Proofs

A proof is a **valid argument** that establishes the truth of a mathematical statement

A proof can use the hypotheses of the theorem theorem is a statement that can be shown to be true.

To understand written mathematics, one must understand what makes up a correct mathematical argument, that is, a **proof**

Many theorems in mathematics are <u>implications</u>, $p \rightarrow q$. The techniques of proving implications give rise to different methods of proofs.

DIRECT PROOF:

The implication $p \rightarrow q$ can be proved by showing that if p is true, the q must also be true. This shows that the combination p true and q false never occurs. A proof of this kind is called a direct proof.

p	q	p→q
T	Т	T
T	F	F
F	T	T
F	F	T

- 1. An integer n is even if, and only if, n = 2k for some integer k.
- 2. An integer n is odd if, and only if, n = 2k + 1 for some integer k.
- 3. An integer n is prime if, and only if, n > 1 and for all positive integers r and s, if $n = r \cdot s$, then r = 1 or s = 1.

- 4. An integer n > 1 is composite if, and only if, $n = r \cdot s$ for some positive integers r and s with $r \neq 1$ and $s \neq 1$.
- 5. A real number r is rational if, and only if, $r = \frac{a}{b}$ for some integers a and b with $b \neq 0$.
- 6. If n and d are integers and $d \ne 0$, then d divides n, written d/n if, and only if, n = d.k for some integers k.
- 7. An integer n is called a perfect square if, and only if, $n = k^2$ for some integer k.

Prove that the sum of two odd integers is even.

SOLUTION:

Let **m** and **n** be two odd integers. Then by definition of odd numbers m = 2k + 1 for some $k \in \mathbb{Z}$

$$n = 2l + 1$$
 for some $l \in \mathbb{Z}$

$$n = 2l + 1$$
 for some $l \in \mathbb{Z}$

Now m + n =
$$(2k + 1) + (2l + 1)$$

= $2k + 2l + 2$
= $2(k + l + 1)$
= $2r$ where $r = (k + l + 1) \in \mathbb{Z}$

Hence m + n is even.

EXERCISE:

Prove that if n is any even integer, then $(-1)^n = 1$

SOLUTION:

Suppose n is an even integer. Then n = 2k for some integer k.

Now

$$(-1)^{n} = (-1)^{2k}$$

= $[(-1)^{2}]^{k}$
= $(1)^{k}$
= 1 (proved)

Prove that the product of an even integer and an odd integer is even.

SOLUTION:

and

Suppose m is an even integer and n is an odd integer. Then

$$m = 2k$$
 for some integer k
 $n = 2l + 1$ for some integer l

Now

$$\mathbf{m} \cdot \mathbf{n} = 2k \cdot (2l+1)$$

= $2 \cdot k (2l+1)$
= $2 \cdot \mathbf{r}$ where $\mathbf{r} = k(2l+1)$ is an integer

Hence $m \cdot n$ is even. (Proved)

EXERCISE:

Prove that the square of an even integer is even.

SOLUTION:

Suppose n is an even integer. Then n = 2k

Now

square of
$$n = n^2 = (2 \cdot k)^2$$

= $4k^2$
= $2 \cdot (2k^2)$
= $2 \cdot p$ where $p = 2k^2 \in Z$
(proved)

Hence, n^2 is even.

EXERCISE:

Prove that if n is an odd integer, then $n^3 + n$ is even.

SOLUTION:

Let n be an odd integer, then n = 2k + 1 for some $k \in \mathbb{Z}$

Now
$$n^3 + n = n (n^2 + 1)$$

 $= (2k + 1) ((2k+1)^2 + 1)$
 $= (2k + 1) (4k^2 + 4k + 1 + 1)$
 $= (2k + 1) (4k^2 + 4k + 2)$
 $= (2k + 1) 2 \cdot (2k^2 + 2k + 1)$
 $= 2 \cdot (2k + 1) (2k^2 + 2k + 1)$
 $= an even integer$

Prove that, if the sum of any two integers is even, then so is their difference.

SOLUTION:

Suppose m and n are integers so that m+n is even. Then by definition of even numbers

Hence m - n is even.

EXERCISE:

Prove that the sum of any two rational numbers is rational.

SOLUTION:

Suppose r and s are rational numbers.

Then by definition of rational

$$r = \frac{a}{b}$$
 and $s = \frac{c}{d}$

for some integers a, b, c, d with $b\neq 0$ and $d\neq 0$

Now

$$r+s = \frac{a}{b} + \frac{c}{d}$$

$$= \frac{ad + bc}{bd}$$

$$= \frac{p}{q}$$
where $p = ad + bc \in Z$ and $q = bd \in Z$ and $q \neq 0$

Hence r + s is rational.

EXERCISE:

Given any two distinct rational numbers r and s with r < s. Prove that there is a rational number x such that r < x < s.

SOLUTION:

Given two distinct rational numbers r and s such that

$$r < s$$
(1)

Adding r to both sides of (1), we get

$$r + r < r + s$$

$$2r < r + s$$

$$\Rightarrow r < \frac{r+s}{2} \qquad(2)$$

Next adding s to both sides of (1), we get

$$\Rightarrow r+s < s+s r+s < 2s$$

$$\Rightarrow \frac{r+s}{2} < s \qquad(3)$$

Combining (2) and (3), we may write

$$r < \frac{r+s}{2} < s \qquad \dots (4)$$

Since the sum of two rationals is rational, therefore r+s is rational. Also the quotient of a rational by a non-zero rational, is rational, therefore the rational and by (4) it lies between r & s. Hence, we have found a rational number such that r < x < s. (proved)

EXERCISE:

Prove that for all integers a, b and c, if a|b and b|c then a|c.

PROOF:

Suppose a|b and b|c where a, b, c \in Z. Then by definition of divisibility b=a·r and c=b·s for some integers r and s.

Now
$$c = b \cdot s$$

 $= (a \cdot r) \cdot s$ (substituting value of b)
 $= a \cdot (r \cdot s)$ (associative law)
 $= a \cdot k$ where $k = r \cdot s \in Z$
 \Rightarrow a|c by definition of divisibility

EXERCISE:

Prove that for all integers a, b and c if a|b and a|c then a|(b+c)

PROOF:

Suppose a|b and a|c where a, b, $c \in \mathbb{Z}$

By definition of divides

$$b = a \cdot r$$
 and $c = a \cdot s$ for some $r, s \in Z$

Now

$$b+c=a\cdot r+a\cdot s \qquad \qquad \text{(substituting values)} \\ =a\cdot (r+s) \qquad \qquad \text{(by distributive law)} \\ =a\cdot k \qquad \qquad \text{where } k=(r+s)\in Z \\ \text{Hence} \qquad a|(b+c) \qquad \qquad \text{by definition of divides.}$$

Prove that the sum of any three consecutive integers is divisible by 3.

PROOF:

Let n, n + 1 and n + 2 be three consecutive integers.

Now

$$n + (n + 1) + (n + 2) = 3n + 3$$

= $3(n + 1)$
= $3 \cdot k$ where $k = (n+1) \in Z$

Hence, the sum of three consecutive integers is divisible by 3.

EXERCISE:

Prove the statement:

There is an integer n > 5 such that $2^n - 1$ is prime

PROOF:

Here we are asked to show a single integer for which 2^n -1is prime. First of all we will check the integers from 1 and check whether the answer is prime or not by putting these values in 2^n -1.when we got the answer is prime then we will stop our process of checking the integers and we note that,

Let
$$n = 7$$
, then $2^n - 1 = 2^7 - 1 = 128 - 1 = 127$

and we know that 127 is prime.

EXERCISE:

Prove the statement: There are real numbers a and b such that

$$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$$

PROOF:

Let
$$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$$

Squaring, we get
$$a + b = a + b + 2\sqrt{a}\sqrt{b}$$

$$\Rightarrow 0 = 2\sqrt{a}\sqrt{b} \qquad \text{canceling a+b}$$

$$\Rightarrow 0 = \sqrt{ab}$$

$$\Rightarrow 0 = ab \qquad \text{squaring}$$

$$\Rightarrow$$
 either $a = 0$ or $b = 0$

It means that if we want to find out the integers which satisfy the given condition then one of them must be zero.

Hence if we let a = 0 and b = 3 then

$$R.H.S = \sqrt{a+b} = \sqrt{0+3}$$

$$R.H.S = \sqrt{3}$$

Now L.H.S = $\sqrt{a} + \sqrt{b}$ by putting the values of a and b we get

$$=\sqrt{0}+\sqrt{3}$$

$$L.H.S = \sqrt{3}$$

From above it quite clear that the given condition is satisfied if we take a=0 and b=3.

PROOF BY COUNTER EXAMPLE:

Disprove the statement by giving a counter example.

For all real numbers a and b, if a < b then $a^2 < b^2$.

SOLUTION:

Suppose
$$a = -5$$
 and $b = -2$

then clearly -
$$5 < -2$$

But
$$a^2 = (-5)^2 = 25$$
 and $b^2 = (-2)^2 = 4$

But
$$25 > 4$$

This disproves the given statement.

EXERCISE:

Prove or give counter example to disprove the statement.

For all integers n, n^2 - n + 11 is a prime number.

SOLUTION:

The statement is not true

For
$$n = 11$$

we have ,
$$n^2$$
 - $n + 11 = (11)^2$ - $11 + 11$
= $(11)^2$
= $(11)(11)$
= 121

which is obviously not a prime number.

EXERCISE:

Prove or disprove that the product of any two irrational numbers is an irrational number.

SOLUTION: We know that $\sqrt{2}$ is an irrational number. Now

$$(\sqrt{2})(\sqrt{2}) = (\sqrt{2})^2 = 2 = \frac{2}{1}$$

which is a rational number. Hence the statement is disproved.

EXERCISE:

Find a counter example to the proposition:

For every prime number n, n + 2 is prime.

SOLUTION:

Let the prime number n be 7 then

$$n+2=7+2=9$$

which is not prime.