Math 237

Module V

Section V.0 Section V.1

Section V

Section V.

Section V.

Module V: Vector Spaces

Module V

Section V.0 Section V.1 Section V.2

Section V.3

What is a vector space?

At the end of this module, students will be able to...

- **V1. Vector property verification.** ... show why an example satisfies a given vector space property, but does not satisfy another given property.
- **V2. Vector space identification.** ... list the eight defining properties of a vector space, infer which of these properties a given example satisfies, and thus determine if the example is a vector space.
- **V3. Linear combinations.** ... determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.
- **V4. Spanning sets.** ... determine if a set of Euclidean vectors spans \mathbb{R}^n .
- **V5.** Subspaces. ... determine if a subset of \mathbb{R}^n is a subspace or not.

Module V Section V.0

Section V.1 Section V.2 Section V.3

Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Add Euclidean vectors and multiply Euclidean vectors by scalars.
- Add complex numbers and multiply complex numbers by scalars.
- Add polynomials and multiply polynomials by scalars.
- Perform basic manipulations of augmented matrices and linear systems E1,E2,E3.

The following resources will help you prepare for this module.

- Adding and subtracting Euclidean vectors (Khan Acaemdy): http://bit.ly/2y8A0wa
- Linear combinations of Euclidean vectors (Khan Academy): http://bit.ly/2nK3wne
- Adding and subtracting complex numbers (Khan Academy): http://bit.ly/1PE3ZMQ
- Adding and subtracting polynomials (Khan Academy): http://bit.ly/2d5SLGZ

Math 237

Section V.0

Section V.1

Module V Section 0

Math 237

Module 1

Section V.0 Section V.1 Section V.2 Section V.3

Activity V.0.1 (\sim 20 min)

Consider each of the following vector properties. Label each property with \mathbb{R}^1 , \mathbb{R}^2 , and/or \mathbb{R}^3 if that property holds for Euclidean vectors/scalars $\mathbf{u}, \mathbf{v}, \mathbf{w}$ of that dimension.

Addition associativity.

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}.$$

2 Addition commutivity.

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
.

3 Addition identity.

There exists some **z** where $\mathbf{v} + \mathbf{z} = \mathbf{v}$.

4 Addition inverse.

There exists some $-\mathbf{v}$ where $\mathbf{v} + (-\mathbf{v}) = \mathbf{z}$.

5 Addition midpoint uniqueness.

There exists a unique \mathbf{m} where the distance from \mathbf{u} to \mathbf{m} equals the distance from \mathbf{m} to \mathbf{v} .

6 Scalar multiplication associativity. $a(b\mathbf{v}) = (ab)\mathbf{v}$.

- Scalar multiplication identity.1v = v.
- Scalar multiplication relativity.
 There exists some scalar c where either
 cv = w or cw = v.
- **9** Scalar distribution. a(u + v) = au + av.
- **(b)** Vector distribution. $(a + b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$.
- Orthogonality.

There exists a non-zero vector \mathbf{n} such that \mathbf{n} is orthogonal to both \mathbf{u} and \mathbf{v} .

Bidimensionality. $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ for some value of a, b.

Definition V.0.2

A **vector space** V is any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following properties. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ belong to V, and let a, b be scalar numbers.

- Addition associativity.
 u + (v + w) = (u + v) + w.
- Addition commutativity.
 u + v = v + u.
- Addition identity.
 There exists some z where
 v + z = v.
- Addition inverse.
 There exists some -v where
 v + (-v) = z.

- Scalar multiplication associativity.
 a(bv) = (ab)v.
- Scalar multiplication identity.
 1v = v.
- Scalar distribution. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- Vector distribution. (a + b)v = av + bv.

Any **Euclidean vector space** \mathbb{R}^n satisfies all eight requirements regardless of the value of n, but we will also study other types of vector spaces.

Math 237

Module V

Section V 0

Section V.1

Section V.2

Section V.4

Module V Section 1

Remark V.1.1

Last time, we defined a **vector space** V to be any collection of mathematical objects with associated addition and scalar multiplication operations that satisfy the following eight properties for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V, and all scalars (i.e. real numbers) a, b.

- Addition associativity.
 u + (v + w) = (u + v) + w.
- Addition commutativity.
 u + v = v + u.
- Addition identity.
 There exists some z where
 v + z = v.
- Addition inverse.
 There exists some -v where
 v + (-v) = z.

- Scalar multiplication associativity.
 a(bv) = (ab)v.
- Scalar multiplication identity.
 1v = v.
- Scalar distribution. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- Vector distribution. (a + b)v = av + bv.

Remark V.1.2

The following sets are examples of vector spaces, with the usual/natural operations for addition and scalar multiplication.

- \mathbb{R}^n : Euclidean vectors with n components.
- \mathbb{R}^{∞} : Sequences of real numbers (v_1, v_2, \dots) .
- $M_{m,n}$: Matrices of real numbers with m rows and n columns.
- C: Complex numbers.
- \mathcal{P}^n : Polynomials of degree n or less.
- \mathcal{P} : Polynomials of any degree.
- $C(\mathbb{R})$: Real-valued continuous functions.

Activity V.1.3 (~20 min)

Consider the set $V = \{(x, y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw)$$
 $c \odot (x,y) = (cx,y^c)$

Activity V.1.3 (\sim 20 min)

Consider the set $V = \{(x, y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw)$$
 $c \odot (x,y) = (cx,y^c)$

Part 1: Show that V satisfies the vector distributive property

$$(a+b)\odot \mathbf{v}=(a\odot \mathbf{v})\oplus (b\odot \mathbf{v})$$

by letting $\mathbf{v} = (x, y)$ and showing both sides simplify to the same expression.

Activity V.1.3 (\sim 20 min)

Consider the set $V = \{(x, y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw)$$
 $c \odot (x,y) = (cx,y^c)$

Part 1: Show that V satisfies the vector distributive property

$$(a+b)\odot \mathbf{v}=(a\odot \mathbf{v})\oplus (b\odot \mathbf{v})$$

by letting $\mathbf{v}=(x,y)$ and showing both sides simplify to the same expression. Part 2: Show that V contains an additive identity element by choosing $\mathbf{z}=(?,?)$ such that $\mathbf{v}\oplus\mathbf{z}=(x,y)\oplus(?,?)=\mathbf{v}$ for any $\mathbf{v}=(x,y)\in V$.

Remark V.1.4

It turns out $V = \{(x, y) | y = e^x\}$ with operations defined by

$$(x,y) \oplus (z,w) = (x+z,yw)$$
 $c \odot (x,y) = (cx,y^c)$

$$c\odot(x,y)=(cx,y^c)$$

satisifes all eight properties.

- Addition associativity. $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}.$
- Addition commutivity.
 - $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$.
- Addition identity. There exists some **z** where $\mathbf{v} \oplus \mathbf{z} = \mathbf{v}$.
- Addition inverse. There exists some $-\mathbf{v}$ where $v \oplus (-v) = z$.

Thus, V is a vector space.

 Scalar multiplication associativity.

$$a\odot(b\odot\mathbf{v})=(ab)\odot\mathbf{v}.$$

- Scalar multiplication identity. $1 \odot \mathbf{v} = \mathbf{v}$.
- Scalar distribution. $a \odot (\mathbf{u} \oplus \mathbf{v}) = (a \odot \mathbf{u}) \oplus (a \odot \mathbf{v}).$
- Vector distribution. $(a+b)\odot \mathbf{v}=(a\odot \mathbf{v})\oplus (b\odot \mathbf{v}).$

Activity V.1.5 (\sim 15 min)

Let $V = \{(x, y) | x, y \in \mathbb{R}\}$ have operations defined by

$$(x,y) \oplus (z,w) = (x+y+z+w, x^2+z^2)$$
 $c \odot (x,y) = (x^c, y+c-1).$

Activity V.1.5 (∼15 min)

Let $V = \{(x, y) | x, y \in \mathbb{R}\}$ have operations defined by

$$(x,y) \oplus (z,w) = (x+y+z+w, x^2+z^2)$$
 $c \odot (x,y) = (x^c, y+c-1).$

Part 1: Show that the scalar multiplication identity holds by simplifying $1 \odot (x, y)$ to (x, y).

Let $V = \{(x, y) | x, y \in \mathbb{R}\}$ have operations defined by

$$(x,y) \oplus (z,w) = (x+y+z+w, x^2+z^2)$$
 $c \odot (x,y) = (x^c, y+c-1).$

Part 1: Show that the scalar multiplication identity holds by simplifying $1 \odot (x, y)$ to (x, y).

Part 2: Show that the addition identity property fails by showing that $(0,-1) \oplus \mathbf{z} \neq (0,-1)$ no matter how $\mathbf{z} = (z_1,z_2)$ is chosen.

Activity V.1.5 (\sim 15 min)

Let $V = \{(x, y) | x, y \in \mathbb{R}\}$ have operations defined by

$$(x,y) \oplus (z,w) = (x+y+z+w, x^2+z^2)$$
 $c \odot (x,y) = (x^c, y+c-1).$

Part 1: Show that the scalar multiplication identity holds by simplifying $1 \odot (x, y)$ to (x, y).

Part 2: Show that the addition identity property fails by showing that

$$(0,-1) \oplus \mathbf{z} \neq (0,-1)$$
 no matter how $\mathbf{z} = (z_1,z_2)$ is chosen.

Part 3: Can V be a vector space?

For example, we can say $\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}$ is a linear combination of the vectors $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

since

$$\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Definition V.1.7

The **span** of a set of vectors is the collection of all linear combinations of that set:

$$\mathsf{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m\} = \{c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_m\mathbf{v}_m \,|\, c_i \in \mathbb{R}\}.$$

For example:

$$\operatorname{span}\left\{\begin{bmatrix}1\\-1\\2\end{bmatrix},\begin{bmatrix}1\\2\\1\end{bmatrix}\right\} = \left\{a\begin{bmatrix}1\\-1\\2\end{bmatrix} + b\begin{bmatrix}1\\2\\1\end{bmatrix} \middle| a, b \in \mathbb{R}\right\}$$

Activity V.1.8 (\sim 10 min) Consider span $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Activity V.1.8 (~10 min)

Consider span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$.

Part 1: Sketch $1\begin{bmatrix} 1\\2 \end{bmatrix}$, $3\begin{bmatrix} 1\\2 \end{bmatrix}$, $0\begin{bmatrix} 1\\2 \end{bmatrix}$, and $-2\begin{bmatrix} 1\\2 \end{bmatrix}$ in the xy plane.

Activity V.1.8 (~10 min)

Consider span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$.

Part 1: Sketch
$$1\begin{bmatrix}1\\2\end{bmatrix}$$
, $3\begin{bmatrix}1\\2\end{bmatrix}$, $0\begin{bmatrix}1\\2\end{bmatrix}$, and $-2\begin{bmatrix}1\\2\end{bmatrix}$ in the xy plane.

Part 2: Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\} = \left\{ a \begin{bmatrix} 1\\2 \end{bmatrix} \mid a \in \mathbb{R} \right\}$ in the xy plane.

Section V.0 Section V.1 Section V.2 Section V.3

Activity V.1.9 (\sim 10 min)

Consider span
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$
.

Part 1: Sketch the following linear combinations in the xy plane.

$$1\begin{bmatrix} 1\\2 \end{bmatrix} + 0\begin{bmatrix} -1\\1 \end{bmatrix} \qquad 0\begin{bmatrix} 1\\2 \end{bmatrix} + 1\begin{bmatrix} -1\\1 \end{bmatrix} \qquad 1\begin{bmatrix} 1\\2 \end{bmatrix} + 1\begin{bmatrix} -1\\1 \end{bmatrix}$$
$$-2\begin{bmatrix} 1\\2 \end{bmatrix} + 1\begin{bmatrix} -1\\1 \end{bmatrix} \qquad -1\begin{bmatrix} 1\\2 \end{bmatrix} + -2\begin{bmatrix} -1\\1 \end{bmatrix}$$

Activity V.1.9 (\sim 10 min)

Consider span
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$$
.

Part 1: Sketch the following linear combinations in the xy plane.

$$1\begin{bmatrix} 1\\2 \end{bmatrix} + 0\begin{bmatrix} -1\\1 \end{bmatrix} \qquad 0\begin{bmatrix} 1\\2 \end{bmatrix} + 1\begin{bmatrix} -1\\1 \end{bmatrix} \qquad 1\begin{bmatrix} 1\\2 \end{bmatrix} + 1\begin{bmatrix} -1\\1 \end{bmatrix}$$
$$-2\begin{bmatrix} 1\\2 \end{bmatrix} + 1\begin{bmatrix} -1\\1 \end{bmatrix} \qquad -1\begin{bmatrix} 1\\2 \end{bmatrix} + -2\begin{bmatrix} -1\\1 \end{bmatrix}$$

Part 2: Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$ in the xy plane.

Section V.1 Section V.2 Section V.3

Section V

Activity V.1.10 (\sim 5 min)

Sketch a representation of all the vectors belonging to span $\left\{ \begin{bmatrix} 6 \\ -4 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \end{bmatrix} \right\}$ in the xy plane.

Math 237

Module V

wiodule v

Section V.0

Section V.2

Section V.

Section V.4

Module V Section 2

Section V.2

Fact V.2.1

Recall these definitions from last class:

• A linear combination of a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is given by $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_m\mathbf{v}_m$ for any choice of scalar multiples c_1, c_2, \ldots, c_m .

For example, we can say
$$\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}$$
 is a linear combination of the vectors $\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and

$$\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
 since

$$\begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

 The span of a set of vectors is the collection of all linear combinations of that set:

$$span\{v_1, v_2, ..., v_m\} = \{c_1v_1 + c_2v_2 + ... + c_mv_m | c_i \in \mathbb{R}\}.$$

Section V.0 Section V.1 Section V.2 Section V.3 Activity V.2.2 (~15 min)

The vector
$$\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when there exists a

solution to the vector equation
$$x_1 \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
.

Activity V.2.2 (\sim 15 min)

The vector
$$\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when there exists a

solution to the vector equation
$$x_1 \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
.

Part 1: Reinterpret this vector equation as a system of linear equations.

Activity V.2.2 (~15 min)

The vector
$$\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when there exists a

solution to the vector equation
$$x_1 \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
.

- Part 1: Reinterpret this vector equation as a system of linear equations.
- Part 2: Find its solution set, using CoCalc.com to find RREF of its corresponding augmented matrix.

Activity V.2.2 (~15 min)

The vector
$$\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ exactly when there exists a

solution to the vector equation
$$x_1 \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
.

Part 1: Reinterpret this vector equation as a system of linear equations.

Part 2: Find its solution set, using CoCalc.com to find RREF of its corresponding augmented matrix.

Part 3: Given this solution set, does
$$\begin{bmatrix} -1 \\ -6 \\ 1 \end{bmatrix}$$
 belong to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$?

Math 237

Module V Section V.0

Section V.1 Section V.2 Section V.3

Fact V.2.3

A vector **b** belongs to span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ if and only if the linear system corresponding to $[\mathbf{v}_1 \dots \mathbf{v}_n | \mathbf{b}]$ is consistent.

Put another way, **b** belongs to span $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ exactly when RREF $[\mathbf{v}_1 \dots \mathbf{v}_n | \mathbf{b}]$ doesn't have a row $[0 \dots 0 | 1]$ representing the contradiction 0 = 1.

Activity V.2.4 (\sim 10 min)

Determine if
$$\begin{bmatrix} 3 \\ -2 \\ 1 \\ 5 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \\ 2 \end{bmatrix} \right\}$ by row-reducing an

appropriate matrix.

Activity V.2.5 (\sim 5 min)

Determine if
$$\begin{bmatrix} -1 \\ -9 \\ 0 \end{bmatrix}$$
 belongs to span $\left\{ \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \right\}$ by row-reducing an appropriate matrix.

Activity V.2.6 (\sim 10 min)

Does the third-degree polynomial $3y^3 - 2y^2 + y + 5$ in \mathcal{P}^3 belong to span $\{y^3 - 3y + 2, -y^3 - 3y^2 + 2y + 2\}$?

Activity V.2.6 (\sim 10 min)

Does the third-degree polynomial $3y^3 - 2y^2 + y + 5$ in \mathcal{P}^3 belong to span $\{y^3 - 3y + 2, -y^3 - 3y^2 + 2y + 2\}$?

Part 1: Reinterpret this question as an equivalent exercise involving Euclidean vectors in \mathbb{R}^4 . (Hint: What four numbers must you know to write any polynomial in \mathcal{P}^3 ?)

Activity V.2.6 (\sim 10 min)

Does the third-degree polynomial $3y^3 - 2y^2 + y + 5$ in \mathcal{P}^3 belong to span $\{y^3 - 3y + 2, -y^3 - 3y^2 + 2y + 2\}$?

Part 1: Reinterpret this question as an equivalent exercise involving Euclidean vectors in \mathbb{R}^4 . (Hint: What four numbers must you know to write any polynomial in \mathcal{P}^3 ?)

Part 2: Solve this equivalent exercise, and use its solution to answer the original question.

Module V Section V.0 Section V.1 Section V.2

Section V.3 Section V.4

Activity V.2.7 (~ 5 min)

Does the matrix $\begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$ belong to span $\left\{ \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}, \begin{bmatrix} -1 & -3 \\ 2 & 2 \end{bmatrix} \right\}$?

Module V Section V.0 Section V.1

Section V.2 Section V.3

Activity V.2.8 (\sim 5 min)

Does the complex number 2i belong to span $\{-3+i,6-2i\}$?

Section V.3

Module V Section 3

Module V Section V.0 Section V.1 Section V.2 Section V.3

Activity V.3.1 (\sim 5 min)

How many vectors are required to span \mathbb{R}^2 ? Sketch a drawing in the xy plane to support your answer.

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) Infinitely Many

Section V.0 Section V.1 Section V.2 Section V.3

Activity V.3.2 (\sim 5 min)

How many vectors are required to span \mathbb{R}^3 ?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) Infinitely Many

Section V.1 Section V.3

Fact V.3.3

At least n vectors are required to span \mathbb{R}^n .

Section V.2 Section V.3 Section V.4

Activity V.3.4 (~15 min)

Find a vector
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 in \mathbb{R}^3 that is not in span $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} \right\}$ by ensuring $\begin{bmatrix} 1 & -2 & a \\ -1 & 0 & b \\ 0 & 1 & c \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. (Why does this work?)

Fact V.3.5

The set $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ fails to span all of \mathbb{R}^n exactly when RREF $[\mathbf{v}_1 \dots \mathbf{v}_m]$ has a row of zeros:

$$\begin{bmatrix} 1 & -2 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & | & a \\ -1 & 0 & | & b \\ 0 & 1 & | & c \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$$
 for some choice of vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$

Activity V.3.6 (\sim 5 min)

Consider the set of vectors
$$S = \left\{ \begin{bmatrix} 2\\3\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-4\\3\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\3\\5\\7\\16 \end{bmatrix} \right\}$$
. Does

$$\mathbb{R}^4 = \operatorname{span} S$$
?

Activity V.3.7 (\sim 10 min)

Consider the set of third-degree polynomials

$$S = \left\{2x^3 + 3x^2 - 1, 2x^3 + 3, 3x^3 + 13x^2 + 7x + 16, -x^3 + 10x^2 + 7x + 14, 4x^3 + 3x^2\right\}$$

Does $\mathcal{P}^3 = \operatorname{span} S$?

Module V

Section V.0 Section V.1

Section V.2

Section V.3

Activity V.3.8 (\sim 10 min)

Consider the set of matrices

$$S = \left\{ \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \right\}$$

Does $M_{2,2} = \operatorname{span} S$?

Section V.2 Section V.3 Section V.4

Activity V.3.9 (~10 min)

Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^7$ be three vectors, and suppose \mathbf{w} is another vector with $\mathbf{w} \in \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. What can you conclude about span $\{\mathbf{w}, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

- (A) span $\{\mathbf{w}, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is larger than span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- (B) span $\{\mathbf{w}, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \text{span } \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$
- (C) span $\{\mathbf{w}, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is smaller than span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

Module V

VIOUUIE V

Section V.U

Section V.

Section V.

Section V.4

Module V Section 4

Section V.0

Section V.1

Section V.2

Section V.3

Section V.4

Definition V.4.1

A subset of a vector space is called a **subspace** if it is itself a vector space.

Section V.4

Remark V.4.2

To prove that a subset S is a subspace of a vectorspace V, you need only verify that the operations on V restrict to the subset S; that is you must check two things:

- The set is **closed under addition**: i.e. for any $x, y \in S$, x + y is also in S.
- The set is **closed under scalar multiplication**: i.e. for any $x \in S$ and scalar $c \in \mathbb{R}$, the product cx is also in S.

Activity V.4.3 (\sim 15 min)

Let
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + 2y + z = 0 \right\}.$$

Section V.1 Section V.2

Section V.3

Section V.4

Activity V.4.3 (\sim 15 min)

Let
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + 2y + z = 0 \right\}.$$

Part 1: Let
$$\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_3 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_3 \end{bmatrix}$. Show that if $\mathbf{v}, \mathbf{w} \in S$, then $\mathbf{v} + \mathbf{w} \in S$ as

well.

Module V

Section V.0 Section V.1 Section V.2 Section V.3 Section V.4

Activity V.4.3 (\sim 15 min)

Let
$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| x + 2y + z = 0 \right\}.$$

Part 1: Let
$$\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$. Show that if $\mathbf{v}, \mathbf{w} \in S$, then $\mathbf{v} + \mathbf{w} \in S$ as

well.

Part 2: Let
$$\mathbf{v} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$$
 and let $c \in \mathbb{R}$. Show that if $\mathbf{v} \in S$, then $c\mathbf{v} \in S$ as well.

Therefore S is a subspace of \mathbb{R}^3

Section V.0 Section V.1 Section V.2

Section V.3 Section V.4

Activity V.4.4 (\sim 10 min)

Prove that $P = \{ax^2 + b \mid a, b \in \mathbb{R}\}$ is a subspace of the vector space of all degree-two polynomials by showing it is closed under addition and scalar multiplication.

Section V.0

Section V.1

Section V.2

Section V.3

Section V.4

Activity V.4.5 (\sim 10 min)

Let P be the set of all positive real numbers. Determine if P is a subspace of $\mathbb R$ or not.

Remark V.4.6

Since 0 is a scalar and $0\mathbf{v} = \mathbf{0}$ for any vector \mathbf{v} , a set that is closed under scalar multiplication must contain the zero vector.

Therefore, if a set does **not** contain the zero vector, it is **not** a subspace.

Module V Section V.0 Section V.1 Section V.2 Section V.3

Section V.4

Activity V.4.7 (\sim 10 min)

Consider the subset of \mathbb{R}^2 where at least one coordinate of each vector is 0.

Determine if this is a subspace of \mathbb{R}^2 or not.

Activity V.4.8 (\sim 5 min)

Show that the set of 2×2 matrices

$$S = \left\{ \begin{bmatrix} a & b \\ -b & -a \end{bmatrix} \middle| a, b \text{ are real numbers} \right\}$$

is a subspace of $\mathbb{R}^{2\times 2}$.

Section V.1 Section V.2

Section V.3

Section V.4

Activity V.4.9 (\sim 10 min)

Let W be a subspace of a vector space V. How are span W and W related?

- (a) span W is bigger than W
- (b) span W is the same as W
- (c) span W is smaller than W

Section V.0

Section V.1

Section V.2

Section V.3

Section V.4

Fact V.4.10

If S is a subset of a vector space V, then span S is a subspace of V. In fact, it is the smallest subspace of V containing S.