UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

EE40 Summer 09

		MIDTERM EXAMI Time allotted: 90		
		Time unotice. 70	minutes	
NAME: _ (print)	Last	First		
STUDENT	T ID #:			
DISCUSSION SECTION:		1		
		Day / Tim	ne e	
LAB SECTION:		1		
		Days / Tin	ne	
 Cl S_I Cl Cs 	HOW YOUR WORK. Partial learly mark (BOX or UNDER	ELINE) your answers. nenever appropriate. Po are allowed ONE 8.5" x		er.
	SCORE:	1/15 2/20 3/24 4/20		
		5/16	TOTAL:/ 95	

Problem 1 [15 points]: Circuit Basics

- a) Multiple Choice Questions. Select only ONE choice. No credit will be given to multiple answers. [5 pts each]
- 1) What is the current in I_1 ?
- a) 3 A
- b) 6 A
- c) 9 A
- d) 12 A

- 2) Which element is absorbing power?
- a) #1
- b) #2

- 3) If $V_1 = 2 \text{ V}$, $V_2 = -3 \text{ V}$, $V_3 = 5 \text{ V}$, $V_4 = 5 \text{ V}$, what is V_5 ?
- a) 8 V
- b) 2 V
- c) -8 V
- d) -2 V

Problem 2 [20 points]: Circuit Basics

1) Consider the circuit below:

a) Write a KCL expression for node a. Be sure to label any new variables you create on the circuit diagram above. [5 pts]

b) Write a KCL expression for node b. Be sure to label any new variables you create on the circuit diagram above. [5 pts]

c) What is R_{TH} between nodes c and d? [5 pts]

2.) Draw the equivalent circuit model of an op amp in the linear range: [5 pts] Be sure to label all the elements.

<u>Problem 3</u> [24 points]: Maximum Power Transfer Consider the circuit below:

a.) Find the Thévenin equivalent between a and b [12 pts]

For parts (b) to (d), please use the values $V_{TH} = 5 \text{ V}$ and $R_{TH} = 1 \text{k}\Omega$ INSTEAD of the values you found in part (a).				
b.) Find the Norton equivalent between a and b [6 pts]				
c.) Based on your answer in part (b), find the optimal R_L such that the power delivered to R_L is maximized. [3 pts]				
d.) Based on your answer to part (c), what power is dissipated by R_L ? [3 pts]				

Problem 4 [20 points]: Op Amp Circuit

Consider the circuit below. Assume that both op-amps are ideal.

a) Write the KCL expression at the non-inverting input of op-amp #1. Be sure to label any new variables you create on the circuit diagram above. [8 pts]

b) Find the expression for the overall gain, $G = v_{o,2}/v_s$ in terms of the listed parameters. [12 pts]

<u>Problem 5</u> [16 points]: EE Technology and Circuit Basics True or False Questions. Select only ONE answer. [2 pts each]

T	F	Moore's Law describes the phenomenon where the number of transistors on a computer chip doubles every 1.5 to 2 years.
T	F	The state-of-the-art solid-state transistor has dimensions on the order of 450 μ m.
T	F	The maximum power that a solar cell can deliver in practice can be determined by i_{sc} x v_{oc} .
T	F	A good voltage source should have a small series resistance.
Т	F	Any linear circuit can be reduced to an equivalent circuit comprising a voltage source with a series resistance.
T	F	The equivalent circuit from the previous question is called a Norton equivalent
T	F	A Wheatstone bridge is a circuit that can be used to measure change in resistance of a resistive sensor.
T	F	Multisim is a circuit simulator based on SPICE: Simulation Program with Integrated Circuit Emphasis.