Introducción a la Computación Distribuida y Condor

- Cómo ejecutar aplicaciones más rápido
- Supercomputación
- E-Ciencia
- Cluster
- Tecnologías de Cluster y su Clasificación
- Servicios Importantes para Clusters
- Administración y Planificación de Tareas en Clusters
- Condor
- Comandos Condor

¿Como ejecutar aplicaciones más rápido?

- Hay 3 formas de mejorar el rendimiento
 - · Trabajar más rápido
 - Trabajar más inteligente
 - Obtener ayuda
- La analogía en computación sería:
 - Usar hardware más rápido
 - Optimización de algoritmos y técnicas utilizadas para resolver tareas de cálculo
 - Múltiples computadores para resolver una tarea en particular (Sistema distribuido – Sistema paralelo)

Tipos de Sistemas Distribuidos

- SD de cómputo
 - Clúster
 - Grid (Malla)
- SD de información Figure 4: A Taxonomy of Computer Systems Architectures.

(mainframes, SMPs, workstations)

Peer-to-Peer

- Procesamiento de transacciones
- Integración de aplicaciones empresariales
- SD embebidos

Miremos la escalabilidad en:

- SD de información
 - Procesamiento de transacciones
 - Integración de aplicaciones empresariales

Miremos la escalabilidad en:

- SD de cómputo
 - Clúster
 - Grid (Malla)

Introducción a la Computación Distribuida y Condor

Supercomputación

- Es lo mas grande y rápido en computación en este preciso momento.
- Es también la computadora mas grande y rápida del mundo es este instante.
- Hay una regla?, un supercomputador es mínimo 100 veces mas rápido que el PC mas rápido del mundo

Introducción a la Computación Distribuida y Condor

Supercomputación

- ■La supercomputación también se conoce como:
- Computación de Alto Rendimiento -High Performance Computing (HPC).
- High End Computing (HEC).
- Ciberinfraestructura -Cyberinfrastructure (CI).

TOP 500

- Lista de los 500 supercomputadores más rápidos del mundo ejecutando el banco de pruebas HPL (High performance LINPACK)
- Sistemas de ecuaciones lineales densos (cálculo matricial). Permite obtener velocidades muy altas (un máximo virtual).
- También se empezó a medir la potencia consumida.

		Top500 Li	st – 1	top5() 0 .0I	rg
• Junio/2024	1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,206.00	1,714.81	22,786
	2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Stingshot-11, Intel D0E/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
	3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
	4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.26Hz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
	5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Stingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107

496	Hercules - PowerEdge C6520, Xeon Platinum 8380 40C 2.3GHz, Infiniband NDR, DELL EMC Mississippi State University United States	40,960	2.14	3.01	
497	Phoenix - 2022 - ThinkSystem SR670 V2, Xeon Platinum 8360Y 36C 2.4GHz, NVIDIA A100, Infiniband HDR, Lenovo University of Adelaide Australia	20,160	2.13	3.34 69	
498	Betty - Cray CS500, AMD EPYC 7542 32C 2.9GHz, InfiniBand HDR100, HPE US Army Research Laboratory (ARL) United States	94,976	2.13	4.41	
499	NA3 - Lenovo ThinkSystem SR650 V2, Xeon Platinum 8358 32C 2.66Hz, 1006 Ethernet, Lenovo Software Company United States	56,448	2.13	4.70	
500	HSUper - Megware D50TNP, Xeon Platinum 8360Y 36C 2.4GHz, InfiniBand HDR100, MEGWARE Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg Germany	41,832	2.13	3.21 395	

Rendimiento y Métricas

- 2 métricas comunes: tiempo y nro de operaciones
- Floating-point operations per second (flops)
- · Kilo, mega, giga, tera, peta
- 1000, 1 millón, 1 billón, 1 trillon, 1 cuadrillon.
- Benchmark estándar: Linpack o Highly Parallel Linpack – HPL
 - Resolver un conjunto de ecuaciones lineales en forma de matrices densas.
 - Top500 los 500 supercompudadores de mayor potencia en el mundo

Introducción a la Computación Distribuida y Condor

E-Ciencia

- "e-Science is about global collaboration in key areas of science and the next generation of infrastructure that will enable it." - Dr John Taylor, Director General of Research Councils
- "The term "e-Science" denotes the systematic development of research methods that exploit advanced computational thinking" Professor Malcolm Atkinson, e-Science Envoy.

Introducción a la Computación Distribuida y Condor

E-Ciencia

