Bayesian Analysis of New York City's Uber Rides Data

David Arthur, Krishnan Raman

12/10/2020

Introduction

Uber is a popular ridesharing platform that services millions of customers each day. Uber drivers are interested in making the most money. This involves answering the following questions:

- What times of the year and week are drivers most needed?
- What times of day are the busiest and does this vary by location?
- For an optimal route, how much can a driver expect to make?
- Is the optimal route really that much better than a random route?

Two Datasets

```
orig
      dest pickup datetime distance duration fare
1 7C
       6A 2014-09-01 09:00:00
                               4.25
                                     15.183 15.30
2 7B
       15 2014-09-01 18:00:00
                              10.17 34.083 32.28
3
  11
       2A 2014-09-01 17:00:00 4.02 17.100 15.57
 3B
       4A 2014-09-01 13:00:00 1.46 6.533 8.00
4
5 2A
       10 2014-09-01 14:00:00 8.31 26.283 26.29
6
  5B
                              1.04 8.583 8.00
       4C 2014-09-01 12:00:00
```

```
Date.Time Lat Lon Base
1 9/1/2014 0:01:00 40.2201 -74.0021 B02512
2 9/1/2014 0:01:00 40.7500 -74.0027 B02512
3 9/1/2014 0:03:00 40.7559 -73.9864 B02512
4 9/1/2014 0:06:00 40.7450 -73.9889 B02512
5 9/1/2014 0:11:00 40.8145 -73.9444 B02512
6 9/1/2014 0:12:00 40.6735 -73.9918 B02512
```

First Question: The Data

First Question: The Model

The model for the number of trips on day t is:

$$y(t) = \beta_0 + \beta_1 t + \beta_2 t^2 + f_1(t) + f_2(t) + \epsilon(t)$$
 where $\epsilon(t) \sim \mathcal{N}(0, \sigma^2)$

This can be more compactly written in matrix/vector notation as:

$$Y = X\beta + f_1 + f_2 + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$

Here, f_1 and f_2 are Gaussian Processes that represent a smooth, yearly trend and a shorter, periodic trend respectively. The $X\beta$ is a structural component that accounts for an increasing trend over time.

First Question: Gaussian Process

We assume that:

$$f_1 \sim \mathcal{N}(0, au_1^2 \ extit{K}_1), \ f_2 \sim \mathcal{N}(0, au_2^2 \ extit{K}_2)$$
 $K_1(t,t') = \expigg(-rac{|t-t'|^2}{(2)(7^2)}igg), \ K_2(t,t') = \expigg(-rac{-2\,\sin^2(\pi|t-t'|/7)}{7^2}igg)$ $\pi(eta) \propto 1$ $\sigma^2 \sim \operatorname{InverseGamma}(3,5)$ $au_1^2, au_2^2 \sim \operatorname{Gamma}(1.5,0.2)$

A Gibbs Sampler with MH-steps for τ_1^2 and τ_2^2 is implemented to sample from the marginal posterior $f(Y|\beta,\sigma^2,\tau_1^2,\tau_2^2)$ where $Y|\beta,\sigma^2,\tau_1^2,\tau_2^2\sim\mathcal{N}(X\beta,K_1+K_2+\sigma^2I)$ and then these can be used to estimate f_1 and f_2 .

First Question: Model Checking

	GR Estimate	Upper C.I.	ESS
β_0	1.0015	1.0016	14032.3905
β_1	1.0006	1.0009	30000.0000
β_2	1.0015	1.0017	22429.7924
σ^2	1.0001	1.0004	21527.7282
τ_1^2	1.0008	1.0016	683.5401
$ au_2^2$	1.0011	1.0022	2434.2481

First Question: Model Checking

First Question: Posterior Predictive Check

First Question: Posterior Estimates of Trends

First Question: Weekly Trend

First Question: Predictions

Second Question: The Data

Second Question: The Model

The model for number of trips at location s at time t is:

$$y(s,t) = f(s,t) + \epsilon(s,t)$$
 where $\epsilon \sim \mathcal{N}(0,\sigma^2)$

Or more compactly:

$$Y = f + \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$

Here, f just represents a spatio-temporal Gaussian Process that allows us to understand trends in trips across space and time simultaneously instead of considering them separately.

Question 2: Spatio-Temporal Gaussian Process

We assume that:

$$f \sim \mathcal{N}(0, K)$$

$$K(s, s', t, t') = \tau_s^2 \exp\left(-\frac{||s - s'||_2^2}{(2)(0.005^2)}\right) \times \tau_t^2 \exp\left(-\frac{|t - t'|^2}{(2)(12^2)}\right)$$

$$\sigma^2, \tau_s^2, \tau_t^2 \sim \text{InverseGamma}(3, 5)$$

A Gibbs Sampler is used to sample from the posterior distribution.

Second Question: Model Checking

	Point est.	Upper C.I.	ESS
σ^2	1.0000	1.0001	16561.97
τ_s^2	1.0200	1.0571	2727.01
τ_t^2	1.0193	1.0517	1115.583

Second Question: Model Checking

Second Question: Posterior Predictive Check

Second Question: Predictions

True Log Counts with Log Predictions

Third Question: Uber Graphs & Subgraphs

Uber as a graph, with 29 vertices, 812 edges.

Third Question: Graph of Most Lucrative Edges

Uber top-100 subgraph, Vertices: 29 Edges: 100

Third Question: What's an Optimal Circuit?

Some criterion for the optimal circuit:

- Circuit: Collection of edges
- Want a closed circuit aka Cycle or loop
- Want a "simple path" : each node visited only once

We want to find:

Circuit that makes the most money for the Uber Driver

We are assuming:

- Driver works 9AM-5PM: 8 HOURS
- Make 1 Uber trip per hour
- Want an 8-cycle aka Simple Path with 8 Nodes aka 8-gon

Third Question: The Optimal Circuit

Third Question: Summary Statistics for Optimal Circuit

Src	Dest	Mean	Median	Sigma	Var
8	18	63.54	63.69	4.90	23.97
18	15	53.06	52.44	6.71	45.06
15	16	50.18	49.72	8.65	74.84
16	10	47.70	47.86	7.69	59.07
10	9	47.20	46.39	7.40	54.79
9	7A	54.00	53.42	4.66	21.70
7A	17	61.56	61.96	6.22	38.72
17	8	60.19	59.89	6.04	36.47

Third Question: Fare Distributions for Each Edge

Third Question: Two Models

Edge Fare X_i = Observed fares for edge X_i over a year. Circuit Fare $Y = \sum X_i$, i=1:8, Y is unobserved.

Model 1: Gaussian Conjugate Prior

- \blacktriangleright $X_i \sim N(1/8\mu, 1/8\sigma^2) \rightarrow Y \sim N(\mu, \sigma^2)$
- $\mu \sim N(50*8,8*(7^2))$
- Posterior Dist of Y proportional to product of Prior & Likelihood
- Gaussian Conjugate prior yields Gaussian posterior

Model 2: Hierarchical Model

- \triangleright $X_i \sim N(\mu_i, \sigma)$
- $\blacktriangleright \mu_i \sim N(\mu, \phi)$
- $ightharpoonup Y \sim N(8\mu, \sqrt{8}\sigma)$
- Estimate posterior mean of Y via MCMC

Third Question: Model 1 Posterior of Mean Fare

Third Question: Model 2 Posterior Distributions

Third Question: Model 2 Posterior of Mean Fare

Mean Fare from Optimal Daily Circuit: \$437.63

Fourth Question: Random Circuit Posterior Distributions

Fourth Question: Random Circuit Mean Fare Posterior

Mean Fare from Random Daily Circuit: \$235.82

|Optimal-Random| Median Loss: \$201.81

Fourth Questions: Confidence Distributions

- Professor Don Rubin: "Fisher Randomization Test is a Stochastic Proof-By-Contradiction"
- FRT = distribution-free test to compare two (multimodal)
 Uber circuits
- Fisher Sharp Null compares individual potential outcomes $Y_i(1)$ vs $Y_i(0)$ for every observation.
- An assignment is a Boolean vector over two weeks.
- An assignment simply means on the given day, the Uber driver drove Circuit c2.
- A non-assignment means the wages would come from Ckt c1 aka Null Hypothesis.
- Compute the biweekly average and compare with the null hypothesis biweekly average
- ► This comparison is a simple difference test statistic.

Fourth Question: Confidence Distributions

Conclusions

What we confirmed:

- Holidays are not times of high demand
- Weekends are when most people need an Uber
- Central New York is the busiest
- Most places see a spike in demand in the morning and evening
- You'll make a lot more money driving the optimal circuit

Room for Improvement:

- Fix estimation problems with length-scale parameters
- Address model inadequacies found with posterior predictive checks