PRUNE AND TELL: VIT VS CONVNEXT IN IMAGE CAPTIONING WITH TOKEN PRUNING

Exploring Efficient Vision-Language Models through Backbone Comparison

Ghufron Wahyu Kurniawan / 413830003

What is image captioning?

"Man in black shirt is playing quitar."

"Construction worker in orange safety vest is working on road. "

"Two young girls are playing with lego toy."

Source: COCO captions dataset

 Image captioning is a multimodal problem where the goal is to learn a mapping from visual data (images) to natural language (sentences).

Motivation

Why Efficient Image Captioning or VLM?

- •Vision-language tasks (e.g., image captioning, VLM) are computationally expensive.
- •Cross attention in image captioning are powerful, but can be redundant in token usage.
- •Reducing computation without sacrificing accuracy is crucial for real-time or edge devices.

Theoretical Background

Vision Transformer (ViT)

Paper: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (Dosovitskiy et al., 2020)

Swin Transformer

Paper: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (Liu et al., 2021)

ConvNeXt

Paper: A ConvNet for the 2020s (Liu et al., 2022)

MetaFormer

Paper: MetaFormer is Actually What You Need for Vision (Yu et al., 2022)

Token Pruning

Paper: DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

Transformer with the multihead self attention is powerfull but redundant in complexity O(n^2)

Image captioning block

Image feature extraction (VIT and Convnext)

Transformer Encoder

ConvNeXt V1 Block

ConvNeXt V2 Block

Decoder

MHSA with Cross-Attention is Key part of image captioning because find the correlation of image-text

Token Prune illustration

AFTER PRUNE

HOW we BUILD image captioning

- Vision Transformer (ViT) or ConNext as Encoder
- Projection Layer (to ensure image and text have same dimention)
- Tokenization and Positional Embedding
 - Tokenizer (Converts ground truth captions into token IDs using a vocabulary)
 - PosEmbedding (Embeds token IDs into vectors ([batch, seq_len, d_model]), Adds positional encodings to preserve word order.)
- Masking Mechanisms
 - Padding Mask: Prevents attending to <PAD> tokens.
 - Subsequent Mask: Prevents a word from attending to future words during training (causal masking).
- Transformer Decoder
 - Cross-Attention with token pruning: Attend to visual features from visual encoder.
 - Feed-Forward Network (FFN): Non-linear transformation.
- Output Layer (Caption Generation)

Training Strategy and hyperparameter

- batch_size = 128
- num_epochs = 100
- patch_dim = 768
- vocab_size = 2033
- d_model = 512
- n_layers = 2
- nhead = 4
- $ff_dim = 2048$
- dropout_ratio = 0.1
- learning_rate = 0.001

- Dataset = coco image captioning (14GB)
- Prune ratio = 30%

(train in single RTX4090, before use prune the batch size maximum=48)

Training Result

CONVNEXT BACKBONE (ACC =

Real world testing

```
A group of people walking along a snow covered slope,
                                 93, 301, 12, 350, 624, 983,
tensor([ 1,
                   89,
                         8, 10,
                                                                           0,
                                                                           0,
                                                                           0,
<matplotlib.image.AxesImage at 0x748543dfc190>
   50
  100
  150 -
  200
  250
  300
  350
              100
                       200
                                300
                                          400
                                                   500
                                                            600
```

Real world testing

MEAN ATTENTION MAP (SCALING)

Conclusion

Summary

 We compared Vision Transformer (ViT) and ConvNeXt architectures for the image captioning task, integrating token pruning to reduce computation. Both models were evaluated based on caption quality, efficiency.

Key Findings

 ViT with token pruning preserved semantic richness but was more sensitive to pruning rate.ConvNeXt, a modern CNN, showed greater robustness to token pruning with better speed-performance trade-off.Token pruning significantly improved efficiency with minimal loss in caption accuracy for both models.