IMPROVING SLEEP QUALITY MONITORING WITH IOT AND MACHINE LEARNING

A PROJECT REPORT

Submitted by

SANTHOSHRAJ.Y

VARUN.N

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY in INFORMATION TECHNOLOGY

St. JOSEPH'S COLLEGE OF ENGINEERING, OMR

ANNA UNIVERSITY :: CHENNAI 600 025

MARCH 2024

BONAFIDE CERTIFICATE

Certified that this project report "IMPROVING SLEEP QUALITY MONITORING WITH IOT AND MACHINE LEARNING." is the Bonafide work of SANTHOSHRAJ.Y and VARUN.N who carried out the project work under my supervision.

SIGNATURE

Head of the Department, Mrs.Lathaselvi G, M.E., Ph.D., Associate Professor, Department of IT,

St. Joseph's College of Engineering, OMR, Chennai- 600119.

SIGNATURE

Project Guide, Divya J, M.Tech, (Ph.D) Assistant Professor, Department of IT,

St. Joseph's College of Engineering, OMR, Chennai- 600119.

CERTIFICATE OF EVALUATION

COLLEGE NAME: St. Joseph's College of Engineering, Chennai-600119.

BRANCH : **B.TECH., IT** (Information Technology)

SEMESTER : VIII

SL. NO	NAME OF THE STUDENT	TITLE OF THE PROJECT	NAME OF THE SUPERVISOR WITH DESIGNATION
2	SANTHOSHRAJ Y (312320205136) VARUN N (312320205173)	IMPROVING SLEEP QUALITY MONITORING WITH IOT AND MACHINE LEARNING	Divya J, M.Tech, (Ph.D) ASSISTANT PROFESSOR

The report of the project work submitted by the above students in partial fulfillment for the award of Bachelor of Technology Degree in Information Technology of Anna University was confirmed to be report of the work done by the above students and then evaluated. Submitted to Project and Viva Examination held on

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

At the outset we would like to express our sincere gratitude to our Chairman, Dr.Babu Manoharan, M.A.,M.B.A.,Ph.D., for his constant guidance and support.

We would like to express our heartfelt thanks to our respected **Managing Director Mr. B. Shashi Sekar, M.Sc.,** for her kind encouragement and blessings.

We wish to express our sincere thanks to our **Executive Director Mrs. S. Jessie Priya, M.Com.,** for providing ample facilities in the institution.

We express our deepest gratitude and thanks to our beloved **Principal Dr.Vaddi Seshagiri Rao, M.E., M.B.A., Ph.D., F.I.E.,** for his inspirational ideas during the course of the project.

We wish to express our sincere thanks and gratitude to Mrs.Lathaselvi G,M.E., Ph.D., Associate Professor, Head of the Department, Department of Information Technology, St. Joseph's College of Engineering for her guidance and assistance in solving the various intricacies involved in the project.

It is with deep sense of gratitude that we acknowledge our indebtness to our supervisor Divya J, M.Tech, (Ph.D) Assistant Professor, for her expert guidance and connoisseur suggestion.

Finally, we thank our department staff members who helped us in the successful completion of this project.

ABSTRACT

An innovative sleep monitoring system is presented in this paper, designed to leverage affordable sensors—specifically, an accelerometer, pulse oximeter, and microphone amplifier—integrated with the ESP32 micro-controller. The ESP32's Wi-Fi and Bluetooth capabilities enable efficient real-time data transmission to the AWS cloud. The methodology involves the use of a combination of a random forest model and a recurrent neural network (RNN) algorithm for comprehensive data analysis. Precise body movement is captured by the ADXL345 accelerometer, while heartbeat and SPO2 levels are monitored by the MAX30102 pulse oximeter. Snoring patterns are detected with the assistance of the MAX9814 microphone amplifier. The ESP32, known for its dual-core processing and robust connectivity, serves as the central processing unit for seamless data acquisition and communication. The integrated system allows for the capture and analysis of sleep-related data in realtime on the AWS cloud. The distinct advantages of the RNN algorithm, with its proficiency in processing sequential data, are demonstrated over conventional random forest models. A holistic approach to sleep monitoring is offered by this system, providing an affordable and effective solution for the analysis of sleep patterns, with valuable insights into sleep quality and potential health indicators being provided.

CHAPTER	TITLE	PAGE
		NO
	ABSTRACT	V
	LIST OF FIGURES	viii
	LIST OF TABLES	ix
1	INTRODUCTION	1
	1.1 Background and Motivation	1
	1.2 Objectives of the Sleep Monitoring System	2
	1.3 Significance of Real-Time Sleep Data Analysis	4
	1.4 Overview of the Integrated System Components	5
2	LITERATURE REVIEW	6
3	SYSTEM ARCHITECTURE	14
	3.1 Description of Integrated Sensors	15
	3.2 Role of ESP32 Micro-controller in Data	16
	Acquisition and Communication	
	3.3 Connectivity Features: Wi-Fi and	18
	Bluetooth Capabilities	
	3.4 System Requirements	18
	3.4.1 Hardware Requirements	18
	3.4.2 Software Requirements	19

4	METHODOLGY	21
	4.1 Data Collection Process	21
	4.2 Preprocessing of Sleep Data	22
	4.3 Random Forest Model for Sleep Data	23
	Analysis	
	4.4 Recurrent Neural Network (RNN)	24
	Algorithm Implementation	
	4.5 Integration of Machine Learning	26
	Algorithms for Comprehensive Analysis	
5	EXPERIMENTAL SETUP	27
	5.1 Hardware Configuration	28
	5.2 Software Environment	29
	5.3 Calibration and Validation of Sensors	30
6	Results and Discussion	32
	6.1 Real-Time Data Capture and	33
	Transmission	
	6.2 Comparative Analysis of Random Forest	34
	and RNN Algorithms	
	6.3 Evaluation of Sleep Patterns and	35
	Anomalies	
	6.4 Insights Gained from Snoring Detection	35
7	Conclusion	36
	7.1 Summary of Findings	36
	7.2 Contributions of the Sleep Monitoring	37
	System	

	7.3 Implications for Sleep Research and	37
	Healthcare	
8	Challenges and Limitations	38
	8.1 Sensor Limitations and Accuracy	38
	8.2 Connectivity Issues and Data	39
	Transmission Delays	
	8.3 Challenges in Algorithm Implementation	39
	8.4 Limitations of the Integrated System	40
	8.5 Future Enhancements	40
	8.6 Sensor Upgrades and Integration	41
	8.7 Algorithm Refinement and Optimization	41
	8.8 Expansion of Monitoring Parameters	41
	8.9 Integration with Wearable Devices	45
	APPENDIX A	43
	APPENDIX B	49
	REFERENCES	50

LIST OF TABLES

Table Number	Table Name	Page Number
Table 5.1	Optimal Values	31
Table 6.1	Parameters of Algorithm	34

LIST OF FIGURES

Figure Number	Figure Name	Page Number
Fig 3.1	Circuit Diagram	15
Fig 4.1	Data collection	22
Fig 5.1	Experimental Setup	28
Fig 6.1	Random Forest graph Accuracy	32
Fig 6.2	RNN graph Accuracy	33