

$$I = \frac{(n + (AL))2}{1s} = \frac{n_2 L}{1s} A \qquad \frac{L}{1s} = \frac{distance}{time} = V$$

I = nqVA

15

Physics Component 2-2-2/Resistance

Potential difference: - the electrical p.d between two points is the

difference in electrical potential energy between those

two points

- Units: volts (V) > V = JC'

- P.d. don't 'go through' things, they simply exist

or do not exist

- IV is the electrical p.d between two points

such that IJ of work is done transferring IC

between them

Same

F=VQ P.d=DEPE

P=VI = T^2R = V^2

 $E = VQ \quad Pd = \stackrel{\triangle EPE}{=} \qquad P = VI = I^{2}R = \frac{V^{2}}{R}$ $R = \stackrel{\triangle L}{=} \qquad R = \stackrel{V}{=} \qquad V = IR$ $R = \stackrel{\triangle L}{=} \qquad R = \stackrel{V}{=} \qquad V = IR$

I-V Gaph Characteristics

Filament lamp Metal wire corrent voltage

Resistance: The electrical resistance of a component is defined by the equation $R = \frac{V}{I}$, where V is the pol across as the component and I is the carrent that the fact of the p.d. application

- Ohm's Law: Ohm's Law is obeyond if the current storing through a component is directly proportional to the p.d across it provided that temp, length, cross-solvend and material reconstant V.

- Resistance Unit: Ohms $(\Omega) \to \Omega = VA^{-1}$ The current across in across it provided that temp, length, cross-solvend and material across in across in across $(\Omega) \to \Omega = VA^{-1}$

- Electrical resistance is caused by collisions between free
electrons and ions, this increases waken with temperature.
This increase is an almost linear poriation, over
a vide range.
- Ordinarily, collisions between free electrons and ions in metals
increase the random sibration energy of the ions, to the
temperature of the metal increases.
Superconductivity: - Superconductivity is the flow of electric current
without resistance in certain metals, alloys and ceramics
at temperatures near absolute zero, applyingsome
- asses Absolute zero - OK or -273%
- At a certain critical temperature, the smoothly deveasing
resistivity as the temperature falls drops suddonly to zero.
Electric current in a super conducting ring continues
indefinitely without any driving field. This is the superconducting
transition temperature.
- Most metals show superconductivity, and have transition
temperatures a few degrees above absolute zero.
· Certain metals, called high temperature superconductors)
have transition temperatures above the boiling point of antiongen and (-196°()
of and a page (-196°C)
- superconductors are used in MRI scanners and
particle accelerators.

Physics Component Z - Z.3/D.C. Circuits In a circuit: - The current from a source is equal to the Suon of the currents in the separate branches of a Thermistor: parallel circuit - this is due to the conservation normal/ntc = of charge. The sum of the potential differences across companents in a series circuit is equal to the potential difference across the supply, and that this is a consequence of the conservation of energy LDR: - The potential differences across components in parallel are oqual - In genes Rotal = R, + Rz + -- Rn

In parallel Rotal = R, + Rz + -- Rn Light interity - The e.m.f of a (cell/battery) months watergorisa electrical power supply is the energy converted from some other form (eg. chemical energy) to electrical potential energy per contomb of charge Slowing through the power supply Vc, = (Cz Vrotul (series) busitally Emplosen E. mf = energy converted to electrical charge e.m.f is the '12V' on a cell E.m. & Unit: volt (V) - some as pod that it says it will give although

in practice some of this is V= E.m. &

lost due to internal resistance II = (Rz) Itotal - Useful to remember: VRI = - A potential divider can be used to produce a desired potential difference. This can be an additional resistor that reduces the p.d across another component to the desired level and if a thermistor or LDR is used this can be dependent on light concentrations or han temperature

Ven = IR, + IR2 Vont = IR2 Ven R. + R. Vont = Valleto Vin Lo

Physics Component 2 - 2.4/Capacitance A simple parallel plate capacitor consists of a poor of equal parallel que metal plates separatal by an a vacuum fair Capacitors store energy by transferring charge from one plate to the other so that the plates carry equal but apposite drarges (net charge is seo). Capacitance is defined by the equation (= Q/V = 2QV To calculate the apacitance of a parallel plate apacitor with no dielectric you can use C= Eo A Where A is the area of the plate, do is the distance between the plates, and Eo is the permittinity of free space. 1. Capacitance is proportional to plate area 2. Capacitunce is inversely proportional to the separation of the plates 3. You will only ever be asked questions on you can use Eo. (8.85×10-12 Fm-1 on data book) Having a dielectric (an insulator between the plater) increases the capacitance of a vaccion vaccion-spaced capacitor (sometimes by a factor of thousands). The E field within a parallel plate capacitor is uniform and is given by E= X Combining Capacitors reduction of capacitune to smaller than smallest capacitor

Parallel: CT = C1 + Cz + Cz ··· effectively become one big

Charging and discharging capacitors

When the switch is up, the capacitor charges. When f it is down it discharges through the resistor.

The capacitor provides a pd across the resistor during discharging, providing a carrent

and discharging (37% remaining)

(VERY wefu)

CHARGING

decay constant = = = >

If the switch is moved into position A the capacitor will begin charging. At t=0, Q=0 so $V_{cap}=0$. After t=0 the charge will accumulate on the plates and $Q\neq 0$. This means that $V_{cap}\neq 0$. and This voltage appears the voltage of the cell (due to the creation of an induced electric field puching arrent in the apposite direction) which and increases as time passes. Eventually $V_{cap}=V_{cell}$ on S=0, at this point the capacitor is fully charged

The graph

of this > gives the time variables of the charge on the charging capacitor is:

\[
\text{A} = \text{Q} \text{o} \text{(1-e} \text{ } \te

	DISCHARGING.
	When the smitched into position B the capacitor will begin to discharge.
	From the P.O.V of the capacitor, the current through the resistor is
	the rate at which the capacitor is losing charge.
	$AQ = T = -V = Q \qquad (a V = Q)$
	$\frac{1}{\Delta t} = -I = -\frac{V}{R} = -\frac{Q}{RC} (as \ V = \frac{Q}{C})$
	From this we know that the capacitor is losing charge at a rate
	that is proportional to the charge on the capacital (ac 2 - 0) so
	when the capacitor is fully changed it loss charge quickly.
<u> </u>	As the charge decreases the capacitar loses its charge of a lone
	rate. The graph of this is the below.
	1 camp change as charging curve, just unoido da
	Same shape as charging curve, just upside down
	Here RC is still the time constant and remember after one time constant the superitor will have with charge remaining 37%
	The equation that gives the line variation of
	the change on the saco discharging capacitor is
	time/s QZQde Q=Qez
(beginning charge

.

-	Physics Component Z-Z-5/Solids Under Stress
	Hooke's Law: The Force needed to extend/compress a spring or meterial is directly proportional to the distance extended/compressed Low F= K x Toping constant = force per unit extension
	Stress: ratio of the force applied to the cross-sectional area Let 5 = F (Pa) & normally use MPa or GP.
	Strain: ratio of the total deformation to initial dimensions Let $E = \frac{\Delta L}{L}$ or $\frac{\Delta L}{L}$ Of $\frac{\Delta L}{L}$ or $\frac{\Delta L}{L}$
	Young's Malulus: ratio of of to E in the elactic region Ly E = 0 (Pa, MPa, GPa) TE=Tstiff
	Workdone: work done in deferming a solid is agreed to the area under a force-extension graph, which is: W= 1/2 FZ if Hooke's law obeyed = 1/2 KZ²
	Solid chassification
	** crystalline: orderly arangement of the attents over long ranges 00000 Eg. diamond, Quartz, copper sulfate (metals are polycrystalline mastly)
	* a morphous: no order to particle arrangement Office Eg. Glass/Ceanics (ceramics are often partly egoton crystalline)
	A Adyment: He particles are in long chains

ductile (racture) As the stess reaches the yield point, more and more edge dislocations are generated and migrate, causing the elonghtion. Because volume doesn't increase the C.S.A decreases (necking) which increases strain in that section, leading to a mo positive feedback loop until factors. Eg. metals, like copper Tough = not prove to shatter = high area + plastic behaviour Strong = high UTS Creep = plastic deformation by loudy force below edustic limit Lo ey. stained glass & tubire blader Britle materals Hoole's law obeyed until breaking stess Often very low max strain Quench hardening = small growns = edged. 3 locations and run = stronger and harder (Slower cooling = langer crystels/grains) Annealing = heat and cool slowly = large grains Britle fracture The tensile beaking stress of brittle materials is a lot hower than predicted from the strength of the bonds within the material. The material fractures sooner than expected due to the existence of microsopic cooks in the surface. As stress is applied the stress is concentrated around the tip of the crack. In sittle materials there are no edge dislocations to relieve the stress so The crack preuks further, rapidly prepagating. They can act more normally under congression which can be done in toughed glass,

and pre-stressed roughte, or by reducing surface imperfections (eg. thin glass fibres). The reduction of surface imperfections reduces the no. of cracks that can propagate, and the compression helps present the cracks from opening up and proprogating. Rubber Doctor V Rubber Behaviour · Non-linear: steep > less steep > very steep 4 hooke's how approx obeyed for very low stresses large strains Low Young's Modulus · Loading a unlading curves different: elastic hysteresis · Work done by band during contraction is less than work done on during stretching a Area between curry represents energy disapported on force extension graph and energy dissapated/volume on stress-stain graph during one movement around hysteresis bop which converts to random vibrational energy indeed Why does it behave like this? Rubber molecules in unstressed state are naturally targled and folded up. Applying a small load rotate the bonds and straightens on the molecules - no bonds are stretched - large extensions can be produced with-the small load (Low E). The force worlds against the thermal motions of the molecules which tender to pull the ends in and try to refold and tangle the molecules. When the force is relaxed the natural inspations tangle it up again. Because of the work done, the molecules vibrate more => hysteresis. Elastic hysteresis reduced by introducing indecider cross linkages between inclearly for same intended in sich is ward A: Van der Ward's weak cross-bands account for initial stiffness B: Molecules unfolding and straightening = low E (no bonds state Line) strain must state being confirmation of all their molecules are already straight so further so E is high and factor

Multiwavelength Astronomy = the defection and analysis of em radiation from objects over multiple A. Our # atmosphere absorbs gamana ays, x-rays, most ultraviolet, and all but narrow wavelength bands of infaced. As a result, we do most multiwavelength astronomy through space stations or 'observatories'. By looking in different nacelengths, we can learn about the different processes which took place there

4	
	Physics - Component 2 - 28/Orbits and the wider Universa
Ü	
	Koologie lauts
	Kepler's laws
	1+1 To at to 14 > alace with the contract
	1st Law: The planets orbit in elipses with the sun at one joci.
	2nd have Equal areas are sweet by the orbits in equal times.
	3rd Law: The square of the orbital period of a planet is directly proportion
•	to the cube of the seme-major axis of its orbit. (T'x r's)
	Fgara = G M. Mz Derinton of Kepler's TT
	elliptial orbit approximates to a circle
\cup	Frentipetal = Fgan
	Doppler effect mrw2 = GmM
	$\frac{\Delta \lambda}{\lambda} = \frac{\Delta f}{f} = \frac{V}{C}$ $\frac{(2\pi)^2}{f} = \frac{GM}{f} \Rightarrow T^2 = 4\pi^2 r^3$
	7 f c
	noutainer 1. T2 x r3
	D. K. a. A.
	Dark Matter
	moust be more we mass that we
_	centit see for a
\mathcal{L}	20 Observed
	3 0034740
	7
	1 physipaper 1 phy
	Expected Expected
	Distance from centre
	main galactic We used to think dark matter was WIMPs (nearly intensity
<u> </u>	(F. W. 1 3 5 6 7)
	massive particles). With These involve supersymmetry but have been
	difficult to some experimentally indentify. Dark matter
	may come from cetain decay modes of the Higgs boson.

Critical Density of Vaiverse Imagine a sphere of radius & drawn around our gulaxy, large enough to contain millions of other galaxies, treating it as a homogeneous sphere its mass M will be - M= Volume x density = 4 TT r 3 P Now consider a thin shell (mass in) of universe surrounding the sphere. This shell, morning away from us has V = Hor. Will this velocity be great enough to keep moving backmards! For the escape velocity of a body of mass in to infinity: Initial KE of body = PE at infinity - Initial PE(at) So = 3 mr3 = 0 - (- 6 m M) $V^{2}r = ZGM$ $(Hor)^{2}r = ZG(\frac{4}{3}\pi r^{3}P_{c})$ entral - P = 3Ho?

density 8TT G it Partial 7 Po : expansion slows to zero, then contraction at a growing rate if Pactual = Pa : expansion will slaw to pero but only at infinite siz if Pactual < Pe : expansion will contine for ever Actual enidence suggests (including dark matter) partual = Pe. Yet we appear to be in an era of accelerating expension. -> Don't energy