Práctica 6

• Logrosán Fernández, Héctor.

Índice

Ejercicio 1

1.	Hipótesis	2
2.	Supuestos	2
3.	Estadístico de contraste	2
4.	Distribución muestral	3
5.	Nivel crítico	3
	Decisión	

Ejercicio 1

<u>Hipótesis</u>

*H*0: μ = 1,65

*H*1: $\mu \neq$ 1,65

Supuestos

Pruebas de normalidad

	Kolmo	gorov-Smirn	ov ^a	Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Altura (metros)	,175	3		1,000	3	1,000

a. Corrección de significación de Lilliefors

Se mantiene la normalidad de la población de la variable altura, ya que:

 $Sig > \alpha$

1 > 0,05

Estadístico de contraste

Prueba para una muestra

Valor de prueba = 1.65

				Diferencia de	95% de intervalo de confianza de la diferencia		
	t	gl	Sig. (bilateral)	medias	Inferior	Superior	
Altura (metros)	,000	2	1,000	,00000	-,1987	,1987	

Distribución muestral

T se distribuye según t2

Nivel crítico

p = 1

<u>Decisión</u>

Como p > α , se mantiene la hipótesis nula. Por lo tanto, la media de altura en la población será 1,65m.