BMA Approach — Point Esimation

 We first average (or marginalise) the working model across the posterior distribution of a to obtain the posterior predictive distributions:

$$p_m(d_i|\Omega_j) = \int_{\mathcal{A}} \psi_m(d_i;a) f_m(a|\Omega_j) da.$$

 Then, we can apply BMA to combine each of the posterior predictive distributions corresponding to each ordering to obtain a single, combined distribution as follows,

$$p_c(d_i|\Omega_j) = \sum_{m=1}^M p(m)p_m(d_i|\Omega_j).$$

Escalation with Overdose Control

- Determine a^* such that $\psi_m(d_i; a^*) = \theta$.
- Compute $\Pr[\psi_m(d_i;a)> heta]=\int_{-\infty}^{a^*}f_m(a|\Omega_j)da$

- Combine the integrals corresponding to each ordering to obtain

$$\Pr[\psi(d_i;a) > \theta] = \sum_{m} p(m) \Pr[\psi_m(d_i;a) > \theta]$$

– This value can then be compared to the feasibility bound $c_{
m od}$.

Prior Elicitation

Suppose dose schedules are given the following notation:

 d_0 : Standard of Care

d₁: 1500mg BID

*d*₂ : 1000mg TID

 d_3 : Asymmetric; 1500mg in the morning, 2000mg in the evening

- $-d_0$ is known to be the least toxic.
- d_1 is less toxic than d_3 .
- This yields the following orderings:

$$m=1:d_0\to d_1\to d_2\to d_3$$

$$m=2:d_0\rightarrow d_1\rightarrow d_3\rightarrow d_2$$

$$m=3:d_0\rightarrow d_2\rightarrow d_1\rightarrow d_3$$

– Denote true risk of toxicity of *i*-th dose as $R(d_i)$.

Systematic approach to prior specification.

Figure: A simple discrete graphical model from Hoeting et al. (1999).

- Prior probability of existence of a particular arrow from node j to node k is denoted as $\pi_{jk} = \pi_{kj}$.
- $p(m=i) = \prod_{j,k} \pi_{jk}^{\delta_{ijk}} (1-\pi_{jk})^{1-\delta_{ijk}}$ where δ_{ijk} indicates whether the arrow exists from j to k in the i-th model.
- Suppose that π_{jk} is prior probability of $R(d_j) > R(d_k)$ s.t. $\pi_{jk} = (1 \pi_{kj})$.
- -p(m=i) can be elicited from pairwise prior probabilities.
- Depending on prior beliefs, may not be practical for settings with many possible doses (e.g. for 16 doses, $_{16}C_2 = 120$).

Example

$$\pi_{01} = \pi_{02} = \pi_{03} = 0$$
 $\pi_{12} = 0.4$
 $\pi_{13} = 0$
 $\pi_{23} = 0.25$

$$p(m=1) = (1 - \pi_{01})(1 - \pi_{02})(1 - \pi_{03})(1 - \pi_{12})(1 - \pi_{13})(1 - \pi_{23})$$

= 1 \times 1 \times 1 \times 0.6 \times 1 \times 0.75 = 0.45

$$p(m=2) = (1 - \pi_{01})(1 - \pi_{02})(1 - \pi_{03})(1 - \pi_{12})(1 - \pi_{13})\pi_{23}$$

= 1 \times 1 \times 1 \times 0.6 \times 1 \times 0.25 = 0.15

$$p(m=3) = (1 - \pi_{01})(1 - \pi_{02})(1 - \pi_{03})\pi_{12}(1 - \pi_{13})(1 - \pi_{23})$$
$$= 1 \times 1 \times 1 \times 0.4 \times 1 \times 0.75 = 0.3$$

Simulation Study Plan

Assessment Metrics:

- Proportion of Acceptable Selections
- Proportion of Correct Selections
- Proportion of Overly Toxic Selections
- Number of treated at overly toxic doses

Scenarios

- Traditional, basic scenarios should be included as baseline/benchmark
- Scenarios where possible orderings are similar should be included, important that no potential ordering is correct
- Displays operating characteristics of BMA methods under scenarios where posterior model probabilities are likely to be similar

Example:

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 6$$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 4$$

$$1 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 6$$

True ordering: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$

