

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
16 October 2003 (16.10.2003)

PCT

(10) International Publication Number
WO 03/085115 A2

- (51) International Patent Classification⁷: C12N 15/82 (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (21) International Application Number: PCT/EP03/03703 (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
- (22) International Filing Date: 8 April 2003 (08.04.2003)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
02447062.7 10 April 2002 (10.04.2002) EP
60/396,124 15 July 2002 (15.07.2002) US
- (71) Applicant (*for all designated States except US*): CROPDESIGN N.V. [BE/BE]; Technologiepark 3, B-9052 Zwijnaarde (BE).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): INZE, Dirk [BE/BE]; Driesstraat 18, B-9310 Moorsel-Aalst (BE). BROEKKAERT, Willem [BE/BE]; Kluizenbosstraat 26, B-1700 Dilbeek (BE).
- (74) Common Representative: CROPDESIGN N.V.; Technologiepark 3, B-9052 Zwijnaarde (BE).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/085115 A2

(54) Title: IDENTIFICATION AND VALIDATION OF NOVEL TARGETS FOR AGROCHEMICALS

(57) **Abstract:** The invention relates to a method for identifying and validating plant targets for agrochemicals, comprising the steps of determining gene or protein expression profiles in function of the progression of an essential biological process in a plant, and the subsequent downregulation of expression of said gene or protein in a plant cell. More particularly, the effects of downregulation of the candidate target gene were directly monitored on plants locally infected with a vector mediating viral induced gene suppression in that infected plant area. The invention also relates to isolated plant genes encoding proteins involved in plant growth and development. The invention also relates to plants tolerant to agrochemicals such as herbicides or pesticides.

IDENTIFICATION AND VALIDATION OF NOVEL TARGETS FOR AGROCHEMICALS

The invention relates to isolated plant genes encoding proteins essential for plant growth and development and to methods for identifying and validating these genes/proteins as target genes/proteins for agrochemicals, such as herbicides. A target for an agrochemical is a gene or a protein where the agrochemical interferes with when applied to the target organism.

For the identification and validation of useful agrochemicals, the agrochemical industry traditionally relied on *in vivo* screening methods wherein chemical compounds were brought into direct contact with the living target organisms (e.g. plants for herbicide screening, insects for insecticide screening, etc.). However due to (i) the dramatic increase in the number of compounds that need to be screened to find a successful new agrochemical product, and (ii) the need to rely on very small quantities of compound such as are available in a combinatorial chemistry based compound libraries, and (iii) the need to identify compounds with a novel mode of action, the industry has developed a considerable interest in using more efficient and faster *in vitro* screening methods.

To render such *in vitro* screening methods more successful, it is essential to carefully select the tested target gene/proteins and/or the tested agrochemicals. It has been described that a more practical *in vitro* approach for finding new agrochemicals would involve identification of target genes/proteins against which the agrochemical compounds could possibly work. For this process identification of suitable target genes/proteins, the conventional methods make use of gene knock-outs of the target organism. Gene knock-out libraries are generally made as a random collection of thousands of gene knock-outs. In these methods it is investigated if the gene/protein is essential for the growth and/or viability of the organism, since the knockout of an essential gene (when present in a homozygous state) leads to a lethal or otherwise detrimental effect on the organism. The indication that said gene/protein is essential to the organism makes it a suitable target for an agrochemical. These conventional methods are still cumbersome and time consuming because of the use of gene-knockouts. Other techniques that are useful to estimate the essential character of a gene or its corresponding protein are based on the downregulation of said gene or protein for example via anti-sense expression technology (WO0107601).

To render an *in vitro* screening for agrochemicals more successful, it is essential to carefully select the tested target gene/proteins. Therefore a more practical *in vitro* approach for finding new agrochemicals could be a multistep process involving the steps of (1) identification of target genes/proteins against which the agrochemical compounds could possibly work, (2)

validation of the candidate target gene as being an essential gene/protein for the organism and
(3) use of these target genes/proteins in an *in vitro* screening procedure in which the chemical compounds are tested.

It is the aim of the present invention to develop a process for the more efficient identification of
5 candidate target genes/proteins for agrochemicals, combined with the more efficient validation of the target genes/proteins. It is a further aim of the invention to provide this process in order to design more efficiently the screening procedure with the agrochemical compound.

The method of the present invention is based on the direct use of genetic information for
10 example generated by expression profiling of the candidate target genes/proteins, for the identification and the validation of the targets.

Therefore according to a first embodiment of the present invention, there is now provided a method for identifying and validating plant genes/proteins as targets for agrochemicals, said
15 method comprising the steps of:

- a. determining gene or protein expression profiles during a biological process of a plant or plant cell, said biological process being necessary for the viability or the growth of the plant or plant cell;
- b. selecting genes or proteins having altered expression during said biological process,
- c. cloning said selected gene or the nucleic acid encoding said protein in its full-length or partial form,
- d. incorporating said nucleic acid in a vector designed for downregulation of expression of said nucleic acid or the sequence homologous to said nucleic acid in a plant or plant cell.

25 The aim of methods of the present invention is the identification of target gene(s)/protein(s) out of a broad range of candidate plant genes/proteins. The identification step is achieved by the techniques of expression profiling described in the following embodiments. Since the method of the present invention can be used for identification of genes/proteins or proteins, the term
30 "target" as used herein can mean a gene as well as a gene product, namely a protein, polypeptide or peptide. With the expression "target for an agrochemical" is meant a protein as well as a gene or nucleic acid encoding such protein, and when such target is inhibited, stimulated or otherwise disrupted in its normal activity by an agrochemical compound, this would lead to a desired effect in a target organism. The invention aims at efficiently identifying
35 targets for agrochemicals. Said agrochemicals can be herbicides or pesticides as well as growth stimulators or growth regulators.

Target identification means selecting candidate targets from a larger number of genes/proteins or proteins on the basis of certain properties that give such a molecule a higher probability of being a suitable target than other molecules which do not exhibit said properties.

A herbicide target is a protein or gene that when inhibited, stimulated or otherwise disrupted in

- 5 its normal activity by a compound would kill the (weedy) target plant or have a strong negative effect on its growth, said compound would therefore be a candidate herbicide. An insecticide target is a protein or gene that when inhibited, stimulated or otherwise disrupted in its normal activity by a compound would kill the insect pest or have a strong negative effect on its growth, said compound would therefore be a candidate insecticide. A plant growth regulator (PGR)
10 target is a protein or gene that when inhibited, stimulated or otherwise disrupted in its normal activity by a compound would promote or alter in a desirable way the growth of plant, said compound would therefore be a candidate PGR.

Nowadays a lot of genomic information, e.g. gene sequences, expression profiles, homologies

- 15 and putative functionality, is available from genomic sequencing and expression studies in several target organisms. It is therefore of interest to develop a new method to identify and validate genes/proteins as candidate targets for agrochemicals, such methods being based on a direct use of such genomic information. This use of genomic information, e.g. the expression level of a gene, allows the selection of a limited set of appropriate candidate genes/proteins.
20 Only this limited set of genes is then tested in the validation step, contributing to a higher efficiency and success rate of the screening procedure for agrochemicals. Furthermore, the genetic information, e.g. the functional data of the putative target gene/protein, is used as a basis to design more efficiently the *in vitro* screening procedure with the agrochemical compound(s) under investigation.

- 25 The present invention discloses methods that allow for the identification and validation of target genes/proteins for agrochemicals out of the broad range of possible genes/proteins and proteins. It therefore allows genes or proteins to be selected for the development of suitable *in vitro* screening methods for the screening of novel and efficient agrochemicals.
30 According to a first step of the methods of the present invention target genes or gene products are identified by using transcript profiling of the genomic content of a cell. By using this technique one immediately obtains genomic data (sequences and expression level) as well as a functional indication of the candidate target gene or gene product. Thus this method is useful for a first identification and selection of possible agrochemical target genes/proteins, since it
35 provides as a bonus genomic and functional data on the candidate target. A good candidate target gene is a gene of which the expression varies significantly over the course of an essential biological process of the cell, since that is an indication that the gene/protein is

involved in that biological process. The present application describes for the first time that the determination of an expression profile of a gene during the progression of an essential biological process is used to identify possible agrochemical targets.

- 5 The expression profiling in the target identification steps of the method of the present invention is carried out in function of the progression of a process that is essential for plant growth and/or plant development and/or plant viability. In one preferred embodiment of the present invention, the essential process that is monitored in the target identification step is the process of cell division. Accordingly, in a particular embodiment of the invention, the method to identify
10 target genes/proteins for agrochemicals is based on the transcript profiling of genes/proteins that are specifically involved in cell division. Therefore the invention provides a method as mentioned above, wherein said biological process cell division.

Other biological processes that may be monitored for the identification and validation of
15 agrochemical targets are for instance processes that are essential for seed germination, leaf formation, etc.

The term expression profiling means determining the time and/or place when or where a gene or a protein is active. Particularly for a gene, this is achieved by monitoring the level of
20 transcripts and therefore in the case of gene expression profiling the term transcript profiling or mRNA profiling is used.

Generally, the expression profiling in the methods of the present invention is carried out in function of the progression of a process that is essential for plant growth and/or development and/or plant viability. To achieve this, the process of interest is synchronized in a sufficient
25 number of cells (for example in a cell culture) or organisms to allow collecting samples for expression profiling representing various stages of said process. Target identification then consists in selecting those genes or proteins that show significant changes in expression levels in function of the progression of the process of interest. It are those genes or proteins that are likely to be strongly involved or to be essential in said process.

30 The term "essential" means that if the gene or the gene product cannot function as normal in the cell or organism, this will have significant implication in the cell growth or cell development or other vital functions of the cell or organism.

According to the invention, the expression profiling can be studied at the level of m-RNA, using
35 transcript profiling techniques, or alternatively at the level of protein, using proteomics-based approaches.

In one preferred embodiment of the invention, m-RNA profiling is used for identification of target genes/proteins and expression levels may be quantified via techniques that are well known to the man skilled in the art. For instance, mRNA-profiling can be performed using micro-array or macro-array technologies, this method however requires that the gene sequences are known (full length sequences or at least partial sequences) and are physically available for coating on the micro or macro array surface. Standard chips are being commercialised for *Arabidopsis*, and sufficient sequence information is now available for different plant species (including rice) to allow sufficient sequence data for this approach.

Another approach for mRNA profiling is the use of AFLP-based transcript profiling as described in example 1. In this approach short sequence tags are monitored. In a next step these short sequence tags may be matched with full-length genes/proteins if required. Gene or protein selection thus be based on either full-length or partial sequences and it is well within the realm of the person skilled in the art to find a full length sequence based on the knowledge of a partial sequence.

Therefore, one aspect of the invention is the direct use of genetic information to select candidate targets for agrochemicals. As mentioned above this genetic information can be generated by a number of techniques. Accordingly, the present invention encompasses a method as mentioned above, wherein the expression profiles are determined by means of micro-array, macro array or c-DNA-AFLP.

According to another embodiment of the invention, proteomic based approaches may be used to identify candidate target proteins for agrochemicals.

It is now demonstrated that for the purposes of identifying a target gene for agrochemicals a synchronized culture of dividing plant cells is used to isolate samples and to monitor the expression of the transcripts of those cells during the progression of the cell division.

Therefore according to a particular embodiment, the invention also encompasses a method for the identification and validation of plant agrochemical targets, wherein said gene or protein expression profiling is based on nucleic acid or protein samples collected from a synchronized culture of dividing plant cells.

In one embodiment of the invention, the samples used for expression profiling are obtained from a synchronized culture of rice cells, tobacco cells, *Arabidopsis* cells or cells from any other plant species. The cell culture should be synchronized in order to obtain samples containing a sufficient amount of cells that are at the same stage of the biological process, so that the various samples taken for expression profiling are representative for the various

stages of the essential biological process. In a particular embodiment of the present invention the samples are obtained from cells that are synchronized for cell division. In a preferred embodiment of the invention expression profiling is done on synchronized dividing cells. Certain cell lines are particularly suitable for synchronization of cell division, for instance 5 synchronization of tobacco Bright Yellow-2 cell lines as described in example 1. Therefore most preferably, the synchronized cells are tobacco BY2 cells. By using synchronized tobacco BY2 cells and performing a cDNA-AFLP-based genome-wide expression analysis, the inventors built a large collection of plant cell cycle-modulated genes/proteins. Approximately 10 1340 periodically expressed genes/proteins were identified, including known cell cycle control genes as well as numerous novel genes. A number of plant-specific genes were found for the first time to be cell cycle modulated. Other transcript tags were derived from unknown plant genes showing homology to cell cycle-regulatory genes of other organisms. Many of the genes encode novel or uncharacterised proteins, indicating that several processes underlying cell division are still largely unknown. These sequences are presented herein as SEQ ID NO 1 to 15 SEQ ID NO 785.

While, according to the invention, the basic criterion for identifying an agrochemical target gene or gene product consists in the differential expression levels of the gene or the protein observed during the progression of an essential biological progress, secondary selection 20 criteria can be used and combined with this primary criterion.

One such secondary criterion may be to make a selection of genes or proteins that are found not to exhibit a high degree of homology with genes or proteins from other organisms (such as mammals) as this criterion is likely to reduce the probability that the agrochemical compounds 25 active on the "plant-specific" target genes or gene products would also exhibit toxic effects against other organisms, for example mammals.

Another secondary selection criterion could exist in focussing on a particular phase of the essential biological process as mentioned above. For instance, when cell division modulated genes/proteins are under investigation as potential agrochemical target genes/proteins, one 30 could preferably use those cell division modulated genes/proteins which exhibit high expression during the G1 phase, S phase, G2 phase or M phase or at the transition stages of these phases. In one embodiment of the present invention, the focus may be on the G2/M transition phase, since this phase in the plant cell cycle is considered to have more "plant specific" elements than other phases of the cell cycle and is therefore more likely to yield plant 35 specific candidate target genes and proteins. Whereas the core cell cycle genes/proteins and the basic regulatory mechanisms controlling cell cycle progression are conserved among higher eukaryotes, basic developmental differences between plants and other organisms imply

that plant-specific regulatory pathways exist that control cell division. Especially for events occurring at mitosis, plants are expected to have developed unique mechanisms regulating karyo- and cytokinesis. A typical plant cell is surrounded by a rigid wall and can as such not divide by constriction. Instead, a new cell wall between daughter nuclei is formed by a unique cytoskeletal structure called the phragmoplast, whose position is dictated by another cytoskeletal array called the preprophase band. Another major difference between plant and animal mitosis is found in the structure of the mitotic spindles: in animals, they are tightly centred at the centrosome, whereas in plants they have a diffuse appearance.

Therefore a suitable second criterion to combine with the first criterion may be to select genes/proteins that are involved in the mitosis step of the cell cycle and/or that are involved in the building of the cell wall during mitosis.

Likewise a secondary selection criterion to be combined with the first criterion may be the selection of genes or proteins from a dicotyledonous plant that do not exhibit a high degree of homology with genes or proteins from a monocotyledonous plant (or vice versa). This secondary criterion is especially relevant when identifying agrochemical target genes or proteins with the intention to selectively identify targets that would allow for subsequent screening of selective herbicides or plant growth regulators. For instance, this strategy is advantageous to find targets and agrochemicals for selective weed control, such as herbicides that kill dicotyledonous weeds in monocotyledonous crops or vice versa.

Therefore according to further embodiments, the present invention encompasses methods as mentioned above, wherein the target gene or protein meets any one or more of the above mentioned secondary selection criteria, such as being plant specific, being mitosis specific or being dicot specific etc.

The possibility for combination of criteria used for selecting target genes or proteins renders the method of the present invention more powerful than classical methods. According to a preferred embodiment the technique of the present invention allows identifying genes/proteins, to be used as agrochemical target genes/proteins, these genes being genes/proteins that are involved in cell division and control of cell cycle progression, and these genes being novel and these genes being plant specific. Therefore the method of the present invention is characterized in that it allows identifying new and unexpected agrochemical targets.

In the target gene identification step according to the present invention, genes or proteins are selected for which there is a high probability of being essential. It should be clear that the above-mentioned examples are given by way of illustration and are not meant to be limiting in any way.

Further, according to a second step in the method of the invention, the candidate agrochemical target gene or gene product is subsequently validated as being essential for the growth and/or development and/or viability of the organism. This is achieved by cloning the
5 identified candidate target gene in a vector construct designed to downregulate said target gene in a plant or plant cell, followed by inoculating the plant with this construct and monitoring whether downregulation of the gene results in negative effects on plant growth and/or development and/or viability. A valid target gene is a target gene that causes significant effects on growth of plants or plant cells when downregulated. The present application describes for
10 the first time the use of a particularly fast and efficient downregulation method to validate possible agrochemical targets.

Accordingly, the present invention encompasses a method as mentioned above for the identification and validation of plant targets for agrochemicals, wherein said downregulation
15 involves a viral-induced gene silencing mechanism.

Thus, starting from a number of candidate target genes/proteins identified in the first step of the method of the invention, the target validation step aims at confirming and demonstrating the essential nature of the gene by demonstrating that severe down-regulation of the
20 expression level of the gene has a significant effect on the organism.

In particular, when one is interested in developing a screening assay for herbicides, downregulation of the candidate target gene in a plant may result in a lethal effect, a severe inhibition of plant growth or any other (obviously) negative phenotypic effects. Alternatively, when one is interested in developing a screening assay for plant growth regulators, the effect
25 of downregulating the target gene may be modulation or even stimulation of growth in general or modulation or even stimulation of a particular process associated with plant growth and/or development and/or architecture and/or physiology and/or biochemistry or any other phenotypic effect.

30 The man skilled in the art will be aware of various methods to achieve downregulation of a given gene or protein, such methods include essentially co-suppression based approaches or anti-sense based approaches as well as any other method resulting in gene silencing. Other examples of downregulation in a cell are well documented in the art and include, for example, RNAi techniques, the use of ribozymes etc. Gene silencing may also be achieved by insertion
35 mutagenesis (for example, T-DNA insertion or transposon insertion) or by gene silencing strategies as described by, among others, Angell and Baulcombe, 1998 (WO 98/36083), Lowe et al., 1989 (WO 98/53083), Lederer et al., 1999 (WO 99/15682) or Wang et al., 1999 (WO

99/53050). Expression of an endogenous gene may also be reduced if the endogenous gene contains a mutation.

The effect of gene downregulation can be observed in stably transformed plants which can be
5 obtained by means of various well known techniques, these techniques generally involving a plant transformation step and a plant regeneration step.

Genes/proteins which exhibit a severe negative effect when downregulated may however significantly reduce transformation and/or regeneration efficiency. Therefore, a relevant parameter indicative for the essential nature of the gene, may be a severe reduction in
10 transformation efficiency when said particular gene is used in a down-regulation construct. In order to avoid the (negative) effect on transformation efficiency in the transformation and regeneration process, an inducible promoter system can be used. Induction of promoter activity can then be applied at a later stage (after transformation) in order to observe the effect of gene downregulation once the transformed plant or plantlet started to develop.

15 Further, another method for testing the effect of downregulation of a target gene, which can be used in the methods of the present invention, is based on a rapid transient transformation process and does not rely on the somewhat lengthy process of stable transformation. The use of this method for target validation in plants is part of this invention, regardless of whether
20 target identification has been performed according to this invention.

Accordingly, in a preferred embodiment, the downregulation method is based on co-suppression and on rapid transient transfection of plant cells. The preferred method to validate genes/proteins as targets for agrochemicals is based on the cloning of the identified candidate
25 target gene in a vector construct containing a viral replicase that is involved in the very efficient downregulation of the candidate target gene in the infected plant or plant cell via the mechanism of co-suppression. One advantage of this method for downregulation, is the fact that the infection of the host cells or the plant can be performed locally for example by inoculating the vector directly on the leaves. This allows a very fast evaluation of the effect of
30 downregulating the candidate target since no complete transgenic plants have to be generated. Also this technique allows an easy way of monitoring the effect of the downregulated candidate target by simply looking at the changes of the infected place, for example monitoring the lethal effects on the infected leaf).

35 Therefore in a preferred embodiment, the downregulation method is based on co-suppression. In a more preferred embodiment of the invention this co-suppression technique is fast and easy to evaluate the effect of downregulation, so that it is suitable for dealing with high

numbers of genes/proteins. This can be achieved by using viral induces gene silencing mechanisms (VIGS) and by infecting the plant directly and locally, for example on the leaves. Therefore, according to another embodiment, the present invention relates to the use of a viral-induced gene silencing system for validating plant targets for agrochemicals.

5

This method for severe downregulation via transient expression of the gene in the presence of certain viral elements is referred to as "virus-induced gene silencing mechanism" (VIGS) and is previously described in Ratcliff *et al.*, Plant J., 25 237 – 245, 2001. Briefly, virus vectors carrying host-derived sequence inserts induce silencing of the corresponding genes/proteins in infected plants. This virus-induced gene silencing is a manifestation of an RNA-mediated defence mechanism that is related to post-transcriptional gene silencing in transgenic plants. Ratcliff *et al.*, developed an infectious cDNA clone of Tobacco rattle virus (TRV) that has been modified to facilitate insertion of non-viral sequences and subsequent infection in plants. This vector mediates VIGS of endogenous genes/proteins in the absence of virus-induced symptoms. Unlike the other RNA virus vectors that have been used previously for VIGS, the TRV construct is able to target most RNA's in the growing points of the plant. A more detailed description of this downregulation mechanism is given in example 2.

According to particular embodiments of the present invention, the VIGS system is applied in 20 *Arabidopsis* or in tobacco for the purposes of validation of a candidate agrochemical target gene.

According to a further preferred embodiment, there is provided a method for validation of a candidate agrochemical target gene, wherein the gene is downregulated in a plant via the use of infectious DNA of virus is Tobacco Rattle Virus and wherein said plant is tobacco.

25

The present invention relates to a combination of the above-mentioned identification and validation steps, which are especially selected so that they lead to an efficient selection of candidate target genes for agrochemicals. The outcome of the transcript profiling provides the necessary information and forms the basis for the second step, namely the validation of the 30 target gene via incorporation of the gene sequence in the downregulation construct. The combination of these two techniques is especially useful for selecting suitable target genes/proteins for agrochemicals in a high throughput fashion. This technique thus overcomes the technical limitations of previously described techniques such as the knock-out libraries and the antisense strategies without genetic information of the genes. This new combination offers 35 a time-saving strategy for identification of a candidate target gene and the more direct information output in the form of a real sequence, the immediate cloning of the gene in the

downregulation construct and immediate application of the downregulating construct on the target organism.

The combination of these steps offers the unique opportunity to provide many high quality target genes/proteins for agrochemicals in a commercially and economically advantageous

5 way. Furthermore, inherent to the techniques of the present invention is that the qualified target genes/proteins are accompanied with the necessary information to design a suitable *in vitro* screening assay with the agrochemical. This information consists of the expression characteristics of the genes/proteins and their function and importance in the essential biological process that was monitored during the transcript profiling.

10 In this way, the methods of the present invention overcome the practical and commercial limitations of the existing techniques.

Once this level of target validation is reached, the validated target can be selected for the development of an appropriate high-throughput *in vitro* screening method, wherein the

15 agrochemical is tested. Therefore, the present invention also encompasses a method for screening candidate agrochemical compounds, comprising the use of any of the identification procedures and/or validation procedures as mentioned above. More particularly, the present invention encompasses a method for screening agrochemical compounds, comprising the use of any one or more of the sequences represented in SEQ ID NO 1 to 785.

20 Various methods can be used to develop suitable *in vitro* assays for screening the chemical compounds, depending on what is known about the biological activity of the target gene. For example, when the target is an enzyme, measurement of the enzymatic activity of the target could form the basis of the *in vitro* screening assay with the chemical compound.

25 Therefore, the methods of the present invention, the genes/proteins and the information generated by the combined identification and validation methods of the present invention, allow one to design and/or fine tune a screening for testing and/or developing agrochemicals (for example herbicides). For example if the expression pattern and the role of the target gene in the essential biological process is known, it is much easier to set up an *in vitro* screening assay to monitor the effect of a candidate herbicide on the target cells. Therefore it is expected 30 that much more refined and/or efficient herbicides will be characterized using the methods of the present invention.

Also because of the knowledge of its function, one can further design the screened 35 agrochemical compound to improve its activity for instance to improve its binding capacity to the target.

Therefore, the present invention encompasses a method for screening candidate agrochemical compounds comprising the use of any of the methods as mentioned above.

The invention may also be applied for the development of agrochemical (for example herbicide or pesticide) tolerant plants, plant tissues, plant seeds and plant cells.

5 Herbicides that exhibit greater potency can also have greater crop phytotoxicity. A solution to this problem is to develop crops that are resistant or tolerant to herbicides. Crop hybrids or varieties that are tolerant to the herbicides allow, for instance, for the use of herbicides that kill weeds without attendant risk of damaging the crop. Further it should be clear that when a plant
10 is overexpressing the target of a particular herbicide, the tolerance of said plant against said herbicide will also be enhanced.

Therefore the present invention also relates to the use of the agrochemical (e.g. herbicide) target genes/proteins as identified by the method of the present invention for generating
15 transgenic plants that are tolerant or resistant to an agrochemical (e.g. herbicide). Example of genes and gene sequences identified by the combined identification and validation methods of the present invention and which can be used as agrochemical target or that can be used to obtain herbicide tolerant plants comprise the sequences as represented in any of SEQ ID NOS 1 to 785.

20 These sequences are derived from tobacco, but the one skilled in the art can easily find via homology search in databases or homology search in a cDNA library the homologous genes of other plant species, for instance monocot sequences (e.g. the corresponding rice or corn sequence), and use them for the same purposes as described herein. These homology searches can be done for example with a BLAST program (Altschul et al., Nucl. Acids Res., 25
25 3389 – 3402, 1997) on a sequence database such as the GenBank database. Homology studies as referred to above can be performed using sequences present in public and/or proprietary databases and using several bioinformatics algorithms, well known to the man skilled in the art. Methods for the alignment of sequences are well known in the art, such methods include GAP, BESTFIT, BLAST, FASTA and TFASTA. GAP uses the algorithm of
30 Needleman and Wunsch (J. Mol. Biol. 48: 443-453, 1970) to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. The BLAST algorithm calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information.

35 Further, some of the tobacco sequences identified by the method of the present invention might be partial but again, the full-length sequence can easily be found based on the partial

sequence. For example "transcript building" can be done based on homology search on EST databases, cDNA's or gene predictions. These databases and programs are publicly available e.g. <http://www.tigr.org/>.

Therefore the present invention relates to the use of the nucleic acids as identified and disclosed herein and represented in SEQ ID NO 1 to 785, and also to the use of the full length genes regenerated from the partial sequences as well as to the use of the homologues sequences isolated from the same or from other plants.

In another embodiment, the present invention relates to a nucleic acid identified according to the method of the invention. Thus the invention encompasses an isolated nucleic acid identifiable by any of the methods as mentioned above.

In another embodiment, the invention relates to a nucleic acid identified according to the method of the invention, comprising the nucleic acid sequence chosen from the group of SEQ ID NO 1 to 785 or a full length sequence thereof, or a functional homologue thereof, or a functional fragment thereof, or an immunologically active fragment thereof. Thus the invention encompasses an isolated nucleic acid, comprising at least part of a nucleic acid sequence chosen from the group of SEQ ID NO 1 to 785 a homologue, functional fragment or derivative thereof.

With "a functional fragment" is meant any part of the sequence that is responsible for the biological function or for an aspect of the biological function of the nucleic acid sequence.

Further, the invention encompasses a method for the production of an agrochemical resistant plant, comprising the use of any one or more of SEQ ID NO 1 to 785 or a homologue, functional fragment or derivative thereof or one or more of the proteins encoded by SEQ ID NO 1 to 785 or a homologue, functional fragment or derivative thereof.

In one embodiment of the present invention the sequences, the full-length sequences and the homologues are used to develop herbicide tolerant plants.

Further the invention encompasses a plant tolerant to an agrochemical, in which the expression level of one or more of the nucleic acids corresponding the SEQ ID NO 1 to 785 or the homologue, functional fragment or derivative thereof, is modulated. Further the invention encompasses any part or more preferably any harvestable part of these plants.

Therefore the invention also relates to the use of these sequences, the full-length sequences and the homologues as targets for agrochemicals The invention encompasses the use of a

nucleic acid as mentioned above or the protein encoded by said isolated nucleic acid as a target for an agrochemical compound, preferably, wherein the agrochemical compound is a herbicide.

- 5 Further, the invention relates to the use of these sequences to develop screening assays for the identification and/or development of agrochemicals. The invention encompasses a method for screening candidate agrochemical compounds comprising the use of any one or more of SEQ ID NO 1 to 785 or a homologue, functional fragment or derivative thereof or one or more of the proteins corresponding to SEQ ID NO 1 to 785 or a homologue, functional fragment or
10 derivative thereof.

The present invention will be further illustrated by the following figures, wherein, **Figure 1** shows the gene expression profiles obtained by quality-based clustering of all transcript tags monitored in a transcript profiling experiment as described in example 1. Shown
15 are the trend lines of 16 clusters containing 97% of the genes and covering the entire time course as indicated on top. S-phase-specific gene clusters are grouped in **A**, gene clusters with peak expression between S- and M-phase are grouped in **B**, whereas group **C** contains the M- and G1-phase-specific clusters. **D**: Three small clusters of genes with peak expression during two cell cycle phases.

20 **Figure 2** shows the phenotypes of tobacco plants inoculated with a acetolactate synthase (SEQ ID NO 18) downregulation construct and phenotypes of tobacco plants inoculated with a prohibitin (SEQ ID NO 21) downregulation construct. The phenotypes were observed 12 days after inoculation (upper panel) or 17 days after inoculation (lower panel).

25 **Figure 3** shows the phenotype of tobacco plants inoculated with a B-type CDK (SEQ ID NO 11) donwregulation contruct. The observations were made 37 days after inoculation.

30 **Figure 4** shows the sequences identified by the methods of the present invention and represented by SEQ ID NO 1 to SEQ ID NO 785

EXAMPLES

Example 1

35 A cDNA-AFLP based expression profiling of sequence obtained from samples of a synchronized tobacco BY2 cell line system, was used to identify genes that are upregulated during the cell cycle, an essential biological process needed for the viability and growth of the tobacco cell line system.

A genome-wide expression analysis of cell cycle-modulated genes in the tobacco Bright Yellow-2 (BY2) cell line was performed. This unique cell line can be synchronized to high levels with different types of inhibitors of cell cycle progression (Nagata *et al.*, Int. Rev. Cytol., 132 1 – 30, 1992; Planchais *et al.*, FEBS Lett., 476 78 – 83, 2000). Because of the lack of extensive molecular resources such as genomic sequences, cDNA clones or expressed sequence tags (ESTs) for tobacco, a microarray-based approach cannot be used for a transcriptome analysis. Therefore, the cDNA-AFLP technology was used to identify and characterize cell cycle-modulated genes in BY2. cDNA-AFLP is a sensitive and reproducible fragment-based technology that has a number of advantages over other methods for genome-wide expression analysis (Breyne and Zabeau, Curr. Opin. Plant Biol., 4 136 – 142, 2001): it does not require prior sequence information, it allows identification of novel genes, and it provides quantitative expression profiles. After a detailed analysis, it was found that around 10% of the transcripts analyzed is periodically expressed. This comprehensive collection of plant cell cycle-modulated genes provides a basis for selecting and validating novel and unexpected agrochemical target genes

Synchronization of BY2 cells and sampling of material. Tobacco BY2 (*Nicotiana tabacum* L. cv. Bright Yellow-2) cultured cell suspension were synchronized by blocking cells in early S-phase with aphidicolin as follows. Cultured cell suspension of *Nicotiana tabacum* L. cv. Bright 20 Yellow 2 were maintained as described (Nagata *et al.*, Int. Rev. Cytol., 132 1 – 30, 1992). For synchronization, a 7-day-old stationary culture was diluted 10-fold in fresh medium supplemented with aphidicolin (Sigma-Aldrich, St. Louis, MO; 5 mg/l), a DNA-polymerase α inhibiting drug. After 24 h, cells were released from the block by several washings with fresh medium and resumed their cell cycle progression. After the drug had been washed, samples 25 were taken every hour, starting from the release from the aphidicolin block (time 0) until 11 h later. The mitotic index was determined by counting the number of cells undergoing mitosis under fluorescence microscopy after the DNA had been stained with 5 mg/l 4',6-diamidino-2-phenylindole (Sigma-Aldrich). DNA content was measured by flow cytometry. This was done as follows A subsample was used to check cell cycle progression and synchrony 30 levels. After the DNA had been stained with 5 mg/l 4',6-diamidino-2-phenylindole (Sigma-Aldrich), the mitotic index was determined under fluorescence microscopy by counting the number of cells undergoing mitosis. A mitotic peak of approximately 40% was obtained 8 h after washing. For flow cytometry, cells were first incubated in a buffered enzyme solution (2% cellulase and 0.1% pectolyase in 0.66 M sorbitol) for 20 min at 37°C. After the suspension had 35 been washed and resuspended in Galbraith buffer (Galbraith *et al.*, Science, 220 1049 – 1051, 1983), it was filtered through a 30-μm nylon mesh to purify the DAPI-stained nuclei. The fluorescence intensity was measured using a BRYTE HS flow cytometer (Bio-Rad, Hercules,

CA). Exit from S-phase was observed 4 h after aphidicolin release and the level of synchrony was shown to be sufficiently high throughout the time course.

RNA extraction and cDNA synthesis. Total RNA was prepared by using LiCl precipitation (Sambrook et al., 1989) and poly(A⁺) RNA was extracted from 500 µg of total RNA using Oligotex columns (Qiagen, Hilden, Germany) according to the manufacturer's instructions. Starting from 1 µg of poly(A⁺) RNA, first-strand cDNA was synthesized by reverse transcription with a biotinylated oligo-dT₂₅ primer (Genset, Paris, France) and Superscript II (Life Technologies, Gaithersburg, MD). Second-strand synthesis was done by strand displacement 10 with *Escherichia coli* ligase (Life Technologies), DNA polymerase I (USB, Cleveland, OH) and RNase-H (USB).

cDNA-AFLP analysis. Five hundred ng of double-stranded cDNA was used for AFLP analysis as described (Vos et al., Nucl. Acids Res., 23 4407 – 4414, 1995; Bachem et al., Plant J., 9 745 – 753, 1996) with modifications. The restriction enzymes used were *Bst*YI and *Mse*I (Biolabs) and the digestion was done in two separate steps. After the first restriction digest with one of the enzymes, the 3' end fragments were collected on Dyna beads (Dynal, Oslo, Norway) by means of their biotinylated tail, while the other fragments were washed away. After digestion with the second enzyme, the released restriction fragments were collected and used as templates in the subsequent AFLP steps. The adapters used were: for *Bst*YI, 5'-CTCGTAGACTGCGTAGT-3' and 5'-GATCACTACGCAGTCTAC-3', and for *Mse*I, 5'-GACGATGAGTCCTGAG-3' and 5'-TACTCAGGACTCAT-3'; the primers for *Bst*YI and *Mse*I were 5'-GACTGCGTAGTGATC(T/C)N₁₋₂-3' and 5'- GATGAGTCCTGAGTAAN₁₋₂-3', respectively. For preamplifications, a *Mse*I primer without selective nucleotides was combined with a *Bst*YI primer 25 containing either a T or a C as 3' most nucleotide. PCR conditions were as described Vos et al., Nucl. Acids Res., 23 4407 – 4414, 1995). The obtained amplification mixtures were diluted 600-fold and 5 µl was used for selective amplifications using a P³³-labeled *Bst*YI primer and the AmpliTaq-Gold polymerase (Roche Diagnostics, Brussels, Belgium). Amplification products were separated on 5% polyacrylamide gels using the Sequigel system (Biorad). Dried gels were 30 exposed to Kodak Biomax films as well as scanned in a phospholmager (Amersham Pharmacia Biotech, Little Chalfont, UK).

Quantitative measurements of the expression profiles and data analysis. Gel images were analyzed quantitatively with the AFLP-QuantarPro image analysis software (Keygene 35 N.V., Wageningen, The Netherlands). This software was designed for accurate lane definition, fragment detection, and quantification of band intensities. All visible AFLP fragments were scored and individual band intensities were measured per lane. The obtained data were used to

determine the quantitative expression profile of each transcript. The raw data were corrected for differences in total lane intensities, after which each individual gene expression profile was variance-normalized. This was done as follows.

The obtained raw data were first corrected for differences in total lane intensities which may occur due to loading errors or differences in the efficiency of PCR amplification with a given primer combination for one or more time points. The correction factors were calculated based on constant bands throughout the time course. For each primer combination, a minimum of 10 invariable bands was selected and the intensity values were summed per lane. Each of the summed values was divided by the maximal summed value to give the correction factors. Finally, all raw values generated by QuantarPro were divided by these correction factors.

Subsequently, each individual gene expression profile was variance-normalized by standard statistical approaches as used for microarray-derived data (Tavazoie *et al.*, Nature Genet., 22 281 – 285, 1999). For each transcript, the mean expression value across the time course was subtracted from each individual data point after which the obtained value was divided by the standard deviation. A coefficient of variation (CV) was calculated by dividing the standard deviation by the mean. This CV was used to establish a cut-off value and all expression profiles with a CV less than 0.25 were considered as constitutive throughout the time course.

The Cluster and TreeView software (Eisen *et al.*, PNAS, 95 14863 – 14868, 1998) was used for hierarchical, average linkage clustering. Quality-based clustering was done with a newly developed software program (De Smet *et al.*, Bioinformatics 2002 May; 18(5): 735-46). This program is related to K-means clustering, except that the number of clusters does not need to be defined in advance and that the expression profiles that do not fit in any cluster are rejected. The minimal number of tags in a cluster and the required probability of genes belonging to a cluster were set to 10 and 0.95, respectively. With these parameters, 86% of all the tags were grouped in 21 distinct clusters.

Characterization of AFLP fragments. Bands corresponding to differentially expressed transcripts were isolated from the gel and eluted DNA was reamplified under the same conditions as for selective amplification. Sequence information was obtained either by direct sequencing of the reamplified polymerase chain reaction product with the selective *Bst*YI primer or after cloning the fragments in pGEM-T easy (Promega, Madison, WI) or sequencing of individual clones. The obtained sequences were compared against nucleotide and protein sequences present in the publicly available databases by BLAST sequence alignments (Altschul *et al.*, Nucl. Acids Res., 25 3389 – 3402, 1997). When available, tag sequences were replaced with longer EST or isolated cDNA sequences to increase the chance of finding significant homology. Based on the homology, transcript tags were classified in functional groups as shown in Table 1.

Experimental Results

Identification and characterization of cell cycle-modulated genes

Tobacco BY2 cells were synchronized by blocking cells in early S-phase with aphidicolin, an inhibitor of DNA polymerase α . After the inhibitor had been released, 12 time points with an 1-h interval were sampled, covering the cell cycle from S-phase until M-to-G1 transition. Flow cytometry and determination of the mitotic index showed that the majority of cells exit S-phase 4 h after release from blocking and that the peak of mitosis is reached at 8 h. From each time point, extracted mRNA was subjected to cDNA-AFLP-based transcript profiling.

Quantitative temporal accumulation patterns of approximately 10,000 transcript tags were determined and analyzed. In total, around 1,340 transcript tags were modulated significantly during the cell cycle. Hierarchical clustering of the expression profiles resulted in four large groups with the peak of expression in S-, early G2-, late G2-, or M-phase. Within each of these groups, several smaller clusters of genes with similar expression patterns could be distinguished. By quality-based clustering 21 different clusters were identified (see: <http://www.plantgenetics/genomics/CCMgenes>). In agreement with the hierarchical clustering, the four largest clusters (clusters 1 to 4 in Fig. 1) correspond to the S-, early G2-, late G2-, and M-phases and together contain 65% of all the tags. An additional cluster (cluster 5 in Fig. 1C), not clearly separated in the hierarchical clustering, includes the genes with peak expression in G1-phase and contains another 5% of the tags. The remaining clusters are much smaller and most often (e.g., clusters 6, 9, 10, and 18) include genes with a narrow temporal expression pattern. In addition to these clusters, three small groups of genes displaying elevated expression during two cell cycle phases were distinguished also by quality-based clustering (Fig. 1 D).

After the transcript tags had been sequenced, homology searches revealed that 36.5% of the tags were significantly homologous to genes of known functions, 13.1% of the tags matched a cDNA or genomic sequence without allocated function, whereas for 50.4% of the tags no homology with a known sequence was found. Genes of known function belong to diverse functional classes (Table 1) revealing that several biological processes are at least partially under temporal transcriptional control during the cell cycle in plants. In general, the observed transcript accumulation profiles and cell cycle specificity correlate well with the functional properties of the corresponding genes. It is interesting that the number of transcription factors with G2-phase specificity is high, which may be related with the induction of genes involved in M-phase-specific processes. The overrepresentation of RNA-processing genes in the M-phase might indicate that post-transcriptional regulation is involved in gene activity during mitosis. Because *de novo* transcription is severely reduced during mitosis (Gottesfeld *et al.*, Trends Bioch. Sci., 22 197 – 202, 1997). RNA-processing could provide an alternative regulatory

mechanism. Intriguingly, transcript tags with homology to a gene of unknown function are overrepresented in the M-phase as well (Table 1). The principal differences in cell cycle events between plants and other organisms occur during mitosis; therefore, the inventors believe that several of these transcripts correspond to still uncharacterised plant-specific genes triggering these events. Remarkably, several of the tags homologous to a publicly available sequence have no *Arabidopsis* homologue, indicating that, in addition to conserved genes, different plant species possess also unique sets of cell cycle-modulated genes. Although many of these tags may be too short to significantly match with an *Arabidopsis* sequence, analysis of longer cDNA clones corresponding to a subset of tags has revealed that approximately 25% of the sequences remain novel.

In Tables 1 to 4 a selection of 785 sequence tags are shown. This selection was based on the criterion if the tags were full length or that showed homology with genes known to be involved in the cell cycle (group 2 SEQ ID NOs 22 to 118), or on the criterion that they show homology with genes of unknown function (group 3 SEQ ID NOs 119 to 283) or on the criterion that the sequences showed no homology with the sequences in that existing databases (group 4 SEQ ID NOs 284-785). A first group (SEQ ID Nos 1 to 21) represent a smaller selection of tags which are used in the target validation method described in the present invention, more particularly, that were used in example 2.

20 **The core cell cycle machinery**

Several tags coincide with genes belonging to the core cell cycle machinery and exhibiting distinct expression profiles. Transcript tags from five B1- or B2-type cyclins as well as from a D2-type cyclin show mitotic accumulation and exhibit a narrow temporal expression profile, confirming previous studies (Mironov *et al.*, Plant Cell, 11 509 – 521, 1999; Sorrell *et al.*, Plant Physiol., 119 343 – 351, 1999). Based on the transcription patterns, the six A-type cyclins fall into three groups that sequentially appear during the cell cycle, adding new data to earlier observations (Reichheld *et al.*, PNAS, 93 13819 – 13824, 1996). Two groups have quite a broad window of transcript accumulation; one group, homologous to A3-type cyclins, is expressed during S-phase and disappears during G2-phase and the other group, corresponding to A2-type cyclins comes up at mid S-phase and goes down during M-phase, except for one transcript that is specific for S-phase. The third group, containing an A1-type cyclin, has the same expression pattern as the B- and D2-type cyclins. Several tags derived from genes encoding the plant-specific B-type cyclin-dependent kinases (CDKs) were also identified. CDKB1 and CDKB2 peak at the G2-to-M transition, slightly before the mitotic cyclins as describe (Porceddu *et al.*, J. Biol. Chem., 276 36354 – 36360, 2001). In contrast to what has been observed in partially synchronized alfalfa cell cultures (Magyar *et al.*, Plant Cell, 9 223 – 235, 1997), the transcript levels of the tags homologous to a C-type CDK accumulate

differentially during the cell cycle. The transcripts are present during late M-phase and early S-phase, suggesting that CDKC is active during the G1-phase.

In addition to these well-characterized cell cycle-regulatory genes, also several tags were identified herein derived from genes encoding transcription factors and protein kinases or phosphatases with a known or putative role in cell cycle control. One tag with a sharp peak of transcript accumulation 1 h before the B- and D-type cyclins corresponds to a 3R-MYB transcription factor. Recently, a 3R-MYB has been shown to activate B-type cyclins and other genes with a so-called M-phase-specific activator domain (Ito *et al.*, Plant Cell, 13 1891 – 1905, 2001). Another tag peaking in M-phase is homologous to the CCR4 associated protein CAF. CAF forms a complex with CCR4 and DBF2, resulting in a transcriptional activator involved in the regulation of diverse processes including cell wall integrity, methionine biosynthesis and M-to-G1 transition (Liu *et al.*, EMBO J., 16 5289 – 5298, 1997). A majority of the tags with similarity to protein kinases and phosphatases show M-phase-specific accumulation (Table 1). Although the true identity and putative cell cycle related function remains unclear for the majority, one is highly homologous to a dual-specificity phosphatase. This type of phosphatases plays a crucial role in cell cycle control in yeast and animals (Coleman and Dunphy, Curr. Opin. Cell Biol., 6 877 – 882, 1994). Another M-phase-specific tag is homologous to prohibitin. In the mammalian cell cycle, prohibitin represses E2F-mediated transcription via interaction with retinoblastoma (Rb), thereby blocking cellular proliferation (Wang *et al.*, Oncogene, 18 3501 – 3510, 1999).

Protein degradation by the ubiquitin-proteasome pathway also plays an important role in the control of cell cycle progression at both G1-to-S transition and exit from mitosis. Although there is little evidence for cell cycle-modulated expression of the genes encoding the various components of the ubiquitin-proteasome complexes, some proteins accumulate in a cell cycle-dependent way (del Pozo and Estelle, Plant Mol. Biol., 44 123 – 128, 2000). Furthermore, several tags were isolated herein from genes encoding ubiquitin-conjugating enzyme (E3), ubiquitin-protein ligase (E2), and proteasome components with an M-phase-specific expression pattern. Another transcript tag that accumulates during late M-phase is similar to cathepsin B-like proteins, which are proteolytically active and degrade diverse nuclear proteins, including Rb (Fu *et al.*, FEBS Lett., 421 89 – 93, 1998).

Whereas all the core cell cycle regulatory genes have been identified that control the G2-to-M transition for which the expression is known to be cell cycle modulated, genes such as Rb and E2F, controlling G1-to-S transition were not found. These genes were probably missed because the G1-to-S transition was not included in the present analysis, what is supported by the finding that the early targets of E2F, such as polymerase α and ribonucleotide reductase, are already present at high levels at the beginning of the time course.

Genes involved in DNA replication and modification

In agreement with the studies performed in yeast and human fibroblasts, transcripts encoding proteins involved in DNA replication and modification accumulated during S-phase and exhibited broad temporal expression profiles. Different replication factors, DNA polymerase α , 5 and the histones H3 and H4 are already present at the onset of the time course, indicating that they are induced before the time point of the aphidicolin arrest. Interestingly, most of the histones H1, H2A, and H2B appear somewhat later than H3 and H4, what might reflect that they are deposited into the nucleosomes after H3 and H4 (Luger et al., Nature, 389 251- 260, 1997; Tyler et al., Nature, 402 555 – 560, 1999). The profile of the homologue of the 10 anti-silencing function 1 (ASF1) protein is similar to that of the histones H3 and H4, in agreement with the fact that the three proteins are part of the replication-coupling assembly factor complex that mediates chromatin assembly (Tyler et al., Nature, 402 555 – 560, 1999). Genes encoding high-mobility group proteins reach the highest accumulation during late G2, consistent with the subsequent steps involved in the folding and structuring of the chromatin. 15 Tags derived from genes encoding proteins involved in DNA modification, such as S-adenosyl-L-methionine (SAM) synthase and cytosine-5-methyl- transferase are found in the histone cluster. Tags from methionine synthase genes, which provide the precursor for SAM synthase, accumulate during M-phase, in contrast to yeast, where these genes are expressed during late S-phase (Spellman et al., Mol. Cell Biol., 9 3273 – 3297, 1998).

20 Genes involved in chromatin remodelling and transcriptional activation or repression have been identified as well. One gene is a histone deacetylase with highest transcript accumulation during the G2-phase and another belongs to the SNF2 family of chromodomain proteins with an M-phase-specific expression pattern. Interestingly, one tag corresponds to a mammalian inhibitor of growth 1 (p33-ING1) protein. The human ING1 protein has DNA-binding activity 25 and might be involved in chromatin-mediated transcriptional regulation (Cheung and Li, Exp. Cell Res., 268 1 – 6, 2001). This protein accumulates during S-phase (Garkavtsev and Riabowol, Mol. Cell Biol., 17 2014 – 2019, 1997), what is in agreement with the expression profile we observed. The yeast homologues of ING1 are components of the histone acetyltransferase complex and show similarity to the Rb-binding protein 2 (Loewith et al., Mol. 30 Cell Biol., 20 3807 – 3816, 2000). Another tag, homologous to the *Arabidopsis* MSI3 protein, follows a similar expression profile. MSI-like proteins are involved in the regulation of histone acetylation and deacetylation and in chromatin formation (Ach et al., Plant Cell, 9 1595 – 1606, 1997).

35 The expression profiles of the different ribonucleotide reductase (RNR) genes are more complex. One gene is already expressed at high levels at the beginning of the time course and its expression is restricted to the S-phase as described (Chabouté et al., Plant Mol. Biol., 38 797 – 806, 1998), whereas, in contrast, another one is highly expressed in S-phase and

reappears at lower levels during M-phase and a third one is M-phase-specific. This latter expression profile has also been described for a *RNR* gene from *Xenopus* where the encoded protein appears to be involved in microtubulin nucleation (Takada *et al.*, Mol. Cell Biol., 11 4173 – 4187, 2000).

- 5 Numerous other transcript tags with S-phase specificity were found in addition to the ones involved in DNA replication and modification. Most interestingly, one of these tags is homologous to a mammalian gene encoding a TRAF-interacting protein (TRIP), which is a component of the tumor necrosis factor (TNF) signalling complex, and promotes cell death when complexed with TRAF (Lee *et al.*, J. Exp. Medicine, 185 1275 – 1285, 1997). Another
10 S-phase-specific tag shows homology to the RING finger domain of inhibitor of apoptosis proteins, which are also involved in the TNF signalling pathway.

Modulated expression of genes required for mitosis and cytokinesis

- Several paralogous genes that encode either α - or β -tubulin were highly induced and
15 accumulated prior to the mitotic index peak or during early M-phase. The inventors found that in BY2, tubulin genes are highly cell cycle modulated. This transcriptional regulation is in agreement with previous demonstrations of *de novo* transcription of α - and β -tubulin genes during different cellular processes (Stotz *et al.*, Plant Mol. Biol., 41 601 – 614, 1999). In the present analysis, no γ -tubulin genes were found, confirming published data that the amount of
20 γ -tubulin is constant in dividing BY2 cells (Stoppin-Mellet *et al.*, Plant Biol., 2 290 – 296, 2000). Most of the kinesins identified herein, fall in the same cluster as the tubulins peaking prior to mitosis. Interestingly, two tags have a distinct transcription pattern and appear in another gene cluster. Their window of transcript accumulation is very narrow and coincides with the peak of mitosis. Most interestingly, these tags correspond to the plant-specific
25 phragmoplast-associated type of kinesin, PAKRP1 (Lee and Liu, Curr. Biol., 10 797 – 800, 2000). A chromokinesin not yet described in plants was identified as well. This type of motor proteins use DNA as cargo and play a role in chromosome segregation and metaphase alignment (Wang *et al.*, J. Cell Biol., 128 761 – 768, 1995). Among the M-phase-specific kinases, two were unambiguously recognized herein as playing a
30 role in cytokinesis. One is Aurora, a protein kinase with a key role in the control of chromosome segregation, centrosome separation, and cytokinesis in yeast and animals (Bischoff and Plowman, Trends Cell Biol., 9 454 – 459, 1999) but not described in plants yet. The other is NRK1, a mitogen-activated protein kinase kinase which is phosphorylated by NPK1, a kinase involved in regulating the outward redistribution of phragmoplast microtubules
35 (Nishihama *et al.*, Genes Dev., 15 352 – 363, 2001).

Hormonal regulation and cell cycle-modulated gene expression

A number of genes belonging to the class of auxin-induced genes were also differentially expressed. Cell cycle-modulated expression of auxin-induced genes has never been observed before although auxins together with cytokinins are the two major groups of plant hormones

5 that affect cell division (Stals and Inzé, Trends Plant Sci., 6 359 – 364, 2001). The genes as identified herein fall into two groups based on their transcript accumulation profiles (data not shown). The first group displays an early S-phase-specific expression pattern and consists of the *parA*, *parB* and *parC* genes. Induction of the *par* genes is most often observed in response to stress conditions (Abel & Theologis, Plant Phys. 111, 9 – 17, 1996). The fact that the
10 transcripts rapidly disappear after release from the cell cycle-blocking agent might indicate a stress response rather than a cell cycle dependent auxin response.

More interesting is the second group of genes with transcripts accumulating during early M-phase. This group includes the auxin response factor 1 (*ARF1*), an auxin transporter as well as different members of the early auxin response *AUX/IAA* gene family. *ARF1* is a transcription
15 factor that binds to a particular auxin response element (Ulmasov *et al.*, Science, 276 1865 – 1868, 1997). Additional studies suggest that the activity of *ARF1* is controlled by its dimerization with members of the *AUX1/IAA* family (Walker and Estelle, Curr. Opin. Plant Biol., 1 434 – 439, 1998). The similarity in temporal expression profiles the inventors observed supports these findings and suggests that these proteins mediate an auxin response
20 necessary for cell cycle progression

By using tobacco BY2 as model system together with cDNA-AFLP-based transcript profiling, it is described herein for the first time how a comprehensive inventory of plant cell cycle-modulated genes can be made. Although the obtained data confirm earlier results and observations, in addition, numerous novel findings were made. The obtained data are a very
25 useful basis for selecting and validating agrochemical target genes.

Example 2

In this example it is described how plant genes are evaluated for assessment of their essential character in the biological process, thus how they are validated as good candidate targets for
30 agrochemicals.

The Tobacco Rattle Virus (TRV) is used to induce silencing of target genes . In case of an essential gene the silencing will result in a lethal effect on the plant and therefore, the system allows to validate good candidates as targets for herbicides .

The TRV based system is used in this example in combination with series of candidate genes,
35 more particularly with the candidate targets as represented herein as group 1 sequences consisting of the SEQ ID NOS 1 to 21. The identification technique of the present invention (see example 1) allowed to identify new genes that are potential new herbicide targets,

because of their putative function in various key processes crucial for cell life, their expression at a certain developmental stage crucial for cell life, their role in metabolism and/or maintenance of cell living state.

5 This example illustrates the validation of these candidate genes as novel targets for agrochemicals, via the technique of the virus-induced gene silencing (VIGS).

Gene silencing mechanism

The virus-induced gene silencing (VIGS) is a manifestation of an RNA-mediated defence mechanism that is related to post-transcriptional gene silencing (PTGS) in transgenic plants 10 (Ratcliff *et al.*, Plant J., 25 237 – 245, 2001). The method uses a vector with an infectious cDNA of tobacco rattle virus (TRV) modified (see below) to facilitate insertion of target sequences and modified for efficient infection of plants (e. g. tobacco). The vector mediates VIGS of endogenous genes in the absence of specific virus-induced symptoms.

The RNA-mediated defence is triggered by the virus vectors, and targets both the viral genome 15 and the host gene corresponding to the insert. As a result, the symptoms in the infected plant are similar to loss-of-function mutants or reduced-expression mutants in the host gene. The presence of a negative growth phenotype suggests that the targeted gene is a potential herbicide target.

The process of constructing a virus vector and monitoring symptoms on infected plants is 20 completed within a few weeks, such that virus-induced gene silencing (VIGS) provides a simple, rapid means of assigning function to genes that have been sequenced but are otherwise uncharacterized. The determination of new herbicide target genes is performed in a few weeks including gene cloning, transformation steps and tobacco plant analyses.

The TRV construct is shown to target host RNAs in the growing points of plants (Ratcliff *et al.*, 25 Plant J., 25 237 – 245, 2001) such as meristems and actively dividing cells.

It has been shown that this vector overcomes many of the problem features of PVX, TMV and TGMV. For example, the TRV vector induces very mild symptoms, infects large areas of adjacent cells and silences gene expression in growing points such as meristems and actively dividing cells. Infection of tobacco plants on the leaves with TRV based constructs will affect 30 growth and development of upper parts of the infected leaves and allow screening for growth parameters.

Construction of TRV vectors used in the validation process of the present invention

TRV is a positive-strand RNA virus with a bipartite genome. Proteins encoded by RNA 1 are 35 sufficient for replication and movement within the host plant, while proteins encoded by RNA 2 allow virion formation and nematode-mediated transmission between plants (reviewed by MacFarlane, J. Gen. Virol., 80 2799 – 2807, 1999).

The downregulation system is composed of separate cDNA clones of TRV RNA 1 and RNA 2 under the control of cauliflower mosaic virus (CaMV) 35S promoters on the transferred T-DNA of plant binary transformation vectors.

The TRV RNA 1 construct (pBINTRA6) contains a full-length infectious cDNA clone in which the RNA polymerase ORF is interrupted by intron 3 of the Arabidopsis Col-0 nitrate reductase NIA1 gene (Wilkinson and Crawford, Mol. Gen. Genet., 239 289 – 297, 1993), necessary to prevent expression of a TRV-encoded protein that is toxic to *E. coli*. This vector has been given the internal reference number p3209.

The TRV RNA 2 construct (pTV00), contains a multiple cloning site (MCS), leaving only the 5' and 3' untranslated regions and the viral coat protein (Ratcliff et al., Plant Cell, 11 1207 – 1215, 1999). This vector has the internal reference number p3930 and contains a Gateway™ cassette and the gene of interest to be tested. The genes as presented in SEQ ID NO 1 to 21 are each cloned in this vector.

cDNAs were amplified using Gateway compatible primers and the cDNAs were entered into Entry Clones by BP recombination reactions. Subsequently the entry clones comprising the gene according to any one of SEQ ID NO 1 to 21 were checked via Ban2 restriction digest. The genes of interest were then entered into destination vectors by LR recombination reactions and the destination vectors were checked via ECORV restriction digestions. These expression clones were electroporated into the *Agrobacterium* strain GV3101 agro and the plasmid pBintra6 was electroporated into pMP90 agro.

Inoculation

To inoculate plants, *Agrobacterium* cultures carrying pBINTRA6 (strain C58C1RifR containing pMP90 plasmid) and pTV00 (strain GV3101 containing pMP90 plasmid) were grown and mixed and infiltrated to the leaves of *Nicotiana benthamiana* as previously described (English et al., Plant J., 12 597 – 603, 1997). Briefly, virus infection was achieved by *Agrobacterium*-mediated transient gene expression. *Agrobacterium* containing the TRV cloning vectors were grown overnight in L brith (+Tc+Km), *Agrobacterium* containing the helper plasmid was grown overnight in 10 ml YEB+Rif+Km. The culture was centrifuged and resuspended in 10 ml of 10mM MgCl₂, 1mM MES-pH5.6 and 100µM acetosyringone and kept at room temperature for 2 h. Separate cultures containing pBINTRA6 and TRV cloning vectors were mixed in a ratio of 1:10. The culture was then infiltrated to the underside of two leaves of three-weeks old plants using a 2 ml syringe without a needle. In two independent experiments 6 plants per *Agrobacterium* clone were infected. In this way the cloned genes (SEQ ID NO 1-21) were transferred into the cells of the infiltrated region, and could be transcribed into the viral cDNAs in the leave cells. These transcripts then serve as an inoculum to initiate systemic infection of the plant. Consequently the VIGS system is activated, resulting in the downregulation of the

host cell gene, corresponding to the cloned gene of interest. All experiments involving virus-infected material was carried out in controlled growth chambers. *N. benthamiana* plants were germinated ad grown individually on universal potting ground in pots at 25°C during the day (16h) and 20°C during the night (8h).

5

The plants were phenotypically evaluated on a daily basis. Particular attention was given to visible leaf damage and growth inhibition. The effects of the suppression of gene activity using the VIGS system is measured by the phenotypic aspect of the plants, including leaf defects such as growth retardation, yellow or necrotic spots, early senescence, etc. The effects of the

10 downregulation of genes identified by the methods of the invention are also measured on the flower structure and the flowering capacities of the transformed plants.

The severity of the phenotype is linked to the level of suppression of the geneactivity and indicates the degree in which the gene is essential for the plant Therefor the phenotype is an indication of the degree in which the gene is a valid target for a herbicide.

15

Phenotypes of the infected plants.

1. Co-suppression of the gene leads to loss of gene transcription and protein expression in the virus infected leaf and induces leaf growth modification, including leaf wrinkling, curling, wilting, leading to cell death and/or plant death.

20

2. Co-suppression of the geneleads to loss of gene transcription and protein expression in the virus infected leaf and induces leaf yellowing or senescence, or cell death and necrosis, leading to plant death.

25 3. Co-suppression of the gene leads to loss of gene transcription and protein expression in the virus infected leaf and induces any of the following phenotypic symptoms: chlorotic regions around infection, crisp or crunchy leaf texture around infection, numerous surface lumps on either leaf surface, abnormal trichomes, abnormal leaf size, reduced growth, reduced final size, altered vascular leaf system, altered water movement in leaf , leading to cell death and/or
30 plant death.

35 4. Co-suppression of the gene leads to loss of gene transcription and protein expression in the virus infected leaf and induces any of the following anatomical symptoms: clumps of modified cells on the surface of the leaf (either abaxial or adaxial), individual cells detached from the epidermis, swollen or modified trichome cells, modification of leaf tissue structure, cell size, cell number, tissue composition, parenchyme, epidermis, etc , leading to cell death and/or plant death.

5. co-suppression of gene X leads to loss of gene transcription and protein expression in the virus infected leaf and induces any of the following biochemical symptoms, enzyme activity and products, degradation of leaf components and effects in neighboring leaves, stem,
5 vascular system, degradation of cell wall structure, communication between cells, modification of cell-cell signaling leading to cell death and/or plant death.

The genes identified by the present invention can be utilized to examine herbicide tolerance mechanisms in a variety of plants cells, including gymnosperms, monocots and dicots. It is particularly useful in crop plant cells such as rice, corn, wheat, barley, rye, sugar beet, etc

10

Example 3

Significant phenotypic alterations could be observed in plants infiltrated with *Agrobacterium* containing pBINTRA6 + Bstt44-4-340 (SEQ ID NO 18, acetolactate synthetase) and pBINTRA6 + Bstt2-42-520 (or T4-32-7) (SEQ ID NO 21, prohibitin) and pBINTRA6 + Bstt23-4-
15 230 (SEQ ID NO 11, B-type CDK).

At 10 days post-infiltration the first symptoms were visible. The symptoms were persistent until the end of the experiment and could be observed in at least 5 out of the 6 infiltrated plants.

The phenotypes of the plants transformed with acetolactate synthase are further described.
20 In two separate replicated experiments, specific phenotypes on each plant infected with the acetolactate synthetase downregulation construct were observed (Figure 2). Winkling and wrapping of the leaves as well as some chlorotic spots were observed. Thus acetolactate downregulation provoked a general growth arrest accompanied with chlorotic and necrotic areas. These observations were in line with previous reports, wherein acetolactate synthetase
25 is described as a useful herbicide target.

The phenotypes of the plants transformed with prohibitin are further described.
In two separate replicated experiments, specific phenotypes on each plant infected with the prohibitin downregulation construct were observed (Figure 2). These plants showed strong
30 wrinkling of the leaves about 20 days after infection, corresponding to the expected occurrence of silencing events. Thus the downregulation of prohibitin provokes a severe leaf distortion and general growth arrest.

The phenotype of the plants inoculated with a B-type CDK downregulation construct are shown
35 in Figure 3. A late (from 30 days after inoculation) but strong negative effect on the plant growth was observed. The plants started to grow much slower and lost their apical dominance, resulting in the increased appearance of lateral branches.

Table 1. Functional classification of transcript tags

Function	Tags	S	G2	M	G1
5		27.7%	15.8%	52.9%	3.6%
Cell cycle control	30	5/8 (0.078)	8/5 (0.068)	14/16 (0.114)	3/1
Cell wall	35	6/10 (0.047)	4/6 (0.136)	25/18 (7.1e⁻³)	0/1
Cytoskeleton	43	1/12 (1.2e ⁻⁵)	4/7 (0.090)	38/22 (2.1e⁻⁷)	0/2
10 Hormone response	13	6/4 (0.113)	1/2 (0.277)	6/7 (0.185)	0/0
Kinases/phosphatases ¹	27	4/8 (0.039)	1/4 (0.059)	19/14 (0.025)	3/1
Protein synthesis	50	15/14 (0.116)	5/8 (0.087)	29/26 (0.079)	1/2
Proteolysis	21	2/6 (0.026)	1/3 (0.144)	17/11 (0.039)	1/1
Replication and modification	74	57/20 (4.2e⁻¹⁹)	8/12 (1.0e ⁻⁵)	8/39 (1.0e ⁻¹⁸)	1/3
15 RNA processing	20	1/6 (6.8e-3)	1/3 (0.137)	18/11 (8.1e⁻⁴)	0/0
Signal transduction	10	1/3 (0.121)	3/2 (0.201)	6/5 (0.205)	0/0
Stress response	20	6/6 (0.192)	2/3 (0.229)	10/10 (0.159)	2/1
Transcription factors	27	4/8 (0.039)	10/4 (3.0e ⁻³)	12/14 (0.112)	1/1
Transport and secretion ²	31	5/9 (0.047)	2/5 (0.076)	21/16 (0.031)	3/1
20 Unknown	175	37/48 (0.015)	19/28 (0.014)	112/93 (8.3e⁻⁴)	7/6

The total number of tags and the observed/expected number of tags within the different cell cycle phases for each functional group is given together with the probability values between parentheses as calculated based on the binomial distribution function, except for the G1-phase because the values were too small. A significant enrichment ($P < e^{-3}$) of tags of a functional group within a particular cell cycle phase is indicated in bold.

¹ Only kinases and phosphatases with unknown biological function.

² Except small GTP-binding proteins, which are classified under signal transduction.

30 Table 2: overview of group 1 of sequences used for validation of candidate target genes

SEQ ID NO	CDS NO	Tag Name	Function	Fase
1	2216	18R1850_C4-32-33_1E2	catalase	??
2	2217	Bstt2-31-215	phytoene desasturase	??
3	2218	Bstc13-1-145	L-ascorbate peroxidase	M-G1
4	2219	Bstc21-4-280	GTP-bindingprotein	M
5	2220	Bstc33-2-310	vacuolarsortingreceptor	M
6	2221	Bstc4-34-170	probable cinnamyl alcohol dehydrogenase	G1/S-S; M-G1
7	2222	Bstt34-3-470	kinesin	M
8	2223	Bstt12-3-410	B-typeCDK	M
9	2224	Bstt14-3-458	squalene mono-oxygenase	G1/S-S
10	2225	Bstt12-1-230	kinesin-likeprotein	M
11	2226	Bstt23-4-230	B-typeCDK	M
12	2227	Bstt2-42-225	B-typeCDK	M
13	2228	Bstt31-4-208	arabinogalactan protein precursor	G2/M-M
14	2229	Bstt 3-41-205	arabinogalactan protein precursor	G2/M-M

15	2230	Bstt33-4-285	chorismate synthase	S-G2
16	2231	Bstt2-31-215	kinesin-likeprotein	M
17	2232	Bstt41-2-400	endo-beta-1,4glucanase	M
18	2233	Bstt44-4-340	acetolactate synthase	G2/S-G2-M-G1
19	2234	G17-2-13 G17-2-13	WRKY transcription factor	??
20	2235	mapk9-ntf6.seq	mapkinase phragmoplast associated NTF6	??
21	2236	Bstt2-42-520	prohibitin	??

Table 3: overview of group 2 sequences of full-length sequences that are cell cycle modulated and of which some are involved in the cell cycle process

SEQ ID NO	CDS NO	Gene name		
22	0613	Protein kinase mRNA, complete , N. tabacum, 2073 bp		
23	0614	BY2 AA041K03 probable DNA-binding protein GBP16 - rice T02069, N. tabacum, 834 bp		
24	0615	BY2 AA042C09 probable nuclear DNA-binding protein G2p [imported] in Arabidopsis T51151, N. tabacum, 1185bp		
25	0616	BY2-AA044J17 transcription regulator-like in Arabidopsis AB025604, N. tabacum, 1893bp		
26	0617	BY2 AA044J23 ATP-dependent RNA helicase CA3 of the DEAD/DEAH box family; Dbp3p; BY2-AA044J23P19G01 RNA helicase RH5 in Arabidopsis T51739 N. tabacum, 1593bp		
27	0618	BY2-AA046C15 protein phosphatase 2C-like in Arabidopsis BAB08417 AB025622, N. tabacum, 732bp		
28	0619	BY2-AA047G13 14-3-3-like protein C P93343, N. tabacum, 70bp		
29	0620	BY2-AA054L09 protein kinase tousled in Arabidopsis A49318 N. tabacum, 2037bp		
30	0621	BY2-AA066H11P19H05 phosphoprotein phosphatase 2A regulatory chain T03684 N. tabacum, 1764 bp		
31	0622	BY2-AA069L10 transcription factor-like protein in Arabidopsis BAB09482 AB012246, N. tabacum, 831bp		
32	0623	BY2-AA073K06 SET protein, phosphatase 2A inhibitor in Arabidopsis AAG52377.1 AC011765, N. tabacum		
33	0624	BY2-AA073MP19B07 phosphoprotein phosphatase 2A regulatory chain T03684, N. tabacum, 1764bp		
34	0625	BY2-AA075H12 Putative phosphatase 2A inhibitor in Arabidopsis AC011809_9 AC011809, N. tabacum, 783bp		
35	0626	BY2-AA076O02P19B08 hypothetical protein kinase in Arabidopsis T47727, N. tabacum, 2514 bp		
36	0627	BY2-AA079J13 putative casein kinase I in Arabidopsis AAG51841.1 AC010926_4 , N. tabacum, 1401bp		
37	0628	BY2-AA080G14 porin I 36K in potato S46959, N. tabacum, 393bp		
38	0629	BY2-AA081P13p21E02 separation anxiety protein-like in Arabidopsis CAB96669.1 AL360314, N. tabacum, 492bp		
39	0630	Complementary copy of 0630, N. tabacum, 975bp		
40	0631	BY2-AA085N17p21H04 14-3-3-like protein in potato 16R P93784 N. tabacum 768bp		
41	0632	BY2-AA087C16p21G03 AP2 domain transcription factor homolog in potato T07784 N. tabacum, 891bp		
42	0633	BY2-AA088B13 putative RING zinc finger protein in Arabidopsis CAB80936.1 AL161491 N. tabacum 1248bp		
43	0634	BY2-AA095M08 protein kinase homolog in Arabidopsis T02181 N. tabacum858		
44	0635	BY2-AA096M07 peptidyl-prolyl cis-trans isomerase-like protein BAB10691.1 AB015468 N. tabacum 450bp		
45	0636	BY2-AA096M12 zinc finger protein-like in Arabidopsis BAB09106.1 AB017069 N. tabacum 1518bp		
46	0637	BY2-AA096M22 cell division-like protein in Arabidopsis T45963 N. tabacum 687bp		
47	0638_1	BY2-AA098B08p21D11 similarity to DAG protein in Arabidopsis BAA97063.1 AP000370 N. tabacum 1146bp		
48	0638_2	Icl_AA091G16p21F05 N. tabacum 891bp		
49	0639	BY2-AA109N15 GAMM1 protein-like in Arabidopsis BAB08430.1 AB017067 N. tabacum 888bp, (MYG1) FAMILY, proliferation associated		
50	0640	Complementary copy of 0640 N. tabacum, 891bp		
51	0641	BY2-AA114N16 unknown protein in Arabidopsis BAB03019.1 AP001297; candidate tumor suppressor p33 ING1 homolog in Homo sapiens N. tabacum 720bp		
52	0642	BY2-AA115P21p22D02 NAC2 Arabidopsis AAF09254.1 AF201456_1N: tabacum 699bp		
53	0643	BY2-AA119N11p22G04 serine/threonine-specific protein kinase-like protein BAB09338.1 AB016879 N. tabacum 1293bp		
54	0662	BY2-AA041E04 >pir T06678 hypothetical protein T17F15.80 - Arabidopsis thaliana		
55	0663	BY2-AA043A01 >gb AD24540.1 AF113545_1 (AF113545) vacuole-associated annexin VCab42 [Nicotiana tabacum]		
56	0664	BY2-AA044C02 >dbj BAA02028.1 (D11470) chloroplast elongation factor TuB(EF-TuB) [Nicotiana tabacum]		
57	0665	BY2-AA044L14.dbj BAA97319.1 (AB020754) gene_id:MYN8.3~pir T02891~similar to unknown protein		
58	0666	BY2-AA045P04p01G10 sp Q43681 NLTP_VIGUN PROBABLE NONSPECIFIC LIPID-TRANSFER PROTEIN AKCS9		
59	0667	BY2-AA046C08p19E02 dbj BAB30364.1 (AK016659) putative [Mus musculus]		

60	0668	BY2-AA046E06_pir T50556 stamina pistillodia protein Stp [imported] - garden pea
61	0669	BY2-AA046G14_dbj BAB26082.1 (AK009117) putative [Mus musculus]
62	0670	BY2-AA046H23_emb CAA98172.1 (Z73944) RAB8A [Lotus japonicus]
63	0671	BY2AA048A05_gb AAD15504.1 (AC006439) putative AAA-type ATPase [Arabidopsis thaliana]
64	0672	BY2-AA049K03_dbj BAB24909.1 (AK007240) putative [Mus musculus]
65	0673	BY2-AA051A10_dbj BAB02543.1 (AP000417) mitotic checkpoint protein [Arabidopsis thaliana]
66	0674	BY2-AA051L22p19H03_gb AAD48948.1 AF147262_11 (AF147262) contains similarity to Pfam family PF00400 -WD domain
67	0675	BY2-AA052E10 >gb AAF52905.1 (AE003628) CG4968 gene product [Drosophila melanogaster]
68	0676	BY2-AA052F14 >gb AAF79819.1 AC007396_20 (AC007396) T4O12.22 [Arabidopsis thaliana]
69	0677	BY2-AA052G16p19D04 >dbj BAB09843.1 (AB005246) gene_id:MUP24.12~unknown protein [Arabidopsis thaliana]
70	0678	BY2-AA052N17 >gb AAG42914.1 AF327533_1 (AF327533) unknown protein [Arabidopsis thaliana]
71	0679_1	BY2-AA053C11.1 >dbj BAB22857.1 (AK003561) putative [Mus musculus]
72	0679_2	BY2-AA053C11.2 >gb AAC62883.1 (AC005397) hypothetical protein [Arabidopsis thaliana]
73	0680	BY2-AA062A09 >gb AAF01061.1 AF189284_1 (AF189284) nucleolar G-protein NOG1 [Trypanosoma brucei]
74	0681	BY2-AA062G03 >pir T02135 hypothetical protein F8K4.10 - Arabidopsis thaliana
75	0682	BY2-AA065E08 >pir T00795 hypothetical protein F24L7.13 - Arabidopsis thaliana
76	0683	BY2-AA072K18 >emb CAB40381.1 (AJ010819) GrpE protein [Arabidopsis thaliana]
77	0684	BY2-AA075K12 >gb AAD31331.1 AC007354_4 (AC007354) T16B5.4 [Arabidopsis thaliana]
78	0685	BY2-AA076N08 >dbj BAA94770.1 (AP001859) ESTs AU082761(S5084) D42006
79	0686	BY2-AA080D01 >gb AAF80646.1 AC012190_2 (AC012190) Contains similarity to F28O16.19 a putative translation initiation protein
80	0687	BY2-AA081P14 >gb AAD32777.1 AC007661_14 (AC007661) unknown protein [Arabidopsis thaliana]
81	0688	BY2-AA082H04p21F02 >dbj BAB10171.1 (AB016880) gene_id:MTG10.12~pir T05795~strong similarity to unknown
82	0689	BY2-AA082H06p21G04 >pir T09039 hypothetical protein F26K10.110 - Arabidopsis thaliana
83	0690	BY2-AA082M07p21B05 >dbj BAB01783.1 (AB022215) gene_id:MCB17.19~unknown protein [Arabidopsis thaliana]
84	0691	BY2-AA083B24p21C04 >dbj BAB08247.1 (AB006698) gene_id:MCL19.6~unknown protein [Arabidopsis thaliana]
85	0692	BY2-AA083C05p21D02 >gb AAH02924.1 AAH02924 (BC002924) Unknown (protein for IMAGE:3956179) [Homo sapiens]
86	0693	BY2-AA085D08p21C05 >pir T47624 hypothetical protein T5N23.10 - Arabidopsis thaliana
87	0694	BY2-AA085F09p21H01 >gb AAF79503.1 AC002328_11 (AC002328) F20N2.15 [Arabidopsis thaliana]
88	0695	BY2-AA085M15p21D04 >gb AAF97305.1 AC007843_8 (AC007843) Unknown protein [Arabidopsis thaliana]
89	0696	BY2-AA088K23p21G05 >gb AAG52001.1 AC012563_11 (AC012563) unknown protein; 64612-65506 [Arabidopsis thaliana]
90	0697	BY2-AA088L24p21A07 >gb AAD55292.1 AC008263_23 (AC008263) Contains PF 00249 Myb-like DNA-binding domain.
91	0698	BY2-AA089F12p21H05 >gb AAD55274.1 AC008263_5 (AC008263) Strong similarity to gb D21805 calcium-dependent protein kinase
92	0699	BY2-AA089M17 >pir T02186 hypothetical protein F14M4.16 - Arabidopsis thaliana
93	0700	BY2-AA090J23p21G08 >pir T48545 hypothetical protein F14F18.30 - Arabidopsis thaliana
94	0701	BY2-AA092F12p21H06 >emb CAB46854.1 (AJ388555) hypothetical protein [Canis familiaris]
95	0702	BY2-AA092L20p21E07 >gb AAD10646.1 (AC005223) 45643 [Arabidopsis thaliana]
96	0703	BY2-AA093J23p21C11 >gb AAG51461.1 AC069160_7 (AC069160) unknown protein [Arabidopsis thaliana]
97	0704	BY2-AA093L18p21D09 >emb CAC15504.1 (AJ297917) B2-type cyclin dependent kinase [Lycopersicon esculentum]
98	0705	BY2-AA093M19 >gb AAG12535.1 AC015446_16 (AC015446) Unknown protein [Arabidopsis thaliana]
99	0706	BY2-AA094B12p21F10 >dbj BAB02118.1 (AP000381) contains similarity to unknown
100	0707_1	BY2-AA096G05p21A11_dbj BAB02118.1 (AP000381) contains similarity to unknown
101	0707_2	cl_AA094B12p21F10
102	0708	BY2-AA097G22p21D10 >gb AAG60065.1 AF337913_1 (AF337913) unknown protein [Arabidopsis thaliana]
103	0709	BY2-AA099F04_gb AAG52457.1 AC010852_14 (AC010852) hypothetical protein; 12785-11538 [Arabidopsis thaliana]
104	0710	BY2-AA099N08p21H09_gb AAK14411.1 AC087851_3 (AC087851) unknown protein [Oryza sativa]
105	0711	cl_AA100B09_ref NP_009820.1 Ybr261cp [Saccharomyces cerevisiae]
106	0712	BY2-AA109N02_ref NP_002848.1 peroxisomal farnesylated protein; Housekeeping gene 33kD [Homo sapiens]
107	0713	BY2-AA114E09p22F02_pir T51434 hypothetical protein F2G14_10 - Arabidopsis thaliana
108	0714	BY2-AA115B14p22C02_dbj BAB08888.1 (AB012243) gene_id:MIJ24.6~ref NP_013897.1~similar to unknown protein

109	0715	BY2-AA115F08p22C04 >gb BY2-AAH03900.1 AAH03900 (BC003900) Similar to hypothetical protein 384D8_6 [Mus musculus]
110	0716	BY2-AA115L12p22G01 >gb AAF43925.1 AC012188_2 (AC012188) Contains similarity to PIT1 from Arabidopsis thaliana
111	0717	BY2-AA116L23p22E01 >dbj BAB01460.1 (AP000731) gene_id:MCB17.21~unknown protein [Arabidopsis thaliana]
112	0718	BY2-AA117B12p21G12 >sp O23708 PSA2_ARATH PROTEASOME SUBUNIT ALPHA TYPE 2 (20S PROTEASOME ALPHA SUBUNIT B)
113	0719	BY2-AA117E08p22A03 >pir F81195 conserved hypothetical protein NMB0465 [imported] - Neisseria
114	0720	BY2-AA117O08p22E03 >dbj BAB01753.1 (AP000603) gb BY2-AAD10646.1~gene_id:MRP15.12
115	0721	BY2-AA118D23p22E02 >emb CAB89490.1 (AJ277062) CRK1 protein [Beta vulgaris], cdc2 like kinase
116	0722	BY2-AA119D12p22H04 >dbj BAB01163.1 (AP000410) gene_id:K10D20.9~unknown protein [Arabidopsis thaliana]
117	0723	BY2-AA120G12 >gb BY2-AAB63649.1 (AC001645) hypothetical protein [Arabidopsis thaliana]
118	0724	BY2-AA120G19p22D05 >gb BY2-AAF69547.1 AC008007_22 (AC008007) F12M16.18 [Arabidopsis thaliana]

Table 4: overview of group 3 sequences that show homology with proteins of unknown function

SEQ ID NO	Tag name and	Function	Fase	SEQ ID NO	Tag name and	Function	Fase
119	Bstc1-11-320		M-G1	160	Bstc31-3-400	unknown	G2/M-M-G1
120	Bstc1-12-255		G2/M-M-G1	161	Bstc32-1-122	unknown	M-G1
121	Bstc1-12-275		G2/M-M-G1	162	Bstc3-21-125		G1/S-S; G2/M-M-G1
122	Bstc1-13-143	unknownprotein	G2/M-M-G1	163	Bstc32-2-150	putativeprotein	G1/S-S; G2/M-M-G1
123	Bstc1-13-160	unknownprotein	G2/M-M-G1	164	Bstc32-4-193		
124	Bstc11-3-190		M-G1	165	Bstc32-4-370		G1/S-S-G2/S; M-G1
125	Bstc11-3-215	putativeprotein	G2/M-M-G1	166	Bstc3-31-350	putativeprotein	G1/S-S-G2/S
126	Bstc11-3-230		G1/S; M-G1	167	Bstc33-2-145	hypotheticalprotein	G1/S-S; G2/M-M-G1
127	Bstc11-3-300	unknown	M-G1	168	Bstc3-33-350		G1/S-S
128	Bstc13-4-168	hypotheticalprotein	S-G2	169	Bstc33-360	putativeprotein	G2/M-M-G1
129	Bstc13-4-290	hypotheticalprotein	M-G1	170	Bstc33-4-270	unknown	G2/M-M
130	Bstc14-205		G2/S-G2	171	Bstc3-41-270	unknown	M-G1
131	Bstc1-43-107		G2/S-G2	172	Bstc3-41-300		G2/M-M-G1
132	Bstc14-3-165	unknown	M-G1	173	Bstc3-41-360		G2/M-M-G1
133	Bstc1-43-250	unknown	G2/M-M-G1	174	Bstc3-42-175		M-G1
134	Bstc1-43-310	hypotheticalprotein	G2/M-M	175	Bstc3-43-135		G1
135	Bstc21-2-270	hypotheticalprotein	G2/M-M-G1	176	Bstc3-43-180		M-G1
136	Bstc2-21-182	unknown	M-G1	177	Bstc3-43-193	unknown	G1/S-S; G2/M-M-G1
137	Bstc22-1-275	unknownprotein	G2-M-G1	178	Bstc3-43-287		G1/S-S
138	Bstc2-22-100	unknown	G2-G2/M	179	Bstc3-44-145		M-G1
139	Bstc2-22-155		G2-M	180	Bstc3-44-375	putativeprotein	M-G1
140	Bstc2-22-240	hypotheticalprotein	M	181	Bstc4-11-120	hypotheticalprotein	G2/M-M-G1
141	Bstc22-2-270		G1/S; M-G1	182	Bstc4-11-320	unknown	M-G1
142	Bstc2-23-135		G2/S-G2-M	183	Bstc42-3-115	unknown	M-G1
143	Bstc2-23-220	unknown	G2-M-G1	184	Bstc42-3-125	putativeprotein	G2/M-M-G1
144	Bstc22-4-215	hypotheticalprotein	G2/M-M	185	Bstc4-23-210		M-G1
145	Bstc2-31-280		G2/M-M-G1	186	Bstc42-4-225	unknown	G1/S-S-G2
146	Bstc23-2-240	unknown	M	187	Bstc4-32-115	unknownprotein	G1/S-S; G2/M-M-G1
147	Bstc23-2-330	putativeprotein	M	188	Bstc4-32-185	unknown	G1/S-S
148	Bstc23-2-370		G1/S-S; G2/M-M-G1	189	Bstc4-32-190	unknown	G2/M-M
149	Bstc2-32-400		G1/S-S; G2/M-M-G1	190	Bstc4-32-270	unknown	G2/S-G2-M
150	Bstc23-3-270		G1/S-S; M-G1	191	Bstc4-32-410		G1/S-S-G2- G2/M
151	Bstc2-33-280	unknownprotein	G1/S-S;M-G1	192	Bstc4-34-250		G2/M-M-G1
152	Bstc2-34-120	unknown	G2/M-M-G1	193	Bstc4-41-230	putativeprotein	G2/M-M-G1
153	Bstc23-4-300	unknown	M	194	Bstc4-43-113	unknown	M-G1
154	Bstc2-41-165		G1/S-S	195	Bstc44-3-125		G2/M-M
155	Bstc2-42-100	unknown	G1/S-S				
156	Bstc2-43-210		M-G1				
157	Bstc31-185	unknown	G2/M-M-G1				
158	Bstc3-12-145	unknown	S-G2				
159	Bstc3-12-290	unknown	G2/M-M-G1				

196	Bstt1-12-340	unknown	G2/M-M		240	Bstt3-11-205		G1/S-S-G2
197	Bstt12-2-225		G1/S-S-G2		241	Bstt31-1-250	hypotheticalprotein	G2/M-M-G1
198	Bstt1-22-330	unknown	G2/M-M-G1		242	Bstt31-1-430	hypotheticalprotein	G2/M-M-G1
199	Bstt12-2-420	unknownprotein	G2/M-M-G1		243	Bstt3-12-360	unknownprotein	G2/M-M
200	Bstt12-2-540	hypotheticalprotein	G2/M-M-G1		244	Bstt31-3-380		G1/S-S
201	Bstt1-23-155		M-G1		245	Bstt31-4-420	hypotheticalprotein	G2/M-M-G1
202	Bstt12-3-215	hypotheticalprotein	G2/M-M-G1		246	Bstt32-180	putativeprotein	G2-M-G1
203	Bstt12-3-280	unknown	G1/S-S-G2		247	Bstt3-22-160	PotatoEST/hypotheticalprotein	G1/S-S-G2
204	Bstt12-3-310	hypotheticalprotein	G1/S-S		248	Bstt32-3-175	unknown	G2/M-M
205	Bstt12-3-350		G1/S-S-G2-G2/M		249	Bstt32-3-325	unknown protein	G2/M-M-G1
206	Bstt1-24-205		G2/M-M-G1		250	Bstt3-24-135	unknown	G2/M-M-G1
207	Bstt1-24-220		G1/S-S-G2		251	Bstt3-24-200		G2/M-M-G1
208	Bstt1-31-170	hypotheticalprotein	G2/M-M-G1		252	Bstt3-31-215	unknownprotein	G2/M-M-G1
209	Bstt1-31-215	unknown	G2/M-M-G1		253	Bstt3-31-330	unknown	G1/S-S-G2
210	Bstt13-210	unknown	G2/M-M-G1		254	Bstt33-1-350	unknown	G2/M-M-G1
211	Bstt14-4-310	unknownprotein	G2/M-M-G1		255	Bstt33-1-510	putativeprotein	G2/M-M-G1
212	Bstt2-11-165	unknown	G2/M-M-G1		256	Bstt33-3-220	unknown	G2/M-M-G1
213	Bstt2-12-190		G1/S-S-G2		257	Bstt33-3-245	unknownprotein	G2/M-M-G1
214	Bstt21-4-150	hypotheticalprotein	G1/S-S-G2/S		258	Bstt3-33-550	hypotheticalprotein	G1/S-S; M-G1
215	Bstt21-4-250		G1/S-S; G2/M-G1		259	Bstt33-4-140	putativeprotein	S-G2
216	Bstt21-4-470		G2/M-M-G1		260	Bstt34-2-165	unknown	G1/S-S-G2
217	Bstt22-1-170	unknown	S-G2		261	Bstt3-42-325	hypotheticalprotein	G2/M-M-G1
218	Bstt2-21-190	unknown	G2/M-M		262	Bstt3-44-150	unknown	G2/M-M-G1
219	Bstt22-2-190	unknown	G2/M-M-G1		263	Bstt3-44-250	unknown	G2/M-M-G1
220	Bstt22-2-290	hypotheticalprotein	G2/M-M-G1		264	Bstt34-4-310	unknown	G2/M-M-G1
221	Bstt22-3-225		M		265	Bstt3-44-345	hypotheticalprotein	G2/M-M-G1
222	Bstt22-3-275	unknown	G2/M-M		266	Bstt41-2-340		G2/M-M-G1
223	Bstt22-3-315	TomatoEST	G2/M-M-G1		267	Bstt41-3-310	unknown	G2/M-M
224	Bstt22-3-370	unknown	G2/M-M-G1		268	Bstt4-21-185		M-G1
225	Bstt22-3-390	putativeprotein	G2/M-M-G1		269	Bstt42-1-370		S-G2-G2/M
226	Bstt22-3-480		G2/M-M-G1		270	Bstt4-23-480	unknown	G2/M-M-G1
227	Bstt23-1-140		S-G2-G2/M		271	Bstt4-24-170		G2/M-M-G1
228	Bstt23-120	unknownprotein	G2/M-M-G1		272	Bstt43-265	unknown	G1/S-S-G2/M
229	Bstt23-1-200		S-G2-M		273	Bstt43-3-350	unknown	G2/M-M-G1
230	Bstt2-31-300	unknown	S		274	Bstt4-33-390	hypotheticalprotein	G1/S-S; G2/M-M-G1
231	Bstt2-32-220		M		275	Bstt4-34-280		G2/M-M-G1
232	Bstt2-32-400	hypotheticalprotein	G2/M-M-G1		276	Bstt43-4-300	unknownprotein	G2/M-M-G1
233	Bstt23-3-350	unknown	G2-M		277	Bstt43-4-330	unknownprotein	G2/M-M-G1
234	Bstt23-370	unknown	G2/M-M-G1		278	Bstt43-4-340		G2/M-M-G1
235	Bstt24-1-320		S-G2		279	Bstt44-4-250	hypotheticalprotein	G2/M-M
236	Bstt24-2-310		G2/M-M-G1		280	Bstt4-44-400	hypotheticalprotein	G2/M-M-G1
237	Bstt2-43-210	unknown	G2-M		281	MBc03-90	unknown	S-G2
238	Bstt2-43-240		S-G2/S		282	MBc42-180	unknown	G2-M-G1
239	Bstt31-1-100	hypotheticalprotein	G1/S-S-G2		283	MBc43-210	unknown	G1/S-S-G2

Table 5: overview group 4 sequences showing no homology to known genes

SEQ ID NO	Tag name	Function	Fase
284	Bstc1 1-100	unknown	G2/S-G2-M
285	Bstc1 11-110	unknown	S
286	Bstc1 11-115	unknown	G1/S-S;G2/M-M-G1
287	Bstc1 11-120		G1/S-S-G2
288	Bstc1 1-1-125	unknown	G2/M-M-G1
289	Bstc1 1-1-290	NaD	G1/S;G2/M-M-G1
290	Bstc1 -12-155		G2/S-G2-M
291	Bstc1 -12-175	unknown	S
292	Bstc1 -12-185	unknown	G2/M-M-G1
293	Bstc1 1-3-116	unknown	S-G2
294	Bstc1 1-3-118	unknown	G2/M-M-G1
295	Bstc1 -13-120		S
296	Bstc1 -13-130		G1/S-S; G2/M-M-G1
297	Bstc1 -13-132	unknown	M-G1

SEQ ID NO	Tag name	Function	Fase
298	Bstc1 -13-142	unknown	G1/S-S
299	Bstc 11-3-187	unknown	S-G2/S
300	Bstc1 1-3-200	unknown	G1/S-S-G2/S
301	Bstc1 1-3-290	unknown	G2/S-G2-M-G1
302	Bstc1 -14-100	unknown	G2/M-M
303	Bstc1 -14-108	unknown	G2/M-M-G1
304	Bstc1 1-4-130	unknown	G1/S-S-G2
305	Bstc1 1-4-135	unknown	G2/M-M-G1
306	Bstc1 1-4-140	unknown	S-G2-M
307	Bstc1 -14-155		G2/M-M
308	Bstc1 -14-165		G2-G2/M
309	Bstc1 -14-167		G2-G2/M
310	Bstc1 1-4-175		G2/M-M-G1
311	Bstc1 1-4-200	unknown	G1/S-S

312	Bstc1	2-1-110	unknown	S-G2
313	Bstc1	-21-150	unknown	G2/M-M-G1
314	Bstc1	2-1-160	unknown	G2-M-G1
315	Bstc1	2-1-240	unknown	M-G1
316	Bstc1	2-1-95	unknown	G1/S-S-G2
317	Bstc1	-22-110		G2-M-G1
318	Bstc1	2-3-103	unknown	G2/M-M-G1
319	Bstc1	2-3-125	unknown	G1/S-S; G1
320	Bstc1	2-3-235		M-G1
321	Bstc1	2-3-237	unknown	G1/S-S
322	Bstc1	2-4-130	unknown	G2/M-M-G1
323	Bstc1	2-4-133	unknown	S-G2
324	Bstc1	2-4-145	unknown	M-G1
325	Bstc1	2-4-235	unknown	G2/M-M-G1
326	Bstc1	3-1-150		M-G1
327	Bstc1	3-2-170	unknown	G2/M-M-G1
328	Bstc1	3-2-180	unknown	G1/S-S
329	Bstc1	3-2-190	unknown	G1/S-S
330	Bstc1	3-2-280	unknown	G1/S-S; G2/M-M-G1
331	Bstc1	-41-170	unknown	G1/S-S
332	Bstc1	-41-175	unknown	G1/S-S
333	Bstc1	-41-180	unknown	G1/S-S; G2/M-M-G1
334	Bstc1	-41-210	unknown	G1/S-S
335	Bstc1	-41-230		G1/S; G2/M-M-G1
336	Bstc1	4-2-140	unknown	M-G1
337	Bstc1	-42-150	unknown	G2/S-G2
338	Bstc1	-42-80	unknown	G1/S-S-G2
339	Bstc1	-42-90	unknown	G2-M
340	Bstc1	-43-105		G2/M-M
341	Bstc1	4-3-105		G1/S-S; G2/M-M
342	Bstc1	-43-110		G1/S-S; G2-M
343	Bstc1	4-3-130	unknown	G2/M-M-G1
344	Bstc1	-43-140	unknown	S-G2
345	Bstc1	-43-150		G2/M-M-G1
346	Bstc1	-43-175		S-G2
347	Bstc1	-43-185	unknown	G1/S-S-G2/S
348	Bstc1	4-3-235	unknown	G1/S-S
349	Bstc1	4-3-260	unknown	G2/M-M-G1
350	Bstc1	-43-65	unknown	G1/S-S-G2
351	Bstc1	-43-75	unknown	S-G2
352	Bstc1	-44-138	unknown	G1/S-S-G2/S
353	Bstc1	-44-140	unknown	G2/S-G2-M
354	Bstc1	-44-157	unknown	G2/S-G2
355	Bstc1	-44-95	unknown	G2/M-M
356	Bstc2	1-1-100	unknown	G2/M-M-G1
357	Bstc2	1-1-140	unknown	G1/S-S-G2
358	Bstc2	1-1-145	unknown	M-G1
359	Bstc2	1-1-65	unknown	G2-M-G1
360	Bstc2	1-2-120		G2/M-M
361	Bstc2	1-2-215		G2/M-M
362	Bstc2	1-2-75		S-G2-M
363	Bstc2	-13-110		G1/S-S; G2/M-M
364	Bstc2	-14-100	unknown	G2/M-M-G1
365	Bstc2	1-4-120	unknown	M-G1
366	Bstc2	-14-125	unknown	G2/M-M-G1
367	Bstc2	1-4-130	unknown	G2/M-M-G1
368	Bstc2	-14-135	unknown	S-G2/S
369	Bstc2	1-4-135		S-G2
370	Bstc2	1-4-155	unknown	G2/M-M-G1
371	Bstc2	-14-160		M-G1
372	Bstc2	1-4-180	unknown	G2/S-G2
373	Bstc2	2-100	unknown	G2-M
374	Bstc2	-21-120	unknown	G1/S-S
375	Bstc2	2-1-125	unknown	S-G2
376	Bstc2	-21-170	unknown	M-G1

377	B stc22	1-98	unknown	S-G2-G2/M
378	Bstc2	2-2-110	unknown	G2/M-M-G1
379	Bstc2	-22-160	unknown	G1/S-S; G2-G2/M
380	Bstc2	2-2-165	unknown	G1/S-S
381	Bstc2	-22-90		S; G2-M
382	Bstc2	-23-110	unknown	G2/M-M
383	Bstc2	-23-140		M-G1
384	Bstc2	2-3-150		S-G2
385	B stc2	-23-175		M-G1
386	Bstc2	-23-195	unknown	M-G1
387	Bstc2	2-3-90		M-G1
388	Bstc2	-24-100	unknown	G2/M-M-G1
389	Bstc2	2-4-140		G1/S-S-G2-M
390	Bstc2	-24-165		G2/M-M
391	Bstc2	-24-170	unknown	G1/S-S
392	Bstc2	-31-140	unknown	G2/M-M-G1
393	Bstc2	-31-160		M-G1
394	Bstc2	-31-170	unknown	M-G1
395	Bstc2	3-2-135	unknown	G2/M-M-G1
396	Bstc2	-32-285		G2/M-M
397	Bstc2	3-2-360	unknown	G1/S; G2/M-M-G1
398	Bstc2	3-2-80	unknown	G2/M-M
399	Bstc2	3-3-175	unknown	G1/S-S-G2
400	Bstc2	-33-200	unknown	G2/M-M-G1
401	Bstc2	23-3-305	unknown	M-G1
402	Bstc2	-33-85		S-G2
403	Bstc2	-33-95	unknown	G2/M-M-G1
404	Bstc2	3-4-110	unknown	G2-M
405	Bstc2	3-4-120	unknown	G1/S-S-G2
406	Bstc2	3-4-310		S-G2
407	Bstc2	3-4-335		G2-M-G1
408	Bstc2	-41-110	unknown	S-G2
409	Bstc2	4-2-165		M-G1
410	Bstc2	-43-105	unknown	S-G2-G2/M
411	Bstc2	-43-130	unknown	G2/M-M
412	Bstc2	4-3-285		G1
413	Bstc2	-43-77	unknown	G2/M-M-G1
414	Bstc2	-43-90	unknown	G2/M-M-G1
415	Bstc2	4-4-125	unknown	G1/S-S
416	Bstc2	-44-175	unknown	G2/M-M-G1
417	Bstc2	4-4-220		G2/M-M-G1
418	Bstc2	4-4-230		G2-G2/M
419	Bstc2	-44-95	unknown	M-G1
420	Bstc3	1-1-110	unknown	G1/S-S
421	Bstc3	1-1-250		G2/M-M
422	Bstc3	1-1-77		M-G1
423	Bstc3	1-1-90	unknown	M-G1
424	Bstc3	-12-115	unknown	M-G1
425	Bstc3	1-2-190	unknown	G1/S-S-G2
426	Bstc3	1-3-127	unknown	G1/S-S-G2/M
427	Bstc3	1-3-235	unknown	S-G2
428	Bstc3	-13-330		G1
429	Bstc3	1-3-60	unknown	G2-M
430	Bstc3	1-3-80	unknown	S-G2-M-G1
431	Bstc3	-13-90	unknown	G2/M-M-G1
432	Bstc3	-13-95	unknown	M-G1
433	Bstc3	-14-105	unknown	M-G1
434	Bstc3	-14-110	unknown	M-G1
435	Bstc3	-14-125	unknown	G2/M-M-G1
436	Bstc3	-14-130	unknown	G1/S; M-G1
437	Bstc3	2-1-108	unknown	G1/S-S-G2
438	Bstc3	2-1-170	unknown	S-G2/S
439	Bstc3	-21-70	unknown	M-G1
440	Bstc3	2-2-100	unknown	G1/S-S-G2
441	Bstc3	2-2-270	unknown	G1/S; G2/M-M-G1

442	Bstc3 2-2-390	unknown	G2/M-M-G1
443	Bstc3 2-2-93	unknown	G2/M-M
444	Bstc3 2-3-100	unknown	S-G2
445	Bstc3 -23-125	unknown	G2/M-M-G1
446	Bstc3 2-3-155		S-G2-M
447	Bstc3 -23-175	unknown	G2/M-M-G1
448	Bstc3 -23-177		G2/S-G2-M-G1
449	Bstc3 2-3-63	unknown	S-G2
450	Bstc3 -23-65		S; G2-M-G1
451	Bstc3 -24-155	unknown	G2/M-M-G1
452	Bstc3 2-4-230	unknown	G2/M-M
453	Bstc3 2-4-250	unknown	G2/M-M-G1
454	Bstc3 -24-255	unknown	G2/M-M-G1
455	Bstc3 -24-305		G2-M-G1
456	Bstc3 -24-340	unknown	G1/S-S; M-G1
457	Bstc3 -24-90		M-G1
458	Bstc3 -31-130	unknown	G1/S-S-G2
459	Bstc3 3-120	unknown	G1/S-S
460	Bstc3 -31-200		S-G2
461	Bstc3 -31-260	unknown	G1/S-S
462	Bstc3 3-150	unknown	G2/M-M-G1
463	Bstc3 -32-105	unknown	G2-G2/M
464	Bstc3 -32-120		G1/S-S; G2/M-M-G1
465	Bstc3 -32-240	unknown	S-G2
466	Bstc3 -32-320		G1/S-S-G2; M-G1
467	Bstc3 3-280	unknown	G2-M-G1
468	Bstc3 3-2-90	unknown	S-G2
469	Bstc3 3-3-105	unknown	G2/M-M-G1
470	Bstc3 3-3-115		G1/S-S; M-G1
471	Bstc3 3-3-165		G1/S-S-G2/S
472	Bstc3 -34-110		G2/M-M
473	Bstc3 3-4-165		G2/M-M
474	Bstc3 3-4-200		S
475	Bstc3 -34-290	unknown	G2/M-M-G1
476	Bstc3 -34-85	unknown	G2-M-G1
477	Bstc3 -34-90	unknown	G1/S-S
478	Bstc3 3-90	unknown	S
479	Bstc3 4-115		G2-M-G1
480	Bstc3 -41-180		G2/M-M-G1
481	Bstc3 4-13-300	unknown	G/S-S;M-G1
482	Bstc3 4-3-100		M-G1
483	Bstc3 4-3-135		S-G2-G2/M
484	Bstc3 4-3-190		S-G2-M-G1
485	Bstc3 -43-210	unknown	G1/S-S; M-G1
486	Bstc3 4-3-210	unknown	G2/S-G2-G2-G2/M
487	Bstc3 -43-240		G1/S-S; G2/M-M-G1
488	Bstc3 4-3-248	unknown	S
489	Bstc3 4-3-263	unknown	G2/M-M-G1
490	Bstc3 -43-280	unknown	G2/M-M-G1
491	Bstc3 4-3-95	unknown	S
492	Bstc3 -44-155	unknown	G1/S-S; M-G1
493	Bstc3 -44-173		G2/M-M-G1
494	Bstc3 4-80	unknown	S-G2/S
495	Bstc4 -11-117		G2/M-M-G1
496	Bstc4 1-1-125	unknown	M-G1
497	Bstc4 1-1-130	unknown	G2-M-G1
498	Bstc4 -11-180		G2/M-M-G1
499	Bstc4 1-1-195	unknown	G1/S-S-G2
500	Bstc4 1-1-197	unknown	G2/M-M-G1
501	Bstc4 -11-210	unknown	G1/S-S-G2/S
502	Bstc4 1-1-210	unknown	G1/S-S-G1/S
503	Bstc4 1-1-245	unknown	M-G1
504	Bstc4 -11-350	unknown	G2/M-M
505	Bstc4 1-1-90	unknown	G2/M-M-G1
506	Bstc4 -12-150	unknown	G2-M-G1

507	Bstc4 1-2-280		S-G2-M
508	Bstc4 -13-112	unknown	S-G2
509	Bstc4 1-3-170	unknown	G1/S-S
510	Bstc4 1-3-205	unknown	G2/M-M-G1
511	Bstc4 -13-280	unknown	G1/S-S-G2/S
512	Bstc4 -13-70	unknown	G2/M-M-G1
513	Bstc4 1-4-105		M-G1
514	Bstc4 1-4-112	unknown	G2/M-M
515	Bstc4 -14-120	unknown	G1/S-S; M-G1
516	Bstc4 1-4-127	unknown	S-G2-M
517	Bstc4 1-4-145	unknown	G2/M-M-G1
518	Bstc4 -14-160	unknown	G2/M-M-G1
519	Bstc4 1-4-165	unknown	G2-M-G1
520	Bstc4 1-4-185		G1/S-S-G2
521	Bstc4 1-4-270		G1/S-S; G2/M-M-G1
522	Bstc4 2-1-150	unknown	G2/M-M-G1
523	Bstc4 -21-155		G1/S-S-G2
524	Bstc4 -21-200	unknown	S; G2/M-M-G1
525	Bstc4 2-135	unknown	G2/M-M-G1
526	Bstc4 -22-150	unknown	G1/S-S; G1
527	Bstc4 42-2-170		S-G2-M
528	Bstc4 2-2-185		M-G1
529	Bstc4 2-2-220	unknown	M-G1
530	Bstc4 2-3-100	unknown	M-G1
531	Bstc4 -23-115	unknown	M-G1
532	Bstc4 2-3-133		S-G2/S
533	Bstc4 -23-135	unknown	G2/M-M-G1
534	Bstc4 2-4-110	unknown	G1/S-S; G2/M-M-G1
535	Bstc4 -24-240		G1/S-S-G2
536	Bstc4 -31-260		G2/M-M-G1
537	Bstc4 -31-310	unknown	S; G2/M-M-G1
538	Bstc4 3-3-100		S-G2-M
539	Bstc4 3-3-103	unknown	G2/M-M-G1
540	Bstc4 3-3-135		M-G1
541	Bstc4 3-3-175		G2/M-M-G1
542	Bstc4 3-3-250	unknown	M-G1
543	Bstc4 -34-135	unknown	G2/M-M-G1
544	Bstc4 -34-185		G1/S-S
545	Bstc4 3-4-200	unknown	G2/M-M-G1
546	Bstc4 3-4-320		G1/S-S
547	Bstc4 -41-100	unknown	G2-M
548	Bstc4 -41-105	unknown	G1/S-S; G2/M-M-G1
549	Bstc4 -41-107	unknown	G2/M-M-G1
550	Bstc4 -41-125	unknown	M-G1
551	Bstc4 4-41-180		G2/M-M-G1
552	Bstc4 -41-220	unknown	M-G1
553	Bstc4 4-150	unknown	G2-M-G1
554	Bstc4 -42-110	unknown	G2/M-M-G1
555	Bstc4 -42-115	unknown	G2/M-M
556	Bstc4 -42-130	unknown	S-G2
557	Bstc4 -42-165	unknown	G1/S-S; M-G1
558	Bstc4 -42-217	unknown	G2/M-M-G1
559	Bstc4 -43-103	unknown	G1/S-S-G2-G2/M
560	Bstc4 4-3-167	unknown	G2/M-M-G1
561	Bstc4 4-3-170		M-G1
562	Bstc4 4-4-120	unknown	M-G1
563	Bstc4 4-4-290	unknown	G2/M-M-G1
564	Bstt1 -11-190		G1/S-S
565	Bstt1 -11-200	unknown	G1/S-S-G2-G2/M
566	Bstt1 -11-55	unknown	G1/S-S
567	Bstt1 -11-65	unknown	G1/S-S-G2
568	Bstt1 -12-105	unknown	G2/M-M
569	Bstt1 -12-115		G1/S-S
570	Bstt1 -12-230		S-G2
571	Bstt1 -13-150	unknown	G2/M-M

572	Bstt1 -13-230	unknown	G2/S-G2-M
573	Bstt1 -14-125	unknown	G1/S-S
574	Bstt1 -14-220	unknown	G2/M-M
575	Bstt1 -21-100	unknown	G2/M-M
576	Bstt12 -1-240	unknown	S-G2-M
577	Bstt1 -21-250	unknown	S, G2/M-M-G1
578	Bstt12 -2-100	unknown	G2/S-G2-M-G1
579	Bstt12 -2-140	unknown	G2/M-M-G1
580	Bstt1 -22-160		G2/M-G1
581	Bstt12 -2-215	unknown	G2/M-M
582	Bstt1 -22-225		M-G1-G1/S
583	Bstt12 -2-360	unknown	G2/M-M-G1
584	Bstt1 -22-70	unknown	G1/S-S
585	Bstt12 -3-115	unknown	G1/S-S-G2
586	Bstt1 -23-150	unknown	G2/M-G1
587	Bstt1 -23-170	unknown	G2-M
588	Bstt12 -3-170	unknown	G1/S-S
589	Bstt1 -23-180	unknown	G2/S-G2-M
590	Bstt1 -23-185		G2-M-G1
591	Bstt1 -23-235	unknown	G2-M
592	Bstt1 -24-105	unknown	G2/S-G2-M-G1
593	Bstt1 -24-120	unknown	G2/M-M-G1
594	Bstt12 -4-260		G2/S-G2-G2/M
595	Bstt12 -4-320		G2/M-M
596	Bstt1 -31-120		G2/M-M-G1
597	Bstt1 -31-180	unknown	G2/M-M-G1
598	Bstt13 -170	unknown	G1/S-S-G2
599	Bstt13 -2-150		G1/S-S-G2
600	Bstt1 -32-170	unknown	G1/S-S-G2
601	Bstt1 -32-185		G1/S-S
602	Bstt13 -3-100	unknown	G1/S-S-G2-M
603	Bstt1 -33-170	unknown	G1/S-S-G2
604	Bstt13 -3-320	unknown	G2/M-M-G1
605	Bstt1 -33-66		G2/M-M
606	Bstt1 -41-120	unknown	G2/M-M
607	Bstt1 -42-264	unknown	G2-M-G1
608	Bstt14 -2-280	unknown	G2/M-M-G1
609	Bstt14 -3-120		S-G2
610	Bstt14 -3-140	unknown	G1-S-S-G2
611	Bstt1 -43-220	unknown	G2/S-G2-G2/M
612	Bstt1 -43-330	unknown	G2/M-M-G1
613	Bstt14 -3-460	unknown	G2/M-M
614	Bstt14 -4-130	unknown	S-G2
615	Bstt14 -4-150	unknown	G2
616	Bstt14 -4-195		S-G2-M
617	Bstt14 -4-220		G2/S-G2-G2/M
618	Bstt14 -85	nohits	G2/M-M
619	Bstt21 -1-170	unknown	G2/M-M
620	Bstt2 -11-290		G2/S-G2-G2/M
621	Bstt2 -11-540		G1/S-S
622	Bstt21 -2-190		G2/M-M-G1
623	Bstt2 -13-165		S-G2-M
624	Bstt2 -13-170	unknown	G2/M-M
625	Bstt2 -14-130	unknown	G2/M-M
626	Bstt2 -14-175	unknown	S-G2
627	Bstt22 -1-140	unknown	S-G2
628	Bstt2 -21-300	unknown	G2/M-M
629	Bstt22 -2-110	unknown	G1/S-G2
630	Bstt22 -2-255		G1/S-S-G2-G2/M
631	Bstt22 -2-370		G1/S-G2
632	Bstt22 -3-100	unknown	G2/M-M-G1
633	Bstt22 -3-145	unknown	G2/M-M-G1
634	Bstt2 -23-220	unknown	G2-M-G1
635	Bstt2 -23-370		G1/S-G2
636	Bstt22 -4-145	unknown	G2/M-M

637	Bstt22 -4-170		S-G2
638	Bstt22 -4-175		G2-M
639	Bstt22 -80	unknown	G2/M-M
640	Bstt23 -1-128	unknown	S-G2
641	Bstt23 -1-155	unknown	S-G2-G2/M
642	Bstt2 -31-200	unknown	G2/S-G2
643	Bstt23 -170	unknown	G2/M-M-G1
644	Bstt2 -32-175	unknown	G2/S-G2-G2/M
645	Bs tt23-220		G1/S-S-G2
646	Bstt23 -3-200		G1/S-S-G2/S
647	Bstt23 -3-265		S-G2-G2/M
648	Bstt23 -3-330		G1/S-S
649	Bstt2 -34-170	unknown	G2/M-M-G1
650	Bstt23 -4-180		S-G2-M
651	Bstt23 -4-210		G2/M-M-G1
652	Bstt2 -41-170	unknown	G1/S-S-G2
653	Bstt24 -1-170	unknown	S-G2
654	Bstt2 -41-390		S-G2
655	Bstt2 -42-300		G2/M-M-G1
656	Bstt24 -2-318		S-G2
657	Bstt24 -2-320	unknown	G2/M-M-G1
658	Bstt24 -290	unknown	G2/M-M
659	Bstt2 -43-150		S-G2
660	Bstt2 -43-160		S-G2/S
661	Bstt2 -43-50		S
662	Bstt2 -43-65	unknown	S-G2
663	Bstt2 -44-230		G2/S-G2-M
664	Bstt2 -44-240	unknown	G1/S-S-G2
665	Bstt24 -4-240	unknown	G1/S-S-G2/S
666	Bstt24 -4-260	unknown	G1/S-S
667	Bstt24 -4-283	unknown	G1/S-S-G2
668	Bstt24 -4-285	unknown	G2/M-M-G1
669	Bstt31 -1-145		S-G2-M
670	Bstt31 -1-210		G2/M-M-G1
671	Bstt31 -2-165	unknown	G2/S-G2
672	Bstt31 -2-185		G2/M-M-G1
673	Bstt3 -12-200	unknown	G2/M-M-G1
674	Bstt3 -12-315		S-G2-M
675	Bstt31 -2-330		G2/M-M-G1
676	Bstt3 -13-110	unknown	S-G2-G2/M
677	Bstt31 -3-180		S-G2-G2/M
678	Bstt3 -13-360		G2/M-M
679	Bstt3 -14-130	unknown	G2/M-M
680	Bstt3 -14-135	unknown	G2/M-M
681	Bstt31 -50	unknown	G1/S-S-G2-G2/M
682	Bstt32 -1-105		S-G2
683	Bstt3 -21-165		G2/S-G2
684	Bstt3 -21-305	unknown	G2/M-M
685	Bstt32 -140	unknown	S-G2/S
686	Bstt3 -22-100		G2/M-M-G1
687	Bstt32 -2-210		S-G2-M
688	Bstt3 -22-280	unknown	G1/S-S;M-G1
689	Bstt32 -2-510	unknown	S-G2-G2/M
690	Bstt32 -3-115		G2/S-G2
691	Bstt32 -3-155	unknown	S-G2
692	Bstt32 -3-160		M
693	Bstt32 -3-180	unknown	G1/S-S-G2
694	Bstt3 -23-205	unknown	S-G2-M
695	Bstt3 -23-65	unknown	G2/M-M-G1
696	Bstt32 -4-170	unknown	S, M
697	Bstt32 -4-195		G1/S-S;G2/M-M-G1
698	Bstt32 -4-260	unknown	G1/S-S
699	Bstt3 -24-390		M-G1
700	Bstt33 -1-105		G1/S-S-G2
701	Bstt33 -1-128		S-G2

702	Bstt33 -1-132	unknown	G2/M-M
703	Bstt33 -1-160	unknown	G2/M-M-G1
704	Bstt33 -1-185		M-G1
705	Bstt33 -140	unknown	G2/M-M-G1
706	Bstt33 -2-75	unknown	G1/S-S-G2
707	Bstt33 -2-85		G1/S-S; G2/M-G1
708	Bstt33 -3-110		G1/S-S; G2/M-M-G1
709	Bstt33 -3-125	unknown	G2/M-M-G1
710	Bstt3 -33-170	unknown	S-G2/S
711	Bstt33 -4-110		S-G2
712	Bstt33 -4-120	unknown	G1/S-S-G2
713	Bstt33 -4-130	unknown	G2/M-M
714	Bstt33 -95	unknown	G2/M-M
715	Bstt34 -1-110		S-G2-G2/M
716	Bstt34 -1-170		G1/S-S-G2-G2/M
717	Bstt3 -42-350	unknown	G2/M-M-G1
718	Bstt3 -43-145	unknown	G2/M-M-G1
719	Bstt3 -43-190	unknown	G1/S-S, M-G1
720	Bstt3 -43-265		G2/S-G2-M-G1
721	Bstt3 -43-280	unknown	G2/M-M-G1
722	Bstt34 -70	unknown	S
723	Bstt41 -3-100b	unknown	G2/M-M
724	Bstt41 -3-130	unknown	G2/M-M-G1
725	Bstt41 -3-140	unknown	G2/M-M-G1
726	Bstt41 -3-180		G2-M
727	Bstt41 -3-230	unknown	S-G2
728	Bstt41 -3-90	unknown	G2/M-M-G1
729	Bstt41 -4-210	unknown	S-G2-M-G1
730	Bstt4 -14-500		G2/M-M-G1
731	Bstt41 -70	unknown	G1/S-S
732	Bstt42 -1-130	unknown	G2/M-M-G1
733	Bstt42 -1-290	unknown	G2/M-M
734	Bstt4 -21-60	unknown	S-G2
735	Bstt4 -22-100		M-G1
736	Bstt4 -22-360		S-G2
737	Bstt42 -3-105	unknown	G1/S-S-G2/S
738	Bstt42 -3-110	unknown	G2/M-M-G1
739	Bstt4 -23-130		S-G2/M
740	Bstt4 -23-160		G2/S-G2-M
741	Bstt42 -4-150	unknown	G1/S-S-G2
742	Bstt4 -24-270	unknown	G2/M-M-G1
743	Bstt42 -4-390	unknown	M-G1
744	Bstt43 -1-290	unknown	G2/M-M-G1
745	Bstt43 -1-85		G1/S-S-G2/S
746	Bstt4 -32-230	unknown	G1/S-S-G2/S
747	Bstt43 -2-238		G2/M
748	Bstt43 -3-145	unknown	G1/S-S-G2
749	Bstt43 -3-210		G2/M-M-G1
750	Bstt43 -4-230	unknown	G2/M-M-G1
751	Bstt4 -34-75	unknown	G2/S-G2-M
752	Bstt44 -1-125	unknown	S-G2-G2/M
753	Bstt44 -185	unknown	M-G1
754	Bstt44 -2-135		G2/M-M-G1
755	Bstt4 -42-150	unknown	M
756	Bstt4 -42-390	unknown	M-G1
757	Bstt44 -3-240	unknown	G2/M-M-G1
758	Bstt44 -3-250	unknown	S-G2-G2/M
759	Bstt4 -44-148		G2/M-M-G1
760	M Bc02-100	unknown	G2/M-M
761	M Bc02-120	unknown	G2/M-M
762	M Bc03-110	unknown	G2/M-M
763	M Bc03-85		G2/M-M
764	M Bc11-135	unknown	G2-M
765	M Bc12-150		S-G2-M
766	M Bc31-185	unknown	G2/M-M

767	M Bc32-107	unknown	G2/M-M-G1
768	M Bc32-110	unknown	G2/M-M-G1
769	M Bc41-110	unknown	G1/S-S, G2/M-M
770	M Bc42-280	unknown	G2-M
771	M Bc43-95	unknown	G2-M
772	M Bc44-130		S-G2
773	M Bc44-95	unknown	G2/M-M
774	M Bt12-80	unknown	G2/M-M
775	M Bt12-95		M
776	M Bt13-105	unknown	M-G1
777	M Bt14-100	unknown	G2/M-M-G1
778	M Bt14-85	unknown	S-G2-M
779	M Bt14-90	unknown	G2-M
780	M Bt31-95		S-G2-M
781	M Bt33-115		G2/M-M-G1
782	M Bt33-133		G2-M
783	M Bt42-135	unknown	G2-M
784	M Bt43-95	unknown	G2-G2/M
785	M Bt44-145	unknown	G1/S-S-G2-M

CLAIMS

1. A method for identifying and validating plant genes/proteins as targets for agrochemicals, said method comprising the steps of:
 - a. Determining gene or protein expression profiles during a biological process of a plant or plant cell, said biological process being necessary for the growth and/or development and/or viability of the plant or plant cell;
 - b. Selecting genes or proteins having altered expression during said biological process,
 - c. Cloning said selected gene or the nucleic acid encoding said protein in its full-length or partial form,
 - d. Incorporating said nucleic acid in a vector designed for downregulation of expression of said nucleic acid or the sequence homologous to said nucleic acid in a plant or plant cell.
2. The method according to claim 1, wherein said biological process cell division.
3. The method according to claim 1 or 2, wherein said gene or protein expression profiling is based on nucleic acid or protein samples collected from a synchronized culture of dividing plant cells.
4. The method according to claim 3, wherein said dividing plant cells are tobacco BY2 cells.
5. The method according to any of claims 1 to 4, wherein the expression profiles are determined by means of micro-array, macro array or c-DNA-AFLP.
6. The method according to any of claims 1 to 5, wherein said downregulation involves a viral-induced gene silencing mechanism.
7. The method according to any of claim 1 to 6, wherein said downregulation involves the use of infectious DNA of virus is Tobacco Rattle Virus and wherein said plant is tobacco.
8. A method for screening candidate agrochemical compounds comprising the use of any of the methods according to claim 1 to 10.
9. A method for screening candidate agrochemical compounds comprising the use of any one or more of SEQ ID NO 1 to 785 or a homologue, functional fragment or derivative thereof or one or more of the proteins corresponding to SEQ ID NO 1 to 785 or a homologue, functional fragment or derivative thereof.

10. A method for the production of an agrochemical resistant plant, comprising the use of any one or more of SEQ ID NO 1 to 785 or a homologue, functional fragment or derivative thereof or one or more of the proteins encoded by SEQ ID NO 1 to 785 or a homologue ,
5 functional fragment or derivative thereof.
11. An isolated nucleic acid identifiable by any of the methods according to claims 1 to 10.
12. An isolated nucleic acid, comprising at least part of a nucleic acid sequence chosen from
10 the group of SEQ ID NO 1 to 785 a homologue, functional fragment or derivative thereof.
13. Use of a gene nucleic acid according to claim 11 or 12 or the protein encoded by said isolated nucleic acid as a target for an agrochemical compound.
- 15 14. Use of a nucleic acid or protein according to claim 13, wherein the agrochemical compound is a herbicide.
15. A plant tolerant to an agrochemical, in which the expression level of one or more of the nucleic acids corresponding the SEQ ID NO 1 to 785 or the homologue, functional
20 fragment or derivative thereof, is modulated.
16. A harvestable part of a plant according to claim 15.

25

FIGURE 1

Exp. II - 12 days after inoculation

FIGURE 2

Exp. II - 17 days after inoculation

FIGURE 2 (continued)

Exp. III - 37 days after inoculation

FIGURE 3

Sequence ListingGROUP 1

SEQIDNO1

GAATTCACTAGTGATTGATGAGTCCTGAGTAAGGTGAGACGAGAAGCGACCTCTGACCACA
 AGACTTGTCAAGCCTGAGACAGGTATGATATCCATATACTGCGTATCTCATAAAGTGACTCGTG
 GATCGGATAAAATGCTCAACCCATTGCTAACATATCTGTCTGCCTGTCAGGTTCCCAGGAT
 CACTACGCAGT AATCGAATTCCCGCCCTATAGTGAGTCGTATTAA

SEQIDNO2

TGACTGCGTAC TCTCAAAGAAGTGGAAAGTTACGAGTGCTCGAGATGTGATGCAGCAGCT
 TCCTCAGGGTC CAAACAGAAAGGTAGCTGCAACCAACATGAATCGTGTAGTAGCCGTT
 CACACAGTGT ACATGTGTGATAGAGAGCAAATGGGAATCTCAAGGAGTAACTCACCAC
 CGGTTTGCTC TACTCAGGACTCATCA

SEQIDNO3

GNNATGCCGATAAGCCGCCCTANATACANTNAAATGGTCCCGGANACCCTGGNGAC
 AATNATNGACT NGCAGTGGTTGAAGNTGACAATT CCTATT

SEQIDNO4

CNCNATTNTN AAGCCCGAAAAAGAAGAAGTAANGGAGGGAGAAGGCCTGAAGAGAATT
 GCNGGATTTC AGAGTTGATACAGAACTTCTCAAACGTCCACCTTGGATTATGACAA
 GTAGTGTCAACCAAGGTCGAGATGAGATACTGTTGCACATGTCTCAGCTGCGAAACTAT
 TGGCTCAAGCAGTGGCATCATATGA

SEQIDNO5

TTT TANGNCAGAATCTCNCTCTAACGGACCCNGCATGGCTTGTTCAAAATAAATGCCTC
 AGGACAATACCGTTATGTAATGGGGAGTGAAGTGCCTGATATCCGTTCTGCTCNTTATCT
 GGGCGGNGCCTGTGAAGTTTGACAAACTCTNTCTGGNTCTCACACTAGGGCCACACTCA
 TCATTACTGTTGTCCAAAACCGTACTCAACTCTTCATCGGGATGTGGAAGCGCCTCTCT
 CCAATCAAGGTTATG

SEQIDNO6

CTGGATGGTCNACCAGATTGAAGAACNCAGAGAAAAAGCTGTTTCTCATCCACTTCATAAG
 TCACAAAATGAACANCAGCCTTGAGAATNCAGCTGTGNTATGTANNTCGAAGACATTGG
 CTGAGGATGCTGCATGGAAGTTGTGAAAGAGAAAGCCTATCGATATGGTTACGATAAACCC
 AGCAATGGTTATTGGCGGTTGTTACAACCAATAC

SEQIDNO7

CCCAAGATGAACAGTCAGTCAGTCAGTCATGCCATATTACAATTACATTGGAACAAAA
 GAGAATGGCTAATTGCTCGACGAACGATGATGGTGTGACATATTATGTGCCAAGCTTCATT
 TGTTGACCTTGCTGGTCAGAGCGAGCAAAGCGAACTGGAGCTGATGAGATCGTGTACGA
 NAGGGNATTCAATCAACAGGGATTGCTTGCTTGGCAATGTAATAAGTGCCTTGGTGA
 TGAAAAGAAGCGGAAAGAAGGNGCACACATCCCACAGAGATAGCANGTTGACACGTNTCT
 TACAGGACTCACTGGAGGAAACAGCANGACAGTTATGATTGCTTGTGTCAGTCCTGCTGAC
 ACCAATGCAGAGGAGACCC

FIGURE 4

SEQIDNO8

GCGGTTGATATGTGGTCTGTGGATGTATTTGCCGAGATGGTCGAAGGCAAGCCTTATT
 TCCTGGTGAECTCTGAGTTCAAGCAACTGCTCACATATTCAAGGCTGTTAGGAACCCAACTG
 AGAACGAGTGGCCTGGAGTCAGTCAGTCCTCGCGACTGGCATGTTATCCAAAATGGAACCT
 CAGAACCTGGCCTGCTGTCAGCATTGGCCTGATGGCGTGGACCTCCTCACGAAAAT
 GCTCCAATATGATCCGGCAGATAGGATTCAGCAAAAGCTGCACTTGATCATCCATACTTCG
 ATAGCTGGACAGTCTCAGTTGAGGTTGCTTCACTTCTAAGATCAGCC

SEQIDNO9

GCAGCNAGCNAAGNTNNGGNTGGGNACGCCAANNANNNTGTGCCCTTGATGACGTACCAG
 NTATCANTCTACATANAACGGAGGNCTGCGANNGGCTTGGNTCATTCTACNGNTCTAGGAT
 TNTCAACTCTNNCTAATTCTCNATAACTNACCTATTCTCCTGCAGCAATATGTGAGACGTA
 ACCTAGAATATTATTCGCTTATAGATATTGACTTATTCTGCTGCATATTATCTGCAG
 CCGGTGGCATCTACCATCAATACATTGGCTGGTCATGTATAAGGTGTTGTGCTTCACC
 TGATCAAGCTAGGAAGGAGATGCGCGATGCATGCTTGACTATTGAGCCTGGAGTAT
 TCTCCACAGGACCTGTATCTTGCTTCTGGC

SEQIDNO10

GTCAGTGCTTGAGCTGAACCCGTTGCTGGACTTGACAACTAGCATCTCTCTTGATGCT
 GCCCTCATGTATTGCCAATGTAATTCTCCTAGCAAACCATATTGATACAAACTATTA
 TTATGATTGTGAATAACTTGTGAAAGTTCAATCAATCTGAAAGAAATAATCTCT

SEQIDNO11

CGTTGNTGTTTGGAAATTGGAACAGCATTGGTAAGGCACCTACGGNCAAGTGTACATG
 GNTAAAGAAATTAGAACAGGGAAATTGTTGCNTTGAAGAAGATACGCATGGACAAACGAANG
 AGAAGGGTTCCAATANCTGCTACGTGAAATCAAATCTTGAAGAAGCTGCACCATGAAA
 ATGNGA

SEQIDNO12

TAAAGGACCGNTTGTGAGAAATTGGNNCAGATTGGTGAAGGCACCTACGGTCAAGTG
 TACATGGCTAAAGAAATTAGAACAGGGAAATTGTTGCTTGAAGAAGATACGCATGGACAA
 CGAAAGAGAAGGTTCCAATAACTGCTACGTGAAATCAAATCTTGAAGAAGCTGCACC
 ATGAAAATGTGA

SEQIDNO13

GGACGTTGCATTCGGATTNGNGCACGAGATGTTNATGATTTAGGATTATTTAGTCAT
 CTTACTCGGNTGATGTTATCGTTTGTGACTTTACTCGNGGGCGGNGACCGCGNACATGCTATTGAT
 CATGCTATTATGATTTACTATGGNTATTGNTATTGTTA

SEQIDNO14

TTACNTTACTGAGATNNTTATGATTTAGGATTATTTAGCCATCTTACTCNGGTGATGT
 TTATTCGATTNTGTGACTTTACTCGNGGGCGGNGACCGCGNACATGCTATTGAT
 TTTTACTATGGTTATTGTTATTGTTA

SEQIDNO15

TATCAAATGGAGAAGTTATCAATATGAAAATAGCTGTCAAGCCACTCAACTATTGCTAGGA
 AGCAGCAAACGTGACGCGAGATAAACATGACACAGAACTCATTGCTAGGGGTNGNNATGAT
 NCTTGTGTAGTCCCNAANTGNCANTGNTTAAGCAATGGTAGCCCTGGCGTAGTGG
 TNAGCTAATGGCTCATTATGCACAGTGTATGCTGTTCCCAA

FIGURE 4 (continued)

SEQIDNO16

TTGAAGAGTGGAAAGTTACGAGTGCTCGAGATGTGATGCAGCAGCTTCTCAGGGTGTGCAA
ACAGAAAGGTAGCTGCAACCAACATGAATCGTGTAGTAGCCGTTCACACAGTGTTCACA
TGTGTGATAGAGAGCAAATGGGAATCTCAAGGAGTAACTCACCACCGGTTGCTCGTC

SEQIDNO17

GGGCCGCCACCACCGCAACCACCTAGTTATTCCCTCCGTCGAACACACGTGTCTCACGAGAGTG
AGAGTGAGAGCGTTCATCGTCAGCATGATCATCATCGTTCAACCACATGTGCCTTCATTC
TTCCACCATGAGACCTCACACATCCAGAGCTCATCGATAAGCCTCATTAGGGTTTATAC
AAAGGCTGATCCCATTACTCTCACTATCCGTGACGGCAAAGTCGTTCTGCCTCTTCTG
ATCCATCCGATCCTTCAACACTGGTATAAAGATGAGAAGTACAGCACTAAAGTGAAGGAT
GAAGAGGGTTCCAAGCTTGCTCTGG

SEQIDNO18

GTNTNTGTGGCCCACCTGCTGCNAGAGTGACACACAGGNATGATCTTAGAGCNGCNATTAG
AAGATGTTAGACACTCCTGNGCCATACTTGNTGGATGTGNTTGACCTCATCAGGAACATGT
TNTACCTATGATTCCCAGAGGCGGGCTTCAAAGATGTGATCACAGAGGGTGACGGGAGAA
GNTCCTATTGANTTGAGNNNGCTACAGAGCTAGTTCTAGGCCTTGCATTATCTAAAATAAAC
TTCTA

SEQIDNO19

GCAAGGAGTCAAGTGGATATTTGGATGATGGTTATAGATGGAGGAATACGGACAGAAGGC
TGTCAAGAACACAGATTCCAAGAACAGTACTACCGATGCACGCATCAAGGATGTAACGTGA
AGAAAACAAGTACAAAGGCTGTCAAAGGATGAAGGGTAGTAGTAACACTTATGAAGGCATG
CATTACACATCCCATTGAGAAGTCCACAGATAACTTGGACACATTGACTCAGATGCAAAT
CTATGCTTCTTTGAAACGTCCATCACTCAATGCTAAGGCATGACACTCAATTAGTCAC
TTGTAAGATAGTACTACAGTATATTGTGATCATGCGTTGAACCTAGATGCTATATTTGA
AATAAAACGCAACTCATTAGGAATTAAATTGATCATTGTACAACAAAAGTAATGTG
TATTTTTGTTTATCATTGTTGCCGGAGCCATGCTCTCATTAACTCTTTC
TTTGAATTAACAAATAATTGATGTTGGAGAAAGATAACGTGCCAAAAAA

SEQIDNO20

TAATGGACACGGATCTGCACCAAGATAATACGCTTCAAGCACTGACAGAAGATCACTGC
CAATACTTCTCTATCAATTATTACGTGGACTCAAGTATGTACATTGCTAATGTCCTCCA
CCGGGATCTGAAACCTAGCAACTTACTACTCAACGCAAACGTGACCTCAAGATTGTGATT
TTGGGCTAGCTAGAACCACTTCAGAGGCGGATTTATGACTGAGTATGTTGTCACCCGCTGG

SEQIDNO21

TTTGCAGCCACCTTNACATTGCTAGANGATNTGCCATAACAAAGCCTGACTTTNTAAA
GGAATTACAGCTCAATTGAAGCAAAACAAGTGGCTGCTCAAGAAGCTGAAAGAGCAAAGT
TTGTTGTGGAAAAGCTGAGCAAGATAAGCGAAGTGTGTTATCAGAGCTCAGGGTGGAGGCT
AAGAGTGCCAGCTTATTGGTCAAGCGATTGCCATAATCCGGCATTATCACACTCAGGAA
AATCGAAGCAGCAAGAGAGATTGCCAGACTATCTCACATGCAGCAAACAAGGTGACTTGA
GTGCCGATGATCTGTTGC

FIGURE 4 (continued)

GROUP 2

SEQIDNO22

ctgaaccctaaca~~gcacaca~~acttcactttgctc~~ctccaaatctctccaaatgcaggatt~~
tcatcggtccgatctcggttcaagc~~agtgccgagacttcgataccggcgt~~
gccgggtcg~~gatccggaggctcggtgagaaacttaggtcgagcattcgaaatc~~
gagtattggaatctcgaa~~agctcatgttccgtctccgttat~~ttaag~~gtgagc~~
tgcccgcgaaggctcgaa~~agatgacactccgccaatccggtgagggaaaggtgaaatgatt~~
ggatgtgg~~tgcttttgttagggttat~~atgggat~~gaatgttgattctggagagttactcg~~
tataaaggagg~~ttcgattgcgatgaatggtgctcgagagagcagcacaagctcatgtta~~
gagagctt~~gaggaagaagtgaatcttgaagaatctctccatccaa~~catagt~~gagatatt~~
ttgggaact~~gcaagagaggcaggatcattaatattgttgaaatttgc~~c~~ttggct~~
aatctcg~~tactttggaaaatttgatc~~ttcc~~ctgaatctgttataagaatgtacacca~~
agcaatt~~gttattacgg~~tt~~gaaatacttgcataagaatggattatgcacagagatattaag~~
ggagcaa~~acatacttgg~~acaataa~~agg~~tt~~gcattaaacttgcatttcggtgcacccaa~~
gaag~~gttgcatttg~~actat~~gactgg~~gcca~~actcaatgaagg~~gtactcc~~catactgg~~
tggctcc~~cgaaagtcat~~t~~ctgcagactgcccata~~g~~ctctgtgacat~~at~~ggagtgtcg~~ga
tgcactattat~~cgaaatgg~~ct~~acaggaaaac~~ct~~cccttg~~g~~agccagc~~ag~~tatcaggagg~~tt~~gc~~
tgctct~~cttccatata~~agg~~gacaaccaa~~at~~ccatccccatcc~~ag~~gacatcttgc~~t~~g~~
aat~~caaaggactc~~ct~~attaaaatgttgc~~aga~~agg~~a~~accgc~~act~~gagg~~catt~~ctgc~~at~~ca~~
aatt~~tgcttc~~ag~~catccatttgc~~ac~~agc~~aga~~acatc~~agg~~aaagctcgcc~~cc~~tttctcg~~ct~~c~~
at~~cctt~~at~~ggaaacccc~~g~~aaaacatgg~~cc~~ggc~~ca~~aggatgg~~at~~gtttagg~~ac~~ctcaatca~~
ttc~~ctgat~~at~~gagag~~c~~ttc~~ct~~gcaatgttgc~~aa~~agatgttgc~~tt~~gtttagg~~ac~~ctcaatca~~
tgctcc~~actgtat~~at~~cccgagaattc~~ct~~tagggaa~~ag~~actgcacttgc~~aa~~acttaggaa~~act~~c~~
tgat~~gtgacatgt~~gc~~agatgg~~ata~~gtgatgttgc~~att~~tatgttgc~~at~~ctgtgaaatgc~~a
gtt~~caagat~~tt~~gcatttc~~ct~~gtaattata~~ag~~agatgttgc~~at~~ctgtgaaatgc~~a
gat~~ggccatgc~~aa~~atttgatgaa~~at~~gtccc~~g~~agttgc~~g~~aaaagtcaagc~~aa~~acctgc~~at~~ta~~
tgat~~caagc~~act~~attaagcc~~act~~ataaccc~~at~~catgtc~~ata~~caggaggatctgc~~t~~tt~~
tcacatt~~ccaagtgg~~ca~~atctgc~~ag~~ccgaggatgt~~g~~atgtgaaatgc~~ac~~agactctaa~~att~~agg~~
agg~~gcattc~~ct~~tgatgaaa~~ag~~caatgg~~act~~tg~~g~~agaagctgc~~aa~~acaccactat~~at~~gaag~~
att~~ctacaatcc~~tt~~tgatgttcc~~ag~~cacacc~~g~~actccgttgc~~act~~gg~~ga~~acaaggaa~~aa
at~~gttcca~~ag~~taacataa~~act~~tacc~~cca~~aaa~~ag~~caggtcac~~aaa~~acgtatgc~~t~~tagc~~aga
agg~~ctctactgc~~att~~gaagg~~tg~~ctgt~~g~~ctccc~~ag~~cc~~act~~gt~~act~~cattcc~~ag~~gc~~aat~~g~~
at~~caaata~~t~~ttgg~~tg~~ccctaaatgg~~ta~~gatgt~~g~~acttgc~~aa~~gctcagttgc~~cc~~gagg~~cata~~at~~
aat~~ggaa~~ag~~atcttcttgg~~tt~~caacgt~~g~~aaagcagtt~~att~~caagcttct~~g~~gagg~~ca~~aa~~
aga~~agg~~tg~~gaaa~~aga~~agag~~c~~ttgt~~g~~aaag~~at~~gtgc~~aa~~agaa~~ac~~gagagat~~at~~gcgtcagg~~
agt~~caacttat~~c~~accacca~~aa~~aggatcc~~att~~cta~~at~~cgatgt~~g~~agaagtt~~at~~caagg~~tt~~g~~
cat~~ctc~~ct~~gga~~ag~~ataatgt~~at~~gtacttgc~~cc~~ctaaactaa~~ag~~tcagttgc~~g~~agg~~cata~~ac~~
aatt~~aatgt~~c~~ctgc~~aa~~cccc~~aga~~acac~~ag~~agatgt~~at~~gtcttgc~~g~~agg~~cata~~ac~~
agg~~tttcttg~~g~~acc~~cg~~ttact~~ac~~aggaat~~at~~cagcgctgt~~c~~agat~~ag~~agt~~g~~agctgtt~~act~~cg~~
ac~~aggaat~~at~~ctgt~~ca~~acc~~ct~~gtt~~aat~~cat~~att~~ataaa~~at~~gcca~~at~~aa~~att~~tgc~~tt~~gtattcg~~
ttt~~gatcattctc~~ct~~tgagagc~~at~~tgt~~g~~aaaaatgc~~agg~~cc~~tt~~ttata~~ac~~cttatata~~ag~~g~~
tg~~ctctct~~cat~~ggtagttgc~~aa~~atatta~~aa~~acgc~~ag~~gaaa~~ag~~tcg~~ag~~ttct~~cat~~ctgc~~ta
att~~gtttgt~~aaa~~atgt~~g~~atata~~at~~gttattaccgt~~tt~~acaacc~~

FIGURE 4 (continued)

SEQIDNO23

ccacgcgtccgtatatggatgtcacattgatggattattgctgttagttggacatacaca
tgttcttcacgaaggaccagttactggtagacctgctgacgtcattgcagctgctaatacag
ccgctgaagttgtcttgaggctgtgagaccaggaaagaagaactcgatgtaacagaagct
attcagaaagtgtctgcctatgactgcaagattgtgaggggtgtcttgagccatcaaatt
gaagcaatttgttattgtatggaaacaaagttgtattgagttgtgaccaatctgaaacgagag
tagatgtaaaggcagaattcgaggagaatgaggttactccattgtatattgtgacaagcactgg
gaaggaaagccaaagtgttggatgagaaacaacaactatctacaagagagccgtggacaa
gagctataacctgaagatgaaagcatcaaggttatcttcagtgaaatcagtcagaagttcc
ctatcatgccatttacgcagggatttgaggagaagaggcgtctggcctagttgag
tgtgttaaccatgagctttgcagccatatcctgttctacatgagaaacctgtgtattgg
tgctcacattaaattcacagtgttaatgcctaattgggtcgataggattacatctcatg
ctctccaggagctgaagcctgcaagtcgatagagaatgaacccgaaatcaaagcctggctt
gccctcccgtaagaccaagaagaaaggcggtggaaagaaaaagaaaaaggaaaaaggta
caagacagaagactcatctcaagctgagccaacggaaaggatagagaaatggttcaaattt
gataaatagcaatttgaggtgttgcataacttcactgaaactattggttactgtt
ggtcggcactttcagtcgtcattgtttcattgtggggcttgcataacaaggacagaca
gttattgtcctctgtactgtcatgttaaattactcagtttccatgctattcaacatgct
ctcaatcggtcttaaaaaaaaaaaaaaaag

SEQIDNO24

ccacgcgtccgcaaaaccctagctcaaattccgttgcctccatttcattccatcaacaaa
aacctaagttatactcagcttgagacatttgcataactatgtcgacgcacgagagagaagag
aaagagttggatctgacaagtccctgagggttactaagtacaaaaatgctgctgaaattgt
taacaaggctctgcagttgggtgtctgaatgcaagccaaaagcaaaagatgttgcatttt
gtgaaaaaggagatgccttcatcaaagagcaactggaatatgtacaagaatgtgaagaag
aaaatcgagaggggtgtggcattcccacctgcatttcagttacaataaccgtgtgccattt
ttctccactgtctagtgcagagacagtattggagaaggatgttgcatttt
ggtgtcatatagatggcttattgtctgttagttggcatacacatgtgcctcaggaggacca
gttactggtagagcagctgacggttgcggctgctaatacagctgtgaagttgcctgag
gcttgcggaccaggaaagaaactcgatgtaaacagaagctattcagaaagttgcgcgg
catatgactgcaagattgttgggggttttaagccatcaaattgcagttgttgcatttgc
ggaaacaaagttgtttaagtgttccaatcctgaaacgagagtagatgtgcagaatttga
ggagaatgaggctattcaattgacattgtaaacagactggtaaggaaagccaaaattgt
tggatgagaaacaaacaaccatctacaagagagctgttagataaaagctacaacctgaagatg
aaagcgtcgaggttatttcagtgaaatcagtcagaagttccctgtcatgccatttacagc
aagggatttggaggagaagagagagctcggtggactcggtgaatgttgcataccatgagctt
tgcagccctatcctgttctacatgagaaacctggtagttggctcacataaaaattcaca
gtgctgttgcataccgggtcagataggatcacaactcataactctccaggagctgaaacc
tgctaagacaatagaggatgaaacctgaaatcaagacctggtagccctccgtaaaaagca
agaaaaaaaggccggcggaaagaaaaagaaaaagcgaagaaaggtgagaagacacagaagactcatcc
caagctgaaccaatgaaaggagaatcaaattggctgaaatcttgcatttgcatttt
gatttgattcaattccaaagaactatttgcatttgcatttgcataacaagaatggcatggacagtgttgccttgc
ttgtggatcttgcggcatttgcataacaagaatggcatggacagtgttgcatttgcatttgc
tcttgcacacatttgcatttgcatttgcataacaagaatggcatggacagtgttgcatttgc
tatcaaaaaaaaaaaaaaaaaggccggcaactctagagttca

FIGURE 4 (continued)

SEQIDNO25

ccacgcgtccgcttggggatttagcaggttgtcgacaaagaaaattcattgttcctacgat
cacacaagtgcgtggtgtgcagatccgcttcgctaagggaaactcaaaagcccagttcg
tgtagttcatccaaagatgagttccagcaaaagggtggaaagtcttctaattcatcaggaa
agcagaaaagctatatgcgaaacaactactacaccaacgggtgatgatataatgttaggcgt
gaagatatggggttaactccgatcaaaatgatggatggatagtgtgtttctagaaagtccaa
gaacaagggtggaaagcagcagtgcgtgaatgaagcaatggatttctcagaatccactccaa
aagccaaactggaatgcgtaacaatattgttgatcatcaggacaggggtcttaggaataac
tggtccacacctaatttatcatcctcgaaaacctgctggcagagaatgctacacaccgacacc
cgctgcagttcctcctgcctgaagaatgggtggattggatctgtcgctcgttccaatg
aggaccatgatacttattccctgtcgatgtcaaggcttcctgtgaacatgatggagag
gataatgaatcggtttgcgtatgatgacagtgtatgagcttccgagtgtatgacgactt
tgcgtactcggatgttaatgaaatgagtcatgaggtactcaaggaaagtgcgttgc
agaacctttcaaattgtctgacagttgactgtactgagattaatgatccggaaagacag
tggcactgcctgcatgcaaagggtggccgggtcaattgagttccagggatacagtc
agtgtgaaccacgcaaaaacgaaaggatttagatgaaattacacagacaactgctcaac
tttggaggaagagactgcgtcgaggaaacttctgtgtacccctcagtcagtttatgga
agatgggggtggcggtgaatatgaagataagggaaatagtgtggccaccgaccgcgattatcgt
gaacacagtgcgtgagaaagatgaaatgacaagtggatttggaaatggaaatcaggagctgc
gtgattatttcagctttatgcgtcaaggcagcgcgaagctcatatggtcaccaaggc
catcggtatcagtgtgttgcattttggggactccctgtggatacatggaggctgtact
tctcagtgagcagttctgaaaaaggaaatgtatgagatgcattggaaacacaatccagttc
tctttatctggggaaaacgtaagcttatggttacatggcagagaaaagagacatggac
aactttaaccggcattcacatggaaatcaaggctgaagttcgagatgaggtcatataaaga
aactgttcaatccagcgtatgcagatgtcgaggataatcaacagctcatatggttcaaga
accaaggcctctaagcacaaaagcggctaaagctactgaagagactctctaagactggtgagt
gaaaagcaccgtcagacagtcgaagagaacaagattgtcagactgagaactaagatgcacca
tgaacggacaaggaaagatgaaatctagagcagttttatgatcagttgaaaatga
tttatgatgccaggactgctgaggaggacaagttgaaaagatacagcaggaacagcgtgag
atgatctatcaatctaacttgcacttccctcggtcgaggatcatcgactcaggcagagaa
agttgcgaaatttatcaaacttcagacaaggatgaaatgttgcggaaatggagggata
atctgataagagactcatgaaagatagggtagttcaatgagacgcacataacttgcata
tcggaagaggcagttgcacttgcagaagaattttgatctcgactggctaaagctgtatggagaa
gtactcatcaaagcaatctgagcaggtcaacagcagtgtatgcgtgtgaccctata
ctattcaagcgccgttttagctttaattctgtgaacttggattctcactgactttat
aatcctggctgtccatgtttgtatgatgctaaagaaaatgattctaata
tcctaaaacatatggcttgcactattgttagaaaaaaaaaaaaaaaaaaaaaggcgccc

FIGURE 4 (continued)

SEQIDNO26

FIGURE 4 (continued)

SEQ ID NO 27

ccacgcgtccgggtggaaacgcacgttgcattctctttcggtgacaagctcaaacgc
gcgtctctcgatctgagtgtgttttttcgtcaagttccggcagttaa
tgcggcaaattcaaatttagatgttatgcaatagctgcgtaaaggattgttttcaagca
gcacatattgatacacacattgtgcaaaggcaatttatcaactcattaaagttgaatgc
aactcgtagcataagttattcttggaatagtgtatatacagcaaggagaacgatgtgg
atactggagcaactgctaaaggaggacctgtcgatgtttcaccggagaaggatgataat
aatggtggttcgttagcggaggatggaaagatgtgaagatggaagactgagtgtggattt
aagcttagagggaaaagagccaccatggaggattttatgacattaaacttggcaaagtt
gatggacaaacaggttagcttattggatattgtatggccatggactctgcacagctga
gttctgaagaaacatctttgagaatctaatacagatccagacttccaaacgaacgc
agctgccataagtgaaacatacaacaaacagacatggacttcttagattctgaaaaagat
accttccgagatgtgttccactgcttcaacagcagttctagttgtaaccatcttatgt
tgccaatgttgagattcacggactataatatcgaagggcgaaaagcaattgtcttctg
aggatcataagccaaatcgaactgatgagagagaattgaaagtgccggaggtgttg
atgtggctggtacctggagagttgggtgtttagcaatgcacgtgctttggcaaccgt
atgttgaagcaatttggctgaacctgagattcagatcaagagatgtgatgaggaatt
agaactactcgtgcttgcagcgtggcttggatgtgttaccaaatgaggatgttatt
cacttgcacaacgcagaagaagaaccagaaggcagtgcttaggaagctaacagaaactgcattt
actcggggtagtgtgacaatattacctgcatagtgttgcattttcaccacaagaagggtga
accagaggggagccagcaaggttgaagaatttggatgtgcacatgcctttcctggtgg
aaggctgttcaatgtatgccggtgcagttgtgtacgtacatcacaggctgtcatttt
ttcatttgcattttgcattttcccgtcatcctgttaactgtgttattaaagggt
ctgcgttgcgtctgcatttgcattttctgttagaggtattgtctggataaaacttactgt
aaaacgttagttaaaagttaaaaaaaaaaaaaaaaaaaaag

SEQIDNO28

ccacgcgtccggaagaaaatggttgaattcatggaaaaggcttcaactccctcggtcagaa
gaactaccgtggaggaacgaaacacctcctccgtcggtacaagaacgtatcgagcgcg
tagggcatcgtggcgtagtattatctcatcgattgagcaaaaggaagagtccagagggaaacgagg
aacacgtaaactctatccgcgagtgatcagatctaagattgagaatgaactcttaagatctgt
gatggcattctgaaattgctcgatgcaaagcttattccctctgcagcatctgggtattctaa
ggtgtttacgtaaaatgaaaggagattaccaccgtattggctgagttcaagaccggtg
ctgaacgtaaaggaggctgctgagagtactctcaactgcctacaaagctgctcaggatattgca
actactgagcttgcacacatcccactccgacttggactggctttaacttctctgtgtt
ttactatgagatcttgaactctcctgaccgcgcttgcataacttgcataacaggccttgc
aagcaattgctgagttggacacactggggcggaggacttacaaggatagcacttgcatt
caacttcttcgtgacaatctcaactctggacatctgatgcaggatgtgggctgtga
aatcaaggaagatcccaaaccgtatgaagccaaaaattgaaggaattgaaactctctaattt
gctttcacttcttcgttattggaaaggactgattatcgtaatttccttact
attatggtttccgctagggggttgcatttgcattgaaatgaaacaactttatattgatgtt
cagaagttccatcttaatttgcgtttctgggtaaaaaaaag

FIGURE 4 (continued)

SEQIDNO29

ccacgcgtccgctactgttcttcatcgctatgccgtcagttccgcttctacttgactgaa
tctgccgcattggaaaggggatatctacacatctaactgcagaattttacataaacactgat
ggaaatgcagaagagatattctcaaataattcaaggtagcatttggaaaatgtcagatgata
tgtcattcattttcatccaattcttcaaaccatcagaccagtctctgcccacaaagatt
gctaaacttgaggcaagaatggtggcaaaaggctcatctacatctacatcccggacttgc
ctggctgccccagccaagttggctggcctggcctgctgacaatgttgcgtggacttgc
ctgtctctagtgtattgtatgatgataatggaaaggaaatttctcatacaagcaaac
actcagaagcggcacaactcgaggatgacaacagctcaacttcattgaacatgtggagac
agcagctgatactgtgaaaaagatagtagacaatacagacacaagcaaagtgggttcagatg
tgaatagacggaaacaaagccgtgtcaaggacaaactaattctgttagaggacgtggcc
cgagttagtgtatcagaccaagtcaacagcattctgtgtcaatggtagctcgagaactc
ttaccagaaggatggttgcaaaagagcaaattggcacatcgacagactgttgcgaag
aggagatcacttcttacggcaaaagttgtggcttggaggaagagcttaaaaatccgt
caagaggcatcagattatcaacatcagtgtcaacagctggaaaaggaaattgaaggatctt
agattatgagcagcagacaaagccaaagagaacgaaaataatattgttaatattctg
tttcaaaagctgagaggcaagaggcacatgaaagtgcgcacaggaatcttgcactggc
aacgtggagtaatcagagctggaccattattctgaggcctggaaagatggcaagcact
aaaggacctaattgtcagcttagaaacttattagaaactaaagaagacttgcacggc
gtaaattgctcaagaaacgacaaccagataaaagtgtggaggatgtggagggaggtttgc
caggaagaagattctctcattcaggatgagatctacaatctcgtagccagcatcaaacg
tgaggaagatgtgataatgcgtgagaggaccatgaaactagagaaaggacttgc
gtgaaatgaaacgcatacgtgatgaaagatgttctcatttacaatttgcattttgc
caccgatattccctttaaaccttggaaaaggaggatttagtggatgttgcac
cgacttggtagaccatagatgttgcatttgcataactggactaaacgcattttgc
aagagaagaagccaaagttatataccggcatgcaatcaggagttacaacatccacaagactt
gtgcaccatcacattgtcggtttggacattttgagatgacccatggggatgttgcac
tatcttggagtactgttagtggaaaggacattgtgatgcatttgcataacttgc
cagaaagagaagcaagaatcatcatttgcatttgcataacttgcatttgcataacttgc
aagtccacatcccttgcatttgcatttgcatttgcatttgcatttgcatttgc
catttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ggatggagactaacatcccttgcatttgcatttgcatttgcatttgcatttgc
ctaagcaagacacacttgcatttgcatttgcatttgcatttgcatttgcatttgc
ccaaatgtttggcaacgtcccttggcatgaccgtcacaagaagaataactaagg
aggacacaattattaaagcaagaaagggttgcatttgcatttgcatttgcatttgc
gcaaaaggatgttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
tatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
acttggacagagggtattggacgaggattgggtctcaaggaaattttgtatgttgc
ccatgtatgttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ttaggccccaaaatttggggcatttgcatttgcatttgcatttgcatttgcatttgc
tatatccgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ggtctgtatgttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
agtaaaacttcagatattttgcatttgcatttgcatttgcatttgcatttgcatttgc
ttcagttcatgttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
tttttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
gaacttttagcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ttgaaattttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
acacggaaatgaggaagataacc

FIGURE 4 (continued)

SEQIDNO30

ccacgcgtccgacgaaatccaaccgtcgaatctcaggcaacaggcggcagctcattcaccg
ctgtAACAAAATTcgagagaatggcaatggtagatgagccattgtaccccataGCCGTGTT
aatAGATGAACTTAAGAACGATGATATAACAATTACGGTGAATTCAATTAGGAGGTTATCGA
CTATTGcacgtGCCCTGGTgaggaaAGAAACTCGAAAGGAATTGATCCCTTTGAGTGA
aacaATGATGATGATGAGGTGTTATTGGCAATGGCTGAAGAGCCTGGTGTGTTATCCC
TTATGTTGGAGGTTAGAGCATGCTCATGTTGCTCCGCCGGTGGAGACGCTTGTACTG
TTGAGGAGACCTGTTGAGGGATAAAGCTGTTGAATCGTTGTGAGGATTGGATCTCAGATG
AGGGAGAGTGAATTGGTTATTGGTCGTCCCTTTGTAAGAGGGCTGGCAGCTGGTGAATG
GTTCACAGCTAGAGTTCTGCCTGTGGACTCTTCATATTGCTTACTCAAGTGCCCCAGAGA
TGTGAAGGCAGAACTTCGGTCTATTACAGTCAATTGTTCAAGACGACATGCCTATGGT
CGAAAGATCAGTGCACAAACTTGGGAAGTTGCTGACTGTTGAATCTACTTACCTCAA
GAGTGACATCATGTCATATTGATGATCTTACACAGGATGATCAGGATTCTGTACGCTTAT
TAGCTGTTGAGGGCTGTGCTGCACTGGCAAGCTGTTGGAGCAGGATTGTTGACAC
ATCCTGCCTGTCATTGTCATTCTCAGGACAAGTCTGGCGCGTCCGCTACATGGTGC
TAACCAGTTGTCAGAACTATGTAAGCTGTAAGGGCCTGAGCCACTAGGACGGATTGGTGC
CTGCCTATGTCGTTGCTCGAGATAATGAAGCTGAAGTTCGCACTGCTGAGGGAAA
GTCACCAAATTCTGTCGGATTCTTAGTCCGAGCTGCTATTGAGCATATTCTCCCTGTG
GAAGGAATTATCATCAGACTCTCACAGCATGTCAGATCTGCTTGGCTTGTATAATTGG
GGATGGCTCCTGTTGGAAAGGATGCAACCATTGAGCATCTTCTTCCAATTATTCTTCC
CTTCTGAAGGACGAGTTCTGATGTCGCGCTGAACATCATTGCAAGCTTGTCAAGTCAA
TCAGGTGATTGAAATTGATTATTATCCAATTCTTGTGCCAGCTATTGTTGAGCTAGCAG
AGGACAGGCATTGGCGAGTCCGTCTGCAATAATAGAACATACCTTCTATTGGCAAGTCAA
TTGGGCATAGGATTGATGATAAGCTTGGTGCCTTGTATGCAATGGTACAGGACAA
GGTTTATTCAATCAGAGATGCTGCTAATAACCTAAAGCGTCTGAGAAGAATTGGTC
CAGAGTGGCAATGCAGCATATAATTCTCAGGTCTGGATATGACTACCAGTCCACATT
TTGTATAGAATGACAATTCTTAGAGCAATTCTATTGCTGCTGACCTGTAATGGCTCTGAA
AACTTGTCTAAATTGCTGCTGTGGTTATTACTGCAACAAAGGATAGAGTGCCTAACATTA
AATTAAATGTCGAAAGGTGTTGCAATCCCTATAACCTATTGTTGACCACTCGTGGTGGAG
AAAACCAATTGCCCTAGTTAGTAGAGCTAGCTGAAGACCCCTGATGTTGATGTCGTTTA
TGCCAAATCAAGCACTTCAGTCAGTCATTGATAACGTCATGATGTCAGGCTAGAGAATATAACTGT
GGTAGAGTACTACAAATCTCTCTTCAAATCCCTTTGTTGAGGATTGCTCTCACAGAA
GACGCAAAAGAGAAAATGTGCAAGCAAAATGCATTCTGTTGAGCTGGAGTCGTATATTGTT
ACTAATTCTTTGTTGAGGATTGACATTCAAGAGTCTGTCAGACTAATGAACACCGAGTGT
TTTCATGTAAGTTACTGCCGTACTATTAGATCTGCTAAGCTCATGTTGCTTTGTTA
GTGTACTTTGGTGTGTTGAACCTACAACCTTACCTGCGTTATTCTAGCAGATTGTTG
CGTTACATTAGCGTTGCGTTCTCCTAGCCGATGTTATGTTGAGCAGTGCCTTCCGCC
CCCTCTCTTCTCAGGTCTTATGCTTCTATGTTGTTTATGCTGCCGATAGAATGTATGT
GGAACCTTTAGTACTTATTATTTATGTTGTTGGCTTGAAGATGAGCAACATAAA
TAATAAGAAAATGGG

FIGURE 4 (continued)

SEQIDNO31

ctgtacaaaaaagcggctggtaccggatccggatattccggatatcgacccacgcgtcc
gaggagatttagactgactcaatgttccgagattgattcaaccacaaggaaagatg
aatataatatgaatgttggattcatcatactcataatattaatgagatcctgccttgt
ctgacgtcagatccgaagcctcgacttcgttgactgctgacccatcgaaacgcgttcgttg
tgctgttactcagcttggcggtcccagcaaagctacgccaaggcgataatgcggacaatgg
gtgtcaaggactgaccctttcacctaaagagtacccatcgaaatacagactaggactt
acagctacatattcattagagagcccttggacttctggacttcctcagcaggccggcatc
ggacttgaatgaaggatatgaagtcaaggaggcattgagagctcagatggaagtgc当地
aattgcacctgcaagttgaagctgagaagcacttgc当地attcggcaggatgctgaacaagg
tatattagcatgctggagaaggcctgtaaaatgcttgc当地atcattggtagt
tactgaaaatgatcaagagacttgc当地aggatttagaacaaggacacaagttaggccctt
gtaatccacttggattatgc当地ccctcggaatctgctgatcttggatccatggccagaa
gaagttcccccagaatccatccacaattcaccgattgtccactgaaagctgcttaactt
gcatgagactcctgacttccctagaaggacttcacctggaggaagaaaacgaggc
cgaatggagatcaacacatgcatcaggatctggattactagcttaatgtcttct
ttcgctctgcttcaagttaatcgcttggattactagcttaatgtcttct
taagagatttagtgc当地gatttatctacagccattgattctcaaaactgcatattgc当地tt
ggaaatactgatggcccttggacttgc当地gatggtaaatgcaagctgatgacttctaactt
taactgc当地ccctgaacattaaatcctaaaaaaggaagaaaattgagatgc当地gag

SEQIDNO32

agcggcttgttacccgtccggaaattccccggatatcgtcgaccacgcgtcgaaagaagaga
aaaagatgggtgctgacaaggaaagaagcaaaaagtggaggaagagaacaacaccattgat
ggtagctcgttttccattgaaaaattgcaagaaatacaagacgagctcgagaagatcaa
tgaggaaggcaagtataaagtattggaagtggacagaactacaatgagatccgcaagcctg
tctatgacaacgaaacgacatcattaaagctatcccggacttctgggtgactgcttttg
agtcatcctgtccttaggtgaacctctaactgaagaagacaaaagatcttcaagttctaag
ttctattgaagttgaagactctaaagatgtgaagtggctactcgataaccttaacttca
atgcgaatccttatttggaaaatacaaagctcacaaggacctataccttccttgaagatgga
cccacaagattctgtacaacaataaaatggaaagaaggcatgggcattcctaattggatt
tgcacatgagaagaaaggaaacaagcgtctcatgctgaggaaagcttccatgttca
gtgaagtcaataaaaagatgaggatgaggatgaggatgaggccctagagattcaggatgaggtcgct
gacataattaaggatgacttggccgaacccttcacatttacaacgagcctgatga
agaagattttgtgtgacggaggaaaggacagtgaaggctctgaagacgaagagaagaag
aagaggaggatgaggatgggtgatgaagaatgaaggcagtaactgttcaagacccttatttt
gggatctcgcttcagcggtttaatcatcagggttaatgtctgtaaagaggcttgaatg
ttgccaagaacagaataactgtgggtgactatacctttcttcttgcattgtatggttataactt
ataagcaaaaatatctaattccggaggtccaaaatgtttcattaggctagttcgattatg
aagtgtttgtctggaaaaactgataatgttaggtattgagttatg

FIGURE 4 (continued)

SEQIDNO33

ccacgcgtccgcccacgcgtccgggcagctcattttaccgcgttaacaaaaactcgagaga
atggcaatggtagatgagccattgttaccatagccgtttaatagacgaacttaagaacga
cgatataacaatttaggaggttgaattcaatttaggaggttatcgactattgcacgtcactcggtg
aggaaagaactcgaaaggaattgatccccctttgagtgaaaacaatgatgatgatgatgag
gtgttattggcaatggctgaagagcattgggtttattcccttatgttgaggttagagca
tgctcatgtcttgcctccgccttggagacgccttgcactgttgcaggagacttgtgtgaggg
ataaggcggtggaatcgttttagaattggatctcagatgaggagactgtgtgatgat
tggttgtccctctcgtaagaggcttcagccggtaatggtcactgtctagggttcagc
ttggactcttcattgttactcaagtgcggcagagatgttgcaggcagaacttcggt
cgatttacagtcaattgtgtcaagacgacatgcctatggcgaaggctggctgcgacaaac
ttgggaagtttgcctaccgttgcatactgttacccatcaagagtgatcatgtcaatt
tgcattgttacacaggatgatcacgattctgtacgcttattagctgttgcggctgtc
cacttggcaagctgctggaccacaggactgtgtgcacatcctgcctgtcattgtcaac
ttctctcaggacaagtcttggcgcgtgcgatacatggtgctaaccaggatgtatgaactatg
tgaagctgttagggcctgagccacttaggacgattggcctatgtccgttgc
gagataatgaagctgaagttcgcatagctgcgcaggaaaagtccaaattctgtcggatt
cttagtcccagactagctattcagcatattttccctgttgcaggatggcctgttggaa
ttcacagcatgtcagatctgtttggcttgcattataatggggatggcctgttggatt
aggatgcaaccattgaacatcttccaatatattttccctgttgcaggacagactc
gatgtgcgcgttgcacatcatttagcaagcttgcatttgcaggatggcattggc
attatcccaatcttattaccagctattgttgcaggatggcattggcattggc
gtcttgcataataagaatacataccctgttgcaggatggcatttgcaggatggc
gataagcttggctttgtatgcataatggtacaggacaaggatttgcaggatggc
tgctgctaataactaaagcgttgcaggatggcatttgcaggatggcattggc
taattcctcaggcatttgcatttgcaggatggcatttgcaggatggcattggc
agagcaatttcatttgcatttgcaggatggcatttgcaggatggcattggc
tgtggatttgcatttgcaggatggcatttgcaggatggcatttgcaggatggc
tgcaatcccttatacctattttgcatttgcaggatggcatttgcaggatggc
gttagagcttgcaggatggcatttgcaggatggcatttgcaggatggc
aattgataacgttgcatttgcaggatggcatttgcaggatggcatttgcaggatggc
tcctcaaatttgcatttgcaggatggcatttgcaggatggcatttgcaggatggc
tgcaagcaaaatgcatttgcaggatggcatttgcaggatggcatttgcaggatggc
tttgacattcaagatgtgtgacactaatgaagaccgaggatggcatttgcaggatggc
ctgcactatttagatctgctaaatgcaggatggcatttgcaggatggcatttgcaggatggc
tgaacttcccacgtttctgcgt

FIGURE 4 (continued)

SEQIDNO34

tttgtacaaaaaggcaggctggtaccggccggatattccggatatcgtcgacccacgcgt
ccgagaaaattgcgttagagacactgagaagcagcagctcttcctcagctgtgtgc
ttaggcaaaagaataaaatggggcagacaaggaaagaagcagaaaagtggatgaggaaaaca
acaatgttattgtgaaaagctcattttccattgaaaaattgcaagagatacaagacgag
ctcgagaagatcaatgaaaaagcaagcgaactgttggaaagttagaacaagactacaacga
gatccgcaagcctgtctacgataagcgaatgtgtcatttagctcttctgacttctggt
tgactgctttttagtcatcctgttcttggtaacccctcactgaagaggacaaaagatt
ttcaaattttaagttctattgaagtggaaactcaaggatgtgaaatcggtcattcaat
cacgttttaactttaagccaaatccttatttggaaaattcaaagctctcaaagacgtataacct
tccttgaagatggacctacaaaaattacagctacaacaataaaatggaaagaaggcatggc
attcctaattggagttgctgacaagaagaaaggacaagcggccacgctgaagaaagttt
ctttacatggttcagtgaagtcaatcaaaaaggatgtggatgatgacgaaaatgagattc
tggacattcaggatgatgaggttgcgtgaaataatcaaggatgacttgcctaaacccttc
aattattttgaccatgagcctgatgaagaagatattggggcgatgagggaaaggacagcgg
aggctctgaagagagaagaagagagatgtgaagatgaagaagacgaatgaactgttgc
gttagaccttgcgtttgatttagttctcatcagtgtttcaatcatcagagttggctctgt
aagaggttcggatattgcagaaaaattgaatgacatatagtggactctaatttttagtt
tcagtga

FIGURE 4 (continued)

SEOIDNO35

FIGURE 4 (continued)

SEOIDNO36

ccacgcgtccggcgtatgtaatcttggatgctacttattccctttccctttagcc
caaactcaagaaggtaaaaaacaaaaattacaaaaagctggaatcttcgcagtttttat
ttaatttatttatcctatgttgaattaattttgggtcaatattcccaatttgttagtc
caatggagcctcggttggtaataagttccggcttggccggaaaatcggttagcggttttt
ggagagatctatctcggcctaattttcaactaacgaagagggttcaattaaagctggaaaa
tgtgaaaacaacaaagcatcctcaactattatacgaaagttgtataaaaactacaaggag
gaacttggaaatccccaaattttaaaatgggttggagtgttgaaggagattataatggcccttgatg
gatttgctgggccttagtcttgaagatcttcaacttctgcagttaggaagctgtctttaaa
gaccgttctcatgtcgccagatcagatgattaatcggttgaattttcatgccaatctt
ttcttcatcgagatataaaacctgacaactttctttaggtttagaaagacgtgcaatcag
gtctatgattgttggctggcaagaagtatagagactcatcaactcatcagcatat
tccgtatagagaaaaacaaaaatttgcacaggaactgttagatacgcaagcatgaataactcatc
ttggcatttgaacaaagtcgaaggatgatttggaaatcgctggttatgtttaatgtacttc
ttaagaggaagtctcccttggcagggtctggaaagcaggactaagaaacagaagtatgagaa
gatcagtgagaagaaagtatcaacatcaatagagaccttggtagggatatcctgcagagt
ttgcattcatatttcatactgtcgatcactaagattgtatgataaaaccagattatgttt
ctgaagagaattttccgtatcttgcattcgtaagggttcaatttgcattatatttgc
ctggaccatttggaaatatcagcaatcacagcttgcattccatctcgctctgg
gtactgttggccaaagctcaggatgcctcatgtcttgcattttgcattttgcatt
ggagatgaagggtcgaccaactgggttgcattcatcaaatcttgcattttgcatt
gctgcatttgcatttgcattttgcattttgcattttgcattttgcattttgcatt
tgggtaaagagttatccagttctaaattttccggtaatgttgcattttgcatt
gtctctagcatcccgagacccagtgatttgcagggttgcattttgcattttgcatt
aaaagatgtcaagccccgggaccattgcgtaaagtatccagtgctgcacggagggttgcatt
ttgtgtcctcagatcacaagcgcagctcctctatcaaaaatgcacataaagaatttagag
tccaccgtcaagggatagagggttgcattttgcattttgcattttgcattttgcatt
gctttgtctcagttctccgttactgttaatgttgcacaccaacttggggagttgcatt
tgatatttagttgtcgtcaggatgttgcattttgcattttgcattttgcattttgcatt
aatgcacccaaagcacattaaaggatgttgcattttgcattttgcattttgcatt
atgtctgtccatatacgatgttgcattttgcattttgcattttgcattttgcatt
tggttattgttgcgttgcattttgcattttgcattttgcattttgcattttgcatt
gtataattgccgagaaatcatgtacttagttgtttaaacatgagacaaactgttattttgcatt
caagctactttaatatcaaaaaaaaaaaaaaaag

SEOIDNO37

Ccacgcgtccgcccacgcgtccggaagaagaagaagcctgctgccatgctccgagaaagaagc
tgctcttctcaccgttccttcagattctcctacaccttatttgacaagatcattaacaaggaaa
tcccagcaaacattgtctacgaggatgacaaggtagcttcagagacataatccccaa
gctccgggtgcacattctgcttattcccaaggtcagggatggcttactggactgtccaaggc
tgaagaaaagcattgtgaaattcttggtaacttcttacaccgcaaagcttgtctaaac
aagaaggtctgctcgagaatgggtcagacttgtatcaatgatggccctagtggatgccaa
tctgtttatcatcttacacccacccatcgaaaaacactatcgtctatgttagcgttgaagaatcaagctctaagctc
gtgcacttactgaaaacactatcgtctatgttagcgttgaagaatcaagctctaagctc
gtcctatgctctatggagtgacaaataggactcattccgactatttatattgatcatcaata
agaggqattctctgaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

FIGURE 4 (continued)

SEQIDNO38

ccacgcgtccgcaatattttgactaatacactgttctgttcttacaccaattctttcttc
tctaataataacgtgctgctaagtctaaagctcctctttggagctccaattaactccaaac
tacccaaaatccagagcaggttaaccaaagaatgggggttggaggacgtgaagtggcgatttc
atggatggagtggacaagaatatgtcaattgaagaaaatcaataactgcaatttcc
cagttcgctacaacgataagtattacactgtatgcattgcctctggtgattcaccaagcta
gcataattacagtatattgttaggttcaattgcattgcgccttgagaagaaggaaagctgg
ggctgttgcgtttacataatgactctgggtgttggctccatatcgtggcttaggtattg
gcaaaatgttggtaaccatatcctcaatcttgccttgcacgagaacgttagcgagatttat
ttgcattgtgcacacaattaacgaagatgccctcaattctataagaaatttggatttgaggt
tactgataaaatccaaaattattataacaaacataacccccaccagactgtttgtcctgacca
agttcatcactcaaacgaagaaatagatagtctcagctacttgcattgagccttggtcaaacc
cttcacattatcttqaggttctgagcttctggttctagtttgcattatgatgaaatg
tgccacccattggatttttagtgcataagccctttctgttctatcttgcacaaatctgcaacaa
catcaaagttaatgattccctgtaatagaaatagtgcagttcaatgcacaaatccgagtt
tggttatgttagatcagc

SEQIDNO39

gatatcgtcgacccacgcgtccgaaagagaagaatattaaatagcacaagaaaaatggaga
gtgctaattgcatattctacattgccaatggaaaatgttaacgatgttggcttatttttc
atggacgaggctaactttgaacaatttattgagctcattaagggtgaaactgctgaccctat
cgtgaagtttgcggcaactatgactgtgaacacattacaggttgcctcgactgatg
tccaatttgagccaaacaccaatggatatcttgatttggatgtctacaacatataatcct
atttcacttttctccctccccggagaaatgaagctccggagaagaagaagaggaggagga
agacgacaatgattacgaggaatcttctggacaacaactaccaccatgactatgtgc
cgccaacgccaacaaagaagagcacgaggactgaccgatcaagaactttaattccgagcga
aaaagaagaggaagaatgaaagagaagctttatgccttgcttccttagttctaatataaac
aaagatggataaagcctccattataggagatgcaataactatatgtacaaggactgcaaacgc
aagcaaagttactaaaggcagaaatagcaggtcttgagtcttcctcaaatgaaatgaaat
aatccatttcagaataccaaagcaatgaaattgtgactcattatcctgcaatcaagaggat
atcgaagatggacattttcaagttaggagaaagaagctttacgtgagattgtatgcaaca
aaggcgacaagttgtggctctttcaagcttgcgttgcattttctggattcaatgtt
caaagctccaacttggctacttctgccatgattatatttgcgttcaactttaatgtgag
cgaatgtgaggttagacatgaacttggccatttgaagctatggatagcttagtgctttctta
atcaagggttgcattcgagacattaccattggcttaacgatgttgcattattgttaattgtgcag
agtttaaccgtcaaaaagatgagaaatgtcattattatcggtcgtcatttgtaacttttg
attatttagagtacgttattctaaaagatgaaatgttgcatttgcgttgcattttgcgcac
actgtgtacatgtgaccgacctaattgttattacgggttgcattttgttactactactttgg
aatcaaaaacagtcatggcgccgc

FIGURE 4 (continued)

SEQIDNO40

ccacgcgtccgcttccacattctcaactttctcttctaaaacttttccttttcta
gcacacagacccatggcatcgccgcgaggagaacgtgtaccctggcgaagcttgctga
gcaagccgaacgctacgaggagatggtagagttcatggagaaagtgcgcgcggcgacg
acgaactcaccgtcgaggaacgcaacccctccgtcgctacaaaaatgtatcgagcg
aggcgagcgtcggtggcgcataatctcatcgatcgagcagaaagaagagagtcgcgtaacga
agatcacgtggcctccattaaaacccatcgatctaagatcgaatctgaattgacttcgatct
gcaatggtatccttaagttgctcgattcaaaactcattggcaccgctgtaccggactct
aaggtttctatttggaaaatgaaggagattattacaggtacttggctgagttcaaaaccgg
agctgagagaaaaagaagcccccggagaataactttcggttacaagtcggctcaggatattg
ctaatgttgaatttagccccatcacatccaatccgattggggctagctctcaatttctcagtg
tttactatgagatattgaactctcctgaccgtgcttgcattctcgccaaacaggcattga
tgaggctattgcggagcttgcacaccctgggagaggacttacaaggatagcactttgatta
tgcaacttctcgatgtataacctcactttgtggacctcgatatgcaggatgttgcactgat
gagatcaaagaaccatcaaaagcgaggagcagcagtaatgtgagtgaagcctttgcitta
ggattgaatccatatggcataactttgcattgtatcgaatttgcgtttgttagttctga
attccctgaattgtatcacctaaaagcactgtttcttgcatttgcgtttcagcaaagat
tacaaaaatctcgatattccctgtattttggatgcctcagtgaaactctttatcgat
gaaatgaatgcgtt

SEQIDNO41

ccacgcgtccgccccacgcgtccgctccatgtttcattacttggagttgggtgctaaaaca
gattaaagcttagctgtaagcttagtactgttagttttgttaatttgcataaggaaactaaagag
tcaaaaaacagtggatccaaggcatggaaagaggggactttcatccaatgaaatggaaatgg
aagagaaaagagaataacgataatattgtatcgcctcaacttcaagaggagcttataatata
tactcagctcgatctcagcatgacatgtctgtatggttctgccttctcaagttattgg
aaacagtaccaccattttctctgctaatgtactccattaccctacccatctgcgt
tagctctccaaaaccatctcaatcttattgaggatcaaggaaattcgagaagaaaaaggat
agaggagtgaggcaagaccatggggaaagtgggcagccgaaatccgagacccaaagaaagc
agctagagtatggcttgcactttgaaactgtgaggctgcagcaattgcctacgatgaag
cagctctcagattcaaaggcaacaaagccaaactcaacttccctgaaagagttcaaggcaaa
ttccaaatcaccttactactacttagtcaaaatcatcacttgcctgataatattttcaaca
acaatataattccaaactagctccaataataatcatccctccctgtcaagaacattatccct
gttacatcactatgctcagacttctcagatgtacagcaatattactgattttttcgat
atctcgccaaagtataatcagcagttatctgcattttgattttgcgcaatcatcatctaa
cagtagtattatcgaaattgcgcagcttcttgcattgcagaggcaattacaatcaagttacaagc
aagaagaagaagtttaatgagattttcatcgccattttgtactacttcaagctcatctgga
cctcatgaaagtaactggaaagagttgaagatagaagatcataagttcattcccttagtatt
aagagatacgaagactgaaagaagtttatgagatttccgtcgattttgcgtttagtt
tggttttactggggtttctgcctctgatttgcatttgcattttatcgat
atataattatcatgaattatggaaaaatattgggtgtggttatgtgtttaaaaaaa

FIGURE 4 (continued)

SEQ ID NO 42

FIGURE 4 (continued)

SEQ ID NO 43

SEQ I DNO 44

Ccacgcgtccggaatcgacaatgaaattcagccgcgcattcaatgccgcttcagttctctta
gttcttcttattaccatagttacggctaagaagtccggtgatgttacgaattgcagat
cggtgtgaagttaaagccaaaatcttgcgaacttaaggctcacaagggtgatagactctcag
tacactacagtggaaaacttacagatggactgtattgactccagctatgagaggaatgac
cccattgagtttagctggaaagtggtaagtgattaaagggtggatcaaggacttcttgg
aatgtgcgtggagagaagcgaaagttgaagatccctgctaaacttggttatggcgagagtg
gatctccaccaaagattccagggtggctacacttgtctcgacactgagctggtgctgtg
aatggaaagagatcagcagctgatagtgaactgtgatttaaacgatgtctctacactcttcat
tagcgacttctaaatctatTTTtaggttatcttatagttatattgcttcttttataatt
tagataactaaagtattggctgctggcaaaatgacacactcaagtgtgtttccccccccatca
gtttttccctctgctaaagttaaagtggatggacgatgaactcccaagatgggtttgcacatca
ttactttaaaaaaaaaaaaaaag

FIGURE 4 (continued)

SEQIDNO45

FIGURE 4 (continued)

SEQIDNO46

ccacgcgtccggatgtgtgcagcaccaggcagctggagtcaggtttaaGCCGAAG
ttatatctcccagcaaagtgtcatctgataccaggacggcgatctaccacttattgtggc
tattgacttacagcctatggctccattgaaggtgttattcaagtcacagggtatataacaa
atgctaaaacagctgaagtggatttagacatttgacggatgcaggctgacattgtgtc
tgtatgggtgcacctgtatgtacggacttcatgacatggatgaattgttcagtcagccagct
gatattggcgggcctaaccattgtcactcacatactaaaaggaggcggaaagttcatagcaa
aaattttcgagggaaaagacacaaggccttactgtcagctaaaactatttcacagaa
gtgactttgctaagccaaaagcagtcggattcttagcatagaggcattgcagttgcga
gaattactctccacctgtggcagaggattaatgagaaagatcttcatgcgcatttggaaaagattg
gaagtccatctggcagaggaccttagtgcatgtgcattggctggaaaggcctaataag
gtgtatattccattctggctgtggagaccttagcgggtacgattcagaccgttcatatcc
acttcctaaagctgcagatggAACCTATCAGTGTTCAGTCCTGTCACACCTCCATTGCAC
CGCCATATAAACGAGCTCTGAAATGAAGAAAAGCGTCGAATCAAGGAATCCAACACTAGAC
AAGCTTCTCTAGCTCTAAATCTTACCATCCAGAATTATTCCATTCTGTGACATTGAAAG
TCGCTTATACGTACCCAAATGTAAGGACTTTATTGTTAACTGCACCTGCAATTAGAAT
TTAATGTTTTGTTAAAAAAAAAAAAAAGG

SEQIDNO47

ccacgcgtccgtgcagaaatggcgactcgttatctgactcggttcatttactgctcttc
tcgctcatacacttctttctctctacacccctccctctctttttctcc
tccgtctcgaccgcttattggcgacagctgtcaacccctccgcagcgtctccggcgta
gcaacccctttcgagggtttgcactcgccaaacgtcgctgtctttaaatgacccgaaccc
gaactggccaaccgtccccgaaggagacgtctacttgatggatgtgatggact
ggcttggatgtgatggagaaacctgagggtgatcctaccagagatgaaatcatcgatagctac
atcaaaactctggctaaagtgttggaaagcgaggaagaagcaagaatgaagatatactgt
ctcgacaagacattactatgcattggagcttgcattttatccgaagaacttattacaagctaa
aagaactgcccagggtagctgggtcttgcattttatccgttgcattttatccgttgcattttatcc
tacggagggaaacctttatcaatggcaggctgtaccatacgacccaaagtaccacgagga
gtgggtaagaaacaatgcccggactatgagagagacaggcgcaatgaccgacccctcgtaact
ttgataggtccagaaattttgagagaagaagagagatgcagaacactggatccaacatgggt
ggtggacccatccaaatgacgaatgcggccaaaccttgcacatgggtggatgcagcgcctaa
catgggtggaggcatcgcctagcatgggaggaccacagcggccaaatatgggaggtgcac
ctcataactacgggtggagcgcctccaaataactatgggtggagcggccaaacaatccaaataat
tttcaatacaatagtggacaaagcaacggaggcatgccttaccaaacaggtccaggacccaa
ccagaattatgcttcaatatacatctggtgaaacccttatcagaatccaaacatgcctggaa
gagatatgccccctccaaatcagaactatgctccgaatacggctggaaacccttatcag
aatcaaaacatgcctggaaagagatatgccccctcggaaattatcaataggctgatata
gtatgaactttgttccagagtctgtttcagaaatgagaacatagctatgggtgtc
gataggatgttgcgtgtatagttgaatgtgcaaaacttatatgtttgtgagttatgc
atgtcaagggtttctcatcctattgcaccccttatgttgcacatgcctgtcaatttcct
gatgagttactagcctgaccaagaatatgttatgtttaccatgttgaatgttgc
cagggcctcattgcaggtactgttcaaaaaaaaaaagg

FIGURE 4 (continued)

SEQIDNO48

ccacgcgtccggaaatggcgactcggtatctgactcgcccttattcactgctctctcgc
ccatacacttgtcttctctacaccctccgcgttatctttctctcctcc
gtcttcgaccacttatcgccggcgccgtcaacccctccgcagcgtctccggcgggagca
acccctttcgagggttgcactcgccaaacgtcgccgtcgtaaatgacccgaaccggaa
ctggtccaatcgccccccgaaggagacgaccctacttgatggatgtgatttgagcactggc
tttgtgtatggagaaacctgagggcgatcctaccagagatgaaatcatcgatagctacatc
aaaactctggctaaagtgttggaaagcgaggaagaagcaagaatgaagatatactctgtctc
gacaaggcattactatgcatttggagcttgcattccgaagaactttcttacaagctaaag
aagtgccgaaggttagctgggtgcttcctgattcctacctggatgtaagaataaagattat
ggaggggagcctttatcaatggcaggctgtaccatacgcacccaaagtaccatgaggagtg
ggtaaagaaacaatgcccggactaatgagaagaacaggcgcaatgaccgacccgtactttg
atagggccagaaatttgagagaagaagagagatgcagaacactggacccaaatgggtggt
ggacccccaacatgacaatgcgccaccccaacatgggtggatgcagcgcctaacat
ggcgaggcatcagcttagcatgggaggaccacagcagccaaacatgggaggtgcaccc
ataactatggtgagcgcctccaaataactatggtggtgcctccaaataactacggtgga
gcacccccaattactatggtgagcgccaaacaatccaaaccaatttcaatacatggtg
accaaccaacggaggcatgccttaccaaaacaagtccaggccaaatcagaattatgctcaa
atacatctggtgaaacccttatcagaatcaaagcatgcctggaaagagatgtgccccctcca
aatcagaactatgctccgaatacggctgacagaacccttatcagaaccaaaacatgcctgg
aagagatatgccccctcaaaatttatcaataggccattgtatatgagtagactttgtatcc
ccagaattctatttcacgaaatagtaaacagttagccgt

SEQIDNO49

ccacgcgtccgcaaaaccctaaactttcacccatcaaaccatcaaaatcctctcgcatct
cttagtaatggctaccgctaactccttttctcacctgtatcttccccttcaaaccatgt
tccccctaaagcgagtaggtactcacaatggtagcttccattgagatgaagcttgggtgct
tcattgttgcgtttacaaaacaagtttacaatgctcagattgtccgtactcgcgataaccagg
gtgttggaaacgcgttgatgcgggtgcttgcgttgggtgggttatgatcctagtcgagacc
gttatgatcatcaccaaaaggatttcaagaggtttggacatgtttcactactaagctt
agcagtgcgtggcttgcgttacaagcatttggaaaggagataattgcaaaaggagctccaagt
tgatgaagaacatccggatgttcataggttgccttgccattacaagagcttcatggagg
caattgtatgcagtcgacaatggaatcaatcagtgacgatacagaccagtccacccagatatgt
aataatactcattgtcctcacgagttggaaagactaaacttggactggattgaacctgatca
gtcttctgaaaaggagaatgaagcttgcacgttgcatttttttttttttttttttttttttttt
tggatcggtccgcatttcatgttgcatttttttttttttttttttttttttttttttttttttt
cttgctgcaagacacaagattgtatccttagtggagagattgttagtttttttttttttttt
gttggaaagcttcatttgcgttgcatttttttttttttttttttttttttttttttttttttt
ctttatcatcaggatgtatggagcaaaaggatggcgactgtcaagctgtgggttagctcctgac
agatttgagagcaggaaagccctccagtcagtggttgcaggtttaagagatgtacttc
caaggaaaacaggaattcctggctgtgtttttatccacatgagtgggtttagtggagggaaatc
aaagttatgaaggagactcgcaatggcaaaaggctgttttgcgttgcatttttttttttttt
ttttataatggatttgcgttgcatttttttttttttttttttttttttttttttttttttt
gacatcaggatgttgcatt
ctatacacaaccaggcagacagtt

FIGURE 4 (continued)

SEQIDNO50

SEQIDNO51

gttttacaaaaaaaggcaggctggtaaccggccggatattcccgatcgatcgaccacgcgt
tccgcggaaagattctcatgcaattaaccgaatcgtaaatttcctctaaaataaaagt
tctccggaaaatgtcattcatcgatgaattcaagccaatatagaagctcttccgaaccatt
tacggaggaaatatgccttattgcgtgatttagataaaagtctgcaaggagtgccagaggcaa
aatgagcaacgttgtgagaaagaaatagaggatgatacagcgtattaaggctggtaacgt
gacaccagactcttcaactaatcaaattctctgatgatgcattggatgagcaaaagcatgca
tccgaattgctgatgagaaagtgcattagcttctcaggcatatgatctggtagacgctcac
attcagcagctcgatcagtaactgaaaaatttgcattagacttgcggagagaaaagagatgt
tgctgttacttgcactcctgctaccactgttgcggaaaataatggaaagtccggaggtctg
gtgaaggttaagggaggcgcaagaaaacacgtcttgcattacagcagcggcagctacagccact
gcagcagcagcagcaacaccaactggaatggattggatctacactgttgcattacatgaaacc
aacatattgttctgcaatcaagtttagctatggtaatggttgcgtgcacaatctaatt
gcaaaatagagtggtttccactacggctgtgttgcggcttaaagaacacagccaaaggaaaatgg
tttgcgcggattgtgcaggaacacaaaagaagcggaaaggcagatgatgatgatgatgaaagaa
aataattcagttactgatttaagacgtttaccaccggaaaatttatgttagataactgtac
ttctgtatattgttagccattattaacaagtactcttgcattctaattgttagga
gggaagtacaataagtcaacaaaaattactcttgcattatgttagactataacgaacaaaat
aaactattgtctttaccaatcaacatattgttaatc

FIGURE 4 (continued)

SEQIDNO52

Ccacgcgtccgcccacgcgtccgttcatattcttcttctgcttcattgttattgtta
tagaaaaaaaaatccaagaatggagcagttcaagagggtttcggttcgtcctacagattca
gaacgacttatgtttgtgagattcattgctaaacaagagatgaatgattctggatttat
cacaacaaacatcgacgtctatggcagagaagaaccctggaaattacaatcacggcgtat
cctgtggtaatgaagataatgcggactacagcagtaactatcgctatttcattacaaagctg
aagaagaaaaacaaggcgaggcataatctagaggtggaaataaaggagttggaaacaaca
agataaggtaaatcagttcactacaaaatacggaaattcatcttctgtggatttggat
gcaaaaagagcttgttacgtgaataaacatcagtgtctataatcagagcgttggacattgg
ctaattgaaggagtacgagcttctaattgttattcttcagaattcgacgaagattgttagaga
ttatgttcttgcattcaaaaggaaagtcatgttctactgattatattgagcggccattgg
caagggtgcagtatcaagtgaatgatgtttggggactatatgcagagcaattcagggcattat
gtggaatctgaaacggacatgacgacacagaacgaggtgcccattagaagtcttgatta
tcaatttagaagtcttgggatgaaaaggacttagctgatttaattggatgttatgat
gcctgtggcgatcagacggtgaatattgtcgagcagcagaggaaccagaggtcagttatta
ataagagtgtatgaattctatcagatgtggcacaaaacgaagctttgagttctattgatta
actgtatagtcatattcttggtagatgatagagattgattaacaatggcatatgtcccact
ttgtagaatggaatttaagatagtagtacatctatatactttgtataacagtatggcgcc
gcc

FIGURE 4 (continued)

SEQIDN053

ccacgcgtccgtctatctaagcaattccgtagttccaaacacggctaaatcagattc
gctttttcatctcaaattctactttttgttgcctcgcaacttggcttagatccttc
atcacgcttgtaactgcttcactcaagctattcacgatgcgatcaatgcata
aaaattcgaagtgcggaaagaaatggagaaggagtacatgattataggcatctca
attggagtgtgataggagtgttttagctatacttgcattttctgctttaggtaccat
gaaacgtcctcagataggaaatgcagttctaggaggcgtccactattcctattc
atgggtgctgatactgtacagtattatcagactcttcattgttacagagtcac
actatccagaatggcatgtcagtgtggcttggcccttaggaaggaaatgttgc
ttccggatactcgagttactcctacaaggattgcagagagcaacctacaact
tgattggcaaggcccataaggattgttataaggctcagatgttactggtagac
gctgtcaaagtgcgcactgattctaaacaaggagagaattccaaacagaggcat
gttactggaaaggctacatcatagaaacctggtaatttggatattgtc
gtcagcatatgcttatctacgttacatgagcagaggcagttggcttc
gaaaagctgaacccttgcaactgggatttgagagttcaaattgttgc
cttagagtatcttgcacggggcagttccctcagggttgcatttggatatt
atattttggatcagtcaatgagagctagggttgcatttggcttcaaggaa
atgatcagtaaacatgtatccaacatccgtgaaacattcgat
atcaacttagtcattcactaagaaaagcgatgttacagttgggttact
ttattgttgcatttgcacgggcatttgcatttgcatttgcatttgcatt
acagatggaaaagggtggatgggagggaaattgcagattccgttgcatt
gcaagagcttaatgatgttagctgcacttgcatacaatgttgcatt
ggcctccatgagggacattgtcaggttctgtcaaggatactt
aagcgtcccaagcgttttcatctgcaacagcagaggatccat
agattatcgagtcataactctggacccgcacgaggaaatctat
catgtgaagtttgcatttgcatttgcatttgcatttgcatttgcatt
ctttcttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
ggcgttgcattgggtactttaggtatgttgcgttgcatttgcatt
tttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
ggtaaaaggccagatcagcctttgtcaattctatgaaagttcat
gtgcacgg

FIGURE 4 (continued)

SEQIDNO54

ccacgcgtccggccagcaaggcacagtcgtccacaatttagatattgatctgaatgtaccagatg
aaagaactttgatgaaataaattctcgagattctgcttagagttgatctctccattggac
catatgactaatcgtgctgactgaagaatgaagaatgattctcctgctgttcgctgttc
tgaggactcgatcttgcattaaatagagttgatgaaacctggatgttagggcagtgcctg
tgagtagcagtagtagattggatggtagtttaccccaaatacatcatcatccattggc
ttgccaactggggaggtgaggaggacttgcattaaataatgggcctggatgtgattc
cagcgcagaacacagttttattccacgataatcatcagggaaagcatgcgttccaaactgcctg
cttctagcctcagactgaacaatccagaaatgggaatcttcttcttgcattactcctgg
aatacttattcaactgtgacacttccatcaatttgcctgatcgtgtggagcagccgcatt
ccaaatggcacacactggcacaacgaatattgggcctcctgctgctggatctccttca
ccgcggatgttacccggagttcagttgtcatcatcgcctgccgtgccttaccatcctcc
cctttcagtatccatatattccttcggaaacgagctcccacttcctctgcaacatttc
agttggatcagcttcttcgttagattcttcgttgcggcgtgtcatcatacgccttgcatt
attcacagttgtgggtcccggtggcgctgtgtcatcataatccaaggccttatatggtt
ggacttcgtacagtagcagcaacggtaccatggatcacaatagaaaatggggaggcagg
tctggatctaattgcaggccctggagttggacatggaaggagagaagagtcggatctt
tgtcggcaaggcaactctctgttgcgggttccaaagcattagcagacgagcatggtagatg
tatgctgtacctgggggtgttgcagggaggcctgagggtgggtggacagttagaa
cttcagattcaagcagtcattgcactaagatctgcaatctggatattataagctactgg
ggatggacttggctaactcctcaaaactctcagttctggcatgctcctgtgggtggcggt
agttagcaatttgcattttgcagactgcactttggtagctatattctctgggtggatgcag
tgggatttccatgggttgcagactgcactttggtagctatattctctgggtggatgcag
atgagtttccctgttagatatttaactgttggaaagcttgcatttgcatttgcacccagg
ctggggataaatcaatgttattcctgtccaaattattgacaatggaggccttgcagact
gaatcaaacggaaagctttcttgccttgcatttgcatttgcatttgcacccgtgt
tcttgcctttctgtcctccttgccttgcatttgcatttgcatttgcacccagg
tggtactaatgcattcatcaggcatgttttagttgttgcggcatttgcatttgcacccagg
aatcggtcaacgttagttgttagtctcattcacagatgatagaactcttgcatttgcacccagg
ttcaatgtgtgggtgtgtgtctgttttgcatttgcatttgcacccagg
ttgtgagcaacgaaaagacaactctgttttgcatttgcatttgcacccagg
ttgcatgggttaaaaaaaaaaaaaaaaaaaaaaaag

FIGURE 4 (continued)

SEQIDNO55

ccacgcgtccgcacaattcttctacagtacaagaaccaaaaatggcgagtcctaaagtt
ccaacatctgttccagaaccttatgaagatgctgagcaactcaaaaagctttgctggatg
gggtacaaatgaggcacttatttagattctggcacatagaaatgcagcacaacgcaagt
taatccgagaaacttatgctgcagttatggagaggatcttcataaggacttggatgctgaa
ctgacaagtgatttcagcgtgcagtgcattctgtggactttgagtcctgctgagcgcacgc
ctacttggttaatgaagctaccaaacgtctgacttctagcaattgggtatcttggaaattg
cttgtacaaggcttctgatgatcttttaaggcgaggcaggctaccatgctcgatacaag
aaatcacttgaagaagatgttgcattcacacaactggggattccgtaaagctttggttcc
tcttttaactgcattcagatacgaaggagaagaggcgaacatgacattggcaagaaaggagg
caaataactacacgagaagatctctgacaaggctacaatgatgaggagctcatccgaatt
atttctacttaggataaagcacagctgaatgcaacattcaaccactacccgtaccatgg
cagtgaaatcaacaaggatctggaaactgattctgatgatgagtcatttttttttttttttt
cagcaatagaatgttggaaaaccccagagaaacactttgagaaagttctcgattggctatc
aagggtacaggcacagacgaatgggaccttactagatgttgcactactcggctgaagttga
catggAACGTATCAAAGAGTACCATAGAGGAACAGTGTCCATTGGACCCTGCAATTG
CTGGAGACACTCAGGAGACTATGAAAGGATGCTCTGGCTTGATTGGCATGGAGATGCT
TGAATGGAAATATGTGTTCTAAGATTGGATAAGAAACTATTCTTAATGTGAAGTTGAAT
TTGTTGATGATGTGTTGGCATGTATGCCAGAGTTGGTTGCATTATATGGGATTAAATA
ATCCAGGTGTTGTGTTGGTTAAAAAAA

FIGURE 4 (continued)

SEQIDNO56

ccacgcgtcggataacatcattatcttcttccttcttccttcaccacaatt
ctcaactccctttcgctcttcctccaacttcaatcccatttcaggaaaaagctgc
atggcttcaattcagcagctctgccacagctacagcttacaaagctgcatacccta
ttcccccttcctcaagcagcagcagcaacactgctgttattccctcaaattcctcaa
agcttaccccttccctttacacccacccctcaaccctttccactcaccaaca
actactccttcaccacccacccctcggtcactgtccgcgtcacgtggcaaattoga
gcttaaaaaaacctcacgtcaacattggtaacaattggccacgttaccatggaaagaccac
tcacagctgcttgaccatggcgctgcctctatggcaactccgccccaaagaaatatgac
gaaattgtatgcgtccctgaagaaaggcgcttgttattactatcaacactgcccactgtgga
atatgaaacggaaaacagacattatgcacacgtggactgcccgggcatgctgattatgtca
agaacatgattactggtgctgcccattatggatggcaattcttggatgtcaggtgctgat
ggcccaatgccacagactaaagagcatattttgttagctaagcaagttgggtccataat
ggttgtttcttgaacaaacaagaccaagttgtatgatgaggatcttggatgtcaggtgctgat
tggaggttaagagaattattgtcaagttatgatgatgttccctggatgaaattccttattttct
ggttctgcacttttagctttagaggctttaggtatggctaattcttagtattaaaagggtgaaaa
tcaatgggtgataagatttatcaattgtatggataatgtttagtgaatataatccctatcccac
aaagacaaactgaattgccttcttgcattgtatggctattgaggatgttctcgattaccgtaga
ggtaactgtggcgacgggagagttagagagagggactgttaagggtggaaattgtttagt
agttggattgaaggatacttaggaataactacagtgcacagggtttagatgtttcagaagattt
tggatgaagcgatggcgaggataatgtggattgttgttagaggatattcagaagattgt
attcagagaggatggtgtggcgaaagccggaaacaattactccgcacacaaagttgaac
tttggtgtatgttgtgaagaaggaagagggaggaaaggcattccccgttcttgcgggttata
ggcctaattttacatgaggacaactgtactgtactggaaagggttactgtgattatgatgac
aaaggagaggaatctaagatggtcatgcctggcgatgtgtaaacatgtgtttagctt
catgccgggtgcattgttagcaaggatgagggttgcattcaggaaaggaggaaagactgtt
gagctgggttattcagaaaatcttagaatgtactgtactgtactgttgcggatctctttcaca
tgcggactttccattgttagttacttaatccattgtcatatatgcacttcttgcgggttact
tttattatgtcttagaatcttacttttagtagaaagtatcctgtttaaacaccaaattctact
gaactttggattttcctcagtctcctttcattttccttgcgtttagaaaggatgaga
acatttgcattgtcactttatataatttagaaacaaatgtgcactgtttaaaattaag

FIGURE 4 (continued)

SEOIDNO57

SEQIDNO58

FIGURE 4 (continued)

SEQIDNO59

FIGURE 4 (continued)

SEQIDNO60

ccacgcgtccgatagatatacagaagagagagagaggggtgggtgtgaatatg
gtataggccctgagaccctgaaaggcatggaagtgcgtggccatgctgaggcaactcattg
gacaagttaaacaactcttacaacaacaaaatacacactctccttcttcctcctct
tcttcttcttaactctcttcccttcaatcgccaccgtttacaccccaggtg
ttatgttctgaatcttgatgacagttctgctgaagacagttgtacaatatcattatgactg
ctggaaaatctgaaaatctcaagatgttggAACCTGGCAAGCCTCCACCAAAAAGAAAGCT
cggaaggagaggaatcgagaaaaAGTgactggAACTCATGCTCCATAGAGAATTGGATCC
gcaaataatggaaagaatttccctgaagacttattgaagctgttattgaagactaccattg
ccactttttccgccttcagatctgtctgcccaaatttggAACTCAATGCTGATGTCCTCAAAGT
ttttctgaacagtgcacccaagttcctcaaccacaaccgtggttctacaccattactcatga
aaacgtgaataactggagccatgtacgaccctatgttgaagaaatggcaccatcctactatac
ctgcactgccgaccaagttgatagtcttgcagttgcattgtcaggaggtttgtctgtttc
cttgatattggacataggagcttctacgtatgcaacccttacttaggtccttaaagagtt
accagccagatctgttaaggtgtggctcggtgtggcagtagggatgacattgagtgaaaat
cagcttacagtatccttgggttgggtgtatggtaatttgaagtttacgactccagaaag
aactcttggactcgtccaggatctatgtcctcaaatgttaagcttcttatggcactcaactt
caagtgcagacagtcaaccatcggtataataattttactttatgcgcctcagagcctgatggaa
tcgtgtcctatgacatggtaactggatctggaaagcagttcattatccctgcacccctacat
ctgagtgatcatacactagcagaatgtggggccgcataatgctgtcgggctgtgacaaa
gaatgcagccacttgcgtgtgcataatggtaactgcaaaagatgactctttgtggaaaggagg
ttgacagaatgccaatatatggtgcattggagtttatggaaagcacgttcggatgacttgc
ttggtaacaaagggtttgctcatgctatcttaagatcaagacaaaatgaaccggcttagtaac
gtatgattctcaaccggagaatggatgaaggtccccgggtgcgtgtgccccgtggagaa
agaggcaatggatgcgtgcggactgctttcaccccccgttacagcttggcttaactt
ggatgcccagtaaattctagtcacagcagagtgcgatttattatcatgtgggttttagc
tttcccatcataatctgcagccatgttgcattccagaggactaatctacgactacttattaca
taaacatctagtttaagctttcattccagaggactaatctacgactacttattaca
ttaaaaaaaaaaaaaaggggcgcc

FIGURE 4 (continued)

SEQIDNO61

ccacgcgtccgccaatatacagattcttcatgaactccacttccaattctcattgcttct
tcttcccatttccacccatccaaagccatcctccagaaaacccatgttccattacattcttagc
ccccaaaaaagattcccatctcaattccacaaaaaaacacaaggagatctaaggaaattcccc
gcctctatata>tagagaggttgaattttcctgaattgggttgaattgattgattgacaga
tttggtgagagggttattgaaaaaatgggtgacatgaaggataaagtcaaaagggttcat
gaaaaaaagtacatcttcttcaggttaagttaaaggccaaggtaggtttgggtggtt
catcttcttcaggaccctcaatcatgtcaataattttcatcacatccctaaatacaagg
caagatcaacaacccatataaaaaacttcgcctcaaaaaccaagtaattctgatcaaag
aattgagaatataatgtgaaattcagtcacaaaaagtgaatcaaaggatgggttgcatt
ttggtaatttagtcacttctggaaagagaaacccaaaagggttacttactaatgtgtt
gaatgccctgtctgttagtgggtttctgaagaagaggttcaactcatattgatag
ctgttaagttctgaagtgtcttctaattggagttgaaagttgaagttaaagttgaaat
aattggaaacatgttgttagtgcataatgtttcagggaaagccctcagaagggtcagttgaagtt
gtcattaagttgttaaagaatattgtgaaaggaaccagagaatgccaagtttagaaaaataag
gatgggaatccaaaaataaaaggctataggatgtttagggagttggagctattgg
aatttggatttgagttgaaagaagaagggtggaaatttggctgtgatggatgttgc
tctgaagaacaactgttatgcttaagaatgttagttcactcttggaaaccgaagaaggatt
agagttggcgtccttatcccaagtttaaggcgagtgaaccagttgagccgaagaaggatt
gacagattcgagtgttcttctgttcccgagagcgttagcagcaaaaattgagctac
tccttcttaacccctcacgtgaggaattgagaagagaaggatgaggaagaaggaaatt
agaagattccaaattattgattccttaatctatcggaaaagcaggcaaaagctgcaagaa
agaagtacacaaaatccattatccgttacagttccagatggcattgttcaaggtgtc
tttctacccctcgagccaacttagtgcctttagtgggttgcagcgcagcgtt
aagcttagagttcgaaattgttacatccgtgtttaaaaagcgggttattcccttgc
cagctgtggggagaggctgttacagttgaagaggaggattgggttgcagctact
aaatttaaacctatcgaaacagattctgtttactggctttgaatgagcttgc
aattagcgagccctcgagaccggatcagttgcattcgttaagctctaaattacatc
tttgaattctctgagttggaaaccttataaaactctctgcgcggaaatgct

SEQIDNO62

ccacgcgtccggactttctgaccttgcataaaaaacccatgtgtttctcacattctggtcc
caatctctgtatatttattggagaagacgttgcagctccaccagctaggctcgagcagat
tatgattatcttatcaagctcctcattggcgatagcgggtgtggaaagagttgttgc
tctgaggttctcagatgggttccattacaacaagttcatcaccactattggaaattgactt
agataagaacaattgtacttgcggatggcggatggacttgcataatggatcagctgg
caggagcgttccgcactatcacgacagcgttattatcgaggagccatgggttattctgt
gtacgtgtcagggcgttgcacatcttcaataacatcaggaactggattgcacatagac
agcatgctctgacaatgtcaataagattttgggttggaaacaaggctgtatggacgaaagc
aaaaggctgtgcacttccaaagggtcaagcttgcattgtatgaatatggcattaagttt
tggaaacaatgtcaaaagacaacatgaatgttgcggacttgcgttgcatttgcattgt
tcaaaacaaggcttgcggacttgcattgttgcggacttgcgttgcattgttgcattgt
tcggatcaggccggacttgcattgttgcgttgcacatgttgcattgttgcattgt
ggagacaatgttgcattgttgcattgttgcattgttgcattgttgcattgttgcattgt
gaaaaactgttgcattgttgcattgttgcattgttgcattgttgcattgttgcattgt
atgtgtcaaaaggctttctactgttgcattgttgcattgttgcattgttgcattgt
tttgcattgttgcattgttgcattgttgcattgttgcattgttgcattgttgcattgt

FIGURE 4 (continued)

SEQIDNO63

ccacgcgtccgaataaatctgctttggaaacattgtgtgcatttccttcagaggaga
 atagaacacacccgttagggccacagcaaaccaccaacttcaccaggcaccattcgcaat
 gctctttatggcctcctggcactggaaaacaatgggtgcattggagatcgcaagaaaat
 cgggttggactatgccatgatgactggagggatgtgcaccctgggtgcacaggctgc
 accaaaaattcacgagatattcgattggccaaaaatcaaataaaggcctactgctttcat
 tcatgaggctgatgcattttgtcgagcgaatagtagatacatgagtgaagctcagcga
 gtgcttaaatgcttactcttcaacagggaccagtcccagacgttagttgtcct
 gcgaccaacaggccaggagatctagacagtgcgtcactgaccgtatagacgaagttatcga
 attccctccctcaagaagaagagcgttcaaattgtcaagctctattgaacaagtacc
 ttgctggtaaggagacagtgcacagcaattctaagtggggcaccttcaagaagaaccaa
 caaaagaggataaccatacaagattgtctgatgtgatttagagaggctgctaagaagat
 agaaggattctctggccgtgagattgcaaaacttatggcaagtgttcaagcaactgtatatg
 ggagcccagattgtgttctgattctcaactgttcaagggaaatcgtagattacaaggctgc
 gagcatcaccaacgaataaaactagctgctgaaggtatggagccaacttaccaggaaatta
 actgacaccacaaagatacaagtgtcttcaactgatacgaattgtgaaaatttggatttatta
 tctcttggtagtattgcattgcattttccaaacttaggatattgttagttagg
 tgtactattctgttgggaatgagcactggatggggacgtgttcaagggttcaatggga
 ctttacaatttgatgggtacatagctcaactggctgttaattgtattgattctgtggatcgc
 agaaaaatacatccattgaatagataaatagtaggcaaaacatgaagtctttgaaatagg
 tctctgttatcaaatatcaactaacctatctttgattacc

SEQIDNO64

ccacgcgtccgtatcttaatccgactccatctcctatcttatctctcatacacttaacataaa
 tccacaatcaaattccccactataacacacacccaaattataaagagagaaattttcggt
 tgggtgttattattgttgtgggtttgtaaataatgggtcagaatcagatgagaggg
 aggtgatattgggttagatggggcaccacccactgtgtgtttgtatgccacttctt
 ctctttccgaattccctgatccttccagttctggccgtccgtgtgggttccaa
 ttttaatagcgtggagaagatgttagctagagaaacactggaaaagggtatggcagaagcat
 tgctttagtgcgtgtgaaacgatcagctgtttaagcagtgtgttgggtctatccgtgt
 aaccatccaacggatcaggagaaaatattaggctgggtgaggagtgcattccaaagtcatgt
 taagttgtatattcagaatgtgcgtggctctagcaagtggcacgtggaaaacttc
 atggctgttttaatagctggtacaggaagcattttatggattactgacgatggaaaga
 gaagctggccgggtgcagggctgtttgggtattggggagtggtatggattgc
 tgctcaagcattgattgcagtgtgagggtcatgtggcaggtccacaaacatgtt
 cgagttgtattctacagtacttagtcttctccggacgaactaatagggtggacccat
 gggatccatctggctcgcattgcagcactgttccagttgtatcctgtcagagga
 tggagatcaacttgcagacgagatcttacataatgcagttcaagaatggctataagtgtca
 aagctgtgtccaaagactacgctggccgggaagatggaaaagggtccttccctgtgtt
 atgggtggggcgtaacttggagccaacaataatggaaatatagggaatgaagtactaattc
 tattttaaagacttatcctggagcttgcattgtgttaatttagaccaaaaggtagagcctgcagttggag
 ctgctttattggcttaaatttctgtatgaaagaaacagtagctaatggccatagttgacac
 ctgattgtacatgactaactgtgttaactgtataatcattgaagttctttatcggt
 tccaaattctggggcatgtcctggatcatggactgtacttgccttcattgc
 atatgcagactgctaaaaatgatctgttattcaaatgaacgttgcaccaacttggtaaca
 tatcttggcttaatgtggcagtctttgggtgtggagagaggaaaggagatttt
 gtcataagggttgcattgtattgtatggttatataagaattcataactgatcagtatgttatg
 taatctttatagcattctgttggataaaaaaaaaaaaaaaaaaaaaaaag

FIGURE 4 (continued)

SEQIDNO65

ccacgcgtccgcaaaatttagaacccaaaacaatcagtaactcctcactccaaattggccc
caatttgaattcaaaatctgaaagcattcatgtgacttttcattttcaaaaactctctc
tcttctctccctccactctctgtgaaaccctagacacacactccatacgctctcgcaacctc
tacctctcttaaatcagcaaacgacagcgatctcatgacggcggtgccgcagtctccgg
aagagagctcgcaagcccacccaaggacggcataccaaacctccgatttccaatcacagt
atcaccttcttggttgcgtctggataagacgggtcgttgcattgtcaagtgcgaatgcg
ttgagaggagagttcatgcacggaggccagttctcgattgttgcattccacgatgattttc
tggattcagtgcgttagtgcataataccgttagaaggctgttcaactatgaaagagagg
atatcttgggaaggcatgacgcaccagttcgctgcattgaataactcatatgcaaccggacaa
gtgataactggcagctggacaaaaccttgaatgcgtggatcccagaggtgcaagtggaca
ggaacgtactttttggaaacgtatacacaaccagagcgtttactctttcccttgt
ggaaccgtttagtagtgcataactgcgttagatgtcaattgtcattgcggaaacatg
tctcaacctgaacaacggagggatcttccttgaatataactatgcgttgcgttgcatt
tcccaacggAACAGGCTATGCTTAAGTTCTGTGAAGGTGCAGGTTGCCATTGGAAATTTTG
ATCTCTGTAGGCCGGTCAGTCCAAGAAATATGCAATTGCGTTCACCTATCTATGGTACCTCGC
GGAAGGGACATAGTCTACCCGTAAATGCAATTGCGTTCACCTATCTATGGTACCTCGC
CACTGGGGTTGTGATGGTTATGTTAATGTCGTGGATGTTAATAACAAAAGAGGGCTATC
AGTACCCCTAAATATCCTCAAGCATTGCGAGCATTGTCATTAGCAGAGATGGTAGACTCCTG
GCTGTAGCATCAAGTTACATTGCAAGAGGGAGAAAAGCCCCATGAGCCAGATGCCATAAT
TGTCCCGAGCGTAAATGAAAGTTGAAAGTGAAGGCCAAAGGTTTGCCGAATCCTACCT
CATGAAAACATTCTAGAAGCTCCTCGATCCTCTCGAGTCGACTAGTTATCTTACTTTGAA
AAACAAAAAAACTCTTATGTTACTTAATATTCAATTGACTTCAGGACTCATTCTCGTAG
CTGAAATTCTGGAGAACAGTGTATAATTGTAATTCCAGTTGCAATTGTACCTTTCTGAA
GATGAAAAAAAG

FIGURE 4 (continued)

SEQIDNO66

ccacgcgtccgtcgccctacattgagcatgtcctgccccctttcgtagctgcaccttcct
ctgaaactcgagaaaaagtacaacaatttaagcttcagagatgctgaagtataagaac
agctcagggtgagtggaagccgtcgccagtagtagccctagctactagcgccgacgatttca
gtcgcccgagctcgagaagacggctcttgagattggcttgcattgtccctgctccgtcg
gctggcactgtcaacttataatacatggaaatcctaattctagggttctcgtagtgtgg
tgtaaatcggggtcgagaaggttggatgcaggctcggttatttcgtccagcattgtggatc
agtttacgagtggatctttcgatttgactcagaaggctgtcttagattccattgggttt
caatatggcagatggctggaaccatgcaatacttcgcagcttcatcaaaatcttccaagg
cagttgagaatggccatgttaatcatacaaattgggttagtagtgataatgagagcactga
aggtgaagatgtatgactcggttgcattcatgaggatgtatgtgaaaatggtcaaa
ttgcatttgcttgcgtgacatgggtgcgttcaatctacactactgtatgagaagaatatgact
tacaaaagatcattgcctagggtcagtggcgatattgagcgtcacttgagttctgatgc
aaagaggatatttctggtagtagtgatggttataagatgttggatgccaagtttagcat
atgaagtctataggataacagttggacttggaggttggtagtgaatctgaactatgcata
tggtcattgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
gttctggacaccatcatggcactctttcgtcacttcgttgcgttgcgttgcgttgcgtt
atgcttttagcagcatcaccagccataggagggtttctgtctgtgtgtgtgtgtgt
ataatttataagctctcaaccagtgggtttatgttgcgttgcgttgcgttgcgttgcgtt
catgaagaaaatgggtttatgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
cagttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
tccggggagaagcccattgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
tatctcagggtggtagactaaactttgcataactctgttgcgttgcgttgcgttgcgtt
ctccgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt
ttcagttaggtttactcttagtccaggctgcgtactggatagatattttgtttgcgtt
tgtaaaaaaggcggt
tagtggctcggttaagtcaaaacttcgagggatcacatgcgttgcgttgcgttgcgtt
ggttaatgtttgtttatccgactatgtaaaaccctgttttttttttttttttttttt
tgcttagcaagaggccatggactgtcagccaaaggcagctccctctggactgccatttgc
attcaatggttttcagtgcagattttctcaatgtatgtatgtatgtatgtatgtatgt
tatgtgggt
ttacgaagaattgttaccatgttaccatgttaccatgttaccatgttaccatgttacc
agtggtagctgtcaactgtttggagatgtgtatataatttttttttttttttttttt
caacattggtttatcaagattgaatggtttttttttttttttttttttttttttttt
aaatagcaatgtgttt
ctaaagcaacttaggagaatggtccaaaccggaaatacatctccctgcccggaaagat
tttcctggagaagtgttt
ctacagttcaaggcgatgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt
ccaacttagctaattgtcaagatttagcttgcgttgcgttgcgttgcgttgcgttgc
accttaaagcgcaagccgataggaaatgttttttttttttttttttttttttttttt
tgaattctgtgcattcaggatctgttttttttttttttttttttttttttttttttt
tgatcatagacaaaccctggattcaagtggtaaaactcttgcgttgcgttgcgttgc
cgtatttttggacataatcttttttttttttttttttttttttttttttttttttt
gaggggtgtattcaacccctttcactcatatattcttgcgttgcgttgcgttgc
ggggaaaaagttgaaatcaacactcaagtcaatatactatgttgcgttgcgttgc
cctatggaaattgcgttagacccgttaatatactatgttgcgttgcgttgcgttgc
gttcagatattgattaatgtttcctgtataacatttattcaag

FIGURE 4 (continued)

SEQIDNO67

ccacgcgtccgcctctgagtaacccttgagaagtcaagatcgatcttattcgctgccggag
atctgattacttcacttgtttgttcttttagaaagatatacgatctgaccgtcaaacaaa
gtaaaagatgcaggatcaggaaggcatgtggctatgcagggaaaagaaaacattgacatctg
ttcaaacatctgaaattgaagattggacaaaatacaggatgtatattatgcaacagcaa
tcttcatccaggctgaacaagctgtaaaaactcaatttgtggcgataaggaaccttgc
ttcattagaagctgaataccatctggaaattcaatttgcggagaaaataaagggtgtga
gtgaacaatatgtgtccttagaagaacacgtggagatggaaattgtctttccgcagttc
atgttggtaaccttgagcacattctggaatcacaagatcaaagcgaagttcatcgattaa
agcttagtattgaggaatgcaaaaagacacttcaaagttggctacgcagaattcacatttgc
aagacttttgcgttattcctcgagcaactcgataatgttcttcaaggttagcaaagattcc
ataagtcatgaagaactcctacgcagaagtcgtatccgtccattctgactatgttgtat
gttctcagattgtAACATCTGGTGAATAAGGAAGCGCTCGGAGTTTCGAACCATT
tactaggactaacaaatgcctcagtggagcagtttgcagaactcatcagtggAACCCATGGC
gaagagagtcatgtcgagattatacgccctatcagatgcgttgggtgtaccaatccgtgt
cgtatatcttgcataagctcatgtgagaacaacagcatcaatgtaaatcaccacgactttgc
ttcctacaagcgatggcatgggaatagtgggtttccaagaccacaaatccatcttacc
ttgctgtatcgcccaggacattacgcacattcttaccccaagtgtatgttcttcatattgggg
tcgttgggttgaatacagtttatgtcggataagttatactggtataagttatgtcggat
tagttatgttaggattgtttttatccattgttggatgttgtattaaatatacgacattgc
ataatctgtaaagaagatgtataccgggtctaattacccacccctcgataaggtataagtt
tcccgggttaatttaatcctggataacttatacgtgggtttgctaaccacacgaaagtatt
aagggtggcat

SEQIDNO68

ccacgcgtccggaagaaacgaagccggagaagagggctttttcgaggagaagaacaat
tataggagtattatcttatacttattcttaccaaaagatggatcggtaccaaaaagtggagaa
gccaaggggcaggaacaccccattgtatgagaatgagattcggttacttagtcagggtcgcatgc
gcagctatatcacctatgctatgacccttcaaggaaaaaggatcagatgagattgtgttc
aaggcaatgggcagggcaatcaacaagacagtgaccattgtggattgattaagaggaggat
tgttggtcttaccaaataacgtctattacatccactgatattactgatacatggaaacccc
ttgaagaaggccttctacctctcgaaacaccaccaggcatgtctcaatgatcacaattaccctc
tcaaaaaaggagctggatttgacttctgtgggtaccaaccaccattgccagcagaccaggt
gaaagtgtgacagatttgactatgatggaggatcacctagttgtggacgaagaggccgcg
gtggtagaggaaggggaaggtctagaggttctcaggaaatggctttatgttggctgaatac
gatgatggcggttgcatacgcaatcgagctatggtagggtaggggtcgaggcagaggtcg
tagctccgtggccgtgaaaggggagggtacaatggtcctcaggatgcccagcaagacgctg
acttctacaatcaagaagcaccatgcaggccgaggccggacggggaaagggaactcgt
ggtagggacgcggttcagaactaatggccgatccatggcggtggcttaaagatcaaa
ctttaagaatacaagagattatgtctatgagtgccctgcctatgttctatgttttttcc
cttcagttgttacccgtgttaacagtaggtattgatctgtaatcagagtagactaattata
gatttcattaccgcgggtatgtggtaggtttttgttttttcttgatatctctagtt
tttcttctggtagattagtgcttgcataactgttaatttccttagtgagcagcacattctt
taattgtctgtgttagacatgttcagtgacccctcagtgctgtaaattgcctctgtttt
agttggcagaatactcaaattacataattctgtcgcttataacttcttaactattgaa
agtcttqctttacaaaaaaaaaaaaaaaag

FIGURE 4 (continued)

SEQIDN069

ccacgcgtccgaacagaagctgatcttgtatatatcgtagacgatgacatgattccaggaa
gaaaatgttgc当地atggatcacatgttagcaggatagacaagtacaagaattctgtttgg
gaagcattggtaggatttgccatttagacagaaggatttactttccgagctataatcactgttgcac
tttcgatcaaaggaagcaggcattttgcctgatcctgcttataatcactgttgcac
aattgttcagggtggatttcctccacttgcgttgcacttgcacttaagctatcagctt
tttcatcgaaacgcccttcacttgcacaggagaagacttgcacttaagctatcagctt
cagaagtataaaaaatgtggatcatgtgtgtccagttgcacttgcacttgcactt
gggtgacagttagcacagacttgcttatgtatccgaaaccactgttatattcaaggacactg
ttcaagtccgagacaatcaatggtggaaagcacttccactgttatgtacacaatggca
gcaatgaatcctcagaaaattgtgcactttctatgcccacttgcacttgcactt
tctcgcccttcttgcggaaattcaggtaactgttgcacttgcacttgcactt
caggaggcagcttgcggcgtcgaaagatgttgcacttgcacttgcacttgcactt
tgcaaaagaaaagaagattcaagattgtgttgcacttgcacttgcacttgcactt
ttcagaagtgcggcgttcaagcacttgcacttgcacttgcacttgcactt
acccgattttgtgatcacggtagctgatgcagatcctcatgtgaagaaaagcactcaagatg
gctatagaagctaaccacacagttcatcttgcacttgcacttgcactt
gcttcttggatggctgatctcggtccacagcattgccaatttggatgtatgaggc
ccataaatatcatcacacagaatagacttgcacttgcacttgcacttgcactt
gacgcatactatataaggcgatgtggatgttgcacttgcacttgcactt
agcaactataaagcttgcacttgcacttgcacttgcacttgcactt
gaatcatccaaggaggcttaattcgagctgttagtggatgttgcacttgcactt
gatgttgcacttgcacttgcacttgcacttgcacttgcacttgcactt
atatgctgtcttgcacttgcacttgcacttgcacttgcacttgcactt
ctcttacacgcccacgggtggatgtggatgtggatgtggatgtggatgt
ttcttcaagcaattcatccaaacacacccatctccaccaattgcacttgcactt
gatgttgcacttgcacttgcacttgcacttgcacttgcacttgcactt
atccaaagcaaaatcctgttgcacttgcacttgcacttgcacttgcactt
aaaaagttttgatagatgtacttaagagggtacgttagcacttgcactt
aaatcaaacgagctttcaacaaatcatatggaaaccaggcgtcacttgcactt
atgtggtaagcataacaaggctgatgttgcacttgcacttgcactt
ctttgcacttgcacttgcacttgcacttgcacttgcacttgcactt
gcctgtttcttaaggattaaaggcaggcgtcacttgcacttgcactt
gcacttgcacttgcacttgcacttgcacttgcacttgcactt
ttctgaaaactccatactcgtccgtatcacttgcacttgcactt
ttgcacttgcacttgcacttgcacttgcacttgcactt
gttgattcagcttatttctatgcacttgcacttgcactt
tgatgagaatgtacttgcacttgcacttgcacttgcactt
cctcatttgcacttgcacttgcacttgcacttgcactt

FIGURE 4 (continued)

SEOIDNO70

SEQIDNO71

tgtacaaaaagcggtggtaccggccggatattccggatatcgacccacgcgtccgc
ccacgcgtgcgcaattcgcggtgatgaagaaaatggttactcacaagctataacagta
caaagaggacgtttgaaccctaataagaagattgactaaagaaaagctccccaaaacg
tgccttacgtttcgctgcgtttcaagtacaacacagctctggaccgccttatcga
gttctggtcgataactttatcaatttctccattcagaataattggatttgagaaaagg
aatgatggattttgtatgccaaattgtactccgtgtataacagactgtttatggctgac
tggacaagctgggtcagaagttaccgtgtgctttagaattgc当地agatccccgatttga
aggctccctgcactcacaaggAACATATGCTGATGATTGTATTGTCGAGAGACTTCA
acacaagtgttatattgtcgcaacatgtgtatcgagatttgaagcgtagaatacgcaaggTCC
ctgggttaccaatcatgtacattactcaacataactccatttgaaggttgcctgaagca
acaatcggtggagctccaagatattgagttacgtgttgcagcagtcaaacaatggatttcc
aagacccgtggatagtggatcgaaattcccatcacggctgtcgctgcatacattaccagatctc
ggtgcgttgtcaacggaaaatgtcaagtatcagtcgaatctcaattttgtacccgggtgg
ttgttatgtgttccctcaatgataaagaaaatgttcgatTTGTTAGTTAGTATCTTAGG
tgctggcccccgtgtgtcttaattaaacagccaaatagcgggtgtcctaaggcattccaaacaga
actataatccatqccctttaatgtqtaagggggtggttatcaac

FIGURE 4 (continued)

SEQIDNO72

gtacaaaaaaagcaggctggtaaccggccggaaattcccggatatcgacccacgcgtccg
cccacgcgtccgcaaattcgcggatgaagaaaatggtaactcacaaagctataaacagt
acaaagaggacgtttgaaccctaataagaaaagattgactaaagaaaagctccccaaaaac
gtgccttacgtttcgctgcgccttcagaactacaacacagctctggaccgccttatcg
agttctggtcgatactaactttatcaatttctccattcagaataaaattggatttgagaaag
gaatgatggattgttgtatgccaatgtactccgtgtataacagactgtgttatggctgag
ctggagaagctggcagaagtaccgtgtgctcttagaattgcaaaagatccccgatttga
aaggctccctgcactcacaaggaacatcatgtgatgattgtattgtcgagagagttactc
aacacaagtctatattgtcgcaacatgtgatcgagattgaagcgtagaatacgcaggc
cctgggttaccaatcatgtacattactcaacataaatactccattgaaagggtgcctgaagc
aacaatcggtggagctccaagatattgagttacgtgttcgagcagtcaaacaatgaaatttc
caagacccctggatagtggttcgaaattcccatcacggctgtcgctgcatacgattaccagatct
cggtgcgttgcaacaaaaatgctgaagtatcagtcgaatctcaattttgtacccggtgg
attgttatgtgttcctaattgataaagaaaatgttcgattttgttagtttagtatctctag
gtgctgccccccgtgtcttaattaaacagccaaatagcgggtcctaaggcattccaaacag
aactataatccatgccttcattatgtgttaagggggtgttatcaaccttgt

SEQIDNO73

ccacgcgtccgcgaggcaacagatgaagcaggtgttgttaactatgagcacgttactga
agatggcgtattcggtgaagaatgcagctgtgagaggttactgaatcagagggtggaaat
tgaaaatgaagtgcaaaaagttgaatgactgcttgaacccttcattgttgcataatgc
ccacgtgaccagaaagagaggccagcatgcatacctcaggcagtggttggaaagccagagctaa
ggaggctgagggcagatgctgagaaacagaaaaggaaacttgagagagatctggagaatgaga
acgggggtgcaggtgttactctgccagcttggagaaagcactatctttagcaaaaagaagag
tggaaaggaagatgtaatgccagaaatttagatgggcacaatgtctacgactttattgacc
tgatatcttacaaaggcttgaagaattggagagagaagaaggcttcgtcaggatgaagaag
gagatgatgatttgagatggacggcgtttagctgacccttgaagaacaacgcgcattagct
gaaattcggaaacagaagagttgtcattcaacagcatagaattaagaaaagcaccgcaga
gagccgaccactgtaccaagaaagttgacaaagacaaggacttcacttcaaaaagaatgg
gaaggcagttatctgcattgggctggatccaactctagcaatcaatcgagcccgttagtaga
tcaaggggctgttaagcgagagagatcagttgaacgtggagatgacattggtaaggatgcaat
ggatgtcgacaagattactcccaacaagaagcaaaagattgaggtcactttcattacggcaa
gatcaaggtcaaggtcacgaccctccagatgaatttgtccaggggagggtttaaggacaaa
gcccaaaaagaagatggctataaagatggctaagggttcttctaagaagagagaataaggatgc
tcggggggagaggctgatagagtattcctactctgaaaccaaaaacatctttctcaggaa
agcgatcaactggaaaactgaccggcgttagtaaaccagatggcatttatcttggaaatt
tgctgtatggtacctgtcaagatgcttgttgcataatcttgggtggcggacagaaaggcta
aaagaaaactcagttgtgaggaagatgtcaagaattcaatctttagtggaaatggcaagaccaa
gactacagattaagtatttaagttgtcttaagatgcagctgaacttgctgccttattat
gcatttttggaaacttagataccctgttgaagatgtgtttatcccgatgtttaattttgtct
cagattttttggattttctttagtacagccttcctcttttgcataactttcttggaaat
acacgcctaaaggcgtattcagaaaatgttattcatctgccaatctccttggatgtttt
tttttttggaa

FIGURE 4 (continued)

SEQIDNO74

ccacgcgtccgattgttaattactgcttctgtccccacaccacttaagagcacccattcat
ggcttctcccaactcactcaccacttctgattatccagtgcatttgctgtaaactac
agttatttcttagctgaaaatccaagattgtgttaattcttgaccctttgcccttctt
ggattttctgttattttggattcttttgtgttgaagcaaaggaaaggcagaaaatgag
aggaggggtcagtggaaagttcaaacttgatgtggatcttgcatttgcatttgcatt
tccgagactccaattgcagctcactgaagcatctaaaaggctcttattcaaggacataaag
gaggacactctttccagagatctcccaatgcgtccacagcccttctcccttatt
tgcacccattccatggcacccattcacaaacagcactttaccataattatctggactctgta
cgcttaacttgcattgtgagaagtatgcattgtggatgcacatcaatagattgttagcacca
tttgcacagtatctggctaattgtcatgtgcgtccctcaactggaaacaactcttgcatt
tattggcggtctagtaaaaaaacaatatgcattgcattaaatgggaccctcgcaaagcatt
gccttcagatttcagcaactctggatggcaaggtgccaatgataacttgcagcatata
tgctctccatccgtctaattactcaaggttctgcccggtaaagatgtcatgagtt
tgagacgactgtggactcgctacttgcctgtggcaagatcgatcttgcatt
aatgcgtgagcaaacctgcaaaatgcataatcagaagctgctaaaaacttgcacttaaa
gcatatgatcttttaagcatggatggatgcattcatgtgcgtgcattgcacacgaccagagttaa
cgactgtaaaagtattgtacaccgtggatggcaagtaacttgcattgcgtggagcaaaag
atgttcttagaggacttctaattgcaaaaacaataaagtgtgcctctggctttcggc
ataaaaatattacaaaggctgtggagacgggatgaataaccatcaatatgcgttaatc
tggagaggatgtctctacttacaaaggcagagcttcgtcaccacttgcattgcatttgg
attgtgcgttacttgcattttcaattgcatttttttttttttttttttttttttttttttt
ctctgtcacattgcctcaaggattttccgtacaatttttttttttttttttttttttttt
tttgcctagttaccgtcgatgcatttttttttttttttttttttttttttttttttttt
acttaaatgacaatattccggctcctggccatctatgtctcatttttttttttttttttt
aataagtctgtgagaattccgcacttccgtgcgcatttttttttttttttttttttttt
aatatatggtcacatatgtctactgtatggcgtcgatgtatattggaaatctgttatatcta
atgctgcatt
tcaaaaatatacgatgttgcatttttttttttttttttttttttttttttttttttttt
ggaaaatcatgcacccgtggatggcaactcagagatgattccaaatgcatttttttttt
gaaatttttattcccttcttggcaataagaaatgtgaaaaaaaattacacacagcaggat
tagtttcatgtattttccacttgcataactttgccttgcatttttttttttttttttttt
aaaaaaaaaaaaaaaaaaaaaggcgccgtctagag

FIGURE 4 (continued)

SEQIDNO75

acagttgtacaaaaaaaggcaggctggtaccggccggattcccgatcgatcgaccac
gcgtccggatcaagaccatatcgatcgatggatgtatgcatttagcattggctac
agaggaactgcaataataaagctatccgtcagttgtcatggatgttatcagatgttag
tgatgtatcgccggacagcagttggacttggatgttatcagatgttatctgagccagac
agatgcctcgatgttatcgttgcagtttgcaggtactggatgttatcagatgttatc
gctatggcagtaggcatttgcaggtactggatgttatcagatgttatcattgttgc
gccttgacatcagatgtggatgttatcagatgttatcagatgttatcattgttgc
tgatggccagataagtgaagctagtgattccgcgtggcatttcaggcgacaactggag
aaaattgtcttagataagcatgaagataccatgagtaaaatgggtcaatttggcctctgg
tattcttgcgtggatgttatcagatgttatcattttgcgttttatcagatgttatccacttata
aaattacacagtcgttggacttagctgttttagtcagttttgcgttatcatttgc
tatttcgttagcttagcatttcaccaacacgcattgttatcatttgcgttatcatttgc
gccaatgttcagttgttatcacaacgcattgttatcatttgcgttatcatttgc
ctgttagccaccacaacttctgtgtgaaacttcccacagctgttttatcatacatcggttgc
gctaaggcaagggttagcaagaaagaggctgagaaagccattgtccgagaaggcagctggaaac
agagtcatttctgtgcaccaagttctgggagtcacatgcaggtggatactccagcggaga
agaaaaatgaaccagagccatcatttgcgttatcatttgcgttatcatttgc
caggagaaatacataaagtttttgcgttatcatttgcgttatcatttgc
tgatgttatcatttgcgttatcatttgcgttatcatttgcgttatcatttgc
catttgcgttatcatttgcgttatcatttgcgttatcatttgcgttatcatttgc
cttgtcattgttatcatttgcgttatcatttgcgttatcatttgcgttatcatttgc
gcgttatcatttgcgttatcatttgcgttatcatttgcgttatcatttgcgttatcatttgc
gttctaatataagattttatattgttgcgttatcatttgcgttatcatttgcgttatcatttgc
atttatagtcc

FIGURE 4 (continued)

SEOIDNO76

ccacgcgtccgtaaaaccctgcggcctatcggttatcttcccccattccactgtacc
atacaatacaatggccaccacttcccttagaacgcccaccactaccgtaaaggccgcgtcca
cccccgctcagcgccctccgcggtaaaaccaattgtatcacttcttatacctacttacaccgc
agacggggcagactgcactacttccccgacgggtcgattcaccactccgctaacaacaaat
tggtcagctgccgcaccggcggtgagaaatttatagtcttgctcaaataggggatgctg
ctgagggcgtcaaaaccgagactcaggaacctgagcaggaggtaacaagaatccgagcaggag
gagaatgttagatgggtcgctgtgaagatgcttcggatgagggtgacaatgcagctgcaga
tgaaactgcatattcattgcattcattgcacttcattgcagtgtacagagatgcttagcaaataatg
acgattcaaaagttgcagagatagaaatttccctcaagtccatagaagaagagaaaattgaa
cttcagagaaaagttagcctcattgaccgaagaactgtcaagtgagagcgaaccgggtcttag
aatcagcgctgacttcgacaatttccgtaaagagaacagagagagaaaagactttcttgtga
agaatgcacaaggggaagttgtcgagaaactctatctgttctggacaatttgagagggcg
aaaatgcaaatcaagggtggcaacagaggagaagagaaaattaataatagttatcagagcat
ttctaaacaattgggaaatccttggatcttgggttgagactgtggagacagttggga
agccattcgaccattgtgcacgaagctataatgcgtgaggattcagaggaatttgaagaa
ggtgttattagaagaatatgc当地aaaggttcaaacttggagacagactcttacgtcc
aatggtaagggtgtcggtggccaggccggcaaagccagagacagcggagcctaagaag
agcaaaaacgaagtgcaggagaagagtggaggtactgtgaaacacagcagggtatgt
acaggtaaggaggtaactaactaccagtatgtgatgtgacaagtggatgttaacctgt
tttcttttgcataagcaaaaaggacatatttcttgggttggatgtgagatagg
tttttgcgttataccttcaatttcatataactactgtttatctgaaaggacatattt
ggtcagtcggcttatgactgtctaaacactatggatgtgaggttggatgtgagatagg
ttcatatagtgcatcccaactagcttggatgcaggcgcaattgtgtaaatactccggaaac
aagagcgtaatgtcatatgcgcactgtaca

SEQIDNO77

FIGURE 4 (continued)

SEQIDNO78

ccacgcgtccgcggacgcgtggcgcaactcagattctaataatggcggcatcgtagag
tacgaagacggaggttccaacacagcaaccgattcagccggatcgacccgaattttgtgcc
ggattcgtaaaatcggtcggttcatctgtacaggcacattaggaaaaatgtttacg
agattcaccagatgtacgagtcctctttagacttaagcgagcgtatgttcaaggaaact
ccatggccttcagttgtatgccgttgcccttacgttataacgaccacgtttctgttgc
ataccgtgaaatgtgggtccgtcacttgtacgctaggcttctactcttaaacagcgg
ttgattcttggataattattgcagcctttcaggttgcgtcatgtgtggtaacatg
caattgccaaatcagtgggtggacatggtagatgagtttataccaattccaggcatt
ctgtcaataccgtgcaaagatgaagaacaaaactgcggaggagattgcattgtcaagcaat
atgaccaggcttggaatgtctacgggtcctcaacttcttacaagccctgttagagaaatct
acgataatccaaatattggagagggagaaggtaagttactgtactgtatgg
gtatgattacagtggtaagtaatgtcttgaagggtttgggttatttcagcatgatagct
tgctcagagttcattgtctgtgggtgattatcatactggcctgaagtgttgcgttccaatt
gacataactcaacaagggtttacaccagtgttattggagccacataaccacaatttatca
ctacggcttgcatacttatgttggaggtatgttagacgtatccaagaatttacaaa
tccttctatatatattataagacaaacgagtatcaccagaagtcccccagtgagcagata
ctgaagaaaaatgagcagatgtatgtctgtggccatcttgcactgtgcctcaagt
gaaacttgttgaagaaaactgtcaattctcaattaaggagaagtatgttggagaagatggcga
gaatgcaaagatgtatgttggctttgcctctatgttagactcttcataatgcatgt
ccaaagtcttactccctctgtccaagtttggagggcttgcataattacaaccagga
tgcgtataggctacagttgaagctcttgcattgttagactgttgcataatgttagct
gtgttaggaccttttgaagtcattcaacaatctccctggaaagctgtcaactacatg
gaagtggatgaacccactttaaggacaatttgcataactacatgtgcataacacatgt
cgattccgatggaaagataacttctaatgtatgtggacttctacattgttagacatga
tccgcgtatgttagaatctaaaccgcataaggatgtatggagattacttgcgtcagattgt
aagttgaaggatcatgactgtatgttgcacaggataaagctggagtaagctatcttctatg
ttcttagtattgtcttagtttgcattttgactcgaaagcaagaaggaaa
atgcataaaagtggaaaaagtatacattttgttgcattttctgagactgttaccggaaag
ttgttgcataatgaccagttaaatccattttctaaaaaaaaaaaaaaag

FIGURE 4 (continued)

SEQIDNO79

ccacgcgtccgcccacgcgtccgctttccatcagattcagctctttactccacagctgc
agcaactacattggggacttctggtaaattcactggcttccaacaagaaggcatt
ctacaagctccaaggtaactcggtcacactccgaaattatgagccacaattgttacttgc
ctcttcacaaagtgggtatgaataaaaacccagatcaaaaccctcgccccctga
attgttgcatttctcatattgataaaaacccattatggtttacaagaaattg
gcttatctgggtctgacccgttacattatcaataaaaagcgatttgcatttgcatttgc
catactactattaaaccaagtctgattatctcgggagtttgcatttgcatttgcatttgc
agcttagggttattaagaaagagcctaggctgcttccagtaatctccctaaagtaataaccac
ccaatatactattgttgcataatctgggtttcgctagggatattgagacgggtttcat
cgccgtccttaggtatctgcttaataaccctgagttggctgagagagtagttaatcaagcaga
aaagagtttaacgtacctcgagtcacggatgttgcatttgcatttgcatttgcatttgcatttgc
cgcttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
tctgatatctgtgcaatggcgaaaacttcctactgttgcatttgcatttgcatttgcatttgc
aagaagtacattgaaattttcatgaccgaacttgggtatgaaaccttagttatctggcttgc
atgcaccactttaaagtacagtatggagaagagggtcaagccaaggaaatcttgcatttgcatttgc
tttcttaagaaaaccagctgataaaaggaaactaagtcttgcatttgcatttgcatttgcatttgc
tgaatcacgatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
atttatacataaaaatacaagctaaagagaggtcttgcatttgcatttgcatttgcatttgcatttgc
agtgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ttcaagcatgttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ctataaaaactagaaaatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
ggaaaggaaagaagtgttagaaaccagacttgcatttgcatttgcatttgcatttgcatttgcatttgc
aaaaaaaaaaaaaaaaaaaaaaag

FIGURE 4 (continued)

SEQ ID NO: 80

FIGURE 4 (continued)

SEQIDNO81

FIGURE 4 (continued)

SEQIDNO82

ccacgcgtccgctgacgcgtgggtccactacatcaagacatctactacactcatcttttt
gcacttattgggtgtaaattttgaaaccaggatgttcagatatgaaacaatgcagcattgataatggagattc
gaagggattgacccagcagatgttcagatatgaaacaatgcagcattgataatggagattc
tgaagattgtctcgctgaaacgttcttgtctcctctgaaacccttgcgttaggccat
cagattccttgaatctgattgtcaagaaggaaaatcaaactccttatttgagaattca
tctgttaatctctcatctccgttacccataaaggccacttaaccctaattgggctctggaaaa
ttcaagactcaagccgaacaagcccaattccaaacagagtcttgatgagatggcggctagaa
agagcgaaaggaaatgattccgtatgagaagaaaatagacgaggaaattgaagaaatt
cagatggagatttaggttaggttagttcaagattagaggcttggagaattgaaaaggctgagaa
aactgttgctaagactgttggaaaagcgaggaagggttggcagcaaagttatggagccaa
aacaatgttattaagattgaagagcgtataatcaatgagtgcagaacaaggtggagcag
agaagggtcttagtttaggaccatctgagattttacttggacgcggcggcggagggtttag
tatggggccatcagatattcttagcagggacaacaaaggcacggcaattggaaagcaagaga
tgattattactcctattcagccaatacacaacaggcgaaagtgcgtttttggaaagctcaa
gagattgaagaagagggaaaaagttcaagccttagtcctaaatcaagaaaaactgctgcaag
aacaatggttacaacaaggcaggcagttactacaattgcataaagaagaattgaaaaaaag
atgtggacttttagttcagttcagccaaagaagttttaaagatctcgaaaagtctgct
gctgctaataagaagccccagaggccggggaggggttgcgttagttaggtataatcagagtac
aattcagtcatcagtagttagttaggaaaagaggtcttacctgaaaatgataaggatgagaga
gaaatgataagaacaggcgttatctgttagggaaaacgcgtgtctcaaactgagagcaag
aatttgggtactgaaagttaggtgaaaaagagatggaaattccttagttagattgttagttca
tggaaacacagagagttagttaggaaaatctccactaagcatttgcgttaggttgcattccgc
gaatttaggattgcgtgtgttagttaggattctgcgttagttaggaaaatgataaggatg
atagagttgataggcaagaaatcgttttcagttactgttagttagttagttagttagttca
tcaagtttaagtttcagaggaaagatgttagttagttagttagttagttagttagttagttagtca
ctaactctttcatgccttcaatttcaatttcaattcctgccttttaattttgttcattcgtgc
tttaattgaatggggaaagcattttgccttcaactggtagttcttagttagttagttagttagttagtca
cattgtatggtacaatatgaataagggtttgtctccggcagggttgccttcaagtttagtttta
gcttaaaatagatgcggca

SEQIDNO83

ccacgcgtccgcgtttcacaagcatttgtgttctgatgggatggaactatctggcacctcc
tgataactcgaagtcatatcagatgttatctgatgaaagcaactgcaaaccgagatgatc
tagtttgtggcccccttggtaataatccacaacactatcacaggaaaacgtgatgatggc
cgcatggagggttggaaacaaggcaatggatagttacaccttagaggtattggatttcacaa
tggaaaggtgaaggccttgtataacagagaaggcatctaggtgttactctggtaaatttc
caagttaatggatgccatgcggtagcggaatatttgagaaagataaccgcggagaaaa
ggtagggctcgactgcagccgtgactctaggcaaggatgacgagaaacaaccctgacccgt
caaggttgcattaggactggagagaagaagagactcttctatggttatctggaaactgtta
gtgatttagagaagggttgcactctcgaaagaagattaccattgctagccgatcagat
tatgtgacatctggttagaaccacttgaatagcttacattaagatgtgctcagttgagaa
tttagtcaattccctgcttagatattctggcttgcgttactttattggcccttaggaat
tggggcagcttctctggataactgtggagctaagttataagtgcctatgcgtttcc
cctcttcttagtgaatcttctgcctagattagcagttaaagtccatggactcgctgatt
gttctgtccttgtccgccttcgcgttgcggatgaggctgggtgtaccattgggttgcaaaa
gttcaggca

FIGURE 4 (continued)

SEQIDNO84

ccacgcgtccggccgaaaacaatgggaagagggaaagtcaaggaaagcctactggtcgtcg
ccagttctccactcccgaggagatgattgctggtaacttccgcgtcacgtccgcacgttta
ggcagggaaagaggctgaacttgaggaagaagagagatctgaggagctgaagaggaatctgaa
gaagattctgtatggagagaagaagaaaaggtactcagggtattattgagattgagaaccccaa
tttggtaagccaaagaacgtgaaagctaaatgttcatattgagaaaacaactgagcttt
ccgcacgtgaaaggaaagagatagagaaacagcaagctcatgaaaggtacatgaggctgcaa
gaacaaggaaaaacagagcaagcttaggaaagatttagaccgcttgctctcatacgacaaca
aagagcagaagctgcaaaaaagcgagaggaggagaaagctgccaagaacagaagaaggtag
aagctcgcaagtaacgaatagtaccatgaaatgttgcattcaatttccttagtacaagatat
atccctaccattattggctaatgatggagttacacttccacccctcgttcatgtcctgtct
agttaaatggagaagagttcttatagagggaaatcatgaaattatactttaagctctgatt
ctgtacacaaaatagattgttggccaatatgatggaggattaccagtcctttgttgg
gttggaaataaggttattgcgactaattaaactatcttgcagtgtgtgctatgaggagaaa
tacttccatgaaaatgttctaaggaaagtggttttaaaaacttatttcctgtgtt
gcttgggtgtggacgcacgatcttgcattccctgaggtgctttcaaaagattggaatat
ataatggttgagcaggc

SEQIDNO85

FIGURE 4 (continued)

SEQIDNO86

FIGURE 4 (continued)

SEQIDNO87

ccacgcgtccgtctcaatccaaacttcgagttcacattgccctagcttgagaatgatca
tttgc当地actcaaattattgaatttagatcataatagaatccgtaatataccaaattgtatt
gtttgtttgtatgtgtgtgaaaatactgttaatggtaacaattcgattatggccgat
gtaagggtggttaagcgtgtcaagtacaaatctcagtcaaggaccctggcggtctggcg
tttgaagttgaccaaggaacgggtttcttatgccgaatgaccacatcaacgacaaagc
ttaatgtggagttcaagttgattaaaggccacaggcttctaaagagggtcaagtaagc
gctcttcttaatctcatgcacgatcagggcaggaattatattttgagttgatagctccc
ggaccgcgacaagtgtcgagaattttgcctctgcaattgcgggttggagaagttgtga
aagctgctctgaaaaacctgctgtccacatgatgaacaactcagtgcagcagaatgg
cgtcgattaaagtactgcaggagaatagtgaattgcagaaactccacaggcaattgg
tggaggtattctatcagaggctgaattttggccgcttaggaagaagctactggAACAGGGCG
atatcaagaagccaaaacaacgggtggctttaaaaaacgacatgtggagttgtaaaacctt
tccgatggccagacgaacagagttacatttaacttgcacaccggagttattcatcagatt
tgctgagaaaccagctgtccgccaagcatattgaaatttgcggcaagatgtcagaaa
aagaatttggactaaatattcaagagctgaatacccccacagcacaaaaatatttgtca
gcagctgctgaggctgctgaagatgaggagcttgcgggttttgaagcaagatgacatgtt
agcatttgaagctcgtaagaagatcagaagggtggatccaactctggacatggagcagatg
aagggtatgattacatgcattccccgatcatggcttgcacacttgcggcatgc
cttggaccacagtatgaaccattcaagaggtcggtctcgacatggccatgc
atgtttcgaggaagagttatagatgttgcacacttgcggcatgc
cattcatcaggacaaatcaggctgaacttagtgcggcatgc
gaacgcatacgctaaagtgcgatgcatttgcggatcttgcggcatgc
accagttgcattgcatagtatcaaggatcctcggttgcggatcttgcggcatgc
caataaaggcttggggatgcggatcaggacaagacagctgaaatttagtgc
gaagaaggctttgccttgcggatcatttgcggatcttgcggatcttgcggatcttgc
accataattatgtccagaagtagctctcaagggttgcggatcttgcggatcttgc
gtacaaagtatcatgcggatcatttgcggatcttgcggatcttgcggatcttgc
acgaaagatgaactattactccattggacatcaattcaggatatttgcggatcttgc
atcttgcatttgcggatcttgcggatcttgcggatcttgcggatcttgcggatcttgc
ctcggatcttgcggatcttgcggatcttgcggatcttgcggatcttgcggatcttgc
gtttcccttgcggatcttgcggatcttgcggatcttgcggatcttgcggatcttgc
agatatacagaagagatctgcggatcttgcggatcttgcggatcttgcggatcttgc
tttgcggatcttgcggatcttgcggatcttgcggatcttgcggatcttgcggatcttgc
acatttgcggatcttgcggatcttgcggatcttgcggatcttgcggatcttgcggatcttgc
gactgcctgcggtaattgtacatcttagtggataatgg

FIGURE 4 (continued)

SEOIDNO88

ccggccggatccggatatggtgacccacgcgtccgcctttggatgttatggaaagg
atcaaagtggatatgactcgaagtggcttttggatgacacgatagcgcttaactaaaggagatggaaagatgttat
tcatcgattggatggatgacacgatagcgcttaactaaaggagatggaaagatgttat
atttctactatatacacagagaattgggtcaatactcctggacaagatgaagataattcatg
gcaagcattcggtttgtgccaaaagaaaacttgtatattgcaaaaatcccgttactcggtt
atgtacctaacttgagagggAACATgataaatgcaaaagtggagatgaatccagctcgaatt
cttggcatgtcttatctgtcaacgcagaagggtggagttccaggtgccaagtctggcctgg
tgatttccaagtggaaagtggattaaagccttgcggatgcagtaagcaaaaaggggaaac
atcttaaagaattattagaataggctggacattggggcatccacgctcaccagttgagca
agattgtggaaatgccattcagagatggagaagatacaggttctttctatgtaccttgg
ggaaaagagagaattgagctgaggaaaggagtggaaaccttaaaatgcagtgactacaggcca
caccaccaagtcaaattatcagatttttcttgcataataatggggctctcaattttctt
taggctatcaacttagtatggtaactaaggcgtatgtttataattatcctcgctgtta
caagggttggcaatcaaataatacaacaatgtgcttggaaatcggttagtactgttaaaagatt
taatgtcaatgtgcaatgcgc

SEOIDNO89

ccacgcgtccgacctttcacaaacttctacaatataatttacttcaaacaacttgtagtcctattgtttctgattcgatgtcggttagaacagtgaaagtgagcaatgtctctttggcgctcgagcaagatataaggagttcttcattctctggggatattgagtagtgtgagatgataagtgagaatgagcgatctcaaattgcataatgtcacattcaaggatccccagggtgcagaaactgcagttcttctggagccacaattgttgcattcgtctgtcatagtagccctggAACCTGACTACAGAGCTGCCTCTACAGCTCCAGTGCCAATCAAGGCAACTGAGAGGGCTAA
TGCAGCTGGTGGATCTGCTATTCAAAGGCGAGAAGATGTTGAGCAGCATGTTGGCAA
AGGGCTTCATCTTGGCAAGGATGCGAGTTAACAAAGCAGACATTGATGAGAAACACCAG
TTCATATCCACTGCGATCAGCCAAGGTTGCTTCACTAGATCAAAAAATTGGACTTAGTGAGAA
AATCAATATGGAAACAACATTGTGAATGACAAAGTGAAGAAATGGACCAGAAGTCCAAG
TTACTGAAAAGACAAATCAGCTTGCAGCTGCTGAGCAGACAGTTGACTGCTGGATCA
GCCATCATGAAGAACAGATATGTTGACAGGGGCACTTGGTTACTGGTGCCTTAATAA
GGTCACCAAGGCTGCAGGGGAAGTGGGCCAGAAGACGAAGGAAAGATGGCAGAAGAAC
AGGGAAAGGTTAGCTGCAGGTTACGTGCCTATACATGCTTCTCGGAGTCCCCAAAAGCT
TCCAAAACCGAGGAACCTGCCAAGCCCTTCACTTAAGGGCTAATTCTCTAGCTGTGCA
AAAATATTCAAACATTGTTCAATTCCGCTGTGATCTTCTAGCTGTGATTGTGTTG
GGTTAGACTTAGATATGCTAGTTACATAAAATGTCCTGTACGATTGTTGATACATGGAAAC
GATAGTTGCTGGACTATTAAATTCCCTGTCGGAGTGTGTCGCG

FIGURE 4 (continued)

SEQIDNO90

ccacgcgtccggagagtaaaagtggatcctatgaggaagagcgtcagttgaacaatctctc
acagtacgaacagccaaatgctaacaacacagcgtgatacatctaaagtggctgaggaaggat
atgcctctgcagatgacgctgttcaacaccactccaacacgcggtcgcgagcgtaaagcgagga
gtaccatggacggaggaagagcacaagttattcctatttaggattgcagaaaagtggggaaagg
agactggagaggaatctctagaaacttcgtaaagacacgtacaccgacacaggttgcagtc
atgctcagaagtacttcctccgacgaagcaacctcaaccgtcgtcgcccgatctagcctc
tttgatatatcaccactgactcggtatcagctatgccaatagaagagggaaaaataagcaaga
aatcccagttccaccagttgttagcatcatcaccacattgcctactactatagaggctacca
aaaccaatgcattccagtggcacctatcatgttaccagcacagattgatcagtcaagagaa
agtccaaactctgttgcacgaaatcaagtgaattcgatcggccagttcgcccttttat
gcttcaatgcccataccatcaacagtatttgcacctaacgtgaaccagatctcagaagtgc
aaccattgtcactgagattatccttgtcactgtcaggacaagcatcatctactagacac
cactcgccatttaagtaatgccaagcttcgtaatggagagagcatcattagtgtggcatg
agatcgaaggatctgtgagaaaaaatgaaagcaatatggaaagtaaaaataggacaagagt
ggtacgctgcactcataattatattaaggaaatgttatttaaggagagattaattgacta
gacatttggcctgattgtacagaccagaatatgtcatgccttgcgttacctgttaat
gcaacgagtatactgac

FIGURE 4 (continued)

SEQIDNO91

FIGURE 4 (continued)

SEQIDN092

ccacgcgtccgcttggacttggttacaaaaacagtagcctaaatagtccagctactgccct
tgccttgatcatgcaatgcaagtacaggctccgcattggcgaatttcaccgttgcatt
aacgacgattggctagtgcattgttaaggagtagagagtaggtcattcctcagctg
ttggagatccaggaatgataacacagatggcttaaggatagctttagaagcttggaaactttgt
aatgaagtttgtgaagaagctcctgaaatggtagccctagagctgctgattgcattcatct
ttctgacagttctctgactcacaagtaaccggactcgataataagcttaggagtggcaaga
cattccctggcctgagtcctaaggctaagaataatccggacttatatgctgttggaaaaggaa
ctctatcttggttcattgtgtgaagttgatgacacgcggcatggcaattttggatgat
aatgttgaagaacggaaattatgacacaaaatctggctttgcccagaaaatggaaaaaaag
tgccccctttaatcctgaaagattcctgtttggaaaggatgtatgaatcacctatc
ttgtatcaccagccacttcattattagccatgatattatgcggggagggtttatggat
ctatgattgggttcttcaacgggtggcagtagttccttctttgaggtgctctggaaaaaga
aagttggcacaggggggtggatttcagcacaaactcagaacctccaaattgtatccatgg
ctgatgttgcattcttagggcggacgcgaccaaagggtctggaggctaccactacgatac
cagaggaatgttaaaaactctccggagtcacctaatttaaggtcaaattgacaccttggatg
tgaagcgagggggaggaccqaagagccagtttacttgcataattttggcagctgtggaaag
aacaatggtgctccatgtgatggagatgtgcactgatattaccagatacagcgagatgat
cattaatccagaaactccagcttggtcagccccacaaaatttggcaactgcccaccttca
acatcacaccgaacaatactaaaatctacaggaatgacacacctctcactcccttactcagct
tatcactattattgtgctctggaaacgcccggacttggaaaagccatatagtacatgtga
tccttacagtaatccccaaagcacaggagctagttcagttgcctcatccaatatggcag
actacggctatccaaaccaacaaggagacggctgggtgggatggaaacaatggagctt
gacgttggcccttccagcagacttacttctatcaggatccaggtacacccctgcttag
aagaatatggacatctctggatgtgggactgaaattttgttagcaacaaagatgaagtgg
cagaatggactctgagcgactttgatgtttaatcacctcgtaaagccataataatgatacc
cttctatttaacattgttaactgttagccaaagcaaaatcagatagtgggacaaggctcatca
ttcttgcattttctaaactttatcttctatactagatctgatctgacggggcaagtccctggca
gcattttccgagagaagaaaaagaattttgtttgcttaaaaaaaaaaaaaaag
ggccggccgctctagagat

FIGURE 4 (continued)

SEQIDNO93

ccacgcgtccggcttcaactatctttagctggccatatttcatgcttcaggaactgattta
ctgctttcgctgggtggcgttttcaagttaaagtttagtcaaactcagaggattcgta
tagtttacatactttctgtggcattaacgaaactatgttactgaaacacgggggtgat
tcaattcttcttgcacagatattaaagctggactaaagcatctacagactggactctatc
ctgttagtttagatgcagactaagaaaaattaaatggaagaaatccccgagagctggctag
tccaaagggttcaagacagcagcggaaagatgtccgagaatgtgcaaactcaggcaaagcaag
ttaaggaacttataacatctacagtggaaagcaaaaatcaggaagcaatttcttgaaaaag
attgagaattatgttgcgtacagatctggatgtaagattggattgggtctgtatgacac
ttctgctgcttcagacgcacatgatgctgtcatgaatataactattactattaataagg
actataatgttgcactgtatgtgcacaaatgataactatatttctcctaccctccatata
tccagaactattggagggaaatttctaacagagcagacatacccaaattcattgagcaagc
agaccagccattgcaggagcctggaaaggaaaatatggaagttgatctgctgacaagtatt
ttgtgctggacgaggctaccgatataggggccagcatatctcctctgaagttcagctgt
catctctattaaagattcaaaactggaatgcattgatgaatttaatcaattcagttgcc
tgctgatgttagtatggaggaagaggaaaactgaagagttgatgactttgatccatatttt
tcataaagaatttaccagacttgtactcagggtttccaaacatttcggcctgtgttattgcct
aaacaaaacacggagttgccatcaaccactcttggacttggatgagaccttggtgc
ctctacacttgcacccattgtgatgatgcagatttcacttctcggtaattcaacctgaaag
atcataatgtatgttcgatgccgtctcatcttcggattttatggatagagtatccagc
ctatttggattatcatattactgcaagccaaagcatttatgctgagaagcttctgaatgt
gcttgcattccaaagagaaaagtatttaggcattgtgttaccgtgagtcattgttatttgc
atggcaatttacccattaaagatctgtcagtttgcggcgtgatttagcacatgtgattatcatc
gacaacttccgcaggcattggattccagggtggacaatggattccaaattgagagctggatt
tgatgaccgctctgacaaagagttgtctcttgcctccatttgcggaaagcttagttggag
ttgaagacgttgcaccgattattgttagccaaattcaacccatttcgcggagagaatagctgt
gctacttgccttttaactctttagaggtgatgcatttgcggagatggatccgtgtcttt
atagattcagtctggttacttgcatttttagatttcaatggctctcgatgagttgcaggaaat
cagttctaatgtacccatttgcggatgtgatgttgcctagaggctgatctctaatgttggtaat
ttatgttaattcacatttgcattttgcggatgtgatgttgcctagaggctgatctctaatgttggtaat
aataaggctgtatctgaaacgtgaaatcatccaagcgag

FIGURE 4 (continued)

SEQIDNO94

ccacgcgtccgcttagggtccaaattgctctaaattcccggattgagagttcattggag
acttccattgttcccagcgctaaagatgagccggttattgagcatcacctagcaaataata
aacaggacatgaaaggacagagggtttttgttggttggccgtactactactgaaagc
aaaattcatgaggtatttcttcattgtggtagatttgaaaatacggttataaaaagacca
gacaggcggttcataagggtttgttgcattgtacgatttgcataaaaaatgctgctgacaag
ctctgaaggaaaaatctggatatgtgctggatggaaagaaactcggggttcggccctcagtt
gagcaggacactttatttcttggaaatcttaacaaagggttgggtgcggaggaatttgagag
tattgtgcgccaggtttccagatgttgcattgttgcatttgcacttcttggagatgtcc
aacctggtcagaagcaacggaatcgggtttgcattgttgcataattccatctcatgctgct
gcggctcgtgcatttcggtaggctccaaatctgatattctcattgtatggcaagttacatcc
atctgtacagtggctgaggaacctgatccaaatgacttgcatttgcataagcagcattcg
ttagaaatgtacccctggcgtatgttgcattttgcattttgcattttgcattttgcattttgc
aatgttagagaggatgtctatccaggaaaggtagctccaccattggattcgattacttcga
taagcgatctgtatcttgcataatgttattatggcgttgcattttgcattttgcattttgc
tgggaggtccctcatgcaagcttcaggcgttgcattttgcattttgcattttgcattttgc
cgaggtcgtgaggatccaaacatgtccaggatccattttgcattttgcattttgcattttgc
tgatccagatgttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc
cgatccattatgttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc
atcttgcggcttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc
gatattgcggccatctgttgcattttgcattttgcattttgcattttgcattttgcattttgc
tgcagaacaaggaggatcttagcttcatatatttgcattttgcattttgcattttgcattttgc
aaacaattcgatagtaggtcaaggatagaagatgttgcattttgcattttgcattttgcattttgc
gttctctacaagagttcggttgcattttgcattttgcattttgcattttgcattttgcattttgc
tgcctaggactgttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc
cgatgcaccaaggatgggaggaaaggcaatgttgcattttgcattttgcattttgcattttgc
tagtcgggtggcaacggatgggaggcaggatggcattttgcattttgcattttgcattttgc
gggtgacacaaaggatgggaggaaaggcaatgttgcattttgcattttgcattttgcattttgc
gtcgggttatcaaggatggatggcaaggatggcattttgcattttgcattttgcattttgc
tactaatgacagaattggacttcattttgcattttgcattttgcattttgcattttgcattttgc
gaccacggatcaggatggcattttgcattttgcattttgcattttgcattttgcattttgc
gagccaattttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc
ctaatttacaatgttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc
cgcagctgtaaaatagtagctgttgcattttgcattttgcattttgcattttgcattttgc
gatttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgc

FIGURE 4 (continued)

SEQIDNO95

ccacgcgtccgcccacgcgtccgcaaaccctcccgcaagctaaattccctttctc
tctcttgattgaataagagaattggggttacagtaattggggttcgtatatttag
ttctgtaaaactcatccctcgactcgattcttgcattgattcattagatt
gactttgatttcaattcaattctaattgatggaggactaattcagcagaacgtcgatcga
ttcacgtctgttcatcttcaggtgaaagagccgttaggccacataatgcgcagaacagcc
tatttcgccccaaagatgaaaggactgttctgcaaattgcattgtgaatgcattcatccctg
gggctttaagaaatgctaaagatcaccctgttacctctgaaactggagctctgtccgcctt
tatccctcaattcctattctcctcaggaccaaggtttactatggaggtaacgcacaacgg
caactgggagttggccaaacaatccaatgatgtcaatgtgaacttgcattgttagtccgcag
caatgtacaatgagaatcccctttccctccgggtacggcttgcattgttagtccgcag
tttggacagttcccccattcgctagtcccttctcctttatgatagatggccagctata
ctccccacaccagatccggttctccaaattactatgcaccacatttccctggcttgc
cgcatgttacatcagcttccagcttcgcagcctgatctggcaccaggaagcactggc
catgaaattgatagcatgtatttggccaggatcaggttactacataccgttgatcgtt
tggcggaggcagttcgggaaagcagaacattggttctacaattaccaggtaatttgc
gatctggtaatcttacctaattcgcactaaccctggactctggaaagatacatgtctcaa
atgacatctgcggcactatatccacaaccatggcatacttggcgtacgaactaaacgc
catgcaggcttcacatcaaggcttggattcacaccaggcttcaggcaggaatttccc
aaggcaattttatccttagtgcattactatggtactgggtctagttctgtggaaaccagg
cacagaaattggctaactcctgacagagggtggaaagacgtgagagaggatccgcactctgtt
catttctactgaatcattggatggcaagtgaacgaaaccaggaccaaggcattaaaac
caaagagcaagggtccattgaggatagcttcatctgtcatccgtaaagaagttgagtc
actaatacttgcagcctgagcagtataattcggctgtgaatttgcatttgcacttgc
caagttcttgcattcaatcctcagtgaagataattttcacaattttgcattcaatata
tgtggctagactcctctggaaatggaaagcttgcatttgcatttgcatttgcatt
aggaatgctgatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
ggttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
gatggagtggcaatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
cgccacctacttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
ggtaatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
ctatattggatgatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
aaacagcgaacacttcaacctggtagtgcatttgcatttgcatttgcatttgcatt
actagcggatagtcttgcggcatttgcatttgcatttgcatttgcatttgcatt
agtttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
tttagttggatggcaaccaggctggctgtatagttaaaggagattgcatttgcatt
ggtggcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
ttgttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
ttagtgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt

FIGURE 4 (continued)

SEQIDNO96

ccacgcgtccggggttggcaagaaaaattctaaagagaaaaggaggaacacattgattttac
gaggactagtcatcattttcttggacagtcttggaaactaacagcttgattgctgaccct
tttcctatcacggtagacagccaaactccacatttttatataaagaccaccctttcatt
ttggatttggtaaaacaaaggaagttccagaagataatcagagaaaagatgaaatttggaaag
aatttgcattccaaattgtccaagaatggcaagaagcctatgtggattacaattatctcaag
agtgtttaaaagacatcttgaatttcaatattgccctcacctaagttgaaggctcctt
aaagagaaggctatctatgtacagagcctttagtggattacaaacttagttcaaagttc
aaaacaatgaagatgaagccataatttagtgagttcagaaggccactatcaaactatgtttctt
atgtcatctgaaaaagggtggagaaaatgagatggtttttttttttttttttttttttttttttt
caacaagggtgataacttttaccagaaaaaaatgagatggtttttttttttttttttttttttt
tgagtaaacaatggatgcacttattgctctaagaatcaagggtgataaggccttctataaga
atcaaaaattcccatttggaaatccaggttagtcagaaatggaggcaatacaagaagcaga
gtgacaagtgaagaagaagcaacaagaggaaaagagatacagcaaatacaaaaacata
tggattttaggcctgctccactagagattttggaccatataaaaatcaatcttgaacccgaa
acacctgtctcaactttaaaaatcatccatacttcaaaatccaacttattcattcagcaa
agaggagctcagaaaagctgaagaacaaatgagaaaggcttttgtgagttctatcaaaagc
ttcgacttctgaaaaacttctgtcttttttttttttttttttttttttttttttttttttttt
tatgacaagatcacctcaaggaaagcttcttaaatcataacttagagatggtaataatctt
tcttggtagctctgtatgagttgcttaagctcatagaaagagttggaggccacattcataaagc
attttgtcaatggaaatcgaaggaaaggaatgaaatcttttttttttttttttttttttttt
acgcatacatacatacatacatacatacatacatacatacatacatacatacatacata
tattgctgtatccatacattcggaaaccttctacagcatgagggtcggtggcagttatgg
aaaatatattccactctacagcctattcgatacattgtccatcatgtcatgtacgcc
gggacatataactactggaggcatttttagtcaattatcccttcatttttggcttcaagca
gggacagaacttagtttacagacaagtttttttttttttttttttttttttttttttttt
tggctgtcgattgtccacacttagatatggagatggatccaaatacaagaatgggg
gtgatttagtgcattgtccacttgcgtggttattctgtcttcaataacttttttttttt
gaacatcatatatcgtaagtcgttcttttttttttttttttttttttttttttttttt
ctcccccttacaaggtaatctaccagatttttttttttttttttttttttttttttttt
tcaggcaatttaggagtttgcagttctatgtctgtactatgtgtggggcaacttc
gatctaataatgtcaagaaaagcagtgtttatcaaatcttatacatagtcgtcgcaattt
cccttttggtctcggttattcagtgccttcggcgttatttgaagagaaaagattcaatgca
ggggcttaatagcctaaatatttcaaccatttttttttttttttttttttttttttttt
ctcaaaaagagaggaacgtttttggagagtaatggcgcatcatcctcaggaatttactac
gcaaataacttactggacattgtttagatggggttattgcaaaagaattcaagaaaaccg
ttgggttagagacaaaactgctgtgcccacacaagattgtctacttttttttttttttt
acattattctgagacttagtggatgcagtggtttttttttttttttttttttttttttt
cacaagaaaagcaatggttgcagtagttgcctcttagagatccttcggcaggcatgtggaa
tt
taccattgccttttaactacagaggaggacaagagttctatctatacttgcatacgc
agaagtgcgaaggaatccagggttttttttttttttttttttttttttttttttttt
attcgttgcgtatattgtt

FIGURE 4 (continued)

SEQIDNO97

ccacgcgtccgaaaccataaacagagcagagagcgattgagagagagagagaaaatggaga
ctgtaaaaaagagtgcacggcaatggaaagcattcgagaagcttgcggaaatcgtagactgaagaa
acttacggaaagggtgtacagagcggagatagggtacttgcggaaatcgtagactgaagaa
gacgaggcttcacgaggacgaagaagggttcctcccactactctccgcgagatctctcttc
tgcggatgctctctagggatcctcacattgtcaactgatggatgttaaacaaggccagaac
aaagaaggaaagacggtctacttggtcttgagtatcatggatactgatgtcaagaaatt
tattcgtagttccgcgcaaattggagaaaacatccccctaaaactgtcaagagcttgcgt
accaactatgcaaggagttgccttgcgcattgtcatggcgtttacacaggatctgaaa
ccacacaatcttctgtatggaccgtaaagacgaatgtgcctcaattagcagatttggacttgg
cagagcttataactctggccatcaagaagtacacgcgtgagatattaaccctatggatagag
ccccctgaggttcttctggagctactcattactccacagcagttgcacatgtggctgtgg
tgtatttgcgtactggtcacaaaacaaggcccttccaggagactctgagctgcaaca
actgcctcacatttcagattgcgttagtactcctaattgaagaactctggccgggtgagca
agcttagtaaactggcatgaatacccccaatggaaaccccccagccactctcaactgtgtccct
ggcttagatgaagatggcgtcccaccttctaactgagatgtgcattatgagccagctaagag
gatttcagcaaaagaagactatggAACATCCCTATTGATGATTGGACAAAACTCCTCT
GAAGTCCCCTCATGACCCATGTGAAAAATTGCAAAATTCTCATCACCGGAGATCAACA
AACCCATCTAACCCCTCATCGCAAGCTTTATTGCTTCTCAAGCATCTTTAATAGTATC
AATTAGTATGACTAGCTCACCTAAAACTTGTCTTCTATATCAATTGGATCAGTGTAGC
ACAATTATGTGGAATGATAGAACCGCA

SEQIDNO98

ccacgcgtccgatattcctcggtatattctgactgactcacgattttcggacgccttgtt
ctcgccgtagcgcggatattatacactttgtacaatctgttagtgatcgccgattgatttg
ccgctccggtaagttgtccttgcgaaaatttcttcagatctgtgaggcaggtggctg
cagttgttgaaggttgaagttagcttagacaaaagcattgtcatgtgaccagatgagca
gaactgtatgttatttcagtagaaggaggaggttcttctcgtttcagttctggatataag
taaggcctgacccttactcttgggtcagaagaacgaagagaagcccattgagagttgcac
cgtggaaaccagtaccagtgggaccaagaaactgatccggacactccagctggctccggg
aagaacagggttgcgcgggtgcgcctccttgcatttatgcattggcgcgtccgctggact
tgagagccatctcccttaaagtgcgtcctacccaacagccagaagtctgcctagctgtc
ctgcttctgacaaggacaacaatcagtcgcagtgtgttaatattattgaagacagtcatatc
tcaccaaagggttgccttcggagtagcttaaaggaaaccagcaaatagtataccattctgg
tggtaatggtaatgaacgcggcacaattctctaaagattgtatgcattggcgcgtccgctatgg
agaaaaggaaagtgcagtggacagacacatctggaggagagctttgagataaggaaattt
gagcctagtgtatgtgtgaatcagatgtatgcatttgagagtggaatgaaagaactgttcc
ttgcaagataatgtatatttagtccttataagaaggttcatggctgatttcattgttaggag
gcaacaattgaggtgctgcagatgtatattacgtggagggttgcacacatgccttttgc
ctcaactatcagtcgacacaagtgtatatttgaggctttattaggtagcgtcacgttgcatt
gggctttctgggtttggctgactaatctgtgtctatattcaattttcattatattatcttcat
tgcattttctggggccctgcgtctattgtttcataattatattatcttcatttttaa
ttaaaaqatttctggccttttatcaaaaaaaaaaaaaaggacgaccgctgttagggt

FIGURE 4 (continued)

SEQIDNO99

FIGURE 4 (continued)

SEQIDNO100

ccacgcgtccgagcttaagaaaagaacactgccctgctgagtatctataaccatataagata
 ccagtaccataatttgcacatcatcttcaactctaaggatcaaagcttattgtccaaagaa
 aaaacttatggactcccctcataagccaaggctttcacctaaccattctttcttcc
 ttcttgatcctcaaatctcctgacttttcatctaacatatttaagaactcttcttgc
 tctctataccagcaaacatataaagccatggccactgcttcattaaacaatgctatccctt
 tggtgttaagtcaaaaacttagagatgttgcattgtatctgataaaccaggcagctgatttag
 acttaccatctgagttcctgcttacatctccacatcaactgccattggagtcaactcg
 agcttaattctgacaaactcatccctccggtggccgtccatgtactatgtttccagattt
 acttcggcggtacatgtcataaaaaatcaatggatcttgcctgatgatgagctcctggcac
 agaagctgctctcaaagggtgtgagcctccctcgccgtagatgccgtcgcagctcaa
 caggaatatgttgcggcttacatccctccgtgagagcttgcggattactccatcagattcatc
 tgttagttggacagcatatacatgcaaaagctatgaaatgtctaatcaacaggaaaaaaatc
 aaaaagcatttgcattgtgattgcaaaagactgcttgcattgtcaatggccttcaatacattt
 ttgtccaaaaaggagctggccttgcattctcttgcattgtcaatggccttcaatacattt
 gggtacaatcagaataggcgatcttgcattttgcattttgcattttgcattttgcatttt
 gagaaaggaacataacaatattaacaacttcaatgaaatctcaatggccttcaatacattt
 atagcatcaagaggagtcgtaccccttgcataagcatttcgcacacttccttcttgc
 caatacactggatatagttgcatttgcataatgcatgtgcattgtcaatggataccacacttc
 tccacttcttattatttcgcacatctatagggtgcctccgcattttgcattttgcatttt
 catttttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 gtttaataaggcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 tggatcttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 ctttactttcttactttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 taaaattatagattcatttcagatgacatcttcgcataaacttagcattttgcattttgcatttt
 ggttatgtttgtatgttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt

SEQIDNO101

ccacgcgtccgtatgctgttcatgtatctgataaaccaggcagctgatttagacttaccatc
 ttagttccttgcatttcacatctccacaacaactgccatttggagtcaacccgaactttaatt
 ctgacaaaactcatccctcctgttggccgtccatgtactatgtttccagatttacttcgtcgt
 tacatgtcgtacaaaatcaatggttcttgcggatgtatgagctccttgcacagaagctgct
 tctcaaaagggtgtgagcctccctcgccgcagatgccgtcctgtgcatacaggatgt
 ttgagccttacatcccttcgtgagatgttgcattttgcattttgcattttgcattttgcatttt
 acagcatatacatgcaaaagctgtgaatgtcaatcaacaggaaaaatcagaagcatt
 tggatgttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 agggagctggccttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 agaaataggcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 cataacaatattaacaacttcaatgaaatcttgcattttgcattttgcattttgcattttgcatttt
 gaggagtgatcttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 gatatagttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 attatttcgcacatctatagggtgcatttcgcattttgcattttgcattttgcattttgcatttt
 gtgttgggtgagcaatttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 gttaagtgggtcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 agcactgttggagaagccacttgcattttgcattttgcattttgcattttgcattttgcatttt
 ctacttttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt
 tttttaaattatagattcatttcagatggcattttgcattttgcattttgcattttgcatttt
 gtgagttttgcattttgcattttgcattttgcattttgcattttgcattttgcattttgcatttt

FIGURE 4 (continued)

SEQIDNO102

FIGURE 4 (continued)

SEQIDNO103

SEQIDNO104

FIGURE 4 (continued)

SEQIDNO105

ccacgcgtccgcccacgcgtccgcccacgcgtccggccttggctctcaacttcaaattcccg
acctcttctagcggcggaaattaccacgcacgcagagaaggacaccattagccgttcggcca
ctgacccaaattggaaatcggcggatttagactccgatggcgtgaatttagaaacgcggacga
gatgtggagagaagaagttaggagatggtaccacaaaagaagtctcaatggtataacaaag
gcatcaattactggaaagggttggagccacagtggatggtgtgctggcgatatggcat
gtgaatgaggctgatataaaggcaagtggatattctcaacaccatttgccagaaagggtt
ccctgatgctggaaagaggccgcatttgcacttgcactctggattgtggatctggcatggagg
ttaccaagaatcttcttatacgatattcaatgaggtgcacactagagcctgtatcacat
tttttggaaatcagccccggtaatttggctctgaaaatttaatgggttcagagttgcacaa
agctgccaattttattgtgttccactccagaatttactcctgatgtgaaagatatgt
ttatttgggttcagtgggtattggcatctgcagatgtactttatttcatcttcaag
agagcacaggctggcttggaaacctggactttttttctaaaagagaacattgcaaaaac
aggatttgattggacaaagaagataagagcatcacaagatcagattcatatttaaggagc
tgttcaatcaatgtggactatacatctacaagatgaaggataaaaaggattccagatgaa
ttatttgcgtgaagatgtatgcattgactactgagatgccaaggcaaggtataaaacctag
acctaaacggacaactaatagacctgctatcatcagatgtgaatatcacattgggttg
tggtttactaacttggatgaagtaattcataggttattgttttaggtcacatgtatg
agttctgtcaatgttatgttattgtttggatataagttatatacatgtatgtgaagaga
tttgggtgtacttttagcttattgttaggttacttctttagttgaattttatgcaaccg
tttgcataatgttattctgtcttcttgcataaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaccaatttaaggctgg

SEQIDNO106

tttgcataaaaaaaggcaggctggtaccggccggatattccggatatcgacccacgcgt
ccgcccacgcgtccgcaaggcttagggatgacgttggccgataggaatgctaagaaaaagg
gaagcaaaaggcttccggtagtcaaaagactcgcacgttagctgaagctcttgcataagctt
ggAACAGACTAGAGAGGCTGGTAAAGGATTGGAAATCAGTGGCCGGGCCGAGACCTGGTGA
GATAGCTGGGAATGATGCAATGATGGAGGAGTGGTTAAGCAGTTGAGGAGCTTCTGG
ATCTCAGGACATGGAGTCGATAGTAGAGACCATGATGCAACAGCTTGTCAAAGGAAATCC
TTCATGAACCCATGAAAGAAATTGAAGAAAAGATATCCTAAATGGTTGGAGGACAACAAAGCT
AAGTTGAGCACGGAAGATTATGAACGTTACAGACGCCAGTATGAACCTATAAGAGATCTGAA
CAAAGTTACGAGACTGAACCTAGCAACTCAACAAAATTGTAGAGCTATGCAGAAAATGC
AAGAATGTGGCCAACCGCCAAATGATATTGTCATGAGCTGCTCCAGACTTGTATATCA
TCTCTGGACAACTATCCCAGAGATGTTGGAGGGCCAACAGAACTGCCGTGTTATGTGAAA
ACTGAAATGTCCCCCGCTGAAATGTCCTGCTGTTGTCACCTTGTACAGTTGCA
ACAACATTATTGCT

FIGURE 4 (continued)

SEQIDNO107

ccacgcgtccgctatacctagatgacatttaccccttagccctaagccaaaaaaaagaagaaaa
gatccattgcctcatcctctgtaatctcatggattcaactggttcaatcctctgcacatcttct
tcttccttcaatataattttaccccagttcatgctcaagtcatgtttagggatggttactca
gttaagacactgattgatggccacaagatcaaaaattaaacctcactccataattctgtaat
gggtgctggcaatttcatcattttgattctgtgctgccagacttttacaccttatcttca
acaaaaactctgaattttcatattcgaagttactggtagtgagactgctggctatgtggat
ggttctctggataaggctaagttcaacaaaacccaaaagcttgcgtttagtcaaaaaggaa
tatttatgttgcgtatatttggaaacaagcatgcaatttagaaagatttagcaagtcaggttta
ctacaatagcagggggttattcaactaaagccaggccgtgctgatggacctggattaaatgcg
tcattctcagctgatttgaacttt
ccgtggcactatgttagtgcggcaaatacagcttaaggccgaggattttcaagagattctc
attctgctctaagagcagtttctacatggttcttaaccgtggggctccctgctggctgc
ttgattctcggttggtcatccgtccttatgtttagtccctaatgaacatggcagtcgtttcg
gcbcacatgacatggaaagcacttccataatcagtcgtggagagacaagttctgtatgttctgct
tcggcatcagaagcgtagttgttgactcaaagatctattcaactttaaaggaagctcgtgtta
cttactttctccatctgtgcctaatgttttagtcctaaagtagtagtatgccagacttctcg
taaacaactggctcctcttaagtttgcgtactctgaaagcaaaagatcagcaaaatcac
cggtggcagctaacatttggaggatttgataactttgtatggaaagttggtaactccgag
ctgactactaatcaagatgatgcagtggagcaaaagtaccgttgcgttagatagcat
gatactagctaattaaaagggttgcagaacaggggattgttgcgttagatgat
catcgagcattcgagcttagttaaaccggaaaaaaaagaacgtaacttagtgaagtcgtac
gtatgttattactattaacttttgcactgttgcataagttcatcggtctatctgctaccact
ttcatgtacatgttggaaacaagcaaatgactcaaggcccttttagttaaatattcttagcc
tgtgtttctggttccaaaaaaaaaaaaaaaaaaaaaa

SEQIDNO108

FIGURE 4 (continued)

ttgtcagggttagtatgccatgaatgtgtgaactttatgatcatgatgactctttatctct
taaaaaaaaaa

SEQIDNO109
ccacgcgtccgcccacgcgtccgcccacgcgtccgcccagccagacgttaaacgacgtcac
ttaatgtacccttccccaaaaattggggcttgcataattcattgaacaattcacaatt
gtagaatttaggtcttttcagtaatggaaagtggatttgcatacccaagatgaaaa
gcagtcaagaagaagcgagccgcggcggcgcagcagatgaagaaagtgtgaaattcacagt
gttgcacagccacttagggatttagaattccaactgggtgttgcataatttgcata
agaatatttgcataaaatttgcgtgaaattactagagataattatgatgatggtcatg
tgaattttgcataagctgcattgcattcagggcgcattcaggtgtacagcaggaaggcg
gaatatctgtattctctggattgcattgcatttgcataattaccagaagagtgaaaccaga
tctaccagcaagtgtatcagcccaagaagatgaaaacgggttgcctgcgtccgacaaatgaag
agaatgatccatactyggcttcagaagaaacctcagtgaaagcacaagacatgtggataat
acgacgtgcagggatcttcattaccgcatttgcattgcattgcattgcattgcattgcattgcatt
cgaggctgactgctggatgttactggagatgctggagaactagactgttacactgcatt
cgtgtgatcttaccgcatttgcatttgcattgcattgcattgcattgcattgcattgcatt
tttgcataatgagaatatacgatggaaagggtgcataacaatagctgcactgcattgcatt
ttcttgcactccaagtgccacaagagctttactctcccacaagacgtttgagggaactg
gcaataagtcttcagctcaaaagaatcaggatgctaatttatcagtctcaagggttcat
gagtttggccaggcaatttacaatgatcagttgcattgcattgcattgcattgcatt
tgatgcacatagatgtgaagatggatattcagaacacctagagactcagacgaatcgatgatg
aagacccatggaatccgttgcattgcattgcattgcattgcattgcattgcattgcatt
aaagttaatttaatagaaggcagggtgcggcgtccaaaaaagtgcatttgcatttgcatt
atttcagggtgcgagattacatggtaccactagcgcagacctcaacgcacatgtggagagaa
aatgttgcattgcattgcattgcattgcattgcattgcattgcattgcattgcatt
gaatcacttgcattgcattgcattgcattgcattgcattgcattgcattgcattgcatt
tggaaatgtgactatgatgtgcagatcagatttggcatttgcattgcattgcatt
aaaatgtgacatgcattgcattgcattgcattgcattgcattgcattgcattgcatt
tttttgcacagtgcattgcattgcattgcattgcattgcattgcattgcattgcatt
ctcccacttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatt
cacgggttcaacgtggaaacagagaattgagcagaacttggaggaacaagaatcacatccc
cccttgcattgcattgcattgcattgcattgcattgcattgcattgcattgcatt
tcaaaggcacaatgcatttgcattgcattgcattgcattgcattgcattgcatt
cattttgcatttgcattgcattgcattgcattgcattgcattgcattgcatt
cgtgagttccacttgcattgcattgcattgcattgcattgcattgcatt
tggtagggagaaaatgcattgcattgcattgcattgcattgcattgcatt
agggcatttgcattgcattgcattgcattgcattgcattgcattgcatt
tcagaacccaaactcaagggttaccgatttgcattgcattgcattgcatt
gtacgcattgcattgcattgcattgcattgcattgcattgcatt
gcatttgcattgcattgcattgcattgcattgcattgcatt
tcacttgcattgcattgcattgcattgcattgcattgcatt
gaagattaacccaccatgaccactgttaatttgcatt
gaaatttgcattgcattgcattgcattgcattgcatt
aggatgtatgcattgcattgcattgcattgcattgcatt

FIGURE 4 (continued)

SEQIDNO110

SEQIDNO111

ccacgcgtccgatgagacttggagggtgcctcggttagctgaggcatggcgagacaaca
caaatgtgcattccaagaaaaagtcatttcattgaaactgaattgatgatgaggcgact
agttatgcgtcttgaacgaggacggcatgacttgatgagattgaggatatgaggatacg
cgaaaacttgtttacaagcttgataaagattccaaggaatacgaagaatataagttgaat
tccatagaaggaatacgaacaagaataatggaaatgacggtccaaaagagaaggaaaaatcg
aataacgtttcagttctagggtcgagaaaggctaaagggtatagatgagaagcagcaaaa
caagaaagagaaaactgagctataacttcgcctccgttcaagtttcagctaaatgatt
tcggagcatctccaataaagaggttaagggttccaactttaatcagcttactgcggcccttat
catgagccgtttgttggatattatgtgtcgaaagggttcaagtttgcattatcca
cagagctactagcaaggttgggtgtggcgactctattcaaaaggacatgaaatttgact
tgggatcaactaagaatagagctacttgtgtctattggggaaattctggctcaaagagca
ctggctgatgatattcataacgttagttatacgccaaaggaaaggggagaaatttggaaaggaa
acttgagattgtacttcagtcattatcacatggcatcaatgtgaaggtaagattaagc
agagaaaaaccaagaaacctggcttccaccgccccgacagcttagtggtcatcctacattac
gttagatgaaattaaaagtgacaaggaagtttatcaacgtcttataagctcgaaacagcgc
aatgttagtaagttagaacaaggctcagagatgtattactacacctttgcgagggtgcagaaca
tttccctaaattcagtttcaatcggttcaatagtagttacaacttggaaataatctt
ttatttcctgcaatttgttattctttatgagaatacattgtgttaatgtaaaagtgtgac
tcgcag

FIGURE 4 (continued)

SEQIDNO112

ccacgcgtccgcccacgcgtccggctggaaacttgcgtatcatcttcaaactcttgattag
ttatattaaagacttagtcattaaactcaatgggtatagtcaactcttcactcacca
cttcagccatctggaaagctggttcagattgaacatgcattgactgcgttggatcttgt
caaacttcattaggattaaagctgtaatgggtttgtaattgtactgagaagaagttacc
atccatcttagttgatgaagcatctgtcagaaaatacagggtttgacgcctaatttggag
ttgtctacagtggatggccctgattctcgagtttgggttgcggaaaagtagaaagcaggct
gagcaatatcaccgactctataaagaaccaatccctgtcacacagctggtgaggaaactgc
tgctgtcatgcaggaattcaccatcaggtggtaaggccattgggtttcactcttgg
ttgcgggatttgcataagggtccccactatatcaggtggatccatctggttcatacttc
tcttggaggcttcagctatgggaagaatgtcttaatgcgaagacattctcgagaagag
gtacacggaggatagagctcgatgatgcttacactgtactctaaaggagg
gattcgagggacagatctctggaaaaacattgagattggcattattggactgacaaagta
tttaaagtttcacgccagcgaaatagatgattacctaagaagtggaatagattttctt
ttccgcttaaggcattggaaaaagttgtcaggtggaaagcgcagacgggtcatagcacaac
tattggatgttcttggcttgcattatcacttgcatttaatcaaactagacttagttgtat
gttggccatgttgggttatttattgcctgatgtatggctctgaaaagttatatgggtttc
tttctcagttcttgaacatactgatttttatgttacctgaaacacatgacagtagaga
aaagcattatattttgagcaacccttacgtctgagaacgg

SEQIDNO113

cgtccgaaatggcsgaagacaagaaagactcaacgtcgagttccgcgtccaagaagatccc
gaagatcccgtaaatccccccttcttcccccaattcctccactcgcaaggctgtatgc
tgttcttcaaagttgggtgtcaaagaagttcatgactggatgcgtggccttccatccatgg
ctgttacatttcatcaactgggtttattcaatttgtatgggttgcacatcgataacccatatt
tatgaaagacttggattgacatattggccttgcatttgcatttaatcaaactagacttagttgtat
cttgcggatatttgcattcatcatggctgggttcaacagttttggataggaaatgg
ttataaagagaatgcccttgcatttgcattcatcaacttgcattcaaggaaatgtacttgc
atttcaccagaccagaataactatgcattcaaggaaatgtacttgcattcaaggaaatgtacttgc
tggtaatatgcattggtttcataacatcttcagttgttctccagagagatgtgggatg
aagagttgtgcagcattttgtccctacaaatcattgtatataaggagatgtatttgc
aattcaaatgatcatcaggccaaatttgtctgtcgagaaggcatagagatcatttttc
tgtggaaatgtcaatgccgcaggatattctcttgcatttgcatttgcatttgc
ggatccctctaaacagaatgttaaagtaaacagaatcatcatcattgcatttgcatttgc
gctaaagctaccataatctcatttttagggaaatgcgcatttgcatttgcatttgc
gttcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc
gtgttatttttaggatttagttaggaggatgtttgcatttgcatttgcatttgcatttgc
cattgtttggctgttagctggttactctaattacatttacccgtggctgtacagtcttgc
aactttagtgcatttgcatttgcatttgcatttgcatttgcatttgcatttgcatttgc

FIGURE 4 (continued)

SEQIDNO114

ccacgcgtccgcccacgcgtccgcccacgcgtccgcccacgcgtccggcagcctacagtcca
tattcacgtgctacatccctgccccactttggggcatgatggccagctctatggatcaca
acaataccactatccgtatttcagccccctccctccaaccagaattcgtaactactccag
ttgccctgccaaaaggtagattgcacccctgtgtgtgtgtaaaaggaaatgtgg
gttgattctgctaatttcaatggcattgcaatgggtgtgtaaaaggaaatgtgg
gcctacgcttgtgaggcctgcattccagaacccatccgtaaatgctaattgttttatggac
gggtgcgttgctggaggagctgtttcaggttatcacgaccctagatttaggtttgtggt
gtgcgatctccattccatggatagatggatcaatgttcaactgacgggaaggtaggt
gtcggcaatttttacaccatctttcaatggcagtgcgcgttccatcataaaaatc
agaatgttcatccgcatctaattgggttccaccacccaaggccctttctggcatgaacaca
acaaatgggtatataatggatgtaccccaataaactgtatggggccgtattgtaacac
attcggtactggcatggcttggatccaatggatgtatccgtaccacaggtcggt
ggatgacggttacaacaaggtaaaacccagggttagagaaatagtttctacggtaatgag
aacatggatggttaaatgagctcaacaggacccatggtaaaagggttcaagaataaaa
gggttttacaccagtaacgctggcagtcaaggccagaacgttccgctaccctaaaccatg
atgctgagaaagaaaaaccaaggctgattctgacagagaacaatacaactgtccagattt
ccagtgacatataactgtatgccaagttttataatcaagtcttacagtgaggatgtgca
aaaaagcatcaaataatgttggctagcacaccaatggtaacaagaagcttgattctg
cttaccaggaggctaaacaaaagtctgggttgcctgtttttttctcggtgaat
acaagtggtcagttgtcgggttgcagagatggtaggaccagttcaacaagagtt
ggagtattggcagcaagacaagtggatcggctgtttctgtaaagtggcacatcgtaagg
atgtaccaaacagcttggtaaaaacatcacfctggagaacaacgaaaacaagctgttacc
aacagtagagatactcaggaggtcaaaatagagcaggccctacaggtgattaagatattaa
ggatcatattagcaaacagtgcatccttgatgtttgagttctatgaggatcgtaaga
gaattcaggaaaagaaggtcaagcagcagcttccagaagcagtcgcaggatggaaaggc
aaagctactgaagagaagaagaaaacacgaaagtggacctaagtcccagaaaccttc
agaagtccctgtggttgaacaaggaaagttaccgcgtgtccgactaatggggaggta
agcttacagaaaatggatcagttacaaggagatgatgtaaagggtgctaaaccagtcact
gtagcggaaaagaaacctgttagctataggatgcaaaaggagttgctaattggatgctagct
tcacctaattgtggggaggctgtggtaaaaggccctaaattggagcttggactaca
tgatatgcacgccagtgtggtagatctcataaccattggactgcccctttatcctagc
tgcatttggagttggcttgcattaagaatccccggagataatcaatagtggcaaggct
agttcaatctgttctaaagagttcaggaagttggaagctccatccatgggtttagc
ttctgacagggttccatccctgggttttaggataatttttataattttgttt
cgtcatgtggcttattttggtaattttccctttttaaaagttatttgggtttaaagg
gtggggttctgttatt
ttggcggcagttcccaacattgtttttgtactaatgattgagctagaagctagtttaat
gtcaagtctctaccgg

FIGURE 4 (continued)

SEQIDNO115

ccacgcgtccggccacgcgtccggcggatttgtgagttgaatgaggaaaaagggtgtc
cagtgtgatgagatatgagggtaagatttaggaaaatgggtgttgcataatggaaagaga
tttcataatcttgagacacctaattgggaggtttagttgaagtaggagagaaaatgggtt
gatagagatttgctgccccatctgggaggagagaaaatgggtactgttgcataatggaa
tgccgtaggtggcgccggaggaggttagtgcataatgggttgcataatgggttagggatcaga
aggatgagaagaagggtgagaatgcaggcatagggtgagaggagaaggcttgcataatgg
ccaaggcttaaggcaaccacctaagaatgtgcacggcgagaatggcggttgcataatgg
atggcttctgtatgttagctggagaggctatcaatgggttgcataatggcgatcaga
tttgcataatgggttagtgcataatgggttagtgcataatgggttagtgcataatgg
ctaacqgggaacatcggtgcactgaagaaggtagatttgcataatgggttagtgcataatgg
gagatttatggcaagagagatcttgatggccgccttgcattgcataatgggttagtgcataatgg
tgcaaggattggtagtgcataatgggttagtgcataatgggttagtgcataatgg
catgatttagtgcacttgcataatgggttagtgcataatgggttagtgcataatgg
ttacatgcataactattgcaggctgcataatgggttagtgcataatgggttagtgcataatgg
atataaaaggatcaaatcttcttattgcataatgggttagtgcataatgggttagtgcataatgg
ttggcttcttcttgcataatgggttagtgcataatgggttagtgcataatgg
gtacagaccaccagagcttgcataatgggttagtgcataatgggttagtgcataatgg
gtgctggtagtgcataatgggttagtgcataatgggttagtgcataatgggttagtgcataatgg
gttgcataatgggttagtgcataatgggttagtgcataatgggttagtgcataatgg
gtcaaggctccacaatgcataatgggttagtgcataatgggttagtgcataatgg
aaactttaaagatcttgccttcataatgggttagtgcataatgggttagtgcataatgg
cctgcgttagcgtcagacagactacaactgcattacagactgcatttgcataatgg
cgccgtgaaccttccagcattccaaatgcataatgggttagtgcataatgg
gagacgaagaatctcgaaagacaaagagactgcataatgggttagtgcataatgg
aatcgccatgcataatgggttagtgcataatgggttagtgcataatgg
agtcaatatcgataggcgttgcataatgggttagtgcataatgggttagtgcataatgg
ttcctccccacaccaggatggaaacatgcataatgggttagtgcataatgg
ccagcctatgcataatgggttagtgcataatgggttagtgcataatgg
gatccaaacgtggccatgcataatgggttagtgcataatgg
agccatcaaagaaggattctaaacaagaaggaaaaggaaaggctgttgcataatgg
acgtgattctacaatggtataacttcaggagactgcataatgggttagtgcataatgg
gtaaatcaagaagcttcaacagcatagagaggtaaacaaggcatttgcataatgg
ccttgcataatgggttagtgcataatgggttagtgcataatgg
catattagcaggctgttgcataatgggttagtgcataatgg

FIGURE 4 (continued)

SEQIDNO116

ccacgcgtccgccgtttccaactccaatgcgcggcaaaccctaattcctcagcttggttt
ttgcctcagaaaattcatccgtcaatttgcaccttattatggggcgcaactgactcttagatca
cctgccagggtcgatctcctcgtaagaggagcccttacgcagggaaaggtcacctgc
tcggaaaaagagtccacatgctgcaagttcagctgttagcagagaaggccttcaaaccgtata
ggtccccgagacgtgcaaggtcaagatctttttcacctgcaacagagaggcca
tctagtcgaataggtcccaaagcgcagaaaatcaatctcccctgcacactcactccca
cagagagaaaaccctcgagtcgcacgaagtctccaaacgagactaagtcaaggctcctgatt
cgaggtttagtacaggttagagaaggattctcaggccgagtcaggtctccttagacgtgccaagttg
cagtcctcgaatctcgctcaccctcaccacgaacaaaaagactaaggagagcagaacaaga
gactgaagaaaagacaaggggcgcgagcctgagaaaaaccatggagagctagtggtaggg
ctgctctacatagggagaaggattctgatagaacagtgcctgaatccgttaccgtcacca
cgaacaaaaagactaaggagagcagaacgagagactgaagaaaactcgagggagcagagcc
tgagaaaaatcatggagagctagttagtgcacataggaaaaggattatgacagaa
cggtgctttagtccgttaccgtcaccacgaactaaagactaaggagagcagaaccagag
actgaagaaaagttaagatacgggagcccgagagaaaatcatggagagactgtataggc
tacacataaggaaaaagattctgacagaatggtaaaatgaaaggagagagaaaagatcag
gaaaggatgcactggataatggatcttctaagtcaagaaaatggtcgtacgttccaccc
gaacgtcagcataggagtccgcacagatcgagatcacctgcagcagccgacacgagac
cgatgagatgacaagctcaaggagaggtgaactcaggaatggtagtgcacttccatcta
aaatgcaggcggcagaggaggcctgcaagctaaaataaagacaaggcctcggttagctc
tctggaaagcttgcagcagaaaactaatcgagtaagaggtaaacacttctttaatgagcc
accagatgctagaaaaccgcgtacgtacgtggcgcttgttatgttttaagggtggtaagtcc
ttaatgagcctctatatgttcatcgccaaatgtttagtcttttggagagaaaaggagggtt
gcagacattcctacggatccccatcttgcagcaagcaacatgtgtccctccagtagaggca
agttgagaaaagacaatcccgatggtacttcatcgagcaactaaggccgtacgtatggatc
ttggaagcactaatggtactttcattaatgaaaatcggttagcagcccgagataactatgag
ctattagaaaaggataacttaagttggtaatagttagccgagagtagtgcgttccacga
gaattcagcatgtgagtctctaaaatggtgcggaggtgtcattgcattgttggctt
gacgtcagaagctttagtccatcgatcaaatttgcgttactagcaggatagccgtt
gtaagtgccttagccgaaatcggtaatgtgttagagatttggcattgcgttccacga
cactgctaattgaaaatggatatttttttatgcattcgatgttgcattgcgttccacga
ctttgtccctatatatggatatttttttatgcattgcattgcgttccacga
cttttcttctaatttgcattgcgttccacga

FIGURE 4 (continued)

SEOIDNO117

FIGURE 4 (continued)

SEQIDNO118

Group 3

SEQIDNO119

GNATGNCTGACCNAGNTGNGTGCCTAACGTNTCGCANGCNCTGTAGTGNAGGGGACCNNCA
NTNTCTNCTNGACGNCCGCAGTAACCAGNNCTCTNAACCNATGCATNATGCAGATNCAGGCT
TTNCAGTCTNTTANGGCTCAATTGGTGTATGCAAGNTCCAGGACATGGTGTACGATCAGATN
ATGATCTGCAAGCGAAGAATTNTGNTTNTCAAATGCTTTCAAGGCCCTGTCGACGAAGC
CTGCAGAACTATCAAATTGCTCANGGAGGTTCCCTT

SEQIDNO120

ACTCGGGACGGAGAACAAACCGAGAGAANGGAGACATNGNTCAAANTCGTGGACTNCCAA
TGTACTGNTGAGCACTNNGTAACTNATNATNTGGNTNATGAGGGCNGGCANGAATAGGCAG
NACGCGGGNGCAAACCCCTGCGAATTGATAACGATCAGATAAAAGATCATCANNATGGANAGGN
GCNGNTGTTCTGGGGT

SEQIDNO121

TNTGGCTAAGAACTGNNCTATANCTAGNGACANTGTGCTATTCGACTCACAGGAAAAACTAC
TAAAGGATTCTCTAGATTNGCATATAATTCCAAGAGATAAAAAAGTTTCCATGCTCACTTC
AAGGTGGATCGAGAACCTCAGGCATCTGTTGCTGTGTATGCATTGAAAGGCCAGNGATTCTG
TTCTTGATGAGCAAATAGAACTACAAGTTGGTGT

SEQIDNO122

FIGURE 4 (continued)

GGNGAGGNGACGGNGANTGGAGCNGTAGTGTGCGGGAGGAGGGACAAAAGCTGNANGNAAG
AACAGCGNNACAAGANTNACACCTNCTGNAATATANT

SEQIDNO123

AATAGCAGCGGCAGCATACGACTACGAGAACGATCCGAGATGGGCAGATTACTGGTCCAACA
TNCTNATTCCCTCACATGGCTGCCGACGTNGNNNACCACT

SEQIDNO124

TTNAGNATCCGNAAGTTGAGCAACAACATTCACTCGNCAGAGAATGGAAANTCGATGAC
ATTGTGNACGCTNGNGCAGTGGGGTACGGACGCTGGATTGCCATTGCATCCAGGCTCAG
NGGC

SEQIDNO125

ACTCCTTACAACCAGCAGATTGCAAATTGCTGCAAGGGAGGAGTGATCAACTCATGGGNCA
AGNATACTGCAACATGCTTTAGCTCATTCCAAGTCAGTGTNGGTGCTGCCGAACAACCAA
TAAAACAGTTAGAGTTCTAAGAACATTCAACC

SEQIDNO126

GCCAGTCATTGTTGCCCATAAGCCAACAGCCACCCAAAACCATCAAATCTGAGCTGTT
NTCCAGCGCTAACGCTAGTGGCCGACGCCAAAGCAAACCTCCATCACGAGCCAAACAGTA
AGTCGACAAGTCTGAGCTGCCGGAGCCGCGCTGACCTCC

SEQIDNO127

AGAGNCAAATCCCACATGGGCATCTGGCTGGCGGATGCTTGTCACTCACAGCAGATTC
ATGTNTAGACATGTTGAGTGAGGCTGCAGTACTGGGAAGCCTGTGTAGNTGGAGCTG
AACGCTGTACGTGGAAGCTCACAGATTCCACAAGACACTCAGAGAGAGGGGACTGACTAGG
CCATTACACAGGACTTGAGGATATGTCAGAAAGTTGGAGTTACCCCTCCGC

SEQIDNO128

CAACAAGAGGAAANTGGAGTTCAATTGACTTGGAACTGAAATTATAGAGACGCTAATCAA
GTGGCTGAGTGGACTGTCTGATTGACATTCTGTACCCAATAACAATTAGAAGTA

SEQIDNO129

CTTTGCTAGAATCTTGCAAGCTGGACAAGGTGAAATGGTCGGAGTGAAACACAGCATTC
AACAAACCCGTTGTTGATGAAATGTACGAGGCCTGAAAGAAACTCTAACTGACTATGAGG
TCATCATCTGCCGTTGCCGGAGTACACATTGCATTGGAGAATGCCATTGCTGATATTGAG
AAAGCAATTGGATGCACTAGAGAAGCAATATGCAGATGTCTTGTACCA

SEQIDNO130

CAGAAAAGGAGGAAAAATGAGAAAATATCTCTGCTTAGAGTGTGCAAAGCTTGGCC
TCACTGCCTTCCTCTCATCATTGTCCTCTCTGGTCTCTGTATAATTATGT
AGTAGATAAAACTCAAGTATTGAGGTTTGTCTCAA

SEQIDNO131

CTCTNCCTCACACGAANNAGTACTTGACAAGGGAGTTAGTACTTATANNGACGACANTTTA
GNCN

SEQIDNO132

NTNCCATGTTNANAAAATNCAAGCTCTGAATGGAAACGGCTGGGTGCTGATACTTCTTCCT
TTGGTTTCTGGGACAGATTCCCTCGAAACTTCAGNTTGTGGAC

FIGURE 4 (continued)

SEQIDNO133

GTAGNATTCTCCATTGAAAATACATAGTGTCAAGGCCATCTGGACATCAAACGGAGGTGGA
 GAGACTAGTCTAAGGGCAAGGAGACCACCAAGCCAAGATCAGGATGCTGCATTAGCATTGCG
 ATTGCAGTATAGGAATTCTCTTGCTCTGCCAGATCGAATTGAGGGCCATGGCATCAAGAG
 CCA

SEQIDNO134

NNNNGNATNTNTCTGNTATAATCTTCAAGNTGNACAAGGTGAAATGGTCGGGAGTGAAAAC
 ACAGCATTCANCAACCCCCGTTGATGAAATGNACGAGGCCCTGAAAGAAACTCTAACTG
 ACTATGAGGTACATCATCTGCCGNTGCCGGAGTACACATTGCATTGGAGAATGCCATTGCT
 GATATTGAGAAAGCAATTGGATGCAGTAGAGAAGCAATATGCAGATGTCTTGTACCCA

SEQIDNO135

TCTGGGTATCATTGGCTGTTGGTACAAGACGGATAACGGAGAGTCACTTANGAGAAACTG
 TTNGGAAGAGAGAGAAAGAGGGCGGAAACTATTGCNAGGTGTGGAGGAATTGAAGAGAA
 AAGGGGTGGAGTTGATTGTTGAAAGAGGTTGNCGCTCTTAGGAGGGCTANNAGTTNGAGG
 GTTGAAGACTAACGGTTG

SEQIDNO136

GCACGTTGGCTCGTCTGCTCTCCCGCAAGAAAGTGCAGTGATATGGATATCAGTAGTTCA
 GTACTTTGTTAGGGTCAGCTTGGGAAATCCGGTTCTTGTATTAGGTGGTAAAAGA
 AACTTTATGTCGCTG

SEQIDNO137

TTANGNGCCAATGTTCAATACACATTGCCCGCCATGAATATCGAACATGACACAATT
 ATTTGATGTAGCACAGAAGAGTGTTCAGNCCTTTCTTGTGGACTTATTGGTTGCAGCAT
 TTGCACTTACTATTGGTCCACTGTATTGTCAGTGCTCTGCTGATTGTACAAGAAC
 ACAATATGAAGATATTATATAATGGTGTGGTGTGCT

SEQIDNO138

TGAACACTGAATNTGGTATCTGTATTACTCCTGTTGAAATGGCATTGGACTTACGGCCTTGG

SEQIDNO139

TGTTTGTCTCCGGTTGAGGGCTTCCAGATGGTACATATGAAGGAGTTGAAACTGGATA
 TGACGAATTATTAAGGACGCCATCATCCCTCACGGAGAGCCCAGACATTCTCTGG

SEQIDNO140

TTGAANNCCNTTNGANGACCAAGNTNNAAATCCTNCTGAAATGGTAGCAAATCCT
 ACCCGATTGGGATAACGGNAGAGTTATACTGATTAGTTATCAATTGCACTTCCCTATT
 CAGTTGGNACTGAAAATGGAGGAAAACCTCGTANTTCATGCCGCTACTAACGGNGCGGNGAC
 ACTAAATTNAACACCGCCGACACTTTNTAGGG

SEQIDNO141

CANAATAACCCCTNAAACGACCCGAGTCTCAAATCGANGAGATTGGAACACTTCGGTCAG
 TACTTGAGGAATCAAAGGCCACCAGTTCCATATCCAATGTTATAGCAACCAGTCCTAGA
 GTTCCTCCGATACTGGACCAGTCGGGAAAACCTAAGGTTCACTTACAAGGTTATCTTT
 ATGGACAGCCCGAGCCGCCAGCTCCCTGTACTTGTCCG

FIGURE 4 (continued)

SEQIDNO142

CTNGTGGNANTAAATAACATTCTCATTCTTCNNNTNTTCAGGTCCAGTACCACCAAT
 GGAGNCTTCCCTATNAN
 TAATTCATATAGTCG

SEQIDNO143

GNGATGTCNCNTATTGCACATCTGNTGTTGATTCACTTTATGGGAATGCTCAGAAATTCA
 AGCAATCGAGACAGATAATCGCAGGCAACGAGCAGCTAGTGACCTACAGGAAAAGGTAG
 ATGCTGTTGCTTACCCAAGAGGAACTCTGGGTGAAAAATACGTGCATACTCCG

SEQIDNO144

GAATGGAAAAAGTGAATTGCTTGACGGATGCCGAGTGCTACTATACATGGCTACTT
 GTAACCACCCCTGCTAGTATTGATGAACTGCTGAAGTCTATAAGGCCGTATGGCACTCTTAG
 TTTGTTGTCGCGCTGATGTGTGAAGTCA

SEQIDNO145

GTCCTTGCCTTCAAGCTGCCGGCGGGCAGTATCTCACCTGGGACGACGTCTTCAACTC
 CCCGAATCTCCTCAAAATGACTCTTCTACCCCTCAGCTTCTCGATAAAATCAAGCTCTG
 TAATCGCAATTGGAGAAGCAATCCGAGTTCATGCCTTCGTGATTGAAGACCAAATAATNG
 GATACGTACACCACGTGGTTGCTGA

SEQIDNO146

AGANTTAACTCNATCCATTACTGTANATGGNATGAAAATCCTACCCGATTGGGGATACGG
 NAGAGTTNATACTGNTTATGCTATCAATTGCACTTNCCTATTCCAGNNNGNACTGANAAT
 GGAGGAAAACCTCGTANTTCATGCCGCTACTAACGGNNNGCGGAGACACTAAATTCAACACCGC
 CGACACTTCTGTAGGGTTACTCAGGACTCATNAAGAAGG

SEQIDNO147

TTTNCACACTAATTCCCNTATCTACNAATGAAGTGCCTGGGCTTGCAGTACCTGGAGGCC
 ATTGTAAGCTCAAGGCTCTGGCTCCAACCAACGCGCACTGTCTACCTTCCTCGTCCC
 CGACGAGGAAATCGGCGGNGNCATGGAGCCGGAAAGTTGTCGATTCCGATGTCTCGTA
 AGATGAATGTTGGGATTGTACTTGACGAGGGCTTGCCTCTCCCACCGAAAATATCGTGA
 TTCTATGGGGAGAGGTCCCCCTGGTGGCTGGTCG

SEQIDNO148

GNTCCGTAAAGTCCCCAGNNNTNCNGACCCGTNACTCNGGAGTTACAGCGANACANGTGGCT
 GNATNATNNGACATACTCAGACCTANTTAGCTTGATATAATCCGTGAGGGTAANTTCGTT
 TTTGCAANCAAATGGACGAACCTGGTATGTTAGCCTAATTGCAAACAGGTTGCTGATGCT
 TTTATTCATGGGTTCAATTGTACTAAAGCTCACTTGCCGTTCTCATGTACTAGAAAAC
 TACATATGTCTATGACCCTTACCTAGTCTGGTAATTCAAGGCATGAGATTNGGATTGATC
 AAAACAAGTTGGAG

SEQIDNO149

GGTAACCTCGATATCATCGAGAGGCCATACGCCACTCACAAAGCGGCAAGGTGCTCGCTATGT
 GCCTGCTGCTTCTGACTGGTTGCTGACCCGGTAAAGTCCAGGGANGAATTGTCCAAC
 TATTGCTGAGTTAGAGGGTAGGATACCAGTTCTAGTTCTGGCAACAGCAGGTTCTCCGAAG
 AGGTCAAAAGCAGAGATGGAAGCACTTATGGAGGCCAAAGGGGTGAGCAAGTATATCGAAGT

FIGURE 4 (continued)

GCCAGGTGCTCCTTCCCCAGGAAGAGTATCCTGAAATAGTTGCAGAACAGCTTACAGGN
TTCTGCAAGAGAAGTTGAGCTTNAGGC

SEQIDNO150

TTTNNNACTTCTAAAACCCTCGTNTGANNCNTGCNAGGCATGTGAAGNTGTCAAACCTCAAAC
CTTATGCCANAAAGTGCAGAAAAGTGCATCTTGAATATGCGCCAGTGATTCTCGTAAATGCT
GAACAGTTCTGGAAAAAAATGACGTATGTCTATTCTCATGATTGAGAGCCTGCAGCAGA
TAAAGAGCTACAAGCATCACCAAAGATGCAAGCTTCATTGCATTGGCCTC

SEQIDNO151

CTGNCCCTATCCGATCCAATAGTTGACTCAAAGGTGTTGCCTATTCCAGCCGGAGATTGAG
TTTGGTTCGGGTGCACAAGTGCAGAAAANTCAGTTGNAATTGGTCAAGATGTCTTACTGATT
TGGTGGCATAGATGCTGAAGATTCCGGNCAAATGATGAAGGCAGCTCGGAGATGATCAN
AGGAAAGGTGGAAATCAACCAAGAGCATTCCATTTCTCAATGCC

SEQIDNO152

AATCCTGTCAATACCAAAATCAAGCAACAAACGGTTGGCAAGCTTCTGGAAAAAGTTTT
GATAGATATGATGTAC

SEQIDNO153

TCAACTGAGAGGTGTGGGAAGAAATGAAGAATTGTTGATGGCTTATTTGCAGAAAGCCTTA
TGGGAGTAGCTCCGAATGGTTATGGATCAAGACACGTCTCGCTGGTATGTCGGGATGACA
TGGCACAGGCCTTGTCAAACGGTCCAATACAACATCGACATTGCCAGACCACATTCCC
TTTCAAACCTGAAGAAGAACCAAGTGAAGAGTTCAGGGAATATGCCA

SEQIDNO154

CTGGGTAAAAAGCTCTCCTNTGCCTNCCAGAACGACCTAGCGAACATGTAATGGATAG
ATGTGCTCGNCCATGGATGTGCAACTTTGCATGCGGAGCCTCATGTCATAGTTA

SEQIDNO155

CGCTGCTGTGNGTTGAATTCTCCCATTGGAGAGGTGTATCTGGA

SEQIDNO156

AATGGAGAATGGAAAAAGTGAAGTGAATTGCTTGACGGATGCCGAGTGCTACTATACTGG
CTACTGTAACCACCCCTGC
TAGTATTTGATGAAGTCTGCTGAAGTCTATANGCCGTATGGCACTCTTAGTTGTTGTCCGNG
CTGATGTGTGAAGTNA

SEQIDNO157

GNTATGTTGCTGATCAATCTNGTTATGGCATGGTTGATCCTTCTCAGCATTATTATCCGGAG
CAACCATCCAAGCCGCAGCCAAGCATTGCAACAGTCCTATGCTGAGAATTATCAACAGCC
ATTGGTTCTCATACAGTAGCGGCT

SEQIDNO158

TACCCAAAAATAAAAGTACCATCCTGATGCATCCTAATGTGCTACATATTGCAATCTTCATG
GGTAAAAGAGGTCAATTGGCGGACCAATGAGGT

SEQIDNO159

ACGGGGCCTCNAGGCTAATAAACAAACAGAAAATGAAAATTCTTTGAGAAAGAGTTGCTAA
AAATGCAAGAAAAACTCAAAAGATGACACTTGAGAAGGAGCAGACTGAGGAAATGTTGAAA

FIGURE 4 (continued)

GCTAGAGAGGATATGTTGAAGCAGAAGGAGGAAGAGCTCGAACGCTCGGGATAAAGAGCANGA
AAAGCTCAAATTGAACCAAAAAGTNGCAGAANATGAAAGAGT

SEQIDNO160

TTTNNGANGTACTAANNNCATTNTAGCCGACCGCACTCACAAAGCGGCAAGGCCTCGCT
ATGNGCCTGCTGCTTCTTGACTGGTTGCTTGACCCGGTAAAGTCCAGGGAAAGAATTGTC
CAACTATTNGCTGAGTTAGAGGGTAGGGATACCAGTTCTAGTTCTGGCAACAGCAGGTTCTCC
GAAGAGGTCAAAAGCAGANATGGAAGCACTTATGGAGGCCAAAGGGGTGAGCAAGTATATCG
AAGTGCCAGGTGCTCTCCTCCCCAGGAAGAGTATCCTGAAATAGTTGCAGAACAGCTTAC
AGGTTTCTGCAAGAGAAGTTNGAGCTTNAGGC

SEQIDNO161

TAATCNCACNAATNGAGGCCCTATGCAAATCTCNTCAAGTGGAGTTGCTTCATACTTGCA
TTATTGTCACTNT

SEQIDNO162

TTATTGGGTAAATTCCCATCTACTGGGTCTTCTCAAGATTNTCAACTGCATCTGTAGCCAG
TGATAACAAGCAGGATG

SEQIDNO163

AAGTAAACTCNCGGTAGGGAAACTACNNCGATGAAGGTCTTCAGTCAGCTGAACACTACTGG
TGTGCTCATATCCGTTNGAATGAGCTTGAGCCTGGTAAAGTAAAGGNTATTGG

SEQIDNO164

GNCGCGANTCCTCGTCCAAGACTGANGTTNTANTCAAACAGGTAGTTCAAATGCTTA
CTGGGTCCCTCTGAAACCGCCAAGGTGAGCTACTCCGGTCTGGCTGAGCCNGTTAGACAT
CNTATCCGCCCA

SEQIDNO165

TGCTGTGANTCTTGCTACATATGCCAACGATTGATGTCAATGCTGATCAGCACCCCTTCAGTACAAAANCT
CCAGGCATCTTCAGAATTGCCTATGGTGCAAATTGCTTTCAGTATACTGTTGNCCCAC
CAGATGAACCTGCAAATGCAGGATCAAGTTCTACAACAAGAACAAAGCATTCCCTCAAAAGG
AGA

SEQIDNO166

GCACNTGTCGAAAATCAGGATTGATGTCAATGCTGATCAGCACCCCTTCAGTACAAAANCT
AAATCAACACAGAACGCCAGCTAACGGTGGACNTGAANTCCGCAGTTATCCTGGCGGTCCAC
CTTCACCAGCAAGGGCGCAAAGATGTCGCACTTGTCGATACAACAGAAATGGTAAGAGGA
CCTGAGGAGTCACCTGGCTACTGGTGGTACTGGTGCAAAGCTATGTTAGAACANATNTAG
GATAAGAATGAAAGTGAAGTACTCGCTC

SEQIDNO167

CCTTTNAGGCCACGNNTNGGAGCAGCAAACACAGCAAATNTAGCGATGAGANAGCCAGTAT
TCATAAAAGTGGATCAGTTGAAACCGGGAACAGTGGTCACAATCTGACGG

SEQIDNO168

TTTNCTTGGATACATGGCTTGCATCTGCTATGGTTCTTCATGCTAGGGACGTGTTG
GTTTCCGCTCATCCATGCTTTGTCGTACATTATCGATCTATCAAGTGCAGTAAACA
TTTGTGTAGTATTGTTCTCCACTTAGCCTCTACTTCTCGGGTAGATGAAAAGT

FIGURE 4 (continued)

CTGCGTACACACTACCTCTCCAGACCCCATTAGTGGGATTTACTGGATTGTTGTTGTT
TACACCACCTTGGTTATACC

SEQIDNO169

CTCCTACTCCTCAGTGTTCAGCCAGCCGTGGAACACTACAAAGGCCACTCCATCTAAGGCA
AACTATAGACCTCTGGAGACAAGGGTATCCTCAAGAACAGAGCAGCAATGAAGA
GAAGAGAAAGGAAGATCAAGGGAAAGATGATGAGTAATAATCAACAAGGACAGAGAGGTGGTG
CTATTGTTGCTGAAAAGAAGCTGCTGCTAGAGCTTGGATGTCTTCTGGTCTTGAAACCT
TGCACCTTTCCAGCTGAAATGGTCAAAGCCCAGTGCAGAACATTGATGAAGTGATTC
TTTCATAC

SEQIDNO170

GTTCCCTCCTACCAAACCTGAGGAAATCAAGTCTATGCACAGCCCACAGTTAGCACAAAGGG
CTTACAGCCAAGAGTCATGTAAGAGGAGAAAGGAGCCCCAGATTGACGGGCAAGGGAC
TTGAAATAAGCAAACCTCTAGCCCCAGCCATCTAATCTGGTCAAAATGGTGTGGTCCG
TCTTCTACCTAGTA

SEQIDNO171

NTCNAGANTGATCGANCAGANGTGNGATGATACTTGGNAAGGCCTAGTGAAGAGGNCAA
CTCCAGATAATGAATCANAGTTCAAGGTGAAACAAGAGAGAGAGCANNTAGCNGCGGACGAA
AGGGAAAGAGGGAGAGCTAATTGCTGATCCTGAAGATGTTGGAAATNTCGAGGGAGTNAGCAA
TTTA

SEQIDNO172

TAAGGNCANNCAAGNCCANCAGTGCATNACGCNNATTGCCTGACTGTTCANTGCCTACAN
TNTGCNGTANTTCTAATGGCGANCTGAAAATGGCCAAGGNCCCNAACCTAGAGCTNTGTC
AGTAGANTNGGTNTATATTGAATTNGATNCTGTTGAGTGATAANGATGGTGGACNCNTTG
TACCTNTACCTGANTGCAAATAANGTNTGTCATCACAGANNTTATGCTA

SEQIDNO173

GTAAAGNGNGCNANGAGGAGGCTGTTCNATGCAGNNNGTCTGGNCTATCNNGTNNTNTNT
AGGNNNNANATCCTANGNCTCACCTGGNTCTCTTAACCTGAGNATCATNCACCACTTNA
CTCAATNTNCTCAGNCCANCTNTCCTNTCAAAATTGAAATTATTGTNCCCATAGTATAT
ACTCTGTTCTGGCCTCTTCTGTGCTGTAGCCACAATTACATACAGCACGCTTCA
TGTATCCTATGGTAGACCTATCACCTCGTTCTCTA

SEQIDNO174

GTCGNGCAAAAGAAGTTGTGGCTACAAGTGGAAAGCATCAGAGATAACAGAATAGACAGTGNA
GTTTGAACACTNTTCTGATTTATTTCTCTGCCTTAGGGA

SEQIDNO175

ATGAGAAGCCAAGGGAGTCCTAGTCTTNCNGCTTGTACCTGGGGCCAAAGGAGCAACTA
GTGACTCGNA

SEQIDNO176

NNTCATCACCTATGCCACTACTCTTCTGGAGAGGCCTGGAAAGAGATTGTCTTGAAAG
CANTGGGCACAGGCAATTAGCAAAACAGTTGCTATAGCAGANATCA

SEQIDNO177

FIGURE 4 (continued)

TTCGGCCAAGCTGACGCTTCCCTTTCAAACAGGTAGATCAAATGTTACTGGGNCCCTCTGA
AACCGCCAAGGTTGCAGNTANTCCGGTCGNGCTGAGCCNGTTAGACATCCTATCCCGCCCA

SEQIDNO178

CGTNGNCCAACTCANGGCTGAACAAGTGATGAAGNGCCCTCACGGGTTCCCTTGNAAGAAC
CAGNGGCAGTTGGTGGTAAACATATGTCAAAGTCTNCAAGTATGAANGGAATCATCACCCCT
GCGCCAAGGTTGAGNTTCTCCCTTACCTATCACCGAGCATTGGNTTCTNCCTCAAA
GNCTTCTACGCAGCCCTCGTCTCGTCCCTCA

SEQIDNO179

CNGTGGAAATCGCCCGTAAC TGACCTGACATTCCGGAGTTACTGAGGAAGAGTCAACGT
GGGACATGTGTTCGGATAA

SEQIDNO180

NTACTGGTACTNGAGCGGGGAATTTCGATTATCTGCTGGGCTGATTCCATTCAAGTAATG
CTTCCGGGAATGTATAATAAAAATGCCGAGTTGGTACTGAGAAGAACCTTGTAAATAAAA
TCACATAGTCGTTGNANGAGTCGTGGTCATCAACTCCAATTCTGCATTTCACNCTCACTGG
AACATTGTATTGCAGCAATTACNCACATGGCCTCAGCAACAAACTTGGATCAAGCATGA
GTCGCACACCAAAACACCCATGTCCAGCTACTTAGGGCTAGGACATCCGCAA

SEQIDNO181

AGTGCCCATTNTCAGGTTGNANAATGAGCACCTTGNAAATAACGTCGGAAATATCGGCC
TTCAAGTCCGTACCATTGCCTT

SEQIDNO182

ATTCGGTTAACCTCCAGTATCCTGTTTNCTGATGAAGACATGCTAGAGGTCCCAACAT
ATGCTTAGAAGGCTAGAAACTTGTGAAGATAGCAGATGGTCATAATTGTAACACTGGGTG
TCATGAAAATATACGTATCACGACAATGACTGGTGGCTGCAAAGTTGAATGTGTTGCTGATG
GTGACTGTATAGTTAGTTGAATGTGTTGCTGATGGTGGCAAGAGAGAGGGTTATACTTTGGT
TGTGTT

SEQIDNO183

CCNNNGNAAATCCCACANATNTGCNCTAAACTNCTACCGAAACAAACCTGGATGTT
TCTGNGAACTGGNTGATNTNC

SEQIDNO184

CNTTGGAACCNCCCTCAAGCTGAAAAAGAGGAGGGATTACCTTACCGACACATTGC
CAATTATGCCACAGGNTTATGTCACCATGCC

SEQIDNO185

NAGCGCTTGGTCTNCCTCACTGCTTNTGGTGNNTAATCTTGGNNNTGTNCCAGNCGT
TCNNNTAACATGAAGCNTANGTNANAAAGGNAGAAAGTNTCTGCTNGAAGGGCTATCTT
CCCNTGCTTCANGCTGAAGAGGATGAAAGATTG

SEQIDNO186

GCTTAGANNTCTGAAGGTGACCTGATAATGGAATCTGGCAATTGNCTACAAACACCTAGGT
ATGATGTGGAAAGCCAAAGTGGAGGGATTGTCTGATCACTACATNCAGCNTCATAGGTAC
AGNGNCTNATACTAAANGATGGGTTGGAGGGA

FIGURE 4 (continued)

SEQIDNO187

CTTGGATGGTCNACCAGATTGAAGAACNCGAGAAAAAGCTGTTTCTCATCCACTTCATAAG
TCACAAAATGAACAN CAGC

SEQIDNO188

GANAGCCCAGCTGNTNTANNANAAGCTGCNGAGGCTGACTGGNGNNCTGTACNNAGGAT
ACCAANNTGTTNTGCTNATNCACGCTANAAGGGNGACTATTANGCTAAGGATATT CAGNT
GGCNAGGCGTATTACGGGAGAAAGGGC

SEQIDNO189

CGTTAGTACGCNCATCTGATAATGACNTTGAGAGTGCAAAATGCATGAGCTTGTCAAAT
AATCATCATCATTCACTACAAGGCCAAAGGCTGATTTACAAATCAGGTACCGC AAAAT
GAGGGACTTACCAAGCTGCAAAGTTATCTCAGTTGC

SEQIDNO190

ACCTTGGATTNCTTA C TGAATGACTAAATGACTTGCTCGAAGGACGAGGTGGCATTAG
AGCACGGCAGATATTTGCCCTTCTGATTTTCATCGCTGGACATGCTAGAAGCTGCTT
TCACTGATGTACTAGAAGCTTGTCTTGCACTTTATCAGTCAACTCGTCATCAGCATCA
TCACTTGAGCTTCACTTTCAAAGAAGTCATCGCTGC

SEQIDNO191

ACACCNATTCAACTACCNNAGCTGACAGCNTACNCAATACACCGCAGANGCTTTGCTT
ACTCCAAGTTGCTCCCTAATCTGGAATACAGCGAACGCATGCAGCATTTGACTGTAATGAA
TGGTCC₁ TGGATTGAGCAGCCATCCAAAGCTTGGAGTGGTGGAGAATGCTGGAGGTCTGTGA
TGGNACTAATGGNGGAACGTTGTCGCTGACTAGAAGCAGAAATACTTAGGTTGATT CGAAC
AGGATTGTCCATAAGAAAAT TGCTCCTGTTGATCTGCCATTGCGCTAGTTACAAGCT
GAATCATGGTCGCTCANCTATGTTTTGAAAATCTGTTATTACTGCCCTGTTCTAAAA
TAACATAATTCTTGACGC

SEQIDNO192

CGTTTGNNTCACGTTCTAATGTACGNTNACTCATTGGAAACANTCCTACACATT CAGAGAC
GAAACTGGCANACTCTTACCTCTATGACAAAGCTACATGNATTCTGCTNGGAAACTCTTCC
TCCCGGAAACAGATTCAATCTGGACC ATCTAGCTGCAAATCCTCTTGTACCAAGAAAAGAT
ANACTCTTGGAC

SEQIDNO193

CCTTGGATTGCCCTCATTGNTGGGGCCAGGC GTCCTGATGTATGGAACGAGTTGCTATT
TCAATT TTGTGANAAGAACAGGTGCACTTGTAAGTAATCTTNCACTATCATTGGAGAAA
AGAAAAGTTCACACCTTGAACGTAATGTACATCTCGAATGAGCACGCCATGTTCTACTGT
TAGTA

SEQIDNO194

CCTTTCTAGTTGCATCACNTGCATTGACTTGGGGACTCAACACAGGGTTGGTCCGTC
TAGGACANGTGTACCCAAA

SEQIDNO195

CCTTNNACATTTCTGGTTAGCCTCTGGTTGTTGATGTTTTAGCACCGGTGTGCATA
ATCCAGTGTGC

FIGURE 4 (continued)

SEQIDNO196

GTNNNGAGCNTGGCNNAGGATGCAGACTACCAAAGCTCNNAANNAAGCTTCTNTGAACACT
 CTCNTAATAGGTNAGATGTAATGGTCTTCAGAACATGCCAACACAGCAATANTGCCTTGAGT
 GTCCCAAATCACTGATGCCATGATGTGGGCTCCTAGACTGNCCCTGACTNTNGCTTGACTGT
 GCCANTGCCACCTCNGGTAGCCNTNAGTTTCAATGATGCTTGCCTGGAGATCATATTGN
 CGAAGCCATGTTCCAATGCCGCTTACAATTGTCAGAGGGATNCGTCAAGGATCGNGAACCC
 TCCTGT

SEQIDNO197

TGCGGANCCNGGCATGNCAAGCACGCCNNAGGACCAGCAGNATNACTGCTNCAGNAG
 ATNGNNATGANGNGNNTGN>NNATGTTGTTAGTCNCNGGTCTTTAATANATCATCNN
 TNACCGCNTAGGTTNGNNCANCACTGNCGAGGCTNTTANGTNANNTAAGAGTCTGTCNTNGT
 CTAG

SEQIDNO198

AGTGCAATGAGTATAAGCTATTGAGGCTATTGAATCTGGCGCTGTCATGCTGCTCTGTCT
 TGAGCAAATTGAGCTCCAAATAGCTCAAGCTAAAGAGGAAGCTTTAGCAGAAAAGACATTC
 TAGACAAAGTCGAGAAATGGATTGCTGCTTGAGGAGGAGTGTGGCTTGAGGAGTATAAC
 AGGGATGAAAATCGCTATAATGCTGGACGAGGCACCCACCTTACCCCTGAAGCGTGTGAGAA
 AGCTC

SEQIDNO199

CAAAGTACGANAGCGATGGNTCTATCTCTCAGCTGCAGGCAATGCCAAGTCGCCTTGACTTC
 ACCACTGAATTCTCTCTCTAGCTGCTCATGAAGCTATTGTCGTTGTCATCCAGTTAC
 TGTGCTTCTCTGTCACTTCTCTGAACCTCTATCCCACAGGGAAACAGATGCCAACAACTG
 AGGTTGTA~~GTTT~~CAGGACTTTAGTCACGACTCTATCTCAGGGCCTCAGAATGATTCTGAT
 ATCCTAAAGCAAATGAAACGAGCTCACACTCGGCTATCTGAGCTAGGTGCTGACAAATTTT
 TGGGAAAGGTGAGATTGGGAGACGGGAACTGGTTTCACTGAATGCATGGAATTCCG
 GTG

SEQIDNO200

CTGGGCNGACATNGCTANTGNGNNNTCTGAGGNNTCCNATNGACATGATTGTGGGACT
 CCAGGCAGGGTTCTACAACATATTGAAGAGGGAAACGTGGTTATGGTGACATCAGATACTT
 GGTCTTGGATGAGGCTGATACCATGTTGATCGCGGTTTGGTCTGATATACGAAAATTTC
 TTGCACCNTGAAAAACCGTGCTTCGAAGCCTGGTGAAGGATTCAAACNGTGTGGTG
 ACAGCAACAATGACAAAGGCAGTTCAAAAGCTGGTGACGAGGAGTTCAAGGGATTAGCA
 TTTACGTACTTCTACATTACATAAGAAGATTGCTCTGCTCGTCATGATTTCATCAAAC
 CAGGTTCTGAGAACAAAGCTGGAGGCCTGCTACAGGTTCTGAGCCAAGNTAGCAAAGGGC
 AATAGAGTGATGGTATTCTGTAACACGTTGAATTCCAGTCGTGCTGTGGATCACTTCTCAG
 TGAAAACCAATTTCTACTG

SEQIDNO201

TTNNCAACCTTGGTATTGNGCTCACTTTNCTATGGCAGNCTTGGCTTCTGGTGGCTG
 GCAAGAACGGAAAGAATGGTCAANNCTCATCAACCAGCAATTGCTGAATCTGTCAGCAT
 CG

FIGURE 4 (continued)

SEQIDNO202

ANGTTGGCCAAGGCAC TTGCGAAATTCTTGGTGCCAGGCTACTGATAGTTGATTCTCTCTT
 ATTACCTGGNGGATCAACTGCCAAGACATTGACTCTGTAAAGGAAAGTTCTAACCTGAGA
 GAGCAAGTACTTCGCTAAACGTGCTGCTCAGGTGGCTGCACTACATC

SEQIDNO203

CACTTGCTACTCTAGCAACTGAAGGATTGGTTCTGTTCATGGTGACGCTGTGAAGAGAATA
 TGATGAGTCTAAATTAGGAGTGAGGCATTCTCAAATTCTGCTCAGGGAGCAGAAGTTGAT
 ATGTGGATTGCTACTATTTGCAAGAGCACTTGCGGGCATGTTAGGCAAAGTCATGTTTT
 TGTTCCTGATCAGCATTCTCACTATCTGCCCTTGAAACAGTTAGCCATAC

SEQIDNO204

NGACCGCNGCGATNCTAGAATCAGTTGANANTGNNGNTNGGACATGGNATNTCTNGNCNT
 GAAGCNTTTGTCATCGACGATNATGAATTCTACATCCGGTNCCAGAAGACAAAAGC
 TCATGCAGANGTAGATGAGTATCACTTTCAATNCATATTCTACAAGAAGCTCNAAGAGG
 CTGTAUTGAGCAAGAAAGGAATNGCANATGCTTGNTGGAATATCAACTNCCAACAGCTACC
 TGAAAGCAAAGTGCC

SEQIDNO205

TCAACCAAGNTGTTCTATTGGTTCAAGCTTCTTCAATCAACTTGCCTTGCAATTCT
 TCCAAAGAGGNATTAGGTACAGNAAAAGATAGTGCCTTGAAATTGCGGTTAGTTGTA
 AAAGCAAAATCTGAAAGAGAAGCAGTGTGATGATACTCAAAGCTAAAGCAATCACA
 TCGCATAGTTCTAAACTCGAAGACGTTATCTGGTTCACTGTCGGCATATTATCAAGGGCTT
 GGCTTCCAGGATTCTCCAAGTGAAGAGTGAGGATGGCTTCCCTTCTTCC

SEQIDNO206

NCAATGACAGTGCTGCTCCAGCTTCCCTACTTCCCCACCTCTGTGGTGTATTGAGCAC
 TTCACCAACATCACCACATGAGTCCCTTCATTGGTTCTGATTCACAGAGAGAGTGAGTA
 TCGATAAGCAAATAACTGCTGCTCAGAGCAATAGCTTGGTATCAG

SEQIDNO207

TTGCTTCCCTGATAGNGCNTGACAGANGCCTNANGACCNTCCANTCAGGATNACTCATTGNG
 GAGGTTGCNTGAGGAGATTNTTATGTTTAGACTGCTGCNCTTTTATATCATCNTT
 TACCGACTAGCTTGNACAGANNNNCNAGGCTTNAGGGANGGTAGAGTTGTCATAGTC
 TAG

SEQIDNO208

AGATGATAAAAGTCTGGACGAGGNTGGGGACCCGACGCTGCCATCTTAGAGGACGGCGTAC
 CAACTGAGAATAAGAATATAACTCACACCTNCTCTGCAAATTCCAGACCTC

SEQIDNO209

CNNNNCACTCNNGAAATACTTNNCGCCNGCTACTGATANTGATTCTCTCTTATTACCGNG
 NTNTTCAACTGCCAAGACATTGACTCTGAAAGGAAAGTTCTAAACCTGAGAGAGCAAGT
 ACTTTCGCTAACGTGCTGCTCAGGTGGCTGCACTACATC

SEQIDNO210

TTTGANGGCCTTAAGCTACATCNGAGGAATGAAGAGTATTATCGGTTGATTCACCAACACA
 TATAATGCGCACTGGACCTACATAATCCTGAAACTGTAATGTCAGGNGGTTGAAGCGGAA
 TCTTCACAATCATTCAAAGGAAGAATCACAATGCTGCTATCAGTTTATGATGC

FIGURE 4 (continued)

SEQIDNO211

CGCGTNNGTCTAACGGCTGGCTGGCATANCGTNATACGGNTTATTNTGCCAGTAAG
TTTGGCCTCAAAGGACTGGCAGAAGCATTGCAGCAGGAGGTATTGGCGAAAATATTCACGT
ATCACTAATATTCACCCGGACACTGAAACTCCTGGATTGCTGAAGAGAACAAAAGAAGGC
CACGGGTGACTAGTATAATAGCAGCCTCTGGTGCCATGAAAGCTGACGAAGTTGCCAAG
ATAGCTTGAATGGCA

SEQIDNO212

GGCANTTNTTCTATTACTCCCAGCCTGGTGGAATGGAGTATGTCTTACATCACGGC
TCTCNATTTGCAATTGTTCAATCCCTT

SEQIDNO213

GNTGGAATGCCNAAGAACGANNCGACCCCTGTCCTATCAGTGTCTATTCTTCAGTTGCTA
GATGAGAAAAGATCATATTTGTGCAAAGCAATCAACCAAATTAGTTGCTGTTGCTGTAGT

SEQIDNO214

CTTCTTATCTTCTACAAATTGGCTCAATATTTAGTCTTACNATTATCTTTNTAATT
TTNATAAGANATATAATTNATTGAGNGA

SEQIDNO215

TTCNGTTACTGGGGNTGATGATTGACAAACCGAAGTGGTATGTGGTGTGGCTGCAAATA
TGAAACACTCACATTCTCCGAATGCGTAGTTAGCTACAAATATGGACGTATGTCAGGT
CAAGCAAATNGTGCCTCATCCATGAAGTGGCCTCATGCTCAAATGCAATGGGTACA

SEQIDNO216

GNAGCAATTATCCTCCTTCTCTTTCAATTATTTGTAAGGGTAGTTGCTGATAGGT
TTGGAGGTCCAATGGCGATTGGCATGAAGCAGATGTCCATAATAATAGCAACCCCTGGTGT
TTATCCTTGTATTGGAGTTATTGCTGAAACAAGAACGCTGCANCTGGACTGCAATACC
AGGAAAAGCGTTGTTATTGTAAATACAAGTCTGACCCACTGTTGCCTGGCTATTG
CTTTGCTCTTGTGCATCTCTGTGGCGGTTCTGCTGTTATTATCCGTATCAA
GGGAAGTCAATCCCACAAGCTGCTTTGCTAAAAACACTANTTTGNTGTGTTCCCTAACAT
CGCATTGGCACAACGGTTAGCAGCAGCA

SEQIDNO217

AATGAATATCTCCATGACTAGAAAATTGTAGACATGACACATTCTTCTGCTTGCAG
GCTCAGTGAAGCTTCATTGGCTAGATTGTTGATTCAGT

SEQIDNO218

CAAAGAAGAAGATGGTCGTCATCATCATCATATAATGAAGGAAATAGACCATATGATGAT
CCATTCTGGCATGTTGTTGTCCTGTTGTTGCTACTTCTCTGTG

SEQIDNO219

GNAGGTTCATATCTCAAGGTCAAAGAACGAGATGGGTGTCATCATCATCATATAATGAAG
GAAATAGACCATATGATGATCCATTCTGGCATGTTGTTGNTGTCCTGTTGTTGAGTTCT
TCTACTTCTCTGTG

FIGURE 4 (continued)

SEQIDNO220

GGAAATACCCCACGCTTCAGCAGATCAAGGAANCCTCCTGAATCAGCTACTTCTGCTGCAC
 ATGAGGCATCTATTCGCGAATTGCGNGAGGCTGTCCGTGCTATCGAGCTATTTCCATGAT
 TCAGAACAGCAACTCTAGACTGCACAAAATGTACCTAAAATGCATTCGAAGCNGCCA
 GCAGCACATCAAGAACGACTTGCTCTCCAATCTGTTGCCATG

SEQIDNO221

GAAAAGCAAAAATAAGNCACATGGGGTTTATTGGAAGAAGAAGATTGGGACTTGAATAA
 TAAGAAGCGTAAGTGGGAGGAGAATAGATCACGGCGGCAGCCATAGCTCCAGGGAACACTAC
 ATATTAGCTATCAGCGCCACCTCCTCACCAATGGCTNTCCCTCATCAACGCCATTTGC

SEQIDNO222

NCTNNAAAGGCCACTCAAGTTCCCTGATATAAAANGACATAGTATTGCACATCACCTTGCA
 CATCCTTCCATTTCTCATATCAACTCTAGATCACTCATAATATCCGATGTAATGTCATG
 CAAATAGTATTGACTATATTGTGTAAGGAATAAGGACAAGAAAAAGTCTGTACATGTTG
 AGTACAGACGCAATTTCCTCCAATATTCCAATCCTGGTTGCC

SEQIDNO223

TTTGCANACAGTCCCNTACTTCCCAGACTACTNCAATAGGATNCTGAAGAGATGCCCTTGATT
 CATCTTCTGACATCTAGCCTATCCGTGGNCAATCAACACAAAGTATTATAATGCTGATGGT
 TCTATTGGATGGCCCATCTTNATGAGGACTNTCCATTGGAGCTTGCCAGCATTGACCA
 CCTTATTGCATTGGTGGTCTCGATATTAGTGATCTCATCTTGCTGCGCTGAAAG
 ATTGGGTTCTCGCACCGACATCC

SEQIDNO224

ACCCAAATCCTCCTCAACCTGAACAAATGTTGAAGAGAGCCAACCTCTACCAGGTTGAGTTT
 GGTTGCAAATGAAAGAACTCCTATGAAGCTCTGCTGAAAGTGAAGTAATGCTGAAACAC
 CTGCTCAGCCCACACCAAAAGAGATCGGTGCCAATTACCGAAAATAAGTACAAGAGTATGACA
 TGCCAAAACCTCTGTTGTTCCAATCTAATTGTCAAAAGGTCAATTGGATTTTCCACCTGGG
 TGGTGAAGAGATATCTTCAGATTGAGTTCTGGCAGTATAGAGCATCATGAAGATGTAGATA
 ATGCC

SEQIDNO225

TACCGGATGANNTTGTNGATGATGANCATTCCAGTTTGNNTGCACCTGCTNTTTGGCC
 AGNTTNCATTGAGAGAGAGGAGACGCNAAAAGCATGCTGCTGNTTAGNGAAACAAGATGA
 TGAGGNAACGTNAAGCTGAAAATGCTGCCCTGAAACGCTCTAAGTCAGTTGACTCTGCTG
 AGCTGGGAAGTATAGCATATGGNGGAAAGAGAATGAANATGAGAATACTGATTCAAAGGNA
 CNCTTGANGCGGGACAAATGGNTACNGNAAGGCTGNTATAANCATNGCAACAATGAAGAA
 AAAGATNGGCTTGGCTCAAGAGTTAGAGAATCGGC

SEQIDNO226

TTTCTGCNTACAGGATNTCAAGGCATTGTTCCCTCTGATAGAAATCCCTTTATGCTGGT
 TTTGGAANNNGAGACACCGACAAGCTCAGCTACCTCAAGGTTGGAATACCTGAAGGAAAAAT
 CTTCACCACATCGATCCAAAGGGTCAAATTCTATGAACCACACATAGATACAAATCATA
 CCTACATACATGGTTCGTCGATGACATGTTCCACCCCTGTCCTCACGTGAGCAGATTGT
 TATGGACAAAGTGTACTATTACTAAGAGGAGGTATTCGCCGTTGATGGGTAAATGACTG

FIGURE 4 (continued)

GAGAGTGTACTGATGGATTCATCGTGCATGACACACATACTGGAATTGTGATGAC
CTGCATTGAAAGAAAATTCTGTCTGAACCTTAGGGATATGGTCTCTGTATAACTG
GTTTGTCAAGAAATGTCCACC

SEQIDNO227
TATCAGNCGAATCTAATTTGTACCCGGATTGTTATGTGGTCCTCAATGNTNAAGNAAT
ATGNNCNTNTGT

SEQIDNO228
TTATGGCTTCACTCCAAGAAACCCTCGTGCTGGAAAGCCACCTGATCATTACATAGAATAC
ATGCGC

SEQIDNO229
CTCCTATACTGANAGGACTCTCACTTGGAGCCTCTAGGTATNTAATTCCGNCTTG
NNGGGAGACTGACATCGGNTACATGCAGCGNNGCTCAACTGTAATATTCCACCTNATGG
CCTGCCNTCGT

SEQIDNO230
CACCCAGAAAATNATCTATAAAGTATTATGATCCAGGACGAGCTGACTAAACTAGCTGATGA
GGAAGATGACGAGGAAGAGGAAGGCATGCTGAGAAGGATGAAAAAGCCTCTGGCAAAG
GTGTGAAGGCCTGAAAANACATGGGNAGANTGTNANCACANNANAGGCCNCACNCTATCN
ATCAATATCCAACCTTCTTCCTCGTAATTGTGCCCTGTGAGTTAACCAACCAGCTGTAAT
CTATTC

SEQIDNO231
GANNCCNTNNCTNCTAANTAANNGAAAAATAAGCGACATGGGTTATNTGGAAGAAGA
AGANTGGGACTTTGAATAATANGAACGTNAGTGGGAGGAGAATAGATCACGGCGGNGCCA
TAGCTNCAGGAAACACTACATATTTAGCTATCAGCGCCACCTNCTNACCAATGGCTCTCCC
TTCATCAACGCCATTGC

SEQIDNO232
GCCTTGANTTGCNCNAACAGGATGATCTGTAGATGATGATCATTCCCAGTTTGG
TGCACCTGCTTTGGCCAGAAGGCAATTGAGAGAGAGGAGACGCGAAAAGCATGCTGCTG
CTTAGTGAAACAAGATGATNAGTAACCGTNAAGCTGAAAATGCTGCCCTNGAACGCTCT
AACTANGCTGGTTTGTGCTGNACCAGAATCCCTATGNNGNACANNANTGATANTGA
GAANTCNNANTCAAAGGTACGCTTGATGCGNGACCAATGGTTACGGCAAGGCTGTATATAA
GCATTGCAACAATGAAGAAAAGATTGGCTGGCTCAAGAGTTACAGAACNC

SEQIDNO233
TTGGACTTGAGTGCTTGTAGATGGTGCCTTGCCGATACCCACGGCATCCGCAATCATCTCG
ACGGTGACGCTGTCTCACCTGGCGAGGAACAGCTGAGTGCAGGAGAATTCTCTG
CTCGCGGCGCGAAACTCACGGACCTTGCGGGTTCTTGTGCATAAGAAAAAGGTCTGCAG
AGGTGGATATTGGGAGGGTGGCGTCCCCAAGCGTGTGCGAACGTTTACCCGGTGC
GCGGGATTATCCCGACTGAACGGTGTGGCAACGCTATATGAACAAACCTTGCAC

SEQIDNO234
TCAACCTGAACAAATGTTGAAGAGAGGCCAACCTCTACCAGGTTGAGTTGGTTGCAAATGAA
AGAACTCCTATGAAGCTCCTGTGAAAGTGAAGTAATGCTGAAACACCTGCTCAGCCCAC
ACCAAAAGAGATCGGTGCCAATTACCGAAAATAAGTACAAGAGTATGACATGCCAAAACCTCG

FIGURE 4 (continued)

TTGTTCCAATCTAATTGTCAAAAGTCATTGGATTTCCACCTTGGGTGGTGAAGAGATA
TCTTCAGATTGAGTTCTGGCAGTATAGAGCATCATGAAGATGTAGATAATGCC

SEQIDNO235

TCATGTGCATTTGACTTGGAGACTCAACACAGGGTTGGGTCTGTCTAGGACAGGTGCAC
CTGAAATGAAAAGACCCTTGATGCATCCTATGTGCTACATGTTGCATTTATTCAAGGGTA
AAAAGGTCAATTGGCGGACCAATGATAGTTGAGGGCAAGTGAAAAAAATGAAAAAAATGAAAA
AAGGGAAAAAGAGAGGGTGAAGTGTGAGGATAAACGAGCGGGCCTAATTAGGTTATCTGT
TACATTTTGT

SEQIDNO236

TCACGTGCATCTGACTTGGGACTCAACACAGGGTTGGTCCGTCTAGGACAGGTGTACC
TAAAATAACAGACCCTTGATGCATCCTATGTGCTACATGTTGCATTCTCAAGGGCAA
AGGGTCATTGGCGGACCAATGATAGTTGAGGGAAAATGAAAAAGAAAANGAGGTTG
AAGTGTAAAGATAAACGAGTGGGCCCGATTATATTNTGTCACATTCTTG

SEQIDNO237

AGCAGNCANGGATNAAATGGAAAAACNTGTCAAGCCTANCTCTACCACCAAAAGAGANTGA
AAGATCNGACTNGAGCACACCACTNGATACTAGGTATCAGGCACATAGAAGATTAGTTACT
GTTGCCAACCGAAGAAATTCTTCACTACTGATGGCAAGCATAACCA

SEQIDNO238

AGAGGTATCCTTAGTGTGGATTTGATACTGGGTTGATGATTGACAAACCCGAAGTGG
TATGTGGTGTGGTCTGCAAATATGAACACTCACATTCTCCGAATGCGTAGTTAGCTACAA
ATATGGACGTATATGTCAGGTCAAGCAAATNGTGCCTCATCCATGAAGTGGCTCCTCATG
CTTCAAATGCAATGGGTACA

SEQIDNO239

GAGNGGCAAGTCCTGGCGCTCTATTCCGAGAGNAGAAAAAGAATTGTTTGCT

SEQIDNO240

GGGTNCAGGCNTCTGGCAANTCCTCGGTGTCANNNTACACAACGGAGATGGAAAGAAAGT
TTATGTCGCCAAAATGGCAGGAGTTCTGGTCAAAGCGCATATAGATGTTACAGAAAGG
AGACTGGAGCTGGTT

SEQIDNO241

GGTTCTATCTAAANNATTAAATGACTTGCAGCTGAAGGATGGNTGTACACTAGCAAAGCTG
AACTGCGGAAACGTATCAGGAAACTCAAAATGGCCAGGAAGAAATCACACTGCAGGTGGG
AGGGTTGAAAAGTCTAAAGGTTCTCCCAATAGCTTGTGCTCCTGATGCTCC
TTGCTCTGCATTAGGT

SEQIDNO242

TANANTACGACCGAGAACATCCTNATCAAATGCTCTCAAGCTGTTCTTCATCAAAACCTTT
TTCGGGTTCATCTCAGTACCAATTACAACAATCTTGATTGAAGCTGCGGGTAATGTTGTAC
AACGGGCTTNGAACTCGGCCAGCCGAACATCAGCCAAATGTGGTAAAAAATCCGAAAAAA
CGAACCGGGCATCAAGGAGAGCGCCAACACTACTGTCCTACTACTGACACCACAAATTCG
ACAAATGGTTCAAGAATTCACTGGCATCCCTACAGCTCCGTTACTGGTTAGCCTACACTC

FIGURE 4 (continued)

GCCGCCTTGATCTTTTCTACAGCTGGCTAGCGATGAGGTGGTCATTGGATACTCTT
GGGCCACTTACCCCT

SEQIDNO243

AAGACAGGGATGGCAGTGCTGAGAGNAGGGCAAAGATTGAGCAATGGAATAGGGAAAAAGAA
GAGGCAGAATCTGCTAAATACAATAATTGACACTGATAATGGCAAGAGTGATGGTGGTGA
TCACTATGGAGAACAGTTGATGACGATTACCGAAGCAGCAGTAGGTAGCAAATGGAAGTT
ATGGCTACTGATAGTAGTGTACTCTGGGTGGAGTACAGGTCCACTGTGCTGTGATTTGAA
AAAAGCATAACCCTCTATTGTCTTACCATGT

SEQIDNO244

GGATCAGGAAGGGCATGTGGCTGATGCAGGAAAAGAACATTGACATCTGTTCAAACATCTG
AAATTGAAGATTGGACAAAATACAAGGATGATGATATTATGCAACAGCAATCTCCATCCAG
GCTGAACAAGCTGTAAAACCTCAATTGTTGGCGATAAGGAACCTTGTCTTCATTAGAAC
TGAATACCATCTGGAAATTCAATTGCTGGAGAAAATAAAGGTGCTGAGTGAACAATATG
CTGCCCTAGAAGAACACGTGGAGATGGAAATTGCTTTCCGAGTTCATGTTGGTTAC
CTTGTATGC

SEQIDNO245

CCGNCAAACAAAGTAAAAGATGCAGGATCAGGAAGGGCATGTGGCTGATGCAGGAAAAGAAA
CATTGACATCTGTTCAAACATCTGAAATTGAAGATTGGACAAAATACAAGGATGATGATATT
ATGCAACAGCAATCTCCATCCAGGCTGAACAAGCTGTAAAACCTCAATTGTTGGCGATAA
GGAACCTTGTCTTCATTAGAAGCTGAATACCATCTGGAAATTCAATTGCTGGAGAAAA
TAAAGGTGCTGAGTGAACAATATGCTGCCCTAGAAGAACACGTGGAGATGGAAATTGCTT
TTCCGCAGTTCATGTTGGTTACCTTGAGCACATTCTGGAATCACAAGAATCAAAGCGAAG
TTCATCGCA

SEQIDNO246

GCAAACCTGAAAGAAANGANTGGCAATGATATTNNNTCTGATGGCNAAGGTGAANCCAGAGA
TTACTTGGTGGCGTGCACCAACCACCAAGGTGGAGAGAGCAGCATTGCACTAGTTAGATGA
TG

SEQIDNO247

GAATTTTAGATTCATGGCTCTCAATGAGTTACACGGAATCAAGNTCTAAAGTACCTTG
GGATGCGAGTTGCTAGAGGCTGGCTCAATGTTGG

SEQIDNO248

CAGGGTGTGTTGTGACATATCCCTGCACTGATCACCCAGGTGACCTAACTCTGGTCTAAC
CTGCCTAAAGGGCATTGTGACAGATCTGCACTGATCACTCAGGTGATGTAACATTGTC
TAGGCTCTGC

SEQIDNO249

GAAGAGTGGACTCTTATGAGCAGGTAGCTGTTGCAGCTATGGATTGTCAGTCAGTCTTGATGT
GGCAAAGGACTGCATAAAGGTATTGCAAAAGAAGTTCCAGGGAGCAAAGGGTTGGTAGGC
TAGAAGCTATGTTGCTAGAGGCCAGAGGATTGTGGTCAGAGGCAGAAAATGCTACTCAAGC
CTTTGGAGGAAATCCCTTGATCAGGTTGTACATAAGAGGAGGGCAGCCATGGCAAAGGC
GCAAGGCAATACGTCAGCAGCAATTGACTGGC

FIGURE 4 (continued)

SEQIDNO250

TTCTGCTGGAAAGTACTATGATGGTAGATTGATGAACCCCAACAACAATATTTTGATG
CTTGTTCCTTGTAAAGAACGCCTGCAG

SEQIDNO251

AAACTAATATACGAGTTGTCTGCATCTCCTCACTGGTTCATAGATTGATCAATTGTG
GCACCGGCAATGTGGTGGCGAGGTTACATCCTCGAATTGTTCCACCGGTCAAAAGATGACC
TGCTTTCTGAAATGAATTCTGTTCCCAAGCAG

SEQIDNO252

GCACATTGAGAGCNCNNCGCANTNCATNTCTNAGCAGNGGAAGAGTAANTCTAGATG
TAAATACCCCTGCTTCCCGTAAGAACTGGTTATATTGAAAGCAGAAATGCCTCTGCTGGCC
AATTTCGACTTATAATTCCAGACATATCCACTTCCTC

SEQIDNO253

AGCAAGTGAAGGATTGGTTCTGTTCATGGTACGCTGTGAAGAGAATATGATGAGTCTAAA
TCAGGAGTGAGGCATTCTCAANTTCATTGCTCAGGGAGCAGAAGTTGATATGTAGATTGCTA
CTATTGCAAGAGCACTTCCTGGCATGTTAGTCANAGTCATGTTTTGTTCTGATCAGC
AGTCTCTTNACTATCTGCCTTGNAAGAGTTAGCCATACGTTAGAGCAATGTGTTCTT
TCAATGTTGGATATTGAACTTGATC

SEQIDNO254

AGTANGCGTAGGGAAGACAGGGATGGCANTGCTGAGAGGAGGGCAAAGATTGAGCNATGGAA
TAGGGAAAAAGAAGAGGCAGAACATCTGCTAAATACAATAATTGACACTGATAATGGCAAGA
GTGATGGTGGTGATCACTATGGAGAACAGCTNGATGANGATTACCCNANGCAGCANTAGGA
NCAAGATGGAAGTTATGGCTNCTGATANTANCCTACTNTGGNNNGAGTACANGNCANTGN
NCTGCAGATTTGNANANAGCATANCCCTTATTGGATTCTTACCANGT

SEQIDNO255

AAGCTAACAGAACATGTTGGAATAAGGGTGTGATTCCGAGAGCTTCCACCCCCGTTATC
GGNCTCATGAAATGCGACTAAGACTAAGTAATGGAGAACATCCGATAAACCTTGATAGTCCAT
GTTGGACGACTTGGAGTTGAGAACAGAGTTGGATTTCTCAAAAGGGTATGGATAGACTCC
AGATGCTCGATTGCTTTATTGGAGATGGCCATACAGGGAGGAATTGGAGAAAATGTTCC
ATGGCATGCCTGCCNGTTCACAGGTATGTTACTAGGAGAGGAGCTTCCAAAGCATATNCC
ANCGGNGATGTTNTCTTATNCCTNANAGTNAGAGACACTGGGGCTCGCTGCTTGGAGGC
CATGTCATCAGGGCTTCTGTAGTANCTGCCGTGCCGG

SEQIDNO256

CGNTTNTNCTGGNGNGTCAGCTNNNGGANGCNCTGGTGCTGGTCNNAGGNCTNATGA
AACGCTCNAAGGCAACAATCTGGTTATGACAACCTGGGGAAAAATTCCCTTCTGCGCAAAC
TCTCAAAGCGATGGACTNGCNATCANAGCAANTTTGCATCTGC

SEQIDNO257

ATGANGANGAGGATGAAGAAGATTATAAGCCACCACTAGGAAGCAATCTGATAATTCTGAT
GAAGATGCGGAGTCTTTCCGTTGAAACGAAAGCTATCTCCGAAAGAAGAGCCTGAGCCAAA
AAGGTTGCAGCGGATTGCTAAAGGCTCAAAGTCTCGAGACGGTGTTCGCTGCTTGTGCT
CAACC

FIGURE 4 (continued)

SEQIDNO258

ATGATCAAGCCCTAGAATT CGCGAAGATGCTGATCAATCGGAAC TGTAATTGTTGGAA
 AATATCGTATT CCTGAAGCCTGACCAGGTGGT GAAAGCCATGAAAGGCCTAATGCCAATGCC
 CTGGCCGAACCAAATGACCCAAAATGATGAAGGAGCTTCAACAAATGGAGGAGAAGAAAG
 CAGCAATTGACAAGAACGGCAGAATCATTGGTGCGGACAGAGTTGTGGCGTGGACTAGGTTAC
 TTTGTGATT CAGACTTCAGCTTCATGAGGCTCACTTCTGGGAGTTATCATGGGATGTAAT
 GGAGCCTATTGCTTCTATGTCACATCCATTACTGCATGGCTGGGTATGCTTCTTCCTTA
 GGACCTCCAAAGAACCTCTTGAAGGGTTTCCAGAGCCGGTTAGTGCAAAGCAAAG
 CGATTGATGAAGCTTCATAAATTGGATCTTCATAGGGACCAAGAGCTCCACAGAGCTTGNG
 ATCCTCATTGACGATACTGGTGGAAACACC

SEQIDNO259

CAGATGGTACTGTAAACATGTATGTTCATCATGAGATTATTATTCCCTGCGNTTCCGTCTGC
 ACAGCATGGATCGATTGCCCTA

SEQIDNO260

TTGNTTACTCNGCCCTTGNATTCAATGNGCTAATCCATTANCCNCACGGAATGACGNCT
 AAAGTACCTTGCGGATGCGAGTTGCTAGAGGCTGGTCTTAATGATGG

SEQIDNO261

CAATAANTTTATTGGAGGCTTCCCTGCCTGGTTGATGTCATGACCTATCTGAAA
 ATGCTATTGATGATGAGGGTTAGATGCTTCAGCAGCATATGTGGCAGTTGTTGGCT
 ACGGAGCCCCCTCACATCAAACCTGGGGTTGGAGGCTTCAGCATGGCGCAGCGACATCTCT
 TTATTCTGCAACTGTTCACTCGTGGAAAGTATGAGAATGGCAACTCGTACTCTGCCAATC
 TGAGTGCAGCTGTTGGA

SEQIDNO262

GGATCAGGTTNTAGCAGATAACTATAATCANAGTTGNNGTGGCATGGGCATGGNTATAT
 TTGGNGGAAGGGTGGAAAGCTTNCCGAA

SEQIDNO263

GTGTCCCAGCAAGGATTACCCAGGTGATGTACCTCTCATCAAGGCTCTGCCTACAGGCACAT
 TGTGATGTATCTGCAC TGATCACCTAGGTCACTGTAAC TTTNTCTAGGCTCTACCTACGA
 TGGCATTGTGACATATCTGCAC TAATCCAAGT GATGTA ACTCTGTCTAGGATGTGC
 CTAAA

SEQIDNO264

CCGNTACTCTCCGCTNGACCAGNTGTTNCTCCCTTTCAAGGCTGGTGACACACTANT
 ACAGTCAGTANGACAACCTCATCACTGATTTGAGACAAAGATCAATCTNTCAAGCTTGCN
 CATTGCGGTCA TNNTCTCNGGAANACCGNGANAAAGAGGCTGNTATAGGTTACCTTGA
 AGGAGAGACTGAGAAACTCNNNACTAAGGAGACACNGATAAAGGAGCCGATTCTTATA
 T

SEQIDNO265

FIGURE 4 (continued)

GGCTGTTAGTGGCTAAAAATTGTTGGCTCAGCCAAAGCAGAATCCATTGAAAGTGGTGA
 GGACTCGTCACATGCAGCCTACACTNCGAATAGTCCACACCCTCTCTTGCAATGCT
 GTTGTATATTCTGCATATGAAGCATCCAAGGACGAAGTAACCCAAAATAATGCACCA
 TGACGCTACGAGCTATGCTTGCACGGGACAGGGCCTCCTATTG
 GAGAAAGCAACTATGACGAAGCTGTTGAATTGATCCAA

SEQIDNO266

ACAAATGGTTACAGATGTTATGGAAAATCTTGTCAAGAGGGCTATAATGGCTGAATCTGAAA
 CTGCTTAGAGAAGGAGAACAAATAGGTCNTGAAGAGATTCAAAGAAAGGCCTTCAG
 ATTGAAAACATGTCAGGTAAGTTAGAAGAGATGGAAAGGTTGCTTGGGTACAAATTGTAT
 CTTGAATGAGATGCCAGAGAGTTGAAGATTGGTCGAAGAAACTCTAGACAGAGGCAGC
 GAGCTNCAGAAAATGAGCAGGAGCTTCTCGT

SEQIDNO267

GNNTNTGGANGCTGNACATNTCATCCTCANCNCAGGCCTANNCTAGNNCNAGGNCCNNCC
 ATNNNTNCAGNTNNCTTNCGNNAATTCTANTNATTGTCGACATGNNGAAACCTATGCTNT
 TCGNCNGCTNNANGNACANTCANNCTGCANNNGNCNGANCCTCNCANCNTAAATCAA
 CCTTNCAACNGCATGATGACTCTTCATGCATAGCCATATGNTATCTTCATTACGGCTTTT
 CAGACATACCGCTTCGTTAGCAGGCATCTTACCC

SEQIDNO268

GATATTCGTAGGGCGAGGACTGTTATCTTACAAAGGATCATCAAACCCCCAAACCACTAAAG
 TGCTGAAATTGCTTAGCAGCAGNGAACATTATCTGCTTTCATAGTTGTGATG

SEQIDNO269

GGGTCAATACTCTGCTTCACTGCGATCGATATTGCGAATGTTGGGTGAGGGACGAGCA
 TTTCAAGACGAAAAGCACAGGAAGCGTGTGAAAATAATGATGGGCCTGCACACACACCC
 AACTTGATGCTGATTTAGCTGCTGGAATTGGCATGCCAGATAATGGTCAAAGCTAATGTCG
 ATGAGTTGAGCTCTTGCCTGTTATAACTCCTACATTACTGGTAGAGTTCTTGAAC
 TTGAGAATTGCTGAGGAACATAGGTTGTTAGTCTACCATCTCTCTCAGTATAGC
 AAGT

SEQIDNO270

TGATGACCTTNNGNATCTNGTAATATNTGAGAACAACTCAAACGTTGAGAGCTGCAGCAAT
 TGATCAAGTTACCCCTTNGAAGAACAGAACAGATATTAGCTACAGAACAGCACAGATGGTGA
 AGAACGTTGGTATTGAGAACAGAACAGACTGCAATGCTCAAGTCACAGGCTGAAAGTTAGCA
 AATTACTGTGATGTGCCAGCACTAATAAACACAGGAGCGCTGCAGAAGGGAGTCTGCAA
 GTATAGTTCCATTGATACAGNTGGTATTGCTGGTTATCGTCTTGGACTGTATGTT
 TGCAGATGTCACCTGATGCTGTTGAAGTTGACGACATAATTGAGAACAGCCTTTT
 CCTTTTCTGTATTTAACATAAGCAACGATGAACG

SEQIDNO271

AGGGTTATTCGGGTCGGACCTGGCGAATGCAATTGCTAAAGATAACAACAAATTGATCGAG
 GTTTAGATACNCATTGAGACCTACCATTGATTGCTTAGGAAAACTTGGCACCAGTGA
 AATGTAG

SEQIDNO272

CACTCAAANTCCNGNCAGAACATCCGGNGAANTTTCGGCGAGACATTCCAGTAGAGTTCTTGT
 CCGAGGTTTGACATTCACTGAGGTCTATTCTCCTCACGTTGTTGTGC

FIGURE 4 (continued)

SEQIDNO273

ATTGGCCGGTCTTGGACTTCACAAAACNNTNCAGAGCTCGAAGTATCACTTCTAAACCTC
 AACCGGAGAAGAAAAATATAACANAGTTGACTATTCTACTCCTTGCGCCGTTCCGAT
 CGATTGAAAGGCAACACCCCTCCGAATCAGAATTGCGCCGTTCGGGTCGCTTGAATGAGAA
 GTCCCTGCTACTCTGCTCCACCAGCAAAAGGAAATTGGGGCTTTGAAGAAGGAGATGTTG
 AAGAAGATAATGAGAAGAGACCTGCTAATGCACCTCTCCTGAGAGTGAAAGATGGC

SEQIDNO274

GCCNGCTGTGNNTGCAGTTGTAAGGTGAAGTAGCTCTAGACAAAAGCATTGCATG
 TTGACCAGATGAGCAGAACTGATGTATTGAGCTAGAAGGAGGAGGTTCTTCTCGTCTTC
 AGCTTCTGGATATAAGTAAGGGCCTGACCCTCTACTCTGGGTCAAGAAGAACGAAGAGAAC
 CCATGAGAGTTGCACCGTGGAACNAGTACCAAGTTGGACCAAGAAACTGATCCGGACCTC
 CAGCTGGCTCCGGAAAGAACAGGGTTGTCCCGGGTGCACCTCCTTGATGCTTGGTCG
 CGCTGCCGCTGGACTTGAGAGCCCATCTCCCC

SEQIDNO275

CGTTCTNCTGGATNGTCTGGCTATATTATGGGAGGGAAAACAGGAACAAAGAGAAAGCA
 AGATTGCGAAAAGGTATATCTATTCTTGTGCAACTCCTGGACGTCTTGATCACCTAAA
 AAACACATCATCATCTTGTACACGAACCTGCNCTGGATAATTTTGATGAAGCAGACAGAA
 TTCTGGAACCTGGATATGGTAAAGAGATTGAAGANATAC

SEQIDNO276

TCCAGGATGATGGCACTCCTGTCTCAATATTGCACTTACGGGAGTAATGCAAACGATGGA
 CATTAGCTGCTGGCGAAATGGAGTCAAGCGACTCGCACTGTTAGGCATCCAAATATT
 GTCATTCTTCACAGCACCAGCAGAAAATTGATGGTCTACTACCAAGGTTACCATCT
 ATATTGTTACTGAACCTGTCATGCCACTCTGGAGAACGCTAAAGGAATTAGGA

SEQIDNO277

ATNGCAAAATTGCGATCCNAGCGTCAGATGAATCCATTACCCAGGAGATTGCTTCANATT
 TCAGGGNTGGNTGNATGATCTAACTGATGGTGGTGTGAGTACATGCCTGAAGANNAAGTAA
 AGNGGCTGCTGCTGAAAAGCTAAAGATTCAATGGAACGGATAGCATTACTAAAGCGGCA
 AGACCTCCCCGAAGTCTCCAAAATCTGATGATGAAGAAGAGGAGGAAGACGAGGATGAT
 GAGAACCAAAAGAAAGAACATGA

SEQIDNO278

TTGTCTAAGATAAAAATGTAATAGTAAAGAGAGCTGCAGATGAAGACATGGAAACTGCTTC
 TATGTTGCTTAGGTGTTGCTATAATTTTATAAGGACACTTTGTCATTGCTCCCATCAG
 GTNTAAACCTTATATGGTGCATCTCAATTGCTACAGAAACATATATCCAACCTGGATA
 GATGCAGTTGACATACTGATATGAACACTTCACGGAAGCTACTTTGTCGGCCTACACACT
 TCTGCATGCCATTGCACAAATGTCTCAGCTGCTA

SEQIDNO279

GCTTCTTGCCTGCCGTAGACACAGTGNGAAGGGNGAGTGCCTACATGAATGNTTAGAGTG
 AACCTGATGGTGTCAAAGACAAAATTAGCTGTTGAGNTCTGGATNTGACTCTNGAGGA
 TGNCATAAATGCATAGAGCTTATTNTACGCCATCGCAAAGATGCA

SEQIDNO280

GCGATACGAGGCAGAAAACATAAGCTTCCGGAGAGTGTGAAAGCAGATNCCCTACTAATGA
 AGCTTTCTGACCGGGGTTACTCGCCCCAAGGTTCTGATCATTCTCCCTCTAGCAAGTG
 TTGCATTGAGTAGTCAAGCGGCTGATTGACACCTCTAAATACAAGTCTAATGTA

FIGURE 4 (continued)

GAGGAGCGTGAACGTTCTATAGAGAATTGGGGCCGGAGTAAGCAAAGATAGGGAGGATGA
AGATGCCGTCGAAAGCTCTGAATCAAAGAAGAGCTCAAAACCATCTGATTTCAAGCATTAT
TTGGGGGAAATAACAATGATCACTCATGCTAGGAA

SEQIDNO281

GCGGCATGTGAAAATCAACTGNTTGTGATATCCCACCTACTGGAC

SEQIDNO282

GNGTACGGGNCCGGCATAGATATGCCGNANGAGTNNGACAAAGCTGCAGAGTGGNTC
ATCCTTGTCA GACCACCCCTGCATGTATATNTCTNTGNTNCNTCCCAGTACAAAGAT
GGACCTTACTCCAGACAGCGTATGGTGGTAACGGATAGCTAATTNAGTGCANAGGTGTTGNC
CTCCTCTTACTTACCTTCAGCAGTCCCCATTATCGTGG

SEQIDNO283

GCTNACTNACATAATAATNANNCCNGAAAANTAAAACCTTTNAATTATAATCATAAGCT
CTACTCGGAGATGTGAACAGCGAGTTAGGTGGACTNTGAAAGAATGCCTCGATTGNG
TGNTCCAGAAGGAAGCGGCTCTGTGATAATCGAGGACGATTTGAAACCTAGGAGAAG
GATCANACGGCTGTGAAGGCACGGGAAGCGAGTCGAGAAGGAAATCGTCGTAGGTTGATGC
CTTTCACAGCAACTC

Group 4

SEQIDNO284

GGCCATCGGAGCAAAAGAGAGCAACTTACATTCTGAACACTACGTGAAGAATCTCAGAACCT
T

SEQIDNO285

GAAGGTGAAAATGGATATNGCATATCTCAAAGGCACNTNAGGTATGGCACTTTGTT

SEQIDNO286

CTGNTCGAATGGGATATGCATATTCATATGTCCTATTGTAATCAGAGTTCAAGATTCT
GGCTT

SEQIDNO287

TGGATAGGTNAGCNANGAGCANACGANANNCCTGACNGGAAAGGGATGCANTCAGACTCTC
ACTGGCTTCAGCAATTCTT

SEQIDNO288

TTGAAATANCNNNTGNNAANNCTNACATTAGCCNCTCTGTTGTGAGGAAAGGCCTATTCCCC
CTCTCTATGTAUTCATTCTGNACATACAT

SEQIDNO289

TGATNNATGCTCTNTAATTGCCATACTCATTGTAATTGTGTTGATGNGCCTNATAACGGG
TTATNATGGCCTNCTCTTCTATTAGCGCCAAATGTAGGAAAGTCATTAGTTGTGTTAG
TTCAGGAACAGACATATTCAAGCCGTGCCACCGGACATCGCATGATGTCAAACCTGNGAAC
TAATCTCACTAGAGACGAGAAGACNATGGCCCGTAGT

SEQIDNO290

GCAGCAGAAGANATGAACCGAAATGAAGGCCTGAGTTGGCCCCAACAGCCGATTCAACAA
CAGAAATCAATGCACAGATTCAATCTGAGCAGAATGT

FIGURE 4 (continued)

SEQIDNO291

GGCATGANAGGAACATTCACNCGTATGAGCACGCATGTTGCAGANTCTCCTCGNGGGCTG
NTCCAAANATTCAACCCTATGTTAGCCCAGGAAATTNCNCCTCCCCNTGATNCTCTGCTCTG
CAGT

SEQIDNO292

NTCTGTGCCGCTCNANTNNGGATACTACAGCCGAAACCTANCAGCGTATNNNNNAAGTG
CGCAAGAGATTGACAGATTGTAANGCTGTTACNGAGAATGCTGNGTAGGAAAGTCCATAANG
ACCGCGTGTACTATGT

SEQIDNO293

NGGAGTAGTAATAACCGTGTGGATAGTACCAAACTCAATTACTTAGGAGGGTATGTTGCTC
AACCTACCAACTGGC

SEQIDNO294

CTTNNGNAGTCCGAACNCCTCNNNGANAGACCAAANNGATGCGNNNNGCTCNTGCAAAGG
GTGAGGANCNNATNNTNGCC

SEQIDNO295

TTGCAGAATTGATGTGGTTGCTTGCTCTAAAGTTGGAAC

SEQIDNO29

TTGAAGNCCTTNANCNNCNCTNANAGGGCTGNNGNTGGACGCACACGATTACATT
CTNCNCCTAGNCGAACGTGGTGGAACAGTTACATCACT

SEQIDNO297

ANCCCANGGTTANATGGNGAATCACACGATNACANANCTTCTCCTNAGCCGACGCCTGTACG
GAACAGCATACTCACT

SEQIDNO298

GNTTAGNNANCCNNCGGTNNNGATNGGATGNNGNAGGGNCTGNTCAATCCTGTATAGN
GACTCTTNTTACCCGTTGTTCCNCT

SEQIDNO299

CCTAGANAGCGNGCTCCNGAAGAGAATAAGGCAATNGCAAAGTTGAAAAGTTCATGCC
TNCGTTAGCAGNTGGATCAATTGGCACAGGAGGGCCTCAGCTNTGCCTCGAAGATCTAAAG
CTTTAC

SEQIDNO300

GGCCCTGACGTCTCTCTATATTTATTCCTATTCATCTTTTGCTTCAGAAACAATGT
NTCCTTTATTCTCGGACCTGTATTTAGCAGTCTAGAACGTCGGTACATTGTGACACTA
GGTTTGGGTGATTATGGC

SEQIDNO301

NTNTAACATCACGCATGCATAACAAACTGTCAATTGGTGTGAATATTCAAAGTCTCTTAT
TCATATCAATNCTCAGGGGAATATNACNACTCTCCAGGAAAAAGACGTTCANANACGGAC
AGCTGCNAAGAGATGCAGTATGACAAGAAATTCAATTCTCTCCGCCCTCCAGCCAT
TTCACAAAGGGCTCCAGCGACTTGACAAAGTTTGCC

FIGURE 4 (continued)

SEQIDNO302ATAAACTCTCAAGTCCTGGCGGCCAGAAAACCAGCTTCAGGCGGGCGGNG
GGGCTCCCCCTCCCTGCTCGTCTGC

SEQIDNO303
GTAGGAGTCGNGGATGAGGANAGAAGNGTCCTGAGNAATNGAGGGAGANGGTGGANGAT

SEQIDNO304
NCCCANTGNTTGACNCNGTGGTGNAGGGGTNTTAANATGATTNAGTGCTATTNGCTAGAG
TGGNTATAAGNCTTGGGA

SEQIDNO305
CNCGATNGTAAACGCCCGCANCGNTATGGNTAAAAAGNAGACCCCTAACAAAATNANGGA
ATTGANACNTANCAAA

SEQIDNO306
ACNANTATNNGAAGGTAGAGNGTNTGATGGGNGAAAAACGAATNGGACNGGGGTGCNTAA
ACNNNAGTCAGNTNGAAGAANATAGA

SEQIDNO307
GNTNNATNAGCACTCTGTTGTGAGGTAAGGGNCTGGTGCCCTCGGGATGTANTCANTATN
GCCGGAGAT

SEQIDNO308
NTTNGGGTGACAAGTCTTATGTCTCAGGAATAGGCCATTCATNGGTCGAAAAACCTTGA
AGAACAAACTGNTCTGATTTGTTCAACTTTCTTCTAT

SEQIDNO309
CACCTNTCAACAGCATCCAGCNACTCTAACNCNAGAAAAACANCCNGCCTNCATTGAAAC
CNCCATTTGCTTGNTGNTCGAACNCNTNNCAGATCNCATNCTGAAAN

SEQIDNO310
CCAAAGTNTCCGGCTCCANAGGGTTAGCAAGNGGANGATGGCGTNGGGNNAGCGAGAATGA
AAGCCTTCATNATCCCANGNAGAGAACAA

SEQIDNO311
CCCATTTCANCNACCNAANGCAGCCTAGGTTANAACCTCTNNNNNTGNACAAGCANCAGG
CTTAAAGNTGNATGANTGAGGTGANCAGNTNTNCCAGTATCCTCGGCC
TGAACCTA

SEQIDNO312
ANCCTGCNTGTTGTAACCGCCTGGNTACTAATTGTATNANCTTGCTATAAATTTTTAT

SEQIDNO313
NNNNCTNNNNNTGGGANTAGAACCATTTGTTCANTCACTTTAGNNNTGTNATGNAATG
AAATAATAGCTATATCCNTNNNNNTGAANAAATGATGGCTGNTGCTNGGGG

SEQIDNO314
CTGTTTGGGNCAAGGATNNNGNCTGAGGNNAGCGCCNNCTTGTNCGCNANNAGNT
TGCAGAACAAACTGNTGCTGATTATGCANAACNTGCCNTCTG

FIGURE 4 (continued)

SEQIDNO315

CCNGGANGNAGACCNCTGNTGGCATCAGGNATACTAGCNTCAACTAGGGAGTGGAGACCC
TATNTTGACA

SEQIDNO316

NCNTNAGATGNNTAAAATGGTGNGNTGCTTNGGCTTAANGAAGNNNGGGNACT

SEQIDNO317

NTCGTNNNNNNCTGTGTACTGNNATATGTGTCTGNATTACTCCTGNTGTAATGCATTGACT
TATACGGGNCTTGGG

SEQIDNO318

TNGNTANGCCCCTATTNGTTACAGGATCNCTACTTCCCACANAANATCGNCCATNGC

SEQIDNO319

TTNTAACCCCCATNNTGCATCTCACATAATGGACCGGCCANCAATANGTAATTAGCTGGA
TGATATTCAAACGAAAATTCATCATCTCC

SEQIDNO320

TTGNAAGCCTAGTTNTANCCAGCAGGGGCTGCTCGTAAGGGCAATTTACCCACCTTAT
TATCCACCCCTATGGGTATACGCCACCACCTTACCATATCAACANTATTACCTAACCTTA
TCAAGCTACAACCCACTCCACCTGGTGGTCAGCAAGCCACACATCAGCAGCAGCGGCACAA
CAACC

SEQIDNO321

TTTGTAGCCTAGTTGNTCCCAGGNGGGCTGCTCGTAAGGGNAANTNTACCCACCTTATT
ATCCACCCCTATGGGNNTNCGCCACCACCTNTACCATATCAACAGTATNATCCTAACCTTAT
CAAGCTACAANCCACTCCACCTGGTGGNCAGNAAGCCACACATCAGCAGCAGCGGCACAAAC
AACC

SEQIDNO322

TGCCCAGGGAATGGGTATTGGGNGCAGTTGTACCGGGAACACTANATGACTATCAAAATGN
GCTTCACNGGACA

SEQIDNO323

GCTNNGGAATNGNANTGGAGCANNTGNACNNGGACACTACATGACTATCAAAATGGCGTC
NTCACGACA

SEQIDNO324

TGAAACTATGTGCAAGAATTAGTCAGTTGACAATAATTGATTGAGTCTTCAATTCTTAGC
ATTTGGAAGCTAGATACAAGCCTATGA

SEQIDNO325

ATCNTGATNNTCGGCCATCTGGTACNTGGAANNGCGCTGGTGAGACTTGANTCTNGNCAGA
GGNGGACCCCNAGCCACGAGCAGGATGCTGCATTANCATTGCNATCAGCAGTATAGGAATTC
TCTTGCTCTGGCCAGATCGAATTGAGGGCCATGGCATCAAGAGCCA

SEQIDNO326

GTAAATACCCGGATGTGGAACAGGAACCTTCAGTCTGTNNGATAAGAATTACCTCTCCAGCAT
CCAGGCTCAGCAGACTCTGCATCAGATTCTTCACAATTCAATGGTGCT

FIGURE 4 (continued)

SEQIDNO327

TTTTNTAGCTNCTAANAGCCAAATTCTCCGAGNCCAAAACAAGGTCAAGGTCCAAACAG
 TGAATTGGCCTTGGAGCAGGGCGTGAAAGACTCTGATATAGATGCTGCAAAAGTTGCTGCAT
 TGAAGGCTGCTGAACTAG

SEQIDNO328

TNNGCNGATNNNTAAANTCCCCTCTCGACGACNACNGCTNAGCATGCNTNTGCTGANGAGT
 NCTAAAGGCTGTTNCCAAATTACTAGNTCTGACATCGTATCTAACTGGANTGATTGGTA
 GANTATAAAANTGNAGACAANNNGTNTGACTNG

SEQIDNO329

TTTAAAACCTTNTAAAAACCGAAAAATGCTNTAAAAGGGTCCAAGGCAGAGACCAAGAAA
 ANTAACTGTTGAAGANC GGANAGATGGAAGNAANGTANAATTTGTNNAAAGGATATGGTNAN
 GATTGTTTTNAAGAGANGNCNAAAACNAACCCCCAAATT CCTCCAG

SEQIDNO330

TTTAGCGGCTNCTAAAGCNCGGACTAACAGAGACCNTCNGCAAATGGCNAGGNTGCNAGGTA
 ANNGCNTGNCNNNCGNANTCNCNAGTGCNCCTCNATNTTACTACTNTNCGNATTNTTAG
 ACTATNNANGGNGANAGTAGTACNGACCGGAANANGAGGCTCGAGACTGTGACACCAGANC
 ANANTGNGCTACNC CCCCCTAGGTATTGTACNCTCCNNATGAACNTNNCGNTGC

SEQIDNO331

TNCNNNNNNCTNCCGAGCNGNTNTCTCTGACTTAGGTNTATATTCTAGGAACCTTCAGTG
 GGAAATGCCGTTNAAATTATGATACTAATGTTAAGGTAGGAAAGATTACTGGTTGACACAG
 CATA

SEQIDNO332

GNNNNTGTNNNNNGNGTGNNCGCATNGGTGAGTGGAGTTCACNAGNNGGNNACTGAAAT
 TTATAGAGACGCTANTGAGGGGGCGAGNGGCCNNNTCNNAATTNGACNTTCTNGTGCNN
 ATNACNATTAGAAGNA

SEQIDNO333

CCCNNGNNNNCGNGGAATTGCGANTTGNAAGCAACNTGTTGTCATGNAGAGCAGGAAACA
 AAATNTCGTATCTCGATCTAGANCNTNAGCACANTACAGANNTATGNNACAGGCTGTGNGNG
 AGGTANTCANNTATCGGTTGTA

SEQIDNO334

GNNNNNCNNNNCNGNTCTGTGGCTTGNCTTGGANATTAAGCNCTACTNNNTACGNNTAC
 TGNANNAGNCNCNTCTANGAGCAAGCNACNAGCCCTACTACTANATTNACTACTGCCTT
 ATGNTAACAAAGNNNGAGCAAGANAGGACCAACAGATGCTACTAGCTAGAGTTGATCATA

SEQIDNO335

TAAANGNNNNAGCAAGGAAGCTCTAGCTTGAAGGATGCTGATTATNANTTTGATTAGAA
 TTTTACAAATGTAAGAATTATACTAATGTAAGAACTACGTTGGGCTTGATCCCCATAGG
 AGCTTAGCCCGGGGTACGTAGGCAACCTGTGAGAAAGGAGAGATCAGGTGCAGCCCCTGT
 A

SEQIDNO336

FIGURE 4 (continued)

ACNCGAATNGNAAAGGAACCGAAACTATGANTNNNAACTNGNAATTCTTGATGCTACAA
ATTGGCACTGNATNG

SEQIDNO337
GNGTCCAATTNNGTTACGTGTTACTNTNGTTCCCTGCTCATACTAAGCTGTGAAGATG
ATTAGTGCTATTGAGTAGCAGTGGTTGTAAGCCTGGGA

SEQIDNO338
GTTGTGTNCCATTNGCATGCTNTATTACATGNGTTATGAGGTGNNACTGATCAGGAACA
CTANATGACTATCAAAATGTGCTTACGNCA

SEQIDNO339
CATTGTCTCTTTNTTCTTGGCGAATTTCCTTGNTTCTTGA

SEQIDNO340
CTGGGTGTAAGTNGAAGAAGGATAATGGACAAGTGATCCAAAGCATTATAGGGACGACACTT
TAGGCA

SEQIDNO341
NGGCCGGAGTGGGTGNGGNGANGANTGGATCGTGGTGAGTGGTGNNTNNNC

SEQIDNO342
GCCGCATACATGCATATCCGNGGGCAGCAGGATGCGGAACAGTTTNATGGNACCCC
TANTGCANGNNC

SEQIDNO343
AATCCNNGNTAAGATTNTCAGCNTGGCNAGAGNAAGCNCTAACNTGATNANCANTGGT
GAACCNAANTANCCAGTTACCAACCT

SEQIDNO344
GCTCTCTGTAANGTTATTTTGACTGACANNCAAGGGGTAAATTTTANTTANNACC
ANAANTTGNTTAAGGNNN

SEQIDNO345
ACGTACACATTCTCCTCAATTGCTCAGGAAATGGTATTGGTGAGTTGTACNGNAACACT
ACATGACTATCAAAATGTGCTCACGACA

SEQIDNO346
GGTGCATCGNCTGCCGAAGAAGCGTTGTACTTGAAAATATCGGAGGAAATATCCCTGAAA
TAAGTGCACGCTGGTGAGCAGNCAAAAGGTACTATGTTCGNTCTNNATNTAGCA

SEQIDNO347
NCNGTTATAGTCGANACACANGGNATGCCCTCTNGNAAACATNTATTGTACNGGATGACGTA
TTCTGATANTNNCTCAAANAAAGANNCATCACTAGNGAGCAGCAGAAAGATAAGTGTNTTNTC
TCAAAGAAATGACCA

SEQIDNO348
TNGCCGNTNCCATGNNGNACNTGGATANTCNAANNCTNTCCGNNGCTCGNNNTANNG
NCCGGCNANACACCANNCCNACTNTNTGTGACGCNTGNAGGACNANCTATGNTGGNAGGANT
TNATAGNNNGNNCANATCNGCNCTNGACAGNCACTNNCCTGNGACTNCNNNTGNANC

FIGURE 4 (continued)

SEQIDNO349

TAGNCCGCTNGTTCAAGAGATTNNGCTCTGGCATCTGTAAGTGAGATATCAAAGCGCACCTC
TGAAACCCCTCAACGAGAAAATAGAAGGAATNCAACAAAGATTGACCAACCATTCTGTAGAA
GCAGAACAGAAAAGGGTGAATTGCTATCACACTCAGGAAATTTGAATCAATAACGAGAAT
GGAAACAGAACATGTTCCCGTACTGNATTTNTCCTTCAGC

SEQIDNO350

CCCAAANTCCNTCTNTACGATTACTCAGGAACNNATNATGNGATTGNNTNGACCGAANGC
CTTNTNCGTGATTACCTGGAAAAGCTGCAGCTGGACA

SEQIDNO351

TACTATGTTATTGTTCGTCANGANANTNTGCAACNGNTGNCCA

SEQIDNO352

GCGAGGGCCTCCCAAGNTGAGTNAGCAGCNNGNGTNANGNAATNAAGAGNAGAAAGAGGNT
CANGCGGNNNGAAAATGTAA

SEQIDNO353

GCGCGGGACCCTACCGAANGGGTAATTGNAGCAGNCTCGTACAAAANATAGGAGGAGTANA
ANGTAAGNTCNNGCGGAAGANNATGTAA

SEQIDNO354

TGTGNTTCTTCCTGTTATGGGGACTGTTGGTTATTCCTTTGTGAAGCTCTGGTCGTT
ACCTCAAAGTGTATGTACTCCAAACGGAA

SEQIDNO355

ATTGTCTTCTCTTGGTTCTTGGCAATTTCCTTGTGTTCTGCTGA

SEQIDNO356

AAGCACTCTGTTGTGAGGTAAGGCCTAGTCCCCCTCTATGTACTNATTNTGCCATACA
TTT

SEQIDNO357

GGATTCAANCCATCGAGGGCCATNGTGGTCTCCGGCTACGGNCTATTNGTGNCAACTAT
TNGGTGGNCCGCATNNTCTGTANACTANCAGGAANATCT

SEQIDNO358

TGCTCAGNTNGATCNAAGGGNGTNTTNACTGGAACAGGGCAACTGCCTCTACTGNTT
TNATGCCTTTTCAATTNCATTNGTCACTAGGGATCGGCCGT

SEQIDNO359

GATNNNNNTANCCNNGGNCTATNAACGTTNCCGANGCAGGTNCGNATGCTNTGNCTTATNN
CATNGCGAANGAGTACCNNGGANANCCNCNTGGACANACNTGAGGGCAGCCATGGNAGGCT
GANACAAAATTCTGGTTCACTAATTCCATCTTNTTTATNNGCCAACACANTAA
CTNTATTGGTACTAGAACATGGNATTACCTTGGGT

SEQIDNO360

NACGCAGNNNAANACGATGACGAAAGNCCGCCAAACCACTGACTTGACACNTNNAAGATT
GCTNGGGANCANAGGGANGCN

FIGURE 4 (continued)

SEQIDNO361

TGTNNAAANAAGGCGTGCCGAGGCNGACGGATGTGNCANGTGTNCANGACGATGTTACTGA
ATNGGTANTTACANCAGGGAAATCTGTGGCGNTCATGC

SEQIDNO362

AAGNCAGGAANGTTGTANCCGNACCNCANANAAATTCACATTG

SEQIDNO363

GGAGCACAGCAATTCAAATTCTTCTACCATTTGGTTCATATCTAAGTCATTCCCTATT
GGGCTTGCCT

SEQIDNO364

GTGGGATGCTGACNNTGNAGCTNTNGTNTNGTNCCNNAGNNATTNCNNGCNATTAAGCAT

SEQIDNO365

CGCTANNNTAGCANTCCGATGTGAGGGANGNNNCAGNCCCCCTTTATGAACTTGANTGC
TGGCATAACA

SEQIDNO366

GNAAAGCTAANGTGANNAATTAGCACTCTGNTGGAGGGTANNNCTANANTCCCCTAANTAT
GNTACTTAATTGGGGCCGTNCAT

SEQIDNO367

GCCGGCTNNTGNAGNGNCNTGCTNNNTNAGTNTNNNTGAGCATGGNCCTNNAGAAAACGCT
NGTGGCATGATGCNTNANGGGN

SEQIDNO368

NNNTATCCCTGCTGTGAGGAGTGTNTTCCTTGTGTNATGCCTNTATTGNGTTCCGCNNT
TGTGCTCTNTCTAATGTATAGATTNTNACTGTAGATTCTCAT

SEQIDNO369

GNCNGGTNGNNGAACTAAAGTAAGTNGGTAGGCATGGTGGCGAATGAACCTAAAAAGTAAA
TCTAACTTGCAGGATCAAACATANGNTCA

SEQIDNO370

CNCATTGTANATCAACCTATATGATGGACTTACGNGAAGTTCCAAGACACATGACTAAAGC
TGACCAAGTCTANTAGGCTAGNTCAAGCCGTACCGTGACA

SEQIDNO371

TCGTATTTATGCNCATGAATGATGTGCAGTGNTGTGCTCTGACTNATNGGAGGCCGTTGTCAA
ACATGNNGTATGAGTAGGAAGNATTNNCTGCTCNTCGGNCATGNAGGNAGCCANATNNGT
CNGNNAGTGCAGAT

SEQIDNO372

NCGATNCNNANGACNCANNNNNGCAGGTGNGTAANANTTGNNAACCTTTANTNGCTGCACT
ANGANATCGACNNGCNCNGTGANNNNNACNTGAGGAAANCANAGCNGGAATGNCTNAGTA

SEQIDNO373

FIGURE 4 (continued)

AATATGGAACCTGGAATTATGTATCTGTATTACTCCTGTTGTAATGCATTGACTTATAACGGCC
TTGG

SEQIDNO374
GCTTATAGTGCTGNATTATGCTGATAAATTCTGTAACATAATAGTGAGGTTGTAATGTAGA
TGTTGAAGAGCTACCTG

SEQIDNO375
GNTNAAGCAGNGTNGNTAANAGGNNGCATTTCAGTTTCAGATTTCTGTTCTGGAGCA
ATAACATCCATTTCTCCT

SEQIDNO376
CCGTTNCCTCAAACACCCTGAACTCCTATCGAACCTGGATTGAAGACGAACCCCTAGAAAT
TCCAAAATCCTAAATCGAGTGTGTTGAATTTCAGTCTAAATTGATTTCATTGTTG
TTCTTG

SEQIDNO377
TTTNGATANNTTAGTTGGATGGNATGGAATGCTTATCTNNNTATNCGAAANGATGGT

SEQIDNO378
TTGAATAACNCCAGNATNGCNNAATACANNCCTAATANCGAATGATCTGGTATTTACAG
GNCTGACGGGGGNGGCCCTTCCGTGN

SEQIDNO379
TGCTTGTANNANGCCNATGCTGTTGGTGGNNCGCGCACGTNGTGNTCNNNTGAGAGGACAT
NTCTGANTTNGCCAGGNNCCNGANGAAGACTNCCGATANTTANTGCCGAGGCNCATGGGG

SEQIDNO380
TNTAGACCCGTTTATACAAAGCCAAGGACTGAGACTNTGTACAGTTGCGGAATCTGCTTG
ACCCCTTTACATGGTTGATACTTGTAAACAAACAGAACATGCTGAAGGTGAAAAGGTGGA
G

SEQIDNO381
NGCACGGCCCTCGGNCTTGCAAAANGTGGNNACACCCTGGGNCNNNGCAGNGGG

SEQIDNO382
ACTCNANNCCCGCGTGCTCGGCCAGCTCCAATGCAAATGGNATAGAAAATNCAATGCTG
AGCATCG

SEQIDNO383
NNCTNNAATGTAGCTAGTACAAGTGGNAGTGNCTACACAATATAGCTGACCCGACAAAA
ATNCTNCACGCAGNAACTCATGACATGGTATAACG

SEQIDNO384
CGNAGCNCNNCGNACACNNCGACAAAGGGANCGNCACANCC

SEQIDNO385

FIGURE 4 (continued)

GCCCCCTGTNGCTGCCCTNAGTGNNTGGNCATNCAGTGGTAAGCATATTGGCCTGCGCCA
GCATACTCTAACATGGTNTNGATAGAATTCCATCACGCTACTCTNGNGGCATGAAGAG
CATATCCG

SEQIDNO386

NTGTAGCTTCTNTGTAAGCTTATGTACCTANNNGNNCCTGCACCGCCATGGCTGCCGGAT
CTGATAGCTCCAAACNATNTGTTCAACCACAACCCATTCTGCCAAAACCAACCACA
TCGTAGCCCACCAGNTNTGTTCTCTCCG

SEQIDNO387

NATNATCTCCGTGAGAAAAGACNCTAATGANTATNGNTTAANCTTATGCCCTATACTCATTC
GACGACTNACACTGNAATAAAGCCGAGTAATNGCAAATGCATTATTATACTACACC

SEQIDNO388

TTGANTACNNNNANTNCNGNCCTCCNTNCAAACAAACAGNACNNTGAGAAGCCATAAAAAT
ACAGCTAG

SEQIDNO389

GTGTNTCCCTGTGTNATGCCNTNTTGTTCGCTATTGTACTCTCATCATAATGNNTA
CCATTCTGNAGATTCTNA

SEQIDNO390

CCTCACGTGGTCTGGGACAGGGNACCNCGCTGGGCTGGGCATNTNANGCTCATATCGTGG
CAGAGGACATGGCACTACACGAGGTGGTCGCGGTGGAAGTAGCAGTTGGGCCGTGTC
AG

SEQIDNO391

GGCCTGGTCNGTGTACTTANACAAAGTCCAAGGACTGAGACTNTGTACAGTTGCGGAATCT
GCTTGACCCCTTTACATGGTTGATACTTGTAAACAAACAGAACATGCTGAAGGTGAAAAG
GTGGAG

SEQIDNO392

CTTAGCANCACAGCTGCTTANCACAAAGATAACCAGCCCAGGGAAGTTGAATTGNNTGTCTA
CAGCNAAGCCATTGCNGANGNAAAGCCCTNGTTN

SEQIDNO393

TACAAAACGTNTTCATTCTTCNANTAAATCTNTATTNTTATNAGAGACATGGGTNGCCCG
TTNGANGGAGTACTGNTGTTCTCCTNNNGNTNAGTTGCNGAATATTGCANTNGCTGC

SEQIDNO394

GCTCTACAGAGGACAAGNACTNATATCTGNAGACAAGAGGGAATTGCAGCACTCANGATGTG
GTAGAACGGACAAGGGAGTTCCCTNNTGNTCAAGTGTATNTCTCTCTC

SEQIDNO395

CCTTNGNTAGGCCGNCGACCTTCAGGANAACCTCNCNTNCNGGAGACCGTNCTNTCGNCNTG
NTGATGCCATNNNTNAAACGNNTGTGATG

SEQIDNO396

TGTAGTGAGGAGANTGAGGCTGCAGATGAGGTGGCTGGTAAATCTGTGATGAATTGATTC
AACGGTAGTGAATAGTCATGTCAAAAGACTACCACTTGCTGATGTAACGTGATTCATATCTGA

FIGURE 4 (continued)

ATCTTCCTGCTTCAATCTCTGCAGCTGAGAGGTCTCATGCTAGGGAAAGTCTGGATTCTGTC
AAGACAGATGCTAGCTGCACTGGCATCATAATAAGCCAAAAGAAAGCTTGGAAAGTAGC

SEQIDNO397

GCAATCTNAACTCCGACTTNGNTGNNTGATNTCTGCTGTTGAATCGGCTGTTGGTGG
CTGAACTCAGACCATCATTGGTCCATTCTTGATGTTGTTCTGCTGTTGAGTTGTCCTGA
AGTATTTATGGAAGTTGATTCAAGTCTAATAGTGGCCTTACTCTGCATTTAGCTGTCC
AAGAATTATGGAAGTTGATTCAAGTCAAATAGTGGCCTTACTCTGCATTTAGGTACGTA
CAGGTCAACTGTAATTCTGTTGCATTCTAAATGAAAATATGGTTATCTTGTATGTT
NGNG

SEQIDNO398

TTT TANGCAAGNNNTNNCCTCCCANGAACAAANCCTAGTCCAGNTTCAAAG

SEQIDNO399

TTTTANGAGNAACTAAATCCCCTTNCCGANCCNTGAAAANGNGGNCTANACNGNNNN
NTGAGNGNNNAATNCNAANATNAAACNCTGCNTTCAATTCTTNCTACTGATATGAGACTGT
CAATNCTGNCAGGGCAC

SEQIDNO400

TTNTTNGGCTCGTCAGGGNGATTCTCCTGCNTATGCTGATNATGAGTTGACCGATGTTCAN
TGTTNNNTAGANCTGNCNAGTCCNGGCAATGTNNCAAGTATATAGTGGCACTGCNCGGTNT
TATGNCAACATCAATNCTGCGAAAAGCTTCACC

SEQIDNO401

NNNCACTNCTAAAGCNCTCTCCTAANGACCCCCAAGAGGANGCNTNTACTAGACATNCNACT
CAGGCGNGATCCGCANNCTGANCCGCTATAGCTGTTGATNGGNCANCCAAGGATTNTG
GNNTACGAGGGCCGTANTGNGANANGACAATGNNGACAANANNTGNACCTNANGNGNN
ACAACNCAACCCAAAGGCTAACTATGCGAACCAGACACACCTACTAACGCTCTACTATGTGN
CACAAGCTGTGCGGTACGACAAGGC

SEQIDNO402

NGGCGTGGTGGCTGNAANGGGTCTNANGNTGCC

SEQIDNO403

TTCTCAGGNAGGCAGGGTGNCATCNCTGAACACCANAGGCAGNTNNCC

SEQIDNO404

AACCTCTTTCTAGNAACCACTCTCTNAATNTGTGGTNGCGNTTNCA

SEQIDNO405

ACCNCNANCNTCNGAGGGANANGCCNACNTNNNTGGCNGTGGCCCGGAANTGTNCNAATAT
AA

SEQIDNO406

TGCCGGGTTNTCNNACAAGAATGCCNNNCNCTGNNNCGTGNTGTCTGNNNCATATGCNG
GANANGNCNTGNCCNAANNNNGNCATNGTGCCTNCAGTAGNATNANCNGATCANCTNTNA
GAGTNNCNNNCAGGNNNCNNCAGNTNGNTAGTGTNTNTGCTNTNGATNTGACCTTACTA
TAAANATGAANCAGGCACNACCATAAGGTATAATGTAGGCACANTGCTGCTATA

FIGURE 4 (continued)

SEQIDNO407

CTCGGTGAATGCACCATCCTCANTCAAAGTGGTGCTATGGNTANCAGACANCATATCGG
TNACANNNTNCGAATTGAACGAAGAATTGGGGTAAACTNTGTCAGCAGAGCATGAATGCT
GGTTGTCAGTGGAGTTGAGGTTATTGATGTTNTACTCCTCCATGCTACAAGGTAAGTGG
AGACAGCAAGAAAAGAAGACTTCTACGGCTGTCTGAAATTATTGATTGACAGACTCAC
CTATTTTGTCTGATGTAACATAATA

SEQIDNO408

TGANAGAATGGGTTCTANTNAGGAACNATGTNTTGT

SEQIDNO409

ACTCNCAGTTGNGNGGTGCGNAGTAAACAACAACTAACAGANTGCGNAAGCATTGANGAGGACC
CACTGTANGCTTATNNCATCTNGATCAAAATCAGAATGAAGTTATTCTACTCTG

SEQIDNO410

TGGNAGCGCCCGCGTAGCGANAGGNACTATGCCCTGGGTNGTATAGACACNTATNGGCTGGC
ACANCTTCTNACA

SEQIDNO411

TNNCATTGAATNGCCCTACATNTACCAATNTGNAATCNACTGATACTTCTCAAAACATATCA
NTGNCTTGGCCACTTCATTACGGGNTTGTATGANAANCCA

SEQIDNO412

TTCCC GG CCTGGTTNCCCTACTNATACTCNACCATAACC NAGAAACCCNTAACCTAACCTT
CATNNCTCTCCNCATATCATCNTCAAATACTCTNTNCACANATTGTTCTACAACTC
CATCACTTNTCCCTCTGCCACC GTTCCAAGTATTGCACATGGGTGANAGCTGNTTNATGN
TCTGTNGCTGNGACAGATGAACACACC ATCGCNAGTAATGGACTAGTACACAAAGAATA
TGCTGNCC

SEQIDNO413

CTNANTGGCGNNATCAGTGCTCACA

SEQIDNO414

GTTCTTTNGCAACTTGATCGGGAAAGGGCTCNCA

SEQIDNO415

NTACTTCTGTTTCTTTGTGTCAAATATTGTTGAAC TCTGGTTTCTACCACGTGCCA
CGGTACCACTGA

SEQIDNO416

TGCAATAATGAACAAAGCAAGATATCAGTAGT GATATCTTGTTAGAGCATCTTGTTA
GCTGCTNTCCACTANCTACAAAATTGAATATTGCAACATTGTAACCTTATT TTATCTTGG
CAA

SEQIDNO417

TCCCTGTTTATGGAGCCGATTACTTATGAGAATGCTCAGAAACTCAAGCAATCGAGAC
AGATAATCGCAGGCAACGAGCAGCTCTGGTGACCTTACAGGNNAAGGTAGATGCTGTTGCTT
ACCCAAGAGGA ACTCTGGGTGAAAAATACGTGCATACTCCA

SEQIDNO418

FIGURE 4 (continued)

ACCCCNNTAAAGGGGCCAAGGNANAANCTGCAATCATTATCGATTGAAACAATCCTGC
GATNNANACNNGANANNCTGANANATGNCTNAANNAAAATTGTGCTGANNGGGTGCTN
TTCNNCATGAGGANTANATNNNCANCNNCTNAAGCTTCCATACTGGA

SEQIDNO419

TTGCGTGGCAGTTNGGGCANAGGCAGTGGAGACAAGGGCNACTCCAA

SEQIDNO420

AAGCAACCTTGAATCAGACTCCTCACTGATCTCTCCTCTCGTCACTGTTCTGTGTG
TGTGTGTGT

SEQIDNO421

GAATATGGAAGATTCCGAAAAAGTGTCAATAGATGGCAAAATCACAAATGGCATGCAAAT
ATAGTTCAAGAACACAAATCGGAGGAAGATGTTGGTCACCTGAAAAATTAGTTAGTCAGTG
GAAACTGCGATGTCTAGAATAAGAATAAGAGTCATAGACCAGCTGATAGTGATGGAGAGGG
TCCAATGT

SEQIDNO422

TNAAAANANAATGNATTCCNCTNGGGT

SEQIDNO423

GAATTCTTGGTGTNCATGCGAATTACGCGTTCAAGTTCTTATTGGGCTCACGT

SEQIDNO424

AGGATACAAAANCAGAACCCNNTGNNTGNCTACACTGCNGAACTGCGTCGTTGCAGGGTCTTA
TTGGGCTCAGT

SEQIDNO425

NAACAATTGAAATAATATATTCGTCAATGCAGCTGCAAGCTGCAGAGAGGAGAGTCATT
ATAGTAACTTATAACTTTGTTCAAGTTACAAACCTTGTAAATTGACCATTGAACT
TCTCCCTTCAG

SEQIDNO426

GCACATTNTCACATCTTACTAANATAAGAAGATTNCTGTANCATCTACTAAGATATTGCAN
AATNNNTATCAGCNAGAGTGTGACGCCGC

SEQIDNO427

GAGACTTCAATTGCGTGCNTGCTNTNANCAAGCCGGAGACANTNCTAATACTNNGACNNG
CTGGNAATGNGNCATCTNGNNNNCTANTNAGANNCNNANGNCACAANGTNACTGTGTC
TTCTGGCTGATGNCTCCCNAGCATTACGTGNTGTCGCGGCTGAATAAGATACTGCCTCT
GCAAATCC

SEQIDNO428

CCTGCTNATTGGANGGAGCACTGAGGGTGGTACTNNTGCAGGAAAATGCCTGTCNTNNGNA
CNCAANTNCANGCCCGNNNGCACGANGTNGATGCGGNACNANNNGCNGCNTNATATCTGNNN
NGNATCGNNANGTGTNACACGCNANNAGCACCAGNTANNTTNNATCCTNTGCCGGTG
TACCTTGANNNTNANANTCCTCNTGTTACCGANGNCANGTGCTTCTNCTNAGCTTGTANT
TGAANTGGNGTGAGAATGAATGACCAGCNGCT

SEQIDNO429

FIGURE 4 (continued)

NAGNTNTAATTACTCGGNC

SEQIDNO430

TTTANNCACTATAANTNCCTNCCCTTAAACCCCCACTGGAC

SEQIDNO431

TGGNACTTCTNCTCTTCAAAAGCTTGACTCTCT

SEQIDNO432

TGTGCGCNNGTGNATGTATATGTGGCTNGGCTTNAGNCTGNCT

SEQIDNO433

TGCAGCTTGGGAAGACCAGGATATGAGCGNCGGAGTGAGCCACTCCATAT

SEQIDNO434

GACAACACCATCAGGTACAATGCCAAGTCGCAGGCCTGGAGACGTACCAAGTTAGGAT

SEQIDNO435

TGAACTAGANATGTCATTCTATAGCNAGTATTCCAGCCNGTGCTGTNTTANCATAATATNA
AGAATNTTCTNACTTACGTGCAGGGAT

SEQIDNO436

NATAGAGGAGGACCATCTGACTCCCGTCTTCTTCATTAGAAATGGAATCACACATCCA
CGAACAAAAATGCTATCGCTAT

SEQIDNO437

TCAGCCTCCGGTTAACCTACTGNGGNACAGNATGTNGGAAATNCCNGCNAAGCTGGNT
GGNT

SEQIDNO438

GGNNATGCNCATTGAAACACNCGAATGAAACGTTCTNTGCAGGAAAGTACTCACCAACGAGT
GCCATTGAAAGATTCTATATTGTTATGGAACGCCTAGANNCAATACAGTGNNAACGCAGC
ATCT

SEQIDNO439

CATCTCGCAATGTNATCCAGNGTNAGCTAACNG

SEQIDNO440

TATAATCCNGCACTCNCAGGANCGCAAATAGNTGTGNNTGATGGTTATTNTNGTTATG

SEQIDNO441

ACCNAAGATCCCCNNTNAAACACCCAATCCCCCTNTCCGGCAATGAAGCTGCCGGAGCTG
ACATTGATCTGGCCGATGTTCGCCAAGTACTTGAACCAAGGTACAACAAATGATAATGAT
CATGATCAAGATAATATTCTCAAGAATCTCCCTGGCTGATCAAGATTATTGTTCTATTGG
AGCAAGCTTATCAAATTCTCCTCATTAGATAGCTTGG

SEQIDNO442

ACCANAACNCAANNGAAAGGGCCCCTACTTATAGNNNCAAGGAGGAGNACAAGTTACTGAT
TGG

FIGURE 4 (continued)

SEQIDNO443

CTATTAAATACCTCCGGGTTTAAANACCACNCGNCTATATTACCGGTTCCGAANCATTGTG
CNG

SEQIDNO444

NCNCGGAAAGGCCCCCTTNGTGGGNAAACGACCCGGACTCTCNNGCNGCCC

SEQIDNO445

GTAAGGGTAAGGTCTCGCTACAACACTACAGTCGTTGGTGGTAACAACCATAAACATT
ATCATCCTTCTCAATCTTAGCCG

SEQIDNO446

TCTNTGGNAAAGCCNTGAGANATTGGAAAACNTAACAAACNGNTAAGCAGCAGGAGANCC
NACANGNNNAGNGAGGCCATTTTTNCGACANCNGNATAACAAAAGGAAGCAGGNGCAA
ATTGAGCTCAGACACNGAAAACCAGNNTCTNA

SEQIDNO447

ACTGGCNTNTGCNAGCGTTAGGTTGCTGGTTGTCCTTNCTTNCATATNNNTTTGNGC
TGTTNNNTCTTCACCCTTACGGANCATTACCCAGTTNCAAAANCAGCTCNGTNACATCCGNC
G

SEQIDNO448

CTCGGCATAATCGTGCCTATATCGCTGGTAGTCCGAAACATTACAAGATTATTTCTGC
TGATGCTCGGCATATTATATGGATTCTTATTCACTCGATATTGGCACCTGATATTTCTGAG
TCG

SEQIDNO449

NCCGCAGAGTCCCTGCAGC

SEQIDNO450

GGTNTTGGANCTCCATTCTATTAGCCNG

SEQIDNO451

AAGGTGANGTCNAAAGANNTGACCGGGGCCTGNNTNTGNTCNGNNNACAGGCATANCNGNA
GACNGAAGCGANGANGACTNAAG

SEQIDNO452

CANGTGCAAGANTGTCNTCGAATATTTTGATTATATANGCAAATAGTAACCCCACACCT
ACTAGTTGTTCTAATTTCATTTCTTCAATTGTTACTGTTGATTTTCTTACCA
TGTTGGATAAATAATGTGTTGACTATAA

SEQIDNO453

TCNNTGAGCTNNNTGCAGCTTAGCNGANCTTNTTGAGCGTCTNGCAGNNGNTTNT
NNGCCATGNTGTTNTCTNTNCATAGCCNGTGTATTTGGCTATGANCTGCTCTAGT
NTNCATCTGCCTTCAGCGTGAGCCTNGTCAACTACATTNTTCTTGGAA

SEQIDNO454

NTGNGGAGCATGAGTTATTGCCTTGATGGTTCACATGCTAAGTCTGAATAACATTACACC
GTTTTAGATAACCTAGTCGGTCAAANACACACATTACTATTTCCAGATGCTGATTCTT

FIGURE 4 (continued)

AGTTCTGAGAATAGCTGAAAGTAATCAGAGTTAGATATGCTGAACCTCCAATACAGCCTT
AG

SEQIDNO455

GATGGCAAAGCAACATTGNACAGGNTGAGGACTACTAGAATATTANANGCTNNNTATTGGGTAG
GGNCATACGTTGGTNCTGTGAAAGGGAATCAATGCCNTGNTNNCTNGCNNGANNTNGAGC
NTNNNGNGCACAAATGNNTATAANNAGCCNTNTNATGNAGGNGGAGNNCACAAGNGNAGG
ANGTGATGCCNANCAGCTAGCTGTGTAACACAGGNTATTGANAG

SEQIDNO456

CAAAGAGTGAGGAAAAATGGAAACTGATTGCGTGGTGCTACCGTTCACACGGTATACATGA
AAAGAAATCAAGTCAGGTATTTGACAGTGAGGATTCAAACAAACAAGATCATATACT
CTGAAGTAGCCGAATCCAGGGAGCTGTTGATCTGATCTCGATCCCCAGCAGCGTGCAGGTGA
CTAACAAAAGCTAAAACCAACTCTATTCAAGAGCTGGAGGTGCTTCAACATAATAAGTAAGG
GCTGTTCAATTCTGATTCTTCAATTAG

SEQIDNO457

CTTGCCACATTCTCGGCGNCACTNGTAAGTAG

SEQIDNO458

TGNGCANANAACANAGGACTNAGGCAAGCGNTANTATGGGANNGGANCCNANGNGCNNT
CAAGTGNANTC

SEQIDNO459

CCCCGATGCCCTTCAGTAGACAGAAGCTCACTGCTGTTGCACCAATNTNCACCCGATGACTC
TGCCAGAGGGCGAAGTAGTTGC

SEQIDNO460

NCCGGAGAAAAGGTCGAAACCGACCGTAGNTAGGACTNAGTTCTCTNCNGAAAGANCNTG
ATCAGGGCTCTAGNNCANAACCNNNGNTTNAATATATAATAGANAAACTTCTNNNGNANGTT
ATG

SEQIDNO461

TGAGGANAAAGAAGGNTACNGCNCTNCCGATGNACACNCAGNAGGATGANCNATNNNACNG
ACTCTCNATGCTGNNCGATGNCCAGAAGGTGAGCAACTGGAAGAGANTTCTGTTTTNGT
NCTTACATATNTGAANANNAATCANNNAAGTANGANCACTAAAACNAACCCATANTGGTCCA
TAANCTNTNNNCCTN

SEQIDNO462

GGGTAATTCAACAGTGTAGATTTTTCTAGCTTTGTAGCAAATGAATTTTTGATCTGT
TGTGTACTGTATCCAAAACAAAATGTTGTTCAATGAAAGATGAAC

SEQIDNO463

TCAANGAAGCTCTCACCAAGTCTCCATTAGTAGAGTCTATAATTATGC

SEQIDNO464

TTTGANNNCCCAANGAGNANCNCNTGAAAAAGGNCTGATGAATTACCAACCAATGCCTCA
CAATCTTGTGGNGGACTAAANTGTTTGCCTTTNTGAAAAGCCTTGCTCAGCG

FIGURE 4 (continued)

SEQIDNO465

NGTGAAACATGCNGCCNTCNGGGTCTATCCAGGAATGCGATTCTGCCAGATGCGATTCCA
CACGCTAGTCGGAAAAGTCGATAGNTATAAAAAGAAGGGCAACTATCAGGGTGAGCTCGGG
AAGGACCTGTTCTCGTCTGGAAAATGTTGAAGACGAGAGCGTGC

SEQIDNO466

GGCTGCCNTCAGTCCACCCGGAGACCAAGGTAGACCTGCAGGCAGTCGGCGGGGCTGGCGT
CTCCCTCTATCTTATTACCTGTTCATTTCTTCGTTCAAAAACAGTTATTGTATTTTC
TTCAGGCCTTGTGTTGTAGTAGCTTAGATAGTATGTGACACTATGACACCAGATTTGGGT
ATTGAGGTTTGAAAGCTGTAATAGATATAGTCTGAGTTATAAAATTGTTGATTCCGC

SEQIDNO467

ACATCTAAAGACGGCAAAGTTCAAGAGACTTCAGCTCTGGCATCTGTAAGTGGGATATCAA
GCGCATTCTGAAACCCCTCAACGAGAAAATAGAAGGACTAGAACAAAGCTGACCAACC
TCTGTAGAAGCGACACAGAAAAGGGTGAATTGCTATCACACTCAGGAAATTCGAATCAATA
AACGAGAACATGGAAACAGAACATGTTCCGTACTGTATTTCTCCTTCAGC

SEQIDNO468

TANGCANTTTTNAATNGTCGCNTGTANAAGCCNCAANTCNGATCGNNCCAACCTCTGAG

SEQIDNO469

TGTANCTTCTTNNGCTCNTCNGNTGGNTGGCAGTCTGNANTNATCAGCTGNCTTCC

SEQIDNO470

GAACAGNAGAANNGAAGNATANGGAAGNCAGAGGAGTGAGCACACGGCACCACCA~~T~~GNCT
CGN

SEQIDNO471

TTTTGCTAGGGATGGTGGACNNGTGANTTGNATGTGAGTGCNTCTATCNTTAGCANT
TCNATNAACTNCCNCAGGNNNTATNCNGCNGAGCNTGGNNCNATATTTGT

SEQIDNO472

TGGGGCAAGCACCGNGCGGAGNGGAGGAGNANGTGNNGCTTNNCAGNNNANC

SEQIDNO473

TNCTTCAAGAAATCNATGGTATGAAAATCTTTGNNGNTNCAGNATGAGGATTCAATTG
GAGNTAGACAATTACCAATTTCNTTGCCTCTGTAATAA

SEQIDNO474

TTATTACTGAGCTCATTCTCCTGCTTCAATCATATGCATAGCATGTAACACTAGTTG
TTCTAGAAAGATTCTGATTAGTATCTATCACAGAACAGGATGTAACAAATCTGGAAT
ATGTTAGTTA

SEQIDNO475

CATTATGCGGANTTACAGGATNANTACAACGACTNATCTGANAAGCATANNTGATCTGCA
GGNNNTACANGATGTNAANNTGGNTGCAGCAAAAGCAGGAAGAAAAGGTATGGTCTNNNT
TNGCCAANANTCTCNCTGCGGAGCTCTCANTTGAGAGTGGAAAGGGAGAGGGAGAGGGAA
ATGCTGAAAAGGAGAATAGAACCTTANAGCTAAC

FIGURE 4 (continued)

SEQIDNO476

TATCNCAANTACTGGAC

SEQIDNO477

NTTAGGTTAAGTACTTTATTTGAAC

SEQIDNO478

CCAAGGAAAAAGGAAATCTGATAAAGGACTTTGGAATGTTGTTGC

SEQIDNO479

AGNANCCCTGTTTTCATCGGATTGGCTACTGCCTCATCAGAGTTGCTCTCAGATTCGA
CCGGAGTTTCGTTTCTGATGGATTCA

SEQIDNO480

TCGGNATATAATATCACCGCAAATGACCTCGACTCTCAAATGGCGACCTTGACCGCGAAACT
ACAATGATTCAAACCTGAAAAATGCTCAATGATGTTCAACCTGCTTTA

SEQIDNO481

GCCCCTTNAACAGCAGCAAAAGGACAGCAGTCATTCCCCTTCCCTAACAGACTGCCAATG
CCTAGTCAATCCATCATCTATCTAATCGGAAGCAGAAAATACCAAGGCTCCAGAACACCAAG
AGCATTGTCACTGCAACTTGGTGGCATTTCATTTAGAACTGACATCTGTTGAGTGAAAA
TTTATAGCGACTCTTGACATCTTACTGGTCCAATAATGTTCTCCAATTGATGCTGT
TTCTATGCTAATCCAAGACCTGTTCCCGTCTCCT

SEQIDNO482

AGACGCTGTNAAGTAATGAATTCTTGAGGACGCTCATCGAAAGGACC

SEQIDNO483

TGCCCTTNCCAGCCGTGTTGNTATTTCGTCACAAAGNTATCACAGGTCTCAAAGAT
CACCAATNAAGAGC

SEQIDNO484

TTCCCGCTNTANACGCCCTATTGAGTTGAGGATCTGTCNAGGTCGAGTTACGGCGAGT
CAAGTTGTAATCTGTTGTTGACAACGAGTCGATGTTTAGTCAAGTAACNCAATACCA
AAGGAAATGGNC

SEQIDNO485

CTANCGNAAATCTCCTTCTCACAAACGAAACCCTAGCAAAACTCCATCTNCATATCAGGN
CGTTCAACACTAGAGACCAAGGAATGTCTTCAGCCAAGAGTCATGCCCTCCCATCCGT
TCTGCTTCTTCACCATTTCA

SEQIDNO486

CTCCTNCTTTATTACCGNTAGCTGATATTGTTGCTTGATTGGCTTCTAAAATTGTA
AAATGCATATTACGCTTGAATTTCAGAGATGTATTGGGTGATTGCTTGTATTG
AGAAGTAGAGATATTGAATTCCACC

SEQIDNO487

FIGURE 4 (continued)

AGGAAAATNGT GAGAGCAAAATAAATGAGAGAACGAGGAAGAACAGATATGGATATGAGAA
 AACGATNCGCTTTCTTCTTCCCATTCACCTGAAACCAAAACACCTCTCATTAGCT
 ACTGAAACAATCACCAAATGTCACCTAAACAACCAGAAAACCTCCA

SEQIDNO488

ANNCCCNNTTGAGGGANNNNGGCTGGNCTGATGNGTGTGATGCTACGNACTTANGANN
 ATGCNGAAAAANGTATATCTACGTNGGANGGCCNTGNTNCCTGGNGGCGNAGATGNCGCN
 ATTTGTACTTAGACACATTCAAAGCATGTTGGCNAANGGAGATTNGAANTNTGNTGTN
 AAANTTAGTCNTNAGNGTTACC

SEQIDNO489

TNCCCGGTTNGTTAAGNGACTTCAGCTCTGGCATCTGTAAGTGGATATCAAAGCGCATTTC
 TGAAACCCCTCAACGAGAAAATAGAAGGACTAGAACAAAGCTTGACCAACCATTCTGTAGAA
 GCGACACAGAAAAGGGTGAATTGCTATCACACTCAGGAAATTCAATCAATAAACGAGAAT
 GGAAACAGAACATGTTCCCGTACTGTATTTCTCCTTCAGC

SEQIDNO490

TCAANTGANAGGTGTGGGAAGAAATGAAGAATTGTTGATGGCTTATTTGGAAAAGCCTTA
 CAGGAGTAGCTCCGAATGGTTATGGATCAAGACA^CGTCTGTCAAACAGTTCCAATACAA
 CATTGACATTGCCCAAGACCGCAATTCCCTTCAAACCTGAAGAAGAAACCAACTGAAAGTT
 TCAGGGAAATATGCCA

SEQIDNO491

GGAANCAGGAATTCTTGATAAAGGGACTTTGGGAATGGTTGGTTGGC

SEQIDNO492

GCNTTNCAGAATTCTCTCTATATGAGACTGAAAGACTATGTTCAGGAACCTGCTAAATT
 TGAGATTGATACACACAACATTATAA

SEQIDNO493

NNCTGGTAAGAAATAGATGGTGACAGAAAANNTTNGGNNTACGNTNGANGATTCAATT
 GGGNGANAAANACCAATTCCCTTGNTCTGTANTAA

SEQIDNO494

GGGCCTTAGGGAAAGGATGCTTGGCTATGGTTATGA

SEQIDNO495

TTNNCTCCANTACGGAAACAAGCACCGGCTACCGAGGGACTCCNATATGACACGAGAACCTTT
 CAGGTTGGCGCCCGTT

SEQIDNO496

GGTATGGAAGAGCTCANNCAAACGNGAGGAANTTNNGAAAACAATATGGAGCNTCAACA
 TGGATAGGAAATGTCAAANGCTGGCGCT

SEQIDNO497

GTCCGAACACCAAGAGAGAAACCCAGTGCCAATGGAGTTCAATTTCATACTGAAAAGAGGA
 TTCATCATATAATCCGCAATTGATCTGT

SEQIDNO498

FIGURE 4 (continued)

GAAATACACNATTCNAGCTGNCCCTNGAATGGATGCCAANNNTGCTAATGCTNGNCCAAT
GACNGTATCGANAANANGTCGCACACNAGAATTGAGGCTNACAGGGATATGATTACACCTGT
TGGAGACGCTT

SEQIDNO499

GAACANTGATGNTTCCTCNNGNNNGCTAAGGNNTNCNCCNACCCNGACAGGGCNTGGATT
NNGTTCTTNTTCNNCGNTCCNNNAACTGACTTGACTAAGAATTNCATACGNG
TGGGT

SEQIDNO500

TTATGTTCTTGAGTGTGTTCTGTGAAGGTTAGCTCACACCAAGTTTCTTTCATT
TGCTAACACCAATGTTCCCCTGAAATGTGGACAAAGTAGGAAGCAAAGGGTGAGAGCTG
CT

SEQIDNO501

GCGCCTTGTNTATAATGCACCTTTCTTCTGAAAATATNCTCTGATGATCTTGCTTG
GCNCTATGAATTCAATTGTGNTGAATTGGCTAACCTAGGGTACCAACTTTTAT
TCCTGAAGTGGTGGAACATTACCTATCTTGT

SEQIDNO502

ACTAANCNNCCCCATAACTNCNTTAATNTACATCAAACCTGTACTCTCTCCATGTAATGN
GGTTGTNAGATCACTGTTCTCTACGAGGCTCATTACATACCGAATATACGACCCTCTGN
TTCTCTTGGCTGT

SEQIDNO503

NACNGCGAGNGATACTCCNAAACNGNAAAAGAACTCCGGAACACGCNTGGAGCANGAGATTT
TTTGAGCACACAAGCGGAGCCAAGCTCTAACAGNCNGCANGAAGGAAGNGATGCATGGTG
AGAGTACAGGCGAGAACACATGACATCTNTAACATACTCTCACATAANCTNGAAACTGACGT
GTNNNACAGAACTNAATGCT

SEQIDNO504

NATCCTCCNTCNAAGCCGGTTGCCAGGGNTTGACGTCTGACCGATTGCAGAAGTAT
CATTGAATGTTGCTCGTCATATATCTGCAGACTTGGAGAGGNTTACCGCAATGTGGGGGT
CAGCCGCAGGAACAAGCGCTTGATTACAGTGATGCTGGTGGATTCTACTGCAGAGATCAA
GTCTTCTTAGCTAGCAGTCCTTGATTATTCTTGTTATCTTGAGTTGTAAGAGTCT
NCTGNTGTTGATCATGNTATTTGCCTTTATTT

SEQIDNO505

TTNTGGAGAAAGGGNTGTAATGNACATTGTGTGTANGCACACATGGATTTGT

SEQIDNO506

ACCTGGTTGTTCCGANCCACCAAGAGAGANCCACAGTGCNNNGAGTCCANTTTNATAC
TGAAAAGAGGATNCATCATAATCCGCCATTGATCTGT

SEQIDNO507

TGTGGCAAAACATGTAAGCGAGCAGCTAATCAACAAGCTTGATTGGAGATAGAAGCCGCTG
AAAAAGCTCATGAAGATGAACCATGACATAGCTCAAAGATTACTTAGATATAGTAGTTCAAC

FIGURE 4 (continued)

CTTACTAATTTGTTGCATAGTCATAATAGACTTCTGAATGCTTGAGAGGTGAACCCA
AACTTGTCAATCAATTCTATAGTG

SEQIDNO508
AGGCNCTGCTNCTGGGTCCNACTNTGCTACACAAGNAANAAAAGCAAGCTCTCGTTGGTT
TNCTCT

SEQIDNO509
GGNTCGGAAATCNCGGATGNAAGNCNNCAAGNCGNANGATNNNANGCGCAGGGGTAGNAT
GANANNCCTATGCTATANGGAGCTACAGTAGGCNAGNTTATTGAGGCCTGACATTNCC

SEQIDNO510
GNCNCGGTTTNNGCTCCGNATTGATCGTTACTGTGACTAGACAGAACCTGNANGTCTCA
NACTTNAACAAAGGAANGNGCTGACAAGGCAACAGGCCTCCATCCTATGATCACGNAGAA
TCAACTNTGGAGCATTGACAACATTGCGCTATAGCC

SEQIDNO511
AANCCCTACTTATACATGANGTNTGTGAATACTTGTAAANGGAAGNATNNNGANNAGNTGG
GATGCNAANGTATGTTCTGGTGTATGCATNCTNCNANTGCTTGTGAAATCCACAACTA
NAATANTACTTGCACTACATTANGGCTGTNNNTANCAATNANTAGTTTTGCTGATTGC
ANCTCCATGTATNGATAGCNGAGNGTNGACAATCNANNATT CCT

SEQIDNO512
NANCCCNCTGTAAGCTCNCTNAGGACTAGTNAAAGGGGGCAAACANCTGATGAATGCCAA
CTGAGAT

SEQIDNO513
NNCTTTTNGTGNNCATATTNATGTTNTATNACAAAGANNTGTNTAA

SEQIDNO514
GCCCGATNTTTAGGGNAAACTCTGCATTNTGAANGGAATGANGTCTATACGCATTGA

SEQIDNO515
ATNCNACNNTTGCNATGCNTNGTNCNGGACTTGAAGCCNNGCAATCNCTNGGAATGCCA
GCTNNGAT

SEQIDNO516
CCNGGANGNAGACCCNCTGNTGGCATCAGGNATACTAGCNTCAACTAGGGAGTGGAGACCC
TATNTTGACA

SEQIDNO517
TCCTNATNTTAGCGGCCNNNTGCNGTTCTGGTCANTGATGCNACTNTCGGNNAATATNN
GATGNGTGCACANNGGA

SEQIDNO518
ATGTNCCGANNTTGTATCCTNGCATGATNTANGGAATGATNCTCTNNTGAAATCAAGGT
GCCGTAGGTAGTTNAGGGACANTNTATAACATGCNGATATGNGTGTGAT

SEQIDNO519

FIGURE 4 (continued)

GCCGCTNGTATTNATCTGTTGAAGAAATTGCTGNTCAGTTGTTCTGCAGCAGTATGACAAT
CCACTTCTAAGAACGCTAACGATATCA

SEQIDNO520

CCTAACTNTAAGGCCGGCAAGTTCAAGACCAGTTAGCAGACACTTCCAGAAAATCGCTTGA
TGGGTGAAACTGAGAAGTGAGGCTTACAAGGCAAACCATTTGCCATACA

SEQIDNO521

CCCTCTNTATGNCCNNAGCTGCTGTGTTAAAATAGAGNCCAAGAGAGCTCATAGAATNAT
GTCGAGGAAGGATTATACTGTGNCAAACAAATCNATANNTCATNGTATATNGNGNGGGGN
ANCAGTGCANCAAGTGTGGGANTGGTGCTGGAAAATAGGATCAGA

SEQIDNO522

NNTAACAAACCCATGNTNTANGCACACAAAGTGGAGCATATNCTAAAAGTTCCGGNGAAGAAC
TTGAGAAGGAAAGAGAAAGAATGGTACCGAAATGGAGAGCGAGNGGAGTT

SEQIDNO523

ATGCNNCTGNNGTAACCTGCCGACATTATGCCNTCTNGTTATGNTTGATGTTGCGTAT
TCAAGTTATTGACATTGGCTGAACAATTAGTTCAAGTTATTAGTTAGTATCTAGTATG

SEQIDNO524

TGTGCACATGNCTGATNGTGCTTGGNTGGNTAAGGATATCGNNNGAGCTAGNAGNACC
NTACTTNGANCCGCTGNCATGATGGTCGNTNCNNGCTGCTGAGGNAAGACACTGTGTC
NGCGGGACNCACTCTCCAGCGCTTATNAATG

SEQIDNO525;

TAAGGGCTGCTGAACACATCACCAATGACTCACAACTTTGTGGCGGACTAAATTGTTTTG
TTTTCACTGAAAAAGCCTTGCTCACCG

SEQIDNO526

AANTCCCCCTGTAACACGCGCGCAAAACTGGGGANAAAGAGCGGNCCAGCNNCCGATCCA
NCGNTGAANNACNGGNNGNCANNANNACNNAGGGNANTTNNAGG

SEQIDNO527

TCTCCAGAACCTCATCAATGCTCAGTATGTTAGTGTGCCATTGGTGGGCATTGTGG
CCAGNTTCAATGTAGGGTATAATTATTGGCTTTGGTTGGCATTGTGG

SEQIDNO528

AACGGGACCTTCGATCCAGACCTCAGAAACTCGCCGAACCGTGACAAAATCCAACAAAC
NAACGGCTGAAGCTCTCCTTCAGAAGTGTGCGCTGCTGGTTGGTTCAGTGAAGCAGGGTC
ATTGGTTGG

SEQIDNO529

NTGAGCNAATTNCTGCCAAGGNCGNACGGNCATGNTGAACGTGAGNCCNAGAGGNAGCNN
GCACTTACCCATTNTNGGGANGNNAGGTATACAAGGTATTTAGTATGGTATTCTTGG
AATCATTCCGCTCNGNCCTAGTTGTTGNTTCCTG

SEQIDNO530

CGTTGGAAANCCGTGANGNNTNGGANANNNNCCANAANAAGTCGCCAGAGGNGACCGA
NCGNTAANCAACCTT

FIGURE 4 (continued)

SEQIDNO531

ACGCNNCTNGTNNATNAGCCACTGAACCNAANNNNTNANCCTCGCACGATGCTGACGGCGAC
GGNTACG

SEQIDNO532

TCTTNAGAAAGNCCTTGCACTTNGNANAGGNNCTTNGCTTAGNCTAGCAAGCTGNTG
GGGAGAGTGGTCAANTTTNGNCAACANCTNAGCATNCACATGC

SEQIDNO533

ANTCCCCTGTNTCTGNTCACCGNGTGTGGAGGNTGNACTGCTNCNTGGACAGGNACAGTG
GNGGACTGACNGTTGNNACAGCCNTATTGNGAGCG

SEQIDNO534

TAGCAAGGAAAGGGCTCTAATTCTGCTCGACTCCTGGCGGCNTA

SEQIDNO535

AAATCNCCGATNNCNAATACCNAAGGAACATCAACAAANGACNTCTTACTATGAATCTTTG
TTGATTTAGAGCTTATTATTCTTATGATGTTGATGATGATNCTTTAGGCATCAAACCTT
CATACTTATATCTTGTATTGTATCTGGATGTTCAACTCTAAGTGTATGTTGTTTTTA
GTCTTGAG

SEQIDNO536

NANCCCCNTCNAACAAACCCNTGCTGTACCCATTNACCGNTTGCAAAAGACATGAGCCTG
NNGGAAAAAAATTACGATTCTATCCTTGTGATGGTGAAGTNTTNATTATGATAAAATCTAC
CACTTTGATTGGATTCACGATCCAAAATAAAGGATGGTGTGCATACTATAAGATTTAG
TTGGAGATCGGTTCCCTCTTGATC

SEQIDNO537

NACCCCAATNNAAACAAGCCGGTACCGAGNNCCNATATGATCGAGAACCTTCAGGTTG
GTGCCCGANNTTAGGTTCTTCTGTCTCGCAATGGTTAATGGCCTTCAGTGCCAGAT
CAAATTCTCATCTCACATATCATTCCGATTACTGCCATTGATGTGAGTAGGCAGAGAA
TTGTTCATCATATTGGCCTCTCATCCCTAACATTATTCCTGACATTGATAAGGTC
TTCCACTGCTCTC

SEQIDNO538

TTATNTATATTGTTAGACNTTGGAGTCTGAAATTAGNGNTTTGGGNTGTACGC

SEQIDNO539

GNAGAAATCNAATCNAAGTAGAGGAAGGGCGATACTGGGAAGGGGGCCTAGCN

SEQIDNO540

GGGNATGTCAAGTANGACANTATGGNCANNCTNGAGCGTGCACNATGTCTATTNCAGCANC
ACATTGANGATANCTGAGGANTGTGCCAC

SEQIDNO541

AAGTTNNCGANTATCCTCGCTGAGTNAAATCTATACANTCTGAATCCTNATTACACTG
TTAGAGAGATNATGAAAAAAGGACCTNTGAATCNAANNNCTACTATTTGCTTCGCCTTA
CC

SEQIDNO542

FIGURE 4 (continued)

CNNNNACATTAACAAGTGAGAGTTGAAGCCCTTCAACTGCGCATGTGAAAGCATTGA
 ATCTGCAAAGGGGAATGCAGGATGATAAAGAAAATCTGCATCTGTATGGAATAAAGCTA
 TTGAAATGTGCGAATCCAATTCACTGCAANCTTTGAGAAGACAAGGGAAAGTGTATCA
 ATTGTC

SEQIDNO543
 CNCTTGAAGNNCCACCATCGTACANGGANAANACGGCNACCANAATCCGGNCAAATTCNG
 GNGNNCTNCCNGAACNCNTNTTTNTTGGGTGCCACCATGNACGGNCAC

SEQIDNO544 ; BSTC4-34-185
 CTGNCAAACCCNGGNAGTCAGGNAACGTCCANCATGGATCTGGATCNNGGCACAGNGAAG
 GCAACGCNANCAGACNTAGNNACNNNANGACTGTATNAAACANAGNCNGGANTNACTGANN
 NCANNNANNAGNNNTANGAAGNTTCANGGCNC

SEQIDNO545
 TTGNNGTNGNAGGNGAACGNAGGGCAGTTNNNTCCNAGGGANCACCANCNANNNGNTNN
 TN>NNNNNAANNTTTTGNTATANNCACACGGANNTNNNNACNANCAGAGGGGGNTTTTCT
 ACANTNNATTNCGTGGGNANAATCAAACGATGANNNCNGNNNTNCNGGGANATGNNGA
 CNNGNNTANNGNTCGACCNCNACCACNNNACNGGAGNNNGNNGANNGTCGNNCTCATTAANG
 AGAGNTTAANCNGAGTGNAGTNAATACGNANCANANNGANATNTANNTTTNNNCNGGCN
 NNTANNTANNTNACNTANNACNNNGTATNNNTCGGNNNGCNTCCANNNNNTTANNN
 TNNTCGAATAAGANNNCNGNCANGNNCNANTCCCNGCTNNNCAAAACACGNAGNGGAGG
 GTCCGCGNAGGCAGTGAATCCGTATTNACATACAAGTGCCTGNGTGCAGNTGNCAANAA
 CAGGAAATACTNTGGAATAAGTGTATGCATNCAGAAATGCTACTTCTGGCTCAAAGTTGCT
 GACTGCA

SEQIDNO546
 GAGGTACATAGCAGCTACCAGGCAGTGATTCAAAGTAGAGCTGCATTCCGTTCTAGGCCTT
 AGAATAACTTCCTAGTTCTATATACTGTTCCATTTCAGACAGTATTGTAATTCC
 TTCCAAATATTGTATTAGTATAATCCGAAGCTCATGTACTTGTGACTTCACATATTGGGA
 TATTGCGTTAGATGTTGGTTTAGACTTATTGTGTTGTATCAGAATTGCCTTACGTTT
 GTTA

SEQIDNO547
 CTCTTGGAAAGCCCTCATNGNGTGAGAANACNANGCGNAAANNCTNTGNNACGCNATT
 ACTCAGGACNCATCATTTTTCNNNNCACGCTANAAGGGGACTATNNNGCCTAAGGANA
 TNCAAGGNGNNANGGTANTACGGGAGAAAGGGC

SEQIDNO548
 CCTTTNGAGGCAGGCATGGATGTAGCAGGGAAAGGCTCTAATTCTGCTCGACTCCTGGCG
 GCNTA

SEQIDNO549
 CCNTTGTGAGCCTATCTNNNGTCCGAAANTGAAACCGACGCTAACTTCTCCACTAGTCNG
 CCTTCAGTA

SEQIDNO550
 CTTGGNAAGACCGCGAAGTTGAAGGGACAGGGAGAGATGANGNGCGNCTCCTAGGGNACGA
 TCCCTANGNCNNACCGCNNTCACACAGNGTNTGGGT

FIGURE 4 (continued)

SEQIDNO551

GTTNATNATGCGATTCTTTCTGCCTANGTGGNAGNGACCAAGGAATTGCAGGACCAATT
TTTTTGGGTTATNTATCCCTGCTCAAGGGACTTCATTGGTATAGGTTGNAAGTGTAAGG
NNTATTGTGGCTGGCTA

SEQIDNO552

GAANNCNCNGACNNATTGGAAAACCACCTGANGAAGAAANGATATGTNGCATNTAAAGNT
GACTTATGAGTANNAGGCTANGATNTGTTACCANACCCGNGNTGGTAATCNNAGNACTATAT
NGAACATNTTANTTGNACCTCTNANTACATNANCNGNTATGAGNACCANTATTACNCNGNA
CTTNATTNACANNTGCGNNNGNAGGANATTANNGGTGNCNCTNGATCGANTTCTGACTCATA
NTNTNACNNANCNAATGNACNNNTCNAANGTNNTNANATNATNNNTNCGTGAATCGAGNTT
TAGCTATNGCNGCNNACCACGTGAAGAAGAAATGATTGTTGCACGTAAAGCTGACTTATGA
GACNGAGGTTATGATATGTTACCATACCCGAGTTGTAATCTCGCACTATATTGAACATCT
AGTTGTAGCAGTTTTTATCATCTGCTATTGTGCATTA

SEQIDNO553

TNAAAAAANAATGGATAGCACTAACACAAAGGCGGCAAGTTCAAGACCAAGCTTGAGACACT
TCCAGAAAATCGCTTGTGGTGAACACTGAGAAGTGAGGCTTACAAGGCAAACCATTGCCCC
ATACA

SEQIDNO554

TGCCCNCGTCNTGGTTGTGGCNAGNGNGCTAGANGANTCCNGANGAGGNGNAGACCGNGAAA
CCCACCGA

SEQIDNO555

CTTGGAAAGGCCNNAGCTNNNGGANTCNGCNATAGGGAAATNAACCNAATGTGCATGCAA
CAAACAAGCCGNTNNATGTCANGA

SEQIDNO556

CTCGTNNAGANCAGGGATTGTTGNTTCCAGCGNACGATTGAGGTTCGGATTNGGNATTT
CGATGTCTCANTCCANGGGATTGTTGCTTGTAGCCCGA

SEQIDNO557

CNTGNCNTNCCCGNGCTCCTNCNGTGANNNCNGCTGCTNTACGGAGCTGATNCTGTNNNTGT
CAAGGAGGNGCACACAGGTANGNNCCNNCGNGAAAGTGTGTANATGACAATATCAAGATTGT
NNGGAGA

SEQIDNO558

CTTGGANANTCCGAAGAGATNAGGNAGACGACCCCTGATCCTGNAGGCTGAGCAAGAANNNA
GNNCACAATGAGCNATNGCTANGNNAGCNGACANGCAAACATANCTCNNAANCTNTNCTGGTG
ATNCCGNTGATCANGGAGGNAGCCTCNACCAGACAGNCNTGACAGGA

FIGURE 4 (continued)

SEQIDNO559

CNCTTNGNCACAGCCCTATTGTATTTATGTTGAATTTATGACAAAATGGTCGTATTTT
CTCA

SEQIDNO560

ACGACGCGTANAANATCTGAAGGATAACCTATGNNAANCAGAACCAATGCACGGATATCCNTT
TATAACCCAAATCTCAGTNGNGAATATCTCTNCAGTCCTTTCTATTGC

SEQIDNO561

CGAGTTTATGGCGNNNGCGATGTGGACATTGGTGTGGNGGCATAATGCTGAAAAGGGNTAT
TGATATGGCAAGAGGAACCCTCTGCAATGCAGAAATTGANNGTGGCTCC

SEQIDNO562

ACNTGACTTCNTNCAACCAGCCATCTATANNANAGGAAAAATANTNTGAGGATTCCA

SEQIDNO563

CTGTCNTTTNTNGACCTNGTGCNGCNTNCTCTGANNGNGCCNGTNAGCGNCAAACTC
NNATCAAGCTCCTNCAANTGANTGAGGACATGATGNGGTNATTACTCGTGANGAAAGGCA
GCTNATTCTGACCCNATGGAAGCAGNNAGGAAATCNGCTCTNGCTNCNNACTGNGCANGG
NTNNANNGTACTCGNCCATACNGANGTCNCACANNATTGCTANATTGTTNCTAGCA

SEQIDNO564

NCTGGCAGTACCAAAGGTCTATGGATTGTTACTTCNCGAAAAATCTGGAGATAAGGAAGG
AAAAAGTGGTAATCCTCAAATTGATGCCAANCAGATTGAGGGATCGTGCAATTACAATGT
TTGCGCGGTGGATGTATGATGCAGGTCTTCCTT

SEQIDNO565

GNNGCTAGCAGCTGGAGTNNTTNGNGTCCNGCNGAAATTTNNTGGNGNACACNGGAAN
TTGNNNNATNTCTNATGGNGTATGGTAAGAACTNATTGAGGNGCANATGTT
CTTNGGGGGNNCCGTACACCTGTCACTTCATTCATTTCATT

SEQIDNO566

AAAGGAAACTAGTTGGAACCTGTT

SEQIDNO567

AAGATGATGAGCAGATTGCAAGGAGGAAGCACCT

SEQIDNO568

ACTACGACTGGCAAAGATCAAGTTGTAGTAACATAAAATACTCGAGAGAGAACAGTGGAAA
TCTTTTGT

SEQIDNO569

TNCANGNCCTGCNCANGTTCTNGNAAACAGGCCGNCTTGGTTGTACTCAGGTACTCAT
GAAACTTGATAGNGCTNGTAAGAAGTTGNGTNGTCGGT

SEQIDNO570

CTGGCNGNACCAAGGNCCGTGNAGCCCGGTANATTCCCCTGTAGCTNCANACTCCTGAN
TNTACTNTNGATNNNACATTATGGGGNNAGACCACNATNNNATNNTCAGCTNGTGA

FIGURE 4 (continued)

TCATGAGNTNTCTGGCCATGNNAAGCTAAGACATCAATATGTGAGNGCGNTACGAGCATA
TGCCNGAGCAGACATTGATAGAGACTCTNTTATTAGTGG

SEQIDNO571

TTCTGCTGNNTCAGTGAGGTTAGATCGTAATGGAGCACTTTATGGAGAACATCAAACAA
GAAGTTGAAAGTATTGATGCTGATGTAACACCTCTCGAATACAAACTGCCT

SEQIDNO572

TTTGCATGNCTTCGAAGGCAGTGCTTGNTCTGAACCGTNNCTGGACTTGACAAGTAGCA
TCTTCTCTTGATGCTGCCCTCATGTATTGCCATGTAATTCTCCTCTAGCAAACCATTA
TGTATTACAAACTATTATTGATTGTGAATAACTTGTGAAAAGTTCAATCAATCTGAAAGA
AAGTAATCTCTCT

SEQIDNO573

GGNTTCTAATTCTAAGTTGATGGCTCAACCAAAGATATTTAGTACTGAACTGATTGTACTA
ATTGTTCTATAAAATTACGGGTTAGAT

SEQIDNO574

ATATGATGNAGTCCGGAAGATCGAATNTGGGAAGGTCTTCTGGATCAAATAGGCTAGAT
TTACTTGTCTTCTAAAAATGTAATAAGGCCAGTGCCTAGTGACTTATTTATTATTT
TAGTGTCGTTGGATTCTGCTATTTATATTGAAATGAAGCATTATTGGCAT

SEQIDNO575

TTAGCTACGANGTTCTCTNCGAGATTATATTCTAACGCTNATGCNCACGCNTTGCTTC
TCGTGT

SEQIDNO576

CAGNGCTNGAGCTGAACCCGGNGCTNGGACTTGACAACTAGCATCNTCTTTGCATGCTGC
CCTCATNTATTGCCATGTAATTCTCCNNTAGCANANCATNATGNNNTACAAACTATTATT
ATGATNGTGAANAACTCAGTGAAACGTTCAANCAATCTGAAAGAAAGTAATCTCTCTTCT

SEQIDNO577

GGGAGGNAANTNGCCCTGAAACNTAAGAGGCTGAGACTTGTCTAAAGAAACAAACTNTAT
TCANGCANGAGAAGAAAGCAGTAAGGAAATCAGCAAATAGCAATGAGGTTAGCAAAGTTA
TTGATAACAACGGAGGGACCAAGGATGTACAACACAAGAAGGAGAACATGAACAAAGAGCT
ATGACCACCTGGAAAAATTGAGCAGATCATG

SEQIDNO578

ATACGAAGGTTCAGTGCTAGTAGCTGAACCCGTTGGATTGATAGTTGGGTGACA
G

SEQIDNO579

AGAAATCTGCCNGTTGCATGGATATAAGCAAATGCTCAAGAATGGTGCTTGGAACAGTG
CATGTCTGCCTTGGAGCCCTGTGAAGGGCAAGCTG

SEQIDNO580

GCTCAAGGGGAGGTGGCNCCAGAGNNNAGTGCNGGTTGGGNAAAGGGTGCAGATTCTNCN
AAGGNCCGTAAAAGAGCCATGNCCAACAATTACTAATGATTACAAGAGCNNTGGGGN
GG

FIGURE 4 (continued)

SEQIDNO581

NATGTGTATTCCCTGAANNANCTNANTGNCAATTATTCAACCANTNATTNTACCAAGTTCAN
TGTANCCAGANTANNCNTCATTNATCTNTACATGCNTCACTAAGATNTTATTGTAACA
AGNGGTTTGGNTGG

SEQIDNO582

GCTCTAAAACCAACCTTATCAGTCAGAAATCAGCTTCAAACCTCCATAAACACAGCAGTT
GGTTTCTTCACCATCGATTCTATTTCCGGTCGCGGGTTCGTACATTTTGAGTTCAAAG
CTATCAAACAATTGAATTTAGACTATTGAGGTTATTCCTCCCTCCGCTATTATTT
TGG

SEQIDNO583

TCTATCACAAATAGAGTCCTTGCTCGNGAAGAGATGGGGCACATCAAGCCACATTATCCAC
TCATCACAAATAGTAGAGGCCACACACAGAGAGGAAATGCGCCAAAAGGAGCTGCTGTATATA
CACATCAAAGTTATAGGAAGCATGCATCAGGAAGAGGAAATGGGCTTGGAGCTGCTCTA
CATTCTCGTCAGAATAATATGGGCATGGGAGAGGACAAGTGCCAAATGGTGTCCCTCAACT
CAATCATCGCAATGTGGGAGGTCAATTGCGGACGCGAAGCAAAGAATTCCCATTGG

SEQIDNO584

NGGAAGGNGTTGGTGTANGGTGGGGGATTGGGACCCCAGGTGGGGGG

SEQIDNO585

AAANGAGGAAAANTAATNTATGGCTANNACANATGACAAGGACATAAGGTAACTNNGCATT
CTANCC

SEQIDNO586

TTTGGCTGCCNTTGCTAACCTGCAGTNTNTGCATAATNNAGTAGGGGTATGAAGA
TGCCCACCTNTGTCATTCACTNAAGGATAATTACAAGCCAATGGATGTGACG

SEQIDNO587

AGANTAGAATGTTGTAAGAGTATTGAACTCAAAGCAGTATTGTAAGTTGTAAGTAAGTTGA
AACTATTGAACTAAAGGCTCGAGGTATTCAACTCGAAGTAGTGGTGTAAAAGTATTGAATTG
GAAGTGCG

SEQIDNO588

CCCCCTCATTCACACATTCTGAAACCAGGTGCACTTGCCAAATCAGGTACTCCAAAATCT
CTGCTAAATCAAGGTTGAAAAGTGTCACTCCCTGTTGCTATTATAGTCAACAAATTCCC

SEQIDNO589

TTTGGGAANCTTGGAAAGGTCCCATATACGTNTTNCAANTNANCNGGGCCTCTNGG
TTTTTTTATGNTTNACGTCGGNTTGAGAANATTGNNTGNTACAAGNAGGTGAGGAAT
ANATAATATGATTCCCTATCTTCTTGCG

SEQIDNO590

CAGCGGAATGCCACCGAGGCGATACCAGCGATGCTGCACGTGATGGCATGNTCTGCTTCGGC
GCGACCTGGGGCAGAATAGAGGAATCCGGTATAGCGCTTCTGCCAACCGGTACTGTGCGA
GGAAGCTAATCTTATTGCG

FIGURE 4 (continued)

SEQIDNO591

GGCCNGTAGTTGGGCTNGNNACGCNCCNNAGNACCNACTGGCCNGNNAANGAGNATNAGNT
 NNTCATGCNTTATAACNGGNACTNACAACCCACCANCCATGCCATAGCAAAGAAGCGAGNTAT
 AACACAAAGNTCNGGACCTNTGCCTATNCCAATCAAATTACAAAGCCACGGNTACAAACT
 NCTAAACG

SEQIDNO592

TTTNNNCCTTCNTNNCATGNTATACGAAGGTCAGTGCTAGAGCTGAACCCGTTGCTGGAA
 TTGATAGTTGGGTGACAG

SEQIDNO593

CCAGACTCGCGATANCTGNNTNANCTAACANTAGCATTNTGANGANGTACCTGNGACTTNCA
 CATAGCAGCGGTGGTCAACAG

SEQIDNO594

ATCTATTGGATTATGCTTGGNTCTGCTTCTAAAATATAGAAATTCTGGAGAATTGAAGC
 TCGTTCTATTGAGGTTGCAATTCCAGNTCGAAATCATGGNCCATAGCTCGCTCGAGGATT
 GCTTTCTTGGAGATTATTTGCACTGNACCCGTGAAAAATTTCAGNAACAAAGGTCC
 ATCTTCCCCATTGCAACTTCA

SEQIDNO595

AGANCCTATGATAACANGATNGGAGGAACATGGCTNAGGCTGGCTGGAAACATCGGNNGCT
 GGGGCCACCCTCTGAACCATATCGNTAAGACGGTCTCCTACTAGCTGGCCCTCACCTCT
 AGCGGTCTGGCCTCCACATATAACGACCTGACCTATACTNTAGCGGGATGACCCCTACCTC
 GNNCTCCCAGACCCCTACCTNTAAATGGCTTGGCAGGCAATGCCAGAATCATGGCACGGTGA
 ACTNTGNTACTGCGACTGAACACCCA

SEQIDNO596

TNCAGCATCGCAAGTGATTTACTTGNCTGGNGCCNCCAAGNTGGAAGGANGTTAGCCCTG
 TAATCAAGGCGNTNNTGNCCCTGCCTC

SEQIDNO597

CNCANCAACCNTTGTANATATGCNCTTTACGCTCGAAATTTTAGCTGATTGAAGAGGG
 TNNTCTCCNTCTGGCAGGTATAAGGGAAAGAAGCTGCTTATTGTAGCAGCAAGTTAGNGA
 TC

SEQIDNO598

GAGACCGTTGGCCGCATAAACAGCTCCANCTGAAAAGGGAGTAATTGTTTTCTTCTT
 CTTCTGAAATATATAGACAAAAGAAAATAGGAATGAGAAAAGGGGAAAGCATG
 TGTTCTAGCTATTAGTTCC

SEQIDNO599

CTTGCCTGGTCCATTGCAAGGTTGAAGTGGCAGCTTCTGGATCATGAAACGATTGAGTGCAGC
 GTCTGCCAGCATCCATTCTTG

SEQIDNO600

CNCCACGTCTNTGTGCCGNAGCCNCCCCCTGCNCCAATNCGGGTGTCAATTNCANCNCANC
 GATTTTACCTACAAGATAGGTGGNTCGGATCGANNCGCNACATTNGATCAGATTGNCGGT
 GC

FIGURE 4 (continued)

SEQIDNO601

TNCNGNCCNNNTTGCNCAAANCCTGAANCTCCAACCACTACCACCCCCAAAATACCNACA
TNNNTNGATTNAGCTCTCAAGACCTAGCTATTGNTGNCAATTCTACCCCCAAAATCCGGCG
ACCAAAATCTGGC

SEQIDNO602

TCNNNAACACACCCTAACCTCAACNCCC

SEQIDNO603

NCAACAGCTCTAAGTAAAAGGGGAGTAATTGTTTTCTCTCTGAAATATATAT
AGANAAAAGAAAGAAAAATAGGAATGAGAAAAGGGGAAAAGCATGTGTTCTAGCTATTAG
TTTCC

SEQIDNO604

NAGCCCGGAGCTTTNAATTCTTCATAACCCAAGGAGAAGAATAGGACTCTTACCAAGTAT
CATAAACCTCTCNATGGAAATGGAACCTAGATCACGATGTGAACCTACTTATGAGTGGAAATT
TCGTTGACAAGCAAATTCCCCGGGAAAACAAACTTTCTCCAATTGAGATGCTCTTCATT
TATGGATTCTATGCGAGATTGGTAGTGCGAAGTGTGATCCTGGCTNAGAAGGAAAAGCTA
TATGC

SEQIDNO605

GGNCCAAAATCGGNANCATCTCC

SEQIDNO606

TNCCCAGCATTCCCGCCTACCANAGAAAAAGATGGATCCACCANAGATNAAACAAGTTATAT
TGGGTATAGGCATATGACGAANACCAGAGAGACAAGGGAGTTCTATGAT

SEQIDNO607

GACCCTTCCNCACCGTNTGNATCTCGNTGAAGANTCGAGCNGGACCCAACCTATGTC
ANNCCCCCCAAATCCATACCAGGNATCCANCTGNCCCTTNGACCAAACCAAGCTTGG
CTTGNCCGAATNTAACAGAAAANCCANGNCCNAANTCAGGTCCAAGAACCTAGAAATC
CGGAATCTGAGGGTTTGTNNGA

SEQIDNO608

TGCTGTTTCAGGTCTGCTGATTNTGTGACGACGTTAGAAATCTAGTCTCAATCCACTGTA
TGTAGTGTAGAGTAAACAGTTTGTGGCAGCTAAGAGCTGCTGCAGGTATTGATGTTA
GTTCCACGGGCTCTCCAAAATCTGAAGGCCAGATTGAAGAAATATCCTAAAAATATGTCT
TCTTATTG

SEQIDNO609

GNAGNGGCGNNCAGCATCNTNGATCTGAAAGGAAACATGATTGNTGGTNAAACTCGTAAC
GGTAATTAATNACCTTGNNTANGTCC

SEQIDNO610

GGGGTCGGGTTCCGGCGAGTCAAGGNGTAATCTTGTGTTCTGACAACGAGTCGATGTNGA
AAGTCACGTAACTCAATACCAAGGAAAGGGCN

SEQIDNO611

FIGURE 4 (continued)

CCCCGGACGTTGAATCTGGGCCAGGTCTTCTGGTACCAAATANGCTAGATTATTTACT
TTTCCTAAAATGTAATAAGGCCAATGCCAGNACTGACTTATTTTATCATCTTAGTGTC
GTTTGGGGATTCGTCTATTTATATTGAAATGAAGCATTATTGGCA

SEQIDNO612

CCCCNCAGCTTNGAACATAACCCCCCGAGCATGACTGCTNTGATTACTTANCTTATGCAG
TTTNNAACGTTCCCACAAGAACACGTTCTGTCGGNCAAACAGAGATTNGAAGGTTGTC
ATGATTCTGTTACTGNAGATGAGAATGCTCATGAGGGCGGGCTCCCTAAGGAAACTGAAGTG
CATTCCCAAGACATCTGTGGATGCGAAAAGCCTCAATTCTGAGAAATTGAAAGCGCCATC
CATGGAGGAAGAACATGTCTACTTATGCCA

SEQIDNO613

NGCCTACNGGCACNTCGGCTNNNTACTTNTGTGGATGGCTCCNNGCTAGCCAGTNTNAGANA
NTAACNGNTGCATCCNGACNTATNNATGAATTNCCATTGTTGTCNGATGGTNGGTCAAGGGC
ATAACCTGTTANGNTGGANANCATGATGTGCTGTGGATACACAAAGAATGNAGGCAGACATT
CACAGAGTGCTTCTCCAATAGCACAAGAAAAGGAACCATCGGTTNTACACCCAGAGNGGN
AACCCCNATTGTTCCAANCNAAGCAGTAAATTCATGGGAAGNCCTTCTTCACAAGCAGGNT
CATGGAGGCCAACATCCAACAGTTGTTGCAATAAAGAAGCAAATTGTGTGGAGTCCTCTG
AAGATGAAGGCCATGAGAAGTAGGCAATAGGAAGCCCTCTCTTC

SEQIDNO614

ACAACGGCTAGGTTCCCGAGTCANCCTGGNAAAGGAGCCTGGNNANNGTANAGANGACCGA
CAGTNNCGNATACAGNCNCAGAACGTNA

SEQIDNO615

CCAATAGGCTAAAACGCAACAAAACCAAAAGAAGAACGAAATTCCCTTGNTGGATTCA
AATCTCAATTGTCTTGTCTGGTACGTGAAATGTTGATA

SEQIDNO616

GGAAGTAGCTGCCTNCTGTGNTGAAGGCTTGCNGCTGTCTNCCTCATTGTTAGCCTAGT
AAANNTGGCNTATATNTNCATGGCCGCTCTCATGTGNTAACGACNTTGCTNAACCATTTC
TATGATAGCATGAGAATGATGATGCTATGAGTTACAATGCTGGGA

SEQIDNO617

NGGAGGGGTCCGGNAGATGAATCTGGAAAGGTCTTCTGGTACCAAATAGGCTAGATTAT
TTACTTTTCTAAAATGTAATAAGGCCAATGCCAGTACTGACTTATTTTATCATCTTA
GTGTCGTTGGGATTCGTCTATTTATATTGAAATGAAGCATTATTGGCA

SEQIDNO618

CAAGGTTTGGTCTTCTTTGGAGATTGGTTGTGCTATCTTAGCTCCA

SEQIDNO619

TACCCACNCCACCTCCCGCTGCTGNTCCTTGNCNTCANCTCATTNAAGCNTGACNNCACT
NCCAATGTGTAAAGCTNAGNGCGTACTCGCT

SEQIDNO620

FIGURE 4 (continued)

TNGTTGCTTCTTCTCCACGCCTCTCCGGCACTACTTCTTNTCCGGTCGAAAATCGGC
AGATCCCTCTCATTCTGGCTGGGCCGTCATCTNCTCAGCACACCACAAACAATCGATC
TTCTCGACCTCTCAACCATAAAGCCACCATCGAATCCCTCATCCGTTACTCGAACATAC
TAGTTACAGAACTAAATAACTTCAAANTTTGCTGTT

SEQIDNO621

GCACTACAAGAAGCTGCTGNGCTTCTGNAGGGTTTGTGNGANNATACCACTCTGATNN
NTGTTNNCNCCGATGGTTATNGGTTCANNGAAGCNCNTCAAGTCTTACAAATCTTATGA
GGNAGCAANAGNAGTATTCAATGACTTCCAAAAGAAAATATTACAGTGAAGAACAAATCTT
CAAGTTGTGTATTGATGAAAGTGATATTGGAGCAAGTGTATGTCATCTGTATTGTTAGCT
GGAATGTTGTAGGGATGAAGATTCAAAAAGTTCTCAGTTGATTGTTGATAAGAGTATT
TTGCTCAATTNTTATTATNGCTAGNTGGTATTATTAGNTNGATTGTNNAGTTGANGN
NATACTGGNTGNCGCATTCAACCTCTGTNGAATNGAGTATTAGGATGCCNAAGCCNTTATC
TTTGACTCCCNGTGGNATGNAATAAAANATGTCNTGATT

SEQIDNO622

ANTACANNTAAAGGTNTTAGCTGCTGACATTNGAATTGTCGCTCAAGCTGNTGNTGGATT
GCTTGTNCNTGAAATTGNATTTTGAGTGTGAGTNCGATNNCAATTTCAGAAAGTGAAG
CTACATTNTGTTGAATCTNCTATTG

SEQIDNO623

CTAGGCGTGTAGTCGACAAAGCATAGCCCACGTTCTGTGTTTGGATCGCAGTTCATCGT
CAAATTCTAGGCGTAGTTCTAGTGGTACTAGTCGAAGCATCCGTACAGTAGCT

SEQIDNO624

AGAACCAATCCCCAATTGGGGTACCCACTCCACCTCCGCTGCTGCTCCTTGCCTTC
AACTCATTCAAGCATGACAACACTCCAATGTGTAAAGCTCGAGGCATACTCGCT

SEQIDNO625

CAATTAGCNCNTGTCAGNCANAANAGGAAGAGAAGNAATNTTGATAGCTTCTTGACAAA
TGTAGGTNTTAGTGTACCTTGNTATTTACTTAT

SEQIDNO626

TTGTAATGCTTGTATCCACCTGGTGTGAAACAATGTTCACTGTTCTTCTAATGGTT
AGTTCAAGTTGTGGATAATGATTATACTGTGCTCTCGTAAACATAGGATGCATTG
ACCAT

SEQIDNO627

TGGNTGATATCATTATAGATATAGGGCTTCACCCCTAATCNCNTTTTCAAGGTNTACA
CAANCCTGATTNTTCNNCT

SEQIDNO628

AGGTTGATGAAAGAAAATGAAAGACTAATAGTTGATGAAAGTATGTGAAGCAATGAACAAAGATC
AATGTTACAACCGATCATGAGTTGAAGGAGTAGAAGAAGAGTGTGCTGAATTGCATTG
CCTAAAGGAAACCACTTGCCTTCCCCGAAGATAACTGAATGAAAAACTTGTNTTTTCC
GCTTCTGTGAAGACACCAATAGCTGAGGTGTTAGAAAGTATTACATTCTG

SEQIDNO629

NTTCNANCAGAACNNCTCATGTGCTCATTNCATGCAATGCTGATGNNAANNGTGTCCANNNG
GCCGTTACNCNTNGG

FIGURE 4 (continued)

SEQIDNO630

TGACCNAGGACCAANATTGAAGGAACATCAACAAANGACTTGTACTATGAATCTTNGCTT
 GNCGANTAGAGCTATNTATTCTTATGATGNTGATGATGANGCTNTAGGCATNAAACTTCAT
 ACTAATATCTTGNAATTGCATCTGGATGTTCAACTCTAACAGAGTTGTGATGGNCTTAGAN
 TTTGAG

SEQIDNO631

TTTCTTCAAGANTGCCAANNAAGCATGCAATGAGCAACGGTGTACACGACATATAGCAC
 TGTCAAGTTACTNACAAAAGTGAGAAAAAGAAAAATGAGAGAGTCTTACTAGTGAAAACCT
 CCACGGGCACTGTAAGGCAGCGTAAGCAGAGATGAATAAATGAGAGAGACTTGTGGA
 AACCCCTGGAACTACTTGTGAAAGTGAGTCGTGAAGCTGATGCGAAGAATTGGCATAAA
 CAAGCCTGACTTCAAAGGTATAAGAATGGTATAAGGGAAAGATTGGATTAGTTGGTAGAT
 CGGTG

SEQIDNO632

GTGCAGGAGNTGCCAAAAGNANGGAGNTGAATTACTAATTCTGNTGNTGGC

SEQIDNO633

CCACNCCCCATTTCCCCTATANGCCNTTCTACATTGGCACNTTCACAAACAAGNACG
 CTNACCCTTNTTATGTNGGACTCTGTACNC

SEQIDNO634

GAGGCNTNCATTGANCTTCATTGNACCAACAACCTNACCACATGGCACACTAGTTCTT
 GNCGACGGAAAGCACCATGAAAACGCTGTCCCTCACCCTAAAGCTCACCGGAAAATAGT
 NGCCGGATAAGCTTCAGCACACCCAGGACCCTCTCGCATCTCCTCACACCAGCGACCCCT
 CCCCCCGGNCG

SEQIDNO635

NNNACGNTCTCGAGTNTGNNGCCTTCTCAAGACTGCCAANAAGCATGCNATNGCAACG
 GTTGTACACGACATATAGNACTGTCAAGTTACTTACAAAAGTGAGAAAAGGAANAATGAG
 AGAGTCTTACTAGTGAACACCTCCACGGGCACTGTAAGGCAGCGTAAGCAGAGATGAATAA
 ATGAGAGAGACTTGTGGTAAAACCCCTGGAACTACTTGTGAAAGTGAGTCGTGAAGC
 TGATGCGAAGAATTGGCATAAACAGCCTGACTTCAAAGGTATAAGAATGGTATAAGGGGA
 AGATTGGATTAGTTGGTAGATCGGTG

SEQIDNO636

TCCCCAAANTCTGNTTGAATGAGNGNGCCCANACCAGGACNGCTNGCCGCTAGACCCGGAC
 ANACNTTTCGANAAACNCATCGANCAGGGCA

SEQIDNO637

TTTGGAAATGCCAAGACAATTCTGGNATGGGGAGTTGNAGAATNNATGCTATTGGC
 ATAANTCAGNAGTTNNAGATNCGAANCTGCCANTAGACTCGCTAAAGCTGGCGCTNACNT
 A

SEQIDNO638

TGCCCTAAAGCCGGGGAAATCTNATTGGNGGCTGAAAATGAACCAAAAAAGCTGAAGACAA
 AAGGAATGATCAAAGAAAAGGTTCGTAAATTATATTGATACANCTCTAGACAGTCTCCA

SEQIDNO639

FIGURE 4 (continued)

TCAAAAGGCAAGCAACCCTTGGTGGGCATAAGGGTATAATGCCG

SEQIDNO640

NCTCTACACAGAAACTCGAACCTACGCNTGACGGTCACGATTCAGTANCCTCCNNCTCC
TGNGT

SEQIDNO641

TGNGGTGGGGAGCTCGTCACCTGTCTATCAGGACCTGNGTATACTGCCAACCTGAAGCT
ATGCAAATGTCACGACNCCTAGTCT

SEQIDNO642

GATCCCTCNCTCAAATGCATTCTGATCAACTAAATTTGAAAGGCAGGGCAATCGATGTTAT
AGAAAGGGTTTCGTTGGTGAATTTCTTGTCATTGCGAACAGCTTGTGTTGAT
AGTGAAGGAGTTATTTGTTACAGAATATTAGTC

SEQIDNO643

CCTACATCACCAAAGCTATCATCTATGAGCTGGTGGAAGGATGGAAGCAGCTCCATGTTTAC
ACTGATTGAATCACCGTCCTACCAAAGCATTGATGTCTTCTTATGATCACAGGCACC
CTATTAC

SEQIDNO644

GAAGGCCNTNCGTTNNACACCAATGAGCCCTTTCTTCTAAAAAACAAAACACATTCAA
AACCATCCTTAGCAGCAGCAAAGACCTCTAAAATAAGTTCAAACCAGCTTTCTTCTC
CCTAAATAGTATGAAACCGTCCAAATAAGC

SEQIDNO645

AATCTTTACCATCGGCCGCAATAATGCCCTCTGCGGCACGTTCAATCTGGNGTGGGCTCA
AGAACACAAGTATTGGTCTGCGGATACTGCGCTGCTGTTCTTCGGTGGTTCC
TCAGAATCTTCAGCGCCTTGATGCGCTTGATCCACTTCCGCC

SEQIDNO646

GGCTCATATCGATTATGGATCAGANATTACCGGAGAAGAAAGATTTTACCTTTAGACTT
ATACTAGGGATGAAACTCTNCTACTATATAAGAGAAAGGTTCTTTGNAACATATACTG
GAACATGCAAATCAAAGCAATAGGAGTTATTTCTGCC

SEQIDNO647

GCNTGGCNNATCCACTNTATGGGCGGTAGCCAGGGTACCGAGGTGGACAGATCACT
TAGCGCTGNCGGGAAAAGGGCTTGCATAACCTNGCAGGACTGTTGNTTACNCGN
TGNAGTNAGGACCTTGTGAGGNAGCCGTAAGCCGAGCAGCAAAGNCATATTCTGA
GCTGGTNAAAATATTCNGNCNGACNGGCCACGTNCC

SEQIDNO648

CCNGGAACCTATTGACTCGACCTCAATCAAAGAAAAGGGATGGTATTGCTCCATTCCA
GGCTGNTTCTGGTCAAAGGGTACTTTGAGTGGCTTCAGGNGGNCTTTAGCAA
CGACACAACTATTCGAACAGAGGTTTCAGCTGCGNTTCGAACAGTTGAGAGNGATTCT
GGNGGTTNCGGGCTAGAAGGATGCTGGTAGAGTTCTGTCCGAGGTTGACATTCA
TTCATCGAGGTCTATTCTTCCTCACGTTGTTGTGC

SEQIDNO649

FIGURE 4 (continued)

CNCATCACCAAAGCTATCATCTATGAGCTGGNGGAAGGGATGGAAGCACTCCATGTTCACAC
TGATTGAATCACCGTCCTACCAAAGCATTGATGTCTTCTTATGATCACAGGCACCC
ATTAC

SEQIDNO650

TCGTCTACGGANGATTGNTCAGGTACACGCTCTGAAATTATGGATTGATGTACGTTGAAT
TGGAAGTTGAGTTGAAGTAAACAAAGNAAATGAATCGTTCACCTACTTCACAATACCTGTG
TTCAAATGTAGCAATAGGA

SEQIDNO651;

CTACGGNNAACTCCTCATCTTNNCCCTCTACTCCTTGATGTCCAGAGCAACATTTCCGG
TGCCGGAATTGTGAAAGGGAGGTCAAGCGCAGCAGAACACCAGCATTGTGGCAATTGGC
ATAGTAAAAAGACAATGGAAAGGAAGGATGAAAGTTTCGA

SEQIDNO652

CGAATGTCTGATTGCACTGAAATGAAATGAAGAGGAAGCATATTTGTTGAAATTCCGG
TGGCTTCATGCTNTCATTATAGNTTGNAATAATTGGACTGNATTGAACTGATGAACTG
TTAGGCTTGAGTTGATCATTGGACTA

SEQIDNO653

CTGGTGTCAACAATGTTCAGNGTTCTTAATGGTTAGTTCAAGTTGTTGTGGATAAAT
GATTATACTGTGCTNTCNTAAACATAGGATGCATTGTACCAT

SEQIDNO654

TTCTNCGGCAGAAGTCAAGCTATCTATCAAGTGCACCTGACCATGATAAGGCAGAACATCCG
GAGGGTAACTCTAGAGGAGGTACATGCTCGGGCTTGATCTCTCAGCCGATATTGAAAGGA
CGAAGATTTGGAAGAAGAGGGCTGCCACTCAGCTTCTGATGAGGATGATTGCCAGTGGC
TCTAAGAGTGGAGGAGACGAAGATGAAGTCCCCGAGGGTGGCTCTCGAAGATGCCAGTCC
TAAAGATGAAACTGCTGAAAATATGACCCCGAAGTAGTTGGGTTCTTATTGTTCT
GTTCAAGTCTCCCTATGTAATATCTCCTA

SEQIDNO655

GNNTGCTCTGATTCTGAAAAATCAGAAGAATCATCAGTGTGTTCTCTGTGGTGTCA
ACCAAGGAGGTGAGGCTGAAAGTAAAGAGAACATGACGACAATTCTATATGGTCAATTCAA
GTGAATGCAAGTACTAAAGATGATGAAGAAGATGAGGAAGAAGGAGGACTTGAAGAAGA
AGAAGAATATGATGATGATAACTATGATGAAAATGAAGAAGATGGAGATTTAGTTGATGAAC
TGTGTGAAGCAATTAGCAAGA

SEQIDNO656

ATGAGGTGTTGGGTACATCTTCTATTCCCTTTGTACCNCCACGTGGACACTTCTCTC
CTTAGTTGATTCTTGTCTGCAATGCCCTCTTCCAACCTCTCAAATGCCGGACAAC
AGATAATCTCGTTCTGTTGNTGCACAAATGTTGTCATAAGTTGTTATTATAAGAT
ATTGAACATCATAGCTTCACTTAGTTCTTAGCTAATGTGAAAGTTGCTTATGG

SEQIDNO657

ACGTTGAGAGCCGTAAGCCAGAAACTGGAGAGGAAGATAACAAATGCATCTGCCGGTTCAACT
GGAGTTGATAGCATGGCTGATAGCATAAAATCATTCACTGTAATCAGAATTACAGATAC
TGAGGCTTGCACGTCAAGCAATAGGTCTATCAGCTCATGATGATCAGGCATCAGATATTGCAG

FIGURE 4 (continued)

ACCCCTGAAGAAGCTGCTGTGACAGAACATCAGCTGTAGTAAGTCAGGAATGTGCCTCTAATTG
G

SEQIDNO658

GGATGAGAGAAAGCCAAGTCGGACGGTTGGTGAANCCAGAACTAATTCAAGCAGATCGTTAT
AGTGGACAGAGAACGACTGATTTGAAAATGCTCTTCAGAATGGTGGGGGAAGATAGCTCCTG
GTGGTGTAACTCAGTGTAAAATCCAACAAATTCAAGCTTGAGAACGATTNGAGCCGGNGACT
GAAAAGAGTGGCNAGAAAAAGAAACAAAAACCATTCTGGA

SEQIDNO659

AGCCTGNCTAAACCAGTNTCGATCTNTGCTCTGCCATTGTNGAACCATGGCACAG
TGGAACTGAAAAGAGAACCGTCCATGCTGTCCTGTCCAATCACTGTCCA

SEQIDNO660

AAAGCAACTGTTNTTAGAGTNATGGTTAGCCATGGCCATNCTNATTAGNCCNAAC
ACTCCCNAAGATATNGATATTGGNCACAACAAAGGCCGTGCAGAACATGGTGTGCCACTCC
CACCA

SEQIDNO661

ACGGGGNNNTGTCCCATTGACGTATCTCACAACTATTTAANNNGNCAAACCCGAAGTGGTA
TGTGGTGTGGTCTGCAAATATGAACNCTCACATTCTCCGNGGTGCGTAGTTAGCTACAAA
TATGGACGTATATGTCAGGTCAAGCAAATNGTGCCTCATGAAAGTGGCTCCTCATGC
TTCAAATGCAATGGGNACA

SEQIDNO662

TTGAGAAAGTTTGTAAAGACNGGTTGCTNGGAAAGNATGGNNGTTGGCCA

SEQIDNO663

TTNNAATAGCCATACAAGGTATATCGGNGTTANTGCATGTTTNAACTTATGGNNCACNC
ANNATTGTTGATCCANGGTACAAAANAGNCAAGCNGTCANGNTGNANGAGANAANTNAA
NAATGGAGGCANATGTGGNGATGTANNTACCAGTTGTGAACAATANGACATGNACTGTTCGN
CATGATTGGCACNATTGTGNGGNGAATCCNAAGCAA

SEQIDNO664

GANGACCCTATGCTGATGATCCCTATGCCTGGCTAGAGGTGAAGATGCCCCACTCCAGTG
CAGAGCTCCTAGAGAACCTTGACCTGGAAATGTGTGCGCTGATTCTTGATT
GCAGACGTATAGCTGGCTGCTTCCACATTCAAGGAACATAGAATTACTTCCCCAAAAAA
TAAAACGTATATAACTGCAA

SEQIDNO665

CCCTATGCGNTTGGCTAGAGGTGAAGAACATGCCCCACTCCANGGCAAAGCTNNCTAGAGAAC
TGAAACTTGCACCTGGAAATGTGTGCGCTCNACTTGATTGCNNNTACGTATAGCTGGCTG
CTTCCACATGNNGAGGAACATAGAATTACTTCCCCAAAAAAACTGNATATAACTGN
NATTACTCAGGACTCATNATCCTGCTCAAGTTGCTCAAGTTGGAGCAGAACGTGATC
CTGCTCCAGCTCCTACTGGCTGGGAATGAGACCTGCTTCTTTAGAAAGTTCTTTGAA

SEQIDNO666

FIGURE 4 (continued)

GANNGNCGTANACGAAGNCAGGGACTGAATCATNAAGTATGCACAACGGAGCTCTATTGT
 TNGTCCACCNTGTGTTGGGGGGGGAGTGGCTNCCTANTGATATGTATGTATNNNTNNGAG
 CCAAAGNTCATATTATACTTAANCCTACTGNGCNCCTATAAAGAGAATGCCGCGAGATTCA
 AAGATGCTTCTGATCTGTGA

SEQIDNO667

GGAGGCTAATAAGTGAAGGCATTGCAGAGAGCTGCTGCTCGAACCTCTCATATCAAGTCTA
 CGTGATGGTTTCACATAGAGCTCCATAGAGGTTCTAACTAATTATACCTTCTTATTGT
 AAATGCTTCAGATTACCTCAATCTGAACGTCCAGAGACTTGTCCAATGATAATCTTT
 TACTCTTCACCCAAATTGGATGTCATTTCA

SEQIDNO668

AATCTGAAGGGTCAGAAGAACATCATCAGTGTGTTCCCTCTGTGGTGACATACCAAGGAGGTGAG
 GCTGAAAGTAAAGAGAACATGACGACAATTCACTATGTGGTCATTCAAGTGAATGCAAGTAC
 TAAAGATGATGAAGAAGATGAGGAAGAAGGAGGACTTGAAGAAGAAGAAGAATATGGAG
 ATTAGTTGATGAACTGTGTGAAGCAATTAGCAAGA

SEQIDNO669

GCCANCCCAGTCGACAAGACCAGCGCCTGNACGTAAAAATCTGATACCTGACTAAGCTTATG
 TCCTGAGGGAGCCAACCTCCCTCAGGCCTCTGTTACTACCTGCTGGCTT

SEQIDNO670

GCCGGCTCTGNGTCCACCTGACTATCAGAACGGCNACAGATGATTGCATCTGTATTANAAAC
 AANGGAATCTCCATCTTCCATGANTGNGCTATAGACATCTCTATAANTCATTNTTN
 CTTNNNCANAAATNGNCGGAGATACTNTAGCTTCATNANTNGT

SEQIDNO671

GGGCAAGTGGATGGGGTACTGNCNCCTGGAGCTCGAACGGTTCTGNNNCTGGATTGNC
 TGTCTATACCATTATGTGATGTNACCNAGATGGCATCGCATCTTGAGGCCACTCTCATCTN
 GCTTNTG

SEQIDNO672

GGNGCNATTGCCNAANTGTGCTTCTGCTGGATATCATGTGTGAGTGTTATCTTCAGAAC
 TCACAAATTGTAGTTGATCAGAACATCTTGCAATGCCTTCTCATTTCATTGTGC
 TTCCTTATTTGTCTTTACG

SEQIDNO673

GGTGCTGAATTGGAGGAAGGAGAACANAGGANNNGANGAGGAATGCCTAGNNNNNGNTGCA
 TAGANTCCAAGTGAGTCACGCAAGAACCACTGTTCCACTGNTTGGCTNCTGCTAGGGN
 TGTTGAGTCTTGATAAGAACGTTGATGGN

SEQIDNO674

CACCATTCTGATCGTAGTCCGAGATTCCACGGTGAGCTGCTCCCTCCTATGTCGTTCA
 AGCATGATGGAGTCTCTTTGCTTGTCTATTCTAGACAGTGGATAGATT
 TATTCTTTATATATTCTGCTAGATGCCATATACTTGTGACACCAGGTCTTGACACACACA
 TTAGTAGACTATTCTTGGATTGTATAATTATTGTACGTTGCTAATTATCACTTGGT

SEQIDNO675

GGGGNNNGNTNTCTCTCCGCTGGAAANNTGANTGACTTGGGTGCTAANTGATGGNAGACCN
 ACACACCCAANAAGGGNAAGNGAAAGGACGACATGGNTCAATAGCNCAGNGAGGGAGACAG

FIGURE 4 (continued)

ACGGAATGAAACGANNCAAGANANTGGGNNAACNTGTTCTATTANTGTGNNAGNNAAAC
AACCCACGTCCTNACAAAACAAACAGTATTGGATCGGAGACTAATCTGAATTTCCAGA
CGAGTTTTNCGGTNAATCTNGAGGTTCCGACATGGNTTTG

SEQIDNO676
TAGGGAANCNATNCTCATTGTTATGACCACCATTACTTAGCT

SEQIDNO677
CTCNGNTANCAACACGGCTGGATAAACTTCAGNGCTCCGGTGTGGGTCTATTATCGGAGT
TTGAGCACGACNNACACCCGGGACCATNTAGNTAGGATNGCTCATTCANGAATAGC

SEQIDNO678
TCAGAATGCGAATTGCCTACTCAAATGAACGAGATTGCTAAGTGGAAATGCCAATCCGG
AAGGGTAGTTGTTGTCAGCTCTTCGGCTTCATCACCTGCAGGTCTT
AGATCATCATCTTGTATTATTCTGCCGGCTTCATAACCAAGAATGTTGCCTGCATGGG
CATTACTCTCATGACAGACAATAGAAACCTGACGCTTACAAAGCATAAAATATAGCAGTCG
AACGAAAACACACACGGCAAGTTGAGCAGATGAGTTAGATTGCAGGTTTGCT

SEQIDNO679
TTTGGCCATACAAAGGGNTGAATATGAGGNATATGGGGGNTAGGCATATGTCGCACAAACC
CTGGNAT

SEQIDNO680
ACCTACCGGGAGGATCATATGAGCGTGGTTCTACTGGCCTCGACGTCTGTAGTTGGA
AGGGAAACCAT

SEQIDNO681
GGTGTAGGTTGTCT

SEQIDNO682
TNGCCCCNGCCAGTCGGACAGAACGGNTAGNACCGAAGNCNATNCTGCCACGGCANGGAA
GACGT

SEQIDNO683
AGAGGTGGTGGGACTGTTGTTGGTCTGAGGTTCTGGTTCTGATTCTGTCTATACCA
TTATTGTTGTAACCGAGATGGCATCGCATCTTGAGGTCCACTCTCATCTTGCTTATG

SEQIDNO684
GCNGNGNNCAAGGNGGCTACCTGACNTNACTNAATAATCAANCTNTTGAACTCAGGGTNT
ATAGGANGAGATGGAGGCTCATGCATGGTTGACACCAGGGTTACTGGAAAGANGGTTATCA
TCCAAACCATAACATTGACACTGAGGATGATGCACTTGCCTGAAGTGTATCAACCACAA
CCATTGCTTCAGATAATACGAGCTCATTATCTAATGAGGAATCAGCAAACCTAGCAAGTGT
ACTTCACTTCTG

SEQIDNO685

FIGURE 4 (continued)

CGTTACATATTAGGAGTATAATTTTCATTACTAAAGCATGTAAATATGTTGCTCCGGGCT
TTGGTCTATTAGTAAGAGCGCAATGCGTATATGTGGG

SEQIDNO686

TCNAGCAATTANNNNNTTGGCCTGCNGGTNCCTNTGGCGCTGANGATCTCTATGCCCGCC
GGCAGACGGTGGATTGGATGATGACAATGCTCACG

SEQIDNO687

TGGNNNNNTCCTNNCNNGCCAATAACCAGCCCCNGGNCTATCANCATAANCTAAAAAGANCC
CCATACANTCAACCTGGCTGGNCCATCACTTAGGGCNNGTTCAAGATTATCCAACTTGGG
NAATACTTATCCGCCANGATCNATAGCCGGATCAGACNGACG

SEQIDNO688

AAGACAGGGATGGCAGTGCTGAGAGGAGGGCAAAGATTGAGCAATGGAATAGGGAAAAAGAA
GAGGNAGAATCTGCTAAATACAATAATTGACACTGATAATGGCAAGAGTGATGGTGGTGA
TCACTATGGAGAACAGTTGATGACGATTACCGAAGCAGCAGTAGGTAGCAAATGGGAAGT
TATGGGCTACTGATAGTAGTGGTTACTCTGG

SEQIDNO689

NAANCCCAGNANNATTNNNGANGCAAGGGTGATAGCGACTATCANGGCTGATGATTTCA
CCNGCTTNGCGGGAGTAGCCTGTGCTCATTGACNGGAACCGTNTCGCAGGACCTTCGCC
ATGAATCGNTTCTGCCATTCCGTATTGCTCGTCANCTCAGTCCTGCCGGTGCAC
ACATTGNCGCGCTGAACCTGCGTGCCTACTCGGCGGAAGAGAGCAAGGAGCTGGCGCTGGAAG
CCCTGAGCCGTCGAGGCCTGTCGTTGATGAATACCAACAGAAAGAAAGCCGAAC TGACCGGC
CAGCCACAAAAAACCTTGGTTCGACCGCAGGGTGAAATGAATGNCGAGCGCGGNATGACG
CTCCACGGCGCCAGGTGAGTTAAGTGACAGGGCNTGAAAAGCCGAGGGTTCCACANGAAC
TCGGGTTTTGNTTGCCATCCGTTCCGGAGCCTG

SEQIDNO690

CCATNANTTNACANTGCTGGNNCATNNACAACCCGGTGCAGCGGTTGCCGTTGCGCGGCAGT
TCCGGC

SEQIDNO691

CGGTACGAGAACGCGTGTGATTCAAAAACAACACTGTGATCATGCAAAGTATTGAGATGGAATCT
TGGAATGCATGGAACTAGCGTTAGATTGGTTGAAATTGTAATTCTAATCGCAAGC

SEQIDNO692

GGGCCTCTAGCAACATTAGGAACCGAATAACAGCACTTCTCAGTCTACGGCATCCTGA
TTGTTCATCAGCTCGTATTCACAGGCTACCATATCACCAGTGTCCATGCTCAGCC

SEQIDNO693

CCTCNGGCAGGTACTCAATAGCNAACAACCTTACATCCTCAAATTAGCACAAATCTACATA
TTCATATACAGAACACTATAGTAGAGTTCATGTTAGACTATTGCCAAGTCTGCATGATCT
AAACAACAACCTCCACC

SEQIDNO694

FIGURE 4 (continued)

TTTCTTGTGCTCGTGAAGAGCCAATAACCAGCCCCGCAGCTATCAACATAATCAAAAAAG
AACCACCATAGATCAACCTGGTAGGCCATCACTAGGGCAACTTCAGATTATCCAACCTC
GAAATCTTATCCGCCATAATCAATAGCCGCTCAGACTGACG

SEQIDNO695

TGGTCGNTGNAANAATTTGCTGGAAGCTTGTNNAAATGAAAAATTGNTGCTTCAG

SEQIDNO696

GCCAGCTAAGTGGCTTATAACACAAAAGAAAGAGGCCTTAGGACAACTAATATGACATA
CACTTAGACAACATGAATTGCCAATTATCTGTTACTATTCATTGACCTCTAAACTCAC
CTCCATGCA

SEQIDNO697

NCGTAGCTATCTTGCTGCTCTTGATGCTTGAATCATCTTGATCTGTGACGATATTT
GTGTTTATTCGCCGGAGTTGAACAGTTAGGAGTTATTATGGNTTATTTCACTGTT
TTTGTTCATTCTTTTACTTCTTGACA

SEQIDNO698

GATGCATGTGTCACAGAAGAGATGCCATAGTCCATATTAGGAATTGATAAGATGTGCTAAG
ATCAATATAGTCACTTAGTATTATTCTCTTAGGCACTAGTTCAGGTCTATTTAGTT
TTATGGGATGCATTCTGAAACTTGTCTGCCTTCAGTTCTATTTGTATGTATATGTCA
CTGGTCCATATTGTTGACACTCGGCA

SEQIDNO699

GATGGACGTGTTATTGGTGGTGGAGTTGCCGNCTATTGGTAGGCTGNCACTGTGCAGA
TTGTTGGGGCAGCTNCTGATGGAATTCACTCGAGCAGACGACCAAGANAAACAAGTNC
GAGCCCATAGNTGNAGCTGNTCTCTATCTAGTACAGATATGAAANCCTATNACTCATN
ATNAGCANAACCAACTGTAGNATGGATTCTCCTTACATGAAGATAACTGNNCATNATTAG
CCNCNGACTTGAGGAATANNCTGCTGACATCAATGNATNTAACCTGCATAGGTTTGTN
GAANTGNANTTNATCNG

SEQIDNO700

NCTGAAGAAGGTCTNTCGGGANGAAATAGCTAGGNNGTCTNGNTTCANCT

SEQIDNO701

NCTGATTGTTCTTACAAATAGGTCAATCTTAGTCCAAGTAAGTATATTCTCTTACTCTGTA
NTTTCCAGATTGGT

SEQIDNO702

TAAGGGATCACGACCCCTACGGGAGATCATATGAGCGTGGTTCTACTGNCTCGACGGCTNT
GNAGNNGGANGGAAACCAT

SEQIDNO703

GAANGAAGGTTCCAAGNGNCTCCATTGTGGAGCANTATCACCTACACATTGTAGGGCTAAT
TATCTTCACTCACNCGGTAGAGGANCAGATTGCATAGCTGT

SEQIDNO704

NNTGATGTCCTTCTTCTGGTGTGATCCGGCTTTNCGTGGAAGCGGTGTTGCTAAA
TCGNGTGTCCGACGGCCCTTACTGTACTGGAACGACATTCTCATTGTTGCTGCTGTT
ACGGT

FIGURE 4 (continued)

SEQIDNO705

GATATCTTCATCTTGCCTTATGTTCTCACATCCACAAGTATTGGTGTGTTCTGCAT
TATCATTCTCAGTAGTTCTCTGTTCTCC

SEQIDNO706

CGAAGAAGAAGANACTTACG

SEQIDNO707

CACGGAAATCACGCCGNNTGGTACCTGACC GGTTNCCTANAGGGNACTTCAGTCANTG
GGNNGCCAGNNACTGAGGNGGCCG

SEQIDNO708

CATCTGGATTNAACAATTCATGCCAGGTTCAAAAAAAAATAAAACAAGGTCTTCATGCC
GTGC

SEQIDNO709

NAACCTTACTGTACAAAGGAAATCATTGGTGCTGGATAAAAGTCTGCATGCCAAAAGT
AGGTGGCC

SEQIDNO710

CGGNNTTGACAAAGGTTCCCGCTTACACACTCCTCGTNCGATGNGCTCCCTGACCCGAGT
GTTNTCGCGCAGCAGTGTATGNTCAAAACCAGGATTGNNNTAAAANGACAGGACTTCAGG
TCATTNATTCCGCC

SEQIDNO711

ATTNTNNNTTTGGAATGGTAAATACAGGTTGGATAGAAGCTTCCCA

SEQIDNO712

GCAAATANTTATANGAAAAGGTCAAGGAAACACTAAGTGTGTCAATAATAGGATTATCTATT
ANTA

SEQIDNO713

CTNNCTTGNTNGACGAGAGTAANANCTGGCAGCTATCTCCAAGCCATTTCAAGGGCTN
TGCATCTGTAGTNCTNTGCA

SEQIDNO714

CTGATAGTCTGATGGCTTCCCTTGAGGGTAACCCGACCTTCTCTGGCTGCC

SEQIDNO715

GANCCAGCGGNANTAGCTGCTGTACTANNACAGGNATCCAANATATGAAAGCT

SEQIDNO716

AGCACNTCCGGCTGTATCTTAACCAAGAGAAATTACAGNTGTGGACATATCTGAAGATGA
ATCAATNGAATATCTNCTAATGAAATTGCTTGCTTTNGNTGNGTAT

SEQIDNO717

ACTGGTCCAAAAGCTNAAAAATTGTCTAACAGAGAAATTACAGNTGTGGACATATCTGAAGATGA
CCNACATAAAAGTTCTCTGAGGGCAGCATTGNGCCTGCCAACCTGANNACCACCA
CGCAGTTGACTGAACAAGGGTTTTCAAGCTCAGAANGCNTACCAATNNTGGGTNGNCC

FIGURE 4 (continued)

AAAAANCAAGGCANC GG TAAANGAATTGCCATNGGNCCAANCTTNGNNNTATAAAANNNA
ANGTCCCNAANTCNTTANATNGCNTNGAATNCCGGCCNNTGA

SEQIDNO718

GATTTAGTGATNAATTCCAGCTTATTTTGNTGTGAGAGGAGNGCAGTATCAGNACTCCT
TCTGGGCCAGGATACCATNAACAGGTAGCCATCGAAGGTGTACA

SEQIDNO719

GGGAAGNTCCAAACAAAAAGAAAAACGCAGTAATACCCCTCCAAAAGCTTCATCTTCTCA
CCAAAGCCTCTTGCTTGCCATAGAAACCAGTAACCATTAGCTATGTAACCAACCTTGAG
CTACCATTTAGAACAGTTCGAAACGCCA

SEQIDNO720

AGCCCTTNGTCAGCCCACCTNTTATGCTCAATCNCACCGNNAGGAANNCTGNNAAGTTANN
GANGCGATTGATTNCNGCCTGACAGATCATATNGCTTCTATAANNGTTNGCGGACACCGCG
AATNAGNTTNCTTACCCCTCGCATAAGACACANATNCTGATCTTACCAACCACTCATTAGATGTG
GNACCTACAGCANCTACATCTTCTACTGCTGCTAACA

SEQIDNO721

AGGCATTNTNCAGNGGCCACAAGTATACTGGATTCCCGGAGACATGTGACTGGAGANGCA
TCACCGCAAGATTGTCGCTCAAACCTCTCATTGATGCTGCCATTGNCATACAAAAGTGNAT
TCAGCGGGTGGATAGTAAGGTCTCTTGTAAGCACGGACCAATCTCCTACAGTTCTAAG
GAATGTGAAGAGAAATATAATGCAGCGGNAGCAATCCAACATGCTTCAAAGGAATATAACA

SEQIDNO722

GGAAACATACAACGAATGCCAAATCTGCCATTTGA

SEQIDNO723

CTTCCGAATGCTACCNGATNGTATCAATTGGGTGAACTGGTTGGGTTTTTCCCCCTT
TACC

SEQIDNO724

TCNTTGCNGANATCTACCTTACATGTTCTGATGCAATCATGACTTACTCTGATTACACAT
GGGTTGCTGGGCTGATTCCATGTCC

SEQIDNO725

GCCTTAAATGGTGTGTTCTAACAGGCTTATGGGTATGCTGGCATTCTCCATTGCTGGCATA
CCCACAGCCTGCCCTGCCTTCAATTTCCTATTCCCC

SEQIDNO726

GCGNTACTTCANAGTCNNNGGANAGAGGGCTAACAGGNCNNACANNAANTGCTTCAGTACTAAT
GAANCANATNCTNGNNCTTTNAGGGACATANCAGGTTTGACAAGCCCCACATGAATA
AGAATATATNANACTTCTCTAAC

SEQIDNO727

FIGURE 4 (continued)

TTACTGTTGCTACCTGGTATGGATAGTTGGGTCTGAATAATTGTGGATGCAACA
 ACAAGCTTGTTACTTTGTNAAGTACAGTGGTTACTTGAACTAGTTGTGTAATATATG
 CTATGGTAGTGGTCGTATCTGAAACACGTGATATTAGTGC

SEQIDNO728

GCCTGGTAAGACATTGTAAAAACTCTGTTATTCTTAGAGATAAGGTGGTCCCGC

SEQIDNO729

GACTCTGCCAAAATTGTATCTAAATCCTCATCTCCTTGGGATTGCCAAGATTGGCTGG
 CAATGTTGGGCATTTGTTGAGTTGTTCATGTTGGACAAGTGAACCTGATTAGATG
 TTGAGAGCAAAGCTGTGCGATTGTGTTATGTTATTCTTCTA

SEQIDNO730

GCCCGACGCTTGAAAGATTGCATTGGAGAAATGCCAATTGAGAAATAAGGAGAGCTTGAGA
 ACATTGTTCTACTCTGTCAAGACGTCAGAGAGGTTATTTCCAGAACTGTTGGGACTGG
 TAATGAAATGTTCAGCCTGCCAGNGTTCTAAGGAGAGTGAAGTCCCTTGCCTGGAAAGCT
 GTTCACTACTCACAACTGAAGNCCTTGAGTCTGTCCTCCTTCATGGAAGGAAATCCAGAGC
 CTCAGGTGATTCATGTGCAATATAAGGATAGTGAACATCAGTCACTGTCTACCTT
 GTTCTCCGCACTAAAGATTACAATGGAGACCAGACTCAAATCTCTTCTTCAGCTGGTG
 TTGNGGAACTTGATGCGAAAAGAGGCAATNAAATTTCAAAGAAGACCCTGNGACTTG
 GAAGTCACTTGCCTGGNGCATAGACTGGCCTCCTCATCATGCATTCAAGGACAACACTACT
 ATAT

SEQIDNO731

TAGGTTTGTAGTGTCTAAGTTCTGTTTT

SEQIDNO732

GAAGCNACTAGTCAAAATATGTGCAGTGTGATCATATTCTTGTATGCCAGTTTA
 CCATTGTTGGACACGTTGATGCTGT

SEQIDNO733

GCCCGTANNANGGGTCCNACACNNCNTANGTCCTNTTCTGAATNGAGCCTGCG
 ATAAACTCCATANANAACCTAGCAAAAGAGCTCCATTTTCACTAAAACAACCGTCAAA
 CAGCTATGANAATCCCTCTATCTCCATCAAACCGCAGCATCCATCATCCTCAATAAAGGGC
 TGCACAAACCTGCTACAATCAGCATAAAAACAGCCCTGAAACTAGCTCTTCAGCTAAAA
 TCAACT

SEQIDNO734

TGTGCTAANGTAGCCCCNTCTTATCAATAAGTGCAGTTGG

SEQIDNO735

TAATAAAGCCCCGGGANAAGNNAAGAAAAAAAGAGAAAAACTAGGCCGGTCAAGGC
 AGGCCATATTGNAGCACTACTGCCTGG

SEQIDNO736

FIGURE 4 (continued)

TGNGACCTTTGAATCTCCGAGTCTGNAGGTCTAGTTACTCCCAATAGACGAGTATCACT
ACAAGTCTACTGCAAATGGTGATGTTGATGTGGGAGACGAAACGATAAGCAATTAGTAA
CATGTGTCCTTTCACGTATATAGATAGAGCAAGAATGAAAATGGAGACACCTTTCCA
TTTTGAAGGATATATTGCTGTTCTCCCTCAAAGAGAGTTGCACTATGTTGGTAG
CTTTCGAGAGTAGTATGTTTATCTGTTGAAGAACCTCCTTTCCCCCTGACTAG
TTGACTTGAAGGG

SEQIDNO737
TGTTTGTATGACCCTGCTGGTCATTGTAATTATGTGTTAGTACTATGTCTGGTGC

SEQIDNO738
CTTCGTGGAGCTTNGCCGCCGGCTACCATCAGTACAATCCTCCNGCTGGCGCCC

SEQIDNO739
TGAATCACCTTAAACACACGGNAAAAGTAAAAGTAAAAAAAGNAGGAAAAGGAAACT
AGGCCGGGTCAAGGGCAGGCCATTGACAGCACTACTGCCTCG

SEQIDNO740
TGCAGACATTGCAACTAAGCAAGCTTTCCCTACATTGNCGTATCCAGCACACAGATAT
CACGGGGCATGGAGCCATCCNCAGTGTCAACCAGTGCCTATATAGGCGGNGACATGCGGC
GCG

SEQIDNO741
GNNNNGGAGNAAGCAAGCATAGAAGGAGCAAANTGTTCACTGAGTANGAAGACAA
AGCAAGAAATAATTCAAGCTGATTGAAATAGTAAATGAAATATCAAGCA

SEQIDNO742
CCCTGCCTGGAAATGGTCAATTGAGGAAGGGCATTGGCAGCTAACTGTTATATGCGCAA
AGTCTTGTATGACATAGAAGTAGATGGCACAGACAAGTCCACCAAGATGATTCCAAGG
TTCAAACCTCAAGAATCAAGGTGTTTATGAAGGAAATCAACATAATGACAATGATGGCTAC
TGGGACTATAACTCTTATTGGAGGTGCAGGTGGAGGAGAACATAG

SEQIDNO743
CCTCAGTCTGAAATTCAACACCAATATGCCCAATTGATTCTAGTTGACCCGTAAACAA
TATTGGATCAACCCATATTATGGAAGTCATGAAAACATGACATCAACTAATTACCATATGG
NGANTTATCATAATATGGTCTCCAAGGAAATATGTCAAATTGAAAGAGGGTTCTTGT
TCAATAGATTCTTATGACATGCAACAGATCATCACAAAGTCGATGGACATTCAAGATGA
TGGAGATGACCTTCAGTCAGTGGCTTCAGATATCTCAACATTGATCAGTANNTAGGN
CTCAAAAACAAATCATGGGTGAAGA

SEQIDNO744
TNCTNTCATGGTGNCCCTACATTNGGACACNGTANTGATCCTNGCCAGCANGATTGTCTTA
CGCTACTACANTGGANCGATNNGCCTACCTGNCGGTTTANTNNNGAGGACAATAAGNTCG
ACCNNTCCNATCTGCCTGAGCATTNNNNCTATGATGANCGATNGGAGGNATTGTGCCATCT
GCGAGTTGAANGATTATCCACAGTGAGAGCCGGAAACCCCTGCAATNCNANANTCTGGGT

SEQIDNO745
CCTTNNGTGGCTNGNGNTGTGCTCTGCGT

SEQIDNO746

FIGURE 4 (continued)

GNTTGTCCCTACCTGGTGATGGATAGTTGGGTTCTGAATAATTGTGGGATGCAACAACAAG
 CTTTGTTACTTTGTCAAGTACAGTGGTTACTTGAACTAGTTGTGTAATATATGCTATG
 GTAGTGGTCGTATCTGAAACACGTGATATTAGTGC

SEQIDNO747
 NCTTGAAATTGAACCACTACCTAATATGAAAGAACCGCTGCTCGTAATGAAATACTTGTCA
 TGGTGCTCTACCGAGTCCTTGGCTAGGGCAACTCAATATGCAGTCGTAAGAACATGTT
 TTGAAATGCATATGTAGTCATCATCGGTGTTCACATTATGTGAATTGGATGTCG

SEQIDNO748
 CCTGCTTGAGGTCCATTCTTTCTCCTTNTTTAGTCGATAACACTATATGCAGGTCT
 CTGATGGTTGTCGCGTNNTTGGGTGC

SEQIDNO749
 TTTGGAATACAATTCAACTTCTGTTCTAAAGAAATAGAACAGAAAAGCAGCTGGAGCT
 TTGAATAGTAGAGAACGCTCGACGCAAAGTCCAGTAAGAGCTGCTACAGCTCATTCTAACAT
 CTCTAGCAGCAGAATATCAAGAGTGGTCGCGC

SEQIDNO750
 CAGTATCCCCCTTACTTGTGTCAAATCANCTNTCCCAGTATGGCTTCATATTTGACTAC
 AATTCTTATCAGAAGGCATGATAGTAATAAGTGACAAAGATGCAAAAAACATAAAAGTTGTC
 CTTCACTTTGGTTAGAGGCTGAAGATGAACCTTCTAAGTTGGACA

SEQIDNO751
 TTCGATCGGTGAAGCTTCTTACCAAC

SEQIDNO752
 TACAAAGNAATGCNGTNCCAAAATACATTGAAATAATTGGCAGCCGAATACTAAACTTGATC
 ATGT

SEQIDNO753
 CCCGAATTTCGTCCGCCAAATTGTCGTGCATAGGAACAGAACGAGAGGCCATCAATGCCGTAG
 GGCCTTCGCGTACCATGACCCGAGAAAAACACCGGAAAGGATTCCGTGATTGTT
 CTCGGTGTAGCTACGCCGCA

SEQIDNO754
 TTGGTNTTGNACCTGCNAATGGCNNTACATGGAGCAGGGACGNNAATAAGTGNACGAGTG
 ACCACATGAGGGAG

SEQIDNO755
 CATCTCNCCTCACTTGTAACTGTACGCCACCCTTTCTTGGNTNTGTTCTTANA
 AGTTTCTGGCACCTGCTTTGCTTCTATTATCATCAGCTTCTTCAGGA

SEQIDNO756
 NACACCAATATGCCCAATTGATTCTAGCTTGACNTGTAACAATATTGGATCAACCCATA
 TTATGGAAGTCATGAAAACATGACATCAACTAATTACCATATGGAGANTTATCATAATATGG
 TGCTTCCAAGGAAAATATGTCAAATTGAGAGGGTTCTGTTCAATNGATTCTTATGAC
 ATGCAAACAGATCATCACACAGTCGATGGACATTCNAGATGATGGAGATGACCTTNAAGTC
 AGTGNNTTCAGATATCTCAACNTTCTGATCNGTNCTATGNCTNAAAAACATATCATG
 GNTGATGA

FIGURE 4 (continued)

SEQIDNO757

CTTGGGGCCGTTCTGGNATCCGTCGAAGTAGGGTGTGAAATTCTNTTTCTTCTT
ATTGGGTTCTATTATCGATTNCATGNGATATTTATTCCCTTATTGTGTTGAGTAATNGT
TTCCATGTTGCTGTTGATTCTACCACTATATAACCCCTCCCCAATTACCCTTTGGA
CAGACC

SEQIDNO758

GGTANCTCTNGGNCTGCGAANANGNCTCTNAGCCTNCNAAGCGNGCGAGAGAACGGC
NNACNNAGCTACCGNTTCACCCGNCCGACTAAAANACAACAGNCGCAGACCTACTTGATTC
ANAAGAAAGGNGACGGNTTCGCNAACANGNANNCGGNTTCTATCANAGGTGCNAGGGTTCC
AAACC

SEQIDNO759

CCTNTGGNGTTCTGNNAATTCTGTACACANAAGGGAAAACAAACAAAGGAAGAGCAGCAA
AGTATGAGTAGAGCTCAGTAGCTAGCTATTATGGTNGTGGAA

SEQIDNO760

GNGGCATT CGGANCGATGGATTGGTCTTCATAACATT CATCTTACATTGCAGCATTTC
AGAAG

SEQIDNO761

TCAAAANTANTNNCNTNCTNGNNCTGCACATTGAGCATGTGCTCANAACCTNTNTGTGCT
CNNTNTTCCCCTGAACATAGNAGTATGCAG

SEQIDNO762

TAGNNCCTGAGACNNAGNAAGAACAGACAGACNGTCACTGCAACGCCNNANGAGCATGACNN
GANCGNGGNAC

SEQIDNO763

GGCACAA GTNNAAN NGCCTGTNTCGAAGGTGNGGCAACAAACC

SEQIDNO764

CAACGTAAGGATTCAATTCTGTGTTGTTCATCATTGAAATAATTTTTAGTCT
TGCATTATATGTTGGTTGGT

SEQIDNO765

GGCTTGGGGNNNGCGGGTGNCCACCATGNNATGCATACANTATNCATGTANGNNGCTACANA
GACACATTNGGAATAATGNGTCGGATCGNTAGNNNTGGG

SEQIDNO766

CNCGATTNNATACAACCCGTGAGAAAAGAATGTTAAAAATGACTATCTTTGTAAAGAAC
CCTTCATTCAGGCAATGCAAGGGGGATCACAGTTTACATNGTGGGTGTGGTTATTAA
CGTCACAGTT

SEQIDNO767

ACGATCGATNANGTGGNCTNGNAACATT CANCATACTTACATNGANATNTCANAGGTACN
CAGGNCTCATCANTGGNNAGCCTNTGCTCANCG

SEQIDNO768

FIGURE 4 (continued)

TCGCACACAGTATCATGAGAATNNTGGNCTTGTCACTCCTCAAAAGAACATCCTGTNANAGCATG
G

SEQIDNO769
NTCTACAATNGCATAACANCATCAAGCATAGNCAATCACAAACATGTCATGTANAAGTCCTGA
AATTTCGATGTCAGGACTAAGCTATAAGNACTACTACATGGAAAGCATATATGTGCATTCGT
NGTCCAAGCAT

SEQIDNO770
GAGCCTGCTGGATCTTCTTCTTAGCAAAGAGGAAAGGAAGAAACTAGTCGAAGAGCGCC
CTGGAATCAATAATTCTACTATTACTGCTCTCATTCTCTAAAATGGAAGGAATTGAGTGAA
GAAGAAAAACAAGTGTGGACAACAACAAAGCAGCTGAAGCATAACAAAAGGAAATGGAAGAGTA
CAACAACTCTGTAGCAGAAAAGCAGAACAAACATTAGAAATAGTAGAAATAACTATAATATG
TTCAACTGATTATGTTAACATAGAACATGATTGCTAGTTGAAGTAGTAAATAGGTATCA
TTCCAATTCCCTTGTGTTAGTAGCAG

SEQIDNO771
TCCGNTGCAANCNNCTNCACNCTAGCAANAAACACNNNTCTGGGATTNNAGTCATGCC
ACAANTAGCAGGGCTNAGNCGNCC

SEQIDNO772
GGTTCTNCTNTNNCTGCTGCGCCTGACAGCANTGTGTGGNTCTGNCCTGCACNCNNCNGC
TGTNTACGCGNGAGGNGNAANGNTGNNCCTGNTNNGGAGTCACATGATGACANGNGTNAN
ANNTNGTTNNA

SEQIDNO773
ANGNGCTATATCTCGNNAGAAANACTGCTGCGCAGTGTGNAANAGCGTGNNTTCACGGTAT
GNANGNNNGATNNNACTNTGCAGNAACTNCNA

SEQIDNO774
CTGTTGNTCTTGGNCACATGATGATTGATCAGNTGNNAATNTGTGG

SEQIDNO775
ATAGTAACGTGCCTCTTGTGCTGCNNTCATTNGCTANAGTCAGTGGAGTAACGCGTG
NGCCATTNTNTNGAAGCTGCGG

SEQIDNO776
NTTTATGCCGGAANAAAGNNAGGCAGNATGCAGATGCNGNNACATAACGCTAATATGNGG
ATGAATNAGGACNAGCAGCAGTGAACACTCCTTCCC

SEQIDNO777
NGAGTNAAGGGCCANTCTGAATNTGGCTAATNTGGNTAAANNGNGGGAGTANGCCGNACA
NANTNATTCTGTGGNTGGNNNNNCGTTNA

SEQIDNO778
CTGATATGGGGATTNNAGGGCAAGGGTATGGGNATCATGAAGNTGGTTGCAG

SEQIDNO779
GANNAGGCCTCCCTCCTNCTTGTGATGACANCNATNGAANGAGAAGACTCCTA

FIGURE 4 (continued)

SEQIDNO780

GAAGCATAGCCCNGCGCNGNTNGCGTNAATGAGANCACAGATGGNNCTAAAANATGANTGNT

SEQIDNO781

CCGCCTANTGCCTGTTAAGTCTAGCAACCTCCTCNAGAGTTNGGAATTACAATGGCAGCC

SEQIDNO782

GTANGGCCGAGTNAANGTAGCAGAACTTNGAATGTGGGACNNAGNGTACAANGCGTCNGA
CANNGACTTNGTGTANANN

SEQIDNO783

GGNAGCGCTAGATGANCAAGACACAATTGATATGCAGTCTTAGGAANCTAGAGAGAGANTGT
AGANTANGGTGATGAGCACNTNGG

SEQIDNO784

TATTCNCCTGCGTGACCTAGTAAANATNGATAGGCCTCNANAGGTGGGTTANTNAGGNCTC
ATCAATNCCNAGACCAAATCAGGCAATC

SEQIDNO785

AAGCNGANNGACCTGTNTGCACCTNAATATCNNAGCCAAGGAAGANNGACGNTGGCTGGA
TGANNCAATNCTNNANNAACCANNTACTGNCCN

PRIMERS

SEQIDNO786

CTCGTAGACTGCGTAGT

SEQIDNO787

GATCACTACGCAGTCTAC

SEQIDNO788

GACGATGAGTCCTGAG

SEQIDNO789

TACTCAGGACTCAT

SEQIDNO790

GACTGCGTAGTGATCNNN

SEQIDNO791

GATGAGTCCTGAGTAANN

FIGURE 4 (continued)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
16 October 2003 (16.10.2003)

PCT

(10) International Publication Number
WO 2003/085115 A3

(51) International Patent Classification⁷: C12N 15/82,
G01N 33/53

(21) International Application Number:
PCT/EP2003/003703

(22) International Filing Date: 8 April 2003 (08.04.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
02447062.7 10 April 2002 (10.04.2002) EP
60/396,124 15 July 2002 (15.07.2002) US

(71) Applicant (for all designated States except US):
CROPDESIGN N.V. [BE/BE]; Technologiepark 3,
B-9052 Zwijnaarde (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): INZE, Dirk
[BE/BE]; Driesstraat 18, B-9310 Moorsel-Aalst (BE).
BROEKAERT, Willem [BE/BE]; Kluizenbosstraat 26,
B-1700 Dilbeek (BE).

(74) Common Representative: CROPDESIGN N.V.; Tech-
nologiepark 3, B-9052 Zwijnaarde (BE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
5 August 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2003/085115 A3

(54) Title: IDENTIFICATION AND VALIDATION OF NOVEL TARGETS FOR AGROCHEMICALS

(57) Abstract: The invention relates to a method for identifying and validating plant targets for agrochemicals, comprising the steps of determining gene or protein expression profiles in function of the progression of an essential biological process in a plant, and the subsequent downregulation of expression of said gene or protein in a plant cell. More particularly, the effects of downregulation of the candidate target gene were directly monitored on plants locally infected with a vector mediating viral induced gene suppression in that infected plant area. The invention also relates to isolated plant genes encoding proteins involved in plant growth and development. The invention also relates to plants tolerant to agrochemicals such as herbicides or pesticides.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 03/03703

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/82 G01N33/53

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, MEDLINE, EMBL

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6 369 296 B1 (BAULCOMBE DAVID CHARLES ET AL) 9 April 2002 (2002-04-09) the whole document -----	1-8
Y	BREYNE PETER ET AL: "Genome-wide expression analysis of plant cell cycle modulated genes." CURRENT OPINION IN PLANT BIOLOGY, vol. 4, no. 2, April 2001 (2001-04), pages 136-142, XP002210256 ISSN: 1369-5266 cited in the application the whole document -----	1-8
A	WO 01 07601 A (KUMAGAI MONTO H ; DELLA CIOPPA GUY (US); LARGE SCALE BIOLOGY CORP () 1 February 2001 (2001-02-01) the whole document ----- - / --	1-8

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"V" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

27.10.2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Bucka, A.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/03703

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 01 94603 A (ROBERTSON DOMINIQUE ; TURNAGE MICHAEL A (US); UNIV NORTH CAROLINA () 13 December 2001 (2001-12-13) the whole document -----	1-8
A	WESLEY S VARSHA ET AL: "Construct design for efficient, effective and high-throughput gene silencing in plants" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 27, no. 6, September 2001 (2001-09), pages 581-590, XP002187670 ISSN: 0960-7412 the whole document -----	1-8

INTERNATIONAL SEARCH REPORT

International application No.
PCT/EP 03/03703

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

See Invention 1.

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: claims 1 to 8

a method for identifying and validating plant targets for agrochemicals

Inventions 2 to 786: claims 9 to 16 (all partially)

each invention comprises the use of one nucleic acid selected from the group of SEQ ID NO: 1-785 as a target for a herbicide or pesticide,
a method of screening candidate agrochemical compounds using said nucleic acid,
the use of said nucleic acid to produce agrochemical resistant plants,
the corresponding isolated nucleic acid

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/03703

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 6369296	B1	09-04-2002	NONE		
WO 0107601	A	01-02-2001	US 6303848 B1 AU 6238100 A BR 0012685 A CA 2380363 A1 EP 1196556 A2 JP 2003505079 T WO 0107601 A2 US 2002069429 A1	16-10-2001 13-02-2001 16-04-2002 01-02-2001 17-04-2002 12-02-2003 01-02-2001 06-06-2002	
WO 0194603	A	13-12-2001	AU 7535001 A CA 2410490 A1 EP 1287150 A2 WO 0194603 A2 US 2002148005 A1	17-12-2001 13-12-2001 05-03-2003 13-12-2001 10-10-2002	