Sistemas de Comunicación

- Comunicaciones Digitales -
 - Definciones -

Ph.D. Cristian Guarnizo Lemus

cristianguarnizo@itm.edu.co

Contenido – Comunicaciones Digitales

- 1. Introducción
- 2. Cuantificación ADC.
- 3. ADC Modulación.
- 4. Codificación de línea.
- 5. Modulación digital.

Sentido Humano Por qué ir hacia lo Digital?

- El incremento de la demanda por servicios de comunicaciones, pero el espectro es limitado.
 - Se necesita de formas mas eficientes de transmitir datos a través de RF.
- Los esquemas de modulación digital tiene una mayor capacidad para enviar grandes cantidades de información que los esquemas análogos.

Sentido Humano Por qué ir hacia lo Digital?

- La comunicación digital es mas robusta que la analógica.
- Es mas fácil multiplexar señales digitales que analógicas.
- La señales digitales se pueden codificar y encriptar.

Sentido Humano Inmunidad al ruido

(a) Noise on a binary signal. (b) Clean binary signal after regeneration.

Innovación Tecnológica con

Sentido Humano Comparación entre sistemas

Sistema de Comunicación Análoga:

Sistema de Comunicación Digital:

Sentido Humano Transmisión Digital

1. Mod. Pulso

PWM

PPM

PAM

- 2. Mod. Cod. Pulso
- 3. Mod. Delta

Cod. de línea

- 1. RZ
- 2. NRZ
- 3. AMI
- 4. Etc.

- 1. ASK
- 2. FSK
- 3. PSK
- 4. QAM

Sentido Humano 2. Cuantificación - ADC

- En muchos procesos de comunicación, el primer paso es convertir la información de análoga a su forma digital.
- La señales continuas son cambiadas en series de números binarios.
- En el receptor, los datos digitales deben ser re-convertidos a la forma análoga antes de ser utilizada por el usuario.

Sentido Humano 2. Cuantificación - ADC

- Traducir una señal análoga en una señal digital se realiza por el dispositivo conocido como conversor análogo a digital o ADC (Analog-to-Digital Conversor).
- El conversor Digital a Análogo o DAC (Digital-to-Analog Conversor), decodificador, realiza la operación inversa del ADC.

Innovación Tecnológica con

Sentido Humano 2. Cuantificación - ADC

Numero de bits

Numero de niveles

Numero de incrementos

Sentido Humano 2. Cuantificación - ADC

Ejemplo: el rango de voltajes de un conversor A/D que utiliza 14-bit es de -6 a +6 V. Determinar a) El numero discreto de niveles (códigos binarios), b) el numero de incrementos de voltaje, y c) la resolución de la digitalización expresada en su incremento de voltaje mas pequeño.

a)
$$2^N = 2^{14} = 16384$$

b)
$$2^N - 1 = 16384 - 1 = 16383$$

c)
$$\frac{6 - (-6)}{16383} = \frac{12}{16383} = 0.7325 \text{mV}$$

Sentido Humano 2. ADC - Especificaciones

- Resolución: es la cantidad mas pequeña de voltaje reconocida por el conversor.
- Rango dinámico: una medida del rango de voltajes de entrada que pueden ser convertidos.
- Relación Señal-a-Ruido (S/N): La relación del voltaje de entrada con respecto al ruido total en el sistema.

Sentido Humano 2. ADC — Codificación M-aria

- Bi-nario representa un digito que tiene 2 niveles. Ej: 2 bits (1 y 0).
- M-ario representa un digito que tiene M niveles.

$$N = \log_2(M) \qquad \qquad 2^N = M$$

N = numero de bits necesarios

M = numero de niveles, o combinaciones posibles con N bits

Para binario $M=2 \rightarrow N=1$

Sentido Humano 2. ADC — Baudio

- Baudio es la medida es la razón de cambio de una señal sobre el medio de transmisión después que la codificación y la modulación han ocurrido.
- Un modo de medir la calidad de la señal en el transmisor, justo antes de ser transmitida.
- También conocido como símbolos por segundo

baudio =
$$f_s = \frac{1}{t_s}$$

 f_s = rata de símbolos (símbolos por segundo)

 t_s = intervalo de tiempo de un símbolo

Sentido Humano 2. ADC — Bit-rate - Capacida

Bit es el cambio del símbolo a la entrada del modulador.

$$f_b = f_s N = 2BN = 2B \log_2(M)$$

 f_b = bit-rate: bit por segundo (bps)

 f_s = baudio (símbolos por segundo)

B =ancho de banda mínimo de Nyquist (hertz)

M = numero de señales discretas o niveles de voltaje

N = numero de bits codificados en cada símbolo

Sentido Humano 2. ADC — Ancho de Banda

Para un sistema M-ario, sabemos que

$$f_b = f_s N = 2BN = 2B \log_2(M)$$

Entonces el ancho de banda es

$$B = \frac{f_b}{2\log_2(M)} = \frac{f_b}{2N}$$

Sentido Humano 2. ADC — Capacidad de Información

- Representa el numero de símbolos independientes que pueden ser transportados a través del sistema en un unidad de tiempo dada.
- Utilizando el limite de Shannon para la capacidad de información, se define como

$$I = B\log_2\left(1 + \frac{S}{N}\right) = 3.32B\log_{10}\left(1 + \frac{S}{N}\right)$$

$$\log_a(N) = \frac{\log_b(N)}{\log_b(a)}, \qquad a^P = N, \qquad p = \log_a(N)$$

Sentido Humano 2. ADC — Capacidad de Información

Ejemplo: Un canal de comunicación estándar de voz tiene una potencia SNR de 1000 (30dB) y una señal con ancho de banda de 2.7kHz. Determinar la capacidad de información.

$$I = 3.32B\log_{10}\left(1 + \frac{S}{N}\right) = (2.7k\text{Hz})(3.32)\log_{10}(1 + 1000)$$

$$I = 26.9k$$
bps

Sentido Humano 2. ADC – Capacidad de Información

Ejercicio: Un canal de comunicación estándar de voz tiene una potencia SNR de 20dB y una señal con ancho de banda de 3kHz. Determinar la capacidad de información.

$$I = B\log_2\left(1 + \frac{S}{N}\right) = 3\text{kHz} \cdot 3.32 \cdot \log_{10}(1 + 100) = 19.96k\text{bps}$$

$$\frac{S}{N} = 20 \text{dB} \Rightarrow 10^{20/10} = 100$$

Sentido Humano 3. ADC Modulación Sentido Humano 3. ADC Modulación

Sentido Humano 3. ADC Modulación

PAM (Pulse Amplitude Modulation): la amplitud del pulso denota la información análoga. Es una serie de pulsos en donde cada pulso representa la amplitud de la señal de información en un instante de tiempo dado.

Sentido Humano 3. ADC Modulación de Pulso

PWM (Pulse Width Modulation): el ancho del pulso varia de manera proporcional a la amplitud de la señal análoga en el instante de muestreo.

PPM (Pulse Position Modulation): es una serie de pulsos donde el tiempo de cada pulso representa la amplitud de la señal análoga en un instante de tiempo dado.

Innovación Tecnológica con

Sentido Humano 4. Codificación de línea

RZ: Return to Zero.

NRZ: No RZ.

Innovación Tecnológica con **Sentido Humano**

5. Modulación Digital

Sentido Humano 5. Modulación Digital de Amplitud

La técnica de modulación más sencilla es la modulación digital de amplitud., que corresponde a AM-DSB.

$$v_{\text{ask}}(t) = \left[1 + v_m(t)\right] \left[\frac{A}{2}\cos(\omega_c t)\right]$$

 $v_{ask}(t)$ = voltaje de la onda de amplitud modulada $\frac{A}{2}$ = amplitud de la portadora no modulada (volts) $v_m(t)$ = señal binaria moduladora (volts) $\omega_c t$ = frecuencia de la portadora en radianes (rad por segundo)

Viailada Mineducación

Sentido Humano 5. ASK — On-Off Keying

 $v_m(t)$ es un código de línea NRZ. Entonces

Cuando $v_m(t) = 1$

$$v_{\text{ask}}(t) = [1+1] \left[\frac{A}{2} \cos(\omega_c t) \right] = A \cos(\omega_c t)$$

Cuando $v_m(t) = -1$

$$v_{\text{ask}}(t) = [1-1] \left[\frac{A}{2} \cos(\omega_c t) \right] = 0$$

Innovación Tecnológica con

Sentido Humano 5. Modulación Digital de Amplitud

Aplicaciones:

ASK se usa en fibra óptica, RFID, NFC.

OOK por su consumo menor, se emplea en controles remotos,

y también en fibra óptica.

Sentido Humano 5. Modulación Dig. De frecuencia

Similar a su homologo análogo, se define la modulación digital en frecuencia, FSK (Frequency Shift Keying) como

$$v_{fsk}(t) = V_c \cos(2\pi (f_c + v_m(t)\Delta f)t)$$

 $v_{\rm fsk}(t)$ = voltaje de la onda modulada en frecuencia Δf = desviación de frecuencia (hertz) $v_m(t)$ = señal binaria moduladora (volts)

Innovación Tecnológica con

Sentido Humano 5. Modulación Dig. De frecuencia

Innovación Tecnológica con

Sentido Humano 5. Modulación Dig. De frecuencia

Sentido Humano 5. Modulación Dig. De frecuencia

En FSK, el índice de modulación es

$$\Delta f = \frac{|f_m - f_s|}{2}$$

 Δf = desviación máxima de frecuencia (hertz)

 f_m = frecuencia de marca (hertz)

 f_s = frecuencia de espacio (hertz)

Bibliografía

- -FRENZEL, Louis. (2016) Principles of Electronic Communication Systems. 4th Edition.
- –WAYNE, Tomasí. (2003) Sistemas de Comunicaciones Electrónicas. 4ª ed. Prentice Hall.

