P510/1 PHYSICS Paper 1 July/August 2023 2½ hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

PHYSICS

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES:

- Answer five questions, including at least one, but not more than two from each of the Sections A, B and C.
- Any additional question(s) answered will not be marked.
- Non programmable silent scientific calculators may be used.

Assume	wh	ere	nece	essary:
				1 .

2			he where hecessury.
$= 9.81 \text{ ms}^{-2}$	=	g	Acceleration due to gravity
$= 1.6 \times 10^{-19} C$		e	Electron charge
$= 9.11 \times 10^{-31} kg$	=		Electron mass
$= 5.97 \times 10^{24} kg$	= 17		Mass of earth
$= 6.6 \times 10^{-34} Js$	=	h	Planck's constant,
$= 5.67 \times 10^{-8} Wm^{-2}K^{-4}$. edl	σ	Stefan - Boltzmann's constan
$= 6.4 \times 10^6 m$	o in T ob		Radius of the earth
$= 7.0 \times 10^8 m$			Radius of the sun
$= 1.5 \times 10^{11} m$	=	t the sun	Radius of earth's orbit about
$= 3.0 \times 10^8 m$	=		Speed of light in a vacuum
$=$ 4,200Jkg $^{-1}$ K $^{-1}$	=	er	Specific heat capacity of water
$= 3.34 \times 10^5 \text{Jkg}^{-1}$	=811		Specific latent heat of fusion
$= 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$	=/		
$= 6.02 \times 10^{23} mol^{-1}$	=	N_A	
$= 13.6 \times 10^3 kgm^{-3}$	=		
$= 1.8 \times 10^{11} \text{ Ckg}^{-1}$	n =	e/m	Charge to mass ratio,
$= 9.0 \times 10^9 F^1 m$	= 1		The constant $\frac{1}{4\pi\epsilon_0}$
$= 1000 kgm^{-3}$	2500		Density of water
$= 8.31 Jmol^{-1}K^{-1}$	it oʻ <u>a</u> m	R	Gas constant
$= 2.90 \times 10^{-3} m K$	AL -	nt	Wien's displacement constan
$= 2.0 \times 10^{-2} \text{Nm}^{-1}$	#14		
$= 1.8 \times 10^{11} \text{C kg}^{-1}$	= = 1		Electron charge to mass ratio
$= 1.6 \times 10^{-19} J$	=		One electron volt, (eV)
$= 6.02 \times 10^{23} \text{ mol}^{-1}$ $= 13.6 \times 10^{3} \text{kgm}^{-3}$ $= 1.8 \times 10^{11} \text{ Ckg}^{-1}$ $= 9.0 \times 10^{9} \text{ F}^{-1} \text{m}$ $= 1000 \text{kgm}^{-3}$ $= 8.31 \text{Jmol}^{-1} \text{K}^{-1}$ $= 2.90 \times 10^{-3} \text{ m K}$ $= 2.0 \times 10^{-2} \text{ Nm}^{-1}$ $= 1.8 \times 10^{11} \text{ C kg}^{-1}$	= = = = = = = = = = = = = = = = = = =	etant, G N _A e/m R nt	Universal gravitational constant Avogadro's number Density of mercury Charge to mass ratio, The constant $\frac{1}{4\pi\epsilon_0}$ Density of water Gas constant Wien's displacement constant Surface tension of soap solution Electron charge to mass ratio

© WAKISSHA Joint Mock Examinations 2023

Turn Over

SECTION A

- (a) (i) What is meant by dimensions of a physical quantity? (01 mark)
 - (ii) Give two uses of dimensions of physical quantities. (01 mark)
 - (iii) The displacement, S, of a body moving with an initial speed, u, accelerating at a rate, a, to attain a velocity, v, is obtained from the expression:

$$S = \frac{v^2 - u^2}{2a},$$

Show that the above expression is dimensionally consistent.

(03 marks)

- (b) (i) Distinguish between perfectly elastic and perfectly inelastic collisions. (02 marks)
 - (ii) A car of mass m makes a head-on collision with another car of mass m_2 initially at rest. If the collision is perfectly elastic, show that; $\frac{\Delta E}{E_o} = \frac{-4x}{(1+x)^2} \text{ where } x = \frac{m_2}{m_1}. \Delta E \text{ is the loss in kinetic energy of } m_1 \text{ and } E_0 \text{ is its initial kinetic energy.}$ (05 marks)
- (c) (i) Explain, using molecular theory, the origin of solid friction.

(03 marks)

(ii) A car of mass 1 tonne moves along a straight track with a speed of 72 kmh⁻¹. The car comes to a stop when brakes are steadily applied after travelling a distance of 0.09 km.

Calculate the coefficient of friction between the surface of the track and the tyres; and state the energy changes which occur as the car comes to rest.

(05 marks)

- 2. (a) Define the following terms:
 - (i) Tensile stress (01mark)
 - (ii) Tensile strain (01 mark)
 - (b) A copper wire is stretched until it breaks.
 - (i) Sketch a stress strain graph for the copper wire and explain the main features of the graph. (04 marks)
 - (ii) Explain what happens to the energy used to stretch the copper wire at each stage. (04 marks)
 - (iii) Derive the expression for the work done to stretch the copper wire by a distance, e, if its force constant is K. (03 marks)

15 2023 2 (Suggest)

	(0)	of 4	10°C to 20 d the;	^o C.	rature		
			(i)	strain produced in the wire.	(02 marks)		
			(ii)	force needed to prevent it from contracting.	(02 marks)		
				Take Young's modulus of steel = $2.0 \times 10^{11} \text{ Pa}$,	(03 marks)		
				Coefficient of linear expansion = $1.1 \times 10^{-5} \text{ K}^{-1}$.			
	(d)	Wh	at is worl	k-hardening?	(02 marks)		
√ 3.	(a)	(i)	Define	(01 mark)			
		(ii)	Explain	n why a racing car can travel faster on a banked			
				nan on an unbanked track of the same radius.	(03 marks)		
	(b)	, ,		Kepler's laws of planetary motion.	(03 marks)		
		(ii)		lite of mass 100 kg is launched in a parking orbit			
				the earth's surface. Calculate the height of the			
			satellit	e above the earth's surface.	(04 marks)		
	(c)	(i)		simple harmonic motion.	(01 mark)		
		(ii)	The pis	ston of a car engine performs simple harmonic moti	ion.		
				ston has a mass of 500 g and its amplitude of vibrat			
			4.5cm. minute.	The revolution counter in the car reads 240 revolut.	ions per		
			Show t	hat the piston above performs simple harmonic mo	tion and		
				an expression for its period.	(05 marks)		
				calculate the maximum force on the piston.	(03 marks)		
4.	(a)	(i)		surface energy.	(01 mark)		
		(ii)	Explain	the effect of temperature on surface tension of a l	iquid.		
	(1.)	n bur		market in the second of the se	(03 marks)		
	(b)	(b) Describe an experiment to determine the angle of contact of a					
	liquid using capillary method.				(06 marks)		
	(c)	(i)	State B	ernoulli's principle.	(01 mark)		
		(ii)	Derive t	the principle in (c) (i) above.	(03 mark)		
	(d)	(i)	Air flow	vs over the upper surface of the wings of an aerop	lane		
			at a speed of 120 ms ⁻¹ and past the lower surface of the wings				
	at 110 ms ⁻¹ . Calculate the lift force on the aeroplane, if it has						
			a total w	ving area of 20 m ² . (Density of air is 1.29 kgm ⁻³).	(03 marks)		
		(ii)		n standing near a railway line experiences a force			
				a fast moving train. Explain the observation.	(03 marks)		
				© WAKISSHA Joint Mook Franciscotions 2022	Turn Over		

SECTION B

			SECTION B					
5.	(a)	Def (i) (ii)	ine the following quantities; Thermometric property Heat capacity	(01 mark) (01 mark)				
	(b)	Stat	e the type of thermometer you would use and justify your cho	ice for				
		each	of the tasks below.					
		(i)	A gardener measuring the temperature of a ground	(02 marks)				
		(ii)	An engineer measuring the temperature at different points on the cylinder head of a car engine.	(02 marks)				
	(c)	(i)	Describe an experiment to determine specific heat capacity	(06 marks)				
		(ii)	of a liquid using the method of mixtures. When a current of 2.5 A is passed through a coil of constar	,				
			resistance 20 Ω immersed in 600 g of water at O ⁰ C in a vacuum flask, the temperature of water raises to 10 ⁰ C in 6 If instead the flask contained 300 g of water and 300 g of it what current must be passed through the coil if the mixture to be heated to the same temperature in the same time?	minutes.				
			to be neated to the same temperature in the cases	(05 marks)				
	(d)	Exp	lain why when starting fire, small pieces of charcoal or wood	are				
		requ	ired.	(03 marks)				
6.	(a)	(i)	Define specific molar heat capacity of a gas at constant					
		-02/r	Explain why specific molar heat capacity at constant press	(01 mark)				
		(ii)	Explain why specific molar heat capacity at constant press	ure is				
			greater than specific molar heat capacity at constant volum	(02 marks)				
	(b)	Show	w that $Cp - Cv = R$, where Cp is molar heat capacity at cons	,				
	(0)	pressure, Cv is molar heat capacity at constant volume, and R is the						
			r gas constant.	(04 marks)				
	(c)		deal gas of specific heat capacity ratio $8 = 1.40$ is expanded	,				
	adiabatically and reversibly from a pressure of 30 cmHg. It the							
		undergoes a reversible isothermal compression to its original pressure.						
		Final	ly it is expanded isobatically to its original volume.					
		(i)	Sketch the P – V diagram showing the above processes.	(02 marks)				
		Calcu		(00				
		(ii)	the volume at the end of the adiabatic expansion.	(02 marks)				
		(iii)	the temperature at the end of the isothermal compression.	(02)				
	(d)	(i)	Define saturated vapour pressure.	(02 marks)				
	(u)	(1)	Define saturated vapour pressure.	(01 mark)				

© WAKISSHA Joint Mock Examinations 2023

(ii)

Describe an experiment to determine the temperature dependence

of saturated vapour pressure of water by dynamic method. (06 marks)

Define thermal conductivity. (i) (a) (01 mark) Explain the mechanism of heat transfer in glass. (ii) (03 marks) Describe the flow of heat along a: (b) fully lagged metal bar. (i) (02 marks) (ii) un lagged metal bar. (02 marks) Describe with the aid of a labelled diagram an experiment to (c) (i) determine the thermal conductivity of a poor conductor. (07 marks) A piece of glass is cut into a thin disc of cross section area 40cm^2 and (ii) thickness 20 mm. When sandwiched between two slabs and steam is passed through the chest, the temperatures of the disc above and below it are 30°C and 10°C respectively. The disc is cooled and placed on a heated slab of mass 250 g and specific heat capacity of 400 Jkg⁻¹K⁻¹. It absorbs heat and its temperature rises. Calculate the rate of temperature rise of the disc. (Thermal conductivity of glass is 0.55 wm⁻¹K⁻¹). (05 marks) SECTION C What is meant by the terms; (a) Unified atomic mass unit. (i) (01 mark) (ii) Nuclear fusion. (01 mark) (b) The fusion reaction used in the generation of electricity is given by the equation ${}_{1}^{3}H + {}_{1}^{2}H \longrightarrow {}_{2}^{4}He + {}_{1}^{1}H$ Calculate the energy released in the reaction in joules. Mass of ${}_{1}^{3}H = 3.015500 U$ Mass of ${}_{1}^{2}H = 2.01355 U$ Mass of ${}_{2}^{4}$ He = 4.001506 U Mass of ${}_{1}^{1}H = 1.007276 U$ (05 marks) (ii) Explain two uses of isotopes. (04 marks) Define the following terms as applied to radioactivity. Half - life (i) (01 mark) (ii) Decay constant (01 mark) Describe briefly how the half-life of a ratio active material may (d) be determined using a G-M tube. (03 marks) The initial activity of a sample of 1 mole of radon -220 is 8.02×10^{21} s⁻¹. (e) Calculate: the decay constant of radon - 220. (i) (02 marks) (ii) the half-life of radon - 220. (02 marks) Turn Over © WAKISSHA Joint Mock Examinations 2023

9.	(a)	(i)	What is meant by the term "photon"	(01 mark)				
,	(4)	(ii)	State the laws of photoelectric emission.	(04 marks)				
		(11)	State the laws of photoelectric emissions					
	(b)	The	work function of potassium is 2.25 eV. Light having a wave	elength of				
			nm falls on the metal. Calculate;	(03 marks)				
		(i)	the stopping potential.	(02 marks)				
		(ii)	the speed of the most energetic elections emitted.					
	(-)	(:)	Define enseifie charge	(01 mark)				
	(c)	(i)	Define specific charge. With the aid of a well labelled diagram, describe J.J Thom	nson's				
		(ii)	experiment for determination of specific charge of an elec-	etron.				
			experiment for determination of specime	(06 marks)				
	(d)	Elec	trons accelerated from rest through a potential difference of	erated from rest through a potential difference of				
		3000	V enter perpendicularly a region of uniform magnetic field	orbit.				
		If th	e flux density is 0.01 T. Calculate the radius of the electron	(03 marks)				
				(11				
10.	(0)	(i)	What are x-rays?	(01 mark)				
10.	(a)	(i) (ii)	With the aid of a well labelled diagram, describe how					
		(11)	x-rays are produced.	(05 marks)				
		(iii)	State the energy changes in the production of x-rays.	(01 mark)				
		()						
	(b)	(i)	State Bragg's law.	(01 mark)				
		(ii)	An x-ray beam is produced when electrons accelerated					
			through a p.d of 10 kV are stopped by a metal target.					
			When the beam falls on a set of parallel atomic plates of a					
			certain metal, at a glancing angle of 16 ⁰ , a first order diffraction					
			maximum occurs. Calculate the atomic spacing of the plan					
				(04 marks)				
		(*)	William are and had a way of	(01 1)				
	(c)	(i)	What are cathode rays? Explain the motion of an electron directed into a uniform	(01 mark)				
		(ii)		(02 1)				
		(iii)	magnetic field. An electron accelerated from rest by a p.d of 100 V, enters	(03 marks)				
		(111)	perpendicularly into a uniform electric field of intensity 10					
			Find the magnetic field density, B, which must be applied	OU VIII .				
			perpendicularly to the field so that the electron passes					
	lah-sam		undeflected through the field.	(04 marks)				
				(OT IIIalks)				

END