

Horizontal Forus Side View

Vertical Forces Side View

where F is some predictable force applied by our throters. Fo is the drag due to air resistance.

Fg is the force from gravity.

equation for drag is $\overline{F}_D = \frac{1}{2} p \times^2 C_D A$

where $p = 287.058 \frac{3}{kg \cdot k}$ or $1.1839 \frac{ks}{m^{-3}}$ at 77° F.

x2 = Velocity squared

CD = Similar to a model rocket at 0.75

 $F_0 = 0.089 \, x^2 \, N$

Fg = 9.8 m N

Dynamical Equations cont.

horizontal

Vertical

but
$$\overline{F} = 2.45 \cdot \alpha$$
 where α is some number from 0 to 1 to describe how α much power is being

30

\$\phi = \tilt of fan as described here?

horizontal

4.074 x +02.455 sind -0.089 x = -0

Vertical

4.074 g + x 2.455 cosp - (4.074) 9.8 =0

So final dynamical equations:

(1)
$$\dot{x}$$
 +[4]0.602 sin $\dot{\phi}$ = 0.022 \dot{x}^2 = 0 =) \dot{x} -0.22 \dot{x}^2 + (α)0.602 sin $\dot{\phi}$

where a equals the power to fans coefficient (constant) and d is the angle of the fans (adjustable constant)