Project : 4 – Measure Energy Consumption

Phase 1 - Problem Definition and Design Thinking

Problem Definition

The problem at hand is to create an automated system that measures energy consumption, analyzes the data, and provides visualizations for informed decision-making. This solution aims to enhance efficiency, accuracy, and ease of understanding in managing energy consumption across various sectors.

Design Thinking

To successfully solve this problem, we need to carefully plan our approach. Here's a step-by-step design thinking process for this project :

1.Data Source:

Some of the Data Sources for Measuring Energy Consumption:

Smart Meters:

Modern utility meters equipped with communication capabilities for real-time tracking of electricity and gas consumption in homes and businesses.

IoT Sensors:

Internet of Things sensors and devices that capture data on temperature, occupancy, lighting, and more to monitor energy use in buildings.

Utility Bills:

Historical bills providing data on past energy use and costs, useful for long-term analysis and trend tracking.

Remote Monitoring Services:

Third-party services offering remote energy monitoring and management for organizations seeking outsourcing options.

2.Data Processing:

<u>Data Preprocessing:</u> Cleans and normalizes raw data, handling missing values and outliers.

Aggregation: Summarizes data into hourly, daily, or custom time intervals to facilitate analysis.

<u>Data Transformation:</u> Converts data into a suitable format for analysis and visualization.

3. Feature Extraction:

Feature extraction is crucial for analyzing energy consumption data effectively. Here are some common features :

Consumption Profiles:

- Daily, weekly, and monthly consumption patterns.

- Peak usage times and demand profiles.

Load Factors:

- Active power, reactive power, and apparent power.
- Power factor (cosine of the phase angle between voltage and current).

Energy Intensity:

- Energy consumption per square foot (for buildings).
- Energy usage per unit of production (for industrial processes).

Load Balancing:

- Balancing of loads across phases or equipment to reduce energy waste.

These extracted features can provide valuable insights into energy consumption patterns.

4. Model Development:

- Gather historical energy consumption data.
- Clean, normalize, and engineer features.
- Choose appropriate machine learning or time-series models.
- Train the model using the training dataset.

5. Visualization:

- Dashboard Creation: Develops a user-friendly dashboard to display real-time and historical energy consumption data.
- Charts and Graphs: Utilizes various visualization techniques such as line charts, bar graphs, and heatmaps to present data insights.
- Alerts and Notifications: Sends alerts to users when consumption exceeds predefined thresholds or anomalies are detected.

6. Automation:

- Automation ensures precise measurement, reducing errors in energy usage data.
- Continuous monitoring allows for timely identification of energy wastage and optimization.
- By pinpointing inefficiencies, businesses can implement energy-saving measures.
- Provides valuable insights for making informed decisions on energy management.