

基于零样本学习的高光谱图像分类

潘尔婷, 马泳, 黄珺*, 樊凡, 李皞, 梅晓光, 马佳义

武汉大学 电子信息学院

录

1 研究背景

2 算法设计

3 实验分析

4 总结展望

研究背景

• 选题背景及意义 • 问题定义

自强弘毅 求是拓新

选题背景及意义

研究背景

算法设计

实验分析

总结展望

自强私毅 求是拓新

旋翼无人机高光谱成像系统

便携式地面高光谱成像系统

● 应用背景

- ✔ 小型化,便携化高光谱传感器的发展大大降低了高光谱数据的获取成本
- ✔ 高光谱数据的应用依赖于详细且可靠的标注

算法设计

实验分析

总结展望

自强弘毅
求是拓新

选题背景及意义

- 现有分类算法存在问题
- ▶ 分类性能被过优估计 公共数据集少,模型在单个数据集上进行训练和测试 随机采样策略引起数据在空间上重叠

(b) Training set

(c) Testing set

算法设计

实验分析

总结展望

自强私毅 求是招新

选题背景及意义

- 现有分类算法存在问题
- ▶ 分类性能被过优估计
- ▶ 模型泛化性能差

有监督分类器要求每类有足够的训练样本 高光谱数据人工标注成本高,难度大,有标签数据少 训练样本不足,模型无法直接迁移到新的数据集上

● 解决方案

跨数据集对分类模型进行训练和评估

算法设计

实验分析

总结展望

自强私毅 求是拓新

问题定义

● 有监督分类模型

已知: $x \in \mathcal{X}$, $y \in \mathcal{Y}$

目标: $f: X \to Y$

● 跨数据集分类模型

已知: $x \in \mathcal{X}$, $y \in \mathcal{Y}$

目标: $f: \mathcal{X} \to \mathcal{Y}'$

 $(y \neq y', 甚至 y \cap y' = \emptyset)$

ightharpoonup解决方案:参考零样本学习,引入标签语义信息 $y' \to z'$ $y' \to z'$

算法设计

• 特征提取

• 特征映射

• 标签推理

自强弘毅 求是拓新

特征提取

研究背景

算法设计

实验分析

总结展望

自强私毅 求是拓新

▶ 视觉特征提取: 高光谱数据 —

▶ 类别语义描述: 类别名称

词向量模型

语义特征空间

特征映射

研究背景

算法设计

实验分析

总结展望

自强弘毅
求是拓新

▶ 通过将特征映射到同一特征空 间来学习视觉特征和语义特征 的对应关系

- ✓ 语义→视觉 特征映射
- ✓ 视觉→语义 特征映射

标签推理

研究背景

算法设计

实验分析

总结展望

自强私毅
求是拓新

▶ 将学习到的映射迁移至测试集数据,利用度量学习的方法来衡量两种特征的相似度,推理出最合适的标签

实验分析

• 实验设置 • 实验结果

自强弘毅 求是拓新

算法设计

实验分析

总结展望

自强私毅 求是招新

实验设置

- 数据集选择及划分
- ▶ 选择同一传感器采集的数据集为一组 Indian Pines (IP) & Salinas (SA) 均使用AVIRIS传感器采集, 光谱覆盖波段为400-2500nm
- 两种训练-测试组合 IP-SA & SA-IP

Indian Pines

Salinas

编	SA	IP		
号	名称	数量	名称	数量
1	Brocoli_green_weeds_1	2009	Alfalfa	46
2	Brocoli_gree_weeds_2	3726	Corn-notill	1428
3	Fallow	1976	Corn-mintill	830
4	Fallow_rough_plow	1394	Corn	237
5	Fallow_smooth	2678	Grass-pasture	483
6	Stubble	3959	Grass-trees	730
7	Celery	3579	Grass-pasture- mowed	28
8	Grapes_unstrained	11271	Hay-windrowed	478
9	Soli_vinyard_develop	6203	Oats	20
10	Com_seneseed_green_weeds	3278	Soybean-notill	972
11	Lettuce_romaine_4wk	1068	Soybean-mintill	2455
12	Lettuce_romaine_5wk	1927	Soybean-clean	593
13	Lettuce_romaine_6wk	916	Wheats	205
14	Lettuce_romaine_7wk	1070	Woods	1265
15	Vinyard_untrained	7268	Building-Grass- Trees-Drives	386
16	Vinyard_vertical_trellis	1807	Stone-Steel Powers	93

实验设置

研究背景

算法设计

实验分析

总结展望

自强私毅
求是拓新

● 实验对比算法

▶ 特征提取

✓ 视觉特征提取: RNN, SSUN

✓ 语义特征提取: word2vec

▶ 特征映射&标签推理:

✓ V→S: DeVise, WLE (Word Label Embedding), SAE (Stacked AutoEncoder),

✓ S→V: SAE, DEM(Deep Embedding Model), RN(Relation Network)

● 定量评价指标: Top-k 精度

实验结果

研究背景

算法设计

实验分析

总结展望

自强弘毅
求是拓新

精度	模型	映射	SA-IP		IP-SA		
		方向	RNN	SSUN	RNN	SSUN	
	DeVise	V→S	13.46	15.02	10.95	12.57	
	WLE	$V \rightarrow S$	8.57	10.89	6.82	7.33	
Top1	SAE	$V \rightarrow S$	10.14	11.03	6.04	8.46	
Top1	SAE	$S{\rightarrow}V$	11.03	12.09	7.92	7.29	
	DEM	S→V	16.65	20.87	10.63	9.05	
	RN	s→v	19.87	13.75	13.26	14.11	
	DeVise	V→S	28.36	31.21	24.52	26.83	
	WLE	$V \rightarrow S$	22.49	23.76	16.14	20.04	
Top?	SAE	$V \rightarrow S$	23.57	26.88	15.37	23.15	
Top3		$S{\rightarrow}V$	27.69	25.41	16.94	22.97	
	DEM	$S{\rightarrow}V$	28.35	34.02	23.85	26.08	
	RN	$S{\rightarrow}V$	31.67	28.36	29.82	37.46	

实验分析:

> 学习类别不够,测试类别较多

SA-IP: 训练16个类别,测试12个类别

IP-SA: 训练12个类别,测试16个类别

- ▶ 类别语义相差小
- ▶ 语义特征和视觉特征的鸿沟
- ▶ 整体模型没有进行协同训练

实验结果

研究背景

算法设计

实验分析

总结展望

自强私毅 求是拓新

Acc	Model	V/S	SA-IP (12)			IP-SA (16)		
			Bands-grouping RNN	ResNet18	SSAN	Bands-grouping RNN	ResNet18	SSAN
Top1	DeVise	$V \to S$	13.83	10.67	15.87	10.77	11.44	13.25
	WLE	$V \to S$	8.64	8.57	11.60	6.91	10.52	6.96
	SAE	$V \to S$	9.54	10.50	11.27	5.58	9.01	7.23
		$S \to V$	10.08	8.12	12.16	7.81	12.66	7.35
	DEM	$S \to V$	17.48	17.11	22.65	12.41	12.03	8.28
	RN	$S \to V$	20.21	13.79	14.60	13.59	13.25	14.25
Top3	DeVise	$V \to S$	28.23	24.14	31.60	24.87	23.89	30.21
	WLE	$V \to S$	23.33	21.92	26.88	16.63	24.18	21.79
	SAE	$V \to S$	23.92	23.37	26.70	15.83	16.15	22.24
		$S \to V$	29.11	25.11	25.52	14.49	14.57	24.72
	DEM	$S \to V$	28.42	31.50	36.10	25.48	24.29	28.68
	RN	$S \to V$	32.76	28.44	29.28	30.22	28.78	38.09

实验分析:

- ▶ 数据集在地物类别名称 接近,语义相差小
- ▶ 语义特征和高光谱特征 的鸿沟
- ▶ 整体模型没有进行协同 训练

总结与展望

• 全文总结

• 未来展望

自强私毅 求是拓新

基于零样本学习的高光谱图像分类

研究背景

算法设计

实验分析

总结展望

自强弘毅
求是拓新

● 全文总结

- ▶ 针对高光谱分类算法在单一数据集上训练和评估导致训练不足,模型泛化性能差的缺点,本文提出在高光谱分类中引入标签语义信息,以实现跨数据集进行分类模型的训练与评估;
- ▶ 本文实验结果表明,视觉-语义映射的模式能更好地学习到高光谱数据的两种特征之间的关联。

● 未来展望

- ▶ 在更专业的语料库中训练高光谱数据标签的语义特征
- ▶ 语义特征和高光谱特征对齐问题

谢谢!

潘尔婷 武汉大学电子信息学院 panerting@whu.edu.cn

自强弘毅求是招新