Требования к программам

- 1. Программа должна получать все параметры в качестве аргументов командной строки.
- 2. Во всех задачах требуется вычислить вектор, являющийся m-м элементом указанной в условии последовательности, строящейся по заданной $n \times n$ матрице A и 0-му элементу последовательности x_0 .
- 3. Аргументы командной строки для задач 1, 3-6:
 - 1) m номер элемента последовательности,
 - 2) n число строк и столбцов $n \times n$ матрицы A,
 - 3) р количество выводимых значений в матрице и векторах,
 - 4) k_A задает номер формулы для инициализации матрицы A, должен быть равен 0 при вводе матрицы A из файла,
 - 5) f_A имя файла, откуда надо прочитать матрицу A. Этот аргумент **отсутствует**, если $k_A! = 0$,
 - 6) k_x задает номер формулы для инициализации вектора x_0 размера $n \times 1$, должен быть равен 0 при вводе вектора x_0 из файла,
 - 7) f_x имя файла, откуда надо прочитать вектор x_0 . Этот аргумент **отсутствует**, если $k_x! = 0$.

Например, запуск

```
./a.out 100 6 5 0 a.txt 0 x.txt
```

означает, что матрицу A 6×6 надо прочитать из файла a.txt, вектор x_0 длины 6 надо прочитать из файла x.txt, выводить не более 5 строк и столбцов матрицы и вектора, вычислить требуется 100-й элемент последовательности x_{100} ; а запуск

```
./a.out 100 2000 6 1 4
```

означает, что матрицу A 2000 × 2000 надо инициализировать по формуле номер 1, вектор x_0 длины 2000 надо инициализировать по формуле номер 4 (как матрицу 2000×1), и выводить не более 6-ти строк и столбцов матрицы и вектора, вычислить требуется 100-й элемент последовательности x_{100} .

- 4. Аргументы командной строки для задач 2, 7–10:
 - 1) τ параметр τ подпрограммы,
 - 2) m номер элемента последовательности,
 - 3) n число строк и столбцов $n \times n$ матрицы A,
 - 4) р количество выводимых значений в матрице и векторах,
 - 5) k_A задает номер формулы для инициализации матрицы A, должен быть равен 0 при вводе матрицы A из файла,
 - 6) f_A имя файла, откуда надо прочитать матрицу A. Этот аргумент **отсутствует**, если $k_A! = 0$,

- 7) k_x задает номер формулы для инициализации вектора x_0 размера $n \times 1$, должен быть равен 0 при вводе вектора x_0 из файла,
- 8) f_x имя файла, откуда надо прочитать вектор x_0 . Этот аргумент **отсутствует**, если $k_x! = 0$.
- 5. Ввод матрицы должен быть оформлен в виде подпрограммы, находящейся в отдельном файле.
- 6. Ввод матрицы из файла. В указанном файле находится матрица в формате:

$$a_{1,1}$$
 ... $a_{1,n}$
 $a_{2,1}$... $a_{2,n}$
... ... $a_{m,n}$

где $m \times n$ - указанные размеры матрицы, $A = (a_{i,j})$ - матрица. Программа должна выводить сообщение об ошибке, если указанный файл не может быть прочитан, содержит меньшее количество данных или данные неверного формата.

7. Ввод матрицы и правой части по формуле. Элемент $a_{i,j}$ матрицы A размера $m \times n$ полагается равным

$$a_{i,j} = f(k, m, n, i, j), \quad i = 1, \dots, m, \quad j = 1, \dots, n,$$

где f(k,m,n,i,j) - функция, которая возвращает значение (i,j)-го элемента $m \times n$ матрицы по формуле номер k (аргумент командной строки). Функция f(k,m,n,i,j) должна быть оформлена в виде отдельной подпрограммы.

$$f(k,m,n,i,j) = \begin{cases} \max\{n,m\} - \max\{i,j\} + 1 & \text{при} \quad k = 1 \\ \max\{i,j\} & \text{при} \quad k = 2 \\ |i-j| & \text{при} \quad k = 3 \\ \frac{1}{i+j-1} & \text{при} \quad k = 4 \end{cases}$$

8. **В задачах 2–10**, где участвует вектор b, он строится после инициализации матрицы $A = (a_{i,j})_{i,j=1,...,n}$ по формуле:

$$b = (b_i)_{i=1,\dots,n}, \quad b_i = \sum_{k=0}^{(n-1)/2} a_{i,2k+1}$$

Инициализация должна быть оформлена в виде подпрограммы, вызываемой из функции main.

- 9. Решение должно быть оформлено в виде подпрограммы, находящейся в отдельном файле.
- 10. Программа должна содержать подпрограмму вывода на экран прямоугольной матрицы $m \times n$ матрицы. Эта подпрограмма используется для вывода исходной $m \times n$ матрицы после ее инициализации, а также для вывода на экран результата работы программы. Подпрограмма выводит на экран не более, чем p строк и столбцов $m \times n$ матрицы, где p параметр этой подпрограммы (аргумент командной строки). Каждая строка матрицы должна печататься на новой строке, каждый элемент матрицы выводится в строке по формату " \$10.3e" (один пробел между элементами и экспоненциальный формат \$10.3e).
- 11. Функция, реализующая задачу, не должна выделять или использовать дополнительную память.

- 12. Сложность работы подпрограммы не должна превышать $C(m+1)*n^2$ при $n\to\infty$, $m\to\infty$. Константа C=1 в задачах 1-7, C=3/2 в задачах 8, 9, C=2 в задаче 10. Это означает, что при переходе от x_{k-1} к x_k
 - может быть только одно умножение матрицы A на вектор (во всех задачах),
 - надо решать систему линейных уравнений с треугольной матрицей методом последовательного исключения неизвестных (в задачах 8–10).
- 13. Результатами работы задач 1-10 являются 3 элемента:
 - Собственно вектор x_m .
 - Два вещественных числа r_1 и r_2 , вычисляемых после вызова задачи:
 - Для задачи 1

$$r_1 = ext{ возвращаемое значение функции, } r_2 = \sum_{i=1}^n \left| \left(\sum_{j=1}^n a_{ij} x_j \right) - r_1 x_i \right| / \sum_{i=1}^n |r_1 x_i|$$

Для задач 2–10

$$r_1 = \sum_{i=1}^{n} \left| \left(\sum_{j=1}^{n} a_{ij} x_j \right) - b_i \right| / \sum_{i=1}^{n} |b_i|, \quad r_2 = \sum_{i=1}^{n} |x_i - (i \mod 2)| / \sum_{i=1}^{n} (i \mod 2)|$$

Здесь $(x_i)_{i=1,...,n}$ – это компоненты вектора x_m .

Вычисление r_1 и r_2 должно быть оформлено в виде подпрограммы, вызываемой из функции main. Эта подпрограмма не должна выделять или использовать дополнительную память.

- 14. Вывод результата работы функции в функции main должен производиться по формату:
 - Непосредственно вывод вектора x_m . Он выводится вызовом подпрограммы печати матрицы (см. пункт 10) размера $1 \times n$ (т.е. в строку и **по указанному там формату**)
 - Отчет о результате и времени работы:

где

- argv[0] первый аргумент командной строки (имя образа программы),
- task номер задачи (1-10),
- r1 = r_1 вычисленное значение r_1 (см. пункт 13),
- $r2 = r_2 вычисленное значение r2 (см. пункт 13),$
- t время работы функции, реализующей решение этой задачи.

Вывод должен производиться в точности в таком формате, чтобы можно было автоматизировать обработку запуска многих тестов.

Задачи

- 1. Написать функцию, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , x, целые числа n и m, и возвращающую m-й член последовательности $\{\lambda_k\}$, где $\lambda_k = (Ax_k, x_k)/(x_k, x_k)$, $x_k = Ax_{k-1}$, $x_0 0$ -й элемент последовательности, значение которого может меняться подпрограммой, (\cdot, \cdot) евклидово скалярное произведение. В векторе x возвращается значение x_m .
- 2. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, целые числа n, m и вещественное число τ , и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $(x_k-x_{k-1})/\tau+Ax_{k-1}=b$. x_0-0 -й элемент последовательности, значение которого может меняться подпрограммой.
- 3. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, r целые числа n и m, и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $(x_k-x_{k-1})/\tau_{k-1}+Ax_{k-1}=b$, $\tau_k=(r_k,r_k)/(Ar_k,r_k)$, $r_k=Ax_k-b$, (\cdot,\cdot) евклидово скалярное произведение. x_0 —0-й элемент последовательности, значение которого может меняться подпрограммой, r—дополнительная память.
- 4. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, r, целые числа n и m, и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $(x_k-x_{k-1})/\tau_{k-1}+Ax_{k-1}=b$, $\tau_k=(Ar_k,r_k)/(Ar_k,Ar_k)$, $r_k=Ax_k-b$, (\cdot,\cdot) евклидово скалярное произведение. x_0 0-й элемент последовательности, значение которого может меняться подпрограммой, r дополнительная память.
- 5. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, r целые числа n и m, и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $D(x_k-x_{k-1})/\tau_{k-1}+Ax_{k-1}=b$, $\tau_k=(D^{-1}r_k,r_k)/(AD^{-1}r_k,D^{-1}r_k)$, $r_k=Ax_k-b$, D диагональ матрицы A, (\cdot,\cdot) евклидово скалярное произведение. x_0 0-й элемент последовательности, значение которого может меняться подпрограммой, r дополнительная память.
- 6. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, r, целые числа n и m, и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $D(x_k-x_{k-1})/\tau_{k-1}+Ax_{k-1}=b$, $\tau_k=(AD^{-1}r_k,r_k)/(AD^{-1}r_k,AD^{-1}r_k)$, $r_k=Ax_k-b$, D диагональ матрицы A, (\cdot,\cdot) евклидово скалярное произведение. x_0 0-й элемент последовательности, значение которого может меняться подпрограммой, r дополнительная память.
- 7. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, r, целые числа n, m и вещественное число τ , и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $D(x_k-x_{k-1})/\tau+Ax_{k-1}=b$, D диагональ матрицы A. x_0 0-й элемент последовательности, значение которого может меняться подпрограммой, r дополнительная память.
- 8. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, r, w, целые числа n, m и вещественное число τ , и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $(D+L)(x_k-x_{k-1})/\tau+Ax_{k-1}=b$, D диагональ матрицы A, L нижняя треугольная часть матрицы матрицы A. x_0 0-й элемент последовательности, значение которого может меняться подпрограммой, r, w дополнительная память.
- 9. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, r, w, целые числа n, m и вещественное число τ , и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $(D+R)(x_k-x_{k-1})/\tau+Ax_{k-1}=b$, D диагональ матрицы A,

- R верхняя треугольная часть матрицы матрицы A. x_0 0-й элемент последовательности, значение которого может меняться подпрограммой, r, w дополнительная память.
- 10. Написать подпрограмму, получающую в качестве аргументов $n \times n$ матрицу A, вектора x_0 , b, x, r, w, целые числа n, m и вещественное число τ , и возвращающую в векторе x m-й член последовательности $\{x_k\}$, где $(D+L)D^{-1}(D+R)(x_k-x_{k-1})/\tau + Ax_{k-1} = b$, D диагональ матрицы A, L нижняя треугольная часть матрицы матрицы A, R верхняя треугольная часть матрицы матрицы матрицы матрицы которого может меняться подпрограммой, r, w дополнительная память.