Метаболизм микроорганизмов

Метаболизм прокариот.

- Метаболизм совокупность ферментативных процессов, протекающих в клетке и обеспечивающих её энергетические и биосинтетические потребности.
- Энергетический метаболизм (катаболизм) поток реакций, сопровождающийся мобилизацией энергии и преобразованием её в электрохимическую или химическую форму, которая затем используется во всех энергозависимых процессах.
- Конструктивный метаболизм (биосинтез, анаболизм) поток реакций, в результате которых за счет поступающих извне веществ строится вещество клетки и при этом используется запасённая клеткой энергия.

Макроэлементы, их источники и функции в бактериальной клетке.

Элемент	% от сухого веса	Источник	Функция
Углерод	50	органические соединения или CO ₂	Основной компонент клеточного материала
Кислород	20	H_2O , органические соединения, CO_2 , и O_2	Компонент клеточного материала и воды; O_2 акцептор электронов при аэробном дыхании
Азот	14	NH_3 , NO_3 , органические соединения, N_2	Компонент аминокислот, нуклеиновых кислот, нуклеотидов и коферментов
Водород	8	H ₂ O, органические соединения, H ₂	Основной компонент органических соединений и клеточной воды
Фосфор	3	Неорганический фосфат (PO₄)	Компонент нуклеиновых кислот, нуклеотидов, фосфолипидов, LPS, тейхоевых кислот
Сера	1	SO ₄ , H ₂ S, S⁰, сера органических соединений	Компонент цистеина и метионина, глутатиона, нескольких коферментов
Калий	1	Соли калия	Основной неорганический клеточный катион и кофактор некоторых энзимов
Магний	0.5	Соли магния	неорганический клеточный катион, кофактор некоторых ферментативных реакций
Кальций	0.5	Соли кальция	неорганический клеточный катион, кофактор некоторых ферментов и компонент эндоспор
Железо	0.2	Соли железа	Компонент цитохромов и некоторых негемовых железосодержащих белков и кофакторы некоторых ферментативных реакций

Основные классы веществ в биохимии

- Белки
- Углеводы
- Липиды
- Нуклеотиды

Аминокислоты

Пептидная связь

- Связь межу аминогруппой одной АК и карбоксильной группой другой АК
- Образуется на рибосомах в процессе трансляции

Предшественник	Метаболический путь, приводящий к образованию предшественника	Аминокислоты с общими биосинтети- ческими путями
Щавелевоуксусная кислота	цикл трикарбоновых кислот реакции карбоксилирования	аспарагиновая кислота аспарагин лизин метионин треонин изолейцин
α-Кетоглутаровая кислота	чикл трикарроновых кислот	
3-фосфоглицериновая кислота	гликолиз цикл Кальвина	серин глицин цистеин
Пировиноградная кислота	гликолиз путь Энтнера-Дудорова	аланин валин лейцин
Фосфоенолпировиног радная кислота + Эритрозо-4-фосфат	гликолиз окислительный пентозофосфатный путь	триптофан тирозин фенилаланин
5-Фосфорибозил-1- пирофосфат + АТФ	окислительный пентозофосфатный путь	гистидин

Углеводы

• Моносахариды – триозы, пентозы гексозы

$$CH_{2}$$
— O — R_{1}
 CH — O — R_{2}
 CH_{2} — O — P — O — CH_{2} — $CHNH_{2}$ — $COOH$
 OH

- 3. дифосфатидилглицерин (кардиолипин);
- 4. фосфатидилинозит;
- 5. фосфатидилэтаноламин;
- 6. фосфатидилсерин

Нуклеотиды

Динуклеотид - НАД

Нинотинамидадениндинуклеотидфосфат (НАДФ)

Нуклеотиды

Классификация бактерий по типу метаболизма

		Источник энергии			
		Свет		Энергия химических связей	
		Донор электронов			
		Неорган. в-ва	Орган. в-ва	Неорган. в-ва	Орган. в-ва
Источник углерода	CO ₂	Фотолито- автотрофы	Фотооргано- автотрофы	Хемолито- автотрофы	Хемооргано- автотрофы
Источник углерода	Органические соединения	Фотолито- гетеротрофы	Фотооргано- гетеротрофы	Хемолито- гетеротрофы	Хемооргано- гетеротрофы

Источник азота

- 1. восстановленная форма: соли аммония, мочевины, орг. соединения (аминокислоты или пептиды)
- 2. окисленная форма: нитраты (восстанавливаются до аммиака в два этапа)

нитратредуктаза
$$NO_3^- + HAД \cdot H_2 \longrightarrow NO_2^- + HAД^+ + H_2O$$
 нитритредуктаза $NO_2^- + 3HAД \cdot H_2 + H^+ \longrightarrow NH_3 + 3HAД^+ + 2H_2O$

3. молекулярная форма

Источник серы

- в форме неорганических солей, сульфатов (восстанавливаются до сульфидов)

Источник фосфора

- в форме неорганических солей, фосфатов

Факторы роста

Метаболизм прокариот

- Факторы роста вещества, которые прокариоты по какимлибо причинам не могут синтезировать самостоятельно из используемого источника углерода (аминокислоты, пурины, пиримидины, витамины и др.). Такие вещества добавляют в питательные среды в готовом виде в небольших количествах.
- Микроорганизмы, которым в дополнение к основному источнику углерода необходимы факторы роста, называются ауксотрофы.
- Микроорганизмы, которые синтезируют все необходимые органические соединения из основного источника углерода самостоятельно, называются **прототрофы.**

Продукты брожения глюкозы

В ходе гликолиза из одной молекулы глюкозы образуется две молекулы пирувата, 2 АТФ и 2 НАДН. В ходе окислительного фосфорилирования переход двух электронов с НАДН на O_2 обеспечивает образование 2,5 АТФ, а переход двух электронов с ФАДН $_2$ на O_2 даёт 1,5 АТФ. Когда обе молекулы пирувата окисляются до 6 CO_2 пируватдегидрогеназным комплексом и в ходе цикла трикарбоновых кислот, а электроны переносятся на O_2 в ходе окислительного фосфорилирования, т.о. суммарный выход АТФ составляет 32 молекулы на молекулу глюкозы

Выход АТФ или Суммарный Реакция восстановленных выход АТФ коферментов глюкоза → глюкозо-6-фосфат -1 ATФ -1 фруктозо-6-фосфат → фруктозо-1,6-бифосфат -1 ATФ -1 2 глицеральдегид-3-фосфат \rightarrow 2 1,3-бифосфоглицерат 2 НАДН 3 2 1,3-бифосфоглицерат →2 3-фосфоглицерат **2** ΑΤΦ 2 фосфоенолпируват \rightarrow 2 пируват **2** ΑΤΦ 2 2 пируват → 2 ацетил-КоА 2 НАДН 2 изоцитрат \rightarrow 2 α -кетоглутарат 2 НАДН 5 5 2α -кетоглутарат → 2 сукцинил-КоA2 НАДН 2 АТФ (или 2 ГТФ) 2 сукцинил-КоА \rightarrow 2 сукцинат 2 2 сукцинат \rightarrow 2 фумарат 2 ФАДH₂ 3 2 малат \rightarrow 2 оксалоацетат 2 НАДН 5 *Итого АТФ*: 30—32

Реакция	Выход АТФ или восстановленных коферментов	Суммарный выход АТФ
глюкоза → глюкозо-6-фосфат	−1 ATФ	-1
фруктозо-6-фосфат → фруктозо-1,6-бифосфат	−1 ATФ	-1
2 глицеральдегид-3-фосфат → 2 1,3-бифосфоглицерат	2 НАДН	3 или 5
2 1,3-бифосфоглицерат →2 3-фосфоглицерат	2 АТФ	2
2 фосфоенолпируват → 2 пируват	2 АТФ	2
2 пируват → 2 ацетил-КоА	2 НАДН	5
2 изоцитрат $ ightarrow$ 2 $lpha$ -кетоглутарат	2 НАДН	5
2 α-кетоглутарат → 2 сукцинил-КоА	2 НАДН	5
2 сукцинил-КоА $ ightarrow$ 2 сукцинат	2 АТФ (или 2 ГТФ)	2
2 сукцинат → 2 фумарат	2 ФАДН ₂	3
2 малат → 2 оксалоацетат	2 НАДН	5
		Итого: 30—32

Цикл кальвина

Способ ассимиляции СО₂ в углеводы, присущий всем растениям, был расшифрован только в середине XX века американским биохимиком Мелвином Кальвином и его сотрудниками. Их работа привела к расшифровке всех последующих реакций, следующих друг за другом реакций СЗ-пути фотосинтеза.

Общий баланс реакций цикла:

$$3 CO_2 + 6 HAДФ·H + 5 H_2O + 9 ATФ \rightarrow
 $\rightarrow C_3H_7O_3-PO_3 + 3 H^+ + 6 HAДФ^+ + 9 AДФ + 8 Ф_H$$$

