I. Linear Maps

1. Linear Maps on Vector Space

Definition: Linear Map, Linear Operator

Vector space V 에서 vector space W 에 대해 $T:V\to W$ 가 다음 성질을 만족할 때 T 를 **linear map** from V to W 라 한다. 같은 vector space에서의 linear map을 **linear operator** 가 한다.

- (a) For all $u,\,v\in V$, T(u+v)=Tu+Tv ;
- (b) For all $v \in V$ and $c \in \mathbb{F}$, T(cv) = cTv.

V 에서 W 로의 모든 linear map 의 집합을 $\mathcal{L}(V,W)$ 라 하며 $\mathcal{L}(V,V)$ 는 $\mathcal{L}(V)$ 로 쓸 수 있다.

Theorem 1.1

 v_1,\ldots,v_n 이 V의 basis 이고 w_1,\ldots,w_n 이 W의 elements 일 때 $Tv_j=w_j$ for all $j=1,\ldots,m$ 인 $T\in\mathcal{L}(V,w)$ 가 존재한다.

(Proof) (1) Define $T\in \mathcal{L}(V,\,W)$ as $T(c_1v_1+\cdots+c_nv_n)=c_1w_1+\cdots+c_nw_n$ for arbitrary $c_i\in\mathbb{F}.\ v_1,\ldots,\,v_n$ 이 V 의 basis 이므로 $T:V\to W$ 를 잘 정의한다. 각각의 c_j 를 1로 놓으면 우리가 원하는 T 와 같다.

(2) For any $v,\,v'\in V$, $c\in\mathbb{F}$ 에 대해 T(v+cv')=Tv+cTv' 임은 쉽게 보일 수 있다. 따라서 주어진 T 는 linear map from V to W 이다. \square

Definition: Addition and scalar multiplication on linear operator

Let $T, S \in \mathcal{L}(V, W)$ and V is defined on scalar field \mathbb{F} . For $v \in V$ and $c \in \mathbb{F}$, S + T is defined by (S + T)(v) = Sv + Tv and (cT) is defined (cT)(v) = c(Tv).

Theorem 1.2

 $\mathcal{L}(V, W)$ is a vector space.

Proof is trivial

Definition: Product of Linear map

 $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ 일 때 $ST \in \mathcal{L}(U, W)$ 는 ST(u) = S(T(u)) 로 정의된다.

Properties of Product of linear maps

(1) Identity map $I \in \mathcal{L}(V) \stackrel{\vdash}{\vdash} Iv = v$ for all $v \in V$.

(2) $T, T_1, T_2 \in \mathcal{L}(U, V)$ ans $S, S_1, S_2 \in \mathcal{L}(V, W)$ 일 때 $(S_1 + S_2)T = S_1T + S_2T$, $S(T_1, T_2) = ST_1 + ST_2$ 로 정의된다.

(3) $T_1 \in \mathcal{L}(U, V)$, $T_2 \in \mathcal{L}(V, W)$, $T_3 \in \mathcal{L}(W, Z)$ 일 때 $T_3(T_2T_1) = (T_3T_2)T_1$ 이다.

Theorem 1.3

For $T \in \mathcal{L}(V, W)$ 에 대해 T0 = 0 .

(Proof)
$$T(0) = T(0+0) = T0 + T0$$
.

Exercise (Chap. 3.A)

4. $T \in \mathcal{L}(V, W)$ 이고 $v_1, \ldots, v_m \in V$ 라 하자. $v_1, \ldots, v_m \in V$ 이 Tv_1, \ldots, Tv_m 을 linearly independent 하게 한다면 v_1, \ldots, v_m 도 linearly independent 함을 보이시오.

Let $a_1v_1+\cdots+a_mv_m=0$. $0=T(a_1v_1+\cdots+a_mv_m)=a_1Tv_1+\cdots+a_mTv_m$. Tv_1,\ldots,Tv_m 이 linearly independent 하므로 $a_1=\cdots=a_m=0$. 따라서 v_1,\ldots,v_m 은 linearly independent.

10. U 가 V 의 proper subspace 이고 $S\in\mathcal{L}(U,W)$ 이며 $S\neq 0$ 이라 하자. $T:V\to W$ 를 아래와 같이 정의하면 T 가 linear map on V 가 아님을 보이시오.

$$Tv = \left\{ egin{aligned} Sv & & ext{if } v \in U\,, \ 0 & & ext{if } v \in V ext{ and } v
otin U\,. \end{aligned}
ight.$$

Let $u \in U$ where $Tu \neq 0$, and $w \in V - U$. Then $u + w \in V - U$ and T(u + w) = 0. If T is a linear map, $T(u + w) = Tu \neq 0$. Contradiction.

11. U 가 V 의 proper subspace 이고 $S \in \mathcal{L}(U, W)$ 라 하자. 이 때 $S \equiv V$ 에서 작용하도록 확장시킨 linear map $T \in \mathcal{L}(V, W)$ 가 존재함을 보이시오. 즉 Tu = Su for all $u \in U$ 이어야 한다.

 $v\in V$ 는 어떤 $u\in U$, $w\not\in U$ 에 대해 v=u+w 이다. T(v)=S(u) 로 정의하면 Tu=Su 이며 T 는 linear map 이다.

12. V 가 finite dimensional vector space 이고 W 가 infinite dimensional vector space 일 때 $\mathcal{L}(V,W)$ 는 infinite dimensional 임을 보이시오.

(1) Let v_1, \ldots, v_n be a basis of V. W 에서 임의의 n 개의 linearly independent vector w_1, \ldots, w_n 을 선택하자. $Tv_i = w_i$ 가 되도록 하는 $T: V \to W$ 는 linear map 이다. (Theorem 1.1)

- (2) $w_1', \ldots, w_n' \notin \operatorname{span}(w_1, \ldots, w_n)$ 이 되는 independents vectors 를 선택 할 수 있다. $T'v_i = w_i'$ 가 되도록 하는 $T: V \to W$ 역시 independent map 이다.
- (3) T 와 T' 이 independent 함을 보이자. $0=c_1T+c_2T'$ 이라 하자. $c_1Tv_1+c_2Tv_1=c_1w_1+c_2w_1'=0$ 이며 w_1 과 w_2 가 linearly independent 하므로 $c_1=c_2=0$
- (4) W 가 infinite dimensional 이므로 이런 $T,\,T'$ 같은 linear map을 무한히 행성할 수 있으며 이들은 서로 linearly independent 하다. 따라서 $\mathcal{L}(V,\,W)$ 는 infinite dimensional 이다.
- **13.** V, W 가 vector space 라 하자. v_1, \ldots, v_m 이 linearly dependent in V 이고 $W \neq \{0\}$ 이라 하자. Prove that there exist $w_1, \ldots, w_m \in W$ such that no $T \in \mathcal{L}(V, W)$ satisfies $Tv_k = w_k$ for each $k = 1, \ldots, m$.
- (1) v_1, \ldots, v_m 이 linearly dependent. $c_1v_1 + \cdots + c_mv_m = 0$ for some nonzero c_i . $c_1 \neq 0$ 으로 놓아도 no loss of generality.
- (2) Let $w_1 \neq 0$ and $w_j = 0$ for all j > 1. $0 = T(c_1v_1 + \cdots + c_mv_m) = c_1w_1 \neq 0$. Contradiction!.
- **14.** V 가 finite dimensional with $\dim V \geq 2$ 일 때, 어떤 $S, T \in \mathcal{L}(V)$ 에 대해 $ST \neq TS$ 임을 보이 시오.

Let $v_1, \, v_2$ be independent vectors in V. Define $Sv_1=v_2, Sv_2=v_1, Tv_1=v_1+v_2 \, Tv_2=v_2$. Then $ST(v_1+v_2)=S(v_1+2v_2)=2v_1+v_2$ and $TS(v_1+v_2)=T(v_1+v_2)=v_1+2v_2$.

Definition: Kernel and Range of Linear map

For $T \in \mathcal{L}(V, W)$, **kernel** of T, denoted $\ker T$ is defined as $\ker T = \{v \in V : Tv = 0\}$. **Range** of T, denoted range T is defined as $\operatorname{range} T = \{Tv : v \in V\}$.

Theorem 1.4

For $T \in \mathcal{L}(V, W)$, $\ker T$ is a subspace of V and $\operatorname{range} T$ is a subspace of W.

Proof is trivial

Theorem 1.5

For $T \in \mathcal{L}(V, W)$, T is injective iff $\ker T = \{0\}$.

Proof is trivial

Theorem 1.6 (Fundamental Theorem of Linear Maps)

For finite dimensional vector space V and $T \in \mathcal{L}(V, W)$, $\dim V = \dim(\ker T) + \dim(\operatorname{range} T)$.

(Proof) (1) $\ker T$ 가 V 의 subspace 이므로 finite dimensional 이며 u_1, \ldots, u_m 을 $\ker T$ 의 basis 라 하자. 즉 $m = \dim(\ker T)$. V 의 나머지 basis 를 w_1, \ldots, w_n 이라 하자. 즉 $\dim V = n + m$ 이다.

(2) $v=a_1u_1+\cdots+a_mu_m+b_1w_1+\cdots+b_nw_n$. 이며 $T(v)=b_1Tw_1+\cdots b_nTw_n$ 이다. Tw_1,\ldots,Tw_n 은 linearly independent 하며(it can be easily shown) range T를 span 하므로 $\dim(\operatorname{range} T)=n$ 이다. \square

Corollary 1.7

 $\dim V > \dim W$ 이면 $T \in \mathcal{L}(V, W)$ 는 injective 할 수 없다. $\dim V < \dim W$ 이면 $T \in \mathcal{L}(V, W)$ 는 surjective 할 수 없다.

Exercises (Chap. 3.B)

7. $V,\ W$ 가 finite dimensional vector space 이고 $2 \leq \dim V \leq \dim W$ 라 하자. 이 때 $\{T \in \mathcal{L}(V,\ W) : T \text{ is not injective}\} \succeq \mathcal{L}(V,\ W)$ 의 subspace 가 되지 않음을 보이시오.

Let $V=\mathbb{R}^2$ and $W=\mathbb{R}^3$ and $T,\,S\in\mathcal{L}(V,\,W)$ defined as $T(x,\,y)=(x,\,0,\,0)$ and $S(x,\,y)=(0,\,y,\,0)$. Then it can be easily shown that T and S are not injective. However, $(T+S)(x,\,y)=(x,\,y,\,0)$ is injective.

8. V,W 가 finite dimensional vector space 이고 $2 \leq \dim W \leq \dim V$ 라 하자. 이 때 $\{T \in \mathcal{L}(V,W): T \text{ is not surjective}\}$ 는. \$\mathcal{L}(V,\,W)의 subspace가 되지 않음을 보이시오.

Let $V=\mathbb{R}^3$ and $W=\mathbb{R}^2$. Define $T,\,S\in\mathcal{L}(V,\,W)$ by $T(x,\,y,\,z)=(x,\,0)$ and $T(x,\,y,\,z)=(y,\,0)$. The it can be easily shown that T and S are not surjective. However $(T+S)(x,\,y,\,z)=(x,\,y)$ is surjective.

9. $T \in \mathcal{L}(V, W)$ 가 injective 이고 v_1, \ldots, v_n 이 linearly independent in V 일 때 Tv_1, \ldots, Tv_n 도 linearly independent 함을 보이시오.

Suppose $c_1Tv_1+\cdots+c_nTv_n=0$. Then $T(c_1v_1+\cdots+c_nv_n)=0$. T is injective 이므로 $c_1v_1+\cdots c_nv_n=0$ 이며 linearly independent 조건으로부터 $c_1=\cdots=c_n=0$. 따라서 Tv_1,\ldots,Tv_n 도 linearly independent.

12. V 가 finite dimensional vector space 이고 $T \in \mathcal{L}(V, W)$ 이다. 어떤 subspace of V 인 U 가 존 재하여 $U \cap \ker T = \{0\}$ 이며 range $T = \{Tu : u \in U\}$ 임을 보이시오.

- (1) Let v_1,\ldots,v_m be a basis of $\ker T$ and u_1,\ldots,u_n be a linearly independent elements of V which are not spanned by v_1,\ldots,v_m . Then $v_1,\ldots,v_m,\,u_1,\ldots,\,u_n$ are basis of V and $\dim V=n+m$.
- (2) Let $U = \operatorname{span}(u_1, \dots, u_n)$ then U is the subspace of V and $V = (\ker T) \oplus U$. It is obvious that range $T = \{Tu : u \in U\}$.

20. W 가 finite dimensional vector space 이고 $T \in \mathcal{L}(V, W)$ 일 때 다음을 보이시오: T is injective iff $\exists S \in \mathcal{L}(W, V)$ s.t. ST is identity map on V.

- (1) Suppose T is injective. T 가 injection 이므로 $\dim V = \dim(\operatorname{range} T) \leq \dim W$. 따라서 V is finite dimensional. Let v_i,\ldots,v_n be a basis of V and $w_i=Tv_i$. Then w_1,\ldots,w_n is linearly independent (Exercise 9). Define $Sw_i=v_i$ for and Sw=0 for all $w\notin\operatorname{span}(w_1,\ldots,w_n)$. Then ST is identity map on V.
- (3) Suppose ST is identity map on V. If T is not injection, ST cannot be identity on V. 따라서 T is injection.
- **21.** V가 finite dimensional 이고 $T \in \mathcal{L}(V, W)$ 라 할 때 다음을 보이시오 : T is surjective iff $\exists S \in \mathcal{L}(W, V)$ s.t. TS is the identity map on W.
- (1) Suppose T is surjective. $\dim W = \dim(\operatorname{range} T) = \dim V \dim(\ker T) \leq \dim V$ 이므로 W is finite dimensional. Let u_1,\ldots,u_n be basis of $\ker T$ and v_1,\ldots,v_m be linearly independent vectors which are not spanned by u_1,\ldots,u_n . Then $\dim V = m+n$ and $m=\dim W$. Let $V'=\operatorname{span}(v_1,\ldots,v_m)$ then V' is a subspace of V and there is $T|_{V'}\in \mathcal{L}(V',W)$ defined as $T_{V'}(u+v)=Tv$ for u=U and v=V'. Because any $v\in V$ is uniquely represented as v=u+v for $v\in U$ and $v\in V'$, $v\in U'$ is well defined. In addition, because $\dim W = \dim V'$, we can make isomorphism by defining $v\in U'$ is uniquely represented as v=u+v for $v\in U$ and $v\in V'$, $v\in U'$ is well defined. In addition, because $v\in U'$ is uniquely represented as v=u+v for $v\in U'$ and $v\in V'$, $v\in U'$ is uniquely represented as v=u+v for $v\in U'$ and $v\in V'$, $v\in U'$ is well defined. In addition, because $v\in U'$ is in $v\in U'$, we can make isomorphism by defining $v\in U'$. Then $v\in U'$ for all $v\in U'$ is identity map on $v\in U'$. Then $v\in U'$ is identity map on $v\in U'$.
- (b) Suppose $S \in \mathcal{L}(W, V)$ which makes TS be an identity map on W. If T is not surjective, TS cannot be identity. 따라서 $T \vdash$ surjection.
- **22.** U, V 가 finite dimensional vector space 이고 $S \in \mathcal{L}(V, W), T \in \mathcal{L}(U, V)$ 일 때 다음이 성립함을 보이시오.

$$\dim(\ker ST) \leq \dim(\ker S) + \dim(\ker T)$$
.

- (1) Let u_1,\ldots,u_m be a basis of $\ker T$ and μ_1,\ldots,μ_m be a linearly independents basis of $(\ker T)^\perp$. Then $\{u_i \text{ and } \mu_j\}$ become basis of $V.T\mu_1,\ldots,T\mu_m$ are linearly independent vectors of V. Then we can constitute with additional linearly independent vectors v_1,\ldots,v_k in V and basis of $\ker S$ with r vectors in $T\mu_1,\ldots,T\mu_m$ and s vectors in v_1,\ldots,v_k with $r\leq m$ and $s\leq k$.
- (2) $\dim(\ker ST)=m+r$ 이며 , $\dim(\ker S)=r+s$, $\dim(\ker T)=m$ 임은 쉽게 알 수 있다. 따라서 $\dim(\ker ST)=m+r\leq m+(r+s)=\dim(\ker S)+\dim(\ker T)$.
- **23.** U, V 가 finite dimensional vector space 이고 $S \in \mathcal{L}(V, W), T \in \mathcal{L}(V, U)$ 일 때 다음이 성립함을 보이시오.

$$\dim(\operatorname{range} ST) \leq \min\{\dim(\operatorname{range} S), \dim(\operatorname{range} T)\}\$$
.

(1) From the argument in exercise 22, $\dim(\operatorname{range} S) = k$ and $\dim(\operatorname{range} T) = (m-r) + (k-s)$. In addition, $\dim(\operatorname{range} ST) = \dim V - \dim(\ker ST) = m + k - (m+r) = k - r$

- (2) $\dim(\operatorname{range} ST) \dim(\operatorname{range} S) = -r \le 0$ and $\dim(\operatorname{range} ST) \dim(\operatorname{range} T) = s r \le 0$. 따라서 , $\dim(\operatorname{range} ST) \le \min\{\dim(\operatorname{range} S), \dim(\operatorname{range} T)\}$
- **24.** W 이 finite dimensional 이고 $T_1,\,T_2\in\mathcal{L}(V,\,W)$ 일 때 다음을 보이시오.: $\ker T_1\subset\ker T_2$ iff $\exists S\in\mathcal{L}(W)$ s.t. $T_2=ST_1$.
- (1) Suppose $\ker T_1 \subset \ker T_2$. Let u_1,\ldots,u_m be a basis of $\ker T_1$ and u'_1,\ldots,u'_k be additional linear independents vector to be a basis of $\ker T_2$. In addition let v_1,\ldots,v_n be additional linearly independent vectors to be a basis of V. $\{T_1u'_1,\ldots,T_1u'_k,T_1v_1,\ldots,T_1v_n\}$ are linearly independent in W and $\{T_2v_1,\ldots,T_2v_n\}$ are linearly independent also. Let's define $S(T_1v_1)=T_2v_1$ for all $i=1,\ldots,n$ and $S(T_1u'_j)=0$ for all $j=1,\ldots,k$. Then $ST_1v=T_2v$ for all $v\in V$.
- (2) Suppose $T_2=ST_1$. $v\in \ker T_1 \implies T_2v=ST_1v=0 \implies v\in \ker T_2$. Then $\ker T_1\subset \ker T_2$.
- **25.** V 이 finite dimensional 이고 $T_1,\,T_2\in\mathcal{L}(V,\,W)$ 일 때 다음을 보이시오.: $\mathrm{range}\,T_1\subset\mathrm{range}\,T_2$ iff $\exists S\in\mathcal{L}(V)$ s.t. $T_1=T_2S$.
- (1) Suppose range $T_1\subset \operatorname{range} T_2$. Let w_1,\ldots,w_m be a basis of range T_1 and w_{m+1},\ldots,w_{m+k} be a necessary elements of basis to span range T_2 . Then there is v_1,\ldots,v_m which satisfies $w_i=T_1v_i$ for all $i=1,\ldots,m$ and v_1',\ldots,v_{m+k}' which satisfies $w_j=T_2v_j'$ for all $j=1,\ldots,m+k$. Define $S:V\to V$ by $Sv_i=v_i'$ for all $i=1,\ldots,m$ and Sv=0 for all $v\not\in\operatorname{span}(v_1,\ldots,v_m)$. We can show that $S\in\mathcal{L}(V)$ and satisfies $T_1=T_2S$.
- (2) Suppose $T_1=T_2S$. $w\in \operatorname{range} T_1\implies w=T_1v$ for some $v\in V$ and $w=T_2Sv'$ for some $v'\in V\implies w\in\operatorname{range} T_2$. 따라서 $\operatorname{range} T_1\subset\operatorname{range} T_2$.
- **28.** $T \in \mathcal{L}(V, W)$ 이고 w_1, \ldots, w_m 이 range T 의 basis 라 하자. 이 때 어떤 $\varphi_1, \ldots, \varphi_m \in \mathcal{L}(V, \mathbb{F})$ 이 존재하여 모든 $v \in V$ 에 대해 $Tv = \varphi_1(v)w_1 + \cdots + \varphi_m(v)w_m$ 임을 보이시오.
- (1) Let v_1,\ldots,v_n is a basis of V. Define $\varphi_j:V o\mathbb{F}$ by $\varphi_j(cv_k)=c\delta_{jk}$. Let $u=\sum_i a_iv_i,\ v=\sum_i b_iv_i$. Then $\varphi_j(u+cv)=a_j+cb_j=\varphi_j(u)+c\varphi_j(v)$. 따라서 $\varphi_j\in\mathcal{L}(V,\mathbb{F})$.
- (2) For w_i , we can find v_i satisfying $w_i=Tv_i$. And we can find v_{m+1},\ldots,v_n linearly independent vectors in $\ker T$. Then any $v\in V$ can be represented as $v=\sum\limits_{i=1}^n c_iv_i$ and $c_i=\varphi_i(v)$
- (3) $T(v) = \sum\limits_{i}^{n} arphi_{i}(v) T v_{i} = \sum\limits_{i=1}^{m} arphi_{i}(v) w_{i}.$
- **29.** Suppose $\varphi \in \mathcal{L}(V, \mathbb{F})$ and $u \in V \ker \varphi$. 이 때 $V = \ker \varphi \oplus \{au : a \in \mathbb{F}\}$ 임을 보이시오.

Let $A=\{au:a\in\mathbb{F}\}$ and $v\in\ker\varphi\cap A$. Since $v\in A$, the v=cu for some $c\in\mathbb{F}$. Also $v\in\ker\varphi$, $u\in\ker\varphi$ if $c\neq 0$, which is contradict to $u\in V-\ker\varphi$. Therefore $\ker\varphi\cap A=\{0\}$. 따라서 $V=\ker\varphi\oplus A$.

30. Suppose $\varphi_1,\,\varphi_2\in\mathcal{L}(V,\,\mathbb{F})$. 만약 $\ker\varphi_1=\ker\varphi_2$ 이면 어떤 $c\in\mathbb{F}$ 에 대해 $\varphi_1=c\varphi_2$ 임을 보이 시오.

From 29, $V=\ker \varphi_1\oplus \{au_1:a\in \mathbb{F}\}=\ker \varphi_2\oplus \{bu_2:b\in \mathbb{F}\}$ for a $u_1\in V-\ker \varphi_1$ and a $u_2\in V-\ker \varphi_2$. It is obvious that $\{au_1\}=\{bu_2\}$ and they are 1-dimensional. 따라서 $\varphi_1=c\varphi_2$.

2. Isomorphic Vector Space and Matrices

Definition: Matrix

For positive integer n and m and scalar field \mathbb{F} , m by n (or $m \times n$) matrix A over \mathbb{F} 는 m개의 rows 와 n개의 column상에 \mathbb{F} 의 원소를 배치한 것을 말한다. 즉,

$$A = \left[egin{array}{cccc} A_{1,\,1} & \cdots & A_{1,\,n} \ dots & & dots \ A_{m,\,1} & \cdots & A_{m,\,n} \end{array}
ight]$$

형태이며 모든 $A_{i,\,j}\in\mathbb{F}$ 이다. 여기서 , i는 row index, j 는 column index 이다.

Definition: Matrix of Linear map

 $T\in\mathcal{L}(V,\,W)$ 이고 $v_1,\ldots,\,v_n$ 은 V 의 basis, $w_1,\ldots,\,w_m$ 을 W의 basis 라 하자. Matrix of T, denoted by $m\times n$ matrix $\mathcal{M}(T)$ 은 그 entries $A_{i,\,j}$ 가 다음과 같이 정의된 행렬을 말한다.

$$Tv_k = A_{1,k}w_1 + \cdots + A_{m,k}w_m.$$

Definition: Addition, Scalar Multiplication of Matrix

Let A, B be a $n \times m$ matrix over \mathbb{F} . Then A+B is defined as $n \times m$ matrix of which entries are $(A+B)_{i,\,j}=A_{i,\,j}+B_{i,\,j}$. For $c\in\mathbb{F}$, scalar multiplication cA is defined as $n \times m$ matrix of which entries are $(cA)_{i,\,j}=cA_{i,\,j}$.

Notation : $\mathbb{F}^{m,\,n}$

Field $\mathbb F$ 에 대해 $\mathbb F^{m,\,n}$ or $\mathbb F^{m\times n}$ 은 $\mathbb F$ 에서의 모든 $m\times n$ 행렬의 집합을 의미한다.

Theorem 2.1

 $\mathbb{F}^{m,n}$ 은 mn dimensional vector space over \mathbb{F} 이다.

Proof is trivial

Matrix Multiplication

Vector space U, V, W의 basis 가 각각 (u_1, \ldots, u_p) , (v_1, \ldots, v_n) , (w_1, \ldots, w_m) 이며 $T \in \mathcal{L}(U, V)$, and $S = \mathcal{L}(V, W)$ 라 하자. 이 때 주어진 basis 에 대한 T 와 S 의 행렬표현 $\mathcal{M}(T)$ 와 $\mathcal{M}(S)$ 를 생각 할 수 있다. 우리는 $ST \in \mathcal{L}(U, W)$ 임을 알고 있다. 그렇다면 $\mathcal{M}(ST)$ 는 어떻게 될까? $A = \mathcal{M}(S)$, $B = \mathcal{M}(T)$, $C = \mathcal{L}(ST)$ 라 하자. 그렇다면,

$$STu_i = \sum_{j=1}^n C_{i,\,j} v_j = S(\sum_{j=1}^n B_{k,\,j} u_j) = \sum_{k=1}^m A_{i,\,k}(\sum_{j=1}^n B_{k,\,j} u_j) = \sum_{j=1}^n \left[\sum_{k=1}^m A_{i,\,k} B_{k,\,j}\right] u_j \;.$$

따라서 $C_{i,\,j}=\sum\limits_{k=1}^m A_{i,\,k}B_{k,\,j}$ 로 정의된다. 이것으로부터 Matrix multiplication C=AB를 정의 할 수 있다.

Notation : $A_{j,\cdot}, A_{\cdot, k}$

A가 m imes n 행렬 일 때, $A_{j,\cdot}$ 은 A의 j-th row로 구성된 1 imes n matrix를 의미한다. $A_{\cdot,\,k}$ 는 k-th column으로 구성된 m imes 1 matrix를 의미한다.

이 때 $m \times n$ 행렬 A와 $n \times l$ 행렬 B의 곱 AB에 대해 $(AB)_{i,\,j}=A_{i,\,\cdot}B_{\cdot,\,j}$ 이다. 또한 $(AB)_{\cdot,\,k}=AB_{\cdot,\,k}$ 이며 $(AB)_{j,\,\cdot}=A_{j,\,\cdot}B$ 이다. (See exercise 10.)

$$n imes 1$$
 행렬 $c=egin{bmatrix} c_1 \ \vdots \ c_n \end{bmatrix}$ 에 대해 $Ac=c_1A_{\cdot,\,1}+\cdots+c_nA_{\cdot,\,n}$ 이다. 즉 A 는 linear combination of the columns of A 이다.

Exercise (Chap. 3.C)

10. A가 $m \times n$ 행렬이고 C 가 $n \times p$ 행렬일 때 $(AC)_{i,\cdot} = A_{i,\cdot}C$ 임을 보이시오.

$$(AC)_{j,\,k}=\sum\limits_{i=1}^nA_{j,\,i}C_{i,\,k}=\sum\limits_{i=1}^n(A_{j,\,\cdot})_iC_{i,\,k}$$
 . 따라서 $(AC)_{j,\,\cdot}=A_{j,\,\cdot}C.$

Definition: Invertible Linear Map, Inverse Linear Map

 $T\in\mathcal{L}(V,\,W)$ 가 어떤 $S\in\mathcal{L}(W,\,V)$ 에 대해 $TS=I_W$ 이고 $ST=I_V$ 이면 T 를 invertible linear map 이라 하며, S를 T의 inverse linear map 이라 한다. 이 때 $S=T^{-1}$ 로 쓴다. (여기서 $I_W\in\mathcal{L}(W)$, $I_V=\mathcal{L}(V)$ 는 identity map on W and V respectively.)

Theorem 2.1

 $T \in \mathcal{L}(V, W)$ 가 invertible 일 경우 T의 inverse linear map은 unique 하다.

(*Proof*) Let $S_1, S_2 \in \mathcal{L}(W, V)$ are two inverse linear map of T. Then, $S_1 = S_1 I_W = S_1 T S_2 = I_V S_2 = S_2$.

Theorem 2.2

 $T \in \mathcal{L}(V, W)$ 일 때 다음이 성립한다. T is invertible $\iff T$ is bijective.

(*Proof*) (1) Suppose T is invertible. Assume Tu=Tv. Then $u=T^{-1}Tu=T^{-1}Tv=v$. 따라서 T is injective. $w\in W$ 이면 $w=TT^{-1}w=T(T^{-1}w)$ 이므로 $w\in \mathrm{range}\,T$. 따라서 T is surjective.

(b) Suppose T is bijective. T가 $V \to W$ 함수이므로 어쨌든 역함수 $S:W \to V$ 가 존재한다. 이제 S가 linear map 임을 보이자. Let $w_1, w_2 \in W$ and $c \in \mathbb{F}$. T가 bijection 이므로 $w_1 = Tv_1$, $w_2 = Tv_2$ 인 $v_1, v_2 \in V$ 가 unique 하게 존재한다.

 $S(w_1+cw_2)=S(Tv_1+cTv_2)=ST(v_1+cv_2)=v_1+cv_2=Sw_1+cSw_2$. 따라서 S는 linear map 이며 $TS=I_W$, $ST=I_V$ 임은 쉽게 보일 수 있다. 따라서 T 는 invertible 이다.

Definition: Isomorphism

Vector spaces V, W 사이에 invertible linear map $T \in \mathcal{L}(V, W)$ 가 존재하면 T를 **isomorphism** 이라 하며 V와 W가 서로 **isomorphic** 하다고 한다.

Lemma 2.3

Finite dimensional vector spaces V and W are isomorphic iff $\dim V = \dim W$.

Proof is trivial

Theorem 2.4

Finite dimensional vector spaces V, W over field $\mathbb F$ 에 대해 $m=\dim V$, $n=\dim W$ 라 하자. 이 때 $\mathcal L(V,W)$ 는 $\mathbb F^{m,\,n}$ 과 isomorphic 하다.

Proof is trivial

Corollary 2.5

 $\dim \mathcal{L}(V, W) = \dim V \times \dim W.$

Definition: Matrix of a vector

V가 n-dim finite dimensional vector space over $\mathbb F$ 이고 (v_1,\ldots,v_n) 이 basis of V 라 하자. 이 때 $v\in V$ 는 $n\times 1$ 행렬 $\mathcal M(v)$ 로 표현될 수 있으며 $v=c_1v_1+\cdots+c_nv_n$ where $c_i\in\mathbb F$ 일 때,

$$\mathcal{M}(v) = egin{bmatrix} c_1 \ dots \ c_2 \end{bmatrix}$$

이다.

Theorem 2.6

 $T \in \mathcal{L}(V, W)$ 이고 (v_1, \ldots, v_n) , (w_1, \ldots, w_m) 이 각각 V, W의 basis 일 때 $\mathcal{M}(T)_{\cdot, k} = \mathcal{M}(v_k)$ 이다.

(Proof) (1) Let
$$Tv_k = c_{1,\,k}w_1 + \dots + c_{m,\,k}w_k$$
 for $k = 1,\dots,\,n$. Then $\mathcal{M}(T)_{i,\,j} = c_{i,\,j}$.
(2) $\mathcal{M}(v_k) = [c_{1,\,k},\dots,\,c_{m,\,k}]^T = [\mathcal{M}(T)_{\cdot\,k}]^T$.

Theorem 2.7

 $T\in\mathcal{L}(V,\,W)$ 이고 $v\in V$ 라 하자. $(v_1,\ldots,\,v_n)$, $(w_1,\ldots,\,w_m)$ 이 basis of V and W 일 때 $\mathcal{M}(Tv)=\mathcal{M}(T)\mathcal{M}(v)$ 이다.

(*Proof*) (1) Let
$$v=\sum\limits_{i=1}^n c_iv_i$$
, and $Tv_i=\sum\limits_{j=1}^m A_{j,\,i}w_j$. Then $Tv=\sum\limits_{i=1}^n \sum\limits_{j=1}^m c_iA_{j,\,i}w_j$.

$$(2) \ \mathcal{M}(Tv) = \begin{bmatrix} \sum\limits_{i=1}^{n} A_{1,\,i} c_i \\ \vdots \\ \sum\limits_{i=1}^{n} A_{m,\,i} c_i \end{bmatrix} = \begin{bmatrix} A_{1,\,1} & \cdots & A_{1,\,n} \\ \vdots & & \vdots \\ A_{m,\,1} & \cdots & A_{m,\,n} \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = \mathcal{M}(T) \mathcal{M}(v)$$

Theorem 2.8

Finite dimensional vector space V에서의 $T \in \mathcal{L}(V)$ 에 대해 다음이 성립한다.: T is invertible \iff T is injective \iff T is surjective

(*Proof*) From the fundamental theorem of linear map, $\dim V = \dim(\ker T) + \dim(\operatorname{range} T)$. From Theorem 2.2, T is invertible $\iff T$ is bijective. And $T \in \mathcal{L}(V)$ is injective $\iff \ker T = \{0\}$ $\iff \dim V = \dim(\operatorname{range} T)$ and $\operatorname{range} T \subset V \iff V = \operatorname{range} T \iff T$ is surjective. \square

Exercise (Chap. 3.D)

1. $T \in \mathcal{L}(V, W)$ 와 $S \in \mathcal{L}(W, V)$ 가 모두 invertible linear map 일 때 $ST \in \mathcal{L}(V, V)$ 도 invertible 임을 보이고 $(ST)^{-1} = T^{-1}S^{-1}$ 임을 보이시오.

- (1) For $v_1, v_2 \in V$ and $c \in \mathbb{F}$, $ST(v_1+cv_2) = S(Tv_1+cTv_2) = (ST)v_1+c(ST)v_2$; ST is a linear map.
- (2) ST bijection 임은 자명하다. 따라서 ST 는 invertible linear map.
- (3) $ST(T^{-1}S^{-1}) = I_V = T^{-1}S^{-1}ST$.
- **2.** V가 finite dimensional vector space 이고 $\dim V>1$ 일 때 V에서의 non invertible operator의 집함은 $\mathcal{L}(V)$ 의 subspace가 아님을 보이시오.

- (1) Let $S,\,T\in\mathcal{L}(V)$ and $(v_1,\ldots,\,v_n)$ be a basis of V. Put $Sv_1=v_1$ and $Sv_i=0$ for all $i=2,\ldots,\,n$. Again, $Tv_1=0$ and $Tv_j=v_j$ for all $j=2,\ldots,\,n$. Then S+T is a invertible linear operator.
- **3.** V가 finite dimensional vector space 이고 U는 V의 subspace 이며 $S \in \mathcal{L}(U, V)$ 일 때 다음을 보이시오. : Tu = Su for all $u \in U$ 인 invertible operator $T \in \mathcal{L}(V)$ 가 존재한다 $\iff S$ is injective.
- (1) Suppose S is injection. u_1,\ldots,u_n 을 U의 basis라 하자. S가 injection이므로 Su_1,\ldots,Su_n 은 linearly independent 하다. $(u_1,\ldots,u_n,v_1,\ldots,v_m)$ 이 V의 basis 가 되도록 하는 v_1,\ldots,v_m 을 선택할 수 있으며, $(Su_1,\ldots,Su_n,v_1',\ldots,v_m')$ 이 V의 basis가 되도록 하는 v_1',\ldots,v_m' 을 선택할 수 있다. $Tu_i=Su_i,Tv_i=v_i'$ 가 되도록 T를 정의 할 수 있으며 T는 invertible 이다.
- (2) Suppose S is not injection. 따라서 Tu=Su 가 되도록 하는 어떤 $T\in\mathcal{L}(V)$ 도 injection 이 아니므로 invertible $T\in\mathcal{L}(V)$ 가 존재하지 않는다.
- **4.** W가 finite dimensional vector space 이고 $T_1, T_2 \in \mathcal{L}(V, W)$ 일 때 다음을 보이시오. : $\ker T_1 = \ker T_2 \iff T_1 = ST_2$ 가 되게 하는 invertible $S \in \mathcal{L}(W)$ 가 존재한다.
- (1) Suppose $\ker T_1 = \ker T_2 = U$. W가 finite dimensional vector space 이고 $\operatorname{range} T_1$, $\operatorname{range} T_2$ 가 subspace of W 이므로 finite dimensional 이다. $\operatorname{range} T_1$ 의 basis를 w_1,\ldots,w_m , $\operatorname{range} T_2$ 의 basis를 w'_1,\ldots,w'_m 이라 하고 $(w_1,\ldots,w_m,\alpha_1,\ldots,\alpha_n)$, $(w'_1,\ldots,w'_m,\alpha'_1,\ldots,\alpha'_n)$ 을 W의 basis라 하자. $Sw'_i=w_i$, $S\alpha'_j=\alpha_j$ 가 되도록 S를 정의하면 $T_1=ST_2$ 이며 $S\in\mathcal{L}(W)$ 이다.
- (2) $T_1=ST_2$ 인 invertible $S\in\mathcal{L}(W)$ 가 존재한다고 가정하자. $\dim(\ker T_1)=\dim(\ker ST_2)$ 이며, $\dim(\ker ST_2)\leq\dim\ker S+\dim\ker T_2$ 이다 (Exercise 3.B. 22). S 가 invertible 이므로 $\dim\ker S=0$, 따라서 $\dim(\ker T_1)=\dim(\ker ST_2)\leq\dim(\ker T_2)$. If $v\in\ker T_2$, $ST_2v=T_1v=0$. 따라서 $v\in\ker T_1$ 이며 $\ker T_2\subset\ker T_1$. 즉 $\ker T_1=\ker T_2$.
- **5.** V 가 finite dimensional vector space 이고 $T_1,\,T_2\in\mathcal{L}(V,\,W)$ 일 때 다음을 보이시오 : $\mathrm{range}\,T_1=\mathrm{range}\,T_2\iff T_1=T_2S$ 가 되도록 하는 invertible $S\in\mathcal{L}(V)$ 가 존재한다.
- (1) Suppose $\operatorname{range} T_1 = \operatorname{range} T_2$. Let the w_1,\ldots,w_m be the basis of $\operatorname{range} T_1$ (and also $\operatorname{range} T_2$). Choose v_i and v'_i to satisfies $w_i = T_1v_i$ and $w_i = T_2v'_2$ respectively. v_1,\ldots,v_m 을 포함하는 V의 basis $(v_1,\ldots,v_m,u_1,\ldots,u_n)$ 과 v'_1,\ldots,v'_m 을 포함하는 V의 basis $(v'_1,\ldots,v'_m,u'_1,\ldots,u'_n)$ 을 얻을 수 있다. Define $Sv_i=v'_i$ for $i=1,\ldots,m$ and $Su_j=u'_j$ for $j=1,\ldots,n$ 이라 하면 S는 invertible 이며 $T_1=T_2S$. 이다.
- (2) $T_1=T_2S$ 인 invertible $S\in\mathcal{L}(V)$ 가 존재한다고 가정하자. $\dim(\mathrm{range}\,T_1)=\dim(\mathrm{range}\,T_2S)$, $\dim(\mathrm{range}\,T_2S)\leq \min\{\dim(\mathrm{range}\,T_2),\,\dim(\mathrm{range}\,S))\}$ (Exercise 3.B. 23) , $\dim(\mathrm{range}\,S)=\dim V,\,\dim(\mathrm{range}\,T_2)\leq \dim V$ 임을 알고 있다. 따라서 $\dim(\mathrm{range}\,T_2S)=\dim(\mathrm{range}\,T_2)$ 이므로 $\dim(\mathrm{range}\,T_1)=\dim(\mathrm{range}\,T_2)$ 이다. $\mathrm{range}\,T_1=\mathrm{range}\,T_2S\subset\mathrm{range}\,T_2$ 이고 $\mathrm{range}\,T_1$ 이 finite dimensional vector space 이므로 $\mathrm{range}\,T_1=\mathrm{range}\,T_2$.
- **6.** V, W가 finite dimensional vector space 이고 $T_1, T_2 = \mathcal{L}(V, W)$ 일 때 다음을 보이시오:

 $\dim(\ker T_1)=\dim(\ker T_2)\iff T_1=ST_2R$ 이 되도록 하는 invertible $S\in\mathcal{L}(W)$ 와 invertible $R\in\mathcal{L}(V)$ 가 존재한다.

- (1) Suppose $\dim(\ker T_1)=\dim(\ker T_2)$. v_1,\ldots,v_n 와 $u_1,\ldots u_n$ 가 각각 $\ker T_1$, $\ker T_2$ 의 basis 일 때 $v_1,\ldots,v_n,v_{n+1},\ldots,v_{n+k}$ 와 $u_1,\ldots,u_n,u_{n+1},\ldots,u_{n+k}$ 가 각각 V의 basis 가 되도록 하는 v_{n+i},u_{n+i} 를 구할 수 있다. $Rv_i=u_i$ 가 되도록 하는 invertible $R\in\mathcal{L}(V)$ 가 존재하며 $\ker T_1=\ker T_2R$ 이다. Exercise 4 에 의해 $T_1=ST_2R$ 이 되도록 하는 invertible $S\in\mathcal{L}(W)$ 가 존재.
- (2) $T_1=ST_2R$ 이 되도록 하는 invertible $S\in\mathcal{L}(W)$ 와 invertible $R\in\mathcal{L}(V)$ 가 존재함을 가정한다. 이 때 Exercise 4에 의해 $\ker T_1=\ker T_2R$ 이며, Exercise 2.B. 22에 의해

$$\dim(\ker T_1) = \dim(\ker T_2 R) \leq \dim(\ker T_2) + \dim(\ker R) = \dim(\ker T_2).$$

 $T_2=S^{-1}T_1R^{-1}$ 이므로 같은 이유로 $\dim(\ker T_2)\leq\dim(\ker T_1)$. 따라서 $\dim(\ker T_1)=\dim(\ker T_2)$.

- **7.** $V,\ W$ 가 finite dimensional vector space 이고 $v\in V$ 에 대해 $E=\{T\in\mathcal{L}(V,\ W):Tv=0\}$ 일 때, E는 subspace of $\mathcal{L}(V,\ W)$ 임을 보이고, $v\neq 0$ 일 때의 $\dim E$ 를 구하시오.
- (1) $0 \in E$. For $T, S \in E$ and $c \in \mathbb{F}$, (T+cS)(v) = Tv + cSv = 0. 따라서 E =subspace of $\mathcal{L}(V, W)$.
- (2) Let $m=\dim V$, $n=\dim W$. Then $\dim \mathcal{L}(V,W)=mn$. Let v,v_1,\ldots,v_{m-1} be basis of V and w_1,\ldots,w_n be basis of W. $\mathcal{L}(V,W)$ is isomorphic to $\mathbb{F}^{m,\,n}$. Tv=0 and $Tv_i=\sum\limits_{j=1}^n c_{j,\,i}w_j$ for all $i=1,\ldots,m-1$. 따라서 $\dim E=(m-1)n$.
- **8.** V 가 finite dimensional vector space 이고 $T \in \mathcal{L}(V, W)$ 는 surjection 이라 하자. 어떤 V의 subspace U 에서 $T|_U$ 는 isomorphism of U onto W 가 됨을 보이시오.
- (1) Let v_1,\ldots,v_m be a basis of $\ker T$ and u_1,\ldots,u_n be linearly independent vectors of V all of which cannot be spanned by v_1,\ldots,v_m . Let the vector space spanned by u_1,\ldots,u_n . By the fundtamental theorem of linear map, $\dim W = \dim(\operatorname{range} T) = \dim V \dim(\ker T) = n = \dim U$. 따라서 U 와 W 사이에 isomorphism이 존재한다.
- **9.** V가 finite dimensional 이고 $S,\,T\in\mathcal{L}(V)$ 일 때 다음을 보이시오.: ST is invertible \iff Both S and T are invertible.
- (1) Suppose ST is invertible. Then $\dim V = \dim(\operatorname{range} ST) \leq \min\{\dim(\operatorname{range} S), \dim(\operatorname{range} T)\} \leq \dim V$. 따라서 $\dim(\operatorname{range} S) = \dim(\operatorname{range} T) = \dim V$. S and T are invertible.
- (2) Suppose both S and T are invertible. $0 \le \dim(\ker ST) \le \dim(\ker S) + \dim(\ker T) = 0$. 따라서 $\dim(\ker ST) = 0$ and ST is invertible.

10. V가 finite dimensional vector space 이고 $S,\,T\in\mathcal{L}(V)$ 일 때 $ST=I_V\iff TS=I_V$ 임을 보이시오.

From exercise 9, I_V 가 invertible 이므로 $S,\,T$ 모두 Invertible. 따라서

$$ST = I_V \iff TST = T \iff TS = TSTT^{-1} = TT^{-1} = I_V$$

11. V가 finite dimensional vector space 이고 $S,\,T,\,U\in\mathcal{L}(V)$ 라 하자. $STU=I_V$ 이면 $T^{-1}=US$ 임을 보이시오.

$$TUS = (TU)S = S^{-1}S = I_V. UST = U(ST) = UU^{-1} = I_V.$$

12. V 가 finite dimensional 이 아닌 경우 exercise 11의 결론이 성립하지 않을 수 있음을 보이시오.

Consider \mathbb{R}^{∞} . Let $T(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, \ldots)$, $S(x_1, x_2, x_3, \ldots) = (x_2, x_3, \ldots)$ and U = I. Then STU = I but T is not surjection. 따라서 T^{-1} 은 존재하지 않음.

13. V가 finite dimensional vector space 이고 R, S, $T \in \mathcal{L}(V)$ 이며 RST 가 surjective 라 하자. 이 때 S가 injection 임을 보이시오.

Let $n=\dim V$. RST is surjection 이므로 bijection 이며 따라서 모든 $R,\,S,\,T$ 가 bijection 이어야 한다.

14. v_1,\ldots,v_n 이 vector space V의 basis 이고 $T:V\to \mathbb{F}^{n,\,1}$ 이 $Tv=\mathcal{M}(v)$ 로 정의되었을 때 T는 isomorphism 임을 보이시오.

(1)
$$v=\sum_i c_iv_i$$
 일 때 $Tv=\begin{bmatrix}c_1\ dots\\ c_n\end{bmatrix}$ 이다. $v_1,\,v_2\in V$ 가 $v_1=\sum_i a_iv_i$, $v_2=\sum_i b_iv_i$ 이고 $c\in\mathbb{F}$ 일 때

 $T(v_1+cv_2)=Tv_1+cTv_2$ 임은 쉽게 보일 수 있다. 따라서 $T\in\mathcal{L}(V,\mathbb{F}^{n,\,1})$ 이다.

(2) $v_1=\sum_i a_iv_i$, $v_2=\sum_i b_iv_i$ 일 때 $Tv_1=Tv_2\implies a_i=b_i$ for all $i=1,\ldots,\,n\implies v_1=v_2$. 따라서 T는 injection.

(3) For any
$$u=egin{bmatrix} c_1 \ dots \ c_n \end{bmatrix}$$
 , $v=\sum_i c_i v_i \in V$ and $Tv=u$. 따라서 T 는 surjection 이며 (2)와 함께

bijection. 따라서 T는 isomorphism.

16. V가 finite dimensional vector space 이고 $T \in \mathcal{L}(V)$ 일 때 다음을 보이시오. : Tv = cv for some $c \in \mathbb{F} \iff ST = TS$ for all $S \in \mathcal{L}(V)$.

(1) Tv=cv for some $c\in\mathbb{F}$ 일 때 ST=TS for all $S\in\mathcal{L}(V)$ 임은 자명하다.

- (2) Suppose ST=TS for all $S\in\mathcal{L}(V)$. v_1,\ldots,v_n 이 base of V 라 하자. Let $S_iv_j=\delta_{i,\,j}v_i$, and $Tv_i=\sum_j c_{j,\,i}v_j$. $S_kTv_i=TS_kv_i$ for all $i,\,k$ 이어야 한다.
- (3) $S_k T v_i = S_k(\sum_j c_{j,\,i} v_j) = c_{k,\,i} v_k$.
- (4) $TS_kv_i=T(\delta_{k,\,i}v_k)=\left\{egin{array}{ll} 0 & ext{if } k
 eq i \ \sum_j c_{j,\,k}v_j & ext{if } k=i \end{array}
 ight.$ 따라서 $c_{k,\,j}=\delta_{k,\,j}c_j$ 이며 $c_k=c_j$ for all $k,\,j$. 따라서 Tv=cv for some $c\in\mathbb{F}$.
- **17.** V가 finite dimensional vector space 이고 \mathcal{E} 가 $\mathcal{L}(V)$ 의 subspace 라 하자. $\forall T \in \mathcal{E}$, $\forall S \in \mathcal{L}(V)$ 에 대해 $ST \in \mathcal{E}$ and $TS \in \mathcal{E}$ 이면 $\mathcal{E} = \{0\}$ 이거나 $\mathcal{E} = \mathcal{L}(V)$ 임을 보이시오.
- (1) \mathcal{E} 가 $\{0\}$ 이거나 $\mathcal{L}(V)$ 일 때 $ST \in \mathcal{E}$ and $TS \in \mathcal{E}$ for all $T \in \mathcal{E}$ and $S \in \mathcal{L}(V)$ 임은 자명하다.
- (2) $T \in \mathcal{E}$ defined by $T(v_i) = \sum_j c_{j,\,i} v_j$ 라 하자. $c_{k,\,i} \neq 0$ 인 k 에 대해 $T'(v_i) = (c_{k,\,i})^{-1} \sum_j c_{j,\,i} v_j \in \mathcal{E} \text{ 이다. } \phi_k(v_i) = \delta_{i,\,k} v_k \boxminus \phi_i \in \mathcal{L}(V) \text{ 이다.}$ $\phi_k(T'(v_i)) = (c_{k,\,i})^{-1} \sum_j c_{j,\,i} \delta_{k,\,j} v_j = v_k \text{ 이며 } \phi_k T' \in \mathcal{E} \text{ 이다.}$
- (3) $\phi_l(\phi_kT')(v_m)=\delta_{l,\,k}v_k\in\mathcal{E}$. 따라서 $T\in\mathcal{E}$ with $c_{k,\,i}
 eq 0$ 에 대해 $\phi_k\in\mathcal{E}$ 이다.
- (4) Exchange operator $\psi_{i,\,j}$ 를 생각하자. $v=c_1v_1+\cdots+c_iv_i+\cdots c_jv_j+\cdots+c_nv_n$ 에 대해 $\psi_{i,\,j}=c_1v_1+\cdots+c_jv_i+\cdots+c_iv_j+\cdots+c_nv_n$ 이다. $\psi_{i,\,j}\in\mathcal{L}(V)$ 임은 쉽게 보일 수 있다. (2), (3) 과 같이 생각하면 $n=\dim(V)$ 일 때 $\phi_j\in\mathcal{E}$ for all $j=1,\ldots,n$.
- (5) 모든 $S \in \mathcal{L}(V)$ 는 linear combination of $\phi_j(v_k)$ 이므로 $\mathcal{E} = \mathcal{L}(V)$.
- **18.** V와 $\mathcal{L}(\mathbb{F}, V)$ 가 isomorphic 함을 보이시오.
- (1) Let (v_1, v_2, \ldots) be basis of V. For $S \in \mathcal{L}(\mathbb{F}, V)$, $S(1) = \sum_j c_j v_j$. 1 is a basis of \mathbb{F} in vector space concept. Therefore $\phi_j(1) = v_j$ is a basis of $\mathcal{L}(\mathbb{F}, V)$. 따라서 V와 $\mathcal{L}(\mathbb{F}, V)$ is isomorphic.
- **19.** $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ 에 대해 T는 injective 이며 $\deg Tp \leq \deg p$ for every nonzero polynomial $p \in \mathcal{P}(\mathbb{R})$ 이라 하자. 이 때 다음을 보이시오.
- (a) T is surjective
- (b) $\deg Tp = \deg p$ for every nonzero $p \in \mathcal{P}(\mathbb{R})$.
- (1) Let $\mathcal{P}_n(\mathbb{R})$ a set of polynomials of which degree is less then n. $\mathcal{P}_n(\mathbb{R})$ 이 finite dimensional vector space 임은 자명하다. $\deg Tp \leq \deg p$ 이므로 $p \in \mathcal{P}_n(\mathbb{R})$ 에 대해 $Tp \in \mathcal{P}_n(\mathbb{R})$ 이다. Restriction of T over $\mathcal{P}_n(\mathbb{R})$ 를 T_n 이라 하자. T_n 은 injective 이며 $\dim(\mathcal{P}_n(\mathbb{R})) = n$ 이므로 $\dim(\mathrm{range}\,T) = n$. 따라서 T_n is bijective.
- (2) (1)로부터 임의의 p에 대해 $\deg p=m$ 일 때, Tp'=p 인 $p'\in\mathcal{P}_{m+1}(\mathbb{R})$ 이 존재한다. 따라서 T is surjective.
- (3) $\deg Tp = \deg p$ 임은 (1)로부터 자명하다.

3. Products and Quotients of Vector Spaces

Definition: Product of vector spaces

 $V_1,\ldots,\,V_m$ 이 모두 vector space over $\mathbb F$ 일 때 the **product space** $V_1\times\cdots\times V_m$ 는 다음과 같이 정의된다.

$$V_1 \times \cdots \times V_m = \{(v_1, \dots, v_m) : v_1 \in V_1, \dots, v_m \in V_m\}$$

 $u, v \in V_1 \times \cdots \times V_m$ 일 때 $u+v=(u_1+v_1,\ldots,\,u_m+v_m)$ 으로 정의되며 $\lambda \in \mathbb{F}$ 에 대해 $\lambda u=(\lambda u_1,\ldots,\,\lambda u_m)$ 으로 정의된다.

Theorem 3.1

 V_1,\ldots,V_m 이 vector spaces over $\mathbb F$ 일 때 $V_1 imes \cdots imes V_m$ 역시 vector space over $\mathbb F$ 이다.

Proof is trivial

Theorem 3.2

 $V_1,\ldots,\,V_m$ 이 각각 finite dimensional vector space 일 때 $\dim(V_1 imes\cdots imes V_m)=\sum\limits_{k=1}^m\dim(V_k)$ 이다.

Proof is trivial

Theorem 3.3

 $U_1,\ldots,\,U_m$ 이 subspaces of V 일 때 Linear map $\Gamma\in\mathcal{L}(U_1 imes\cdots imes U_m,\,U_1+\cdots+U_m)$ 을 다음과 같이 정의하자.

$$\Gamma(u_1,\ldots,u_m)=u_1+\ldots+u_m.$$

이 때 다음이 성립한다. $U_1 + \cdots + U_m$ is a direct sum iff Γ is injective.

(*Proof*)
$$\Gamma$$
 is injective $\iff \ker \Gamma = \{(0,\ldots,0)\} \iff u_i = 0 \text{ for all } i=1,\ldots,m \iff U_1 + \cdots + U_m \text{ is a direct sum. } \square$

Lemma 3.4

V가 finite dimensional vector space 이고 U_1,\ldots,U_m 이 subspaces of V 일 때 다음이 성립한다.

$$U_1+\cdots+U_m$$
 is a direct sum iff $\dim(U_1+\cdots+U_m)=\sum\limits_{k=1}^m\dim(U_k)$.

(Proof)
$$U_1 + \cdots U_m$$
 is a direct sum $\iff \Gamma$ is injective (theorem 3.3) $\iff \dim(U_1 + \cdots + U_m) = \dim(U_1 \times \cdots \times U_m) = \sum_{k=1}^m \dim(U_k)$

Definition: Affine subset, parallel, Quotient space

V 가 vector space 이고 U는 subspace of V 라 하자. $v \in V$ 에 대해 v + U를 $v + U = \{v + u : u \in U\}$ 로 정의한다. 이렇게 v + U 형식의 subset of V 를 **affine subset** of V 라 하며 **parallel** to U 라 한다.

Quotient space of V/U 는 이렇게 U 에 parallel 한 affine subsets의 집합이다. 즉 $V/U=\{v+U:v\in V\}.$

Theorem 3.5

U 가 vector space V의 subspace 라 하자. $v, w \in V$ 일 때, 다음 (a), (b), (c) 는 equivalent 하다.

- (a) $v w \in U$;
- (b) v + U = w + U;
- (c) $(v+U)\cap (w+U)\neq \varnothing$.

(*Proof*) (1) Suppose (a) holds. v = w + u for some $u \in U$. Therefore w + U = v + U.

- (2) (b) \Longrightarrow (c) is trivial.
- (3) Suppose (c) holds. Let $z\in (v+U)\cap (w+U)$. Then $z=v+u_1=w+u_2$ for some $u_1,\,u_2\in U$. Then $v-w=u_2-u_1\in U$. $\ \square$

Definition: Addition and scalar multiplication of Quotient Space

Suppose U be a subspace of vector space V over $\mathbb F$. Let $v_1,\,v_2\in V$ and $\lambda\in\mathbb F$. Then the **addition** and **scalar multiplication** on V/U is defined by

$$(v_1 + U) + (v_2 + U) = (v_1 + v_2) + U,$$

 $\lambda(v_1 + U) = (\lambda v_1) + U.$

Theorem 3.6

U 가 vector space V의 subspace 이고 addition과 scalar multiplication이 위와 같이 정의되었을 때 V/U도 vector space 이다.

(Proof) 0+U=U is a zero vector of V/U. V/U가 모든 vector space의 조건을 만족함을 쉽게 보일 수 있다.

Definition: Quotient map

U가 V의 subspace 일 때 **quotient map** $\pi:V\to V/U$ 를 $\pi(v)=v+U$ 로 정의한다.

Theorem 3.7

위의 quotient map π 는 linear map 이다.

```
(proof) For v_1,\,v_2\in V and c\in\mathbb{F} , \pi(v_1+cv_2)=v_1+cv_2+U=(v_1+U)+(cv_2+U)=\pi(v_1)+c\pi(v_2) . \Box
```

Theorem 3.8

V가 finite dimensional vector space 이고 U가 V의 subspace 일 때 $\dim(V/U) = \dim(V) - \dim(U)$ 이다.

(proof) Quotient map $\pi \in \mathcal{L}(V, V/U)$ 에서 $\dim(V) = \dim(\ker \pi) + \dim(\operatorname{range} \pi)$. 여기서 $\ker \pi = U$ 이며 $\operatorname{range} \pi = V/U$ 이므로 증명 끝. \square

Definition

 $T \in \mathcal{L}(V, W)$ 일 때 map $\widetilde{T}: V/(\ker T) \to W$ 를 $\widetilde{T}(v + \ker T) = Tv$ 로 정의하자.

Theorem 3.9

 $T \in \mathcal{L}(V, W)$ 일 때 다음이 성립한다.

- (a) $\widetilde{T} \vdash V/(\ker T) \to W$ linear map 이다;
- (b) \widetilde{T} 는 injection 이다;
- (c) range $\widetilde{T} = \operatorname{range} T \circ |\Gamma|$.
- (d) $V/(\ker T)$ 는 range T와 isomorphic 하다.

(Proof) (a) Let $K=\ker T$, $v_1,\,v_2\in V$, and $c\in\mathbb{F}$. $\widetilde{T}(v_1+K+c(v_2+K))=\widetilde{T}(v_1+cv_2+K)=T(v_1+cv_2)=T(v_1)+cT(v_2)=\widetilde{T}(v_1+K)+c\widetilde{T}(v_2+K)$. 따라서 \widetilde{T} 는 linear map.

- (b) $v+K\in\ker \widetilde{T}\iff \widetilde{T}(v+K)=Tv=0\iff v\in\ker T$. 따라서 $\ker \widetilde{T}=0$ 이며 \widetilde{T} 는 injection.
- (c) Obvious from definition
- (d) Obvious from (b) and (c) \Box

Exercise (Chap. 3. E)

1. $T:V \to W$ 일 때 **graph** of T 는 $\{(v,Tv) \in V \times W : v \in V\}$ 로 정의된다. 이 때 다음을 보이시오 : T is a linear map iff graph of T is a subspace of $V \times W$.

- (1) Suppose $v_1, v_2 \in V$ and $c \in \mathbb{F}$. Let \mathcal{T} be a graph of T.
- (2) Suppose T is a linear map. Then $(0,\,T0)=(0,\,0)\in\mathcal{T}$, $(v_1,\,Tv_1)+(cv_2,\,T(cv_2))=(v_1+cv_2,\,T(v_1+cv_2))\in\mathcal{T}$. Then \mathcal{T} is a subspace of $V\times W$.
- (3) Suppose $\mathcal T$ is a subspace of $V \times W$. Then $(0,0) \in \mathcal T$ and $(v_1,Tv_1)+c(v_2,Tv_2)=(v_1+cv_2,T(v_1)+cT(v_2))\in \mathcal T$. 따라서 $T(v_1+c_v2)=T(v_1)+cT(v_2)$. 즉 T is a linear map.

3. $U_1,\,U_2$ 가 subspace of V 일 때 $U_1 imes U_2$ 가 $U_1 + U_2$ 와 isomorphic 하지만 $U_1 + U_2$ 가 direct sum 이 아닌 예를 드시오.

Let $U_1=\mathbb{R}$ and $U_2=\mathbb{R}^\infty$. Let $u\in U$ and $(u_1,\,u_2,\ldots)\in U_2$. Then $(u,\,u_1,\,u_2,\ldots)\in U_2$. 따라서 $U_1\times U_2$ is isomorphic to U_2 and then U_1+U_2 . 그러나 $U_1\cap U_2\neq\{0\}$ 이므로 U_1+U_2 는 direct sum이 아니다.

4. V_1, \ldots, V_m 이 vector space 일 때 $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ 와 $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ 가 isomorphic 함을 보이시오.

- (1) Let $\phi \in \mathcal{L}(V_1 \times \cdots \times V_m, W)$. Because $(v_1, v_2, \dots, v_m) = (v_1, 0, \dots, 0) + \dots + (0, \dots, 0, v_m)$, $\phi(v_1, v_2, \dots, v_m) = \phi(v_1, 0, \dots, 0) + \phi(0, v_2, \dots, 0) + \dots + \phi(0, \dots, 0, v_m)$.
- (2) Define $\phi_i \in \mathcal{L}(V_i, W)$ by $\phi_i(v_i) = \phi(0, \dots, 0, v_i, 0, \dots, 0)$. Then any $\phi \in \mathcal{L}(V_1 \times \dots \times V_m, W)$ can be represented as $\phi(v_1, \dots, v_m) = \phi_1(v_1) + \dots + \phi_m(v_m)$.
- (3) Define $\psi: \mathcal{L}(V_1,\,W) imes \cdots imes \mathcal{L}(V_m,\,W) o \mathcal{L}(V_1 imes \cdots imes V_m,\,W)$ by $\psi(\phi_1,\ldots,\,\phi_m) = \phi_1 + \cdots + \phi_m$. Let $K = \ker \psi$. If $(\phi_1,\ldots,\,\phi_m) \in K$, $\phi_1(v_1) + \cdots + \phi_m(v_m) = 0$ for any $v_1 \in V_1,\ldots,\,v_m \in V_m$. 이로부터 $\phi_1 = \cdots = \phi_m = 0$ 임을 알수 있다. 따라서 $K = (0,\ldots,\,0)$ 이므로 ψ 는 injection 이다.
- (4) (2)로부터 ψ 가 surjection 임을 알 수 있다. 따라서 증명 끝.
- **5.** W_1, \ldots, W_m 이 vector space 일 때 $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ 과 $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ 은 isomorphic 함을 보이시오.
- (1) For $\phi_i \in \mathcal{L}(V, W_i)$, define $\phi \in \mathcal{L}(V, W_1 \times \cdots \times W_m)$ by $\phi(v) = (\phi_1(v), \dots, \phi_m(v))$. Then it is obvious that given twos are isomorphic
- **6.** Vector space V에 대해 V^n 과 $\mathcal{L}(\mathbb{F}^n, V)$ 가 isomorphic 함을 보이시오.

V is isomorphic to $\mathcal{L}(\mathbb{F}, V)$. V^n is isomorphic to $\mathcal{L}(\mathbb{F}, V)^n$. $\mathcal{L}(\mathbb{F}, V)^n$ is isomorphic to $\mathcal{L}(\mathbb{F}^n, V)$. (exercise 4.)

7. V가 vector space, U, W는 V의 subspace 이다. 어떤 v_1 , $v_2 \in V$ 에 대해 $v_1 + U = v_2 + W$ 이면 U = W 임을 보이시오.

- (1) $v_1=v_2+w$ for some $w\in W$. 따라서 $v_1-v_2\in W$ 이며 당연히 $v_2-v_1\in W$ 이다. 같은 이유로 $v_1-v_2\in U$.
- (2) $w\in W$ 이면 어떤 $u\in U$ 가 존재하여 $w=v_1-v_2+u\in U$. 따라서 $W\subset U$. 같은 방법으로 $U\subset W$ 임을 보일 수 있으므로 U=W.

- **8.** Vector space V의 nonempty subset A 에 대해 다음이 성립함을 보이시오 : A is an affine subset of V iff for all $a_1, a_2 \in A$ and for all $\lambda \in \mathbb{F}$, $\lambda a_1 + (1 \lambda)a_2 \in A$.
- (1) Suppose A is a affine subset of V. 어떤 V의 subspace U와 $v \in V$ 에 대해 $A = \{v + u : u \in U\}$. Let $a_1 = v + u_1$ and $a_2 = v + u_2$. Then $\lambda a_1 + (1 \lambda)a_2 = v + \lambda u_1 + (1 \lambda)u_2 \in A$.
- (2) Suppose for all $a_1,\ a_2\in A$ and for all $\lambda\in\mathbb{F}$, $\lambda a_1+(1-\lambda)a_2\in A$. Nonzero element $x\in A$ 를 선택하여 $A-x=\{a-x:a\in A\}$ 를 생각하자. 우리는 A-x가 vector space임을 보이고자 한다.
- (2-1) $x \in A$ 이므로 $0 \in A x$.
- (2-2) For any $a\in A$, $\lambda x+(1-\lambda)a\in A$. Then $(1-\lambda)(a-x)\in A-x$ for any $\lambda\in\mathbb{F}$. 따라서 $a-x\in A-x\implies c(a-x)\in A-x$ for any $c\in\mathbb{F}$.
- (2-3) Let $u_1,\,u_2\in A-x$ be $u_1=a_1-x$ and $u_2=a_2-x$ for some arbitrary $a_1,\,a_2\in A$. From (2-2), $1/2u_1,\,1/2u_2\in A$ and $1/2u_1+1/2u_2=1/2a_1+1/2a_2-x\in A-x$. 따라서 $u_1+u_2\in A-x$.
- (2-4) From (2-1), (2-2), and (2-3), U=A-x is vector space, and therefore A=x+U for some vector space U and elements $x\in U$.
- **9.** A_1, A_2 가 affine subsets of vector space V 일 때 $A_1 \cap A_2$ 는 공집합 이거나 affine subset of V 임 을 보이시오.
- (1) Let $A_1=x_1+U_1$ and $A_2=x_2+U_2$ for some x, $x_2\in V$ and $U_1,\,U_2$ for some subspace of V.
- (2) If $U_1=U_2$ and $x_1\not\in U_1$, $x_2\not\in U_1$ $x_2=-x_1$ 라 하자. $x\in A_1\cap A_2$ 이면 $x=x_1+u_1=x_2+u_2$ for some $u_1,\,u_2\in U_1=U_2$ 이며 $x_1-x_2=2x_1=u_2-u_1\in U$ 인데 $x_1\not\in U$ 임에 모순. 따라서 $A_1\cap A_2=\varnothing$.
- (3) 이제 $A_1 \cap A_2 \neq \emptyset$ 이라 가정하자. Problem 8을 이용하여 $A_1 \cap A_2$ 이 affine subset of V임을 보인다. $x, x' \in A_1 \cap A_2$ 라 하자. $x = x_1 + u_1 = x_2 + u_2$, $x' = x_1 + u_1' = x_2 + u_2'$ for some $u_1, u_1' \in U_1$ and $u_2, u_2' \in U_2$ 이다. $\lambda x + (1 \lambda)x' = x_1 + \lambda u_1 + (1 \lambda)u_2 \in x_1 + U_1 = A_1$ 이 며 같은 방법으로 $\lambda x + (1 \lambda)x' \in A_2$ 임을 보일 수 있다. 즉 $A_1 \cap A_2$ 는 affine subset of V 이다.
- **11.** $v_1,\ldots,v_m\in V$ 에 대해 $A=\{\lambda_1v_1+\cdots+\lambda_mv_m:\lambda_i\in\mathbb{F},\;\sum_i\lambda_i=1\}$ 라 하고 다음을 증명하라.
- (a) A는 affine subset of V 이다.
- (b) v_1, \ldots, v_m 을 포함하는 모든 affine subset of V는 A를 포함한다.
- (c) A = v + U for some $v \in V$ and some subspace U of V with $\dim U < \dim V$.
- (a) Let $a, a' \in A$ be $a = \sum \lambda_i v_i$ and $a' = \sum \mu_i v_i$. $ca + (1-c)a' = \sum (c\lambda_i + (1-c)\mu_i)v_i$. $\sum_i c\lambda_i + (1-c)\mu_i = c+1-c=1$ 따라서 임의의 $a, a' \in A$, $c \in \mathbb{F}$ 에 대해 $ca + (1-c)a' \in A$ 이 므로 problem 8에 의해 A는 affine subset of V 이다.
- (b) Let B the affine subset of V which contains v_1,\ldots,v_m . Show it by induction. By Problem 8, $c_1v_1+c_2v_2\in B$ if $c_1+c_2=1$. Assume that for any k=m-1, $\sum\limits_{i=1}^kc_iv_i\in B$ if $\sum\limits_{i=1}^k=1$. Then

$$\lambda v_m + \sum\limits_{i=1}^k (1-\lambda)(c_iv_i) \in B$$
 because $\lambda + \sum\limits_{i=1}^k (1-\lambda)c_i = 1$. 따라서 $A \subset B$

- (c) A는 affine subset 이므로 A=v+U for some $v\in V$ and some subset U of V. 만약 $\dim U=\dim V$ 이면 $v\in U$ 이므로 A=V 이므로 문제의 조건에 모순. 왜냐면 $v_1+\dots+v_m\not\in A$ 이므로 $A\neq V$ 이어야 하기 때문.
- **12.** U가 subspace of V 이고 V/U가 finite dimensional 일 때 V와 $U \times (V/U)$ 가 isomorphic 함을 보이시오.
- (1) V/U가 finite dimensional 이므로 V/U의 basis 는 v_1+U,\ldots,v_m+U where every $v_i\in V,\,v_i\not\in U$ and v_1,\ldots,v_m is linearly independent 이다. U의 basis를 $u_1,\,u_2,\ldots$ 라 하면 $v_1,\ldots,v_m,\,u_1,\,u_2,\ldots$ 는 linearly independent 함은 잘 알 수 있다.
- (2) $v\in V$ 가 linear combination of $v_1,\ldots,v_m,\,u_1,\,u_2,\ldots$ 로 표현 될 수 없다고 하자. 그렇다면 $v+U\not\in V/U$ 이므로 모순. 따라서 모든 $v\in V$ 는 linear combination of $v_1,\ldots,v_m,\,u_1,\,u_2,\ldots$
- (3) 즉 (V/U) 는 U^\perp 와 isomorphic 하다. V는 $U \times U^\perp$ 이므로 V는 $U \times (V/U)$ 와 isomorphic 하다.
- **14.** $U = \{(x_1, x_2, \ldots) \in \mathbb{F}^{\infty} : x_j \neq 0 \text{ for only finitely many } j\}$ 일 때 다음을 보이시오.
- (a) U는 subspace of \mathbb{F}^{∞} .
- (b) \mathbb{F}^{∞}/U is infinite dimensional.
- (a) It's trivial.
- (b) also trivial.
- **15.** $\varphi \in \mathcal{L}(V, \mathbb{F})$, $\varphi \neq 0$ 일 때, $\dim V/(\ker \varphi) = 1$ 임을 보이시오.

From Theorem 3.9 (d), $V/\ker\varphi$ is isomorphic to range φ of which dimension is 1.

16. U가 V의 subspace 이고 $\dim V/U=1$ 일 때 $\varphi\in\mathcal{L}(V,\mathbb{F})$ s.t. $\ker\varphi=U$ 인 φ 가 존재함을 보이 시오.

 $\dim V/U=1$ 이므로 V/U의 basis v 를 선택하자. v를 제외한 V의 basis를 $v_1,\,v_2,\ldots$,라 하고 $\varphi(v)=1$, $\varphi(v_i)=0$ for all $i=1,\,2,\ldots$ 라 하면 $\varphi\in\mathcal{L}(V,\,\mathbb{F})$ 이며 $\ker\varphi=U$ 이다.

17. U가 V의 subspace 이고 V/U라 finite dimensional 일 때 어떤 subspace W of V에 대해 $\dim W = \dim(V/U)$ 이고 $V = U \otimes W$ 가 됨을 보이시오.

Let v_1+U,\ldots,v_m+U be basis of V/U. Then v_1,\ldots,v_m are linearly independent vectors of V. Let $W=\mathrm{span}(v_1,\ldots,v_m)$, then W is a subspace of V. Then $V=U\otimes W$.

18. $T\in\mathcal{L}(V,W)$ 이고 U가 subspace of V이며, π 가 $V\to V/U$ quotient map 일 때 다음을 보이시 오: 어떤 $S\in\mathcal{L}(V/U,W)$ s.t. $T=S\circ\pi$ 이 존재한다. $\iff U\subset\ker T$.

- (1) 어떤 $S\in\mathcal{L}(V/U,\,W)$ s.t. $T=S\circ\pi$ 가 존재함을 가정하자. $u\in U$ 이면 $\pi(u)=U=0_{V/U}$ 이므로 $T(u)=0_W$. 따라서 $U\subset\ker T$.
- (2) $U\subset\ker T$ 임을 가정한다. U의 basis를 $u_1,\,u_2,\ldots$ 라 하자. 이로부터 V의 basis를 구축한다. U^\perp 의 basis를 $v_1,\,v_2,\ldots$ 라 하자. $V=U\oplus U^\perp$ 이다. $Tu_i=0_W$ 임은 자명하다. $v_1,\,v_2,\ldots$ 중 $\ker T$ 에 포함되는 것을 $v_1^0,\,v_2^0,\ldots$ ker T에 포함되지 않는 것을 $v_1^1,\,v_2^1,\ldots$ 라 하자.
- (3) $S(v_i^0+U)=0_W$, $S(v_i^1+U)=Tv_i^1$ 이라 하면 $S\in\mathcal{L}(V/U,\,W)$ 이며 $T=S\circ\pi$ 이다.
- **20.** U가 subspace of V 일 때 Γ : $\mathcal{L}(V/U, W) \to \mathcal{L}(V, W)$ 를 $\Gamma(S) = S \circ \pi$ 로 정의하자. 다음을 보이시오.
- (a) Γ is a linear map.
- (b) Γ is injective.
- (c) range $\Gamma = \{T \in \mathcal{L}(V, W) : Tu = 0 \text{ for every } u \in U\}$
- (a) Let $S_1,\,S_2\in\mathcal{L}(V/U,\,W)$ and $c\in\mathbb{F}.$ $\Gamma(S_1+cS_2)=(S_1+cS_2)\circ\pi=\Gamma(S_1)+c\Gamma(S_2).$
- (b) $S \in \ker \Gamma \implies S \circ \pi = 0 \implies (S \circ \pi)(v) = 0$ for all $v \in V \implies S(v+U) = 0$ for all $v \in V \implies S = 0$. 따라서 Γ is injective.
- (c) Let $\mathcal{T} = \{T \in \mathcal{L}(V, W) : Tu = 0 \text{ for every } u \in U\}.$

 $T\in\operatorname{range}\Gamma\implies T=S\circ\pi$ 인 $S\in\mathcal{L}(V/U,\,W)$ 가 존재. By problem 18, $U\subset\ker T$ 이므로 Tu=0 for all $u\in U$. 따라서 $T\in\mathcal{T}$ 이므로 $\operatorname{range}\Gamma\subset\mathcal{T}$.

 $T \in \mathcal{T} \implies U \in \ker T \implies T = S \circ \pi$ 인 $S \in \mathcal{L}(V/U, W)$ 가 존재 (Problem 18) $\implies T \in \operatorname{range} \Gamma$. 따라서 $\mathcal{T} \subset \operatorname{range} \Gamma$ 이며 앞서의 결론과 함께 $\mathcal{T} = \operatorname{range} \Gamma$.

4. Duality

Definition: Linear Functional, Dual Space

Vector space V와 scalar field \mathbb{F} 에 대해 $\phi \in \mathcal{L}(V, \mathbb{F})$ 를 **linear functional** from V to \mathbb{F} 라 한다. $\mathcal{L}(V, \mathbb{F})$ 를 **dual space** of V 라 하며 V'으로 쓴다.

Theorem 4.1

V가 finite dimensional 일 때 $\dim V = \dim V'$ 이다.

Proof is trivial

Definition: Dual Basis

 v_1,\ldots,v_m 이 V의 basis 일 때 $\varphi_j\in V'$ defined by $\varphi_j(v_i)=\delta_{i,j}$ 인 $\varphi_1,\ldots,\varphi_m$ 을 v_1,\ldots,v_m 에 대한 **dual basis** 라한다.

Theorem 4.2

V가 finite dimensional vector space이고 v_1, \ldots, v_m 이 basis of V 일 때 이에 대한 dual basis $\varphi_1, \ldots, \varphi_m$ 은 V'의 basis 이다.

(Proof) Let $\varphi = a_1 \varphi_1 + \cdots + a_m \varphi_m = 0$. $\varphi(v_i) = a_i = 0$ 이므로 모든 $a_i = 0$. 따라서 $\varphi_1, \ldots, \varphi_m$ 은 linearly independent 하며 $\dim V' = m$ 이므로 $\varphi_1, \ldots, \varphi_m$ 은 V'의 basis 이다. \square

Definition: Dual Map

 $T \in \mathcal{L}(V, W)$ 일 때 $\varphi \in W'$ 에 대해 $T'(\varphi) = \varphi \circ T$ 로 정의되는 $T' \in \mathcal{L}(W', V')$ 을 dual map of T라 한다.

Lemma 4.3

Dual map은 linear map이다.

 (Proof) Let $\varphi_1,\, \varphi_2 \in W'$ and $c \in \mathbb{F}$. $T'(\varphi_1 + c\varphi_2) = (\varphi_1 + c\varphi_2) \circ T = \varphi \circ T + c\varphi \circ T = T'(\varphi_1) + cT'(\varphi_2)$. 따라서 T'은 linear map.

Example

 $D: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ defined by $Dp \in p'$ 을 생각하자.

1. $\varphi \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathbb{R})$ defined by $\varphi(p) = p(3)$. Then $(D'(\varphi))(p) = (\varphi \circ D)(p) = p'(3)$. 2. $\varphi \in \mathcal{L}(P(\mathbb{R}), \mathbb{R})$ defined by $\varphi(p) = \int_0^1 p'$. Then $(D'(\varphi))(p) = (\varphi \circ D)(p) = p(1) - p(0)$.

Theorem 4.4

(a)
$$(S+T)'=S'+T'$$
 for all $S,\,T\in\mathcal{L}(V,\,W)$.

(b)
$$(cT)'=cT'$$
 for all $T\in\mathcal{L}(V,\,W)$ and $c\in\mathbb{F}.$

(c)
$$(ST)' = T'S'$$
 for all $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$.

(Proof) (a) For
$$\varphi \in W'$$
 , $(S+T)' = \varphi \circ (S+T) = \varphi \circ S + \varphi \circ T = S' + T'$

(b)
$$(cT)' = \varphi \circ (cT) = c\varphi c \circ T = cT'$$

(c) For
$$\varphi \in W'$$
, $(ST)' = \varphi \circ (ST) = (\varphi \circ S) \circ T = T'(\varphi \circ S) = T'S'$

Definition: Annihilator of subspace

U가 vector space V의 subspace 일 때 **annihilator** of U는 $\{\varphi \in V' : \varphi(u) = 0 \text{ for all } u \in U\}$ 로 정의되며 U^0 로 쓴다.

Theorem 4.5

U가 V의 subspace 일 때 $U^0 는 V'$ 의 subspace 이다.

Proof is trivial

Theorem 4.6

V가 finite dimensional vector space 이고 U가 V의 subspace 일 때 $\dim V = \dim U + \dim U^0$ 이다.

(Proof) Define $i\in\mathcal{L}(U,\,V)$ by i(u)=u. For $i'\in\mathcal{L}(V',\,U')$, $\dim V'=\dim(\ker i')+\dim(\operatorname{range} i')$. $\ker i'=U^0$ 이며 $\dim(\operatorname{range} i')=\dim U$ 이므로 $\dim V=\dim U+\dim U^0$.