Computational Electromagnetics

Hw6-Q5

Mohammadreza Arani

1401/09/30

clear; close all; clc;


```
NN = [3  7  20  30  60  100  150  200  500  1000];
ER = 9.6;
i = 0 ;
Z = zeros(1,length(NN));
W = 1;
H = 1;
for N = NN
```

```
i = i +1;
[ ~ , ~ ,~ , Z(i) ] = Impedance_MoM_Calc(N,ER,W,H);

disp(N+ " | " + Z(i) );
disp("-----");
end
```

```
3 | 50.0235

7 | 58.5266

20 | 65.6422

30 | 65.9336

60 | 66.2762

100 | 66.4386

150 | 66.5295

200 | 66.5787

500 | 66.6775

1000 | 66.7158
```

TABLE I
CHARACTERISTIC IMPEDANCES OF MICROSTRIP TRANSMISSION LINES

W/H	$\epsilon_{r2} = 6.0$		$\epsilon_{r2}=9.5$		$\epsilon_{r2}=16.0$		$\epsilon_{r2} = 28.0$	
W/H	Z_0^*	$Z_0\dagger$	Z_0^*	$Z_0\dagger$	Z ₀ *	$Z_0\dagger$	Z_0^*	$Z_0\dagger$
0.1	135.455	134.352	110.172	110.058	85.9659	87.762	65.5298	68.819
0.2	113.272	112.255	91.809	91.776	71.6954	73.015	54.6138	57.110
0.4	91.172	89.909	73.702	73.290	57.4999	58.110	43.7391	45.281
0.7	73.613	71.995	59.379	58.502	46.2344	46.217	35.1153	35.872
1.0	62,713	60.970	50.501	49.431	39.2512	38.948	29.7629	30.144
2.0	43.149	41.510	34.592	33.493	26.7555	26.248	20.2086	20.197
4.0	27.301	26.027	21.763	20.906	16.7210	16.300	12.5529	12.474
10.0	13.341	12.485	10.568	9.981	8.0385	7.8079	5.9746	5.892

^{*} Characteristic impedance obtained by method of moment.

What we achieved here, is about 66.57 [ohm]! --> Comparing to FD method, it took less time and the accuracy is considerable!

[†] Characteristic impedance obtained by conformal mapping.

Computational Electromagnetics

Hw3

Mohammadreza Arani :::::::::::: 810100511 1401/08/18

FIGURE 3.54

Q-3.24:

3.24 Modify the program in Figure 3.21 or write your own program to calc for the microstrip line shown in Figure 3.54. Take a = 2.02, b = 7.0, h = t = 0.01, $\epsilon_1 = \epsilon_0$, $\epsilon_2 = 9.6\epsilon_0$.

we can use symmetry in this problem and consider the right half of this geometry -->

Step 1:							
H = 0.1 0.001	0.1	0.01	0.01	0.01	0.01	0.001	
NT = 1000 30000	5000	1000	5000	10000	30000	10000	
Z0 = 56.15	56.1581	145.6462	64.5268	56.9608	53.2661	5523000	1678

values obtained in FD method, shows tendacy to 65 [ohm] in high number of iterations!

```
function [G ] = impedance_MoM_TEM_strips(N,ER,AIR , W,H)

%     vo = 3.0e08; % SPEED of LIGHT in free space % Given

%     ER = 9.6; % Given

Eo = 8.8541878176e-12; % F/m % Given

%     H = 1.0; % Given

%     W = 1;
```

^{**} Both Values are almost the same and are reasonable **

```
G = zeros(N,N);
   C = G;
   if(AIR == 0)
    k = (ER-1)/(ER+1);
   else
       k=1;
   end
   Delta = W/N;
   for i=1:N
       for j=1:N
           SUM = 0;
           C(i,j) = Delta/H * abs(2*(i-1) - 2*(j-1) -1);
           for n = 1: 100
               SUM = SUM + k^{(2*(n-1))*log((C(i,j)^2 + (4*n-2)^2)) / (C(i,j)^2 + (4*n-4)^2)
                           k^{(2*n-1)*log(} (C(i,j)^2 + (4*n-2)^2) / (C(i,j)^2 + (4*n)^2)
           end
           G(i,j) = 1/(4*pi*Eo) * SUM ;
        end
   end
end
function [G , Capo , Cap , Zo] = Impedance_MoM_Calc(N,ER,W,H)
    AIR = 0;
    vo = 3.0e08; % SPEED of LIGHT in free space % Given
    G = impedance_MoM_TEM_strips(N,ER,AIR , W,H);
    Alpha = inv(G)*ones(N,1);
    Cap = sum(Alpha, 'all'); % F/m
    AIR =1;
    G_Air_Filled = impedance_MoM_TEM_strips(N,ER,AIR , W,H);
    Alpha_AIR_FIlled = inv(G_Air_Filled)*ones(N,1);
    Capo = sum(Alpha_AIR_FIlled, 'all'); % F/m
    Zo = 1/(vo * sqrt(Capo*Cap));
end
```

r	-	۰	
۲			