

SRI KRISHNA COLLEGE OF ENGINEERING AND TECHNOLOGY (An Autonomous Institution. Affiliated to Anna University, Chennai) Kuniamuthur, Coimbatore - 641 008

CONTINUOUS INTERNAL ASSESSMENT I - Question Bank Regulation - 2022

Programme (s)	Semester	Course Code (s)	Course Title
B.TECH IT &	IV	22CS403	Operating Systems
B E CSE			

COURS	E OUTCOMES
C403.1	Identify the basic concepts and operations of operating systems.
C403.2	Illustrate the Process management concepts including scheduling, Inter process communication, deadlocks and multithreading in real world problems.
C403 3	Apply the concepts of memory management including Virtual Memory and Page
0400.0	Replacement to the issues that occur in Real time applications.
C403.4	Analyze the concepts related to file system interface and implementation.
C403.5	Describe the disk management, system protection and security mechanisms

			<u>PART A</u>		
1.	Does Context Sv	vitching improve	CPU utilization?	Justify your ansv	ver.
2.	List out the functi	ons of operating	system.		
3.	Draw the Gantt c			' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 	neduling.
	Process	Arrival Time	Burst Time	Priority	
	P1	0	4	2	
	P2	1	2	4	
	P3	2	3	6	
	P4	3	5	10	
4.	List out the proce	ess states availat	ole.		
5.	Specify any four	services provide	d by an operating	ı system.	
6.	Give the benefits	of Synchronous	and asynchrono	us communication	on.
7.	Differentiate pre-	emptive and non	-pre-emptive sch	eduling algorithr	ns.
8.	Define semaphor	e and summarize	e its importance i	n operating syst	em.
9.	List out the fields	associated with	Process Control	Blocks.	
10.	Justify why dead	locks cannot aris	e in a bounded b	uffer producer-o	consumers system.
11.	*	-	*	• `	tex locks) for processes to re possible on semaphore

12.	Suppose run for th	e amoui	nt of time	listed. I	n ansv	vering	the qu	uestion	s, use	e pree	mptive	schedul	-	
	all decision	ons on th		ation you al Time		at the t st Time		ne deci	sion	must b	e made	•		
	Process P1		AIIIV	0.0	Dui	8t 11111	.							
	P2			0.4		4								
	P3			1.0		1								
	a. What is			around ti	ime for	these	proce	sses w	ith th	e				
	SJF sched	luling al	gorithm?											
13.	Discuss h	ow dead	llock is po	ossible w	ith the	dining	g-phile	osophe	rs pro	oblem.				
14.	List the n	ecessary	condition	ns for the	e occur	rence	of a d	eadloc	k.					
15.	Classify th	ne three §	general mo	ethods fo	or passi	ng para	amete	rs to th	e ope	rating	system	with exa	ample.	
16.	What scho						e follo	wing c	ases?					
	a. The pro							- C : -1-		1				
	b. The sys									ipieted	•			
17.						1100 01 1								
		r · r												
18.	Illustrate 1	the use o	of fork and	l exec sys	stem ca	ılls.								
19.	Does Con	itext Swi	tching imp	prove CF	U utili	zation?	Justif	y your	answ	er.				
20.	Consider	the follo	wing reso	ource all	ocation	state	and co	mpute	the 1	need n	natrix ar	nd the to	otal no o	f
	resources			4.				1 .			1			
	Proce	A Cur	rent Allo		A	Max	С		vailal B	C	_			
	P ss	0	1	<u>C</u> 1	6	B 7	7	A 3	2	3	-			
	Q	2	1	 	4	2	2	2	1	2	1			
	R	3	0	0	4	5	3							
	S	3	2	2	3	2	2							
	T	4	3	2	5	4	5							
21.	Mention	the ma	in advan	tage of	multip	orogra	mmi	ng.						
22.	List few	crucial o	operating	system	n servi	ces.								
23.	Different	iate bet	ween a c	client-se	rver a	nd dis	tribut	ed co	mput	ing er	vironm	ent.		
24.	Infer the concept of system calls and give an example of a system call for any two categories.													
25.	Compare	e proces	ss virtual	machin	e and	syste	m vir	tual m	achir	ne				
26.	Label the	data fi	ields ass	ociated	with F	roces	s Cor	ntrol B	locks	S.				
27.	Defend ti	mesharii	ng system	n differs t	from a	multip	rograr	nming	syste	em. If s	so, how	?		
28.	State the	advanta	ige of usir	ng tightly	coupl	ed sys	tems							

Interpret the above C program using the necessary system call. 30. Draw the process creation using fork() system call. 31. Sketch the actions taken by a kernel to context-switch between processes 32. Define race condition with an example 33. Give an application of thread. 34. Write down the necessary conditions that must hold simultaneously for a deadlock situation to arise in a system. 35. Infer how the Convoy effect is implemented with an example 36. Explain the code snippets for implementing Semaphore with no Busy waiting 37. Context Switching between processes is expensive than context switching between threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality.	29.	#include <stdio.h> int main () { printf ("Greetings!");</stdio.h>
 31. Sketch the actions taken by a kernel to context-switch between processes 32. Define race condition with an example 33. Give an application of thread. 34. Write down the necessary conditions that must hold simultaneously for a deadlock situation to arise in a system. 35. Infer how the Convoy effect is implemented with an example 36. Explain the code snippets for implementing Semaphore with no Busy waiting 37. Context Switching between processes is expensive than context switching between threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality. 		}
 32. Define race condition with an example 33. Give an application of thread. 34. Write down the necessary conditions that must hold simultaneously for a deadlock situation to arise in a system. 35. Infer how the Convoy effect is implemented with an example 36. Explain the code snippets for implementing Semaphore with no Busy waiting 37. Context Switching between processes is expensive than context switching between threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality. 	30.	Draw the process creation using fork() system call.
 33. Give an application of thread. 34. Write down the necessary conditions that must hold simultaneously for a deadlock situation to arise in a system. 35. Infer how the Convoy effect is implemented with an example 36. Explain the code snippets for implementing Semaphore with no Busy waiting 37. Context Switching between processes is expensive than context switching between threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality. 	31.	Sketch the actions taken by a kernel to context-switch between processes
 34. Write down the necessary conditions that must hold simultaneously for a deadlock situation to arise in a system. 35. Infer how the Convoy effect is implemented with an example 36. Explain the code snippets for implementing Semaphore with no Busy waiting 37. Context Switching between processes is expensive than context switching between threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality. 	32.	Define race condition with an example
to arise in a system. 35. Infer how the Convoy effect is implemented with an example 36. Explain the code snippets for implementing Semaphore with no Busy waiting 37. Context Switching between processes is expensive than context switching between threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality.	33.	Give an application of thread.
 36. Explain the code snippets for implementing Semaphore with no Busy waiting 37. Context Switching between processes is expensive than context switching between threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality. 	34.	•
 37. Context Switching between processes is expensive than context switching between threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality. 	35.	Infer how the Convoy effect is implemented with an example
threads. Justify. 38. List any two advantages of using multithreading in software development. 39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality.	36.	Explain the code snippets for implementing Semaphore with no Busy waiting
39. Identify synchronization mechanisms used for coordinating processes. 40. Differentiate between a semaphore and a mutex in terms of their functionality.	37.	
40. Differentiate between a semaphore and a mutex in terms of their functionality.	38.	List any two advantages of using multithreading in software development.
2 more made between a comapner of and a matex in terms of their fameticitients.	39.	Identify synchronization mechanisms used for coordinating processes.
41 01-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	40.	Differentiate between a semaphore and a mutex in terms of their functionality.
State the conditions in which a system encounters a deadlock.	41.	State the conditions in which a system encounters a deadlock.

		PART B
1.	i)	Describe about Operating system operations and discuss in detail about User and Abstract view of OS.
2.	i)	Consider the situation while designing the operating system structures, it is sometimes difficult to achieve a layered approach if two components of the operating system are dependent on each other. Which approach will be suitable for designing operating structures in this situation and justify. Also elaborate the other operating system structure design approaches with their benefits. Also list out some of the operating system services.
3.	i)	An operating system executes a variety of programs that run as a process. Process is a program in execution; process execution must progress in sequential fashion. Describe the process states with the help of state diagram. Define process control block and its role in the context switching of the process.

	4.	i)		esses, each	_							e that are shared by Show that the syster	- 1
\vdash		ii)			r the dini	ng ph	ilosoph	ers pi	oble	m us	ing s	emaphores.	\dashv
F	5.	i)					-					suitable examples	\exists
	6.	i)	Discuss h multiproce exhibit min	now wait() a essor enviro nimal busy v	and signa nments u vaiting. D	al() s using evelo	emapho the test op pseu	ore on t and do co	perat set i de fo	ions nstru or imp	could ction leme	d be implemented The solution shouenting the operation	in ıld
_	7.	<u>i)</u>		e methods f									
	8.	i)			g set of	proc	esses, '	with t	he le	ength	of th	he CPU – burst tin	ne
			Proces	lilliseconds: Burst	Priority	,							
			S	Time	Filolity	'							
			P1	10	3								
			P2	1	1								
			P3	2	3								
			P4	1	4								
			P5	5	2								
				sses have a									
												ese processes usi	ng
				FS, SJF, Pri							iling		
				termine the lculate the w				-					
F	9.	i)									andli	ng deadlock in deta	ail.
H	10.											3 resource types:	
	10.	1)		ing Snapsh		-			_		anu	o resource types.	
			Process	Maximu		-,	Allocation			ilable (V	Vork)		
				R1 R2	R3	R1	R2	R3	R1	R2	R3		
			P1	7 5	3	0	1	0	3	3	2		
			P2	3 2	2	2	0	0					
			P3 P4	9 0	2	2	1	2 1					
			P5	4 3	3	0	0	2					
			i) Fin	d 'Available'	resource	es for	each p	roces	ses				
				at is the cor					555.				
			iii) Is t	he system ir	n a safe s	state?)						
					from P2	arri	ves for	(1,0	,2),	can	the	request be grante	ed
			imr	nediately?									
\vdash	11.	i.	Summaria	ra the comic	as and or	etom	compos	nanta	of or	agrati	na ar	vetame briofly	\dashv
\vdash	12.	ı. 										ystems briefly. olved in a process.	\dashv
	12.	'	Explain	ie various ti	ireaurig i	mode	is and t	пеас	ınıg ı	issues	5 11100	orved in a process.	
F		ii	Discuss tl	he critical s	ection p	roble	m. State	e and	disc	cuss	the b	pasic requirements	of
				oblem soluti	_							1	
L			1										
	13.	i						in th	ne tin	ne gi	ven,	with the length of t	he
			CPU-burs	t time given	in millis	econo	ds.						
								, .					
				Arrival	Burst t	ime	Priority	/ (ms))				
				Time (ms)	(ms)		4						
L			P1 0		15		4						

		P2	1	10	3		
		P3	3	8	5		1
		P4	5	5	2		1
		P5	7	4	1		1
		P6	8	2	6		1
		Give the	Gantt chart	illustrating	the execution	on of pi	- rocesses using FIFO, Preemptive
				mptive prio	rity schedu	ıling an	nd Round robin algorithm(time
		quantun	,				
		1 ′		ge waiting t	time and av	erage ti	urn-around time for each of the
14.	li	above al		diagram PC	B and the	neratio	ons performed on processes
17.	'		process state	alagram, i c	ob and the C	эрстанс	ons performed on processes
15.	i	Assume	that there are	5 processes	s, P0 throug	h P4, ar	nd 4 types of resources. At T0 we
		have the	following sy	stem state:	_		
		Proces	Allocation	Max	Available		
		s					
			4 D C D	4 D C D	4 D C D		
			A, B, C, D	A, B, C, D	A, B, C, D		
		P0	0 1 1 0	0 2 1 0	1 5 2 0		
			0110	0 2 1 0	1 3 2 0		
		 _{P1}	1 2 3 1	1652			
			1 2 0 1	1002			
		P2	1 3 6 5	2 3 6 6			
		P3	0 6 3 2	0 6 5 2			
						1	
		P4	0 0 1 4	0656			
		Using Ba	anker's algori	thm, answe	r the follow	ing que	estions:-
		1 ′	ate the numb			C, D	
		1 ′	he contents o			.1	
			•				quence of processes executing i
16.	i						and the reason. tween many people. If one of th
10.	'						ald be reading or writing at th
							to him/her. However, if som
		1					the same time.
			y the applica				
		ii) Consi					lve this situation.
		•			_		r of processes
		•		ter is ready,	, it periorm	s its wr	ite. Only one writer may write a
			a time, If a process	is writing	no other pr	ocess ca	n read it
			_	_	_		rocess can write.
		•	Readers ma		_	_	
	ii						following scenario. At time't
		process	P1 requests	for a resou	urce R1, P2	2 reque	ests R2. Both the resources ar
	I	l available	and they ar	o allocated	to the mage	100tina	process. At time t1, where t1>t

		both the processes are still holding the resources, however P1 requests for R2 which
		is held by P2, P2 requests R1 held by P1. Will there be a deadlock? Justify your
		answer with the conditions.
17.	i	Elucidate the various methods and mechanisms involved in implementing inter
		process communication.
18.	i	Write short notes on
		i) Loosely coupled systems
		ii) Scheduling queues
		iii) Real time systems
		iv) Variation in FCFS Scheduling
19.	i.	Considering the situation while designing the operating system structures, it is sometimes
		difficult to achieve a layered approach if two components of the operating system are
		dependent on each other. Which approach will be suitable for designing operating
		structures in this situation and justify. Also elaborate the other operating system structure
		design approaches with their benefits.
	ii.	Using simple system calls as examples (e.g. getpid, or fork), describe what is generally involved in providing the result from the point of involving the system call to what it
		involved in providing the result, from the point of invoking the system call to what it returns.
20.	i	Discuss the classic problems of synchronization with examples.
21.	i)	An operating system executes a variety of programs that run as a process. The
	'/	process is a program in execution; process execution must progress sequentially.
		Describe the process states with the help of a state diagram. Define the process
		control block and its role in the context switching of the process.
22.	i)	Discuss in detail about multithreading models. Cite the necessity for process
	,	synchronization. Illustrate a software-based solution to Producer-Consumer Problem
		using Shared Memory and Message Passing
23.	i)	Consider the following set of processes, with the length of the
		CPU burst given in milliseconds:
		Process Burst Time Priority
		P1 2 2
		P2 1 1
		P3 8 5
		P4 4 4 P5 5 3
		The processes are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 , all at time 0.
		a. Draw four Gantt charts that illustrate the execution of these
		processes using the following scheduling algorithms: FCFS,
		SJF, Priority (a larger priority number implies a higher
		priority), and RR (quantum = 4).
		b. What is the turnaround time of each process for each of the
		scheduling algorithms in part a?
		c. What is the waiting time of each process for each of these
		scheduling algorithms?
		d. Which of the algorithms results in the minimum average
		waiting time (over all processes)?
24.	i)	Assume that the following processes arrive in the time given, with the length of the
		CPU-burst time given in milliseconds.
		Job Arrival Burst time
		Time (ms) (ms)
		Time (ms) (ms) P 0 15

		Q 3 6
		R 2 10 S 4 7
		T 1 13
		a) Give the Gantt chart illustrating the execution of processes using FIFO, Preemptive and non-preemptive SJF scheduling, and Round robin algorithm (time quantum= 4 ms). Note highest priority is 5 and the lowest priority is 1. b) Calculate the average waiting time and average turn-around time for each of the above algorithms.
25.	i)	Briefly explain the hardware solutions used to solve critical – sections.
	ii)	Discuss the methods and mechanisms used to implement interprocess-communications
26.	i)	Assume a multithreaded application uses only reader-writer locks for synchronization. Applying the four necessary conditions for deadlock, is deadlock still possible if multiple reader-writer locks are used? Can a system detect that some of its processes are starving? If you answer "yes," explain how it can. If you answer "no," explain how the system can deal with the starvation problem
27.	i)	Explain readers-writers problem. Give its solution with semaphore.
	ii)	Summarize the responsibility of operating systems concerning system components. Write short notes on Tightly coupled systems & Monitors
28.	i)	Various types of errors are generated when programmers use Semaphores incorrectly to solve critical-section problems. With a schematic view of a monitor and its condition variables, discuss the usage of Monitors in dealing with such errors. Also, illustrate monitor concepts by presenting deadlock-free solutions to Dining – Philosophers' problem.
29.	i)	Consider the following snapshot of a system:
	ŕ	Allocation Max Available A B C D A B C D P ₀ 0 0 1 2 0 0 1 2 1 5 2 0 P ₁ 1 0 0 0 1 7 5 0 P ₂ 1 3 5 4 2 3 5 6 P ₃ 0 6 3 2 0 6 5 2 P ₄ 0 0 1 4 0 6 5 6 Answer the following questions using the banker's algorithm:
		 a. What is the content of the matrix Need? b. Is the system in a safe state? c. If a request from process P₁ arrives for (0,4,2,0), can the request be granted immediately?
30.	i)	Consider the deadlock situation that occurs in a dining philosopher's problem, when the philosophers obtain the chopsticks one at a time. Analyze the four necessary conditions for deadlock for this setting. • If all five philosophers are hungry simultaneously, and each of them pickup one chopstick, then a deadlock situation occurs because they will be waiting for another chopstick forever. • Mutual exclusion • Hold and wait

		No preempti Circular wait						
31.	i)	Explain about	the emerging tr				uture of comp	uting
			and how might the					
32.	i)	1	etween blocking	•		/stem calls.	Enumerate	the
		advantages a	nd disadvantage	s of each ap	proach			
	ii)	Explain the ρι	urpose and impo	rtance of Sys	stem Calls ir	n detail with	examples.	
33.	i)	Summarize the management.	e activities of an o	operating syst	tem with rega	ard to proces	s, file and mer	mory
34.	i)	Discuss the co	ncept of virtualizat	ion and its rol	e in modern o	operating sys	tem structures.	
35.	i)		ultitasking, and ho king benefits user		perating syste	em achieve it	? Provide exam	ples
36.	i)	Illustrate the co	encept of boot pro	ocess of a co	omputer, incl	uding the va	rious stages	
	ii)		ncept of process ow does the OS n	, •	•	•	•	ntrol
37.	i)	<u> </u>	et of processes of					ourst
	,		nillisecond. Calcul			•		
		throughput usir			ge	, arerage t		
		amougnput uon	.g . c. c.					
		Pro	cess	Burst	Time(ms)			
			P1		5			
			P2		24			
			P3		16			
			P4		10			
			P5		3			
			•					
38.	i)	Consider the	set of processe	s given. Ca	Iculate the	average wait	ting time, ave	rage
	·	turnaround time	e and throughput u	using Priority	Scheduling	•		
		Process	Burst Time(m	s)	Priority			
		P1	5		2			
		P2	24		4			
		P3	16		5			
		P4	10		1			
		P5	3		3			
				•				
39.	i)	System consis	ts of 4 processes	P1 through	P4; and 2 i	resource type	s: R1 (4 instan	ces)

and R2 (3 instances) The following Snapshot of the system has been taken:

	Max	imum	Allocation		
	R1	R2	R1	R2	
P1	2	2	0	1	
P2	2	1	1	0	
P3	1	2	0	1	
P4	3	3	2	0	
,	ocation in a safe state P1 arrives for (0,1).		be granted in	nmediately?	
	ot of deadlock prever	ntion and how it	aims to elimi	nate one or r	
necessary conditio	ns for deadlock.				

40.