

Signal detection theory as bridge for Bayesian statistics and modelling

Bayes@Lund, 2019-05-07

Presenter: Gerit Pfuhl

UiT The Arctic University of Norway

In cooperation with Robert Biegler, NTNU

Background: assume no prior knowledge

How sure are you that your partner is cheating?

Where do the numbers come from?

Introduce probabilities as uncertainties

A real world example: male perception – intuitive understanding of uncertainty (noise)

Bayes theorem and p-value fallacies

two types of errors in hypothesis testing

Test result If H0 is true If H0 is false

If H0 is rejected α 1 - β (power)

If H0 is not rejected $1 - \alpha$ β

Prior odds = if you have two hypotheses you know nothing about: 1/1 Likelihood ratio often 80/5 = 16/1 Posterior odds = 1/1 * 16/1

from Bayes theorem to Bayesian decision theory

students see that updating old information with new information is what they do (but not always, links to cognitive biases)

Relationship frequentist to Bayesian stats

But doubt that anything is useful still, as real world seems to be full of biases

Introduce risk in Signal detection theory

Predation risk or starvation risk changes the decision criterion

Unbiased decision criterion = symmetrical EV

Biased decision criterion from asymmetrical EV

Men are risk seeking in the mating game

	GAINS	Losses
High	RISK AVELSE Fear of disappinhent	RISK SEEKING Hope to avoid loss
PERABLITY	RISK SEEKING Hope of large gain	RISK AVELSE For of lage loss

Expected utility in male perception – outcome variability

xi ...all possible results => mating/offspring or no mating/ no offspring pi... probability of the results: 1:100

v ... value function, means relative value in the decision-maker's mind π ... probability weighting function

$$V = \pi(.01) * v(offspring) + \pi(.99) * v(no offspring)$$

We know: $\pi(.01) > .01$ due to overweighting of small probabilities

We know: loss is aversive, gain is attractive

Decision criterion in male perception

#metoo or bachelor risk changes the decision criterion

Combining perceptual and economic uncertainty – integrated framework

Male perception according to Error management theory

Hands-on exercises with labview program - Expected utility in SDT

Be experimenter vs be the participant

Thanks for listening, Happy to take your questions