TP Lois de comportement

- 1) L'objectif de ce TP est d'ajuster les données expérimentales σ_1 =f(λ) par différents modèles hyperélastiques, afin de les comparer. Pour cela nous allons d'abord faire des « fits » avec des lois simples :
 - 1.1. Créer un vecteur de données y=2*x +5, x entre 0 et 10.
- 1.2. Méthode 1 « graphique » : retrouver les coefficients directement sur les outils de la figure matlab
 - 1.3. Méthode 2 : retrouver les coefficients avec la fonction polyfit
 - 1.4. Méthode 3 : retrouver les coefficients avec la fonction fminsearch
- 1.5. Refaire tout ce processus pour un même vecteur avec ajout de bruit avec différents niveaux de signal à bruit.
- 2) Le tableau suivant rapporte les résultats d'expériences d'extension uniaxiale d'un échantillon cylindrique de tissu hépatique. Les données sont : La force mesurée sur la balance, rapportée à zéro à l'état non-déformé, et le déplacement imposé du plateau supérieur. On donne :
- -Epaisseur initiale h₀ = 7mm
- -Diamètre de l'échantillon = 10mm

Rapporter le tableau suivant en termes de contrainte ingénieur t_1 et contrainte vraie σ_1 , et λ . Tracer $t_1=f(\lambda)$ et $\sigma_1=f(\lambda)$

Déplacement (mm)	0	0.35	0.7	1.05	1.4	1.75	2.1	2.45	2.8
Force (mN)	0	38	85	126	180	252	349	503	895

- 3) Fitter les données expérimentales σ_1 =f(λ) pour les modèles Néo-Hookéen, Mooney-Rivlin, Ogden $2^{\grave{e}me}$ ordre (4 paramètres) et Langevin $2^{\grave{e}me}$ ordre. Pour le modèle d'Ogden : refaire le fit en utilisant un jeu de données de départ complètement différent.
- 4) Proposer une métrique pour comparer la qualité des différents modèles.

Annexe : Fonctions énergie de déformation

$$W = C_1(I_B - 3) + C_2(II_B - 3)$$
 (Mooney-Rivlin)

$$W = \sum_{m} \frac{\mu_{m}}{\alpha_{m}} \left(\lambda_{1}^{\alpha_{m}} + \lambda_{2}^{\alpha_{m}} + \lambda_{3}^{\alpha_{m}} - 3 \right)$$
 (Ogden)

$$W = \frac{NkT}{2} (\lambda_1^2 + \lambda_2^2 + \lambda_3^2 - 3) + \frac{kN^2T}{20n} ((\lambda_1^2 + \lambda_2^2 + \lambda_3^2)^2 - 9) \text{ (Langevin 2}^{\text{ème}} \text{ ordre)}$$