

Another look at countable products
of searchable sets

Martin Escardo 26 Feb 2008 Theory Lab Lunch

(1) Martin Escado - Lab lunch talk 26 Feb 2008 (Another look at my LIES'2007 paper.) searchalle subset of a type X $A \subseteq X \qquad \mathcal{E} : (X \to B) \to X$ $p \longmapsto a \in A \quad \text{s.t.}$ $y \exists a \in A \cdot p(a) \text{ then } p(a_0)$ $SX \stackrel{\text{def}}{=} (X \to B) \to X$ $E \times hzusfibk \quad subset$ $Q \times = (X \to B) \to B$ $\Rightarrow \exists = (X \to B) \to B$ $\Rightarrow f = \exists a \in A - p(a)$ Proposition searchable => exhaustible $\frac{Proof}{E} \xrightarrow{SX} \xrightarrow{QX} E \xrightarrow{P} p.p(Ep) \qquad \Box$ Proposition computable images of exhaustible lets are exhaustible.

searchable searchable Proof (1) let f:X -> Y. Then = Jyef(A). q(Y) (=) JxEA. q(xx)) $f \mapsto \lambda = (x \rightarrow y) \longrightarrow (x \rightarrow y)$ $f \mapsto \lambda = (x \rightarrow y) = (\lambda x \cdot q(f(x)))$ (2) To find $y \in f(A)$ s.t. q(y), find $x \in A$ s.t. q(f(a)) and zpply f to it. $f \longrightarrow \lambda \varepsilon. \longrightarrow \lambda q. f(\varepsilon(\lambda x - p (x))).$

(2)

(This part from Barbados hotes 2004.)

Proposition Singletons (consisting of a Emputable element)
re exhaustible à searchable.

$$\begin{array}{ccc}
Proof & (1) & \times \longrightarrow & QX \\
\times & & & \lambda p. p(x)
\end{array}$$

$$\begin{array}{cccc} (z) & \times \longrightarrow & \times \times \\ & \times \longmapsto & \lambda p. \times \end{array} \qquad \Box$$

Proposition Aunion of exhaustible sets is exhaustible.

searchable searchable

Proof (1) XEUA W JAEA St. XEA

$$QQX \longrightarrow QX$$

(Z) To find $x \in UA$, find $A \in A$ s.t. $\exists a \in A$.

$$SSX \longrightarrow SX$$

$$E \mapsto \lambda p$$
, $E(\lambda \epsilon, p(\epsilon p))(p)$

17

We have two monads and a monad morphism.	
Functoriality Noturality SX SSX SMX SSX SSX SSX SSX SSX	
whit and JMX MSX JMX associationly laws. SX SX SX MX	
$SX \xrightarrow{X} QX \qquad SSX \xrightarrow{SX} QX$ $SX \xrightarrow{X} QX \qquad U. \qquad U. \qquad U.$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
X X	
So what?	
Want to derive other search algorithms from this.	
These monds are automatically strong (we are in a coc & the functor, unit, multiplication are internalized)	
Extension operator $f : X \longrightarrow SY \qquad SX \longrightarrow SY$	
$f: X \longrightarrow SY$ $SX \longrightarrow SY$ $SF \longrightarrow \mu_Y$	
This realizes the following SSY proposition-	

*

Proposition If $\{B_X \subseteq X \mid X \in X\}$ is a family of sets stable inspruly in $X \in X$ and $A \subseteq X$ is searchable, then $V = B_X$ is searchable.

Proof let $f: X \to SY$ s.t $f(x) = \mathcal{E}_{B_X}$.

Then $\mathcal{E}_{X \mid X \in A} = f^{\#}(\mathcal{E}_{A})$.

In suy ccc-moned the strength can be defined as

This redizes ?

Proposition If xeX and BSY is searchable, then {x} x B is searchable.

 $\frac{\text{Co-strength} = \text{TX} \times \text{Y} \longrightarrow \text{T(X} \times \text{Y})}{(\mathcal{E}, Y) \longmapsto (\lambda \times \mathcal{M}(X, Y))^{\#}(\mathcal{E})}$

Proposition If ASX and BSY are searchable, then so is AXB-

Proof this can be certized in two different ways because the monad is not commutative.

(i) Extend strength

 $(\mathcal{E}_{A}, \mathcal{E}_{B}) \mapsto (\lambda x. strength(x, \mathcal{E}_{B}))^{\#}(\mathcal{E}_{A})$

(ii) Extend co-strength. []

Expanding all the definitions, (i) gives the same algorithm given in LICS 2007

TX x TY ---> T(XxY)

(\mathcal{E}_{A}) \mathcal{E}_{B}) (---> let $a_{0} = \mathcal{E}_{A}(\lambda a - \mathcal{I}_{b \in B} P(a_{1}b))$ $b_{0} = \mathcal{E}_{B}(\lambda b - P(a_{0}, b))$ In (a_{0}, b_{0})

Corrosity (?) D = (co) strength $TX \times TY \longrightarrow T(X \times Y)$

 $R = \langle TT_X, TT_y \rangle$

In goven, nos + Identity. E. T = Q

 $QX = (X \rightarrow B) \rightarrow B$

But for T=S, Ros=Identity.

Is that important?

LICS' 2007 injunite product

(head, tail)

XXX

Cons

Cons

this 21so has a retraction $SX \times (SX)^{\omega} \longrightarrow SX \times SX^{\omega}$

OR:

 $TT\left(\cos\left(\varepsilon_{o},\vec{\varepsilon}\right)\right)=\cos'\left(\varepsilon_{o},TT\left(\vec{\varepsilon}\right)\right)$

It wasn't written like this in LICS' 2007, but this is equiplant.