Aula 20

Teorema (Teorema da Independência do Caminho): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua num domínio D_f aberto e conexo. Então as seguintes proposições são equivalentes entre si.

- i) f tem primitiva em D_f , ou seja, uma função holomorfa $F:D_f\subset\mathbb{C}\to\mathbb{C}$ tal que F'(z)=f(z) para todo o $z\in D_f$.
- ii) Para qualquer caminho fechado γ em D_f tem-se

$$\oint_{\gamma} f(z) \, dz = 0$$

iii) Se $z_0,z_1\in D_f$ são quaisquer dois pontos e $\gamma,\tilde{\gamma}$ quaisquer dois caminhos em D_f , de z_0 para z_1 , tem-se

$$\int_{\gamma} f(z) \, dz = \int_{\tilde{\gamma}} f(z) \, dz.$$

Teorema de Cauchy

Teorema de Cauchy (Versão Básica): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa sobre os pontos de uma curva de Jordan $\Gamma\subset D_f$, assim como em todos os pontos do seu interior. Então

 $\oint_{\Gamma} f(z)dz = 0.$

Teorema da Deformação (Versão Básica): Seja

 $\overline{f}:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa no domínio D_f e $\gamma,\tilde{\gamma}$ dois caminhos homotópicos em D_f , fechados ou com extremos fixos. Então

$$\int_{\gamma} f(z) \, dz = \int_{\tilde{\gamma}} f(z) \, dz.$$

Teorema da Cauchy (Versão Homotópica): Seja

 $\overline{f}:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa no domínio D_f e Γ uma curva de Jordan homotópica a um ponto em D_f . Então

$$\oint_{\Gamma} f(z) \, dz = 0.$$

<u>Definição</u>: Diz-se que um domínio Ω é **simplesmente conexo** se todo o caminho fechado em Ω é homotópico a um ponto, ou seja se toda a curva de Jordan em Ω tem o seu interior em Ω .

Teorema da Cauchy (Domínios Simplesmente Conexos): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa no domínio D_f . Se D_f é simplesmente conexo, então

$$\oint_{\gamma} f(z) \, dz = 0,$$

para qualquer caminho fechado γ em D_f .

<u>Corolário</u>: Funções holomorfas em domínios simplesmente conexos têm primitiva.

Teorema de Cauchy-Goursat

<u>Definição</u>: Diz-se que dois caminhos γ e $\tilde{\gamma}$ são **homotópicos** no domínio Ω se existe uma aplicação contínua $H:[0,1]\times[0,1]\to\Omega$ tal que

- $H(0,t) = \gamma(t) \quad 0 \le t \le 1$,
- $H(1,t) = \tilde{\gamma}(t) \quad 0 \le t \le 1.$

Diz-se que são caminhos homotópicos fechados se H(s,0)=H(s,1) para todo $0\leq s\leq 1$. Diz-se que são caminhos homotópicos de extremos fixos $z_0,z_1\in\Omega$ se $H(s,0)=z_0$ e $H(s,1)=z_1$ para todo $0\leq s\leq 1$.

Teorema da Deformação (Cauchy-Goursat): Seja

 $\overline{f}:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa no domínio D_f e $\gamma,\tilde{\gamma}$ dois caminhos homotópicos em D_f , fechados ou de extremos fixos. Então

$$\int_{\gamma} f(z) \, dz = \int_{\tilde{\gamma}} f(z) \, dz.$$

Em particular, se γ for um caminho fechado homotópico a um ponto em D_f tem-se

$$\oint_{\gamma} f(z) \, dz = 0.$$