HealthcareMajor

April 29, 2024

1 Tasks to be done:

- 1. Data Exploration treat missing values
- 2. Explore variables using Histogram
- 3. Create a count(frequency) plot describing the data types and the count of variables.

```
import numpy as np
import pandas as pd

# visualizing data
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
print('All Library imported')
```

All Library imported

```
[2]: # import csv file
df = pd.read_csv('health care diabetes.csv')
print('data loaded')
```

data loaded

```
[3]: # top 5 rows df.head()
```

[3]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

```
DiabetesPedigreeFunction Age Outcome 0 0.627 50 1 1 0.351 31 0
```

```
4
                            2.288
                                    33
                                              1
[4]: # shape of data
     df.shape
[4]: (768, 9)
[5]: #check for missing values
     df.isnull().sum()
[5]: Pregnancies
                                  0
     Glucose
                                  0
     BloodPressure
                                  0
     SkinThickness
                                  0
     Insulin
                                  0
     BMI
                                  0
     DiabetesPedigreeFunction
     Age
                                  0
                                  0
     Outcome
     dtype: int64
    We are lucky to have No missing values.!
[6]: df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 768 entries, 0 to 767
    Data columns (total 9 columns):
         Column
                                    Non-Null Count
                                                     Dtype
         _____
     0
         Pregnancies
                                    768 non-null
                                                     int64
     1
         Glucose
                                    768 non-null
                                                     int64
     2
         BloodPressure
                                    768 non-null
                                                     int64
     3
         SkinThickness
                                    768 non-null
                                                     int64
     4
         Insulin
                                    768 non-null
                                                     int64
     5
         BMI
                                    768 non-null
                                                     float64
     6
         DiabetesPedigreeFunction 768 non-null
                                                     float64
     7
         Age
                                    768 non-null
                                                     int64
     8
         Outcome
                                    768 non-null
                                                     int64
    dtypes: float64(2), int64(7)
    memory usage: 54.1 KB
[7]: # checking how many people have diabetes
     df['Outcome'].value_counts()
```

2

3

0.672

0.167

32

21

1

0

[7]: 0 500 1 268

Name: Outcome, dtype: int64

268 people have diabetes and $500~\mathrm{do}$ not have diabetes

[8]: df.describe().T

[8]:		count	mean	std	min	25%	\
	Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	
	Glucose	768.0	120.894531	31.972618	0.000	99.00000	
	BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	
	SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	
	Insulin	768.0	79.799479	115.244002	0.000	0.00000	
	BMI	768.0	31.992578	7.884160	0.000	27.30000	
	DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	
	Age	768.0	33.240885	11.760232	21.000	24.00000	
	Outcome	768.0	0.348958	0.476951	0.000	0.00000	
		50)% 75%	′ max			
	Pregnancies	3.000	6.0000	17.00			
	Glucose	117.000	00 140.25000	199.00			
	BloodPressure	72.000	00 80.00000	122.00			
	SkinThickness	23.000	32.00000	99.00			
	Insulin	30.500	00 127.25000	846.00			
	BMI	32.000	36.60000	67.10			
	DiabetesPedigreeFunction	0.372	0.62625	5 2.42			
	Age	29.000	00 41.00000	81.00			
	Outcome	0.000	00 1.00000	1.00			

1.1 Univariate Analysis

```
[9]: #create histogram for glucose using matplotlib
plt.hist(df['Glucose'])
plt.show()
```


Range is approx 50 to 200; Highest level of Glucose is 200. somewhat looks like a normal distribution but not a pure normal distribution.

lowest 40 to 100; Max at approx 70

```
[11]: plt.hist(df['SkinThickness'])
   plt.show()
```


Right Skewed Data - tail on right side ; Mean < Median

```
[12]: plt.hist(df['Insulin'])
   plt.show()
```


It's a normal distribution

```
[14]: plt.hist(df['Age'])
plt.show()
```


Max users are of 20-25 age group

Checking for Value 0 in the data and replacing it with None where 0 doesn't make sense if it is a normal distribution we can fill it with mean if it is not a normal distribution fill it with median

```
[15]: col = ['Glucose','BloodPressure','SkinThickness','Insulin','BMI']
for i in col:
    df[i].replace(0,df[i].median(), inplace=True)
```

[16]: df.head()

[16]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	30.5	33.6	
1	1	85	66	29	30.5	26.6	
2	8	183	64	23	30.5	23.3	
3	1	89	66	23	94.0	28.1	
4	0	137	40	35	168.0	43.1	

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

1.1.1 Data Exploration:

- 1. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.
- 2. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.
- 3. Perform correlation analysis. Visually explore it using a heat map.

```
[17]: df.columns
```

```
[18]: plt.figure(figsize = (15,8))
sns.countplot(x=df['Age'], hue='Outcome', data=df)
```

[18]: <AxesSubplot: xlabel='Age', ylabel='count'>

0 - not ahve diabetes 1 - have diabetes

```
[19]: ### Getting the details of only the diabetic persons

dib_person = df[df['Outcome']==1]
    dib_person
```

```
[19]:
           Pregnancies
                         Glucose BloodPressure SkinThickness
                                                                  Insulin
                                                                             BMI \
      0
                      6
                             148
                                              72
                                                              35
                                                                     30.5 33.6
      2
                      8
                             183
                                              64
                                                              23
                                                                     30.5 23.3
      4
                      0
                             137
                                              40
                                                              35
                                                                    168.0 43.1
      6
                      3
                              78
                                              50
                                                              32
                                                                     88.0 31.0
      8
                      2
                                              70
                                                                    543.0 30.5
                             197
                                                              45
      . .
                                                              •••
      755
                      1
                             128
                                              88
                                                              39
                                                                     110.0 36.5
      757
                      0
                             123
                                              72
                                                              23
                                                                     30.5 36.3
      759
                      6
                             190
                                              92
                                                              23
                                                                     30.5 35.5
      761
                      9
                             170
                                              74
                                                                     30.5 44.0
                                                              31
      766
                                              60
                      1
                             126
                                                              23
                                                                     30.5 30.1
           DiabetesPedigreeFunction
                                            Outcome
                                       Age
      0
                               0.627
                                        50
      2
                               0.672
                                        32
                                                   1
      4
                               2.288
                                        33
                                                   1
      6
                               0.248
                                        26
                                                   1
                               0.158
      8
                                        53
                                                   1
      . .
      755
                               1.057
                                        37
                                                   1
      757
                               0.258
                                        52
                                                   1
      759
                               0.278
                                                   1
                                        66
      761
                               0.403
                                        43
                                                   1
      766
                               0.349
                                        47
                                                   1
      [268 rows x 9 columns]
[20]: sns.histplot(x=dib_person['Glucose'])
      plt.show()
```



```
[23]: dib_person['BloodPressure'].value_counts().head()
```

[23]: 72 32 70 23 76 18 78 17 74 17

Name: BloodPressure, dtype: int64

32 people have BP of 72 and so on...

1.2 Scatter Plot

```
[24]: # Creating a scatter plot to see if glucose increases then blood pressure also_u increase? - Bivariate Analysis
# we are using the data of only diabetic persons

plt.scatter(x = dib_person['BloodPressure'], y=dib_person['Glucose'])
plt.xlabel('BloodPressure')
plt.ylabel('Glucose')
```

[24]: Text(0, 0.5, 'Glucose')

Much relation not seen here

```
[25]: # Now let's work with the whole original dataset
sns.scatterplot(x='Glucose', y='BloodPressure', hue='Outcome', data=df)
```

[25]: <AxesSubplot: xlabel='Glucose', ylabel='BloodPressure'>

[26]: # people having diabetes have higher glucose and BP in the same range

[27]: sns.scatterplot(x='SkinThickness', y='Insulin', hue='Outcome', data=df)

[27]: <AxesSubplot: xlabel='SkinThickness', ylabel='Insulin'>

People having diabetes have higher Insulin wrt to SkinThickness

1.2.1 Let's perform correlation analysis - Heatmap

correlation is calculated using Pearson correlation

[28]:	df.corr()							
[28]:		Pregnanci	es Glucose		se	BloodPressure	SkinThickness	\
	Pregnancies	1.000000		0.128213		0.208615	0.032568	
	Glucose	0.128213		1.000000		0.218937 0.1721		
	BloodPressure	0.2086	15	0.218937		1.000000	0.147809	
	SkinThickness	0.032568		0.172143		0.147809	1.000000	
	Insulin	-0.033523		0.35757	73	-0.028721	0.238188	
	BMI			0.137327		0.281132	0.546951	
	DiabetesPedigreeFunction					-0.002378	0.142977	
	Age					0.324915	0.054514	
	Outcome	0.2218	98	0.49278	32	0.165723	0.189065	
		Insulin		BMI	Di	abetesPedigreeF	unction \	
	Pregnancies	-0.055697	0.0	021546		_	.033523	
	Glucose	0.357573 0.		0.231400		0.137327		
	BloodPressure	-0.028721	0.281132			-0.002378		
	SkinThickness	0.238188 0.		0.546951		0.142977		
	Insulin	1.000000	0.3	0.189022		0.178029		
	BMI	0.178029 0.3		1.000000 0.153506 0.025744		0.153506 1.000000		
	DiabetesPedigreeFunction							
	Age					0	.033561	
	Outcome	0.148457	0.3	.312249		0	. 173844	
		Age	0 1	utcome				
	Pregnancies	0.544341	0.2	221898				
	Glucose	0.266909	0.4	492782				
	BloodPressure	0.324915	0.3	165723				
	SkinThickness	0.054514	0.3	189065				
	Insulin	-0.015413	0.3	148457				
	BMI	0.025744	0.3	312249				
	DiabetesPedigreeFunction	0.033561	0.3	173844				
	Age	1.000000	0.2	238356				
	Outcome	0.238356	1.0	000000				

we look at Outcome row here. It shows our target variable Outcome has Highest correlation with Glucose. and none of the variables have negative corr with outcome variable

```
[29]: plt.figure(figsize=(10,10))
sns.heatmap(df.corr(), annot=True, cmap='viridis')
```

[29]: <AxesSubplot: >

[]:

1.3 Data Modeling:

Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.

Apply an appropriate classification algorithm to build a model.

Compare various models with the results from KNN algorithm.

Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc.

Please be descriptive to explain what values of these parameter you have used.

```
[30]: # Data Preprocessing
      # (creating DV, IDV, training data, test data)
      # Let's extract features(X) vs label
      X=df.iloc[:, :-1].values
      # .values converts data into array
[31]: # input data we have
      X
[31]: array([[ 6.
                                72.
                                                      0.627,
                                                                     ],
                     , 148.
                                            33.6
                                                               50.
             , 85.
                                 66.
                                             26.6
                                                       0.351,
                                                               31.
                                                                    ],
                                       . ....
             8.
                     , 183.
                                64.
                                             23.3
                                                      0.672,
                                                                    ],
            ...,
             5.
                                 72.
                                            26.2
                                                      0.245,
                                                               30.
                                                                     ],
                     , 121.
             1.
                     , 126.
                                 60.
                                            30.1
                                                      0.349,
                                                               47.
                                                                     ],
             1.
                       93.
                                70.
                                            30.4
                                                      0.315,
                                                              23.
                                                                    ]])
[32]: # label Y
      y = df.iloc[:,-1].values
      У
[32]: array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
             1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
             1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
             1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
             1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1,
             1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
             1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
             1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
             1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,
             1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
             1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,
            0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,
            1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
            0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
            0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0,
            0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
            0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
             1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
```

Applying ML Model one by one now

2 CLASSIFICATION MODELS APPLICATION

```
[33]: # Step 1 : split the data into train and test data
      from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2,__
       →random state=10)
[34]: X_train.shape
[34]: (614, 8)
[35]: X_test.shape
[35]: (154, 8)
[36]: import warnings
      warnings.filterwarnings('ignore')
     2.1 1. Logistic Regression
[37]: from sklearn.linear_model import LogisticRegression #Class
      model1 = LogisticRegression() #Object
[38]: #Training the model
      model1.fit(X_train, y_train)
[38]: LogisticRegression()
[39]: y_pred1 = model1.predict(X_test)
```

```
[40]: # train score & test score; checking both scores to see if any overfitting is ______

→ there or not

print('Train score', model1.score(X_train, y_train))
print('Test score', model1.score(X_test, y_test))
```

Train score 0.7801302931596091 Test score 0.72727272727273

Both accuracies are not very high. We have overfitting.

[41]: from sklearn.metrics import confusion_matrix, classification_report

[42]: print(confusion_matrix(y_test, y_pred1))

[[83 12] [30 29]]

 $0\ 1\ 0\ TN\ FP\ 1\ FN\ TP$

Accuracy = (TP+TN)/ALL = 83+29/30+12+83+29 = 112/154 = 72.7%

Recall = TP/TP+FN = 29/29+30 = 49%

Out of all positive classes, how many are correctly classified as positive is called RECALL. If recall score of target class is poor then it is not a good model. you need to improve it.

[43]: print(classification_report(y_test, y_pred1))

	precision	recall	f1-score	support
0	0.73	0.87	0.80	95
1	0.71	0.49	0.58	59
accuracy			0.73	154
macro avg	0.72	0.68	0.69	154
weighted avg	0.72	0.73	0.71	154

[44]: # 73% accuracy on test data

[45]: # Prepare ROC Curve

from sklearn.metrics import roc_auc_score, roc_curve
roc_curve is created by calculating the probabilities.

prob = model1.predict_proba(X)
prob
it returns the estimate of probability label for all classes.

```
# prob of 0 class,
                           1 class down below
[45]: array([[0.23785043, 0.76214957],
             [0.9374594, 0.0625406],
             [0.15485464, 0.84514536],
             [0.83610184, 0.16389816],
             [0.67902335, 0.32097665],
             [0.92269141, 0.07730859]])
[46]: # i would like to keep the prob of positive class only i.e. 1
      # select prob for the positive outcome only
      prob = prob[:,1]
      # Calculate
      auc = roc_auc_score(y,prob)
      print('AUC score : %.3f ',auc)
     AUC score: %.3f 0.8383805970149254
[47]: # is it a good Area under the curve AUC score?
      # YES -> the model is doing right, but it can be better
      # Calculate roc curve - it is created between FPR vs TPR (false +ve rate, true_
       →+ve rate)
      # roc is created between y actual data, your probabilities
[48]: # Calculate roc curve
      fpr, tpr, thresholds = roc_curve(y,prob)
      # To see how much it is above the line.
      # plot
      plt.plot([0,1],[0,1],linestyle='--')
      plt.plot(fpr,tpr,marker='.')
```

[48]: [<matplotlib.lines.Line2D at 0x7fbe13379570>]


```
[49]: # To save this model for future predictions
# joblib, pickle

import joblib

joblib.dump(model1,'log_reg.pkl')

print('model saved') # saved in the current working directory as a non readable

⇒binary file. you cant open it
```

model saved

```
[50]: # load the model back
Pred_model=joblib.load('log_reg.pkl')
print('model loaded')
```

model loaded

```
[51]: # Can the prediction be done on Real time data?
# Let's try

df.columns
```

```
[51]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
             'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
            dtype='object')
[52]: Pregnancies=2
      Glucose =148
      BloodPressure = 72
      SkinThickness = 40
      Insulin = 100
      BMI = 25.5
      DiabetesPedigreeFunction = 0.35
      Age = 35
      output = Pred_model.predict([[Pregnancies, Glucose, BloodPressure,__
       SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age]])
      print('Person has', output)
     Person has [0]
[53]: # person is not diabetic
     This model will work in any workbook
 []: 2. Decision Tree
 []: 3. Random Forest
 []: 4. KNN
 []: 5. SVM
 []:
```