6/1/2027 Yash Verma 19075083 CSE

Notations:

If Σ is an alphabet, $\alpha \in \Sigma$, $\alpha \in \Sigma^*$ and $L \subseteq \Sigma^*$ at $\alpha \in \Sigma$ and $\alpha \in \Sigma$.

Etime

のとこ ススリ . _ - 九 .

 $\Sigma^{k} = \Sigma \Sigma \Sigma - \Sigma = \{\alpha \in \Sigma^{*} : |\alpha| = R\}$ $L^{k} = L \cdot L \cdot L \cdot L \cdot - - - L \cdot L$

When K=0, $a^0=E$, $x^0=E$, $\xi^0=E$, $\xi^0=E$.

-Unit of Concatenation is $E/\xi \in \mathcal{F}$.

· Set of all strings that can be obtained by concatenating any no. of elements of L:

The operation * is called Kleene star.

LT - L* | {E}

Describing Languages:

Example:

L, - fab, baby + 6 fb } fbb }*

language 4 is constructed either by com (+) an arbitary no of strings each of which is either aborbab. by so (+) strug & with arbitary no. of strug 66.

L2= {a ∈ {a, b } * { na (n) ≥ n_b (n) }

L3 = set of strings,

Recursive definition of L*

@ e EL*

@ For any x EL*, y EL, ny EL*

3) No storing is in L *, unless it cant be obtained by D and D

Exampli.

L= {a, ab}

EEL* - O

1* = { \in ab } = { \in ab } - 2

Repeating step @, we get &a, Eab, aa, adb, aburn For any K>0, a string obtained by (+) k elements
of L can be obtained by using K-times only 2.

Proof will mainly use mathematical induction techniques;

- 1) Basis step
- @ Induction hypothesis
- 3 show induction step.
- @ Proof of induction step.

Problem:

If Z is an alphabet, L is a language over Z, thene the problem is:

"Given a string $w \in \Sigma^*$, decide whether or not $w \in L^{\mathcal{H}}$.

Deterministic Finite Automata

DFA consists of:

- 1) finite set of states, (Q)
- Definite set of input symbols (Z)
- (start state, one of states in Q (20)
- 4) Set of final states F E Q
- 5) Transition for that takes an argument a state and a an input symbol and returns a state, denoted by S, defined as

Representation of DFA: A = (Q, \(\sigma\), \(\delta\), \(\de\), \(\delta\), \(\delta\), \(\delta\), \(\delta\), \(\delta\), \ DFA processing a storing:

Suppose w = 9,92 -- an,

- . DFA begins in its initial state qo.
- · Consult the transition for, 8. 8 (20,91) = 9, (say) to find the state that the DFA A enters after Processing the first input Symbol a,
- Process next input symbol 92, 8 (91,92) = 92 (say)
- Finding states q₃, 24 · 8(2;-1,9;) 2; ∀ i
- · At the end, $\delta(q_{n-1}, q_n) = q_n$. $Q_n \in F$

E) W E RA L(A) [input string w is accepted,
otherwise the input is rejected]

Transition table:

-> Conventional tabular of representation of fn 8, takes two arguments and returns a value. Q a, a, a, 90/5(90,91) 91 8(2192)
92 1

Example. Q = {20,21,22} 90 92 90 *91 91 91 T= {0,1} $\frac{1}{\sqrt{2}}$ 01 E. L(A) 000 & L (A) Extended transition function: It is defined using induction on the length of input strings · (Basic) 8 = (2, E) = 2 '(Induction) wis a string of form w= xa. $a \in \Sigma$, is last symbol of w and n is the string Consisting of last symbol s*(a, w) = 8(s*(a, n), a) To compute 8*(9, w), first 8*(9,71).

If p = 8*(q, n)8*(q, w) = 8(p, q) $A = (Q, \Xi, \delta, q_0, I^{\Xi})$ is defined by $L(A) = (w: \delta * (q_0, w) \in F$?

If L is a language for DFA, then we say L is a requeler language.

Example:

L= $w \in \{0,1\}^* | w \text{ is } q \text{ ever length and starts } with 0,1\}$ $M = \{\{0,1\}^* | \{0,1\}^*, \{2,2\}^*, \{2,1\}^*, \{0,1\}^$

