Geometría y Álgebra Lineal 2

Mauro Polenta Mora

CLASE 11 - 14/04/2025

Norma inducida y Ortogonalidad

Observación

Sea V un \mathbb{R} -espacio vectorial con producto interno, dos vectores $v,w\in V$ tal que $v,w\neq \vec{0}$. Se cumple que:

$$-1 \le \frac{\langle v, w \rangle}{\|v\| \|w\|} \le 1$$

Por otra parte, en \mathbb{R}^3 y con el producto interno usual: $\langle v, w \rangle = ||v|| ||w|| \cos \theta$.

Definimos el ángulo entre v y w como el ángulo θ que cumple lo siguiente:

$$\cos \theta = \frac{\langle v, w \rangle}{\|v\| \|w\|}$$

Corolario 1 (de la desigualdad de Cauchy-Schwarz)

Sea $V=\mathbb{R}^n$ con $\langle x,y\rangle=\sum_{i=1}^n x_iy_i$, considerando: - $x=\{x_1,x_2,\dots,x_n\}$ - $y=\{y_1,y_2,\dots,y_n\}$

Se cumple:

$$\left(\sum_{i=1}^n x_i y_i\right)^2 \le \left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i^2\right)$$

Corolario 2 (de la desigualdad de Cauchy-Schwarz)

Sea V=C[a,b] con $\langle f,g\rangle=\int_a^b f(t)g(t)dt.$ Se cumple que:

$$\left(\int_a^b f(t)g(t)dt\right)^2 \leq \left(\int_a^b f^2(t)dt\right)\left(\int_a^b g^2(t)dt\right)$$

Corolario 3 (de la desigualdad de Cauchy-Schwarz)

Vamos a probar la desigualdad triangular para la norma inducida por un producto interno.

$$||v + w|| < ||v|| + ||w|| \quad \forall v, w \in V$$

Demostración:

$$\begin{split} &\|v+w\|^2\\ =&(\text{definición de norma inducida})\\ &\langle v+w,v+w\rangle\\ =&(\text{desarrollo})\\ &\langle v,v\rangle+\langle v,w\rangle+\langle w,v\rangle+\langle w,w\rangle\\ =&(\text{por: }z+\overline{z}=2Re(z))\\ &=\|v\|^2+2Re(\langle v,w\rangle)+\|w\|^2\\ \leq&(\text{por: }Re(z)\leq|z|)\\ &\|v\|^2+2\|\langle v,w\rangle\|+\|w\|^2\\ \leq&(\text{desigualdad de Cauchy-Schwarz})\\ &\|v\|^2+2\|v\|\|w\|+\|w\|^2\\ =&(\text{operatoria})\\ &(\|v\|+\|w\|)^2 \end{split}$$

Entonces reagrupando:

$$\begin{split} \|v+w\|^2 &\leq (\|v\|+\|w\|)^2 \\ &\iff \text{(ambos lados siempre positivos)} \\ \|v+w\| &\leq \|v\|+\|w\| \end{split}$$

Definición (ortogonalidad y ortonormalidad)

Sea V un espacio vectorial sobre \mathbb{K} con producto interno. Decimos que v, w son ortogonales si $\langle v, w \rangle = 0$.

Notación: $v \perp w$

• Sea $A \subset V$, decimos que A es un conjunto ortogonal si $\forall v, w \in A$, con $v \neq w$ se cumple que $v \perp w$. Si además $\|v\| = 1 \quad \forall v \in A$ decimos que A es un conjunto ortonormal

Observaciones:

- 1. $\langle v, 0 \rangle = 0 \quad \forall v \in V$
- 2. $v \perp v \iff \langle v, v \rangle = 0 \iff v = \vec{0}$
- 3. Sea A un conjunto ortogonal tal que $\vec{0} \notin A$. Entonces el conjunto $B = \{\frac{v}{\|v\|} : v \in A\}$ es un conjunto ortonormal

Teorema

Sea V un espacio vectorial con producto interno y $\{v_1,v_2,\dots,v_r\}\subset V$ conjunto ortogonal tal que $v_i\neq \vec{0} \quad \forall i\in 1,\dots,r.$

Entonces $\{v_1, v_2, \dots, v_r\}$ es LI.

Demostración:

Consideremos:

$$\alpha_1 v_1 + \dots + \alpha_n v_r = 0 \quad (i)$$

Para i = 1, ..., r, para un j fijado, se cumple que:

Es decir, para este j fijado se cumple que $\alpha_j=0$. Podemos aplicar este razonamiento para todos los valores de j y obtener que la única forma para que (i) sea 0 es que todos los escalares α_i sean. Con esto concluimos que: $\{v_1,v_2,\ldots,v_r\}$ es LI.

Teorema de Pitagoras

Sea V un espacio vectorial con producto interno, y $\{v_1,v_2,\dots,v_r\}$ un conjunto ortogonal. Entonces se cumple:

$$\|\sum_{i=1}^r v_i\|^2 = \sum_{i=1}^r \|v_i\|^2$$

Demostración:

$$\|\sum_{i=1}^r v_i\|^2$$

=(definición de norma inducida)

$$\left\langle \sum_{i=1}^r v_i, \sum_{j=1}^r v_j \right\rangle$$

=(definición de producto interno)

$$\sum_{i=1}^r \sum_{j=1}^r \left\langle v_i, v_j \right\rangle$$

=(por ortogonalidad cuando $i\neq j$)

$$\sum_{i=1}^r \langle v_i, v_i \rangle$$

=(definición de norma inducida)

$$\sum_{i=1}^r \|v_i\|^2$$