Przygotowanie narzędzi do uczenia maszynowego opartego na danych z eksperymentu CMS.

Paweł Czajka Mateusz Fila Rafał Masełek

Opiekun projektu: dr hab. A. Kalinowski

Cel projektu

Celem projektu było przygotowanie narzędzi do efektywnego wykorzystania metod uczenia maszynowego (ang. Machine Learning – ML) do analiz fizycznych w eksperymencie Compact Muon Solenoid (CMS) przy Wielkim Zderzaczu Hadronów (LHC) w ośrodku badawczym CERN pod Genewą. Bazowym założeniem było wykorzystanie isniejącej analizy dedykowanej rozpadom bozonu Higgsa na parę taonów ($H \to \tau \tau$), wyekstraktowanie z niej interesujących obserwabli do plików w formacie czytelnym z poziomu języka programowania Python, a następnie wykorzystanie zaawansowanych bibliotek dedykowanych do uczenia maszynowego w celu poprawienia wydajności analizy.

1 Upublicznienie kodu projektu

Dla projektu stworzono dedykowane repozytorium na serwisie GitHub. Znajduje się ono pod adresem: https://github.com/Rav2/HEPMachineLearning. Początkowa część projektu polegała na modyfikacji analizy do rozpadów $H \to \tau \tau$, dostępnej pod adresem https://github.com/akalinow/RootAnalysis.

2 Modyfikacja istniejącej analizy

Pierwszym krokiem w budowie zintegrowanego narzędzia do analiz fizycznych z użyciem ML była modyfikacja istniejącej analizy dra Kalinowskiego.

2.1 Instalacja

Pliki C++ stworzone w ramach projektu, zostały zintegrowane z analizą dra Kalinowskiego i są dostępne pod adresem https://github.com/akalinow/RootAnalysis. Instrukcja kompilacji i użycia znajduje się w pliku README.md w katalogu głównym repozytorium. Po skompilowaniu analizy nie jest potrzebna żadna dodatkowa instalacja modułu ML. Warto nadmienić, iż analiza wymaga oprogramowania takiego jak: Pythia8[1], ROOT[2], Python[3] 2.7.x oraz biblioteki Boost[4] dla języka C++.

2.2 Założenia

Przyjęto następujące wytyczne:

- Kod powinien być zgodny ze standardem C++11.
- Modyfikacja powinna mieć formę modułu, nie zakłócać ani nie spowalniać normalnego działania analizy. Powinna istnieć możliwość wyłączenia działania modułu.
- Kod powinien być na tyle elastyczny, aby mógł być potencjalnie użyty do różnych analiz. Powinna istnieć możliwość wyboru parametrów zapisywanych do pliku.
- Sterowanie parametrami programu powinno odbywać się bez potrzeby ponownej kompilacji kodu, powinno dać się w razie potrzeby zautomatyzować. Zdecydowano się na użycie zewnętrznego pliku tekstowego z ustawieniami.
- Kod powinien być udokumentowany i napisany zgodnie z tzw. zasadami dobrego programowania.

Należy stworzyć skrypt czytający powstałe pliki rootowe do języka Python.

3 Przepływ danych

- 1. Działanie programu ropoczyna się od wczytania pliku konfiguracyjnego, np. $HTauTau/Analysis/config/htt_MuTau.ini$. Znajdują się tam podstawowe parametry programu, takie jak: liczba wątków, folder na wyniki, ścieżka do plików wejściowych z danymi z eksperymentu CMS oraz ich nazwy.
- 2. Funkcja main analizy $H\to \tau\tau$ znajduje się w pliku HTauTau/Analysis/src/HTTAnalysis.cc. Wykonywane są w niej kolejno:
 - (a) Wczytanie pliku konfiugracyjnego (np. htt_MuTau.ini) oraz parsowanie parametrów.
 - (b) Utworzenie użytecznych obiektów:
 - std::vector<Analyzer*> myAnalyzers kontener na obiekty dziedziczące po klasie *Analyzer*, tj. obiekty analizy implementujące selekcję danych i obliczenia. W dalszej części dokumentu będziemy nazywać takie obiekty po prostu *analizami*.
 - EventProxyHTT *myEvent obiekt pośredniczący pomiedzy analizami a danymi.
 - ObjectMessenger* OMess obiekt służący do przekazywania wyników obliczeń pomiędzy różnymi analizami.
 - (c) Obiekty analiz są tworzone i umieszczane w kontenerze myAnalyzers. Jako ostatnia jest dodawana analiza przygotowująca dane do obróbki algorytmami $\mathrm{ML^1}$. Klasa za to odpowiedzialna nazywa się MLAnalyzer i dziedziczy po klasie Analyzer. Wymaga do pracy obiektu klasy MLObjectMessenger dziedziczącego po klasie ObjectMessenger.
 - (d) Następnie tworzony jest obiekt **TreeAnalyzer *tree**, który będzie sterował wykonywaniem analiz. Obiekt ma dostęp do konte-

¹Głównym zadaniem analizy ML jest przygotowanie i zapisanie danych do pliku .root. Ponieważ ten typ plików jest wykorzystywany jedynie w trybie pracy jednowątkowej, dlatego analiza ML nie zostanie utworzona, jeśli program zostanie uruchomiony w trybie wielowątkowym.

- nera z analizami, obiektu typu *ObjectMessenger* oraz pliku konfiguracyjnego.
- (e) W końcowym etapie działania funkcji następuje wypisanie statystyk na stdout oraz zwolnienie pamięci.
- 3. W obiekcie klasy TreeAnalyzer tworzone są histogramy wspólne dla wszystkich analiz. W metodzie int TreeAnalyzer::loop() znajduje się pętla iterująca po wszystkich eventach (elementarnych zderzeniach). Dla każdego eventu wykonywane są analizy z kontenera myAnalyzers w kolejności w jakiej zostały tam dodane. Wykorzystywana jest do tego metoda bool TreeAnalyzer::analyze(const EventProxyBase&).
- 4. ObjectMessenger jest klasą zaopatrzoną w kontenery do przechywania danych w wybranych typach podstawowych. Dane są umieszczane i pobierane z kontenerów za pomocą odpowiednich metod. Ze względu na swoją elastyczność, funkcjonalność klasy ObjectMessenger może zostać poszerzona o nowe typy i dedykowane kontenery. Jedną z takich klas jest klasa MLObjectMessenger, która gromadzi wyniki pracy analiz aby dostarczyć je do analizy ML.
- 5. Analiza ML wykonuje następujące czynności:
 - (a) W trakcie tworzenia obiektu wczytywany jest plik $HTauTau/Analysis/config/ml_Properties.ini$, w którym użytkownik może wybrać, które wielkości powinny znaleźć się w pliku wyjściowym.
 - (b) Dane pobrane z obiektu MLObjectMessenger są przygotowywane do zapisu. W pliku wyjściowym tworzona jest wewnętrzna struktura.
 - (c) Czteropędy zrekonstruowanych cząstek i jetów są zapisywane do pliku wyjściowego.
 - (d) Pozostałe parametry są zapisywane.

4 Lista plików C++

Poniżej znajduje się lista plików C++ utworzonych bądź znacząco zmodyfikowanych w trakcie realizacji pierwszej części projektu:

• MLAnalyzer.h – plik nagłówkowy dla klasy MLAnalyzer dziedziczącej po klasie Analyzer. Zadaniem klasy jest wczytanie ustawień z pliku

ml_Properties.ini, utworzenie struktury drzewa w pliku .root, zapisanie odpowiednich danych do tego pliku.

- MLAnalyzer.cc plik źródłowy dla klasy MLAnalyzer.
- ObjectMessenger.h plik nagłówkowy dla klasy ObjectMessenger.
 Obiekty tej klasy są kontenerami, w których przechowywane są dane przesyłane pomiędzy różnymi analizami. Klasa posiada interfejsy do modyfikacji i odczytu danych dla najczęściej używanych typów podstawowych.
- ObjectMessenger.cc plik źródłowy dla klasy *ObjectMessenger*.
- MLObjectMessenger.h plik nagłówkowy dla klasy *MLObjectMessenger* dziedziczącej po klasie *ObjectMessenger*. W stosunku do klasy bazowej jest wzbogacona o obsługę typów *HTTParticle* oraz *HTTAnalysis::sysEffects*.
- ml_Properties.ini plik tekstowy umożliwiający wybór predefiniowanych parametrów, które zostaną zapisane do drzewa w pliku .root. Dane z pliku są wczytywane w metodzie MLAnalyzer::ParseCfg(const std::string&)

4.1 Konwersja danych z pliku ROOT do Pythona

Po wyekstraktowaniu danych z analizy do pliku .root należy wczytać je do części frameworku napisanej w języku programowania Python. W dalszej części opisany zostanie moduł user_defined_function.py, w której można zaimplementować funkcję get_data(), z której korzysta już reszta pythonowego frameworku. Najwygodniej chyba osiągnąć to korzystając z funkcji które eksportują dane z formatu .root do plików w formacie pickle. TODO napisac gdzie one sa.

5 Uczenie maszynowe w Python

5.1 Założenia pythonowych programów

Chcieliśmy osiągnąć ogólność naszego kodu. Powinien on działać zarówno dla problemów binarnej klasyfikacji jak i regresji. W obecnej wersji można użyć dowolnych numerycznych featcherów oraz featcherów kategorycznych.

- Podejście funkcyjne. Jedynymi efektami ubocznymi napisanych funkcji są powstawanie plików oraz zmiany wag modelu. Dzięki temu kod można łatwiej zrozumieć oraz modyfikować.
- Wszystkie ważne użyte funkcje mają dokumentację umieszczoną w komentarzach.
- Staraliśmy się zastosować do wytycznych dotyczących wydajności kodu ze strony https://www.tensorflow.org/guide/performance/datasets. Dzięki temu trenowanie zachodzi szybko.
- W programie użyte są standardowe estymatory tensorflowowe używające głębokich sieci neuronowych tf.estimator.DNNClassifier oraz tf.estimator.DN

5.2 Pliki pythonowe

Powstały następujące pliki pythonowe

• io TFRecords Ten moduł umożliwia tworzenie plików binarnych w tensorflowowym formacie TFRecord, który jest wspomniany w dokumentacji tensorflow. Ten binarny format danych pozwala modelom tensorflowowym uczyć się na dużych zbiorach danych w szybki sposób. Obsługa tego formatu jest jednakże dość skomplikowana, gdyż trzeba pamiętać dokładnie jakiego typu dane były zapisane w pliku binarnym by można było go odczytać. Z tego powodu moduł ten tworzy foldery w których oprócz binarnych danych w formacie TFRecord znajdują się pliki z informacją o rodzajach zapisanych danych, które umożliwiają wygodne odczytanie danych. W plikach można zapisywać numeryczne featchery które sa listami floatów (ustalonej długości) oraz featchery kategoryczne w postaci liczb całkowitych (wówczas dostarczamy klasie także możliwe wartości naszych kategorycznych danych). Przewidywana wielkość może być zarówno binarną informacją typu tło-sygnał jak również może być przewidywaną liczbą liczbą rzeczywista. Dodatkowo wraz z danymi używanymi do trenowania można zapisać dane które będą przez estymatory ignorowane. Dzięki temu można później sprawdzać korelacje tych nie używanych featcherów z uzyskanymi wynikami.

- model_dnn Ten moduł zawiera obudowane standardowe estymatory tensorflowowe w taki sposób, by mogły one łatwo uczyć się na datasetach zapisanych przy pomocy modułu io_TFRecords. W zależności od tego, czy problem polega na binarnej klasyfikacji czy regresji użyty jest estymator tf.estimator.DNNClassifier lub tf.estimator.DNNRegressor. Ta klasa zajmuje się także normalizacją danych wchodzących do estymatora.
- create_tf_records_folder Ten moduł korzysta z modułu io_TFRecords by zapisać dane w postaci formatu TFRecords. Korzysta on także z pliku user_defined_function.py, w którym znajduje się jedyna zależna od problemu funkcja, którą musi zaimplementować użytkownik. Funkcja ta zwraca dane które mają zostać zapisane.

5.3 Użycie pythonowych klas

5.3.1 user defined function.py

W tym pliku należy zaimplementować funkcję get_data(). Funkcja ta ma za zadanie przekazać dane featcherów numerycznych oraz kategorycznych. W tym miejscu użytkownik decyduje się które featchery mają zostać użyte do uczenia, a które mają występować tylko w celu analizy wyników. Tutaj również należy określić, czy powstający dataset ma służyć do binarnej klasyfikacji czy do regresji. Dokładniejsza dokumentacja tej funkcji znajduje się w komentarzu na początku pliku create tf records folder.py.

5.3.2 create tf records folder.py

W tym pliku zaimplementowana jest funkcja create_tfr_record która tworzy przy pomocy modułu io_TFRecords plik z danymi zwróconymi prez funkcję user_defined_function.get_data(). Moduł ten zajmuje się wstępnym tasowaniem tych danych oraz automatycznie rozponaje jakie są zbiory możliwych wartosci danych które użytkownik wskazał jako kategoryczne.

5.3.3 model dnn.py

Użytkownik chcący wytrenować model będzie korzystał z następujących funkcji (mają one dokładną dokumentację w postaci komentarzy w kodzie)

• create_model_folder, która pozwala utworzyć model tensorflowowy oraz wybrać jego architekturę.

- train pozwalająca trenować model na folderze danych utworzonym przez klasę io_TFRecords
- evaluate pozwalająca ewaluować działanie modelu. Ta funkcja używa również z danych zapisanych przy pomocy klasy io TFRecords
- load_model jest istotna, jeśli chcemy samodzielnie zaimplementować jakąś funkcjonalność. Wczytuje ona tensorflowowy model zapisany w określonym folderze.
- input_fn jest również istotna dla osób modyfikujących działanie tego modułu. Wszystkie estymatory muszą przyjmować dane w postaci odpowiedniej funkcji zwanej input function. Można tą funkcję zmodyfikować do swoich potrzeb.

5.3.4 io TFRecords

Z tego modułu użytkownik nie musi bezpośredni korzystać, jednakże warto przytoczyć funcjonalność w celu ułatwienia ewentualnej modyfikacji.

- create_empty_data_folder tworzy pusty folder danych. Należy jej powiedzieć jakiego typu danych się spodziewamy w tym folderze (to znaczy podajemy rozmiary featcherów oraz możliwe wartości featcherów kategorycznych)
- write_one_example zapisuje pojedynczy przykład do folderu
- parse_individualy_not_ignored pozwala odczytac tensorflow.dataset zawierający dane które będą używane podczas uczenia. Z tej funkcji korzysta model dnn.
- parse_batch_all pozwala odczytać zarówno dane ignorowane (czyli nie używane podczas uczenia) jak i nie ignorowane. Jest ona użyteczna jeśli ktos chce porównać wartość tych ignroowanych wielkości z predykcjami modelu.

Literatura

[1] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008.

- [2] R. Brun and F. Rademakers. ROOT: An object oriented data analysis framework. *Nucl. Instrum. Meth.*, A389:81–86, 1997.
- [3] Python org. webpage. https://www.python.org. Accessed: 2019-01-21.
- [4] Boost library webpage. https://www.boost.org. Accessed: 2019-01-21.