Sprawozdanie z drugiego laboratorium WSI

Michał Goławski, 325158

1. Cel eksperymentów

Celem eksperymentów było zbadanie wpływu parametrów algorytmu ewolucyjnego na jakość uzyskiwanych przez niego wyników. Zaimplementowany algorytm ewolucyjny służy do rozwiązywania problemu TSP- znajdowania najkrótszej drogi prowadzącej przez wszystkie punkty podane jako argument. W eksperymentach główną uwagę skupiono na poniższe parametry:

- rozmiar populacji
- szansa na mutację
- szansa na krzyżowanie

2. Wyniki eksperymentów

Dla wybranej listy 20 początkowych punktów zbadano średnią różnicę pomiędzy idealnym rozwiązaniem, a rozwiązaniem uzyskanym przez algorytm ewolucyjny, dla próby wynoszącej 50. Powyższy proces przeprowadzono dla różnych zestawów parametrów algorytmu ewolucyjnego. Najkrótsza droga w idealnym rozwiązaniu wynosi 1572.67. Tak prezentują się wyniki:

2.1. Eksperymenty dla wyłączonego krzyżowania

Dla poniższych parametrów:

populacja: 100siła mutacji: 1

szansa na krzyżowanie: 0

• iteracje: 800

w zależności od szansy na mutację:

szansa na mutację	średnie odchylenie od idealnego rozwiązania
0.1	380.52
0.3	230.33
0.5	167.64
0.8	183.56
1	226.62

Dla poniższych parametrów:

populacja: 20siła mutacji: 1

szansa na krzyżowanie: 0

• iteracje: 800

w zależności od szansy na mutację:

szansa na mutację	średnie odchylenie od idealnego rozwiązania	
0.1	390.50	
0.3	352.06	
0.5	235.81	
0.8	258.77	
1	245.57	

Jak można zauważyć na podstawie powyższych dwóch tabel, algorytm dla parametrów wymienionych wyżej działa najlepiej, gdy szansa na mutację wynosi 0.5. Ponadto dla populacji o rozmiarze 100 algorytm działa lepiej niż dla populacji wynoszącej 20.

2.2. Eksperymenty dla włączonego krzyżowania

Dla poniższych parametrów:

populacja: 100siła mutacji: 1iteracje: 800

w zależności od szansy na mutację i szansy na krzyżowanie:

szansa na mutację	szansa na krzyżowanie	średnie odchylenie od idealnego rozwiązania
0.3	0.1	181.87
0.5	0.3	134.29
0.6	0.6	89.6
0.6	0.8	88.37

Jak widać na powyższej tabeli, algorytm działał lepiej dla większych współczynników odpowiedzialnych za szansę na mutację i krzyżowanie. Ponadto uwzględnienie krzyżowania polepszyło działanie algorytmu w stosunku do wcześniejszych eksperymentów, które nie uwzględniały krzyżowania.

3. Zmiana najlepszego rozwiązania znalezionego przez algorytm na przestrzeni iteracji

Jak widać algorytm dokonuje progresu w znajdowaniu najkrótszej ścieżki w sposób skokowy, zaś po 300 iteracji nie osiąga już żadnego progresu. Tak prezentuje się znaleziona przez algorytm ścieżka.

