Álgebra Lineal Grupo 3058, 2020-IV

Examen parcial 1 (tarea examen)

Fecha de entrega: sábado 8 de agosto, 12:00 hrs.

"Si quieres llegar rápido, viaja solo. Si quieres llegar lejos, viaja acompañado."

—Proverbio africano

1. Sea (F, \mathbb{R}) el espacio vectorial de todas las funciones reales de variable real y sea L^2 el conjunto de todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que

$$\int_{-\infty}^{\infty} f^2(x) \ dx < \infty.$$

Demuestra que (L^2,\mathbb{R}) es un subespacio vectorial de (F,\mathbb{R}) . (1 pto.)

- **2.** Sea V un espacio vectorial con subespacios W_1 y W_2 . Demuestra que V es una suma directa de W_1 y W_2 si y sólo si todo vector \mathbf{v} de V puede ser expresado de manera única como $\mathbf{v} = \mathbf{x}_1 + \mathbf{x}_2$, con $\mathbf{x}_1 \in W_1$ y $\mathbf{x}_2 \in W_2$. (1 pto.)
- 3. Sea ${\bf c}$ un vector no nulo del espacio vectorial complejo \mathbb{C}^n y $a \neq 0 \in \mathbb{R}$. ¿Cómo interpretarías geométricamente el producto del vector ${\bf c}$ por el escalar $\frac{a}{i}$? (0.5 ptos.)
 - 4. Siguiendo del primer ejercicio, define una operación $\langle\cdot,\cdot\rangle:L^2\times L^2\to\mathbb{R}$ como

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(x)g(x) \ dx.$$

Demuestra que es un producto escalar en L^2 . Si las funciones de L^2 tuvieran imágenes en \mathbb{C} en vez de \mathbb{R} , ¿cómo podrías modificar la operación $\langle \cdot, \cdot \rangle$ para que siga teniendo todas las propiedades del producto escalar? (1 pto.)

- **5.** Sea (V, K) un espacio vectorial con producto escalar positivo definido $\langle \cdot, \cdot \rangle : V \times V \to K$. Demuestra que la función $||\cdot|| : V \to K$ dada por $||\mathbf{v}|| = +\sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$ para todo $\mathbf{v} \in V$ es una norma en V. (0.5 ptos.)
- **6.** Sea (V, K) el mismo espacio vectorial con producto escalar positivo definido del ejercicio anterior. Decimos que una función $d(\cdot, \cdot): V \times V \to K$ es una *métrica* si para todo $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$:

$$d(\mathbf{u}, \mathbf{v}) = 0 \iff \mathbf{u} = \mathbf{v},$$
$$d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$$
$$\mathbf{v} \quad d(\mathbf{u}, \mathbf{w}) \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w}).$$

Demuestra que $d(\mathbf{u}, \mathbf{v}) = +\sqrt{\langle \mathbf{u}, \mathbf{u} \rangle - \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle}$ para todo $\mathbf{u}, \mathbf{v} \in V$ es una métrica en V. ¿Cómo puedes interpretar esta función geométricamente? (1 pto.)

1

- 7. Si los números de cuenta de l@s integrantes de su equipo fueran vectores de \mathbb{R}^9 , ¿formarían un conjunto linealmente independiente? (0.5 ptos.)
- 8. Demuestra o da un contraejemplo: un conjunto de vectores L es linealmente independiente si y sólo si cualquier subconjunto finito de L es linealmente independiente. (1 pto.)
- **9.** Demuestra o da un contraejemplo: si S_1 y S_2 son subconjuntos arbitrarios de un espacio vectorial V, entonces $\langle S_1 \rangle + \langle S_2 \rangle$ es un subespacio vectorial de V y $\langle S_1 \rangle + \langle S_2 \rangle = \langle S_1 \cup S_2 \rangle$. (1 pto.)
- 10. Sea V un espacio vectorial con producto escalar de dimensión finita n. Demuestra que cualquier conjunto ortogonal de n vectores es una base ortogonal de V. (0.5 ptos.)
 - 11. Sean

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Demuestra que $\{\sigma_0, \sigma_1, \sigma_2, \sigma_3\}$ es una base de $M_{2\times 2}(\mathbb{C})$ y que, por tanto, este espacio vectorial complejo es de dimensión 4. (1 pto.)

12. Sea $P^2([-1,1])$ el espacio vectorial real de todos los polinomios reales de grado 2 con dominio en [-1,1], dotado de un producto escalar dado por

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx.$$

Obten una base ortonormal para este espacio vectorial y expresa a un vector arbitrario $v(x) = ax^2 + bx + c \in P^2([-1, 1])$ como combinación lineal de los elementos de la base que hayas obtenido. (1 pto.)