EE655: Computer Vision & Deep Learning

Lecture 08

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

Multi-class Classification v/s Multi-label Classification

$$oxed{\mathsf{p}_{\mathsf{i}}} = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Scores from the last layer are passed through a **softmax** layer. The softmax layer converts the score into **probability** values.

We use the **sigmoid** activation function in the final layer. Sigmoid converts each score of the final node between 0 to 1 independent of what the other scores are.

Loss Functions

Multi-class Classification: Categorical Cross-entropy Loss

$$-\sum_{i}^{M}y_{o,c}\log(p_{o,c})$$

- M number of classes (dog, cat, fish)
- $-\sum_{c=1}^M y_{o,c} \log(p_{o,c})$ log the natural log y binary indicator (0 or 1) if class label c is the correct classification for observation o
 - ullet p predicted probability observation o is of class c

Multi-label Classification: Binary Cross-entropy Loss

$$ext{Loss} = -rac{1}{ ext{output}} \sum_{i=1}^{ ext{output}} y_i \cdot \log \hat{y}_i + (1-y_i) \cdot \log \left(1-\hat{y}_i
ight)$$

where \hat{y}_i is the *i*-th scalar value in the model output, y_i is the corresponding target value, and output size is the number of scalar values in the model output.

Calculate the output probabilities if following are passed to the softmax layer

 $\begin{bmatrix} 8 \\ 5 \\ 0 \end{bmatrix}$

Now, compute the categorical entropy loss if the target vector is the following:

[1 0 0]

Let's see how weights can be updated

A regression problem

Forward Propagation through Hidden Layer

Net Input For h1:

Output Of h1:

Output Of h2:

out h2 = 0.596884378

Forward Propagation through Output layers

Output For o1:

net o1 = w5*out h1 + w6*out h2 + b2*1 0.4*0.593269992 + 0.45*0.596884378 + 0.6*1 = 1.105905967

Out o1 = $1/1 + e^{-net o1}$

 $1/1 + e^{-1.105905967} = 0.75136507$

Output For o2:

Out o2 = 0.772928465

Error Computation

Error For o1:

Error For o2:

Total Error:

$$E_{total} = E_{01} + E_{02}$$

Chain Rule

$$\frac{\delta E total}{\delta w 5} = \frac{\delta E total}{\delta out \ o1} * \frac{\delta out \ o1}{\delta net \ o1} * \frac{\delta net \ o1}{\delta w 5}$$
out h2
w6
net o1 out o1 E total

Back-propagation leverages chain-rule to compute gradients gradually from backwards.

$$E_{\text{total}} = 1/2(\text{target o1} - \text{out o1})^2 + 1/2(\text{target o2} - \text{out o2})^2$$

 $\delta Etotal$

Sout o1

$$= -(\text{target o1} - \text{out o1}) = -(0.01 - 0.75136507) = 0.74136507$$

out o1 =
$$1/1+e^{-neto1}$$

 $\frac{\delta out \ o1}{\delta net \ o1}$ = out o1 (1 - out o1) = 0.75136507 (1 - 0.75136507) = 0.186815602

net o1 = w5 * out h1 + w6 * out h2 + b2 * 1

$$\frac{\delta net \ o1}{\delta w5} = 1 * out h1 \ w5^{(1-1)} + 0 + 0 = 0.593269992$$

$$\frac{\delta E total}{\delta w 5} = \frac{\delta E total}{\delta out \ o 1} * \frac{\delta out \ o 1}{\delta n e t \ o 1} * \frac{\delta n e t \ o 1}{\delta w 5}$$

Gradient Descent: a way to update the weights, requiring gradients

$$w5^{+} = w5 - n \frac{\delta E total}{\delta w5}$$

$$w5^{+} = 0.4 - 0.5 * 0.082167041$$

Updated w5 0.35891648

Like this all the weights can be updated

Back Propagation In Fully Connected Layers

Notations

- $\mathbf{n}^{[l]}$ The number of neurons in the layer l.
- $W^{[l]}$ The weight matrix associated with the layers l and l-1, of the size $(n^{[l]} \times n^{[l-1]})$. $w_{jk}^{[l]}$ refers to the weight associated with the neuron j in the layer l and the neuron k in the layer l-1.
- $b^{[l]}$ The vector of biases associated with the layer l, of the size $(n^{[l]} \times 1)$.
- $a^{[l]}$ The vector of activations of the neurons in the layer l, of the size $(n^{[l]} \times 1)$.
- $\mathbf{Z}^{[l]}$ The vector of the weighted output of the neurons in the layer l, of the size $(\mathbf{n}^{[l]} \times 1)$.
- $g^{[l]}$ The activation function applied to the output of the neurons in the layer l, $a^{[l]} = g^{[l]}(z^{[l]})$.

Computations happening in a layer

 $z^{[l]} = w^{[l]} \cdot a^{[l-1]} + b^{[l]}$

$$\mathbf{a}^{[l]} = g^{[l]}(z^{[l]})$$

Cost and how to use it to update the weights

$$C = -(y\log \hat{y} + (1 - y)\log(1 - \hat{y}))$$
$$w^{[l]} = w^{[l]} - \alpha \frac{\partial C}{\partial w^{[l]}}$$

Gradient Descent Equations

$$b^{[l]} = b^{[l]} - \alpha \frac{\partial C}{\partial b^{[l]}}$$

Forward pass

For any layer 'l'

dz/dwl can be computed easily because of weighted sum relationship. Similarly, dz/dbl

 $\frac{\partial C}{\partial w^{[l]}} =$

 $rac{\partial w^{[l]}}{\partial C} = rac{\partial z^{[l]}}{\partial C} rac{\partial z^{[l]}}{\partial C}$

However, there is no direct relationship between C and zl to compute dC/dzl

How to compute it then?

Let's open up dC/dzl a bit more using the chain rule

The idea is to progressively use the previous layer's dC/dzl while coming backwards from the last layer, whose dC/dzl can be easily computed.

$$\frac{\partial C}{\partial z^{[l]}} = \frac{\partial C}{\partial z^{[l+1]}} \cdot \frac{\partial z^{[l+1]}}{\partial a^{[l]}} \cdot \frac{\partial a^{[l]}}{\partial z^{[l]}}$$

Other terms can be computed because of weighted sum and activation function relationships

Backward

propagation dC/dz to compute dC/dw & dC/db

There is relationship between dC/dz of current layer and dC/dz of previous layer while moving backwards.

Since last layer's dC/dz can be computed, we can get the dC/dz of other layers too by exploiting the relationship between the subsequent layers just mentioned.

Computation of other terms

$$\begin{split} z^{[l+1]} &= w^{[l+1]}.a^{[l]} + b^{[l+1]} \\ \frac{\partial z^{[l+1]}}{\partial a^{[l]}} &= \frac{\partial}{\partial a^{[l]}} (w^{[l+1]}.a^{[l]} + b^{[l+1]}) \\ &= w^{[l+1]} \\ \frac{\partial z^{[l+1]}}{\partial a^{[l]}} &= w^{[l+1]} \end{split}$$

also,

$$\frac{\partial a^{[l]}}{\partial z^{[l]}} = g^{[l]\prime}(z^{[l]})$$

$$\frac{\partial a^{[l]}}{\partial z^{[l]}} = \sigma'(z^{[l]})$$

Assuming sigmoid activation

Final Formula

$$\frac{\partial C}{\partial z^{[l]}} = (w^{[l+1]^T} \cdot \frac{\partial C}{\partial z^{[l+1]}}) \cdot *\sigma'(z^{[l]})$$

. (dot) denotes matrix multiplication
* denotes element wis

.* denotes element-wise multiplication

We need to store all z's in addition to w's and b's