## Estructura de Computadores

#### Tema 1. Introducción

▶ ¿Cómo sabemos si un computador A ofrece mejor rendimiento que un computador B?

- ► Tiempo de ejecución
  - Tiempo transcurrido entre el inicio y el final de una tarea
  - Rendimiento es la inversa del tiempo de ejecución

- ► Tiempo de ejecución
  - Tiempo transcurrido entre el inicio y el final de una tarea
  - ► Rendimiento es la inversa del tiempo de ejecución
- Productividad (Throughput)
  - Número de tareas completadas por unidad de tiempo
  - Rendimiento en servidores web, bases de datos...

▶ Un computador A tiene 1 CPU que tarda 10 us en completar una tarea. Un computador B tiene 200 CPUs que tardan 20 us en completar la misma tarea. ¿Cuál tiene mayor rendimiento?

## Relación entre tiempo de ejecución y productividad

- A menor tiempo de ejecución, mayor productividad
- Aumentar la productividad puede reducir el tiempo de ejecución, pero solo en caso de congestión, ya que se reduce el tiempo de espera en las colas

#### Tiempo de ejecución

- ► Tiempo de CPU + Tiempo de espera E/S + Tiempo de espera mientras se ejecutan otras tareas
- ► En EC, solo tendremos en cuenta el tiempo de CPU

### Tiempo de ejecución

- ► Tiempo de CPU + Tiempo de espera E/S + Tiempo de espera mientras se ejecutan otras tareas
- ► En EC, solo tendremos en cuenta el tiempo de CPU
- Rendimiento =  $\frac{1}{T_{ejecución}}$

### Speedup

- ► Mejora de rendimiento o speedup
  - Cuántas veces más rápido se ejecuta una tarea al introducir una mejora en el programa o en la arquitectura

### Speedup

- Mejora de rendimiento o speedup
  - Cuántas veces más rápido se ejecuta una tarea al introducir una mejora en el programa o en la arquitectura
- $\triangleright Speedup = \frac{Rendimiento_{mejorado}}{Rendimiento_{original}} = \frac{T_{original}}{T_{mejorado}}$

### Speedup

- Mejora de rendimiento o speedup
  - Cuántas veces más rápido se ejecuta una tarea al introducir una mejora en el programa o en la arquitectura

$$\triangleright Speedup = \frac{Rendimiento_{mejorado}}{Rendimiento_{original}} = \frac{T_{original}}{T_{mejorado}}$$

- Ejemplo
  - $T_{original} = 10s$
  - $ightharpoonup T_{mejorado} = 5s$

### Factores que influyen en el tiempo de ejecución

- $ightharpoonup t_{eje} = n_{ciclos} imes t_c = n_{ciclos}/f_{clock}$ 
  - $ightharpoonup n_{ciclos}$ : Número de ciclos de reloj que tarda la ejecución
  - $ightharpoonup t_c$ : Tiempo de ciclo
  - $ightharpoonup f_{clock}$ : Frecuencia de reloj

## Factores que influyen en el tiempo de ejecución

- $ightharpoonup t_{eje} = n_{ciclos} imes t_c = n_{ciclos}/f_{clock}$ 
  - n<sub>ciclos</sub>: Número de ciclos de reloj que tarda la ejecución
  - $t_c$ : Tiempo de ciclo
  - f<sub>clock</sub>: Frecuencia de reloj
- Dos formas de reducir el tiempo de ejecución
  - Reducir el número de ciclos
  - Aumentar la frecuencia de reloj (reducir tiempo de ciclo)

- ightharpoonup Ejecutar menor número de instrucciones  $(n_{ins})$
- Reducir el número de ciclos por instrucción (CPI)
- $ightharpoonup n_{ciclos} = n_{ins} \times CPI$ 
  - CPI es el promedio de ciclos por instrucción de todo el programa

- ightharpoonup Ejecutar menor número de instrucciones  $(n_{ins})$
- Reducir el número de ciclos por instrucción (CPI)
- $ightharpoonup n_{ciclos} = n_{ins} \times CPI$ 
  - CPI es el promedio de ciclos por instrucción de todo el programa
- $ightharpoonup t_{eje} = n_{ciclos} imes t_c$

- ightharpoonup Ejecutar menor número de instrucciones  $(n_{ins})$
- Reducir el número de ciclos por instrucción (CPI)
- $ightharpoonup n_{ciclos} = n_{ins} \times CPI$ 
  - CPI es el promedio de ciclos por instrucción de todo el programa
- $ightharpoonup t_{eje} = n_{ciclos} imes t_c$
- $ightharpoonup t_{eje} = n_{ins} \times CPI \times t_c$

$$ightharpoonup n_{ciclos} = n_{ins} \times CPI$$

- $ightharpoonup n_{ciclos} = n_{ins} \times CPI$
- Para reducir  $n_{ins}$  hay que mejorar el compilador

- $ightharpoonup n_{ciclos} = n_{ins} imes CPI$
- Para reducir n<sub>ins</sub> hay que mejorar el compilador
- ► El CPI depende del retardo de cada tipo de instrucción y del número de instrucciones de cada tipo
  - $PI = (n_1 \times CPI_1 + n_2 \times CPI_2 + ... + n_m \times CPI_m)/n_{ins}$
  - Para reducir el CPI:
    - Mejorar la microarquitectura
    - Sustituir instrucciones costosas por instrucciones simples (mul por s11)

- $ightharpoonup n_{ciclos} = n_{ins} \times CPI$
- Para reducir n<sub>ins</sub> hay que mejorar el compilador
- ► El CPI depende del retardo de cada tipo de instrucción y del número de instrucciones de cada tipo

  - Para reducir el CPI:
    - ► Mejorar la microarquitectura
    - Sustituir instrucciones costosas por instrucciones simples (mul por s11)
- $ightharpoonup t_{eje} = n_{ins} \times CPI \times t_c$

- $ightharpoonup n_{ciclos} = n_{ins} imes CPI$
- Para reducir n<sub>ins</sub> hay que mejorar el compilador
- ► El CPI depende del retardo de cada tipo de instrucción y del número de instrucciones de cada tipo
  - $PI = (n_1 \times CPI_1 + n_2 \times CPI_2 + ... + n_m \times CPI_m)/n_{ins}$
  - Para reducir el CPI:
    - Mejorar la microarquitectura
    - Sustituir instrucciones costosas por instrucciones simples (mul por s11)
- $ightharpoonup t_{eje} = n_{ins} \times CPI \times t_c$
- $t_{eje} = (n_1 \times CPI_1 + n_2 \times CPI_2 + ... + n_m \times CPI_m) \times t_c$

### Ejemplo

Queremos comparar dos versiones de un programa en un mismo computador, que dispone de 3 tipos de instrucciones A, B y C con CPI 1, 2 y 3 respectivamente. La versión 1 consta de: 2 instrucciones de A, 1 de B y 2 de C. La versión 2 consta de: 4 instrucciones de A, 1 de B y 1 de C. ¿Cuál es más rápido? ¿Cuáles son los CPI promedio de ambas versiones?

## Aumentar la frecuencia de reloj (reducir el tiempo de ciclo)



- Se reduce la latencia para las instrucciones de tipo A
- ▶ Las instrucciones de tipo B requiren 2 ciclos en lugar de 1
- Beneficio depende del número de instrucciones de tipo A y B
- ▶ No siempre se mejora el rendimiento

### Ejemplo

▶ El procesador A tiene  $tc_A = 500ps$  y  $CPI_A = 2$ . Supongamos que lo rediseñamos para que se use un menor tiempo de ciclo. El nuevo procesador B tiene  $tc_B = 250ps$ . Pero esto require aumentar el número de ciclos del programa de test, aumentando el CPI promedio:  $CPI_B = 3$ . ¿Es más rápido el nuevo diseño?

## Ejemplo

Supongamos que un computador A, con  $f_A = 2Ghz$ , ejecuta un programa en  $t_{eje} = 10s$ . Con ciertas mejoras en el circuito, se ejecuta en 6s, pero aumenta el número de ciclos en un factor 1.2. ¿Cuál es la frecuencia de reloj del nuevo diseño?

### Ley de Amdahl

- "El máximo speedup que se puede conseguir minimizando el retardo de una parte está limitado por la fracción de tiempo que representa dicha parte sobre el tiempo total"
- Speedup total al mejorar una parte P en un factor S:

$$S_t = \frac{1}{(1-P) + \frac{P}{S}}$$

### Ley de Amdahl

- "El máximo speedup que se puede conseguir minimizando el retardo de una parte está limitado por la fracción de tiempo que representa dicha parte sobre el tiempo total"
- Speedup total al mejorar una parte P en un factor S:

$$S_t = \frac{1}{(1-P) + \frac{P}{S}}$$

Máximo speedup posible al mejorar una parte P:

$$S_{max} = \frac{1}{1 - P}$$

### Ley de Amdahl

- "El máximo speedup que se puede conseguir minimizando el retardo de una parte está limitado por la fracción de tiempo que representa dicha parte sobre el tiempo total"
- Speedup total al mejorar una parte P en un factor S:

$$S_t = \frac{1}{(1-P) + \frac{P}{S}}$$

Máximo speedup posible al mejorar una parte *P*:

$$S_{max} = \frac{1}{1 - P}$$

► ¿Máximo speedup al mejorar una parte de un programa que representa el 80 % del tiempo de ejecución?

#### "Ley" de Moore

"La densidad de transistores en un chip se duplica cada 2 años"

► Gordon Moore, cofundador de Intel, 1965

### Transistores nMOS y pMOS

MOS: Metal–Oxide–Semiconductor



## Transistores nMOS y pMOS

MOS: Metal–Oxide–Semiconductor



## Tecnología CMOS

Complementary Metal–Oxide–Semiconductor



### Tecnología CMOS - Carga

► Complementary Metal—Oxide—Semiconductor



### Tecnología CMOS - Descarga

Complementary Metal–Oxide–Semiconductor



#### "Ley" de Moore

"La densidad de transistores en un chip se duplica cada 2 años"

► Gordon Moore, cofundador de Intel, 1965







## "Ley" de Moore



## Consecuencias de la "Ley" de Moore

- Transistores más pequeños
- Reducción del tiempo de conmutación de los transistores
- Mayor frecuencia de reloj
- Mayor disipación de potencia y consumo energético

#### Potencia dinámica

- Consumo de energía producido durante los ciclos de carga/descarga de los transistores (conmutación)
  - ► P: Potencia dinámica (Watts)
  - α: Fracción de transistores que conmutan por ciclo
  - C: Capacitancia (Farads)
  - ► V: Voltaje (Volts)
  - f<sub>clk</sub>: Frecuencia de reloj

$$P_{din\'amica} = \alpha \cdot C \cdot V^2 \cdot f_{clk}$$

### Potencia dinámica vs Potencia estática

Potencia dinámica

$$P_{total} = \alpha \cdot C \cdot V^2 \cdot f_{clk} + I_{leak} \cdot V$$

- Potencia estática
  - I<sub>leak</sub>: corriente parásita que circula por el transitor en circuito abierto

$$\boxed{P_{est\'atica} = I_{leak} \cdot V}$$

### Potencia dinámica vs Potencia estática

Potencia dinámica

$$P_{total} = \alpha \cdot C \cdot V^2 \cdot f_{clk} + I_{leak} \cdot V$$

- Potencia estática
  - I<sub>leak</sub>: corriente parásita que circula por el transitor en circuito abierto

$$P_{est\'atica} = I_{leak} \cdot V$$

- ▶ Potencia total:  $P = P_{dinámica} + P_{estática}$
- ► Energía consumida en un tiempo t, en Joules:

$$E = t \cdot P$$



# Potencia, Energía y Temperatura

- La energía consumida se convierte en calor
  - Sistema de refrigeración para evitar exceso de temperatura
  - ► Thermal Design Power (TDP)

## Potencia, Energía y Temperatura

- La energía consumida se convierte en calor
  - Sistema de refrigeración para evitar exceso de temperatura
  - Thermal Design Power (TDP)
- Dispositivos móviles
  - Alimentados por baterías
  - Espacio reducido para el sistema de refrigeración

# Potencia, Energía y Temperatura

- La energía consumida se convierte en calor
  - Sistema de refrigeración para evitar exceso de temperatura
  - ► Thermal Design Power (TDP)
- Dispositivos móviles
  - Alimentados por baterías
  - Espacio reducido para el sistema de refrigeración
- Hemos alcanzado el punto en el que el calor no se puede disipar
  - La frecuencia máxima se ha estancado en los últimos años

Tema 1. Introducción



<sup>\* &</sup>quot;New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

#### Técnicas de reducción de consumo

- Clock gating
- Power gating
- Dynamic Voltage and Frequency Scaling (DVFS)

#### Estructura de Computadores

#### └─Tema 1. Introducción

| Essentials                   | Export specifications                                              |
|------------------------------|--------------------------------------------------------------------|
| Product Collection           | 9th Generation Intel® Core™ i9 Processors                          |
| Code Name                    | Products formerly Coffee Lake                                      |
| Vertical Segment             | Desktop                                                            |
| Processor Number             | 19-9900K                                                           |
| Status                       | Launched                                                           |
| Launch Date ?                | Q4'18                                                              |
| Lithography ?                | 14 nm                                                              |
| Included Items               | Please note: The boxed product does not include a fan or heat sink |
| Use Conditions ?             | PC/Client/Tablet                                                   |
| Recommended Customer Price ? | \$488.00 - \$499.00                                                |
| Performance                  |                                                                    |
| # of Cores ?                 | 8                                                                  |
| # of Threads ②               | 16                                                                 |
| Processor Base Frequency (?) | 3.60 GHz                                                           |
| Max Turbo Frequency 🔞        | 5.00 GHz                                                           |
| Cache ?                      | 16 MB SmartCache                                                   |
| Bus Speed ②                  | 8 GT/s DMI3                                                        |
| TDP ?                        | 95 W                                                               |