

Algorithms for Scientific Computing

Space-Filling Curves

Michael Bader Technical University of Munich

Summer 2022

Start: Morton Order / Cantor's Mapping

Questions:

- Can this mapping lead to a contiguous "curve"?
- i.e.: Can we find a continuous mapping?
- and: Can this continuous mapping fill the entire square?

Morton Order and Cantor's Mapping

Georg Cantor (1877):

$$0.01111001... \rightarrow \begin{pmatrix} 0.0110... \\ 0.1101... \end{pmatrix}$$

- bijective mapping $[0,1] \rightarrow [0,1]^2$
- proved identical cardinality of [0, 1] and [0, 1]²
- provoked the question: is there a continuous mapping?
 (i.e. a curve)

History of Space-Filling Curves

- **1877:** Georg Cantor finds a bijective mapping from the unit interval [0, 1] into the unit square $[0, 1]^2$.
- **1879:** Eugen Netto proves that a **bijective** mapping $f: \mathcal{I} \to \mathcal{Q} \subset \mathbb{R}^n$ can not be continuous (i.e., a curve) at the same time (as long as \mathcal{Q} has a smooth boundary).
- 1886: rigorous definition of curves introduced by Camille Jordan
- 1890: Giuseppe Peano constructs the first space-filling curves.
- **1890:** Hilbert gives a geometric construction of Peano's curve;
 - and introduces a new example the Hilbert curve
- 1904: Lebesgue curve
- 1912: Sierpinski curve

Part I

Space-Filling Curves

What is a Curve?

Definition (Curve)

As a curve, we define the image $f_*(\mathcal{I})$ of a *continuous* mapping $f: \mathcal{I} \to \mathbb{R}^n$. $x = f(t), t \in \mathcal{I}$, is called **parameter representation** of the curve.

With:

- $\mathcal{I} \subset \mathbb{R}$ and \mathcal{I} is compact, usually $\mathcal{I} = [0, 1]$.
- the image $f_*(\mathcal{I})$ of the mapping f_* is defined as $f_*(\mathcal{I}) := \{ f(t) \in \mathbb{R}^n \mid t \in \mathcal{I} \}.$
- Rⁿ may be replaced by any Euklidian vector space (norm & scalar product required).

What is a Space-filling Curve?

Definition (Space-filling Curve)

Given a mapping $f: \mathcal{I} \to \mathbb{R}^n$, then the corresponding curve $f_*(\mathcal{I})$ is called a **space-filling curve**, if the Jordan content (area, volume, ...) of $f_*(\mathcal{I})$ is larger than 0.

Comments:

- assume $f: \mathcal{I} \to \mathcal{Q} \subset \mathbb{R}^n$ to be surjective (i.e., every element in \mathcal{Q} occurs as a value of f);
 - then, $f_*(\mathcal{I})$ is a space-filling curve, if the area (volume) of $\mathcal Q$ is positive.
- if the domain \mathcal{Q} has a smooth boundary, then there can be **no bijective** mapping $f: \mathcal{I} \to \mathcal{Q} \subset \mathbb{R}^n$, such that $f_*(\mathcal{I})$ is a space-filling curve (theorem: E. Netto, 1879).

Remember: Construction of the Hilbert Order

Incremental construction of the Hilbert order:

- start with the basic pattern on 4 subsquares
- combine four numbering patterns to obtain a twice-as-large pattern
- proceed with further iterations

Remember: Construction of the Hilbert Order

Recursive construction of the Hilbert order:

- start with the basic pattern on 4 subsquares
- for an existing grid and Hilbert order: split each cell into 4 congruent subsquares
- order 4 subsquares following the rotated basic pattern, such that a contiguous order is obtained
 Michael Bader | Algorithms for Scientific Computing | Space-Filling Curves | Summer 2022

Definition of the Hilbert Curve's Mapping

Definition: (Hilbert curve)

• each parameter $t \in \mathcal{I} := [0, 1]$ is contained in a sequence of intervals

$$\mathcal{I}\supset [a_1,b_1]\supset\ldots\supset [a_n,b_n]\supset\ldots,$$

where each interval results from a division-by-four of the previous interval.

- each such sequence of intervals can be uniquely mapped to a corresponding sequence of 2D intervals (subsquares)
 → "uniquely mapped" based on grammar for Hilbert order
- the 2D sequence of intervals converges to a unique point q in $q \in \mathcal{Q} := [0, 1] \times [0, 1] q$ is defined as h(t).

Theorem

 $h: \mathcal{I} \to \mathcal{Q}$ defines a space-filling curve, the **Hilbert curve**.

Proof: *h* defines a Space-filling Curve

We need to prove:

- h is a mapping, i.e. each t∈ I has a unique function value h(t)
 → OK, if h(t) is independent of the choice of the sequence of intervals (see next chapter)
- $h: \mathcal{I} \to \mathcal{Q}$ is surjective:
 - for each point $q \in \mathcal{Q}$, we can construct an appropriate sequence of 2D-intervals
 - the 2D sequence corresponds in a unique way to a sequence of intervals in *I* – this sequence defines an original value of *q* ⇒ every *q* ∈ *Q* occurs as an image point.
- h is continuous

Continuity of the Hilbert Curve

```
A function f\colon \mathcal{I} \to \mathbb{R}^n is uniformly continuous, if for each \epsilon > 0 a \delta > 0 exists, such that for all t_1, t_2 \in \mathcal{I} with |t_1 - t_2| < \delta, the following inequality holds: \|f(t_1) - f(t_2)\|_2 < \epsilon
```

Strategy for the proof:

For any given parameters t_1 , t_2 , we compute an estimate for the distance $||h(t_1) - h(t_2)||_2$ (functional dependence on $|t_1 - t_2|$). \Rightarrow for any given ϵ , we can then compute a suitable δ

Continuity of the Hilbert Curve (2)

- given: $t_1, t_2 \in \mathcal{I}$; choose an n, such that $|t_1 t_2| < 4^{-n}$
- in the *n*-th iteration of the interval sequence, all interval are of length 4^{-n} $\Rightarrow [t_1, t_2]$ overlaps at most two neighbouring(!) intervals.
- due to construction of the Hilbert curve, the values $h(t_1)$ and $h(t_2)$ will be in neighbouring subsquares with face length 2^{-n} .
- the two neighbouring subsquares build a rectangle with a diagonal of length 2⁻ⁿ · √5;
 therefore: ||h(t₁) h(t₂)||₂ ≤ 2⁻ⁿ√5

For a given $\epsilon > 0$, we choose an n, such that $2^{-n}\sqrt{5} < \epsilon$. Using that n, we choose $\delta := 4^{-n}$; then, for all t_1, t_2 with $|t_1 - t_2| < \delta$, we get: $||h(t_1) - h(t_2)||_2 \le 2^{-n}\sqrt{5} < \epsilon$. Which proves the continuity!

Part II

Arithmetisation of Space-Filling Curves

Space-filling Orders – Required Algorithms

Traversal of *h*-indexed objects:

- given a set of objects with "positions" $p_i \in Q$
- traverse all objects, such that $\bar{h}^{-1}(p_{i_0}) < \bar{h}^{-1}(p_{i_1}) < \dots$
- solved by grammar representation

Compute mapping:

• for a given index $t \in \mathcal{I}$, compute the image h(t)

Compute the index of a given point:

- given $p \in \mathcal{Q}$, find a parameter t, such that h(t) = p
- problem: inverse of h is not unique (h not bijective!)
- define a "technically unique" inverse mapping \bar{h}^{-1}

Mapping and index computation required for random access to a data structure!

Arithmetic Formulation of the Hilbert Curve

Idea:

 interval sequence within the parameter interval I corresponds to a quaternary representation; e.g.:

$$\left[\tfrac{1}{4}, \tfrac{2}{4}\right] = \left[0_4.1, 0_4.2\right], \quad \left[\tfrac{3}{4}, 1\right] = \left[0_4.3, 1_4.0\right]$$

- **self-similarity**: every subsquare of the target domain contains a scaled, translated, and rotated/reflected Hilbert curve.
- ⇒ **Construction** of the arithmetic representation:
 - find quaternary representation of the parameter
 - use quaternary coefficients to determine the required sequence of operations

Arithmetic Formulation of the Hilbert Curve (2)

Recursive approach:

$$h(0_4.q_1q_2q_3q_4...) = H_{q_1} \circ h(0_4.q_2q_3q_4...)$$

- $\tilde{t} = 0_4.q_2q_3q_4...$ is the relative parameter in the subinterval $[0_4.q_1,0_4.(q_1+1)]$
- $h(\tilde{t}) = h(0_4, q_2 q_3 q_4 ...)$ is the relative position of the curve point in the subsquare
- H_{a_i} transforms $h(\tilde{t})$ to its correct position in the unit square:
 - rotation
 - translation
- expanding the recursion equation leads to:

$$h(0_4.q_1q_2q_3q_4...) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots$$

Arithmetic Formulation of the Hilbert Curve (3)

If t is given in quaternary digits, i.e. $t = 0_4.q_1q_2q_3q_4...$, then h(t) may be represented as

$$h(0_4.q_1q_2q_3q_4...) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

using the following operators:

$$H_0 := \left(\begin{array}{c} x \\ y \end{array}\right) \to \left(\begin{array}{c} \frac{1}{2}y \\ \frac{1}{2}x \end{array}\right) \qquad H_1 := \left(\begin{array}{c} x \\ y \end{array}\right) \to \left(\begin{array}{c} \frac{1}{2}x \\ \frac{1}{2}y + \frac{1}{2} \end{array}\right)$$

$$H_2 := \left(\begin{array}{c} x \\ y \end{array}\right) \rightarrow \left(\begin{array}{c} \frac{1}{2}x + \frac{1}{2} \\ \frac{1}{2}y + \frac{1}{2} \end{array}\right) \quad H_3 := \left(\begin{array}{c} x \\ y \end{array}\right) \rightarrow \left(\begin{array}{c} -\frac{1}{2}y + 1 \\ -\frac{1}{2}x + \frac{1}{2} \end{array}\right)$$

Matrix Form of the Operators H_0, \ldots, H_3

In matrix notation, the operators H_0, \ldots, H_3 are:

$$H_0 := \left(\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{array}\right) \begin{pmatrix} x \\ y \end{pmatrix} \qquad \qquad H_1 := \left(\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array}\right) \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$$

$$H_2 := \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \quad H_3 := \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$

Governing operations:

- scale with factor ¹/₂
- translate start of the curve, e.g. $+ \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$
- reflect at x and y axis (for H₃)

A First Comment Concerning Uniqueness

Question:

Are the values h(t) independent of the choice of quaternary representation of t concerning trailing zeros:

$$h(0_4.q_1...q_n) = h(0_4.q_1...q_n000...),$$

Outline of the proof:

1. compute the limit $\lim_{n\to\infty} H_0^n$, or $\lim_{n\to\infty} H_0^n {x \choose y}$;

Result:
$$\lim_{n\to\infty} H_0^n \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- **2.** show: $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is a fixpoint of H_0 , i. e. $H_0 \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- \Rightarrow independence of trailing zeros, as H_{q_n} is applied to the fixpoint!

A Second Comment Concerning Uniqueness

Question:

Are the values h(t) independent of the choice of quaternary representation of t, as in:

$$h(0_4.q_1...q_n) = h(0_4.q_1...q_{n-1}(q_n-1)333...), \qquad q_n \neq 0$$

(if $q_n = 0$, then consider $0_4.q_1...q_n = 0_4.q_1...q_{n-1}$)

Outline of the proof:

- **1.** compute the limits $\lim_{n\to\infty} H_0^n$ and $\lim_{n\to\infty} H_3^n$.
- **2.** for $q_n = 1, 2, 3$, show that

$$H_{q_n} \circ \lim_{n \to \infty} H_0^n = H_{q_{n-1}} \circ \lim_{n \to \infty} H_3^n$$

Algorithm to Compute the Hilbert Mapping

Task: given a parameter t, find $h(t) = (x, y) \in \mathcal{Q}$

Most important subtasks:

1. compute quaternary digits – use multiply by 4:

$$4 \cdot 0_4 \cdot q_1 q_2 q_3 q_4 \dots = (q_1 \cdot q_2 q_3 q_4 \dots)_4$$

and cut off the integer part

2. apply operators H_a in the correct sequence – use recursion:

$$h(0_4.q_1q_2q_3q_4...) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 stop recursion, when a given tolerance is reached ⇒ track size of interval or set number of digits

Implementation of the Hilbert Mapping

Algorithm 1 hilbert(t, eps)

```
1: if eps > 1 then
      return (0,0)
3: else
    a \leftarrow floor(4 * t)
5: r \leftarrow 4 * t - q
   (x, y) \leftarrow hilbert(r, 2 * eps)
   switch q do
7:
        case q = 0: return (v/2, x/2)
8:
        case q = 1: return (x/2, y/2 + 0.5)
9:
        case q = 2: return (x/2 + 0.5, y/2 + 0.5)
10:
        case q = 3: return (-v/2 + 1.0, -x/2 + 0.5)
11:
      end
12.
13: end if
```


Computing the Inverse Mapping

Task: find a parameter t, such that h(t) = (x, y) for a given $(x, y) \in \mathcal{Q}$

Problem: *h* not bijective; hence, *t* is not unique

- \Rightarrow a strict inverse mapping h^{-1} does not exist
- \Rightarrow instead, compute a "technically unique" inverse \bar{h}^{-1}

Recursive Idea:

- determine the subsquare that contains (x, y)
- transform (using the inverse operations of H₀,..., H₃) the point (x, y) into the original domain → (x̃, ỹ)
- recursively compute a parameter \tilde{t} that is mapped to (\tilde{x}, \tilde{y})
- depending on the subsquare, compute t from \tilde{t}

Inverse Operators of H_0, \ldots, H_3

Example \rightarrow compute inverse of operator H_0 :

$$\begin{pmatrix} x \\ y \end{pmatrix} = H_0 \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\tilde{y} \\ \frac{1}{2}\tilde{x} \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} 2y \\ 2x \end{pmatrix}$$

By similar computations:

$$H_0^{-1} := \left(\begin{array}{c} x \\ y \end{array}\right) \rightarrow \left(\begin{array}{c} 2y \\ 2x \end{array}\right) \qquad H_1^{-1} := \left(\begin{array}{c} x \\ y \end{array}\right) \rightarrow \left(\begin{array}{c} 2x \\ 2y - 1 \end{array}\right)$$

$$H_2^{-1} := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 2x-1 \\ 2y-1 \end{pmatrix} \quad H_3^{-1} := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -2y+1 \\ -2x+2 \end{pmatrix}$$

Algorithm to Compute the Inverse Mapping

$$\bar{h}^{-1} := \operatorname{proc}(x, y)$$

(1) determine the subsquare $q \in \{0, ..., 3\}$ by checking $x <> \frac{1}{2}$ and $y <> \frac{1}{2}$:

(treat cases $x, y = \frac{1}{2}$ in a unique way: either < or $> \Rightarrow$ technically unique inverse)

- (2) set $(\tilde{x}, \tilde{y}) := H_q^{-1}(x, y)$
- (3) recursively compute $\tilde{t} := \bar{h}^{-1}(\tilde{x}, \tilde{y})$
- (4) return $t:=\frac{1}{4}\left(q+\widetilde{t}\right)$ as value

(stopping criterion still to be added)

Implementation of the Inverse Hilbert Mapping

Algorithm 2 hilbertInverse(x, y, eps)

```
1: if eps > 1 then return 0
2: if x < 0.5 then
    if v < 0.5 then
        return (0 + hilbertInverse(2 * v, 2 * x, 4 * eps))/4
4:
5:
    else
        return (1 + hilbertInverse(2 * x, 2 * y - 1, 4 * eps))/4
6:
    end if
7:
8: else
    if y < 0.5 then
9:
        return (3 + hilbertInverse(1 - 2 * y, 2 - 2 * x, 4 * eps))/4
10:
    else
11:
        return (2 + hilbertInverse(2 * x - 1, 2 * y - 1, 4 * eps))/4
12:
     end if
13:
14: end if
```