Amateur Radio Exam Preparation Guide

Your Name

December 30, 2024

Contents

1	Cor	mmission Rules	9				
	1.1	Frequency Privileges and Signal Regulations	9				
	1.2	Station Restrictions and Special Operations	9				
	1.3	Automatic and Remote Control	9				
	1.4	Amateur Space and Earth Stations	9				
	1.5	Volunteer Examiner Program	9				
2	Operating Procedures 11						
	$2.\overline{1}$	Miscellaneous Rules	11				
	2.2	Amateur Radio in Space	11				
	2.3	Television Practices	11				
	2.4	Contest and DX Operating	11				
	2.5	Operating Methods: Digital Modes	11				
	2.6	Operating Methods: HF Digital Modes	12				
3	Rac	dio Wave Propagation	13				
_	3.1	Electromagnetic Waves and Specialized Propagation	13				
	3.2	Transequatorial and Long-Path Propagation	13				
	3.3	Propagation Prediction and Reporting	13				
4	Amateur Practices 15						
	4.1	Test Equipment	15				
		4.1.1 Oscilloscopes	15				
		4.1.2 Spectrum Analyzers	15				
		4.1.3 Antenna Analyzers	15				
		4.1.4 Frequency Counters	15				
	4.2	Measurement Techniques and Limitations	15				
	4.3	Receiver Performance	15				
	4.4	Receiver Performance Characteristics	16				
	4.5	Noise and Interference	16				
5	Elec	ctrical Principles	17				
	5.1	Resonance and Q	17				
	5.2	Time Constants and Phase Relationships	17				

	5.3	Coordinate Systems and Phasors
	5.4	RF Effects in Components and Circuits
6	Circ	cuit Components 19
Ů	6.1	Semiconductor Materials and Devices
	6.2	Diodes
	٠	6.2.1 Zener Diodes
		6.2.2 Schottky Diodes
		6.2.3 Varactor Diodes
		6.2.4 PIN Diodes
		6.2.5 Point-Contact Diodes
		6.2.6 Diode Applications
	6.3	Digital ICs
	0.0	6.3.1 Logic Gates
		6.3.2 Comparators and Hysteresis
		6.3.3 Tri-State Logic
		6.3.4 BiCMOS Logic
		6.3.5 CMOS Logic
		6.3.6 Field-Programmable Gate Arrays (FPGAs)
	6.4	Inductors
	0.1	6.4.1 Core Materials and Permeability
		6.4.2 Transformers
		6.4.3 Ferrite Beads and Parasitic Suppression
	6.5	Piezoelectricity
	0.0	6.5.1 Piezoelectric Effect
		6.5.2 Quartz Crystals
	6.6	Semiconductor Materials and Packages for RF Use
	6.7	Electro-Optical Technology
	0.1	Electic Optical Technology
7	SUI	BELEMENT E7 - PRACTICAL CIRCUITS 23
	7.1	Digital Circuit Essentials
		7.1.1 Introduction to Digital Circuits
		7.1.2 Bistable Circuits
		7.1.3 Counters and Frequency Division
		7.1.4 Multivibrators
		7.1.5 Logic Gates
		7.1.6 Truth Tables and Positive Logic
	7.2	Amplifier Basics
		7.2.1 Class AB and Class D Amplifiers
		7.2.2 RF Switching Amplifiers
		7.2.3 Class A Amplifiers
		7.2.4 Oscillations and Grounded-Grid Amplifiers
		7.2.5 Class C Amplifiers and Efficiency
		7.2.6 Emitter Followers and Biasing
	7.3	Network Element Configurations
		7.3.1 Low-Pass and High-Pass Filters

		7.3.2	Pi-L Networks and Impedance Matching	24
		7.3.3	Filter Types	24
		7.3.4	Helical and Crystal Lattice Filters	24
		7.3.5	Cavity Filters and Shape Factor	24
	7.4	Voltag	ge Regulator Mechanics	24
		7.4.1	Linear and Switchmode Regulators	24
		7.4.2	Voltage References and Three-Terminal Regulators	25
		7.4.3	Linear Voltage Regulator Circuits	25
		7.4.4	Battery Operating Time and Power Supplies	25
		7.4.5	Solar Panel Inverters and Dropout Voltage	25
		7.4.6	Power Dissipation and Filter Capacitors	25
	7.5	Radio	Communication Essentials	25
		7.5.1	FM Signal Generation and Reactance Modulators	25
		7.5.2	Frequency Discriminators and SSB Signals	25
		7.5.3	Pre-emphasis and De-emphasis	25
		7.5.4	Baseband and Mixers	25
		7.5.5	Detectors and Demodulation	25
	7.6	Key T	Terms in Software-Defined Radio and Digital Signal Processing	26
		7.6.1	Direct Sampling and Adaptive Filters	26
		7.6.2	Hilbert-Transform Filters and SSB Generation	26
		7.6.3	Sampling and Fast Fourier Transform	26
		7.6.4	Decimation and Anti-Aliasing Filters	26
		7.6.5	SDR Bandwidth and Signal Level	26
		7.6.6	FIR Filters and Taps	26
	7.7	Op-A	mp Essentials	26
		7.7.1	Op-Amp Characteristics	26
		7.7.2	Op-Amp Filters and Stability	26
		7.7.3	Gain-Bandwidth and Voltage Gain	26
		7.7.4	Operational Amplifier Definition	26
	7.8	Oscilla	ator Insights	27
		7.8.1	Oscillator Circuits	27
		7.8.2	Microphonics and Phase-Locked Loops	27
		7.8.3	Colpitts and Pierce Oscillators	27
		7.8.4	Frequency Synthesis and Direct Digital Synthesizers	27
		7.8.5	Crystal Oscillators and Stability	27
0	CTI	DDID	AFFINE DO GLONALO AND DIMEGLONIO	~
8			MENT E8 - SIGNALS AND EMISSIONS	29
	8.1	_	Processing Essentials	29
		8.1.1	Fourier Analysis and Analog-to-Digital Conversion	29
		8.1.2	Time Domain and Dither	29
		8.1.3	RMS Measurements and PEP-to-Average Power	29
		8.1.4	Direct Sampling and Resolution	29
	0.0	8.1.5	Total Harmonic Distortion	29
	8.2		lation Secrets Revealed	30
		8.2.1	FM Modulation Index and Deviation Ratio	30
		8.2.2	Orthogonal Frequency-Division Multiplexing	30

		8.2.3	Frequency Division Multiplexing	30	
	8.3	Transı	mission Insights	30	
		8.3.1	Quadrature Amplitude Modulation	30	
		8.3.2	Symbol Rate and PSK Signals	30	
		8.3.3	Bandwidth of Various Signals	30	
		8.3.4	Error Correction and Digital Codes	30	
		8.3.5	Baud Rate and CW Signal Bandwidth	30	
		8.3.6	Constellation Diagrams and Mesh Networks		
	8.4	Spread	d Spectrum Unveiled	30	
		8.4.1	Spread Spectrum Techniques		
		8.4.2	Key Clicks and Parity Bits	31	
		8.4.3	AFSK Signals and Distortion		
		8.4.4	Baudot and ASCII Codes		
9	SUI	BELEN	MENT E9 - ANTENNAS AND TRANSMISSIO	ON LINES	33
	9.1	Anten	na Essentials	33	
		9.1.1	Isotropic Radiators and Effective Radiated Power .	33	
		9.1.2	Feed Point Impedance and Ground Gain	33	
		9.1.3	Antenna Efficiency and Ground Losses		
		9.1.4	Gain Comparison and Fresnel Zones	33	
	9.2	Anten	na Patterns Unveiled	33	
		9.2.1	Beamwidth and Front-to-Back Ratio	33	
		9.2.2	Elevation Patterns and Far Field	34	
		9.2.3	Method of Moments Analysis	34	
	9.3	Anten	na Patterns and Impedances	34	
		9.3.1	Radiation Patterns of Vertical Antennas		
		9.3.2	Long Wire and Off-Center-Fed Dipoles	34	
		9.3.3	Terminated Rhombic and Folded Dipoles	34	
		9.3.4	G5RV and Zepp Antennas	34	
		9.3.5	Extended Double Zepp and Polarization Effects	34	
	9.4	Anten	na Insights	34	
		9.4.1	Parabolic Reflectors and Circular Polarization	34	
		9.4.2	Loading Coils and Electrically Short Antennas	34	
		9.4.3	Yagi Antennas and Radiation Resistance	34	
	9.5	Match	ning Antenna Mechanics	35	
		9.5.1	Gamma and Beta Matches	35	
		9.5.2	Q-Section and Wilkinson Divider	35	
		9.5.3	Shunt Feeding and Phasing Lines	35	
	9.6	Transı	mission Line Essentials	35	
		9.6.1	Velocity Factor and Electrical Length	35	
		9.6.2	Transmission Line Impedance		
	9.7	Charti	ing Impedances	35	
		9.7.1	Smith Chart Basics	35	
		9.7.2	Smith Chart Components	35	
	9.8	Essent	tial Antenna Design Insights	35	
		9.8.1	Beverage Antennas and Directivity	35	

CONTENTS		7

9.8.2 Small-Loop and Sense Antennas	
10 SUBELEMENT E0 - SAFETY	37
10.1 Related Principles	37
10.1.1 Grounding and RF Exposure	37
10.1.2 Microwave Hazards and MPE Limits	37
10.1.3 Tower Safety and SAR	37
10.1.4 RF Exposure Evaluations	37
10.1.5 Climbing Safety	

Commission Rules

1.1 Frequency Privileges and Signal Regulations

 Question IDs: E1A01, E1A02, E1A03, E1A04, E1A05, E1A06, E1A07, E1A08, E1A09, E1A10, E1A11

1.2 Station Restrictions and Special Operations

• Question IDs: E1B01, E1B02, E1B03, E1B04, E1B05, E1B06, E1B07, E1B08, E1B09, E1B10, E1B11

1.3 Automatic and Remote Control

 Question IDs: E1C01, E1C02, E1C03, E1C04, E1C05, E1C06, E1C07, E1C08, E1C09, E1C10, E1C11, E1C12

1.4 Amateur Space and Earth Stations

Question IDs: E1D01, E1D02, E1D03, E1D04, E1D05, E1D06, E1D07, E1D08, E1D09, E1D10, E1D11, E1D12

1.5 Volunteer Examiner Program

 \bullet Question IDs: E1E01, E1E02, E1E03, E1E04, E1E05, E1E06, E1E07, E1E08, E1E09, E1E10, E1E11

Operating Procedures

2.1 Miscellaneous Rules

 Question IDs: E1F01, E1F02, E1F03, E1F04, E1F05, E1F06, E1F07, E1F08, E1F09, E1F10, E1F11

2.2 Amateur Radio in Space

 Question IDs: E2A01, E2A02, E2A03, E2A04, E2A05, E2A06, E2A07, E2A08, E2A09, E2A10, E2A11, E2A12

2.3 Television Practices

Question IDs: E2B01, E2B02, E2B03, E2B04, E2B05, E2B06, E2B07, E2B08, E2B09, E2B10, E2B11, E2B12

2.4 Contest and DX Operating

 \bullet Question IDs: E2C01, E2C02, E2C03, E2C04, E2C05, E2C06, E2C07, E2C08, E2C09, E2C10, E2C11, E2C12

2.5 Operating Methods: Digital Modes

 Question IDs: E2D01, E2D02, E2D03, E2D04, E2D05, E2D06, E2D07, E2D08, E2D09, E2D10, E2D11

2.6 Operating Methods: HF Digital Modes

 \bullet Question IDs: E2E01, E2E02, E2E03, E2E04, E2E05, E2E06, E2E07, E2E08, E2E09, E2E10, E2E11, E2E12, E2E13

Radio Wave Propagation

3.1 Electromagnetic Waves and Specialized Propagation

Question IDs: E3A01, E3A02, E3A03, E3A04, E3A05, E3A06, E3A07, E3A08, E3A09, E3A10, E3A11, E3A12, E3A13, E3A14

3.2 Transequatorial and Long-Path Propagation

Question IDs: E3B01, E3B02, E3B03, E3B04, E3B05, E3B06, E3B07, E3B08, E3B09, E3B10, E3B11, E3B12, E3B13

3.3 Propagation Prediction and Reporting

• Question IDs: E3C01, E3C02, E3C03, E3C04, E3C05, E3C06, E3C07, E3C08, E3C09, E3C10, E3C11, E3C12

Amateur Practices

4.1 Test Equipment

4.1.1 Oscilloscopes

• Question IDs: E4A01, E4A04, E4A06, E4A09, E4A10

4.1.2 Spectrum Analyzers

• Question IDs: E4A02, E4A03

4.1.3 Antenna Analyzers

• Question IDs: E4A07, E4A08, E4A11

4.1.4 Frequency Counters

• Question IDs: E4A05

4.2 Measurement Techniques and Limitations

Question IDs: E4B01, E4B02, E4B03, E4B04, E4B05, E4B06, E4B07, E4B08, E4B09, E4B10, E4B11

4.3 Receiver Performance

 Question IDs: E4C01, E4C02, E4C03, E4C04, E4C05, E4C06, E4C07, E4C08, E4C09, E4C10, E4C11, E4C12, E4C13, E4C14

4.4 Receiver Performance Characteristics

Question IDs: E4D01, E4D02, E4D03, E4D04, E4D05, E4D06, E4D07, E4D08, E4D09, E4D10, E4D11, E4D12, E4D13, E4D14

4.5 Noise and Interference

• Question IDs: E4E01, E4E02, E4E03, E4E04, E4E05, E4E06, E4E07, E4E08, E4E09, E4E10, E4E11, E4E12, E4E13, E4E14

Electrical Principles

5.1 Resonance and Q

Question IDs: E5A01, E5A02, E5A03, E5A04, E5A05, E5A06, E5A07, E5A08, E5A09, E5A10, E5A11, E5A12, E5A13

5.2 Time Constants and Phase Relationships

• Question IDs: E5B01, E5B02, E5B03, E5B04, E5B05, E5B06, E5B07, E5B08, E5B09, E5B10, E5B11, E5B12

5.3 Coordinate Systems and Phasors

• Question IDs: E5C01, E5C02, E5C03, E5C04, E5C05, E5C06, E5C07, E5C08, E5C09, E5C10, E5C11, E5C12

5.4 RF Effects in Components and Circuits

• Question IDs: E5D01, E5D02, E5D03, E5D04, E5D05, E5D06, E5D07, E5D08, E5D09, E5D10, E5D11, E5D12

Circuit Components

6.1 Semiconductor Materials and Devices

 Question IDs: E6A01, E6A02, E6A03, E6A04, E6A05, E6A06, E6A07, E6A08, E6A09, E6A10, E6A11, E6A12

6.2 Diodes

6.2.1 Zener Diodes

• Question IDs: E6B01, E6B03

6.2.2 Schottky Diodes

• Question IDs: E6B02, E6B06, E6B08

6.2.3 Varactor Diodes

• Question IDs: E6B04

6.2.4 PIN Diodes

• Question IDs: E6B05, E6B11

6.2.5 Point-Contact Diodes

• Question IDs: E6B09

6.2.6 Diode Applications

• Question IDs: E6B07, E6B10

6.3 Digital ICs

6.3.1 Logic Gates

• Question IDs: E6C07, E6C08, E6C10, E6C11

6.3.2 Comparators and Hysteresis

• Question IDs: E6C01, E6C02

6.3.3 Tri-State Logic

• Question IDs: E6C03

6.3.4 BiCMOS Logic

• Question IDs: E6C04

6.3.5 CMOS Logic

• Question IDs: E6C05, E6C06

6.3.6 Field-Programmable Gate Arrays (FPGAs)

• Question IDs: E6C09

6.4 Inductors

6.4.1 Core Materials and Permeability

• Question IDs: E6D04, E6D05, E6D06, E6D08, E6D10, E6D11, E6D12

6.4.2 Transformers

• Question IDs: E6D07

6.4.3 Ferrite Beads and Parasitic Suppression

• Question IDs: E6D09

6.5 Piezoelectricity

6.5.1 Piezoelectric Effect

• Question IDs: E6D01, E6D03

6.5.2 Quartz Crystals

• Question IDs: E6D02

6.6 Semiconductor Materials and Packages for RF Use

• Question IDs: E6E01, E6E02, E6E03, E6E04, E6E05, E6E06, E6E07, E6E08, E6E09, E6E10, E6E11, E6E12

6.7 Electro-Optical Technology

 \bullet Question IDs: E6F01, E6F02, E6F03, E6F04, E6F05, E6F06, E6F07, E6F08, E6F09, E6F10, E6F11

SUBELEMENT E7 - PRACTICAL CIRCUITS

- 7.1 Digital Circuit Essentials
- 7.1.1 Introduction to Digital Circuits
- 7.1.2 Bistable Circuits
 - E7A01
- 7.1.3 Counters and Frequency Division
 - E7A02, E7A03, E7A04
- 7.1.4 Multivibrators
 - E7A05, E7A06
- 7.1.5 Logic Gates
 - E7A07, E7A08, E7A09
- 7.1.6 Truth Tables and Positive Logic
 - E7A10, E7A11
- 7.2 Amplifier Basics
- 7.2.1 Class AB and Class D Amplifiers
 - E7B01, E7B02

7.2.2 RF Switching Amplifiers

• E7B03

7.2.3 Class A Amplifiers

• E7B04

7.2.4 Oscillations and Grounded-Grid Amplifiers

• E7B05, E7B06

7.2.5 Class C Amplifiers and Efficiency

• E7B07, E7B08

7.2.6 Emitter Followers and Biasing

• E7B09, E7B10, E7B11, E7B12

7.3 Network Element Configurations

7.3.1 Low-Pass and High-Pass Filters

• E7C01, E7C02

7.3.2 Pi-L Networks and Impedance Matching

• E7C03, E7C04

7.3.3 Filter Types

• E7C05, E7C06, E7C07

7.3.4 Helical and Crystal Lattice Filters

• E7C08, E7C09

7.3.5 Cavity Filters and Shape Factor

• E7C10, E7C11

7.4 Voltage Regulator Mechanics

7.4.1 Linear and Switchmode Regulators

• E7D01, E7D02

7.4.2 Voltage References and Three-Terminal Regulators

• E7D03, E7D04, E7D05

7.4.3 Linear Voltage Regulator Circuits

• E7D06, E7D07, E7D08

7.4.4 Battery Operating Time and Power Supplies

• E7D09, E7D10

7.4.5 Solar Panel Inverters and Dropout Voltage

• E7D11, E7D12

7.4.6 Power Dissipation and Filter Capacitors

• E7D13, E7D14, E7D15

7.5 Radio Communication Essentials

7.5.1 FM Signal Generation and Reactance Modulators

• E7E01, E7E02

7.5.2 Frequency Discriminators and SSB Signals

• E7E03, E7E04

7.5.3 Pre-emphasis and De-emphasis

• E7E05, E7E06

7.5.4 Baseband and Mixers

• E7E07, E7E08, E7E09

7.5.5 Detectors and Demodulation

• E7E10, E7E11

7.6 Key Terms in Software-Defined Radio and Digital Signal Processing

7.6.1 Direct Sampling and Adaptive Filters

• E7F01, E7F02

7.6.2 Hilbert-Transform Filters and SSB Generation

• E7F03, E7F04

7.6.3 Sampling and Fast Fourier Transform

• E7F05, E7F06, E7F07

7.6.4 Decimation and Anti-Aliasing Filters

• E7F08, E7F09

7.6.5 SDR Bandwidth and Signal Level

• E7F10, E7F11

7.6.6 FIR Filters and Taps

• E7F12, E7F13, E7F14

7.7 Op-Amp Essentials

7.7.1 Op-Amp Characteristics

• E7G01, E7G03, E7G04

7.7.2 Op-Amp Filters and Stability

• E7G02, E7G05

7.7.3 Gain-Bandwidth and Voltage Gain

• E7G06, E7G07, E7G08, E7G09, E7G10, E7G11

7.7.4 Operational Amplifier Definition

• E7G12

7.8 Oscillator Insights

7.8.1 Oscillator Circuits

• E7H01

7.8.2 Microphonics and Phase-Locked Loops

• E7H02, E7H03

7.8.3 Colpitts and Pierce Oscillators

• E7H04, E7H05

7.8.4 Frequency Synthesis and Direct Digital Synthesizers

• E7H06, E7H09, E7H10, E7H11

7.8.5 Crystal Oscillators and Stability

• E7H07, E7H08, E7H12, E7H13

SUBELEMENT E8 -SIGNALS AND EMISSIONS

- 8.1 Signal Processing Essentials
- 8.1.1 Fourier Analysis and Analog-to-Digital Conversion
 - E8A01, E8A02
- 8.1.2 Time Domain and Dither
 - E8A03, E8A04
- 8.1.3 RMS Measurements and PEP-to-Average Power
 - E8A05, E8A06, E8A07
- 8.1.4 Direct Sampling and Resolution
 - E8A08, E8A09, E8A10
- 8.1.5 Total Harmonic Distortion
 - E8A11

8.2 Modulation Secrets Revealed

8.2.1 FM Modulation Index and Deviation Ratio

- E8B01, E8B02, E8B03, E8B04, E8B05, E8B06, E8B09
- 8.2.2 Orthogonal Frequency-Division Multiplexing
 - E8B07, E8B08

8.2.3 Frequency Division Multiplexing

• E8B10, E8B11

8.3 Transmission Insights

8.3.1 Quadrature Amplitude Modulation

- E8C01
- 8.3.2 Symbol Rate and PSK Signals
 - E8C02, E8C03, E8C04

8.3.3 Bandwidth of Various Signals

- E8C05, E8C06, E8C07
- 8.3.4 Error Correction and Digital Codes
 - E8C08, E8C09, E8C10
- 8.3.5 Baud Rate and CW Signal Bandwidth
 - E8C11, E8C12
- 8.3.6 Constellation Diagrams and Mesh Networks
 - E8C13, E8C14, E8C15

8.4 Spread Spectrum Unveiled

8.4.1 Spread Spectrum Techniques

• E8D01, E8D02, E8D03

8.4.2 Key Clicks and Parity Bits

• E8D04, E8D05, E8D06

8.4.3 AFSK Signals and Distortion

• E8D07, E8D08, E8D09

8.4.4 Baudot and ASCII Codes

• E8D10, E8D11

SUBELEMENT E9 -ANTENNAS AND TRANSMISSION LINES

9.1 Antenna Essentials

- 9.1.1 Isotropic Radiators and Effective Radiated Power
 - E9A01, E9A02, E9A03
- 9.1.2 Feed Point Impedance and Ground Gain
 - E9A04, E9A05
- 9.1.3 Antenna Efficiency and Ground Losses
 - E9A06, E9A07, E9A09, E9A10, E9A11
- 9.1.4 Gain Comparison and Fresnel Zones
 - E9A08, E9A12
- 9.2 Antenna Patterns Unveiled
- 9.2.1 Beamwidth and Front-to-Back Ratio
 - E9B01, E9B02, E9B03, E9B04

9.2.2 Elevation Patterns and Far Field

- E9B05, E9B06, E9B07, E9B08
- 9.2.3 Method of Moments Analysis
 - E9B09, E9B10, E9B11

9.3 Antenna Patterns and Impedances

- 9.3.1 Radiation Patterns of Vertical Antennas
 - E9C01, E9C02, E9C03
- 9.3.2 Long Wire and Off-Center-Fed Dipoles
 - E9C04, E9C05
- 9.3.3 Terminated Rhombic and Folded Dipoles
 - E9C06, E9C07, E9C08
- 9.3.4 G5RV and Zepp Antennas
 - E9C09, E9C10
- 9.3.5 Extended Double Zepp and Polarization Effects
 - E9C11, E9C12, E9C13, E9C14
- 9.4 Antenna Insights
- 9.4.1 Parabolic Reflectors and Circular Polarization
 - E9D01, E9D02
- 9.4.2 Loading Coils and Electrically Short Antennas
 - E9D03, E9D04, E9D05, E9D06, E9D07, E9D08, E9D09, E9D10
- 9.4.3 Yagi Antennas and Radiation Resistance
 - E9D11, E9D12

9.5 Matching Antenna Mechanics

9.5.1 Gamma and Beta Matches

• E9E01, E9E02, E9E03, E9E04, E9E05

9.5.2 Q-Section and Wilkinson Divider

• E9E06, E9E07, E9E08

9.5.3 Shunt Feeding and Phasing Lines

• E9E09, E9E11

9.6 Transmission Line Essentials

9.6.1 Velocity Factor and Electrical Length

• E9F01, E9F02, E9F03

9.6.2 Transmission Line Impedance

• E9F04, E9F05, E9F06, E9F07, E9F08, E9F09, E9F10, E9F11, E9F12

9.7 Charting Impedances

9.7.1 Smith Chart Basics

• E9G01, E9G02, E9G03, E9G04, E9G05

9.7.2 Smith Chart Components

• E9G06, E9G07, E9G08, E9G09, E9G10, E9G11

9.8 Essential Antenna Design Insights

9.8.1 Beverage Antennas and Directivity

• E9H01, E9H02, E9H03, E9H06, E9H07

9.8.2 Small-Loop and Sense Antennas

• E9H04, E9H05, E9H08

36 CHAPTER~9.~~SUBELEMENT~E9-ANTENNAS~AND~TRANSMISSION~LINES

9.8.3 Cardioid Patterns and Loop Antennas

• E9H09, E9H10, E9H11

SUBELEMENT E0 -SAFETY

10.1 Related Principles

10.1.1 Grounding and RF Exposure

• E0A01, E0A02, E0A03, E0A04

10.1.2 Microwave Hazards and MPE Limits

• E0A05, E0A06

10.1.3 Tower Safety and SAR

• E0A07, E0A08

10.1.4 RF Exposure Evaluations

• E0A09, E0A10

10.1.5 Climbing Safety

• E0A11, E0A12