2022-Jun-28 Shift-2

AI24BTECH11003 - Badde Vijaya Sreyas

1) Let $R_1 = \{(a, b) \in N \times N : |a - b| \le 13\}$ and $R_2 = \{(a, b) \in N \times N : |a - b| \ne 13\}$. Then

a) Both R_1 and R_2 are equivalence relacity or R_1 is an equivalence relation but R_2 is

b) Neither R_1 nor R_2 is an equivalence d) R_2 is an equivalence relation but R_1 is

2) Let f(x) be a quadratic polynomial such that f(-2) + f(3) = 0. If one of the roots of

3) The number of ways to distribute 30 identical candies among four children C_1 , C_2 , C_3 and C_4 so that C_2 receives at least four and at most 7 candies, C_3 receives at least 2

4) The term independent of x in the expression of $(1 - x^2 + 3x^3)(\frac{5}{2}x^3 - \frac{1}{5x^2})^1$ 1, $x \ne 0$ is

f(x) = 0 is -1, then the sum of the roots of f(x) = 0 is equal to:

b) $\frac{7}{2}$

b) 615

b) $\frac{33}{200}$

and at most 6 candies, is equal to:

not

c) $\frac{13}{2}$

c) 510

c) $\frac{39}{200}$

d) $\frac{14}{3}$

d) 430

d) $\frac{11}{50}$

on N:

a) $\frac{11}{3}$

a) 205

a) $\frac{7}{40}$

tions

relation

5) If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to the last mean is 1:7 and $a + n = 33$, then the value of n is								
a)	21	b) 22	c) 23	d) 24			
6) I	Let $f, g : R \to R$	be functions define	d by $f(x) = \begin{cases} $	$\begin{bmatrix} [x] & \vdots \\ 1-x & \vdots \end{bmatrix}$	$ \begin{array}{c} x < 0 \\ x \ge 0 \end{array} \text{and} g $	(x) =		
$\begin{cases} e^x - x & x < 0 \\ (x - 1)^2 - 1 & x \ge 0 \end{cases}$ where $[x]$ denotes the greatest integer less than or equal to x . Then, the function $f \circ g$ is discontinuous at exactly:								
a)	one point	b) two points	c) three point	s d) four points			
7) Let $f: R \to R$ be a differentiable function such that $f\left(\frac{\pi}{4}\right) = \sqrt{2}$, $f\left(\frac{\pi}{2}\right) = 0$ and $f'\left(\frac{\pi}{2}\right) = 1$ and let $g(x) = \int_x^{\frac{\pi}{4}} (f'(t) \sec t + \tan t \sec t f(t)) dt$ for $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right)$. Then $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x)$ is equal to								

a) 2	0) 3	C) 4	u) –3					
8) Let $f: R \to R$ be a continuous function satisfying $f(x) + f(x+k) = n$, for all $x \in R$ where $k > 0$ and n is a positive integer. If $I_1 = \int_0^{4nk} f(x) dx$ and $I_2 = \int_{-k}^{3k} f(x) dx$, then								
a) $I_1 + 2I_2 = 4nk$	b) $I_1 + 2I_2 = 2nk$	c) $I_1 + nI_2 = 4n^2k$	d) $I_1 + nI_2 = 6n^2k$					
9) The area of the bounded region enclosed by the curve $y = 3 - \left x - \frac{1}{2} \right - \left x + 1 \right $ and the x-axis is								
a) $\frac{9}{4}$	b) $\frac{45}{16}$	c) $\frac{27}{8}$	d) $\frac{63}{16}$					
10) Let $x = x(y)$ be the solution of the differential equation $2ye^{\frac{x}{y^2}}dx + \left(y^2 - 4xe^{\frac{x}{y^2}}\right)dy = 0$ such that $x(1) = 0$. Then, $x(e)$ is equal to								
a) $e \log_e(2)$	b) $e^2 \log_e(2)$	c) $-e \log_e(2)$	d) $-e^2 \log_e(2)$					
11) Let the slope of the tangent to a curve $y = f(x)$ at (x, y) be given by $s \tan(\cos x - y)$. If the curve passes through the point $\left(\frac{\pi}{4}, 0\right)$, then the value of $\int_0^{\frac{\pi}{2}} y dx$ is equal to								
a) $\left(2 - \sqrt{2}\right) + \frac{\pi}{\sqrt{2}}$	b) $2 - \frac{\pi}{\sqrt{2}}$	c) $\left(2 + \sqrt{2}\right) + \frac{\pi}{\sqrt{2}}$	d) $2 + \frac{\pi}{\sqrt{2}}$					
12) Let a triangle be bounded by the lines $L_1: 2x + 5y = 10$; $L_2: -4x + 3y = 12$ and the line L_3 , which passes through the point P(2, 3), intersect L_2 at A and L_1 at B. If the point P divides the line-segment AB, internally in the ratio 1: 3, then the area of the triangle is equal to								
a) $\frac{110}{13}$	b) $\frac{110}{13}$	c) $\frac{110}{13}$	d) $\frac{110}{13}$					

13) Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of latus rectum of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Let e' and l' respectively the eccentricity and length of latus rectum of its conjugate hyperbola. If $e^2 = \frac{11}{14}l$ and $(e')^2 = \frac{11}{8}l'$, then the value of 77a + 44b is equal to

a) 100

0) 2

b) 110

c) 120

d) 130

14) Let $\overrightarrow{a} = \alpha \hat{i} + 2\hat{j} - \hat{k}$ and $\overrightarrow{b} = -2\hat{i} + \alpha \hat{j} + \hat{k}$, where $\alpha \in R$. If the area of the parallelogram whose adjacent sides are represented by the vectors \overrightarrow{a} and \overrightarrow{b} is $\sqrt{15(\alpha^2 + 4)}$, then the value of $2|\overrightarrow{a}|^2 + (\overrightarrow{a} \cdot \overrightarrow{b})|\overrightarrow{b}|^2$ is equal to

a) 10

b) 7

c) 9

d) 14

15) If vertex of a parabola is (2, -1) and the equation of its directrix is 4x - 3y = 21, then the length of its latus rectum is

d) 16