

#### BD Vidéo et Audio

#### Plan

- Rappel des principes de compression vidéo
- Modèles de représentation d'images vidéo
- Normes de compression vidéo

## Compression vidéo MPEG

- La compression MPEG (Moving Picture Experts Group) permet la compression de la vidéo, elle est réalisée avec perte.
- La compression MPEG reprend une bonne partie des spécifications de la norme <u>JPEG</u> (*Joint Photographic Experts Group*) et lui ajoute des traitements propres à l'image animée.
- Une image de référence entière est conservée, et pour les images successives, on ne conserve que les modifications.
- MPEG-1 restitue une image avec une résolution de 352 pixels et 282 lignes, à raison de 25 images par seconde, ou 352 x 240 à 30 images par seconde.
- MPEG-2 offre un débit plus élevé (plus de 20 Mbit/s). La résolution des images peut atteindre 1920 x 1080 à raison de 60 images par seconde.

# Calcul du taux de compression des images vidéo

```
largeur * hauteur * profondeur * fps = bits/sec
Facteur de compression
```

```
largeur ~ pixels (160, 320, 640, 720, 1280, 1920)
hauteur ~ pixels (120, 240, 480, 485, 720, 1080)
profondeur ~ bits (1, 4, 8, 15, 16, 24)
fps ~ frames par seconde (5, 15, 20, 24, 30)
Facteur de compression (1, 6, 24)
```



### Exemple d'applications

- Applications de divertissement
  - Diffusion d'émissions de télévision
  - Enregistrements
- Applications interpersonnelles
  - Visiophonie et vidéoconférence
- Applications interactives
  - Des fenêtres contenant des clips vidéo

#### Format de diffusion télévision

#### Résolution spatiale et temporelle

NTSC: 525 lignes

PAL/CCIR/SECAM: 625 lignes

Rafraîchissement de 60 à 50 trames par seconde

#### Séquence de balayage

- Le taux de rafraîchissement peut être réduit à 25 trames par seconde
- Transmission des images en mode entrelacé pour réduire la largeur de bande
  - NTSC: 262.5 lignes dont 240 visibles
  - PAL: 312.5 lignes dont 288 visibles



# Principe de balayage entrelacé



#### Perception de la couleur

- L'œil est plus sensible aux différences d'intensités (luminosité) que de couleurs.
- Le vert porte le maximum de luminosité; le blanc est le résultat de l'addition de 59% de vert, 30% de rouge et seulement 11% de bleu.
- Transformation du code couleur RGB au code YCC
  - Y représente la luminosité obtenue par 0.30R + 0.59V + 0.11B
    - Mesure compatible pour la télévision monochrome
  - Le premier C, appelé Cb, est la différence entre la valeur de B et la valeur de Y.
  - Le deuxième C, appelé Cr, est la différence entre la valeur de R et celle de Y.
- Le code YCbCr (proche du système HSB Hue, Saturation, Brightness) est utilisé pour les images de télévision pour lesquelles l'exigence de fidélité est inférieure à celle d'une image fixe.

# Transmission des images couleurs

- La largeur de bande est la même pour la diffusion monochrome et couleur
  - Sous échantillonnage des signaux de couleurs pour éviter la dégradation de la diffusion monochrome
- Diffusion PAL
  - Y = 0.299 R + 0.587 G + 0.114 B
  - U = 0.493 (B Y)
  - V = 0.877 (R Y)
- Diffusion NTSC
  - Y = 0.299 R + 0.587 G + 0.114 B
  - I = 0.74 (R Y) 0.27 (B Y)
  - Q = 0.48 (R Y) + 0.41 (B Y)

### Interpolation d'images

- Principe: à partir d'une image du passé et une image du futur, reconstruire les images intermédiaires par interpolation
- Les blocs d'images intermédiaires peuvent fournir des prédictions bidirectionnelles (avant et arrière)
- Trois grands types d'images pour établir un compromis entre le besoin d'accès direct et l'efficacité de compression:
  - Les images à codage intra (images I): codées sans référence aux autres images. Elles fournissent des points d'accès à la séquence mais leur taux de compression est modéré (10:1 à 20:1)
  - Les images codées par prédiction (images P): codage plus efficace (20:1 à 30:1) utilisant une prédiction compensée en mouvement, d'après une image antérieure, intra ou prédictive, et sont utilisées comme référence pour une prédiction future
  - Les images codées par prédiction bidirectionnelles (images B): taux de compression le plus élevé (30:1 à 50:1) mais nécessitent une image antérieure et future de référence. Elles ne peuvent pas être considérées comme référence de prédiction

# Exemples de séquences d'images interpolées



Composition du train binaire



Format du train binaire

| Sequence<br>start code |  |                   |                   | stream<br>ameters   |   | Quantizatic<br>parameters |  | GOP 1                | GOP2    |           | GOP3    |   |  |   | GOPN      |  |
|------------------------|--|-------------------|-------------------|---------------------|---|---------------------------|--|----------------------|---------|-----------|---------|---|--|---|-----------|--|
|                        |  |                   |                   |                     |   |                           |  |                      |         |           |         |   |  |   |           |  |
|                        |  |                   | GOP<br>start code |                     | ) | GOP<br>parameters         |  | Picture<br>(frame) 1 |         | Picture 2 |         | - |  |   | Picture N |  |
|                        |  |                   |                   |                     |   |                           |  |                      |         |           |         |   |  |   |           |  |
|                        |  |                   | re<br>ode         | Туре ро             |   | Buffer<br>arameters       |  | ncode<br>rameters    | Slice 1 |           | Slice 2 |   |  |   | Slice N   |  |
|                        |  |                   |                   |                     |   |                           |  |                      |         |           |         |   |  |   |           |  |
|                        |  | Slice<br>start co |                   | Vertica<br>position |   | Quantizat<br>paramete     |  | MB 1                 | M       | NB 2      | MB 3    |   |  | - | MB N      |  |

#### Norme MPEG2

- La spécification MPEG2 est générique
  - Plusieurs profils et niveaux adaptés à des applications particulières
  - Fournit des méthodes en laissant le soin à l'utilisateur de les paramétrer
- Niveaux et profils dans MPEG2
  - 4 niveaux: low, main, high 1440 et high
  - 5 profiles: simple, main, spatial resolution, quantization accuracy and high
- Niveau main et profile main de MPEG2 (MP @ML)
  - Application de distribution de télévision numérique
  - Balayage entrelacé
  - Format 4:2:0



- MPEG2 repose sur une structure d'algorithme de compression hybride à base de transformées en cosinus discrète DCT (Discrete Cosine Transform) et de prédiction temporelle compensée en mouvement
- MPEG2 permet de nombreux modes d'encodage supplémentaires
  - Prédiction inter-image ou une prédiction intra-trame pour les signaux 4:2:0,
     4:2:2 et 4:4:4 entrelacés
  - Transformation DCT intra-image (après mélange des deux trames) ou intratrame
  - Possibilités de redéfinir les matrices de quantification
- MPEG2 offre un mode d'extensibilité spatiale supplémentaire (data partitionning)
  - Transmettre sur la couche basse les coefficients DCT de basse fréquence
  - Les coefficients DCT de fréquences supérieures sont transmis sur les couches d'améliorations

Composition des blocs DCT pour le codage des images I



Composition des blocs DCT en mode field



Composition des blocs DCT en mode frame



#### Norme MPEG4

- La norme MPEG4 permet:
  - La prise en compte d'une grande variété de sources audio et vidéo naturelles et synthétiques
    - Modèles 3D synthétiques
    - Séquences vidéo naturelles
    - Parole synthétisée
    - Morceau de musique compressé
  - La prise en compte de la transmission des informations multimédias sur des supports hétérogènes en terme de débit
    - Réseaux mobiles: dizaines de kilobits/s
    - Réseaux câblés: plusieurs mégabits/s
  - Interaction entre l'utilisateur et le contenu des images (sous forme d'objets)
- MPEG4 repose sur un schéma de compression hybride, basé DCT et compensation de mouvement



- MPEG4 définit une représentation compacte de l'audio, la vidéo, le texte et les graphiques sous forme d'objets audiovisuels
- Format de description de scènes BIFS (BInary description For Scene)
  - Format binaire compressé d'un langage textuel de description de scène inspiré de VRML
  - BIFS permet de décrire
    - Le positionnement spatio-temporel des différents objets
    - Les interactions possibles avec les objets ou leur animation
- MPEG4 représente les images comme une superposition d'objets vidéo plans VOP (Video Object Plane)

Composition de scènes



- MPEG4 améliore la robustesse aux erreurs
  - Les images sont découpées en paquets indépendants délimités par des marqueurs spécifiques
  - Possibilité de resynchronisation à l'intérieur même d'un VOP
  - Confiner les erreurs à l'intérieur d'un paquet
- Partition de données
  - Réorganisation interne des données des macroblocs
  - Un réarrangement de données est effectué par type: forme, mouvement et texture
- Codage à longueur variable réversible RVLC (Reversible Variable Length Coding)
  - Code symétrique
  - La réception d'un code non symétrique permet de détecter une erreur
  - Il permet aussi de corriger d'éventuelles erreurs lors du décodage

| VLC  | RVLC   |
|------|--------|
| 1    | 111    |
| 01   | 1011   |
| 001  | 10011  |
| 0001 | 100011 |

Maximum codeword length = 6 bits





 Compression audio et vidéo dans MPEG4



#### Le mode objet dans MPEG4

- Permet de coder des objets vidéo préalablement extraits par segmentation de la séquence originale
- Un VOP est le plus petit rectangle englobant l'objet considéré et contenant un nombre entier de macroblocs
- Codage de la texture et de la forme d'un VOP
- Postproduction vidéo, réalité augmentée, la réalité virtuelle, les jeux vidéo, les présentations multimédias...

#### Codage de la texture

- Transformation DCT suivie de quantification scalaire et codage entropique
- Une technique de codage spécifique est définie pour les blocs frontières (technique de padding utilisée dans la version 1)
- Technique dite de Shape Adaptive DCT (SA-DCT) introduite dans la version 2



#### Codage de la forme

- La composante de forme est codée macrobloc par macrobloc
- Le bloc contenant l'information de forme est appelé BAB (Binary Alpha Block)
- Plusieurs modes de codage
  - Codage par recopie du BAB
  - Codage par compensation de mouvement
  - Codage arithmétique intra
  - Codage arithmétique inter
  - Codage arithmétique inter avec compensation de mouvement

#### Le mode sprite dans MPEG4

- Image panoramique (ou mosaïque) représentant une partie statique d'une séquence vidéo naturelle
- Deux modes principaux de codage: mode basique et le mode lowlatency sprite qui permet une transmission progressive du sprite



Codage des VOP



#### Plan de la présentation

- Pourquoi extraire les traits d'une vidéo (12.1)
- Analyse de vidéo et segmentation (12.2)
- Métadonnées d'audio et de vidéo (12.6, 12.7)
- Classification de vidéo
- Indexation de vidéo (12.7.1)
- Requêtes vidéo (12.9)
- *inter*Media pour vidéo et audio

# Pourquoi extraire les traits d'un vidéo 12.1

- Repérage audio et vidéo
  - Traits basés sur les images
  - Traits basés sur les mouvements
- Détection d'objets et suivi du mouvement
- Reconnaissance de la parole / transcription textuelle
- Identification vocale
- Repérage de mots
- Classification d'audio

#### Plan de la présentation

- Pourquoi extraire les traits d'un vidéo (12.1)
- Analyse de vidéo et segmentation (12.2)
- Métadonnées d'audio et de vidéo (12.6, 12.7)
- Classification vidéo
- Indexation de vidéo (12.7.1)
- Requêtes vidéo (12.9)
- *inter*Media pour vidéo et audio

#### Segmentation manuelle

- Trouver un logiciel de segmentation ex: <a href="http://www.boilsoft.net/download/avimpg-splitter.exe">http://www.boilsoft.net/download/avimpg-splitter.exe</a>
- Faire les coupures en identifiant les frontières manuellement
- Enregistrer les temps de départs et d'arrêts

# Analyse et segmentation automatique

- Techniques CBR d'images utilisées pour les vidéos
  - Segmenter le vidéo en objets plus petits
- Créer une hiérarchie d'images (frame), de scènes (scene) ou de prises (shot)
  - Images unitaires donnent un volume trop élevé
  - Bas niveaux syntaxiques
    - 1. la scène
    - 2. la prise
- Technique de segmentation la plus répandue
  - Détection automatique des transitions de prises



#### Terminologie vidéo

- <u>Vidéo</u> (clip) : succession d'images, regroupées en scènes ou en prises
- **Image** (frame) : une seule image
  - inefficace comme unité organisationnelle en BD Vidéo
- <u>Segment</u> ou <u>Scène</u> (scene) : regroupement logique des prises d'un évènement, d'un endroit
  - unité organisationnelle de base en BD Vidéo
- <u>Prise</u> (shot): sucession d'images capturées en continue par une seule caméra
  - unité fondamentale de travail en production de film

#### Organisation hiérarchique d'une vidéo



#### Exemple avec cette terminologie

de Harald Kosh

- image (frame)
- prise (shot)
- 2 prises
- scène (scene)
- audio

















# La détection de prise

- 2 types de transition de prise
  - coupure
  - graduelle : couverture, fondu
- 2 approches de technique de détection
  - détection sur une vidéo non compressé
  - détection sur vidéo compressé

## Exemples de transition de prises



Coupure (Cut)



Couverture graduelle (Wipe)



Fondu (Dissolve)

## **Exemples de transition - Dissolve**

 Fondu enchaîné: mélange de deux séquences vidéo où la première est graduellement estompée (fade-out) et la seconde apparaît graduellement (fade-in)





### 1. Par histogramme de couleur (non compressé)

- Calculer les pourcentages de couleur par image
- Comparer ces pourcentages entre images adjacentes
- Si différentielle moyenne > seuil
  - changement de prise
  - sinon, retenir la différentielle





### 2. Par détection de la forme (non compressé)

- Algorithme de détection des contours appliqué aux images
- Comparer les vecteurs entre images adjacentes
- Si différentielle moyenne > seuil
  - changement de prise
  - sinon, retenir la différentielle



### 3. Par macrobloc (compressé)

- MPEG: format compressé encodé par différentielles
- Images segmentées en macroblocs

### 3 types de macrobloc

- 1. type I (Intra-coded): chaque macrobloc est encodé indépendament des autres
- type P (Predicted) : encode le vecteur de mouvement et la différentielle par rapport à l'image précédente
- 3. type B (Bidirectional) : encode le vecteur de mouvement et la différentielle par rapport à l'image précédente <u>ou suivante</u>
- Détection de changement de prise selon le nombre de macroblocs qui changent





# Cut detection with Motion Vector and Macro block statistics



FIGURE 2. The Compressed Domain Scene Cut Detection Algorithm



### 4. Avec le modèle de découpage spatio-temporel





- Identification d'images-clés
- Détection mouvement d'objets ou caméra
- Distinction objet vs caméra par analyse des macroblocs: caméra si mouvement consistant sur majorité de macroblocs

### Évaluation des méthodes

de : Paul Browne, Centre for Digital Video Processing, Dublin City University

### Mesures d'évaluation

• Rappel :

Nombre de bonnes prises trouvées

Nombre total de prises

Précision :

Nombre de bonnes prises trouvées

Nombre de prises trouvées (bonnes + mauvaises)

→ Équilibrer Rappel-Précision



### Évaluation des méthodes

de : Paul Browne, Centre for Digital Video Processing, Dublin City University

#### Précision moyenne sur 8 heures de vidéo

Histogramme 90.4

• Forme 90.0

Macrobloc 87.4

Rappel moyen sur 8 heures de vidéo

Histogramme 78.9

Forme 70.2

Macrobloc 75.3

### Émissions avec les plus bas niveaux de rappel

- Home & Away (Australian soap)
- Cooking Program

## **Combiner les approches**

- Détection des frontières par différentes méthodes
- Combinaison des décisions par un 'OU' logique





## **Nouvelles approches**

 Segmentation temporelle de vidéo avec détection de frontière de prises en MPEG-7

[source: MPEG-7 Descriptors for Temporal Video Segmentation, Michael Höynck, Institute for Communications Engineering Aachen, University of Technology]

### Vue d'ensemble de la méthode



### Base de la méthode

- MPEG-7 normalise la description du contenu
  - Scalable Color Descriptor (SCD): histogramme de couleurs basé sur l'espace HSV, encodée par la transformée de Haar
  - Edge Histogram Descriptor (EHD): histogramme de formes
- MPEG-7 est flexible (interopérable)
  - description des traits utilisés pour segmentation
  - algorithmes d'extraction des traits
  - méthodes de repérage

### Vue d'ensemble



## SCD – Scalable Color Descriptor

- <u>Transformée de Haar</u> avec 256-bin d'histogramme dans l'espace de couleur HSV
- Représentations SCD enregistrées sous différentes résolutions [16 à 256 coefficients par histogramme]



## EHD – Edge Histogram Descriptor

- Spécifie la distribution spatiale de 5 types de formes dans 16 régions d'images
- Dérive aussi la forme générale



# Méthode de détection de prise

- Segmentation par les histogrammes de couleurs et de formes
- Calcul des différencielles par une mesure de distance (e.g., L1-norm)
- Pour la couleur : twin comparison method
  - Si diff < T<sub>L</sub> : omettre
  - Si T<sub>L</sub> < diff < T<sub>H</sub> : cumule les différentielles
  - Si T<sub>H</sub> < Cumul(diff) ⇒ changement graduel détecté
  - Si T<sub>H</sub> < diff ⇒ frontière de prises</li>



# Exemple de détection



Département de génie logiciel et des TI

# Évaluation de la performance de la détection de prises

### Résultats de performance globale

- 97% rappel et 80% précision
- Définition de l'ensemble de test (naturel, synthétique, genres)
  - détermination sur échantillon (1170 scènes)
  - performance évaluée par les mesures de rappel et de précision

# Segmentation vidéo et reconnaissance de forme

- Structure sémantique d'une vidéo difficile à analyser
- Nécessite la connaissance spatio-temporelle des interactions entre objets de même séquence
- Reconnaissance des figures et des personnes
- Reconnaissance d'objets à travers plusieurs images
- Segmentation spatio-temporelle combinée à l'estimation des mouvements de caméra
  - Permet d'identifier des objets spécifiques et d'en faire le décompte (ex. nombre de personnes ou de voitures dans une application de surveillance)

# **Utilisation d'heuristiques (***lignes directrices***) pour déterminer les frontières**

- Les prises d'une séquence avec un contenu similaire en couleurs partagent souvent le même arrière-plan
  - Couleurs changent drastiquement à la fin d'une séquence
  - Changement d'angle de la caméra n'a pas d'effet sur les couleurs de l'arrière-plan
- Contenu audio varie considérablement d'une séquence à l'autre; coïncidence d'une coupure audio avec une coupure vidéo suggère un changement de séquence
- Prises consécutives regroupées en une séquence si identification d'un même dialogue



# Plan de la présentation

- Pourquoi extraire les traits d'un vidéo (12.1)
- Analyse de vidéo et segmentation (12.2)
- Métadonnées d'audio et de vidéo (12.6, 12.7)
- Classification vidéo
- Indexation de vidéo (12.7.1)
- Requêtes vidéo (12.9)
- *inter*Media pour vidéo et audio

### MPEG-1, MPEG-2

- Focus sur compression des images
- MPEG-1
  - standard de base pour CD vidéo et MP3
- MPEG-2
  - standard de base pour télévision numérique et DVD
  - supporte vidéo de plus haute qualité (nouveaux codec)
  - supporte l'encodage prédictif (par différentielles) pour audio/vidéo imbriqués
  - modes extensibles pour dégradation graduelle (temps réel)

### MPEG-4

- Même support que MPEG-2 + support pour
  - traitement distribué
  - reconnaissance d'objet (segmentation avant-plan / arrière-plan)
  - canaux mobiles
  - transmissions interactives (vidéoconférences)
- En cours d'élaboration
  - Représentation des contenus
  - Interfaces pour la gestion des droits numérisés

### MPEG-4

- Scènes audiovisuelles organisées en hiérarchie d'objets
- Objets de base
  - Images fixes (arrière-plan)
  - Objets vidéo (personne qui parle, sans l'arrièreplan)
  - Objets audio (discours de la personne qui parle)

### MPEG -7

- Support additionnel pour l'indexation et le repérage de contenu audio et visuel (CBR)
- Utilisé avec MPEG-4 (complément)
- Couvre
  - Format d'encodage des descripteurs de contenu audio et vidéo (Systems)
  - Langage de définition des descriptions (DDL)

### MPEG-7

### • Couvre (suite)

- Outils pour description de contenus visuels (Visual)
- Outils pour description de contenus audio (Audio)
- Outils pour description de traits génériques (Multimedia Description Schemes)
- Implémentation des logiciels de support pour les différentes parties MPEG-7 (Reference Software)
- Procédure de validation de la conformité à l'implémentation de MPEG-7 (Conformance)
- Information sur l'extraction et l'utilisation de certaines descriptions de contenus (Extraction and use of descriptions)

# Plan de la présentation

- Pourquoi extraire les traits d'un vidéo (12.1)
- Analyse de vidéo et segmentation (12.2)
- Métadonnées d'audio et de vidéo (12.6, 12.7)
- Classification vidéo
- Indexation de vidéo (12.7.1)
- Requêtes vidéo (12.9)
- *inter*Media pour vidéo et audio

### Capture vidéo (video record)

- Segmentation utilisée pour identifier des séquences vidéo spécifiques
  - Séquence des images d'un objet spécifique
  - Débute par l'image où l'objet apparaît et se termine par l'image où il disparaît
- Format
  - identifiant unique
  - annotation textuelle (manuelle)
  - des vecteurs de mouvement de l'objet (motion vector)
    - ensemble de primitives de mouvement (e.g. rotation vers la droite, nord)
    - Tuples spatio-temporels (x, y, t)

### Traitement d'images en mouvement

- Caractéristiques temporelles d'une vidéo
- Traiter les relations de
  - temps
  - durée
  - synchronisation
- Doit habituellement décompresser l'objet vidéo

## **Synchronisation**

- Synchronisation des lèvres synchronisation des mouvements de lèvre de la bande vidéo avec la bande sonore pour rendre le réalisme
- Synchronisation des estampilles consistance des estampilles temporelles sur chaque bande d'une vidéo
- Synchronisation du transport ordonnancement temporel des paquets transmis par voie de télécommunication (temps réel)

### Synchronisation en vidéoconférence

- Aspect temps réel et bidirectionnel
- Synchronisation intra-flux : encapsulation des paquets et des estampilles (protocole RTP – Real-Time Transport Protocol)
- Synchronisation inter-flux: synchronisation des flux des différents sites; utilisation d'une horologe globalement synchronisée (protocole NTP – Network Time Protocol)
- Synchronisation inter-media : synchronisation des lèvres (protocoles NTP ou H221)

# Plan de la présentation

- Pourquoi extraire les traits d'un vidéo (12.1)
- Analyse de vidéo et segmentation (12.2)
- Métadonnées d'audio et de vidéo (12.6, 12.7)
- Classification vidéo
- Indexation de vidéo (12.7.1)
- Requêtes vidéo (12.9)
- *inter*Media pour vidéo et audio

# Indexation automatique de vidéo segmentées

- Approche par images
  - Déterminer l'image-clée de chaque séquence (scène ou prise)
  - Utiliser les techniques d'indexage d'images pour indexer les images-clées
- Requêtes CBR à partir de cet index

# Indexation automatique de vidéo segmentées

- Approche par traits
  - Extraction automatique de courtes séquences du vidéo qui représentent les traits importants des longues séquences
  - Plus informatif que les images fixes
- Utile pour requêtes de type QBE
- Utilisé pour le 'video skimming'

# Plan de la présentation

- Pourquoi extraire les traits d'un vidéo (12.1)
- Analyse de vidéo et segmentation (12.2)
- Métadonnées d'audio et de vidéo (12.6, 12.7)
- Classification vidéo
- Indexation de vidéo (12.7.1)
- Requêtes vidéo (12.9)
- *inter*Media pour vidéo et audio

# Requêtes vidéo

- **Niveau 1: traits primitifs** (couleurs, formes, textures, localisation spatiale et mouvement)
- **Niveau 2: traits logiques** (objets ou relations nommés, e.g. avion au décolage)
- **Niveau 3: attributs abstraits** (associé à la compréhension, e.g. trouver une vidéo sur les désastres naturels)
- L'organisation des traits du vidéo et de ses métadonnées est importante pour les requêtes
- Extraction d'un ensemble de vidéos ou d'extraits qui répondent à la requête; l'utilisateur doit regarder les clips un à un

# Abstractions vidéo (p.415)

- Méthodes d'accélération de consultation de vidéo (un à un):
  - Consultation syntaxique: On présente des images miniatures « thumbnails » des prises
  - Consultation sémantique: On présente des graphiques de transition de prises

# Plan de la présentation

- Pourquoi extraire les traits d'un vidéo (12.1)
- Analyse de vidéo et segmentation (12.2)
- Métadonnées d'audio et de vidéo (12.6, 12.7)
- Classification vidéo
- Indexation de vidéo (12.7.1)
- Requêtes vidéo (12.9)
- interMedia pour vidéo et audio

# **Application vidéo avec Oracle**

Fait avec Oracle *inter*Media ORDvideo et ORDaudio

### inter Media OR Dvideo

- interMedia vous offre déjà des méthodes communes à ORDaudio, ORDimage et ORDvideo.
- Travaille au niveau du Blob et du BFile
- Peut extraire les traits du vidéo dans un fichier XML
- Types d'objets ORDvideo
- Constructeurs ORDvideo
- Méthodes additionnelles de ORDvideo

### Type objet ORDvideo

Supporte enregistrement et gestion d'objets vidéo

CREATE OR REPLACE TYPE **ORDVideo** AS OBJECT ( -- ATTRIBUTES description VARCHAR2(4000), source ORDSource, format VARCHAR2(31), mimeType VARCHAR2(4000), comments CLOB, -- VIDEO RELATED ATTRIBUTES width INTEGER, height INTEGER, frameResolution INTEGER, frameRate INTEGER, videoDuration INTEGER, numberOfFrames INTEGER, compressionType VARCHAR2(4000), numberOfColors INTEGER, bitRate INTEGER,

### **Méthodes ORDvideo**

Initialiser une instance vidéo

init(srcType, srcLocation, srcName)

```
BEGIN INSERT INTO pm.online_media (product_id, product_video) VALUES (2030, ORDSYS.ORDVideo.init('FILE', 'FILE_DIR','speakers.rm')); COMMIT; END; /
```

 processVideoCommand(): pour passer une commande et des paramètres à un plug-in

# ORDvideo méthodes (en plus)

| checkProperties    | getFrameResolution  | setDescription     |
|--------------------|---------------------|--------------------|
| getAllAttributes   | getFrameSize        | setFormat          |
| getAttribute       | getNumberOfColors   | setFrameRate       |
| getBitRate         | getNumberOfFrames   | setFrameResolution |
| getCompressionType | getVideoDuration    | setFrameSize       |
| getContentInLob    | import              | setKnownAttributes |
| getContentLength   | importFrom          | setNumberOfColors  |
| getDescription     | processVideoCommand | setNumberOfFrames  |
| getFormat          | setBitRate          | setProperties      |
| getFrameRate       | setCompressionType  | setVideoDuration   |

## **Compression ORDvideo**

- Apple Quicktime 3.0
- Microsoft AVI
- Realnetworks Real Video format
- MPEG-1
- MPEG-2
- MPEG-4