

Correction to C-H Arylation Reaction: Atom Efficient and Greener Syntheses of π -Conjugated Small Molecules and Macromolecules for Organic Electronic Materials

Ken Okamoto, Junxiang Zhang, Jeremy B. Housekeeper, Seth R. Marder,* and Christine K. Luscombe* *Macromolecules* **2013**, DOI: 10.1021/ma401190r

Typographical errors were found in Table 3 and Scheme 4. For Table 3, row 6, the correct yields are 40-45% instead of 35-50%, and for row 7, the correct number of types is 8 instead of 7. The yields shown at the bottom of Scheme 4 are 40-96% instead of 23-79%. These changes do not alter the conclusions of the paper. The corrected Table 3 and Scheme 4 are shown below.

Table 3. Mono- and/or Bis-arylation of 3-Methoxythiophene and 3,4-Ethylenedioxythiophene (EDOT)

Group Conditions	Thiophene	Ar-X	Mono- arylation Yield%	Bis- Arylation Yield%
Borhese	3-methoxythiophene (1.0 eq)	7 types Ar-X (1.0 eq)	OCH ₃ Ar 41-60%	
Pd(OAc) ₂ (10 mol%) KOAc (3.0 eq)	3-methoxythiophene (2.0 eq)	3 types X-Ar-X (1.0 eq)		OCH ₃ Ar H ₃ CO 23-29%
DMF TBAB (1 eq) 80 °C	EDOT (1.0 eq)	2 types Ar-X (2.0 eq)		Ar S Ar 40-92%
Mohanakrishnan	EDOT (1.0 eq)	10 types Ar-X (1.0 eq)	34-55%	
Pd(PPh ₃) ₄ (10 mol%) K ₂ CO ₃ (1.2 eq) DMF 80 °C, 8-14 h	EDOT (1.0 eq)	4 types Ar-X (2.0 eq)		ArArAr
	EDOT (2.0 eq)	2 types X-Ar-X (1.0 eq)		40-45%
Yu	EDOT (1.0 eq)	8 types Ar-X (2.0 eq)		73-98%
Pd(OAc) ₂ (5 mol%) P(m-Tol) ₃ (10 mol%) Cs ₂ CO ₃ (2.4 eq) Toluene 110 °C, 24 h	EDOT dimer (1.0 eq)	3 types Ar-X (2.0 eq)		Ar S Ar Ar 53-66%

Macromolecules Addition/Correction

Scheme 4

