Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Отчет по лабораторной работе №7_3 Курс: «Проектирование реконфигурируемых гибридных вычислительных систем»

Teмa: Pipeline

Выполнил студент гр. 3540901/81501		Селиверстов Я.А
	(подпись)	
Руководитель		Антонов А.П.
	(подпись)	
		2019 г.

Санкт – Петербург 2019

ОГЛАВЛЕНИЕ

1.	. Задание	3
	1.2. Исходный код	4
2.	. Решение №1.	5
	2.1 Моделирование	5
	2.2 Синтез	5
	2.3 C RTL моделирование	7
3.	. Решение №2	8
	3.1 Параметры второго решения	8
	3.2 Синтез	8
	3.3 C RTL моделирование	. 10
4.	. Решение № 3.	. 11
	4.1 Параметры третьего решения	. 11
	4.2 Синтез	. 11
	4.3 C RTL моделирование	. 13
5	Вывол	14

1. Задание

- Создать проект lab7_3
- Микросхема: ха7а12tcsg325-1q
- Создать функцию на основе приведенного ниже слайда.

```
void foo_top (in1, in2, *out1_data...) {
    accum=0;
    ...
    L1:for(i=1;i<N;i++) {
        accum = accum + in1 + in2;
    }
    *out1_data = accum;
}</pre>
```

- Создать тест lab7_3_test.c для проверки функций выше.
 - о осуществить моделирование (с выводом результатов в консоль)
- Сделать свой solution (для варианта без конвейеризации, с конвейеризацией, с конвейеризацией и rewind)
 - о задать: clock period 10; clock_uncertainty 0.1
 - о осуществить синтез
 - привести в отчете:
 - performance estimates=>summary
 - utilization estimates=>summary
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - Осуществить C|RTL моделирование (для каждого варианта задания директивы)
 - Привести результаты из консоли
 - Открыть временную диаграмму (все сигналы)
 - Отобразить два цикла обработки на одном экране
 - На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Выводы
 - Привести обобщенную таблицу зависимости utilization и performance от каждого варианта: без конвейеризации, с конвейеризацией, с конвейеризацией и rewind.
 - Объяснить отличие процедур обращения к элементам массива для каждого случая

1.2. Исходный код

Представим код программ lab7_z3.c и lab7_z3_test.c на листинге 1 и 2.

```
void foo (int in1, int in2, int *out_data) {
    int i;
    static int accum = 0;

L1: for(i = 0; i < 10; i++) {
        accum = accum + in1 + in2;
    }
    *out_data = accum;
}</pre>
```

Листинг 1.

```
#include <stdio.h>
int main() {
    int in1 = 4;
    int in2 = 6;
    int out = 0; int *o_p = &out;
    int exp_out = 100;

    foo(in1,in2,o_p);

    printf("Out %d == Exp %d\n", out, exp_out);
    if (out != exp_out) {
        fprintf(stdout, "-----ERROR-----\n");
        return -1;
    } else {
        fprintf(stdout, "-----Test Pass-----\n");
        return 0;
    }
}
```

Листинг 2.

2. Решение №1.

2.1 Моделирование

На рисунке 2.1. приведем результаты логи успешного моделировании.

Рисунок 2.1. Логи моделирования

2.2 Синтез

Результаты синтеза с оценкой производительности и используемых ресурсов представлены на рисунках 2.2 и 2.3 соответственно

Рисунок 2.2. Performance estimates – summary

Utilization Estimates						
Summary						
Name	BRAM_18K	DSP48E	FF	LUT	URAM	
DSP	-	-	-	-	-	
Expression	-	-	0	100	-	
FIFO	-	-	-	-	-	
Instance	-	-	-	-	-	
Memory	-	-	-	-	-	
Multiplexer	-	-	-	24	-	
Register	-	-	70	-	-	
Total	0	0	70	124	0	
Available	40	40	16000	8000	0	
Utilization (%)	0	0	~0	1	0	

Рисунок 2.3. Utilization estimates – summary

Диаграмма операционного расписания с указанием Latency и диаграмма оперционного просмоторщика ресурсов приведены на рисунках 2.4. и 2.5.

Рисунок 2.5. Resourse viewer

2.3 C|RTL моделирование

Результаты C|RTL приведены на рисунке 2.6.

Рисунок 2.6. Отчет о моделировании

Временная диаграмма приведена на рисунке 2.7.

Рисунок 2.7. Временная диаграмма

3. Решение №2

3.1 Параметры второго решения

Пропишем директиву PIPELINE примененную к циклу, рисунок 3.1.

Рисунок 3.1. Директива PIPELINE примененная к циклу

3.2 Синтез

Результаты синтеза с оценкой производительности и используемых ресурсов представлены на рисунках 3.2 и 3.3 соответственно.

Рисунок 3.2. Performance estimates – summary

Рисунок 3.3. Utilization estimates – summary

Диаграмма операционного расписания с указанием Latency и диаграмма оперционного просмоторщика ресурсов приведены на рисунках 3.4 и 3.5.

Рисунок 3.4. Schedule viewer

Рисунок 3.5. Resource viewer

3.3 C|RTL моделирование

Результаты C|RTL приведены на рисунке 3.6.

Рисунок 3.6. Отчет о моделировании

Временная диаграмма приведена на рисунке 3.7.

Рисунок 3.7. Временная диаграмма

4. Решение № 3.

4.1 Параметры третьего решения

Пропишем директиву PIPELINE внешнего цикла, рисунок 4.1.

Рисунок 4.1. Директива PIPELINE примененная внутри внешнего цикла

4.2 Синтез

Результаты синтеза с оценкой производительности и используемых ресурсов представлены на рисунках 4.2. и 4.3 соответственно.

Рисунок 4.2. Performance estimates – summary Utilization Estimates

■ Summary							
Name	BRAM_18K	DSP48E	FF	LUT	URAM		
DSP	-	-	-	-	-		
Expression	-	-	0	86	-		
FIFO	-	-	-	-	-		
Instance	-	-	-	-	_		
Memory	-	-	-	-	-		
Multiplexer	-	-	-	54	-		
Register	-	-	103	-	-		
Total	0	0	103	140	0		
Available	40	40	16000	8000	0		
Utilization (%)	0	0	~0	1	0		

Рисунок 4.3. Utilization estimates – summary

Диаграмма операционного расписания с указанием Latency и диаграмма оперционного просмоторщика ресурсов приведены на рисунках 4.4. и 4.5.

Рисунок 4.4. Schedule viewer

Рисунок 4.5. Resource viewer

4.3 C|RTL моделирование

Результаты C|RTL приведены на рисунке 4.6.

Рисунок 4.6. Отчет о моделировании

Временная диаграмма приведена на рисунке 4.7.

Рисунок 4.7. Временная диаграмма

5. Вывод

Функция «rewind» позволяет сократить время выполнения за счет того, что она начинает выполнение цикла верхнего уровня сразу по его завершению что и видно при сравнении решений 2 и 3. Хотя конкретно в данном случае применение директивы PIPELINE лишь ухудшило стандартное решение.

Рисунок 5.1 Сравнительный отчет решений