

Syllabus Honour Programme in Internet of Things

(Programme commenced from AY 2024-25) (Department of Electronics and Computer Engineering)

From Academic Year 2024-25 (SVU-KJSCE 2.0)

(Approved by BOS date	ed, FOET dated _	
and AC dated _	, Item No)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Honour Programme in the Internet of Things

Offered by the Department of Electronics and Computer Engineering

Introduction

The Fourth Industrial Revolution, or Industry 4.0, brings digital and physical technologies together to create responsive, interconnected operations. From the supply chain to the smart factory, enterprises are using AI, robotics, edge computing, and the cloud to make informed, timely decisions. Solutions designed for the Industrial Internet of Things (IIoT) use connected sensors and edge devices to help improve product quality and factory operational efficiency in real-time.

Objective

- Understand the various market segments and the potential revenue opportunities in each market segment
- Plan for and develop a solid security approach to keep advisories from hacking an IIoT system
- Staff a project and then plan and execute a product schedule
- What Industry 4.0 is and what factors have enabled the IIoT.

Learning Outcomes:

At the successful completion of this minor program an engineering graduates will be able to

LO1: Understand the basic concepts of IoT and smart factory

LO2: Develop industrial applications using PLC, SCADA

Eligibility Criteria:

The candidate should have completed Basic Electrical & Electronics Engineering course along with Basics of Electronics Circuits course.

Assessment Methods: Tests, Mini projects, Laboratory, Presentation/ Video making ,Quiz, study of research papers etc.

Honours Programme in Internet of Things

Teaching and Credit Scheme

Course Code	rse Code Course Name		Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Semester of Major Degree
216H06C401	Cloud computing	3-0-0	03	3-0-0	03	IV
216H06L401	Cloud computing Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	IV
216H06C501	Design And Development of IoT systems	3-0-0	03	3-0-0	03	V
216H06L501	Design And Development of IoT Systems Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	V
216H06C601	Sensor Data Mining And Analytics	3-0-0	03	3-0-0	03	VI
216H06L601	Sensor Data Mining And Analytics Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	VI
216H07L602	Industrial Automation: PLC and SCADA Laboratory	0 - 4 - 0	04	0 - 2 - 0	02	VI
216H06C701	Industrial IOT Security	3 - 0 - 0	03	3 - 0 - 0	03	VII
216H07L701 Industrial IOT Security Laboratory		0 - 2 - 0	02	0 - 1 - 0	01	VII
	Total	12-12-0	24	12 - 06 - 0	18	

Evaluation Scheme

	Evaluation		Examir	nation Sche	eme				
Course	C V		Marks						
Code	Course Name		CA	ESE	LAB/T	Total			
		ISE	IA	ESE	UT CA	Total			
216H06C401	Cloud computing	30	20	50	-	100			
216H06L401	Cloud computing Laboratory	-	-	-	50	50			
216H06C501	Design And Development of IoT systems	30	20	50	-	100			
216H06L501	Design And Development of IoT Systems Laboratory	-	-	-	50	50			
216H06C601	Sensor Data Mining And Analytics	30	20	50	-	100			
216H06L601	Sensor Data Mining And Analytics Laboratory	-	-	-	50	50			
216H07L602	Industrial Automation: PLC and SCADA Laboratory	-	-	-	50	50			
216H06C701	Industrial IOT Security	30	20	50	-	100			
216H07L701	Industrial IOT Security Laboratory	-	-	-	50	50			
	Total	120	80	200	250	650			

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
216Н06С401		Cloud Computing					
	Т	ТН		P	TUT	Total	
Teaching Scheme (Hrs.)		03				03	
Credits Assigned		03				03	
	Marks						
Examination Scheme	CA		Dan			TD . 4 . 1	
Examination Scheme	ISE	IA	ESE	LAB/TUT CA		Total	
	30	20	50			100	

Course prerequisites:

Knowledge of Operating Systems

Course Objectives: The objective of this course is to provide graduate students of Information Systems with comprehensive and in-depth knowledge of Cloud Computing concepts, technologies, architecture, and applications by introducing and researching state-of-the-art in Cloud Computing fundamental issues, technologies, applications

Course Outcomes:

At the end of successful completion of the course the student will be able to

- **CO1.** Understand the differences between traditional deployment and cloud computing
- CO2. Determine whether existing applications to the cloud make technical and business sense
- **CO3.** Analyze and compare the long-term costs of cloud services
- **CO4.** Learn how to build a transactional web application for the cloud or migrate one to it

Module No.	Unit No.	Topics	Hrs.	СО		
	Cloud A	rchitecture Basics	9	CO1		
1	1.1	Cloud architecture standards and interoperability- Cloud types				
1	1.2	Benefits and challenges of cloud computing, public, private clouds community cloud, the role of virtualization in enabling the cloud.				
2	End-to-e	End-to-end Architecture				

	3.2	Amazon, Azure, and Google App cloud platforms in the industry.		
		industry. tion into the cloud		G02
	Applica	9	CO2	
4	4.1	Web Application Design, privacy design		
	4.2	Database Management for clouds		
	Speciali	zed cloud architecture	9	CO4
5	5.1	Workload distribution architecture		
	5.2	Dynamic scalability	=	
		Total	45	

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with Country	Edition with Year of Publication
1.	Reese, G	Cloud Application Architectures: Building Applications and Infrastructure in the Cloud	Sebastopol, CA: O'Reilly Media, Inc. (2009).	1 st edition 2009
2.	John Rhoton	Cloud Computing Explained: Handbook for Enterprise Implementation	Recursive Limited	2nd ed. edition 2009
3.	M N Rao	Cloud Computing	Prentice Hall Pub, India	1 st edition 2015
4.	J Hurwitz	Cloud Computing for Dummies	Wiley Publications	1 st edition,2010

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
216H06L401	Cloud Computing Laboratory						
	7	TH		P	TUT	Total	
Teaching Scheme(Hrs.)	0			2	0	2	
Credits Assigned	0			1	0	1	
	Marks						
	CA		ESE	I A D //DVI//D C/A		Total	
Examination Scheme	ISE	IA	ESE	LAB/TUT CA		Total	
	-	-			50	50	

Term-Work:

Term work will consist of experiments/ tutorials covering the entire syllabus of the course '216H06C401'. Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title					
216Н06С501	Design And Development of IoT systems					
	7	ГН		P	TUT	Total
Teaching Scheme (Hrs.)	03					03
Credits Assigned	03					03
	Marks					
Examination Scheme	CA		ECE	LAB/TUT CA		Total
Examination Scheme	ISE	IA	ESE LAB/TU		IUI CA	1 Otal
	30	20	50			100

Course prerequisites:

Microprocessor and application Knowledge of Python / C-programming

Course Objectives: Learn to create the next generation of IoT-enabling technologies, by designing an IoT system to connect embedded sensors using commodity smartphones via low-power Bluetooth Low Energy. Skills such as app development and embedded system design are practiced using various applications including a sensor station.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1: System Design knowledge of the Internet of Things.

CO2: Understanding the design architecture of IoT.

CO3: Choice of protocols and deployment in solutions

CO4: Overview and Design Perspective of IoT-based products /services.

CO5: Understanding IIoT design with the help of case studies

Module No.	Unit No.	Topics	Hrs.	СО
	Introdu	ection to Internet of Things	9	CO1
	1.1	Introduction to IoT, Components of IoT		
1	1.2	Key terms – IoT Platform, Interfaces, API, clouds, Data Management Analytics, Mining & Manipulation.		
	1.3	Anatomy of the Thing, Industrial Internet of Things		
	System	Design of Connected Devices	9	CO2
2	2.1	Internet – Reference Architecture IoT, IoT system components: sensors, Gateways, Routers, Modem, Cloud brokers, servers and its integration, Wireless Sensor Network (WSN)		
	2.2	Physical design of IoT: Things in IoT, IoT protocol. IoT levels & deployment templates		
	2.3	Logical design of IoT: IoT functional blocks, IoT communication models, IoT communication API's		
	IoT Con	9	CO3	
3	3.1	IoT protocols –COAP, MQTT, 6lowpan, lwm2m, AMPQ, CAN-BUS		
-	3.2	IoT cloud platforms: Overview of cost of cloud platforms, predix, thing works, azure etc. Data analytics, cloud services, Business models: Saas, Paas, Iaas, UNIT		
	Develop	oing of IoT	9	CO4
4	4.1	IoT Design methodology: Steps involved in IoT system design and methodology, Process specification, Domain model specification, Information model specification, Service level specification, Functional and operational use specification, Device and component integration and application development.		
	4.2	Quality Assurance, Predictive Maintenance, Real-Time Diagnostics		
	IoT App	olications (Case Study)	9	CO5
5	5.1	Home Automation, Smart / Precision Agriculture, Weather Monitoring Station, e-Health Body Area Networks, Connected Car.		

		Total	45	Ì
	5.2	Industrial IoT Supply chain management system		

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	ArshdeepBahga, Vijay Madisetti	Internet of Things a hands- on approach	Universities Press	1 st 2017
2.	Olivier Hersent, David Boswarthic, Omar Elloumi	The Internet of Things key applications and protocol	Wiley India	2 nd 2017
3.	Adrian McEwen & Hakim cassimally	Designing the internet of things	Wiley India	2 nd 2017
4.	Davis Hanes, Gonzalo, Patrics, Rob, Jerome	IoT fundamentals, Networking technologies, protocols, and case studies.	Ciscopress.com	e-book
5.	Dirk Slama, Frank puhlmann	Enterprise IoT	Shroff Publishers & distributers Pvt. Ltd.	1 st 2015

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
216H06L501	Design And Development of IoT Systems Laboratory						
	7	ТН		P	TUT	Total	
Teaching Scheme(Hrs.)	0			2	0	2	
Credits Assigned	0			1	0	1	
	Marks						
	CA		ECE	LAD / DATE CA		Total	
Examination Scheme	ISE	IA	ESE	LAB/TUT CA		Total	
	-	-	-	50		50	

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course '216H06C501' . Students will be graded based on continuous assessment of their term work

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
216Н06С601	Sensor Data Mining And Analytics							
	ТН			P	TUT	Total		
Teaching Scheme (Hrs.)	03					03		
Credits Assigned	03					03		
	Marks							
	CA							
Examination Scheme	ISE	IA	ESE	LAB/TUT CA		Total		
	30 20		50			100		

Course prerequisites: Programming basics

Course Objectives: This course provides a way to understand the concepts and the basics of big data mining and analytics and their role in the Internet of things

Course Outcomes:

At the end of successful completion of the course the student will be able to

- **CO1.** Understand the concept of Big data
- CO2. Understand data types and data pre-processing
- CO3. Understand data mining concepts
- **CO4.** Understanding data analytic techniques

Module No.	Unit No.	Topics	Hrs.	СО
	Introdu	ction to BIG data	9	CO1
1	1.1	Data warehouse, Independent vs. dependent Data marts, Evolving data management strategies		
	1.2	DBMS schemas for decision support - data extraction, clean-up, and transformation tools- Metadata		
	Data ob	jects and pre-processing	9	CO2
2	2.1	Data objects and Attribute types, Basic statistics of data, data visualization, measuring data similarities and dissimilarities.		

	2.2	Overview of data pre-processing, data cleaning, data integration, data reduction, and data transformation and discretization		
	Data m	ining concepts	9	CO2
	3.1	Introduction to data mining. A multidimensional view of data mining. Types of Data Mining Type of Patterns.		
3	3.2	Technology used, Applications. Major Issues in Data Mining.		
	3.3	Data warehousing mining and on-line analytical processing: Data cube and OLAP, design and usage and implementation		
	Data A	nalytics techniques	9	CO4
	4.1	Regression Analytics, Monte Carlo simulation factor analysis, Cohort analysis, Cluster analysis, Time series analysis, and Sentiment analysis.		
4	4.2	Mapreduce: The map tasks, grouping by key, the reduce tasks, combiners, details of mapreduce execution. Algorithm using MapReduce: Matrix-Vector Multiplication by mapreduce, relational-algebra operations, computing selections by mapreduce, computing projections by map reduce,		
	SUSTA	INABILITY DATA AND ANALYTICS	9	CO4
5	5.1	Sustainability Data and Analytics in Cloud-Based M2M Systems, Potential stakeholders and their complex relationships to data and analytics applications – Social Networking Analysis.		
3	5.2	Building a useful understanding of a social network – Leveraging.		
	5.3	Social Media and IoT to Bootstrap Smart Environments: lightweight Cyber-Physical Social Systems - citizen actuation.		
		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with Country	Edition with Year of Publication
1.	Stackowiak, R., Licht, A., Mantha, V., Nagode, L	Big Data and The Internet of Things Enterprise Information Architecture for A New Age	Springer Nature Apress, India	1 st Edition, 2015
2.	Arshdeep Bahga, Vijay Madisetti	Internet of Things a hands-on approach	Orient Blackswan Private Limited - New Delhi	1 st Edition 2015
3.	Olivier Hersent, David Boswarthic, Omar Elloumi	The Internet of Things key applications and protocol	Wiley India	2 nd Edition, 2017
4.	Adrian McEwen & Hakim Cassimally	Designing the internet of things	Wiley India	2 nd Edition, 2017

Course Code	Course Title							
216Н06С601	Sensor Data Mining And Analytics Laboratory							
	ТН			P	TUT	Total		
Teaching Scheme(Hrs.)	0			02		02		
Credits Assigned	0			01		01		
	Marks							
	CA		FGF					
Examination Scheme	ISE	IA	ESE	LAB/	Total			
	-	-	-		50			

Term-Work:

Term work will consist of experiments/ tutorials covering the entire syllabus of the course '216H06C601'. Students will be graded based on continuous assessment of their term work

K. J. Somaiya College of Engineering, Mumbai -77
(A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
216H07L602	Industrial Automation: PLC and SCADA Laboratory							
	ТН			P	TUT	Total		
Teaching Scheme(Hrs.)		_		2	0	2		
Credits Assigned		_		2	0	2		
	Marks							
	CA		ESE	т. А	В СА	Total		
Examination Scheme	ISE	IA	ESE	LA	D CA	Total		
	-	_	_		50	50		

Term-Work:

Term work will consist of experiments/ tutorials. Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
216Н06С701	Industrial IOT Security						
	TH			P	TUT	Total	
Teaching Scheme (Hrs.)	03					03	
Credits Assigned		03				03	
	Marks						
Examination Scheme	CA	CA		LAD/FUE CA		Total	
Examination Scheme	ISE	IA	ESE	LAB/	LAB/TUT CA To		
	30	20	50			100	

Course prerequisites: Basic knowledge of IoT and Cloud Computing.

Course Objectives: To learn the security principles and methodologies for the Internet of Things. Be able to secure a connected IoT product from scratch. Be able to discuss the main threats and attacks on IoT products and services. Know how to research and assess IoT threats and risks as they arise. Be able to implement a security reporting scheme in their organization.

Course Outcomes:

At the end of successful completion of the course the student will be able to

- **CO1.** Ability to understand the Security requirements in IoT.
- CO2. Understand the cryptographic fundamentals for IoT
- **CO3.** Ability to understand the authentication credentials and access control.
- **CO4.** Understand the various types of Trust models and Cloud Security.

Module No.	Unit	nit Topics		CO
	No.			
1	Introdu	ction	9	CO1
	1.1	Security Requirements in IoT Architecture, Types of		
		Threats, Security Layers in IoT Architecture, Challenges		
		to Secure IoT		
	1.2	Insecure Access Control, Threats to Access Control,		
		Privacy, and Availability. Attacks Specific to IoT.		
		Vulnerabilities – Secrecy and Secret-Key Capacity.		
	1.3	Authentication and Authorization for Smart Devices -		
		Transport Encryption – Attack & Fault Trees.		
2	CRYPT	OGRAPHIC FUNDAMENTALS FOR IOT	10	CO2
	2.1	Cryptographic primitives and their role in IoT-Encryption		

		-		
		and Decryption, Hashes, Digital Signatures		
	2.2	Random number generation, Cipher suites – key		
		management fundamentals		
	2.3			
		communication protocols – IoT Node Authentication.		
3	IDENT	ITY & ACCESS MANAGEMENT SOLUTIONS FOR	8	CO3
	IOT			
	3.1	Identity lifecycle, authentication credentials		
	3.2	Authorization with Publish / Subscribe schemes – access		
		control		
4	PRIVA	9	CO2	
	IOT			
	4.1	Concerns in data dissemination, Lightweight and robust		
		schemes for Privacy protection.		
	4.2	Trust and Trust models for IoT, self-organizing		
		Things - Preventing unauthorized access		
5	CLOUI	SECURITY FOR IOT	9	CO4
	5.1	Cloud services and IoT, offerings related to IoT from		
		cloud service providers		
	5.2	IoT security controls, An enterprise IoT cloud security		
		architecture, New directions in cloud-enabled IoT		
		computing.		
		Total	45	

Recommended Books:

Sr. No.	Name/s of Author/s Title of Book		Name of Publisher with Country	Edition with Year of Publication
1.	Brian Russell, Drew Van Duren	Practical Internet of Things Security (Kindle Edition)	Packt Publishing,	2 nd Edition 2018
2.	S. Misra, M. Maheswaran, and S. Hashmi	Security Challenges and Approaches in Internet of Things	Springer International Publishing	1 st Edition 2017
3.	F. Hu.	Security and privacy in Internet of things (IoTs): Models, Algorithms, and Implementations	CRC Press	1 st Edition 2016
4.	S. Li and L. D. Xu.	Securing the Internet of Things	Syngress	2 nd Edition 2017

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
216H06L701	Industrial IOT Security Laboratory							
	7	ГН		P	TUT	Total		
Teaching Scheme(Hrs.)	0			02		02		
Credits Assigned	0			01		01		
	Marks							
	CA		ESE	I AD/THT CA		Total		
Examination Scheme	ISE	IA	ESE	LAB/TUT CA		Total		
	-	-	-	50		50		

Term-Work:

Term work will consist of experiments/ tutorials covering the entire syllabus of the course '216H06C701' . Students will be graded based on continuous assessment of their term work