State Mean:

1.67/3

Want more revision exercises? Get MathsFit - New from projectmaths.

## 12 | 14b | The diagram shows the region

bounded by  $y = \frac{3}{(x+2)^2}$ , the x-axis,

the y-axis, and the line x = 1.

The region is rotated about the x-axis to form a solid.

Find the volume of the solid.



$$V = \pi \int_{0}^{1} y^{2} dx$$
$$= \pi \int_{0}^{1} \left( \frac{3}{x^{2}} \right)^{2} dx$$

$$= \pi \int_{0}^{1} \left( \frac{3}{(x+2)^{2}} \right)^{2} dx$$

$$= \pi \int_{0}^{1} \frac{9}{(x+2)^{4}} dx$$
$$= 9\pi \int_{0}^{1} (x+2)^{-4} dx$$

$$= 9\pi \left[ \frac{(x+2)^{-3}}{-3} \right]_0^1$$

$$=-3\pi\left[\frac{1}{(x+2)^3}\right]_0^1$$

$$= -3\pi \left[ \frac{1}{27} - \frac{1}{8} \right]$$

$$= -3\pi \left[ \frac{-19}{216} \right]$$

$$= \frac{19\pi}{72}$$

 $\therefore$  volume is  $\frac{19\pi}{72}$  units<sup>3</sup>

## **Board of Studies: Notes from the Marking Centre**

Many candidates correctly stated  $V = \pi \int_0^1 \left\{ \frac{3}{(x+2)^2} \right\}^2 dx$ , but most omitted the dx.

Omitting  $\pi$  was not a common error.

In many responses, candidates were unable to find the primitive. The most common error involved attempting to use logarithms in the primitive or to obtain a primitive involving  $(x+5)^{-5}$ .

Source: http://www.boardofstudies.nsw.edu.au/hsc\_exams/

<sup>\*</sup> These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies