In [27]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Out[4]:

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	
0	Aruba	ABW	Population, total	SP.POP.TOTL	54608.0	55811.0	56682.0	
1	Africa Eastern and Southern	AFE	Population, total	SP.POP.TOTL	130692579.0	134169237.0	137835590.0	14
2	Afghanistan	AFG	Population, total	SP.POP.TOTL	8622466.0	8790140.0	8969047.0	
3	Africa Western and Central	AFW	Population, total	SP.POP.TOTL	97256290.0	99314028.0	101445032.0	10
4	Angola	AGO	Population, total	SP.POP.TOTL	5357195.0	5441333.0	5521400.0	

5 rows × 68 columns

In [5]: df.tail()

Out[5]:

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	
261	Kosovo	XKX	Population, total	SP.POP.TOTL	947000.0	966000.0	994000.0	1022
262	Yemen, Rep.	YEM	Population, total	SP.POP.TOTL	5542459.0	5646668.0	5753386.0	5860
263	South Africa	ZAF	Population, total	SP.POP.TOTL	16520441.0	16989464.0	17503133.0	18042
264	Zambia	ZMB	Population, total	SP.POP.TOTL	3119430.0	3219451.0	3323427.0	343
265	Zimbabwe	ZWE	Population, total	SP.POP.TOTL	3806310.0	3925952.0	4049778.0	417

5 rows × 68 columns

localhost:8888/notebooks/Prodigy_infotech/Task_p_1.ipynb

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 266 entries, 0 to 265
Data columns (total 68 columns):

# 	Column	Non-Null Count	Dtype
0	Country Name	266 non-null	object
1	Country Code	266 non-null	object
2	Indicator Name		object
3	Indicator Code		object
4	1960	264 non-null	float64
5	1961	264 non-null	float64
6	1962	264 non-null	float64
7	1963	264 non-null	float64
8	1964	264 non-null	float64
9	1965	264 non-null	float64
10	1966	264 non-null	float64
11	1967	264 non-null	float64
12	1968	264 non-null	float64
13	1969	264 non-null	float64
14	1970	264 non-null	float64
15	1971	264 non-null	float64
16	1972	264 non-null	float64
17	1973	264 non-null	float64
18	1974	264 non-null	float64
19	1975	264 non-null	float64
20	1976	264 non-null	float64
21	1977	264 non-null	float64
22	1978	264 non-null	float64
23	1979	264 non-null	float64
24	1980	264 non-null	float64
25	1981	264 non-null	float64
26	1982	264 non-null	float64
27	1983	264 non-null	float64
28	1984	264 non-null	float64
29	1985	264 non-null	float64
30	1986	264 non-null	float64
31	1987	264 non-null	float64
32	1988	264 non-null	float64
33	1989	264 non-null	float64
34	1990	265 non-null	float64
35	1991	265 non-null	float64
36	1992	265 non-null	float64
37	1993	265 non-null	float64
38	1994	265 non-null	float64
39	1995	265 non-null	float64
40	1996	265 non-null	float64
41	1997	265 non-null	float64
42	1998	265 non-null	float64
43	1999	265 non-null	float64
44	2000	265 non-null	float64
45	2001	265 non-null	float64
46	2002	265 non-null	float64
47	2003	265 non-null	float64
48	2004	265 non-null	float64
49	2005	265 non-null	float64
50	2006	265 non-null	float64
51	2007	265 non-null	float64
52	2008	265 non-null	float64
53	2009	265 non-null	float64
54	2010	265 non-null	float64
55	2011	265 non-null	float64

```
56
   2012
                    265 non-null
                                    float64
                                    float64
57
   2013
                    265 non-null
58
                    265 non-null
                                    float64
   2014
59
                                    float64
   2015
                    265 non-null
                    265 non-null
                                    float64
60
   2016
                    265 non-null
                                    float64
61
   2017
                                    float64
62
   2018
                    265 non-null
63
   2019
                    265 non-null
                                    float64
   2020
64
                    265 non-null
                                    float64
                                    float64
65
   2021
                    265 non-null
66
   2022
                    265 non-null
                                    float64
67 2023
                    0 non-null
                                    float64
```

dtypes: float64(64), object(4)

memory usage: 141.4+ KB

```
In [8]: df.shape
```

Out[8]: (266, 68)

```
In [9]: df.isna().sum()
```

Out[9]: Country Name 0 Country Code 0 Indicator Name 0 Indicator Code 0 1960 2 2019 1 2020 1 2021 1 1 2022 2023 266

In [10]: | df = df.fillna(method="ffill") df.head()

Length: 68, dtype: int64

Out[10]:

	Country Name	Country Code	Indicator Name	Indicator Code	1960	1961	1962	
0	Aruba	ABW	Population, total	SP.POP.TOTL	54608.0	55811.0	56682.0	
1	Africa Eastern and Southern	AFE	Population, total	SP.POP.TOTL	130692579.0	134169237.0	137835590.0	14
2	Afghanistan	AFG	Population, total	SP.POP.TOTL	8622466.0	8790140.0	8969047.0	
3	Africa Western and Central	AFW	Population, total	SP.POP.TOTL	97256290.0	99314028.0	101445032.0	10
4	Angola	AGO	Population, total	SP.POP.TOTL	5357195.0	5441333.0	5521400.0	

5 rows × 68 columns

```
In [13]: df.isna().sum()
Out[13]: Country Name
                              0
         Country Code
                              0
         Indicator Name
                              0
         Indicator Code
                              0
         1960
                              0
         2019
                              0
         2020
                              0
         2021
                              0
         2022
                              0
         2023
                            266
         Length: 68, dtype: int64
In [14]: df.duplicated().sum()
Out[14]: 0
In [15]: df['Country Name'].nunique()
Out[15]: 266
In [16]: df['Country Code'].nunique()
Out[16]: 266
In [19]: |df['Indicator Code'].unique()
Out[19]: array(['SP.POP.TOTL'], dtype=object)
In [18]: |df['Indicator Code'].value_counts()
Out[18]: SP.POP.TOTL
                         266
         Name: Indicator Code, dtype: int64
In [20]: |df['Indicator Name'].value_counts()
Out[20]: Population, total
                               266
         Name: Indicator Name, dtype: int64
In [21]: | df.drop(columns=['Country Code','Indicator Code','Indicator Name','2023'],i
```

```
In [22]: df.columns
Out[22]: Index(['Country Name', '1960', '1961', '1962', '1963', '1964', '1965', '19
            66',
                      '1967', '1968', '1969', '1970', '1971', '1972', '1973', '1974', '19
            75',
                      '1976', '1977', '1978', '1979', '1980', '1981', '1982', '1983', '19
            84',
                      '1985', '1986', '1987', '1988', '1989', '1990', '1991', '1992', '19
            93',
                      '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '20
            02',
                      '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '20
            11',
                      '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019', '20
            20',
                      '2021', '2022'],
                    dtype='object')
In [25]:
            cols=['1960','1961','1962','1963','1964','1965','1966','1967','1968','1969'
                    '1971', '1972', '1973', '1974', '1975', '1976', '1977', '1978', '1979' '1982', '1983', '1984''1985', '1986', '1987', '1988', '1989', '1990', '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000 '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010' '2013', '2014', '2015', '2016', '2017', '2018', '2019', '2020', '2021'
In [28]: for i in cols:
                  fig = plt.figure(figsize=(5,5))
                  plt.hist(df[i],color='#079eab',bins=10)
                  plt.xlabel(i)
                  plt.show()
              250
              200
               150
               100
                50
```

```
In [34]: years = df.columns[1:]

total_values = df[years].sum()

plt.figure(figsize=(30, 30))
plt.barh(years, total_values, color='#42024b')
plt.xlabel('Total Values')
plt.ylabel('Years', size=20)
plt.title('Total Values per Years', size=20)
plt.show()
```


In [35]: by_1960 = df.sort_values(by='1960').head(20) by_1960

Out[35]:

	Country Name	1960	1961	1962	1963	1964	1965	1966	1967	
225	Sint Maarten (Dutch part)	2646.0	2888.0	3171.0	3481.0	3811.0	4161.0	4531.0	4930.0	5
147	St. Martin (French part)	4135.0	4258.0	4388.0	4524.0	4666.0	4832.0	5044.0	5294.0	5
179	Nauru	4582.0	4753.0	4950.0	5198.0	5484.0	5804.0	6021.0	6114.0	6
245	Tuvalu	5404.0	5436.0	5471.0	5503.0	5525.0	5548.0	5591.0	5657.0	5
228	Turks and Caicos Islands	5604.0	5625.0	5633.0	5634.0	5642.0	5650.0	5652.0	5662.0	5
255	British Virgin Islands	7850.0	7885.0	7902.0	7919.0	7949.0	8018.0	8139.0	8337.0	8
52	Cayman Islands	8473.0	8626.0	8799.0	8985.0	9172.0	9366.0	9566.0	9771.0	9
164	Northern Mariana Islands	8702.0	8965.0	9252.0	9561.0	9890.0	10229.0	10577.0	10720.0	10
6	Andorra	9443.0	10216.0	11014.0	11839.0	12690.0	13563.0	14546.0	15745.0	17
188	Palau	9446.0	9639.0	9851.0	10076.0	10318.0	10563.0	10813.0	10992.0	11
155	Marshall Islands	15374.0	15867.0	16387.0	16947.0	17537.0	18154.0	18794.0	19665.0	21
212	San Marino	15556.0	15895.0	16242.0	16583.0	16926.0	17273.0	17588.0	17907.0	18
137	Liechtenstein	16472.0	16834.0	17221.0	17625.0	18058.0	18500.0	18957.0	19467.0	20
11	American Samoa	20085.0	20626.0	21272.0	21949.0	22656.0	23391.0	24122.0	24848.0	25
149	Monaco	21797.0	21907.0	22106.0	22442.0	22766.0	23022.0	23198.0	23281.0	23
84	Gibraltar	21822.0	21907.0	22249.0	22796.0	23347.0	23910.0	24477.0	25047.0	25
91	Greenland	32500.0	33700.0	35000.0	36400.0	37600.0	39200.0	40500.0	41900.0	43
256	Virgin Islands (U.S.)	32500.0	34300.0	35000.0	39800.0	40800.0	43500.0	46200.0	49100.0	55
78	Faroe Islands	34154.0	34572.0	34963.0	35385.0	35841.0	36346.0	36825.0	37234.0	37
200	Qatar	36385.0	40111.0	45123.0	50950.0	57531.0	64843.0	73102.0	82517.0	93
20 ro	ws × 64 colur	nns								

 $local host: 8888/notebooks/Prodigy_infotech/Task_p_1.ipynb$

```
In [40]: by_1960_t = by_1960.set_index('Country Name').T
    for country_name, data_values in by_1960_t.iterrows():
        fig = plt.figure(figsize=(10, 5))
        sns.barplot(x=data_values.index, y=data_values.values)
        plt.xlabel('Countries')
        plt.ylabel('Data Values')
        plt.title(f"{country_name} Data Values from 1960 to 2022")
        plt.xticks(rotation=90)
        plt.show()
```


In [44]: by_2022 = df.sort_values(by='2022').head(20)
by_2023

Out[44]:

	Country Name	1960	1961	1962	1963	1964	1965	1966	1967
245	Tuvalu	5404.0	5436.0	5471.0	5503.0	5525.0	5548.0	5591.0	5657.0
179	Nauru	4582.0	4753.0	4950.0	5198.0	5484.0	5804.0	6021.0	6114.0
188	Palau	9446.0	9639.0	9851.0	10076.0	10318.0	10563.0	10813.0	10992.0
255	British Virgin Islands	7850.0	7885.0	7902.0	7919.0	7949.0	8018.0	8139.0	8337.0
147	St. Martin (French part)	4135.0	4258.0	4388.0	4524.0	4666.0	4832.0	5044.0	5294.0
84	Gibraltar	21822.0	21907.0	22249.0	22796.0	23347.0	23910.0	24477.0	25047.0
212	San Marino	15556.0	15895.0	16242.0	16583.0	16926.0	17273.0	17588.0	17907.0
149	Monaco	21797.0	21907.0	22106.0	22442.0	22766.0	23022.0	23198.0	23281.0
137	Liechtenstein	16472.0	16834.0	17221.0	17625.0	18058.0	18500.0	18957.0	19467.0

```
In [46]: by_2022_t = by_2022.set_index('Country Name').T
for country_name, data_values in by_2022_t.iterrows():
    fig = plt.figure(figsize=(10, 5))
    sns.barplot(x=data_values.index, y=data_values.values)
    plt.xlabel('year')
    plt.ylabel('Data Values')
    plt.title(f"{country_name} Data Values from 1960 to 2022")
    plt.xticks(rotation=90)
    plt.show()
```


In []: