Environment

Linux, Intel i7, GTX 960M(4G memory)

Package: tensorflow, nltk, genism, numpy

Model description

glove (https://nlp.stanford.edu/projects/glove/)

Performance

- Subsample target frequent target word $P(w_i) = (\sqrt{\frac{z(w_i)}{0.001}} + 1) \cdot \frac{0.001}{z(w_i)} (\sim 10\% \text{ up})$ (http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/)
- 2. Finetune pretrained embedding (~5%up)
- 3. Stack up to 2 BiRNN (~5%up)
- Increase diversity of feature interaction by adding (~5%up) (李弘毅老師 3/24 上課內容)

Summation of log probability of neighbor words (5 words left and 5 words right) in inference time (~5%up)

Experiment settings and results

Model Structure

 $Voc_Size = 60000$

Hidden_Size_per_Single_LSTM_Cell = 256

Basic_Cell = tf.contrib.rnn.BasicLSTMCell(Hidden_Size, forget_bias=0.1)

 $Num_Stack_Layer = 2$

Pre_Trained_Ebd = glove

Training

Train_Iters = 90000 # ~ 7 epochs = ~ 15 hours

Batch_Size = 64

Loss = "Sampled_Softmax_Loss"

Sampled_Softmax_Loss_Num_Sampled = 1024

Optimizer_Type = "Adam"

Learning_Rate = 0.01

Learning_Rate_Decay_Step = 39000 # ~3 epochs

Finetune_Embedding_Rate = 0.05 * current_learning_rate

SubSample_Rate = 0.001 # $P(w_i) = (\sqrt{\frac{z(w_i)}{0.001}} + 1) \cdot \frac{0.001}{z(w_i)}$ # **Results**

Public set: 0.62308 Private set: 0.65385