# Acute respiratory failure

Continued development of BASIC Collaboration courses is supported by unrestricted educational grants from:













#### **Definition**

Acute respiratory failure occurs when the pulmonary system is no longer able to meet the metabolic demands of the body

Hypoxaemic respiratory failure

 $PaO_2 \le 8 \text{ kPa}$  when breathing room air



combination of both

Hypercapnic respiratory failure

PaCO<sub>2</sub> ≥ 6.7 kPa



# Basic phyisology

#### Oxygen



Continuous delivery of oxygen from inspired air to tissue cells

3 sequential events

Uptake of oxygen from alveolar air into the lungs

Transport/delivery of oxygen in blood from lung to tissues

Release of oxygen from blood to tissues

#### Oxygen uptake

#### Key parameter: PaO<sub>2</sub>

PaO<sub>2</sub> in arterial blood is the result of oxygen uptake via diffusion through the alveolo-capillary membrane from the lungs to the blood

Diffusion

capacity



# Oxygen uptake: PAO<sub>2</sub> - FiO<sub>2</sub>

#### Alveolarpressure= $P_AO_2 + P_ACO_2 + P_AH_2O + P_AN_2$



#### Oxygen uptake

#### Key parameter: PaO<sub>2</sub>

PaO<sub>2</sub> in arterial blood is the result of oxygen uptake via diffusion through the alveolo-capillary membrane from the lungs to the blood



# Oxygen uptake: PAO<sub>2</sub> - pACO<sub>2</sub>

#### A Ive o larpressure = $P_AO_2 + P_ACO_2 + P_AH_2O + P_AN_2$



A-a gradient

normal: hypoxia due to hypercapnia

increased: hypoxia due to shunt or diffusion abnormality

### Oxygen uptake

#### Key parameter: PaO<sub>2</sub>

PaO<sub>2</sub> in arterial blood is the result of oxygen uptake via diffusion through the alveolo-capillary membrane from the lungs to the blood



## Oxygen uptake: Ventilation-perfusion matching



No. of lung units



Ventilation:perfusion ratio

Copyright Janet Fong, 2004





## Pulse oximetry



#### Oxygen



Continuous delivery of oxygen from inspired air to tissue cells

3 sequential events

Uptake of oxygen from alveolar air into the lungs

Transport/delivery of oxygen in blood from lung to tissues

Release of oxygen from blood to tissues

## Determinants of oxygen delivery



## Oxyhemoglobin dissociation curve



## Oxygen delivery - oxygen consumption



. Blut  $\longrightarrow$ 

 $VO_2$ = 4.1ml  $O_2$ /dL Blut x 50 = 205ml $O_2$ /min

 $DO_2$ = 19.8ml  $O_2$ /dL Blut x 50 = 990ml $O_2$ /min



# Relationship between DO<sub>2</sub> and VO<sub>2</sub>



A = delivery independent phase

B = delivery dependent phase

#### Oxygen



Continuous delivery of oxygen from inspired air to tissue cells

3 sequential events

1 Uptake of oxygen from alveolar air into the lungs

Transport/delivery of oxygen in blood from lung to tissues

Release of oxygen from blood to tissues

# Oxygen release



## Oxygen release



## Oxygen release



# Oxygen status and blood gas analysis

| Ilutgas Ergebnis  | ne der un-occordante des . |        |
|-------------------|----------------------------|--------|
| рН                | 6.885                      |        |
| pCO,              | 44.1                       | mmHg   |
| pO,               | 319*                       | mmHg   |
| 'cHCO, TP, st)c   | 8.5                        | mmol/L |
| cBase(Ecf)c       | -24.8                      | mmol/L |
| <b>s</b> O,       | 98.3                       | %      |
| xymetrie Ergebnis |                            |        |
| CIHD              | 138                        | g/L    |
| sO,               | 98.3                       | %      |
|                   |                            |        |



# Oxygen status and blood gas analysis



$$O_{2}Hb \text{ (\%)} = \frac{\text{FO}_{2}Hb}{\text{FO}_{2}Hb} + \text{FHHb} + \text{FCOHb} + \text{FMetHb}$$
 x100 = 58.9%

# Oxygen status and blood gas analysis



Continuous delivery of oxygen from inspired air to tissue cells

3 sequential events

Surrogate marker

Uptake of oxygen from alveolar air into the lungs

PaO<sub>2</sub>

Transport/delivery of oxygen in blood from lung to tissues

CaO<sub>2</sub>

Lactate

Hypoxaemia

Hypoxia

Release of oxygen from blood to tissues

p50

- hypoxemicischemic
- anemic
- histotoxic

#### Carbon dioxide

