

1 Introduzione

Si desidera realizzare un dispositivo per la misura della forza.

Il principio adottato è il seguente:

- a) Generazione di un'onda rettangolare con duty cicle proporzionale alla forza.
- b) Misura del duty cicle con un segnale di "quantizzazione".
- c) Visualizzazione della forza (scala da 0 a 9) e controllo del livello massimo e minimo di forza ammissibile.
- d) Attesa prima di una nuova misurazione

Un sensore resistivo con valore proporzionale alla forza, simulato con il trimmer R21 e inserito in un ponte che funge da entrata per un amplificatore differenziale, fornisce il livello di riferimento per un comparatore su cui è immesso un segnale triangolare. All'uscita del comparatore avremo perciò un'onda rettangolare il cui duty cicle è proporzionale alla forza. Il segnale triangolare è generato con un classico sistema ad OP AMP ed è quindi raddrizzato con un raddrizzatore attivo.

Per il controllo dei livelli Min e Max si filtra il segnale con duty cicle variabile e si ottiene un livello in tensione corrispondente al duty cicle. Tale segnale è l'ingresso di un comparatore a finestra con soglie corrispondenti alle forze massima e minima ammesse.

La visualizzazione avviene su un display sette segmenti con convertitore binario/decimale.

Prima di una nuova misura si attende un tempo T generato tramite un monostabile 555.

Il dispositivo prevede pure un tempo di attesa all'accensione affinché il valore medio in entrata al comparatore a finestra sia stabilizzato (carica di una cella RC).

2 Schema di principio del dispositivo

3 Lista del materiale

Identificatore	Descrizione	N° Articolo	Fr/Pzo
R5,R28,R29	Resistenza 47K / 0.6W / 1%	71 41 40	0.26
R11,R35	Resistenza 1K2 / 0.6W / 1%	71 40 91	0.26
R15	Resistenza 1K / 0.6W / 1%	71 40 89	0.26
R16	Resistenza 33K / 0.6W / 1%	71 41 36	0.26
R19,R20,R23,R31	Resistenza 4K7 / 0.6W / 1%	71 41 07	0.26
R22	Resistenza 5K1 / 0.6W / 1%	71 41 08	0.26
R24,R26	Resistenza 100K / 0.6W / 1%	71 41 48	0.26
R3,R12	Resistenza 22K / 0.6W / 1%	71 41 32	0.26
R37	Resistenza 39K / 0.6W / 1%	71 41 38	0.26
R38	Resistenza 2K2 / 0.6W / 1%	71 40 99	0.26
R30	Resistenza 20K / 0.6W / 1%	71 41 31	0.26
R4,R6,R7,R8,R9,R10,R33,R34,R40	Resistenza 10K / 0.6W / 1%	71 41 15	0.26
R21,R39	Potenziometri 3362P 20K	74 23 20	2.40
C1,C2,C3	Condensatore 10uF/35V	80 29 59	0.32
C10	Condensatore 100uF/25V	80 24 30	0.50
C4,C8	Condensatore ceramico 100nF/50V	83 02 84	0.55
C5	Condensatore 3.3uF/100V	80 24 70	0.45
C6	Condensatore 4.7uF/100V	80 24 71	0.45
C7,C9,C11	Condensatore ceramico 10nF/50V	83 02 70	0.33
U1,U2,U4	DUAL OP AMP TL082CN, DIL8	64 16 81	0.97
U3	QUAD ANALOG COMPARATOR, DIL14	64 24 06	0.38
U5,U6	TIMER LM555, DIL8	64 42 59	0.75
Q1,Q2	Transistor BC37-25, TO-92	61 03 47	0.28
D3,D4,D5	Diodi	60 30 16	0.11
zoccoli 14 poli	Zoccolo x IC DIL14	65 05 55	0.85
zoccoli 8 poli	Zoccoli x IC DIL8	65 05 54	0.80
striscia contatti wrap 2x36	Striscia contatti wrap 2x36 poli	12 22 09	4.52
striscia contatti x wrap 36 poli	Striscia contatti wrap 36 poli	12 22 05	2.58
contatti a innesto			
R36, R32,R25, R27, R14, R13,R17,R18	Resistenze da dimensionare		0.26

Vanno montate su stift tutte le resistenze da dimensionare, i LED, i trimmer, le resistenze R3, R4 e R5, R12 e C5.

accusici di muomorrazione en 02 des /	D /040416	Attività: Proporazione ED	Data:	Allievo.

4 Layout

Zona millefori: ponti e stift wrap

Zona millefori: componenti

5 Dimensionamenti

a) Determina il valore di R36 affinché la frequenza dell'astabile U6 sia di 2350 Hz. In seguito scegli un valore compatibile (tolleranza del condensatore C9: +/- 10%)

The charge time (output high) is given by:

$$t_1 = 0.693 (R_A + R_B) C$$

And the discharge time (output low) by:

$$t_2 = 0.693 (R_B) C$$

Thus the total period is:

$$T = t_1 + t_2 = 0.693 (R_A + 2R_B) C$$

The frequency of oscillation is:

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2 R_B) C}$$

b) Determina il valore di R32+R39 per avere il tempo T_{ON} del monostabile t=0.5 secondi (+/-10%). Ricordiamo che T_{ON} =1,1.R_A.C. In seguito scegli valore per R32 nella serie E24 considerando che il trimmer R39=20K. Verifica la compatibilità con la tolleranza del condensatore (+/- 20%).

- c) Determina il valore di R25 e R27 affinché il fattore d'amplificazione di U4 sia $|A_V| = 1,6$.
- d) Determina il valore di R13 e R14 sapendo che si misurano 0,5 volt su *St14 e 4,5 volt su St13-2 (misure rispetto a massa)*.
- e) Determina dopo quanto tempo, all'inserimento del circuito, commuta l'uscita di U3D (C10 inizialmente scarico).

f) Calcola il valore di R17 e il valore di R18 affinché scorra una corrente di 10 mA nei Led DL1 e DL2

La tensione di saturazione per l'LM339 è V_{SAT}=200mV

6 Messa in servizio

- a) Collegare al bus μ LIP i moduli mLIP-input, mLIP-output e l'hardware realizzato da voi. Al momento non si collega il modulo con il micro.
- b) Togli i jumper S9, S10, S11, S12, S15 e S16 dal modulo mLIP-input; togli i jumper S5 e S6 dal modulo mLIP-output.
- c) Sull'hardware realizzato devono essere montati tutti gli IC, deve essere tolto il jumper JMP1 (il jumper JMP2 deve essere invece inserito) e devono essere inserite tutte le resistenze dimensionate in precedenza.
- d) Ora puoi alimentare l'hardware con +12V, -12V, +5V e GND.
- e) Verifica le alimentazioni di tutti gli integrati.
- f) Riporta su un oscillogramma i segnali ai punti di misura StU1-1 e StU1-7.

acaraigi di mramaragiana an 02 daa /	D /04.04.16	Attività: Proporaziona ED	Data:	Allievo:

SAMB

Scuola Arti e Mestieri

Elettronico

- g) Misura e riporta i valori in tensione su StU4-1 per la massima e per la minima escursione di R21. Disegna lo schema di misura.
- h) Agendo sul sensore (R21) rileva e riporta il valore del duty cicle su StU3-2 per i seguenti valori di U su StU3-4

U [V]	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
DC %										

- i) Riporta su un grafico la funzione DC% = f(U) in base alla tabella del punto precedente
- j) Inserisci ora il jumper JMP1 e agendo su R21 rileva per quali intervalli di valori di U su StU3-9 sono accesi:
 - a. DL1
 - b. DL2
- k) Regola R39 in modo da ottenere un tempo T_{ON} su StU5-3 di 0,5 secondi. Protocolla il segnale quando il tempo è corretto. NOTA BENE: è necessario agire su S5 e S6 del modulo uLIP INPUT per azionare il 555.
- 1) Rileva la frequenza su StQ2C. Se il risultato non è compreso nella forchetta 2350 Hz +/- 10% sostituisci la resistenza R36. Indica l'eventuale nuovo valore di R36.
- m) Rileva e riporta i valori su St14 e St13-2.
- n) Visualizza la tensione sulla resistenza R14 con l'oscilloscopio usando 2 sonde e le funzioni matematiche idonee. Mostra il risultato della misura al docente e protocolla.
- o) Riporta i segnali StU3-13 e St30 sullo stesso oscillogramma.

7 Software

7.1 Preparazione hardware

Dalla piastra mLip-Input togliere i jumper S13 e S14 (deve rimanere solo S15 che permette l'uso del pulsante S7).

Sulla piastra mLip-Output inserire i iumper S5 e S6 (permettono la trasmissione dei segnali *Trigger* e *Reset* dal PIC all'hardware da voi costruito).

I jumper S1, S2, S3, S4 devono abilitare il display 7 segmenti.

Togliere i jumper S7 e S8.

Sul mLip-Kit devono essere inserite le piastre mLip-Input e mLipOutput.

Collegare il kit EasyPIC5 al PC con il cavo USB.

Il mLip-Kit deve essere collegato alla piastra EasyPIC5 tramite adapter e cavi piatti a 10 poli e più precisamente:

- I pin 27-36 del bus mLip-Kit (Din0-Din7, GND, V_{CC}) con PORTC.
- I pin 47-56 del bus mLip-Kit (Dout0-Dout7, GND, V_{CC}) con PORTB.

Il mLip-Kit deve essere alimentato con +12V, -12V, GND. **TOGLIERE LA BOCCOLA +5V DALL'ALIMENTATORE** (il +5V è fornito dalla presa USB del PC)!

7.2 Controlli preliminari

7.2.1 Programma preliminare 1

- a) Si visualizza un 8 sul display e si attende 1 secondo
- b) Si aziona il monostabile U5 tramite il segnale Trigger: il segnale Pause va a "1".
- c) Si attende che il segnale Pause torna a "0".
- d) Si visualizza un 15₁₀ per un secondo.
- e) Si torna al punto a).

7.2.2 Programma preliminare 2

- a) Si visualizza un "8" sul display.
- b) Si chiama una funzione che attende l'azionamento di S7 e il suo rilascio.
- c) Si visualizza un 15₁₀ per un secondo.
- d) Si chiama la funzione che attende l'azionamento di S7 e il suo rilascio.
- e) Si ritorna al punto a).

l acamaini di muamamaniana an 00 daa /	D /040416	Attività: Dranaraziona ED	Data:	I Δllievo:

7.3 Programma

Il software, in linea di principio, permette di visualizzare la forza esercitata sul sensore (simulato con R21) misurando il duty cicle all'uscita di U3A (*Duty*) con il segnale *Clock* (Q2).

7.3.1 Accensione

- a) All'accensione il sistema attende che il segnale su Din2 (*Stab*) assume il valore "1". Nel frattempo (finché Din2="0", cioè *Stab*="0") sul display è visualizzato il numero "0".
- b) Quando il segnale *Stab* (Din2) è passato a "1" si esegue un conteggio da 1 a 15 sul display (incremento ogni 0,5 secondi).
- c) Si chiama una funzione che attende l'azionamento di S7 e il suo rilascio e si passa al punto 7.3.2

7.3.2 Test del segnale "Clock"

- a) Si contano i periodi del segnale *Clock*: finché il numero contato è inferiore o uguale a 2000 si visualizza sul display un 8₁₀; da 2001 a 4000 si visualizza un 7₁₀.
 Si visualizza poi un 15₁₀.
- b) Si chiama una funzione che attende l'azionamento di S7 e il suo rilascio. Si passa quindi alla fase 7.3.3;

7.3.3 Misura della forza

- a) Si misura per 2 periodi consecutivi la durata di T_{ON} del segnale Duty usando come base dei tempi il segnale Clock e in seguito si fa la media.
 - Dopo aver effettuato la misura si deve abilitare il monostabile U5 tramite il segnale Trigger. Si visualizza quindi la media del conteggio sui 2 periodi (vedi tabella).
 - Quando l'impulso del monostabile è terminato si passa al punto 7.3.3.b).
- b) Se S7 è a "1" (uLip Input) si attende che torna a "0" e si passa al punto 7.3.1 altrimenti si ricomincia dal punto 7.3.3.a).

7.3.4 Compiti

- a) Implementare il punto 7.2.1 e mostrare il funzionamento al docente. Salvare.
- b) Implementare il punto 7.2.2 e mostrare il funzionamento al docente. Salvare.

SAMB

Scuola Arti e Mestieri

Elettronico

- c) Realizzare un diagramma di flusso per il punto 7.3.1 (<u>dopo l'azionamento di S7 si ripete il</u> punto 7.3.1.a)
- d) Implementare il diagramma di flusso con MikroC.
- e) Verificarne il funzionamento e mostrare al docente.
- f) Salvare questa versione con il nome *PE_07_1*
- g) Realizzare un diagramma di flusso per il punto 7.3.2 (<u>dopo l'azionamento di S7 si ripete il</u> punto 7.3.2.a)
- h) Implementare il diagramma di flusso con MikroC.
- i) Verificarne il funzionamento e mostrare al docente.
- j) Salvare con il nome PE_07_2
- k) Realizzare un diagramma di flusso di massima per il punto 7.3.3 (<u>il programma va eseguito</u> come ciclo senza fine).
- 1) Implementare l'aggiunta in MikroC del punto 7.3.3
- m) Verificarne il funzionamento e mostrare al docente
- n) Salvare con il nome **PE 07 3**
- o) Unire ora le tre parti per ottenere il funzionamento come descritto dal punto 7.3.1 al punto 7.3.3
- p) Verificarne il funzionamento e mostrare al docente.
- q) Salvare con il nome **PE_07**