(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 March 2001 (08.03.2001)

PCT

(10) International Publication Number WO 01/16699 A1

(51) International Patent Classification7:

G06F 7/58

- (21) International Application Number: PCT/US00/23949
- (22) International Filing Date: 30 August 2000 (30.08.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/386,600

31 August 1999 (31.08.1999) US

- (71) Applicant: QUALCOMM INCORPORATED [US/US]; 5775 Morehouse Drive, San Diego, CA 92121-1714 (US).
- (72) Inventors: LUPIN, Edward, D.; 7745 Salix Place, San Diego, CA 92129 (US). SINDHUSHAYANA, Nagabhushana, T.; 10615 Dabney Drive, No. 19, San Diego, CA 92126 (US).
- (74) Agents: OGROD, Gregory, D. et al.; Qualcomm Incorporated, 5775 Morehouse Drive, San Diego, CA 92121-1714 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: A METHOD AND APPARATUS FOR GENERATING MULTIPLE BITS OF A PSEUDONOISE SEQUENCE WITH EACH CLOCK PULSE BY COMPUTING THE BITS IN PARALLEL

(57) Abstract: A novel method and apparatus for generating PN sequences with an arbitrary number of bits, where the number of bits is provided in parallel with each clock pulse is described. This allows the sequences to be generated at high speed when needed, and allows parallel processing in the acquisition and demodulation processes. In the invention, the initial values of states are loaded into registers of a parallel PN generator, which immediately generates the next n bits of the PN sequence, where n is an arbitrary number dependent on performance required. Then, a first sub-part of the PN generator (406) of the present invention receives the present state of the PN generator (406) and outputs the state of the PN generator (406)n bits in the future.

7 001/16699 A

WO 01/16699 PCT/US00/23949

A METHOD AND APPARATUS FOR GENERATING MULTIPLE BITS OF A PSEUDONOISE SEQUENCE WITH EACH CLOCK PULSE BY COMPUTING THE BITS IN PARALLEL

BACKGROUND OF THE INVENTION

I. Field of the Invention

5

10

15

20

25

30

35

The invention presented relates to pseudonoise (PN) sequence generators. More particularly, the present invention relates to a method and an apparatus for generating PN sequence with each clock pulse by computing their bits in parallel.

II. Description of the Related Art

The Telecommunications Industry Association has standardized a method for code division multiple access (CDMA) communications in the IS-95 family of interim standards, entitled "Mobile Station-Base Station Compatibility Standard for Dual Mode Wideband Spread Spectrum Cellular System." In addition, the Telecommunications Industry Association in its submission to the International Telecommunications Union, entitled "The cdma2000 ITU-R RTT Candidate Submission," describes proposed CDMA system that would be able to support higher data rates and higher capacity. Both in the IS-95 standard and in the cdma2000 proposal, the transmitted waveform is modulated in accordance with a pseudonoise spreading sequence.

The use of a pseudonoise sequence with appropriate autocorrelation characteristics is essential to the operation of a CDMA system in which multipath components are present. The generation and employment of pseudonoise sequences are described in detail in U.S. Patent No. 4,901,307, entitled "SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS," assigned to the assignee of the present invention, and incorporated by reference herein. The use of CDMA techniques in a multiple access communication system is further disclosed in U.S. Patent No. 5,103,459, entitled "SYSTEM AND METHOD FOR **GENERATING** SIGNAL WAVEFORMS IN Α CDMA CELLULAR TELEPHONE SYSTEM," assigned to the assignee of the present invention, and incorporated by reference herein.

The aforementioned U.S. Patents Nos. 4,901,307 and 5,103,459 describe the use of a pilot signal used for acquisition. The use of a pilot signal enables

10

15

20

25

the remote user to acquire local base station communication system in a timely manner. The remote user gets synchronization information and relative signal power information from the received pilot signal. U.S. Patents Nos. 5,644,591 and 5,805,648, both entitled "METHOD AND APPARATUS FOR PERFORMING SEARCH ACQUISITION IN A CDMA COMMUNICATION SYSTEM," describe a novel and improved method and apparatus that reduces the remote user forward link acquisition time. Both patents are assigned to the assignee of the present invention and are incorporated by reference herein.

Space or path diversity is obtained by providing multiple signal paths through simultaneous links from a remote user through two or more cell-sites. Furthermore, path diversity may be obtained by exploiting the multipath environment through spread spectrum processing by allowing a signal arriving with different propagation delays to be received and processed separately. Examples of path diversity are illustrated in U.S. Patent No. 5,101,501, entitled "SOFT HANDOFF IN A CDMA CELLULAR TELEPHONE SYSTEM," and U.S. Patent No. 5,109,390, entitled "DIVERSITY RECEIVER IN A CDMA CELLULAR TELEPHONE SYSTEM," both assigned to the assignee of the present invention, and incorporated by reference herein.

In CDMA communications systems, a pilot signal is transmitted that allows a receiver to coherently demodulate the received signal. Within demodulator of such receivers is a channel estimate generator, which estimates the channel characteristics based on the pilot signal transmitted with values known to both the transmitter and the receiver. The pilot signal is demodulated and the phase ambiguities in the received signal are resolved by taking the dot product of the received signal and the pilot signal channel estimate. An exemplary embodiment of a circuit for performing the dot product operation is disclosed in U.S. Patent No. 5,506,865, entitled "PILOT CARRIER DOT PRODUCT CIRCUIT," assigned to the assignee of the present invention, and incorporated by reference herein.

30

35

SUMMARY OF THE INVENTION

The invention presented is a novel method and apparatus for generating a PN sequences with an arbitrary number of bits, where the number of bits is provided in parallel with each clock pulse. This allows the sequences to be generated at high speed when needed, and allows parallel processing in the acquisition and demodulation processes. The invention describes in detail generation of PN sequences as standardized for the IS-95 communications systems. As proposed in the IS-95 standards, the pseudonoise spreading

10

15

20

sequences are maximal length sequences that are capable of being generated using linear feedback shift-registers (LSFRs). Using a linear feedback shift-register, the PN sequences are computed one bit with each clock pulse.

In the invention, the initial PN states are loaded into registers of a parallel PN generator, which immediately generates the next n bits of the PN sequence, where n is an arbitrary number dependent on performance required. In addition, the present invention provides a method of determining the register states of the parallel PN generator an arbitrary number of cycles in the future. Thus, the present invention takes the present state of the registers of the PN generator and outputs the next n bits of the generator. In addition, the PN generator of the present invention receives the present state of the PN generator and outputs the state of the PN generator n bits in the future. In this fashion, the entire PN sequence can be continuously generated.

It will be understood by one skilled in the art that although the present invention is directed toward the generation of a psuedonoise sequences compliant with systems standardized by the Telecommunications Industry Association, the teachings of the present invention are equally applicable to the generation of other psuedonoise sequences such as, the orthogonal Gold code sequences proposed for use in the W-CDMA, proposals to the International Telecommunications Industry Association, proposals by the European Telecommunications Standards Institute (ETSI), and the Association of Radio Industries and Business (ARIB).

BRIEF DESCRIPTION OF THE DRAWINGS

25

The features, objects, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:

- FIG. 1 illustrates a prior art embodiment of pseudonoise (PN) generators employing linear feedback shift-registers;
- FIG. 2 depicts prior art of pseudonoise generators employed to generate parallel groups of PN sequence;
- FIG. 3 is a block diagram illustrating the generalized operation of the present invention apparatus for generating the PN sequences;
 - FIG. 4 shows one embodiment of the invention;
 - **FIG. 5** is a simplified block diagram of an exemplary receiver chain using PN generators in accordance with the invention; and

FIG. 6 is a block diagram of a part of an exemplary single demodulation chain using PN generators in accordance with the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

5

10

15

20

25

FIG. 1a illustrates a traditional apparatus employing a linear feedback shift-register for generating pseudonoise sequences. The generalized shift-register 100 from FIG. 1a comprises memory elements 102a, 102b, . . , 102n, holding state values $S_0(n)$, $S_1(n)$, . . ., $S_N(n)$. The last value S_N constitutes an output of the shift-register, and also a feed-back to modulo-2 adders 104a, . . ., 104m. Before the value S_N is provided to a particular modulo-2 adder 104a, . . ., 104m, it is multiplied by an associated coefficient g_0 , g_1 , . . , g_N . A coefficient will take a value of '1' if a feedback is desired, and a value of '0' otherwise.

Short-code pseudonoise sequences are used to modulate and demodulate the in-phase (I) and quadrature-phase (Q) components of the CDMA waveform. The I and Q short-code PN sequences are periodic with a period of $2^{15}-1$ with a bit stuffed at the preamble of sequence to make the sequence periodic with an even factor of 2.

The short-code PN₁ sequence satisfies a linear recursion specified by the following generator polynomial (P₁):

$$P_{I}(x) = x^{15} + x^{13} + x^{9} + x^{8} + x^{7} + x^{5} + 1.$$
 (1)

FIG. 1.b depicts a shift-register implementation for generating the PN₁ sequence. Note that in accordance with FIG. 1a, only the '1' valued coefficients g₁₅, g₁₃, g₉, g₈, g₇, g₅, g₀, are present.

The short-code PN_Q sequence satisfies a linear recursion specified by the following generator polynomial (P_Q):

30
$$P_O(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^4 + x^3 + 1.$$
 (2)

FIG. 1.c depicts a shift-register implementation for generating the PN_Q sequence.

35

FIG. 1c shows a shift-register implementation of a long-code PN generator with a mask. The long-code is periodic, with period $2^{42} - 1$ chips and satisfies a linear recursion specified by the following characteristic polynomial (P):

$$P(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{10} + x^{7} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1$$
(3)

The mask used for the long-code is channel type dependent, and can be found along with further details about the implementation of the PN generators in a document entitled "Physical Layer Standard for cdma2000 Spread Spectrum Systems."

It is sometimes desired to obtain an output of a shift-register as a parallel combination of output state values $S_N(n)$, $S_N(n+1)$, ..., $S_N(n+K)$. FIG. 2 shows a block diagram of a parallel PN generator 200 according to the prior art. The PN generator comprises a shift-register 100 in accordance with a description for FIG. 1a, followed by a serial-to-parallel converter 202. The PN generator outputs K values of $S_N(n)$ for shift instances n, n+1, ..., n+K. However, there are K clock cycles required for generating the set of K output values. In the prior art understanding, in order to generate the parallel PN generator outputs, the outputs of the linear feedback shift-registers illustrated in FIGS. 1a and 1b are provided to the serial to parallel converter.

FIG. 3 shows a block diagram of inventive alternative to the implementation of FIG. 2. In general, a relationship between values of shift register in a state (n) and next state (n+1) can be expressed as a system of equations:

 $S_N(n+1) = g_{11} \cdot S_N(n) + \dots + g_{1N-1} \cdot S_2(n) + g_{1N} \cdot S_1(n)$ (4a)

 $S_{2}(n+1) = g_{N-11} \cdot S_{N}(n) + \dots + g_{N-1N-1} \cdot S_{2}(n) + g_{2N} \cdot S_{1}(n)$ $S_{1}(n+1) = g_{N1} \cdot S_{N}(n) + \dots + g_{NN-1} \cdot S_{2N-1}(n) + g_{NN} \cdot S_{1}(n)$ (4n-1)
(4n)

Such a system of equations can be re-written in a matrix form as:

$$S(n+1)=G^*S(n), \tag{5}$$

where:

S(n+1) is column matrix containing the state values of the state after a shift,

35

20

25

30

35

G is a coefficient matrix comprising the g values indicated in equations 4a-4n, and

S(n) is a column vector of present states.

Once a state after a shift has been determined, the next state can be calculated using equation (5):

$$S(n+2) = G^*S(n+1). (6)$$

10 Substituting equation (5) into equation (10) then results into an equation:

$$S(n+2) = G^*G^*S(n) = G^{2*}S(n). \tag{7}$$

Further generalization of equation (11) yields an equation:

$$S(n+k) = G^{k*}S(n), \tag{8}$$

where k is a number expressing a state, in which an output is to be computed.

Applying these principles to **FIG. 1**, it is obvious that a value of a certain register in next state $S_l(n+1)$ is a function of a value of the preceding register in current state $S_{l-1}(n)$, and — if a feedback exists — a value of the output register in current state $S_{N}(n)$. Consequently, the system of equations (4) will have at most two non-zero coefficients in each of the equations (4a) through (4n).

As an example, the G matrix for a PN_1 shift-register in accordance with **FIG. 1b** will be developed as follows:

Observing, that there is a connection between stages S_{15} and S_{14} and no feedback from stage S_{15} , it follows that the next state value of S_{15} is equal to previous state value of S_{14} . Thus, equation (4a) will take a form:

$$S_{15}(n+1) = 0 \cdot S_{15}(n) + 1 \cdot S_{14}(n)$$
 (9)

Consequently, the first row of matrix G will contain a non-zero element only in a position g_{12} :

$$G_1 = [010000000000000] \tag{10}$$

Equivalent relation will hold for all stages an input of which is an output of another stage.

Turning to the next stage S₁₄, one can observe that its next state value is equal to previous state value of stage S₁₃ summed with a previous state value of stage S₁₅. Thus, the equation (4b) will take a form:

5

$$S_{14}(n+1) = 1 \cdot S_{15}(n) + 1 \cdot S_{13}(n) \tag{11}$$

Consequently, the second row of matrix G will contain a non-zero (unity) element in a position g21 and g23:

10

$$G_2 = [10100000000000] \tag{12}$$

Equivalent relation will hold between all stages an input of which is a sum of outputs of two stages.

15

20

Reference back to FIG. 3 will expand on these concepts. State memory 212 is initialized to an initial set of states $S_1(n)$, $S_2(n)$, ..., $S_N(n)$. These states are then provided to an output generator 214, and a next state generator 216. Next state generator 216 contains a coefficient matrix G_{NS} formed in accordance with the principles outlined in description of equations (4) and (5). In the exemplary embodiment, the generator polynomial has relatively few feedback taps and, consequently, the resultant matrix G is sparse. This sparseness permits a relatively simple implementation of the matrix operation to be performed using fixed Boolean operator programmed into a field programmable gate array or designed into an application specific integrated circuit (ASIC).

Next state generator 216 accepts the set of states $S_1(n)$, $S_2(n)$, ..., $S_N(n)$ from memory 212 to compute a set of new states $S_1(n+K)$, $S_2(n+K)$, ..., $S_N(n+K)$ in accordance with equation (12), and provides the set of new states back to the state memory 212.

.30

25

The output generator 214 performs a matrix operation on the current states in accordance with a matrix G_{os} formed as follows. As explained in description to FIG. 1a, the output of a shift-register is the state $S_N(n)$. From equation (8) follows that:

$$S(n+0) = G^{0*}S(n+0)$$

 $S(n+0) = G^{0*}S(n),$ (13)

where G^0 is a matrix having non-zero elements only in the main diagonal. Inspecting the system of equations (4), it is obvious that value $S_N(n)$ can be calculated using equation (4a). This equation is equivalent to forming a row

matrix G_R by taking the first row of a matrix G_{NS}^0 and multiplying it by a column matrix of states S formed from values $S_1(n)$, $S_2(n)$, . . ., $S_N(n)$. Therefore, the first row of a matrix G_{NS} becomes the last row of matrix G_{OS} . Similarly, from equation (8), the value $S_N(n+1)$ can be calculated by forming a row matrix G_R by taking the first row of a matrix G_{NS}^2 , and multiplying it by a column matrix of states S. Thus, the last row of a matrix G_{NS} becomes the last but one row of matrix G_{OS} . This process of forming the matrix G_{OS} continues until all K rows are filled. In mathematical terms:

$$\mathbf{10} \qquad G_{OS} = \begin{bmatrix} G_{NSL}^{K} \\ \vdots \\ G_{NSL}^{1} \\ G_{NSL}^{0} \end{bmatrix}, \tag{14}$$

where G_{NSL}^{k} is last row of matrix G_{NS}^{k} .

Once matrix G_{os} has been formed, the output generator 214 computes the values $S_N(n+1)$, $S_N(n+2)$, ..., $S_N(n+K)$ by multiplying the matrix G_{os} by a column matrix of states S:

$$S_N(n+K) = G_{OS} \cdot S(n) \tag{15}$$

A long-code output generator 214 differs from the structure of short-code output generator. The reason is that the long-code generator contains a mask, which can be different for each long-code generator, see, "The cdma2000 ITU-R RTT Candidate Submission" and FIG. 1d. The PN output bit of the long code is a modulo-2 addition of values of the shift registers multiplied by the mask. The output bit can be expressed in matrix notation as follows:

$$pn_{\text{out}}(n) = M^*S(n), \tag{16}$$

where:

30 $pn_{our}(n)$ is an output bit in a state n, and M is a column mask matrix.

Substituting equation (8) into equation (16) results in:

$$pn_{out}(n+k) = M^*G^{k*}S(n)$$
(17)

From equation (10) follows that desired output of K+1 parallel bits can be achieved by forming matrix G_{ost}

$$5 G_{OSL} = \begin{bmatrix} M * G_{NSL}^{K} \\ . \\ . \\ M * G_{NSL}^{1} \\ M * G_{NSL}^{0} \end{bmatrix}, (18)$$

and, once matrix G_{osl} has been formed, the output generator 214 computes the values pn(n), pn(n+1), . . , pn(n+K) by multiplying the matrix G_{osl} by a column matrix of states S:

$$pn(n+K) = G_{OSL} \cdot S(n) \tag{19}$$

At this point of the process the set of states, $S_1(n+K)$, $S_2(n+K)$, ..., $S_N(n+K)$ is provided to an output generator 214, a next state generator 216, and the whole cycle is repeated.

In particular, let us consider the G matrix for a PN₁ shift-register to be the basic next state generator matrix G_{NSI} :

20

10

Matrix G_{NS}^{0} is as follows:

	[100000000000000]
	010000000000000
	001000000000000
	000100000000000
	000010000000000
	000001000000000
	000000100000000
$G_{NSIO} =$	00000010000000
	00000001000000
	00000000100000
	000000000010000
	000000000001000
	000000000000100
	00000000000000000010
	000000000000001

5

Taking the first row of matrix G_{NSI}^0 and last row of matrix G_{NSI} the matrix G_{OSIZ} is formed as follows:

$$G_{\mathit{OSI2}} = \begin{bmatrix} 010000000000000 \\ 1000000000000000 \end{bmatrix}$$

10

One ordinarily skilled in the art will recognize that matrix G_{os} can be modified according to desired PN generator output, without departing from the scope of the invention. For example, if a parallel output $S_N(n)$, $S_N(n+2)$, $S_N(n+4)$, and $S_N(n+6)$ is desired, matrix G_{os} will comprise in accordance with equation (14) first row of G_{NS}^6 in row one, first row of G_{NS}^4 in row two, first row of G_{NS}^6 in row three, and first row of G_{NS}^0 in row four.

20

15

FIG. 4 depicts a block diagram of a preferred embodiment of the parallel PN generator. In addition to the state memory 212, the output generator 214, and a next state generator 216, it contains a jump generator 218 and a control processor 220. The function of the jump generator 218 is to advance the state by predetermined number of shifts. Such a function is desirable e.g., for forward link acquisition as described in aforementioned U.S. Patent Nos. 5,644,591 and 5,805,648. In the exemplary embodiment, the PN generator is employed in a

10

15

20

receiver in accordance to an IS-95 standard. The systems designed in accordance with an IS-95 standard comprise base stations utilizing a common PN generator, with a phase offset in increments of 64 chips for a particular pilot signal. Consequently, the jump generator 218 is functionally equivalent to next state generator 216 in that it comprises a coefficient matrix G_{js} formed in accordance with the principles outlined in description of FIG. 1a, and raised to the power of 64.

Next state generator 216 receives the set of states $S_1(n)$, $S_2(n)$, ..., $S_N(n)$ from memory 212 and generates a set of new states $S_1(n+64)$, $S_2(n+64)$, ..., $S_N(n+64)$ in accordance with equation (8), and provides the set of new states back to memory 212. The reason for having a separate next state generator 216 and a jump generator 218 is that in general $K \neq L$, and, consequently, the matrices G_{os} and G_{js} are different. As described above, the present invention is preferably implemented in hardware adapted to the specific operation and designed to perform a specific task.

The function of the control processor 220 is to coordinate cooperation between the different subsystems, and to control bit stuffing. As described, the short-code PN sequences have a period of 2^{15} generating polynomials, and from them derived matrices, generate only sequences with period $2^{15}-1$. The control processor 200 monitors the output of the next state generator 216 for the state preceding the state corresponding to a period $2^{15}-1$, for which a computation of next state according to equation (8) would exceed the state corresponding to a period $2^{15}-1$. Once the control processor 200 detects such state it performs two operations. It will cause the output generator 214 to compute the output state values, and overwrites the last output state value with '0'. It will then avoid writing the output of the next state generator 216 into state memory 212, and will initialize the state memory 212 to initial set of states $S_1(n), S_2(n), \ldots, S_N(n)$.

30

35

25

FIG. 5 depicts a simplified block diagram of an exemplary receiver chain using PN generators in accordance with the invention. The RF signal arriving at the antenna 400 is provided to the receiver (RCVR) 402, which downconverts the received signal to a baseband frequency, producing I and Q components of the signal. These components are simultaneously provided to a searcher 404 and demodulators 406a, . . ., 406c. The task of the searcher 404 is to perform searches in code space to identify candidate signals to be added to the Active Set of the remote station in order to maximize the quality of the received signal. To accomplish this task, searcher 404 will control parameters of the PN

10

15

20

25

30

35

sequences generators, devised in accordance with the principles outlined in present invention. An exemplary method for performing acquisition and searching in a CDMA communication system is described in detail in aforementioned U.S. Patent Nos. 5,644,591 and 5,805,648

In order to be effective, a receiver must be able to operate in a multipath environment and must be able to adapt to changes in physical location. In the aforementioned U.S. Patent Nos. 5,101,501 and 5,109,390, a method for exploiting the reception of multiple version of a signal is described. Demodulators 406a, 406b and 406c demodulate redundant versions of the same signal. These redundant version either correspond to multipath propagations of a signal from a single source or from multiple transmissions of the same information from multiple base stations in a soft handoff condition.

The demodulated signals from demodulators 406a, . . ., 406c are provided to combiner 410, which combines the signals and provides them for further processing to a de-interleaver 412 and decoder 414.

FIG. 6 illustrates the exemplary embodiment of the receiver structure of the present invention. The signal is received at antenna 400 and provided to receiver (RCVR) 402. Receiver 402 down converts, amplifies, filters, and samples the received signal, and provides digital samples to buffer 402. In response to signals from control processor 403, a selected set of samples from buffer 404 are provided to despreader 408. In addition, in response to a signal from control processor 403, PN generator 406 provides a portion of a PN sequence to depreader 408.

Despreader 408 despreads the signal in accordance with the portion of the PN sequence provided by PN generator 406 which operates in accordance with the present invention. Within despreader 408 the PN sequence is provided to pilot despreader 412, which despreads the received signal in accordance with the portion of the short PN sequence provided by PN generator 406 and the Walsh covering sequence for the pilot signal. In the exemplary embodiment, the pilot signal is covered with the Walsh zero sequence and as such does not effect the despreading operation performed by pilot despreader 412. In addition, the portion of the short PN sequence is provided to traffic despreader 414, which despreads the signal in accordance with the short PN sequence and the Walsh traffic covering sequence $W_{\rm T}$.

The result of the despreading operation performed by pilot despreader 412 and the result of the despreading operation performed by traffic despreader 414 are provided to dot product circuit 414. The pilot signal has known symbols and can be used to remove the phase ambiguities introduced by the

10

15

20

propagation path as described in the aforementioned U.S. Patent No. 5,506,865. The result of the dot product operation is provided to combiner 410. Combiner 410 combines redundantly despread version of the same symbols whether transmitted by different base stations in a soft handoff environment or by the same base station traversing different propagation paths in a multipath environment.

In accordance with an exemplary demodulation chain embodiment, and previous discussion follows that a first set of matrices is required for the short-code PN generator for the I component 516, a second set for the short-code PN generator for the Q component 518, and a third set for the long-code PN generator 504.

1. Acquisition mode.

In the exemplary embodiment, the receiver is able to rapidly determine jump 64 chips ahead in the PN sequence in order to perform a correlation process to determine the correlation energy of between the received signal and a portion of the PN sequence.

In the generation of the short PN₁ sequence, state memory 212 provides the current state of the PN sequence S(n) to next state generator 216. Next state generator 216 generates the state of the PN sequence S(n+2) two cycles in advance by left-multiplying the PN sequence S(n) by the matrix G_{NSIZ} :

In the generation of the short PN₁ sequence, state memory 212 provides the current state of the PN sequence S(n) to jump generator 218. Jump generator 218 generates the state of the PN sequence S(n+2) sixty-four (64) cycles in advance by left-multiplying the PN sequence S(n) by the matrix G_{ISIG} :

14

5

	· · · · · · · · · · · · · · · · · · ·
$G_{JSI64} =$	[101011010100101
	010101101010010
	000001100001100
	000000110000110
	000000011000011
	000000001100001
	101011010010101
	011110111101111
	000100001010010
	000010000101001
	101010010110001
	110101001011000
	011010100101100
	101101010010110
	010110101001011]

In the generation of the short PN₁ sequence, the next state generator **216** or the jump generator **218** provides the current state of the PN sequence S(n) to output generator **214**. Output generator **214** computes the values $S_N(n+1)$, $S_N(n+2)$, . . , $S_N(n+K)$ left-multiplying a column matrix of states S(n) by the matrix G_{osn} :

15
$$G_{OS/2} = \begin{bmatrix} 0100000000000000 \\ 1000000000000000 \end{bmatrix}$$

The short-code PN generator for the Q component 518 uses an algorithm for PN sequence generation, identical to the one for the acquisition mode. Consequently, the set of matrices as well as their application is identical.

- 10

$G_{NSQ2} =$	0010000000000000
	1001000000000000
	110010000000000
	110001000000000
	010000100000000
	000000010000000
	00000001000000
	10000000100000
	11000000010000
	11000000001000
	110000000000100
	010000000000010
	00000000000000000001
	1000000000000000
	0100000000000000

$$G_{osQ^2} = \begin{bmatrix} 010000000000000\\ 1000000000000000 \end{bmatrix}$$

In the generation of the long-code PN sequence, state memory 212 provides the current state of the PN sequence S(n) to next state generator 216.

WO 01/16699 PCT/US00/23949

Next state generator 216 generates the state of the PN sequence S(n+2) two cycles in advance by left-multiplying the PN sequence S(n) by the matrix G_{NSL2} :

 $G_{NSL2} =$

In the generation of the long-code PN sequence, state memory 212 provides the current state of the PN sequence S(n) to jump generator 218. Jump generator 218 generates the state of the PN sequence S(n+64) sixty-four (64) cycles in advance by left-multiplying the PN sequence S(n) by the matrix G_{JSL64} :

 $G_{JSL64} =$

In the generation of the long-code PN sequence, the next state generator 216 or the jump generator 218 provides the current state of the PN sequence S(n) to output generator 214. Output generator 214 first computes the output state matrix G_{ost} by left-multiplying matrix M by matrices G_{NSLO} :

 G_{NSIO} =

WO 01/16699 PCT/US00/23949

, and by matrix G_{NS1} :

 G_{NSL1} =

, and then computes the output bits $pn_{out}(n+k)$ by multiplying the resulting matrix G_{osl} by a column matrix of states S.

2. Demodulation mode:

The demodulation mode uses algorithm for PN sequence generation, identical to the one for the acquisition mode. Consequently, the set of matrices as well as their application is identical.

The short-code PN generator for the I component 516 comprises the following matrices:

. 10

	[010010101000000]
	001001010100000
	110110000010000
	111011000001000
	011101100000100
	101110110000010
	000101110000001
$G_{NS/8} =$	010000010000000
	011010100000000
	001101010000000
	0101000000000000
	101010000000000
	010101000000000
	001010100000000
•	100101010000000

The short-code PN generator for the Q component 518 comprises the following matrices:

The long-code PN generator for 518 comprises the following matrices:

 $G_{NSL8} =$

 $G_{JSL64} =$

G_{OSL18}

 G_{OSL28} =

 $G_{OSL38} =$

 $G_{OSL48} =$

 $G_{OSI,58}$

 G_{OSL68} =

 $G_{OSL78} =$

 G_{OSL88} :

PCT/US00/23949

The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

1.

. 10

WHAT IS CLAIMED IS:

- 1. An apparatus for generating multiple bits of a pseudonoise sequence with each clock pulse by computing the bits in parallel, comprising:
 - a) a state memory;
- 4 b) a next state generator communicatively connected with said state memory; and
- 6 c) an output generator communicatively connected with said state memory and said next state generator.
- 2. The apparatus of claim 1 wherein said state memory has been configured to hold:
 - a) a set of initial values of states; and
- 4 b) a set of values of states generated by said next state generator or a jump generator.
- 2 3. The apparatus of claim 1 wherein said set of initial values of states comprises:
- a) coefficients of a generating polynomial.
- 2 4. The apparatus of claim 3 wherein said generating polynomial is: $P_{1}(x) = x^{15} + x^{13} + x^{9} + x^{8} + x^{7} + x^{5} + 1$
- 2 5. The apparatus of claim 3 wherein said generating polynomial is: $P_o(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^4 + x^3 + 1$
- 2 6. The apparatus of claim 3 wherein said generating polynomial is: $P(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{19} + x^{10} + x^{10}$

- 2 7. The apparatus of claim 1 wherein said next state generator has been configured to:
 - a) accept one set of values of states;
 - b) generate another set of values of states a first pre-determined number of clocks apart from current state by multiplying said accepted values by a next step matrix; and
- 8 c) provide said another set of values of states to said memory and said output generator.
- 2 8. The apparatus of claim 7 wherein said first pre-determined number of clocks is two and said next step matrix G_{NSI2} is:

2 9. The apparatus of claim 7 wherein said first pre-determined number of clocks is two and said next step matrix G_{NSO2} is:

2 10. The apparatus of claim 7 wherein said a first pre-determined number of clocks is eight and said next step matrix G_{NSIS} is:

2 11. The apparatus of claim 7 wherein said a first pre-determined number of clocks is eight and said next step matrix G_{NSO2} is:

2 12. The apparatus of claim 1 wherein said output generator has been configured to:

a) one set of values of states; and

b) generate multiple output bits in parallel by multiplying said

6 accepted values by an output state matrix.

2 13. The apparatus of claim 12 wherein said multiple is two and said output state matrix G_{osi2} is:

$$G_{osi2} = \begin{bmatrix} 010000000000000\\ 1000000000000000 \end{bmatrix}.$$

4

2 14. The apparatus of claim 12 wherein said multiple is two and said output state matrix G_{oso2} is:

$$G_{os \varrho 2} = \begin{bmatrix} 0100000000000000\\ 10000000000000000 \end{bmatrix}$$

2 15. The apparatus of claim 12 wherein said multiple is eight and said output state matrix G_{osi8} is:

2 16. The apparatus of claim 12 wherein said multiple is eight and said output state matrix $G_{\infty s}$ is:

- 2 17. The apparatus of claim 1 further comprising a jump generator.
- 2 18. The apparatus of claim 17 wherein said jump generator has been configured to:
 - a) accept one set of values of states;
 - b) generate values of states a second pre-determined number of
- 6 clocks apart from current state by multiplying said accepted values by a jump state matrix; and
- 8 c) provide said values of states to said memory and said output generator.

2 19. The apparatus of claim 18 wherein said second pre-determined number is sixty-four and said jump state matrix G_{ISIGS} is:

20. The apparatus of claim 18 wherein said second pre-determined number is sixty-four and said jump state matrix G_{15064} is:

21. The apparatus of claim 1 further comprising a controller.

- The apparatus of claim 21 wherein said controller has been configured to
 monitor output bits of said next state generator for a pre-determined combination, and when said pre-determined combination has been reached to:
 - a) overwrite an appropriate output bit value with a value of '0';
- b) void writing values of states generated by said next state
 6 generator to said state memory; and
- c) instruct said state memory to provide a set of initial values of 8 states to said next state generator.
 - 23. A pseudonoise (PN) sequence generator comprising:
- a) state memory for storing at least one state of a PN generator polynomial;
- b) next state generator for receiving said at least one state of said PN generator polynomial and for generating a second state of said PN generator
- 6 polynomial by performing a matrix operation upon said at least one state of said PN generator polynomial; and
- c) output generator for receiving said at least one state of said PN generator polynomial and for generating at least one PN sequence output by performing a matrix operation upon said at least one state of said PN generator polynomial.
- 24. The apparatus of Claim 23 wherein said at least one state comprises the fifteen component state of a PN short code.
- 25. The apparatus of Claim 23 wherein said at least one state comprises the forty two component state of a PN long code.

2
$$P_Q(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^4 + x^3 + 1$$

28. The apparatus of Claim 23 wherein said generator polynomial (P) is: $P(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + (1) + x^{10} + x^7 + x^6 + x^5 + x^3 + x^2 + x + 1.$

29. The apparatus of Claim 23 wherein said next state generator computes 2 the state of PN sequence generator two clock cycles in the future and performs said matrix operation in accordance with the matrix GNSI21:

30. The apparatus of Claim 23 wherein said next state generator performs 2 said matrix operation in accordance with the matrix GNSQ2:

31. The apparatus of Claim 23 wherein said output generator computes the
 next two outputs of said PN sequence generator and performs said matrix operation in accordance with the matrix GOSI2:

 $G_{ost2} = \begin{bmatrix} 010000000000000 \\ 100000000000000 \end{bmatrix}.$

- 32. The apparatus of Claim 23 wherein said PN generator programmed into 2 an ASIC.
- 33. The apparatus of Claim 23 wherein said PN generator programmed intoa field programmable gate array.
- A method for generating multiple bits of a pseudonoise sequence with each clock pulse by computing the bits in parallel, comprising the steps of:
 - a) storing at least one set of values of states in a state memory;
- b) generating a second set of values of states by a next state generator, said second set being derived from said at least one set; and
- 6 c) generating a set of output bits in parallel by an output generator, said set of output bits being derived from said at least one set of values of states.
- 35. The method of claim 34, wherein the step of storing at least one set of values of states comprises the steps of:
 - a) holding a set of initial values of states; and
- b) holding another set of values of states from said next state generator or from a jump generator.
- 36. The method of claim34, wherein the step of generating a second set of values of states comprises the step of:
- a) multiplying said at least one set of values of states by a next step
 4 matrix.
- 37. The method of claim 34, wherein the step of generating a set of output 2 bits in parallel comprises the step of:
- a) multiplying said at least one set of values of states by an output 4 state matrix.

- 38. The method of claim34, further comprising the step of monitoring a set of values of states of said next state generator for a pre-determined combination.
- 39. The method of claim 38, wherein upon detecting said pre-determinedcombination, the method further comprises the steps of:
 - a) overwriting an appropriate output bit value with a value of '0';
 - b) voiding writing said second set of values of states generated by said next state generator to said state memory; and
- 6 c) instructing said state memory to provide a set of initial values of states to said next state generator.
 - 40. The method of claim34, further comprising the step of generating a third set of values of states by a jump state generator, said second set being derived from said at least one set.
 - 41. The method of claim 40, wherein the step of generating a third set of values of states by a jump state generator comprises the step of:
 - a) multiplying said at least one set of values of states by a jump state-
- 4 matrix.

2

FIG. 1C

FIG. 1D

FIG. 3

FIG. 4

INTERNATIONAL SEARCH REPORT

al Application No PCT/US 00/23949

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G06F7/58

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{MinImum documentation searched (classification system followed by classification symbols)} \\ \text{IPC 7} & \text{G06F} & \text{H03K} \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical search terms used)

EPO-Internal, PAJ, WPI Data

Category •	INTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Retevant to claim No.
х	O. KAESTNER: "Implementing Branch instructions with Polynomial Counters" COMPUTER DESIGN.,	1-41
	vol. 14, no. 1, January 1975 (1975-01), pages 69-75, XP002155211 PENNWELL PUBL. LITTLETON, MASSACHUSETTS., US ISSN: 0010-4566 the whole document	t
X	US 3 881 099 A (AILETT CLAUDE ET AL) 29 April 1975 (1975-04-29) figures	1-41
X	US 5 910 907 A (BRADLEY ALAN S ET AL) 8 June 1999 (1999-06-08) figures	1-41

	Y Patent family members are listed in annex.
Further documents are listed in the continuation of box C.	λ
Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance E' earlier document but published on or after the international filing date L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
12 December 2000	29/12/2000
Name and mailing address of the ISA	Authorized officer ·
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-240, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Verhoof, P

INTERNATIONAL SEARCH REPORT

Interns al Application No PCT/US 00/23949

		PC1703 00		
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Melevant to claim No.	
A	US 5 228 054 A (GILHOUSEN KLEIN S ET AL) 13 July 1993 (1993-07-13) column 4, line 37 - line 60; figures	:	4,22,26, 39	
			·	
		;		
		·. <i>i</i>		
		÷		
		•		
		·.		
		•		
		.:		
		•		
		. •		
			* .	
		Ę		
		•		
		:		
	·	į		
		: ·		
		•		
	·			
		·:		
			-	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Interna al Application No PCT/US 00/23949

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
US 3881099	Α ·	29-04-1975	FR 2211169 A DE 2359336 A GB 1433050 A IT 1002248 B JP 49090857 A NL 7317217 A	12-07-1974 20-06-1974 22-04-1976 20-05-1976 30-08-1974 18-06-1974
US 5910907	Α	08-06-1999	NONE	
US 5228054	A	13-07-1993	AU 4045593 A CN 1082284 A IL 105207 A MX 9301917 A WO 9320630 A ZA 9302097 A	08-11-1993 16-02-1994 16-10-1996 31-08-1994 14-10-1993 12-01-1994

				11. N.		
	•-					· •
: .			-	·		• *
						•
•	•	•				
		•				·
				• ;	•	• •
						•
	•		•			
	.•	•	, -A.	•		
	·				•	
:						
:	-				•	•
: 1						
			*			•
1 :		•				
			÷			.•
			•	()		
	•					
	· ·		· · · · · · · · · · · · · · · · · · ·		· ·	•
	•					
			* *			
:	,				•	•
			•			
•				• • • • • • • • • • • • • • • • • • • •		•
*	•					
					.•	
	•					•
					•	-
	•		· · · · · · · · · · · · · · · · · · ·			
	:					
			•	•		
: .		• .				
	•	· ·	• • •	•	: · ·	
	,			· • • • • • • • • • • • • • • • • • • •		
•	•	. •	. • .	•		
;			·			•
•			• .		t	
<i>:</i>						
					•	:
•		•			•	
٠.						
					·	•
	•	•	•			•

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 March 2001 (08.03.2001)

PCT

(10) International Publication Number WO 01/016699 A1

(51) International Patent Classification7:

G06F 7/58

(21) International Application Number: PCT/US00/23949

(22) International Filing Date: 30 August 2000 (30.08.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/386,600

.31 August 1999 (31.08.1999) US

- (71) Applicant: QUALCOMM INCORPORATED [US/US]; 5775 Morehouse Drive, San Diego, CA 92121-1714 (US).
- (72) Inventors: LUPIN, Edward, D.; 7745 Salix Place, San Diego, CA 92129 (US). SINDHUSHAYANA, Nagabhushana, T.; 10615 Dabney Drive, No. 19, San Diego, CA 92126 (US).

- (74) Agents: OGROD, Gregory, D. et al.; Qualcomm Incorporated, 5775 Morehouse Drive, San Diego, CA 92121-1714 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: A METHOD AND APPARATUS FOR GENERATING MULTIPLE BITS OF A PSEUDONOISE SEQUENCE WITH EACH CLOCK PULSE BY COMPUTING THE BITS IN PARALLEL

(57) Abstract: A novel method and apparatus for generating PN sequences with an arbitrary number of bits, where the number of bits is provided in parallel with each clock pulse is described. This allows the sequences to be generated at high speed when needed, and allows parallel processing in the acquisition and demodulation processes. In the invention, the initial values of states are loaded into registers of a parallel PN generator, which immediately generates the next n bits of the PN sequence, where n is an arbitrary number dependent on performance required. Then, a first sub-part of the PN generator (406) of the present invention receives the present state of the PN generator (406) and outputs the state of the PN generator (406) n bits in the future.

1/016699 A1

WO.01/016699 A1

- (48) Date of publication of this corrected version:
 12 September 2002
- (15) Information about Correction: see PCT Gazette No. 37/2002 of 12 September 2002, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

25

30

35

A METHOD AND APPARATUS FOR GENERATING MULTIPLE BITS OF A PSEUDONOISE SEQUENCE WITH EACH CLOCK PULSE BY COMPUTING THE BITS IN PARALLEL

BACKGROUND OF THE INVENTION

I. Field of the Invention

The invention presented relates to pseudonoise (PN) sequence generators. More particularly, the present invention relates to a method and an apparatus for generating PN sequence with each clock pulse by computing their bits in parallel.

II. Description of the Related Art

The Telecommunications Industry Association has standardized a method for code division multiple access (CDMA) communications in the IS-95 family of interim standards, entitled "Mobile Station-Base Station Compatibility Standard for Dual Mode Wideband Spread Spectrum Cellular System." In addition, the Telecommunications Industry Association in its submission to the International Telecommunications Union, entitled "The cdma2000 ITU-R RTT Candidate Submission," describes proposed CDMA system that would be able to support higher data rates and higher capacity. Both in the IS-95 standard and in the cdma2000 proposal, the transmitted waveform is modulated in accordance with a pseudonoise spreading sequence.

The use of a pseudonoise sequence with appropriate autocorrelation characteristics is essential to the operation of a CDMA system in which multipath components are present. The generation and employment of pseudonoise sequences are described in detail in U.S. Patent No. 4,901,307, entitled "SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS," assigned to the assignee of the present invention, and incorporated by reference herein. The use of CDMA techniques in a multiple access communication system is further disclosed in U.S. Patent No. 5,103,459, entitled "SYSTEM AND METHOD FOR WAVEFORMS INGENERATING SIGNAL Α CDMA TELEPHONE SYSTEM," assigned to the assignee of the present invention, and incorporated by reference herein.

10

15

20

25

30

2

The aforementioned U.S. Patents Nos. 4,901,307 and 5,103,459 describe the use of a pilot signal used for acquisition. The use of a pilot signal enables the remote user to acquire local base station communication system in a timely manner. The remote user gets synchronization information and relative signal power information from the received pilot signal. U.S. Patents Nos. 5,644,591 and 5,805,648, both entitled "METHOD AND APPARATUS FOR PERFORMING SEARCH ACQUISITION IN A CDMA COMMUNICATION SYSTEM," describe a novel and improved method and apparatus that reduces the remote user forward link acquisition time. Both patents are assigned to the assignee of the present invention and are incorporated by reference herein.

Space or path diversity is obtained by providing multiple signal paths through simultaneous links from a remote user through two or more cell-sites. Furthermore, path diversity may be obtained by exploiting the multipath environment through spread spectrum processing by allowing a signal arriving with different propagation delays to be received and processed separately. Examples of path diversity are illustrated in U.S. Patent No. 5,101,501, entitled "SOFT HANDOFF IN A CDMA CELLULAR TELEPHONE SYSTEM," and U.S. Patent No. 5,109,390, entitled "DIVERSITY RECEIVER IN A CDMA CELLULAR TELEPHONE SYSTEM," both assigned to the assignee of the present invention, and incorporated by reference herein.

In CDMA communications systems, a pilot signal is transmitted that allows a receiver to coherently demodulate the received signal. Within demodulator of such receivers is a channel estimate generator, which estimates the channel characteristics based on the pilot signal transmitted with values known to both the transmitter and the receiver. The pilot signal is demodulated and the phase ambiguities in the received signal are resolved by taking the dot product of the received signal and the pilot signal channel estimate. An exemplary embodiment of a circuit for performing the dot product operation is disclosed in U.S. Patent No. 5,506,865, entitled "PILOT CARRIER DOT PRODUCT CIRCUIT," assigned to the assignee of the present invention, and incorporated by reference herein.

SUMMARY OF THE INVENTION

The invention presented is a novel method and apparatus for generating a PN sequences with an arbitrary number of bits, where the number of bits is provided in parallel with each clock pulse. This allows the sequences to be

15

20

25

30

35

generated at high speed when needed, and allows parallel processing in the acquisition and demodulation processes. The invention describes in detail generation of PN sequences as standardized for the IS-95 communications systems. As proposed in the IS-95 standards, the pseudonoise spreading sequences are maximal length sequences that are capable of being generated using linear feedback shift-registers (LSFRs). Using a linear feedback shift-register, the PN sequences are computed one bit with each clock pulse.

In the invention, the initial PN states are loaded into registers of a parallel PN generator, which immediately generates the next n bits of the PN sequence, where n is an arbitrary number dependent on performance required. In addition, the present invention provides a method of determining the register states of the parallel PN generator an arbitrary number of cycles in the future. Thus, the present invention takes the present state of the registers of the PN generator and outputs the next n bits of the generator. In addition, the PN generator of the present invention receives the present state of the PN generator and outputs the state of the PN generator n bits in the future. In this fashion, the entire PN sequence can be continuously generated.

It will be understood by one skilled in the art that although the present invention is directed toward the generation of a psuedonoise sequences compliant with systems standardized by the Telecommunications Industry Association, the teachings of the present invention are equally applicable to the generation of other psuedonoise sequences such as, the orthogonal Gold code sequences proposed for use in the W-CDMA, proposals to the International Telecommunications Industry Association, proposals by the European Telecommunications Standards Institute (ETSI), and the Association of Radio Industries and Business (ARIB).

BRIEF DESCRIPTION OF THE DRAWINGS

The features, objects, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:

- FIG. 1 illustrates a prior art embodiment of pseudonoise (PN) generators employing linear feedback shift-registers;
- FIG. 2 depicts prior art of pseudonoise generators employed to generate parallel groups of PN sequence;

FIG. 3 is a block diagram illustrating the generalized operation of the present invention apparatus for generating the PN sequences;

FIG. 4 shows one embodiment of the invention;

FIG. 5 is a simplified block diagram of an exemplary receiver chain using PN generators in accordance with the invention; and

FIG. 6 is a block diagram of a part of an exemplary single demodulation chain using PN generators in accordance with the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

10

15

20

25

5

FIG. 1a illustrates a traditional apparatus employing a linear feedback shift-register for generating pseudonoise sequences. The generalized shift-register 100 from FIG. 1a comprises memory elements 102a, 102b, . . , 102n, holding state values $S_0(n)$, $S_1(n)$, . . . , $S_N(n)$. The last value S_N constitutes an output of the shift-register, and also a feed-back to modulo-2 adders 104a, . . ., 104m. Before the value S_N is provided to a particular modulo-2 adder 104a, . . ., 104m, it is multiplied by an associated coefficient g_0, g_1, \ldots, g_N . A coefficient will take a value of '1' if a feedback is desired, and a value of '0' otherwise.

Short-code pseudonoise sequences are used to modulate and demodulate the in-phase (I) and quadrature-phase (Q) components of the CDMA waveform. The I and Q short-code PN sequences are periodic with a period of $2^{15}-1$ with a bit stuffed at the preamble of sequence to make the sequence periodic with an even factor of 2.

The short-code PN₁ sequence satisfies a linear recursion specified by the following generator polynomial (P₁):

$$P_I(x) = x^{15} + x^{13} + x^9 + x^8 + x^7 + x^5 + 1. {1}$$

FIG. 1.b depicts a shift-register implementation for generating the PN₁ sequence. Note that in accordance with FIG. 1a, only the '1' valued coefficients g_{15} , g_{19} , g_{9} , g_{9} , g_{5} , g_{0} , are present.

The short-code PN_Q sequence satisfies a linear recursion specified by the following generator polynomial (P_Q):

35
$$P_Q(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^4 + x^3 + 1.$$
 (2)

15

20

25

5

FIG. 1.c depicts a shift-register implementation for generating the PN_{Q} sequence.

FIG. 1c shows a shift-register implementation of a long-code PN generator with a mask. The long-code is periodic, with period $2^{42}-1$ chips and satisfies a linear recursion specified by the following characteristic polynomial (P):

$$P(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{10} + x^{7} + x^{6} + x^{5} + x^{3} + x^{2} + x + 1$$
(3)

The mask used for the long-code is channel type dependent, and can be found along with further details about the implementation of the PN generators in a document entitled "Physical Layer Standard for cdma2000 Spread Spectrum Systems."

It is sometimes desired to obtain an output of a shift-register as a parallel combination of output state values $S_N(n)$, $S_N(n+1)$, ..., $S_N(n+K)$. FIG. 2 shows a block diagram of a parallel PN generator 200 according to the prior art. The PN generator comprises a shift-register 100 in accordance with a description for FIG. 1a, followed by a serial-to-parallel converter 202. The PN generator outputs K values of $S_N(n)$ for shift instances n, n+1, ..., n+K. However, there are K clock cycles required for generating the set of K output values. In the prior art understanding, in order to generate the parallel PN generator outputs, the outputs of the linear feedback shift-registers illustrated in FIGS. 1a and 1b are provided to the serial to parallel converter.

FIG. 3 shows a block diagram of inventive alternative to the implementation of FIG. 2. In general, a relationship between values of shift register in a state (n) and next state (n+1) can be expressed as a system of equations:

$$S_N(n+1) = g_{11} \cdot S_N(n) + \dots + g_{1N-1} \cdot S_2(n) + g_{1N} \cdot S_1(n)$$
 (4a)

35

$$S_2(n+1) = g_{N-11} \cdot S_N(n) + \dots + g_{N-1N-1} \cdot S_2(n) + g_{2N} \cdot S_1(n)$$
 (4n-1)

$$S_1(n+1) = g_{N1} \cdot S_N(n) + \dots + g_{NN-1} \cdot S_{2N-1}^{\dagger}(n) + g_{NN} \cdot S_1(n)$$
 (4n)

Such a system of equations can be re-written in a matrix form as:

$$S(n+1) = G^*S(n), \tag{5}$$

5

where:

S(n+1) is column matrix containing the state values of the state after a shift,

G is a coefficient matrix comprising the g values indicated in equations 10 4a-4n, and

S(n) is a column vector of present states.

Once a state after a shift has been determined, the next state can be calculated using equation (5):

15

$$S(n+2)=G^*S(n+1).$$
 (6)

Substituting equation (5) into equation (10) then results into an equation:

20
$$S(n+2) = G^*G^*S(n) = G^{2*}S(n).$$
 (7)

Further generalization of equation (11) yields an equation:

$$S(n+k) = G^{k*}S(n), \tag{8}$$

25

30

35

where k is a number expressing a state, in which an output is to be computed.

Applying these principles to **FIG. 1**, it is obvious that a value of a certain register in next state $S_i(n+1)$ is a function of a value of the preceding register in current state $S_{i,1}(n)$, and — if a feedback exists — a value of the output register in current state $S_{i,1}(n)$. Consequently, the system of equations (4) will have at most two non-zero coefficients in each of the equations (4a) through (4n).

As an example, the G matrix for a PN₁ shift-register in accordance with FIG. 1b will be developed as follows:

Observing, that there is a connection between stages S_{15} and S_{14} and no feedback from stage S_{15} , it follows that the next state value of S_{15} is equal to previous state value of S_{14} . Thus, equation (4a) will take a form:

20

25

30

35

7

$$S_{15}(n+1) = 0 \cdot S_{15}(n) + 1 \cdot S_{14}(n) \tag{9}$$

Consequently, the first row of matrix G will contain a non-zero element only in a position g_{12} :

$$G_1 = [010000000000000] \tag{10}$$

Equivalent relation will hold for all stages an input of which is an output of another stage.

Turning to the next stage $S_{1\nu}$ one can observe that its next state value is equal to previous state value of stage S_{1s} summed with a previous state value of stage S_{1s} . Thus, the equation (4b) will take a form:

$$S_{14}(n+1) = 1 \cdot S_{15}(n) + 1 \cdot S_{13}(n)$$
(11)

Consequently, the second row of matrix G will contain a non-zero (unity) element in a position g_{21} and g_{22} :

$$G_2 = [101000000000000] \tag{12}$$

Equivalent relation will hold between all stages an input of which is a sum of outputs of two stages.

Reference back to FIG. 3 will expand on these concepts. State memory 212 is initialized to an initial set of states $S_1(n)$, $S_2(n)$, . . ., $S_N(n)$. These states are then provided to an output generator 214, and a next state generator 216. Next state generator 216 contains a coefficient matrix G_{NS} formed in accordance with the principles outlined in description of equations (4) and (5). In the exemplary embodiment, the generator polynomial has relatively few feedback taps and, consequently, the resultant matrix G is sparse. This sparseness permits a relatively simple implementation of the matrix operation to be performed using fixed Boolean operator programmed into a field programmable gate array or designed into an application specific integrated circuit (ASIC).

Next state generator 216 accepts the set of states $S_1(n)$, $S_2(n)$, . . ., $S_N(n)$ from memory 212 to compute a set of new states $S_1(n+K)$, $S_2(n+K)$, . . , $S_N(n+K)$

in accordance with equation (12), and provides the set of new states back to the state memory 212.

The output generator 214 performs a matrix operation on the current states in accordance with a matrix G_{os} formed as follows. As explained in description to FIG. 1a, the output of a shift-register is the state $S_N(n)$. From equation (8) follows that:

$$S(n+0) = G^{0*}S(n), \tag{13}$$

where G⁰ is a matrix having non-zero elements only in the main diagonal. Inspecting the system of equations (4), it is obvious that value S_N(n) can be calculated using equation (4a). This equation is equivalent to forming a row matrix G_R by taking the first row of a matrix G⁰_{NS} and multiplying it by a column matrix of states S formed from values S₁(n), S₂(n), ..., S_N(n). Therefore, the first row of a matrix G_{NS} becomes the last row of matrix G_{OS}. Similarly, from equation (8), the value S_N(n+1) can be calculated by forming a row matrix G_R by taking the first row of a matrix G²_{NS}, and multiplying it by a column matrix of states S. Thus, the last row of a matrix G_{NS} becomes the last but one row of matrix G_{OS}. This process of forming the matrix G_{OS} continues until all K rows are filled. In mathematical terms:

$$G_{OS} = \begin{bmatrix} G_{NSL}^K \\ \vdots \\ G_{NSL}^1 \\ G_{NSL}^0 \end{bmatrix}, \tag{14}$$

where G_{NSL}^{k} is last row of matrix G_{NS}^{k} .

25

Once matrix G_{os} has been formed, the output generator 214 computes the values $S_N(n+1)$, $S_N(n+2)$, ..., $S_N(n+K)$ by multiplying the matrix G_{os} by a column matrix of states S:

$$S_N(n+K) = G_{os} \cdot S(n) \tag{15}$$

A long-code output generator 214 differs from the structure of short-code output generator. The reason is that the long-code generator contains a mask,

which can be different for each long-code generator, see, "The cdma2000 ITU-R RTT Candidate Submission" and **FIG. 1d**. The PN output bit of the long code is a modulo-2 addition of values of the shift registers multiplied by the mask. The output bit can be expressed in matrix notation as follows:

5

$$pn_{our}(n) = M^*S(n), \tag{16}$$

where:

 $pn_{out}(n)$ is an output bit in a state n, and

10 *M* is a column mask matrix.

Substituting equation (8) into equation (16) results in:

$$pn_{\text{our}}(n+k) = M^*G^{k*}S(n) \tag{17}$$

15 From equation (10) follows that desired output of K+1 parallel bits can be achieved by forming matrix G_{ost}

$$G_{OSL} = \begin{bmatrix} M * G_{NSL}^{K} \\ \\ \\ M * G_{NSL}^{1} \\ \\ M * G_{NSL}^{0} \end{bmatrix}, \tag{18}$$

20

and, once matrix G_{ost} has been formed, the output generator 214 computes the values pn(n), pn(n+1), ..., pn(n+K) by multiplying the matrix G_{ost} by a column matrix of states S:

$$pn(n+K) = G_{OSL} \cdot S(n) \tag{19}$$

25

At this point of the process the set of states, $S_1(n+K)$, $S_2(n+K)$, ..., $S_N(n+K)$ is provided to an output generator 214, a next state generator 216, and the whole cycle is repeated.

In particular, let us consider the G matrix for a PN₁ shift-register to be the basic next state generator matrix G_{NST} :

Matrix G_{NSI}^{0} is as follows:

Taking the first row of matrix G_{NSI}^{0} and last row of matrix G_{NSI} , the matrix G_{OSIZ} is formed as follows:

10

15

20

25

30

35

One ordinarily skilled in the art will recognize that matrix G_{os} can be modified according to desired PN generator output, without departing from the scope of the invention. For example, if a parallel output $S_N(n)$, $S_N(n+2)$, $S_N(n+4)$, and $S_N(n+6)$ is desired, matrix G_{os} will comprise in accordance with equation (14) first row of G_{NS}^6 in row one, first row of G_{NS}^4 in row two, first row of G_{NS}^2 in row three, and first row of G_{NS}^0 in row four.

FIG. 4 depicts a block diagram of a preferred embodiment of the parallel PN generator. In addition to the state memory 212, the output generator 214, and a next state generator 216, it contains a jump generator 218 and a control processor 220. The function of the jump generator 218 is to advance the state by predetermined number of shifts. Such a function is desirable e.g., for forward link acquisition as described in aforementioned U.S. Patent Nos. 5,644,591 and 5,805,648. In the exemplary embodiment, the PN generator is employed in a receiver in accordance to an IS-95 standard. The systems designed in accordance with an IS-95 standard comprise base stations utilizing a common PN generator, with a phase offset in increments of 64 chips for a particular pilot signal. Consequently, the jump generator 218 is functionally equivalent to next state generator 216 in that it comprises a coefficient matrix G_{js} formed in accordance with the principles outlined in description of FIG. 1a, and raised to the power of 64.

Next state generator 216 receives the set of states $S_1(n)$, $S_2(n)$, . . . , $S_N(n)$ from memory 212 and generates a set of new states $S_1(n+64)$, $S_2(n+64)$, . . , $S_N(n+64)$ in accordance with equation (8), and provides the set of new states back to memory 212. The reason for having a separate next state generator 216 and a jump generator 218 is that in general $K \neq L$, and, consequently, the matrices G_{os} and G_{js} are different. As described above, the present invention is preferably implemented in hardware adapted to the specific operation and designed to perform a specific task.

The function of the control processor 220 is to coordinate cooperation between the different subsystems, and to control bit stuffing. As described, the short-code PN sequences have a period of 2^{15} generating polynomials, and from them derived matrices, generate only sequences with period $2^{15}-1$. The

control processor 200 monitors the output of the next state generator 216 for the state preceding the state corresponding to a period $2^{15}-1$, for which a computation of next state according to equation (8) would exceed the state corresponding to a period $2^{15}-1$. Once the control processor 200 detects such state it performs two operations. It will cause the output generator 214 to compute the output state values, and overwrites the last output state value with '0'. It will then avoid writing the output of the next state generator 216 into state memory 212, and will initialize the state memory 212 to initial set of states $S_1(n), S_2(n), \ldots, S_N(n)$.

10

15

20

25

30

5

FIG. 5 depicts a simplified block diagram of an exemplary receiver chain using PN generators in accordance with the invention. The RF signal arriving at the antenna 400 is provided to the receiver (RCVR) 402, which downconverts the received signal to a baseband frequency, producing I and Q components of the signal. These components are simultaneously provided to a searcher 404 and demodulators 406a, . . ., 406c. The task of the searcher 404 is to perform searches in code space to identify candidate signals to be added to the Active Set of the remote station in order to maximize the quality of the received signal. To accomplish this task, searcher 404 will control parameters of the PN sequences generators, devised in accordance with the principles outlined in present invention. An exemplary method for performing acquisition and searching in a CDMA communication system is described in detail in aforementioned U.S. Patent Nos. 5,644,591 and 5,805,648

In order to be effective, a receiver must be able to operate in a multipath environment and must be able to adapt to changes in physical location. In the aforementioned U.S. Patent Nos. 5,101,501 and 5,109,390, a method for exploiting the reception of multiple version of a signal is described. Demodulators 406a, 406b and 406c demodulate redundant versions of the same signal. These redundant version either correspond to multipath propagations of a signal from a single source or from multiple transmissions of the same information from multiple base stations in a soft handoff condition.

The demodulated signals from demodulators 406a, . . ., 406c are provided to combiner 410, which combines the signals and provides them for further processing to a de-interleaver 412 and decoder 414.

35

FIG. 6 illustrates the exemplary embodiment of the receiver structure of the present invention. The signal is received at antenna 400 and provided to

15

20

25

30

35

receiver (RCVR) 402. Receiver 402 down converts, amplifies, filters, and samples the received signal, and provides digital samples to buffer 402. In response to signals from control processor 403, a selected set of samples from buffer 404 are provided to despreader 408. In addition, in response to a signal from control processor 403, PN generator 406 provides a portion of a PN sequence to depreader 408.

Despreader 408 despreads the signal in accordance with the portion of the PN sequence provided by PN generator 406 which operates in accordance with the present invention. Within despreader 408 the PN sequence is provided to pilot despreader 412, which despreads the received signal in accordance with the portion of the short PN sequence provided by PN generator 406 and the Walsh covering sequence for the pilot signal. In the exemplary embodiment, the pilot signal is covered with the Walsh zero sequence and as such does not effect the despreading operation performed by pilot despreader 412. In addition, the portion of the short PN sequence is provided to traffic despreader 414, which despreads the signal in accordance with the short PN sequence and the Walsh traffic covering sequence W_T.

The result of the despreading operation performed by pilot despreader 412 and the result of the despreading operation performed by traffic despreader 414 are provided to dot product circuit 414. The pilot signal has known symbols and can be used to remove the phase ambiguities introduced by the propagation path as described in the aforementioned U.S. Patent No. 5,506,865. The result of the dot product operation is provided to combiner 410. Combiner 410 combines redundantly despread version of the same symbols whether transmitted by different base stations in a soft handoff environment or by the same base station traversing different propagation paths in a multipath environment.

In accordance with an exemplary demodulation chain embodiment, and previous discussion follows that a first set of matrices is required for the short-code PN generator for the I component 516, a second set for the short-code PN generator for the Q component 518, and a third set for the long-code PN generator 504.

1. Acquisition mode.

In the exemplary embodiment, the receiver is able to rapidly determine jump 64 chips ahead in the PN sequence in order to perform a correlation

process to determine the correlation energy of between the received signal and a portion of the PN sequence.

In the generation of the short PN_i sequence, state memory 212 provides the current state of the PN sequence S(n) to next state generator 216. Next state generator 216 generates the state of the PN sequence S(n+2) two cycles in advance by left-multiplying the PN sequence S(n) by the matrix G_{NSIZ} :

In the generation of the short PN_I sequence, state memory 212 provides the current state of the PN sequence S(n) to jump generator 218. Jump generator 218 generates the state of the PN sequence S(n+2) sixty-four (64) cycles in advance by left-multiplying the PN sequence S(n) by the matrix G_{ISIGA}:

	•
:	[101011010100101]
	010101101010010
•	000001100001100
	000000110000110
:	000000011000011
	000000001100001
	101011010010101
$G_{JSI64} =$	011110111101111
35104	000100001010010
	000010000101001
	101010010110001
	110101001011000
	011010100101100
:	101101010010110
20	010110101001011

In the generation of the short PN_I sequence, the next state generator 216 or the jump generator 218 provides the current state of the PN sequence S(n) to output generator 214. Output generator 214 computes the values $S_N(n+1)$, $S_N(n+2)$, . . , $S_N(n+K)$ left-multiplying a column matrix of states S(n) by the matrix G_{OSD} :

$$G_{OSI2} = \begin{bmatrix} 0100000000000000 \\ 100000000000000 \end{bmatrix}$$

The short-code PN generator for the Q component 518 uses an algorithm for PN sequence generation, identical to the one for the acquisition mode. Consequently, the set of matrices as well as their application is identical.

$$G_{osq2} = \begin{bmatrix} 0100000000000000\\ 10000000000000000 \end{bmatrix}$$

In the generation of the long-code PN sequence, state memory 212 provides the current state of the PN sequence S(n) to next state generator 216. Next state generator 216 generates the state of the PN sequence S(n+2) two cycles in advance by left-multiplying the PN sequence S(n) by the matrix G_{NSL2} :

 $G_{NSL2} =$

In the generation of the long-code PN sequence, state memory 212 provides the current state of the PN sequence S(n) to jump generator 218. Jump generator 218 generates the state of the PN sequence S(n+64) sixty-four (64) cycles in advance by left-multiplying the PN sequence S(n) by the matrix G_{ISL64}:

In the generation of the long-code PN sequence, the next state generator 216 or the jump generator 218 provides the current state of the PN sequence S(n) to output generator 214. Output generator 214 first computes the output state matrix G_{ost} by left-multiplying matrix M by matrices G_{NSLO} :

 $G_{NSL0} =$

and by matrix G_{NS1} :

 $000000000\,0000000000\,00000000\,000000100\,00$

 $G_{NSL_1} =$

, and then computes the output bits $pn_{out}(n+k)$ by multiplying the resulting matrix G_{osl} by a column matrix of states S.

2. Demodulation mode:

The demodulation mode uses algorithm for PN sequence generation, identical to the one for the acquisition mode. Consequently, the set of matrices as well as their application is identical.

The short-code PN generator for the I component **516** comprises the following matrices:

10

	010010101000000
	001001010100000
	110110000010000
	111011000001000
	011101100000100
•	101110110000010
	000101110000001
$G_{NSI8} =$	010000010000000
	011010100000000
	001101010000000
	0101000000000000
	101010000000000
	010101000000000
	001010100000000
	100101010000000

The short-code PN generator for the Q component 518 comprises the following matrices:

The long-code PN generator for 518 comprises the following matrices:

 $G_{NSL8} =$

 G_{JSL64} :

 $G_{OSL\,18} =$

 $G_{OSL\ 28} =$

 $G_{OSL 38} =$

	•					
•	0000100000	0000000000	0000000000	0000000000	00	٦
	0000010000	000000000	000000000	000000000	00	
	0000001000	000000000	000000000	000000000	00	
	1000000100	000000000	000000000	0000000000	00	
	0100000010	000000000	000000000	0000000000	00	
	1010000001	000000000	0000000000	000000000	. 00	
	0101000000	1000000000	000000000	000000000	00	
	1010000000	0100000000	000000000	000000000	. 00	
	0101000000	0010000000	000000000	0000000000	00	
	0010000000	0001000000	000000000	0000000000	00	1
	0001000000	0000100000	000000000	000000000	00	
	1000000000	0000010000	000000000	0000000000	00	I
	1100000000	000001000	000000000	000000000	00	١
	1110000000	000000100	0000000000	000000000	00	l
	0111000000	0000000010	0000000000	000000000	00	ı
	0011000000	000000001	000000000	000000000	00	I
	1001000000	0000000000	1000000000	0000000000	00	
	1100000000	0000000000	0100000000	000000000	00	I
	0110000000	000000000	0010000000	0000000000	00	I
	1011000000	000000000	0001000000	0000000000	00	l
	1101000000	0000000000	0000100000	000000000	00	l
•	1110000000	000000000	0000010000	000000000	00	l
	1111000000	000000000	000001000	000000000	00	
	0111000000	000000000	0000000100	000000000	00	
	0011000000	000000000	000000010	0000000000	00	
	0001000000	000000000	000000001	000000000	00	
	0000000000	000000000	000000000	1000000000	00	
	0000000000	000000000	000000000	0100000000	00	
	1000000000	000000000	000000000	0010000000	00	
	0100000000	0000000000	0000000000	0001000000	00	
	0010000000	000000000	000000000	0000100000	00	
1	1001000000	0000000000	000000000	0000010000	00	ĺ
	1100000000	000000000	000000000	000001000	00	1
	1110000000	000000000	000000000	000000100	00	
	0111000000	000000000	0000000000	000000010	00	
1	1011000000	0000000000	000000000	000000001	00	
Į	1101000000	.000000000	000000000	000000000	10	
	1110000000	000000000	000000000	000000000	01	
	1111000000	000000000	000000000	000000000	00	
	0111000000	000000000	000000000	000000000	00	
-	0011000000	000000000	000000000	000000000	00	
l	0001000000	0000000000	0000000000	0000000000	00]	
		•				

 $G_{OSL \ 48} =$

			<i>33</i>	!	
	0001000000	000000000	000000000	000000000	00
	0000100000	000000000	000000000	000000000	00
	0000010000	000000000	000000000	000000000	00
	0000001000	000000000	000000000	000000000	00
	1000000100	000000000	000000000	. 000000000	00
I	0100000010	000000000	000000000	000000000	00
	1010000001	000000000	000000000	0000000000	00
I	0100000000	100000000	000000000	000000000	. 00
	1010000000	0100000000	000000000	000000000	. 00
ı	0100000000	0010000000	000000000	0000000000	00
I	0010000000	0001000000	000000000	000000000	00
ı	000000000	0000100000	000000000	000000000	00
I	1000000000	0000010000	0000000000	000000000	00
	1100000000	000001000	.0000000000	000000000	00
l	1110000000	000000100	0000000000	000000000	00
ŀ	0110000000	000000010	0000000000	000000000	00
	0010000000	0000000001	000000000	0000000000	00
l	1000000000	0000000000	1000000000	0000000000	00
l	1100000000	0000000000	0100000000	0000000000	00
	011000000	000000000	0010000000	0000000000	00
	1010000000	0000000000	0001000000	0000000000	00
	1100000000	0000000000	0000100000	0000000000	00
	1110000000	000000000	0000010000	000000000	00
	1110000000	000000000	0000001000	000000000	00
	0110000000	0000000000	000000100	0000000000	00
	0010000000	0000000000	000000010	0000000000	00
	000000000	0000000000	000000001	000000000	00
	000000000	000000000	000000000	100000000	00
	000000000	000000000	000000000	0100000000	00
	1000000000	0000000000	000000000	0010000000	00
	0100000000	0000000000	000000000	0001000000	00
	0010000000	000000000	000000000	0000100000	00
	100000000	000000000	000000000	0000010000	00
	1100000000	000000000	000000000	0000001000	00
	1110000000	000000000	000000000	000000100	00
	0110000000	000000000	000000000	000000010	00
	1010000000	000000000	000000000	000000001	00
	1100000000	0000000000	000000000	000000000	10
	1110000000	0000000000	0000000000	000000000	01
	1110000000	0000000000	000000000	000000000	00
	0110000000	000000000	000000000	000000000	00
	0010000000	000000000	000000000	000000000	00]

 $G_{OSL 58} =$

	; ·					
	[0010000000	0000000000	0000000000	0000000000	0	0
	0001000000	0000000000	0000000000	0000000000	0	0
	0000100000	0000000000	0000000000	000000000	0	0
	0000010000	0000000000	0000000000	0000000000	0	0
	0000001000	0000000000	0000000000	000000000	0	J
	1000000100	000000000	000000000	000000000	00)
	0100000010	0000000000	000000000	000000000	00)
	1000000001	. 0000000000	000000000	000000000	00)
	0100000000	1000000000	000000000	000000000	00)
ı	1000000000	0100000000	000000000	000000000	00)
I	0100000000	0010000000	000000000	000000000	00)
I	0000000000	0001000000	000000000	000000000	00)
I	0000000000	0000100000	000000000	000000000	00)
١	1000000000	0000010000	000000000	000000000	00	
l	1100000000	000001000	000000000	. 000000000	00	
l	1100000000	000000100	000000000	000000000	00	
l	0100000000	000000010	000000000	000000000	00	ļ
l	0000000000	000000001	000000000	000000000	00	ı
	1000000000	000000000	100000000	000000000	00	
ĺ	1100000000	000000000	0100000000	000000000	00	
	0100000000	0000000000	0010000000	0000000000	00	
	1000000000	000000000	0001000000	000000000	00	
	1100000000	0000000000	0000100000	000000000	00	
	1100000000	000000000	0000010000	000000000	00	
	1100000000	0000000000	0000001000	000000000	00	
•	0100000000	000000000	000000100	000000000	00	
(0000000000	000000000	000000010	000000000	00	
	0000000000	0000000000	0000000001	0000000000	00	
	0000000000	0000000000	0000000000	100000000	00	
	000000000	0000000000	0000000000	0100000000	00	
	.000000000	000000000	0000000000	0010000000	00	I
	0100000000	0000000000	0000000000	0001000000	00	l
	000000000	0000000000	000000000	0000100000	00	l
	000000000	000000000	000000000	0000010000	00	ı
	100000000	000000000	000000000	000001000	00	
	100000000	000000000	000000000	000000100	00	ĺ
	100000000	000000000	000000000	000000010	00	
	000000000	000000000	000000000	000000001	00	
	100000000	000000000	000000000	000000000	10	
	100000000	000000000	000000000	000000000	01	
	100000000	000000000	000000000	000000000	00	
0	100000000	000000000	000000000	000000000	00]	

 $G_{\it OSL~68} =$

 $G_{OSL 78} =$

 $G_{\mathit{OSL}~88} =$

	•		. 30			
	100000000	000000000	000000000	000000000	00)
	0100000000		000000000	000000000	. 00)
	0010000000	0000000000	000000000	0000000000	. 00)
	0001000000	000000000	. 000000000	000000000	00)
	0000100000	000000000	000000000	000000000	00)
	0000010000	000000000	000000000	000000000	00)
	0000001000	000000000	000000000	0000000000	00)
	000000100	000000000	000000000	000000000	00)
	000000010	0000000000	000000000	000000000	00)
	0000000001	0000000000	000000000	0000000000	00)
	0000000000	1000000000	- 0000000000	000000000	Ì. 00	,
	000000000	0100000000	000000000	000000000	00	þ
	000000000	0010000000	000000000	000000000	00)
	000000000	0001000000	000000000	000000000	00	,
	000000000	0000100000	000000000	000000000	00	ł
	0000000000	0000010000	000000000	000000000	00	,
	000000000	0000001000	0000000000	000000000	00	
	000000000	000000100	0000000000	000000000	00	
	000000000	0000000010	000000000	000000000	00	
	000000000	000000001	000000000	000000000	00	
:	000000000	000000000	1000000000	000000000	00	
	000000000	000000000	010000000	000000000	00	
	0000000000	000000000	001000000	000000000	00	
	0000000000	000000000	0001000000	000000000	00	
	000000000	000000000	0000100000	000000000	00	
	000000000	000000000	0000010000	000000000	00	
	0000000000	000000000	0000001000	000000000	00	l
	0000000000	0000000000	0000000100	0000000000	00	Ì
	0000000000	0000000000	0000000010	000000000	00	ı
1	0000000000	000000000	000000001	000000000	00	l
	0000000000	000000000	000000000	1000000000	00	l
	0000000000	0000000000	0000000000	0100000000	00	l
	0000000000	000000000	0000000000	0010000000	00	l
	0000000000	000000000	0000000000	0001000000	00	l
I	0000000000	0000000000	0000000000	0000100000	00	
l	0000000000	000000000	000000000	0000010000	00	
I	000000000	0000000000	000000000	000001000	00	
I	0000000000	000000000	000000000	000000100	00	l
۱	0000000000	000000000	000000000	000000010	00	
١	0000000000	000000000	000000000	000000001	00	
	000000000	000000000	000000000	000000000	10	
L	000000000	000000000	000000000	0000000000	01	

The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. The

various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

WHAT IS CLAIMED IS:

An apparatus for generating multiple bits of a pseudonoise sequence
 with each clock pulse by computing the bits in parallel, comprising:

- a) a state memory;
- 4 b) a next state generator communicatively connected with said state memory; and
- 6 c) an output generator communicatively connected with said state memory and said next state generator.
- 2. The apparatus of claim 1 wherein said state memory has been configured to hold:
 - a) a set of initial values of states; and
- 4 b) a set of values of states generated by said next state generator or a jump generator.
- 2 3. The apparatus of claim 1 wherein said set of initial values of states comprises:
- 4 a) coefficients of a generating polynomial.
- 2 4. The apparatus of claim 3 wherein said generating polynomial is: $P_I(x) = x^{15} + x^{13} + x^9 + x^8 + x^7 + x^5 + 1$
- The apparatus of claim 3 wherein said generating polynomial is: $P_{\varrho}(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^4 + x^3 + 1$
- 2 6. The apparatus of claim 3 wherein said generating polynomial is: $P(x) = x^{42} + x^{35} + x^{33} + x^{31} + x^{27} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{19} + x^{19}$

- 2 7. The apparatus of claim 1 wherein said next state generator has been configured to:
 - a) accept one set of values of states;
- b) generate another set of values of states a first pre-determined
- number of clocks apart from current state by multiplying said accepted values by a next step matrix; and
- 8 c) provide said another set of values of states to said memory and said output generator.
- 2 8. The apparatus of claim 7 wherein said first pre-determined number of clocks is two and said next step matrix G_{NSIZ} is:

2 9. The apparatus of claim 7 wherein said first pre-determined number of clocks is two and said next step matrix G_{NSQ2} is:

2 10. The apparatus of claim 7 wherein said a first pre-determined number of clocks is eight and said next step matrix G_{NSIB} is:

2 11. The apparatus of claim 7 wherein said a first pre-determined number of clocks is eight and said next step matrix G_{NSQ2} is:

- 2 12. The apparatus of claim 1 wherein said output generator has been configured to:
 - a) one set of values of states; and
- b) generate multiple output bits in parallel by multiplying said
 6 accepted values by an output state matrix.
- 2 13. The apparatus of claim 12 wherein said multiple is two and said output state matrix G_{osiz} is:

$$G_{OS/2} = \begin{bmatrix} 010000000000000 \\ 100000000000000 \end{bmatrix}.$$

2 14. The apparatus of claim 12 wherein said multiple is two and said output state matrix G_{0002} is:

$$G_{OSQ2} = \begin{bmatrix} 0100000000000000 \\ 1000000000000000 \end{bmatrix}$$

PCT/US00/23949

44

2 15. The apparatus of claim 12 wherein said multiple is eight and said output state matrix G_{OSB} is:

4

2 16. The apparatus of claim 12 wherein said multiple is eight and said output state matrix G_{osos} is:

- 2 17. The apparatus of claim 1 further comprising a jump generator.
- 2 18. The apparatus of claim 17 wherein said jump generator has been configured to:
- a) accept one set of values of states;
- b) generate values of states a second pre-determined number of clocks apart from current state by multiplying said accepted values by a jump state matrix; and

- 8 c) provide said values of states to said memory and said output generator.
- 2 19. The apparatus of claim 18 wherein said second pre-determined number is sixty-four and said jump state matrix G_{15164} is:

20. The apparatus of claim 18 wherein said second pre-determined number is sixty-four and said jump state matrix G_{15064} is:

6

- 21. The apparatus of claim 1 further comprising a controller.
- 22. The apparatus of claim 21 wherein said controller has been configured to monitor output bits of said next state generator for a pre-determined combination, and when said pre-determined combination has been reached to:
 - a) overwrite an appropriate output bit value with a value of '0';
 - b) void writing values of states generated by said next state generator to said state memory; and
- c) instruct said state memory to provide a set of initial values of states to said next state generator.
 - 23. A pseudonoise (PN) sequence generator comprising:
- 2 a) state memory for storing at least one state of a PN generator polynomial;
- 4 b) next state generator for receiving said at least one state of said PN generator polynomial and for generating a second state of said PN generator
- 6 polynomial by performing a matrix operation upon said at least one state of said PN generator polynomial; and
- 8 c) output generator for receiving said at least one state of said PN generator polynomial and for generating at least one PN sequence output by

- 10 performing a matrix operation upon said at least one state of said PN generator polynomial.
- 24. The apparatus of Claim 23 wherein said at least one state comprises the fifteen component state of a PN short code.
- 25. The apparatus of Claim 23 wherein said at least one state comprises the forty two component state of a PN long code.
- 26. The apparatus of Claim 23 wherein said generator polynomial (P_1) is: $P_1(x) = x^{15} + x^{13} + x^9 + x^8 + x^7 + x^5 + 1$
- 27. The apparatus of Claim 23 wherein said generator polynomial (P_Q) is: $P_Q(x) = x^{15} + x^{12} + x^{11} + x^{10} + x^6 + x^5 + x^4 + x^3 + 1$
- 28. The apparatus of Claim 23 wherein said generator polynomial (P) is: $P(x) = x^{42} + x^{35} + x^{31} + x^{21} + x^{26} + x^{25} + x^{22} + x^{21} + x^{19} + x^{18} + x^{17} + x^{16} + x^{19} + x^$
- 29. The apparatus of Claim 23 wherein said next state generator computes the state of PN sequence generator two clock cycles in the future and performs said matrix operation in accordance with the matrix GNSI21:

30. The apparatus of Claim 23 wherein said next state generator performs said matrix operation in accordance with the matrix GNSQ2:

31. The apparatus of Claim 23 wherein said output generator computes the next two outputs of said PN sequence generator and performs said matrix operation in accordance with the matrix GOSI2:

 $G_{osi2} = \begin{bmatrix} 010000000000000\\ 100000000000000 \end{bmatrix}.$

- 32. The apparatus of Claim 23 wherein said PN generator programmed into 2 an ASIC.
- 33. The apparatus of Claim 23 wherein said PN generator programmed into
 2 a field programmable gate array.
- A method for generating multiple bits of a pseudonoise sequence with each clock pulse by computing the bits in parallel, comprising the steps of:
 - a) storing at least one set of values of states in a state memory;
- b) generating a second set of values of states by a next state generator, said second set being derived from said at least one set; and
- 6 c) generating a set of output bits in parallel by an output generator, said set of output bits being derived from said at least one set of values of states.
- 35. The method of claim 34, wherein the step of storing at least one set of values of states comprises the steps of:
 - a) holding a set of initial values of states; and
- b) holding another set of values of states from said next state generator or from a jump generator.
- 36. The method of claim34, wherein the step of generating a second set of values of states comprises the step of:
- a) multiplying said at least one set of values of states by a next step 4 matrix.
- 37. The method of claim 34, wherein the step of generating a set of output 2 bits in parallel comprises the step of:

- a) multiplying said at least one set of values of states by an output 4 state matrix.
- 38. The method of claim34, further comprising the step of monitoring a set of values of states of said next state generator for a pre-determined combination.
- 39. The method of claim 38, wherein upon detecting said pre-determined combination, the method further comprises the steps of:
 - a) overwriting an appropriate output bit value with a value of '0';
- b) voiding writing said second set of values of states generated by said next state generator to said state memory; and
- 6 c) instructing said state memory to provide a set of initial values of states to said next state generator.
- 40. The method of claim34, further comprising the step of generating a third set of values of states by a jump state generator, said second set being derived from said at least one set.
- 41. The method of claim 40, wherein the step of generating a third set of values of states by a jump state generator comprises the step of:
- a) multiplying said at least one set of values of states by a jump state
 4 matrix.

FIG. 1D

FIG. 4

INTERNATIONAL SEARCH REPORT

Internal Cal Application No PCT/US 00/23949

		PCT/US 00/23949
A. CLAS	SIFICATION OF SUBJECT MATTER G06F7/58	
110 /	40017738	
		*
	to International Patent Classification (IPC) or to both national classification a	ind IPC
	S SEARCHED documentation searched (classification system followed by classification syn	
IPC 7	GO6F HO3K	ibols)
1		
Document	allon searched other than minimum documentation to the extent that such do	cuments are included in the fields searched
	:	3333
Electronic o	data base consulted during the international search (name of data base and	Where practical cosmo torms upon
	ternal, PAJ, WPI Data	mele practical search terms used)
	E Dada	
C DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Calegory *	Citation of document, with indication, where appropriate, of the relevant p	
3-1,7	oration of document, with indication, where appropriate, or the relevant p	assages Relevant to claim No.
x	O. KAESTNER: "Implementing Branch	1 41
	instructions with Polynomial Counters	1-41
	COMPUTER DESIGN.	
	vol. 14, no. 1, Ĵanuary 1975 (1975-01 pages 69-75, XPO02155211	.),
	PENNWELL PUBL. LITTLETON, MASSACHUSET	тs
	US	
1	ISSN: 0010-4566 the whole document	
	 .	
X	US 3 881 099 A (AILETT CLAUDE ET AL)	1-41
!	29 April 1975 (1975-04-29) figures	
Х	US 5 910 907 A (BRADLEY ALAN S ET AL) 1–41
	8 June 1999 (1999-06-08) figures	
	-/	
X Furthe	er documents are listed in the continuation of box C.	Patent family members are listed in annex.
° Special cate	gories of cited documents :	
"A" documen	f defining the general state of the set which to per	document published after the International filing date priority date and not in conflict with the application but
"E" earlier do	diment but nublehed on or affor the international	d to understand the principle or theory underlying the antion
"L" document	e Can	ment of particular relevance; the claimed invention not be considered novel or cannot be considered to live an inventive step when the document is taken alone
citation	or other special reason (as specified) Y docu	ment of particular relevance; the claimed invention not be considered to involve an inventive step when the
ouner me	eans mor	ument is combined with one or more other such docu- nis, such combination being obvious to a person skilled
P document later that	published prior to the international filing date but	e art. ment member of the same patent family
Date of the ac	tuot completion of the Leavest water	of malling of the international search report
12	December 2000	29/12/2000
Name and ma	iling address of the ISA Author	orized officer
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Ritswilk	
	Tel. (+31-70) 340-2040. Tx. 31 651 eno el	Verhoof, P

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Internal al Application No PCT/US 00/23949

	TO BE SET PLIANT	PCT/US 00/23949			
	ntion) DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.		
Category °	Citation of document, with indication, where appropriate, of the relevant passages				
Α	US 5 228 054 A (GILHOUSEN KLEIN S ET AL) 13 July 1993 (1993-07-13) column 4, line 37 - line 60; figures		4,22,26, 39		
n	13 July 1993 (1993-07-13)		39		
	column 4, line 37 - line 60; figures				
	*				
		1			
		:			
		:			
		· :			
		. ;			
		:			
	e e		·		
1					
		· .	•		
			·		
•					
		:			
		•			
		•	Ì		
•			·		
		i			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Internal at Application No PCT/US 00/23949

	atent document d in search repor	t :	Publication date		. 1	Patent family member(s)	Publication date
US	3881099	A,	29-04-1975	:	FR DE GB IT JP NL	2211169 A 2359336 A 1433050 A 1002248 B 49090857 A 7317217 A	12-07-1974 20-06-1974 22-04-1976 20-05-1976 30-08-1974 18-06-1974
US	5910907	A	08-06-1999	•	NONE	•	
US	5228054	A .	13-07-1993		AU CN IL MX WO ZA	4045593 A 1082284 A 105207 A 9301917 A 9320630 A 9302097 A	08-11-1993 16-02-1994 16-10-1996 31-08-1994 14-10-1993 12-01-1994

Form PCT/ISA/210 (patent family annex) (July 1992)