Group Codes

Theorem

Let c_1, c_2, \ldots, c_d be d distinct columns of the parity check $r \times n$ matrix H. Then the r-tuple sum $c_1 \oplus c_2 \oplus \cdots \oplus c_d$ is 0 if and only if the null space of H, N(H) has a code word of weight d.

Theorem

H is a parity-check matrix for a code of minimum weight at least 3 if and only if

- (i) no column of H is all 0s; and
- (ii) no two columns are identical.
- (iii) there exists three columns, whose sum is 0, that is, $\exists C_i, C_j, C_k$ such that $C_i \oplus C_j \oplus C_k = 0$.

Error detection/correction capability

Theorem

Let H be an $r \times n$ binary parity-check matrix of the form $[P|I_r]$, where I_r is an $r \times r$ identity matrix, and P an arbitrary $r \times (n-r)$ matrix. Then the code defined by H has 2^{n-r} code words. H is called the canonical parity-check matrix.

Error detection/correction capability of N(H), the null space of a parity-check matrix H of a code, C

- = minimum weight of C
- = minimum number of columns, d of H that sum to 0
- = d.

Let $H = [P|I_r]$ be a canonical parity-check matrix, where I_r is an $r \times r$ identity matrix, and P an arbitrary $r \times (n - r)$ matrix.

Let
$$k = n - r$$
.

Let

$$H = \begin{pmatrix} h_{11} & h_{12} & \cdots & h_{1k} \\ h_{21} & h_{22} & \cdots & h_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ h_{r1} & h_{r2} & \cdots & h_{rk} \\ & P & & I_r \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ & I_r & & \end{pmatrix}.$$

Encoding Procedure:

- Given a k-tuple message $x = \langle x_1, x_2, \dots, x_k \rangle$, we need to compute the corresponding n-tuple code word (frame = message + error code) $y = \langle y_1, y_2, \dots, y_k, y_{k+1}, \dots, y_n \rangle$, where k = n r, that is, n = k + r.
- Set $y_i \leftarrow x_i$, for all $1 \le i \le k$.

• Compute y_{k+i} for $1 \le i \le r$ as the modulo-2 sum:

$$y_1h_{11} \oplus y_2h_{12} \oplus \cdots$$

$$\oplus y_kh_{1k} \oplus y_{k+1}h_{1,k+1} = 0, \text{ since } h_{1,k+1} = 1$$

$$\Rightarrow y_{k+1} = y_1h_{11} \oplus y_2h_{12} \oplus \cdots \oplus y_kh_{1k}.$$
Similarly,
$$y_{k+2} = y_1h_{21} \oplus y_2h_{22} \oplus \cdots \oplus y_kh_{2k}.$$
In general,
$$y_{k+i} = \bigoplus_{i=1}^k y_ih_{i,i}.$$

Decoding Procedure:

- Let C be a group code with individual code words c_i .
- Assume that the true code word is the *n*-tuple *x*, but the observed *n*-tuple is *x'*, which is *x* after it has been corrupted by errors.
- Note that Hamming code is a single-error correcting code since H
 generates a code of minimum weight at least 3.
- Let ϵ be the error *n*-tuple that satisfies

$$\begin{array}{rcl}
\mathbf{X}' & = & \mathbf{X} \oplus \mathbf{\epsilon} \\
\Rightarrow \mathbf{X} & = & \mathbf{X}' \oplus \mathbf{\epsilon}.
\end{array}$$

• We now show that the problem of finding ϵ reduces the problem of finding the coset to which x' belongs.

Decoding Procedure (Continued...):

- For each c_i , let us find the error vector ϵ_i that satisfies $x' = c_i \oplus \epsilon_i$, that is, $\epsilon_i = c_i \oplus x'$.
- The error vectors ϵ_i s form the set $E = C \oplus x'$. Because C is a subgroup of the group, $G = \langle \{ \text{ all } n\text{-tuples } \}, \oplus \rangle$, $C \oplus x'$ is a coset (right) of the group G.
- Thus, we wish to find ϵ , the *n*-tuple of least weight in the coset that contains x' (by the Maximum Likelihood method). This ϵ is called the "coset leader" for that coset.
- In summary,
 - (i) Determine the coset to which the observed n-tuple x' belongs;
 - (ii) Find the coset leader ϵ for that coset; and
 - (iii) Decode x' as the n-tuple $x = x' \oplus \epsilon$.

Definition

For any observed *n*-tuple x', the *syndrome* of x' is the *r*-tuple $x'.H^t$, where r is the number of parity-check bits.

Theorem

Two n-tuples are in the same coset if and only if they have the same syndrome.

Problem:

Given the following 4×9 parity-check matrix H.

- (a) Does its null space N(H) have single-error correcting capability? Justify your answer.
- (b) Encode the message tuple (1 1 0 1 0).
- (c) Find the error, if any, in the tuple ($0\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1)$ and hence show that its syndrome is same as that of error tuple.

Solution:

Here r = 4, n = 9, k = n - r = 5.

- (a) N(H), the null space of H has single-error correcting capability, because H satisfies the following properties:
- (i) No column of H is all 0's;
- (ii) No two columns of H are identical;
- (iii) at least three columns sum is 0, i.e., minimum weight is at least 3, since \exists

$$c_1=\left(egin{array}{c}1\1\0\0\end{array}
ight),\,c_4=\left(egin{array}{c}1\1\0\1\end{array}
ight),\,c_9=\left(egin{array}{c}0\0\0\1\end{array}
ight)$$
 such that $c_1\oplus c_4\oplus c_9=0.$

Solution (Continued...):

b) Here the message tuple is (1 1 0 1 0) = $\langle x_1, x_2, x_3, x_4, x_5 \rangle$. H is of the form $[P|I_r]$, where P is an 4×5 matrix and I_4 is the identity matrix. Let the encoded message tuple be $y = \langle y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8, y_9 \rangle$.

```
Set y_1 = x_1 = 1;
V_2 = X_2 = 1;
y_3 = x_3 = 0;
y_4 = x_4 = 1;
y_5 = x_5 = 0.
The parity-check equations are given by
V_1 \oplus V_2 \oplus V_4 \oplus V_6 = 0 \Rightarrow V_6 = 1;
V_1 \oplus V_4 \oplus V_5 \oplus V_7 = 0 \Rightarrow V_7 = 0;
V_2 \oplus V_3 \oplus V_5 \oplus V_8 = 0 \Rightarrow V_8 = 1;
y_3 \oplus y_4 \oplus y_9 = 0 \Rightarrow y_9 = 1.
```

Hence, the encoded message is $\langle 110101011 \rangle$.

Solution (Continued...):

(c) The observed received tuple is $x'=\langle\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\rangle$. The error syndrome is $x'.H^t=\langle\ 1\ 0\ 0\ 0\ \rangle$. Thus, there is a single error at $(1\ 0\ 0\ 0)_2=8$ -th position of x'. Hence, the decoded tuple is $x=x'\oplus\epsilon=\langle\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 1\ 1\rangle$, by simply flipping the 8-th bit position of x'.

Problem: Let H be an $r \times (2^r - 1)$ parity-check matrix for a Hamming code for which the i-th column is the binary representation of the integer i. Let H' be created from H by appending a row of all 1s. Show that the null space of H' is a group code with minimum distance 4.

Solution: Here *H* has the following form

$$H = \left(\begin{array}{cccccc} 1 & 0 & 1 & 0 & 1 & \cdots & 1 \\ 0 & 1 & 1 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 \end{array}\right),$$

where i-th column of H is the binary representation of the integer i.

Solution (Continued...): Now, H' will have the following form

$$H' = \left(egin{array}{ccccccc} 1 & 0 & 1 & 0 & 1 & \cdots & 1 \\ 0 & 1 & 1 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & 1 & 1 & \cdots & 1 \\ dots & dots & dots & dots & dots & dots \\ 0 & 0 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 1 & 1 & 1 & 1 & \cdots & 1 \end{array}
ight),$$

where the last row of H is appended with all 1s.

Solution (Continued...): N(H') is a group code with minimum distance 4, since

- No column of H' is all 0s;
- No two columns are identical;
- There does not exist three columns of H', whose sum is 0; and
- There exists four columns C_2 , C_3 , C_4 , C_5 such that $C_2 \oplus C_3 \oplus C_4 \oplus C_5 = 0$.

End of this lecture