator 131, and outputs
- 15 a signal in accordance with a phase difference.

The output signal of the multiplier 125 is inputted to one input terminal of the differential amplifier 127 via the LPF 126 and the switch 119. The other input terminal of the differential amplifier 127 is grounded. An output of the

20 differential amplifier 127 is inputted to the inductor 128 of the bias T circuit, and the bias value is variably controlled so as to correct the operating point of the MZ modulator 113.

- 25 On the other hand, the modulation signal is grounded via the diode 160 and the resistor 161. A voltage corresponding to the intensity of the modulation signal is detected at both terminals of the resistor 161.

The voltage corresponding to the intensity of the modulation signal is inputted, via the amplifier 162, to the

30 comparator 163, where it is compared with a reference voltage V_{ref2} . If an electrical signal is smaller than or equal to the reference voltage V_{ref2} , the comparator 163 outputs a signal to the adder 170.

The adder 170 ANDs the signal supplied from the

35 comparator 118 and the signal supplied from the comparator 163 and outputs a result to the optical attenuator 171. That is, the adder 170 outputs a signal to the optical attenuator 171 when receiving (a) signal(s) from either or both comparators

118 and 163, and only when no signals are received from either of the comparators 118 and 163 does it not output any signals to the optical attenuator 171.

When receiving an output of the adder 170, the optical
5 attenuator 171 attenuates the intensity of the input light that is supplied from the optical coupler 112 to a predetermined intensity. When receiving no output from the adder 170, the optical attenuator 171 transmits the input light that is supplied from the optical coupler 112 and outputs it to the
10 MZ modulator 113.

Next, functions and advantageous effects of the eighteenth embodiment will be described.

The optical add/drop apparatus having the above configuration can keep the operating point stable even if the input light loses its existence during a period when the wavelength of light exit from the LD bank 110 is changed in the optical addition circuit 107d, for example, during a period when laser light of a wavelength L2 is changed to laser light of a wavelength L4. Further, neither ASE nor input light that is not modulated with a modulation signal is sent to the N x 1 optical multi/demultiplexer 106 even during a period when the optical addition circuit 107d has no modulation signal to be transmitted or there is no light to be exited from the LD bank 110.

25 The operation of the operating point control circuit in the fourth embodiment to stabilize the operating point is the same as that in the first embodiment and hence is not described here.

30 The operation in the fourth embodiment to avoid sending ASE or input light that is not modulated with a modulation signal to the N x 1 optical multi/demultiplexer 106 will be described below.

35 The intensity of a modulation signal is detected by the diode 160 and the resistor 161. A voltage corresponding to the intensity of the modulation signal is judged by the comparator 163 as to whether the voltage is smaller than or equal to the predetermined reference voltage V_{ref2} , that is,

whether the intensity of the modulation signal is the predetermined value or less.

When there exists a modulation signal to be transmitted, the comparator 163 does not send any signals to the adder 170.

5 Therefore, the adder 170 does not output any signals to the optical attenuator 171, and hence the MZ modulator 113 modulates the light received with the modulation signal and outputs resulting light.

On the other hand, when the modulation signal no longer exists, the voltage value of the resistor 161 decreases to approximately zero. Since the voltage value becomes smaller than or equal to the reference voltage V_{ref2} , the comparator 163 sends a signal to the adder 170. Therefore, the adder 170 outputs a signal to the optical attenuator 171, which attenuates the input light to the predetermined light intensity (including zero). Therefore, neither ASE nor input that is not modulated with a modulation signal is sent to the $N \times 1$ optical multi/demultiplexer 106.

The input light exit from the LD bank 110 is photoelectrically converted by the PD 116. The comparator 118 judges whether an output signal of the PD 116 is smaller than or equal to the reference voltage V_{ref1} . That is, whether or not input light is being exit from the LD bank 110 can be judged by the comparator 118 as to whether the electrical signal that is outputted from the PD 116 is smaller than or equal to the predetermined reference voltage V_{ref1} .

When the LD bank 110 is exiting input light, the light intensity is larger than the predetermined value and hence the comparator 118 does not send any signals to the adder 170. Therefore, the adder 170 does not output any signals to the optical attenuator 171, and hence the MZ modulator 113 modulates the light received with a modulation signal and outputs it.

On the other hand, when the LD bank 110 stops exiting input light, the output signal of the PD 116 decreases to approximately zero. Since the output signal becomes smaller than or equal to the reference voltage V_{ref1} , the comparator

118 sends a signal to the adder 170. Therefore, the adder 170 outputs a signal to the optical attenuator 171, which attenuates ASE that is generated in the optical amplifier 111 etc. to the predetermined light intensity (including zero).
5 Therefore, ASE is not sent to the $N \times 1$ optical multi/demultiplexer 106.

Naturally, when neither a modulation signal nor input light exists, the adder 170 outputs a signal to the optical attenuator 171 and hence ASE is not sent to the $N \times 1$ optical
10 multi/demultiplexer 106.

Next, the nineteenth embodiment will be described.

At first, the nineteenth embodiment will be described starting from its configuration.

In FIG. 19, this optical add/drop apparatus is composed
15 of optical amplifiers 101 and 103, an OADM 102, an $1 \times M$ optical coupler 104, M optical wavelength branching circuits 105, an $N \times 1$ optical multi/demultiplexer 106, and N optical addition circuits 107e.

Although this optical add/drop apparatus has the M optical wavelength branching circuits 105 and the N optical addition circuits 107e, in FIG. 19 only one of the M optical wavelength branching circuits 105 and only one of the N optical addition circuits 107e are shown by solid lines and the other circuits are shown with broken lines because the circuits of
20 each group have the same configuration.
25

A wavelength-division multiplexed optical signal transmitting an optical transmission line enters the optical add/drop apparatus, and is amplified by the amplifier 101 and then entered to the OADM 102. Signal light beams of
30 predetermined wavelengths that have been dropped by the OADM 102 are entered to the $1 \times M$ optical coupler 104. The optical signals distributed by the $1 \times M$ optical coupler 104 are entered to the optical wavelength branching circuits 105, where they are subjected to receiving operations. On the other hand,
35 optical signals to be added in the OADM 102 are generated by the optical addition circuits 107e. The optical signals to be added and an optical signal that has not been dropped in

the OADM 102 are wavelength-division multiplexed with each other, and a resulting optical signal is amplified by the optical amplifier 103 and then outputted to the optical transmission line.

5 Each optical addition circuit 107e is composed of an LD bank 110, optical amplifiers 111 and 115, optical couplers 112 and 114, an MZ modulator 113, PDs 116 and 123, amplifiers 117, 121, and 162, a buffer amplifier 124, comparators 118 and 163, a switch 181, a variable gain amplifier 120, a coupling 10 capacitor 122, a multiplier 125, an LPF 126, a differential amplifier 127, an inductor 128, a capacitor 129, resistors 130 and 161, a low-frequency oscillator 131, a diode 160, and an adder 180.

15 In FIG. 19, laser light exit from the LD bank 110 is entered to the optical amplifier 111. Amplified light is branched into two beams by the optical coupler 112, and first branched light is entered to the MZ modulator 113.

20 On the other hand, second branched light that has been branched off by the optical coupler 112 is entered to the PD 116. An electrical signal that is outputted from the PD 116 is amplified by the amplifier 117 and then compared with a reference voltage V_{ref1} by the comparator 118. When the electrical signal is smaller than or equal to the reference voltage V_{ref1} , the comparator 118 outputs a signal to the 25 switch 181 and the adder 180.

30 The switch 181 can switch between connecting the LPF 126 to the differential amplifier 127 and connecting a reference voltage $V1$ to the differential amplifier 127. Normally, the switch 181 connects the LPF 126 to the differential amplifier 127. Upon reception of a signal from the comparator 118, the switch 181 switches to connecting the reference voltage $V1$ to the differential amplifier 127. When the signal coming from the comparator 118 is terminated, the switch 181 again connects the LPF 126 to the differential amplifier 127.

35 The reference voltage $V1$ has a voltage value in a range where the operating point can be controlled by the operating point control circuit.

A modulation signal and a low-frequency signal of a predetermined frequency f_0 that is outputted from the low-frequency oscillator 131 are inputted to the variable gain amplifier 120. An output signal of the variable gain amplifier 5 120 is inputted to one modulation-input terminal of the MZ modulator 113 via the amplifier 121 and the coupling capacitor 122.

The resistor 130 and a bias T circuit that is composed of the inductor 128 and the capacitor 129 are connected to the 10 other modulation-input terminal of the MZ modulator 113.

The MZ modulator 113 modulates the light of a wavelength λ_2 , for example, that is exit from the LD bank 110 with the signal supplied from the drive circuit, into an optical signal, and outputs it. Further, when receiving a signal from the 15 adder 180, the MZ modulator 113 is prevented from producing output light by shifting the phases of light beams transmitting through two respective optical waveguides in the MZ modulator 113 to form a phase difference of 180° .

Part of the output light of the MZ modulator 113 is 20 branched off by the optical coupler 114 and thereby taken out. The other part of the output light is entered to the above-mentioned $N \times 1$ optical multi/demultiplexer 106 via the optical amplifier 115. A part of the branched output light is detected by the PD 123, and the detected signal is inputted 25 to the multiplier 125 via the buffer amplifier 124. The low-frequency signal that is outputted from the low-frequency oscillator 131 is also inputted to the multiplier 125. The multiplier 125 compares the phases of the input signal supplied from the buffer amplifier 124 and the low-frequency signal 30 supplied from the low-frequency oscillator 131, and outputs a signal in accordance with a phase difference.

The output signal of the multiplier 125 is inputted to one input terminal of the differential amplifier 127 via the LPF 126 and the switch 181. The other input terminal of the 35 differential amplifier 127 is grounded. An output of the differential amplifier 127 is inputted to the inductor 128 of the bias T circuit, and the bias value is variably controlled

so as to correct the operating point of the MZ modulator 113.

On the other hand, the modulation signal is grounded via the diode 160 and the resistor 161. A voltage corresponding to the intensity of the modulation signal is detected at both 5 ends of the resistor 161.

The voltage corresponding to the intensity of the modulation signal is inputted, via the amplifier 162, to the comparator 163, where it is compared with a reference voltage vref2. If this voltage is smaller than or equal to the 10 reference voltage vref2, the comparator 163 outputs a signal to the adder 180.

The adder 180 ANDs the outputs of the comparators 118 and 163 and outputs a result to the MZ modulator 113.

Next, functions and advantageous effects of the 15 nineteenth embodiment will be described.

The optical add/drop apparatus having the above configuration can keep the operating point stable even if the input light loses its existence during a period when the wavelength of light exit from the LD bank 110 is changed in 20 the optical addition circuit 107e, for example, during a period when laser light of a wavelength L2 is changed to laser light of a wavelength L4. Further, neither ASE nor input light that is not modulated with a modulation signal is outputted to the N x 1 optical multi/demultiplexer 106 even during a period when 25 the optical addition circuit 107e has no modulation signal to be transmitted or there is no light to be exited from the LD bank 110.

The operation of the operating point control circuit in the fifth embodiment to stabilize the operating point is the 30 same as that in the first embodiment except that, in place of the switch 119 being turned on or off, the switch 164 connects one input terminal of the differential amplifier 127 to the LPF 126 or the terminal of the reference voltage V1, and hence it is not described here.

35 The operation in the fifth embodiment to avoid outputting ASE or input light that is not modulated with a modulation signal to the N x 1 optical multi/demultiplexer 106

will be described below.

The intensity of a modulation signal is detected by the diode 160 and the resistor 161. A voltage corresponding to the intensity of the modulation signal is judged by the 5 comparator 163 as to whether the voltage is smaller than or equal to the predetermined reference voltage V_{ref2} , that is, whether the intensity of the modulation signal is the predetermined value or less.

When there is a modulation signal to be transmitted, the 10 comparator 163 does not output any signals to the adder 180. Therefore, the adder 180 does not output any signals to the optical modulator 113, and hence the MZ modulator 113 modulates the received light by the modulation signal and outputs it.

On the other hand, when the modulation signal no longer 15 exists, the voltage value of the resistor 161 decreases to approximately zero. Since the voltage value becomes smaller than or equal to the reference voltage V_{ref2} , the comparator 163 outputs a signal to the adder 180. Therefore, the adder 180 outputs a signal to the optical modulator 113, which shifts 20 the phase differences of respective light beams transmitting through two light waveguides in the MZ modulator 113 by 180° , so the producing of output light is stopped. Therefore, neither ASE nor input that is not modulated with a modulation signal is sent to the $N \times 1$ optical multi/demultiplexer 106.

25 The input light exited from the LD bank 110 is photoelectrically converted by the PD 116. The comparator 118 judges whether an output signal of the PD 116 is smaller than or equal to the reference voltage V_{ref1} . That is, whether input light is being exited from the LD bank 110 can be judged 30 by the comparator 118 as to whether the electrical signal that is outputted from the PD 116 is smaller than or equal to the predetermined reference voltage V_{ref1} .

When the LD bank 110 is exiting input light, the light 35 intensity is larger than the predetermined value and hence the comparator 118 does not output any signals to the adder 180. Therefore, the adder 180 does not output any signals to the optical modulator 113, and hence the MZ modulator 113 modulates

the input light with a modulation signal and outputs it.

On the other hand, when the LD bank 110 is not exiting light, the output signal of the PD 116 decreases to approximately zero. Since the output signal becomes smaller 5 than or equal to the reference voltage V_{ref1} , the comparator 118 outputs a signal to the adder 180. Therefore, the adder 180 outputs a signal to the optical modulator 113, which attenuates ASE that is generated in the optical amplifier 111 and etc. Therefore, ASE is not outputted to the $N \times 1$ optical 10 multi/demultiplexer 106.

Naturally, when neither a modulation signal nor input light exists, the adder 180 outputs a signal to the optical modulator 113 and hence ASE is not outputted to the $N \times 1$ optical multi/demultiplexer 106.

15 The LD bank 110 used in the first to fifth embodiments can be replaced by a tunable wavelength laser capable of exiting light of an arbitrary wavelength.

CLAIMS

What is claimed is:

1. An optical communication apparatus comprising:
 - an optical modulating means for modulating input light in accordance with a modulation signal to be transmitted;
 - an optical branching means for branching a modulated optical signal that is exit from said optical modulating means into a first branched optical signal and a second branched optical signal;
- 10 an operating point controlling means for controlling said optical modulating means in accordance with said second branched optical signal exit from said optical branching means; and
 - 15 a stabilizing means for controlling said operating point controlling means in accordance with the intensity of light in said optical modulating means.
2. An optical communication apparatus according to claim 1, wherein said stabilizing means comprises:
 - an input light branching means for branching light entered to an input port into a first branched input light and a second branched input light;
 - an optical detecting means for detecting the light intensity of said second branched input light exit from said input light branching means, and
- 25 a controlling means for controlling said operating point controlling means in accordance with said light intensity that is detected by said optical detecting means.
3. An optical communication apparatus according to claim 1, wherein said stabilizing means further comprises an optical detecting means for detecting said light intensity of said optical modulating means.
4. An optical communication apparatus according to claim 1, wherein said stabilizing means controls an operating point of said operating point controlling means to a predetermined value within a control range.
- 35 5. An optical communication apparatus according to claim 1, wherein said stabilizing means comprises a modulation

signal detecting means for detecting the intensity of said modulation signal and a controlling means for controlling said operating point controlling means in accordance with said signal intensity that is detected by said modulation signal 5 detecting means.

6. An optical communication apparatus comprising an optical modulating means for modulating input light in accordance with a modulation signal to be transmitted and a regulating means for regulating the intensity of light which 10 is transmitted through an optical transmission line from said optical modulation means.

7. An optical communication apparatus according to claim 6, wherein said regulating means is an optical attenuating means for attenuating intensity of light entered 15 to an input port of said optical modulating means in accordance with the intensity of light in said optical modulating means.

8. An optical communication apparatus according to claim 6, wherein said regulating means is an optical attenuating means for attenuating the intensity of light entered to an input port of said optical modulating means in 20 accordance with the intensity of said modulation signal.

9. An optical communication apparatus according to claim 6, wherein said regulating means is an optical attenuating means for attenuating the intensity of light exit 25 from an output port of said optical modulating means in accordance with the intensity of light in said optical modulating means.

10. An optical communication apparatus according to claim 6, wherein said regulating means is an optical attenuating means for attenuating the intensity of light exit 30 from an output port of said optical modulating means in accordance with the intensity of said modulation signal.

11. An optical communication apparatus according to claim 6, wherein said regulating means is a modulation controlling means for switching said optical modulating means 35 in accordance with the intensity of light in said optical modulating means.

12. An optical communication apparatus according to claim 6, wherein said regulating means is a modulation controlling means for switching said optical modulating means in accordance with the intensity of said modulation signal.

5 13. An optical communication apparatus according to claim 1, wherein further comprising an optical attenuating means for attenuating the intensity of light entered to an input port of said optical modulating means in accordance with the intensity of light in said optical modulating means.

10 14. An optical communication apparatus according to claim 1, wherein further comprising an optical attenuating means for attenuating the intensity of light exit from an output port of said optical modulating means in accordance with the intensity of light in said optical modulating means.

15 15. An optical communication apparatus according to claim 1, wherein further comprising a modulation controlling means for switching said optical modulating means in accordance with the intensity of light in said optical modulating means.

20 16. An optical communication apparatus according to claim 1, wherein further comprising an optical attenuating means for attenuating the intensity of light entered to an input port of said optical modulating means in accordance with the intensity of said modulation signal.

25 17. An optical communication apparatus according to claim 1, wherein further comprising an optical attenuating means for attenuating the intensity of light exit from an output port of said optical modulating means in accordance with the intensity of said modulation signal.

30 18. An optical communication apparatus according to claim 1, wherein further comprising a modulation controlling means for switching said optical modulating means in accordance with the intensity of said modulation signal.

35 19. An optical communication apparatus according to claim 1, wherein further comprising an optical attenuating means for attenuating the intensity of light entered to an input port of said optical modulating means in accordance with

the intensity of light in said optical modulating means and the intensity of said modulation signal.

20. An optical communication apparatus according to claim 1, wherein further comprising an optical attenuating means for attenuating the intensity of light exit from an output port of said optical modulating means in accordance with the intensity of light in said optical modulating means and the intensity of said modulation signal.

10 21. An optical communication apparatus according to claim 1, wherein further comprising a modulation controlling means for switching said optical modulating means in accordance with the intensity of light in said optical modulating means and the intensity of said modulation signal.

15 22. An optical add/drop apparatus for adding and dropping an optical signal to and from wavelength-division multiplexed optical signal, which transmits through an optical transmission line, comprising:

20 an optical modulating means for modulating input light in accordance with a modulation signal to be transmitted;

25 an optical branching means for branching said modulated optical signal that is exit from said optical modulating means into a first branched optical signal and a second branched optical signal;

30 an operating point controlling means for controlling said optical modulating means in accordance with said second branched optical signal exit from said optical branching means; and

35 a controlling means for controlling said operating point controlling means in accordance with the intensity of light in said optical modulating means.

23. An optical add/drop apparatus for adding and dropping an optical signal to and from wavelength-division multiplexed optical signal, which transmits through an optical transmission line, comprising:

35 an optical modulating means for modulating input light in accordance with a modulation signal to be transmitted and a regulating means for regulating the intensity of light

which is transmitted to said optical transmission line from said optical modulation means.

ABSTRACT OF THE DISCLOSURE

The present invention relates to an optical communication apparatus for detecting the intensity of light in an optical modulator or the intensity of a modulation signal and for controlling the operating point of the optical modulator based on the result of detection. In the optical communication apparatus having such a configuration, the operating point of the optical modulator can be kept stable even when the input light or the modulation signal is temporarily non-existent in the optical communication apparatus.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

F I G. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

F I G. 15

F I G. 1 6

F I G. 1 7

F I G. 1 8

F I G. 1 9

F I G. 2 0

F I G. 2 1

F I G . 2 2

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。

As a below named inventor, I hereby declare that:

私の住所、私書箱、国籍は下記の私の氏名の後に記載された通りです。

My residence, post office address and citizenship are as stated next to my name.

下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者（下記の氏名が一つの場合）もしくは最初かつ共同発明者であると（下記の名称が複数の場合）信じています。

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

OPTICAL COMMUNICATION APPARATUS AND
OPTICAL ADD/DROP APPARATUS

上記発明の明細書（下記の欄でx印がついていない場合は、本書に添付）は、

the specification of which is attached hereto unless the following box is checked:

 月 日に提出され、米国出願番号または特許協定条約
国際出願番号を とし。
(該当する場合) に訂正されました。 was filed on _____
as United States Application Number or
PCT International Application Number
_____ and was amended on
_____ (if applicable).

私は、特許請求範囲を含む上記訂正後の明細書を検討し、内容を理解していることをここに表明します。

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編第1条56項に定義されるとおり、特許資格の有無について重要な情報を開示する義務があることを認めます。

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration
(日本語宣言書)

私は、米国法典第35編119条(a)-(d)項又は365条(b)項に基き下記の、米国以外の国の少なくとも一ヵ国を指定している特許協力条約365(a)項に基く国際出願、又は外国での特許出願もしくは発明者証の出願についての外国優先権をここに主張するとともに、優先権を主張している。本出願の前に出願された特許または発明者証の外国出願を以下に、枠内をマークすることで、示しています。

Prior Foreign Application(s)

外国での先行出願
Hei11-41177

(Number) (番号)	JAPAN (Country) (国名)
(Number) (番号)	(Country) (国名)

私は、第35編米国法典119条(e)項に基いて下記の米国特許出願規定に記載された権利をここに主張いたします。

(Application No.) (出願番号)	(Filing Date) (出願日)
-----------------------------	------------------------

私は、下記の米国法典第35編120条に基いて下記の米国特許出願に記載された権利、又は米国を指定している特許協力条約365条(c)に基く権利をここに主張します。また、本出願の各請求範囲の内容が米国法典第35編112条第1項又は特許協力条約で規定された方法で先行する米国特許出願に開示されていない限り、その先行米国出願書提出日以降で本出願書の日本国内または特許協力条約国際提出日までの期間中に入手された、連邦規則法典第37編1条56項で定義された特許資格の有無に関する重要な情報について開示義務があることを認識しています。

(Application No.) (出願番号)	(Filing Date) (出願日)
(Application No.) (出願番号)	(Filing Date) (出願日)

私は、私自身の知識に基づいて本宣言書中で私が行なう表明が真実であり、かつ私の入手した情報と私の信じるところに基づく表明が全て真実であると信じていること、さらに故意になされた虚偽の表明及びそれと同等の行為は米国法典第18編第1001条に基づき、罰金または拘禁、もしくはその両方により処罰されること、そしてそのような故意による虚偽の声明を行なえば、出願した、又は既に許可された特許の有効性が失われることを認識し、よってここに上記のごとく宣誓を致します。

I hereby claim foreign priority under Title 35, United States Code, Section 119 (a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed

優先権主張なし

19/02/1999

(Day/Month/Year Filed)
(出願年月日)(Day/Month/Year Filed)
(出願年月日)

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.) (出願番号)	(Filing Date) (出願日)
-----------------------------	------------------------

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of application.

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration (日本語宣言書)

委任状： 私は下記の発明者として、本出願に関する一切の手続を米特許商標局に対して遂行する弁理士または代理人として、下記の者を指名いたします。（弁護士、または代理人の氏名及び登録番号を明記のこと）

POWER OF ATTORNEY: As a named Inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number).

James D. Halsey, Jr., 22,729; Harry John Staas, 22,010; David M. Pitcher, 25,908; John C. Garvey, 28,607; J. Randall Beckers, 30,358; William F. Herbert, 31,024; Richard A. Gollhofer, 31,106; Mark J. Henry, 36,162; Gene M. Garner II, 34,172; Michael D. Stein, 37,240; Paul I. Kravetz, 35,230; Gerald P. Joyce, III, 37,648; Todd E. Marlette, 35,269; Harlan B. Williams, Jr., 34,756; George N. Stevens, 36,938; Michael C. Soldner, 41,455; Norman L. Ourada, 41,235; Kevin R. Spivak, P-43,148; and William M. Schertler, 35,348 (agent)

書類送付先

Send Correspondence to:

STAAS & HALSEY
700 Eleventh Street, N.W.
Suite 500
Washington, D.C. 20001

直接電話連絡先：（名前及び電話番号）

Direct Telephone Calls to: (name and telephone number)

STAAS & HALSEY
(202) 434-1500

唯一または第一発明者名		Full name of sole or first Inventor Hideyuki Miyata	
発明者の署名	日付	Inventor's signature <i>Hideyuki Miyata</i>	Date Jan. 21, 2000
住所	Residence Kawasaki-shi, Kanagawa, Japan		
国籍	Citizenship JAPAN		
私書箱 c/o FUJITSU LIMITED 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588 Japan	Post Office Address		
第二共同発明者		Full name of second joint Inventor, if any Hiroshi Onaka	
第二共同発明者	日付	Second Inventor's signature <i>Hiroshi Onaka</i>	Date Jan. 21, 2000
住所	Residence Kawasaki-shi, Kanagawa, Japan		
国籍	Citizenship JAPAN		
私書箱 c/o FUJITSU LIMITED 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa, 211-8588 Japan	Post Office Address		

（第三以降の共同発明者についても同様に記載し、署名をすること） (Supply similar information and signature for third and subsequent joint inventors.)