

Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital

Fundamentos Matemáticos da Computação II $_{\rm Per\'iodo~2024.2}$

Trabalho 3ª Unidade

	Lista de Alunos	
2		
3		
4		
5		
6		

Seção Múltipla Escolha

Nesta seção, **não é necessário descrever o processo usado para marcação da alternativa**. a nota de cada questão levará em conta apenas a marcação da alternativa correta, sendo atribuído 0 pontos para a marcação da alternativa errada e 0.5 ponto para a marcação da alternativa correta.

Questão M1 (0.5 ponto)

Seja o conjunto \mathbb{R} e a operação $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $(a,b) \mapsto a+b-3$. Assinale a alternativa correta:

- A ($\mathbb{R},*$) é um grupo não abeliano, e=3 e o inverso do elemento 15 é o -9
- B $(\mathbb{R},*)$ é um grupo abeliano, e=3 e o inverso do elemento 15 é o -9
- C $(\mathbb{R},*)$ é um grupo não abeliano, e=4 e o inverso do elemento 15 é o -8
- $(\mathbb{R},*)$ é um grupo abeliano, e=4 e o inverso do elemento 15 é o -8
- \mathbb{E} ($\mathbb{R},*$) é um grupo abeliano, e=3 e o inverso do elemento 15 é o 9

Questão M2 (0.5 ponto)

Seja a estrutura algébrica ($\mathbb{Z},*$) com * definida por a*b=a-b. Esta operação, associada com o conjunto satisfaz as seguintes propriedades:

- A Fechamento, associatividade, elemento neutro e inversos
- B Fechamento, associatividade e elemento neutro
- C Fechamento e associatividade
- D Apenas fechamento
- E Nenhuma das alternativas

Questão M3 (0.5 ponto)

Seja o grupo abeliano $(\mathbb{Z}_6, +_6)$ o inverso do elemento $\bar{4}$ é:

- $\left(\begin{array}{c} \mathbf{A} \end{array}\right) \bar{\mathbf{0}}$
- В 1
- $\left(\begin{array}{c} \mathbf{C} \end{array}\right)\bar{2}$
- $\left(\begin{array}{c} \mathbf{D} \end{array}\right)\bar{\mathbf{3}}$
- $\left(\mathbf{E}\right)^{2}$

Questão M4 (0.5 ponto)

Considere a tábua de operação de * sobre o conjunto $A = \{1, 2, 3, 4, 5\}$:

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

Assinale a alternativa que traz a afirmação correta:

- (3*3)*(4*4) = 2 e a operação é comutativa
- $\begin{picture}(20,0)\put(0,0)$
- (3*3)*(4*4) = 1 e a operação não é comutativa
- (3*3)*(4*4) = 1 e a operação é comutativa
- \mathbf{E} (3*3)*(4*4)=4 e a operação não é comutativa

Seção Discursiva

Nesta seção, descreva de forma detalhada sua resposta. A nota de cada questão levará em conta tanto o procedimento utilizado quanto a resposta final.

Questão D1 (1 ponto)

Considere a estrutura algébrica dada por $(M_2(\mathbb{Z}),\cdot)$, onde $M_2(\mathbb{Z})$ é o conjunto das matrizes quadradas 2×2 com entradas inteiras e (\cdot) é o produto usual de matrizes. Com base nisto, responda:

- A A operação do produto de matrizes satisfaz a condição de fechamento? Explique.
- B A operação do produto de matrizes é associativa? Explique.
- C Verifique a existência de elemento neutro. Em caso afirmativo, especifique o elemento neutro.
- D Verifique a condição de existência de simétricos/inversos.
- E Essa estrutura se enquadra na definição de grupos? Explique.

Questão D2 (1 ponto)

Considere a estrutura algébrica ($\mathbb{R}^+,*$) com a operação binária definida como a*b=|a-b|

- A Verifique se essa operação satisfaz a condição de fechamento. Explique.
- B A operação possui elemento neutro? Explique com base na definição de elemento neutro e em caso positivo, descreva quem é o elemento neutro.
- D Verifique a existência de simétricos/inversos.
- E Essa operação é associativa e comutativa? Explique usando a definição de associatividade e comutatividade.
- E Essa estrutura pode ser considerada um grupo? Explique.

Boa Sorte!