8

9

1

2

3

4

5

1

2

3

1

sub t	$4_1'$	1. A method for communicating packets between one of a plurality of
	2	sending nodes and one of a plurality of receiving nodes of a switched network, the
	3	switched network including a buffer-less switch coupling the sending nodes and the
	4	receiving nodes, the method comprising:
	5	transmitting packets from respective sending nodes to respective input ports of
	6	the buffer-less switch; and

the buffer-less switch; and
forwarding all packets that are successfully delivered through output ports of
the buffer-less switch to the receiving nodes, through the buffer-less
switch with a fixed forwarding rate.

- 2. The method as recited in claim I wherein each receiving node sends an acknowledge to a respective sending node at a predetermined time with respect to sending a corresponding packet, to indicate successful delivery of the corresponding packet to the sending node, thereby providing a fixed time for the sending node to know whether a packet was successfully transmitted.
- 3. The method as recited in claim 2 wherein the sending node determines that transmission of a packet was unsuccessful by checking if the acknowledge was returned after the predetermined time has elapsed.
- 1 4. The method as recited in claim 3 wherein the receiving node sends a 2 no acknowledge (nack) at the predetermined time to the sending node on detection of 3 an error condition in receipt of the packet.
- The method as recited in claim 4 wherein the error condition detected by the receiving node is one of a buffer overflow and a checksum error.
- 1 6. The method as recited in claim 2 wherein unsuccessful transmission 2 is determined by a timeout indicating that an acknowledge failed to arrive after the 3 predetermined time has elapsed.
 - 7. The method as recited in claim 1 further comprising:

- 35 -

2	for ea	ch packet being sent over the switched network, requesting respective			
3	transmission paths through the switched network to one of the				
4		receiving nodes;			
5	alloca	allocating one of the transmission paths to a first requester with respect to			
6		arrival time in the buffer-less switch, the first requester requesting the			
7		one transmission path, and ignoring any other requests for the one			
8		transmission path until the one transmission path again becomes			
9		available; and			
10	if mu	Itiple requests collide by requesting a switch resource simultaneously,			
11		selecting a first packet associated with one of the requests as a winning			
12		packet and dropping any other packets associated with requests other			
13		than the one request.			
1	8.	The method as recited in claim 7 wherein the requests for transmission			
2	paths are contained within the packets sent into the network and extracted after entry				
3	into the switc	ch.			
1	9.	The method as recited in claim 7 further comprising selecting the			
2	winning pack	tet according to at least one of a random basis and a round robin basis.			
1	10.	The method as recited in claim 7 further comprising selecting the			
2	winning pack	tet according to a fairness riteria having an objective to allocate to each			
3	input port an	equal share of bandwidth at each output port.			
1	11.	The method as recited in claim 7, wherein no buffer space is allocated			
2	in a receiving	g node before a packet is sent, thereby simplifying switch overhead.			
1	12.	The method as recited in claim 11 wherein if the receiving node detects			
2	a buffer over	flow, the receiving node sends a no acknowledge packet (nack) to the			

13. The method as recited in claim 1 wherein communicating packets between one of the sending nodes and one of the receiving nodes further comprises:

sending node indicating that a packet associated with the buffer overflow was not

successfully received.

3

4

1

2

3	the sending node writing a packet to a send register;				
4	the sending node polling a status register to determine if transmission of the				
5	packet was successful; and				
6	if transmission was unsuccessful rewriting the packet to the send register.				
1	14. A method for utilizing a switch of a switched network comprising:				
2	forwarding packets at a fixed rate on a first come first served basis from				
3	respective input ports through the witch to respective output ports;				
4	and //				
5	if a first and second packet simultaneously request a switch resource, selecting				
6	one of the first and second packets a winner and one a loser, the winner				
7	obtaining the switch resource, and dropping the loser.				
1	15. The method as recited in claim 14 wherein the selecting is determined				
2	according to at least one of a random selection and a round robin selection.				
1	16. The method as recited in claim 14 wherein low latency packets are				
2	transmitted on the switch.				
1	17. The method as recited in claim 14 wherein a sending node can				
2	positively determine after a fixed delay with respect to sending of the packet that a				
3	packet was successfully transmitted across the switched network.				
5	packet was successfully transmitted across the switched network.				
1	18. A computing system comprising:				
2	a plurality of sending and receiving nodes;				
3	a low latency switched network including a first switch, the first switch being				
4	a buffer-less switch coupling the plurality of sending and receiving				
5	nodes, the buffer-less switch having a fixed forwarding delay for all				
6	packets sent from one of the sending nodes and successfully received				
7	by one of the receiving nodes.				
1	19. The computing system as recited in claim 18 further comprising a				
2	second switched network including a second switch coupled to the plurality of				

sending and receiving nodes.

3

1 2

3

1

1

2

3

1 2

1 2

3

4

1	20. The computing system as recited in claim 18	wherein the first switch
2	carries scheduling information for a storage device and the	second switch carries bulk
3	traffic for at least one of storage and retrieval on the storage	e device.

- The computing system as recited in claim/18 wherein each sending 21. node includes a send register written into by a sending node to send data across the network.
- 22. The computing system as recited in claim 21 wherein each sending node includes a status register indicating whether a fransfer across the network completed successfully.
- 23. The computing system as recited in claim 22 wherein the status 2 register includes a field indicating a type of failure.
 - 24. The computing system as recited in claim 22 wherein a sending node rewrites data into the send register if a transfer across the network for the data completed unsuccessfully.
 - The computing system as recited in claim 18 wherein the buffer-less 25. switch further comprises:
- a plurality of input registers coupled to respective input ports; 3 4
- switch control logic, coupled to the input registers and responsive to packet 5 information stored in the registers, to allocate output ports on the switch according to the packet information; 6
- 7 and wherein the switch control logic is responsive to allocate output ports on a 8 first come first served basis.
 - 26. The computing system as recited in claim 25 wherein respective packet information provided to the switch control logic constitutes respective requests for output ports, and if a first and second request for an output port path collide by requesting the output port at the same time, the switch control logic responds by

2

3

1

2

3 4

5

6 7

- selecting one of the requests as a winner and dropping a packet associated with the second request.
- The computing system as recited in claim 25 further comprising output registers in the buffer-less switch coupled to receive data selected by respective selector circuits selectively coupled to respective ones of the input ports.
- 1 28. The computing system as recited in claim 26 wherein the switch 2 control logic selects the winner according to at least one of a random basis and a 3 round robin basis.
 - 29. The computing system as recited in claim 18 wherein the low latency switched network includes a plurality of cascaded buffer-less switches, thereby forming a multi-stage buffer-less switch.
 - 30. A switched network comprising:

 means for forwarding packets ports at a fixed rate on a first come first served basis from respective input ports through the switch to respective output ports; and
 - means for selecting one of a first and second packet as a winner and one a loser, the winner obtaining a switch resource, and dropping the loser, if the first and second packet simultaneously request the switch resource.