# Review Exercise 4

### Q.1 Multiple type questions?

- (i) is an algebraic ...
  - (a) Expression
  - (c) Equation

- (b) Sentence
- (d) In-equation
- (ii) The degree of polynomial  $4x^4 + 3x^2y$  is
  - (a) 1
  - (c) 3

- **(b)** 2
- (d) 4

- (iii)  $a^3 + b^3$  is equal to
  - (a)  $(a-b)(a^2+ab+b^2)$

**(b)**  $(a+b)(a^2-ab+b^2)$ 

(c)  $(a-b)(a^2-ab+b^2)$ 

- (d)  $(a-b)(a^2+ab+b^2)$
- (iv)  $(3+\sqrt{2})(3-\sqrt{2})$  is equal to
  - **(a)** 7
  - **(c)** -1

- **(b)** -7
- (d) 1
- (v) Conjugate of surd  $a + \sqrt{b}$  is;
  - (a)  $-a + \sqrt{b}$

**(b)**  $a-\sqrt{b}$ 

(c)  $\sqrt{a} + \sqrt{b}$ 

(d)  $\sqrt{a} - \sqrt{b}$ 

- (vi)  $\frac{1}{a-b} \frac{1}{a+b}$  is equal to
  - $(a) \frac{2a}{a^2 b^2}$

**(b)**  $\frac{2b}{a^2-b^2}$ 

(c)  $\frac{-2a}{a^2-b^2}$ 

(d)  $\frac{-2b}{a^2-b^2}$ 

- (vii)  $\frac{a^2-b^2}{a+b}$  is equal to
  - (a)  $(a-b)^2$

**(b)**  $(a+b)^2$ 

(c) a+b

- (d) a-b
- (viii)  $(\sqrt{a} + \sqrt{b})(\sqrt{a} \sqrt{b})$  is equal to
  - (a)  $a^2 + b^2$

**(b)**  $a^2 - b^2$ 

(c) a-b

(d) a+b

#### ANSWER KEY

| i | ii | iii | iv | $\mathbf{v}$ | vi | vii | viii |
|---|----|-----|----|--------------|----|-----|------|
| a | d  | b   | a  | b            | b  | d   | c    |

#### **Q.2** Fill in the blanks

- (i) The degree of polynomial  $x^2y^2 + 3xy + y^3$  is \_\_\_\_\_
- (ii)  $x^2 4$

(iii) 
$$x^3 + \frac{1}{x^3} = \left[ x + \frac{1}{x} \right] \left( \underline{\hspace{1cm}} \right)$$

(iv) 
$$2(a^2+b^2)=(a+b)^2+(\underline{\phantom{a}})^2$$

$$(\mathbf{v}) \qquad \left[ x - \frac{1}{x} \right]^2 = \underline{\hspace{1cm}}$$

(vi) Order of surd  $\sqrt[3]{x}$  is \_\_\_\_\_

(vii) 
$$\frac{1}{2-\sqrt{3}} =$$

#### ANSWER KEY

(ii) 
$$(x-2)(x+2)$$

(iii) 
$$x^2 - 1 + \frac{1}{x^2}$$

(iv) 
$$a-b$$

(v) 
$$x^2 + \frac{1}{x^2} - 2$$

(vii) 
$$2 + \sqrt{3}$$

**Q.3** If 
$$x + \frac{1}{x} = 3$$
, find

(i) 
$$x^2 + \frac{1}{x^2}$$

Solution: Given that 
$$x + \frac{1}{x} = 3$$

$$\therefore (a+b)^2 = a^2 + b^2 + 2ab$$

Putting the values

$$\left[x + \frac{1}{x}\right]^2 = \left(x\right)^2 + \left(\frac{1}{x}\right)^2 + 2\left(x\right)\left(\frac{1}{x}\right)$$

$$(3)^2 = x^2 + \frac{1}{x^2} + 2$$

$$9 = x^2 + \frac{1}{x^2} + 2$$

$$9-2=x^2+\frac{1}{x^2}$$

$$x^2 + \frac{1}{x^2} = 7$$
 Ans

Solution: Given that 
$$x^2 + \frac{1}{x^2} = 7$$

$$\left(x^{2} + \frac{1}{x^{2}}\right)^{2} = \left(x^{2}\right)^{2} + \left(\frac{1}{x^{2}}\right)^{2} + 2\left(x^{2}\right)\left(\frac{1}{x^{2}}\right)$$

$$(7)^{2} = x^{4} + \frac{1}{x^{4}} + 2$$

$$49 = x^{4} + \frac{1}{x^{4}} + 2$$

$$x^{4} + \frac{1}{x^{4}} = 49 - 2$$

$$x^{4} + \frac{1}{x^{4}} = 47 \text{ Ans}$$

Q.4 If 
$$x - \frac{1}{x} = 2$$
 find  
(i)  $x^2 + \frac{1}{x^2}$  (ii)  $x^4 + \frac{1}{x^4}$ 

## Solution (i)

Given that 
$$x - \frac{1}{x} = 2$$
  

$$\therefore (a+b)^2 = a^2 + b^2 + 2ab$$
Putting the values

$$\left(x - \frac{1}{x}\right)^{2} = \left(x\right)^{2} + \left(\frac{1}{x}\right)^{2} - 2\left(x\right)\left(\frac{1}{x}\right)$$

$$(2)^{2} = x^{2} + \frac{1}{x^{2}} - 2$$

$$4 + 2 = x^{2} + \frac{1}{x^{2}}$$

$$x^{2} + \frac{1}{x^{2}} = 6 \text{ Ans}$$

### Solution (ii)

Given that 
$$x^2 + \frac{1}{x^2} = 6$$

$$\left(x^2 + \frac{1}{x}\right) = x^4 + \frac{1}{x^4} + 2\left(x^2\right) \left(\frac{1}{x^2}\right)$$

$$(6)^2 = x^4 + \frac{1}{x^4} + 2$$

$$x^4 + \frac{1}{x^4} = 36 - 2$$

$$x^4 + \frac{1}{x^4} = 34 \text{ Ans}$$

Q.5 Find the value of 
$$x^3 + y^3$$
 and  $xy$   
if  $x + y = 5$  and  $x - y = 3$ .

**Solution: Given that** 
$$x + y = 5$$

$$x - y = 3$$

As we know that

$$\therefore (x+y)^2 - (x-y)^2 = 4xy$$

Putting the values

$$4xy = (5)^2 - (3)^3$$

$$4xy = 25 - 9$$

$$4xy = 16$$

$$xy = \frac{16^4}{\cancel{A}}$$

$$xy = 4$$
 Ans

As we know that

$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

Putting the values

$$(5)^3 = x^3 + y^3 \cdot 3 \times 4 \times 5$$

$$125 = x^3 + y^3 + 60$$

$$x^3 + y^3 = 125 - 60$$

$$x^3 + y^3 = 65$$

$$x^3 + y^3 = 65$$
 Ans

(i) 
$$P + \frac{1}{P}$$

**Solution:** Given that  $P = 2 + \sqrt{3}$ 

$$\frac{1}{P} = \frac{1}{2+\sqrt{3}}$$

$$\frac{1}{P} = \frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$$

$$\frac{1}{P} = \frac{2-\sqrt{3}}{(2)^2 - (\sqrt{3})^2}$$

$$\frac{1}{P} = \frac{2-\sqrt{3}}{4-3}$$

$$\frac{1}{P} = \frac{2-\sqrt{3}}{4-3}$$

$$\frac{1}{P} = \frac{2-\sqrt{3}}{1}$$

$$\frac{1}{P} = 2-\sqrt{3}$$

$$P + \frac{1}{P} = 2+\sqrt{3} + 2-\sqrt{3}$$

$$P + \frac{1}{P} = 4$$
Ans

(ii) 
$$P - \frac{1}{P}$$
As we know that
$$\frac{1}{P} = 2 - \sqrt{3} \text{ and}$$

$$P = 2 + \sqrt{3}$$

$$P - \frac{1}{P} = 2 + \sqrt{3} - (2 - \sqrt{3})$$

$$= \cancel{2} + \sqrt{3} - \cancel{2} + \sqrt{3}$$

$$= 2\sqrt{3} \text{ Ans}$$

(iii) 
$$P^2 + \frac{1}{P^2}$$

**Solution: Given that**  $P + \frac{1}{P} = 4$ 

$$(a+b)^2 = a^2 + b^2 + 2ab$$

$$\left(P + \frac{1}{P}\right)^2 = \left(P\right)^2 + \left(\frac{1}{P}\right)^2 + 2\left(P\right)\left(\frac{1}{P}\right)$$

$$(4)^{2} = P^{2} + \frac{1}{P^{2}} + 2$$

$$16 - 2 = P^{2} + \frac{1}{P^{2}}$$

$$P^{2} + \frac{1}{P^{2}} = 14 \text{ Ans}$$

(iv) 
$$P^2 - \frac{1}{P^2}$$

**Solution:** 

$$P^{2} - \frac{1}{P^{2}} = \left(P + \frac{1}{P}\right) \left(P - \frac{1}{P}\right)$$
$$P^{2} - \frac{1}{P^{2}} = (4)\left(2\sqrt{3}\right)$$
$$= 8\sqrt{3} \text{ Ans}$$

**Q.7** If 
$$q = \sqrt{5} + 2$$
 find

(i) 
$$q + \frac{1}{q}$$

**Solution:** Given that  $q = \sqrt{5} + 2$ 

$$\frac{1}{q} = \frac{1}{\sqrt{5} + 2} \times \frac{\sqrt{5} - 2}{\sqrt{5} - 2}$$

$$= \frac{\sqrt{5} - 2}{\left(\sqrt{5}\right)^2 - \left(2\right)^2}$$

$$= \frac{\sqrt{5} - 2}{5 - 4}$$

$$= \sqrt{5} - 2$$

$$q + \frac{1}{q} = \sqrt{5} + 2 + \sqrt{5} - 2$$

$$q + \frac{1}{q} = 2\sqrt{5} \text{ Ans}$$

(ii) 
$$q-\frac{1}{a}$$

**Solution:** Given that  $q = \sqrt{5} + 2$ 

$$\frac{1}{q} = \sqrt{5} - 2$$

$$q - \frac{1}{q} = \sqrt{5} + 2 - \left(\sqrt{5} - 2\right)$$

$$= \sqrt{5} + 2 - \sqrt{5} + 2$$

$$q - \frac{1}{q} = 4 \text{ Ans}$$

(iii) 
$$q^2 + \frac{1}{q^2}$$

**Solution:** Given that  $q - \frac{1}{q} = 4$ 

Squaring both sides

$$\left(q - \frac{1}{q}\right)^2 = (4)^2$$

$$q^2 + \frac{1}{q^2} - 2 = 16$$

$$q^2 + \frac{1}{q^2} = 16 + 2$$

$$q^2 + \frac{1}{q^2} = 18 \text{ Ans}$$

(iv) 
$$q^2 - \frac{1}{q^2}$$

**Solution:** Given that  $q + \frac{1}{a} = 2\sqrt{5}$ 

$$q - \frac{1}{q} = 4$$

By using formula

$$q^{2} - \frac{1}{q^{2}} = \left(q + \frac{1}{q}\right)\left(q - \frac{1}{q}\right)$$
$$= \left(2\sqrt{5}\right)(4)$$
$$= 8\sqrt{5} \text{ Ans}$$

#### 0.8 **Simplify**

(i) 
$$\frac{\sqrt{a^2+2}+\sqrt{a^2-2}}{\sqrt{a^2+2}-\sqrt{a^2-2}}$$

$$= \frac{\sqrt{a^2 + 2} + \sqrt{a^2 - 2}}{\sqrt{a^2 + 2} - \sqrt{a^2 - 2}} \times \frac{\sqrt{a^2 + 2} + \sqrt{a^2 - 2}}{\sqrt{a^2 + 2} + \sqrt{a^2 - 2}}$$

$$= \frac{\left(\sqrt{a^2 + 2} + \sqrt{a^2 - 2}\right)^2}{\left(\sqrt{a^2 + 2}\right)^2 - \left(\sqrt{a^2 - 2}\right)^2}$$

$$= \frac{\left(\sqrt{a^2 + 2}\right)^2 + \left(\sqrt{a^2 - 2}\right)^2 + 2\left(\sqrt{a^2 + 2}\right)\left(\sqrt{a^2 - 2}\right)}{a^2 + 2 - a^2 + 2}$$

$$= \frac{a^2 + 2 + a^2 - 2 + 2\left(\sqrt{a^4 - 2a^2 + 2a^2 - 4}\right)}{a^2 + 2 - a^2 + 2}$$

$$= \frac{2a^{2} + 2\sqrt{a^{4} - 4}}{4}$$

$$= \frac{2(a^{2} + \sqrt{a^{4} - 4})}{4}$$

$$= \frac{2(a^{2} + \sqrt{a^{4} - 4})}{4}$$

$$= \frac{a^{2} + \sqrt{a^{4} - 4}}{2}$$
 Ans

(ii) 
$$\frac{1}{a - \sqrt{a^2 - x^2}} - \frac{1}{a + \sqrt{a^2 - x^2}}$$

$$= \left(\frac{1}{a - \sqrt{a^2 - x^2}} \times \frac{a + \sqrt{a^2 - x^2}}{a + \sqrt{a^2 - x^2}}\right)$$

$$- \left(\frac{1}{a + \sqrt{a^2 - x^2}} \times \frac{a - \sqrt{a^2 - x^2}}{a + \sqrt{a^2 - x^2}}\right)$$

$$= \left(\frac{a + \sqrt{a^2 - x^2}}{a - \left(\sqrt{a^2 - x^2}}\right)^2\right) - \left(\frac{a - \sqrt{a^2 - x^2}}{a - \left(\sqrt{a^2 - x^2}}\right)^2\right)$$

$$= \left(\frac{a + \sqrt{a^2 - x^2}}{a - \left(a^2 - x^2\right)}\right) - \left(\frac{a - \sqrt{a^2 - x^2}}{a - \left(a^2 - x^2\right)}\right)$$

$$= \left(\frac{a + \sqrt{a^2 - x^2}}{a^2 - a^2 + x^2}\right) - \left(\frac{a - \sqrt{a^2 - x^2}}{a^2 - a^2 + x^2}\right)$$

[MEBSINE FREEILM.COM] [NOTES: 9TH MATHEMATICS - UNIT 4 - REVIEW EXERCISE SOLUTION]

$$= \left(\frac{a + \sqrt{a^2 - x^2}}{x^2}\right) - \left(\frac{a - \sqrt{a^2 - x^2}}{x^2}\right)$$

$$= \frac{\cancel{a} + \sqrt{a^2 - x^2} - \cancel{a} + \sqrt{a^2 - x^2}}{x^2}$$

$$= \frac{2\sqrt{a^2 - x^2}}{x^2} \text{ Ans}$$

### Last Updated: September 2020

Report any mistake at freeilm786@gmail.com



[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 6 OF 6]