

TP1 Signaux typiques et Transformée de Fourier

Les principales fonctions MATLAB à utiliser pour réaliser le travail demandé sont indiquées en italique et en caractères gras (tapez help pour l'aide en ligne de MATLAB).

I. Objectifs:

L'objectif de ce TP est d'apprendre à étudier et à manipuler des signaux réels, complexes et des signaux aléatoires et leurs Transforme de Fourier.

II. Signaux réels

a) Sinusoïdes:

On va étudier des signaux de la forme

$$S(n) = A\cos(wn + \varphi).$$

- 1. Soit l'exemple : $S(k) = \sin(3k\pi + \frac{\pi}{2})$ avec $-10 \le k \le 10$
- 2. Etudiez et représentez cette sinusoïde dans une figure(1)

(plot)

III. Signaux aléatoires

- 1. Générer et représenter dans une figure(1) les deux signaux aléatoires s_1 et s_2 de longueur 100. (randn, rand)
- 2. Générer et représenter dans une figure (2) un signal aléatoire s_3 de longueur 100 tels que ces éléments sont uniformément distribués dans l'intervalle [-2, 2]. (randi)
- 3. Représenter les trois signaux aléatoires générés. (subplot)

IV. Signaux complexes

La fonction exponentielle complexe représente un exemple intéressant pour être étudié car elle représente des caractéristiques particulières et peut être la base d'étude d'autres signaux.

- -a) -Soit-le-signal-exponentiel complexe-suivant: S = exp(jnw)-
- 1. Générer le signal étudié (exp, plot)

Utiliser les valeurs des paramètres suivants :

$$- f_1 = 1 \, kHz \,,$$

$$- f_2 = 1500 Hz$$

$$- f_3 = 50 \ kHz$$

$$- n = [0:60]$$

Représentation des signaux typiques et TFD ٧.

a)

Soit l'exemple d'une impulsion de Dirac :

$$\delta(k) = \begin{cases} 1 & pour \ k = k_0 \\ 0 & pour \ k \neq k_0 \end{cases}$$

- 1. Etudier et représentez $\delta(k)$
- 2. Etudier et représenter un peigne de Dirac de longueur 50. (ones)
- 3. Etudier et représenter l'impulsion décalée suivante :

$$S(k) = 1.5 \delta(k - 333)$$
 $300 \le k \le 350$

(zeros, plot)

1. Créer un vecteur t contenant le temps dans l'intervalle [-5, 5]. Le vecteur de temps est initialisé par un commande de type [t=linspace (-5, 5, N)].

On prendra N = 1024 et une fréquence d'échantillonnage fe = 102.4 Hz.

2. Tracer les signaux suivants :

a.
$$x_1(t) = \Pi_T(t)$$

b.
$$x_2(t) = \Gamma(t)$$

c.
$$x_3(t) = \delta(t-2)\delta(t+3)$$
, avec $f_e = 250kHz$

d.
$$x_4(t) = \exp(3t)\Gamma(t)$$

e.
$$x_5(t) = \cos(2\pi f_0 t)$$
 avec $f_0 = 10$, $N = 1000$

f.
$$x_6(t) = \text{sinc}(2\pi f_0 t)$$
, $f_0 = 10$, $N = 1000$

VI. Représentation spectrale

Pour les signaux étudiés précédemment :

- 1. Créer le vecteur des fréquences (linspace, N=1024).
- 2. Déterminer les transformée de Fourier. (fft).
- 3. Représenter le module de la transformée de Fourier en fonction de la fréquence (*plot*, *fftshift*).