Importing Libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing Datasets

```
In [2]: df=pd.read_csv(r'C:\Users\user\Downloads\Rainfall\KONKAN GOA.csv')
df
```

Out[2]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	2508	KONKAN & GOA	1902	0.3	0.0	0.0	0.4	7.6	428.2	943.6	515.1	613.8	7
1	2509	KONKAN & GOA	1903	0.0	0.0	0.1	0.0	201.1	470.5	1298.6	673.9	285.1	14
2	2510	KONKAN & GOA	1904	0.0	0.1	6.6	6.3	4.6	975.8	771.7	321.3	217.0	9
3	2511	KONKAN & GOA	1905	0.1	0.1	0.0	0.4	8.6	293.7	770.6	305.5	208.3	8
4	2512	KONKAN & GOA	1906	5.0	0.9	0.0	0.0	2.9	547.4	1090.9	506.7	222.5	3
109	2617	KONKAN & GOA	2011	0.0	0.0	0.0	3.4	1.1	857.0	1384.1	987.9	468.3	12
110	2618	KONKAN & GOA	2012	0.0	0.0	0.0	0.6	1.1	633.0	928.5	762.5	515.3	17
111	2619	KONKAN & GOA	2013	1.8	5.4	0.1	0.1	18.5	1028.3	1478.5	497.6	340.7	14
112	2620	KONKAN & GOA	2014	1.3	5.3	1.8	0.7	21.3	238.2	1293.2	658.0	419.5	9
113	2621	KONKAN & GOA	2015	2.7	0.0	36.8	3.6	11.3	764.0	526.5	377.3	240.9	9
114 rows × 20 columns													

Data Cleaning and Data Preprocessing

In [3]: df=df.dropna()
df

Out[3]:

	index	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	2508	KONKAN & GOA	1902	0.3	0.0	0.0	0.4	7.6	428.2	943.6	515.1	613.8	7
1	2509	KONKAN & GOA	1903	0.0	0.0	0.1	0.0	201.1	470.5	1298.6	673.9	285.1	14
2	2510	KONKAN & GOA	1904	0.0	0.1	6.6	6.3	4.6	975.8	771.7	321.3	217.0	9
3	2511	KONKAN & GOA	1905	0.1	0.1	0.0	0.4	8.6	293.7	770.6	305.5	208.3	8
4	2512	KONKAN & GOA	1906	5.0	0.9	0.0	0.0	2.9	547.4	1090.9	506.7	222.5	3
109	2617	KONKAN & GOA	2011	0.0	0.0	0.0	3.4	1.1	857.0	1384.1	987.9	468.3	12
110	2618	KONKAN & GOA	2012	0.0	0.0	0.0	0.6	1.1	633.0	928.5	762.5	515.3	17
111	2619	KONKAN & GOA	2013	1.8	5.4	0.1	0.1	18.5	1028.3	1478.5	497.6	340.7	14
112	2620	KONKAN & GOA	2014	1.3	5.3	1.8	0.7	21.3	238.2	1293.2	658.0	419.5	9
113	2621	KONKAN & GOA	2015	2.7	0.0	36.8	3.6	11.3	764.0	526.5	377.3	240.9	9

114 rows × 20 columns

In [4]: df.columns

```
In [5]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 114 entries, 0 to 113
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	index	114 non-null	int64
1	SUBDIVISION	114 non-null	object
2	YEAR	114 non-null	int64
3	JAN	114 non-null	float64
4	FEB	114 non-null	float64
5	MAR	114 non-null	float64
6	APR	114 non-null	float64
7	MAY	114 non-null	float64
8	JUN	114 non-null	float64
9	JUL	114 non-null	float64
10	AUG	114 non-null	float64
11	SEP	114 non-null	float64
12	OCT	114 non-null	float64
13	NOV	114 non-null	float64
14	DEC	114 non-null	float64
15	ANNUAL	114 non-null	float64
16	Jan-Feb	114 non-null	float64
17	Mar-May	114 non-null	float64
18	Jun-Sep	114 non-null	float64
19	Oct-Dec	114 non-null	float64
dtype	es: float64(1	7), int64(2), o	bject(1)
memoi	ry usage: 18.	7+ KB	

Line Chart

```
In [6]: df.plot.line(subplots=True)

Out[6]: array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>], dtype=object)

In [6]: df.plot.line(subplots=True)

Out[6]: array([<AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>, <AxesSubplot:>], dtype=object)

In [6]: df.plot.line(subplots=True)

Out[6]: array([<AxesSubplot:>, <AxesSubplot:>, <AxesSu
```

```
In [7]: df.plot.line()
```

80

100

Out[7]: <AxesSubplot:>

20

40

60

Bar Chart

```
In [8]: df.plot.bar()
```

Out[8]: <AxesSubplot:>

Histogram

```
In [9]: df.plot.hist()
```

Out[9]: <AxesSubplot:ylabel='Frequency'>

Area Chart

```
In [10]: df.plot.area()
```

Out[10]: <AxesSubplot:>

Box Chart

In [11]: df.plot.box()

Out[11]: <AxesSubplot:>

Pie Chart

```
In [12]: df.plot.pie(y='ANNUAL')
Out[12]: <AxesSubplot:ylabel='ANNUAL'>
```


Scatter Plot

```
In [13]: df.plot.scatter(x='JAN',y='FEB')
```

Out[13]: <AxesSubplot:xlabel='JAN', ylabel='FEB'>

In [14]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 114 entries, 0 to 113
Data columns (total 20 columns):

#	Column	Non-Null Count	t Dtype
0	index	114 non-null	int64
1	SUBDIVISION	114 non-null	object
2	YEAR	114 non-null	int64
3	JAN	114 non-null	float64
4	FEB	114 non-null	float64
5	MAR	114 non-null	float64
6	APR	114 non-null	float64
7	MAY	114 non-null	float64
8	JUN	114 non-null	float64
9	JUL	114 non-null	float64
10	AUG	114 non-null	float64
11	SEP	114 non-null	float64
12	OCT	114 non-null	float64
13	NOV	114 non-null	float64
14	DEC	114 non-null	float64
15	ANNUAL	114 non-null	float64
16	Jan-Feb	114 non-null	float64
17	Mar-May	114 non-null	float64
18	Jun-Sep	114 non-null	float64
19	Oct-Dec	114 non-null	float64
dtype	es: float64(1	7), int64(2), (object(1)

memory usage: 18.7+ KB

In [15]: df.describe()

Out[15]:

	index	YEAR	JAN	FEB	MAR	APR	MAY	
count	114.000000	114.000000	114.000000	114.000000	114.000000	114.000000	114.000000	1.
mean	2564.500000	1958.500000	1.224561	0.550877	1.383333	3.990351	33.635088	68
std	33.052988	33.052988	3.879799	2.056642	4.769388	8.647522	58.570653	19
min	2508.000000	1902.000000	0.000000	0.000000	0.000000	0.000000	0.000000	2:
25%	2536.250000	1930.250000	0.000000	0.000000	0.000000	0.300000	2.900000	5₄
50%	2564.500000	1958.500000	0.000000	0.000000	0.050000	1.250000	9.650000	7(
75%	2592.750000	1986.750000	0.450000	0.100000	0.375000	4.075000	30.450000	8(
max	2621.000000	2015.000000	31.800000	18.400000	36.800000	67.300000	345.400000	11 ⁻
4								•

EDA And Visualization

In [16]: sns.pairplot(df)

Out[16]: <seaborn.axisgrid.PairGrid at 0x1be5ac0ab50>

In [17]: | sns.distplot(df['ANNUAL'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[17]: <AxesSubplot:xlabel='ANNUAL', ylabel='Density'>

In [18]: sns.heatmap(df.corr())

Out[18]: <AxesSubplot:>

