บทที่ 2 เซต

Waranyu Wongseree Chitralada Technology Institute

เซต

แนวคิดเกี่ยวกับเซต (Sets) เป็นพื้นฐานที่สำคัญในการศึกษาคณิตศาสตร์ไม่ต่อเนื่อง (Discrete Mathematics) โดยเซตเป็นโครงสร้างแบบไม่ต่อเนื่อง (Discrete Structures) ชนิดหนึ่ง ถูกใช้ในการรวมกลุ่ม "วัตถุ" (objects) เข้าด้วยกันโดยวัตถุนั้นจะเป็นอะไรก็ได้ซึ่งอาจจะมีหรือไม่มี ความสัมพันธ์ซึ่งกันและกันก็ได้

ดังนั้นการนิยามของเซตจะใช้ความเป็นสมาชิก (Membership) เป็นสิ่งที่จะชี้วัดว่าวัตถุใดที่ เป็นสมาชิกภายในเซตนั้น

เซต (Set) คือการรวมกลุ่มของวัตถุหรือสมาชิกที่ไม่จำเป็นต้องเรียงลำดับ และไม่มีสมาชิกซ้ำกัน

คุณสมบัติสำคัญของเซต

- กำหนดชัดเจน (Well-defined): เราสามารถตัดสินได้ว่าวัตถุใด "เป็น" หรือ "ไม่เป็น" สมาชิกของ เซตนั้นอย่างแน่นอน
- ไม่มีลำดับ: สมาชิกของเซตไม่มีลำดับ เช่น เซต {1, 2, 3} กับ {3, 2, 1} ถือว่าเป็นเซตเดียวกันไม่มี สมาชิกซ้ำ:
- สมาชิกของเซตไม่ซ้ำกัน เช่น {1, 2, 2, 3} จะถือว่าเป็น {1, 2, 3}

วัตถุนี้อยู่ภายในเซตใดๆนั้นจะเรียกวัตถุนั้นว่า "สมาชิก (Member or Element)" ของเซต

สัญลักษณ์ที่ใช้แสดงความเป็นสมาชิกของเซต

 $a \in A$ หมายถึง a เป็นสมาชิกของเซต A

และ $a \not\in A$ หมายถึง a ไม่เป็นสมาชิกของเซต A

การอธิบายสมาชิกภายในเซตใดๆทำได้ 2 วิธี

คือการแจกแจงสมาชิกของเซตและการระบุเงื่อนไขสมาชิกของเซต

1. การแจกแจงสมาชิกของเซต (Roster Method)

ทำได้โดยการเขียนสมาชิกทั้งหมดของเซตลงในเครื่องหมายวงเล็บปีกกา { } และใช้เครื่องหมาย จุลภาค (,) คั่นระหว่างสมาชิกแต่ละตัว เช่น

เซตของสระในภาษาอังกฤษ คือ {a, e, i, o, u}
เซตของจำนวนเต็มบวกคี่ที่มีค่าน้อยกว่า 10 คือ {1, 3, 5, 7, 9}
เซตของจำนวนเต็มบวกที่มีค่าน้อยกว่า 100 คือ {1, 2, 3, ..., 99}.

2. การระบุเงื่อนไขสมาชิกของเซต (Set-builder Method)

การอธิบายสมาชิกของเซตโดยใช้การระบุเงื่อนไข สมาชิกภายในเซตจะต้องมีคุณสมบัติที่คล้ายคลึง กัน โดยจะเขียนให้อยู่ในรูปแบบดังนี้

{ x | x : เงื่อนไข } เครื่องหมาย "|" อ่านว่า "โดยที่" เช่น

$$A = \{ x \mid x \text{ เป็นสระภาษาอังกฤษ} \}$$

$$B = \left\{ x \mid (x < 10) \land (x \in \mathbf{Z}^+) \right\}$$

สัญลักษณ์ที่ใช้แทน เซตพื้นฐานทางคณิตศาสตร์มีดังต่อไปนี้

\mathbf{N}	แทน	จำนวนนับ (Natural Numbers)	$\{0,1,2,3,\cdots\}$
Z, I	แทน	จำนวนเต็ม (Integers)	{···,-3,-2,-1,0,1,2,3,···}
$\mathbf{Z}^+, \mathbf{I}^+$	แทน	จำนวนเต็มบวก (Positive Integers)	$\{1,2,3,\cdots\}$
Z -, I -	็แทน	จำนวนเต็มลบ (Negative Integers)	{···,-3,-2,-1}
Q	แทน	จำนวนอตรรกยะ (Irrational Numbers)	
$\overline{\mathbf{Q}}$	แทน	จำนวนตรรกยะ (Rational Numbers)	
R	แทน	จำนวนจริง (Real Numbers)	
\mathbf{R}^{+}	แทน	จำนวนจริงบวก (Positive Real Number	s)
\mathbf{R}^-	แทน	จำนวนจริงลบ (Negative Real Numbers	5)
C	แทน	จำนวนเชิงซ้อน (Complex Numbers)	

สัญลักษณ์สำหรับช่วงของจำนวนจริง

Notation

Given real numbers a and b with $a \le b$:

$$(a,b) = \{x \in \mathbf{R} \mid a < x < b\}$$
 $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$ $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}$ $[a, b] = \{x \in \mathbf{R} \mid a \le x \le b\}.$

The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:

$$(a, \infty) = \{x \in \mathbf{R} \mid x > a\}$$
 $[a, \infty) = \{x \in \mathbf{R} \mid x \ge a\}$ $(-\infty, b) = \{x \in \mathbf{R} \mid x < b\}$ $[-\infty, b) = \{x \in \mathbf{R} \mid x \le b\}.$

เซต 2 เซตจะเท่ากันก็ต่อเมื่อสมาชิกภายในเซตทั้งสองเซตเหมือนกันทุกประการ

เซต {1,3,5} และ {3,5,1} เท่ากันเนื่องจากทั้งสองเซตมีสมาชิกเหมือนกัน

เชต {1,3,3,3,5,5,5,5} เท่ากับเช็ต {1, 3,5} เนื่องจากทั้งสองเซตมีสมาชิกเหมือนกัน

ตัวอย่าง
$$A=\{2,4,6\},\ B=\{6,2,4,2,6,4,6\}$$
 และ $C=\left\{x\,|\, (x<8)\land (x=2n)\land \left(n\in\mathbf{Z}^+\right)\!\}$ เซต A , B , และ C เท่ากันหรือไม่ ตอบ $A=B=C$

จากตัวอย่างจะเห็นได้ว่า ลำดับของสมาชิกและสมาชิกที่ซ้ำกันไม่มีความสำคัญในการพิจารณาเซต

เซตจักรวาล (Universal Set) หรือ **U** คือ เซตที่มีขนาดใหญ่ที่สุด และประกอบด้วยสมาชิกทั้งหมดที่ กำลังพิจารณาอยู่

เซตว่าง (Empty Set) หรือ Ø คือ เซตที่ไม่มีสมาชิกภายในเซตเลย

แผนภาพของเวนน์ (Venn Diagram)

เป็นแนวคิดที่ใช้ในการนำเสนอเซตในรูปแบบของภาพ โดยจะเขียนเซตต่างๆ เป็นรูปวงกลมโดยถูกปิด รอบด้วยกรอบสี่เหลี่ยมซึ่งกรอบสี่เหลี่ยมนั้นจะแทนเซตจักรวาล ดังเสนอในรูป

" A เป็นเซตย่อย (Subset) ของ B " ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A จะต้องเป็นสมาชิกของเซต B ด้วย โดยใช้สัญลักษณ์ $A\subseteq B$ หรือ $B\supseteq A$ แทน A เป็นเซตย่อยของ B และใช้สัญลักษณ์ $A\not\subset B$ แทน A ไม่เป็นเซตย่อยของ B

" A เป็นเซตย่อย (Subset) ของ B " ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A จะต้องเป็นสมาชิกของเซต B ด้วย โดยใช้สัญลักษณ์ $A\subseteq B$ หรือ $B\supseteq A$ แทน A เป็นเซตย่อยของ B และใช้สัญลักษณ์ $A\not\subset B$ แทน A ไม่เป็นเซตย่อยของ B

$$A = \{1,2,3\}, \ B = \{1,2,3,4,5,6\}$$
 แล้ว $A \subseteq B$ แต่ $B \not\subset A$

" A เป็นเซตย่อย (Subset) ของ B " ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A จะต้องเป็นสมาชิกของเซต B ด้วย โดยใช้สัญลักษณ์ $A\subseteq B$ หรือ $B\supseteq A$ แทน A เป็นเซตย่อยของ B และใช้สัญลักษณ์ $A\not\subset B$ แทน A ไม่เป็นเซตย่อยของ B

ลักษณะการเป็นเซตย่อย สามารถนำตรรกศาสตร์เข้ามานิยามได้ดังนี้

$$A\subseteq B$$
 หรือ $B\supseteq A$ \Rightarrow $\forall x\{(x\in A)\to (x\in B)\}=\mathbf{T}$

ตัวอย่าง A เป็นเซตย่อยของ B และ A ไม่เป็นเซตย่อยของ B

Figure 6.1.1 $A \subseteq B$

Figure 6.1.2 $A \not\subseteq B$

ทฤษฎีบท

ให้ S เป็นเซตใดๆ แล้ว

- 1) $\emptyset \subseteq S$
- 2) $S \subseteq \mathbf{U}$
- 3) $S \subseteq S$

ทฤษฎีบท

จากทฤษฎีบทที่กล่าวว่า 🛭 เป็นเซตย่อยของทุกๆ เซตนั้น สามารถที่จะพิสูจน์ได้โดยการใช้ ตรรกศาสตร์

$$\mathit{A} \subseteq \mathit{B}$$
 หรือ $\mathit{B} \supseteq \mathit{A}$

$$\Rightarrow$$

$$A\subseteq B$$
 หรือ $B\supseteq A$ \Rightarrow $\forall x\{(x\in A)\to (x\in B)\}=\mathbf{T}$

ถ้าแทนค่าเซต A ด้วย \varnothing แล้วจะได้

$$\varnothing \subseteq B$$
 $\Rightarrow \forall x \{(x \in \varnothing) \rightarrow (x \in B)\}$

แต่ $x\in \varnothing$ เป็นเท็จเสมอ ดังนั้นทำให้ $\forall x\{(x\in \varnothing)\to (x\in B)\}$ เป็นจริงเสมอ ไม่ว่าเซต B จะเป็น เซตอะไรก็ตาม

" A เป็นเซตย่อยแท้จริง (Proper Subset) ของ B " ก็ต่อเมื่อ $A\subseteq B$ และ $A\neq B$ โดยใช้ สัญลักษณ์ $A\subset B$ หรือ $B\supset A$ แทน A เป็นเซตย่อยแท้จริงของ B

 $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$

B is proper $B \subset A$ subset of A

ให้ S เป็นเซตใดๆ

ถ้า n เป็นจำนวนสมาชิกของเซต S ที่ทราบค่าแน่นอน และ n ไม่ใช่จำนวนเต็มลบแล้ว เรียก S ว่า "เซตจำกัด (Finite Set)" และเรียก n ว่า "จำนวนสมาชิกของเซต S (Cardinality of S)"โดย แทนด้วย |S|ถ้า n เป็นจำนวนสมาชิกของเซต S ที่ค่าเป็นจำนวนนับไม่ได้แล้วเรียก S ว่า "เซต อนันต์ (Infinite Set)"

ตัวอย่าง

ถ้า
$$A=\{\ x\mid x\ \text{เป็นสระภาษาอังกฤษ}\}$$
 $B=ig\{x\mid (x<10)\land ig(x\in \mathbf{Z}^+ig)ig\}$ $C=ig\{x\mid (x<10)\land ig(x\in \mathbf{R}ig)ig\}$ แล้ว $|A|=5$ และ $|B|=9$ ดังนั้น A และ B เป็นเซตจำกัด $|C|=\infty$ ดังนั้น C เป็นเซตอนันต์

ให้ S เป็นเซตใดๆ

"เพาเวอร์เซต (Power Set) ของ S " คือ เซตที่สมาชิกเป็นเซตย่อยของ S ทั้งหมด เขียนแทน

เพาเวอร์เซตของ S ด้วย P(S)

ตัวอย่าง

$$A = \{1,2,3\}$$
 แล้ว เพาเวอร์เซตของ A คือ

$$P(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

ตัวอย่าง

$$A=arnothing$$
 และ $B=\{arnothing\}$ แล้ว จงหาเพาเวอร์เซตของ A และ B

$$P(A) = \{\varnothing\}$$
 ແລະ $P(A) = \{\varnothing, \{\varnothing\}\}$

$$|P(A)|=1$$
 และ $|P(B)|=2$

ทฤษฎีบท

ให้ S เป็นเซตใดๆ แล้ว

ถ้า
$$|S|=n$$
 แล้ว $|P(S)|=2^n$

Ordered n-tuple

The ordered n-tuple (a_1, a_2, \ldots, a_n) is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its nth element.

Cartesian Product

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$$

What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?

Solution: The Cartesian product $A \times B$ is

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$$

$$B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}.$$

ตัวปฏิบัติการของเซต (Set Operations)

ตัวปฏิบัติการของเซตมีทั้งหมด 4 ตัว คือ ยูเนียน (Union), อินเตอร์เซคชัน (Intersection), ผลต่าง (Difference), และคอมพลีเมนต์ (Complement)

ให้ A และ B เป็นเซตใดๆแล้ว

"เซต A ยูเนียน (Union) เซต B " เขียนแทนด้วย $A \cup B$ คือ เซตที่ประกอบด้วยสมาชิกซึ่งเป็น สมาชิกของเซต A หรือเป็นสมาชิกของเซต B โดยสามารถแสดงเป็นสัญลักษณ์ทางตรรกศาสตร์ได้ ดังนี้

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$$

ตัวอย่าง
$$A=\{a,b,c\}$$
 และ $B=\{1,2,3\}$ ดังนั้น $A\cup B=\{a,b,c,1,2,3\}$

สามารถนำ $A \cup B$ มาแสดงเป็นแผนภาพของเวนน์ได้ดังนี้

ให้ A และ B เป็นเซตใดๆแล้ว

"เซต A อินเตอร์เซคชัน (Intersection) เซต B" เขียนแทนด้วย $A \cap B$ คือ เซตที่ประกอบด้วย สมาชิกซึ่งเป็นสมาชิกของเซต A และเป็นสมาชิกของเซต B โดยสามารถแสดงเป็นสัญลักษณ์ทาง ตรรกศาสตร์ได้ดังนี้

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}$$

ตัวอย่าง
$$A = \{1,2,3\}$$
 และ $B = \{3,4,5\}$ ดังนั้น $A \cap B = \{3\}$

สามารถนำ $A \cap B$ มาแสดงเป็นแผนภาพของเวนน์ได้ดังนี้

ให้ A และ B เป็นเซตใดๆแล้ว

"ผลต่าง (Difference) ของเซต A และเซต B" เขียนแทนด้วย A-B คือ เซตที่ประกอบด้วย สมาชิกซึ่งเป็นสมาชิกของเซต A แต่ไม่เป็นสมาชิกของเซต B โดยสามารถแสดงเป็นสัญลักษณ์ทาง ตรรกศาสตร์ได้ดังนี้

$$A - B = \{x \mid (x \in A) \land (x \notin B)\}$$

ตัวอย่าง
$$A = \{1,2,3\}$$
 และ $B = \{3,4,5\}$ ดังนั้น $A - B = \{1,2\}$

สามารถนำ A-B มาแสดงเป็นแผนภาพของเวนน์ได้ดังนี้

นิยาม

ให้ A เป็นเซตใดๆแล้ว

"คอมพลีเมนต์ (Complement) ของเซต A " เขียนแทนด้วย \overline{A} คือ เซตที่ประกอบด้วยสมาชิกซึ่ง ไม่เป็นสมาชิกของเซต A โดยสามารถแสดงเป็นสัญลักษณ์ทางตรรกศาสตร์ได้ดังนี้

$$\overline{A} = \{ x \mid (x \notin A) \}$$

ตัวอย่าง
$$A=\{1,2,3\}$$
 และ $\mathbf{U}=ig\{x\mid ig(x<10)\land ig(x\in\mathbf{Z}^+ig)\}$ ดังนั้น $\overline{A}=\{4,5,6,7,8,9\}$

สามารถนำ \overline{A} มาแสดงเป็นแผนภาพของเวนน์ได้ดังนี้

ตัวปฏิบัติการของเซต (Set Operations)

Shaded region represents $A \cup B$.

Shaded region represents $A \cap B$.

Shaded region represents B - A.

Shaded region represents A^c .

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\},\$$

 $A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\},\$
 $B - A = \{x \in U \mid x \in B \text{ and } x \notin A\},\$
 $A^c = \{x \in U \mid x \notin A\}.$

ตัวปฏิบัติการของเซต (Set Operations)

Shaded region represents $A \cup B$.

Shaded region represents $A \cap B$.

Shaded region represents B - A.

Shaded region represents A^c .

Let the universal set be the set $U = \{a, b, c, d, e, f, g\}$ and let $A = \{a, c, e, g\}$ and $B = \{d, e, f, g\}$. Find $A \cup B$, $A \cap B$, B - A, and A^c .

Solution

$$A \cup B = \{a, c, d, e, f, g\}$$
 $A \cap B = \{e, g\}$
 $B - A = \{d, f\}$ $A^c = \{b, d, f\}$

Let the universal set be the set **R** of all real numbers and let

$$A = (-1, 0] = \{x \in \mathbf{R} \mid -1 < x \le 0\} \text{ and } B = [0, 1) = \{x \in \mathbf{R} \mid 0 \le x < 1\}.$$

These sets are shown on the number lines below.

$$A \cup B = \{x \in \mathbf{R} \mid x \in (-1, 0] \text{ or } x \in [0, 1)\} = \{x \in \mathbf{R} \mid x \in (-1, 1)\} = (-1, 1).$$

Let the universal set be the set **R** of all real numbers and let

$$A = (-1, 0] = \{x \in \mathbf{R} \mid -1 < x \le 0\} \text{ and } B = [0, 1) = \{x \in \mathbf{R} \mid 0 \le x < 1\}.$$

These sets are shown on the number lines below.

$$A \cap B = \{x \in \mathbb{R} \mid x \in (-1, 0] \text{ and } x \in [0, 1)\} = \{0\}.$$

Let the universal set be the set **R** of all real numbers and let

$$A = (-1, 0] = \{x \in \mathbf{R} \mid -1 < x \le 0\} \text{ and } B = [0, 1) = \{x \in \mathbf{R} \mid 0 \le x < 1\}.$$

These sets are shown on the number lines below.

$$B - A = \{x \in \mathbf{R} \mid x \in [0, 1) \text{ and } x \notin (-1, 0]\} = \{x \in \mathbf{R} \mid 0 < x < 1\} = (0, 1)$$

Let the universal set be the set **R** of all real numbers and let

$$A = (-1, 0] = \{x \in \mathbf{R} \mid -1 < x \le 0\} \text{ and } B = [0, 1) = \{x \in \mathbf{R} \mid 0 \le x < 1\}.$$

These sets are shown on the number lines below.

$$A^{c} = \{x \in \mathbf{R} \mid \text{it is not the case that } x \in (-1, 0]\}$$

= $\{x \in \mathbf{R} \mid \text{it is not the case that } (-1 < x \text{ and } x \le 0)\}$
= $\{x \in \mathbf{R} \mid x \le -1 \text{ or } x > 0\} = (-\infty, -1] \cup (0, \infty)$

by definition of the double inequality by De Morgan's law

Disjoint Set

Two sets are called *disjoint* if their intersection is the empty set.

Let $A = \{1, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8, 10\}$. Because $A \cap B = \emptyset$, A and B are disjoint.

ทฤษฎีบท

ให้ A และ B เป็นเซตใดๆ แล้ว

$$|A \cup B| = |A| + |B| - |A \cap B|$$

กฎเกณฑ์ต่างๆของเซต (Set Equivalence Laws)

การสมมูลกันทางเซต (Set Equivalences)	
การสมมูลกัน (Equivalence)	ชื่อ (Name)
$A \cap \mathbf{U} = A$	Identity Laws
$A \cup \emptyset = A$	
$A \cup \mathbf{U} = \mathbf{U}$	Domination Laws
$A \cap \emptyset = \emptyset$	
$A \cap A = A$	Idempotent Laws
$A \cup A = A$	
$(\overline{A})=A$	Double Negation Law
$A \cap B = B \cap A$	Commutative Laws
$A \cup B = B \cup A$	

กฎเกณฑ์ต่างๆของเซต (Set Equivalence Laws)

$(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$	Associative Laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive Laws
$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$ $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	De Morgan's Laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption Laws
$A \cup \overline{A} = \mathbf{U}$ $A \cap \overline{A} = \emptyset$	Complement Laws

ตัวอย่าง

จงพิสูจน์ว่า
$$\overline{A \cup (B \cap C)} = \left(\overline{C} \cup \overline{B}\right) \cap \overline{A}$$

<u>วิธีทำ</u>

$$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)}$$

De Morgan Law

$$= \overline{A} \cap \left(\overline{B} \cup \overline{C}\right)$$

De Morgan Law

$$= (\overline{B} \cup \overline{C}) \cap \overline{A}$$

Commutative Law

$$\overline{A \cup (B \cap C)} = \left(\overline{C} \cup \overline{B}\right) \cap \overline{A}$$

Commutative Law

Generalized Unions and Intersections

(a) $A \cup B \cup C$ is shaded.

(b) $A \cap B \cap C$ is shaded.

Let $A = \{0, 2, 4, 6, 8\}$, $B = \{0, 1, 2, 3, 4\}$, and $C = \{0, 3, 6, 9\}$. What are $A \cup B \cup C$ and $A \cap B \cap C$?

Solution: The set $A \cup B \cup C$ contains those elements in at least one of A, B, and C. Hence,

$$A \cup B \cup C = \{0, 1, 2, 3, 4, 6, 8, 9\}.$$

The set $A \cap B \cap C$ contains those elements in all three of A, B, and C. Thus,

$$A \cap B \cap C = \{0\}.$$

นิยาม

ให้ A_i เป็นเซตใดๆ โดยที่ $i \in \mathbf{Z}^+$ แล้ว

"การสะสมยูเนียนของเซต (Union of a collection of set)" เขียนแทนด้วย

$$\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \cdots \cup A_{n-1} \cup A_{n}$$

"การสะสมอินเตอร์เซคชันของเซต (Union of an intersection of set)" เขียนแทนด้วย

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_{n-1} \cap A_n$$

For each positive integer
$$i$$
, let $A_i = \left\{ x \in \mathbf{R} \mid -\frac{1}{i} < x < \frac{1}{i} \right\} = A_i = \left(-\frac{1}{i}, \frac{1}{i} \right)$.

$$A_1 \cup A_2 \cup A_3 = \{x \in \mathbb{R} \mid x \text{ is in at least one of the intervals } (-1, 1),$$

or
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
, or $\left(-\frac{1}{3}, \frac{1}{3}\right)$ }
$$= \left\{x \in \mathbf{R} \mid -1 < x < 1\right\}$$
because all the elements in $\left(-\frac{1}{2}, \frac{1}{2}\right)$

$$= (-1, 1)$$
and $\left(-\frac{1}{3}, \frac{1}{3}\right)$ are in $(-1, 1)$

For each positive integer
$$i$$
, let $A_i = \left\{ x \in \mathbf{R} \mid -\frac{1}{i} < x < \frac{1}{i} \right\} = A_i = \left(-\frac{1}{i}, \frac{1}{i} \right)$.

$$A_1 \cap A_2 \cap A_3 = \{x \in \mathbf{R} \mid x \text{ is in all of the intervals } (-1, 1),$$
 and $\left(-\frac{1}{2}, \frac{1}{2}\right)$, and $\left(-\frac{1}{3}, \frac{1}{3}\right)\}$

$$= \left\{x \in \mathbf{R} \mid -\frac{1}{3} < x < \frac{1}{3}\right\} \quad \text{because } \left(-\frac{1}{3}, \frac{1}{3}\right) \subseteq \left(-\frac{1}{2}, \frac{1}{2}\right) \subseteq (-1, 1)$$

$$= \left(-\frac{1}{3}, \frac{1}{3}\right)$$

_

For each positive integer
$$i$$
, let $A_i = \left\{ x \in \mathbf{R} \mid -\frac{1}{i} < x < \frac{1}{i} \right\} = A_i = \left(-\frac{1}{i}, \frac{1}{i} \right)$.

$$\bigcup_{i=1}^{\infty} A_i = \{x \in \mathbf{R} \mid x \text{ is in at least one of the intervals } \left(-\frac{1}{i}, \frac{1}{i}\right),$$
where *i* is a positive integer}

$$= \{x \in \mathbf{R} \mid -1 < x < 1\}$$
$$= (-1, 1)$$

because all the elements in every interval

$$\left(-\frac{1}{i}, \frac{1}{i}\right)$$
 are in $(-1, 1)$

For each positive integer
$$i$$
, let $A_i = \left\{ x \in \mathbf{R} \mid -\frac{1}{i} < x < \frac{1}{i} \right\} = A_i = \left(-\frac{1}{i}, \frac{1}{i} \right)$.

$$\bigcap_{i=1}^{\infty} A_i = \{x \in \mathbf{R} \mid x \text{ is in all of the intervals } \left(-\frac{1}{i}, \frac{1}{i}\right), \text{ where } i \text{ is a positive integer}\}\$$

$$= \{0\}$$
because the only element in every interval is 0