Contrôle d'algèbre linéaire N°4

Dur	rée: 1 heure 30 minutes	Barème sur 15 points
NOM:		Groupe
PRENOM:		

1. Dans le plan muni de la base canonique $B = (\vec{e}_1, \vec{e}_2)$, on donne deux vecteurs $\vec{u} = \vec{e}_1 - 3\vec{e}_2$ et $\vec{v} = 3\vec{e}_1 + 4\vec{e}_2$.

On considère un endomorphisme f du plan dont l'espace image $\operatorname{Im} f$ est la droite (O, \vec{v}) et le noyau Ker f est la droite (O, \vec{u}) .

- a) Sachant que $\forall \vec{x} \in \text{Im } f$, $f(\vec{x}) = 13\vec{x}$, déterminer une base propre B' de f, la matrice de f relativement à B' et la nature géométrique de f.
- b) Soit q l'endomorphisme du plan défini par sa matrice relativement à la base canonique $B: M_g = \frac{1}{13} \begin{pmatrix} 7 & 24 \\ -8 & 45 \end{pmatrix}$.
 - i) Montrer que f et g ont un sous-espace vectoriel propre en commun.
 - ii) Calculer la matrice de g dans la base propre B' de f.
- c) Soit h une homothétie de centre O et de rapport $\alpha \in \mathbb{R}^*$.
 - i) Calculer la matrice de l'application $j = \frac{1}{13} (g \circ f) + h$ dans B'.
 - ii) Déterminer les valeurs de α de sorte que j soit une affinité, caractériser alors l'affinité j.

4,5 pts

2. Soit f l'endomorphisme de l'espace dont la matrice relativement à la base canonique de \mathbb{R}^3 est $M_f = \begin{pmatrix} 2 & -5 & -3 \\ -1 & -2 & -3 \\ 3 & 15 & 12 \end{pmatrix}$.

- a) L'endomorphisme f est il diagonalisable? Justifier rigoureusement votre réponse.
- b) Déterminer avec précision la nature géométrique de f.

4 pts

3. Dans \mathbb{R}^3 , on considère deux vecteurs perpendiculaires \vec{a} et \vec{b} non nuls.

Soit f l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 définie par

$$f(\vec{x}) = (\vec{x} \times \vec{a}) \times \vec{a} + (\vec{x} \times \vec{b}) \times \vec{b},$$

où $\vec{u} \times \vec{v}$ représente le produit vectoriel de \vec{u} par \vec{v} .

L'endomorphisme f est-il diagonalisable ? Justifier rigoureusement votre réponse.

Indication : on ne demande pas de calculer les éventuelles valeurs propres de f. 2,5 pts

4. Discuter en fonction du paramètre réel m et résoudre le système suivant :

$$\begin{cases} 2x + y + z &= m - 1\\ -x - y - 2z &= 1\\ x - y - 4z &= -m^2 \end{cases}$$
 4 pts