

Fundamentos de Matemática

Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/

Exercícios de Revisão

- [01] Sejam m e n números naturais. Verdadeira ou falsa? Se mn é par, então m é par ou n é par. Justifique sua resposta!
- [02] Diga se cada uma sentenças abaixo é verdadeira ou falsa. Apresente uma demonstração caso a sentença seja verdadeira e um contraexemplo caso ela seja falsa.
 - (a) Se x > 0, então $x^2 \ge \sqrt{x}$.
 - (b) Se $a, b \in \mathbb{R}$, então |a+b| = |a| + |b|.
 - (c) Se n é um número inteiro, então $n^2 n$ é um número par.
 - (d) Se $a \neq 0$, $b \neq 0$ e a < b, então 1/b < 1/a.
- [03] Verdadeira ou falsa? $A \Rightarrow B$ é verdadeira se, e somente se, $\sim B \Rightarrow \sim A$ é verdadeira. Justifique sua resposta!
- [04] Dizemos que $p \in \mathbb{R}$ é ponto de mínimo local de uma função $f : \mathbb{R} \to \mathbb{R}$ se existe $\epsilon > 0$ tal que para todo $x \in]p \epsilon, p + \epsilon[$, tem-se $f(x) \geq f(p)$.
 - (a) Dê um exemplo de uma função $f: \mathbb{R} \to \mathbb{R}$ e de um número p tais que p seja ponto de mínimo local de f. Justifique o porquê de p ser ponto de mínimo local de f.
 - (b) Quando $p \in \mathbb{R}$ não é ponto de mínimo local de uma função $f : \mathbb{R} \to \mathbb{R}$?
 - (c) Mostre, usando a definição, que p=0 $n\tilde{a}o$ \acute{e} ponto de mínimo local de $f:\mathbb{R}\to\mathbb{R}$ definida por f(x)=x.
- [05] (2.0) Forme um argumento válido acrescentando como conclusão tudo o que você puder concluir sobre o conjunto A a partir das premissas dadas a seguir. Justifique sua conclusão.

Premissas:

- 1) $A \subset \mathbb{N}$;
- 2) se $d \in \mathbb{N}$, $x \in A$ e d divide x, então $d \in A$;
- 3) $1 \in A$ se, e somente se, $2 \notin A$;
- 4) se existe x > 20 tal que $x \in A$, então $20 \in A$;
- 5) se $a \in A$ e $b \in A$, então $a \cdot b \in A$;
- 6) $A \neq \emptyset$;
- [06] (a) Escreva a forma contrapositiva da seguinte sentença: se f e g são funções limitadas, então f+g é uma função limitada.
 - (b) Verdadeira ou falsa? Se $a, b \in \mathbb{N}$, 7 divide a + b e 7 divide $a^2 + b^2$, então 7 divide a e 7 divide b. Justifique sua resposta!

Texto composto em LATEX2e, HJB, 14/01/2014.