Contents

1.	Introduction					
	1.1.	Purpos	e of the Thesis	3		
	1.2.	Scope	of the Thesis	3		
	1.3.	Structu	are of the Thesis	3		
2.	Kub	Kubernetes and CNI Basics				
	2.1.	1. Kubernetes Architecture				
	2.2.	2. Introduction to Container Network Interface				
	2.3.	Overvi	ew of selected CNI Plugins	5		
3.	Traffic Engineering in Kubernetes					
	3.1.	1. The Concept of Traffic Engineering				
	3.2.	Network Traffic Management in Kubernetes				
	3.3.	Ingress and Egress Traffic Management in Kubernetes				
4.	Ingress and Egress Scenarios in Traffic Engineering					
	4.1.	Egress Scenario: Filtering Outgoing Traffic via Egress Gateway				
		4.1.1.	Traffic Filtering for Subnets	11		
		4.1.2.	The impact of Gateway Policy size on node resources usage	11		
		4.1.3.	Egress Gateway Implementation in Selected CNI Plugins	11		
	4.2.	Ingress	S Scenario: Splitting Incoming Traffic via API Gateway	11		
		4.2.1.	Proportional Traffic Splitting	12		
		4.2.2.	The impact of Gateway Policy size on node resources usage	12		
		4.2.3.	Traffic Duplication to a Packet Analyzer	12		
	4.3.	Implen	nentation in Selected CNI Plugins	12		
5.	Implementing Egress and Ingress Scenarios Using Selected CNI Plugins					
5.1. Tools and Automation			and Automation	13		
		5.1.1.	Ansible	14		
		5.1.2.	Kind	14		

		5.1.3.	Terraform	14		
	5.2.	5.2. Configuration				
		5.2.1.	Local Environment	15		
		5.2.2.	Cloud Environment	15		
	5.3.	Comparison of Egress Gateway Implementation				
		5.3.1.	Antrea	15		
		5.3.2.	Cilium	15		
	5.4. Deployment and Configuration Examples					
6. Egress Scenario Comparison				17		
	6.1.	Resource Utilization				
	6.2.	2. Throughput				
	6.3.	. Round Trip Time				
7. Ingress Scenario Comparison				20		
	7.1. Resource Utilization					
	7.2. Traffic Splitting					
		7.2.1.	Virtual Users	21		
		7.2.2.	Time Window	21		
8.	eBP	eBPF in Traffic Engineering				
	8.1.	3.1. The Concept of Traffic Engineering				
	8.2.	Network Traffic Management in Kubernetes				
	8.3.	Ingress and Egress Traffic Management in Kubernetes				

1. Introduction

IŁTEX jest systemem składu umożliwiającym tworzenie dowolnego typu dokumentów (w szczególności naukowych i technicznych) o wysokiej jakości typograficznej ([Dil00], [Lam92]). Wysoka jakość składu jest niezależna od rozmiaru dokumentu – zaczynając od krótkich listów do bardzo grubych książek. LŁTEX automatyzuje wiele prac związanych ze składaniem dokumentów np.: referencje, cytowania, generowanie spisów (treśli, rysunków, symboli itp.) itd.

IŁTEX jest zestawem instrukcji umożliwiających autorom skład i wydruk ich prac na najwyższym poziomie typograficznym. Do formatowania dokumentu IŁTEX stosuje TEXa (wymiawamy 'tech' – greckie litery τ , ϵ , χ). Korzystając z systemu składu IŁTEX mamy za zadanie przygotować jedynie tekst źródłowy, cały ciężar składania, formatowania dokumentu przejmuje na siebie system.

1.1. Purpose of the Thesis

Celem poniższej pracy jest zapoznanie studentów z systemem LATEX w zakresie umożliwiającym im samodzielne, profesjonalne złożenie pracy dyplomowej w systemie LATEX.

1.2. Scope of the Thesis

Celem poniższej pracy jest zapoznanie studentów z systemem LATEX w zakresie umożliwiającym im samodzielne, profesjonalne złożenie pracy dyplomowej w systemie LATEX.

1.3. Structure of the Thesis

W rodziale ?? przedstawiono podstawowe informacje dotyczące struktury dokumentów w LATEXu. Alvis [Szp11] jest językiem

2. Kubernetes and CNI Basics

W rozdziale tym przedstawiono podstawowe informacje dotyczące struktury prostych plików L^ATEXa. Omówiono również metody kompilacji plików z zastosowaniem programów *latex* oraz *pdflatex*.

2.1. Kubernetes Architecture

Plik LaTeXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- 1. Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
% ąśężźćńłóĘŚĄŻŹĆŃÓŁ

\end{document}
```

Nie ma żadnych przeciwskazań do tworzenia dokumentów w L^AT_EXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po

kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

2.2. Introduction to Container Network Interface

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test. tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi -o test.ps
ps2pdf test.ps
lub za pomocą PDFLATEX:
pdflatex test.tex
```

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., LATEX tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

2.3. Overview of selected CNI Plugins

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. Emacs, mają wbudowane moduły ułatwiające składanie tekstów w La-TeXu (kolorowanie składni, skrypty kompilacji, itp.).

Jednym z bardziej znanych środowisk do składania dokumentów Late z jest Kile. Aplikacja dostępna jest dla środowiska KDE począwszy od wersji 2. Zawiera edytor z podświetlaną składnią, zestawy poleceń Late za, zestawy symboli matematycznych, kreatory tabel, macierzy, skrypty kompilujące i konwertujące podpięte są do poleceń w menu aplikacji (i pasków narzędziowych), dostępne jest sprawdzanie pisowni, edytor obsługuje projekty (tzn. dokumenty składające się z wielu plików), umożliwia przygotowanie i zarządzanie bibliografią, itp.

Na stronie http://kile.sourceforge.net/screenshots.php zamieszczono kilkanaście zrzutów ekranu środowiska *Kile*, które warto przejrzeć, by wstępnie zapoznać się z możliwościami programu.

- Edit shortcuts definiowanie własnych klawiszy skrótu;
- Line Tools dodatkowe operacje na liniach tekstu;
- Multi-edit możliwość jednoczesnej edycji w wielu miejscach tekstu;
- Zoom zmiana wielkości czcionki edytora z użyciem rolki myszy;
- Split View możliwość podziału okna edytora na 2 części.

3. Traffic Engineering in Kubernetes

W rozdziale tym przedstawiono podstawowe informacje dotyczące struktury prostych plików L^ATEXa. Omówiono również metody kompilacji plików z zastosowaniem programów *latex* oraz *pdflatex*.

3.1. The Concept of Traffic Engineering

Plik LaTeXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
% ąśężźćńłóĘŚĄŻŹĆŃOŁ
\end{document}
```

Nie ma żadnych przeciwskazań do tworzenia dokumentów w LAT_EXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po

kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

3.2. Network Traffic Management in Kubernetes

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test. tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi -o test.ps
ps2pdf test.ps
lub za pomocą PDFLATEX:
pdflatex test.tex
```

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., LATEX tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

3.3. Ingress and Egress Traffic Management in Kubernetes

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. Emacs, mają wbudowane moduły ułatwiające składanie tekstów w La-TeXu (kolorowanie składni, skrypty kompilacji, itp.).

Jednym z bardziej znanych środowisk do składania dokumentów Late z jest Kile. Aplikacja dostępna jest dla środowiska KDE począwszy od wersji 2. Zawiera edytor z podświetlaną składnią, zestawy poleceń Late za, zestawy symboli matematycznych, kreatory tabel, macierzy, skrypty kompilujące i konwertujące podpięte są do poleceń w menu aplikacji (i pasków narzędziowych), dostępne jest sprawdzanie pisowni, edytor obsługuje projekty (tzn. dokumenty składające się z wielu plików), umożliwia przygotowanie i zarządzanie bibliografią, itp.

Na stronie http://kile.sourceforge.net/screenshots.php zamieszczono kilkanaście zrzutów ekranu środowiska *Kile*, które warto przejrzeć, by wstępnie zapoznać się z możliwościami programu.

- Edit shortcuts definiowanie własnych klawiszy skrótu;
- Line Tools dodatkowe operacje na liniach tekstu;
- Multi-edit możliwość jednoczesnej edycji w wielu miejscach tekstu;
- Zoom zmiana wielkości czcionki edytora z użyciem rolki myszy;
- Split View możliwość podziału okna edytora na 2 części.

4. Ingress and Egress Scenarios in Traffic Engineering

W rozdziale tym przedstawiono podstawowe informacje dotyczące struktury prostych plików L^ATEXa. Omówiono również metody kompilacji plików z zastosowaniem programów *latex* oraz *pdflatex*.

4.1. Egress Scenario: Filtering Outgoing Traffic via Egress Gateway

Plik LaTeXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
% ąśężźćńłóĘŚĄŻŹĆŃÓŁ

\end{document}
```

Nie ma żadnych przeciwskazań do tworzenia dokumentów w LATEXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

4.1.1. Traffic Filtering for Subnets

4.1.2. The impact of Gateway Policy size on node resources usage

4.1.3. Egress Gateway Implementation in Selected CNI Plugins

4.2. Ingress Scenario: Splitting Incoming Traffic via API Gateway

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test. tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi -o test.ps
ps2pdf test.ps
lub za pomocą PDFLATEX:
```

pdflatex test.tex

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., Łateż tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

4.2.1. Proportional Traffic Splitting

4.2.2. The impact of Gateway Policy size on node resources usage

4.2.3. Traffic Duplication to a Packet Analyzer

4.3. Implementation in Selected CNI Plugins

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. Emacs, mają wbudowane moduły ułatwiające składanie tekstów w La-TeXu (kolorowanie składni, skrypty kompilacji, itp.).

Jednym z bardziej znanych środowisk do składania dokumentów LATEXa jest *Kile*. Aplikacja dostępna jest dla środowiska KDE począwszy od wersji 2. Zawiera edytor z podświetlaną składnią, zestawy poleceń LATEXa, zestawy symboli matematycznych, kreatory tabel, macierzy, skrypty kompilujące i konwertujące podpięte są do poleceń w menu aplikacji (i pasków narzędziowych), dostępne jest sprawdzanie pisowni, edytor obsługuje projekty (tzn. dokumenty składające się z wielu plików), umożliwia przygotowanie i zarządzanie bibliografią, itp.

Na stronie http://kile.sourceforge.net/screenshots.php zamieszczono kilkanaście zrzutów ekranu środowiska *Kile*, które warto przejrzeć, by wstępnie zapoznać się z możliwościami programu.

- Edit shortcuts definiowanie własnych klawiszy skrótu;
- Line Tools dodatkowe operacje na liniach tekstu;
- Multi-edit możliwość jednoczesnej edycji w wielu miejscach tekstu;
- Zoom zmiana wielkości czcionki edytora z użyciem rolki myszy;
- Split View możliwość podziału okna edytora na 2 części.

5. Implementing Egress and Ingress Scenarios Using Selected CNI Plugins

W rozdziale tym przedstawiono podstawowe informacje dotyczące struktury prostych plików IŁTEXa. Omówiono również metody kompilacji plików z zastosowaniem programów latex oraz pdflatex.

5.1. Tools and Automation

Plik LaTeXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- 1. Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
% ąśężźćńłóĘŚĄŻŹĆŃÓŁ

\end{document}
```

5.2. Configuration 14

Nie ma żadnych przeciwskazań do tworzenia dokumentów w LATEXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

5.1.1. Ansible

5.1.2. Kind

5.1.3. Terraform

5.2. Configuration

Plik LaTeXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- 1. Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
% ąśężźćńłóĘŚĄŻŹĆŃÓŁ

\end{document}
```

Nie ma żadnych przeciwskazań do tworzenia dokumentów w LATEXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

5.2.1. Local Environment

5.2.2. Cloud Environment

5.3. Comparison of Egress Gateway Implementation

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test.tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi -o test.ps
ps2pdf test.ps
lub za pomocą PDFETEX:
pdflatex test.tex
```

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., ŁATEX tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

5.3.1. Antrea

5.3.2. Cilium

5.4. Deployment and Configuration Examples

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. Emacs, mają wbudowane moduły ułatwiające składanie tekstów w La-TeXu (kolorowanie składni, skrypty kompilacji, itp.).

Jednym z bardziej znanych środowisk do składania dokumentów Late jest Kile. Aplikacja dostępna jest dla środowiska KDE począwszy od wersji 2. Zawiera edytor z podświetlaną składnią, zestawy poleceń Late za zestawy symboli matematycznych, kreatory tabel, macierzy, skrypty kompilujące i konwertujące podpięte są do poleceń w menu aplikacji (i pasków narzędziowych), dostępne jest sprawdzanie pisowni, edytor obsługuje projekty (tzn. dokumenty składające się z wielu plików), umożliwia przygotowanie i zarządzanie bibliografią, itp.

Na stronie http://kile.sourceforge.net/screenshots.php zamieszczono kilkanaście zrzutów ekranu środowiska *Kile*, które warto przejrzeć, by wstępnie zapoznać się z możliwościami programu.

- Edit shortcuts definiowanie własnych klawiszy skrótu;
- Line Tools dodatkowe operacje na liniach tekstu;
- Multi-edit możliwość jednoczesnej edycji w wielu miejscach tekstu;
- Zoom zmiana wielkości czcionki edytora z użyciem rolki myszy;
- Split View możliwość podziału okna edytora na 2 części.

6. Egress Scenario Comparison

W rozdziale tym przedstawiono podstawowe informacje dotyczące struktury prostych plików L^ATEXa. Omówiono również metody kompilacji plików z zastosowaniem programów *latex* oraz *pdflatex*.

6.1. Resource Utilization

Plik LaTeXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
% ąśężźćńłóĘŚĄŻŹĆŃÓŁ

\end{document}
```

Nie ma żadnych przeciwskazań do tworzenia dokumentów w LAT_EXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po

6.2. Throughput 18

kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

6.2. Throughput

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test.tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi -o test.ps
ps2pdf test.ps
lub za pomocą PDFLATEX:
pdflatex test.tex
```

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., LATEX tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

6.3. Round Trip Time

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. Emacs, mają wbudowane moduły ułatwiające składanie tekstów w La-TeXu (kolorowanie składni, skrypty kompilacji, itp.).

Jednym z bardziej znanych środowisk do składania dokumentów Latexa jest *Kile*. Aplikacja dostępna jest dla środowiska KDE począwszy od wersji 2. Zawiera edytor z podświetlaną składnią, zestawy poleceń Latexa, zestawy symboli matematycznych, kreatory tabel, macierzy, skrypty kompilujące i konwertujące podpięte są do poleceń w menu aplikacji (i pasków narzędziowych), dostępne jest sprawdzanie pisowni, edytor obsługuje projekty (tzn. dokumenty składające się z wielu plików), umożliwia przygotowanie i zarządzanie bibliografią, itp.

Na stronie http://kile.sourceforge.net/screenshots.php zamieszczono kilkanaście zrzutów ekranu środowiska *Kile*, które warto przejrzeć, by wstępnie zapoznać się z możliwościami programu.

6.3. Round Trip Time

- Edit shortcuts definiowanie własnych klawiszy skrótu;
- Line Tools dodatkowe operacje na liniach tekstu;
- Multi-edit możliwość jednoczesnej edycji w wielu miejscach tekstu;
- Zoom zmiana wielkości czcionki edytora z użyciem rolki myszy;
- Split View możliwość podziału okna edytora na 2 części.

7. Ingress Scenario Comparison

W rozdziale tym przedstawiono podstawowe informacje dotyczące struktury prostych plików L^ATEXa. Omówiono również metody kompilacji plików z zastosowaniem programów *latex* oraz *pdflatex*.

7.1. Resource Utilization

Plik LATEXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
% ąśężźćńłóĘŚĄŻŹĆŃÓŁ

\end{document}
```

Nie ma żadnych przeciwskazań do tworzenia dokumentów w LAT_EXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po

7.2. Traffic Splitting 21

kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

7.2. Traffic Splitting

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test. tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi -o test.ps
ps2pdf test.ps
lub za pomocą PDFLATEX:
pdflatex test.tex
```

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., LATEX tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

7.2.1. Virtual Users

7.2.2. Time Window

8. eBPF in Traffic Engineering

W rozdziale tym przedstawiono podstawowe informacje dotyczące struktury prostych plików IŁTEXa. Omówiono również metody kompilacji plików z zastosowaniem programów latex oraz pdflatex.

8.1. The Concept of Traffic Engineering

Plik LaTeXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
% ąśężźćńłóĘŚĄŻŹĆŃÓŁ

\end{document}
```

Nie ma żadnych przeciwskazań do tworzenia dokumentów w L^AT_EXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po

kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

8.2. Network Traffic Management in Kubernetes

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test. tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi -o test.ps
ps2pdf test.ps
lub za pomocą PDFLATEX:
pdflatex test.tex
```

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., LATEX tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

8.3. Ingress and Egress Traffic Management in Kubernetes

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. Emacs, mają wbudowane moduły ułatwiające składanie tekstów w La-TeXu (kolorowanie składni, skrypty kompilacji, itp.).

Jednym z bardziej znanych środowisk do składania dokumentów Late z jest Kile. Aplikacja dostępna jest dla środowiska KDE począwszy od wersji 2. Zawiera edytor z podświetlaną składnią, zestawy poleceń Late za, zestawy symboli matematycznych, kreatory tabel, macierzy, skrypty kompilujące i konwertujące podpięte są do poleceń w menu aplikacji (i pasków narzędziowych), dostępne jest sprawdzanie pisowni, edytor obsługuje projekty (tzn. dokumenty składające się z wielu plików), umożliwia przygotowanie i zarządzanie bibliografią, itp.

Na stronie http://kile.sourceforge.net/screenshots.php zamieszczono kilkanaście zrzutów ekranu środowiska *Kile*, które warto przejrzeć, by wstępnie zapoznać się z możliwościami programu.

- Edit shortcuts definiowanie własnych klawiszy skrótu;
- Line Tools dodatkowe operacje na liniach tekstu;
- Multi-edit możliwość jednoczesnej edycji w wielu miejscach tekstu;
- Zoom zmiana wielkości czcionki edytora z użyciem rolki myszy;
- Split View możliwość podziału okna edytora na 2 części.

Bibliography

- [Dil00] A. Diller. LaTeX wiersz po wierszu. Wydawnictwo Helion, Gliwice, 2000.
- [Lam92] L. Lamport. *LaTeX system przygotowywania dokumentów*. Wydawnictwo Ariel, Krakow, 1992.
- [Szp11] M. Szpyrka. *On Line Alvis Manual*. AGH University of Science and Technology, 2011.

http://fm.ia.agh.edu.pl/alvis:manual.