

OFDM System

RTL Implementierung des Rx Pfades

Blockdiagramm Rx Kette

Interpolator: I/Os

Portname	Mode	Breite	Beschreibung
sys_clk_i	in	1	Systemtakt, 100MHz
sys_rstn_i	in	1	Systemreset, low-aktiv
sys_init_i	in	1	Synchrones Init, high-aktiv
rx_data_i/q_i	in	12	Rx Daten von AD9361 (I/Q Paar)
rx_data_valid_i	in	1	Valid Signal der Elnagngsdaten, aktiv für einen Taktzyklus pro Datum
interp_mode_i	in	1	Interpolator Modus 0Interpolation auf die Oversampling Rate 1Interpolation auf ein Sample mit zeitlichem Versatz
rx_data_delay_i	in	4	Verzögerung in Samples der Eingangsdatenrate
rx_data_offset_i	in	4	Verzögerung in Samples auf der Ausgangsrate
rx_data_i/q_osr_o	out	12	Ausgangsdaten (I/Q Paar)
rx_data_osr_valid_o	out	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum

Interpolator: Requirements

Modi

- Oversampling Mode
 - Oversampling Rate ist fix definiert (generic: osr_g)
 - osr_g: 2ⁿ; n=3,**4**,5
 - ohne Verzögerung
- Offset Mode
 - pro Eingangssample wird ein Ausgangssample bei einem Offset auf dem Oversampling-Raster erzeugt
 - Delay:
 - auf Eingangsraster: rx_data_delay_i(3:0)
 - Ausgangsraster: rx_data_offset_i(3:0) (n=4)

Coarse Alignment: I/Os

Portname	Mode	Breite	Beschreibung
sys_clk_i	in	1	Systemtakt, 100MHz
sys_rstn_i	in	1	Systemreset, low-aktiv
sys_init_i	in	1	Synchrones Init, high-aktiv
rx_data_i/q_osr_i	out	12	Daten von Interpolatorblock (I/Q Paar)
rx_data_osr_valid_i	out	1	Valid Signal der Eingansgdaten, aktiv für einen Taktzyklus pro Datum
interp_mode_o	out	1	Interpolator Modus 0Interpolation auf die Oversampling Rate (für coarse alignment) 1Interpolation auf ein Sample mit zeitlichem Versatz (für regulären Betrieb)
rx_data_delay_o	out	4	Verzögerung in Samples der Eingangsdatenrate (Ergebnis des coarse Alignment)
rx_data_offset_o	out	4	Verzögerung in Samples auf der Ausgangsrate (Ergebnis des coarse Alignment, Update durch fine Alignment)
offset_inc_i	in	1	Increment der Verzögerung am Oversampling Raster (Signal von Fine Aligment) Wird beim Beginn des nächsten OFDM Symbols übernommen
offset_dec_i	in	1	Decrement der Verzögerung am Oversampling Raster (Signal von Fine Aligment) Wird beim Beginn des nächsten OFDM Symbols übernommen
min_level_i	in	16	Unterer Schwellwert für das Erkennen eines Korrelations-Peaks beim coarse alignment (muss skaliert werden $\times 2^x$)
rx_data_i/q_coarse_o	out	12	Ausgangsdaten, (I/Q Paar)
rx_data_coarse_valid_o	out	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum
rx_data_symb_start_o	out	1	Gleichzeitg mit dem valid Signal des ersten Datums eines OFDM Symbols aktiviert
17/10/2018			UC23 M25/174 - Ranetuteing 2

Coarse Alignment: Reqs

- Nach aktiviertem init oder rstn startet das Coarse Alignment
 - Bis Coarse Alignment das Trainingssymbol detektiert hat werden keine Daten ausgegeben
 - Danach werden die Daten am 4MS/s Raster ausgegeben (nicht unbedingt äquidistant)
 - Coarse Aligment signalisiert den Start eines OFDM Symbols
 - Coarse Alignment detektiert das Traininsgsymbol nach Schmidl's Methode (siehe Foliensatz)
 - Nach erfolgtem coarse alignment wird das gefundene Delay durch das Fine Alignment aktualisiert (1x pro Symbol)
 - => Änderung des *offset*, eventuell auch des *delay*

CP Removal: I/Os

Portname	Mode	Breite	Beschreibung
sys_clk_i	in	1	Systemtakt, 100MHz
sys_rstn_i	in	1	Systemreset, low-aktiv
sys_init_i	in	1	Synchrones Init, high-aktiv
rx_data_i/q_coarse_i	in	12	Daten von Coarse Alignment, (I/Q Paar)
rx_data_coarse_valid_i	in	1	Valid Signal der Eingangsdaten, aktiv für einen Taktzyklus pro Datum
rx_data_coarse_start_i	in	1	Start Signal des OFDM Symbol der Eingangsdaten, aktiv für einen Taktzyklus pro Datum
rx_data_i/q_fft_o	out	12	Ausgangsdaten für die FFT, (I/Q Paar)
rx_data_fft_valid_o	out	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum
rx_data_fft_start_o	out	1	Gleichzeitig mit dem valid Signal des ersten Datums eines OFDM Symbols aktiviert

CP Removal: Reqs

- Entfernen der ersten 64 Samples nach Empfang des start Signals der Eingangsdaten
 - Ausgangsdatenrate reduziert sich von MS/s auf 3.2MS/s
 - Sample am Ausgang nicht äquidistant

FFT Top: I/Os

Portname	Mode	Breite	Beschreibung
sys_clk_i	in	1	Systemtakt, 100MHz
sys_rstn_i	in	1	Systemreset, low-aktiv
sys_init_i	in	1	Synchrones Init, high-aktiv
rx_data_i/q_fft_i	in	12	Daten von CP Removal (I/Q Paar)
rx_data_fft_valid_i	in	1	Valid Signal der Eingansgdaten der FFT, aktiv für einen Taktzyklus pro Datum
rx_data_fft_start_i	in	1	Start Signal des OFDM Symbol der Eingansgdaten, aktiv für einen Taktzyklus pro Datum
rx_symbols_i/q_fft_o	out	12	Ausgangsdaten der FFT, (I/Q Paar)
rx_symbols_fft_valid_o	out	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum
rx_symbols_fft_start_o	out	1	Gleichzeitg mit dem valid Signal des ersten Datums eines OFDM Symbols aktiviert

FFT Top: Reqs

OBERÖSTERREICH OBERÖSTERREICH

FFT altera fft ii

- Instantiierung der Altera FFT
 - Erzeugen der Steuersignale
 - Anlegen der Daten
 - siehe <u>ug fft.pdf</u> (elearning)
- Entfernen der unbenutzten Subträger
 - Reduktion der Datenrate von 3.2MS/s auf 1.6MS/s

Fine Alignment: I/Os

Portname	Mode	Breite	Beschreibung
sys_clk_i	in	1	Systemtakt, 100MHz
sys_rstn_i	in	1	Systemreset, low-aktiv
sys_init_i	in	1	Synchrones Init, high-aktiv
rx_symbols_i/q_fft_i	in	12	Eingangsdaten des Fine alignment (Ausgangsdaten der FFT), (I/Q Paar)
rx_symbols_fft_valid_i	in	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum
rx_symbols_fft_start_i	in	1	Gleichzeitg mit dem valid Signal des ersten Datums eines OFDM Symbols aktiviert
rx_symbols_i/q_o	out	12	Eingangsdaten des Fine alignment (Ausgangsdaten der FFT), (I/Q Paar)
rx_symbols_valid_o	out	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum
rx_symbols_start_o	out	1	Gleichzeitg mit dem valid Signal des ersten Datums eines OFDM Symbols aktiviert
offset_inc_o	out	1	Increment der Verzögerung am Oversampling Raster (Signal von Fine Aligment) Wird beim Beginn des nächsten OFDM Symbols übernommen
offset_dec_o	out	1	Decrement der Verzögerung am Oversampling Raster (Signal von Fine Aligment) Wird beim Beginn des nächsten OFDM Symbols übernommen

Fine Alignment: Reqs

- Analyse des Phasenfehlers
 - laut Algorithmus aus Matlab fixed-point
 Implementierung
 - Detektion des optimalen Phasenfehlers
 - Update des Offset der Eingangsdaten

Demodulation: I/Os

Portname	Mode	Breite	Beschreibung
sys_clk_i	in	1	Systemtakt, 100MHz
sys_rstn_i	in	1	Systemreset, low-aktiv
sys_init_i	in	1	Synchrones Init, high-aktiv
rx_symbols_i/q_i	in	12	Eingangsdaten des Fine alignment (Ausgangsdaten der FFT), (I/Q Paar)
rx_symbols_valid_i	in	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum
rx_symbols_start_i	in	1	Gleichzeitig mit dem valid Signal des ersten Datums eines OFDM Symbols aktiviert
rx_rcv_data_i	out	2	Ausgangsdaten der Demodulation und Bitstreamgenerierung (Ausgangsdaten der FFT)
rx_rcv_data_valid_i	out	1	Valid Signal der Ausgangsdaten, aktiv für einen Taktzyklus pro Datum
rx_rcv_data_start_i	out	1	Gleichzeitig mit dem valid Signal des ersten Datums eines OFDM Symbols aktiviert

Demodulation: Reqs

- Zuordnen der complexen Rx Symbole zu einem Datensymbol (00, 01, 10, 11)
 - Detektion des Quadranten

RTL Testbench

- Top Testbench instantiert das Rx Top Level
 - Eingangsdaten werden aus Matlab-Datei gelesen
 - Ergebnisse und Zwischenergebnisse werden in Textdatei als Integer geschrieben
 - Generierung der Clock, Reset, Init und Parameter
 - Vergleich der Ergebnisse der RTL Implementierung mit der Fixed-Point Matlab Implementierung in Matlab
 - EVM, Konstellationsdiagramm, SNR,