Teorie užitku

- Většinou měříme výplatu, hodnotu atd. penězi.
- MEU (maximalizace očekávaného zisku) je většinou rozumná věc k volbě.
- Ale občas je lidská intuice jiná a je na nás, jestli věříme víc intuici nebo tomu, že máme maximalizovat aditivní MEU.

Loterie

Mějme generátor náhodného výsledku podle zadané pravděpodobnosti. Můžete se účastnit jedné ze dvou loterií, otázka zní, kterou si vyberete.

Odpovídejte na základě intuice, pak teprve max. MEU.

Loterie A

- 400 80% šance vyhrát \$400
- 2 100% šance vyhrát \$300

Co zvolíte?

Loterie E

A z této dvojice?

- 20% šance vyhrát \$400
- 25% šance vyhrát \$300

Co zvolíte?

Loterie

Mějme generátor náhodného výsledku podle zadané pravděpodobnosti. Můžete se účastnit jedné ze dvou loterií, otázka zní, kterou si vyberete.

Odpovídejte na základě intuice, pak teprve max. MEU.

Loterie A

- 400 80% šance vyhrát \$400
- 2 100% šance vyhrát \$300

Co zvolíte?

Loterie B

A z této dvojice?

- 20% šance vyhrát \$400
- 25% šance vyhrát \$300

Co zvolíte?

Užitek peněz

Loterie

Opět výběr ze dvou loterií:

- Buď dostat \$1000000
- nebo hodit korunou a na 50% dostat \$3000000

Užitek peněz

- Ekonomové říkají, že užitek peněz není lineární.
- Nechť mám v tuto chvíli k peněz. Užitek mít o n víc je zhruba (v dolarech):

$$U(S_{k+n}) = -263.31 + 22.09\log(n + 150000)$$

v rozmezí –\$150000 a \$800000. (Mr. Beard)

Užitek peněz

Loterie

Opět výběr ze dvou loterií:

- Buď dostat \$1000000
- nebo hodit korunou a na 50% dostat \$3000000

Užitek peněz

- Ekonomové říkají, že užitek peněz není lineární.
- Nechť mám v tuto chvíli k peněz. Užitek mít o n víc je zhruba (v dolarech):

$$U(S_{k+n}) = -263.31 + 22.09log(n+150000)$$

v rozmezí -\$150000 a \$800000. (Mr. Beard)

Nadojené mléko: Při uvedených cenách: použít, vyhodit, testovat?

Marta Vomlelová 14. prosince 2016

Očekávaný zisk (expected utility, value)

když známe zisk V(d,x,e) v každé možné situaci d,x,e, nemáme jistotu, která situace nastane. Proto nemůžeme maximalizovat V(d,x,e), ale maximalizujeme očekávaný zisk:

$$EU(d|e) = \sum_{x} V(d, x, e) \cdot P(X|d, e)$$

Pokud máme více funkcí užitku V_1,\ldots,V_n , pak (téměř vždy) uvažujeme aditivní skládání, tj. $V(U)=V_1(U)+\ldots+V_n(U)$. Jednotlivé funkce $V_i(U)$ mohou záviset na různých podmnožinách prostoru náhodných veličin U.

- Rozhodovací strom obsahuje tři typy uzlů:
 - rozhodnutí D;
 - náhodné uzly X;
 - listy; listům je přiřazen zisk v příslušné situaci definované cestou od kořene.
- pro každou možnou hodnotu rozhodnutí D a náhodné veličiny X vychází z uzlu D resp. X jedna hrana označená tímto výsledkem d_i, x_i
- větve z náhodné veličiny X navíc označíme pravděpodobností, s jakou větev zvolíme, za podmínky, že se do uzlu X dostaneme, tj.
 P(X = x_i|cesta z kořene do X).
- na cestě od kořene do listu se každé rozhodnutí a náhodná veličina vyskytuje nejvýše jednou (nemusí se vyskytovat, pokud neovlivňuje užitek ani pravděpodobnost dosažení listu).
- cesta odpovídá časovému uspořádání: náhodná veličina je před rozhodnutím právě když je hodnota této veličiny známa před rozhodnutím.

- Rozhodovací strom obsahuje tři typy uzlů:
 - rozhodnutí D;
 - náhodné uzly X_i
 - listy; listům je přiřazen zisk v příslušné situaci definované cestou od kořene.
- pro každou možnou hodnotu rozhodnutí D a náhodné veličiny X vychází z uzlu D resp. X jedna hrana označená tímto výsledkem d_i , x_i
- větve z náhodné veličiny X navíc označíme pravděpodobností, s jakou větev zvolíme, za podmínky, že se do uzlu X dostaneme, tj. $P(X = x_i | \text{cesta z kořene do } X)$.
- na cestě od kořene do listu se každé rozhodnutí a náhodná veličina vyskytuje nejvýše jednou (nemusí se vyskytovat, pokud neovlivňuje užitek ani pravděpodobnost dosažení listu),
- cesta odpovídá časovému uspořádání: náhodná veličina je před rozhodnutím právě když je hodnota této veličiny známa před rozhodnutím.

- Rozhodovací strom obsahuje tři typy uzlů:
 - rozhodnutí D_i
 - náhodné uzly X_i
 - listy; listům je přiřazen zisk v příslušné situaci definované cestou od kořene.
- pro každou možnou hodnotu rozhodnutí D a náhodné veličiny X vychází z uzlu D resp. X jedna hrana označená tímto výsledkem d_i, x_i
- větve z náhodné veličiny X navíc označíme pravděpodobností, s jakou větev zvolíme, za podmínky, že se do uzlu X dostaneme, tj.
 P(X = x_i|cesta z kořene do X).
- na cestě od kořene do listu se každé rozhodnutí a náhodná veličina vyskytuje nejvýše jednou (nemusí se vyskytovat, pokud neovlivňuje užitek ani pravděpodobnost dosažení listu).
- cesta odpovídá časovému uspořádání: náhodná veličina je před rozhodnutím právě když je hodnota této veličiny známa před rozhodnutím.

- Rozhodovací strom obsahuje tři typy uzlů:
 - rozhodnutí D_i
 - náhodné uzly X_i
 - listy; listům je přiřazen zisk v příslušné situaci definované cestou od kořene.
- pro každou možnou hodnotu rozhodnutí D a náhodné veličiny X vychází z uzlu D resp. X jedna hrana označená tímto výsledkem d_i, x_i
- větve z náhodné veličiny X navíc označíme pravděpodobností, s jakou větev zvolíme, za podmínky, že se do uzlu X dostaneme, tj.
 P(X = x_i|cesta z kořene do X).
- na cestě od kořene do listu se každé rozhodnutí a náhodná veličina vyskytuje nejvýše jednou (nemusí se vyskytovat, pokud neovlivňuje užitek ani pravděpodobnost dosažení listu),
- cesta odpovídá časovému uspořádání: náhodná veličina je před rozhodnutím právě když je hodnota této veličiny známa před rozhodnutím.

- Rozhodovací strom obsahuje tři typy uzlů:
 - rozhodnutí D;
 - náhodné uzly X_i
 - listy; listům je přiřazen zisk v příslušné situaci definované cestou od kořene.
- pro každou možnou hodnotu rozhodnutí D a náhodné veličiny X vychází z uzlu D resp. X jedna hrana označená tímto výsledkem d_i, x_i
- větve z náhodné veličiny X navíc označíme pravděpodobností, s jakou větev zvolíme, za podmínky, že se do uzlu X dostaneme, tj. $P(X = x_i | \text{cesta z kořene do } X)$.
- na cestě od kořene do listu se každé rozhodnutí a náhodná veličina vyskytuje nejvýše jednou (nemusí se vyskytovat, pokud neovlivňuje užitek ani pravděpodobnost dosažení listu),
- cesta odpovídá časovému uspořádání: náhodná veličina je před rozhodnutím právě když je hodnota této veličiny známa před rozhodnutím.

Nadojené mléko: Při uvedených cenách: použít, vyhodit, testovat?

Marta Vomlelová 14. prosince 2016

Nadojené mléko: použít, vyhodit, testovat?

Marta Vomlelová 14. prosince 2016

Pravděpodobnostní model + ceny (užitek).

Marta Vomlelová 14. prosince 2016

Dopočteme pravděpodobnosti.

```
\begin{split} &\inf <\text{- cptable($\sim$inf, values=$c(0.0007,0.9993),levels=$c('yes','no'))$} \\ &\text{test} <\text{- cptable($\sim$test+$inf, values=$c(1,99,99,1),levels=$c('pos','neg'))} \end{split}
```


Marta Vomlelová 14. prosince 2016

Vyhodnotíme. Vážený součet v náhodných uzlech, maximum v rozhodnutích. $EU(dole) = 0 \cdot P(y) + 100 * P(n) = 99.93,$

 $EU(nahore) = 97.94 \cdot P(pos) + 99.94 \cdot P(n, neg) - 0.06 \cdot P(y, neg) = 99.92.$

Marta Vomlelová 14. prosince 2016

Vyhodnocení rozhodovacího stromu

- Vyhodnocení začínáme od listů, kde je znám zisk EU(list) = V(list).
- Jsou-li všechny děti uzlu vyhodnoceny, vyhodnotíme uzel:
 - v rozhodovacím uzlu vybereme dítě s nejvyšším ziskem a opíšeme jeho hodnotu; větev označíme.
 - v náhodném uzlu spočteme $EU(X|cesta) = \sum_{deti} EU(dite|cesta) \cdot P(dite|cesta).$
 - v koření nám vyjde očekávaný zisk optimální strategie.

Definition

Strategie řešení rozhodování za nejistoty je <mark>předpis</mark> (např. rozhodovací strom) jaké rozhodnutí zvolit za každé možné situace předchozích rozhodnutí a pozorovaných náhodných veličin.

Optimální strategie je strategie s maximálním očekávaným ziskem ze všech strategií pro daný problém.

Influenční diagram je DAG (orientovaný graf bez cyklů) se třemi typy uzlů a dvěma typy tabulek:

- Rozhodovací a náhodné uzly mají konečné množiny vzájemně se vylučujících stavů, uzly užitku nemají žádné stavy.
- Obdélníkové rozhodovací uzly nemají přiřazenou tabulku, resp. tabulku podkladů pro rozhodnutí vypočteme
- Elipsové náhodné uzly mají přiřazeny podmíněnou pravděpodobnost stavu pro možné konfigurace rodičů, stejně jak bylo v bayes. síti
- Kosočtvercové uzly užitku, (utility) mají přiřazenu výplatu (reálné číslo) pro každou konfiguraci rodičů.
- Hrany do náhodných veličin mají závislostní význam, jako v BN.
- Hrany do rozhodovacích uzlů z náhodných veličin mají význam informační:
- Předpokládáme nezapomínání pokud předchozí rozhodnutí znalo veličinu
 A, pak ji zná i následné rozhodnutí.
- Influenční diagram vyžaduje orientovanou cestu přes všechna rozhodnutí, tj. časové uspořádání na rozhodnutích. (Nevadí, když jsou na cestě i náhodné uzly).

Influenční diagram je DAG (orientovaný graf bez cyklů) se třemi typy uzlů a dvěma typy tabulek:

- Rozhodovací a náhodné uzly mají konečné množiny vzájemně se vylučujících stavů, uzly užitku nemají žádné stavy.
- Obdélníkové rozhodovací uzly nemají přiřazenou tabulku, resp. tabulku podkladů pro rozhodnutí vypočteme
- Elipsové náhodné uzly mají přiřazeny podmíněnou pravděpodobnost stavu pro možné konfigurace rodičů, stejně jak bylo v bayes. síti
- Kosočtvercové uzly užitku, (utility) mají přiřazenu výplatu (reálné číslo) pro každou konfiguraci rodičů.
- Hrany do náhodných veličin mají závislostní význam, jako v BN.
- Hrany do rozhodovacích uzlů z náhodných veličin mají význam informační:
- Předpokládáme **nezapomínání** pokud předchozí rozhodnutí znalo veličinu *A*, pak ji zná i následné rozhodnutí.
- Influenční diagram vyžaduje orientovanou cestu přes všechna rozhodnutí, tj. časové uspořádání na rozhodnutích. (Nevadí, když jsou na cestě i náhodné uzly).

Influenční diagram je DAG (orientovaný graf bez cyklů) se třemi typy uzlů a dvěma typy tabulek:

- Rozhodovací a náhodné uzly mají konečné množiny vzájemně se vylučujících stavů, uzly užitku nemají žádné stavy.
- Obdélníkové rozhodovací uzly nemají přiřazenou tabulku, resp. tabulku podkladů pro rozhodnutí vypočteme
- Elipsové náhodné uzly mají přiřazeny podmíněnou pravděpodobnost stavu pro možné konfigurace rodičů, stejně jak bylo v bayes. síti
- Kosočtvercové uzly užitku, (utility) mají přiřazenu výplatu (reálné číslo) pro každou konfiguraci rodičů.
- Hrany do náhodných veličin mají závislostní význam, jako v BN.
- Hrany do rozhodovacích uzlů z náhodných veličin mají význam informační:
- Předpokládáme nezapomínání pokud předchozí rozhodnutí znalo veličinu
 A, pak ji zná i následné rozhodnutí.
- Influenční diagram vyžaduje orientovanou cestu přes všechna rozhodnutí, tj. časové uspořádání na rozhodnutích. (Nevadí, když jsou na cestě i náhodné uzly).

Influenční diagram je DAG (orientovaný graf bez cyklů) se třemi typy uzlů a dvěma typy tabulek:

- Rozhodovací a náhodné uzly mají konečné množiny vzájemně se vylučujících stavů, uzly užitku nemají žádné stavy.
- Obdélníkové rozhodovací uzly nemají přiřazenou tabulku, resp. tabulku podkladů pro rozhodnutí vypočteme
- Elipsové náhodné uzly mají přiřazeny podmíněnou pravděpodobnost stavu pro možné konfigurace rodičů, stejně jak bylo v bayes. síti
- Kosočtvercové uzly užitku, (utility) mají přiřazenu výplatu (reálné číslo) pro každou konfiguraci rodičů.
- Hrany do náhodných veličin mají závislostní význam, jako v BN.
- Hrany do rozhodovacích uzlů z náhodných veličin mají význam informační:
- Předpokládáme nezapomínání pokud předchozí rozhodnutí znalo veličinu
 A, pak ji zná i následné rozhodnutí.
- Influenční diagram vyžaduje orientovanou cestu přes všechna rozhodnutí, tj. časové uspořádání na rozhodnutích. (Nevadí, když jsou na cestě i náhodné uzly).

Influenční diagram je DAG (orientovaný graf bez cyklů) se třemi typy uzlů a dvěma typy tabulek:

- Rozhodovací a náhodné uzly mají konečné množiny vzájemně se vylučujících stavů, uzly užitku nemají žádné stavy.
- Obdélníkové rozhodovací uzly nemají přiřazenou tabulku, resp. tabulku podkladů pro rozhodnutí vypočteme
- Elipsové **náhodné uzly** mají přiřazeny podmíněnou pravděpodobnost stavu pro možné konfigurace rodičů, stejně jak bylo v bayes. síti
- Kosočtvercové uzly užitku, (utility) mají přiřazenu výplatu (reálné číslo) pro každou konfiguraci rodičů.
- Hrany do náhodných veličin mají závislostní význam, jako v BN.
- Hrany do rozhodovacích uzlů z náhodných veličin mají význam informační:
- Předpokládáme nezapomínání pokud předchozí rozhodnutí znalo veličinu
 A, pak ji zná i následné rozhodnutí.
- Influenční diagram vyžaduje orientovanou cestu přes všechna rozhodnutí, tj. časové uspořádání na rozhodnutích. (Nevadí, když jsou na cestě i náhodné uzly).

Influenční diagram je DAG (orientovaný graf bez cyklů) se třemi typy uzlů a dvěma typy tabulek:

- Rozhodovací a náhodné uzly mají konečné množiny vzájemně se vylučujících stavů, uzly užitku nemají žádné stavy.
- Obdélníkové rozhodovací uzly nemají přiřazenou tabulku, resp. tabulku podkladů pro rozhodnutí vypočteme
- Elipsové náhodné uzly mají přiřazeny podmíněnou pravděpodobnost stavu pro možné konfigurace rodičů, stejně jak bylo v bayes. síti
- Kosočtvercové uzly užitku, (utility) mají přiřazenu výplatu (reálné číslo) pro každou konfiguraci rodičů.
- Hrany do náhodných veličin mají závislostní význam, jako v BN.
- Hrany do rozhodovacích uzlů z náhodných veličin mají význam informační: před rozhodnutím známe stav příslušné náhodné veličiny; z rozhodovacích uzlů mají význam časového uspořádání – rozhodnutí, ze kterého jde hrana, musí být uskutečněno dřív, než rozhodnutí – dítě.
- Předpokládáme nezapomínání pokud předchozí rozhodnutí znalo veličinu
 A, pak ji zná i následné rozhodnutí.

Influenční diagram vyžaduje orientovanou cestu přes všechna

Influenční diagram je DAG (orientovaný graf bez cyklů) se třemi typy uzlů a dvěma typy tabulek:

- Rozhodovací a náhodné uzly mají konečné množiny vzájemně se vylučujících stavů, uzly užitku nemají žádné stavy.
- Obdélníkové rozhodovací uzly nemají přiřazenou tabulku, resp. tabulku podkladů pro rozhodnutí vypočteme
- Elipsové náhodné uzly mají přiřazeny podmíněnou pravděpodobnost stavu pro možné konfigurace rodičů, stejně jak bylo v bayes. síti
- Kosočtvercové uzly užitku, (utility) mají přiřazenu výplatu (reálné číslo) pro každou konfiguraci rodičů.
- Hrany do náhodných veličin mají závislostní význam, jako v BN.
- Hrany do rozhodovacích uzlů z náhodných veličin mají význam informační:
- Předpokládáme nezapomínání pokud předchozí rozhodnutí znalo veličinu
 A, pak ji zná i následné rozhodnutí.
- Influenční diagram vyžaduje orientovanou cestu přes všechna rozhodnutí, tj. časové uspořádání na rozhodnutích. (Nevadí, když jsou na cestě i náhodné uzly).

Influenční diagram je DAG (orientovaný graf bez cyklů) se třemi typy uzlů a dvěma typy tabulek:

- Rozhodovací a náhodné uzly mají konečné množiny vzájemně se vylučujících stavů, uzly užitku nemají žádné stavy.
- Obdélníkové rozhodovací uzly nemají přiřazenou tabulku, resp. tabulku podkladů pro rozhodnutí vypočteme
- Elipsové náhodné uzly mají přiřazeny podmíněnou pravděpodobnost stavu pro možné konfigurace rodičů, stejně jak bylo v bayes. síti
- Kosočtvercové uzly užitku, (utility) mají přiřazenu výplatu (reálné číslo) pro každou konfiguraci rodičů.
- Hrany do náhodných veličin mají závislostní význam, jako v BN.
- Hrany do rozhodovacích uzlů z náhodných veličin mají význam informační:
- Předpokládáme nezapomínání pokud předchozí rozhodnutí znalo veličinu
 A, pak ji zná i následné rozhodnutí.
- Influenční diagram vyžaduje orientovanou cestu přes všechna rozhodnutí, tj. časové uspořádání na rozhodnutích. (Nevadí, když jsou na cestě i náhodné uzly).

Příklad - Poker (T.D.Nielsen, kniha)

- Každý dostane 5 karet
- poprvé: nejvýše 3 může vyměnit
- podruhé: nejvýše 2 může vyměnit
- můžu 'vsadit' nebo vzdát
- vyšší karty berou talon.

Úkol

Navrhněte model - rozhodovací graf.

Vyhodnocení influenčního diagramu

Jedna cesta je vytvořit rozhodovací strom a ten vyhodnotit. Influenční diagram vyžaduje **časové uspořádání rozhodnutí**, nechť máme provádět rozhodnutí v pořadí D_1, \ldots, D_n . Označíme I_0 množinu náhodných veličin, které může D_1 pozorovat; obecně I_i bude množina pozorování, které může pozorovat D_{i+1} , ale ne D_i . I_n jsou pozorování, které nezná ani poslední rozhodnutí. Tím dostáváme **částečné časové** uspořádání rozhodovacích a náhodných uzlů $I_0 < D_1 < I_1 < \ldots < D_n < I_n$. Při konstrukci stromu musí být vždy "menší"uzly blíže kořeni.

Marta Vomlelová

Řetězové pravidlo pro influenční diagramy (ID)

Nechť jsou v ID náhodné veličiny $\mathcal O$ a rozhodnutí D_1,\ldots,D_n . Pak:

$$P(\mathcal{O}|D_1,\ldots,D_n)=\Pi_{X\in\mathcal{O}}P(X|pa(X)).$$

Na základě tohoto pravidla můžeme vypočítat všechny pravděpodobnosti potřebné v rozhodovacím stromě.

Optimální stragetie

Při daném časovém uspořádání $I_0 < D_1 < I_1 < \ldots < D_n < I_n$ je optimální strategie pro D_i :

$$\sigma_i(I_0, D_1, I_1, \ldots, D_{i-1}, I_{i-1}) =$$

$$\underset{l_i}{\operatorname{argm}} \mathsf{ax}_{D_i} \sum_{I_i} \underset{max_{D_{i+1}}}{\operatorname{max}} \dots \underset{max_{D_n}}{\operatorname{max}} \sum_{I_n} P(U|D_1, \dots, D_n) \bigvee_{i=1}^{N} V(U, D_1, \dots, D_n)$$

Očekávaná hodnota stragetie počínající v
$$D_i$$
 je:
$$\rho_i(I_0, D_1, I_1, \dots, D_{i-1}, I_{i-1}) = \frac{1}{P(I_0, \dots, I_{i-1}|D_1, \dots, D_{i-1})}.$$

$$\max_{D_i} \sum_{l_i} \max_{D_{i+1}} \dots \max_{D_n} \sum_{l_n} P(U|D_1, \dots, D_n)V(U, D_1, \dots, D_n)$$

14. prosince 2016 Marta Vomlelová

- Do seznamu Φ_0 dáme všechny pravděpodobnostní tabulky $P(A_i|pa(A_i))$.
- Do seznamu Ψ_0 dáme všechny tabulky užitku $V_i(pa(V_i))$
- Postupně budeme eliminovat proti směru časového uspořádání všechny proměnné. Při eliminaci rozhodnutí si zapamatujeme optimální strategii tohoto rozhodnutí.
- Při použití vyhodnoceného ID nejdříve zadáme hodnoty pozorované před D_1 , pak zvolíme d_1 s nejvetším očekávaným ziskem. Pokračujeme dále zadávání pozorovaných hodnot a volbou rozhodnutí, dokud nedojdeme k poslednímu rozhodnutí

- Do seznamu Φ_0 dáme všechny pravděpodobnostní tabulky $P(A_i|pa(A_i))$.
- Do seznamu Ψ_0 dáme všechny tabulky užitku $V_j(pa(V_j))$.
- Postupně budeme eliminovat proti směru časového uspořádání všechny proměnné. Při eliminaci rozhodnutí si zapamatujeme optimální strategii tohoto rozhodnutí.
- Při použití vyhodnoceného ID nejdříve zadáme hodnoty pozorované před D_1 , pak zvolíme d_1 s nejvetším očekávaným ziskem. Pokračujeme dále zadávání pozorovaných hodnot a volbou rozhodnutí, dokud nedojdeme k poslednímu rozhodnutí

- Do seznamu Φ_0 dáme všechny pravděpodobnostní tabulky $P(A_i|pa(A_i))$.
- Do seznamu Ψ_0 dáme všechny tabulky užitku $V_i(pa(V_i))$.
- Postupně budeme eliminovat proti směru časového uspořádání všechny proměnné.
 Při eliminaci rozhodnutí si zapamatujeme optimální strategii tohoto rozhodnutí.
- Při použití vyhodnoceného ID nejdříve zadáme hodnoty pozorované před D_1 , pak zvolíme d_1 s nejvetším očekávaným ziskem. Pokračujeme dále zadávání pozorovaných hodnot a volbou rozhodnutí, dokud nedojdeme k poslednímu rozhodnutí

- Do seznamu Φ_0 dáme všechny pravděpodobnostní tabulky $P(A_i|pa(A_i))$.
- Do seznamu Ψ_0 dáme všechny tabulky užitku $V_i(pa(V_i))$.
- Postupně budeme eliminovat proti směru časového uspořádání všechny proměnné. Při eliminaci rozhodnutí si zapamatujeme optimální strategii tohoto rozhodnutí.
- Při použití vyhodnoceného ID nejdříve zadáme hodnoty pozorované před D₁, pak zvolíme d₁ s nejvetším očekávaným ziskem. Pokračujeme dále zadávání pozorovaných hodnot a volbou rozhodnutí, dokud nedojdeme k poslednímu rozhodnutí.

Eliminace proměnné X v kroku i znamená:

- $\Phi_X = \{ \phi \in \Phi_{j-1} | X \in dom(\phi) \}$ $\Psi_X = \{ \psi \in \Psi_{j-1} | X \in dom(\psi) \}$
- 2 Je-li X náhodná veličina

$$\frac{\phi_X}{\phi_X} = \sum_X \frac{\Pi \Phi_X}{\Psi_X}$$

$$\psi_X = \frac{1}{\phi_X} \sum_X \Pi \Phi_X \left(\sum \Psi_X \right)$$

jinak X rozhodnutí

$$\phi_X = \frac{\max_X \prod \Phi_X}{\psi_X} = \max_X \left(\sum \Psi_X \right)$$

každopádně:

$$\begin{aligned}
\Phi_i &= \Phi_{i-1} \\
\Psi_i &= \Psi_{i-1}
\end{aligned}
\quad
\begin{aligned}
\Phi_X &\cup \{\phi_X\} \\
\Psi_X &\cup \{\psi_X\}
\end{aligned}$$

14. prosince 2016

Varianty ID

• LIMIDs - Limited Memory IDs

- UIDs Unconstrained IDs
- a mnoho jazyků na asymetrické problémy (např. Valuation networks, AIDs)
- CEG Chain Event Graphs blíže k rozhodovacím stromům, ale snaží se je maximálně spojovat 'coalescencí'.

Opakování v čase

Příklad: Rybolov

- LIMIDs Limited Memory IDs
- UIDs Unconstrained IDs
- a mnoho jazyků na asymetrické problémy (např. Valuation networks, AIDs)
- CEG Chain Event Graphs blíže k rozhodovacím stromům, ale snaží se je maximálně spojovat 'coalescencí'.

Opakování v čase

Příklad: Rybolov

- LIMIDs Limited Memory IDs
- UIDs Unconstrained IDs
- a mnoho jazyků na asymetrické problémy (např. Valuation networks, AIDs)
- CEG Chain Event Graphs blíže k rozhodovacím stromům, ale snaží se je maximálně spojovat 'coalescencí'.

Opakování v čase

Příklad: Rybolov

- LIMIDs Limited Memory IDs
- UIDs Unconstrained IDs
- a mnoho jazyků na asymetrické problémy (např. Valuation networks,AIDs)
- CEG Chain Event Graphs blíže k rozhodovacím stromům, ale snaží se je maximálně spojovat 'coalescencí'.

Opakování v čase Příklad: Rybolov

- LIMIDs Limited Memory IDs
- UIDs Unconstrained IDs
- a mnoho jazyků na asymetrické problémy (např. Valuation networks,AIDs)
- CEG Chain Event Graphs blíže k rozhodovacím stromům, ale snaží se je maximálně spojovat 'coalescencí'.

Opakování v čase

Příklad: Rybolov

Markovské rozhodovací procesy

- Předpokládáme, že se množina možných stavů S nemění v průběhu času

$$S_{t+1} \perp \!\!\!\perp S_{t-i} | S_t$$

Marta Vomlelová

Markovské rozhodovací procesy

- Předpokládáme, že se množina možných stavů S nemění v průběhu času
- Markovská vlastnost stav v čase t+1 je nezávislý na stavu v čase t-i, i > 0 při znalosti stavu v čase t, tj.

$$S_{t+1} \perp \!\!\!\perp S_{t-i} | S_t$$

Marta Vomlelová

Markovské rozhodovací procesy

- Předpokládáme, že se množina možných stavů S nemění v průběhu času
- Markovská vlastnost stav v čase t+1 je nezávislý na stavu v čase t-1, i>0 při znalosti stavu v čase t, tj.

$$S_{t+1} \perp \!\!\!\perp S_{t-i} | S_t$$

 Toto jsou plně pozorované markovské procesy prvního řádu; markovské procesy vyššího řádu dovolují závislost na více předchozích stavech.

Markovský rozhodovací proces MDP

- Množina stavů S v každém časovém bodě stejná
- Počáteční stav so
- Množina možných akcí A
- Matice přechodu $T(s, a, s^{|})$
- Výplata v každém stavu R(s)

Protože jde o proces v čase, výplaty musíme sčítat. Isou dvě možnosti:

- MDP s konečným horizontem předem stanoví počet kroků
- nekonečný proces a součet, ale hodnoty v budoucnosti budeme počítat s nižš hodnotou (kdo ví, co bude pak).

$$U(s_0,\ldots,s_t,\ldots)=\sum_{t=0}^{\infty}\gamma^tR(s_t)$$

- γ odpovídá úrokové míře $\frac{1}{\gamma} 1$, kterou musíme platit.
- ullet Vzhledem ke konečnosti S je $U(s_0,\ldots,s_t,\ldots) \leq rac{R_{max}}{(1-\gamma)}$

Protože jde o proces v čase, výplaty musíme sčítat. Isou dvě možnosti:

- MDP s konečným horizontem předem stanoví počet kroků
- nekonečný proces a součet, ale hodnoty v budoucnosti budeme počítat s nižší hodnotou (kdo ví, co bude pak).

$$U(s_0,\ldots,s_t,\ldots)=\sum_{t=0}^{\infty}\gamma^tR(s_t)$$

- ullet γ odpovídá úrokové míře $rac{1}{\gamma}-1$, kterou musíme platit.
- ullet Vzhledem ke konečnosti S je $U(s_0,\ldots,s_t,\ldots) \leq rac{R_{ extit{max}}}{(1-\gamma)}$

Protože jde o proces v čase, výplaty musíme sčítat.

Jsou dvě možnosti:

- MDP s konečným horizontem předem stanoví počet kroků
- nekonečný proces a součet, ale hodnoty v budoucnosti budeme počítat s nižší hodnotou (kdo ví, co bude pak).

$$U(s_0,\ldots,s_t,\ldots)=\sum_{t=0}^{\infty}\gamma^tR(s_t)$$

- ullet γ odpovídá úrokové míře $rac{1}{\gamma}-1$, kterou musíme platit.
- Vzhledem ke konečnosti S je $U(s_0,\ldots,s_t,\ldots) \leq rac{R_{ extit{max}}}{(1-\gamma)}$

Protože jde o proces v čase, výplaty musíme sčítat. Isou dvě možnosti:

- MDP s konečným horizontem předem stanoví počet kroků
- nekonečný proces a součet, ale hodnoty v budoucnosti budeme počítat s nižší hodnotou (kdo ví, co bude pak).

$$U(s_0,\ldots,s_t,\ldots)=\sum_{t=0}^{\infty}\gamma^tR(s_t)$$

- γ odpovídá úrokové míře $\frac{1}{\gamma}-1$, kterou musíme platit.
- Vzhledem ke konečnosti S je $U(s_0, \ldots, s_{\underline{i}}, \ldots) \leq \frac{R_{max}}{(1-\gamma)}$

Cílem je najít takovou **strategii** π^* , která maximalizuje očekávanou výplatu, tj.

$$\pi^* = argmax_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi\right]$$

- Konečný horizont vede k nestacionární strategii, tj. různé strategii dle toho, kolik času zbývá do konce.
- Nekonečný horizont vede ke stacionární strategii, tj. doporučený tah v políčku (stavu) je stejný nezávisle na počtu již provedených tahů.
- Reprezentovat stacionární strategii je snažší
- Máme—li jistotu, že agent musí skončit v cílovém stavu, můžeme počítat s $\gamma=1$, jinak bychom mohli neustále zvyšovat užitek a neměli bychom zajištěno nalezení optimální strategie. (Šlo by hledat maximální zisk za k kroků.)

Cílem je najít takovou **strategii** π^* , která maximalizuje očekávanou výplatu, tj.

$$\pi^* = argmax_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi\right]$$

- Konečný horizont vede k nestacionární strategii, tj. různé strategii dle toho, kolik času zbývá do konce.
- Nekonečný horizont vede ke stacionární strategii, tj. doporučený tah v
 políčku (stavu) je stejný nezávisle na počtu již provedených tahů.
- Reprezentovat stacionární strategii je snažší
- Máme-li jistotu, že agent musí skončit v cílovém stavu, můžeme počítat s $\gamma=1$, jinak bychom mohli neustále zvyšovat užitek a neměli bychom zajištěno nalezení optimální strategie. (Šlo by hledat maximální zisk za k kroků.)

Cílem je najít takovou **strategii** π^* , která maximalizuje očekávanou výplatu, tj.

$$\pi^* = argmax_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi\right]$$

- Konečný horizont vede k nestacionární strategii, tj. různé strategii dle toho, kolik času zbývá do konce.
- Nekonečný horizont vede ke stacionární strategii, tj. doporučený tah v
 políčku (stavu) je stejný nezávisle na počtu již provedených tahů.
- Reprezentovat stacionární strategii je snažší.
- Máme-li jistotu, že agent musí skončit v cílovém stavu, můžeme počítat s $\gamma=1$, jinak bychom mohli neustále zvyšovat užitek a neměli bychom zajištěno nalezení optimální strategie. (Šlo by hledat maximální zisk za k kroků.)

Cílem je najít takovou **strategii** π^* , která maximalizuje očekávanou výplatu, tj.

$$\pi^* = \underset{\mathsf{argmax}_{\pi}}{\mathsf{argmax}_{\pi}} \mathsf{E} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t) | \pi \right]$$

- Konečný horizont vede k nestacionární strategii, tj. různé strategii dle toho, kolik času zbývá do konce.
- Nekonečný horizont vede ke stacionární strategii, tj. doporučený tah v políčku (stavu) je stejný nezávisle na počtu již provedených tahů.
- Reprezentovat stacionární strategii je snažší.
- Máme–li jistotu, že agent musí skončit v cílovém stavu, můžeme počítat s $\gamma=1$, jinak bychom mohli neustále zvyšovat užitek a neměli bychom zajištěno nalezení optimální strategie. (Šlo by hledat maximální zisk za k kroků.)

Algoritmus řešení MDP Iterací hodnot

```
input: MDP, stavy S, přechody T, výplata R, diskontní f. \gamma,\epsilon prom.: U,U^{\parallel}, vektory užitku stavů v S, na poč. 0 \delta maximální změna užitku v jedné iteraci repeat U \leftarrow U^{\parallel}; \delta \leftarrow 0 for each state s in S do U^{\parallel}[s] \leftarrow R[s] + \gamma \max_{s} \sum_{s} T(s,s,s) U(s) if |U^{\parallel}[s] - U^{\parallel}[s]| > \delta then \delta \leftarrow |U^{\parallel}[s] - U^{\parallel}[s]| until \delta < \epsilon(1-\gamma)/\gamma return U
```

Iterace strategie (policy iteration)

```
input: MDP, stavy S, přechody T, výplata R, diskontní f. \gamma,\epsilon
    prom.: U, vektory užitku stavů v S, na poč. 0
            \pi strategie, na začátku náhodná
    repeat
        U \leftarrow HODNOTA\_STRATEGIE(\pi, U, MPD)
        unchanged? \leftarrow true
        for each state s in S do
            if \max_{a} \sum_{s} T(s, a, s^{|}) U[s^{|}] > \sum_{s} T(s, \pi[s], s^{|}) U[s^{|}]
            then
                 \pi[s] \leftarrow argmax_a \sum_{s|} T(s, a, s|) U[s|]
                 unchanged? \leftarrow false
    until unchanged?
return \pi
```

Výpočet $HODNOTA_STRATEGIE(\pi, U.MPD)$ vyžaduje vyřešení soustavy Slineárních rovnic pro U[s] v jednotlivých stavech.

Částečně pozorovatelné markovské procesy (POMDP)

- Nejsme schopni pozorovat stav, pouze skrze nepřesné senzory.
- Bude příště.
- Pointy:
 - Proces je opět makrovský, pokud bereme BELIEF (PRAVDĚPODOBNOSTNÍ ROZLOŽENÍ) na stavech. Těch je ale nekonečně, tedy máme problém.
 - Tzv. Witness algoritmus hledáme svědka, že naše strategie není optimální.