第十五次习题课

方法提要、小测讲解、习题讲解和内容扩充

助教: 邓先涛

2023年12月25日

重点知识提要

重点知识提要

- ▶ Galois 理论: 特征 0 域上的多项式 f 可根式解等价于 f 的 Galois 群可解.
- ► 一般的五次多项式不可根式解:了解一般五次多项式不可根式的证明思路;能够计算一些五次 多项式的 Galois 群.

小测讲解

小测第1题

构造 25 元有限域 \mathbb{F}_{25} , 指出所有本原元.

极大理想的性质

注

 \mathbb{F}_{25} 确实是 $x^{25} - x$ 在 \mathbb{F}_5 上的分裂域,但是不能写作 $\mathbb{F}_5[x]/(x^{25} - x)$.

思维拓展

找出 \mathbb{F}_{25}^{\times} 的全部生成元.

- ► 构造 25 元有限域等价于找 F₅[x] 中的次数 为 2 的不可约多项式生成的极大理想.
- ▶ 注意到 x^2+2 在 \mathbb{F}_5 上没有根,因此不可约.
- $\blacktriangleright \mathbb{F}_{25} = \mathbb{F}_5[x]/(x^2+2) = \{a+b\overline{x}|a,b\in\mathbb{F}_5\}.$
- ▶ 本原元: $\alpha \in \mathbb{F}_{25}$ 使得 $\mathbb{F}_{25} = \mathbb{F}_{5}(\alpha)$.
- ▶ 素数阶扩张任意 $\alpha \in \mathbb{F}_{25} \mathbb{F}_5$ 均是本原元.
- ▶ 原根/生成元: $\alpha \in \mathbb{F}_{25}$ 使得 $\mathbb{F}_{25}^{\times} = <\alpha>$.

小测第2题

设 $F = \mathbb{Q}\left(\sqrt[3]{2}, \sqrt{-1}\right)$, 对 F/\mathbb{Q} 的每一个中间域 M, 找一个 $\beta \in F$ 使得 $M = \mathbb{Q}(\beta)$, 指出在 \mathbb{Q} 上为正规扩张的所有非平凡中间域.

域扩张中的元素分析

思维拓展

任给素数 p 和正整数 n,找出 $F = \mathbb{Q}\left(\sqrt[p]{2}, \zeta_{2^n}\right)$ 的所有中间域.

- ▶ $[F:\mathbb{Q}]=6$, F/\mathbb{Q} 只有 2 次和 3 次子域 M.
- ▶ 若 $[M:\mathbb{Q}] = 3$, 则 $M \cap \mathbb{Q}\left(\sqrt[3]{2}\right)$ 为 \mathbb{Q} 或 M.
- ▶ 若是 \mathbb{Q} , 则 $x^3 2$ 在 M 上可约,等价于有根,这与 $M \subset F$ 矛盾.
- ▶ 若是 M, 则 $M = \mathbb{Q}(\sqrt[3]{2})$, 不是正规扩张.
- ▶ 若 $[M: \mathbb{Q}] = 2$,则 $\sqrt{-1} \in M$,否则 $[M(\sqrt{-1}): \mathbb{Q}] = 4$ 与 $M \subset F$ 矛盾.
- ▶ 此时 $M = \mathbb{Q}(\sqrt{-1})$, 是正规扩张.

小测第3题

设 $\alpha = \sqrt{2 + \sqrt{2}}$, $\beta = \sqrt{2 - \sqrt{2}}$, m(x) 为 α 在 \mathbb{Q} 上的极小多项式,证明 $\mathbb{Q}(\alpha)$ 为 m(x) 在 \mathbb{Q} 上的分裂域,求 m(x) 在 \mathbb{Q} 上的 Galois 群.

单扩张的 Galois 群的计算

思维拓展

试用四次方程 Galois 群的判定方法证明该结论.

- ► α 的零化多项式为 x⁴ 4x² + 2 在 ℚ 上不可约, 因此 m(x) = x⁴ 4x² + 2.
- ▶ 可验证 $\pm \alpha$ 和 $\pm \beta$ 是 m(x) 的全部不同根.
- ▶ $\beta = \frac{\alpha^2 2}{\alpha} \in \mathbb{Q}(\alpha)$, 因此 $\mathbb{Q}(\alpha)$ 包含了 m(x) 全部根,为 m(x) 的分裂域.
- Gal(ℚ(α)/ℚ) 中的元素由 α 的像完全决定,
 因此是一个四阶群.
- ▶ $\sigma(\alpha) = \beta$, 则 $\sigma^2(\alpha) = -\alpha$, 因此 σ 为四阶元, 这意味着 $Gal(\mathbb{Q}(\alpha)/\mathbb{Q})$ 是四阶循环群.

第八章习题

第八章第 37 题

设 E/F 为素数 p 次循环扩张,L/F 为任一域扩 张. 证明:复合域 EL 或者是 L 上的 p 次循环 扩张或者 EL = L.

正规扩张的性质

思维拓展

举例说明题中循环扩张的条件是必要的.

- ▶ 素数次扩张总是可以令 $E = F(\alpha)$, α 在 F上的极小多项式为 m(x).
- ▶ 若 $\alpha \in L$. 则 EL = L.
- ▶ 若 $\alpha \notin L$, 则令 h(x) 为 α 在 L 上的极小多 项式, 有 $h(x) \mid m(x)$.
- ▶ m(x) 在 E 中完全分解, 因此 h(x) 的系数 属于 E.
- ▶ 若 $h(x) \neq m(x)$, 则存在 h(x) 的系数 $a \in (E - F) \cap L$, 因此 $E = F(a) \subset L$ 矛盾.

Galois 群计算实例

补充题

证明: $f(x) = x^5 - 20x + 16$ 在 \mathbb{O} 上的群为 S_5 .

S_n 的基本性质

- ▶ 注意到 $x^5 20x + 16$ 有三个实根和一对复根.
- ▶ $\sigma: a+bi \rightarrow a-bi$ 是 $Gal(\mathbb{Q}(f)/\mathbb{Q})$ 中的二阶元素,可以看作 S_5 中的元素 (12).
- ▶ f(x-1) 在 ② 上不可约,因此 f(x) 不可约推出 $Gal(\mathbb{Q}(f)/\mathbb{Q})$ 有 5 阶子群,即 5 阶元.
- ▶ 5 阶元表明 $Gal(\mathbb{Q}(f)/\mathbb{Q})$ 有元素可以看作大群 S_5 中的 (12345).
- ▶ 因此 $S_5 = <(12), (12345) > \subset Gal(\mathbb{Q}(f)/\mathbb{Q}) \subset S_5$ 推得命题成立.

第八章第 39 题

证明: $f(x) = x^5 + 20x + 16$ 在 \mathbb{Q} 上的群为 A_5

教材 258 页定理 5: G_f 只含有偶置换的充要条件是 D(f) 在 $\mathbb Q$ 内可开方.

证明第一步: $G_f \subset A_5$

- ▶ 设 x_i 为 $F(x) = x^5 + ax + b$ 的根, $D(F) = \prod_{1 < i < j < 5} (x_i x_j)^2$ 是关于 x_i 的 20 次齐次对称多项式.
- ightharpoonup 令 $\sigma_k = \sum_{1 \le i_1 \le \cdots \le i_k \le 5} x_{i_1} \cdots x_{i_k}$ 为初等对称多项式. 则 $\sigma_1 = \sigma_2 = \sigma_3 = 0$, $\sigma_4 = a$, $\sigma_5 = -b$.
- ▶ D(F) 可以表为初等对称多项式的多元函数,因此写作 $D(f) = k_1 \sigma_1^5 + k_2 \sigma_2^4$,其中 k_1 和 k_2 的值 与 a 和 b 的选择无关。
- ▶ 取 a = -1 和 b = 0. 有 $D(F) = -256 = -k_1$. 因此 $k_1 = 4^4$.
- ▶ 取 a = -5 和 b = 4, 则 F 有重根,有 $D(F) = 0 = -k_1 \cdot 5^5 + k_2 4^4$,因此 $k_2 = 5^5$.
- ▶ $D(f) = 4^4 \cdot 20^5 + 5^5 \cdot 16^4 = 4^85^6$ 可在 \mathbb{Q} 中开方,推出 $G_f \subset A_5$.

第八章第 39 题

证明: $f(x) = x^5 + 20x + 16$ 在 \mathbb{Q} 上的群为 A_5

多项式模 p 法 (294 页定理 20): 设 p 是与 D(f) 互素的素数,则 f(x) 在 \mathbb{F}_p 上的群是 G_f 的子群.

证明第二步: $|G_f| \ge 15$

- ▶ 前一问结论为 $D(f) = 2^{16} \cdot 5^6$.
- ▶ 现令 p=3,验证 f(x) 在 \mathbb{F}_p 上不可约,因此 f(x) 在 \mathbb{F}_3 上的群为 5 阶循环群.
- ▶ 因此 G_f 中至少有一个 3 阶循环子群与 5 阶循环子群的半直积,元素个数大于等于 15.

第八章第 39 题

证明: $f(x) = x^5 + 20x + 16$ 在 \mathbb{Q} 上的群为 A_5

群在集合上的作用:

证明第三步: $|G_f| = A_5$

- ▶ 前两问的结论为: $D(f) = 2^{16} \cdot 5^6$ 和 $[A_5 : G_f] \leq 4$.
- ▶ $Q_1, \dots, Q_s (s < 4, q_1 = 1)$ 为 A_5 关于 G_f 的陪集分解.
- ▶ 定义 A_5 在 $\{q_1, \dots, q_s\}$ 上的作用, $qq_i = q_i \iff qq_iG_f = q_iG_f$,有同态 $\psi: A_5 \to S_4$.
- ▶ $\ker(\psi)$ 为 A_5 的正规子群,因此 $\ker(\psi)$ 要么是 $\{1\}$ 要么是 $A_{5.}$
- ▶ 前者与两群的阶数相矛盾;后者表明 $G_f = A_5$,因此结论成立.

总结

任给正整数 n 和 m < n. A_n 中不存在指数为 m 的子群.

补充题

证明 $f(x) = x^5 - x - 1$ 在 \mathbb{Q} 上的 Galois 群是 S_5 .

多项式模 p 法: 设 p 是与 D(f) 互素的素数,则 f(x) 在 \mathbb{F}_p 上的群是 G_f 的子群.

- ▶ 计算多项式的判别式 $D(f) = 5^5 4^4 = 2869$, 因此模 p 法可以取 p = 2, 3, 5.
- ▶ p=2, 验证 $f(x) \equiv (x^2+x+1)(x^3+x^2+1) \mod 2$, 因此 G_f 有一个 6 阶循环子群.
- ▶ p=3, 验证 f(x) 在 $\mathbb{F}_3[x]$ 中不可约, 因此 G_f 有一个 5 阶循环子群.
- ▶ 注意到 S_5 中的元素可以写作不相交的轮换乘积,6 阶元总是形如 (12)(345).
- ▶ 因此 $[(12)(345)]^3 = (12) \in G_f$,且 $(12345) \in G_f$,推出 $G_f = S_5$.

补充题

任给素数 p > 3,构造一个在 \mathbb{Q} 上 Galois 群为 S_n 的 p 次不可约多项式 $f(x) \in \mathbb{Z}[x]$.

多项式模 p 法: 设 p 是与 D(f) 互素的素数,则 f(x) 在 \mathbb{F}_p 上的群是 G_f 的子群.

证明

- ▶ 令 $f_1(x)$ 为 $\mathbb{F}_2[x]$ 中的 p 次不可约多项式.
- ▶ 令 $f_2(x)$ 是 $\mathbb{F}_p[x]$ 中次数为 2 的不可约多项式.
- ▶ \diamondsuit $f(x) = pf_2(x) + 2(x-1)\cdots(x-(p-2))f_2(x)$, p f(x) f(
- ▶ f(x) 在 \mathbb{Q} 上的群中有一个 p 阶元和一个 p 阶元和一个 p 阶元和一个 p 阶元,因此 $G_f = S_p$.

思维拓展

任给正整数 n,构造在 $\mathbb Q$ 上的群为 S_n 的 n 次不可约多项式 $f(x) \in \mathbb Z[x]$ (见教材 295 页定理 21).

本学期抽象代数习题课到此结束

感谢各位同学对我助教工作的积极配合

祝各位同学期末取得满意成绩

该系列课件适合做完习题的同学查阅核对,对将要学习抽象代数的同学无益,请勿传至学弟学妹.