Método de Elementos Finitos

Instituto de Desarrollo Económico e Innovación Universidad Nacional de Tierra del Fuego, Antártida e Islas del Atlántico Sur

Ushuaia, 13 al 20 de Octubre de 2016

Sumario

- Introducción. Elementos Finitos en 1D
- Elementos Finitos en 2D. Implementación
- Adaptatividad
- Elementos Finitos Mixtos

Bibliografía

- A. Ern. Éléments finis. Dunod. Paris. 2005.
- C. Johnson. Numerical solutions of partial differential equations by the finite element method. Cambridge University Press. 1987.
- P.G. Ciarlet. The finite element method for elliptic problems.
 North Holland. Amsterdam. 1978.
- S. Brenner, L.R. Scott. The Mathematical Theory of Finite Element Methods. Springer. New York. 2008.
- J. Alberty, C. Carstensen and S.A. Funken. Remarks around 50 lines of Matlab: short finite element implementation. Numerical Algorithms 20 (1999) 117–137.
- F. Hetch. FreeFem++. http://www.freefem.org/ff++/ftp/freefem++doc.pdf

Problema (D)

$$-(\alpha u')' = f \text{ en } \Omega = (a, b)$$

$$u(a) = u(b) = 0$$

- equilibrio mecánico de una cuerda
- euilibrio térmico de una barra

Algunas variantes

Condiciones de Dirichlet no homogéneas

$$-(\alpha u')' = f \text{ en } \Omega = (a, b)$$

$$u(a) = u_a$$

$$u(b) = u_b$$

Condiciones de Neumann homogéneas

$$-(\alpha u')' = f \text{ en } \Omega = (a, b)$$

$$u'(a) = u'(b) = 0$$

$$\int_a^b u = 0$$

Condiciones mixtas

$$-(\alpha u')' = f \text{ en } \Omega = (a, b)$$

$$u(a) = u_a$$

$$u'(b) = 0$$

Problema (V)

$$u \in V:$$

$$\int_a^b \alpha u' v' = \int_a^b fv \qquad \forall v \in V$$

; Quién es V?

- funciones C^1 que se anulan en a y en b?
- funciones continuas, C^1 a trozos, que se anulan en a y en b?

Problema (V)

$$u \in V:$$

$$\int_a^b \alpha u' v' = \int_a^b f v \qquad \forall v \in V$$

Problema (M)

$$u \in V$$
: $F(u) = \min_{v \in V} F(v)$

con

$$F(v) = \frac{1}{2} \int_a^b \alpha(v')^2 - \int_a^b fv$$

Problema Variacional

$$u \in V$$
: $a(u, v) = F(v) \quad \forall v \in V$

- V: espacio de Hilbert
- \bullet a: forma bilineal, continua y coercitiva en V
- F: forma lineal continua en V

$$H^1(\Omega)$$

Algunas propiedades de $H^1(\Omega)$

- Las funciones de $H^1([a,b])$ "son continuas"
- $v \in H^1([a,b])$ con v' continua (derivada débil), entonces "v es derivable en el sentido usual"
- Vale la fórmula de integración por partes

$$H_0^1(\Omega)$$

Lema de Lax-Milgram

$$(D) \implies (V) \iff (M)$$

Condiciones Esenciales y Naturales

Método de Elementos Finitos

- Aproximación por el Método de Galerkin
- Espacios de aproximación caracterizados por
 - (FEM1) malla o triangulación
 - (FEM2) funciones polinomiales a trozos
 - (FEM3) bases fáciles de calcular y con soportes pequeños.

$$V_h = \text{gen} \{v_1, v_2, \dots, v_N\}$$

$$u_h = c_1 v_1 + c_2 v_2 + \dots c_N v_N$$

Problema:

$$u_h \in V_h$$
: $a(u_h, v_i) = F(v_i)$ $i = 1, 2, \ldots, N$.

Sistema Lineal equivalente

$$Mc = b$$

con

$$M_{ij} = a(v_j, v_i), \quad b_i = F(v_i), \quad c = (c_i)$$

Ejemplo

 \bullet $\alpha = 1$

$$-u'' = f$$
 en $(0,1)$, $u(0) = u(1) = 0$

- malla: $T_h = \{x_i = ih : i = 0, 1, ..., N\}$ con $h = \frac{1}{N}$
- elementos finitos lineales (grado 1)

Los elementos son

$$\left(I_i, \quad \mathcal{P}_1(I_i), \quad \{\text{evaluaciones en extremos}\}\right)$$

con

$$I_i = [x_{i-1}, x_i]$$

dibujar funciones base

Ciarlet 1978

Un Elemento Finito es una terna (K, \mathcal{P}, Σ)

Algunos lemas útiles

Lemma

Supongamos que \mathcal{P} es d-dimensional, y $\{N_1, N_2, \dots, N_d\} \subset \mathcal{P}'$. Entonces son equivalentes

- $\{N_1, N_2, \dots, N_d\}$ es una base de \mathcal{P}' .
- Si $v \in \mathcal{P}$ y $N_i v = 0$ para i = 1, 2, ..., d, entonces v = 0.

Lemma

Sea $P \in \mathcal{P}_d$, con $d \ge 1$, que se anula en un hiperplano de ecuación L(x) = 0. Entonces P = LQ con $Q \in \mathcal{P}_{d-1}$.

Elemento de Lagrange de grado 1

Elemento de Crouzeix-Raviart

Elementos de Lagrange de grados 1, 2 y 3

Elementos de Hermite (grado 3) y de Zienkiewicz

Elementos Afín Equivalentes

Interpolación local: Π_K

Dominio de Π_K

Características de FEM

- (FEM1) malla o triangulación
- (FEM2) funciones polinomiales (o cercanas a polinomios) a trozos
- (FEM3) bases fáciles de calcular y con soportes pequeños.

(FEM1) T_h es una triangulación de Ω (polígono) si

- $\bullet \quad \bar{\Omega} = \cup_{K \in \mathcal{T}_b} K, \text{ cada } K \text{ es un polígono.}$
- ② todo $K \in \mathcal{T}_h$ es cerrado y tiene interior no vacío.
- **3** Conformidad: Si $K_1, K_2 \in \mathcal{T}_h$, entonces $K_1 \cap K_2 = \emptyset$, o $K_1 \cap K_2 = \{p\}$ o $K_1 \cap K_2 = \ell$ con p o ℓ vértice o lado (respectivamente) común a K_1 y K_2 .

Interpolador Global: Π_h

$$(\Pi_h u)|_K = \Pi_K (u|_K) \qquad \forall K \in \mathcal{T}_h$$

Dominio de Π_h

Espacio de elementos finitos (Lagrange): X_h

ullet Nodos / Grados de libertad globales: \mathcal{N}_h

•

$$X_h = \left\{ v = (v_K) \in \prod_{K \in \mathcal{T}_h} P_K : \\ \forall b \in \mathcal{N}_h, \lambda, \mu \in \lambda(b), v_{K_\lambda}(b) = v_{K_\mu}(b) \right\}$$

Bases globales

(FEM3) X_h tiene una base fácil de construir y de soportes pequeños.

Construcción de Espacios de Elementos Finitos

Interpolante global en X_h

$$\Pi_h v = \sum_{j=1}^M \phi_j(v) w_j$$

con $\{\phi_j\}$ grados de libertad y $\{w_j\}$ base.

Construcción de Espacios de Elementos Finitos

Elementos Finitos de clase C^0 y C^1

Construcción de Espacios de Elementos Finitos

Condiciones de borde: X_{0h}

Datos del problema

Hallar
$$u \in V$$
: $a(u, v) = F(v) \quad \forall v \in V$

- V: espacio de hilbert
- $a: V \times V \to \mathbb{R}$ forma bilineal en V, continua y coerciva:

$$a(v, w) \le M||v|||w|| \quad \forall v, w \in V$$

 $a(v, v) \ge \alpha||v||^2 \quad \forall v \in V$

• $F: V \to \mathbb{R}$ forma lineal en V.

Métodos de elementos finitos conformes

Hallar
$$u_h \in V_h$$
: $a(u_h, v) = F(v) \quad \forall v \in V_h$

• V_h espacio de dimensión finita con

$$V_h \subset V$$

Ortogonalidad de Galerkin Lema de Céa

¿Qué es h?

$$h = 0.25$$

¿Qué es h?

$$h = 0.125$$

¿Qué es h?

$$h = 0.0625$$

¿Qué es h?

h = 0.03125

$$\lim_{h\to 0}\|u-u_h\|=0 ?$$

$$||u-u_h||=O(h^p)?$$

Error de Interpolación

global: $||u - \Pi_h u||_{\Omega}$

local: $||u - \Pi_K u||_K$

Error de Interpolación Local

- Error de Interpolación en elemento de referencia
- Argumento de re-escale en elementos de la malla

Error de Interpolación en elemento de referencia

- Lema de Bramble-Hilbert
- Polynomial preserving property del operador de interpolación
- Estabilidad del operador de Interpolación

Argumento de re-escale

$$x = F(\hat{x}) := B\hat{x} + c$$

• Una propiedad fundamental:

$$\Pi_{\hat{K}}\hat{u}(\hat{x}) = \Pi_{K}u(x)$$

- Acotar $||B||y||B^{-1}||$ por cantidades geométricas
- Condición de regularidad de la familia de mallas

Convergencia y orden

Theorem (Convergencia para Elementos de Lagrange de orden k)

Supongamos que la familia de mallas \mathcal{T}_h verifica

H1) es regular:

H2)
$$\forall K \in \cup \mathcal{T}_h$$
, $(K, \mathcal{P}_K, \Sigma_K) \simeq (\hat{K}, \hat{\mathcal{P}}, \hat{\Sigma})$

siendo $(\hat{K}, \hat{P}, \hat{\Sigma})$ un elemento de Lagrange de grado k. Si la solución $u \in V$ del problema está también en $H^{k+1}(\Omega)$, existe una constante C independiente de h tal que

$$||u-u_h||_{1,\Omega} \leq Ch^k|u|_{k+1,\Omega}$$

Suponemos $V \subset H^1(\Omega)$, $\|\cdot\|_V \simeq \|\cdot\|_{H^1(\Omega)}$. Notar que los elementos son de clase C^0 .

Implementación: Malla

```
nv: cantidad de vértices
```

nt: cantidad de elementos

ne: cantidad de aristas del borde

malla
$$\longleftrightarrow$$
 $p,$ $e,$ t

p: 2 × *nve*: 2 × *net*: 3 × *nt*

Implementación: Malla

Matriz p

define la numeración global de los vértices de la malla p(:,j): coordenadas del vértice j

Matriz t

contiene a los elementos: si $t(:,n)=[v1 \ v2 \ v3]$, entonces el n-ésimo elemento tiene vértices v1, v2, v3.

Matriz e

contiene las aristas del borde: si e(:,j)=[v1 v2] ' entonces la j-ésima arista tiene vértices v1, v2

Implementación: Malla

Adaptatividad

 $\mathsf{Solve} \quad \longrightarrow \quad \mathsf{Estimate} \quad \longrightarrow \quad \mathsf{Mark} \, \longrightarrow \quad \mathsf{Refine}$

Adaptatividad: Residuo

Problema

$$-\operatorname{div}(A(x)\nabla u) + b \cdot \nabla u + cu = f \quad \text{en } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Formulación Variacional

$$u \in V$$
: $a(u, v) = \langle f, v \rangle \quad \forall v \in V$

con

$$V := H_0^1(\Omega)$$

$$a(u, v) := \int_{\Omega} A(x) \nabla u \cdot \nabla v + b \cdot \nabla u \, v + c \, u \, v$$

$$\langle f, v \rangle := \int_{\Omega} f \, v$$

Adaptatividad: Residuo

$$R(u_h) \in V^* = H^{-1}(\Omega)$$

$$\langle R(u_h), v \rangle := \langle f, v \rangle - a(u_h, v), \qquad v \in V$$

Adaptatividad: Residuo

Lemma (Estimación de error a posteriori)

$$\alpha \|u - u_h\|_V \le \|R(u_h)\|_{V^*} \le M\|u - u_h\|_V$$

Adaptatividad: Estimadores

Estimadores

$$T \in \mathcal{T}_h$$
: $R_T(u_h)$
 $S \in \mathcal{E}_h$: $J_S(u_h)$

$$\eta_{h}(T)^{2} = h_{T}^{2} \|R_{T}(u_{h})\|_{0,T}^{2} + \sum_{S \subset T} h_{S} \|J_{S}(u_{h})\|_{0,S}^{2}$$
$$\omega \subset \Omega : \qquad \eta_{h}(\omega)^{2} = \sum_{T \in \mathcal{T}_{h}, T \subset \Omega} \eta_{h}(T)^{2}$$

Adaptatividad: Estimadores

Lemma (Cota superior)

$$\|u-u_h\|_V \leq C_1 \eta_h(\Omega)$$

con
$$C_1 = C_1(\alpha, M, \sigma)$$

Adaptatividad: Estimadores

Lemma (Cota inferior)

Para cada $T \in \mathcal{T}_h$

$$C_2 \eta_h(T) \leq \|u - u_h\|_{V,\omega_T} + \operatorname{osc}_h(\omega_T)$$

con $C_2 = C_2(\alpha, M, \sigma)$ y $\omega_T = \bigcup \{K : K \text{ comparte arista con } T\}.$

Adaptatividad: Marcado

Procedimiento de Marcado

Dado un parámetro $\theta \in (0,1)$, sea $\widehat{\mathcal{T}_h}$ un conjunto minimal de \mathcal{T}_h tal que

$$\sum_{T \in \widehat{T}_h} \eta_h(T)^2 \ge \theta \eta_h(\Omega)^2.$$

Se marcan todos los elementos de $\widehat{\mathcal{T}}_h$ para refinamiento.

Adaptatividad: Refinamiento

Malla 0

Ref. elem. 15 y 20

Matlab: refinemesh(g,p,e,t,[15;20])

Adaptatividad: Algoritmo

 \mathcal{T}_0 : malla inicial

- 1) SOLVE (T_H, A, b, c)
- 2) $\{\eta_H(T)\}_{T \in \mathcal{T}_H} = \text{ESTIMATE } (\mathcal{T}_H, u_H)$
- 3) $\widehat{T}_H = MARK(T_H, \{\eta_H(T)\})$
- 4) $T_h = \text{REFINE} (T_H, \widehat{T_H})$
- 5) $\widehat{T}_H = \widehat{T}_h$ y volver al paso 1)

Métodos Mixtos. Ecuaciones de Stokes

$$\begin{array}{rcl} -\Delta u + \nabla p & = & f & \quad \text{en } \Omega \\ \\ \nabla \cdot u & = & g & \quad \text{en } \Omega \\ \\ u & = & 0 & \quad \text{en } \partial \Omega \end{array}$$

$$a(u,v) + b(v,p) = \langle f, v \rangle \quad \forall v \in V$$

 $b(u,q) = \langle g, q \rangle \quad \forall q \in Q$

ó

$$Au + B^t q = f$$
 en V'
 $Bu = g$ en Q'

$$Au + B^{t}q = f$$
 en V'
 $Bu = g$ en Q'

ó

$$u \in W(g)$$

 $a(u,v) = \langle f,v \rangle \quad \forall v \in W$

Condición inf-sup

Existe $\beta > 0$ tal que

$$\sup_{\mathbf{v} \in V} \frac{b(\mathbf{v}, q)}{\|\mathbf{v}\|_{V}} \ge \beta \|q\|_{Q}, \qquad \forall q \in Q$$

Theorem (Existencia y unicidad)

Supongamos que

- lacktriangle a es coercitiva en W con constante lpha
- $oldsymbol{2}$ b satisface la condición inf-sup copn constante eta

Entonces existe única solución $(u,p) \in V \times Q$ del problema mixto y además

$$\begin{split} \|u\|_{V} & \leq & \frac{1}{\alpha} \|f\|_{V'} + \frac{1}{\beta} \left(1 - \frac{\|a\|}{\alpha} \right) \|g\|_{Q'} \\ \|p\|_{Q} & \leq & \frac{1}{\beta} \left(1 + \frac{\|a\|}{\alpha} \right) \|f\|_{V'} + \frac{\|a\|}{\beta^{2}} \left(1 + \frac{\|a\|}{\alpha} \right) \|g\|_{Q'} \end{split}$$

Problema Discreto

$$V_h \subset V$$
, $Q_h \subset Q$

$$a(u_h, v_h) + b(v_h, p_h) = \langle f, v_h \rangle \quad \forall v_h \in V_h$$

 $b(u_h, q_h) = \langle g, q_h \rangle \quad \forall q_h \in Q_h$

$\mathsf{Theorem}$

Suponemos

- lacktriangle a coercitiva en W con constante α
- **2** b satisface condición inf-sup con constante β
- **3** a coercitiva en W_h con constante α^*
- **1** b satisface condición inf-sup discreta con constante β^*

Entonces existe $C = C(\alpha, \beta, ||a||, ||b||, \alpha^*, \beta^*)$ tal que

$$||u-u_h||_V + ||p-p_h||_Q \le \left(\inf_{v_h \in V_h} ||u-v_h||_V + \inf_{q_h \in Q_h} ||p-q_h||_V\right)$$

El Sistema Lineal

$$\left[\begin{array}{cc} \mathcal{A} & \mathcal{B}^t \\ \mathcal{B} & 0 \end{array}\right] \left[\begin{array}{c} \mathcal{U} \\ \mathcal{P} \end{array}\right] = \left[\begin{array}{c} \mathcal{F} \\ \mathcal{G} \end{array}\right]$$

$$\mathcal{A} \in \mathbb{R}^{N_u \times N_u}, \qquad \mathcal{B} \in \mathbb{R}^{N_p \times N_u}$$

$$N_u = \dim V, \qquad N_p = \dim Q$$

condición inf-sup discreta

$$\ker \mathcal{B} = \{0\}$$

 \uparrow

 ${\cal B}$ tiene rango máximo

Métodos Mixtos. Ecuaciones de Stokes

- Espacio para la velocidad: $V = H_0^1(\Omega)^2$
- Espacio para la presión: $Q = L_0^2(\Omega)$
- Formas bilinelaes

$$egin{array}{lll} a(\mathbf{v},\mathbf{w}) &=& \int_{\Omega}
abla \mathbf{v} :
abla \mathbf{w} \, dx & \mathbf{v},\mathbf{w} \in V \\ b(\mathbf{v},q) &=& \int_{\Omega} q \,
abla \cdot \mathbf{v} \, dx & \mathbf{v} \in V, \, \, q \in Q \end{array}$$

Métodos Mixtos. Ecuaciones de Stokes

Espacios Incompatibles

- $\mathbf{0} \mathcal{P}_1/\mathcal{P}_0$
- Q_1/\mathcal{P}_0

Espacios Compatibles

- **1** Mini: $(\mathcal{P}_1 + \{\text{burbujas}\})/\mathcal{P}_0$
- 2 Taylor-Hood: $\mathcal{P}_k/\mathcal{P}_{k-1}$, $k \ge 2$