What is claimed is:

1. A compound of Formula I

$$\begin{array}{c|c}
R^{1} & R^{4} \\
R^{3} & | R^{5} \\
R^{1} & R^{12} \\
R^{2} & H & (I)
\end{array}$$

wherein

Ar represents a 6 membered aromatic ring containing 0, 1 or 2 N atoms;

 R^1 and R^2 are each independently selected from H, halo, CF_3 , $C(O)R^9$,

 (C_1-C_6) alkyl optionally substituted with up to two substituents selected from OH, (C_1-C_3) alkoxy, F, and phenyl,

(C₁-C₆)alkoxy optionally substituted with one or two substituents each

independently selected from x and

 $N[(C_1-C_3)alkyl]_2$ where each alkyl is independently optionally substituted up to two times with $(C_1-C_3)alkoxy$,

NH(C₁-C₃)alkyl where said alkyl is optionally substituted with up to two substitutents each selected independently from OH, F, (C₁-C₃)alkoxy,

N[(C₁-C₃)alkyl]₂, NH(C₁-C₃)alkyl, phenyl, pyrrolidinyl, and N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted with up to two substitutents each selected independently from OH, F,

substituted with +N

pyrrolidinyl optionally substituted up to two times with $N[(C_1-C_3)alkyl]_2$, phenyl optionally substituted with up to two substitutents each selected independently from $(C_1-C_3)alkyl$, $(C_1-C_3)alkoxy$, halo, CF_3 , and CN,

phenyl, and (C₁-C₃)alkoxy, said alkoxy being optionally

with the proviso that when (Ar) contains 1 or 2 N atoms, R^1 and R^2 must each be

and, R¹ and R² together with the adjacent C atoms to which they are attached form a ring selected from benzo, dioxolo and imidazo,

said imidazo being optionally substituted up to two times with (C_1-C_3) alkyl,

with the proviso that R1 and R2 together with the adjacent C atoms to

which they are attached form a ring only when contains no N atoms; R³ is selected from H, (C₁-C₄)alkyl, OH, NO₂, NH₂, NH(C₁-C₄)alkyl, NHC(O)(C₁-C₄)alkyl and NHC(O)phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN;

R⁴ is selected from H, OH, halo, CN, C(O)R⁶, S(O)₂R⁷, OSi[(C₁-C₄)alkyl]₃, tetrazolyl, thienyl, pyrrolyl, pyrimidinyl, oxazolyl, furanyl,

 (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl, each optionally substituted with OH, F, OC(O)NHphenyl, NHC(O)(C_1-C_3)alkyl, C(O)NH₂,

C(O)NH(C₁-C₃)alkyl, C(O)N[(C₁-C₃)alkyl]₂,
$$+$$
N \longrightarrow X

 $(C_1\text{-}C_3)$ alkoxy optionally substituted up to two times with $(C_1\text{-}C_3)$ alkoxy,

NHC(O)NH(C₁-C₃)alkyl where said alkyl is optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F and phenyl,

NHC(O)NHphenyl where said phenyl is optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,

NHC(O)N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted up to two times with (C₁-C₃)alkoxy,

NH-phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,

N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted up to two times with (C₁-C₃)alkoxy,

phenyl optionally substituted with up to two substituents independently selected from (C_1 - C_3)alkyl, (C_1 - C_3)alkoxy, halo, CN, CF₃, and

$$+\sqrt{x}$$

pyrrolidinyl optionally substituted up to two times with $N[(C_1-C_3)alkyl]_2$, $(C_1-C_6)alkoxy$ optionally substituted with up to two substituents independently

selected from (C₁-C₃)alkoxy, pyrrolidinyl,

and $N[(C_1-C_3)alkyl]_2$ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, F, $(C_1-C_3)alkoxy$ and phenyl,

 $N[(C_1-C_4)alkyl]_2$ where each of said alkyl groups are independently optionally substituted with up to two substituents independently selected from OH, $(C_1-C_3)alkyl$, F, $(C_1-C_3)alkoxy$, and phenyl,

oxadiazolyl optionally substituted up to two times with (C₁-C₃)alkyl, phenyl optionally substituted with up to two substituents independently selected

from (C_1-C_3) alkoxy, CN, (C_1-C_3) alkyl, halo, C(O)-N , N

- $C(O)(C_1-C_3)$ alkyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkoxy, OH, (C_1-C_3) alkoxy, F, and phenyl, and
- $C(O)N[(C_1-C_3)alkyl]_2 \ where each of said alkyl groups are independently optionally substituted up to two times with (C_1-C_3)alkoxy,$
- pyridyl optionally substituted with up to two substituents independently selected from $(C_1\text{-}C_3)$ alkyl,
- $C(O)N[(C_1-C_3)alkyl]_2$ where each of said alkyl groups are independently optionally substituted up to two times with $(C_1-C_3)alkoxy$, and
- O-pyridyl optionally substituted with up to two substituents independently selected from CF_3 , halo, and (C_1-C_3) alkyl;

R⁵ is selected from H, halo, CN, (C₁-C₆)alkoxy, and (C₁-C₆)alkyl;

- R^6 is selected from OH, NHR¹⁰, O-(C₃-C₆)cycloakyl, (C₁-C₃)alkoxy, O-(C₂-C₆)alkenyl, O-(C₃-C₆)alkynyl,
 - (C_1-C_6) alkyl optionally substituted with up to two substituents independently selected from OH, (C_1-C_3) alkoxy, F, and phenyl,
 - N[(C₁-C₄)alkyl]₂ where each of said alkyl groups are independently optionally substituted with up to two substituents independently selected from OH, CN, N[(C₁-C₄)alkyl]₂, (C₁-C₃)alkoxy, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₃-C₆)cycloalkyl, and pyridyl,
 - $N[(C_1-C_3)alkyl]R^8$ where $[(C_1-C_3)alkyl]$ is optionally substituted up to two times with $(C_1-C_3)alkoxy$,
 - $\label{eq:Newtonicond} N[(C_3\text{-}C_6)\text{cycloalkyl}](C_1\text{-}C_3) alkyl \ \text{where said alkyl is substituted with up to two substituents independently selected from (C_1\text{-}C_3) alkoxy, OH, CN,}$

PCT/US2003/036003 WO 2004/043950

> $N[(C_1-C_4)alkyl]_2$, $S(O)_2$ -phenyl, $S(O)_2(C_1-C_3)alkyl$, phenyl, furyl, tetrahydrofuryl, (C5-C6)cycloalkyl, and pyridyl,

pyrrolidinyl optionally substituted with up to two substituents independently selected from NH_2 , $NH(C_1-C_3)$ alkyl, $N[(C_1-C_4)$ alkyl]₂, $C(O)NH_2$, NHC(O)(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, pyridyl, $N[(C_1-C_3)alkyl]C(O)NH(C_1-C_3)alkyl,\ N[(C_1-C_3)alkyl]C(O)(C_1-C_3)alkyl,\ and$ (C1-C3)alkyl optionally substituted with up to two substituents

independently selected from $N[(C_1-C_4)alkyl]_2$, $(C_1-C_3)alkoxy$, and pyrrolidinyl,

morpholinyl optionally substituted up to two times with (C1-C3)alkyl, thiomorpholinyl optionally substituted up to two times with (C1-C3)alkyl, piperazinyl optionally substituted with up to two substituents independently selected from pyrazinyl, C(O)NH₂, C(O)NH-phenyl, C(O)-furanyl, $C(O)(C_1-C_3)$ alkyl, $C(O)NH(C_1-C_3)$ alkyl, $C(O)N[(C_1-C_3)$ alkyl] R^8 ,

$$S(O)_2(C_1-C_3)$$
alkyl, $S(O)_2$ -phenyl,

pyridyl optionally substituted with up to two substituents independently selected from (C1-C3)alkyl, CN and CF3,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN, halo, CF₃, and (C₁-C₃)alkoxy,

(C1-C3)alkyl optionally substituted with up to two substituents independently selected from OH, F, phenyl, (C1-C3)alkoxy,

$$N[(C_1-C_3)alkyl]_2$$
, pyrrolinidyl, $C(O)$ -pyrrolidinyl, $C(O)$ - X

pyridyl optionally substituted up to two times with (C₁-C₃)alkoxy,

and

piperidinyl optionally substituted with up to two substituents independently selected from phenyl, pyridyl, pyrrolidinyl and oxo-dihydrobenzimidazolyl;

R⁷ is selected from NH₂, pyrrolidinyl,

NH(C₁-C₃)alkyl said alkyl being optionally substituted up to two times with · (C₁-C₃)alkoxy,

NH-phenyl said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN, (C₁-C₄)alkoxy, halo and CF₃, N[(C1-C3)alkyl]2 wherein each alkyl is independently optionally substituted up to

two times with (C₁-C₄)alkoxy, and

phenyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkyl, (C_1-C_3) alkoxy, halo, CF₃ and CN;

R⁸ is selected from (C₁-C₃)alkoxy, pyridyl, piperidinyl, pyranyl and phenyl, where each ring moiety is optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and (C₁-C₃)alkyl;

R⁹ is selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH,

phenyl optionally substituted with (C_1-C_3) alkyl, (C_1-C_3) alkoxy, halo, CF_3 , and CN, $N[(C_1-C_4)$ alkyl]₂ where each of said alkyl groups are independently optionally substituted with OH, CN, $N[(C_1-C_4)$ alkyl]₂, (C_1-C_4) alkoxy, $S(O)_2$ -phenyl, $S(O)_2(C_1-C_3)$ alkyl, phenyl, furyl, tetrahydrofuryl, (C_3-C_6) cycloalkyl, and

pyrrolidinyl optionally substituted with N[(C1-C3)alkyl]2,

and, only when Ar contains no N atoms, R⁹ is also selected from pyridyl, thienyl, and NHR¹⁰;

R¹⁰ is selected from H, indolyl,

 (C_1-C_4) alkyl optionally substituted with up to two substituents independently selected from OH, F, phenyl, (C_1-C_4) alkoxy, NHC(O) (C_1-C_3) alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, indolyl, thienyl, pyrazolyl, , ,

N[(C₁-C₄)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F, and phenyl,

phenyl optionally substituted with up to two substituents independently selected from (C_1 - C_3)alkyl, (C_1 - C_3)alkoxy, CN, halo,

 CF_3 , $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ phenyl, and $S(O)_2NH_2$, pyridyl optionally substituted up to two times with CF_3 ,

imidazolyl optionally substituted up to two times with (C₁-C₃)alkyl,

furyl optionally substituted up to two times with (C_1 - C_4)alkyl, and

pyrrolidinyl optionally substituted with up to two substituents independently

selected from (C₁-C₄)alkoxy, (O), and

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F,

and phenyl,

 $S(O)_2$ -phenyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkoxy, (C_1-C_3) alkyl, halo, and CN,

pyrazolyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and

phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C_1-C_4) alkoxy, (C_1-C_4) alkyl, halo, CF_3 , and CN,

benzothiazolyl optionally substituted up to two times with (C_1-C_4) alkyl, thiazolyl, optionally substituted up to two times with (C_1-C_4) alkyl,

thiadiazolyl, optionally substituted with up to two substituents independently selected from CF₃, (C_3 - C_6)cycloalkyl, and (C_1 - C_6)alkyl,

phenyl optionally substituted with up to two substituents independently selected

from CN, halo, CF₃, N[(C₁-C₄)alkyl]₂, indolyl, $\stackrel{+}{\longrightarrow}$,

O-pyridyl optionally substituted with C(O)NH(C1-C4)alkyl,

(C1-C4)alkyl optionally substituted with up to two substituents

independently selected from pyridyl, +N X, OH,

(C₁-C₃)alkoxy, F, and phenyl, and

(C₁-C₄)alkoxy optionally substituted with N[(C₁-C₄)alkyl]₂ where one alkyl group is optionally substituted with phenyl, or

(C₁-C₄)alkoxy optionally substituted with +N X,

pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_4) alkoxy, and

indazolyl optionally substituted up to two times with (C₁-C₄)alkyl;

R¹¹ and R¹² are each selected independently from H, F and Cl with the proviso that when one of R¹¹ and R¹² is F or Cl. the other must be H;

X is selected from O, S, CH₂, and NH, and

when X is NH, the H on NH is optionally replaced with pyridyl, pyrazinyl, phenyl, or $(C_1\text{-}C_4)$ alkyl optionally substituted with up to two substituents independently selected from OH, $(C_1\text{-}C_3)$ alkoxy, $N[(C_1\text{-}C_3)$ alkyl]₂, C(O)-pyrrolidinyl, $N[(C_1\text{-}C_4)$ alkyl]₂, and phenyl said phenyl being optionally substituted with up to two substituents independently selected from CN and $(C_1\text{-}C_3)$ alkoxy,

- 2. A compound of claim 1 wherein represents a 6 membered ring containing 0 N atoms.
- 3. A compound of claim 2 wherein R¹ and R² are each independently selected from H, (C₁-C₃)alkoxy, F, and CF₃; R³ is selected from H, NH₂, and NHC(O)(C₁-C₃)alkyl; R⁴ is selected from H, halo, (C₁-C₃)alkoxy, CN, COR⁶, S(O)₂R⁷, N[(C₁-C₃)alkyl]₂, optionally substituted phenyl and optionally substituted (C₁-C₄)alkyl; and R⁵ is selected from H, (C₁-C₃)alkoxy, F and CN.
 - 4. A compound of claim 3 wherein R^5 is selected from H and F; and R^4 is selected from H, halo, (C_1-C_3) alkoxy, CN, COR^6 , $S(O)_2R^7$, $N[(C_1-C_3)$ alkyl]₂, and optionally substituted (C_1-C_4) alkyl.
- 5. A compound of claim 4 wherein R^1 and R^2 are each H; R^3 is NH_2 ; R^4 is COR^6 , $S(O)_2R^7$, and (C_1-C_4) alkyl optionally substituted with $N[(C_1-C_3)$ alkyl] $_2$ and $N[(C_3-C_6)$ cycloalkyl] $_2$; and $N[(C_3-C_6)$ cycloalkyl] $_3$; and $N[(C_3-C_6)$ cycloalkyl] $_3$
- 6. A compound of claim 1 wherein is 6 membered aromatic ring containing 1 or 2 N atoms.
- 7. A compound of claim 6 wherein R^3 is selected from H, NH_2 , and $NHC(O)(C_1-C_3)alkyl$; R^4 is selected from H, halo, $(C_1-C_3)alkoxy$, CN, COR^6 , $S(O)_2R^7$, $N[(C_1-C_3)alkyl]_2$, optionally substituted phenyl and optionally substituted $(C_1-C_4)alkyl$; and R^5 is selected from H, $(C_1-C_3)alkoxy$, F and CN.
- A method of treating a hyper-proliferative disorder comprising the administration to a mammal in need thereof of an effective amount of a compound of Formula I

$$\begin{array}{c|c}
R^{11}R^{4} \\
R^{3} \\
R^{12}
\end{array}$$

$$\begin{array}{c|c}
R^{11}R^{4} \\
R^{12}
\end{array}$$

wherein

represents a 6 membered aromatic ring containing 0, 1 or 2 N atoms; R¹ and R² are each independently selected from H, halo, CF₃, C(O)R⁹, (C1-C6)alkyl optionally substituted with up to two substituents selected from OH, (C₁-C₃)alkoxy, F, and phenyl, (C₁-C₆)alkoxy optionally substituted with one or two substituents each independently selected from N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted up to two times with (C_1-C_3) alkoxy. NH(C₁-C₃)alkyl where said alkyl is optionally substituted with up to two substitutents each selected independently from OH, F, (C₁-C₃)alkoxy, N[(C₁-C₃)alkyl]₂, NH(C₁-C₃)alkyl, phenyl, pyrrolidinyl, and N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted with up to two substitutents each selected independently from OH, F. phenyl, and (C₁-C₃)alkoxy, said alkoxy being optionally substituted with pyrrolidinyl optionally substituted up to two times with N[(C₁-C₃)alkyl]₂, phenyl optionally substituted with up to two substitutents each selected independently from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN. contains 1 or 2 N atoms, R¹ and R² must each be with the proviso that when H. and, R1 and R2 together with the adjacent C atoms to which they are attached form a ring selected from benzo, dioxolo and imidazo, said imidazo being optionally substituted up to two times with (C₁-C₃)alkyl, with the proviso that R1 and R2 together with the adjacent C atoms to which they are attached form a ring only when [!] contains no N atoms: R^3 is selected from H, (C₁-C₄)alkyl, OH, NO₂, NH₂, NH(C₁-C₄)alkyl, NHC(O)(C₁-C₄)alkyl and NHC(O)phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN;

R⁴ is selected from H, OH, halo, CN, C(O)R⁶, S(O)₂R⁷, OSi[(C₁-C₄)alkyl]₃, tetrazolyl, thienyl, pyrrolyl, pyrimidinyl, oxazolyl, furanyl,

 (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl, each optionally substituted with OH, F, OC(O)NHphenyl, NHC(O) (C_1-C_3) alkyl, C(O)NH₂,

 $C(O)NH(C_1-C_3)alkyl, C(O)N[(C_1-C_3)alkyl]_2,$ +N \longrightarrow

(C₁-C₃)alkoxy optionally substituted up to two times with (C₁-C₃)alkoxy,

NHC(O)NH(C₁-C₃)alkyl where said alkyl is optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F and phenyl,

NHC(O)NHphenyl where said phenyl is optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,

 (C_1-C_3) alkoxy, halo, CF_3 , CN, and $\stackrel{+}{\longrightarrow} N$,

NHC(O)N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted up to two times with (C₁-C₃)alkoxy,

NH-phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,

(C₁-C₃)alkoxy, halo, CN, and +N ,

 $N[(C_1-C_3)alkyl]_2$ where each alkyl is independently optionally substituted up to two times with $(C_1-C_3)alkoxy$,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CN, CF₃, and

pyrrolidinyl optionally substituted up to two times with $N[(C_1-C_3)alkyl]_2$, $(C_1-C_6)alkoxy$ optionally substituted with up to two substituents independently

selected from (C₁-C₃)alkoxy, pyrrolidinyl,

and N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, F, (C₁-C₃)alkoxy and phenyl,

N[(C₁-C₄)alkyl]₂ where each of said alkyl groups are independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkyl, F, (C₁-C₃)alkoxy, and phenyl,

oxadiazolyl optionally substituted up to two times with (C1-C3)alkyl,

phenyl optionally substituted with up to two substituents independently selected

from (C_1-C_3) alkoxy, CN, (C_1-C_3) alkyl, halo,

- $C(O)(C_1-C_3)$ alkyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkoxy, OH, (C_1-C_3) alkoxy, F, and phenyl, and
- $C(O)N[(C_1-C_3)alkyl]_2$ where each of said alkyl groups are independently optionally substituted up to two times with $(C_1-C_3)alkoxy$,
- pyridyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkyl,
- $C(O)N[(C_1-C_3)alkyl]_2$ where each of said alkyl groups are independently optionally substituted up to two times with $(C_1-C_3)alkoxy$, and
- O-pyridyl optionally substituted with up to two substituents independently selected from CF₃, halo, and (C₁-C₃)alkyl;
- R⁵ is selected from H, halo, CN, (C₁-C₆)alkoxy, and (C₁-C₆)alkyl;
- R^6 is selected from OH, NHR¹⁰, O-(C₃-C₆)cycloakyl, (C₁-C₃)alkoxy, O-(C₂-C₆)alkenyl, O-(C₃-C₆)alkynyl,
 - (C_1-C_6) alkyl optionally substituted with up to two substituents independently selected from OH, (C_1-C_3) alkoxy, F, and phenyl,
 - N[(C₁-C₄)alkyl]₂ where each of said alkyl groups are independently optionally substituted with up to two substituents independently selected from OH, CN, N[(C₁-C₄)alkyl]₂, (C₁-C₃)alkoxy, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₃-C₆)cycloalkyl, and pyridyl,
 - $N[(C_1-C_3)alkyl]R^8$ where $[(C_1-C_3)alkyl]$ is optionally substituted up to two times with $(C_1-C_3)alkoxy$,
 - $$\label{eq:Newtonicondition} \begin{split} N[(C_3-C_6) & \text{cycloalkyl}](C_1-C_3) \text{alkyl} \text{ where said alkyl is substituted with up to two} \\ & \text{substituents independently selected from } (C_1-C_3) \text{alkoxy, OH, CN,} \\ & N[(C_1-C_4) \text{alkyl}]_2, \ S(O)_2-\text{phenyl, S}(O)_2(C_1-C_3) \text{alkyl, phenyl, furyl,} \\ & \text{tetrahydrofuryl, } (C_5-C_6) \text{cycloalkyl, and pyridyl,} \end{split}$$
 - pyrrolidinyl optionally substituted with up to two substituents independently selected from NH₂, NH(C₁-C₃)alkyl, N[(C₁-C₄)alkyl]₂, C(O)NH₂, NHC(O)(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, pyridyl, N[(C₁-C₃)alkyl]C(O)NH(C₁-C₃)alkyl, N[(C₁-C₃)alkyl]C(O)(C₁-C₃)alkyl, and (C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from N[(C₁-C₄)alkyl]₂, (C₁-C₃)alkoxy, and pyrrolidinyl,

morpholinyl optionally substituted up to two times with (C_1-C_3) alkyl, thiomorpholinyl optionally substituted up to two times with (C_1-C_3) alkyl, piperazinyl optionally substituted with up to two substituents independently selected from pyrazinyl, $C(O)NH_2$, C(O)NH-phenyl, C(O)-furanyl, $C(O)(C_1-C_3)$ alkyl, $C(O)NH(C_1-C_3)$ alkyl, $C(O)N[(C_1-C_3)$ alkyl]R⁸,

 $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ -phenyl, \downarrow

pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN and CF₃,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN, halo, CF₃, and (C₁-C₃)alkoxy,

(C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from OH, F, phenyl, (C₁-C₃)alkoxy,

$$N[(C_1-C_3)alkyl]_2$$
, pyrrolinidyl, $C(O)$ -pyrrolidinyl, $C(O)$ -N

pyridyl optionally substituted up to two times with (C₁-C₃)alkoxy,

and

piperidinyl optionally substituted with up to two substituents independently selected from phenyl, pyridyl, pyrrolidinyl and oxo-dihydrobenzimidazolyl;

 R^7 is selected from NH₂, pyrrolidinyl,

NH(C_1 - C_3)alkyl said alkyl being optionally substituted up to two times with $(C_1$ - C_3)alkoxy,

NH-phenyl said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN, (C₁-C₄)alkoxy, halo and CF₃,

N[(C₁-C₃)alkyl]₂ wherein each alkyl is independently optionally substituted up to two times with (C₁-C₄)alkoxy, and

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃ and CN;

R⁸ is selected from (C₁-C₃)alkoxy, pyridyl, piperidinyl, pyranyl and phenyl, where each ring moiety is optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and (C₁-C₃)alkyl;

 R^9 is selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH,

phenyl optionally substituted with (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN, N[(C₁-C₄)alkyl]₂ where each of said alkyl groups are independently optionally substituted with OH, CN, N[(C₁-C₄)alkyl]₂, (C₁-C₄)alkoxy, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₃-C₆)cycloalkyl, and

pyrrolidinyl optionally substituted with N[(C1-C3)alkyl]2,

and, only when contains no N atoms, R⁹ is also selected from pyridyl, thienyl, and NHR¹⁰;

R¹⁰ is selected from H, indolyl,

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, F, phenyl, (C₁-C₄)alkoxy, NHC(O)(C₁-C₃)alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, indolyl, thienyl, pyrazolyl, \(\bar{1}\) \

phenyl optionally substituted with up to two substituents independently selected from (C_1 - C_3)alkyl, (C_1 - C_3)alkoxy, CN, halo,

 CF_3 , $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ phenyl, and $S(O)_2NH_2$, pyridyl optionally substituted up to two times with CF_3 , imidazolyl optionally substituted up to two times with (C_1-C_3) alkyl, furyl optionally substituted up to two times with (C_1-C_4) alkyl, and pyrrolidinyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkoxy, (O), and

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F, and phenyl,

S(O)₂-phenyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (C₁-C₃)alkyl, halo, and CN,

pyrazolyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and

phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C_1-C_4) alkoxy, (C_1-C_4) alkyl, halo, CF_3 , and CN,

benzothiazolyl optionally substituted up to two times with (C1-C4)alkyl,

thiazolyl, optionally substituted up to two times with (C₁-C₄)alkyl, thiadiazolyl, optionally substituted with up to two substituents independently selected from CF₃, (C₃-C₆)cycloalkyl, and (C₁-C₆)alkyl, phenyl optionally substituted with up to two substituents independently selected

from CN, halo, CF₃, N[(C₁-C₄)alkyl]₂, indolyl, $\stackrel{+}{\longrightarrow}$, O-pyridyl optionally substituted with C(O)NH(C₁-C₄)alkyl, (C₁-C₄)alkyl optionally substituted with up to two substituents

independently selected from pyridyl, +N, OH

(C₁-C₃)alkoxy, F, and phenyl, and

 (C_1-C_4) alkoxy optionally substituted with $N[(C_1-C_4)$ alkyl]₂ where one alkyl group is optionally substituted with phenyl, or

(C₁-C₄)alkoxy optionally substituted with

↓ N X

pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_4) alkoxy, and

indazolyl optionally substituted up to two times with (C₁-C₄)alkyl;

R¹¹ and R¹² are each selected independently from H, F and Cl with the proviso that when one of R¹¹ and R¹² is F or Cl, the other must be H;

X is selected from O, S, CH₂, and NH, and

when X is NH, the H on NH is optionally replaced with pyridyl, pyrazinyl, phenyl, or $(C_1\text{-}C_4)$ alkyl optionally substituted with up to two substituents independently selected from OH, $(C_1\text{-}C_3)$ alkoxy, $N[(C_1\text{-}C_3)$ alkyl]₂, C(O)-pyrrolidinyl, $N[(C_1\text{-}C_4)$ alkyl]₂, and phenyl said phenyl being optionally substituted with up to two substituents independently selected from CN and $(C_1\text{-}C_3)$ alkoxy,

and when X is O, S, or CH_2 , the moiety is optionally substituted by replacing any H atom in the moiety with (C_1-C_4) alkyl;

or a pharmaceutically acceptable salt or ester thereof.

9. A method according to claim 8 wherein the hyperproliferative disorder is selected from breast cancer, lung cancer, colon cancer, pancreatic cancer, prostate cancer, skin cancer, leukemia, lymphoma, glioblastoma and head and neck cancers.

10. A method according to claim 9 wherein the hyperproliferative disorder is selected from breast cancer, lung cancer, colon cancer and pancreatic cancer.

11. A method of treating a angiogenic disorder comprising the administration to a mammal in need thereof of an effective amount of a compound of Formula !

$$\begin{array}{c|c}
R^{11}R^{4} \\
R^{3} \\
R^{12}
\end{array}$$

$$\begin{array}{c|c}
R^{11}R^{4} \\
R^{5} \\
R^{12}
\end{array}$$
(I)

wherein

Ar represents a 6 membered aromatic ring containing 0, 1 or 2 N atoms;

 R^1 and R^2 are each independently selected from H, halo, CF_3 , $C(O)R^9$.

 (C_1-C_6) alkyl optionally substituted with up to two substituents selected from OH, (C_1-C_3) alkoxy, F, and phenyl,

 $(C_1\text{-}C_6)$ alkoxy optionally substituted with one or two substituents each

independently selected from +N and

 $N[(C_1-C_3)alkyl]_2$ where each alkyl is independently optionally substituted up to two times with $(C_1-C_3)alkoxy$,

NH(C₁-C₃)alkyl where said alkyl is optionally substituted with up to two substitutents each selected independently from OH, F, (C₁-C₃)alkoxy,

N[(C₁-C₃)alkyl]₂, NH(C₁-C₃)alkyl, phenyl, pyrrolidinyl, and

N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted with up to two substitutents each selected independently from OH, F, phenyl, and (C₁-C₃)alkoxy, said alkoxy being optionally

substituted with +N

pyrrolidinyl optionally substituted up to two times with N[(C₁-C₃)alkyl]₂, phenyl optionally substituted with up to two substitutents each selected independently from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN,

with the proviso that when $\stackrel{\textstyle (Ar)}{}$ contains 1 or 2 N atoms, R^1 and R^2 must each be H,

and, R¹ and R² together with the adjacent C atoms to which they are attached form a ring selected from benzo, dioxolo and imidazo,

said imidazo being optionally substituted up to two times with (C_1-C_3) alkyl,

with the proviso that R1 and R2 together with the adjacent C atoms to

which they are attached form a ring only when contains no N atoms;

R³ is selected from H, (C₁-C₄)alkyl, OH, NO₂, NH₂, NH(C₁-C₄)alkyl, NHC(O)(C₁-C₄)alkyl and NHC(O)phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN;

 R^4 is selected from H, OH, halo, CN, C(O) R^6 , S(O) $_2R^7$, OSi[(C $_1$ -C $_4$)alkyl] $_3$, tetrazolyl, thienyl, pyrrolyl, pyrimidinyl, oxazolyl, furanyl,

 (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl, each optionally substituted with OH, F, OC(O)NHphenyl, NHC(O)(C_1-C_3)alkyl, C(O)NH₂,

$$C(O)NH(C_1-C_3)alkyl, C(O)N[(C_1-C_3)alkyl]_2,$$

(C₁-C₃)alkoxy optionally substituted up to two times with (C₁-C₃)alkoxy,

NHC(O)NH(C₁-C₃)alkyl where said alkyl is optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F and phenyl,

NHC(O)NHphenyl where said phenyl is optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,

NHC(O)N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted up to two times with (C₁-C₃)alkoxy,

NH-phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,

 $N[(C_1-C_3)alkyl]_2$ where each alkyl is independently optionally substituted up to two times with $(C_1-C_3)alkoxy$,

phenyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkyl, (C_1-C_3) alkoxy, halo, CN, CF₃, and

$$+\sqrt{\chi}$$

pyrrolidinyl optionally substituted up to two times with $N[(C_1-C_3)alkyl]_2$, $(C_1-C_6)alkoxy$ optionally substituted with up to two substituents independently

selected from (C₁-C₃)alkoxy, pyrrolidinyl,

- and N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, F, (C₁-C₃)alkoxy and phenyl,
- N[(C₁-C₄)alkyl]₂ where each of said alkyl groups are independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkyl, F, (C₁-C₃)alkoxy, and phenyl,

oxadiazolyl optionally substituted up to two times with (C1-C3)alkyl,

phenyl optionally substituted with up to two substituents independently selected

from (C_1-C_3) alkoxy, CN, (C_1-C_3) alkyl, halo, C(O)-N

- $C(O)(C_1-C_3)$ alkyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkoxy, OH, (C_1-C_3) alkoxy, F, and phenyl, and
- $C(O)N[(C_1-C_3)alkyl]_2$ where each of said alkyl groups are independently optionally substituted up to two times with $(C_1-C_3)alkoxy$,
- pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,
- C(O)N[(C₁-C₃)alkyl]₂ where each of said alkyl groups are independently optionally substituted up to two times with (C₁-C₃)alkoxy, and
- O-pyridyl optionally substituted with up to two substituents independently selected from CF₃, halo, and (C₁-C₃)alkyl;

 R^5 is selected from H, halo, CN, (C₁-C₆)alkoxy, and (C₁-C₆)alkyl;

- R^6 is selected from OH, NHR¹⁰, O-(C₃-C₆)cycloakyl, (C₁-C₃)alkoxy, O-(C₂-C₆)alkenyl, O-(C₃-C₆)alkynyl,
 - (C₁-C₆)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F, and phenyl,
 - $N[(C_1-C_4)alkyl]_2$ where each of said alkyl groups are independently optionally substituted with up to two substituents independently selected from OH, CN, $N[(C_1-C_4)alkyl]_2$, $(C_1-C_3)alkoxy$, $S(O)_2$ -phenyl, $S(O)_2(C_1-C_3)alkyl$, phenyl, furyl, tetrahydrofuryl, (C_3-C_6) cycloalkyl, and pyridyl,
 - $N[(C_1-C_3)alkyl]R^8$ where $[(C_1-C_3)alkyl]$ is optionally substituted up to two times with $(C_1-C_3)alkoxy$,

N[(C₃-C₆)cycloalkyl](C₁-C₃)alkyl where said alkyl is substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, OH, CN, N[(C₁-C₄)alkyl]₂, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₅-C₆)cycloalkyl, and pyridyl,

pyrrolidinyl optionally substituted with up to two substituents independently selected from NH₂, NH(C₁-C₃)alkyl, N[(C₁-C₄)alkyl]₂, C(O)NH₂, NHC(O)(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, pyridyl, N[(C₁-C₃)alkyl]C(O)NH(C₁-C₃)alkyl, N[(C₁-C₃)alkyl]C(O)(C₁-C₃)alkyl, and (C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from N[(C₁-C₄)alkyl]₂, (C₁-C₃)alkoxy,

morpholinyl optionally substituted up to two times with (C_1-C_3) alkyl, thiomorpholinyl optionally substituted up to two times with (C_1-C_3) alkyl, piperazinyl optionally substituted with up to two substituents independently selected from pyrazinyl, $C(O)NH_2$, C(O)NH-phenyl, C(O)-furanyl, $C(O)(C_1-C_3)$ alkyl, $C(O)NH(C_1-C_3)$ alkyl, $C(O)N[(C_1-C_3)$ alkyl] R^8 ,

$$S(O)_2(C_1-C_3)$$
alkyl, $S(O)_2$ -phenyl,

and pyrrolidinyl.

pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN and CF₃,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN, halo, CF₃, and (C₁-C₃)alkoxy,

(C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from OH, F, phenyl, (C₁-C₃)alkoxy,

$$N[(C_1-C_3)alkyl]_2$$
, pyrrolinidyl, $C(O)$ -pyrrolidinyl, $C(O)$ - N X

pyridyl optionally substituted up to two times with $(C_1\text{-}C_3)$ alkoxy,

and

piperidinyl optionally substituted with up to two substituents independently selected from phenyl, pyridyl, pyrrolidinyl and oxo-dihydrobenzimidazolyl;

 R^7 is selected from NH₂, pyrrolidinyl,

NH(C_1 - C_3)alkyl said alkyl being optionally substituted up to two times with $(C_1$ - C_3)alkoxy,

NH-phenyl said phenyl being optionally substituted with up to two substituents 204

independently selected from (C_1-C_3) alkyl, CN, (C_1-C_4) alkoxy, halo and CF₃, N[(C_1-C_3) alkyl]₂ wherein each alkyl is independently optionally substituted up to two times with (C_1-C_4) alkoxy, and

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃ and CN;

R⁸ is selected from (C₁-C₃)alkoxy, pyridyl, piperidinyl, pyranyl and phenyl, where each ring moiety is optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and (C₁-C₃)alkyl;

 R^9 is selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH,

phenyl optionally substituted with (C_1-C_3) alkyl, (C_1-C_3) alkoxy, halo, CF_3 , and CN, $N[(C_1-C_4)$ alkyl]₂ where each of said alkyl groups are independently optionally substituted with OH, CN, $N[(C_1-C_4)$ alkyl]₂, (C_1-C_4) alkoxy, $S(O)_2$ -phenyl, $S(O)_2(C_1-C_3)$ alkyl, phenyl, furyl, tetrahydrofuryl, (C_3-C_6) cycloalkyl, and pyridyl, and

pyrrolidinyl optionally substituted with $N[(C_1-C_3)alkyl]_2$,

and, only when Ar contains no N atoms, R⁹ is also selected from pyridyl, thienyl, and NHR¹⁰;

R¹⁰ is selected from H, indolyl,

 (C_1-C_4) alkyl optionally substituted with up to two substituents independently selected from OH, F, phenyl, (C_1-C_4) alkoxy, NHC(O) (C_1-C_3) alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, indolyl, thienyl, pyrazolyl, N[(C₁-C₄)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F, and phenyl,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, CN, halo,

 CF_3 , $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ phenyl, and $S(O)_2$ NH₂, pyridyl optionally substituted up to two times with CF_3 , imidazolyl optionally substituted up to two times with (C_1-C_3) alkyl, furyl optionally substituted up to two times with (C_1-C_4) alkyl, and pyrrolidinyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkoxy, (O), and

> (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C1-C3)alkoxy, F, and phenyl,

S(O)₂-phenyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (C₁-C₃)alkyl, halo, and CN.

pyrazolyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and

phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (C₁-C₄)alkyl, halo, CF₃, and CN,

benzothiazolyl optionally substituted up to two times with (C1-C4)alkyl, thiazolyl, optionally substituted up to two times with (C1-C4)alkyl,

thiadiazolyl, optionally substituted with up to two substituents independently selected from CF₃, (C₃-C₆)cycloalkyl, and (C₁-C₆)alkyl,

phenyl optionally substituted with up to two substituents independently selected

from CN, halo, CF₃, N[(C₁-C₄)alkyl]₂, indolyl,

O-pyridyl optionally substituted with C(O)NH(C1-C4)alkyl,

(C₁-C₄)alkyl optionally substituted with up to two substituents

independently selected from pyridyl,

(C₁-C₃)alkoxy, F, and phenyl, and

 $(C_1\text{-}C_4)$ alkoxy optionally substituted with $N[(C_1\text{-}C_4)alkyl]_2$ where one alkyl group is optionally substituted with phenyl, or

(C1-C4)alkoxy optionally substituted with

pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl and (C₁-C₄)alkoxy, and

indazolyl optionally substituted up to two times with (C_1-C_4) alkyl;

R¹¹ and R¹² are each selected independently from H, F and Cl with the proviso that when one of R¹¹ and R¹² is F or Cl, the other must be H;

X is selected from O, S, CH₂, and NH, and

when X is NH, the H on NH is optionally replaced with pyridyl, pyrazinyl, phenyl, or (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, N[(C₁-C₃)alkyl]₂, C(O)-pyrrolidinyl, $N[(C_1-C_4)alkyl]_2$, and phenyl said phenyl being

optionally substituted with up to two substituents independently selected from CN and (C₁-C₃)alkoxy,

and when X is O, S, or CH_2 , the moiety is optionally substituted

by replacing any H atom in the moiety with (C₁-C₄)alkyl; or a pharmaceutically acceptable salt or ester thereof.

- 12. A method of claim 11 where the angiogenic disorder is selected from diabetic retinopathy, macular degeneration, angiofibromas, a rheumatic inflammatory disease, a neoplastic disease, and a solid tumor growth.
- 13. A method of claim 12 where the angiogenic disorder is selected from breast cancer, lung cancer, colon cancer, prostate cancer and pancreatic cancer.
- 14. A pharmaceutical composition comprising a compound of Formula I

$$\begin{array}{c|c}
R^{11}R^{4} \\
R^{3} & |R^{5}| \\
R^{12} & |R^{12}| \\
R^{2} & |R^{12}| \\
R^{2} & |R^{12}| \\
R^{3} & |R^{12}| \\
R^{12} & |R^{12}| \\
R^{13} & |R^{12}| \\
R^{14} & |R^{12}| \\
R^{15} & |R^{12}| \\
R^{15} & |R^{15}| \\
R^{15}$$

wherein

Ar represents a 6 membered aromatic ring containing 0, 1 or 2 N atoms;

 R^1 and R^2 are each independently selected from H, halo, CF_3 , $C(O)R^9$,

 (C_1-C_6) alkyl optionally substituted with up to two substituents selected from OH, (C_1-C_3) alkoxy, F, and phenyl,

(C₁-C₆)alkoxy optionally substituted with one or two substituents each

independently selected from and

 $N[(C_1-C_3)alkyl]_2$ where each alkyl is independently optionally substituted up to two times with $(C_1-C_3)alkoxy$,

 $NH(C_1-C_3)$ alkyl where said alkyl is optionally substituted with up to two substitutents each selected independently from OH, F, (C_1-C_3) alkoxy,

 $N[(C_1-C_3)alkyl]_2$, $NH(C_1-C_3)alkyl$, phenyl, pyrrolidinyl, and $N[(C_1-C_3)alkyl]_2$ where each alkyl is independently optionally substituted

with up to two substitutents each selected independently from OH, F, phenyl, and (C_1-C_3) alkoxy, said alkoxy being optionally

substituted with +

pyrrolidinyl optionally substituted up to two times with N[(C_1 - C_3)alkyl]₂, phenyl optionally substituted with up to two substitutents each selected independently from (C_1 - C_3)alkyl, (C_1 - C_3)alkoxy, halo, CF₃, and CN,

with the proviso that when contains 1 or 2 N atoms, R¹ and R² must each be H,

and, R¹ and R² together with the adjacent C atoms to which they are attached form a ring selected from benzo, dioxolo and imidazo,

said imidazo being optionally substituted up to two times with (C₁-C₃)alkyl,

with the proviso that R1 and R2 together with the adjacent C atoms to

which they are attached form a ring only when contains no N atoms; R³ is selected from H, (C₁-C₄)alkyl, OH, NO₂, NH₂, NH(C₁-C₄)alkyl, NHC(O)(C₁-C₄)alkyl and NHC(O)phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN;

R⁴ is selected from H, OH, halo, CN, C(O)R⁶, S(O)₂R⁷, OSi[(C₁-C₄)alkyl]₃, tetrazolyl, thienyl, pyrrolyl, pyrimidinyl, oxazolyl, furanyl,

 (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl, each optionally substituted with OH, F, OC(O)NHphenyl, NHC(O) (C_1-C_3) alkyl, C(O)NH₂,

 (C_1-C_3) alkoxy optionally substituted up to two times with (C_1-C_3) alkoxy, NHC(O)NH(C_1-C_3)alkyl where said alkyl is optionally substituted with up to two substituents independently selected from OH, (C_1-C_3) alkoxy, F and phenyl,

NHC(O)NHphenyl where said phenyl is optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,

(C₁-C₃)alkoxy, halo, CF₃, CN, and

 $NHC(O)N[(C_1\text{-}C_3)alkyl]_2 \ where each alkyl is independently \\ optionally substituted up to two times with (C_1\text{-}C_3)alkoxy,$

NH-phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,

$$(C_1-C_3)$$
alkoxy, halo, CN, and $+$

 $N[(C_1-C_3)alkyl]_2$ where each alkyl is independently optionally substituted up to two times with $(C_1-C_3)alkoxy$, phenyl optionally substituted with up to two substituents independently selected from $(C_1-C_3)alkyl$, $(C_1-C_3)alkoxy$, halo, CN, CF₃, and $+\sqrt{}$

pyrrolidinyl optionally substituted up to two times with $N[(C_1-C_3)alkyl]_2$, $(C_1-C_6)alkoxy$ optionally substituted with up to two substituents independently

selected from (C₁-C₃)alkoxy, pyrrolidinyl,

- and N[(C₁-C₃)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, F, (C₁-C₃)alkoxy and phenyl,
- $N[(C_1-C_4)alkyl]_2$ where each of said alkyl groups are independently optionally substituted with up to two substituents independently selected from OH, $(C_1-C_3)alkyl$, F, $(C_1-C_3)alkoxy$, and phenyl,

oxadiazolyl optionally substituted up to two times with (C₁-C₃)alkyl, phenyl optionally substituted with up to two substituents independently selected

from (C₁-C₃)alkoxy, CN, (C₁-C₃)alkyl, halo, C(O)-N X, +N

- C(O)(C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, OH, (C₁-C₃)alkoxy, F, and phenyl, and
- $C(O)N[(C_1-C_3)alkyl]_2$ where each of said alkyl groups are independently optionally substituted up to two times with $(C_1-C_3)alkoxy$,
- pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl,
- $C(O)N[(C_1-C_3)alkyl]_2$ where each of said alkyl groups are independently optionally substituted up to two times with $(C_1-C_3)alkoxy$, and
- O-pyridyl optionally substituted with up to two substituents independently selected from CF₃, halo, and (C₁-C₃)alkyl;

R⁵ is selected from H, halo, CN, (C₁-C₆)alkoxy, and (C₁-C₆)alkyl;

 R^6 is selected from OH, NHR¹⁰, O-(C₃-C₆)cycloakyl, (C₁-C₃)alkoxy, O-(C₂-C₆)alkenyl,

- O-(C₃-C₆)alkynyl,
- (C₁-C₆)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F, and phenyl,
- N[(C₁-C₄)alkyl]₂ where each of said alkyl groups are independently optionally substituted with up to two substituents independently selected from OH, CN, N[(C₁-C₄)alkyl]₂, (C₁-C₃)alkoxy, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₃-C₆)cycloalkyl, and pyridyl,
- $N[(C_1-C_3)alkyl]R^8$ where $[(C_1-C_3)alkyl]$ is optionally substituted up to two times with $(C_1-C_3)alkoxy$,
- N[(C₃-C₆)cycloalkyl](C₁-C₃)alkyl where said alkyl is substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, OH, CN, N[(C₁-C₄)alkyl]₂, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₅-C₆)cycloalkyl, and pyridyl,
- pyrrolidinyl optionally substituted with up to two substituents independently selected from NH₂, NH(C₁-C₃)alkyl, N[(C₁-C₄)alkyl]₂, C(O)NH₂, NHC(O)(C₁-C₃)alkyl, NHS(O)₂(C₁-C₃)alkyl, pyridyl, N[(C₁-C₃)alkyl]C(O)NH(C₁-C₃)alkyl, N[(C₁-C₃)alkyl]C(O)(C₁-C₃)alkyl, and (C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from N[(C₁-C₄)alkyl]₂, (C₁-C₃)alkoxy, and pyrrolidinyl,

morpholinyl optionally substituted up to two times with (C_1-C_3) alkyl, thiomorpholinyl optionally substituted up to two times with (C_1-C_3) alkyl, piperazinyl optionally substituted with up to two substituents independently selected from pyrazinyl, $C(O)NH_2$, C(O)NH-phenyl, C(O)-furanyl, $C(O)(C_1-C_3)$ alkyl, $C(O)NH(C_1-C_3)$ alkyl, $C(O)N[(C_1-C_3)$ alkyl] R^8 ,

$$S(O)_2(C_1-C_3)$$
alkyl, $S(O)_2$ -phenyl, $+$

pyridyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkyl, CN and CF₃,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN, halo, CF₃, and (C₁-C₃)alkoxy,

 (C_1-C_3) alkyl optionally substituted with up to two substituents independently selected from OH, F, phenyl, (C_1-C_3) alkoxy,

$$N[(C_1-C_3)alkyl]_2$$
, pyrrolinidyl, $C(O)$ -pyrrolidinyl, $C(O)$ - N , and

pyridyl optionally substituted up to two times with (C_1 - C_3)alkoxy, and

piperidinyl optionally substituted with up to two substituents independently selected from phenyl, pyridyl, pyrrolidinyl and oxo-dihydrobenzimidazolyl;

R⁷ is selected from NH₂, pyrrolidinyl,

NH(C_1 - C_3)alkyl said alkyl being optionally substituted up to two times with (C_1 - C_3)alkoxy,

NH-phenyl said phenyl being optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, CN, (C₁-C₄)alkoxy, halo and CF₃,

 $N[(C_1-C_3)alkyl]_2$ wherein each alkyl is independently optionally substituted up to two times with $(C_1-C_4)alkoxy$, and

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃ and CN;

R⁸ is selected from (C₁-C₃)alkoxy, pyridyl, piperidinyl, pyranyl and phenyl, where each ring moiety is optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and (C₁-C₃)alkyl;

 R^9 is selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH,

phenyl optionally substituted with (C_1-C_3) alkyl, (C_1-C_3) alkoxy, halo, CF_3 , and CN, $N[(C_1-C_4)$ alkyl]₂ where each of said alkyl groups are independently optionally substituted with OH, CN, $N[(C_1-C_4)$ alkyl]₂, (C_1-C_4) alkoxy, $S(O)_2$ -phenyl, $S(O)_2(C_1-C_3)$ alkyl, phenyl, furyl, tetrahydrofuryl, (C_3-C_6) cycloalkyl, and pyridyl, and

pyrrolidinyl optionally substituted with $N[(C_1-C_3)alkyl]_2$,

and, only when contains no N atoms, R⁹ is also selected from pyridyl, thienyl, and NHR¹⁰;

R¹⁰ is selected from H, indolyl,

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, F, phenyl, (C₁-C₄)alkoxy, NHC(O)(C₁-C₃)alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, indolyl, thienyl, pyrazolyl, N[(C₁-C₄)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from

OH, (C₁-C₃)alkoxy, F, and phenyl,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, CN, halo,

 CF_3 , $S(O)_2(C_1-\tilde{C}_3)$ alkyl, $S(O)_2$ phenyl, and $S(O)_2NH_2$,

pyridyl optionally substituted up to two times with CF₃,

imidazolyl optionally substituted up to two times with (C1-C3)alkyl,

furyl optionally substituted up to two times with (C1-C4)alkyl, and

pyrrolidinyl optionally substituted with up to two substituents independently

selected from (C₁-C₄)alkoxy, (O), and

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, F, and phenyl,

S(O)₂-phenyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (C₁-C₃)alkyl, halo, and CN,

pyrazolyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl, (C_3-C_6) cycloalkyl, and

phenyl, said phenyl being optionally substituted with up to two substituents independently selected from (C_1-C_4) alkoxy, (C_1-C_4) alkyl, halo, CF_3 , and CN,

benzothiazolyl optionally substituted up to two times with (C1-C4)alkyl,

thiazolyl, optionally substituted up to two times with (C1-C4)alkyl,

thiadiazolyl, optionally substituted with up to two substituents independently selected from CF₃, (C_3 - C_6)cycloalkyl, and (C_1 - C_6)alkyl,

phenyl optionally substituted with up to two substituents independently selected

from CN, halo, CF₃, N[(C₁-C₄)alkyl]₂, indolyl,

O-pyridyl optionally substituted with C(O)NH(C₁-C₄)alkyl,

(C₁-C₄)alkyl optionally substituted with up to two substituents

independently selected from pyridyl,

(C₁-C₃)alkoxy, F, and phenyl, and

(C₁-C₄)alkoxy optionally substituted with N[(C₁-C₄)alkyl]₂ where one alkyl group is optionally substituted with phenyl, or

(C₁-C₄)alkoxy optionally substituted with

+N \longrightarrow X

pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected

from (C_1-C_4) alkyl and (C_1-C_4) alkoxy, and indazolyl optionally substituted up to two times with (C_1-C_4) alkyl;

R¹¹ and R¹² are each selected independently from H, F and Cl with the proviso that when one of R¹¹ and R¹² is F or Cl, the other must be H;

X is selected from O, S, CH₂, and NH, and

when X is NH, the H on NH is optionally replaced with pyridyl, pyrazinyl, phenyl, or (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, N[(C₁-C₃)alkyl]₂, C(O)-pyrrolidinyl, N[(C₁-C₄)alkyl]₂, and phenyl said phenyl being optionally substituted with up to two substituents independently selected from CN and (C₁-C₃)alkoxy,

and when X is O, S, or CH_2 , the moiety is optionally substituted

by replacing any H atom in the molety with (C_1-C_4) alkyl; or a pharmaceutically acceptable salt or ester thereof.