Building Simple Neural Networks

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

PyTorch uses the Autograd library for backpropagation during training

Autograd relies on reverse-mode automatic differentiation

Conceptually similar to autodiff in TensorFlow

Build a simple NN model for regression and classification

NLL as loss function and LogSoftMax as output layer

Training a neural network uses Gradient Descent to find the weights of the model parameters

"Training" the Algorithm

Start Somewhere

"Gradient Descent"

MSE = Mean Square Error of Loss

Loss =
$$\theta$$
 = $y_{predicted}$ - y_{actual}

MSE

Mean Square Error (MSE) is the metric to be minimized during training of regression model

Given x, model outputs predicted value of y

Loss = θ = $y_{predicted}$ - y_{actual}

Loss Function θ

Loss function measures inaccuracy of model on a specific instance

Actual label, available in training data

Loss =
$$\theta$$
 = $y_{predicted}$

Loss Function θ

Loss function measures inaccuracy of model on a specific instance

Gradient(θ) = $\nabla \theta(W_1, b_1)$ = $(\partial \theta/\partial W_1, \partial \theta/\partial b_1)$

Gradient: Vector of Partial Derivatives

For a function $y = f(x_1, x_2, x_3)$, the Greek character "nabla" (∇) denotes the gradient

Partial derivative of loss w.r.t to parameter W

Holding all other parameters and the input constant - how much does loss change when you tweak W

Gradient(
$$\theta$$
) = $\nabla \theta(W_1)$ b_1) = $(\partial \theta/\partial W_1)$ $\partial \theta/\partial b_1$)

Gradient: Vector of Partial Derivatives

For a function $y = f(x_1, x_2, x_3)$, the Greek character "nabla" (∇) denotes the gradient

Gradient(
$$\theta$$
) = $\nabla\theta(W_1, b_1)$ = $(\partial\theta/\partial W_1, \partial\theta/\partial b_1)$

Gradient: Vector of Partial Derivatives

For a function $y = f(x_1, x_2, x_3)$, the Greek character "nabla" (∇) denotes the gradient

Gradient(θ) = $\nabla \theta(W_1, b_1)$ = $(\partial \theta/\partial W_1, \partial \theta/\partial b_1)$

Gradient Descent to Minimize Loss

Find values of W_1 , b_1 where loss has "lowest" gradient - i.e. minimize gradient of θ

Condition of minimum:

Gradient(θ) = $\nabla \theta(W_1, b_1)$ = $(\partial \theta/\partial W_1, \partial \theta/\partial b_1)$ = zero

Gradient Descent to Minimize Loss

Find values of W_1 , b_1 where loss has "lowest" gradient - i.e. minimize gradient of θ

Gradient(θ) = $\nabla \theta(W_1, b_1)$ = $(\partial \theta/\partial W_1, \partial \theta/\partial b_1)$

Gradient Descent to Minimize Loss

Find values of W_1 , b_1 where loss has "lowest" gradient - i.e. minimize gradient of θ

In NN with 10,000 Neurons:

```
Gradient(\theta) = \nabla \theta(W<sub>1</sub>, b<sub>1...</sub>W<sub>10000</sub>, b<sub>10000</sub>)
= (\partial \theta / \partial W_1, \partial \theta / \partial b_1, ... \partial \theta / \partial W_{10000}, \partial \theta / \partial b_{10000})
```

Gradient Descent for Complex Networks

The gradient vector gets very large for complex networks, need sophisticated math to calculate and optimize

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

PyTorch, TensorFlow and other packages rely on automatic differentiation

These gradients are used to update the model parameters

Forward Pass for Prediction

Forward pass: Calculate y_{predicted} and error

Backward Pass to Update Weights

Backward Pass to Update Weights

Autograd is the PyTorch package for calculating gradients for back propagation

Demo

Introducing Autograd in PyTorch

Reverse Auto-differentiation in Backpropagation

Back propagation is implemented using a technique called reverse auto-differentiation

In NN with 10,000 Neurons:

```
Gradient(\theta) = \nabla \theta(W_1, b_1, W_{10000}, b_{10000})
= (\partial \theta / \partial W_1, \partial \theta / \partial b_1, ... \partial \theta / \partial W_{10000}, \partial \theta / \partial b_{10000})
```

Gradient Descent for Complex Networks

The gradient vector gets very large for complex networks, need sophisticated math to calculate and optimize

Greatly simplifies our little example

Output of first neuron = $W_1x + b_1$

Simple Example: Two Neurons, Linear Network

Output of second neuron = $W_2(W_1x + b_1) + b_2$

$$y_{\text{predicted}} = W_2(W_1x + b_1) + b_2$$

MSE = Mean Square Error of Loss

Loss =
$$\theta$$
 = $y_{predicted}$ - y_{actual}

$$y_{\text{predicted}} = W_2(W_1x + b_1) + b_2$$

Loss Function θ

Loss function measures inaccuracy of model on a specific instance

```
\theta = y_{\text{predicted}} - y_{\text{actual}} = W_2(W_1x + b_1) + b_2 - y_{\text{actual}}
\text{Gradient}(\theta) = \nabla \theta(W_1, b_1, W_2, b_2)
= (\partial \theta / \partial W_1, \partial \theta / \partial b_1, \partial \theta / \partial W_2, \partial \theta / \partial b_2)
```

For a function $y = f(x_1, x_2, x_3)$, the Greek character "nabla" (∇) denotes the gradient

$$\theta = y_{\text{predicted}} - y_{\text{actual}} \in W_2(W_1x) + b_1) + b_2 - y_{\text{actual}}$$

$$\text{Gradient}(\theta) = \nabla \theta(W_1, b_1, W_2, b_2)$$

$$= (\partial \theta / \partial W_1) \partial \theta / \partial b_1, \partial \theta / \partial W_2, \partial \theta / \partial b_2)$$

$$\partial \theta / \partial W_1 = W_2 \times$$

Differentiate θ with respect to W_1 , assuming all other values are constant

$$\theta = y_{\text{predicted}} - y_{\text{actual}} = (W_2(W_1X + b_1)) + b_2 - y_{\text{actual}}$$

$$\text{Gradient}(\theta) = \nabla \theta(W_1, b_1, W_2, b_2)$$

$$= (\partial \theta / \partial W_1, \partial \theta / \partial b_1, (\partial \theta / \partial W_2)) \partial \theta / \partial b_2)$$

$$\partial \theta / \partial W_2 = W_1 \times + b_1$$

Differentiate θ with respect to W_2 , assuming all other values are constant

$$\theta = y_{\text{predicted}} - y_{\text{actual}} = W_2(W_1x + b_1) + b_2 - y_{\text{actual}}$$

$$\text{Gradient}(\theta) = \nabla \theta(W_1, b_1, W_2, b_2)$$

$$= (\partial \theta / \partial W_1 (\partial \theta / \partial b_1), \partial \theta / \partial W_2, \partial \theta / \partial b_2)$$

$$\partial \theta / \partial b_1 \notin W_2$$

Differentiate θ with respect to b_1 , assuming all other values are constant

$$\theta = y_{\text{predicted}} - y_{\text{actual}} = W_2(W_1x + b_1) + b_2 - y_{\text{actual}}$$

$$\text{Gradient}(\theta) = \nabla \theta(W_1, b_1, W_2, b_2)$$

$$= (\partial \theta / \partial W_1, \partial \theta / \partial b_1, \partial \theta / \partial W_2, \partial \theta / \partial b_2)$$

$$\partial \theta / \partial b_2 = 1$$

Differentiate θ with respect to b_2 , assuming all other values are constant

```
Gradient(\theta) = \nabla \theta(W_1, b_1, W_2, b_2)

= (\partial \theta / \partial W_1, \partial \theta / \partial b_1, \partial \theta / \partial W_2, \partial \theta / \partial b_2)

= (W_2 \times, W_2, W_1 \times + b_1, 1)
```

Have calculated the gradient using high-school calculus - "symbolic differentiation"

$$t t t t t$$
Gradient(θ) = (W_2x , W_2 , $W_1x + b_1$, 1)

These gradients apply to a specific time t

These gradients apply to a specific time t

t+1 t
Parameters = Parameters - learning_rate x Gradient(θ)

For Next Time Step: Update Parameter Values

Move each parameter value in the direction of reducing gradient

Exact math and mechanics are complex and will vary by optimization algorithm

```
t+1 t
Parameters = Parameters - learning_rate x Gradient(θ)
```

For Next Time Step: Update Parameter Values

```
t+1 t
Parameters = Parameters - learning_rate x Gradient(θ)
```

For Next Time Step: Update Parameter Values

t+1 t
Parameters = Parameters - learning_rate x Gradient(θ)

For Next Time Step: Update Parameter Values

Calculated in backward pass of time t

t+1

t Parameters = Parameters - learning_rate x Gradient(θ)

For Next Time Step: Update Parameter Values

```
Updated in backward pass
    of time t...

t+1
Parameters = Parameters - learning_rate x Gradient(θ)
```

For Next Time Step: Update Parameter Values

```
...then used in forward pass
    of time t+1

t+1

Parameters = Parameters - learning_rate x Gradient(θ)
```

For Next Time Step: Update Parameter Values

Why Two Passes?

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

Because reverse auto-differentiation needs two passes

Conceptually difficult but easy to implement

Reverse-mode auto-differentiation Used in TF, PyTorch Two passes in each training step

- Forward step: Calculate loss
- Backward step: Update parameter values

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

PyTorch, TensorFlow and other packages rely on automatic differentiation

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

Symbolic Differentiation

Conceptually simple but hard to implement

Actually calculate each element of gradient vector

(Approach adopted in example above)

Easy to understand, hard to implement

- complex neural networks
- Some activation functions are hard to differentiate
- Output function may be nondifferentiable

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

Numeric Differentiation

Easy to implement but won't scale

Trivial to implement

$$y = f(x)$$

Add small "perturbation" ∂x to x

$$y + \partial y = f(x + \partial x)$$

$$\partial y/\partial x = [f(x + \partial x) - f(x)]/\partial x$$

Numeric Differentiation

Easy to implement but won't scale

Problem: need to do for each parameter
Will not scale to complex networks
(May have thousands of parameters)

Actually Calculating Gradients

Symbolic Differentiation

Conceptually simple but hard to implement

Numeric Differentiation

Easy to implement but won't scale

Automatic Differentiation

Conceptually difficult but easy to implement

Conceptually difficult but easy to implement

Relies on a mathematical trick

Based on Taylor's Series Expansion

Allow fast approximation of gradients

Conceptually difficult but easy to implement

Add a dual number to each parameter at each step

The dual number is very very small...

...but not negligible

By Taylor series, get gradient value in single operation

Conceptually difficult but easy to implement

Two flavors

- Forward-mode
- Reverse-mode

Conceptually difficult but easy to implement

Forward-mode ~ numeric differentiation Suffers from same flaw...

...Requires one pass per parameter
Will not scale to complex networks

Conceptually difficult but easy to implement

Reverse-mode used in TF, PyTorch...

Two passes in each training step

- Forward step: Calculate loss
- Backward step: Update parameter values

Conceptually difficult but easy to implement

Reverse auto-differentiation used everywhere

- TensorFlow: autodiff
- PyTorch: autograd

Back propagation is only required during training: to do so in PyTorch, invoke the .backward() method

Demo

Linear model to calculate gradients using autograd

Update model weights in the backward pass

PyTorch NN Library

PyTorch NN Library

Several types of layers

- Convolutional
- Recurrent
- Normalization
- Padding
- Pooling
- Linear
- Dropout
- Vision

PyTorch NN Library

Several types of activation functions

- ReLU
- Sigmoid
- Tanh
- ...

PyTorch NN Library **Parameters**

Containers

Loss functions

Distance functions

PyTorch NN Library DataParallel layers for distributed multi-GPU support

Easier (currently) to leverage GPUs in PyTorch than in TensorFlow

Demo

Build a fully connected sequential model for automobile price prediction

PyTorch Optimizers

Linear Regression as an Optimization Problem

Objective Function

Minimize variance of the residuals (MSE)

Linear Regression as an Optimization Problem

Objective Function

Minimize variance of the residuals (MSE)

Constraints

Express relationship as a straight line

$$y = Wx + b$$

Linear Regression as an Optimization Problem

Objective Function

Minimize variance of the residuals (MSE)

Constraints

Express relationship as a straight line

y = Wx + b

Decision Variables

Values of W and b

"Gradient Descent"

Using an Optimizer in PyTorch

Construct Optimizer Object

Pass iterable of all parameters

Each parameter should be a Variable

Compute Gradients

Invoke .backward()

Autograd for reverse auto-differentiation

Specify Per-parameter Options

Pass iterable of dict objects

Each key a param, defines parameter group

Take an Optimization Step

Invoke optimizer.step()

Overloaded version takes in a closure (advanced)

torch.optim

torch.optim.Optimizer
torch.optim.Adadelta
torch.optim.Adagrad
torch.optim.Adam

...

```
t+1 t
Parameters = Parameters - learning_rate x Gradient(θ)
```

Basic SGD Optimizer

Move each parameter value in the direction of reducing gradient

```
t
momentum_vec = momentum_coeff + learning_rate x Gradient(θ)
t+1 t
Parameters = Parameters - momentum_vec
```

Momentum-based Optimizer

Momentum vector helps accelerate in the direction where gradient is decreasing

```
momentum_vec = momentum_coeff + learning_rate x Gradient(θ)

t+1

t
Parameters = Parameters - momentum_vec
```

Momentum-based Optimizer

Gradients at each step weighted by those in previous step

Benefit: Faster convergence

```
momentum_vec = momentum_coeff + learning_rate x Gradient(θ)

t+1

t

Parameters = Parameters - momentum_vec
```

Momentum-based Optimizer

Need a momentum coefficient, between 0 and 1 to prevent overshooting

Advanced Optimizers Many variants of optimizers

Increasing complexity

More hyper parameters

Better performance

Adam ~ Adaptive Moment Estimation

Classification Using Neural Networks

Linear Regression with One Neuron

Linear Regression with One Neuron

Linear Regression with One Neuron

Linear Classification with One Neuron

Linear Classification with One Neuron

SoftMax for True/False Classification

SoftMax N-category Classification

SoftMax for Digit Classification

Intuition: Low Cross Entropy

Intuition: Low Cross Entropy

The labels of the two series are in-synch

Intuition: Low Cross Entropy

Intuition: High Cross Entropy

Intuition: High Cross Entropy

The labels of the two series are out-of-synch

Intuition: High Cross Entropy

Objective Function

Minimize crossentropy between

Yactual and Ypredicted

Objective Function

Constraints

Minimize crossentropy between Express relationship as an exponential one

Yactual and Ypredicted

Objective Function

Minimize crossentropy between Y_{actual} and Y_{predicted} **Constraints**

Express relationship as an exponential one

Decision Variables

Find "best" values for parameters

Softmax or Log Softmax as Output Layer?

Softmax

Output layer of NN is Softmax

Slightly less stable

Use cross-entropy as loss function

Objective is to minimize cross-entropy

Need just 1 output layer (Softmax)

Log Softmax

Output layer of NN is Log Softmax

Slightly more stable, nicer properties

Use NLL (negative log likelihood) as loss

Mathematically equivalent (almost)

Might need additional output layer (log), but in PyTorch just use LogSoftMax

Softmax or Log Softmax as Output?

Softmax or Log Softmax as Output?

Using (Output Layer = LogSoftmax and Loss = NLL) is equivalent* to using (Output Layer = Softmax and Loss = Cross-entropy)

Demo

Predicting survival probabilities on the Titanic

One-hot Encoding

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

One-hot Encoding

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Monday	O	1	O	Ο	Ο	O	Ο
Thursday	O	0	O	O	1	O	Ο
Saturday	O	Ο	O	Ο	O	O	1

Summary

PyTorch uses the Autograd library for backpropagation during training

Autograd relies on reverse-mode automatic differentiation

Conceptually similar to autodiff in TensorFlow

Explore NN functionality for classification

NLL as loss function and LogSoftMax as output layer