

# Network-on-Chip

Sunil Kumar



# The course will enable you to:



- Understand the basic principles of Network-on-Chip.
- Understand the various techniques of NoC topologies.
- Understand the switching, flow control, routing techniques and router microarchitecture.
- Carry out experiments, analyze results and to make necessary conclusions using NoC simulator.



Application
Algorithm
Programming Language
Operating System
Instruction Set Architecture
Microarchitecture
Register-Transfer Level
Circuits
Devices
Technology







Application: Ideally wants low-latency, high-bandwidth, dedicated channels between logic and memory

Technology: Dedicated channels too expensive in terms of area and power





An Interconnection Network is a programmable system that transports data between terminals

Technology: Interconnection network helps efficiently utilize scare resources such as area and power

Application: Managing interconnection network can be critical to achieving good performance





#### One Theme for Course:

Interplay between application requirements, technology constraints, and interconnection networks

# Interconnection Networks: Introduction



- How to connect individual devices together into a community of communicating devices?
- Device:
  - Component within a computer
  - Single computer
  - System of computers
- Types of elements:
  - end nodes (device + interface)
  - Links
  - interconnection network
- Internetworking: interconnection of multiple networks

# Interconnect network



8



# **Interconnection Network Domains**





# Interconnection Network



- Key Design Principles
  - Transfer maximum amount of information (high bandwidth) within the least amount of time (low latency) so as to not bottleneck the system
  - Efficiently utilize shared but scarce resources (buffers, links, logic) to reduce area and power.

# **NoC and Off-Chip Networks**



### NoC

- Sensitive to cost:
  - area and power
- Wires are relatively cheap
- Latency is critical
- Traffic is known a-priori
- Design time specialization
- Custom NoCs are possible

# Off-Chip Networks

- Cost is in the links
- Latency is tolerable
- Traffic/applications unknown
- Changes at runtime
- Adherence to networking standards

# Why Study NoC?





Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

# Why Study NoC?





Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

# Examples of Multicore and Manycore Processors





# Irregular Threaded Application Running on Processor-to-Memory Network





#### **Application Requirements**

| Message Size      | 512b      |
|-------------------|-----------|
| Average Bandwidth | 400 MB/s  |
| Peak Bandwidth    | 8 GB/s    |
| Latency           | Minimum   |
| Traffic Pattern   | Arbitrary |



What network design meets these requirements within the technology constraints and with the least a ea, power, and lowest latency?

# Streaming Application Running on Processor-to-Processor Network





#### **Application Requirements**

| Message Size      | 4MB       |
|-------------------|-----------|
| Average Bandwidth | 120 MB/s  |
| Peak Bandwidth    | 120 MB/s  |
| Latency           | Tolerant  |
| Traffic Pattern   | Streaming |

What network design meets these requirements within the technology constraints and with the least area, power, and maximum bandwidth?

# Goal: Flexible Networks Capable of Running Many Different Kinds of Applications





## **Interconnection Network Basics**



18

- Topology
  - Arrangement of Nodes and Channels
- Routing
  - Determining Path Between Terminals
- Flow Control
  - Managing Allocation of Resources
- Router Microarchitecture

# **Topology**





# Routing







Minmal Routing vs. Non-Minimal Routing Oblivious vs. Adaptive Routing Deterministics vs. Randomized Routing

# **Flow Control**







# **Router Architecture**







# **Example Architectures**

NoC Sunil Kumar 5/8/2020 - 23

# **Sun Niagara Processor**





- 8 multithreaded processors
- Single-stage crossbar connecting 8 cores to 4 L2 cache banks
- "200 GB/s" total bisection BW

### **IBM Cell Processor**





- 1 general-purpose processor
- 8 processors specialized for data-parallelism
- 4 uni-directional rings
- Each ring is 128b wide at 1.6 GHz
- Network Bisection BW = 25.6 GB/s
- Total Bisection = 102.4 GB/s

### **MIT Raw Processor**





- 16 simple RISC cores
- Two dynamically routed mesh networks (32b/channel)
- Two statically routed mesh networks for message passing (32b/channel)
- Bisection bandwidth per network is 8\*32b at 400 MHz 12.8 = 12.8 GB/s
- Total bisection bandwidth is 51.2 GB/s
- Network consumes 20-30% of total chip power

# **Tilera Tile100**







# Any Question?

NoC Sunil Kumar 5/8/2020 - 28