orecasting using Extrapolative and Explanatory Meth	ods
${f y}$	
J	
mit Behura	

Objective: We are forecasting the value of life expectancy from the data collected from gapminder website. We will be using multiple forecasting model and comparing respective accuracy to find the best fit model.

Data: Data we have used is collected from Gapminder website. With 1960-2010 as the data points to build the forecasting models and another 7 data points from 2011-2017 to test the accuracy of these models. For Bivariate regression and multivariate regression we have used child mortality rate for dependent variable and respective dummy variable for any structural instability.

Sequence Chart:

We can observe a very linear growth of LifeExpectancy over the year with some instability round 1996 which will be examined further.

Extrapolative methods:

1. Naïve Forecasting

Using excel, we have performed the naïve forecasting for test data points as follows:

Year L	ifeExpectancy	Predicted
--------	---------------	-----------

2011	66.9	66.7
2012	67.3	66.9
2013	67.7	67.3
2014	68.1	67.7
2015	68.4	68.1
2016	68.6	68.4
2017	69	68.6

We have calculated various accuracy parameters for the same as follows:

MAD	0.328571
MSE	0.115714
RMSE	0.340168
MAPE	
(%)	0.483053

Note: At = Actual Value and Ft = Forecasted Value

2. Moving Average

We have used 3 MA models (3 year, 4 year, and 5 year) to forecasting these data points as follows:

Year	LifeExpectancy	3 year	4 year	5 year
2011	66.9	66.5	66.4	66.2
2012	67.3	66.7	66.6	66.5
2013	67.7	67.0	66.9	66.7
2014	68.1	67.3	67.2	67.0
2015	68.4	67.7	67.5	67.3
2016	68.6	68.1	67.9	67.7
2017	69	68.4	68.2	68.0

And the respective accuracy parameters are as follows:

	3 year	4 year	5 year
MAD	0.6333	0.7857	0.9314
MSE	0.4144	0.6327	0.8855
RMSE	0.6438	0.7954	0.9410
MAPE			
(%)	0.9308	1.1546	1.3685

We can observe from graph as well as MAPE 3 year Moving Average have highest accurate results followed by 4 year and 5 year.

3. Exponential Smoothing

We have used SPSS to do Exponential Smoothing (using Holt's Linear Trend, Damped Trend and Simple Exponential Smoothing Models). Since we don't have any seasonality in our data due to annual form of data, we have not used winter method and other methods.

Forecasted values are as follows:

	Actual		Forecasted		
Year	LifeExpectancy	Simple	Holt's Linear Trend	Damped Trend	
2011	66.9	66.7	66.9	66.9	
2012	67.3	66.7	67.2	67.2	
2013	67.7	66.7	67.4	67.4	
2014	68.1	66.7	67.6	67.6	
2015	68.4	66.7	67.8	67.9	
2016	68.6	66.7	68.1	68.1	
2017	69	66.7	68.3	68.3	

Respective Forecast Plot are as follow:

I. Simple Exponential Smoothing

II. Holt's Linear Trend

III. Damped Trend

Respective Accuracy parameters are as follows:

	Simple	Holt's Linear Trend	Damped Trend
MAD	1.3000	0.3960	0.3743
MSE	2.1643	0.2074	0.1873
RMSE	1.4712	0.4554	0.4327

MAPE	Ì.			
(%)		1.9017	0.5791	0.5473

From graph as well as MAPE we can observe that, Damped Trend provides highest accurate result followed by Holt's Linear trend then Simple model.

4. ARIMA (autoregressive integrated moving average)

Here first we had to check for stationary, from first diagram it can be observed that the trend line is not stationary. So taking difference = 2, we achieved stationary.

Then we check for ACF and PACF graph to come with required for of ARIMA.

ACF and PACF graph are as follows:

We can observe similar graphs where as ACF reduced to zero more compared to PACF. And from ACF graph we can observe one spike rest are essentially zero. So we decided to go with Moving Average models only.

We also verified the same using Auto ARIMA by R to determine efficient model with respect to Lower normalised BIC value.

After multiple iteration, we reached ARIMA (0,2,6) to have highest accuracy. Results are as follows:

		ARIMA
Year	LifeExpectancy	(0,2,6)
2011	66.9	66.9
2012	67.3	67.2
2013	67.7	67.4
2014	68.1	67.6
2015	68.4	67.8
2016	68.6	68.0
2017	69	68.2

Accuracy parameter are as follows:

MAD	0.4169
MSE	0.2357
RMSE	0.4855
MAPE	0.6094

Explanatory Methods

We are using explanatory methods to generate single equation models to forecast LifeExpectancy.

I. Bivariate Regression

We have observed from earlier exercises Child Mortality rate to be the strongest independent variable to explain variability across life expectancy value.

Coefficients^a

			cificients			
				Standardized		
		Unstandardize	d Coefficients	Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	74.516	7.060		10.554	.000
	BabiesPerWomen	3.896	2.636	.573	1.478	.146
	CO2perPerson	-4.944	3.582	219	-1.380	.174
	ChildMortalityper100	218	.041	-1.733	-5.348	.000
	IncomePerPerson\$.000	.001	.045	.413	.682
	GDPgrowth	020	.043	009	478	.635
2	(Constant)	74.339	6.984		10.645	.000
	BabiesPerWomen	3.790	2.600	.557	1.458	.152
	CO2perPerson	-3.747	2.088	166	-1.795	.079
	ChildMortalityper100	215	.040	-1.707	-5.422	.000
	GDPgrowth	016	.041	007	382	.704
3	(Constant)	74.063	6.882		10.761	.000
	BabiesPerWomen	3.862	2.569	.568	1.503	.139
	CO2perPerson	-3.736	2.068	165	-1.806	.077
	ChildMortalityper100	216	.039	-1.714	-5.503	.000
4	(Constant)	84.039	1.848		45.469	.000
	CO2perPerson	-6.229	1.252	276	-4.975	.000
	ChildMortalityper100	158	.007	-1.253	-22.599	.000

a. Dependent Variable: LifeExpectancy

We did bivariate regression with LifeExpectancy as dependent variable and ChildMortalityper1000 as independent variable.

Coefficients^a

Unstandardized Coefficients		Standardized Coefficients			95.0% Co Interva		
Model	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1 (Constant)	74.999	.411		182.654	.000	74.173	75.824
ChildMortalityper1000	125	.003	990	-48.721	.000	130	119

a. Dependent Variable: LifeExpectancy

Forecast Single Equation:

LifeExpectancy = 74.999 + (-.125)*ChildMortalityper1000

Forecasted values are as follows:

Year	LifeExpectancy	Predicted
2011	66.9	68.13
2012	67.3	68.51
2013	67.7	68.88
2014	68.1	69.23
2015	68.4	69.57
2016	68.6	69.88
2017	69	70.18

Accuracy parameters as follows:

MAD	1.1965
MSE	1.4336
RMSE	1.1973
MAPE	
(%)	1.7598

2. Multivariate Regression with dummy for structural instability

We can observe a kink in the graph at 1996, which might be due to economic restructuring during 1990-95 in India. So we took a dummy variable (D) with 0 as years before 1996 and 1 for years starting from 1996.

Coefficientsa

		Unstand Coeffi		Standardized Coefficients			95.0% Co Interva	onfidence ll for B
M	odel	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	77.125	.655		117.820	.000	75.808	78.441
	ChildMortalityper1000	135	.004	-1.075	-37.988	.000	143	128
	D	-1.740	.447	110	-3.896	.000	-2.638	842

a. Dependent Variable: LifeExpectancy

Forecast Single Equation:

LifeExpectancy = 77.125 + (-.135)*ChildMortalityper100 + (-1.740)*D

Forecasted values are as follows:

Year	LifeExpectancy	Predicted
2011	66.9	67.92727
2012	67.3	68.33329
2013	67.7	68.73932
2014	68.1	69.11828
2015	68.4	69.4837
2016	68.6	69.82206
2017	69	70.14688

Accuracy parameters are as follows:

MAD	1.081542
MSE	1.174743
RMSE	1.083856
MAPE	
(%)	1.589893

3. Multivariate Regression with Slope and intercept dummy

Coefficients^a

		0001110101101			
Model	Unstandardized Coefficients	Standardized Coefficients	t	Sig.	95.0% Confidence Interval for B

		В	Std. Error	Beta			Lower Bound	Upper Bound
1	(Constant)	77.330	.663		116.637	.000	75.996	78.663
	ChildMortalityper1000	136	.004	-1.084	-37.774	.000	144	129
	D	-3.765	1.477	239	-2.549	.014	-6.738	793
	D_ChildMortality	.023	.016	.124	1.437	.157	009	.056

a. Dependent Variable: LifeExpectancy

Forecast Single Equation:

 $\label{eq:LifeExpectancy} \mbox{LifeExpectancy} = 77.330 \mbox{ - } 3.765 \mbox{* D - } .136 \mbox{* ChildMortalityper} \mbox{1000} + .023 \mbox{* D_ChildMortalityper} \mbox{1000}$

Forecasted Value are as follows:

Year	LifeExpectancy	Predicted
2011	66.9	67.33745
2012	67.3	67.67647
2013	67.7	68.01549
2014	68.1	68.33191
2015	68.4	68.63702
2016	68.6	68.91954
2017	69	69.19075

Accuracy parameter are as follows:

MAD	0.301233
MSE	0.097297
RMSE	0.311925
MAPE	
(%)	0.444087

Comparison Models used for forecasting:

We compared respective MAPE for various models and give ranking to the models accordingly.

	MAPE	
Model	(%)	Rank
Extrapolative methods		
1. Naive	0.4831	2
2. Moving Average		
I. 3 year	0.9308	6
ii. 4 year	1.1546	7
iii. 5 year	1.3685	8
3. Exponential Smoothing		
I. Simple	1.9017	
ii. Holt's Linear Trend	0.5791	4
iii. Damped Trend	0.5473	3
4. ARIMA (0,2,6)	0.6094	5
Explanatory Methods		
1. Bivariate Regression	1.7598	10
2. Multivariate regression		
with dummy	1.5899	9
3. Multivariate regression		
with slope and intercept		
dummy	0.4441	1

Conclusion

- In general Extrapolative methods provide accurate result compared to Explanatory Methods.
- But, Multivariate regression with slope and intercept dummy provided highest accurate result followed by Naïve method.
- Every Method used here are efficient to be used in forecasting as MAPE % is lower than 2%. Relative accuracy can be observed from rank column for these models used.

^{*}Note: Calculations in excel and Results of SPSS are attached with the same name.