Improving Generalization via Scalable Neighborhood Component Analysis

Обзор статьи

https://arxiv.org/abs/1808.04699

14.08.2018 18.09.2018

- Основные задачи computer vision обычно формулируются как задачи классификации
- B deep neural network классификаторы обычно реализуются, используя multi-way parametric softmax:

- Это означает, что рассматриваемые классы при обучении и при тестировании одни и те же
- Однако такое предположении о замкнутости мира плохо работает на реальных данных

Open-set nature

Как можно решить эту проблему?

Получить новый классификатор

- ресурсоемко

Open-set nature

Как можно решить эту проблему?

Transfer learning

отрезать последний слой (softmax classification layer) и дообучить предпоследний слой

- полученный классификатор имеет смысл только для разделения пространства тренировочных данных и может быть непригодным в пространстве новых данных

Open-set nature

Как можно решить эту проблему?

Non-parametric embedding

to directly optimize a feature representation which preserves distance metrics in a non-parametric fashion Хорошо подходят для meta-knowledge transfer (в отличие от параметрических моделей)

Пока конкурентоспособных моделей, использующих данный подход, не было предложено

Non-parametric embedding

Идея

- 1. Обучаемся на данных $oldsymbol{\mathcal{D}}$
- 2. Получаем на вход изображение $oldsymbol{\varkappa}$ из другого набора данных D '
- 3. Вычисляем v = f(x),

- 4. Находим в D изображения, которые максимально похожи на $oldsymbol{
 u}$
- 5. Информация из выбранных изображений может быть перенесена на 🗶

Neighbourhood components analysis

Используется для обучения сети

- Классификация многомерных данных в соответствии с заданной метрикой расстояния
- Почти тоже, что и k/V/V
- "Обучает" метрику расстояния путем нахождения линейного преобразования входных данных так, чтобы в полученном пространстве эффективность классификации увеличивалась

Non-parametric formulation of classification

Имеем набор данных $x_1, x_2, ..., x_n$ принадлежащие классам $y_1, y_2, ..., y_n$

Каждый экземпляр преобразуется в вектор $v_i = f_{ heta}(x_i)$

Дальше - вычисляем матрицу подобия
$$s_{ij} = \cos(\phi) = \frac{v_i^T}{\|v_i\| \|v_j\|} = v_i^T v_j$$

Элемент
$$x_i$$
 будет соседом x_j с вероятностью $p_{ij} = \frac{\exp(s_{ij}/\sigma)}{\sum_{k \neq i} \exp(s_{ik}/\sigma)}$

Определим множество $\Omega_i = \{j | y_j = y_i\}$

Тогда вероятность, что элемент x_i будет правильно классифицирован, можно найти по формуле

$$p_i = \sum_{j \in \Omega_i} p_{ij}$$

Non-parametric formulation of classification

Целевая функция
$$J=rac{1}{n}\sum_i J_i = -rac{1}{n}\sum_i \log(p_i)$$

Градиент данной целевой функции находится по формуле

$$\frac{\partial J_i}{\partial v_i} = \frac{1}{\sigma} \sum_k p_{ik} v_k - \frac{1}{\sigma} \sum_{k \in \Omega_i} \tilde{p}_{ik} v_k$$

$$\frac{\partial J_i}{\partial v_j} = \begin{cases} \frac{1}{\sigma} (p_{ij} - \tilde{p}_{ij}) v_i, & j \in \Omega_i \\ \frac{1}{\sigma} p_{ij} v_i, & j \notin \Omega_i \end{cases}$$

$$\tilde{p}_{ik} = p_{ik} / \sum_{j \in \Omega_i} p_{ij}$$

Defeat bottleneck

1. Для обучения используется \mathcal{SGD}

2. В качестве градиента целевой функции берут
$$\frac{\partial J_i}{\partial v_i} = \frac{1}{\sigma} \sum_k p_{ik} v_k - \frac{1}{\sigma} \sum_{k \in \Omega_i} \tilde{p}_{ik} v_k$$

3. Используют расширенную память для хранения *vi*

t-ая итерация

$$v_i^{(t)} \approx f_{\theta^{(t)}}(x_i) \qquad \frac{\partial J_i}{\partial v_i} = \frac{1}{\sigma} \sum_k p_{ik} v_k^{(t)} - \frac{1}{\sigma} \sum_{k \in \Omega_i} \tilde{p}_{ik} v_k^{(t)} \qquad p_{ij} = \frac{\exp(s_{ij}/\sigma)}{\sum_{k \neq i} \exp(s_{ik}/\sigma)}$$
$$v_i^{(t+1)} \leftarrow m \cdot v_i^{(t)} + (1-m) \cdot v_i$$

Image Recognition

• Лучше, чем baseline на 3% при k=1

Лучше на 1.1 %, чем ResNet34,

и на 0.7%, чем ResNet50 при k = 30

Discovering Sub-Categories

- Для каждого класса обнаруживает примерно 100-500 соседей
- ImageNet при этом имеет около 1000 изображений в каждом классе

CIFAR			ImageNet			
Task	20 classes	100 classes	Task	127 classes	1000 classes	
Baseline	81.53	54.17	Baseline	81.48	48.07	
Ours	81.42	62.32	Ours	81.62	52.75	

Discovering Sub-Categories

Few-shot Recognition

 В связи с подходом модель не так сильно зависит от количества представителей каждого класса при обучении

Table 5: Few-shot recognition on Mini-ImageNet dataset.

Method	Network	FineTune	5-way Setting		20-way Setting	
Method			1-shot	5-shot	1-shot	5-shot
NN Baseline [42]	Small	No	41.1 ± 0.7	51.0 ± 0.7	-	-
Meta-LSTM [29]	Small	No	43.4 ± 0.8	60.1 ± 0.7	16.7 ± 0.2	26.1±0.3
MAML [6]	Small	Yes	48.7 ± 0.7	63.2 ± 0.9	16.5 ± 0.6	19.3±0.3
Meta-SGD [20]	Small	No	50.5 ± 1.9	64.0 ± 0.9	17.6 ± 0.6	28.9 ± 0.4
Matching Net [42]	Small	Yes	46.6 ± 0.8	60.0 ± 0.7	-	-
Prototypical [36]	Small	No	49.4 ± 0.8	68.2 ± 0.7	5 - 5	-
RelationNet [39]	Small	No	51.4 ±0.8	61.1 ± 0.7	-	-
Ours	Small	No	50.3 ± 0.7	64.1 ± 0.8	23.7 ±0.4	36.0 ± 0.5
SNAIL [27]	Large	No	55.7 ± 1.0	68.9 ± 0.9	-	-
RelationNet [39]	Large	No	57.0 ± 0.9	71.1 ± 0.7	_	_
Ours	Large	No	57.8 ±0.8	72.8 ± 0.7	30.5 ± 0.5	44.8 ± 0.5

Few-shot Recognition

