Examenul național de bacalaureat 2023 Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{6}-2)(\sqrt{6}+2)=(\sqrt{6})^2-2^2=$	3p
	=6-4=2	2p
2.	$a^2 + 1 = 1 - a$, deci $a^2 + a = 0$	3 p
	a=-1 sau $a=0$	2p
3.	$x^2 + 4 = 6x - 4$, deci $x^2 - 6x + 8 = 0$	3 p
	x=2 sau $x=4$, care convin	2p
4.	Cifra zecilor se poate alege în 3 moduri	2p
	Pentru fiecare alegere a cifrei zecilor, cifra unităților se poate alege în câte 5 moduri, deci se	3р
	pot forma $3.5=15$ numere	· P
5.	$x_M = 3$ și $y_M = 0$, unde M este mijlocul segmentului AB	3 p
	OM = 3	2 p
6.	$tgC = \frac{AB}{AC} \Rightarrow AB = 6\sqrt{3}$	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 6\sqrt{3}}{2} = 18\sqrt{3}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} -1 & 2 \\ -6 & 7 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} -1 & 2 \\ -6 & 7 \end{vmatrix} = (-1) \cdot 7 - 2 \cdot (-6) =$	3 p
	$\begin{vmatrix} -6 & 7 \end{vmatrix} = -7 + 12 = 5$	2p
b)	$A(a) - I_2 = \begin{pmatrix} -a & a \\ -3a & 3a \end{pmatrix} = a \begin{pmatrix} -1 & 1 \\ -3 & 3 \end{pmatrix}, \text{ pentru orice număr real } a$	2p
	$A(1) = \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix} \Rightarrow a(A(1) - I_2) = a\begin{pmatrix} -1 & 1 \\ -3 & 3 \end{pmatrix}, \text{ deci } A(a) - I_2 = a(A(1) - I_2), \text{ pentru orice}$ $\text{număr real } a$	3 p
c)	$A(m) \cdot A(2m) = A(4m^2 + 3m)$, pentru orice număr întreg m	3p
	$A(4m^2 + 3m) = A(1)$ şi, cum m este număr întreg, obținem $m = -1$	2p
2.a)	$0 \circ 3 = 0 \cdot 3 - 0 - 3 + 4 =$	3 p
	=0-3+4=1	2p
b)	$x \circ x = x^2 - 2x + 4$, pentru orice număr real x	2p
	$x^2 - 2x + 4 = 3x \Leftrightarrow x^2 - 5x + 4 = 0$, de unde obtinem $x = 1$ sau $x = 4$	3 p
c)	$xa-x-a+4=x+a \Leftrightarrow xa-2x-2a+4=0$, pentru orice număr real x	2p
	x(a-2)-2a+4=0 și, cum egalitatea are loc pentru orice număr real x, obținem $a=2$	3 p

SUBIECTUL al III-lea (30 de puncte)

SUBII	SUBIECT OL al III-lea (50 de pu	
1.a)	$f'(x) = e^x (x^2 + 2x - 2) + e^x (2x + 2) =$	3p
	$= e^{x} (x^{2} + 2x - 2 + 2x + 2) = e^{x} (x^{2} + 4x), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x)}{f'(x)} = \lim_{x \to +\infty} \frac{e^x (x^2 + 2x - 2)}{e^x (x^2 + 4x)} = \lim_{x \to +\infty} \frac{x^2 + 2x - 2}{x^2 + 4x} =$	2p
	$= \lim_{x \to +\infty} \frac{x^2 \left(1 + \frac{2}{x} - \frac{2}{x^2}\right)}{x^2 \left(1 + \frac{4}{x}\right)} = \lim_{x \to +\infty} \frac{1 + \frac{2}{x} - \frac{2}{x^2}}{1 + \frac{4}{x}} = 1$	3р
c)	$f'(x) = 0 \Leftrightarrow x = -4 \text{ sau } x = 0$; pentru $x \in (-\infty, -4] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $(-\infty, -4]$ și, pentru $x \in [-4, 0] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[-4, 0]$	2p
	$f(x) \le f(-4)$, pentru orice $x \in (-\infty, 0]$ și $f(-4) = \frac{6}{e^4}$, deci $e^{x+4}(x^2+2x-2) \le 6$, pentru	3 p
	orice $x \in (-\infty, 0]$	
2.a)	$\int_{1}^{2} \left(f(x) - \frac{3}{x} \right) dx = \int_{1}^{2} x^{3} dx = \frac{x^{4}}{4} \Big _{1}^{2} =$	3p
	$=\frac{16}{4} - \frac{1}{4} = \frac{15}{4}$	2p
b)	G este o primitivă a funcției $g \Rightarrow G'(x) = g(x) = \frac{1}{\sqrt{x}} \left(x^3 + \frac{3}{x} \right), x \in (0, +\infty)$	2p
	$\frac{1}{\sqrt{x}}\left(x^3 + \frac{3}{x}\right) > 0$, pentru orice $x \in (0, +\infty)$, deci funcția G este crescătoare	3 p
c)	$\int_{1}^{\sqrt{3}} \frac{1}{f(x)} dx = \int_{1}^{\sqrt{3}} \frac{x}{x^4 + 3} dx = \frac{1}{2} \int_{1}^{\sqrt{3}} \frac{(x^2)'}{(x^2)^2 + 3} dx = \frac{1}{2\sqrt{3}} \operatorname{arctg} \frac{x^2}{\sqrt{3}} \bigg _{1}^{\sqrt{3}} =$	3p
	$=\frac{1}{2\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=\frac{\pi}{12\sqrt{3}}$	2p