Program Verification Using Cyclic Proof

Reuben N. S. Rowe

University College London Programming Principles, Logic and Verification Research Group (PPLV)

Computer Laboratory Programming Research Group Seminar Thursday 19th May 2016

Prologue: It's Proof, But Not As We Know It

 \cdot We are all familiar with proofs as finite trees

Prologue: It's Proof, But Not As We Know It

- We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?

Prologue: It's Proof, But Not As We Know It

- We are all familiar with proofs as finite trees
- But what if we allow proofs to be cyclic graphs instead?
- Cyclic proofs must satisfy a global soundness property

· Our research programme has two broad aims:

- · Our research programme has two broad aims:
 - · Develop cyclic proof (meta) theory in a verification setting

- · Our research programme has two broad aims:
 - · Develop cyclic proof (meta) theory in a verification setting
 - Implement the techniques for automatic verification

- · Our research programme has two broad aims:
 - · Develop cyclic proof (meta) theory in a verification setting
 - Implement the techniques for automatic verification

Why cyclic proof?

- · Our research programme has two broad aims:
 - · Develop cyclic proof (meta) theory in a verification setting
 - Implement the techniques for automatic verification

- Why cyclic proof?
 - · It subsumes standard induction

- · Our research programme has two broad aims:
 - · Develop cyclic proof (meta) theory in a verification setting
 - Implement the techniques for automatic verification

- Why cyclic proof?
 - It subsumes standard induction
 - It can help discover inductive hypotheses

- · Our research programme has two broad aims:
 - · Develop cyclic proof (meta) theory in a verification setting
 - Implement the techniques for automatic verification

- Why cyclic proof?
 - It subsumes standard induction
 - It can help discover inductive hypotheses
 - Termination arguments can often be extracted from cyclic proofs

James Brotherston

Cristiano Calcagno

Alex Simpson

Dino Distefano

Richard Bornat

Nikos Gorogiannis

Example: First Order Logic

- · Assume signature with zero, successor, and equality
- · Allow inductive predicate definitions, e.g.

Example: First Order Logic

- · Assume signature with zero, successor, and equality
- · Allow inductive predicate definitions, e.g.

These induce unfolding rules for the sequent calculus, e.g.

$$\frac{\Gamma \vdash \Delta, N \ t}{\Gamma \vdash \Delta, N \ st} \ (NR_2) \quad \frac{\Gamma, t = 0 \vdash \Delta \quad \Gamma, t = sx, N \ x \vdash \Delta}{\Gamma, N \ t \vdash \Delta} \ (Case \ N)$$

where x is fresh

$$Nx \vdash Ex, Ox$$

$$\frac{-E 0,O 0}{x = 0 \vdash E x,O x} (=L)$$

$$x = sy,N y \vdash E x,O x$$
(Case N)

A Cyclic Proof of $N \times E \times O \times A$

$$\frac{N \ y \vdash E \ y, O \ sy}{\vdash E \ 0, O \ 0} (ER_1) \qquad \frac{N \ y \vdash E \ y, O \ sy}{\vdash E \ sy, O \ sy} (ER_2) \qquad (ER_2)$$

$$\frac{N \ y \vdash E \ sy, O \ sy}{\vdash E \ sy, O \ sy} (ER_2) \qquad (Case \ N)$$

$$\frac{N \ y \vdash E \ y, O \ sy}{\vdash E \ sy, O \ sy} (ER_2) \qquad (Case \ N)$$

$$\frac{N \ y \vdash E \ y, O \ y}{N \ y \vdash E \ y, O \ sy} (OR_1)$$

$$\frac{N \ y \vdash E \ y, O \ sy}{N \ y \vdash E \ sy, O \ sy} (ER_2)$$

$$\frac{N \ y \vdash E \ sy, O \ sy}{x = sy, N \ y \vdash E \ x, O \ x} (Case \ N)$$

$$\frac{N \ x \vdash E \ x, O \ x}{N \ x \vdash E \ x, O \ x}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} (Subst)$$

$$\frac{N y \vdash E y, O y}{N y \vdash E y, O sy} (OR_1)$$

$$\frac{N y \vdash E y, O sy}{N y \vdash E sy, O sy} (ER_2)$$

$$\frac{N y \vdash E sy, O sy}{X = sy, N y \vdash E x, O x} (Case N)$$

A Cyclic Proof of $Nx \vdash \overline{Ex, Ox}$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

A Cyclic Proof of $N \times E \times O \times A$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} \text{(Subst)}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} \text{(OR1)}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E \times, O \times} \text{(ER2)}$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} \text{(Case N)}$$

$$[\![x]\!]_{m_1} > [\![y]\!]_{m_2}$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (OR_1)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (ER_2)$$

$$\frac{N \times \vdash E \times, O \times}{X = Sy, N \times \vdash E \times, O \times} (ER_2)$$

$$\frac{N \times \vdash E \times, O \times}{X = Sy, N \times \vdash E \times, O \times} (Case N)$$

$$[\![x]\!]_{m_1} > [\![y]\!]_{m_2} = [\![y]\!]_{m_3}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} \text{(Subst)}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} \text{(OR1)}$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} \text{(ER2)}$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} \text{(Case N)}$$

$$[\![x]\!]_{m_1} > [\![y]\!]_{m_2} = [\![y]\!]_{m_3} = [\![y]\!]_{m_4}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} \text{(Subst)}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} \text{(OR1)}$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} \text{(ER2)}$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} \text{(Case N)}$$

$$[\![x]\!]_{m_1} > [\![y]\!]_{m_2} = [\![y]\!]_{m_3} = [\![y]\!]_{m_4} = [\![y]\!]_{m_5}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} (Subst)$$

$$\frac{N y \vdash E y, O y}{N y \vdash E y, O sy} (OR_1)$$

$$\frac{N y \vdash E y, O sy}{N y \vdash E sy, O sy} (ER_2)$$

$$\frac{N y \vdash E sy, O sy}{x = sy, N y \vdash E \times, O \times} (Case N)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Case N)$$

$$[\![X]\!]_{m_1} > [\![Y]\!]_{m_2} = [\![Y]\!]_{m_3} = [\![Y]\!]_{m_4} = [\![Y]\!]_{m_5} = [\![X]\!]_{m_6}$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} (Subst)$$

$$\frac{N \times \vdash E \times, O \times}{N y \vdash E y, O y} (OR_1)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (ER_2)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (ER_2)$$

$$\frac{N \times \vdash E \times, O \times}{N \times \vdash E \times, O \times} (Case N)$$

$$[\![x]\!]_{m_1} > [\![y]\!]_{m_2} = [\![y]\!]_{m_3} = [\![y]\!]_{m_4} = [\![y]\!]_{m_5} = [\![x]\!]_{m_6} > [\![y]\!]_{m_7} \dots$$

$$n_1 > n_2 > n_3 > \dots$$

 Separation Logic incorporates formulas for representing heap memory:

- Separation Logic incorporates formulas for representing heap memory:
 - emp denotes the empty heap

- Separation Logic incorporates formulas for representing heap memory:
 - · emp denotes the empty heap
 - $x \mapsto \vec{v}$ is the single-cell heap containing values \vec{v} at memory location x

- Separation Logic incorporates formulas for representing heap memory:
 - · emp denotes the empty heap
 - $x \mapsto \vec{v}$ is the single-cell heap containing values \vec{v} at memory location x
 - F * G denotes a heap h that can be split into disjoint sub-heaps h_1 and h_2 which model F and G respectively

- Separation Logic incorporates formulas for representing heap memory:
 - · emp denotes the empty heap
 - $x \mapsto \vec{v}$ is the single-cell heap containing values \vec{v} at memory location x
 - F * G denotes a heap h that can be split into disjoint sub-heaps h_1 and h_2 which model F and G respectively
- Inductive predicates now represent data-structures, e.g. linked-list segments:

$$\frac{x = y \land \mathsf{emp}}{\mathsf{ls}(x, y)} \qquad \frac{x \mapsto z * \mathsf{ls}(z, y)}{\mathsf{ls}(x, y)}$$

$$ls(x, y) * ls(y, z) \vdash ls(x, z)$$

$$\frac{1}{\operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)} (\operatorname{id}) = \frac{1}{\operatorname{emp} * \operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)} (\operatorname{id}) = \frac{1}{\operatorname{emp} * \operatorname{ls}(x,z) \vdash \operatorname{ls}(x,z)} (\operatorname{id}) = \frac{1}{\operatorname{ls}(x,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)} (\operatorname{Subst}) = \frac{1}{\operatorname{ls}(x,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(y,z) \vdash \operatorname{ls}(y,z)} (\operatorname{Subst}) = \frac{1}{\operatorname{ls}(x,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(y,z) \vdash \operatorname{ls}(y,z)} (\operatorname{lsR}_2) = \frac{1}{\operatorname{ls}(x,y) * \operatorname{ls}(y,z) \vdash \operatorname{ls}(x,z)} (\operatorname{lsR}_2) = \frac{1}{\operatorname{ls}(x,y) * \operatorname{ls}(x,z)} (\operatorname{$$

- Fix some values that we can trace along paths in the proof
 - In our examples: inductive predicate instances

- Fix some values that we can trace along paths in the proof
 - · In our examples: inductive predicate instances
- · Map (model, trace-value) pairs to elements of a w.f. set

- Fix some values that we can trace along paths in the proof
 - In our examples: inductive predicate instances
- · Map (model, trace-value) pairs to elements of a w.f. set
 - Inductive definitions induce a monotone operator φ on sets of models

- Fix some values that we can trace along paths in the proof
 - In our examples: inductive predicate instances
- · Map (model, trace-value) pairs to elements of a w.f. set
 - Inductive definitions induce a monotone operator φ on sets of models
 - Interpret the inductive definitions using the lfp

$$\varphi(\bot) \sqsubseteq \varphi(\varphi(\bot)) \sqsubseteq \ldots \sqsubseteq \varphi^{\omega}(\bot) \sqsubseteq \ldots \sqsubseteq \mu X. \varphi(X)$$

- Fix some values that we can trace along paths in the proof
 - In our examples: inductive predicate instances
- · Map (model, trace-value) pairs to elements of a w.f. set
 - Inductive definitions induce a monotone operator φ on sets of models
 - Interpret the inductive definitions using the lfp

$$\varphi(\bot) \sqsubseteq \varphi(\varphi(\bot)) \sqsubseteq \ldots \sqsubseteq \varphi^{\omega}(\bot) \sqsubseteq \ldots \sqsubseteq \mu X. \varphi(X)$$

• Map $(m, P \vec{t})$ to the least approximation $\varphi^{\alpha}(\bot)$ of P in which m appears

- Fix some values that we can trace along paths in the proof
 - In our examples: inductive predicate instances
- · Map (model, trace-value) pairs to elements of a w.f. set
 - Inductive definitions induce a monotone operator φ on sets of models
 - Interpret the inductive definitions using the lfp

$$\varphi(\bot) \sqsubseteq \varphi(\varphi(\bot)) \sqsubseteq \ldots \sqsubseteq \varphi^{\omega}(\bot) \sqsubseteq \ldots \sqsubseteq \mu X. \varphi(X)$$

- Map $(m, P \vec{t})$ to the least approximation $\varphi^{\alpha}(\bot)$ of P in which m appears
- · Identify the progression points of the proof system, e.g.

$$\frac{x = y \land \mathsf{emp} \vdash F \quad x \mapsto v * \mathsf{ls}(v, y) \vdash F}{\mathsf{ls}(x, y) \vdash F} \text{ (Case ls)}$$

- Impose global soundness condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata

- · Impose global soundness condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:

- · Impose global soundness condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid

- · Impose global soundness condition on proof graphs:
 - · Every infinite path must have an infinitely progressing trace
 - · This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - Assume the conclusion of the proof is invalid
 - Local soundness implies an infinite sequence of (counter) models

- · Impose global soundness condition on proof graphs:
 - Every infinite path must have an infinitely progressing trace
 - · This condition is decidable using Büchi automata
- We obtain an infinite descent proof-by-contradiction:
 - · Assume the conclusion of the proof is invalid
 - Local soundness implies an infinite sequence of (counter) models
 - Global soundness then implies an infinite descending chain in a well-founded set

• Explicit induction requires induction hypothesis F up-front

$$\frac{}{N \text{ 0}} \frac{N \text{ x}}{N \text{ sx}} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \text{ } t \vdash \Delta} \text{ (Ind } N)$$

• Explicit induction requires induction hypothesis F up-front

$$\frac{}{N \text{ 0}} \frac{N \text{ x}}{N \text{ sx}} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \text{ } t \vdash \Delta} \text{ (Ind } N)$$

· Cyclic proof enables 'discovery' of induction hypotheses

• Explicit induction requires induction hypothesis F up-front

$$\frac{}{N \text{ 0}} \frac{N \text{ x}}{N \text{ sx}} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \text{ } t \vdash \Delta} \text{ (Ind } N)$$

- · Cyclic proof enables 'discovery' of induction hypotheses
- Complex induction schemes naturally represented by nested and overlapping cycles

• Explicit induction requires induction hypothesis F up-front

$$\frac{}{N \text{ 0}} \frac{N \text{ x}}{N \text{ sx}} \frac{\Gamma \vdash F[0] \quad \Gamma, F[x] \vdash F[sx], \Delta \quad \Gamma, F[t] \vdash \Delta}{\Gamma, N \text{ } t \vdash \Delta} \text{ (Ind } N)$$

- · Cyclic proof enables 'discovery' of induction hypotheses
- Complex induction schemes naturally represented by nested and overlapping cycles
- The explicit induction rules are derivable in the cyclic system (cf. Brotherston & Simpson)

Cyclic Proofs vs Infinite Proofs

 Cyclic proofs are the (strict) regular subset of the set of non-well-founded proof trees

Cyclic Proofs vs Infinite Proofs

 Cyclic proofs are the (strict) regular subset of the set of non-well-founded proof trees

 Theorem (Brotherston & Simpson): the full infinite system is cut-free complete

Cyclic Proofs vs Infinite Proofs

 Cyclic proofs are the (strict) regular subset of the set of non-well-founded proof trees

 Theorem (Brotherston & Simpson): the full infinite system is cut-free complete

· Cut is likely not eliminable in the cyclic sub-system

A Simple Imperative Language

```
(Terms) t := nil \mid x

(Boolean Expressions) B := t = t \mid t! = t

(Programs) C := \varepsilon (stop)

\mid x := t; C (assignment)

\mid x := [y]; C \mid [x] := y; C (load/store)

\mid free(x); C \mid x := new; C (de/allocate)

\mid if B then C; C (conditional)

\mid while B do C; C (loop)
```

A Simple Imperative Language

```
(Terms) \quad t ::= \mbox{nil} \mid x \\ (Boolean Expressions) \quad B ::= t = t \mid t! = t \\ (Programs) \quad C ::= \varepsilon \qquad (stop) \\ \mid x := t; C \qquad (assignment) \\ \mid x := [y]; C \mid [x] := y; C \qquad (load/store) \\ \mid free(x); C \mid x := \mbox{new}; C \qquad (de/allocate) \\ \mid if B \mbox{then} \mbox{$C$}; C \qquad (loop) \\ \mid while B \mbox{do} \mbox{$C$}; C \qquad (loop) \\ \end{cases}
```

The following program deallocates a linked list

```
while x!=nil do y:=[x]; free(x); x=y;
```

Program Verification by Symbolic Execution

• We use Hoare logic for proving triples $\{P\}$ C $\{Q\}$ using Separation Logic as an assertion language

Program Verification by Symbolic Execution

- We use Hoare logic for proving triples $\{P\}$ C $\{Q\}$ using Separation Logic as an assertion language
- Program commands are executed symbolically by the proof rules, e.g.

(load):
$$\frac{\{x = v[x'/x] \land (P * y \mapsto v)[x'/x]\} C \{Q\}}{\{P * y \mapsto v\} x := [y]; C \{Q\}} (x' \text{ fresh})$$

Program Verification by Symbolic Execution

- We use Hoare logic for proving triples $\{P\}$ C $\{Q\}$ using Separation Logic as an assertion language
- Program commands are executed symbolically by the proof rules, e.g.

(load):
$$\frac{\{x = v[x'/x] \land (P * y \mapsto v)[x'/x]\} C \{Q\}}{\{P * y \mapsto v\} x := [y]; C \{Q\}} (x' \text{ fresh})$$

(free):
$$\frac{\{P\} C \{Q\}}{\{P*x \mapsto v\} \, \mathsf{free}(x); C \{Q\}}$$

Handling Loops in Cyclic Proofs

• The standard Hoare rule for handling while loops:

$$\frac{\{B \land P\} C_1 \{P\} \quad \{\neg B \land P\} C_2 \{Q\}}{\{P\} \text{ while } B \text{ do } C_1; C_2 \{Q\}}$$

Handling Loops in Cyclic Proofs

• The standard Hoare rule for handling while loops:

$$\frac{\left\{t=z \land B \land P\right\} C_1 \left\{t < z \land P\right\} \quad \left\{\neg B \land P\right\} C_2 \left\{Q\right\}}{\left\{P\right\} \text{ while } B \text{ do } C_1; C_2 \left\{Q\right\}}$$

t is the loop variant

Handling Loops in Cyclic Proofs

• The standard Hoare rule for handling while loops:

$$\frac{\{t = z \land B \land P\} \ C_1 \ \{t < z \land P\} \quad \{\neg B \land P\} \ C_2 \ \{Q\}}{\{P\} \ \text{while} \ B \ \text{do} \ C_1 \ ; C_2 \ \{Q\}}$$

t is the loop variant

With cyclic proof, it is enough just to unfold loops

```
while x!=nil do y:=[x];free(x);x=y;
```

```
\{ls(x,nil)\}\ while x!=nil do y:=[x];free(x);x=y;
```

```
\{ls(x,nil)\}\ while x!=nildoy:=[x];free(x);x=y; \{emp\}
```

```
\{ls(x,nil)\} \quad \text{while} \, x! = nil \, do \, y := [\,x\,] \, ; \\ free(\,x\,) \, ; x = y \, ; \quad \{emp\}
```

```
\{ls(x,nil)\} \quad \text{while} \, x! = nil \, do \, y := [\,x\,] \, ; \\ free(\,x\,) \, ; x = y \, ; \quad \{emp\}
```

```
 \begin{cases} x \neq \text{nil} \\ \land \text{ls}(x, \text{nil}) \end{cases} y := [x]; \dots \{\text{emp}\} 
 \vdots \qquad \begin{cases} x = \text{nil} \\ \land \text{ls}(x, \text{nil}) \end{cases} \epsilon \{\text{emp}\} 
 \begin{cases} \{\text{ls}(x, \text{nil})\} \text{ while } \dots \{\text{emp}\} \end{cases}
```

```
\{ls(x,nil)\} \quad \text{while} \, x\,!\,=\!nil\,do\,y\,:\,=\![\,x\,]\,; free(\,x\,)\,; x\,=\!y\,; \quad \{emp\}
```

$$\left\{ \begin{array}{l} x \neq \text{nil} \\ \wedge \, \text{ls}(x, \text{nil}) \right\} \, y \colon= [x] \, ; \, \dots \, \{\text{emp}\} \\ & \vdots & \left\{ \begin{array}{l} x = \text{nil} \\ \wedge \, \text{ls}(x, \text{nil}) \right\} \, \epsilon \, \, \{\text{emp}\} \end{array} \right.$$
 (while)

```
\{ls(x,nil)\} \quad while \, x\,!\,=\!nil\,do\,y\,:\,=\![\,x\,]\,; free(\,x\,)\,; \,x\!=\!y\,; \quad \{emp\}
```

```
\{ls(x,nil)\}\ while x!=nil do y:=[x];free(x);x=y; \{emp\}
```

```
 \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \times \begin{array}{c} \\ \end{array} \times \begin{array}{c} \\ \\ \end{array} \times \begin{array}{c} \\ \\ \end{array} \times \begin{array}{c} \\ \end{array} \times \begin{array}{c} \\ \\ \end{array}
```

```
\{ls(x,nil)\} \quad \text{while} \, x\,!\,=\!nil\,do\,y\,:\,=\![\,x\,]\,; \,free(\,x\,)\,; \,x\,=\!y\,; \quad \{emp\}
```

$$\frac{\left\{ \begin{array}{c} x\mapsto y\\ *\lg(y,\operatorname{nil}) \end{array} \right\} \operatorname{free}(x); \dots \{\operatorname{emp}\}}{\left\{ \begin{array}{c} x\mapsto y\\ *\lg(y,\operatorname{nil}) \end{array} \right\} \operatorname{free}(x); \dots \{\operatorname{emp}\}} \tag{load}} \\ \left\{ \begin{array}{c} x\mapsto v\\ *\lg(y,\operatorname{nil}) \end{array} \right\} y := [x]; \dots \{\operatorname{emp}\} \end{aligned} \qquad \frac{\left\{ \begin{array}{c} x\mapsto v\\ *\lg(y,\operatorname{nil}) \end{array} \right\} y := [x]; \dots \{\operatorname{emp}\}}{\left\{ \begin{array}{c} x=\operatorname{nil}\\ \wedge\lg(x,\operatorname{nil}) \end{array} \right\} \epsilon \{\operatorname{emp}\}} \\ \vdots \qquad \qquad \frac{\left\{ \lg(x,\operatorname{nil}) \right\} \operatorname{supp}}{\left\{ \lg(x,\operatorname{nil}) \right\} \epsilon \operatorname{supp}\}} \end{aligned} \qquad (\text{while})$$

```
\{ls(x,nil)\} \quad \text{while} \, x\,!\,=\!nil\,do\,y\,:\,=\![\,x\,]\,;\\ free(x\,)\,;\,x\,=\!y\,;\quad \{emp\}
```

```
\{ls(x, nil)\} while . . . \{emp\} (assign)
                                                                                                                                                              \{ls(y, nil)\}\ x=y; \dots \{emp\}
\frac{ \left\{ \begin{array}{c} x \mapsto y \\ * \, \mathsf{ls}(y, \mathsf{nil}) \end{array} \right\} \, \mathsf{free}(x); \, \ldots \, \{\mathsf{emp}\} }{ \left\{ \begin{array}{c} x \mapsto y \\ * \, \mathsf{ls}(y, \mathsf{nil}) \end{array} \right\} \, \mathsf{y} := [x]; \, \ldots \, \{\mathsf{emp}\} } \\ \left\{ \begin{array}{c} x \mapsto v \\ * \, \mathsf{ls}(v, \mathsf{nil}) \end{array} \right\} \, \mathsf{y} := [x]; \, \ldots \, \{\mathsf{emp}\} \end{array}
                                                                                                                                                                           \frac{}{\left\{ \begin{array}{c} x = \text{nil} \\ \wedge \text{ls(x,nil)} \end{array} \right\} \epsilon \left\{ \text{emp} \right\}}
                                              \left\{ \begin{array}{l} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \text{ y:=[x]; ... \{emp\}} 
                                                                                                                                   \{ls(x, nil)\}\ while \dots \{emp\}
```

{ls(x,nil)} while x!=nil do y:=[x]; free(x); x=y; {emp}

```
\{ls(x,nil)\}\ while x!=nil\ do\ y:=[x]; free(x); x=y; \{emp\}
                                                                                                  \{ls(x, nil)\} while . . . \{emp\} (assign)
                                                                                                    \{ls(y, nil)\}\ x=y; \dots \{emp\}
                                                                          \begin{cases} x \mapsto y \\ * ls(y, nil) \end{cases} free(x); \dots \{emp\}
 \begin{array}{l} x \neq \text{nil} \\ \land x = \text{nil} \end{array} \hspace{-0.5cm} \left\{ \begin{array}{l} x \mapsto v \\ * \, \text{ls(v, nil)} \end{array} \right\} \hspace{-0.5cm} y \colon=\hspace{-0.5cm} [x]\hspace{-0.5cm} ; \hspace{0.5cm} \ldots \hspace{0.5cm} \{\text{emp}\} \end{array} 
                                                                                                                 \frac{}{\left\{ \begin{array}{c} x = \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \epsilon \left\{ \text{emp} \right\} } 
                          \left\{ \begin{array}{l} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \text{ y:=[x]; ... \{emp\}} 
                                                                              \rightarrow {ls(x, nil)} while ... {emp}
```

```
\{ls(x,nil)\}\ while x!=nil\ do\ y:=[x]; free(x); x=y; \{emp\}
                                                                                                                  \{ls(x, nil)\} while . . . \{emp\} (assign)
                                                                                                                    \{ls(y, nil)\} x=y; \dots \{emp\}
                                                                                        \begin{array}{c} \left\{\begin{array}{c} x \mapsto y \\ * \operatorname{ls}(y, \operatorname{nil}) \end{array}\right\} \operatorname{free}(x); \dots \{\operatorname{emp}\} \end{array} 
 \begin{array}{l} x \neq \text{nil} \\ \land x = \text{nil} \end{array} \hspace{-0.5cm} \left\{ \begin{array}{l} x \mapsto v \\ * \hspace{-0.1cm} \mathsf{ls}(v, \text{nil}) \end{array} \right\} \hspace{-0.5cm} y \hspace{-0.1cm} := \hspace{-0.5cm} [x] \hspace{-0.5cm} ; \hspace{0.1cm} \ldots \hspace{0.1cm} \{\text{emp}\} \end{array} 
                                                                                                                                  \frac{}{\left\{\begin{array}{c} x = \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array}\right\} \epsilon \left\{\text{emp}\right\}}
                              \left\{ \begin{array}{l} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \ y := [x]; \dots \{\text{emp}\} 
                                                                                           \rightarrow {ls(x, nil)} while ... {emp}
```

```
(Procedures) \operatorname{proc} p(\vec{x}) \{ C \}
(Programs) C := ... \mid p(\vec{t}); C
```

(Procedures)
$$\operatorname{proc} p(\vec{x}) \{ C \}$$

(Programs) $C := ... \mid p(\vec{t}); C$

(proc):
$$\frac{\{P\} C \{Q\}}{\{P\} p(\vec{x}) \{Q\}} (body(p) = C)$$

(Procedures)
$$\operatorname{proc} p(\vec{x}) \{ C \}$$

(Programs) $C := ... \mid p(\vec{t}); C$

$$(\text{proc}): \ \ \frac{\{P\} \, C \, \{Q\}}{\{P\} \, p(\vec{x}) \, \{Q\}} (\text{body}(p) = C) \qquad (\text{call}): \ \ \frac{\{P\} \, p(\vec{t}) \, \{P'\} \, \{P'\} \, C \, \{Q\}}{\{P\} \, p(\vec{t}) \, ; \, C \, \{Q\}}$$

(Procedures)
$$\operatorname{proc} p(\vec{x}) \{ C \}$$

(Programs) $C := ... \mid p(\vec{t}); C$

(Procedures)
$$\operatorname{proc} p(\vec{x}) \{ C \}$$

(Programs) $C := ... \mid p(\vec{t}); C$

$$\begin{array}{ll} \text{(proc):} & \frac{\{P\}\,C\,\{Q\}}{\{P\}\,p(\vec{x})\,\{Q\}} \, \text{(body(p) = C)} & \text{(call):} & \frac{\{P\}\,p(\vec{t})\,\{P'\} \quad \{P'\}\,C\,\{Q\}}{\{P\}\,p(\vec{t})\,;\,C\,\{Q\}} \\ \\ & \text{(param):} & \frac{\{P\}\,p(\vec{t})\,\{Q\}}{\{P[t/x]\}\,p(\vec{t})[t/x]\,\{Q[t/x]\}} \end{array}$$

• The following procedure recursively deallocates a linked list proc dealloc(x) { if x!=nil then y:=[x]; free(x); dealloc(y); }

proc dealloc(x) { if x!=nil then y:=[x]; free(x); dealloc(y); }

```
\{ls(x, nil)\}\ dealloc(x); \{emp\}\ (param)
                                           {ls(y, nil)} dealloc(y); {emp}
\left\{\begin{array}{c} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array}\right\} \text{ y:=[x]; ... \{emp\}}
                                              \{ls(x, nil)\}\ if\ x!=nil\ then....\{emp\}
                                               → {ls(x, nil)} dealloc(x); {emp}
```

proc dealloc(x) { if x!=nil then y:=[x]; free(x); dealloc(y); }

```
\{ls(x, nil)\}\ dealloc(x); \{emp\}\ (param)
                                            {ls(y, nil)} dealloc(y); {emp}
\left\{\begin{array}{c} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array}\right\} \text{ y:=[x]; } \dots \text{ {emp}}
                                               \{ls(x, nil)\}\ if\ x!=nil\ then....\{emp\}
                                                 → {ls(x, nil)} dealloc(x); {emp}
```

proc dealloc(x) { if x!=nil then y:=[x]; free(x); dealloc(y); }

```
\{ls(x, nil)\}\ dealloc(x); \{emp\}\ (param)
                                           {ls(y, nil)} dealloc(y); {emp}
\left\{ \begin{array}{c} x \neq \text{nil} \\ \wedge \text{ls}(x, \text{nil}) \end{array} \right\} \text{ y:=[x]; ... \{emp\}}
                                              \{ls(x, nil)\}\ if\ x!=nil\ then....\{emp\}
                                                → {ls(x, nil)} dealloc(x); {emp}
```

```
proc dealloc(x) { if x!=nil then y:=[x]; free(x); dealloc(y); }
```

```
\{ls(x, nil)\}\ dealloc(x); \{emp\}\ (param)
                                                                                   {ls(y, nil)} dealloc(y); {emp}
 \begin{array}{c} x \mapsto y \\ \text{* ls(y, nil)} \end{array} \text{free(x); ... {emp}} \\ (\text{load}) \\ \text{$\wedge$ x = nil $} \\ \text{$\wedge$ emp} \end{array} \text{$y := [x]; ... {emp}} \\ \begin{array}{c} x \mapsto y \\ \text{* ls(y, nil)} \end{array} \text{$y := [x]; ... {emp}} \end{array} 
                                                                                         \{ls(x, nil)\}\ if\ x!=nil\ then....\{emp\}
                                                                                             → {ls(x, nil)} dealloc(x); {emp}
```

```
proc shuffle(x) {
  if x!=nil then
    y:=[x]; reverse(y); shuffle(y); [x]:=y;
}
```

```
proc shuffle(x) {
                        if x!=nil then
                           y:=[x]; reverse(y); shuffle(y); [x]:=y;
       {ls(y, nil)} reverse(y); {ls(y, nil)}
\{x \mapsto y * ls(y, nil)\}\ reverse(y); \{x \mapsto y * ls(y, nil)\}\ \{x \mapsto y * ls(y, nil)\}\ shuffle(y); \dots \{ls(x, nil)\}
                      \{x \mapsto y * ls(y, nil)\}\ reverse(y); shuffle(y); ... \{ls(x, nil)\}
```

```
proc shuffle(x) {
  if x!=nil then
    y:=[x]; reverse(y); shuffle(y); [x]:=y;
}
```

```
\frac{\{ls(y, nil)\} \ reverse(y); \ \{ls(y, nil)\}}{\{x \mapsto y * ls(y, nil)\} \ reverse(y); \ \{x \mapsto y * ls(y, nil)\} \ shuffle(y); \dots \ \{ls(x, nil)\}}{\{x \mapsto y * ls(y, nil)\} \ reverse(y); \ shuffle(y); \dots \ \{ls(x, nil)\}}
```

```
proc shuffle(x) {
  if x!=nil then
    y:=[x]; reverse(y); shuffle(y); [x]:=y;
}
```

```
\frac{\{ls(y,nil)\} \ reverse(y); \{ls(y,nil)\}}{\{x \mapsto y * ls(y,nil)\} \ reverse(y); \{x \mapsto y * ls(y,nil)\} \ f(x \mapsto y * ls(y,nil)\} \ shuffle(y); \dots \{ls(x,nil)\}}{\{x \mapsto y * ls(y,nil)\} \ reverse(y); shuffle(y); \dots \{ls(x,nil)\}}
```

Solution: Explicit Approximation

- We explicitly label predicate instances, e.g. $ls_{\alpha}(x,y)$
 - · indicates which approximation to interpret them in

Solution: Explicit Approximation

- We explicitly label predicate instances, e.g. $ls_{\alpha}(x,y)$
 - · indicates which approximation to interpret them in
- · We now use these labels as the trace values, e.g.

```
\frac{\{ls_{\beta}(y, nil)\} \ reverse(y); \{ls_{\beta}(y, nil)\}}{\{x \mapsto y * ls_{\beta}(y, nil)\} \ reverse(y); \{x \mapsto y * ls_{\beta}(y, nil)\}} \underbrace{\{x \mapsto y * ls_{\beta}(y, nil)\} \ shuffle(y); \dots \{ls_{\alpha}(x, nil)\}}_{\{x \mapsto y * ls_{\beta}(y, nil)\} \ reverse(y); \ shuffle(y); \dots \{ls_{\alpha}(x, nil)\}}
```

Solution: Explicit Approximation

- We explicitly label predicate instances, e.g. $ls_{\alpha}(x,y)$
 - · indicates which approximation to interpret them in
- We now use these labels as the trace values, e.g.

$$\frac{\{ls_{\beta}(y, nil)\} \, reverse(y); \, \{ls_{\beta}(y, nil)\}}{\{x \mapsto y * ls_{\beta}(y, nil)\} \, reverse(y); \, \{x \mapsto y * ls_{\beta}(y, nil)\} \, shuffle(y); \dots \, \{ls_{\alpha}(x, nil)\}}}{\{x \mapsto y * ls_{\beta}(y, nil)\} \, reverse(y); \, shuffle(y); \dots \, \{ls_{\alpha}(x, nil)\}}$$

· We now need constraints on labels when unfolding, e.g.

$$\frac{\Gamma, \beta < \alpha, t = 0 \vdash \Delta \quad \Gamma, \beta < \alpha, t = \mathsf{sx}, \mathsf{N}_\beta \; \mathsf{x} \vdash \Delta}{\Gamma, \mathsf{N}_\alpha \; \mathsf{t} \vdash \Delta} \; \; (\mathsf{Case} \; \mathsf{N})$$

The Cyclist Verification Tool

- · Our verification tool, CYCLIST, is implemented in OCaml
- Generic cyclic proof-search procedure using iterated depth-first search
 - · Cycles are formed eagerly and discarded if unsound
- The generic proof search is parametric
 - Different proof systems implemented as separate modules

The Cyclist Verification Tool

- · Our verification tool, CYCLIST, is implemented in OCaml
- Generic cyclic proof-search procedure using iterated depth-first search
 - · Cycles are formed eagerly and discarded if unsound
- The generic proof search is parametric
 - Different proof systems implemented as separate modules

github.com/ngorogiannis/cyclist

Performance Results

Program	Time (ms)	LOC	Procs	Nodes	Back-links
list traverse	17	6	1	18	2
tree traverse	24	7	1	26	2
list deallocate	14	7	1	13	1
tree deallocate	21	8	1	24	2
tree reflect	20	9	1	22	2
list rev. deallocate	43	18	1	49	2
list append	28	21	1	34	1
list reverse	122	14	1	34	1
list reverse (tail rec.)	31	18	1	32	1
list reverse (with append)	47	28	2	56	2
list filter	27	16	1	29	1
list partition	31	25	1	40	1
list ackermann	126	17	1	50	3
queue	894	30	3	119	6
functional queue	254	28	3	62	1
shuffle	202	23	2	79	4

Results of Experimental Evaluation on 2.93GHz Intel Core i7-870, 8GB RAM

Concluding Remarks

- Ongoing work: inferring constraints on predicate labels automatically
- · Some problems remain hard, of course
 - Generalisation of inductive hypotheses
 - Finding and applying lemmas
 - Synthesizing procedure summaries (see previous point!)

Thank You

Related Work

- Cyclic proofs for FOL with inductive predicates (Brotherston & Simpson, LICS 2007)
- Cyclic proofs for Separation Logic with inductive predicates (Brotherston, SAS 2007)
- Cyclic proofs verifying simple heap-manipulating WHILE language (Brotherston, Bornat & Calcagno, POPL 2008)
- Implementations in Isabelle/HOL, then OCaml (Brotherston, Distefano, Gorogiannis, CADE 2011/APLAS 2012)
- Abduction of inductive predicates using cyclic proof (Brotherston & Gorogiannis, SAS 2014)
- Current Work cyclic proofs for verifying:
 - procedural heap-manipulating language (Rowe, Brotherston)
 - temporal properties (Tellez Espinosa, Brotherston)