Introducción a Desigualdades

Javier Caram

7 de diciembre de 2024

1. La Desigualdad Más Importante

Esta la considero la más importante (y Violeta también) ya que de ella salen la mayoria de desigualdades báscias (y no tan básicas).

$$x^2 > 0$$
 y la igualdad sólo se da cuando $x = 0$.

y $x^2 = |x|^2$ como todo no negativo es mayor o igual a 0 entonces $x^2 \ge 0$ y es igual únicamente si x = 0.

1.1. Ejemplo:

Demuestra que si a, b son reales no negativos entonces:

$$\frac{a+b}{2} \ge \sqrt{ab}$$
 y sólo son iguales si $a = b$.

Como a, b son positivos entonces nos consideramos x, y tales que:

$$x^2 = a, y^2 = b.$$

Por tanto, ahora queremos demostrar:

$$\frac{x^2 + y^2}{2} \ge xy$$
$$x^2 + y^2 \ge 2xy$$
$$x^2 + y^2 - 2xy \ge 0$$
$$(x - y)^2 \ge 0$$

y es cierto por la desigualdad anterior. Además, la igualdad se da si sólo si x = y lo que implica a = b que es lo que queríamos demostrar.

2. Desigualdad del Reacomodo

Si tienes 2 listas de números reales $a_1 \le a_2 \le ... \le a_n$ y $b_1 \le b_2 \le ... \le b_n$ y $x_1, x_2...x_n$ es una permutación de $b_1, b_2, ...b_n$ entonces:

$$a_1b_n + a_2b_{n-1} + \dots + a_nb_1 \le a_1x_1 + a_2x_2 + \dots + a_nx_n \le a_1b_1 + a_2b_2 + \dots + a_nb_n$$

y la igualdad se da sólo cuando la permutación es igual a $b_n, b_{n-1}...b_1$ y a $b_1, b_2...b_n$ respectivamente.

2.1. Ejemplo:

Demuestra que si a, b son reales no negativos entonces:

$$\frac{a+b}{2} \geq \sqrt{ab}$$
y sólo son iguales si $a=b.$

Sin pérdida de la generalidad decimos $a \leq b$ y nos consideramos la listas $\sqrt{a} \leq \sqrt{b}$ y $\sqrt{a} \leq \sqrt{b}$ y la permutación \sqrt{b} , \sqrt{a} por desigualdad del reacomodo tenemos que:

$$\sqrt{a}\sqrt{b} + \sqrt{a}\sqrt{b} \le \sqrt{a}\sqrt{a} + \sqrt{a}\sqrt{b}$$
$$2\sqrt{ab} \le a + b$$
$$\sqrt{ab} \le \frac{a+b}{2}$$

y sabemos que la igualdad se da cuando la permutación es igual a la lista, por tanto son iguales si sólo si $\sqrt{b} = \sqrt{a}$ que implica a = b que es lo que queríamos demostrar.

3. Desigualdad de Medias / MH-MG-MA-MQ

Sean $a_1, a_2...a_n$ reales positivos (con 0 también funcionan, menos la media armónica, pero es trivial o se reduce a un caso anterior) entonces:

$$\frac{1}{\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}} \leq \sqrt[n]{a_1 a_2 \ \ldots \ a_n} \leq \frac{a_1 + a_2 \ldots + a_n}{n} \leq \sqrt{\frac{a_1^2 + a_2^2 \ldots + a_n^2}{n}}$$

3.1. Ejemplo:

Si x, y, z son reales positivos, demuestra que: $\frac{xy}{z} + \frac{yz}{x} + \frac{xz}{y} \le x + y + z$

Notemos que:

$$\frac{xy}{z} + \frac{yz}{x} + \frac{xz}{y} = 2\frac{\frac{xy}{z}}{2} + 2\frac{\frac{yz}{x}}{2} + 2\frac{\frac{xz}{y}}{2}$$

y por MA-MG

$$\frac{\frac{xy}{z}}{\frac{z}{2}} + \frac{\frac{yz}{x}}{\frac{z}{2}} \ge \sqrt{\frac{xy \cdot yz}{z \cdot x}} = \sqrt{y^2} = y$$

Análogamente:

$$\frac{\frac{yz}{x}}{2} + \frac{\frac{xz}{y}}{2} \ge z$$

$$\frac{\frac{xz}{y}}{2} + \frac{\frac{xy}{z}}{2} \ge x$$

y al sumar todas las desigualdades nos queda:

$$\frac{xy}{z} + \frac{yz}{x} + \frac{xz}{y} = 2\frac{\frac{xy}{z}}{2} + 2\frac{\frac{yz}{x}}{2} + 2\frac{\frac{xz}{y}}{2} \ge x + y + z$$

que es lo que queríamos demostrar.

4. La Útil / Lemma de Titu / CS forma de Engel

(nombres ordenados de más a menos usado en México)

Este en un uso particular de la desigualdad de Cauchy-Schwarz auque no necesitan saberla para usar esta (ni para demostrarla).

Sean $x_1, x_2, \dots x_n$ reales y $y_1, y_2, \dots y_n$ reales positivos, entonces:

$$\frac{x_1^2}{y_1} + \frac{x_2^2}{y_2} + \ldots + \frac{x_n^2}{y_n} \ge \frac{(x_1 + x_2 + \ldots + x_n)^2}{y_1 + y_2 + \ldots + y_n}$$

4.1. Ejemplo:

Sean x, y, z reales positivos. Demuestra que:

$$\frac{2}{x+y} + \frac{2}{y+z} + \frac{2}{z+x} \ge \frac{9}{x+y+z}$$

Factorizamos el 2 y nos queda:

$$2(\frac{1}{x+y} + \frac{1}{y+z} + \frac{1}{z+x})$$

Usando la Útil tenemos que:

$$2(\frac{1^2}{x+y} + \frac{1^2}{y+z} + \frac{1^2}{z+x}) \ge 2\frac{(1+1+1)^2}{2x+2y+2z}$$

$$2\left(\frac{1}{x+y} + \frac{1}{y+z} + \frac{1}{z+x}\right) \ge 2\frac{3^2}{2x+2y+2z}$$

$$2(\frac{1}{x+y} + \frac{1}{y+z} + \frac{1}{z+x}) \ge 2\frac{9}{2x+2y+2z}$$

$$\frac{2}{x+y} + \frac{2}{y+z} + \frac{2}{z+x} \ge \frac{9}{x+y+z}$$

que es lo que queríamos demostrar.

5. Problemas

1. Demuestra (sin usar desigualdad de medias) que si a, b son reales positivos entonces:

$$\frac{2}{\frac{1}{a} + \frac{1}{b}} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2 + b^2}{2}}$$

2. Si x, y son reales positivos. Demuestra que:

$$\frac{x}{y} + \frac{y}{x} \ge 2$$

y encuentra cuándo se da la igualdad.

3. Sean x, y, z reales no necesariamente positivos. Demuestra que:

$$x^2 + y^2 + z^2 \ge xy + yz + zx$$

4. Sean x, y, z reales positivos. Demuestra que:

$$x^3 + y^3 + z^3 \ge x^2y + y^2z + z^2x$$

5. Sean x, y, z reales positivos. Demuestra que:

$$(x+y)(y+z)(z+x) \ge 8xyz$$

y encuentra cuándo se da la igualdad.

6. Si x, y son reales positivos. Demuestra que:

$$x^2 + y^2 + 1 \ge xy + x + y$$

y encuentra cuándo se da la igualdad.

7. (3/OMM 2007) Sean a, b, c números reales positivos tales que a + b + c = 1. Muestra que

$$\sqrt{a+bc} + \sqrt{b+ca} + \sqrt{c+ab} \le 2$$

8. (3/OMM 2009) Sean a, b, c números reales positivos tales que abc = 1. Muestra que:

$$\frac{a^3}{a^3+2} + \frac{b^3}{b^3+2} + \frac{c^3}{c^3+2} \ge 1$$
 y que $\frac{1}{a^3+2} + \frac{1}{b^3+2} + \frac{1}{c^3+2} \le 1$

9. (Desigualdad de Nesbitt) Sean x, y, z reales positivos. Demuestra que:

$$\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} \ge \frac{3}{2}$$

y encuentra cuándo se da la igualdad.

10. (3/E8 México TST 2023-2024) Sean a, b, c reales positivos tales que $a^2 + b^2 + c^2 = 3$. Muesta que:

4

$$\frac{1}{1+ab} + \frac{1}{1+bc} + \frac{1}{1+ca} \ge \frac{3}{2}$$

6. Problemas Más Difíciles

Estos no necesariamente salen con las técnicas vistas anteriormente. Nota: NO intentar si no has acabado los demás.

1. Sean $a_1, a_2, \dots a_n$ reales positivos tales que su producto es 1. Demuestra que:

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \ge n$$

2. Sean x, y, z reales. Demuestra que:

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 2(\frac{1}{x+y} + \frac{1}{y+z} + \frac{1}{z+x})$$

3. Sean x,y,z reales positivos tales que x+y+z=1. Demuestra que:

$$xy+yz+zx \leq \tfrac{1}{3}$$

4. (1/IMO 1975) Considera 2 secuencias de reales $x_1 \ge x_2 \ge ... \ge x_n$ y $y_1 \ge y_2 \ge ... \ge y_n$. Sea $z_1, z_2, ..., z_n$ una permutación de $y_1, y_2, ..., y_n$. Demuestra que:

$$\sum_{i=1}^{n} (x_i - y_i)^2 \le \sum_{i=1}^{n} (x_i - z_i)^2$$

5. (3/Final Estatal Nuevo León 2023) Sean a, b, c reales no negativos tales que a + b + c = 1. Demuestra que:

$$\frac{ab + bc}{\sqrt{b^2 + 4c + 4a}} + \frac{bc + ca}{\sqrt{c^2 + 4a + 4b}} + \frac{ca + ab}{\sqrt{a^2 + 4b + 4c}} \le \frac{2}{5}$$

6. (A1/IMO SL 1996) Sean a, b, c > 0 tales que abc = 1. Demuestra que:

$$\frac{ab}{ab+a^5+b^5} + \frac{bc}{bc+b^5+c^5} + \frac{ca}{ca+c^5+a^5} \leq 1.$$

7. (2/IMO 2001) Muestra que para cualesquiera reales positivos a, b, c, se cumple que:

$$\frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \ge 1.$$

8. (A2/IMO SL 2009) Sean a, b, c reales positivos tales que $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = a + b + c$. Demuestra que:

$$\frac{1}{(2a+b+c)^2} + \frac{1}{(a+2b+c)^2} + \frac{1}{(a+b+2c)^2} \le \frac{3}{16}.$$

5

7. Bonus

Demostraciones de las desigualdades del Reacomodo, Medias y la Útil (si quieren pueden tratar de demostrarlas).

7.1. Reacomodo:

Tienes 2 listas de números reales $a_1 \leq a_2 \leq ... \leq a_n$ y $b_1 \leq b_2 \leq ... \leq b_n$. $x_1, x_2, ... x_i, ... x_j, ... x_n$ y $x_1, x_2 ... x_j, ... x_n$ son permutaciones de $b_1, b_2, ... b_n$ donde sólo cambiamos x_i y x_j de lugar. Nos consideramos:

$$a_1x_1 + a_2x_2 + \dots + a_ix_i + a_jx_j + \dots + a_nx_n$$

$$a_1x_1 + a_2x_2 + \dots + a_ix_j + \dots + a_jx_i + \dots + a_nx_n$$

Notemos que al restar la primera con la segunda el resultado es:

$$a_i x_i + a_j x_j - a_i x_j - a_j x_i = (a_i - a_j)(x_i - x_j)$$

Como los a's están ordenados sabemos que $a_i \leq a_j$ por tanto el resultado es positivo si sólo si $x_i \leq x_j$. Repitiendo el proceso llegamos a:

$$a_1b_n + a_2b_{n-1} + \dots + a_nb_1 \le a_1x_1 + a_2x_2 + \dots + a_nx_n \le a_1b_1 + a_2b_2 + \dots + a_nb_n$$

7.2. Medias

Sean $a_1, a_2...a_n$ reales positivos.

■ MQ-MA: Al elevar al cuadrado nos damos cuenta que únicamente queremos demostrar.

$$(a_1 + a_2 + \dots + a_n)^2 \le n(a_1^2 + a_2^2 + \dots + a_n^2)$$

lo cual es cierto por reacomodo.

■ MA-MG: Anteriormente demostramos que para 2 números se cumple. Demostraremos que si para k números se comple, para 2k también. Digamos que:

$$S_A = \frac{a_1 + a_2 + \dots + a_k}{k}$$

$$S_B = \frac{b_1 + b_2 + \dots + b_k}{k}$$

$$G_A = \sqrt[k]{a_1 a_2 ... a_k}$$

$$G_B = \sqrt[k]{a_1 a_2 \dots a_k}$$

Entonces como para k se cumple tenemos que:

$$S_A + S_B \ge G_A + G_B$$

$$\frac{S_A + S_B}{2} \ge \frac{G_A + G_B}{2} \ge \sqrt{G_A G_B}$$

y $\frac{S_A+S_B}{2}$, $\sqrt{G_AG_B}$ son las medias aritmética y geométrica respectivamente de $a_1, a_2, \ldots a_k, b_1, b_2, \ldots b_k$. Para acabar basta con demostrar que si para k números se cumple, para k-1 también. Digamos que:

$$G = \sqrt[k-1]{a_1 a_2 ... a_{k-1}}$$

Entonces como para k números es cierta:

$$\frac{a_1 + a_2 + \ldots + a_{k-1} + G}{k} \geq \sqrt[k]{a_1 a_2 \ldots a_{k-1} G} = \sqrt[k]{G^{k-1} G} = G$$

por tanto:

$$\frac{a_1 + a_2 + \dots + a_{k-1} + G}{k} \ge G$$

$$a_1 + a_2 + \dots + a_{k-1} \ge (k-1)G$$

$$\frac{a_1 + a_2 + \dots + a_{k-1}}{k-1} \ge G$$

que es lo que queríamos demostrar.

■ MG-MH: Usaremos MA-MG. Por MA-MG en $\frac{1}{a_1}, \frac{1}{a_2}, \dots \frac{1}{a_n}$ tenemos que:

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \ge n \frac{1}{\sqrt[n]{a_1 a_2 \dots a_n}}$$

por tanto:

$$\tfrac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}} \leq \tfrac{n}{n \frac{1}{\sqrt[n]{a_1 a_2 \ldots a_n}}} = \sqrt[n]{a_1 a_2 \ldots a_n}$$

que es lo que queríamos demostrar.

7.3. La Útil

Usaremos inducción.

Caso base:

$$\frac{x_1^2}{y_1} + \frac{x_2^2}{y_2} \ge \frac{(x_1 + x_2)^2}{y_1 + y_2}$$
$$x_1^2 y_2 (y_1 + y_2) + x_2^2 y_1 (y_1 + y_2) \ge (x_1 + x_2)^2 y_1 y_2$$
$$(x_1 y_2 - x_2 y_1)^2 \ge 0$$

lo que es claramente cierto. Suponemos que para n números es cierto y lo demostraremos para n+1.

$$\frac{x_1^2}{y_1} + \frac{x_2^2}{y_2} + \dots \frac{x_{n+1}^2}{y_{n+1}} \ge \frac{(x_1 + x_2 + \dots + x_n)^2}{y_1 + y_2 + \dots y_n} + \frac{x_{n+1}^2}{y_{n+1}}$$

y el caso de $2\ \mathrm{ya}$ lo demostramos, por tanto:

$$\frac{x_1^2}{y_1} + \frac{x_2^2}{y_2} + \dots \frac{x_{n+1}^2}{y_{n+1}} \geq \frac{(x_1 + x_2 + \dots + x_n)^2}{y_1 + y_2 + \dots y_n} + \frac{x_{n+1}^2}{y_{n+1}} \geq \frac{(x_1 + x_2 + \dots + x_n + x_{n+1})^2}{y_1 + y_2 + \dots y_n + y_{n+1}}$$

que es lo que queríamos demostrar.