Lycée Chateaubriand MPSI 3 • 2024 – 2025

Colle **29**Polynômes

- ▶ Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mardi prochain.
- ▶ Vous trouverez le sujet et des indications sur la page ci-contre.

Exercice 29.1

Le polynôme $P := X^3 + X^2 - 3X + 2$ admet-il des racines rationnelles?

Exercice 29.2

Soit $n \ge 3$. On pose

$$A := X^n + 3X + 2$$
 et $B := X^3 - 2X^2 + X$.

Déterminer le reste dans la division euclidienne de A par B.

Exercice 29.3

Soit $n \ge 2$.

- **1.** Factoriser le polynôme $1 + X + \cdots + X^{n-1}$.
- **2.** En déduire la valeur de $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$.
- **3.** Soit $\theta \in \mathbb{R}$. Calculer $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n} + \theta\right)$.

Exercice 29.5

Soit $n \in \mathbb{N}^*$. Soit $\theta \in \mathbb{R}$. Factoriser, dans $\mathbb{R}[X]$, le polynôme

$$X^{2n} - 2\cos(\theta)X^n + 1.$$

Exercice 29.4

Soit $n \in \mathbb{N}$. Soient $a_0, \ldots, a_n \in \mathbb{Z}$. On pose

$$P := a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{Z}[X].$$

Montrer que, si P admet une racine $\dfrac{p}{q}\in\mathbb{Q}$, avec $p\in\mathbb{Z}$, $q\in\mathbb{N}^*$ et $p\wedge q=1$, alors

$$p \mid a_0$$
 et $q \mid a_n$.

Exercice 29.6

Soit $n\geqslant 2$. Soient $a,b\in\mathbb{R}$. Montrer que le polynôme

$$P := X^n + aX + b$$

a au plus trois racines réelles distinctes.

Exercice 29.7

Soit $n \in \mathbb{N}$.

 Montrer qu'il existe un unique polynôme T_n vérifiant

$$\forall \theta \in \mathbb{R}, \ \mathsf{T}_n \big(\mathsf{cos}(\theta) \big) = \mathsf{cos}(n\theta). \quad (\star)$$

- **2.** Déterminer une relation entre T_n , T_{n+1} et T_{n+2} .
- **3.** Déterminer une équation différentielle vérifiée par T_n .
- **4.** Pour $k \in \mathbb{N}$, calculer $\mathsf{T}_n^{(k)}(1)$ et $\mathsf{T}_n^{(k)}(-1)$.

Exercice 29.8

On considère l'endomorphisme de $\mathbb{C}[X]$

$$\Delta: \left| \begin{array}{ccc} \mathbb{C}[\mathsf{X}] & \longrightarrow & \mathbb{C}[\mathsf{X}] \\ P & \longmapsto & P(\mathsf{X}+1) - P(\mathsf{X}). \end{array} \right|$$

- **1.** Déterminer $Ker(\Delta)$ et $Im(\Delta)$.
- **2.** Soit $n \in \mathbb{N}$. Soit $P \in \mathbb{C}[X]$. Montrer que

$$\Delta^{n}(P) = (-1)^{n} \sum_{k=0}^{n} (-1)^{k} {n \choose k} P(X+k).$$

3. Soit $n \in \mathbb{N}$. Soit $P \in \mathbb{C}[X]$ tel que $\deg(P) < n$. En déduire que

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k P(k) = 0.$$