- 1. Sea $\tau=(\emptyset,\{{\bf s}^2,{\bf i}^2\},\{\leq^2\},a)$ y sea Σ formado por Σ_{Ret} más la sentencia $\exists z\, \neg\exists x(z\leq x\wedge z\neq x).$
 - a. Dar una prueba elemental en (Σ, τ) de la sentencia $\exists z \forall x \ x \leq z$.
 - b. Dar un prueba formal que atestigüe que

$$(\Sigma, \tau) \vdash \exists z \forall x \ x \leq z.$$

- 2. Sea $\tau=(\emptyset,\emptyset,\{\leq^2,r^1\},a)$. Sea Σ el conjunto formado por los axiomas que dicen que \leq es un orden parcial junto con los siguientes axiomas:
 - $\exists x \exists y \ (x \neq y \land r(x) \land r(y) \land \forall z \ (r(z) \rightarrow (z = x \lor z = y)))$
 - $\forall x \forall y (r(x) \land r(y)) \rightarrow (x \leq y \lor y \leq x)$
 - $\exists x \exists y \ \neg (x \le y \lor y \le x).$

Dar (mediante un diagrama para cada uno) todos los modelos de tres elementos de (Σ, τ) , modulo isomorfismo. Para cada par de modelos propuestos justifique por qué no son isomorfos.