Student: Mono

Lab: Jeremy IT's Lab

Topic: GRE



- 1. Configure a GRE tunnel to connect R1 and R2.
- Configure OSPF on the tunnel interfaces of R1 and R2, to allow PC1 and PC2 to communicate.

1.

Int Tunnel

Tunnel source

**Tunnel destination** 

Int Tunnel ip address itself for the tunnel

```
D1>
R1>en
Rl#config t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#int ?
                       Dialer interface
  Dialer
                      Dotll interface
  DotllRadio
                      IEEE 802.3
  Ethernet
  FastEthernet
                      FastEthernet IEEE 802.3
  GigabitEthernet GigabitEthernet IEEE 802.3z
                      Loopback interface
  Loopback
                     Ethernet Channel of interfaces
  Port-channel
                      Serial
  Serial
                      Tunnel interface
  Tunnel
  Virtual-Template Virtual Template interface
  Vlan
                      Catalyst Vlans
  range
                      interface range command
R1(config) #int tunnel ?
  <0-2147483647> Tunnel interface number
R1(config) #int tunnel 0
R1(config-if)#
%LINK-5-CHANGED: Interface TunnelO, changed state to up
R1(config-if) #tunnel ?
  destination destination of tunnel
              tunnel encapsulation method
  source
               source of tunnel packets
R1(config-if) #tunnel source ?
                   IEEE 802.3
  Ethernet
  FastEthernet FastEthernet IEEE 802.3
  GigabitEthernet GigabitEthernet IEEE 802.3z
                Loopback interface
  Loopback
  Serial
                     Serial
R1(config-if) #tunnel source g0/0/0
R1(config-if) #tunnel destination ?
  A.B.C.D ip address
R1(config-if) #tunnel destination 200.0.0.2
R1(config-if)#ip add 192.168.1.1 255.255.255.252
R1(config-if)#
Verify - R1
R1(config) #do show ip int bri
Interface IP-Address OK? Method Status Protographic SignabitEthernet0/0 10.0.1.1 YES NVRAM up up GigabitEthernet0/1 unassigned YES NVRAM administratively down down GigabitEthernet0/2 unassigned YES NVRAM administratively down down GigabitEthernet0/0/0 100.0.0.2 YES manual up up
                                                                                   Protocol
                          192.168.1.1 YES manual up down unassigned YES unset administratively down down
Tunnel0
Vlanl
```

Note: The protocol of tunnel 0 is down!

# R2 - Config like R1

```
R2>en
R2#config t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#int tunnel 0
R2(config-if)#
%LINK-5-CHANGED: Interface TunnelO, changed state to up
R2(config-if)#tunnel source g0/0/0
R2(config-if) #tunnel destination 100.0.0.2
R2(config-if)#
R2(config-if)#ip address 192.168.1.2 255.255.255.252
R2(config-if)#
R2(config-if)#do show ip int bri
                           IP-Address
Interface
                                                OK? Method Status
                                                                                              Protocol
GigabitEthernet0/0 10.0.2.1 YES NVRAM up up
GigabitEthernet0/1 unassigned YES NVRAM administratively down down
GigabitEthernet0/2 unassigned YES NVRAM administratively down down
GigabitEthernet0/0/0 200.0.0.2 YES manual up up
                           192.168.1.2 YES manual up down unassigned YES unset administratively down down
Tunnel0
Vlanl
R2(config-if)#
```

After checking both ip routing tables of R1 and R2, there are no routes for them to reach each other. Therefore, configuring default routes for them is necessary!

R1

```
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
       10.0.1.0/24 is directly connected, GigabitEthernet0/0
       10.0.1.1/32 is directly connected, GigabitEthernet0/0
    100.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C
       100.0.0.0/30 is directly connected, GigabitEthernet0/0/0
        100.0.0.2/32 is directly connected, GigabitEthernet0/0/0
R2
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
С
       10.0.2.0/24 is directly connected, GigabitEthernet0/0
       10.0.2.1/32 is directly connected, GigabitEthernet0/0
   200.0.0.0/24 is variably subnetted, 2 subnets, 2 masks
С
       200.0.0.0/30 is directly connected, GigabitEthernet0/0/0
        200.0.0.2/32 is directly connected, GigabitEthernet0/0/0
```

### Config default routing!

#### Verify

R1

```
10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
С
      10.0.1.0/24 is directly connected, GigabitEthernet0/0
       10.0.1.1/32 is directly connected, GigabitEthernet0/0
    100.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
С
     100.0.0.0/30 is directly connected, GigabitEthernet0/0/0
L
      100.0.0.2/32 is directly connected, GigabitEthernet0/0/0
    192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
     192.168.1.0/30 is directly connected, Tunnel0
C
L
      192.168.1.1/32 is directly connected, Tunnel0
S* 0.0.0.0/0 [1/0] via 100.0.0.1
R2
    10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C
      10.0.2.0/24 is directly connected, GigabitEthernet0/0
      10.0.2.1/32 is directly connected, GigabitEthernet0/0
T.
    192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
0
       192.168.1.0/30 is directly connected, Tunnel0
      192.168.1.2/32 is directly connected, Tunnel0
L
   200.0.0.0/24 is variably subnetted, 2 subnets, 2 masks
C
      200.0.0.0/30 is directly connected, GigabitEthernet0/0/0
L
       200.0.0.2/32 is directly connected, GigabitEthernet0/0/0
S* 0.0.0.0/0 [1/0] via 200.0.0.1
```

After I configured the default routes for R1 and R2, the routes of the tunnels showed up! Now, R1 and R2 can ping each other using ip addresses of the tunnels.

#### 2.

However, PC1 cannot ping PC2, vice versa because there are no routes to reach from the PCs' networks. That is why I need to configure OSPF on the tunnel interfaces of R1 and R2.

```
R1>en
R1#config t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#router ospf 1
R1(config-router)#network 192.168.1.1 0.0.0.0 area 0
R1(config-router)#network 10.0.1.1 0.0.0.0 area 0
R1(config-router)#passive int g0/0

% Invalid input detected at '^' marker.

R1(config-router)#passive-int g0/0
R1(config-router)#passive-int g0/0
R1(config-router)#
```

```
R2>en
R2#config t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config) #router ospf 1
R2(config-router) #network ?
  A.B.C.D Network number
R2(config-router) #network 192.168.1.2 ?
  A.B.C.D OSPF wild card bits
R2(config-router) #network 192.168.1.2 0.0.0.0 ?
  area Set the OSPF area ID
R2(config-router) #network 192.168.1.2 0.0.0.0 area 0
R2(config-router) #network 10.0.2.1 0.0.0.0 area 0
R2(config-router) #pass
R2(config-router) #passive-interface g0/0
R2(config-router)#exit
R2(config)#
R2(config)#exit
```

## Verify



Physical Config Desktop Programming Attributes Command Prompt Cisco Packet Tracer PC Command Line 1.0 C:\>ping 10.0.2.100 Pinging 10.0.2.100 with 32 bytes of data: Request timed out. Reply from 10.0.2.100: bytes=32 time<1ms TTL=126 Reply from 10.0.2.100: bytes=32 time<1ms TTL=126 Reply from 10.0.2.100: bytes=32 time<1ms TTL=126 Ping statistics for 10.0.2.100: Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in milli-seconds: Minimum = 0ms, Maximum = 0ms, Average = 0ms C:\>ping 10.0.2.100 Pinging 10.0.2.100 with 32 bytes of data: Reply from 10.0.2.100: bytes=32 time<1ms TTL=126 Ping statistics for 10.0.2.100: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms



Another option, I can configure specific static routes for PC1 and PC2 reaching each other.