1 Polynomial Interpolation (Section 6.1)

Suppose we're given m+1 data points,

$$(x_i, y_i), \quad 0 \le i \le m,$$

and we want to seek a polynomial P of the lowest possible degree for which

$$P(x_i) = y_i, \quad 0 \le i \le m.$$

Such a polynomial P is said to **interpolate** the data.

(Example.) Suppose we have the following data points.

$$\begin{array}{c|ccccc} x & -5 & -3 & -1 \\ \hline y & 0 & -2 & 0 \\ \end{array}$$

Drawing the points and the associated curve,

schematically, we can represent the data points above with the polynomial

$$P(x) = \frac{1}{2} (x+3)^2 - 2.$$

We don't care about what the curve looks like beyond those points. The interpolation condition just ensures that the curve associated with the polynomial goes through the *given* points.

Remarks:

- If we were just given a single point, then the lowest-degree polynomial we can create is a constant polynomial, $P(x) = y_0$.
- If we had two points, then we can draw a line through the points and the lowest-degree polynomial we can create is a linear equation.

The theorem that governs this problem is shown below.

Theorem 1.1: Polynomial Interpolation

If x_0, x_1, \ldots, x_m are distinct real numbers, then for arbitrary values y_0, y_1, \ldots, y_m , there exists a unique polynomial P_m of degree at most m such that

$$P_m(x_i) = y_i \quad (0 \le i \le m)$$

Proof. We'll show both aspects of the theorem.

• Uniqueness: Suppose we have two interpolating polynomials $P_m(x_i) = y_i$ and $Q_m(x_i) = y_i$, both of which are degree m. Then, their difference, $P_m(x) - Q_m(x)$, also has at most degree m. This means that this difference polynomial has at most m zeros/roots. But, as both P_m and Q_m are interpolating polynomials, $P_m(x_i) - Q_m(x_i) = y_i - y_i = 0$ has m + 1 zeros. Thus, $P_m(x) - Q_m(x) = 0$ has zeros everywhere and thus $P_m(x) = Q_m(x)$.

• Existence: Suppose, for $k \ge 1$, $P_{k-1}(x)$ has degree k-1. In other words, $P_{k-1}(x_i) = y_i$ for $0 \le i \le k-1$. Suppose we want to construct the next higher-degree polynomial, degree k, such that $P_k(x_i) = y_i$ for $0 \le i \le k$. Then,

$$P_k(x) = P_{k-1}(x) + c(x - x_0)(x - x_1) \dots (x - x_{k-1}).$$

Then,

$$P_k(x_i) = P_{k-1}(x_i) + c \cdot 0 = P_{k-1}(x_i) = y_i, \quad (0 \le i \le k-1).$$

So, set $P_k(x_k) = y_k$ and then solve for c. More specifically,

$$P_k(x_k) = y_k = P_{k-1}(x_k) + c(x_k - x_0)(x_k - x_1)(x_k - x_2)\dots(x_k - x_{k-1}).$$

By solving for c, we have

$$c = \frac{y_k - P_{k-1}(x_k)}{(x_k - x_0)(x_k - x_1)(x_k - x_2)\dots(x_k - x_{k-1})}.$$

This concludes the proof.

1.1 Polynomial Representation

There are different ways we can represent these polynomials, although keep in mind that they all represent the same function.

1.1.1 Newton's Form

Newton's Form is

$$P_m(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_m(x - x_0)(x - x_1) \dots (x - x_{m-1})$$
(1)

Note that this form models m+1 data points $(0 \le i \le m)$. Notice, however, that we never include x_m in our final equation. The first few cases of the above equation are

$$P_0(x) = c_0$$

$$P_1(x) = c_0 + c_1(x - x_0)$$

$$P_2(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1)$$

(Example.) Suppose we have the polynomial $P_m(t)$, for $t \in \mathbb{R}$ (i.e., we're evaluating this polynomial with value t). We can write an algorithm similar to Horner's method for evaluating this polynomial. Then, we'll have the inputs x_i , c_i for $0 \le i \le m$, and $t \in \mathbb{R}$.

Algorithm 1 Finding the Polynomial

- 1: $p \leftarrow c_m$
- 2: for $k \leftarrow m-1$ to 0 step -1 do
- 3: $p \leftarrow (t x_k) \cdot p + c_k$
- 4: end for

To find the coefficients c_k , we have

$$c_k = \begin{cases} y_0 & k = 0\\ \frac{y_k - P_{k-1}(x_k)}{(x_k - x_0)(x_k - x_1)(x_k - x_2)\dots(x_k - x_{k-1})} & k \ge 1 \end{cases}$$
 (2)

To compute the coefficients, we can make use of the following algorithm. Given

• x_i $(0 \le i \le m)$

• y_i $(0 \le i \le m)$

this algorithm should output c_i for $0 \le i \le m$.

Algorithm 2 Computing c_i

```
1: c_0 \leftarrow y_0
 2: for k \leftarrow 1 to m do
         d \leftarrow (x_k - x_{k-1})
          p \leftarrow c_{k-1}
          for i \leftarrow k-2 to 0 step -1 do
 5:
               d \leftarrow d(x_k - x_i)
                                                                                                                                       ▶ Denominator
 6:
               p \leftarrow p(x_k - x_i) + c_i
                                                                                                                                             \triangleright P_{k-1}(x_k)
 7:
          end for
 8:
          c_k \leftarrow (y_k - p)/d
 9:
10: end for
```

(Example.) Suppose we have the data points

Newton's form for the polynomial looks like

$$P(x) = c_0 + c_1(x-5) + c_2(x-5)(x+7) + c_3(x-5)(x+7)(x+6).$$

Then, we can compute each of the c_i for $0 \le i \le m = 3$.

• i = 0: we know that

$$c_0 = y_0 = 1.$$

• i = 1: we have

$$c_1 = \frac{y_1 - P_0(x_1)}{(x_1 - x_0)} = \frac{-23 - 1}{(-7 - 5)} = 2.$$

• i = 2: we have

$$c_2 = \frac{y_2 - P_1(x_2)}{(x_2 - x_0)(x_2 - x_1)} = \frac{-54 - (c_0 + c_1(x_2 - x_0))}{(-6 - 5)(-6 - (-7))} = \frac{-54 - (1 + 2(-6 - 5))}{(-6 - 5)(-6 - (-7))} = 3.$$

• i = 3: by the same process as above, we find that $c_3 = 4$.