```
from google.colab import drive
drive.mount("/content/drive")
    Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
df = pd.read_csv("/content/drive/MyDrive/HR Analytics/train_LZdllcl.csv")
                                                    + Code - + Text -
df
                                  region education gender recruitment channel no
```

	employee_id	department	region	education	gender	recruitment_channel
0	65438	Sales & Marketing	region_7	Master's & above	f	sourcing
1	65141	Operations	region_22	Bachelor's	m	other
2	7513	Sales & Marketing	region_19	Bachelor's	m	sourcing
3	2542	Sales & Marketing	region_23	Bachelor's	m	other
4	48945	Technology	region_26	Bachelor's	m	other
54803	3030	Technology	region_14	Bachelor's	m	sourcing
54804	74592	Operations	region_27	Master's & above	f	other
54805	13918	Analytics	region_1	Bachelor's	m	other
54806	13614	Sales & Marketing	region_9	NaN	m	sourcing
54807	51526	HR	region_22	Bachelor's	m	other
	ws × 14 columr					

```
(54808, 14)
df.columns
        Index(['employee_id', 'department', 'region', 'education', 'gender',
                   'recruitment_channel', 'no_of_trainings', 'age', 'previous_year_rating',
'length_of_service', 'KPIs_met >80%', 'awards_won?',
'avg_training_score', 'is_promoted'],
```

```
dtype='object')
df.education.value_counts()
    Bachelor's
    Master's & above
                     14925
    Below Secondary
                       805
    Name: education, dtype: int64
def barplot_count(column,x=5,y=5,df=df):
        plt.figure(figsize=(x,y))
```

```
cnt_column = df[column].value_counts().to_dict()
plt.title(column)
plt.bar(cnt_column.keys(),cnt_column.values())
```

barplot_count('gender',5,4)

df.shape

barplot_count('department',15,5)

barplot_count('education')

df.recruitment_channel.unique()
barplot_count('recruitment_channel')

barplot_count('age')
df.age.describe()

```
count
         54808.000000
            34.803915
mean
             7.660169
std
            20.000000
min
            29.000000
25%
            33.000000
50%
75%
            39.000000
            60.000000
Name: age, dtype: float64
```


 $agefrom 25_40_in_percentage = (df.loc[(df.age >= 25) \& (df.age < 40)].shape[0])/df.shape[0]*100 \\ agefrom 25_40_in_percentage$

74.38330170777988

barplot_count('previous_year_rating')

barplot_count('length_of_service')
df['length_of_service'].describe()

count	54808.000000
mean	5.865512
std	4.265094
min	1.000000
25%	3.000000
50%	5.000000
75%	7.000000
max	37.000000
Manager	According to Community

Name: length_of_service, dtype: float64

barplot_count('KPIs_met >80%')

barplot_count('awards_won?')

barplot_count('avg_training_score')

df['avg_training_score'].unique()

```
array([49, 60, 50, 73, 85, 59, 63, 83, 54, 77, 80, 84, 51, 46, 75, 57, 70, 68, 79, 44, 72, 61, 48, 58, 87, 47, 52, 88, 71, 65, 62, 53, 78, 91, 82, 69, 55, 74, 86, 90, 92, 67, 89, 56, 76, 81, 45, 64, 39, 94, 93, 66, 95, 42, 96, 40, 99, 43, 97, 41, 98])
```

df['avg_training_score'].describe()

```
count
         54808.000000
            63.386750
mean
            13.371559
std
min
            39.000000
25%
            51.000000
50%
            60.000000
75%
            76.000000
            99.000000
max
```

Name: avg_training_score, dtype: float64

Total_promotedf = df.loc[df.is_promoted == 1]
Total_promoted = Total_promotedf.shape[0]
Total_promotedf.describe()

	employee_id	no_of_trainings	age	previous_year_rating	length_of_service	KPIs_met >80%	awards_won?	avg_training_sc
count	4668.000000	4668.000000	4668.000000	4329.000000	4668.000000	4668.000000	4668.000000	4668.000
mean	39285.092331	1.203299	34.372965	3.986140	5.716367	0.698800	0.119751	71.325
std	22754.632174	0.513805	7.081449	1.052149	4.007772	0.458828	0.324706	14.746
min	39.000000	1.000000	20.000000	1.000000	1.000000	0.000000	0.000000	41.000
25%	19390.500000	1.000000	29.000000	3.000000	3.000000	0.000000	0.000000	59.000
50%	39439.500000	1.000000	33.000000	4.000000	5.000000	1.000000	0.000000	71.000
75%	59082.250000	1.000000	38.000000	5.000000	7.000000	1.000000	0.000000	84.000
4								>

```
FullDataATSMedian = df.avg_training_score.quantile(.50)
LessmedianPromoted=Total_promotedf.loc[Total_promotedf.avg_training_score < FullDataATSMedian]
Lmp=(LessmedianPromoted.shape[0]/Total_promoted)*100
Lmp</pre>
```

26.028277634961437

Hmp = 100.0 - LmpHmp

73.97172236503856

Hence if Employee has high training score, chances for him to be promoted is 73%

barplot_count('is_promoted')

Pie_dict={'Low Training Score':Lmp, 'High Training Score':Hmp}
plt.title('Promoted Employees with')
plt.pie([Lmp, Hmp], labels=Pie_dict.keys())
plt.show()

EmployeeWithAwards = Total_promotedf.loc[Total_promotedf['awards_won?'] == 1].shape[0]

PEmpPromoplusAwards = (EmployeeWithAwards/Total_promoted)*100 PEmpPromoplusAwards

11.975149957155098

PromoWithKpi = Total_promotedf.loc[Total_promotedf['KPIs_met >80%'] == 1].shape[0]

PpromoWithKpi=(PromoWithKpi/Total_promoted)*100 PpromoWithKpi

69.88003427592116

FullDataLOSMedian = df.length_of_service.median()
LOSmorethan7 = Total_promotedf.loc[Total_promotedf.length_of_service > FullDataLOSMedian].shape[0]

PpromoWithLOS7 =(LOSmorethan7/Total_promoted)*100
PpromoWithLOS7

43.14481576692374

barplot_count('department',15,5, df=Total_promotedf)

barplot_count('education', df=Total_promotedf)

AllBachelor=df.loc[df.education == "Bachelor's"].shape[0]
PromotedBachelor=Total_promotedf.loc[Total_promotedf.education == "Bachelor's"].shape[0]
ShareofBachelor=(PromotedBachelor/AllBachelor)*100
ShareofBachelor

8.20311434726881

AllMasters=df.loc[df.education == "Master's & above"].shape[0]
PromotedMasters=Total_promotedf.loc[Total_promotedf.education == "Master's & above"].shape[0]
ShareofMasters=(PromotedMasters/AllMasters)*100
ShareofMasters

9.855946398659967

Master's have higher chances of getting promoted!

```
plt.title("Factors supporting Promotion")
plt.pie([
PEmpPromoplusAwards,
PpromoWithKpi,
PpromoWithLOS7,
ShareofMasters,
ShareofBachelor, Hmp, Lmp
],labels=['With Awards','KPIs','LOS','Master','Bachelor','High Training Score','Lower Training Score'])
plt.show()
```

Factors supporting Promotion KPIs With Awards Lower Training Score

barplot_count('age', df=Total_promotedf)

High Training Score

Age between 26 to 38 are have seen more promotion


```
Lis=[]
```

```
for i in df.department.unique():
   Dpt=df.loc[df.department == i ].shape[0]
   PromotedDPT=Total_promotedf.loc[Total_promotedf.department == i ].shape[0]
   ShareofDPT=(PromotedDPT/Dpt)*100
   Lis.append(ShareofDPT)
Gg = {'Department':df.department.unique(),
```

'Share':Lis}
pd.DataFrame(Gg,index=range(len(Lis)))

	Department	Share
0	Sales & Marketing	7.203088
1	Operations	9.014804
2	Technology	10.759316
3	Analytics	9.566517
4	R&D	6.906907
5	Procurement	9.638554
6	Finance	8.123028
7	HR	5.624483
8	Legal	5.101059

plt.figure(figsize=(15,5))

plt.title("Share of departments in Promotion!")

plt.bar(df.department.unique(),Lis)

<BarContainer object of 9 artists>

barplot_count('previous_year_rating',df=Total_promotedf)

Employees with previous year rating of 5 have highest chances of getting promoted, which is quite obvious!

barplot_count('no_of_trainings',df=Total_promotedf)

barplot_count('gender',df=Total_promotedf)


```
Allgender=df.loc[df.gender == "m" ].shape[0]
PromotedGenders=Total_promotedf.loc[Total_promotedf.gender== "m" ].shape[0]
ShareofMales=(PromotedGenders/Allgender)*100
ShareofMales
```

8.315149625935161

```
Allgender=df.loc[df.gender == "f" ].shape[0]
PromotedGenders=Total_promotedf.loc[Total_promotedf.gender== "f" ].shape[0]
ShareofFemales=(PromotedGenders/Allgender)*100
ShareofFemales
```

8.993379107405591

df.columns

Total_promotedf.recruitment_channel.value_counts()

```
other 2556
sourcing 1974
referred 138
```

Name: recruitment_channel, dtype: int64