Producto Interior e Interpretación en Análisis de Datos

José Antonio González Morente

21 de noviembre de 2024

Resumen

Índice

1. Productos interiores, espacios euclídeos. Normas

1

1. Productos interiores, espacios euclídeos. Normas

En la geometría euclidiana, las propiedades que permiten medir longitudes de segmentos rectilíneos y los ángulos formados por rectas se denominan **propiedades métricas**. En nuestro estudio de V_n , definimos las longitudes y los ángulos utilizando el producto escalar. Ahora buscamos extender estas ideas a espacios vectoriales más generales. Para ello, primero introduciremos una generalización del producto escalar, que llamaremos **producto interior**, y luego definiremos la longitud y el ángulo en función de este nuevo concepto.

El **producto escalar** de dos vectores $\mathbf{x} = (x_1, \dots, x_n)$ y $\mathbf{y} = (y_1, \dots, y_n)$ en V_n se define como:

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i \tag{1}$$

En un espacio vectorial más general, utilizamos la notación $\langle x, y \rangle$ en lugar de $x \cdot y$ para referirnos al producto interior. Este se define de manera axiomática, en lugar de mediante una fórmula explícita. Es decir, establecemos ciertas propiedades fundamentales que los productos interiores deben cumplir, y estas se consideran como **axiomas**.

Definición 1.1. Un espacio vectorial real V tiene un producto interior si, a cada par de elementos x e y de V le corresponde un número real único $\langle x, y \rangle$ que satisface los siguientes axiomas para todos $x, y, z \in V$ y para todo escalar real c.

- 1. Conmutatividad o simetría: $\langle x, y \rangle = \langle y, x \rangle$
- 2. Distributividad o linealidad: $\langle x, y + z \rangle = \langle y, x \rangle + \langle x, z \rangle$
- 3. Homogeneidad en el primer argumento: $c\left\langle x,y\right\rangle =\left\langle cx,y\right\rangle$
- 4. Positividad: $\langle x, x \rangle > 0$ si $x \neq 0$

Un espacio vectorial con un producto interior se denomina espacio real euclídeo.

En un espacio vectorial complejo, un producto interior $\langle x, y \rangle$ es un número complejo que satisface los mismos axiomas que el producto interior real, con una excepción: el axioma de simetría se reemplaza por la **simetría hermitiana**:

$$\langle x, y \rangle = \overline{\langle y, x \rangle},\tag{2}$$

donde $\overline{\langle y,x\rangle}$ denota el conjugado complejo de $\langle y,x\rangle$. Además, en el axioma de homogeneidad, el escalar c puede ser cualquier número complejo. A partir del axioma de homogeneidad y de (2), se deduce la siguiente relación:

$$\langle x, cy \rangle = \overline{\langle cy, x \rangle} = \overline{c} \cdot \overline{\langle y, x \rangle} = \overline{c} \langle x, y \rangle$$

Un espacio vectorial complejo dotado de un producto interior se denomina **espacio euclídeo complejo**. También se utiliza el término **espacio unitario** como sinónimo. Un ejemplo clásico es el espacio vectorial complejo $V_n(\mathbb{C})$. Cuando nos referimos a un espacio euclídeo sin especificar, entenderemos que puede ser tanto real como complejo.

Ejemplos de producto interior

El lector debería comprobar que cada ejemplo que sigue satisface todos los axiomas de producto interior.

Ejemplo 1.1. En V_n , sea $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$ el producto escalar ordinario de \mathbf{x} e \mathbf{y} .

Ejemplo 1.2. Si $\mathbf{x} = (x_1, x_2)$ e $\mathbf{y} = (y_1, y_2)$ son dos vectores de V_2 , definimos $\langle \mathbf{x}, \mathbf{y} \rangle$ mediante la fórmula

$$\langle \mathbf{x}, \mathbf{y} \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$$

Este ejemplo pone de manifiesto que pueden existir más de un producto interior en un espacio vectorial dado.

Ejemplo 1.3. Sea C(a, b) el espacio vectorial de todas las funciones reales continuas en el intervalo [a, b]. Definamos un producto interior de dos funciones f y g mediante la fórmula

$$\langle f, g \rangle = \int_a^b f(t)g(t) dt$$

Esta fórmula es análoga a la ecuación (1), que define el producto escalar de dos vectores en V_n . Los valores de las funciones f(t) y g(t) desempeñan el papel de los componentes x_i e y_i , y la integración desempeña el papel de la suma.

Ejemplo 1.4. En el espacio C(a,b), definimos

$$\langle f, g \rangle = \int_{a}^{b} w(t) f(t) g(t) dt$$

donde w es una función positiva fija de C(a,b). Tal función se llama función peso. En el ejemplo anterior, w(t) = 1 para todo $t \in [a,b]$.

Ejemplo 1.5. En el espacio vectorial de todos los polinomios reales, definimos

$$\langle f, g \rangle = \int_0^\infty e^{-t} f(t)g(t) dt$$

Debido al factor exponencial, esta integral impropia converge para todo par de polinomios f y g.

Teorema 1.1. En un espacio euclídeo V, todo producto interior satisface la desigualdad de Cauchy-Schwarz:

$$\left|\left\langle x,y\right\rangle \right|^{2}\leq\left\langle x,x\right\rangle \left\langle y,y\right\rangle ,$$

para todo x e y en V. Además, el signo de igualdad se cumple si y sólo si x e y son linealmente dependientes.

Demostración. Si x=0 o y=0, la demostración es trivial. Supongamos, entonces, que $x \neq 0$ e $y \neq 0$. Consideremos el vector z=ax+by, donde a y b son escalares que especificaremos más adelante. La propiedad de no negatividad del producto interior nos da:

$$\langle z, z \rangle \ge 0$$

para todo a y b. Usaremos esta desigualdad, junto con una elección apropiada de a y b, para obtener la desigualdad de Cauchy-Schwarz.

Expresamos $\langle z, z \rangle$ en términos de x e y usando las propiedades del producto interior:

$$\langle z, z \rangle = \langle ax + by, ax + by \rangle$$

$$= \langle ax, ax \rangle + \langle ax, by \rangle + \langle by, ax \rangle + \langle by, by \rangle$$

$$= a\overline{a} \langle x, x \rangle + a\overline{b} \langle x, y \rangle + b\overline{a} \langle y, x \rangle + b\overline{b} \langle y, y \rangle$$

Tomando $a = \langle y, y \rangle$ y suprimiendo en la desigualdad el factor positivo $\langle y, y \rangle$, resulta

$$\langle y, y \rangle \langle x, x \rangle + \overline{b} \langle x, y \rangle + b \langle y, x \rangle + b\overline{b} \ge 0$$

Ahora, hagamos $b = -\langle x, y \rangle$. Entonces $\bar{b} = -\langle y, x \rangle$ y la última desigualdad, una vez simplificada, toma la forma

$$\langle y, y \rangle \langle x, x \rangle \ge \langle x, y \rangle \langle y, x \rangle = |\langle x, y \rangle|^2$$

Esto demuestra la desigualdad de Cauchy-Schwarz. El signo de igualdad es válido si y solo si z=0. Esto ocurre si y sólo si x e y son linealmente dependientes.