JESOUTHWESTERN MEDICAL CENTER

A DEEP LEARNING APPROACH TO PREDICT SUCCESSFUL VS UNSUCCESSFUL MEMORY

Akshay Arora

WOULDN'T YOU RATHER FOCUS ON INSIGHTS FROM YOUR DATA INSTEAD OF BUILDING AN INFRASTRUCTURE AROUND IT?

BRAIN-COMPUTER INTERFACE (BCI) TO ENHANCE MEMORY VIA NEURON-STIMULATION

Top-down approach

Record brain activity during memory paradigm

Create a classifier that represents brain activity at all regions when "good" memories are formed

offline

Repeat memory paradigm and deliver electrical stimulation when the brain is not in a "good" encoding state

closed-loop (using BCI)

Identify optimal stimulation site and parameters to enhance the classifier estimate

STIMULATE

EXPERIMENTAL PARADIGM

DATA: 100 patients

200 words : Recall

1000 words: Non Recall

PREDICT CLASSES

R : Recall Successful

N: Non Recall Unsuccessful - 0

Problem Solution SMOTE

Class Imbalance (1:5) Algorithm

Class balance (1:1)

PROJECT ROADMAP

Data Preparation

Classifier Model

Testing

DEEP RECURRENT NEURAL NETWORK [LSTM] MODEL

fig 2: Rnn-LSTM model using Tensorflow

fig 3: Accuracy and Cost during training the model

RESULTS

Rnn-LSTM vs Logistic Regression

fig 5a: Classifier Comparison: RNN-LSTM vs Logistic Regression

fig 5b: f-score Isomap: RNN-LSTM vs Logistic Regression

FUTURE SCOPE

- Design a fully automated BCI
- ➤ Identify good brain sites and parameters for neuron-stimulation
- ➤ Embed the classifier model into the BCI product release

SUMMARY AND CONCLUSIONS

- ➤ The project showcases a **deep recurrent neural network** based approach to classify successful and unsuccessful memory in epileptic patients
- ➤ L2-regularization and Dropout regularization are used to make the model robust to over-fitting.
- ➤ The proposed algorithm achieves a better **f1-score** and a higher **AUC** than logistic regression and showed a significant(**pvalue=0.004**) improvement in the classifier prediction

66

If you torture your data enough, It will Confess...!

-Ronald Coase