Subject Code: AAS0301A

Roll No:

NOIDA INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA

(An Autonomous Institute)

Affiliated to Dr. A.P. J. Abdul Kalam Technical University, Uttar Pradesh, Lucknow

Course: B.Tech Branch: CSE/IT/CS

Semester: III Sessional Examination: III Year: (2021-2022)

Subject Name: Eng. Maths III

Time: 1.15 Hours [SET-2] Max. Marks:30

General Instructions:

> This Question paper consists of 2 pages & 5 questions. It comprises of three Sections, A, B, and C.

➤ Section A -Question No- 1 is objective type questions carrying 1 mark each, Question No- 2 is very short answer type carrying 2 mark each. You are expected to answer them as directed.

> Section B - Question No-3 is short answer type questions carrying 5 marks each. You need to attempt any two out of three questions given.

Section C -Question No. 4 & 5 Long answer type (within unit choice) questions carrying 6 marks each. You need to attempt any one-part a or b.

Blooms Level: K1: Remember, K2: Understand, K3: Apply, K4: Analyze, K5: Evaluate, K6: Create

1	T	SECTION - A	[8 Marks]	СО	Blooms level
				1 1 1	
1.	Atte	mpt all parts	(4×1=4)		
-		The solution of PDE $(D + 4D' + 5)^2 z = 0$ is (i) $z = e^{-5x} f_1 (y - 4x) + x e^{-5x} f_2 (y - 4x)$ (ii) $z = e^{-5x} f_1 (y + 4x) + x e^{-5x} f_2 (y + 4x)$ (iii) $z = e^{5x} f_1 (y + 4x) + x e^{5x} f_2 (y + 4x)$ (iv) None of these	(1)	CO3	K5
	b.	PDE: $Bu_{xx} + Au_{xy} + Cu_{yy} + f(x, y, u, u_x, u_y) = 0$ is elliptic if	(1)	CO3	K4
	c.	While solving a PDE using a Variable Separable method, we equate the ratio to a Constant which? (i) Can be Positive or Negative Integer or Zero (ii) Can be Positive or Negative rational number or Zero (iii) Must be a Positive Integer (iv) Must be a Negative Integer	(1)	CO3	K1
	d.	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is two-dimensional heat equation instate.	(1)	CO3	К1
1	0				

2	. A	ttempt all parts	(2)2	10	
	a.		(2×2=4)		
			(2)	CO3	K5
	b.	Classify the PDE: $yu_{xx} + (x + y)u_{xy} + xu_{yy} = 0$ about the	(2)	CO3	K4
		line $y = x$.			
	1	SECTION – B	110.24		
			[10 Marks]	1	
3.	An	swer any two of the following-			
	a.		[2×5=10]		
1	-	Solve the PDE $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ subject to the condition	(5)	CO3	K5
		$u(0,y) = 4e^{-y} - e^{-5y}$ by method of separation of variables.			
	b.	Solve the PDE: $(D^2 + DD' - 6D'^2)z = y \sin x$	(5)	CO3	K5
	c.	Solve the PDE: $(D^2 - D'^2 - 3D + 3D')z = xy + e^{x+2y}$	(5)	CO3	K5
-		SECTION - C	[12 Marks]		
	1.				
4	Answer any one of the following-				11 11
	a.	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is	[2×6=12] (6)	CO3	K5
	- 5	initially in a position is given by $y = y_0 \sin^3 \frac{\pi x}{l}$. If it released from rest	C	0	
		from this position, find the displacement $y(x,t)$.			
		22			
	b.	Solve the PDE $\frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial x} = 0$ subject to the condition:	(6)	CO3	K5
		$u(x,0) = 0, u(x,\pi) = 0, u(0,y) = 4 \sin 3y$ by method of separation of variables.			
5.	Ans	wer any one of the following-			
	a.	Find the temperature of the bar of length 2 whose ends are kept at zero	(6)	CO2	We
		and internal surface insulated by if the initial temperature is	(6)	CO3	K5
	10	$\sin\frac{\pi x}{2} + 3\sin\frac{5\pi x}{2}.$			
	b.	Find the solution of Laplace equation subject to the condition:	(6)	CO3	K5
		$u(0,y) = u(1,y) = u(x,0) = 0, u(x,1) = 100 \sin \pi x$			