Familles sommables

 \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} .

1 Familles de réels positifs

Définition 1.1 Somme d'une famille de réels positifs

Soit $(u_j)_{j\in J}\in (\mathbb{R}_+)^J$ une famille de réels **positifs**. Notons $\mathcal{P}_f(J)$ l'ensemble des parties finies de J. On pose

$$\sum_{j \in \mathcal{J}} u_j = \sup \left\{ \sum_{j \in \mathcal{K}} u_j, \ \mathcal{K} \in \mathcal{P}_f(\mathcal{J}) \right\} \in [0, +\infty]$$

Remarque. Dans le cas où $I = \mathbb{N}$, la somme de la suite positive $(u_n)_{n \in \mathbb{N}}$ est tout simplement la somme de la série $\sum_{n \in \mathbb{N}} u_n$. Si la série diverge, $\sum_{n=0}^{+\infty} u_n = +\infty$.

Proposition 1.1 Invariance de la somme par permutation

Soient $(u_i)_{i \in J} \in (\mathbb{R}_+)^J$ une famille de réels **positifs** et φ une permutation de J. Alors

$$\sum_{j \in \mathcal{J}} u_{\varphi(j)} = \sum_{j \in \mathcal{J}} u_j$$

Définition 1.2 Famille sommable de réels positifs

Soit $(u_j)_{j\in J} \in (\mathbb{R}_+)^J$ une famille de réels **positifs**. On dit que $(u_j)_{j\in J}$ est **sommable** si $\sum_{j\in J} u_j < +\infty$.

Remarque. Soient $(a_j)_{j\in J}$ et $(b_j)_{j\in J}$ deux familles de réels tels que $0 \le a_j \le b_j$ pour tout $j \in J$. Si $(b_j)_{j\in J}$ est sommable, alors $(a_j)_{j\in J}$ également.

Exemple 1.1

Soit $q \in [0,1[$. La famille $(q^{|n|})_{n \in \mathbb{Z}}$ est sommable. En effet, si J est une partie finie de \mathbb{Z} , il existe $\mathbb{N} \in \mathbb{N}$ tel que $\mathbb{J} \subset [-\mathbb{N},\mathbb{N}]$. Alors

$$\sum_{n \in \mathcal{J}} q^{|n|} \le \sum_{n = -N}^{N} q^{|n|} = 1 + 2q \frac{1 - q^{N}}{1 - q} \le 1 + \frac{2q}{1 - q} = \frac{1 + q}{1 - q}$$

La somme de la famille $(q^{|n|})_{n\in\mathbb{Z}}$ est $\frac{1+q}{1-q}$ puisque

$$\lim_{N \to +\infty} \sum_{n=-N}^{N} q^{|n|} = \frac{1+q}{1-q}$$

Exemple 1.2

La famille $\left(\frac{1}{pq}\right)_{(p,q)\in(\mathbb{N}^*)^2}$ n'est pas sommable. En effet, posons $J_N=[\![1,N]\!]^2$ pour tout $N\in\mathbb{N}^*$. Alors

$$\sum_{(p,q)\in J_N} \frac{1}{pq} = \left(\sum_{n=1}^N \frac{1}{n}\right)^2 \underset{N\to+\infty}{\longrightarrow} +\infty$$

puisque la série harmonique diverge vers $+\infty$.

Proposition 1.2 Opérations

Somme Soient $(u_j)_{j \in J}$ et $(v_j)_{j \in J}$ des familles de réels **positifs**. Alors $\sum_{i \in J} u_i + v_j = \sum_{i \in J} u_i + \sum_{i \in J} v_i$.

Multiplication par un réel positif Soient $(u_j)_{j\in J}$ une famille de réels positifs et λ un réel positif. Alors $\sum_{i\in J} \lambda u_i = \lambda \sum_{j\in J} u_j$.

Remarque. On utilise les conventions de calcul suivantes dans $[0, +\infty]$:

- $(+\infty) + (+\infty) = +\infty$;
- pour $\lambda > 0$, $\lambda \times (+\infty) = +\infty$;
- $0 \times (+\infty)$.

Proposition 1.3 Sommation par paquets

Soit $J = \bigsqcup_{i \in I} J_i$ et $(u_j)_{j \in J} \in (\mathbb{R}_+)^J$ une famille de réels **positifs**. Alors

$$\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}_i} u_j = \sum_{j \in \mathcal{J}} u_j$$

Remarque. L'égalité est encore valable lorsque l'un des membres vaut $+\infty$.

Exemple 1.3

On souhaite calculer $\sum_{n=1}^{+\infty} \frac{1}{(2n+1)^2}$ en admettant que $\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. En utilisant la partition $\mathbb{N}^* = \{2k, \ k \in \mathbb{N}^*\} \sqcup \{2k+1, \ k \in \mathbb{N}\},$

$$\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{k=1}^{+\infty} \frac{1}{4k^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{1}{4}\zeta(2) + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

On en déduit que

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{3}{4}\zeta(2) = \frac{\pi^2}{8}$$

Méthode

Pour montrer qu'une famille de réels **positifs** $(u_i)_{i\in I}$ est sommable, on peut employer le théorème de sommation par paquets ou le théorème de Fubini positif pour montrer que $\sum_{i\in I}u_i<+\infty$.

Exemple 1.4

On veut déterminer la nature de la famille $\left(\frac{1}{(m+n)^{\alpha}}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ pour $\alpha\in\mathbb{R}$. Comme il s'agit d'une famille de réels positifs, on peut employer le théorème de sommation par paquets en remarquant que $(\mathbb{N}^*)^2=\bigsqcup_{p\geq 2}\mathrm{I}_p$ avec $\mathrm{I}_p=\{(m,n)\in(\mathbb{N}^*)^2,\ m+n=p\}$. Ainsi

$$\sum_{(m,n) \in (\mathbb{N}^*)^2} \frac{1}{(m+n)^{\alpha}} = \sum_{p=2}^{+\infty} \sum_{(m,n) \in \mathbb{I}_p} \frac{1}{(m+n)^{\alpha}} = \sum_{p=2}^{+\infty} \frac{\operatorname{card}(\mathbb{I}_p)}{p^{\alpha}} = \sum_{p=2}^{+\infty} \frac{p-1}{p^{\alpha}}$$

Or
$$\frac{p-1}{p^{\alpha}} \sim \frac{1}{p^{\alpha-1}}$$
 donc

$$\sum_{(m,n)\in(\mathbb{N}^*)^2}\frac{1}{(m+n)^\alpha}<+\infty\iff\alpha>2$$

Proposition 1.4 Théorème de Fubini positif

Soit $(u_{i,j})_{(i,j)\in I\times J}\in (\mathbb{R}_+)^{I\times J}$ une famille de réels **positifs**. Alors

$$\sum_{(i,j)\in I\times J}u_{i,j}=\sum_{i\in I}\left(\sum_{j\in J}u_{i,j}\right)=\sum_{j\in J}\left(\sum_{i\in I}u_{i,j}\right)$$

Remarque. A nouveau, l'égalité est encore valable lorsque l'un des membres vaut +∞.

Exercice 1.1

On souhaite calculer la somme de la famille $\left(\frac{1}{q^p}\right)_{p,q\geq 2}$.

$$\sum_{p,q \ge 2} \frac{1}{q^p} = \sum_{q=2}^{+\infty} \sum_{p=2}^{+\infty} \frac{1}{q^p} = \sum_{q=2}^{+\infty} \frac{1}{q^2} \cdot \frac{1}{1 - \frac{1}{q}} = \sum_{q=2}^{+\infty} \frac{1}{q^2 - q} = \sum_{q=2}^{+\infty} \frac{1}{q - 1} - \frac{1}{q} = 1$$

2 Familles sommables de complexes

Définition 2.1 Famille sommable de réels

Soit $(u_j)_{j\in J}\in \mathbb{R}^J$ une famille de réels. On dit que la famille $(u_j)_{j\in J}$ est **sommable** si la famille $(|u_j|)_{j\in J}$ l'est.

Rappel Parties positive et négative d'un réel

Pour $x \in \mathbb{R}$, on pose $x^+ = \max(0, x)$ et $x^- = \max(0, -x)$. Alors $x = x^+ - x^-$ et $|x| = x^+ + x^-$.

Proposition 2.1

La famille $(u_j)_{j\in J}\in \mathbb{R}^J$ est sommable si et seulement si les familles $(u_j^+)_{j\in J}$ et $(u_j^-)_{j\in J}$ sont sommables.

Définition 2.2 Somme d'une famille de réels

Soit $(u_j)_{j\in \mathbb{J}}\in \mathbb{R}^{\mathbb{J}}$ une famille sommable. On définit la somme de la famille $(u_j)_{j\in \mathbb{J}}$ en posant

$$\sum_{j \in \mathcal{J}} u_j = \sum_{j \in \mathcal{J}} u_j^+ - \sum_{j \in \mathcal{J}} u_j^-$$

Définition 2.3 Famille sommable de complexes

Soit $(u_j)_{j\in\mathbb{J}}\in\mathbb{C}^\mathbb{J}$ une famille de complexes. On dit que la famille $(u_j)_{j\in\mathbb{J}}$ est sommable si la famille $(|u_j|)_{j\in\mathbb{J}}$ l'est.

Proposition 2.2

La famille $(u_i)_{i \in J} \in \mathbb{C}^J$ est sommable si et seulement si les familles $(\text{Re}(u_i))_{i \in J}$ et $(\text{Im}(u_i))_{i \in J}$ sont sommables.

Définition 2.4 Somme d'une famille de complexes

Soit $(u_j)_{j\in\mathbb{J}}\in\mathbb{C}^\mathbb{J}$ une famille sommable. On définit la somme de la famille $(u_j)_{j\in\mathbb{J}}$ en posant

$$\sum_{j \in \mathcal{J}} u_j = \sum_{j \in \mathcal{J}} \operatorname{Re}(u_j) + i \sum_{j \in \mathcal{J}} \operatorname{Im}(u_j)$$

Exemple 2.1

Soit $q \in \mathbb{C}$ tel que |q| < 1. Alors la famille $(q^{|n|})_{n \in \mathbb{Z}}$ est sommable de somme $\frac{1+q}{1-q}$.

Notation 2.1

L'ensemble des familles sommables de \mathbb{K}^J est noté $\ell^1(J,\mathbb{K})$ ou plus simplement $\ell^1(J)$ s'il n'ya pas d'ambiguïté.

Proposition 2.3 Invariance de la somme par permutation

Soient $(u_j)_{j \in J} \in \ell^1(J, \mathbb{K})$ et φ une permutation de J. Alors

$$\sum_{j\in \mathcal{J}}u_{\varphi(j)}=\sum_{j\in \mathcal{J}}u_j$$

Proposition 2.4

Soient $(u_j)_{j\in \mathbb{J}}\in \mathbb{C}^{\mathbb{J}}$ et $(v_j)_{j\in \mathbb{J}}\in (\mathbb{R}_+)^{\mathbb{J}}$ telles que $|u_j|\leq v_j$ pour tout $j\in \mathbb{J}$. Si $(v_j)_{j\in \mathbb{J}}$ est sommable, alors $(u_j)_{j\in \mathbb{J}}$ l'est également.

Proposition 2.5 Linéarité de la somme

Soit $((u_j)_{j\in J}, (v_j)_{j\in J}) \in \ell^1(J, \mathbb{K})$. Alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$,

• la famille $(\lambda u_j + \mu v_j)_{j \in J} \in \ell^1(J, \mathbb{K});$

•
$$\sum_{j \in J} \lambda u_j + \mu v_j = \lambda \sum_{j \in J} v_j + \mu \sum_{j \in J} v_j$$
.

Proposition 2.6 Lien entre série et famille sommable

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$ une suite numérique. La famille $(u_n)_{n\in\mathbb{N}}$ est sommable si et seulement si la série $\sum_{n\in\mathbb{N}}u_n$ converge absolument. Dans ce cas, la somme de la famille $(u_n)_{n\in\mathbb{N}}$ est la somme de la série $\sum_{n\in\mathbb{N}}u_n$.

Remarque. Dans le cadre des séries, la notation $\sum_{n\in\mathbb{N}}u_n$ peut être ambiguë puisqu'elle peut donc désigner à la fois une série (i.e. la suite des sommes partielles) et la somme de la famille $(u_n)_{n\in\mathbb{N}}$.

Proposition 2.7 Sommation par paquets

Soient
$$J = \bigsqcup_{i \in I} J_i$$
 et $(u_j)_{j \in J} \in \ell^1(J, \mathbb{C})$. Alors

$$\sum_{i \in I} \sum_{j \in J_i} u_j = \sum_{j \in J} u_j$$

Exemple 2.2

Soit $z \in \mathbb{C}$ tel que |z| < 1. On souhaite montrer que

$$\sum_{n=1}^{+\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}} = \frac{z}{1 - z}$$

Fixons $n \in \mathbb{N}$. En faisant intervenir une série géométrique,

$$\frac{z^{2^n}}{1 - z^{2^{n+1}}} = z^{2^n} \sum_{k=0}^{+\infty} z^{2^{n+1}k} = \sum_{k=0}^{+\infty} z^{2^n(2k+1)}$$

Pour $n \in \mathbb{N}$, on pose alors $J_n = \{2^n(2k+1), k \in \mathbb{N}\}$. En partitionnant \mathbb{N}^* suivant la valuation 2-adique, on montre que $(J_n)_{n \in \mathbb{N}}$ est une partition de \mathbb{N}^* . Comme la série $\sum_{j \in \mathbb{N}^*} z^j$ converge absolument, la famille $(z^j)_{j \in \mathbb{N}^*}$ est sommable et le théorème de sommation par paquets permet alors d'affirmer que

$$\sum_{n=1}^{+\infty} \sum_{k=0}^{+\infty} z^{2^n(2k+1)} = \sum_{i=1}^{+\infty} z^j$$

Ce qui peut encore s'écrire d'après ce qui précède et en reconnaissant dans le second membre la somme d'une série géométrique :

$$\sum_{n=1}^{+\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}} = \frac{z}{1 - z}$$

Proposition 2.8 Théorème de Fubini

Soit $(u_{i,j})_{(i,j)\in I\times J}\in \ell^1(I\times J,\mathbb{K})$. Alors les familles $(\sum_{i\in I}u_{i,j})_{i\in I}$ et $(\sum_{i\in I}u_{i,j})_{j\in J}$ sont sommables et

$$\sum_{(i,j)\in I\times J}u_{i,j}=\sum_{i\in I}\left(\sum_{j\in J}u_{i,j}\right)=\sum_{j\in J}\left(\sum_{i\in I}u_{i,j}\right)$$

Exemple 2.3

On admet dans la suite que $\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

La série $\sum \frac{(-1)^n}{n^2}$ converge absolument i.e. la famille $\left(\frac{(-1)^n}{n^2}\right)_{n\in\mathbb{N}^*}$ est sommable. On peut donc appliquer le théorème de sommation par paquets avec la partition $\mathbb{N}^* = \{2k, \ k \in \mathbb{N}^*\} \sqcup \{2k+1, \ k \in \mathbb{N}\}$:

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = \sum_{k=1}^{+\infty} \frac{1}{4k^2} - \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{1}{4} \zeta(2) - \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

Mais en utilisant cette même partition,

$$\zeta(2) = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{k=1}^{+\infty} \frac{1}{4k^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{1}{4}\zeta(2) + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

On en déduit que

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{1}{2}\zeta(2) = -\frac{\pi^2}{12}$$

Exemple 2.4

On veut calculer $\sum_{(m,n)\in\mathbb{N}\times\mathbb{N}^*} \frac{(-1)^n}{(m+n^2)(m+n^2+1)}.$ Sous réserve de sommabilité, on applique le théorème de Fubini :

$$\sum_{(m,n)\in\mathbb{N}\times\mathbb{N}^*}\frac{(-1)^n}{(m+n^2)(m+n^2+1)}=\sum_{n=1}^{+\infty}(-1)^n\sum_{m=0}^{+\infty}\frac{1}{m+n^2}-\frac{1}{m+n^2+1}=\sum_{n=1}^{+\infty}\frac{(-1)^n}{n^2}$$

La série $\sum \frac{(-1)^n}{n^2}$ converge absolument donc la suite $\left(\frac{(-1)^n}{n^2}\right)_{n\in\mathbb{N}^*}$ est sommable, ce qui justifie les calculs précédents. Finalement, en utilisant l'exemple 2.3,

$$\sum_{(m,n)\in\mathbb{N}\times\mathbb{N}^*} \frac{(-1)^n}{(m+n^2)(m+n^2+1)} = -\frac{\pi^2}{12}$$

ATTENTION! On ne peut pas toujours permuter l'ordre de sommation. Par exemple, en prenant

$$a_{p,q} = \frac{2p+1}{p+q+2} - \frac{p}{p+q+1} - \frac{p+1}{p+q+3}$$

On obtient

$$\sum_{p=0}^{+\infty}\sum_{q=0}^{+\infty}a_{p,q}=1 \qquad \text{et} \qquad \sum_{q=0}^{+\infty}\sum_{p=0}^{+\infty}a_{p,q}=0$$

Ceci prouve en particulier que la famille $(a_{p,q})_{(p,q)\in\mathbb{N}^2}$ n'est pas sommable sinon les deux sommes précédentes seraient égales en vertu du théorème de Fubini.

Proposition 2.9 Produit de deux familles sommables

Soient $(u_i)_{i\in I}$ et $(v_j)_{j\in J}$ deux familles sommables. Alors la famille $(u_iv_j)_{(i,j)\in I\times J}$ est sommable et

$$\sum_{(i,j)\in I\times J} = \left(\sum_{i\in I} u_i\right) \left(\sum_{i\in J} v_i\right)$$

REMARQUE. Par récurrence, le résultat précédent s'étend à un produit d'un nombre fini de familles sommables.

3 Produit de Cauchy

Définition 3.1 Produit de Cauchy

Soient $\sum_{n\in\mathbb{N}}a_n$ et $\sum_{n\in\mathbb{N}}b_n$ deux séries numériques. On appelle **produit de Cauchy** de ces deux séries la série $\sum_{n\in\mathbb{N}}c_n$ où $c_n=\sum_{k=0}^na_kb_{n-k}=\sum_{k=0}^na_{n-k}b_k$ pour tout $n\in\mathbb{N}$.

Proposition 3.1

Soient $\sum_{n\in\mathbb{N}}a_n$ et $\sum_{n\in\mathbb{N}}b_n$ deux séries numériques **absolument convergentes**. Alors leur produit de Cauchy $\sum_{n\in\mathbb{N}}c_n$ est une série absolument convergente. De plus

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$$

Exemple 3.1

Soit $(a,b) \in \mathbb{C}^2$. Les séries $\sum_{n \in \mathbb{N}} \frac{a^n}{n!}$ et $\sum_{n \in \mathbb{N}} \frac{b^n}{n!}$ sont absolument convergentes de sommes respectives e^a et e^b . On vérifie facilement que leur produit de Cauchy est $\sum_{n \in \mathbb{N}} \frac{(a+b)^n}{n!}$. On en déduit que $e^{a+b} = e^a e^b$.