Лекция 13

1. Правило Лопиталя.

Теорема 1 (праило Лопиталя). Пусть f и g дифференцируемы на интервале (a,b) и $g'(x) \neq 0$ в кажедой точке $x \in (a,b)$. Предположеим, что $\lim_{x \to b-0} f(x) = \lim_{x \to b-0} g(x) = 0$ и существует предел $\lim_{x \to b-0} \frac{f'(x)}{g'(x)} = A$. Тогда существует предел $\lim_{x \to b-0} \frac{f(x)}{g(x)} = A$.

Доказательство. Пусть $x,y\in(a,b),\ x< y$. По теореме Лагранжа $g(x)-g(y)\neq 0$. Тогда по теорема Коши $\frac{f(x)-f(y)}{g(x)-g(y)}=\frac{f'(c)}{g'(c)},\ c\in(x,y)$. Перепишем это соотношение в следующем виде: $\frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)}(1-\frac{g(y)}{g(x)})+\frac{f(y)}{g(x)}$. По условию для каждого $\varepsilon>0$ найдется такое $\delta>0$, что для произвольных точек $x,y,b-\delta< x< y< b$ для соответствующей точки c выполнено $|\frac{f'(c)}{g'(c)}-A|<\varepsilon$. Таким образом, для произвольной точки $x\in(b-\delta,b)$ и для произвольной точки $y\in(x,b)$ выполнено

$$\left| \frac{f(x)}{g(x)} - A \right| = \left| \frac{f'(c)}{g'(c)} - A - \frac{f'(c)}{g'(c)} \frac{g(y)}{g(x)} + \frac{f(y)}{g(x)} \right| \le \left| \frac{f'(c)}{g'(c)} - A \right| + \left| \frac{f'(c)}{g'(c)} \right| \cdot \left| \frac{g(y)}{g(x)} \right| + \left| \frac{f(y)}{g(x)} \right|$$
$$\le \varepsilon + (|A| + \varepsilon) \left| \frac{g(y)}{g(x)} \right| + \left| \frac{f(y)}{g(x)} \right|.$$

Устремляя $y \to b-0$ и переходя к пределу в неравенстве, получаем, что для произвольного $x \in (b-\delta,b)$ выполнено $\left|\frac{f(x)}{g(x)}-A\right| \le \varepsilon$.

Аналогично обосновывается следующий вариант правила Лопиталя.

Теорема 2 (праило Лопиталя). Пусть f и g дифференцируемы на интервале (a,b) и $g'(x) \neq 0$ в каждой точке $x \in (a,b)$. Предположим, что $\lim_{x \to b-0} g(x) = \infty$ и существует предел $\lim_{x \to b-0} \frac{f'(x)}{g'(x)} = A$. Тогда существует предел $\lim_{x \to b-0} \frac{f(x)}{g(x)} = A$.

Доказательство. Пусть $x,y\in(a,b),\ x>y$. По теореме Лагранжа $g(x)-g(y)\neq 0$. Тогда по теорема Коши $\frac{f(x)-f(y)}{g(x)-g(y)}=\frac{f'(c)}{g'(c)},\ c\in(y,x)$. Перепишем это соотношение в следующем виде: $\frac{f(x)}{g(x)}=\frac{f'(c)}{g'(c)}(1-\frac{g(y)}{g(x)})+\frac{f(y)}{g(x)}$. По условию для каждого $\varepsilon>0$ найдется такое $\delta>0$, что для произвольных точек $x,y,b-\delta< y< x< b$ для соответствующей точки c выполнено $|\frac{f'(c)}{g'(c)}-A|<\varepsilon$. Таким образом, для произвольной точки $y\in(b-\delta,b)$ и для произвольной точки $x\in(y,b)$ выполнено

$$\left| \frac{f(x)}{g(x)} - A \right| = \left| \frac{f'(c)}{g'(c)} - A - \frac{f'(c)}{g'(c)} \frac{g(y)}{g(x)} + \frac{f(y)}{g(x)} \right| \le \left| \frac{f'(c)}{g'(c)} - A \right| + \left| \frac{f'(c)}{g'(c)} \right| \cdot \left| \frac{g(y)}{g(x)} \right| + \left| \frac{f(y)}{g(x)} \right|$$

$$\le \varepsilon + (|A| + \varepsilon) \left| \frac{g(y)}{g(x)} \right| + \left| \frac{f(y)}{g(x)} \right|.$$

Пусть теперь y — фиксировано. Тогда найдется такое δ_1 , что для произвольного $x \in (b-\delta_1,b)$ выполнено $|\frac{g(y)}{g(x)}| < \varepsilon$ и $|\frac{f(y)}{g(x)}| < \varepsilon$. Тогда при $x \in (b-\delta_1,b)$ выполнено неравенство $|\frac{f(x)}{g(x)} - A| \le \varepsilon(2 + |A| + \varepsilon)$.

2. Производные старших порядков.

Определение 3. Пусть функция f определена в некоторой окрестности точки a. **Производная** n-го порядка функции f в точке a определяется индуктивно: предположим, что проиводная (n-1)-го порядка $f^{(n-1)}$ определена в некоторой окрестности точки a и сама является дифференцируемой в точке a функцией, тогда по определению производная n-го порядка $f^{(n)}(a) := (f^{(n-1)})'(a)$.

Обычно саму функцию считают ее производной «нулевого порядка», т.е. используют обозначение $f^{(0)} = f$.

Предложение 4 (обобщенное правило Лейбница). Пусть функции f и g дифференцируемы n раз g точке g точке

Доказательство. Доказательство проведем по индукции. Для n=1 формула дает обычное правило Лейбница для производной произведения. Обсудим индуктивный переход.

$$(fg)^{(n+1)} = \left(\sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}\right)' = \sum_{k=0}^{n} C_n^k f^{(k+1)} g^{(n-k)} + \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n+1-k)}$$

$$= \sum_{k=1}^{n+1} C_n^{k-1} f^{(k)} g^{(n+1-k)} + \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n+1-k)} = f^{(n+1)} g^{(0)} + \sum_{k=1}^{n} (C_n^{k-1} + C_n^k) f^{(k)} g^{(n+1-k)} + f^{(0)} g^{(n+1)}$$

$$= \sum_{k=0}^{n+1} C_{n+1}^k f^{(k)} g^{(n+1-k)},$$

где было использовано равенство $C_n^{k-1} + C_n^k = C_{n+1}^k$

3. ФОРМУЛА ТЕЙЛОРА И РЯД ТЕЙЛОРА.

Определение 5. Пусть f дифференциркема n раз в точке a. Многочленом Тейлора порядка n функции f называется многочлен $T_n(x) = T_n(x; f, a) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$.

Заметим, что T_n — многочлен степени n, у которого все производные до порядка n в точке a совпадают с производными функции f в этой точке.

Теорема 6. Пусть функция f дифференциркема n раз в точке a. Тогда

$$f(x) = T_n(x) + \bar{o}((x-a)^n)$$

 $npu \ x \rightarrow a$.

Доказательство. Применим правило Лопиталя:

$$\lim_{x \to a} \frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k}{(x - a)^n} = \lim_{x \to a} \frac{f'(x) - \sum_{k=1}^{n} \frac{f^{(k)}(a)}{(k-1)!} (x - a)^{k-1}}{n(x - a)^{n-1}}$$

$$= \dots = \lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a) - f^{(n)}(a)(x - a)}{n!(x - a)} = 0,$$

что следует из определения дифференцируемости функции $f^{(n-1)}$ в точке a.

С помощью предыдущей теоремы обосновываются равенства

1)
$$e^x = \sum_{k=0}^n \frac{x^k}{k!} + \bar{o}(x^n)$$
 при $x \to 0$;

2)
$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + \bar{o}(x^{2n+2})$$
 при $x \to 0$;

3)
$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} + \bar{o}(x^{2n+1})$$
 при $x \to 0$;

4)
$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}x^k}{k} + \bar{o}(x^n)$$
 при $x \to 0$;

5)
$$(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha \cdot (\alpha-1) \cdot \dots \cdot (\alpha-k+1)}{k!} \cdot x^{k} + \bar{o}(x^{n})$$
 при $x \to 0$.

Теорема 7. Пусть функция f дифференцируема n раз g каждой точке отрезка g концами а и х и ее первые п производных являются непрерывными функциями на этом отрезке. Кроме того, пусть в каждой точке интервала с концами а и х функция f $\partial u \phi \phi$ еренцируема (n+1) раз. Пусть g — произвольная непрерывная функция на отрезке с концами а и х, которая дифференцируема в каждой точке интервала с концами а $u \; x$, причем $g'(t) \neq 0$ в каждой точке t данного интервала. Тогда найдется точка c в интервале с концами а и х, для которой

$$f - T_n(x; f, a) = \frac{f^{(n+1)}(c)}{n! g'(c)} (g(x) - g(a))(x - c)^n.$$

Доказательство. Рассмотрим функцию $G(t) = \sum_{k=0}^{n} \frac{f^{(k)}(t)}{k!} (x-t)^{k}$. Заметим, что

$$G'(t) = \sum_{k=1}^{n} \left(\frac{f^{(k+1)}(t)}{k!} (x-t)^k - \frac{f^{(k)}(t)}{(k-1)!} (x-t)^{(k-1)} \right) + f'(t) = \frac{f^{(n+1)}(t)}{n!} (x-t)^n.$$

По теореме Коши на интервале с концами a и x есть точка c, для которой

$$G(x) - G(a) = \frac{G'(c)}{g'(c)}(g(x) - g(a)).$$

Остается заметить, что G(x) = f(x), $G(a) = T_n(x; f, a)$.

Пусть $R_n(x; f, a) := f(x) - T_n(x; f, a)$.

Остаточный член в форме Коши. Если g(t)=t-x, то g'(c)=1, g(x)-g(a)=x-a и $R_n(x;f,a)=\frac{f^{(n+1)}(c)}{n!}(x-c)^n(x-a)$.

Остаточный член в форме Лагранжа. Если $g(t)=(t-x)^{n+1},$ то $g'(c)=(n+1)(c-x)^n,$ $g(x) - g(a) = -(a-x)^{n+1} \text{ M } R_n(x;f,a) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$

Теорема 8. Пусть f бесконечно дифференцируема на интервале (a-r, a+r) (т.е. имеет в каждой точке этого интервала производные всех порядков). Предположим, что для некоторых чисел $C>0,\ M>0$ выполнено $|f^{(n)}(x)|\leq CM^n$ для всех $x\in (a-r,a+r).$ Тогда $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$ для кажедой точки $x \in (a-r,a+r)$.

Доказательство. Заметим, что

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} \right| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1} \right| \le \frac{C(rM)^{n+1}}{(n+1)!} \to 0$$

при $n \to +\infty$.

Определение 9. Для бесконечно дифференцируемой функции f в точке a ее **рядом Тейлора** называется формальное выражение $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$.

Пример 10. Для функции $f(x) = e^x$ на каждом интервале (-r,r) выполнено $|f^{(n)}(x)| =$ $|e^x| \leq e^r$. По предыдущей теореме $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ для каждого $x \in \mathbb{R}$.

Аналогично можно обосновать равенст

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$$
 при $x \in \mathbb{R}$; $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$ при $x \in \mathbb{R}$. Используя остаточный член в форме Коши, можно показать, что

$$\ln(1+x) = \sum_{k=1}^{\infty} \tfrac{(-1)^{k-1} x^k}{k} \text{ при } |x| < 1; \ (1+x)^{\alpha} = \sum_{k=0}^{\infty} \tfrac{\alpha \cdot (\alpha-1) \cdot \ldots \cdot (\alpha-k+1)}{k!} \cdot x^k \text{ при } |x| < 1.$$

Замечание 11. Отметим, что бывают такие бесконечно дифференцируемые функции, что их ряд Тейлора в точке a сходится к значению функции только в точке a (т.е. не сходится к значению функции ни в какой окрестности точки a). Такой функцией например будет $f(x) = e^{-1/x^2}$ при $x \neq 0$ и f(0) = 0 (a = 0).