Linear regression

Tuan Nguyen - Al4E

Problem

HOUSE PRICE PREDICTION

Dataset

Diện tích(m2)	Giá bán (triệu VNĐ)
30	448.524
32.4138	509.248
34.8276	535.104
37.2414	551.432
39.6552	623.418

Visualization

How?

Line

Loss function

Symbol

	Diện tích(m2)	Giá bán (triệu VNĐ)
x1	30	448.524 y1
x2	32.4138	509.248 y2
х3	34.8276	535.104 y3
64	37.2414	551.432
	39.6552	623.418

Loss function

$$J = \frac{1}{2} * \frac{1}{N} * (\sum_{i=1}^{N} (\hat{y_i} - y_i)^2)$$

$$\hat{y_i} = w_1 * x_i + w_0$$

- J không âm
- J càng nhỏ thì đường thẳng càng gần điểm dữ liệu.
- Nếu J = 0 thì đường thẳng đi qua tất các điểm dữ liệu.

Summary

- 1. Define the problem
- 2. Visualize the data
- Choose the model
- 4. Loss function

Solve the problem -> Find best parameter for the model -> Optimize loss function

How?

Gradient

$$f(x) = x^2 \operatorname{la} f'(x) = \frac{df(x)}{dx} = 2 * x$$

- f'(1) = 2 * 1 < f'(2) = 2 * 2 => đồ
 thị gần điểm x = 2 dốc hơn đồ thị
 gần điểm x = 1 => trị tuyệt đối
 của đạo hàm tại một điểm càng
 lớn thì gần điểm đấy càng dốc.
- f'(-1) = 2 * (-1) = -2 < 0 => đồ thị đang giảm hay khi tăng x thì y sẽ giảm; ngược lại đạo hàm tại điểm nào đó mà dương thì đồ thị quanh điểm đấy đang tăng.

Gradient descent

- Bước 1: Khởi tạo giá trị x tùy ý
- Bước 2: Gán x = x learning_rate
 * f'(x)(learning_rate là hằng số không âm ví dụ learning_rate = 0.001)
- Bước 3: Tính lại f(x):
 - Nếu f(x) đủ nhỏ thì dừng lại.
 - Ngược lại tiếp tục bước 2.

Gradient descent visualization

Gradient descent visualization

Check learning rate

- Nếu learning_rate nhỏ: mỗi lần hàm số giảm rất ít nên cần rất nhiều lần thực hiện bước 2 để hàm số đạt giá trị nhỏ nhất
- Nếu learning_rate hợp lý: sau một số lần lặp bước 2 vừa phải thì hàm sẽ đạt giá trị đủ nhỏ.
- Nếu learning_rate quá lớn: sẽ gây hiện tượng overshoot và không bao giờ đạt được giá trị nhỏ nhất của hàm.

Check loss function

Gradient review

$$(x^{a})' = a * x^{a-1}$$

$$(a^{x})' = a^{x} * ln(a)$$

$$(e^{x})' = e^{x}$$

$$(ln(x))' = \frac{1}{x}$$

$$(sin(x))' = cos(x)$$

$$(cos(x))' = -sin(x)$$

Calculate gradient

$$J(w_0,w_1) = rac{1}{2} * (\sum_{i=1}^N (\hat{y_i} - y_i)^2) = rac{1}{2} * (\sum_{i=1}^N (w_0 + w_1 * x_i - y_i)^2)$$

$$egin{aligned} rac{dJ}{dw_0} &= \sum_{i=1}^N (w_0 + w_1 * x_i - y_i) \ rac{dJ}{dw_1} &= \sum_{i=1}^N x_i * (w_0 + w_1 * x_i - y_i) \end{aligned}$$

Vector presentation

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}, W = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

$$\hat{Y} = X * W = \begin{bmatrix} w_0 + w_1 * x_1 \\ w_0 + w_1 * x_2 \\ \dots \\ w_0 + w_1 * x_n \end{bmatrix}$$

Gradient

$$X[:,1] = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}, sum(X[:,1]) = x_1 + x_2 + \dots + x_n$$
$$\frac{dJ}{dw_0} = sum(\hat{Y} - Y), \frac{dJ}{dw_1} = sum(X[:,1] \otimes (\hat{Y} - Y))$$

Non-linear

How to fit?

Matrix representation

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{bmatrix} => X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \dots & \dots & \dots \\ 1 & x_n & x_n^2 \end{bmatrix}$$

$$W = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

Parabol

Q&A

