For $A \in M^{n \times n}$, a matrix norm $\| \| : \mathbb{R}^{n \times n} \to \mathbb{R}$ satisfies the following properties: 1. ||A|| > 0 if $A \neq 0$ 2. $\|\alpha A\| = |\alpha| \|A\|$, $\alpha \in \mathbb{R}$ 3. $||A + B|| \le ||A|| + ||B||$ for $A, B \in \mathbb{R}^{n \times n}$ 4. ||AB|| < ||A|| ||B|| for $A, B \in \mathbb{R}^{n \times n}$

 $||A|| \stackrel{\text{def}}{=} \stackrel{\text{max}}{\text{j}} \sum_{i=1}^{n} |a_{ij}|$ (maximum absolute column sum)

5. $||A\vec{x}|| < ||A|| ||\vec{x}||$ for $A \in \mathbb{R}^{n \times n}$, $\vec{x} \in \mathbb{R}^n$

Example: