

นำเสนอ ผศ.ดร. สุรินทร์ กิตตธรกุล

จัดทำโดย นาย วัชระ วิริยะกุล 63010871 นาย อัศราวุธ สานทอง 63011078

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชา
01076253 PROBABILITY AND STATISTICS
สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง
ภาคเรียนที่ 2 ปีการศึกษา 2564

สารบัญ

Water Quality (Drinking water potability)	3
Why is it interesting?	3
Fundamental Statistical Value	4
Histogram	5
Stem&Leaf	6
Scatterplot	7
BoxPlot	8
Probability Density Function	10
Cumulative Distribution Function	11
บทวิเคราะห์จากกราฟ	12
Confidence Interval (CI) of Mean	13
pH Column	13
Turbidity Column	19
บทวิเคราะห์ข้อมูลจากกราฟ	25
Linear Regression	28
บทวิเคราะห์ข้อมูลจากกราฟ	31

ชื่อชุดข้อมูล : Water Quality (Drinking water potability)

แหล่งที่มาของข้อมูล : https://www.kaggle.com/adityakadiwal/water-potability

Why is it interesting?

น้ำเป็นสิ่งที่จำเป็นต่อการดำรงชีวิตของมนุษย์เป็นอย่างมาก ซึ่งคุณภาพของน้ำเป็น สิ่งจำเป็นที่เราต้องรู้ก่อนที่จะนำเข้าสู่ ร่างกาย ไม่ว่าจะเป็นความเป็นกรด-เบส ปริมาณสาร แขวนลอยต่างๆ และ Organic Carbon ที่ถูกสร้างจากแบคทีเรียที่อยู่ในแหล่ง น้ำ สิ่งเหล่านี้ล้วนส่งผลต่อคุณภาพน้ำและส่งผลต่อผู้บริโภคเป็นอย่างมาก

Data frame Info:

•	ph ‡	Hardness ‡	Solids ‡	Chloramines ‡	Sulfate ‡	Conductivity ‡	Organic_carbon ‡	Trihalomethanes ‡	Turbidity ‡	Potability ‡
4	8.316766	214.37339	22018.417	8.059332	356.8861	363.2665	18.436524	100.34167	4.628771	0
5	9.092223	181.10151	17978.986	6.546600	310.1357	398.4108	11.558279	31.99799	4.075075	0
6	5.584087	188.31332	28748.688	7.544869	326.6784	280.4679	8.399735	54.91786	2.559708	0
7	10.223862	248.07174	28749.717	7.513408	393.6634	283.6516	13.789695	84.60356	2.672989	0
8	8.635849	203.36152	13672.092	4.563009	303.3098	474.6076	12.363817	62.79831	4.401425	0
10	11.180284	227.23147	25484.508	9.077200	404.0416	563.8855	17.927806	71.97660	4.370562	0
11	7.360640	165.52080	32452.614	7.550701	326.6244	425.3834	15.586810	78.74002	3.662292	0
13	7.119824	156.70499	18730.814	3.606036	282.3441	347.7150	15.929536	79.50078	3.445756	0
16	6.347272	186.73288	41065.235	9.629596	364.4877	516.7433	11.539781	75.07162	4.376348	0
18	9.181560	273.81381	24041.326	6.904990	398.3505	477.9746	13.387341	71.45736	4.503661	0
20	7.371050	214.49661	25630.320	4.432669	335.7544	469.9146	12.509164	62.79728	2.560299	0
22	6.660212	168.28375	30944.364	5.858769	310.9309	523.6713	17.884235	77.04232	3.749701	0
25	5.400302	140.73906	17266.593	10.056852	328.3582	472.8741	11.256381	56.93191	4.824786	0
26	6.514415	198.76735	21218.703	8.670937	323.5963	413.2905	14.900000	79.84784	5.200885	0
27	3.445062	207.92626	33424.769	8.782147	384.0070	441.7859	13.805902	30.28460	4.184397	0
31	7.181449	209.62560	15196.230	5.994679	338.3364	342.1113	7.922598	71.53795	5.088860	0
33	10.433291	117.79123	22326.892	8.161505	307.7075	412.9868	12.890709	65.73348	5.057311	0
34	7.414148	235.04453	32555.853	6.845952	387.1753	411.9834	10.244815	44.48930	3.160624	0
36	5.115817	191.95274	19620.545	6.060713	323.8364	441.7484	10.966486	49.23823	3.902089	0
37	3.641630	183.90872	24752.072	5.538314	286.0596	456.8601	9.034067	73.59466	3.464353	0
40	9.267188	198.61439	24683.724	6.110612	328.0775	396.8769	16.471969	30.38331	4.324005	0
42	5.331940	194.87407	16658.877	7.993830	316.6752	335.1204	10.180514	59.57271	4.434820	0
43	7.145772	238.68993	28780.340	6.814029	385.9757	332.0327	11.093163	66.13804	5.182591	0

หมายเหตุ: จะเห็นว่าลำดับของข้อมูลไม่ได้ถูกเรียงตามลำดับเนื่องจากมีการตัดแถวของข้อมูลที่ไม่ทราบค่าออกไป [na.omit(data): in R programing] เพื่อให้ได้การวิเคราะห์ผลที่แม่นยำที่สุดจากข้อมูลทั้งหมด 3276 ตัวอย่างเมื่อตัดข้อมูลที่ไม่ ทราบค่าทั้งหมดออกไปจะเหลือข้อมูลทั้งหมด 1980(pH), 2011(Turbidity) ตัวอย่าง และ เลือกมาวิเคราะห์เฉพาะคอลัมน์ที่ สนใจคือ pH, Turbidity และ Potability

Fundamental Statistical Value:

Statistical value	Non-Dri	nkable Water	Drinkable Water			
Statistical value	рН	Turbidity (NTU)	рН	Turbidity (NTU)		
Mean	7.0672	3.9552	7.1138	3.9913		
Median	6.9920	3.9441	7.0465	4.0073		
Mode	8.3168	4.6288	9.4451	3.8752		
1st Quartile	5.9829	3.4447	6.2560	3.4406		
3rd Quartile	8.1420	4.4975	7.9552	4.5275		
Interquartile	2.1591	1.0528	1.6991	1.0868		
Min	1.4318	1.4500	0.2275	1.4922		
Max	14.0000	6.4947	11.8981	6.4942		
Range	12.5682	5.0447	11.6706	5.0020		
STD.	1.6591	0.7829	1.4376	0.7764		
Variance	2.7526	0.6131	2.0668	0.6028		

Histogram:

หมายเหตุ: NTU ย่อมาจาก Nephelometric turbidity unit โดยเป็นหน่วยวัดความขุ่นของน้ำโดยวัดจากสาร
แขวนลอยในน้ำในหน่วย mg/l หรือ ppm ซึ่งสารแขวนลอย 1 mg/l เท่ากับ 3 NTU องค์การอนามัยโลกกำหนดไว้ว่าน้ำที่สามารถ
นำมาบริโภคได้ไม่ควรจะมีค่าของ Turbidity เกิน 5 NTU

#Histrogram
#pH
hist(ph,
 main = "pH of The Water",
 xlab = "pH",
 ylab = "Frequency (Samples)",
 col = "orange",
 border = "brown"
)
#Turbidity
hist(turbidity,
 main = "Turbidity of The Water",
 xlab = "Turbidity(NTU)",
 ylab = "Frequency (Samples)",
 col = rgb(.182,.66,.23),
 border = rgb(.37,.119,.232)
)

Stem and Leaf:

- pH
- Non-Drinkable Water

O Drinkable Water

- Turbidity
 - O Non-Drinkable Water

O Drinkable Water

หมายเหตุ: เนื่องจากข้อมูลมีจำนวนมากจึงไม่สามารถแสดงออกมาทั้งหมดได้ เพราะจะทำให้เกิดความไม่สะอาดในการ รายงานผู้จัดทำจึงกำหนดความกว้างของ leaf ไว้เพียง 80 หน่วยเท่านั้น

Scatter Plot:

ตัวแปรต้น : pH

ตัวแปรตาม : Turbidity

Boxplot:

Before remove outlier:

After remove outlier:

Probability Density Function:

Non-Drinkable Water

Drinkable Water


```
#Prob density func.
dens_pH <- density(ph)
plot (dens_pH,
    main = "Probability Density Function of pH",
    xlab = "pH",
    ylab = "Density",
)
polygon(dens_pH, col = "orange", border = "brown")
#Flurbidity
dens_Turb <- density(turbidity)
plot(dens_Turb,
    main = "Probability Density Function of Turbidity",
    xlab = "Turbidity (NTU)",
    ylab = "Density",
)
polygon(dens_Turb, col = rgb(.182,.66,.23), border = rgb(.37,.119,.232))</pre>
```

Cumulative Distribution Function:

Non-Drinkable Water

Drinkable Water


```
#Cumulative distribution function
#pH

cdf_pH <- ecdf(ph)
plot(cdf_pH,
    main = "Cumulative Distribution Function of pH",
    xlab = "pH",
    ylab = "Density",
)
#Turbidity
cdf_Turb <- ecdf(turbidity)
plot(cdf_Turb,
    main = "Cumulative Distribution Function of Turbidity",
    xlab = "Turbidity (NTU)",
    ylab = "Density",
)</pre>
```

บทวิเคราะห์

จากการวิเคราะห์ Histogram ทั้งในส่วนของน้ำที่บริโภคได้และบริโภคไม่ได้ค่าของ pH มีช่วงที่ใกล้เคียงกันคือ 4-8 pH ซึ่งไม่สามารถสรุปได้ว่า pH เท่าใดควรเป็นค่าที่เหมาะสมสำหรับน้ำที่นำมาบริโภคจึงสามารถสรุปได้ว่า pH ไม่ใช่พารามิเตอร์ที่ เหมาะสมสำหรับข้อมูลชุดนี้ในการสร้างโมเดลทำนายน้ำที่บริโภคได้หรือไม่ได้

จากการวิเคราะห์ในส่วนของ Scatter Plot ของทั้งน้ำที่สามารถนำมาบริโภคได้และบริโภคไม่ได้ ค่าความขุ่น (Turbidity)จะอยู่ในช่วงเดียวกันแต่จะแตกต่างกันค่อนข้างชัดเจนคือค่าของ pH ที่ในส่วนของน้ำที่บริโภคได้นั้นจะเกาะกลุ่มในช่วง pH 6-8 และน้ำบริโภคไม่ได้จะเกาะกลุ่มในช่วง pH 4-8 อีกทั้งค่าของ pH ส่งผลต่อความขุ่นของน้ำโดย pH แปรผันตรงกับความ ขุ่น

จากการวิเคราะห์ในส่วนของ PDF และ CDF จะเป็นแนวโน้มเดียวกับ Scatter Plot คือน้ำที่สามารถบริโภคได้จะมี pH 6-9 และน้ำบริโภคไม่ได้จะเกาะกลุ่มในช่วง pH 4-10 และค่าความขุ่น(Turbidity) อยู่ใมนช่วง 3-5 NTU

สรุปผล

น้ำที่สามารถบริโภคได้นั้นจากกลุ่มตัวอย่างจะมีค่า pH เป็นกลางคือช่วง 6-8 และในส่วนของค่าความขุ่นจะอยู่ใน ช่วง 3-5 NTU โดยยังมีค่าที่ทับซ้อนกันอยู่บางส่วนซึ่งสามารถคำนวณเป็น Error ของการคำนวณได้แต่ก็ยากที่จะสรุปให้ลงตัวได้ ยกตัวอย่างเช่น ผลกระทบของ pH ต่อความขุ่นของน้ำ ทั้งนี้หากต้องการความชัดเจนที่มากขึ้นควรจะใช้คอลัมน์อื่นๆเพื่อมา ประกอบการพิจารณาด้วย เช่น จำนวนของคาร์บอนที่ถูกสร้างจากแบคทีเรียในน้ำเป็นต้น

Confidence Interval (CI) of Mean

pH Population Mean (μ) of non-drinkable water = 7.0576 pH Population Mean (μ) of drinkable water = 7.1206 Turbidity Population Mean (μ) of non-drinkable water = 3.956 Turbidity Population Mean (μ) of drinkable water = 3.9794

pH Column

Non-Drinkable Water

Figure 1: Confidence Interval of pH Mean (Confidence level: 90%) from non-drinkable water samples round.

Figure 2: Confidence Interval of pH Mean (Confidence level: 95%) from 50 non-drinkable water samples/round.

```
#### Confidence Interval

getCI <- function(cl,n,x){
    m <- mean(x)
    s <- s/sqrt(n)
    z <- qnorm(cl)
    me <- se*z
    ci <- c(m-me,m+me)
    return(ci)

}

S_rounds = 50

S_round = c(l:rounds)
    snsmples = 50

pop_pot0_ph_mean = mean(data_Pot0_no_out$pH)
pop_pot1_ph_mean = mean(data_Pot0_no_out$pH)
pop_pot1_ph_mean = mean(data_Pot1_no_out$pH)
pop_pot1_ph_sd = sd(data_Pot1_no_out$pH)
pop_pot1_turb_sd = sd(data_Pot1_no_out$pth)
pop_pot1_turb_sd = sd(data_Pot1_no_out$phh)
p
```


Figure 3: Confidence Interval of pH Mean (Confidence level: 99%) from 50 non-drinkable water samples/round.

- Drinkable Water

Figure 4: Confidence Interval of pH Mean (Confidence level: 90%) from 50 drinkable water samples/round.

Figure 5: Confidence Interval of pH Mean (Confidence level: 95%) from 50 drinkable water samples/round.

Figure 6: Confidence Interval of pH Mean (Confidence level: 99%) from 50 drinkable water samples/round.

Turbidity Column

Non-Drinkable Water

Figure 7: Confidence Interval of Turbidity Mean (Confidence level: 90%) from 50 non-drinkable water samples/round.

Figure 8: Confidence Interval of Turbidity Mean (Confidence level: 95%) from 50 non-drinkable water samples/round.

Figure 9: Confidence Interval of Turbidity Mean (Confidence level: 99%) from 50 non-drinkable water samples/round.

- Drinkable Water

Figure 10: Confidence Interval of Turbidity Mean (Confidence level: 90%) from 50 drinkable water samples/round.

Figure 11: Confidence Interval of Turbidity Mean (Confidence level: 95%) from 50 drinkable water samples/round.

Figure 12: Confidence Interval of Turbidity Mean (Confidence level: 99%) from 50 drinkable water samples/round.

Mean With	Non-Drinkable Water						Drinkable Water					
	рН			Turbidity			рН			Turbidity		
CL	Lower	Upper	Range	Lower	Upper	Range	Lower	Upper	Range	Lower	Upper	Range
CL	bound	bound		bound	bound		bound	bound		bound	bound	
90%	6.4893	7.8756	1.3863	3.5725	4.3288	0.7563	6.5004	7.7151	1.2147	3.6774	4.3310	0.6536
95%	6.2824	7.7758	1.4934	3.5576	4.3392	0.7816	6.4268	7.7559	1.3291	3.6189	4.3661	0.7472
99%	5.8556	7.8850	2.0294	3.4676	4.4050	0.9374	6.3693	7.9054	1.5361	3.5610	4.4882	0.9272

Figure 13: Conclusion Table of Confidence Interval

บทวิเคราะห์ข้อมูลจากกราฟ

- วิเคราะห์ข้อมูลจากกราฟกลุ่มของ Confidence Level 90 %
 - O Non-Drinkable Water
 - pH: มี 45 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น 90% ของ ข้อมูลทั้งหมดและมี 10% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval
 - Turbidity: มี 44 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น
 88% ของข้อมูลทั้งหมดและมี 12% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval
 - O Drinkable Water
 - pH: มี 44 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น 88% ของ ข้อมูลทั้งหมดและมี 12% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval
 - Turbidity: มี 47 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น
 94% ของข้อมูลทั้งหมดและมี 6% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval

- วิเคราะห์ข้อมูลจากกราฟกลุ่มของ Confidence Level 95 %

- O Non-Drinkable Water
 - pH: มี 47 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น 94% ของ ข้อมูลทั้งหมดและมี 6% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval
 - Turbidity: มี 48 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น
 96% ของข้อมูลทั้งหมดและมี 4% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval

O Drinkable Water

- pH: มี 47 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น 94% ของ ข้อมูลทั้งหมดและมี 6% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval
- Turbidity: 47 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น 94% ของข้อมูลทั้งหมดและมี 6% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval

- วิเคราะห์ข้อมูลจากกราฟกลุ่มของ Confidence Level 99 %

- O Non-Drinkable Water
 - pH: มี 49 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น 98% ของ
 ข้อมูลทั้งหมดและมี 2% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval
 - Turbidity: มี 49 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น
 98% ของข้อมูลทั้งหมดและมี 2% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval

O Drinkable Water

- pH: มี 49 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น 98% ของ ข้อมูลทั้งหมดและมี 2% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval
- Turbidity: มี 49 ค่าจาก 50 ค่าที่อยู่ในช่วงของ Confidence Interval ที่สร้างขึ้นมา หรือคิดเป็น
 98% ของข้อมูลทั้งหมดและมี 2% ที่ค่า Population mean ไม่ได้อยู่ในช่วง Confidence Interval

ซึ่งค่าเหล่านี้สามารถบ่งบอกได้ว่า มีโอกาส k% (Confidence level = k) โดยประมาณที่ Confidence interval ที่ถูกสร้างขึ้นมาจะคลอบคลุมค่าของ Population mean

การนำไปใช้จริง

- Non-Drinkable Water
 - ОрН
- มีโอกาสประมาณ 90% ที่น้ำจะมีค่า pH อยู่ระหว่าง 6.4893 7.8756
- มีโอกาสประมาณ 95% ที่น้ำจะมีค่า pH อยู่ระหว่าง 6.2824 7.7758
- มีโอกาสประมาณ 99% ที่น้ำจะมีค่า pH อยู่ระหว่าง 5.8556 7.8850
- O Turbidity (NTU)
 - มีโอกาสประมาณ 90% ที่น้ำจะมีค่า Turbidity อยู่ระหว่าง 3.5725 4.3288 NTU
 - มีโอกาสประมาณ 95% ที่น้ำจะมีค่า Turbidity อยู่ระหว่าง 3.5576 4.3392 NTU
 - มีโอกาสประมาณ 99% ที่น้ำจะมีค่า Turbidity อยู่ระหว่าง 3.4676 4.405 NTU
- Drinkable Water
 - ОрН
- มีโอกาสประมาณ 90% ที่น้ำจะมีค่า pH อยู่ระหว่าง 6.5004 7.7151
- มีโอกาสประมาณ 95% ที่น้ำจะมีค่า pH อยู่ระหว่าง 6.4268 7.7559
- มีโอกาสประมาณ 99% ที่น้ำจะมีค่า pH อยู่ระหว่าง 6.3693 7.9054
- O Turbidity (NTU)
 - มีโอกาสประมาณ 90% ที่น้ำจะมีค่า Turbidity อยู่ระหว่าง 3.6774 4.331 NTU
 - มีโอกาสประมาณ 95% ที่น้ำจะมีค่า Turbidity อยู่ระหว่าง 3.6189 4.3661 NTU
 - มีโอกาสประมาณ 99% ที่น้ำจะมีค่า Turbidity อยู่ระหว่าง 3.561 4.4882 NTU

Linear Regression

Graph

- ตัวแปรต้น คือ pH
- ตัวแปรตามคือ Turbidity(ความขุ่น)

Figure 14: Linear Regression Line with Scatterplot XY: X(pH), Y(Turbidity)

จะได้สมการคือ y=0.004x+3.9277 โดยมีค่า r=0.0081 ซึ่งเป็นค่า r ที่น้อยมากหรือ เรียกว่า Weak or No Correlation บ่งบอกได้ถึงข้อมูลทั้งสองคอลัมน์นั้นไม่มีความสัมพันธ์เชิงเส้นตรงต่อกันและกันทาง ผู้จัดทำจึงลองปรับเปลี่ยนการจับคู่ของคอลัมน์ดังผลลัพธ์ถัดไป

- ตัวแปรต้นคือ pH
- ตัวแปรตามคือ Potability(สามารถบริโภคได้)

Figure 15: Linear Regression Line with Scatterplot XY: X(pH), Y(Potability)

จะได้สมการคือ y=0.0071x+0.3073 โดยมีค่า r=0.0231 ซึ่งเป็นค่า r ที่ดีกว่าการ จับคู่ระหว่าง pH กับ Turbidity เล็กน้อย คือจาก 0.8% มาสู่ 2.31% แต่ก็ยังคงเป็น Weak or No Correlation อยู่ดี

ผู้จัดทำจึงลองปรับเปลี่ยนการจับคู่ของคอลัมน์ดังผลลัพธ์ถัดไป

[1] 0.02311571

```
ggplot(data_Pot0_no_out_1,aes(pH,Potability))+
    geom_point(color = "red")+
    geom_smooth(method = "lm",size = 1, alpha = 1)+
    xlab("pH")+ylab("Potability")+
    theme(axis.title = element_text(size=10))

model <- lm(Potability~pH,data = data_Pot0_no_out_1)
model
tidy(model)
x<-data_Pot0_no_out_1$pH
y<-data_Pot0_no_out_1$Potability
xbar <- mean(x)
ybar <- mean(y)
n <- length(y)
# y = 0.307

SSxy <- sum(x*y) - n*xbar*ybar
SSxy <- sum(x*2) - n*xbar^2
SSyy <- sum(y^2) - n*ybar^2
r <- SSxy/(sqrt(SSxx)*sqrt(SSyy))</pre>
```

- ตัวแปรต้นคือ Turbidity(ความขุ่น)
- ตัวแปรตามคือ Potability(สามารถบริโภคได้)

Figure 16: Linear Regression Line with Scatterplot XY: X(pH), Y(Potability)

จะได้สมการคือ y=0.0081x+0.325 โดยมีค่า r=0.0129 ซึ่งเป็นค่า r ที่ด้อยกว่าการ จับคู่ระหว่าง pH กับ Portability เสียอีก

<u>วิเคราะห์ข้อมูลจากกราฟ</u>

บทวิเคราะห์ตามหลักคณิตศาสตร์

จากกราฟ Linear Regression ทั้งสามกราฟที่ได้ ดังนี้

(pH, Turbidity): y = 0.004x + 3.9277; r = 0.0081

(pH, Potability): y = 0.0071x + 0.3073; r = 0.0231

(Turbidity, Potability): y = 0.0081x + 0.325; r = 0.0129

จากกราฟ Linear Regression ทั้งสามกราฟที่ได้จัดทำขึ้นซึ่งเป็นการจับคู่กันของคอลัมน์ข้อมูลที่สนใจทั้ง 3 คอลัมน์ พบว่าความชันของแต่ละกราฟมีค่าเป็นบวก บ่งบอกถึงว่าข้อมูลของแต่ละกราฟมีแนวโน้มที่จะแปรผันตามกัน อย่างเช่น หากน้ำที่มีค่า pH สูงขึ้นก็ยังมีแนวโน้มที่จะมีความขุ่นเพิ่มมากขึ้นด้วยหรือน้ำที่สามารถบริโภคได้ส่วนใหญ่ค่า pH ก็จะอยู่ ในช่วงที่มีค่าสูงเช่นกัน แต่ถึงอย่างไรความแม่นยำของกราฟนั้นมีไม่ถึง 5% จึงไม่สามารถสรุปได้ว่าข้อมูลที่เหลือทั้งหมด นอกจากกลุ่มตัวอย่างที่ตัดข้อมูลที่เป็น Outlier หรือ NA ออกนั้นจะมีแนวโน้มดังเช่นกราฟ การสรุปภาพรวมนั้นจึงต้อง อาศัยข้อมูลคอลัมน์อื่นประกอบด้วย ยกตัวอย่างคอลัมน์ที่สำคัญสำหรับพิจารณาคุณภาพของน้ำคือ Trihalomethanes เป็น สารพิษที่ถูกสร้างมาจากการเติมคอรีนเพื่อฆ่าเชื้อภายในน้ำเป็นต้น

กล่าวโดยสรุปคือ การทำ Linear Regression ไม่เหมาะกับชุดข้อมูลที่เลือกมาทำให้ผลการทำนายโดยใช้ Linear Regression มีความแม่นยำต่ำ ไม่สามารถนำไปใช้ต่อยอดได้

การปรับใช้จริง

จากกราฟ Linear Regression ทำให้เห็นถึงความสำคัญของ Parameters ต่างๆที่มีผลต่อคุณภาพน้ำ จากที่ผู้จัดทำได้ ทดลองกับทุกๆคอลัมน์พบว่า ความชั้นของกราฟหรือค่า m (y = mx + c) โดยส่วนใหญ่มีค่าเป็นบวกกับแทบทุกๆ parameter ดังภาพที่แนบมา

Figure 17: Scatterplot for all column

สรุปผลการศึกษาและเสนอแนะแนวทางการศึกษาเพิ่มเติม

จากการศึกษาพบว่าชุดข้อมูลชุดนี้ไม่เหมาะกับการวิเคราะห์แบบ Linear Regression เพราะไม่สามารถทำนายผลแนวโน้มที่ จะเกิดขึ้นได้ ผู้จัดทำจึงได้ทำการลองการจัดการข้อมูลแบบอื่น ได้แก่ Random, ForestDecision, TreeKNNSupport, Vector,

MachinesLogistic, RegressionNaive Bayes ดังผลลัพธ์ต่อไปนี้

จะเห็นได้ว่าการจัดการข้อมูลแบบอื่นๆ เหมาะสมและสามารถทำนายได้ดีกว่าการทำแบบ Linear Regression ดังนั้นแนวทางการศึกษาเพิ่มเติมคือ

- ควรจะใช้การจัดการข้อมูลแบบอื่น ๆ ในการสร้างโมเดลทำนายแนวโน้ม
- ควรศึกษาพารามิเตอร์ที่สำคัญเกี่ยวกับคุณภาพน้ำให้ละเอียดเพื่อให้สามารถตัดสินใจได้ว่าควรตัดสินใจเลือก พารามิเตอร์ใดเป็นหลัก ให้เหมาะกับการคัดเลือกคุณภาพน้ำ และเพื่อลดต้นทุนการทดสอบ ยกตัวอย่างเช่นหาก
 - เลือกกำจัดน้ำที่ไม่ได้คุณภาพโดยใช้ค่าของ Conductive หรือค่าความนำไฟฟ้าของน้ำ จะเห็นได้ว่าเราสามารถ ตัดกลุ่มตัวอย่างออกไปได้จำนวนมาก จะทำให้สามารถ ลดค่าใช้จ่ายในการตรวจสอบข้อมูลได้
- หากยังมีการใช้งานข้อมูลทางสถิติในอนาคตอย่าง ต่อเนื่องผู้ศึกษาควรจะศึกษาเครื่องมือต่างๆให้ดี มากกว่านี้ เพื่อความเหมาะสมในการคัดเลือกแนว ทางการวิเคราะห์ข้อมูล

data_Chloramines_RM data_Conductivity_RM ● data pH RM data_Pot0_no_out data_Pot0_no_out_1 data_Pot1_no_out data_Pot1_no_out_1 data_Potability_0 data_Potability_1 data_Solids_RM • data_Sulfate_RM data_Turbidity_RM

59 obs. of 10 variables 794 obs. of 10 variables • data_Organic_carbon_RM 2010 obs. of 10 variables 961 obs. of 10 variables 1184 obs. of 2 variables 1184 obs. of 3 variables 793 obs. of 2 variables 793 obs. of 3 variables 1200 obs. of 10 variables 811 obs. of 10 variables 0 obs. of 10 variables 0 obs. of 10 variables • data_Trihalomethanes_RM 1623 obs. of 10 variables 1827 obs. of 10 variables

SourceCode :

R: https://drive.google.com/drive/folders/1q8blktKrqvKYfphlOVWFxkhdK9-gMuHT?usp=sharing

Python (Pandas, Seaborn): https://drive.google.com/drive/folders/1ogYMAHUXm0QICeCvAVRLJjvzljpjJ f6?usp=sharing