o-Jan-2002 16:20

5

17

CLAIMS

- 1. An oral vaccine comprising a nucleic acid operatively encoding an antigen complexed with or entrapped within liposomes formed from liposome forming components including cationic compounds and zwitterionic phospholipid in molar ratio in the range 1:1 to 1:5, and comprising
 - a) at least one cationic compound
- b) at least 50% by mole of the zwitterionic phospholipid has the general formula II

in which R³ and R⁴ are the same or different and are selected from groups of the formula CH₃(CH₂)₀(CH₂)₀-

in which each of e and g are 0 to 23 and e + g is in the range 12 to 23;

R7 is a C1-8 alkanediyl group;

Y is -O- or a bond;

X2 is N, P or S;

m is 3 when X² is N or P and is 2 when X² is S; and

the groups R⁸ are the same or different and are selected from the group consisting of hydrogen, C₁₋₈ alkyl, C₆₋₁₁ aryl or aralkyl, or two or three of the groups R⁸ together with X³ may form a saturated or unsaturated heterocyclic group having 5 to 7 ring atoms.

25 2. A vaccine according to claim 1 in which the cationic compound has the general formula I,

in which R¹ and R² are the same or different and are selected from groups of the formula $CH_3(CH_2)_a(CH=CH-CH_2)_b(CH_2)_c(CO)_d$

in which b is 0 to 6, a and c are each selected from 0-23 and (a + c + 3b) is in the range 12-23 and d is 0 or 1;

R⁵ is a bond or a C₁₋₈ alkanediyl group;

16-01-2002 16-01-2002 18:20

5

10

15

20

25

30

X¹ is N, P or S;

n is 3 where X¹ is N or P and is 2 where X¹ Is S; and the groups R⁵ are the same or different and are selected from hydrogen, C₁-s alkyl, C₅-1z aryl or aralkyl, or two or three of the groups R⁵ together with X¹ may form a saturated or unsaturated heterocyclic group having 5 to 7 ring atoms.

- 3. A vaccine according to claim 2 in which R¹=R² and R³=R⁴.
- 4. A vaccine according to claim 3 in which R¹ and R² represent a different group to R³ and R⁴.
- 5. A vaccine according to claim 3 and claim 4 in which in R¹ and R² b=1 and in which (a + c) is in the range 10-20.
 - 6. A vaccine according to any of claims 3 to 5 in which d = 0.
 - 7. A vaccine according to any of claims 2 to 6 in which X^1 is N and in which the R^6 groups are all C_{1-4} alkyl.
- 8. A vaccine according to any preceding claim which comprises two zwitterionic phospholipids each having the formula II, in which Y is O, and X² is N, and the groups R⁸ of the first phospholipid are all hydrogen and the groups R⁸ of the second phospholipid and all C₁₋₄ alkyl, preferably methyl.
- 9. A vaccine according to claim 8 in which, in each phospholipid Y is O and R⁷ is (CH₂)_h in which h is 2 or 3.
 - 10. A vaccine according to claim 8 or claim 9 in which the groups R^3 and R^4 of the first phospholipid are the same and each is a group in which f=1 and (e+g) is in the range 10 to 20, preferably 12 to 14.
- 11. A vaccine according to any of claims 8 to 10 in which the groups R³ and R⁴ of the second phospholipid are the same and e + g is in the range 15 to 23, preferably 15-17.
- 12. A vaccine according to any of claims 12 to 14 in which the zwitterionic phospholipid is selected from the group consisting of distearoylphosphatidylcholine, distearoylphosphatidylethanolamine, diplamitoylphosphatidylcholine, dipalmitoylphosphatidylethanolamine and mixtures thereof.

16-Jan-Z002 18:20

5

10

15

20

25

30

- 13. A vaccine according to claim 1 in which the cationic compound is cholesterol-3β-N-(dimethyaminoethyl) carbamate.
- 14. An oral vaccine according to any preceding claim in which the liposome forming components include at least 25 mole%, preferably at least 50 mole%, of components which individually have a transition temperature of more than 40°C.
- 15. A vaccine according to any preceding claim in which the nucleic acid is entrapped within the liposomes.
- 16. A method in which a human or a non-human animal is vaccinated by administering a vaccine according to any preceding claim orally whereby an immune response to the encoded antigen is generated.
- 17. A method of entrapping polynucleotide into liposomes involving the steps of:
 - forming an aqueous suspension comprising naked nucleic acid, which operatively encodes an immunogenic polypeptide useful to induce a desired immune response in a human or animal subject, and preformed liposomes formed of liposome forming components as defined in any of claims 1 to 14,
 - ii) freeze-drying or spray-drying the suspension, and
 - iii) rehydrating the product of step ii) to form dehydration/rehydration vesicles.
 - 18. A method according to claim 17 comprising the further steps of:
 - iv) subjecting the aqueous suspension of dehydration/rehydration vesicles from step iii to microfluidization to control their size; and
 - v) optionally separating non entrapped nucleic acid from liposomes.
- 19. Use of a nucleic acid operatively encoding an antigen complexed with or entrapped within liposomes formed from liposome forming components including cationic compounds and zwitterionic phospholipid in molar ratio in the range 1:1 to 1:5, and comprising
 - a) at least one cationic compound

GB0003773

20

b) at least 50% by mole of the zwitterionic phospholipid has the general formula II

in which R³ and R⁴ are the same or different and are selected from groups of the formula CH₃(CH₂)_e(CH₂)_g-

in which each of e and g are 0 to 23 and e + g is in the range 12 to

10 23;

R7 is a C1.8 alkanediyl group;

Y is -O- or a bond;

X2 is N. P or S;

m is 3 when X2 is N or P and is 2 when X2 is S; and

the groups R⁸ are the same or different and are selected from the group consisting of hydrogen, C₁₋₈ alkyl, C₆₋₁₁ aryl or aralkyl, or two or three of the groups R⁸ together with X³ may form a saturated or unsaturated heterocyclic group having 5 to 7 ring atoms;

in the manufacture of an oral vaccine for use in the vaccination of an animal in a method in which the vaccine is administered orally.

20. Use according to claim 19 in which the vaccine is as claimed in any of claims 2 to 15.

20