

# Big Data

Introducción, presentación y motivación

**Camilo Yate Támara** 





































xarray























### Metodología Analítica





Modelo Cupo Sin Uso



Recomendación Medicamentos



Propensión Uso Recreacion



Propensión a Servicios - Dados



# Cupo sin Uso - Crédito

Cupo Sin Uso – Pregunta Negocio

### Pregunta de Negocio

¿Qué estrategias desarrollar para incentivar el uso de TMS en aquellos clientes que nunca la han usado?

# 1

### Cupo Sin Uso – Analisis Exploratorio

#### Consumo según lugar de residencia



#### Consumo según lugar de trabajo



## 1

### Cupo Sin Uso – Construcción Modelo

Fase 1 Cálculo de la probabilidad de Compra en instalaciones de Colsubsidio

Entrenamiento (70%)

Prueba (30%)

#### Modelo de Clasificación

(conjunto de entrenamiento)

- Regresión logística binomial
- Análisis Discriminante lineal
- Random Forest

## **Comparación de Modelos** (Conjunto de Prueba)

 Comparación de AUROC & F1 Score.

Promedio armónico entre la sensibilidad y especificad

#### Selección de Modelo

• Regresión Logística

Fase 2

Calculo de la UES de compra más probable

Partición

Entrenamiento (70%)

Prueba (30%)

#### Modelo de Clasificación

(conjunto de entrenamiento)

- Regresión logística multinomial
- KNN
- Elastic Net

## **Comparación de Modelos** (Conjunto de Prueba)

 Comparación de AUROC & F1 Score.

#### Selección de Modelo

 Regresión logística multinomial Fase 3

Calculo del Convenio de compra más probable

Partición

Entrenamiento (70%)

Prueba (30%)

#### Modelo de Clasificación

(conjunto de entrenamiento)

- Regresión logística multinomial
- KNN
- Elastic Net

## **Comparación de Modelos (Conjunto de Prueba)**

Comparación de AUROC & F1
 Score.

#### Selección de Modelo

KNN

### Cupo Sin Uso – Resultados

## Modelo Cupo Sin Uso – Resultados

Crédito
(Modelo Cupo sin Uso)

23,490

**Activaciones Cupo** 

\$4,847 mll

Consumo 2018

\$360 mill

Promedio mes 2019







## Sistema de Recomendación - Medicamentos

Analitica Avanzada - Colsubsidio

## 2 Sistema Recomendación - Pregunta

### Pregunta de Negocio

¿Cuáles son los clientes que tendrían mejor respuesta a campañas de comunicación y promoción para los diferentes artículos ofrecidos por las droguerías Colsubsidio?

# 2

### Sistema Recomendación - Metodologia

Los algoritmos de recomendación se basan en el producto punto entre dos vectores y en las fórmulas de correlación .

Producto Punto 
$$\vec{u} \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$



Correlación 
$$sim(u,v) = \frac{\sum_{i=1}^{m} (r_{u,i} - r_{\bar{u}})(r_{v,i} - r_{\bar{v}})}{\sigma_u \sigma_v}$$

- Algoritmos de Recomendación Basado en Usuario
- Algoritmos de Recomendación Basado en Articulos

| Artículos o Productos |   |   |   |   |   |  |
|-----------------------|---|---|---|---|---|--|
| Usuario               | A | В |   |   | n |  |
| 1                     | 1 | 1 | 0 | 0 | 0 |  |
| 2                     | 1 | 1 | 0 | 1 | 0 |  |
| 3                     | 1 | 0 | 1 | 0 | 1 |  |
| 4                     | 0 | 0 | 1 | 0 | 0 |  |

En general, para un dataset con **n usuarios** y **m ítems**, para cada usuario se deben realizar **n-1 comparaciones**, en total **n(n-1).** En el peor de los casos cada comparación implica **m operaciones** 

## 2

## Sistema Recomendación - Metodologia

- Coseno del ángulo de dos vectores (invarianza, salvo signo, frente a homotecias)
- Coeficiente de correlación (invarianza frente a traslaciones y salvo signo frente a homotecias)
- Medidas para datos dicotómicos

| $X_i \setminus X_j$ | 1     | 0     | Totales           |
|---------------------|-------|-------|-------------------|
| 1                   | a     | b     | a+b               |
| 0                   | С     | d     | c + d             |
| Totales             | a + c | b + d | m = a + b + c + d |

$$\checkmark$$
 Medida de Ochiai →  $\frac{a}{\sqrt{(a+b)(a+c)}}$ 

$$\text{Medida } \Phi \to \frac{\text{ad-bc}}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

$$\protect\ ext{$\checkmark$}$$
 Medida de Russell y Rao →  $\frac{a}{a+b+c+d} = \frac{a}{m}$ 

$$\mathscr{P}$$
 Medida de Parejas simples  $\rightarrow \frac{a+d}{a+b+c+d} = \frac{a+d}{m}$ 

$$^{𝔻}$$
 Medida de Jaccard →  $\frac{a}{a+b+c}$ 

$$\checkmark$$
 Medida de Dice →  $\frac{2a}{2a+b+c}$ 

$$\checkmark$$
 Medida de Rogers-Tanimoto →  $\frac{a+d}{a+d+2(b+c)}$ 

$$^{\circ}$$
 Distancia Euclídea:  $d(x_i, x_j) = \sqrt{\sum_{c=1}^{p} (x_{ic} - x_{jc})^2}$ 

**The Distancia de Minkowski:** 
$$d_q(x_i, x_j) = \left(\sum_{c=1}^{p} |x_{ic} - x_{jc}|^q\right)^{\frac{1}{q}}$$
 donde q≥1

P Distancia de Tchebychev o del máximo (q = 
$$\infty$$
):  $d_{\infty}e(x_i, x_j) = máx(c = 1, \dots, p) |x_i - x_k|$ 

To Distancia de Mahalanobis: 
$$D_s(x_i, x_i) = \sqrt{(x_i - x_i)^i S^{-1} (x_i - x_i)}$$

P Distancia 
$$\chi^2$$
:  $\chi^2 = m \left[ \sum_{i=1}^p \sum_{j=1}^q \frac{n_{ij}^2}{m_{i\bullet} m_{\bullet j}} - 1 \right]$ 

# 2 Sistema Recomendación – Metodologia

#### Métodos Basados en Densidades:

Buscan eliminar el supuesto de esfericidad de los datos. Sigue una forma de identificar clúster siguiendo el modo intuitivo en el que lo hace el cerebro humano, identificando regiones con alta densidad de observaciones separadas por regiones de baja densidad.



#### Métodos basados en distribuciones:

Considera que las observaciones proceden de una distribución (normal multivariante). En principio, cada clúster puede estar descrito por cualquier función de densidad, pero normalmente se asume que siguen una distribución multivariante normal.



# 2 Sistema Recomendación – Metodologia

#### Sistemas de Recomendación Planteados

Para los sistemas de recomendación se excluyen artículos los artículos de las categorías dispositivos médicos y retail y clientes esporádicos.

## MÉTODOS BASADOS EN POPULARIDAD

Este método no personalizado calcula la proporción de cada ítem como estimación de la probabilidad de uso de cada ítem

#### RECOMENDACIÓN ALEATORIO

Recomienda a cada usuario un ítem aleatorio con el que el usuario no haya interactuado.

## MÉTODO HÍBRIDO: FACTORIZACIÓN MATRICIAL CON CONTENIDO

Permite lidiar con el problema de cold-start incluyendo informacion adicional del usuario y del item.



## MÉTODOS BASADOS EN REDUCCIÓN DE DIMENSIONALIDAD

En este método se supone que las filas y las columnas de la matriz de interacciones están altamente correlacionadas y puede ser aproximada por una matriz de menor rango usando los factores latentes de la matriz.



#### **MÉTODOS BASADOS EN MEMORIA**

Las predicciones de cada interacción entre usuario y artículo están basada en vecindades entre usuarios o artículos. Pueden ser basados en Ítems o en Usuarios



## 2 Sistema Recomendación – Metodologia

Con el fin de evaluar la calidad de un sistema de recomendación, es necesario particionar correctamente el conjunto de datos entre conjunto de entrenamiento y conjunto de prueba. En los sistemas de recomendación es usual el método *Holdout*.



Con el fin de determinar el modelo que otorga mejores rankings se utilizaran las siguientes métricas de evaluación

AUC: la probabilidad que para un usuario en particular, un ítem con interacción positiva esté en un ranking de recomendación superior a un artículo sin interacción

$$MRR = \frac{1}{k} \sum_{i=1}^{k} \frac{1}{rango_i}$$

Los hiper parámetros de cada modelo son calibrados con el fin de maximizar ambas medidas

## 2

## Sistema Recomendación - Metodologia

| Modelo  Recomendación Aleatoria |           | Parámetros -      |                                   | Entrenamiento |         | Prueba  |                   |                                    |
|---------------------------------|-----------|-------------------|-----------------------------------|---------------|---------|---------|-------------------|------------------------------------|
|                                 |           |                   |                                   | AUC           | MRR     | AUC     | MRR               | <ul> <li>Implementación</li> </ul> |
|                                 |           |                   |                                   | 0,49578       | 0,00005 | 0,44620 | 0,00003           | R: recommenderlab                  |
| Basado en Popularidad           |           |                   | 0,51257                           | 0,00008       | 0,34854 | 0,00007 | R: recommenderlab |                                    |
|                                 | Basado en | Numero de Vecinos | S:                                |               |         |         |                   |                                    |
| Basado en                       | usuarios  | 100               |                                   | 0,56485       | 0,00265 | 0,56485 | 0,00218           | R: recommenderlab                  |
| Memoria                         | Basado en | Numero de Vecinos | S:                                |               |         |         |                   |                                    |
|                                 | Ítems     | 5                 |                                   | 0,55419       | 0,00254 | 0,36022 | 0,00160           | R: recommenderlab                  |
| Basado en 0                     | Contenido | 4                 |                                   | 0,57249       | 0,00150 | 0,48089 | 0,00085           | R: recommenderlab                  |
|                                 |           | Optimizador:      | Func <mark>ión de</mark> Pérdida: |               | - 11 6  |         |                   |                                    |
|                                 |           | ADAGRAD           | Logística                         | 0,59846       | 0,00154 | 0,49074 | 0,00131           | Python: LightFM                    |
|                                 |           | Optimizador:      | Función de Pérdida:               |               | - 11    |         | _                 |                                    |
| Método Hibrido (LightFM)        |           | ADAGRAD           | BPR                               | 0,66476       | 0,05482 | 0,45869 | 0,05372           | Python: LightFM                    |
|                                 |           | Optimizador:      | Función de Pérdida:               |               |         |         |                   |                                    |
|                                 |           | ADAGRAD           | WARP                              | 0,72466       | 0,11655 | 0,68118 | 0,10606           | Python: LightFM                    |
|                                 |           | Optimizador:      | Función de Pérdida:               |               |         |         |                   |                                    |
|                                 |           | ADADELTA          | Logística                         | 0,67246       | 0,09845 | 0,59849 | 0,07876           | Python: LightFM                    |
|                                 |           | Optimizador:      | Función de Pérdida:               |               |         |         |                   |                                    |
|                                 |           | ADADELTA          | BPR                               | 0,75250       | 0,21548 | 0,73745 | 0,13360           | Python: LightFM                    |
|                                 |           | Optimizador:      | Función de Pérdida:               |               | •       |         |                   | _                                  |
|                                 |           | ADADELTA          | WARP                              | 0,81462       | 0,35448 | 0,79945 | 0,31978           | Python: LightFM                    |
|                                 |           |                   |                                   |               |         |         |                   |                                    |





# Uso de Servicios Clubes Horas Valle - RyT



## Uso Clubes RyT – Metodologia

#### Pregunta de Negocio

¿Cuáles son los clientes mas propensos a utilizar los servicios de los Clubes Colsubsidio, en servicios y horarios de baja demanda?



## Uso Clubes RyT - Exploración RFM

#### **Análisis Total**



# 3

### Uso Clubes RyT – Balanceo

La base de datos esta evidentemente desbalanceada, es decir, existe una gran proporción de productos que han sido muy poco usados. Esto suele representar problemas a la hora de estimar un modelo. Por lo cual se propone la siguiente metodología:

#### **Synthetic Minority Over-sampling Technique (SMOTE)**





### Uso Clubes RyT - Modelo Analítica

#### Modelo de Clasificación:

Se propone modelar la probabilidad la intención de compra de cada producto en cada club por para todos los clientes afiliados a la caja a partir de la información de los clientes que han consumido

| Partición     |        |  |  |  |  |  |  |
|---------------|--------|--|--|--|--|--|--|
| Entrenamiento | Prueba |  |  |  |  |  |  |
| (70%)         | (30%)  |  |  |  |  |  |  |

Se particiona la base de datos en conjunto de entrenamiento y validación con el fin de minimizar los errores de predicción del modelo

A partir de estadísticas de bondad de ajuste, se decide utilizar el Modelo Random Forest para estimar la probabilidad de deserción de los tarjetahabientes



AUROC: 0,9056



# Modelo propensión a Servicios - Dados

### Propensión Uso – Pregunta

### Pregunta de Negocio

¿Cuáles serían los clientes con mayor propensión a consumir los de productos o servicios en el dado y asimismo adquirir una membresía?



Dados

Propensión

de

Modelo

### Propensión Uso – Datos







Bases de Datos UES



Base de Datos Analítica Modelos de Clasificación Multiclase

Calificación individual de la probabilidad de consumir algún servicio.

Agregación para calcular la probabilidad de adquirir membresía.

#### Construcción del Modelo



### Propensión Uso – Modelo

#### Modelo de Clasificación:

Se propone modelar la probabilidad la intención de uso de alguno de los servicios propuestos para el dado, basados en los consumos individuales (para afiliados o beneficiarios) en alguno de los servicios similares ofrecidos actualmente.

| Partición     |        |
|---------------|--------|
| Entrenamiento | Prueba |
| (70%)         | (30%)  |

Se utiliza una metodología OnevsAll con un Random Forest para estimar la probabilidad individual de cada servicio dados los consumos pasados y las demás covariables de la base

https://colsubsidio.shinyapps.io/Dados/

Se particiona la base de datos en conjunto de entrenamiento y validación con el fin de minimizar los errores de predicción del modelo



AUROC: 0,9127



### Propensión Uso – Modelo



#### Mapa de Propensión de Servicios





# Contenidos

#### Contenidos

#### El curso se dividirá en tres capítulos principales:

- 1. Introducción a Python.
  - I. Numpy
  - II. SicPy
  - III. Pandas
  - IV. Matplotlib
  - V. Plotly
- 2. Conceptos de Big Data
  - I. Arquitectura Big Data
  - II. Data Wrangling
  - III. Herramientas Distribuidas
- 3. Machine Learning
  - I. Descripción de Datos
  - II. Aprendizaje no supervisado
  - III. Aprendizaje Supervisado
  - IV. Sistemas de Recomendacion

|                    | ACTIVIDADES DE APRENDIZAJE |                            |                                          |                    |               |  |
|--------------------|----------------------------|----------------------------|------------------------------------------|--------------------|---------------|--|
| semana             | TEMA                       | ACOMPAÑAMIENTO DEL DOCENTE |                                          |                    | TRABAJO       |  |
|                    |                            |                            | TEORÍA                                   | PRÁCTICA           | INDEPENDIENTE |  |
|                    | Presentaci                 |                            | tura de contenido                        |                    |               |  |
| 1                  | ón del                     | •                          | gramático                                |                    |               |  |
| •                  | curso                      |                            | uerdos<br>roducción                      |                    |               |  |
|                    | curso                      | • inti                     | roduccion                                |                    |               |  |
|                    |                            | •                          | os de variables,                         |                    | TALLER        |  |
|                    |                            |                            | os, estructuras de                       |                    |               |  |
|                    | Capítulo 1                 |                            | ntrol y funciones.<br>ta wrangling y     |                    |               |  |
| 2,3,4,5            | Programa<br>ción en        |                            | oloración de datos.                      |                    |               |  |
|                    | Python                     |                            | delos de regresión.                      |                    |               |  |
|                    | . ,                        |                            | G                                        |                    |               |  |
|                    |                            |                            |                                          |                    |               |  |
| 6                  | PRIMER PARCIAL             |                            |                                          |                    |               |  |
|                    |                            | • Arc                      | uitectura Big data,                      |                    | TALLER        |  |
|                    | Capítulo 2                 |                            | mo funciona?                             |                    |               |  |
| 7,8                | Ficheros,<br>limpieza y    | • RD                       | -                                        |                    |               |  |
| 7,0                | descripció                 |                            | ructuras de control                      |                    |               |  |
|                    | n                          |                            | inciones.<br>ta wrangling                |                    |               |  |
|                    |                            |                            |                                          | CECUNDA.           |               |  |
|                    | Capítulo 3                 | -                          | oloración de datos<br>stering, K-means y | SEGUNDA<br>ENTREGA |               |  |
| 9,10               | Segmenta                   | Knr                        |                                          | ENTREGA            |               |  |
|                    | ción                       |                            | •                                        |                    |               |  |
| 11                 |                            |                            | SEGUNDO                                  | -                  |               |  |
|                    |                            |                            | nceptos: modelos de                      | LABORATORIO        | ADELANTO      |  |
| 12,13              | Capítulo 4                 | _                          | resión                                   |                    | PROYECTO      |  |
|                    | Modeling                   | _                          | gresión Lineal                           |                    |               |  |
|                    |                            |                            | gresión logística<br>triz de confusión   | ADELANTO           | ADELANTO      |  |
|                    |                            |                            | tricas de resultados                     | PROYECTO           | PROYECTO      |  |
|                    | Capítulo 5                 |                            | álisis de resultados y                   |                    |               |  |
| 14, 15, 16         | Predicción                 |                            | ección de modelos                        |                    |               |  |
|                    |                            |                            |                                          |                    |               |  |
|                    |                            |                            |                                          |                    |               |  |
| PRESENTACIÓN FINAL |                            |                            |                                          |                    |               |  |
|                    |                            |                            |                                          |                    |               |  |

9 de Septiembre

14 de Octubre → PreProyecto 21 de Octubre → Parcial 2

18 de Noviembre → Proyecto
25 de Noviembre → Examen Final



# Evaluación

#### Evaluación

