INFORMED SEARCH ALGORITHMS

Chapter 4, Sections 1–2

Outline

- ♦ Best-first search
- \Diamond A* search
- ♦ Heuristics

Review: Tree search

```
function TREE-SEARCH (problem, fringe) returns a solution, or failure fringe \leftarrow INSERT (MAKE-NODE (INITIAL-STATE [problem]), fringe) loop do

if fringe is empty then return failure

node \leftarrow REMOVE-FRONT (fringe)

if GOAL-TEST [problem] applied to STATE (node) succeeds return node fringe \leftarrow INSERTALL (EXPAND (node, problem), fringe)
```

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node

– estimate of "desirability"

 \Rightarrow Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search A* search

Romania with step costs in km

Greedy search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = {\rm straight}$ -line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Complete??

Complete?? No-can get stuck in loops, e.g., with Oradea as goal, lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking

Time??

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking

Time?? $O(b^m)$, but a good heuristic can give dramatic improvement

, men a 800 a men en 80

Space??

Complete?? No–can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow

Complete in finite space with repeated-state checking

Time?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

Complete?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow

Complete in finite space with repeated-state checking

Time?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

A* search uses an admissible heuristic

i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \geq 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

A^* search example

A^* search example

A^* search example

A* search example

A* search example

A* search example

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Complete??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Next: Example Up: 13 Previous: Optimality of A*

IDA*

Series of Depth-First Searches

Like Iterative Deepening Search, except use A* cost threshold instead of depth threshold

Ensures optimal solution

queueing-fn is enqueue-at-front if $f(child) \le threshold$

Threshold is h(root) for first pass

Next threshold is f(min_child), where min_child is cutoff child with minimum f value

This conservative increase ensures cannot look past optimal cost solution

Example

Example

Example

Next: Eight Puzzle Example Up: 13 Previous: IDA*

Example

Example

Example

Example

Example

Example

Example

Example

Example

Next: RBFS Up: 13 Previous: Eight Puzzle Example

Analysis

Some redundant search, but small amount compared to work done on last iteration

Dangerous if f values are very close

If threshold = 21.1 and next value is 21.2, probably only include 1 new node each iteration

Time: $O(b^m)$ Space: O(m)

SMA* search can be used to remember some nodes from one iteration to the next.

Proof of lemma: Consistency

A heuristic is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

$$h_1(S) = ??$$

 $h_2(S) = ??$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) =$ number of misplaced tiles

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

$$h_1(S) = ?? 6$$

 $h_2(S) = ?? 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes
$${\sf A}^*(h_1)=539 \ {\sf nodes}$$

$${\sf A}^*(h_2)=113 \ {\sf nodes}$$

$$d=24 \ {\sf IDS}\approx {\sf 54,000,000,000} \ {\sf nodes}$$

$${\sf A}^*(h_1)=39,135 \ {\sf nodes}$$

$${\sf A}^*(h_2)=1,641 \ {\sf nodes}$$

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

incomplete and not always optimal

 A^* search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems