Solving String Constraints via Regular Constraint Propagation

MOSCA 2025

Oliver Markgraf, Matthew Hague, Artur Jeż, Anthony Widjaja Lin and Philipp Rümmer

Zagreb, July 22, 2025

Why Study Regular Constraint Propagation?

Regular Constraint Propagation is:

- Simple it just propagates regular constraints through function applications
- > Widely used many solvers use it already in limited capacity

But how far can it really take us?

Why Study Regular Constraint Propagation?

Regular Constraint Propagation is:

- Simple it just propagates regular constraints through function applications
- > Widely used many solvers use it already in limited capacity

But how far can it really take us?

Our hopes:

- Maybe it's more powerful than expected even complete for some interesting fragment?
- Maybe it's a strategy every solver could benefit from?

Takeaway

Regular Constraint Propagation alone is surprisingly powerful: complete for a large decidable fragment, simple yet effective in practice.

Agenda

1. Regular Constraint Propagation

2. Orderable Fragment

3. Experimental Results

History of Constraint Propagation in String Solving

Normalize Decimal Function

```
function normalize(decimal) {
    decimal = decimal.trim();
    const decimalReg = /^(\d+)\.?(\d*)$/;
    var decomp = decimal.match(decimalReg);
    var result = "";
    if (decomp) {
        var integer = decomp[1].replace(/^0+/, "");
        var fractional = decomp[2].replace(/0+$/, "");
        if (integer !== "") result = integer; else result = "0";
        if (fractional !== "") result = result + "." + fractional;
    }
    return result;
}
```

Normalize a decimal by trimming whitespace and removing leading and trailing zeros.

From Code to Constraint

```
\begin{array}{lll} \operatorname{decimal = decimal.trim()} & \longrightarrow & \operatorname{dec} = f_{\mathsf{trim}}(\operatorname{input}) \\ \\ \operatorname{decimal.match(decimalReg)} & \longrightarrow & \operatorname{dec} \in R_{\mathsf{dec}} \wedge \operatorname{dec} = \\ & f_{\mathsf{concat}}(\operatorname{int}, ".", \operatorname{frac}) \\ \\ \operatorname{integer = decomp[1].replace(/^0+/), \ and} \\ \operatorname{fractional = decomp[2].replace(/0+\$/)} & \longrightarrow & z_1 = f_{\mathsf{lstrip0}}(\operatorname{int}) \\ & \wedge z_2 = f_{\mathsf{rstrip0}}(\operatorname{frac}) \\ & \wedge \operatorname{res} = f_{\mathsf{concat}}(z_1, ".", z_2) \\ \\ \operatorname{Verification \ condition} & \longrightarrow & \operatorname{res} \not \in \operatorname{correctFormat} \\ \end{array}
```


Regular Constraint Propagation

$$\psi ::= \phi \mid \psi \wedge \psi \qquad \phi ::= x \in e \mid x = f(x_1, \dots, x_n)$$

- Variables: x_1, x_1, \dots, x_n
- Functions: f (e.g., concat, replaceAll, etc.)
- > Regular expressions: e

$$\psi ::= \phi \mid \psi \wedge \psi \qquad \phi ::= x \in e \mid x = f(x_1, \dots, x_n)$$

- \rightarrow Variables: x, x_1, \dots, x_n
- Functions: f (e.g., concat, replaceAll, etc.)
- Regular expressions: e

Examples:

Formula	Description	In normal form?
$x \in (a b)^*$	Regular constraint	✓

$$\psi ::= \phi \mid \psi \wedge \psi \qquad \phi ::= x \in e \mid x = f(x_1, \dots, x_n)$$

- Variables: x, x_1, \dots, x_n
- Functions: f (e.g., concat, replaceAll, etc.)
- > Regular expressions: e

Examples:

Formula	Description	In normal form?
$x \in (a b)^*$	Regular constraint	✓
$x = \mathtt{replaceAll}(y, a, bb) \land x \in A$	Conjunction of allowed forms	✓

$$\psi ::= \phi \mid \psi \wedge \psi \qquad \phi ::= x \in e \mid x = f(x_1, \dots, x_n)$$

- \rightarrow Variables: x, x_1, \dots, x_n
- Functions: f (e.g., concat, replaceAll, etc.)
- Regular expressions: e

Examples:

Formula	Description	In normal form?
$x \in (a b)^*$	Regular constraint	✓
$x = \mathtt{replaceAll}(y, a, bb) \land x \in A$	Conjunction of allowed forms	✓
x = f(g(y))	Nested application	X

$$\psi ::= \phi \mid \psi \wedge \psi \qquad \phi ::= x \in e \mid x = f(x_1, \dots, x_n)$$

- \rightarrow Variables: x, x_1, \dots, x_n
- Functions: f (e.g., concat, replaceAll, etc.)
- Regular expressions: e

Examples:

Formula	Description	In normal form?
$x \in (a b)^*$	Regular constraint	✓
$x = \mathtt{replaceAll}(y, a, bb) \land x \in A$	Conjunction of allowed forms	✓
x = f(g(y))	Nested application	X
$x = f(z) \wedge z = g(y)$	Resolved nesting	✓

10/39

What is a Proof System?

Gentzen-style sequent rules:

- We read **bottom-up**: from conclusion to premises
- A line means a deduction step
- Commas stand for conjunctions: $x \in A$, $x = f(...) = x \in A \land x = f(...)$
- > Branching occurs in rules for disjunction or nondeterminism
- The proof succeeds if all branches are closed by an Axiom

Forward Propagation (Fwd-Prop)

Concrete Example:

Instantiated Proof Step:

$$x_1 \in (a|b)^*$$

$$x_2 \in b^*$$

$$x = f_{concat}(x_1, x_2)$$

Therefore:

$$x \in (a|b)^*b^*$$

$$\mathbf{x} \in (\mathbf{a}|\mathbf{b})^*\mathbf{b}^*, \ x = f_{concat}(x_1, x_2), \ x_1 \in (\mathbf{a}|b)^*, \ x_2 \in b^* \ x = f_{concat}(x_1, x_2), \ x_1 \in (\mathbf{a}|b)^*, \ x_2 \in b^* \$$
 [Fwd-Prop]

Forward Propagation (Fwd-Prop)

Concrete Example: Instantiated Proof Step:

$$x_1 \in (a|b)^*$$

$$x_2 \in b^*$$

$$x = f_{concat}(x_1, x_2)$$

$$\mathbf{x} \in (\mathbf{a}|\mathbf{b})^*\mathbf{b}^*, \ x = f_{concat}(x_1, x_2), \ x_1 \in (\mathbf{a}|b)^*, \ x_2 \in b^*$$
 $x = f_{concat}(x_1, x_2), \ x_1 \in (\mathbf{a}|b)^*, \ x_2 \in b^*$
[Fwd-Prop]

$$x = f_{concat}(x_1, x_2), \,\, x_1 \in (a|b)^*, \,\, x_2 \in b^*$$

Therefore:

$$x \in (a|b)^*b^*$$

General Rule:

$$\frac{\Gamma, \mathbf{x} \in \mathbf{e}, x = f(x_1, \dots, x_n), x_1 \in e_1, \dots, x_n \in e_n}{\Gamma, x = f(x_1, \dots, x_n), x_1 \in e_1, \dots, x_n \in e_n}$$
[Fwd-Prop]

where
$$L(e) = f(L(e_1), \ldots, L(e_n))$$

Forwardable Functions

Definition (Forwardable)

A function $f:(\Sigma^*)^k\to \Sigma^*$ is forwardable if, for all regular languages $L_1,\ldots,L_k\subseteq \Sigma^*$, the image

$$f(L_1,\ldots,L_k)$$
 is regular,

and there is an algorithm to compute a representation of this language from representations of L_1, \ldots, L_k .

Forwardable Functions

Definition (Forwardable)

A function $f:(\Sigma^*)^k \to \Sigma^*$ is forwardable if, for all regular languages $L_1,\ldots,L_k\subseteq \Sigma^*$, the image

$$f(L_1,\ldots,L_k)$$
 is regular,

and there is an algorithm to compute a representation of this language from representations of L_1, \ldots, L_k .

√ Forwardable Examples

- concat if arguments used linearly (e.g., x = yz)
- Rational transductions
- replaceAll(input, const, const)

X Not Forwardable

- concat if a variable is reused (e.g., x = yy)
- replaceAll(input, const, x) —
 variable replacement

13/39

When Forward Propagation Fails

Example: Non-forwardable function — self-concatenation

Let:

$$x = f_{concat}(y, y)$$
 and $y \in \{a, b\}^*$

When Forward Propagation Fails

Example: Non-forwardable function — self-concatenation

Let:

$$x = f_{concat}(y, y)$$
 and $y \in \{a, b\}^*$

Then:

$$x \in \{ww \mid w \in \{a,b\}^*\}$$
 (the set of all string self-concatenations)

When Forward Propagation Fails

Example: Non-forwardable function — self-concatenation

Let:

$$x = f_{concat}(y, y)$$
 and $y \in \{a, b\}^*$

Then:

$$x \in \{ww \mid w \in \{a, b\}^*\}$$
 (the set of all string self-concatenations)

This language is **not regular**.

- So we cannot compute an exact regular constraint on x from y via forward propagation
- Any forward propagation (e.g. $x \in (a|b)^*(a|b)^*$) is an over-approximation

Backward Propagation (Bwd-Prop)

Example:

- $x = f_{concat}(y, y)$
- $x \in a^*b$

Then backward propagation gives three branches:

$$f_{concat}^{-1}(a^*b) = \begin{cases} (1) & y \in \varepsilon, \quad y \in a^*b \\ (2) & y \in a^*, \quad y \in b \\ (3) & y \in a^*b, \quad y \in \varepsilon \end{cases}$$

Backward Propagation (Bwd-Prop)

Example:

- $x = f_{concat}(y, y)$
- $x \in a^*b$

Then backward propagation gives three branches:

$$f_{concat}^{-1}(a^*b) = \begin{cases} (1) & y \in \varepsilon, \quad y \in a^*b \\ (2) & y \in a^*, \quad y \in b \\ (3) & y \in a^*b, \quad y \in \varepsilon \end{cases}$$

General Rule: Backward Propagation (Bwd-Prop)

Let
$$f^{-1}(L(e)) = \bigcup_{i=1}^k L(e_1^i) \times \cdots \times L(e_n^i)$$

Then we apply the rule:

$$x \in e$$
, $x = f(x_1, ..., x_n)$ \rightsquigarrow branches over $x_j \in e_j^i$

General Rule: Backward Propagation (Bwd-Prop)

Let
$$f^{-1}(L(e)) = \bigcup_{i=1}^k L(e_1^i) \times \cdots \times L(e_n^i)$$

Then we apply the rule:

$$x \in e$$
, $x = f(x_1, ..., x_n)$ \rightsquigarrow branches over $x_j \in e_j^i$

$$\frac{\Gamma, \ x = f(x_1, \dots, x_n), \ x \in e, \ x_1 \in e_1^1, \dots, x_n \in e_n^1 \quad \dots \quad \Gamma, \ x = f(x_1, \dots, x_n), \ x \in e, \ x_1 \in e_1^k, \dots, x_n \in e_n^k}{\Gamma, \ x = f(x_1, \dots, x_n), \ x \in e}$$
[Bwd-Prop]

Backwardable Functions

Definition (Backwardable)

A function $f:(\Sigma^*)^k \to \Sigma^*$ is backwardable if, for all regular languages $L \subseteq \Sigma^*$:

- The preimage $f^{-1}(L)$ is a **recognizable relation**, and
- There exists an algorithm to compute a representation of $f^{-1}(L)$ from a representation of L

Recognizable relation:

$$R \subseteq (\Sigma^*)^k$$
 is recognizable if $R = \bigcup_{i=1}^m L_{i,1} \times \cdots \times L_{i,k}$, with each $L_{i,j}$ regular

This is exactly the structure used in the [Bwd-Prop] rule. The representation is not unique.

Backwardable Functions

✓ Backwardable

- concat even with duplicated variables (e.g., x = yy)
- Rational transductions
- replaceAll(x, constant, variable)
- > Regular replacement with capture groups
- Streaming string transducers
- > Poly-regular functions

X Not Backwardable

replaceAll(x, variable, variable)

Question: How do we end a proof?

A branch closes when we derive an unsatisfiable constraint, i.e. a variable constrained to the empty language:

Question: How do we end a proof?

Both branches close

$$f_{concat}^{-1}(a^*b) = \left\{ egin{array}{ll} (1) & y \in a^*, & y \in b & \Rightarrow & L = \emptyset \ (2) & y \in arepsilon, & y \in a^*b & \Rightarrow & L = \emptyset \end{array}
ight.$$

Question: How do we end a proof?

Both branches close

$$f_{concat}^{-1}(a^*b) = \begin{cases} (1) & y \in a^*, & y \in b \Rightarrow L = \emptyset \\ (2) & y \in \varepsilon, & y \in a^*b \Rightarrow L = \emptyset \end{cases}$$

The Intersect Rule: Why We Need It

Purpose: Combine multiple constraints on a variable into a single regular expression.

Rule:

$$[\text{Intersect}] \qquad \Gamma, x \in e_1, \dots, x \in e_n \quad \rightsquigarrow \quad \Gamma, x \in e \quad \text{where } L(e) = \bigcap_i L(e_i)$$

Why it is needed:

$$f^{-1}(L_1 \cap L_2) = f^{-1}(L_1) \cap f^{-1}(L_2)$$
 (OK for backward)
 $f(L_1 \cap L_2) \subseteq f(L_1) \cap f(L_2)$ (NOT equal in general)

Counterexample:

Let:

$$A_1=\{a,\ aa\},\quad A_2=\{aa,\ aaa\},\quad B=\{aab,\ b\}$$

Then: $aaab\in (A_1\cdot B)\cap (A_2\cdot B),\quad \text{but } aaab\not\in ((A_1\cap A_2)\cdot B)$

So we intersect first and then apply forward propagation.

2

Orderable Fragment

Orderable Fragment in Context

Fragment	Rough Idea	Captured by Orderable?
Straight-line	Acyclic use of functions, define variables at	✓Yes
	most once	
Chain-free	Allows chaining, but restricts dependencies	✓Yes
	between variables	
Orderable (new)	Captures both fragments via a simple prop-	(*) This talk
	agation order	

Straight-Line Fragment (SL)

Structure:

- > Each variable defined at most once
- Definitions follow a linear order no reuse or cycles

Example:

$$x_1 = f_{concat}(x, x)$$

$$x_2 = f_{concat}(x_1, x_1)$$

$$x_3 = f_{concat}(x_1, x_2)$$
...

Captured by orderable: ✓Yes — propagation follows definition order.

Taolue Chen, Matthew Hague, Anthony Lin, Philipp Rümmer, and Zhilin Wu. "Decision procedures for path feasibility of string-manipulating programs with complex operations." POPL, 2019.

Chain-Free Fragment (CF)

Structure:

- Allows re-use of variables and chaining of constraints
- Use splitting graph to compute dependencies

Example:

$$x_1 = f_{concat}(x, x)$$

 $x_2 = f_{concat}(x_1, x_1)$
 $x_3 = f_{concat}(x_1, x_2)$
 $x_3 = f_{concat}(z_1, z_2)$ (second constraint on x_3)

This is not straight-line (due to reuse), but still chain-free.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, Lukáš Holík, and Petr Janků. 2019. "Chain-Free String Constraints". ATVA, 2019

Chain-Free Example: Splitting Graph

$$x_1 = f_{concat}(x, x)$$

$$x_2 = f_{concat}(x_1, x_1)$$

$$x_3 = f_{concat}(x_1, x_2)$$

$$x_3 = f_{concat}(z_1, z_2)$$

 $\begin{bmatrix} x_1 \end{bmatrix}$ $\begin{bmatrix} x \end{bmatrix}$

$$\begin{bmatrix} x_1 \end{bmatrix}$$
 $\begin{bmatrix} x_1 \end{bmatrix}$

$$x_3$$
 x_1 x_2

Chain-Free Example: Splitting Graph

Example:

$$x_1 = f_{concat}(x, x)$$

$$x_2 = f_{concat}(x_1, x_1)$$

$$x_3 = f_{concat}(x_1, x_2)$$

$$x_3 = f_{concat}(z_1, z_2)$$

Structure:

- Allows re-use of variables and chaining of constraints
- Determine propagation order with the Marking Algorithm
- > Visualize propagation order with Flow Sequence and Flow Graph

Example:

Flow Direction:

$$\begin{aligned} x_1 &= f_{\mathsf{concat}}(x, x) \\ x_2 &= f_{\mathsf{concat}}(x_1, x_1) \\ x_3 &= f_{\mathsf{concat}}(x_1, x_2) \\ x_3 &= f_{\mathsf{concat}}(z_1, z_2) \end{aligned}$$

Structure:

- Allows re-use of variables and chaining of constraints
- Determine propagation order with the Marking Algorithm
- > Visualize propagation order with Flow Sequence and Flow Graph

Example:

Flow Direction:

$$\begin{aligned} x_1 &= f_{\mathsf{concat}}(x, x) \\ x_2 &= f_{\mathsf{concat}}(x_1, x_1) \\ x_3 &= f_{\mathsf{concat}}(x_1, x_2) \\ x_3 &= f_{\mathsf{concat}}(\mathbf{z}_1, \mathbf{z}_2) \end{aligned}$$

$$(x_3 = f_{\mathsf{concat}}(z_1, z_2), \leftarrow)$$

Structure:

- Allows re-use of variables and chaining of constraints
- Determine propagation order with the Marking Algorithm
- > Visualize propagation order with Flow Sequence and Flow Graph

Example:

Flow Direction:

$$x_1 = f_{concat}(x, x)$$

$$x_2 = f_{concat}(x_1, x_1)$$

$$x_3 = f_{concat}(x_1, x_2)$$

$$(x_3 = f_{concat}(x_1, x_2), \rightarrow)$$

$$(x_3 = f_{concat}(z_1, z_2), \leftarrow)$$

Structure:

- Allows re-use of variables and chaining of constraints
- Determine propagation order with the Marking Algorithm
- Visualize propagation order with Flow Sequence and Flow Graph

Example:

Flow Direction:

$$x_{1} = f_{concat}(x, x)$$

$$x_{2} = f_{concat}(x_{1}, x_{1})$$

$$(x_{2} = f_{concat}(x_{1}, x_{1}), \rightarrow)$$

$$(x_{3} = f_{concat}(x_{1}, x_{2}), \rightarrow)$$

$$(x_{3} = f_{concat}(x_{1}, x_{2}), \leftarrow)$$

Structure:

- Allows re-use of variables and chaining of constraints
- Determine propagation order with the Marking Algorithm
- > Visualize propagation order with Flow Sequence and Flow Graph

Example:

Flow Direction:

$$x_1 = f_{concat}(x, x)$$

$$(x_1 = f_{\mathsf{concat}}(x, x), \rightarrow)$$

$$(x_2 = f_{\mathsf{concat}}(x_1, x_1), \rightarrow)$$

$$(x_3 = f_{\mathsf{concat}}(x_1, x_2), \rightarrow)$$

$$(x_3 = f_{\mathsf{concat}}(x_1, x_2), \leftarrow)$$

Example:

 z_1

 x_2

 z_2

Example:

$$(x_3 = f_{concat}(z_1, z_2), \leftarrow)$$

(x

x

Example:

$$(x_3 = f_{concat}(z_1, z_2), \leftarrow)$$
$$(x_3 = f_{concat}(x_1, x_2), \rightarrow)$$

Example:

$$(x_3 = f_{concat}(z_1, z_2), \leftarrow)$$

$$(x_3 = f_{concat}(x_1, x_2), \rightarrow)$$

$$(x_2 = f_{concat}(x_1, x_1), \rightarrow)$$

RPTU 28/39

Example:

$$(x_3 = f_{concat}(z_1, z_2), \leftarrow)$$

 $(x_3 = f_{concat}(x_1, x_2), \rightarrow)$
 $(x_2 = f_{concat}(x_1, x_1), \rightarrow)$
 $(x_1 = f_{concat}(x, x), \rightarrow)$

Main Result: Completeness of RCP

Theorem

Every unsatisfiable **orderable** constraint admits a proof in the RCP system using only the following rules:

Close, Intersect, Fwd-Prop, Bwd-Prop

Orderable Fragment — Is This the End for RCP?

RCP still succeeds beyond orderable:

$$x \in "2"^+ \land y = replaceAll(x, "2", "10")$$

 $z = replaceAll(x, "2", "01") \land y = z$

- Not orderable but RCP can still solve it
- The expressive power depends on how regular expressions interact

Benchmark Sets Overview

We evaluate solvers across three distinct benchmark sets:

- > SMT-LIB'24 (2000 benchmarks)
 - Derived from the latest SMT-LIB string division
 - Mix of real and synthetic formulas over regex, concat, replaceAll, etc.
- > PCP Benchmarks (1000 instances)
 - > Based on Post Correspondence Problem in form PCP[3,3]
 - Each instance has 3 dominos over binary alphabet, words of length 3
- Bioinformatics Benchmarks (1000 instances)
 - ightarrow Models reverse transcription: RNA ightarrow DNA via replaceAll
 - Goal: find RNA y such that replacements yield a given DNA string, and y contains a specific motif

Research Questions

1. Is Regular Constraint Propagation effective as a core solving technique?

- Can a propagation-based engine compete with modern solvers?
- Does it scale to real-world and synthetic benchmarks?

2. Is RCP complementary to existing techniques?

- Can it boost solvers when used as a component?
- Does it solve instances others leave unanswered?

Experimental Evaluation

		SM	T-LIB'24		Р	СР	Bioinformatics		
	Sat	Unsat	Unknown	Time(s)	Solved Time(s)		Solved	Time(s)	
RCP	1071	728	201	15416.8	901	7308.7	1000	5532.6	

RCP	1071	728	201	15416.8	901	7308.7	1000	5532
cvc5	1162	716	122	7954.3	0	60000.0	0	-
OSTRICH-BASE	833	653	514	32298.7	0	60000.0	1000	2596
					_			

6.2 OSTRICH-COMP 1009 733 258 22840.7 60000.0 1000 3911.0 0

1156 730 60000.0 60000.0 **Z**3 114 8286.0 0 0 Z3-alpha 724 60000.0 60000.0 1127 149 10681.2 0 0 Z3-Noodler 1236 749 15 797.0 0 60000.0 0 60000.0

RPTU 33/39

Experimental Evaluation

	SMT-LIB'24 (2000)			PCP (1000)			Bioinformatics (1000)		
Solver Combination	U	С	1	U	C	Ĺ	U	С	ì
RCP	201	-	-	99	_	_	0	-	-
cvc5 + RCP	61	61	0.50	99	901	0.90	0	1000	1.00
OSTRICH-COMP + RCP	68	197	0.74	99	901	0.90	0	0	0.00
Z3 + RCP	85	29	0.25	99	901	0.90	0	1000	1.00
$Z3 ext{-}alpha + RCP$	87	65	0.43	99	901	0.90	0	1000	1.00
Z3-Noodler + RCP	11	4	0.27	99	901	0.90	0	1000	1.00

Conclusion and Future Work

Takeaways

- > RCP is a simple and intuitive strategy
-) It is complete for the **orderable fragment**, which subsumes known fragments
- As a core strategy, RCP is effective and competitive on diverse benchmarks
- > Every solver can benefit from adopting RCP as a subroutine

Future Work

- Study power of RCP with other rules:
 - > Power-introduction, cut rules, Nielsen splitting, Parikh reasoning
- Lift RCP to richer theories (e.g., sequences over infinite alphabets)
- Output and certify RCP proofs

Thank you

Oliver Markgraf, Matthew Hague, Artur Jeż, Anthony Widjaja Lin and Philipp Rümmer

markgraf(at)cs.uni-kl.de

RPTU in Kaiserslautern

Bonus: Additional Proof Rules for Satisfiability

[Solution]

$$x_1 \in e, \ldots, x_n \in e$$

[Cut]

[Fwd-Elim]

$$\frac{\Gamma, \mathbf{x} \in \mathbf{e}, x_1 \in e_1, \dots, x_n \in e_n}{\Gamma, x = f(x_1, \dots, x_n), x_1 \in e_1, \dots, x_n \in e_n}$$

where
$$L(e) = f(L(e_1), \dots, L(e_n))$$
 and $|L(e)| = 1$

$$\frac{\Gamma, \ x \in e \qquad \Gamma, \ x \notin e}{\Gamma}$$

Experimental Evaluation

Z3-Noodler + RCP

(Z3 + OB) + RCP

39/39

(cvc5 + OB) + RCP

(Z3-alpha + OB) + RCP

(Z3-Noodler + OB) + RCP

	SMT	T-LIB'	24 (2000)	P	CP (10	000)	Bio	oinform	atics (1000)
Solver Combination	U	С	1	U	C	Ĺ	U	С	1
RCP	201	_	_	99	_	_	0	_	_
cvc5 + RCP	61	61	0.50	99	901	0.90	0	1000	1.00
$OSTRICH ext{-}COMP + RCP$	68	197	0.74	99	901	0.90	0	0	0.00
Z3 + RCP	85	29	0.25	99	901	0.90	0	1000	1.00
$Z3 ext{-}alpha + RCP$	87	65	0.43	99	901	0.90	0	1000	1.00

0.27

0.03

0.06

0.08

0.00

901

901

901

901

901

99

99

99

99

99

0.90

0.90

0.90

0.90

0.90

0

1000

1.00

0.00

0.00

0.00

0.00

RPTU

11

61

85

87

4

5

8

0