CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/31 Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme	Syllabus	Paper	•
		GCE A LEVEL – October/November 2013	9709	31	
1	Obtain co	ect quotient or product rule orrect derivative in any form e given statement		M1 A1 A1	[3]
2	EITHER:	State or imply non-modular equation $2^2(3^x \ 1)^2 \ (3^x)^2$, or p $2(3^x \ 1) \pm 3^x$	pair of equations	M1	
		Obtain $3^x = 2$ and $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$)		A1	
		3			
	OR:	Obtain $3^x = 2$ by solving an equation or by inspection		B1	
		Obtain $3^x \frac{2}{3}$ (or $3^{x+1} = 2$) by solving an equation or by inspe	ction	B1	
	Use corre Obtain fi	ect method for solving an equation of the form $3^x = a$ (or $3^{x+1} =$ nal answers 0.631 and -0.369	a), where $a > 0$	M1 A1	[4]
3	EITHER:	Integrate by parts and reach $kx^{\frac{1}{2}} \ln x$ $m \int x^{\frac{1}{2}} \cdot \frac{1}{x} dx$		M1*	
		Obtain $2x^{\frac{1}{2}} \ln x$ $2 \int \frac{1}{x^{\frac{1}{2}}} dx$, or equivalent		A1	
		Integrate again and obtain $2x^{\frac{1}{2}} \ln x$ $4x^{\frac{1}{2}}$, or equivalent Substitute limits $x = 1$ and $x = 4$, having integrated twice Obtain answer $4(\ln 4 \ 1)$, or exact equivalent		A1 M1(dep*) A1	
	OR1:	Using $u = \ln x$, or equivalent, integrate by parts and reach $kue^{-\frac{1}{2}}$	$\frac{1}{2}^{u}$ $m\int e^{\frac{1}{2}u}du$	M1*	
		Obtain $2ue^{\frac{1}{2}u}$ $2\int e^{\frac{1}{2}u} du$, or equivalent		A1	
		Integrate again and obtain $2ue^{\frac{1}{2}u}$ $4e^{\frac{1}{2}u}$, or equivalent Substitute limits $u = 0$ and $u = \ln 4$, having integrated twice Obtain answer $4 \ln 4$ 4, or exact equivalent		A1 M1(dep*) A1	
	OR2:	Using $u = \sqrt{x}$, or equivalent, integrate and obtain $ku \ln u = m \int$	$\int u \cdot \frac{1}{u} du$	M1*	
		Obtain $4u \ln u + \int 1 du$, or equivalent		A1	
		Integrate again and obtain $4u \ln u + 4u$, or equivalent		A1	
		Substitute limits $u = 1$ and $u = 2$, having integrated twice or qu	$\int \ln u du$		
		as $u \ln u \pm u$ Obtain answer $8 \ln 2$ 4, or exact equivalent		M1(dep*) A1	
	OR3:	Integrate by parts and reach $I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x \sqrt{x}} dx$		M1*	
		Obtain $I = \frac{x \ln x - x}{\sqrt{x}} + \frac{1}{2}I = \frac{1}{2} \int \frac{1}{\sqrt{x}} dx$		A1	
		Integrate and obtain $I = 2\sqrt{x} \ln x + 4\sqrt{x}$, or equivalent		A1	
		Substitute limits $x = 1$ and $x = 4$, having integrated twice Obtain answer $4 \ln 4$, or exact equivalent		M1(dep*) A1	[5]

	Page 5	Mark Scheme	Syllabus	Paper	•
	-	GCE A LEVEL – October/November 2013	9709 31		
4	Use corre	ct product or quotient rule at least once		M1*	
	Obtain $\frac{d}{d}$	$\frac{dy}{dt} = \int_{0}^{t} \sin t dt = \int_{0}^{t} \cos t dt = \int_{0}^{t} \sin t dt$, or equivalent		A1	
	Use $\frac{\mathrm{d}y}{\mathrm{d}x}$	di di		M1	
	Obtain $\frac{d}{d}$	$\frac{y}{x} = \frac{\sin t - \cos t}{\sin t + \cos t}$, or equivalent		A1	
	EITHER:	Express $\frac{dy}{dx}$ in terms of tan t only	M1	(dep*)	
		Show expression is identical to $\tan\left(t - \frac{1}{4}\pi\right)$		A1	
	OR:	Express $\tan\left(t - \frac{1}{4}\pi\right)$ in terms of $\tan t$		M1	
		Show expression is identical to $\frac{dy}{dx}$		A1	[6]
5		Use Pythagoras		M1	
		Use the $\sin 2A$ formula Obtain the given result		M1 A1	[3]
	(ii)	Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain $p \ln \tan \theta$	integral of the form	n M1*	
		Obtain indefinite integral $\frac{1}{2} \ln \sin \theta + \frac{1}{2} \ln \cos \theta$, or equivalent, or	$r \frac{1}{2} \ln \tan \theta$	A1	
		Substitute limits correctly Obtain the given answer correctly having shown appropriate wor		(dep)* A1	[4]
6	(i)	State or imply $AB = 2r\cos\theta$ or $AB^2 = 2r^2 = 2r^2\cos(\pi + 2\theta)$		B1	
		Use correct formula to express the area of sector ABC in terms of		M1 M1	
		Use correct area formulae to express the area of a segment in terms State a correct equation in r and θ in any form	ins of r and b	A1	
		Obtain the given answer [SR: If the complete equation is approached by adding two s area above <i>BO</i> and <i>OC</i> give the first M1 as on the scheme for using correct area formulae for a triangle <i>AOB</i> or <i>AO</i> or <i>AOC</i> .]	e, and the second M1		[5]
		Use the iterative formula correctly at least once Obtain final answer 0.95		M1 A1	
		Show sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or change in the interval (0.945, 0.955)	show there is a sign		[3]
					رحا

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	31

7 (i) State or imply partial fractions are of the form $\frac{A}{x-2} + \frac{Bx+C}{x^2+3}$

Use a relevant method to determine a constant

Obtain one of the values A = -1, B = 3, C = -1Obtain a second value

A1

Obtain the third value

A1

[5]

(ii) Use correct method to obtain the first two terms of the expansions of $(x \ 2)^{1}$,

 $\left(1 \quad \frac{1}{2}x\right)^{-1}, \left(x^2+3\right)^{-1} \text{ or } \left(1+\frac{1}{3}x^2\right)^{-1}$ M1

Substitute correct unsimplified expansions up to the term in x^2 into each partial fraction $A1\sqrt[4]{+}A1\sqrt[4]{}$

Multiply out fully by Bx + C, where $BC \neq 0$ M1

Obtain final answer $\frac{1}{6} + \frac{5}{4}x + \frac{17}{72}x^2$, or equivalent A1 [5]

[Symbolic binomial coefficients, e.g. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are not sufficient for the M1. The f.t. is

on A, B, C.]

[In the case of an attempt to expand $(2x^2 - 7x - 1)(x - 2)^{-1}(x^2 + 3)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1 $^{-1}$ A1 $^{-1}$ in (ii)]

8 (a) EITHER: Solve for u or for v

Obtain $u = \frac{2i - 6}{1 - 2i}$ or $v = \frac{5}{1 - 2i}$, or equivalent

M1

Either: Multiply a numerator and denominator by conjugate of denominator, or equivalent

Or: Set u or v equal to x + iy, obtain two equations by equating real and imaginary parts and solve for x or for y M1

OR: Using a + ib and c + id for u and v, equate real and imaginary parts and obtain

four equations in a, b, c and d Obtain b + 2d = 2, a + 2c = 0, a + d = 0 and -b + c = 3, or equivalent A1

Solve for one unknown M1

Obtain final answer u = -2 -2i, or equivalent

Obtain final answer v = 1 + 2i, or equivalent A1 [5]

(b) Show a circle with centre –i B1

Show a circle with radius 1

Show correct half line from 2 at an angle of $\frac{3}{4}\pi$ to the real axis

Use a correct method for finding the least value of the modulus

M1

Obtain final answer $\frac{3}{\sqrt{2}}$ 1, or equivalent, e.g. 1.12 (allow 1.1) A1 [5]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	31

9 (i)	EITHER	2: Obtain a vector parallel to the plane, e.g. \overrightarrow{AB} 2i+4j k	B1	
		Use scalar product to obtain an equation in a, b, c, e.g. $2a+4b$ c 0,		
		$3a \ 3b+3c \ 0$, or $a+b+2c \ 0$	M1	
		Obtain two correct equations in a, b, c	A1	
		Solve to obtain ratio $a:b:c$	M1	
		Obtain $a:b:c$ 3:1: 2, or equivalent	A1	
	OR1:	Obtain equation $3x + y - 2z = 1$, or equivalent Substitute for two points, e.g. A and B, and obtain $2a \ b+2c \ d$	A1	
		and $3b+c$ d	B1	
		Substitute for another point, e.g. <i>C</i> , to obtain a third equation and eliminate one unknown entirely from the three equations	M1	
		Obtain two correct equations in three unknowns, e.g. in a, b, c	A1	
		Solve to obtain their ratio, e.g. $a:b:c$	M1	
		Obtain $a:b:c$ 3:1: 2, $a:c:d$ 3: 2:1, $a:b:d$ 3:1:1 or	A 1	
		b:c:d 1: 2:1 Obtain equation 3x + y 2z 1 or equivalent	A1 A1	
		Obtain equation $3x + y$ 2z 1, or equivalent	AI	
	OR2:	Obtain a vector parallel to the plane, e.g. \overrightarrow{BC} 3i 3j+3k	B1	
		Obtain a second such vector and calculate their vector product		
		e.g. $(2\mathbf{i} + 4\mathbf{j} \mathbf{k}) \times (3\mathbf{i} 3\mathbf{j} + 3\mathbf{k})$	M1	
		Obtain two correct components of the product	A1	
		Obtain correct answer, e.g. $9i + 3j - 6k$	A1	
		Substitute in $9x + 3y + 6z + d$ to find d	M1	
		Obtain equation $9x + 3y + 6z = 3$, or equivalent	A1	
	OR3:	Obtain a vector parallel to the plane, e.g. \overrightarrow{AC} $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$	B1	
		Obtain a second such vector and form correctly a 2-parameter equation for		
		the plane	M1	
		Obtain a correct equation, e.g. $\mathbf{r} = 3\mathbf{i} + 4\mathbf{k} + \lambda (2\mathbf{i} + 4\mathbf{j} + \mathbf{k}) + \mu(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$	A1	
		State three correct equations in x, y, z, λ, μ	A1	
		Eliminate λ and μ	M1	
		Obtain equation $3x + y + 2z = 1$, or equivalent	A1	[6]
(ii)	Obtain a	answer $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, or equivalent	B1	[1]

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	31

(iii) EITHER: Use
$$\frac{\overrightarrow{OA}.\overrightarrow{OD}}{|\overrightarrow{OD}|}$$
 to find projection ON of OA onto OD

Obtain
$$ON = \frac{4}{3}$$

OR1: Calculate the vector product of
$$\overrightarrow{OA}$$
 and \overrightarrow{OD}

Obtain answer
$$6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$$
 A1

OR2: Taking general point
$$P$$
 of OD to have position vector $\lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$, form an equation in λ by either equating the scalar product of \overrightarrow{AP} and \overrightarrow{OP} to zero, or using Pythagoras in triangle OPA , or setting the derivative of $|\overrightarrow{AP}|$

Solve and obtain
$$\lambda = \frac{4}{9}$$

Carry out method to calculate AP when
$$\lambda = \frac{4}{9}$$
 M1

Obtain
$$\cos AOD = \frac{4}{9}$$
 or $\cos ADO = \frac{5}{3\sqrt{10}}$, or equivalent A1

Obtain
$$\cos AOD = \frac{8}{18}$$
 or $\cos ADO = \frac{10}{6\sqrt{10}}$, or equivalent A1

10 (i) State or imply
$$V \pi h^3$$

State or imply
$$\frac{dV}{dt} = k\sqrt{h}$$
 B1

Use
$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$
, or equivalent

[The M1 is only available if $\frac{dV}{dh}$ is in terms of h and has been obtained by a correct method.]

[Allow B1 for
$$\frac{dV}{dt}$$
 $k\sqrt{h}$ but withhold the final A1 until the polarity of the constant

$$\frac{k}{3\pi}$$
 has been justified.]

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	31

- (ii) Separate variables and integrate at least one side M1Obtain terms $\frac{2}{5}h^{\frac{5}{2}}$ and -At, or equivalent **A**1 Use t = 0, h = H in a solution containing terms of the form $ah^{\frac{5}{2}}$ and bt + cM1Use t = 60, h = 0 in a solution containing terms of the form ah^{-2} and bt + cM1 Obtain a correct solution in any form, e.g. $\frac{2}{5}h^{\frac{5}{2}}$ $\frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}$
- (ii) Obtain final answer $t = 60 \left(1 \left(\frac{h}{H} \right)^{\frac{5}{2}} \right)$, or equivalent A1 [6]

A1

(iii) Substitute $h = \frac{1}{2}H$ and obtain answer t = 49.4B1 [1]

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/32 Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work
 only. A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \\"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	ļ.	Mark Scheme	Syllabus	Paper	•
			GCE A LEVEL – October/November 2013	9709	32	
1	Obtain c	orrect o	otient or product rule derivative in any form n statement		M1 A1 A1	[3]
2	EITHER		or imply non-modular equation $2^2(3^x \ 1)^2 \ (3^x)^2$, or pair	r of equations		
		(1) $\pm 3^x$		M1	
		Obtai	$an 3^x = 2$ and $3^x \frac{2}{3}$ (or $3^{x+1} = 2$)		A1	
	OR:	Obtai	n $3^x = 2$ by solving an equation or by inspection		B1	
		Obtai	n $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$) by solving an equation or by inspect	ion	B1	
			thod for solving an equation of the form $3^x = a$ (or $3^{x+1} = a$) swers 0.631 and -0.369), where $a > 0$	M1 A1	[4]
3	EITHER		rate by parts and reach $kx^{\frac{1}{2}} \ln x$ $m \int x^{\frac{1}{2}} \cdot \frac{1}{x} dx$		M1*	
			$\int_{0}^{\infty} \frac{1}{2x^{2}} \ln x = 2 \int_{0}^{\infty} \frac{1}{x^{2}} dx, \text{ or equivalent}$		A1	
		Subst	rate again and obtain $2x^{\frac{1}{2}} \ln x + 4x^{\frac{1}{2}}$, or equivalent itute limits $x = 1$ and $x = 4$, having integrated twice n answer $4(\ln 4 + 1)$, or exact equivalent		A1 M1(dep*) A1	
	OR1:	Using	$gu = \ln x$, or equivalent, integrate by parts and reach $kue^{\frac{1}{2}u}$	$m\int e^{\frac{1}{2}u}du$	M1*	
		Obtai	n $2ue^{\frac{1}{2}u}$ $2\int e^{\frac{1}{2}u} du$, or equivalent		A1	
		Subst	rate again and obtain $2ue^{\frac{1}{2}u}$ $4e^{\frac{1}{2}u}$, or equivalent itute limits $u = 0$ and $u = \ln 4$, having integrated twice n answer $4 \ln 4$ 4, or exact equivalent		A1 M1(dep*) A1	
	OR2:	Using	$\int u \sqrt{x}$, or equivalent, integrate and obtain $ku \ln u = m \int u$	$\frac{1}{u} du$	M1*	
		Obtai	n $4u \ln u$ 4 $\int 1 du$, or equivalent		A1	
		_	rate again and obtain $4u \ln u + 4u$, or equivalent itute limits $u = 1$ and $u = 2$, having integrated twice or quo	ted In u du	A1	
		as uli	$nu \pm u$ n answer 8ln2 4, or exact equivalent	ted Jiii da	M1(dep*) A1	
	OR3:	Integr	rate by parts and reach $I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x \sqrt{x}} dx$		M1*	
			$\ln I = \frac{x \ln x}{\sqrt{x}} + \frac{1}{2}I = \frac{1}{2} \int \frac{1}{\sqrt{x}} dx$		A1	
		Subst	rate and obtain $I = 2\sqrt{x} \ln x = 4\sqrt{x}$, or equivalent itute limits $x = 1$ and $x = 4$, having integrated twice n answer $4 \ln 4 = 4$, or exact equivalent		A1 M1(dep*) A1	[5]

Page 5	Mark Scheme	Syllabus	Paper	
	GCE A LEVEL – October/November 2013	9709	32	
Use correc	et product or quotient rule at least once		M1*	
Obtain $\frac{dx}{dt}$	$\frac{dy}{dt} = \int_{0}^{t} \sin t dt = \int_{0}^{t} \cos t dt = \int_{0}^{t} \sin t dt$, or equivalent		A1	
Use $\frac{dy}{dx}$	$\frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		M1	
Obtain $\frac{dy}{dx}$	$\frac{\sin t - \cos t}{\sin t + \cos t}$, or equivalent		A1	
EITHER: I	Express $\frac{dy}{dx}$ in terms of tan <i>t</i> only	N	11(dep*)	
\$	Show expression is identical to $\tan\left(t - \frac{1}{4}\pi\right)$		A1	
OR:	Express $\tan\left(t - \frac{1}{4}\pi\right)$ in terms of $\tan t$		M1	
S	Show expression is identical to $\frac{dy}{dx}$		A1	[6]
	· · · ·		M1	
			M1 A1	[3]
	_	ntegral of the for		
		$\frac{1}{2}$ ln tan θ	A1	
	Substitute limits correctly	N	11(dep)*	
			Å1	[4]
(i) S	State or imply $AB = 2r\cos\theta$ or $AB^2 = 2r^2 = 2r^2\cos(\pi + 2\theta)$		B1	
	_		M1	
		s of r and θ		
	- · · · · · · · · · · · · · · · · · · ·			[5]
	SR: If the complete equation is approached by adding two searea above BO and OC give the first M1 as on the scheme,	and the second M	ed 11	[၁]
			M1	
(Obtain final answer 0.95		A1	
		now there is a sign	gn A1	[3]
	Obtain $\frac{dx}{dt}$ Use $\frac{dy}{dx}$ Obtain $\frac{dy}{dx}$ Contain $\frac{dx}{dx}$ Contain $\frac{dy}{dx}$ Contain $\frac{dy}{d$	Use correct product or quotient rule at least once Obtain $\frac{dx}{dt} = t' \sin t = t' \cos t \text{ or } \frac{dy}{dt} = t' \cos t = t' \sin t, \text{ or equivalent}$ Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$ Obtain $\frac{dy}{dx} = \frac{\sin t}{\sin t} \cos t$, or equivalent EITHER: Express $\frac{dy}{dx}$ in terms of tan t only Show expression is identical to $\tan \left(t - \frac{1}{4}\pi\right)$ OR: Express $\tan \left(t - \frac{1}{4}\pi\right)$ in terms of tan t Show expression is identical to $\frac{dy}{dx}$ (i) Use Pythagoras Use the $\sin 2A$ formula Obtain the given result (ii) Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain in $p \ln \tan \theta$ Obtain indefinite integral $\frac{1}{2} \ln \sin \theta = \frac{1}{2} \ln \cos \theta$, or equivalent, or Substitute limits correctly Obtain the given answer correctly having shown appropriate work (i) State or imply $AB = 2r \cos \theta$ or $AB^2 = 2r^2 = 2r^2 \cos(\pi - 2\theta)$ Use correct area formulae to express the area of a segment in term State a correct equation in r and θ in any form Obtain the given answer [SR: If the complete equation is approached by adding two searea above BO and OC give the first M1 as on the scheme, for using correct area formulae for a triangle AOB or AOC .] (ii) Use the iterative formula correctly at least once Obtain final answer 0.95	Use correct product or quotient rule at least once Obtain $\frac{dx}{dt} = e' \sin t = e' \cos t \text{ or } \frac{dy}{dt} = e' \cos t = e' \sin t, \text{ or equivalent}$ Use $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$ Obtain $\frac{dy}{dx} = \frac{\sin t - \cos t}{\sin t + \cos t}$, or equivalent EITHER: Express $\frac{dy}{dt}$ in terms of tan t only Show expression is identical to $\tan \left(t - \frac{1}{4}\pi\right)$ OR: Express $\tan \left(t - \frac{1}{4}\pi\right)$ in terms of tan t Show expression is identical to $\frac{dy}{dx}$ (i) Use Pythagoras Use the $\sin 2A$ formula Obtain the given result (ii) Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain integral of the for $p \ln \tan \theta$ Obtain indefinite integral $\frac{1}{2} \ln \sin \theta - \frac{1}{2} \ln \cos \theta$, or equivalent, or $\frac{1}{2} \ln \tan \theta$ Substitute limits correctly Obtain the given answer correctly having shown appropriate working (i) State or imply $AB - 2r \cos \theta$ or $AB^2 - 2r^2 - 2r^2 \cos(\pi - 2\theta)$ Use correct area formulae to express the area of a segment in terms of r and θ Use correct area formulae to express the area of a segment in terms of r and θ State a correct equation in r and θ in any form Obtain the given answer [SR: If the complete equation is approached by adding two sectors to the shad area above BO and OC give the first M1 as on the scheme, and the second N for using correct area formulae for a triangle AOB or AOC , and a sector AOC . (ii) Use the iterative formula correctly at least once Obtain final answer 0.95 Show sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a signal and the second N for sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a signal and the second N for sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a signal and the second N for sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a signal and the second N for sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a signal and the second N for sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show there is a	Use correct product or quotient rule at least once $\frac{dy}{dt}$ e ' sin t e ' cost or $\frac{dy}{dt}$ e ' cost e ' sin t, or equivalent A1 Use $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$ A1 Use $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$ A1 Use $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$ A1 EITHER: Express $\frac{dy}{dx}$ in terms of tan t only M1(dep*) Show expression is identical to $\tan(t - \frac{1}{4}\pi)$ A1 OR: Express $\tan(t - \frac{1}{4}\pi)$ in terms of tan t Show expression is identical to $\frac{dy}{dx}$ A1 (i) Use Pythagoras Use the sin 2.4 formula A1 Obtain the given result A1 (ii) Integrate and obtain a k ln sin θ or m ln cos θ term, or obtain integral of the form p ln tan θ Obtain the given result A1 (ii) Integrate and obtain a k ln sin θ or m ln cos θ, or equivalent, or $\frac{1}{2}$ ln tan θ A1 Substitute limits correctly A1 Obtain the given answer correctly having shown appropriate working A1 (ii) State or imply AB $2r \cos \theta$ or $AB^2 = 2r^2 = 2r^2 \cos(\pi - 2\theta)$ B1 Use correct area formulae to express the area of sector ABC in terms of r and θ M1 Use correct area formulae to express the area of a segment in terms of r and θ M1 State area of sevent area of sector ABC in terms of r and θ M1 State area of sevent area of sector ABC in terms of r and θ M1 State area of sevent area of sector ABC in terms of r and θ M1 State area of sevent area of sector ABC in terms of r and θ M1 State area of sevent area of a segment in terms of r and θ A1 Obtain the given answer O5 O5 O5 O5 O5 O5 O5 O

Syllabus

Paper

Page 5

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	32

(i) State or imply partial fractions are of the form $\frac{A}{x-2} + \frac{Bx+C}{x^2+3}$ 7 **B**1

> Use a relevant method to determine a constant M1Obtain one of the values A = -1, B = 3, C = -1**A**1

Obtain a second value **A**1 Obtain the third value **A**1

[5]

M1

(ii) Use correct method to obtain the first two terms of the expansions of $(x \ 2)^{-1}$,

 $\left(1 \quad \frac{1}{2}x\right)^{-1}, \left(x^2+3\right)^{-1} \text{ or } \left(1+\frac{1}{3}x^2\right)^{-1}$ M1

Substitute correct unsimplified expansions up to the term in x^2 into each partial fraction

Multiply out fully by Bx + C, where $BC \neq 0$ M1

Obtain final answer $\frac{1}{6} + \frac{5}{4}x + \frac{17}{72}x^2$, or equivalent **A**1 [5]

[Symbolic binomial coefficients, e.g. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are not sufficient for the M1. The f.t. is

on A, B, C.]

[In the case of an attempt to expand $(2x^2 7x 1)(x 2)(x^2 + 3)^1$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.] [If B or C omitted from the form of partial fractions, give B0M1A0A0A0 in (i); M1A1√A1√ in (ii)]

(a) EITHER: Solve for u or for v8

M1Obtain $u = \frac{2i - 6}{1 - 2i}$ or $v = \frac{5}{1 - 2i}$, or equivalent **A**1

Either: Multiply a numerator and denominator by conjugate of denominator, or equivalent

Or: Set u or v equal to x + iy, obtain two equations by equating real and imaginary parts and solve for x or for y M1

OR: Using a + ib and c + id for u and v, equate real and imaginary parts and obtain four equations in a, b, c and d

> Obtain b + 2d = 2, a + 2c = 0, a + d = 0 and -b + c = 3, or equivalent **A**1

Solve for one unknown M1

Obtain final answer u = -2 –2i, or equivalent A1

Obtain final answer v = 1 + 2i, or equivalent **A**1 [5]

(b) Show a circle with centre –i **B**1

Show a circle with radius 1 B1

Show correct half line from 2 at an angle of $\frac{3}{4}\pi$ to the real axis B1

Use a correct method for finding the least value of the modulus M1

Obtain final answer $\frac{3}{\sqrt{2}}$ 1, or equivalent, e.g. 1.12 (allow 1.1) **A**1 [5]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	32

9	(i)	EITHER	R: Obtain a vector parallel to the plane, e.g. \overrightarrow{AB} $2\mathbf{i} + 4\mathbf{j}$ \mathbf{k}	B1	
			Use scalar product to obtain an equation in a, b, c, e.g. $2a+4b$ c 0,		
			$3a \ 3b + 3c \ 0$, or $a + b + 2c \ 0$	M1	
			Obtain two correct equations in a, b, c	A1	
			Solve to obtain ratio $a:b:c$	M1	
			Obtain $a:b:c$ 3:1: 2, or equivalent	A 1	
			Obtain equation $3x + y - 2z = 1$, or equivalent	A1	
		OR1:	Substitute for two points, e.g. A and B, and obtain $2a \ b+2c \ d$		
			and $3b+c$ d	B1	
			Substitute for another point, e.g. C, to obtain a third equation and eliminate	3.61	
			one unknown entirely from the three equations	M1	
			Obtain two correct equations in three unknowns, e.g. in a , b , c Solve to obtain their ratio, e.g. $a : b : c$	A1 M1	
			Obtain $a:b:c$ 3:1: 2, $a:c:d$ 3: 2:1, $a:b:d$ 3:1:1 or	IVI I	
			b:c:d 1: 2:1	A1	
			Obtain equation $3x + y = 2z = 1$, or equivalent	A1	
		OD2			
		OR2:	Obtain a vector parallel to the plane, e.g. \overrightarrow{BC} 3i 3j+3k	B1	
			Obtain a second such vector and calculate their vector product	2.61	
			e.g. $(2\mathbf{i} + 4\mathbf{j} \mathbf{k}) \times (3\mathbf{i} 3\mathbf{j} + 3\mathbf{k})$	M1	
			Obtain two correct components of the product	A1	
			Obtain correct answer, e.g. $9\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$	A1	
			Substitute in $9x + 3y$ 6z d to find d	M1	
			Obtain equation $9x + 3y + 6z = 3$, or equivalent	A 1	
		OR3:	Obtain a vector parallel to the plane, e.g. \overrightarrow{AC} $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$	B1	
			Obtain a second such vector and form correctly a 2-parameter equation for		
			the plane	M1	
			Obtain a correct equation, e.g. $\mathbf{r} = 3\mathbf{i} + 4\mathbf{k} + \lambda(2\mathbf{i} + 4\mathbf{j} + \mathbf{k}) + \mu(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$	A1	
			State three correct equations in x, y, z, λ, μ	A1	
			Eliminate λ and μ	M1	
			Obtain equation $3x + y + 2z = 1$, or equivalent	A1	[6]
			ocam equation on ty 22 1, or equivalent	111	[v]
	(ii)	Obtain a	enswer $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, or equivalent	B1	[1]
			_		

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	32

(iii) EITHER: Use
$$\frac{\overrightarrow{OA.OD}}{|\overrightarrow{OD}|}$$
 to find projection ON of OA onto OD

Obtain $ON = \frac{4}{3}$

Use Pythagoras in triangle OAN to find AN
Obtain the given answer

A1

OR1: Calculate the vector product of \overrightarrow{OA} and \overrightarrow{OD}
Obtain answer $6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$
A1

Divide the modulus of the vector product by the modulus of \overrightarrow{OD}
Obtain the given answer

A1

OR2: Taking general point P of OD to have position vector $\lambda(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$, form an equation in λ by either equating the scalar product of \overrightarrow{AP} and \overrightarrow{OP} to zero, or using Pythagoras in triangle OPA , or setting the derivative of $|\overrightarrow{AP}|$
to zero

M1

Solve and obtain $\lambda = \frac{4}{9}$
A1

Carry out method to calculate AP when $\lambda = \frac{4}{9}$
M1

OR3: Use a relevant scalar product to find the cosine of AOD or ADOObtain $\cos AOD = \frac{4}{9}$ or $\cos ADO = \frac{5}{3\sqrt{10}}$, or equivalent

Use trig to find the length of the perpendicular

Obtain the given answer

OR4: Use cosine formula in triangle AOD to find $\cos AOD$ or $\cos ADO$ M1

Obtain $\cos AOD = \frac{8}{18}$ or $\cos ADO = \frac{10}{6\sqrt{10}}$, or equivalent A1

Use trig to find the length of the perpendicular M1

Obtain the given answer

M1

A1

[4]

A1

10 (i) State or imply $V \pi h^3$

Obtain the given answer

State or imply $\frac{dV}{dt} = k\sqrt{h}$ B1

Use $\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$, or equivalent M1

Obtain the given equation A1 [4]

[The M1 is only available if $\frac{dV}{dh}$ is in terms of h and has been obtained by a correct method.]

[Allow B1 for $\frac{dV}{dt}$ $k\sqrt{h}$ but withhold the final A1 until the polarity of the constant

 $\frac{k}{3\pi}$ has been justified.]

Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	32

(ii) Separate variables and integrate at least one side

Obtain terms $\frac{2}{5}h^{\frac{5}{2}}$ and -At, or equivalent

A1

Use t = 0, h = H in a solution containing terms of the form $ah^{\frac{5}{2}}$ and bt + c

M1

Use t = 60, h = 0 in a solution containing terms of the form $ah^{\frac{1}{2}}$ and bt + c

M1

Obtain a correct solution in any form, e.g. $\frac{2}{5}h^{\frac{5}{2}}$ $\frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}$

A1

(ii) Obtain final answer $t = 60 \left(1 - \left(\frac{h}{H} \right)^{\frac{5}{2}} \right)$, or equivalent

A1 **[6]**

(iii) Substitute $h = \frac{1}{2}H$ and obtain answer t = 49.4

B1 [1]

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/33 Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol № implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4 Mark Scheme		Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	33
Apply at least o	ne logarithm property correctly		*M1

- Obtain $\frac{(x+4)^n}{x}$ x+a or equivalent without logarithm involved A1
- Rearrange to express x in terms of ad*M M1
- Obtain $\frac{16}{a}$ or equivalent **A**1 [4]
- Carry out complete substitution including the use of $\frac{du}{dx}$ 3 2 M1
 - Obtain $\int \left(\frac{1}{3} + \frac{1}{3u}\right) du$ A1
 - Integrate to obtain form $k_1u + k_2 \ln u$ or $k_1u + k_2 \ln 3u$ where $k_1k_2 \neq 0$ M1
 - Obtain $\frac{1}{3}(3x+1)$ $\frac{1}{3}\ln(3x+1)$ or equivalent, condoning absence of modulus signs and + c A1 [4]
- 3 Substitute -2 and equate to zero or divide by x + 2 and equate remainder to zero or use −2 in synthetic division M1Obtain a = -1**A**1 [2]
 - (ii) Attempt to find quadratic factor by division reaching $x^2 + kx$, or inspection as far as $(x+2)(x^2+Bx+c)$ and equations for one or both of B and C, or $(x+2)(Ax^2+Bx+7)$ and equations for one or both of A and B. M1Obtain x^2 3x + 7**A**1 Use discriminant to obtain -19, or equivalent, and confirm one root cwo A1 [3]
- Differentiate y^3 to obtain $3y^2 \frac{dy}{dx}$ 4 **B**1 Use correct product rule at least once *M1
 - Obtain $6e^{2x}y + 3e^{2x}\frac{dy}{dx} + e^{x}y^{3} + 3e^{x}y^{2}\frac{dy}{dx}$ as derivative of LHS **A**1
 - Equate derivative of LHS to zero, substitute x = 0 and y = 2 and find value of $\frac{dy}{dx}$ M1(d*M)
 - Obtain $\frac{4}{3}$ or equivalent as **final answer A**1 [5]
- (i) Use integration by parts to obtain $axe^{\frac{1}{2}x} + \int be^{\frac{1}{2}x} dx$ 5 M1*
 - Obtain $8xe^{\frac{1}{2}x} + \int 8e^{\frac{1}{2}x} dx$ or unsimplified equivalent A1
 - Obtain $8xe^{\frac{1}{2}x}$ $16e^{\frac{1}{2}x}$ Use limits correctly and equate to 9 **A**1
 - M1(d*M)Obtain given answer $p = 2 \ln \left(\frac{8p+16}{7} \right)$ correctly **A**1 [5]

-	. u	3			Oynabas	i apci	
			G	CE A LEVEL – October/November 2013	9709	33	
	(ii)	Use correct iteration formula correctly at least once Obtain final answer 3.77 Show sufficient iterations to 5sf or better to justify accuracy 3.77 or show sign change in interval $(3.765, 3.775)$ [$3.5 \rightarrow 3.6766 \rightarrow 3.7398 \rightarrow 3.7619 \rightarrow 3.7696 \rightarrow 3.7723$]			M1 A1		
					A1	[3]	
6	(i)	Find scalar product of the normals to the planes Using the correct process for the moduli, divide the scalar product by the product of the			M1		
		moduli and find cos ¹ of the result. Obtain 67.8° (or 1.18 radians)		M1 A1	[3]		
	(ii)	<u>EITHER</u>	ER Carry out complete method for finding point on line		M1		
		Obtain one such point, e.g. $(2, 3,0)$ or $\left(\frac{17}{7},0,\frac{6}{7}\right)$ or $(0, 17, 4)$ or		A1			
			<u>Either</u>	State $3a$ $b+2c$ 0 and $a+b$ 4c 0 or equivariant	alent	B1	
				Attempt to solve for one ratio, e.g. $a:b$		M1	
				Obtain $a:b:c$ 1:7:2 or equivalent	54 = 03	A1	
				State a correct final answer, e.g. $r = [2, -3, 0] + \lambda$	[1, 7, 2]	A1√	
			<u>Or 1</u>	Obtain a second point on the line		A1	
				Subtract position vectors to obtain direction vecto	r	M1	
				Obtain [1, 7, 2] or equivalent	[1 7 2]	A1 A1√	
				State a correct final answer, e.g. $r = [2, -3, 0] + \lambda$	[1, /, 2]	AI₩	
			<u>Or 2</u>	Use correct method to calculate vector product of	two normals	M1	
				Obtain two correct components		A1	
				Obtain [2, 14, 4] or equivalent State a correct final answer, e.g. $r = [2, -3, 0] + \lambda$	[1 7 2]	A1 A1√	
				[is dependent on both M marks in all three case		711+	
		<u>OR 3</u>	•	ss one variable in terms of a second variable		M1	
			Obtain a correct simplified expression, e.g. $x = \frac{1}{2}(4+z)$		A1		
			Expres	s the first variable in terms of third variable		M1	
			Obtain	a correct simplified expression, e.g. $x = \frac{1}{7}(17 + y)$		A1	
				a vector equation for the line	21	M1	
			State a	correct final answer, e.g. $r = [0, -17, -4] + \lambda [1, 7, -4]$	2]	A1	
		OR 4 Express one variable in terms of a second variable		M1			
				a correct simplified expression, e.g. $z + 2x + 4$		A1	
				is third variable in terms of the second variable a correct simplified expression, e.g. $y = 7x - 17$		M1 A1	
				a vector equation for the line		M1	
				correct final answer, e.g. $r = [0, -17, -4] + \lambda [1, 7, -4]$	21	A1	[6]
				, <u>, , , , , , , , , , , , , , , , , , </u>	-		r

Syllabus

Paper

Page 5

			·		
7	(i)		$\frac{1}{\cos \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$	B1	
			θ 2 sin θ cos θ and to form a horizontal equation in sin θ and cos θ or		
			with common denominators	M1	
		Obtain gi	ven equation $2\sin\theta + 4\cos\theta$ 3 correctly	A1	[3]
	(ii)	State or in	mply $R = \sqrt{20}$ or 4.47 or equivalent	B1	
		Use corre	ect trigonometry to find α	M1	
			3.43 or 63.44 with no errors seen	A1	[3]
	(iii)	Carry out	a correct method to find one value in given range	M1	
	()	Obtain 74.4° (or 338.7°)		A1	
			a correct method to find second value in given range	M1	
			38.7° (or 74.4°) and no others between 0° and 360°	A1	[4]
			A B C		
8	(i)	<u>Either</u>	State or imply form $\frac{A}{1+x} + \frac{B}{(1+x)^2} + \frac{C}{2-3x}$	B1	
			Use any relevant method to find at least one constant	M1	
			Obtain $A = -1$	A1	
			Obtain $B = 3$	A1	
			Obtain $C = 4$	A1	
		<u>Or</u>	State or imply form $\frac{A}{1+x} + \frac{Bx}{(1+x)^2} + \frac{C}{2 + 3x}$	B1	
			Use any relevant method to find at least one constant	M1	
			Obtain $A = 2$	A1	
			Obtain $B = -3$	A1	
			Obtain $C = 4$	A1	
		<u>Or</u>	State or imply form $\frac{Dx + E}{(1+x)^2} + \frac{F}{2 - 3x}$	B1	
			Use any relevant method to find at least one constant	M1	
			Obtain $D = -1$	A1	
			Obtain $E = 2$	A1	
			Obtain $F = 4$	A1	[5]

GCE A LEVEL – October/November 2013

Page 6

Paper 33

Syllabus

9709

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	33

(ii) Either Use correct method to find first two terms of expansion of $(1+x)^{-1}$ or

$$(1+x)^2$$
 or $(2 3x)^1$ or $(1 \frac{3}{2}x)^1$

Obtain correct unsimplified expansion of first partial fraction up to x^2 term
Obtain correct unsimplified expansion of second partial fraction up to x^2 term
Obtain correct unsimplified expansion of third partial fraction up to x^2 term
A1

A1

Obtain final answer 4 $2x + \frac{25}{2}x^2$ A1

Or 1 Use correct method to find first two terms of expansion of $(1+x)^2$

or
$$(2 \ 3x)^{-1}$$
 or $\left(1 \ \frac{3}{2}x\right)^{-1}$

Obtain correct unsimplified expansion of first partial fraction up to x^2 term
Obtain correct unsimplified expansion of second partial fraction up to x^2 term
Expand and obtain sufficient terms to obtain three terms

M1

Obtain final answer 4 $2x + \frac{25}{2}x^2$ A1

Or 2 (expanding original expression)

Use correct method to find first two terms of expansion of $(1+x)^2$

or
$$(2 \ 3x)^{-1}$$
 or $\left(1 \ \frac{3}{2}x\right)^{-1}$

Obtain correct expansion 1 $2x + 3x^2$ or unsimplified equivalent A1

Obtain correct expansion $\frac{1}{2} \left(1 + \frac{3}{2}x + \frac{9}{4}x^2 \right)$ or unsimplified equivalent A1

Expand and obtain sufficient terms to obtain three terms M1

Obtain final answer 4
$$2x + \frac{25}{2}x^2$$
 A1

Or 3 (McLaurin expansion)

Obtain first derivative f'(x) $(1+x)^2$ $6(1+x)^3+12(2 3x)^2$ M1

Obtain f'(0) 1 6+3 or equivalent A1

Obtain f''(0) = 2 + 18 + 9 or equivalent A1

Use correct form for McLaurin expansion M1

Obtain final answer 4
$$2x + \frac{25}{2}x^2$$
 A1 [5]

9 (a) Solve using formula, including simplification under square root sign M1*

Obtain $\frac{2 \pm 4i}{2(2 \ i)}$ or similarly simplified equivalents A1

Multiply by $\frac{2+i}{2+i}$ or equivalent in at least one case M1(d*M)

Obtain final answer $\frac{4}{5} + \frac{3}{5}i$ A1

Obtain final answer –i A1 [5]

	Page 8	Mark Scheme	Syllabus	Paper	•
	-	GCE A LEVEL – October/November 2013	9709	33	
	(b) Show w in first quadrant with modulus and argument relatively correct Show w³ in second quadrant with modulus and argument relatively correct Show w* in fourth quadrant with modulus and argument relatively correct Use correct method for area of triangle Obtain 10 by calculation			B1 B1 B1 M1 A1	[5]
10	Separate varial Obtain $ln(y^3 - 0)$ Obtain = 2x	Use $2\cos^2 x = 1 + \cos 2x$ or equivalent Separate variables and integrate at least one side Obtain $\ln(y^3 + 1) = \dots$ or equivalent Obtain $\dots = 2x + \sin 2x$ or equivalent Use $x = 0$, $y = 2$ to find constant of integration (or as limits) in an expression containing			
	at least two ter	ms of the form $a \ln(y^3 + 1)$, bx or $c \sin 2x$		M1*	
	Obtain $\ln(y^3 -$	$+1$) = $2x + \sin 2x + \ln 9$ or equivalent e.g. implied by correct	et constant	A1	
	Identify at leas	t one of $\frac{1}{2}\pi$ and $\frac{3}{2}\pi$ as x-coordinate at stationary point		B1	
	Use correct pro Obtain 5.9 Obtain 48.1	ocess to find y-coordinate for at least one x-coordinate		M1(c A1 A1	d*M) [10]