MATH 8440 - Assignment #6

last updated April 7, 2023

Turn in <u>three</u> problems.

1. Let f be an arithmetic function. Suppose D(f,s) converges for $s=s_0$. Fix $\delta \in (0,\pi/2)$. Prove that D(f,s) converges uniformly in the open region of s satisfying $\operatorname{Arg}(s-s_0) \leq \frac{\pi}{2} - \delta$.

Again, you can show "uniform Cauchyness", starting from $\sum_{N_1 < n \le N_2} f(n) n^{-s} = S(N_2) N_2^{s_0 - s} - S(N_1) N_1^{s_0 - s} - \int_{N_1}^{N_2} S(t) (t^{s_0 - s})' dt$, where $S(x) = \sum_{n \le x} f(n) n^{-s_0}$. It will be helpful that if $\operatorname{Arg}(s - s_0) \le \delta$, then $\Re(s - s_0) \ge c |s - s_0|$ for a positive constant $c = c(\delta)$.

2. Let f and g be arithmetic functions. Suppose that D(f, s) and D(g, s) converge and represent the same function in the half plane $\Re(s) \geq \sigma$ (where $\sigma \in \mathbf{R}$). Prove that f = g.

In class we proved f(1) = g(1) and sketched an inductive approach to show f(n) = g(n) for all positive integers n. You are being asked to fill in the details.

3. Let f be an arithmetic function and let $S(x) = \sum_{n \leq x} f(n)$ be the corresponding summatory function. Suppose that for a fixed real number α , we have $S(x) = O(x^{\alpha})$ (for all $x \geq 1$). Show that D(f, s) converges uniformly on compact subsets of $\Re(s) > \alpha$.

As a special case $(\alpha = 0)$, if the partial sums of f(n) are bounded, then D(f, s) converges uniformly on compact subsets of $\Re(s) > 0$.

4. Let χ be a nontrivial Dirichlet character modulo q. For $\Re(s) > 1$, we defined "Log $L(s, \chi)$ " as the sum of a certain double series,

$$\operatorname{Log} L(s,\chi) = \sum_{p} \sum_{k} \frac{\chi(p^{k})}{kp^{ks}}.$$

- (a) Show that this double series converges absolutely for $\Re(s) > 1$.
- (b) Show that $\sum_{p^k} \frac{\chi(p^k)}{kp^{ks}}$ converges uniformly on compact subsets of $\Re(s) > 1$. Here the notation means that the sum is taken over all prime powers p^k (p prime, $k \ge 1$), with the prime powers p^k arranged in increasing order.

It follows that $\text{Log } L(s,\chi)$ is analytic for $\Re(s) > 1$.

- (c) Argue that $\exp(\operatorname{Log} L(s,\chi)) = L(s,\chi)$ for $\Re(s) > 1$. Thus, $\operatorname{Log} L(s,\chi)$ is a genuine logarithm of $L(s,\chi)$.
- 5. (Dirichlet density = logarithmic density, for sets of primes)
 - (a) Show that $\sum_{p>x} p^{-1-1/\log x} = O(1)$, for $x \geq 2$. Hint. Apply partial summation along with Chebyshev's upper bound $\pi(x) \ll x/\log x$.
 - (b) Show that $\sum_{p \leq x} (p^{-1} p^{-1-1/\log x}) \ll 1$, for $x \geq 2$. Hint. Find a way to use the bound $\sum_{p \leq x} \log p/p \ll \log x$, also shown earlier in class.

(c) Let \mathcal{P} be any set of primes. By applying the results of (a) and (b) with $x = \exp(1/(s-1))$, show that whenever 1 < s < 3/2,

$$\sum_{p \in \mathcal{P}} \frac{1}{p^s} = \sum_{\substack{p \in \mathcal{P} \\ p \le \exp(1/(s-1))}} \frac{1}{p} + O(1).$$

(d) Show that a set of primes \mathcal{P} has Dirichlet density δ if and only if

$$\lim_{x \to \infty} \frac{1}{\log \log x} \sum_{\substack{p \le x \\ p \in \mathcal{P}}} \frac{1}{p} = \delta.$$

6. Let n be a positive integer, say $n \ge 100$. Put $y = \log n/(\log \log n)^3$. Decompose n = AB, where²

$$A = \prod_{\substack{p^e \mid n \\ p \le y}} p^e$$
, and $B = \prod_{\substack{p^e \mid n \\ p > y}} p^e$.

That is, A is the largest piece of n composed only of primes up to y and B is everything else. In this exercise you will prove a useful upper bound on d(n) = d(A)d(B).

- (a) Show that if $p^e \mid n$, then $e \leq \log n/\log 2$. Use this to prove that $d(A) \leq \exp(O(\log n/(\log \log n)^2))$.
- (b) Explain why $d(B) \le 2^{\sum_{p^e \parallel B} e}$.
- (c) Show that $B \ge y^{\sum_{p^e \parallel B} e}$. Deduce that $\sum_{p^e \parallel B} e \le \log n / \log y$.
- (d) Prove that for every fixed $\epsilon > 0$ and all large enough values of n,

$$d(n) \le \exp((\log 2 + \epsilon) \log n / \log \log n).$$

It can be shown that the constant $\log 2$ in part (d) is optimal, in that there are infinitely many n with $d(n) \ge \exp((\log 2 - \epsilon) \log n / \log \log n)$. As $\log n / \log \log n$ is of smaller order than $\log n$, the bound in (d) implies that $d(n) \ll_{\delta} n^{\delta}$ for each fixed $\delta > 0$ and all positive integers n; this weaker bound on d(n) is often sufficient for applications.

7. For real s > 1, define

$$F(s) = (s-1) \int_1^\infty \left(\sum_{n \le \log t} 1/n \right) t^{-s} dt.$$

- (a) Show that $F(s) = \log \frac{1}{1 e^{1 s}}$. Deduce that $F(s) = \log \frac{1}{s 1} + o(1)$, as $s \downarrow 1$.
- (b) We know from earlier in the semester that $\sum_{n \leq \log t} 1/n = \log \log t + \gamma + O(1/\log t)$ whenever $t \geq e$. Using this, show that as $s \downarrow 1$,

$$F(s) = \log \frac{1}{s-1} + \gamma + \int_0^\infty e^{-v} \log v \, dv + o(1).$$

Suggestion. To estimate $\int_{e}^{\infty} (\log \log t) t^{-s} dt$, first substitute $t = e^{u}$, and then substitute u = v/(s-1).

¹Recall that the Dirichlet density of \mathcal{P} is the limit, as $s\downarrow 1$, of $\frac{1}{\log\frac{1}{s-1}}\sum_{p\in\mathcal{P}}\frac{1}{p^s}$.

²The notation $p^e \parallel n$ means that $p^e \mid n$ while $p^{e+1} \nmid n$.

³Both d(n) and $\tau(n)$ are used (interchangeably) for the number of positive divisors of n.

(c) Conclude that

$$\gamma = -\int_0^\infty e^{-v} \log v \, \mathrm{d}v.$$

8. Following the method from class, derive an analytic continuation of $\zeta(s)$ to $\Re(s) > -2$ (apart from the pole at s=1). Use your answer to show $\zeta(-1) = -1/12$.