Last Time:

- Wrap up Big-O
- HW1 assigned!
- Reduction
 - Recursion

Today:

- Finish analysis of Hanoi
- More Recursion
- Reminder:
 - HW1 due Friday!

Tower of Hansi

Tower (n, src, dest, tmp) - T(n) it n = 0 : do nothing

otherwise:

Tower (n-1, src, tmp, dest)

move the disc n from size to dest - 1

-) T(n-1)

Tower (n-1, tmp, dest, suc)

Efficiency (ount something -) court single dick moves! Let the number of moves on input n be some T(n)

T(n) = ???

Recursion

1) It the problem instance is simple, solve it directly

2 It the instance is hard, reduce it to solving (easier) instances of the problem.

Relative Maximum

Relative Maximum
Input: A list L of n items.
Det A relative max or peak is an element
L[i] where L[i] 2 L[i-1], and L[i] 2 L[i+1]
(At least as large as neighbors).
Output: The index of any one peak.
Example:
L-) 2 4 6 3 2 -1 4
7
2
The absolute max is always a relimax.
Algl
D Find the max of the list, by iterating
through all the elements.
2 Ontput the index.
$\hookrightarrow \boxed{\Theta(n)}$
A192 17
(i) C i) a peak seab ?? T
② C 11 not a peak.
b>c or $d>c$

Pick C to be the middle to alway, elining the most clenents.

Peak (L, i, j)
$$\longrightarrow$$
 T(n)

① It $j-i < 1 : L[i]$ is the peak.
② otherwise, we want to check whether the middle of L[i] ... L[i] is a peak.

 $m \leftarrow (i+j)/2 \longrightarrow (1)$

if $L[m] < L[m-1]$:

Peak (L, i, m) \longrightarrow T(n/2)

else if $L[m] < L[m+1]$:

Peak (L, m+1, j) \longrightarrow T(n/2)

else if $L[m] < L[m+1]$:

$$\frac{\text{Efficiency}}{\left(T(n) = T(n/2) + O(1)\right)}$$

$$T(n) = O(\log n)$$