WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/31, G01N 33/569 A61K 39/04, 39/395, C07K 13/00 C12N 15/62, 1/21, 5/10

(11) International Publication Number:

WO 92/16628

(43) International Publication Date:

1 October 1992 (01.10.92)

(21) International Application Number:

PCT/EP92/00661

A1

(22) International Filing Date:

24 March 1992 (24.03.92)

(30) Priority data:

91400798.4

25 March 1991 (25.03.91) EP

(34) Countries for which the regional or international application was filed:

GB et al.

(71) Applicant (for all designated States except US): N.V. IN-NOGENETICS S.A. [BE/BE]; Industriepark Zwijnaarde 7, Box 4, B-9710 Ghent (BE).

(72) Inventors: and

(75) Inventors/Applicants (for US only): COCITO, Carlo [BE/ BE]; 26, rue de l'Elevage, B-1340 Bruyères/Ottignies (BE). COENE, Marc [BE/BE]; 9, rue de la Fondation, B-1080 Brussels (BE). DE KESEL, Myriam [BE/BE]; 1/15, Clos des Quadrilles, B-1340 Ottignies (BE). GI-LOT, Philippe [BE/BE]; 41, rue du Pont Levis, B-1200 Brussels (BE).

(74) Agents: GUTMANN, Ernest et al.; Ernest Gutmann-Yves Plasseraud S.A., 67, boulevard Haussmann, F-75008 Paris (FR).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), HU, IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent), US.

Published

With international search report.

(54) Title: POLYPEPTIDES FROM MYCOBACTERIUM PARATUBERCULOSIS

(57) Abstract

The invention relates to a polypeptide containing in its polypeptidic chain: the amino acid sequence of 101 amino acids of Figure 8, or a fragment of this sequence, this fragment being such that it is liable to be recognized by antibodies also recognizing the abovesaid sequence of 101 amino acids, but it is not recognized by antibodies respectively raised against M. bovis, M. avium, M. phlei and M. tuberculosis, and possibly against M. leprae, M. intracellulare, M. scrofulaceum, M. fortuitum, M. gordonae and M. smegmatis; it is liable to generate antibodies which also recognize the abovesaid sequence of 101 amino acids but which do not recognize M. bovis, M. avium, M. phlei and M. tuberculosis, and possibly M. leprae, M. intracellulare, M. scrofulaceum, M. fortuitum, M. gordonae and M. smegmatis; it reacts with the majority of sera from cattle suffering from Johne's disease; or the polypeptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the above-mentioned properties.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Austria F1 Finland AU Australia FR France BB Barbados GA Gabon BE Belgium GB United Kingdom BF Burkina Faso GN Guinea BG Bulgaria GR Greece BJ Benin HU Hungary BR Brazil IE Ireland CA Canada IT Italy CF Central African Republic JP Japan CG Congo KP Democratic People's of Korea CI Côte d'Ivoire KR Republic of Korea CI Cameroon L1 Liechtenstein CS Czechoslovakia LK Sri Lanka DE Germany LU Luxembourg DK Denmark MC Monaco ES Spain MG Madagascar	MI. Mali MN Mongolia MR Mauritania MW Malawi NI. Netherlands NO Norway PL Poland RO Romania RU Russian Federation SD Sudan SE Sweden SN Senegal SU Soviet Union TD Chad TG Togo US United States of America
---	---

POLYPEPTIDES FROM MICROBACTERIUM PARATUBERCULOSIS

The invention relates to polypeptides and peptides, particularly recombinant ones, which can be used for the diagnosis of paratuberculosis in cattle and possibly of Crohn's disease in human beings. The invention also relates to a process for preparing the above-said polypeptides and peptides, which are in a state of biological purity such that they can be used as part of the active principle in the preparation of vaccines against paratuberculosis.

It also relates to nucleic acids coding for said polypeptides and peptides.

Furthermore, the invention relates to the <u>in vitro</u> diagnostic methods and kits using the above-said polypeptides and peptides and to the vaccines containing the above-said polypeptides and peptides as active principle against paratuberculosis.

By "recombinant polypeptides or peptides" it is to be understood that it relates to any molecule having a polypeptidic chain liable to be produced by genetic engineering, through transcription and translation, of a corresponding DNA sequence under the control of appropriate regulation elements within an efficient cellular host. Consequently, the expression "recombinant polypeptides" such as is used herein does not exclude the possibility for the polypeptides to comprise other groups, such as glycosylated groups.

The term "recombinant" indeed involves the fact that the polypeptide has been produced by genetic engineering, particularly because it results from the expression in a cellular host of the corresponding nucleic acid sequences which have previously been introduced into an expression vector used in said host.

Nevertheless, it must be understood that the polypeptides or the peptides of the invention can be produced by a different process, for instance by classical chemical synthesis according to methods used in the protein synthesis or by proteolytic cleavage of larger molecules.

The expression "biologically pure" or "biological purity" means on the one hand a grade of purity such that the polypeptides can be used for the production of vaccinating compositions and on the other hand the absence of contaminants, more particularly of natural contaminants.

Paratuberculosis (Johne's disease) has been described as one of the most serious diseases affecting industry. This mycobacteriosis cattle produced by M. paratuberculosis is characterized by an successively enteritis leading emaciation, dysentery, cachexy and death (Chiodini R.J. "Ruminant paratuberculosis (Johne's et al.. 1984, disease): the current status and future prospects", 74:218-262). Histological examination Cronell Vet. shows oedema, infiltration and thickening of the ileal mucosa, and hypertrophy and necrosis of intestinal lymphnodes. A miliary syndrome with diffused parenchima granuloma in liver, spleen and lungs is not infrequent. The high contagiousness of this disease is due to large numbers of bacteria from excretion of intestinal tract: contaminated pastures propagate the producing live-stocks wherein rapidly infection, infected animals represent a large part of population. Chronical dysentery is an advanced stage of the disease, for epidemiological data suggest that the subclinical cases, with little sign of intestinal alteration correspond to the majority of infected animals and frequently to a large proportion of a live-stock population.

paratuberculosis Diagnosis of is essential, especially in the absence of clinical symptoms: leads to identification of hidden bacterial shedders and avoids propagation of infection. Unfortunately, diagnostic indicators for early stages of the disease are missing. In fact, identification of the etiological agent (a slow grower) is a lengthy process, histological examination of biopsy material difficult and expensive. More interesting appear to be the immunological procedures for analysis of humoral immune reactions (Brugère-Picoux J., diagnostic de la paratuberculose chez les ruminants", Rec. Méd. Vét. 163:539-546 ; Colgrave J.S. et al., 1989, "Paratuberculosis in cattle: a comparison of three serologic tests with results of fecal culture", Veterinary Microbiology 19:183-187). Although complement fixation hemagglutination and apparently lack both sensitivity and specificity, immunoenzymometric methods for evaluation antimycobacterial antibodies seem to be more promising (Abbas B. et al., 1983, "Isolation of specific peptides from Mycobacterium paratuberculosis protoplasm and their use in an enzyme linked immunosorbent assay for the detection of paratuberculosis (Johne's disease) in cattle", Am. J. Vet. Res. 44:2229-2236; Colgrave J.S. et al., 1989, "Paratuberculosis in cattle: a comparison of three serologic tests with results of fecal culture" Veterinary Microbiology, 19:183-187; Yokomizo Y. et 1983, "Enzyme-linked immunosorbent assay al., detection of bovine immunoglobulin G1 antibody to a protoplasmic antigen of Mycobacterium paratuberculosis" Am. J. Vet. Res. 44:2205-2207; Yokomizo Y. et al., 1985, "A method for avoiding false-positive reactions in an enzyme-linked immunosorbent assay (ELISA) for the

diagnosis of bovine paratuberculosis" Japan, J. Vet. Sci. 47:111-119).

Moreover, since slaughtering of cattle affected by tuberculosis (caused by M. bovis and/or Μ. tuberculosis), but not of those with paratuberculosis, is compulsory in Occidental countries, a distinction at the immunological level between the two mycobacterial diseases is essential. Moreover, M. paratuberculosis is known to be genetically close-related to M. avium (Chiodini R.J. et al., 1989, "The genetic relationship between Mycobacterium paratuberculosis and the M. avium complex" Acta Leprol. 7:249-251; Hurley S.S. et al., acid-relatedness "Deoxyribonucleic Mycobacterium paratuberculosis to others members of the family Mycobacteriaceae" Int. J. Syst. Bacteriol. 38:143-146), which is a possible host of the intestinal tract of ruminants.

Taking into account the cross reactivity between M. paratuberculosis and many other mycobacteria, it was a priori a difficult approach to find an antigen containing specific epitopes liable to be used as reagents for the diagnosis of paratuberculosis, said reagents having no cross reactivity with other close related mycobacteria.

In addition to the above-mentioned aspects relative to paratuberculosis in cattle, <u>M. paratuberculosis</u> has been found to play an etiologic role in at least some cases of Crohn's disease in human.

The disease originally described by Crohn and chronical ileitis producing coworkers was а granulomata the intestine of and hyperplastic lymphnodes. The syndrome presently known as Crohn's disease entails inflammatory alterations of different the digestive tract (month, οf esophagus, stomach, ileum and colon). Segments of the motive apparatus (joints, muscles and bones) can also be involved. Isolation of mycobacteria from patients affected by the Crohn's disease has been repeatedly related: in several instances isolates were identified as M. paratuberculosis. The induction by these isolates of a syndrome mimicking Crohn's disease in laboratory animals and primates has been successful. In a recent review article (Chiodini R.J., 1989, "Crohn's disease and the mycobacterioses: a review and comparison of two disease entities", Clin. Microbiol. Rev. 2:90-117), Chiodini suggests this syndrome to be the expression of several pathological entities and concludes, that, if Crohn's disease has a mycobacterial etiology, the most likely agent would be M. paratuberculosis.

At this present time, larger epidemiological investigation with an ELISA based on a specific protein of <u>M. paratuberculosis</u> is expected to help to solve the problem of the etiology of this enteritis resembling in many respects the Johne's disease of cattle.

The expression "cattle" means ruminants, such as bovines, sheeps, goats, cervidae, but also include some non ruminant animals which may also be infected by Johne's disease such as monkeys and horses.

aspect of the invention is to provide recombinant polypeptides which can be used as purified antigens for the detection and control of paratuberculosis.

Another aspect of the invention is to provide nucleic acids coding for the peptidic chains of biologically pure recombinant polypeptides which enable their preparation on a large scale.

Another aspect of the invention is to provide antigens which can be used in serological tests as an <u>in vitro</u> rapid diagnosis of paratuberculosis, as well as in skin tests for in vivo diagnosis of

paratuberculosis and as an immunogenic principle in vaccines.

Another aspect of the invention is to provide a rapid in vitro diagnostic means for paratuberculosis, enabling it to discriminate between cattle suffering from tuberculosis from the ones suffering from paratuberculosis.

Another aspect of the invention is to provide a rapid in vitro diagnostic means for paratuberculosis, enabling it to discriminate between cattle suffering from paratuberculosis from the ones infected or colonized by M. avium, M. bovis or M. tuberculosis or M. phlei.

Another aspect of the invention is to provide <u>in</u> <u>vitro</u> diagnostic means for patients suffering from Crohn's disease.

The invention relates to an antigen complex from M. paratuberculosis, named hereafter "the antigen A36", liable to be obtained as follows:

- sonication of bacterial suspensions of \underline{M} .

 paratuberculosis to obtain a homogenate (also named sonicate),
- centrifugation of the above-mentioned homogenate to obtain a supernatant (which corresponds to the cytoplasm of the bacteria),
- RNAase digestion of the above-mentioned supernatant,
- fractionation of the digested supernatant, for instance by gel exclusion chromatography, for instance on Sepharose 6B columns,
- recovery of the antigen complex (A36) which is the excluded fraction of the fractionation.

It is to be noted that the antigen complex hereabove defined corresponds to the TMA complex (thermostable macromolecular antigens), belonging to a family of complexes present in all mycobacteria and

consisting of or containing lipid, polysaccharide and protein moieties.

The proteic part of the antigen complex of the invention can be fractionated and visualized as follows:

- fractionation of the proteins of the above-mentioned antigen complex by electrophoresis in a gel, for instance 10% polyacrylamide gels to obtain the protein on bands,
- detection of the proteins by staining for instance with Coomassie blue.

The polypeptides of the invention contain in their polypeptidic chain:

- the amino acid sequence of 101 amino acids of Figure 8,
- or a fragment of this sequence, this fragment being such that:
 - . it is liable to be recognized by antibodies also recognizing the abovesaid sequence of 101 amino acids, but it is not recognized by antibodies raised respectively against M. bovis, M. avium, M. phlei and M. tuberculosis,
 - . it is liable to generate antibodies which also recognize the abovesaid sequence of 101 amino acids but which do not recognize M. bovis, M. avium, M. phlei and M. tuberculosis,
 - . it reacts with the majority of sera from cattle suffering from Johne's disease,
- or the polypeptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the above-mentioned properties.

Recognition of one of the above-mentioned fragments by the above-mentioned antibodies - or of the abovesaid sequence of 101 amino acids by the above-

mentioned antibodies - means that the above-mentioned fragment can form a complex with one of the above-said antibodies.

The formation of the complex antigen (i.e. the sequence of 101 amino acids or of the above-said fragment) - antibody and the detection of the existence of a formed complex can be done according to classical techniques such as the ones using a marker labeled by radioactive isotopes or by an enzyme.

Hereafter is also given in a non limitative way, a test for giving evidence of the fact that polypeptides of the invention are recognized selectively by the majority of the sera from cattle suffering from Johne's disease (immunodominant polypeptides), for instance bovines.

This test is an immunoblotting (Western blotting) analysis, in the case where the polypeptides of the invention are obtained by recombinant techniques. This test can also be used for polypeptides of the invention obtained by a different preparation process. After sulfate-polyacrylamide sodium dodecyl electrophoresis, polypeptides of the invention are onto nitrocellulose membranes (Hybond (Amersham)) as described by Towbin H. et al., 1979, of proteins "Electrophoretic transfer polyacrylamide gels to nitrocellulose sheets: procedure and some applications", Proc. Natl. Acad. Sci. 76:4350-4354. The expression of polypeptides of the invention fused to β -galactosidase in E. coli Y1089, is visualized by the binding of a polyclonal rabbit anti-A36 antiserum (or polyclonal rabbit anti-homogenate antiserum defined hereafter in the examples, polyclonal rabbit anti- β gal-p362 antiserum, defined hereafter in the examples) (1:1,000) or by using a monoclonal anti- β -galactosidase antibody (Promega). The secondary antibody (anti-rabbit immunoglobulin G and anti-mouse immunoglobulin G respectively, both alkaline phosphatase conjugated) is diluted as recommended by the supplier (Promega). Colour reaction is developed by adding NBT/BCIP (Nitro Blue Tetrazolium 5-bromo 4-chloro-3-indolyl phosphate [Promega]) using conditions recommended by suppliers.

In order to identify selective recognition of polypeptides of the invention and of fusion proteins of the invention by sera of bovine suffering from Johne's disease, nitrocellulose sheets are incubated overnight with each of these sera (1:50) (after blocking aspecific protein-binding sites).

Reactive areas on the nitrocellulose sheets are revealed by incubation with peroxidase conjugated goat anti-bovine immunoglobulin G antibody (Dakopatts, Copenhagen, Denmark) (1:200) for 4h, and after repeated washings, color reaction is developed by adding α -chloronaphtol (Bio-Rad Laboratories, Richmond, Calif.) in the presence of hydrogen peroxide.

The non-recognition of the antibodies raised against the above-mentioned fragments of the invention by <u>M. bovis</u>, <u>M. avium</u>, <u>M. phlei</u> and <u>M. tuberculosis</u> and by other mycobacteria can be done according to a process detailed in the examples.

As to the non-recognition of the above-mentioned fragments of the invention by antibodies raised respectively against <u>M. bovis</u>, <u>M. avium</u>, <u>M. phlei</u> and <u>M. tuberculosis</u> or other mycobacteria, it can also be done according to a process detailed in the examples.

Advantageous above-defined fragments of the invention are liable not to be recognized by antibodies raised against other mycobacteria such as <u>M. leprae</u>, <u>M. intracellulare</u>, <u>M. scrofulaceum</u>, <u>M. fortuitum</u>, <u>M. gordonae</u> and <u>M. smegmatis</u>, and are liable to generate antibodies which do not recognize M. leprae, M.

intracellulare, M. scrofulaceum, M. fortuitum, M. gordonae and M. smegmatis.

It goes without saying that the free reactive functions which are present in some of the amino acids, which are part of the constitution of the polypeptides of the invention, particularly the free carboxyl groups which are carried by the groups Glu and Asp or by the C-terminal amino acid on the one hand and/or the free NH₂ groups carried by the N-terminal amino acid or by amino acids inside the peptidic chain, for instance Lys, on the other hand, can be modified in so far as this modification does not alter the above mentioned properties of the polypeptide.

The molecules which are thus modified are naturally part of the invention. The above mentioned carboxyl groups can be acylated or esterified.

Other modifications are also part of the the amine or carboxyl Particularly, invention. functions or both of terminal amino acids can be themselves involved in the bond with other amino acids. For instance, the N-terminal amino acid can be linked the C-terminal amino acid of another peptide comprising from 1 to several amino acids.

Furthermore, any peptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids of the polypeptides according to the invention are part of the invention in so far as this modification does not alter the above mentioned properties of said polypeptides.

The polypeptides according to the invention can be glycosylated or not, particularly in some of their glycosylation sites of the type Asn-X-Ser or Asn-X-Thr, X representing any amino acid.

An advantageous recombinant polypeptide of the invention is constituted by the sequence represented on Figure 8, extending from the extremity constituted by

amino acid at position (1) to the extremity constituted by amino acid at position (101), or by the following peptides:

Glu-Phe-Pro-Gly-Gly-Gln-His-Ser-Pro-Gln,

(position 1 to 11 on Figure 8)

Gln-Gln-Ser-Tyr-Gly-Gln-Glu-Pro-Ser-Ser-Pro-Ser-Gly-Pro-Thr-Pro-Ala

(position 85 to 101 on Figure 8).

It is to be noted that this polypeptide is derived from the expression product of a DNA derived from the nucleotide sequence coding for a polypeptide of 10 kDa being the carboxy terminal part of a 34 kDa protein of M. paratuberculosis, defined hereafter.

An advantageous recombinant polypeptide of the invention is characterized by the fact that:

- it contains the amino sequence of 101 amino acids of Figure 8 as its C-terminal part,
- it has a molecular weight of about 34kDa, in SDS-PAGE,
- it is coded by a nucleotide sequence liable to hybridize with the complementary strand of the sequence of Figure 11,
- it reacts with the majority of sera from cattle suffering from Johne's disease,
- it is advantageously liable to elicit a cellular immune response in sensitized subjects.

Subjects can be either test animals such as mice or guinea pigs or cattle or human beings.

"Sensitized" means that these subjects have been in contact previously with <u>M. paratuberculosis</u>, resulting in a priming of the cellular immune system.

Sensitization can be induced by inoculating the subjects with killed or attenuated \underline{M} . paratuberculosis or it can result from a natural infection with \underline{M} . paratuberculosis.

A positive cellular immune response to the polypeptides of the invention can be detected for example <u>in vivo</u> by a delayed - type hypersensitivity reaction upon skintesting with the polypeptides of the invention or <u>in vitro</u> by proliferation of peripheral blood lymphocytes isolated from sensitized subjects, in response to the added polypeptides.

An advantageous recombinant polypeptide of the invention contains or is constituted by the amino acid sequence of Figure 11.

Another advantageous recombinant polypeptide of the invention contains or is constituted by the amino acid sequence extending from amino acid at position (1) to the amino acid at position (199), of Figure 11.

It is to be noted that this polypeptide is a 34 kDa protein which is present in the proteic part of the TMA complex of \underline{M} . paratuberculosis (A36).

Hereafter is given, in a non limitative way, a process for preparing this 34 kDa protein of the invention.

The DNA sequence (306 bp) coding for p362, being the carboxyterminal end of the 34 kDa protein has been determined (see Figure 8). It contains a unique ApaI (GGGCCC) site at position 141.

Using this information, the full gene coding for the 34 kDa protein can be isolated as follows:

An oligonucleotide coding for a stretch of at least 30 bp, situated within the region EcoRI-ApaI (1-141 bp) of the known sequence, is synthesized.

It is labeled and used as a probe to hybridize to the DNA of M. paratuberculosis (strain ATCC 19698), which has previously been cut by ApaI, separated by agarose gel electrophoresis, denatured and transferred to a nylon membrane.

This hybridization indicates a band on the nylon membrane of around 1500 bp, which contains the coding

part for the rest of the 34 kDa protein. After having located this 1500 bp fragment, flanked by 2 ApaI sites, in the agarose gel, it is isolated from the gel, purified and subcloned in the ApaI site of the sequencing vector pBluescript SK⁺.

After sequencing of this fragment, the coding region, starting with the initiation codon ATG or GTG, is delineated. Using a restriction site near the initiation codon (5' end), naturally present or created by site-directed mutagenesis, and the ApaI site at the 3' end, the DNA fragment coding for the N-terminal part of the protein (about 750 bp) is excised from pBluescript SK⁺, and purified. It is ligated to the ApaI site of the fragment coding for the C-terminal part of p362 (142-306, Figure 8), that for example has been prepared synthetically.

The complete gene coding for the 34 kDa protein (about 910 bp) is subcloned in an expression vector and expressed in $\underline{E.\ coli}$. The recombinant 34 kDa protein is then purified.

The invention also relates to the amino acid sequences constituted by the above mentioned polypeptides and a protein or an heterologous sequence with respect to said polypeptide, said protein or heterologous sequence comprising for instance from about 1 to about 1100 amino acids. These amino acid sequences will be called fusion proteins.

In an advantageous fusion protein of the invention, the heterologous protein is β -galactosidase.

The invention also relates to a nucleic acid characterized by the fact that it comprises or is constituted by:

- a nucleotide chain liable to hybridize with the nucleotide chain coding for the polypeptides according to the invention, or

- a nucleotide chain coding for the polypeptides according to the invention, or
- the complementary sequences of the above nucleotide chains.

The invention also relates to nucleic acids comprising nucleotide sequences which hybridize with the nucleotide sequences coding for any of the above mentioned polypeptides under the following hybridization conditions:

- hybridization and wash medium:
- * a preferred hybridization medium contains about 3 x SSC [SSC = 0.15 M sodium chloride, 0.015 M sodium citrate, pH 7], about 25 mM of phosphate buffer pH 7.1, and 20% deionized formamide, 0.02% Ficoll, 0.02% BSA, 0.02% polyvinylpyrrolidone and about 0.1 mg/ml sheared denatured salmon sperm DNA,
- * a preferred wash medium contains about 3 x SSC, about 25 mM phosphate buffer, pH 7.1 and 20% deionized formamide;
- hybridization temperature (HT) and wash temperature (WT) for the nucleic acids of the invention defined by x-y: i.e. by the sequence extending from the extremity constituted by the nucleotide at position (x) to the extremity constituted by the nucleotide at position (y) represented on Figures 7A, 7B or 7C:
- 1 306 (for Figures 7B and 7C) or

 $HT = WT = 65^{\circ}C$

- 1 307 (for Figure 7A)
- 1 507 (for Figures 7B and 7c)

HT = WT = 65°C

1 - 508 (for Figure 7A)

The above mentioned temperatures are to be considered as approximately ± 5°C.

It is to be noted that in the above defined nucleic acids, as well as in the hereafter defined

nucleic acids, the nucleotide sequences which are brought into play are such that T can be replaced by U.

A group of preferred nucleic acids of the invention comprises one at least of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (307) represented in Figure 7A,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (508) represented in Figure 7A, wherein
- X and E represent phosphodiester bonds,
- Y and F represent respectively G and C,
- Z and H represent respectively C and G, or
- X and E represent respectively G and C,
- Y and F represent respectively C and G,
- Z and H represent phosphodiester bonds.

A group of preferred nucleic acids of the invention comprises one at least of the following nucleotide sequences:

- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (306) represented in Figure 7B,
- the one extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (507) represented in Figure 7B.

The nucleotide sequence represented in Figure 7B corresponds to the one represented in Figure 7A, wherein

- X and E represent phosphodiester bonds,
- Y and F represent respectively G and C,

- Z and H represent respectively C and G.

The invention also relates to a nucleic acid characterized by the fact that it comprises or is constituted by a nucleotide chain,

- extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (306) on Figure 7C, or
- extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (507) on Figure 7C.

The nucleotide sequence represented on Figure 7C corresponds to the one represented on Figure 7A, wherein

- X and E represent respectively G and C,
- Y and F represent respectively C and G,
- Z and H represent phosphodiester bonds.

The invention also relates to a nucleic acid which comprises or is constituted by:

- a nucleotide sequence liable to hybridize with the complementary strand of the nucleotide sequence of Figure 11, or with the complementary strand of the nucleotide sequence extending from nucleotide at position (742) to nucleotide at position (1338) of Figure 11,
- the nucleotide sequence of Figure 11 or the nucleotide sequence extending from nucleotide at position (742) to nucleotide at position (1338) of Figure 11,
- the complementary sequences of the nucleotide sequences above-defined.

From the nucleic acids of the invention, probes (i.e. cloned or synthetic oligonucleotides) can be inferred.

These probes can be from 15 to the maximum number of nucleotides of the selected nucleic acids. The oligonucleotides can also be used either as

amplification primers in the PCR technique (PCR, Mullis and Faloona, Methods in Enzymology, vol. 155, p. 335, 1987) to generate specific enzymatically amplified fragments and/or as probes to detect fragments amplified between bracketing oligonucleotide primers.

The specificity of a PCR-assisted hybridization assay can be controlled at different levels.

The amplification process or the detection process or both can be specific. The latter case giving the higher specificity is preferred.

The invention also relates to any recombinant nucleic acid containing at least one of the nucleic acids of the invention combined to or inserted in a heterologous nucleic acid.

The invention relates more particularly to recombinant nucleic acid such as defined, in which the nucleotide sequence of the invention is preceded by a promoter (particularly an inducible promoter) under the control of which the transcription of said sequence is liable to be processed and possibly followed by a sequence coding for transcription termination signals.

The invention also relates to the recombinant nucleic acids in which the nucleic acid sequences coding for the polypeptide of the invention and possibly the signal peptide, are recombined with control elements which are heterologous with respect to the ones to which they are normally associated with in the mycobacterial genome and, more particularly, the regulation elements adapted to control their expression in the cellular host which has been chosen for their production.

The invention also relates to recombinant vectors, particularly for cloning and/or expression, comprising a vector sequence, notably of the type plasmid, cosmid or phage or virus DNA, and a recombinant nucleic acid

of the invention, inserted in one of the non essential sites for its replication.

According to an advantageous embodiment of the invention, the recombinant vector contains necessary elements to promote the expression in a cellular host of polypeptides coded by nucleic acids according to the said vector and notably in invention inserted the RNA polymerase of the promoter recognized by cellular host, particularly an inducible promoter and transcription sequence coding for a possibly termination signals and possibly a signal sequence and/or an anchoring sequence.

According to another additional embodiment of the invention, the recombinant vector contains the elements enabling the expression by $\underline{\mathbf{E}}$. $\underline{\mathbf{coli}}$ of a fusion protein consisting of the polypeptide of β -galactosidase or part thereof linked to a polypeptide coded by a nucleic acid according to the invention.

The invention also relates to a cellular host, chosen from among bacteria such as \underline{E} . \underline{coli} or chosen from among eukaryotic organism, such as CHO cells or insect cells, which is transformed by a recombinant vector according to the invention, and containing the regulation elements enabling the expression of the nucleotide sequence coding for the polypeptide according to the invention in this host.

The invention relates to an expression product of a nucleic acid expressed by a transformed cellular host according to the invention.

The invention also relates to a process for preparing a recombinant polypeptide according to the invention comprising the following steps:

- the culture in an appropriate medium of a cellular host which has previously been transformed by an appropriate vector containing a nucleic acid according to the invention,

- the recovery of the polypeptide produced by the above said transformed cellular host from the above said culture medium, or from the cellular host, and
- possibly the purification of the polypeptide produced, eventually by means of immobilized metal ion affinity chromatography (IMAC).

The polypeptides of the invention can be prepared according to the classical techniques in the field of peptide synthesis.

The synthesis can be carried out in homogeneous solution or in solid phase.

For instance, the synthesis technique in homogeneous solution which can be used is the one described by Houbenweyl in the book titled "Methode der organischen chemie" (Method of organic chemistry) edited by E. Wunsh, vol. 15-I et II. THIEME, Stuttgart 1974.

The polypeptides of the invention can also be prepared in solid phase according to the method described by Atherton & Shepard in their book titled "Solid phase peptide synthesis" (Ed. IRL Press, Oxford, NY, Tokyo, 1989).

The invention also relates to a process for preparing the nucleic acids according to the invention.

A suitable method for chemically preparing the single-stranded nucleic acids (containing at most 100 nucleotides of the invention) comprises the following steps:

- DNA synthesis using the automatic β -cyanoethyl phosphoramidite method described in Bioorganic Chemistry 4; 274-325, 1986.

In the case of single-stranded DNA, the material which is obtained at the end of the DNA synthesis can be used as such.

A suitable method for chemically preparing the double-stranded nucleic acids (containing at most

100 bp of the invention) comprises the following steps:

- DNA synthesis of one sense oligonucleotide using the automatic β -cyanoethyl phosphoramidite method described in Bioorganic Chemistry 4; 274-325, 1986, and DNA synthesis of one anti-sense oligonucleotide using said above-mentioned automatic β -cyanoethyl phosphoramidite method,
- combining the sense and anti-sense oligonucleotides by hybridization in order to form a DNA duplex,
- cloning the DNA duplex obtained into a suitable plasmid vector and recovery of the DNA according to classical methods, such as restriction enzyme digestion and agarose gel electrophoresis.

A method for the chemical preparation of nucleic acids of length greater than 100 nucleotides - or bp, in the case of double-stranded nucleic acids - comprises the following steps:

- assembling of chemically synthesized oligonucleotides, provided at their ends with different restriction sites, the sequences of which are compatible with the succession of amino acids in the natural peptide, according to the principle described in Proc. Nat. Acad. Sci. USA 80; 7461-7465, 1983,
- cloning the DNA thereby obtained into a suitable plasmid vector and recovery of the desired nucleic acid according to classical methods, such as restriction enzyme digestion and agarose gel electrophoresis.

The invention also relates to antibodies themselves formed against the polypeptides according to the invention, and characterized by the fact that they recognize neither <u>M. bovis</u>, nor <u>M. avium</u>, nor <u>M. phlei</u>, nor <u>M. tuberculosis</u>.

It goes without saying that this production is not limited to polyclonal antibodies.

It also relates to any monoclonal antibody produced by any hybridoma liable to be formed according to classical methods from splenic cells of an animal, particularly of a mouse or rat, immunized against the purified polypeptide of the invention on the one hand, and of cells of a myeloma cell line on the other hand, and to be selected by its ability to produce the monoclonal antibodies recognizing the polypeptide which has been initially used for the immunization of the animals.

The invention also relates to any antibody of the invention labeled by an appropriate label of the enzymatic, fluorescent or radioactive type.

The polypeptide which is advantageously used to produce antibodies, particularly monoclonal antibodies, is the one or part of the one extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (101) represented on Figure 8.

Variations of this peptide are also possible depending on its intended use. For example, if the peptide is to be used to raise antisera, the peptide may be synthesized with an extra cysteine residue added. This extra cysteine residue is preferably added to the amino terminus and facilitates the coupling of the peptide to a carrier protein which is necessary to render the small peptide immunogenic. If the peptide is to be labeled for use in radioimmune assays, it may be advantageous to synthesize the protein with a tyrosine attached to either the amino or carboxyl terminus to facilitate iodination. This peptide possesses therefore the primary sequence of the peptide above-mentioned but with additional amino acids which do not appear in the primary sequence of the protein and whose sole function is to confer the desired chemical properties to the peptide.

The invention also relates to a process for detecting <u>in vitro</u> antibodies related to paratuberculosis in a biological sample of an animal liable to contain them, this process comprising

- contacting the biological sample with a polypeptide or a peptide according to the invention, or the expression product of the invention, under conditions enabling an <u>in vitro</u> immunological reaction between said polypeptide and the antibodies which are possibly present in the biological sample and
- the <u>in vitro</u> detection of the antigen/antibody complex which may be formed.

Preferably, the biological medium is constituted by an animal serum, and particularly by bovine serum.

The detection can be carried out according to any classical process.

By way of example a preferred method brings into play an immunoenzymatic process according to ELISA technique or immunofluorescent or radioimmunological (RIA) or the equivalent ones.

Thus the invention also relates to any polypeptide according to the invention labeled by an appropriate label of the enzymatic, fluorescent, radioactive... type.

Such a method for detecting <u>in vitro</u> antibodies related to paratuberculosis comprises for instance the following steps:

- deposit of determined amounts of a polypeptidic composition according to the invention in the wells of a titration microplate,
- introduction into said wells of increasing dilutions of the serum to be diagnosed,
- incubation of the microplate,
- repeated rinsing of the microplate,
- introduction into the wells of the microplate of labeled antibodies against the blood immunoglobulins,

- the labeling of these antibodies being based on the activity of an entyme which is selected from among the ones which are able to hydrolyze a substrate by modifying the absorption of the radiation of this latter at least at a given wave length,
- detection by comparing with a control standard of the amount of hydrolyzed substrate.

The invention also relates to a process for detecting and identifying in vitro antigens of M. paratuberculosis in an animal biological sample liable to contain them, this process comprising:

- contacting the biological sample with an appropriate antibody of the invention under conditions enabling an in vitro immunological reaction between said antibody and the antigens of M. paratuberculosis which are possibly present in the biological sample and
- the <u>in vitro</u> detection of the antigen/antibody complex which may be formed.

Preferably, the biological medium is constituted by serum or faeces, milk or urine, particularly of bovine origin.

Appropriate antibodies are advantageously monoclonal antibodies directed against the abovementioned peptide.

The invention also relates to an additional method for the <u>in vitro</u> diagnosis of paratuberculosis in an animal liable to be infected by <u>Mycobacterium</u> paratuberculosis comprising:

- contacting a biological sample taken from an animal with a polypeptide or a peptide of the invention, or the expression product of the invention, under conditions enabling an <u>in vitro</u> immunological reaction between said polypeptide or peptide and the antibodies which are possibly present in the biological sample and - the <u>in vitro</u> detection of the antigen/antibody complex which has possibly been formed.

To carry out the <u>in vitro</u> diagnostic method for paratuberculosis in an animal liable to be infected by <u>Mycobacterium paratuberculosis</u>, the following necessary or kit can be used, said necessary or kit comprising:

- a polypeptide or a peptide according to the invention, or the expression product of the invention,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complex which has been produced by the immunological reaction, said reagents possibly having a label, or being liable to be recognized by a labeled reagent, more particularly in the case where the above mentioned polypeptide or peptide is not labeled.

The invention also relates to an additional method for the <u>in vitro</u> diagnosis of paratuberculosis in an animal liable to be infected by <u>M. paratuberculosis</u>, comprising the following steps:

- contacting a biological sample of said animal with an appropriate antibody of the invention under conditions enabling an <u>in vitro</u> immunological reaction between said antibody and the antigens of <u>M. paratuberculosis</u> which are possibly present in the biological sample and - the <u>in vitro</u> detection of the antigen/antibody complex which may be formed.

To carry out the <u>in vitro</u> diagnostic method for paratuberculosis in an animal liable to be infected by <u>Mycobacterium paratuberculosis</u>, the following necessary or kit can be used, said necessary or kit comprising:

- an antibody of the invention,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complexes which have been produced by the immunological reaction, said reagent possibly having a label or being liable to be recognized by a labeled reagent, more

particularly in the case where the above-mentioned antibody is not labeled.

An advantageous kit for the <u>in vitro</u> diagnosis of paratuberculosis comprises:

- at least a suitable solid phase system, e.g. a microtiter-plate for deposition thereon of the biological sample to be diagnosed in vitro,
- a preparation containing one of the monoclonal antibodies of the invention,
- a specific detection system for said monoclonal antibody,
- appropriate buffer solutions for carrying out the immunological reaction between a test sample and said monoclonal antibody on the one hand, and the bonded monoclonal antibodies and the detection system on the other hand.

The invention also relates to a kit, as described above, also containing a preparation of one of the polypeptides or peptides of the invention, said antigen of the invention being either a standard (for quantitative determination of the antigen of M. paratuberculosis which is sought) or a competitor, with respect to the antigen which is sought, for the kit to be used in a competition dosage process.

The invention also relates to a method for the <u>in</u> <u>vitro</u> diagnosis of Crohn's disease in a patient liable to be infected by <u>Mycobacterium</u> <u>paratuberculosis</u> comprising the following steps:

- contacting the biological sample with an appropriate antibody according to the invention, under conditions enabling an <u>in vitro</u> immunological reaction between said antibody and the antigens of <u>M. paratuberculosis</u> which are possibly present in the biological sample and - the <u>in vitro</u> detection of the antigen/antibody complex which may be formed.

The invention also relates to a method for the <u>in</u> <u>vitro</u> diagnosis of Crohn's disease in a patient liable to be infected by <u>M. paratuberculosis</u>, comprising the following steps:

- contacting a biological sample taken from a patient with a polypeptide or peptide according to the invention, or the expression product of the invention, under conditions enabling an <u>in vitro</u> immunological reaction between said polypeptide and the antibodies which are possibly present in the biological sample and - the <u>in vitro</u> detection of the antigen/antibody complex which has been possibly formed.

The invention also relates to a necessary or kit for an <u>in vitro</u> diagnosis method of Crohn's disease in a patient liable to be infected by <u>Mycobacterium</u> paratuberculosis, said necessary or kit comprising:

- an antibody according to the invention,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complexes which have been produced by the immunological reaction, said reagents possibly having a label or being liable to be recognized by a labeled reagent, more particularly in the case where the above-mentioned antibody is not labeled.

The invention also relates to a necessary or kit for an <u>in vitro</u> diagnosis method of Crohn's disease in a patient liable to be infected by <u>Mycobacterium paratuberculosis</u> said necessary or kit comprising:

- a polypeptide or a peptide according to the invention, or the expression product of the invention,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complex which has been produced by the immunological reaction, said reagents possibly having a label, or

being liable to be recognized by a labeled reagent, more particularly in the case where the above mentioned polypeptide is not labeled.

The invention also relates to an immunogenic composition comprising a polypeptide or a peptide according to the invention, or the expression product of the invention, in association with a pharmaceutically acceptable vehicle.

vaccine invention also relates to a The composition comprising among other immunogenic principles anyone of the polypeptides or peptides of invention or the expression product of the invention, possibly coupled to a natural protein or to a synthetic polypeptide having a sufficient molecular weight so that the conjugate is able to induce in vivo the production of antibodies neutralizing Mycobacterium paratuberculosis, induce in vivo a protective or activating cellular immune response by paratuberculosis antigen-responsive T cells.

The invention also relates to a necessary or kit for the diagnosis of prior exposure of an animal to M. paratuberculosis, said necessary or kit containing a preparation of at least one of the polypeptides or peptides of the invention, or the expression product of the invention, with said preparation being able to induce in vivo after being intradermally injected to an animal a delayed type hypersensitivity reaction, at the site of injection, in case the animal has had prior exposure to M. paratuberculosis.

Other characteristics and advantages of the invention will appear in the following examples and the figures illustrating the invention.

LEGENDS TO FIGURES

- Figure 1(1) represents the two-dimensional cross immunoelectrophoresis (CIE) of total cytoplasm (the

supernatant fraction obtained after centrifugation of the sonicate) from M. paratuberculosis and Figure 1(2) represents the two-dimensional cross immunoelectrophoresis of the exclusion fraction obtained by gel exclusion chromatography of the same cytoplasm.

In the second dimension (upward in the figure), migration was made in a gel containing rabbit antiserum mycobacterial sonicate. against the directed Preparations in 1 and 2 contained 10 μg of proteins. AMT complex figure identifies the exclusion (A36) present in the paratuberculosis fraction.

- Figure 2 represents the serological analysis of infected animals with polypeptide p362. Multiwell plates were coated with 4 μg of proteins/well of Ε. coli-a362 total cytoplasm (white) or Ε. coli-control total cytoplasm (black). Samples of diluted (1/400) bovine sera previously exhausted by incubation with Ε. coli-control homogenate (said homogenate and total cytoplasm being obtained in the same way as Μ. paratuberculosis homogenate and total cytoplasm as described above) were added, followed by washing, incubation with labeled anti-bovine Ig, peroxidase reagents and spectrophotometric reading at 450 nm.

The following sera were used: asymptomatic non-excretory (sample 1), asymptomatic excretory (samples 2 to 13), symptomatic excretory (samples 14 to 24) and healthy bovine (samples 26 to 32).

- Figure 3 represents the serological analysis of infected animals with a A36-based immunoassay.

Multiwell plates were coated with comparable amounts (0.5 μ g total proteins/well) of: M. paratuberculosis total cytoplasm (black), A36 (white) and B. subtilis total cytoplasm (control: hatched). Samples of diluted (1/400) bovine sera previously

exhausted by incubation with B. subtilis homogenate (said homogenate and total cytoplasm being obtained in the same way as M. paratuberculosis homogenate and cytoplasm as above-described) were total added, followed by washing, incubation with labeled antibovine Ig, peroxidase reagents and spectrophotometric reading at 450 nm. The following bovine sera were used: symptomatic-excretory forms of paratuberculosis (samples 1 to 7); b) asymptomatic-excretory forms (samples 8 to 12); and c) healthy cattle (samples 13 to 15). Mean values of absorbance and standard deviations are the results of 4 repeats.

Figure 4 represents the recognition of different A36 proteins by the sera of infected bovines. A36 proteins from M. paratuberculosis were fractionated by gel electrophoresis and transferred to nitrocellulose. Membranes were incubated with sera from uninfected (lane 8) or infected animals (lanes 4 to 7), either pre-absorbed (lane 7) or not (lanes 4, 5, 6) with a mixture of homogenates of M. avium, M. bovis and M. phlei. Membrane-bound primary Ig were revealed by labeled secondary Ig. Sera of infected animals were as follows: asymptomatic-non excretory (lane asymptomatic-excretory (lane 5), and symptomaticexcretory (lane 6, 7) cases of paratuberculosis. Reference molecular weight standards (lane 1) and A36 proteins (lane 2) were stained by India ink. Reference: immunoblotted with proteins anti-A36 rabbit antiserum (lane 3).

Figure 5 represents the analysis of the size of the polypeptide (p362) fused to β -galactosidase expressed by recombinant clone a362 (hereafter defined). This fusion protein is named β gal-p362.

Lysate proteins of <u>E. coli</u> Y1089 lysogenized either by standard λ gtll (tracks C and E) or by the same phage carrying the insert coding for p362 (clone

a362) (tracks D and F) were fractionated by 7.5% polyacrylamide gel electrophoresis. Tracks C and D and molecular weight standards (tracks A and B) were stained with Coomassie brilliant blue, whereas tracks E and F were treated with rabbit anti-A36 antiserum and stained with peroxydase-labeled anti-rabbit antiserum.

Figure 6 represents the evidence of the belonging of the recombinant polypeptide p362 to the 34 kD protein of the A36 complex.

The TMA complex from M. paratuberculosis was protein components were and its dissociated fractionated by 10% polyacrylamide gel electrophoresis nitrocellulose transblotted to а Fractionated proteins were either stained with India ink (track b) or incubated with rabbit anti- β gal-p362 molecular weight Track a: (track c). antiserum standards.

Figure 7A represents the nucleic acid sequence encompassing the nucleic acid sequence of Figure 7B and the one of Figure 7C.

Figure 7B represents a sequence homologous to the one represented on Figure 7C.

Figure 7C represents the base sequence of the M. paratuberculosis genomic fragment present in clone a362 and coding for p362.

It should be noted that the two EcoRI sites [GAATTC] present at both ends of the sequence are a result of the cloning strategy and are not naturally present in the genomic sequence.

Figure 8 represents the amino acid sequence and corresponding nucleotide sequence of the recombinant polypeptide p362.

It should be noted that the first two amino acids, corresponding to the EcoRI sites in the DNA sequence, are not naturally present in the native protein, but are a result of cloning.

Figure 9a corresponds to the restriction and genetic map of the pmTNF-MPH plasmid used in Example II for the expression of p362 of the invention in \underline{E} . \underline{coli} .

Figure 9b corresponds to the pmTNF-MPH nucleic acid sequence.

On this figure, the origin of nucleotide stretches used to construct plasmid pmTNF-MPH is specified hereafter.

Position

- 1-208: lambda PL containing EcoRI blunt-MboII blunt fragment of pPL(\(\lambda\)) (Pharmacia)
- 209-436: synthetic DNA fragment
- 230-232: initiation codon (ATG) of mTNF fusion protein
- 236-307: sequence encoding AA 2 to 25 of mature mouse TNF
- 308-384: multiple cloning site containing His₆ encoding sequence at position 315-332
- 385-436: HindIII fragment containing <u>E. coli</u> trp terminator
- 437-943: rrnBT₁T₂ containing HindIII-SspI fragment from pKK223 (Pharmacia)
- 944-3474: DraI-EcoRI blunt fragment of pAT $_{153}$ (Bioexcellence) containing the tetracycline resistance gene and the origin of replication.

Figure 10 represents the complete amino acid sequence of the recombinant polypeptide mTNF-H6-p362. The amino acids 1-26 represent the mTNF part, the amino acids from 27-46 correspond to the polylinker part (H6) and the remaining amino acids (47-147) represent the <u>M. paratuberculosis</u> 10 kDa polypeptide (p362).

Figure 11 represents the DNA sequence containing the nucleic acid coding for the protein of 34 kDa hereabove defined and the corresponding amino acid sequence. Nucleotides are numbered in the right-hand

side margin and amino acids are numbered below the protein sequence.

It is to be noted that the arrow before amino acid 200 corresponds to the third amino acid of Figure 8, since the first two amino acids of Figure 8 are artificial, corresponding to the <u>EcoRI</u> site from cloning.

Table 5 hereafter corresponds to the complete restriction site analysis of pmTNF-MPH.

Φ
_
ع
₫
H

**************************************	 ICTI	******* ON-SIT		**************************************								
Done on	DNA	sequence		PMTNFMPH								
Total number of bas Analysis done on th	mbeı dor	number of bas is done on th	a a	is: 3474. completes	l. sequence.	nce.						
	•			1		1		# # # #				
List of cuts by	Cuts	by enz	туте.									
Acc I	••	371	2818									
_	••	788	2264	2921	3035	3056						
Afl II	••	387										
ALI III Aha III	•• ••	1698 224										
	••	386	439	1141	1398	1534	1760	2382	2785	1 7 7 7	245	
Alw NI	••	1289				• ! !)	1	3	7	00.50	
	••	345										
	••	1384				•						
Asp 7181	••	210				•						
Agu I	••	341	342	547	919	992	1988	2030	2209	2333	2582	267
-		2945	3297									
Ava I	••	338	2043									
	••	547	1988	2030	2333	2582	2670					
Bal I	••	2026			-							
Bam HI	••	334	3093									

									4	300				444 4	289 13	979 19	423	87	56	}		010 23	•					
									11 3	936 3				439	1224 1	1779	382 2	2857 2	3441 34) 		1134 2						
									2028	~				400	1213	1760	36	2801	3322			1059						
3255	3								67	1986	30			386	1170	.1687	2353	2785	3298		1888	1048						
98	2683			3101					55	1321	90			361	1141	1676	21	2641	3175		1424	1040	3122					
92	2050			1140	3088				1539	9	2	17		350	844	1658	~	2597	3140		1015	962	3095					
3059 1919	2026			1054	36				908	736	2699	90		343	828	1632	2189	2552	3071		717	950	3004				1	3238
$\frac{3038}{1806}$	1279			5	1052	97			638	4	2539	93		272	167	1534	2145	53	2999		661	336	2645	94		2940		2976
2924 1788	27	2738	54	~	S	1			2	3	2185	52		265	678	1398	2063	51	œ	3	7		7	2030	3	2	1	2692
2267 1369	$\overline{}$	1875	~	17	329	906	2414	354	215		3		3446		099	1393			2947	_	3	11	ਥ	1988	σ,	ø,	[9]	V
•• ••	••	**	••	••	••	••	••	••	••	••	••	••	••	••						••	••	••		••	••	••	••	••
- -	*	11	-		*								н							01				H	* * * * * * * * * * * * * * * * * * *		<u>.</u>	4 / I I I
Bbe	2	Bbv	Bgl	Bin	Bin	Bsp	Bsp	Bsp	Bst	Cau	Cfr	Cfr	Cla	C∨i.						₹V.	ode	Dpn		Ora	Jra) Ba	00	၀

			_		m		~	_	
			177	236	24		202	317	· .
		3338	1774	2307	3244 2366		2552 3240 1687	3071	
		2409	1656	2262	3173 2237		2480 3059 1676	2947	3392
		2026	1501	2183	3170 2227		2423 3038 1658	2939	3349
		1671	1358	2064	2892 2082		2026 2978 1224	2875	3055
con't)		1550	1293	2061	2889 2056	3125	1687 2924 844	2641	2829 3196 3034
Table 5 (con't)		1537	1290	2054	2855 1934	2769	1676 2697 828	2552	2238 3068 2885 2920
Lab	3057	804	1084	2040	2748 1837	2654 3322	1224 2267 767	2531	2088 2514 2298 2702
	3036	989	532	11911	2697 1655	2525 3370 2468	844 1828 678	2480	796 2482 2007 2263 3001
	2922 2845	526	417	1908	2532 1074	2498 852 2423	828 1458 361	2423	183 1586 1388 2179 2987
	216 1156 2265 198	30		1795	2447	49 46 81	2088 2642 361 394	2210	3298 160 1008 141 210 345
	** ** ** **	•• ••	•• ••		••	•• ••			00 00 08 08 08
	571 571* 781 NI	RI	RV 4HI		110	* H H	. *	i	1 1 ** C I I *
	Eco Eco Eco Eco	Eco Eco	Bco Fnu		Fnu	Fok Fok	Gsu Gsu Hae Hae	3	= = = = = = = = = = = = = = = = = = =

					Table 5		(Con't)					
Ilha I	••	542	593	1074	1183	1357	1457	1524	1794	1827	2017	205
		2115	2266	2525	2656	2696	2771	2923	2977	3037	3058	321
		3239	3371									
Hin PlI	••	540	591	1072	1181	1355	1455	1522	1792	1825	2015	205
		2113	2264	2523	2654	2694	2769	2921	2975	3035	3026	320
Hind II Hind III Hinf I	** ** **	3237 109 384 368	3369 372 437 1328	2819 3439 1724	1799	1944	2165	2463	2617	2837		
—	, ••	2	339	355	375	735	769	1130	1320	1346	1493	198
		2186	2212	2450	2540	2700	2776	2936	3059	3068	3083	330
		3309										
Hph I Hph I*	**	96 8	140 305	183 311	716 317	196	1953	2174	3028	3073	3355	
	•• ••	214	952	1205	1981	3240						
	• ••	7	330	751	997	1900	1924	2513	2569			
HH	•• ••	2	257 236	1162 334	1278 948	1341 960	2320 1038	2587 1046	3255 1057	3343 1132	2008	232
ŧ	•	2340	2371	2643	3002	3093	3120					
Mbo II*		2 0	2997	2	1032	1001	7/67	C # / 7				
HH	• ••	1305	1489	3165 1595	3252 2001	2499	2683					
Mnl I*	••	210	291	350	764	1520	1803	2169	2196	2234	2295	259
		2864	3083	3287	3347							

							_	9	_	•													
							201	346	221	339												153	
							1881	3121	2181	3351												1321	
	3436						1702	2983	2146	3141											1	908	3340
	3414						982	2910	2032	3095											!	169	3300
	994						912	2764	1989	3057												736	2936
	817		•				620	2725	1670	3036											•	638	2411
n't)	486						565	2539	1631	2946												528	2212
e 5 (Con't)	388	0	3069	3056			382	2422	549	2922		2331										340	2028
Table	223	3610	7/01	3035			349	2294	343	2704		1360	2910	2154					2948			339	1986
	188	# 1 1 7 1 1 2 C	1 6 6 7	2921			232	2279	336	2583		1115	1702	2105	1807	2831		2030	2033	3307	2817	215	1673
	181	- ⟨		7 0	4	3	9	2222	212	2265	- 6	41	8	295	2	7	3	8	99	-	~	9	1552
	** *	• •	••	••	••	••	••		••		••	••	••	••	••	••	••	••	֥	••	••	••	
	-	⊣ ⊦	-	-	—	—	III		IV		H	BII	HI	H	Ħ	* I	CI	MI)	H		H	
	Mae		Nae	Nar	NGO	Nhe	Nla		Nla		Nru	Nap	Nap		Ple		_						

37bis

		333					153												•		
		3339					1319														
	3196	2940					804	3338			3446	-									
	3001	2934					167	3298			3131										
	2987	2301		3255			734	2934			2818						3093				
	2885	2099	3344	990 E			989	2409			2343						1057				
on't)	2298	2021	3231	3054			526	2210			2202						1046				
Table 5 (Con't)	2007	1538	2820	2433			338	2026			1600						096				•
Tet	1388	345	2445	2038			337	1984			999				1114		948				: 743,
	345	338	818	1601		2910	213	1671		2099	371			1107	1075		334				ts is
	141	ស	2	420	4	8	4	S	9	4	S	1802	0	40	989	9	9	3	2529	9	Total number of cuts
	••	••	••	••	••	••	**		••	••	••	••	••	••	••	••	••	••	••	••	ber
	H	I	N	*IN	Ħ	H	II		H	-	=	II	IIB*	11I	11111*	H	II	H	III	H	al num
	Sdu	Sec	Sfa	Sfa	Sma	Sph	SBO		Stu	Sty	Taq	Taq	Tad	Tth	Tth	Xba	Xho	Xma	Xma	Xmn	Tot

Table 5 (con't)

•	1
80	-
ð	
nzyme	1
5	i
N	Ì
	ì
画	ì
_	i
77	i
ected	i
<u>.</u>	i
75	i
ĭ	i
	ì
sele	i
Ĭ	ì
•	i
-	1
Ling	i
=	
7	
=	1
2	
cutti	
_	ļ
듯	ļ
non	1
=	į
	į
쎂	!
O	
	1
יַּ	
₩.	į
ᅼ	1
List	1

, Bsp MI*	, Mlu I	, Pvu II	, Sfi I	, Tth 1111	•
			, Sci I		•
			, Sca I	, Taq IIA	
	, Eco 311*		, Sau I	Ssp I	
, Avr II	, Bst XI	, Not I	, Sac II	, Spl I	, Xho I
		, Nde I	, Sac I	, Spe I	, Xca I
			Rsr II		

Total number of selected enzymes which do not cut: 38

EXAMPLE I: Purification of the TMA complex of M. paratuberculosis (A36), characterization of the proteic part of A36, identification of the 34 kDa protein and development of A36 based immunoassay:

MATERIALS AND METHODS

Bacteria:

mycobacteria were Μ. used: following The paratuberculosis strain 2E and 316F (from Dr. Saxegaard, National Veterinary Institute, Oslo, Norway; Saregaard F. et al., 1985, "Control of paratuberculosis by vaccination" disease) in goats (Johne's (from serotype 4 116:439-441); M. avium Portaels, Institute of Tropical Medicine, Antwerpen, Belgium) (Shaefer W.B., 1965, "Serologic identification and classification of the atypical mycobacteria by their agglutination", Am. Rev. Resp. Dis. 92:85-93); M. bovis strain BCG GL2 (from Dr. Weckx, Pasteur Institute, Brussels, Belgium) and M. phlei strain AM76 (from Dr. M. Desmecht, National Institute for Veterinary Research, Brussels, Belgium). The 168 strain of B. subtilis was used as control ATCC n° 33234.

Preparation of bacterial cytoplasms:

Bacterial suspensions in buffered saline (100 mg wet weight cells/ml 0.15 M NaCl 0.02 M K2HPO2 pH 7.5 containing 10 mM phenylmethylsulfonyl fluoride) were disrupted by sonication (15 min treatment with a 500-W ultrasonic processor, Vibra cell Sonics from Materials Inc, Danbury, Co USA (3 min sonication for B. subtilis). Homogenates were centrifuged (5000 x g, 10 supernatants (i.e. mycobacterial 4°C), and min, cytoplasms) were stored at -20°C and used as sources of antigens.

Purification of TMA complexes:

The supernatant (about 4.5 mg proteins/ml) was submitted to RNAase digestion (10 μ g enzyme/100 μ g wet

weight bacteria, 30 min, 37°C) and fractionated by gel exclusion chromatography on Sepharose 6B columns (Pharmacia, Uppsala, Sweden) equilibrated with buffered saline, as previously detailed (Cocito C. et al., 1986, "Preparation and properties of antigen bovis BCG" Clin. Mycobacterium Exp. Immunol. 66:262-272). TMA complexes (thermostable macromolecular antigen complexes) were found within the excluded fractions (which contained on the average 0.5 soluble proteins/ml). Solutions of TMA (with 1 mM phenylmethylsulfonyl fluoride as conservative) were stored at -20°C.

Purity of TMA complexes was checked by crossed immunoelectrophoresis, according to the reference systems (Closs O. et al., 1980, "The antiqens of Mycobacterium bovis, strain BCG, studied by crossed immunoelectrophoresis: a reference system" Scand. J. Immunol. 12:249-263; Gunnarsson E. et al., "Analysis of antigens in Mycobacterium paratuberculosis" Acta Vet. Scand. 20:200-215).

For this purpose agarose gels (1% type 2 agarose from Sigma, St Louis, Mo) on glass plates (5 by 7 cm) were used, the top gel containing 200 μ l of rabbit anti-mycobacterial homogenate. Mycobacterial antigen (10 μ l of samples containing 0.5 mg TMA/ml) was applied to a corner well and electrophoretic runs were made as described (1 h, 8 V/cm, 15°C in 1st dimension; 3 V/cm, 18 h, 15°C in 2nd dimension). Slants were washed, dried, stained with Coomassie blue and photographed.

Animal sera:

For production of polyclonal antisera, mycobacterial homogenate or TMA preparations (10 μ g soluble proteins/0.5 ml buffered saline emulsified with equal volume of incomplete Freund adjuvant) were repeatedly injected (6 inoculations at 1-week intervals) into rabbits by subcutaneous way.

The antibody titer of the sera was evaluated by an immunoenzymometric procedure (see below).

Here is thus obtained a polyclonal anti-TMA complex antiserum, more particularly anti-A36 antiserum, and a polyclonal anti-homogenate antiserum referred to in the Western blotting test.

Four kinds of sera from bovines either healthy or at different stages of the Johne's disease were used: a) healthy controls with no sign of mycobacterial infection and with negative tests of coproculture and asymptomatic non-excretory complement fixation; b) stage I of the disease (a case which appeared negative at the moment of sampling but became positive later); asymptomatic excretory stage II of the disease (positive coproculture with no clinical signs disease); and d) symptomatic excretory stage III of the disease (with positive complement fixation test). These provided by the National Institute of Desmecht, Brussels, (Dr. M. Research Veterinary Belgium) and the Center of Veterinary Medicine (Dr. B. Limbourg, Erpent, Belgium).

Electrophoretic fractionation and Western blotting of TMA proteins:

complexes TMA was protein moiety of The fractionated by electrophoresis on 10% polyacrylamide gels, in the presence of Na dodecyl sulfate (SDS-PAGE procedure) (Laemmli U.K., 1970, "Cleavage of structural the assembly of the during proteins bacteriophage T4" Nature 227:680-695). Protein samples (25 μ g soluble polypeptides in 50 μ l 0.125 mM Tris-HCl pH 6.8 containing 5% w/v SDS, 20% v/v glycerol, 10% V:V β -mercaptoethanol and 0.05% bromophenol blue) were boiled for 5 min and then applied to vertical gel slabs. Molecular weight protein markers (Sigma Chem. Co., St Louis, Mo) were: bovine serum albumin (66 kDa), (45 kDa), glyceraldehyde-3-phosphate ovalbumin

dehydrogenase (36 kDa), carbonic anhydrase (29 kDa), trypsinogen (24 kDa), trypsin inhibitor (20.1 kDa) and α -lactalbumin (14.2 kDa). Electrophoretic runs (4 h, 50 V, 20°C) were made in a vertical unit (LKB, Bromma, Sweden). Protein bands were visualized by staining with Coomassie brilliant blue. Controls of total cytoplasmic proteins were run in parallel with TMA samples.

Electrophoresed proteins were transferred from polyacrylamide gels to nitrocellulose membranes (BA 85, Macherey-Nagel, Germany) by the use of a transblot-unit (217 multiphor 2, LKB, Bramma, Sweden).

Transfer buffer contained 20% methanol, 0.039 M glycine and 0.048 M Tris base pH 8.8, and runs were made at 10 V for 2 h. Transblotted proteins were identified by reaction with a primary antibody (either polyclonal rabbit antiserum [1/1500] or bovine serum [1/100]) and then with a labeled secondary antibody.

Transblotted nitrocellulose sheets were first incubated for 30 min with TBS buffer (0.5 M NaCl, 0.023 M Tris-HCl pH 7.5) containing 3% w/v gelatin and then for 3 h with the primary antibodies diluted with TBST buffer (TBS containing 0.05% v/v Tween 20) and 1% w/v gelatin. After repeated washings with TBST, sheets were incubated for 2 h with secondary IgG (1/400 diluted preparations of peroxydase-labeled anti-rabbit, anti-mouse or anti-cow IgG, Dako, Copenhagen, Denmark), followed by washings with TBST and TBS buffers. A color reaction was developed by addition of α -chloronaphtol (Bio-Rad Laboratories, Richmond, Cal) in the presence of hydrogen peroxide. The color reaction was stopped by washing sheets with distilled water. A similar protocol directly antigens spotted used for nitrocellulose membranes (dot-blot analysis). Reference samples of transblotted total proteins and molecular weight markers were visualized by India ink staining (10% solution of fount India, Pelikan, Germany, in 0.2

M NaCl, 0.05 M Tris-HCl pH 7.4 containing 0.3% v/v Tween 20) for 30 min (Hancok K. et al., 1983, "India ink staining of proteins on nitrocellulose paper" Anal. Biochem. 133:157-162).

Immunoassay for determination of antimycobacterial Ig:

Multiwell microtiter plates (Microwell Module, Nunc, Denmark) were coated either with purified A36 or paratuberculosis total cytoplasm with М. supernatant) (0.5 μ g soluble proteins/50 μ l 0.05 M Na carbonate buffer pH 9.6/well). Air dry wells were saturated with bovine serum albumin (0.1% w/v BSA in 0.15 M NaCl, 1 h, 37°C). Increasing dilutions of serum to be tested in 0.15 M NaCl 0.02 M Na phosphate buffer pH 7.2 0.005% Tween 80 (PBST buffer) were added (50 μ l/well, 1 h, 37°C), optimal dilutions being identified by checker board titration. Horse-radish peroxydaselabeled swine anti-rabbit, or rabbit anti-cow antiserum (Dako, Copenhagen, Denmark) were added (50 μ l of 1/400 IgG dilution in PBST/well, 1 h, 37°C). Excess reagent was removed by 5 buffer washings. After incubation with the peroxidase reagent (50 μ l per well of a 17 mM Na citrate buffer pH 6.3 containing 0.2% 0-phenylene diamine and 0.015% H_2O_2 , 30 min, 37°C in the dark), the reaction was stopped (50 μ l 2 M H_2SO_4) and samples were spectrometrically measured (Plate reader SLT 210 from Kontron Analytical, U.K.). Results were recorded as ELISA absorbance values (A_{450rm}) .

In some experiments, cross-reactive Ig were removed by incubation (18 h, 4°C) with either purified TMA preparations (0.2 mg protein/ml of serum) or bacterial homogenates or intact mycobacteria (equivalents of 2 mg dry weight bacteria/ml of serum). Absorbed preparations were checked by dot-blot trials before application in immunoblot or immunoassay.

Immune electron microscopy:

Suspensions of mycobacteria in water (5×10^7) cells/5 μ 1) were placed on carbon-formvar 200-mesh copper grids and air dried. Grids were serially incubated with: a) bovine serum albumin (3% solution in buffered saline, 30 min, 37°C); b) anti-TMA complex rabbit antiserum (a 10⁻³ dilution of Ig in buffered saline with 0.05% Tween 20, 2 h, 37°C); c) sheep antirabbit biotinylated Ig (1/200 dilution of Ig from Amersham, U.K., in buffered saline-Tween, 1 h, 20°C); gold-labeled streptavidin (a 1/20 dilution of a preparation from Amersham, U.K.) (Cloeckaert A. et al., 1990, "Identification of seven surface-exposed Brucella membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay" Infect. Immun. 58:000-000). Grids were analyzed in a transmission electron microscope (Philips CM 10).

RESULTS

Purification of TMA complexes and preparation of anti-TMA antisera:

The TMA complex of M. paratuberculosis (A36) has been prepared from the total homogenate. Cytoplasm fractionation by gel exclusion chromatography yielded said TMA complex within the exclusion fraction. The immunoelectrophoretic patterns of total cytoplasmic antigens (supernatant) (Figure 1(1)) and of the exclusion fraction (Figure 1(2)) are compared. From these tracings, which were obtained with polyclonal antisera elicited by inoculation of rabbits with whole mycobacterial homogenate, the purity of the A36 preparation can be inferred.

A similar protocol was used for preparation of other antigens of the TMA group from <u>M. avium</u>, <u>M. bovis</u> and <u>M. phlei</u>, which were used for comparative analysis.

The polyclonal antisera corresponding to the TMA complexes have also been prepared. The purity of these Ig preparations was checked by crossed immunoelectrophoresis: using total cell homogenates as antigens in every case, a single immunoprecipitogen line corresponding to the TMA complex was obtained (patterns not shown, mimicking that of Figure 1(2)). It is to be noted that subcutaneous injection of TMA complex preparations invariably induced the synthesis of high titer antisera (ELISA absorbance higher than 2.5 for dilutions at 10⁻⁵), a result which stressed the high immunogenicity of these antigen complexes.

Development of A36-based serological assay for paratuberculosis:

prompted availability of A36 has The development of an enzymometric ELISA-type immunoassay for paratuberculosis. Accordingly, multiwell plates were coated with A36 and incubated with sera of infected animals. Peroxidase-labeled rabbit anti-bovine IgG were added as second antibody, and the color developed after addition of peroxydase reagent was detailed spectrophotometrically, as measured Materials and Methods. A comparative survey was made in with with A36 and total parallel (supernatant) of M. paratuberculosis (equal amounts of proteins were used for the two assays).

All the sera of infected animals (stages II and III of the Johne's disease) yielded a positive answer (values of 0.84 to 2.25 units) to both types of the ELISA assay (Figure 3). On the contrary, uninfected animals were invariably negative (values lower than 0.38 units). With A36-ELISA, considerably higher absorbance values (1.44 to 2.25 units) were obtained than with the total cytoplasm-ELISA (0.84 to 1.65).

These results suggest the immunodominance of the A36 antigen in the Johne's disease, and the usefulness of the A36-based ELISA as a diagnostic assay.

Peripheral location of the TMA complex in mycobacteria:

The observed immunodominance of A36 is more compatible with a surface component than with an antigen complex located in the cytoplasm. However, a transfer of TMA complex through the envelope and its protrusion at the cell surface is conceivable.

The use of the immunoelectron microscopy methodology has allowed a direct approach to this problem. Multiplying cells of M. paratuberculosis were incubated with anti-A36 Ig from immunized rabbits. Cell-bound antibodies primary were revealed secondary swine anti-rabbit IgG labeled with colloidal gold. Electron micrographs show the presence of antigen reactive spots on the surface of mycobacteria (results not shown).

These data indicate that part of the TMA complex does indeed occur within the cell wall and is presented on the cell surface.

Immunological crossreactivity of A36 and other TMA antigens:

In the preceding section, the development of a A36-based ELISA assay for titration of mycobacterial antibodies has been described. possible use of this assay in Veterinary Medicine relies on its specificity with respect to: a) other mycobacteria which are usual hosts of the intestinal tracts of ruminants; and b) М. bovis, tuberculosis which can cause tuberculosis in cattle (compulsory slaughtering of PPD-positive cattle). This problem was approached evaluating by crossreactivity of TMA complexes from mycobacteria with two procedures (see Table 1).

A first series of assays was carried out with microtitration plates coated with the TMA complex from M. avium, M. bovis, M. paratuberculosis and M. phlei. All these plates were used to titrate a single anti-A36 antiserum, a procedure yielding an evaluation of the percentage of shared TMA epitopes. Considering the autologous reaction (A36-anti A36 IgG) equal to 100, percentage of homology of M. paratuberculosis TMA complex with the TMA complex of M. avium and bovis was very high; it was much lower for M. phlei TMA complex.

When the A36-based ELISA assay was repeated with anti-A36 antiserum previously absorbed by different mycobacterial TMA complexes, an evaluation of the A36 specific epitopes was obtained. From Table 1, it results that the percentage of specific epitopes was low when the A36 was compared to the TMA of M. avium and M. bovis, it was high when compared to the TMA of M. phlei.

FOUR OF COMPLEXES TMA THE NI EPITOPES SPECIFIC SPECIES CROSSREACTING AND TABLE 1 : C

TMA in ELISA

Epitopes (%) Cross- specific ^d reacting	100(±13) 100(±13) 96(±10) 49(± 8)	0 7(±11) 10(±13) 48(±8)
ELISA units (A450mm) ^c	2.367 2.376(±0.247) 2.240(±0.181) 1.083(±0.156)	0.462 0.574(±0.197) 0.603(±0.238) 1.073(±0.141)
Absorbing reagent (antiserum) ^b	1 1 1 1	M. parat. M. avium M. bovis M. phlei
Coating reagent (plate)ª	M. parat. M. avium M. bovis M. phlei	M. parat. M. parat. M. parat.
Parameter	A. Crossreactivity	B. Specificity

coat to nseq Were $\mu g/well)$ (0.5)mycobacteria different from microtitration plates preparations

b anti-A36 antiserum was pre-absorbed (samples B) or not (samples A) with TMA complex from different mycobacteria

(samples B) or with different TMAs (samples A) anti-A36 was added, and bound Ig were revealed by a second labeled c to plates coated with A36 (samples B) or with antiserum (1/150000 dilution) was added, and bound antibody

d percentage of crossreacting or specific epitopes calculated on a logarithmic scale.

These results show the lack of species-specificity of the A36-ELISA as a diagnostic reagent for the Johne's disease. They suggest, however, the possible occurrence of A36 components endowed with such a specificity.

Immunodominance and specificity of the A36 proteins:

The species specificity, which was missing at the level of the complete A36 antigen complex, was sought with respect to its proteins components. The complexes from M. avium, M. bovis, M. paratuberculosis isolated, phlei were and their fractionated by polyacrylamide components were A similarity of M. avium and M. electrophoresis. paratuberculosis tracks is apparent, whereas those of M. bovis and M. phlei TMA were clearly different to the M. paratuberculosis track.

When fractionated A36 proteins were immunoblotted with anti-A36 antiserum, a dozen of major polypeptides were stained, most of them located in the 28-42 kDa region. Immunoblotting with anti-A36 antiserum preyielded 5 lysate of M. phlei absorbed with а polypeptide bands; they were 3 in the case of M. bovis and one with M. avium. Table 2 provides a comparative evaluation of the main A36 components according to two properties: immunogenicity level (staining intensity by bovines) and species pooled sera of infected specificity (lack of cross-reactivity with the other mycobacteria). Eleven major components of 22 to 74 kDa are listed: two of them (of 23 and 31 kDa) containing specific epitopes with respect to the tested organisms except M. avium, and one of 34 kDa containing specific epitopes with respect to all of the tested organisms including M. avium.

OF COMPLEX TMA THE OF PROTEINS SOME OF CHARACTERISTICS TABLE 2 : IMMUNOLOGICAL CHARACTE MYCOBACTERIUM PARATUBERCULOSIS (A36)

												
	M. phlei	no	ou	yes	ou	yes	yes	yes	yes	yes	yes	yes
Specificity ^d towards	M. bovis	ou	no	ou	no	no	ou	yes	yes	ou	yes	no
62	M. avium	ou	ou	ou	ou	ou	ou	yes	ou	ou	ou	ou
	vines III	+	ı	+	+	++	++	+++	+++	+	1	ı
ty ^{b,c} nosts)	ected bovines III	ı	1	+	+	1	+	+++	ı	ı	+	++
genici Is in l	infec	ı	ı	+	+	++	++	+++	+++	ı	1	1
Immuno (leve]	rabbit infected anti-A36 I I I	++	+	+	+++	++	+	+++	+	++++	+++	+
Protein* (kDa)		74	52	41	40	37	35	34	31	29	23	22

* A36 was dissociated and protein components were fractionated by SDS-PAGE electrophoresis and identified by immunoblotting

of the intensity from evaluated was COWS immunoblot staining with the corresponding sera and for rabbits immunogenicity b degree of

c sera from cattle affected by different stages of the Johne's disease: I, asymptomaticnon excretory; II, asymptomatic-excretory; and III, symptomatic-excretory forms

d crossreactivity was expressed by a no, and specificity by a yes

The immunological relevance of the latter protein was checked by immunoblot analysis of A36 proteins with infected bovine sera: a major band at the level of the 34 kDa marker was observed (Figure 4, lanes 4, 5, 6 and 7). This band was missing in the control (lane 8 with healthy bovine serum).

It is thus evident that the 34 kDa protein component of the TMA complex is immunodominant in cattle, relevant to Johne's disease, and containing species-specific epitopes with respect to related mycobacteria.

The present invention enables to develop a A36 based ELISA test for paratuberculosis: its ability to reveal the presence of a mycobacterial infection in cattle has been proven in Figure 3. Basic requirements for the use of a given antigen as reagent interest are: of medical 1) its immunoassays immunodominance; 2) its relevance to the targeted disease; and 3) its specificity. Requirements 1 and 2 were therefore fulfilled by the A36 based-ELISA. Requirements 1 to 3 are completely fulfilled by the p362 polypeptide which is part of the 34 kDa protein belonging to A36, as described hereafter.

EXAMPLE II: Isolation of clone a362 expressing a 10 kDa polypeptide (p362), DNA sequencing of the insert of clone a362 and testing of p362 in an ELISA for Johne's disease:

MATERIAL AND METHODS

Cloning vectors

The following types were used: λ gt11 (Young R.A. and Davis R.W., 1983, "Yeast RNA polymerase II genes: isolation with antibody probes" Proc. Natl. Acad. Sci. USA 80:1195-1198) and pUEX2 (Brennan G.M. et al., 1987, "pUEX, a bacterial expression vector related to pEX with universal host specificity" Nucl. Acids Res.

<u>15</u>:10056) and pmTNF-MPH (see Figures 9a, 9b and Table 5) as expression vectors, and the Blue-Script SK^{+} as sequencing vector (Stratagene).

Bacteria

Mycobacterium paratuberculosis 19698 (from the American Type Culture Collection). M. paratuberculosis: strain 2887 (Crohn): ATCC n° 43015. M. avium serotype 4, M. avium serotype 2, M. avium serotype 8 (Schaefer W.B., 1965, "Serologic identification and classification of the atypical mycobacteria by their agglutination" Am. Rev. Resp. Dis. suppl. 92:85-93). M. tuberculosis H37rv: ATCC n° 25618. M. gordonae: ATCC n° 14470. Brucella abortus B3 (Cloeckaent A. et al., 1990, Infect. Immun. 58:3980-3987). Strains of Escherichia coli: Y1089 ($\Delta(lacU169)$, $\Delta(lon)$, hflA150 (chr::Tn10), (pMC9), (rK^{-}, mK^{+}) , Y1090 $(\Delta(lacU169), \Delta(lon), sup F,$ (trpC22::Tn10), (pMC9), (rK', mK')), MC1061 (Δ (lacX74), galU', galK', (rK', mK')) and DH5 α F' (F', (rK', mK'), supE44, $lacZ\Delta M15$, $\Delta(lacZYA argF) U169$, $K12\Delta H$, ATCC33767 (lacZ(am) Δ (bio uvr B) (λ Nam7 am53 cI 857 Δ H1) rpsL20).

Antisera

Rabbit anti-M. paratuberculosis antiserum was from Dako (Copenhagen, Denmark, lot n° 014). Sera from paratuberculosis-infected cattle were provided by Dr. M. Desmecht (National Institute for Veterinary Research, Brussels) and Dr. B. Limbourg (Erpent, Center of Veterinary Medicine, Belgium).

Polyclonal antisera against whole homogenate of $\underline{\mathbf{M}}$. avium serotype 4, $\underline{\mathbf{M}}$. bovis BCG, and $\underline{\mathbf{M}}$. phlei, as well as those against the TMA complex and β gal-p362 (recombinant polypeptide of the invention fused to β -galactosidase hereafter described) were produced by repeated subcutaneous inoculations into rabbits (10 μ g proteins/0.5 ml buffered saline emulsified with equal

volume of incomplete Freund's adjuvant, 6 inoculations at 1-week intervals).

Purification of M. paratuberculosis DNA:

Suspensions of bacteria (10 mg in 0.5 ml of 100 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl pH 7,4) were incubated sequentially with lysozyme (25 μ l of 20 mg/ml, 14 h, 50°C), pronase (25 μ l of 20 mg/ml, 1 h, 37°C), and SDS (25 μ l of 20%, 1 h 37°C). Mixtures were extracted with chloroform-isoamyl alcohol (24:1, vol:vol), watersaturated phenol, and ether. After incubation with ribonuclease (5 μ l of 2 mg/ml, 1 h, 37°C), DNA was purified on columns of Sephadex G50 (equilibrated with 4.8 mM sodium phosphate pH 6,8) and hydroxyapatite (washed with 8 M urea, 0,1 M sodium phosphate buffer pH 6,8 containing 1% SDS, and then with 4,8 mM sodium phosphate pH 6,8, and eluted with 480 sodium mM phosphate pH 6,8).

Construction of a Agt11 library of M. paratuberculosis:

M. paratuberculosis DNA was sheared to average 1,5 (Vibra Cell length segments of 0,5 to kb ultrasonicator 60 W, 2 sec). Shearing was monitored by electrophoresis. EcoR1 sites gel agarose methylated with EcoR1 methylase (5 μ g of sheared DNA in 50 μ l of buffer (50 mM Tris-HCl pH 7,5, 1 mM Na₃EDTA, 5 mM dithiothreitol, 50 μ M S-adenosyl-L-methionine and 10 units of EcoR1 methylase). Methylation was pursued for 30 min at 37°C, and stopped by 10 min incubation at fragments were obtained Blunt-end DNA 70°C. incubation with T4 DNA polymerase (5 μ l of 0,1 M MgCl₂, 2.5 μ l of 1 mM dTNPs, 1 μ l of 1 M(NH₄)₂SO₄, and 20 units of T4 DNA polymerase per 40 μ l methylation reaction medium; 20 min incubation at 37°C). EDTA (15 mM final concentration) added, reaction mixture was extracted with phenol/chloroform twice, and the aqueous phase was extracted with ether. After addition of sodium acetate 0,3 M final concentration, DNA was

precipitated with 2 vol of EtOH at -20°C and washed with 70% EtOH. DNA pellet was dissolved in buffer (10 μ l of 100 mM Tris-HCl pH 7,5, 20 mM MgCl₂, 20 mM dithiothreitol), phosphorylated EcoR1 linkers μ g/ml) were added, followed by addition of PEG 6000 15%), 1 mM ATP concentration (final concentration) and 2 units of T4 DNA ligase, and the reaction mixture was incubated overnight at 12°C. This mixture was incubated at 37°C with an excess of EcoR1, and DNA fragments were purified from linker excess on Sephadex G25. The DNA solution thus obtained was sequentially with phenol/chloroform extracted and ether, precipitated, and washed with ethanol. DNA pellet (0,5 μ g) was dissolved in TE buffer (10 mM Tris-HCl pH 7,5, 0,1 mM EDTA) and ligated (18 h, 4°C) with 1 μ g of dephosphorylated EcoR1-digested λ gt11 DNA (Promega). Methylation, ligation, and digestion steps were controlled by agarose gel electrophoresis. Phage was obtained with packaging of cloned DNA Stratagene gigapack extract.

Screening of the Agtl1 library and dot-blot technique:

After infection of E. coli Y1090 by the recombinant phage mixture and spreading them out over the plate, they were incubated for 3-4 h at 42°C.

For identification of recombinant phages, IPTG (isopropylthio β-galactopyranoside) (10 mM) saturated nitrocellulose filters were placed directly on the surface of the overlay plates containing the plaques and incubated for 18 h at 37°C (Young R.A. and Davis R.W., 1983, "Yeast RNA polymerase II genes: isolation with antibody probes" Proc. Natl. Acad. Sci. USA 80:1195-1198). After spotting of control antigens (1 μg) and washing for 10 min with TBS buffer (0,5 M NaCl, 0,023 M Tris-HCl pH 7,5), filters were incubated for 30 min with the same buffer containing 3% (w/v) gelatin and then with the rabbit anti-M. paratuberculosis

antiserum (Dako) previously diluted with TBST buffer (TBS buffer containing 0,05% (v/v) Tween 20) containing 1% (w/v) gelatin. After washing, filters were incubated for 1 h with 1/400 dilutions of peroxydase-labeled anti-rabbit Ig. After repeated washing with TBST and TBS, the peroxydase substrate α -chloronaphtol (Bio Rad Laboratories, Richmond, Calif.) and hydrogen peroxide were added. Reaction was stopped by washing with distilled water. Plaques corresponding to reactive spots on the filters were picked off, transferred to SM medium (100 mM NaCl, 10 mM MgSO4, 20 mM Tris-HCl pH 7,4) and purified by repeated passages in E. coli were clones then further Recombinant their antigenicity characterized with respect to (incubation with bovine sera and anti-A36) and their with antibodies directed (incubation specificity against homogenate of M. avium, M. bovis and M. phlei) using the same procedure as described above.

A similar technique was used for dot-blot experiments in which the specificity of the recombinant polypeptide p362 was tested with respect to different mycobacteria: spots of mycobacterial homogenates on nitrocellulose membranes were incubated with anti- β gal-p362 Ig.

High level expression of fusion protein in E. coli:

Colonies of E. coli Y1089 lysogenized with the appropriate Agtl1 recombinants were multiplied at 30°C in Luria-Bertani medium $(A_{600rm}=0.5)$. After heat shock (20 min at 45°C), production of β -galactosidase fusion proteins of the invention was induced by the addition (final concentration) and further IPTG mM 10 37°C). Cells harvested (60 min at incubation centrifugation were suspended in buffer (10 mM Tris-HCl, pH 8,2, 2 mM EDTA) and rapidly frozen in liquid nitrogen.

For enhanced expression, λ gtll inserts were subcloned into the expression vector pUEX2 (Brennan G.M. et al., 1987, "pUEX, a bacterial expression vector related to pEX with universal host specificity" Nucl. Acids Res. 15:10056), commercially available from Amersham, which was used to transform E. coli MC1061 (Maniatis, Molecular Cloning). Single colonies of transformed E. coli were grown at 30°C to λ_{600} =0,3 and heat-shocked (90 min at 42°C). Harvested cells were lysed by sonication and frozen in liquid nitrogen. Protein fractionation and immunoblotting:

The TMA complex and recombinant proteins were analyzed by polyacrylamide gel electrophoresis under denaturing conditions (SDS PAGE) (Laemmli, U.K. 1970,

"Cleavage of structural proteins during the assembly of the head of bacteriophage T4", Nature 227:680-695).

Fractionation on 7,5 or 10% acrylamide gels was carried out in a 2001 vertical electrophoresis unit (LKB-Produkter AB, Bromma, Sweden) (4 h, 50 V, 20°C). Molecular weight protein markers (Sigma, St Louis, Mo) were: myosin (205 kDa), β -galactosidase (116 kDa), phosphorylase B (97,4 kDa), bovine serum albumin (66 kDa), ovalbumin (45 kDa), glyceraldehyde-3-phosphate dehydrogenase (36 kDa) carbonic anhydrase (29 kDa), trypsinogen (24 kDa), trypsin inhibitor (20.1 kDa), and α -lactalbumin (14.2 kDa). Protein bands were stained with Coomassie brilliant blue. Electrophoresed proteins were transblotted (LKB 217 Multiphor 2 Electrophoresis System, 10 V, 2 h, with buffer 20% methanol, 0,039 M 0,048 M Tris base, glycine and Hq 8.8) nitrocellulose membranes. Mycobacterial antigens were visualized by sequential incubation with polyclonal rabbit antisera (anti-A36 for recombinant mycobacterial antigens fused to β -galactosidase or anti- β gal-p362 for TMA proteins) and peroxydase-labeled anti-rabbit Ig (Dako, Copenhagen, Denmark) (1/400 dilution). Total

protein blotted on the membrane was visualized by staining with India ink.

DNA Sequencing:

Sequence analysis of the DNA insert of recombinant clone a362 was done by the primer extension and dideoxy termination method (Sanger F. et al., 1977, "DNA sequencing with chain terminating inhibitors", 74:5463-5467), Acad. USA Sci. Natl. subcloning of the Agtll insert into the sequencing pBluescript SK⁺ (Stratagene). Sequencing reactions were performed with T7 DNA polymerase and different primers (universal, reverse, SK, primers from Deaza Kit, Pharmacia, Uppsala, Sweden). Computer-aided analysis of nucleic acid and polypeptide sequences were performed with the program COD-FICK (PC-GENE, Intelligenetics, USA). Homology searches were performed on DNA level in EMBL bank (release 29) and UGEN bank (release 70-29) (Intelligenetics Inc., USA), and on protein level in PIR bank (release 31) and Swiss Prot (release 20). No homologous sequences were found.

<u>Serological analysis (ELISA) with recombinant</u> polypeptides:

Multiwell microtiter plates (Microwell Module, High binding Capacity, Nunc, Denmark) were coated with total cytoplasm of <u>E. coli</u>—a362 and with total cytoplasm of <u>E. coli</u> as a control. Four μ g of soluble proteins / 50 μ l 0,05 M Na carbonate buffer pH 9,6 were coated per well. Plates were air dried overnight and saturated (0,1% serum albumin in 0,15 M NaCl, 1 h at 37°C). Dilutions of bovine Ig in PBST (0,15 M NaCl, 0,02 M phosphate buffer pH 7,2, containing 0,005% Tween 80) were added to plate wells (50 μ l, 1 h at 37°C). Peroxydase-labelled rabbit anti-cow Ig (Dako) (50 μ l, 1/400 dilution in PBST/per well) were added (1 h at 37°C). Excess of reagent was removed by 5 PBST

washings. After incubation with peroxydase reagent (50 μ l/well of 0.2% 0-phenylenediamine with 0,015% hydrogen peroxyde in 0,017 M Na citrate buffer pH 6,3, 30 min, 37°C in the dark), the reaction was stopped with 50 μ l 2 M H_2SO_4 , and A_{450nm} was measured in a colorimetric plate reader (SLT 210, Kontron Analytical, UK). Results were recordered as ELISA absorbance values. In some experiments, reactive Ig were removed cross by incubation (18 h at 4°C) with bacterial homogenate. Absorbed preparations were checked by dot-blot trials before applications in immunoblots or immunoassays.

Immune electron microscopy:

Suspensions of mycobacteria in water (5×10^7) cells/5 μ l) were placed on carbon-formvar 200-mesh copper grids and air-dried. Grids were serially incubated with: a) bovine serum albumin (3% solution in buffered saline, 30 min, 37°C); b) anti- β gal-p362 rabbit antiserum (a 10⁻³ dilution of Ig in buffered saline with 0,05% Tween 20, 2 h, 37°C); c) sheep antirabbit biotinylated Ig (1/200 dilution of Ig from Amersham, U.K., in buffered saline-Tween, 1 h, 20°C); d) gold-labelled streptavidin (a 1/20 dilution of a preparation from Amersham, U.K.) (Cloeckaert A. et al., 1990, "Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay", Infec. Immun. 58:3980-3987).

Grids were analyzed in a transmission electron microscope (Philips CM 10).

RESULTS

1. Preparation of a genomic library of M. paratuberculosis and isolation of recombinant clones:

A genomic library of <u>M. paratuberculosis</u> has been prepared by the use of the expression vector $\lambda gt11$. For this purpose, purified mycobacterial DNA was sonicated

under controlled conditions yielding segments of 103 bp on the average (0.5 to 2 \times 10³). These fragments were methylated by EcoR1 DNA methylase (efficiency of methylation was controlled by incubation with EcoR1), incubated with T4 DNA polymerase to obtain blunt-end DNA, and provided with EcoR1 linkers by incubation with T4 DNA ligase. After EcoR1 digestion, DNA segments were purified free of linker excess and inserted into EcoR1-cleaved λgt11 by incubation with T4 DNA ligase (a step checked by gel electrophoresis). After packaging and infection of E. coli Y1090, 7.5 x 10^5 recombinant clones (75% of total clones) were obtained, one third with rabbit screened which was After repeated paratuberculosis (Dako). antiserum purifications, ten recombinant clones were selected: three of them expressed TMA complex proteins, and seven produced epitopes of proteins not present within the TMA complex.

2. Analysis of antigenicity and specificity of polypeptides produced by recombinant clones:

since cloning of <u>M. paratuberculosis</u> genes was aimed at producing polypeptides to be used as diagnostic reagents, it appeared essential to test the reactivity of recombinant clones towards sera of cattle affected by the Johne's disease. As shown in Table 3, all the selected clones reacted with sera of animals bearing one of the clinical forms of the disease. The strongest reactions were afforded by clones a4 and a362. On the contrary, no reactivity was observed with sera from healthy bovines.

TABLE 3
Characteristics of clones expressing an antigenic polypeptide of M. paratuberculosis

Clones*	Ant	igenio	city**	Specificity	with resp	ect to***
	1	2	3	M. avium	M. bovis	M. phlei
a1	(+)	+	+	no	no	yes
a2	+	+	+	yes	yes	- yes
a 3	+	+	++	no	yes	yes
a4	++	++	++	no	no	yes
a 5	+	+	+	no	yes	yes
a6	+	+	++	no	no	yes
a7	(+)	+	+	no	no	no
a361	+	+	++	no	yes	yes
a362	++	++	++	yes	yes	yes
a363	(+)	+	+	no	no	yes

^{*} only clones a361 to a363 express polypeptides belonging to the TMA complex.

Another requirement of paramount importance was the specificity with respect to mycobacteria belonging to the saprophytic and pathogenic flora of cattle. Recombinant clones were tested for reactivity with

^{**} detected by sera from asymptomatic and non excretory bovine (1), asymptomatic and excretory bovine (2) and symptomatic and excretory bovine (3); quantified as low reaction "(+)", good reaction "+" and very good reaction "++".

^{***} cross reactivity was expressed by a "no", and specificity by a "yes".

antisera against homogenates of <u>M. avium</u>, <u>M. bovis</u> and <u>M. phlei</u>. It was previously shown that the overall DNA homology levels of these three mycobacteria with respect to <u>M. paratuberculosis</u> were respectively 94, 52, and 19 percent (Hurley S.S. et al., 1988, "DNA relatedness of <u>M. paratuberculosis</u> to other members of the family of mycobacteriaceae", Int. Journal Syst. Bact. 38:143-146). Data in Table 3 indicate that, although all clones but one were specific towards <u>M. phlei</u>, only five of them were specific for <u>M. bovis</u> and two for <u>M. avium</u>.

In conclusion, only two of the selected clones, a2 and a362 fulfilled both requirements for species-specificity and relevance to Johne's disease. Moreover, only the latter clone reacted with anti-A36 antiserum and corresponded, therefore, to a A36 protein, presumably the 34 kDa protein previously identified as a TMA complex component with species-specific epitopes. The remaining part of this example relates to the characterization and use of clone a362.

3. Size of clone a362 insert and its expressed polypeptide p362:

EcoR1 cleavage of DNA of clone a362 yielded an insert of about 500 bp devoid of internal EcoR1 restriction sites (not shown).

E. coli Y1089 was lysogenized by the recombinant phage, and the synthesis of a chimaeric protein fused with β -galactosidase was induced by IPTG: a fusion protein of about 125 kDa (β gal-p362) was produced (Figure 5). Since β -galactosidase (116 kDa) misses 2 kDa in λ gtl1, the recombinant polypeptide coded for by the insert of clone a362 (p362) is expected to be about 11 kDa in size. Consequently, only a roughly 300 bp portion of the 500 bp insert coded for such an 11 kDa polypeptide. This was confirmed by sequencing and

determination of the orientation of the insert DNA as described further.

4. Production of p362 recombinant polypeptide and evidence of its belonging to a 34 kDa protein of A36:

Since the production of the β -gal p362 by <u>E. coli</u> Y1089 containing the λ gtll-recombinant phage was only 2% of total proteins, the corresponding insert was recloned in a more favorable expression vector. For this purpose, the λ gtll insert of the a362 recombinant clone was freed by incubation with EcoR1, purified by electroelution from an agarose gel (75% recovery), and recloned into the EcoR1 site of the expression vector pUEX2 (Amersham). In this case, production of β gal-p362 fusion protein in the transformed MC1061 strain of <u>E. coli</u> (6 x 10⁵ transformants/ μ g DNA) was about 25% of total proteins.

After running the SDS-PAGE of the lysate from the transformed strains, the recombinant fusion protein was eluted from the polyacrylamide gel and used to elicit antibodies in rabbits (anti- β gal-p362).

The protein components of the TMA complex from \underline{M} . paratuberculosis were fractionated by electrophoresis on polyacrylamide gels (SDS PAGE). After transfer to nitrocellulose sheets, TMA proteins were incubated with anti- β gal-p362. As shown in Figure 6, a major band corresponding to the 34 kDa protein of the TMA complex was immunolabeled: this was the unique TMA protein containing species-specific epitopes as above reported. A second band of about 31 kDa was stained to minor extent: it was also present in the immunoblots of TMA proteins with sera of infected cattle.

5. <u>Localization of the p362 polypeptide at the</u> bacterial surface:

Since the A36 antigen complex was previously shown to be present at the cell surface, a peripheral location of the p362 recombinant polypeptide would

further confirm the belonging of p362 recombinant polypeptide to a protein of the A36 complex. Electron micrographs show indeed the presence of the p362 polypeptide within the cell wall and its release during the declining growth phase (results not shown).

6. Assessment of the species-specificity of the recombinant polypeptide p362:

From what is above-mentioned, it is shown that the 34 kDa protein component of the TMA complex of M. contains epitopes devoid of paratuberculosis crossreactivity towards M. bovis, M. avium and M. phlei. Although the recombinant p362 polypeptide, which apparently represents a portion of the 34 kDa protein, is likely to be endowed of species-specificity, a more stringent confirmation is needed for a polypeptide for serological reagent forecast as Consequently, the specificity of p362 was tested against two series of M. paratuberculosis and M. avium isolates from cattle as well as against certain Grampositive and Gram-negative bacteria being usual hosts of bovine gut (Table 4).

The dot-blot experiment was carried out by spotting on a nitrocellulose membrane 2 μ g samples of different bacterial homogenates. Membranes were then incubated successively with rabbit anti- β gal-p362 antiserum and, after washing, with peroxydase-labeled swine anti-rabbit IgG. Spots were revealed by the peroxydase reaction. All of eight M. paratuberculosis isolates were positive, whereas the closely related organisms of the MAIS group were negative. None of the other tested mycobacteria gave a positive reaction, neither did the Nocardia and Brucella species (see Table 4).

: SPECIFICITY OF p362 TOWARDS OTHER [MYCO]BACTERIA 4 TABLE

Bacterium lysates	Anti-Agal-p362	Bacterium lysates	Anti-βgal-p362
- M. paratuberculosis: 316F 316F ATCC 19698 ATCC 43015 2890(bovine)(1) 2891(bovine)(1) 2895(goat)(1) 172 28/66(bovine)(2) - M. avium b4(5) - M. avium serotype 4 - M. avium serotype 8 - M. scrofulaceum(1) - Salmonella typhimurium(3)	+++++++11111	M. intracellulare(1) MAIS A3(4) MAIS A84(4) MAIS 8715(4) MAIS 87537(4) M. bovis BCG GL2 M. tuberculosis H37rv(6) M. phlei AM76(1) M. fortuitum M62(1) M. smegmatis(1) M. smegmatis(1) M. gordonae ATCC 14430 Nocardia asteroides(1) Brucella abortus B3(3)	

(-) absence of reaction positive immunological reaction

from Kaeckenbeeck DBUL (Département de Bactériologie, Université de Liège, Belgique) Portaels IMTA (Institut de Médecine Tropicale, Anvers Belgique)

Saxegaard NVIN (National Veterinary Institute, Norway) from LIMET ICP (Institut of Cellular Pathology, Belgique) from Defoe IPB (Institut Pasteur du Brabant, Belgique) from +100400

ATCC

7. Sequencing of the cloned insert coding for polypeptide p362:

To sequence the 500 bp DNA segment coding for the polypeptide p362, the insert of clone a362 was isolated by EcoR1 cleavage from the chimaeric vector λ gtl1 and recloned into the Bluescript vector SK⁺. After transformation of <u>E. coli</u> DH5 α F⁺, clones carrying inserts coding for p362 were selected.

The sequence of the insert showed the occurrence DNA segment flanked by two EcoR1 а 507 bp of extremities (Figure 7C). The G+C content of this segment was 70%, in agreement with the 64% G+C of the whole M. paratuberculosis genome. The sequence Figure 7C yielded two open reading frames in phase with the EcoRI sites: a 306 bp region (1 to 306) in one direction, and a 185 bp region (507 to 322) into opposite orientation. The program COD-FICK (PC-GENE) which takes in account the codon usage, confirmed the coding ability of the two open reading frames. They coded respectively for 10 kDa and 7 kDa polypeptides. The insert was subcloned in an expression vector in E. coli in both orientations. Only one orientation yielded an expression product reacting with the rabbit anti- β gal-p362 antiserum. Restriction analysis led to the selection of the 306 bp open reading frame as being the one coding for the p362 polypeptide [10 kDa]. selected coding region and the aminoacid sequence of polypeptide p362, corresponding to the carboxyterminal extremity of the 34 kDa protein are displayed in Figure

8. Testing of p362 in an ELISA for Johne's disease:

The 10 kDa polypeptide (p362), endowed with species-specificity, and being part of the 34 kDa protein of A36, can be used as a specific test for paratuberculosis.

A preliminary test has been done using plates coated with total cytoplasm of \underline{E} . \underline{coli} -a362 containing p362. Bovine sera were preabsorbed to \underline{E} . \underline{coli} -control homogenate. Figure 2 shows that all sera from infected bovines react significantly with p362. On the contrary, healthy bovines (samples 26-32) do not give a signal which is significantly higher than that observed with \underline{E} . \underline{coli} -control cytoplasm.

Antibodies directed against p362 are already present in the early stages of the disease (samples 1-13). p362 can thus be considered as a very suitable antigen for specific and sensitive diagnosis of paratuberculosis.

To decrease the background levels due to cross reaction with the β -galactosidase part of the fusion protein, the insert coding for p362 was recloned into another expression vector (pmTNF-MPH, Innogenetics) (Figures 9a and 9b).

It contains the tetracycline resistance gene and the origin of replication of pAT₁₅₃ (obtainable from Bioexcellence, Biores B.V., Woerden. The Netherlands), the lambda PL promoter up to the MboII site in the N gene 5' untranslated region (originating from $pPL(\lambda)$; Pharmacia), followed by a synthetic ribosome binding site (see sequence data), and the information encoding the first 25 AA of mTNF (except for the initial Leu which is converted to Val). This sequence is, in turn, followed by a synthetic polylinker sequence which encodes six consecutive histidines followed by several proteolytic sites (a formic acid, CNBr, kallikrein, and <u>E.</u> <u>coli</u> protease VII sensitive site, respectively), each accessible via a different restriction enzyme which is unique for the plasmid (SmaI, NcoI, BspMII and StuI, respectively; see restriction and genetic map, Figure 9a). Downstream from the polylinker, several transcription terminators are present including the E.

<u>coli</u> trp terminator (synthetic) and the $rrnBT_1T_2$ (originating from pKK223-3; Pharmacia). The total nucleic acid sequence of this plasmid is represented in Figure 9b.

Table 5 gives a complete restriction site analysis of pmTNF-MPH.

The presence of 6 successive histidines allows purification of the fusion protein by Immobilized Metal Ion Affinity Chromatography (IMAC).

To subclone the insert coding for p362 in pmTNF-MPH, it was set free from the construct in vector pUEX2 by EcoRI digestion. The EcoRI fragment (507 bp) was eluted from the gel, purified, blunted and inserted in the blunted XbaI site of pmTNF-MPH. The resulting recombinant plasmid, pmTNF-MPH-a362, is brought into E. coli strain K12AH (ATCC 33767) by transformation. After growth at 28°C, expression of the recombinant protein is induced by a temperature shift to 42°C, which is held on during 2 hours. Cells were harvested, centrifuged and lysed in French press.

The expressed fusion protein mTNF-H6-p362, present in the cytoplasm fraction of the <u>E. coli</u> recombinant, is purified by Immobilized Metal Ion Affinity Chromatography (IMAC) using conditions known by the man skilled in the art. The amino acid sequence of this complete fusion protein is represented in Figure 10.

The purified fusion protein is used to coat 96-well microtitration plates, which were incubated with serial dilutions of sera from uninfected (control) and infected animals. Plate bound IgG were titrated with peroxydase-labeled rabbit anti-bovine IgG, as described in Materials and Methods.

CLAIMS

- 1. Polypeptide containing in its polypeptidic chain:
- the amino acid sequence of 101 amino acids of Figure 8,
- or a fragment of this sequence, this fragment being such that:
 - . it is liable to be recognized by antibodies also recognizing the abovesaid sequence of 101 amino acids, but it is not recognized by antibodies respectively raised against M. bovis, M. avium, M. phlei and M. tuberculosis, and possibly against M. leprae, M. intracellulare, M. scrofulaceum, M. fortuitum, M. gordonae and M. smegmatis,
 - . it is liable to generate antibodies which also recognize the abovesaid sequence of 101 amino acids but which do not recognize M. bovis, M. avium, M. phlei and M. tuberculosis, and possibly M. leprae, M. intracellulare, M. scrofulaceum, M. fortuitum, M. gordonae and M. smegmatis,
 - . it reacts with the majority of sera from cattle suffering from Johne's disease,
- or the polypeptidic sequences resulting from the modification by substitution and/or by addition and/or by deletion of one or several amino acids in so far as this modification does not alter the above-mentioned properties.
- 2. Polypeptide according to Claim 1, characterized by the fact that it is constituted by the sequence represented on Figure 8, extending from the extremity constituted by amino acid at position (1) to the extremity constituted by amino acid at position (101), or by the following peptides:

Glu-Phe-Pro-Gly-Gly-Gln-His-Ser-Pro-Gln,

Gln-Gln-Ser-Tyr-Gly-Gln-Glu-Pro-Ser-Ser-Pro-Ser-Gly-Pro-Thr-Pro-Ala.

- 3. Polypeptide according to Claim 1, characterized by the fact that:
- it contains the amino sequence of 101 amino acids of Figure 8 as its C-terminal part,
- it has a molecular weight of about 34kDa, in SDS-PAGE.
- it is coded by a nucleotide sequence liable to hybridize with the complementary strand of the sequence of Figure 11,
- it reacts with the majority of sera from cattle suffering from Johne's disease,
- it is advantageously liable to elicit a cellular immune response in sensitized subjects.
- 4. Amino acid sequences constituted by anyone of the polypeptides according to Claims 1 to 3 and a protein or an heterologous sequence with respect to said polypeptide, said protein or heterologous sequence comprising for instance from about 1 to about 1100 amino acids.
- 5. Nucleic acid characterized by the fact that it comprises or is constituted by:
- a nucleotide chain liable to hybridize with the nucleotide chain coding for the polypeptides according to anyone of Claims 1 to 3, or
- a nucleotide chain coding for the polypeptides according to anyone of Claims 1 to 3, or
- the complementary sequences of the above nucleotide chains.
- 6. Nucleic acid according to Claim 5, characterized by the fact that it comprises or is constituted by a nucleotide chain,
- extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (307) on Figure 7A, or

- extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (508) on Figure 7A, wherein
- X and E represent phosphodiester bonds, Y and F represent respectively G and C, Z and H represent respectively C and G, or
- X and E represent respectively G and C, Y and F represent respectively C and G, Z and H represent phosphodiester bonds.
- 7. Nucleic acid according to Claim 5, characterized by the fact that it comprises or is constituted by a nucleotide chain,
- extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (306) on Figure 7C, or
- extending from the extremity constituted by nucleotide at position (1) to the extremity constituted by nucleotide at position (507) on Figure 7C.
- 8. Nucleic acid according to Claim 5, which comprises or is constituted by:
- a nucleotide sequence liable to hybridize with the complementary strand of the nucleotide sequence of Figure 11, or with the complementary strand of the nucleotide sequence extending from nucleotide at position (742) to nucleotide at position (1338) of Figure 11,
- the nucleotide sequence of Figure 11 or the nucleotide sequence extending from nucleotide at position (742) to nucleotide at position (1338) of Figure 11,
- the complementary sequences to the above-defined sequences.
- 9. Recombinant nucleic acid containing at least one of the nucleotide sequences of anyone of Claims 5

to 8 combined to or inserted in a heterologous nucleic acid.

- 10. Recombinant vector particularly for cloning and/or expression, comprising a vector sequence, notably of the type plasmid, cosmid, phage or virus DNA and a recombinant nucleic acid according to anyone of Claims 5 to 8, inserted in one of the non essential sites for its replication.
- 11. Recombinant vector according to Claim 10, containing necessary elements to promote the expression in a cellular host of polypeptides coded by nucleic acids according to anyone of Claims 5 to 8 inserted in said vector and notably a promoter recognized by the RNA polymerase of the cellular host, particularly an inducible promoter and possibly a sequence coding for transcription termination and possibly a signal sequence and/or an anchoring sequence.
- 12. Recombinant vector according to Claim 10, containing the elements enabling the expression by \underline{E} . \underline{coli} of a fusion protein consisting of the polypeptide of β -galactosidase or part thereof linked to a polypeptide coded by a nucleic acid according to anyone of Claims 5 or 8.
- 13. Cellular host chosen from among bacteria such as <u>E. coli</u> or chosen from among eukaryotic organisms, such as CHO cells or insect cells, which is transformed by a recombinant vector according to anyone of Claims 9 to 12, and containing the regulation elements enabling the expression of the nucleotide sequence coding for the polypeptide according to anyone of Claims 1 to 3 in this host.
- 14. Expression product of a nucleic acid expressed by a transformed cellular host according to Claim 13.
- 15. Antibody characterized by the fact that it is specifically directed against a polypeptide according to anyone of Claims 1 to 3, and preferably by the fact

that it recognizes neither <u>M. bovis</u>, nor <u>M. avium</u>, nor <u>M. phlei</u>, nor <u>M. tuberculosis</u>.

- 16. Process for preparing a recombinant polypeptide according to anyone of Claims 1 to 4 comprising the following steps:
- the culture in an appropriate medium of a cellular host which has previously been transformed by an appropriate vector containing a nucleic acid according to anyone of Claims 5 to 8, and
- the recovery of the polypeptide produced by the above said transformed cellular host from the above said culture medium or from the cellular host.
- 17. Method for the <u>in vitro</u> diagnosis of paratuberculosis in an animal liable to be infected by <u>Mycobacterium paratuberculosis</u> comprising
- contacting a biological sample taken from an animal with a polypeptide according to anyone of Claims 1 to 3, or the expression product according to Claim 14, under conditions enabling an in vitro immunological reaction between said polypeptide and the antibodies which are possibly present in the biological sample and the in vitro detection of the antigen/antibody complex which has been possibly formed.
- 18. Method for the <u>in vitro</u> diagnosis of paratuberculosis in an animal liable to be infected by <u>M. paratuberculosis</u>, comprising the following steps:
- contacting a biological sample with an appropriate antibody according to Claim 15, under conditions enabling an <u>in vitro</u> immunological reaction between said antibody and the antigens of <u>M. paratuberculosis</u> which are possibly present in the biological sample and the <u>in vitro</u> detection of the antigen/antibody complex which may be formed.
- 19. Method for the <u>in vitro</u> diagnosis of Crohn's disease in a patient liable to be infected by

Mycobacterium paratuberculosis comprising the following
steps:

- contacting a biological sample with an appropriate antibody according to Claim 15, under conditions enabling an <u>in vitro</u> immunological reaction between said antibody and the antigens of <u>M. paratuberculosis</u> which are possibly present in the biological sample and the <u>in vitro</u> detection of the antigen/antibody complex which may be formed.
- 20. Method for the <u>in</u> <u>vitro</u> diagnosis of Crohn's disease in a patient liable to be infected by <u>M.</u> paratuberculosis, comprising the following steps:
- contacting a biological sample taken from a patient with a polypeptide according to anyone of Claims 1 to 3, or the expression product according to Claim 14, under conditions enabling an in vitro immunological reaction between said polypeptide and the antibodies which are possibly present in the biological sample and the in vitro detection of the antigen/antibody complex which has been possibly formed.
- 21. Necessary or kit for an <u>in vitro</u> diagnosis method of paratuberculosis in an animal liable to be infected by <u>Mycobacterium paratuberculosis</u> according to Claim 17, comprising:
- a polypeptide according to anyone of Claims 1 to 3, or the expression product of Claim 14,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complex which has been produced by the immunological reaction, said reagents possibly having a label, or being liable to be recognized by a labeled reagent, more particularly in the case where the above mentioned polypeptide is not labeled.
- 22. Necessary or kit for an in vitro diagnosis method of paratuberculosis in an animal liable to be

infected by <u>Mycobacterium</u> <u>paratuberculosis</u> according to Claim 18, comprising:

- an antibody according to Claim 15,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complexes which have been produced by the immunological reaction, said reagents possibly having a label or being liable to be recognized by a labeled reagent, more particularly in the case where the above mentioned antibody is not labeled.
- 23. Necessary or kit for an <u>in vitro</u> diagnosis method of Crohn's disease in a patient liable to be infected by <u>Mycobacterium paratuberculosis</u> according to Claim 19, comprising:
- an antibody according to Claim 15,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complexes which have been produced by the immunological reaction, said reagents possibly having a label or being liable to be recognized by a label reagent, more particularly in the case where the above mentioned antibody is not labeled.
- 24. Necessary or kit for an <u>in vitro</u> diagnosis method of Crohn's disease in a patient liable to be infected by <u>Mycobacterium paratuberculosis</u> according to Claim 20, comprising:
- a polypeptide according to anyone of Claims 1 to 3, or the expression product of Claim 14,
- reagents for making a medium appropriate for the immunological reaction to occur,
- reagents enabling to detect the antigen/antibody complex which has been produced by the immunological reaction, said reagents possibly having a label, or being liable to be recognized by a labeled reagent,

more particularly in the case where the above mentioned polypeptide is not labeled.

- 25. Immunogenic composition comprising a polypeptide according to anyone of Claims 1 to 3, or the expression product of Claim 14, in association with a pharmaceutically acceptable vehicle.
- 26. Vaccine composition comprising among other immunogenic principles anyone of the polypeptides according to anyone of Claims 1 to 3 or the expression product of Claim 14, possibly coupled to a natural protein or to a synthetic polypeptide having a sufficient molecular weight so that the conjugate is able to induce in vivo the production of antibodies neutralizing Mycobacterium paratuberculosis, or induce in vivo a protective cellular immune response by activating M. paratuberculosis antigen-responsive T cells.
- 27. Necessary or kit for the diagnosis of prior exposure of an animal to <u>M. paratuberculosis</u>, said necessary or kit containing a preparation of at least one of the polypeptides or peptides according to anyone of Claims 1 to 3, or the expression product of Claim 14, with said preparation being able to induce <u>in vivo</u> after being intradermally injected to an animal a delayed type hypersensitivity reaction, at the site of injection, in case the animal has had prior exposure to <u>M. paratuberculosis</u>.
- 28. Polypeptides according to claim 3, characterized in that they contain or are constituted by:
- the amino acid sequence of Figure 11 or
- the amino acid sequence extending from amino acid at position (1) to amino acid at position (199) of Figure 11.

Figure ! (1)

Figure 1 (2)

2/27

Figure 2

Absorbance

#. 18. 18

Figure 4

Figure 5

Figure 6

508				GGGAATTC CCCTTAAG	GCGACATGAC CGGCGCGTTG GGGAATTC CGCTGTACTG GCCGCGCAAC CCCTTAAG	GCGACATGAC CGCTGTACTG	
480	ATCGCCAACA TAGCGGTTGT	CCAGTTGTTG GGTCAACAAC	TCACGCTGAT AGTGCGACTA	ATCGCCGCGG TAGCGGCGCC	CGGTGGTGGC ACTGGTCATC ATCGCCGCGG TCACGCTGAT GCCACCACCG TGACCAGTAG TAGCGGCGCC AGTGCGACTA	CGGTGGTGGC	
420	TTCGCCCCGG AAGCGGGGCC	CAGGGTCGCG	GTGACCTCGT CACTGGAGCA	CGCCAGGCGC GCGGTCCGCG	ACAACCGGGC AGCGGGCGCT CGCCAGGCGC GTGACCTCGT CAGGGTCGCG TTCGCCCCGG TGTTGGCCCG TCGCCCGCGA GCGGTCCGCG CACTGGAGCA GTCCCAGCGC AAGCGGGGCC	ACAACCGGGC TGTTGGCCCG	
360	CGGGTGGAGG GCCCACCTCC	CAGAGTGACA GTCTCACTGT	GCCCTGTCGC GCCTAGTCGG GAACGTGCCC CGGGACAGCG CGGATCAGCC CTTGCACGGG	GCCTAGTCGG	CGCCTAACGT GCCCTGTCGC GCCTAGTCGG GAACGTGCCC CAGAGTGACA GCGGATTGCA CGGGACAGCG CGGATCAGCC CTTGCACGGG GTCTCACTGT	CGCCTAACGT GCGGATTGCA	
300	GGCCGACGCC	TCACCGTCTG AGTGGCAGAC	GZCCAGCAGT CCTACGGCCA GGAGCCTTCT TCACCGTCTG CHGGTCGTCA GGATGCCGGT CCTCGGAAGA AGTGGCAGAC	GZCCAGCAGT CCTACGGCCA CHGGTCGTCA GGATGCCGGT		CAGGCCGGTG GTCCGGCCAC	
240	TTACTCCGAG AATGAGGCTC	CGACCGCCAA GCTGGCGGTT	TCCGGTTCGG	GGGATCGGAC CCCTAGCCTG	CCGCYGCCCA ACGTCGGCGG GGGATCGGAC TCCGGTTCGG CGACCGCCAAGCCGTTCGGTTCG	CCGCYGCCCA	
180	CAGCTTCAGC GTCGAAGTCG	CCGGCTTCCC	CGCAGCAGCA GGGCCCGTCC ACACCGCCCA CCGGCTTCCC CAGCTTCAGC GCGTCGTCGT CCGGGCAGG TGTGGCGGGT GGCCGAAGGG GTCGAAGTCG	GGGCCCGTCC		CAACAGTCCG GTTGTCAGGC	
120	GTCCGGCCCG	GGTGCCCAGC CGTCGCCGCA CCACGGGTCG GCAGCGGCGT		CGGCGGTTTC	GCGCTCCGAC CGGCGGTTTC CGCGAGGCTG GCCGCCAAAG	GGCCAGGGCG CCGGTCCCGC	
09	CGGCGGTTAC GCCGCCAATG	GGTCGCAGTA CCAGCGTCAT	CAGG X CTACG GTCC E GATGC	GCATTCGCCG CGTAAGCGGC	GAATTUCUGG GIGGICAGCA GCATTCGCCG CAGGKCTACG GGICGCAGIA CGGCGGTTAC CITAAGGGCC CACCAGICGI CGIAAGCGGC GICCEGAIGC CCAGCGICAT GCCGCCAAIG	GTTAAGGGCC	

F19-72

9

GAATTCCCGG GTGGTCAGCA GCATTCGCCG CAGGCTACGG GTCGCAGTAC GGCGGTTACG CTTAAGGGCC CACCAGTCGT CGTAAGCGGC GTCCGATGCC CAGCGTCATG CCGCCAATGC

120

180

240

300

360

420

480

507

Fig. 7B	
CGACATGACC GGCGCGTTGG GGAATTC GCTGTACTGG CCGCGCAACC CCTTAAG	CGACATGACC GCTGTACTGG
GGTGGTGGCA CTGGTCATCA TCGCCGCGGT CACGCTGATC CAGTTGTTGA TCGCCAACAG CCACCACCGT GACCAGTAGT AGCGGCGCCA GTGCGACTAG GTCAACAACT AGCGGTTGTC	GGTGGTGGCA CCACCACCGT
A GCGGGCGCTC GCCAGGCGCG TGACCTCGTC AGGGTCGCGT TCGCCCCGGC	CAACCGGGCA GTTGGCCCGT
CCCTGTCGCG CCTAGTCGGG AACGTGCCCC AGAGTGACAC GGGTGGAGGA	GCCTAACGTG CGGATTGCAC
CCCAGCAGTC CTACGGCCAG GAGCCTTCTT CACCGTCTGG GCCGACGCCC	AGGCCGGTGG TCCGGCCACC
COTCGCCGG GGATCGGACT CCGGTTCGGC GACCGCCAAT TACTCCGAGC	CGCGGCCCAA GCGCCGGGTT
GCAGCAGCAG GGCCCGTCCA CACCGCCCAC CGGCTTCCCC AGCTTCAGCC CGTCGTCGTC CCGGGCAGGT GTGGCGGGTG GCCGAAGGGG TCGAAGTCGG	AACAGTCCGC TTGTCAGGCG
GCCAGGGCGG CGCTCCGACC GGCGGTTTCG GTGCCCAGCC GTCGCCGCAG TCCGGCCCGC CGGTCCCGCC GCGAGGCTGG CCGCCAAAGC CACGGGTCGG CAGCGGCGTC AGGCCGGGCG	GCCAGGGCGG

_	507				GGAATTC CCTTAAG	GGCGCGTTGG GGAATTC	CGACATGACC GCTGTACTGG	
_	480	TCGCCAACAG AGCGGTTGTC	CTGGTCATCA TCGCCGCGGT CACGCTGATC CAGTTGTTGA TCGCCAACAGGACCAGTACTAGTAGT AGCGGCGCCA GTGCGACTAG GTCAACAACT AGCGGTTGTC	CACGCTGATC GTGCGACTAG	TCGCCGCGGT		GGTGGTGGCA CCACCACCGT	
_	420	TCGCCCCGGC AGCGGGGCCG	AGGGTCGCGT TCGCCCCGGC TCCCAGCGCA AGCGGGGCCG	GCCAGGCGCG TGACCTCGTC CGGTCCGCGC ACTGGAGCAG	GCCAGGCGCG	CAACCGGGCA GCGGGCGCTC GCCAGGCGCG TGACCTCGTC AGGGTCGCGT TCGCCCCGGC GTTGGCCCGT CGCCGCGAG CGGTCCGCGC ACTGGAGCAG TCCCAGCGCA AGCGGGGCCG	CAACCGGGCA	
_	360	GGGTGGAGGA	AGAGTGACAC TCTCACTGTG	AACGTGCCCC AGAGTGACAC TTGCACGGGG TCTCACTGTG	CCTAGTCGGG GGATCAGCCC	GCCTAACGTG CCCTGTCGCG CCTAGTCGGG AACGTGCCCC AGAGTGACAC GGGTGGAGGA CGGATTGCAC GGGACAGCGC GGATCAGCCC TTGCACGGGG TCTCACTGTG CCCACCTCCT	GCCTAACGTG CGGATTGCAC	
_	300	GCCGACGCCC CGGCTGCGGG	CTACGGCCAG GAGCCTTCTT CACCGTCTGG GCCGACGCCC GATGCCGGTC CTCGGAAGAA GTGGCAGACC CGGCTGCGGG	GAGCCTTCTT CTCGGAAGAA	GCCAGCAGTC CTACGGCCAG GAGCCTTCTT CGGTCGTCAG GATGCCGGTC CTCGGAAGAA		CAGGCCGGTG	
	240	TTACTCCGAG AATGAGGCTC	TCCGGTTCGG CGACCGCCAA AGGCCAAGCC GCTGGCGGTT	TCCGGTTCGG	ACGTCGGCGG GGGATCGGAC TGCAGCCGCC CCCTAGCCTG		CCGCCGCCCA	
0	180	CAGCTTCAGC GTCGAAGTCG	CGCAGCAGCA GGGCCCGTCC ACACCGCCCA CCGGCTTCCC CAGCTTCAGC GCGTCGTCGT CGCGGCAGGG GTCGAAGTCG	GGGCCCGTCC ACACCGCCCA CCCGGGCAGG TGTGGCGGGT	GGGCCCGTCC		CAACAGTCCG GTTGTCAGGC	
0	120	GTCCGGCCCG	GCGCTCCGAC CGGCGGTTTC GGTGCCCAGC CGTCGCCGCA GTCCGGCCCG CGCGAGGCTG GCCGCCAAAG CCACGGGTCG GCAGCGGCGT CAGGCCGGGC	GGTGCCCAGC	CGGCGGTTTC		GGCCAGGGCG	
0	09	CGGCGGTTAC GCCGCCAATG	GCATTCGCCG CAGGGCTACG GGTCGCAGTA CGGCGGTTAC CGTAAGCGGC GTCCCGATGC CCAGCGTCAT GCCGCCAATG	CAGGGCTACG	GCATTCGCCG	GAATTCCCGG GTGGTCAGCA GCATTCGCCG CAGGGCTACG GGTCGCAGTA CGGCGGTTAC CTTAAGGGCC CAGCGTCAT GCCGCCAATG	GAATTCCCGG	

もった

										CAG Gln					45
										CCG Pro					90
GGT Gly	GCC Ala	CAG Gln	CCG Pro	TCG Ser 35	CCG Pro	CAG Gln	TCC Ser	GGC Gly	CCG Pro 40	CAA Gln	CAG Gln	TCC Ser	GCG Ala	CAG Gln 45	135
CAG Gln	CAG Gln	GGC Gly	CCG Pro	TCC Ser 50	ACA Thr	CCG Pro	CCC Pro	ACC Thr	GGC Gly 55	TTC Phe	CCC Pro	AGC Ser	TTC Phe	AGC Ser 60	180
CCG Pro	CCG Pro	CCC Pro	AAC Asn	GTC Val 65	GGC Gly	GGG	GGA Gly	TCG Ser	GAC Asp 70	TCC Ser	GGT Gly	TCG Ser	GCG Ala	ACC Thr 75	225
GCC Ala	AAT Asn	TAC Tyr	TCC Ser	GAG Glu 80	CAG Gln	GCC Ala	GGT Gly	GGC Gly	CAG Gln 85	CAG Gln	TCC Ser	TAC Tyr	GGC Gly	CAG Gln 90	270
										GCC Ala					306

Figure 9a

•	45	AAA T'I'F	ATA TAT	TAC ATG	CTC	TTA	TGT ACA	TCA	GAG
		GCA	GTG	TGA	ACG	GGT	ອອລ ວລອ	AAT TTA	ລອອ ອວລ
	39	CCT	ລອລ ອນອ	ລວອ	GTG	GGA	CAA GTT	၁၁၁ ၅၅၅	TTT AAA
		999 ၁၁၁	TCT AGA	TGG	AAG TTC	CCA	TGA	GCA	522 255
	33	TGC	CCA	CAC	ATG TAC		GAG	GGA	CAT
		CAA GTT	TAA ATT	TAC	ACC	GGG GTA	TTC	GGA	ອອນ ວນອ
	27	AAA TTT	AGA	AAA TTT	ACC TGG	GCA	AAA TTT	AGT TCA	ນນຸນ
		ACC	TAC	CAT	CTG	AGG TCC	TCA	CCA	TCC AGG
	21	CCT	ACA TGT	TGA	GCA	AGA	TAG	CCA	GGA
		TCA	AAA TTT	TGT ACA	GAC	TGA	AAG TTC	AAA TTT	CGT
	15	•	TAA ATT	ეე <u>ე</u> ეეე	CAG	ອອອ	ATC TAG	AGC TCG	CCA
I		GAT C'FA	ATA	TGG	CAG	AAG	AAG TTC	CGT	TCA
pmTNF nPH	<u> </u>	ວວວ ອອອ	TTC	CTC	CAT	ATT TAA	GGT	CGT	CCA
pmTN		TCC	AAA TTT	TAT ATA	GCA	AAA TTT	CAT GTA	CCA	TCA
From:	ო-	AAT TTA	AAT TTA	AAT TTA	TGA	TTA AAT	AAT TTA	AGC	CCA
Fr		H .	46	91	136	181	226	271	316

ອອວ ວວອ	TTT AAA	AGA TCT	TAG	ACG	AGG	ACT TGA	TGA	AAC TTG
ອອວ ວວອ	CTG	ATC	CAG	GAA	AGT TCA	AAG TTC	TCC	AGC TCG
TAA	TGG	TAA ATT	ວວອ ອອວ	AGT TCA	GAG	CGA	CTC	CGA
AAG TTC	GCT	GAT CTA	TGG	AGA TCT	TGC	AGT TCA	ACG	TTG
AGT TCA	CAA GTT	ACA TGT	ອ ອວ	CTC	CCA	CTC	TGA	ACG
TTA AAT	ອອວ ວວອ	GAT	TTT AAA	GAA	TCC	AGG	225 552	
AGC TCG	GAT	CCT	GAA	၅၅၁ ၁၁၅	GTC	GAA	TGT ACA	GAG CGG ATT TGA CTC GCC TAA, ACT
GCA	NTT NAA	CAG GTC	ACA TGT	CAT	ວວວ ອອອ	AAC TTG	GTT	CGG GCC Igure
CAT	TTN	TTT AAA	AAA TTT	ອອອ ວວວ	TGT	TAA ATT	GTT	GAG CTC
225 252	ATT TAA	GAT	GAT	TGA	TAG	AAA TTT	TCT	225 552
GAC	ອນນ ນອອ	GAA	TCT AGA	ACC TGG	TGG	ATC TAG	TTA AAT	ອນອ ນອນ
GTC CAG	ອນນ ນອອ	AGA TCT	225 552	ອອອ ນນນ	CGA	ອນນ ນອອ	GTT	ATC TAG
AGA TCT	GCT	ATG TAC	AAG TTC	GGT	ອນອ	CCA	TTC	CAA
TCT	TCC	ວວອ ອອວ	CAG	GGT	TAG	CTG	CCT	GGA
990 000	AGT TCA	TGG	ACG	ອນອ	ວອອ ອວວ	GAA	ລລລ	GTA
361	406	451	496	541	586	631	919	721

ອນນ ນອອ	CGT	ATG	TAA	AAT TTA	AGA TCT	AAT TTA
CCA	TTG	AAT TTA	TAA	CAA GTT	CGT	CGT
CTG	TTT AAA	TCA AGT	CAA GTT	GAC	999 ၁၁၁	ວອວ ອວອ
AAA T'I'T	ອອວ	CAT	CTT GAA	CAT	AGA TCT	TCT AGA
CAT	ATG	ata Tat	ATG	TCT AGA	GTC AGA C	TTT
ອນອ ນອນ	225 252	TAA	TAA ATT	TAA ATT	AGC TCG	TTT AAA n't)
ອອວ ວວອ	TGA ACT	TTC	TGA ACT	TGA	CTG	TCC TTT AGG AAA 9 9b (con't)
GAC	TCC	TTT	CCC TGA GGG ACT	TTT TGA TAA AAA ACT ATT	CCA	AGA TCT Figure
CAG	CCA	TTA	TAA ATT	CCT	GTT CAA	TTG
ວລວ ອອອ	AGG TCC	TGT	CAA GTT	GAT	TTC	TTC
ອນນ ນອອ	AGA TCT	TTT AAA	AGA TCT	GAA	GTT CAA	ATC TAG
GGT	AGC TCG	CTC	ATG TAC	GGT	TGA	AGG
GAG	TTA AAT	AAA T'I'T	CTC	CTA GAT	ACG TGC	CAA GTT
CCG GAG CCC CCC	AAA TTT	TAC	ລອອ	GAT	TTA	GAT
ອນນ ນອອ	ATC TAG	T'TC AAG	TAT ATA	AAG TTC	999 ၁၁၁	AAA TTT
166	811	856	901	946	991	1036
						• •

			15/2	27		
TTG AAC	TGG	ອອວ ວວອ	ATA TAT	CGA	GGA	ອອວ
GGT	AAC TTG	GTA	TAC	TGG	ACC TGG	ACA TGT
GGT	GGT AAC CCA TTG	AGT GTA	GCC TAC	CAG GTC	GTT	CAC ACA GTG TGT
AGC	SAA	CCT TCT GGA AGA	ACC TGG	TGC	ATA TAT	CTG AAC GGG GGG TTC GTG GAC TTG CCC CCC AAG CAC Figure 9b (con't)
ACC TGG	TTT TCC (CCT	CTC TGT AGC ACC GAG ACA TCG TGG	TGC	GGA CTC AAG ACG ATA CCT GAG TTC TGC TAT	TTC
GCT	TTT AAA	TGT ACA	TGT ACA	ອນນ	AAG TTC	ວວວ
ACC ACC GCT TGG TGG CGA	TCT	AAA TAC TGT TTT ATG ACA	CTC	ACC AGT TGG TCA	CTC	G AAC GGG C TTG CCC Figure 9b (con't)
ACC TGG	AAC TTG	AAA TTT	GAA	ACC TGG	GGA	AAC TTG
AAA TTT	ACC TGG	ACC	CAA GTT	GTT CAA	GTT CAA	CTG GAC Fig
AAA TTT	GCT	GAT	CTT GAA	CCT	၁၁၅	000 000
AAC TTG	AGA	GCA	CCA	AAT TTA	TAC	GTC
GCA	TCA	AGC	CCA	GCT	TCT	၁၅၁ ၅၃၅
CTT GAA	GGA	CAG	AGG TCC	TCT AGA	GTG	GCA
CTG	550 225	CAG	GTT CAA	ອນອ	GTC	ອນນ ນອອ
CTG	TTT	CTT GAA	GTA	CCT	TAA ATT	TAA
1081	1126	1171	1216	1261	1306	1351

			16/	27						
SCG	ວອວ	GGA	CCL	GAG	CIC		ລລອ	GTC	CAG	
ACA	TGT	CGC	ອລລ	CAC	GTG	TGT	ACA	CTC	GAG	
CCT	GGA	AAA	TTT	SCG	ວອວ	TCC	AGG	ATG	TAC	
ATA	TAT	GAG	CIC	AGA	\mathtt{TCT}	TAG	ATC	GTG	CAC TAC (
GAĠ	CIC	AGG	TCC	AGG	TCC	TTA	AAT	TTT	AAA	
	TGA	CGA	CCL	AAC	${ m TTG}$	TCT	AGA AAT	ATT	TAA	_
CGA	CCL	TCC	AGG		ວວອ	GTA	CAT	TGA GCG TCG ATT TTT	AGC	(con't
CAC	GTG	GCT	CGA	GGT	CCA	CTG	GAC	Sas	၁၅၁	gure 9b
CTA	GAT		GTG	CAG	GIC	ລອວ	525	TGA	ACT	Fi
GAC	CTG	CGC	ອລອ	CGG	ວວອ	AAA	AGG TCC CCC TTT	3 ACT 1	\mathbf{TGA}	
AAC	TTG	AAG	TTC	AAG	TTC	999	ລລລ	CT(GA(
BUB	CCI CGC IIG	AGA	AAC TCT TTC GCG	TCC GGT	CCA	AGG	ICC	CCT	GGA	
GGA	CCT	TTG	AAC	TCC	AGG	TCC	AGG	CCA	GGT	
CTT	GAA	GCA	CGT	GTA	CAT	CCT	CGA	DOL	AGC	
CAG	GIC	TGA	ACT	CAG	GTC	GGA	CCT	GTT	CAA	
1396 CAG CTT		1441 TGA (1486		1531 GGA (1576 GTT		

1	7	1	2	7

TTT	TCC	TGA	CGA	CCA	CTC	ອນອ
CTT	CTT	CTT GAA	CAG	TTT AAA	TTG	GCT
ອນນ ນອອ	GTT CAA	ອນອ ນອນ	ລອລ ອລອ	ນອນ ອນອ	TTG	TTC
ອນອ ນອນ	CAT GTA	TAC	CGA	TCC	ATG TAC	ACG
CAA GTT	TCA	TAT ATA	GAC	ACT TGA	TTC	TTC
CAG	TGC	ລອອ ອວລ	AAC TTG	CTG	CCA	ອນອ ນອນ
5 2 2 2 2 3	TTT AAA	GGA TAA CCT ATT	ລອອ	292 929		
AAA TTT	ອອວ ວວອ	GGA	CAG	AGA TCT	CGA AGA GCT TCT	AGC AGC AGT TCG TCG TCA Figure 9b (con't)
GNA	CTG	TGT ACA	ລອອ ອລລ	GGA	AAC TTG	AGC TCG Figure
ATG	TTG	TTC	TCG	AGC TCG	GGA	TGC
CCT	CTT GAA	TGA	ອນອ	GGA	CAC	TTT AAA
GNG	500 055	ອອອ ວນນ	TAC	CGA	AAA TTT	ACG TGC
ນອນ ອນອ	CCT	ATC TAG	TGA	GAG	ACG TGC	CAG
222 255	GTT	GTT CAA	AGC TCG	AGT TCA	TTT AAA	
AGG TCC	ACG	TGC	GTG	GTC	GAC	AGG TCG TCC AGC
1621 AGG GGG TCC CCC	1666	1711	1756	1801	1846	1891

AGC	GTG	TGG	555	GAG	CGA	GAC
550 225	ອອອ ວວວ	TGC	TTT AAA	TTG	GGT	GCA
999 ၁၁၁	GCA	ອນລ	TGG	TTC	TCA	GAG
AAC TTG	TGC	GCG TGC GGC	AAG GGT TGG TTT TTC CCA ACC AAA	CAA GIT	GGC TTC CAT TCA GGT CCG AAG GTA AGT CCA	ນນນ
ອນນ	ICA AGT	ວອວ	AAG TTC	CTC	TTC	ອນອ ນອນ
CAG TAA GTC ATT	GGA	99 0 ၁၁9	ອອວ	TGG	ອນນ ນອອ	CAA GTT
CAG	GCA	TGC	TCT	GAT	ອອວ	ACG TGC
AAC TTG	GGA	AGA ICT	TGT TCT ACA AGA	ATT	ອອວ ອອວ ວວອ ວວອ	GCG ACG CGC TGC
GCT	ACA TGT	ວອອ	ATA TAT	AGA TCT	GGT	ACC TGG Figure
TCT	ACG	TGC	TGG	GCA	CGA	TGC ACC ACG TGG Figure
CAT GTA	TCA	ອນອ	CGA	TCC AGG	TAG	CCA GGT
ATT TAA	TCC AGG	CAA GTT	ACG	TTC	CGT	GCT
GTG	ວວວ ອອອ	ACC TGG	ວວອ ອອວ	CAG	ATC	ລອອ
TCG	550 225	AGG ACC TCC TGG	TGG	TCA	TGA ATC ACT TAG	ອນນ
GTA	CTA	ອອວ ວວອ	AGA TCT	CAT	TGG	GGT
1936	1981	2026	2071	2116	2161	2206

TGT	AGT TCA	CTG	CAA	ນນນ
CCA	TCC	AAG TTC	CTG	AAT TTA
GTT	ລລອ	TTG	ອນນ ນອອ	CAT
999 ၁၁၁	CAG	TCC AGG	CAT	AAT TTA
CAA GT'T	GAT	CGA	CAG	AAG TTC
TGC	GAC	GAG	GGA	GAG
CCA	CGT	ອນອ	CCT	AGC
AAT T'TA	ອນອ	AGC	CTG	GGA AGC
TAC	AAT TTA	AAG TTC	TAC	0000 0000 10000
<u> </u>	ATA TAT	GGT	ATC TAG	992 000
ອນນ ວອອ	ອນນ	GCT	GTC	GAT
ອນນ ວອອ	ອນນ	TAG	GTC	999 222
TAG GGC ATC CCG	CGA GGC GCT CCG	CGA AGT TAG GCT TCA ATC	ATG	CAT
GTA	ອນອ	CGA	CTG	ນນນ
AAG	GCT	GAT	TCC	ອນອ ນອນ
2251 AAG GTA TTC CAT	2296	2341 GAT (CTA (2386 TCC CTG ATG AGG GAC TAC	2431 CGC GGG GCG CCC

20	/	2	7
----	---	---	---

	550 £	500 E	r cgc	TGC TGC	r AAG	r GAC
GEA	CTC	GAG	CGT	ອນອ ນອນ	CAT	GCT
GAC	CTT	AGC TCG	CAT	GAG	AGT	GGA
CAA GTT	CTG	TTG	GAT	CCA	GAC	GAA
CAG	ອນນ ນອອ	5 22	ອອວ ວວອ	GAC	GAA	ລອອ
ອນອ	AAT TTA	GAA	CAG	AAT TTA	AAA TTT	CCA
GAA	GAT	GAC	CGA	GAA	GAT	CAT GCC CCG CGC GTA CGG GGC, GCG
5 000	ອນນ ນອອ	AGT TCA	AAG	552 225	CAT	ဦး ၁၅၅၅ ၁၅၅၅
CGT GCA	ອອວ ວນອ	ACC TGG	ອນອ ນອນ	CTC	TTG	SCC CGG
TCG	CAT GTA	ວວວ ອອອ	TAC	GTC	GAG	
555 555 555	ອນອ	ອນນ	GAA	ນອນ ອນອ	TAC	AGT TCA
CCA	ອນນ ນອອ	GGT	TCC AGG	AAA TTT	TCC AGG	GAT
CAT GTA	GTC	TTT AAA	GAT	ນອນ ອນອ	CTG	GAC
5 22	ອນອ ນອນ	ACG TGC	CAA GTT	CCA	CAC	ອນນ ນອອ
GAA CTT	CAG	GAA	GTG CAC	GCT	ນນອ ອອນ	TGC GGC
2476	2521	2566	2611	2656	2701	2746

			21	/27		
ATG	GTT	992 229	GAA CTT	ATC	552 225	GAC
CTT GAA	552 225	500 055	990 009	555 222	500 055	CAG
TCC	GAG	GAT	CAC	TTC	TGT	CCA
CTC TCC GAG AGG	GTT	GGA	ACC TGG	ATC	ACC TGG	GAT
ACG	TAG	CAA	CAT	000 000	ອນອ ນອນ	GAG
TCG	TAG	ATG	CAC	AGC CCG	AAC CGC ACC TTG GCG TGG	GTA GAG CAT CTC
225 252	CAG	TGC	GCC TGC CGG ACG	ລອວອ	GCC AGC CGG TCG	GCG TCC GGC CGC AGG CCG Figure 9b (con't)
CAT	552 225	TGG	ອອວ ວວອ	GTG	ອອນ ນນອ	TCC AGG
ນນນ ອອອ	GCA	GAA	ວນວ	GAA	ອນນ ນອອ	GCG CGC Figure
CAA GTT	GAA	AAG TTC	CAC	ອອອ	ATA TAT	GAT
TCT	TAG	ອນອ	ອນນ	GAG	GAT	CAC (GTG
ອນນ ນອອ	CAT	ອນອ ນອນ	ອອອ ວວວ	CAT	ອນນ ນອອ	ອນນ ນອອ
GNA	CTG	ອນອ ນອນ	TCC	GCT	GTC	ອອວ ວວອ
GTT CAA	CTC	CAC	CAG	AGC TCG	GAT	GAT
TGG	CGA	GAG	CAA	ACA TGT	GGT	GGT
2791	2836	2881	2926	2971	3016 GGT CCA	3061

_	_		_	_
2	2	/	2	7

TAG	TGC	ອນອ ນອນ	GAT	၁၁၁ ၁၁၅
AAG	CAG	TAG	GAC	TAT ATA
TCC	GGA	ATA TAT	ATG TAC	990 229
522 295	GTC	ອນອ ນອນ	GGA	CAA GTT
AGT TCA	ລອລ ອີລອ	CAA GTT	GTC	AAC TTG
GAT	AAA TTT	CAT	GCT	CAT GTA
GTC	552 225	TTG	GAT	ວວອ ອອວ
GTA	ນອນ ອນອ	AAA TTT	ອນນ ນອອ	TAC
0 0 0 0	ລອລ ອວອ	TAG	ACT TGA	CAG
GAT	TGG	GCA	GTG	ວວອ ອອວ
CAT	GAC	TGC	ATA TAT	ອອນ ວນອ
ອນອ	CAG	ວວວ	990 229	GAG
GGT	GAG	AAC TTG	CAC	CAA GTT
ACA	AGC TCG	GAG	CAG) 299 t
りつつ	CGA	TCC	TAG	ATC TAG
SIUB GGG TGT GGT CGC CCC ACA CCA GCG	3151 CGA AGC GAG CAG GCT TCG CTC GTC	3196 TCC GAG AAC GGG AGG CTC TTG CCC	3241 TAG CAG CAC GCC ATC GTC GTG CGG	3286 ATC CCG CAA GAG TAG GGC GTT CTC

716

Ğ

978

933

845

composition:

DNA sequence

2 OTHER;

Sequence name: NPMTNFMPH.

Total number of bases is:

OLIDOTITI ITT	3376	ATG GTT CAA TGA ACT		TCG TAG AGA TTT TCT AAA TAA ACT ATT TGA	GTC GTC GTA ACC TGG	CCA ACA TGT GCA CGT	CCA CTG ACA CGG TGT GCC GCA TTA CGT AAT	CCA CGG CTG AACG GAC TTC GAA TTTC GAA TTTC	CGG CTG GAC CTT GAA	TCT VCT VTC	GEC GEC GAT GAT	TTTA GC AAT CC GAT AA	SCA SCA SGT SAG	CTC ATT TAA CTG GAC	GCG TAA ATT TCA AGT	TAA TAA CTG GAC AAC
	3466 P	ATG	AGA F	ATT TAA												

Figure 9b(con't)

Met Val Arg Ser Ser Ser Gln Asn Ser Ser Asp Lys Pro Val Ala 1 His Val Val Ala Asn His Gln Val Glu Glu Gln Gly Ile His His 16 31 His His His Val Asp Pro Gly Pro Met Ala Phe Arg Arg Pro Leu Glu Phe Pro Gly Gly Gln Gln His Ser Pro Gln Gly Tyr Gly 46 Ser Gln Tyr Gly Gly Gly Gly Gly Ala Pro Thr Gly Gly 61 76 Phe Gly Ala Gln Pro Ser Pro Gln Ser Gly Pro Gln Gln Ser Ala Gln Gln Gln Gly Pro Ser Thr Pro Pro Thr Gly Phe Pro Ser Phe 91 106 Ser Pro Pro Pro Asn Val Gly Gly Ser Asp Ser Gly Ser Ala Thr Ala Asn Tyr Ser Glu Gln Ala Gly Gly Gln Gln Ser Tyr Gly 121 136 Gln Glu Pro Ser Ser Pro Ser Gly Pro Thr Pro Ala

Fig. 10

GGG	CCC	GAA	CTT	GAC	GAA	CTC	GCC	GTC	GTA	GCT	GGC	TTC	CTC	GTC	45
GGT	CCA	CAG	CGC	CCG	CAT	CGC	TTC	CAG	GTA	TTC	GCG	CAG	CAT	GGT	90
GCG	GCG	CCG	GCC	CGC	CGG	CAC	GCC	GTG	GTC	GGC	GAG	TTC	GTC	GGT	135
GTT	CCA	GCC	GAA	CCC	GAC	GCC	GAG	GCT	GAC	CCG	GCC	GCC	GGA	CAG	180
ATG	GTC	AAG	GGT	GGC	AAT	ACT	TTT	CGC	CAG	CGT	GAT	CGG	GTC	GTG	225
TTC	GAC	CGG	CAG	GGC	CAC	CGC	GGT	GGA	CAG	CCG	CAC	CCG	CGA	GGT	270
GAC	GGC	ACA	GGC	CGC	GCC	CAG	ACT	GAC	CCA	CGG	GTC	CAG	GGT	GCG	305
CAT	GTA	GCG	GTC	GTC	GGG	CAG	CGA	CGC	GTC	GCC	GGT	GGT	CGG	GTG	360
CGC	GGC	CTC	CCG	CTT	GAT	CGG	GAT	ATG	CGT	GTG	TTC	CGG	CAC	GTA	405
GAA	GGT	CGC	AAA	CCC	GTG	GTC	GTC	GGC	AAG	CTT	CGC	GGC	CGC	AGC	450
CGG	AGA	GAT	GCC	ACG	GTC	GCT	GGT	GAA	AAG	CAC	AAG	ccc	GTA	ATC	495
CAT	GCA	GTG	AAT	TAG	AAC	GTG	TTC	TAC	CTC	TGC	GGG	GCA	AGC	TGT	540
CGT	GAT	ACG	GAC	CGT	CTC	GCC	GCG	CGG	TCG	TCT	GCG	AAG	CCC	GCG	585
GGC	AAG	CCA	ATG	GCG	ACG	GCA	CCG	GCC	GTC	GCA	CGT	GCG	CTA	GCG	630
TGG	GTG	ATC	GAC	CGT	GTC	GCT	CGC	GCA	GTG	ACG	CGC	CTG	CAA	GCA	675
CCG	CGT	CGC	ATC	GCA	ACC	GTG	GCG	ccc	GCT	CGG	CAC	TAA	AAG	GCA	720
GTG	GAA	GCA	ACA	GGA	GGA	GCC						GGC Gly			765
		_	_							_		GGC Gly			810
												CTC Leu			855
												GCC Ala			900
												CTC Leu			945

Figure 11

			•								
										GTG Val	
CTG Leu 85											1035
AAG Lys 100											1080
CTG Leu 115											1125
ATC Ile 130											1170
GCG Ala 145											1215
ACG Thr 160											1260
GGC Gly 175	Gln	Tyr		Gln	Tyr	Gln	Tyr	Gly			1305
GGT Gly 190											1350
CAT His 205											1395
GGC Gly 220											1140
TCC Ser 235											1485

Figure 11 (con't 1)

										CCG Pro					1530
										AAT Asn					1575
										CCT Pro					1620
		ACG Thr				CGT	GCC	CTG	TCG	CGC	CTA	GTC	GGG	AAC	1665
GTG	ccc	CAG	AGT	GAC	ACG	GGT	GGA	GGA	CAA	CCG	GGC	AGC	GGG	CGC	1710
TCG	CCA	GGC	GCG	TGA	CCT	CGT	CAG	GGT	CGC	GTT	CGC	ccc	GGC	GGT	1755
GGT	GGC	ACT	GGT	CAT	CAT	CGC	CGC	GGT	CAC	GCT	GAT	CCA	GTT	GTT	1800
GAT	CGC	CAA	CAG	CGA	CAT	GAC	CGG	CGC	GTT	GGG	GAA	TTC			1839

Figure 11 (cont 2)

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/EP 92/00661

I. CLASSIFICATION OF SUB.	ECT MATTER (if several classification	symbols apply, indicate all) ⁶	
	nt Classification (IPC) or to both National 31; GO1N33/569;	Classification and IPC A61K39/04:	A61K39/395 C12N5/10
II. FIELDS SEARCHED	Minimum Down	Sample of	
	Minimum Docum	mentation Searched? Classification Symbols	
Classification System Int.Cl. 5	CO7K; C12P;	•	51K
	Documentation Searched other	er than Minimum Documentation s are Included in the Fields Searched ⁸	ı
III. DOCUMENTS CONSIDER	DEN TO RE PELEVANT ⁹		·
	Document, 11 with indication, where approp	printe, of the relevant passages 12	Relevant to Claim No. ¹³
A WO,A,8 FOUNDA	903 892 (WISCONSIN ALL TION) 5 May 1989 ge 4, paragraph 2 ge 6, paragraph 4 - pag	JMNI RESEARCH	5
MCFADD see ab	808 456 (J. HERMAN-TAY EN) 3 November 1988 stract ge 27, paragraph 2	rLOR & J.−J.	1,5, 17-24
		-/	
"E" earlier document but pu filing date "L" document which may the which is cited to estable citation or other special "O" document referring to other means "P" document published pri later than the priority of IV. CERTIFICATION	general state of the art which is not ticular relevance ablished on or after the international arow doubts on priority cizim(s) or ish the publication date of another i reason (as specified) an oral disclosure, use, exhibition or for to the international filing date but date cizimed	citéd to understand the prin invention "X" document of particular relev cannot be considered novel involve an inventive step "Y" document of particular relev cannot be considered to the	ciple or theory underlying the ciple or theory underlying the cance; the claimed invention or cannot be considered to cance; the claimed invention olive an inventive step when the one or more other such document of the cance; the claimed invention olive an inventive step when the one or more other such document of the cancer of the canc
Date of the Actual Completion	5 MAY 1992	2 3. 08. g	
International Searching Author	ry PEAN PATENT OFFICE	Signature of Authorized Off THIELE U.H.	

II. DOCUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	B 1 21
Category o	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
	JOURNAL OF CLINICAL MICROBIOLOGY vol. 25, May 1987, WASHINGTON D.C., US pages 796 - 801; J. J. MCFADDEN: 'Crohn's Disease-Isolated Mycobacteria Are Identical to Mycobacterium paratuberculosis, as Determined by DNA Probes That Distinguish between Mycobacterial Species' see abstract see page 798, left column, paragraph 5 - right column, paragraph 1 see page 799, right column, line 37 - page 800,	5
	line 5	
	•	
	λ	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

9200661 57664

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 15/05/92

Patent document cited in search report W0-A-8903892	Publication date	Patent family member(s)		Publication date
		US-A- AU-A-	4918178 2787889	17-04-90 23-05-89
WO-A-8808456	03-11-88	AU-A- EP-A- EP-A- JP-T-	1628688 0288306 0356450 3503837	02-12-88 26-10-88 07-03-90 29-08-91