Label Distribution Protocol (LDP)

Distribución de etiquetas

Etiquetas o Labels:

- •Son <u>necesarias</u> para la creación de un LSP.
 - •Estas serán utilizadas en ese trayecto o camino.
- •Son siempre generadas por el router que recibirá el paquete.
 - •Esta etiqueta siempre es local al router que la genera.

Esto permite que cuando un router recibe un paquete con una determinada etiqueta, pueda identificar inmediatamente a que FEC pertenece.

Distribución de etiquetas:

•Un protocolo de distribución de etiquetas tiene como **finalidad**:

Realizar los procedimientos necesarios para que un LSR en el momento que asigne una etiqueta a una FEC, de a conocer esta asignación a los LSRs vecinos.

•El protocolo de distribución de etiquetas entonces se encarga de <u>distribuir las</u> asignaciones de etiquetas en una red MPLS.

Distribución de etiquetas:

•Se conoce como "Pares de Distribución de Etiqueta":

Al procedimiento que ocurre cuando dos LRS utilizan un protocolo para informarse mutuamente de las asignaciones de etiquetas que cada uno ha hecho a una FEC específica.

Protocolos de distribución de etiquetas:

•Existen diferentes protocolos que pueden ser utilizados:

•LDP (Label Distribution Protocol):

•Funciona en conjunto con el protocolo IGP ejecutado en la red.

•En la medida que los routers toman conocimiento de las nuevas redes de destino a través de su IGP, <u>utilizan LDP para anunciar las etiquetas</u> que permiten a sus vecinos llegar al destino.

•Los LSP señalizados con LDP <u>siempre seguirán el camino</u> determinado por el IGP.

Protocolos de distribución de etiquetas:

•Existen diferentes protocolos que pueden ser utilizados:

•RSVP-TE (Resource Reservation Protocol—Traffic Engineering)

- •Este protocolo también se utiliza para señalizar LSP a través de la red.
- •Se utiliza para la <u>ingeniería de tráfico</u> cuando el router de entrada desea crear un LSP con limitaciones específicas más allá de la ruta elegida por el IGP.
- •RSVP-TE <u>especifica la ruta deseada para el LSP</u> y puede incluir las necesidades de recursos u otras limitaciones para el camino.

¿Que son los parámetros de distribución de etiquetas?:

•La arquitectura MPLS define varios parámetros de asignación y distribución de etiquetas:

•MPLS Label Space:

Per-interface or per-platform label space

•MPLS Label distribution modes:

•Unsolicited downstream or downstream-on-demand label distribution

MPLS Label retention modes:

Liberal or conservative label retention

MPLS Label Control modes:

Ordered or independent label allocation control

MPLS Label Space:

Per-Interface label space:

- •Las etiquetas deben ser <u>únicas para una interfaz de entrada específica</u>.
- •Los paquetes MPLS son **forwardeados** <u>basados tanto en la etiqueta como en la</u> <u>interface entrante.</u>
- •La etiqueta asignada a una interfaz de entrada puede ser <u>reutilizada en otra interfaz</u>, teniendo también otro "significado", es decir asignado a un diferente destino.
- •Tiene la ventaja de la prevención del "label spoofing", no permitiendo el forwardeo de etiquetas que no están asociadas a la interfaz por la que se recibió.
 - •Este modo es utilizado en las implementaciones del tipo "MPLS cell mode"

MPLS Label Space:

Per-Platform label space:

- •El espacio de etiquetas debe ser <u>único para la plataforma o router en su totalidad.</u>
- •Los paquetes MPLS son forwardeados <u>basado solamente en el incoming label</u> sin consideración alguna de la interfaz entrante.
- Minimiza el número de sesiones LDP.
- •Permite a los túneles LSP upstream, incorporar links en paralelo, ya que el mismo label es utilizado en todos los links.
 - •Este es el modo utilizado en las implementaciones frame-mode MPLS.

MPLS Label distribution modes:

•Downstream on-demand:

- •Requiere que cada LSR solicite una etiqueta específica a su vecino "downstream".
- •En la figura se observa que el Router A, le solicita un label a su vecino "downstream".

MPLS Label distribution modes:

Unsolicited Downstream:

- •Cada router en <u>forma independiente asigna una etiqueta o label a cada prefijo IP</u> de destino de su tabla de ruteo.
- •Este mapeo es almacenado en la tabla LIB, y <u>luego de forma automática, sin</u> <u>esperar ningún tipo de request,</u> lo distribuye a sus vecinos.

•No existe un mecanismo de control para administrar la propagación de estas etiquetas en forma ordenada.

MPLS Label Space & Label distribution modes:

•Lo general es encontrar que las implementaciones del tipo:

•frame-mode utilicen "unsolicited downstream"

•cell-mode utilicen "downstream-on-demand":

MPLS Label retention modes:

Liberal label retention mode:

- •Cada LSR mantiene todas las etiquetas recibidas de los peers LDP.
 - •Incluso si no hay peers downstream para la red X.
- •Esto mejora la velocidad de convergencia en la red, como una rápida reacción ante cambios de routing ya que todos los labels se encuentran almacenadas en las LIBs.

MPLS Label retention modes:

Conservative Label retention mode:

- •Solo se almacenan <u>etiquetas que pueden ser utilizadas inmediatamente</u> para caminos de tráfico normal.
- •Esto implica que los mapeos de etiquetas son almacenados solo si el LSR que los envía es el next hop downstream router para un FEC especifico.
 - Todas las otras etiquetas son ignoradas.

MPLS Label Control modes:

•Independent label distribution control mode:

- •Un LSR realiza una <u>asignación local a un FEC inmediatamente después que</u> descubre la existencia del mismo en la tabla de routeo.
- •Es usualmente combinado con el modo de propagación del tipo "unsolicited downstream".
- •De esta forma, un LSR se puede encontrar con un paquete etiquetado entrante donde no hay una etiqueta de salida correspondiente en la tabla LFIB.
- •El LSR debe ser entonces, capaz de realizar operaciones de búsqueda completa de la capa 3

MPLS Label Control modes:

•Independent label distribution control mode:

MPLS Label Control modes:

Ordered label distribution control mode:

- •Un LSR <u>asigna una asociación local a un FEC solamente si</u>:
 - •Reconoce que es el LSR de egreso para ese FEC
 - •Si recibe una asociación de etiquetas desde el next hop downstream LSR.
- •Este requerimiento resulta en una secuencia ordenada de downstream request.

What Are Standard Parameter Sets in Cisco IOS MPLS Implementation?:

•Routers with frame interfaces:

•Per-platform label space, unsolicited downstream distribution, liberal label retention, independent control

•Routers with ATM interfaces:

•Per-interface label space, downstream-on-demand distribution, conservative or liberal label retention, independent control

•ATM switches:

•Per-interface label space, downstream-on-demand distribution, conservative label retention, ordered control

- •Es un protocolo para distribución etiquetas MPLS.
- •Definido en la RFC 5036 (https://tools.ietf.org/html/rfc5036).
- •Contiene un **set de procedimientos y mensajes** mediante los cuales los LSR establecen un LSP a través de la red,
- •Eso mediante el mapeo de información de routing de Layer 3 directamente con caminos switcheados de Layer 2.

- •LDP asocia un FEC con cada LSP que es creado.
 - •Este FEC asociado con un LSP especifica cual paquete será mapeado en ese LSP.
- •En esencia:

finalmente LDP es utilizado para distribuir asociaciones de (label,prefix).

- Todos aquellos routers que tengan configurado LDP:
 - •Establecen una sesión y se convierten en "peers".
 - •Esta sesión, permite el intercambio de etiquetas.

- •Las sesiones de LDP se establecen **entre LSRs vecinos en la red MPLS** (no necesariamente adyacentes)
- •Estos intercambian los distintos tipos de mensajes mediante el envío de PDUs de LDP.
- •Cuando se habilita LDP en una red de routers, el peering es establecido entre todos los routers vecinos LDP, resultando en una red full mesh.
- •No obstante existe la posibilidad de establecer <u>peering entre dos LSR no vecinos</u> directamente conectados.

- •El descubrimiento de vecinos adyacentes se realiza a través de mensajes del tipo Hello.
- Luego se establece una sesión TCP entre ellos.
- •Los **Hellos se envían periódicamente** con dirección destino multicast (224.0.0.2, todos los routers en el segmento) hacia el puerto UDP 646.
- •El **descubrimiento de vecinos no adyacentes** difiere sólo en la dirección destino de los mensajes Hellos.
 - •Se envían a la dirección IP unicast (debe ser definida) del vecino y luego el mecanismo de establecimiento es el mismo que para el caso de vecinos adyacentes.

- •Luego el router con el **Router ID más alto** (Active Node) inicia una sesión TCP hacia el puerto 646 con dirección destino unicast (la IP origen del Hello o la dirección de transporte anunciada en el Hello).
- •<u>Una vez establecida la sesión TCP</u> se intercambian mensajes de:
 - ✓ Inicialización
 - √ keepalives
 - √ finalmente, se inicia el intercambio de etiquetas/destinos.

•Es importante entender que **este protocolo se ejecuta en paralelo con algún protocolo o mecanismo de ruteo.**

•También es importante entender que otros mecanismos de distribución de etiquetas, como ser RSVP o BGP-MP, pueden ejecutarse en paralelo con LDP.

6	0	22.362296	10.0.0.1	224.0.0.2	LDP	76	Hello Message
7	0	27.321707	10.0.0.1	224.0.0.2	LDP	76	Hello Message
8	0	31.441948	10.0.0.1	224.0.0.2	LDP	76	Hello Message
9	0	33.206093	10.0.0.2	224.0.0.2	LDP	76	Hello Message
10	0	33.222068	10.0.1.1	10.0.0.6	TCP	60	50375 → ldp [SYN] Seq=0 Win=4128 Len=0 MSS=536
11		33.238093	10.0.0.6	10.0.1.1	TCP	60	ldp → 50375 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
12	0	35.575132	10.0.0.1	224.0.0.2	LDP	76	Hello Message
13	0	37.286339	10.0.0.2	224.0.0.2	LDP	76	Hello Message
14	O	37.294298	10.0.1.1	10.0.0.6	TCP	60	45334 → ldp [SYN] Seq=0 Win=4128 Len=0 MSS=536
15	0	37.302369	10.0.0.6	10.0.1.1	TCP	60	ldp → 45334 [SYN, ACK] Seq=0 Ack=1 Win=4128 Len=0 MSS=536
16	0	37.310301	10.0.1.1	10.0.0.6	TCP	60	45334 → ldp [ACK] Seq=1 Ack=1 Win=4128 Len=0
17	0	37.358295	10.0.1.1	10.0.0.6	LDP	90	Initialization Message
18	0	37.366326	10.0.0.6	10.0.1.1	TCP	60	ldp → 45334 [ACK] Seq=1 Ack=37 Win=4092 Len=0
19	0	37.374318	10.0.0.6	10.0.1.1	LDP	98	Initialization Message Keep Alive Message

•La primera tarea que realizan los nodos es descubrir los vecinos mediante alguno de los siguientes dos métodos:

Basic Discovery Mechanism:

•utilizando mensajes UDP HELLOs multicast para el caso de los vecinos directamente conectados.

Extended Discovery Mechanism:

•utilizando mensajes UDP HELLOs unicast "dirigidos" para el caso de los vecinos no-directamente conectados.

- •En ambos casos, el tráfico siempre tiene como destino el puerto LDP 646.
- •El intercambio de mensajes LDP Discovery Hellos entre dos LSR dispara el establecimiento de sesiones LDP, que es un proceso de dos etapas:
 - 1) Transport connection establishment
 - 2) Session initialization

Transport connection establishment

- Implica el <u>establecimiento de una sesión TCP utilizando el Puerto 646</u>, en una operación cliente-servidor.
- Durante este proceso tenemos dos posibilidades,
 - <u>Si los dos LSR tiene actualmente una sesión TCP entre ellos</u>, (por ejemplo una sesión LDP establecida sobre alguna otra interfaz):

•entonces no será creada o establecida una nueva sesión TCP.

- •Si <u>los dos LSR NO tienen actualmente establecida</u> una sesión TCP entre ellos:
 - •entonces intentaran establecerla.
- •Para esto lo primero será definir roles, siendo:
 - •el LSR activo, que actuara como el TCP sesión client, utilizando un source port aleatorio.
 - •el LSR pasivo, actuando como el TCP sesión server escuchando el puerto LDP 646.
- •Estos roles serán definidos **comparando la dirección IP intercambiada en los mensajes hellos**, siendo que el LSR con la dirección más alta, será el activo y el restante LSR el pasivo.

Session initialization

- Luego de que los LSRs establecen la sesión de transporte, estos negocian los parámetros de la sesión, intercambiando LDP initialization message.
- Los parámetros negociados incluyen:
 - ✓ LDP protocol versión,
 - ✓ label distribution method,
 - ✓ timer values, etc.

Session initialization

- En caso de una **negociación exitosa**:
 - la sesión LDP es establecida.
- En caso de una negociación NO exitosa:
 - mensajes del tipo Error Notification son intercambiados y los
 LSRs reintentan la inicialización de la sesión.

Es importante destacar que:

- > si hay una incompatibilidad en la configuración, podría suceder un loop sin fin de negociación.
 - Para esto, un procedimiento de limitación de retroceso exponencial debería entrar en acción.
 - Este algoritmo, tiene valores configurables.

Luego de que la <u>sesión es establecida</u>:

"ahora los LSRs pueden iniciar el procedimiento de distribución de etiquetas"

Adicionalmente, existe la necesidad de mantenerla activa

Esto se realiza en dos niveles:

- el mantenimiento de las Hello Adjacencies (en el discovery level)
- el mantenimiento de la session LDP (en el session level)

Mantenimiento de las Hello Adjacencies:

- Si el discovery Hello hold down timer expira sin recibir mensajes Hello desde el vecino:
 - el LSR concluye que el peer no ejecuta mas label switching sobre ese link.
 - Cuando el último hello adjcaceny es eliminado, la sesión LDP es terminada enviando una mensaje de notificación cerrando la conexión de transporte.
- Esta expiración resulta en el vecino dado de baja con el siguiente mensaje de error:

```
*Jan 18 21:49:58.244: %LDP-5-NBRCHG: LDP Neighbor x.x.x.x:0 (1) is DOWN (Discovery Hello Hold Timer expired)
```

Mantenimiento de la sesión LDP:

- Es realizado mediante el envío/recepción de mensajes keepalive y la utilización de un hold down timer.
- Cada vez que un mensaje LDP es recibido sobre una sesión, este timer es reiniciado.
- Si no se reciben mensajes LDP o keepalive del peer y expira el hold down timer, la sesión de transporte es terminada.
- La expiración de esta sesión, resulta en el vecino dado de baja con el siguiente error de mensaje:

```
*Jan 18 21:51:50.844: %LDP-5-NBRCHG: LDP Neighbor x.x.x.x:0 (1) is DOWN (Session KeepAlive Timer expired)
```

El valor por defecto de estos timers:

```
Transport session: Keepalive: 60 seconds Hold time: 180 seconds

Discovery: Hello Interval: 5 seconds Hold time: 15 seconds

Discovery Targeted: Hello Interval: 10 seconds Hold time: 90 seconds
```

- Los LSRs negociaran estos valores de timers.
- Seleccionando el de menor tiempo.
- ➤ Lo que significa que en caso de realizar cambios, estos deben ser en ambos extremos para que surja efecto.

Router#show mpls ldp parameters

```
Protocol version: 1

Session hold time: 180 sec; keep alive interval: 60 sec

Discovery hello: holdtime: 15 sec; interval: 5 sec

Discovery targeted hello: holdtime: 90 sec; interval: 10 sec

!--- output omitted-----
```


Se definieron cuatro mensajes:

1. Mensajes de Descubrimiento:

Este tipo de mensajes se utilizan para:

- > anunciar
- > descubrir
- mantener

la presencia de un router LSR vecino en una red

Esto a través del intercambio de mensajes del tipo HELLO.

2. Establecimiento de sesión o adyacencia:

- Los routers que tengan configurado LDP establecerán una sesión TCP con sus vecinos
- Esto para un intercambio confiable de mensajes.

Estos mensajes se utilizan para:

> establecimiento

mantenimiento

> terminación

de las sesiones LDP

3. Anuncio o intercambio de etiquetas:

• Luego que la sesión LDP está establecida, los routers intercambian etiquetas para los FEC de los que tienen conocimiento.

Estos mensajes se utilizan para:

- > creación
- > intercambio
- > eliminación

del mapeo entre etiquetas y FEC.

4. Mensajes de notificación:

- Estos mensajes se utilizan para:
 - > proveer información de avisos
 - > proveer señales de error.
- LDP utiliza TCP para el envío de sus mensajes para garantizar la confiabilidad.

1	0	0.000000	1.1.2.2	1.1.2.1	LDP	80	Hello Message
2	0	0.094000	1.1.2.1	1.1.2.2	LDP	80	Hello Message
3	0	0.203000	1.1.2.2	1.1.2.1	LDP	80	Hello Message
4	0	0.375000	1.1.2.2	1.1.2.1	LDP	94	Initialization Message
5	0	0.469000	1.1.2.1	1.1.2.2	LDP	102	Initialization Message Keep Alive Message
6	0	0.547000	1.1.2.2	1.1.2.1	LDP	76	Keep Alive Message
7	0	0.594000	1.1.2.2	1.1.2.1	LDP	326	Address Message Label Mapping Message
8	o	0.687000	1.1.2.1	1.1.2.2	LDP	286	Address Message Label Mapping Message
9	Θ,	0.703000	1.1.2.1	1.1.2.2	LDP	148	Label Mapping Message Label Mapping Message
10	٠	2.078000	1.1.2.2	1.1.2.1	LDP	326	[TCP Retransmission] Address Message Label Mapping Message Label Mapping Message Label Mapping Message Label Mapping Messag
11	0	2.281000	172.16.0.0	224.0.0.2	LDP	76	Hello Message
12	0	2.562000	1.1.2.2	1.1.2.1	LDP	108	Label Mapping Message
13	O	2.922000	172.16.0.1	224.0.0.2	LDP	76	Hello Message
14	0	6.891000	172.16.0.1	224.0.0.2	LDP	76	Hello Message

• La estructura de una PDU LDP se observa a continuación:

Una PDU LDP consiste en un header seguido por un grupo de uno o más mensajes LDP,
 que puede o no tener relación entre sí.

Versión:

- Es un campo de dos bytes que indican el número de versión del protocolo.
- Actualmente es la versión 1.

PDU Lenght:

- Es un campo de dos bytes que especifica la longitud total de este PDU en bytes.
- Excluyendo el campo Version y PDU length.
- Por ejemplo, si el paquete LDP contiene tres mensajes Hello, entonces el campo longitud será igual a tres veces la longitud de un mensaje Hello.

LSP Identifier:

 Es un campo de 6 bytes que identifica unívocamente el espacio de etiquetas del LSR emisor.

Los primeros cuatro bytes:

 identifican al LSR y debe ser un valor globalmente único, como por ejemplo los 32 bits del router ID.

Los últimos dos bytes:

• identifican un espacio de etiquetas específicos dentro del LSR.

LSP Identifier:

- Si el router utiliza un espacio de etiquetas "per-plataform" este valor es cero.
- Por ejemplo, un identificador LDP 192.168.1.1:0, implica un LSR ID 192.168.1.1 y un label space del tipo per-plataform.

- Luego de la parte en común del header LDP todos los mensajes tiene el siguiente formato:
 - siendo los parámetros opcionales y mandatorios escritos utilizando el esquema TLV (type-length-value)

Campo U:

- Este campo consta de un bit e indica el comportamiento que se debe asumir en caso de que llegue un mensaje desconocido.
 - Si U es igual a cero (0) se responde con un mensaje de notificación,
 - Si U es igual a uno (1) se ignora el mensaje y se continúa con el envío de la PDU..

Campo F:

- Este campo sólo se utiliza cuando U es igual a 1.
- Cuando se recibe un mensaje desconocido y debe ser enviado a otro LSR:
 - F debe ser igual a uno (1),
- De lo contrario F debe ser igual a cero (0)
 - por lo tanto el mensaje no podrá ser enviado al siguiente LSR. opcionales.

Campo Tipo:

• Este campo consta de 15 bits que definen el tipo de mensaje.

Campo Longitud:

- Este campo consta de 16 bits.
- Especifica la longitud de los campos Message ID, Mandatory Parameters, and Optional Parameters.

Campo Message ID:

• Este campo de 32 bits se utiliza para identificar el mensaje.

Campo Mandatory Parameters:

- Es un campo de longitud variable de parámetros requeridos por el mensaje.
- Aunque no necesariamente todos los mensajes requieran parámetros mandatorios.

Campo Optional Parameters:

- Es un campo de longitud variable de parámetros opcionales del mensaje.
- Aunque no necesariamente todos los mensajes tengan parámetros opcionales.

Tipos de mensajes LDP

Categoría	Tipo	Nombre
Notificación	0x001	Notification
Descubrimiento	0x100	Hello
Sesión o	0x200	Initialization
adyacencia	0x201	Keep Alive
Ī	0x300	Address
	0x301	Address withdraw
Anuncio	0x400	Label mapping
	0x401	Label request
	0x402	Label withdraw
	0x403	Label release
	0x404	Label abort request

Mensajes de notificación

- Son utilizados para:
 - ➤ Informar al peer LDP un error
 - > Proveer información de consulta sobre:
 - > el resultado del procesamiento de un mensaje LDP
 - > el estado de una sesión LDP

Mensajes de notificación

Algunos mensajes de notificación son:

- Malformed PDU or message
- Unknown or malformed TLV
- Session keepalive timer expiration
- Unilateral session shutdown
- Initialization message events
- Events resulting from other errors

Mensajes Hello

- Son intercambiados como parte del mecanismo de descubrimiento de vecinos de LDP.
- El formato de los mensajes implica el bit U en 0 y el tipo de mensaje 0x0100.

• Los campos de los parámetros mandatorios son los siguientes:

- Hold time:
 - Especifica el hello hold time en segundos.
 - Este es el tiempo que, el LSR que envía el mensaje, mantendrá la entrada de los LSR recibidos sin la recepción de otro mensaje hello.
 - Si el hold time es 0, entonces serán utilizados:
 - el valor por defecto de 15 segundos para link hellos.
 - el valor por defecto de 45 segundos para targeted hellos.

- Hold time:
 - Un valor de 0xffff significa infinito.
 - Este timer es reseteado cada vez que un mensaje hello es recibido.
 - Si este expira antes que un nuevo mensaje es recibido, entonces la adyacencia es eliminada.

- <u>T:</u>
 - Especifica el tipo de mensaje hello, T=1 para targeted hello y T=0 para link hello
- <u>R:</u>
 - Este campo es conocido como el "request send targeted hellos"
 - Un valor de 1 indica que al receptor se le requiere que envie periódicos targeted hellos a la fuente de estos hellos.
 - Un valor de 0 no hace tal petición.

```
Frame 1: 80 bytes on wire (640 bits), 80 bytes captured (640 bits)
Ethernet II, Src: cc:03:04:dc:00:10 (cc:03:04:dc:00:10), Dst: cc:04:04:dc:00:10 (cc:04:04:dc:00:10)
MultiProtocol Label Switching Header, Label: 18, Exp: 6, S: 1, TTL: 254
Internet Protocol Version 4, Src: 1.1.2.2 (1.1.2.2), Dst: 1.1.2.1 (1.1.2.1)
D User Datagram Protocol, Src Port: 1dp (646), Dst Port: 1dp (646)

▼ Label Distribution Protocol

     Version: 1
     PDU Length: 30
     LSR ID: 1.1.2.2 (1.1.2.2)
     Label Space ID: 0

▼ Hello Message

         0... = U bit: Unknown bit not set
         Message Type: Hello Message (0x100)
        Message Length: 20
        Message ID: 0x00000000

▼ Common Hello Parameters TLV

            00.. ... = TLV Unknown bits: Known TLV, do not Forward (0x00)
            TLV Type: Common Hello Parameters TLV (0x400)
            TLV Length: 4
            Hold Time: 90
            1... .... = Targeted Hello: Targeted Hello
            .1.. .... = Hello Requested: Source requests periodic hellos
         ...0 0000 0000 0000 = Reserved: 0x0000
      ▼ IPv4 Transport Address TLV
            00.. ... = TLV Unknown bits: Known TLV, do not Forward (0x00)
            TLV Type: IPv4 Transport Address TLV (0x401)
            TLV Length: 4
            IPv4 Transport Address: 1.1.2.2 (1.1.2.2)
```

Mensajes de Inicialización

- Son utilizados para solicitar el establecimiento de la sesión LDP.
- El formato de estos mensajes tienen el bit U en 0 y el tipo de mensaje 0x0200.

• El formato de los campos de parámetros mandatorios tiene los siguientes datos:

Mensajes de Inicialización

- KeepAlive time:
 - Indica el número máximo de segundos que pueden transcurrir entre la recepción de dos mensajes LDP PDU sucesivos.
 - Este timer se resetea cada vez que una LDP PDU es recibida.

Mensajes de Inicialización

- <u>A:</u>
 - Indica el tipo de label advertisement:
 - downstream unsolicited (A=0)
 - downstream on demand (A01).
 - Este último, downstream on demand, solo es utilizado para ATM o Frame Relay.

Mensajes de Inicialización

- <u>D:</u>
 - Habilita el loop detection.
- PVLim (Path vector limit):
 - Indica el número máximo de LSRs almacenados en el Path vector a utilizar para el loop detection.
- Receiver LDP Identifier:
 - Identifica el label space del receptor

Mensajes de Inicialización

```
0.375000 1.1.2.2
                              1.1.2.1
                                                              Initialization Message
Frame 4: 94 bytes on wire (752 bits), 94 bytes captured (752 bits)
▶ Ethernet II, Src: cc:03:04:dc:00:10 (cc:03:04:dc:00:10), Dst: cc:04:04:dc:00:10 (cc:04:04:dc:00:10)
MultiProtocol Label Switching Header, Label: 18, Exp: 6, S: 1, TTL: 254
Internet Protocol Version 4, Src: 1.1.2.2 (1.1.2.2), Dst: 1.1.2.1 (1.1.2.1)
Transmission Control Protocol, Src Port: 58596 (58596), Dst Port: 1dp (646), Seq: 1, Ack: 1, Len: 36

    ▼ Label Distribution Protocol

      Version: 1
      PDU Length: 32
      LSR ID: 1.1.2.2 (1.1.2.2)
      Label Space ID: 0

▼ Initialization Message

         0... = U bit: Unknown bit not set
         Message Type: Initialization Message (0x200)
         Message Length: 22
         Message ID: 0x0000000c

▼ Common Session Parameters TLV

             00.. ... = TLV Unknown bits: Known TLV, do not Forward (0x00)
            TLV Type: Common Session Parameters TLV (0x500)
            TLV Length: 14

▼ Parameters

                Session Protocol Version: 1
                Session KeepAlive Time: 180
                0... = Session Label Advertisement Discipline: Downstream Unsolicited proposed
                .0.. ... = Session Loop Detection: Loop Detection Disabled
                Session Path Vector Limit: 0
                Session Max PDU Length: 0
                Session Receiver LSR Identifier: 1.1.2.1 (1.1.2.1)
                Session Receiver Label Space Identifier: 0
```

Mensajes Keepalive

- Este mensaje se envía como parte del mecanismo para monitorear la integridad de una sesión LDP.
- El formato de estos mensajes tienen el bit U en 0 y el tipo de mensaje 0x0201.
- No existen parámetros ni mandatorios ni opcionales.

Mensajes Keepalive

```
1.1.2.1
                                                             Keep Alive Message
     0.547000 1.1.2.2
                                            LDP
                                                      76
Frame 6: 76 bytes on wire (608 bits), 76 bytes captured (608 bits)
  Ethernet II, Src: cc:03:04:dc:00:10 (cc:03:04:dc:00:10), Dst: cc:04:04:dc:00:10 (cc:04:04:dc:00:10)
  MultiProtocol Label Switching Header, Label: 18, Exp: 6, 5: 1, TTL: 254
  Internet Protocol Version 4, Src: 1.1.2.2 (1.1.2.2), Dst: 1.1.2.1 (1.1.2.1)
  Transmission Control Protocol, Src Port: 58596 (58596), Dst Port: ldp (646), Seq: 37, Ack: 45, Len: 18

▼ Label Distribution Protocol

      Version: 1
      PDU Length: 14
      LSR ID: 1.1.2.2 (1.1.2.2)
      Label Space ID: 0

▼ Keep Alive Message

         0... = U bit: Unknown bit not set
         Message Type: Keep Alive Message (0x201)
         Message Length: 4
         Message ID: 0x0000000d
```

Mensajes Address y Address withdraw

- Un LSR publica las direcciones de sus interfaces utilizando los mensajes del tipo address.
- Esto antes de enviar un label mapping y un label request message.
- Las direcciones recibidas en los mensajes del tipo address, son utilizados por los LSR para realizar el mapeo entre peer LDP-ID y next hop address, encontradas dentro de la tabla de ruteo.
- Adicionalmente, cualquier dirección publicada con anterioridad, puede ser dada de baja con la utilización de mensajes del tipo "address withdraw".
- También cualquier interfaz que se ponga UP.

Mensajes Address y Address withdraw

```
Frame 1: 490 bytes on wire (3920 bits), 490 bytes captured (3920 bits) on interface 0
Ethernet II, Src: c0:05:13:ec:00:01 (c0:05:13:ec:00:01), Dst: c0:04:13:ec:00:01 (c0:04:13:ec:00:01)
Internet Protocol Version 4, Src: 6.6.6.6 (6.6.6.6), Dst: 5.5.5.5 (5.5.5.5)
Transmission Control Protocol, Src Port: 12330 (12330), Dst Port: 1dp (646), Seq: 1, Ack: 1, Len: 436
Label Distribution Protocol

▼ Label Distribution Protocol

      Version: 1
      PDU Length: 414
      LSR ID: 66.6.6.6 (66.6.6.6)
      Label Space ID: 0

▼ Address Message

         0... = U bit: Unknown bit not set
         Message Type: Address Message (0x300)
         Message Length: 26
         Message ID: 0x00000003

▼ Address List TLV

            00.. ... = TLV Unknown bits: Known TLV, do not Forward (0x00)
            TLV Type: Address List TLV (0x101)
            TLV Length: 18
            Address Family: IPv4 (1)

▼ Addresses

                Address 1: 10.1.67.6
                Address 2: 10.1.56.6
                Address 3: 6.6.6.6
                Address 4: 66.6.6.6
   Label Mapping Message
   Label Mapping Message
```

Label mapping message

- Un LSR utiliza este tipo de mensaje para publicar el mapeo de un label a un FEC a su peer LDP.
- El formato de un mensaje del mensaje consiste en el bit U en 0 y el tipo de mensaje seteado a 0x0400.
- Los parámetros mandatorios consisten en el FEC TLV y el label TLV.

Label mapping message

- En LDP, el FEC puede ser tanto un prefijo de una dirección IP o puede ser también la red completa IP del host destino.
- La estructura del <u>FEC TLV</u> permite a un FEC ser especificado como un set de "elementos"
 FEC, donde cada "elemento" FEC identifica a un set de paquetes que pueden ser mapeados a un correspondiente LSP.
- El label TLV nos da el label asociado con el FEC asociado en el FEC TLV.

Label mapping message


```
LSR ID: 66.6.6.6 (66.6.6.6)
   Label Space ID: 0
Address Message

▼ Label Mapping Message

      0... = U bit: Unknown bit not set
      Message Type: Label Mapping Message (0x400)
      Message Length: 23
      Message ID: 0x00000004

▼ Forwarding Equivalence Classes TLV

         00.. ... = TLV Unknown bits: Known TLV, do not Forward (0x00)
         TLV Type: Forwarding Equivalence Classes TLV (0x100)
         TLV Length: 7

▼ FEC Elements

         ♥ FEC Element 1
                FEC Element Type: Prefix FEC (2)
                FEC Element Address Type: IPv4 (1)
                FEC Element Length: 24
                Prefix: 1.1.1.0
   00.. .... = TLV Unknown bits: Known TLV, do not Forward (0x00)
         TLV Type: Generic Label TLV (0x200)
         TLV Length: 4
         .... .... 0000 0000 0000 0001 0000 = Generic Label: 0x00000010
Label Mapping Message
Label Mapping Message
Label Mapping Message
```

Label request message

- Un LSR envía un label request message a un peer LDP para requerir o consultar respecto al mapeo de un FEC en particular.
- El formato del mensaje label request message se define con el bit U seteado en 0 y el message type seteado al tipo label request 0x0401.
- Los parámetros mandatorios contienen el <u>FEC TLV. hop.</u>

Label request message

- Un LSR puede transmitir un mensaje del tipo label request bajo las siguientes condiciones:
 - El LSR reconoce un nuevo FEC a través de su forwarding routing table, el siguiente salto es un peer LDP y el LSR aún no tiene el mapping desde el siguiente salto para el FEC en cuestión.

Label request message

- Un LSR puede transmitir un mensaje del tipo label request bajo las siguientes condiciones:
 - El siguiente salto para un determinado FEC cambia y el LSR no actualizo al momento el mapeo del siguiente salto para un FEC dado.

Label request message

- Un LSR puede transmitir un mensaje del tipo label request bajo las siguientes condiciones:
 - El LSR recibe un label request para un FEC desde un upstream peer LDP, el FEC next hop es un peer LDP y el LSR no tiene actualmente un mapeo para ese next hop.

Label abort, label withdraw, and label release messages

- Un LSR A puede enviar un mensaje del tipo "label abort" a un peer LDP LSR B, para abortar un mensaje label request pendiente.
- Esto puede suceder por ejemplo, si el next hop para un determinado FEC cambia a otro LSR.

Label abort, label withdraw, and label release messages

 Un LSR A puede enviar un mensaje del tipo "label withdraw" para señalizar a un peer LDP LSR B, que no puede continuar utilizando un FEC-label mapping especifico que este LSR A le había publicado con anterioridad.

Label abort, label withdraw, and label release messages

• Un LSR A puede enviar un mensaje del tipo "label reléase" a un peer LDP LSR B para señalizar a este LSR B que él, el LSR A, ya no necesita más un FEC-label mapping especifico que fue previamente consultado y/o publicado por el peer.

- 1. Una sesión LDP es inicializada y establecida entre dos LSRs.
- 2. Cada LSR asocia las etiquetas locales a cada uno de sus FECs disponibles en su tabla de ruteo.
- 3. Los LSRs publican la información de direccionamiento de todas sus interfaces conectadas en mensajes del tipo address mapping messages.

- 4. El comienzo del intercambio de etiquetas sucede en esta instancia, donde cada LSR publica su asociación FEC/Label en mensajes del tipo label mapping messages.
- 5. Los mensajes recibidos del tipo label mapping son incluidos en una base de datos especial llamada "label information base" o LIB
- 6. Finalmente, cada LSR consulta su propia tabla de ruteo para determina cual es la mejor ruta para cada label mapping y crea la base de datos llamada "label forwarding information base" o LFIB.

```
london#show mpls ldp discovery detail
Local LDP Identifier:
   10.200.254.2:0
   Discovery Sources:
   Interfaces:
        Ethernet0/1/2 (ldp): xmit/recv
           Enabled: Interface config
           Hello interval: 5000 ms; Transport IP addr: 10.200.254.2
           LDP Id: 10.200.254.5:0
             Src IP addr: 10.200.215.2; Transport IP addr: 10.200.254.5
             Hold time: 15 sec; Proposed local/peer: 15/15 sec
             Reachable via 10.200.254.5/32
       Ethernet0/1/3 (ldp): xmit/recv
           Enabled: Interface config
           Hello interval: 5000 ms; Transport IP addr: 10.200.254.2
           LDP Id: 10.200.254.1:0
             Src IP addr: 10.200.210.1; Transport IP addr: 10.200.254.1
             Hold time: 15 sec; Proposed local/peer: 15/15 sec
             Reachable via 10.200.254.1/32
```

```
london#show mpls ldp parameters
Protocol version: 1
Downstream label generic region: min label: 16; max label: 100000
Session hold time: 180 sec; keep alive interval: 60 sec
Discovery hello: holdtime: 15 sec; interval: 5 sec
Discovery targeted hello: holdtime: 90 sec; interval: 10 sec
Downstream on Demand max hop count: 255
LDP for targeted sessions
LDP initial/maximum backoff: 15/120 sec
LDP loop detection: off
```

Peer LDP Ident: 10.200.254.5:0; Local LDP Ident 10.200.254.2:0 TCP connection: 10.200.254.5.11537 - 10.200.254.2.646 State: Oper; Msgs sent/rcvd: 16/19; Downstream; Last TIB rev sent 50 Up time: 00:00:36; UID: 9; Peer Id 1; LDP discovery sources: Ethernet0/1/2; Src IP addr: 10.200.215.2 holdtime: 15000 ms, hello interval: 5000 ms Addresses bound to peer LDP Ident: 10.200.254.5 10.200.215.2 10.200.216.1 Peer holdtime: 180000 ms; KA interval: 60000 ms; Peer state: estab

london#show mpls ldp neighbor 10.200.254.5 detail

```
london#show mpls ldp bindings
 lib entry: 10.200.210.0/24, rev 4
       local binding: label: imp-null
       remote binding: lsr: 10.200.254.5:0, label: 16
       remote binding: lsr: 10.200.254.1:0, label: imp-null
       remote binding: lsr: 10.200.254.3:0, label: 19
 lib entry: 10.200.211.0/24, rev 12
       local binding: label: imp-null
       remote binding: lsr: 10.200.254.5:0, label: 18
       remote binding: lsr: 10.200.254.1:0, label: 32
       remote binding: lsr: 10.200.254.3:0, label: imp-null
 lib entry: 10.200.254.1/32, rev 31
       local binding: label: 24
       remote binding: lsr: 10.200.254.5:0, label: 22
       remote binding: lsr: 10.200.254.1:0, label: imp-null
       remote binding: lsr: 10.200.254.3:0, label: 26
```

```
london#show mpls ip binding
 10.200.210.0/24
       in label:
                     imp-null
                     16
                              lsr: 10.200.254.5:0
       out label:
                     imp-null lsr: 10.200.254.1:0
       out label:
       out label:
                               lsr: 10.200.254.3:0
  10.200.211.0/24
       in label:
                     imp-null
       out label:
                     18
                               lsr: 10.200.254.5:0
                              lsr: 10.200.254.1:0
       out label:
       out label:
                     imp-null lsr: 10.200.254.3:0
  10.200.254.1/32
       in label:
       out label:
                              lsr: 10.200.254.5:0
       out label:
                     imp-null 1sr: 10.200.254.1:0
       out label:
                              lsr: 10.200.254.3:0
```

¿dudas?