BBM407 - FUZZY LOGIC FINAL PROJECT REPORT FEYZA ÖZKAN – 2200356815

Data Understanding:

This part was done in the dataUnderstindg.py file and the codes are the same with some parts of midterm project.

Features Correlating with sepsis_icd

According to table above , I have used bun,resp, heart_rate , creatinine , lactate, bicarbonate as an inputs and sepsis_icd as an output.

After deciding most correlating features, I have created new dataset by selecting instances from dataset "combined.csv", and I put those instances to "selected_data.csv" file. After this step, I have used "selected_data.csv" file in my project.

"selected_data.csv" file;

- shape is (860,7)
- 413 instances have sepsis icd = 0
- 447 instances have sepsis icd = 1

EVALUATION MODEL PERFORMANCE:

This part was done in ANN.py file. I have generated my ann model with the helps of [1] and [2].

The size of training data is 688.

CONFUSION MATRICES FOR 5 FOLDS

SCORES

1:	0.67	acc: 0.66	pre: 0.67	r: 0.68
2:	0.75	acc: 0.72	pre: 0.69	r: 0.83
3:	0.83	acc: 0.81	pre: 0.78	r: 0.88
4:	0.76	acc: 0.77	pre: 0.84	r: 0.7
5:	0.87	acc: 0.86	pre: 0.83	r: 0.92

and average values

p average: 0.7628193346396362
r average: 0.8053433208489389
f1 average: 0.780355868025041
acc average: 0.7662790697674419

FINAL EVALUATION:

Using ANFIS training methods (used 3 membership for each membership functions), I got new predicted values for sepsis_icd([4],[5]). I put actual and predicted y values into csv file ("y_actual_pred.csv"). Then in finalEval.py file, I have created new dataframe from csv file and I have created new column named predicted_ that consists of 0s and 1s (0s for predicted values less than 0.5 and 1s for predicted values greater or equal 0.5).

Finally , I have created confusion matrices for both training and testing data. I've evaluated the f1 ,p, r, acc scores.

f1: 0.9613259668508287 acc: 0.9593023255813954 p: 0.9482288828337875 r: 0.9747899159663865

f1: 0.9456521739130436 acc: 0.9418604651162791 p: 0.925531914893617 r: 0.966666666666666

As you see, anfis model has good performance on both training and testing data. Also, it's scores are better than my ann model.

REFERENCES

[1] https://www.analyticsvidhya.com/blog/2021/10/implementing-artificial-neural-networkclassification-in-python-from-scratch/

[2]https://github.com/bayysp/PredictiveModelANN

[3]https://www.datacamp.com/tutorial/understanding-logistic-regression-python

[4]https://www.youtube.com/watch?v=cBSDIHJ-RYM

[5]https://www.mathworks.com/help/fuzzy/neuro-adaptive-learning-and-anfis.html