### МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Физтех-школа радиотехники и компьютерных технологий

# Отчёт о выполнении лабораторной работы 4.5.1.. «Интерференция лазерного излучения»

Работу выполнил: Студент группы Б01-304 Лепин Владислав Дмитриевич Преподаватель: Тимирханов Ринат Асхатович

# Содержание

| 1 | Вве | дение   |                                                                         | 3  |
|---|-----|---------|-------------------------------------------------------------------------|----|
|   | 1.1 | Цель ј  | работы                                                                  | 3  |
|   | 1.2 | Испол   | възуемые приборы                                                        | 3  |
|   | 1.3 | Teoper  | гическая часть                                                          | 3  |
|   |     | 1.3.1   | Кратко об устройстве лазера и его модах                                 | 3  |
|   |     | 1.3.2   | Видность интерференционной картины                                      | 4  |
|   |     | 1.3.3   | Определение ширины спектра лазерного излучения и числа генерируемых мод | 5  |
|   |     | 1.3.4   | Экспериментальная установка                                             | 6  |
|   |     | 1.3.5   | Методика измерений                                                      | 7  |
| 2 | Ход | ц работ | ГЫ                                                                      | 8  |
|   | 2.1 | Измер   | рение видности при нулевой разности хода $(\mathcal{V}_2=1)$            | 8  |
|   |     | 2.1.1   | Измерение видности при постоянном угле поляризации                      | 10 |
| 3 | Вы  | воды и  | и обсуждение результатов                                                | 13 |
| 4 | Спт | оавочн  | ње данные                                                               | 14 |

## 1 Введение

### 1.1 Цель работы

• исследование видности интерференционной картины излучения гелийнеонового лазера и определение длины когерентности излучения.

### 1.2 Используемые приборы

- Не-Nе-лазер;
- интерферометр Майкельсона с подвижным зеркалом;
- фотодиод с усилителем;
- осциллограф;
- поляроид;
- линейка.

### 1.3 Теоретическая часть

### 1.3.1 Кратко об устройстве лазера и его модах

Лазер состоит из двух зеркал, составляющих лазерный резонатор, и расположенной между ними газообразной усиливающей среды, состоящей из смеси гелия и неона. Типичное расстояние между зеркалами  $0.2 \div 1$  м.

В лазере излучение распространяется по резонатору туда и обратно. При этом максимальным усилением обладают волны, для которых набег фазы при полном обходе резонатора кратен 2. Это приводит к условию на разрешённые частоты и длины волн:

$$\frac{2\pi}{\lambda} 2L = 2\pi m, \ L = \frac{m\lambda}{2}, \ \nu_m = \frac{mc}{2L}, \ \Delta\nu_m = \nu_{m+1} - \nu_m = \frac{c}{2L},$$
 (1)

где L - длина резонатора, m - целое число. Поэтому лазер генерирует отдельные типы колебаний, называемые модами, которые удовлетворяют условию  $\ref{eq:condition}$ .

#### 1.3.2 Видность интерференционной картины

Уменьшение видимости интерференционной картины зависит по большей части от трех независимых факторов: неравенство амплитуд, разная оптическая задержка между интерферирующими пучками и несовпадение поляризаций. Результирующая видность определяется произведением:

$$\mathcal{V} = \mathcal{V}_1 \cdot \mathcal{V}_2 \cdot \mathcal{V}_3 \tag{2}$$

Неравенство амплитуд даёт первый множитель:

$$\mathcal{V}_1 = \frac{2\sqrt{\delta}}{1+\delta},\tag{3}$$

где  $\delta = B_m^2/A_m^2, A_m, B_m$  — амплитуды волн одной моды

Разная оптическая задержка между интерферирующими пучками даёт второй множитель (выводится из сложения всех мод и усреднения):

$$\mathcal{V}_2 = \left| \frac{1}{n} \frac{\sin \frac{\pi l}{2L} n}{\sin \frac{\pi l}{2L}} \right| \tag{4}$$

Наконец, третий множитель обусловлен несовпадением поляризаций.

В случае линейно поляризованных волн:

$$\mathcal{V}_3 = \cos \beta \tag{5}$$

Несколько сложнее случай, когда источник света генерирует излучение с линейной поляризацией, но направление поляризации хаотически меняется в пределах от 0 до  $\pi$ . Если такое излучение разделить на два пучка и на пути каждого поставить по поляроиду с углом между направлениями разрешённой поляризации этих поляроидов  $\beta$ , то опять получим две волны с углом между плоскостями их поляризаций  $\beta$ , но амплитуды этих волн будут флуктуировать. Можно показать, что в этом случае:

$$\mathcal{V}_3 = \cos^2 \beta \tag{6}$$



Рис. 1: Зависимость видности от задержки для разного количества генерируемых мод: а) и б) 3 моды, в) 5 мод, г) 6 мод. Справа приведены соотношения интенсивностей мод

# 1.3.3 Определение ширины спектра лазерного излучения и числа генерируемых мод.

Из расчётных кривых, показанных на рис. 1 можно показать, что полная ширина спектра связана с геометрической задержкой  $l_{1/2}$ , при которой видность падает вдвое, приблизительным соотношением:

$$\Delta\nu_{\text{полн}} \approx 0.6 \frac{c}{l_{1/2}},\tag{7}$$

а число мод равно

$$n \approx 1 + 1.2 \frac{L}{l_{1/2}} \tag{8}$$



Рис. 2: Схема установки. З, З1, З2, З3 - зеркала. П1 и П2 - поляроиды. Б1 и Б2 - блоки №1 и 2. ДК - делительный кубик, РФ - ромб Френеля. ФД - фотодиод, Э - экран, ПК - пьезокерамика, Л - линза

#### 1.3.4 Экспериментальная установка

Для получения интерференционной картины используется интерферометр Майкельсона. Схема установки приведена на рис. 2.

Установка основана на интерференции лазерного излучения, создаваемой двухплечевым интерферометром. В качестве источника света используется гелий-неоновый лазер (= 632,8 нм). Луч лазера проходит через ромб Френеля (при необходимости), который преобразует линейную поляризацию в круговую. Затем делительный кубик разделяет лазерное излучение на два пучка.

Первый пучок (П1) проходит через поляроид, отражается от зеркала 31, установленного на пьезокерамику, и частично отражается от делительного кубика. Второй пучок (П2) проходит через линзу, поляроид, отражается от зеркала 32, снова проходит через линзу и объединяется с первым пучком. Оба пучка интерферируют, создавая интерференционные полосы.

Сферическое зеркало 33 увеличивает интерференционную картину, которая фиксируется фотодиодом через узкую щель. Сигнал с фотодиода усиливается и передаётся на осциллограф. Пьезокерамика, управляемая блоком питания, изменяет положение зеркала 31, вызывая смещение интерференционных полос. Это позволяет измерять фазовые изменения и

анализировать колебания с высокой точностью.

### 1.3.5 Методика измерений

Типичная осциллограмма сигнала фотодиода приведена на рис. 3.

Измеряются следующие параметры:

- 1. Фоновая засветка уровень сигнала при полном перекрытии обоих пучков  $(h_0)$ .
- 2. Интенсивность каждого пучка уровни сигнала при перекрытии одного из пучков  $(h_1$  и  $h_2)$ .
- 3. Максимальная и минимальная интенсивность интерференционной картины уровни сигнала при открытых обоих пучках  $(h_3 \text{ и } h_4)$ .

На основе измерений рассчитываются: - Параметр

$$\delta = \frac{h_1}{h_2} \tag{9}$$

где  $h_1$  и  $h_2$  — уровни интенсивности отдельных пучков. Он необходим для расчёта  $\mathcal{V}_1$ 

- Видность интерференционной картины

$$\mathcal{V} = \frac{h_4 - h_3}{h_4 + h_3} \tag{10}$$

где  $h_4$  — максимум,  $h_3$  — минимум интенсивности при интерференции.

Для определения зависимости видности от разности хода  $\ell$  при фиксированном угле поляризации  $\beta=0$  вычисляется:

$$\mathcal{V}_2(\ell) = \frac{\mathcal{V}}{\mathcal{V}_1} \tag{11}$$

где  $\mathcal{V}_1$  — видность при полной когерентности пучков.

При фиксированной разности хода  $\ell=0$  и изменяемом угле поляризации  $\beta$  видность определяется как:

$$\mathcal{V}_3 = \frac{\mathcal{V}}{\mathcal{V}_1} \tag{12}$$

что позволяет исследовать влияние угла поляризации на интерференционную картину.



Рис. 3: Осциллограмма сигналов с фотодиода

# 2 Ход работы

# 2.1 Измерение видности при нулевой разности хода $(\mathcal{V}_2 = 1)$

Выставим нулевую разность хода. На нашей установке она получается при плече L=16 см. Измерим величины  $h_1,\,h_2,\,h_3$  и  $h_4$  на экране осциллографа при изменении угла поляризации от  $\beta=0^\circ$  до  $\beta=180^\circ$ . Результаты занесем в таблицу 1.

Таблица 1: Измерение видности при нулевой разности хода

| Угол (°) | 0   | 30  | 50  | 70  | 90  | 110 | 130 | 150 | 180 |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $h_1$    | 1   | 1.5 | 1.5 | 1.6 | 1.2 | 0.7 | 0.5 | 1.1 | 1.2 |
| $h_2$    | 1.6 | 1.6 | 1.7 | 3.4 | 3.2 | 3.2 | 3.2 | 3.2 | 2.6 |
| $h_3$    | 0.9 | 1   | 1.4 | 3.4 | 3.5 | 2.8 | 3.2 | 2.7 | 1   |
| $h_4$    | 4.2 | 5.1 | 4.8 | 6.2 | 5.7 | 5.1 | 4.4 | 6   | 4.7 |

Рассчитаем  $\mathcal{V}_3$  для каждого случая, после чего построим график зависимости от  $\beta$ , сравнив с теоретическими зависимостями  $\mathcal{V}_3 = \cos \beta$  и  $\mathcal{V}_3 = \cos^2 \beta$ .



Рис. 4: Зависимость  $\mathcal{V}_3$  от  $\beta$ 



Рис. 5: Зависимость  $\mathcal{V}_3$  от  $\cos \beta$  и  $\cos^2 \beta$ 

Из графика 5 можно сделать вывод, что  $\mathcal{V}_3$  описывается зависимостью, которая больше подходит для  $\cos \beta$ , чем  $\cos^2 \beta$ . К сожалению, можно лишь предположить это, поскольку погрешности измерений слишком велики ( $\sigma=0.2$  для каждого из измерений).

Поэтому можно сделать вывод о том, что поляризация обеих волн линейная.

### 2.1.1 Измерение видности при постоянном угле поляризации

Установим поляроид П1 в положение, в котором интерференционная картина видна наиболее чётко ( $\beta=0^\circ,\,\mathcal{V}_3=1$ ). Передвигая по штанге блок Б2, найдем положение, где видность максимальна ( $L=16~\mathrm{cm}$ ) и подстроим ещё раз угол поворота поляроида: теперь  $\beta=25^\circ.$ 

Проведем измерение параметров  $h_i$  и запишем их в таблицу 2.

аблица 2: Измерение видности при постоянном угле поляризации

| L J I  |       |       | 1 '   |       |               |      |                 |                 |
|--------|-------|-------|-------|-------|---------------|------|-----------------|-----------------|
| L (cm) | $h_1$ | $h_2$ | $h_3$ | $h_4$ | $\mathcal{V}$ | δ    | $\mathcal{V}_1$ | $\mathcal{V}_2$ |
| 89     | 0.8   | 0.6   | 1     | 2     | 0.33          | 1.33 | 0.99            | 0.34            |
| 78.5   | 1     | 1.2   | 0.9   | 3.6   | 0.60          | 0.83 | 1.00            | 0.60            |
| 84     | 0.8   | 1     | 0.8   | 3     | 0.58          | 0.80 | 0.99            | 0.58            |
| 82     | 0.8   | 1     | 0.6   | 3     | 0.67          | 0.80 | 0.99            | 0.67            |
| 81     | 0.8   | 1.2   | 0.7   | 3.5   | 0.67          | 0.67 | 0.98            | 0.68            |
| 80     | 0.8   | 1.4   | 0.8   | 3.8   | 0.65          | 0.57 | 0.96            | 0.68            |
| 79     | 0.8   | 1.2   | 0.7   | 3.2   | 0.64          | 0.67 | 0.98            | 0.65            |
| 78     | 0.8   | 0.8   | 0.6   | 2.8   | 0.65          | 1.00 | 1.00            | 0.65            |
| 76     | 0.8   | 0.6   | 0.6   | 2.4   | 0.60          | 1.33 | 0.99            | 0.61            |
| 73     | 0.4   | 0.3   | 0.4   | 1.2   | 0.50          | 1.33 | 0.99            | 0.51            |
| 70     | 0.4   | 0.5   | 0.7   | 1.4   | 0.33          | 0.80 | 0.99            | 0.34            |
| 65     | 0.4   | 0.4   | 0.8   | 1     | 0.11          | 1.00 | 1.00            | 0.11            |
| 58     | 1     | 1     | 1.8   | 2.1   | 0.08          | 1.00 | 1.00            | 0.08            |
| 51     | 1     | 1.4   | 2     | 2.9   | 0.18          | 0.71 | 0.99            | 0.19            |
| 45     | 1     | 1.4   | 1.8   | 3     | 0.25          | 0.71 | 0.99            | 0.25            |
| 40     | 1     | 0.7   | 1.6   | 1.8   | 0.06          | 1.43 | 0.98            | 0.06            |
| 35     | 1     | 1.3   | 2     | 2.2   | 0.05          | 0.77 | 0.99            | 0.05            |
| 30     | 1     | 1     | 1.8   | 2.4   | 0.14          | 1.00 | 1.00            | 0.14            |
| 25     | 1     | 0.9   | 1.2   | 2.6   | 0.37          | 1.11 | 1.00            | 0.37            |
| 20     | 1     | 1     | 0.7   | 2.2   | 0.52          | 1.00 | 1.00            | 0.52            |
| 18     | 1     | 0.2   | 0.6   | 1.8   | 0.50          | 5.00 | 0.75            | 0.67            |
| 17     | 1     | 0.4   | 0.4   | 1.2   | 0.50          | 2.50 | 0.90            | 0.55            |
| 16     | 1     | 0.4   | 0.5   | 1.2   | 0.41          | 2.50 | 0.90            | 0.46            |
| 15     | 1     | 0.2   | 0.5   | 1.9   | 0.58          | 5.00 | 0.75            | 0.78            |
| 13     | 1     | 0.3   | 0.6   | 1.2   | 0.33          | 3.33 | 0.84            | 0.40            |
| 10     | 1     | 0.4   | 0.7   | 1     | 0.18          | 2.50 | 0.90            | 0.20            |
| 8      | 1     | 0.2   | 0.8   | 1.6   | 0.33          | 5.00 | 0.75            | 0.45            |
|        |       |       |       |       |               |      |                 |                 |

Построим график зависимости  $\mathcal{V}_2$  от L.



Рис. 6: Зависимость  $\mathcal{V}_2$  от L

Сопоставляя наш график с эталонными на рис. 1, приходим к выводу, что в теории наш лазер имеет три моды одинаковой амплитуды.

На графике выделяются два максимума:

$$L_1 = (15 \pm 3) \text{ cm}, \quad L_2 = (81 \pm 3) \text{ cm}.$$

Переведем их в разности хода:

$$\Delta_1 = 2(L_1 - 16) = (-2 \pm 6) \text{ cm}, \quad \Delta_2 = 2(L_2 - 16) = (130 \pm 6) \text{ cm}.$$

Согласно теории, разница

$$\Delta_2 - \Delta_1 = 2L_0,$$

где  $L_0$  — расстояние между зеркалами оптического резонатора лазера. Таким образом,

$$L_0 = (66 \pm 4) \text{ cm}, \quad \varepsilon = 7\%.$$

Межмодовое расстояние по формуле (1):

$$\Delta \nu_m = \frac{c}{2L} = (2.27 \pm 0.14) \cdot 10^8 \text{ } \Gamma \text{H}, \quad \varepsilon = 7\%.$$

Полуширина кривой из графика:

$$l_{1/2} = (10 \pm 3)$$
 cm.

Соответствующая ей разность хода:

$$\Delta_{l1/2} = 2l_{1/2} = (20 \pm 6) \text{ cm}, \quad \varepsilon = 30\%.$$

Наконец, рассчитаем диапазон частот  $\Delta F$ , в котором происходит генерация мод (формула (7)):

$$\Delta F = (9.0 \pm 2.7) \cdot 10^8 \text{ Гц}, \quad \varepsilon = 30\%.$$

А также оценим число генерируемых лазером мод по формуле (8):

$$n = (5 \pm 2), \quad \varepsilon = 40\%.$$

## 3 Выводы и обсуждение результатов

В ходе работы был исследован режим генерации лазера и определены его основные характеристики. Построен график зависимости  $\mathcal{V}_2$  от L, на основе которого были выделены два максимума и вычислены соответствующие разности хода. Это позволило определить расстояние между зеркалами оптического резонатора лазера:

$$L_0 = (66 \pm 4) \text{ cm}, \quad \varepsilon = 7\%.$$

Рассчитано межмодовое расстояние  $\Delta \nu_m$ , определяющее разницу частот между соседними продольными модами:

$$\Delta \nu_m = (2.27 \pm 0.14) \cdot 10^8 \text{ } \Gamma_{\text{II}}, \quad \varepsilon = 7\%.$$

Проанализирована ширина модового спектра лазера. Определена полуширина кривой  $l_{1/2}$  и соответствующая ей разность хода, а также рассчитан диапазон частот  $\Delta F$ , в котором происходит генерация мод:

$$\Delta F = (9.0 \pm 2.7) \cdot 10^8 \text{ } \Gamma \text{H}, \quad \varepsilon = 30\%.$$

На основе этих данных вычислено число генерируемых лазером мод:

$$n = (5 \pm 2), \quad \varepsilon = 40\%.$$

Таким образом, в ходе работы были успешно достигнуты поставленные цели: экспериментально исследованы параметры работы лазера, определены его ключевые характеристики, проведён их анализ и сопоставление с теоретическими ожиданиями.

## 4 Справочные данные

Формулы, используемые для рассчета коэффициентов a, b и их случайных погрешностей  $\sigma_a, \sigma_b$  уравнения наилучшей прямой y = ax + b через метод наименьших квадратов (МНК):

$$a = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}$$

$$\sigma_a \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - a^2}$$

$$b = \langle y \rangle - a \langle x \rangle$$

$$\sigma_b = \sigma_a \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

Если точки описываются линейной зависимостью y = kx, угловой коэффициент k прямой и его случайную погрешность  $\sigma_k$  будем рассчитывать по следующим формулам:

$$k = \frac{\langle xy \rangle}{\langle x^2 \rangle}$$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2},$$

Полные погрешности косвенно измеренных величин будем считать по формулам, приведенным в таблице 3.

Таблица 3: Расчёт погрешностей косвенно измеренных величин

| Формула для величины          | Полная погрешность                                                                 |
|-------------------------------|------------------------------------------------------------------------------------|
| $A = B \pm C$                 | $\sigma_A^2 = \sigma_B^2 + \sigma_C^2$                                             |
| $A = B \cdot C$               | $\varepsilon_A^2 = \varepsilon_B^2 + \varepsilon_C^2$                              |
| A = B/C                       | $\varepsilon_A^2 = \varepsilon_B^2 + \varepsilon_C^2$                              |
| $A = B^{\beta} \cdot C\gamma$ | $\varepsilon_A^2 = (\beta \cdot \varepsilon_B)^2 + (\gamma \cdot \varepsilon_C)^2$ |

И, наконец, приведем формулу для оценки случайной погрешности измеряемой величины:

$$\sigma = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \langle x \rangle)^2},$$

где  $\langle x \rangle$  - наилучшее значение измеряемой величины, которое можно рассчитать так:

$$\langle x \rangle = \frac{1}{n} \sum_{i=1}^{n} x_i$$