Séries Temporais

1. Introdução

De maneira geral, chamamos de **séries temporais** uma **sequência de valores indexados pelo tempo**. O conteúdo dos valores varia muito de acordo com o contexto específico de cada série. Alguns exemplos são: preços de ativos financeiros (série de preços); quantidade de clientes que visitam determinada loja; temperatura medida em um local durante um dado intervalo de tempo, etc.

A área de **modelagem de séries temporais** tem como objetivo desenvolver modelos matemáticos que descrevam o comportamento de uma variável aleatório ao longo do tempo. Em geral, os modelos utilizados para descrever séries temporais são **processos estocásticos**, onde o processo estocástico em si compõe uma família de variáveis aleatórias e uma realização ou trajetória do processo estocástico pode ser visto como uma **série temporal**.

Os processos estocásticos podem ser **discretos**, por exemplo, o número de chamadas telefônicas que chega a uma central em cinco horas, ou **contínuo**, por exemplo, o preço de uma ação na bolsa de valores.

Pode-se descrever um processo estocástico por meio da distribuição de probabilidade conjunta de $Z(t_1),\ldots,Z(t_k)$, mas aqui será abordado o assunto de uma forma um pouco mais simples. Portanto utilizando as funções para o caso contínuo, tem-se que:

Média:
$$\mu(t) = E(Z(t))$$
 Variância: $\sigma^2(t) = Var(Z(t))$

Alguns exemplos de processos estocásticos serão definidos nos tópicos a seguir, sendo eles:

Sequência Aleatória; Ruído branco (*White-Noise*); Passeio Aleatório (*Random Walk*).

1.1 Sequência Aleatória

Considere $\{X_n, n=1,2,\ldots\}$ uma sequência de variável aleatória definidas no mesmo espaço amostral Ω . Aqui, $\mathcal{T}=\{1,2,\ldots\}$ e tem-se um processo com parâmetro discreto, ou uma sequência aleatória. Para todo n>1, podemos escrever ${}^{p(X_1=n)}$, ${}^{p(X_1=n$

1.2 Ruído Branco (White-Noise)

Pode-se definir um ruído branco como $\{\epsilon_t, t \in \mathbb{Z}\}$ se as variáveis aleatórias ϵ_t são não-correlacionadas, isto é, se $Cov\{\epsilon_t, \epsilon_s\} = 0$ para $t \neq s$.

22/10/2023, 13:03 LMS | Ada

Esse processo será estacionário (ou seja, a média e a variância não se alteram ao longo do tempo) se $E(\epsilon_t) = \mu_{\epsilon} e \, Var(\epsilon_t) = \sigma_{\epsilon}^2$ para todo t.

1.3 Passeio Aleatório (Random Walk)

Considere uma sequência aleatória $\{\epsilon_t, t \geq 1\}$ de v.a. i.i.d (variáveis aleatórias independentes e identicamente distribuídas) $(\mu_{\epsilon}, \sigma_{\epsilon}^2)$.

Defina a sequência $X_t = \epsilon_1 + \ldots + \epsilon_t$.

Segue que $E(X_t) = t\mu_{\epsilon} e Var(X_t) = t\sigma_{\epsilon}^2$, ou seja, ambos dependem de t.

Esse processo é chamado de passeio aleatório e é claramente não estacionário (média e variância se alteram ao longo do tempo).

2. Definição de Séries Temporais

Uma série temporal pode ser considerado como uma sequência $Z(t_1), Z(t_2), \ldots, Z(t_n)$ observada nos instantes t_1, \ldots, t_n , ou seja, uma realização ou trajetória de um processo estocástico. Ao utilizar séries temporais têm-se diversos objetivos como por exemplo investigar o fenômeno gerador da série, descrever o comportamento da série, procurar periodicidades relevantes nos dados ou menos fazer previsões de valores futuros.

As séries temporais podem ser **contínuas**, quando as observações são feitas continuamente no tempo. Nesse caso, $\{Z(t): t \in T\}, T = \{t: t_1 < t < t_2\}$. Ou podem ser **discretas**, quando as observações são feitas em tempos específicos $\{Z(t): t \in T\}, T = \{t_1, ..., t_n\}$.

3. Componentes da Série Temporal

Uma série temporal pode ser decomposta nas componentes descritas a seguir:

Tendência (T): indica o seu comportamento ao longo do tempo, ou seja, se é **crescente**, **decrescente** ou **estável**. Além disso, a tendência indica também a velocidade destas mudanças.

Ciclos (C): são oscilações de subida e de queda nas séries, de forma suave e repetida, ao longo da componente de tendência. Os movimentos cíclicos tendem a ser irregulares.

Sazonalidade (S): são oscilações de subida e de queda que sempre ocorrem em um determinado período do ano, do mês, da semana ou do dia. Estes movimentos são facilmente previsíveis, ocorrendo em intervalos regulares de tempo.

Ruído Aleatório (ϵ): ou erro no período t são variações irregulares ou flutuações inexplicáveis, resultado de fatos fortuitos e inesperados.

Para implementar em *Python* a decomposição de séries temporais, utiliza-se da função *seasonal_decompose* oriunda da biblioteca *statsmodels* (uma das principais bibliotecas a respeito de ferramentas estatísticas):

```
# Carregando a função seasonal_decompose
from statsmodels.tsa.seasonal import seasonal_decompose
```

22/10/2023, 13:03 LMS | Ada

Note que para a implementação da função seasonal_decompose é necessário conhecer o período da série temporal, ou seja o intervalo de tempo entre duas observações (pode ser segundos, minutos, horas, dias e etc.). Além disso, é importante conhecer o tipo de série a ser analisada, podendo ser classificada em 2 tipos principais:

Série Aditiva: Uma série é considerada **aditiva** a amplitude da sazonalidade mantém-se constante ao longo do tempo;

Série Multiplicativa: Já a série considerada **multiplicativa**, a amplitude da sazonalidade aumenta ao longo do tempo.

Fonte: Medium

Materiais Complementares

Documentação do statsmodels;

Artigo O que são séries temporais e como aplicar em Machine Learning escrito por Paulo Vasconcellos;

Referências

Pedro A. Morettin, Wilton O. Bussab, Estatística Básica, 8ª edição

Peter Bruce, Andrew Bruce & Peter Gedeck, Practical Statistics for Data Scientists, 50+ Essential Concepts Using R and Python, 2° edition

Ron Larson & Betsy Farber, Estatística Aplicada, 6ª edição.