## APAI2023 - LAB06

## **PULP Tiling - part1**

Authors: Lorenzo Lamberti, Luka Macan, Alessio Burrello, Francesco Conti

Contacts: luka.macan@unibo.it, lorenzo.lamberti@unibo.it

Links: GitHub Link (code) GDOC link (assignment)

## **Summary**

- 1. Subject(s):
  - 2D convolution in L1
  - o 2D convolution in L2
  - Layer Tiling
- 2. Programming Language: C
- 3. Lab duration: 3h
- 4. Assignment:
  - o Time for delivery: 1 week
  - Submission deadline: Nov 23, 2023 at 16:00

## How to deliver the assignment

You will deliver ONLY THIS TEXT FILE, no code

- Copy this google doc to your drive, so that you can modify it. (File -> make a copy)
- Fill the tasks on this google doc.
- Export to pdf format.
- Rename the file to: LAB<number\_of\_the\_lesson>\_APAI\_<your\_name>.pdf
- Use Virtuale platform to load ONLY your .pdf file



## **Setup**

### Access to the remote server, and setup

- Open this web page: <a href="https://compute.eees.dei.unibo.it:8443/guacamole/">https://compute.eees.dei.unibo.it:8443/guacamole/</a> (works only from ALMA WIFI NETWORK!).
- Login. Use the credentials provided during the last labs;
- Open a terminal (right click open a new terminal)

## **Download the repo**

```
$ cd <work_dir>
```

\$ git clone

https://github.com/EEESlab/APAI23-LAB06-Tiling-part1.git

#### **Load modules**

Load appropriate modules to be able to compile and run the code:

```
$ module load pulp-sdk
$ module load dory-conda
```

Note: Always do this when opening a new terminal session.

#### Run code

\$ cd APAI23-LAB06-PULP-Tiling-part1/

- \$ python parameters\_generate.py --channels=1
- --spatial\_dimension=1
- \$ make clean all run

## LAB STARTS HERE

## Case study: Convolutional Layer

Input Size: C x N x N
Output Size: K x N x N
Filter Size: C x C x 1 x 1

Padding: P, Stride: 1

Fixed parameters: F = 1, P = 0.

### Setup:

- Open VSCode.
- Go to your exercise folder
- Every time you want to run the code, SAVE your file and write in the terminal:
   make clean all run

#### How to run the code:

1. Choose the exercise by uncommenting one of the following defines in main.h:



2. To generate input.h, weight.h, output.h use the parameters\_generate.py script present in the same folder, specifying the number of channels and the spatial dimension as command line parameters.

```
Example: python3 parameters_generate.py --channels=1
--spatial_dimension=1
```

3. Code execution: make clean all run

# Exercise 1: find maximum dimensions of layers fitting L1 without tiling

We tackle a 2D convolution with this size:

- Input = SPATIAL\_DIM
- → defined by you
- Output = SPATIAL\_DIM
- → defined by you

- Kernel = 1x1
- Stride = 1
- Padding = 0

## Task 1.1. Implementing missing code:

- Add channels and spatial dimensions.
   File: main.c
- Add L1 vector allocation dimensions.
   File: layer\_execution.c
- Add code for performance computation File: layer\_execution.c

#### Task 1.2. Finds the maximum spatial dimension:

#### Fill the following table by:

- (1) Compute (by hand) the maximum spatial dimensions (N) to allow to store input, output, weights and in L1 (consider 50KB±2KB as Maximum). N.B. Consider only multiple of 8.
- (2) Search in the code the im2col vector size (File: pulp\_nn\_conv.c). Then fill the table with the tot. Value for each input size dimension.
- (3) Compute (by hand) MACs for each Spatial Dimension found
- Calculate the performance with the performance counters
- Compute the metric MACs/cycle.

**Note:** to calculate the performance you will have divide the total number of MAC operations with the measured latency. The formula to calculate the total number of MAC operations is:

$$\mathit{MACs} = \mathit{Kernel Height} * \mathit{Kernel Width} * \mathit{Channels}_{\mathit{in}} * \mathit{Height}_{\mathit{out}} * \mathit{Width}_{\mathit{out}} * \mathit{Channels}_{\mathit{out}}$$

| Channels<br>(C) | Spatial Dim.<br>(N) | (1) Memory Occupation (input+weight+output) | (2) Im2Col<br>size | (3) MAC | Cycles | MAC/cycles |
|-----------------|---------------------|---------------------------------------------|--------------------|---------|--------|------------|
| 16              |                     |                                             |                    |         |        |            |
| 32              |                     |                                             |                    |         |        |            |
| 64              |                     |                                             |                    |         |        |            |
| 128             |                     |                                             |                    |         |        |            |

#### Reply to the following questions

• Why performance (MACs/cycle) improves with more channels?

**Error1:** when you **overflow the L1 memory** available you will get this:

```
Entering Main. Checking for Exercise...

Executing Exercise 1

16678157790: 1041099: [/sys/board/chip/cluster/pe0/warning | Invalid access (pc: 0x1c008a28, offset: 0x1010020, size: 0x1, is_wr ite: 1)

16817888988: 1048077: [/sys/board/chip/cluster/pe1/warning | Invalid access (pc: 0x1c008a28, offset: 0x1010110, size: 0x1, is_wr ite: 1)
```

**Error2:** If you forget to generate the network parameters of the right size, you wll get a similar error (wrong checksum)

```
ERROR at index 1196, expected 5 and got 0
/pulp/pulp-sdk/rtos/pulpos/common/rules/pulpos/default_rules.mk:256: recipe for target 'run' failed
make: *** [run] Error 255
```

## Exercise 2: fetch data from L2

# Task 2.2. Testing performance degradation when fetching from L2:

Test all layers found in the previous exercise.

| Dimensions<br>(C, N) | MAC | Cycles | MAC/cycles |
|----------------------|-----|--------|------------|
| 16, 40               |     |        |            |
| 32, 24               |     |        |            |
| 64, 16               |     |        |            |
| 128, 8               |     |        |            |

• Increase the spatial dimensions to 64 in the first two cases and 32 in the last 2 and measure again the performance

| 16, 64 |  |  |
|--------|--|--|
| 32, 64 |  |  |
| 64, 32 |  |  |

| 120 22  |  |
|---------|--|
| 120, 32 |  |
| ·       |  |

#### Reply to the following questions

- Why fetching the data from L2 is slower?
- Which is the dimension that most influences the performance, channel or spatial?
   Why?

## **Exercise 3: Tiling layer**

#### Task 3.1. Implementing missing code:

- Define tiling parameter
- Complete number of tile iteration

#### Task 3.2. Find the minimum Tiling factor to fit L1:

- Test the four layers specified in the table.
- Find the minimum tiling factor for which the spatial dimension is divided, to fit the layer in L1 (tiling factor must be a divisor of the spatial dimension (N)).
- Compute the corresponding memory occupation in L1

| Dimensions<br>(C, N) | L2 Memory<br>Occupation | L1 Memory<br>Occupation | Tiling Factor | Cycles | MAC/cycles |
|----------------------|-------------------------|-------------------------|---------------|--------|------------|
| 16, 64               |                         |                         |               |        |            |
| 32, 64               |                         |                         |               |        |            |
| 64, 32               |                         |                         |               |        |            |
| 128, 32              |                         |                         |               |        |            |

#### Reply to the following questions

• How do these results compare with full L1 execution?

• How do these results compare with full L2 execution?

# Task 3.3. Find the optimal Tiling factor to maximize performance:

- Test the four layers specified in the table.
- Try different tiling factor. Find the optimal one.

| Dimensions<br>(C, N) | Spatial Dim. L2 | Spatial Dim. L1 | Tiling Factor | Cycles | MAC/cycles |
|----------------------|-----------------|-----------------|---------------|--------|------------|
| 16, 64               |                 |                 |               |        |            |
| 32, 64               |                 |                 |               |        |            |
| 64, 32               |                 |                 |               |        |            |
| 128, 32              |                 |                 |               |        |            |

#### Reply to the following questions

• Have you find any difference between different tiling factor? If so, when?