A Bayesian Statistical Modeling Approach for *Bacillus anthracis* Dose Response Data

Jade Mitchell Blackwood, Patrick L. Gurian, PhD and Mark Weir

Department of Civil, Architectural, and Environmental Engineering

Drexel University

Acknowledgements

- Center for Advancing Microbial Risk Assessment (CAMRA), a cooperative Center of Excellence funded by the U.S. Environmental Protection Agency (US EPA Grant R-83236201) and the U.S. Department of Homeland Security
- Dr. Patrick L. Gurian
- Mark H. Weir
- Dr. Timothy Bartrand
- Dr. Charles N. Haas

Background

- Little human dose data is available for Category A Bioterrorism Agents
- Anthrax has been extensively studied using nonhuman animals as surrogate species
- Attempts have been made to validate with the only existing human data from the Sverdlovsk outbreak (Meselson, 1994)
- Uncertainty associated with extrapolation to unobserved species has not been quantified

Objectives

- Use Bayesian statistical approach to fit dose response parameters for Bacillus anthracis and compare to a classical, or frequentist, likelihoodbased approach
- 2. Conduct a meta-analysis using hierarchical methods for three different species- rhesus monkeys, guinea pigs, and rabbits (Druett et al., 1953; Pitt et al., 2001; Altboum et al., 2002)
- 3. Estimate susceptibility and associated uncertainty of unobserved species based on species with observed susceptibilities

Organism / Strain Used	Host Species	Dose (Inhaled Spores)	Number of Test Subjects	Response	Positive Response	Negative Response
Bacillus Anthracis Vollum Strain	Guinea Pig (Altboum, 2002)	20000000	7	Death	7	0
		2000000	8	Death	7	1
		200000	12	Death	10	2
		20000	12	Death	6	6
		2000	8	Death	0	8
		200	4	Death	0	4
Bacillus Anthracis ATCC_6605 Strain	Guinea Pig (Altboum, 2002)	3000000	10	Death	10	0
		300000	10	Death	8	2
		30000	10	Death	3	7
		3000	10	Death	0	10
		300	6	Death	1	5
		30	6	Death	0	6
Bacillus Anthracis Ames Strain	New Zealand White Rabbit (Pitt, 2001)	14600000	10	Death	10	0
		9240000	8	Death	8	0
		19110000	5	Death	5	0
Bacillus Anthracis Vollum Strain	Rhesus Monkeys (Druett, H.A., et. al., 1953)	70320	8	Death	1	7
		77040	8	Death	4	4
		108720	8	Death	5	3
		137520	8	Death	6	2
		155520	8	Death	5	3
		160800	8	Death	3	5
		240000	8	Death	8	0
		300000	8	Death	7	1
		398400	8	Death	8	0

Methods

Maximum Likelihood Estimation (MLE) Approach

- The exponential dose response model was fit to the three sets of host-species/organism-strain groups using the MLE to determine the best fit parameter, r.
- Confidence intervals were calculated from a bootstrap resampling technique.

Bayesian Hierarchical Model

- Markov Chain Monte Carlo (MCMC) techniques were used to sample an array of parameter estimates for r from the four sets of host-species/organism-strain groups using both an informed and an uniformed prior estimate of the distribution
- Mean, median and credible intervals were calculated for each group using this data

Methods

Exponential Dose Response Model $P(d) = 1 - e^{-rd}$

Where:

P(d) = Probability of death
r = pathogen-host survival probability
d = dose of organisms to host

Bayesian Hierarchical Modeling

Prior Assumptions

Inr~n(μ_{lnr} , σ^2)

 $ln\mu_{lnr}\sim n(-11.9, 2^2)$ - $2ln\sigma^2 \sim n(-0.67, 0.84^2)$

Results of Hierarchical Approach

Vollum Monkeys

ATCC-6605 Guinea Pig

Vollum Guinea Pig

Prediction for Unobserved Species

Prior vs. Posterior Distributions of the Grand Mean for Unobserved Species

Distribution	Informed	Uniformed
Prior	$ln\mu_{lnr} \sim n(-11.9, 2^2)$ $-2ln\sigma^2 \sim n(-0.67, 0.84^2)$	$ln\mu_{lnr} \sim n(-11.9, 20^2)$ $-2ln\sigma^2 \sim n(-0.67, 0.84^2)$
Posterior	$ln\mu_{lnr} \sim n(-11.78, 0.67^2)$	$ln\mu_{lnr}\sim n(-11.99, 0.72^2)$

Model Validation

- Internal
 - Generally consistent with MLE
 - Deviations from MLE are consistent with the influence of data from other experiments
- External
 - Will require cross-validation
 - More data

Conclusions

- Variance is reduced as more information from data is gained
- Bayesian hierarchical model yields more narrow credible percentiles of risk when looking individual species
- Bayesian hierarchical model yields wider credible percentiles of risk when looking at overall pooled data

Future Work

- Extrapolation to unobserved data sets, including humans may be possible
- Characterizing the degree of relatedness of different dose-response experiments
 - Host/Species
 - Organism/Strain

References

- Altboum, et. al 2002. Post exposure prophylaxis against anthrax: Evaluation of various treatment regimens in intranasally infected guinea pigs. *Infection and immunity*, 70:6231.
- Bartrand, T., Weir, M. and Haas, C., 2008. Dose-Response Models for Inhalation of Bacillus anthracis Spores: Interspecies Comparisons, *Risk Analysis*, (accepted for publication)
- Druett, H.A., Henderson, D.W., Packman, L., and Peacock, S., 1953. Studies on Respiratory Infection. I. The Influence of Particle Size on Respiratory Infection with Anthrax Spores. *Journal of Hygiene*, 51:359.
- Meselson, M., Guillemin, J., Hugh-Jones, M., Langmuir, A., Popova, I., Shelokov, A., Yampolskaya, O.,1994. The Sverdlovsk Anthrax Outbreak of 1979. *Science*, 266:5188
- Pitt, M.L.M., Little, S.F., Ivins, B.E., Fellows, P., Barth, J., Hewetson, J., Gibbs, P., Dertzbaugh, M., Friedlander, A.M., 2001. In vitro correlate of immunity in a rabbit model of inhalation anthrax. *Vaccine*, 19:4768.