# T1 - Sistema de Inteligência Artificial para Análise de Jogo da Velha

Integrantes: Daniel Araujo, Eduardo Bregalda e Leonardo Machado

PUCRS - Faculdade de Informática Disciplina: Inteligência Artificial

Professora: Silvia Moraes

Data: 30/09/2025

# 1. DATASET

# 1.1 - Análise e Modificações do Dataset.

O dataset utilizado foi obtido do repositório UCI Machine Learning Repository, contendo 958 configurações de tabuleiro de jogo da velha. Originalmente, o dataset apresentava desbalanceamento entre as classes.

# 1.2 - Distribuição Original vs Balanceada



Figura 1: Comparativo entre distribuição desbalanceada e balanceada do dataset

# 1.3 Adequações Realizadas

Balanceamento das classes: O dataset original tinha 626 amostras "positive" (65.3%) e 332 amostras "negative" (34.7%), criando um desbalanceamento que poderia causar overfitting.

Limitação de amostras: Conforme especificado no enunciado, utilizamos máximo 250 amostras por classe, resultando em um dataset final com 500 amostras (250 positive + 250 negative).

Codificação de variáveis: Todas as variáveis categóricas (x, o, b) foram convertidas para formato numérico usando LabelEncoder.

Nomenclatura personalizada: Todas as variáveis utilizadas no código terminam com "\_\$" conforme o enunciado pedia.

Estratégia de divisão:

Treino: 80% (400 amostras) Validação: 10% (50 amostras) Teste: 10% (50 amostras)

# 2. ALGORITMOS E CONFIGURAÇÕES

# 2.1 Algoritmos Implementados

1. K-Nearest Neighbors (KNN)

Algoritmo baseado em similaridade que classifica uma amostra com base nos k vizinhos mais próximos

Configuração utilizada: k=5, métrica euclidiana

Justificativa: Valor de k ímpar evita empates, k=5 oferece bom equilíbrio entre bias e variância

2. Multi-Layer Perceptron (MLP)

Rede neural artificial com camadas ocultas para aprendizado de padrões complexos

Topologia utilizada: [100, 50] neurônios nas camadas ocultas Configuração: max\_iter=500, solver='adam', activation='relu'

Justificativa: Arquitetura suficiente para o problema sem overfitting

3. Árvore de Decisão

Algoritmo que cria regras hierárquicas para classificação

Configuração: criterion='gini', max\_depth=10, random\_state=42

Justificativa: Profundidade limitada previne overfitting, critério Gini eficiente para classificação binária

4. Support Vector Machine (SVM)

Algoritmo que encontra hiperplano ótimo para separação das classes

Configuração: kernel='rbf', C=1.0, gamma='scale'

Justificativa: Kernel RBF adequado para dados não-lineares, C=1.0 oferece regularização equilibrada

Como funciona: SVM mapeia dados para espaço dimensional superior onde se tornam linearmente separáveis, maximizando a margem entre classes através de vetores de suporte.

# 3. RESULTADOS

# 3.1 Comparação de Performance



Figura 2: Comparação entre os algoritmos de classificação

#### 3.2 Tabela de Resultados Detalhados

### Tabela Comparativa dos Algoritmos de IA

| Algoritmo              | Acuracia<br>(Validação) | F1-Score<br>(Validação) | Acurácia<br>(Teste) | F1-Score<br>(Teste) |
|------------------------|-------------------------|-------------------------|---------------------|---------------------|
| K-Nearest Neighbors    | 0.8100                  | 0.8096                  | 0.7500              | 0.7496              |
| Support Vector Machine | 0.8200                  | 0.8194                  | 0.8500              | 0.8505              |
| Multi-Layer Perceptron | 0.7200                  | 0.7183                  | 0.8400              | 0.8406              |
| Árvore de Decisão      | 0.8200                  | 0.8198                  | 0.8300              | 0.8306              |

Figura 3: Tabela de resultados

# 3.3 Análise Multidimensional

# ☐ Análise Radar dos Algoritmos



Figura 4: Análise multidimensional dos algoritmos

# 3.4 Mapa de Calor de Performance



Figura 5: Mapa de calor da performance dos algoritmos

## 3.5 Discussão dos Resultados

Métricas Avaliadas:

Acurácia: Proporção de predições corretas

Precisão: Verdadeiros positivos / (Verdadeiros positivos + Falsos positivos) Recall: Verdadeiros positivos / (Verdadeiros positivos + Falsos negativos)

F1-Score: Média harmônica entre precisão e recall

#### 3.5.1 Análise de Erros e Confusões:

# K-Nearest Neighbors (KNN):

- Apresentou a maior discrepância entre validação (81,0%) e teste (75,0%), indicando possível overfitting
- Principais erros: Sensibilidade a ruído nos dados e à escolha do valor k
- Possíveis causas: Algoritmo baseado em distância pode ser afetado por features irrelevantes e pela distribuição irregular dos pontos no espaço de características

### **Multi-Layer Perceptron (MLP):**

- Menor performance na validação (72,0%) mas boa recuperação no teste (84,0%)
- Principais erros: Convergência instável durante o treinamento
- Possíveis causas: Arquitetura da rede pode ser inadequada para o tamanho do dataset, ou o algoritmo precisou de mais iterações para convergir adequadamente

#### Árvore de Decisão:

- Performance consistente entre validação (82,0%) e teste (83,0%)
- Principais erros: Possível criação de regras muito específicas para algumas configurações
- Possíveis causas: Natureza hierárquica das decisões pode não capturar completamente as interações complexas entre posições do tabuleiro

# **Support Vector Machine (SVM):**

- Melhor performance geral com melhoria de validação (82,0%) para teste (85,0%)
- Menor quantidade de erros observados
- Possíveis causas dos poucos erros: Alguns padrões de jogo podem estar próximos à fronteira de decisão, causando classificações ambíguas

#### 3.5.2 Escolha do Melhor Modelo:

O Support Vector Machine (SVM) foi escolhido como melhor modelo pelas seguintes justificativas:

- 1. Melhor acurácia no teste: 85,0% a mais alta entre todos os algoritmos
- 2. Melhor F1-Score no teste: 0,8505 indicando bom equilíbrio entre precisão e recall
- 3. Estabilidade: Performance consistente entre validação e teste, sem overfitting
- 4. Robustez: SVM com kernel RBF demonstrou capacidade superior de lidar com a nãolinearidade dos dados de jogo da velha
- 5. Generalização: O modelo mostrou boa capacidade de generalização, melhorando do conjunto de validação para o de teste

# 4. FRONTEND

## 4.1 Implementação da Interface

O frontend desenvolvido permite interação entre humano e máquina em partidas de jogo da velha, com análise em tempo real do estado do jogo.

#### Funcionalidades implementadas:

- Jogo interativo humano vs computador
- Detecção automática dos 5 estados: "Tem jogo", "Possibilidade de Fim de Jogo", "Empate",
  "O vence", "X vence"
- Exibição do algoritmo de IA analisando o tabuleiro
- Contabilização de acertos e erros da IA
- Cálculo de acurácia em tempo real
- Geração de relatórios de partidas

# 4.1 Desempenho do Modelo no Frontend

Total de partidas jogadas: 5

Acurácia média da IA: 87,1%

#### **Erros observados:**

- Confusão entre "Tem jogo" e "Possibilidade de Fim de Jogo": A IA ocasionalmente antecipou situações de final de jogo quando ainda tinha jogadas disponíveis
- Detecção prematura de empate: Em uma situação, a IA previu empate quando o jogo ainda estava em andamento
- Maior dificuldade em estados intermediários: Os erros se concentraram principalmente na diferenciação entre "Tem jogo" e "Possibilidade de Fim de Jogo"

# Acertos por tipo de estado:

"Tem jogo": 12/17 predições corretas (70,6%)

"X vence": 1/1 predição correta (100,0%)

"O vence": 1/1 predição correta (100,0%)

"Possibilidade de Fim de Jogo": Estados mais difíceis de detectar, com confusões ocasionais

"Empate": Detecção precisa quando realmente acontece

#### Análise detalhada:

Total de predições analisadas: 30 predições

Acertos totais: 26 predições corretas Erros totais: 4 predições incorretas

Variação de performance: Entre 50,0% e 100,0% por partida, demonstrando que a complexidade do

estado do jogo influencia na precisão

Estados finais bem detectados: A IA demonstrou 100% de precisão na detecção de vitórias

definitivas

Desafio principal: Diferenciação entre estados intermediários do jogo

Observações importantes:

- A IA manteve consistência com a performance observada nos testes (85% de acurácia)
- O modelo SVM escolhido demonstrou robustez em situações práticas de jogo
- Interface responsiva permitiu análise em tempo real sem atrasos perceptíveis
- Relatórios automáticos facilitaram a análise posterior da performance

# 5. CONSIDERAÇÕES FINAIS

#### 5.1 Dificuldades Encontradas

#### **Principais desafios:**

- Balanceamento adequado do dataset respeitando limite de amostras
- Ajuste de hiperparâmetros para evitar overfitting
- Integração da IA com interface em tempo real
- Implementação de detecção precisa dos estados de jogo

#### 5.2 Ganhos Obtidos

#### **Conhecimentos adquiridos:**

- Aplicação prática de algoritmos de machine learning
- Importância do pré-processamento de dados
- Avaliação comparativa de diferentes abordagens
- Desenvolvimento de sistemas interativos com IA

#### 5.3 Avaliação dos Resultados

#### No desenvolvimento:

Todos os algoritmos foram implementados com sucesso Métricas de performance adequadas para o problema Dataset balanceado conforme especificações

## No uso prático (Frontend):

IA demonstrou capacidade de análise em tempo real Interface intuitiva e funcional Relatórios automáticos facilitam análise posterior

### 5.3 Propostas de Melhoria

Sugestões para trabalhos futuros:

Implementação de algoritmos ensemble Uso de deep learning para análise de padrões Interface gráfica mais elaborada(não apenas pelo terminal) Análise de estratégias de jogo ótimas

# 5.4 Ferramentas de IA Utilizadas

Durante o desenvolvimento deste trabalho, foram utilizadas as seguintes ferramentas de IA:

- GitHub Copilot: Otimização do código e sugestões de implementação, também foi utilizado para desenvolver scripts capazes de gerar todos os gráficos necessários para análise do desempenho dos algoritmos e que foram utilizados neste relatório.
- Gamma AI: Usado para ter uma base dos slides de apresentação do trabalho.