Algoryt	my przetwarzania	i analizy obrazów
trójwymiarowyc	h w zastosowaniac	ch biomedycznych

Aleksander Grzyb

Politechnika Poznańska

Wydział Informatyki

Algorytmy przetwarzania i analizy obrazów trójwymiarowych w zastosowaniach biomedycznych

Aleksander Grzyb

Promotor dr hab. inż. Krzysztof Krawiec

Aleksander Grzyb

Algorytmy przetwarzania i analizy obrazów trójwymiarowych w zastosowaniach biomedycznych $2015\,$

Promotor: dr hab. inż. Krzysztof Krawiec

Politechnika Poznańska

Wydział Informatyki

Poznań

Spis treści

1	Wst	ęp	1
	1.1	Opis problemu	1
	1.2	Cel i zakres pracy	1
	1.3	Projekt RIMO	1
2	Obr	azowanie OCT	3
	2.1	Zasada działania OCT	4
		2.1.1 Metoda uzyskania trójwymiarowego obrazu tkanki	5
		2.1.2 OCT w domenie częstotliwości	6
	2.2	Angiografia OCT	7
		2.2.1 Sposób powstania obrazu angiograficznego	7
	2.3	Zastosowania OCT	8
		2.3.1 OCT w okulistyce	9
		2.3.2 OCT w gastroenterologii i dermatologii	9
		2.3.3 OCT w przemyśle	9
3	Algo	orytmy korejestracji przestrzennej obrazów OCT	11
	3.1	Model deformacji kafelków	12
		3.1.1 Matematyczny zapis modelu transformacji ciała sztywnego	13
	3.2	Korejestracja kafelków	13
		3.2.1 Korejestracja na podstawie wartości pikseli	15
		3.2.2 Korejestracja na podstawie cech	16
	3.3	Łączenie kafelków	19
4	Pro	ponowane algorytmy	21
	4.1	Implementacja	21
	4.2	Wiedza dziedzinowa	21
	4.3	Rejestracja kafelków poprzez ekstrakcję cech SIFT	21
		4.3.1 Dopasowanie wyekstrahowanych cech	21
		4.3.2 Filtrowanie dopasowań	21
	4.4	Rejestracja kafelków poprzez wykrycie położeń naczyń krwionośnych	
		w kafelkach	21
	4.5	Estymacja macierzy transformacji pomiędzy kafelkami	21
	46	Globalna rejestracia kafelków	າາ

Bi	bliografia	27
6	Podsumowanie i wnioski końcowe	25
5	Wyniki eksperymentów obliczeniowych	23
	4.7 Łączenie kafelkow	22

Wstęp

- 1.1 Opis problemu
- 1.2 Cel i zakres pracy
- 1.3 Projekt RIMO

Obrazowanie OCT

Optyczna tomografia koherencyjna (ang. optical coherence tomography, OCT) jest metodą umożliwiającą nieinwazyjne oraz in vivo przechwycenie obrazu wnętrza tkanki biologicznej. Zasada działania OCT opiera się na wykorzystaniu fal świetlnych. Dzięki temu rozdzielczość obrazów jest o wiele wyższa niż w ultrasonografii (wykorzystanie fal dźwiękowych), czy rezonansie magnetycznym (wykorzystanie pola magnetycznego). Następnym powodem dużej popularności OCT w medycynie jest bezkontaktowe badanie pacjenta oraz brak wymogu przygotowania pacjenta przed badaniem.

W projekcie RIMO OCT zostało wykorzystane do uzyskania szczegółowych obrazów naczyń krwionośnych siatkówki oka. Rysunek 2.1 przedstawia przykładowe obrazy siatkówki oka uzyskane dzięki wykorzystaniu OCT. Jednym z tych przykładowych obrazów jest angiografia siatkówki oka, która jest obrazem wejściowym do algorytmów omawianych w niniejszej pracy. Sposób powstania angiografii z danych OCT jest wyjaśniony w podrozdziale 2.2, natomiast ogólna zasada działania OCT jest wyjaśniona w podrozdziale 2.1. Na koniec rozdziału w podrozdziale 2.3 zostaną opisane zastosowania OCT.

Rys. 2.1: Lewy obraz: Dwuwymiarowy przekrój siatkówki oka (B-skan). Obraz został uzyskany poprzez połączenie jednowymiarowych A-skanów, które zawierają informację o strukturze tkanki w głąb siatkówki oka. Prawy obraz: Angiografia siatkówki oka uzyskana dzięki przetworzeniu danych z OCT.

2.1 Zasada działania OCT

Jednym z najważniejszych parametrów metod tomografii w medycynie jest ich rozdzielczość. Optyczna tomografia koherencyjna przechwytuje obrazy wnętrza tkanki poprzez wykorzystanie fal świetlnych. OCT za pomocą generatora wytwarza falę świetlną, która jest skierowana na tkankę pacjenta. Następnie po odbiciu fali poprzez tkankę wiązka jest przechwycona przez detektor. Jedną z dostępnych metod, która umożliwiłaby zlokalizowanie miejsca odbicia fali byłoby zmierzenie czasu pomiędzy wygenerowaniem fali, a zarejestrowaniem jej przez detektor (mechanizm stosowany np. w ultrasonografii z wykorzystaniem fal dźwiękowych), natomiast prędkość światła ($3 \times 10^8 \frac{m}{s}$) wyklucza zastosowanie tego mechanizmu. Zjawisko, które umożliwia dokładne zlokalizowanie miejsca odbicia to **interferencja światła o niskiej spójności**.

Rys. 2.2: Kolejne etapy działania metody OCT. (1) - Etap początkowy. (2) - Źródło wyemitowało wiązkę światła. (3) - Fala rozdzieliła się za pomocą interferometru na wiązkę referencyjną (skierowaną na lustro referencyjne) oraz na wiązkę próbki (skierowaną na tkankę). (4) - Wiązki po odbiciu od lustra referencyjnego i tkanki ponownie łączą się za pomocą interferometru. W tej części występuje zjawisko interferencji, które jest zarejestrowane przez detektor.

Rysunek 2.2 składa się z bardzo uproszczonych schematów OCT, które obrazują kolejne etapy działania metody. Schematy na rysunku 2.2 składają się z pięciu elementów:

- **Źródła** Źródło (np. dioda superluminescencyjna) światła podczerwonego, które jest falą o niskiej spójności.
- Rozdzielacza wiązek (na rysunku 2.2 przedstawiony za pomocą przerywanych linii na środku każdego schematu) Interferometr (np. Michelsona) umożliwiający rozdzielenie fali na dwie wiązki oraz następne ich połączenie.
- Lustro referencyjne Lustro, które odbija wiązkę referencyjną. Posiada możliwość oddalania oraz przybliżania się względem interferometru.
- Tkanka Badana tkanka, która odbija wiązkę próbki.
- Detektor Rejestruje zjawisko interferencji związek.

Najbardziej istotnym etapem wymaganym do zrozumienia mechanizmu OCT jest etap (4) pokazany na rysunku 2.2. W tym kroku wiązka referencyjna i wiązka próbki łączą się i zachodzi zjawisko interferencji. Dzięki temu, że wiązki są falami o niskiej spójności interferencja zachodzi tylko na małej długości (ang. *coherence length*). Odczytując za pomocą detektora charakterystyczny wzorzec interferencji występującej na *coherence length* jesteśmy w stanie wydobyć informacje na temat próbki wnętrza tkanki oraz wiemy dzięki położeniu lustra referencyjnego położenie próbki. Poszczególne badanie głębszych warstw tkanki przedstawia rysunek 2.3.

Rys. 2.3: Kolejne etapy badania głębszych warstw tkanki dzięki przesuwaniu lustra referencyjnego. Aktualna pozycja lustra referencyjnego jest zaznaczona kolorem czarnym, natomiast aktualnie badana warstwa tkanki jest zaznaczona kolorem czerwonym.

2.1.1 Metoda uzyskania trójwymiarowego obrazu tkanki

Poprzez poruszenie lustra referencyjnego pomiary przeprowadzane są w głąb tkanki (wzdłuż osi Z). Zbiór pomiarów w głąb tkanki nazywa się A-skanem (obraz jednowymiarowy). Powtarzając ten proces w osi X lub Y i następnie poprzez połączenie sąsiadujących A-skanów otrzymuje się przekrój tkanki zwany B-skanem (obraz

dwuwymiarowy). Cały proces uzyskania B-skanów można powtórzyć dla sąsiadujących przekrojów. Poprzez połączenie otrzymanych B-skanów otrzymuje się obraz trójwymiarowy tkanki. Na rysunku 2.4 [8] przedstawione są poszczególne skany.

Rys. 2.4: [8] Lewy obraz: Pojedynczy A-skan wykonany w głąb tkanki. Środkowy obraz: Otrzymany B-skan poprzez połączenie A-skanów. Prawy obraz: Trójwymiarowy obraz tkanki stworzony poprzez połączenie B-skanów.

2.1.2 OCT w domenie częstotliwości

Metoda OCT, która wykonuje ruch lustrem referencyjnym jest zwana metodą OCT w domenie czasu (ang. *time-domain OCT, TdOCT*). Alternatywną oraz nowszą metodą od TdOCT jest OCT w domenie częstotliwości (ang. *Fourier-domain OCT, FdOCT*). FdOCT umożliwia 100 razy szybsze [@12] skanowanie w porównaniu do TdOCT. TdOCT jest w stanie wykonać ok. 400 A-skanów w przeciągu sekundy, natomiast FdOCT jest ich w stanie wykonać dziesiątki tysięcy. Szybsze skanowanie poprawia również jakość skanów ze względu na to, że pacjent ma mniejszą szansę poruszenia okiem podczas skanowania (ruch oka w trakcie skanowania przyczynia się do powstania artefaktów ruchu na obrazach OCT). Oprócz poprawy szybkości skanowania FdOCT ma wyższą rozdzielczość w przedziale od 3-7 mikrometrów [@12]. Jest to poprawa względem TdOCT o 8-10 mikrometrów.

Większa szybkość oraz rozdzielczość FdOCT w porównaniu do TdOCT jest możliwa dzięki dwóm modyfikacjom technicznym:

1. FdOCT jako źródło światła wykorzystuje laser o wysokiej szerokości pasma, co znacząco zwiększa rozdzielczość.

2. FdOCT jako detektor wykorzystuje spektrometr, który przeprowadza analizę widma fali (połączona wiązka referencyjna i próbki), która dotarła do spektrometru z interferometru. Wykonanie transformaty Fouriera na widmie fali tworzy A-skan tkanki. Dzięki tej technice FdOCT wyeliminowało potrzebę ruszania lustrem referencyjnym co znacząco zwiększa szybkość skanowania.

FdOCT posiada również wady. Jest droższy od TdOCT ze względu na wykorzystanie drogiego lasera jako źródła światła co powoduje, że jest wykorzystywany tylko w celach badawczych. Następna wada wynika z szybkości powstawania A-skanów. Szybsze skanowanie może prowadzić do utraty jakości obrazów OCT, natomiast utrata tej jakość może być zmniejszona poprzez użycie techniki przetwarzania sygnałów zwanej *oversampling*.

2.2 Angiografia OCT

Angiografia to technika służąca do wizualizacji naczyń krwionośnych i organów ciała. W większości przypadków w medycynie angiografia jest wykonywana poprzez wstrzyknięcie pacjentowi środka kontrastowego, który nie przepuszcza promieni rentgenowskich. Następie wykorzystuje się jedną z technik obrazowania (np. fluoroskopię) opartą o promienie rentgenowskie. Ta metoda ma jedną znaczącą wadę, jako technika inwazyjna może prowadzić do reakcji alergicznych na środek kontrastowy oraz jest przeciwwskazana kobietom w ciąży i dzieciom. Z tego powodu nieustannie poszukiwane są metody, które jednocześnie są nieinwazyjne i tworzą obrazy o jakości porównywalnej do metod inwazyjnych.

Angiografia OCT jest metodą, która opiera się na A-skanach i B-skanach OCT i jest w stanie stworzyć obraz *en face* naczyń krwionośnych siatkówki oka. Przykład takiego obrazu znajduje się na rysunku 2.2.

2.2.1 Sposób powstania obrazu angiograficznego

Obrazy angiograficznie, które zostały użyte w niniejszej pracy powstały za pomocą metody zwanej *Speckle Variance Detection*, która polega na liczeniu wariancji dla każdego piksela pomiędzy sąsiadującymi B-skanami. Ta technika została wykorzystana, ponieważ lokalna wariancja dla obszarów gdzie występuje przypływ krwi (naczynia krwionośne) ma wyższą wartość w porównaniu do obszarów gdzie występuje struktura statyczna. Rezultatem tej metody jest obraz przepływowy, którego piksele mają wartość wariancji sąsiadujących B-skanów. Na rysunku 2.5 został przedstawiony przykładowy zbiór sąsiadujących B-skanów.

Rys. 2.5: Trzy sąsiadujące B-skany na postawie których powstaje jeden obraz przepływowy.

Wartości intensywności pikseli V_{jk} obrazu przepływowego liczone są na podstawie wartości intensywności pikseli I_{ijk} sąsiadujących N B-skanów za pomocą wzoru (na rysunku 2.5 N=3):

$$V_{jk} = \frac{1}{N} \sum_{i=1}^{N} (I_{ijk} - I_{mean})^2$$
 (2.1)

Gdzie j i k to indeksy boczne i głębokościowe B-skanu (współrzędne pikseli), a I_{mean} to średnia intensywność zbioru tych samych pikseli, dla których liczona jest wariancja.

Rezultatem połączenia sąsiadujących obrazów przepływowych obliczonych ze wszystkich B-skanów jest trójwymiarowy obraz przepływowy. Następnie poprzez użycie projekcji maksymalnego natężenia (ang. *maximum intensity projection, MIP*), która polega na projekcji woksela o najwyższej intensywności z obrazu 3D na obraz 2D. W przypadku trójwymiarowego obrazu przepływowego będzie to woksel, którego wartość była największą wartością wariancji pikseli sąsiadujących B-skanów. Po zastosowaniu projekcji maksymalnego natężenia na trójwymiarowym obrazie przepływowym otrzymujemy angiograficzny obraz *en face* naczyń krwionośnych.

2.3 Zastosowania OCT

Optyczna tomografia koherencyjna ze względu na swoje właściwości (badanie nie-inwazyjne oraz *in vivo*) jest metodą, która ma szerokie zastosowanie w medycynie oraz w innych specjalizacjach.

2.3.1 OCT w okulistyce

Najbardziej popularnym zastosowaniem OCT w medycynie jest badanie oka [6]. Technika OCT umożliwia przechwycenie trójwymiarowych obrazów części oka takich jak dno, czy warstwy przednie. Dzięki temu jest wykorzystywane do diagnozowania takich chorób jak stwardnienie rozsiane, zwyrodnienie plamki żółtej, czy jaskra.

2.3.2 OCT w gastroenterologii i dermatologii

OCT w porównaniu do innych metod diagnostycznych w medycynie jest techniką nową. Lekarze i naukowcy nieustannie starają się znaleźć nowe zastosowania dla OCT, która jest metodą obiecującą i szybko rozwijającą się. OCT jest potencjalnym kandydatem by w niektórych diagnozach zastąpić konwencjonalną biopsję, która wymaga usunięcia kawałka tkanki z organizmu. Przykładem takiego zastosowania jest badanie struktury błon śluzowych i podśluzowych w układzie pokarmowym. W tym przypadku OCT dostarczyło czyste obrazy, które dostarczają lekarzom dużo diagnostycznej informacji [11]. Innym przykładem są próby wykorzystania OCT do wczesnej diagnozy raka skóry, który obecnie również diagnozowany jest poprzez biopsję. W tym przypadku OCT w obecnym stopniu zaawansowania nie jest w stanie dostarczyć na tyle dokładnych danych by stać się jedyną metodą diagnozy. Następnym przykładem zastosowania OCT w dermatologii jest diagnoza zapalnych chorób skóry [7].

2.3.3 OCT w przemyśle

OCT wykorzystywane jest również do zastosowań przemysłowych. Umożliwia badanie np. grubości materiałów [15], czy badanie grubości warstwy pancerza tabletek podczas ich produkcji w przemyśle farmaceutycznym [10].

Algorytmy korejestracji przestrzennej obrazów OCT 3

Mozaiką nazywa się obraz, który powstaje poprzez połączenie grupy obrazów zwanych kafelkami na podstawie ich wzajemnych relacji. Znanym oraz popularnym przykładem łączenia obrazów w jeden większy jest funkcja panoramy w telefonach komórkowych, czy aparatach fotograficznych. Od strony użytkownika proces tworzenia panoramy polega na powolnym przesuwaniu telefonem po linii poziomej do momentu aż żądany krajobraz zostanie uchwycony. Od strony urządzenia proces polega na wykonywaniu serii zdjęć oraz następnie łączenie nachodzących klatek w jeden obraz. Rezultatem jest jednolita panorama, która składa się z grupy mniejszych węższych zdjęć.

Celem niniejszej pracy jest stworzenie mozaiki OCT (przykład na rysunku 3.1), która powstaje z połączenia mniejszych nachodzących na siebie nawzajem angiograficznych obrazów OCT (przykład obrazu angiograficznego OCT znajduje się z prawej strony na rysunku 2.1).

Rys. 3.1: Mozaika OCT stworzona z połączenia angiograficznych obrazów OCT.

Proces automatycznego stworzenia mozaiki takiej jak na rysunku 3.1 jest zadaniem nietrywialnym i wymaga dokładnej analizy wiedzy dziedzinowej oraz precyzyjnego wyboru metod. Pierwszym krokiem jest wybór modelu deformacji kafelków (sekcja 3.1), następnym etapem, który jest jednocześnie najbardziej wymagającym jest wybór metody wzajemnej korejestracji kafelków (sekcja 3.2). Posiadając zdefiniowane wzajemne relacje kafelków oraz ich docelowe położenie w finalnej mozaice należy wykonać proces łączenia kafelków (sekcja 3.3). W każdej z tych sekcji została wyjaśniona idea metody w kontekście stworzenia mozaiki OCT, natomiast szczegółowy opis zaimplementowanych metod znajduje się w rozdziale 4.

3.1 Model deformacji kafelków

Model deformacji kafelków określa dozwolone przekształcenia geometryczne, które odwzorują piksele kafelka do pikseli kafelka w finalnej mozaice. Ze względu na to, że angiograficzne obrazy OCT znajdują się na jednej płaszczyźnie możliwy zbiór modeli deformacji ogranicza nam się do transformacji dwuwymiarowych, które zostały zobrazowane na rysunku 3.2.

Rys. 3.2: Zbiór transformacji dwuwymiarowych dla przykładowego angiograficznego obrazu OCT.

Idealnie OCT powinno tworzyć angiograficzne obrazy, które są względem siebie tylko przesunięte, natomiast w rzeczywistości pojawiają się zniekształcenia wynikające

z niedokładności urządzenia oraz ruchu oka pacjenta, przez co niektóre kafelki są nieznacznie obrócone względem siebie. Z tego względu wybranym modelem deformacji kafelków został **model transformacji ciała sztywnego**, czyli połączenie translacji i rotacji.

3.1.1 Matematyczny zapis modelu transformacji ciała sztywnego

Współrzędne piksela w kafelku możemy określić jako trójelementowy wektor $\widetilde{x}=(x,y,1)$, gdzie x i y to współrzędne piksela w układzie współrzędnych kafelka. Tak zdefiniowany piksel poddaje się transformacji by uzyskać współrzędne tego piksela $\widehat{x}=(x',y')$ w układzie współrzędnych finalnej mozaiki. W sekcji 3.1 została wybrana transformacja ciała sztywnego, który zakłada tylko translację oraz rotację i może być zapisana jako:

$$\hat{x} = \begin{bmatrix} R & t \end{bmatrix} \tilde{x} \tag{3.1}$$

gdzie:

$$R = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$
 i
$$t = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
 (3.2)

W równaniu 3.2 θ to kąt obrotu (rotacja) względem początku układu współrzędnych, a t_x i t_y to odpowiednio przesunięcia względem osi x i osi y. Parametry θ , t_x i t_y są niewiadomymi równania 3.1, których obliczenie jest tematem sekcji 3.2.

3.2 Korejestracja kafelków

Po wyborze modelu deformacji kafelków można przejść do wyboru metody, która będzie określać jego parametry (w przypadku niniejszej pracy są to parametry przesunięcia i obrotu). Metoda ta powinna zwrócić takie wartości by kafelek znalazł się w odpowiednim miejscu w finalnej mozaice z możliwie najmniejszym błędem. By rozwiązać ten problem najpierw trzeba poznać położenie kafelków względem siebie oraz ustalić kafelek referencyjny. Rysunek 3.3 przedstawia przykładowe rozmieszczenie kafelków. Kafelek referencyjny oznaczony poprzez przerywane linie jest przesuwany do finalnej mozaiki, natomiast żeby odpowiednio umieścić kafelki (2) i (3) trzeba najpierw znać dopasowanie kafelków (2) i (3) do kafelka referencyjnego (1). W przykładzie na rysunku 3.3 zostało założone, że kafelki (2) i (3) mogą być do-

pasowane do kafelka (1). Informacja na temat tego, które kafelki należy dopasować do których kafelek wynika z wiedzy dziedzinowej i opisane jest to w sekcji 4.2.

Rys. 3.3: Przykładowe rozmieszczenie kafelków na finalnej mozaice. Kafelek referencyjny został wyróżniony przerywaną linią.

Dopasowanie dwóch kafelków do siebie nazywa się również ich korejestracją, czyli przeniesieniem dwóch kafelków do wspólnego układu współrzędnych w taki sposób by były względem siebie dopasowane. Prosty przykład korejestracji przedstawiony jest na rysunku 3.4, gdzie dwie kafelki mają wspólny obszar nałożenia.

Rys. 3.4: Przykładowa korejestracja dwóch kafelków ze wspólnym obszarem nałożenia.

Dopasowanie kafelków z rysunku 3.4 jest przykładem bardzo prostym, ponieważ wymaga tylko translacji jednego kafelka względem drugiego. W rzeczywistości pomiary OCT nie są tak dokładne przez co prosta translacja wzdłuż jednej z osi nie wystarcza i wymagane jest automatyczne wyznaczenie parametrów translacji i rotacji, które może być wykonane na wiele sposobów. Dwie najpopularniejsze metody to:

- 1. **Korejestracja na podstawie wartości pikseli** (sekcja 3.2.1) Metoda przesuwająca jeden obraz względem drugiego i następnie oceniająca jak nałożone piksele obrazów pasują do siebie na podstawie ich wartości.
- 2. **Korejestracja na podstawie cech** (sekcja 3.2.2) Metoda wyodrębniająca charakterystyczne cechy z każdego obrazu i następnie dopasowująca te cechy by osiągnąć globalną spójność. Dopasowania są później użyte przez algorytm do wyznaczenia macierzy transformacji pomiędzy obrazami.

W niniejszej pracy do osiągnięcia żądanego rezultatu zostało wykorzystane połączenie podejścia tych dwóch metod. Wykorzystane techniki dokładnie opisane są w rozdziale 4.

3.2.1 Korejestracja na podstawie wartości pikseli

Korejestracja na podstawie wartości pikseli jest często nazywana metodą bezpośrednią, ponieważ wymaga bezpośredniego porównania wartości pikseli nakładających się obrazów. Pierwszym krokiem w tej metodzie jest wybranie odpowiedniej miary błędu. Taką miarą błędu może być funkcja suma błędów kwadratowych E_{RSS} (ang. residual sum of squares, RSS). Mając daną funkcję $I_S(w_i)$, która zwraca wartość piksela w obrazie źródłowym (przesuwanym) w lokacji $w_i=(x_i,y_i)$ oraz funkcję $I_T(w_i)$, która zwraca wartość piksela w obrazie docelowym (referencyjnym, pozostającym na miejscu) E_{RSS} można zdefiniować jako:

$$E_{RSS} = \sum_{i} [I_S(w_i + u) - I_T(w_i)]^2 = \sum_{i} e_i^2$$
(3.3)

gdzie $u=(t_x,t_y)$ to wartość przesunięcia obrazu źródłowego, a $e_i=I_S(w_i+u)-I_T(w_i)$ to błąd resztowy pomiędzy wartościami pikseli przesuniętego obrazu źródłowego i docelowego.

Mając tak zdefiniowaną miarę błędu najprostszą metodą, która wyznaczyłaby najlepsze dopasowanie obrazów byłoby obliczenie błędu dla każdego możliwego przesunięcia obrazu źródłowego. Posiadając wartości wszystkich błędów z odpowiednimi dla nich wartościami przesunięcia można by wybrać wartość najmniejszego błędu. Takie podejście natomiast wiąże się z ogromnym kosztem obliczeniowym w przypadku, gdy obrazy są dużej rozdzielczości i jest ich wiele. Proces można przyspieszyć używając algorytm optymalizacji Levenberga-Marquardta [14] albo poprzez wykorzystanie piramid obrazu w metodzie *Hierarchical Motion Estimation* [13].

Ze względu na specyficzny charakter problemu niniejszej pracy została zaimplementowana autorska metoda, która również bazuje na bezpośrednim odczytaniu wartości pikseli i jest opisana w sekcji 4.4, natomiast różni się znacząco od metod wymienionych w niniejszej sekcji.

3.2.2 Korejestracja na podstawie cech

Korejestracja na podstawie cech jest techniką, której pierwszym krokiem jest wyekstrahowanie charakterystycznych cech z każdego obrazu i następnie ich dopasowanie. Na podstawie tej informacji można wyestymować macierz transformacji jednego obrazu względem drugiego. W niniejszej sekcji zostaną opisane metody, które realizują wymienione kroki.

Ekstrakcja cech

Ekstrakcja cech (ang. keypoints detection) jest techniką, w której algorytm poprzez skanowanie obrazu piksel po pikselu podejmuje decyzję, czy dany punkt jest określoną cechą, czy nie. Rezultatem tej techniki może być zbiór punktów, krawędzi, rogów, czy obszarów. Każda cecha ma swój deskryptor (ang. keypoint descriptor), który ją określa. W dziedzinie wizji komputerowej zostało zaimplementowanych wiele algorytmów, które ekstrahują cechy obrazów. Poniżej zostały wymienione niektóre algorytmy, które są zaimplementowane przez bibliotekę przetwarzania obrazów OpenCV:

- SIFT [9] algorytm, który potrafi znaleźć charakterystyczne cechy niezależnie od lokalizacji, rotacji, czy skali obrazu. Jest jednym z najpopularniejszych algorytmów i jest wykorzystywany w niniejszej pracy. Został opisany dokładniej w sekcji 4.3.
- **SURF** [1] SURF jest oparty na tych samych zasadach co algorytm SIFT, natomiast detale poszczególnych kroków są różne. Autorzy algorytmu w swojej pracy pokazali, że SURF potrafi być szybszy of SIFT nie tracąc przy tym jakości. Tak jak SIFT jest niezależny od lokalizacji, rotacji, czy skali obrazu.

• Canny [5] - Algorytm, który potrafi wykryć krawędzie obiektów w obrazie, przez co dostarcza dużo informacji o ich strukturze. Na rysunku 3.5 zostało zaprezentowane działanie algorytmu Canny.

Rys. 3.5: Lewy obraz: Wynik zaaplikowanego algorytmu Canny na kolorowym obrazie z prawej strony. Prawy obraz: Oryginalny obraz.

Dopasowanie wyekstrahowanych cech

Następnym krokiem po wyekstrahowaniu cech w dwóch obrazach jest ich dopasowanie na podstawie deskryptorów. Najprostszym rozwiązaniem byłoby porównanie każdej cechy z pierwszego obrazu do każdej cechy z drugiego obrazu, natomiast dla niektórych zastosowań jest to rozwiązanie zbyt wymagające obliczeniowo. Przez co zostały opracowane bardziej wydajne techniki. Przykładem takiej metody jest wykorzystanie drzewa k-d przez Beis i Lowe [2].

Kolejnym wyzwaniem w dopasowaniu cech jest wykrycie obserwacji odstających (ang. *outliners*). Problem obrazuje rysunek 3.6.

Rys. 3.6: Dwa obrazy, w których zostały wykryte po trzy cechy (na rysunku oznaczone jako gwiazdy). Algorytm szukający dopasowań wykrył dopasowania (na rysunku oznaczone jako strzałki) pomiędzy cechami: 1 i 4, 2 i 5, 3 i 5. Z wiedzy dziedzinowej wiemy, że obrazy nachodzą na siebie (tak jak angiograficzne obrazy OCT). Patrząc na dopasowania pomiędzy obrazami można zauważyć, że jedno z nich nie pasuje do reszty (strzałka narysowana przerywaną linią). Zakładając, że możemy tylko obracać i przesuwać obrazy niemożliwa jest estymacja macierzy transformacji biorąc pod uwagę wszystkie dopasowania. Niepoprawne dopasowanie trzeba odrzucić by otrzymać poprawną macierz transformacji.

Problem z rysunku 3.6 można rozwiązać poprzez odpowiednie filtrowanie dopasowań. Jedną z takich metod jest RANSAC (ang. *random sample consensus, RANSAC*), który jest algorytmem iteracyjnym i jego zadaniem jest eliminacja obserwacji odstających (w naszym przypadku są to dopasowania, które nie pasują do większości). RANSAC jest wykorzystywany w niniejszej pracy i jest dokładniej opisy w sekcji 4.3.2. Do rozwiązania tego problemu można również wykorzystać relacje geometryczne (wiedza dziedzinowa) pomiędzy obrazami, których cechy są dopasowywane. Taką relacją geometryczną może być np. informacja, że obraz nie może się przesunąć dalej niż 10 pikseli. Dzięki temu wiemy, że wszystkie dopasowania cech, które znajdują się dalej niż 10 pikseli są niepoprawne. Filtracja na podstawie wiedzy dziedzinowej również jest wykorzystywana w niniejszej pracy i jest opisana dokładniej w sekcji 4.3.2.

Estymacja macierzy transformacji na podstawie dopasowań

Po wyznaczeniu dopasowań pomiędzy dwoma obrazami można przejść do estymacji macierzy transformacji jednego obrazu względem drugiego. Estymacja macierzy transformacji odbywa się na podstawie ustalonego modelu deformacji (sekcja 3.1). Biorąc pod uwagę jako model transformacji ciało sztywne (dozwolona rotacja i translacja) równanie pozwalające obliczyć parametry rotacji i translacji można zapisać jako:

$$T = SR + t \tag{3.4}$$

gdzie T to zbiór cech w obrazie docelowym, S to zbiór cech w obrazie źródłowym, R to macierz rotacji, a t to wektor translacji. Wyznaczenie R i t z tego równania byłoby proste, jeżeli wszystkie cechy z obrazu źródłowego dałoby się idealnie przekształcić na cechy obrazu docelowego. Załóżmy, że do obliczenia parametrów rotacji i translacji zostanie wzięte pod uwagę tylko jedno dopasowanie. Następnie wyznaczoną macierz transformacji stosujemy do cechy z obrazu źródłowego innego dopasowania. Istnieje bardzo mało szansa, że wynikiem będzie cecha obrazu docelowego z tego dopasowania (będzie blisko niej, ale nie idealnie w tym samym miejscu). Ta różnica wynika z tego, że obrazy posiadają szum oraz algorytmy zwracające cechy nie są tak dokładne. Jednym z prostszych rozwiązań tego problemu jest wykorzystanie metody minimalizacji błędu średniokwadratowego, który polega na znalezieniu takiej macierzy transformacji dla której błąd średniokwadratowy pomiędzy cechą w obrazie docelowym, a cechą z obrazu źródłowego po transformacji jest najmniejszy. Mając dane współrzędne cechy w obrazie docelowym T_i oraz współrzędne

odpowiadającej cechy w obrazie źródłowym S_i oraz macierz transformacji M błąd średniokwadratowy można zapisać jako:

$$E_{LS} = \sum_{i} d(T_i, MS_i)^2$$
 (3.5)

gdzie E_{LS} to minimalny błąd średniokwadratowy, a funkcja d(...) to odległość euklidesowa pomiędzy dwoma punktami.

Równanie 3.5 można rozwiązać algorytmami optymalizacji. W niniejszej pracy do wyznaczenia parametrów rotacji i translacji została wykorzystana funkcja OpenCV, której użycie jest opisane w sekcji 4.5.

3.3 Łączenie kafelków

Po wyznaczeniu macierzy translacji pomiędzy dwoma kafelkami następnym krokiem jest ich złączenie w obszarze, w którym na siebie nachodzą. Problem by nie istniał jeżeli dopasowanie byłoby idealne oraz ekspozycja dwóch kafelków byłaby identyczna. Niestety w rzeczywistym świecie po złączeniu widoczne są krawędzie kafelków oraz inne artefakty wynikające z błędu rejestracji, czy niedokładności aparatu. Stworzenie ładnej oraz jednorodnej mozaiki wymaga określenia, które piksele z dwóch kafelków należy wykorzystać w procesie łączenia oraz jakie przypisać im wagi. Najprostszą metodą jest wzięcie średniej ważonej każdego piksela z dwóch łączonych kafelków:

$$f(x) = \frac{\sum_{i} \omega_{i}(x) f_{i}(x)}{\sum_{i} \omega_{i}(x)}$$
(3.6)

gdzie i to liczba nakładających się kafelków, f(x) to wartość piksela x w finalnej mozaice, $f_i(x)$ to wartość piksela x w kolejnych nakładających się kafelkach, a w(x) to waga piksela x. Następnym krokiem w tej metodzie jest ustalenie wartości wag. Jednym z pomysłów jest wykorzystanie zwykłej średniej (w(x) = 1 dla każdego piksela x). Nie jest to jednak najlepszy sposób, ponieważ krawędzie kafelków są dalej widoczne. Lepszym podejściem jest uzależnienie wartości wag od odległości piksela od środka kafelka do którego należy tzn. piksel znajdujący się przy krawędzi swojego kafelka będzie miał mniejszą wagę niż piksel znajdujący się blisko środka swojego kafelka (metoda wykorzystana jest w niniejszej pracy i dokładniej jest opisana w sekcji 4.7). Istnieją również bardziej zaawansowane metody takie jak algorytm multi-band blending zaproponowany przez Burt i Adelson [4], który daje jeszcze lepsze rezultaty [3] niż średnia ważona.

Proponowane algorytmy

Niniejszy rozdział opisuje szczegółowo kolejne kroki rozwiązania problemu, który został dokładnie przestawiony w sekcji 1.1. Sekcja 4.1 opisuje sposób implementacji metod oraz wykorzystane technologie. Sekcja 4.2 opisuje wiedzę dziedzinową na temat danych wejściowych (kafelków). Następnie sekcje od 4.3 do 4.7 opisują zasadę działania poszczególnych metod w kolejności zgodnej z ich wykonywaniem w programie.

- 4.1 Implementacja
- 4.2 Wiedza dziedzinowa
- 4.3 Rejestracja kafelków poprzez ekstrakcję cech SIFT
- 4.3.1 Dopasowanie wyekstrahowanych cech
- 4.3.2 Filtrowanie dopasowań

Filtrowanie na podstawie wiedzy dziedzinowej

RANSAC

- 4.4 Rejestracja kafelków poprzez wykrycie położeń naczyń krwionośnych w kafelkach
- 4.5 Estymacja macierzy transformacji pomiędzy kafelkami

- 4.6 Globalna rejestracja kafelków
- 4.7 Łączenie kafelków

Wyniki eksperymentów obliczeniowych

Podsumowanie i wnioski końcowe

Bibliografia

- [1]Herbert Bay, Andreas Ess, Tinne Tuytelaars i Luc Van Gool. "Speeded-Up Robust Features (SURF)". W: Comput. Vis. Image Underst. 110.3 (czer. 2008), s. 346–359.
- [2] Jeffrey S. Beis i David G. Lowe. "Shape Indexing Using Approximate Nearest-Neighbour Search in High-Dimensional Spaces". W: *Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR '97)*. CVPR '97. Washington, DC, USA: IEEE Computer Society, 1997, s. 1000–.
- [3]Matthew Brown i David G. Lowe. "Automatic Panoramic Image Stitching Using Invariant Features". W: *Int. J. Comput. Vision* 74.1 (sierp. 2007), s. 59–73.
- [4]Peter J. Burt i Edward H. Adelson. "A Multiresolution Spline with Application to Image Mosaics". W: *ACM Trans. Graph.* 2.4 (paź. 1983), s. 217–236.
- [5] J Canny. "A Computational Approach to Edge Detection". W: *IEEE Trans. Pattern Anal. Mach. Intell.* 8.6 (czer. 1986), s. 679–698.
- [6] A F Fercher, W Drexler, C K Hitzenberger i T Lasser. "Optical coherence tomography principles and applications". W: *Reports on Progress in Physics* 66.2 (2003), s. 239.
- [7] Welzel J. "Optical coherence tomography in dermatology: a review." W: *Skin. Res. Technol* 7.1 (2001).
- [8]Martin F. Kraus, Benjamin Potsaid, Markus A. Mayer, Ruediger Bock, Bernhard Baumann, Jonathan J. Liu, Joachim Hornegger i James G. Fujimoto. "Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns". W: *Biomed. Opt. Express* 3.6 (2012), s. 1182–1199.
- [9]David G. Lowe. "Object Recognition from Local Scale-Invariant Features". W: *Proceedings of the International Conference on Computer Vision-Volume 2 Volume 2*. ICCV '99. Washington, DC, USA: IEEE Computer Society, 1999, s. 1150–.
- [10]D. Markl, G. Hannesschläger, M. Leitner, S. Sacher, D. Koller i J. Khinast. A device and a method for monitoring a property of a coating of a solid dosage form during a coating process forming the coating of the solid dosage form. EP Patent App. EP20,140,166,452. 2014.
- [11] Andrew M. Rollins, Rujchai Ung-arunyawee, Amitabh Chak, Richard C. K. Wong, Kenji Kobayashi, Michael V. Sivak i Joseph A. Izatt. "Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design". W: Opt. Lett. 24.19 (1999), s. 1358–1360.

- [13] Richard Szeliski. *Image Alignment and Stitching: A Tutorial*. Spraw. tech. MSR-TR-2004-92. Microsoft Research, 2004, s. 89.
- [14]P. Thévenaz i M. Unser. "User-Friendly Semiautomated Assembly of Accurate Image Mosaics in Microscopy". W: *Microscopy Research and Technique* 70.2 (2007), s. 135–146.
- [15]W.J. Walecki i P. Van. *Determining thickness of slabs of materials by inventors*. US Patent 7,116,429. 2006.

Strony internetowe

[@12]James Strong. Retinal OCT Imaging. 2011. URL: http://www.opsweb.org/?page=RetinalOCT.

Spis rysunków

2.1	Lewy obraz: Dwuwymiarowy przekrój siatkówki oka (B-skan). Obraz został uzyskany poprzez połączenie jednowymiarowych A-skanów, które zawierają informację o strukturze tkanki w głąb siatkówki oka. Prawy obraz: Angiografia siatkówki oka uzyskana dzięki przetworzeniu danych z OCT.	3
2.2	Kolejne etapy działania metody OCT. (1) - Etap początkowy. (2) - Źródło wyemitowało wiązkę światła. (3) - Fala rozdzieliła się za pomocą interferometru na wiązkę referencyjną (skierowaną na lustro referencyjne) oraz na wiązkę próbki (skierowaną na tkankę). (4) - Wiązki po odbiciu od lustra referencyjnego i tkanki ponownie łączą się za pomocą interferometru. W tej części występuje zjawisko interferencji, które jest zarejestrowane przez detektor	4
2.3	Kolejne etapy badania głębszych warstw tkanki dzięki przesuwaniu lustra referencyjnego. Aktualna pozycja lustra referencyjnego jest zaznaczona kolorem czarnym, natomiast aktualnie badana warstwa tkanki jest zaznaczona kolorem czerwonym.	5
2.4	[8] Lewy obraz: Pojedynczy A-skan wykonany w głąb tkanki. Środkowy obraz: Otrzymany B-skan poprzez połączenie A-skanów. Prawy obraz: Trójwymiarowy obraz tkanki stworzony poprzez połączenie B-skanów.	6
2.5	Trzy sąsiadujące B-skany na postawie których powstaje jeden obraz przepływowy.	8
3.1	Mozaika OCT stworzona z połączenia angiograficznych obrazów OCT.	11
3.2	Zbiór transformacji dwuwymiarowych dla przykładowego angiograficznego obrazu OCT	12
3.3	Przykładowe rozmieszczenie kafelków na finalnej mozaice. Kafelek referencyjny został wyróżniony przerywaną linią	14
3.4	Przykładowa korejestracja dwóch kafelków ze wspólnym obszarem nałożenia	14
3.5	Lewy obraz: Wynik zaaplikowanego algorytmu Canny na kolorowym	17

Spis tablic