2023 级大统转专业试卷

1.
$$\lim_{n \to \infty} \left(\frac{1}{n^2 + 2n + 1} + \frac{2}{n^2 + 2n + 2} + \dots + \frac{n}{n^2 + 2n + n} \right)$$
.

2. 交換积分次序
$$\int_{\pi/6}^{\pi/2} \mathrm{d}x \int_{\sin x}^{1} f(x,y) \mathrm{d}y$$
.

3.
$$z = \arctan \frac{x-y}{x+y}$$
, $\vec{x} \frac{\partial z}{\partial x}$.

4.
$$a_n$$
 周期为 2, 函数 $f(x) = 1 - x$ $(0 \leqslant x \leqslant 1)$, 又 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi x)$, 求 $\sum_{n=1}^{\infty} a_{2n}$.

5. 求
$$f(x,y,z) = x + y^2 + z^3$$
 在点 $P(1,1,1)$ 沿 $\vec{l}(2,-2,1)$ 的方向导数.

6.
$$f(x) = \frac{1+x^n}{1+x^{2n}}$$
, \mathbb{M} ().

A.
$$f(x)$$
连续

B.
$$x = -1$$
为间断点

A.
$$f(x)$$
连续 B. $x = -1$ 为间断点 C. $x = 0$ 为间断点 D. $x = 1$ 为间断点

D.
$$x = 1$$
为间断点

7. 求极限
$$\lim_{n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n+j)}$$
.

- 8. 闭域套相关, 题目忘了.
- 9. 下列正确的是 ().

①若
$$\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$$
 收敛, 则 $\sum_{n=1}^{\infty} u_n$ 收敛.

②若
$$\sum_{n=1}^{\infty} u_n$$
 收敛, 则 $\sum_{n=1}^{\infty} u_{n+2024}$ 收敛.

③若
$$\frac{u_{n+1}}{u_n} > 1$$
, 则 $\sum_{n=1}^{\infty} u_n$ 发散.

④若
$$\sum_{n=1}^{\infty} (u_n + v_n)$$
 收敛, 则 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 都收敛.

- A. 12
- B. 23
- C. 24
- D. ①3
- 10. 若 f(x) 在 x = 0 处连续,则下列选项中错误的是().

A. 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
 存在,则 $f(0) = 0$.

B. 若
$$\lim_{x\to 0} \frac{f(x) + f(-x)}{x}$$
 存在,则 $f(0) = 0$.

C. 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
 存在, 则 $f(x)$ 在 $x=0$ 处可导.

D. 若
$$\lim_{x\to 0} \frac{f(x) - f(-x)}{x}$$
 存在, 则 $f(x)$ 在 $x = 0$ 处可导.

11. 试确定
$$a$$
 的值, 使得 $\lim_{x\to 0} \frac{\ln (1+e^{3/x})}{\ln (1+e^{1/x})} + a[x]$ 存在.

12. 记不太清了.
$$f(x,y)$$
 和 $g(x,y)$ 二阶可导, $u=u(x,y)$ 和 $v=v(x,y)$ 由
$$\begin{cases} f(ux,v-y)=0\\ g(不记得了)=0 \end{cases}$$
 所确定, 求 $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}.$

13.
$$D$$
 是 $(x-1)^2+(y-1)^2\leqslant 2,\ y\geqslant x$ 确定的区域, 求 $\iint_D (y-x)\mathrm{d}x\mathrm{d}y.$

14.
$$\Omega: x^2 + y^2 + z^2 \le 1$$
, $\Re \iiint_{\Omega} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right) dV$.

15.
$$L:4x^2+y^2=4$$
, 质点 (x,y) 沿 L 顺时针作功, 且 $\vec{F}=(y+3x)\vec{i}+(2y-x)\vec{j}$, 求所作的功.

16.
$$f_n(x) = e^{-nx} + \frac{x^{n+1}}{n(n+1)}$$
 $(n = 1, 2, 3, \dots)$, 求收敛域及和函数.

17. 若
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$
, 问:

f(x,y) 在 (0,0) 处极限存在吗?

f(x,y) 在 (0,0) 处连续吗? 偏导数是否存在?

 $\Im f(x,y)$ 在 (0,0) 处可微吗?