Конспект к экзамену по билетам (математический анализ) (3-й семестр)

Латыпов Владимир (конспектор)
t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

Лимар Иван Александрович (лектор) https://t.me/limvan

13 апреля 2023 г.

Содержание

1	Как работать с этим сжатым конспектом	3
2	Определения	3
3	Процесс Бернулли, предельные теоремы	5
4	Переход вероятностному пространству распределения	6
5	Примеры дискретных распределений	6
6	Примеры непрерывных распределений	6

1. Как работать с этим сжатым конспектом

Составлено в соответствии с лекциями весны 2023

2. Определения

Определение (Веростностное пространство). Это пространство с *вероятностной* (то есть P(X)=1) мерой: мера должна быть счётно-аддитивной функцией $2^X \to [0,\infty)$ на σ -алгебре.

Используется «птичий язык»:

$$AB \stackrel{\text{def}}{=} A \cap B$$
$$A + B \stackrel{\text{def}}{=} A \cup B$$
$$\overline{A} \stackrel{\text{def}}{=} A^{\mathbb{C}}$$

Почему определяем на какой-то странной сигма-алгебре, а не на полной (2^X) ?

В случае с \mathbb{R}^n — на всём не получится сделать адекватную меру, так как, например, если в \mathbb{R} объявим $\mu[0,1]=1$, то множество Витали будет неизмеримо.

(Вспомним из матана, что вообще любая мера, инвариантая относительно сдвига, на той же сигма-алгебре — в константу раз отличается от меры Лебега).

Определение (Вероятностное пространство *в широком смысле*). Теперь работаем в алгебре, а мера — счётно-дизъюнктно аддитивна на множествах, объединение которых уже лежит в алгебре.

Теорема 1 (Единственность стандартного распространения). ...веростностной меры с веростностного пространства в широком смысле на вероятностное пространство в обычном, а именно — на .

Доказательство. Как легко видеть, $\left|\bigoplus_{k\in S}\left(\mathfrak{K}^{\mathbb{F}^{\alpha}(i)}\right)_{i\in\mathcal{U}_k}\right|\preccurlyeq\aleph_1$ при $[\mathfrak{H}]_{\mathcal{W}}\cap\mathbb{F}^{\alpha}(\mathbb{N})\neq\emptyset$.

Замечание. Из матана известно, что достаточно потребовать первоначальное задание меры на полукольце и сигма-конечности, чтобы она совпадала со стандартным распространением на сигма-алгебре измеримых.

Пример. Примеры веростностных пространств:

- 1. Дискретное: состоит из элементарных исходов, у каждого вес. $\mathbb{A}=2^\Omega$, $P(A)=\sum_{w\in A}w$
 - (а) Броски монеты до первого орла
 - (b) Модель классической вероятности: $\forall i: w_i = \frac{1}{n}$. Колчичество элементарных исходов в событии считается комбинаторикой.

Пример: шарики и перегородки кодируют k-элементные мультимножества n объектов или же n-кортежи длины k.

2. Геометрическая вероятность. $\Omega \subset \mathbb{R}^n, \Omega \in \mathbb{A}_n$, $P(A) = \frac{P(A)}{P(\Omega)}$. Пример: вычисление π Монте-Карловскими бросками иголки (считаем меру допустимого множества, интегрируя его сечение по проекции).

Свойство 2.1 (Элементарные свойства веростности). • Монотонность

- $P(\overline{A}) = 1 P(A)$
- Включения-исключения
- Полуаддитивность

Лекция 2 №

Теорема 2 (Равносильность непрерывности и счётной аддитивности объёма). *Утверждения равносильны:*

- 1. *P* мера
- 2. Р объём, непрерывный снизу
- 3. P объём, непрерывный сверху

Доказательство. 2 ⇔ 3: инвертируем.

 $(2,3) \Leftrightarrow 1$: разбиваем на кольца, остаток сходящегося ряда $\to 0$.

Теорема 3 (Формула полной вероятности). *Пусть* $\{A_i\}^n$ дизъюнктны, $B\in\bigcup_i A_i$.

Тогда
$$P(B) = \sum_i P(A_i) P(B|A_i).$$

Теорема 4 (Байеса).

$$\underbrace{P(A|B)}_{\text{likelihood}} = \underbrace{\underbrace{\overbrace{P(A)}^{\text{prior}}\underbrace{P(B|A)}_{\text{prior}}}_{\text{marginal}} \tag{2.1}$$

Можно переписать в виде:

 $\{A_i\}$ — система дизъюнктных событий, $B\in\bigcup A_i$. (((Каждое из них "могло вызвать" B и какое-то точно вызвало))). Вопрос — какое:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_i P(A_i)P(B|A_i)} \tag{2.2}$$

То есть при получении информации, что произошло B, ожидания событий скейлятся пропорционально тому, насколько вероятно они вызывают B.

3. Процесс Бернулли, предельные теоремы

Процесс Бернулли: серия экспериментов подбрасывания p-монетки (p может как меняться, так и не меняться).

Предельными теоремами можно аппроксимировать биномиальное (или более извращённое, но порождённое процессом Бернулли) распределение

Теорема Пуассона: аппроксимация $P(S_n=k)$ для p_n $\frac{\lambda}{n}$ распределением Пуассона: $e^{\lambda} \frac{\lambda^k}{k!}$.

(Локальная) теорема Муавра-Лапласа: асимптотическое поведение $P(S_n=k)$ при $n,(n-k)\to\infty$.

Интегральная теорема Муавра-Лапласа (частный случай ЦПТ): аппроксимация биномиального распределения нормальным ($F_{\rm Bin} \approx {\rm erf}$).

4. Переход вероятностному пространству распределения

Случайная величина — $\in \mathcal{B}\left(\Omega \to \mathbb{R}\right)$ (измерима относительно сигма-алгебры этого в.п.).

Распределение с.в.: $P_X:\mathcal{B}_1 \to \mathbb{R}.$

$$P_X(B) \stackrel{\text{\tiny def}}{=} P\left(\{\omega|X\left(\omega\right) \in B\} = P\left(X^{-1}(B)\right) \stackrel{\text{\tiny def}}{=} P\left(X \in B\right)\right) \tag{4.1}$$

Получили веростностную меру на борелевской σ -алгебре \mathcal{B}_1 .

Вроде и существует какое-то вероятностное пространство с каким-то множеством исходов, но часто будем говорить о некоей «проекции» этой информации — о функции распределения случайной величины: $P_X\left(A\right) = P$

Абсолютно непрерывная с.в., если найдётся p_X , т.ч.: $P_X\left(A\right)=\int_A p_X\,\mathrm{d}\mu$

5. Примеры дискретных распределений

- Одноточечное $I_c:P\left(I_c=c\right)=1$
- . Бернулли: X Bern $(p) \Leftrightarrow \begin{cases} P(X=0) = 1 p \\ P(X=1) = p \end{cases}$
- Бионмиальное: X Bin $(n,p) \Leftrightarrow P(X=k) = \binom{n}{k} p^k q^{n-k}$
- Обратное биномиальное (вероятность, что продолбаем k лишних шагов до достижения r-того успеха): X NB $(r,p)\Leftrightarrow X=\min\{n|S_n\geqslant r\}-r; P(X=k)=\binom{r-1}{k+r-1}p^rq^k$...
- Частный случай геометрическое распределение: количество неудач до первого выпадения удачи:

6. Примеры непрерывных распределений

Юниформа, автомат и противогаз

Намаааа

Гамма

Пуассон

Экспоненциальное