Chapitre 14. Dérivation

Cadre : Dans tout le chapitre, *I* est un intervalle.

(même si les résultats généraux s'étendent à des parties de $\mathbb R$ quelconques, pourvu que $a \in I$ ne soit pas <u>isolé</u> dans I, càd pourvu que $a \in \overline{I \setminus \{a\}}$)

1 Généralités

1.1 Définition

Définition 1.1. Soit $a \in I$ et $f : I \to \mathbb{R}$

* On définit la fonction taux d'accroissement de f en a :

$$\tau_{[f;a]}: \begin{cases}
I \setminus \{a\} \to \mathbb{R} \\
x \mapsto \frac{f(x) - f(a)}{x - a}
\end{cases}$$

* La fonction f est <u>dérivable en a</u> si $\tau_{[f;a]}$ possède une limite finie en a. Si c'est le cas, on définit le nombre dérivé :

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

* La fonction est <u>dérivable</u> si elle est dérivable en tout point de I On note $D^1(I) = D^1(I; \mathbb{R})$ l'ensemble des fonctions dérivables.

Proposition 1.2. Soit $f: I \to \mathbb{R}$ et $a \in I$. LASSÉ:

- (i) f est dérivable en a.
- (ii) Il existe une fonction $\kappa: I \to \mathbb{R}$ continue en a et telle que $\forall x \in I$, $f(x) = f(a) + \kappa(x)(x-a)$
- (iii) Il existe $\nu \in \mathbb{R}$ et une fonction $\eta : I \to \mathbb{R}$ telle que $\begin{cases} \forall x \in I, f(x) = f(a) + \nu(x-a) + (x-a)\eta(x) \\ \eta(x) \xrightarrow[x \to a]{} 0 \end{cases}$
- (iv) Il existe $\nu \in \mathbb{R}$ et une fonction $\varepsilon : I_a \to \mathbb{R}$ telle que $\begin{cases} \forall h \in I_a, \, f(a+h) = f(a) + \nu h + h \varepsilon(h) \\ \varepsilon(h) \xrightarrow[h \to 0]{} 0 \end{cases}$

Si c'est le cas, on a $f'(a) = \kappa(a) = \nu$

Proposition 1.3. Soit $f: I \to \mathbb{R}$

Si f est dérivable en $a \in I$ alors elle est continue en a. On a donc $D^1(I) \subseteq C^0(I)$

1.2 Caractère local de la dérivabilité

Proposition 1.4. Soit f, g : $I \to \mathbb{R}$ qui coïncident au voisinage de $a \in I$ Alors f est dérivable en a ssi g l'est. Si c'est le cas, f'(a) = g'(a)

1.3 Dérivées à gauche et à droite

Définition 1.5. Soit $f: I \to \mathbb{R}$ et $a \in I$

* (Si a n'est pas l'extrémité gauche de I), on dit que f est <u>dérivable</u> à <u>gauche</u> en a si $\tau_{[f;a]}$ admet une limite finie par valeurs inférieures en a. Si c'est le cas, on note

$$f'_{g}(a) = \lim_{\substack{x \to a \\ x < a}} \frac{f(x) - f(a)}{x - a}$$

1

* Idem à droite, avec

$$f'_d(a) = \lim_{\substack{x \to a \\ x > a}} \frac{f(x) - f(a)}{x - a}$$

(Si cette limite existe)

1.4 Opérations

Proposition 1.6. Soit $f, g : I \to \mathbb{R}$, $a \in I$ et $\lambda \in \mathbb{R}$

- * Si f est dérivable en a, λf aussi et $(\lambda f)'(a) = \lambda f'(a)$
- * Si f est dérivable en a, f + g aussi et (f + g)'(a) = f'(a) + g'(a)
- * Si f et g sont dérivables en a, f g aussi et

$$(fg)'(a) = f'(a)g(a) + f(a)g'(a)$$

* Si f et g sont dérivables en a et que $g(a) \neq 0$, $\frac{f}{g}$ aussi et

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

Corollaire 1.7. Si $f,g:I\to\mathbb{R}$ sont dérivables et que $\lambda\in\mathbb{R}$

- * λf , f + g, fg sont dérivables.
- * Si en outre, g ne s'annule pas sur I, $\frac{f}{g}$ est dérivable.

Corollaire 1.8. $D^1(I)$ est un sous-algèbre de $C^0(I)$ (ou de \mathbb{R}^I), càd un sous-anneau stable par opération linéaire.

Proposition 1.9 (Dérivation des fonctions composées, ou "chain rule").

Soit $I, J \subseteq \mathbb{R}$ deux intervalles et $f : I \to J, g : J \to \mathbb{R}$

- * Soit $a \in I$. Si f est dérivable en a et que g est dérivable en f(a), alors $g \circ f$ est dérivable en a et $(g \circ f)'(a) = g'(f(a))f'(a)$
- * Si f et g sont dérivables, $g \circ f$ aussi et $(g \circ f)' = (g' \circ f)f'$

1.5 Critère de dérivabilité des fonctions réciproques

Proposition 1.10. Soit $I, J \subseteq \mathbb{R}$ deux intervalles, $f : I \to J$ une bijection dérivable, $a \in I$ et $b = f(a) \in J$ Alors f^{-1} est dérivable en b ssi $f'(a) \neq 0$

Si c'est le cas, on a

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}$$

2 Théorèmes principaux

2.1 Extrema locaux

Définition 2.1. Soit $f: I \to \mathbb{R}$ et $a \in I$

- * On dit que f possède un minimum local en a s'il existe $\delta > 0$ tel que $\forall x \in I, |x a| \le \delta \implies f(x) \ge f(a)$
- * On dit que f possède un maximum local en a s'il existe $\delta > 0$ tel que $\forall x \in I, |x a| \le \delta \implies f(x) \le f(a)$

On dit que f possède un extremum local en a si elle possède un minimum ou un maximum local en a.

Définition 2.2. Un élément $a \in I$ est dit intérieur s'il n'est pas une extrémité de I.

Théorème 2.3. Soit $f: I \to \mathbb{R}$ dérivable.

Soit $a \in I$ un point intérieur en lequel f admet un extremum local. Alors f'(a) = 0

Théorème 2.4. Soit $f: I \to \mathbb{R}$ et $a \in I$ intérieur.

Si f est dérivable en a et qu'elle admet un extremum local en a, alors f'(a) = 0

Définition 2.5. Un point $a \in I$ où $f : I \to \mathbb{R}$ est dérivable et tel que f'(a) = 0 s'appelle un <u>point critique</u> (ou un point stationnaire) pour f.

2.2 Théorème de Rolle et des accroissements finis

Théorème 2.6 (Théorème de Rolle). Soit $f : [a, b] \to \mathbb{R}$ continue et dérivable en tout point de]a, b[Si f(a) = f(b) alors il existe $c \in]a, b[$ tel que f'(c) = 0

Théorème 2.7 (Théorème des accroissements finis). Soit $f : [a, b] \to \mathbb{R}$ continue, dérivable en tout point de [a, b]

Alors il existe $c \in [a, b]$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

<u>Interprétation cinématique</u> : Dans un mouvement rectiligne, la vitesse instantanée vaut, à un certain moment, la vitesse moyenne.

2.3 Monotonie et signe de la dérivée

Théorème 2.8. Soit $f: I \to \mathbb{R}$ dérivable. Alors :

- * f est constante ssi f' = 0
- * f est croissante ssi $f' \ge 0$
- * f est strictement croissante ssi $f' \ge 0$ et que la restriction de f' à tout intervalle non trivial est non nulle.

Corollaire 2.9. Soit $f \in C^0(I)$

Si f' > 0 sur I, sauf éventuellement en un nombre fini de points, alors f est strictement croissante.

2.4 Inégalité des accroissements finis

Proposition 2.10. Soit $f: I \to \mathbb{R}$ dérivable et $k \in \mathbb{R}$ tel que $\forall x \in I$, $|f'(x)| \le k$ Alors $\forall x, y \in I$, $|f(y) - f(x)| \le k|y - x|$

Définition 2.11. Soit $f: I \to \mathbb{R}$

- * Pour $k \in \mathbb{R}_+$, on dit que f est k-lipschitzienne si $\forall x, y \in I$, $|f(y) f(x)| \le k|y x|$
- * On dit que f est lipschitzienne s'il existe $k \in \mathbb{R}_+$ telle que f soit k-lipschitzienne.
- * On dit que f est une contraction s'il existe $k \in [0,1]$ telle que f soit k-lipschitzienne.

Proposition 2.12 ("Reformulation" de l'inégalité des accroissements finis). Soit $f: I \to \mathbb{R}$ dérivable.

- * Pour tout $k \in \mathbb{R}_+$, f est k-lipschitzienne ssi $\forall x \in I$, $|f'(x)| \leq k$
- * f est lipschitzienne ssi f' est bornée.

2.5 Théorème de la limite de la dérivée

Théorème 2.13. Soit $f: I \to \mathbb{R}$ continue et $a \in I$.

On suppose que:

- * f est dérivable en tout point de $I \setminus \{a\}$
- $* f'(x) \xrightarrow[x \neq a \\ x \neq a]{} l \in \mathbb{R}$

Alors f est dérivable en a, et f'(a) = l

Théorème 2.14. Soit $f \in C^0(I)$, $a \in I$ tel que f dérivable sur $I \setminus \{a\}$ et $f'(x) \xrightarrow[\substack{x \to a \\ x \neq a}]{} \pm \infty$

Alors

$$\frac{f(a+h)-f(a)}{h} \xrightarrow[h\to 0]{} \pm \infty$$

En particulier, f' n'est pas dérivable.

3 Fonction de classe C^n

3.1 Généralités

On rappelle que, pour $n \ge 1$, on peut considérer l'ensemble $D^n(I) = D^n(I; \mathbb{R})$ des fonctions n fois dérivables. Si $f \in D^n(I)$, on note $f^{(n)}$ la dérivée n-ième de f.

Définition 3.1.

- * $f: I \to \mathbb{R}$ est dite <u>de classe C^n </u> si elle est n fois dérivable et que $f^{(n)}$ est continue.
- * $f: I \to \mathbb{R}$ est dite lisse ou de classe C^{∞} si elle est n fois dérivable pour tout $n \ge 1$.

On note $C^n(I) = C^n(I; \mathbb{R})$ et $C^{\infty}(I) = C^{\infty}(I; \mathbb{R})$ les ensembles continues de ces fonctions. Comme une fonction dérivable est continue, on a :

...
$$\subseteq D^3(I) \subseteq C^2(I) \subseteq D^2(I) \subseteq C^1(I) \subseteq D^1(I) \subseteq C^0(I) \subseteq \mathbb{R}^I$$

et on a
$$C^{\infty}(I) = \bigcap_{n \in \mathbb{N}^*} D^n(I) = \bigcap_{n \in \mathbb{N}} C^n(I)$$

3.2 Fonctions continûment dérivables

Remarque : "Continûment dérivable" = "de classe C^1 "

Proposition 3.2 (Théorème de la limite de la dérivée, version C^1). Soit $f \in C^0(I)$ et $a \in I$ Si $f_{|I\setminus \{a\}}$ est de classe C^1 et que $f'(x) \xrightarrow[x \neq a]{x \to a} l$ alors $f \in C^1(I)$ et f'(a) = l

Proposition 3.3. Soit $f \in C^1([a,b])$

Alors f est lipschitzienne.

Proposition 3.4. Soit $f \in C^1(I; \mathbb{R})$ et $a \in I$ tel que f'(a) > 0

Alors *f* est strictement croissante au voisinage de *a*.

3.3 Opérations algébriques

Proposition 3.5. Soit $f,g:I\to\mathbb{R}$ de classe C^n (resp. n fois dérivables) et $\lambda\in\mathbb{R}$

- * Alors λf est de classe C^n (resp. n fois dérivable) et $(\lambda f)^{(n)} = \lambda f^{(n)}$
- * Alors f + g est de classe C^n est $(f + g)^{(n)} = f^{(n)} + g^{(n)}$
- * (Formule de Leibniz) fg est de classe C^n et

$$(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$$

Corollaire 3.6. $C^n(I)$ et $D^n(I)$ sont des sous-algèbres de \mathbb{R}^I

(rappel: des sous-anneaux stables par combinaison linéaire)

Par intersection, il en va de même de $C^{\infty}(I)$

3.4 Composition et réciproque

Théorème 3.7. Soit I et J deux intervalles de \mathbb{R} et $f:I\to J$ et $g:J\to\mathbb{R}$ de classe C^n (resp. n fois dérivables). Alors $g\circ f$ est de classe C^n .

Théorème 3.8. Soit $n \in \mathbb{N}^*$ et $f \in C^n(I)$ telle que f' ne s'annule pas.

Alors f induit une bijection de I sur un intervalle J et $f^{-1}: J \to I$ est de classe C^n .

4 Brève extension aux fonctions à valeurs complexes

4.1 Généralités

Définition 4.1. Soit $f: I \to \mathbb{C}$ et $a \in I$

La fonction f est dérivable en a si $x\mapsto \frac{f(x)-f(a)}{x-a}$ possède une limite $(\in\mathbb{C})$ quand $x\to a$ Si c'est le cas, cette limite est $f'(a)\in\mathbb{C}$

Proposition 4.2. Soit $f: I \to \mathbb{C}$ et $c \in I$

La fonction f est dérivable en a ssi Re f, Im $f : I \to \mathbb{R}$ le sont.

Si c'est le cas,
$$(f')(a) = \text{Re}(f)'(a) + i \text{Im}(f)'(a)$$
 (autrement dit : $\text{Re } f'(a) = (\text{Re } f)'(a)$, etc...).

S'étendent sans difficulté au cadre complexe : le caractère local, les théorèmes d'opération et la notion de fonction de classe C^n : on obtient des ensembles $D^n(I,\mathbb{C})$, $C^n(I,\mathbb{C})$, $C^\infty(I,\mathbb{C})$.

$$\underline{\text{Rappel}}: \text{On a vu au chapitre 5 que } \begin{cases} \mathbb{R} \to \mathbb{C} \\ x \mapsto e^{\alpha x} \quad (\alpha \in \mathbb{C}) \end{cases} \text{ est dérivable, de dérivée } x \mapsto \alpha e^{\alpha x}.$$

Par une récurrence immédiate, c'est juste une fonction lisse.

En revanche, notre section B s'écroule :

- * La notion d'extremum n'a plus de sens
- * L'énoncé du théorème de Rolle aurait un sens, mais il est faux.

Par exemple :
$$f: \begin{cases} \mathbb{R} \to \mathbb{C} \\ t \mapsto e^{it} \end{cases}$$
 est lisse, vérifie $f(0) = f(2\pi)$ et pourtant $f': t \mapsto ie^{it}$ ne s'annule jamais (on a même $|f'| = 1$)

Rolle et TAF sont fondamentalement des théorèmes en dimension 1.

4.2 Inégalité des accroissements finis

Le programme officiel énonce l'inégalité des accroissements finis pour $f \in C^1(I, \mathbb{C})$ avec la démo suivante (qu'on comprendra plus tard).

Proposition 4.3. Si $\forall t \in [a, b], |f'(t)| \leq k$, on a

$$|f(b)-f(a)| = \left|\int_a^b f'(t) dt\right| \le \int_a^b |f'(t)| dt \le \int_a^b k dt \le k|b-a|$$

En fait, l'inégalité des accroissements finis reste vraie, pour $f \in D^1(I, \mathbb{C})$