DORMAN, LONG & Co. Lb. MIDDLESBROUGH ENGLAND

---1906

POCKET COMPANION

CONTAINING

USEFUL INFORMATION & TABLES

PERTAINING TO THE USE OF

STEEL

MANUFACTURED BY

DORMAN, LONG & Co.

LIMITED

MIDDLESBROUGH, ENGLAND.

COMPUTED AND EDITED BY
THE CONSTRUCTIONAL DEPARTMENT.

FOR THE USE OF ENGINEERS, ARCHITECTS
AND BUILDERS.

1906

Copyright.

Entered at Stationers Hall.

MIDDLESBROUGH:
WILLIAM APPLEYARD AND SONS, LIMITED,
PRINTERS.

DORMAN, LONG & CO. LIMITED.

REGISTERED OFFICE OF THE COMPANY:

MIDDLESBROUGH.

TELEGRAPHIC ADDRESS: "DORMAN, MIDDLESBROUGH."

Head Office and all Departments use the following codes:

LIEBER'S TELEGRAPHIC CODE.

WESTERN UNION TELEGRAPHIC CODE.

A.B.C. TELEGRAPHIC CODE, 5th edition.

A.I. TELEGRAPHIC CODE.

BRITISH STANDARD SECTION CODE.

- Britannia Steel Works and Rolling Mills, Middlesbrough.

 Telegraphic Address: "Dorman, Middlesbrough."
- Constructional Department, Middlesbrough.

 Telegraphic Address: "Dorman, Middlesbrough."
- Clarence Steel Works, Port Clarence, Middlesbrough.
 Telegraphic Address: "DORMAN, PORT CLARENCE."
- Cleveland Wire Works, Middlesbrough.

 Telegraphic Address: "Rops, Middlesbrough."
- Sheet Works, Middlesbrough.

 Telegraphic Address: "NAMSOD, MIDDLESBROCGH,"

BRANCH OFFICES, WORKS AND STOCKYARDS

AT THE FOLLOWING PLACES.

LONDON. Office: 19 Victoria Street, S.W.

Telegrams: "Pugilism, London.

Stockyard and Shops: Nine Elms Lane, S.W.

Sheet Dept. Office: 23 Leadenhall Street, E.C. Wire Dept. Telegrams: "TREFILEUR, LONDON."

MANCHESTER. Office: 42 Deansgate.

Telegrams: "Acero, Manchester."

NEWCASTLE. Office: 10 Neville Street.

Telegrams: "ECHALAZ, NEWCASTLE."

GLASGOW. Office: Gordon Chambers, 90 Mitchell Street.

Telègrams: "BEAM, GLASGOW."

AUSTRALIA. Works & Stockyard: Grant St., South Melbourne.

Telegrams: "GIRDERS, MELBOURNE.

SOUTH AFRICA-

CAPE TOWN. Office: 7 & 8 Parker's Buildings, corner of Burg and Strand Streets.

P.O. Box 1263. Telegrams: "STRUCTURAL, CAPE TOWN."

JOHANNESBURG. Office: Leake's Buildings, 5 Harrison Street.
P.O. Box 4642. Telegrams: "JOISTS, JOHANNESBURG."

PROPERTIES OF THE COMPANY.

BRITANNIA STEEL WORKS BRITANNIA ROLLING MILLS

Basic Open Hearth Steel. Rolled Sections of all descriptions for Engineering, Shipbuilding, General Constructional Work and Allied Trades.

PAGES 1 TO 32

CONSTRUCTIONAL & BRIDGE SHOPS

Steel Frame Buildings, Workshops, Bridges, etc. etc.

PAGES 33 TO 149

SHEET DEPARTMENT

Rolling Mills with Galvanizing and Corrugating Shops. Steel and Iron Sheets, Corrugated, Curved and Plain. Requisite fittings of all descriptions.

PAGES 151 TO 163

WIRE & ROD DEPARTMENT

Rolling Mills, Wire-drawing and Galvanizing Shops.

PAGES 185 TO 173

CLARENCE STEEL WORKS CLARENCE ROLLING MILLS

Open Hearth Steel. Rolled Sections, Rails, Billets, Blooms, Tin Bars, Slabs and Flats. Rails to Standard Sections and Specification. Conductivity Steel to stand General Post Office, India Office and British Railway Tests. A Speciality.—Steel up to 55 Carbon, for Wire Ropes, Springs, Picks, Saws, etc.
Cropped Blooms up to 25 cwts. each can be supplied.

PAGES 175 TO 178

GENERAL INFORMATION, FORMULE, TABLES, ETC. ETC.

PAGES 179 TO 252

BRITANNIA STEE

BRITANNIA STEEL FURNACES.

MOLTEN IRON. MIXER FOR BRITANNIA STEEL FURNACES. - 300 TON

BRITANNIA ROLLING MILLS.-NO.

BRITANNIA ROLLING MILLS.-NO. 2

BAY CONSTRUCTIONAL DEPARTMENT, BRIDGE AND GIRDER SHOP, NO.

CONSTRUCTIONAL

m, Long & Co. Ld. ELECTRIC

ELECTRIC TRAMWAY CAR SHED. SUPPLIED AND ERECTED BY D. L. & CO. LD.

Dagment, Long & Co. Lt.

William to receipt

STEEL FRAME BUILDING.

BRIDGE OF 200 FEET

DGE OF 200 FEET SPAN.

CLARENCE

STEEL FURNACES

CLARENCE ROLLING MILLS.

CLEVELAND WIRE WORKS.-WIRE DRAWING SHOP.

SHEET DEPARTMENT, ROLLIN

DEPARTMENT. CORRUGATING SHEET

SHOP

PREFACE.

IN recent years there has been a large extension of the properties of this Company, and we feel that the several editions of our hand book—the first of which was issued in 1887—do not contain an adequate or complete account of the whole of our productions.

The property now comprises the following:-

Steel Furnaces.

Rolling Mills for all forms of sectional material.

Constructional and Bridge Shops.

Sheet Department (Rolling Mills with Galvanizing and Corrugating Shops).

Wire and Wire Rod Mills.

Rail, Billet, Bloom and Slab Mills.

A full description of the products of each department is given in the present edition.

We have endeavoured to bring before consumers the utility of our various products. The tabular and general information has been so arranged as to allow of an easy and convenient reference, for the selection of the most economical form, for any given purpose.

All the information has been very carefully prepared by our own staff. It is in accordance with the best modern

practice, and meets the requirements of the leading Engineers, Architects, and others connected with Constructional Engineering, Shipbuilding and allied trades.

When the Engineering Standards Committee issued their list of British Standard Rolled Sections in 1903, the Company realised the advantages that would accrue from a general adoption of standard sections by both manufacturers and users, and at once made arrangements for rolling those that the market conditions appeared to demand. Certain sections, not included in the British Standard list, are also rolled by this Company to meet a special demand. Particulars of these will be found in the present edition.

Our steel is manufactured by the Basic Open Hearth process, which ensures an uniform and reliable product.

Our standard product for sectional material will give the following results under test:—

28/32 tons tensile stress per square inch.

20% elongation in eight inches.

40% reduction of area at point of fracture.

The steel is accepted by, and meets the requirements of, the several departments of His Majesty's Government, including the Board of Trade, War Office, India Office, Admiralty; also Lloyds and other surveys, and Engineers of the principal railways at home and abroad.

The stock of sections carried at Middlesbrough, London and Melbourne is in lengths of every foot from 10 feet to 40 feet for ordinary sections, and longer lengths can sometimes be obtained from stock.

The trade margin allowed in rolling sectional material is 2½% above or below the dimensions and weights listed, and we cannot undertake to execute any order without this allowance.

All sections, either from rolls or stock, are cut to a margin of 1" over or under specified lengths. An extra is charged for cutting to within \%" of exact length, and for machining square.

Attention is particularly directed to the full and complete list of sections designed for Shipbuilding purposes, for which line of business our mills are specially adapted.

The Constructional Shops have been specially equipped for the rapid production of all classes of structural work, including steel frame buildings, workshops and bridges, of all sizes. A few illustrations of work executed are included in this edition. As manufacturers of all classes of material required for such work, we carry at all times a large stock, and are thus in a most favourable position for the rapid execution of large or small contracts.

Our Constructional Department maintains a large and competent staff, prepared to submit designs and estimates at any time to meet customers' requirements.

At our London yard—Nine Elms Lane—a large quantity of material is always kept in stock, and as this branch also possesses well equipped shops, structural work of all classes can be obtained at short notice.

This Company have also a branch establishment at Melbourne, Australia, where an adequate stock of Beams, Angles and other material is held. This branch is also equipped to execute orders for all kinds of structural work.

We have endeavoured to standardise the details of ordinary constructional work to facilitate deliveries and effect economy for purchasers. If customers specify any of our standards for their requirements, we can give them better service than if their requirements are special or out of the ordinary, though these latter of course will have our best attention.

We trust that the form of the present pocket companion will be found acceptable. The accuracy attained in the calculations is such, that we have every confidence in recommending the use of the book to all requiring material manufactured by the Company, or who may be engaged in designing structures for which our products are adapted.

DORMAN, LONG & CO. LIMITED.

NOTES ON SECTIONS

Reference Marks.—The reference marks generally adopted throughout this work either indicate those sections determined by the British Standards Committee, or such as are being rolled to meet special demand; the former have the prefix B.S. (viz.:—British Standard), and the latter D.L. (viz.:—Dorman, Long & Co. Ld.), thus affording a ready means of identification.

Sections marked *.—On referring to diagrams and tables, certain sections will be found marked with an asterisk.

Up to the present, the demand for these sections has been so limited that they have not been regularly rolled, neither are they kept in stock. They will be supplied, however, on receipt of orders for a sufficient quantity to warrant putting in the rolls.

Weight of Steel.—All calculations for weights are based on a piece of steel one square inch sectional area and one foot long, weighing 3.4 lbs., or one cubic foot of steel weighing 489.6 lbs.

Mode of ordering material.—I beams, channels, zeds, bulb angles and bulb tees, should be specified according to the weights per foot given in the diagrams and tables, rails to the weights per yard given, but angles, tees, flats, &c., to the thicknesses required.

Variation from published weights or thicknesses.—The minimum weights or thicknesses given in the diagrams and tables cannot be decreased, but may be exceeded when the tonnage ordered is sufficient to warrant a change being made; the effect upon the profile being as indicated on page 32.

It should be observed, however, that such change is only of limited extent.

I BEAMS

B.S.B. 30. 24" × 7½" × 100 lbs per foot.

I BEAMS

I BEAMS

I BEAMS

B.S.B. 24. 14" × 6" × 57 lbs per foot.

B.S.B. 23. 14" × 6" × 46 lbs per foot.

I BEAMS

FOR PROPERTIES & SAFE LOADS SEE PAGES DA. DE. OS & AT.

I BEAMS

I BEAMS

B.S.B. 16.

D.L.B. 15A. 9" x 7" x 58 lbs per foot. 9%" x 3%" x 21% lbs per foot

I BEAMS

B.S.B. 13. 8" × 5" × 28 lbs per foot.

D.L.B. 12 A. 8" × 4" × 25 lbs per foot.

B.S.B. 12. 8" × 4" × 18 lbs per foot.

B.S.B. 11. 7" × 4" × 16 lbs per foot.

I BEAMS

B.S.B. 10. $6^{''} \times 3^{''} \times 16$ lbs per foot. $6^{''} \times 5^{''} \times 25$ lbs per foot.

B.S.B. 9. 6 × 4 ½ × 20 lbs per foot. 6 × 3 × 12 lbs per foot.

B.S.B. 8.

I BEAMS

D.L.B. 5 A. 4³/₄" × 1³/₄" × 10 lbs per foot.

FOR PROPERTIES & SAFE LOADS SEE PAGES 34, 35, 48 & 47.

I BEAMS

4 % × 1% × 6% lbs per foot. 4 × 3 × 9% lbs per foot.

B.S.B. 4.

4" x 1%" x 8 ha per foot. 3% x 1% x 6 ha per foot. 4" x 1% x 5 ha per foot.

3 × 3 × 6 5 be per foot. 3 × 1 5 × 4 be per foot.

B.S.B. 1.

Each Section will be to correct profile for the weights given, but for increased weights the Section will be modified as indicated on page 32.

FOR TABLE OF PROPERTIES SEE PAGES 36 AND 37.

10 × 4 × 30 16 lbs per ft. 10 × 4 × 16 66 lbs per ft. 10 × 3 ½ × 28 · 21 lbs per ft.

10 x 3 1/4 x 2 3 5 5 lbs per ft. 9 x 3 1/4 x 2 5 3 9 lbs per ft. 9 x 3 1/4 x 2 2 2 7 lbs per ft.

Each Section will be to correct profile for the weights given, but for increased weights the Section will be modified as indicated on page 52.

FOR TABLE OF PROPERTIES SEE PAGES 36 AND 37.

CHANNELS

Each Section will be to correct profile for the weights given, but for increased weights the Section will be modified as indicated on page 32.

FOR TABLE OF PROPERTIES SEE PAGES 36 AND 37.

CHANNELS

Each Nextion will be to correct profile for the weights given, but for increased weights the Section will be multiful as indicated or page 32.

FOR TABLE OF PROPERTIES SEE PAGES IS AND IT.

UNEQUAL ANGLES

Each Section will be to correct profile for the thicknesses given, but for intermediate or greater thicknesses the Section will be modified as indicated on page 32.

FOR TABLE OF PROPERTIES SEE PAGES 38 AND 39.

Back Notice will be in cornel profit for the theleasure given, but be intermediate of greater theleasures the Notice will be resulted on telebroid on page 16.

FOR TABLE OF PROPERTIES SEE PROCE IS AND IN

EQUAL ANGLES

Each Section will be to correct profile for the thicknesses given, but for intermediate or greater thicknesses the Sections will be modified as indicated on page 32.

FOR TABLE OF PROPERTIES SEE PAGE 40.

Each Section will be to correct profile for the weights given, but for increased weights the Section will be medified as indicated on page 32.

FOR TABLE OF PROPERTIES SEE PAGES 42 AND 43.

Each Section will be to correct profile for the weights given, but for increased weights the Section will be modified as indicated on page 32.

FOR TABLE OF PROPERTIES SEE PAGES 42 AND 43.

Each Section will be to correct profile for the thicknesses given.

Table and stalk of equal thickness.

FOR TABLE OF PROPERTIES SEE PAGE 41.

TEES

Fight Section will be to covered profile for the dealermone given. Fulfic and stulk of opput thickness.

FOR TABLE OF PROPERTIES SEE PAGE 40.

STEEL TROUGHING

FOR ABOVE, BUILT UP AS FLOORING, SEE PAGES 126 TO 149.

STEEL TROUGHING

FOR ABOVE, BUILT UP AS FLOORING, SEE PAGES 123 TO 149.

Each Section will be to correct profile for the weights given, but for increased weights the Section will be modified as indicated on page 32.

FOR TABLE OF PROPERTIES SEE PAGES 42 AND 43.

F.B.R. 3.

F.B.R. A.

FRR S.

ROUNDS. SQUARES AND FLATS.

ROUNDS.

DIAMETERS.

1½" 9 %" 116" ¾"
138" %" 158" 1" 116"

 $1\frac{1}{8}$ " $1\frac{3}{16}$ " $1\frac{1}{4}$ " $1\frac{5}{16}$ " $1\frac{3}{8}$ " $1\frac{7}{16}$ " $1\frac{1}{8}$ " $1\frac{5}{8}$ " $1\frac{3}{8}$ " $1\frac{7}{8}$ " $1\frac{1}{8}$ " $1\frac{5}{8}$ " $1\frac{3}{4}$ " $1\frac{7}{8}$ "

2" 21/8" 21/4" 23/8" 21/2"

SQUARES.

SIDES

½" 16" %" 16" ¾"

15" %" 15" 1" 15"

1½" 15" 1½" 1½" 1¾" 15"

2" 2½" 2½"

FLATS.

Width Inches 1 24 20 1/4 18	Thie	kness	Width	Thie	kness
Inches	Minimum	Maximum	Inches	Minimum	Maximum
201/4	5 16 5 16 3/8	5/8 5/8 3/4	3½ 3¼ 3	1/4 1/4 1/4	3/4 3/4 3/4
16 14 13	3/8 3/8 3/8	3/ ₄ 3/ ₄ 3/ ₄	23/ ₄ 21/ ₂ 21/ ₄	1/4 1/4 1/4	3/4 3/4 3/4
12 10 9	3/8 3/8 3/8	3/ ₄ 3/ ₄ 3/ ₄	2 1 ³ / ₄ 1 ¹ / ₂	1/4 1/4 1/4	3/4 5/8 1/2
8 4 33/4	3/8 1/4 1/4	3/ ₄ 3/ ₄ 3/ ₄	11/4	1/4 1/4 	1/ ₂ 1/ ₂

Note.—Flats of greater thickness than the above will have the edges slightly rounded

MISCELLANEOUS SECTIONS

No. 3 HATCH.

BOBBIN SECTIONS.

HOLLOW HALF ROUNDS.

SOLID HALF ROUNDS.

NUT STEEL.

FENCING STANDARD.

RIVET BARS.

			Sil	209			
	A	×	В		Α	×	8
1	11/1a"	×	13/10	1	36"	×	3/4
1	1916	×	34"	1	1/10	×	34
1	17/10"	×	34"	1	Va"	×	3/4
1	136"	×	1	1	3/10	×	1

		1		
	N.	1	, CH	
		١		
		J		

14"		2952	1%
%"	34"	1916	136
1952	25/32		1.15
24"	1910	1	1%
21/12	2752	13%	1%
11 . "			

DIAGRAM SHEWING PROFILES OBTAINED WHEN SECTIONS ARE ROLLED OF THICKNESSES OTHER THAN THOSE GIVEN ON THE PRECEDING PAGES.

The hatched portions indicate correct profiles, the blank portions the added material.

DIMENSIONS, PROPERTIES, &c., OF SECTIONS.

Dimensions and Properties.—Complete tables are given of dimensions and properties of the various sections illustrated.

The areas and properties have been carefully calculated on correct profiles, and full sections without holing; all fillets, rounded corners, taper of flanges, &c., being taken into consideration.

Least Radius of Gyration.—The least radius of gyration has been determined for all sections, and will be found in the tables.

In sections such as I beams, channels, tees and equal angles, which have an axis of symmetry, this radius is either about that axis or one at right angles to it. In the case of unequal angles, bulb angles and zed bars, having no axis of symmetry, the position of the axis, about which the radius is least, has been calculated and is given in the tables; this axis being marked in the diagram "minor axis."

DIMENSIONS AND PROPERTIES OF I BEAMS.

For safe distributed loads see pages 46 and 47.

	Reference	Size	Weight		DIAG	RAM	
	Mark	Inches	Foot lbs.	Web	Flange	Radius R1	Radius R2
	BSB 30 29 28 27 26	24×7½ 20×7½ 18×7 16×6 15×6	100 89 75 62 59	·6 ·6 ·55 ·55 ·5	1.07 1.01 .928 .847 .88	·7 ·65 ·65 ·6	35 35 325 325
X	" 25 " 24 " 23 " 22 " 21	15×5 14×6 14×6 12×6 12×6	42 57 46 54 44	·42 ·5 ·4 ·5 ·4	·647 ·878 ·698 ·883 ·717		26 3 25 3 25
98"	DLB 20A BSB 20 11 19 11 18 DLB 17A BSB 17	12×5 12×5 10×8 10×6 – 10×5 – 9×7	39 32 70 42 35 30 58	·44 ·35 ·6 ·4 ·42 ·36 ·55	664 55 97 736 652 552 924	'45 '7 '5 '52	·27 ·225 ·35 ·25 ·26 ·23 ·325
X X X Equal	DLB 15A* BSB 15 " 14 " 13 DLB 12A BSB 12.	9¼×3¾ 9×4 8×6 8×5 8×4 8×4 7×4	21.5 21 35 28 25 18 16	'34 '3 '44 '35 '38 '28 '25	'453 '46 '597 '575 '581 '402 '387	'4 '54 '45 '48 '38	· 22 · 2 · 27 · 225 · 24 · 19 · 175
' y	" 10 " 9 DLB 8A BSB 8 DLB 7A* BSB 7 DLB 6A BSB 6	6×5 6×4½ 6×3 6×3 5×5 5×4½ 5×4½ 5×3	25 20 16 12 24 18 19	·41 ·37 ·34 ·26 ·37 ·29 ·40 ·22	'52 '431 '484 '348 '551 '448 '458 '376	'47 '44 '36 '47 '39 '50	255 235 22 18 235 195 25 16
	DLB 5A BSB 5 DLB 3A BSB 3 DLB 1A BSB 1	4%×1% 4%×1% 4×3 4×1% 4×1% 3×3 3%×1% 3×1%	10 6.5 9.5 8 5 8.5 6	32 18 22 3 17 2 25 16	·48 ·325 ·336 ·383 ·24 ·332 ·344 ·248	·28 ·32 ·3 ·27 ·3 ·25	16 14 16 15 135 15 125

The properties of British Standard Sections in above table are published by permission of the Engineering Standards Committee.

DIMENSIONS AND PROPERTIES OF I BEAMS.

For safe distributed loads see pages 46 and 47.

Area	Moments of	Inertia		Gyration hes	Section Modulus	Centres of Holes	Reference
Square	About x-x	About Y-Y	About x-x	About	About x-x	C Inches	Mark
29.4 26.17 22.06 18.23 17.35	2654 1670 1149 725.7 628.9	66'92 62'63 47'04 27'08 28'22	9'5 7'99 7'21 6'31 6'02	1.5 1.54 1.46 1.21 1.27	221'1 167'0 127'6 90'71 83'85	4.5 4.5 4.0 3.5 3.5	BSB 30 29 28 27 26
12:35 16:76 13:53 15:88 12:94	428° 532°9 440°5 375°5 315°3	11'81 27'96 21'6 28'3 22'27	5'88 5'63 5'7 4'86 4'93	'978 1'29 1'26 1'33 1'31	57.06 76.12 62.92 62.58 52.55	2.75 3.5 3.5 3.5 3.5	25 24 23 22 22
11'47 9'41 20'6 12'35 10'29 8'82 17'06	260°9 220° 344°9 211°5 167°2 145°6 229°5	12'16 9'753 71'67 22'95 11'89 9'79 46'3	4'77 4'83 4'09 4'13 4'03 4'06 3'66	1'03 1'01 1'86 1'36 1'07 1'05 1'64	43'48 36'66 68'98 42'3 33'45 29'12 51'0	2.75 2.75 4.75 3.5 2.75 2.75 4.0	DLB 20A BSB 20 19 18 DLB 17A BSB 17
6:324 6:176 10:29 8:24 7:353 5:294 4:706	83'41 81'1 110'5 89'32 75'06 55'69 39'21	3:446 4:2 17:95 10:26 5:502 3:578 3:414	3.63 3.62 3.27 3.29 3.19 3.24 2.88	'738 '824 1'32 1'11 '865 '822 '851	18'03 18'02 27'62 22'33 18'77 13'92 11'2	2.0 2.25 3.5 2.75 2.25 2.25 2.25	DLB 15A BSB 15 14 13 DLB 12A BSB 12 11
7:35 5:88 4:706 3:53 7:059 5:29 5:588 3:235	20°21 29°30 22°69	9°116 5°415 1°957 1°339 9°751 5°664 4°756 1°462	2:43 2:42 2:36 2:39 2:04 2:07 2:00 2:05	1'11 '959 '645 '616 1'18 1'03 '923 '672	14.58 11.54 8.718 6.736 11.72 9.076 8.937 5.444	2.75 2.5 1.5 1.5 2.75 2.5 2.25 1.5	DLB 8ABSB 8DLB 7ABSB 7DLB 6ABSB 6
2:941 1:912 2:794 2:353 1:47 2:5 1:765 1:176	7.52 5.328 3.668 3.787 3.086	'413 '263 1'281 '324 '186 1'262 '183 '124	1.87 1.64 1.50 1.58 1.23 1.32	'375 '37 '677 '371 '355 '71 '322 '324	3'905 2'833 3'76 2'664 1'834 2'524 1'763 1'106	1.5	DLB 5A BSB 5 DLB 3A BSB 3 DLB 1A BSB 1

The properties of British Standard Sections in above table are published by permission of the Engineering Standards Committee.

CHANNELS.

DIMENSIONS AND PROPERTIES.

	Refer		8	Size		ndard nesses	Ra	dii	ht per lbs.
	Ma	rk	А	×В	t	Т	R	r	Weight foot-lb
Centre of Gravity	DLO BSC	27 26 25 24 22 21 21 a* 20 19 17	15 12 12 12 11 10 10 10 10 9 9	×4 ×3½ ×3½ ×3½ ×4 ×4 ×3½ ×3½ ×3½ ×3½ ×3½	525 525 500 375 475 475 312 475 375 450	630 625 600 500 575 575 312 575 500 550	'630 '625 '600 '500 '575 '575 '600 '575 '500 '550	·440 ·425 ·425 ·350 ·400 ·400 ·200 ·400 ·350 ·375 ·350	41.94 36.47 32.88 26.10 29.82 30.16 18.86 28.21 23.55 25.39 22.27
RI TI.		15 13 12* 10 9	9 8 8 7 7	×3 ×3½ ×3 ×3½ ×3 ×3	375 425 375 400 375	'437 '525 '500 '500 '475	·437 ·525 ·500 ·500 ·475	'350 '375 '350 '350 '325	19:37 22:72 19:30 20:23 17:56
Y	DLO BSO DLO	9A* 8 6 5A 4A 3A 2A	41/4	×21/8 ×31/2 ×3 ×27/8 ×27/8 ×21 ×3 ×1	230 375 312 437 500 375 312	325 475 487 500 500 500	'325 '475 '437 '500 '500 '500 '250	'230 '325 '300 '350 '350 '350 '200	9.75 17.9 14.49 16.08 12.92 14.20 4.14

ZED BARS.

DIMENSIONS AND PROPERTIES.

Minor Axis Y	Reference	Size		ndard	Area	Weight
	Mark	A×B	t	Т	square	per foot— lbs.
Centre of Gravity	BSZ 8 7 7 6 5 4 3 DLZ 2A	10×3½ 9×3½ 8×3½ 7×3½ 6×3½ 5×3 4×3	'475 '450 '425 '400 '375 '350 '325	575 550 525 500 475 450 425	8:283 7:449 6:670 5:948 5:258 4:169 3:605	28.16 25.33 22.68 20.22 17.88 14.17 12.26

The properties of British Standard Sections in above tables, where taken from the Engineering Standards Committee's Section Book, are published by permission of the Committee.

CHANNELS.

DIMENSIONS AND PROPERTIES.

Area	1	Momenta	of Esertia	Section	Moduli		Gyration hea	1.
itiakes	, E	About	Allout	About x x	About v v	About	About	24
5.248	1 081 867 860 896 1 102 929	218 2 190 7 158 6 148 6 180 7 82 58	14'55 13'65 8'933 7'573 8'431 12'03 7'186	26°44 27°02 26°14 16°52	4 748 4 500 3 380 2 866 3 284 4 147 2 324	4°51 4°44 4°50 4°12 3°84 3°84		88d 27 - 2d - 2d - 2d - 2d - 2d - 31 06d 21*
8'995 7'469 6'550 5'696 6'689 5'675 5'950 5'166	988 971 976 784 1 011 844 1 061	117'9 109'6 88'07' 79'90 66'18 68'76 58'43 44'56 37'63	8 194 7 187 7 660 6 963 4 091 7 067 4 330 6 498 4 017	28 50 20 52 19 57 17 76 14 48 15 94 18 36 12 78 10 75				380 30 - 19 - 17 - 16 - 15 - 13* - 10*
2'868 5'266 4'261 4'728 3'800 4'175 1'218		30°48 39°66 34°01 18°13 9°933 10°15	1 069 5 907 3 508 3 385 1 069 3 432 085	7 075 4 410				DES SA

ZED BARS.

DIMENSIONS AND PROPERTIES.

Radii	inskex	Monsola	of Inertia	Berlin	Moduli	11.3	44.	Keltemos		
		About	About	Abret	About	Page	100	Much		
475 450 450 425 975	'350 '350 '325 '300 '300 '250 '250	68'729 44'609 29'660 16'145	19'418 12'094 11'618 11'184 6'578	19'531 15'932 12'745 9'887 8'458		14 16% 19% 933 93% 90% 30%		3 #1 H		

The properties of Helinis Standard Services is above tables, where labor from the Engineering Standards Committee v Section Brook, are published by permission of the Committee.

UNEQUAL ANGLES.

DIMENSIONS AND PROPERTIES.

Refere	nce		Siz	ie a	and	1	Samare	hes	t per	Foot-Lbs.	Ra	dii			nen- ons	of	Iom In		ia	N	lođ	ion uli	e oc	Radius
Mar		-	Thi	ckı	nes	38	Aros. S	Inches	Weigh	Foot	Root	Toe		J	Р	About	××	About	٨٨	About	××	About	Angle or Degrees	Least Radius
BSUA	2.5	7		31/			5.	0	17	-00	-425	-300	2	50	-764	25	1	4	28	5.4	58]	1.56	141/6	-74
	25				-						-425					30	-55	5	15	6.8	36]	1.92	141/6	-74
U	25					3/4	7-	313	24	.86	-425	.300	2	60	-862	35	68	5	95	8.	112	2.26	14	.73
"	24	61/		41			5.	248	17	-84	-45	.325	2	-08	1.09	22	.2	8	75	5.0	22	2.57	25	-97
11	24						6.	482	22	-04	-45	-325	2	13	1.14	27	-09		60	6.8	203	3.15	25	-96
11	24					3/4	7.	686	26	13	-45	.325	2	18	1.19	31	66	12	32	7-3	333	3.72	25	•96
11	22			31/	6>		3.	610		-27	- 425	.300	2	22	-741	15	7	3.	27	3.6	71	1.18	161%	-75
11	22						4.	750	16	-15	-425	.300		28	-792	20:	4	4.	20	4-8	33 1	1.55	161/6	-75
11	22			11		5/8		860	19	.92	-425	.300	2	33	-841	24	83	5	06	5.5	95]	1.90	16	.74
11	21	6	×	4	>	(3%	3.	610	12	-27	-425	.300	1	91	-923	13	2	4.	73	3-2	23 1	1.54	231/6	-87
11	21						4.	750	16	.15	-425	.300	1	96	-974	17.	1	6.	10	4-2	23 2	2.02	231/6	-86
11	21			11		5/8	5	860	19	. 92	-425	.300	2	02	1.02	20	8	7	36	5.2	23 2	2-47	231/2	.86
11	20	6	×	31/	2>						-40	.275			-773							1.18		-76
11	20			11							-40	.275			-823			4.	14	4.1	61	1.55	19	.75
	20			11		5/8	5	549	18		.40	.275	2	11	.872	19	88	4.	97	5.1	11	1.89	181/2	.75
DLUA	20A	6	×	3	>		3.	236	11	.00	-40	.275	2	12	-632	12	0	2	05	3.0)9	.87	141/6	.64
	20a			11			4.	252	14	-46	-40	275	2	17	.683	15	.5	2.	62	4.0	05 1	1.13	141/6	-63
11	20A			11		5/8	5	236	17	.80	-40	.275	2	22	-731	18	79	3.	13	4.5	7	.38	14	:63
BSUA	19			31	6>		3.	236	11	.00	-40	-275	1	80	-807	9	93	3.	15	2.6	81	1.17	22	.76
11	19			11			4.		14	.46	-40	.275	1	85	-857	12	80					.53		.75
11	19			11		5/8	5	236	17	.80	-40	-275	1	90	.905	15	6						211/2	.75
11	18*			3							.375				-662	9.	45	2.	02	2-6	2	-86	17	:64
11	18*			11							.375				.711	12	2	2.	58	3-4	41	1.13	161/2	-64
- 11	18*			11		5/8	4.	925	16	.74	.375	.250	2	00	.759	14	7	3.	08	4-2	20 1	.37	161/2	.63
11	17			4							.40				1.01	7.	96	4.	53	2.2	28 1	-52	32	-85
11	17										-40					10	3	5.	82	2.8	991	-98	32	-84
11	17										-40					12		7-		3.6	6 2	2 · 43	32	.83
11					6>	3/8	3.	050	10	.37	.375	.250	1	59	-848								251/2	.75
11						1/2	4.	003	13	61	.375	.250	1	64				3.	96	2.5	3 1	.52	251/2	-75
11	16					5/8	4.	925	16	.74	.375	.250	1.	69	.944	11 -	9	4.	75	3.6	01	-86	25	-74

UNEQUAL ANGLES. DIMENSIONS AND PROPERTIES.

Refer	ence		Size a	nd	Square	t per Lbs.	R	ıdii		nen- ons	Mom of In		Sec	tion Iuli	9 00	Ladius
Ma	rk		Thick	ness	Area Squa Inches	Weight per Foot-Lbs.	Root	Toe	J	Р	About	About	About	About	Angle oc Degrees	Least Radius
BSUA	15		×3		2-402					.667	6.14	1.68	1.84		20	-65
11	15	17	11		2.859					-693	7.24	1.97	2.18		191/2	.65
11	15		11	1/2	3.749	12.75	.350	250	1.73	.742	9.33	2.51	2.85	1:11	191/2	.64
11	15	17	11	5/8	4.609	15.67	.350	.250	1.78	.789	11.25	3.00	3.49	1:36	19	. 64
11	14*	41	6×34		2.402					.866	4.82	2.55	1.54	.97	301/2	
11	14*	11	11		2.859					.891		3.00	1.83	1.15	301/2	
11	14*		11		3.749					.940			2.39			
11	14*	11	11	5/8	4.609	15.67	.350	.250	1.48	-987	8.81	4.61	2.92	1.83	30	
11	12	4	×31/		2.246					.915	3.46	2.47	1.22	-96	37	
11	12		11	3/8	2.671	9.08	.350	.250	1.19	.941	4.08	2.90	1.45	1.13		
	12	11	11	1/2	3.499	11.90	.350	. 250	1.24	-990	5.23		1.89			
	12		11	5/8	4.296	14.61	.350	.250	1.28	1.04	6.58	4.44	2.31	1.80	361/2	
	11	4	$\times 3$	XTo	2.091	7-11	.325	.225	1.24	•746	3.31	1.59	1.20	.71		.6
11	11		11		2.485					-771	3.89	1.87	1.42	-84		.6
11	11	11	11		3.251	11:05	.325		1-31		4.98		1.85	1.09		-6
11	11	11		5/8	3.985	13.55	.325	.225	1.36	:865	5.96	2.83		1.33		.6
11	9		6×3	× fe	1.934	6.58	.325	.225	1.04	-792	2.27	1.53	-92	-69	351/2	.6
11	9		11		2.298				1.07	-819	2.67	1.80	1.10		351/2	.6
11	9	11	11		3.001	10.20	.325		1.11	.867	3.40		1.42		351/2	-6
11	9		11		3.673	12-49	.325		1.16	.912	4.05	2.71	1.73	1.30	35	.6
11	8		6×21	4×16	1.779	6.05	.30	.20	1.12	-627	2.15	-910	-90	.49	261/2	.5
11	8		11	3/8	2.111	7.18	.30	.50	1.15	.652		1.06	1.07		26	
	8					9.36	.30	.50	1.50	•699		1.34	1.39	.74	26	
	7			2×1/4	1.312	4.46		.20	.895	.648	1.14	.716	-54		34	.5
	7			3/8	1.921	6.53	.275	.20	.945	-697	1.62	1.02	.79		34	
	7		11	1/2	2.499	8.50	.275	.50	-992	-744	2.05	1.28	1.02	.73	$33\frac{1}{2}$	
11	6	3	×2	×1/4	1.187	4.04	.275	-20	.976	-482	1.06	.373				.43
	6		11	3/8	1.733	5.89	.275	-20	1.03	.532	1.50			.36		-42
11	6				2.249	7.65		.50	1.07	-578	1.89	.656	-98	-46	221/2	:42
11	5		4×2	× 1/4	1.063	3.61	.250	175	-774	.527	.636	.359		.24	32	- 42
11	5		2	16	1.309	4.45	.250	.175	.799	.552	.770	• 433	•45	.30	311/2	-42
11	5		2	3/8	1.547	5.26	.250	175	.823		.895	.502	•53		31½	-42
11	4	2	×11/	×136	.622	2.11	225	150	-627	.381	.240	.115	.17	-10		- 32
11	4			1/4	.814	2.77	.225	.150	-653	.407	.308	.146	.23	-13		-31
11	4		- 11	Pa	-997	3.39	. 225	.150	.678	-431	.369	.174		.16		-31

EQUAL ANGLES.

DIMENSIONS AND PROPERTIES.

Reference		Size and	Area Square	Weight per Foot	R	adii	Dimen- sion	Moment	Section Mod'lus	Least
Mark		Thickness	Inches	Lbs.	Root	Toe	J	Inertia xx	XX	of Gyrt'n
BSEA 16	3*	8 ×8 ×½ " " 5/8 " " 3/4	7·75 9·609 11·437	26·35 32·67 38·89	·600 ·600	· 425 · 425 · 425	2·15 2·20 2·25	47·4 58·2 68·5	8·10 10·03 11·91	1·58 1·57 1·56
" 14 " 14	£	6 ×6 × 7 16 5/8 11 11 5/8	5·062 7·112 8·441	17·21 24·18 28·70	·475 ·475 ·475	·325 ·325 ·325	1.64 1.71 1.76	17·3 23·8 27·8	3·97 5·55 6·56	1·18 1·18 1·17
" 13 " 13	3	5 ×5 ×3/8 " " ½ " " 5/8	3·610 4·750 5·860	12·27 16·15 19·92	·425 ·425 ·425	·300 ·300 ·300	1·37 1·42 1·47	8·51 11·0 13·4	2·34 3·07 3·80	-98 -98
" 12 " 12	2*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3·236 4·252 5·236	11·00 14·46 17·80	· 400 · 400 · 400	·275 ·275 ·275	1·22 1·29 1·34	6·14 7·92 9·56	1·87 2·47 3·03	-88 -87 -87
" 11 " 11		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2·859 3·749 4·609	9·72 12·75 15·67	·350 ·350 ·350	·250 ·250 ·250	1·12 1·17 1·22	4·26 5·46 6·56	1·48 1·93 2·36	-78 -77 -77
11 10 11 10 11 10		3½×3½×56 11 11 3/8 11 11 5/8	2·091 2·485 3·251 3·985	7·11 8·45 11·05 13·55	·325 ·325 ·325 ·325	·225 ·225 ·225 ·225	·975 1·00 1·05 1·09	2·39 2·80 3·57 4·27	.95 1.12 1.46 1.77	-68 -68 -68
11 9	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1·44 2·111 2·752 3·362	4·90 7·18 9·36 11·43	·300 ·300 ·300 ·300	·200 ·200 ·200 ·200	·827 ·877 ·924 ·970	1·21 1·72 2·19 2·59	.56 .81 1.05 1.28	·59 ·53 ·58 ·58
77	7	2½×2½×¼ 1 1 15 1 1 3/8 1 1/2	1·187 1·464 1·733 2·249	4·04 4·98 5·89 7·65	·275 ·275 ·275 ·275	·200 ·200 ·200	-703 -728 -752 -799	·677 ·822 ·962 1·21	·38 ·46 ·55 ·71	·48 ·48 ·48
" 6	3	21/4 × 21/4 × 3/6	·809 1·063 1·309 1·547	2·75 3·61 4·45 5·26	·250 ·250 ·250 ·250	·175 ·175 ·175 ·175	·616 ·643 ·668 ·692	· 378 · 489 · 592 · 686	·23 ·30 ·37 ·44	·44 ·44 ·43 ·43
11 55		2 ×2 × 186 11 11 14 11 11 18 11 11 18	·715 ·938 1·153 1·36	2·43 3·19 3·92 4·62	·250 ·250 ·250 ·250	·175 ·175 ·175 ·175	·554 ·581 ·605 ·629	· 260 · 336 · 401 · 467	·18 ·24 ·29 ·34	·39 ·39 ·38 ·38
" 4 " 4		$1\frac{5}{4} \times 1\frac{5}{4} \times \frac{3}{16}$	·622 ·814 ·997	2·11 2·77 3·39	·225 ·225 ·225	·150 ·150 ·150	· 495 · 520 · 544	·172 ·220 ·264	·14 ·18 ·22	·34 ·34 ·34
1 1 33 33	3	$1\frac{1}{2} \times 1\frac{1}{2} \times \frac{3}{16}$	· 526 · 686 · 839	1·79 2·33 2·85	·200 ·200	·150 ·150 ·150	·434 ·458 ·482	·105 ·134 ·159	·10 ·13 ·16	·29 ·29 ·29
" 2		11/4×11/4×13/6	· 433 · 561	1·47 1·91	·200	·150 ·150	·371 ·396	·058 ·073	·07	·24 ·23

TEES. DIMENSIONS AND PROPERTIES.

Refer		Size a		a Square Inches	ht per lbs.	Ra	dii	Dimension		ents of ertia	Sect			ií of tion
Ma	rk	Thick	ness	Area S	Weight per foot-lbs.	Table Root	Table Toe	- Dim	About	About	About	About	About	About
BST	21 21 21	6 ×4	× 3/8 1/2 5/8	3·634 4·771 5·878	16.22	· 425 · 425 · 425	·300 ·300 ·300	·915 ·968 1·02	4·700 6·070 7·350	6:344 8:621 10:912	2.00		1·137 1·128 1·118	1.344
11	20 20 20	6 ×3	×3/8 1/2 5/8		11 · 08 14 · 53 17 · 87	· 400 · 400 · 400	·275 ·275 ·275	·633 ·684 ·732	2·062 2·635 3·144	6·389 8·649 10·938	1.14	2·13 2·88 3·65		1 · 400 1 · 423 1 · 443
11	19 19	5 ×4	× 3/8 1/2	3·257 4·268		· 400 · 400	·275	·998 1·05	4·471 5·772				1·172 1·163	
11	17 17	5 ×3	× 3/8 1/2	2·875 3·762	9·78 12·79	·350 ·350	·250 ·250	·691 ·741	1·973 2·516	3·716 5·031		1.49		1·137 1·156
11	15 15	4 ×4	× 3/8 1/2	2·872 3·758	9·77 12·78	·350		1·11 1·16	4·189 5·402	1·901 2·590			1·208 1·199	·814
17	14 14	4 ×3	× 3/8 1/2	2·498 3·262	8·49 11·08	·325	·225	·767 ·816	1·860 2·365	1·914 2·599	·83	·96 1·30	·863	
11	13 13	3½×3½	4×3/8 1/2	2·496 3·259	8·49 11·08	·325	·225	·988 1·04	2·768 3·543	1·284 1·752			1·053 1·043	·717
11	11 11	3 ×3	× 5/8 1/2	2·121 2·76	7·21 9·38	·300 ·300	·200	·868 ·918	1:708 2:165	·816 1·115	·80 1·04	·54 ·74	·897	·620 ·636
11	10 10	3 ×21	/2 × 3/8 1/2	1.929 2.506	6·56 3·52	·275	·200	·695 ·742	1·015 1·275	·814 1·109	·56 ·73	·54 ·74	·725	·650 ·665
11	8 8	2½×2½	½×¼ 16 3/8	1·197 1·474 1·742	4·07 5·01 5·92	·275 ·275 ·275	·200 ·200 ·200	·697 ·724 ·750	·677 ·823 ·959	·302 ·387 ·473	·38 ·46 ·55	·24 ·31 ·38	·752 ·747 ·742	·502 ·512 ·521
"	7	21/4×21	4×1/4 5/8	1·071 1·554	3·64 5·28	·250 ·250	·175	·638	· 488 · 685	·224 ·349	·30 ·44	·20 ·31	·675 ·664	·457
11	6	2 ×2	× 1/4 3/8	·947 1·367	3·22 4·64	·250 ·250	·175	·579 ·628	·337 ·469	·157 ·246	·24 ·34	·16	·597	·407
DLT	6A	2 ×11	4×1/4 3/8	·820 1·180	2.79	·225	·150	-408 -455	·148 ·202		·14 ·19	·16 ·25	·425 ·414	·441 ·457
BST	5	1½×2	× 1/4	·820 1·003	2.79		·150	·648 ·674	·307 ·369	-068	·23	·09	·612 ·607	·288 ·296
11	44	1%×13		·820 ·999	2.79		·150	·519 ·544	·221 ·265	·107	·18	·12	·520 ·515	· 361 · 370
11	3	1½×13		:531	1.81	-200	·150	·435 ·460	·106 ·135	-048	·10	.06	·447	·301 ·312

The properties of British Standard Sections in above table, where taken from the Engineering Standards Committee's Section Book, are published by permission of the Committee.

BULB ANGLES. DIMENSIONS AND PROPERTIES.

		Refere	ence	Size	dard	Area	Weight per foot-lbs.	Ra	dii
	Y /	Mar	k	A×B	Standard Thickness T	square	Weigl	r1	r ²
	P MinorAxis	BSBA	20	12 ×4	.600	10.724	36 · 46	-675	-450
			19	11 ×3½	.550	8.953	30.44	.625	•425
1	+	17	18	10 ×3½	-525	7-904	26.87	-575	-400
	90° r2	11	17	91/2×31/2	-500	7-277	24.74	.550	-375
J	H	"	16	9 ×31/6	-475	6.677	22.70	•550	•350
	Centre of Gravity	11	14	8½×3½	-475	6.339	21.55	.525	-350
X	T	11	12	8 ×3½	-450	5.779	19.65	-500	-325
A		11	11	8 ×3	-425	5.301	18.02	.500	•325
	r3	11	9	7½×3	-425	5.023	17.08	-475	•325
	11+	11	8	7 ×3½	-425	4-940	16.80	•450	-300
	100	11	7	7 ×3	-400	4-498	15.29	•450	.300
-*		17	6	6½×3½	-400	4-420	15.03	-425	.275
	r5 r4	11	5	6½×3	.375	4.002	13.61	-425	-275
	4	11	4	6 ×3	-375	3.763	12.79	-400	-275
			3	5½×3	.350	3.332	11.33	-375	-250

BULB TEES. DIMENSIONS AND PROPERTIES.

Y	Referen	nce		Size	Stan		Area	Weight per foot-lbs.	Ra	dii
r2 r1 r2 r2 r2 95	Mark		А	×в	t	т	square	Weigh	r1°	r ²
X X	BSBT	6*	12	×61/2	-575	-650	12.498	42.49	-975	-325
A Centre of		5*	11	×6½	.550	-600	11.136	37.86	-900	-300
Tr3		4*	10	×6	.500	-550	9.295	31.60	*825	-275
	tr	3*	9	×5½	-475	.500	7.870	26.76	.750	.250
Tr3		2*	8	$\times 5\frac{1}{2}$	•450	•450	6.701	22.78	.675	-225
Ter4		1*	7	×5	-425	-425	5.592	19.01	.600	-200
19	DLBT	1 _A	23	6×21/2	•3125	•3125	1.759	5.98	.26	-14
Y	11	1в	2	×2	-2	.5	-941	3.50	.5	.1

The properties of British Standard Sections in above tables, where taken from the Engineering Standards Committee's Section Book, are published by permission of the Committee.

BULB ANGLES. DIMENSIONS AND PROPERTIES.

	Radii		Cent Grav		Momen Iner		Sect Mod		e oc	tadius ation hes	Refer	ence
r ³	r+	r ⁵	J	Р	About	About	About	About	Angle ∞ Degrees	Least Radius of Gyration Inches	Mai	rk
1.125	.675	-550	5:585	-778	191 · 443	8 · 355	29.843	2-593	41/2	-821	BSBA	20
1.050	.625	-525	5.188	.686	133 856	5.170	23.031	1.837	4	.715		19
-975	.575	-500	4.622	-693	98 · 228	4.828	18 · 265	1.720	5	.724		18
-950	.550	-475	4.361	-694	82.418	4.585	16.038	1.634	51/2	.729		17
-900	.550	.450	4.095	.695	68 - 383	4.336	13.941	1.546	6	.735		16
.850	-525	-425	3.798	.706	57 - 725	4.265	12.277	1.525	7	.740		14
.825	-500	-400	3.543	.712	47.072	4.031	10.561	1.446		-746	11	12
.825	.500	.400	3.698	.600	42.863	2.449	9.964	1.020		-627	11	11
-800	.475	- 400	3.419	.612	35 · 725	2.405	8.754	1.007	6	-632	11	9
.750	-450	.375	2.998	-737	30.914	3 · 730	7 · 725	1.350	10	.758	11	8
.750	-450	-375	3.141	.614	28.063	2.250	7.272	.943	7	-638	11	7
.700	.425	-350	2.723	-747	23 · 943	3 · 494	6.339	1.269	11½	.764	11	6
.700	-425	.350	2.865	.619	21.677	2.098	5.963	-881		-644	11	5
-675	-400	-325	2.597	-638	17:350	2.057	5.098	-871	10	.648	11	4
.650	.375		2:345	-649	13.032	1.909	4.132	.812	111/2	.653	11	3

BULB TEES. DIMENSIONS AND PROPERTIES.

Ra	dii	Dimension	tre of	Mome Ine	nts of rtia	Section	Moduli		ii of —Inches	Referen	
r3	r4	Dim	Centre Gravit	About	About	About xx	About	About xx	About	Mark	i
1.30	-475	.725	4.759	236 · 808	13.965	32.704	4.297	4.353	1.057	BSBT	6*
1.20	· 450	-675	4.290	177 . 041	12.690	26 - 324	3.505	3.983	1.067		5*
1.10	-400	.625	3.881	122 · 278	9.124	19.984	3.041	3.627	.991		4*
1.00	.375	.575	3.524	83 · 730	6.410	15.290	2.331	3.262	-902		3*
.90	.325	.500	3.018	55 - 377	5.628	11.115	2.046	2.875	.916		2*
-80	.300	-450	2.611	35 · 087	4.021	7.994	1.608	2.505	-848		1*
.3	.5	-344	-977	1.392	-403	-914	.322	.890	-479	DLBT	1 A
.26	·16	-25	.789	-493	.127	-407	.127	-724	.367	11	18

The properties of British Standard Sections in above tables, where taken from the Engineering Standards Committee's Section Book, are published by permission of the Committee.

NOTES ON I BEAMS AND COMPOUNDS.

Dimensions and Properties.—The dimensions and properties of I beams will be found on pages 34 and 35.

The dimensions and properties of compounds are given on the pages immediately preceding those containing the tabular loads for each type. The moment of inertia and section modulus have been calculated on the net section, that is both flanges holed for rivets, the size allowed in any particular case, being shown in the several tables.

Weight of Compounds.—The published weights per foot of compounds are inclusive of rivets. The pitch of rivets for spans in general demand has been taken as the basis of calculation in all cases.

Tabular Loads.—The loads given in the tables include the weights of the girders themselves, and are based on an extreme fibre stress of 7.5 tons per square inch, being one-fourth of the average breaking stress. They are also calculated on the assumption that the girders receive the usual side support as in building work. For other cases, such as concentrated, eccentric, or live loads, special calculation is necessary.

The resistance of the web to shear or buckling has been taken as the limiting factor in deciding the maximum load for each section. These loads should not be exceeded when sections are used at less spans than those for which such values are given.

Deflection.—Care should be taken in selecting beams and compounds that the deflection is not too great for the purpose for which they are to be employed. The zigzag lines in the tables indicate the generally accepted limit of span to depth (20 to 1) for girders supporting plastered ceilings at full tabular locats.

- Deflection Co-efficient.—For I beams and compounds of uniform section throughout their lengths, the deflection, in inches, for tabular loads is found by multiplying the square of the span, in feet, by the co-efficient which is given for each section. If the actual load is less than the tabular load, the deflection will be less in exactly the same proportion.
- Selection of I Beams and Compounds.—It will be observed that, in the tables of distributed loads on beams, the relative order of the British Standard Sections has been maintained; but in each compound table the girders are arranged in the order of their carrying capacity.

It will be further noted that, in most cases, several compounds of different depths and widths will meet the requirements as to loading. It should, however, be borne in mind that, where the depth is not restricted, a deeper and frequently a lighter section, carrying even a greater load than that required, may often be found more economical.

The table, in any case, affords a ready means of selection.

Riveting of Compounds.—In the tables of compounds, particulars are given of the diameter of rivets for each section, together with the minimum spans, at, and above, which the various pitches may be used. In cases of shorter spans than those for which loads are given, special calculations are necessary.

I BEAMS.

SAFE LOADS IN TONS UNIFORMLY DISTRIBUTED.

For dimensions and properties of sections see pages 34 and 35.

Size	Weight				SPA	NS IN	FEET			
Inches	per foot lbs.	2	4	6	8	10	12	14	16	18
24×7½	100					102	92	79	69	61
20×7½	89				94	83	69	59	52	46
18×7	75				78	64	53	45	40	35
16×6	62			73	56	45	38	32	28	25
15×6	59			62	52	42	35	30	26	23
15×5	42			47	35	28	24	20	18	16
14×6	57			59	47	38	31	27	24	21
14×6	46			43	39	31	26	22	19	17
12×6	54		58	52	39	31	26	22	19	17
12×6	44			40	33	26	22	19	16	14
12×5	39			36	27	22	18	15	13	12
12×5	32		32	30	23	18	15	13	11	10
10×8	70			53	43	34	28	24	21	19
10×6	42			35	26	21	17	15	13	11
10×5	35		37	28	21	17	14	12	10	9.8
10×5	30		30	24	18	14	12	10	9	8
9×7	58			42	32	25	21	18	16	14
*91/4×33/4	21'5	26		15	11	9.0	7.5	6.4	5.6	5.0
9×4	21			15	11	9	7.5	6:4	5.8	5
8×6	35			23	17	14	11	9.8	8.6	7.
8×5	28			18	14	11	9	8	7	6.5
8×4	25	27		16	12	9.4	7.8	6.7	5.8	5.5
8×4	18	19	17	11	8.7	7	5.8	5	4.3	
7×4	16	15	14	9.4	7	5.6	4.7	4	3.2	3.
6×5	25	22	18	12	9	7.3	6	5.5	4.2	
6×4½	20	20	14	9.6	7.2	5.8	4.8	4.1	3.6	
6×3	16	18	11	7:3	5'4	4.4	3.6	3.1	2.7	2.4
6×3	12.	14	8.4	5.6	4.5	3.4	2.8	2.4	2.1	1.8
*5×5 5×41/2	24	13	15 11'3	9.8	7:3		4.9	3.5	2.8	
5×4%	18	18	11	7.4	5.6		3.7	3.5	2.8	
5×3	11	9.8	6.8	4.5	3.4	2.7	2.3	1.9	1.7	
43/×13/	10		4.9		2.4		1.6	1.4		
434×154	6.2	7	3.2		1.8		1.2	1		
4×3	9.5	7.8	4.7		2.3		1.6	1.3		
4×1¾	8	6.6	3.3	2.5	1.6	1.3	1.1	.95		
4×1¾	5	4.6	2.3		1.1	.91	.76			
*3×3	8.2	5.3	3.5	2	1.6		1	.8		
3½×1½	6	4.4	2.5	1.5	1.1	.88	.73	.63		
3×1½	4	2.8	-1.4	- '92	- 6	.55	- 46	39		

T I BEAMS.

SAFE LOADS IN TONS UNIFORMLY DISTRIBUTED.

For dimensions and properties of sections see pages 14 and 10.

		32	ANS	IN F	ENT				Defastion	Waight per feet	Nex
20		24	26	28	30		30	40	Guefficient	lia.	Inohau
55	50	46	42	30	36	34			00078	100	
1.1	38	24		29	27					80	
	29		24						00104		
		19				14					
	19				1.6				00125	59	
4	18				915	9				4.2	
9			14	1.0							14 - 6
	14										14 - 6
	14	1.0									
3	12			9						1.5	
	9.0										
	9.3			0.0							
	15	14	18								
	0.0	B. B.	13							43	
8'4			0.4								
	0.0	(5							001875		
2			0.8								9×7
4.0		3.7	8.9								
4.0		27									9 : 4
	0.3								100334		
									100934		
4.7									009844		8 - 4
3.1									.00334		8 - 4
2.10	3.9										7 : 4
											0 - 4
									.008130		
									100875	24	
											3 - 41
									100875		0 1 4/
									.008.12		
											45-11
									*00896		
									.00448	9.5	4-3
									100409		4-11
									100409		4-11
									100835	8.5	3-3
									1000000	- 0	
									100426	4	8-11

DIMENSIONS OF COMPOUND GIRDERS.

For safe distributed loads see following pages.

	Reference	COMPOS	BED O	F		nsions
	Mark			Flats		
		Beams	No.	Size	Depth	Width
	B 0 1	24×7%×100	4	12×%	26%	12
	. 2	20×7%×89	4	12×%	22%	12
	. 3	24×7%×100	2	12×%	2514	12
	. 4	18×7 ×75	4	12×%	20%	12
	" 5	18×7 ×75	4	10×%	20%	10
-	6	20×7%×89	2	12×%	214	12
	. 7	16×6 ×62	4	10×%	18%	10
	8	15×6 ×59	4	10×%	17%	10
	. 9	18×7 ×75	2	12×%	19%	12
	" 10	16×6 ×62	4	10×%	18	10
,						
	" 11	18×7 ×75	2	10×%	19%	10
	12	15×6 ×59	4	10×%	17	10
	" 13	14×6 ×57	4	9×%	16%	9
	14	14×6 ×57	4	9×1/9	16	9
	" 15	12×6 ×54	4	9×%	14%	9
	. 16	16×6 ×62	2	10×%	17%	10
	17	16×6 ×62	2	9×%	1714	9
	18	12×6 ×54	4	9×1/4	14	9
	19	10×6 ×42	4	9×%	12%	9
	20	15×5 ×42	2	$9 \times \%$	16%	9
	. 21	14×6 ×46	2	9×%	15%	9
	. 22	10×6 ×42	4	9×%	12	9
	. 23	15×5 ×42	2	9×%	16	9
	. 24	14×6 ×46	2	9×1/4	15	9
	25	12×6 ×44	2	9×%	1814	9
	26	12×6 ×44	2	9×1/4	18	9
	27	10×6 ×42	2	9×%	111/4	9
	. 28	10×6 ×42	2	9×36	11	9

PROPERTIES OF COMPOUND GIRDERS.

For safe distributed loads see following pages.

P	ROPERTIES	OF SECTION	4	Dia- meter of	iz	mum S feet fo takes (if.	Rafer
Area sq. inches	Weight per foot-lbs.	Moment of Inertia	Section Modulus	Rivets	3"	4"	6"	Mari
59'40	205	6811	514'0	7/4	24	30		BC
56'17	195	4632	411'7	7/4	20	30		
44'40	153	4495	356.0	7/4		16	24	
52'06	181	3592	350'4	7/4	22	30		
47.06	163	3128	305.1	7a	18	26		
41'17	142	2976	280.1	Via.		14	24	
43'23	151	2326	251'4	7/14	16	26		
42'35	148	2049	234'1	7/4	18	26		11
37.06	129	2225	231'1	7/4		14	24	11
38.23	183	1948	216.4	74	14	20		1
34.56	119.5	2008	208.6	7/4		12	20	. 1
37:35	130	1711	201.3	7/10	16	20		1
39.26	136.2	1640	198.7	1/4	16	22		1
34.76	121.5	1373	171'6	7/4	14	20		1
38.38	133	1234	170.3	34	20	30		1
30.73	107.5	1420	164.6	76		10	20	1
29'48	102.2	1334	154'6	74		10	18	1
33.88	118	1026	146'6	1/4	16	26		1
34'85	121	838	134.0	3/4	18	24		. 1
23.60	82.2	999	123.0	%		12	22	2
24.78	86.2	924	121.1	76		14	18	5
30.35	106	684	114.0	3%	16	20		. 2
21'35	74	866	108.3	1/4		10	18	5
22.23	78.5	809	107.8	Tu		12	14	. 5
24.19	84.2	688	108.8	34		12	22	5
21'94	76-5	800	92.2	14		10	18	- 5
23.40	82.2	476	84.6	34		12	22	11.5
21'35	74.5	413	75.0	1 %		10	18	- 9

COMPOUND GIRDERS.

For dimensions and properties of sections see preceding pages,

Refer-					SF	ANS I	N FE	ET				
Mark	8	10	12	14	16	18	20	22	24	26	28	30
									100	00	00	0.0
BO 1									102	99	92	86
" 2								94	86	79	74	69
0 3					102	99	89	81	74	69	64	51
. 4								78	73	67	62	51
. 5						78	76	69	64	59	55	5
. 6				94	88	78	70	64	58	54	50	4'
11 7					73	70	68	57	52	48	45	45
. 8						62	59	58	4.9	45	42	3
. 9				78	72	64	58	52	48	44	41	31
11 10				78	68	60	54	49	45	42	39	3
. 11			78	75	65	58	52	47	43	40	37	3
112					62	56	50	46	42	39	36	3
. 13					59	55	50	4.5	41	38	35	3
. 14				59	54	48	43	39	36	33	31	28
. 15							42	38	35	32	30	2
16		78	69	59	51	46	41	37	34	31	29	2'
. 17		78	64	55	48	48	39	35	32	30	28	20
. 18					46	41	37	88	30	28	26	
. 19						35	34	81	28	26		
. 20			47	44	38	84	31	28	26	24	22	20
. 21				4.8	38	34	30	27	25	23	21	20
. 22					35	32	29	26	24			
28		47	4.5	39	34	30	27	25	23	21	19	11
. 24			4.8	39	34	30	27	25	23	21	19	1.0
n 25			40	37	32	29	26	24	22	20		
26		40	38	33	29	26	23	21	19	18		
u 27			35	30	26	28	21	19	18			
× 28		85	31	27	23	21	19	17				

T COMPOUND GIRDERS.

SAFE LOAD IN TONS UNIFORMLY DISTRIBUTED.

For dimensions and properties of sections see preceding pages.

			SP	ANS I	N FEE	T				Deflection	Refer
32	34	36	38	40	42	4.4	46	48	50	Coefficient	Mari
80	75	71	67	64	61	58	55	53		.000708	BC
64	60	57	54	51	49	47	4.5			.000833	
55	52	49	47	45	43	41	39		36	000742	
55	52	49	46	44	42					000915	
48	45	42	40	38	36					'000915	
44	41	39	37	35	33	32				000882	
39	37	35	33							001014	
36	34	33								001072	
36	34	32	30	29						'000974	
34	32	30								001042	. 1
33	31	29	27							000974	
31	30									'001103	
31	29									'001137	
27										001171	. 1
										'001293	1
25	24									.001087	
24	23									'001087	
										'00134	
										'0015	
19										.001153	2
										001229	2
										001562	2
17										.001171	. 2
										'00125	. 2
										001415	5
										'001443	. 5
										.001999	11 5
										001704	11 5

DIMENSIONS OF COMPOUND GIRDERS.

For safe distributed loads see following pages.

	Befor	OOMPOSI	ED OF		Centres		meione ochre
	Mark			Flate	Beams		
	mar.	Beams	No.	Size	inehas	Depth	Width
	80 29	24 - 7% - 100	6	18 : %	Ð		18
		24 - 7% - 100	6	16×5	8	27%	16
			6	18 -	0	28%	18
		24 - 7% - 100	4	18 = 1	0	201	18
			6	16	8	28%	16
		24×75×100	4	16×	8	200	16
		18-7 -75	6	18-%	9	21%	18
-			4	18 × %	0		18
		20 - 7 - 89	- 7	16 1	8		16
		24 - 7% - 100	ů.	18×5	0		18
		24 - 7 - 100	2	16-	8		16
	- 40		i i	18-	9		18
						20%	
	- 41	18 - 7 - 75	4	1.6 = %	8	20%	1.6
attenue to the	- 42	90×75×89	2	1.8 × %	9	21%	18
	. 48	16 × 6 × 62	10	1.6 = 16	8	1.9	1.6
	- 44	20×75×89	2	16×%	.6	2114	1.6
	- 4.0	15×6 ×59	- 6	1.6 : 14	.0	1.83	1.6
el	. 60	16×6 ×62	6	14×%		19	1.6
100 100 w	- 87	1.6 × 6 × 62	4	18×%	8.	1.8%	1.6
	- 5.0	16×6 ×62	65	18 - 14	816	1.0	1.8
	- 49	18×7 ×75	2	1.8 × %	9		1.6
		10×6 ×62	4	1.4 × %		1.00%	1.6
	. 51	18×7 ×75	2	16×5	8	1.0%	1.6
		1.0 - 6 - 62	4	14 - 14		1.8	1.6
		14 - 6 - 46	4	14 - 5	9	1.6%	14
	- 54	14 - 6 - 46	4		6%		1.8
		10 × 6 × 62	2	16-	8		1.6
		16 - 6 - 62	2	14 - %	7	17%	1.6
		14 - 6 - 46	i i	14		1.6	14
		1.6 - 6 - 62	ů.		614		
Lil-Lill		15 - 5 - 42	Ä		6		19
	80	15×5 ×62	ě.	14-5		1.6%	1.6
	- 61	14-6 -66					1.4
	- 62	12 - 5 - 82	2	14 = %	7	1.0%	18
	- 68				6%	14	18
	. 64	15-5 -68	2		01,	1.5	1.0
	- 65	10×5 ×80	2 4		6	1.6	1.8
				18×%	50%	12	
	- 66	10×5 ×80	4	1.2× %	6	12	1.9
	- 87	12 - 5 - 52	2	18:5	(0)	184	1.8
	- 68	12-5 -82	2	12:16	15	1.8	1.2
	- 70	10 - 5 - 80	2		10%	3.5	1.8
		10×5 ×30	2	12 - %	.6	11	1.2

PROPERTIES OF COMPOUND GIRDERS.

For safe distributed loads on following pages.

	PROPERTIES		Discount of Rowsta		a feet fi token	10	Xedar ross Hack	
Area sq. inches	Weight per fort-like	Monant of Inertia	Hodnins	Inches	r	4"		No.
196 30	435 5	14941	1078 B					800
118 80	410	1.0004	986.3			24		
119 04	418.5	1.008/7	864.6					
108 80		11339	847.5					
112-24	388	003497	788 8					
98.80	840	10433	787.3					
111'09	365.5	8045	739 7			218		
97.34	307	7544	872.7					
93 34			800.4		10			
81 90	280 5	7800				1.4	14	
78 80	979	7473	591.9			14	14	
80'12	309				1.0	99		
84 12	393		519.7		146			
74 04	204.2	0100	480.0				80	1 - 1
84 46	200 5	4000	476 6				1.00	- 1
72 04	200	4000	460° 0		10			- 1
82.70	287	3993	443.0		16	19	1.0	- 1
								- 1
70'46	273	4008	438 3		14	30		- 4
70 48	200		433.3		1.6	30	30	- 4
70 48	265	38637	400.8				1.6	- 4
40.43	330.2	3798	394 0	16		13	1.0	1 - 4
71.44	249'5	30.04	383.0		12	1.08	24	
64.13	993	86.83	8721				16	
04.40	22T 5	3038	300' 4		- 13		1.0	
63.06	217	20.07	BOTT			146	34	
96.04	211	2091	380 B		9	1.2	1.8	
00.40	194	2494	380.7				16	
53 96	187.5	9001	340.0				1.4	
80.00	191.9	21.56				1.4		
80 71	187.5	2234					1.0	
48 70	169.5	2079	244'0		13	1.0		
43.30	146	1094	2081.4				1.8	
44 00	155 5	1580	207.3			13	14	
44.03	157.5	1,046	190 3			15	10	
40'08	144.0	1354	180.0		7	10	14	
36.70	197.5	1979	171.5			- 10	14	
43.04	150 5	943		1 2 1		13	10	
41'04	145'5	883	147'0	1 2 1	12	1.0		
80.04	125.0	949	140.3	1.2	15	14	24	
30'82	107.5	7.08	191 3		1.0	17	14	
20.04	108	Detet	100-8	1 2 1		15	18	
	A STATE OF		A 100 M			0.00	2.00	

COMPOUND GIRDERS.

SAFE LOAD IN TONS UNIFORMLY DISTRIBUTED.

For dimensions and properties of sections see preceding pages.

Refer- ence					8	PANS	IN F	EET				
Mark	8	10	12	14	16	18	20	22	24	26	28	30
BC29										204	192	180
,, 30									204	190	176	164
31								188	180	166	154	144
. 32							204	193	177	163	151	141
33							188	179	164	152	141	131
. 34						204	197	179	164	151	141	131
11 35								156	154	142	132	123
36					188	187	168	153	140	129	120	112
. 3.7					188	173	156	142	130	120	111	104
38				204	194	173	156	142	130	120	111	104
39				204	185	164	148	135	123	114	106	99
11 40						156	141	128	118	109	101	94
. 41					156	144	130	118	108	100	93	87
, 42			188	173	152	135	121	110	101	93	87	81
43				.,	146	132	119	108	99	92	85	79
. 44			188	164	144	128	115	105	96	89	82	77
11 45					124	123	111	101	92	85	79	74
, 46				146	134	119	107	97	89	82	76	71
11 47				146	132	117	106	96	88	81	75	70
. 48	253	202	168	144	126	112	101	92	84	78	72	67
11 49			156	141	123	110	99	90	82	76	71	66
11 50			146	136	119	106	96	87	80	74	68	64
, 51		156	155	133	116	103	93	85	78	72	66	62
, 52	210	168	140	120	105	93	84	76	70	65	60	56
1 53			110	120	86	85	77	70	64	59	55	51
11 54		145	121	104	91	81	72	66	60	56	52	48
11 55	146	145	121	103	90	80	72	66	60	55	51	48
, 56	146	135	112	96	84	75						
1 57	140			86	83	74	67	61	56	52	48	45
, 58		130	108	93	81	72	65	61 59	56	52	48	45
1 59			94	87	76	68	61	56	54 51	50	46	43 41
. 60		94	87	74	65	58	52	47	43	40	37	35
" 61 " 62		96	86	74	65	58	52	4.7	43	40	37	35
63	113	90	75	69	60 56	53	48	44	40	37	34	
11 64	94	86	71	61	54	50 48	45 43	41	38	35	32	30
65		79	65	58	49	48	39	39	36	33	31	29
66			60	58								
67			60	51	46 45	41	37	33	31		00	
68	64	61	51	43	38	34	30	27	30 25	28 23	26	
69		51	43	37	32	29	26	23				
70	60	49	41	35	31	27	24	22				
		10		00	.51	111	27	42				

COMPOUND GIRDERS.

SAFE LOAD IN TONS UNIFORMLY DISTRIBUTED.

For dimensions and properties of sections see preceding pages.

				Deflection	Refer						
32	34	36	38	40	42	44	46	48	50	Coefficient	Mark
168 154 135	158 145 127	150 137 120	142 130 114	135 123 108	128 117 103	122 112 98	117 107 94	112 103 90	108	'000676 '000676 '00079	B 0 29
132 123	125 116	118 109	112 103	106	101	96	92 86	88 82	85	'000708 '00079	· 33
123 115	116 108	109	97	98	94	90	86	82	79	000708	11 34
105 97 97	99 91 91	93 86 86	88 82 82	84 78 78	80 74 74	76 71 71	73 68 68	65	62	'000834 '000834 '000742	" 3'
93	87 83	82 78	78	74	70 67	67	64	61	59	000742	· 31
81 76	76 71	72 67	68 64	65 61	62 58					'000915 '000882	. 4
74	70 68	66	63	57	55					'000987 '000882	4
69	65	62								'001042	. 4
67 66 63	63 62 59	59 59 56	56 56							000987 001014 000987	4
62	58	55	52 50							000974	. 4
58	55	52	49							000974	5
53 48	49	47								.001137	5
45	43									001137	11 5
42	40									.001087	,, 5
42	38									001171	11 5
38	36									001103	11 5
33										001153	11 6
										'00134	11 6
27										00125	6
										001562	6
**										001562	·· 6
										001415	11 6
										001704	" 6
										001704	11 6

DIMENSIONS OF COMPOUND GIRDERS.

For safe distributed loads see following pages.

	Refer-	COMPOSE	D OF		Centres	Dimen in in	
	ence Mark		, 1	Plats	Beams		
	WOLK	Beams	No.	Size	inches	Depth	Width
	BC 71	24×7½×100	6	24×5%	7%	27%	24
	. 72	24×7½×100	6	24×1/6	7%	27	24
	, 73	20×7½×89	6	24×5%	7%	23%	24
	. 74	24×7½×100	4	24×5%	7%	261/4	24
	. 75	24×7½×100	4	$24\!\times\! 1\!\!/_{\!\! 2}$	7%	26	24
	. 76	20×7½×89	6	24×1/2	7%	23	24
	. 77	18×7 ×75	6	24×5/8	7%	21%	24
	. 78	24×7½×100	2	24×34	77/8	251/2	24
	. 79	20×7½×89	4	24×5/8	77/8	221/2	24
	11 80	24×7½×100	2	24×5/8	77/8	251/4	24
	. 81	18×7 ×75	6	24×1/2	7%	21	24
	. 82	20×7½×89	4	24×1/2	7%	22	24
	. 83	18×7 ×75	4	24×5%	7%	201/2	24
- O	. 84	20×71/6×89	2	24×34	77/8	211/2	24
	. 85	16×6 ×62	6	20×5/8	61/2	19%	20
P	86	18×7 ×75	4	24×1/2	7%	20	24
YII Y	87	20×7½×89	2	24×%	7%	2114	24
10 10	. 88	16×6 ×62	6	20×1/2	61/2	19	20
	. 89	18×7 ×75	2	24×%	7%	19%	24
Θ. Θ.	. 90	18×7 ×75	2	24×5/8	77/8	1914	24
0 0	. 91	16×6 ×62	4	20×5/8	61/2	181/2	20
o	. 92	16×6 ×62	4	20×1/2	61/2	18	20
	, 93	14×6 ×46	4	20×5%	61/2	161/2	20
10 10-	, 94	15×5 ×42	4	18×%	6	17%	18
1813 113	" 95	16×6 ×62	2	20×5/s	61/2	17%	20
	,, 96	14×6 ×46	4	20×½	61/2	16	20
	. 97	15×5 ×42	4	18×½	6	17	18
	. 98	16×6 ×62	2	20×1/2	61/2	17	20
	. 99	14×6 ×46	2	20×5%	61/2	151/4	20
	100	15×5 ×42	2	18×5%	6	161/4	18
	101	14×6 ×46	2	20×½	61/2	15	20
	102	15×5 ×42	2	18×1/2	6	16	18

PROPERTIES OF COMPOUND GIRDERS.

For safe distributed loads see following pages.

Refer	or	mum S n feet fo tohes (iı	Dia- meter of Rivets		PROPERTIES OF SECTION Area Weight per Moment of Section						
Mari	6"	4"	3′′	inches	Section Modulus	Moment of Inertia	Weight per foot—lbs.	Area sq. inches				
B07		28	24	7/H	1479'3	20526	615'5	178'20				
" 7		20		7/16	1299'6	17545	554	160'20				
11 7		28	20	7/a	1183'2	14051	582'5	168'51				
" 7	28	18		7/4	1180.8	15647	510.5	148'20				
11 7	22	16		₹/6	1063.1	13821	469.5	136.50				
. 7		22	18	7/4	1032.7	11877	521	150.51				
11 7		28	20	7/4	1007.1	10953	540'5	156'18				
" 7	16	14		7/4	946.1	12063	428.5	124'20				
" 7	28	18	16	7/8	933.7	10504	480.5	138'51				
" 8	16	14		7/m	887.9	11210	408.5	118.20				
. 8		22	18	7/4	869.8	9133	479	138'18				
. 8	22	14		7/4	835.6	9191	436'5	126.51				
. 8	28	16		7/8	779.6	7991	438.5	126'18				
11 8	18	12		7/4	738.3	7937	395.5	114'51				
8		22	16	7/a	717.4	7085	450.5	129.69				
8	22	14		7/4	690.3	6903	394.5	114.18				
11 8	14	12		7/8	690	7332	375.5	108.21				
. 8		20	14	7/4	618	5872	399.5	114'69				
. 8	18	12		7/4	602	5870	353.5	102'18				
,, 9	16	10		3/4	558.1	5372	333.2	96.18				
. 9	22	16	12	74	552.9	5115	365.5	104.69				
11 9	18	14	10	7/4	488.6	4398	328.5	94.69				
11 9	22	16		3/8	443.6	3660	314.2	90.28				
" 9	28	20	14	34	422.7	3698	285	82.05				
. 9	14	8		7/4	393.6	3395	277.5	79.69				
., 9	18	14		3%	386.4	3091	280.5	80.28				
11 9	22	16	12	3/4	366.9	3119	254.5	73.05				
" 9	12	8		7/4	362.3	3080	260.5	74.69				
" 8	14	10		76	302	2303	229.5	65'59				
10	16	10		%	284.4	2311	206.2	59.55				
10	12	10		7/a.	274.3	2057	212.5	60.29				
10	14	8		34	257.2	2058	191	55'05				

COMPOUND GIRDERS. SAFE LOAD IN TONS UNIFORMLY DISTRIBUTED.

For dimensions and properties of sections see preceding pages.

Reference					SP	ANS I	N FE	ET				
Mark	8	10	12	14	16	18	20	22	24	26	28	30
80 71									200	005	001	041
									306	285	264	24
11 72							306	295	271	250	232	21'
11 73							282	269	247	228	211	19'
11 74						306	295	268	246	227	211	19'
11 75					306	295	266	242	222	205	190	17'
. 76						282	258	235	215	199	184	175
1 77	7						234	229	210	194	180	16
11 78	3			306	296	263	237	215	197	182	169	15
11 78					282	259	233	212	195	180	167	15
1 80				306	277	247	222	202	185	171	159	14
. 81						234	218	198	181	167	155	14
. 82				282	261	232	209	190	174	161	149	13
11 88	3				234	217	195	177	162	150	139	13
11 84			282	264	231	205	185	168	154	142	132	12
. 85					219	199	179	163	150	138	128	12
. 86	3			234	216	192	173	157	144	133	123	11
11 8			282	246	216	192	173	157	144	133	123	11
. 88				219	193	172	155	141	129	119	110	10
. 88			234	215	188	167	151	137	125	116	108	10
1 90		234	233	199	174	156	140	127	116	107	100	9
, 91			219	197	173	154	138	126	115	106	99	9
. 92		219	204	175	153	136	122	111	102	94	87	8
. 98					129	123	111	101	92	85	79	7
11 94				141	132	117	106	96	88	81	75	7
1 95		197	164	141	123	109	98	90	82	76	70	6
	1	1										
u 96	3			129	121	107	97	88	81	74	69	6
1 9	7	1	141	131	115	102	92	83	76.	71	66	6
11 98		181	151	129	113	101	91	82	75	70	65	6
11 98		129	126	108	94	84	75	69	63	58	54	5
100		141	119	102	89	79	71	65	59	55	51	4
101		129	114	98	86	76	69	62	57	53	49	4
11 102		128	107	92	80	71	64	59	54	50	46	4
									1	-	1	
											1	

SAFE LOAD IN TONS UNIFORMLY DISTRIBUTED. COMPOUND GIRDERS.

For dimensions and properties of sections see preceding pages.

			SP	ANS I	N FE	ET				Deflection	Refer
32	34	36	38	40	42	44	46	48	50	Coefficient	Mari
231	218	206	195	185	176	168	161	154	148	.000676	B07
203	191	181	171	162	155	148	141	135	130	.000695	. 7
185	174	164	155	148	141	134	128	123		.00079	. 7
185	174	164	155	148	141	134	128	123	118	.000708	. 7
166	156	148	140	133	127	121	116	111	106	'000722	. 7
161	152	143	136	129	123	117	112			.000816	. 7
157	148	140	133	126	120	114				.000862	. 7
148	139	131	124	118	113	108	103	99	95	.000736	. 7
146	137	130	123	117	111	106	102			.000834	. 7
139	131	123	117	111	106	101	97.	93	89	'000742	11 8
136	128	121	114	109	104					.000893	8
131	123	116	110	105	100	95				.000853	8
122	115	108	103	98	93					.000915	. 8
115	109	103	97	92	88	84				.000873	8
112	106	100	94	90						.00092	. 8
108	102	96	91	86						.000938	. 8
108	102	96	91	86	82					'000882	8
97	91	86	81							.000987	. 8
94	89	84	79	75						'000962	8
87	82	77	73							000974	9
86	81	77	73							.001014	. 9
76	72	68								001042	9
69	65									001137	9
66	62	59								.001072	,, 9
62	58									001087	. 9
60								,		.001171	9
57	54									.001103	. 9
57	53						**			.001103	. 9
										001229	. 9
44										.001153	100
										00125	10
40											

DIMENSIONS OF COMPOUND GIRDERS.

For safe distributed loads see following pages.

	Refer-	OOMPOSED			Dimen-	Dimer in in	
	Mark	Channels		Flats	D	Depth	Width
			No.	Size	inches	Береп	Widel
	00 103	15×4 ×41°94	4	14×5%	51/2	171/2	14
	. 104	15×4 ×41.94	4	14×½	5%	17	14
	, 105	12×3½×26·1	4	14×%	61/2	141/2	14
	, 106	15×4 ×41 94	2	14×5%	51/2	161/4	14
TF	. 107	12×3½×26·1	4	14×½	6½	14	14
. 0 .,	108	15×4 ×41.94	2	14×½	51/2	16	14
	. 109	10×3½×23.55	4	14×½	61/2	12	14
	. 110	10×3½×23.55	4	12×½	41/2	12	12
1	111	12×3½×26·1	2	14×%	61/2	131/4	14
	" 112	9×3 ×19·37	4	$12\!\times\!{}^{1\!\!}/_{\!\!2}$	51/2	11	12
P	" 113	10×3½×23·55	2	14×%	61/2	111/4	14
	" 114	12×3½×26·1	2	$12\!\times\!{}^{1\!\!/}_{2}$	41/2	13	12
-	" 115	9×3 ×19·37	4	10×½	31/2	11	10
,	" 116	10×3½×23.55	2	$12\!\times\!{}^{1\!\!/}_{2}$	41/2	11	12
	",117	9×3 ×19·37	2	12×5/8	51/2	101/4	12
	. 118	9×3 ×19·37	2	10×½	81/2	10	10

PROPERTIES OF COMPOUND GIRDERS.

For safe distributed loads see following pages.

1		OF SECTIO	196	Dia- meter of		mum I s feet fi felses (le.	Kefer
Area sq. inches	Weight per foot-the	Moment of Inertia	Section Medulus	Riveta	F.	4"	4.	Mark
50.67	2091	2639	301.0			18	24	
			257.3			16		
			224'4		1.6			
42.17	147.5		191'7			8	14	
43.35			187-4					
						8		
41'85	147.5		153.3					
	184	799						
82.85	115.2		132.9		в		18	
35.30		626	110.0					
	110'5	606			8			
27.35	95.2	669	102.9			В		
31.30	110 5		95'4			14		
25'85	92"	455	82.7				14	
	93.2	405	79-1		8			
		294	58.8					

COMPOUND GIRDERS.

For dimensions and properties of sections see preceding pages.

Refer- ence					SP	ANS I	N FEE	T				
Mark	8	10	12	14	16	18	20	22	24	26	28	30
				100				-			-	-
00 103		129	126	108	94	84	75	68	63	58	54	50
11 104		129	107	92	80	71	64	58	53	49	46	43
11 105				72	70	62	56	51	47	43	- 40	
11 106	120	96	80	68	60	53	48	44	40	37	34	32
11 107	*:		71	67	59	52	47	43	39	36	33	
11 108	106	85	71	61	53	47	43	39	36	33	30	28
11 109			63	55	48	43	38	35	32			
" 110		63	55	47	42	37	33	30	28			
11 111	71	66	55	47	42	37	33	30	28	26		
" 112	59	56	47	41	36	32	28	26				
, 113	63	54	45	39	34	30	27	24				
. 114	64	51	43	37	32	29	26	23	21	20		
115	59	48	40	34	30	27	24	22				
. 116	52	41	35	30	26	23	21	19				
. 117	49	40	33	28	25	22	20					
. 118	36	29	25	21	18	16	14					

TT	COMPOUND GIRDERS.	1 [
1	SAFE LOAD IN TONS UNIFORMLY DISTRIBUTED.	
	For dimensions and properties of sections see preceding pages	

For dimensions and properties of sections see preceding pages.

	SPANS IN FEET								Beflection	Refer-	
32	34	36	38	40	4.2	44	46	48	50	Coefficient	Mark
47	44									'001071	0010
40	38										00 10
										'001103	
30										'001293	" 10
										'001154	
										.001339	10
26										001172	
										'001563	. 10
										'001563	. 11
										001415	. 11
										'001705	. 11
										.001666	. 113
										'001442	· 11
										'001705	. 11
										'001705	. 116
										001829	· 11
										001875	. 118

STANCHIONS AND STRUTS.

- Crippling Loads for various values of $\frac{t}{r}$.—A table shewing the crippling loads, in tons per square inch, on stanchions and struts, for various values of $\frac{t}{r}$ up to 200, is given on page 69.
- Tabular Loads.—The safe loads given in the tables are based on the crippling values above referred to, for the least radius of gyration for each section; the factor of safety adopted being 4. They are for stanchions or struts the ends of which may be considered fixed, and only apply to static and concentric loading.

In preparing the table of safe loads on latticed channel stanchions, it has been assumed that the channels are efficiently connected together by lattice bars, or batten plates, so that they act as a unit, thus eliminating all possibility of failure by local flexure of either channel.

- Effective length.—In stanchions or struts having intermediate steelwork connections, so arranged as to prevent side flexure where these connections occur, the effect is such that the load transmitted may be considered as acting on the shortened length, and the section determined accordingly.
- Limiting lengths for Tabular Loads.—The maximum lengths for which loads are given are based on the lesser of the two values:—
 - I.—160 times the least radius of gyration.
 - II.-40 times the least width of the section.
- Selection of Stanchions.—It will be observed that, in each stanchion table, the sections are arranged in order of their carrying capacity, thus affording a ready means of selection according to requirements.

Tabular Weights of Stanchions.—The weight given in the table, for each section, is for the shaft, inclusive of rivets; the pitch of rivets for lengths, in general demand, being taken as the basis for calculation in all cases.

The weights of base, cap and fittings are not included, as they depend on the loads and nature of structure.

Properties of Sections.—The radii of gyration and area are given for each section, from which the maximum or minimum moment of inertia may be found, by multiplying the square of the corresponding radius of gyration by the area. These values will be of service when calculating additional stresses due to wind-pressure, eccentric loading, or other forces producing bending.

Condition of Ends. Under some conditions it is necessary to consider either one or both ends rounded.

In the case of one end fixed, and the other rounded, the allowable load is found by referring in the table to a length of 1% times the actual length; whilst with both ends rounded the reference length should be 1% times the actual length.

EXAMPLE.—For a stanchion or strut 9 feet long, with one end fixed and the other rounded, reference should be made in the table of safe londs to a length of 12 feet; ov, if both ends are rounded, to a length of 13 feet, when the respective safe londs will be found.

Types of Bases, Caps, Joints, and Girder Connections to Stanchions.—Various types of bases, caps, joints, and girder connections to stanchions are illustrated. In all of these, due consideration has been given to ensure efficiency and simplicity of design.

Beam Grillages for Stanchions.—For stanchions carrying heavy loads, the necessity for deep excavations and large masses of masonry in foundations, may be considerably reduced by the adoption of suitable grillages, combined with stanchion bases, carefully designed to transmit the load.

These are generally obtained by placing on a layer of concrete, one, two, or three tiers of I beams, according to the load to be distributed, and the bearing capacity of the ground. The beams in each tier should be kept sufficiently far apart to allow of the space being thoroughly filled with concrete. Cast iron separators, with through bolts, are generally employed to effect this. In cases where two or three tiers are found necessary, they should be efficiently secured to each other, and the stanchion base to the whole.

The following diagram illustrates a grillage, consisting of two tiers of beams:—

The overall dimensions of the lowest tier are determined by the bearing capacity of the ground, and to find the section of beams required in any tier:—

Let W = total load in tons supported by the stanchion.

n = number of beams forming the tier.

w = load in tons supported by one beam $= \frac{W}{n}$.

L = length in feet of each beam.

I = length in feet, at central portion of beam, on which the load above it is distributed.

M = maximum bending moment in foot tons, in one beam (this occurs at the centre of length L).

then
$$M = \left(\frac{w}{2} \times \frac{L}{4}\right) - \left(\frac{w}{2} \times \frac{l}{4}\right) = \frac{w}{8}(L-l)$$
.

The above bending moment is equivalent to that produced in a beam supported at both ends, and carrying a distributed load "w" over a span = L - l. Therefore, on reference to this span in the tables of safe loads, given on pages 46 and 47, the size of beam to carry the load w may be obtained direct.

It should be observed, however, that for reasons given on page 44, under the heading "tabular load," the load w should not exceed the maximum load, given in the table, for the section determined upon.

Example.—A grillage has to be provided for a stanchion, on ground having a bearing capacity of 2 tons per square foot, the total load to be supported being 100 tons; assumed size of stanchion base, 2 feet square.

For above load and bearing capacity of ground, two tiers will suffice, and as the area required for the foundation is 50 square feet, the lower tier will require to be about 7 feet square; therefore, in this tier, nine beams can be placed side by side at 10 inches centres, the load w on each being about 424 or 111 tons.

The bending moment produced in each beam is equivalent to this load uniformly distributed over a span of 1 - i - 7 - 2 = b feet, and referring to table of safe loads on page 46, it is found that B.S.B. 11, 7 + 4 = 10 liss, per foot, is a suitable section for the loans tion.

The upper tier will be 2 fact wide, i.e., the width of the standard base. In this width three beams can be placed side by side at 9 inches centres, the load we say the being about $\frac{3}{2} = .55$; tous, which is equivalent to this load uniformly distributed over a span of 1 - 1 = 7 - 2 = 5 feet, and an reference to the table of soft loads as before, it will be found that D.L.B. 17.a, 10 = 5 = .25 flux, per fact, is a suitable section for this too.

The above analysis involves the usual fundamental assumptions portaining to flexure.

The exact conditions involved in these assumptions are not usually obtained in grillage practice, so that results obtained by the above analysis about he careefully interpreted.

Our own practice in designing grillages is on the lines of the above analysis.

Where the loads transmitted are very large, the grillege requires special designing, and in such source, particular attention should be given to the auxiliar of the girders with reference to their ability to sarry the loads involved without origining of the wolse.

TABLE OF CRIPPLING LOADS

IN TORS FER SQUARE INCH.

4	Gripp- ling Load	4	Gripp- ling Load		Gripp- ling Load		Gripp- ling Load		Gripp- ling Load
0.00-0.0	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 46 47 40 40	N 0 3 3 5 5						
9 11 11 11	N 80 6 M 10 10 10 10 10 10 10 10 10		00 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	800000					
10 10 10 10 10 10 10 10 10 10 10 10 10 1				8 8 8 8 8					1 10 1 00 1 01 1 11
30 31 30 31 31 31 31		91223		100 101 100 105 108	17-10 17-06 16-90 16-60	90 41 45 45 94		170 171 176 135 138	
20 20 20 20 20 20 20 20 20 20 20 20 20 2	23-48 23-44 23-40 23-36 23-36		20-90 20-81 20-73 20-63 20-54		10:55 10:40 10:17 10:14 10:01	140 146 147 140 140		126 126 127 128 129	
30 30 30 30 30		70 71 70 73 74	30 - 64 30 - 54 30 - 54 30 - 14 30 - 14	110 111 122 113 114	15-98 15-75 15-62 15-49 15-56	101 101 108 108 108		140 141 160 141	
NAME OF STREET			10-16 10-16 10-16 10-16 10-64 10-58		15-15 15-10 14-97 14-94 14-73	106 106 107 158 158	10° 62 10° 73 10° 64 10° 10 10° 86	135 36 37 36 38	
40 41 41 45 48		10010	10+44 10+34 10+24 10+14 10+60	100	14 50 14 47 14 50 14 63 14 11	100 101 100 103 104			7-45

If found as follows to:

For one and fixed and the other recorded. Multiply the actual $\frac{1}{p}$ by V_{2n} and the required Crippling Load, will be that given in the table for this value.

For both crubs rounded,-Multiply the actual is by Pis, and the required Crippling Load will be that given in the table for this value.

I BEAMS AS STANCHIONS.

DIMENSIONS AND PROPERTIES.

	Reference	Size	Area	Weight		f Gyration inches
	Mark	inches	sq. inches	per foot lbs.	About	About
	IS 1	04	29.40	100	9.50	1.20
		24×7½				
	" 2	20×7½	26.17	89	7.99	1.54
	" 3	10×8	20.6	70	4.09	1.86
	11 4	18×7	22.06	75	7.21	1.46
	11 5	9×7	17.06	58	3.66	1.64
	6	16×6	18.23	62	6.31	1.21
~	" 7	15×6	17.35	59	6.02	1.27
	11 8	14×6	16.76	57	5.63	1.29
	9	12×6	15.88	54	4.86	1.33
	" 10	14×6	13.23	46	5.70	1.26
x x	11	12×6	12.94	44	4.93	1.31
	. 12	10×6	12.35	42	4.13	1.36
	13	8×6	10.59	35	3.27	1.32
-	14	15×5	12.35	42	5.88	.978
	11 15	12×5	11.47	39	4.77	1.03
	16	10×5	10.59	35	4.03	1.07
	" 17	12×5	9.41	32	4.83	1.01
	. 18	10×5	8.82	30	4.06	1.05
	19	8×5	8.24	28	3.29	1.11
	, 20	6×5	7:35	25	2.43	1.11
	. 21	. 6×4½	5.88	20	2.42	959
	. 22	5×4%	5.59	18	2.07	1.03
	. 23	9×4	6.176	21	3.62	.824
	. 24	8×4	5.294	18	3.24	.822
	, 25	7×4	4.706	16	2.88	.851

I BEAMS AS STANCHIONS.

SAFE LOADS IN TONS.

ENDS FIXED.

			SAFE	LGADE	IN TO	NB FOR			
			Li	RETURN	IN F	EFT			Referens Mark
6	8		12	1.6	10	18		24	
104	1.04	143	130	115	100	BT	76		18 1
140	138	129	110		9:3	BO			
118	110	108		04	86	78			
32	115	106	96	12-6	73	63			
96	93	86	79	72	64	5.6			
941	89	79	67		40				
94	80		07	B/T	4.0				
91	84	76	aa	54	4.0				
BT	BO	73	0.4	5.5	47				. 9
73	67	60	5.0	5.5	87				
70	80	59		5.5	36				
GB	63			44	36	30			
0.0	5.0	47	4.1	80	30				
63	54	44	36						- 14
59	5.0	43	35						
58	47	40	33	97					
4/0	43		28-						
45	40	34	26						
43	39	33	28						- 19
38	34	30		20					- 20
20	25	91	17						
27	24	20	16						
20	93	18							
25	20	15							- 24
23	18	14							

44

COMPOUND STANDARDNE.

DIRECTOR AND DESCRIPTION

		000/70000	-			Final
	2"	Rese		1	1 1	
-						
- miles						

COMPOUND STANCHIONS.

SAFE LOADS IN TONS. ENDS FIXED.

				SAFE	LOA	DS II	1 TO	NS F	0R					6	9
				I	ENG	THS I	N FE	ET						Paran	Mark
8	10	12	14	16	18	20	22	24	26	28	30	32	34	Re	-
252	245	236	225	214	202									IS	26
234	228	220	211	201		178						108			27
211	206	199	191	182		162					109	100			28
190	185	179	172	164		147			116	107	99	91			29
1 85	181	175	168	161	153	144	135	125	115	106	98	90			30
182	177	172	165	158	151	142	133	123	114	105	97	90	83		31
177	173	168	162	155	148	140	131	122	113	104	96	89	82		32
187	182	175	167	158	148	138	126	116	106	97	88				33
172	167	161	154	146	138	129	119	109	100	92	84				34
164	160	156	150	144	138	131	123	115	107	99	91	84	78		35
161	157	153	148	142	136	129	122	114	106	98	91	84	78		36
167	163	157	150	143	135	127	117	108	99	91	84	77			37
157	154	150	145	139	133	127	120	112	104	97	90	83	77		38
164	160	154	148	141	133	125	116	107	99	91	83	77			38
167	162	155	148	140	131	121	111	101	92	84	77			11	40
159	155	150	144	138	131	123	114	105	97	90	83	76		.,	41
158	152	145	137	128	118	107	97	88	79					11	45
146	142	138	133	127	121	114	107	99	91	84	78	72		11	48
143	139	135	130	125	119	112	105	98	90	83	77	71	66	11	44
140	136	132	128	123	117	111	104	97	90	83	77	71	66	11	45
135	131	125	119	112	104	96	87	80	73	66				11	46
121	116	110	104	98	90	82	74	67	61					111	4
120	115	109	103	96	88	79	72	65	59					11	48
109	106	101	96	90	84	77	70	64	58	53				11	48
109	105	100	95	89	82	75	68	62	56	51				11	50
108	103	98	92	86	78	71	64	58	52					11	5:
103	98	92	86	78	70	63	56	50						11	55
96	92	87	82	77	70	63	57	52	47					"	53
92	87	81	75	67	60	58	48							11	54

COMPOUND STANCHIONS.

DIMENSIONS AND PROPERTIES.

	rence	Mark		C01	MPO	SED	OF	Dim sion in inc	ns	Area	uare inches	Weight r foot-lbs.	0	yra	ii of tion ches
	Refe	M		Bea	ms		Flats	Depth	Width	Ar	square	Weig per foot	About	×	About
	IS	55	24	71		100	14×5%	261/2	14	64	10	000	11.	01	3.14
			20				14×5%	221/4		61					3.55
		57	18		×	75		201/6		57.0					3.5
		58	10		×	70		121/2	14			193			3.40
		59				100	14×½	26	14			199.5			
		60	20>	71		90	14×1/2	22	14	E 4 · ·	1 17	100:5	0.	0.77	0.10
		61	18		×	75		20	14			188.5			3.10
		62	10>		×	70	14×1/2	12	-			174.5 169.5			3.17
		63	16			62		181/		48.5					3.58
		64	15>		×		12×5/8	17%		47:3					2.83
		01	10.			00	12/78	1 172	12	41	55	100	1	42	2.86
X		65	14>	6	×	57	12×5%	161%	12	46.	78	163	e.	98	2.88
		66	12>	6	×		12×5%	141/2				158.5			2.90
.		67	10>	8	×		10×5%	121/2		45.6					2.47
		68	16>	6	×		12×½	18		700		147.5			2.73
		69	15×	6	×		12×½	17	12			144.5			2.76
		70	14×	6	×	57	12×½	16	10	10.5	10	142.5	0.	00	0.70
			12×		X		12×1/2	14				138.5			2.78
	11	72	9×	7	X		10×5%	11%		42.0					2.81
	11	73	10×	8	X		10×1/2	12		40.6					2.46
	11	74	10×	6	×		12×½	12				126.5			2·42 2·92
		75	9×	7		58	9×5/8	11%	9	20.5	0	138.5	4.1		0.00
		76	9×	7	×	58	9×½	11							2.23
		77	10×		×	35	8×5/8	121/6				123·5 105·5			2.18
		78	8×		×	35	9×½	10		30 2 28·2					1.98
	,	79	10×		×	30	8×½	12		28 2 24 8		99			2.22
						00	0 / 72	12	0	24 8	2	87	9.()4	1.92

COMPOUND STANCHIONS.

SAFE LOADS IN TONS.

ENDS FIXED.

				SAF	E LO.	ADS	IN T	ONS	FOR						
					LENG	VTHS	IN	FEET						Cada	fark
8	10	12	14	16	18	20	22	24	26	28	32	36	40	Red	
374	368	361	352	342	331	319	306	293	278	262	230			18	
356	350	344	336	327	317	306	294	282	269	254	224	198	174		56
333	327	321	314	306	297	287	277	266	254	241	214	189	167		
325	320	314	308	301	292	283	273	263	253	241	215	191	169		58
333	327	320	311	302	291	280	268	255	241	226					59
315	309	303	295	287	277	267	256	244	232	218					60
291	286	281	274	267	258	249	239	229	218	205	181	159	140		61
283	279	274	268	261	253	245	236	226	216	206	182	161	142		62
278	273	266	258	249	239	228	217	205	191	178	154	133			63
273	268	262	254	245	235	225	214	202	189	176	153	132			64
270	265	259	251	243	233	223	213	201	188	176	152	132			65
265	260	254	247	238	229	220	209	198	186	173	151	131			66
260	253	245	235	224	213	200	186	171	158	145	123				67
243	238	232	224	216	206	196	186	174	162	150	129	111			68
238	233	227	220	212	203	193	183	172	160	149	128				69
235	230	224	217	209	200	191	181	170	159	148	127				70
230	225	220	213	205	197	188	179	168	157	146	126	109			71
240	233	226	217	207	196	184	171	157	145	133					72
231	225	217	208	198	187	175	162	149	137	126	106				73
210	206	201	196	189	182	175	167	158	148	138	120	104			74
223	216	207	197	186	174	160	146	133	122	111					75
197	191	182	173	163	152	139	127	115	105	96					76
168	161	153	143	133	121	109	99	89	80						77
160	154	148	141	133	124	114	104	95	87	79					78
138	132	125	117	108	98	88	79	71	64						79

COMPOUND STANCHIONS.

DIMENSIONS AND PROPERTIES.

	Reference	COMPO	SED	OF	tres of	Dime sion in inc	ns hes	Area Square Inches	Weight per foot-lbs.	Gyrati incl	on in
	Refe M	Beams		Flats	Oentres Beams	Depth	Width	Square	Weig	About	About
×III×	# 81 # 82 # 83 # 84 # 85	18×7 × 16×6 × 14×6 ×	89 75 75 62 57	18×% 18×% 16×% 16×% 16×%	9½ 9½ 8½ 8½	21 ½ 19 ¼ 19 ¼ 17 ¼ 15 ¼	18 18 18 16 16	66.62 64.12 56.46 53.52	258.5 230.5 222 196 186	7.98 7.98 7.08 6.31	5.05 5.04 4.37 4.49 4.50
Y	89 90 91	14×6 × 14×6 × 12×6 × 12×6 × 14×6 ×	57 46 54 54 46	$16 \times \frac{1}{2}$ $16 \times \frac{1}{2}$ $16 \times \frac{1}{2}$ $14 \times \frac{1}{2}$ $14 \times \frac{1}{2}$ $16 \times \frac{1}{2}$	81/2 7 7 81/2		14 14 16	47.06 49.26 45.76 43.06	172.5 164 170 158.5 150.5	6'48 5'42 5'32 6'32	4.49 4.51 3.85 3.83 4.50
	92 93 94 95	12×6 × 10×6 × 12×6 × 10×6 × 24×7½×1	44 42	14×% 14×% 14×%	7 7 7 7	11	14 14 14	43'38 42'20 39'88 38'70	146 138 5	5.53 4.66 5.43 4.57	3°87 3°84 3°86
TT	97 98	20×7½× 18×7 × 18×7 × 16×6 × 14×6 ×	89 75 75 62	18×% 18×% 16×% 16×%	9½ 9½ 8½ 8½	22½ 20½ 20½ 18½	18 18 16 16	97'34 89'12 84'12 76'46 73'52	335 307 290 264	9°30 8°52 8°45 7°61 6°79	5.08 5.08 4.43 4.52
ŢŢ	103 104 105 106 107	16×6 × 14×6 × 12×6 × 14×6 × 12×6 × 12×6 × 10×6 ×	57 54 46 54 44	16×½ 16×½ 14×% 16×½ 14×½ 14×½ 14×½	8½ 7 8½ 7	16 14½ 16 14 14	16 14 14	68'46'65'52'66'76'59'06'59'76'53'88	227 229 5 205 206 186	7'41 6'61 5'86 6'74 5'69 5'80	4.51 4.52 3.90 4.53 3.88 3.89
¥	IS 109 110 111 112	24×7½×1 20×7½× 18×7 × 18×7 × 16×6 ×	00 89 75 75	18×% 18×%	9½ 9½ 9½ 8	27¾ 23¾ 21¾ 21¾	18 18 16	52.70 126.3 119.84 111.62 104.12 96.46	485.5 413.5 885.5	4.91; 11.47; 9.76; 8.97; 8.89; 8.05;	5.09 5.10 5.10 4.46
×	"115 "116 "117	14×6 × 16×6 × 14×6 × 12×6 × 12×6 ×		$16 \times \frac{1}{2}$ $16 \times \frac{1}{2}$ $14 \times \frac{1}{2}$	8½ 8½ 7	17 15%	16 16	93'52 84'46 81'52 84'26 73'76	293'5 283'5 290'5	7.21 7.79 6.96 6.25 6.02	4.53 4.54 3.93

COMPOUND STANCHIONS.

EAFE LOADS IN TORS.

For other conditions of only see your 65.

SAFE LOADS IN TOWN POR														
					LEN	PTER	136	FEET						13
	12	14	14	18	20		24						P	1
578	474	470	440	450	400	140	439	631	433					
110	407	400	438	433	417	411	404							
			800											
	304	800	206											
		2014												
							347	341						
							340							
				340										(80)
		247	344											
945	343		204											
			214	210										
													118	
199	277	101	273											
110	110	1.00	6.753	1.00		811								
\$30		431	410	\$10										
101														
347														
		304												
				179										
111			901			1.30			\$170					
	100					1.30								
5.610	0.000	*10	11.10						B&T					

COMPOUND STANCHIONS.

DIMENSIONS AND PROPERTIES.

	Mark	COMPOSED	OF	Beams	sion in inc	hes	Area re inch	Weight per foot-lbs.		ion in
	Refe	Beams	Flats	Uent	Depth	Width	Asquare	Weig	About	About
	IS 119	24×7½×100	24×5/8	7%	251/4	24	118.20	410	10.58	86.68
-	1120	20×7½× 89	24×%	7% 2	211/4	24	108.21	377	8.88	6.40
×	. 121	18×7 × 75	24×5/8	7% 1	1914	24	96.18	335	7.98	86.69
-	122	16×6 × 62	20×5/8	6½	17%	20	79.69	279	7.00	5.55
	IS 123	24×7½×100	24×5/8	7% 2	261/2	24	148.2	512	10.88	6.73
T	. 124	20×7½× 89	24×5/8	7% 2	221/2	24	138.21	479	9.22	6.75
L	125	18×7 × 75	24×5%	7% 2	201/2	24	126.18	437		6.75
	126	16×6 × 62	20×5/8	6½ 1	81/2	20	104.69	363	7.51	5.60
	IS 127	24×7½×100	24×%	73/8 2	27%	24	178.2	618.5	11.37	6.77
Tx	. 128	20×7½× 89	24×5/8	7%2	23%	24	168'51	585'5	9.68	6.78
dia	. 129	18×7 × 75	24×5%	7% 2	21%	24	156.18	543.5	8.88	6.78
	130	16×6 × 62	20×5/8	61/2 1	934	20	129.69	453.5	7.94	5.63
	rence	COMPOS	ED OF		Si	ons	es sain	ht per		ii of tion in thes
- Jy	Refer	Beams	Bean	ns	Depth	Width	Ar	Weig	About	About
10	IS 131	20×7½×89	10×8	×70	20	20	% 67.8	37 231	5.18	5.35
	. 132	18×7 ×75	9×7	×58	18	18	1/2 56'1	8 193	4.70	4'78
	. 133	16×6 ×62	8×6	35	16	16	1/2 38:8	31 134	4.42	4.00
	134	14×6 ×57	8×6	35	14	16	1/2 37.8	34 129	3.90	4.07
	ark	COMPOSED	OF	in	inche	S	rea	ht per lbs.	Gyrati	on in
Г	Refe	Zeds	Flats	Depth	W. Sala	WIGE	square	Weig	About	About
×	ZS 1 8	×3½×22.68	10×½	16%	16	1/8	31.68	110	4.82	4.70
	11 2 7	×3½×20.22	9×1/2	145	2 15	518	28.59	98	4'26	4'27
	11 3 6	3×3½×17.88	8×1/2	12	6 14	14	25'03	87	3.69	3.82
	11 4 5	×3 ×14.17	7×1/2	103	2 12	278	20.18	70.5	3.04	3.34
	T× T×	IS 119	IS 119 24×7½×100 120 20×7½×86 121 18×7×75 122 16×6×62 IS 123 24×7½×100 124 20×7½×86 125 18×7×75 126 16×6×62 IS 127 24×7½×100 128 20×7½×89 128 120×7½×89 129 18×7×75 130 16×6×62 134 14×6×57 133 16×6×62 134 14×6×57 25 1 8×3½×22·68 2 7×3½×20·22 3 6×3½×17·88	IS 119 24 × 7½ × 100 24 × % 120 20 × 7½ × 89 24 × % 121 18 × 7 × 75 24 × % 122 16 × 6 × 62 20 × % IS 123 24 × 7½ × 100 24 × % 124 20 × 7½ × 89 24 × % 125 18 × 7 × 75 24 × % 126 16 × 6 × 62 20 × % IS 127 24 × 7½ × 100 24 × % 128 20 × 7½ × 89 24 × % 129 18 × 7 × 75 24 × % 129 18 × 7 × 75 24 × % 130 16 × 6 × 62 20 × %	IS 119 24 × 7½ × 100 24 × ½ 77½ 118 119 18×7 × 75 24 × ½ 77½ 1122 16×6 × 62 20 × ½ 8½ 1122 16×6 × 62 20 × ½ 8½ 1124 20 × 7½ × 89 24 × ½ 77½ 1125 18×7 × 75 24 × ½ 77½ 1126 16×6 × 62 20 × ½ 8½ 127 24 × 7½ × 100 24 × ½ 77½ 128 16×6 × 62 20 × ½ 8½ 138 127 24 × 7½ × 100 24 × ½ 77½ 129 18×7 × 75 24 × ½ 77½ 129 18×7 × 75 24 × ½ 77½ 130 16×6 × 62 20 × ½ 8½ 131 20 × 7½ × 89 24 × ½ 77½ 131 128 20 × 7½ × 89 24 × ½ 77½ 132 18×7 × 75 24 × ½ 77½ 133 16×6 × 62 20 × ½ 8½ 134 14×6 × 57 9×7×58 133 16×6 × 62 8 8×6 × 35 134 14×6 × 57 8×6 × 35 134 14×6 × 57 8×6 × 35 134 14×6 × 57 8×6 × 35 135 136 × 3½ × 22 28 10 × ½ 14½ 13 6×3½ × 20 × 22 9×½ 14½ 13 6×3½ × 17×88 8×½ 12½	IS 119 24 × 7½ × 100 24 × ½ 7½ 25½ 7½ 21½ 25½ 121 18×7 × 75 24 × ½ 7½ 19½ 19½ 1122 16×6 × 62 20 × ½ 6½ 17½ 21½ 20 × 7½ × 89 24 × ½ 7½ 21½ 20 × 7½ × 89 24 × ½ 7½ 20 × 7½ 20 × 125 18×7 × 75 24 × ½ 7½ 20 × 125 18×7 × 75 24 × ½ 7½ 20 × 126 16×6 × 62 20 × ½ 6½ 18½ 125 18×7 × 75 24 × ½ 7½ 20 × 126 16×6 × 62 20 × ½ 6½ 18½ 129 18×7 × 75 24 × ½ 7½ 23 × 129 18×7 × 75 24 × ½ 7½ 23 × 129 18×7 × 75 24 × ½ 7½ 23 × 130 16×6 × 62 20 × ½ 6½ 19½ 18½ 18½ 18% 130 16×6 × 62 20 × ½ 6½ 19½ 18½ 18% 130 16×6 × 62 20 × ½ 6½ 19½ 18 × 7 × 75 24 × ½ 7½ 21½ 131 16×6 × 62 20 × ½ 6½ 19½ 18½ 133 16×6 × 62 20 × ½ 6½ 19½ 18½ 133 16×6 × 62 8×6×35 16 113 134 14×6 × 57 8×6×35 16 114 14×6 × 57 8×6×35 14 12½ 14×6 × 57 8×6×35 14 12½ 14×6 × 57 8×6×35 14 12½ 14×6 × 57 8×6×35 14 12½ 14×6 × 57 8×6×35 14 12½ 14×6 × 57 8×6×35 14 12½ 14×6 × 57 8×6×35 14 12½ 14×6 × 57 8×6×35 14 12½ 14½ 14×6 × 57 8×6×35 14 12½ 14½ 14×6 × 57 8×6×35 14 12½ 14½ 14½ 14×6 × 57 8×6×35 14 12½ 14½ 14½ 14½ 14½ 14½ 14½ 14½ 14½ 14½ 14	IS 119 24 × 7½ × 100 24 × ½ 7% 25½ 24	IS 119 24 × 7½ × 100 24 × ½ 7% 25½ 24 118 *20 120 20 × 7½ × 89 24 × ½ 7% 25½ 24 118 *20 121 18×7 × 75 24 × ½ 7% 21½ 24 96 *18 122 16×6 × 62 20 × ½ 6½ 17½ 20 79 *69 IS 123 24 × 7½ × 100 24 × ½ 7% 22½ 24 148 *51 124 20 × 7½ × 89 24 × ½ 7% 22½ 24 148 *51 125 18×7 × 75 24 × ½ 7% 20½ 24 126 *18 126 16×6 × 62 20 × ½ 6½ 18½ 20 104 *69 IS 127 24 × 7½ × 100 24 × ½ 7% 22½ 24 178 *2 128 20 × 7½ × 89 24 × ½ 7% 20½ 24 126 *18 129 18×7 × 75 24 × ½ 7% 23½ 24 168 *51 129 18×7 × 75 24 × ½ 7% 21½ 24 156 *18 130 16×6 × 62 20 × ½ 6½ 19½ 20 129 *69 COMPOSED OF Dimensions in inches Beams B	IS 119	IS 119 24 × 7½ × 100 24 × ½ 7½ 24 ½ 24 ½ 18 × 20 410 10 × 20 × 7½ × 89 × 24 × ½ 7½ 24 ½ 24 ½ 18 × 35 × 7 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8

COMPOUND STANCHIONS.

SAFE LOADS IN YORK.

ENGS FIXED.

For other possitions of outs our page 16.

				-0.0		1.09			200				1_
					LEHO	THE	138 1	FRET					12
			4		1.0								ă.
			94									138	
043	0.6												
170	40	7 4			454	44							
												18	
7.48	74		61										
		4 1	109	604									
			40 1										
					20	THE THE	DE 1						Į,
												18	
	218												
				MAP	E LA	128	JR 7	9363	POR				
				MAT	LENG		DR T		PUR				Į.
		14		10			138		205				Fact
				10	30	203	24	20					East
	104			10	30	793 23 171	24	266			144		
	104			10	1299 200 1796	23 171 130	24 180 180	266 160 140			144		

CHANNEL STANCHIONS.

DIMENSIONS AND PROPERTIES.

	ence	Size	Area	Weight	Radii of in in	
	Reference	Inches	square	per foot lbs.	About	About
<u>Y</u>	08 1 1 2 1 3 1 4	15 ×4 12 ×4 10 ×4 12 ×3½ 11 ×3½	12:334 10:727 8:871 9:671 8:771	41.94 36.47 30.16 32.88 29.82	5.53 4.51 3.84 4.44 4.12	1.09 1.13 1.16 .96
xx	" 6 " 7 " 8 " 9	10 ×3½ 12 ×3½ 9 ×3½ 10 ×3½ 8 ×3½	8'296 7'675 7'469 6'925 6'682	28°21 26°10 25°39 23°55 22°72	3.77 4.55 3.43 3.85 3.09	.99 1.01 1.02 1.03
Ţ	11 12 13 14 14 15	9 ×3½ 7 ×3½ 6 ×3½ 8 ×3 9 ×3	6.55 5.95 5.266 5.675 5.696	22:27 20:23 17:90 19:30 19:37	3·49 2·74 2·37 3·07 3·38	1.03 1.04 1.06 .87
	16 17 18 18 19	7 ×3 51/8×27/8 6 ×3 4 ×3	5°166 4°728 4°261 4°175	17.56 16.08 14.49 14.20	2.70 1.96 2.37 1.56	'88 '85 '91

LATTICED CHANNEL STANCHIONS.

DIMENSIONS AND PROPERTIES.

	rence	COMPOSED OF	Distance	si	nen- ons nehes	Area re inobes	Radii of Gyration in inches	
Y	Reference	Channels	Dis in	Depth	Width	Arsguare	About Abou	
xx	08 20 1 21 1 22 1 23 1 24	15×4 ×41°94 12×3½×32°88 11×3½×29°82 12×3½×26°1 10×3½×28°21	9½ 6½ 6½ 6½ 4½	12 11 12 10	17½ 13½ 13½ 13½ 11½	19.34 17.54 15.35 16.59	5.525.73 4.444.23 4.114.20 4.544.23 3.773.33	2633
	25 26 27 27 28	9×3½×25·39 10×3½×23·55 9×3½×22·27 9×3 ×19·37 .7×3 ×17·56	4½ 4½ 4½ 5½ 3½	10	11½ 11½ 11½ 11½ 9½	13.85 13.10 11.39	3.433.3 3.853.3 3.493.3 3.383.6 2.7 2.7	4 9

CHANNEL STANCHIONS.

SAFE LOADS IN TONS.

ENDS FIXED.

			SAFE	L64.08	DE TON	s ros				
			5.8	RUTES	196 776	WT.				Haris .
8	4				11	9			13	
	60		04					40	41	0.0
	61	59		54		4.0	5.5	40	90	
	50	10	47	10	4/3	40		77.5		
	5.00		4/0	40	43		34		377	
	4.0	47	4.4	41					365	
4.0	4.6	44	43	30						
44	4.0	41	30		34					
4.0	4.0	40	346	1343						
40										
345			34							
30			34		30		24			
34										
	208									
							1.0			
312		30				19				
		34								
34					1.0		14			
94										

LATTICED CHANNEL STANCHIONS.

			SAF	W 1.0	108	DE T	2783	P23L					
				1,830		18	TENT						3
		10				24					80	4	
			949										
90													
86													
	71								54				
58				80					*1				

CHANNEL COMPOUND STANCHIONS.

DIMENSIONS AND PROPERTIES.

		Reference Mark	COMPOSED (F	Distance in inches	Dime sions inch	in es	Area re inches	ht per lbs.	Gyra	ii of tion ches
		Refe	Channels	Flats	o Dis	Depth	Width	Area square inch	Weight foot-lh	About	About
	Y	08 30 31 32 33 34	15×4 ×41°94 15×4 ×41°94 12×3½×32°88 11×3½×29°82 12×3½×32°88	18×½ 14×% 14×%	9½ 6½ 6½	16 13¼ 12¼	18 14 14	42 [.] 67 36 [.] 84	147°5 128 122	6.71 6.55 5.41 5.03 5.27	5.54 4.14 4.15
	X X	" 35 " 36 " 37 " 38 " 39 " 40	$\begin{array}{c} 12 \times 3 \% \times 26^{\circ} 1 \\ 11 \times 3 \% \times 29^{\circ} 82 \\ 10 \times 3 \% \times 28^{\circ} 21 \\ 12 \times 3 \% \times 26^{\circ} 1 \\ 9 \times 3 \% \times 25^{\circ} 39 \\ 10 \times 3 \% \times 28^{\circ} 21 \end{array}$	14×½ 12×½ 14×½ 12×¾	6½ 4½ 6½ 4½	12 11¼ 13 10¼	14 12 14 12	31·54 31·59 29·35	110 110 102·5 104·5	4.91 4.57 5.42	4·16 3·40 4·14 3·42
		" 41 " 42 " 43 " 44 " 45 " 46	9×3½×25·39 10×3½×23·55 9×3½×22·27 9×3 ×19·37 7×3 ×17·56 7×3 ×17·56	12×½ 12×½ 12×½ 10×½	4½ 4½ 5½ 3½	11 10 10 8	12 12 12 10	26.94 25.85 25.10 23.39 20.33 17.83	90°5 88 82 72	4°14 4°14 3°26	3·40 3·42 3·53 2·82
	·	08 47 48 49 50 51	15×4 ×41°94 15×4 ×41°94 12×3½×32°88 11×3½×29°82 12×3½×32°88	18×½ 14×% 14×%	9½ 6½ 6¼	17 14½ 13½	18 14 14	60°67 54°34 52°54	209 187·5	7°1 5°95 5°54	5·44 4·10 4·11
	x - x	" 52 " 53 " 54 " 55 " 56	11×3½×29·82 12×3½×26·1 10×3½×28·21 9×3½×25·39 10×3½×28·21	14×½ 12×% 12×%	6½ 4½ 4½	14 12½ 11½	14 12 12	43°35 46°59	161 155 [.] 5	5.88 5.05	4·11 3·42 3·43
	Y *D ₂	57 58 59 60 61 62	9×3½×25*39 10×3½×23*55 9×3½×22*27 9×3 ×19*37 7×3 ×17*56 7×3 ×17*56	12×½ 12×½ 12×½ 10×½	4½ 4½ 5½ 3½	12 11 11 9	12 12 12	38.94 37.85 37.10 35.39 30.35 25.83	131.5 129 123 106	4·47 4·96 4·53 4·55 3·61 3·45	3.42 3.44 3.50 2.84
1	x x	08 63 64 65	15×4 ×41°94 15×4 ×41°94 12×3½×32°88	18×1/2	91/4	18	18	78.67	317·5 271·5 212·5	7.51	5.39

CHANNEL COMPOUND STANCHIONS.

SAFE LOADS IN TONS.

ENDS FIXED.

				SAF	E LO	ADS	IN T	ONS I	FOR					8	
					LEN	THS	IN I	EET						Reference	Mark
10	12	14	16	18	20	22	24	26	28	30	32	36	40	Re	_
278	276	274	272	269	266	263	259	255	251	246	241	231	220	088	
252	250	248	246	244	241	238	235	231	227	223	219	210	200		
215	212	209	206	202	198	193	188	183	178	172	166	153	139		32
104	202	199	196	193	189	184	179	174	169	164	158	146	133		38
94	192	189	186	183	179	175	171	166	161	156	151	139	126	11 8	34
91	189	186	183	180	177	172	168	163	158	153	148	136	124		
84	182	179	176	173	170	166	162	158	153	148	148	132	120		36
82	179	175	171	166	161	156	150	144	137	130	122	109	120		
71	169	167	164	161	158	154	150	146	142	137	132	122	111		
72	169	166	162	158	153	148	142	136	130	124	117				
65	162	158	154	150	145	140	135	130	124	117	110	98			£(
55	152	149	146	142	138	133	128	123	117	111	105			4	
49	146	143	140	136	132	127	122	117	110	106	100	89			
45	142	139	136	132	128	124	119	114	100	104	98			11 4	
35	133	130	127	124	121	117	118	109	104	99	94				14
15	112	109	105	101	96	91	86	80	104						L.E
01	98	95	92	88	84	80	75	70							16
11	408	405	401	396	392	387	381	375	368	361	354	220		084	u.
357	355	353	349	345	341	337	332	327	321	315	309	296	282	11 4	
317	313	308	303	298	292	285	277	269	261	253	244	224	203		15
306	302	298	294	288	282	275	268	261	253	245	236	217	197		
276	273	269	265	260	254	248	242	235	228	221	213	196	178		
			255												
	250	246	242	238	099	007	001	915	200	200	105	170	189		
888	264	258	252	245	238	220	001	210	200	100	191	161	149		
259	254	249	244	237	230	220	214	205	106	188	178	156	110		
234	230	225	220	214	207	200	103	185	178	167	158	140	104		o ∈ 5 €
													1 42 3		
210	014	210	211	100	100	192	185	178	170	161	152	135			
214	212	210	205	100	183	187	180	172	164	156	148	131	116		
203	200	107	201 198	100	100	104	177	170	162	104	145	129			
70	187	180	157	151	144	100	170	163	156	149	141				3(
49	140	136	131	198	100	114	100	121	04	104					
10	110	130	101	120	120	114	108	101	51.07					6	35
149	590	595	590	504	510	611	501	100	100	4 Par					
184	461	457	450	447	440	490	490	490	986	177	167	447	424	086	
357	252	340	949	226	200	200	910	904	116	108	100	382			34
202 6	000	040	0.10	000	028	021	212	204	200	285	210	253	229	10 6	

TEES AS STRUTS. SAFE LOADS IN TONS FOR TEES. ENDS FIXED.

Size and				LE	NGTH	IN FE	ET			
Thickness	2	3	4	5	6	7	8	9	10	12
6 ×4 ×3/8 1/2 11 11 5/8	21·5 28·2 34·7	21·1 27·7 34·0	20·5 26·9 33·2	19·9 26·1 32·1	19·1 25·1 30·8	18·2 23·8 29·3	17·2 22·6 27·7	16·2 21·1 25·9	15·0 19·5 23·3	12·5 16·3 19·9
6 ×3 ×3/8 11 11 1/2 11 11 5/8	19·0 24·8 30·5	18·3 23·9 29·4	17·4 22·7 27·8	16·2 21·1 25·9	14·9 19·4 23·7	13·4 17·4 21·1	11·8 15·3 18·5	10·4 13·4 16·2	9·1 11·8 14·2	
5 ×4 ×3/8 1/2	19·2 25·2	18·8 24·7	18·3 24·0	17·6 23·2	16.8	15·9 21·0	14·9 19·8	13·8 18·4	12·6 16·8	10.4
5 ×3 ×3/8	16·8 21·9	16·2 21·2	15·5 20·2	14·5 18·9	13·4 17·5	12·2 15·8	10·9 14·0	9·6 12·4	8·5 10·9	
4 ×4 ×3/8	16·7 21·9	16·2 21·2	15·4 20·2	14·4 19·0	13·3 17·6	12·0 16·0	10·7 14·2	9.4	8.3	
4 ×3 ×3/8	14·6 19·0	14·1 13·4	13·6 17·6	12·8 16·6	11·9 15·5	10·9 14·2	9·8 12·7	8·7 11·2	7·8 9·9	
5½×3½×¾	14·4 18·9	13·8 18·1	12·9 17·0	11·9 15·7	10·7 14·2	9·3 12·5	8·1 10·8	7·0 9·4		
3 ×3 ×3/8	12·1 15·8	11·4 14·9	10·4 13·7	9.3	8.0	6.8	5·7 7·7			
5 ×2½×¾ 1 11 ½	11·0 14·4	10·5 13·7	9·7 12·7	8·7 11·5	7·6 10·1	6·5 8·7	5·6 7·4			
2½×2½×¼ 1 1 16 1 38	6·7 8·2 9·7	6·1 7·5 8·9	5·3 6·6 7·9	4·4 5·5 6·6	3·6 4·5 5·4					
21/4×21/4×1/4 11 3/8	5·9 8·6	5·2 7·7	4·4 6·6	3·6 5·4	2.8					
2 ×2 ×¼ 1 11 38	5·1 7·4	4·4 6·5	3·5 5·3	2·7 4·1						
2 ×1½×¼ 11 3/8	4·4 6·3	3·9 5·5	3·2 4·5	2.5						
1½×2 ×¼	3·9 4·8	2.9								
13/4×13/4×1/4	4·3 5·2	3:5 4:4	2.7							
1½×1½×¼	3.4	2.6	1.9							

ANGLES AS STRUTS.

SAFE LOADS IN TONS FOR SINGLE EQUAL ANGLES. ENDS FIXED.

	Size an	d						LEN	FTH	IN I	FEET					
	Thickne		2	3	4	5	6	7	8	9	10	12	14	16	18	20
8	×8 >										47·6 56·5					
6		6 %a	42.0	41.3	40 - 4	39.2	37.8		34.3	32.4	30.5		21 - 4			
	11	34									35.6		25.2			
5	×5 >	9%					23·9 29·4									
43/	43/43						20·4 25·1									
4		13/4	21.8	20.9	19.8	18.4	16.8									
	11	%					20.7				12.4					
	5×3½>	1/2	18.7	17.8	16.6		10.3		7.6	8.5						
	- 11	%		21.8			16.3	14.1	12.1	10-4						
3	×3 >	7h .	10.1	9.4			7.4	5.4								
	11	1/2	15.6	14.6			9.7									
		7/8				14-1										
21/	4×21/4×	14	6.6	5.9	5.1	5.1	3.3									
	11			8.6	7.4	6-1	4.9									
	" ×2%		12.4	5.1	9.7	7.9	6.3									
	11				5-1	4.0										
			8.4	7.4		4.3										
	×2 >	14 N		3.2		2.6										
		va.			4.0											
					4-7											
	×1%×	The Lie	3.2													
				4.1												
	×1½×			1.8												
	11	14	3.3	2.4												
114	×1%×		1.9													
	11	14		1.5												

ANGLES AS STRUTS.

SAFE LOADS IN TONS FOR SINGLE UNEQUAL ANGLES. ENDS FIXED.

Size and				LEN	WGTH :	IN FEI	T			
Thickness	2	3	4	5	6	7	8	9	10	12
7 × 3½ × 5/8	35·7 42·3	34·3 40·5	32·3 38·1	29·8 35·1	27·0 31·7	23·8 27·8	20.7	18.1		
5½ × 4½ × 5%	38·0 45·1	37·1 44·0	35·8 42·5	34·2 40·6	32·3 38·3	30·2 35·8	27·8 33·0	25·2 29·9	22.7	18:3
5 × 4 × ½ 5/8	27·7 34·2	26·9 33·2	25·8 31·8	24·3 30·0	22·6 27·9	20.7	18·6 22·9	16·5 20·4	14·7 18·1	
× 3½ × ½	26·1 32·2	25·1 30·9	23.6	21·9 27·0	19·9 24·5	17·6 21·7	15·3 18·9	13·4 16·5	11.7	
×3 × ½ 5/8	24·3 29·9	22.9	21·1 25·9	18·9 23·3	16·3 20·1	13·9 17·1	11·7 14·5			
$5\frac{1}{2} \times 3\frac{1}{2} \times \frac{1}{2}$	24·6 30·3	23·7 29·1	22·3 27·5	20·7 25·4	18·8 23·1	16·6 20·4	14·5 17·8	12·6 15·6	11.0	
5½ × 3 × ½* 1 11 5%*	22.9	21·7 26·6	20.0	18.0	15·6 18·9	13·3 16·1	11·3 13·6			
5 × 4 × ½ 1 11 5/8	24·8 30·5	24·0 29·5	22.9	21.6	20.0	18:3	16·3 19·8	14·4 17·5	12·8 15·5	
5 × 3½ × ½ 5%	23.2	22·3 27·3	21·0 25·7	19·5 23·8	17·7 21·6	15·6 19·0	13·6 16·5	11.9	10.4	
5 × 3 × ½ 5/8	21.5	20·3 24·9	18·7 23·0	16·8 20·7	14·6 17·9	12·4 15·3	10.6			
4½ × 3½ × ½* " " 5%*	21.7	20·8 25·6	19·6 24·1	18·1 22·3	16.4	14·4 17·8	12·6 15·5	11.0		
4 × 3 × 3/8 1 11 1/2 1 18 5/8	14·2 18·6 22·8	13·5 17·5 21·5	12·4 16·1 19·7	11·1 14·4 17·7	9·7 12·5 15·3	8·2 10·6 13·0	7·0 9·0 11·0			
3½ × 3 × ½ 3/8 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	11·0 13·1 17·1 20·9	10·4 12·4 16·1 19·7	9·5 11·3 14·7 18·0	8·5 10·1 13·0 16·0	7·3 8·7 11·1 13·6	6·2 7·4 9·4 11·5	5·2 6·2 8·0 9·7			
$\frac{3\frac{1}{2}\times2\frac{1}{2}\times\frac{5}{16}}{\frac{5}{8}}$	10·0 11·8 15·4	9·2 10·9 14·2	8·2 9·7 12·6	7·0 8·2 10·6	5·8 6·7 8·8	4·8 5·5 7·2				
3 × 2½ × ¼ 1 1	7·3 10·7 14·0	6·7 9·9 12·8	5·9 8·7 11·3	5·0 7·3 9·5	4·1 6·0 7·8					
3 × 2 × ½ 1 1 1	6·4 9·4 12·1	5·7 8·2 10·6	4·7 6·6 8·6	3·7 5·2 6·7						
$2\frac{1}{2} \times 2 \times \frac{1}{4}$	5·7 7·1 8·3	5·0 6·2 7·3	4·1 5·0 5·9	3·2 3·9 4·6						
2 × 1½ × 3 11 11 14	3·1 4·0 4·9	2·4 3·1 3·8	1·8 2·2 2·7							

ANGLES AS STRUTS. SAFE LOADS IN TONS FOR TWO EQUAL ANGLES. ENDS FIXED.

Size and	d		lii of stion				LEN	OTH	IN F	EET			
Thickness		жж	Y Y	2	3	4	5	6	8	10	12	16	
8 ×8 ×%*		2-46 2-45	3-52	114·8 136·7	114·4 136·1		112-9 134-4					94-4	84-0 90-7
6 ×6 ×16		1:84		6816 8418	68°1 84°1	67·4 83·3	66·6 82·3				56:4 69:6	47-8 58-8	38-4
5 ×5 × 16			2:75 2:26 2:29	100-6 56-5 69-7	99°8 55°9		97·6			87·7 46·4	82-2 42-3		
4%×4%×5%		1:36		50-4 62-1	68:9 49:8 61:3	67·9 48·9 60·2	66-7 47-8 58-9	65-3 46-6 57-3	61 · 6 43 · 3 53 · 2	57-1 39-5 48-4	52·0 34·9 42·7	25-9	
4 ×4 ×5				33·8 44·3	33·3 43·7	32·6 42·7	31·7 41·5	30°6 40°1		24·8 32·4			
314×314×14		1.07		54·5 24·7 20·3	53·6 24·1 20·7	52-4 23-5 27-9		21·6 20·6	44.6 19-2 22-7	39°4 16°3 19°2			
		1.05	1.63	38°3 46°9	37·5 45·9	36-4 44-6	35°1 42°9	33·4 40·9		24-9 30-2	20-5 24-8		
3 ×3 × 1		-90			16-4 24-0 31-3			14·1 20·5 26·6					
254 × 254 × 54			1:45		38-2 13-2		34-6	32-4					
				17-0 20-1 26-0		15-4 18-2 23-4	14·2 16·8 21·6						
2%×2%×/6									4.9				
			1.10		14.3		12-1 14-2						
			1:00	7.0	0-4		11.5	9-8					
		-52 -51 -45			8-4 10-2 5-1	7-4 5-9 4-3	7-4						
		· 44 · 44	-78 -80		0.0	5-5	4-4						
154×154×74	Ę	· 37		4·5 5·8	3.0								

ANGLES AS STRUTS.

SAFE LOADS IN TONS FOR TWO UNEQUAL ANGLES. ENDS FIXED.

Size and Thickness	d	Rad					L	ENG	TH I	N F	EET			
Thickness		xx	YY	2	3	4	5	6	8	10	12 14	16	18	20
7 ×3½×½ " " 58	5/8 5/8	2.55	1.45	73-3	72.5	71-4	69.9	68.3	64.2	59.1	12·537·653·345·664·0.56	40.5	35.1	
6½×4½×½ 1, 1, 5/8 1, 1, 3/4	5/8 5/8 5/8	2.04		77.1	76.8	76-1	75.3	74.3	71.8	68-7	52 · 2 48 · 1 64 · 9 60 · 1 77 · 2 72 · 1	756.1	50.9	45-8
6½×3½×38 11 11 ½ 11 11 58	16 16 16	2.07	1.40	56-4	55-7	54.8	53.6	52.3	48.9	44-7	29·8 25·3 39·9 34·3 50·1 43·3	730.0	25.9	
6, ×4 ×3/8 11 11 ½ 11 11 5/8	16 16	1.90	1.67	56.6	56-1	55 - 4	54.6	53.6	51.2	48-1	33·6 30·1 44·6 40· 55·4 50·	736.2	32.0	28.3
6 ×3½×3/ ₈ 0 0 ½ 0 1/ ₈	% % %	1.91		53.5	52.9	52.0	51.0	49.8	46.7	43.0	29·0 25·38·7 53·43·4 42·4	329.3	25.4	
6 ×3 ×3/8 11 11 1/2 12 5/8	1/4 1/4 1/4	1.91	1·19 1·22 1·25	50.3	49.5	48.5	47.1	45.6	41.6	37.0	23 · 4 19 · 31 · 5 26 · 39 · 8 53 ·	7 22 - 5		
$5\frac{1}{2} \times 3\frac{1}{2} \times \frac{3}{8}$ $\frac{1}{11} \frac{1}{12} \frac{1}{28}$	14 14 14	1.73	1·45 1·48 1·50	50.5	50.0	49.2	48.3	47.2	44-5	41.1	27 · 9 24 · 37 · 2 52 · 45 · 3 40 · 1	3 28 . 6	24.9	
5½×3 ×3%× " " ½× " " 5%×	1/2	1.75	1·22 1·25 1·28	47-4	46.7	45.7	44-6	43.1	39.5	35.4	22 · 6 19 · 30 · 4 25 · 38 · 3 52 ·	9 21 - 9		
5 ×4 × 3/8 11 11 1/2 11 11 5/8	16 16 16	1.56	1.76	50.6	50.1	49.4	48.6	47.6	45.1	42.0	29 · 4 26 · 38 · 5 34 · 47 · 0 41 · 1	130.2		
5 ×3½×¾ 11 1/2 5/4	16 16 16	1.57	1:49 1:52 1:55	47.6	47.1	46-4	45.6	44.6	42.2	39.1	26:8 23: 35:7 31:0	527.7		

ANGLES AS STRUTS.

SAFE LOADS IN TONS FOR TWO UNEQUAL ANGLES. ENDS FIXED.

Size and	d		ii of stion				LEN	PH	IN F	EET			
Thickness		ЖX	Y Y	2	3	4	5	6	8			14	
5 ×5 ×6 		1:60 1:50 1:58 1:56	1:26	35°8 44°4	33:4 43:8	27-4 32-6 43-0 52-9	31·9 41·9	30 · 8 40 · 7	23·7 28·3 37·5 46·5	25:4 33:8	18·1 21·9 29·4 36·9		
4)4×3)4×4.* 1 1 14 14 14 14 14 14 14 14 14 14 14 14		1:42 1:41 1:40 1:38	1:53	28:5 33:9 44:5 54:7	44.0	27 · 7 33 · 0 43 · 2 53 · 1	42.3		24 · 8 29 · 5 38 · 6 47 · 2	22-8 27-0 35-3 43-1			
4 ×3%×56 4 ×3%×56 6 × 56 7 × 76	2222	1·24 1·24 1·22 1·21	1:58		26 · 2 31 · 1 40 · 8 50 · 0				22:1 26:3 34:2 41:9	30:4	26:0	14·4 17·1 22·0 26·7	
4 ×3 ×4 % % %	***	1·26 1·25 1·24 1·22	1.34	24·8 29·4 38·5 47·1	24-4 29-0 37-9 46-4	28:4 37:1		26 · 8	20·7 24·6 32·0 30·0		16·0 18·9 24·5 29·6	13·6 16·0 20·8 25·0	
31/2×3 × A2 	2222	1:08 1:08 1:06 1:05	1:34	27·1 35·4									
3½×2½×A _k	2000		1.10	21 · 0 24 · 9 32 · 5	24:4				16:4 19:6 25:4				
3 ×256×54	222			15-4 22-5 29-3	21.9	14·4 21·1 27·4		12-9 18-8 24-4					
3 ×2 ×14	222	94 95 95 92	- 07 - 91 - 94	20°-3 26°-4	19-7 25-6	24-7							
255×2 ×54	222	-77 -77 -76	-92 -94 -95	12-3 15-2 17-9		11-2 13-8 16-3	10-4 12-9 15-1		7·5 9·2 10·7				
2 ×1%×4	222	-62 -61	-71 -73 -75	7-1 9-3 11-4	6-7 8-8 10-7	6 1 8 0 9 6	5·5 7·2 8·7	4·7 6·1 7·4					

ANGLES AS STRUTS.

SAFE LOADS IN TONS FOR FOUR UNEQUAL ANGLES LACED. ENDS FIXED.

For the Sections given, the least radius of Gyration will be about YY, as, for this to be otherwise the distance A would have to be less than \%".

Size and	d	Radius of Gyration				L	ENGT	H IN	FEET	7			
Thickness	u	< Rad ≺ Gyr	6	8	10	12	14	16	18	20	22	24	26
6 ×4 ×½ 11 11 5/8	1/2	2·91 2·95	111 · 6 137 · 7		107·7 133·1	105·2 130·1	102·3 126·5	98·9 122·4	95·1 117·9	91·2 113·1	86·9 108·0	82·2 102·4	77 - 1
6 ×3½×½ " " 5/8		3.00		104 - 4	102.4	100-2	97.6	94.5	91 - 1	87·5 108·3	23.7	79·5 98·7	
		2·72 2·76	99·6 122·7	97·9 120·6	95·7 118·0	93·2 115·0	90·1 111·4	86·7 107·3	82·9 102·7	78·9 97·9	74·6 92·7	69.8	
5 ×4 ×3/8 11 11 1/2 18 1/2 18 1/8		2·35 2·39 2·41	75·3 99·0 121·9	73·5 96·7 119·2		90.7			58·9 77·9 96·4	54·9 72·9 90·3	50·6 67·3 83·5	46·4 61·8 76·7	
5 ×3½×¾ 11 11 ½ 11 11 5%	1/4	2·43 2·46 2·49	71·0 93·3 114·9	69·5 91·3 112·5	67·6 88·9 109·6		62·6 82·5 101·8	59·6 78·6 97·2	56·4 74·5 92·2	52·9 70·0 86·8	49·0 65·0 80·8	45·0 59·9 74·6	
5 ×3 ×3/8 11 11 ½ 12 5/8	1/2 1/2 1/2	2·50 2·53 2·56	66·7 87·5 107·6	65·3 85·8 105·6	8316	61·6 81·0 99·8	59·2 77·9 96·1	56·5 74·4 91·9	53·7 70·8 87·5	50·5 66·8 82·7			
4½×3½×¾* ½* ½* ½*	1/2 1/2 1/2	2·16 2·19 2·21	66·1 86·7 106·7	64·3 84·4 103·9		59·3 78·1 95·1	56·2 74·1 91·4	52·9 69·8 86·2	49·1 65·1 80·5	45·0 59·7 74·0	41·0 54·5 67·5	37·3 49·6 61·6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2 1/2 1/2 1/2 1/2 1/2	1·95 1·97 1·99 2·02	48·0 57·0 74·7 91·6	46·4 55·2 72·3 88·9	44·4 52·9 69·3 85·3	41·9 50·0 65·7 80·9	39·3 46·9 61·7 76·2	36·3 43·5 57·3 70·9	33·0 39·6 52·2 64·9	29·7 35·7 47·2 58·7			
$3\frac{1}{2} \times 3 \times \frac{5}{16}$	5/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	1.64 1.66 1.68 1.71	43·5 51·8 67·8 83·1	41·5 49·5 64·8 79·5	38·9 46·4 60·9 75·0	36·0 43·0 56·6 69·8	32·6 39·1 51·6 63·9	28·9 34·8 46·0 57·2	25·5 30·3 40·7 50·8	22·5 27·2 36·0 45·0			

TYPES OF BASES & CAPS FOR STANCHIONS

FOR SMALL I BEAMS. FOR MEDIUM I BEAMS.

FOR LARGE I BEAMS.

TYPES OF BASES & CAPS FOR STANCHIONS

FOR DOUBLE I BEAMS WITH FLATS. MEDIUM TYPE.

FOR DOUBLE I BEAMS WITH FLATS. LARGE TYPE.

TYPES OF BASES & CAPS FOR STANCHIONS

FOR I BEAMS OF CRUCIFORM SECTION.

TYPES OF BASES & CAPS FOR STANCHIONS

FOR ZED BARS WITH FLATS. FOR CHANNELS WITH FLATS.

TYPES OF JOINTS FOR STANCHIONS

FOR SINGLE I BEAMS.

FOR SINGLE I BEAMS WITH FLATS.

FOR LARGER I BEAMS. FOR BEAMS OF DIFFERENT SIZES.

Bolted Connections may be adopted to facilitate snection if found advisable.

TYPE CONNECTIONS OF I BEAMS TO BEAM STANCHIONS

Flange Connections.

Flange Connections.

SIMPLE ANGLE STOOLS AND TOP CLEATS FOR I BEAMS.

Web Connections.

Flange Connections

BUILT STOOLS AND TOP CLEATS FOR I BEAMS

Flange Connections. BUILT STOOLS, SIDE AND TOP CLEATS FOR I BEAMS.

(where greater rigidity is required)

TYPE CONNECTIONS OF I BEAM COMPOUNDS TO BEAM COMPOUND STANCHIONS

BUTLT STOOLS AND TOP CLEATS FOR I BEAM COMPOUNDS.

Parge Connection. SURRETTED BYTOSE AND TOP CLEATE FOR 1 MEAN COMPOUNDS

TYPE CONNECTIONS OF I BEAMS AND COMPOUNDS TO ZED BAR STANCHIONS

SIMPLE ANGLE STOOLS AND TOP CLEATS FOR I BEAMS.

BUILT STOOLS AND TOP CLEATS FOR I BEAM COMPOUNDS.

STANDARD CONNECTIONS FOR BEAMS.

Standard Angle Cleats.—The standard angle cleats, illustrated on pages 100 to 103, have been designed for bolted field connections. They have been calculated to withstand reactions equivalent to those produced by the tabular loads on the beams, at the minimum spans given with each standard connection.

Where the reactions are greater than the above, additional support, or special connection, will be necessary.

Separators.—When two or more beams are required to be bolted together, side by side, to form a girder, cast iron separators are frequently used. They should be placed at intervals of about five or six feet, and where concentrated loads occur.

STANDARD CONNECTIONS FOR BEAMS

ANGLE CLEATS 4" × 4" × 1/2" × 1-7 1/2" LONG. REF. No. L1

ANGLE CLEATS 4" x 4" x 1/2" x 1-41/4" LONG. REF. No. L2

ANGLE CLEATS 4 ×4 ×16 ×1-116 LONG. REF. No. L3

ANGLE CLEATS 6 x 316 x 14 x 1-0 LONG. REF. No. L4

Holes for %" dia Boits

8.5.8 15 × 8 × 50 hs Min. Span 10 - 0

B.B.B. 15" × 5" × 42 hs Min. Span. 11-0"

B.B.B. 14" x 8" x 57 ftm Min. Span. 15 - 0"

B.B.B 14 × 8 × 46 lbs Min Span 12-0

ANGLE CLEATS 6 -312 -16 -1019 LONG. REF. No. LS

STANDARD CONNECTIONS FOR BEAMS

ANGLE CLEATS 6" × 31/2" × 3/8" × 81/2" LONG. REF. No. L6

ANGLE CLEATS 6" × 31/2" × 3/8" × 7" LONG. REF. No. L7

ANGLE CLEATS 6" x 6" x 1/2" x 51/2" LONG. REF. No. L8

ANGLE CLEATS 6" x 31/2" x 3/8" x 7" LONG. REF. No. L9

ANGLE CLEATS 6 -30 -10 -5 Long. Her No Lie

	Broate Is " sta-	8.5.5	
		8.0.0	* *
		31.8	
2 11		8.5.8	
S II		31.5	
		8.5.8	
		0.4.8.	
15" da 800		8.0.0	

ANGLE CLEATS 6 -3's -15 -3 LONG. Rev. No. LT

ANGLE CLEATS 6 -315 -15 -215 LONG. REP. NO. LIN

	Books 'S' dis.		
- W- 3		BAR BELOW BA	
	122	BARTIST CO.	
		BEER STORY STATE	

ANGLE CLEATS 6 -3" -1" -1" LONG. REF. NO. L'O

FISHPLATE REF. No. FP1

FISHPLATE REF. No. FP 4
For 8.S.B. 16" × 6" × 62 lbs
For 8.S.B. 15" × 6" × 59 lbs
For 8.S.B. 15" × 5" × 42 lbs

FISHPLATE REF. No. FP2
For B.S.B. 20" × 7½" × 89 lbs

FISHPLATE REF. No. FP 5
For B.S.B. 14" x 6" x 57 lbs
For B.S.B. 14" x 6" x 46 lbs

FISHPLATE REF. No. FP3
For B.S.B 18" x 7" x 75 lbs

FISHPLATE REF. No. FP 6
For B.S.B. 12" × 6" × 54 lbs
For B.S.B. 12" × 6" × 44 lbs

For D.L.B. 12" x 5" x 39 lbs For B.S.B. 12" x 5" x 32 lbs

The above Fishplates are for beams supported at joints, and those usually kept in stock are ½" thick for the larger, and %" thick for the smaller sizes.

FISHPLATE REF. No. FP7

FISHPLATE REF. No. FPS

For B.S.B. 10" x 6" x 42 lbs. For D.L.B. 10" x 5" x 35 lbs. For B.S.B. 10" x 5" x 30 lbs

For D.L.B. 8'4" x 3"4" x 21-5 lbs For B.S.B. B x 4 x 21 lbs.

FISHPLATE REF. No. FP9

For B.S.B. B × 5 × 28 ftm For D.L.B. 8 × 4 × 25 lbs

For B.S.B. B v.4 v 18 lbs

For B.S.B. 7" x 4" x 10 lbs.

0 0 0 0 0

FISHPLATE REF. No. FP 10

For D.L.B. 6 × 3 × 10 lbs

For D.L.B. 5 × 5 × 24 lbs

For B.S.B. 5 × 415 × 18 lbs

FISHPLATE REF. No. FP11

For D.L.B. 4% x1% x10 be For B.S.B. 4" x 3" x 9 5 to

FISHPLATE REF. No. FP 12

I BEAMS WITH CAST IRON SEPARATORS.

B B B SO		Reference		Ewn	3.		Bult	
BBB 30		Mark	Size ,	Rathers Nach Separat	Custres Beams	1		Weight
- 20								Lba.
- 28								4.07
- 27 16 6 802 N 6 6 8 8 8 8 8 8 8 8								4.97
- 26								4.78
25 15 5 42 5 6 5 8 8 3					6		B	
- 24 14 0 877 N° 61 4 8 8 3 22 12 12 6 84 N° 65 4 8 8 3 21 12 6 844 N° 65 5 8 8 3 2 1 12 6 844 N° 65 5 8 8 3 2 21 12 6 844 N° 65 5 8 8 3 2 21 12 6 844 N° 65 5 8 8 3 2 21 12 6 844 N° 65 5 8 8 3 2 1 12 6 8 8 8 1 65 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				615		B	8.08
24 14 6 87 87 88 8 3 22 12 6 864 88 87 65 8 8 8 3 22 12 6 864 88 87 65 8 8 8 3 22 12 6 864 88 87 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					8%		В	
23	4-0-0	. 24	14×6 ×57		615			
22			14 6 × 46		Bh.			
			12×6 ×54					
			12-6 ×44		6%			8.08
B B B 20	4-0->	DLB 20A			67			
10 10 8 70 8 8 6 6 10 1 1 1 1 1 1 1 1		B B B 20						8.05
18 10 × 6 × 42 N' 6 % 6 % 7 % 1	semiliana semiliana		10 × B × 70					1.78
DLB 17a 10×6 ×35 N° 0% % 7a 17 BBB 17 10×5 ×30 N° 6a 4 7a 17 - 16 9×7 ×58 N° 7b 4 6 7a 17 DLB 15a 0 4×21 N° 4b 4 6 5 5 1 17 - 14 8×6 ×35 N° 6b 4 7a 8 17 - 14 8×6 ×35 N° 6b 4 7a 8 17 - 14 8×6 ×35 N° 6b 4 7a 8 17 DLB 12a 8×4 ×25 N° 6b 4 7a 17 BBB 12 8×4 ×25 N° 6b 4 7a 17 - 11 7×4 ×16 N° 4b 7b 17 - 10 6×5 ×25 N° 6b 14 7b 17 - 9 6×4b ×20 N° 6b 14 6b 17 BBB 8 6×8 ×16 N° 6b 14 6b 17 BBB 8 8 8×8 ×16 N° 6b 14 6b 17 BBB 8 8 8×8 ×16 N° 6b 14 6b 17 BBB 8 8 8×8 ×16 N° 6b 14 6b 17 BBB 8 8 8×8 ×16 N° 6b 14 6b 17 BBB 8 8 8×8 ×16 N° 6b 14 6b 17 BBB 8 8 8×8 ×16 N° 6b 14 6b 17								
B B B 17		DLB 17a						
DLB 15a 9\(\pi_1 \cdot \text{N} \text{S} \(\text{S} \) \(\		BBB 17						
B 6 B 16		16	9×7 ×58					1.65
B		DLB 15a			416			
- 14 B × B × 35 N × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		B S B 1.5						
BLB 12		. 14						
DLB 12a B = 4 × 25 5 1 6 6 6 7 1 7 1 1 1 1 2 B = 4 1 1 B 5 1 6 6 6 7 1 1 1 1 7 2 4 1 1 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Transport Transport		B×5 ×28					
B 5 B 12 B 2 4 × 1 B 5 1 0 1 5 7 1 1 1 7 2 4 × 1 B 5 1 2 5 1 1 1 1 7 2 4 × 1 B 5 1 2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DLB 12a	B = 4 × 25					
11 7×4 ×16 5 ¹² 45 5 5 11 10 6×5 ×25 5 ¹² 55 5 5 6 11 2 0 6×45×20 5 ¹² 55 5 6 11 DLE 8a 6×8 ×16 5 ¹² 55 5 65 11 BER 8 6×8 ×12 5 ¹² 55 5 65 11 DLE 7a 5×5 ×24 5 ¹² 55 5 65 11		B 5 B 1 2						1'45
DLB BA 6×8 ×16 bit 5i 6i 11 BA								1.58
DLB BA 6×8 ×16 b ¹⁴ b ¹⁴ b ¹ 4 b ¹ 5 1 1 BBB B 6×8 ×12 b ¹⁴ b ¹⁴ b ¹ 5 b ¹ 5 b ¹ 6 b ¹ 5 b ¹ 7 b ¹ 8 b ¹	-		6×5 ×25					
DLB BA 6×8 ×16 51 55 55 17 BSB 8 6×8 ×12 51 51 5 6 5 6 17 DLB 7A 5×5 ×24 51 50 5 6 6 17			6×4%×20					
BAB 8 6×8 ×12 5° 5° 5° 6° 10° 11° 5° 5° 6° 11° 5° 6° 11° 11° 11° 11° 11° 11° 11° 11° 11°		DLB BA						
DLB 7A D×D ×24 514 550 50 50 11		BBB B						
		DLB 7A						
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		858 7	5×4%×18				614	1.82
DIE W. C.		DLB GA						

Note.—For I Beams of smaller section than 5" × 6,5", single 5," diameter Bolts are used, with Distance Places of 1" gas tabling in lengths cut as required.

STANDARD CAST IRON SEPARATORS.

FOR USE IN BEAMS FROM $24'' \times 7\%''$ TO $12'' \times 5''$.

Reference		DIMENSIONS IN INCHES										
No.	А	В	С	D	E	F	d	Weight in.				
S ¹ S ² S ³ S ⁴ S ⁵ S ⁶ S ⁷	19½ 16 14 12½ 11½ 10½ 8½	7 3/8 7 3/8 6 1/6 5 1/6 6 6	13 10 9 8 7½ 7	2 2 2 1 ³ / ₄ 1 ¹ / ₂ 1 ¹ / ₃	5/8 5/8 5/8 1/2 1/2 1/2 1/2	5/8 5/8 5/8 1/2 1/2 1/2 1/2	1 1 1 1/8 % % % % % %	27 ·10 22 ·75 19 ·23 11 ·78 10 ·83 10 ·01 8 ·39				

FOR USE IN BEAMS FROM $10'' \times 8''$ TO $5'' \times 4\frac{3}{16}''$.

Reference		Weight in						
No.	А	В	E	F	d	7 ·91 6 ·9 6 ·26		
S8 S9 S10 S11 S12 S13 S14	6 7 51/4 63/4 51/4 5	$7\frac{7}{8}$ $6\frac{1}{16}$ $6\frac{15}{16}$ $4\frac{3}{16}$ 6 $4\frac{1}{4}$	1/2 1/2 1/2 1/2 7 16 7 16 7 16 7 16	3/8 3/8 3/8 3/8 3/8 3/8 3/8	7/8 7/8 7/8 7/8 7/8 7/8 7/8	6.9		

STANDARD SPACING OF HOLES IN FLANGES OF CHANNELS, I BEAMS AND ANGLES.

13/4

NOTES ON PLATE GIRDERS.

General Note.—On the preceding pages, tables of I beams and compounds are given, shewing the loads carried by each for various spans; but under some conditions, as for instance where the deflection allowed is very small, it will sometimes be found that the plate girders, given in the following pages, may be used with advantage.

Tabular Loads.—The loads given in the tables include the weights of the girders themselves, and are, in each case, calculated from the modulus of the net section, i.e., both flanges holed. They are based on an extreme fibre stress of 7½ tons per square inch, being one-fourth of the average breaking stress.

When it is considered advisable to adopt any other extreme fibre stress, say f tons per square inch, the tabular loads should be altered in the ratio $\frac{f}{f_{-K}}$.

The loads are also based on the assumption that the girders receive efficient lateral support, and the webs are adequately stiffened.

Stiffeners.—The stiffening of plate girders may be effected by means of vertical angles fitting between the inner surfaces of the flange angles, and properly riveted to the web. In the case of girders having double webs, diaphragms may be adopted, which ensure greater unity than that obtained by using outer stiffeners alone. The spacing of the stiffeners depends on the depth of the girder, the thicknesses of web plates, and the purposes for which the girders are required.

Curtailment of Plates.—Where it is not desirable to allow the flange plates to extend the full length of the girder, the limit to which they can be curtailed, for girders supported at both ends and having an uniformly distributed load, may be found as follows:—

Let A = total area of flange, in square inches.

a1 = area of top plate, in square inches.

a₂ = area of two top plates, in square inches

 $a_x = area$ of number x top plates, in square inches.

K = span of girder, in feet.

k₁ = length of top plate, in feet.

k₂ = length of second plate, in feet.

 $k_x = length$ of xth plate, in feet.

Then :-

$$k_1 = \frac{K\sqrt{a_1}}{\sqrt{A}}$$
 $k_2 = \frac{K\sqrt{a_2}}{\sqrt{A}}$ $k_2 = \frac{K\sqrt{a_2}}{\sqrt{A}}$

It is customary to make the plates longer than the lengths found by the above formulae to the extent of about three pitches of rivets at each end, and the plate next to the flange angles is usually the full length of the girder.

PLATE GIRDERS.

BAFE LOADS IN TONS UNIFORMLY DISTRIBUTED.

T	Augustical
-1	

-	r		
- 1	г		
- 1	ı		

	k sense å 10 insila		i seree A	- An	gles elics	An	k orner giver college		ik prost gjiss sellass
Tax Section 12	fee in i		indiana las in i	An	ness of give other		tone of give	Ann	topes of give indees
86 40 43									

Sugar sie is

Finns				M ins		Begilt over Anglie M instea Whith of Plange II instea Total thinkness, V. in Inches of Sate in the Shape							
in but	Total	of Bata	100 m	in in Stongs	dom.								
					1			%					
1100	H												
	11												
10						5							

NOTE: Where I exceeds \$7', two flats about he used

PLATE GIRDERS.

SAFE LOADS IN TONS UNIFORMLY DISTRIBUTED.

Angles 6″x 6″ ← Web½″Thick

	Angles 6	epth over	Angles	36 inch lth of Fl	es ange 14"	Depth over Angles 42 inches Angles 6"×6"×½" Width of Flange 14 Total thickness, T, in inches, of flats in one flange						
Spans in feet	To	otal thick	ness, T, s in one		es,							
1000	1/2	5/8	3/4	7/8	1	1/2	5/8	3/4	7/8	1		
24 26 28	121 111 104	121 113				135 125	136					
30 32 34	97 91 85	106 99 93	114 107 101	116 109	117	117 109 103	127 119 112	138 129 121	139 131	140		
36 38 40	81 76 72	88 83 79	95 90 86	103 97 92	110 104 99	97 92 88	106 100 95	115 109 103	123 117 111	132 125 119		
42 44 46						83 80 76	91 87 83	98 94 90	106 101 97	113 108 103		

Spans		Depth over Angles 48 inches Angles $6'' \times 6'' \times \%''$ Width of Flange 16"											
in		Total thickness, T, in inches, of flats in one flange											
feet	1/2	5/8	3/4	7/8	1	1 1/8	11/4						
30 32 34	158 148 139	161 151	::			::							
36 38 40	131 125 118	143 135 129	154 146 139	157 149	159	ï.	::						
42 44 46	113 108 103	122 117 112	132 126 121	142 135 130	152 145 138	154 147	156						
48 50 52 54	99 95 91 88	107 103 99 95	116 111 107 103	124 119 114 110	133 127 122 118	141 136 130 126	150 144 138 133						

Note.—When T exceeds 3/4", two flats should be used.

BOX PLATE GIRDERS.

SAFE LOADS IN TONS UNIFORMLY DISTRIBUTED.

Anglus 4.4 4.22 Waba 2 Thick

						_	_	-						
Spans		Wid	th of	Flange	16 in				W.	ish of	Flang	n 16 is		
in feet		Total thickness, T, in inches, of flats in one flange						Total thickness, T, in inches, of flats in one flange						
		%	%	%	1	1 1/4	1 1/4			%	%			11/4
24 26 28	94 87 81	105 97 90	116 107 99			149 137 127				145 133 124		170 157 146		
30 32 34	75 71 67	84 79 74		101 96 90				96 89 83	105 96 93					
36 38 40										96 91 87				

Spans		Wid	th of	Flange	18 in				Wil	ith of	Flang	n 18 b		
in feet				in one		nohes,				thick of flat			inches,	
		%	%	%	1					%		1		1 %
24 26 28	152 140 130	170 187 145						180 166 154			210 221 206	240 223	290	
30 32 34	122 114 107		150 140 132	154 153 144			306 195 181	144 136 127	160 150 141			208 196 104	204 210 168	240 225 212
36 38 40	101 96 91	11.5 107 102		136 129 123	148 140 133	160 151 144	171 162 154	130 114 108		147 130 132	160 152 144	173 164 156		
42 44 40 48	87 83 79 76	97 93 80 85	107 102 96 94	117 112 107 102			147 140 134 129	103 96 94 90	114 109 104 100	136 130 115 110		140 140 136 130	160 153 146 140	171 164 187 180
50 52 54								86 83 80	96 90 30	106 102 98			154 129 124	

NOTE.-When T exceeds 5,", two flats should be used.

BOX PLATE GIRDERS.

SAFE LOADS IN TONS UNIFORMLY DISTRIBUTED.

			over						Depth Wid	over th of I	Angle	s 48 i	inches	
Spans in feet			thickn f flats								ness, 7			
2000	1/2	5/8	3/4	7/8	1	11/8	11/4	1/2	5/8	3/4	7/8	1	1 1/8	11/4
24	218	241						257						
26	201	222	244					237	262					
28	186	207	227					220	243	266				
30	174	193	212	230				205	227	248	270			
32	163	181	198	216	234			193	213	233	253	273		
34	154	170	187	203	220	237		181	200	219	238	257	276	
36	145	161	176	192	208	224	239	171	189	207	225	243	261	279
38	137	152	167	182	197	212	227	162	179	196	213	230	247	264
40	131	145	159	173	187	201	215	154	170	186	203	219	235	251
42	124	138	151	165	178	192	205	147	162	177	193	208	224	239
44	119	131	144	157	170	183	196	140	155	169	184	199	214	228
46	113	126	138	150	163	175	187	134	148	162	176	190	204	218
48	109	121	132	144	156	168	179	128	142	155	169	182	196	209
50								123	136	149	162	175	188	201
52								118	131	143	156	168	181	193
54								114	126	138	150	162	174	186

NOTE.—When T exceeds 3/4", two flats should be used.

NOTES ON ROOFS.

APPROXIMATE WEIGHTS, PER SQUARE FOOT OF GROUND AREA COVERED, FOR STEEL ROOF PRINCIPALS, WITH THE VARIOUS FORMS OF COVERING ENUMERATED SELOW.

PRESSURE OF WIND ON ROOFS (PER UNWIN'S FORMULE).

- Angle of surface of roof, with direction of wind
- F = Force of wind in pounds per square foot.
- N = Pressure normal to surface of roof = F.Sin. a Vot Cos. a L.
- V = " perpendicular to direction of wind = F.Cot.a.Sin.al M Coa.s
- H = n parellel n n n n = F.Sin.a P34 Coxa.

PRESSURE OF WIND ON ROOFS WHERE THE PROPORTION OF HEIGHT TO HALF SPAN - 1:2.*

F. in the per sq. ft.	5	10	15					40	45		
N	2'95				14.75					32.45	35.4
V			7'95		13.25		18-55				31.8
H			4.09	5.4	6.75	8.1	9145			14'85	16.5

PRESSURES OF WIND ON ROOFS.

1	kngls of Roof		301	*28'84'		40"	50"	60"			90*
Г	$N = F \times$	-24	-45	'59	-66		195	1:00			
ı	V = F ×	124	-42	'58		164			- 35		-00
ı	H = F ×	-04		'27					-96	.00	1.00

PROPORTIONS OF ROOFS.

Proportion of height	An	gla		tion of if Rafter	Proportion of height	An	gla		s of length laiter
to half	Deg.	Min.	to height	to half		Deg.	Min.	to height	to half span
1/1	45	0	1:41421	1:41421	*1/2	26	34		1'11808
1/1-5	33	41	1:80277	1:20185	1/2-5		40		
11/8	30	0	2:00000	1:15470	1/3	18	26	3-16228	1:05409

^{*}The proportion, 1:2, of height to half span, has been adopted as meeting general requirements.

ROOF TRUSSES.

Table of Co-efficients for the determination of Stresses, and Lengths of Members, in Roof Trusses, for any span, the proportion of height to half the span being 1:2.

To find the Stress in any Member :-

Let S=Span between the points of intersection of the Rafter and Tie.

W=Total Wind Pressure resisted by the Truss, acting on one side of roof, and normal to its surface.
f=Total Stress required.

Then f=(L multiplied by Co-efficient for Dead Load) + (W multiplied by Co-efficient* for Wind Pressure).

In Trusses of larger spans it is sometimes advisable to provide for expansion, in which case the co-efficient for wind pressure corresponding to "one end free" should be used.

To find the length of any Member between points of intersection:

Multiply S by the length coefficient for that member.

Note.—The following Stress Co-efficients have been calculated on the assumption that the roof purlins occur over the points of intersection of the various members with the rafter; when such is not the case, bending is produced in the rafter which necessitates further calculation, or allowance being made when deciding its section.

		STRE	SS 00-EFF	ICIENTS	ts s	
	mber	Dead	Normal Wi	nd Pressure	Length o-efficient	d d
T	russ	Load	Both ends fixed	One end free	Length Co-efficients	FIG I.
F1G. 1.	ab bc ac ce cd	·838 ·727 ·223 ·750 ·500 ·250	·875 ·875 ·500 ·978 ·419 ·559		·27950 ·27950 ·13975 ·31250 ·18750 ·31250	a S C
F1G. 2.	ab bd de bc dc ac cf ce	·932 ·758 ·783 ·179 ·179 ·833 ·500 ·333	1.042 .820 1.042 .401 .401 1.165 .419 .746		·18634 ·18634 ·18634 ·16797 ·16797 ·31250 ·18750 ·31250	Fig 2 d d a s
F1G. 3.	ab bd df fh bc fg de ac ce; cd gg eg	978 922 866 811 112 112 224 875 750 500 125 125 375	1·125 1·125 1·125 1·125 1·125 ·250 ·250 ·500 1·258 ·978 ·419 ·279 ·279 ·279 ·279 ·338 ·559	1 · 125 1 · 125 1 · 125 1 · 125 1 · 125 2 · 250 · 500 1 · 397 1 · 118 · 559 · 279 · 279 · 279 · 838 · 559	13975 13975 13975 13975 13975 13975 13975 15625 15625 15625 15625 15625 15625 15625	FIG 3.

Note.—Heavy lines indicate Compression and light lines Tension Members.

ROOF TRUSSES.

Table of Co-efficients for the determination of Stresses, &c.

	STRE	SS CO-EFF	CIENTS	.23	
Member	Dead	Normal Win	d Pressure	gth	
Truss	Load	Both ends fixed	One end free	Length Oo-efficients	
abbd dff fh hkk moo od od bc fg kl od eij jr cd dg ln mppghgh ln pp jn	1 048 1 020 964 964 936 980 880 985 056 066 066 066 066 066 066 066 066 06	1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 25 1 25 1 25 1 25 2 25 2 25 2 25 2 25	1·250 1·250 1·250 1·250 1·250 1·250 1·250 1·250 1·250 1·250 1·255 1·25 1·25 1·25 1·25 1·25 1·25 1·2	06987 06697 06697 06697 06697 06697 06697 06697 03494 03494 03494 03494 07812 07812 07812 07812 07812 07812 07812 07812 07812 07812 07812	F(0, 4,
ab bd de e e g j j k bc d dc g h j h e f a c f f l c e h h k f h	1.025 938 960 913 826 838 090 090 090 090 224 917 750 500 167 417 250	1·208 1·208 1·208 1·208 1·208 1·208 200 200 200 200 200 500 1·351 978 419 373 373 373 3559	1·208 1·208 1·208 1·208 1·208 1·208 1·200 ·200 ·200 ·200 ·200 ·200 ·200 ·300 1·491 1·118 ·559 ·373 ·373 ·373 ·332 ·559	**O8817** **O9817** **O9817** **O9817** **O9817** **O9817** **O8398** **O839	Fig 5

Note.—Heavy lines indicate Compression and light lines Tension Members.

TYPE CONNECTIONS FOR ROOF TRUSSES

Detail at "q," Fig. 4 & "k," Fig. 5.

Detail at "d," Fig. 1.

Detail at "h," Fig. 3.

Detail at "h," Fig. 4 & "e," Fig. 5.

TYPE CONNECTIONS FOR ROOF TRUSSES

TYPE CONNECTIONS FOR ROOF TRUSSES

Detail at "e," Figs. 3 & 4. Detail at "b," Figs. 1, 3 & 4.

Detail at "c," Fig. 2.

Detail at "b," Figs. 2 & 5.

Purlin Cleat Connections,

NOTES ON TROUGHING.

Troughing, as illustrated on the following pages, commands a leading place on the market; and can be recommended for a variety of purposes. When used for road bridges, it not only affords a watertight superstructure for carrying the road metalling, but, in most cases, dispenses with the use of cross girders and frequently with the main girders also. In railway bridges it frequently takes the place of cross girders, railbearers and timber planking; at the same time forming a safer floor in case of derailment. A maximum amount of headway under the bridge is attained, and a saving in cost effected. The smaller sections will be found especially useful for the decking of piers, floors of warehouses, ceilings of subways, strong rooms, etc.

The troughing is usually riveted, before dispatched, in sections of three, thus:—

The site connections are generally made with rivets, but bolted connections may be adopted when found advisable; either method affording easy means of erection.

Single troughs, as illustrated on pages 26 and 27, are frequently used as roof gutters, and permit of the supports being placed at long distances apart.

Dimensions, Properties, Safe Loads, &c.—Diagrams of the various sections of built-up troughing are shewn on pages 123 to 131; and tables, giving dimensions, properties and safe loads, will be found on pages 132 to 134. The properties have been carefully calculated on their correct profiles, all fillets and rounded corners being taken into consideration.

The tabular loads include the weight of the troughing itself, and are calculated from the section modulus of the width "C" shewn on diagrams. They are based on an extreme fibre stress of 6% tons per square inch.

From these particulars the section required to safely carry any specified load may be easily determined.

Examples.—The application of the various sizes of troughing to meet different requirements, together with the necessary calculations, are given on pages 155 to 159.

Handrail Standards.—The types of handrail standards generally adopted in trough bridges are shewn on page 140.

Illustrations of Trough Bridges.—Illustrations shewing the use of troughing as applied to bridge work, will be found on later pages.

STEEL TROUGHING

O MINIMUM

weight per sq. ft. of covered area = 13.4 lbs Section Modulus = 4.92

O MAXIMUM

weight per sq. ft. of covered area = 19.06 lbs Section Modulus = 6.55

A MINIMUM

weight per sq. ft. of covered area = 17.61 lbs Section Modulus = 8.4

A MAXIMUM

weight per sq. ft. of covered area = 23.1 lbs Section Modulus = 11.05

STEEL TROUGHING

B MINIMUM

weight per sq. ft. of covered area = 21.8 lbs Section Modulus = 13.5

B MAXIMUM

weight per sq. ft. of covered area = 28 lbs Section Modulus = 17.5

STEEL TROUGHING

C MINIMUM

weight per sq. ft. of covered area = 24.52 lbs Section Modulus = $21^{6}62$

C MAXIMUM

weight per sq. ft. of covered area = 32.97 lbs Section Modulus = 30.6

STEEL TROUGHING

C1 MINIMUM

weight per sq. ft. of covered area = 26.26 lbs

Section Modulus = 36.57

C1 MAXIMUM

weight per sq. ft. of covered area = 35.02 lbs Section Modulus = 51.45

STEEL TROUGHING

D MINIMUM

STEEL TROUGHING

Weight per sq. ft. of covered area = 40.5 lbs Section Modulus = 103.54 D MEDIUM

D MEDIUM

STEEL TROUGHING

Weight per sq. ft. of covered area = 51-83 lba Section Modulus = 135-8

E MINIMUM

FOR PROPERTIES AND BAFE LOADS SEE PAGE 194.

STEEL TROUGHING

E MAXIMUM

STEEL TROUGHING.

DIMENSIONS AND PROPERTIES.

Reference	Weight per sq. ft.			Width	Thick-	Thick-	Ri	vets	Section Modulus
Mark	of covered area in lbs.	Centres	Depths	of Flange B	ness of Flange	ness of Web	Dia.	Pitch	for width
D. Max.	51.83	ft. in. 2 8	ft. in. 1 1	ins.	ins. 1.000	ins. ·636	ins. 3/4	ins.	135 ·80
D. Med.	40 · 50	2 8	1 01/2	9	.756	.508	3/4	4	103.54
D. Min.	28.78	2 8	1 0	9	•500	.367	3/4	4	72.67
O' Max.	35.02	2 0	93/8	71/2	.625	.401	3/4	4	51 · 45
O' Min.	26.26	2 0	9	7½	.438	307	3/4	4	36 · 57
O Max.	32.97	1 . 8	73%	6	616	.400	5/8	4	30.60
O. Min.	24.52	1 8	7	6	.438	.300	5/8	4	21.62
B. Max.	28.00	1 4	61/4	51/8	.503	.304	5/8	4	17.50
B. Min.	21 · 80	1 4	6	51/8	.375	.240	5/8	4	13.50
A. Max.	23 10	1 2	51/4	41/2	.453	.247	1/2	4	11.05
A. Min.	17:61	1 2	5	41/2	.336	·188	1/2	4	8 · 40
0. Max.	19.06	1 0	41/4	4	.386	·184	1/2	4	6.55
0. Min.	13.40	1 0	4 a.	4	·267	125	1/2	4	4.92

STEEL TROUGHING.

SAFE LOADS IN CWTS. PER SQUARE FOOT.

Reference	SPAN IN FEET														
Mark	6	8		12	14	16	18	20	22	24	26	28	30	32	
D. Max.			44-1	3016			13:6				615	516	4.9	4-3	
D. Med.				23-4			10:4	8:4				4-3			
D. Min.			23.6	16:4				5.9	4.9	4-1	3.0		2.6		
O: Max.					11.4		6.9	5-6	4.6						
O' Min.			15.8			6.2	4.9	4.0	3.3						
C. Max.		24.8	15-9			6.2	4.9								
C. Min.		17.6				4-4									
B. Max.	31.6		11:4	7.9	5-8	4-4									
B. Min.	24:4				4.5	3:4									
A. Max.		12-8			4.2										
A. Min.				4:3											
O. Max.				3:9											
0. Min.		6-6	4.3	2.9											

SAFE DISTRIBUTED LOADS IN TONS FOR WIDTH "C."

Reference						8.P	AN I	N FE	FT					
Mark	6	8	10	12	14	16	18	20	22	24	26	28	30	32
D. Max. D. Med. D. Min.			44-9	37-4			24.9	22-4	20:4			16-0	19-6 14-9 10-3	
C: Max. C: Min.					15-9 11-3					9-3				
C. Max.					9-5 6-7		7·4 5·2							
B. Max. B. Min.	12-6 9-7	9-5 7-3			5-4 4-2	4-7 3-6								
A. Max. A. Min.	8:0	6-0 4-5	4·8 3·6	4·0 3·0										
0. Max. 0. Min.	4-7 3-5	3·5 2·7		2-4 1-8										

DIMENSIONS AND PROPERTIES.

	Weight			of es	nge o	eb	Fl	ats	Ri	vets	Section Modulus
Reference Mark	per sq. ft. of covered area in lbs.	Oentres c	Depths	w Width	Thickness of Flange	Thickness of Web	Width	Thick- ness E		Pitch	for width "C"
E. Max. E. Min.	56·76 32·6		ft. in. 1 5¼ 1 3¾	ins. 9	ins. 1.000	ins. ·636 ·367	ins. 7	ins. 5/8	ins. 7/8 7/8	ins. 4	203·87 104·61

SAFE LOADS IN CWTS. PER SQUARE FOOT.

Reference Mark		SPAN IN FEET													
	14	16	18	20	22	24	26	28	30	32	34	36	38	40	
E. Max. E. Min.															

SAFE DISTRIBUTED LOADS IN TONS FOR WIDTH "C."

Reference Mark		SPAN IN FEET													
	14	16	18	20	22	24	26	28	30	32	34	36	38	40	
E. Max.	63.1	55.2	49.1	44.2	40.2	36.8	34.0	31.8	29.4	27.6	26.0	24.5	23.2	22.1	
E. Min.	32.4	28.3	25.2	22.7	20.6	18.9	17-4	16.2	15.1	14.2	13.3	12.6	11.9	11.3	

Live Load (wheel load 10 Tons) distributed over 3 Whiths, Benda

Dead Land per square foot = 180hs.

Total Dead Load on 11-5' × 5' × 185 = 3.72. T

Age to Live Lond = 10 (3.5% pl.)" = 380 inch to Remling Moment 3.72x 11/5 (1.1% pl.) = 14/17 inch to Dead Lond = 8.75x 11/5 (1.1% pl.) = 14/17 inch to Tead Lond = 8.75x 11/5 (1.1% pl.)

forbillon of 3 Whithis "C"= 3 × 30 t = 81.8, trees = $\frac{454 \cdot 17}{31 \cdot 6}$ = 4.54 Toos per square inch.

DOUBLE LINE RAILWAY. MAX." SECTION TO 3 .. APPLICATION OF

STRENGTH OF FLOOR AS SHEWN ABOVE.

Live Load (wheel load 20 Toos) distributed over 2 Widths, " $C^{**}=46,~\Omega_{\rm m}$

J. Dend Load on 2 Walchs -C" = 23 × 6 × 206 = 12 99 Tons.

dow to Live Load = (20 × 2 × 10 × 5) 12" = 1411.2 inch tons
Reading Moment 12 46 × 25 × 12 = 487 8
dow to Dead Load = 8

Modulus of 2 Widths "C" = 2 x 203 SI = 407 74 Stress = 1849 = 4-53 Tons nor sonare inch.

DORMAN. LONG CO. LIMITED. 82

due to Live Load = (20×9·38-10×5) 12" = 1651·2 inch tons

8.8×25×12

Bending Moment
due to Dead Load

= 8.8 Tons.

25' × 6' × 131.5

Bending Moment

Live Load (wheel load 10 Tons) distributed over 2 Widths, "C" = 6ft, 0in.

Dead Load per square foot = 131.5lbs.

Total Dead Load on 2 Widths "C" =

Total 1981.2

Modulus of 2 Widths "C" = 2 × 205.87 = 407.74,

407.74 = 4.85 Tons per square inch.

1981 -2

MAX." SECTION TO DOUBLE LINE RAILWAY SLEEPERS CROSS HLIW ы : OF APPLICATION

BRIDGE ROAD PUBLIC 10 SECTION MAX... M :: 0.5 APPLICATION

STRENGTH OF PLOOR AS SHEWN ABOVE FOR ES & SPAN

Line Lond - Traction Engine II Trace, and London Wagon of M. Trace, distributed over 3 Width - C. -10s, to.

and Lond per square fast a 27%.

and Dead Load - No. 10 to

TYPE OF DECK SPAN TON DOUBLE LINE RALLWAY.

OF THROUGH SPAN FOR SINGLE

DOUBLE LINE RAILWAY SPAN THROUGH

TYPE OF PUBLIC ROAD BRIDGE OF LARGE SPAN.

ROAD BRIDGE WITHOUT MAIN PUBLIC OF

YPE OF HIGHWAY BRIDGE.

TYPE OF HIGHWAY BRIDGE.

TYPE OF LIGHT CARRIAGE BRIDGE.

TYPE OF FOOT BRIDGE.

TELEGRAMS: "NAMROD, MIDDLESBROUGH."

SHEET DEPARTMENT

AYRTON ROLLING MILLS, MIDDLESBROUGH. ENGLAND.

ROLLING MILLS WITH GALVANIZING AND CORRUGATING SHOPS.

STEEL AND IRON SHEETS

REQUISITE FITTINGS OF ALL DESCRIPTIONS.

LONDON OFFICE :

23 LEADENHALL STREET, E.C. "TREFILEUR, LONDON."

TELEGRAMS:

BRANDS.

APPROXIMATE NUMBER OF GALVANIZED CORRUGATED SHEETS PER TON.

Rose	Derrugu- tus			6	01/1		
					54		47
			54				
							57
	0.41						
				04		54	51
			67	60			
	9.9"					81	76
						903	
	7.4"						85
			8.6			-08	84
22 5.6.				110		99	93
				97			
				140			119
		1.60					94
20 1. G.							149
							194
38 8.6.	8.5					172	1.01
	9.5"				1.69	1.58	1.67
				1.07	156	140	

Fig. Shorts N' with sound the same as UP' carragation, and W' with some as UP' corragation.

APPROXIMATE NUMBER OF GALVANIZED CORRUGATED SHEETS PER TON.

			_					
8′	8½′	9′	9½′	10'	11'	12'	Oorruga- tion	Size
44 37							8/3") 5/5") 10/3") 6/5")	16 B. G.
							5/5"	18 B. G.
54	51	48	45	43			8/3"	,,
							6/4"	,,
48	45	42	40	38			7/4"	,,
46	43	41	39	37			6/5"	,,
				0,			10/3"	,,
71	67	63	60	57			∫ 8/3″	20 B. G.
							6/4"	,,
61	57	54	51	49			7/4"	,,
59	56	53	50	47			10/3"	,,,
87	82	77	73	69	63		8/3"	22 B. G.
73	68	65	61	58			10/3"	,,
100	98	93	88	84	76	70	8/3"	24 B. G.
96	90	85	81	77			9/3"	,,
88	83	78	74	70			10/3"	,,
139	131	124	117	111			8/3"	26 B. G.
127	120	113	107	101			9/3″	,,
116	109	103	98	93			10/3"	31
150							8/3"	28 B. G.
137							9/3"	,,
125							10/3"	,,

Flat Sheets 30" wide count the same as 8/3" corrugation, and 36" wide same as 10/3" corrugation.

CORRUGATED SHEETS.

GAUGES 16, 18 AND 20 B.G.

CORRUGATED SHEETS.

GAUGES 16, 18 AND 20 B.G.

CORRUGATED SHEETS.

GAUGES 16, 18, 20, 22, 24, 26 AND 28 B.G.

CURVED CORRUGATED SHEETS.

8/3" OR 10/3". FROM 16 TO 26 GAUGE. 5/5" ,, 6/5". ,, 16 ,, 20 ,,

8/3" OR 10/3". FROM 16 TO 26 GAUGE. 5/5" ,, 6/5". ,, 16 ,, 20 ,,

GALVANIZED GUTTERS AND DOWN PIPES. GAUGE 16 TO 26.

ANGLE. SOCKET.

HALF ROUND.

STOP END.

GIRTH 10" TO 36". LENGTH ABOUT 6' 0".

O G GUTTER.

SECTION.

GIRTH 10" TO 36". LENGTH ABOUT 6' 0".

GALVANIZED GUTTERS AND DOWN PIPES.

BEADED GUTTER.

GIRTH 10" TO 36". GAUGE 24. LENGTH ABOUT 6 0".

MOULDED O G ANGLE.

STAMPED O G GUTTER, WITH SLIP JOINTS. SECTION.

9

GIRTH 10" TO 36". GAUGE 24. LENGTH ABOUT & 0".

GALVANIZED RIDGES AND LOUVRE BLADES.

Girth 12" to 36". Gauge 16 to 26. Length about 6' 0".

Girth 12" to 36". Gauge 16 to 26. Length about 6' 0".

16 Gauge up to ½" thick, maximum length 6' 0".

Under 16 Gauge, 8' 0".

Girth 11".—16 Gauge up to ½" thick, maximum length 6' 0". Under 16 Gauge, ,, ,, 8' 0".

Girth 11".—16 Gauge up to ½" thick, maximum length 6' 0".

Under 16 Gauge, ,, ,, 8' 0".

GALVANIZED FITTINGS.

Weight of Rivets.

 $\frac{1}{2}'' \times \frac{1}{4}'' - 52$,, ,,

5/8" × 1/4" - 48 ,, ,,

Weight of Bolts and Nuts.

 $\frac{3}{8}'' \times \frac{1}{4}'' - 57$ Gross to 1 cwt. $1\frac{1}{4}'' \times \frac{1}{4}'' - 24$ Gross to 1 cwt.

 $1\frac{1}{2}'' \times \frac{1}{4}'' - 22$,, 3/4" × 1/4" - 31

1/2" × 1/4" - 32 ,,

3" - 19 ,, ,,

 $2\frac{1}{2}$ " - 22 Gross to 1 cwt. $2\frac{1}{4}$ " - 24 Gross to 1 cwt. 2½" - 21 ,, ,, 3" - 16

 $4'' \times \frac{5}{16}''$ diameter - $5\frac{1}{2}$ Gross to 1 cwt.

4½" × 5" ,, - 5 ,, ,,

,, - 41/2 4" × 3/8"

41/2" × 3/8" ,, - 3½ 5" × 3/4" - 3

18 Gross to 1 cwt.

For 1/4" Rivets and Nails:

57 Gross to 1 cwt. 11 Gross to 1 cwt.

. TELEGRAMS: "RODS, MIDDLESBROUGH."

WIRE & ROD DEPARTMENT

CLEVELAND WIRE WORKS. MIDDLESBROUGH. ENGLAND.

ROLLING MILLS, WIRE DRAWING, AND GALVANIZING SHOPS.

LONDON OFFICE: TELEGRAMS:
23 LEADENHALL STREET, E.C. "TREFILEUR, LONDON."

THE

CLEVELAND WIRE MILLS

MANUFACTURE

ALL KINDS OF WIRE FOR ALL PURPOSES.

Wire Rods Rolled or drawn to any size or length to specification.

3 Cwt. Pieces, without Weld or Joint, guaranteed if required.

"WILLOW TREE" BRAND

SPECIAL MAKE OF PATENT AND PLOUGH
STEEL ROPE WIRE.

THE CLEVELAND WIRE MILLS.

SPECIALITIES:

Galvanized Telegraph (High Conductivity) Wire.

Galvanized Telephone Wire.

Signal Strand, etc.

Galvanized Patent Steel Hawser Wire to Lloyd's Specification.

Bright Patent and Plough Steel Rope Wire of all grades and of Highest Tensile Strength and Ductility.

DRAWN AND ANNEALED PIT GUIDE RODS, WELDS GUARANTEED.

The Cleveland Wire Mills are also makers of all kinds of

IRON, STEEL & CHARCOAL WIRE OF ALL SIZES & GRADES FOR ALL PURPOSES.

GALVANIZED STEEL BARB FENCING WIRE.

Style	Description	Weig	ht of	Length of	
Boyle	Description	100 yds.	Mile	112lbs. or 51 Kilos	
1	2 Point Ordinary Barbs round One Wire only, 5in, apart	lbs. 19	lbs. 335	589 yards 539 metres	
The state of the s	2 Point Thickset Barbs round One Wire only, 21/2 in. apart	21	370	533 yards 487 metres	
1.2	4 Point Ordinary Barbs round One Wire only, 6in. apart	20	352	560 yards 512 metres	
77	4 Point Thickset Barbs round One Wire only, Sin, apart	25	440	448 yards 410 metres	
AmA	4 Point Ordinary Barbs round Both Wires, 6in, apart	20	352	560 yards 512 metres	
	4 Point Thickset Barbs round Both Wires, 3in, apart	25	440	448 yards 410 metres	

DORMAN, LONG & CO. LIMITED.

GALVANIZED FENCING STRAND.

	• т	HREE PLY	۲.		FIVE PLY.					
Gauge	Size of Single Wire	Weight per Mile, Lbs.	Length per Owt., Yards	Gauge	Size of Single Wire	Weight per Mile, Lbs.	Length per Owt., Yards			
0 1 2 3	8 8½ 9 10	1100 994 800 704	179 198 246 280	0 1 2 3	10½ 11½ 12 13	1070 870 778 607	184 226 253 324			
4 5 6 7	11 12 $12\frac{1}{2}$ $13\frac{1}{4}$	580 466 414 340	340 423 476 580	4 5 6 7	13½ 14 15 16	530 460 372 294	372 428 530 670			
8 9 10	14 15 16	275 223 176	717 884 1120	8 9 10	16½ 17 18	250 225 165	788 876 1194			
	F	OUR PLY		SEVEN PLY.						
0 1 2 3	9½ 10½ 11 12	1063 855 773 620	185 231 255 318	1/ ₂ 7 16 0 5 16	7½ 9 11½ 12	2840 2085 1211 1085	69 95 162 182			
4 5 6 7	$12\frac{1}{2}$ $13\frac{1}{4}$ 14 $14\frac{1}{2}$	552 454 367 330	356 434 537 593	1 2 3 4	12½ 13 13½ 14¼	963 850 741 610	205 232 266 323			
8 9 10	15½ 16¼ 17	265 220 180	743 896 1095	5 6 7 8	15 16 16½ 17¼	520 410 351 292	379 481 560 675			
				9	18 18½	230 195	853 1011			

IMPERIAL STANDARD WIRE GAUGE.

TABLE OF SIZES, WEIGHTS, LENGTHS, AND BREAKING STRAINS
OF STEEL WIRE

As adopted by the Iron and Steel Wire Manufacturers' Association—January, 1904.

Diameter Inches	Size on Wire Gauge	Diar	neter	onal in inches		Approxim weight		Approx		Approximate breaking strain	
		Decl. of an inch	Milli- metres	Sectional area in square inch	100 Yards	Mile	Kilo- metre	Owt.	100 Kilos	25 Tons per sq. in.	35 Tons per sq. in.
					lbs.	lbs.		vards	yards		
1/2	7/0	.500	12.7	19635	200.11	3522		56	110	10995	
10	6/0	.464	11.8	.16910	172 - 33	3033		65		9469	
7.6	5/0	.432	11.0	.14657	149.37	2629	1634	75	147		11490
13	4/0	.400	10.2	12568		2254	1400			7035	9851
3/8	3/0	.372	9.4	10869	110.80	1950			198	6086	
11	2/0	.348	8.8	.09510	96 93	1706	1060	115	226	5326	7457
	1/0	.324	8.2	.08244	84.03	1479	919		261	4616	6463
	1	.300	7.6	.07069	72.04	1268		155	305	3958	5542
	2	.276	7.0	.05982	60.97	1073	667	183	360	3350	4690
1/4	3	.252	6.4	.04987	50.85	895	556		433	2792	3910
	4	.232	5.9	.04227	43.07		471	260	512	2366	3313
	5	.515	5.4	.03530	35 · 97	633	393	311	612	1977	2767
3	6	.192	4.9	.02896	29.43	518	323	380	748	1621	2269
	7	.176	4.5	.02432	24.77	436	271	452	890	1362	1908
	8	.160	4.1	.02011	20.45	360	224	546	1075	1125	1576
	9	.144	3.7		16.59	292		675	1329	911	1276
1/8	10	.128	3.3	.01287	13.12		143	854	1681	720	1008
	11	.116	3.0	.01057	10.80	190	118	1040	2047	592	828
	12	.104	2.6	.00850	8.63	152	95	1293	2545	475	666
32	13	.095	2.3	.00665	6.76	119	74	1653	3254	373	521
	14	.080	5.0	.00503	5.11	90	56	2186	4303	281	394
	15	.072	1.8	.00407	4.15	73	45	2699	5313	227	318
16	16	.064	1.6	.00322	3.29	58	36	3416	6724	180	252
	17	.056	1.4	.00246	2.50	44	27.5	4462	8783	138	192
de	18	.048	1.2	.00181	1.83	32.5	20.5	6073	11954	101	141
	19	.040	1.0	.00126	1.27	22.54	14.0	8745	17214		98
	20	.036	0.9	.00102	1.03	18.25	11.34	10796	21251	57	79
32	21 22	·032	0.8	.00080	-819		8.96	13663	26894	45	63
	23	.028	0.6	.00062	1628		6.86	17846	35128	34 · 4	48.2
	24	.024	0.55	.00045	.461		5.04	24290	47813	25.2	35.3
T = 8	25	.020	0.55	·00038	· 387		4·24 3·5	28908 34978	56903 68851	21.2	29.8
	26	.018	0.45	.00025	-259		2.84	43184	85003	14.2	19.9
	27	.0164		.00023	215		2.35		102498	11.8	16.6
7	28	.0148		.00021	175		1.92		125735	9.6	13.5
8.1	29	.0136		.00014	-148		1.62		148903	8.1	11.4
	30	.0124		.00014	123		1.35		179118	6.8	9.5

TABLE OF TENSILE STRAIN OF WIRE.

From '3 to '126 Inch for 1 Ton per Square Inch for each One Thousandth Part of an Inch.

TENSILE OF WIRE IN LBS. FOR 1 TON (2240 LBS.) PER EACH 1000 INCH.

Decl.	Lbs.	Decl.	Lbs.	Decl.	Lbs.	Decl.	Lbs.	Decl.	Lbs.
·3	158·3	· 265	123·6	·23	93·1	·195	67·	·16	45·
·299	157·3	· 264	122·6	·229	92·3	·194	66·2	·159	44·5
·298	156·2	· 263	121·7	·228	91·5	·193	65·6	·158	43·9
·297	155·2	· 262	120·8	·227	90·7	·192	64·8	·157	43·4
·296	154·2	· 261	119·8	·226	89·9	·191	64·2	·156	42·8
· 295	153·1	· 26	118·9	·225	89·01	·19	63·6	·155	42·3
· 294	152·1	· 259	118·	·224	88·2	·189	62·9	·154	41·7
· 293	151·	· 258	117·1	·223	87·51	·188	62·2	·153	41·2
· 292	150·	· 257	116·2	·222	86·7	·187	61·5	·152	40·6
· 291	149·	· 256	115·3	·221	85·9	·186	60·9	·151	40·1
·29	147·9	· 255	114·4	·22	85·1	185	60·2	·15	39·6
·289	146·9	· 254	113·5	·219	84·3	184	59·5	·149	39·
·288	145·9	· 253	112·6	·218	83·6	183	59·	·148	38·5
·287	144·9	· 252	111·7	·217	82·84	182	58·3	·147	38·
·286	143·9	· 251	110·8	·216	82·1	181	57·7	·146	37·5
· 285	142·9	·25	110·1	·215	81.3	·18	57:	·145	37·
· 284	141·9	·249	109·1	·214	80·6	·179	56:4	·144	36·5
· 283	140·9	·248	108·2	·213	79·8	·178	55:7	·143	36·
· 282	139·9	·247	107·3	·212	79·	·177	55:2	·142	35·5
· 281	138·9	·246	106·4	·211	78·3	·176	54:5	·141	35·
· 28	137·9	·245	105·6	·21	77·6	·175	53·8	·14	34·5
· 279	136·9	·244	104·7	·209	76·9	·174	53·3	·139	34·
· 278	135·9	·243	103·9	·208	76·2	·173	52·7	·138	33·5
· 277	135·	·242	103·	·207	75·4	·172	52·	·137	33·
· 276	134·1	·241	102·	·206	74·7	·171	51·5	·136	32·5
·275	133 ·	·24	101·1	·205	73.9	·17	50:9	·135	32·
·274	132 · 1	·239	100·51	·204	73.2	·169	50:2	·134	31·6
·273	131 · 1	·238	99·71	·203	72.5	·168	49:6	·133	31·1
·272	130 · 2	·237	98·8	·202	71.8	·167	49:	·132	30·7
·271	129 · 2	·236	98·	·201	71.	·166	48:5	·131	30·2
·27	128·2	· 235	97·	·2	70·4	·165	47·9	·13	29·7
·269	127·3	· 234	96·3·	·199	69·7	·164	47:3	·129	29·3
·268	126·3	· 233	95·5	·198	69·	·163	46·7	·128	28·8
·267	125·4	· 232	94·7	·197	68·3	·162	46·2	·127	28·4
·266	124·4	· 231	93·9	·196	67·6	·161	45·6	·126	28·

TABLE OF TENSILE STRAIN OF WIRE.

From '125 to '001 Inch for 1 Ton per Square Inch for each One Thousandth Part of an Inch.

TENSILE OF WIRE IN LBS. FOR 1 TON (2,240 LBS.) PER EACH $\frac{1}{1.0.00}$ INOH.

Decl.	Lbs.	Decl.	Lbs.	Decl.	Lbs.	Decl.	Lbs.	Decl.	Lbs.
·125	27·5	·1	17.6	· 075	9·9	· 05	4·4	·025	1·1
·124	27·	·099	17.24	· 074	9·6	· 049	4·2	·024	1·014
·123	26·6	·098	16.9	· 073	9·4	· 048	4·0	·023	·93
·122	26·2	·097	16.6	· 072	9·1	· 047	3·8	·022	·85
·121	25·8	·096	16.2	· 071	8·9	· 046	3·7	·021	·775
·12	25·3	· 095	15·9	·07	8.6	·045	3·55	·02	· 7
·119	24·9	· 094	15·55	·069	8.4	·044	3·4	·019	· 635
·118	24·5	· 093	15·2	·068	8.1	·043	3·25	·018	· 57
·117	24·1	· 092	14·9	·067	7.9	·042	3·12	·017	· 508
·116	23·7	· 091	14·6	·066	7.7	·041	2·95	·016	· 45
·115	23·3	· 09	14·3	·065	7·4	· 04	2·8	·015	· 396
·114	22·9	· 089	13·9	·064	7·2	· 039	2·7	·014	· 3448
·113	22·5	· 088	13·6	·063	7·	· 038	2·56	·013	· 297
·112	22·1	· 087	13·3	·062	6·8	· 037	2·4	·012	· 253
·111	21·7	· 086	13·	·061	6·5	· 036	2·3	·011	· 2128
·11	21·3	·085	12·7	·06	6·33	· 035	2·16	·01	·176
·109	20·9	·084	12·4	·059	6·1	· 034	2·04	·009	·1425
·108	20·5	·083	12·1	·058	5·9	· 033	1·93	·008	·1126
·107	20·1	·082	11·8	·057	5·7	· 032	1·8	·007	·0862
·106	19·7	·081	11·5	·056	5·5	· 031	1·7	·006	·0633
·105	19·4	·08	11·26	·055	5·3	·03	1:58	·005	· 04398
·104	19·	·079	11·	·054	5·1	·029	1:48	·004	· 02815
·103	18·7	·078	10·7	·053	4·9	·028	1:38	·003	· 01583
·102	18·3	·077	10·4	·052	4·8	·027	1:28	·002	· 007
·101	17·9	·076	10·16	·051	4·6	·026	1:188	·001	· 00176

 $\ensuremath{\mathsf{Note}}.\ensuremath{\mathsf{-To}}$ explain the application of the above table, the following illustration will suffice:—

Required to know the breaking strain of any wire the section of which is comprised within the limits of '3 and '001 diameter of section of wire. Find the breaking strain by usual test. Let it be supposed '024. If the wire breaks at 620lbs. strain, find in the table, opposite 024, the figures in the column headed "lbs." 12'4. Use these as a diviser: 620 + 12'4 = 50 tons.

TELEGRAMS: "DORMAN, PORT CLARENCE."

CLARENCE STEEL WORKS AND ROLLING MILLS

PORT CLARENCE.

OPEN HEARTH STEEL.

SPECIALITIES:

High-Class Steels in all qualities.

Hard Steel with Carbon up to 1.5 per cent., for Wire Ropes, Springs, Picks, Saws, Tools, Files, etc.

Steel to stand Admiralty, War Office, Board of Trade, Lloyds, and other Special Tests.

Conductivity Steel to stand General Post Office, India Office, and British Railway Tests.

ROLLED SECTIONS.

Billets, Blooms, Slabs, Tin Bars, Flats, Angles and Rails to British Standard and other Special Sections.

OPEN HEARTH STEEL

Manufactured and Rolled at Clarence Steelworks.

INGOTS

Descript	ion	Size	Weight
Octagon Fluted		Inches $26\frac{1}{2} \times 24\frac{1}{2}$	Cwts. 100/110
п		$27 \times 23 \frac{1}{2}$	100/115
п		$24 \frac{1}{2} \times 20 \frac{1}{2}$	100/110
n n		$22 \times 18 \%$	75/85
0 0		20 × 17	55/65
Hexagon		22×20	60/65
Rectangular		24×20	60/65
		21×17	35/46
		$16\frac{1}{2} \times 14\frac{1}{2}$	28/30
Square		18	35/42
n		17	30/36
n		16	29/32
		141/2	25
		12	17
Slab		33×11½	40/60

All Measurements taken across the Flats.

OPEN HEARTH STEEL

Manufactured and Rolled at Clarence Steelworks.

	520	OMS			
Inches	Inches	Inches	Inches		
10×8	8×7	7×6	6×5		
8 × 8 ½	7×7	6×6			
	BILL	ETS			
Inches	Inches	Inches	Inches		
$5\frac{1}{2}\times5\frac{1}{2}$	4×4	3×3	21/4 × 21/4		
5 × 5	3½×3½	23/4 × 23/4	2×2		
4½×4½	31/4 × 31/4	2½×2½	$1\frac{15}{16} \times 1\frac{1}{1}$		
	SLA	BS			
Inches	Inches	Inches	Inches		
$7 \times 4\frac{3}{4}$	7×2½	7×1½	6×3½		
7 × 3½	7×2	6 × 4 ¾	6×3		
			6×2		

7 × 1 1/4	7 × 3/4	6 × 1 1/8	6 × 1 %	6 × 1/8	5 × 1 3/4	4 × 1 ¾
$7\times1\%$	$7 \times \frac{5}{8}$	$6\times1\%$	6 × 1 1/4	6 × 3/4	5 × 1 ½	4 × 1 ½
7×1		6 × 1 %	6 × 1 1/8	6 × 1/8	5 × 1 1/4	4 × 1 1/4

TINPLATE BARS, TAPER EDGES

Inches	Inches	Inches	Inches
$7\frac{1}{2} \times 1$	$7\frac{1}{2} imes \frac{13}{16}$	7½ × 5/8	$7\frac{1}{2} imes \frac{15}{32}$
$7\frac{1}{2} \times \frac{15}{16}$	7½ × ¾	$7\frac{1}{2} \times \frac{9}{16}$	$7\frac{1}{2} \times \frac{7}{16}$
71/2 × 1/8	7½×+	71/2 × 1/2	

GENERAL INFORMATION, FORMULÆ, TABLES, ETC.

GENERAL FORMULAE FOR THE FLEXURE OF BEAMS.

A = area of section in square inches

L = length of span in feet

l = length of span in inches

W = total distributed load in tons

f = safe stress, in tons per square inch, in extreme fibres of beam

d = total depth of cross section in inches

y= distance in inches of outermost fibre from neutral axis (in a symmetrical section $y=\frac{d}{2}$)

M = maximum bending moment in inch tons

D = maximum deflection in inches

I = greatest moment of Inertia about the neutral axis (passing through the centre of gravity of section)

Ip = moment of Inertia about an axis parallel to above, but not passing through the centre of gravity

v, = distance in inches between these axes

Z = section modulus

r = radius of gyration in inches

E = modulus of elasticity (assumed at 12,000 tons per square inch for steel)

$$\begin{split} \mathbf{Z} &= \frac{\mathbf{I}}{\mathbf{y}} & \quad \mathbf{I}\mathbf{p} = \mathbf{I} + \mathbf{A}.\mathbf{v}^2 & \quad \mathbf{r} = \sqrt{\frac{\mathbf{I}}{\mathbf{A}}} \\ \mathbf{M} &= \frac{f.\mathbf{I}}{\mathbf{y}} = f\mathbf{Z} & \quad f = \frac{\mathbf{M}.\mathbf{v}}{\mathbf{I}} = \frac{\mathbf{M}}{\mathbf{Z}} \end{split}$$

For a beam supported at both ends and uniformly loaded, $W = \frac{8 \times f \times Z}{t} = \frac{8 \times f \times I}{t \times y}$

- (I) $D = \frac{5 \text{ W.} I^3}{384 \text{ E.I}}$ for beams of uniform section, supported at both ends and uniformly loaded
- (II) $D = \frac{P_c J^a}{43 \text{ E.I}}$ for beams of uniform section, supported at both ends and loaded with a single load, P, at centre of span
- (III) $D=\frac{W_d l^n}{8~E.I}$ for beams of uniform section fixed at one end and supported at the other, and uniformly loaded
- (IV) $D = \frac{P_c l^3}{3 \text{ E.I}}$ for beams of uniform section fixed at one end and unsupported at the other, and loaded with a single load, P, at the latter end

For girders with equal flanges and f taken at $7\frac{1}{2}$ tons per square inch, the deflection is as follows:—

(I) D =
$$\frac{.01875~L^{2}}{d}$$
; (II) D = $\frac{.015~L^{2}}{d}$; (III) D = $\frac{.045~L^{2}}{d}$; (IV) D = $\frac{.06~L^{2}}{d}$

BENDING MOMENT, SHEAR AND DEFLECTION OF BEAMS UNDER VARIOUS SYSTEMS OF LOADING.

W=total load in tons.

E = modulus of elasticity, assumed

(1). BEAM SUPPORTED AT BOTH ENDS AND HAVING AN UNIFORMLY DISTRIBUTED LOAD.

Maximum bending moment, in inch tons, at middle of span = $\frac{W.I}{V} = \frac{3 \text{ W.L}}{V}$.

Maximum deflection in inches = $\frac{5 \text{ W.}_{6}}{384 \text{ E.I}}$

(2).—BEAM SUPPORTED AT BOTH ENDS AND HAVING A CONCENTRATED LOAD IN THE MIDDLE.

Maximum bending moment, in inch tons, at middle of span = $\frac{W.l}{4}$ = 3 W.L.

Maximum deflection in inches = $\frac{11.6}{48}$ E.I

Maximum deflection in inches, where flanges are equal and extreme fibre stress taken at 71/2

(3). BEAM SUPPORTED AT BOTH ENDS AND HAVING A CONCENTRATED LOAD AT ANY POINT.

Safe load=that given in the tables for case (1) × 8 A.B

Maximum bending moment, in inch tons, at point of application of load = $\frac{W.a.b}{I} = \frac{12 W.A.B}{I}$.

support = $\frac{W,B}{L}$ and between load and the W.A

 $\frac{\text{Maximum deflection, in inches}}{\text{tion, in inches}} = \frac{W.a.b(2l-a)}{9 \text{ E.I } l} \checkmark$

equal and extreme fibre stress taken at 7% tons per square inch = $\frac{2 L - \Lambda}{600 d} \sqrt{48 A (2 L - A)}$.

Note. - Care should be taken that the maximum shear, in the above cases, does not exceed half the maximum load given in the tables.

SHEAR BENDING MOMENT. DEFLECTION OF BEAMS UNDER VARIOUS SYSTEMS OF LOADING.

(4) BEAM SUPPORTED AT BOTH ENDS AND HAVING TWO W, CONCENTRATED AT EQUAL EQUAL LOADS. DISTANCES FROM CENTRE OF BEAM.

 $loads = \frac{W.a}{} = 6 W.A.$

Maximum shear between load and nearer

 $\begin{cases} \text{n, in} \\ \text{inches} \end{cases} = \frac{\text{W.a}}{48 \text{ E.I}} (3 l^2 - 4 a^2).$

tons per square inch = $\frac{.0075}{...}$ (3 L² - 4 A²).

(5). BEAM FIXED AT ONE END AND HAVING A CONCENTRATED LOAD AT THE FREE END.

Safe load = 1/8 that given in

Maximum bending moment, in inch tons, at point of support = W.l = 12 W.L.

Maximum shear between load and point of support = W.

Maximum deflection, in inches = $\frac{W.t}{3 \text{ E.I}}$

Maximum deflection, in inches, where flanges .06 L=

(6). BEAM FIXED AT ONE END AND HAVING AN UNIFORMLY DISTRIBUTED LOAD.

W.l = 6 W.L.

Maximum shear at point of support = W. Maximum deflection, in inches = $\frac{W.t^{-}}{8 \text{ E.I}}$

Maximum deflection, in inches, where flanges are equal and extreme fibre stress taken at 71/2 tons per square inch = $\frac{.045 \text{ L}^2}{.045 \text{ L}^2}$

Safe load = 1/4 that given in

Note.—Care should be taken that the maximum shear, in the above cases, does not exceed half the maximum load given in the tables.

OF BEAMS UNDER VARIOUS SYSTEMS OF LOADING.

W - total hand in tons.

I - moment of inertia.

K = modulus of elasticity, nominal on 12,000 terms per square techfor start.

of - depth of beam in inches.

IN or distance in fact.

L. - spine in fact

I - span in bolion.

y = longth in fact over which load is distributed.

E = point at which receives brouding numbers occurs.

s = distance is fast of C from support %.

(T) BEAM SUPPORTED AT BOTH ENDS AND HAVING A BISTRIBUTED LOAD INCREASING, BY A UNIFORM INCREMENT, FROM ONE SUPPORT TO THE OTHER.

Nafe load = 9006 t that gives in the tables for case (1), x = -9775 L.

Maximum heading moment, in such tens, at point C = 1222 W. I = 1.9225 W. L,

Maximum shour at support T - 🖟 W.

Maximum defection is inches a SIS W.P.

fractioners deflection, in inches, where faceposition opens and extreme fibre atmos taken at The trees per square lack = 20008 L.c.

LOAD UNIFORMLY DISTRIBUTED OVER A PORTION OF ITS LENGTH, EXTENDING FROM DRE SUPPORT.

Formula for finding the position of the point C. or which the remainment bending resonant

191 BEAM SUPPORTED AT BOTH ENDS AND HAVING A LOAD UNIFORMLY DISTRIBUTED OVER A PORTION OF ITS LENGTH, NOT EXTENDING TO SITHER SUPPORT.

Formula for finding the position of the point \$\bullet{V}_i\$ at which the stantours bending recount occurs.

BEAMS UNSYMMETRICALLY LOADED.

Example shewing how to find the size of a beam necessary to carry a load uniformly distributed over a portion of its length, and extending from one support, as shewn in diagram; the beam being supported at both ends and of uniform section throughout.

Assume that W is 10 tons, span 20' 0" and distance that load extends from one support is 16' 0".

Let R₁ = reaction at end, S, where load commences.

R2 = reaction at other end, I

C = point where maximum bending moment occurs.

x = distance in feet of C from end

P = distributed load on length x.

 $W_{\rm E}$ = equivalent distributed load, over the whole beam, which would produce the same maximum bending moment as that caused by load $W_{\rm c}$

Then
$$R_1 = \frac{W(\frac{y}{2} + z)}{L} = \frac{10(8+4)}{20} = 6 \text{ tons.}$$

$$R_2 = 10 - 6 = 4 \text{ tons.}$$

From formula on previous page $x = y\left(1 - \frac{y}{2L}\right) = 16\left(1 - \frac{16}{2\times20}\right) = 9.6$ feet.

$$P = \frac{W.x}{y} = \frac{9.6 \times 10}{16} = 6 \text{ tons.}$$

The maximum bending moment= $(R_1 \times x) - \left(P \times \frac{x}{2}\right) = 6 \times 9.6 = 6 \times 4.8 = 28.3 \text{ ft. tons.}$

The maximum bending moment in ft. tons on a beam supported at both ends and having an uniformly distributed load, W_1 , is $\frac{W_1}{2}$.

Therefore the equivalent distributed load W_E = $\frac{Maximum bending moment in ft, tons ×8}{L}$

Hence W_E in this case = $\frac{28.8 \times 8}{20}$ = 11.52 tons.

Reference to the table of safe distributed loads on beams will shew that B.S.B 21 ($12'' \times 6'' \times 44$ lbs.) is capable of carrying 13 tons at 20 feet span; and, as half the maximum load given in the table for this beam $\left(\frac{40}{2} = 20 \text{ tons}\right)$ is greater than the maximum reaction R_1 (6 tons), this beam will meet the requirements.

BEAMS UNSYMMETRICALLY LOADED.

R1 W1 3 100 12100 R2 12100 R2

Example shewing how to find the size of a beam necessary to carry three loads concentrated at different points in its length, as shewn in diagram; the beam being supported at both ends, and of uniform cross section throughout.

Let W₁, W₂ and W₃ be 3 concentrated loads of 2, 3 and 12 tons respectively.

R₁ = reaction at end S.

 R_2 = reaction at end T.

$$\begin{split} W_E &= \text{equivalent distributed load over the} \\ &\quad \text{whole beam which would produce the} \\ &\quad \text{same maximum bending moment} \\ &\quad \text{as that caused by } (W_1 + W_2 + W_3). \end{split}$$

Then
$$R_1 = \frac{(12 \times 5) + (3 \times 8) + (2 \times 14)}{16} = 7$$
 tons. $R_2 = 12 + 3 + 2 - 7 = 10$ tons.

he maximum bending moment occurs at the point of application of

The bending moment at
$$C=R_1\times 2$$
 = $7\times 2=14$ ft. tons.
 , , , D=R_1 × 8 - 2 × 6 = 56 - 12 = 44 ,, , , , , , E=R_2 × 5 = 10 × 5 = 50 ,, , , .

Hence the maximum bending moment is at E. and = 50 ft. tons.

The maximum bending moment, in ft. tons, on a beam supported at both ends and having an uniformly distributed load, W, is $\frac{W.L}{2}$.

 $\frac{\text{Therefore the equivalent}}{\text{distributed load }W_E} = \frac{\text{Maximum bending moment in ft. tons} \times 8}{L}$

Hence
$$W_E$$
 in this case = $\frac{50 \times 8}{16} = 25$ tons.

Reference to the table of safe distributed loads on beams will show that B.S.B 26 (15" \times 6" \times 59 lbs.) is capable of carrying 26 tons at 16 feet span; and, as half the maximum load given in the table for this beam $\left(\frac{62}{2}=31\text{ tons}\right)$ is greater than the maximum reaction R_z (10 tons), this beam will meet the requirements.

MENSURATION

LENGTH.

Circumference of Circle = diameter $\times \pi$

Diameter of Circle = circumference × '31831

Length of Arc = number of degress x radius x ·017453 $\pi = 3.14159265 +$

Degrees in an Arc whose length = radius = 57° · 2957795

V = versed sine

C = half the chord.

R = radius

0 = any ordinate. X = distance of ordinate from centre.

$$0 = \sqrt{R^2 - X^2} - (R - V).$$

$$R = \frac{V^2 + C^2}{2V} \text{ or diameter} = \frac{V^2 + C^2}{V}$$

$$V = R - \sqrt{R^2 - C^2}$$

$$X = \sqrt{R^2 - (O + R - V)^2}$$

AREA.

Area of Triangle = base × half the perpendicular height.

,, Circle
$$=\frac{\pi D^2}{4}=\pi R^2$$
 where D=diameter of circle. R=radius of circle.

Area of Sector

of Circle = Area ABED = length of arc × half the radius

number of degrees in arc x area of circle 360

Area of Segment of Circle = Area BDE = area of Sector less area of triangle.

Area of Parabola = base × 3 height.

TRIGONOMETRICAL FUNCTIONS.

This diagram shews the different trigonometrical functions in terms of the angle A to the radius of 1.
$$\begin{split} & \text{Sine} = \frac{\text{Perp}}{\text{Hyp.}}; \quad & \text{Cosine} = \frac{\text{Base}}{\text{Hyp.}}; \quad & \text{Tangent} = \frac{\text{Perp}}{\text{Base}}; \\ & \text{Cotangent} = \frac{\text{Base}}{\text{Perp.}}; \quad & \text{Secant} = \frac{\text{Hyp.}}{\text{Base}}; \end{split}$$

Cosecant = Hyp. Perp.; Versed sine = Hyp. - Base Hyp.

Coversed sine = Hyp. - Perp.

Sin. =
$$\frac{\tan x}{\sec x} = \frac{1}{\cos x + \cos x} = \frac{\cos x}{\cot x}$$

$$\cos = \frac{\cot \cdot}{\csc \cdot} = \frac{1}{\sec \cdot} = \sqrt{1 - \sin \cdot^2} = \frac{\sin \cdot}{\tan \cdot} = \sin \cdot \times \cot$$

Tan. =
$$\frac{\sin x}{\cos x} = \frac{1}{\cot x} = \sin x \times \sec x = \sqrt{\sec x^2 - 1}$$
.

$$\cot = \frac{1}{\tan^2} = \sqrt{\csc^2 - 1} = \frac{\cos}{\sin}.$$

Sec. =
$$\frac{1}{\cos x} = \sqrt{1 + \tan^2 x} = \frac{\tan x}{\sin x}$$

Cosec. =
$$\frac{1}{\sin} = \sqrt{1 + \cot^2}$$
 Cos. $^2 + \sin^2 = 1$

Coversin. =
$$1 - \sin$$
. $1 + \cot ^2 = \csc$.

SOLUTION OF TRIANGLES.

 $\begin{bmatrix} a & b & c & c & abc \\ sin. & A & sin. & B & c & c & abc \\ cos. & A & b^2 + c^2 - abc & or & a^2 = b^2 + c^2 - 2b.c.cos. & A \\ cos. & A & b^2 + c^2 - abc & or & a^2 = b^2 + c^2 - 2b.c.cos. & A \\ cos. & A & bc & c & c & c \\ sin. & A & c & c & c & c \\ cos. & A & c & c & c \\ cos. & A &$

 $\sqrt{s(s-a)(s-b)(s-c)} = S$

MOMENTS OF INERTIA OF RECTANGLES.

Neutral Axis

Depth		W	IDTH OF	RECTANGL	E IN INC	HES	
in Inches	1/4	10	3/8	200	1/2	18	5/8
1 2 3 4	·021	· 026	·031	·036	·042	.047	· 05/
	·17	· 21	·25	·29	·33	.38	· 42
	·56	· 70	·84	·98	1·13	1.27	1 · 41
	1·33	1 · 67	2·	2·33	2·67	3.	3 · 33
5	2·60	3·26	3·91	4·56	5·21	5.86	6:51
6	4·50	5·63	6·75	7·88	9·	10.13	11:25
7	7·15	8·93	10·72	12·51	14·29	16.08	17:86
8	10·67	13·33	16·	18·67	21·33	24.	26:67
9	15·19	18·98	22·78	26·58	30·38	34.17	37:97
10	20·83	26·04	31·25	36·46	41.67	46.87	52.08
11	27·73	34·66	41·59	48·53	55.46	62.39	69.32
12	36·	45·	54·	63·	72.	81.	90.
13	45·77	57·21	68·66	80·10	91.54	102.98	114.43
14	57·17	71·46	85·75	100·04	114.33	128.63	142.92
15 16 17 18 19	70·31 85·33 102·35 121·50 142·90	87·89 106·67 127·94 151·88 178·62	105 · 47 128 · 153 · 53 182 · 25 - 214 · 34	123·05 149·33 179·12 212·63 250·07	140.63 170.67 204.71 243.	158·20 192· 230·30 273·38 321·52	175 · 78 213 · 33 255 · 89 303 · 75 357 · 24
20 21 22 23 24	166 · 67 192 · 94 221 · 83 253 · 48 288 ·	208 · 33 241 · 17 277 · 29 316 · 85 360	250 · 289 · 41 332 · 75 380 · 22 432 ·	291 · 67 337 · 64 388 · 21 443 · 59 504 ·	333·33 385·88 443·67 506·96 576·	375 · 434 · 11 499 · 13 570 · 33 648 ·	416 · 67 482 · 34 554 · 58 633 · 70 720 ·
25	325 · 52	406.90	488·28	569.66	651·04	732·42	813·80
26	366 · 17	457.71	549·25	640.79	732·33	823·88	915·42
27	410 · 06	512.58	615·09	717.61	820·13	922·64	1025·16
28	457 · 33	571.67	686·	800.33	914·67	1029·	1143·33
29	508 · 10	635.13	762·16	889.18	1016·21	1143·23	1270·26
30	562·50	703·13	843·75	984·38	1125 ·	1265·63	1406 · 25
32	682·67	853·33	1024·	1194·67	1365 · 33	1536·	1706 · 67
34	818·83	1023·54	1228·25	1432·96	1637 · 67	1842·38	2047 · 08
36	972·	1215·	1458·	1701·	1944 ·	2187·	2430 ·
38	1143·17	1428·96	1714·75	2000·54	2286 · 33	2572·13	2857 · 92
40 42 44 46 48	1333 · 33 1543 · 50 1774 · 67 2027 · 83 2304 ·	1666 · 67 '1929 · 38 2218 · 33 2534 · 79 2380 ·	2000 · 2315 · 25 2662 · 3041 · 75 3456 ·	2333·33 2701·13 3105·67 3548·71 4032·	2666 · 67 3087 · 3549 · 33 4055 · 67 4608 ·	3000 · 3472 · 88 3993 · 4562 · 63 5184 ·	3333 · 33 3853 · 75 4436 · 67 5069 · 58 5760 ·
50	2604 · 17	3255 · 21	3906 · 25	4557 · 29	5208 · 33	5859·38	6510·42
52	2929 · 33	3661 · 67	4394 ·	5126 · 33	5858 · 67	6591·	7323·33
54	3280 · 50	4100 · 63	4920 · 75	5740 · 88	6561 ·	7381·13	8201·25
56	3658 · 67	4573 · 33	5488 ·	6402 · 67	7317 · 33	8232·	9146·67
58	4064 · 83	5081 · 04	6097 · 25	7113 · 46	8129 · 67	9145·87	10162·08
60	4500 ·	5625 ·	6750 ·	7875 ·	9000 ·	10125·	11250

MOMENTS OF INERTIA OF RECTANGLES.

	WIDTH	OF RECTAR	GLE IN IN	CHES		Depth	
11	3/4			18	1	Inches	
*057 *46 1*55 3*67	1.69 4.	1.83 4.33	.073 .58 1.97 4.67		1083 167 2125 5133	1 2 3 4	
7·16	7·81	8 · 46		9*77	10·42	5	
12·38	13·50	14 · 63		16*88	18·	6	
19·65	21·44	23 · 22		26*80	28·58	7	
29·33	32·	34 · 67		40*	42·67	8	
41·77	45·56	49 · 36		56*95	60·75	9	
57·29	62·50	67·71	72.92	78·13	83 · 33	10	
76·26	83·19	90·12	97.05	103·98	110 · 92	11	
99·	108·	117·	126.	135·	144 ·	12	
125·87	137·31	148·75	160.20	171·64	183 · 08	13	
157·21	171·50	185·79	200.08	214·38	228 · 67	14	
193 · 36	210°94	228 · 52	246 · 09	263 · 67	281 · 25	15	
234 · 67	256°	277 · 33	298 · 67	320 ·	341 · 33	16	
281 · 47	307°06	332 · 65	358 · 24	383 · 83	409 · 42	17	
334 · 13	364°50	394 · 88	425 · 25	455 · 63	486 ·	18	
392 · 96	428°69	464 · 41	500 · 14	535 · 86	571 · 58	19	
458:33	500°	541 · 67	583·33	625 · 723 · 52 831 · 87 960 · 55 1080 ·	666.67	20	
530:58	578°81	627 · 05	675·28		771.75	21	
610:04	665°50	720 · 96	776·42		887.33	22	
697:07	760°44	823 · 81	887·18		1013.92	23	
792:	864°	936 ·	1008·		1152.	24	
895 · 18	976·56	1057 · 94	1139·32	1220·70	1302 · 08	25	
1006 · 96	1098·50	1190 · 04	1281·58	1373·13	1464 · 67	26	
1127 · 67	1230·19	1332 · 70	1435·22	1537·73	1640 · 25	27	
1257 · 67	1372·	1486 · 33	1600·67	1715·	1829 · 33	28	
1397 · 29	1524·31	1651 · 34	1778·36	1905·39	2032 · 42	29	
1546 · 88	1687 · 50	1828·13	1968 · 75	2109·38	2250 · 2730 · 67 3275 · 33 3888 · 4572 · 67	30	
1877 · 33	2048 ·	2218·67	2389 · 33	2560·		32	
2251 · 79	2456 · 50	2661·21	2865 · 92	3070·63		34	
2673 ·	2916 ·	3159·	3402 ·	3645·		36	
3143 · 71	3429 · 50	3715·29	4001 · 08	4286·88		38	
3666 · 67	4000*	4333 · 33	4666·67	5000-	5333·33	40	
4244 · 63	4630*50	5016 · 38	5402·25	5788-13	6174·	42	
4880 · 33	5324*	5767 · 67	6211·33	6655-	7098·67	44	
5576 · 54	6083*50	6590 · 46	7097·42	7604-38	8111·33	46	
6336	6912*	7488 ·	8064	8640-	9216·	48	
7161 · 46	7812-50	8463:54	9114·58	9765 · 63	10416·67	50	
8055 · 67	8788-	9620:33	10252·67	10985 ·	11717·33	52	
9021 · 38	9841-50	10661:63	11481·75	12301 · 88	13122·	54	
10061 · 33	10976-	11890:67	12806·33	13720 ·	14634·67	56	
11178 · 29	12194-50	13210:71	14226·92	15243 · 12	16259·33	58	
12375 ·	13500-	14625:	15750·	16875 ·	18000·	60	

MOMENTS OF INERTIA OF RECTANGLES.

Neutral

Depths in	1	Widths	in Inch	es, corre	spondin	g to th	ose of F	lats, se	e page	30.
Inches	8	9	10	12	13	14	16.	18	20	24
- 3/8 178 1/2	· 035 · 056 · 083	·040 ·063 ·094	·044 ·070 ·104	·053 ·084 ·125	·057 ·091 ·135	·062 ·098 ·146	·070 ·112 ·167	·079 ·126 ·187	· 088 · 140 · 208	.16
9 16 5/8 5/8 3/4	·119 ·163 ·217 ·281	·133 ·183 ·244 ·316	·148 ·203 ·271 ·352	·178 ·244 ·325 ·422	· 193 · 264 · 352 · 457	· 208 · 285 · 379 · 492	· 237 · 326 · 433 · 562	· 267 · 366 · 487 · 633	· 297 · 407 · 542 · 703	· 35/ · 48/ · 65/ · 84/
#8	·358 ·447 ·549 ·667	· 402 · 502 · 618 · 750	-447 -558 -687 -833	·536 ·670 ·824 1·000	·581 ·726 ·893 1·083	·626 ·782 ·961 1·167	·715 ·893 1·099 1·333	1.005 1.236 1.500	-894 1·117 1·373 1·667	1.073 1.340 1.648 2.000
176 178 174	·800 ·949 1·116 1·302	-900 1:068 1:256 1:465	1·000 1·187 1·395 1·628	1·199 1·424 1·675 1·953	1·299 1·542 1·814 2·116	1·399 1·661 1·954 2·279	1·599 1·898 2·233 2·604	1·799 2·136 2·512 2·930	1·999 2·373 2·791 3·255	2·39: 2·84: 3·34: 3·90:
1 % 1 % 1 ½	1·507 1·733 1·980 2·250	1.696 1.950 2.228 2.531	1.884 2.166 2.475 2.812	2·261 2·600 2·970 3·375	2·449 2·816 3·218 3·656	2.638 3.033 3.466 3.937	3·015 3·466 3·961 4·500	3·391 3·899 4·456 5·062	3·768 4·333 4·951 5·625	4·52 5·19 5·94 6·75
1% 1% 1¼ 1¾	2·543 2·861 3·204 3·573	2·861 3·218 3·604 4·020	3·179 3·576 4·005 4·466	3·815 4·291 4·805 5·359	4·133 4·649 5·206 5·806	4·450 5·006 5·606 6·253	5·086 5·721 6·407 7·146	5·722 6·437 7·208 8·039	6·358 7·152 8·009 8·932	7.62 8.58 9.61 10.71
1+8 1+8 1+8 2	3·970 4·395 4·849 5·333	4·466 4·944 5·455 6·000	4·962 5·493 6·061 6·667	5·954 6·592 7·273 8·000	6·451 7·141 7·879 8·667	6 · 947 7 · 690 8 · 485 9 · 333	7·939 8·789 9·698 10·667	8·932 9·888 10·910 12·000	9·924 10·986 12·122 13·333	
2½ 2½ 2¼	5·849 6·397 6·978 7·594	6·580 7·197 7·851 8·543	7·311 7·996 8·723 9·492	8·774 9·596 10·468 11·391	9·505 10·395 11·340 12·340	11 . 195	13.957	14·394 15·701	14·623 15·993 17·446 18·984	
2½ 258 2½	9.655	10·047 10·862	11.164	13·396 14·482	13·397 14·513 15·689 16·927	15.629 16.896	17·862 19·310	20·095 21·723	20·611 22·327 24·137 26·042	24 · 73. 26 · 79. 28 · 964 31 · 250
2% 2½ 2¼ 2¾	12·059 12·941	13.566	15·073 16·176	18·088 19·411	18 · 229 19 · 595 21 · 028 22 · 530	21·103 22·646	22 · 435 24 · 117 25 · 881 27 · 729	27.132	28 · 044 30 · 146 32 · 351 34 · 661	
218 278 3	14 · 832 15 · 842 16 · 898	16 · 685 17 · 823 19 · 011	18·539 19·803 21·123	22:247 23:764 25:347	25.744 27.460	29.572	31 · 685 33 · 797	35·646 38·021	37 · 079 39 · 606 42 · 246 45 · 000	47 · 52 · 50 · 69

SHEARING AND BEARING VALUES OF RIVETS.

Dia.	Area	Shea Value a	ring t4tons		BEARING VALUES AT 7 TONS PER SQ. INCH											
Rivet	Square	per sq	. inch		Thickness in inches of Plate passed through											
inches	inches	American	Single Shear	Double Shear	1/4	A	3/4	√a		i%	5/4	18		7/4		
3%	1104	-44		166	-82											
	1963	.79	1.37	-87		1.31	1.53									
9/4	.3068	1.23		1:09	1-37	1:64	1.91	2:19								
34	.4418	1.77	3:09	1.31	1:64	1.97	2:30	2:62	2:95							
7/4	'6013	2:41	4.21	1.53		2:30	2:68		3.45							
1	.7854	3.14	5.50		2.19		3:06					5-25				
Dia.	Area	Valuea	ations BEARING VALUES AT 8% TONS PER								SQ.	INOH				

Dia. of Rivet	in Square	per sq. inch		B	BEARING VALUES AT 8% TONS PER SQ. INCH Thichness in inches of Plate passed through										
inches		Single Shear	Double Shear	1/4	Y's	3/4	v7es		-Ne	%	14	34	7%		
%	·1104	-55	.97		1.03										
1/2	1963	198	1.72	1:09		1:64									
9/4	*3068	1.53	2.68					2.73							
3/4	-4418	2.51	3.87	1:64		2.46				4.10					
7/10	.6013	3.01	5.26				3.35	3.83	4.31	4.79	5-26				
1	*7854	3.93	6.87	2.19	2.73	3.58		4.37							

Dia.	Area	Shearing Value at 6 tons		В	BEARING VALUES AT 101/2 TONS PER SQ. INCH									
Rivet	in Square	per sq	inch		Thi	ickness	in inch	es of P	late pa	ssed t	hroug	h		
inches	inches	Single	Double Shear	1/4	-fis	3/4	778		-Ne	9%	14	34	7/8	
3%	-1104	.66	1.16	-98										
	1963	1.18	2.06	1.31	1:64	1.97	2.30							
B/10	*3068	1.84	3.22	1:64	2.05	2.46	2.87	3.28						
3/4	.4418	2.65	4.64	1.97	2.46	2.95	3.45	3.94		4.92				
7/a	'6013	3.61	6.31	2.30	2.87	3.45	4.02	4.59	5-17	5.74				
1	.7854	4.71	8.25	2.62	3.28	3.94	4.59							
								-						

In the above tables double shear is calculated at $1\frac{\pi}{4}$ times single shear; and the bearing stress per square inch at $1\frac{\pi}{4}$ times the shearing stress.

The bearing values above and to the right of the upper zigzag lines in the tables are greater than double shear for the corresponding diameters, so that in these cases the shearing values are the determining factors.

The bearing values between the lower and upper zigzag lines are greater than of single shear the shearing value is the determining factor, and in case of double shear the bearing value is the determining factor.

The bearing values below and to the left of the lower zigzag lines are less than single shear, so that in these cases the bearing values are the determining factors.

WEIGHTS OF ANGLES IN LBS. PER LINEAL FOOT.

mess rle in	hes				SUN	OF	FLAN	ES IN	N INOH	ES		
Thickness	ine	21/2	3	3%	4	4%	5	5%	6	6%	7	7%
3		1.47	1.79	2.11	2.43	2.75						
	1/4	1.91	2.33	2.77	3.19	3.61	4.04	4.46	4.90			
16		- >>>	2.85	3.39	3.92	4.45	4.98	5.51	6.05	6.58	7.11	7.64
1	3/8				4.62	5.26	5.89	6.53	7.18	7.81	8.45	9.08
76		117				6.05	6.78	7.53	8.28	9.02	9.76	10.50
	1/2						7.65	8.50	9.36	10.20	11.05	11.90
20								9.44	10.41	11.36	12.31	13.27
	%	111							11.43	12.49	13.55	14.61
11											14.76	15.92
	8/4	***										
,,,,	3/8	22.7										
	1	1111										

AREAS OF ANGLES IN SQUARE INCHES.

mess gle in				SUM	OF FLA	NGES 1	N INCI	IES		
Thick of Any	21/2	3	3%	4	41/2	5	5%	6	61/4	7
A	433	.526	622	715	'809					
3/4	'561	.686	814	938	1'063	1'187	1'312	1'440		
A		839	997	1'153	1,308	1'464	1.620	1.779	1'934	2'091
%				1.360	1'547	1'788	1'921	2.111	2'298	2'485
78 ···					1.778	1.882	2'214	2'486	2.653	2'872
1/2						2.548	2'499	2.752	3,001	3'251
Po							2.776	3.061	3'341	3'622
%								3'362	3'673	3'985
14	100									4'341
%										
3/8										12
1										

WEIGHTS OF ANGLES IN LBS. PER LINEAL FOOT.

		SUM	OF FI	LANGES	IN INC	HES			gle in
8	81/2	9	9%	10	10%	11	12	16	Thickness of Angle in inches
									18
									1/4
8.17									
9.72	10.37	11.00	11.64	12.27					%
11.25	12.01	12:74	13.49	14.23	14.97	15.70	17.21		18
12.75	13.61	14.46	15.31	16.15	17.00	17.84	19.56		
14.22	15.19	16.14	17:10	18:05	19.01	19.95	21.89	29.52	18
15.67	16.74	17.80	18.87	19.92	20.98	22.04	24.18	32.67	%
17.09	18 - 27	19.44	20.61	21.77	22 94	24.10	26 - 45	35.79	11
18:49	19.77	21.04	22:32	23.59	24.86	26.13	28 - 70	38 - 89	3/4
		24.18	25.67	27.15	28.63	30.11	33.11	45.00	3/4
				30.60	32.30	33-99	37-41	51.00	1

AREAS OF ANGLES IN SQUARE INCHES.

SUM OF FLANGES IN INCHES													
7%	8	81/2	9	91/4	10	10%	11	12	16	Thick of Ang			
										. 14			
										14			
2'246	2.402									/4			
2.671	2.859	3.050	3.236	3.424	3.610					34			
3.089	3.308	3.231	3.748	3 967	4.184	4.403	4.619	5.062		1/4			
8.499	3.749	4.003	4.252	4.502	4.750	5.000	5.248	5.753	7.750				
3:902	4.183	4:468	4.748	51029	5.309	5.290	5.869	6.437	8.683	1			
4.296	4.609	4.925	5'236	5.549	5'860	6.172	6.482	7.112	9.609	%			
4'683	5.027	5.375	5.717	6.061	6.403	6.746	7.088	7.780	10.527	14			
	5'437	5.816	6.189	6'564	6.938	7.313	7.686	8'441	11'437	34			
			7.111	7.549	7.985	8.422	8.857	9.737	13.234	74			
					9.000	9.500	9.998	11.003	15.000	1			

WEIGHT OF FLAT ROLLED STEEL IN LBS. PER LINEAL FOOT.

Width			TE	HICKNESS	IN INCH	HES		
in Inches	16	1/8	3 16	1/4	5 16	3/8	$\frac{7}{16}$	1/2
11/2	1 213 266 319	638	·638 ·797 ·956 1·12	1.06 1.28 1.49	1.06 1.33 1.59 1.86	1.28 1.59 1.91 2.23	1.49 1.86 2.23 2.60	1.70 2.13 2.55 2.98
21/2	2 :425 :478 :531 :584	1.06	1.28 1.43 1.59 1.75	1.70 1.91 2.13 2.34	2·13 2·39 2·66 2·92	2:55 2:87 3:19 3:51	2.98 3.35 3.72 4.09	3:40 3:83 4:25 4:68
31/4	3 :638 :691 :744 :797	1.38	1.91 2.07 2.23 2.39	2:55 2:76 2:98 3:19	3.19 3.45 3.72 3.98	3.83 4.14 4.46 4.78	4.46 4.83 5.21 5.58	5°10 5°53 5°95 6°38
41/4	4 .850 .903 .956 .1.01	1.81	2·55 2·71 2·87 3·03	3.40 3.61 3.83 4.04	4.25 4.52 4.78 5.05	5·10 5·42 5·74 6·06	5.95 6.32 6.69 7.07	6:80 7:23 7:65 8:08
51/4	5 1.06 1.12 1.17 1.22	2:13 2:23 2:34 2:44	3·19 3·35 3·51 3·67	4.25 4.46 4.68 4.89	5.31 5.58 5.84 6.11	6.38 6.69 7.01 7.33	7:44 7:81 8:18 8:55	8:50 8:93 9:35 9:78
61/4	6 1.28 1.33 1.38 1.43	2:55 2:66 2:76 2:87	3.83 3.98 4.14 4.30	5.10 5.31 5.53 5.74	6:38 6:64 6:91 7:17	7.65 7.97 8.29 8.61	8.93 9.30 9.67 10.04	10.20 10.63 11.05 11.48
71/4	7 1.49 1.54 1.59 1.65	2.98 3.08 3.19 3.29	4.46 4.62 4.78 4.94	5.95 6.16 6.38 6.59	7:44 7:70 7:97 8:23	8:93 9:24 9:56 9:88	10.41 10.78 11.16 11.53	11.90 12.33 12.75 13.18
81/4	8 1.70 1.75 1.81 1.86	3.40 3.51 3.61 3.72	5°10 5°26 5°42 5°58	6.80 7.01 7.23 7.44	8:50 8:77 9:03 9:30	10°20 10°52 10°84 11°16	11.90 12.27 12.64 13.02	13.60 14.03 14.45 14.88
91/4	9 1.91 1.97 2.02 2.07	3.83 3.93 4.04 4.14	5.74 5.90 6.06 6.22	7.65 7.86 8.08 8.29	9.56 9.83 10.09 10.36	11.48 11.80 12.11 12.43	13.39 13.76 14.13 14.50	15.73 16.15 16.58
101/4		4.25 4.36 4.46 4.57	6.38 6.53 6.70 6.85	8.50 8.71 8.93 9.14	10.63 10.89 11.16 11.42	12.75 13.07 13.39 13.71	14.88 15.25 15.62 15.99	17.00 17.43 17.85 18.28
111/4		4.68 4.78 4.89 5.00	7.01 7.17 7.33 7.49	9:35 9:56 9:78 9:99	11.69 11.95 12.22 12.48	14.03 14.34 14.66 14.98	16.36 16.73 17.11 17.48	18.70 19.13 19.55 19.98
1		5.10	7.65	10.50	12.75	15.30	17.85	20.40

WEIGHT OF FLAT ROLLED STEEL IN LBS. PER LINEAL FOOT.

		THE	OKNESS	IM IMO	HES			Widtk		
1/4	%	th	%				1		Inshe	
1.91 2.39 2.87 3.35	2.18 2.66 3.10 3.72	2:34 2:92 3:51 4:09	2°55 3°19 3°83 4°46	2:76 3:45 4:14 4:83	2.96 3.72 4.46 5.21	8.19 3.98 4.78 5.56	3'40 4'25 5'10 5'95			
3.83 4.30 4.78 5.26	4:25 4:78 5:31 5:84	4.68 5.26 5.84 6.43	5:10 5:74 6:38 7:01	5°53 6°22 6°91 7°60	5°95 6°69 7°44 8°18	6.38 7.17 7.97 8.77	6'80 7'65 8'50 9'35			
5.74 6.23 6.70 7.17	6:38 6:91 7:44 7:97	7.01 7.60 8.18 8.77	7.65 8.29 8.93 9.56	8°29 8°98 9°67 10°36	8-93 9-67 10-41 11-16	9°56 10°36 11°16 11°95				
7.65 8.13 8.61 9.08	8°50 9°03 9°56 10°09	9°35 9°93 10°52 11°10	10°20 10°84 11°48 12°11	11.74 11.74 12.43 13.12	11 90 12 64 13 39 14 13	12.75 13.55 14.34 15.14	18'60 14'45 15'30 16'15	4	4%	41
9°56 10°04 10°52 11°00	10.63 11.16 11.69 12.22	11'69 12'27 12'86 13'44	12:75 13:39 14:03 14:66	13'81 14'50 15'19 15'88	14'88 15'62 16'36 17'11	15.94 16.73 17.53 18.33	17.00 17.85 18.70 19.55			
11'48 11'95 12'43 12'91	12.75 18.28 13.81 14.34	14.08 14.61 15.19 15.78	15:30 15:94 16:58 17:21	16.58 17.27 17.96 18.65	17.85 18.59 19.34 20.08	19°13 19°92 20°72 21°53	20°40 21°25 22°10 22°95	6		
13°39 13°87 14°34 14°82	14'88 15'41 15'94 16'47	16°36 16°95 17°53 18°12	17.85 18.49 19.13 19.76	19°34 20°03 20°72 21°41	20.83 21.57 22.31 23.06	22°31 23°11 23°91 24°70	23°80 24°65 26°50 26°35			
15.30 15.78 16.26 16.73	17.00 17.53 18.06 18.59	18.70 19.28 19.87 20.45	20'40 21'04 21'68 22'31	22°10 22°79 23°48 24°17	23 80 24 54 25 29 26 03	25 50 26 30 27 10 27 89	27°20 28°05 28°90 29°75			85
17-80 18-17 18-65	19°13 19°66 20°19 20°72	21'04 21'62 22'79 22'79	22'95 23'50 24'23 24'86	24'86 25'55 26'24 26'93	26.78 27.52 28.26 29.01	28-69 29-48 30-28 31-08	30° 80 31° 45 32° 30 33° 15	9	94	91
19-13 19-60 20-08 20-56	21.25 21.78 22.31 22.84	23°38 23°96 24°54 25°18	25.50 26.14 26.78 27.41	27-63 28-32 29-01 29-70	20.75 30.49 31.24 31.98	31 88 32 67 33 47 34 27	34 '00 34 '85 35 '70 36 55		10%	
21 04 21 52 22 00 22 47	23°38 23°01 24°44 24°97	25.71 26.30 26.88 27.47	28°05 28°60 29°33 29°98	30°39 31°08 31°77 32°48	39 73 33 47 34 21 34 96	35 06 35 86 36 66 37 45	37 40 38 25 39 10 39 95	11	11%	11)
22.02	25.20	28.05	30.00	33'15	35.70	88.35	40'80	12		

14 ... | 1053 106 159

DORMAN, LONG & CO. LIMITED.

WEIGHT OF FLAT ROLLED STEEL IN LBS. PER LINEAL FOOT.

Width			TH	IOKNESS	IN INCH	HES		
in Inches	16	1/8	3 16	1/4.	, 16	3/8	7 16	1/2
13	2·76	5:53	8·29	11.05	13.81	16:58	19.34	22°10
14	2·98	5:95	8·93	11.90	14.88	17:85	20.83	23°80
15	3·19	6:38	9·56	12.75	15.94	19:13	22.31	25°50
16	3·40	6:80	10·20	13.60	17.00	20:40	23.80	27°20
17	3.61	7:23	10.84	14.45	18.06	21.68	25.29	28.90
18	3.83	7:65	11.48	15.30	19.13	22.95	26.78	30.60
19	4.04	8:08	12.11	16.15	20.19	24.23	28.26	32.30
20	4.25	8:50	12.75	17.00	21.25	25.50	29.75	34.00
21	4.46	8:93	13:39	17.85	22:31	26.78	31.24	35.70
22	4.68	9:35	14:03	18.70	23:38	28.05	32.72	37.40
23	4.89	9:78	14:66	19.55	24:44	29.33	34.21	39.10
24	5.10	10:20	15:30	20.40	25:50	30.60	35.70	40.80
25	5 31	10.68	15.94	21.25	26:56	31.88	37·19	42:50
26	5 53	11.05	16.58	22.10	27:63	33.15	38·68	44:20
27	5 74	11.48	17.21	22.95	28:69	34.43	40·16	45:90
28	5 95	11.90	17.85	23.80	29:75	35.70	41·65	47:60
29	6.16	12:33	18:49	24:65	30.81	36.98	43.14	49:30
30	6.38	12:75	19:13	25:50	31.88	38.25	44.63	51:00
31	6.59	13:18	19:76	26:35	32.94	39.53	46.11	52:70
32	6.80	13:60	20:40	27:20	34.00	40.80	47.60	54:40
33	7:01	14.03	21:04	28.05	35.06	42.08	49.09	56.10
34	7:23	14.45	21:68	28.90	36.13	43.35	50.58	57.80
35	7:44	14.88	22:31	29.75	37.19	44.63	52.06	59.50
36	7:65	15.30	22:95	30.60	38.25	45.90	53.55	61.20
37	7.86	15.73	23.59	31.45	39:31	47.18	55.04	62:90
38	8.08	16.15	24.23	32.30	40:38	48.45	56.53	64:60
39	8.29	16.58	24.86	33.15	41:44	49.73	58.01	66:30
40	8.50	17.00	25.50	34.00	42:50	51.00	59.50	68:00
41	8.71	17:43	26.14	34.85	43.56	52.28	60.99	69.70
42	8.93	17:85	26.78	35.70	44.63	53.55	62.48	71.40
43	9.14	18:28	27.41	36.55	45.69	54.83	63.96	73.10
44	9.35	18:70	28.05	37.40	46.75	56.10	65.45	74.80
45	9.56	19.13	28.69	38.25	47.81	57:38	66.94	76:50
46	9.78	19.55	29.33	39.10	48.88	58:65	68.43	78:20
47	9.99	19.98	29.96	39.95	49.94	59:93	69.91	79:90
48	10.20	20.40	30.60	40.80	51.00	61:20	71.40	81:60
50	10.63	21.25	31.88	42.50	53.13	63.75	74.38	85°00
52	11.05	22.10	33.15	44.20	55.25	66.30	77.35	88°40
54	11.48	22.95	34.43	45.90	57.38	68.85	80.33	91°80

106 | 159 | 213 213 | 319 | 425 319 | 478 | 638 ·266 ·531 ·797 319 372 425 638 744 850 956 1116 1275

WEIGHT OF FLAT ROLLED STEEL IN LBS. PER LINEAL FOOT.

					TI	HICKN	ESS	IN I	NCE	HES						Width
9			3	1	1	3/4		13 10		7/8		1		1		Inches
24° 26° 28° 30°	78 69	29	63 75 88 00	30 32 35 37	06	33 35 38 40	70 25	35° 38° 41° 44°	66 44	41	68 65 63 60	44	44 63 81	47 51	20 60 00 40	13 14 15 16
32 34 36 38	43	38	13 25 38 50	39 42 44 46	08	43 45 48 51	90 45	46° 49° 52° 55°	73 49	53	58 55 53 50	57	19 38 56 75	61 64	80 20 60	17 18 19 20
40 42 43 45	08	48	63 75 88 00			53° 56° 58° 61°	10 65	58° 60° 63° 66°	78 54	62 65 68 71	45			74 78	40 80 20 60	21 22 23 24
47 49 51 53	73 64	55	13 25 38 50	58 60 63 65	11	63° 66° 71°	30 85	69: 71: 74: 77:	83 59	74 77 80 83	35		88		80	25 26 27 28
55° 57° 59° 61°	38	61 63 65 68	75	67 70 72 74	13 46	73 76 79 81	50 05	80° 82° 85° 88°	88 64	86 89 92 95	25 23	92 95 98 102	63	98 102 105 108	00	29 30 31 32
63° 66° 68°	03	72	13 25 38 50	77 79 81 84	81	84° 86° 89°	70 25	91° 93° 96° 99°	93	98 101 104 107	15	108	38 56	119	60	33 34 35 36
70° 72° 74° 76°	59	80	63 75 88 00	88		96	90 45	102: 104: 107: 110:	98 74	113	05	121	13	125 129 132 136	20 60	37 38 39 40
78° 80° 82° 84°	33	89		98	18 51	107	10 65	113 116 118 121	03 79	124	95	133	88	142 146	80	41 42 43 44
87	06 98 89 80	97	75	107	53	117	30 85	124 127 129 132	08 84	136	85	146	63	156 159	80	45 46 47 48
95	63	106 110	25	116 121	88	127	50	138 143 149	13 65	148 154	75	159 165	38	170 176	00	50 52 54

VALUES FOR ADDITIONAL WIDTHS OF 1/4", 1/2" AND 3/4".

WEIGHT OF ROUND AND SQUARE STEEL BARS IN LBS. PER LINEAL FOOT.

Diameter or Side in inches	Round	Square	Diameter or Side in inches	Round	Square	Diameter or Side in inches	Round	Square
1/4	·167	·213	1½	4·172	5·312	3	24·03	30·60
1/6	·261	·332	1¾	5·049	6·428	3¼	28·21	35·91
3/8	·376	·478	1½	6·008	7·650	3½	32·71	41·65
76 ½ ½ 76	·511 ·668 ·845	·651 ·849 1·076	15% 134 178	7·051 8·178 9·388	8·978 10·412 11·953	334 4 414	37·55 42·73 48·23	47·81 54·40 61·41
5/8	1·043	1·328	2	10·681	13·600	4½	54·07	68·85
+6	1·262	1·607	2½	12·06	15·35	4¾	60·25	76·71
3/4	1·502	1·912	2¼	13·52	17·21	5	66·76	85·00
18	1·763	2·245	2¾	15·06	19·18	5½	73·60	93·71
7/8	2·044	2·603	2½	16·69	21·25	5½	80·78	102·85
18	2·347	2·988	2½	18·40	23·43	5¾	88·29	112·41
1 1½	2·670 3·380	3·400 4·303	2¾ 2¾	20.19	25·71 28·10	6	96.13	122.40

WHITWORTH'S STANDARD SIZES OF BOLTS AND NUTS.

	er of Bolt	Threads	at hread	e over inches	S Ver	of ii	Area at Thread inches
Fractional	Decimal Sizes	No. of Thre	Diameter at bottom of Thread in inobes	Distance o	Distance over Corners in inches	Thickness Bolt Head inches	Sectional Area at bottom of Thread in square inches
1/4	-25	20	.186	- 525	-606	-219	-027
3/8	:375	16	·295	.709	-819	*328	.068
1/2	-5	12	. 393	·919	1.061	.437	·121
1/6	.625	11	.508	1.101	1.271	-547	-203
3/4	.75	10	-622	1.301	1.502	.656	.304
7/8	-875	9	*733	1.479	1.707	.766	·422
1	1.0	8	-840	1.670	1.928	·875	.554
11/8	1.125	7	-942	1.860	2.148	•984	*697
11/4	1.25	7	1.067	2.048	2.365	1-094	-894
13%	1.375	6	1.161	2.215	2.557	1.203	1.060
11/2	1.5	6	1.286	2.413	2.787	1.312	1.300

CALCULATED WEIGHTS IN POUNDS OF WHITWORTH'S STANDARD BOLTS & NUTS.

Hermonial Head and Not.

.

A NO	DIAMETER OF BOLT IN INCHES												
Length a													
1	-942	106											
	044												
		114	736	7.80									
	947			900		960							
		100			600								
			754					760					
9				968									
2.5													
8.4	966												
0.4													
8%													
4													
5%													
45													
5%													
	0.00												
			400										
	106		900							4 940			
0													
6.4													
		204	506										
			1004										
8													
8%													
9													
914						21,580							
					1.001		3:38						
11%										7:300			
12									0:140				
Weight in lie, of one Fut	·0134	-0340		1334	-2104		9011						
Weight in its of Shank per I trak of length				1800					3477				
Weight in De. of Shank per I fact of length		-576	160	1 043	1-902	2 044		3 300	4-173	5 040	4-00		

BOLTS, NUTS AND WASHERS.

APPROXIMATE WEIGHTS AND SIZES.

LEWIS BOLTS AND NUTS.

Dimensions in Inches and Weights in Lis

Dia-					Concre	rte	Y	ork St	one		Granit	le
D	A	E	r	В	0	lbs.	В	0	lbs. each	n	C	lbs ea.cl
				9		2:63	416		1:54			
	3%		1/4		18%	4-14	AIR	876	2:47	3/4	618	1.8
	4)%	1:80			16%	6.14		9%	3.20		794	
	416					8:68	6/4	1014		318	8/4	3.8
154	411				19%	11:80	6%		6.76	4%	91/4	
						20.51	814			514	10%	

ORDINARY WASHERS.

BEVELLED WASHERS.

Diameter of Bult- in inches	Outside Diameter of Washers in inches	Thick- ness in inches	Weight in lbs. per 100	в	Dameter of Bolt in inches	Outside Diameter of Washers in inshes	" Thickness in inches	Weight in the per 100
		10.00	21/4 4 51/4		16		٨	4
1 1 114	1% 2% 2%	14	7% 34 37%	1	14		A	8
1% 1% 1%		A	21% 26 30%			1% 2%	٨	11 16

APPROXIMATE WEIGHTS AND SIZES OF GAS TUBING

Nominal Bore in inches		-14	1	114	314	1%
External Diameter in inches		1/4	1.%	1%	314	2/4
Weight in lbs. per lineal foot		1-176	1 1680	2:464	5:136	3-863

APPROXIMATE WEIGHT IN LBS. OF 100 STEEL CUP-HEADED RIVETS.

day		DIAME	TER OF	RIVET IS	INCHES	
Length A in						
	4 800 5 207 6 045 6 845 7 7 600 8 400 9 0 105 1 0 14 1 1 1 1	9 10 10 10 10 10 10 10 10 10 10 10 10 10	21 19 20 27 20 27 21 40 21 40 22 29 20 2	307 869 34 143 30 989 37 510 40 931 440 931 440 941 440 941 440 941 440 941 440 941 941 942 941 943 941 943 941 943 941 941 941 941 94		
Approximate weight in lise of 100 Honde	1.40	4.10	8.19	14.08		33.34
Weight in lie, per Rivet of I insk in length of shank	.0813		'0809	1202	'1708	

DECIMALS OF A FOOT FOR EACH THE OF AN INCH.

Inch	0"	1"	2"	3"	4"	5"	6"	7"	8"	9"	10"	11
0		.0833	1667	-2500	-3333	-4167	.5000	-5833	6667	7500	-8333	-916
d	-0013	.0846	1680	2513	.3346	-4180	-5013	-5846	.6680	-7513	8346	918
32	.0026	.0859	1693	2526	3359	4193	.5026	.5859	.6693	.7526	-8359	919
o's			1706									
16	-0052	.0885	1719	-2552	.3385	.4219	-5052	. 5885	.6719	.7552	-8385	.921
5 E. 4	.0065	.0898	1732	2565	-3398	4232	-5065	-5898	.6732	- 7565	-8390	923
39			1745									
7			1758									
1/8			1771									
0 CK		-0951	1784	-0617	TAES	. 4004	. 5117	FOET	.6704	-776377	DAFT	
5			1797									
11	-0143	.0977	1810	2000	3404	42310	51/07	5077	16010	7030	. 8464	
3	0156	.0990	1823	2656	3490	4323	-5156	- 500n	699%	7040	-0477	30
18		1003	1836	.5669	3503	4336	.5169	.6003	6836	7669	8503	.93
32	0182	1016	1849	2682	3516	4349	.5182	.6016	6849	.7682	8516	.93
1.5	.0190	1029	1862	. 5030	3529	4362	5195	,6029	.6862	7695	-8529	930
			1875									
17	.0221	1055	1888	.2721	3555	4388	.5221	6055	.6888	.7721		938
82			1901									-940
64			1914									941
16	.0360	1094	1927	2760	3594	-4427	5260	6094	6927	7760	2594	942
21	-0273	1107	1940	-2773	3607	-4440	5273	6107	6940	-7773	8607	-944
32			1953									
98			1966									
3/8			1979									
9.6	-0326	1159	1992	-2826	-3659	-4492	-5326	6159	6992	7896	- 9650	- 13/10
37	.0339	1172	2005	2839	.3672	4505	5339	6172	7005	-7839	8672	950
27		1185	2018	2852	3685	4518	5352	6185	7018	7852	8685	951
16		1198			3698							
2.9	-0379	1211	2044									
16			2057									954
81			20070									957
1/2			2070							7904		
/2	2471	1000	2000	EGT.	0100	4000	2471	0230	1000	1911	0100	300

DECIMALS OF A FOOT FOR EACH $\frac{1}{64TH}$ OF AN INCH.

Inch	0"	1"	2"	3"	4"	5"	6"	7"	8"	9"	10"	11"
8 8 6 4	·0430	·1263	·2096 ·2109			· 4596 · 4609		·6263	· 7096	· 7930 · 7943	·8763	· 9596
3.5 6.4 · · · · · · · · · · · · · · · · · · ·	·0456 ·0469	·1289 ·1302	·2122 ·2135	· 2956 · 2969	· 3789 · 3802	· 4622 · 4635		·6289 ·6302	·7122 ·7135	· 7956 · 7969	·8789 ·8802	9635
37 64	.0495	·1315 ·1328 ·1341 ·1354	·2148 ·2161 ·2174 ·2188	· 2982 · 2995 · 3008 · 3021		· 4648 · 4661 · 4674 · 4688	· 5482 · 5495 · 5508 · 5521	·6315 ·6328 ·6341 ·6354	·7148 ·7161 ·7174 ·7188		-8828	· 964 · 966 · 967 · 968
41 64 	·0547	·1367 ·1380 ·1393 ·1406	·2201 ·2214 ·2227 ·2240		· 3867 · 3880 · 3893 · 3906	· 4701 · 4714 · 4727 · 4740	· 5534 · 5547 · 5560 · 5573	·6367 ·6380 ·6393 ·6406	·7201 ·7214 ·7227 ·7240	· 8034 · 8047 · 8060 · 8073		· 970 · 971 · 972 · 974
$\frac{45}{64}$ $\frac{23}{32}$ $\frac{47}{64}$ $\frac{3}{4}$.0599	·1419 ·1432 ·1445 ·1458	·2266 ·2279			· 4753 · 4766 · 4779 · 4792	·5599 ·5612	·6419 ·6432 ·6445 ·6458		·8086 ·8099 ·8112 ·8125	·8919 ·8932 ·8945 ·8958	·975 ·976 ·977 ·979
4 9 0 4 2 5 3 2 5 1 0 4 1 3 1 6	.0651	·1471 ·1484 ·1497 ·1510	·2305 ·2318 ·2331 ·2344				· 5638 · 5651 · 5664 · 5677	·6471 ·6484 ·6497 ·6510	-7318	.8164	· 8971 · 8984 · 8997 · 9010	· 980 · 981 · 983 · 984
55 	·0703 ·0716	·1523 ·1536 ·1549 ·1562	·2370 ·2383	· 3203 · 3216	· 4036 · 4049	· 4857 · 4870 · 4883 · 4896	· 5703 · 5716	·6536 ·6549	· 7370 · 7383		9036	· 985 · 987 · 988 · 989
57 64	.0755	1589	-2422	· 3255 · 3268	-4089	· 4909 · 4922 · 4935 · 4948	.5755	6589	· 7409 · 7422 · 7435 · 7448	·8255 ·8268	· 9076 · 9089 · 9102 · 9115	·990 ·992 ·993 ·994
61 64 31 32 63 64	·0794 ·0807 ·0820		-2474	.3307		· 4961 · 4974 · 4987		6641		·8294 ·8307 ·8320	·9128 ·9141 ·9154	·996 ·997 ·998 1·000

DECIMAL EQUIVALENTS.

EXACT DECIMAL EQUIVALENTS OF THE FRACTION OF AN INCH.

	Frac	tions		Decimals		Frac	tions		Decimals
04 84 		 16		·015625 ·03125 ·046875 ·0625	8 5 6 4	11 32	 16		515625 53125 546875 5625
6 4 6 4			 ½	·078125 ·09375 ·109375 ·125	87 04 80 04	19 32		 5/8	·578125 ·59375 ·609375 ·625
0 64 		 3 16		140625 15625 171875 1875	4 I 6 4 4 B 6 4	21 32 	 11 16		640625 65625 671875 6875
13 64 15 64			1/4	·203125 ·21875 ·234375 ·25	4.5 0.4 4.7 0.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		 34	·703125 ·71875 ·734375 ·75
17 04 19 04		 5 16		·265625 ·28125 ·296875 ·3125	4 9 0 4 5 1 0 4 	25 22	 13 16		765625 78125 796875 8125
21 04 23 64	11 32		 3/8	·328125 ·34375 ·359375 ·375	5 5 6 4	21-02		 %	828125 84375 859375 875
916 . 174 0 . 174 	1 3 2	 7 16		390625 40625 421875 4375	57 64 50 64		 15 16		·890625 ·90625 ·921875 ·9375
2 0 0 4 8 1 0 4	15 32		1/2	·453125 ·46875 ·484375 ·5	61 64 68 64	31 32		1	953125 96875 984375 1.00

MOMENTS OF INERTIA OF VARIOUS SECTIONS.

Sections	Moments of Inertia about xx	Sections	Moments of Inertia about xx
X — B — X	B. D ³	x — — x	$\frac{\pi \left(D^{4} - d^{4}\right)}{64} = 00000000000000000000000000000000000$
X - Y - B - >	B. D ³ 3	x D	B.D ³ 36
X - B -	$-\mathbf{x} \frac{\mathbf{B} \left(\mathbf{D}^{3} - \mathbf{d}^{3}\right)}{12}$	x — B — — — — — — — — — — — — — — — — —	B. D ³
	$\begin{array}{c} -x & \frac{\pi.\mathrm{D}^4}{64} = \\ & \cdot 0491\mathrm{D}^4 \end{array}$	X X	B. D ³

AREAS OF SMALL CIRCLES, ADVANCING BY 32NDS OF AN INCH.

	meter	Area in square inches		neter	Area in square inches	Dian in in	neter	Area in square inches		neter	Area in square inches
	32	.0008		97	.0621			-2217			-4794
Te		.0031	16		.0757	76		.2485	18		*5185
	32	.0069		31	.0928		19	.2769		27	.5591
1/8		.0123	3/8		·1104	5/8		.3068	7/8		.6013
	32	.0192		13	1296		21 32	-3382		29 32	.6450
18		.0276	76		1503	16		.3712	18		*6903
	32	.0376		15	1726		23	.4057		31	.7371
1/4		.0491	1/2		·1963	3/4		.4418	1		-7854

AREAS OF CIRCLES ADVANCING BY EIGHTHS.

Diameter	0	1/8	1/4	3/8	1/2	5/8	3/4	7/8
0 1 2 3 4 5	785 3·142 7·069 12·566 19·635	·012 ·994 3·547 7·670 13·364 20·629	049 1 · 227 3 · 976 8 · 296 14 · 186 21 · 648	·110 1·485 4·430 8·946 15·033 22·691	· 196 1 · 767 4 · 909 9 · 621 15 · 904 23 · 758	-307 2:074 5:412 10:321 16:800 24:850	· 442 2 · 405 5 · 940 11 · 045 17 · 721 25 · 937	·601 2·761 6·492 11·793 18·665 27·109
6 7 8 9	28 · 274 38 · 485 50 · 265 63 · 617 78 · 540	29 · 465 39 · 871 51 · 849 65 · 397 80 · 516	30 · 680 41 · 282 53 · 456 67 · 201 82 · 516	31 · 919 42 · 718 55 · 088 69 · 029 84 · 541	33 · 183 44 · 179 56 · 745 70 · 882 86 · 590	34·472 45·664 58·426 72·760 88·664	35 · 785 47 · 173 60 · 132 74 · 662 90 · 763	37·122 48·707 61·862 76·589 92·886
11	95·033	97:205	99·402	101.62	103 · 87	106·14	108 · 43	110 · 75
12	113·10	115:47	117·86	120.28	122 · 72	125·19	127 · 68	130 · 19
13	132·73	135:30	137·89	140.50	143 · 14	145·80	148 · 49	151 · 20
14	153·94	156:70	159·48	162.30	165 · 13	167·99	170 · 87	173 · 78
15	176·71	179:67	182·65	185.66	188 · 69	191·75	194 · 83	197 · 95
16	201 · 06	204 · 22	207·39	210 · 60	213 · 82	217 · 08	220·35	223 · 65
17	226 · 98	230 · 33	233·71	237 · 10	240 · 53	243 · 98	247·45	250 · 95
18	254 · 47	258 · 02	261·59	265 · 18	268 · 80	272 · 45	276·12	279 · 81
19	283 · 53	287 · 27	291·04	294 · 83	298 · 65	302 · 49	306·35	310 · 24
20	314 · 16	318 · 10	322·06	326 · 05	330 · 06	334 · 10	338·16	342 · 25
21	346 · 36	350 · 50	354 · 66	358 · 84	363·05	367 · 28	371 · 54	375 · 83
22	380 · 13	384 · 46	388 · 82	393 · 20	397·61	402 · 04	406 · 49	410 · 97
23	415 · 48	420 · 00	424 · 56	429 · 13	433·74	438 · 36	443 · 01	447 · 69
24	452 · 39	457 · 11	461 · 86	466 · 64	471·44	476 · 26	481 · 11	485 · 98
25	490 · 87	495 · 79	500 · 74	505 · 71	510·71	515 · 72	520 · 77	525 · 84
26	530 · 93	536 · 05	541·19	546 · 35	551 · 55	556 · 76	562.00	567·27
27	572 · 56	577 · 87	583·21	588 · 57	593 · 96	599 · 37	604.81	610·27
28	615 · 75	621 · 26	626·80	632 · 36	637 · 94	643 · 55	649.18	654·84
29	660 · 52	666 · 23	671·96	677 · 71	683 · 49	689 · 30	695.13	700·98
30	706 · 86	712 · 76	718·69	724 · 64	730 · 62	736 · 62	742.64	748·69
31	754·77	760 · 87	766 · 99	773 · 14	779·31	785 · 51	791 · 73	797 · 98
32	804·25	810 · 54	816 · 86	823 · 21	829·58	835 · 97	842 · 39	848 · 83
33	855·30	861 · 79	868 · 31	874 · 85	881·41	888 · 00	894 · 62	901 · 26
34	907·92	914 · 61	921 · 32	928 · 06	934·82	941 · 61	948 · 42	955 · 25
35	962·11	969 · 00	975 · 91	982 · 84	989·80	996 · 78	1003 · 8	1010 · 8
36	1017·9	1025·0	1032·1	1039·2	1046·3	1053·5	1060·7	1068·0
37	1075·2	1082·5	1089·8	1097·1	1104·5	1111·8	1119·2	1126·7
38	1134·1	1141·6	1149·1	1156·6	1164·2	1171·7	1179·3	1186·9
39	1194·6	1202·3	1210·0	1217·7	1225·4	1233·2	1241·0	1248·8
40	1256·6	1264·5	1272·4	1280·3	1288·2	1296·2	1304·2	1312·2
41	1320·3	1328·3	1336 · 4	1344·5	1352·7	1360·8	1369·0	1377·2
42	1385·4	1393·7	1402 · 0	1410·3	1418·6	1427·0	1435·4	1443·8
43	1452·2	1460·7	1469 · 1	1477·6	1486·2	1494·7	1503·3	1511·9
44	1520·5	1529·2	1537 · 9	1546·6	1555·3	1564·0	1572·8	1581·6
45	1590·4	1599·3	1608 · 2	1617·0	1626·0	1634·9	1643·9	1652·9
46	1661 · 9	1670·9	1680·0	1689·1	1698·2	1707 · 4	1716·5	1725 · 7
47	1734 · 9	1744·2	1753·5	1762·7	1772·1	1781 · 4	1790·8	1800 · 1
48	1809 · 6	1819·0	1828·5	1837·9	1847·5	1857 · 0	1866·5	1876 · 1
49	1885 · 7	1895·4	1905·0	1914·7	1924·4	1934 · 2	1943·9	1953 · 7
50	1963 · 5	1973·3	1983·2	1993·1	2003·0	2012 · 9	2022·8	2032 · 8

AREAS OF CIRCLES ADVANCING BY EIGHTHS.

Diameter	0	1/8	1/4		1/2	5/8	3/4	7/8
51	2042 · 8	2052 · 8	2062·9	2073·0	2083·1	2093 · 2	2103·3	2113·5
52	2123 · 7	2133 · 9	2144·2	2154·5	2164·8	2175 · 1	2185·4	2195·8
53	2206 · 2	2216 · 6	2227·0	2237·5	2248·0	2258 · 5	2269·1	2279·6
54	2290 · 2	2300 · 8	2311·5	2322·1	2332·8	2343 · 5	2354·3	2365·0
55	2375 · 8	2385 · 6	2397·5	2408·3	2419·2	2430 · 1	2441·1	2452·0
56	2463 · 0	2474 · 0	2485·0	2496 · 1	2507 · 2	2518·3	2529 · 4	2540 · 6
57	2551 · 8	2563 · 0	2574·2	2585 · 4	2596 · 7	2608·0	2619 · 4	2630 · 7
58	2642 · 1	2653 · 5	2664·9	2676 · 4	2687 · 8	2699·3	2710 · 9	2722 · 4
59	2734 · 0	2745 · 6	2757·2	2768 · 8	2780 · 5	2792·2	2803 · 9	2815 · 7
60	2827 · 4	2839 · 2	2851·0	2862 · 9	2874 · 8	2886·6	2898 · 6	2910 · 5
61	2922 · 5	2934 · 5	2946 · 5	2958 · 5	2970 · 6	2982·7	2994 · 8	3006 · 9
62	3019 · 1	3031 · 3	3043 · 5	3055 · 7	3068 · 0	3080·3	3092 · 6	3104 · 9
63	3117 · 2	3129 · 6	3142 · 0	3154 · 5	3166 · 9	3179·4	3191 · 9	3204 · 4
64	3217 · 0	3229 · 6	3242 · 2	3254 · 8	3267 · 5	3280·1	3292 · 8	3305 · 6
65	3318 · 3	3331 · 1	3343 · 9	3356 · 7	3369 · 6	3382·4	3395 · 3	3408 · 2
66	3421 · 2	3434·2	3447 · 2	3460 · 2	3473 · 2	3486·3	3499·4	3512·5
67	3525 · 7	3538·8	3552 · 0	3565 · 2	3578 · 5	3591·7	3605·0	3618·3
68	3631 · 7	3645·0	3658 · 4	3671 · 8	3685 · 3	3698·7	3712·2	3725·7
69	3739 · 3	3752·8	3766 · 4	3780 · 0	3793 · 7	3807·3	3821·0	3834·7
70	3843 · 5	3862·2	3876 · 0	3889 · 8	3903 · 6	3917·5	3931·4	3945·3
71	3959·2	3973·1	3987 · 1	4001·1	4015·2	4029·2	4043·3	4057 · 4
72	4071·5	4085·7	4099 · 8	4114·0	4128·2	4142·5	4156·8	4171 · 1
73	4185·4	4199·7	4214 · 1	4228·5	4242·9	4257·4	4271·8	4286 · 3
74	4300·8	4315·4	4329 · 9	4344·5	4359·2	4373·8	4388·5	4403 · 2
75	4417·9	4432·6	4447 · 4	4462·2	4477·0	4491·8	4506·7	4521 · 5
76	4536·5	4551·4	4566 · 4	4581·3	4596·3	4611 · 4	4626 · 4	4641·5
77	4656·6	4671·8	4686 · 9	4702·1	4717·3	4732 · 5	4747 · 8	4763·1
78	4778·4	4793·7	4809 · 0	4324·4	4839·8	4855 · 2	4870 · 7	4886·2
79	4901·7	4917·2	4932 · 7	4948·3	4963·9	4979 · 5	4995 · 2	5010·9
80	5026·5	5042·3	5058 · 0	5073·8	5089·6	5105 · 4	5121 · 2	5137·1
81	5153·0	5168 · 9	5184 · 9	5200 · 8	5216 · 8	5232 · 8	5248 · 9	5264 · 9
82	5281·0	5297 · 1	5313 · 3	5329 · 4	5345 · 6	5361 · 8	5378 · 1	5394 · 3
83	5410·6	5426 · 9	5443 · 3	5459 · 6	5476 · 0	5492 · 4	5508 · 8	5525 · 3
84	5541·8	5558 · 3	5574 · 8	5591 · 4	5607 · 9	5624 · 5	5641 · 2	5657 · 8
85	5674·5	5691 · 2	5707 · 9	5724 · 7	5741 · 5	5758 · 3	5775 · 1	5791 · 9
86	5808 · 8	5825 · 7	5842 · 6	5895 · 6	5876·5	5893 · 5	5910 · 6	5927·6
87	5944 · 7	5961 · 8	5978 · 9	5996 · 0	6013·2	6030 · 4	6047 · 6	6064·9
88	6082 · 1	6099 · 4	6116 · 7	6134 · 1	6151·4	6168 · 8	6186 · 2	6203·7
89	6221 · 1	6238 · 6	6256 · 1	6273 · 7	6291·2	6308 · 8	6326 · 4	6344·1
90	6361 · 7	6379 · 4	6397 · 1	6414 · 9	6432·6	6450 · 4	6468 · 2	6486·0
91	6503 · 9	6521 · 8	6539·7	6557 · 6	6575·5	6593 · 5	6611 · 5	6629·6
92	6647 · 6	6665 · 7	6683·8	6701 · 9	6720·1	6738 · 2	6756 · 4	6774·7
93	6792 · 9	6811 · 2	6829·5	6847 · 8	6866·1	6884 · 5	6902 · 9	6921·3
94	6939 · 8	6958 · 2	6976·7	6995 · 3	7013·8	7032 · 4	7051 · 0	7069·6
95	7088 · 2	7106 · 9	7125·6	7144 · 3	7163·0	7181 · 8	7200 · 6	7219·4
96	7238 · 2	7257 · 1	7276 · 0	7294 · 9	7313 · 8	7332 · 8	7351 · 8	7370 · 8
97	7389 · 8	7408 · 9	7428 · 0	7447 · 1	7466 · 2	7485 · 3	7504 · 5	7523 · 7
98	7543 · 0	7562 · 2	7581 · 5	7600 · 8	7620 · 1	7639 · 5	7658 · 9	7678 · 3
99	7697 · 7	7717 · 1	7736 · 6	7756 · 1	7775 · 6	7795 · 2	7814 · 8	7834 · 4
100	7854 · 0	7873 · 6	7893 · 3	7913 · 0	7932 · 7	7952 · 5	7972 · 2	7992 · 0

CIRCUMFERENCES OF CIRCLES ADVANCING BY EIGHTHS.

Diameter	0	1/8	1/4	3/8	1/2	5/8	3/4	7/8
0 1 2 3 4 5	3·142 6·283 9·425 12·566 15·708	·393 3·534 6·676 9·817 12·959 16·101	·785 3·927 7·069 10·210 13·352 16·493	1·178 4·320 7·461 10·603 13·744 16·886	1·571 4·712 7·854 10·996 14·137 17·279	1·963 5·105 8·247 11·388 14·530 17·671	2·356 5·498 8·639 11·781 14·923 18·064	2·749 5·890 9·032 12·174 15·315 18·457
6 7 8 9	18·850 21·891 25·133 28·774 31·416	19·242 22·384 25·525 28·667 31·809	19·635 22·777 25·918 29·060 32·201	20·028 23·169 26·311 29·452 32·594	20·420 23·562 26·704 29·845 32·987	20·813 23·955 27·096 30·238 33·379	21·206 24·347 27·489 30·631 33·772	21 · 598 24 · 740 27 · 882 31 · 023 34 · 165
11	34 · 558	34·950	35 · 343	35 · 736	36·128	36·521	36 · 914	37 · 306
12	37 · 699	38·092	38 · 485	38 · 877	39·270	39·663	40 · 055	40 · 448
13	40 · 841	41·233	41 · 626	42 · 019	42·412	42·804	43 · 197	43 · 590
14	43 · 982	44·375	44 · 768	45 · 160	45·553	45·946	46 · 338	46 · 731
15	47 · 124	47·517	47 · 909	48 · 302	48·695	49·087	49 · 480	49 · 873
16	50·265	50.658	51·051	51 · 444	51 · 836	52·229	52.622	53 · 014
17	53·407	53.800	54·192	54 · 585	54 · 978	55·371	55.763	56 · 156
18	56·549	56.941	57·334	57 · 727	58 · 119	58·512	58.905	59 · 298
19	59·690	60.083	60·476	60 · 868	61 · 261	61·654	62.046	62 · 439
20	62·832	63.225	63·617	64 · 010	64 · 403	64·795	65.188	65 · 581
21	65·973	66:366	66 · 759	67·152	67·544	67 · 937	68:330	68 · 722
22	69·115	69:508	69 · 900	70·293	70·686	71 · 079	71:471	71 · 864
23	72·257	72:649	73 · 042	73·435	73·827	74 · 220	74:613	75 · 006
24	75·398	75:791	76 · 184	76·576	76·969	77 · 362	77:754	78 · 147
25	78·540	78:933	79 · 325	79·718	80·111	80 · 503	80:896	81 · 289
26	31 · 681	82:074	82·467	82·860	83·252	83·645	84·038	84 · 430
27	84 · 823	85:216	85·608	86·001	86·394	86·786	87·179	87 · 572
28	87 · 965	88:357	88·750	89·143	89·535	89·928	90·321	90 · 713
29	91 · 106	91:499	91·892	92·284	92·677	93·070	93·462	93 · 855
30	94 · 248	94:640	95·033	95·426	95·819	96·211	96·604	96 · 997
31	97·389	97·782	98·175	98·567	98 · 960	99·353	99·746	100·14
32	100·53	100·92	101·32	101·71	102 · 10	102·49	102·89	103·28
33	103·67	104·07	104·46	104·85	105 · 24	105·64	106·03	106·42
34	106·81	107·21	107·60	107·99	108 · 38	108·78	109·17	109·56
35	109·96	110·35	110·74	111·13	111 · 53	111·92	112·31	112·70
36	113·10	113·49	113.88	114·28	114.67	115·06	115·45	115 · 85
37	116·24	116·63	117.02	117·42	117.81	118·20	118·60	118 · 99
38	119·38	119·77	120.17	120·56	120.95	121·34	121·74	122 · 13
39	122·52	122·91	123.31	123·70	124.09	124·49	124·88	125 · 27
40	125·66	126·06	126.45	126·84	127.23	127·63	128·02	128 · 41
41	128·81	129·20	129·59	129·98	130·38	130·77	131·16	131 · 55
42	131·95	132·34	132·73	133·12	133·52	133·91	134·30	134 · 70
43	135·09	135·48	135·87	136·27	136·66	137·05	137·44	137 : 84
44	138·23	138·62	139·02	139·41	139·80	140·19	140·59	140 · 98
45	141·37	141·76	142·16	142·55	142:94	143·34	143·73	144 · 12
46	144·51	144·91	145·30	145·69	146.08	146 · 48	146.87	147 · 26
47	147·65	148·05	148·44	148·83	149.23	149 · 62	150.01	150 · 40
48	150·80	151·19	151·58	151·97	152.37	152 · 76	153.15	153 · 55
49	153·94	154·33	154·72	155·12	155.51	155 · 90	156.29	156 · 69
50	157·08	157·47	157·85	158·26	158.65	159 · 04	159.44	159 · 83

CIRCUMFERENCES OF CIRCLES ADVANCING BY EIGHTHS.

Diameter	0		1/4	3/8	1/2	5/8	3/4	7/8
51	160·22	160 · 61	161·01	161·40	161 · 79	162:18	162:58	162 · 97
52	163·35	163 · 76	154·15	164·54	164 · 93	165:33	165:72	166 · 11
53	166·50	166 · 90	167·29	167·68	168 · 08	168:47	163:86	169 · 25
54	169·65	170 · 04	170·43	170·82	171 · 22	171:61	172:00	172 · 39
55	172·79	173 · 18	173·57	173·97	174 · 36	174:75	175:14	175 · 54
56	175 · 93	176·32	176 · 71	177·11	177:50	177 · 89	178 · 29	178 · 68
57	179 · 07	179·46	179 · 86	180·25	180:64	181 · 03	181 · 43	181 · 82
58	182 · 21	182·61	183 · 00	183·39	183:78	184 · 18	184 · 57	184 · 96
59	185 · 35	185·75	185 · 14	186·53	185:92	187 · 32	187 · 71	188 · 10
60	188 · 50	188·89	189 · 28	189·67	190:07	190 · 46	190 · 85	191 · 24
61	191 · 64	192 · 03	192 · 42	192·82	193 · 21	193.60	193·99	194:39
62	194 · 78	195 · 17	195 · 56	195·96	196 · 35	195.74	197·13	197:53
63	197 · 92	198 · 31	198 · 71	199·10	199 · 49	199.88	200·28	200:67
64	201 · 05	201 · 45	201 · 85	202·24	202 · 63	203.03	203·42	203:81
65	204 · 20	204 · 60	204 · 99	205·38	205 · 77	205.17	206·56	206:95
66	207·35	207·74	208·13	208 · 52	208 · 92	209·31	209·70	210:09
67	210·49	210·88	211·27	211 · 66	212 · 05	212·45	212·84	213:24
68	213·63	214·02	214·41	214 · 81	215 · 20	215·59	215·98	216:38
69	216·77	217·16	217·56	217 · 95	218 · 34	218·73	219·13	219:52
70	219·91	220·30	220·70	221 · 09	221 · 48	221·87	222·27	222:66
71	223:05	223 · 45	223 · 84	224 · 23	224 · 62	225 · 02	225 · 41	225 · 80
72	226:19	226 · 59	226 · 98	227 · 37	227 · 77	228 · 16	228 · 55	228 · 94
73	229:34	229 · 73	230 · 12	230 · 51	230 · 91	231 · 30	231 · 69	232 · 09
74	232:48	232 · 87	233 · 26	233 · 66	234 · 05	234 · 44	234 · 83	235 · 23
75	235:62	236 · 01	236 · 40	236 · 80	237 · 19	237 · 58	237 · 98	238 · 37
76	238·76	239·15	239·55	239·94	240 · 33	240 · 72	241·12	241 · 51
77	241·90	242·30	242·69	243·08	243 · 47	243 · 87	244·26	244 · 65
78	245·04	245·44	245·83	246·22	246 · 62	247 · 01	247·40	247 · 79
79	248·19	248·58	248·97	249·36	249 · 76	250 · 15	250·54	250 · 93
80	251·33	251·72	252·11	252·51	252 · 90	253 · 29	253·68	254 · 08
81	254 · 47	254 · 86	255 · 25	255 · 65	256 · 04	256 · 43	256 · 83	257 · 22
82	257 · 61	258 · 00	258 · 40	258 · 79	259 · 18	259 · 57	259 · 97	260 · 35
83	260 · 75	261 · 14	261 · 54	261 · 93	262 · 32	262 · 72	263 · 11	263 · 50
84	263 · 89	264 · 29	264 · 68	265 · 07	265 · 46	265 · 86	266 · 25	266 · 64
85	267 · 04	267 · 43	267 · 82	268 · 21	268 · 61	269 · 00	269 · 39	269 · 78
86	270 · 18	270·57	270 · 96	271 · 36	271 · 75	272 · 14	272 · 53	272:93
87	273 · 32	273·71	274 · 10	274 · 50	274 · 89	275 · 28	275 · 67	276:07
88	276 · 46	276·85	277 · 25	277 · 64	278 · 03	278 · 42	278 · 82	279:21
89	279 · 60	279·99	280 · 39	280 · 78	281 · 17	281 · 57	281 · 96	282:35
90	282 · 74	283·14	283 · 53	283 · 92	284 · 31	284 · 71	285 · 10	285:49
91	285 · 88	286 · 28	286 · 67	287 · 06	287 · 45	287 · 85	288 · 24	288 · 63
92	289 · 03	289 · 42	289 · 81	290 · 20	290 · 60	290 · 99	291 · 38	291 · 78
93	292 · 17	292 · 56	292 · 95	293 · 35	293 · 74	294 · 13	294 · 52	294 · 92
94	295 · 31	295 · 70	296 · 10	296 · 49	296 · 88	297 · 27	297 · 67	298 · 06
95	293 · 45	298 · 84	299 · 24	299 · 63	300 · 02	300 · 41	300 · 81	301 · 20
96	301 · 59	301 · 99	302·38	302 · 77	303·16	303 · 56	303 · 95	304 · 34
97	304 · 73	305 · 13	305·52	305 · 91	306·31	306 · 70	307 · 09	307 · 48
98	307 · 88	308 · 27	308·66	309 · 05	309·45	309 · 84	310 · 23	310 · 62
99	311 · 02	311 · 41	311·80	312 · 20	312·59	312 · 98	313 · 37	313 · 77
100	314 · 16	314 · 55	314·94	315 · 34	315·73	316 · 12	316 · 52	316 · 91

SQUARES OF NUMBERS AND FRACTIONAL PARTS.

No.	0	1/8	1/4	3/8	1/2	5/8	3/4	7/8
0		.0156	-0625	1406	-2500	-3906	-5625	-76
1	1	1.2656	1.5625	1.8906	2.2500	2.6406	3.0625	3.51
2	4	4.5156	5.0625	5.6406	6.2500	6.8906	7.5625	8.26
3	9	9.7656	10.5625	11.3906	12.2500	13.1406	14.0625	15.01
4	16	17.0156	18.0625	19.1406	20 - 2500	21.3906	22.5625	23.76
5	25	26 · 2656	27 · 5625	28 · 8906	30 - 2500	31 · 6406	33 · 0625	34.51
6	36	37.5156	39.0625	40 · 6406	42.2500	43 · 8906	45 · 5625	47.26
7	49	50.7656	52 · 5625	54 · 3906	56 · 2500	58 · 1406	60.0625	62.01
8	64	66.0156	68.0625	70 · 1406	72 · 2500	74 · 3906	76 · 5625	78 - 76
9	81	83 · 2656	85 · 5625	87 · 8906	90.2500	92.6406	95.0625	97.51
10	100	102-5156	105.0625	107 · 6406	110 · 2500	112-8906	115.5625	118-26
11	121	123 · 7656	126 · 5625	129.3906	132 2500	135 · 1406	138 - 0625	141 - 01
12	144	147.0156	150.0625	153 · 1406	156 · 2500	159.3906	162 - 5625	165.76
13	169	172 2656	175 - 5625	178 - 8906	182 2500	185.6406	189.0625	192.51
14	196	199.5156	203 · 0625	206 · 6406	210 · 2500	213.8906	217 - 5625	221 - 26
15	225	228 · 7656	232 · 5625	236 · 3906	240 · 2500	244 · 1406	248 · 0625	252 - 01
16	256	260.0156	264 · 0625	268 1406	272 - 2500	276 - 3906	280 - 5625	284 · 76
17	289	293 - 2656	297 · 5625	301 - 8906	305 - 2500	310 - 6406	315 · 0625	319.51
18	324	328 - 5156 .	333 0625	337-6406	342 - 2500	346 - 8906	351 · 5625	356 . 26
19	361	365 - 7656	370 - 5625	375 - 3906	380 - 2500	385 1406	390.0625	395 .01
20	400	405.0156	410.0625	415 · 1406	420 · 2500	425 · 3906	430 · 5625	435 · 76
21	441	446 · 2656	451 - 5625	456 · 8906	462 - 2500	467 - 6406	473 - 0625	478 - 51
22	484	439 · 5156	495 · 0625	500.6406	506 - 2500	511 8906	517 - 5625	523 · 26
23	529	534 · 7656	540 - 5625	546 · 3906	552 2500	558 · 1406	564 · 0625	570.01
24	576	582.0156	588 · 0625	594 · 1406	600 2500	606 · 3906	612.5625	618.76
25	625	631 · 2656	637 · 5625	643 · 8906	650 · 2500	656 - 6406	663 · 0625	669.51
26	676	682.5156	689 0625	695 · 6406	702 · 2500	708 · 8906	715 · 5625	722 · 26
27	729	735 - 7656	742 · 5625	749 · 3906	756 · 2500	763 · 1406	770 · 0625	777:01
28	784	791 · 0156	798 · 0625	805 · 1406	812 · 2500	819 3906	826 · 5625	833 - 76
29	841	848 2656	855 - 5625	862 · 8906	870 2500	877 · 6406	885 0625	892.51
30	900	907:5156	915.0625	922 6406	930 - 2500	937 · 8906	945 - 5625	953 26

SQUARES OF NUMBERS AND FRACTIONAL PARTS.

No.	0	1/4	1/4		1/2		%	7/4
31	961	968 - 7656	976 - 5625	984 - 3906	992-2500	1000-1406	1008-0625	1016:015
32	1024	1032 0156	1040 0625	1048:1406	1056 2500	1064:3006	1072 - 5625	1080 - 765
33	1089	1097 - 2656	1105-5625	1113-8906	1122 2500	1130-6406	1130-0625	1147:515
34	1156	1164:5156	1173 0625	1181 6406	1190 - 2500	1198-8906	1207 5625	1216-265
35	1225	1233 - 7656	1242 - 5625	1251 - 3906	1260-2500	1269-1406	1278 0625	1287:015
36	1296	1305-0156	1314 0625	1323 1406	1332 2500	1341 - 3906	1350-5625	1359-765
37	1360	1378 2656	1387 - 5625	1396 8906	1406 2500	1415 6406	1425 0625	1434:515
38	1444	1453 5156	1463 0625	1472:6406	1482 2500	1491 8906	1501 5625	1511 265
39	1521	1530 7656	1540 - 5625	1550:3906	1560 2500	1570 1406	1580 0625	1590 015
40	1600	1610-0156	1620 - 0625	1630-1406	1640-2500	1650-3906	1660-5625	1670 765
41	1681	1691 - 2656	1701 - 5625	1711 8906	1722-2500	1732-6406	1743 0625	1753-515
42	1764	1774 5156	1785 0625	1796 6406	1806 2500	1816 8906	1827-5625	1838 - 266
43	1849	1859 7656	1870-5625	1381 - 3906	1892 2500	1903 1406	1914 0625	
44	1936	1947-0156	1958 0625	1969 1406	1980-2500	1991:3906	2002-5625	2013:765
45	2025	2036 - 2656	2047 - 5625	2058 8906	2070-2500	2031 - 6406	2093 0625	2104-515
46	2116	2127-5156	2139-0625	2150-6406	2162-2500	2173-8906	2185 - 5625	2197 - 265
47	2209	2220 - 7656	2232-5625	2244 3906	2256 2500	2268 1406	2280:0625	
48	2304	2316 0156	2328 0625	2340 1406	2352 2500	2364 3906	2376 - 5625	2388-765
49	2401	2413:2656	2425 - 5625	2437 8906	2450 2500	2462-6406	2475 0625	2487 - 515
50	2500	2512-5156	2525-0625	2537 - 6406	2550-2500	2562:8906	2575 - 5625	2588 265
51	2601	2613-7656	2626 - 5625	2639-3906	2652-2500	2665-1406	2678 0625	2601 - 015
52	2704	2717 0156	2730-0625	2743 1406	2756 2500	2769-3906	2782-5625	2795-765
53	2809	2822 2656	2835 5625	2848 8906	2862 2500	2875 6406	2889-0625	2902-515
54	2916	2929-5156	2943-0625	2956 6406	2970 - 2500	2983 - 8906	2997 5625	3011 - 266
55	3025	3038 - 7656	3052-5625	3066-3906	3080-2500	3094-1406	3108-0625	
56	3136	3150-0156	3164-0625	3178-1406	3192-2500	3206 - 3906	3220-5625	3234 - 765
57	3249	3263-2656	3277-5625	251 3509	3306 - 2500	3320-6406	3335 0625	3349-515
58	3364	3378 - 5156	3393-0625	3407 - 6406	3422-2500	3436 - 8906	3451 5625	3466 265
59	3481		3510-5625			3555-1406	3570-0625	3585-015
60	3600	3615-0156	3630 0625	3645 1406	3660-2500	3675-3906	3690:5625	3705 768

CUBES OF NUMBERS AND FRACTIONAL PARTS.

No.	0	1/8	1/4	3/8	1/2	5/8	3/4	7/8
0		-002	-016	-053	.125	-244	-422	-670
1	1	1.424	1.953	2.600	3.375	4.291	5.359	6.592
2	8	9.596	11.391	13.396	15.625	18.088	20.797	23.764
3	27	30.518	34 · 328	38 - 443	42.875	47.635	52.734	58 · 186
4	64	70.189	76 - 766	83 - 740	91 · 125	98 - 932	107-172	115 · 857
5	125	134.611	144 · 703	155 · 287	166 · 375	177 - 979	190 · 109	202 · 779
6	216	229 · 783	244 · 141	259.084	274 · 625	290 · 775	307 - 547	324 - 951
7	343	361 · 705	381 · 078	401 · 131	421.875	443 - 322	465 - 484	488 - 373
8	512	536 - 377	561 - 516	587 - 428	614 · 125	641.619	669 922	699 045
9	729	759 799	791 - 453	823 - 975	857 - 375	891.666	926 - 859	962 967
10	1000	1037 - 971	1076 - 891	1116 · 771	1157 · 625	1199 · 463	1242 · 297	1286 - 139
11	1331	1376 · 893	1423 · 828	1471 - 818	1520 · 875	1571 - 010	1622 234	1674 - 561
12	1728	1782 - 564	1838 266	1895 115	1953 · 125	2012:307	2072 - 672	2134 · 232
13	2197	2260 986	2326 · 203	2392 662	2460 · 375	2529 - 354	2599.609	2671 - 154
14	2744	2818 · 158	2893 · 641	2970 - 459	3048 625	3128 · 150	3209 · 047	3291 - 326
15	3375	3460.080	3546 · 578	3634 · 506	3723 · 875	3814 · 697	3906 • 984	4000 - 748
16	4096	4192 · 752	4291 · 016	4390 · 803	4492 · 125	4594 · 994	4699 · 422	4805 - 420
17	4913	5032-174	5132 953	5245 - 350	5359 375	5475 041	5592 - 359	5711 - 342
18	5832	5954 · 346	6078 · 391	6204 · 146	6331 · 625	6460.838	6591 · 797	6724 - 514
19	6859	6995 268	7133 - 328	7273 · 193	7414 875	7558 - 385	7703 - 734	7850 - 936
20	3000	8150 · 939	8303 · 766	8458 · 490	8615 · 125	8773 - 682	8934 · 172	9096, 607
21	9261	9427 - 361	9595 - 703	9766 · 037	9938 · 375	10112 · 729	10289 · 109	10467 - 529
22	10648	10830 - 533	11015 · 141	11201 · 834	11390.625	11581 - 525	11774 · 547	11969 - 701
23	12167	12366 - 455	12568 078	12771 · 881	12977 · 875	13186.072	13396 · 484	13609 123
24	13824	14041 · 127	14260.516	14482 178	14706 · 125	14932 · 369	15160 922	15391 - 795
25	15625	15860 - 549	16098 - 453	16338 · 725	16581 · 375	16826 · 416	17073 · 859	17323 · 717
26	17576	17830 · 721	18087 - 891	18347 · 521	18609 625	18874 - 213	19141 - 297	19410 - 889
27	19683	19957 643	20234 828	20514 · 568	20796 · 875	21081 · 760	21369 234	21659.311
28	21952	22247 · 315	22545 266	22845 865	23149-125	23455 057		24074 982
29	24389	24705 . 736	25025 203	25347 - 412	25672 375	26000 · 104	26330.609	
30	27000	27338 908	27680 641	28025 · 209	28372 625	28722 • 900	29076 · 047	29432 · 076

CUBES OF NUMBERS AND FRACTIONAL PARTS.

No.	0		1/4	3/8		9/8	3/4	7/8
31	29791	30152.83	30517:58	30885 · 26	31255 · 87	31629 · 45	32005 - 98	32385 - 50
32	32768	33153 - 50	33542:02	33933 - 55	34328 - 12	34725 - 74	35126 - 42	35530 · 1'
33	35937	36346 - 92	36759 95	37176 - 10	37595 - 37	38017 - 79	38443 · 36	38872 0
34	39304	39739 10	40177 - 39	40618 90	41063 62	41511 - 59	41962.80	42417 - 2
35	42875	43335 02	43800 · 33	44267 - 94	44738 · 87	45213 · 13	45690 · 73	46171 . 6
36	46656	47143 - 69	47634 - 77	48129 - 24	48627 - 12	49128 - 43	49633 17	50141 · 3
37	50653	51168 · 11	51686 · 70	52208 · 79	52734 · 37	53263 · 48	53796 11	54332 2
38	54872	55415 28	55962 · 14	56512.58	57066 62	57624 · 28	58185 - 55	58750 · 4
39	59319	59891 · 21	60467.08	61046 63	61629.87	62216 · 82	62807 - 48	63401.8
40	64000	64601.88	65207 · 52	65816 · 93	66430 · 12	67047 12	67667 · 92	68292 · 5
41	68921	69553 · 30	70189 - 45	70829 - 47	71473-37	72121 · 17	72772 · 86	73428 - 4
42	74088	74751 47	75418 · 89	76090 27	76765 62	77444 96	78128 - 30	78815 6
43	79507	80202 · 39	80901 · 83	81605 · 32	82312 87	83024 · 51	83740 23	84460.0
44	85184	85912.06	86644 27	87380 62	88121 · 12	88865 81	89614.67	90367 - 7
45	91125	91886 · 49	92652 · 20	93422 · 16	94196 · 37	94974 · 85	95757 · 61	96544 6
46	97336	98131 66	98931 - 64	99735 96	100544.62	101357 · 65	102175 . 05	102995 8
47	103823	104653.58	105488 · 58	106328 · 01	107171.87	108020 - 20	108872 98	109730 - 2
48	110592	111458 - 25	112329 02	113204 · 30	114034 · 12	114968 · 49	115857 - 42	116750 9
49	117649	118551 67	119458 95	120370 85	121287 - 37	122208 · 54	123134 · 36	124064.8
50	125000	125939 85	126884 · 39	127833 65	128787 · 62	129746 · 34	130709 · 80	131678 · 0
51	132651	133628 - 77	134611 - 33	135593 69	136590.87	137587 · 88	138539 - 73	139596 - 4
52	140608	141624 - 44	142645 - 77	143671 99	144703 · 12	145739 18	146780 · 17	147826 - 1
53	148877	149932 - 86	150993 - 70	152059 - 54	153130 - 37	154206 23	155287 · 11	156373 0
54	157464	158560 03	159661 14	160767 - 33	161878 62	162995 03	164116 . 55	165243 - 2
55	166375	167511 96	163654 08	169801 · 38	170953 - 87	172111 57	173274 - 48	174442 · 6
56	175616	176794 63	177978 - 52	179167 68	180362 12	181561 87	182766 92	183977 - 2
57	185193	186414 05	187640 - 45	188872 - 22	190109 - 37	191351 92	192599 86	193853 - 2
58	195112	196376 22	197645:89	198921 .02	200201-62	201487 · 71	202779 - 30	204076 - 3
59	205379	206687 14	203000 83	209320 07	210644.87	211975 - 26	213311 23	214652 - 8
60	216000	217352 · 81	218711 · 27	220075 · 37	221445 12	222820 · 56	224201 · 67	225588 · 4

No.	Square	Oube	Square Root	Root	No.	Square	Cube	Square Root	Cube Root
123456789	1 4 9 16 25 36 49 64 81	1 8 27 64 125 216 343 512 729	1·0000 1·4142 1·7321 2·0000 2·2361 2·4495 2·6458 2·8284 3·0000	1·0000 1·2599 1·4422 1·5874 1·7100 1·8171 1·9129 2·0000 2·0801	50 51 52 53 54 55 56 57 58 59	2500 2601 2704 2809 2916 3025 3136 3249 3364 3481	125000 132651 140608 148877 157464 166375 175616 185193 195112 205379	7-0711 7-1414 7-2111 7-2801 7-3485 7-4162 7-4833 7-5498 7-6158 7-6811	3 · 6840 3 · 7084 3 · 7325 3 · 7563 3 · 7798 3 · 8030 3 · 8259 3 · 8485 3 · 8709 3 · 8930
10	100	1000	3·1623	2·1544	60	3600	216000	7·7460	3 · 9149
11	121	1331	3·3166	2·2240	61	3721	226981	7·8102	3 · 9365
12	144	1728	3·4641	2·2894	62	3844	238328	7·8740	3 · 9579
13	169	2197	3·6056	2·3513	63	3969	250047	7·9373	3 · 9791
14	196	2744	3·7417	2·4101	64	4096	262144	8·0000	4 · 0000
15	225	3375	3·8730	2·4662	65	4225	274625	8·0623	4 · 0207
16	256	4096	4·0000	2·5198	66	4356	287496	8·1240	4 · 0412
17	289	4913	4·1231	2·5713	67	4489	300763	8·1854	4 · 0615
18	324	5832	4·2426	2·6207	68	4624	314432	8·2462	4 · 0817
19	361	6859	4·3589	2·6684	69	4761	328509	8·3066	4 · 1016
20	400	8000	4·4721	2.7144	70	4900	343000	8-3666	4 · 1213
21	441	9261	4·5826	2.7589	71	5041	357911	8-4261	4 · 1408
22	484	10648	4·6904	2.8020	72	5184	373248	8-4853	4 · 1602
23	529	12167	4·7958	2.8439	73	5329	389017	8-5440	4 · 1793
24	576	13824	4·8990	2.8845	74	5476	405224	8-6023	4 · 1983
25	625	15625	5·0000	2.9240	75	5625	421875	8-6603	4 · 2172
26	676	17576	5·0990	2.9625	76	5776	438976	8-7178	4 · 2358
27	729	19683	5·1962	3.0000	77	5929	456533	8-7750	4 · 2543
28	784	21952	5·2915	3.0366	78	6084	474552	8-8318	4 · 2727
29	841	24389	5·3852	3.0723	79	6241	493039	8-8882	4 · 2908
30	900	27000	5·4772	3·1072	80	6400	512000	8·9443	4·3089
31	961	29791	5·5678	3·1414	81	6561	531441	9·0000	4·3267
32	1024	32768	5·5659	3·1748	82	6724	551368	9·0554	4·3445
33	1089	35937	5·7446	3·2075	83	6889	571787	9·1104	4·3621
34	1156	39304	5·8310	3·2396	84	7056	592704	9·1652	4·3796
35	1225	42875	5·9161	3·2711	85	7225	614125	9·2195	4·3968
36	1296	46656	6·0000	3·3019	86	7396	636056	9·2736	4·4140
37	1369	50653	6·0828	3·3322	87	7569	658503	9·3274	4·4310
38	1444	54372	6·1644	3·3620	88	7744	681472	9·3808	4·4480
39	1521	59319	6·2450	3·3912	89	7921	704969	9·4340	4·4647
40 41 42 43 44 45 46 47 48 49	1600 1681 1764 1849 1936 2025 2116 2209 2304 2401	64000 68921 74083 79507 85184 91125 97336 103823 110592 117649	6:3246 6:4031 6:4807 6:5574 6:6332 6:7082 6:7823 6:8557 6:9282 7:0000	3·4200 3·4482 3·4760 3·5034 3·5303 3·5569 3·5830 3·6088 3·6342 3·6593	90 91 92 93 94 95 96 97 98 99	8100 8281 8464 8649 8836 9025 9216 9409 9604 9801	729000 753571 778688 804357 830584 857375 884736 912673 941192 970299	9·4868 9·5394 9·5917 9·6954 9·7968 9·7980 9·8489 9·8995 9·9499	4 · 4814 4 · 4979 4 · 5144 4 · 5307 4 · 5468 4 · 5629 4 · 5789 4 · 5947 4 · 6261

No.	Square	Oubs	Square Root	Cube Root	No.	Square	Cube	Square Eoot	Cubs Root
			W						
100	10000	1000000	10:0000	4:6416	150	22500	3375000	12:2474	
101	10201	1030301	10:0499	4:6570		22801	3442961		
	10404	1061208	10.0996	4.6723		23104			
103	10609		10.1489	4 6875		23409		12:3603	5:3485
104	10816	1124864	10.1980	4 7027	154		3652264	12:4097	5:3601
105			10.2470	4.7177		24025			
106	11236		10.5956	4.7326	156:	24336	3796416		
	11449	1225043	10.3441	4 7475		24649		12:5300	5 3947
108	11664			4.7622		24964	3944312	12:5698	5:4061
100	11881	1295029	10-4403	4.7769			4019679		
	12100	1331000	10:4881	4.7914		25600	4096000		5:4280
111		1367631		4:8059			4173281		5:4401
	12544	1404928	10-5830	4.8203		26244	4251528		5 4514
113	12769	1442897	10.6301	4 8346		26569	4330747		5:4626
114	12996	1481544	10.6771	4 8488	164	26896	4410944	12:8062	5.47.57
				4 8629			4492125	12:8452	5.4848
116	13456	1560896		4.8770	166	27556	4574296		
	13689	1601613		4.8910			4657463		
	13024	1643032	10.8628	4.9049	168	28224	4741632	12.9615	
119	14161		10.9087	4.9187		28561	4826809	13:0000	
	14400	1729000	10-9545	4 - 9324		28900	4913000	13:0384	
	14641	1771561	11:0000	4.9461					
	14884	1815848	11:0454	4 - 9597		29684	5088448	13:1149	
		1860867	11:0905	4.9732					
124		1906624		4.9866	174		5268024	13-1909	
	15625		11.1803	5.0000		30625			5 5954
126	15876	2000376	11 2250			30976	5451776	13 2665	
	16129	2048383	11:2694	5:0265			5545233	13-3041	5.0147
	16384	2097152				31684	5639752		
129	16641	2146689				32041			
130	16900	2197000	11:4018	5:0658	180	32400		13:4164	5:6462
		2248091	11-4455				50009741	13 4536	516567
	17424	2299968	11:4891	5.0916		33124	6028568	13-4907	5.0071
133		2352637	11:5326	5.1045		33489	6128487		5.6774
134	17956	2406104	11 5758		184	33856	6229504	13.5647	
135		2460375	11.6190	5.1299		34225			516990
136	18496	2515456	11.0019	5 1426	186	34596	6434856		
137			11.7047	5.1561		34960		13.6748	
138	19044	2628072	11.7473	5.1676	188	35344	6644672		
139	19321	2685619	11.7898	5.1801	189		6751269	13:7477	
140	19600	2744000		5-1925	190	36100	6859000	13-7840	5.7489
141	19681	2803221	11.8743	5.2048		36481	6967871		5 7590
142	20164	2863288	11.9164		192	36864	7077888	13:8564	5:7600
143	20449	2994207	11.9583		193	37249	7189057	13-8984	5.7790
144	20736	2065064	12-0000	5.2412	194	37636	7301384	13-9084	5.7890
145	21025	3048625	12-0416	5 2536	195	38025	7414875	13:9642	5-7989
146	21316	3112136	12-0830	5.2656	196		7529536	14-0000	5.8088
147	21609	3176523	12-1244	5-2776		38809	7645373	14 0557	5.8186
148 149	21904	3241792	12 1655	5.53396	198	39004		14.0712	
		3307949	12:2066	5.3015	199	39601	7880589	14:1067	

No.	Square	Cube	Square Root	Root	No.	Square	Cube	Square Root	Root
200 201 202 203 204 205 206 207 208 209	40000 40401 40804 41209 41616 42025 42436 42849 43264 43681	8000000 8120601 8242408 8365427 8489664 8615125 8741816 8869743 898912 9129329	14·1421 14·1774 14·2127 14·2478 14·2829 14·3178 14·3527 14·3875 14·4222 14·4568	5·3480 5·8578 5·8675 5·8771 5·8868 5·8964 5·9059 5·9155 5·9250 5·9345	250 251 252 253 254 255 256 257 258 259	62500 63001 63504 64009 64516 65025 65536 66049 66564 67081	15625000 15813251 16003008 16194277 16387064 16581375 16777216 16974593 17173512 17373979	15.8114 15.8430 15.8745 15.9060 15.9374 15.9687 16.0000 16.0312 16.0624 16.0935	6.2996 6.3080 6.3164 6.3247 6.3330 6.3413 6.3496 6.3579 6.3661 6.3743
210 211 212 213 214 215 216 217 218 219	44100 44521 44944 45369 45796 46225 46656 47089 47524 47961	9261000 9393931 9528128 9663597 9800344 9938375 10077696 10218313 10360232 10503459	14·4914 14·5258 14·5602 14·5945 14·6287 14·6629 14·6969 14·7309 14·7648 14·7986	5·9439 5·9533 5·9627 5·9721 5·9814 5·9907 6·0000 6·0092 6·0185 6·0277	260 261 262 263 264 265 266 267 268 269	67600 68121 63644 69169 69696 70225 70756 71289 71824 72361	17576000 17779581 17984728 18191447 18399744 18609625 18821096 19034163 19248832 19465109	16·1245 16·1555 16·1864 16·2173 16·2481 16·2788 16·3095 16·3401 16·3707 16·4012	6·3825 6·3907 6·3988 6·4070 6·4151 6·4232 6·4312 6·4393 6·4473
220 221 222 223 224 225 226 227 228 229	48400 48841 49284 49729 50176 50625 51076 51529 51984 52441	10648000 10793861 10941048 11089567 11239424 11390625 11543176 11697083 11852352 12008989	14·8324 14·8661 14·8997 14·9332 14·9666 15·0000 15·0333 15·0665 15·0997 15·1327	6.0368 6.0459 6.0550 6.0641 6.0732 6.0822 6.0912 6.1002 6.1091 6.1180	270 271 272 273 274 275 276 277 278 279	72900 73441 73984 74529 75076 75625 76176 76729 77284 77841	19583000 19902511 20123648 20346417 20570824 20796875 21024576 21253933 21484952 21717639	16·4317 16·4621 16·4924 16·5529 16·5831 16·6132 16·6433 16·6733 16·7033	6 · 4633 6 · 4713 6 · 4792 6 · 4872 6 · 4951 6 · 5030 6 · 5187 6 · 5265 6 · 5343
230 231 232 233 234 235 236 237 238 239	52900 53361 53324 54289 54756 55225 55696 56169 56644 57121	12167000 12326391 12487168 12649337 12812904 1297761 13144256 13312053 13481272 13651919	15·1658 15·1987 15·2315 15·2643 15·2971 15·3297 15·3623 15·3948 15·4272 15·4596	6·1269 6·1358 6·1446 6·1534 6·1622 6·1710 6·1797 6·1885 6·1972 6·2058	280 281 282 283 284 285 286 287 288 289	78400 78961 79524 30089 C0656 31225 81796 82369 82944 83521	21952000 22188041 22425768 22665187 22906304 23149125 23393656 23639903 23887872 24137569	16·7332 16·7631 16·7929 16·8226 16·8523 16·8819 16·9115 16·9411 16·9706 17·0000	6:5421 6:5499 6:5577 6:5654 6:5731 6:5808 6:5885 6:5962 6:6039 6:6115
240 241 242 243 244 245 246 247 248 249	57600 58981 58564 59049 59536 60025 60516 61009 61504 62001	13824000 13997521 14172488 14343907 14526784 14706125 14386936 15069223 15252992 15438249	15 · 4919 15 · 5242 15 · 5563 15 · 5885 15 · 6525 15 · 6525 15 · 6844 15 · 7162 15 · 7480 15 · 7797	6·2145 6·2231 6·2317 6·2403 6·2488 6·2573 6·2658 6·2743 6·2828 6·2912	290 291 292 293 294 295 296 297 298 299	84100 84681 85264 85849 86436 37025 37616 88209 38304 89401	24389000 24642171 24897088 25153757 25412184 25672375 25934336 26198073 26463592 26730899	17·0294 17·0587 17·0880 17·1172 17·1464 17·1756 17·2047 17·2337 17·2627 17·2916	6:6191 6:6267 6:6343 6:6419 6:6569 6:6644 6:6719 6:6794 6:6369

No.	Square	Oube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
			~	i.				~	V
300 301 302 303 304 305 306 307 308 309	90000 90601 91204 91809 92416 93025 93636 94249 94864 95481	27000000 27270901 27543608 27818127 28094464 28372625 28652616 28934443 29218112 29503629	17 · 3205 17 · 3494 17 · 3781 17 · 4069 17 · 4356 17 · 4542 17 · 4929 17 · 5214 17 · 5499 17 · 5784	6 · 6943 6 · 7018 6 · 7092 6 · 7166 6 · 7240 6 · 7313 6 · 7387 6 · 7460 6 · 7533 6 · 7606	350 351 352 353 354 355 356 357 358 359	122500 123201 123904 124609 125316 126025 126736 127449 128164 128881	42875000 43243551 43614208 43986977 44361864 44738875 45118016 45499293 45882712 46268279	18 · 7083 18 · 7350 18 · 7617 18 · 7883 18 · 8149 18 · 8414 18 · 8680 18 · 8944 18 · 9209 18 · 9473	7·0473 7·0540 7·0607 7·0674 7·0740 7·0807 7·0873 7·0940 7·1006 7·1072
310 311 312 313 314 315 316 317 318 319	96100 96721 97344 97969 98596 99225 99856 100489 101124 101761	29791000 30080231 30371328 30664297 30959144 31255875 31554496 31855013 32157432 32461759	17:6068 17:6352 17:6635 17:6635 17:6918 17:7200 17:7482 17:7764 17:8045 17:8326 17:8606	6·7679 6·7752 6·7824 6·7897 6·7969 6·8041 6·8113 6·8185 6·8256 6·8328	360 361 362 363 364 365 366 367 368 369	129600 130321 131044 131769 132496 133225 133956 134689 135424 136161	46656000 47045881 47437928 47832147 48228544 48627125 49027896 49430863 49836032 50243409	18 · 9737 19 · 0000 19 · 0263 19 · 0526 19 · 0788 19 · 1050 19 · 1311 19 · 1572 19 · 1833 19 · 2094	7·1138 7·1204 7·1269 7·1335 7·1400 7·1466 7·1531 7·1596 7·1661 7·1726
320 321 322 323 324 325 326 327 328 329	102400 103041 103684 104329 104976 105625 106276 106929 107584 108241	32768000 33076161 33386248 33698267 34012224 34328125 34645976 34965783 35287552 35611289	17 · 8885 17 · 9165 17 · 9444 17 · 9722 18 · 0000 18 · 0278 18 · 0555 18 · 0831 18 · 1108 18 · 1384	6 · 8399 6 · 8470 6 · 8541 6 · 8612 6 · 8683 6 · 8753 6 · 8824 6 · 8894 6 · 8964 6 · 9034	370 371 372 373 374 375 376 377 378 379	136900 137641 138384 139129 139876 140625 141376 142129 142884 143641	50653000 51064811 51478848 51895117 52313624 52734375 53157376 53582633 54010152 54439939	19·2354 19·2614 19·2873 19·3132 19·3391 19·3649 19·3907 19·4165 19·4422 19·4679	7·1791 7·1855 7·1920 7·1984 7·2048 7·2112 7·2177 7·2240 7·2304 7·2368
330 331 332 333 334 335 336 337 338 339	108900 109561 110224 110889 111556 112225 112896 113569 114244 114921	35937000 36264691 36594368 36926037 37259704 37595375 37933056 38272753 38614472 38958219	18 · 1659 18 · 1934 18 · 2209 18 · 2483 18 · 2757 18 · 3030 18 · 3303 18 · 3576 18 · 3848 18 · 4120	6 · 9104 6 · 9174 6 · 9244 6 · 9313 6 · 9382 6 · 9451 6 · 9521 6 · 9589 6 · 9658 6 · 9727	380 381 382 383 384 385 386 387 388 389	144400 145161 145924 146689 147456 148225 148996 149769 150544 151321	54872000 55306341 55742968 56181887 56623104 57066625 57512456 57960603 58411072 58863869	19·4936 19·5192 19·5448 19·5704 19·5959 19·6214 19·6469 19 6723 19·6977 19·7231	7·2432 7·2495 7·2558 7·2625 7·2685 7·2748 7·2814 7·2874 7·2936 7·2996
340 341 342 343 344 345 346 347 348 349	117649 118336 119025 119716 120409 121104	39304000 39651821 40001688 40353607 40707584 41063625 41421736 41781923 42144192 42508549	18 · 4391 18 · 4662 18 · 4932 18 · 5203 18 · 5472 18 · 5742 18 · 6011 18 · 6279 18 · 6548 18 · 6815	6 · 9795 6 · 9864 6 · 9932 7 · 0000 7 · 0068 7 · 0136 7 · 0203 7 · 0271 7 · 0338 7 · 0406	390 391 392 393 394 395 396 397 398	152100 152881 153664 154449 155236 156025 156816 157609 158404 159201	59319000 59776471 60236288 60698457 61162984 61629875 62099136 62570773 63044792 63521199	19·7484 19·7737 19·7990 19·8242 19·8494 19·8746 19·8997 19·9249 19·9750	7·3061 7·3124 7·3186 7·3248 7·3310 7·3372 7·3434 7·3496 7·3618

No.	Square	Oube	Square Root	Root	No.	Square	Cube	Square Root	Cube Root
400	160000	64000000	20·0000	7·3681	450	202500	91125000	21 · 2132	7·6631
401	160801	64481201	20·0250	7·3742	451	203401	91733851	21 · 2368	7·6688
402	161604	64964808	20·0499	7·3803	452	204304	92345408	21 · 2603	7·6744
403	162409	65450827	20·0749	7·3864	453	205209	92959677	21 · 2838	7·6801
404	163216	65939264	20·0993	7·3925	454	206116	93576664	21 · 3073	7·6857
405	164025	66430125	20·1245	7·3986	455	207025	94196375	21 · 3307	7·6914
406	164836	66923416	20·1494	7·4047	456	207936	94818816	21 · 3542	7·6970
407	165649	67419143	20·1742	7·4108	457	208849	95443993	21 · 3776	7·7026
408	166464	67917312	20·1990	7·4169	458	209764	96071912	21 · 4009	7·7082
409	167281	68417929	20·2237	7·4229	459	210681	96702579	21 · 4243	7·7138
410	168100	68921000	20·2485	7·4290	460	211600	97336000	21 · 4476	7·7194
411	168921	69426531	20·2731	7·4350	461	212521	97972181	21 · 4709	7·7250
412	169744	69934528	20·2978	7·4410	462	213444	98611128	21 · 4942	7·7306
413	170569	70444997	20·3224	7·4470	463	214369	99252847	21 · 5174	7·7362
414	171396	70957944	20·3470	7·4530	464	215296	99897344	21 · 5407	7·7418
415	172225	71473375	20·3715	7·4590	465	216225	100544625	21 · 5639	7·7473
416	173056	71991296	20·3961	7·4650	466	217156	101194696	21 · 5870	7·7529
417	173889	72511713	20·4206	7·4710	467	218089	101847563	21 · 6102	7·7584
418	174724	73034632	20·4450	7·4770	468	219024	102503232	21 · 6333	7·7639
419	175561	73560059	20·4695	7·4829	469	219961	103161709	21 · 6564	7·7695
420	176400	74088000	20·4939	7·4889	470	220900	103823000	21 · 6795	7·7750
421	177241	74618461	20·5183	7·4948	471	221841	104487111	21 · 7025	7·7805
422	178084	75151448	20·5426	7·5007	472	222784	105154048	21 · 7256	7·7860
423	178929	75686967	20·5670	7·5067	473	223729	105823817	21 · 7486	7·7915
424	179776	76225024	20·5913	7·5126	474	224676	106496424	21 · 7715	7·7970
425	180625	76765625	20·6155	7·5185	475	225625	107171875	21 · 7945	7·8025
426	181476	77308776	20·6398	7·5244	476	226576	107850176	21 · 8174	7·8079
427	182329	77854483	20·6640	7·5302	477	227529	108531333	21 · 8403	7·8134
428	183184	78402752	20·6882	7·5361	478	228484	109215352	21 · 8632	7·8188
429	184041	78953589	20·7123	7·5420	479	229441	109902239	21 · 8861	7·8243
430 431 432 433 434 435 436 436 437 438 439	184900 185761 186624 187489 183356 189225 190096 190969 191844 192721	79507000 80062991 80621568 81182737 81746504 82312875 32881856 83453453 84027672 84604519	20·7364 20·7605 20·7846 20·8037 20·8327 20·8567 20·8806 20·9045 20·9284 20·9523	7·5478 7·5537 7·5595 7·5654 7·5712 7·5770 7·5828 7·5886 7·5944 7·6001	480 481 482 483 484 485 486 487 488 489	230400 231361 232324 233289 234256 235225 236196 237169 238144 239121	110592000 111284641 111980168 112678587 113379904 114084125 114791256 115501303 116214272 116930169	21 · 9089 21 · 9317 21 · 9545 21 · 9773 22 · 0000 22 · 0227 22 · 0454 22 · 0681 22 · 0907 22 · 1133	7·8297 7·8352 7·8406 7·8460 7·8514 7·8568 7·8622 7·8676 7·8730 7·8784
440	193600	85184000	20 · 9762	7·6059	490	240100	117649000	22:1359	7·8837
441	194481	85766121	21 · 0000	7·6117	491	241081	118370771	22:1585	7·8891
442	195364	86350888	21 · 0238	7·6174	492	242064	119095488	22:1811	7·8944
443	196249	86938307	21 · 0476	7·6232	493	243049	119823157	22:2036	7·8998
444	197136	87528384	21 · 0713	7·6289	494	244036	120553784	22:2261	7·9051
445	198025	88121125	21 · 0950	7·6346	495	245025	121287375	22:2486	7·9105
446	198916	88716536	21 · 1187	7·6403	496	246016	122023936	22:2711	7·9158
447	199809	89314623	21 · 1424	7·6460	497	247009	122763473	22:2935	7·9211
448	200704	89915392	21 · 1660	7·6517	498	248004	123505992	22:3159	7·9264
449	201601	90518849	21 · 1896	7·6574	499	249001	124251499	22:3383	7·9317

No.	Square	Cube	Square Root	Root	No.	Square	Cube	Square Root	Cube Root
500 501 502 503 504 505 506 506 507 508 509	250000 251001 252004 253009 254016 255025 256036 257049 258064 259081	125000000 125751501 126506008 127263527 128024064 128787625 129554216 130323843 131096512 131872229	22:3607 22:3830 22:4054 22:4277 22:4499 22:4722 22:4944 22:5167 22:5389 22:5610	7·9370 7·9423 7·9476 7·9528 7·9581 7·9634 7·9686 7·9739 7·9791 7·9843	550 551 552 553 554 555 556 557 558 559	302500 303601 304704 305809 306916 303025 309136 310249 311364 312481	166375000 167284151 168196608 169112377 170031464 170953875 171879616 172808693 173741112 174676879	23·4521 23·4734 23·4947 23·5160 23·5372 23·5584 23·5797 23·6008 23·6220 23·6432	8·1932 8·1982 8·2031 8·2081 8·2130 8·2180 8·2229 8·2278 8·2327 8·2377
510 511 512 513 514 515 516 517 518 519	260100 261121 262144 263169 264196 265225 266256 267289 268324 269361	132651000 133432831 134217728 135005697 135796744 136590875 137388096 138188413 138991832 139798359	22 · 5832 22 · 6053 22 · 6274 22 · 6495 22 · 6716 22 · 6936 22 · 7156 22 · 7376 22 · 7816	7 · 9396 7 · 9948 8 · 0000 8 · 0052 8 · 0104 8 · 0156 8 · 0208 8 · 0260 8 · 0311 8 · 0363	560 561 562 563 564 565 566 567 568 569	313600 314721 315844 316969 318096 319225 320356 321489 322624 323761	175616000 176558481 177504328 178453547 179406144 180362125 181321496 182284263 183250432 184220009	23 · 6643 23 · 6854 23 · 7065 23 · 7276 23 · 7487 23 · 7697 23 · 7908 23 · 8118 23 · 8328 23 · 8537	8 · 2426 8 · 2475 8 · 2524 8 · 2573 8 · 2621 8 · 2670 8 · 2719 8 · 2768 8 · 2816 8 · 2865
520 521 522 523 524 525 526 527 528 529	270400 271441 272484 273529 274576 275625 276676 277729 278784 279841	140608000 141420761 142236648 143055667 143877824 144703125 145531576 146363183 147197952 148035889	22:8035 22:8254 22:8473 22:8692 22:8910 22:9129 22:9347 22:9565 22:9783 23:0000	8:0415 8:0466 8:0517 8:0569 8:0620 8:0671 8:0723 8:0774 8:0825 8:0876	570 571 572 573 574 575 576 577 578 579	324900 326041 327184 328329 329476 330625 331776 332929 334084 335241	185193000 186169411 187149248 188132517 189119224 190109375 191102976 192100033 193100552 194104539	23 · 8747 23 · 8956 23 · 9165 23 · 9374 23 · 9583 23 · 9792 24 · 0000 24 · 0208 24 · 0416 24 · 0624	8 · 2913 8 · 2962 8 · 3010 8 · 3059 8 · 3107 8 · 3155 8 · 3203 8 · 3251 8 · 3300 8 · 3348
530 531 532 533 534 535 536 537 538 539	280900 281961 283024 284089 285156 286225 287296 288369 289444 290521	148877000 149721291 150568768 151419437 152273304 153130375 153990656 154854153 155720872 156590819	23 · 0217 23 · 0434 23 · 0651 23 · 0868 23 · 1084 23 · 1301 23 · 1517 23 · 1733 23 · 1948 23 · 2164	8:0927 8:0978 8:1028 8:1079 8:1130 8:1231 8:1231 8:1281 3:1332 8:1382	580 581 582 583 584 585 586 587 588 589	336400 337561 338724 339889 341056 342225 343396 344569 345744 346921	195112000 196122941 197137368 198155287 199176704 200201625 201230056 202262003 203297472 204336469	24·0832 24·1039 24·1247 24·1454 24·1661 24·1868 24·2074 24·2281 24·2487 24·2693	8:3396 8:3443 8:3491 8:3539 8:3587 8:3634 8:3682 8:3730 8:3777 8:3825
540 541 542 543 544 545 546 546 547 548 549	291600 292681 293764 294849 295936 297025 298116 299209 300304 301401	157464000 158340421 159220088 160103007 160989184 161878625 162771336 163667323 164566592 165469149	23 · 2379 23 · 2594 23 · 2809 23 · 3024 23 · 3238 23 · 3452 23 · 3666 23 · 3880 23 · 4094 23 · 4307	8:1433 8:1483 8:1533 8:1533 8:1633 8:1683 8:1733 8:1783 8:1783 8:1833 8:1832	590 591 592 593 594 595 596 596 597 598 599	348100 349281 350464 351649 352836 354025 355216 356409 357604 358801	205379000 206425071 207474688 208527857 209584584 210644875 211708736 212776173 213847192 214921799	24 · 2899 24 · 3105 24 · 3311 24 · 3516 24 · 3721 24 · 3926 24 · 4131 24 · 4336 24 · 4540 24 · 4745	8·3872 8·3919 8·3967 8·4014 8·4061 8·4108 8·4155 8·4202 8·4249 8·4296

No.	Square	Cube	Square Root	Root	No.	Square	Cube	Square Root	Cube Root
600	360000	216000000	24·4949	8 · 4343	650	422500	274525000	25·4951	8 · 6624
601	361201	217081801	24·5153	8 · 4390	651	423801	275894451	25·5147	8 · 6668
602	362404	218167208	24·5357	8 · 4437	652	425104	277167808	25·5343	8 · 6713
603	363609	219256227	24·5361	8 · 4484	653	426409	278445077	25·5539	8 · 6757
604	364816	220348864	24·5764	8 · 4530	654	427716	279726264	25·5734	8 · 6801
605	366025	221445125	24·5967	8 · 4577	655	429025	281011375	25·5930	8 · 6845
606	367236	222545016	24·6171	8 · 4623	655	430336	282300416	25·6125	8 · 6890
607	368449	223648543	24·6374	8 · 4670	657	431649	283593393	25·6320	8 · 6934
608	369664	224755712	24·6577	8 · 4716	658	432964	284890312	25·6515	8 · 6978
609	370881	225866529	24·6779	8 · 4763	659	434281	286191179	25·6710	3 · 7022
610 611 612 613 614 615 616 617 618 619	372100 373321 374544 3757696 37696 378225 379456 380689 381924 383161	226981000 228099131 229220928 230345397 231475544 232608375 233744896 234885113 236029032 237176659	24 · 6982 24 · 7184 24 · 7336 24 · 7588 24 · 7790 24 · 7892 24 · 8193 24 · 8395 24 · 8596 24 · 8797	8·4809 8·4856 8·4902 8·4948 8·5040 8·5086 8·5132 8·5178 8·5224	660 661 662 663 664 665 666 667 668 669	435600 436921 438244 439569 440896 442225 443556 444889 446224 447561	287496000 288804781 290117528 291434247 292754944 294079625 295408296 295740963 298077632 299418309	25·6905 25·7099 25·7294 25·7488 25·7682 25·7876 25·8070 25·8263 25·8457 25·8650	8 · 7066 8 · 7110 8 · 7154 8 · 7198 8 · 7241 8 · 7285 8 · 7373 8 · 7416 8 · 7460
620	384400	238328000	24 · 8998	8·5270	670	448900	300763000	25 · 8844	8·7503
621	385641	239483061	24 · 9199	3·5316	671	450241	302111711	25 · 9037	8·7547
622	386884	240541848	24 · 9339	8·5362	672	451584	303464448	25 · 9230	8·7590
623	388129	241804367	24 · 9600	8·5408	673	452929	304821217	25 · 9422	8·7634
624	389376	242970624	24 · 9800	8·5453	674	454276	306182024	25 · 9615	8·7677
625	390625	244140625	25 · 0000	8·5499	675	455625	307546875	25 · 9808	8·7721
626	391876	245314376	25 · 0200	8·5544	676	456976	308915776	26 · 0000	8·7764
627	393129	245491883	25 · 0400	8·5590	677	458329	310288733	26 · 0192	8·7807
628	394384	247673152	25 · 0599	8·5635	678	459684	311665752	26 · 0384	8·7850
629	395641	248858189	25 · 0799	8·5681	679	461041	313046839	26 · 0576	8·7893
630	395900	250047000	25·0998	8:5726	680	452400	314432000	25·0768	8 · 7937
631	393161	251239591	25·1197	8:5772	681	453761	315821241	25·0960	8 · 7980
632	393424	252435968	25·1396	8:5817	682	455124	317214568	25·1151	8 · 8023
633	400589	253636137	25·1595	8:5862	683	456489	318611987	26·1343	8 · 8056
634	401956	254840104	25·1794	8:5907	684	457856	320013504	26·1534	8 · 8109
635	403225	255047875	25·1992	8:5952	685	469225	321419125	25·1725	8 · 8152
636	404495	257259456	25·2190	8:5997	686	470596	322828856	26·1916	8 · 8194
637	405769	258474853	25·2389	8:6043	687	471969	324242703	26·2107	8 · 8237
638	407044	259694072	25·2587	8:6088	688	473344	325660672	26·2298	8 · 8280
639	408321	260917119	25·2784	8:6132	689	474721	327082769	26·2488	8 · 8323
640	409600	262144000	25 · 2982	8:6177	690	476100	328509000	26·2679	8.8366
641	410881	263374721	25 · 3180	8:6222	691	477481	329939371	26·2869	8.8408
642	412164	264609288	25 · 3377	8:6267	692	478864	331373888	26·3059	3.8451
643	413449	265847707	25 · 3574	8:6357	693	480249	332812557	26·3249	8.8493
644	414736	267089984	25 · 3772	8:6357	694	481636	334255384	26·3439	8.8536
645	416025	268336125	25 · 3969	8:6401	695	483025	335702375	26·3629	3.8578
646	417316	269586136	25 · 4165	8:6446	696	484416	337153536	26·3818	8.8621
647	418609	270840023	25 · 4352	8:6490	697	435809	338608873	26·4008	8.8663
648	419904	272097792	25 · 4558	8:6535	698	487204	340068392	26·4197	8.2706
649	421201	273359449	25 · 4755	8:6579	699	438601	341532099	26·4386	8.8748

No.	Square	Cube	Square Root	Root	No.	Square	Cube	Square Root	Root
700 701 702	490000 491401 492804	343000000 344472101 345948408	26 · 4575 26 · 4764 26 · 4953	8 · 8790 8 · 8833 8 · 8875	750 751 752	562500 564001 565504	421875000 423564751 425259008	27 · 3861 27 · 4044 27 · 4226	9:085 9:089 9:093
703 704	494209 495516	347428927 348913664	26 · 5141 26 · 5330		753 754	567009 568516	426957777 428661064	27 · 4408 27 · 4591	9.097
705 706	497025 498436	350402625 351895816	26·5518 26·5707	8 9001	755 756	570025 571536	430368875 432081216	27 · 4773 27 · 4955	9.105
707 708 709	499849 501264 502681	353393243 354894912 356400829	26 · 5895 26 · 6083 26 · 6271	8 · 9085 8 · 9127 8 · 9169	757 758 759	573049 574564 576081	433798093 435519612 437245479	27 · 5136 27 · 5318 27 · 5500	9·113 9·117 9·121
710 711	504100 505521	357911000 359425431	26 · 6458 26 · 6646		760 761	577600 579121	438976000 440711081		9 125
712 713	506944 508369	360944128 362467097	26 6833			580644 582169	442450728 444194947	27·6043 27·6225	9 133
714 715	509796 511225	363994344 365525875	26 · 7208 26 · 7395	8 · 9378 8 · 9420	764 765	583696 585225	445943744 447697125	27 6405	9.141
716 717	512655 514089	367051695 368601813	26·7532 26·7769	8 9462	766 767	586756 588289	449455096 451217663		9 149
718 719	515524 516961	370145232 371694959	26 · 7955 26 · 8142	8 · 9545 8 · 9587	768 769	589824 591361	452984832 454756609		9.157
720 721	518400 519841	373248000 374805361	26·8328 26·8514	8 9628		592900	456533000	27 · 7489	9-165
722	521284 522729	376367048 377933067	26 · 8701 26 · 8887	8 · 9670 8 · 9711 8 · 9752	771 772 773	594441 595984 597529	458314011 460099648 461889917	27 · 7669 27 · 7849 27 · 8029	9·169 9·173 9·177
724 725	524176 525625	379503424 381078125	26 · 9072 26 · 9258	8 9794	774 775	599076 600625	463684824 465484375		9-181
726 727	527076 528529	382657176 384240583	26 9444 26 9629	8 9876	776 777	602176	467288576 469097433	27·8568 27·8747	
728 729	529984 531441	385828352 387420489	26 · 9815 27 · 0000	8 · 9959 9 · 0000	778 779	605284 606841	470910952 472729139	27·8927 27·9106	
730 731	532900 534361	389017000 390617891	27·0185 27·0370	9·0041 9·0082	780 781	608400 609961	474552000 476379641	27·9285 27·9464	9-205
732 733	535824 537289	392223168 393832837	27 0555	9.0123		611524 613089	478211768 480048687	27 9643 27 9821	9.213
734	538755 540225	395445904 397055375	27:0924	9.0205	784 785	614656 616225	481890304 483736625	28.0000	9-220
736 737	541696 543169	398688256 400315553	27·1293 27·1477	9:0287		617796 619369	485587656 487443403		9.228
738 739	544544 546121	401947272 403583419	27·1662 27·1845	9.0369	788 789	620944 622521	483303872 491169069	28·0713 28·0891	9.236
740	547600 549081	405324000 405859021	27·2029 27·2213	9.0450	790 791	624100 625681	493039000 494913671	28·1059 28·1247	9-244
742	550554	408518438 410172407	27 · 2397 27 · 2580	9.0532		627264 628849	496793088 498677257	28 1425	9 252
744	553536 555025	411830784 413493525	27 - 2764 27 - 2947	9.0513	794 795	630435	500556184 502459875	28·1780 28·1957	9-259
745	556516 558009	415160936 416832723	27·3130 27·3313	9·0594 9·0735	796 797	633616 635209	504358336 506261573	28·2135 28·2312	9-267
748 749	559504 561001	418508992 420189749	27·3496 27·3679	9.0775	798 799	636804 638401	508169592 510082399	28 - 2489 28 - 2666	9-275

No.	Square	Cube	Square Root	Cube Root	No.	Square	Cube	Square Root	Cube Root
800 801 802 803 804 805 805 807 808 809	640000 641601 643204 644809 646416 648025 649636 651249 652864 654481	512000000 513922401 515849608 517781627 519718464 521600125 523600616 525557943 527514112 529475129	28 · 2843 28 · 3019 28 · 33196 28 · 3373 28 · 33749 28 · 3725 28 · 3901 28 · 4077 28 · 4253 28 · 4429	9·2832 9·2870 9·2909 9·2948 9·2986 9·3025 9·3053 9·3102 9·3140 9·3179	850 851 852 853 854 855 856 857 858 859	722500 724201 725904 727609 729316 731025 732736 734449 735164 737881	614125000 616295051 618470208 620650477 622835864 625026375 627222016 629422793 631628712 633839779	29·1548 29·1719 29·1890 29·2062 29·2233 29·2404 29·2575 29·2746 29·2916 29·3087	9:4727 9:4764 9:4801 9:4838 9:4875 9:4912 9:4986 9:5023 9:5060
810 811 812 813 814 815 816 817 818 819	656100 657721 659344 660969 662596 664225 665856 657489 669124 670761	531441000 533411731 535387328 537367797 539353144 541343375 543338496 545338513 547343432 549353259	28 · 4605 28 · 4781 28 · 4956 28 · 5132 28 · 5307 28 · 5482 28 · 5657 28 · 5832 28 · 6007 28 · 6182	9·3217 9·3255 9·3294 9·3332 9·3370 9·3408 9·3447 9·3485 9·3523 9·3561	850 851 852 863 864 865 866 867 858 869	739600 741321 743044 744769 746496 748225 749956 751689 753424 755161	636055000 638277381 640503928 642735647 644972544 647214525 649461896 651714363 653972032 656234909	29·3258 29·3428 29·3598 29·3769 29·4109 29·4279 29·4449 29·4618 29·4788	9·5097 9·5134 9·5171 9·5207 9·5244 9·5317 9·5354 9·5391 9·5427
820 821 822 823 824 825 826 827 828 829	672400 674041 675684 677329 678976 680525 682276 683929 685584 687241	551368000 553387661 555412248 557441767 559476224 561515625 553559976 565609283 557663552 559722789	28 : 6356 28 : 6531 28 : 6705 28 : 6380 28 : 7054 28 : 7228 28 : 7402 28 : 7576 28 : 7750 28 : 7924	9;3599 9;3637 9;3675 9;37713 9;37751 9;3789 9;3827 9;3855 9;3902 9;3940	870 871 872 873 874 875 876 877 878 879	756900 758641 760384 763876 765625 767376 769129 770884 772641	658503000 660776311 663054848 665338617 667627624 669921875 672221376 674526133 676836152 679151439	29 · 4958 29 · 5127 29 · 5296 29 · 5466 29 · 5635 29 · 5804 29 · 5973 29 · 6142 29 · 6311 29 · 6479	9·5464 9·5501 9·5537 9·5574 9·5610 9·5647 9·5683 9·5719 9·5756
830 831 832 833 834 835 836 837 838 839	688900 690561 692224 693589 695556 697225 698896 700569 702244 703921	571787000 573856191 575930368 578009537 580093704 582182875 584277056 586376253 538480472 590539719	28 8097 28 8271 28 8444 23 8617 28 8791 28 8964 28 9137 28 9310 28 9482 28 9655	9·3978 9·4016 9·4053 9·4091 9·4129 9·4166 9·4204 9·4241 9·4279 9·4316	830 881 832 883 884 885 886 387 888 889	774400 776161 777924 779589 781456 783225 784996 786769 788544 790321	681472000 683797841 686128968 688455387 690807104 693154125 695506456 697854103 700227072 702595369	29.6648 29.6816 29.6985 29.7153 29.7321 29.7489 29.7658 29.7825 29.7993 29.8161	9·5828 9·5865 9·5901 9·5937 9·5973 9·6010 9·6046 9·6082 9·6118 9·6154
840 841 842 843 844 845 845 846 847 848 849	705600 707281 708954 710549 712336 714025 715716 717409 719104 720801	592704000 594823321 596947688 599077107 601211584 603351125 605495736 607645423 609800192 611950049	28 · 9828 29 · 0000 29 · 0172 29 · 0345 29 · 0517 29 · 0689 29 · 0861 29 · 1033 29 · 1204 29 · 1376	9·4354 9·4391 9·4429 9·4466 9·4503 9·4541 9·4578 9·4615 9·4652 9·4690	890 891 892 893 894 895 896 897 898 899	792100 793881 795664 797449 799236 801025 802816 804609 806404 808201	704959000 707347971 709732288 712121957 714516984 716917375 719323136 721734273 724150792 726572699	29 · 8329 29 · 8496 29 · 8564 29 · 8831 29 · 8998 29 · 9166 29 · 9333 29 · 9500 29 · 9666 29 · 9833	9.6190 9.6226 9.6262 9.6298 9.6334 9.6370 9.6406 9.6442 9.6477 9.6513

No.	Square	Oube	Square Root	Root	No.	Square	Cube	Square Root	Root
900 901 902 903 904 905 906 907 908 909	810000 811801 813604 815409 817216 819025 820836 822649 824464 826281	729000000 731432701 733870808 736314327 738763264 741217625 743677316 746142643 748613312 751089429	30 · 0000 30 · 0167 30 · 0333 30 · 0500 30 · 0666 30 · 0832 20 · 0098 30 · 1164 30 · 1330 30 · 1496	9.6549 9.6585 9.6620 9.6656 9.6692 9.6727 9.6763 9.6799 9.6834 9.6870	950 951 952 953 954 955 956 957 958 959	902500 904401 906304 908209 910116 912025 913936 915849 917764 919681	857375000 860085351 862801408 865523177 868250644 870983875 873722816 876467493 879217912 881974079	30 · 8221 30 · 8383 30 · 8545 30 · 8707 30 · 8869 30 · 9031 30 · 9192 30 · 9354 30 · 9677	9·8305 9·8339 9·8374 9·8408 9·8443 9·8511 9·8546 9·8580 9·8614
910 911 912 913 914 915 916 917 918 919	828100 829921 831744 833569 835396 837225 839056 840889 842724 844561	753571000 756058031 758550528 761048497 763551944 766060875 768575296 771095213 773620632 776151559	30 · 1662 30 · 1828 30 · 1993 30 · 2159 30 · 2324 30 · 2490 30 · 2655 30 · 2820 30 · 2985 30 · 3150	9·6905 9·6941 9·6976 9·7012 9·7047 9·7082 9·7118 9·7153 9·7188 9·7224	960 961 962 963 964 955 966 967 968 969	921600 923521 925444 927369 929296 931225 933156 935089 937024 938961	884736000 887503681 890277128 893056347 895841344 898632124 901428696 904231063 907039232 909853209	30 · 9839 31 · 0000 31 · 0161 31 · 0322 31 · 0483 31 · 0644 31 · 0805 31 · 0966 31 · 1127 31 · 1288	9·8643 9·8683 9·8717 9·8751 9·8785 9·8819 9·8854 9·8888 9·8922 9·8956
920 921 922 923 924 925 926 927 928 929	846400 848241 850084 851929 853776 855625 857476 859329 861184 863041	778688000 781229961 783777448 876330467 788889204 791453125 794022776 796597983 799178752 301765089	30 · 3315 30 · 3480 30 · 3645 30 · 3809 30 · 3974 30 · 4138 30 · 4302 30 · 4457 30 · 4631 30 · 4795	9·7259 9·7294 9·7329 9·7364 9·7400 9·7435 9·7470 9·7505 9·7540 9·7575	970 971 972 973 974 975 976 977 978 979	940900 942841 944784 946729 948676 950625 952576 954529 956484 958441	912673000 915498611 918330048 921167317 924010424 926859375 929714176 932574833 935441352 938313739	31 · 1448 31 · 1609 31 · 1769 31 · 1929 31 · 2090 31 · 2250 31 · 2410 31 · 2570 31 · 2730 31 · 2890	9·8990 9·9024 9·9058 9·9092 9·9126 9·9194 9·9227 9·9261 9·9295
930 931 932 933 934 935 936 937 938 939	864900 856761 868624 870489 872356 874225 876096 877969 879844 881721	804357000 805954491 809557568 312166237 814780504 817400375 320025856 822656953 825293672 827936019	30 · 4959 30 · 5123 30 · 5287 30 · 5450 30 · 5614 30 · 5778 30 · 5941 30 · 6105 30 · 6268 30 · 6431	9·7610 9·7645 9·7680 9·7715 9·7750 9·7785 9·7819 9·7854 9·7889 9·7924	980 981 982 983 984 985 986 987 988 989	960400 962361 964324 966289 968256 970225 972196 974169 976144 978121	941192000 944076141 946966168 949862087 952763904 955671625 958585256 961504803- 964430272 967361669	31 · 3050 31 · 3209 31 · 3369 31 · 3528 31 · 3688 31 · 3847 31 · 4006 31 · 4166 31 · 4325 31 · 4484	9·9329 9·9363 9·9396 9·9430 9·9464 9·9497 9·9531 9·9565 9·9598 9·9632
940 941 942 943 944 945 946 947 948 949	883600 885481 887364 889249 891136 893025 894916 896809 898704 900601	830584000 833237621 835896888 838561807 841232384 843908625 846590536 849278123 851971392 854670349	30 · 6594 30 · 6757 30 · 6920 30 · 7083 30 · 7246 30 · 7409 30 · 7571 30 · 7734 30 · 7896 30 · 8058	9·7959 9·7993 9·8028 9·8063 9·8097 9·8132 9·8167 9·8236 9·8270	990 991 992 993 994 995 996 997 998 999	980100 982081 984064 986049 988036 990025 992016 994009 996004 998001	970299000 973242271 976191488 979146657 982107784 985074875 988047936 991026973 994011992 997002999	31 · 4643 31 · 4802 31 · 4960 31 · 5119 31 · 5278 31 · 5436 31 · 5595 31 · 5753 31 · 5911 31 · 6070	9·9666 9·9699 9·9733 9·9766 9·9800 9·9833 9·9866 9·9900 9·9933

LOGARITHMS OF NUMBERS FROM 0 TO 1,000.

No.	0	1	2	3	4	5	6	7	8	
0	0	00000	30103	47712	60206	69897	77815	84510	90309	950
10	00000	00432	00360	01284	01703	02119	02531	02938	03342	030
11	04139	04532	04922	05308	05690	06070	06446	06819	07188	073
12	07918	08279	08636	08991	09342	09691	10037	10380	10721	110
13	11394	11727	12057	12335	12710	13033	13354	13672	13988	144
14	14613	14922	15229	15534	15836	16137	16435	16732	17026	173
15	17609	17898	18184	18469	18752	19033	19312	19590	19866	20:
16	20412	20683	20951	21219	21484	21748	22011	22272	22531	22:
17	23045	23300	23553	23805	24055	24304	24551	24797	25042	25:
18	25527	25768	26007	26245	26482	26717	26951	27184	27416	27:
19	27875	28103	28330	28556	28780	29003	29226	29447	29667	29:
20	30103	30320	30535	30750	30963	31175	31387	31597	31806	320
21	32222	32428	32634	32838	33041	33244	33445	33646	33846	340
22	34242	34439	34635	34830	35025	35218	35411	35603	35793	350
23	36173	36361	36549	36736	36922	37107	37291	37475	37658	370
24	38021	38202	38382	38561	38739	38917	39094	39270	39445	390
25	39794	39967	40140	40312	40483	40654	40824	40993	41162	413
26	41497	41664	41830	41996	42160	42325	42488	42651	42813	428
27	43136	43297	43457	43616	43775	43933	44091	44248	44404	448
28	44716	44871	45025	45179	45332	45484	45637	45788	45939	460
29	46240	46389	46538	46687	46835	45982	47129	47276	47422	478
30	47712	47857	48001	48144	48287	49430	48572	48714	48855	488
31	49136	49276	49415	49554	49693	49831	49969	50106	50243	503
32	50515	50650	50786	50920	51054	51188	51322	51455	51587	517
33	51851	51983	52114	52244	52375	52504	52634	52763	52892	530
34	53148	53275	53403	53529	53656	53782	53908	54033	54158	542
35	54407	54531	54654	54777	54900	55023	55145	55267	55338	555
36	55630	55751	55871	55991	56110	56229	56348	56467	56585	567
37	56820	56937	57054	57171	57287	57403	57519	57634	57749	578
38	57978	59092	58206	58320	58433	58546	58659	58771	58883	589
39	59106	59218	59329	59439	59550	59660	59770	59379	59988	600
40	60206	60314	60423	60530	60638	60745	60853	60959	61066	611
41	61278	61384	61490	61595	61700	61805	61909	62014	62118	622
42	62325	62428	62531	62634	62737	62839	62941	63043	63144	632
43	63347	63448	63548	63649	63749	63849	63949	64048	64147	642
44	64345	64444	64542	64640	64738	64836	64933	65031	65128	652
45 46 47 48 49	65321 66276 67210 68124 69020	65418 66370 67302 68215 69108	65514 66454 67394 68305 69197	65610 66558 67486 68395 69285	65706 66652 67578 68485 69373	65801 66745 67669 68574 69461	65896 66839 67761 68664 69548	65992 66932 67852 68753 69636	66087 67025 67943 68842 69723	667 680 688 698
50	69897	69984	70070	70157	70243	70329	70415	70501	70586	706
51	70757	70842	70927	71012	71096	71181	71265	71349	71433	715
52	71600	71684	71767	71850	71933	72016	72099	72181	72263	723
53	72428	72509	72591	72673	72754	72835	72916	72997	73078	731
54	73239	73320	73400	73480	73560	73640	73719	73799	73878	739

LOGARITHMS OF NUMBERS FROM 0 TO 1,000.

No.	0	1	2	3	4	5	6	7	8	9
55	74036	74115	74194	74273	74351	74429	74507	74586	74663	7474
56	74819	74896	74974	75051	75128	75205	75282	75358	75435	7551
57	75587	75664	75740	75815	75891	75967	76042	76118	76193	7626
58	76343	76418	76492	76567	76641	76716	76790	76864	76938	7701
59	77085	77159	77232	77305	77379	77452	77525	77597	77670	7774
60	77815	77887	77960	78032	78104	78176	78247	78319	78390	7846
61	78533	78604	78675	78746	78817	78888	78958	79029	79099	7916
62	79239	79309	79379	79449	79518	79588	79657	79727	79796	7986
63	79934	80003	80072	80140	80209	80277	80346	80414	80482	8055
64	80618	80686	80753	80821	80889	80956	81023	81090	81157	8122
65	81291	81358	81425	81491	81558	81624	81690	81757	31823	8188
66	81954	82020	82086	82151	82217	82282	82347	82413	82478	8254
67	82607	82672	82737	82802	82866	82930	82995	83059	83123	8318
68	83251	83315	83378	83442	83506	83569	83632	83696	83759	8382
69	83885	83948	84011	84073	84136	84198	84261	84323	84386	8444
70	84510	84572	84634	84696	84757	84819	84880	84942	85003	8506
71	85126	85187	85248	85309	85370	85431	85491	85552	85612	8567
72	85733	85794	85854	85914	85974	86034	86094	86153	86213	8627
78	36332	86392	86451	86510	86570	86629	86688	86747	86806	8686
74	36923	86982	87040	87099	87157	87216	87274	87332	87390	8744
75	87506	87564	87622	87679	87737	87795	87852	87910	87967	8802
76	82081	88138	88195	88252	88309	88366	88423	88420	88536	8858
77	38649	88705	88762	88818	88874	88930	88986	89042	89098	8918
78	89209	89265	89321	89376	89432	89487	89542	89597	39653	8970
79	89763	89818	89873	89927	89982	90037	90091	90146	90200	9028
80	90309	90363	90417	90472	90526	90580	90633	90687	90741	9079
81	90843	90902	90956	91009	91062	91116	91169	91222	91275	9132
82	91381	91434	91487	91540	91593	91645	91696	91751	91803	9185
83	91908	91960	92012	92064	92117	92169	92221	92273	92324	9237
84	92428	92480	92531	92583	92634	92686	92737	92788	92840	9289
85	92942	92993	93044	93095	93146	93197	93247	93298	93349	9338
86	93450	93500	93551	93601	93651	93702	93752	93802	93852	9390
87	93952	94002	94052	94101	94151	94201	94250	94300	94349	9438
88	94448	94498	94547	94596	94645	94694	94743	94792	94841	9488
89	94939	94988	95036	95085	95134	95182	95231	95279	95328	9537
90	95424	95472	95521	95569	95617	95665	95713	95761	95809	9585
91	95904	95952	95999	96047	96095	96142	96190	96237	96284	9633
92	96379	96426	96473	96520	96567	96614	96661	96708	96755	9680
93	96848	96895	96942	96988	97035	97081	97128	97174	97220	9726
94	97313	97359	97405	97451	97497	97543	97589	97635	97681	9772
95	97772	97818	97864	97909	97955	98000	98046	98091	98137	9818
96	98227	98272	98318	98363	98408	98453	98498	98543	98588	9863
97	98677	98722	98767	98811	98856	98900	98945	98989	99034	9907
98	99123	99167	99211	99255	99300	99344	99388	99432	99476	9952
99	99564	99607	99651	99696	99739	99782	99826	99870	99913	9996

DORMAN, LONG & CO. LIMITED.

Degrees	SINE												
A	0'	10'	20′	30'	40′	50′	60′	1					
0 1 2 3 4	· 01745 · 03490 · 05234 · 06976	·00291 ·02036 ·03781 ·05524 ·07266	·00582 ·02327 ·04071 ·05814 ·07556	·00873 ·02618 ·04362 ·06105 ·07846	·01164 ·02908 ·04653 ·06395 ·08136	·01454 ·03199 ·04943 ·06685 ·08426	·01745 ·03490 ·05234 ·06976 ·08716	88 88 88					
56789	·08716 ·10453 ·12187 ·13917 ·15643	·09005 ·10742 ·12476 ·14205 ·15931	·09295 ·11031 ·12764 ·14493 ·16218	·09585 ·11320 ·13053 ·14781 ·16505	·09874 ·11609 ·13341 ·15069 ·16792	10164 11898 13629 15356 17078	·10453 ·12187 ·13917 ·15643 ·17365	86					
10 11 12 13 14	·17365 ·19081 ·20791 ·22495 ·24192	17651 19366 21076 22778 24474	·17937 ·19652 ·21360 ·23062 ·24756	·18224 ·19937 ·21644 ·23345 ·25038	·18509 ·20222 ·21928 ·23627 ·25320	18795 20507 22212 23910 25601	·19081 ·20791 ·22495 ·24192 ·25882	75 75 76 76					
15	· 25882	·26163	·26443	· 26724	·27004	·27284	· 27564	7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7: 7					
16	· 27564	·27843	·28123	· 28402	·28680	·28959	· 29237						
17	· 29237	·29515	·29793	· 30071	·30348	·30625	· 30902						
18	· 30902	·31178	·31454	· 31730	·32006	·32282	· 32557						
19	· 32557	·32832	·33106	· 33381	·33655	·33929	· 34202						
20	· 34202	· 34475	· 34748	· 35021	· 35293	· 35565	· 35837	6 6 6 6					
21	· 35837	· 36108	· 36379	· 36650	· 36921	· 37191	· 37461						
22	· 37461	· 37730	· 37999	· 38268	· 38537	· - 38805	· 39073						
23	· 39073	· 39341	· 39608	· 39875	· 40142	· 40408	· 40674						
24	· 40674	· 40939	· 41204	· 41469	· 41734	· 41998	· 42262						
25	· 42262	· 42525	· 42788	· 43051	· 43313	· 43575	· 43837	666666					
26	· 43837	· 44098	· 44359	· 44620	· 44880	· 45140	· 45399						
27	· 45399	· 45658	· 45917	· 46175	· 46433	· 46690	· 46947						
28	· 46947	· 47204	· 47460	· 47716	· 47971	· 48226	· 48481						
29	· 48481	· 48735	· 48989	· 49242	· 49495	· 49748	· 50000						
30	·50000	·50252	·50503	·50754	·51004	·51254	·51504	555555					
31	·51504	·51753	·52002	·52250	·52498	·52745	·52992						
32	·52992	·53238	·53484	·53730	·53975	·54220	·54464						
33	·54464	·54708	·54951	·55194	·55436	·55678	·55919						
34	·55919	·56160	·56401	·56641	·56880	·57119	·57358						
35	·57358	· 57596	·57833	·58070	·58307	·58543	·58779	55555					
36	·58779	· 59014	·59248	·59482	·59716	·59949	·60182						
37	·60182	· 60414	·60645	·60876	·61107	·61337	·61566						
38	·61566	· 61795	·62024	·62251	·62479	·62706	·62932						
39	·62932	· 63158	·63383	·63608	·63832	·64056	·64279						
40	·64279	·64501	·64723	64945	·65166	65386	·65606	44444					
41	·65606	·65825	·66044	66262	·66480	66697	·66913						
42	·66913	·67129	·67344	67559	·67773	67987	·68200						
43	·68200	·68412	·68624	68835	·69046	69256	·69466						
44	·69466	·69675	·69883	70091	·70298	70505	·70711						
	60′	50′	40'	30′	20′	10'	0'	Dagrage					

Degrees	COSINE												
Deg	0'	10'	. 20'	30'	40"	501	60						
0			-90008	90006	99003	1999603							
ĭ	199985	99979	190973	199066	1909058	190040							
- 6			199917				190863						
23	199863		99831										
4	199756	90736	99714	90602	90666	90644	199619						
5	-90619			196540	99611	199482							
6			199590		190324	1000200							
7					199106	190067							
Ŕ	199027		196944	198902									
9	98760	198723		98629	198580	1985/1	96481						
					98272	98218	196163						
îĭ	-98163												
12													
	-97437												
14	97030	96050	96887	96815	196742	196667	196503						
15	196595	196517	196440	96363	196285	96206	96126						
ie	96126	96046											
17							96106						
îá	95106		194924		194740								
19	94552	94457		94264	94167	94068	93060						
	-93969												
				91706	-91590								
24		91236		90006	190875	90753	90631						
	-90631	190507	190383		90133	90007							
			189623										
		-88968			88566								
					87743								
29	87462			87036	86893	186748							
30		-86457		186163	86015								
				85264									
		184650	84495	84330	84182	84025							
33			83549			183066	82904	- 54					
34	-82004	82741		82413	82248								
35		81748	81580	81412	181242								
36	-80903	80730	80558	80386									
	-79864	79688	79612			78980							
38			78442	78261									
39			177347	177162			75604	54					
40	-76604	-76417		176041			75471	41					
41	-75471	-75280		74896	-74703	74509	74314	43					
42	-74314	-74120	73904					4					
43						72136	71954	44					
44	-71954							44					
	60	50'	40	80									
								Deer					
				SINE				A					

DORMAN, LONG & CO. LIMITED.

	DO	KMAN	, LUI	v G a	00. 1	_ 1 M 1 1	ED.	
Degrees				TANGENT				
De	0'	10'	20′	30'	40′	50′	60′	
0 1 2 3 4	· 01746 · 03492 · 05241 · 06993	· 00291 · 02036 · 03783 · 05533 · 07285	*00582 *02328 *04075 *05824 *07578	· 00873 · 02619 · 04366 · 06116 · 07870	·01164 ·02910 ·04658 ·06408 ·08163	·01455 ·03201 ·04949 ·06700 ·08456	· 01746 · 03492 · 05241 · 06993 · 08749	89 88 87 86 85
5 6 7 8 9	· 03749 · 10510 · 12278 · 14054 · 15838	· 09042 · 10805 · 12574 · 14351 · 16137	· 09335 · 11099 · 12869 · 14648 · 16435	· 09629 · 11394 · 13165 · 14945 · 16734	· 09923 · 11688 · 13461 · 15243 · 17033	·10216 ·11983 ·13758 ·15540 ·17333	·10510 ·12278 ·14054 ·15838 ·17633	84 83 82 81 80
10 11 12 13 14	·17633 ·19438 ·21256 ·23087 ·24933	·17933 ·19740 ·21560 ·23393 ·25242	·18233 ·20042 ·21864 ·23700 ·25552	·18534 ·20345 ·22169 ·24008 ·25862	·18835 ·20648 ·22475 ·24316 ·26172	· 19136 · 20952 · 22781 · 24624 · 26483	·19438 ·21256 ·23087 ·24933 ·26795	79 78 77 76 75
15 16 17 18 19	· 26795 · 28675 · 30573 · 32492 · 34433	· 27107 · 28990 · 30891 · 32814 · 34758	· 27419 · 29305 · 31210 · 33136 · 35085	· 27732 · 29621 · 31530 · 33460 · 35412	· 28046 · 29938 · 31850 · 33783 · 35740	· 28360 · 30255 · 32171 · 34108 · 36068	· 28675 · 30573 · 32492 · 34433 · 36397	74 73 72 71 70
20 21 22 23 24	· 36397 · 38386 · 40403 · 42447 · 44523	· 36727 · 38721 · 40741 · 42791 · 44872	· 37057 · 39055 · 41081 · 43136 · 45222	· 37388 · 39391 · 41421 · 43481 · 45573	· 37720 · 39727 · 41763 · 43828 · 45924	· 38053 · 40065 · 42105 · 44175 · 46277	· 38386 · 40403 · 42447 · 44523 · 46631	69 68 67 66 65
25 26 27 28 29	· 46631 · 43773 · 50953 · 53171 · 55431	· 46985 · 49134 · 51320 · 53545 · 55812	· 47341 · 49495 · 51688 · 53920 · 56194	· 47698 · 49858 · 52057 · 54296 · 56577	48055 50222 52427 54673 56962	· 48414 · 50587 · 52798 · 55051 · 57348	· 48773 · 50953 · 53171 · 55431 · 57735	64 63 62 61 60
30 31 32 33 34	· 57735 · 60086 · 62487 · 64941 · 67451	58124 60483 62892 65355 67875	58513 60881 63299 65771 68301	· 58905 · 61280 · 63707 · 66189 · 68728	· 59297 · 61681 · 64117 · 66608 · 69157	·59691 ·62083 ·64528 ·67028 ·69588	60086 62487 64941 67451 70021	59 58 57 56 55
35 36 37 38 39	·70021 ·72654 ·75355 ·78129 ·80978	·70455 ·73100 ·75812 ·78598 ·81461	· 70891 · 73547 · 76272 · 79070 · 81946	·71329 ·73996 ·76733 ·79544 ·82434	·71769 ·74447 ·77196 ·80020 ·82923	·72211 ·74900 ·77661 ·80498 ·83415	72654 75355 78129 30978 83910	54 53 52 51 50
40 41 42 43 44	·83910 ·86929 ·90040 ·93252 ·95569	·84407 ·87441 ·90569 ·93797 ·97133	·84906 ·87955 ·91099 ·94345 ·97700	·85408 ·88473 ·91633 ·94896 ·98270	·85912 ·88992 ·92170 ·95451 ·98843	·86419 ·89515 ·92709 ·96008 ·99420	·86929 ·90040 ·93252 ·96569	49 48 47 46 45
	60′	50′	40′	30′	20′	10'	0'	ses
			0	OTANGEN	r			Degrees

gree	COTANGENT												
Degrees	0'	10'	20'	30	40'	50'	60'						
0 1 2 3 4	57:28996 28:63625 19:08114 14:30067	343 · 77371 49 · 10388 26 · 43160 18 · 07498 13 · 72674	171 · 88540 42 · 96408 24 · 54176 17 · 16934 13 · 19688	114 · 58865 38 · 18846 22 · 90377 16 · 34986 12 · 70621	85 · 93979 34 · 36777 21 · 47040 15 · 60478 12 · 25051	68 · 75009 31 · 24158 20 · 20555 14 · 92442 11 · 82617	57 · 28996 28 · 63625 19 · 08114 14 · 30067 11 · 43005	88 87 86 85					
5	11·43005	11:05943	10·71191	10·38540	10·07803	9·78817	9·51436	84					
6	9·51436	9:25530	9·00983	8·77689	8·55555	8·34496	8·14435	83					
7	8·14435	7:95302	-7·77035	7·59575	7·42871	7·26873	7·11537	82					
8	7·11537	6:96823	6·82694	6·69116	6·56055	6·43484	6·31375	81					
9	6·31375	6:19703	6·08444	5·97576	5·87080	5·76937	5·67128	80					
10	5·67128	5·57638	5·48451	5·39552	5·30928	5 · 22566	5·14455	79					
11	5·14455	5·06584	4·98940	4·91516	4·£4300	4 · 77286	4·70463	78					
12	4·70463	4·63825	4·57363	4·51071	4·44942	4 · 38869	4·33148	77					
13	4·33148	4·27471	4·21933	4·16530	4·11256	4 · 06107	4·01078	76					
14	4·01078	3·96165	3·91364	3·86671	3·82083	3 · 77595	3·73205	75					
15	3·73205	3.68909	3·64705	3.60588	3:56557	3:52609	3·48741	74					
16	3·48741	3.44951	3·41236	3.37594	3:34023	3:30521	3·27085	78					
17	3·27085	3.23714	3·20406	3.17159	3:13972	3:10842	3·07768	72					
18	3·07768	3.04749	3·01783	2.98869	2:96004	2:93189	2·90421	71					
19	2·90421	2.87700	2·85023	2.82391	2:79802	2:77254	2·74748	70					
20	2:74748	2·72281	2·69853	2:67462	2·65109	2:62791	2·60509	69					
21	2:60509	2·58261	2·56046	2:53865	2·51715	2:49597	2·47509	68					
22	2:47509	2·45451	2·43422	2:41421	2·39449	2:37504	2·35585	67					
23	2:35585	2·33693	2·31826	2:29984	2·28167	2:26374	2·24604	66					
24	2:24604	2·22857	2·21132	2:19430	2·17749	2:16090	2·14451	65					
25	2:14451	2·12832	2·11233	2·09654	2:08094	2:06553	2·05030	64					
26	2:05030	2·03526	2·02039	2·00569	1:99116	1:97680	1·96261	63					
27	1:96261	1·94858	1·93470	1·92098	1:90741	1:89400	1·88073	62					
28	1:88073	1·86760	1·85462	1·84177	1:82906	1:81649	1·80405	61					
29	1:80405	1·79174	1·77955	1·76749	1:75556	1:74375	1·73205	60					
30	1·73205	1·72047	1·70901	1.69766	1.68643	1·67530	1.66428	59					
31	1·66428	1·65337	1·64256	1.63185	1.62125	1·61074	1.60033	58					
32	1·60033	1·59002	1·57981	1.56969	1.55966	1·54972	1.53987	57					
33	1·53987	1·53010	1·52043	1.51084	1.50133	1·49190	1.48256	56					
34	1·48256	1·47330	1·46411	1.45501	1.44598	1·43703	1.42815	55					
35	1·42815	1·41934	1·41061	1·40195	1 · 39336	1:38484	1 · 37638	54					
36	1·37638	1·36800	1·35968	1·35142	1 · 34323	1:33511	1 · 32704	53					
37	1·32704	1·31904	1·31110	3·30323	1 · 29641	1:28764	1 · 27994	52					
38	1·27994	1·27230	1·26471	1·25717	1 · 24969	1:24227	1 · 23490	51					
39	1·23490	1·22758	1·22031	1·21310	1 · 20693	1:19882	1 · 19175	50					
40 41 42 43 44	1·19175 1·15037 1·11061 1·07237 1·03553	1·18474 1·14363 1·10414 1·06613 1·02952	1·17777 1·13694 1·09770 1·05994 1·02355	1·17035 1·13029 1·09131 1·05378 1·01761	1·16398 1·12369 1·08496 1·04766 1·01170	1·15715 1·11713 1·07864 1·04158 1·00583	1·15037 1·11061 1·07237 1·03553	49 48 47 46 45					
	60	50'	40'	30'	20'	10'	0'	egrees					

LBS. RISING BY 7, EXPRESSED IN CWTS., QRS. & LBS. AND IN DECIMALS OF A TON.

Lbs.	c. q. lbs.	Ton	Lbs.	c.	q.	lbs.	Ton	Lbs.	c. q.	lbs.	Ton
7 14 21	7 14 21	·003125 ·00625 ·009375	336 343 350 357	3 3 3 3	0000	0 7 14 21	·15 ·153125 ·15625 ·159375	672 679 686 693	6 0 6 0 6 0 6 0	0 7 14 21	· 3 · 303125 · 30625 · 309375
28 35 42 49	1 0 1 7 1 14 1 21	·0125 ·015625 ·01875 ·021875	364 371 378 385	3 3 3 3	1 1 1 1	0 7 14 21	·1625 ·165625 ·16875 ·171875	700 707 714 721	6 1 6 1 6 1 6 1	0 7 14 21	·3125 ·315625 ·31875 ·321875
56 63 70 77	2 0 2 7 2 14 2 21	·025 ·028125 ·03125 ·034375	392 399 406 413	3 3 3 3	2222	0 7 14 21	·175 ·178125 ·18125 ·184375	728 735 742 749	6 2 6 2 6 2 6 2	0 7 14 21	· 325 · 328125 · 33125 · 334375
84 91 98 105	3 0 3 7 3 14 3 21	· 375 · 040625 · 04375 · 046875	420 427 434 441	3 3 3	3 3 3 3	0 7 14 21	·1875 ·190625 ·19375 ·196875	756 763 770 777	6 3 6 3 6 3	0 7 14 21	· 3375 · 340625 · 34375 · 346875
112 119 126 133	1 0 0 1 0 7 1 0 14 1 0 21	·05 ·053125 ·05625 ·059375	448 455 462 469	4 4 4 4	0000	0 7 14 21	·2 ·203125 ·20625 ·209375	784 791 798 805	7 0 7 0 7 0 7 0	0 7 14 21	·35 ·353125 ·35625 ·359375
140 147 154 161	1 1 0 1 1 7 1 1 14 1 1 21	·0625 ·065625 ·06875 ·071875	476 483 490 497	4 4 4 4	1 1 1 1	0 7 14 21	·2125 ·215625 ·21875 ·221875	812 819 826 833	7 1 7 1 7 1 7 1 7 1	0 7 14 21	· 3625 · 365625 · 36875 · 371875
168 175 182 189	1 2 0 1 2 7 1 2 14 1 2 21	·075 ·078125 ·08125 ·084375	504 511 518 525	4 4 4 4	2222	0 7 14 21	·225 ·228125 ·23125 ·234375	840 847 854 861	7 2 7 2 7 2 7 2 7 2	0 7 14 21	·375 ·378125 ·38125 ·384375
196 203 210 217	1 3 0 1 3 7 1 3 14 1 3 21	·0875 ·090625 ·09375 ·096875	532 539 546 553	4 4 4 4	3 3 3 3	0 7 14 21	· 2375 · 240625 · 24375 · 246875	868 875 882 889	7 3 7 3 7 3 7 3	0 7 14 21	·3875 ·390625 ·39375 ·396875
224 231 238 245	2 0 0 2 0 7 2 0 14 2 0 21	·1 ·103125 ·10625 ·109375	560 567 574 581	5 5 5 5	0000	0 7 14 21	·25 ·253125 ·25625 ·259375	896 903 910 917	8 0 8 0 8 0 8 0	0 7 14 21	·4 ·403125 ·40625 ·409375
252 259 266 273	2 1 0 2 1 7 2 1 14 2 1 21	·1125 ·115625 ·11875 ·121875	588 595 602 609	5 5 5 5	1 1 1 1	0 7 14 21	·2625 ·265625 ·26875 ·271875	924 931 938 945	8 1 8 1 8 1 8 1	0 7 14 21	·4125 ·415625 ·41875 ·421875
280 287 294 301	2 2 0 2 2 7 2 2 14 2 2 21	·125 ·128125 ·13125 ·134375	616 623 630 637	5 5 5 5	2222	0 7 14 21	·275 ·278125 ·28125 ·284375	952 959 966 973	8 2 8 2 8 2 8 2	0 7 14 21	· 425 · 428125 · 43125 · 434375
308 315 322 329	2 3 0 2 3 7 2 3 14 2 3 21	·1375 ·140625 ·14375 ·146875	644 651 658 665	5 5 5	3 3 3 3	0 7 14 21	·2875 ·290625 ·29375 ·296875	980 987 994 1001	8 3 8 3 8 3 8 3	0 7 14 21	· 4375 · 440625 · 44375 · 446875

LBS, RISING BY 7, EXPRESSED IN CWTS., QRS. 4 LBS, AND IN DECIMALS OF A TON.

Liu.	6.	1	lbs.	Tun	Lite.	6.	4	llu.	Ton	Lise	4.	1	lbs.	Ton
1008 1015 1023 1023	2222		07.80	45 463125 46626 400075										
1056 1043 1050 1057	2000			-96(25) -96(25) -96(275) -971(275)										
1064 1071 1078 1085				-475 -473125 -48126 -484375	1400 1407 1414 1421									
1060 1066 1106 1113	0.000			-49775 -4006/2/5 -400775 -406/2/75										
1130 1127 1134 1141			07.51		1456 1465 1470 1477									
1140 1156 1160 1160			0 7 14 21											
			0 7 M					14 (1						
304 311 318 318 485			NE	-5875 -540605 -54375 -546875	1540 1547 1564 1561				-6875 -600625 -60075 -606275					
1350 1350 1360 1363			07.80			14		0720		1964 1911 1913 1965				
1,060 1,067 1,774 1,274			07 18	-560625 -560625 -56675 -371475	1506 1603 1610 1617	14		07 18 (0						
1,000 1,000 1,000 1,000		Section 2	0 7 8 10	-975 -979336 -98135 -984375	18/18 16/11 16/01 16/45	14		0 T M	730 -738128 -73128 -734375	11867 1187 1174 1181			0 × 8 H	
		Section 20	0.27	-5075 -530625 -53075 -536775		10.00		0 × 2 × 0	-7575 -740605 -74575 -746075	1 MIS 1 MIS 3 X X X 2 X X X				0000 000000 00000 00000

LBS. RISING BY 7, EXPRESSED IN CWTS., QRS. & LBS. AND IN DECIMALS OF A TON—

CONTINUED.

Lbs.	c. q. lbs.	Ton	Lbs.	c. q. lbs.	Ton
2016 2023 2030 2037 2044 2051 2058 2065 2072 2079 2086 2093 2100 2107 2114 2121	18 0 0 7 18 0 14 18 0 14 18 0 21 18 1 0 18 1 14 18 1 14 18 1 21 18 2 0 18 2 7 18 2 14 18 2 21 18 3 0 18 3 7 18 3 14 18 3 21 18 3 21 18 3 14 18 3 21 18 3 21 18 3 14 18 3 21 18 3 21 18 3 14 18 3 21 18 3 21 18 3 14 18 3 21 18 3 21 18 3 21 18 3 14 18 3 21 21 21 21 21 21 21 21 21 21 21 21 21	-9 -903125 -90625 -908375 -9125 -9125 -91875 -921875 -928 -928 -928 -934375 -940625 -948875 -948875	2128 2135 2142 2149 2156 2163 2170 2177 2184 2191 2198 2205 2212 2219 2226 2233 2240	19 0 0 0 19 0 7 7 19 0 14 19 0 21 19 1 0 19 1 1 14 19 1 2 11 19 2 2 17 19 2 14 19 2 2 11 19 3 0 19 3 7 19 3 14 19 3 2 11 20 0 0 0 0	-95 -953125 -95625 -959375 -9625 -965625 -96675 -971875 -978125 -98125 -984375 -99625 -99375 -996875

CONVERSION TABLE TONS INTO POUNDS.

Tons	Pounds	Tons	Pounds	Tons	Pounds	Tons	Pounds
1	2.240	26	58,240	51	114,240	76	170,240
2	4.480	27	60,480	52	116,480	77	172,480
3	6.720	28	62,720	53	118,720	78	174,720
4	8.960	29	64,960	54	120,960	79	176,960
5	11.200	30	67,200	55	123,200	80	179,200
6	13,440	31	69,440	56	125,440	81	181,440
7	15,680	32	71,680	57	127,680	82	183,680
8	17,920	33	73,920	58	129,920	83	185,920
9	20,160	34	76,160	59	132,160	84	188,160
10	22,400	35	78,400	60	134,400	85	190,400
11	24,640	36	80,640	61	136,640	86	192,640
12	26,880	37	82,880	62	138,880	87	194,880
13	29,120	38	85,120	63	141,120	88	197,120
14	31,360	39	87,360	64	143,360	89	199,360
15	33,600	40	89,600	65	145,600	90	201,600
16	35,840	41	91.840	66	147.840	91	203,840
17	38,080	42	94.080	67	150.080	92	206,080
18	40,320	43	96.320	68	152,320	93	208,320
19	42,560	44	98.560	69	154,560	94	210,560
20	44,800	45	100.800	70	156,800	95	212,800
21	47,040	46	103,040	71	159,040	96	215,040
22	49,280	47	105,280	72	161,280	97	217,280
23	51,520	48	107,520	73	163,520	98	219,520
24	53,760	49	109,760	74	165,760	99	221,760
25	56,000	50	112,000	75	168,000	100	224,000

APPROXIMATE LIVE LOAD ON FLOORS.

Crowd of People	- 84 to 112 lbs. per	sq. ft.
Floors of Dwellings and Offices		
Floors of Public Halls, Churche		
Theatres, &c	- 100 to 160 ,, ,	
Floors of Stores, Warehouses, &c.		
Floors of Workshops carrying hea		
machinery	- 200 to 400 ,, ,,	, ,,

APPROXIMATE WEIGHT, IN LBS. PER CUBIC FOOT, OF VARIOUS SUBSTANCES.

6
28

WEIGHT AND BULK OF WATER.

	:- 1 cubic foot	6.228 gallons.
(at 62° Fahr.)	1 gallon	10lbs.
	1 gallon	·161 cubic foot.
	1 ton	36 cubic feet.
	7 4	004 ~ 11

The weight of fresh water is to that of sea water as 1 is to 1.026.

WEIGHTS AND MEASURES.

LINEAR MEASURE.

Inches	Feet	Yards	Poles	Furlongs	Mile
1	.08333	-02778	.0050505	-00012626	.00001578
12	1.	- 33333	.0606061	.00151515	.00018939
36	3.	1.	1818182	.00454545	.00056818
193	16.5	5.5	1.		.003125
7920	660	220	40.	1.	·125
63360	5280	1760	320	8.	1.

SURVEYING MEASURE (LINEAL).

Inches	Links	Feet	Yards	Ohains	Mile
1.	126	-0833	-0278	.00126	0000158
7.92	1.	.66	-22	.01	.000125
12	1.515	1.	-333	.01515	.000189
36.	4.545	3.	1.	.04545	-000568
792	100	66.	22.	1.	.0125
63360	8000 ·	5280	1760	80.	1.

CUBIC MEASURE.

Inches	Feet	Yards
1.	*0005787	-00002143
1728	1.	•03704
46656	27-	1.

WEIGHTS AND MEASURES.

SQUARE MEASURE.

Square Inches	Square Feet	Square Yards	Square Poles	Roods	Acres	Square Mile
1	-00694	-000772				
144	1.	-11111	.003673			
1296	9.	1.	.033058	*000826		
	272-25	30 · 25	1.		.00625	
	10890	1210	40.	1.		.0003906
	43560	4840	160	4.	1.	.0015615
		3097600	102400	2560	640	1.

MEASURE OF CAPACITY.

Pints	Quarts	Gallons	Pecks	Bushels	Quarters	Oubic Inches
1	-5	.125	-0625	.015625	-001953125	34.683
2	1.	.25	·125	.03125	.00390625	69.366
8	4.	1.		.125	.015625	277 - 463
16	8.	2.	1.	.25	.03125	554 · 926
64	32.		4.	1.	.125	2219 704
512	256	64.	32.		1.	17757 - 632

AVOIRDUPOIS WEIGHT.

Grains	Drams	Ounces	Pounds	Hundred- weights	Gross Ton
1.	.03657	.002286	.000143	·00000128	.0000000637
27 · 34375	1.	.0625	.003906	*00003488	.000001744
437.5	16.	1.	.0625	.00055804	.00002790
7000	256 •	16.	1.	.0089286	.0004464
784000	28672	1792	112.	1.	.05
15680000	573440	35840	2240	20.	1.

METRIC MEASURES. LINEAR MEASURE.

Millimetres	Oentimetres	Decimetres	Metres	Dekametres	Hectometres	Kilometre
		-01	-001		.00001	-000001
1	-1	-01	.001	.0001	-00001	-000001
10	1.	-1	-01	.001	-0001	.00001
100	10-	1.	.1	.01	.001	.0001
1000	100	10.	1.	.1	.01	-001
10000	1000	100	10.	1.	.1	-01
100000	10000	1000	100	10.	1.	-1
1000000	100000	10000	1000	100	10.	1.

SQUARE MEASURE.

Square Centimetres	Square Decimetres	Square Metres	Ares or Square Decimetres	Hectare or Square Hectometre
1	-01	-00001	00001	.00000001
100	1.	-01	·0001	.000001
10000	100	1.	-01	.0001
1000000	10000	100	1.	-01
100000000	1000000	10000	100	1.

CUBIC MEASURE.

Oubic Oentimetres	Cubic Decimetres	Cubic Metre
. 1	001	-000001
1000	1.	.001
1000000	1000	1.

METRIC MEASURES.

MEASURES OF CAPACITY.

Millilitres	Centilitres	Decilitres	Litres	Dekalitres	Hectolitres	Kilolitre
1	1	.01	.001	0001	00001	000000
10	1.	'1	01	.001	.0001	.00001
100	10.	1.	.1	.01	.001	.0001
1000	100	10.	1.	.1	.01	.001
10000	1000	100	10.	1.	.1	
100000	10000	1000	100	10.	1.	.1
1000000	100000	10000	1000	100		1.

WEIGHTS.

Milli- grammes	Centi- grammes	Deci- grammes	Grammes	Deka- grammes	Hecto- grammes	Kilo- gramme
1	.1	.01	.001	.0001	.00001	·000001
10	1.	1	.01	'001	.0001	.00001
100	10.	1.	.1	.01	'001	.0001
1000	100	10.	1.	.1	.01	1001
10000	1000	100	10.	1.	.1	-01
100000	10000	1000	100	10-	1.	-1
1000000	100000	10000	1000	100-	10.	1.

METRICAL EQUIVALENTS OF BRITISH UNITS.

LINEAR MEASURE.

British Units	Metrical Equivalents		Metrical Units	British Equivalents
1 inch = 1 inch = 1 foot = 1 yard = 1 fathom = 1 pole = 1 chain = 1 furlong = 1 mile = 1	2 * 5399541 ce * 02539954 1 * 50479449 * 91438348 1 * 82876696 5 * 02911 20 * 116437 201 * 16437 1609 * 31493		1 millimetre 1 centimetre 1 metre 1 " 1 " 1 kilometre 1 " 1 " 1 "	03937 inches 393708 " 3937079 " 3:2808992 feet 1:033633 yards 1093:63306 " 4)*71059 chains 3280:88917 feet 6213824 mile

SQUARE MEASURE.

British Units	Metrical Equivalents	Metrical Units	British Equivalents
1 " yard = 1 " = 1 acre =	6:451367 sq. centimetres :09283968 sq. metre :8360971 "" :008360971 are :404671 hectare :58:98945 "	1 sq. centimetre 1 " metre 1 " " 1 are 1 hectare 1 "	= '1550059 sq, inch = 10·7642994 " feet = 1·1960333 " yards =119·60333 " " = 2·47114 acres = '0038612 sq, mile

CUBIC MEASURE.

British Units	Metrical Equivalents	Metrical Units	British Equivalents
1 " foot= '(3861759 cubic centimetres 02831531 " metre 76451342 " "	1 " metre =	35.31653074 " feet

CAPACITY.

British Units	Metrical Equivalents	Metrical Units	British Equivalents
1 cubic inch 1 ii ii 1 gill 1 pint 1 quart 1 gallon 1 ii 1 bushel	16·386176 millilitres 1·6386176 centilitres 14·1983 1567932 litres 1·135864 " 4·543458 " 4·543458 dekalitres 3·634766 " 5634766 hectolitre	1 millilitre 1 centilitre 1 " 1 litre 1 " 1 dekalitre 1 " 1 hectolitre	'061027 cubic inch '61027 gill' '' '97043 gill' '' 1.76077 pints '830387 quart '2200967 gallons 2-20097 '' '275121 bushels 2-75121 ushels

METRICAL EQUIVALENTS OF BRITISH UNITS.

WEIGHT.

British Units	Metrical Equivalents	Metrical Units	British Equivalents
l pound l hundred- weight	= 64 · 79895 milligrammes = 6 · 478836 centigrammes = 06478836 grammes = 28 · 34954 = 02234954 kilogrammes = 45359265 " = 50802377 quintals = 1 · 01604754 milliers or tonnes	1 milligramme 1 centigramme 1 gramme 1 1 kilogramme 1 1 quintal 1 millier or tonne	Avoirdupois = '01543235 grains = '1543235 " = '1543235 " = '0352739 ounces = 35:27394 = 2:20462125 pounds = 1:96341 hundred-weight = '98420591 tons

MISCELLANEOUS COMPOUND MEASURES.

British Units	Metrical Equivalents	Metrical Units	British Equivalents
1 foot per second } =	3048 metres per second	1 metre per second =	3.2809 feet per second
1 foot per minute } = 1 mile per hour } = 1 pound per foot } = 1 pound per square inch } = 1 pound per square foot } = 1 ton per square foot } = 1 ton per square foot } = 1 pound per la ton per square foot } = 1 pound per la ton per square foot } = 1 pound per la ton per square foot } = 1 pound per la ton per square foot } = 1 pound per la ton per square foot } = 1 pound per la ton	second 3048 metres per minute 1 16093 kilometres per hour 1 148319 kilogrammes per metre 48606 kilogrammes per metre 707031 kilogrammes per square centimetre 4 88261 kilogrammes per square metre 10 93704 tonnes per square metre 702768 kilogrammes per cubic centimetre	second) I metre per minute = 1 kilometre per hour = 1 kilogramme per metre = 1 kilogramme per square metre = 1 kilogramme per cubic per litiogramme per cubic per litiogramme per cubic per litiogramme per square metre =	second 5'2209 feet per minute 6214 miles per hour 67196 pounds per foot 2'01587 pounds per yard 14'22282 pounds per square inch 20481 pounds per square foot 09143 tons per square foot 50'1255 pounds per cubic inch
cubic inch = 1 pound per cubic foot = 1 pound per cubic yard = 1 pound per gallon = 1	metre 16:019 kilogrammes per cubic metre 5933 kilogrammes per cubic metre	1 kilogramme per cubic metre 1 kilogramme per cubic metre 1 kilogramme per litre	0624245 pounds per cubic foot 1 68546 pounds per cubic yard 10 0166 pounds per gallon

EQUIVALENTS IN MILLIMETRES

OF INCHES AND FRACTIONS OF AN INCH ADVANCING BY 32NDS.

Inches	0"	1"	2"	3″	4"	5"
0 1/32 1/6 3/2	·794 1·537 2·381	25 · 400 26 · 193 26 · 987 27 · 781	50 · 799 51 · 593 52 · 387 53 · 180	76 · 199 76 · 992 77 · 786 78 · 580	101·598 102·392 103·186 103·979	126 · 99 127 · 79 128 · 58 129 · 37
½ 5 32 3 16 	3·175 3·969 4·762 5·556	28·574 29·368 30·162 30·956	53·974 54·768 55·561 56·355	79.374 80:167 80:961 81:755	104 · 773 105 · 567 105 · 361 107 · 154	130 · 17 130 · 96 131 · 76 132 · 55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6·350 7·144 7·937 8·731	31·749 32·543 33·337 34·131	57·149 57·943 58·736 59·530	82·549 83·342 84·136 84·930	107 · 948 108 · 742 109 · 536 110 · 329	133 · 34 134 · 14 134 · 93 135 · 72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9·525 10·319 11·112 11·906	34 · 924 35 · 718 36 · 512 37 · 306	60·324 61·118 61·911 62·705	85 · 723 86 · 517 87 · 311 88 · 105	111·123 111·917 112·710 113·504	136 · 52 137 · 31 138 · 11 138 · 90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12·700 13·494 14·287 15·081	38 · 099 38 · 893 39 · 687 40 · 481	63·499 64·293 65·086 65·880	88 · 898 89 · 692 90 · 486 91 · 280	114·298 115·092 115·885 116·679	139 · 69 140 · 49 141 · 28 142 · 07
5 ₈ 21/32 11/16 23/32	10 051	41 · 274 42 · 068 42 · 862 43 · 655	66 · 674 67 · 468 68 · 261 69 · 055	92·073 92·867 93·661 94·455	117 · 473 118 · 267 119 · 060 119 · 854	142 · 87 143 · 66 144 · 46 145 · 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.637	44 · 449 45 · 243 46 · 037 46 · 830	69 · 849 70 · 642 71 · 436 72 · 230	95 · 248 96 · 042 96 · 836 97 · 629	120 · 648 121 · 442 122 · 235 123 · 029	146 · 04 146 · 84 147 · 63 148 · 42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07 010	47 · 624 48 · 418 49 · 212 50 · 005	73·024 73·817 74·611 75·405	98 · 423 99 · 217 100 · 011 100 · 804	123 · 823 124 · 616 125 · 410 126 · 204	149 · 22 150 · 01 150 · 81 151 · 60

12 Inches = 304.794 Millimetres.

EQUIVALENTS IN MILLIMETRES

OF INCHES AND FRACTIONS OF AN INCH ADVANCING BY 32400.

Inches	6"	7"	8"	9"		
0	152·307 153·191 153·985 154·778	177 · 797 178 · 591 179 · 384 180 · 178	203 · 196 203 · 990 204 · 784 205 · 578	228 · 596 229 · 390 230 · 183 230 · 977	253 · 995 254 · 789 255 · 583 256 · 377	
½	155 · 572 156 · 366 157 · 160 157 · 953	180 · 972 181 · 765 182 · 559 183 · 353	206 · 371 207 · 165 207 · 959 208 · 752	231 · 771 232 · 565 233 · 358 234 · 152	257 · 170 257 · 964 258 · 758 259 · 552	282 · 570 283 · 360 284 · 150 284 · 950
1 1/4 1/4 1/4 1/4	158 · 747 159 · 541 160 · 335 161 · 128	184 · 147 184 · 940 185 · 734 186 · 528	209 · 546 210 · 340 211 · 134 211 · 927	234 · 946 235 · 739 236 · 533 237 · 327	260 · 345 261 · 139 261 · 933 262 · 727	
10 % 10	161 · 922 162 · 716 163 · 510 164 · 303	187 · 322 188 · 115 188 · 909 189 · 703	212 · 721 213 · 515 214 · 309 215 · 102	238 · 121 238 · 914 239 · 708 240 · 502	263 · 520 264 · 314 265 · 108 265 · 901	
14 1/2 1/4	165 · 097 165 · 891 166 · 684 167 · 478	190 · 497 191 · 290 192 · 084 192 · 878	215 · 896 216 · 690 217 · 484 218 · 277	241 · 296 242 · 089 242 · 883 243 · 677	266 · 695 267 · 489 268 · 283 269 · 076	292 · 09 292 · 88 293 · 68 294 · 47
11 ··· %	168 · 272 169 · 066 169 · 859 170 · 653	193 · 672 194 · 465 195 · 259 196 · 053	219·071 219·865 220·659 221·452	244 · 471 245 · 264 246 · 058 246 · 852	269 · 870 270 · 664 271 · 458 272 · 251	295 · 27 296 · 06 296 · 85 297 · 65
11 %	171 · 447 172 · 241 173 · 034 173 · 828	196 · 846 197 · 640 198 · 434 199 · 228	222 · 246 223 · 040 223 · 833 224 · 627	247 · 646 248 · 439 249 · 233 250 · 027	273 · 045 273 · 839 274 · 633 275 · 426	298 · 44 299 · 23 300 · 03 300 · 82
11 % 11 %	174 · 622 175 · 416 176 · 209 177 · 003	200 · 021 200 · 815 201 · 609 202 · 403	225 · 421 226 · 215 227 · 008 227 · 802	250 · 820 251 · 614 252 · 408 253 · 202	276 · 220 277 · 014 277 · 807 278 · 601	301 · 62 302 · 41 303 · 20 304 · 00

12 Inches = 304.794 Millimetres.

EQUIVALENTS OF MILLIMETRES IN INCHES.

Milli- metres	Inches	Milli- metres	Inches	Milli- metres	Inches	Milli- metres	Inches	Milli- metres	Inches
1 2 3 4 5	·039	51	2·008	101	3·976	151	5.945	201	7·913
	·079	52	2·047	102	4·016	152	5.984	202	7·953
	·118	53	2·087	103	4·055	153	6.024	203	7·992
	·157	54	2·126	104	4·095	154	6.063	204	8·032
	·197	55	2·165	105	4·134	155	6.102	205	8·071
6 7 8 9	·236 ·276 ·315 ·354 ·394	56 57 58 59 60	2·205 2·244 2·283 2·323 2·362	105 107 108 109 110	4·173 4·213 4·252 4·291 4·331	156 157 158 159 160	6·142 6·181 6·221 6·260 6·299	206 207 208 209 210	8·110 8·150 8·189 8·228 8·268
11	·433	61	2·402	111	4·370	161	6·339	211	8 · 307
12	·472	62	2·441	112	4·409	162	6·378	212	8 · 347
13	·512	63	2·480	113	4·449	163	6·417	213	8 · 386
14	·551	64	2·520	114	4·488	164	6·457	214	8 · 425
15	·591	65	2·559	115	4·528	165	6·496	215	8 · 465
16	·630	66	2·598	116	4·567	166	6·535	216	8·504
17	·669	67	2·638	117	4·606	167	6·575	217	8·543
18	·709	68	2·677	118	4·646	168	6·614	218	8·583
19	·748	69	2·717	119	4·685	169	6·654	219	8·622
20	·787	70	2·756	120	4·724	170	6·693	220	8·661
21	·827	71	2:795	121	4·764	171	6.732	221	8·701
22	·866	72	2:835	122	4·803	172	6.772	222	8·740
23	·906	73	2:874	123	4·843	173	6.811	223	8·780
24	·945	74	2:913	124	4·882	174	6.850	224	8·819
25	·984	75	2:953	125	4·921	175	6.890	225	8·858
26	1·024	76	2·992	126	4·961	176	6 · 929	226	8 · 898
27	1·063	77	3·032	127	5·000	177	6 · 969	227	8 · 937
28	1·102	78	3·071	128	5·039	178	7 · 008	228	8 · 976
29	1·142	79	3·110	129	5·079	179	7 · 047	229	9 · 016
30	1·181	80	3·150	130	5·118	180	7 · 087	230	9 · 055
31	1·220	81	3·189	131	5·158	181	7·126	231	9·095
32	1·260	82	3·228	132	5·197	182	7·165	232	9·134
33	1·299	83	3·268	133	5·236	183	7·205	233	9·173
34	1·339	84	3·307	134	5·276	184	7·244	234	9·213
35	1·378	85	3·346	135	5·315	185	7·284	235	9·252
36	1·417	86	3·386	136	5·354	186	7·323	236	9·291
37	1·457	87	3·425	137	5·394	187	7·362	237	9·331
38	1·496	88	3·465	138	5·433	188	7·402	238	9·370
39	1:535	89	3·504	139	5·472	189	7·441	239	9·410
40	1·575	90	3·543	140	5·512	190	7·480	240	9·449
41	1.614	91	3·583	141	5·551	191	7·520	241	9·488
42	1.654	92	3·622	142	5·591	192	7·559	242	9·528
43	1.693	93	3·661	143	5·630	193	7·598	243	9·567
44	1.732	94	3·701	144	5·669	194	7·638	244	9·606
45	1.772	95	3·740	145	5·709	195	7·677	245	9·646
46 47 48 49 50	1.811 1.850 1.890 1.929 1.969	96 97 98 99	3·780 3·819 3·858 3·898 3·937	146 147 148 149 150	5·748 5·787 5·827 5·866 5·906	196 197 198 199 200	7·717 7·756 7·795 7·835 7·874	246 247 248 249 250	9·685 9·724 9·764 9·803 9·843

EQUIVALENTS OF MILLIMETRES IN INCHES.

Milli- metres	Inches								
251	9·882	301	11:850	351	13·819	401	15·788	451	17 · 756
252	9·921	302	11:890	352	13·858	402	15·827	452	17 · 795
253	9·961	303	11:929	353	13·898	403	15·866	455	17 · 835
254	10·000	304	11:969	354	13·937	404	15·906	454	17 · 874
255	10·039	305	12:008	355	13·977	405	15·945	455	17 · 914
256	10·079	306	12:047	356	14:016	406	15 · 984	456	17 · 953
257	10·118	307	12:087	357	14:055	407	16 · 024	457	17 · 992
258	10·158	308	12:126	358	14:095	408	16 · 063	458	18 · 032
259	10·197	309	12:165	359	14:134	409	16 · 103	459	18 · 071
260	10·236	310	12:205	360	14:173	410	16 · 142	460	18 · 110
261	10·276	311	12:244	361	14·213	411	16:181	461	18 · 150
262	10·315	312	12:284	362	14·252	412	16:221	462	18 · 189
263	10·354	313	12:323	363	14·291	413	16:260	463	18 · 229
264	10·394	314	12:362	364	14·331	414	16:299	464	18 · 268
265	10·433	315	12:402	365	14·370	415	16:339	465	18 · 307
266	10·473	316	12:441	366	14:410	416	16:378	466	18:347
267	10·512	317	12:480	367	14:449	417	16:417	467	18:386
268	10·551	318	12:520	368	14:488	418	16:457	468	18:425
269	10·591	319	12:559	369	14:528	419	16:496	469	18:465
270	10·630	320	12:559	370	14:567	420	16:536	470	18:504
271	10.669	321	12.638	371	14 · 606	421	16·575	471	18 · 543
272	10.709	322	12.677	372	14 · 646	422	16·614	472	18 · 583
273	10.748	323	12.717	373	14 · 685	423	16·654	473	18 · 622
274	10.787	324	12.756	374	14 · 725	424	16·693	474	18 · 662
275	10.827	325	12.795	375	14 · 764	425	16·732	475	18 · 701
276	10.866	326	12:835	376	14 · 803	426	16·772	476	18 · 740
277	10.906	327	12:874	377	14 · 843	427	16·811	477	18 · 780
278	10.945	328	12:913	378	14 · 882	428	16·851	478	18 · 819
279	10.984	329	12:953	379	14 · 921	429	16·890	479	18 · 858
280	11.024	330	12:992	380	14 · 961	430	16·929	480	18 · 898
281	11:053	331	13·032	381	15·000	431	16 · 969	481	18 · 937
282	11:102	332	13·071	382	15·040	432	17 · 008	482	18 · 977
283	11:142	333	13·110	383	15·079	433	17 · 047	483	19 · 016
284	11:181	334	13·150	384	15·118	434	17 · 087	484	19 · 055
285	11:221	335	13·189	385	15·158	435	17 · 126	485	19 · 095
285	11 · 260	336	13 · 228	386	15·197	436	17·166	486	19·134
287	11 · 290	337	13 · 268	387	15·236	437	17·205	487	19·173
288	11 · 339	338	13 · 307	383	15·276	438	17·244	488	19·213
289	11 · 378	339	13 · 347	389	15·315	439	17·284	489	19·252
290	11 · 417	340	13 · 386	390	15·354	440	17·323	490	19·292
291	11 · 457	341	13 · 425	391	15·394	441	17·362	491	19·331
292	11 · 496	342	13 · 465	392	15·433	442	17·402	492	19·370
293	11 · 536	343	13 · 504	393	15·473	443	17·441	493	19·410
294	11 · 575	344	13 · 543	394	15·512	444	17·480	494	19·449
295	11 · 614	345	13 · 583	395	15·551	445	17·520	495	19·488
296	11.654	346	13·622	396	15.591	446	17·559	496	19·528
297	11.693	347	13·662	397	15.630	447	17·599	497	19·567
298	11.732	348	13·701	398	15.669	448	17·638	498	19·606
299	11.772	349	13·740	399	15.709	449	17·677	499	19·646
300	11.811	350	13·780	400	15.748	450	17·717	500	19·685

EQUIVALENTS OF MILLIMETRES IN INCHES.

Milli- metres	Inches								
501	19·725	551	21 · 693	601	23 · 662	651	25 · 630	701	27 · 598
502	19·764	552	21 · 732	602	23 · 701	652	25 · 670	702	27 · 638
503	19·803	553	21 · 772	603	23 · 740	653	25 · 709	703	27 · 677
504	19·843	554	21 · 311	604	23 · 780	654	25 · 748	704	27 · 717
505	19·882	555	21 · 851	605	23 · 819	655	25 · 788	705	27 · 756
506	19·921	556	21 · 890	606	23 · 858	656	25 · 827	706	27 · 796
507	19·961	557	21 · 929	607	23 · 898	657	25 · 866	707	27 · 838
508	20·000	558	21 · 969	608	23 · 937	658	25 · 906	708	27 · 874
509	20·040	559	22 · 008	609	23 · 977	659	25 · 945	709	27 · 914
510	20·079	560	22 · 047	610	24 · 016	660	25 · 984	710	27 · 953
511	20·118	561	22:087	611	24 · 055	661	26 · 024	711	27 · 999
512	20·158	562	22:126	612	24 · 095	662	26 · 063	712	28 · 037
513	20·197	563	22:166	613	24 · 134	663	26 · 103	713	28 · 07
514	20·236	564	22:205	614	24 · 173	664	26 · 142	714	28 · 110
515	20·276	565	22:244	615	24 · 213	665	26 · 181	715	28 · 150
516	20·315	566	22 · 284	616	24 · 252	666	26 · 221	716	28 · 189
517	20·355	567	22 · 323	617	24 · 292	667	26 · 260	717	28 · 229
518	20·394	568	22 · 362	618	24 · 331	668	26 · 299	718	28 · 268
519	20·433	569	22 · 402	619	24 · 370	669	26 · 339	719	28 · 307
520	20·473	570	22 · 441	620	24 · 410	670	26 · 378	720	28 · 347
521	20·512	571	22 · 481	621	24 · 449	671	26 · 418	721	28 · 38/
522	20·551	572	22 · 520	622	24 · 488	672	26 · 457	722	28 · 42/
523	20·591	573	22 · 559	623	24 · 528	673	26 · 496	723	28 · 46/
524	20·630	574	22 · 599	624	24 · 567	674	26 · 536	724	28 · 50/
525	20·669	575	22 · 638	625	24 · 607	675	26 · 575	725	28 · 54/
526	20 · 709	576	22 · 677	626	24 · 646	676	26 · 614	726	28 · 583
527	20 · 748	577	22 · 717	627	24 · 685	677	26 · 654	727	28 · 622
528	20 · 788	578	22 · 756	628	24 · 725	673	26 · 693	728	28 · 662
529	20 · 827	579	22 · 795	629	24 · 764	679	26 · 733	729	28 · 701
530	20 · 866	580	22 · 835	630	24 · 803	630	26 · 772	730	28 · 740
531	20 · 906	581	22 · 874	631	24 · 843	681	26 · 811	731	28 · 780
532	20 · 945	582	22 · 914	632	24 · 882	682	26 · 851	732	28 · 819
533	20 · 984	583	22 · 953	633	24 · 921	633	26 · 890	733	28 · 859
534	21 · 024	584	22 · 992	634	24 · 961	634	26 · 929	734	28 · 898
535	21 · 063	585	23 · 032	635	25 · 000	635	26 · 969	735	28 · 937
536	21 · 103	586	23 · 071	636	25 · 040	686	27·008	736	28 · 977
537	21 · 142	587	23 · 110	637	25 · 079	687	27·047	737	29 · 016
538	21 · 181	588	23 · 150	638	25 · 118	688	27·087	738	29 · 055
539	21 · 221	589	23 · 189	639	25 · 158	689	27·126	739	29 · 096
540	21 · 260	590	23 · 229	640	25 · 197	690	27·166	740	29 · 134
541	21 · 299	591	23 · 268	641	25 · 236	691	27 · 205	741	29·173
542	21 · 339	592	23 · 307	642	25 · 276	692	27 · 244	742	29·213
543	21 · 378	593	23 · 347	643	25 · 315	693	27 · 284	743	29·252
544	21 · 418	594	23 · 385	644	25 · 355	694	27 · 323	744	29·292
545	21 · 457	595	23 · 424	645	25 · 394	695	27 · 362	745	29·331
546	21 · 496	596	23 · 464	646	25 · 433	696	27 · 402	746	29:370
547	21 · 536	597	23 · 503	647	25 · 473	697	27 · 441	747	29:410
548	21 · 575	598	23 · 543	648	25 · 512	698	27 · 481	748	29:449
549	21 · 614	599	23 · 582	649	25 · 551	699	27 · 520	749	29:488
550	21 · 654	600	23 · 622	650	25 · 591	700	27 · 559	750	29:528

EQUIVALENTS OF MILLIMETRES IN INCHES.

Milli- mateus	Inches	Milli-	Inches	Milli-	Inches	Mills- metres	Inches	Milli- metres	Inches
771 772 773 774 776		901 902 903 904 906			33-504 53-544 33-563 33-663 33-663	901 902 903 904 900			
	20-764 20-903 20-963 20-963 20-963								
761 762 763 764 766	29-961 30-000 30-040 30-079 30-118	811 812 813 813 814 810	31 -960 31 -960 32 -968 32 -948 32 -987	361 362 363 364 364					
756 757 768 759 770	30° 130 30° 197 30° 236 30° 276 30° 315								
771 770 771 774 770	50-300 30-304 30-450 30-475 30-975								
776 777 778 779 780	301 553 301 501 301 630 301 670 301 709								
791 752 753 754 756	30-748 50-705 30-627 30-666 30-906		32-717 52-756 52-756 52-655 52-674						
716 707 703 708 700	30 945 30 985 31 984 31 963 31 105	106 07 138 139 159 160	30-914 30-963 30-963 31-050 31-050 30-071						
705 705 705 704 706		943 943 943 944 940		01 00 00 00 00 00 00		H H H H H H		711 201 201 204 200	
706 707 706 706 700	11 00 11 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 1	196 197 190 190 190		276 227 236 236 230	30 - 27% 30 - 510 30 - 500 30 - 504 30 - 430	77			

EQUIVALENTS OF METRES IN FEET.

1 Metre = 3.280899 Feet.

Metres	.0	1	.5	.3	.4	.2	.6	.7	.8	.8
12345	9.8427	6.8899 10.1708 13.4517	7·2180 10·4989 13·7798	7 · 5461 10 · 8270 14 · 1079	7·8742 11·1551 14·4360	11 · 4831 14 · 7640	8·5303 11·8112 15·0921	5·5775 8·8584 12·1393 15·4202 18·7011	9·1865 12·4674 15·7483	9·5146 12·7955 16·0764
789	22 · 9663 26 · 2472 29 · 5281	23 · 2944 26 · 5753 29 · 8562	23 · 6225 26 · 9034 30 · 1843	23 · 9506 27 · 2315 30 · 5124	24 · 2787 27 · 5596 30 · 8405	24 · 6067 27 · 8876 31 · 1685	24 · 9348 28 · 2157 31 · 4966	21 · 9820 25 · 2629 28 · 5438 31 · 8247 35 · 1056	25·5910 28·8719 32·1528	25 · 9191 29 · 2000 32 · 4809

EQUIVALENTS OF FEET IN METRES.

1 Foot = 3047945 of 1 Metre.

Feet	.0	1	.5	.3	.4	.2	.6	.7	.8	.8
	·30480 ·60959 ·91438 1·21918 1·52397		1.28014	1·00582 1·31062	1·03630 1·34110	1·06678 1·37158	1·09726 1·40205	1·12774 1·43253	1:46301	1·18870 1·49349
789	1·82877 2·13356 2·43836 2·74315 3·04794	2·16404 2·46884 2·77363	2·19452 2·49931 2·80411	2·22500 2·52979 2·83459	2·25548 2·56027 2·86507	2·28596 2·59075 2·89555	2·31644 2·62123 2·92603	2·34692 2·65171 2·95651	2·37740 2·68219 2·98699	2·40788 2·71267 3·01747

EQUIVALENTS OF SQUARE CENTIMETRES IN SQUARE INCHES.

1 Square Centimetre = 1550059 of 1 Square Inch.

Square Cent.	.0	1	.2	.3	.4	.2	.6	.7	.8	.9
1 2 3 4 5	·15501 ·31001 ·46502 ·62002 ·77503	·17051 ·32551 ·48052 ·63552 ·79053	·18601 ·34101 ·49602 ·65102 ·80603	·20151 ·35651 ·51152 ·66652 ·82153	·21701 ·37201 ·52702 ·68203 ·83703	·23251 ·38751 ·54252 ·69753 ·85253	· 24801 · 40301 · 55802 · 71303 · 86803	· 26351 · 41852 · 57352 · 72853 · 88353	·27901 ·43402 ·58902 ·74403 ·89903	·29451 ·44952 ·60452 ·75953 ·91453
6 7 8 9 10	·93004 1·08504 1·24005 1·39505 1·55006	1.25555	1.27105	1·28655 1·44156	1·14704 1·30205 1·45706	1 · 16254 1 · 31755 1 · 47256	1.48806	1·19355 1·34855 1·50356	1·20905 1·36405 1·51906	1·22455 1·37955 1·53456

EQUIVALENTS OF SQUARE INCHES IN SQUARE CENTIMETRES.

1 Square Inch = 6.451367 Square Centimetres.

Square	.0	1	'2	.8	'4	'5	.6	.7	'8	.8
--------	----	---	----	----	----	----	----	----	----	----

EQUIVALENTS OF SQUARE METRES IN SQUARE FEET.

Square Metre = 10.764299 Square Feet.

Square	.0	1	.2	'8	.4	.5	.6	.7		.8
12345	10·764 21·529 32·293 43·057 53·821	11 ·841 22 ·605 33 · 369 44 ·134 54 ·898	12·917 23·681 34·446 45·210 55·974	13 · 994 24 · 758 35 · 522 46 · 286 57 · 051	15 · 070 25 · 834 36 · 599 47 · 363 58 · 127	16 · 146 26 · 911 37 · 675 48 · 439 59 · 204	17 · 223 27 · 987 38 · 751 49 · 516 60 · 280	18 · 299 29 · 064 39 · 828 50 · 592 61 · 356	51 669	31 · 216 41 · 981 52 · 745
6 7 8 9 10	64 · 586 75 · 350 86 · 114 96 · 879 107 · 643	65 · 662 76 · 427 87 · 191 97 · 955 108 · 719	66 · 739 77 · 503 88 · 267 99 · 032 109 · 796	67 · 815 78 · 579 39 · 344 100 · 108 110 · 872	79 · 656 90 · 420 101 · 184	102 - 261		104 - 414	94 - 726	95 · 802 106 · 567

EQUIVALENTS OF SQUARE FEET IN SQUARE METRES.

1 Square Foot = '0928997 of a Square Metre.

-										
Square	.0	'1	'2	'8	.4	.2	.6	.7	.8	.8
12345	·09290 ·18580 ·27870 ·37160 ·46450	·10219 ·19509 ·28799 ·38039 ·47379	11143 20438 29728 39018 48308	12077 21367 30657 39947 49237	13006 22296 31586 40876 50166	·13935 ·23225 ·32515 ·41805 ·51096	14864 24154 33444 42734 52024	15793 25083 34373 43663 52953	16772 126012 135302 144592 153882	
6 7 8 9 10	55740 65030 74320 83610 92900	·56669 ·65959 ·75249 ·84539 ·93829	·57598 ·66888 ·76178 ·85468 ·94758	·58527 ·67817 ·77107 ·86397 ·96687	·59456 ·68746 ·78036 ·87326 ·96616	160385 169675 178965 188255 197545	·61314 ·70604 ·79894 ·89184 ·98474	·62243 ·71533 ·80823 ·90113 ·99403	63172 72462 81752 91042 1 00332	*82681

EQUIVALENTS OF CUBIC CENTIMETRES IN CUBIC INCHES.

1 Cubic Centimetre = '06102705 of a Cubic Inch.

Unbie Oent.	.0	.1	.5	.3	.4	.2	.6	.7	.8	.8
12345	·061027 ·122054 ·183081 ·244108 ·305135	·189184 ·250211	·134260 ·195287 ·256314	·140362 ·201389 ·262416	·207492 ·268519	·091541 ·152568 ·213595 ·274622 ·335649	.280724	·103746 ·164773 ·225800 ·286827 ·347854	·109849 ·170876 ·231903 ·292930 ·353957	·115951 ·176978 ·238005 ·299033 ·360060
6 7 8 9 10	·427189 ·488216 ·549243	· 433292 · 494319 · 555346	· 378368 · 439395 · 500422 · 561449 · 622476	· 445497 · 506525	·451600 ·512627 ·573654	·518730 ·579757	· 463806 · 524833 · 585860	· 408881 · 469908 · 530935 · 591962 · 652989	·414984 ·476011 ·537038 ·598065 ·659092	· 421087 · 482114 · 543141 · 604168 · 665195

EQUIVALENTS OF CUBIC INCHES IN CUBIC CENTIMETRES.

1 Cubic Inch = 16.386176 Cubic Centimetres.

oio s.	.0	. 1	.0	0						
Oubic Ins.	.0	1	.5	.3	4	.2	.6	-7	.8	.9
1 2 3 4 5	16 · 386 32 · 772 49 · 158 65 · 545 81 · 931	18 · 025 34 · 411 50 · 797 67 · 183 83 · 569	19.663 36.050 52.436 68.822 85.208	21 · 302 37 · 688 54 · 074 70 · 461 86 · 847	22:941 39:327 55:713 72:099 88:485	24·579 40·965 57·352 73·738 90·124	26 · 218 42 · 604 58 · 990 75 · 376 91 · 763	27 · 856 44 · 243 60 · 629 77 · 015 93 · 401	29·495 45·881 62·267 78·654 95·040	31 · 134 47 · 520 63 · 906 80 · 292 96 · 678
8	98·317 114·703 131·089 147·476 163·862	116·342 132·728 149·114	117 · 980 134 · 367 150 · 753	136·005 152·391	121 · 258 137 · 644 154 · 030	122 · 896 139 · 282 155 · 669	124·535 140·921 157·307	126 · 174 142 · 560 158 · 946	127 · 812 144 · 198 160 · 585	129·451 145·837 162·223

EQUIVALENTS OF CUBIC METRES IN CUBIC FEET.

1 Cubic Metre = 35.31658 Cubic Feet.

Oubic	.0	.1	.5	.3	.4	.2	.6	.7	.8	.8
12345	141 . 266	109·481 144·798		116 · 545 151 · 861	84 · 760 120 · 076 155 · 393	88 · 291 123 · 608 158 · 925	91·823 127·140 162·456	95·355 130·671 165·988	98 · 886 134 · 203 169 · 520	173.051
789	247 · 216 282 · 533 317 · 849	250 · 748 286 · 064 321 · 381	218 · 963 254 · 279 289 · 596 324 · 913 360 · 229	257 · 811 293 · 128 328 · 444	261 · 343 296 · 659 331 · 976	264 · 874 300 · 191 335 · 508	268 · 406 303 · 723 339 · 039	271 · 938 307 · 254 342 · 571	275 · 469 310 · 786 346 · 103	279·001 314·318

EQUIVALENTS OF CUBIC FEET IN CUBIC METRES.

1 Cubic Foot = '02831531 of a Cubic Metre.

Oubie	.0	'1	.5	.3	'4	'5	16,	.7	.8	.8
4	·056631 ·084946 ·113261	·031147 ·059462 ·087777 ·116093 ·144408	062284 090609 118924	·065125 ·093441 ·121756	·067957 ·096272 ·124587	·070788 ·099104 ·127419	1073620 101935 130250	104767 133082	·079283 ·107598 ·135913	·082114 ·110430 ·13874
	198207 226522 254838		'203870 '232186 '260501	'206702 '235017 '263332	·209533 ·237849 ·266164	·212365 ·240680 ·268995	·215196 ·243512 ·271827	·246343 ·274659		·252006 ·280322

EQUIVALENTS OF KILOGRAMMES IN POUNDS.

1 Kilogramme = 2.20462125 Pounds.

Kilo- grammer	.0	1	.2	.3	.4	.2	.6	.7	.8	.8
12345	2·2046 4·4092 6·6139 8·8185 11·0231			9 - 4799	5·2911 7·4957 9·7003	5·5116 7·7162 9·9208	7 · 9366 10 · 1413	10.3617		
789	13 · 2277 15 · 4323 17 · 6370 19 · 8416 22 · 0462	15.6528 17.8574 20.0621	15 · 8733 18 · 0779 20 · 2825	16:0937 18:2984 20:5030	16 · 3142 18 · 5188 20 · 7234	16 · 5347 18 · 7393 20 · 9439		16 · 9756 19 · 1802 21 · 3848	17 · 1960 19 · 4007 21 · 6053	17 · 4165 19 · 6211 21 · 8258

EQUIVALENTS OF POUNDS IN KILOGRAMMES.

1 Pound = '45359265 of a Kilogramme.

	Ponnas	.0	'1	'2	.8	.4	.2	.6	'7	.8	.8
	4	1.81437	1.40614	99790 1 45150 1 90509	1:04326 1:49686 1:95045	1.54222	1:13398 1:58757 2:04117	1:17934 1:63293 2:08653	1 · 22470 1 · 67829 2 · 13159	1 · 27006 1 · 72365 2 · 17724	·86183 1·31542 1·76901 2·22260 2·67620
1	789	3·17515 3·62874 4·08233	3·22051 3·67410 4·12769	3 · 26587 3 · 71946 4 · 17305	3·31123 3·76482 4·21841	3·35659 3·81018 4·26377	3 · 40194 3 · 85554 4 · 30913	3 · 44730 3 · 90090 4 · 35449	3 · 49266 3 · 94626 4 · 39985	3 · 53802 3 · 99162 4 · 44521	3 · 12979 3 · 58338 4 · 03697 4 · 49057 4 · 94416

EQUIVALENTS OF KILOGRAMMES PER SQUARE CENTIMETRE IN POUNDS PER SQUARE INCH.

1	1231	2177.0	nor Sa	11000	Cont	tro -	14	- 22222	Pau	nor	Same	Inc	

Kilogram'e per Square Centimetre	.0	1	.5	.3	.4	.2	.6	.7	.8	.9
1 2 3 4 5	14 · 223 28 · 446 42 · 668 56 · 891 71 · 114	15·645 29·868 44·091 58·314 72·536	17·067 31·290 45·513 59·736 73·959	46 · 935 61 · 158	34 · 135 48 · 358 62 · 580	35·557 49·780	51·202 65·425	24·179 38·402 52·624 66·847 81·070	54·047 68·270	27·023 41·246 55·469 69·692 83·915
	99·560 113·783 128·005	86 · 759 100 · 982 115 · 205 129 · 428 143 · 650	102 · 404 116 · 627 130 · 850	103 · 827 118 · 049 132 · 272	105 · 249 119 · 472 133 · 695	106 · 671 120 · 894 135 · 117	108·093 122·316 136·539	109·516 123·739 137·961	110 · 938 125 · 161 139 · 384	112 · 360 126 · 583 140 · 806

EQUIVALENTS OF POUNDS PER SQUARE INCH IN KILOGRAMMES PER SQUARE CENTIMETRE.

1 Pound per Square Inch = 07030954 of a Kilogramme per Square Centimetre.

	a z come	ber ada	care amen		001010	True Pres	mine pe	, odam,	Continu	Ceres
Pounds	.0	.1	.5	.3	.4	.2	.6	.7	.8	.8
3 4	·140619 ·210929	·147650 ·217960 ·288269	·154681 ·224991 ·295300	·091402 ·161712 ·232021 ·302331 ·372641	·168743 ·239052 ·309362	·175774 ·246083 ·316393	·182805 ·253114 ·323424	·189836 ·260145 ·330455	·196867 ·267176 ·337486	·203898 ·274207 ·344517
8 9	· 492167 · 562476	·499198 ·569507 ·639817	·506229 ·576538 ·646848	· 442950 · 513260 · 583569 · 653879 · 724188	·520291 ·590600 ·660910	·527322 ·597631 ·667941	·534353 ·604662 ·674972	·541383 ·611693 ·682003	·548414 ·618724 ·689033	·555445 ·625755 ·696064

EQUIVALENTS OF KILOGRAMMES PER METRE IN POUNDS PER FOOT.

Kilo- grammes per Metre	.0	1	.5	.3	.4	.2	.6	.7	.8	.9			
1	·6720	·7392	·8063	·8735	·9407	1·0079	1·0751	1·1423	1·2095	1·2767			
2	1·3439	1·4111	1·4783	1·5455	1·6127	1·6799	1·7471	1·8143	1·8815	1·9487			
3	2·0159	2·0831	2·1503	2·2175	2·2847	2·3518	2·4190	2·4862	2·5534	2·6206			
4	2·6878	2·7550	2·8222	2·8894	2·9566	3·0238	3·0910	3·1582	3·2254	3·2926			
5	3·3598	3·4270	3·4942	3·5614	3·6286	3·6958	3·7630	3·8302	3·8973	3·9645			
6	4·0317	4·0989	4·1661	4·2333	4·3005	4·3677	4·4349	4·5021	4·5693	4·6365			
7	4·7037	4·7709	4·8381	4·9053	4·9725	5·0397	5·1069	5·1741	5·2413	5·3085			
8	5·3757	5·4428	5·5100	5·5772	5·6444	5·7116	5·7788	5·8460	5·9132	5·9804			
9	6·0476	6·1148	6·1820	6·2492	6·3164	6·3836	6·4508	6·5180	6·5852	6·6524			
10	6·7196	6·7868	6·8540	6·9212	6·9883	7·0555	7·1227	7·1899	7·2571	7·3243			

EQUIVALENTS OF POUNDS PER FOOT IN KILOGRAMMES PER METRE.

Founds per Foot	'0	1	.3	.3	-4	-5		
100040	2 · 9764 4 · 4646 5 · 9628	3 · 1252 4 · 6134 6 · 1016	3 · 2740 4 · 7622 6 · 2504	3 · 4228 4 · 9110 6 · 3992		3 · 7206 5 · 2087 6 · 6060		
9	8 9898 10 4173 11 9055 13 3937 14 8819	10·5662 12·0544 13·5425	10:7150 12:2032 13:6914	10 8638 12 3520 13 8402	11:0126 12:5008 13:9890	11:1614 12:6496 14:1378		

EQUIVALENTS OF MOMENTS OF INERTIA AND SECTION MODULI.

Moment of Inertia in centimetre units = Moment of Inertia in inch units × 41-62

Moment of Inertia in inch units = Moment of Inertia in centimetre units × 004

Section Modulus in centimetre units = Section Modulus in inch units × 10-206

Section Modulus in inch units = Section Modulus in inch units × 10-206

CONTRACTIONS GENERALLY ADOPTED.

Linear Messure	Square Measure	Cubic Measure	Capacity	Weight
m = metre $dm = decimetre$ $em = centimetre$	$m^2 = a$ metre $dm^2 = a$ decimetre $dm^2 = a$ centim'tre	&m"=cub.kilom'tre m"= " metre ttm"= " docimetre em"= " centimetre ntm"== " millimetre		

ITALIC letters are used for these contractions, and no stop is used at the right of them.

The contractions succeed the figures to which they refer, on the same line and after the last decimal place, when decimals are used.

COMPARISON OF WEIGHTS OF STEEL PLATES TO 1 INCH THICK.

Divided into 82nds and 40ths of an Inch, and Millimetres.

Milli- metres	Weight in lbs. per sq. foot	32nds	16ths	20ths	40ths	Weight in lbs. per sq. foot	Millimetre
25	40.80	32	16	20	40	40.80	25
25	39.525	31			39	39.78	
24 -	38:25	30	15	19	38	38.76	24
23 -	36.975	29		18	37 36	37·74 36·72	- 23
	35.70	28	14	10	35	35.70	
22		27	1.4	17	34	34.68	22
21	34.425			- ' '	33	33.66	- 21
00-	33.15	26	13	16	32	32.64	- 20
20	31.875	25			31	31.62	20
19	30.60	24	12	15	30	30.60	- 19
18	29:325	23			29	29.58	- 18
10	28:05	22	11	14	28	28.56	
17	26.775	21			27	27.54	17
16			10	13	26 25	26.52	16
	25.50	20	10	12	24	25.50	
15	24.225	19		12	23	23 46	15
14	22.95	18	9	- 11	22	22:44	14
	21.675	17			21	21.42	
13	20.40	16	8	10	20	20.40	13
12	19:125	15			19	19:38	12
11	17.85	14	7	9	18	18:36	
11	16.575	13	-		17	17.34	11
10		12		8	16	16.32	10
9	15.30		6	7 -	15	15.30	9
	14.025	11	_	/	13	13.26	
8	12.75	10	5	6	12	12:24	8
7-	11.475	9			11	11.22	7
	10.20	8	4	5	10	10.50	
6	8-925	7			9	9.18	6
5	7:65	6	3	4	8	8.16	- 5
	6.375	5	3		7	7.14	
4				3	6	6.12	4
3	5.10	4	2		5	5.10	3
2	3.825	3		2	3	3.06	- 2
	2.55	2	1	- , -	2	2:04	1
1	1.275	1		,	-	1.02	

INDEX.

Registered Office,	Departmen	ats and				
Photo-Illustration						vii-axxiii
Preface					XXX	

A

Abbrevi	ations generally ac							
Angles,	areas, tables of							192-193
	as struts							85-90
	backmarks							
	bulb, see "bulb a	agles"						
	centre lines of hol	es in						
	cleats, standard							99-103
	dimensions and pr	opertie	rs.					38-40
	reference marks							38-40
	safe loads as stru	ts						85-80
	sections of							
Area, m	ethod of increasing	g section	onal					32
Area of	Angles, table of							
	" see also	dimer	usions	and p	ropert	ies"		
	circles advancing	by 1/4"						206-207
	" small							205
	rivets, see table of	shear	ring a	nd bea	ring	valves		
Astoriak	, sections marked	with						
Avoirdu	pois weight							
Awin mi								. AC AC

В

Backmarks for J	Angles.	Beams	and (Channe	lis				
Barley, weight o	of								
Bars, flat, sizes									
. rivet .									
" tinplate .									
Beams, as stanc	hions, c	limensio	ms, p		m am	safe	loads		
" bending	momen	t, shear	and		on of			44, 45,	180-185

Beams,	connec	tions for							96-107
		11 1	notes on						65, 99
	dimens	sions and p	ropertie	s					33-35
	deflect	ion, bendin	g mome	ent an	d shea	ır		44, 45	5, 180-185
	distant	ce pieces fo	or						106-107
	fishpla	tes for							104-105
	genera	d formulæ	for flex	ure of					180
	minim	um spans f	or stand	dard c	leats				100-103
	notes	on							44, 45
	proper	ties and di	mension	s of					33-35
Beams,	referer	ice marks							3-13, 34
	safe lo	ads on							46-47
	section	s of							3-13
	separa	tors for							106-107
	standa	rd spacing	of hole	s in fl	anges	of			35-108
	system	s of loadin	ng						181-185
	unsym	metrically !	loaded						181-185
	weight	t of							3-13, 34
	with c	ast iron se	parators	S					106-107
Bearing	and s	hearing val	lue of r	ivets					191
Bending	mome	ent, shear a	and defle	ection	of be	ams			181-185
Billets,	steel								178
									178
		ıs							31
Bolts an	nd Nut	s, sizes of	Whitwo	orth					198
		weight o							199
		galvaniz			weigh	t			163
		ize and we							163
									200
		eeting							153
		re							167
		in of steel							171
		eight of							233
Bridges	, troug	thing for							135-139
	illust	rations of	troughir	ng					135-149
Bridge	Rails,	sections of							29
British	and m	etric equiva	alents						238-251
Bulb A	ngles,	dimensions	and pro	opertio	es			21,	22, 42, 43
		reference n	narks						21, 22, 42
		sections of							
		weight per							21, 22, 42
	11								

Pull To Pull I				00 40 47
Bulb Tees, dimensions and properties				28, 42, 43
" reference marks				28, 42
" sections of				28
" weight per foot				28, 42
Bulk and weight of water				233
C				
Capacity, measure of, British				235
n n metric				
" British and metric equivale	ents			238
Cast Iron, weight of				233
Cast Iron Separators, or distance pieces			99	, 106, 107
Centre of Gravity of Sections, position of, see "	dimer	sions	and	
properties"				
Channels, centre line of holes in				108
compounds				60-63
dimensions				14-17, 36
properties				
reference marks				14-17, 36
sections of				14-17
stanchions				80-83
weight per foot				14-17, 36
Circle, area of, table, advancing by 1/8"				206-207
enall.				205
airconference of told-				208-209
Cl-1- 1-1-1-1				99-103
Carl and the C				233
C- C- 1- C- D 10 1				
				44-63
length of members of roof trusse	S			116-117
u u stress in u u				116-117
Coke, weight of				233
Compounds, dimensions and properties of				48-61
notes on				44-45
reference marks of				48-63
riveting of (see also tables)				45
safe loads				50-63
weights per foot		44	, 49, 8	53, 57, 61
Concrete, weight of				233
Connections for Beams, standard cleats				99-103
u u distance pieces			99,	106, 107

Connections for Beams, standard fishplates		104, 105
notes on		65, 99
separators		99, 106, 107
to stanchions		
Contractions, generally adopted in metric system		251
Conversion Tables, lbs. into qrs., cwts. or decimals of a	a ton	230-232
tons into lbs		232
British into metric units		238-251
metric into British units		238-251
Corrugated Sheeting, see "sheeting"		
Cosine of an Angle		187
Cosines, table of natural		226-227
Cotangent of an Angle		187
table of natural		228-229
Crippling Loads for various values of $\frac{l}{r}$		69
Cubes, cube roots, squares and square roots of Nos. 1-1	,000	214-223
Cubes of numbers and fractional parts		212-213
Cubic measure, British		234
equivalents, British and metric		238, 248, 249
" metric		236
Curtailment of flange plates in plate girders		110
0		
D		
Decimal equivalents of fractions of an inch		204
of a foot for each of an inch		202-203
of a ton, lbs., qrs. and cwts. expressed as		230-232
Deflection		44, 180-183
bending moment and shear of beams		181-183
coefficients		45, 47-63
Details for roof principals		118-120
Dimensions and Properties, notes on		33, 44
of angles, bulb		42, 43
equal		40
u unequal		38-39
of I Beams		34, 35, 44
u channels		36-37
compounds		44-61
stanchions		64, 65, 70-83
		0., 00, 10 00

Dimensions and Properties of tees					41
n n n bulb					42-43
" " troughing				123	5-132, 134
ıı ıı zeds					36-37
Distance Pieces or Separators				98	9, 106-107
Downpipes, Gutters, &c					160-161
fountain head for					161
shoe					161
E					
Elasticity, modulus of					180
Equivalents in decimals of the fractions of	an in	ch			204
Equivalents of British and Metric Units					238-251
of Moment of Inertia and S	Section	Mod	ulus i	n	
British and Metric Units					251
_					
F					
Feet into Metres					24
Fencing Wire, galvanized steel barb					169
strand, galvanized					170
standard, sections of					3:
Fishplates, standard					104, 108
Fittings, galvanized					163
Flange Plates in plate girders, length of					110
Flat-bottomed Rails					2
Flats, rolled steel, weight per foot					194-19
ıı sizes					30, 178
Flexure of Beams, general formulæ for					180
Floors, approximate live loads on					23
troughing					121-14
Foot, decimals of, for each of an inch					202, 203
Formulæ for Flexure of Beams, general					180
Foundation for Stanchion, steel grillage					66
Fountain Head for Downpipes					16
Fractions of an Inch into Decimal Equiva	lents				204
ıı ıı of a F	oot				202, 200
Fractions, trigonometrical					18'

Galvanized C	orrugated Sheets	see "	sheets'				
,, D	ownpipes, &c						160, 161
,, F	ittings						163
11 G	utters, &c						160, 161
" " L	ouvre Blades, Rid	ges					162
,, V	Vashers						163
,, V	Vire						168-170
Gas Tubing,	approximate weig	ht and	d sizes				200
	as distance pieces	or se	parator	s			108
Gauge, imper	rial standard wire						171
Girders, I Be	eam, dimensions a	nd pro	perties				33-35
	notes on			٩.			44, 45
	safe loads						46, 47
11 1	weight per fo	oot					3-13, 34
n comp	bound, dimensions	and p	properti	es			44-61
	notes on						44, 45
	safe loads						50-63
	weight of				4	14, 49,	53, 57-61
" plate	e, notes on						109, 110
	safe loads on						111-114
Glass, weigh	t of						233
Grillage for	Stanchions						66
Gutters, Dow	vnpipes, &c						160, 161
Gyration, rac	dii of						33-43
1.1							
Н							
Half-rounds	hollow and solid						3:
	d Standards, type						
	section						-
	ard spacing in ang						
	galvanized, weigh						36
Trook Dones,	Burramed, weigh	10, 000.					
I Beams, see							3.00
	ndard Wire Gaug						17
Inch, decima	l equivalents of fr.	action	s of				204

Inches into Millimetres Inertia, moment of rectangles various sections Ingots, steel, size, shape and weight of Iron, cast, weight of K Kilogrammes into pounds per metre into pounds per foot. Lead, weight of Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British equivalents, British and metric metric Loading on Beams, various systems of Loads, corippling, for various values of $\frac{t}{r}$ Loads on floor, approximate live. Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000 Louvre Blades			240 188-190 205 177 233 249 251 233 110 200 234 48, 240-246 181-185 69
Lead, weight of		232	205 177 233 249 251 233 110 200 234 8, 240-246 236 181-185
Ingots, steel, size, shape and weight of Iron, cast, weight of Kilogrammes into pounds per metre into pounds per foot Lead, weight of Lead, weight of Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British equivalents, British and metric metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{V}{P}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000			249 251 233 110 200 234 8, 240-246 236 181-185
Lead, weight of			249 251 233 110 200 234 23, 240-246 236 181-185
Kilogrammes into pounds		23	249 251 233 110 234 234 236 181-185
Lead, weight of Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British " equivalents, British and metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{l}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	233 110 200 234 48, 240-246 236 181-185
Lead, weight of Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British " equivalents, British and metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{l}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	233 110 200 234 48, 240-246 236 181-185
Lead, weight of Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British " equivalents, British and metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{l}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	233 110 200 234 48, 240-246 236 181-185
Lead, weight of Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British "equivalents, British and metric "metric "current of Loads, crippling, for various values of $\frac{l}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	233 110 200 234 48, 240-246 236 181-185
Lead, weight of		23	233 110 200 234 48, 240-246 236 181-185
Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British " equivalents, British and metric " metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{I}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	110 200 234 88, 240-246 236 181-185
Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British " equivalents, British and metric " metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{I}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	110 200 234 88, 240-246 236 181-185
Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British " equivalents, British and metric " metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{I}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	110 200 234 88, 240-246 236 181-185
Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British " equivalents, British and metric " metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{I}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	110 200 234 88, 240-246 236 181-185
Length of flange plates in plate girders Lewis Bolts, size and weight Linear Measure, British " equivalents, British and metric " metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{I}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	110 200 234 88, 240-246 236 181-185
Lewis Bolts, size and weight		23	200 234 88, 240-246 236 181-185
Linear Measure, British equivalents, British and metric Loading on Beams, various systems of Loads, crippling, for various values of $\frac{t}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	88, 240-246 236 181-185
equivalents, British and metric Loading on Beams, various systems of Loads crippling, for various values of $\frac{l}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000		23	236 181-185
Loading on Beams, various systems of Loads, crippling, for various values of $\frac{l}{r}$ Loads on floor, approximate live Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000			236 181-185
Loading on Beams, various systems of Loads, crippling, for various values of $\frac{l}{r}$ Loads on floor, approximate live			
Loads, crippling, for various values of $\frac{l}{r}$			69
Loads on floor, approximate live			
Loads, see "safe loads" Logarithms of Numbers from 1 to 1,000			233
Logarithms of Numbers from 1 to 1,000			200
			224, 225
			162
M			
			233
			2
			233
weight of various			
			234, 235
equivalents of British and r	netric i	units	238-251
metric			236, 237
Mensuration			186
Metres into Feet			246
Metric equivalents of British units			238-251
" Moment of Inertia and Section	n Modi	ulus	251

Metric measures						236, 237
contractions generall	ly ado	pted				251
Millimetres into Inches						242
Minor Axis				3	5, 38,	39, 40, 42
Miscellaneous Compound Measures						239
Sections						31
Substances, weight of						233
Mode of ordering Material						2
Modulus of Elasticity						180
Section (see also tables of		perties)			180
equivalents in me						251
Moment of Inertia (see also tables of	fprope	erties)				180
equivalents in me						251
of rectangles						188-190
of various section						205
N						
14						
Nails, galvanized for sheeting						163
Natural Sines and Cosines						226, 227
Tangents and Cotangents						228, 229
Notes on I Beams and Compounds						44, 45
Connections						99
Dimensions and Properties						33
Plate Girders						109, 110
Roofs						115
Sections						1, 2
Stanchions and Struts						64-68
Troughing						121, 122
Numbers, logarithms of						
square, cubes, square and c		oote a				224, 225
and fractional parts, cubes						214-223
" squar						212, 213
Nuts and Bolts, galvanized, weight o						
						163
Nut Steel, sections of						31
-						
P						
Plate Girders, notes on						100 110
safe loads on						109, 110
Pounds into cwts., qrs., and decimals						111-114
kilogrammes						230-232
n knogrammes						249

Pounds per foot into kilogrammes per metr	e				251
tons into					232
Pressure of Wind on Roofs					115
Principals, roof					115-120
Profiles of Sections					3-32
the change of					32
Properties and Dimensions, notes on					33
of angles, bulb					42, 43
u equa		unequ			38-40
of I beams	· minu	unequ			33-35
" " channels					36, 37
" " compounds					44-61
stanchions					65, 70-83
Tees					41
u u u bulb					42, 43
troughing				10	23-132, 134
					36, 37
					120
					115
see notes on roofs					115
_					
R					
D. W. CO					
Radius of Gyration					180
of various sections					33-43
see notes on properties					33
Rails, bridge					29
flat-bottomed					29
Reference Marks, notes on					1
see sections, tables, &c.					
Ridges, galvanized					162
Rivet Bars, sections					31
Rivets, cupheaded, weight of					201
galvanized, weight of					163
heads, weight of					201
shearing and bearing value of					191
spacing of holes for, in angles, bea	ms, a	nd cha	nnels		108
Rivetting of Compounds (see also tables)					45
Roofs, loads on					115
notes on					115
pressure of wind on					115
proportions of					115
weight of, approximate					115

Roof Trusses, co-efficients for length of members of	11	16, 117
n stress in members of	11	6, 117
details of	1	18-120
proportions of	1	15-117
Roots, square and cube of numbers 1 to 1,000		14-223
Rope, wire, plough steel and Bright's patent		7, 168
u steel for		175
		30
		198
weight per foot of		198
S		
5		
Safe loads, on angles, as struts		85-90
II II II Beams		46, 47
compounds		50-63
" " plate girders		11-114
n stanchions		70-83
n struts, angle		85-90
n tees as struts		84
n n troughing	122, 13	53, 134
Screws, galvanized		163
Section Modulus		180
see also "properties of sections"		
British and metric equivalents		251
Sections angles, bulb		21, 22
ıı ıı equal		20
u unequal		18, 19
" I Beams		3-13
channels		14-17
flat bars		30
hollow and solid half-rounds		31
marked with an asterisk		1
miscellaneous		31
moment of inertia of various		205
notes on		1, 2
nut steel		31
profile of, when rolled of, thicknesses other than	lard	32
properties of		33-43
rails, bridge and flat bottomed		29
rivet bars		31

Sections, rounds	30
squares	30
Sections of Tees	24, 25
bulb	28
" troughing	26, 27
" " built up	123-131
n n zeds	23
Separators, standard C. I.	99, 107
" " I beams with	106
Shear, bending moment and deflection of beams	181-183
Shearing and Bearing Value of Rivets	191
Sheets, brands	153
corrugated, gauge and size of corrugations	156-159
u curved	159
II Buttuned, approximate	154, 155
" fittings for	163
Sines, table of natural	226, 227
, see also trigonometrical functions	187
Slabs, sizes of steel	178
Solution of Triangles	187
Spacing of Holes in Angles, Beams, and Channels	108
Splice Plates for beams	104, 105
Square Measure, British	 235
u u and metric equivalents	246, 247
ıı ıı metric	236
Squares, cubes, square and cube roots of Nos. 1 to 1,000	214-223
of numbers and fractional parts	210, 211
ıı sizes	30
weight per foot of	198
Stanchions, bases and caps for	65, 91-94
. I Beams	70-79
brackets on	65, 96-98
channel	80-83
connections of I beams and compounds to	65, 96-98
compounds	
crippling load for various values of $\frac{l}{r}$	69
dimensions and properties	66-68
joint plates for	
limiting lengths for tabular load.	64

Stanchions, notes on							64-68
properties							70-82
safe loads on							64, 71-83
splice plates for							65, 95
tabular weights							65
zed							78, 79
Steel, weight of							2, 233
" flat rolled							194-197
wire							167-173
							171
Strain of Wire, breaking							171-173
strain of wire, breaking							171 171-173
Stresses in Members of Roof To							116, 117
Struts, notes on							64, 65
crippling load for variou			i				
			r				69
safe loads on							84-90
Substances, approximate weight							233
Surveying Measure							234
Systems of Loading, bending m	oment	t, she	ar and	d def	Hection	for	
various							181-185
T							
Tangent of an Angle							187
table of natural							228, 329
TD.							
							84
dimensions and properties							24, 25, 41
reference marks							24, 25, 41
sections of							24, 25
" " bulb							28
weights per foot							41
Thickness, variation from publis	hed						2
mi i n							178
Ton, cwts., grs., lbs. as decimals							230-232
ii into lbs							232
m.i							
							187
Trigonometrical functions							187

Troughing, application of built-up				135-139
bridges, handrails for				140
ıı types				141-149
built-up, calculation of s	uitable			135-139
diagrams of				123-131
dimensions and	properties	of		122-134
ıı safe loads			122,	133, 134
notes on				121, 122
section of single				26, 27
" " built-up				123-131
Trusses, see "roofs"				
Tubing, gas, as distance pieces or s	separators			106
" size and weight of				200
11				
U				
Unsymmetrically Loaded Beams				181-185
V				
Values, crippling loads for various	1			69
shearing and bearing, of ri	,			
Variation from published weights a				191
variation from published weights a	nd thickness	ies		32
W				
**				
Washers, bevelled and ordinary, siz	es and weig	ghts		200
galvanized, weight of				163
Water, weight and bulk of fresh				233
ıı ıı sea				233
Weight, variation from published				32
Weights and Measures, British				234, 235
equivalents	, British an	d metric		238-251
metric				236, 237
Weight of Angles, bulb				21, 22, 42
equal				, 192, 193
unequal				. 192, 193
				,

Weight of	Angles, table of						192, 193
	I Beams						3-13, 34
	bevelled washers						200
	bolts and nuts, White	worth					199
	ıı ıı lewis						200
	cast iron						233
	channels						14-17, 36
	compounds				44,	49, 5	53, 57, 61
	100 cup-headed rivets						201
	100 cup heads, rivet						201
	flat rolled steel						194-197
	galvanized barb fenci		re				169
	bolts and						163
	hook bolts	5					163
	nails						163
	rivets						163
	" screws						163
	ıı spikes						163
	washers						163
	gas tubing						200
		botto					201
	rivets						201
	rivet heads						163
	rivets, galvanized						115
	roofs						198
	rounds						198
	squares stanchions						65
							2, 233
	9-4-						194-197
							1-197, 252
						10	41
							28, 42
11							123-134
	troughing						200
"	tubing, gas						233
"	various substances						
II.	washers, ordinary an	d beve	elled				200
11	" galvanized						163
. 11	water						233
	wheat						233
11	wire						169-171

Weigh	t of zeds								23, 36
Wheat	, weight of								233
Whitworth Bolts and Nuts, stan					sizes				198
			weig	ghts o	of.				199
Wind,	pressure on a	roofs							
Wire,	barb fencing								169
	brands								167
	breaking stra	in of							171
	fencing								169, 170
	galvanized								168-170
	gauge, imper	ial sta	indard						
	rods								167
	rope								168
	specialities								168
	telegraph and	I telep	hone						168
	tensile strain	of							
	weight of								
_	_								
7	_								
Zeds,	dimensions ar	id pro	perties						23, 36, 37
	reference mai	rks							23, 36
	sections								23
	stanchions, d	imensi	ons, p	roperi	ties an	d safe	loads		78, 79
	weight per fo	ot							23, 36

