#### **Problem Statement:**

New York City is a thriving metropolis. Just like most other metros that size, one of the biggest problems its citizens face is parking. The classic combination of a huge number of cars and cramped geography is the exact recipe that leads to a huge number of parking tickets.

In an attempt to scientifically analyse this phenomenon, the NYC Police Department has **collected data for parking tickets**. For the scope of this analysis, we wish to analyse the parking tickets over the year 2017.

### **Location In HDFS:**

The data for this case study has been placed in HDFS at the following path: 'common\_folder/nyc\_parking/Parking\_Violations\_Issued\_-\_Fiscal\_Year\_2017.csv'

#### **Assumptions:**

- As mentioned in the Up-grad portal, to consider the data for the 2017 Year alone, So, considered only 2017 Year (i.e. date range from 2017-01-01 to 2017-12-31).
- Removed all the rows, if any rows have the Null Values but Didn't find any such for the 2017 Year.
- Removing the Duplicate records, if the dataset contains as such for the Year 2017 but didn't find any as such for 2017 Year.
- Based on the Violation Time, Divided the Violation Time to Time Bins into 6 equal Bins by considering as 24 hrs clock as below:
  - 1. 0-3
  - 2. 4-7
  - 3. 8-11
  - 4. 12-15
  - 5. 16-19
  - 6. 20-23
- Based on the Month of the Issue date, Divided the Issue date to Time Bins into 4 equal as below:
  - 1. Mar-May → Spring
  - 2. Jun-Aug  $\rightarrow$  Summer
  - 3. Sep-Nov → Autumn
  - 4. Dec-Feb → Winter
- I have taken the Average of the TWO fines (The fines are based on the two different categories) to calculate the total amount collected by NYC Police Department.

#### EDA:

- After filtering the entire dataset for 2017 alone, Didn't Find any Null values in the entire 2017 Dataset.
- After filtering the entire dataset for 2017 alone, Didn't Find any duplicates in the entire 2017 Dataset.
- Didn't find any numeric entry with '99' in the Registration State and hence not replaced with any values.
- There are total **10803028** records in the entire dataset.
- After filtering for 2017 Year alone, there are **5431909** records.
- Created the Temporary views for the further Analysis.

#### **ANALYSIS:**

#### 1. Examine the data

1.1. Find the total number of tickets for the year.



1.2. Find out the number of unique states from where the cars that got parking tickets

came from.

- Didn't find any numeric entry with '99' in the Registration State and hence not replaced with any values.
- 1.2.1. Find out the number of tickets from each unique states where the cars that got parking tickets came from(ONLY FOR TOP 5 STATES).

| Registration_State | Ticket_count |
|--------------------|--------------|
| NY                 | 4273944      |
| NJ                 | 475824       |
| PA                 | 140285       |
| СТ                 | 70403        |
| FL                 | 69468        |



## 2. Aggregation tasks

## 2.1. How often does each violation code occur? Display the frequency of the top five violation codes.

| Violation_Code | count  |
|----------------|--------|
| 21             | 768085 |
| 36             | 662765 |
| 38             | 542079 |
| 14             | 476664 |
| 20             | 319644 |



## 2.2. How often does each 'vehicle body type' get a parking ticket? How about the

'vehicle make'? . (Hint: find the top 5 for both)

## vehicle body type:

| Vehicle_Body_Type | Number_of_Tickets |
|-------------------|-------------------|
| SUBN              | 1883953           |
| 4DSD              | 1547312           |
| VAN               | 724027            |
| DELV              | 358984            |
| SDN               | 194191            |



## vehicle make :

| Parking_Ticket | Vehicle_Make |
|----------------|--------------|
| 636843         | FORD         |
| 605288         | ТОҮОТ        |
| 538884         | HONDA        |
| 462017         | NISSA        |
| 356031         | CHEVR        |



## 2.3. Top five Precinct Zone where violation occurred and where ticket was issued.

• While doing the analysis, we come across the Zone value as "0", which we considered as erroneous. We ignored that value and did the analysis.

## **Violation Precinct:**

| Violation_Precinct | Number_of_Tickets |
|--------------------|-------------------|
| 19                 | 274444            |
| 14                 | 203553            |
| 1                  | 174702            |
| 18                 | 169131            |
| 114                | 147444            |



## <u> Issuer Precinct :</u>

| Issuer_Precinct | Number_of_Tickets |
|-----------------|-------------------|
| 19              | 266961            |
| 14              | 200495            |
| 1               | 168740            |
| 18              | 162994            |
| 114             | 144054            |



# 2.4. Violation Code frequency across three Precincts which have issued to the greatest number of tickets. Considering top 5 Violation Code across each Precincts

2.4.1. The violation code frequency across three precincts With Respect to top 3 Issuer\_Precinct.

| check_wrt_Issuer_Precinct | Violation_Code |
|---------------------------|----------------|
| 113187                    | 14             |
| 68869                     | 46             |
| 48190                     | 38             |
| 43782                     | 37             |
| 39046                     | 69             |
| 33499                     | 21             |

2.4.2. The violation code frequency across three precincts With Respect to top 3 Violation\_Precinct.

| check_wrt_Violation_Precinct | Violation_Code |
|------------------------------|----------------|
| 116487                       | 14             |
| 72730                        | 46             |
| 49364                        | 38             |
| 44219                        | 37             |
| 39057                        | 69             |
| 35472                        | 21             |

2.4.3 Violation Code frequency across three Precincts which have issued to the greatest number of tickets. Considering top 5 Violation Code across each Precincts

| check_wrt_Issuer_Precinct | Violation_Code  | Issuer_Precinct |
|---------------------------|-----------------|-----------------|
| <mark>48445</mark>        | <mark>46</mark> | <mark>19</mark> |
| <mark>36386</mark>        | <mark>38</mark> | <mark>19</mark> |
| <mark>36056</mark>        | <mark>37</mark> | <mark>19</mark> |
| <b>29797</b>              | <mark>14</mark> | <mark>19</mark> |
| <b>28415</b>              | 21              | <mark>19</mark> |
| 45036                     | 14              | 14              |
| 22555                     | <mark>31</mark> | <mark>14</mark> |
| 18364                     | <mark>47</mark> | <mark>14</mark> |
| 10027                     | <mark>42</mark> | <mark>14</mark> |
| <b>7679</b>               | <mark>46</mark> | <mark>14</mark> |
| 38354                     | <mark>14</mark> | 1               |
| 19081                     | <mark>16</mark> | 1               |
| <b>15408</b>              | <mark>20</mark> | 1               |
| 12745                     | <mark>46</mark> | 1               |
| <b>8535</b>               | 38              | 1               |

• The Violation codes have high frequencies doesn't have common across precincts. e.g.: The precinct 19 has large no. of tickets for violation code 46 but for precinct 14 and 1 has large no. of tickets for violation code 14.



- 2.5. You'd want to find out the properties of parking violations across different times of the day:
  - 2.5.1. Find a way to deal with missing values, if any.
  - Didn't Found any missing Values for the year 2017 and hence didn't deal anything with that.
  - 2.5.2. The Violation Time field is specified in a strange format. Find a way to make this into a time attribute that you can use to divide into groups. Divide 24 hours into six equal discrete bins of time. The intervals you choose are at your discretion.
- Based on the Violation Time, Divided the Violation Time to Time Bins into 6 equal Bins by considering as 24 hrs clock as below:
  - 0-3
  - 4-7
  - 8-11
  - 12-15
  - 16-19
  - 20-23

## 2.5.3. For each of these groups, find the three most commonly occurring violations.

| Violation_Code | Time_Bin | ticket_freq |
|----------------|----------|-------------|
| 21             | 0-3      | 36957       |
| 40             | 0-3      | 25866       |
| 78             | 0-3      | 15528       |
| 40             | 4-7      | 60652       |
| 21             | 4-7      | 57897       |
| 14             | 4-7      | 74114       |
| 36             | 8-11     | 348165      |
| 38             | 8-11     | 176570      |
| 36             | 12-15    | 286284      |
| 38             | 12-15    | 240721      |
| 37             | 12-15    | 167025      |
| 38             | 16-19    | 102855      |
| 14             | 16-19    | 75902       |
| 37             | 16-19    | 70345       |
| 7              | 20-23    | 26293       |
| 40             | 20-23    | 22337       |
| 14             | 20-23    | 21045       |
| 21             | 8-11     | 598067      |



2.5.4. For the three most commonly occurring violation codes, find the most common time of the day (in terms of the bins)

| Violation_Code | Time_Bin | total_tickets |
|----------------|----------|---------------|
| 21             | 8-11     | 598067        |
| 36             | 8-11     | 348165        |
| 36             | 12-15    | 286284        |
| 38             | 12-15    | 240721        |



## 2.6. Find some seasonality in this data

- 2.6.1. divide the year into some number of seasons, and find frequencies of tickets for each season.
- Based on the Month of the Issue date, Divided the Issue date to Time Bins into 4 equal as below:
  - Mar-May → Spring
    Jun-Aug → Summer
    Sep-Nov → Autumn
  - 4. Dec-Feb → Winter

| season | no_of_tickets |
|--------|---------------|
| Spring | 2873383       |
| Winter | 1704681       |
| Summer | 852866        |
| Autumn | 979           |



## 2.6.2. Find the three most common violations for each of these seasons

| Violation_Code | season | count  |
|----------------|--------|--------|
| 21             | Spring | 402424 |
| 36             | Spring | 344834 |
| 38             | Spring | 271167 |
| 21             | Winter | 238181 |
| 36             | Winter | 221268 |
| 38             | Winter | 187386 |
| 21             | Summer | 127352 |
| 36             | Summer | 96663  |
| 38             | Summer | 83518  |
| 21             | Autumn | 128    |
| 38             | Autumn | 8      |



#### 2.7. Estimating that for the three most commonly occurring codes.

2.7.1. Find total occurrences of the three most common violation codes.

| Violation_Code | ticket_freq_wrt_VC |
|----------------|--------------------|
| 21             | 768085             |
| 36             | 662765             |
| 38             | 542079             |

2.7.2. Find the Average fines for the three most common violation codes.

| Violation_Code | Avg_fines |
|----------------|-----------|
| 21             | 55        |
| 38             | 50        |
| 36             | 50        |

2.7.3. Find the total amount collected for the three violation codes with maximum tickets.

| Violation_Code | ticket_freq_wrt_VC | Avg_fines | total_amt_collected |
|----------------|--------------------|-----------|---------------------|
| 21             | 768085             | 55        | 42244675            |
| 36             | 662765             | 50        | 33138250            |
| 38             | 542079             | 50        | 27103950            |

## 2.7.4. What can you intuitively infer from these findings?

- Violation Code "21" (Street Cleaning: No parking where parking is not allowed by sign, street marking or traffic control device.) has the maximum collection of amount \$ 42244675 for the 2017 Year alone.
- NYC Police Department are getting the major revenue from the unparking Areas where the People are parking and tickets are getting issued.
- Violation Code "36" (Exceeding the posted speed limit in or near a designated school zone.) has the next major collection of amount \$ 33138250 for the 2017 Year alone followed by the Violation Code "21".
- Next Major revenue getting to NYC Police Department is by Exceeding the Speed limits followed by the Parking Violation.

•