Dokumentation - SNP

LED Design:

6 genutzte Zeilen: (Bei 0 leuchtet keine LED in jeweiliger Zeile usw.)

PORTCO mit Sekunden-Einer (0-9)

PORTC1 mit Sekunden-Zehner (0-9)

PORTD4 mit Minuten-Einer (0-9)

PORTD5 mit Minuten-Zehner (0-9)

PORTB0 mit Stunden-Einer (0-9)

PORTB1 mit Stunden-Zehner (0-2)

Auswahlbegründung:

- Einfach darzustellen
- Leicht und schnell für Betrachter zu lesen
- Übersichtlich (andere Darstellungen können meiner Meinung nach schnell unübersichtlich werden wegen Platzmangel)

Funktionsweise:

Variablen

sekunde1	Sekunden-Einer
sekunde2	Sekunden-Zehner
minute1	Minuten-Einer
minute2	Minuten-Zehner
stunde1	Stunden-Einer
stunde2	Stunden-Zehner
counter	Schlafmoduszähler(30s)
ledcounter	Zähler für Zeitpunkt zum Ansteuern der
	Matrixzeilen

Funktionen

Inittimer0	Initialisiert den Timer0 mit einem Prescaler von
	64 (8MHz/64= 125000Hz) aktiviert Overflow
	Interrupts und setzt Register auf 256-125 (es
	entstehen 1000OVF, da 1000x125=125000)
ISR(TIMERO_OVF_vect)	Timer0 OVF Interrupt Händler, bei Auftreten
	eines OVF, setzt Register wieder auf 256 – 125
	Und erhöht den ledcounter (zählt von 0 bis 12)
Inittimer2	Initialisiert Timer2 mit einem Prescaler von
	1024, dieser wird asynchron betrieben (RTC-
	Real Timer Counter, externer Uhrenquarz) und
	im CTC (Clear on Compare) Modus betrieben,
	d.h. wenn der OCR2 Wert von 31

	(32768Hz/1024 – 1=31) erreicht wird, wird der
	Compare Interrupt Händler aufgerufen und das
	Register zurückgesetzt
ISR(TIMER2_COMP_vect)	Compare Interrupt Händler von Timer2,
	verantwortlich zum Zählen der Uhr, d.h. er
	erhöht die Sekunden, Minuten und Stunden,
	sowie den counter für den Schlafmodus
ISR(INTO_vect)	Externer Interrupt Händler, dieser setzt den
	counter für den Schlafmodus immer auf 0
	zurück und stellt den externen Interrupt wieder
	auf fallende Flanke (zeitweise lowlvl gesteuert,
	da sonst ext. Interrupt nicht im sleepmode
	funktioniert)
Aufruf(int zeit)	Aufruf wird von der Funktion zeitanzeige()
	aufgerufen um das Schieberegister zu füllen,
	dies geschieht über Clock Signale und jeweils
	das Einfügen einer 0 (leuchten) oder 1 (nicht
	leuchten), bei 1 leuchtet die Diode nicht da die
	LEDS sperren wenn von Kathoden Seite auf high
	gestellt ist.
Zeitanzeige()	Über ledcounter gesteuert, d.h. LEDs werden
.	über den Timer0 gesteuert: Z.B. wenn
	ledcounter=0 dann wird Aufruf(sekunde1)
	aufgerufen und die Zeile angemacht, dann
	wenn ledcounter=2 ist wird sie wieder
	ausgemacht, Aufruf(sekunde2) getätigt und die
	neue Zeile angemacht usw. (An machen einer
	Zeile = 1 setzen, andersrum 0(Anodenseite))
	Und nach Aufruf der Zeitanzeige jeweils immer
	Strobe an und aus am Ende um die Daten vom
	8Bit Shift Register ins 8Bit Storage Register zu
	schieben.
Clear()	Schaltet vor sleepmode sicherheitshalber alle
	Zeilen aus
Int main()	Mainfunktion wird als allererstes vom
	Programm aufgerufen: Zunächst ausschalten
	des Watchdogs um Energie zu sparen(dieser
	kümmert sich um Errors und erzeugt Interrupt
	bei Fehlern, damit der Prozessor nicht abstürzt)
	Danach werden die Ausgänge der Ports
	festgelegt, danach der externe Interrupt auf
	PORTD2 (Eingang) auf 1gesetzt und über sein
	Register initialisiert mit zunächst fallender
	Flanke, danach werden die Timer initialisiert
	und die Startzeit gesetzt, danach wird der
	Schlafmodus (powersave) gesetzt und es
	werden globale Interrupt aktiviert (sei()),
	danach geht das Programm in die while
	Schleife, in welche sich das Register der Timer
	füllt, ab 30Sekunden wird ein Schlafmodus
	geschalten, sonst wird die Uhrzeit über

Sleepmode (rund 10Mikroampere)

Sleepmode: power save, da im power down Modus der Timer2 nicht mehr an ist und in andren Sleepmodis, wie dem Idle Modus sind zu viele unnötige Clocks aktiviert, die im Schlafmodus Energie rauben.

Funktionsweise: Im Sleepmode powersave wacht die Uhr wegen des sekündigen Timer2 Interrupts für einen kurzen Moment auf, um die Uhrzeit zu bestimmen (kurzzeitige Erhöhung des Stromverbrauchs am Messgerät) und wechselt dann wieder in den sleepmode. In diesem kurzen Zeitraum ist es nur möglich einen Flanken gesteuerten, externen Interrupt auszulösen, deshalb verwendet man während des Sleepmodes den lowlvl Interrupt, damit es auch im Schlafmodus funktioniert und im aktiven Modus bei Betätigen des externen Interrupt wechselt man wieder auf die Rückflanke.