Chapter 1

Groups

Lectured by Dr Michele Zordan Typed by Yu Coughlin Spring 2024

0 Introduction

The following are supplementary reading:

- $\bullet\,$ J B Fraleigh, A first course in abtract algebra, 2014
- $\bullet\,$ R B J T Allenby, Rings, field and groups: an introduction to abstract algebra, 1991
- A W Knapp, Basic Algebra, 2006

Lecture 1 Thursday 10/01/19

Contents

	1	Groups			
		0	Introd	luction	
Lecture 1		1	Binary	y operations and groups	
		2	Subgro	oups	
			2.1	Subgroups	
			2.2	Cyclic groups and orders	
			2.3	Cosets	
			2.4	Lagrange's theorem	
			2.5	Generating groups	
		3	Group	homomorphisms	
		4	Symm	etric groups	
			4.1	Disjoint cycle decomposition	
			4.2	Alternating groups	
			4.3	Dihedral groups	

1 Binary operations and groups

Definition 1.0.1 (Binary operation). Given a set G a binary operation on G is a mapping $\cdot : G \times G \to G$ written $\cdot (g,h) = g \cdot h$ (and sometimes gh) for all $g,h \in G$.

Definition 1.0.2 (Group). A **group** is a pair $G = (G, \cdot)$, for some set G and a binary operation \cdot , satisfying the following properties:

- G1 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in G$ the binary operation is **associative**,
- G2 $\exists e \in G$ such that $\forall g \in Gg \cdot e = e \cdot g = g$ the is an **identity** element,
- G3 $\forall g \in G, \exists g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = e$ every element has an **inverse**.

In some literature, the condition of **closure** is also required however this is given in the fact that \cdot is a binary operation on G.

Theorem 1.0.3 (Uniqueness). The identity element for some group G is unique. The inverse, g^{-1} , of any element $g \in G$ is also unique.

Lemma 1.0.4 (Inverse of product). Given a group G and the elements $g_1, g_2, \ldots, g_n \in G$ we have,

$$(g_1g_2...g_n)^{-1} = g_n^{-1}g_{n-1}^{-1}...g_1^{-1}.$$

Definition 1.0.5 (Abelian Group). If a group G also satisfies the condition $g \cdot h = h \cdot g$ for all $g, h \in G$ -commutativity, then G is said to be an **abelian group**.

Definition 1.0.6 (Powers of elements). Given a group G and some $g \in G$ the nth power of g in G is defined recursively as,

$$g^{n} := \begin{cases} e & \text{if } n = 0 \\ g^{n-1}g & \text{if } n > 0 \\ (g^{n})^{-1} & \text{if } n < 0 \end{cases}$$

Definition 1.0.7 (Order of group). The **order** of a group G, written |G|, is the cardinality of the underlying set of G.

Example 1.0.8 (Symmetric group). The symmetric group of size n, denoted S_n , is the set of bijections on the interval [1, n], for $n \in \mathbb{N}$, under function composition.

2 Subgroups

2.1 Subgroups

Definition 2.1.1 (Subgroup). Given a group (G, \cdot) and a subset $H \subseteq G$ we say (H, \cdot) is a **subgroup** of G, written $H \subseteq G$, if (H, \cdot) forms a group and

$$\forall h_1, h_2 \in H : h_1 \cdot h_2 \in H.$$

A subgroup, H, is a **proper subgroup** if $H \neq G$. $\{e\}$ is the trivial subgroup.

Theorem 2.1.2 (Subgroup test). Given a group (G, \cdot) , (H, \cdot) is a subgroup iff:

- S1 H is non-empty existence,
- S2 for all $h_1, h_2 \in H$ we have $h_1 \cdot h_2 \in H$ closure under group operation,
- S3 for all $h \in H$ we have $h^{-1} \in H$ closure under inverses.

2.2 Cyclic groups and orders

Definition 2.2.1 (Cyclic group). We say a group G is cyclic if there is an element $g \in G$ such that

$$G = \langle g \rangle := \{ g^n : n \in \mathbb{N} \}.$$

We say that G is **generated** by g or g is a **generator** of G.

Definition 2.2.2 (Order of elements). Given a group G and some $g \in G$, the **order** of g in G, written ord g, is the smallest positive integer n such that $g^n = e$ or ∞ if no such n exists.

Theorem 2.2.3. Suppose G is a cyclic group generated by g with |G| = n, ord $g = |\{e, g, g^2, \dots, g^{n-1}\}| = |G| = n$.

Theorem 2.2.4. Suppose G is a cyclic group with $G = \langle g \rangle$, the three statements:

- 1. $H \leq G \implies H$ is cyclic,
- 2. suppose |G| = n and $m \in \mathbb{Z}$ with $f = \gcd(m, n)$,

$$\langle g^m \rangle = \langle g^d \rangle$$
 and $|\langle g^m \rangle| = \frac{n}{d}$.

In particular, $\langle g^m \rangle = G$ iff gcd(m,n)=1,

3. if |G| = n and $k \le n$, then G has a subgroup of order k iff k|n, this subgroup is $\langle g^{n/k} \rangle$.

Definition 2.2.5 (Euler totient). The **Euler totient** function ϕ is defined as $\phi(n) := |\{k \in \mathbb{N} : k \le n \text{ and } \gcd(k,n)=1\}|$.

Corollary 2.2.6. For $n \in \mathbb{N}$:

$$\sum_{d|n} \phi(d) = n.$$

2.3 Cosets

Definition 2.3.1 (Coset). Given a group G with $H \leq G$ and $g \in G$ then

$$qH := \{qh : h \in H\},$$

is a **left coset** of H in G (the definition of a **right coset** follows clearly).

Note 2.3.2. For the rest of this section, unless specified otherwise, a coset is assumed to be a left-coset.

Theorem 2.3.3. Given a group G with $H \leq G$, all cosets of H in G have the same size.

Theorem 2.3.4. If G is a finite group with $H \leq G$, the left cosets of H for a partition of G.

2.4 Lagrange's theorem

Theorem 2.4.1 (Lagrange's theorem). If G is a finite group and $H \leq G$, |H| divides |G|.

Corollary 2.4.2. Given a group G with $H \leq G$, the relation \sim on G given by: $g \sim k$ iff $g^{-1}k \in H$, is an equivalence relation with equivalence classes given by cosets of H.

Corollary 2.4.3. Given a group G of order n, for all $g \in G$, ord $g \mid n$ and $g^n = e$.

Corollary 2.4.4 (Fermat's little theorem). Let p be prime. If $x \in \mathbb{Z}$ and $p \nmid x$, then $x^{p-1} \equiv 1 \pmod{p}$.

2.5 Generating groups

Definition 2.5.1. Given a group G with $S \subseteq G$, $S^{-1} := \{g^{-1} \in G : g \in S\}$.

Definition 2.5.2 (Subgroup generated by a set). Let G be a group with non-empty $S \subseteq G$. The subgroup generated by S is defined as

$$\langle S \rangle := \{ q_1 q_2 \dots q_k \in G : k \in \mathbb{N} \text{ and } q_i \in S \cup S^{-1} \text{ for all } i \in [1, k] \}.$$

Lemma 2.5.3. Given a group G with non-empty $S \subseteq G$, $\langle S \rangle \leq G$ and, $H \leq G$, $S \subseteq H \implies \langle S \rangle \leq H$. This is equivalent to saying " $\langle S \rangle$ is the smallest subgroup of G containing S".

3 Group homomorphisms

Definition 3.0.1 (Group homomorphism). If (G,\cdot) and (H,*) are goups, $\phi: G \to H$ is a **group homomorphism** iff $\phi(g_1)*\phi(g_2) = \phi(g_1 \cdot g_2)$ for all $g_1, g_2 \in G$. If ϕ is bijective then it is called a **group isomorphism** with G and H being **isomorphic**, written $G \cong H$.

Example 3.0.2. The **determinant** is a group homomorphism, suppose \mathbb{F} is a field:

$$\det: \operatorname{GL}(n, \mathbb{F}) \to (\mathbb{F}^*, \times).$$

Lemma 3.0.3. If G,H are groups with $\phi:G\to H$,

- 1. $\phi(e_G) = e_H$,
- 2. $\phi(g^{-1})(\phi(g))^{-1}$ for all $g \in G$.

Definition 3.0.4 (Image and kernel of group homomorphism). If G,H are groups with $\phi: G \to H$, the image of ϕ is:

$$\operatorname{im} \phi := \{ h \in H : \exists g \in G, h = \phi(g) \}.$$

and the **kernel** of ϕ is

$$\ker \phi := \{ g \in G : \phi(g) = e_H \}.$$

These are each subgroups of H and G respectively.

Lemma 3.0.5. A group homomorphism, $\phi : G \to H$, is injective iff $\ker \phi = \{e_H\}$.

Theorem 3.0.6. The composition of two compatible group homomorphisms is also a group homomorphism.

Theorem 3.0.7. All cyclic groups of the same order are isomorphic.

4 Symmetric groups

4.1 Disjoint cycle decomposition

Definition 4.1.1. If $f, g \in S_n$ and $x \in [1, n]$ then f fixes x if f(x) = x and f moves x otherwise.

Definition 4.1.2. The support of $f \in S_n$ is the set of points f moves, supp $(f) := \{x \in [1, n] : f(x) \neq x\}$.

Definition 4.1.3. If $f, g \in S_n$ satisfy $\operatorname{supp}(f) \cap \operatorname{supp}(g) = \emptyset$, f and g are disjoint.

Lemma 4.1.4. If $f, g \in S_n$ are disjoint, fg = gf.

Definition 4.1.5 (Cycles). If $f \in S_n$ with $i_1, i_2, \ldots, i_r \in [1, n]$ for some $r \leq n$ such that,

$$f(i_s) = i_{s+1 \mod (r)}$$
 for all $s \in [1, r]$,

with f fixing all other elements of [1, n], then f is a cycle of length r or an r-cycle and we write $f = (i_1 i_1 \dots i_r)$.

Theorem 4.1.6 (Disjoint cycle form). if $f \in S_n$ then there exists $f_1, f_2, \ldots, f_k \in S_n$ all with disjoint supports such that $f = f_1 f_2 \ldots f_n$. If we further have, for all $i \in [1, k]$, both f_i is not a 1-cycle when $f \neq \text{id}$ and $\text{supp}(f_i) \subseteq \text{supp}(f)$. We say f is in **disjoint cycle form** or **d.c.f**.

Theorem 4.1.7 (Uniqueness of disjoint cycles). The disjoint cycle form of some $f \in S_n$ is unique up to rearrangement.

Theorem 4.1.8. If $f \in S_n$ is written in d.c.f as $f = f_1 f_2 \dots f_k$ where f_i is an r_i -cycle for $i \in [1, k]$ then,

- 1. $f^m = \text{id iff } f_i^m = \text{id for all } i \in [1, k],$
- 2. ord $(f) = \text{lcm}(r_1, r_2, \dots r_k)$.

4.2 Alternating groups

Theorem 4.2.1. Every permutation in S_n can be written as the product of 2-cycles.

Definition 4.2.2 (Sign of a permutation). We define the **sign** of a permutation with the group homomorphism, $\operatorname{sgn}: S_n \to \{-1,1\}$ with $\operatorname{sgn}(i\ j) := -1$ for all $i,j \in [1,n]$ with $i \neq j$. This is defined over all permutations by the decomposition into 2-cycles, the sign of a permutation is unique. We say $f \in S_n$ is **even** if $f \in \ker(\operatorname{sgn})$ and **odd** otherwise.

Definition 4.2.3 (Alternating group). The alternating group of size n is $A_n := \ker(\operatorname{sgn})$ with $A_n \leq S_n$.

4.3 Dihedral groups

Definition 4.3.1 (Dihedral group). The **dihedral group** of order 2n, denoted D_{2n} , is the group of symmetries of a regular n-gon in \mathbb{R}^3 centered at the origin, it is often written at

$$D_{2n} = \{e, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\},$$

where r is a rotation by $\frac{2\pi}{n}$ and s is the reflection along the centre of the polygon and the first vertex.

Theorem 4.3.2. The elements of D_{2n} can be written as elements of S_n giving $D_{2n} \leq S_n$. Specifically, $r = (1 \ 2 \ \dots \ n)$ and $s = (1)(2 \ n)(3 \ n-1) \dots$ or $(1 \ n)(2 \ n-1) \dots$ if n is odd or even respectively.