Deep Multimodal Representation Learning from Temporal Data

Xitong Yang*¹, Palghat Ramesh², Radha Chitta*³, Sriganesh Madhvanath*³, Edgar A. Bernal*⁴ and Jiebo Luo⁵

¹University of Maryland, College Park ²PARC ³Conduent Labs US ⁴United Technologies Research Center ⁵University of Rochester

1xyang35@cs.umd.edu, ²Palghat.Ramesh@parc.com, ³{Radha.Chitta, Sriganesh.Madhvanath}@conduent.com, ⁴bernalea@utrc.utc.com, ⁵jluo@cs.rochester.edu

(Paper to appear in CVPR 2017) https://arxiv.org/abs/1704.03152 Presented by Dustin Doss

Introduction

Problem

- Temporal Multimodal Learning (TML)
- Previous attempts:
 - Non-temporal models applied to concatenated data (deep autoencoders, etc.)
 - More recently, temporal models (Recurrent RBMs, multimodal LSTMs)
- Goals of a TML Model:
 - Joint representation for multimodal input and temporal structure
 - Dynamic weighting of input modalities
 - Generalize to different multimodal datasets
 - Efficient/tractable training

Figure 1. Different multimodal learning tasks. (a) Non-temporal model for non-temporal data [21]. (b) Non-temporal model for temporal data [13]. (c) Proposed CorrRNN model: temporal model for temporal data.

Introduction

Main Contributions/Claims

- Correlational Recurrent Neural Network (CorrRNN) uses assumption of correlation between modalities
 - Encoder/Decoder RNN framework with multimodal GRUs
 - Multi-aspect learning objective
 - Dynamic weighting of modes
- Improvements over state-of-the-art for video/sensor activity classification and audio-visual speech recognition
- More efficient training than previous TML models

Overview

- 1. Input vectors mapped to hidden layers
- Multimodal hidden inputs combined into fusion layer via multimodal GRU
 - Correlation and mode weighting used here
- 3. Final feature vector fed to decoder layer
- 4. Fairly standard reconstruction loss used here, re-extracting original inputs

Figure 2. Basic architecture of the proposed model

Encoder Overview

Figure 3. The structure of the multimodal encoder. It includes three modules: Dynamic Weighting module (DW), GRU module (GRU) and Correlation module (Corr).

Encoder Dynamic Weighting Module

- "Soft-attention" mechanism to shift focus on most useful modality
- Based on coherence scores between time-steps of modalities:

$$\alpha_t^1 = x_t A_1 h_{t-1}^T, \quad \alpha_t^2 = y_t A_2 h_{t-1}^T,$$

Normalized using Laplace smoothing

$$w_t^i = \frac{1 + \exp(\alpha_t^i)}{2 + \sum_k \exp(\alpha_t^k)}, i = 1, 2$$

CorrRNN Model GRU module

- Multimodal GRU extends standard GRU
- Keeps track of 3 quantities:
 - Fused representation h_r
 - o Individual representations h_t^1 and h_t^2
- Uses different weights for different modalities

Figure 4. Block diagram illustrations of unimodal and multimodal GRU modules.

Correlation module

Compute correlation loss across individual representations from GRU

$$corr(H_t^1, H_t^2) = \frac{\sum_{i=1}^{N} (h_{ti}^1 - \overline{H_t^1})(h_{ti}^2 - \overline{H_t^2})}{\sqrt{\sum_{i=1}^{N} (h_{ti}^1 - \overline{H_t^1})^2 \sum_{i=1}^{N} (h_{ti}^2 - \overline{H_t^2})^2}}$$
 where $\overline{H_t^1} = \frac{1}{N} \sum_{i}^{N} h_{ti}^1$ and $\overline{H_t^2} = \frac{1}{N} \sum_{i}^{N} h_{ti}^2$.

Maximize correlation as part of feature learning

Decoder

- Attempt to reconstruct individual modality sequences X and Y from h₊
- Uses three component loss terms

Multimodal Decoder

• Fused-reconstruction loss. The error in reconstructing $\tilde{x_i}$ and $\tilde{y_i}$ from joint representation $\tilde{h_i} = f(\tilde{x_i}, \tilde{y_i})$.

$$L_{\text{fused}} = L(g(f(\tilde{x}_i, \tilde{y}_i)), \tilde{x}_i) + \beta L(g(f(\tilde{x}_i, \tilde{y}_i), \tilde{y}_i))$$

• Self-reconstruction loss. The error in reconstructing $\tilde{x_i}$ from $\tilde{x_i}$, and $\tilde{y_i}$ from $\tilde{y_i}$.

$$L_{\text{self}} = L(g(f(\tilde{x_i})), \tilde{x_i}) + \beta L(g(f(\tilde{y_i}), \tilde{y_i}))$$

• Cross-reconstruction loss. The error in reconstructing $\tilde{x_i}$ from $\tilde{y_i}$, and $\tilde{y_i}$ from $\tilde{x_i}$.

$$L_{\text{cross}} = L(g(f(\tilde{y_i}), \tilde{x_i}) + \beta L(g(f(\tilde{x_i})), \tilde{y_i})$$

$$\mathcal{L} = \sum_{i=1}^{N} \left(L_{ ext{fused}} + L_{ ext{cross}} + L_{ ext{self}}
ight) - \lambda L_{ ext{corr}}$$

Experiments

Setups and Data

- Two domains:
 - Video-sensor data (ISI dataset)
 - Subjects inject insulin while wearing Google Glass and a wrist sensor
 - Manually labeled to correspond to one of seven actions
 - Audio-Video data (AVLetters and CUAVE)
 - Subjects pronounce the English alphabet and digits 0-9 respectively
 - Video cropped to mouth; audio represented with Mel-Frequency Cepstrum Coefficients
- Each used five multimodal learning settings:

	Feature Learning	Supervised Training	Testing
Multimodal Fusion	X + Y	X + Y	X + Y
Cross Modality	X + Y	X	X
Learning	X + Y	Y	Y
Shared Represe-	X + Y	X	Y
ntation Learning	X + Y	Y	X

Experiments Video-Sensor Data Results

Configuration	Correlation	
Fused	0.46	
Self	0.67	
Cross	0.76	
Corr	0.95	
Corr-DW	0.93	

Table 3. Normalized correlation for different model configurations

Config	Description
Baseline	Single-layer GRU RNN per modality
Fused	Objective uses only L_{fused} term
Self	Objective uses $L_{ m fused}$ & $L_{ m self}$
Cross	Objective uses $L_{\text{fused}} \& L_{\text{cross}}$
All	Objective uses L_{fused} , L_{self} & L_{cross}
Corr	Objective uses all loss terms
Corr-DW	Objective uses all loss terms & dyn. weights

Table 2. CorrRNN model configurations evaluated

Figure 5. Classification accuracy on the ISI dataset for different model configurations

Experiments

Audio-Video Data Results

Method	Accuracy	
	Clean Audio	Noisy Audio
MDAE	94.4	77.3
Audio RBM	95.8	75.8
MDAE + Audio RBM	94.4	82.2
CorrRNN	96.11	90.88

Table 6. Classification accuracy for audio-visual speech recognition on the CUAVE dataset, under clean and noisy audio conditions. White Gaussian noise is added to the audio signal at 0dB SNR. Baseline results from [13].

Method	Accuracy	
	AVLetters	CUAVE
MDAE [13]	62.04	66.70
MDBN [21]	63.2	67.20
MDBM [21]	64.7	69.00
RTMRBM [7]	66.04	-
CRBM [1]	67.10	69.10
CorrRNN	83.40	95.9

Table 4. Classification performance for audio-visual speech recognition on the AVLetters and CUAVE datasets, compared to the best published results in literature, using the fused representation of the two modalities.

	Train	Method	Accuracy	
	/Test		AVLetters	CUAVE
Cross-	Video	Raw	38.08	42.05
modality	/Video	CorrRNN	81.85	96.22
learning	Audio	Raw	57.31	88.32
	/Audio	CorrRNN	85.33	96.11
Shared	Video	MDAE	-	24.30
represe-	/Audio	CorrRNN	85.33	96.77
ntation	Audio	MDAE	-	30.70
learning	/Video	CorrRNN	81.85	96.33

Table 5. Classification accuracy for the cross-modality and shared representation learning settings. MDAE results from [13].

Conclusions

Good

- Well-written and fairly easy-to-follow paper
- Multi-domain experiments
- Promising results

Questions

- Does it actually perform as well for >2 modalities?
- How much does dynamic weighting add?
- No comparison on the video/sensor task?
- Baselines look weird for the audio-video task
- No argument for efficiency of training
- Training on asynchronous inputs?