MP* KERICHEN 2021-2022

DS nº4 Sujet 3 (X, ÉNS)

Dans tout le sujet, $(\Omega, \mathcal{A}, \mathbb{P})$ désigne un espace probabilisé sur lequel seront définies les différentes variables aléatoires. On admet que toutes les variables aléatoires introduites peuvent bien être construites sur cet espace. On note $\mathbb{P}(A)$ la probabilité d'un événement $A \subset \Omega$ et $\mathbb{E}(X)$ l'espérance d'une variable aléatoire X sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs réelles. On rappelle que si $s \in]1, +\infty[$, la série $\sum_{n \geq 1} n^{-s}$ converge et on note $\zeta(s)$ sa somme. On dit qu'une variable aléatoire

X a valeurs dans \mathbb{N}^* suit la loi zêta de paramètre s > 1 si, pour tout $n \in \mathbb{N}^*$,

$$\mathbb{P}(X = n) = \zeta(s)^{-1} \frac{1}{n^s}$$

Si $n \in \mathbb{N}^*$ et p est un nombre premier, on note $\nu_p(n)$ la valuation de n en p. On note également $(p_k)_{k\geqslant 1}$ la suite croissante des nombres premiers.

Si $n \in \mathbb{N}^*$, on pose, $\chi_4(2n) = 0$ et $\chi_4(2n-1) = (-1)^{n-1}$. On pourra utiliser sans justification que, pour m et n dans \mathbb{N}^* , on a $\chi_4(mn) = \chi_4(m)\chi_4(n)$.

Le sujet comporte quatre parties, et les parties II et III sont indépendantes de la partie I.

Partie I

Soit s > 1 un nombre réel et soit X une variable aléatoire a valeurs dans \mathbb{N}^* suivant la loi zêta de paramètre s. Si $n \in \mathbb{N}^*$, on note $\{n \mid X\}$ l'évènement « n divise X » et $\{n \nmid X\}$ l'évènement complémentaire.

- **1a.** Calculer $\mathbb{P}(n \mid X)$ pour $n \in \mathbb{N}^*$.
- **1b.** Soit $(\alpha_i)_{i\in\mathbb{N}^*}$ une suite d'entiers naturels. Montrer que les évènements

$$\left\{p_1^{\alpha_1} \mid \mathbf{X}\right\}, \left\{p_2^{\alpha_2} \mid \mathbf{X}\right\}, \dots, \left\{p_k^{\alpha_k} \mid \mathbf{X}\right\}, \dots$$

sont mutuellement indépendants.

2a. Soit $r \ge 1$ un entier. Montrer que

$$\mathbb{P}\left(\bigcap_{i=1}^{r} \{p_i \nmid X\}\right) = \prod_{i=1}^{r} \left(1 - p_i^{-s}\right)$$

2b. En déduire que

$$\zeta(s)^{-1} = \lim_{n \to +\infty} \prod_{k=1}^{n} (1 - p_k^{-s})$$

- **3a.** Montrer que pour tout $k \in \mathbb{N}^*$, la variable aléatoire $\nu_{p_k}(\mathbf{X}) + 1$ suit la loi géométrique de paramètre $(1 p_k^{-s})$.
- **3b.** Montrer que, pour $r \in \mathbb{N}^*, k_1 < \cdots < k_r$ dans \mathbb{N}^* et $(n_1, \ldots, n_r) \in \mathbb{N}^r$, on a

$$\mathbb{P}\left(\nu_{p_{k_1}}(\mathbf{X}) = n_1, \dots, \nu_{p_{k_r}}(\mathbf{X}) = n_r\right) =$$

$$\sum_{\ell=0}^{r} (-1)^{\ell} \sum_{\substack{(\varepsilon_1, \dots, \varepsilon_r) \in \{0,1\}^r \\ \varepsilon_1 + \dots + \varepsilon_r = \ell}} \mathbb{P}\left(\nu_{p_{k_1}}(\mathbf{X}) \geqslant n_1 + \varepsilon_1, \nu_{p_{k_2}}(\mathbf{X}) \geqslant n_2 + \varepsilon_2, \dots, \nu_{p_{k_r}}(\mathbf{X}) \geqslant n_r + \varepsilon_r\right)$$

3c. En déduire que les variables aléatoires $\nu_{p_1}(X), \ldots, \nu_{p_k}(X), \ldots$ sont mutuellement indépendantes.

Si $n \in \mathbb{N}^*$, on note, pour $i \in \{0, 1, 2, 3\}$,

$$r_i(n) = \operatorname{Card} \{ d \in \mathbb{N} : d \equiv i \, [4] \text{ et } d \mid n \}$$

On pose $g(n) = r_1(n) - r_3(n)$.

- 4a. Montrer que si m et n sont deux entiers naturels non nuls et premiers entre eux, on a g(mn) = g(m)g(n).
- **4b.** Montrer que, pour tout $n \in \mathbb{N}$, et tout nombre premier p, on a

$$g(p^n) = \begin{cases} 1 & \text{si } p = 2, \\ n+1 & \text{si } p \equiv 1 \text{ [4]}, \\ \frac{1}{2} (1+(-1)^n) & \text{si } p = 3 \text{ [4]}. \end{cases}$$

5. Soit $(f_n)_{n\geqslant 1}$ une suite de fonctions de \mathbb{N}^* dans \mathbb{R} telle que, pour tout $x\in\mathbb{N}^*$, la suite $(f_n(x))_{n\geqslant 1}$ converge vers un réel f(x) quand n tend vers $+\infty$. On suppose qu'il existe une fonction $h:\mathbb{N}^*\to[0,+\infty[$ telle que h(X) est d'espérance finie et telle que $|f_n(m)|\leqslant h(m)$ pour tous m et n dans \mathbb{N}^* . Justifier que $\mathbb{E}(f(X))$ est d'espérance finie et montrer que

$$\lim_{n \to +\infty} \mathbb{E}(f_n(X)) = \mathbb{E}(f(X))$$

- **6a.** On note r(n) le nombre de diviseurs $d \ge 1$ de n. Montrer que la série $\sum_{n \ge 1} r(n) n^{-s}$ converge et que sa somme vaut $\zeta(s)^2$.
- **6b.** En déduire que la série $\sum_{n\geq 1} g(n)n^{-s}$ converge.
- 7a. Montrer que la suite de fonctions $\left(x \mapsto \prod_{k=1}^n p_k^{\nu_{p_k}(x)}\right)_{n\geqslant 1}$ de \mathbb{N}^* dans \mathbb{N}^* converge simplement vers la fonction identité.
- **7b.** Montrer que $\mathbb{E}(g(\mathbf{X})) = \lim_{n \to +\infty} \prod_{k=1}^{n} \mathbb{E}\left(g\left(p_k^{\nu_{p_k}(\mathbf{X})}\right)\right)$.
- **8a.** Montrer que si p est un nombre premier tel que $p \equiv 1$ [4], on a

$$\mathbb{E}\left(g\left(p^{\nu_p(\mathbf{X})}\right)\right) = \frac{1}{1 - p^{-s}}$$

- **8b.** Calculer $\mathbb{E}\left(g\left(p^{\nu_p(X)}\right)\right)$ si p est un nombre premier vérifiant $p\equiv 3$ [4].
- 8c. En déduire

$$\mathbb{E}(g(\mathbf{X})) = \lim_{n \to +\infty} \prod_{k=1}^{n} \frac{1}{1 - \chi_4(p_k) p_k^{-s}}$$

9a. Montrer que, si p est un nombre premier,

$$\mathbb{E}\left(\chi_4\left(p^{\nu_p(\mathbf{X})}\right)\right) = \frac{1 - p^{-s}}{1 - \chi_4(p)p^{-s}}$$

9b. Montrer que

$$\mathbb{E}\left(\chi_4(\mathbf{X})\right) = \frac{1}{\zeta(s)} \lim_{n \to +\infty} \prod_{k=1}^n \frac{1}{1 - \chi_4\left(p_k\right) p_k^{-s}}$$

9c. En déduire que la série

$$\sum_{n \ge 0} \frac{(-1)^n}{(2n+1)^s}$$

est convergente et que sa somme vaut $\mathbb{E}(g(X))$.

Partie II

10a. Soit $n \in \mathbb{N}$. Expliciter un polynôme $P_n \in \mathbb{R}[X]$ tel que, pour tout $\theta \in \mathbb{R}$,

$$\sin((2n+1)\theta) = \sin(\theta) P_n \left(\sin^2(\theta)\right).$$

Indication: on pourra développer $(\cos(\theta) + i\sin(\theta))^{2n+1}$.

10b. Déterminer les racines de P_n et en déduire que, pour tout $x \in \mathbb{R}$,

$$P_n(x) = (2n+1) \prod_{k=1}^n \left(1 - \frac{x}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \right).$$

10c. En déduire que, pour tout $x \in \mathbb{R}$,

$$\sin(\pi x) = (2n+1)\sin\left(\frac{\pi x}{2n+1}\right) \prod_{k=1}^{n} \left(1 - \frac{\sin^2\left(\frac{\pi x}{2n+1}\right)}{\sin^2\left(\frac{k\pi}{2n+1}\right)}\right)$$

Soit $x \in \mathbb{R} \setminus \mathbb{Z}$. Soit $m \in \mathbb{N}$ tel que m > |x|. On pose, pour $n \in \mathbb{N}$ tel que n > m:

$$u_{m,n}(x) = (2n+1)\sin\left(\frac{\pi x}{2n+1}\right) \prod_{k=1}^{m} \left(1 - \frac{\sin^2\left(\frac{\pi x}{2n+1}\right)}{\sin^2\left(\frac{k\pi}{2n+1}\right)}\right)$$

 $_{
m et}$

$$v_{m,n}(x) = \prod_{k=m+1}^{n} \left(1 - \frac{\sin^2\left(\frac{\pi x}{2n+1}\right)}{\sin^2\left(\frac{k\pi}{2n+1}\right)} \right)$$

- 11a. Montrer que les suites, indexées par n, $(u_{m,n}(x))_{n>m}$ et $(v_{m,n}(x))_{n>m}$ sont convergentes dans \mathbb{R}^* . On note $v_m(x)$ la limite de $(v_{m,n}(x))_{n>m}$.
- **11b.** Montrer que, pour $n \in \mathbb{N}$ tel que n > m, on a

$$1 \geqslant v_{m,n}(x) \geqslant \prod_{k=m+1}^{n} \left(1 - \frac{\pi^2 x^2}{4k^2}\right)$$

et en déduire que $\lim_{m \to +\infty} v_m(x) = 1$

11c. En déduire que, pour tout $x \in \mathbb{R}$,

$$\sin(\pi x) = \pi x \lim_{n \to +\infty} \prod_{k=1}^{n} \left(1 - \frac{x^2}{k^2} \right)$$

Partie III

On rappelle que la suite $((\sum_{k=1}^n k^{-1}) - \ln(n))_{n\geqslant 1}$ converge. On note γ sa limite. Soit $n \in \mathbb{N}^*$. Pour $x \in]0, +\infty[$, on pose

$$\Gamma_n(x) = \frac{1}{x} e^{-\gamma x} \prod_{k=1}^n \frac{e^{xk^{-1}}}{1 + xk^{-1}}$$

12. Montrer que la suite de fonctions $(\Gamma_n)_{n\geqslant 1}$ converge simplement sur $]0,+\infty[$ vers une fonction Γ de $]0,+\infty[$ vers $]0,+\infty[$.

- **13.** Montrer que, pour tout $x \in]0, +\infty[$, on a $\Gamma(x+1) = x\Gamma(x)$.
- **14a.** Montrer que la fonction Γ est de classe \mathcal{C}^2 et que, pour tout $x \in]0, +\infty[$,

$$\ln(\Gamma)''(x) = \sum_{k=0}^{+\infty} \frac{1}{(x+k)^2}$$

14b. Montrer que $\lim_{x\to +\infty} \ln(\Gamma)''(x) = 0$.

Soit $f:]0, +\infty[\to]0, +\infty[$ une fonction de classe C^2 telle que la fonction $\ln(f)$ est convexe et vérifie f(1) = 1 et f(x+1) = xf(x) pour tout x > 0.

15a. Montrer que la fonction

$$S : \begin{cases}]0, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \ln\left(\frac{f(x)}{\Gamma(x)}\right) \end{cases}$$

est 1-périodique et convexe.

- **15b.** En déduire que $f = \Gamma$.
 - **16.** Montrer que pour tous $a \in]0, +\infty[$ et $x \in]0, +\infty[$:

$$\int_0^{+\infty} \frac{t^{x-1}}{(1+t)^{x+a}} dt = \frac{\Gamma(x)\Gamma(a)}{\Gamma(x+a)}$$

Indication : on pourra poser, pour $x \in]0, +\infty[\,, f(x) = \frac{\Gamma(x+a)}{\Gamma(a)} \int_0^{+\infty} \frac{t^{x-1}}{(1+t)^{x+a}} \mathrm{d}t$.

17. Montrer que pour tout $x \in]0,1[$:

$$\int_0^{+\infty} \frac{t^{x-1}}{1+t} dt = \frac{\pi}{\sin(\pi x)}$$

Partie IV

18a. Montrer que pour tout $x \in [0,1[$:

$$\frac{\pi}{\sin(\pi x)} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1-x}$$

18b. En déduire que, pour $x \in \left] -\frac{1}{2}, \frac{1}{2} \right[$:

$$\frac{\pi}{\cos(\pi x)} = \sum_{k=0}^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^{2k+1}} \right) 2^{2k+2} x^{2k}$$

18c. En déduire que la fonction :

$$v : \left\{ \begin{array}{c} \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{\cos(x)} \end{array} \right.$$

est développable en série entière et que, pour tout $k \in \mathbb{N}$,

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^{2k+1}} = \frac{\pi^{2k+1}}{2^{2k+2}(2k)!} \mathbf{E}_{2k}$$

où, pour tout $k \in \mathbb{N}$, $\mathbf{E}_{2k} = v^{(2k)}(0)$.

19a. Montrer que, pour $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n} (-1)^k \binom{2n}{2k} \mathcal{E}_{2k} = 0$$

et en déduire les valeurs de E₀, E₂ et E₄.

19b. Calculer $\mathbb{E}(q(X))$ lorsque X est une variable aléatoire suivant la loi zêta de paramètre 3 puis de paramètre 5.