Importing Required libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
import statsmodels.formula.api as smf
```

Importing Data

```
In [2]: calories = pd.read_csv("calories_consumed.csv")
    calories
```

Out[2]:		Weight gained (grams)	Calories Consumed
	0	108	1500
	1	200	2300
	2	900	3400
	3	200	2200
	4	300	2500
	5	110	1600
	6	128	1400
	7	62	1900
	8	600	2800
	9	1100	3900
	10	100	1670
	11	150	1900
	12	350	2700
	13	700	3000

Data understanding

```
In [3]: calories.head()
Out[3]: Weight gained (grams) Calories Consumed
```

3]:		Weight gained (grams)	Calories Consumed
	0	108	1500
	1	200	2300
	2	900	3400
	3	200	2200
	4	300	2500

```
In [5]:
           calories.shape
 Out[5]: (14, 2)
 In [6]:
           calories.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 14 entries, 0 to 13
          Data columns (total 2 columns):
               Column
                                        Non-Null Count
               Weight gained (grams) 14 non-null
                                                         int64
               Calories Consumed
                                        14 non-null
                                                         int64
          dtypes: int64(2)
          memory usage: 352.0 bytes
 In [7]:
           calories.isna().sum()
 Out[7]: Weight gained (grams)
          Calories Consumed
          dtype: int64
 In [8]:
           calories.dtypes
         Weight gained (grams)
                                     int64
 Out[8]:
          Calories Consumed
                                     int64
          dtype: object
In [10]:
           calories.describe()
                 Weight gained (grams) Calories Consumed
Out[10]:
                            14.000000
                                              14.000000
          count
          mean
                           357.714286
                                            2340.714286
                           333.692495
                                             752.109488
            std
            min
                            62.000000
                                            1400.000000
           25%
                           114.500000
                                            1727.500000
           50%
                           200.000000
                                            2250.000000
           75%
                           537.500000
                                            2775.000000
                          1100.000000
                                            3900.000000
           max
```

Checking Weater the assumptions are matching or not

```
In [12]:
   plt.scatter(x = 'Weight gained (grams)' , y = 'Calories Consumed', data = calories)
   plt.show()
```

```
4000 - 3500 - 2500 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 20
```

```
In [13]:
    sns.regplot(x = 'Weight gained (grams)' , y = 'Calories Consumed' , data = calories
    plt.show()
```



```
In [18]:
    sns.distplot(calories['Weight gained (grams)'])
    plt.show()
    import warnings
    warnings.filterwarnings('ignore')
```



```
In [17]:
    sns.distplot(calories['Calories Consumed'])
    plt.show()
```


In [28]: calories.corr()

 Weight_gained_grams
 Calories_Consumed

 Weight_gained_grams
 1.000000
 0.946991

 Calories_Consumed
 0.946991
 1.000000

Model Bulding

Out[24]:		Weight_gained_grams	Calories_Consumed
	0	108	1500
	1	200	2300
	2	900	3400
	3	200	2200
	4	300	2500

In [25]:
 linear_model = smf.ols(formula = 'Calories_Consumed~Weight_gained_grams' , data = c
 linear_model

Out[25]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x209637a6640>

Model Testing

In [26]: linear_model.params

Out[26]: Intercept 1577.200702 Weight_gained_grams 2.134423 dtype: float64

```
linear_model.tvalues,linear_model.pvalues
In [27]:
         (Intercept
                                  15.687195
Out[27]:
                                  10.211269
          Weight_gained_grams
          dtype: float64,
                                  2.326102e-09
          Intercept
          Weight_gained_grams
                                  2.855864e-07
          dtype: float64)
In [29]:
          linear_model.rsquared,linear_model.rsquared_adj
Out[29]: (0.8967919708530552, 0.8881913017574764)
```

Model Prediction

Sample Calculation

```
In [31]:
          ### y = mx+c
          calories = (1577.200702+2.134423)*(5)
Out[31]: 7896.675625
In [35]:
          #machine prediction
          pred_data = {'Weight_gained_grams':[100,200,300,400]}
Out[35]: {'Weight_gained_grams': [100, 200, 300, 400]}
In [36]:
          new_data = pd.DataFrame(pred_data)
          new_data
            Weight_gained_grams
Out[36]:
          0
                            100
                            200
          1
          2
                            300
          3
                            400
In [37]:
          linear_model.predict(new_data)
               1790.642998
         0
Out[37]:
               2004.085294
               2217.527589
               2430.969885
          dtype: float64
 In [ ]:
```