Atividade 1 - Grupo 10 - MO824

Ricardo Ribeiro Cordeiro - RA 186633 Sinara Caonetto Pamplona - RA 187101 Victor Ferreira Ferrari - RA 187890

Resumo. Este documento propõe uma solução para um problema de otimização na produção de uma fábrica de papel, apresentando uma modelagem matemática para o problema linear, realizando ensaios através do software Gurobi. Foram realizados testes com os modelos inteiro e contínuo e em ambos os casos as instâncias foram resolvidas de maneira ótima.

Palavras-chave. Programação Linear, Otimização, Gurobi.

1. Introdução

Este documento consiste em determinar a quantidade de cada tipo de papel a ser produzida em cada máquina de cada fábrica e a quantidade que deve ser transportada de cada tipo de papel partindo de cada fábrica para cada consumidor, de forma a minimizar seu custo total de produção e transporte, problema proposto na Atividade 1 de MO824 2S-2020.

2. Modelo Matemático

Dada as constantes enunciadas na Atividade 1, sejam as seguintes variáveis:

 X_{plf} : Quantidade de papéis de tipo p produzidos pela máquina l na fábrica f.

 T_{pfj} : Quantidade de papéis de tipo p transportados da fábrica f ao cliente j.

Dito isso, queremos minimizar o custo total de produção e transporte, denotado por *total cost*.

$$\min_{\mathbf{s}.\mathbf{a}} \quad total_cost \\
\mathbf{s}.\mathbf{a} \quad total_cost \ge \sum_{p} \sum_{l} \sum_{f} X_{plf} \cdot p_{p,l,f} + \sum_{p} \sum_{f} \sum_{j} t_{pfj} \cdot T_{pfj} \qquad (1) \\
\sum_{f} T_{pfj} = D_{jp} \qquad \forall p, j \qquad (2) \\
\sum_{f} T_{pfj} = \sum_{l} X_{plf} \qquad \forall p, f \qquad (3) \\
\sum_{f} \sum_{g} X_{plf} \cdot r_{mpl} \le R_{mf} \qquad \forall m, f \qquad (4) \\
\sum_{f} \sum_{g} X_{plf} \le C_{lf} \qquad \forall l, f \qquad (5)$$

$$\sum T_{pfj} = D_{jp} \qquad \forall p, j \qquad (2)$$

$$\sum_{j} T_{pfj} = \sum_{j} X_{plf} \qquad \forall p, f \qquad (3)$$

$$\sum_{l=1}^{J} \sum_{l} X_{plf} \cdot r_{mpl} \le R_{mf} \qquad \forall m, f \qquad (4)$$

$$\sum_{l} X_{plf} \le C_{lf} \qquad \forall l, f \qquad (5)$$

$$\begin{array}{ccc}
X_{plf}, T_{pfj} \ge 0 & \forall p, l, f, j & (6) \\
Y_{rot}, T_{rot} \in \mathbb{Z} & \forall r, l, f, i & (7)
\end{array}$$

Onde,
$$j = 0, \ldots, |J - 1|, p = 0, \ldots, |P - 1|, f = 0, \ldots, |F - 1|, l = 0, \ldots, |L - 1|$$
 e $m = 0, \ldots, |M - 1|$.

O custo total é apresentado como a soma dos custos de produção e também do transporte, como mostra a equação (1). A equação (2) demonstra que o total de papéis do tipo p transportado para o cliente j por todas as fábricas deve ser igual à demanda do cliente j de papel do tipo p. Por sua vez, a equação (3) relaciona o total produzido de p em uma fábrica f com a quantidade transportada a partir dessa mesma fábrica. Juntas, as equações (2) e (3) implicitamente relacionam a quantidade produzida nas fábricas com a demanda dos clientes. Assim, não é necessário incluir uma restrição extra para essa relação.

A equação (4) diz sobre a disponibilidade da matéria-prima m na fábrica f: a quantidade de matéria-prima utilizada para a produção dos papéis deve ser menor ou igual à quantidade disponível. Já a equação (5) é relativa a capacidade de produção de uma máquina l na fábrica f: o total de papéis produzidos em cada máquina não pode ser maior do que sua capacidade de produção. Por fim, as equações (6) e (7) denotam o domínio das variáveis (não-negatividade e integralidade).

Obs.: a equação (7) pode ser modificada para permitir variáveis contínuas, resultando em uma relaxação do problema inteiro.

3. Metodologia

3.1. Gerador de Instâncias

As instâncias foram geradas de maneira aleatória e uniforme a partir de uma quantidade de clientes fornecida, conforme o código fonte disponibilizado separadamente (generator.py). Os limites dos intervalos de cada constante foram adaptados a partir dos fornecidos pelo enunciado da Atividade 1 para gerar instâncias factíveis. As instâncias são salvas em arquivos no formato JSON.

Atividade 1 3

3.2. Especificações do Computador

As especificações de hardware do computador no qual foram feitas as execuções estão na Tabela 1.

Tabela 1: Condições de Execução

Modelo da CPU	Intel(R) Core(TM) i7-8550U (4C/8T)		
Frequência do Clock da CPU	1.8-4.0 GHz		
RAM	$8,00~{ m GB}/2400~{ m MHz}$		

O sistema operacional utilizado foi o Windows 10 (64 bits). Foi utilizado como software de execução o *solver* Gurobi Optimizer V8.1.0. Os modelos foram executados com limite de 1800 segundos (30 minutos) e sem limite de memória.

4. Resultados Obtidos e Análise

Para cada valor de J proposto na atividade foi gerada uma instância e os resultados alcançados estão na Tabela 2, sendo os custos das soluções do PL relaxado arredondados.

Tabela 2: Resultados Obtidos

Número de clientes	Quantidade de variáveis	Custo da solução	Tempo de Execução	Custo da solução	Tempo de Execução
	do problema	PLI	PLI [s]	PL relaxado	PL relaxado [s]
50	30691	144688	0.18	144686.31177	0.09
100	94177	246701	0.65	246698.06000	0.36
150	169851	227830	1.33	227829.39999	0.86
200	323533	359579	2.68	359576.23077	1.59
250	710533	450029	11.86	450027.15000	4.28
300	836311	557315	12.71	557310.37143	5.00
350	1003921	538909	11.64	538906.00000	6.64
400	951751	626426	15.74	626412.86333	5.42
450	3089857	1099368	65.42	1099362.2619	63.90
500	2268221	756021	40.49	756013.49999	53.60

Pela Tabela 2, temos que o problema relaxado retornou resultados de custo menor que as soluções inteiras, confirmando a característica de que a solução de problemas contínuos são limitantes inferiores para os problemas inteiros. Observase que na maioria dos casos o gap entre as soluções é relativamente pequeno, porém em todos a solução contínua é inviável para o problema inteiro (pelo menos uma variável da solução não é inteira).

Além disso, com exceção da instância de J=500, o tempo de execução do problema linear relaxado foi menor que o tempo de execução do problema linear inteiro. Porém, percebe-se que o tempo de execução não é diretamente proporcional à quantidade de variáveis do problema, como visto para J=350 e J=400.

Por fim, é notório que todas as instâncias geradas foram resolvidas de maneira ótima dentro do tempo alocado para execução. Isso possivelmente atesta a qualidade do *solver*, que utilizou dualização, heurísticas para valor inicial e outras técnicas para atingir esses resultados.