Certificação digital

Lucas Klüber Silvia T. Lopes

Assinatura e Certificado Digital

Assinatura Digital e Certificado Digital agregam valor de confiança e segurança em operações veiculadas em ambiente virtual.

Assinatura Digital trabalha com **criptografia assimétrica**

Criptografia de chaves públicas

Criptografia simétrica e assimétrica

- Criptografia Simétrica:
 - Mesopotâmia/Egito
 - Julio César Guerras da Gália
 - Alfabeto Criptografado: veni, vidi, vici == YHQL, YLGL, YLFL
 - Chave única

Criptografia simétrica e assimétrica

- Criptografia assimétrica:
 - o Anos 70 Whitfield Diffie, Martin Hellman e Ralph Merkle
 - Chave Pública e Chave Privada (Privativa)

Certificado Digital

Agregar valor de confiança às comunicações virtuais.

Documento eletrônico assinado por uma terceira parte confiável, que associa nome e atributos confiáveis de uma pessoa à uma chave pública.

Direto do túnel do tempo

x.500 e x.509 - Padrões de serviço de diretório e autenticação com hierarquia

1988

Signaturgesetz - Primeira Legislação de certificação digital implementada na Europa

1997

PGP - Programa de criptografia baseado em Web of trust

1991

ICP-Brasil - Infraestrutura nacional para certificação digital criada

2001

- O X.500 é um conjunto de padrões abordando serviços de diretório
- Desenvolvido pela ITU-T (Telecommunication Standardization Sector) em 1988 com parceria da ISO
- O X.500 definiu os protocolos:
 - DAP (Directory Access Protocol)
 - DSP (Directory System Protocol)
 - DISP (Directory Information Shadowing Protocol)
 - DOP (Directory Operational Bindings Management Protocol)
- Originalmente utilizavam o modelo de rede OSI, porém foram feitas adaptações do DAP para o TCP/IP (LDAP).

- X.509 é um padrão que define certificados de chave pública.
- Utilizado em protocolos de rede
 - o TLS/SSL
- Utilizado em assinaturas eletrônicas
- Define uma hierarquia baseada em autoridades certificadoras

- Certificado
 - o Versão
 - Número Serial (Único)
 - o ID do Algoritmo de assinatura
 - Nome do Emissor
 - Validade
 - Não Antes
 - Não Depois
 - Nome do proprietário
 - Informações da chave pública do proprietário
 - Algoritmo da Chave Pública
 - Chave Pública
 - o Identificador Único do emissor (opcional)
 - o Identificador Único do Proprietário (opcional)
 - Extensões (opcional, definem o propósito do certificado)
- Algoritmo de assinatura do certificado
- Assinatura do certificado

- 1. CSR (Certificate Signing Request) auto-assinada
 - Public key
 - Private key
- 2. A CSR contém a chave pública, DN (Distinguished name) e outras informações de identificação;
- 3. A CA (Autoridade Certificadora) então emite um certificado que vincula a chave pública com um DN ;
- 4. Como se baseia em hierarquia, o certificado raiz deve ser distribuído para que os certificados emitidos a partir dele sejam reconhecidos.
- 5. Navegadores vem com certificados das principais CA pré instalados.
- 6. Todo certificado deve conter o endereço de uma CRL (Certificate revocation List) da Autoridade Certificadora. Essa lista contém todos os certificados revogados.

PGP

- Pretty Good Privacy
- É uma forma de criptografia de comunicação e autenticação desenvolvida em 1991
- Diferente do padrão X.509, e baseado em uma Web of Trust
 - Certificados são assinados por outros certificados de entidades que confiam neste certificado.
 - Gradualmente cada certificado vai estar vinculado a diversos outros certificados que são considerados confiáveis, efetivamente criando uma "teia de confiança"
- Nas versões atuais do PGP foi adicionado suporte para a existência de Autoridades Certificadoras, tornando possível um funcionamento parecido com o do X.509

Secure Socket Layer

Protocolo HTTP com SSL:

Provê uma abstração de canal seguro de comunicação, ou *stream* seguro à interface HTML de maneira transparente.

- Autenticação de servidores através de certificados públicos (CA).
- sujeita às vulnerabilidades do protocolo TCP/IP.

- O OpenSSL é uma implementação open source dos protocolos TLS e SSL.
- Disponibiliza várias funções de criptografia e pode ser utilizado para gerar certificados de autenticação de serviços.
- Disponível para Linux, BSD, MAC e Windows.

Criar CSR

\$ openssl req -new -sha256 -nodes -newkey rsa:4096 -keyout <u>example.com</u>.key -out <u>example.com</u>.csr

Criar certificado autoassinado

\$ openssl req -x509 -sha256 -nodes -newkey rsa:4096 -keyout <u>example.com</u>.key -days 730 -out <u>example.com</u>.pem

Ver certificados e CSRs

\$ openssl x509 -in <u>example.com</u>.pem -noout -text

\$ openssl req -in example.com.csr -noout -text

Criar um certificado AC

```
#arquivo x509.ext define as extensões
[ ca ]
# X509 extensions for a ca
keyUsage = critical, cRLSign, keyCertSign
basicConstraints = CA:TRUE, pathlen:0
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always
[ server ]
# X509 extensions for a server
keyUsage
         = critical,digitalSignature,keyEncipherment
extendedKeyUsage
                      = serverAuth,clientAuth
                   = critical,CA:FALSE
basicConstraints
subjectKeyIdentifier
                    = hash
authorityKeyIdentifier = keyid,issuer:always
```

Criar um certificado AC

- # Criar a chave privada e o certificado Autoridade Certificadora
- \$ openssl req -new -sha256 -nodes -newkey rsa:4096 -keyout CA.key -out CA.csr
- \$ openssl x509 -req -sha256 -extfile x509.ext -extensions ca -in CA.csr -signkey CA.key -days 1095 -out CA.pem
- # Criar certificado de servidor/cliente e assinar pela AC
- \$ openssl req -new -sha256 -nodes -newkey rsa:4096 -keyout <u>www.example.com.key</u> -out <u>www.example.com.csr</u>
- \$ openssl x509 -req -sha256 -CA CA.pem -CAkey CA.key -days 730 -CAcreateserial -CAserial CA.srl -extfile x509.ext -extensions server -in www.example.com.csr -out www.example.com.csr -out www.example.com.csr -out www.example.com.csr -out www.example.com.pem -out <a href="https://www.example.com.

Brasil

- A Infraestrutura de chaves Públicas Brasileira (ICP-Brasil) foi criada em 2001 e é o sistema nacional de certificações digitais;
- Utiliza o padrão X.509
- A Autoridade Certificadora Raiz é o ITI Instituto de Tecnologia da Informação
- O ITI é responsável por credenciar e homologar as Autoridades Certificadoras que podem então emitir certificados para o contribuinte.

Uso

No Brasil, o certificado digital pode ser utilizado pelo contribuinte como um documento, CPF ou CNPJ eletrônicos, reconhecido pela receita federal.

Tipos de Certificados

Certificado A1:

Esse tipo de certificado digital é um arquivo (geralmente .pfx ou .p12) que pode ser instalado em qualquer computador.

Validade de 1 Ano.

Certificado A3:

É instalado em um token ou cartão que deve ser "espetado" na máquina para ser utilizado, por conta disso garante uma maior segurança.

Validade de 3 anos

Tipos de Certificados

Ambos podem ser utilizados tanto por pessoas físicas quanto jurídicas.

- O certificado de uma pessoa física é o e-CPF
- O certificado de uma pessoa jurídica é o e-CNPJ

e-CPF

Utilizado para:

- Declaração de imposto de renda
- Assinatura de documentos e email
- Acessar serviços online da secretaria da fazenda (Receita/PR, e-CAC)

e-CNPJ

Utilizado para:

- Emissão de documentos fiscais
- Transações bancárias
- Reconhecimento de firma
- Acessar serviços da SEFAZ
- Declaração de imposto de renda
- eSocial
- Assinatura de documentos

eNF-e

É um tipo de certificado para pessoa jurídica, mas que tem apenas a função de emitir documentos fiscais.

Enquanto o e-CNPJ é de propriedade do responsável legal da empresa, o eNF-e pode ser disponibilizado para uso dos funcionários.

Outros usos

• A partir desse ano é possível emitir a carteira de habilitação digital, processo facilitado para as pessoas que já possuem um certificado digital (podem fazer pelo próprio celular)

Outros usos

Outros usos

• e-Diploma: É um diploma completamente digital que pode ser utilizado da mesma forma que um diploma de papel. O documento é assinado digitalmente pelo proprietário e pelos responsáveis usando o certificado digital.

Referências

MENKE, Fabiano. Assinatura Digital, Certificados Digitais, Infra-estrutura de chaves públicas brasileiras e ICP alemã, 2003 - UFSC

POUW, Keesje Duarte; GEUS, Paulo Lício. **Desenvolvendo** aplicações seguras em ambiente HTML/HTTPS, 1999 - UNICAMP

Referências

Cryptoid

https://cryptoid.com.br/banco-de-noticias/26558-certificacao-digital/

https://cryptoid.com.br/certificacao-digital/diploma-na-parede-e-passado-entenda-as-vantagens-do-e-diploma/

FolhaZ

https://www.folhaz.com.br/noticias/certificado-digital/

Docusign

https://www.docusign.com.br/blog/assinatura-eletronica-x-assinatura-digital-voce-sabe-quais-as-diferencas/

Tecnoblog

https://tecnoblog.net/265343/cnh-digital-500-mil-motoristas/