

United International University

School of Science and Engineering

Assignment-2, Coordinate Geometry and Vector Analysis

Course Code: MAT 2109, Section-A, Spring-2024

Due: February 27, 2024, in Class

Solve all questions.

- 1. (a) Find parametric equations and symmetric equations for the line through (2, 1, 0) and perpendicular to both $\mathbf{i} + \mathbf{k}$ and $\mathbf{j} + \mathbf{k}$.
 - (b) Determine whether the lines L_1 and L_2 are parallel, skew, or intersecting. If they intersect, find the point of intersection.

$$L_1: \frac{x}{1} = \frac{y-1}{-1} = \frac{z-2}{3}; \quad L_2: \frac{x-2}{2} = \frac{y-3}{-2} = \frac{z}{7}$$

- (c) Is the line through (2,4,0) and (1,1,1) perpendicular to the line through (2,3,4) and (3,1,-8)?
- 2. (a) Find an equation of the plane through the points (2,1,2), (3,-8,6), and (-2,-3,1).
 - (b) Use intercepts to help sketch the plane 3x + 2y 3z = 6.
 - (c) The plane that passes through the point (3,1,4) and contains the line of intersection of the planes x + 2y + 3z = 1 and 2x y + z = -3
 - (d) The plane that passes through the point (1,5,1) and is perpendicular to the planes 2x + y 2z = 2 and x + 3z = 4.
- 3. (a) Find the vertex, focus, and directrix of the parabola and sketch its graph $(x-3)^2 = 8(y+1)$.
 - (b) Find the vertices, foci, and asymptotes of the hyperbola and sketch its graph $9y^2 4x^2 36y 8x = 4$
 - (c) Identify the type of conic section whose equation is $x^2 = 4y 2y^2$ and find the vertices and foci.
 - (d) Reduce the equation: $17x^2 + 18xy 7y^2 16x 32y 18 = 0$; to one of the standard forms, where the origin is transferred to (1, -1). Then, classify the surface, and sketch it.
- 4. Match the equation with its graph (Figure 1 (labeled I–VIII)). Give reasons for your choice, i. e. with the help of traces illustrate the graphs.

- (a) $x^2 + 4y^2 + 9z^2 = 1$
- (e) $9x^2 + 4y^2 + z^2 = 1$

(b) $x^2 - y^2 + z^2 = 1$

(f) $-x^2 + y^2 - z^2 = 1$

(c) $y = 2x^2 + z^2$

(g) $y^2 = x^2 + 2z^2$

(d) $x^2 + 2z^2 = 1$

(h) $y = x^2 - z^2$

Figure 1:

- 5. Use traces to sketch and identify the surface.
 - (a) $x = y^2 + 4z^2$

(d) $9y^2 + 4z^2 = x^2 + 36$

(b) $x^2 = 4y^2 + z^2$

(e) $3x^2 - y^2 + 3z^2 = 0$

(c) $z^2 - 4x^2 - y^2 = 4$

- (f) $x = y^2 z^2$
- 6. Following two figures are the satellite dish and cooling towers of nuclear reactors. Name these two figures with proper reasoning.

Figure 2:

