Step-1

First we have to show that every number is an Eigen value for $^{Tf(x)=df/dx}$.

Suppose $f(x) = e^{ax}$ for a real number a, so by the above definition we have:

$$Tf(x) = \frac{df}{dx}$$
$$= \frac{d}{dx} (e^{ax})$$
$$= ae^{ax}$$
$$= af(x)$$

Therefore, every real number a is an eigenvalue for Tf(x) = df/dx

Step-2

Now, we have to show that the transformation

Step-3

Let us take $^{Tf}(x) = af(x)$, for some real number a and function f.

Step-4

 $Tf(x) = \int_{0}^{x} f(t)dt$ We know that , so we have

Step-5

$$\int_{0}^{x} f(t)dt = Tf(x)$$
$$= af(x)$$

Step-6

 $\int f(t)dt = af(x)$

Step-7

Differentiate both the sides of equation $\int_{0}^{x} f(t)dt = af(x).$

$$f(x) = af'(x)$$

Rewrite the above equation as

$$\frac{f'(x)}{f(x)} = \frac{1}{a}$$

To solve for *f*, first integrate both the sides of equation:

$$\int \frac{f'(x)}{f(x)} dx = \int \frac{1}{a} dx$$
$$\ln|f(x)| = \frac{1}{a}(x) + C$$

$$\ln\left|f(x)\right| = \frac{x}{a} + C$$

Step-8

Take exponential of both sides of equation $\ln |f(x)| = \frac{x}{a} + C$.

$$e^{\ln|f(x)|} = e^{\frac{x}{a} + C}$$

$$\left| f\left(x\right) \right| =e^{\frac{x}{a}+C}$$

$$\left| f(x) \right| = e^{C} e^{\frac{x}{a}}$$

Step-9

Substitute A for e^{C} (here A may be a negative).

Step-10

$$f(x) = Ae^{\frac{x}{a}}$$

Step-11

Use the function $f(x) = Ae^{\frac{x}{a}}$ and definition of T, $Tf(x) = \int_{0}^{x} f(t)dt$, so

$$Tf(x) = \int_{0}^{x} Ae^{\frac{t}{a}} dt$$

By integrating, we have

$$Tf(x) = A \int_{0}^{x} e^{\frac{a}{t}} dt$$
$$= \left[Aae^{\frac{t}{a}} \right]_{0}^{x}$$
$$= Aae^{\frac{x}{a}} - Aa$$
$$= a \left(Ae^{\frac{x}{a}} - A \right)$$

Substitute f(x) for $Ae^{\frac{x}{a}}$, so

$$Tf(x) = a \left(Ae^{\frac{x}{a}} - A \right)$$
$$= a \left(f(x) - A \right)$$

We know that Tf(x) = af(x), so we have

$$af(x) = a(f(x) - A)$$
$$= af(x) - aA$$

This implies that either a = 0 or A = 0. So we get f(x) = 0 in either conditions,

Therefore, we have concluded that transformation $Tf(x) = \int_{0}^{x} f(t)dt$ has no eigenvalues.