$1^{\underline{0}}$ Teste (recurso) de ÁLGEBRA LINEAR para a Engenharia

Licenciatura em Engenharia Química e Biológica

9 de fevereiro de 2022 Duração: **1h40m**

Nome :	$ m N^{o}$	Curso

Relativamente às questões seguintes notar que nas suas respostas:

- i) devem ser apresentados os cálculos essenciais e uma justificação da resposta, nos espaços indicados.
- ii) a resolução de sistemas de equações lineares deve ser feita pelo método de Gauss, de Gauss- Jordan ou pela regra de Cramer;
- iii) o cálculo de determinantes deve ser feito por aplicação do teorema de Laplace ou através da condensação de Gauss.

1. Considere as matrizes
$$A = \begin{bmatrix} 1 & 0 & -1 & 0 \\ -2 & 1 & 1 & 0 \\ 0 & -1 & 2 & 0 \end{bmatrix}$$
 e $C = \begin{bmatrix} 1 & 2 & 1 & 1 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ -1 & 0 & -2 & 1 \end{bmatrix}$.

- (a) Calcule a matriz produto AC e a sua caraterística.
- (b) Classifique e resolva o sistema $(AC)X = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ (*i.e.* calcule o conjunto das soluções do sistema).

- 2. Considere $k \in \mathbb{R}$ e as matrizes de entradas reais: $A_k = \begin{bmatrix} 1 & 2 & k \\ -k & 0 & 1 \\ 0 & k & 2 \end{bmatrix}$ e $D = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$.
 - (a) Determine os valores de k tais que a matriz ${\cal A}_k$ é invertível.
 - (b) Fixe k=1. Caso exista, determine uma matriz X tal que $A_1X=2D^T$ e diga se a solução que determinou é única.

3. (a) Discuta o seguinte sistema de quatro equações lineares, de coeficientes reais, nas incógnitas $x_1, x_2,$ x_3 , x_4 e x_5 , em função dos parâmetros a e de b:

$$\begin{cases} x_1 + ax_2 + x_3 + x_5 &= 1 \\ -x_2 - ax_3 + x_4 &= -b \\ -x_1 - ax_2 - x_3 - bx_4 &= 3 \\ ax_1 + x_4 + x_5 &= -b+1 \end{cases}$$

(b) Se
$$a = 0$$
 e $b = -1$, a matriz dos coeficientes do sistema é $A = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$. Diga se existem duas matrizes coluna distintas, X_1 e X_2 , tais que $AX_1 = AX_2$. Em caso afirmativo,

se existem duas matrizes coluna distintas, X_1 e X_2 , tais que $AX_1 = AX_2$. Em caso afirmativo, determine X_1 e X_2 que verifiquem esta igualdade

4. Sejam
$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & 4 & 1 \\ 1 & 3 & 1 & 1 \\ 0 & 0 & -2 & 0 \end{bmatrix}$$
 e $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 0 \\ 0 & 2 \end{bmatrix}$ matrizes de entradas reais.

- (a) Calcule $|A| \in |AB(AB)^T|$.
- (b) Diga se A é invertível e, em caso afirmativo, calcule $[A^{-1}]_{31}$.