Question number	Scheme	Marks
5 a	$\alpha + \beta = -\frac{b}{a} = \frac{-(6+2p)}{2} = -3-p$	В1
	Scheme $\alpha + \beta = -\frac{b}{a} = \frac{-(6+2p)}{2} = -3 - p$ $\alpha\beta = \frac{c}{a} = \frac{2p}{2} = p$ $(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$ $= (\alpha + \beta)^2 - 4\alpha\beta$ $= (-3-p)^2 - 4p$	B1 (2)
ь	$\left(\alpha - \beta\right)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$	M1
	$= (\alpha + \beta)^2 - 4\alpha\beta$	M1
	$=(-3-p)^2-4p$	M1
	$=9+2p+p^2 *$	A1 cso (4)
c	$(\alpha - \beta) = 3 \text{ implies } (\alpha - \beta)^2 = 9$ So $9 = 9 + 2p + p^2 \Rightarrow 0 = 2p + p^2 \Rightarrow 0 = p(2+p)$	B1
	So $9 = 9 + 2p + p^2 \Rightarrow 0 = 2p + p^2 \Rightarrow 0 = p(2+p)$	M1
	p = 0 or $p = -2$	A1 (3)
Total 9 marks		

Part	Mark	Notes
(a)	B1	For the sum $\alpha + \beta = -3 - p$ Need not be simplified. E.g., accept $\frac{-(6+2p)}{2}$
	B1	For the product $\alpha\beta = p$ (Accept $\frac{2p}{2}$)
(b)	M1	For the correct algebra on $(\alpha - \beta)^2$
		$(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta$ Accept un-simplified and terms in any order
	M1	For the correct algebra on $(\alpha - \beta)^2$ using $(\alpha + \beta)^2$
		$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$
		Note: $(\alpha + \beta)^2 = 9 + 6p + p^2$ which you may see substituted in without seeing
		the algebra
	N/I	For substituting in their sum and product from part (a)
	M1	$\left(\alpha - \beta\right)^2 = \left(-3 - p\right)^2 - 4p$
	A1 cso	For obtaining the given result $(\alpha - \beta)^2 = 9 + 2p + p^2$
		Note: condone absence of seeing the LHS.
		Note: This is a given result. There must be no errors or omissions (including in algebra) in their work for this mark
(c)	B1	For $(\alpha - \beta)^2 = 9$
	M1	For setting the given answer = 9
		$9+2p+p^2=9 \Rightarrow 2p+p^2=0 \Rightarrow p=$ Two values.
	A1	For $p = 0$ or $p = -2$