

Le ReJMiC présente :

Méthodes d'analyse non supervisée

Journée d'initiation à la bio-informatique n°2 24 juin 2022

Plan

Partie I: L'Analyse en Composantes Principales (ACP)

Partie II: Clustering

Plan

Partie I: L'Analyse en Composantes Principales (ACP)

Partie II: Clustering

Introduction/ La PCA

PCA = Principal Component AnalysisACP = Analyse en Composantes Principales

- Analyse **multivariée** (> 2 variables qui caractérisent un individu)
- Jeu de données contenant des individus décrits par plusieurs variables quantitatives
- Méthode de visualisation sans apriori → méthode non supervisée

Résumé des informations (tableau de données × individus) :

- → On parle de réduction de dimension
- → En biologie: données transcriptomiques, protéomiques...

Les données

Exemple données transcriptomiques

Variables quantitatives

Rappel

Variance : mesure de la dispersion des variables

→ variance élevée = points éloignés autour de la moyenne

Covariance: mesure de la liaison entre deux variables

→ covariance élevée = relation forte entre deux variables

Corrélation: mesure standardisée de la covariance

→ la corrélation varie entre -1 et 1

La variance = information

Pourquoi la PCA?

- Former des groupes d'individus semblables → ressemblance
- Former des groupes de variables liées entre elles → liaison corrélation

Caractérisation des groupes d'individus par les variables

Quelles (groupes de) variables expliquent le plus la variabilité inter-individus ?

En biologie (exemple):

Est-ce que la variance contenue dans les variables permet d'expliquer mes différents phénotypes (individus) ?

Objectifs de la PCA en biologie

- Analyse exploratoire des questions
- Comprendre la structure sous-jacente des données
- Identifier les biais, les erreurs expérimentales, les effets de lot
- Identifier les variables corrélées

Un exemple simple pour comprendre comment ça fonctionne

Notes de 11 élèves de 1 à 20 pour 5 disciplines

				Variables		
1		Maths	Histoire- Géographie	Philosophie	Physique	Biologie fondamentale
	eleve 1	10	19	9	4	7
	eleve 2	12	12	13	6	9
lus	eleve 3	16	18	14	10	13
Individus	eleve 4	7	12	16	1	4
ndi	eleve 5	18	9	11	12	15
	eleve 6	16	12	17	10	13
	eleve 7	13	14	10	7	10
	eleve 8	12	14	7	6	9
	eleve 9	11	12	15	5	8
	eleve 10	9	16	11	3	6
ţ	eleve 11	9	16	11	3	6

Comment analyser simultanément ces 5 variables ?

Classiquement on aurait fait

Analyse univariée

→ Etudes des variables (colonnes)

	Maths	Histoire Géographie	Philosophie	Physique	Biologie fondamentale
Moyenne	10,9	13,8	12,3	6,7	8,8
Ecart type	4,6	2,9	3,1	3,2	3,6

→ Etude des individus (lignes)

	eleve 1	eleve 2	eleve 3	eleve 4	eleve 5	eleve 6	eleve 7	eleve 8	eleve 9	eleve 10	eleve 11
Moyenne	8,6	8,3	14,2	8,0	13,0	13,6	10,8	9,6	10,2	9,0	10,3
Ecart type	6,1	4,0	3,0	6,0	3,5	2,9	2,8	3,4	3,8	4,9	2,6

Classiquement on aurait fait

Analyse bivariée (matrice de corrélation)

→ Etudes des variables (colonnes)

	Maths	Histoire- Géographie	Philosophie	Physique	Biologie fondamentale
Maths	1	-0,28	0,11	0,71	0,95
Histoire- Géographie	-0,28	1	-0,33	-0,23	-0,28
Philosophie	0,11	-0,33	1	0,02	0,08
Physique	0,71	-0,23	0,02	1	0,89
Biologie fondamentale	0,95	-0,28	0,08	0,89	1

→ Etude des individus (lignes)

	eleve 1	eleve 2	eleve 3	eleve 4	eleve 5	eleve 6	eleve 7	eleve 8	eleve 9	eleve 10	eleve 11
eleve 1	1	0,73	0,71	0,6	-0,75	-0,13	0,62	0,63	0,48	0,88	0,93
eleve 2	0,73	1	0,29	0,8	-0,89	0,13	0,13	0	0,63	0,65	0,85
eleve 3	0,71	0,29	1	0,63	-0,09	0,38	0,99	0,92	0,68	0,92	0,74
eleve 4	0,6	0,8	0,63	1	-0,44	0,66	0,51	0,27	0,97	0,82	0,85
eleve 5	-0,75	-0,89	-0,09	-0,44	1	0,34	0,05	0,04	-0,22	-0,46	-0,71
eleve 6	-0,13	0,13	0,38	0,66	0,34	1	0,36	0,08	0,8	0,33	0,2
eleve 7	0,62	0,13	0,99	0,51	0,05	0,36	1	0,95	0,59	0,84	0,62
eleve 8	0,63	0	0,92	0,27	0,04	0,08	0,95	1	0,34	0,74	0,52
eleve 9	0,48	0,63	0,68	0,97	-0,22	0,8	0,59	0,34	1	0,79	0,75
eleve 10	0,88	0,65	0,92	0,82	-0,46	0,33	0,84	0,74	0,79	1	0,95
eleve 11	0,93	0,85	0,74	0,85	-0,71	0,2	0,62	0,52	0,75	0,95	1

Classiquement on aurait fait

Analyse bivariée (matrice de corrélation)

→ Etudes des variables (colonnes)

	Maths	Histoire- Géographie	Philotophie Philotophie	Phys	Biologie damentale
Maths	1	-0,28	0,11	0,71	0.05
Histoire- Géographie	-0,28	1	0.22	0.22	
Philosophie	0,11	-0,33	1	0,02	
Physique	0,71	-0,23	0,02	1	
Biologie fondamentale	0,95	-0,28	0,08	0.84	
→ Etude	des indi	vidus (1	gnes)		
	olova 1 olova	2 alaya 2	alava 4	alarva 5	

	eleve 1	eleve 2	eleve 3	eleve 4	eleve ⁵			ė 8	eleve 9	eleve 10	eleve 11
eleve 1	1	0,73	0,71	0,6	-0		,6		0,48	0,88	0,93
eleve 2	0,73	1	0,29	0,8			,13	0	0,63	0,65	0,85
eleve 3	0,71	0,29	1	0,63	·v,09	0,	0,99	0,92	0,68	0,92	0,74
eleve 4	0,6	0,8	0,63		-0,44),51	0,2'	0,97	0,82	0,85
eleve 5	-0,75	-0,89	-0,09	-0,44	1	0,34	0,05	0,04	-0,22	-0,46	-0,71
eleve 6	-0,13	0,13	0,38	0,66	0,34	1	0,36	0,08	0,8	0,33	0,2
eleve 7	0,62	0,13	0,99	0,51	0,05	0,36	1	0,95	0,59	0,84	0,62
eleve 8	0,63	0	0,92	0,27	0,04	0,08	0,95	1	0,34	0,74	0,52
eleve 9	0,48	0,63	0,68	0,97	-0,22	0,8	0,59	0,34	1	0,79	0,75
eleve 10	0,88	0,65	0,92	0,82	-0,46	0,33	0,84	0,74	0,79	1	0,95
eleve 11	0.93	0.85	0.74	0.85	-0.71	0.2	0.62	0.52	0.75	0.95	1

Et si on essayait la PCA?

Un exemple simple pour comprendre comment ça fonctionne

Notes de 11 élèves de 1 à 20 pour 5 disciplines

	4			Variables		
1		Maths	Histoire- Géographie	Philosophie	Physique	Biologie fondamentale
	eleve 1	10	19	9	4	7
	eleve 2	12	12	13	6	9
lus	eleve 3	16	18	14	10	13
Individus	eleve 4	7	12	16	1	4
ndi	eleve 5	18	9	11	12	15
	eleve 6	16	12	17	10	13
	eleve 7	13	14	10	7	10
	eleve 8	12	14	7	6	9
	eleve 9	11	12	15	5	8
	eleve 10	9	16	11	3	6
ţ	eleve 11	9	16	11	3	6

Comment analyser simultanément ces 5 variables ?

- Un individu = 1 ligne du tableau \rightarrow 1 point dans un espace à p (n=variables) dimensions
 - si $p = 2 \rightarrow$ nuage de points
 - $\operatorname{si} p = 3 \rightarrow \operatorname{espace} 3D$
 - si $p \ge 4 \rightarrow$ représentation impossible
- Notion de ressemblance entre les individus
 - deux individus se ressemblent \rightarrow valeurs proches sur l'ensemble des p variables
 - mesure de la distance entre les individus (somme des carrés des écarts pour chaque variable)
- Visualisation de la forme du nuage de points → étude des individus

• Visualisation d'un nuage de point en en 2D (photo) à partir d'un espace 3D

Comment les oiseaux synchronisent-ils leur vol ? (vidéo) | Etrange et Insolite (jack35.fr)

- L'ACP va fournir une image simplifiée
- Trouver le sous espace qui résume le plus fidèlement les données (restitution de l'image originale)

• Quelle représentation choisir ?

https://github.com/matplotlib/matplotlib/issues/5830/

• Quelle représentation choisir ?

https://github.com/matplotlib/matplotlib/issues/5830/

- Une image est bonne :
 - o si elle restitue la forme initiale de l'image
 - o si elle ne déforme pas les distances entre les individus
 - o si elle représente au mieux la diversité et la variabilité des données

- Comment dire qu'une image est de bonne qualité ?
 - O Notion de variabilité ou de dispersion sur plusieurs dimensions = inertie
 - Inertie = variance généralisée sur plusieurs dimensions

https://www.analyticsvidhya.com/blog/2020/12/an-end-to-end-comprehensive-guide-for-pca/

→ Composantes principales :

- Les variables originales = variable artificielles pour expliquer l'information (ici la variance)
- → Séparation avec les composantes principales (PC1 et PC2) :
 - La direction des axes = maximisation de la variance
 - PC1 : premier axe principal → direction selon le maximum de variance antre les individus
 - PC2 : deuxième axe principal → seconde direction la plus importante, orthogonale à PC1

Valeurs propres/Variances

Valeurs propres (eigenvalues en anglais) : mesure de la quantité de variance par composante

Quantité d'information (variance) par composante

Valeurs propres/Variances

Valeurs propres (eigenvalues en anglais) : mesure de la quantité de variance par composante

Quantité d'information (variance) par composante

Composantes = combinaisons linéaires des variables initiales (les valeurs propres)

Cosinus carré → qualité de la représentation de chaque individu sur chaque axe

Etude des variables

- Une variable = 1 colonne du tableau \rightarrow 1 point dans un espace à N (n=individus) dimensions
- Variables = représentées par des flèches

> res.pca.raw\$var\$coord

```
Dim. 3
                                                                               Dim. 5
                           Dim.1
                                       Dim. 2
                                                                Dim.4
Maths
                       0.9271567
                                  0.1032435 0.08920569 -0.3489464200
                                                                       3.778953e-32
Histoire.Géographie
                                  0.6691947 0.60613132 -0.0000828758
                      -0.4298643
                                                                       1.672270e-47
Philosophie
                       0.1866839 -0.8357073 0.51396389
                                                         0.0508290836
                                                                       7.838766e-48
                                  0.2135242 0.01972722
Physique
                       0.8907839
                                                         0.4006524254
                                                                       2.643445e-32
                                  0.1603253 0.06537553 -0.0435917477 -5.954092e-32
Biologie.fondamentale
                       0.9839317
```

Etude de la corrélation des variables avec les composantes principales

Etude des variables

- Représentation des variables dans espaces déterminés par les composantes
- Coordonnées de la variable = corrélation entre la variable et chaque composante

Etude des variables

- Représentation des variables dans espaces déterminés par les composantes
- Coordonnées de la variable = corrélation entre la variable et chaque composante

Visualisation de la corrélation entre les variables Identification des groupes de variables corrélées entres elles

Biplot/Analyse simultanée

Un individu qui se trouve du même côté d'une variable donnée a une valeur élevée pour cette variable; Un individu qui se trouve sur le côté opposé d'une variable donnée a une faible valeur pour cette variable.

*	penicillin [‡]	streptomycin [‡]	neomycin [‡]	gramstain
Aerobacter aerogenes	870.000	1.00	1.600	neg
Brucella abortus	1.000	2.00	0.020	neg
Escherichia coli	100.000	0.40	0.100	neg
Klebsiella pneumoniae	850.000	1.20	1.000	neg
Mycobacterium tuberculosis	800.000	5.00	2.000	neg
Proteus vulgaris	3.000	0.10	0.100	neg
Pseudomonas aeruginosa	850.000	2.00	0.400	neg
Salmonella typhosa	1.000	0.40	0.008	neg
Salmonella schottmuelleri	10.000	0.80	0.090	neg
Bacillis anthracis	0.001	0.01	0.007	pos
Diplococcus pneumoniae	0.005	11.00	10.000	pos
Staphylococcus albus	0.007	0.10	0.001	pos
Staphylococcus aureus	0.030	0.03	0.001	pos
Streptococcus fecalis	1.000	1.00	0.100	pos
Streptococcus hemolyticus	0.001	14.00	10.000	pos
Streptococcus viridans	0.005	10.00	40.000	pos

- Données provenant du package R « Lucid »
- "Effectiveness of 3 antibiotics against 16 bacterial species"
- "16 observations on the following 5 variables"

- Définir les variables et les individus ?
- Quelles sont les variables à garder pour la PCA?

_	penicillin [‡]	streptomycin [‡]	neomycin [‡]	gramstain
	periiciiiii	streptomycm	neomycm	granistani
Aerobacter aerogenes	870.000	1.00	1.600	neg
Brucella abortus	1.000	2.00	0.020	neg
Escherichia coli	100.000	0.40	0.100	neg
Klebsiella pneumoniae	850.000	1.20	1.000	neg
Mycobacterium tuberculosis	800.000	5.00	2.000	neg
Proteus vulgaris	3.000	0.10	0.100	neg
Pseudomonas aeruginosa	850.000	2.00	0.400	neg
Salmonella typhosa	1.000	0.40	0.008	neg
Salmonella schottmuelleri	10.000	0.80	0.090	neg
Bacillis anthracis	0.001	0.01	0.007	pos
Diplococcus pneumoniae	0.005	11.00	10.000	pos
Staphylococcus albus	0.007	0.10	0.001	pos
Staphylococcus aureus	0.030	0.03	0.001	pos
Streptococcus fecalis	1.000	1.00	0.100	pos
Streptococcus hemolyticus	0.001	14.00	10.000	pos
Streptococcus viridans	0.005	10.00	40.000	pos

Exemple biologique simple

Exemple biologique simple

Exemples biologique (1)

Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets

- Echantillons : rats (n = 64)
- Acétamonophène à différentes doses
- Analyse des données : etude transcriptomique

Yao F, Coquery J, Lê Cao KA. Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets. *BMC Bioinformatics*. 2012;13:24. Published 2012 Feb 3. doi:10.1186/1471-2105-13-24

Exemples biologique (2)

Quantitative Analysis of the Human Airway Microbial Ecology Reveals a Pervasive Signature for Cystic Fibrosis

- Echantillons : crachats (n = 25)
 - \circ patients sains (n = 9)
 - Patients mucoviscidose (n =16)
- Analyse des données : NGS

Blainey PC, Milla CE, Cornfield DN, Quake SR. Quantitative analysis of the human airway microbial ecology reveals a pervasive signature for cystic fibrosis. *Sci Transl Med*. 2012;4(153):153ra130. doi:10.1126/scitranslmed.3004458

Exemples biologique (3)

Detection of azole resistance in Aspergillus fumigatus complex isolates using MALDI-TOF mass spectrometry

Discrimination of *Aspergillus fumigatus* sensu stricto from the cryptic species of the *Aspergillus fumigatus* complex

Zvezdanova ME, Arroyo MJ, Méndez G, Candela A, Mancera L, Rodríguez JG, Serra JL, Jiménez R, Loza I, Castro C, López C, Muñoz P, Guinea J, Escribano P, Rodríguez-Sánchez B; ASPEIN group. Detection of azole resistance in Aspergillus fumigatus complex isolates using MALDI-TOF mass spectrometry. Clin Microbiol Infect. 2022 Feb;28(2):260-266. doi: 10.1016/j.cmi.2021.06.005. Epub 2021 Jun 17. PMID: 34147673.

Plan

Partie I: L'Analyse en Composantes Principales (ACP)

Partie II: Clustering

Clustering

Rassembler les objets en groupes ou clusters :

- (i) homogènes : notion de similarité au sein d'un groupe ou cluster
- (ii) séparés : notion de différence ou dissimilarités entre les groupes ou clusters

Un cluster est une collection objets similaires au sein du même cluster mais dissimilaires aux objets appartenant aux autres clusters

Un exemple biologique

On dispose de souches bactériennes analysées en spectrométrie de masse de type MALDI-TOF

Les 6 souches ont été caractérisée génétiquement en trois espèces distinctes (espèces : A, C et D)

Problématique : existe-t-il une relation entre la spectrométrie de masse et la génétique pour l'identification de ces souches ?

Souche_1_Espece_C	27/06/2020 12:09	Dossier de fichiers
Souche_2_Espece_C	27/06/2020 12:02	Dossier de fichiers
Souche1_espece_D	27/06/2020 12:02	Dossier de fichiers
Souche2_Espece_A	27/06/2020 11:59	Dossier de fichiers
Souche2_espece_D	27/06/2020 12:08	Dossier de fichiers
Souche3_Espece_A	27/06/2020 11:59	Dossier de fichiers

Comment réaliser un clustering

Comment réaliser un clustering

Transformation du spectre en matrice binaire (0 : absence du pic/ 1: présence du pic)

Comment réaliser un clustering

Transformation du spectre en matrice binaire (0 : absence du pic/ 1: présence du pic)

Transformation du spectre en matrice binaire (0 : absence du pic/ 1: présence du pic)

• Pipeline

Matrix Distance mesure Grouping (linkage)

• File .csv (comma delimited)

name	bike	natation	long_run	ning	short_running
PAUL	11.8	18.9	20.9		
JULIETTE	13.4	67.0	28.1		30.7
AGATHE	6.6	23.2	27.3		32.8
PIERRE	8.9	4	24.9		41.7
MICHEL	10.3	10.8	20.0		18.9
FLORE	30.3	23.7	24.2		13.9
JEAN	11.2	20.7	27.9		
Wrong data			\mathbf{B}	ad nai	me

Matrix

Distance mesure

Grouping (linkage)

• File .csv (comma delimited)

name	bike	natation	long_running	short_running
PAUL	11.8	18.9	20.9	NA
JULIETTE	13.4	67.0	28.1	30.7
AGATHE	6.6	23.2	27,3	32.8
PIERRE	8.9	NA	24.9	41.7
MICHEL	10.3	10.8	20.0	18.9
FLORE	30.3	23.7	24.2	13.9
JEAN	11.2	20.7	27.9	NA

Observation

Variables

Matrix

Distance mesure

Grouping (linkage)

Matrice de distance

• Euclidean distance:

$$d_{euc}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

• Manhattan distance:

$$d_{man}(x,y) = \sum_{i=1}^{n} |(x_i - y_i)|$$

• Pearson correlation distance

$$d_{cor}(x,y) = 1 - \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Degré de relation linéaire entre deux profils

• Kendall correlation distance

$$d_{kend}(x,y) = 1 - \frac{n_c - n_d}{\frac{1}{2}n(n-1)}$$

• n_c : total number of concordant pairs

• n_d : total number of discordant pairs

• n: size of x and y

• Quelle distance choisir ?

gene expression data analysis ► correlation based distance gene presence or peak presence ► binary method

Clustering

- Single Link
- Complete Link
- ...

	Α	В	С	D
Gene_X	0	0	1	0
Gene_Y	0	0	1	1
Gene_Z	0	0	0	1
Gene_T	0	0	1	1
Gene	•••	• • •	•••	•••

	Α	В	C	D
Α	0	5	2	8
В		0	5	7
C			0	8
D				0

	Α	В	С	D
A	0	5	2	8
В		0	5	7
С			0	8
D				0

	Α	В	С	D
Α	0	5	2	8
В		0	4	1
C			0	2
D				0

	Α	В	С	D
Α	0	5	2	8
В		0	4	1
С			0	2
D				0

Hierarchcial clustering (HCA)

- **Maximum or** *complete linkage*: The distance between two clusters is defined as the maximum value of all pairwise distances between the elements in cluster 1 and the elements in cluster 2. It tends to produce more compact clusters.
- **Minimum or** *single linkage*: The distance between two clusters is defined as the minimum value of all pairwise distances between the elements in cluster 1 and the elements in cluster 2. It tends to produce long, "loose" clusters.

- **Mean or** *average linkage*: The distance between two clusters is defined as the average distance between the elements in cluster 1 and the elements in cluster 2 = **UPGMA**
- *Centroid linkage*: The distance between two clusters is defined as the distance between the centroid for cluster 1 (a mean vector of length p variables) and the centroid for cluster 2 = **UPGMC**
- *Ward's minimum variance method*: It minimizes the total within-cluster variance. At each step the pair of clusters with minimum between-cluster distance are merged.

- **Maximum or** *complete linkage*: The distance between two clusters is defined as the maximum value of all pairwise distances between the elements in cluster 1 and the elements in cluster 2. It tends to produce more compact clusters.
- **Minimum or** *single linkage*: The distance between two clusters is defined as the minimum value of all pairwise distances between the elements in cluster 1 and the elements in cluster 2. It tends to produce long, "loose" clusters.

- **Mean or average linkage:** The distance between two clusters is defined as the average distance between the elements in cluster 1 and the elements in cluster 2 = **UPGMA**
- *Centroid linkage*: The distance between two clusters is defined as the distance between the centroid for cluster 1 (a mean vector of length p variables) and the centroid for cluster 2 = **UPGMC**
- *Ward's minimum variance method*: It minimizes the total within-cluster variance. At each step the pair of clusters with minimum between-cluster distance are merged.

Evaluer la solidité de l'arbre

- The linking of objects in the cluster tree should have a strong correlation with the distances between objects in the original distance matrix
- >0,75: acceptable correlation

