- 11. Sea $A \in \mathbb{R}^{m \times n}$ una matriz de rango 1. Llamamos rango de A a la dimensión del espacio generado por la imagen $Im(A) = \{Ax \mid x \in \mathbb{R}^n\}$. Sea u un vector unitario en Im(A).
 - a) Demostrar que todas las columnas de A son múltiplos de u.
 - b) Mostrar que A se puede escribir de la forma $A = \sigma u v^t$, con $v \in \mathbb{R}^n$ unitario y $\sigma > 0$.
 - c) Mostrar que existe una matriz ortogonal $U \in \mathbb{R}^{m \times m}$ cuya primer columna es u y una matriz ortogonal $V \in \mathbb{R}^{n \times n}$ cuya primer columna es v. ¿Cómo podría construir dichas matrices?
 - d) Deducir que toda matriz A de rango 1 tiene descomposición SVD. ¿Quién es Σ ?

Im(A) es el subespacio generado por las columnas de A

dim(Im(A)) = 1 => cualquier base de Im(A) tiene un único vector.

En particular podemos tomar u pues uEIm(A).

Im(A) = < u>

P)

Aei = coli(A) = Liu pues coli(A) & Im(A) Vi=1...n

QVQ: A = OUVT con VER unitario, 0 >0

Por a) ya sabemos que las columnas de A se pueden escribir como múltiplos de u.

Sea $\tilde{V} = (\alpha_1 \cdots \alpha_n)$ formado con los coeficientes tq $col_i(A) = \alpha_i u \quad \forall i=1...n$.

Sea $\sigma = ||\tilde{V}||_z > 0$ pues $\tilde{V} \neq 0$ porque rango (A) = 1.

Sea V = Vo el vector V normalizado.

A =
$$\sigma u \sqrt{1} = \sigma u \sqrt[3]{\sigma} = u \sqrt[3]{\sigma}$$

= $\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_1 u_1 & \dots & u_1 u_n \\ u_n u_n & \dots & u_n u_n \end{bmatrix} = \begin{bmatrix} u_1 u_1 & \dots & u_n u_n \\ u_n u_n & \dots & u_n u_n u_n \end{bmatrix}$

Col_{(A)} · Col_{(A)} · Col_{(A)}

C)

Para construir las matrices ortogonales $U \in \mathbb{R}^{m \times m} y \vee e \mathbb{R}^{n \times m}$

vamos a usar los subespacios ortogonales a $\langle u \rangle y \vee \langle v \rangle$.

 $\langle u \rangle \oplus \langle u \rangle^{\perp} = \mathbb{R}^m \qquad \dim(\langle u \rangle) = 1 \qquad \dim(\langle u \rangle^{\perp}) = m-1$
 $\langle v \rangle \oplus \langle v \rangle^{\perp} = \mathbb{R}^n \qquad \dim(\langle v \rangle) = 1 \qquad \dim(\langle v \rangle^{\perp}) = n-1$

Sea $\{u_2 \dots u_m\}$ una base ortonormal de $\langle u \rangle^{\perp}$.

Sea $\{v_2 \dots v_n\}$ una base ortonormal de $\langle v \rangle^{\perp}$.

 $V = \begin{bmatrix} u & u_2 & u_n & u_n \\ u & u_2 & u_n & u_n \\ u_1 & u_1 & u_n & u_n \end{bmatrix}$
 $V = \begin{bmatrix} u & u_2 & u_n & u_n \\ v & v_2 & v_n & u_n & u_n \\ u_1 & u_2 & u_n & u_n & u_n & u_n \\ u_2 & u_2 & u_n & u_n & u_n & u_n & u_n & u_n \\ u_3 & u_3 & u_3 & u_n & u_n & u_n & u_n & u_n & u_n \\ u_4 & u_5 & u_5 & u_5 & u_5 & u_n & u_n & u_n & u_n \\ u_5 & u_5 & u_5 & u_5 & u_5 & u_n &$

