

Decision Trees

Practical Machine Learning (with R)

UC Berkeley Fall 2015

Topics

- Administrativa
 - Github
 - Reorganization → one repository
 - Please put
- Review and Expectations

⇒In-Class Assignment

New Topics

REVIEW AND EXPECTATIONS

REVIEW AND EXPECTATION

Github

Transformations

Logistic Regression ~ Linear Regression with the logit link function

```
oglm( ..., family=""")
```

Comprehensive ML Process

Goal:

BUILD UP A TOOL BOX OF SKILLS

Worked Example: Boston Housing
Transformations and Stepwise

NEW TOPICS

RMARKDOWN: DEMOSTRATION

MODEL PERFORMANCE

Model Performance

- Determine relevant metric, e.g. RMSE, FPR
- Calculate statistic ("metric")

On training data
 Training or apparent performance → bias → over-fitting

Need unbiased estimate for calculating performance

RESAMPLING

- Best Solution: Data Splitting
 Split data into training and test data
 - Easy to interpret defend
 - Requires data not be consumed by model
 - Computationally easy
 - Is generally not (by itself) the most accurate → no confidence

- Resampling Strategies
 - Repeated Splitting
 - K-Fold Cross Validation
 - Bootstrap

REPEATED SPLITTING

AKA Monte Carlo Splitting

- Split data 75%-25%
 - Fit Model
 - Calculate Metric
 - Repeat with Different Split(30+ times)
- Calculate Metric

 $Metric = AVG_i(metric)$

10-Fold Cross Validation

LOOCV : K→n

- Split the data set into 10 equal sized samples.
- Leave one sample out (fold)
 - Fit the model
 - calculate the metric on the fold
 - Repeat choosing another sample until
- Calculate Metric

$$Metric = AVG_i(metric)$$

● 5 or 10-fold common

Bootstrap

"Sampling with Replacement"

Which Is Best?

There isn't one.

K-fold cross validation
Higher Variance
Lower Bias

Bootstrap Lower Variance Higher Bias

CALCULATING PERFORMANCE IS <u>NOT</u> THE SAME AS FITTING THE MODEL

EXERCISE:
LECTURES/04-DECISIONTREES/RESAMPLING.RMD

MODEL FORMULA (HIGHER ORDER TERMS)

Model Formula ...

CLASSIFICATION PERFORMANCE

METRICS FOR BI-NOMIAL CLASSIFICATION

Total Population

Total Population

Positive

Predicted

Negative

[•] https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Total Population		Observed		
		Positive	Negative	
	Positive	True Positive	False Positive (Type I Error)	
Predicted	Negative	False Negative (Type II Error)	True Negative	

Alternatives: Norm by Observed

Total Popula	ation	Observed		
		Positive	Negative	
Due di ete d	Positive	True Positive Rate (TPR), Sensitivity, Recall True Positives Observed Positives	False Positive Rate (FPR), Fall-Out False Positives Observed Negatives	
Predicted		False Neg. Rate (FNR), Miss rate False Negatives Observed Positives	True Neg. Rate (TNR), Specificity (SPC) True Negatives Observed Negatives	

Alternatives: Norm by Predicted

Tatal Damila		Observed		
Total Popula	ation	Positive	Negative	
Predicted	Positive	Pos. Predictive Value (PPV), Precision True Positives Predicted Positives	False Discovery Rate (FDR) False Positives Predicted Positives	
Predicted	Negative	False Omission Rate(FOR) False Negatives Predicted Negatives	Negative Predictive Value (NPV) True Negatives Predicted Negatives	

[•] https://en.wikipedia.org/wiki/Sensitivity and specificity

MORE FUN ...

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

EXERCISE BINOMIAL METRICS: SKIN-NON SKIN

EVEN MORE COMPLICATION

Not all errors need count "equivocal zone" or "intermediate zone"

Prevalent when the model has three choices, e.g. A or B or Nothing.

MUTLINOMIAL CLASSIFICATION

TERMS

- SKappa Statistic,
- S-Statistics, F-Statistic

MULTICLASS CLASSIFICATION WITH LOGISTIC REGRESSION

BIAS VARIANCE TRADE-OFF

$$E[MSE] = \sigma^2 + (model bias)^2 + model variance$$

Process

EXAMPLE OF ML ALGORITHM(S)

- Spam Filter
- handwriting recognition (svm)
- Traffic engineering (lights)
- Weather prediction
- Sentiment analysis (social media)
- Netflix Recommender
- Fraud detection (Visa)
- Imaging processing
- (network) Intrution detection
- Self-driving cars

LOGISTIC REGRESSION

DECISION TREES

APPENDIX

COMPARISON OF MODELS (CHART)

TRANSFORMATIONS

- Centering and Scaling: scale*
- Resolve skewness: log, sqrt, inv
- Resolve outliers: spatial sign, PCA

Some algorithms require scaling Some are insensitive Time consuming Somewhat of an art

Genetic algorithms (GA)

			True co	ndition		
		Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive/ Σ Total population	
	Predicted	Predicted condition positive	<u>True positive</u>	<u>False positive</u> (<u>Type I error</u>)	Positive predictive value (PPV), Precision = Σ True positive/ Σ Test outcome positive	False discovery rate (FDR) = Σ False positive/ Σ Test outcome positive
	condition	Predicted condition negative	False negative (Type II error)	<u>True negative</u>	False omission rate (FOR) = Σ False negative/Σ Test outcome negativ e	Negative predictive value (NPV) $= \Sigma \text{ True}$ negative/ Σ Test outcome negativ e
		Accuracy (ACC) = Σ True positive + Σ True negative/Σ Total	True positive rate (TPR), Sensitivity, Recall = Σ True positive/ Σ Condition positive	False positive rate (FPR), Fall-out = Σ False positive/Σ Condition negative	Positive likelihood ratio (LR+) = TPR/FPR	<u>Diagnostic odds ratio</u> (DOR) =
		population	False negative rate (FNR), Miss rate = Σ False negative/Σ Condition positive	True negative rate (TNR), Specificity (SPC) = Σ True negative/ Σ Condition negative	Negative likelihood ratio (LR-) = FNR/TNR	LR+/LR-