

Seminario 4

Álgebra Relacional. Otros Lenguajes de Consulta Formales.

Contenidos

- Introducción
- Algebra Relacional
 - Operaciones
 - Selección
 - Proyección
 - Composición de operadores
 - Producto cartesiano
 - Unión y diferencia
 - Reunión
 - Intersección
 - División
 - Eficiencia en las Consultas
- Otros lenguajes de consulta formales
 - Lenguajes declarativos
 - · Cálculo de predicados
 - CRD
 - CRT
 - Lenguajes relacionalmente completos
 - Lenguajes comerciales

Introducción

- Un lenguaje de consulta:
 - Permite al usuario solicitar información de la base de datos.
 - Son normalmente de más alto nivel que los lenguajes de programación de propósito general.
 - Pueden clasificarse en:
 - Procedimentales
 - Declarativos

Introducción

Procedimental:

- El usuario da instrucciones al sistema para que realice una secuencia de operaciones en la BD para calcular el resultado deseado.
 - Álgebra Relacional
 - "A Relational Model of Data for Large Shared Data Banks" E. F. Codd, Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387.

Declarativo:

- El usuario describe la información deseada sin dar un procedimiento específico para obtener esa información.
 - Cálculo Relacional (Codd, 1970)
 - "Relational Completeness of Data Base Sublanguages" E.F. Codd (presented at Courant Computer Science Symposia Series 6, "Data Base Systems," New York City, N.Y., May 24th-25th, 1971). IBM Research Report RJ987 (March 6th, 1972). Republished in Randall J. Rustin (ed.), Data Base Systems: Courant Computer Science Symposia Series 6. Englewood Cliffs, N.J.: Prentice-Hall (1972).

- Las operaciones del Álgebra Relacional son internas dentro del conjunto de las relaciones:
 - Entrada:
 - Una o más relaciones
 - Salida:
 - Una relación

Operador	Notación
Selección	σ
Proyección	π
Unión	U
Intersección	n
Diferencia	-
Producto Cartesiano	×
Θ-Reunión	\bowtie_{Θ}
División	÷

- Clasificación de los operadores:
 - Con respecto al tipo de operador:
 - Operadores monarios
 - Selección
 - Proyección
 - Operadores binarios
 - Unión
 - Intersección
 - Diferencia
 - Producto Cartesiano
 - θ-reunión
 - División

- Con respecto a su relación con el modelo relacional:
 - Operadores de conjunto
 - Unión
 - Diferencia
 - Intersección
 - Producto

- Operadores relacionales
 - Selección
 - Proyección
 - O-reunión
 - División

- Con respecto a su necesidad:
 - Operadores fundamentales (primitivos)
 - Selección
 - Proyección
 - Unión
 - Diferencia
 - Producto Cartesiano

- Operadores no fundamentales (derivados)
 - Intersección
 - θ-reunión
 - División

Selección

- Definición:
 - Sean
 - R(A₁, ..., A_n) una relación cualquiera.
 - Θ una expresión lógica asociada a $\{A_1,...,A_n\}$.
 - r la instancia de R.
 - El operador Θ-selección aplicado a R obtiene aquellas tuplas de r para las que Θ es cierta.

- Notación:
 - σ_Θ(R)

Álgebra Relacional Selección

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Luis Martínez Pérez	AS	TSEÑAL	TESE
242560	María Gómez Sánchez	CU	TSEÑAL	TESE

Selección

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Luis Martínez Pérez	AS	TSEÑAL	TESE
242560	María Gómez Sánchez	CU	TSEÑAL	TESE

$\sigma_{categoria=AS}$ (profesores)

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Luis Martínez Pérez	AS	TSEÑAL	TESE

Selección

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Luis Martínez Pérez	AS	TSEÑAL	TESE
242560	María Gómez Sánchez	CU	TSEÑAL	TESE

$\sigma_{categoria \neq ASA(area=COMPUTVarea=ELECTR)}$ (profesores)

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
2842560	José Álvarez Pérez	CE	ELECTR	ELEC

Proyección

- Definición:
 - Sean
 - R(A₁, ..., A_n) una relación cualquiera.
 - {A_i,...,A_i} un subconjunto de sus atributos.
 - r la instancia de R.
 - El operador proyección sobre {A_i,...,A_j} aplicado a R obtiene tuplas de r eliminando de la tabla aquellos atributos no pertenecientes a {A_i,...,A_j} y suprimiendo las tuplas redundantes.

Notación:

• $\pi_{Ai,...,Aj}(R)$

>> Porque pueden repetirse

Proyección

• $\pi_{NRP,nom_prof,categoria}$ (Profesores)

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Luis Martínez Pérez	AS	TSEÑAL	TESE
242560	María Gómez Sánchez	CU	TSEÑAL	TESE

Proyección

• $\pi_{NRP,nom_prof,categoria}$ (Profesores)

NRP	NOM_PROF	CATEGORIA
2428456	Juan Sánchez Pérez	AS
24283256	Antonia Pérez Rodríguez	CU
242256	Luis Pérez Pérez	TE
84256	Carmen Pérez Sánchez	TU
324256	David Pérez Jiménez	CU
24256	María López Ruiz	TU
2842560	José Álvarez Pérez	CE
842560	Adela Pérez Sánchez	AS
84560	Luis Martínez Pérez	AS
242560	María Gómez Sánchez	CU

Proyección

- Como una proyección produce como resultado una relación:
 - Si en el resultado de una proyección aparecen tuplas repetidas se deben descartar.
 - Esto suele ocurrir cuando, al proyectar, no se incluye una clave candidata en la lista de atributos.

•	Fiemn	lo: Tabla	Profesores

· Clave primaria: NRP

Si proyectamos por {area,cod_dep}

AREA	COD_DEP
COMPUT	CCIA
COMPUT	CCIA
LENGUA	LSI
LENGUA	LSI
ARQUIT	ATC
ARQUIT	ATC
ELECTR	ELEC
ELECTR	ELEC
TSEÑAL	TESE
TSEÑAL	TESE

Proyección

- Como una proyección produce como resultado una relación:
 - Si en el resultado de una proyección aparecen tuplas repetidas se deben descartar.
 - Esto suele ocurrir cuando, al proyectar, no se incluye una clave candidata en la lista de atributos.

AREA	COD_DEP
COMPUT	CCIA
LENGUA	LSI
ARQUIT	ATC
ELECTR	ELEC
TSEÑAL	TESE

- Ejemplo: Tabla Profesores
 - Clave primaria: NRP
 - Si proyectamos por {area,cod_dep}

Composición de operadores

- El AR se basa en la aplicación sucesiva de operadores hasta que obtenemos la tabla que contiene la solución a nuestra consulta.
- Como el resultado de una operación es siempre una relación, dicho resultado puede usarse como operando de otra operación.

Composición de operadores

- Ejemplo:
 - Obtener una lista con el NRP y el Nombre de aquellos profesores que pertenecen al departamento cuyo código es ELEC:
 - $\sigma_{cod_dep=ELEC}$ (profesores)

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC

• π_{NRP, nom_prof} ($\sigma_{cod_dep=ELEC}$ (profesores))

NRP	NOM_PROF
2842560	José Álvarez Pérez
842560	Adela Pérez Sánchez

Composición de operadores

- Ejemplos:
 - Encontrar los nombres de los profesores que no tienen categoría AS y pertenecen a las áreas de conocimiento TSEÑAL o ARQUIT.
 - $\Pi_{\text{nom_prof}}(\sigma_{\text{categoria} \neq AS \land (\text{area} = TSE \tilde{N}ALV \text{ area} = ARQUIT})(\text{profesores}))$

- Encontrar las áreas de conocimiento que tienen profesores con categoría CU o TU.
 - $\pi_{area}(\sigma_{categoria=TU\ V\ categoria=CU}(profesores))$

Composición de operadores

- Encontrar el DNI y el nombre de aquellos alumnos que nacieron antes del 1-1-80.
 - $\pi_{DNI, nom_alum}(\sigma_{fecha-nac<01-01-80}(alumnos))$
- Encontrar las provincias de las que vienen alumnos becados.
 - $\pi_{provincia}(\sigma_{beca=SI}(alumnos))$

- Definición:
 - Sean
 - R(A₁, ..., A_n) y S(B₁, ..., B_m) dos relaciones cualesquiera.
 - r y s los dos instancias correspondientes.
 - El producto cartesiano (del álgebra) de las dos relaciones es el conjunto de tuplas resultante de hacer el producto cartesiano (conjuntista) sobre los conjuntos de tuplas de las instancias.
 - Notación:
 - R × S

Producto cartesiano

Α	В
a_1	b_1
a ₂	b ₂
a ₃	b ₃

×

D
d_1
d ₂

=

Α	В	D
a ₁	b_1	d_1
a ₁	b_1	d_2
a ₂	b ₂	d_1
a ₂	b ₂	d_2
a ₃	b ₃	d_1
a ₃	p³	d_2

Producto cartesiano

Propiedades:

- Propiedad 1:
 - Sean
 - R(A₁, ..., A_n) y S(B₁, ..., B_m) dos relaciones cualesquiera.
 - $W = R \times S$.
 - Entonces
 - W(A₁, ..., A_n, B₁, ..., B_m)
 - esquema(W) = esquema(R) U esquema(S).
- Propiedad 2:
 - Sean
 - R(A₁, ..., A_n) y S(B₁, ..., B_m) dos relaciones cualesquiera.
 - $W = R \times S$.
 - Sean r y s las instancias de R y S respectivamente y w la correspondiente instancia de W.
 - Entonces:
 - $card(w) = card(r) \times card(s)$.

- Denominación de atributos y uso de alias
 - Cuando se usa más de una relación, puede ocurrir que haya ambigüedad a la hora de referenciar atributos en las operaciones.
 - Solución:
 - Anteponer un prefijo al nombre del atributo para indicar la tabla a la que nos referimos
 - · Profesor.NRP
 - Grupos.NRP

- Puede ocurrir incluso que una misma relación aparezca más de una vez en la consulta.
- Operador de redefinición:
 - Sea
 - R(A₁, ..., A_n) una relación cualquiera.
 - r la instancia de R.
 - El operador redefinición aplicado a R nos permite asignar un nuevo nombre a R.
 - Notación
 - ρ(R)
 - $\rho(R) = S$ nos permite referirnos a R como S.
 - Se dice entonces que S es un alias de R.

- · Consideremos nuestra base de datos de ejemplo y supongamos que deseamos saber, para cada departamento, el nombre de su director.
- Paso 1: profesores × departamentos

NRP	NOM_PROF	CATG.	AREA.	COD_DEP	COD_DEP	NOM_DEP	DIRECTOR
2428456	Juan Sanchez Perez	AS	COMPUT	CCIA	CCIA	Ciencias de la Computacion	24283256
24283256	Antonia Perez Rodriguez	CU	COMPUT	CCIA	CCIA	Ciencias de la Computacion	24283256
242256	Luis Perez Perez	TE	LENGUA	LSI	CCIA	Ciencias de la Computacion	24283256
84256	Carmen Perez Sanchez	TU	LENGUA	LSI	CCIA	Ciencias de la Computacion	24283256
324256	David Perez Jimenez	CU	ARQUIT	ATC	CCIA	Ciencias de la Computacion	24283256
24256	Maria Lopez Ruiz	TU	ARQUIT	ATC	CCIA	Ciencias de la Computacion	24283256
2842560	Jose Alvarez Perez	CE	ELECTR	ELEC	CCIA	Ciencias de la Computacion	24283256
842560	Adela Perez Sanchez	AS	ELECTR	ELEC	CCIA	Ciencias de la Computacion	24283256
84560	Luis Martinez Perez	AS	TSEÑAL	TESE	CCIA	Ciencias de la Computacion	24283256
242560	Maria Gomez Sanchez	CU	TSEÑAL	TESE	CCIA	Ciencias de la Computacion	24283256
2428456	Juan Sanchez Perez	AS	COMPUT	CCIA	LSI	Lenguajes y Sistemas	84256
2428456	Juan Sanchez Perez	AS	COMPUT	CCIA	ATC	Arquitectura de Computadores	324256
2428456	Juan Sanchez Perez	AS	COMPUT	CCIA	ELEC	Electronica	2842560
2428456	Juan Sanchez Perez	AS	COMPUT	CCIA	TESE	Teoria de la Señal	84560
24283256	Antonia Perez Rodriguez	CU	COMPUT	CCIA	TESE	Teoria de la Señal	84560
242256	Luis Perez Perez	TE	LENGUA	LSI	TESE	Teoria de la Señal	84560
84256	Carmen Perez Sanchez	TU	LENGUA	LSI	TESE	Teoria de la Señal	84560
324256	David Perez Jimenez	CU	ARQUIT	ATC	TESE	Teoria de la Señal	84560
24256	Maria Lopez Ruiz	TU	ARQUIT	ATC	TESE	Teoria de la Señal	84560
2842560	Jose Alvarez Perez	CE	ELECTR	ELEC	TESE	Teoria de la Señal	84560
842560	Adela Perez Sanchez	AS	ELECTR	ELEC	TESE	Teoria de la Señal	84560
84560	Luis Martinez Perez	AS	TSEÑAL	TESE	TESE	Teoria de la Señal	84560
242560	Maria Gomez Sanchez	CU	TSEÑAL	TESE	TESE	Teoria de la Señal	84560
DE GRANADA						Fundamentos de Pases de Dates - 6	29

Producto cartesiano

• Paso 2: $\sigma_{\text{director=NRP}}$ (profesores × departamentos)

NRP	NOM_PROF	CATG.	AREA.	COD_DEP	COD_DEP	NOM_DEP	DIRECTOR
24283256	Antonia Perez Rodriguez	CU	COMPUT	CCIA	CCIA	Ciencias de la Computacion	24283256
84256	Carmen Perez Sanchez	TU	LENGUA	LSI	LSI	Lenguajes y Sistemas	84256
324256	David Perez Jimenez	CU	ARQUIT	ATC	ATC	Arquitectura de Computadores	324256
2842560	Jose Alvarez Perez	CE	ELECTR	ELEC	ELEC	Electronica	2842560
84560	Luis Martinez Perez	AS	TSECAL	TESE	TESE	Teoria de la Señal	84560

• Paso 3: $\pi_{\text{nom_prof,nom_dep}}(\sigma_{\text{director=NRP}} \text{ (profesores} \times \text{departamentos)})$

NOM_PROF	NOM_DEP
Antonia Perez Rodriguez	Ciencias de la Computacion
Carmen Perez Sanchez	Lenguajes y Sistemas
David Perez Jimenez	Arquitectura de Computadores
Jose Alvarez Perez	Electronica
Luis Martinez Perez	Teoria de la Señal

Producto cartesiano

- Ejemplos
 - Obtener, para cada profesor, su NRP, su nombre y el nombre del departamento al que pertenece.
 - $\pi_{NRP, nom_prof, nom_dep}(\sigma_{departamentos.cod_dep=profesores.cod_dep}(departamentos \times profesores))$
 - Obtener el DNI y el nombre de aquellos alumnos matriculados de la asignatura de código BDI que son becarios.
 - $\pi_{\text{alumnos.DNI,nom_alum}}(\sigma_{\text{alumnos.DNI=matriculas.DNI} \land \text{beca=SI} \land \text{cod_asig=BDI}}(\text{alumnos} \times \text{matriculas}))$
 - $\pi_{\text{alumnos.DNI,nom_alum}}(\sigma_{\text{alumnos.DNI=matriculas.DNI}}(\sigma_{\text{beca=SI}}(\text{alumnos}) \times \sigma_{\text{cod_asig=BDI}}(\text{matriculas})))$

¿Cuál es más eficiente?

- Encontrar la lista de los profesores (NRP y nombre) que imparten la asignatura BDI.
 - $\pi_{grupos.NRP,nom_prof}(\sigma_{profesores.NRP=grupos.NRP}(profesores \times \sigma_{cod_asig=BDI}(grupos)))$

- Ejemplos
 - Encontrar los códigos de las asignaturas de las que está matriculado el alumno de nombre 'Luis Martinez Perez' (entendemos que el nombre del alumno es único).
 - $\Pi_{\text{cod_asig}}(\sigma_{\text{alumnos.DNI=matricula.DNI}}$ (matriculas $\times \sigma_{\text{nom_alum=Luis Martinez Perez}}$ (alumnos)))
 - Encontrar los nombres de los profesores con categoría CU o TU que pertenecen al departamento de nombre Electrónica (entendemos que el nombre del departamento es único).
 - $\Pi_{\text{nom_prof}}$ ($\sigma_{\text{profesores.cod_dep=departamentos.cod_dep}}$ ($\sigma_{\text{categoria=CU V categoria=TU}}$ (profesores) × $\sigma_{\text{nom_dep=Electronica}}$ (departamentos)))
 - Encontrar los nombres de las asignaturas de las que está matriculado el alumno 'Luis Martinez Perez' (entendemos que el nombre del alumno es único).
 - $\Pi_{\text{nom_asig}}(\sigma_{\text{matricula.cod_asig=asignaturas.cod_asig}}(asignaturas \times \sigma_{\text{alumnos.DNI=matricula.DNI}}(matriculas \times \sigma_{\text{nom_alum=Luis Martinez Perez}}(alumnos))))$

Producto cartesiano

Ejemplos

- Encontrar los nombres de los profesores que imparten prácticas en la asignatura Bases de Datos. Entendemos que los grupos de prácticas son los grupos de tipo P y que el nombre de la asignatura es único.
 - $\pi_{\text{nom_prof}}$ ($\sigma_{\text{profesores.NRP=grupos.NRP}}$ (profesores x $\sigma_{\text{grupos.cod_asig=asignaturas.cod_asig}}$ ($\sigma_{\text{tipo=P}}$ (grupos) × $\sigma_{\text{nom_asig=Bases de Datos}}$ (asignaturas))))
- Encontrar el nombre y el DNI de aquellos alumnos cuya provincia es Almería y que están matriculados de alguna asignatura de primer curso.
 - $\pi_{\text{alumnos.DNI,nom_alum}}(\sigma_{\text{alumnos.DNI=matricula.DNI}}(\sigma_{\text{provincia=Almeria}}(\text{alumnos}) \times \sigma_{\text{matricula.cod_asig=asignaturas.cod_asig}}(\text{matriculas} \times \sigma_{\text{curso=1}}(\text{asignaturas}))))$

Producto cartesiano

- Ejemplos:
 - Encontrar los nombres de los profesores que pertenecen a la misma área de conocimiento que María López Ruiz (se entiende que no hay más que una que se llame así).
 - ρ(profesores) = profes
 - $\pi_{profes.nom_prof}$ ($\sigma_{profesores.area=profes.area}$ (profes x $\sigma_{profesores.nom_prof=Maria\ Lopez\ Ruiz}$ (profesores)))
 - Encontrar el DNI y el nombre de aquellos alumnos de edad mayor o igual que la del alumno 'Luís Martínez Pérez' (se entiende que no hay más que uno que se llame así).
 - ρ(alumnos) = alu
 - $\pi_{\text{alu.DNI,alu.nom_alum}}(\sigma_{\text{alumnos.fecha-nac} \geq \text{alu.fecha-nac}}(\text{alu x }\sigma_{\text{alumnos.nom_alum} = \text{Luis Martinez Perez}}(\text{alumnos})))$

¿Sale el alumno Luís Martínez Pérez?

- Encontrar aquellas asignaturas optativas que están en cursos superiores al de la asignatura de nombre 'Bases de Datos' (se entiende que no hay más que una que se llame así).
 - ρ(asignaturas) = asis
 - $\pi_{asis.nom_asig}(\sigma_{asignaturas.curso < asis.curso})$ • $(\sigma_{asignaturas.nom_asig=Bases\ de\ Datos}(asignaturas) \times \sigma_{asis.caracter=op}(asis)))$

Unión y diferencia

- Unión
 - Sean
 - $R(A_1, ..., A_n)$ y $S(B_1, ..., B_n)$ dos relaciones tales que $\{A_1...A_n\} \equiv \{B_1...B_n\}$.
 - r y s las instancias de R y S.
 - El operador unión aplicado sobre R y S es el resultado de hacer la unión de r y s como conjuntos de tuplas.
 - Notación:
 - RUS

Unión y diferencia

- Diferencia
 - Sean
 - $R(A_1, ..., A_n)$ y $S(B_1, ..., B_n)$ dos relaciones tales que $\{A_1...A_n\} \equiv \{B_1...B_n\}$.
 - r y s las instancias de R y S.
 - El operador diferencia aplicado sobre R y S es el resultado de hacer la diferencia de r y s como conjuntos de tuplas.
 - Notación:
 - R S

Unión y diferencia

R

Α	В	С
a_{1}	b_1	c ₁
a ₂	b ₂	c ₂
a ₃	b_1	c ₁
a ₄	b_1	c ₁
a ₄	b ₂	C ₂

S

Α	В	С
a_{1}	b ₁	c ₁
a ₂	b ₂	C ₂
a ₃	b ₂	C ₂
a ₄	b ₂	c ₂
a ₁	b ₂	c ₂

 $R \cup S$

А	В	С
a ₁	b ₁	c ₁
a ₂	b ₂	c ₂
a ₃	b_1	c ₁
a ₄	b_1	c ₁
a ₄	b ₂	c ₂
a ₃	b ₂	c ₂
a ₁	b ₂	c ₂

Unión y diferencia

R

Α	В	С
a ₁	b_1	C ₁
a ₂	b ₂	C ₂
a ₃	b_1	c ₁
a ₄	b_1	c ₁
a ₄	b ₂	C ₂

S

Α	В	С
a ₁	b_1	c ₁
a ₂	b ₂	c ₂
a ₃	b ₂	c ₂
a ₄	b ₂	c ₂
a ₁	b ₂	c ₂

R-S

Α	В	С
a_3	b_1	c ₁
a_4	b_1	c ₁

Unión y diferencia

- Ejemplos:
 - Encontrar las asignaturas de segundo ciclo; es decir, aquellas cuyo curso sea 4 ó 5.
 - $\sigma_{curso=4 \ V \ curso=5}$ (asignaturas)
 - $\sigma_{curso=4}$ (asignaturas) U $\sigma_{curso=5}$ (asignaturas)

¿Cuál es más eficiente?

- Encontrar aquellos profesores que sean de categoría TU y no pertenezcan al área de conocimiento COMPUT.
 - $\sigma_{categoria=TU \ \land \ \neg(area=COMPUT)}(profesores)$
 - $\sigma_{categoria=TU}(profesores) \sigma_{area=COMPUT}(profesores)$
 - · ¿Cuál es más eficiente?

Unión y diferencia

- Ejemplos:
 - Encontrar los códigos de aquellas asignaturas en las que no hay matriculado ningún alumno.
 - $\Pi_{cod_asig}(asignaturas) \pi_{cod_asig}(matricula)$
 - Encontrar los alumnos más jóvenes de la base de datos; es decir, aquellos cuya fecha de nacimiento es la mayor entre las de todos los alumnos.
 - ρ(alumnos) = alu
 - $\pi_{\text{alumnos.DNI,alumnos.nom_alum}}(\text{alumnos}) \pi_{\text{alumnos.DNI,alumnos.nom_alum}}(\sigma_{\text{alumnos.fecha-nac}}(\text{alumnos} \times \text{alu}))$
 - Encontrar las asignaturas que solo tienen un profesor (o ninguno).
 - $\Pi_{cod_asig}(asignaturas) \pi_{grupos.cod_asig}(\sigma_{grupos.cod_asig=gru.cod_asig} \land grupos.NRP <> gru.NRP} (grupos × gru))$

Unión y diferencia

- Ejemplos:
 - Encontrar los códigos de aquellas asignaturas que o bien son de segundo ciclo o bien no tienen matriculado ningún alumno.
 - $\begin{array}{l} \bullet \ \pi_{cod_asig}(\sigma_{(curso=4\ V\ curso=5)}(asignaturas)) \\ U \\ (\pi_{cod_asig}(asignaturas) \pi_{cod_asig}(matricula)) \end{array}$

Reunión O

- O -Reunión
 - Definición
 - Sea
 - R(A₁, ..., A_n), y S(B₁, ..., B_m) dos relaciones cualesquiera.
 - Θ una expresión lógica que utiliza atributos de la unión de los dos esquemas.
 - r y s las dos instancias correspondientes.
 - Entonces la Θ -Reunión de R y S equivale a $\sigma_{\Theta}(R \times S)$.
 - Notación:
 - $R\bowtie_{\Theta}S$

Álgebra Relacional Reunión Θ

profesores $\bowtie_{director=NRP}$ departamentos = $\sigma_{director=NRP}$ (profesores × departamentos)

NRP	NOM_PROF	CATG.	AREA.	COD_DEP	COD_DEP	NOM_DEP	DIRECTOR
24283256	Antonia Perez Rodriguez	CU	COMPUT	CCIA	CCIA	Ciencias de la Computacion	24283256
84256	Carmen Perez Sanchez	TU	LENGUA	LSI	LSI	Lenguajes y Sistemas	84256
324256	David Perez Jimenez	CU	ARQUIT	ATC	ATC	Arquitectura de Computadores	324256
2842560	Jose Alvarez Perez	CE	ELECTR	ELEC	ELEC	Electronica	2842560
84560	Luis Martinez Perez	AS	TSECAL	TESE	TESE	Teoria de la Señal	84560

- Reunión natural
 - Definición
 - Sea
 - $R(A_1, ..., A_n)$, $y S(B_1, ..., B_m)$ dos relaciones tales que existen $\{A_i, ..., A_j\} \subseteq \{A_1, ..., A_n\}$ $y \{B_i, ..., B_j\} \subseteq \{B_1, ..., B_m\}$ de forma que $\forall k \in \{i...j\}$, $A_k = B_k$.
 - r y s dos instancias de las mismas.
 - Entonces la Reunión Natural de R y S equivale a:
 - $\bullet \quad \pi_{\{A1..An\} \ \cup \ (\{B1..Bm\}-\{Bi...Bj\})}(\sigma_{R.Ai=S.Bi \ \land \ ... \ \land \ R.Aj=S.Bj} \ (R \times S))$
 - · Notación:
 - R ⋈ S

Reunión natural

Α	В	С
a_1	b_1	c ₁
a ₂	b ₂	c ₂
a ₃	b ₁	C ₁
a ₄	b ₁	C ₁
a ₄	b ₂	C ₂

В	С	D	Е
b ₁	c ₁	d_1	e_1
b ₂	C ₂	d_2	e_2
b ₁	C ₁	d_1	e ₃
b ₁	c ₃	d_3	e_1
b_1	c_2	d_2	e_1

Α	В	С	D	E
a ₁	b ₁	c ₁	d ₁	e ₁
a ₁	b ₁	c ₁	d ₁	e ₃
a ₂	b ₂	c ₂	d ₂	e ₂
a ₃	b ₁	c ₁	d ₁	e ₁
a ₃	b ₁	c ₁	d ₁	e ₃
a ₄	b ₁	c ₁	d ₁	e ₁
a ₄	b ₁	c ₁	d ₁	e ₃
a ₄	b ₂	c ₂	d ₂	e ₂

M

- Ejemplos
 - Obtener, para cada profesor, su NRP, su nombre y el nombre del departamento al que pertenece.
 - $\pi_{NRP,nom_prof,nom_dep}(\sigma_{departamentos.cod_dep=profesores.cod_dep}(departamentos \times profesores))$
 - $\pi_{NRP,nom\ prof,nom\ dep}$ (departamentos \bowtie profesores)
 - Obtener el DNI y el nombre de aquellos alumnos matriculados de la asignatura de código BDI que son becarios.
 - $\pi_{\text{alumnos.DNI,nom_alum}}(\sigma_{\text{alumnos.DNI=matriculas.DNI}}(\sigma_{\text{beca=SI}}(\text{alumnos}) \times \sigma_{\text{cod_asig=BDI}}(\text{matriculas})))$
 - $\pi_{DNI,nom\ alum}(\sigma_{beca=SI}(alumnos))\bowtie \sigma_{cod\ asig=BDI}(matriculas))$

- Ejemplos
 - Encontrar la lista de los profesores (NRP y nombre) que imparten la asignatura BDI.
 - $\pi_{\text{grupos.NRP,nom_pro}}(\sigma_{\text{profesores.NRP=grupos.NRP}})$ (profesores × $\sigma_{\text{cod asig=BDI}}(\text{grupos})))$
 - $\pi_{NRP,nom\ pro}(profesores \bowtie \sigma_{cod\ asig=BDI}(grupos))$
 - Encontrar los códigos de las asignaturas de las que está matriculado el alumno de nombre 'Luis Martinez Perez' (consideramos que solo hay un Luis Martínez).
 - $\Pi_{cod_asig}(\sigma_{alumnos.DNI=matricula.DNI}$ (matriculas × $\sigma_{nom_alum=Luis\ Martinez\ Perez}$ (alumnos)))
 - $\Pi_{cod_asig}(matriculas \bowtie \sigma_{nom_alum=Luis\ Martinez\ Perez}(alumnos))$

- Ejemplos
 - Encontrar los nombres de los profesores con categoría CU o TU que pertenecen al departamento de nombre Electrónica (consideramos que solo hay uno con ese nombre).
 - $\Pi_{\text{nom_prof}}$ ($\sigma_{\text{profesores.cod_dep=departamentos.cod_dep}}$ ($\sigma_{\text{categoria=CU V categoria=TU}}$ (profesores) $\times \sigma_{\text{nom_dep=Electronica}}$ (departamentos)))
 - $\Pi_{\text{nom prof}}$ ($\sigma_{\text{categoria}=\text{CU V categoria}=\text{TU}}$ (profesores) $\bowtie \sigma_{\text{nom dep=Electronica}}$ (departamentos))
 - Encontrar los nombres de las asignaturas de las que está matriculado el alumno 'Luis Martinez Perez' (consideramos que solo hay uno con ese nombre).
 - $\Pi_{\text{nom_asig}}(\sigma_{\text{matricula.cod_asig=asignaturas.cod_asig}}(asignaturas \times \sigma_{\text{alumnos.DNI=matricula.DNI}}(matriculas \times \sigma_{\text{nom_alum=Luis Martinez Perez}}(alumnos))))$
 - $\Pi_{nom_asig}(asignaturas \bowtie (matriculas \bowtie \sigma_{nom_alum=Luis\ Martinez\ Perez}(alumnos)))$

Reunión natural

Ejemplos

- Encontrar los nombres de los profesores que imparten prácticas en la asignatura Bases de Datos. Entendemos que los grupos de prácticas son los grupos de tipo P y que el nombre de la asignatura es único.
 - $\pi_{\text{nom_prof}}$ ($\sigma_{\text{profesores.NRP=grupos.NRP}}$ (profesores x $\sigma_{\text{grupos.cod_asig=asignaturas.cod_asig}}$ ($\sigma_{\text{tipo=P}}$ (grupos) × $\sigma_{\text{nom_asig=Bases de Datos}}$ (asignaturas))))
 - $\pi_{\text{nom prof}}$ (profesores \bowtie ($\sigma_{\text{tipo=P}}$ (grupos) \bowtie $\sigma_{\text{nom asig=Bases de Datos}}$ (asignaturas)))
- Encontrar el nombre y el DNI de aquellos alumnos cuya provincia es Almería y que están matriculados de alguna asignatura de primer curso.
 - $\pi_{\text{alumnos.DNI,nom_alum}}(\sigma_{\text{alumnos.DNI=matricula.DNI}})$ • $(\sigma_{\text{provincia=Almeria}}(\text{alumnos}) \times \sigma_{\text{matricula.cod_asig=asignaturas.cod_asig}}(\text{matriculas} \times \sigma_{\text{curso=1}}(\text{asignaturas}))))$
 - $\pi_{\text{alumnos.DNI,nom_alum}}(\sigma_{\text{provincia=Almeria}}(\text{alumnos}) \bowtie (\text{matriculas} \bowtie \sigma_{\text{curso=1}}(\text{asignaturas})))$

Intersección

- Definición
 - Sean
 - $R(A_1, ..., A_n)$, y $S(B_1, ..., B_n)$ dos relaciones tales que $\{A_1...A_n\} \equiv \{B_1...B_n\}$
 - r y s las instancias de R y S
 - El operador intersección aplicado sobre R y S es el resultado de hacer la intersección de r y s como conjuntos de tuplas.
 - Notación:
 - R ∩ S

Intersección

R

Α	В	С
a_1	b_1	c ₁
a ₂	b ₂	c ₂
a ₃	b ₁	c ₁
a ₄	b_1	c ₁
a ₄	b ₂	c ₂

S

Α	В	С
a ₁	b ₁	c ₁
a ₂	b ₂	c ₂
a ₃	b ₂	C ₂
a ₄	b ₂	C ₂
a ₁	b ₂	C ₂

 $R \cap S$

Α	В	С
a_3	b_1	c ₁
a_4	b_1	c ₁
a_4	b_2	C ₂

Intersección

- Ejemplos:
 - Encontrar los alumnos becarios que vienen de Almería.
 - $\sigma_{beca=SI \land provincia=ALMERIA}$ (alumnos)
 - $\sigma_{beca=SI}(alumnos) \cap \sigma_{provincia=ALMERIA}(alumnos)$

¿Cuál es más eficiente?

- Encontrar las asignaturas optativas de segundo ciclo; es decir, aquellas cuyo curso sea 4 ó 5.
 - $\sigma_{caracter=op \land (curso=4 \lor curso=5)}$ (asignaturas)
 - $\sigma_{caracter=op}$ (asignaturas) \cap ($\sigma_{curso=4}$ (asignaturas) \cup $\sigma_{curso=5}$ (asignaturas))

¿Cuál es más eficiente?

Intersección

Ejemplos:

• Encontrar los profesores que tienen categoría 'TU' o 'CU' y dan clase en asignaturas de segundo ciclo.

• π_{NRP,nom_prof} ($\sigma_{categoria=TUVcategoria=CU}$ (profesores)) \cap π_{NRP,nom_prof} (profesores \bowtie (grupos \bowtie $\sigma_{curso=4 \ V \ curso=5}$ (asignaturas)))

Intersección

Propiedad:

- Sean R y S relaciones cualquiera y r y s dos instancias de las mismas.
- Se verifica que:

•
$$R \cap S = R - (R - S)$$

Intersección

?	A	В	С
	a ₁	b ₁	C ₁
	a ₂	b ₂	C ₂
	a_3	b_1	C ₁
	a_4	b_1	c ₁
	a ₄	b_2	c ₂

Α	В	С
a_1	b_1	c ₁
a ₂	b ₂	c ₂
a ₃	b ₂	C ₂
a ₄	b ₂	C ₂
a_{1}	b ₂	c ₂
	a ₁ a ₂ a ₃	 a₁ b₂ a₃ b₂ a₄ b₂

S	Α	В	С
	a_3	b_1	c_1
	a ₄	b_1	c ₁

R -

?	Α	В	С
	a_{1}	b_1	c ₁
	a ₂	b_2	c_2
	a ₃	b_1	c ₁
	a ₄	b ₁	c ₁
	a ₄	b_2	C ₂

R - S	Α	В	С
	a ₃	b ₁	C ₁
	a ₄	b ₁	C ₁

R –(R – S)	Α	В	С
$R \cap S$	a_1	b_1	c_{1}
1(3	a_2	b ₂	c ₂
	a_4	b_2	C_2

- Consultas relacionadas con la conexión de un elemento de un conjunto con "todos" los elementos de otro.
 - Encontrar los alumnos que están matriculados de todas las asignaturas de primer curso.
 - Encontrar las asignaturas en las que dan clase todos los profesores del área 'COMPUT' que sean de categoría 'CU'.
 - Encontrar los profesores que dan clase a todos los grupos de la asignatura de código 'BDI'.
 - Encontrar las aulas que están ocupadas todos los días de la semana.

División

Definición

- Sean
 - R(A₁, ..., A_n, B₁, ..., B_m] y S(B₁, ..., B_m)
 - y las instancias correspondientes r y s.
- La división de R con respecto a S es la instancia w de una relación $W[A_1..A_n]$, que verifica:
 - $\forall u \in w ; \forall v \in s$
 - $\exists t \in r | t[A_1..A_n] = u , t[B_1..B_m] = v$
- Notación
 - R ÷ S

División

A	В	С	D	÷	D	=	A
a_1	b ₁	C ₁	d_1		d_1		a_1
a_1	b ₁	C ₁	d_2		d_2		a ₃
a_1	b ₁	C ₃	d ₃				
a_2	b ₂	C ₂	d_2				
a_2	b ₂	C ₂	d ₃				
a_3	b ₃	C ₃	d_1				
a_3	b ₃	C ₃	d ₂				
a_1	b_1	C ₁	d_5				

 b_1

Α	В	С	D
a ₁	b ₁	c ₁	d_1
a ₁	b_1	c ₁	d ₂
a ₁	b ₁	c ₃	d ₃
a ₂	b ₂	C ₂	d ₂
a ₂	b ₂	C ₂	d ₃
a ₃	b ₃	c ₃	d_1
a ₃	b ₃	c ₃	d_1
a ₁	b ₁	c ₁	d ₅

	С	D			
÷		d_2	_	Α	В
7	c ₂	u ₂	_	a ₂	b ₂
	c ₂	d_3		- 2	- 2

División

Ejemplos:

- Encontrar el nombre y el DNI de los alumnos que están matriculados de todas las asignaturas de primer curso.
- Dividendo:
 - $\pi_{DNI,cod_asig}(matriculas)$
- Divisor:
 - $\Pi_{cod\ asig}(\sigma_{curso=1}(asignaturas))$
- División:
 - $\pi_{DNI,cod_asig}(matriculas) \div \pi_{cod_asig}(\sigma_{curso=1}(asignaturas))$
- π_{DNI,nom_alum} (alumnos \bowtie $(\pi_{DNI,cod_asig}(matriculas) \div \pi_{cod_asig}(\sigma_{curso=1}(asignaturas))))$

División

Ejemplos

- Encontrar las asignaturas en las que dan clase todos los profesores del área 'COMPUT' que sean de categoría 'CU'.
- Dividendo:
 - ⊓_{cod asig,NRP} (grupos)
- Divisor:
 - π_{NRP} ($\sigma_{area=COMPUT \land categoria=CU}$ (profesores))
- División:
 - $\Pi_{\text{cod_asig,NRP}}$ (grupos) ÷ π_{NRP} ($\sigma_{\text{area=COMPUT} \land \text{categoria=CU}}$ (profesores))

División

Ejemplos:

• Encontrar los profesores que dan clase a todos los grupos de la asignatura de código 'BDI'.

• Encontrar las aulas que están ocupadas todos los días de la semana (se entiende que en la tabla clase aparecen todos los días que hay que considerar).

•
$$\Pi_{cod_aula, dia}(clase) \div \pi_{dia}(clase)$$

$$A - \pi_{A codoubla}((A \times B) - C)$$

$$A = \Pi_{cod_aula}(clase)$$

- Encontrar aquellas aulas que no tienen ninguna hora libre; es decir, aquellas que están ocupadas todos los días a todas horas (se entiende que todas las parejas día y hora que hay que considerar están en la tabla clase).
 - $\Pi_{cod\ aula,\ dia,\ hora}(clase) \div \pi_{dia,\ hora}(clase)$

División

Ejemplos:

- Encontrar los días y horas en los que no hay aulas libres; es decir, los días y las horas en los que hay clase en todas las aulas (se entiende que cada pareja día y hora que hay que considerar aparece al menos una vez en la tabla clase).
 - $\pi_{dia,hora,cod_aula}(clase) \div \pi_{cod_aula}(aulas)$
- Encontrar las áreas de conocimiento en las que hay profesores de todas las categorías.
 - $\pi_{area,categoria}$ (profesores) ÷ $\pi_{categoria}$ (profesores)
- Encontrar los departamentos que tienen profesores de todas las categorías.
 - $\Pi_{\text{cod_dep,categoria}}(\text{profesores}) \div \pi_{\text{categoria}}(\text{profesores})$

División

Propiedad

- Sean
 - R(A₁, ..., A_n, B₁, ..., B_m) y S(B₁, ..., B_m)
 - y las instancias correspondientes r y s.
- Entonces
 - $R \div S = \prod_{A1..An} (R) \prod_{A1..An} ((\prod_{A1..An} (R) \times S) R)$

$$R \div S = \prod_{A,B,C} (R) - \prod_{A,B,C} ((\prod_{A,B,C} (R) \times S) - R)$$

A	В	С	D
a_1	b_1	C ₁	d_1
a_1	b_1	C ₁	d_2
a_1	b_1	C ₃	d_3
a_2	b_2	C_2	d_2
a_2	b_2	C ₂	d_3
a_3	b_3	C ₃	d_1
a ₃	b_3	C ₃	d_2
a_1	b_1	C_1	d_5

•	D	=
	d_1	
	d_2	

A	В	С
a_1	b_1	C ₁
a_3	b_3	C ₃

$$R \div S = \prod_{A,B,C} (R) - \prod_{A,B,C} ((\prod_{A,B,C} (R) \times S) - R)$$

A	В	С	D
a_1	b_1	C ₁	d_1
a_1	b_1	C_1	d_2
a ₁	b_1	C ₃	d_3
a ₂	b ₂	C ₂	d_2
a_2	b ₂	C ₂	d_3
a_3	b ₃	C ₃	d_1
a_3	b ₃	C ₃	d_2
a_1	b_1	C_1	d_5

D	
d_1	
d ₂	1

A	В	С	D
a_1	b_1	c_1	d_1
a_1	b_1	c_1	d_2
a_1	b_1	C ₃	d_1
a_1	b_1	C ₃	d_2
a_2	b ₂	C ₂	d_1
a_2	b_2	C_2	d_2
a_3	b ₃	C ₃	d_1
a_3	b_3	c ₃	d_2

$$r \div s = \prod_{A,B,C} (R) - \prod_{A,B,C} ((\prod_{A,B,C} (R) \times S) - R)$$

A	В	С	D
a_1	b ₁	C ₁	d_1
a_1	b_1	C ₁	d_2
a_1	b_1	C ₃	d_1
a_1	b_1	C ₃	d_2
a ₂	b ₂	c ₂	d_1
a ₂	b ₂	C ₂	d_2
a ₃	b ₃	C ₃	d_1
a ₃	b ₃	C ₃	d_2

A	В	С	D
a_1	b_1	C ₁	d_1
a_1	b_1	C ₁	d ₂
a_1	b_1	C ₃	d ₃
a ₂	b ₂	C ₂	d ₂
a ₂	b ₂	C ₂	d ₃
a ₃	b ₃	C ₃	d_1
a ₃	b ₃	C ₃	d ₂
a_1	b_1	c_1	d_5

$$r \div s = \prod_{A,B,C} (R) - \prod_{A,B,C} ((\prod_{A,B,C} (R) \times S) - R)$$

A	В	С
a_1	b_1	C ₁
a ₁	b ₁	C ₃
a ₂	b ₂	C ₂
a ₃	b_3	C ₃

A	В	С	D
a_1	b ₁	C ₃	d_1
a_1	b_1	C ₃	d_2
a ₂	b ₂	C ₂	d_1

Eficiencia de las consultas

- Con Álgebra Relacional:
 - A cada expresión le corresponde una única tabla.
 - Es posible que haya varias expresiones para resolver la misma consulta.
 - Hay que elegir en términos de eficiencia.
 - Ejemplo:
 - $\sigma_{beca=SI \ \Lambda \ provincia=ALMERIA}(alumnos)$
 - $\sigma_{beca=SI}(alumnos) \cap \sigma_{provincia=ALMERIA}(alumnos)$

Eficiencia de las consultas

- En un SGBD hay un componente que se encarga de paliar los efectos de un mal usuario:
 - Optimizador de consultas
- Existen algunas reglas básicas:
 - Ejemplo:
 - Selecciones, cuanto antes
 - Limitan el número de tuplas
 - Proyecciones, cuanto antes
 - Limitan el tamaño de las tuplas
 - Normalmente:
 - Los SGBDs no publican sus estrategias de optimización
 - Ventaja competitiva

Lenguajes declarativos

Lenguaje

- Procedimental:
 - El usuario da instrucciones al sistema para que realice una secuencia de operaciones en la BD para calcular el resultado deseado.
 - Algebra Relacional
 - Cómo
- Declarativo:
 - El usuario describe el resultado deseado sin dar un procedimiento específico para obtener esa información.
 - Cálculo Relacional
 - Qué

Cálculo de predicados

- Se ha adaptado el cálculo de predicados para crear un lenguaje para bases de datos relacionales. Dos formas:
 - Cálculo relacional orientado a tuplas (CRT), que emplea variables de tupla que toman valores en tuplas de las relaciones de nuestra BD.
 - Cálculo relacional orientado a dominios (CRD), que utiliza variables de dominio, que toman valores de los dominios asociados a los atributos de las relaciones de nuestra BD.

· Identificación en el caso del cálculo relacional orientado a tuplas

· Consultas en el CRT

- Expresiones del tipo
 - { x, y, ..., z | F(x, y, ..., z) }
 - donde F es una fórmula que tiene como variables libres a x, y, ..., z.
 - La primera parte se denomina lista objetivo.
 - Se pueden poner términos proyección sobre la lista objetivo:
 - x.A, y.B, ..., z.C

- Ejemplo:
 - Dado el esquema de base de datos siguiente:
 - P(codpie, nompie, color, peso ciudad)
 - S(codpro, nompro, estatus, ciudad)
 - J (codpj, nompj, ciudad)
 - SPJ (codpie, codpro, codpj, cantidad, fecha)
 - Nombre de los proveedores que han tenido relación con todas las piezas: $\{x.nompro \mid S(x) \land \forall y \ (P(y) \rightarrow \exists z \ (SPJ(z) \land y.codpie=z.codpie \land z.codpro=x.codpro))\}$

Consideremos:

- Asignaturas(Cod_Asig,Nom_asig, Creditos, Carácter, Curso)
- Profesores(NRP, Nom_Prof, Categoria, Area, Cod_Dep)
- Departamentos(Cod_Dep,Nom_Dep, Director)
- Grupos(Cod_Asig, Cod_Grup, Tipo, NRP, Max_Al)
- Una clave externa:
 - ∀x (Grupos(x) → ∃y (Asignaturas(y) ∧ x.cod_asig=y.cod_asig))
- Unicidad:
 - ∀x,y ((Asignaturas(x) ∧ Asignaturas(y) ∧ x.cod_asig=y.cod_asig) → x=y)
- Y otro tipo de restricciones: "No hay grupos con max_al superior a 90"
 - $\forall x (Grupos(x) \rightarrow x.max_al <= 90)$

Identificación intuitiva en el calculo relacional orientado a dominios

- Ejemplo:
 - Dado el esquema de base de datos siguiente:
 - P(codpie, nompie, color, peso ciudad)
 - S(codpro, nompro, estatus, ciudad)
 - J (codpj, nompj, ciudad)
 - SPJ (codpie, codpro, codpj, cantidad, fecha)
 - Nombre de los proveedores que han hecho una venta con una cantidad superior a 200:
 - CRT: { x.nombre | $S(x) \land \exists y(SPJ(y) \land x.codpro=y.codpro \land y.cantidad>200) }$
 - CRD: { x1 | ∃y1,y2,y3,z1,z2,z3,z4 (S(y1,x1,y2,y3) ∧ SPJ(z1,y1,z2,z3,z4) ∧ z3>200) }

Lenguajes relacionalmente completos

 Cualquier consulta que se pueda especificar en álgebra relacional puede especificarse también en cálculo relacional y viceversa.

- · De hecho,
 - Se dice que un lenguaje de consulta es relacionalmente completo si es posible expresar en él cualquier consulta que se pueda expresar en cálculo relacional.

Lenguajes comerciales

- A mediados de los 70 existían dos grandes prototipos relacionales:
 - System R de IBM, que derivó en DB2 y está muy relacionado con SQL.
 - Ingres de la Universidad de California, que estaba basado en un lenguaje denominado QUEL (QUEry Language)
 - QUEL es un lenguaje basado en CRT.
- QBE (basado en CRD)
 - Query By Example
 - Desarrollado por IBM.
 - Sintaxis bidimensional
 - Consultas: un ejemplo de lo que se quiere (ver Access, por ejemplo).

Contenidos

- Introducción
- Algebra Relacional
 - Operaciones
 - Selección
 - Proyección
 - Composición de operadores
 - Producto cartesiano
 - Unión y diferencia
 - Reunión
 - Intersección
 - División
 - Eficiencia en las Consultas
- Otros lenguajes de consulta formales
 - Lenguajes declarativos
 - · Cálculo de predicados
 - CRD
 - CRT
 - Lenguajes relacionalmente completos
 - Lenguajes comerciales

Imágenes

- Imágenes tomadas de <u>Pixabay</u>
 - Portada
 - Imagen de Manfred Steger
 - Cabecera
 - Imágenes de Gerd Altmann
 - T3
 - Imagen de mcmurryjulie
 - T4
 - Imágenes de Gordon Johnson

