

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to E-100 .
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

EGZAMIN MATURALNY Z MATEMATYKI Poziom rozszerzony

DATA: 11 maja 2022 r.
GODZINA ROZPOCZĘCIA: 9:00
CZAS PRACY: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY
Uprawnienia zdającego do:
nieprzenoszenia zaznaczeń na kartę
dostosowania zasad oceniania
dostosowania w zw. z dyskalkulią.

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–15).
 Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 4. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 5. Odpowiedzi do zadań zamkniętych (1–4) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 6. W zadaniu 5. wpisz odpowiednie cyfry w kratki pod treścią zadania.
- 7. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (6–15) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 8. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 9. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 10. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego.

W każdym z zadań od 1. do 4. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $\log_3 \sqrt{27} - \log_{27} \sqrt{3}$ jest równa

A. $\frac{4}{3}$

- **B.** $\frac{1}{2}$
- **c**. $\frac{11}{12}$
- **D.** 3

Zadanie 2. (0-1)

Funkcja f jest określona wzorem $f(x) = \frac{x^3 - 8}{x - 2}$ dla każdej liczby rzeczywistej $x \neq 2$.

Wartość pochodnej tej funkcji dla argumentu $x = \frac{1}{2}$ jest równa

A. $\frac{3}{4}$

B. $\frac{9}{4}$

C. 3

D. $\frac{54}{8}$

Zadanie 3. (0-1)

Jeżeli $\cos\beta=-\frac{1}{3}$ i $\beta\in\left(\pi,\,\frac{3}{2}\pi\right)$, to wartość wyrażenia $\sin\left(\beta-\frac{1}{3}\pi\right)$ jest równa

A.
$$\frac{-2\sqrt{2}+\sqrt{3}}{6}$$
 B. $\frac{2\sqrt{6}+1}{6}$ **C.** $\frac{2\sqrt{2}+\sqrt{3}}{6}$ **D.** $\frac{1-2\sqrt{6}}{6}$

B.
$$\frac{2\sqrt{6}+1}{6}$$

c.
$$\frac{2\sqrt{2}+\sqrt{3}}{6}$$

D.
$$\frac{1-2\sqrt{6}}{6}$$

Zadanie 4. (0-1)

Dane są dwie urny z kulami. W każdej z urn jest siedem kul. W pierwszej urnie są jedna kula biała i sześć kul czarnych, w drugiej urnie są cztery kule białe i trzy kule czarne.

Rzucamy jeden raz symetryczną monetą. Jeżeli wypadnie reszka, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku – jedną kulę z drugiej urny.

Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy kulę białą w tym doświadczeniu, jest równe

A.
$$\frac{5}{14}$$

B.
$$\frac{9}{14}$$

c.
$$\frac{5}{7}$$

D.
$$\frac{6}{7}$$

BRUDNOPIS (nie podlega ocenie)

Zadanie 5. (0-2)

Ciąg (a_n) jest określony dla każdej liczby naturalnej $n \geq 1$ wzorem $a_n = \frac{(7p-1)n^3 + 5pn - 3}{(p+1)n^3 + n^2 + p}$, gdzie p jest liczbą rzeczywistą dodatnią.

Oblicz wartość $\,p,\,$ dla której granica ciągu $\,(a_n)\,$ jest równa $\,\frac{4}{3}\,.$

W poniższe kratki wpisz kolejno – od lewej do prawej – pierwszą, drugą oraz trzecią cyfrę po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.

BRUDNOPIS (nie podlega ocenie)

Zadanie 6. (0-3)

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y takich, że 2x > y, spełniona jest nierówność

$$7x^3 + 4x^2y \ge y^3 + 2xy^2 - x^3$$

	Nr zadania	5.	6.
Wypełnia egzaminator	Maks. liczba pkt	2	3
	Uzyskana liczba pkt		

Zadanie 7. (0-3)

Rozwiąż równanie:

$$|x-3| = 2x + 11$$

Wypełnia egzaminator	Nr zadania	7.
	Maks. liczba pkt	3
	Uzyskana liczba pkt	

Zadanie 8. (0-3)

Punkt P jest punktem przecięcia przekątnych trapezu ABCD. Długość podstawy CD jest o 2 mniejsza od długości podstawy AB. Promień okręgu opisanego na trójkącie <u>ostrokątnym</u> CPD jest o 3 mniejszy od promienia okręgu opisanego na trójkącie APB.

Wykaż, że spełniony jest warunek $|DP|^2 + |CP|^2 - |CD|^2 = \frac{4\sqrt{2}}{3} \cdot |DP| \cdot |CP|$.

	Nr zadania	8.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

Zadanie 9. (0-4)

Reszta z dzielenia wielomianu $W(x) = 4x^3 - 6x^2 - (5m + 1)x - 2m$ przez dwumian x + 2 jest równa (-30).

Oblicz m i dla wyznaczonej wartości m rozwiąż nierówność $W(x) \ge 0$.

	Nr zadania	9.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 10. (0-4)

Ciąg (a_n) , określony dla każdej liczby naturalnej $n \geq 1$, jest geometryczny i ma wszystkie wyrazy dodatnie. Ponadto $a_1=675$ i $a_{22}=\frac{5}{4}a_{23}+\frac{1}{5}a_{21}$.

Ciąg (b_n) , określony dla każdej liczby naturalnej $n \geq 1$, jest arytmetyczny. Suma wszystkich wyrazów ciągu (a_n) jest równa sumie dwudziestu pięciu początkowych kolejnych wyrazów ciągu (b_n) . Ponadto $a_3 = b_4$. Oblicz b_1 .

	Nr zadania	10.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 11. (0-4)

Rozwiąż równanie $\sin x + \sin 2x + \sin 3x = 0$ w przedziale $(0, \pi)$.

	Nr zadania	11.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 12. (0-5)

Wyznacz wszystkie wartości parametru m, dla których równanie

$$x^2 - (m+1)x + m = 0$$

ma dwa różne rozwiązania rzeczywiste $\ x_1 \ \text{ oraz } \ x_2$, spełniające warunki:

$$x_1 \neq 0$$
, $x_2 \neq 0$ oraz $\frac{1}{x_1} + \frac{1}{x_2} + 2 = \frac{1}{x_1^2} + \frac{1}{x_2^2}$

Wypełnia egzaminator	Nr zadania	12.
	Maks. liczba pkt	5
	Uzyskana liczba pkt	

Zadanie 13. (0-5)

Dany jest graniastosłup prosty ABCDEFGH o podstawie prostokątnej ABCD. Przekątne AH i AF ścian bocznych tworzą kąt ostry o mierze α takiej, że $\sin\alpha=\frac{12}{13}$ (zobacz rysunek). Pole trójkąta AFH jest równe 26,4.

Oblicz wysokość h tego graniastosłupa.

	Nr zadania	13.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 14. (0-6)

Punkt A=(-3,2) jest wierzchołkiem trójkąta równoramiennego ABC, w którym |AC|=|BC|. Pole tego trójkąta jest równe 15. Bok BC zawarty jest w prostej o równaniu y=x-1. Oblicz współrzędne wierzchołków B i C tego trójkąta.

Wypełnia egzaminator	Nr zadania	14.
• •	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 15. (0-7)

Rozpatrujemy wszystkie trójkąty równoramienne o obwodzie równym 18.

- a) Wykaż, że pole P każdego z tych trójkątów, jako funkcja długości b ramienia, wyraża się wzorem $P(b)=\frac{(18-2b)\cdot\sqrt{18b-81}}{2}$.
- b) Wyznacz dziedzinę funkcji P.
- c) Oblicz długości boków tego z rozpatrywanych trójkątów, który ma największe pole.

	Nr zadania	15.
Wypełnia	Maks. liczba pkt	7
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS (nie podlega ocenie)

