ИФИМ КВИН

3 СЕМЕСТР ФАКУЛЬТЕТ КИБ

Математический анализ

Автор: Тропин А.Г.

Лектор: Теляковский Д.С.

e-mail: andrewtropin@gmail.com

github: abcdw/mephi

Оглавление

1	Ф	икциональный последовательности и ряды	5		
1	Числовые ряды				
	1.1	Определение	7		
	1.2	Действия с рядами			
		1.2.1 Ряды с неотрицательными членами	8		
	1.3	Интегральный признак сходимости рядов с неотрицательными членами	11		
	1.4	Признак сходимости для чередующихся рядов	12		
	1.5	Преобразование Абеля	13		
	1.6	Признаки Дирихле и Абеля	13		
	1.7	Безусловно и условно сходящиеся ряды	14		
2	Функциональные последовательности и ряды				
	2.1	Поточечная сходимость	15		
	2.2	Равномерная сходимость	16		
	2.3	Признаки равномерной сходимости рядов Дирихле и Абеля	17		
	2.4	Равномерная сходимость и непрерывность	18		
	2.5	Равномерная сходимость и интегрирование	19		
	2.6	Равномерная сходимость и дифференцирование	20		
3	Степенные ряды				
	3.1	Радиус сходимости и круг сходимости	21		
4	Радомский консультация				
	$4.1^{'}$	Вычисление площадей поверхностей	23 23		
	4.2	Тройные интегралы			

4 ОГЛАВЛЕНИЕ

Часть І

Функциональный последовательности и ряды

Глава 1

Числовые ряды

1.1 Определение

Определение 1.1.1. $U_1 + U_2 + U_3 + \cdots = \sum_{k=0}^{\infty} U_k$

Определение 1.1.2 (Частичная сумма). $S_n = \sum_{k=0}^n U_k$

Определение 1.1.3. Ряд сходится, если $\exists \lim_{n \to \infty} \sum_{0}^{\infty} U_k = S_n$

Определение 1.1.4. $\{a_n\}=a_0+\sum\limits_1^n(a_k-a_{k-1}),$ где $(a_k-a_{k-1})=U_k$

Теорема 1.1.1 (Критерий Коши). *Ряд сходится, тогда и только тогда, когда он удовлетворяет условию Коши:*

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon), \ \forall n \ge N, \forall p : \ |\sum_{k=n+1}^{n+p} U_k| = |U_{n+1} + \dots + U_{n+p}| = |S_{n+p} - S_n| < \varepsilon$$

Доказательство. $\sum U_k$ - сходится $\Leftrightarrow \{S_n\}$

$$\forall \varepsilon > 0, \ \exists N : \forall n \ge N, \forall p : \ |S_{n+p} - S_n| < \varepsilon$$

Следствие (Необходимое условие сходимости). $Ecnu \sum U_k \ cxodumcs, \ mo\ U_k \to 0, \ npu\ k \to \infty$

Доказательство. Если $\sum U_k$ сходится, то выполняется Критерий Коши. При p=1

$$\forall \varepsilon > 0, \exists N, \forall n \ge N : |S_{n+1} - S_n| = |U_{n+1}| < \varepsilon$$

Следствие. Отбрасывание или добавление любого конечного числа членов ряда на его сходимость не влияет.

Пример 1.1.1. $\sum_{0}^{\infty} z^n$, $S_n(z) = \sum_{0}^{n} z_n = \frac{1-z^{n+1}}{1-z}$. При $n \to \infty$, $S_n(z) = \frac{1}{1-z}$, |z| < 1. $S_n(z)$ не имеет придела при $|z| \ge 1$.

1.2 Действия с рядами

Теорема 1.2.1. Ряды $\sum U_k$ и $\sum V_k$ сходятся к α , тогда

$$\sum \alpha U_k = \alpha \sum U_k \tag{1.1}$$

$$\sum (U_k \pm V_k) = \sum U_k \pm \sum V_k \tag{1.2}$$

Доказательство. Доказательство свойства (1.1):

$$\sum_{k=0}^{\infty} \alpha U_k = \lim_{n \to \infty} \sum_{k=0}^{n} \alpha U_k = \alpha \lim_{k \to \infty} \sum_{k=0}^{n} U_k = \alpha \sum_{k=0}^{\infty} U_k$$

Доказательство. Доказательство свойства (1.2):

$$\sum_{0}^{\infty} U_k \pm \sum_{0}^{\infty} V_k = \lim_{n \to \infty} \sum_{0}^{n} U_k \pm \lim_{n \to \infty} \sum_{0}^{n} V_k =$$

$$= \lim_{n \to \infty} \sum_{0}^{n} U_k \pm \sum_{0}^{n} V_k = \lim_{n \to \infty} \sum_{0}^{n} (U_k \pm V_k) = \sum_{0}^{n} (U_k \pm V_k)$$

Замечание 1.2.1. Из сходимости $\sum (U_k \pm V_k) \not\Rightarrow$ сходимость $\sum U_k$ и $\sum V_k$ Замечание 1.2.2. Если $\sum U_k$ сходится, то можно группировать, не меняя порядка. Пример 1.2.1.

$$\sum (1-1)$$

$$(1-1) + (1-1) + \dots$$

$$1 - (1-1) - (1-1) \dots$$

Комментарий. Нельзя раскрывать скобки и переставлять члены.

1.2.1 Ряды с неотрицательными членами

 $U_k \ge 0, \, S_n = \sum\limits_0^n U_k$ - не убывающая последовательность.

$$\sum\limits_{0}^{n}U_{k}$$
 - сходится $\Leftrightarrow\{S_{n}\}$ — ограничена

Kомментарий. Сходимость ряда эквивалентна ограниченности S_n

Теорема 1.2.2.

$$U_k \geq 0, V_k \geq 0, \ \forall k$$
:

- 1. Если $0 \le U_k \le V_k$, то если $\sum V_k$ сходится $\Rightarrow \sum U_k$ сходится и если $\sum U_k$ расходится $\Rightarrow \sum V_k$ расходится.
- 2. Если $\lim_{n\to\infty}\frac{U_k}{V_k}=A>0$, то ряды сходятся или расходятся одновременно.

Доказательство.

- 1. $\forall n$ верно неравенство $0 \leq \sum_{k=0}^{n} U_k \leq \sum_{k=0}^{n} V_k$
- 2. $\forall \varepsilon > 0 \ \varepsilon < A \ \exists N : \forall n \geq N \Rightarrow 0 < A \varepsilon < \frac{U_k}{V_k} < A + \varepsilon$ $0 < (A - \varepsilon) \cdot V_k < U_k < (A + \varepsilon) \cdot V_k$ Пусть U_k — сходится, тогда из доказанного выше 1ого пункта следует $(A - \varepsilon) \cdot V_k$ — сходится $\Rightarrow \sum V_k$ сходится $\Rightarrow \sum (A + \varepsilon) \cdot V_k$ сходится $\Rightarrow \sum U_k$ сходится.

Замечание 1.2.3. Вместо существования предела $\lim_{n \to \infty} \frac{U_k}{V_k}$ достаточно предположить, что существуют такие числа р и q > 0, такие что $0 < q < \frac{U_k}{V_k} < p, \ \forall k$

Теорема 1.2.3 (Признак Даламбера).

$$\sum U_k, \ U_k > 0$$

- 1. Если $\exists q$ такое что: $\forall k \; \frac{U_{k+1}}{U_k} < q < 1 \; cxo \partial umcs$
- 2. $Ecnu \exists \lim_{n\to\infty} \frac{U_{k+1}}{U_k} = q, mo$:
 - $npu \ q < 1 \ cxo \partial u mocmb$
 - $npu \ q > 1 \ pacxodumocmb$
 - $npu \ q = 1$ неизвестно (нужно провести дополнительные исследования)

Доказательство. Идея докозательства - сравнение с геометрической прогрессией.

1.
$$k = 0, 1, \dots, n; U_k = U_0 \cdot \frac{U_1}{U_0} \frac{U_2}{U_1} \cdots \frac{U_k}{U_{k-1}} < U_0 \cdot q^k$$

Комментарий. $\frac{U_k}{U_{k-1}} < q, \ \forall k$

$$q<1$$
, тогда $\sum\limits_{U_0}U_0\cdot q^k$ — сходящаяся геометрическая прогрессия. $U_k=U_0\cdot rac{U_1}{U_0}rac{U_2}{U_1}\cdots rac{U_k}{U_{k-1}}\geq U_0>0$

Комментарий. $\frac{U_k}{U_{k-1}} \geq 1, \ \forall k$

 $U_k \not\to 0 \Rightarrow$ не выполняется необходимое условие сходимости.

- 2. Пусть $\lim_{k \to \infty} \frac{U_{k+1}}{U_k} = q$ $\forall \varepsilon>0, \ \exists K: \ \forall k\geq K$ выполняется неравенство $q-\varepsilon<\frac{U_{k+1}}{U_k}< q+\varepsilon$
 - Если q<1, то $(q+\varepsilon)\in[q,1]$. Выберем такое ε , что $q+\varepsilon<1$, для $\forall k\geq K(\varepsilon)$. $\frac{U_{k+1}}{U_k}< q+\varepsilon<1\Rightarrow$ сходится по первой части.
 - Если q>1, то $(q-\varepsilon)\in [1,q]$. Выберем ε так, чтобы $q-\varepsilon>1$, для $\forall k\geq K(\varepsilon)$. $\frac{U_{k+1}}{U_k}>q-\varepsilon>1$, \Rightarrow расходится по первой части.

Теорема 1.2.4 (Признак Коши).

$$\sum U_k, U_k \ge 0$$

- 1. Если $\exists q<1$ и $\forall k>K$: выполняется $\sqrt[k]{U}_k\leq q<1$, то ряд сходится, а если $\forall k\sqrt[k]{U}_k\geq 1$, то расходится.
- 2. Ecau $\exists \lim_{k \to \infty} \sqrt[k]{U_k} = q, (q \ge 0), mo$
 - \bullet q < 1 cxoдumcs
 - \bullet q > 1 pacxodumcs
 - ullet q=1 нужны дополнительные исследования

Замечание 1.2.4. $\lim_{n\to\infty} \sqrt[n]{U}_n$ можно рассматривать вместо $\overline{\lim}_{k\to\infty} \sqrt[k]{U}_k$

Доказательство. Сравнение с геометрической прогрессией

- 1. Если $\forall k \sqrt[k]{U}_k \leq q < 1 \Rightarrow U_k \leq q^k$ сходящаяся геометрическая прогрессия. Если $\forall k \sqrt[k]{U}_k \geq 1 \Rightarrow U_k \geq 1$ не выполняется необходимое условие сходимости.
- 2. Если $\lim_{k\to\infty} \sqrt[k]{U}_k = q$, то $\forall \varepsilon > 0 \ \exists K = K(\varepsilon) : \forall k \ge K, (q-\varepsilon) < \sqrt[k]{U}_k < (q+\varepsilon)$ $(q-\varepsilon)^k < U_k < (q+\varepsilon)^k$
 - При q < 1 выберем ε так, чтобы $q + \varepsilon < 1$, тогда $U_k < (q + \varepsilon)^k < 1$ сходящаяся геометрическая прогрессия.
 - При q>1 выберем ε так, чтобы $q-\varepsilon>1$, тогда $U_k>(q-\varepsilon)^k>1$ не выполняется необходимое условие сходимости.

Определение 1.2.1. Дана $\{a_n\}$ и пусть $\overline{\lim_{n\to\infty}}a_n$ — наибольший из частичных пределов, тогда:

$$\forall \{a\} \ \exists \overline{\lim}_{n \to \infty} a_n = A \ or \ \infty$$

Комментарий. A — число.

- Если $\overline{\lim_{n\to\infty}} a_n = +\infty \Rightarrow \{a_n\}$ неограничена сверху $\Rightarrow \overline{\lim_{k\to\infty}} \sqrt[k]{U_k} = +\infty$ неограничена сверху. U_k неограничена сверху и не выполняется необходимое условие.
- Если $\overline{\lim_{n\to\infty}} a_n = A$, тогда $\forall \varepsilon \in (A-\varepsilon, A+\varepsilon)$ бесконечно много членов $\{a_n\}$:
 - $\varlimsup_{k\to\infty}\sqrt[k]{U}_k=q<1$. Выберем ε так, чтобы $q+\varepsilon<1\Rightarrow \exists K: \forall k\geq K,\ \sqrt[k]{U}_k< q+\varepsilon<1$ по признаку Коши.
 - $\varlimsup_{k\to\infty}\sqrt[k]{U}_k=q>1$. Выберем ε так, чтобы $q-\varepsilon>1\Rightarrow \forall K\; \exists k\geq K:\sqrt[k]{U}_k\;>\; q-\varepsilon\;>\; 1$ $\Rightarrow U_k\;>\; 1$

1.3 Интегральный признак сходимости рядов с неотрицательными членами

Теорема 1.3.1. Если f(x) не отрицательна и убывает на $x \ge 1$, то ряд

$$\sum_{n=1}^{\infty} f(n) < \infty \tag{1.3}$$

сходится тогда и только тогда, когда сходится интеграл:

$$\int_{1}^{+\infty} f(x)dx \tag{1.4}$$

mo ecmo $\int_{1}^{+\infty} f(x)dx < \infty$.

- $\sum a_n < \infty cxo\partial umcs$
- $\sum a_n = \infty pacxodumcs$

Доказательство. Если $k \leq x \leq k+1, \ k=1,2,\ldots,$ то, в силу убывания функции получаем неравенство:

$$f(k) \ge f(x) \ge f(k+1)$$

Интегрируя по отрезку [k, k+1] получим:

$$f(k) \ge \int_{k}^{k+1} f(x)dx \ge f(k+1), \ k = 1, 2, \dots$$

$$\sum_{k=1}^{n} f(k+1) \le \int_{1}^{n+1} f(x)dx \le \sum_{k=1}^{n} f(k)$$
 (1.5)

Пусть $S_n = \sum_{k=1}^n f(k)$, тогда 1.5 примет вид:

$$S_n + 1 - f(1) \le \int_{1}^{n+1} f(x)dx \le S_n$$
 (1.6)

Если ряд 1.3 сходится и его сумма равна S, то $S_n \leq S$, и $\int\limits_1^{n+1} f(x) dx \leq S$, $\forall n \in \mathbb{N}$.

 $\forall b > 1, n + 1 > b$ имеем:

$$\int_{1}^{b} f(x)dx \le \int_{1}^{n+1} f(x)dx \le S$$

В силу неотрицательности функции f(x) интеграл сходится. Пусть наоборот, интеграл 1.4 сходится, тогда из 1.6 следует:

$$S_{n+1} \le f(1) + \int_{1}^{n+1} f(x)dx \le f(1) + \int_{1}^{\infty} f(x)dx$$

Тем самым, последовательность сумм $\{S_n\}$ ряда 1.3 ограничена сверху, и поэтому этот ряд сходится.

Пример 1.3.1.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}, \alpha \in \mathbb{R} \tag{1.7}$$

Положим $f(x)=\frac{1}{x^{\alpha}},$ тогда $f(n)=\frac{1}{n^{\alpha}}$ Поскольку $\int\limits_{1}^{+\infty}\frac{dx}{x^{\alpha}}:$

- При $\alpha > 1$ сходится
- При $\alpha \le 1$ расходится

Тогда ряд 1.7 сходится тогда и только тогда, когда $\alpha>1$. При $\alpha<0$ дробь $\frac{1}{n^{\alpha}}\geq 1$.

1.4 Признак сходимости для чередующихся рядов

Рассмотрим ряды с действительными числами, которые то положительные, то отрицательные.

Теорема 1.4.1 (Лейбница). Если

$$\lim_{n \to \infty} U_n = 0 \tag{1.8}$$

$$U_n > U_{n+1} > 0, \ n = 1, 2, \dots$$
 (1.9)

то знакочередеющийся ряд

$$\sum_{n=1}^{+\infty} (-1)^{n+1} U_n \tag{1.10}$$

cxo dumcs, npu этом $ecnu\ S$ — $cymma\ psda$, $a\ S_n$ — $ero\ n$ -ая частичная cymma, $mo\ \forall n: n=1,2,\ldots$

$$|S - S_n| \le U_{n+1} \tag{1.11}$$

 Δ оказательство. Заметим, что частичная суммы S_n с четными номерами возрастают:

$$S_{2k} = (U_1 - U_2) + (U_3 - U_4) + \dots + (U_{2k-1} - U_{2k}), \ k = 1, 2, \dots$$

Так что выполняется неравенство $S_{2k+2} \ge S_k$. Кроме того, они ограничены сверху:

$$S_{2k} = U_1 - (U_2 - U_3) - \dots - (U_{2k-2} - U_{2k-1}) - U_{2k}, \ S_{2k} < U_1$$

Поэтому последовательность $\{S_{2k}\}$ сходится

$$\lim_{k \to \infty} S_{2k} = S \tag{1.12}$$

Поскольку $S_{2k+1} = S_{2k} + U_{2k+1}$ и $U_{2k+1} \to 0$ при $k \to \infty$, то

$$\lim_{k \to \infty} S_{2k+1} = S \tag{1.13}$$

Из 1.12 и 1.13 следует, что $\lim S_n = S$

При этом, нетрудно увидеть, что

$$S_{2k} \le S \le S_{2k+1} \le S_{2k-1}, \ \forall k \tag{1.14}$$

Из неравенства 1.14 следует, что

$$S - S_{2k} \le S_{2k+1} - S_{2k} = U_{2k+1}$$

$$S_{2k-1} - S \le S_{2k-1} - S_{2k} = U_{2k}, \ k = 1, 2, \dots$$

Это и означает, что $\forall n \in \mathbb{N}$ выполняется неравенство 1.11.

1.5 Преобразование Абеля

Теорема 1.5.1. Пусть $a_k \in \mathbb{C}$, $b_k \in \mathbb{C}$, k = 1, ..., n; $B_k = b_1 + \cdots + b_k$, тогда

$$\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} (a_k - a_{k+1}) b_k + a_n B_n$$
(1.15)

Доказательство. Очевидно, $b_1 = B_1, b_k = B_k - B_{k-1}, k = 2, 3, \dots, n$

Поэтому $a_1b_1 + a_2b_2 + \dots + a_nb_n = a_1B_1 + a_2(B_2 - B_1) + a_3(B_3 - B_2) + \dots a_n(B_n - B_{n-1}) = (a_1 - a_2)B_1 + (a_2 - a_3)B_2 + \dots + (a_{n-1} - a_n)B_{n-1} + a_nB_n$

Называется преобразованием Абеля
$$\sum_{k=1}^{n} a_k b_k$$
.

Следствие (лемма Абеля). Если $a_1 \leq a_2 \leq \cdots \leq a_n$ или $a_1 \geq a_2 \geq \cdots \geq a_n$ $a_k \in \mathbb{R}, \ \forall k = 1, 2, \ldots, n, \ |b_1 + \cdots + b_k| \leq B, \ (b_k \in \mathbb{C}), \ mo$

$$\left| \sum_{k=1}^{n} a_k b_k \right| \le B(|a_1| + 2|a_n|)$$

Доказательство.
$$\left| \sum_{k=1}^{n} a_k b_k \right| \leq \sum_{k=1}^{n-1} |a_k - a_{k+1}| |B_k| + |a_n B_n| \leq B \left(\sum_{k=1}^{n-1} |a_k - a_{k+1}| + |a_n| \right) = B \left(\left| \sum_{k=1}^{n-1} (a_k - a_{k+1}) \right| + |a_n| \right) = B \left(|a_1 - a_n| + |a_n| \right) \leq B \left(|a_1| + 2|a_n| \right).$$

1.6 Признаки Дирихле и Абеля

Теорема 1.6.1. Пусть дан ряд

$$\sum_{n=1}^{\infty} a_n b_n \tag{1.16}$$

- 1. $a_n \in \mathbb{R}^n, b_n \in \mathbb{C}, n = 1, 2, ...$
- 2. $\{a_n\}, \{a_n\} \downarrow 0 \ (\{a_n\} \uparrow 0)$
- 3. $\{B_n\}$ последовательность частичных сумм ряда $\sum b_n$ ограничена

Тогда ряд 1.16 сходится.

Доказательство. $\exists B>0, \ |B_n|\leq B \ \forall n\Rightarrow \forall m\geq n\geq 2: |b_n+\cdots+b_m|=|B_m-B_{n-1}|\leq 2B$ Возьмем $\varepsilon>0$. По скольку $a_n\to 0$, то $\exists N=N(\varepsilon): \forall n>N(\varepsilon)$ имеем $|a_n|<\frac{\varepsilon}{6B}$. Поэтому, $\forall n>N(\varepsilon)$ и $\forall m\geq n$ получим:

$$|a_n b_n + \dots + a_m b_m| \le 2B(|a_n| + 2|a_m|) < 2B\left(\frac{\varepsilon}{6B} + 2\frac{\varepsilon}{6B}\right) = \varepsilon$$

Ряд 1.16 удовлетворяет Критерию Коши сходимости рядов.

Замечание 1.6.1. Признак Лейбница - это частный случай признака Дирихле.

Теорема 1.6.2 (признак Абеля). Если последовательность действительных чисел a_n монотонна и ограничена, ряд $\sum_{n=1}^{\infty} b_n, b_n \in \mathbb{C}$ сходится, то ряд 1.16 также сходится.

Доказательство. $a_n = a + \alpha_n, \{\alpha_n\}$ — монотонно стремящаяся к нулю последовательность. Поэтому

$$\sum a_n b_n = \sum (a + \alpha_n) b_n = a \sum b_n + \sum \alpha_n b_n,$$

где $a \sum b_n$ сходится по условию, а $\sum \alpha_n b_n$ сходится по признаку Дирихле.

 $\{B_n\}$ — последовательность частичных сумм $\sum b_n$ ограничена, $\{\alpha_n\}$ — монотонно стремящаяся к нулю последовательность.

1.7 Безусловно и условно сходящиеся ряды

Определение 1.7.1. Пусть $\{k_n\}, n=1,2,\ldots$ — последовательность, в которой каждое натуральное число встречается только один раз. $\{k_n\}$ — однозначное отображение $a_n^*=a_{k_n}, (n=1,2,\ldots)$.

Будем говорить, что ряд $\sum a_n^*$ является перестановкой ряда $\sum a_n$.

Определение 1.7.2. Говорят, что $\sum a_n$ сходится безусловно, если каждая перестановка сходится.

Теорема 1.7.1. Ряд $\sum a_n, (a_n \in \mathbb{C})$ сходится безусловно тогда и только тогда, когда он сходится абсолютно.

Доказательство. Достаточность.

Если ряд $\sum a_n$ сходится абсолютно, то все его перестановки сходятся к одному и тому же числу — сумме исходного ряда.

Пусть $\sum a_n^*$ — перестановка ряда $\sum a_n$. S_n^* — ее частичная сумма.

По Коши: $\forall \varepsilon > 0 \exists N : m \geq n > N$

$$|a_n| + \dots + |a_m| < \varepsilon \tag{1.17}$$

Выберем p так, чтобы все натуральные числа $1,2,\ldots,N$ содержались в множестве k_1,k_2,\ldots,k_p (смотри определение), тогда при n>p a_1,\ldots,a_N в разности $S_n-S_n^*$ уничтожаются, так что $|S_n-S_n^*|<\varepsilon$ в силу 1.17.

Значит
$$\{S_n^*\}$$
 сходится к тому же пределу, что и $\{S_n\}$.

Определение 1.7.3. Сходящийся, но не абсолютно сходящийся ряд называется условно сходящимся.

Из теоремы 1.7.1 (из необходимости условия) ⇒ Теорема 1.7.2

Теорема 1.7.2. Условно сходящийся ряд не может сходится безусловно, то есть у него всегда существует расходящаяся перестановка.

Доказательство. Без Доказательства.

Теорема 1.7.3 (Римана). Если ряд с действительными членами условно сходится, то каким бы не было действительное число S, существует перестановка ряда такая, что ее сумма равна S

Доказательство. Без Доказательства.

Глава 2

Функциональные последовательности и ряды

2.1 Поточечная сходимость

Пусть на некотором множестве $\mathbb E$ задана последовательность комплексно значимых функций $f_n, n=1,2,\ldots, (f_n\in\mathbb C)$. Элементы $x\in\mathbb E$ будем называть точками.

Определение 2.1.1. $\{f_n\}$ называется ограниченной на \mathbb{E} , если $\exists M>0: \forall n\in\mathbb{N}, \forall x\in\mathbb{E}$ выполняется

$$|f_n(x)| \leq M$$

Определение 2.1.2. $\{f_n\}$ называется сходящейся поточечно на множестве \mathbb{E} , если при любом фиксированном $x \in \mathbb{E}$, числовая последовательность $\{f_n(x)\}$ сходится. Если последовательность сходится на \mathbb{E} , то $f(x) := \lim_{n \to \infty} f_n(x), x \in \mathbb{E}$ называется пределом последовательности. Пусть $\{U_n(x)\}_{n=1}^{\infty}, x \in \mathbb{E}$, $(U_n \in \mathbb{C})$ — последовательность числовых функций.

Определение 2.1.3. Множество числовых рядов

$$\sum_{n=1}^{\infty} U_n(x) \tag{2.1}$$

в каждой из которых точка x фиксированная называется рядом на множестве $\mathbb{E},$ а функция $U_n(x)$ — его член.

 $S_n(x) = \sum_{k=1}^n U_k(x), x \in \mathbb{E}$ называется n-ой частичной суммой ряда 2.1.

 $\sum_{k=n+1}^{\infty} U_k(x)$ - его n-ым остатком.

Определение 2.1.4. Ряд 2.1 называется сходящимся поточечно на множестве \mathbb{E} , если последовательность $\{S_n(x)\}$ сходится поточечно на \mathbb{E} . При этом $\lim_{n\to\infty} S_n(x) = S(x), x \in \mathbb{E}$ называется суммой ряда 2.1.

$$S(x) = \sum_{n=1}^{\infty} U_n(x).$$

Определение 2.1.5. Если ряд 2.1 при любом $x \in \mathbb{E}$ сходится абсолютно, то он называется абсолютно сходящимся на множестве \mathbb{E} .

Замечание 2.1.1. Беззаботная перестановка членов ряда может привести к ошибке.

2.2 Равномерная сходимость

Определение 2.2.1. Говорят, что функциональная последовательность $\{f_n\}_{n=1}^{\infty}$ сходится равномерно на \mathbb{E} , если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n > N, \forall x \in \mathbb{E}$ имеем

$$|f_n(x) - f(x)| < \varepsilon$$

Ясно, что каждая равномерно сходящаяся последовательность, сходится поточечно.

Комментарий. Обозначение равномерной сходимости: $f_n \stackrel{\mathbb{E}}{\Longrightarrow} f$

Теорема 2.2.1 (Критерий Коши равномерной сходимости последовательностей). Для того, чтобы $\{f_n\}$ равномерно сходилась на $\mathbb{E} \iff \forall \varepsilon > 0 \ \exists N : n,m > N, \forall x \in \mathbb{E} :$

$$|f_n(x) - f_m(x)| < \varepsilon \tag{2.2}$$

Доказательство.

• Необходимость:

$$f_n \stackrel{\mathbb{E}}{\Longrightarrow} f$$
, тогда $\forall \varepsilon > 0$, $\exists N \in \mathbb{N} : \forall n > N, \forall x \in \mathbb{E} |f_n(x) - f(x)| < \frac{\varepsilon}{2}$. $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, $(\forall n, m > N, \forall x \in \mathbb{E})$.

• Достаточность:

Пусть выполняется условие Коши, тогда $\{f_n(x)\}$, удовлетворяет критерию Коши сходимости числовых последовательностей и следовательно сходящегося числового предела, который обозначим f(x).

Тогда перейдя к пределу при $m \to \infty$ получим $\forall n > N, \forall x \in \mathbb{E} : |f_n(x) - f(x)| < \varepsilon$.

Иногда полезен критерий, следующий из определения 2.2.1

Теорема 2.2.2. Пусть $\lim_{x \to \infty} f_n(x) = f(x), \forall x \in \mathbb{E}.$

Положим $r_n = \sup |f_n(x) - f(x)|, x \in \mathbb{E}$ — равномерное уклонение.

Тогда $f_n \stackrel{\mathbb{E}}{\Longrightarrow} f \iff r_n \to 0, \ n \to \infty.$ (Переформулировка определения).

Доказательство. Без доказательства.

Пример 2.2.1.
$$f_n(x) = x^n, \mathbb{E} = [0, 1)$$

$$\lim_{n \to \infty} f_n(x) = 0, \forall \in \mathbb{E}, r_n = \sup_{x \in [0, 1)} |x^n - 0| = 1 \not\to 0, n \to \infty.$$

 $\{x^n\}$ не является равномерно сходящейся на $\mathbb E.$

Пример 2.2.2.
$$f_n(x) = x^n - x^{n+1}$$
, $\mathbb{E} = [0, 1]$. $f_n(x) \to 0$, $\forall x \in \mathbb{E}$, $f'_n(x) = nx^{n-1} - (n+1)x^n = 0$. $x_n = \frac{n}{n+1}$, $f_n(x_n) = x_n^n(1-x_n) < \frac{1}{n+1}$. $r_n < \frac{1}{n+1}$.

Определение 2.2.2.

$$\sum_{n=1}^{\infty} U_n(x), \ x \in \mathbb{E}$$
 (2.3)

называется равномерно сходящейся, если на множестве $\mathbb E$ равномерно сходится последовательность частичных сумм.

Пусть $S_k(x)$ — частичные k-ые суммы ряда 2.3,

$$m \ge n : U_n(x) + \dots + U_m(x) = S_m(x) - S_n(x)$$

тогда из теоремы 2.2.1 (критерий Коши равномерной сходимости последовательности) \Rightarrow Теорема 2.2.3 (критерий Коши равномерной сходимости ряда).

Теорема 2.2.3 (Критерий Коши равномерной сходимости ряда). Для того, чтобы ряд 2.3 равномерно сходился на множестве $\mathbb{E} \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N}, \forall x \in \mathbb{E}$:

$$|U_n(x) + \dots + U_m(x)| < \varepsilon \tag{2.4}$$

Доказательство. Без доказательства.

Следствие (Необходимый признак равномерной сходимости). У равномерно сходящегося ряда общий член равномерно стремится к нулю.

Теорема 2.2.4 (Признак Вейерштрасса). Пусть $\{U_n\}$ — последовательность функций, определенных на \mathbb{E} и пусть $|U_n(x)| \leq a_n, \forall x \in \mathbb{E}, \forall n \in \mathbb{N}$. Тогда если $\sum a_n < \infty$ сходится, то следовательно $\sum U_n(x)$ сходится равномерно на \mathbb{E} .

Доказательство. Если $\sum a_n$ сходится, то $\forall \varepsilon > 0 | \sum_{k=n}^m U_k(x) | \leq \sum_{k=n}^m a_k < \varepsilon$, при любом $x \in \mathbb{E}$, если только m и n достаточно велики, теорема 1.1.1 (критерий Коши сходимости числового ряда). Равномерная сходимость нашего ряда вытекает из теоремы 2.2.3.

Замечание 2.2.1. $\sum a_n$ называется мажорирующим рядом $\sum U_n(x)$.

Замечание 2.2.2. ПРОВЕРИТЬ!!!

Условие признака Вейерштрасса не являются необходимыми для равномерной сходимости ряда.

2.3 Признаки равномерной сходимости рядов Дирихле и Абеля

Теорема 2.3.1. Пусть дан ряд

$$\sum_{n=1}^{\infty} a_n(x)b_n(x), \ x \in \mathbb{E}$$
 (2.5)

такой что:

- 1. $a_n(x) \in \mathbb{R}, \ b_n(x) \in \mathbb{C}, \ n = 1, 2, ...$
- 2. $a_n(x) \stackrel{\mathbb{E}}{\rightrightarrows} 0$ (Равномерная сходимость к нулю), $\{a_n(x)\}$ монотонна.
- 3. $\{b_n(x)\}, \sum b_n(x)$ ограничена на множестве \mathbb{E} .

Тогда ряд 2.5 равномерно сходится на множестве \mathbb{E} .

Доказательство. В силу условия 3, $\exists B>0: |B_n(x)|\leq B, \ \forall x\in\mathbb{E}, \ \forall n\in\mathbb{N}.$ $\forall x\in\mathbb{E}, m\geq n\geq 2: |b_n(x)+\cdots+b_m(x)|=|B_m(x)-B_{n-1}(x)|\leq 2B.$ $\forall \varepsilon>0$ из условия $2\Rightarrow \exists N=N(\varepsilon): n>N(\varepsilon), \forall \in\mathbb{E}$ выполняется неравенство:

$$0 \le |a_n(x)| < \frac{\varepsilon}{6B}.$$

Примениев лемму Абеля 1.5, получим:

$$|a_n(x)b_n(x) + \dots + a_m(x)b_m(x)| \le 2B$$

$$(|a_n(x) + 2a_m(x)| < \varepsilon, \forall x \in \mathbb{E}, m > n > N(\varepsilon))$$

В силу критерия Коши 2.2.3, ряд 2.5 сходится равномерно.

Теорема 2.3.2 (Признак Абеля).

$$\sum_{n=1}^{\infty} a_n(x)b_n(x) \tag{2.6}$$

- 1. Echu $a_n(x) \in \mathbb{R}, b_n(x) \in \mathbb{C}, n = 1, 2, \dots, x \in \mathbb{E}.$
- 2. $\{a_n(x)\}$ ограничена на множестве \mathbb{E} и монотонна $\forall x \in \mathbb{E}$.
- 3. Ряд $\sum b_n(x)$ равномерно сходится на \mathbb{E} .

Тогда ряд 2.6 равномерно сходится.

Доказательство. Доказательство легко провести так, как была доказана теорема 1.6.1.

Пример 2.3.1.
$$\sum_{n=1}^{\infty} \frac{c_n}{n^x}$$
 — ряд Дирихле.

Если этот ряд сходится в точке x_0 , то он сходится равномерно $\forall x \in \mathbb{E}, \ \mathbb{E} = [x_0, +\infty)$. Можно воспользоваться Признаком Абеля:

$$a_n(x) = \frac{1}{n^{x-x_0}}, \ b_n = \frac{c_n}{n^{x_0}}$$

Упраженение 1. Рассмотреть и доказать абсолютную сходимость при $x > x_0 + 1$

2.4 Равномерная сходимость и непрерывность

Теорема 2.4.1. Пусть $f_n \stackrel{\mathbb{E}}{\Rightarrow} f$, $x_0 - npedeльная точка множества <math>\mathbb{E}$ и пусть $\lim_{x \to x_0} f_n(x) = A_n$, (n = 1, 2, ...). Тогда $\{A_n\}$ сходится и

$$\lim_{x \to x_0} f(x) = \lim_{n \to \infty} A_n \tag{2.7}$$

Иными словами, 2 предельных перехода в данном случае коммутируют.

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x)$$

Доказательство. Пусть $\varepsilon > 0$. В силу равномерной сходимости последовательности $\{f_n\} \exists N : n > N, m > N, x \in \mathbb{E}$,

$$|f_n(x) - f_m(x)| < \varepsilon \tag{2.8}$$

Переходя в неравенстве 2.8 к приделу при $x \to x_0$ получим

$$|A_n - A_m| < \varepsilon, \ (n, m > N) \tag{2.9}$$

Поэтому $\{A_n\}$ — последовательность для которой выполняется признак Коши сходимости последовательности \Rightarrow она сходится.

Обазначим ее предел A

$$|f(x) - A| \le |f(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$$
(2.10)

Выберем n:

$$|f(x) - f_n(x)| < \frac{\varepsilon}{3}, \ \forall x \in \mathbb{E}$$
 (2.11)

Это возможно в силу равномерной сходимости.

$$|A_n - A| < \frac{\varepsilon}{3} \tag{2.12}$$

Затем, для этого n подберем такую окрестность $U(x_0): x \in U(x_0), x \neq x_0$, следовательно:

$$|f_n(x) - A_n| < \frac{\varepsilon}{3} \tag{2.13}$$

Из неравенств 2.10 - 2.13 получим

$$|f(x) - A| < \varepsilon, \ \forall x \in U(x_0), \ x \neq x_0$$

Это равносильно равенству 2.7

Теорема 2.4.2. Последовательность функций, непрерывных в точке $x \in \mathbb{E} f_n \stackrel{\mathbb{E}}{\Rightarrow} f$, то функция f непрерывна в точке x_0 .

Доказательство. Без доказательства.

Замечание 2.4.1. Обратное не верно, то есть последовательность непрерывных функций может неравномерно сходиться.

Из теоремы 2.4.2 и определения $2.2.2 \Rightarrow$ теорема 2.4.3

Теорема 2.4.3. Если функции $U_n(x)$, (n = 1, 2, ...), $x \in \mathbb{E}$ непрерывны в точке $x_0 \in \mathbb{E}$ и ряд $\sum_{n=1}^{\infty} U_n(x)$ равномерно сходится на \mathbb{E} , то его сумма f(x) также непрерывна в точке x_0 .

2.5 Равномерная сходимость и интегрирование

Теорема 2.5.1. Пусть f_n — последовательность действительных, значимых, интегрируемых на отрезке [a,b] функций. Тогда функция f также интегрируема на [a,b] u

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx \tag{2.14}$$

Существование предела заранее не предполагается.

Доказательство. $\forall \varepsilon > 0, \exists n :$

$$|f_n(x) - f(x)| < \varepsilon, \ x \in [a, b] \tag{2.15}$$

Зафиксируем n и выберем разбиение $[a,b],\ \triangle_1,\ldots,\triangle_S$ так, чтобы выполнялось неравенство

$$\sum_{i} \omega(f_n, \triangle_i)|\triangle_i| < \varepsilon \tag{2.16}$$

Комментарий. $\omega(f, E) = \sup - \inf - \ker$ функции.

Функции f_n интегрируемы на [a,b]. По скольку $\omega(f,\triangle_i) \leq \omega(f_n,\triangle_i) + 2\varepsilon$, $(i=1,\ldots,S)$ (смотри 2.15).

$$\sum_{i} \omega(f, \triangle_i) |\triangle_i| \le \varepsilon + 2\varepsilon (b - a)$$

Отсюда следует, что $f \in \mathbb{R}[a,b]$. Для доказательства 2.14 выберем n > N:

$$|f_n(x) - f(x)| < \varepsilon, \ (a \le x \le b), \ n > N$$

$$\left| \int_a^b f(x)dx - \int_a^b f_n(x)dx \right| \le \int_a^b |f(x) - f_n(x)|dx < \varepsilon(b - a)$$

Отсюда вытекает 2.14.

Теорема 2.5.2. $U_n \in R[a,b]$ (Интегрируема). Если

$$f(x) = \sum_{n=1}^{\infty} U_n(x), \ (a \le x \le b)$$
 (2.17)

 Πpu чем ряд 2.17 сходится на [a,b], тогда

$$\int_{a}^{b} f(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f(x)dx$$

Иными словами ряд 2.17 можно интегрировать частями.

Доказательство. Без доказательства.

Замечание 2.5.1. При нарушении равномерности ряд, состоящий из интегрируемых функций может иметь интегрируемую сумму.

2.6 Равномерная сходимость и дифференцирование

 $f_n(x) = \frac{\sin nx}{\sqrt{n}}, x \in \mathbb{R}$ показывает, что из равномерной сходимости последовательности функций не следует даже поточечная сходимость последовательностей функций производных. То есть нужны более сильные предположения, чтобы заключать, что $f'_n \to f_n$, при $f_n \to f$.

Теорема 2.6.1. Пусть $f_n(x) \to f(x)$, $x \in [a,b]$, $n \to \infty$, $f_n \in C[a,b]$, (n = 1, 2, ...). Если $\{f'_n(x)\}$ сходится равномерно на [a,b], то $f_n(x)$ дифференцируема u

$$f'(x) = \lim_{n \to \infty} f'_n(x)$$

Доказательство. Обозначим через f^* предел последовательности f'_n . Ввиду теоремы 2.4.2 f^* непрерывна на [a,b].

Применим теорему 2.5.1 к последовательости $\{f_n\}$ на промежутке [a,x], где $x \in [a,b]$

$$\int_{a}^{x} f^{*}(t)dt = \lim_{x \to \infty} \int_{a}^{x} f'(t)dt = \lim_{n \to \infty} (f_{n}(x) - f_{n}(a)) = f(x) - f(a)$$

Так как интеграл слева ввиду непрерывности функции f^* имеет производную равную f', то ту же производную имеет и f(x).

$$f'(x) = f^*(x) = \lim_{n \to \infty} f'(x), x \in [a, b]$$

Перефразируем теорему 2.6.1 с точки зрения рядов:

Пусть сходящийся ряд $\sum_{n=1}^{\infty} U_n(x) =: f(x), x \in [a,b]$ и пусть $U_n(x) \in C^1[a,b], (n = 1, 2, ...).$

Если ряд $\sum_{n=1}^{\infty} U_n'(x)$ сходится равномерно на [a,b], то сумма f(x) дифференцируема, и $f'(x) = \sum_{n=1}^{\infty} U_n'(x), x \in [a,b].$

Глава 3

Степенные ряды

3.1 Радиус сходимости и круг сходимости

Определение 3.1.1. Степенной ряд — ряд вида

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n, \ z, z_0 \in \mathbb{C}, n = 0, 1, \dots$$
(3.1)

 a_n — коэффициенты ряда.

$$\xi = z - z_0$$
, тогда $\sum_{n=0}^{\infty} a_n \xi$,

$$\sum_{n=0}^{\infty} a_n z^n \tag{3.2}$$

Теорема 3.1.1. Степенной ряд 3.2, $\alpha = \overline{\lim} \sqrt[n]{|a_n|}$,

$$R = \frac{1}{\alpha} \tag{3.3}$$

 $(\alpha = 0 \Longleftrightarrow R = \infty, \ \alpha = +\infty \Longleftrightarrow, R = 0)$, тогда ряд 3.2 абсолютно сходится, если |z| < R, и рассходится, если |z| > R.

Доказательство. Положим $C_n = a_n z^n$. По критерию Коши заключаем, что сумма $\sum C_n$ сходится при $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = |z| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = \frac{|z|}{R} < 1$, то есть |z| < R; и рассходится, если |z| > R.

Определение 3.1.2. Число R называется радиусом сходимости ряда 3.2. $|z| < R, z \in \mathbb{C}$ называется кругом сходимости ряда 3.2.

Замечание 3.1.1. О сходимсоти на границе окружности |z|=R ничего не говорится в теореме 3.1.1, так как возможны все варианты.

Теорема 3.1.2. Если R — радиус сходимости (R > 0) ряда 3.2, то на любом круге |z| < r, где r — фиксированно, и r < R.

Таким образом этот ряд сходится абсолютно и равномерно.

Доказательство. $z=r,\sum\limits_{n=0}^{\infty}|a_n|r^n$ сходится, а так как для любой точки z круга $|z|\leq r$ выполняется неравенство:

$$|a_n z^n| \le |a_n| r^n, \ \forall n$$

то по признаку Вейерштрассе на этом круге ряд 3.2 сходится равномерно.

Следствие. Степеной ряд непрерывный в каждой точке своего круга |z| < R сходится.

Теорема 3.1.3 (2-ая т. Абеля). Если R — радиус сходимости, $\sum_{n=0}^{\infty} a_n z^n$ и этот ряд сходится npu |z| = R, то он сходится на отрезке [0,R] равномерно.

Доказательство. Пусть $0 \le x \le R$, представим ряд $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n$. По скольку члены ряда $\sum a_n R^n$ не зависит от x, то его сходимость означает его равномерную сходимость. $\{(\frac{x}{R})^n\}$ ограничена на отрезке [0,R] и монотонна в каждой точке. Поэтому в силу признака Абеля равномерной сходимости рядов 2.3.2 ряд 3.2 равномерно сходится на отрезке [0,R].

Лемма 3.1.4. Радиусы сходимости R, R_1, R_2 соответственно рядов $\sum\limits_{n=0}^{\infty} a_n z^n, \sum\limits_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}, \sum\limits_{n=0}^{\infty} n a_n z^{n-1}$ равны: $R = R_1 = R_2$.

$$\mathcal{A}$$
оказательство. Действительно, так как $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n+1}} = \lim_{n\to\infty} \sqrt[n]{n} = 1$, то $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \overline{\lim_{n\to\infty} \sqrt[n]{|a_n|}} = \overline{\lim_{n\to\infty} \sqrt[n]{|na_n|}gt}$