

客戶貸款違約風險

707王琥 證券-數據分析組【簡報專題】

Credit Home Default Risk Dataset

命題挑選之緣由

- 1. 挑戰自己
- 2. 數據完整、足夠、且貼近市場實況 relational database
- 3. Business Model主要獲利來源
- 4. Wide range of applications
 - 擔保貸款 房屋,車貸等
 - 無擔保貸款 一般消費信貸
 - Margin Account

數據介紹 Introduction

Applications

- 主要數據
- 預測的變數: Target
- 當下申請貸款的基本訊息與資 料
- SK ID CURR

Previous **Application**

- 與Home Credit 以前 的貸款訊息。
- 一個申請人可有多此 紀錄
- SK ID PREV
- SK_ID_CURR

Bureau

- 以前的貸款記錄、基本訊息、 資料等
- 一個申請人可能有有多次的的 歷史貸款記錄
- SK_ID_CURR
- SK ID BUREAU

每月餘額

當月的貸款狀態:進行中、已 關閉、DPD: 0-30, 31-60 etc.

Bureau_balance

SK ID BUREAU

POS_CASH_balance

- Home Credit 記錄的 每月結餘
- SK ID PREV
- SK ID CURR

Credit card balance

- 申請人在Home Credit 的信用卡的每 月消費記錄和餘額等 資料
- SK ID PREV
- SK_ID_CURR

Installments payments

- 以前在Home Credit 的貸款付費記錄與習 慣
- SK ID PREV
- SK ID CURR

Overview

Overall Steps and Idea

Feature Engineering 特徵工程

Categorical

- Binary 0,1
 (性別,是否提供基本資料, 是否遲繳?)
- One Hot Encode (工作職位?)

基本變數

- 貸款金額 產品金額
- 收入-貸款金額
- 收入/家庭人數
- 年收/貸款金額

Aggregate沒有解釋的變數

- EXTERNAL_SOURCE_1, 2, 3
- EXTERNAL_SOURCE * DAYS []

比率變數

- 增加時間與變數之間的關係
- 貸款金額/年齡
- 貸款金額/工作時長
- 貸款剩下的比率
- 完成的貸款比率

數據大小 Data Shape

Cleaning Data 清理數據

1. Reduce Memory Usage

- 找出dtype=int 的變數
- 用最大與最小值將可以改變的data type 改的越小越好
- E.g. if MAX=120, MIN=-120 change dtype to int8
- Int16, int32 改成 floating point
- 成功減少50%的memory usage

2. Delete Columns 刪除沒有訊息的變數

- 刪除空的變數
- 刪除0和1分佈一樣的類別特徵。(如果一個特徵有個100個0和100個1)
- 刪除Train Data 分佈與Test Data 分佈不一樣的變數 防止 Covariate Shift
- 刪除Feature Importance=0 的變數
- 將變數從3767減少到1566

LGBM Modeling

Why Light GBM?

- Faster, efficient
- 不需要太多記憶體
- 可以產出相同甚至更好的準確度
- 適用於大型的數據
- 小心不能Overfit
- 限制max depth, 決策樹的層次

Extreme Gradient Boosting

LGBM Modeling

Setup

- 5-Fold Cross Validation
- Train, Validation, Test
- roc_auc_score

Hyperparameter Tuning

- Goss: Larger gradient
- Bayesian Optimization
- Max_depth 自己設置
- 使用 regularization terms 來防止
 Overfitting (reg_alpha, lambda)
- 透過colsample, subsample 減少每 一次測試的數據大小來加速模型
- min_split_gain 來加速決策樹分支
- min_child_weigh防止決策樹太多層

```
lgbm params = {
            'boosting type': 'goss',
            'nthread': 4,
            'n estimators': 10000,
            'learning_rate': 0.005134,
            'num leaves': 54,
            'colsample_bytree': .9497036,
            'subsample': .8715623,
            'max_depth': 10,
            'reg alpha': 0.436193,
            'reg lambda': 0.479169,
            'min split gain': 0.024766,
            'min_child_weight': 39.3259775,
            'verbose': -1
```

Results

ROC AUC Curve

- True Positive vs False Positive
- 模型預測1是1,0是0的準確度
- AUC: Area Under the curve
- 計算roc綫下的大小,約接近1越好

TP = 準確預測到target不會default的數量 0 is 0

TN = 準確預測到target會default的數量 1 is 1

FP = 錯誤預測到target不會default

FN = 錯誤預測到target會default

TPR /Recall / Sensitivity =
$$\frac{TP}{TP + FN}$$

Irue Positive Rate

Results – Feature Importance & score

Training Log

Full AUC score 0.793690

Fold 4 started at Mon Apr 5 10:58:06 2021
[LightGBM] [Warning] num_threads is set with n_jobs=-1, nthre ad=4 will be ignored. Current value: num_threads=-1
Training until validation scores don't improve for 100 rounds Early stopping, best iteration is:
[3895] training's auc: 0.911725 training's binary_log loss: 0.18425 valid_1's auc: 0.792797 valid_1's binary_logl oss: 0.237642
Fold 4 AUC: 0.792797

Best Score roc auc train 0.910625 roc auc test 0.793690 Submission and Description Private Score Public Score prediction_0.csv 0.79273 0.79680 5 hours ago by Tiger Wang add submission details prediction_0.csv 0.79367 0.79791 2 days ago by Tiger Wang add submission details

Feature Importance

Top 20 重要變數 – Gini Importance

- 1. 貸款的額度/年還款金額
- 2. 外部提供的訊息平均
- 3. 貸款額度/消費貸款中商品的價格
- 4. 外部訊息1/年齡(天)
- 5. 年齡
- 6. 工作年龄/年龄
- 7. 外部訊息2/工作年齡
- 8. 在幾天前更改過申請書中的個人資料
- 9. 外部訊息2*外部訊息3
- 10 外部訊息2
- 11. (年收入/12) 年還款金額

- 12.外部訊息3/工作年齡
- 13. 歷史付款記錄付款日期-應該付款日期 最大值
- 14.工作年龄
- 15. 外部訊息3/年齡
- 16. 外部訊息3
- 17. 平均還有多少年金需要繳納
- 18. 外部訊息 Standard Deviation
- 19. 在幾天前更改過申請書的申請資料
- 20. 收入/年還款金額

Further Research and Recommendations

1. Blender

- 使用多個不同統計模型 e.g. Xgboost, NN, Randomforest
- 記錄不同模型的predictions
- 再將各種prediction結合
- E.g. blending prediction = 0.5*predction 1 + 0.5*prediction2
- 記錄所有模型的validation set predictions
- 用這些predictions再跑一次得到最好結果的統計模型

2. 再做更多更好的特徵工程

• 瞭解更多領域知識 (Domain Knowledge)

Concept Diagram of Stacking

金融場景延伸之應用

趨勢:

投資開戶的人數有再增加。

國外不介意透過借款來投資,台灣是否也會一樣?

年輕族群投資的意圖有提升,但是相對來說年輕人沒有那麽多積蓄。

Debit Balances in Customers' Securities Margin Accounts

Source: Financial Industry Regulatory Authority (FINRA)
Get the data - Add this chart to your site

Investopedia

表 7、開戶人數與自然人年齡結構,暨定期定額投資金額

		2020 年	2019 年	2018年	2017年	2016年	2015年
總開戶人數(萬人)		1,124	1,057	1,024	999	977	961
新增開戶人數(萬人)		67	33	25	22	16	16
自然人總開戶人數(萬人)		1,115	1,049	1,016	992	970	954
有交易人數(萬人)		438	334	326	312	276	289
自然人開戶人數占總人口(%)		47.3	44.5	43.1	42.1	41.2	40.6
各年龄層(%)	0-19 歲	6.8	5.7	5.4	5.2	5.2	5.4
	20-30 歲	36.1	29.2	27.0	25.8	25.2	25.4
	31-40 歲	53.1	49.9	49.2	49.1	49.5	50.2
	41-50 歲	61.6	60.5	60.1	59.7	59.2	58.8
	51-60 歲	61.8	60.4	59.5	58.7	57.9	57.1
	61 歲以上	62.7	60.8	59.2	57.6	55.9	54.0
定期定額投資金額(億元)		171.3	61.5	33.8	12.1	-	-

https://www.bnext.com.tw/article/60899/broker-dealer-digital-transformation-strategy

金融場景延伸之應用 – Cross Selling

- 運用各子公司客戶進行Cross selling
- 同時增加貸款利息收入、以及證券交易手續費

金融場景延伸之應用 - Others

能夠預測申請人是否會Default,那是否能夠預測一家公司會不會Default呢?

做到更低風險的投資。

加入申請人在證券的交易數據,能否提升準確率?

• 支援臺北富邦銀行的貸款服務,讓集團整體收益得到提升。

適用於任何希望預測Binary結果的模型

- 透過此經驗能在下次遇到相同問題上有跟快速,更好的模型與做法。
- 信用卡盜刷、防詐騙、信用卡客戶轉換。

謝謝! Thank You For Listening!

富邦金控 Fubon Financial

Reference

- https://www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction
- https://www.kaggle.com/willkoehrsen/introduction-to-manual-feature-engineering
- https://www.kaggle.com/willkoehrsen/automated-feature-engineering-basics
- https://www.kaggle.com/willkoehrsen/intro-to-model-tuning-grid-and-random-search
- https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
- https://www.kaggle.com/aantonova/797-lgbm-and-bayesian-optimization
- https://www.kaggle.com/jsaguiar/lightgbm-7th-place-solution
- https://www.kaggle.com/ashishpatel26/different-basic-blends-possible
- https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs
- https://github.com/KazukiOnodera/Home-Credit-Default-Riskxgboost/#:~:text=Light%20GBM%20is%20a%20fast,many%20other%20machine%20learning%20tasks
- https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5#:~:text=AUC%20%2D%20ROC%20curve%20is%20a,capable%20of%20distinguishing%20between%2 0classes
- https://www.fubon.com/financialholdings/citizenship/downloadlist/downloadlist/Fubon_CSRreport_2019_CHebook.pdf.pdf