

Business Analytics

Introduction to the DMC

Decision Sciences & Systems (DSS)

Department of Informatics

TU München

Outline

Today's topics:

- Dates & Grading for Data Mining Cup
- Rules of Data Mining Cup
- Steps of Data Mining Cup
- Example dataset + Script
- Presentation of dataset

Dates & Grading for Data Mining Cup

Date

• 26.05. 11:30 am – 15.06. 11:55 pm

Grading for the DMC

- Best 25%: +8 points
- Next 25%: +6 points
- Next 25%: +4 points
- Minimum 2 points if you perform better than 0-R

Note: Only "serious" submissions are taken into account for the ranking.

Rules of Data Mining Cup

Teams

- Team size: 1 4 members.
- Teams must be built before the first submission (teams will be fixed after first submission!).
- Each student can only be member of one team within one Data Mining Cup.

Submissions

- Maximum number of valid submissions for each DMC: 10.
- Best ranked submission, only, will be taken into account for the ranking.
- For reasons of traceability you must use a fixed seed of 42 (set.seed (42)).

Disqualification reasons:

- Non-reproducible submissions (submitted predictions must be reproducible using the submitted R script)
- Hard-coded classifications (even if the best ranked submission is not hard-coded!)
- Copies from other groups (disqualification of both teams)

Steps of Data Mining Cup

- 1. Build a Team in the DMC Manager
- 2. Load & Explore the Data Set
 - Summary statistics
 - Plotting
- 3. Data Preparation
 - Feature Selection
 - Discretization
- 4. Training & Evaluation
 - Classification Methods
 - Metrics
 - Resampling Methods
- 5. Predict Classes in Test Data
- 6. Export the Predictions
- 7. Upload the Predictions and the Corresponding R Script on DMC Manager

Source: http://topepo.github.io/caret/

Login with your TUM login data ("TUM Kennung")

https://dmc.dss.in.tum.de/dmc/

Login via "Shibboleth" with your TUM login data ("TUM Kennung")

Choose the DMC instance in the DMC Manager

♣ Data Mining Cups

© Decision Sciences & Systems 2014

Found new team or join an existing team

Creating a new team

Team size: 1-4 members

2. Load & Explore the Data Set

Download the training and test datasets from the DMC Manager

2. Load & Explore the Data Set

Load & Explore in R

- Load data sets into R
- Explore the Data Set
 - Get an overview
 - **Statistics**
 - **Plotting**

3. Data Preparation

- Possible Data Preparation steps
 - Nominal attributes
 - Ordinal attributes
 - Unified date format
 - Missing values
 - Fix errors and outliers
 - Zero variance and correlation
 - Discretization/Binning
 - Feature Selection
- ALL changes in both training & test dataset!
- Do <u>NOT DELETE</u> any instances in the test data!

Classification Methods

Name	method Argument in train Function	Tuning Parameters
OneRule	OneR	-
Naïve Bayes	nb	fL, usekernel
Decision Trees	J48	C (pruning factor), M
k-Nearest Neighbors	kknn	kmax, distance, kernel
Ensemble Methods	ada, LogitBoost, logicBag	iter; maxdepth; nu, nlter, nleaves, ntrees

> model = train(Class~., data=training, method="J48")

More classifiers: http://topepo.github.io/caret/modelList.html

Source: http://topepo.github.io/caret/

Classification Methods – Tuning Parameters

- tuneLength: number of tuning parameter values
- tuneGrid: for specific tuning parameter values
 - data frame, where each row is a tuning parameter setting and each column is a tuning parameter

nothing given -> algorithm chooses them on its own here: every combination is build -> 9 DTs and go with majority

Where to find parameters?

http://topepo.github.io/caret/train-models-by-tag.html

Or in R:

> getModelInfo()\$J48\$parameters

Metrics

Name	metric in train Function	Description
Accuracy	Accuracy	=(tp + tn) / (tp + fp + tn + fn) relevant for submission
Карра	Карра	see below
ROC Curve	ROC	area under the ROC curve

```
> model = train(Class~., data=training, method="J48", metric="Kappa")
```

Kappa

- Ratio, which compares a classification method with a random classifier
 - < 0: worse than random classifier
 - > 0: better than random classifier

Source: http://topepo.github.io/caret/

Name	method Argument in trainControl Function	
Bootstrapping (Holdout method, default)	boot	
Repeated K-fold Cross Validation	repeatedcv	10fold is used often
Leave-one-out	LOOCV	

Source: http://topepo.github.io/caret/

Bootstrapping

Bootstrapping

Resampling method

Balanced Samples using the "ROSE" package

not too relevant for this cup as our measure is accuracy relevant, when few instances are true

- "ROSE" package: http://cran.r-project.org/web/packages/ROSE/index.html
- Balanced samples by over-/under-sampling the minority/majority instances

method	Description
over	over-sampling of minority instances create new instances that are true
under	under-sampling of majority instances randomly remove negative instances
both	combination of over- and under-sampling

Comparing the models

- Can compare several trained models
- The models should be using the same resampling

```
> res = resamples(list(dt = model_dt, nb = model_nb))
> summary(res)
...
Accuracy
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
dt 0.4457 0.4810 0.4946 0.4910 0.5041 0.5275 0
nb 0.5000 0.5163 0.5246 0.5192 0.5275 0.5275 0
even worst case solution of NB was better than DT
```


5. Predict Classes in Test Data

Use the trained model to predict the classes in the test dataset.

6. Export the Predictions

- Export predictions into csv-file
 - Format: id, prediction
 - Must contain all instances of the original test dataset

```
> write.csv(predictions, file="predictions group name number.csv",
       row.names=FALSE)
```

predictions group name number.csv


```
"id", "prediction"
130200,"1"
394720, "0"
87847,"1"
228637,"1"
189299, "0"
262991,"1"
```

check this first

- Submissions & Possible Errors
- Maximum number of submission: 10 (valid submissions)
 - Best submission counts
- Possible errors
 - Wrong column names
 - Unknown IDs (if not in Test Data)
 - Missing IDs (if in Test Data but not in Predictions)
 - Wrong file format
 - ...

Comparing Classifiers

- Classifiers are hard to compare [1]
 - Different datasets
 - Limited collection of publically available datasets
 - Different data preparation
 - Tuning
 - Statistically significant claims
 - Etc.
- No best classifier
 - under certain assumptions, no classifier is better than another one [2]
- [1] Salzberg S., On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach
- [2] Wolpert D., On the Connection between In-sample Testing and Generalization Error

Comparing Classifiers

Many studies make mistakes when comparing Classifiers [3]

- Not using statistical tests at all
- Apply unsuitable tests or ignore assumptions
- [3] addresses these problem for...

Comparison of Two Classifiers:

- T-test: checks whether average difference in performance is significant from 0
 - Often inappropriate due to calculating using the averages
 - E.g.: Outliers can have unwanted strong effect on data and increases the variance which decreases the test power
 - Assumes the difference between random variables to be normal distributed (N<30; both often not given)
- Wilcoxon Signed-Ranks Test: non-parametric, ranks the differences in performance and compares them
 - Does not assume normal distribution and is less affected by outliers

Comparison of Multiple Classifiers

[3] Demsar J., Statistical Comparisons of Classifiers over Multiple Data Sets

Comparing Classifiers

However, there is a number of studies, which can provide useful guidelines on classifier selection

Modern vs Traditional Classifiers [4]

[4] Lessmann S., Voß S., A Benchmarking Study of Novel Versus Established Classification Models

Questions?

Information about the "caret package"

http://topepo.github.io/caret/

Example dataset raw_data_large

Data

- History of purchase of an online shop
- Both information about good and customer

Task

Predict if there would be a return

Column name	Description	Range of values	Missing values
ID	Order id	Natural number	No
od	Order date	Date	No
dd	Delivery date	Date	Yes
size	Item size	String	No
price	Price of item	Positive real number	No
tax	Tax	Positive real number	No
a6	Salutation	String	No
a7	Date of birth	Date	Yes
a8	State	String	No
a9	Return shipment	{0,1}	No