

_	_		_		_			_	_
т	n	DI	C:	١,	Е.	\boldsymbol{C}	Γ	١D	C
	u	Г	L.	v	E.	L	u	חי	J

1.	If $ \vec{a} = 2, \vec{b} = 5$ and $ \vec{a} = 1$	$ \vec{a} \times \vec{b} = 8 \text{ then } \vec{a} \cdot \vec{b} \text{ is equ}$	ual to					
				4) 5				
2.	If \vec{a} and \vec{b} are unit ve	ctors such that $(\vec{a} + 3\vec{b})$ is	s perpendicular to $(7\vec{a} -$	4) 5 $(5\vec{b})$ and $(\vec{a} - 4\vec{b})$ is perpendicular				
		gle between $\vec{a} \& \vec{b}$ is		, , ,				
	$1)30^{0}$	2) 45°	$3) 60^{\circ}$	4) 75°				
3.	If the projection of the vector $\hat{i} + 2\hat{j} + \hat{k}$ on the sum of the two vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $-\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is							
	1, then λ is equal to _ 1) 4	2) 5	3) 6	4) 7				
4.			,	,				
	Let $\vec{a} = \hat{i} + \alpha \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - \alpha \hat{j} + \hat{k}$. If area of parallelogram whose adjacent sides are represented by the vectors $\vec{a} \& \vec{b}$ is $8\sqrt{3}$ square units, than $\vec{a}.\vec{b}$ is equal to							
	=			4) 2				
5.	In a triangle ABC, If	BC = 3, $ CA = 5$ and $ BA $	4 = 7 then projection of	4) 2 vector <i>BA</i> on <i>BC</i> is equal to				
	1) $\frac{11}{2}$	2) $\frac{13}{2}$	3) $\frac{15}{2}$	4) $\frac{17}{2}$				
6	<u> </u>	<u> </u>	<u> </u>	<u> </u>				
6.								
7.	4) 120 ⁰ That their resultant is one – third							
<i>,</i> .	What is the angle between two vector forces of equal magnitude such that their resultant is one of either of original forces							
	1) $\cos^{-1}\left(\frac{-17}{18}\right)$	$2) \cos^{-1}\left(\frac{-1}{3}\right)$	3) 45°	4) 120°				
8.		have precisely equal mappy a factor n . What mu		tude of $\vec{A} + \vec{B}$ to be larger than the them is				
		$2) \theta = 2 \operatorname{Tan}^{-1} \left(\frac{1}{n} \right)$		4) 120°				
9.	If \vec{A} is perpendicular t							
	$1) \vec{A} \times \vec{B} = 0$	2) $\vec{A} \cdot (\vec{A} + \vec{B}) = A^2$	3) $\vec{A}.\vec{B} = AB$	4) $\vec{A} \cdot (\vec{A} + \vec{B}) = A^2 + \vec{A}\vec{B}$				
10.	The resultant C of \vec{A} as	$nd \vec{B}$ is perpendicular to	\vec{A} .Also $ \vec{A} = \vec{C} $. The ar	ngle between \vec{A} and \vec{B} isin				
	rad							
	$1)\frac{\pi}{4}$	2) $\frac{5\pi}{4}$	3) $\frac{7\pi}{4}$	$4) \frac{3\pi}{}$				
	т	4	4	4				
11.	The vector sum of the are	e two forces is perpendic	cular to their vector diff	erences. In that case, the forces				
	1) Cannot be predicte	ed	2) Always perpendicular					
	3) Are equal to each of		4) Are not equal to ea	ch other in magnitude				
12.		a unit vector, then 'c' is_						
	1) $\sqrt{0.89}$	2) 0.2	3) 0.3	4) $\sqrt{0.11}$				

- If $\vec{b} = 3\hat{i} + 4\hat{j}$, $\vec{a} = \hat{i} \hat{j}$. The vector having the same magnitude as that of \vec{b} and parallel to \vec{a} is ____
 - 1) $\frac{5}{\sqrt{2}}(\hat{i}-\hat{j})$
- 2) $\frac{5}{\sqrt{2}}(\hat{i}+\hat{j})$ 3) $5(\hat{i}-\hat{j})$ 4) $5(\hat{i}+\hat{j})$
- Two vectors \vec{a} and \vec{b} are at an angle of 60° with each other their resultant makes an angle of 45° with \vec{a} . If $|\vec{b}| = 2$ units then $|\vec{a}|$ is _____
 - 1) $\sqrt{3}$
- 2) $\sqrt{3}-1$
- 3) $\sqrt{3} + 1$
- 4) $\frac{\sqrt{3}}{2}$
- Find at least one vector perpendicular to $3\hat{i} 4\hat{j} + 7\hat{k}$ 28.
 - $1)\hat{i} + 2\hat{j} + 3\hat{k}$
- $2) \hat{i} \hat{j} 3\hat{k}$
- 3) $\hat{i} + 2\hat{j} + \frac{5}{7}\hat{k}$
- Two vectors have magnitude 5 units and 12 units respectively, find their cross product if the angle 29. between them is 30°
 - 1) 30 units
- 2) 40 units
- 3) 50 units
- 4) 60 units
- The sum and difference of two perpendicular vectors of equal lengths are 30.
 - 1) Perpendicular to each other and of equal lengths
 - 2) Perpendicular to each other and of different lengths
 - 3) Of equal lengths and have an acute angle between them
 - 4) Of equal lengths and have an obtuse angle between them

PHYSICS

KEY:

PHYSICS										
1-10	1	3	2	4	1	2	1	2	2	4
11-20	3	4	3	1	3	3	3	2	3	4
21-30	3	2	4	4	2	1	2	3	1	1

HINTS

1. Given
$$|\vec{a}| = 2$$
, $|\vec{b}| = 5$

$$|\vec{a} \times b| = 8$$

$$ab \sin \theta = 8$$

$$2 \times 5 \times \sin \theta = 8$$

$$\sin\theta = \frac{4}{5}$$

$$\vec{a}.\vec{b} = ab\cos\theta = 6$$

Given $(\vec{a} + 3\vec{b}) \perp (7\vec{a} - 5\vec{b})$

$$(\vec{a}+3\vec{b}).(7\vec{a}-5\vec{b})=0$$

$$7a^2 - 15b^2 + 16 \ \vec{a} \cdot \vec{b} = 0 \dots (1)$$

$$(\vec{a}-4\vec{b}).(7\vec{a}-2\vec{b})=0$$

$$7a^2 + 8b^2 - 30 \ \vec{a}.\vec{b} = 0 \dots (2)$$

From 1 & 2 It is clear that a = b

$$\therefore \cos \theta = \frac{b}{2a} = \frac{1}{2}$$

$$\theta = 60^{\circ}$$

3. Let
$$\vec{a} = \hat{i} + 2 \hat{j} + \hat{k}$$

$$\vec{b} = 2\hat{i} + 4\hat{j} - \hat{k} - \lambda\hat{i} + 2\hat{j} + 3\hat{k}$$

= $(2 - \lambda)i + 6j - 2k$

Given $\vec{a}.\vec{b} = ab\cos\theta$

$$a\cos\theta = \frac{\vec{a}.\vec{b}}{\left|\vec{b}\right|} = 1$$

$$\vec{a}.\vec{b} = 2 - \lambda + 12 - 2$$

$$=2-\lambda+10$$

$$=12-\lambda$$

$$\therefore \vec{a}.\vec{b} = |b|$$

$$12 - \lambda = \sqrt{(2 - \lambda)^2 + 6^2 + (-2)^2}$$

$$(12-\lambda)^2 = (4+\lambda^2-4\lambda+40)$$

$$\chi^2 + 144 - 24\lambda = \chi^2 - 4\lambda + 44$$

$$20\lambda = 100$$

$$\lambda = 5$$

4. Given area of parallelogram
$$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ 1 & \alpha & 3 \\ 3 & -\alpha & 1 \end{vmatrix}$$

$$\vec{a} \times \vec{b} = i(4\alpha) + 8j - 4\alpha k$$

$$\vec{a} \times \vec{b} = \sqrt{16\alpha^2 + 64} + 16\alpha^2$$

$$8\sqrt{3} = \sqrt{32\alpha^2 + 64}$$

$$64 \times 3 = 32\alpha^2 + 64$$

$$32\alpha^2 = 128$$

$$\alpha^2 = 4$$

$$\alpha = 2$$

5.

Projection of BA on BC

$$= BA \cos |ABC|$$

$$=7\times\frac{\left(7^2+3^2-5^2\right)}{2\times7\times3}$$

$$= 7 \times \left| \frac{49 + 9 - 25}{2 \times 7 \times 3} \right|$$
$$= \frac{11}{2}$$

6.
$$\vec{A} + \vec{B} = \vec{C}$$

 $(\vec{A} + \vec{B}) \cdot (\vec{A} + \vec{B}) = \vec{C} \cdot \vec{C}$
 $A^2 + B^2 + 2AB\cos\theta = C^2$

$$4^2 + 5^2 + 2 \times 4 \times 5 \times \cos \theta = \left(\sqrt{61}\right)^2$$

$$41 + 40\cos\theta = 61$$

$$40\cos\theta = 20$$

$$\cos\theta = \frac{1}{2} = 60^{\circ}$$

7.
$$\left(\frac{1}{3}\right)^2 = 1^2 + 1^2 + 2 \times 1 \times 1 \times \cos \theta$$

$$\frac{1}{9} = (1 + \cos \theta) \times 2$$

$$\frac{1}{18} = 1 + \cos \theta$$

$$\cos \theta = \frac{1}{18} - 1 = -\frac{17}{18}$$

8. Given
$$|\vec{A} + \vec{B}| = n |\vec{A} - \vec{B}|$$

$$2A\cos\frac{\theta}{2} = n \times 2A\sin\frac{\theta}{2}$$

$$\operatorname{Tan} \frac{\theta}{2} = \frac{1}{n}$$

$$\frac{\theta}{2} = \operatorname{Tan}^{-1} \frac{1}{n}$$

9.
$$\vec{A} \cdot \vec{B} = 0, \vec{A} \times \vec{B} \neq 0$$

10.

$$\operatorname{Tan} \theta' = \frac{C}{A} = \operatorname{Tan} 45^{0}$$

$$\theta' = \frac{\pi}{4}$$

$$\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

11.

$$(\overrightarrow{A} + \overrightarrow{B}).(\overrightarrow{A} - \overrightarrow{B}) = 0$$

$$A^2 - B^2 = 0$$

$$A^2 = B^2$$

$$|\vec{A}| = |\vec{B}|$$

12. Let unit vector =
$$\frac{1}{2}\hat{i} + \frac{4}{5}\hat{j} + c\hat{k}$$

$$\sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{4}{5}\right)^2 + c^2} = 1$$

$$c^2 = \frac{11}{100} \Longrightarrow c = \sqrt{0.11}$$

13.

From fig $\vec{v} \perp \vec{a}$ so $\vec{v} \cdot \vec{a} = 0$

$$a \parallel r$$
 so $r \times a = 0$

14. Let
$$\vec{A_1} + \vec{A_2} = 5\vec{A_3}$$
(1)

$$\overrightarrow{A_1} - \overrightarrow{A_2} = 3\overrightarrow{A_3} \dots (2)$$

Add eqn 1&2 subtract eqn 1&2 to get \overrightarrow{A}_1 , \overrightarrow{A}_2

15. From fig Resolve components

$$F_2\cos 60 = F_1\cos 30$$

$$F_2 \times \frac{1}{2} = 10 \times \frac{\sqrt{3}}{2}$$

$$F_2 = 10\sqrt{3}$$

Along vertical

$$F_2 \sin 60 + F_1 \sin 30 = F_3$$

$$F_3 = 10\sqrt{3} \times \frac{\sqrt{3}}{2} + 10 \times \frac{1}{2}$$

$$=20N$$

$$= 20N$$

$$\vec{a} = -\omega^2 \vec{r}$$

so, acceleration is along $-\vec{r}$

17.
$$(\vec{B} \times \vec{A}) \cdot \vec{A} = (\vec{B} \times \vec{A}) A \cos \theta = 0$$
 $(\theta = 90^{\circ})$

18. Given
$$F_R^2 = 3AB$$

$$A^2 + B^2 + 2AB\cos\theta = 3AB$$

$$\cos \theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

$$19. \qquad \left| \vec{A} + \vec{B} \right| = 2 \left| \vec{A} - \vec{B} \right|$$

$$\cos \theta = \frac{3(A^2 + B^2)}{10AB} = \frac{3 \times 2A^2}{10A^2} = \frac{3}{5}$$

20. Projection of
$$\vec{A}$$
 on $\vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} \hat{B} = \frac{\left(\hat{i} + \hat{j} + \hat{k}\right) \cdot \left(\hat{i} + \hat{j}\right)}{\sqrt{2}} \cdot \frac{\left(\hat{i} + \hat{j}\right)}{\sqrt{2}} = \frac{\mathcal{Z}\left(\hat{i} + \hat{j}\right)}{\mathcal{Z}} = \hat{i} + \hat{j}$

21.
$$\sqrt{10}p = \sqrt{(2p)^2 + (\sqrt{2}p)^2} + 2 \times 2p \cdot \sqrt{2}p \cdot \cos\theta$$

 $\cos\theta = \frac{1}{\sqrt{2}}, \theta = 45^0$

22. Given
$$\cos \alpha = \frac{4}{5\sqrt{2}}$$
, $\cos \beta = \frac{1}{\sqrt{2}} \cdot \frac{5}{5}$, $\cos \gamma = \frac{3}{5\sqrt{2}}$

$$\vec{A} = 4\hat{i} + 5\hat{j} + 3\hat{k}$$

23. Given projection of
$$\vec{A}$$
 on \vec{B} is zero i.e A should be \perp to B

$$\vec{A} \cdot \vec{B} = 0$$

$$(2\hat{i} + 4\hat{j} - 2\hat{k}) \cdot (\hat{i} + 2\hat{j} + \alpha\hat{k}) = 0$$

$$\alpha = 5$$

24. Given $\overrightarrow{a_1} \& \overrightarrow{a_2}$ are collinear

$$\frac{x}{1} = \frac{-1}{y} = \frac{1}{z}$$

unit vector in direction of
$$x\hat{i} + y\hat{j} + z\hat{k} = \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k})$$

25.

let
$$a = 8$$

$$b = 7$$

$$c = 10$$

$$\cos\theta = \frac{b^2 + c^2 - a^2}{2bc}$$

$$=\frac{7^2+10^2-8^2}{2\times7\times10}$$

$$=\frac{85}{140}=\frac{17}{28}$$

Projection of
$$\overrightarrow{AB}$$
 on \overrightarrow{AC}

$$= \left| \overrightarrow{AB} \right| \cos \theta = 10 \times \frac{17}{28} = \frac{85}{14}$$

26. Let, third vector
$$\vec{c}$$

$$\therefore \vec{c} = c \hat{c} = b \hat{a}$$

(Given
$$c = b$$
)

$$|b| = \sqrt{3^2 + 4^2} = 5$$

$$= \frac{5(i-j)}{\sqrt{2}}$$

We know that $\tan \alpha = \frac{b \sin \theta}{a + b \cos \theta}$

$$1 = \frac{2\sin 60}{a + 2\cos 60}$$

$$1 = \frac{\cancel{2} \times \frac{\sqrt{3}}{\cancel{2}}}{a + \cancel{2} \times \frac{1}{\cancel{2}}}$$

$$1 = \frac{\sqrt{3}}{a+1}$$

$$a = \sqrt{3} - 1$$

- Let $x\hat{i} + y\hat{j} + z\hat{k}$ is perpendicular to $3\hat{i} 4\hat{j} + 7\hat{k}$ then their dot product should equal to zero .so 3x-4y+7z=0, option verification by taking $x=1, y=2, z=\frac{5}{7}$. So required equation is $\hat{i}+2\hat{j}+\frac{5}{7}\hat{k}$
- $\vec{A} \times \vec{B} = AB \sin \theta = 5 \times 12 \times \sin 30 = 5 \times \cancel{12} \times \frac{1}{\cancel{2}} = 30 \text{ units}$ 29.
- 30. Conceptual

LECTURER NAME (KPHB)

Sri VENKATESHAM

PH-8328476572