DISCRIMINANT ANALYSIS

Linear discriminant analysis assumes that the random variables $(X,Y) \in \mathbb{R}^p \times \{0,1\}$ has the following distribution. For all $A \in \mathcal{B}(\mathbb{R}^p)$ and all $y \in \{0,1\}$,

$$\mathbb{P}(X \in A; Y = y) = \pi_y \int_A g_y(x) dx,$$

where π_0 and π_1 are positive real numbers such that $\pi_0 + \pi_1 = 1$ and g_0 (resp. g_1) is the probability density of a Gaussian random variable with mean $\mu_0 \in \mathbb{R}^d$ (resp. μ_1) and positive definite covariance matrix $\Sigma_0 \in \mathbb{R}^{d \times d}$ (resp. Σ_1). The Bayes classifier $h_* : \mathbb{R}^p \to \{0, 1\}$ is defined by

$$h_*: x \mapsto \mathbb{1}_{\{\pi_1 q_1(x) > \pi_0 q_0(x)\}}$$
.

1. Give the distribution of the random variable X and prove that

$$\mathbb{P}(h_*(X) \neq Y) = \min_{h: \mathbb{R}^p \to \{0,1\}} \left\{ \mathbb{P}(h(X) \neq Y) \right\} \,.$$

2. Assume that $\mu_0 \neq \mu_1$. Prove that when $\Sigma_0 = \Sigma_1 = \Sigma$, for all $x \in \mathbb{R}^p$,

$$h_*(x) = 1 \Leftrightarrow (\mu_1 - \mu_0)^T \Sigma^{-1} \left(x - \frac{\mu_1 + \mu_0}{2} \right) > \log(\pi_0/\pi_1).$$

Provide a geometrical interpretation.

3. Prove that when $\pi_1 = \pi_0$,

$$\mathbb{P}(h_*(X) = 1|Y = 0) = \Phi(-d(\mu_1, \mu_0)/2),$$

where Φ is the cumulative distribution function of a standard Gaussian random variable and

$$d(\mu_1, \mu_0)^2 = (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_1 - \mu_0).$$

4. Assume now that $\Sigma_1 \neq \Sigma_0$. What is the nature of the frontier between $\{x \, ; \, h_*(x) = 1\}$ and $\{x \, ; \, h_*(x) = 0\}$?