Оборудование: Intel(R) Core(TM) M-5Y10c CPU @ 0.80GHz Оперативная память 8 ГБ OC - Windows 10

Задача:

Проанализировать алгоритмы на графах. Установить особенности алгоритмов.

Dfs

На вход принимает граф, начальную и конечную вершину. Возвращает массив - последовательность вершин, по которым можно пройти из начальной вершины до конечной.

Работает рекурсивно. Из вершины, в которой сейчас находится, пытается перейти в другие смежные вершины, в которых еще не был. Также ведется запись предков для вершин, чтобы в конце восстановить путь. Когда алгоритм доходит до конечной вершины, он восстанавливает путь и прекращается.

Время работы

Алгоритм посетит не более n вершин, и пройдет по ребру не более одного раза. Следовательно O(n+m)

Затраты памяти

Глубина рекурсии не превышает общего числа вызовов функции Dfs — числа вершин. Следовательно объем памяти O(n).

Генерация данных

Лучшие данные

Из времени работы алгоритма следует, что мы хотим минимизировать число вершин и ребер. Число вершин мы минимизировать не можем, тогда минимизируем число ребер. Для тестирования лучшего результата возьмем графы, являющиеся цепью. Время работы будет O(n).

Из графика и линейной аппроксимации видно, что функция растет линейно.

Худшие данные

Из времени работы алгоритма следует, что мы хотим максимизировать число вершин и ребер. Число вершин мы максимизировать не можем, тогда максимизируем число ребер. Для тестирования худшего результата возьмем графы, являющиеся полными. Их время работы будет O(n**2).

Из графика и квадратичной аппроксимации видно, что функция растет квадратично.

Случайные данные

За основу было взято дерево. Добавлялось неизвестное число ребер.

На графике видно, что в большинстве случаев алгоритм вне зависимости от размера графа работал за время, близкое к линейному и редко за время, близкое к квадратичному. Это можно объяснить тем, что в неориентированном графе либо будет примерно линейное количество ребер и тогда алгоритм будет работать линейное время, а если число ребер близко к квадратичному, то скорее всего быстро найдется путь, содержащий маленькое число ребер и его поиск потребует также просмотра маленького числа ребер.

Bfs

На вход принимает граф, начальную и конечную вершину. Возвращает массив - последовательность вершин, по которым можно пройти из начальной вершины до конечной, причем путь будет кратчайшим.

В очередь помещается начальная вершина, затем на каждом шаге из очереди извлекается, добавленная раньше всех вершина, из нее просматриваются все рёбра, если ребро ведет в вершину, которая еще не добавлялась в очередь, то она добавляется в очередь. Как только метод доходит до конечной вершины, он восстанавливает путь и заканчивает работу..

Время работы

Алгоритм посетит не более n вершин, и пройдет по ребру не более одного раза. Следовательно O(n + m)

Затраты памяти

Максимальное число вершин, одновременно хранящихся в очереди — n, то есть, максимальный объем используемой памяти — O(n).

Генерация данных

Лучшие данные

Из времени работы алгоритма следует, что мы хотим минимизировать число вершин и ребер. Число вершин мы минимизировать не можем, тогда минимизируем число ребер. Для тестирования лучшего результата возьмем графы, являющиеся цепью. Их время работы будет O(n).

Из графика и линейной аппроксимации видно, что функция растет линейно.

Худшие данные

Из времени работы алгоритма следует, что мы хотим максимизировать число вершин и ребер. Число вершин мы максимизировать не можем, тогда максимизируем число ребер. Для тестирования худшего результата возьмем графы, являющиеся полными. Их время работы будет O(n**2).

Из графика и квадратичной аппроксимации видно, что функция растет квадратично

Случайные данные За основу было взято дерево. Добавлялось неизвестное число ребер. Видно, что в большинстве случаев время линейное.

Dfs и Bfs

У поиска в ширину коэффициент к во много раз больше, чем у лучшего случая поиска в глубину.

В среднем на худших данных поиск в ширину работает примерно в 1.5 раза медленнее поиска в глубину. Возможно, это связано с тем, что обход в ширину гарантированно посмотрит все ребра из каждой рассматриваемой вершины, а обход в глубину может случайно найти нужное ребро, не рассматривая до конца остальные, и сразу перейти по нему в следующую вершину.

На больших случайных данных поиск в ширину работает намного медленнее поиска в глубину.

Итог:

Во всех случаях обход в ширину в среднем работает медленнее.

Dijkstra

На вход принимает граф, начальную вершину. Возвращает массив, в котором находятся минимальные расстояния от начальной вершины до всех остальных.

Каждой вершине из n сопоставим метку — минимальное известное расстояние от этой вершины до первоначальной..Алгоритм работает пошагово — на каждом шаге он «посещает» одну вершину и пытается уменьшать метки.Работа алгоритма завершается, когда все вершины посещены.

Время работы

Сложность алгоритма Дейкстры складывается из двух операций: время нахождения вершины с наименьшей величиной расстояния, и время совершения релаксации. Эти операции потребуют O(n), O(1) времени.Первая операция выполняется O(n) раз, вторая O(m). Итоговая асимптотика O(n**2+m).

Затраты памяти

Во время алгоритма мы храним матрицу n**2. Следовательно мы используем O(n**2) памяти.

Генерация данных

Лучшие данные

Из времени работы алгоритма следует, что мы хотим минимизировать число вершин и ребер. Число вершин мы минимизировать не можем, тогда минимизируем число ребер. Для тестирования лучшего результата возьмем графы, являющиеся цепью. Их время работы будет O(n**2).

Из графика и квадратичной аппроксимации видно, что функция растет квадратично.

Худшие данные

Из времени работы алгоритма следует, что мы хотим максимизировать число вершин и ребер. Число вершин мы максимизировать не можем, тогда максимизировать число ребер. Для тестирования худшего результата возьмем графы, являющиеся полным. Их время работы будет $O(n^{**}2 + m)$.

Случайные данные За основу был взят связный граф. Добавлялось неизвестное число ребер.

Floyd На вход принимает граф. Возвращает матрицу n на n, в которой находятся минимальные расстояния между двумя любыми вершинами.

Каждой вершине из n сопоставим метку — минимальное известное расстояние от этой вершины до первоначальной..Алгоритм работает пошагово — на каждом шаге он «посещает» одну вершину и пытается уменьшать метки.Работа алгоритма завершается, когда все вершины посещены.

Время работы

Сложность алгоритма Дейкстры складывается из двух операций: время нахождения вершины с наименьшей величиной расстояния, и время совершения релаксации. Эти операции потребуют O(n), O(1) времени. Первая операция выполняется O(n) раз, вторая O(m). Итоговая асимптотика O(n**2+m).

Обозначим длину кратчайшего пути между вершинами и и v, содержащего, помимо и и v только вершины из множества $\{1...i\}$ как d(i)(uv) d(0)(uv) = w(uv). На каждом шаге алгоритма, мы будем брать очередную вершину (пусть её номер — i) и для всех пар вершин и и v вычислять $d(i)(uv) = \min(d(i-1)(uv),d(i-1)(ui)+d(i-1)(iv))$. То есть, если кратчайший путь из и в v, содержащий только вершины из множества $\{1...i\}$, проходит через вершину i, то кратчайшим путем из и в v является кратчайший путь из и в i, объединенный с кратчайшим путем из i в v. В противном случае, когда этот путь не содержит вершины i, кратчайший путь из и в v, содержащий только вершины из множества $\{1...i\}$ является кратчайшим путем из и в v, содержащим только вершины из множества $\{1...i-1\}$.

Время работы

O(n**3), так как мы всегда проходим 3 вложенных цикла длинной n

Затраты памяти

Во время алгоритма мы храним матрицу n**2. Следовательно мы используем O(n**2) памяти.

Для данных с одинаковым количеством вершин время работы алгоритма не изменится.

