**2022 PIDICON** 

개인정보 기명·익명처리 기술경진대회

대회접수 | 2022. 9.13(화) ~ 10.6(목) 16:00 목라인

예선 2022. 10.14(금) 온라인

기술경연 2022. 11.8(화)~ 11.9(수) 온라인 본선

발표평가 2022. 11.12(토) 오프라인















### 개인정보 가명·익명처리 기술 경진대회

### CONTENTS

01 대회개요

04 시상내역

02 참가방법

05 경연방식

03 주요일정

06 평가주안점









### 대회개요

- 대 회 명 2022 개인정보 가명·익명 기술경진 대회
- 주최/주관 과학기술정보통신부/한국인터넷진흥원
- 운 영 기 관 ㈜컬처메이커스
- 일정/장소 2022년 9월 13일(화) ~ 11월 16일(수)
- 목 적 안전한 데이터 활용을 위한 가명·익명처리 기술 발굴 및 저변확대
- 참 가 대 상 대한민국 국민 누구나 참가 가능(학생부/일반부) \*개인 또는 팀(4인 이하) 형식의 참여







## 참가방법

#### 접수방법







#### 가명정보.kr

대회 홈페이지 접속

2022 개인정보 가명·익명처리 기술경진대회(PIDICON) 클릭

\* 데이터3법 2주년 기념이벤트도 참가 해 보세요!

#### pidicon.kr

PIDICON 접속

대회소개, 대회일정, 신청하기, 시상내역 및 관련 일정을 확인

#### 운영요강 확인 ▶ 지원서 제출하기

대회신청

경진대회 운영요강 확인, 참가자격을 증명할 수 있는 서류를 준비해서 지원서 제출하기

## 참가방법

#### 운영절차



▷ 온라인 접수 : 대회 홈페이지를 통해 팀(개인)정보 등록, 참가자 서약 및 소속증빙서류 제출

▷ 예 선 : 경연일정 및 시간에 맞춘 온라인 기술경연

▷ 본 선 : 경연일정 및 시간에 맞춘 온라인 기술경연 및 오프라인 발표경연

※ 대회 동시 추진에 따른 부문별 중복참가 불가

| 일정              | 내용            | 비고                   |
|-----------------|---------------|----------------------|
| 9/15(목)         | 온라인 사전 설명회    | 경진대회 지표설명 및 사전교육     |
| 9/13(화)~10/6(목) | 온라인 접수        | 16:00 까지 제출          |
| 10/14(금)        | 예선 기술경연(온라인)  | 10:00~22:00          |
| 11/8(화)~11/9(수) | 본선 기술경연(온라인)  | 무박 해커톤 형식            |
| 11/12(토)        | 본선 발표경연(오프라인) | 발표 10분 + 질의 및 평가 15분 |
| 11/16(수)        | 입상자 발표        | 대회 홈페이지 공고           |
| 12/23(금) 예정     | 시상식           | _                    |

#### 참가접수

- ▶ 일시 : '22. 9. 13.(화) ~ 10.5.(수) ~ 16:00 (기한내 접수건에 한해서만 인정)
- ▶ 참가대상 : 대한민국 국민 누구나 참여 가능하며 학생부, 일반부로 구성해서 참가
  - ※ 일반부: 대한민국 국민 누구나 참가 가능
  - ※ 학생부: 청소년, 대학(원)생 및 취업준비생 \*'21년 1월~'22년 2월 수료·졸업)으로 구성된 팀
- ▶ 학생부는 참가접수 유의사항 : 학생 경우 재학증명서 또는 수료·졸업예정 증명서 제출,
  - 취업준비생\*의 경우 건강보험자격득실확인서 제출(미취업 여부 확인 용)
  - \* 취업준비생: '21년 1월~'22년 8월 졸업생의 한해서만 인정됨
- ▶ 일반부 접수 유의사항 : 팀장 소속을 확인할 수 있는 증명서류 제출(재직증명서 등)

참가자격에 대한 증빙서류 제출 必

#### 예선

#### 제공된 재현 데이터셋의 원본정보를 분석하여 익명 데이터셋 생성을 통해 가장 안전하면서도 유용성이 높은 익명 처리 기술경연 (Only 정량지표)

- ▶ 일시 : '22. 10. 14.(금), 10시~22시 (기한내 접수건에 한해서만 인정)
- ▶ 참가대상 : 참가접수 된 정보를 바탕으로 결격사유가 없는 부문별 모든 접수팀\*개인 또는 팀(4인 이하) 형식의 참여
- ▶ 경연시작 시 참가자 신분확인 진행예정 \*신분증 준비 필요
- ▶ 제공문서 및 데이터셋, 경연 진행방식 등을 안내하는 경연지침 자료는 예선 전날 팀구성원들에게 발송
- ▶ 경연시작과 함께 데이터셋 암호를 팀구성원들에게 SMS로 일괄 배포

본선참가팀 안내: '22. 10. 19.(수), 대회 홈페이지 공고

#### 본선

# 제공된 재현 데이터셋의 원본정보를 분석하여 가명 및 익명 데이터셋 생성을 통해가장 안전하면서도 유용성이 높은 가명 및 익명 처리 기술경연 (정성 + 정량지표)

- ▶ 일시 : (기술경연) '22. 11. 8.(화) 10시 ~ 11. 9.(수) 17시 (발표경연) '22. 11. 12.(토)
- ▶ 참가대상 : 예선을 통과한 부문별 본선진출팀
- ▶ 경연시작 시 참가자 신분확인 진행예정 \*신분증 준비 필요(발표경연에도 신분증 지참 필요)
- ▶ 제공문서는 본선 진출팀 발표와 함께 팀구성원들의 메일로 발송되며 데이터셋, 경연 진행방식 등을 안내하는 경연지침 자료는 본선 전날 팀구성원들에게 발송
- ▶ 경연시작과 함께 데이터셋 암호를 팀구성원들에게 SMS로 일괄 배포

수상팀 안내: '22. 11. 16.(수), 대회 홈페이지 공고

# 시상내역

#### 과학기술정보통신부장관상 2점, 한국인터넷진흥원장상 10점 / <u>총 2,800만원 상당 상금시상</u>

|           | 대상(2팀)   | 과학기술정보통신부 장관상 | 500만원 | 부문별 1팀 |
|-----------|----------|---------------|-------|--------|
| 일반부 · 학생부 | 최우수상(2팀) | 한국인터넷진흥원 원장상  | 300만원 | 부문별 1팀 |
| 207 467   | 우수상(2팀)  | 한국인터넷진흥원 원장상  | 200만원 | 부문별 2팀 |
|           | 장려상(2팀)  | 한국인터넷진흥원 원장상  | 100만원 | 부문별 2팀 |

## 경연방식

"안전한 데이터 활용을 위한 가명·익명처리 기술 발굴"

#### 예선

▶ 익명처리 기술경연(정량평가)

(도전주제) A유통사의 유통정보를 이용하여 아래와 같은 목적을 달성하기 위해 필<mark>요한 익명</mark> 처리를 하고자 한다.

(분석목적) 예선 경연 당일 이용환경과 함께 공개

#### 본선

▶ 가명·익명처리 기술경연(정량+정성평가)

(도전주제) A공공기관의 노동분야 관련 정보를 B기관에서 제공받아 아래와 같은 분석목적을 달성하기 위해 필요한 가명처리를 하고자 한다.

(분석목적) 본선 경연 당일 이용환경과 함께 공개

2022 PIDICON 개인정보 가명·익명처리 기술 경진대회

#### **▶ 가명·익명 처리 기술 및 예시(2022** 가명정보처리 가이드라인 참조)

|     | 분류                   | 기술              | 세부기술                                           | 설명                                                                                                                                  |
|-----|----------------------|-----------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|     |                      |                 | 삭제(Suppression)                                | ㅇ 원본정보에서 개인정보를 단순 삭제                                                                                                                |
|     |                      | 삭제기술            | 부분삭제(Partial suppression)                      | ㅇ 개인정보 전체를 삭제하는 방식이 아니라 일부를 삭제                                                                                                      |
|     | 개인정보 삭제              |                 | 행 항목 삭제(Record suppression)                    | ㅇ 다른 정보와 뚜렷하게 구별되는 행 항목을 삭제                                                                                                         |
|     |                      |                 | 로컬 삭제(Local suppression)                       | ㅇ 특이정보를 해당 행 항목에서 삭제                                                                                                                |
|     |                      |                 | 마스킹(Masking)                                   | ㅇ 특정 항목의 일부 또는 전부를 공백 또는 문자('*', '_'등이나 전각 기호)로 대체                                                                                  |
|     |                      |                 | 총계처리(Aggregation)                              | ㅇ 평균값, 최대값, 최소값, 최빈값, 중간값 등으로 처리                                                                                                    |
|     |                      | 통계도구            | 부분총계(Micro aggregation)                        | ㅇ 정보집합물 내 하나 또는 그 이상의 행 항목에 해당하는 특정 열 항목을 총계처리. 즉, 다른 정보에 비하여 오차 범위<br>가 큰 항목을 평균값 등으로 대체                                           |
|     |                      | 일반화<br>(범주화) 기술 | 일반 라운딩(Rounding)                               | ㅇ 올림, 내림, 반올림 등의 기준을 적용하여 집계 처리하는 방법으로, 일반적으로 세세한 정보보다는 전체 통계정보가<br>필요한 경우 많이 사용                                                    |
|     |                      |                 | 랜덤 라운딩(Random rounding)                        | ㅇ 수치 데이터를 임의의 수인 자리 수, 실제 수 기준으로 올림(round up) 또는 내림(round down)하는 기법                                                                |
|     | 개인정보 일부 또<br>는 전부 대체 |                 | 제어 라운딩(Controlled rounding)                    | ㅇ 라운딩을 적용하는 경우 값의 변경에 따라 행이나 열의 합이 원본의 행이나 열의 합과 일치하지 않는 단점을 해결하<br>기 위해 행이나 열이 맞지 않는 것을 제어하여 일치시키는 기법                              |
| - 1 |                      |                 | 상하단코딩(Top and bottom coding)                   | o 정규분포의 특성을 가진 데이터에서 양쪽 끝에 치우친 정보는 적은 수의 분포를 가지게 되어 식별성을 가질 수 있음<br>o 이를 해결하기 위해 적은 수의 분포를 가진 양 끝단의 정보를 범주화 등의 기법을 적용하여 식별성을 낮추는 기법 |
|     |                      |                 | 로컬 일반화(Local generalization)                   | ㅇ 전체 정보집합물 중 특정 열 항목(들)에서 특이한 값을 가지거나 분포상 의 특이성으로 인해 식별성이 높아지는 경<br>우 해당 부분만 일반화를 적용하여 식별성을 낮추는 기법                                  |
|     |                      |                 | 범위 방법(Data range)                              | ㅇ 수치 데이터를 임의의 수 기준의 범위(range)로 설정하는 기법으로, 해당 값의 범위 또는 구간(interval)으로 표현                                                             |
|     |                      | _               | 숫자데이터 범주화(Categorization of<br>numeric data)   | ㅇ 숫자로 저장된 정보에 대해 보다 상위의 개념으로 범주화하는 기법                                                                                               |
|     |                      |                 | 문자데이터 범주화(Categorization of<br>character data) | ㅇ 문자로 저장된 정보에 대해 보다 상위의 개념으로 범주화하는 기법                                                                                               |

#### **▶ 가명·익명 처리 기술 및 예시(2022** 가명정보처리 가이드라인 참조)

| 분류                      | 기술         | 세부기술                                                                          | 설명                                                                                                                                                                                                                                                                  |
|-------------------------|------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |            | 양방향 암호화<br>(Two-way encryption)                                               | ㅇ 암호화 및 복호화에 동일 비밀키로 암호화하는 대칭키(Symmetric key) 방식과 공개키와 개인키를 이용하는<br>비대칭키(Asymmetric key) 방식으로 구분                                                                                                                                                                    |
|                         |            | 일방향 암호화 - 암호학적 해시함수<br>(One-way encryption - Cryptogr<br>aphic hash function) | ㅇ 키가 없는 해시함수(MDC, Message Digest Code), 솔트(Salt)가 있는 해시함수,<br>키가 있는 해시함수(MAC, Message Authentication Code)로 구분<br>ㅇ 암호화(해시처리)된 값에 대한 복호화가 불가능하고, 동일한 해시 값과 매핑(mapping)되는 2개의 고유한 서로 다른<br>입력값을 찾는 것이 계산상 불가능하여 충돌 가능성이 매우 적음                                        |
|                         |            |                                                                               | ㅇ 원본정보의 순서와 암호값의 순서가 동일하게 유지되는 암호화 방식<br>ㅇ 암호화된 상태에서도 원본정보의 순서가 유지되어 값들 간의 크기에 대한 비교 분석이 필요한 경우 안전한 분석이 가능                                                                                                                                                          |
| 110174 L                | 암호화        | 형태보존 암호화                                                                      | <ul> <li>원본 정보의 형태와 암호화된 값의 형태가 동일하게 유지되는 암호화 방식</li> <li>원본 정보와 동일한 크기와 구성 형태를 가지기 때문에 일반적인 암호화가 가지고 있는 저장 공간의 스키마 변경 이슈가 없어<br/>저장 공간의 비용 증가를 해결할 수 있음</li> <li>암호화로 인해 발생하는 시스템의 수정이 거의 발생하지 않아 토큰화, 신용카드 번호의 암호화 등에서<br/>기존 시스템의 변경 없이 암호화를 적용할 때 사용</li> </ul> |
| 개인정보<br>일부 또는 전<br>부 대체 | 4          | 동형 암호화<br>(Homomorphic encryption)                                            | ㅇ 암호화된 상태에서의 연산이 가능한 암호화 방법으로 원래의 값을 암호화한 상태로 연산 처리를 하여 다양한 분석에 이용가능                                                                                                                                                                                                |
| <b>+</b> 41/11          |            | 다형성 암호화<br>(Polymorphic encryption)                                           | ㅇ 각 도메인별로 서로 다른 가명정보를 처리할 수 있도록 정보 제공 시 서로 다른 방식의 암호화된 가명처리를 적용함에 따라<br>도메인별로 다른 가명정보를 가지게 됨                                                                                                                                                                        |
|                         |            | 잡음 추가<br>(noise addition)                                                     | ㅇ 개인정보에 임의의 숫자 등 잡음을 추가(더하기 또는 곱하기)하는 방법                                                                                                                                                                                                                            |
|                         | ㅁ자이치       | 군일(시원)<br>(Permutation)                                                       | ㅇ 기존 값을 유지하면서 개인이 식별되지 않도록 데이터를 재배열하는 방법<br>ㅇ 개인정보를 다른 행 항목의 정보와 무작위로 순서를 변경하여 전체정보에 대한 변경 없이 특정 정보가 해당 개인과<br>연결되지 않도록 하는 방법                                                                                                                                       |
|                         | 무작위화<br>기술 | 토큰화<br>(Tokonisation)                                                         | ㅇ 개인을 식별할 수 있는 정보를 토큰으로 변환 후 대체함으로써 개인정보를 직접 사용하여 발생하는 식별 위험을 제거하여<br>개인정보를 보호하는 기술<br>ㅇ 토큰 생성 시 적용하는 기술은 의사난수생성 기법이나 암호화 기법을 주로 사용                                                                                                                                 |
|                         |            | (의사)난수생성기<br>((P)RNG, (Pseudo) Random Num<br>ber Generator)                   | ㅇ 주어진 입력값에 대해 예측이 불가능하고 패턴이 없는 값을 생성하는 메커니즘으로 임의의 숫자를 개인정보에 할당                                                                                                                                                                                                      |

#### **가명·익명 처리 기술 및 예시(2022** 가명정보처리 가이드라인 참조)

| 4 | 분류       | 기술   | 세부기술                                   | 설명                                                                                                                                                                                                                                                                     |
|---|----------|------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 가명·익명처리를 | 기타기술 | (Sampling)<br>해부화<br>(Anatomization)   | <ul> <li>데이터 주체별로 전체 모집단이 아닌 표본에 대해 무작위 레코드 추출 등의 기법을 통해 모집단의 일부를 분석하여 전체에 대한 분석을 대신하는 기법</li> <li>기존 하나의 데이터셋(테이블)을 식별성이 있는 정보집합물과 식별성이 없는 정보집합물로 구성된 2개의 데이터셋으로 분리하는 기술</li> <li>원본과 최대한 유사한 통계적 성질을 보이는 가상의 데이터를 생성하기 위해 개인정보의 특성을 분석하여 새로운 데이터를 생성하는 기법</li> </ul> |
|   |          |      | 동형비밀분산<br>(Homomorphic secret sharing) | ㅇ 식별자 또는 기타 속성정보를 메시지 공유 알고리즘에 의해 생성된 두 개 이상의 쉐어(share)*로 대체*기밀사항을<br>재구성하는데 사용할 수 있는 하위 집합                                                                                                                                                                            |

#### 경진대회 유용성 평가지표

(\* U6~U8 지표의 경우 프라이버시 보호모델인 k-익명성 적용시 해당)

| 지표명                                                                        | 지표 설명                                                                                          | 순위   |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------|
| U3 : CS<br>(Cosine Similarity)                                             | ○코사인 유사도로 원본과 비식별 동일 속성집합 간 벡터의 스칼라곱과 크기                                                       | 내림차순 |
| U2 : MC<br>(Mean Correlation)                                              | ○지정된 2개 이상의 특정 속성쌍들에 대한 피어슨 상관계수에 대한 차이<br>(평균절대오차)                                            | 내림차순 |
| U3 : MGD_CA<br>(Mean Generalized<br>Difference_Character Attribute)        | ○카테고리형 트리 구조를 갖는 문자(혹은 이들의 코드로 표기된) 속성집합들 간의<br>일반화 정도 차이(들에 대한 평균으로 계산)                       | 내림차순 |
| U4 : NED_SSE<br>(Normalized Euclidian<br>Distance_Sum of Squared Errors)   | ○정규화된 유클리디안 거리(NED, Normalized Euclidian Distance)를<br>이용한 제곱합오차(SSE, Sum of Squared Errors)   | 오름차순 |
| U5 : SED_SSE<br>(Standardized Euclidian<br>Distance_Sum of Squared Errors) | ○표준화된 유클리디안 거리(SED, Standardized Euclidian Distance)를<br>이용한 제곱합오차(SSE, Sum of Squared Errors) | 오름차순 |
| U6* : MD_ECM (Mean Distribution Equivalence Class Metric)                  | ○동질집합별 속성들에 대한 평균 분포도(분산)                                                                      | 오름차순 |
| U7*: NA_ECSM (Normalized Average Equivalence Class Size Metric)            | ○정규화된 동질집합들의 평균 크기                                                                             | 오름차순 |
| U8* : NUEM (Non-uniform Entropy Metric)                                    | ○비균일 엔트로피 방법을 이용한 k-익명성 프라이버시 보호 모델에서의 정보손실 측도                                                 | 오름차순 |
| U9 : AR (Anonymisation Ratio)                                              | ○원본 데이터셋 대비 익명처리된 데이터셋의 정보량                                                                    | 내림차순 |

#### 경진대회 평가기준

|  | 구분 | ,        | 지표  | 평가기준(주관적 정성, 객관적 정량평가)                                                    | 배점  | 점수                            | 종합점수               | 비고  | 평가 기초자료                                 |    |
|--|----|----------|-----|---------------------------------------------------------------------------|-----|-------------------------------|--------------------|-----|-----------------------------------------|----|
|  | 예선 | 익명<br>처리 | 안전성 | 익명정보의 안전성 계량화                                                             | 100 | 50%                           | 100%               | 정량  | 익명정보<br>익명처리 결과보고서                      |    |
|  |    | 시니       | 유용성 | 익명정보의 유용성 계량화(U1~U9 9개 지표 반영)                                             | 100 | 50%                           |                    |     | 익명정보                                    |    |
|  |    | 가명<br>처리 | 안전성 | 가명처리 시 가명정보 자체만으로<br>특정 개인을 알아볼 수 있는지 여부 등 평가                             | O/X |                               | 적격 여부 판<br>(심사위원 정 |     | 가명정보, 식별위험성<br>검토결과보고서, 항목별<br>가명처리 계획표 |    |
|  | AL | 지디       | 유용성 | 목적달성가능성 계량화<br>(가명화율 포함, T1~T3 3개 지표 반영)                                  | 100 | 25%                           | 25%                | 정량  | 가명정보                                    |    |
|  |    |          | 안전성 | 시간 · 비용 · 기술 등을 합리적으로 고려할 때 다른<br>정보를 사용하여도 더 이상 개인을 알아볼 수 없는지<br>여부 등 평가 | O/X |                               | 적격 여부 판<br>(심사위원 정 | _   | 익명정보<br>항목별 익명처리 계획표                    |    |
|  |    | 익명<br>처리 |     |                                                                           | 유용성 | 익명정보의 유용성 계량화(U1~U9 9개 지표 반영) | 100                | 25% | 25%                                     | 정량 |
|  |    |          | 여리  | 가명·익명 조치 기법 선정 이유 및 타당성                                                   | 20  | 10%                           |                    |     |                                         |    |
|  |    |          | 발표  | 속성별 가명·익명 조치 적용 수준 및 방법의 우수성                                              | 50  | 25%                           | 50%                | 정성  | 발표자료                                    |    |
|  |    |          |     | 가명·익명 조치 적용 기술의 특징 및 장점, 차별성                                              | 30  | 15%                           |                    |     |                                         |    |

유통데이터



※ A는 완전 재현데이터이며, 제출물은 총 2종(익명정보 A', 익명처리결과보고서)임

#### 대회예선

▶ 익명처리 기술경연

(제공문서) 대회안내서(예선용), 익명처리 결과 보고서 양식

(제공데이터셋) 원본 데이터셋 1종(원본 행 일련번호 포함)

(제출문서) 익명처리된 데이터셋 1종(원본 행 일련번호 포함), 익명처리 결과 보고서

#### 공공분야(노동)데이터

#### [대회 본선] 가명·익명처리



- ※ A는 완전재현데이터이며, 제출물은 총 6종(가명정보 A', 식별 위험성 검토결과보고서, 항목별 가명처리 계획표, 익명정보 A'', 항목별 익명처리 계획표, 발표자료(가명 및 익명 포함))임
- ※ 식별 위험성 검토 결과보고서, 항목별 가명(익명)처리 계획표는 2022년 4월 개인정보보호위원회에서 발행한 '가명정보 처리 가이드라인 개정본' 참조

#### 대 회 본 선

▶ 가명·익명처리 기술경연

(제공문서) 대회 안내서(본선용), 가명처리 식별 위험성 검토 결과보고서 양식, 항목별 가명처리 계획표 양식, 항목별 익명처리 계획표 양식, 발표자료 양식

(제공데이터셋) 원본 데이터셋 1종(원본 행 일련번호 포함)

(제출문서) (가명) 가명처리 식별 위험성 결과보고서, 항목별 가명처리 계획표,

가명처리된 데이터셋 1종(원본 행 일련번호 포함),

(익명) 항목별 익명처리 계획표, 익명처리된 데이터셋 1종(원본 행 일련번호 포함)

(가명+익명 통합) 발표자료 1종



**2022 PIDICON** 

# 개인정보기명·의명처리 기술경진(地)

■ https://가명정보.kr ■ E-Mail. pidicon@cmcom.kr ■ Tel. 070-4849-2062











