Corrigé Pre-examen

[Durée deux heures. Aucun document n'est autorisé. Tous les exercices sont independantes. Seule les reponses soigneusement justifiées seront prise en compte.]

Exercice 1. Soit $\lambda \colon \mathbb{N} \to [0,1]$ une probabilité sur \mathbb{N} telle que $\lambda(x) > 0$ pour tout x > 0 et telle que $\lambda(0) = 0$. On pose $\rho = \sum_{x \geqslant 1} x \lambda(x)$ (quantité éventuellement infinie). On définit une matrice de transition sur \mathbb{N} par

$$P(0, y) = \lambda(y), \quad P(x, y) = x^{-1} \mathbf{1}_{0 \le y \le x - 1}, \quad x \ge 1, y \ge 0.$$

Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov de matrice de transition P. Soit $(\mathcal{F}_n = \sigma(X_0, ..., X_n))_{n\geqslant 0}$ la filtration engendrée par $(X_n)_{n\geqslant 0}$. On pose $S_x = \inf\{n\geqslant 0: X_n = x\}$ et $T_x = \inf\{n\geqslant 1: X_n = x\}$.

- a) Calculer $\mathbb{E}[X_{n+1}|\mathcal{F}_n]$ en fonction de X_n et ρ .
- b) Montrer que la chaîne est irréductible.
- c) La chaîne est-elle apériodique?
- d) Soit $x \ge 1$. Montrer que $\mathbb{P}_x(S_0 < +\infty) = 1$. En déduire que la chaîne est récurrente.
- e) Montrer que $\rho < \infty$ est une condition suffisante de récurrence positive.
- f) On pose $u(x) = \mathbb{E}_x[S_0]$. Écrire le système d'équations satisfaites par u(x). Vérifier que ce système possède une solution donnée par

$$u(x) = \sum_{k=1}^{x} \frac{1}{k}, \quad x \geqslant 1.$$

On admettra que le système admet une seule solution.

g) En déduire que

$$\sum_{x\geqslant 2}\log(x)\,\lambda(x)<+\infty$$

est une condition nécessaire et suffisante de récurrence positive.

- h) On choisit maintenant $\lambda(x) = 1/(x(1+x))$. Vérifier que λ est bien une probabilité et calculer $\mathbb{E}_0[T_0]$.
- i) (Avec la même λ de la question précédente) Soit $x \in \mathbb{N}$, que peut-on dire sur le comportement asymptotique de $\mathbb{P}_x(X_n = 0)$ quand $n \to \infty$?

Solution. a) On a que

$$\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n)$$

$$= \begin{cases} 1/x_n & \text{si } x_n > 0 \text{ et } 0 \leqslant x_{n+1} < x_n \\ 0 & \text{si } x_n > 0 \text{ et } x_{n+1} \geqslant x_n \\ \lambda(x) & \text{si } x_n = 0 \end{cases}$$

alors

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = \mathbb{E}[X_{n+1}|X_n] = 1_{X_n > 0} \frac{1}{X_n} \sum_{x=0}^{X_n - 1} x + 1_{X_n = 0} \sum_{x \ge 1} x \lambda(x)$$

- b) Soit $0 \le y < x$, alors P(x, y) = 1/x > 0 et $P(0, y) = \lambda(y) > 0$ pour tout y > 0. Soit 0 < x < y alors P(x, 0) = 1/x et $P(0, y) = \lambda(y) > 0$ donc $P^2(x, y) > 0$. On vient de montrer que pour tout $x \ne y$ il existe n tel que $P^n(x, y) > 0$, donc la chaîne est irréductible. En effet elle est fortement irréductible car si $0 \le y \le x$ on a aussi $P^2(x, y) > P(x, 0)P(0, y) = \lambda(y)/x > 0$ et $P^2(0, y) > P(0, y + 1)P(y + 1, y) > \lambda(y + 1)/(y + 1) > 0$. Donc $P^2(x, y) > 0$ pour tout $x, y \ge 0$.
- c) On a que $P^2(0,0) > P(0,1)P(1,0) = \lambda(1) > 0$ et $P^3(0,0) = P(0,2)P(2,1)P(1,0) = \lambda(2)/2 > 0$ et donc $\{2,3\} \subseteq R(0)$ et la période de 0 est 1. Etant la chaîne irréductible tout les états ont la même période, donc la chaîne est apériodique.
- d) Pour tout $n \leq S_0$ on a que $X_{n+1} < X_n$ et donc

$$\mathbb{P}_x(S_0 > x) = \mathbb{P}_x(S_0 > x, 0 \le X_x < X_{x-1} < X_{x-2} < \dots < X_1 < X_0 = x) = 0$$

donc $\mathbb{P}_x(S_0 \leqslant x) = 1$ ce qui donne $\mathbb{P}_x(S_0 < +\infty) = 1$ pour tout x > 0. Mais par la propriété de Markov

$$\mathbb{P}_0(T_0 < +\infty) = \sum_{x>0} P(0,x) \mathbb{P}_x(S_0 < +\infty) = \sum_{x>0} \lambda(x) = 1$$

et donc la chaîne est récurrente.

e) On a $\mathbb{E}_x[S_0] \leq x$ car $\mathbb{P}_x(S_0 \leq x) = 1$. Et encore par la propriété de Markov on obtient

$$\mathbb{E}_0[T_0] = 1 + \sum_{x>0} \lambda(x) \mathbb{E}_x[S_0] \leqslant 1 + \sum_{x>0} x \lambda(x) = 1 + \rho < \infty$$

qui donne la récurrence positive dans le cas $\rho < +\infty$.

f) Par Markov on a

$$u(x) = 1 + \frac{1}{x} \sum_{y=0}^{x-1} u(y), \qquad x > 0$$

et u(0) = 0. Alors pour tout x > 0

$$1 + \frac{1}{x} \sum_{y=0}^{x-1} u(y) = 1 + \frac{1}{x} \sum_{y=1}^{x-1} \sum_{k=1}^{y} \frac{1}{k} = 1 + \frac{1}{x} \sum_{k=1}^{x-1} \sum_{y=k}^{x-1} \frac{1}{k} = 1 + \frac{1}{x} \sum_{k=1}^{x-1} \frac{x-k}{k}$$
$$= 1 + \sum_{k=1}^{x-1} \frac{1}{k} - \frac{x-1}{x} = \sum_{k=1}^{x} \frac{1}{k} = u(x).$$

Par unicité on a $\mathbb{E}_x[S_0] = \sum_{k=1}^x \frac{1}{k}$.

- g) On peut alors écrire $\mathbb{E}_0[T_0] = 1 + \sum_{x>0} \lambda(x) \mathbb{E}_x[S_0] = 1 + \sum_{x>0} \lambda(x) u(x)$ e du fait que $\lambda(x)/\log x \to 1$ pour $x \to +\infty$ on en déduit que la condition nécessaire et suffisante pour avoir $\mathbb{E}_0[T_0] < +\infty$ est que $\sum_{x>0} \log x \lambda(x) < +\infty$.
- h) On a

$$\lambda(x) = \frac{1}{x(1+x)} = \frac{1}{x} - \frac{1}{x+1}$$

et donc

$$\sum_{x \geqslant 1} \lambda(x) = \sum_{x \geqslant 1} \frac{1}{x} - \frac{1}{x+1} = 1 - \lim_{x \to +\infty} \frac{1}{x+1} = 1.$$

Alors

$$\mathbb{E}_0[T_0] = 1 + \sum_{x>0} \lambda(x)u(x) = 1 + \sum_{x\geqslant 1} \frac{1}{x(1+x)} \sum_{k=1}^x \frac{1}{k}$$

$$=1+\sum_{k\geqslant 1}\,\frac{1}{k}\sum_{x\geqslant k}\,\frac{1}{x(1+x)}=1+\sum_{k\geqslant 1}\,\frac{1}{k^2}=1+\frac{\pi^2}{6}<+\infty$$

donc la chaîne est récurrente positive.

i) La chaîne est fortement irréductible car $P^2(x, y) > 0$ pour tout x, y donc on a convergence à l'équilibre et $\lim_n P^n(x, y) = \pi(y) = 1/\mathbb{E}_y[T_y]$ pour tout $x, y \ge 0$. On obtient que

$$\lim_{n} \mathbb{P}_{x}(X_{n} = 0) = \frac{1}{\mathbb{E}_{0}[T_{0}]} = \frac{1}{1 + \pi^{2}/6}.$$

Exercice 2.

a) Soit $(M_n)_{n\geqslant 0}$ une martingale telle que $\mathbb{E}[M_n^2]<+\infty$ et soit

$$A_n = \sum_{k=1}^{n} \mathbb{E}[(M_k - M_{k-1})^2 | \mathcal{F}_{k-1}]$$

pour tout $n \ge 1$ et $A_0 = 0$. Montrer que $M_n^2 - A_n$ est une martingale.

- b) Soit $(X_n)_{n\geqslant 0}$ la marche aléatoire simple sur \mathbb{Z} (c-à-d $X_{n+1}=X_n+Z_{n+1}$ où $(Z_n)_{n\geqslant 1}$ est une suite iid telle que $\mathbb{P}(Z_n=\pm 1)=1/2$). On suppose $X_0=0$. Montrer que X_n^2-n est une martingale par rapport à la filtration engendrée par les $(X_n)_{n\geqslant 0}$.
- c) Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov sur l'ensemble fini M de matrice de transition P. Soit $f\colon M\to\mathbb{R}$. Montrer que

$$M_n = f(X_n) - f(X_0) + \sum_{k=0}^{n-1} [f(X_k) - (Pf)(X_k)], \quad n \geqslant 1$$

est une martingale par rapport à la filtration engendrée par les $(X_n)_{n\geqslant 0}$. (On rappelle que $Pf(x) = \sum_{y\in M} f(y)P(x,y)$.

d) Soit $(M_n)_{n\geqslant 0}$ la martingale introduite à la question précédente. Montrer que

$$M_n^2 - \sum_{k=0}^{n-1} [P(f^2)(X_k) - (Pf(X_k))^2], \quad n \ge 1$$

est une martingale par rapport à la filtration engendrée par les $(X_n)_{n\geqslant 0}$. (par définition $f^2(x)=(f(x))^2$ pour tout $x\in M$)

Solution. a) Voir cours.

b) Soit $Y_n = X_n^2 - n$. $Y_n \in \mathcal{F}_n$ donc il est un processus adapté. De plus $|Y_n| \leq 2n$ ce qui donne l'integrabilité. Il nous reste à vérifier la condition de martingale.

$$\Delta Y_n = X_{n+1}^2 - X_n^2 - 1 = Z_{n+1}^2 + 2X_nZ_{n+1} - 1$$

 et

$$\mathbb{E}[\Delta Y_n | \mathcal{F}_n] = \mathbb{E}[Z_{n+1}^2 + 2X_n Z_{n+1} - 1 | \mathcal{F}_n] = \mathbb{E}[Z_1^2] - 1 + 2X_n \mathbb{E}[Z_1] = 0$$

pour tout $n \ge 0$ et donc $(Y_n)_{n \ge 0}$ est une martingale.

c), d) A faire....