El Teorema de Bayes con Diagramas de Venn

Julio Sergio Santana 2019-06-12

Índice general

Pr	rólogo	5
1.	Teorema de Bayes Explicado	7
	1.1. El teorema de Bayes	7
	1.2. Explicación gráfica del teorema	8
2.	Ejemplos	15
	2.1. Ejemplo 1	15

Prólogo

El teorema de Bayes es un tema central de la estadística. No obstante, las explicaciones del tema o bien son muy *matemáticas*, o no son lo suficientemente claras para ahondar en el objetivo que el teorema persigue. El breve texto que se presenta a continuación pretende subsanar dicha carencia por medio de la elaboración de una explicación gráfica basada en los diagramas de Venn.

Capítulo 1

Teorema de Bayes Explicado

Antes de proceder a la explicación del teorema, se enunciará éste de una manera plana.

1.1. El teorema de Bayes

Teorema 1.1. Dados los conjuntos (eventos) $B_1, B_2, ... B_k$, disjuntos, y los conjuntos S, que representa el universo, y A, tales que,

$$S = \bigcup_{i=1}^{k} B_i$$
$$A \subseteq S$$

 $se\ cumple\ que,$

$$P(B_{j}|A) = \frac{P(B_{j}) \cdot P(A|B_{j})}{\sum_{i=1}^{k} P(B_{i}) \cdot P(A|B_{i})}$$
(1.1)

Figura 1.1: Diagrama de Venn para el teorema de Bayes

1.2. Explicación gráfica del teorema

1.2.1. Situación inicial

La Figura 1.1 muestra, en un diagrama de Venn, más o menos la situación inicial planteada en el Teorema 1.1. Aquí se puede ver, por ejemplo, que todos los conjuntos disjuntos, B_i , representados por los triángulos de la figura, componen al conjunto S, representado por el rectángulo mayor de la figura, o que el conjunto A, representado por el óvalo rojo, está contenido en el conjunto S.

Si se hiciera un símil entre las relaciones de áreas de la Figura 1.1, con las probabilidades de los eventos, por ejemplo, la probabilidad del evento B_2 , estaría dada por la relación de áreas que responde a la pregunta: ¿qué porción de S ocupa B_2 ?, y que se muestra en la siguiente fórmula y en la Figura 1.2:

$$P(B_2) = \frac{area(B_2)}{area(S)}$$

Con el fin de simplificar, la fórmula anterior la denotaremos sólo con

$$P\left(B_2\right) = \frac{B_2}{S} \tag{1.2}$$

Estrictamente hablando, el lado izquierdo de la igualdad en la Ecuación (1.2), debería haberse escrito como $P(B_2|S)$. Sin embargo, como S representa el universo o espacio total de muestreo, se obvia en la fórmula, y se escribe simplemente como $P(B_2)$.

En el mismo tenor, y tomando como referencia la Figura 1.3, si $(B_j \cap A) = b_j = a_j$, hay dos preguntas interesantes aquí, a saber:

1. ¿Qué porción de A ocupa b_j ?, o lo que es lo mismo, ¿Cuánto de A está ocupando B_j ?, y en términos de probabilidad:

Figura 1.2: Relación de áreas: ¿qué porción de S ocupa B_2 ?

Figura 1.3: Relación de áreas: ¿qué porción de A o de B_j ocupa $b_j (=a_j)$?

$$P(B_j|A) = b_j/A \tag{1.3}$$

2. ¿Qué porción de B_j ocupa a_j ?, o lo que es lo mismo, ¿Cuánto de B_j está ocupando A?, y en términos de probabilidad:

$$P(A|B_j) = a_j/B_j \tag{1.4}$$

1.2.2. El teorema de la probabilidad total

De acuerdo con la Figura 1.1, y como $A\subseteq S,$ se cumple que:

$$A = A \cap S \tag{1.5}$$

Como $S=\bigcup_{i=1}^k B_i,$ se puede sustituir en la Ecuación (1.5), con lo que se obtiene:

$$A = (A \cap B_1) \cup (A \cap B_2) \cup \dots (A \cap B_k) \tag{1.6}$$

Si se toma la probabilidad en ambos lados de la ecuación y como los B_i son disjuntos, se obtiene:

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + ... + P(A \cap B_k)$$

$$= \sum_{i=1}^{k} P(A \cap B_i)$$
(1.7)

El teorema del producto de probabilidades de eventos dependientes establece que

$$P(X \cap Y) = P(X) \cdot P(Y|X)$$

= $P(Y) \cdot P(X|Y)$ (1.8)

Si se aplica esto a la Ecuación (1.7), se tiene el

Teorema 1.2. Dados los conjuntos (eventos) $B_1, B_2, ...B_k$, disjuntos, y los conjuntos S, que representa el universo, y A, tales que,

$$S = \bigcup_{i=1}^{k} B_i$$
$$A \subseteq S$$

se cumple que,

$$P(A) = \sum_{i=1}^{k} P(B_i) \cdot P(A|B_i)$$

$$\tag{1.9}$$

Gráficamente, si se toma como base la Ecuación (1.4), que representa la *relación de áreas* que se muestra en la Figura 1.3, y se introduce en la Equación (1.9), se tendría que:

$$P(A) = \sum_{i=1}^{k} \frac{B_i}{S} \frac{a_i}{B_i}$$

$$= \frac{1}{S} \sum_{i=1}^{k} a_i = \frac{A}{S}$$

$$(1.10)$$

1.2.3. El teorema de Bayes: deducción y explicación analítica

Para deducir el teorema de Bayes, enunciado en el Teorema 1.1 al principio de este capítulo, se parte del teorema del producto de probabilidades de eventos dependientes, dado en la Ecuación (1.8). En este caso, se aplica a los eventos A y uno, cualquiera, de los B_j , así:

$$P(A) \cdot P(B_j|A) = P(A \cap B_j) = P(B_j) \cdot P(A|B_j)$$

$$(1.11)$$

Si se despeja, se obtiene:

$$P(B_j|A) = \frac{P(B_j) \cdot P(A|B_j)}{P(A)}$$
(1.12)

Finalmente se sustituye P(A), haciendo uso del Teorema de la probabilidad total (1.2), dado en la Ecuación (1.9), y se llega al teorema de Bayes:

$$P(B_j|A) = \frac{P(B_j) \cdot P(A|B_j)}{\sum_{i=1}^{k} P(B_i) \cdot P(A|B_i)}$$
(1.13)

Para explicar el significado del teorema, se recurrirá a la Figura 1.4. La parte (1) de la figura representa el lado izquierdo de la igualdad en la Ecuación (1.13), las partes (2) y (3), representan el numerador del cociente en el lado derecho de igualdad en la ecuación, y la parte (4) representa el denominador.

A continuación se explica cada una de las partes de la Figura 1.4.

1.2.3.1. Parte (1): Lado izquierdo y objetivo del teorema

El lado izquierdo de la igualdad en la Ecuación (1.13), establece el objetivo, por así decirlo, del teorema; esto es, lo que se quiere obtener. En este caso es, $P(B_j|A)$, lo que gráficamente, como se muestra en la parte (1) de Figura 1.4, es la porción que B_j ocupa del área A. En términos estadísticos, es la probabilidad de que ocurra B_j dado que ocurrió A. Gráficamente, y en términos de relaciones de áreas esto es:

$$P(B_j|A) = \frac{b_j}{A} \tag{1.14}$$

Figura 1.4: Explicación gráfica del teorema de Bayes

1.2.3.2. Partes (2) y (4): Lado derecho, el método del teorema

El lado derecho de la igualdad en la Ecuación (1.13), establece el m'etodo, esto es, la forma o manera de obtener lo que se ha establecido en el objetivo. En este caso, se trata de un cociente compuesto de dos partes, el numerador y el denominador.

Es importante notar que, en la fórmula del teorema, dada en la Ecuación (1.13), la estructura del numerador y el denominador es semejante: incluye un producto del tipo $P(B_r) \cdot P(A|B_r)$, donde, ya sea, r=j, o r=i, salvo que en el caso del numerador sólo se trata de uno de estos productos, mientras que en el caso del denominador se trata de una suma de los productos, de tal manera que, lo que se diga acerca del producto registrado en el numerador, aplica a cada uno de los productos de la suma registrada en el denominador.

1.2.3.3. Parte (2): El numerador

El numerador es un producto compuesto de dos factores: $P(B_j)$ y $P(A|B_j)$, que corresponden respectivamente a cada una de las dos gráficas en la parte (2) de la Figura 1.4. El primer factor, y la correspondiente primera gráfica, representan la porción que ocupa B_j del *universo*, S, esto es, la relación de áreas,

$$P(B_j) = \frac{B_j}{S} \tag{1.15}$$

El segundo factor, y la correspondiente segunda gráfica, representan la porción que ocupa A de B_j , esto es, la relación de áreas,

$$P\left(A|B_{j}\right) = \frac{a_{j}}{B_{j}}\tag{1.16}$$

1.2.3.4. Parte (3): El numerador

Si se procede a desarrollar el producto de los lados derechos de la Ecuaciones (1.15) y (1.16), se obtiene:

$$\frac{B_j}{S} \cdot \frac{a_j}{B_j} = \frac{a_j}{S} \tag{1.17}$$

Que es la porción que ocupa a_j , resultado de la intersección entre A y B_j , del universo, S, y que es precisamente lo que registra la gráfica de la parte (3) de la Figura 1.4.

1.2.3.5. Parte (4): El denominador

Como se ha mencionado en la Sección 1.2.3.2, el denominador es la sumatoria de productos del tipo $P(B_r) \cdot P(A|B_r)$, y, por consiguiente, para cada uno de éstos aplica lo desarrollado en las dos secciones anteriores (1.2.3.3 y 1.2.3.4). Esto es, para cada elemento del tipo B_i , se tendría un resultado similar al expresado por la gráfica de la parte (3) de la Figura 1.4. Al sumar todos esos resultados, se obtiene justamente lo expresado por la gráfica de la parte (4) de la Figura 1.4, que representa la reconstrucción del área A en relación con el área que representa el universo, S. Vale decir que esta reconstrucción es propiamente lo que establece el Teorema 1.2 de la probabilidad total. Esta sumatoria resulta entonces en

$$\sum_{i=1}^{k} P(B_i) \cdot P(A|B_i) = \frac{A}{S}$$

$$= P(A|S) = P(A)$$
(1.18)

1.2.3.6. El cociente

Al dividir el numerador establecido en la Ecuación (1.17), entre el denominador, tal como se establece en la Ecuación (1.18), se llega al siguiente resultado:

$$\frac{\frac{a_j}{S}}{\frac{A}{S}} = \frac{a_j}{A} \tag{1.19}$$

Este resultado coincide con el *objetivo* establecido en la Sección 1.2.3.1, en la Ecuación (1.14) y con la parte (1) de la Figura 1.4, ya que $a_j = b_j$.

1.2.3.7. Colofón

En la Sección 1.2.3.1 se estableció el objetivo del teorema, que es obtener $P(B_j|A)$ y, a partir de ahí, en las siguientes secciones se analizó el método para llegar a ese objetivo que es a través del cálculo de un conjunto de productos del tipo $P(B_i) \cdot P(A|B_i)$. Cabe notar que, uno de estos productos es precisamente el que figura en el numerador del teorema, a saber, $P(B_j) \cdot P(A|B_j)$, que corresponde al evento B_j del objetivo del teorema. El denominador, por su parte, es la suma de todos los productos calculados.

Capítulo 2

Ejemplos

2.1. Ejemplo 1

Por razones de pagos en publicidad, un piloto de autos usa un Corvette en el $50\,\%$ de las carreras en las que participa, un Jaguar, en el $30\,\%$ de esas carreras y un Alfa Romeo, en el $20\,\%$ de las mismas. De 25 carreras en las que ha participado con el Corvette, ha ganado 5; de 15, en las que ha participado con el Jaguar, ha ganado 4; y de 10, en las que ha participado con el Alfa Romeo, ha ganado 4.

- a. Haciendo uso de esa información para estimar las probabilidades, indique cuál es la probabilidad de que el piloto gane la reciente carrera en la que participará en Le Mans.
- b. Suponiendo que llega la notificación de que, en efecto, ganó la carrera, ¿cuál es la probabilidad de que haya manejado el Corvette?

Solución

La Figura 2.1 representa esquemáticamente algunos de los elementos del problema, en esta figura:

- 1. S representa el conjunto de todas las carreras que ha corrido el piloto.
- 2. B_c son las carreras en las que ha usado el Corvette.
- 3. B_i son las carreras en las que ha usado el Jaguar.
- 4. B_a son las carreras en las que ha usado el Alfa Romeo.
- 5. A representa el conjunto de carreras en las que ha ganado.

Figura 2.1: Diagrama de Venn para el problema del piloto de autos