Hardware Engineer's Guide

PID CONTROL

By Ghimi Cohen

1. PID FUNDAMENTALS

PID FOUNDATION

TRANSFER FUNCTION

$$G(s) = Kp + Ki/s + Kd \cdot s$$

COMPONENT	TIME DOMAIN	FREQ. DOMAIN	PHYSICAL EFFECT
Proportional	$Kp \cdot e(t)$	Kp	Immediate response strength
Integral	$Ki \cdot \int e(t)dt$	Ki / s	Historical error elimination
Derivative	$Kd \cdot de(t)/dt$	Kd⋅s	Predictive overshoot prevention

Term	Analogy	Too Low	Too High
P	Immediate reaction to difference.	Slow	Unstable.
I	Corrects for past errors, accumulated drift	Slow Settle	Overshoots
D	Anticipates changes, smooths approach	Overshoots	unstable

1.1 PROPORTIONAL CONTROL (P-TERM)

CORE FUNCTION

Direct multiplication of current error by gain factor.

Immediate Response: Output changes instantly

Linear Relationship: Doubling error doubles control output

• Steady-State Error: Always present in **pure proportional**

Stability Margin: Higher Kp lower stability but faster response

Response time: Instantaneous

Steady accuracy: Limited by proportional band

Typical Kp range: 0.1 to 100 (application dependent)

1.2 INTEGRAL CONTROL (I-TERM)

CORE FUNCTION

Accumulates historical error to eliminate steady-state offsets.

Error Accumulation: Continuously sums past errors over time

Offset Elimination: Forces steady-state error to zero

Wind-up Susceptibility: Can saturate during large transients

Stability Impact: Reduces phase margin, can cause oscillation

Continuous: True integration for analog systems

Discrete: Trapezoidal rule for digital implementation

Wind-up protection: Essential for practical systems

1.3 DERIVATIVE CONTROL (D-TERM)

CORE FUNCTION

Provides predictive action based on error rate of change.

Predictive Nature: Responds to error rather than magnitude

Overshoot Reduction: Opposes rapid changes in error signal

Noise Amplification: High-frequency noise becomes dominant

Damping Enhancement: Improves transient response characteristic

Pure derivative: unusable due to noise amplification

Low-pass filtering: Typically 10:1 to 100:1 ratio

Kick suppression: required for setpoint changes

2. THE PLANT

The object being manipulated (Heater, Valve, Motor etc.)

2.1 TIME CONSTANTS AND DELAYS

TIME CONSTANT

- Thermal Systems: Heat capacity / thermal conductance
- Mechanical Systems: Inertia / damping coefficient
- Electrical Systems: L/R or RC time constants
- Process Systems: Volume / flow rate relationships

DEAD TIME EFFECTS

- Transport delays: Physical distance between control and measurement
- Processing delays: Computational and signal processing time
- Sensor delays: Measurement device response time

2.2 NON-LINEARITIES AND CONSTRAINTS

	R ELEMENTS

NON-LINEARITY	EFFECT ON CONTROL	COMPENSATION METHOD
Saturation	Output limiting	Anti-windup, gain scheduling
Dead zone	Poor small-signal response	Bias injection, dither
Backlash	Oscillation tendency	Pre-loading, feed-forward
Rate limiting	Slow large-signal response	Acceleration limiting

CONSTRAINT HANDLING

- Actuator saturation: 0-100% valve, ±10V amplifier limits
- Rate constraints: Maximum slew rate limitations
- Physical limits: Temperature, pressure, position boundaries

2.3 SYSTEM IDENTIFICATION TECHNIQUES

STEP RESPONSE ANALYSIS

- Rise time: 10% to 90% of final value
- Settling time: Within 2% of final value
- Overshoot: Peak value above final value
- Time constant: 63% of final value time

FREQUENCY RESPONSE METHODS

- Bode plot analysis
- Nyquist criteria

3. FEEDBACK PATH

3.1 SENSOR TECHNOLOGIES BY APPLICATION

POSITION/DISPLACEMENT SENSORS

SENSOR TYPE	RESOLUTION	ACCURACY	BANDWIDTH	TYPICAL APPLICATIONS
Encoder	0.1° - 0.001°	±0.05°	10kHz	Servo positioning, robotics
Resolver	0.1°	±0.02°	1kHz	Harsh environment motors
LVDT	0.1µm	±0.1%	1kHz	Precision linear positioning
Hall Effect	1°	±1°	100kHz	Low-cost positioning

TEMPERATURE SENSORS

SENSOR TYPE	RANGE	ACCURACY	RESPONSE	INTERFACE
Thermocouple	-200°C : 1800°C	±0.5°C	100ms	Differential voltage
RTD	-200°C:850°C	±0.1°C	1s	Resistance measurement
Thermistor	-50°C to 300°C	±0.05°C	10ms	Resistance measurement
IC Sensor	-40°C to 125°C	±0.25°C	1ms	Voltage/digital output

3.2 SIGNAL CONDITIONING REQUIREMENTS

AMPLIFICATION AND SCALING

- Sensor output range: mV to V
- ADC input range: Typically, 0-3.3V
- Gain calculation: (ADC_range) / (Sensor_range)
- Offset compensation for bipolar signals

NOISE REJECTION TECHNIQUES

- Differential signaling for long cable runs
- Shielding and grounding for electromagnetic immunity
- Low-pass filtering at sensor interface
- Digital filtering for software-based noise reduction

3.3 SENSOR PLACEMENT AND CALIBRATION

CRITICAL PLACEMENT CONSIDERATIONS

- Thermal coupling: Sensor proximity to controlled element
- Mechanical coupling: Rigid mounting for position feedback
- Electrical isolation: Avoiding ground loops and interference
- Environmental protection: Temperature, vibration, moisture

CALIBRATION PROCEDURES:

- Zero-point calibration at known reference
- Span calibration using full-scale reference
- Linearity verification across operating range
- Temperature compensation coefficient determination

3.4 ERROR DETECTION AND PROCESSING

ERROR SIGNAL GENERATION

 $Error = Setpoint - Process_Var$

ERROR SIGNAL CONDITIONING:

- Scaling: Engineering units to controller units
- Limiting: Prevent excessive error signals
- Rate limiting: Prevent derivative kick
- Filtering: Remove high-frequency noise

MULTIPLE INPUT HANDLING:

- Sensor redundancy for critical applications
- Fault detection through signal comparison
- Automatic sensor switching for failures
- Signal validation and range checking

4. FORWARD ARCHITECTURE

4.1 ACTUATOR INTERFACE DESIGN

POWER STAGE CLASSIFICATIONS

ACTUATOR TYPE	POWER STAGE	CONTROL SIGNAL	PROTECTION REQUIRED
DC Motor	H-Bridge PWM	PWM + Direction	Current limiting, thermal
AC Motor	3-Phase Inverter	3-Phase PWM	Over-current, over-voltage
Servo Valve	Linear Amplifier	± 10 V Analog	Short-circuit, thermal
Heater	SSR/Contactor	On/Off or PWM	Over-temperature, earth fault

4.2 CURRENT LIMITING AND PROTECTION

CURRENT SENSING METHODS

- Shunt resistors: High accuracy, low cost
- Hall effect sensors: Isolated, wide bandwidth
- Current transformers: AC systems, isolation
- Integrated current sensing: Motor drivers

PROTECTION IMPLEMENTATION

- Hardware current limiting: Independent of software
- Thermal monitoring: Junction and case temperature
- Over-voltage protection: Surge suppressors, TVS diodes
- Under-voltage lockout: Prevent malfunction at low supply

5. SIGNAL PROCESSING

5.1 ANTI-ALIASING AND NOISE REJECTION

ANTI-ALIASING FILTER DESIGN

Sampling Rate Selection:

- Nyquist criterion: $fs > 2 \times fmax$
- Practical rule: $fs = 10 \times control\ bandwidth$
- Oversampling benefits: Reduced filter requirements

FILTER TOPOLOGIES

FILTER TYPE	ORDER	ROLL-OFF	GROUP DELAY	APPLICATION
Butterworth	2nd-8th	-40dB/decade	Moderate	General purpose
Bessel	2nd-6th	-40dB/decade	Linear	Pulse response
Chebyshev	2nd-8th	-60dB/decade	Non-linear	Steep cutoff
Elliptic	4th-8th	-80dB/decade	Non-linear	Minimum order

5.2 BIQUAD FILTER STRUCTURES

DIGITAL BI-QUAD IMPLEMENTATION

$$H(z) = (b0 + b1 \times z^{-1} + b2 \times z^{-2}) / (1 + a1 \times z^{-1} + a2 \times z^{-2})$$

Coefficient Calculation Methods:

- Bilinear transform: Frequency warping compensation
- Matched Z-transform: Impulse response matching
- Zero-order hold: Step response matching

5.3 DIGITAL VS ANALOG FILTERING

ANALOG FILTER ADVANTAGES

- No sampling limitations
- Inherent anti-aliasing
- Lower group delay
- Simpler implementation

DIGITAL FILTER ADVANTAGES

- Programmable coefficients
- Perfect repeatability Complex transfer functions
- No component drift

6. PID IMPLEMENTATION

6.1 ANALOG PID

CLASSIC ANALOG PID CONFIGURATION

- OPAMP: High slew rate, low offset drift
- Resistors: 1% tolerance, low temperature coefficient
- Capacitors: Low leakage, stable dielectric
- Power supplies: Low noise, good regulation

6.2 DIGITAL PID

FIXED-POINT VS FLOATING-POINT

Fixed-Point Advantages:

- Faster execution on most microcontrollers
- Deterministic execution time
- Lower power consumption
- Suitable for real-time applications

Floating-Point Advantages:

- Wider dynamic range
- Simpler coefficient calculation
- Reduced scaling concerns
- Better for complex algorithms

NUMERICAL PRECISION REQUIREMENTS

- Control output: 12-16 bits typical
- Internal calculations: 24-32 bits recommended
- Overflow protection: Essential for integral term

6.3 MCU INTEGRATION

TIMER CONFIGURATION:

- Control loop timing: Hardware timer interrupt
- PWM generation: Dedicated PWM peripherals
- ADC sampling: Synchronized with control loop
- Communication: Non-blocking for real-time operation

6.4 EMBEDDED SYSTEM OPTIMIZATION

REAL-TIME PERFORMANCE

- Fixed execution time: Avoid conditional branches in ISR
- Memory allocation: Static allocation only in ISR
- Stack usage: Monitor stack depth for nested interrupts
- Priority levels: Control loop highest priority

CODE OPTIMIZATION TECHNIQUES:

- Table lookups: Replace calculations with lookup tables
- Bit manipulation: Use shifts instead of multiply/divide
- Compiler optimization: Enable appropriate optimization levels
- Assembly critical sections: Hand-optimize time-critical code

7. TUNING & TROUBLESHOOTING

7.1 PRACTICAL TUNING METHODS

ZIEGLER-NICHOLS METHOD

Critical Gain Determination

- Set Ki = 0, Kd = 0
- Increase Kp until sustained oscillation occurs
- Record critical gain (Kc) and oscillation period (Tc)

ТҮРЕ	KP	KI	KD
P-only	0.5 × Kc	0	0
PI	$0.45 \times \text{Kc}$	1.2×Kp/Tc	0
PID	$0.6 \times \text{Kc}$	2×Kp/Tc	$Kp \times Tc/8$

COHEN-COON METHOD

Based on open-loop step response characteristics:

- Process gain (K): Steady-state output change / input change
- Time constant (τ): Time to reach 63% of final value
- Dead time (θ): Time before response begins

7.2 COMMON FAILURE MODES AND SOLUTIONS

ТҮРЕ	CHARACTERISTICS	ROOT CAUSE	SOLUTION
High Freq	Small Amp, fast	D gain too high	Reduce Kd or add filter
Mid Freq	Growing Amp	P gain too high	Reduce Kp
Low Freq	Large Amp, slow	I gain too high	Reduce Ki
Limit	Square wave	Actuator saturation	Reduce gains, add anti-windup

INTEGRAL WINDUP PREVENTION

- Conditional integration: Stop integration when output saturated
- Back-calculation: Reduce integral term when output limited
- Clamping: Limit integral term to prevent excessive accumulation

7.3 ADVANCED TUNING TECHNIQUES

GAIN SCHEDULING

- Multiple PID parameter sets for different operating regions
- Smooth transitions between parameter sets
- Based on setpoint, process variable, or external conditions

FEED-FORWARD CONTROL

- Anticipate disturbances before they affect process variable
- Reduce dependency on feedback for known disturbances
- Combine with PID for optimal performance

CASCADE CONTROL

- Inner loop: Fast variable (current, pressure)
- Outer loop: Slow variable (position, temperature)
- Improved disturbance rejection and stability

7.4 SYSTEM IDENTIFICATION FOR BETTER TUNING

STEP RESPONSE TESTING

- 1. Apply step input to system
- 2. Record process variable response
- 3. Calculate process parameters
- 4. Use parameters for controller tuning

FREQUENCY RESPONSE TESTING

- 1. Apply sinusoidal input sweep
- 2. Measure amplitude ratio and phase shift
- 3. Create Bode plot
- 4. Design controller for desired margins

AUTO-TUNING ALGORITHMS

- Relay feedback method: Automated critical gain finding
- Pattern recognition: Identify system response patterns
- Adaptive tuning: Continuous parameter adjustment
- Model reference: Compare with ideal response

8. REAL-WORLD APPLICATIONS

8.1 MOTOR CONTROL SYSTEMS

Linear Actuator Position Control

SYSTEM COMPONENTS

- Plant: Linear Actuator with encoder feedback
- Sensor: Optical encoder (1000 PPR typical)
- Controller Implemented PID in MCU

TYPICAL SPECIFICATIONS

PARAMETER	SPECIFICATION	TYPICAL VALUES
Position accuracy	±0.1°	Encoder resolution limited
Settling time	<100ms	For 90° step input
Following error	<2°	At maximum velocity
Velocity ripple	<5%	Of commanded velocity

CHALLENGES

- Commutation timing: Precise rotor position required
- Current control: Inner current loop for torque control
- Back-EMF compensation: Velocity-dependent voltage drop
- Cogging torque: Periodic disturbances from magnets

8.2 THERMAL CONTROL APPLICATIONS

Temperature Control System Design: Heater Temperature Control

SYSTEM CHARACTERISTICS

Plant: Thermal mass with heater

Sensor: Precision thermistor (0.1°C accuracy)

Actuator: Linear Peltier driver (±5A)

• Control range: -10°C to +80°C

DESIGN CONSIDERATIONS

ASPECT	CHALLENGE	SOLUTION
Thermal lag	10-100S time constants	Long integration times
Heating/cooling asymmetry	Different time constants	Gain scheduling
Ambient variations	External disturbances	Feed-forward compensation
Power limitations	Peltier current limits	Anti-windup protection

TUNING PARAMETERS

- $Kp: 5-20 (A/^{\circ}C)$ Based on thermal resistance
- $\mathbf{K}i$: $0.1 1 (A/^{\circ}C s) Long time constants$
- $Kd: 0.05 0.5 (A s/^{\circ}C) Filtered heavily for noise$

9. COMMON PID CIRCUITS

9.1 DISCRETE COMPONENT PID CIRCUITS

OP-AMP BASED PID CONTROLLER

Component Values for Typical Application:

- R0 = 10kΩ (proportional gain setting)
- R1 = $100k\Omega$ (integral time constant)
- C1 = 0.1µF (integral capacitor)
- R2 = $10k\Omega$ (derivative gain)
- C2 = 10nF (derivative filter)
- R3 = $10K\Omega$ (Proportional Gain)

TRANSFER FUNCTION

$$rac{v_{oc}(s)}{v_{ic}(s)} = rac{R_3}{R_0} + rac{R_1}{R_0C_1} \cdot rac{1}{s} + R_2C_2 \cdot rac{R_3}{R_0} \cdot s$$

DESIGN GUIDELINES

- Op-amp selection: Low offset, high slew rate
- Resistor tolerance: 1% for consistent performance
- Capacitor type: Low leakage for integral term
- Supply voltage: ±15V typical for wide output swing

9.2 INTEGRATED CONTROLLER SOLUTIONS

DEDICATED PID CONTROLLER ICS DADT NUMBER DESCRIPTIONS D

PART NUMBER	FEATURES	RESOLUTION	INTERFACE
MAX1968	3-term PID, 12-bit	0.025%	SPI
LTC1569	Analog PID filter	Continuous	Analog
AD5933	Impedance analyzer PID	12-bit	I ² C

MICROCONTROLLER-BASED SOLUTIONS:

- STM32F4: 32-bit ARM, floating-point unit
- TMS320F28x: Fixed-point DSP controllers

9.3 SYSTEM INTEGRATION CONSIDERATIONS

POWER SUPPLY DESIGN

Analog circuits: ±15V or ±12V dual supplies

Digital circuits: +3.3V or +5V single supply

Isolation: Required for industrial applications

Noise filtering: LC filters for switching supplies

ELECTROMAGNETIC COMPATIBILITY

Cable shielding: Twisted pair for differential signals

Grounding: Single-point ground for analog circuits

PCB layout: Separate analog and digital ground planes

Filtering: Ferrite beads and bypass capacitors

SAFETY AND RELIABILITY

- Watchdog circuits: Reset on software failures
- Redundancy: Backup systems for critical applications
- Fail-safe design: Known safe state on power loss
- Environmental protection: Temperature, vibration, moisture

TESTING AND VALIDATION

- Loop testing: Step response verification
- Stability margins: Gain and phase margin measurement
- Disturbance rejection: Load step testing
- Long-term stability: Extended operation testing