Машинное обучение в экономике

Семинар 1. Байесовские сети

Задание №1

У вас имеются данные, в которых хранится информация об уходе клиента, а также об уровне его образовании и сокращении частоты использования приложения. Выборка и ее разбиение на части представлены в таблице.

Уход (У)	1	1	1	0	0	1	1	0	0	0	1	1	0	1	0
Образование (О)	1	1	1	0	1	1	0	1	1	1	0	1	1	1	1
Сокращение (С)	1	0	1	1	0	0	1	1	0	0	1	0	0	1	0
Часть			1					2					3		

- 1. Вы используете Байесовский классификатор и прогнозируете, что клиент уйдет, если оценка условной вероятности данного события не меньше 0.55. Оцените точность байесовского классификатора с использованием трехчастной кроссвалидации.
- 2. Обучающая выборка была сформирована из первой и второй частей, а третья часть использовалась в качестве тестовой выборки. Порог прогнозирования остался таким же, как в предыдущем пункте. Оцените точность прогноза наивного байесовского классификатора на тестовой выборке, а также оцените условную вероятность и сделайте прогноз ухода клиента без образования, который не сократил частоту использования приложения. Аргументируйте, можно ли получить аналогичный прогноз с использованием обученного ранее байесовского классификатора.
- 3. Повторите предыдущий пункт, вместо наивного Байесовского классификатора используя Байесовскую сеть, в которой сокращения использования приложения является ребенком образования и родителем ухода клиента. Нарисуйте соответствующую Байесовскую сеть и сделайте вывод о целесообразности использования всех имеющихся признаков для прогнозирования ухода клиента.
- 4. В общем случае графически изобразите Байесовский классификатор и наивный Байесовский классификатор как Байесовскую сеть.

Задание №2

События A и B независимы при условии события C.

- 1. Пусть P(A|C) = 0.3, P(B,C) = 0.2 и P(C) = 0.5. Найдите P(A,B|C).
- 2. В дополнение к предыдущему пункту известно, что P(A,B)=0.16. Рассчитайте P(C|A,B).
- 3. В дополнение к предыдущим пунктам известно, что $P(A|\overline{C}) = P(\overline{B}|\overline{C}) = 0.6$. Проверьте, являются ли события A и B независимыми при условии события \overline{C} .

- 4. Вы решили использовать наивный Байесовский классификатор с двумя бинарными признаками X_{i1} и X_{i2} для прогнозирования бинарной целевой переменной Y_i . События $X_{i1}=1$, $X_{i2}=1$ и $Y_i=1$ эквивалентны событиям A, B и C соответственно. Рассчитайте асимптотическое смещение используемой вами оценки условной вероятности $P(Y_i=1|X_{i1}=1,X_{i2}=1)$. Объясните причину возникновения этого смещения.
- 5. Для оценивания $P(X_{i1} = 1, X_{i2} = 1, Y_i = 1)$ вы используете Байесовскую сеть, в которой X_{i1} является родителем X_{i2} и Y_i , которые, в свою очередь, не имеют детей. Найдите асимптотическое смещение этой оценки.
- 6. Докажите следующие равенства:

$$P(A|C) = P(A|C,B)$$
 $P(B|C) = P(B|C,A)$