AD-A158 762 SIEVES AND A FILTER FOR GAUSSIAN PROCESSES(U) MISCONSIN UNIV-MILMAUKEE J BEDER 25 APR 85 AFOSR-TR-85-8621 AFOSR-84-8329 F/G 12/1 NL

NATIONAL BUREAU OF STANDARDS MICROCOPY RESOLUTION TEST CHART

FILE COPY

315

as

Research Progress and Forecast Report: April 25, 1985

Sieves and a Filter for Gaussian Processes: AFOSP-84-0329

Results on Conjecture 1.

We use the definitions and notation of [1]. Let H be the subspace of $L^2(\Omega,a,p)$ spanned by $\{X_t,t\in T\}$, and let H=H(R,T) be the corresponding reproducing kernel Hilbert space. Assume that H has countable dimension, with CON basis $\{U_i\}$. Fix $\underline{a}=\{a_k\}\in \mathbb{R}^2$, and consider a sample of size n.

<u>Proposition 1</u>. Under $P_{\underline{a}}$, the U_k are independent, and \overline{U}_k has the $n(a_k, 1/n)$ distribution.

We consider the sieve estimator defined in [1], p. 7. Then for each m and for a sample of size n, the sieve estimator of the mean g(t) is

(1)
$$\hat{g}(t) = \Sigma \hat{a}_k g_k(t),$$

where $\{g_{\vec{k}}\}$ is the CON basis of H corresponding

to $\{U_k\}$. We wish to pick m as a function of n so that $\|\hat{g}-g\| \to 0$ (norm in H). But $\|\hat{g}-g\|^2 = \|\hat{\underline{a}}-\underline{a}\|^2$ (norm in ℓ^2) = $\sum\limits_{\substack{k \le m \\ k > m}} (\overline{U}_k - a_k)^2 + \sum\limits_{\substack{k > m \\ k > m}} a_k^2 = X_{nm} + \sum\limits_{\substack{k > m \\ k > m}} a_k^2$, say. The non-stochastic tail vanishes as $n \to \infty$ if we require $m \to \infty$. By Proposition 1, nX_{nm} is $\chi^2(m)$, and the following weak result describes the limitations we will need to impose on $m = m_n$.

<u>Proposition 2</u>. If $m/n \rightarrow \beta$, then $X_{nm} \rightarrow 0$ in P_a -probability iff $\beta=0$.

The Borel-Cantelli Lemma gives a sufficient condition for $P_a(X_{nm}\rightarrow 0) = 1$:

<u>Proposition 3.</u> Let $\{m_n\}$ be chosen so that $m_n \to \infty$ and such that the sequence $\{c_n\}$ defined by

$$c_n = \int_{\frac{n\epsilon}{2}}^{\infty} \frac{1}{\Gamma(\frac{m}{2})} u^{\frac{m}{2}-1} e^{-u} du$$

is summable for every $\varepsilon > 0$. Then $P_a(X_{nm} \rightarrow 0) = 1$.

If m_n is chosen so that it is always even, then we may rewrite c_n

$$c_n = e^{-\alpha \eta} e_{2-1}(\alpha \eta),$$

SELECTE AUG 2 9 1985

G

ECURITY CLASSIFICATION OF THIS FAGE

REPORT DOCUMENTATION PAGE						
1a. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS				
Unclassified						
28. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A				
2b. DECLASSIFICATION/DOWNGRADING SCHEE) III E	Approved fo unlimited	r public re	lease; aist	ribution	
N/A	JOCE	uniimitea				
4. PERFORMING ORGANIZATION REPORT NUM	IBER(S)	5. MONITORING OR	GANIZATION RE	PORT NUMBER	3)	
		AFOSR-TR- 85-0621				
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	74. NAME OF MONIT	TORING ORGANI	ZATION		
University of Wisconsin-Milwa	ukee	AFOSR				
6c. ADDRESS (City, State and ZIP Code)			7b. ADDRESS (City, State and ZIP Code)			
P. O. Box 413		B1dg. 410				
Milwaukee, WI 53201		Bolling AFB, D.C. 20332-6448				
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
AFOSR	NM	AF0SR-84-0329 -				
Bc. ADDRESS (City, State and ZIP Code)		10. SOURCE OF FU	NDING NOS.			
Bldg. 410 Bolling AFB, D.C. 20332-6448	•	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT	
BUTTING AFB, D.C. 20332-0446	•	61102F	2304	A5	1	
11. TITLE (Include Security Classification) Siev	es and a Filter	1	1	}		
for Gaussian Processes		<u> </u>		<u> </u>		
12. PERSONAL AUTHOR(S)						
J. Beder	COVERED	14. DATE OF REPO	BT /Yr Ma Day	15. PAGE	COUNT	
Interim FROM	TO	25 April 1		4		
16. SUPPLEMENTARY NOTATION			<i></i>			
17. COSATI CODES FIELD GROUP SUB. GR.	Gaussian Proc	Continue on reverse if necessary and identify by block number)				
XXXXXXXXXXXXX	dauss Iali Fioc	Jesses				
19. ABSTRACT (Continue on reverse if necessary and identify by black number)						
Results are reported on the f						
described in the research proposal. Conjecture 1 has been established and follow-on						
results are obtained. What remains to be investigated is the use of these results						
to make confidence statements and to test hypotheses. Results which establish the						
Change confecture 2 are also reported. I want to a Cognords, Ast 2002						
truth of conjecture 2 are also reported. Italian beyonds. There is supported.						
1						
20. DISTRIBUTION/AVAILABILITY OF ABSTRA	21. ABSTRACT SECURITY CLASSIFICATION					
UNCLASSIFIED/UNLIMITED 🖫 SAME AS RPT. 🛍 DTIC USERS 🗆		Unclassified				
224 NAME OF E CONSIBLE INDIVIDUAL		226. TELEPHONE	IUMBER	22c. OFFICE SY	MBOL	
Brian W. Woodruff, Maj, USAF		(Include Area C (202)767-5		I NM		
E DITUIT TO MODULUIT, MAJ, USAF		[(202)/0/-3	UL1	NM		

where $\alpha = \varepsilon/2$, $n = 2\ell$, and $e_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. Invert $\ell = \ell(n)$, say $n = \lambda(\ell)$. Now we must choose $\lambda(\ell)$ so that at least $\lambda/\ell + \infty$ and so that $e^{-\alpha\lambda}e_{\ell}(\alpha\lambda)$ is summable for every $\alpha > 0$. Write

$$e^{\alpha\lambda} = e_{\ell}(\alpha\lambda) + \frac{(\alpha\lambda)^{\ell}}{\ell!} A_{\ell}(\alpha).$$

Using results of Buckholtz [2], we may prove the following:

Theorem 1. Let $\lambda = \lambda(\ell)$ be such that $\lambda/\ell \to \infty$ as $\ell \to \infty$. Then for each $\alpha \epsilon(0,\infty)$ we have

$$A_{\ell}(\alpha) = \frac{\ell! e^{\alpha \lambda}}{(\alpha \lambda)^{\ell}} + \frac{\alpha \lambda}{\ell - \alpha \lambda} + O(\frac{1}{\ell}), \quad \ell \to \infty.$$

From this and Stirling's formula we have

Corollary 1. If $\lambda/\ell \to \infty$ as $\ell \to \infty$, then for each $\alpha \epsilon(0,\infty)$ the sequence

$$e^{-\alpha\lambda} e_{\ell}(\alpha\lambda)$$

is summable.

Translating back, we get the following consistency result. Theorem 2. If m = 2l(n) = o(n) and $m + \infty$, then $\hat{a} \rightarrow \underline{a}$ a.s.

At first this holds a.s. $P_{\underline{a}}$, but since the measures in P are equivalent, we may assert a.s. convergence without qualification. In any case, this settles Conjecture 1. In particular, the condition m=o(n), which was sufficient for weak convergence, also gives strong convergence, and since $m/n \to \beta > 0$ does not even give weak convergence, our condition is in some sense best possible. Moreover, a result similar to Theorem 1 allows us to see just what does hold almost surely if we only require $m/n \to \beta > 0$:

Theorem 3. If m/n \rightarrow β > 0, then for all ϵ sufficiently large (depending only on β) we have

$$P_a(X_{nm} > \epsilon i.o.) = 0$$

The distribution of the estimator \hat{g} given by (1) is easy to describe. Consider $\hat{g}(t)$ as a stochastic process. From Proposition 1 we have the following.

Theorem 4. Under P_a , the process $\{\hat{g}(t), t \in T\}$ is Gaussian with mean function $\sum_{i=1}^{\infty} a_i g_i(t)$ and covariance function $\frac{1}{n} \sum_{i=1}^{m} g_i(s)g_i(t)$.

For comparison we note that the reproducing kernel R(s,t) of H may be written $R(s,t) = \sum_{i=1}^{\infty} g_i(s)g_i(t)$ (as long as $\{g_i\}$ is CON in H), and that under P_a the true mean function is $\sum_{i=1}^{\infty} a_i g_i(t)$. What needs to be investigated now is the use of Theorem 4 to make confidence statements and to test hypotheses. Results on Conjecture 2.

The set-up here is given in [1], pp. 7-8. Let us fix a countably infinite orthonormal set $\{g_k\}$ (not necessarily complete) in H, and consider the subset $P_0 \subset P$ consisting of measures corresponding to covariances of from $S(s,t) = R(s,t) + \Sigma \mu_k g_k(s) g_k(t)$, where $\underline{\mu} = \{\mu_k\}$ is in the subset ℓ_e^2 of ℓ_e^2 . Now the likelihood function depends only on $\underline{\mu}$. Let $U_k \in H$ correspond to g_k as usual, and let $A = \{\omega \in \Omega \colon U_k(\omega) \neq 0 \text{ for every } k\}$. Certainly A is an event in A.

Theorem 5. Q(A) = 1 for every $Q \in P$, and for each outcome $\omega \in \Omega$ the corresponding likelihood is unbounded over P_0 . Thus Conjecture 2 is established.

References

- [1] Jay H. Beder. Sieves and a filter for Gaussian processes, AFOSR grant proposal.
- [2] J. D. Buckholtz. Concerning an approximation of Copson, <u>Proc. Amer.</u>

 Math. <u>Soc.</u> 14 (1961), 564-568.

Accession For NTIS GRA&I DTIC TAB Unannouneed Justification	7
By	

END

FILMED

10-85

DTIC