REPORT D	Form Approved OMB No. 0704-0188	
data needed, and completing and reviewing this colle- this burden to Department of Defense, Washington H	on is estimated to average 1 hour per response, including the time for reviewing instruction of information. Send comments regarding this burden estimate or any other aspect eadquarters Services, Directorate for Information Operations and Reports (0704-0188), 13 dring any other provision of law, no person shall be subject to any penalty for failing to co	ns, searching existing data sources, gathering and maintaining the of this collection of information, including suggestions for reducing 215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-
1. REPORT DATE (DD-MM-YYYY) 12/09/2013	2. REPORT TYPE Interim Research Performance Report (Monthly)	3. DATES COVERED (From - To) November 1 - November 30, 2013
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
Expeditionary Light Armor Seeding Development		5b. GRANT NUMBER N00014-13-1-0219
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Nichole Cicchetti, Bazle Haque, Shridhar Yarlagadda		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT
UNIVERSITY OF DELAWARE OFFICE OF THE VICE PROVOS 220 HULLIHEN HALL NEWARK, DE 19716-0099	ST FOR RESEARCH	MONTHLY-8
9. SPONSORING / MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Office of Naval Research		ONR
875 North Randolph Street Arlington, VA 22203-1995		11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION / AVAILABILITY S	TATEMENT	
Approved for Public Release; dis	stribution is Unlimited.	
13. SUPPLEMENTARY NOTES		
14. ABSTRACT		
gap supported by solid aluminun Impacts of a .30cal AP M2 proje	AutoDyn to simulate Depth of Penetration (DoP) expense. ctile over an impact velocity range 700 m/s to 1000 m. File SiC tiles are conducted based on the DoP expering	s are modeled using SPH elements.
ARL-TR-2219, 2000 Tile gap is found to increase the	DoP as compared to One Tile tiles	
Determinations need to be made	ions on narrower and wider gap sizes and different ge e on what the manufacturers tolerances on tile gaps a o determine which geometry and configuration yield th	re and possible filling materials for gaps
15. SUBJECT TERMS		
.30cal AP M2 Projectile, 762x39	PS Projectile, SPH, Aluminum 5083, SiC, DoP Exper	ninets, AutoDyn Simulations, Tile Gap

17. LIMITATION

OF ABSTRACT

UU

18. NUMBER

OF PAGES

27

Standard Form 298 (Rev 8-98) Prescribed by ANSI Std. Z39.18

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area

Shridhar Yarlagadda

302-831-4941

code)

c. THIS PAGE

16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

UU

a. REPORT

MONTHLY REPORT NOVEMBER 2013

Nicole A. Cicchetti, Bazle Z. (Gama) Haque, Shridhar Yarlagadda

MODELING AND SIMULATION OF CERAMIC ARRAYS TO IMPROVE BALLAISTIC PERFORMANCE

MONTHLY REPORT FOR OCTOBER 2013

Half-symmetric model is used in AutoDyn to simulate Depth of Penetration (DoP) experiments on SiC tile with and without a gap supported by solid aluminum. Impacts of a .30cal AP M2 projectile over an impact velocity range 700 m/s to 1000 m/s are modeled using SPH elements. Model validation runs with One Tile SiC tiles are conducted based on the DoP experiments described in reference - ARL-TR-2219, 2000 Tile gap is found to increase the DoP as compared to One Tile tiles The next step will be run simulations on narrower and wider gap sizes and different geometries of tile configurations. Determinations need to be made on what the manufacturers tolerances on tile gaps are and possible filling materials for gaps. DOP is the main measurement to determine which geometry and configuration yield the best results.

EFFECT OF TILE GAP ON DOP

 $2013 \, \hbox{@ University of Delaware} \\$

DEPTH OF PENETRATION

DOP SIMULATION DETAILS

HALF SYMMETRIC MODEL WITH GAP IN AUTODYN

- ☐ Smoothed-particle hydrodynamics (SPH) used for all parts
- ☐ SPH size = 0.40-mm, totaling 278k elements
- ☐ Clamp boundary condition used

HALF-SYMMETRIC MODEL WITH GAP IN AUTODYN

- ☐ SiC and SiC 2 have the same properties. They have been saved as separate materials to differentiate between the two ceramic tiles
- ☐ There is a gap size of 1.2 mm in-between the two ceramic tiles to simulate a impact on a seam

2013 © University of Delaware

Target Dimensions

- □ Aluminum Backing
 - □ Length = 35.08 mm
- □ Ceramic Plate(s)
 - \Box Length (t_c) = 5.08 mm
 - □ Gap size = 1.2 mm
- ☐ Total Length = 40.08 mm

.30cal AP-M2 PROJECTILE MASS PROPERTIES

Component	Material	Weight (g)
Jacket	Gilding Metal	4.2
Core	Hardened Steel - RC 63	5.3
Point Filler	Lead	0.8
Base Filler	Lead	0.5
Total Weight		10.8

SOLID MODEL OF .30cal AP M2 PROJECTILE

MATERIAL PROPERTIES – AI 5083

Experimental Al 5083

	AI 5083
Density (g/cm ³)	2.65
Tensile Strength (MPa)	377.1
Yield Strength (MPa)	318.5
Elongation (%)	9.3

Ref:

MTL TR-86-14, 1986. ARL-TR-2219, 2000.

AutoDyn Al 5083 H116

Equation of State	Linear
Reference density	2.70000E+00 (g/cm3)
Bulk Modulus	5.83300E+11 (ubar)
Reference Temperature	2.93000E+02(K)
Specific Heat	9.10000E+06 (erg/gK)
Thermal Conductivity	0.00000E+00()
Strength	Johnson Cook
Shear Modulus	2.69200E+11 (ubar)
Yield Stress	1.67000E+09 (ubar)
Hardening Constant	5.96000E+09 (ubar)
Hardening Exponent	5.51000E-01 (none)
Strain Rate Constant	1.00000E-03 (none)
Thermal Softening Exponent	8.59000E-01 (none)
Melting Temperature	8.93000E+02(K)
Ref. Strain Rate (/s)	1.00000E+00 (none)
Strain Rate Correction	1st Order
Failure Failure	None
Erosion	None
Material Cutoffs	
Maximum Expansion	1.00000E-01 (none)
Minimum Density Factor	1.00000E-05 (none)
Minimum Density Factor (SPH)	2.00000E-01 (none)
Maximum Density Factor (SPH)	3.00000E+00 (none)
Minimum Soundspeed	1.00000E-04 (cm/s)
Maximum Soundspeed (SPH)	1.01000E+20 (cm/s)
Maximum Temperature	1.00000E+16(K)

2013 © University of Delaware

MATERIAL PROPERTIES - SIC

Experimental SiC

	SiC
Density (g/cm³)	3.20
Elastic Modulus (GPa)	455
Shear Modulus (GPa)	195
Longitudinal Wave Velocity (km/s)	12.3
Poisson's Ratio	0.14
Hardness (kg/mm ²)	2700
Compressive Strength (MPa)	3410

Ref:

ARL-TR-2219, 2000.

AutoDyn SiC

Equation of State	Polynomial
Reference density	3.21500E+00 (g/cm3)
Bulk Modulus A1	2.20000E+12 (ubar)
Parameter A2	3.61000E+12 (ubar)
Parameter A3	0.00000E+00 (ubar)
Parameter B0	0.00000E+00 (none)
Parameter B1	0.00000E+00 (none)
Parameter T1	2.20000E+12 (ubar)
Parameter T2	0.00000E+00 (ubar)
Reference Temperature	2.93000E+02 (K)
Specific Heat	0.00000E+00 (erg/gK)
Thermal Conductivity	0.00000E+00 ()
Strength	Johnson-Holmquist
Shear Modulus	1.93500E+12 (ubar)
Model Type	Segmented (JH1)
Hugoniot Elastic Limit, HEL	1.17000E+11 (ubar)
Intact Strength Constant, S1	7.10000E+10 (ubar)
Intact Strength Constant, P1	2.50000E+10 (ubar)
Intact Strength Constant, S2	1.22000E+11 (ubar)
Intact Strength Constant, P2	1.00000E+11 (ubar)
Strain Rate Constant, C	9.00000E-03 (none)
Max. Fracture Strength, SFMAX	1.30000E+10 (ubar)
Failed Strength Constant, ALPHA	4.00000E-01 (none)
Failure	Johnson Holmquist
Hydro Tensile Limit	-7.50000E+09 (ubar)
Model Type	Segmented (JH1)
Damage Constant, EFMAX	1.20000E+00 (none)
Damage Constant, P3	9.97500E+11 (ubar)
Bulking Constant, Beta	1.00000E+00 (none)
Damage Type	Instantaneous (JH1)
Tensile Failure	Hydro (Pmin)

CALCULATING DEPTH OF PENETRATION

□ DoP is calculated:

$$DOP = L - L_{NP}$$

- Where L is the length of the entire target ceramic tiles and aluminum backing
- □ L_{NP} is the length of the target left not penetrated when the velocity and kinetic energy of the projectile have reached zero

Monolithic Al 5083 No Ceramic Tile Vo= 700 m/s

Projectile Run at 700 m/s

$$DOP = 40.08 - 2.50 = 37.57 \text{ mm}$$

Vo = 700 m/s t_c = 5.08 mm particle size = 0.4, Gap = 1.2 mm

Projectile Run at 700 m/s

$$DOP = 40.08 - 23.68 = 16.40 \text{ mm}$$

$V_o = 700 \text{ m/s } t_c = 5.08 \text{ mm particle size}$ = 0.4, One Tile

Projectile Run at 700 m/s

$$DOP = 40.08 - 30.06 = 10.02 \text{ mm}$$

$V_o = 750$ m/s $t_c = 5.08$ mm particle size = 0.4, Gap = 1.2 mm

Projectile Run at 750 m/s

$$DOP = 40.08 - 21.38 = 18.70 \text{ mm}$$

$V_o = 750$ m/s $t_c = 5.08$ mm particle size = 0.4, One Tile

Projectile Run at 750 m/s

Depth of Penetration

DOP = 40.08 - 31.49 = 8.59 mm

V_o = 850 m/s t_c = 5.08 mm particle size = 0.4, Gap = 1.2 mm

Projectile Run at 850 m/s

DOP = 40.08 - 16.03 = 24.05 mm

V_o = 850 m/s t_c = 5.08 mm particle size = 0.4, One Tile

Projectile Run at 850 m/s

DOP = 40.08 - 30.08 = 10.00 mm

V_o = 900 m/s t_c = 5.08 mm particle size = 0.4, Gap = 1.2 mm

Projectile Run at 900 m/s

Depth of Penetration

DOP = 40.08 - 20.04 = 20.04 mm

V_o = 900 m/s t_c = 5.08 mm particle size = 0.4, One Tile

Projectile Run at 900 m/s

$$DOP = 40.08 - 28.95 = 11.13 \text{ mm}$$

V_o = 950 m/s t_c = 5.08 mm particle size = 0.4, Gap = 1.2 mm

Projectile Run at 950 m/s

$$DOP = 40.08 - 12.08 = 28.00 \text{ mm}$$

V_o = 950 m/s t_c = 5.08 mm particle size = 0.4, One Tile

Projectile Run at 950 m/s

DOP = 40.08 - 27.12 = 12.96 mm

$V_o = 1000 \text{ m/s } t_c = 5.08 \text{ mm particle}$ size = 0.4, Gap = 1.2 mm

Projectile Run at 1000 m/s

Depth of Penetration

DOP = 40.08 - 9.28 = 30.28 mm

$V_o = 1000 \text{ m/s } t_c = 5.08 \text{ mm particle}$ size = 0.4, One Tile

Projectile Run at 1000 m/s

DOP = 40.08 - 25.77 = 14.31 mm