Two Level Logic Optimization: Exact Minimization

Two-Level Logic Minimization

PLA Implementation

Ex:
$$F_0 = A + B'C'$$

 $F_1 = AC' + AB$
 $F_2 = B'C' + AB$
product term AB, AC', B'C', A

Goals: 1. product term => No. of rows

- 2. literal in the input part => speed
- 3. literal in the output part => speed

Terminology and Definition

• literal: a variable or its complement

Ex:
$$xy + x'z \Rightarrow 4$$
 literals

• cube: product term

Ex: 4-variable function
$$f(x, y, z, w)$$

on-set = $\{(1, 1, 1, 1)\}$
=> $f = xyzw$

on-set =
$$\{(1, 1, 1, 1)$$

(0, 1, 1, 1) $\}$
=> f = yzw

on-set =
$$\{(1, 1, 1, 1)$$

 $(1, 0, 1, 1)$
 $(0, 1, 1, 1)$
 $(0, 0, 1, 1)\}$

$$=> f = zw$$

Terminology and Definition

• implicant of a function F(f, d, r):

cube
$$c \subseteq f + d$$

where f, d, r are on-set, don't-care set, and off-set.

- prime implicant: removing any literal from c will cause $c \cap r \neq \emptyset$
- essential prime implicant: a prime implicant of F which contains a minterm F not contained in any other prime
- irredundant cover: a cover C (union of implicant) that no proper subset of C is also a cover

Minimization of Two-Level Logic

• Algebraic manipulation

Uniting Theorem

$$AB + AB' = A (B + B') = A$$

Idempotent Law

$$A + A = A$$

Minimization of Two-Level Logic

• K-map simplification

Exact Minimization of Two-Level Logic

- Quine-McClusky
 - (1) Generate all primes
 - (2) Find a minimum cover

(1) Generate all primes

(utilize
$$AB+AB'=A(B+B')=A$$
)

- Grouping cubes according the number of 1's in a cube
- Merging cubes in the neighboring groups and marking the cubes that are merged

Example: utilize AB+AB'=A(B+B')=A

$$f = \Sigma m (4, 5, 6, 8, 9, 10, 13) + d(0, 7, 15)$$

0000	0-00	01
0100	000_	-1-1
1000	010-	
0101	01-0	
0110	100-	
1001	10-0	
1010	01-1	
0111	-101	
1101	011-	
1111	1-01	
	-111	
	11-1	

(2) Select a subset of primes

$$f(x, y, z, w) = x'z'w' + y'z'w' + xy'z' + xy'w' + xz'w + x'y + yw$$

=> the selected sum for f is

$$f(x, y, z, w) = xy'w' + xz'w + x'y$$

A subset of implicant is a cover of the function if each minterm for which the function is 1 is included in at least one implicant of the subset.

Covering Problem

- Define a constraint matrix
 - -column: corresponds to a prime
 - -row: a minterm
 - $-A_{ij} = 1$ if jth column cover i minterm

$$P_1=x'y$$
 $P_2=x'z'$ $P_3=y'z'$ $P_4=yz$
 $x'y'z'$ 0 1 1 0
 $x'yz'$ 1 1 0 0
 $x'yz$ 1 0 1
 xyz 0 0 1
 xyz 0 0 1

Find a subset of columns of minimum cost that covers all rows. (minimum column cover)

$$P1 + P2 + P3$$
 a cover?

$$P1 + P3 + P4$$
 a cover?

$$P2 + P3 + P4$$
 a cover ?

Unate Covering

	$P_1 = x'y$	$P_2 = x'z'$	$P_3=y'z'$	$P_4=yz$
x'y'z'	0	1	1	0
x'yz'	1	1	0	0
x'yz	1	0	0	1
xyz	0	0	0	1
xy'z'	0	0	1	0

- The constraint matrix can be written as switching function.
 - -interpret "P_i=1" as "column P is selected"
 - -constraint equation

$$(P_2 + P_3)(P_1 + P_2)(P_1 + P_4)P_4P_3 = 1$$

- A formula where no letter appears with both phases is called unate e.g. xy' + zy' otherwise binate e.g.. xy' + zy
- The formula we obtain is unate. Therefore, the covering problem is called unate covering.

1. Reduction of constraint matrix

Ex:

	$P_1=x'y$	$P_2=x'z'$	$P_3=y'z'$	$P_4 = yz$
x'y'z'	0	1	1	0
x'yz'	1	1	ф	0
x'yz	1	0	ф	1
хуz	0	0	þ	1
xy'z'	-0	0	1	0

2. Enumeration in the case of cyclic core cyclic core:

	P_1	P_2	P_3	P_4
1	1	$\bar{1}$	0	0
2	0	1	1	0
3	0	0	1	1
4	1	0	0	1

Three Forms of Reduction

- Elimination of rows covered by essential column
- Elimination of rows through row dominance
- Elimination of columns through column dominance
- Iterate the above three forms of reductions

1. Elimination of rows covered by essential column:

If a row of the constraint matrix is a singleton, the corresponding column must be part of a solution.

Ex:

$$P_1=x'y$$
 $P_2=x'z'$ $P_3=y'z'$ $P_4=yz$
 $x'y'z'$ 0 1 1 0 0
 $x'yz'$ 1 1 0 0
 $x'yz$ 1 0 1 1 0
 xyz 0 0 1 1 0

$$(P_2+P_3)(P_1+P_2)(P_1+P_4)P_4P_3=1$$
 if $P_3=1$, $P_4=1$ (must be selected) $(P_2+1)(P_1+P_2)(P_1+1)11=1$ $P_1+P_2=1$ covers P_3 P_4 P_1 or P_3 P_4 P_2 are solutions

2. Row or constraint dominance

If row r_i of the constraint matrix has all ones of another row r_j , r_i is covered whenever r_j is covered. (r_i dominates r_j)

Ex:

Dominating row is deleted

Ex:

$$(P_1+P_2+P_6)(P_1+P_2)(P_2+P_3)(P_2+P_3+P_4)(P_4+P_5)(P_4+P_5+P_6) = 1$$

$$=> (P_1+P_2)(P_2+P_3)(P_4+P_5) = 1$$

utilize absorption property

$$x(x+y)=x$$

3. Column or variable dominance

The cost of column:

- –each column (prime) corresponds to one AND gate in a SOP form.
- -if the number of gate is the only concern, it is correct to assign the same cost to all columns
- -if the literal is more important

$$P_1 = xyz$$
 $P_2 = wz$
 $cost(P_1) > cost(P_2)$

The total cost is the sum of the cost of the selected column

A column P_i has all ones of another column P_j and the cost of P_i is not greater than P_j . We can discard P_j from the matrix $(P_i \text{ dominates } P_j)$

Ex:

Dominated column is deleted

$$(P_1 + P_2)(P_2 + P_3)(P_4 + P_5) = 1$$

 P_1 is not selected:

$$F_{P_1=0} = P_2(P_2 + P_3)(P_4 + P_5)$$

 P_1 and P_3 are not selected:

$$(F_{P_1=0})_{P_3=0} = P_2 (P_4 + P_5)$$

Enumeration

Enumeration in the case of cyclic core cyclic core:

	P_1	P_2	P_3	P_4
1	1	1	0	0
2	0	1	1	0
3	0	0	1	1
4	1	0	0	1

Use divide and conquer strategy

 $P_i = 0 \Rightarrow \text{reduce matrix} \Rightarrow \text{find a solution}$

P_i = 1 => reduce matrix => find a solution select the smaller one

branch and bound

Multiple Output Functions

Two Implementations for the Multiple-Output Function

Multiple-output Primes

• Multiple-output primes include the primes of products of the individual functions.

Ex: f1, f2, f3 consider primes of f1, f2, f3, f1f2, f2f3, f1f3, f1f2f3

Need to consider 2ⁿ - 1 functions

Cubical Representation for Multipleoutput

x:1

x':0

don't care: -

Tabular Method Applied to the Multipleoutput

- (1) Two adjacent implicant are merged
 - => Their output parts are intersected
- (2) Marking the implicant
 - => Output part of the new implicant is the same

000	01	0-0	01
010	01	01-	01
011	11	-11	10
101	10	1-1	10
111	10		

Formulating the Covering Problem

• Minterm appears once for each output

$$P1 = 011 \begin{vmatrix} 11 \\ P2 = 0-0 \end{vmatrix} 01$$
 $P3 = 01- \begin{vmatrix} 01 \\ P4 = -11 \end{vmatrix} 10$
 $P5 = 1-1 \begin{vmatrix} 10 \\ 10 \end{vmatrix}$

		P1	P2	P3	P4	P5	
000	01	$\begin{bmatrix} 0 \end{bmatrix}$	1	0	0	0	
010	01	0	1	1	0	0	
011	01	1	0	1	0	0	
011	10	1	0	0	1	0	
101	10	0	0	0	0	1	
111	10	0	0	0	1	1	