

IV TALLER DE MÉTODOS NUMÉRICOS Y ESTADÍSTICOS EN COSMOLOGÍA

30, 31 DE JULIO Y 1 DE AGOSTO

Benjamín Camacho Quevedo

Colaborando en el grupo SDSS-IV/eBOSS Galaxy Clustering con M. Vargas Magaña y Sebastien Fromenteau.

Motivación personal

THE COMOVING LAGRANGIAN ACCELERATION (COLA) METHOD

Basic Idea

Standard case is to solve :

$$\partial_t^2 \vec{x} = -\vec{\nabla}\phi$$

COLA idea is to solve:

$$\vec{x} = \vec{x}_{LPT} + \vec{x}_{res} \qquad \mathcal{O}(\delta^3)$$

Numerical $\partial_t^2 \vec{x}_{res} = -\vec{\nabla}\phi - \partial_t^2 \vec{x}_{LPT}$ discretization Analytic in a PM code

4

MG-PICOLA =2LPT + N-body simulations

Figure 1: We show slices through three N-body simulations evolving the same initial conditions up to z=0. The particles (each of mass $4.6 \times 10^9 M_{\odot}/h$) are shown as red points. Each slice is $20 \,\mathrm{Mpc}/h$ on the side (the full simulation box is $100 \,\mathrm{Mpc}/h$ on the side), and about $3 \,\mathrm{Mpc}/h$ thick. The left panel shows the 2LPT approximation used for building mock catalogs using the PTHalos approach [7, 8]. Calculating the 2LPT particle positions requires an equivalent of roughly 3 timesteps performed by an N-body code. The middle panel shows the result obtained with our modified N-body code with as few as 10 timesteps. The rightmost panel shows the "true" result obtained from GADGET-2 [10] after ~ 2000 timesteps starting with 2LPT initial conditions at z=49.

A LIGHTCONE-ENABLED PARALLEL IMPLEMENTATION OF COLA (L-PICOLA)

L-PICOLA

Sweet simulations with added caffeine

View on GitHub

Download .zip

Download .tar.gz

L-PICOLA is a distributed-memory, **parallel** code for creating **fast**, **accurate**, dark matter simulations.

- **How parallel?** We've used it for simulations with ~68,000,000,000 particles on over 1000 processors without a hitch.
- **How fast?** Due to the algorithms used and the coding, it is ~1000 times faster than an identical full N-Body simulation
- **How accurate?** We can reproduce the two- and three-point clustering of dark matter to within 2% on all scales used for current BAO and RSD measurements.

https://cullanhowlett.github.io/l-picola/

Howlett et al. 2015

Tassev et al. 2013,

Tassev et al. 2015

Prerequisites

Open MPI

https://www.open-mpi.org/

https://www.gnu.org/software/gsl/

http://www.fftw.org/

Go for it and unpack

- wget https://github.com/CullanHowlett/l-picola/tarball/master
- Git clone https://github.com/CullanHowlett/l-picola.git
- tar -zxvf master

Cullan Howlett Fixed bug in prepare_lightcone.f90 that stoppped compilation with gfo Latest commit dd385fe on May 13				
Documentation	Added documentation detailing the new cosmological equation for L-PIC	3 years ago		
in files	run_parameters and input_spectrum/transfer were inconsistent, so fine	3 months ago		
src src	Fixed error in flag_replicates in lightcone.c, where the boundaries w	5 months ago		
utilities utilities	Fixed bug in prepare_lightcone.f90 that stoppped compilation with gfo	2 months ago		
■ LICENSE	Create LICENSE	3 years ago		
Makefile	Initial commit	3 years ago		
■ README	Update README	3 years ago		

Source

Branch: master ▼ I-pic	ola / src /	Create new file	Find file	History	
Cullan Howlett Fixed error in flag_replicates in lightcone.c, where the boundaries w		Latest commi	Latest commit 9407fff on Feb 19		
⊇LPT.c	Bug fixes for runs in kpc instead of Mpc again. Previous correction o		3 ye	ears ago	
auxPM.c	Minor bug fix in output file name and changes to output units for par		3 ye	ears ago	
cosmo.c	Minor bug fix in output file name and changes to output units for par		3 ye	ears ago	
kernel.c	Bug fixes for runs in kpc instead of Mpc again. Previous correction o		3 ye	ears ago	
lightcone.c	Fixed error in flag_replicates in lightcone.c, where the boundaries w		5 mo	nths ago	
main.c	removed extraneous print statement in main.c		a	year ago	
power.c	Bug fixes for runs in kpc instead of Mpc again. Previous correction o		3 ye	ears ago	
proto.h	Minor bug fix in output file name and changes to output units for par		3 ye	ears ago	
read_param.c	Minor bug fix in output file name and changes to output units for par		3 ye	ears ago	
ii vars.c	Minor bug fix in output file name and changes to output units for par		3 ye	ears ago	
vars.h vars.h	Forgot to commit the vars.h and vars.c files for new GADGET header		a	year ago	

Files and Utilities

Branch: master ▼ I-picola / files /			Find file	History
Cullan Howlett run_parameters and input_spectrum/transfer were inconsistent, so fine		Latest commit 036c063 on Apr 11		
input_kernel_equil.dat	Initial commit		3 y	ears ago
input_kernel_local.dat	Initial commit	3 years ago		
input_kernel_ortho.dat	Initial commit		3 y	ears ago
input_spectrum.dat	run_parameters and input_spectrum/transfer were inconsistent, so fine		3 mo	nths ago
input_transfer.dat	run_parameters and input_spectrum/transfer were inconsistent, so fine	3 months ago		
output_redshifts.dat	Initial commit	3 years ago		
run_parameters.dat	run_parameters and input_spectrum/transfer were inconsistent, so fine	3 months ago		
Branch: master ▼ I-picola / utiliti	es /	Create new file	Find file	History
Cullan Howlett Fixed bug in prepare_lightcone.f90 that stoppped compilation with gfo		Latest commit dd385fe on May 13		
L-PICOLA_mem.py	Initial commit	3 years ago		
prepare_lightcone.f90	Fixed bug in prepare_lightcone.f90 that stoppped compilation with gfo	2 months ago		

Fixed bugs in gadget outputs in main.c and utilies/prepare_snapshot.f...

a year ago

prepare_snapshot.f90

Makefile Modifications

```
ifeq ($(MACHINE),ATOCATL)
CC = mpicc
ifdef SINGLE_PRECISION
FFTW_INCL = -I /opt/apps/libraries/gnu_4.4.6/fftw_3.3.3/include/
FFTW_LIBS = -L /opt/apps/libraries/gnu_4.4.6/fftw_3.3.3/lib/ -lfftw3f_mpi -lfftw3f else
FFTW_INCL = -I /opt/apps/libraries/gnu_4.4.6/fftw_3.3.3/include/
FFTW_LIBS = -L /opt/apps/libraries/gnu_4.4.6/fftw_3.3.3/lib/ -lfftw3_mpi -lfftw3 endif
GSL_INCL = -I /opt/apps/libraries/gnu_4.4.6/gsl_1.16/include/
GSL_LIBS = -L /opt/apps/libraries/gnu_4.4.6/gsl_1.16/lib/ -lgsl -lgslcblas
MPI_INCL = -I $/opt/apps/clustertools/gnu_4.8.5/ompi_2.1.1/include
MPI_LIBS = -L $/opt/apps/clustertools/gnu_4.8.5/ompi_2.1.1/lib -lmpi endif
```

How to look for them?

- module Av
- module load library
- echo \$LIBRARY_HOME

And then...

- Make
- mpirun -np 24 L-PICOLA /files/run_parameters.dat

Input

```
% This is the run parameters file %
% Simulation outputs
% =========
OutputDir
                                                                % Directory for output.
                           files/
FileBase
                           example filename
                                                                % Base-filename of output files (appropriate additions are appended on at runtime)
OutputRedshiftFile
                           files/output redshifts.dat
                                                                % The file containing the redshifts that we want snapshots for
NumFilesWrittenInParallel
                                                                % limits the number of files that are written in parallel when outputting.
% Simulation Specifications
% =============
                            % Whether or not to use the COLA method (1=true, 0=false).
UseC0LA
Buffer
                1.3
                            % The amount of extra memory to reserve for particles moving between tasks during runtime.
Nmesh
                256
                            % This is the size of the FFT grid used to compute the displacement field and gravitational forces.
Nsample
                256
                            % This sets the total number of particles in the simulation, such that Ntot = Nsample^3.
Box
                512.0
                           % The Periodic box size of simulation.
Init Redshift
                9.0
                            % The redshift to begin timestepping from (redshift = 9 works well for COLA)
                5001
Seed
                            % Seed for IC-generator
SphereMode
                            % If "1" only modes with |k| < k Nyquist are used to generate initial conditions (i.e. a sphere in k-space),
                            % otherwise modes with |k \times |, |k \times |, |k \times | ( k Nyquist are used (i.e. a cube in k-space).
WhichSpectrum
                            % "0" - Use transfer function, not power spectrum
                            % "1" - Use a tabulated power spectrum in the file 'FileWithInputSpectrum'
                            % otherwise, Eisenstein and Hu (1998) parametrization is used
                            % Non-Gaussian case requires "0" and that we use the transfer function
WhichTransfer
                            % "0" - Use power spectrum, not transfer function
                            % "1" - Use a tabulated transfer function in the file 'FileWithInputTransfer'
                            % otherwise, Eisenstein and Hu (1998) parameterization used
                            % For Non-Gaussian models this is required (rather than the power spectrum)
FileWithInputSpectrum files/input spectrum.dat
                                                  % filename of tabulated input spectrum (if used)
                                                  % expecting k and Pk
                                                  % filename of tabulated transfer function (if used)
FileWithInputTransfer files/input transfer.dat
                                                  % expecting k and T (unnormalized)
```

Input

```
% -----
Omega
                0.31
                            % Total matter density (CDM + Baryons at z=0).
OmegaBaryon
                0.048
                             % Baryon density (at z=0).
OmegaLambda
                0.69
                            % Dark Energy density (at z=0)
HubbleParam
                0.69
                             % Hubble parameter, 'little h' (only used for power spectrum parameterization).
                            % Power spectrum normalization (power spectrum may already be normalized correctly).
Sigma8
                0.83
PrimordialIndex 0.96
                            % Used to tilt the power spectrum for non-tabulated power spectra (if != 1.0 and nongaussian, generic flag required)
% Timestepping Options
% =========
                            % The timestep spacing (0 for linear in a, 1 for logarithmic in a)
StepDist
                            % The type of timestepping: "0" - Use modified COLA timestepping for Kick and Drift. Please choose a value for nLPT.
DeltaA
                            % The type of timestepping: "1" - Use modified COLA timestepping for Kick and standard Quinn timestepping for Drift.
Please choose a value for nLPT.
                            % The type of timestepping: "2" - Use standard Quinn timestepping for Kick and Drift
                            % The type of timestepping: "3" - Use non-integral timestepping for Kick and Drift
                -2.5
nLPT
                            % The value of nLPT to use for modified COLA timestepping
% Units
% =====
UnitLength in cm
                               3.085678e24
                                                 % defines length unit of output (in cm/h)
UnitMass in q
                               1.989e43
                                                 % defines mass unit of output (in q/h)
                                                 % defines velocity unit of output (in cm/sec)
UnitVelocity in cm per s
                               1e5
InputSpectrum UnitLength in cm
                              3.085678e24
                                                 % defines length unit of tabulated input spectrum in cm/h.
                                                 % Note: This can be chosen different from UnitLength in cm
```

% Cosmological Parameters

Sistema de colas

ATOCATL es un sistema de supercómputo híbrido CPUs/GPUs para usarse con (i) códigos que requieren únicamente de MPI/OpenMP, o bien, (ii) para códigos que también pueden obtener ventaja de la arquitectura de las Unidades de Procesamiento Gráfico (GPUs) y también para códigos seriales. Es un esfuerzo colectivo/institucional por proveer a la comunidad del IA-UNAM de una herramienta de gran poder de supercómputo para realizar tanto simulaciones como procesamiento de bases de datos.

Sistema de colas (PBS)

Se han incorporado colas que reflejan la versatilidad de las arquitecturas presentes en Atocatl. Las colas se dividen de la siguiente manera:

Las siguientes colas tienen disponibilidad de hasta I semana de wall-clock.

pq1a - cola para corridas paralelas en procesadores AMD (compute-0-0, compute-0-1, compute-0-2, compute-0-3, compute-0-4 y compute-0-6).

pq2a - cola para corridas paralelas en procesadores (compute-0-7)

pq2a_d - cola para corridas paralelas en procesadores de los nodos de Dany (compute-0-7 y compute-0-8)

gpuq Ii - cola para corridas en GPUs en nodos con procesadores Intel (compute-0-9 y compute-0-10)

gfqli - cola para corridas con procesadores Intel dentro del proyecto de Vladimir (compute-I-2)

desiq - cola para corridas utilizando cualquiera o todos los procesadores de los nodos del proyecto DESI (compute-I-0 y compute-I-1, compute-I-3, compute-I-4 y compute-I-5)

desiq1i - cola para corridas utilizando cualquiera o todos los procesadores Intel de los nodos del proyecto DESI (compute-1-3, compute-1-4 y compute-1-5)

desiq1a - cola para corridas utilizando cualquiera o todos los procesadores AMD de los nodos del proyecto DESI (compute-1-0 y compute-1-1)

La cola "default" no está restringida en cuanto al tipo de arquitectura pero si al tiempo de procesamiento que se limita a 25 minutos únicamente.

Example of a job

```
#! /bin/bash
#PBS -V
#PBS -V
#PBS -N L-PICOLA1
#PBS -9 sqi1
#PBS -0 test1.out
#PBS -0 test1.out
#PBS -e test1.err
#PBS -l nodes=1:ppn=12
module load openmpi/2.1.1_gnu
module load gsl/1.16_gnu
module load fftw/3.3.3_ompi_gnu
module load fftw/3.3.3_ompi_gnu
mpirun -np 12 /home/bcamacho/L-PICOLA/CullanHowlett-l-picola-dd385fe/L-PICOLA /home/bcamacho/L-PICOLA/CullanHowlett-l-picola-dd385fe/files/run_parame\
ters.dat
```

Comandos útiles

El envió de un proceso al sistema de colas se puede realizar a través de un script en el cual se deben especificar: la cola, el número de nodos, el número de cores por nodo, etc.

Algunos comandos útiles para checar los procesos en el sistema de colas:

%> qstat -u Nombre_del_Usuario - Proporciona información sobre el o los procesos del usuario.

%> qstat -q - Proporciona información sobre los procesos en general en el sistema de colas.

%> showq - Proporciona información sobre la cantidad total de cores en uso.

%> qsub -V mi_script - Comando para el envio del proceso al sistema de colas. La opción "-V" es necesaria para transmitir las variables de ambiente a todos los nodos que usará el usuario para su corrida, a menos que la haya incluido dentro del script "mi_script". El sistema de colas le asignará un ID al proceso (Job ID o JOBNAME) que puede ser de utilidad para ir monitoreando el desarrollo del proceso. Para enviar el proceso es necesario que tenga cargado el o los módulos utilizados para compilar su código.

%> canceljob ID_del_proceso - Interrumpe y libera los recursos de la cola utilizados por el proceso.

Output

Visualization (Pynbody)

Script preparado para el IV TALLER DE MÉTODOS NUMÉRICOS Y ESTADÍSTICOS EN COSMOLOGÍA.

```
In [1]: ##### Notebook to read 1 file from gadget and do a plot of the density field
         import matplotlib.pyplot as plt
         %matplotlib inline
         import pynbody
         ##### Path to the file
         path data = '/home/bcamacho/Desktop/eBOSS/LSSanalysis-master/nbodikit/'
         ##### Example to rad a file named 'mysimu z0p500.0' which correspond in this case of:
         ##### "mysimu" is the name you give in the parameterfile your run for the simu
         ##### " z0p500" correspond to a snapshot at z=0.5
         ##### ".0" is the first chunk of the simu. The simu has 1 chunk for each CPU used
         #file name = path data +'mysimu z0p500.0'
         file name = path data+'2example filename z0p000.0'
         #### Read the gadget format from the COLA output
         s = pynbody.load(file name)
         #### We create the x, y and z array containning the positions for all the particles in this chunk
        x = (s['pos']).T[0]
        y = (s['pos']).T[1]
        z = (s['pos']).T[2]
```

```
In [2]: import numpy as np
        ##### We want to know the minima and maxima in x, y and z dimensions for this chunk
        print "Xmin =", np.min(x), "Xmax=", np.max(x)
        print "Ymin =", np.min(y), "Ymax=", np.max(y)
        print "Zmin =", np.min(z), "Zmax=", np.max(z)
        Xmin = 0.0 Xmax = 127.99995
        Ymin = 0.0 Ymax = 511.99988
        Zmin = 0.0 Zmax = 511.9998
In [6]: ##### Now we have the information we can choose a slice inside this chunk we want to show
        ##### Here I will choose a slice of 30 Mpc width in X and 300 by 300 Mpc in Y and Z
        ##### You have to adapt these cuts for your simulation.
        ##### Cuts to represent a slice with 30Mpc width in X
         xmin = 10
         xmax = 40
         ymin = 100
        ymax = 400
         zmin = 100
         zmax = 400
        #### We select the particles inside the bounds we defined
         tmp = np.where( (x < xmax) & (x > xmin) & (y < ymax) & (y > ymin) & (z < zmax) & (z > zmin) )
        tmp = tmp[0]
        x = x[tmp]
        y = y[tmp]
        z = z[tmp]
```

```
In [7]: #### We have to fill a 2D array in which we will stack the particles in the X dimension.
#### So we will have a 2D array of 300Mpc by 300Mpc (Y,Z)

L_box = 300
pix size = 0.2 #### size of the pixels in Mpc. You can play with this parameter
N_pix = int(L_box/pix_size) +1 #### calculate the number of pixels in each dimension

y_arr = np.linspace(0,L_box, N_pix) #### create the array with the value of the pixel position in Y
z_arr = np.linspace(0,L_box, N_pix) #### create the array with the value of the pixel position in Z

#### density is the 2D array we will fill
density = np.zeros( (N_pix, N_pix) )

##### We find the cell of density array hosting each of the particles and we add 1 in it
for i in range(len(y)):
    ind_x = int(np.floor( (y[i]-ymin) /pix_size))
    ind_y = int(np.floor( (z[i]-zmin)/pix_size))
    density[ind_x, ind_y] += 1.
```

```
In [8]: #### And we can plot the results. Of course we do not plot in linear scale
#### because we do not see anything
plt.figure(figsize=(10,10))
plt.pcolormesh(y_arr, z_arr, (density), cmap='magma')
plt.title("Linear plot")
plt.show()

plt.title("Power law plot")
plt.show()
```

