

Requisitos de Software

Proyecto: Quantum Filter

Integrantes:

Nombres y Apellidos	Email	ROL USM
Nicolás Alarcón	nicolas.alarcon.14@sansano.usm.cl	201473522-7
Gabriel Valenzuela	gabriel.valenzuel.14@sansano.usm.cl	201473505-7
Rodrigo Elicer	rodrigo.elicer.14@sansano.usm.cl	201473539-1

Desarrollo del Prototipo

Prototipo puede ser encontrado en el siguiente repositorio de Github:

 $\frac{https://github.com/GabrielValenzuelaLorca/Proyecto-IngSoftware/tree/master/Quantum}{ntum}$

Selección de Patrones de Diseño

Intención	Patrón de Diseño	Razonamiento
Mostrar en el diagrama	Facade	La clase Controlador debe
que una clase		ser capaz de englobar las
(Controlador) permitirá		funciones pertenecientes a
representar operaciones		las otras clases de tal
que pertenecen a varias		forma de simplificar lo
clases.		más posible el código.
Mostrar en el diagrama	Adapter	Debido a que se obtendrá
que habrá una clase que		información de diferentes
transforme información		sitios estructurados de
para poder trabajar con		forma diferente, se
esta.		necesita una clase que
		normalice los datos
		obtenidos de estas para
		trabajarlos
		uniformemente.
Asegurar que sólo una	Singleton	Todas las clases tienen
instancia de clasificador		que operar teniendo en
pueda ser creada. Solo una		cuenta el mismo
manera de acceder a dicha		clasificador, debido a que
clase.		este será muy específico
		no es posible generalizarlo
		ni conveniente tener más
		de una instancia de este.

Creación de Diagrama de Clases

(Este se apreciará de mejor manera en los archivos del entregable)

Diagramas de Secuencia

A continuación los diagramas de secuencia para *Filtrar Contenido* y *Buscar Contenido* respectivamente.

(Estos se apreciarán de mejor manera en los archivos del entregable)

Análisis de Trade-off

Si bien no hemos podido tener contacto nuevo con el Cliente, se puede considerar una nueva funcionalidad para añadir al proyecto que no fue agregada en la estapa anterior. El cliente propuso una idea de que **el programa pudiera "aprender" a clasificar las cosas de manera inteligente y autómata.** De lo anterior se plantearon 3 posibles opciones a desarrollar.

- 01: Utilizar criterios *estáticos* para clasificar los distintos tipos de materiales, guiándose por el formato de estos.
- 02: Crear una Inteligencia Artificial con características específicas que ayuden al proyecto.
- 03: Utilizar algún Framework de Inteligencia Artificial.

Criterios a evaluar:

C1: DesempeñoC2: Escalabilidad

C3: UsabilidadC4: ConfiabilidadC5: Mantenibilidad

Criterio\Opciones	01	02	03
C1	+	+	++
C2	0	+	++
C3	++	+	+
C4	0		+
C5	+	-	0

Resultados para cada opción según la tabla de criterios.

- La opción 1 (01) muestra un alto grado de satisfacción en general, teniendo una correlación positiva con la mayoría de los criterios, exceptuando por la Confiabilidad y la Escalabilidad. Estos aspectos no supondrían un gran problema para el cliente a menos que los sitios utilizados no sean de alta confianza.
- La opción 2 (O2) significa un mayor desafío para el grupo ya que sería manejar un alto grado de expertise. Aunque se logre obtener una Inteligencia Artificial, esta carecería de Estabilidad. Además la Confiabilidad sería bastante pobre ya que tenemos experiencia previa con este tipo de tecnologías.
- La opción 3 (03) parece ser la mejor de todas ya que tiene una alta correlación con todos los criterios mencionados. Si bien Mantenibilidad tiene un 0 de "No Disponible", el resto de criterios supone una alta ventaja con respecto al problema planteado por el Cliente.

Para concluir, como equipo se llegó a la conclusión que **utilizar un Framework** (O3) que brinde la capacidad de clasificar archivos de manera eficaz y automática sería lo mejor para el requerimiento propuesto. Esto ya que proporciona atributos de calidad que el cliente solicita, tales como Escalabilidad, Desempeño, Usabilidad y Confiabilidad. Si bien Mantenibilidad está como "No Disponible" en la evaluación, se investigó como grupo la opción de utilizar el Framework TensorFlow, cuya fidelidad es de reconocer, por lo que se espera que no haya problemas en este aspecto.