## Estructuras de Datos

#### **AVL**

Teórico Programación 3 Curso 2009

## Temario

- Motivación
- Árboles equilibrados
- Árboles perfectamente equilibrados
- Árboles AVL



## Motivación (1/4)

- ABB con n de elementos, tiene complejidad O(log n) en caso promedio para las operaciones de:
  - Inserción
  - Borrado
  - Búsqueda
  - Pertenece

pero... ¿qué pasa en el peor caso?

# Motivación (2/4)

 La complejidad de las operaciones anteriores depende la altura del ABB, y la altura depende de la secuencia (orden) de ingreso a la estructura de los n elementos



## Motivación (3/4)









## Motivación (4/4)









- Árboles cuya altura máxima es O(log<sub>n</sub>) independientemente de la secuencia de ingreso de los elementos al árbol
- Para minimizar el problema de los ABB desequilibrados, sea cual sea el grado de desequilibrio que tengan, se puede recurrir a algoritmos globales de equilibrado de árboles
  - Ejemplo: crear una lista mediante la lectura en inorden del árbol, y volver a reconstruirlo equilibrado
- Desventaja de estos algoritmos:
  - requieren explorar y reconstruir todo el árbol cada vez que se inserta o se elimina un elemento, de modo que lo que se gana al acortar las búsquedas, (ya que se efectúan menos comparaciones), se pierde equilibrando el árbol



## Árboles perfectamente equilibrados

- Basan el equilibrio en la cantidad de nodos
- Se tiene que cumplir en todo momento que:

$$\left| cant\_nodos(T_{izq}) - cant\_nodos(T_{der}) \right| \le 1$$

- Ventaja
  - la altura siempre es log n
- Desventaja
  - algoritmos sumamente complejos ya que frecuentemente deben reorganizar el árbol



## AVL - Adelson-Velskii y Landis

- Definiciones
- Ejemplo Inserción
- Tipos de rebalanceo o rotaciones
- Algoritmo de Inserción



- AVL: árbol binario de búsqueda en el que para cada nodo, las alturas de sus subárboles izquierdo y derecho no difieren en más de 1
- Formalmente
  - Un árbol vacío es un árbol AVL
  - Si T es un árbol no vacío y T<sub>L</sub> y T<sub>R</sub> son sus subárboles, T es un AVL <=>

$$T_L$$
 es un AVL  
 $T_R$  es un AVL  
 $\left|altura(T_L) - altura(T_R)\right| \le 1$ 



#### Ejemplos





Factor de balanceo (FB) es la diferencia de altura de los subárboles:

$$FB = altura(T_L) - altura(T_R)$$

Para todo nodo de un AVL se cumple que FB = 1, 0, -1

□ 
$$FB = 1$$
 si  $altura(T_L) > altura(T_R)$ 

□ 
$$FB = -1$$
 si altura $(T_I)$  < altura $(T_R)$ 

□ 
$$FB = 0$$
 si  $altura(T_L) = altura(T_R)$ 



#### Teorema:

Sea *h* la altura de un árbol AVL con n nodos. Se cumple que:

$$\log(n+1) \le h \le 1.44 \log(n+2) - 0.328$$

• Es decir que:

 $h \in O(\log n)$ 



 El algoritmo para mantener un árbol AVL equilibrado se basa en reequilibrados locales, de modo que no es necesario explorar todo el árbol después de cada inserción o borrado



Inicialmente árbol vacío.











Al insertar el elemento 10, se viola la propiedad de AVL

#### Es necesario rebalancear el árbol

Observar que la altura previa a la inserción era h=2 y luego de la inserción es h=3.





El rebalanceo vuelve la altura a h=2, que era el valor previo a la inserción.











Al insertar el elemento 1, se viola la propiedad de AVL

Es necesario rebalancear el árbol





¿Qué nodo se debe rebalancear, el 8 ó el 9?





Observación: si se rebalancea el subárbol de raíz 8 queda, rebalanceado también el subárbol de raíz 9 (porque el subárbol izquierdo de raíz 8 vuelve a tener altura h=2 y el derecho tiene h=1)







Al insertar el elemento 5, se viola la propiedad de AVL

Es necesario rebalancear el árbol

## AVL Ejemplo Inserción















Al insertar el elemento 4, se viola la propiedad de AVL

Es necesario rebalancear el árbol









### $\mathsf{AVL}$

#### Ejemplo Inserción: Observaciones (1/3)

#### Observaciones

- El rebalanceo se realiza en el subárbol cuya raíz sea el ancestro más cercano al nodo insertado y cuyo factor de balance se transforme, a consecuencia de la inserción, en 2 ó -2.
- Luego de rebalanceado el subárbol anterior, no es necesario rebalancear nada más, ya que si la altura de este subárbol antes de la inserción era h y después de la inserción la altura se incrementa a h+1, pero luego del rebalanceo vuelve a ser h.



## **AVL**

#### Ejemplo Inserción: Observaciones (2/3)

- Se quiere insertar un nodo en un árbol T con subárbol izquierdo T<sub>I</sub> y subárbol derecho T<sub>R</sub>
  - Caso 1: el nodo a insertar se inserta en T<sub>L</sub> haciendo que su altura se incremente (si no se incrementa, no se produce desbalanceo).
     Pueden suceder los siguientes casos:

| Previo a la inserción                | Luego de la inserción                                      |
|--------------------------------------|------------------------------------------------------------|
| $altura(T_L) = altura(T_R), FB = 0$  | FB = 1 puede vulnerarse el equilibrio en un nodo ancestro. |
| $altura(T_L) < altura(T_R), FB = -1$ | FB = 0 no se debe rebalancear.                             |
| $altura(T_L) > altura(T_R), FB = 1$  | Se debe rebalancear                                        |



## **AVL**

#### Ejemplo Inserción: Observaciones (3/3)

 Caso 2: el nodo a insertar se inserta en T<sub>R</sub> haciendo que su altura se incremente (si no se incrementa, no se produce desbalanceo).
 Pueden suceder los siguientes casos:

| Previo a la inserción                | Luego de la inserción                                       |
|--------------------------------------|-------------------------------------------------------------|
| $altura(T_R) = altura(T_L), FB = 0$  | FB = -1 puede vulnerarse el equilibrio en un nodo ancestro. |
| $altura(T_R) < altura(T_L), FB = 1$  | FB = 0 no se debe rebalancear.                              |
| $altura(T_R) > altura(T_L), FB = -1$ | Se debe rebalancear                                         |



- Tipos de rebalanceos o rotaciones
  - Simples
    - Tipo LL
    - Tipo RR
  - Dobles
    - Tipo LR
    - Tipo RL



- Rotaciones simples involucran 3 subárboles.
- Se clasifican en
  - Tipo LL
  - Tipo RR



 Sea A el ancestro más cercano del nodo insertado, cuyo factor de balanceo luego de la inserción es 2 ó -2.

 El nodo fue insertado en el subárbol izquierdo del subárbol izquierdo de A





### Tipos de rotaciones: Simples - Tipo LL

Previo a la inserción

#### Luego de la inserción

Rebalanceo



B se convierte en la raíz y A en hijo derecho de B

B<sub>R</sub> se convierte en hijo izquierdo de A

#### Notar que

- A<sub>R</sub> sigue siendo hijo derecho de A
- B<sub>1</sub> sigue siendo hijo izquierdo de B

UdeLaR - Fing - Inco - Programación 3

## AVL

#### Tipos de rotaciones: Simples – Tipo LL





 El nodo fue insertado en el subárbol derecho del subárbol derecho de A.





#### Previo a la inserción Luego de la inserción

#### Rebalanceo



B se convierte en la raíz y A en hijo izquierdo de B

B<sub>L</sub> se convierte en hijo derecho de A

#### Notar que

- A<sub>1</sub> sigue siendo hijo izquierdo de A
- B<sub>R</sub> sigue siendo hijo derecho de B

UdeLaR - Fing - Inco - Programación 3



#### Tipos de rotaciones: Simples – Tipo RR



Se inserta el elemento 10

UdeLaR - Fing - Inco - Programación 3



- Rotaciones dobles involucran 4 subárboles.
- Se resuelven aplicando dos rotaciones simples.
- Se clasifican en
  - Tipo LR
  - Tipo RL



 El nodo fue insertado en el subárbol derecho del subárbol izquierdo de A.





#### **Caso 1:**





#### Tipos de rotaciones: Dobles – Tipo LR

#### Caso 2:

Previo a la inserción

Luego de la inserción

Rebalanceo



El nodo puede ser insertado en CL o CR.

Si va a CL el FB de C pasa a ser 1, sino va a CR el FB de C pasa a ser –1. En cualquiera de los 2 casos, el FB de B pasa a ser -1 y el de A pasa a ser 2.



#### Tipos de rotaciones: Dobles – Tipo LR

# Previo a la inserción Luego de la inserción Rebalanceo $A_R^1$ $A_R^2$ $A_R^2$







UdeLaR – Fing – Inco – Programación 3



• El nodo fue insertado en el subárbol izquierdo del subárbol derecho de A.





#### **Caso 1:**



# A\ Tip

### **AVL**

#### Tipos de rotaciones: Dobles - Tipo RL

#### Caso 2:

Previo a la inserción

Luego de la inserción

Rebalanceo



El nodo a insertar puede ir a CL o CR, si va a CL el FB de C pasa a ser 1, si va a CR el FB de C pasa a ser -1. En cualquiera de los 2 casos, el FB de B pasa a ser 1 y el de A pasa a ser -2





#### Tipos de rotaciones: Dobles - Tipo RL

#### Previo a la inserción



#### Luego de la inserción



#### Rebalanceo









# AVL Algoritmo de Inserción

#### Observaciones

- todos los casos de rebalanceo involucran solamente operaciones de intercambios de punteros, por lo cual los algoritmos que implementan los distintos tipos de rebalanceos serán de O(1).
- para poder saber que rebalanceo aplicar es necesario conocer los factores de balance de los nodos involucrados

```
struct nodeAVL
{ Key clave;
    int FB;
    struct nodeAVL * izq;
    struct nodeAVL * der;
}*AVL;
```



- Se divide en 2 etapas:
  - Insertar el nuevo nodo en el lugar correspondiente
  - recorrer el camino realizado para insertar el nodo en "vuelta atrás", chequeando los factores de balanceo.
- Para saber si se produjo desbalanceo se necesita, además de los factores de balanceo, saber si se incrementó o no la altura del subárbol donde se insertó el nodo, para lo cual se utilizará un parámetro booleano.

# AVL Algorite

# Algoritmo de Inserción

```
void insert(Key x, boolean & aumento, AVL &a){
   if (Vacio(a)){
      a = crearNodo(x); //crea un nodo con FB = 0
      aumento = true;
   }
   else
      //SIGUE!!!!!!
```

```
if (x < a->clave)
      insert(x, aumento, a->izq);
      if (aumento){
          switch(a->FB) {
              case -1: //antes de la ins. ALT(TL) < ALT(TR)
                       a - > FB = 0; //No se produce desbalanceo
                       aumento = false; break;
              case 0: //antes de la ins. ALT(TL) = ALT(TR)
                       a->FB=1;//mirar los ancestros
                       break;
              case 1: //antes de la ins. ALT(TL) > ALT(TR)
                       //rebalanceo, el tipo es LL o LR
                       if (a->izq->FB == 1) // es LL
                           a = RebalancearLL(a);
                       else //es LR
                           a = RebalancearLR(a);
                       aumento = false; break;
          } // fin switch
      } // fin if (aumento)
} // fin if (x < a->clave)
                      UdeLaR - Fing - Inco - Programación 3
```

```
else { insert(x, aumento, a->der);
        if(aumento){
            switch(a->FB) {
                case 1: //antes de la ins. ALT(TR) < ALT(TL)
                         a->FB = 0;//No se produce desbalance
                         aumento = false; break;
                case 0: //antes de la ins. ALT(TR) = ALT(TL)
                         a \rightarrow FB = -1; // mirar los ancestros
                         break;
                case -1: //antes de la ins. ALT(TR) > ALT(TL)
                         //rebalanceo, el tipo es RR o RL
                         if (a->der->FB == -1) // es RR
                             a = RebalancearRR(a);
                         else //es RL
                             a = RebalancearRL(a);
                         aumento = false; break;
            } // fin switch
        } // fin if(aumento)
  } // fin else
 } // fin if(Vacio(a))
} // fin procedimiento
                      UdeLaR - Fing - Inco - Programación 3
```

# 4

### $\mathsf{AVL}$

#### Algoritmo de Rotación Simple

```
AVL RebalancearLL(AVL & a)
    {AVL * auxIzq;
        auxIzq = a->izq;
        a->izq = a->izq->der;
        auxIzq->der = a;
        a->FB = a->FB - 1;
        a = auxIzq;
        a->FB = a->FB - 1;
        return a;
};
```

# Preguntas