Face poset and Grothendieck-Tutte polynomial of matroids over a domain

Alessio Borzì
(joint work with Ivan Martino)

Algebra meets combinatorics in Neuchatel 17 July 2019

Matroids

A (classical) matroid M is a pair (E,\mathcal{I}) where E is a finite set, called the ground set, and \mathcal{I} is a family of subsets of E, called independent sets, such that

- $\bullet \emptyset \in \mathcal{I}.$

Motivating example

Let V be a vector space over a field k and set $E=\{v_1,\ldots,v_n\}\subseteq V$. If $\mathcal{I}=\{\text{linear independent subsets of }E\}$

then (E,\mathcal{I}) is a matroid.

Motivating example

Let V be a vector space over a field k and set $E = \{v_1, \ldots, v_n\} \subset V$. If

$$\mathcal{I} = \{ \text{linear independent subsets of } E \}$$

then (E,\mathcal{I}) is a matroid.

If a matroid M can be realized from a set of vectors in a vector space, then M is said realizable (or representable).

Rank and corank

If $M=(E,\mathcal{I})$ is a matroid, for every $A\subseteq E$, the rank of A, denoted by $\mathrm{rk}(A)$, is the cardinality of a maximal independent set contained in A.

Rank and corank

If $M=(E,\mathcal{I})$ is a matroid, for every $A\subseteq E$, the rank of A, denoted by $\mathrm{rk}(A)$, is the cardinality of a maximal independent set contained in A.

The corank of $A \subseteq E$ is $\operatorname{cork}(A) = \operatorname{rk}(E) - \operatorname{rk}(A)$.

Since their introduction, new definitions of matroids have appeared. For instance *arithmetic matroids*, *valuated matroids*, *oriented matroids*...

Fink-Moci matroids over a ring

A matroid over a commutative ring ${\cal R}$ on the ground set ${\cal E}$ is a function

$$\mathcal{M}: 2^E \to \{\text{f.g. } R\text{-modules}\}$$

such that for every $A\subseteq E$, $a,b\in E\setminus A$ there exist $x,y\in \mathcal{M}(A)$ such that

$$\mathcal{M}(A \cup \{b\}) \simeq \mathcal{M}(A)/(x)$$
$$\mathcal{M}(A \cup \{c\}) \simeq \mathcal{M}(A)/(y)$$
$$\mathcal{M}(A \cup \{b, c\}) \simeq \mathcal{M}(A)/(x, y)$$

$$\mathcal{M}(A) \xrightarrow{/(x)} \mathcal{M}(A \cup \{a\})$$

$$\downarrow/(y) \qquad \qquad \downarrow/(\overline{y})$$

$$\mathcal{M}(A \cup \{b\}) \xrightarrow{/(\overline{x})} \mathcal{M}(A \cup \{a,b\})$$

Example of matroid over $\mathbb Z$

Set
$$R = \mathbb{Z}$$
, $E = \{1, 2\}$

$$\mathcal{M}(\emptyset) \longrightarrow \mathcal{M}(1) \qquad \mathbb{Z}^2 \longrightarrow \mathbb{Z} \oplus \mathbb{Z}/(2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}(2) \longrightarrow \mathcal{M}(12) \qquad \mathbb{Z} \longrightarrow \mathbb{Z}/(2)$$

in this case $x = (2,0), y = (0,1) \in \mathcal{M}(\emptyset) = \mathbb{Z}^2$.

Realizable matroids over R

A matroid ${\mathcal M}$ over R on the gruond set E is realizable if there exists

$$\varphi: E \to \mathcal{M}(\emptyset) \quad \text{such that} \quad \mathcal{M}(A) = \mathcal{M}(\emptyset)/(\varphi(i): i \in A).$$

The map φ is a realization of \mathcal{M} .

Direct sum and tensor product

Let \mathcal{M},\mathcal{M}' be two matroids over R on respective ground sets E and E', their direct sum is a matroid on the ground set $E \amalg E'$ defined by

$$(\mathcal{M} \oplus \mathcal{M}')(A \coprod A') = \mathcal{M}(A) \oplus \mathcal{M}'(A').$$

Direct sum and tensor product

Let \mathcal{M},\mathcal{M}' be two matroids over R on respective ground sets E and E', their direct sum is a matroid on the ground set $E \coprod E'$ defined by

$$(\mathcal{M} \oplus \mathcal{M}')(A \coprod A') = \mathcal{M}(A) \oplus \mathcal{M}'(A').$$

If $R \to S$ is a ring homomorphism, then the function

$$(\mathcal{M} \otimes_R S)(A) = \mathcal{M}(A) \otimes_R S$$

is a matroid over S.

Essential and empty matroids

The empty (projective) matroid for a (projective) R-module N is a matroid on the ground set \emptyset which maps \emptyset to N.

A matroid $\mathcal M$ over R is essential if no nontrivial projective module is a direct summand of $\mathcal M(E)$.

Every matroid ${\mathcal M}$ is a direct sum of an essential matroid and an empty projective matroid

$$\mathcal{M} = \mathcal{M}_E \oplus \mathcal{M}_P$$

If R is a domain, $\mathcal{M}_E \otimes Q(R)$ is the generic matroid of \mathcal{M} .

Proposition (Fink-Moci, 2018)

If M is an essential matroid over a field k, then the function

$$\operatorname{cork}: 2^E \to \mathbb{N}$$
 defined by $\operatorname{cork}(A) = \dim_k \mathcal{M}(A)$

is the corank of a (classical) matroid.

Proposition (Fink-Moci, 2018)

If M is an essential matroid over a field k, then the function

$$\operatorname{cork}: 2^E \to \mathbb{N}$$
 defined by $\operatorname{cork}(A) = \dim_k \mathcal{M}(A)$

is the corank of a (classical) matroid.

If R is a domain, the generic matroid $\mathcal{M}_E\otimes Q(R)$ is a matroid over the field Q(R), we denote by $\Delta\mathcal{M}$ the associated family of independent sets.

More generally, let \mathcal{M} be an essential matroid over R.

If R is a field — then $\mathcal M$ is associated to a *classical* matroid If R is $\mathbb Z$ — then $\mathcal M$ is associated to a *quasi-arithmetic* matroid If R is a DVR — then $\mathcal M$ is associated to a *valuated* matroid

Tutte polynomial

Let M be a classical matroid, the Tutte polynomial of M is

$$T_M(x,y) = \sum_{A \subset E} (x-1)^{\text{rk}(E)-\text{rk}(A)} (y-1)^{|A|-\text{rk}(A)}$$

Dual matroid, deletion and contraction

Let M be a (classical matroid). The maximal independent sets are the bases of M. The dual of M is the matroid M^* with bases equal to the complements of the bases of M.

Dual matroid, deletion and contraction

Let M be a (classical matroid). The maximal independent sets are the bases of M. The dual of M is the matroid M^* with bases equal to the complements of the bases of M.

If $i \in E$, the deletion of M by i is the matroid $M \setminus i$ constituted by all the independent sets contained in $E \setminus \{i\}$. The contraction of M by i is the matroid $M/i = (M^* \setminus i)^*$.

Dual matroid, deletion and contraction

Let M be a (classical matroid). The maximal independent sets are the bases of M. The dual of M is the matroid M^* with bases equal to the complements of the bases of M.

If $i \in E$, the deletion of M by i is the matroid $M \setminus i$ constituted by all the independent sets contained in $E \setminus \{i\}$. The contraction of M by i is the matroid $M/i = (M^* \setminus i)^*$.

A loop in M is an element $i \in E$ such that $\{i\}$ is a dependent set. A coloop is an element $i \in E$ that is a loop in M^* .

Deletion-Contraction property

Theorem (Deletion-Contraction property)

$$T_M(x,y) = \begin{cases} y T_{M\backslash i}(x,y) & \text{if i is a loop} \\ x T_{M/i}(x,y) & \text{if i is a coloop} \\ T_{M\backslash i}(x,y) + T_{M/i}/(x,y) & \text{otherwise} \end{cases}$$

Deletion-Contraction property

Theorem (Deletion-Contraction property)

$$T_M(x,y) = \begin{cases} y T_{M\backslash i}(x,y) & \text{if i is a loop} \\ x T_{M/i}(x,y) & \text{if i is a coloop} \\ T_{M\backslash i}(x,y) + T_{M/i}/(x,y) & \text{otherwise} \end{cases}$$

In addition, every function defined on matroids that satisfy the previous property can be obtained as a specialization of the Tutte polynomial.

Hilbert series of the face ring

The independent sets of a matroid M constitute a simplicial complex. If k[M] denote the *Stanley-Reisner* ring of M, H(k[M],t) is the Hilbert series of k[M] and $r=\mathrm{rk}(E)$, then

Theorem (Björner's Appendix of De Concini-Procesi, 2008)

$$H(k[M],t) = \frac{t^r}{(1-t)^r} T_M(1/t,1)$$

Grothendieck style ring

Let R be a domain. If N is a finitely generated R-module, denote with [N] the isomorphism class of N. Let $L_0(R$ -mod) be the commutative ring with a \mathbb{Z} -linear basis $\{[N]: N \text{ f.g. } R\text{-modules}\}$, and product given by $[N]\cdot[N']=[N\oplus N']$.

Grothendieck style ring

Let R be a domain. If N is a finitely generated R-module, denote with [N] the isomorphism class of N. Let $L_0(R$ -mod) be the commutative ring with a \mathbb{Z} -linear basis $\{[N]: N \text{ f.g. } R\text{-modules}\}$, and product given by $[N]\cdot[N']=[N\oplus N']$.

Let $\mathcal M$ be a matroid over R, we indicate with $\operatorname{tor}(A)$ the torsion submodule of $\mathcal M(A)$. Denote with \vee the controvariant functor $\operatorname{Hom}(-,Q(R)/R)$.

Grothendieck-Tutte polynomial for a matroid over a domain

Let \mathcal{M} be a matroid a domain R. The Grothendieck-Tutte polynomial of \mathcal{M} is

$$T_{\mathcal{M}}(x,y) = \sum_{A \subset E} [\operatorname{tor}(A)^{\vee}](x-1)^{\operatorname{rk}(E) - \operatorname{rk}(A)} (y-1)^{|A| - \operatorname{rk}(A)}$$

here the rank function rk is of the generic matroid $\mathcal{M}_E \otimes Q(R)$.

Grothendieck-Tutte polynomial for a matroid over a domain

Let $\mathcal M$ be a matroid a domain R. The Grothendieck-Tutte polynomial of $\mathcal M$ is

$$T_{\mathcal{M}}(x,y) = \sum_{A \subset E} [\operatorname{tor}(A)^{\vee}](x-1)^{\operatorname{rk}(E) - \operatorname{rk}(A)} (y-1)^{|A| - \operatorname{rk}(A)}$$

here the rank function rk is of the generic matroid $\mathcal{M}_E \otimes Q(R)$.

This polynomial is a bit more explicit and general than the polynomial defined by Fink-Moci and generalizes as well the multiplicity polynomial defined by Moci for arithmetic matroids.

Deletion Contraction for matroids over a ring

If \mathcal{M} is a matroid over R and $i \in E$, then

$$(\mathcal{M} \setminus i)(A) = \mathcal{M}(A)$$
$$(\mathcal{M}/i)(A) = \mathcal{M}(A \cup \{i\})$$

Deletion Contraction for matroids over a ring

If \mathcal{M} is a matroid over R and $i \in E$, then

$$(\mathcal{M} \setminus i)(A) = \mathcal{M}(A)$$
$$(\mathcal{M}/i)(A) = \mathcal{M}(A \cup \{i\})$$

Theorem (B.-Martino, 2019)

If \mathcal{M} is a matroid over a domain R such that $\mathcal{M}(\emptyset)$ is torsion-free and $\mathcal{M}(E)=0$, then

$$T_{\mathcal{M}}(x,y) = \begin{cases} yT_{\mathcal{M}\backslash i}(x,y) & \text{if i is a loop,} \\ xT_{\mathcal{M}/i}(x,y) & \text{if i is a coloop,} \\ T_{\mathcal{M}\backslash i}(x,y) + T_{\mathcal{M}/i}(x,y) & \text{otherwise.} \end{cases}$$

Poset of torsions

Let \mathcal{M} be a *realizable* matroid ovar a domain R with a fixed realization $\psi: E \to \mathcal{M}(\emptyset)$. The poset of torsions (or face poset) of \mathcal{M} is

$$\operatorname{Gr} \mathcal{M} = \{(A, l) : A \in \Delta \mathcal{M}, l \in \operatorname{tor}(A)^{\vee} \}.$$

(recall that $\Delta\mathcal{M}$ is the family of independent sets of the generic matroid of \mathcal{M})

Let $A \cup \{b\} \in \Delta \mathcal{M}$, with $b \notin A$, consider the quotient map

$$\overline{\pi_{A,b}}: \mathcal{M}(A) \twoheadrightarrow \mathcal{M}(A \cup \{b\}) \simeq \mathcal{M}(A)/(\psi(b))$$

consider its restriction to tor(A)

$$\pi_{A,b}: \operatorname{tor}(A) \twoheadrightarrow \operatorname{tor}(A \cup \{b\})$$

and finally apply the controvariant functor \lor

$$\pi_{A,b}^{\vee}: \operatorname{tor}(A \cup \{b\})^{\vee} \to \operatorname{tor}(A)^{\vee}$$

Recall that if P is a poset, b covers a, denoted with $a \triangleleft b$, if a < b and $\nexists c : a < c < b$.

If
$$(A, l), (A \cup \{b\}, h) \in \operatorname{Gr} \mathcal{M}$$
 then we set

$$(A,l) \triangleleft (A \cup \{b\},h) \stackrel{\mathsf{def}}{\Longleftrightarrow} \pi_{A,b}^{\vee}(h) = l.$$

Example of poset of torsions

Let $R = \mathbb{Z}$, $E = \{1, 2\}$, consider the (realizable) matroid

$$\mathcal{M}(\emptyset) \longrightarrow \mathcal{M}(1) \qquad \mathbb{Z}^2 \longrightarrow \mathbb{Z} \oplus \mathbb{Z}/(2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{M}(2) \longrightarrow \mathcal{M}(12) \qquad \mathbb{Z} \longrightarrow \mathbb{Z}/(2)$$

fix the realization $\psi: 2^E \to \mathbb{Z}^2$ defined by $\psi(1) = (2,0), \psi(2) = (0,1)$. The poset of torsions of \mathcal{M} is

Example of infinite poset of torsions

$$\mathcal{M}(\emptyset) \longrightarrow \mathcal{M}(1) \qquad \mathbb{Z}[x]^2 \longrightarrow \mathbb{Z}[x] \oplus \mathbb{Z}$$

$$\downarrow \qquad \downarrow$$

$$\mathcal{M}(2) \longrightarrow \mathcal{M}(12) \qquad \mathbb{Z}[x] \longrightarrow \mathbb{Z}$$

Realized by $\psi(1) = (x, 0), \ \psi(2) = (0, 1).$

Simplicial posets

Recall that a Boolean lattice P is a distributive lattice, that has a maximum $\hat{1}$ and a minimum $\hat{0}$, in which for every element $a \in P$ there exists a complement $a' \in P$ such that $a \vee a' = \hat{1}$ and $a \wedge a' = \hat{0}$. The rank of P is the length of any maximal chain in P.

A poset P is a simplicial poset if it has a minimum $\hat{0}$ and for every $a \in P$ the segment $[\hat{0},a]=\{b \in P: \hat{0} \leq b \leq a\}$ is a Boolean lattice. The rank of an element $a \in P$ is the rank of $[\hat{0},a]$ as a Boolean lattice.

Theorem (B.-Martino, 2019)

If $\mathcal M$ is a realizable matroid over a domain R such that $\mathcal M(\emptyset)$ is torsion-free, then $\operatorname{Gr} \mathcal M$ is a simplicial poset.

Theorem (B.-Martino, 2019)

If \mathcal{M} is a realizable matroid over a domain R such that $\mathcal{M}(\emptyset)$ is torsion-free, then $\operatorname{Gr} \mathcal{M}$ is a simplicial poset.

Recall that, if P is a poset and $a \in P$, then $\mathrm{link}\, a = \{b \in P : a \leq b\}.$

Theorem (B.-Martino, 2019)

If \mathcal{M} is a realizable matroid over a domain R, then $\operatorname{Gr} \mathcal{M}$ is a disjoint union of simplicial posets isomorphic to $\operatorname{link}(\emptyset, e)$.

Face ring of a simplicial poset

Let P be a simplicial poset. If $a,b\in P$, denote with M(a,b) the set of *minimal* upper bounds of $\{a,b\}$. The face ideal of P in the polynomial ring $k[x_a:a\in P]$ is

$$I_P = \left(x_{\hat{0}} - 1, \ x_a x_b - x_{a \wedge b} \left(\sum_{c \in M(a,b)} x_c\right) : a, b \in P\right)$$

where $x_{a \wedge b} = 0$ if $a \wedge b$ does not exists, and $\sum_{c \in M(a,b)} x_c = 0$ if $M(a,b) = \emptyset$. The face ring of P is the quotient

$$k[P] = \frac{k[x_a : a \in P]}{I_P}$$

we set on k[P] the grading $deg(x_a) = rk(a)$.

Face module for a matroid over a domain

Let \mathcal{M} be a matroid over a domain R. If L is the link of (\emptyset, e) in $\operatorname{Gr} \mathcal{M}$, then we define the face module of \mathcal{M} to be

$$N_{\mathcal{M}} = k[L]^{|\operatorname{tor}(\emptyset)|}$$

Application to rings of integers

Recall that an number field \mathbb{F} is a finite extension of \mathbb{Q} . A ring of integers is the integral closure of \mathbb{Z} in a number field \mathbb{F} .

Application to rings of integers

Recall that an number field \mathbb{F} is a finite extension of \mathbb{Q} . A ring of integers is the integral closure of \mathbb{Z} in a number field \mathbb{F} .

Assume that R is a ring of integers that is also a PID. Then every f.g. torsion R-module N is finite and $N \simeq N^\vee$. Further, any f.g. R-module N is the direct sum of a free module and its torsion submodule:

$$N = N/\operatorname{tor}(N) \oplus \operatorname{tor}(N)$$
.

Now consider the homomorphism $\varphi:L_0(R\operatorname{\mathsf{-mod}})\to\mathbb{Z}$ defined by

$$\varphi([F]) = 1 \qquad \qquad \text{for every free module F}, \\ \varphi([N]) = |N| \qquad \qquad \text{for every torsion module N}.$$

It induces an homomorphism of polynomial rings

$$\tilde{\varphi}: L_0(R\operatorname{\!-mod})[x,y] o \mathbb{Z}[x,y].$$

Let $\mathcal M$ be a matroid over R, recall that the Grothendieck-Tutte polynomial of $\mathcal M$ is

$$T_{\mathcal{M}}(x,y) = \sum_{A \subseteq E} [\operatorname{tor}(A)^{\vee}](x-1)^{\operatorname{rk}(E) - \operatorname{rk}(A)} (y-1)^{|A| - \operatorname{rk}(A)}.$$

Let $\mathcal M$ be a matroid over R, recall that the Grothendieck-Tutte polynomial of $\mathcal M$ is

$$T_{\mathcal{M}}(x,y) = \sum_{A \subseteq E} [\operatorname{tor}(A)^{\vee}](x-1)^{\operatorname{rk}(E) - \operatorname{rk}(A)} (y-1)^{|A| - \operatorname{rk}(A)}.$$

Set
$$\tilde{T}_{\mathcal{M}}(x,y) = \tilde{\varphi}(T_{\mathcal{M}}(x,y))$$
, it results

$$\tilde{T}_{\mathcal{M}}(x,y) = \sum_{A \subseteq E} |\operatorname{tor}(A)| (x-1)^{\operatorname{rk}(E) - \operatorname{rk}(A)} (y-1)^{|A| - \operatorname{rk}(A)}$$

Recall that $H(N_{\mathcal{M}},t)$ is the Hilbert series of the face module $N_{\mathcal{M}}$ of \mathcal{M} .

Theorem (B.-Martino, 2019)

If \mathcal{M} is a relizable matroid over R with $r = \operatorname{rk}(E)$, then

$$H(N_{\mathcal{M}},t) = \frac{t^r}{(1-t)^r} \tilde{T}_{\mathcal{M}}(1/t,1).$$

A worked example

Set $R = \mathbb{Z}[i]$, $E = \{1, 2\}$, consider the (realizable) matroid

and fix the realization $\psi: 2^E \to \mathbb{Z}[i]^2$ defined by $\psi(1) = (1, 1+i), \ \psi(2) = (1+i, 0).$

A worked example

The poset of torsions $\operatorname{Gr} \mathcal{M}$ of \mathcal{M} is

A worked example

Since $\mathcal{M}(\emptyset) = \mathbb{Z}[i]^2$ is torsion-free, $\operatorname{Gr} \mathcal{M} = \operatorname{link}(\emptyset, e)$ is a simplicial poset, and its face ring $k[\operatorname{Gr} \mathcal{M}]$ conincide with the face module $N_{\mathcal{M}}$ of \mathcal{M} . We can calculate the Hilbert series of $N_{\mathcal{M}}$ and the Grothendieck-Tutte polynomial of \mathcal{M} :

$$H(N_{\mathcal{M}}, t) = \frac{1 + t + 2t^2}{(1 - t)^2}$$

$$\tilde{T}_{\mathcal{M}}(x,y) = x^2 + x + 1$$

$$\Rightarrow N_{\mathcal{M}}(t) = \frac{1+t+2t^2}{(1-t)^2} = \frac{t^2}{(1-t)^2} \tilde{T}_{\mathcal{M}}(1/t,1).$$

Thank you for your attention!