Binary Numbers

Learning to count!

What is...

Decimal System

- has 10 digits/symbols (0-9)
- has a base of 10

What does each digit in 123 represent?

We could rewrite $\ 123\$ as $1*10^2+2*10^1+3*10^0$

Binary System

- has 2 digits/symbols (0 and 1)
 - off" and "on"
 - called **bits** (binary digit)
 - o a **byte** is 8 bits
- has a base of 2

Binary to Decimal Conversion Example

Convert 111 (binary) to a decimal number

Convert 111 (binary) to a decimal number:

$$1*2^{2} + 1*2^{1} + 1*2^{0} =$$
 $1*4 + 1*2 + 1*1 =$
 $4+2+1 =$
 7

Binary Flipper Tool

Make one 😀

Try it out!

- 0b1100
- 0b1011
- 0b10010
- 0b10101

Decimal to Binary Conversion Example

Convert 255 to binary

Hint: Be greedy!

2^8	2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
?	?	?	?	?	?	?	?	?

2^8 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

Try it out!

- 9
- 17
- 109
- 200

Binary Addition

```
1 1 09 01 + 01 ---- 12 10
```

Binary Subtraction

is really addition of the negative!

$$2-3=2+(-3)$$

How might we represent negative numbers?

Binary Widths

What happens if our computer only has the hardware to deal with 2-bit numbers?

Overflow/Underflow Errors

- overflow: occurs when the number is too big to be represented (wraps to smallest number)
- underflow: occurs when the number is too small to be represented (wraps to the largest number)

What will happen if we add 1 and 255 on an 8-bit machine?

How about 1 and 256?

0b11111111 + 0b00000001 -----0b100000000

We started off with 2 8-bit numbers, and our result is 256, a 9-bit number!

Since the computer cannot manage 9-bit numbers, the extra bit gets chopped off.

So
$$255 + 1 = 0!$$

Rounding Errors

- machines do not have the hardware to represent an infinite number of digits
 - \circ some fractions (e.g. π , e , $\frac{1}{3}$) cannot be represented accurately
 - must approximate (round)

Why Learn Binary?