I Théorie de la mesure

Dans tout ce qui suit, on travaille dans un espace mesuré (E, A, μ) .

Théorème I-1 (Dynkin). — Le π -système engendré par un σ -système est égal à la tribu engendrée par ce dernier.

COROLLAIRE I-2 (Unicité des mesures). — Soient μ et ν deux mesures sur (E, A) qui coïncident sur un π -système \mathcal{C} tel que $\mathcal{A} = \sigma(\mathcal{C})$. Alors :

- 1. $Si \ \mu(E) = \nu(E) < +\infty, \ alors \ \mu = \nu.$
- 2. Si il existe une suite croissante $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathcal{C} tels que $\bigcup_n A_n = E$, et que pour tout $n\in\mathbb{N}, \ \mu(A_n) = \nu(A_n) < +\infty, \ alors \ \mu = \nu.$

THÉORÈME I-3 (Convergence monotone). — Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de E dans $[0,+\infty]$, telle que pour tout $n\geq 0$, $f_{n+1}\geq f_n$. Alors, en notant f la limite simple de cette suite, on a que f est mesurable, et :

$$\int f = \lim_{n \to +\infty} \int f_n$$

THÉORÈME I-4 (Convergence dominée). — Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables qui converge simplement vers f. Si il existe g mesurable telle que pour tout $n\geq 0$, $|f_n|\leq g$, alors f est intégrable et :

$$\int f = \lim_{n \to +\infty} \int f_n$$

Remarque. On peut seulement supposer les conditions ci-dessus vraies presque partout, mais dans ce cas il faut imposer la mesurabilité de la limite simple, ou bien travailler dans la tribu complétée.

Outils:

LEMME I-5 (Fatou). — Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables positives. Alors :

$$\int \underline{\lim}_{n} f_n \le \underline{\lim}_{n} \int f_n$$

Méthode:

Toujours se demander: dans quel ensemble je travaille, quelle est la tribu, quelle est la mesure?

Sacha Ben-Arous 1 E.N.S Paris-Saclay