

Johns Hopkins University

Contractibility as Uniqueness

UCLA Distinguished Lecture Series

An analogy

contractibility :: uniqueness

1. Contractibility as Uniqueness

2. Categorifying Uniqueness

 $3. \infty$ -Categorifying Uniqueness

Contractibility as Uniqueness

The algebra of paths

The standard technique used to distinguish your favorite space A from other spaces is to compute an algebraic invariant of the space.

The "algebra of paths" of a space is described in increasing precision by:

- the fundamental group $\pi_1(A,x)$ of loops in A based at x up to homotopy
- the fundamental groupoid $\pi_1 A$ of paths in A up to homotopy
- the fundamental ∞ -groupoid $\pi_\infty A$ of paths in A

The algebra of paths

The standard technique used to distinguish your favorite space A from other spaces is to compute an algebraic invariant of the space.

The "algebra of paths" of a space is described in increasing precision by:

- the fundamental group $\pi_1(A,x)$ of loops in A based at x up to homotopy
- the fundamental groupoid $\pi_1 A$ of paths in A up to homotopy
- the fundamental ∞ -groupoid $\pi_{\infty}A$ of paths in A

$\pi_{\infty}A$ has:

- points of A as objects
- paths of A as 1-arrows
- paths between paths in A as 2-arrows
- paths between paths between paths in A as 3-arrows, and so on ...

Q: How do we define the composite of two paths?

n'+1

 $\ensuremath{\mathsf{Q}}\xspace$. How do we define the $\ensuremath{\mathsf{composite}}\xspace$ of two paths?

A: We don't!

Q: How do we define the composite of two paths?

A: We don't!

Instead of a composition operation, composites of paths are witnessed by higher paths.

Q: How do we define the composite of two paths?

A: We don't!

Instead of a composition operation, composites of paths are witnessed by higher paths.

Q: How do we define the composite of two paths?

A: We don't!

Instead of a composition operation, composites of paths are witnessed by higher paths.

Q: How unique is path composition?

Q: How do we define the composite of two paths?

A: We don't!

Instead of a composition operation, composites of paths are witnessed by higher paths.

Q: How unique is path composition?

Partial A: Unique enough for associativity.

Given composable paths f, g, h and specified higher paths α , β , γ witnessing composition relations, these higher paths compose. More precisely, a 3-arrow expresses a coherence between compositions witnessed by 2-arrows.

Theorem. The space of composites of two paths f and g in A is contractible.

Theorem. The space of composites of two paths f and g in A is contractible.

Proof: The space of composites of paths f and g in A is defined by the pullback:

Theorem. The space of composites of two paths f and g in A is contractible.

Proof: The space of composites of paths f and g in A is defined by the pullback:

A space is contractible just when any sphere S^{n-1} can be filled to a disk D^n for $n \ge 1$.

Theorem. The space of composites of two paths f and g in A is contractible.

Proof: The space of composites of paths f and g in A is defined by the pullback:

A space is contractible just when any sphere S^{n-1} can be filled to a disk D^n for $n \ge 1$.

Theorem. The space of composites of two paths f and g in A is contractible.

Proof: The space of composites of paths f and g in A is defined by the pullback:

A space is contractible just when any sphere S^{n-1} can be filled to a disk D^n for $n \ge 1$. This filling problem transposes to an extension problem

Theorem. The space of composites of two paths f and g in A is contractible.

Proof: The space of composites of paths f and g in A is defined by the pullback:

A space is contractible just when any sphere S^{n-1} can be filled to a disk D^n for $n \ge 1$. This filling problem transposes to an extension problem, and the extension exists since the inclusion admits a continuous deformation retract.

Summary

- In a group(oid), composable arrows have a unique composite.
- In a ∞-group(oid), composable arrows have a contractible space of composites.

The analogy

ordinary mathematics :: higher mathematics uniqueness :: contractibility

can be made even tighter.

Aim: Express the classical notion of uniqueness more categorically.

Categorifying Uniqueness

To say C has a unique element means

$$\exists x \in C, \forall y \in C, x = y$$

To say C has a unique element means

$$\exists x \in C, \forall y \in C, x = y$$

Here "x = y" is a predicate — a mathematical statement that is either true or false, depending on two free variables x, y : C.

To say C has a unique element means

$$\exists x \in C, \forall y \in C, x = y$$

Here "x = y" is a predicate — a mathematical statement that is either true or false, depending on two free variables x, y : C.

In proof-relevant mathematics, we interpret "x = y" as the set of all proofs that x equals y (which is empty if x and y are not equal).

To say C has a unique element means

$$\exists x \in C, \forall y \in C, x = y$$

Here "x = y" is a predicate — a mathematical statement that is either true or false, depending on two free variables x, y : C.

In proof-relevant mathematics, we interpret "x = y" as the set of all proofs that x equals y (which is empty if x and y are not equal).

Then we can form the set $\sum_{x \in C} \prod_{y \in C} x = y$

inspired by a notational analogy with the sentence $\exists x \in C, \forall y \in C, x = y$.

To say C has a unique element means

$$\exists x \in C, \forall y \in C, x = y$$

Here "x = y" is a predicate — a mathematical statement that is either true or false, depending on two free variables x, y : C.

In proof-relevant mathematics, we interpret "x = y" as the set of all proofs that x equals y (which is empty if x and y are not equal).

Then we can form the set $\sum_{x \in C} \prod_{y \in C} x = y$

inspired by a notational analogy with the sentence $\exists x \in C, \forall y \in C, x = y$.

The set $\sum_{x \in C} \prod_{y \in C} x = y$ is also a set of proofs

— but proofs of what?

The set $\sum_{x \in C} \prod_{y \in C} x = y$ is also a set of proofs

— but proofs of what?

The set
$$\sum_{x \in C} \prod_{y \in C} x = y$$
 is also a set of proofs — but proofs of what?

An element of
$$\sum_{x \in C} \prod_{y \in C} x = y$$
 is

- the choice of some element $c \in C$
- together with a proof, for all $z \in C$, that c equals z.

The set
$$\sum_{x \in C} \prod_{y \in C} x = y$$
 is also a set of proofs

— but proofs of what?

An element of $\sum_{x \in C} \prod_{y \in C} x = y$ is

- the choice of some element c∈ C
- together with a proof, for all $z \in C$, that c equals z.

Thus $\sum_{x \in C} \prod_{y \in C} x = y$ is the set of proofs of the sentence $\exists x \in C$, $\forall y \in C$, x = y asserting that C has a unique element.

The set
$$\sum_{x \in C} \prod_{y \in C} x = y$$
 is also a set of proofs

— but proofs of what?

An element of $\sum_{x \in C} \prod_{y \in C} x = y$ is

- the choice of some element $c \in C$
- together with a proof, for all $z \in C$, that c equals z.

Thus $\sum_{x \in C} \prod_{y \in C} x = y$ is the set of proofs of the sentence $\exists x \in C$, $\forall y \in C$, x = y asserting that C has a unique element.

It remains to explain the analogy:

$$\begin{array}{ccc} \mathsf{logic} & \exists & \forall \\ \mathsf{sets} & \sum & \prod \end{array}$$

A set function $f: S \to T$ induces order-preserving functions between their powersets:

A set function $f: S \to T$ induces order-preserving functions between their powersets:

For the unique function $!: S \to *$ these reduce to $P(S) \leftarrow \Delta - P(*) = \{*, \emptyset\}$

A set function $f: S \to T$ induces order-preserving functions between their powersets:

$$\Delta_f$$
 is inverse image: $B \subset T \mapsto \{s \in S \mid f(s) \in B\} \subset S$

 \exists_f is direct image: $A \subset S \mapsto \{t \in T \mid \exists s \in S, f(s) = t \land s \in A\} \subset T$

 \forall_f is pushforward: $A \subset S \mapsto \{t \in T \mid \forall s \in S, f(s) = t \Rightarrow s \in A\} \subset T$

For the unique function
$$!: S \to *$$
 these reduce to $P(S) \leftarrow \Delta - P(*) = \{*, \emptyset\}$

The set $P(S) = \{A \subset S\}$ can be identified with the set of predicates p(s) with one free variable $s \in S$ — the corresponding subset is $\{s \in S \mid p(s) \text{ is true}\}$.

A set function $f: S \to T$ induces order-preserving functions between their powersets:

$$P(S) \overset{\exists_f}{\leftarrow \Delta_f} - P(T)$$

$$V_f \text{ is inverse image: } B \subset T \mapsto \{s \in S \mid f(s) \in B\} \subset S$$

$$\exists_f \text{ is direct image: } A \subset S \mapsto \{t \in T \mid \exists s \in S, f(s) = t \land s \in A\} \subset T$$

$$\forall_f \text{ is pushforward: } A \subset S \mapsto \{t \in T \mid \forall s \in S, f(s) = t \Rightarrow s \in A\} \subset T$$

For the unique function
$$!: S \to *$$
 these reduce to $P(S) \leftarrow \stackrel{\frown}{\leftarrow} P(*) = \{*,\emptyset\}$

The set $P(S) = \{A \subset S\}$ can be identified with the set of predicates p(s) with one free variable $s \in S$ — the corresponding subset is $\{s \in S \mid p(s) \text{ is true}\}$. If we interpret the two elements of P(*) by * =: "true" and $\emptyset =:$ "false" then

- \exists is the function that sends the predicate p(s) to the sentence $\exists s \in S, p(s)$
- \forall is the function that sends the predicate p(s) to the sentence $\forall s \in S, p(s)$

Digression: locally cartesian closed categories

For any function $f: S \to T$ there are functors:

In proof-relevant mathematics, it is natural to replace the poset P(S) by the category Set_{S} of S-indexed sets. An object $\{P(s)\}_{s\in S}$ is a family of sets where P(s) can be thought of as the set of proofs of some predicate p(s) on $s\in S$.

Digression: locally cartesian closed categories

For any function $f: S \to T$ there are functors:

In proof-relevant mathematics, it is natural to replace the poset P(S) by the category Set_{S} of S-indexed sets. An object $\{P(s)\}_{s\in S}$ is a family of sets where P(s) can be thought of as the set of proofs of some predicate p(s) on $s\in S$.

Summary

The triple of adjoint functors

gives a more formal way to understand the set

$$\sum_{x \in C} \prod_{y \in C} x = y$$

Summary

The triple of adjoint functors

gives a more formal way to understand the set

$$\sum_{x \in C} \prod_{y \in C} x = y$$

 \longrightarrow The set of proofs "x = y" defines an indexed set $\{x = y\}_{x,y \in C} \in \text{Set}_{/C \times C}$

Summary

The triple of adjoint functors

gives a more formal way to understand the set

$$\sum_{x \in C} \prod_{y \in C} x = y$$

- \longrightarrow The set of proofs "x = y" defines an indexed set $\{x = y\}_{x,y \in C} \in \text{Set}_{/C \times C}$
- \longrightarrow Product along the projection $\pi_1: C \times C \to C$ gives $\{\prod_{y \in C} x = y\}_{x \in C} \in \text{Set}_{/C}$

Summary

The triple of adjoint functors

gives a more formal way to understand the set

$$\sum_{x \in C} \prod_{y \in C} x = y$$

- \longrightarrow The set of proofs "x = y" defines an indexed set $\{x = y\}_{x,y \in C} \in \text{Set}_{/C \times C}$
- \longrightarrow Product along the projection $\pi_1: C \times C \to C$ gives $\{\prod_{y \in C} x = y\}_{x \in C} \in \text{Set}_{/C}$
- \longrightarrow Sum along !: $C \to *$ gives the set $\sum_{x \in C} \prod_{y \in C} x = y \in \operatorname{Set}_{/*} = \operatorname{Set}$

∞-Categorifying Uniqueness

A convenient category of spaces

Now replace Set by a convenient category Space of spaces and continuous maps.

A family of spaces $\{E_b\}_{b\in B}\in \operatorname{Space}_{/B}$ is a continuous map $\pi\colon E\to B$, where the space E_b is the fiber over a point $b\in B$ in the base space while the total space $E \simeq \sum_{b\in B} E_b$.

A convenient category of spaces

Now replace Set by a convenient category Space of spaces and continuous maps.

A family of spaces $\{E_b\}_{b\in B}\in \operatorname{Space}_{/B}$ is a continuous map $\pi\colon E\to B$, where the space E_b is the fiber over a point $b\in B$ in the base space while the total space $E \simeq \sum_{b\in B} E_b$.

Any continuous $f: S \to T$ gives rise to an adjoint triple:

 Δ_f is pullback

 \sum_{f} is composition

 \prod_f is pushforward

Identifications as paths

Q: For a space C, how to interpret the family of spaces $\{x = y\}_{x,y \in C} \in \text{Space}_{/C \times C}$?

Identifications as paths

Q: For a space C, how to interpret the family of spaces $\{x = y\}_{x,y \in C} \in \text{Space}_{/C \times C}$?

First guess:
$$\triangle \subseteq \operatorname{Space}_{/C \times C}$$
 — but a better choice is the path space $\subseteq \operatorname{Space}_{/C \times C}$.

 $C \times C$

Identifications as paths

Q: For a space C, how to interpret the family of spaces $\{x = y\}_{x,y \in C} \in \text{Space}_{C \times C}$?

First guess:
$$\triangle \subseteq \operatorname{Space}_{/C \times C}$$
 — but a better choice is the path space $\supseteq \subseteq \operatorname{Space}_{/C \times C}$.

 $C \times C$

New idea:

A point $p \in x = y$ is a path from x to y in C, providing a proof that x equals y.

What is a point in the space $\sum_{x \in C} \prod_{y \in C} x = y$?

What is a point in the space $\sum_{x \in C} \prod_{y \in C} x = y$?

The functor \sum_{B} : Space_{/B} \rightarrow Space takes $\{E_b\}_{b\in B}$ to the total space $\sum_{b\in B} E_b$.

 \longrightarrow a point in $\sum_{b \in B} E_b$ is a pair (a, e_a) of a point $a \in B$ and a point $e_a \in E_a$

What is a point in the space $\sum_{x \in C} \prod_{y \in C} x = y$?

The functor \sum_B : Space_{/B} \rightarrow Space takes $\{E_b\}_{b\in B}$ to the total space $\sum_{b\in B} E_b$.

 \longrightarrow a point in $\sum_{b \in B} E_b$ is a pair (a, e_a) of a point $a \in B$ and a point $e_a \in E_a$

The functor $\prod_B : \operatorname{Space}_{/B} \to \operatorname{Space}$ takes $\{E_b\}_{b \in B}$ to the space of sections $\prod_{b \in B} E_b$.

 \rightsquigarrow a point in $\prod_{b \in B} E_b$ is section $s : B \to \sum_{b \in B} E_b$ of the projection to B

What is a point in the space $\sum_{x \in C} \prod_{y \in C} x = y$?

The functor \sum_{B} : Space_{/B} \rightarrow Space takes $\{E_b\}_{b\in B}$ to the total space $\sum_{b\in B} E_b$.

 \longrightarrow a point in $\sum_{b \in B} E_b$ is a pair (a, e_a) of a point $a \in B$ and a point $e_a \in E_a$

The functor $\prod_B : \operatorname{Space}_{/B} \to \operatorname{Space}$ takes $\{E_b\}_{b \in B}$ to the space of sections $\prod_{b \in B} E_b$.

 \longrightarrow a point in $\prod_{b \in B} E_b$ is section $s : B \to \sum_{b \in B} E_b$ of the projection to B

• So a point in $\sum_{x \in C} \prod_{y \in C} x = y$ is a pair (c, h) where $c \in C$ and $h \in \prod_{y \in C} c = y$.

What is a point in the space $\sum_{x \in C} \prod_{y \in C} x = y$?

The functor \sum_B : Space_{/B} \rightarrow Space takes $\{E_b\}_{b\in B}$ to the total space $\sum_{b\in B} E_b$.

 \longrightarrow a point in $\sum_{b \in B} E_b$ is a pair (a, e_a) of a point $a \in B$ and a point $e_a \in E_a$

The functor $\prod_B : \operatorname{Space}_{/B} \to \operatorname{Space}$ takes $\{E_b\}_{b \in B}$ to the space of sections $\prod_{b \in B} E_b$.

 \longrightarrow a point in $\prod_{b \in B} E_b$ is section $s : B \to \sum_{b \in B} E_b$ of the projection to B

- So a point in $\sum_{x \in C} \prod_{y \in C} x = y$ is a pair (c, h) where $c \in C$ and $h \in \prod_{y \in C} c = y$.
- The point $h \in \prod_{y \in C} c = y$ is a section $h : C \to \sum_{y \in C} c = y$ to the projection.

What is a point in the space $\sum_{x \in C} \prod_{y \in C} x = y$?

The functor \sum_{B} : Space_{/B} \rightarrow Space takes $\{E_b\}_{b\in B}$ to the total space $\sum_{b\in B} E_b$.

 \longrightarrow a point in $\sum_{b \in B} E_b$ is a pair (a, e_a) of a point $a \in B$ and a point $e_a \in E_a$

The functor $\prod_B : \operatorname{Space}_{/B} \to \operatorname{Space}$ takes $\{E_b\}_{b \in B}$ to the space of sections $\prod_{b \in B} E_b$.

 \longrightarrow a point in $\prod_{b \in B} E_b$ is section $s : B \to \sum_{b \in B} E_b$ of the projection to B

- So a point in $\sum_{x \in C} \prod_{y \in C} x = y$ is a pair (c, h) where $c \in C$ and $h \in \prod_{y \in C} c = y$.
- The point $h \in \prod_{y \in C} c = y$ is a section $h : C \to \sum_{y \in C} c = y$ to the projection.

Together $(c, h) \in \sum_{x \in C} \prod_{y \in C} x = y$ defines:

- a center of contraction c and
- a contracting homotopy h,

proving that the space *C* is contractible!

Contractibility as uniqueness

In summary, a point in the set

$$\sum_{x \in C} \prod_{y \in C} x = y$$

is a proof that *C* is unique, while a point in the space

$$\sum_{x \in C} \prod_{y \in C} x = y$$

is a proof that *C* is contractible.

Contractibility as uniqueness

In summary, a point in the set

$$\sum_{x \in C} \prod_{y \in C} x = y$$

is a proof that C is unique, while a point in the space

$$\sum_{x \in C} \prod_{y \in C} x = y$$

is a proof that *C* is contractible.

Next time: If identifications $p \in x = y$ are paths, which may carry data, what strategies exist to prove a theorem involving a hypothesis of the form x = y? We'll introduce one powerful proof technique: the principle of path induction in homotopy type theory.

Thank you!