Übungsserie 12

Lösung

Aufgabe 1:

a) Spektrum $\sigma(\boldsymbol{A}) = \{1, 2, 3\}$, Determinante $\det A = 6$, Spur $\mathrm{tr} \boldsymbol{A} = 6$

b)
$$\sigma(\mathbf{A}) = \{a, a + \sqrt{5}, a - \sqrt{5}\}, \det A = a(a^2 - 5), \operatorname{tr} \mathbf{A} = 3a$$

Aufgabe 2:

- a) $\lambda_{1,2} = \pm i$
 - Eigenvektor/Eigenraum zu $\lambda_1 = +i$:

$$m{x_1} = \left(egin{array}{c} -2-i \\ 1 \end{array}
ight).$$

$$\mathbf{E}_{\lambda_1} = \{ m{x} \mid m{x} = \mu \left(egin{array}{c} -2-i \\ 1 \end{array}
ight), \mu \in \mathbb{R} \}$$

• Eigenvektor/Eigenraum zu $\lambda_2 = -i$:

$$\begin{aligned} \boldsymbol{x_2} &= \left(\begin{array}{c} -2+i \\ 1 \end{array} \right) \\ \mathbf{E}_{\lambda_2} &= \{ \boldsymbol{x} \mid \boldsymbol{x} = \mu \left(\begin{array}{c} -2+i \\ 1 \end{array} \right), \mu \in \mathbb{R} \} \end{aligned}$$

Bemerkung: $x_1=x_2^*$, da auch die zugehörigen Eigenwerte $\lambda_1=\lambda_2^*$ zueinander komplex konjugiert sind.

- b) $\lambda_{1,2} = -1, \lambda_3 = 2$
 - Eigenvektoren zu $\lambda_{1,2} = -1$:

$$m{x_1} = \left(egin{array}{c} -1 \\ 1 \\ 0 \end{array}
ight), \, m{x_2} = \left(egin{array}{c} -1 \\ 0 \\ 1 \end{array}
ight)$$

 \bullet Eigenvektoren zu $\lambda_3=2$:

$$x_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Aufgabe 3:

a) Es gilt:

$$\mathbf{D} = \mathbf{T}^{-1} \mathbf{A} \mathbf{T} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right)$$

- b) Die Eigenwerte sind die Diagonalelemente von D, also $\lambda_1=1,\ \lambda_2=2,\ \lambda_3=3.$ Die Eigenvektoren sind die Spalten von T.
- c) D ist nur eindeutig bis auf die Reihenfolge der Diagonalelemente (da die Eigenwerte von A eindeutig sind). Permutiert man die Diagonalelemente von D, so müssen die Spalten von T derselben Permutation unterzogen werden.

T ist aber auch bei vorgegebenem D immer noch nicht eindeutig, denn die Spalten von T bleiben auch dann Eigenvektoren zu ihrem Eigenwert, wenn sie je mit einem beliebigen Faktor multipliziert werden.

Aufgabe 4:

Python-Code in den Übungen besprochen.

Aufgabe 5:

Python-Code in den Übungen besprochen. Nach 14 Iterationen ist $\lambda_{max}=2.99985638$ und der Eigenvektor $v=(0.29816784,0.59627983,0.74534979)^T$. Die Resultate stimmen überein.