



| STUDENT ID NO |  |  |  |  |  |  |  |  |
|---------------|--|--|--|--|--|--|--|--|
|               |  |  |  |  |  |  |  |  |

## **MULTIMEDIA UNIVERSITY**

### FINAL EXAMINATION

**TRIMESTER 2, 2016/2017** 

# EME2146 – APPLIED THERMODYNAMICS (ME)

27 FEBRUARY 2017 2.30 p.m. - 4.30 p.m. (2 Hours)

#### INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of six pages (including the cover page) with four questions and an Appendix.
- 2. Answer ALL four questions.
- 3. Each question carries 25 marks and the distribution of the marks for each question is given in brackets [].
- 4. Write all your answers in the answer booklet provided.
- 5. A property table booklet is provided for your reference.

A rigid vessel contains non-reacting mixtures at 100 kPa and 80 °C. The mixture consists of 8.4 kg of nitrogen gas (N<sub>2</sub>), 3.2 kg of oxygen gas (O<sub>2</sub>), 2.2 kg of carbon dioxide gas (CO<sub>2</sub>), and 0.9 kg of water vapor (H<sub>2</sub>O).

|                            |    |       | ~~     | TLO              |
|----------------------------|----|-------|--------|------------------|
| Substance                  | No | $O_2$ | $CO_2$ | H <sub>2</sub> O |
|                            | 00 | 22    | 44     | 18               |
| Molecular weight (kg/kmol) |    |       | 77     |                  |

Assuming ideal gas behavior of the gaseous mixtures and taking the universal gas constant, R=8.314 J/mol·K and constant pressure specific heat,  $c_p=29.099$  J/mol·K, determine

| a. | the mass fraction of each component,                                  | [4 marks] |
|----|-----------------------------------------------------------------------|-----------|
| b. | the number of mole of each component in kmol,                         | [4 marks] |
| c. | the mole fraction of each component,                                  | [4 marks] |
| d. | the volume of the vessel in m <sup>3</sup> ,                          | [3 marks] |
| e. | the absolute humidity of the mixture,                                 | [3 marks] |
| f. | the relative humidity of the mixture, and                             | [3 marks] |
| g. | the amount of heat transfer to cool the rigid vessel from 80 °C to 70 | °C in kJ. |

Continued...

[4 marks]

Propane (C<sub>3</sub>H<sub>8</sub>) is burned with 100 percent excess dry air during a steady-flow combustion process. Both the propane and air enter the combustion chamber at 25°C. The mixture is combusted completely at constant pressure of 1 atm. The products leave the chamber at 127 °C and 1 atm.

a. Find the balanced combustion equation.

[5 marks]

b. Find the air fuel.

[3 marks]

c. Determine the heat transfer for this process per unit mass of propane.

[9 marks]

d. In order to supply heat at a rate of 2000 kW, determine the required mass flow rate of the fuel.

[3 marks]

e. Find the dew-point temperature of the water vapor in the product.

[3 marks]

f. If the combustion process is conducted with 100 percent theoretical air, the amount of heat transfer for this process will be lower or higher? Briefly explain your answer.

[2 marks]

Continued...

Consider an ideal Brayton cycle. Air enters the compressor at 27 °C and leaves at 277 °C. Air enters the turbine at 627 °C.

Assume variable specific heats, find the pressure ratio, net work out and a. thermal efficiency for this cycle.

[14 marks]

Assume constant specific heats at room temperature ( $c_p = 1.005 \text{ kJ/kg·K}$  and b. k = 1.4), find the pressure ratio, net work out and thermal efficiency for this cycle.

[11 marks]

| Con  | tino      | ed. | _ |   |
|------|-----------|-----|---|---|
| CATH | WALLEY OF |     | • | ٩ |

A large and frictionless piston-cylinder contains 1.4 kg of a gaseous pure substance. Piston expanded slowly from its initial volume,  $V_1$  to the maximum volume,  $V_2$  under constant pressure,  $p_1 = 100$  kPa as shown in Figure Q4. The initial and final temperature are  $T_1 = 400$  K and  $T_2 = 300$  K respectively.



Figure Q4

For the range of the pressure and temperature, the substance is found to have the expansivity and the isothermal compressibility as:

$$\alpha_p = \frac{1}{T} \; ; \; \beta_T = \frac{1}{p} \left( \frac{p_0}{p + p_0} \right)$$

where the constant,  $p_0 = 1.00$  MPa. The universal gas constant, molecular weight and specific heat ratio of the substance are R = 8.314 J/mol·K, M = 28 g/mol and  $\gamma = 1.4$  respectively. The substance is behaved as an ideal gas when the pressure is relatively small,  $p/p_0 \ll 1$ .

a. Determine the equation of state of the substance.

[12 marks]

b. Calculate the amount of heat transferred.

[6 marks]

c. Find the initial volume.

[2 marks]

d. Find the volume after expansion.

[2 marks]

e. Calculate the change of internal energy.

[3 marks]

Continued...

#### APPENDIX

A1. Clayperon Relation:

$$\frac{dp_{sat}}{dT} = \frac{s_{fg}}{v_{fg}} = \frac{h_{fg}}{Tv_{fg}}$$

A2. Maxwell Relations:

A3. Change of internal energy, enthalpy, and entropy:

$$\begin{split} u_{2} - u_{1} &= \int_{T_{1}}^{T_{2}} c_{v} dT + \int_{v_{1}}^{v_{2}} \left[ T \left( \frac{\partial p}{\partial T} \right)_{v} - p \right] dv \\ h_{2} - h_{1} &= \int_{T_{1}}^{T_{2}} c_{p} dT + \int_{p_{1}}^{p_{2}} \left[ v - T \left( \frac{\partial v}{\partial T} \right)_{p} \right] dp \\ s_{2} - s_{1} &= \int_{T_{1}}^{T_{2}} \frac{c_{v}}{T} dT + \int_{v_{1}}^{v_{2}} \left( \frac{\partial p}{\partial T} \right)_{v} dv = \int_{T_{1}}^{T_{2}} \frac{c_{p}}{T} dT - \int_{p_{1}}^{p_{2}} \left( \frac{\partial v}{\partial T} \right)_{p} dp \end{split}$$

A4. Enthalpy, entropy and internal energy of departure:

$$\frac{(h^* - h)_T}{RT_c} = \int_0^{p_T} \left[ T_r^2 \left( \frac{\partial Z}{\partial T_r} \right)_p \right] \frac{dp_r}{p_r}$$

$$\frac{(s^* - s)_T}{R} = \int_0^{p_T} \left[ Z - 1 + T_r \left( \frac{\partial Z}{\partial T_r} \right)_p \right] \frac{dp_r}{p_r}$$

$$\frac{(u^* - u)_T}{RT_c} = \frac{(h^* - h)_T}{RT_c} + T_r (Z - 1)$$

A5. Specific heats difference:

$$c_p - c_v = \frac{Tv\alpha_p^2}{\beta_T}$$

$$c_n - c_v = R \text{ (for ideal gas)}$$

A6. Some useful calculus relations:

Integration by parts:  $\begin{cases} \frac{1}{2}(\phi) \triangleq (\phi) d\phi = \frac{1}{2}(\phi) d\phi - \int \left[ \left( \int \frac{1}{2}(\phi) d\phi \right) \triangleq'(\phi) \right] d\phi \\ \int \frac{\frac{1}{2}(\phi)}{\frac{1}{2}(\phi)} d\phi = \ln[\frac{1}{2}(\phi)] \\ \exp(-\frac{1}{2}(\phi)) = \ln[\frac{1}{2}(\phi)] \\ \exp(-\frac{1}{2}$ 

End of Paper