Continuous Monitoring of Pareto Frontiers over Partially Ordered Attributes for Many Users

Afroza Sultana and Chengkai Li
Innovative Database and Information Systems Research Lab
The University of Texas at Arlington

EDBT 2018, Vienna, Austria

Motivation

Recommendation based on users' preferences

Motivation

- Recommendation based on users' preferences
- Preferences with multiple attributes

Motivation

- Recommendation based on users' preferences
- Preferences with multiple attributes
- ➤ Goal: objects that "stand out"

	display	brand	CPU
c_1	13-15.9 ↓ 10-12.9 16-18.9 19-up 9.9-under	Apple Lenovo Sony Toshiba Samsung	dual triple quad single

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
		•••	•••
07	16.5	Lenovo	quad

	display	brand	CPU
c_1	$ \begin{array}{c} 13-15.9 \\ \downarrow \\ 10-12.9 \\ \downarrow \\ 16-18.9 19-up \\ 9.9-under \end{array} $	Apple Lenovo Sony Toshiba Samsung	dual triple quad single

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
		•••	•••
07	16.5	Lenovo	quad

	display	brand	CPU
o_1	12	Apple	single
02	14	Apple	dual
•••		•••	
07	16.5	Lenovo	quad

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
•••		•••	
07	16.5	Lenovo	quad

Problem Formulation

Set of attributes D

	display	brand	CPU
c_1	$ \begin{array}{c} 13-15.9 \\ \downarrow \\ 10-12.9 \\ \downarrow \\ 16-18.9 19-up \\ \downarrow \\ 9.9-under \end{array} $	Apple Lenovo Sony Toshiba Samsung	dual triple quad single
c_2	$ \begin{array}{c cccc} $	Lenovo Apple Samsung Toshiba Sony	quad ↓ triple ↓ dual ↓ single

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
•••		•••	•••
07	16.5	Lenovo	quad

Append-only object table *O*

Users' preferences

Problem Formulation

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
•••		•••	•••
07	16.5	Lenovo	quad

Problem Formulation; Continuous Object Dissemination

	display	brand	CPU
c_1	13–15.9 ↓ 10–12.9 ↓ 16–18.9 19–up 9.9–under	Apple Lenovo Sony Toshiba Samsung	dual triple quad single
c_2	13-15.9 10-12.9 16-18.9 19-up ↓ 9.9-under	Apple Samsung Toshiba Sony	quad ↓ triple ↓ dual ↓ single

Find target users such that o_7 is in the Pareto frontier.

Preference tuples

SAMSUNG

TOSHIBA

SAMSUNG

lenovo

lenovo

- \square Theorem 1: $\mathcal{P}_U \supseteq \mathcal{P}_c$
- \square Lemma 1: \mathcal{P}_c w.r.t. $O = \mathcal{P}_c$ w.r.t. \mathcal{P}_U
- ☐ Recall & precision: 100%

Sharing computation across users

Challenge and Ideas

- ☐ Which users share preferences?
 - ✓ Cluster users based on preferences
- ☐ No prior study on clustering for partial orders
 - ✓ Study clustering partial orders

System Architecture

For each cluster in *C*

- Filter: if U approve o in Pareto-optimality, stores o in \mathcal{P}_U
 - Verify: for each c, determines whether o belongs to \mathcal{P}_c

	display	brand	CPU
	13-15.9	Apple	
	10-12.9	Lenovo	dual
	16-18.9 $19-up$	Sony	triple quad
c_1	9.9-under	Toshiba Samsung	single
	13-15.9	Lenovo	quad
	10-12.9 16-18.9	Apple Samsung	triple
	19-up	Toshiba	↓ dual
	15− <i>up</i> ↓	10Smba ↓	<i>auai</i> ↓
c_2	9.9-under	Sony	single
	13-15.9		
	10-12.9 16-18.9		
	19-up	Apple Lenovo	dual triple quad
U	9.9-under	Toshiba Sony Samsung	single

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
o_3	15	Samsung	dual
o_4	19	Toshiba	quad
o_5	9	Samsung	quad
o_6	9.5	Lenovo	triple
07	16.5	Lenovo	quad

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
03	15	Samsung	dual
O_4	19	Toshiba	quad
o_5	9	Samsung	quad
o_6	9.5	Lenovo	triple
07	16.5	Lenovo	quad

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
03	15	Samsung	dual
O_4	19	Toshiba	quad
o_5	9	Samsung	quad
o_6	9.5	Lenovo	triple
07	16.5	Lenovo	quad

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
03	15	Samsung	dual
O_4	19	Toshiba	quad
o_5	9	Samsung	quad
o_6	9.5	Lenovo	triple
07	16.5	Lenovo	quad

	display	brand	CPU	
o_1	12	Apple	single	
o_2	14	Apple	dual	
o_3	15	Samsung	dual	
o_4	19	Toshiba	quad	
o_5	9	Samsung	quad	
o_6	9.5	Lenovo	triple	
07	16.5	Lenovo	quad	

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
03	15	Samsung	dual
O_4	19	Toshiba	quad
o_5	9	Samsung	quad
o_6	9.5	Lenovo	triple
07	16.5	Lenovo	quad

	display	brand	CPU
o_1	12	Apple	single
o_2	14	Apple	dual
03	15	Samsung	dual
O_4	19	Toshiba	quad
o_5	9	Samsung	quad
o_6	9.5	Lenovo	triple
07	16.5	Lenovo	quad

System Architecture

Similarity Function

☐ Jaccard similarity

Common preference tuples

Similarity Function

☐ Weighted Jaccard similarity

Common preference tuples

Locations of preference tuples

Approx. Common Preference Tuples

- ☐ Preferences can be diverse
 - Tiny clusters

Approx. Common Preference Tuples

- Preferences can be diverse
 - Tiny clusters
- Relax idea of common preference tuple
 - ✓ Preference polling

GetApproxCommonPreferenceTuples

Properties of Approx. Common Preference Tuples

- \square Pareto frontier w.r.t. approx. common preference tuples: $\widehat{P_U}$
- \square Pareto frontier w.r.t. user upon approximation: \widehat{P}_c
- Lemma 2:
 - ■Approx. common preference tuples ⊇ Common preference tuples
- ☐ Theorem 2
 - $\blacksquare \widehat{P_U} \subseteq P_U$
- ☐ Lemma 3
 - $\blacksquare \widehat{P}_U \supseteq \widehat{P}_c$
- ☐ Theorem 3
 - $\bullet \widehat{P_U} \cap P_c \subseteq \widehat{P_c}$

Similarity Function

☐Percentage of preference tuples

Related Works

- Conventional preference query (Kießling VLDB 2002)
 - ■Pareto frontier w.r.t. individual users, separately
- ✓ Our solution---
 - Share computation across multiple users

Related Works

- Mining favorable facets (Wong et al. SIGKDD 2007)
 - Minimum disqualifying condition

	brand	CPU
o_1	Apple	single
o_2	Samsung	dual
03	Toshiba	quad

	Minimum set of preferences to disqualify
o_1	$((Samsung,Apple) \land (dual,single)) \lor ((Toshiba,Apple) \land (quad,single))$
o_2	$((Apple,Samsung) \land (single,dual)) \lor ((Toshiba,Samsung) \land (quad,dual))$
03	$((Apple, Toshiba) \land (single, quad)) \lor ((Samsung, Toshiba) \land (dual, quad))$

- ✓ Our solution---
 - Compatible with continuously arriving objects

Related Works

	Attribute	Order
Reverse skyline query (Dellis et al. VLDB 2007)	Numerical: price, distance	Total
Our solution	Categorical/numerical: brand, hotel/suite	Partial

Experiment by Simulation

- ☐ Movie Dataset
 - ■12,749 movies: joined Netflix dataset with data from IMDB
 - ■1000 users
 - **4** attributes: actor, director, genre, writer
- ☐Publication Dataset
 - ■17,598 publications: ACM Digital Library
 - ■1000 users
 - ■4 attributes: affiliation, author, conference, and keyword

Performance of FilterThenVerify/FilterThenVerifyApprox

- ☐Baseline < FilterThenVerify/FilterThenVerifyApprox
 - •Fewer comparisons due to filtering
- ☐FilterThenVerify < FilterThenVerifyApprox
 - Approx. allows more sharing

Performance of FilterThenVerify/FilterThenVerifyApprox

- \square Execution time increases with d
 - ■High *d*=>large Pareto frontiers=>more comparisons

Efficacy of FilterThenVerifyApprox

Dataset	h = 0.70			h=0.55		
	Precision	Recall	F-measure	Precision	Recall	F-measure
Movie	100	95.43	97.67	99.99	90.46	94.99
Publication	100	96.59	98.27	100	95.13	97.51

- Recall decreases with b
 - ■Small h=>large clusters=>high false negatives
- ☐Stable precision
 - •Few false negatives=>fewer false positives

Conclusion

- ✓ Efficient algorithm to find target users
- ✓ Novel problem of clustering partial orders

THANK YOU!