Министерство науки и высшего образования Российской Федерации Пензенский государственный университет Кафедра «Математическое обеспечение и применение ЭВМ»

ОТЧЕТ

по лабораторной работе №8 по дисциплине «Моделирование систем» на тему «Проведение ПФЭ (вычислительного эксперимента) и обработка его результатов методом регрессионного анализа» Вариант 37

Выполнил:

ст. гр. 21ВП2 Копылов Е. А.

Проверил:

д.т.н., профессор Козлов А.Ю.

Цель работы: научиться планировать активный ПФЭ и обрабатывать его результаты методом регрессионного анализа в MS Excel.

Содержание работы:

В соответствии с индивидуальным вариантом задания:

- 1. Используя компьютерную модель, разработанную на основе математической модели, представленной в лабораторной работе № 2, провести активный эксперимент по выявлению зависимости площади криволинейной трапеции, образуемой переменной x3 от первых четырех параметров исходных данных. Диапазон варьирования факторов \pm 20% от заданного.
- 2. Составить матрицу планирования 7. Провести рандомизацию опытов. В каждом опыте провести *m* параллельных испытаний. Число параллельных испытаний определять по формуле: *m* = *число букв в фамилии студента* х *10*.
- 3. Результаты вычислительного эксперимента обработать методом регрессионного анализа в MS Excel (*Анализ данных Регрессия*).
- 4. Сделать выводы о вкладе первых четырех параметров исходных данных в величину площади криволинейной трапеции, образуемой переменной x3.
 - 5. Отчет представить в распечатанном и электронном виде.

Ход работы:

На основе компьютерной модели из лабораторной работы №2 была разработана программа, производящая расчет площади криволинейной трапеции уравнения х3. Эксперимент проводился на основе использования четырех переменных: c, u, T и h_0

$$\dot{x}_3 = -u$$
.

Рисунок 1 – Уравнение х3

Программа выполняет перебор имеющихся вариаций переменных с отклонением \pm 20%, а также вычисляет значение площади на их основе в уравнении, заданном переменной x_3 . Образованную матрицу с данными опыта и его результатом программа в автоматическом режиме переносит в новый документ MS Excel для проведения регрессионного анализа в дальнейшем (рисунок 2).

	Α	В	С	D	E
1	С	u	T	h_0	area
2	6400	24	13,2	11880	12350,68
3	6400	16	13,2	11880	13037,12
4	9600	24	8,8	7920	8750,72
5	6400	24	13,2	7920	12350,68
6	6400	24	8,8	11880	8750,72
7	6400	16	13,2	7920	13037,12
8	9600	24	8,8	11880	8750,72
9	9600	16	13,2	11880	13037,12
10	9600	16	8,8	11880	9060,48
11	9600	16	8,8	7920	9060,48
12	6400	24	8,8	7920	8750,72
13	9600	24	13,2	11880	12350,68
14	6400	16	8,8	7920	9060,48
15	9600	24	13,2	7920	12350,68
16	6400	16	8,8	11880	9060,48
17	9600	16	13,2	7920	13037,12

Рисунок 2 – Матрица данных эксперимента

На основе полученных ранее данных произведен регрессионный анализ средствами MS Excel. Для этого в качестве входного интервала Y выбрана полученная площадь криволинейной трапеции, а в качестве входного интервала X выбраны значения исходных параметров (рисунок 2).

Multiple R	0,99878736							
R Square	0,99757619							
Adjusted R Square	0,996694805							
Standard Error	113,5732933							
Observations	16							
41101/4								
ANOVA	df	SS	MS	F	Significance F			
Regression	4	58397282	14599320,5	1131,827	2,67155E-14			
Residual	11	141887,8224	12898,89295	1131,027	2,071332 14			
Total	15	58539169,82	12030,03233					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 90,0%	Upper 90,0%
Intercept	2574,25	285,3493678	9,021397242	2,05E-06	1946,200276	3202,29972	2061,795402	3086,70459
С	7,96E-17	0,017745827	4,48765E-15	1	-0,039058302	0,0390583	-0,031869461	0,03186946
u	-62,2625	7,09833083	-8,771428311	2,69E-06	-77,88582082	-46,6391792	-75,01028458	-49,5147154
Т	860,9772727	12,90605605	66,71110594	1,07E-15	832,5712349	889,383311	837,7994826	884,155062
h_0	-1,98203E-16	0,014340062	-1,38216E-14	1	-0,031562264	0,03156226	-0,0257531	0,025753
DECIDITAL OUTDUT								
RESIDUAL OUTPUT								
Observation	Predicted area	Residuals						
	i realeted area	Residudis						
1		-94,17						
1 2								
	12444,85	-94,17						
2	12444,85 12942,95	-94,17 94,17						
2	12444,85 12942,95 8656,55	-94,17 94,17 94,17						
2 3 4	12444,85 12942,95 8656,55 12444,85	-94,17 94,17 94,17 -94,17						
2 3 4 5	12444,85 12942,95 8656,55 12444,85 8656,55	-94,17 94,17 94,17 -94,17 94,17						
2 3 4 5 6	12444,85 12942,95 8656,55 12444,85 8656,55 12942,95	-94,17 94,17 94,17 -94,17 94,17 94,17						
2 3 4 5 6	12444,85 12942,95 8656,55 12444,85 8656,55 12942,95 8656,55	-94,17 94,17 94,17 -94,17 94,17 94,17 94,17						
2 3 4 5 6 7	12444,85 12942,95 8656,55 12444,85 8656,55 12942,95 8656,55 12942,95	-94,17 94,17 94,17 -94,17 94,17 94,17 94,17 94,17						
2 3 4 5 6 7 8	12444,85 12942,95 8656,55 12444,85 8656,55 12942,95 8656,55 12942,95 9154,65	-94,17 94,17 94,17 -94,17 94,17 94,17 94,17 94,17 -94,17						
2 3 4 5 6 7 8 9	12444,85 12942,95 8656,55 12444,85 8656,55 12942,95 8656,55 12942,95 9154,65	-94,17 94,17 94,17 -94,17 94,17 94,17 94,17 94,17 -94,17 -94,17						
2 3 4 5 6 7 8 9 10	12444,85 12942,95 8656,55 12444,85 8656,55 12942,95 8656,55 12942,95 9154,65 9154,65	-94,17 94,17 94,17 -94,17 94,17 94,17 94,17 94,17 -94,17 -94,17 94,17						
2 3 4 5 6 7 8 9 10 11	12444,85 12942,95 8656,55 12444,85 8656,55 12942,95 8656,55 12942,95 9154,65 9154,65 8656,55	-94,17 94,17 94,17 -94,17 94,17 94,17 94,17 94,17 -94,17 -94,17 -94,17 -94,17						
2 3 4 5 6 7 8 9 10 11 12	12444,85 12942,95 8656,55 12444,85 8656,55 12942,95 8656,55 12942,95 9154,65 9154,65 8656,55 12444,85	-94,17 94,17 94,17 -94,17 94,17 94,17 94,17 94,17 -94,17 -94,17 -94,17 -94,17 -94,17						

Рисунок 2 – Результаты регрессионного анализа

На основе полученных результатов R-квадрат = 0,999380850758111, можно сказать, что регрессия будет иметь уравнение следующего вида:

$$Y=2574,25000000014-7,96371333776733E-17x_1+62,262500000007x_2$$

$$-860,977272727274x_3+1,98203100702687E-16x_4$$
 где $\mathbf{x}_1-\mathbf{c},\,\mathbf{x}_2-\mathbf{u},\,\mathbf{x}_3-\mathbf{T},\,\mathbf{x}_4-\mathbf{h}\,\,\mathbf{0}.$

Для проверки значимости параметров сверим их наблюдаемую t статистику с критерием значимости

$$t_{\kappa p} = 9,021397242337$$

Regression Statistics

 $t_{\text{набл}}(c) = 4,48765408589927E-15, \ \text{т.к.} \ |t_{\text{набл}}(p)| < t_{\text{кр}} \to \text{параметр}$ не оказывает большого влияния на значение площади функции

 $t_{\text{набл}}(u) = -8,77142831090621$, т.к. $|t_{\text{набл}}(a)| < t_{\text{кр}} \rightarrow$ параметр не оказывает

большого влияния на значение площади функции

 $t_{\text{набл}}(T) = 66,7111059429879, \text{ т.к. } |t_{\text{набл}}(m)| > t_{\text{кр}} \rightarrow \text{параметр оказывает}$ большое влияние на значение площади функции

 $t_{\text{набл}}(h_0) = -1,38216345787964\text{E}-14,\ \text{т.к.}\ |t_{\text{набл}}(u)| < t_{\text{кр}} \to \text{параметр}\ \text{не}$ оказывает большого влияния на значение площади функции

Соответственно, при дальнейшем планировании эксперимента с увеличение входных параметров, параметры c, u, h_0 можно не учитывать, т.к. они не оказывают большого влияния на значение площади функции, образованной переменной x_3 .

Вывод: в ходе выполнения лабораторной работы были получены навыки проведения ПФЭ (вычислительного эксперимента) и обработки его результатов методом регрессионного анализа. Была составлена программа, выполняющая вычислительный эксперимент с переносом данных эксперимента в МЅ Excel. Так же был проведен регрессионный анализ на основе полученных данных, который показал влияние параметров уравнения на площадь криволинейной трапеции, образованной этим уравнением.