Mathematical Foundations of Computer Science

Project 8

Zilong Li

Student ID: 518070910095

April 19, 2021

Warmups

- 6 Can something interesting be said about $\lfloor f(x) \rfloor$ when f(x) is a continuous, monotonically decreasing function that takes integer values only when x is an integer?
- 7 Solve the recurrence

$$X_n = n,$$
 for $0 \le n < m$
 $X_n = X_{n-m} + 1,$ for $n \ge m$.

- 8 Prove the *Dirichlet box* principle: If n objects are put into m boxes, some box must contain $\geq \lceil n/m \rceil$ objects, and some box must contain $\leq \lfloor n/m \rfloor$.
- Egyptian mathematicians in 1800 B.C. represented rational numbers between 0 and 1 as sums of unit fractions $1/x_1 + \cdots + 1/x_k$, where the x's were distinct positive integers. For example, they wrote 1/3 + 1/15 instead of 2/5. Prove that it is always possible to do this in a systematic way: If 0 < m/n < 1, then

$$\frac{m}{n} = \frac{1}{q} + \left\{ \text{representation of } \frac{m}{n} - \frac{1}{q} \right\}, \quad q = \left\lceil \frac{n}{m} \right\rceil$$

(This is Fibonacci's algorithm, due to Leonardo Fibonacci, A.D. 1202.)

Basics

10 Show that the expression

$$\left\lceil \frac{2x+1}{2} \right\rceil - \left\lceil \frac{2x+1}{4} \right\rceil + \left\lfloor \frac{2x+1}{4} \right\rfloor$$

is always either |x| or [x]. In what circumstances does each case arise?

- Give details of the proof alluded to in the text, that the open interval $(\alpha..\alpha)$ contains exactly $\lceil \beta \rceil \lfloor \alpha \rfloor 1$ integers when $\alpha < \beta$. Why does the case $\alpha = \beta$ have to be excluded in order to make the proof correct?
- 12 Prove that

$$\left\lceil \frac{n}{m} \right\rceil = \left\lfloor \frac{n+m-1}{m} \right\rfloor$$

for all integers n and all positive integers m. [This identity gives us another way to convert ceilings to floors and vice versa, instead of using the reflective law (3.4).]

1

13 Let α and β be positive real numbers. Prove that $\operatorname{Spec}(\alpha)$ and $\operatorname{Spec}(\beta)$ partition the positive integers if and only if α and β are irrational and $1/\alpha + 1/\beta = 1$.