DECISION TREES

=> Jio, Aritch => Employee

(1) Retaining: - 1 Salary, promotion 2 Hiring - training time + Cost + Misfit Identify those important Charu of an employee leaving. Classification. Solved factors which are bording to employer abtrition. So hed: Model interepret & feature Importance En coding - Imbalarlu Scaling -> Limenmonately Reduction [if required]
-> feature engineerin.

- Root Node Age < 25 Losion Internal Age modes (7) if overhime > 2.5 => llare making Node 100 else => Stary Overhime > 2.5 else if age > 45

=> leave
else => stay. leave Stary leaf No de (Prediction)

Quiz - 1 Try it out What is the main disadvange of KNN?

41 users have participated

End Quiz Now

Statement I: Topmost node is called leaf node Statement IJ. Topmost node is called root node. Statement III: Bottom nodes are called root nodes. Statement IV: Nodes in between root and leaf are called decision nodes/ internal nodes.

Which of the following statements are true?

A All statements are true

B II & IV

C I & III

D III & IV

10%

To learn Deta: 200 m=200 N

tre M=100 N= 100 4+=90 4-=90 # misclassified = 20

A 12/3/17

conditions which lead to OBJECTNE: those Cuation of PURENOALS / Homogentous
REGIONS.

Premissible masses
meanwhent of funity of
moder.

Impurity (7 => Heterogeneity (7 => Entropy (7 => Purity II)
y => discute RV E & Y, Y2, Y3, Y43.

$$H(Y) = - \sum_{i=1}^{R} P(y_i) \log_2 P(y_i)$$

Entropy for binary classification
$$y \cdot \{0,1\}$$
 $H(y) = - [P(0) \cdot \log P(0) + P(1) \log_2 P(1)]$
 $P(6) = P P(1) = 1-P$
 $H(y) = - [P \log_2 P + (1-P) \log_2 (1-P)]$

Cooks similar to log loss.

 $\log_2 P(0) + P(1) \log_2 P(1)$
 $\log_2 P(1) = 1-P(1)$
 $\log_2 P(1) = 1-P$

$$P(R) = 1/2$$
 $P(Y) = 1$

$$H(4) = -\left[\left(P(G)\log P(G) + P(R)\log P(R)\right)\right]$$

return -((p_g*np.log2(p_g))+(p_r*np.log2(p_r)))

$$P(R) = 1/6$$
 $P(6) = 5/6$
 $P(14) = 0.65$

Out[11]: 1.0

Out[16]: 0.0

In [15]: calc_entropy(p_g=10e-100,p_r=1).round(2)
Out[15]: 0.0
In [16]: calc_entropy(p_g=1,p_r=10e-100).round(2)

$$P(R) = 6/6 = 1 P(G) = 0/6 = 0$$

Out[17]: 0.6500224216483541

In [10]: def calc_entropy(p_g,p_r):

In [11]: calc_entropy(p_g=1/2,p_r=1/2)

$$P(R) = \frac{0}{6} = 0$$
 $P(G) = \frac{6}{6} = 1$
 $P(G) = \frac{6}{6} = 1$

Gender, Education Deuron Trees teatives W= 100 M = 100 = 0 97 Hpavent = 0 97 4+=60 y+=60 EDUCATION GENDGR NON GRADUATE GRADUATE FEMALE MALL C1 m2 = 30 m, = 70 ng = 40 $M_1 = 60$ y+=10 4+=50 4+=50 4-=20 4-=20 4-:30 4-=10 Mc2 = 0.91 Hc1= 0.86 HC1 = 0.65 HC, =0.81

Information Gain

In [18]: ## Left
Parent
calc_entropy(p_g=0.6,p_r=0.4)

calc_entropy($p_g=1/4$, $p_r=3/4$)

Out[18]: 0.9709505944546686

In [19]: ## Left
Child 1
calc_entropy(p_g=5/6,p_r=1/6)

Out[19]: 0.6500224216483541

In [20]: ## Left

Child 2

Out[20]: 0.8112781244591328

In []:

In [21]: ## Right ## Child 1

Out[21]: 0.863120568566631

calc_entropy($p_g=5/7$, $p_r=2/7$)

calc_entropy($p_g=1/3$, $p_r=2/3$)

In [22]: ## Right ## Child 2

Out[22]: 0.9182958340544896

$$\frac{m_{1}}{m} + (c_{1}) + \frac{m_{2}}{m} + (c_{2})$$

$$= \int Gender$$

$$= \int Gen$$

$$= \int Gender$$

Information yain

IGI = Hparent - H Children

= 0.97 - 0.71 = 0.26

IGII = Hparent - Hohildren chrotien = 0.97 - 0.875 = 0.095 I41 > I42,

We will split on Gender.

=> Minimise Entropre => Maximise Information fain. Hparent = 6.97 26. tpavent = 097 8-8-3 8=0 8=8.2 5-0 0000 000 999

Quiz3 - Check your understanding Which of the following statement is false?

28 users have participated

A	Purer the node, more confidence we are in our prediction	21%
В	For making prediction, DT takes majority vote of class.	25%
С	More homogenous the data is at the node, more confident we are about our prediction	25%
D	None of the above	29%

Quiz5 - Check your understanding What will the value of entropy for following distribution of datapoints in node: Positive class: 50 Negative class: 0

29 users have participated

A 0.33

B 1

C -1

D 0

O Time Left: 7s

$$F_1 = 0.3$$
 $F_2 = 0.63$
 $F_3 = 0.2$

Quiz 6 - Check your understanding We calculated information gain for 3

features which is as follows: Feature 1:0.3

Feature 2: 0.03

Feature 3: 0.2 Which feature would you pick for splitting the node?

End Quiz Now