- The Network Layer and Routers
 - Network Layer
 - Switches vs routers
 - Packet forwarding vs routing
 - Forwarding Packets
 - Virtual circuits
 - Datagrams
 - Routers
 - Key functions
 - Input port processing
 - Switching fabrics
 - Memory
 - Bus
 - Interconnection network
 - Output port processing
 - Active queue management
 - Output port contention
 - Head-of-line blocking
- IPv4 and IPv6
 - o IPv4
 - Header format
 - Subnets
 - Forwarding process
 - Fragmentation and reassembly
 - o ICMP
 - Internet Control Message Protocol
 - o DHCP
 - NAT
 - o CIDR
 - Classful IP addressing
 - Classless interdomain routing
 - CIDR and route aggregation
 - Breaking route aggregation
 - o IPv6
 - Motivation
 - Header
 - Transitioning from v4 to v6
 - Tunnels
- Routing Algorithms
 - Challenges
 - Forwarding vs routing
 - Link state algorithm
 - Dijkstra's

- Distance vector algorithm
 - Bellman-Ford
 - Good news travels fast, bad news travels slow
 - Solutions
 - Poisoned reverse
 - Path vector routing
- Load-based routing
 - Bad idea, traffic oscillates back and forth
- Routing in the Internet
 - Hierarchical routing
 - Autonomous systems (AS)
 - Domain and border routers
 - Intra-domain (RIP, OSPF, IGRP)
 - o RIP
 - Routing information protocol
 - Distance-vector algorithm
 - Link failure and recovery
 - Table processing
 - OSPF
 - Open shortest path first
 - Hierarchy
 - ⇒ **BGP**
 - Basics
 - Reachability (advertise prefixes)
 - AS-PATH, NEXT-HOP
 - Route selection (policy)
 - Separation of concerns
- Broadcast and Multicast Routing
 - Broadcast
 - Spanning and Steiner trees
 - Multicast service model
 - Membership and routing
 - IGMP (Internet Group Management Protocol)
 - Messages
 - Versions
 - Problem: finding trees connection routers that have local group members
 - DVMRP
 - Distance vector multicast routing protocol
 - Reverse path forwarding
 - Pruning
 - Flood and prune
 - Soft state

- o CBT
 - Core-based trees
 - Explicit join
 - Not shortest path
- o PIM
 - Protocol-independent multicast
 - Shortest-path trees with explicit joining
- Status
 - Multicast development
 - SSM: Source-specific multicast
 - Best solution
 - No demand for ISPs to deploy
 - Application-layer multicast
- Error Detection and Multiple Access
 - Link Layer
 - Transfers frames (e.g. Ethernet frames)
 - Reliability, flow control, error detection
 - Hardware
 - Error Detection and Correction
 - EDC bits
 - Parity checking
 - CRC (Choose r CRC bits such that D*2^r + R % 2 = 0)
 - Multiple Access Protocols
 - Sharing a single broadcast channel
 - Channel partitioning
 - TDMA: Time division multiple access
 - FDMA: Frequency division multiple access
 - Random access
 - Slotted ALOHA
 - CSMA: Carrier Sense Multiple Access
 - CSMA/CD: collision detection
 - Taking turns
 - Try to have best of channel partitioning and random access
 - Polling
 - Token passing
- MPLS, Data Centers, Retrospective
 - MPLS
 - Speed up IP forwarding
 - Traffic engineering, VPNs
 - Data Center Networking
 - Load balancing, hierarchy, innovation
 - Retrospective
 - DHCP

- ARP
- DNS
- TCP and HTTP
- Switched Local Area Networks
 - Addressing
 - LAN
 - MAC addresses
 - o ARP
 - Building ARP table
 - Ethernet
 - Topologies
 - Frame format
 - Historic vs modern
 - Switches
 - Hubs vs switches
 - Switches vs routers
 - Traffic isolation
 - Self-learning switches
 - VLANs
- Wireless and WiFi
 - Types of networks
 - Single vs multiple hop, infrastructure vs infrastructure-less
 - Links and Networks
 - Wireless technologies
 - Wireless signals
 - CDMA: Code Division Multiple Access
 - Multiple users transmit at same time with minimal interference
 - Encoding and decoding
 - o WiFi
 - IEEE 802.11 standards
 - LAN architecture
 - Channels and association
 - Passive and active scanning
 - CSMA/CA
 - Hidden terminal problem and signal fading
 - RTS/CTS
 - Frame format
 - Address fields
 - Mobility
 - Rate adaptation
 - Power management
 - Low Power
 - BlueTooth

- Zigbee
- Cellular Networks and Mobility
 - Cellular Networks
 - Basic architecture
 - 2G standard
 - GSM: combined FDM/TDM
 - BSC
 - MSC
 - 3G standard
 - Replace BSC with RNC (radio network controller)
 - 4G/LTE standard
 - Evolution from separate circuit-switched and packet-switched core and subdomains to one common IP core
 - EPC: Evolved packet core
 - o All IP core, no circuits
 - Provides QoS to voice calls
 - LTE Radio access network
 - OFDM (FDM and TDM)
 - Mobility
 - Terminology
 - Home agent
 - Foreign agent
 - Permanent address
 - Care-of-address
 - Approaches
 - Network-layer routing
 - Application-layer routing
 - Indirect routing
 - Direct routing
 - Foreign agent chaining
 - Mobile IP
 - Indirect routing
 - Agent discovery
 - Registration with home agent
 - Mobile TCP: problems
 - Cellular Mobility
 - Call to mobile user
 - Home network, HLR (home location register), VLR (visitor location register)
 - Same MSC (mobile switching center)
 - MSC handoff steps
 - Different MSC
- Multimedia Applications and Streaming Video

- Multimedia Applications
 - Video
 - High bit rate
 - Compression
 - Audio
 - Low bandwidth
 - Analog to digital
 - Compression
 - Applications
 - Streaming stored audio/video
 - Best-effort service from application layer
 - Client buffering
 - UDP vs HTTP
 - Adaptive HTTP
 - DASH
 - Divide into 2-second chunks
 - o Content distribution networks
 - Case Studies
 - Netflix
 - YouTube
 - Kankan
 - Voice and video-over-IP
 - Streaming live audio/video
- Voice-Over-IP
 - Best-Effort Service
 - Packet loss
 - Recovering
 - Forward Error Correction (FEC)
 - Interleaving
 - Error concealment
 - Packet delay
 - Packet jitter
 - Removing jitter
 - Include timestamp
 - Use buffering to delay playout
 - Fixed vs Adaptive playout delay

- Skype
 - FEC for loss recovery
 - Codecs at various rates
 - P2P (peer to peer)
 - Super peers and ordinary peers
- Real-Time Streaming Protocols
 - RTP: Real-Time Protocol

- SIP: Session Initiation Protocol
 - Name translation and user location
- Network Support for Multimedia
 - Multiple classes of service
 - Motivating scenarios
 - Packet marking
 - Traffic isolation
 - Policing enforce rate on a network flow
 - Resource reservation allocate bandwidth to flow
 - Scheduling
 - FIFO
 - Priority Queue
 - Round Robin
 - Weighted Fair Queueing (WFQ)
 - Work-conserving vs non-work-conserving
 - Is link ever left idle if packets are ready
 - o Policing
 - Limit traffic to a set of declared parameters
 - Average rate
 - Peak rate
 - Burst size
 - Leaky (Token) Bucket
 - Guaranteed Delay
 - Leaky bucket + weighted fair queueing = provable maximum delay in a queue
 - Differentiated Services
 - Architecture
 - Packet classification and traffic conditioning
 - Per-hop behaviors
 - Expedited forwarding
 - Assured forwarding
 - Integrated Services
 - Provide quality of service guarantees to individual connections
 - Components
 - Scheduling
 - Admission control
 - Resource reservation
 - QOS routing
 - Pricing and billing
 - RSVP
 - Resource ReSerVation Protocol
 - Resource reservation for multicast trees
 - Retrospective

■ Most QoS benefits come from best-effort service