

## Data Sheet

| Customer: |  |  |
|-----------|--|--|
|           |  |  |

Product: Multilayer Chip Ceramic Capacitor - C Series

Size: 0402/0603/0805/1206/1210/1808/1812/1825/2220/2255

Issued Date: 23-Apr.-2016

Edition: Ver. 4

### **Record of change**

| Date        | Ver. | Description                                              | Page   |
|-------------|------|----------------------------------------------------------|--------|
| 30-Oct2014  | 1    |                                                          |        |
| 05-Oct-2015 | 2    | Revised storage condition                                | 21     |
| 20-Feb2016  | 3    | Revised capacitance range and thickness Delete size 2211 | 4 ~ 13 |
| 23-Apr2016  | 4    | Add PCB land pattern recommendation                      | 27     |
|             |      |                                                          |        |

## HITANO ENTERPRISE CORP.

7F-7, No. 3, Wu Chuan 1<sup>st</sup> Road, New Taipei Industrial Park,

New Taipei City, TAIWAN, R.O.C.

Tel: +886 2 2299 1331 (Rep.)

Fax: +886 2 2298 2466, 2298 2969

| Andy Hsu    | Hwa Wu     | Hwa Wu      |                          |
|-------------|------------|-------------|--------------------------|
| 30-Oct2014  | 30-Oct2014 | 30-Oct2014  | recepted by (editionier) |
| Prepared by | Checked by | Approved by | Accepted by (customer)   |



| Introduction                    | 2     |
|---------------------------------|-------|
| Part Number Code                | 3     |
| Capacitance Range – NPO         | 4-7   |
| Capacitance Range – X7R/X5R     | 8-12  |
| Capacitance Range – Y5V         | 13    |
| Thickness Code & SPQ            | 14    |
| Specifications and Test Methods | 15-18 |
| Packing                         | 19-22 |
| Soldering & Cleaning            | 23    |
| Storage and Label               | 24    |
| PCB Design                      | 25-27 |



### 1. Features

Various temperature characteristics cover a wide range in small size. Mounted either by flow or reflow soldering methods Excellent dielectric strength due to uniform structure of dielectric layers

## 2. Applications

MLCC are becoming increasingly important key electronic applications, which are helpful in reducing the size of electronic circuitry. MLCC are used extensively in computers, communicative products, and the detail applications which including the followings:

**Discharge of Stored Energy** 

**Blockage of Direct Current** 

**Coupling of Circuit Components** 

By-Passing of an AC Signal

**Frequency Discrimination** 

**Transient Voltage and Arc Suppression** 

**Surae Protection** 

## 3. Construction of MLCC





### **Part Numbering**

| <u>0805</u> | <u>N</u> | <u>102</u> | <u>J</u> | <u>500</u> | <u>N</u> | <u> </u> | L |               |
|-------------|----------|------------|----------|------------|----------|----------|---|---------------|
|             | T        | 1          | 1        | 1          | 1        | <u>†</u> | Ť | EXTENDED CODE |

- 0805 = .08 X .05" 1206 = .12 X .06" = Omit if per spec.
- 1210 = .12 X .10" 1808 = .18 X .08 1812 = .18 X .12" 2220 = .22 X .20

### **DIELECTRIC**

SIZE CODE

N (COG) B (X7R)
Y (Y5V) X (X5R)

#### **CAPACITANCE**

Value in Pico farads: Two significant figures

Followed by no. of zero. 0R5=0.5pF 2R0=2pF 101=100pF.

### **CAPACITANCE TOLERANCE**

0402 = .04 X .02" 0603 = .06 X .03"

 $A = \pm 0.05pF \quad B = \pm 0.10pF \quad (EIA Code)$ 

 $C = \pm 0.25pF$   $D = \pm 0.50pF$  $F = \pm 1.0\%$   $G = \pm 2.0\%$ 

 $H = \pm 3.0\%$   $J = \pm 5.0\%$ 

 $K = \pm 10\%$   $M = \pm 20\%$ 

 $Z = -20\% \sim +80\%$  Tolerances may be restricted by dielectric type.

### **VOLTAGE**

VDC: Two significant figures followed by number of zeros

063 = 6.3 VDC 100 = 10 VDC 160 = 16 VDC 250 = 25 VDC

102 = 1 KVDC 202 = 2 KVDC 302 = 3 KVDC

#### **TERMINATION**

N = Nickel barrier with 100% Tin

### **PACKING CODE**

B = Bulk in Tray

05 = 500/Reel 1= 1K/Reel 2= 2K/Reel 3= 3K/Reel (for plastic tape only)

T= 4K/Reel U= 10K/ Reel V= 15K/ Reel W = 20K/Reel

### **Dimension: (UNIT mm)**

|   |   | 0402      | 0603      | 0805      | 1206      | 1210      | 1808      | 1812      | 1825      | 2220      | 2225      |
|---|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|   | L | 1.00±0.05 | 1.60±0.10 | 2.00±0.20 | 3.20±0.20 | 3.20±0.30 | 4.50±0.30 | 4.50±0.30 | 4.50±0.30 | 5.70±0.40 | 5.70±0.40 |
| , | w | 0.50±0.05 | 0.80±0.10 | 1.25±0.20 | 1.60±0.20 | 2.50±0.20 | 2.00±0.20 | 3.20±0.30 | 6.30±0.40 | 5.00±0.40 | 6.30±0.40 |





# 4. Capacitance range NPO 25V ~ 50V (Low Voltage)

| Size (uni              | it)      | 04    | 02     | 06    | 03     | 30   | 305        | 12    | 06     | 1210      | 1812      |
|------------------------|----------|-------|--------|-------|--------|------|------------|-------|--------|-----------|-----------|
| (L)Length              | mm       | 1.00± | 0.05   | 1.60: | ±0.10  | 2.00 | ±0.20      | 3.20  | ±0.20  | 3.20±0.30 | 4.50±0.30 |
| (W)Width               | mm       | 0.50± | 0.05   | 0.80: | ±0.10  | 1.25 | ±0.20      | 1.60= | ±0.20  | 2.50±0.20 | 3.20±0.30 |
| (T)Max.<br>Thickness   | mm       | 0.50± | 0.05   | 0.80: | ±0.10  | 1.25 | ±0.10      | 1.65  | ±0.20  | 2.50±0.30 | 3.00±0.30 |
| (t)Terminal            | mm       | 0.15± | 0.35   | 0.27  | ~0.60  | 0.30 | ~0.70      | 0.30- | -0.70  | 0.30~0.70 | 0.35~1.00 |
| Capacitano<br>W.V.(DC) | ce       | 25    | 50     | 25    | 50     | 25   | 50         | 25    | 50     | 50        | 50        |
| 0.47 - 0.82            | pF       |       | S      |       | Р      |      | Α          |       | Н      |           |           |
| 1 – 9.1                | pF       |       | S      |       | Р      |      | Α          |       | Н      |           |           |
| 10                     | pF       |       | S      |       | Р      |      | Α          |       | Н      |           |           |
| 12                     | pF       |       | S      |       | Р      |      | Α          |       | Н      |           |           |
| 15                     | pF       |       | S      |       | Р      |      | Α          |       | Н      |           |           |
| 18                     | pF       |       | S      |       | Р      |      | Α          |       | Н      |           |           |
| 22                     | pF       |       | S      |       | Р      |      | Α          |       | Н      |           |           |
| 27                     | pF       |       | S      |       | Р      |      | Α          |       | Н      |           |           |
| 33                     | pF       |       | S      |       | P      |      | Α          |       | Н      |           |           |
| 39                     | pF       |       | S      |       | P      |      | Α          |       | H      |           |           |
| 47                     | pF       |       | S      |       | P      |      | Α          |       | Н      |           |           |
| 56                     | pF       |       | S      |       | P      |      | A          |       | Н      |           |           |
| 68                     | pF<br>pF |       | S<br>S |       | P<br>P |      | Α          |       | H<br>H |           |           |
| 82<br>100              | pF<br>pF |       | S      |       | P      |      | A<br>A     |       | Н      |           |           |
| 120                    | рF       |       | S      |       | P      |      |            |       | Н      |           |           |
| 150                    | pF<br>pF |       | S      |       | P      |      | A          |       | Н      |           |           |
| 180                    | pF<br>pF |       | S      |       | P      |      | A          |       | Н      |           |           |
| 220                    | рF       |       | S      |       | P      |      | A          |       | Н      |           |           |
| 270                    | рF       |       | S      |       | P      |      | A          |       | Н      |           |           |
| 330                    | pF       | S     | S      |       | P      |      | A          |       | Н      |           |           |
| 390                    | pF       | S     | S      |       | P      |      | A/H        |       | Н      |           |           |
| 470                    | pF       | s     | S      |       | Р      |      | A/H        |       | Н      |           |           |
| 560                    | pF       | S     |        |       | Р      |      | A/H        |       | Н      |           |           |
| 680                    | pF       | S     |        |       | Р      |      | A/H        |       | Н      |           |           |
| 820                    | pF       | S     |        |       | P      |      | A/H        |       | Н      |           |           |
| 1.0                    | nF       | S     |        |       | Р      |      | A/H        |       | Н      |           |           |
| 1.2                    | nF       |       |        |       | Р      |      | A/H        |       | Н      |           |           |
| 1.5                    | nF       |       |        |       | P      |      | A/H        |       | Н      |           |           |
| 1.8                    | nF       |       |        |       | P      |      | A/H        |       | Н      |           |           |
| 2.2                    | nF       |       |        |       | P      |      | A/H        |       | H      |           |           |
| 2.7                    | nF       |       |        |       | P<br>P |      | A/X        |       | H<br>H |           |           |
| 3.3                    | nF<br>nF |       |        |       | P      | Х    | A/X<br>A/X |       | Н      |           |           |
| 4.7                    | nF       |       |        | P     | P      | X    | A/X<br>A/X |       | Н      |           |           |
| 5.6                    | nF       |       |        | P     | P      | X    | A/X<br>A/X |       | Н      |           |           |
| 6.8                    | nF       |       |        | P     | P      | X    | A/X        |       | H/C    |           |           |
| 8.2                    | nF       |       |        | P     | P      | X    | A/X        | Н     | H/X    |           |           |
| 10                     | nF       |       |        | P     | P      | A/X  | A/X        | Н     | Н      |           | Х         |
| 15                     | nF       |       |        |       |        | Н    | Н          | Н     | Н      | х         | Х         |
| 22                     | nF       |       |        |       |        | Х    | Х          | Н     | Н      | х         | Х         |
| 33                     | nF       |       |        |       |        | Х    | Х          | Н     | Н      | L         | Х         |
| 47                     | nF       |       |        |       |        |      |            | Х     | Х      | Z         | L         |
| 68                     | nF       |       |        |       |        |      |            | L     | L      | Z         | L         |
| 100                    | nF       |       |        |       |        |      |            | L     | L      | G         | Z         |
| 220                    | nF       |       |        |       |        |      |            |       |        |           | U         |



## Size and capacitance range NPO100V ~ 630V (Medium Voltage)

| Si     | ze   | 0402          |     | 0603     | }        |          |     | 0805     | 5        |          |          |          | 1206     | ;   |     |     | ,   | 1210  | )        |     |     |     | 1812  |     |     |
|--------|------|---------------|-----|----------|----------|----------|-----|----------|----------|----------|----------|----------|----------|-----|-----|-----|-----|-------|----------|-----|-----|-----|-------|-----|-----|
| (L)    | mm   | 1.00±0.0<br>5 | 1.6 | 60±0.    | 10       |          | 2.0 | 00±0.    | 20       |          |          | 3.2      | 20±0.    | 20  |     |     | 3.2 | 20±0. | .30      |     |     | 4.5 | 50±0. | 30  |     |
| (W)    | mm   | 0.50±0.0      | 0.8 | 30±0.    | 10       |          | 1.2 | 25±0.    | 20       |          |          | 1.6      | 60±0.    | 20  |     |     | 2.5 | 50±0. | 20       |     |     | 3.2 | 20±0. | 30  |     |
| (T)    | mm   | 0.50±0.0<br>5 | 0.8 | 30±0.    | 10       |          | 1.2 | 25±0.    | 10       |          |          | 1.6      | 65±0.    | 20  |     |     | 2.5 | 50±0. | .30      |     |     | 3.0 | 0±0.  | 30  |     |
| (t)    | mm   | 0.15±0.3      | 0.2 | 27~0.    | 60       |          | 0.3 | 30~0.    | 70       |          |          | 0.3      | 30~0.    | 70  |     |     | 0.3 | 30~0. | 70       |     |     | 0.3 | 35~1. | 00  |     |
| Cap.   | W.V. | 100           | 100 | 200      | 250      | 100      | 200 | 250      | 500      | 630      | 100      | 200      | 250      | 500 | 630 | 100 | 200 | 250   | 500      | 630 | 100 | 200 | 250   | 500 | 630 |
| 1 – 8. | 2 pF | s             | P   | Р        | Р        | Α        | A   | Α        | Α        | Α        | Н        | Н        | Н        | Н   | Η   |     |     |       |          |     |     |     |       |     |     |
| 10-6   | pF   | S             | P   | Р        | Р        | Α        | Α   | Α        | Α        | Α        | Н        | Н        | Н        | Н   | Н   | С   | С   | С     | С        | С   | X   | X   | X     | X   | X   |
| 82     | pF   | Ø             | P   | Р        | Р        | Α        | A   | Α        | Н        | Н        | Н        | Н        | Н        | Η   | H   | С   | C   | O     | С        | С   | X   | X   | X     | X   | X   |
| 100    | pF   | S             | P   | Р        | Р        | Α        | A   | Н        | Н        | Н        | Н        | Н        | Н        | Ŧ   | Η   | С   | C   | O     | С        | С   | X   | X   | X     | X   | X   |
| 120    | pF   | s             | Р   | Р        | Р        | Α        | Α   | Н        | Х        | Х        | н        | н        | Н        | Н   | Н   | С   | С   | С     | С        | С   | X   | X   | X     | X   | Х   |
| 150    | pF   | S             | Р   | Р        | Р        | Α        | Н   | Н        | Х        | Х        | Н        | Н        | Н        | Н   | Н   | С   | С   | С     | С        | С   | Х   | X   | X     | X   | Х   |
| 180    | pF   | S             | Р   | Р        | Р        | Α        | Н   | Х        | Х        | Х        | Н        | Н        | Н        | Н   | Н   | С   | С   | С     | С        | С   | Х   | X   | X     | X   | Х   |
| 220    | pF   | s             | Р   | Р        | Р        | Α        | Х   | Х        | Х        | Х        | Н        | Н        | Н        | Н   | Н   | С   | С   | C     | С        | С   | Х   | X   | X     | X   | X   |
| 270    | pF   |               | Р   | Р        | Р        | Α        | Х   | Х        | Х        | Х        | Н        | Н        | С        | С   | C   | С   | С   | C     | С        | С   | Х   | X   | X     | X   | X   |
| 330    | pF   |               | Р   | Р        | Р        | Α        | Х   | Х        | Х        | Х        | Н        | Н        | С        | С   | С   | С   | С   | С     | С        | С   | Х   | X   | X     | X   | X   |
| 390    | pF   |               | Р   | Р        | Р        | Н        | Х   | Х        | Х        | Х        | Н        | Н        | С        | С   | С   | С   | С   | С     | С        | С   | Х   | X   | X     | X   | X   |
| 470    | pF   |               | Р   | Р        | Р        | Н        | Х   | Х        | Х        | Х        | Н        | С        | С        | С   | C   | С   | С   | C     | С        | С   | Х   | X   | X     | X   | X   |
| 560    | pF   |               | Р   | Р        | Р        | Н        | Х   | Х        | Х        | Х        | Н        | С        | Х        | X   | X   | С   | С   | С     | С        | С   | Х   | X   | X     | X   | Х   |
| 680    | pF   |               | Р   | Р        | Р        | Н        | Х   | Х        | Х        | Х        | Н        | С        | Х        | X   | X   | С   | С   | С     | С        | С   | Х   | X   | X     | X   | Х   |
| 820    | pF   |               | Р   | Р        | Р        | Н        | Х   | Х        | Х        | Х        | Н        | С        | L        | L   | L   | С   | С   | С     | С        | С   | Х   | Х   | X     | X   | Х   |
| 1000   | pF   |               | Р   |          |          | Н        | Х   | Х        | Х        | Х        | Н        | С        | L        | ٦   | L   | С   | Χ   | X     | Х        | Х   | Х   | X   | X     | X   | Х   |
| 1200   | pF   |               | Р   |          |          | Н        | Х   | Х        | Х        | Х        | Н        | С        | L        | L   | L   | С   | Χ   | X     | Х        | Х   | Х   | X   | X     | X   | Х   |
| 1500   | pF   |               | Р   |          |          | Н        | Х   | Х        | Х        | Х        | Н        | Х        | L        | L   | L   | С   | Χ   | Х     | Х        | Х   | Х   | Х   | X     | Х   | Х   |
| 1800   | pF   |               |     |          |          | Н        | Х   | Х        | Х        | Х        | Н        | Х        | L        | L   | L   | С   | Χ   | Х     | Х        | Х   | Х   | Х   | X     | Х   | Х   |
| 2200   | pF   |               |     |          |          | Н        | Х   | Х        | Х        | Х        | Н        | Х        | L        | L   | L   | С   | Χ   | Х     | Х        | Х   | Х   | Х   | X     | Х   | Х   |
| 2700   | pF   |               |     |          |          | Х        |     |          |          |          | Н        | Х        | L        | L   | L   | С   | Χ   | Х     | Х        | Х   | Х   | Х   | X     | Х   | Х   |
| 3300   | pF   |               |     |          |          | Х        |     |          |          |          | Н        | Х        | L        | L   | L   | С   | Χ   | Х     | Х        | Х   | Х   | Х   | X     | Х   | Х   |
| 3900   | pF   |               |     |          |          | Х        |     |          |          |          | Н        | L        | L        | L   | L   | С   | Χ   | Х     | Х        | Х   | Х   | Х   | X     | Х   | Х   |
| 4700   | pF   |               |     |          |          | Х        |     |          |          |          | Н        | L        | L        | L   | L   | Х   | Χ   | Х     | Х        | Х   | Х   | Х   | X     | Х   | Х   |
| 5600   | pF   |               |     |          |          | Х        |     |          |          |          | Н        | L        | L        | L   | L   | Х   | Χ   | Х     | Х        | Х   | Х   | Х   | Х     | Х   | Х   |
| 6800   | pF   |               |     |          |          | Х        |     |          |          |          | С        | L        | L        |     |     | L   | L   | L     | L        | L   | Х   | Х   | Х     | Х   | Х   |
| 8200   | pF   |               |     |          |          |          |     |          |          |          | Х        | L        | L        |     |     | L   | L   | L     | L        | L   | Х   | Х   | Х     | Х   | Х   |
| 10     | nF   |               |     |          |          |          |     |          |          |          | Х        |          |          |     |     | L   | Z   | Z     | Z        | Z   | Х   | Х   | Х     | Х   | Х   |
| 12     | nF   |               |     |          |          |          |     |          |          |          | L        |          |          |     |     | L   | Z   | Z     | z        | Z   | Х   | L   | L     | L   | L   |
| 15     | nF   |               |     |          |          |          |     |          |          |          | L        |          |          |     |     | Z   | G   | G     | G        | G   | Х   | L   | L     | L   | L   |
| 18     | nF   |               |     |          |          |          |     |          |          |          | L        |          |          |     |     | G   | G   | G     |          |     | L   | Z   | Z     | Z   | Z   |
| 22     | nF   |               |     |          |          |          |     |          |          |          | L        |          |          |     |     | G   | G   | G     |          |     | L   | Z   | Z     | Z   | Z   |
| 27     | nF   |               |     |          |          |          |     |          |          |          |          |          |          |     |     |     |     |       |          |     | Z   | G   | G     | G   | G   |
| 33     | nF   |               |     |          |          |          |     |          |          |          |          |          |          |     |     | G   |     |       |          |     | Z   | G   | G     | G   | G   |
| 39     | nF   |               |     |          |          |          |     |          |          |          |          |          |          |     |     |     |     |       |          |     | G   | G   | G     |     |     |
| 47     | nF   |               |     |          |          |          |     |          |          |          |          |          |          |     |     |     |     |       |          |     | G   | G   | G     |     |     |
| 56     | nF   |               |     |          |          |          |     |          |          |          |          |          |          |     |     |     |     |       |          |     | G   |     |       |     |     |
| 68     | nF   |               |     |          |          |          |     |          |          |          |          |          |          |     |     |     |     |       |          |     | G   |     |       |     |     |
|        |      |               |     | <u> </u> | <u> </u> | <u> </u> |     | <u> </u> |     |     |     |     |       | <u> </u> |     |     |     |       |     |     |



# Size and capacitance range NPO100V ~ 630V (Medium Voltage)

| Size       |          |          |     | 1825     |     |     |     |     | 2220     |     |     |     | <u>,                                      </u> | 2225     |     |     |
|------------|----------|----------|-----|----------|-----|-----|-----|-----|----------|-----|-----|-----|------------------------------------------------|----------|-----|-----|
| (L)        | mm       |          |     | .50±0.3  | 0   |     |     |     | 5.70±0.4 | Λ   |     |     |                                                | 5.70±0.4 | 0   |     |
|            |          |          |     |          |     |     |     |     |          |     |     |     |                                                |          |     |     |
| (W)        | mm       |          |     | 3.30±0.4 |     |     |     |     | 5.00±0.4 |     |     |     |                                                | 3.30±0.4 |     |     |
| (T)        | mm       |          |     | 2.50±0.3 |     |     |     |     | 3.00±0.2 |     |     |     |                                                | 3.00±0.2 |     |     |
| (t)        | mm       |          |     | .35~1.0  |     |     |     | 1   | .35~1.0  |     |     |     | 1                                              | .35~1.0  |     |     |
| Cap.\\W    | .V       | 100      | 200 | 250      | 500 | 630 | 100 | 200 | 250      | 500 | 630 | 100 | 200                                            | 250      | 500 | 630 |
| 10         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 12         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 15         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 18         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 22         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 27         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 33         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 39         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 47         | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 56         | pF<br>–  | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 68         | pF       | L.       | L   | L        | L   | L   | L . | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 82         | pF       | L.       | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 100        | pF<br>–  | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 120        | pF       | <u>L</u> | L   | L        | L . | L . | L   | L   | L        | L   | L   | L   | L                                              | L        | L . | L   |
| 150        | pF       | <u> </u> | L   | L        | L   | L . | L   | L   | L        | L   | L   | L   | L                                              | L        | L . | L   |
| 180        | pF       | <u>L</u> | L   | L        | L . | L . | L   | L   | L        | L   | L   | L   | L                                              | L        | L . | L   |
| 220        | pF       | <u>L</u> | L   | L        | L . | L . | L   | L   | L        | L   | L   | L   | L                                              | L        | L . | L   |
| 270<br>330 | pF<br>pF | <u> </u> | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 390        | рF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 470        | pF<br>pF | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 560        | рF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 680        | рF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 820        | рF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 1000       | рF       |          | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 1200       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 1500       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 1800       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 2200       | pF       |          | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 2700       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 3300       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 3900       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 4700       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 5600       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 6800       | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 10000      | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 12000      | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 15000      | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 18000      | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 22000      | pF       | L        | L   | L        | L   | L   | L   | L   | L        | L   | L   | L   | L                                              | L        | L   | L   |
| 27000      | pF       | L        | L   | L        | Z   | Z   | L   | L   | L        | Z   | Z   | L   | L                                              | L        | L   | L   |
| 33000      | pF       | L        | L   | L        | Z   | Z   | L   | Z   | Z        | Z   | Z   | L   | L                                              | L        | L   | L   |
| 39000      | pF       | L        | Z   | Z        | G   | G   | L   | Z   | Z        | G   | G   | L   | Z                                              | Z        | Z   | Z   |
| 47000      | pF       | L        | Z   | Z        | G   | G   | L   | G   | G        | G   | G   | L   | Z                                              | Z        | Z   | Z   |
| 56000      | pF       | Z        | G   | G        | G   | G   | Z   | G   | G        | G   | G   | L   | G                                              | G        | G   | G   |
| 68000      | pF       | Z        | G   | G        | G   | G   | Z   | G   | G        |     |     | Z   | G                                              | G        | G   | G   |
| 82000      | pF       | G        | G   | G        |     |     | G   | G   | G        |     |     | Z   | G                                              | G        | G   | G   |
| 100000     | pF       | G        |     |          |     |     | G   |     |          |     |     | G   | G                                              | G        |     |     |



Size and capacitance range NPO1000V ~ 4000V (High Voltage)

| OIZ(     | e ai     | nd cap    | ac  | Ila  | HC  | e i    | all    | ge | IN       | PU    | 710      | UU | v ~ | 40    | UU    | V (I | HIG | n v   | /OIT   | ag | <b>e</b> ) |       |       |    |    |       | _     |                                                  |
|----------|----------|-----------|-----|------|-----|--------|--------|----|----------|-------|----------|----|-----|-------|-------|------|-----|-------|--------|----|------------|-------|-------|----|----|-------|-------|--------------------------------------------------|
| Size     |          | 0805      | 1   | 1200 | 6   | •      | 1210   | )  |          | 18    | 80       |    |     | 18    | 12    |      |     | 18    | 25     |    |            | 22    | 20    |    |    | 22    | 25    |                                                  |
| (L)      | mm       | 2.00±0.20 | 3.2 | 20±0 | .20 | 3.2    | 20±0.  | 30 | 4        | 4.50± | £0.30    | )  | 4   | 4.50± | ±0.30 | )    |     | 4.50± | £0.30  | )  |            | 5.70  | ±0.40 | )  | ;  | 5.70: | ±0.40 | )                                                |
| (W)      | mm       | 1.25±0.20 | 1.6 | 60±0 | .20 | 2.5    | 50±0.  | 20 | :        | 2.00± | £0.20    | )  | ;   | 3.20± | ±0.30 | )    | (   | 6.30± | £0.40  | )  |            | 5.00  | ±0.40 | )  |    | 6.30= | £0.40 | )                                                |
| (T)      | mm       | 1.25±0.10 | 1.6 | 65±0 | .20 | 2.5    | 50±0.  | 30 | :        | 2.00± | £0.20    | )  | ,   | 3.00± | ±0.30 | )    | :   | 2.50  | £0.30  | )  | ;          | 3.00: | ±0.20 | )  | ;  | 3.00= | £0.20 | )                                                |
| (t)      | mm       | 0.30~0.70 | 0.3 | 30~0 | .70 | 0.3    | 30~0.  | 70 | (        | 0.35- | -1.00    | )  | (   | 0.35- | -1.00 | )    | (   | 0.35- | -1.00  | )  | (          | 0.35  | ~1.00 | )  | (  | 0.35- | -1.00 | )                                                |
| Cap./ W  | .V.      | 1K        | 1K  | 2K   | 3K  | 1K     | 2K     | 3K | 1K       | 2K    | 3K       | 4K | 1K  | 2K    | 3K    | 4K   | 1K  | 2K    | 3K     | 4K | 1K         | 2K    | 3K    | 4K | 1K | 2K    | 3K    | 4K                                               |
| 1.5      | pF       | X         | Н   | Н    |     |        |        |    |          |       |          |    |     |       |       |      |     |       |        |    |            |       |       |    |    |       |       |                                                  |
| 1.8      | pF       | Х         | X   | Н    |     |        |        |    |          |       |          |    |     |       |       |      |     |       |        |    |            |       |       |    |    |       |       |                                                  |
| 2.2~8.2  | pF       | Х         | X   | Н    |     |        |        |    | Х        | Х     | X        | X  |     |       |       |      |     |       |        |    |            |       |       |    |    |       |       |                                                  |
| 10       | pF<br>-  | X         | Н   | Н    | L   | С      | С      | L  | X        | X     | X        | X  | X   | X     | X     | X    | Z   | Z     | Z      | Z  | Z          | Z     | Z     |    | Z  | Z     | Z     | Z                                                |
| 12       | pF       | X         | Н   | Н .: | L   | С      | С      | L  | X        | X     | X        | X  | X   | X     | X     | X    | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 15       | pF       | X         | Н   | Н    | L   | С      | С      | L  | X        | X     | X        | X  | X   | X     | X     | X    | z   | Z     | z      | Z  | z          | z     | Z     | z  | Z  | z     | z     | z                                                |
| 18<br>22 | pF<br>pF | X         | Н   | Н    | L   | С      | С      | L  | X        | X     | X        | L  | X   | X     | X     | X    | Z   | z     | Z      | Z  | Z          | Z     | z     | Z  | Z  | Z     | Z     | Z                                                |
| 27       | pF<br>pF | X         | Н   | Н    | L   | С      | С      | L  | X        | X     | X        | L  | X   | X     | X     | X    | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 33       | рF       | X         | Н   | С    | L   | С      | С      | L  | X        | Λ     | <u>^</u> | Z  | X   | X     | X     | X    | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 39       | pF       | X         | Н   | С    | Ē   | С      | С      | Ē  | X        | Х     | X        | z  | X   | Х     | Х     | Х    | z   | z     | z      | z  | z          | z     | z     | z  | z  | z     | z     | Z                                                |
| 47       | pF       | X         | С   | С    | L   | С      | С      | L  | X        | X     | X        |    | X   | X     | Х     | L    | z   | z     | Z      | Z  | Z          | z     | z     | z  | Z  | z     | z     | Z                                                |
| 56       | pF       | Х         | С   | Х    | L   | С      | Х      | L  | Х        | Х     | Х        |    | Х   | Х     | Х     | L    | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 68       | pF       | Х         | С   | Х    | L   | С      | Х      | L  | Х        | Х     | Х        |    | Х   | Х     | Х     | Z    | Z   | z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | z     | z     | Z                                                |
| 82       | pF       | Х         | Х   | Х    | L   | С      | Х      | L  | Х        | Х     | Х        |    | Х   | Х     | Х     | Z    | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 100      | pF       | Х         | Х   | Х    |     | Х      | Х      | L  | Х        | Х     | Z        |    | Х   | Х     | Х     |      | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 120      | pF       | Х         | Х   | L    |     | Х      | Х      | L  | Х        | Х     | Z        |    | Х   | Х     | Х     |      | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 150      | pF       | Х         | Х   | L    |     | Х      | L      | L  | Х        | Z     | Z        |    | X   | X     | Х     |      | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 180      | pF       | Х         | L   | L    |     | X      | L      | L  | X        | Z     | Z        |    | X   | X     | Z     |      | Z   | Z     | Z      | Z  | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 220      | pF       | Х         | L   | L    |     | L      | L      | L  | X        | Z     | Z        |    | X   | X     | Z     |      | Z   | Z     | Z      |    | Z          | Z     | Z     | Z  | Z  | Z     | Z     | Z                                                |
| 270      | pF       | Х         | L   | L    |     | L      | L      |    | Z        | Z     | Z        |    | Х   | Z     | Z     |      | Z   | Z     | Z      |    | Z          | Z     | Z     | G  | Z  | Z     | Z     | Z                                                |
| 330      | pF       | Х         | L   | L    |     | L      | L      |    | Z        | Z     | Z        |    | X   | Z     | Z     |      | Z   | Z     | Z      |    | Z          | Z     | G     | G  | Z  | Z     | Z     | G                                                |
| 390      | pF       | Х         | L   | L    |     | L      | L      |    | Z        | Z     | Z        |    | Х   | Z     | Z     |      | Z   | Z     | Z      |    | Z          | Z     | G     |    | Z  | Z     | Z     |                                                  |
| 470      | pF       |           | L   | L    |     | L      | L      |    | Z        | Z     | Z        |    | Z   | Z     | Z     |      | Z   | Z     | Z      |    | Z          | Z     | G     |    | Z  | Z     | Z     |                                                  |
| 560      | pF<br>-  |           | L   |      |     | L      | L      |    | <b>Z</b> | Z     | Z        |    | Z   | Z     | Z     |      |     | Z     | Z      |    | Z          | Z     | G     |    | Z  | Z     | Z     |                                                  |
| 680      | pF       |           | L   |      |     | L      | L      |    | Z        | Z     |          |    | Z   | Z     | Z     |      | Z   | Z     | G      |    | Z          | Z     | G     |    | Z  |       | Z     |                                                  |
| 820      | pF       |           | L   |      |     | L      | L<br>Z |    | z        | Z     |          |    | z   | z     | G     |      | z   | z     | G<br>G |    | z          | z     | G     |    | z  | G     | G     |                                                  |
| 1000     | pF<br>pF |           |     |      |     |        | Z      |    | Z        | Z     |          |    | Z   | Z     | ٦     |      | Z   | Z     | G      |    | G          | G     | G     |    | Z  | G     | G     | $\vdash$                                         |
| 1500     | pF<br>pF |           | L   |      |     | L<br>Z | G      |    | Z        | Z     |          |    | Z   | Z     |       |      | Z   | G     | G      |    | G          | G     | G     |    | Z  | G     | G     |                                                  |
| 1800     | pF       |           |     |      |     | G      | G      |    | Z        | Z     |          |    | Z   | Z     |       |      | Z   | G     | G      |    | G          | G     | G     |    | Z  | G     | G     | <del>                                     </del> |
| 2200     | pF       |           |     |      |     | G      | 9      |    | Z        | _     |          |    | Z   | Z     |       |      | Z   | G     | G      |    | G          | G     | G     |    | Z  | G     | G     |                                                  |
| 2700     | рF       |           |     |      |     | G      |        |    | Z        |       |          |    | Z   | G     |       |      | Z   | G     | G      |    | G          | G     | G     |    | Z  | G     | G     |                                                  |
| 3300     | pF       |           |     |      |     | G      |        |    | z        |       |          |    | z   | G     |       |      | z   | G     |        |    | G          | G     | -     |    | z  | G     | G     |                                                  |
| 3900     | pF       |           |     |      |     | G      |        |    | z        |       |          |    | G   | -     |       |      | G   | G     |        |    | G          | G     |       |    | Z  | G     | _     |                                                  |
| 4700     | pF       |           |     |      |     |        |        |    |          |       |          |    | G   |       |       |      | G   | G     |        |    | G          | G     |       |    | Z  | G     |       |                                                  |
| 5600     | pF       |           |     |      |     |        |        |    |          |       |          |    | G   |       |       |      | G   | G     |        |    | G          | G     |       |    | G  | G     |       |                                                  |
| 6800     | pF       |           |     |      |     |        |        |    |          |       |          |    |     |       |       |      | G   | G     |        |    | G          | G     |       |    | G  | G     |       |                                                  |
| 8200     | pF       |           |     |      |     |        |        |    |          |       |          |    |     |       |       |      | G   | G     |        |    | G          | G     |       |    | G  | G     |       |                                                  |
| 10000    | pF       |           |     |      |     |        |        |    |          |       |          |    |     |       |       |      | G   |       |        |    | G          |       |       |    | G  | G     |       |                                                  |
| 12000    | pF       |           |     |      |     |        |        |    |          |       |          |    |     |       |       |      | G   |       |        |    | G          |       |       |    | G  |       |       |                                                  |



# 5. Size and capacitance range X7R10V ~ 50V (Low Voltage)

| Siz          | e        |    | 04 | 02    |    |        | 06    | 03     |        |     | 08 | 05            |    |    | 12     | 06     |    |    | 1210  |        | 18    | 12       | 22    | 20       |
|--------------|----------|----|----|-------|----|--------|-------|--------|--------|-----|----|---------------|----|----|--------|--------|----|----|-------|--------|-------|----------|-------|----------|
| (L)          | mm       |    |    | ±0.05 |    |        | 1.60± |        |        |     |    | £0.20         |    |    |        | ±0.20  |    |    | 20±0. |        | 4.50± |          | 5.70± |          |
| (W)          | mm       |    |    | ±0.05 |    |        | 0.80± |        |        |     |    | <u>+</u> 0.20 |    |    |        | ±0.20  |    |    | 50±0. |        | 3.20± |          | 5.00± |          |
| (T)          | mm       |    |    | ±0.05 |    |        | 0.80± |        |        |     |    | ±0.20         |    |    |        | ±0.20  |    |    | 50±0. |        | 3.00± |          | 3.00± |          |
| (t)          | mm       |    |    | ~0.35 |    |        | 0.27~ |        |        |     |    | -0.70         |    |    |        | ~0.70  |    |    | 30~0. |        | 0.35~ |          | 0.35~ |          |
| Cap.\\       | 1        | 10 | 16 | 25    | 50 | 10     | 16    | 25     | 50     | 10  | 16 | 25            | 50 | 10 | 16     | 25     | 50 | 16 | 25    | 50     | 25    | 50       | 25    | 50       |
| 100          | pF       | .0 | .0 |       | S  | .0     | .0    |        | Р      | .0  |    |               | Н  | .0 | .0     | 20     | 00 | .0 |       | 00     | 20    | 00       |       |          |
| 120          | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        |    |    |       |        |       |          |       |          |
| 150          | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        |    |    |       |        |       |          |       |          |
| 180          | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        |    |    |       |        |       |          |       |          |
| 220<br>270   | pF<br>pF |    |    |       | S  |        |       |        | P<br>P |     |    |               | H  |    |        |        | H  |    |       |        |       |          |       |          |
| 330          | pF       |    |    |       | S  |        |       |        | P      |     |    |               | н  |    |        |        | н  |    |       |        |       |          |       |          |
| 390          | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 470          | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 560          | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 680<br>820   | pF<br>pF |    |    |       | S  |        |       |        | P<br>P |     |    |               | H  |    |        |        | H  |    |       |        |       |          |       |          |
| 1000         | рF       |    |    |       | S  |        |       |        | P      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 1200         | pF       |    |    |       | S  |        |       |        | P      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 1500         | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 1800         | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 2200         | pF<br>pF |    |    |       | S  |        |       |        | P<br>P |     |    |               | H  |    |        |        | H  |    |       |        |       |          |       |          |
| 2700<br>3300 | pF<br>pF |    |    |       | S  |        |       |        | P      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 3900         | pF       |    |    |       | S  |        |       |        | P      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 4700         | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 5600         | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 6800         | pF       |    |    |       | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 8200<br>10   | pF<br>nF |    |    | S     | S  |        |       |        | P<br>P |     |    |               | H  |    |        |        | H  |    |       |        |       |          |       |          |
| 12           | nF       |    |    | S     | _  |        |       |        | P      |     |    |               | н  |    |        |        | н  |    |       |        |       |          |       |          |
| 15           | nF       |    |    | S     |    |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 18           | nF       |    |    | S     |    |        |       |        | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 22           | nF       |    |    | S     | S  |        |       |        | Р      |     |    |               | Н  |    |        |        | H  |    |       |        |       |          |       |          |
| 27<br>33     | nF<br>nF |    |    | S     |    |        |       |        | P<br>P |     |    |               | H  |    |        |        | Н  |    |       |        |       |          |       |          |
| 39           | nF       |    |    | S     |    |        |       |        | P      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 47           | nF       |    | S  | S     | S  |        |       | Р      | P      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 56           | nF       |    | S  |       |    |        |       | Р      | Р      |     |    |               | Н  |    |        |        | Н  |    |       |        |       |          |       |          |
| 68           | nF       |    | S  |       |    |        |       | Р      | Р      |     |    |               | Н: |    |        |        | Н  |    |       |        |       |          |       | <u> </u> |
| 82<br>100    | nF<br>nF | S  | S  | S     | S  |        | Р     | P<br>P | P<br>P |     |    |               | H  |    |        |        | H  |    |       |        |       | Х        |       |          |
| 150          | nF<br>nF | 3  | 3  | 3     | 3  | Р      | P     | P      | Г      |     | Х  | Х             | Х  |    |        |        | Х  |    |       |        |       | X        |       |          |
| 220          | nF       | S  | S  |       |    | P      | P     | P      | Р      |     | X  | X             | X  |    |        |        | X  |    |       |        |       | X        |       |          |
| 330          | nF       |    |    |       |    | Р      | Р     | Р      | Р      |     | Χ  | Х             | Х  |    |        | Х      | X  |    |       |        |       | X        |       |          |
| 470          | nF       |    |    |       |    | Р      | Р     | Р      | Р      |     | Χ  | Χ             | Х  |    |        | Х      | L  |    |       |        |       | Χ        |       |          |
| 680          | nF       |    |    |       |    | Р      | Р     | _      | _      | · · | X  | X             | X  |    | X      | X      | L  |    |       |        |       | L/Z      |       | -        |
| 1.0          | uF<br>uF |    |    |       |    | P<br>P | Р     | Р      | Р      | X   | X  | X             | X  |    | X<br>L | X<br>L | L  |    |       | L<br>Z |       | L/Z<br>Z |       | Z        |
| 3.3          | uF       |    |    |       |    | 1      |       |        |        | ^   | ^  | ^             | ^  |    | _      | -      | _  |    |       | G      |       | G        |       | Z        |
| 4.7          | uF       |    |    |       |    |        |       |        |        | Х   | Х  | Х             |    |    | L      | L      | L  |    | Z     | G      | Z     | G        |       | Z        |
| 10           | uF       |    |    |       |    |        |       |        |        | Χ   | *X |               |    | L  | L      | L      |    | Z  | Z/G   | G      | Z     | Z/G      | Z     | G        |
| 22           | uF       |    |    |       |    |        |       |        |        |     |    |               |    | I  |        |        |    | G  | G     |        | Z/G   | -        | G     |          |



# Size and capacitance range X7R100V ~ 630V (Medium Voltage)

| Siz  | Δ.       |        | 0603   |        |     | 08    | 05  |     |     |     | 1206   |        |        |     |     | 1210  |        |        |     |        | 1812   |          |          |
|------|----------|--------|--------|--------|-----|-------|-----|-----|-----|-----|--------|--------|--------|-----|-----|-------|--------|--------|-----|--------|--------|----------|----------|
| (L)  | mm       |        | 60±0.  |        |     | 2.00± |     |     |     | 3   | 20±0.: |        |        |     |     | 20±0. |        |        |     |        | 50±0.: |          |          |
| (W)  | mm       |        | 80±0.  |        |     | 1.25  |     |     |     |     | 60±0.: |        |        |     |     | 50±0. |        |        |     |        | 20±0.: |          |          |
| (T)  | mm       |        | 80±0.  |        |     | 1.25  |     |     |     |     | 65±0   |        |        |     |     | 50±0  |        |        |     |        | 50±0   |          |          |
| (t)  | mm       |        | 27~0.  |        |     | 0.30- |     |     |     |     | 30~0.  |        |        |     |     | 30~0. |        |        |     |        | 35~1.  |          |          |
| (c)  | 1        | 100    | 200    | 250    | 100 | 200   | 250 | 500 | 100 | 200 | 250    | 500    | 630    | 100 | 200 | 250   | 500    | 630    | 100 | 200    | 250    | 500      | 630      |
|      |          |        |        |        |     |       |     | 630 |     |     |        | 300    | 030    | 100 | 200 | 250   | 300    | 030    | 100 | 200    | 250    | 300      | 030      |
| 100  | pF       | Р      | Р      | Р      | н   | н     | н   | н   | н   | Н   | н      |        |        |     |     |       |        |        |     |        |        |          |          |
| 150  | pF<br>pF | Р      | P<br>P | P<br>P | Н   | Н     | Н   | Н   | Н   | Н   | Н      | Х      | Х      | С   | С   | С     | Х      | Х      |     |        |        |          |          |
| 330  | pF       | P<br>P | P      | P      | Н   |       | Н   | Н   | Н   |     | Н      | ^<br>X | X      | С   | С   |       | X      |        | Х   | Х      | Х      | Х        | Х        |
| 470  | рF       | P      | P      | P      | Н   | Н     | Н   | Н   | Н   | Н   | Н      | ^<br>X | X      | С   | С   | С     | X      | X      | X   | ^<br>Х | ^<br>X | X        | X        |
| 560  | рF       | P      | P      | P      | Н   | Н     | Н   | Н   | Н   | Н   | Н      | ^<br>X | ^<br>X | С   | С   | С     | ^<br>X | ^<br>Х | X   | ^<br>X | ^<br>X | <u>^</u> | <u>^</u> |
| 680  | рF       | P      | P      | P      | Н   | "     | н   | Н   | н   | Н   | Н      | X      | X      | С   | С   | С     | ^<br>X | X      | X   | X      | X      | X        | X        |
| 1000 | рF       | P      | P      | P      | Н   | Н     | Н   | Н   | Н   | Н   | Н      | X      | X      | С   | С   | С     | X      | X      | X   | ^<br>X | ^<br>X | <u>^</u> | X        |
| 1500 | pF       | P      | P      | P      | н   | н     | н   | н   | н   | н   | н      | X      | X      | С   | С   | С     | X      | X      | X   | X      | X      | X        | X        |
| 2200 | pF       | P      | P      | P      | Н   | Н     | Н   | Н   | Н   | Н   | Н      | X      | X      | С   | С   | С     | X      | X      | X   | Х      | Х      | X        | X        |
| 3300 | pF       | P      | P      | P      | Н   | Н     | Н   | Н   | Н   | Н   | Н      | Х      | X      | С   | С   | С     | X      | X      | X   | Х      | Х      | X        | X        |
| 4700 | pF       | P      | P      | P      | Н   | Н     | Н   | Х   | Н   | Н   | Н      | Х      | X      | С   | С   | С     | X      | X      | X   | Х      | Х      | X        | X        |
| 5600 | pF       | Р      | Р      | Р      | Н   | Н     | Н   | Х   | Н   | Н   | Н      | Х      | Х      | С   | С   | С     | Х      | Х      | X   | Х      | Х      | X        | X        |
| 6800 | pF       | Р      | Р      | Р      | Н   | Н     | Н   | Х   | Н   | Н   | Н      | Х      | Х      | С   | С   | С     | Х      | Х      | Х   | Х      | Х      | Х        | Х        |
| 10   | nF       | Р      | Р      | Р      | Н   | Н     | Н   | Х   | Н   | Н   | Н      | Х      | Х      | С   | С   | С     | Х      | Х      | Х   | Х      | Х      | Х        | Х        |
| 15   | nF       | Р      | Р      | Р      | Н   | Н     | Н   | Х   | Н   | Х   | Х      | Х      | Х      | С   | С   | С     | Х      | Х      | Х   | Х      | Х      | Х        | Х        |
| 22   | nF       | Р      |        |        | Н   | Н     | Н   | Х   | Н   | Х   | Х      | L      | L      | С   | С   | С     | X      | Х      | Х   | Х      | Х      | Х        | Х        |
| 33   | nF       | Р      |        |        | Х   | Х     | Х   |     | Х   | L   | L      | L      | L      | С   | С   | С     | L      | L      | Х   | Х      | Х      | Х        | Х        |
| 47   | nF       | Р      |        |        | Х   | Х     | Х   |     | Х   | L   | L      | L      | L      | С   | Х   | Х     | L      | L      | Х   | Х      | Х      | Х        | X        |
| 56   | nF       | Р      |        |        | Х   | Х     | X   |     | X   | L   | L      | L      | L      | С   | Х   | X     | L      | L      | X   | Х      | Х      | L        | L        |
| 68   | nF       | Р      |        |        | Х   | Х     | Х   |     | Х   | L   | L      |        |        | С   | L   | L     | L/Z    | L/Z    | Х   | Х      | Х      | L        | L        |
| 100  | nF       | Р      |        |        | Х   | Х     |     |     | Х   | L   | L      |        |        | С   | L   | L     | G      | G      | L   | Х      | Х      | L        | L        |
| 150  | nF       |        |        |        | Х   |       |     |     | L   |     |        |        |        | Х   | G   | G     | G      | G      | L   | L      | L      | G        | G        |
| 220  | nF       |        |        |        | Х   |       |     |     | L   |     |        |        |        | Х   | G   | G     |        |        | L   | L      | L      | G        | G        |
| 330  | nF       |        |        |        |     |       |     |     | L   |     |        |        |        | L   | G   | G     |        |        | L   | L      | Z      | G        | G        |
| 470  | nF       |        |        |        |     |       |     |     | لــ |     |        |        |        | L   | G   | G     |        |        | لــ | L      | Z      | G        |          |
| 680  | nF       |        |        |        |     |       |     |     | L   |     |        |        |        | Z   | G   | G     |        |        | Z   | G      | G      |          |          |
| 1.0  | uF       |        |        |        |     |       |     |     | L   |     |        |        |        | Z   |     |       |        |        | Z   | G      | G      |          |          |
| 1.5  | uF       |        |        |        |     |       |     |     | L   |     |        |        |        | G   |     |       |        |        | Z   |        |        |          |          |
| 2.2  | uF       |        |        |        |     |       |     |     | L   |     |        |        |        | G   |     |       |        |        | G   |        |        |          |          |
| 3.3  | uF       |        |        |        |     |       |     |     |     |     |        |        |        |     |     |       |        |        | G   |        |        |          |          |



# Size and capacitance range X7R100V ~ 630V (Medium Voltage)

| Si    | ze   |     |     | 1825    |     |     |     |     | 2220    |     |     |     |     | 2225      |     |     |
|-------|------|-----|-----|---------|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----------|-----|-----|
| (L)   | mm   |     | 4   | .50±0.3 | 0   |     |     | 5   | .70±0.4 | .0  |     |     |     | 5.70±0.40 | )   |     |
| (W)   | mm   |     | 6   | .30±0.4 | 0   |     |     | 5   | .00±0.4 | -0  |     |     |     | 6.30±0.40 | )   |     |
| (T)   | mm   |     | 2   | .50±0.3 | 0   |     |     | 3   | .00±0.2 | :0  |     |     | ;   | 3.00±0.20 | )   |     |
| (t)   | mm   |     | 0   | .35~1.0 | 0   |     |     | 0   | .35~1.0 | 0   |     |     | (   | 0.35~1.00 | )   |     |
| Cap.\ | \W.V | 100 | 200 | 250     | 500 | 630 | 100 | 200 | 250     | 500 | 630 | 100 | 200 | 250       | 500 | 630 |
| 470   | pF   |     |     |         |     |     |     |     |         |     |     |     |     |           |     |     |
| 680   | pF   |     |     |         |     |     |     |     |         |     |     |     |     |           |     |     |
| 1000  | pF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 1500  | pF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 2200  | pF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 3300  | pF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 4700  | pF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 6800  | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 10    | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 15    | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 22    | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 33    | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 47    | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 68    | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 100   | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 150   | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 220   | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 330   | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | Z   | Z   |
| 470   | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | G   | G   |
| 680   | nF   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z       | Z   | Z   | Z   | Z   | Z         | G   | G   |
| 1.0   | uF   | Z   | Z   | Z       |     |     | Z   | Z   | Z       |     |     | Z   | Z   | Z         | G   | G   |
| 2.2   | uF   | Z   | G   | G       |     |     | Z   | G   | G       |     |     | Z   | G   | G         |     |     |
| 3.3   | uF   | Z   |     |         |     |     | Z   |     |         |     |     | Z   |     |           |     |     |
| 4.7   | uF   | G   |     |         |     |     | G   |     |         |     |     | G   |     |           |     |     |
| 6.8   | uF   |     |     |         |     |     | U   |     |         |     |     | G   |     |           |     |     |
| 10    | uF   |     |     |         |     |     | U   |     |         |     |     | G   |     |           |     |     |



# Size and capacitance range X7R1000V ~ 4000V (High Voltage)

| Size    | 9        | 0805      | 12    | 06            | 12     | 10            |     | 1808   |    |     | 18    | 12    |    |    | 18    | 25    |    |    | 22    | 20    |    |    | 22    | 25              |    |
|---------|----------|-----------|-------|---------------|--------|---------------|-----|--------|----|-----|-------|-------|----|----|-------|-------|----|----|-------|-------|----|----|-------|-----------------|----|
| (L)     | m        | 2.00±0.20 | 3.20± | <u>⊧</u> 0.20 | 3.20±  | <u>+</u> 0.30 | 4.  | 50±0.  | 30 | 4   | 1.50± | ±0.30 | )  | 4  | 4.50: | ±0.30 | )  | 5  | 5.70: | ±0.40 | )  | :  | 5.70: | ±0.40           | )  |
| (W)     | m        | 1.25±0.20 | 1.60± | €0.20         | 2.50±  | <u>+</u> 0.20 | 2.0 | 00±0.2 | 20 | 3   | 3.20± | 0.20  | )  | 6  | 6.30  | £0.40 | )  | 5  | 5.00: | ±0.40 | )  | (  | 6.30: | ±0.40           | )  |
| (T)     | m        | 1.25±0.20 | 1.65± | €0.20         | 2.50±  | <u>+</u> 0.20 | 2.0 | 00±0.2 | 20 | 3   | 3.00± | 0.20  | )  | 2  | 2.50: | £0.30 | )  | 3  | 3.00: | ±0.20 | )  | ;  | 3.00: | ±0.20           | )  |
| (t)     | m        | 0.30~0.70 | 0.30~ | -0.70         | 0.30~  | -0.70         | 0.3 | 35~1.0 | 00 | (   | ).35~ | -1.00 | )  | (  | 0.35  | -1.00 | )  | (  | 0.35  | -1.00 | )  | (  | 0.35  | ~1.00           | )  |
| Cap.\\V | V.V.     | 1K        | 1K    | 2K            | 1K     | 2K            | 1K  | 2K     | 3K | 1K  | 2K    | 3K    | 4K | 1K | 2K    | 3K    | 4K | 1K | 2K    | 3K    | 4K | 1K | 2K    | 3K              | 4K |
| 100     | pF       | Н         | Х     | Х             |        |               |     |        |    |     |       |       |    |    |       |       |    |    |       |       |    |    |       |                 |    |
| 120     | pF       | Н         | X     | X             |        |               |     |        |    |     |       |       |    |    |       |       |    |    |       |       |    |    |       |                 |    |
| 150     | pF       | Н         | Х     | Х             |        |               | Х   | X      | Х  |     |       |       |    |    |       |       |    |    |       |       |    |    |       |                 |    |
| 180     | pF       | Н         | X     | X             |        |               | X   | X      | X  |     |       |       |    |    |       |       |    |    |       |       |    |    |       |                 |    |
| 220     | pF       | Н         | X     | X             |        |               | X   | X      | X  |     |       |       |    |    |       |       |    |    |       |       |    |    |       |                 |    |
| 270     | pF       | Н         | X     | X             | X      | L             | X   | X      | X  | X   | X     | L     | Z  |    |       |       | Z  |    |       |       | Z  |    |       |                 | Z  |
| 330     | pF       | Н         | Х     | X             | Х      | L             | X   | X      | Z  | X   | X     | L     | Z  |    |       |       | Z  |    |       |       | Z  |    |       |                 | Z  |
| 390     | pF       | Н         | X     | X             | X      | L             | X   | X      | Z  | X   | Χ     | L     | Z  |    |       |       | Z  |    |       |       | Z  |    |       |                 | Z  |
| 470     | pF       | Н         | Х     | Х             | Х      | L             | X   | Х      | Z  | X   | X     | L     | Z  |    |       |       | Z  |    |       |       | Z  |    |       |                 | Z  |
| 560     | pF       | Н         | X     | X             | X      | L             | X   | X      | Z  | X   | Χ     | L     | Z  |    |       |       | Z  |    |       |       | Z  |    |       |                 | Z  |
| 680     | pF       | Н         | Х     | Х             | Х      | L             | X   | Х      | Z  | X   | X     | Z     | Z  |    |       |       | Z  |    |       |       | Z  |    |       |                 | Z  |
| 820     | pF       | Н         | Х     | X             | Х      | L             | X   | X      | Z  | X   | X     | Z     | Z  |    |       |       | Z  |    |       |       | Z  |    |       |                 | Z  |
| 1000    | pF       | Н         | X     | X/L           | X      | L             | X   | X      | Z  | X   | X     | Z     | Z  | Z  | Z     | Z     | Z  | Z  | Z     | Z     | Z  | Z  | Z     | Z               | Z  |
| 1200    | pF       | Н         | X     | L             | X      | Z             | X   | Z      | Z  | X   | X     | Z     | G  | Z  | Z     | Z     | G  | Z  | Z     | Z     | G  | Z  | Z     | Z               | G  |
| 1500    | pF       | Х         | X     | L             | X      | Z             | X   | Z      | Z  | X   | X     | Z     | G  | Z  | Z     | Z     | G  | Z  | Z     | Z     | G  | Z  | Z     | Z               | G  |
| 1800    | pF       | Х         | X     | L             | X      | Z             | X   | Z      | Z  | X   | L     | G     | G  | Z  | Z     | Z     | G  | Z  | Z     | Z     | G  | Z  | Z     | Z               | G  |
| 2200    | pF       | Х         | X     | L             | X      | Z             | X   | Z      | Z  | X   | L     | G     |    | Z  | Z     | Z     |    | Z  | Z     | Z     |    | Z  | Z     | Z               |    |
| 2700    | pF       | Х         | X     | L             | X      | G             | X   | Z      |    | X   | L     | G     |    | Z  | Z     | Z     |    | Z  | Z     | Z     |    | Z  | Z     | Z               |    |
| 3300    | pF       | Х         | X     | L             | X      | G             | X   | Z      |    | X   | Z     | G     |    | Z  | Z     | Z     |    | Z  | Z     | Z     |    | Z  | Z     | Z               |    |
| 3900    | pF       | Х         | Х     |               | L      | G             | X   | Z      |    | X   | Z     | G     |    | Z  | Z     | Z     |    | Z  | Z     | Z     |    | Z  | Z     | Z               |    |
| 4700    | pF       | Х         | X     |               | L      | G             | X   | Z      |    | X   | Z     | G     |    | Z  | Z     | Z     |    | Z  | Z     | Z     |    | Z  | Z     | Z               |    |
| 5600    | pF       | Х         | X     |               | L      | G             | Z   | Z      |    | X   | G     |       |    | Z  | Z     | G     |    | Z  | Z     | Z     |    | Z  | Z     | G               |    |
| 6800    | pF       | Х         | X     |               | L      | G             | Z   | Z      |    | X   | G     |       |    | Z  | Z     | G     |    | Z  | Z     | G     |    | Z  | Z     | G               |    |
| 8200    | pF       | Х         | Х     |               | L      | G             | Z   |        |    | X   | G     |       |    | Z  | Z     | G     |    | Z  | G     | G     |    | Z  | Z     | G               |    |
| 10      | nF       |           | Х     |               | L      |               | Z   |        |    | X/L | G     |       |    | Z  | Z     | G     |    | Z  | G     | G     |    | Z  | Z     | G               |    |
| 12      | nF       |           | L     |               | L      |               | Z   |        |    | Z   |       |       |    | Z  | G     | U     |    | Z  | G     | U     |    | Z  | G     | G               |    |
| 15      | nF       |           | L     |               | L      |               | Z   |        |    | Z   |       |       |    | Z  | G     | U     |    | Z  | G     | U     |    | Z  | G     | G               |    |
| 18      | nF       |           | L     |               | L      |               | Z   |        |    | G   |       |       |    | Z  | G     | U     |    | Z  | U     | U     |    | Z  | G     | U               |    |
| 22      | nF       |           | L     |               | L      |               | Z   |        |    | G   |       |       |    | Z  | G     |       |    | Z  | U     |       |    | Z  | G     |                 |    |
| 27      | nF       |           |       |               | L<br>· |               | Z   |        |    | G   |       |       |    | Z  | U     |       |    | Z  | U     |       |    | Z  | G     | $\vdash \vdash$ |    |
| 33      | nF       |           |       |               | L      |               | Z   |        |    | G   |       |       |    | Z  | U     |       |    | Z  | U     |       |    | Z  | G<br> | $\bigsqcup$     |    |
| 39      | nF       |           |       |               | Z      |               | Z   |        |    | G   |       |       |    | Z  | U     |       |    | Z  | υ:    |       |    | Z  | U     | $\vdash \vdash$ |    |
| 47      | nF       |           |       |               | G      |               | Z   |        |    | G   |       |       |    | Z  | U     |       |    | Z  | U     |       |    | Z  | U     |                 |    |
| 56      | nF       |           |       |               | G      |               | Z   |        |    | G   |       |       |    | Z  | U     |       |    | Z  | U     |       |    | Z  | U     | $\vdash \vdash$ |    |
| 68      | nF       |           |       |               | G      |               | Z   |        |    | G   |       |       |    | Z  |       |       |    | G  |       |       |    | Z  |       | $\vdash\vdash$  |    |
| 82      | nF       |           |       |               |        |               |     |        |    | G   |       |       |    | G  |       |       |    | G  |       |       |    | Z  |       | $\vdash\vdash$  |    |
| 100     | nF       |           |       |               |        |               |     |        |    | G   |       |       |    |    |       |       |    | G  |       |       |    | G  |       | $\vdash \vdash$ |    |
| 120     | nF       |           |       |               |        |               |     |        |    |     |       |       |    | U  |       |       |    | G  |       |       |    | U  |       | $\vdash\vdash$  |    |
| 150     | nF       |           |       |               |        |               |     |        |    |     |       |       |    | U  |       |       |    | U  |       |       |    | U  |       | $\vdash \vdash$ |    |
| 180     | nF<br>nF |           |       |               |        |               |     |        |    |     |       |       |    | U  |       |       |    | U  |       |       |    | _  |       | $\vdash \vdash$ |    |
| 220     |          |           |       |               |        |               |     |        |    |     |       |       |    |    |       |       |    |    |       |       |    | U  |       | $\vdash \vdash$ |    |
| 330     | nF       |           |       |               |        |               |     |        |    |     |       |       |    | U  |       |       |    | U  |       |       |    | U  |       | $\vdash \vdash$ |    |
| 390     | nF       |           |       |               |        |               |     |        |    |     |       |       |    |    |       |       |    | U  |       |       |    | U  |       | Ш               |    |



# Size and capacitance range X5R 6.3V ~ 50V \*Available in 20% tolerance only.

| Siz     | е    |     |            | 0402  |    |    |    |     | 06    | 03    |    |    |    |     | 08    | 05            |    |    |     |     | 1206  |    |    |
|---------|------|-----|------------|-------|----|----|----|-----|-------|-------|----|----|----|-----|-------|---------------|----|----|-----|-----|-------|----|----|
| (L)     | mm   |     | 1.0        | 00±0. | 05 |    |    |     | 1.60: | ±0.10 |    |    |    |     | 2.00  | £0.20         |    |    |     | 3.2 | 20±0. | 20 |    |
| (W)     | mm   |     | 0.8        | 50±0. | 05 |    |    |     | 0.80  | ±0.10 |    |    |    |     | 1.25: | £0.20         |    |    |     | 1.0 | 60±0. | 20 |    |
| (T)     | mm   |     | 0.5        | 50±0. | 05 |    |    |     | 0.80= | ±0.12 |    |    |    |     | 1.25  | <u>⊧</u> 0.20 |    |    |     | 1.0 | 65±0. | 20 |    |
| (t)     | mm   |     | 0.         | 15~0. | 35 |    |    |     | 0.27- | -0.60 |    |    |    |     | 0.30  | -0.70         |    |    |     | 0.3 | 30~0. | 70 |    |
| Cap./ \ | N.V. | 6.3 | 10         | 16    | 25 | 50 | 4  | 6.3 | 10    | 16    | 25 | 50 | 4  | 6.3 | 10    | 16            | 25 | 50 | 6.3 | 10  | 16    | 25 | 50 |
| 100     | nF   |     |            | s     | S  | S  |    |     |       |       |    |    |    |     |       |               |    |    |     |     |       |    |    |
| 220     | nF   | S   | S          | s     | S  |    |    |     |       |       | Р  |    |    |     |       |               |    |    |     |     |       |    |    |
| 330     | nF   | S   |            |       |    |    |    |     |       |       | Р  |    |    |     |       |               |    |    |     |     |       |    |    |
| 470     | nF   | S   | S          | S     | Ø  |    |    |     |       | P     | Р  | Р  |    |     |       |               |    |    |     |     |       |    |    |
| 680     | nF   | S   |            |       |    |    |    |     | Р     | Р     | Р  |    |    |     |       |               |    |    |     |     |       |    |    |
| 1.0     | uF   | S   | S          | s     | s  |    |    |     | Р     | Р     | Р  | Р  |    |     |       |               |    |    |     |     |       |    | L  |
| 2.2     | uF   | S   | S          | s     | s  |    |    | Р   | Р     | Р     | Р  | Р  |    | X   | X     | X             | X  | X  |     |     |       |    | L  |
| 3.3     | uF   | S   |            |       |    |    |    |     |       |       |    |    |    |     |       |               |    |    |     |     | L     | ٦  |    |
| 4.7     | uF   | S   | S          |       |    |    |    | Р   | Р     | P     | Р  |    |    | X   | X     | X             | X  | Х  |     |     | L     | L  | L  |
| 10      | uF   | *\$ | <b>*</b> S |       |    |    |    | *P  | *P    | *P    | *P |    |    | X   | X     | X             | X  | Х  |     | L   | L     | L  | L  |
| 22      | uF   |     |            |       |    |    | *P | *P  | *P    |       |    |    |    | *X  | *X    | *X            | *X |    | *L  | *L  | *L    | *L |    |
| 47      | uF   |     |            |       |    |    |    |     |       |       |    |    | *X | *X  | *X    |               |    |    | *L  | *L  | *L    | *L |    |
| 100     | uF   |     |            |       |    |    |    |     |       |       |    |    | *X |     |       |               |    |    | *L  | *L  |       |    |    |

| Siz  | ze   |    |     | 12    | 10    |       |    |    |     | 1812     |    |    |    | 22                    | 20    |    |  |
|------|------|----|-----|-------|-------|-------|----|----|-----|----------|----|----|----|-----------------------|-------|----|--|
| (L)  | mm   |    |     | 3.20= | ±0.30 |       |    |    | 4   | .50±0.3  | 0  |    |    | 5.70                  | ±0.40 |    |  |
| (W)  | mm   |    |     | 2.50  | ±0.20 |       |    |    | 3   | 3.20±0.2 | 0  |    |    | 5.00                  | ±0.40 |    |  |
| (T)  | mm   |    |     | 2.50  | ±0.30 |       |    |    | 3   | 3.00±0.2 | 0  |    |    | 3.00                  | ±0.20 |    |  |
| (t)  | mm   |    |     | 0.30- | -0.70 |       |    |    | C   | .35~1.0  | 0  |    |    | 0.35~1.00<br>10 16 25 |       |    |  |
| Cap. | w.v. | 4  | 6.3 | 10    | 16    | 25    | 50 | 4  | 6.3 | 10       | 16 | 25 | 10 | 16                    | 25    | 50 |  |
| 1.0  | uF   |    |     |       |       |       |    |    |     |          |    |    |    |                       |       |    |  |
| 2.2  | uF   |    |     |       |       |       | G  |    |     |          |    |    |    |                       |       |    |  |
| 3.3  | uF   |    |     |       |       |       |    |    |     |          |    |    |    |                       |       |    |  |
| 4.7  | uF   |    |     |       |       |       | G  |    |     |          |    |    |    |                       |       |    |  |
| 10   | uF   |    |     | *C /Z | *C /Z | *C /G | G  |    |     |          |    | G  |    |                       |       | G  |  |
| 22   | uF   |    |     | *C /G | *C /G | G     |    |    |     |          | *G | *G |    |                       | *G    |    |  |
| 47   | uF   |    | *G  | *G    | *G    |       |    |    | *G  | *U       |    |    |    | *G                    |       |    |  |
| 100  | uF   |    | *G  | *G    |       |       |    |    | *U  | *U       |    |    | *G |                       |       |    |  |
| 220  | uF   | *G | *G  |       |       |       |    |    |     |          |    |    |    |                       |       |    |  |
| 330  | uF   | *G | *G  |       |       |       |    |    |     |          |    |    |    |                       |       |    |  |
| 470  | uF   |    |     |       |       |       |    | *U |     |          |    |    |    |                       |       |    |  |



# 6. Capacitance range Y5V 6.3V ~ 50V

| Size     | 9    | (   | 0402 | 2   |     |     | 0603 | 3    |    |     |     | 0805  | 5   |    |     | •   | 1206  | 3   |    |     | 12    | 10    |    |    | 18    | 12    |    |
|----------|------|-----|------|-----|-----|-----|------|------|----|-----|-----|-------|-----|----|-----|-----|-------|-----|----|-----|-------|-------|----|----|-------|-------|----|
| (L)      | mm   | 1.0 | 0±0. | .05 |     | 1.6 | 00±0 | ).10 |    |     | 2.0 | 0±0.  | .20 |    |     | 3.2 | 20±0. | .20 |    |     | 3.20  | ±0.30 |    |    | 4.50± | £0.30 | )  |
| (W)      | mm   | 0.5 | 0±0  | .05 |     | 3.0 | 30±0 | .10  |    |     | 1.2 | 25±0. | .20 |    |     | 1.6 | 60±0. | .20 |    |     | 2.50  | ±0.20 |    |    | 3.20± | £0.30 | )  |
| (T)      | mm   | 0.5 | 0±0  | .05 |     | 3.0 | 30±0 | .12  |    |     | 1.2 | 25±0. | .20 |    |     | 1.6 | 65±0. | .20 |    |     | 2.00  | ±0.20 |    |    | 2.50± | £0.20 | )  |
| (t)      | mm   | 0.1 | 5~0  | .35 |     | 0.2 | 27~0 | .60  |    |     | 0.3 | 30~0  | .70 |    |     | 0.3 | 30~0  | .70 |    |     | 0.30- | -0.70 |    |    | 0.35- | -1.00 | )  |
| Cap.// V | N.V. | 6.3 | 10   | 16  | 6.3 | 10  | 16   | 25   | 50 | 6.3 | 10  | 16    | 25  | 50 | 6.3 | 10  | 16    | 25  | 50 | 6.3 | 10    | 16    | 25 | 10 | 16    | 25    | 50 |
| 10       | nF   |     |      | Ø   |     |     |      |      | P  |     |     |       |     | Α  |     |     |       |     | Η  |     |       |       |    |    |       |       |    |
| 15       | nF   |     |      | S   |     |     |      |      | Р  |     |     |       |     | Α  |     |     |       |     | Н  |     |       |       |    |    |       |       |    |
| 22       | nF   |     |      | s   |     |     |      |      | Р  |     |     |       |     | Α  |     |     |       |     | H  |     |       |       |    |    |       |       |    |
| 33       | nF   |     |      | S   |     |     |      |      | Р  |     |     |       |     | Α  |     |     |       |     | Н  |     |       |       |    |    |       |       |    |
| 47       | nF   |     |      | s   |     |     |      |      | Р  |     |     |       |     | Α  |     |     |       |     | H  |     |       |       |    |    |       |       |    |
| 68       | nF   |     |      | S   |     |     |      |      | Р  |     |     |       |     | Α  |     |     |       |     | Н  |     |       |       |    |    |       |       |    |
| 100      | nF   |     |      | S   |     |     |      |      | Р  |     |     |       | Α   | Α  |     |     |       |     | Н  |     |       |       |    |    |       |       |    |
| 150      | nF   |     |      |     |     |     |      | Р    | Р  |     |     |       | Α   | Α  |     |     |       |     | Н  |     |       |       |    |    |       |       |    |
| 220      | nF   |     | S    |     |     |     | Р    | Р    | Р  |     |     |       | Α   | Α  |     |     |       |     | Н  |     |       |       |    |    |       |       |    |
| 330      | nF   |     | s    |     |     |     | Р    | Р    |    |     |     |       | Н   | Н  |     |     |       |     | H  |     |       |       |    |    |       |       |    |
| 470      | nF   | S   | Ø    |     |     | Р   | Р    | Р    |    |     |     | Н     | Н   | Н  |     |     |       |     | Η  |     |       |       |    |    |       |       |    |
| 680      | nF   | S   |      |     |     | Р   | Р    |      |    |     |     | X     | X   | X  |     |     |       | Н   | X  |     |       |       |    |    |       |       |    |
| 1.0      | uF   | S   |      |     |     | Р   | Р    |      |    |     |     | X     | X   | X  |     |     |       | X   | X  |     |       |       |    |    |       |       |    |
| 2.2      | uF   |     |      |     | Р   | Р   |      |      |    |     | X   | X     | X   |    |     |     | X     | X   | X  |     |       |       |    |    |       |       |    |
| 3.3      | uF   |     |      |     | Р   |     |      |      |    |     | X   | X     |     |    |     |     | X     | X   |    |     |       |       |    |    |       |       |    |
| 4.7      | uF   |     |      |     | Р   |     |      |      |    |     | X   | X     |     |    |     |     | Х     | Х   |    |     |       |       |    |    |       |       |    |
| 10       | uF   |     |      |     |     |     |      |      |    | X   | X   |       |     |    |     | X   | X     |     |    |     | Z     | Х     | L  |    |       |       | G  |
| 22       | uF   |     |      |     |     |     |      |      |    | X   |     |       |     |    | L   | L   |       |     |    |     | Z     | Z     |    |    |       | G     |    |
| 47       | uF   |     |      |     |     |     |      |      |    |     |     |       |     |    | L   |     |       |     |    | Z   | Z     |       |    |    | G     |       |    |
| 100      | uF   |     |      |     |     |     |      |      |    | _   |     |       |     |    |     |     |       |     |    | G   |       |       |    | G  |       |       |    |



# Thickness Code & Standard Packing Q'ty per reel

| Thickness | Chip | Chip         | Max Tape  | Q'ty of carb | oard tape in | Q'ty of Emb | osses tape in |
|-----------|------|--------------|-----------|--------------|--------------|-------------|---------------|
| Code      | Size | Thickness    | Thickness | 7" reel      | 13" reel     | 7" reel     | 13" reel      |
| S         | 0402 | 0.50±0.05 mm | 0.60 mm   | 10,000       | 50,000       |             |               |
| Р         | 0603 | 0.80±0.10 mm | 0.95 mm   | 4,000        | 15,000       |             |               |
| Α         | 0805 | 0.60±0.10 mm | 0.75 mm   | 4,000        | 15,000       |             |               |
| Н         |      | 0.85±0.10 mm | 0.95 mm   | 4,000        | 15,000       |             |               |
| Х         |      | 1.25±0.10 mm | 1.80 mm   |              |              | 3,000       | 10,000        |
| Н         | 1206 | 0.85±0.10 mm | 0.90 mm   | 4,000        | 15,000       |             |               |
| С         |      | 0.95±0.10 mm | 1.80 mm   |              |              | 3,000       | 10,000        |
| Х         |      | 1.25±0.10 mm | 1.80 mm   |              |              | 3,000       | 10,000        |
| L         |      | 1.65±0.20 mm | 1.80 mm   |              |              | 2,000       |               |
| С         | 1210 | 0.95±0.10 mm | 1.80 mm   |              |              | 3,000       | 10,000        |
| Х         |      | 1.25±0.10 mm | 1.80 mm   |              |              | 2,000       |               |
| L         |      | 1.65±0.20 mm | 1.80 mm   |              |              | 2,000       |               |
| Z         |      | 2.00±0.20 mm | 2.20 mm   |              |              | 2,000       |               |
| G         |      | 2.50±0.20 mm | 2.75 mm   |              |              | 1,000       |               |
| Х         | 1808 | 1.25±0.10 mm | 1.80 mm   |              |              | 2,000       |               |
| F         |      | 1.40±0.20 mm | 1.80 mm   |              |              | 2,000       |               |
| L         |      | 1.65±0.20 mm | 1.80 mm   |              |              | 2,000       |               |
| Z         |      | 2.00±0.20 mm | 2.20 mm   |              |              | 1,000       |               |
| Х         | 1812 | 1.25±0.20 mm | 1.80 mm   |              |              | 1,000       |               |
| L         |      | 1.65±0.20 mm | 1.80 mm   |              |              | 1,000       |               |
| Z         |      | 2.00±0.20 mm | 2.20 mm   |              |              | 1,000       |               |
| G         |      | 2.50±0.20 mm | 2.75 mm   |              |              | 500         |               |
| U         |      | 2.80±0.30 mm | 3.00 mm   |              |              | 500         |               |
| Z         | 1825 | 2.00±0.20 mm | 2.20 mm   |              |              | 1,000       |               |
| G         |      | 2.50±0.20 mm | 2.75 mm   |              |              | 500         |               |
| U         |      | 2.80±0.30 mm | 3.00 mm   |              |              | 500         |               |
| Z         | 2220 | 2.00±0.20 mm | 2.20 mm   |              |              | 500         |               |
| G         |      | 2.50±0.20 mm | 2.75 mm   |              |              | 500         |               |
| U         |      | 2.80±0.30 mm | 3.00 mm   |              |              | 500         |               |
| Z         | 2225 | 2.00±0.20 mm | 2.20 mm   |              |              | 1,000       |               |
| G         |      | 2.50±0.20 mm | 2.75 mm   |              |              | 500         |               |



## **7.SPECIFICATIONS AND TEST METHODS**

| No | Item                     |            | Te                   | est Method                           |                   | Specification                                             |
|----|--------------------------|------------|----------------------|--------------------------------------|-------------------|-----------------------------------------------------------|
| 1  | Capacitance              |            |                      | be measured at 25                    | 5°C at the        | Within the specified tolerance                            |
|    |                          | frequenc   | y and voltage<br>NPO | shown below: NPO>1nF,                | C≧10uF            | Remark: For ClassII(X7R/X5R,Y5V),                         |
|    |                          | Type       | (≦1nF)               | Y5V,                                 | o≦ Ioui           | Before initial test, please perform                       |
|    |                          | Item       |                      | X7R/X5R                              |                   | De-aging process as below:                                |
|    |                          | Freq.      | 1±0.1Mhz             | 1±0.1KHz                             | 120H              | Heat up to 150℃ for 1Hr and then                          |
|    |                          | Voltage    | 1±0.2Vrms            | 1±0.2Vrms                            | 0.5±0.2<br>Vrms   | set form 48±4 Hrs at room temp.                           |
|    | O continue /             | D.F. shall | be measured          | I at 25°C at the fre                 |                   | NPO:                                                      |
| 2  | Q value /<br>D ssipation | voltage s  | hown a o. 1          |                                      |                   | — C<30pF : Q value ≧400+20C                               |
|    | Factor                   | X7R/X5R    | EXCE                 | PTION OF D.F.                        |                   | C≧30pF : Q value ≧ 1000                                   |
|    |                          |            |                      | c ption of D F.                      |                   | X7R/ X5R :                                                |
|    |                          | ≧ ≤ 50V    |                      | )3≧47nF, 0805≧0.                     |                   | Vr=50V~6KV, DF≦2.5%                                       |
|    |                          |            |                      | )6≧0.47uF, 1210≧<br>)5≧1.0uF, 1210≧1 |                   | Vr=25V, DF≦3.5%                                           |
|    |                          |            |                      | 03≧0.33uF ,1210≧1<br>1206≥, 1206     |                   | Vr=16V, DF ≤ 3.5%                                         |
|    |                          | II         |                      | 03≧0.47uF,0805≧                      |                   | Vr=10V, DF≦5.0%<br>Vr=6.3V, DF≦10.0%                      |
|    |                          |            |                      | 06≧6.8uF,0402≧0.                     |                   | VI-0.3V, DF ≦ 10.0 /6                                     |
|    |                          | 16V ≦      |                      | 02≧33nF, 0603≧0.                     |                   | Y5V:                                                      |
|    |                          |            |                      | )5≧0.68uF, 1206≧                     | 2.2uF,            | Vr=≥50V, DF≤5.0%                                          |
|    |                          |            |                      | 10≧4.7uF,                            | 2 25              | Vr =25V, DF≦7.0%<br>Vr=16V(C<1.0uF), DF≦7.0%              |
|    |                          |            |                      | )3≧0.68uF, 0805≧<br>)6≧4.7uF, 1210≧2 |                   | Vr=16V(C≥1.0uF), DF≤9.0%                                  |
|    |                          | 10V ≤      |                      | 02&0603≧0.33uF,0                     |                   | Vr=10V, DF≦12.5%                                          |
|    |                          |            |                      |                                      | · ·               | Vr=6.3V, DF≦20%                                           |
|    |                          | Y5V        |                      |                                      |                   | ( see EXCEPTION at left side)                             |
|    |                          | Vr         | D.F                  | Exception o .F                       |                   |                                                           |
|    |                          | ≧50V       | ≦7%                  | 0603≧0.1uF, 080                      | 05≧0.47uF,        |                                                           |
|    |                          | -          | ≤9%                  | 1206≧4.7uF<br>0402≧47nF, 080         | E \ 0.47.1E       | _                                                         |
|    |                          | 25V        | <u>≤9%</u><br>≤12.5% | 121 /10uF                            | 3 <u>≤</u> 0.47ur |                                                           |
|    |                          | 16V        | <b>≦9%</b>           | 0402≧0.068uF,                        | 0603≧0.68uF       |                                                           |
|    |                          | 16V        | <b>≦12.5%</b>        | 0603≧2.2uF,080                       |                   |                                                           |
|    |                          | (≧1uF)     |                      | 1206≥10uF,1210                       | ) <u>≥</u> 22uF,  |                                                           |
|    |                          |            |                      | 1812≧47uF,                           |                   |                                                           |
| 3  | Insulat on               | Rated vo   | tage ≦100V           | : Apply RV for 12                    | 20 sec.           | NPO : $\ge 10$ GΩ or 500Ω-F(whichever is smaller)         |
|    | Resistance               | Rated vo   | tage 200-630         | V : Apply RV for 60                  | ) sec.            | ,                                                         |
|    |                          | Rated vo   | tage 1KV-6K          | : Apply 500V fo                      | 60 sec.           | X7R/X5R, Y5V : $\ge$ 10GΩ or 100Ω-F(whichever is smaller) |
| 4  | Dielectric               | Test volta | ige(Vt): (Dura       | tion 1∼5 seconds                     | .)                | No evidence of damage or flash                            |
| ~  | Strength                 | Vt= Vr X2  | 50% (Vr≦100          | V) Charge current                    | : ≦ 50mA          | over d ring test.                                         |
|    |                          |            | •                    | /<br>luct Vr=200V/250V               |                   |                                                           |
|    |                          |            | -                    | luct Vr=500V~999\                    |                   |                                                           |
|    |                          |            | -                    | luct Vr=1KV~3KV                      |                   |                                                           |
|    |                          |            | -                    | 5KV, Vt= Vr X100%                    | For Vr>5KV        |                                                           |
|    |                          |            |                      |                                      |                   |                                                           |
| 5  | Solderability            | *Solder to | emperature :         | 235±5°C                              |                   | 95% min. c verage of all metalized                        |
|    |                          | *Dipping   | time : 2±0.5 s       | ec.                                  |                   | area                                                      |
|    |                          |            |                      |                                      |                   |                                                           |



# **SPECIFICATIONS AND TEST METHODS**

| No | Item                                  | Test Method                                                                                                                                                                                                                                                                                                                |                                                                                | Specification                                                                                                           | n                             |                   |
|----|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|
| 6  | Vibration<br>Resistance               | *Vibration Frequency:  10 – 55 Hz.min.  *Total amplitude: 1.5mm  *Test Time: 6 hrs ( Two hrs each in three mutually perpendicular direction )                                                                                                                                                                              | No remarkab<br>Cap. Change<br>To meet initia                                   | and Q/D.F.:                                                                                                             |                               |                   |
| 7  | Resistance to<br>Soldering<br>Heat    | Preheat the capacitor at 120~150°C for 1min. Have the capacitor dip into the solder bath at 270±5°C for 10±1 sec. Set it at room temperature for 48±4hrs, then measure.  Initial measurement for X7R/X5R and Y5V. Perform a heat treatment at 150±5°C for 1 hr and then set for 48±4 hrs at room temperature then measure. | Dielect ic  Appearance  Capacitance chang  DF( or Q)  I.R  Diele tric Strength | NPO  No  <±2.5% or±0.25 pf  C≥30pf : Q≥1000  C<30pf : Q≥4 0+200  More than 10GΩ or 5  (Whichever is Smalle)  No failure | 500ΩF                         | ±20% Same as no.2 |
| 8  | Adhesiv<br>Strength of<br>Termination | *Pressurizing force: 5N(≦0603) and 10n(>0603)  *Test time: 10 ± 1 sec.                                                                                                                                                                                                                                                     | No remarkabl                                                                   | e damage or removal o                                                                                                   | of t e termina                | tion.             |
| 9  | High<br>temperature<br>Load           | *Test Temp. :  NPO, X7R : 125±3°C  X5R, Y5V : 85±3°C  *Test Voltage:                                                                                                                                                                                                                                                       | Dielectric  Appearance  Capacitanc change                                      | <±3% or±0.3 pF                                                                                                          | X7R/X R  defe t  ≥10V: ±12.59 | Y5V ±30%          |
|    |                                       | <ul> <li>(1) V&lt;500V: 2 X R.V.</li> <li>(2) 500≦V&lt;1000V: 1.5 X R.V.</li> <li>(3) V=1000V~3000V:  1.2 X R.V.</li> <li>(4) V&gt;3000V: 100% of R.V.  *Test Time: 1000 hrs</li> </ul>                                                                                                                                    | DF( or Q)                                                                      | whichever is larger  SAME AS NO. 2                                                                                      | 6.3V : ±25%                   |                   |
|    |                                       | *Measurement to be made<br>after keeping at room<br>temp. for 48± hr.                                                                                                                                                                                                                                                      | I.R. Dielectric                                                                | ≥10V, ≥1GΩ or 50Ω<br>smaller)<br>6.3V: ≥10Ω-F                                                                           |                               | is                |
|    |                                       |                                                                                                                                                                                                                                                                                                                            | strength                                                                       | No                                                                                                                      | failure                       |                   |



## **SPECIFICATIONS AND TEST METHODS**

| No | Item                        | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Specifi ation        |                       |
|----|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------|-----------------------|
| 10 | Temperature<br>Coefficient  | (a) NPO The temperature coefficie t is det rmined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5. The capacitance shall be within the specified tolerance for the temperature coefficient.                                                                                                                                                                                                                                                                        | Dielectric  | Temperature<br>Range | Capacitance<br>Change |
|    |                             | Step Temperature(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                      |                       |
|    |                             | - 1 +25±2°C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                      |                       |
|    |                             | 2 -55±3°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NDO         | 5500 1 40500         | 0.100                 |
|    |                             | 3 +25±2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NPO         | -55°C to +125°C      | 0±30ppm/°C            |
|    |                             | 4 +125±3°C(for NPO/X7R +85<br>± 3°C(for X5R/Y5V))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                      |                       |
|    |                             | 5 +25±2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                      |                       |
|    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X7R         | -55°C to +125°C      | Within ±15%           |
|    |                             | (b) X7R/X5R,Y5V<br>The ranges of capacitance change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X5R         | -55°C to +85°C       | Within ±15%           |
|    |                             | compared with the 25±2°C value over the temperature range shall be within the specified ranges                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y5V         | -25°C to+ 85°C       | Within                |
|    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                      | +30%~-80%             |
| 11 | Resistance to board bending | Mount the capacitor to the testing printed wiring board. Then apply force in the direction shown in Fig.3. The bending stroke shall be more than 1mm, Pressurizing is carried out at the rate of 1mm/s. After reaching the specified bending, keeping it for 5±1 seconds then measure the capacitance value.  Cap. Change:  NPO: ±5%or±0.5 pF whichever is larger X7R, X5R: ±12.5%  Y5V: ±30%  (This capacitance change means the change of capacitance under specified flexure of substrate from the capacitance measured before the test) | Fig.3       |                      |                       |
| 12 | Chip Break<br>Strength      | Place the capacitor on an iron plate, And then gradually apply a load on the center of the chip until it breaks.  Tip of push-pull gauge is shown in Fig.4                                                                                                                                                                                                                                                                                                                                                                                  | To load 2 k | Ф 1.0m<br>R 0.5m     |                       |
|    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | сај         | pacitor              |                       |



## **SPECIFICATIONS AND TEST METHODS**

| No | Item                                     |                                                                                                          |                                                                                 | est Method                                                                                                                                                                                                         |                                                                                                                                  | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | Temperature cycle                        |                                                                                                          | capacitor o                                                                     | n test board                                                                                                                                                                                                       | , then cycling the<br>p 1 to step 5, and                                                                                         | *No remarkable damage.  *Cap. Change : NPO:                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                                          |                                                                                                          | NPO                                                                             | X7R                                                                                                                                                                                                                | X5R/Y5V                                                                                                                          | ±2.5% or ±0.5 pF whichever is larger                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                          | Step.                                                                                                    | Temperatu<br>/time(min)                                                         |                                                                                                                                                                                                                    | Temperature(°C )<br>/time(min)                                                                                                   | X7R, X5R: ±7.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                          | 1                                                                                                        | +25±2                                                                           | 2°C / 3±1                                                                                                                                                                                                          | +25±2°C / 3±1                                                                                                                    | Y5V: ±20%                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                          | 2                                                                                                        | -55±2°                                                                          | °C / 30±3                                                                                                                                                                                                          | -30±2°C / 30±3                                                                                                                   | *Q/D.FI.R & dielectric strength : To meet initial requirement.                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                          | 3                                                                                                        | +25±2                                                                           | 2°C / 3±1                                                                                                                                                                                                          | +25±2°C / 3±1                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                          | 4                                                                                                        | +125±3                                                                          | 3°C / 30±3                                                                                                                                                                                                         | +85±3°C / 30±3                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                          | 5                                                                                                        | +25±2                                                                           | 2°C / 3±1                                                                                                                                                                                                          | +25±2°C / 3±1                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                          |                                                                                                          |                                                                                 | · 24±2hours(I<br>5V) at room                                                                                                                                                                                       | NPO) or<br>temperature, then                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14 | Humidity<br>( Damp Heat)<br>Steady State | *Test time:  *Measurem temperatu  X7R/X5R:  Vr D  ≥ ≤ 50V  25V ≤ 16V ≤  10V ≤  Y5V:  Vr D  25V ≤   25V ≤ | 90~95% R 500 hrs nent to be m ire for 48±4 EXCE  .F 66% 10% 14% 10% 15% .F ≤10% | nade after ker<br>hrs.<br>EPTION OF D<br>Exception of<br>0603≥47nF,<br>1206≥0.47u<br>0805≥1.0uF,<br>0603≥0.33u<br>0402≥33nF,<br>0805≥0.68u<br>0402≥56nF,<br>C≥2.2uF<br>Exception of<br>0603≥0.1uF,<br>1206≥1.0 uF, | f D.F.<br>0805≥0.18uF,<br>F, 1210≥1.0uF<br>, C≥4.7Uf<br>F<br>0603≥0.15uF<br>F, C≥2.2uF<br>0603≥0.33uF<br>f D.F.<br>, 0805≥0.33uF | *No remarkable damage  *Cap. Change: NPO: ±5%or±0.5 pF whichever is larger X7R/X5R:≥10V: ±12.5%, 6.3V: ±25% Y5V: ±30%  *Q value/D.F. NPO: C≥30pf: Q≥350 10pF≤Cap<30pF, Q≥275+2.5C Cap<10pF, Q≥200+10C X7R, X5R: Vr≥50V, D.F.≤3% Vr=16/25V, D.F.≤5% Vr=10V, D.F.≤7.5% Y5V: Vr≥25/50V, D.F.≤7.5% Vr=16V(C<1.0uF),DF≤10% Vr=16V(C≥1.0uF),DF≤12.5% Vr=10V, D.F.≤15% Vr=6.3V, D.F.≤30% (See EXCEPTION at left side) ≥10V, ≥1GΩ or 50Ω-F (whichever is smaller) 6.3V: ≥10Ω-F |
| 14 | Humidity<br>(Damp Heat)<br>Load          | *Test time:  *Test Voltage  *Measurem                                                                    | 90∼95% R<br>500 hrs<br>ge : Rated \                                             | Voltage(Max<br>nade after ke                                                                                                                                                                                       | s 500V)<br>eping at room                                                                                                         | *No remarkable damage  *Cap. Change : NPO: ±7.5%or±0.75 pF whichever is larger X7R/X5R:≥10V: ±12.5%, 6.3V : ±25% Y5V: ±30% *Q value/D.F. SAME AS No. 13                                                                                                                                                                                                                                                                                                                |



# 8.Packing

- 8-1. Bulk Packaging: Packing code(B)
- 8-2. Tape Packing: please specify the packing code when ordering.

| Packing code | Pcs/Reel | Reel | size |  |  |
|--------------|----------|------|------|--|--|
| 05           | 500      | 7'   | ,    |  |  |
| 1            | 1000     | 7'   | ,    |  |  |
| 2            | 2000     | 7"   |      |  |  |
| 3            | 3000     | 7"   |      |  |  |
| Т            | 4000     | 7'   | ,    |  |  |
| U            | 10000    | 0402 | 7"   |  |  |
| J            | 10000    | 0603 | 10"  |  |  |
| V            | 15000    | 13"  |      |  |  |
| W            | 20000    | 13"  |      |  |  |

## 8-3. Appearance of taping





## 8-4 Dimensions of Paper Tape



Unit: m/m

| Chip size  Mark | 0402 | 0603 | 0805 | 1206 | Tolerance |
|-----------------|------|------|------|------|-----------|
| $A_0$           | 0.61 | 1.02 | 1.50 | 2.00 | ±0.1      |
| $B_0$           | 1.10 | 1.82 | 2.30 | 3.50 | ±0.1      |
| W               | 8.0  | 8.0  | 8.0  | 8.0  | ±0.3      |
| E               | 1.75 | 1.75 | 1.75 | 1.75 | ±0.1      |
| F               | 3.5  | 3.5  | 3.5  | 3.5  | ±0.05     |
| $D_0$           | 1.55 | 1.55 | 1.55 | 1.55 | ±0.1      |
| P <sub>1</sub>  | 2.0  | 4.0  | 4.0  | 4.0  | ±0.05     |
| P <sub>2</sub>  | 2.0  | 2.0  | 2.0  | 2.0  | ±0.05     |
| P <sub>0</sub>  | 4.0  | 4.0  | 4.0  | 4.0  | ±0.05     |

Paper thickness: T:0.65±0.05 mm (for 0402 product)

T:0.75±0.05 mm (for thickness code S)

T:0.95±0.05 mm (for thickness code P, H)

Note: (1) The top tape and bottom tape shall not protrude beyond the edges of the tape, and shall not cover sprocket holes.

(2) Cumulative tolerance of sprocket holes 10 pitch: ±0.3mm



# 8-5 Dimensions of Embossed Packing (plastic tape):



unit: m/m

|                |           |           |           |           |          |              |          | aiiic. 111/111 |
|----------------|-----------|-----------|-----------|-----------|----------|--------------|----------|----------------|
| Chip size      | 0805      | 1206      | 1210      | 1808      | 1812     | 1825         | 2220     | 2225           |
| $A_0$          | 1.65±0.2  | 2.00±0.2  | 2.80±0.2  | 2.40±0.2  | 3.60±0.2 | <6.80        | 5.50±0.3 | <6.80          |
| B <sub>0</sub> | 2.40±0.2  | 3.60±0.2  | 3.60±0.2  | 4.90±0.3  | 4.90±0.3 | <5.30        | 6.20±0.3 | <6.50          |
| K <sub>0</sub> | 2.50 max  | 2.50 max  | 3.00 max  | 2.50 max  | 4.0 max  | <3.10        | 4.0 max  | <3.10          |
| $D_0$          | 1.55±0.1  | 1.55±0.1  | 1.55±0.1  | 1.55±0.1  | 1.55±0.1 | 1.50+0.10/-0 | 1.55±0.1 | 1.50+0.10/-0   |
| W              | 8.00±0.2  | 8.0±0.2   | 8.0±0.2   | 12.0±0.2  | 12.0±0.2 | 12.0±0.20    | 12.0±0.2 | 12.0±0.20      |
| P <sub>1</sub> | 4.00±0.1  | 4.00±0.1  | 4.00±0.1  | 4.00±0.1  | 8.00±0.1 | 8.00±0.10    | 8.0±0.1  | 8.00±0.10      |
| P <sub>2</sub> | 2.00±0.1  | 2.00±0.1  | 2.00±0.1  | 2.00±0.1  | 2.00±0.1 | 2.00±0.05    | 2.0±0.1  | 2.00±0.05      |
| E              | 1.75±0.1  | 1.75±0.1  | 1.75±0.1  | 1.75±0.1  | 1.75±0.1 | 1.75±0.10    | 1.75±0.1 | 1.75±0.10      |
| Т              | 0.23±0.05 | 0.23±0.05 | 0.23±0.05 | 0.23±0.05 | 0.25±0.1 | 0.30±0.10    | 0.25±0.1 | 0.30±0.10      |
| P <sub>0</sub> | 4.00±0.1  | 4.00±0.1  | 4.00±0.1  | 4.00±0.1  | 4.00±0.1 | 4.00±0.10    | 4.00±0.1 | 4.00±0.10      |

Emboss tape: for thickness code X, L, Z, G, U



## 8-6. Dimension of Reel.





unit: m/m

| Reel size    | Reel size A       |          | С             | W1          | W2(max.) |  |
|--------------|-------------------|----------|---------------|-------------|----------|--|
| 7" 0402~1210 | 179 ±0 5          | 60.5±1.0 | 13.0+0.5/-0.2 | 8.4+1.5/-0  | 14.4     |  |
| 7 0402~1210  | .02~1210 178 ±0.5 |          | 13.0+0.5/-0.2 | 0.4+1.5/-0  | 14.4     |  |
| 7" 1812~2225 | 178 ±0.5          | 60.5±1.0 | 13.0+0.5/-0.2 | 12.4+2.0/-0 | 16.0     |  |
| 10"          | 250 ±0.5          | 100 ±1.0 | 13.0+0.5/-0.2 | 8.4+1.5/-0  | 14.4     |  |
| 13"          | 330 ±0.5          | 100 ±1.0 | 13.0+0.5/-0.2 | 8.4+1.5/-0  | 14.4     |  |



## 9. Soldering & Cleaning

### Recommended Soldering Profile (Prevention of thermal shock)

Figure.(I) IR reflow soldering profile for SMT process with SnAgCu series solder paste, (lead free type)



Figure. (II) Wave soldering profile for SMT process with SnAgCu series solder paste, (lead free type) wave soldering is recommended only for the following size: 0603(1608), 0805(2012) and 1206(3216) thickness < 1mm



#### Cleaning:

All flux residues must be removed by using suitable electronic-grade vapor-cleaning solvents to eliminate contamination that could cause electrolytic surface corrosion. Goods results can be obtained by using ultrasonic cleaning of solvent. The choice of the proper system is depends upon many factors such as component mix, flux, and solder paste and assembly method. The ability of the cleaning system to remove flux residues and contamination from under the chips is very important.



### 10.Storage

- 1. To store products at +5 to 40°C ambient temperature and 40 to 60% related humidity conditions.(refer to JIS C 0806)
- 2. Although HITANO MLCC officially stated storage and shelf life is 2 years from the manufacturing date, we recommend using the products within six months of receipt. Check solder ability in case of shelf life extension is needed.
- 3. Please note that these are "recommended" storage conditions and parts can be stored outside these parameters without affecting solderability or short term reliability. However, components not stored as recommended may see issues such as solderability and tape and reel degradation where the paper tape may not separate as designed.

#### Caution:

- A. Don't store products in a corrosive environment such as sulfide, chloride gas, or acid. It may cause oxidization of electrode, which easily be resulted in poor soldering.
- B. To store products on the shelf and avoid exposure to moisture.
- C. Don't expose products to excessive shock, vibration, direct sunlight and so on.

### 11 Label



**Lot No.** Customer part no. ( If any )



### 12. PCB design

Chip components are susceptible to board stress since the component itself is mounted directly on the board. They are also sensitive to mechanical and thermal stress when solder, which may cause chip cracked.

Please take solder form and component layout into consideration to eliminate stress.

#### 12.1. Pattern form

(1) Placing of chip components and component.





### (2) Placing close to chassis.

### incorrect



### correct



(3) Placing leaded components after chip component.



#### correct





### (4) Lateral mounting

### incorrect



### correct



### 12-2. Component direction

To design a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

(1) put the component lateral to the direction in which stress acts.



(2) Component layout close to board separation point. Susceptibility to stress in the order: A>C>B=D





### 12.3. Land Pattern

When capacitors are mounted on P.C. board, the amount of solder directly affect the performance of capacitors. Therefore, the following items should be carefully considered in the design of solder land pattern.

- (1) The greater the amount of solder, the higher the stress on the chip capacitors, and lead to cracking and breaking likely. It is necessary the appropriate size and configuration of the solder pads should be designed to have proper amount of solder on the termination.
- (2) When two or more capacitors are soldered together onto the same land or pad, the pad must be designed so that each capacitor's soldering point is separated by solder-resist.

The following diagram and table for recommended pad dimensions.



Dimensions in millimeters

| Type | 0201 | 0402 | 0603 | 0805 | 1206 | 1210 | 1808 | 1812 | 1825 | 2220 | 2225 |
|------|------|------|------|------|------|------|------|------|------|------|------|
| D1   | 0.65 | 1.50 | 2.30 | 2.80 | 4.00 | 4.00 | 5.40 | 5.30 | 5.30 | 7.00 | 7.00 |
| D2   | 0.21 | 0.50 | 0.80 | 0.90 | 0.90 | 0.90 | 1.05 | 0.90 | 0.90 | 1.35 | 1.35 |
| D3   | 0.23 | 0.50 | 0.70 | 1.00 | 2.20 | 2.20 | 3.30 | 3.50 | 3.50 | 4.30 | 4.30 |
| D5   | 0.30 | 0.50 | 0.80 | 1.30 | 1.60 | 2.50 | 2.30 | 3.80 | 6.50 | 5.00 | 6.50 |

Unit: mm