Практические работы по физике

Вадим Соснин, Хазин Антон Группа: Б13-403

3 семестр

Содержание

1 Задача М1. Бросок камня под углом к горизонту.

2

1 Задача M1. Бросок камня под углом к горизонту.

Условие задачи

Камень бросают под углом к горизонту в земном поле тяжести с некоторой начальной скоростью. Составьте программу, которая численно решала бы дифференциальное уравнение движения камня, рассчитывая его траекторию движения и определяла бы точку падения. Исследуйте, как изменяется характер траектории при различных начальных параметрах броска (угол, начальная скорость, коэффициент сопротивления). Для силы сопротивления воздуха рассмотрите две модели: а) вязкое трение, пропорциональное скорости $(F \sim v)$, б) лобовое сопротивление, пропорциональное квадрату скорости $(F \sim v^2)$. Там, где это возможно, сравните результаты расчётов с теоретическими.

Решение

Распишем второй закон Ньютона в векторном виде: $m\vec{v}=m\vec{g}-k\vec{v}$. Спроецируем на ось x и y:

$$\begin{cases} m\dot{v}_x = 0 - kv_x \\ m\dot{v}_y = -mg - kv_y \end{cases}$$

Введем обозначение $\beta=\frac{k}{m}$. Поделим оба уравнения на массу m. Далее решим эти уравнения:

$$\begin{cases} dv_x = \beta v_x \cdot dt \\ \frac{dv_y}{dt} = -g - \beta v_y \end{cases} \Longrightarrow \begin{cases} \int \frac{dv_x}{v_x} = -\int \beta \cdot dt \\ \int \frac{dv_y}{-g - \beta v_y} = \int dt \end{cases} \Longrightarrow \begin{cases} \ln|v_x| = -\beta t + C \\ \frac{-1}{\beta} \ln|g + \beta v_y| = t + C \end{cases}$$

Получаем уравнения для скорости:

$$\begin{cases} v_x = v_{0x} \cdot e^{-\beta t} \\ v_y = \frac{\beta \cdot v_{0y} + g}{\beta} \cdot e^{-\beta t} - \frac{g}{\beta} \end{cases}$$

Найдем уравнения изменения координат:

$$\begin{cases} \frac{dx}{dt} = v_{0x} \cdot e^{-\beta t} \\ \frac{dy}{dt} = \frac{\beta \cdot v_{0y} + g}{\beta} \cdot e^{-\beta t} - \frac{g}{\beta} \end{cases} \implies \begin{cases} x = -\frac{v_{0x}}{\beta} \cdot e^{-\beta t} + C \\ y = \frac{\beta \cdot v_{0y} + g}{\beta} \cdot e^{-\beta t} - \frac{g}{\beta} t + C \end{cases}$$

$$\begin{cases} x = -\frac{v_{0x}}{\beta} \cdot e^{-\beta t} + C \\ y = \frac{\beta \cdot v_{0y} + g}{\beta} \cdot e^{-\beta t} - \frac{g}{\beta} t + C \end{cases} \implies \begin{cases} x = (1 - e^{-\beta t}) \cdot \frac{v_{0x}}{\beta} + x_0 \\ y = (1 - e^{-\beta t}) \cdot \frac{\beta \cdot v_{0y} + g}{\beta^2} - \frac{g}{\beta} t + y_0 \end{cases}$$

Итоговые уравнения зависимости координат от времени:

$$\begin{cases} x = (1 - e^{-\beta t}) \cdot \frac{v_0 \cos \alpha}{\beta} + x_0 \\ y = (1 - e^{-\beta t}) \cdot \frac{\beta \cdot v_0 \sin \alpha + g}{\beta^2} - \frac{g}{\beta}t + y_0 \end{cases}$$

Сравнение аналитического решения с результатами моделирования

Далее приведена таблица, в которой сравниваются показатели аналитического решения задачи с показателями этой же задачи смоделированной на компьютере используя библиотеки Python. В таблице приведены 7 экспериментов включая эксперимент №0 без сопротивления среды.

В экспериментах №5-6 показан запуск стального ядра массой 1 кг с различными видами коэффициентов сопротивления. Коэффициент сопротивления формы шара равен вычисляется по формуле: $k_{\text{лоб}} = \frac{C_f \rho_a S}{2} =$

 $=\frac{0.47\cdot 1.225\cdot 0.18}{2}\approx 0.05$. Для наглядности сравнения возьмем коэффициент вязкого трения таким же, как и лобовое.

Таблица 1: Сравнение теоретических и смоделированных показателей полета

Nº	Macca	α	v	l _a	клоб	Теор. показатели		Моделирование	
	(кг)	(градусы)	(M/c)	$k_{\text{вяз}}$		Длина (м)	Высота (м)	Длина (м)	Высота (м)
Опыт №0	1	45.0	100	0	0	1020.3	225.1	1020.5	255.1
Опыт №1	1	45.0	100	0.5	0	139.9	81.5	139.9	81.5
Опыт №2	1	45.0	100	0.2	0	312.7	134.7	312.9	134.7
Опыт №3	1	22.5	100	0.2	0	333.5	49.9	335.1	49.3
Опыт №4	1	22.5	50	0.2	0	116.0	14.9	116.3	14.9
Опыт №5	1	30	100	0.05	0	651.9	109.3	652.8	109.3
Опыт №6	1	30	100	0	0.05	-	-	50.8	15.4

Вывод: Данный эксперимент показал зависимость траектории полета камня от начальных условий. Значения полученные с использованием модели практически не отличаются от значений полученных аналитическим методом.