Total No.	of Questions	:	8]
-----------	--------------	---	------------

-	-	1		
Р			h:	57
	v	J	v.	

SEAT No.:	
-----------	--

[6261]-60 S.E. (1.T.)

[Total No. of Pages :2

LOGIC DESIGN & COMPUTER ORGANIZATION (2010 Pattern) (Semester-III) (214442)

		(2017 1 attern) (Semester-111) (214442)
		[Max. Marks : 70 ions to the candidates:
Insti	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
	2)	Figures to the right indicates full marks.
	<i>3</i>)	Assume suitable data if necessary.
Q1)	a)	Differentiate between combinational Circuit and Sequential Circuit. [6]
	b)	Explain in detail the Conversion of D flip-flop to T flip-flop. [6]
	c)	Define Register. Explain various types of shift registers. [5]
		OR .OR
<i>Q2</i>)	a)	Draw the pin Configuration of 10 7476 and explain the function of Present and Clear pins. [6]
	b)	What is meant by race around condition? How race around condition can be eliminated? [6]
	c)	Define Modulus of Counter. Design MOD-81 counter using Decade
		Counter IC 7490. [5]
Q3)	a)	Explain following terms in brief i) ALU Signals ii) ALU Functions
		iii) ALU Types. [6]
	b)	What are the uses of Registers in a CPU? List typical Registers in a CPU. Write a short note on Flag register. [6]
	c)	What are interrupts? Explain with diagram what steps are carried out when they are present.
		OR OR
<i>Q4</i>)	a)	Write in brief about the Fetch cycle with operations and microinstructions carried out?
	b)	Explain and Design basic structure of Von Neumann architecture. Write the difference between Harvard and Von Neumann architecture. [6]
	c)	Write a short note on following - Address Bus, Data Bus, Control Bus.[6]

P.T.O.

Q5)	a)	What is mean by Machine Instruction? Explain basic format of Machine instruction? What are the basic types of machine instructions? [6]	
	b)	What is meant by Multicore architecture? List the typical features of multicore intel core i7. [6]	
	c)	What is purpose of Interrupt? What are various types of Interrupts? [5]	
		OR	
Q6)	a)	Explain interrupt handling. [6]	l
	b)	Give the Taxonomy of Parallel Processor Architectures, with one line explanation of each type. [6]	
	c)	Identity the addressing mode in following instructions: [5]	l
		i) MOV R1, #0A2DH	
	1	ii) MOV R1,R2	
`		iii) MOV R1, [R2]	
Q7)	a)	Along with suitable diagram explain direct cache mapping technique.[6]	i
	b)	What is DMA? Along with suitable diagram explain how DMA is used for data transfer. [6]	l L
	c)	Explain memory read cycle with timing diagram. OR	ľ
Q 8)	a)	Compare: SRAM and DRAM. [6]	ł
	b)	Explain Cache Coherence. [6]	l
	c)	Whta is Principle of Locality? Explain two types of Localities. [6]	l
		CS CS CS	
		20.76°.	

[6261]-60

Total No	o. of Questions : 8]	SEAT No. :	
P9134	4	Total	No. of Pages : 2
	S.E. (Information Tech		
LD	OCO: LOGIC DESIGN & COMP		ZATION
	(2019 Pattern) (Semester		
		, , ,	
Time: 2	½ Hours]	I	Max. Marks: 70
Instructi	ions to the cardidates:		
1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q2	7 or Q8.	
2)	Neat diagrams must be drawn wherever ne	cessary.	
3)	Figures to the right indicate full marks.		
	6.		
01)			
Q1) a)	Differentiate between Combinational	circuit & Sequential o	circuits? [6]
b)	Design flip flop conversion logic to conversio	onvert J-K flip flop to	T flip-flop?[6]
c)	Design and draw MOD 96 Counter using	ng IC 7490 & explain it	s operations?[6]
	OR	,	
Q2) a)	Compare Asynchronous counters w	•	
b)		convert S-R Flip Flo	X_Y_
	Flop?		[6]
c)	Explain the working of 3-bit synch	ronous counter usin	g J-K flip flop
ŕ	with suitable circuit diagram and stat		[6]
	\		9.
Q3) a)	Describe with neat diagram Von Neu	mann Architecture of	f computer? [6]
b)	Write a note on multiple bus hierarch	nies?	[5]
c)	Explain how system bus organization	is used for communi	cation between

the major components of a computer with heat diagram?

OR

[6]

Total	l No.	of Questions : 8]	SEAT No. :
P15	37	[6002]-166	[Total No. of Pages : 2
		S.E. (I.T.)	
		LOGIC DESIGN & COMPUTER ORG	GANIZATION
		(2019 Pattern) (Semester - III) ((214442)
Instru	uctio	hours] ons to the candidates: Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q	[Max. Marks : 70
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.	
		Figures to the right indicate full marks.	
<i>Q1</i>)	a)	Define the following terms. i) Propagation Delay Time	[8]
	7	Setup Time	?
		iii) Hold Time	
		iv) Maximum Clock Frequency	
	b)	Draw and explain SR flip-flop using NAND g	gate. [6]
	c)	Convert T flip-flop to D flip-flop.	[4]
		OR	
<i>Q</i> 2)	a)	Design MOD-45 counter using IC 7490.	(8)
	b)	Draw and explain 4-bit serial-in serial-out shi	ft register using D ₇ FFs. [6]
	c)	Differentiate between Latch and Flip Flop.	[4]
Q3)	a)	Draw and explain Single bus organization of CPU?	t CPU? State functions of [8]
	b)	Explain sequence of events that occur in Fet diagram at each stage.	ch cycle symbolically with [9]

Q4)	a)	Draw the block diagram of Hardwired control unit.	[8]
	b)	Describe the functions of registers: IR, MBR, MAR, PC, Flag register.	[9]
Q 5)	a)	What are key characteristics of RISC & CISC. Compare RISC a CISC.	nd [9]
	b)	What is mean by Instruction format? Explain 0-1-2-3 address formation in the contract of the c	
		with suitable example? OR	[9]
Q6)	a)	Draw and explain Cluster and Cluster Architectures.	[9]
	b)	Explain symmetric multiprocessors(SMP) organization with features.	[9]
Q7)	a)	What are the different algorithms and techniques used in managing cac	he
		memory.	[8]
	b) 5	Explain Interrupt Driven I/O with a diagram.	[9]
		OR OR	
Q 8)	a)	Draw & explain memory hierarchy structure? What is mean by a Princip of Locality.	[9]
	b)	Explain the memory write cycle with help of suitable timing diagram.	[8]
		Explain the memory write cycle with help of suitable timing diagram.	5
		CR ABBROTO TO	
		D. 10.236	

[6002]-166

Total No	o. of Questions : 8] SEAT No. :
PA-12	[Total No. of Pages : 2
111 12	[5925]-266
	S.E. (IT)
	LOGIC DESIGN & COMPUTER ORGANIZATION
	(2019 Pattern) (Semester - III) (214442)
Time: 2	1/2 Hours] [Max. Marks : 70
	ions to the candidates:
1)	Attempt Q.No.1 or Q.No.2, Q.No.3 or Q.No.4, Q.No.5 or Q.No.6, Q.No.7 or Q.No.8.
2)	Neat diagrams must be drawn wherever necessary.
3) 4)	Figures to the right indicate full marks. Assume suitable data, if necessary.
4)	Assume Sutuatie adia, if necessary.
Q1) a)	Explain with a diagram, the conversion of J-K flip flop to D flip flop.[9]
b)	Differentiate between Latch & flip-flop w.r.t. definition, operation, diagram
	of applications etc. [9]
	OR O
02)	
Q2) a)	Design 3-bit synchronous down - counter using MS JK flip flop
	(IC 7476). (Pin numbers are not required) Draw only logic diagram. [9]
b)	
	of each. [9]
Q3) a)	Explain in brief, various functional units of a computer system with a
2-7-17	block diagram showing interconnection between them. [9]
b)	Write a short note on PC, MAR, MBR, TR. [8]
U)	
	OR OR
Q4) a)	What is the function of control unit in a CPU? Draw block diagram of
	Hardwived control unit & explain its operation, pros & cons. [9]
b)	Explain and draw basic structure of Harvard architecture. State the
,	differences between Harvard and Von Neu mann architecture. [8]
Q5) a)	What is meant by addressing mode? Explain all addressing modes with
$\mathcal{Q}^{(j)}(a)$	what is meant by addressing mode: Explain an addressing modes with

examples.

Differentiate between RISC & CISC architecture.

OR

b)

examples.

[9]

[9]

Q6)	a)	Explain instruction pipelining w.r.t operation and speed up form achieved by pipelining.	ula, [9]
	b)	Explain interrupt w.r.t. its purpose, types. Describe step by step, interrup handling procedure of microprocessors.	the [9]
Q 7)	a)	Explain with examples the various cache replacement policies. Descrivarious cache write policies.	ribe [9]
	b)	Explain programmed controlled I/O with the help of flow chart. OR	[8]
Q 8)	a)	Along with suitable diagram, explain set associative cache mapp technique.	oing [9]
	b)	Explain memory read cycle with the help of suitable timing diagram.	[8]
		Explain memory read cycle with the help of suitable timing diagram.	
[592	25]-2	2	

Total No. of Questions: 8]	290	SEAT No. :
P-9136	. 3	[Total No. of Pages

[6179]-262 S.E. (Information Technology)

		S.E. (Information Technology)
		OBJECT ORIENTED PROGRAMMING
		(2019 Pattern) (Semester - III) (214444)
Time	: 21/2	[Max. Marks: 70
Instru	ıctio	ns to the candidates :
	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.
	<i>3</i>)	Figures to the right indicate full marks.
	<i>4</i>)	Assume suitable data, if necessary.
Q 1)	a)	What is a constructor? Explain the Default constructor with an example.[6]
	b)	Create a Bookshop inventory class. Use appropriate constructors for
		Bookshop Management. [6]
	c)	Can we overload the constructor? Explain with Example. [6]
		OR
0.0	,	
Q 2)	a)	Explain the Parameterized constructor and Copy constructor with an
		example.
	b)	What is garbage collection? Explain the finalize () method in detail. [6]
	c)	What is a destructor? Differentiate between Constructor and Destructor.
		[6]
		20, 8.
Q 3)	a)	What is inheritance? Explain different types of Inheritance. [6]
20)		
	b)	What is an interface in Java? What is the difference between interface and abstract class? [5]
	c)	What is polymorphism? What are the different types of polymorphism?
		Explain with an example. [6]
		OR

Q4)	a) b)	Design and develop inheritance for a given case study, identify objects and relationships and implement inheritance wherever applicable, Employee class has Emp_name, Emp_id, Address, Mail_id and Mobile_noas members. Inherit the classes: Programmer, Team Lead, Assistant Project Manager and Project Manager from the employee class. Add Basic Pay (BP) as the member of all the inherited classes with 97% of BP as DA, 10% of BP as HRA, 12% of BP as PF, and 0.1% of BP for staff club fund. Generate pay slips for the employees with their gross and net salary. [9] Explain the concept of Method Overloading and method overriding with examples. [8]
Q 5)	a)	What is the Exception exception-handling mechanism in Java? Write a
~	,	java program to handle the Divide by zero exception. [8]
	b)	Explain user-defined exception with an example. [5]
	c)	Explain Collection classes in detail. [5]
		OR OR
Q6)	a) 💸	What is a generic method? Explain with a suitable example. [6]
	b)	Explain the use of finally in exception handling with an example. [4]
	c)	Write a program Java to handle Array Index Out of Bounds Exception
		and Null Pointer Exception with the program. [8]
07)		
Q/)	a)	Define the term Stream Explain various stream classes. [8]
	b)	Design a Java program for employee management with following operations -
		operations - i) Create file
		ii) Write data into file
		iii) Read data from file. Consider Name, employee id and department
		as attributes of employee.
		OR
Q 8)	a)	Which are different types of Design patterns [6]
	b)	Explain the Iterator Pattern and its advantages in detail. [6]
	c)	Explain the Adapter pattern and its advantages in detail. [5]

Total No. of Questions: 8]	8	SEAT No. :
PB-3654		[Total No. of Pages : 2

[6261]-62 S.E. (I.T.)

Object Oriented Programming (2019 Pattern) (Semester - III) (214444)

Time: 2½ Hours] [Max. Marks: 70 Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagram must be drawn wherever necessary
- 2) Figures to the right side indicate full marks.
- 3) Assume suitable data if necessary.
- Q1) a) Write a short note on 'Symbolic Constants' in Java. [9]
 - b) Discuss Constructor Overloading with suitable code. [9]

Q'R

- Q2) a) How are objects initialized dynamically? Explain with an example. [9]
 - b) What is garbage collection in OOP? Explain finalize() method in Java.

[9]

- Q3) a) Define a class 'shape' with abstract method compute_area(). Derive the classes 'circle' and 'rectangle' from 'shape' class. Calculate the area of circle and rectangle using Dynamic Binding. Use appropriate instance variables and methods whenever necessary.

 [9]
 - b) Discuss diamond problem in detail? How it can be solved? [8]

OR

- Q4) a) Design a class 'person1' with instance variables 'name' and 'age'. Derive a class 'person2' from 'person1' class with instance variable 'gender'. Derive a class 'employee' from 'person2' class with instance variable 'address'. Create a database of the 3 employees. Use the appropriate methods to accept and display the data. [9]
 - b) Define Polymorphism? Differentiate between Compile Time Polymorphism and Run Time Polymorphism with an example. [8]

P.T.O.

Q 5) a	ı)	Can we throw an exception explicitly or manually? If 'yes', justify your answer with an example. [9]
b))	What is Generic Programming? Discuss any four methods of LinkedList class with their syntax. [9] OR
Q6) a		Differentiate between an array and ArrayList class. Explain following methods of ArrayList class. [9] i) add() ii) get() iii) remove()
t))	Implement a program which handle ArrayIndex Out of Bound Exception[9]
Q7) a	ı)	What is a Design Pattern? Write a short note on Iterator' design pattern. [9]
t		How do you write to a file and read from a file using FileWriter and FileReader class, respectively? OR OR
Q 8) a	ı)	How are input/output exceptions handled in File Handling? Explain with an example [9]
t		Is it possible to concatenate two or more files and save them in a different file? If 'yes', justify' your answer with an example. [8]

Total No	o. of Questions : 8]	SEAT No. :
P1539		[Total No. of Pages : 2
	[6002]-168	
	S.E.(1.T.)	
	OBJECT ORIENTED PROG	RAMMING
	(2019 Pattern) (Semester-II	I) (214444)
Time . 2	½ Hours]	[Max. Marks : 70
		[Max. Marks . 70
Instructi 1)	ions to the candidates: Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7	or O 8
<i>1)</i> 2)	Neat diagrams must be drawn wherever necesar	
3)	Figures to the right indicate full marks.	<i>y</i> .
<i>4</i>)	Assume Suitable data if necesary.	3
-/		
Q1) a)	Consider the definition of 'complex' cla	ss as below. [9]
	Consider the definition of 'complex' clapublic class complex private int real, img; public complex () { //constructor 1 }	
		· · · · · · · · · · · · · · · · · · ·
	private int real, img;	
	public complex ()	S
	//constructor 1	
	}	
	public complex (int real, int img)	
	{	
	//constructor 2	
	}	
	public complex (complex c)	
	{	· NX
	// constructor 3	2 %.
	}	0,0.
	}	2000 of his interior
	Re-write the class 'Complex' as:	-07 20 h
	i) Define the constructor 1 so that the	e private member variables are
	initialized to 0.	
	ii) Define the constructor 2 so that the and img is initialized according to the	The state of the s
	iii) Define the constructors 3, where co	_
b)	With suitable code segments illustrate va	
U)	vitii suitable code segments mustrate va	[9]
	OR OR	. [5]
	.9.1	n.m.o
	> ′	P.T.O.

Q 2)	a)	What are the characteristics of Destructor? How is Destructor declared in OOP? Demonstrate with an example. [9]
	b)	Write a program which demonstrate constructor with default arguments. [9]
Q 3)	a)	Discuss diamond problem in detail? How it can be solved? [9]
	b)	Enlist the benefits and costs of Inheritances. [8]
		OR
Q4)	a)	How parameterized constructors get executed in multilevel inheritance? Explain with an example? [9]
	b)	Define polymorphism? What are the types of Polymorphism? How can be run time polymorphism achieved in OOP? [8]
Q 5)	a)	Define exception. What are its types? Discuss exception handling mechanism in detail. [9]
	b)	What is Generic programming? Discuss any four methods of ArrayList class with their syntax. [9]
20		OR OR
Q6)	a)	Is there any difference between throw and throws in exception handling in Java? If 'yes', justify your answer. [9]
	b)	How basic mathematical set operations union, intersection, and subset are performed using set interface? [9]
Q 7)	a)	What is a design pattern? Write a short note on 'Singleton' design pattern.
	b)	Write program to handle primitive data types in file handling. OR
Q 8)	a)	How do you write to a file and read from a file using File Writer and FileReader class, respectively? [8]
	b)	What are the advantages of design patterns? Explain Adaptor' design pattern in detail. [9]
		* * **

Total	No. o	of Questions : 8] SEAT No. :
PA-	124	5 [Total No. of Pages : 2
		[5925]-268
		S.E. (Information Technology)
		OBJECT ORIENTED PROGRAMMING
		(2019 Pattern) (Semester - III) (214444)
Time	2:21/2	[Max. Marks: 70
Instr	ructio	ns to the candidates:
	<i>1</i>)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.
	<i>3</i>)	Figurest to the right side indicate full marks.
	<i>4</i>)	Assume suitable data if necessary.
Q1)	a)	What is Constructor? What are the characteristics of the Constructor?
		Explain Constructor Overloading with an example? [9]
	b) 🖔	Write a short note on: [9]
		i) Garbage collection in Java
		ii) Destructor in C++
		OR
<i>Q</i> 2)	a)	Design a class 'Complex' with data members for real and imaginary
~ /	,	part. Provide default and Parameterized constructors. Write a program
		in JAVA to perform a Subtraction of two complex numbers. [9]
	b)	Discuss with example Dynamic initialization of object in Java.
Q3)	a)	Define Inheritance. What are the types of Inheritance? How can you

- Q3) a) Define Inheritance. What are the types of Inheritance? How can you inherit a class in Java? [9]
 - b) What is polymorphism? Explain compile time and run time polymorphism.

 [8]

- Q4) a) Differentiate between method overriding and method overloading. Explain method overriding concept with an example.[9]
 - b) What is interface in java? How to declare an interface, write a syntax? Can we achieve multiple inheritance by using interface? Justify with an example. [8]

Q 5)	a)	What is an exception? Explain the following terms with respect	
			[9]
		i) try	
		ii) catch	
		iii) throw	
		iv) finally	
	b)	Write a generic method to count the number of elements in a collect	
		that have a specific properties like odd integers, prime numbers a	
			[9]
06)	2)	OR Evalor And Vist along with an average	[0]
Q6)	a)		[9]
	b)	Write a java program to accept and display the month number. Thr number format exception if improper month number is entered.	ow [9]
		number format exception if improper month number is entered.	נין
Q7)	a)	Explain FileinputStream class. Write any four methods of File Input stre	am
<i>Q</i> 7)	a)		[9]
	b) \		[8]
	, \	i) Create a File	
		ii) Read from a File	
		iii) Write to a File	
		iv) Close a File	
		OR	26
Q 8)	a)	Write a short note on .	[8]
		i) Iterator	50
		ii) Singleton	7
	b)	Implement a program for maintaining a database of student records us	_
		Files. Student has Student-id, name, Roll_no, Class, marks and addre	
		Display the data for few students.	[9]
		i) Create Database	
		ii) Display Database	
		iii) Delete Records	
		iv) Update Record	
		Display the data for few students. i) Create Database ii) Display Database iii) Delete Records iv) Update Record v) Search Record	
		* * * *	
		14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	
[F 0.5	.		
[592	5]-2	2 0	

Total No. of Questions: 8]			200	SEAT No. :	
PB3653		[6361]	[Total	No. of Pages : 4	
			[6261]-61		
		DATA CTDIIC	S.E. (P.T.)	CODITIMO	
			TURES AND ALO		
		(2019 Patter	n) (Semester - III	1) (214443)	
Time: 2			\mathcal{S} .	[N	Aax. Marks: 70
		the candidates:	04.05 04 105		
1) 2)			Q.4, Q.5 or Q.6 and Q.7 awn wherever necessar		
3)		res to the right indica		<i>J</i> •	
4)	Assur	ne suitable data, if n	ecessary.	0-	
		200		3	
Q1) a)	Ima	igine we have two	empty stacks of integ	gers, S1 and S2. I	Draw a picture
	of e	each stack after the	following operation	ic.	[6]
	i) 9	\$1. Push (3);			
	ii)	S1. Push (5);		· O.	
	jii)	S1. Push (7);	9'		
	iv)	S1. Push (9);			
	v)	S1. Push (11);	2, 8y		
	vi) vii)	S1. Pusii (15);	rack (S1))		
	VII) {	winie (: Emptyst	ack (\$1))		
	ι	X = S1. Pop ()			90
		X = S1. Pop ();	7 36		
		S2. Push (X);	6.		
	}		~		
		X	o°		
		· 0.			Ö.
b)		•	content of stack duri	ing conversion	of given infix
	exp	ression to prefix.	V(C - II)		[6]
<u>a)</u>	Wr	$A^B*C-D+E/F$	·	following opers	[6]
c)		ue using linked rep	ode algorithm for the	Tollowing Opera	[6]
	i)	enqueue ()	Siesentation.		[0]
	ii)	dequeue()		9	
	iii)	print_Queue()			
			^	6.	
			OR .		
			8.		P.T.O.

- Q2) a) If the values of A, B, C, and D are 2, 3, 4, and 5 respectively. Calculate the value of the following prefix expression and clearly indicate the content of stack. (Consider '_' as a minus sign)
 - i) +-*ABCD
 - ii) -*A+BCD
 - b) Consider the following circular queue of characters of size 6. "_" denotes an empty queue location. Initial queue configuration is Front = 1, Rear = 3 and having letters as shown below. [6]
 - i) F is added to the queue
 - ii) Two letters are deleted
 - iii) K, L, M are added to the queue
 - iv) R is added to the queue
 - v) Two letters are deleted
 - vi) Sis added to the queue
 - vii) Two letters are deleted

Show the queue content of queue with Front and Rear as the above options take place.

- c) What is double ended queue? Mention Types of double ended queue. Explain enqueue and dequeue operations of double ended queue. [6]
- Q3) a) Create a binary tree from given preorder and inorder traversal. Show all intermediate steps.[6]

Preorder: GBQACKFPDERH

Inorder: QBKCFAGPEDHR

- b) Write the C++ pseudocode algorithm for creating expression tree from postfix expression. [6]
- c) Construct an inorder threaded binary search tree for the following set of elements. [5] 100, 50, 200, 300, 20, 150, 70, 180, 120, 30 Show all steps.

- Q4) a) Write C++ pseudocode algorithm for preorder traversal of threaded binary tree. [6]
 - b) Draw the expression tree for the given postfix expression. Clearly indicate the content of stack. Write the inorder and preorder traversal of the concern tree. [6]

$$A B C * + E * F +$$

- c) Explain the following terms with respect to tree.
 - Root
 - ii) Leaf node
 - iii) Siblings

i)

- iv) Degree of a node
- v) Degree of tree

Q5) a) Find the minimum spanning tree using Prim's algorithm for the following graph. [6]

b) Obtain an AVL tree by inserting one data element at a time in the following sequence: [7]

50, 55, 60, 15, 10, 40, 20, 45, 30, 70, 80,

Label the rotations appropriately at each stage

c) Write short note on OBST

[5]

[5]

OR

- Q6) a) Write an application of Topological sorting with suitable example. [6]
 - b) For a given tree, Identify whether it is AVL tree or not? If it is not an AVL tree, convert it into balanced AVL tree. After conversion, insert node 15 in the tree. Delete node 20 from the tree. After insertion and deletion operation, if the tree is imbalanced, make it balanced AVL tree. [7]

[6261]-61

	c)	Construct Heap to Sort given values in ascending order using MAXh sort, 5, 3, 17, 10, 84, 19, 22.	eap [5]
		(Note: Make a use of Heapify)	
Q 7)	a)	Differentiate between sequential file and direct access file.	[6]
	b)	file:	ntial [6]
		i) Insert recordii) Delete record	
	c)	What are the characteristics of good hash function? List differ techniques to resolve collision in hash table and explain any one v suitable example.	
		OR	
Q 8)	a)	Explain the Index sequential file organization with advantages disadvantage.	and [6]
	b)	Explain Linear probing with and without replacement with suita examples.	able [6]
	c)	What is File? Differentiate between text file and binary file.	[5]
		6.76.V	
		89. 16. 16. 1. 18. 18. 18. 18. 18. 18. 18. 18. 18.	
		What is File? Differentiate between text file and binary file. * * * Output Differentiate between text file and binary file.	
[626	[1]	-61 4	

Total No. of Questions: 8]	260
P9135	

SEAT No.:	
[Total	No. of Pages : 3

[6179]-261

S.E. (Information Technology Engg.) DATA STRUCTURES & ALGORITHMS

	(2019 Pattern) (Semester - III) (214443)	
Time : 2	[Max. Marks :	: 70
Instruct	tions to the candidates.	
1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.	
2)	Neat diagrams must be drawn wherever necessary.	
3)	Figures to the right indicate full marks.	
Q1) a)	Explain stack data structure as an ADT and Discuss briefly application	ons
	of stack.	[6]
b)	Write sudo code for insert and delete operations of linear queue.	[5]
c)	Discuss the types of priority queue with their applications.	[5]
	OR O	
Q2) a)	Convert the following infix expressions to postfix using stack. Clea	rly
		[6]
	i) $(A+B)*C-D*F+C$ ii) $(A-5)*(B+C-D*E)/F$	ر رن ک
	ii) $(A-5)*(B+C-D*E)/F$	72
b)	Write sudo code for insert & delete operations of circular queue.	[8]
c)	Enlist applications of Queue data structures.	[2]
Q3) a)	Explain importance of threaded binary tree and Discuss inorder thread	led
~ , ,		[6]

- b) Write sudo code for deleting a node in BST considering all scenarios.[8]
- c) Discuss with the help of example, the significance of height of tree and depth of a tree. [4]

Q4) a) Enlist the difference between a general tree & binary tree. Convert the given general tree to binary tree and write down the steps required for the same.

- b) Write sudo code for creating a BST of N-nodes. [6]
- c) Explain with the help of example, threaded binary tree traversals. [4]

Q5) a) For the given graph show step-wise representation of MST using Kruskal's algorithm. [6]

- b) Construct an AVL search tree by inserting the following elements in the order of their occurrence. Show the balance factor and type of rotation at each stage.

 [8]
- c) Enlist and discuss applications of Heap.

Heap. [4]

OR

Q6) a) Find the MST using Prin's algorithm for the following graph. Also write algorithm for the same.[8]

- b) Which data structures supports to perform sorting using heap data structure. Explain it to sort it in ascending order. 1, 12, 9, 5, 6, 10. [8]
- c) What is the time-complexity of Prin's algorithm & Kruskal's algorithm.[2]

Q 7)	a)	Explain why file opening nodes are important while opening any file.
		Explain the use of following file-opening nodes. [8]
		i) ios::app
		ii) ios::ate
		iii) ios::in
	b)	For a given set of values: [10]
		9, 45, 13, 59, 12, 75, 88, 11, 105, 46
		Create a hash table and resolve collison using chaining and without
		replacement.
		OR OR
Q8)	a)	Write sudo code to perform following operations on sequential file: [8]
		i) Create and display
		ii) Insert a record
	b)	What is hashing? Explain various hash collision resolution techniques.[8]
	c)	What is the time complexity of a deleting a record from indexed sequential
		file. [2]
		\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
		What is the time complexity of a deleting a record from indexed sequential file. Part Pa
		6.
		26.1
[617	'9]-:	261 3

Total	No.	of	Questions	:	8]	
--------------	-----	----	-----------	---	------------	--

SEAT No.:	
-----------	--

P1538 [6002]-167 S.E. (IT)

[Total No. of Pages : 3

DATA STRUCTURES & ALGORITHMS (2019 Pattern) (Semester - III) (214443)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- Q1) a) Define stack as an ADT. Use this stack to swap two no.s (Write Sudo Code). [6]
 - b) Discuss the merits of circular queue over linear queue and write sudo code for over flow and under flow conditions of circular queue. [8]
 - c) Discuss the time complexity of removing an item from priority queue if sequential memory organization is used. [4]

OR

- Q2) a) Contrast between the characteristics of stack & queue data structures.[4]
 - b) Convert the following infix expressions to postfix and show the contents of stack for each operation.
 - i) p * (X/Y * Z Q/(A+B)).
 - ii) A + B \$ (M-N)/D (\$ for power operation). [8]
 - c) Explain with example the significance of priority queue over simple queue.

[6]

- Q3) a) Discuss the merits & cemerits of implementing threaded binary tree. [6]
 - b) Describe the characteristics of a general tree. Convert the following general tree into binary tree. [8]

c) Discuss the time complexities of inserting & deleting a node from BST.[4]

- Q4) a) Discuss the applications of Binary search tree & expression tree. [4]
 - b) Write sudo code for non-recursive inorder tree traversal of binary tree.[6]
 - c) For the following binary tree, show (draw) threaded binary tree (inorder).

Q5) a) Write sudo code of Kruskal's algorithm for creating a MST. Demonstrate with steps for the following graph MST using same algorithm. [9]

b) Discuss with example, what is AVL & time complexity to insert a node in an AVL. [8]

- **Q6)** a) Explain the time complexity of heap sort & sort the following No.s in ascending order using heap sort. 5, 3, 17, 10, 84, 19, 22. [9]
 - b) Contrast between the approaches of finding MST using prim's algorithm & Kruskal's algorithm. Discuss the time complexities of both algorithms.

Q 7)	a)	Explain prototype of the following function in C++ with examples. [8]
		i) Seekg
		ii) Seekp
		iii) tellg
		iv) tellp
	b)	Enlist characteristics of a good hash function. Create a hash table for the following set of integers, taking modulus function as hash function (h(k)=k%10). 29, 50, 28, 19, 17, 15, 18, 14, 38.
		Demonstrate Chaining with replacement. [9]
		OR
Q8)	a)	Write sudo codes to perform following operations on index sequential file. [8]
		i) inserting a record.
		ii) updating a given record.
	b)	Discuss with examples at least three types of hashing functions, clearly
		mentioning the advantages & disadvantages of each. [9]
Γ <i>ζ</i> Λ	021	167

Total No	o. of Questions : 8]	SEAT No. :
P654	[5869] - 283	[Total No. of Pages : 2
	S.E. (Information Technol	ogy)
	DATA STRUCTURES & ALGO	
	(2019 Pattern) (Semeser - III)	
<i>T</i> : 0		
	2½ Hours] tions to the candidates:	[Max. Marks : 70
1 <i>nstructi</i> 1)	Answer Q.1, or Q.2, Q.3 or Q.4, Q.5or Q.6, Q.7 or	0.8.
2)	Neat diagrams must be drawn wherever necessary.	~
3)	Figures to the right side indicate full marks.	
<i>4</i>)	Assume suitable data, if necessary.	9
	O' 30'	
Q1) a)	Convert the following infix expressions to pr	efix expressions using stack
	data structure.	
	i) A+B*C^D-E/F	5
	$((A+B)*C-(D-E))^{(F+G)}$	5 .' [9]
b)		resentation and mention the
,	time complexity of operations.	[9]
	OR O	
Q2) a)	Write sudo code for converting a given	infix expression to postfix
~ / /	expression and apply the algorithm to conv	
b)	Write a code for singly linked list creation, in	sert and Display and mention
,	the time complexity of operations.	[9]
	~6· ^v	
Q3) a)	Suppose the following sequence lists the nod	es of a binary tree in preorder
~	and inorder respectively.	[9]
	Preorder - G B QACKFPDERH	9, 10.
	Inorder - Q B K C F A G P E D H R	0, 8.
	Construct a binary tree from the given trave	rsals
b)		
,		
	OR 🔯	290
Q4) a)	Explain the difference between array in	representation and linked
× 1/ (1)	representation of binary tree. Justify your an	~ - /

What are the advantages and disadvantages of TBT? Write a algorithm

to implement Inorder Traversal of Inorder TBT.

of each.

b)

P.T.O.

[8]

Q5) a) For the given graph, construct the Adjacency Matrix and Adjacency List. Discuss the limitation(s) of Adjacency Matrix. [9]

What is topological Sorting? Illustrate with an example how topological b) sorting is performed. List any two applications where topological sorting can be used. [9]

OR

*Q***6**) a) What is the cost of the MST? Construct a minimum spanning tree for the given graph using Prim's Algorithm. List applications where MST is required. [9]

- Illustrate with examples the Reheap up and Reheap down operations b) w.r.t. heaps. List any three applications of Heap.
- Explain basic concept of Hash table? Define Hash table? Write **Q7**) a) characteristics of good hash function.
 - Write Comparison of different file organizations (sequential, index b) sequential and Direct Access) [8]

OR

Explain with example hash functions. **Q8**) a)

[9]

Explain Concept of File? Write all File types and explain file organization.

[8] b)

Total No. of Questions: 8]	90	SEAT No. :	
PA-1244		[Total No. of Pages	::3

[5925] 267

S.E. (Information Technology) DATA STRUCTURES & ALGORITHMS (2019 Pattern) (Semester - III) (214443)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Discuss how a two-way stack can be developed using array and write sudo code for Push, Pop and display operations. [9]
 - b) Write a code for doubly linked list creation, insert and Display and mention the time complexity of operations. [9]

- Q2) a) Convert the following infix expressions to postfix expressions using stack data structure. 1) A+B*C^D-E/F 2) ((A+B)*C-(D-E))^(F+G)[9]
 - b) Write a sudo code for Queue implementation using array. Perform the following operations: 1) Queue Full 2) Queue Empty 3) equeue 4) dqueue [9]
- Q3) a) Construct a binary tree from the given traversals

 Pre-order: * + a b c /- d e + f g h In-order: a + b c * d e/f + g h[9]
 - b) What is a Binary Tree? Explain the following operations on Binary Tree i) Inserting a node in to BT ii) Deletion a node from BT [8]

 OR
- Q4) a) What is the use of threaded binary free? Give the node structure required for a threaded binary tree. Write pseudo code to find in-order successor of any node X in a threaded binary tree.[9]

- b) Write a pseudo code to implement binary search tree for performing following operations: i) Display Mirror image ii) Display Minimum value iii) Display average value iv) Display leaf nodes [8]
- Q5) a) Define Minimum Spanning Tree. Compare Prim's and Kruskal's Algorithm. Construct a minimum spanning tree for the given graph using Kruskal's Algorithm. What is the cost of the MST?[9]

b) Given the following Adjacency matrix, construct the graph and traverse it in Breadth first order starting at vertex 'F'. [9]

			(V
	A	В	C	D	E	F
A	0	3 /		2	4	0
В	3		9) P	0	10
C	7	9	(e)	1	0	0
D	2	0	1	0	5	8
E	4	.0	0	5	0	6
F	0	10	0	8	6	0

- **Q6)** a) Construct an Optimal Binary Search Tree for the following data : N=4, Key Set = {C, E, M}, {p1, p2, p3} = {0.1, 0.2, 0.15},{q0, q1, q2, q3} = {0.15, 0.05, 0.3, 0.05}. What is the cost of the OBST? [9]
 - b) Define AVL Tree. Illustrate with example the various types of rotations that are performed to balance the binary tree. [9]

Q 7)	a)	Explain with example hash functions?	[9]
	b)	Write short note on closed hashing and Open addressing.	[8]
		OR T	
Q 8)	a)	Explain chaining with replacement and chaining without re in hashing?	placement [9]
	b)	Write Comparison of different file organizations (sequent sequential and Direct Access)	ial, index [8]
		Restriction of the state of the	SK.

[5925]-267

SEAT No. :

P-9133

[Total No. of Pages: 4

[6179]-259A

S.E. (Information Technology/A.I. & M.L. Engineering) DISCRETE MATHEMATICS

(2019 Pattern) (Semester - III) (214441/218541)

Time : 2½ *Hours*]

[Max. Marks: 70]

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Praw the complement of the following graphs.

[6]

ii)

b) Using the labeling procedure, find the maximum flow in the following transport network. [6]

- c) What is the Prefix Code? Which of the following codes are prefix codes? Justify your answer. [6]
 - i) a:0,e:1,t:01,s:001
 - ii) a: 101, e: 11, t: 001, s: 011, n. 010

Q2) a) Determine whether the following graphs are isomorphic to each other.

Justify your answer. [6]

b) Find the minimum spanning tree and weight of it for the given graph using Prim's algorithm. [6]

c) Suppose that sumeone starts a chain letter. Each person who receives the letter is asked to send it on to four other people. Some people do this, but others do not send any letters. How many people have seen the letter, including the first person, if no one receives more than one letter and if the chain letter ends after there have been 100 people who read it but did not send it out? How many people sent out the letter?

[6]

Q3) a) What is Function? Given a relation $R = \{(1, 4), (2, 2), (3, 10), (4, 8), (5, 6)\}$ and check whether the following relations R1, R2, R3 & R4 are function or not.

$$R1 = \{(1, 4), (2, 4), (3, 4), (4, 4), (5, 4)\}$$

$$R2 = \{(1, 2), (2, 4), (2, 10), (3, 8), (4, 6), (5, 4)\}$$

$$R3 = \{(1, 6), (2, 2), (4, 4), (5, 10)\}$$

$$R4 = \{(1, 6), (2, 2), (3, 2), (4, 4), (5, 40)\}$$

	b)	Solve the following recurrence relation.	[6]
		$a_n = 5n_{n-1} - 6a_{n-2}$ where $a_0 = 2$ and $a_1 = 5$.	
	c)	Show that 7 colors are used to paint 50 bicycles, then at least 8 bicycl	les
		will be of the same color.	[5]
O 1)		SOR	
<i>Q4</i>)	a)	Find the transitive closure by using Warshall's algorithm for the giver relation as:	
		$R = \{(1, 1), (1, 4), (2, 1), (2, 2), (3, 3), (4, 4)\}$	[6]
	b)	Define POSET. Let A is set of factors of positive integer m and relation	Ωn
	0)		[6]
		For m = 45. Draw Hasse Diagram.	
	c)	Given $f(x) = x^2 + 3$ and $g(x) = 3x - 2$. Find $f(5)$, $g(3)$, $g(6)$ as	nd
		fog(x)	[5]
<i>Q5</i>)	a)	Which of the following congruences is true Justify your answer. [[6]
	7	$556 \equiv 1296 \pmod{10}$	
		ii) $1655 \equiv 935 \pmod{11}$	
		iii) $448 \equiv 784 \pmod{56}$	
	b)	Compute GCD of the following numbers using Euclidean Algorithm	m. [6]
		i) GCD (765, 150)	
		ii) GCD (343, 1554)	
	c)	Using Chinese Remainder Theorem, find the value of P using following	_
			[6]
		$P \equiv 2 \pmod{5}$	
		$P \equiv 5 \pmod{7}$	
00	-)	OR	
Q6)	a)	Find multiplicative inverse of 15 mod 26 using Extended Euclide Algorithm.	an [6]
	b)		[6]
	- /	i) 37	
		ii) 35	
		iii) 15	
	c)	What is a Mersenne prime number? Which of the following number	ers
		is the Mersenne Prime number? 71, 31, 255, 8191, 7.	[6]
[617	9]-2	59A 3	

- Let $S = \{1, 2, 3, 6, 12\}$, where a*b is defined as LCM (a, b) over set S. **Q7**) a) Determine whether it is a semigroup, group, or Abelian Group or neither. **[6]**
 - Consider the set $A = \{1, 3, 5, 7, 9, \dots\}$ i.e. a set of odd positive b) integers. Determine whether A is closed under: **[6]**
 - i)
 - ii)
 - a*b = a.b (Multiplication)

 - a*b = min (1, a, b)
 - Consider the (2, 6) encoding function e. e(00) = 000000, [5] c)
 - e(10) = 101010
 - e(01) = 011110, e(11) = 111000

Find the minimum distance of e.

Show that $(Z_6, +)$ is an Abelian Group. **Q8**) a)

[6]

Explain Ring with an example. b)

and y are strike and y are strike and y are strike and y are strike and the strik Prove that Hamming Distance d(x, y) = 0 iff x = y where x and y are c) codewords.

Total No. of Questions : 8]	.20	SEAT No. :	
P1596		[Total No. of Pages	: 5

[6002]-226

S.E. (Information Technology) (Artificial Intelligence & Machine Learning) DISCRETE MATHEMATICS

(214441, 218541) (2019 Pattern) (Semester - III)

Time: 2½ Hours]
Instructions to the candidates:

- [Max. Marks: 70
- 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate fill marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Show that the maximum number of edges in a simple graph with n vertices is n.(n-1)/2. [5]
 - b) Construct an optimal tree for the weights 3,5, 9, 18, 30, 40, 55. Find the weight of the optimal tree [6]
 - c) Using the labelling procedure, find the max flow for the following transport network.

Q2) a) Determine the number of edges in a graph with 7 nodes, 2 of degree 4, 2 of degree 3 and 3 of degree 2. Draw one such graph.[5]

P.T.O.

Find the fundamental system of cutsets and fundamental system of the b) circuit for graph, G with respect to the spanning tree, T. [6]

- Find the chromatic number with the help of graph coloring for: **[6]** c)
 - K6 (complete graph with 6 vertices) i)
 - Any complete bipartite graph.
 - C7 (cyclic graph with 7 vertices). iii)
- Consider these relations on the set of integers **Q3**) a)

$$R1 = \{(a, b) \mid a \le b\};$$

$$R2 = \{(a, b) \mid a > b\};$$

$$R3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$$

$$R4 = \{(a, b) \mid a = b\};$$

$$R5 = \{(a, b) \mid a = b + 1\}$$

$$R6 = \{(a, b) \mid a + b \le 3\}$$

Which are symmetric and which are antisymmetric?

Functions, f, g & h are defined on the set $X = \{1, 2, 3\}$ as b)

$$f = \{(1, 3), (2, 1), (3, 2)\}$$

$$g = \{(1, 2), (2.3), (3, 1)\}$$

$$h = \{(1, 2), (2, 1), (3, 3)\}$$

- Find fog and gofs Are they equals? i)
- ii) Find fogoh and fohog. If $A = \{a,b,c,d\}$ and $R = \{(a,b),(c,d),(c,d),(a,a),(b,b),(d,d)\}$ is a c) relation on A. Draw a digraph R and R **[6]**

Q4) a) Let
$$A = B$$
 be the set of real numbers

[6]

f: a -> given by $f(x) = 2x^3 - 1$

$$g : B -> A \text{ given by } g(y) = 3\sqrt{\frac{1}{2}y + \frac{1}{2}}$$

Show that f is a bijection between A and B and g is a bijection between B and A.

b)

[6]

- Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and {a, c, d, f} in the post with the Hasse diagram shown in Figure?
- Find the greatest lower bound and the least upper bound of ii) {b, d, g}, if they exist, in the post shown in Figure?
- Solve the following recurrence relation c)

$$a_{r} - 3a_{r-1} = 2$$
 , $r > 1 > 1 > a_{0} =$

Q5) a)

Using Euclidean Algorithm find GCD of 268 & 884.

- Using Fermat's Theorem and Fermat's Euler Theorem solve the following:[6] b)
 - 7^121 mod 4 i)
 - 11^100 mod 17 ii)
- Find the multiplicative Inverse of 37 mod 26 using Extended Euclidean Algorithm.

 [6]

 OR c)

Q6)	a)	Using the Chinese Remainder Theorem, find the value of P using following data.	the [8]
		$P = 1 \mod 2$	
		$P = 2 \mod 3$	
		$P = 3 \mod 5$	
	b)	State and explain Fermat - Euler's Theorem with example.	[4]
	c)	Find the Totient function of the following numbers:	[6]
		i) 75 ii) 143	
		iii) 108	
0.5\	`		F. 63
<i>Q7</i>)	a)		[6]
		even odd	
		even even odd odd odd even	
		Show that (G, \oplus) is a group	
	b)	Define the following terms with an example:	[67)
	0)		
		 i) Monoid ii) Group iii) Abelian group iv) Ring 	<i>r</i>
		iii) Abelian group	
		iv) Ring	
	c)	Find the hamming distance between code words of: C = ((0000), (010 (1011), (0111), (1111))	1),
		Rewrite the message by adding an even parity check bit and odd par	rity
			[5]
		OR	
		Ago.	
[600)2]-2	226 4	

Q 8) a)	Consider the (2,6) encoding	function e.	e(00)=100000,	e(10)=101010
	e(01)=001 110, e(11)=101001			[6]

- Find the minimum distance of e i)
- How many errors will e detect? ii)
- Let I be the set of all integers. For each of the following determine whether b) * is an associative operation or not: [8]
 - i) a*b = max(a,b)
 - ii) = min(a + 2,b)
- c)

[3]

Total No.	of Questions : 8] SEAT No.	:
P652	[Total	al No. of Pages : 4
	[5869] - 281	G
	S.E. (Information Technology)	
	DISCRETE MATHEMATICS	
	(2019 Pattern) (Semester - III)	
Time: 21/2	2 Hours] [.	Max. Marks: 70
	ons to the candidates:	1_
1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
<i>2</i>) <i>3</i>)	Figures to the right indicate full marks. Draw neat diagrams wherever necessary.	
4)	Use of scientific calculators is allowed.	
5)	Assume suitable data if necessary.	
01)		:19
Q 1) a)	What are various operations on Graph? Explain it in det	ail? [4]
b)	Find the maximum flow in the given network.	[8]
	Network (G)	
	6/3	
	(A C B) 9/7	~
	S 0/2 6. T	
	0/10	
	0/8 0/10 0/10	
	Flow = 0	3.57
c)	Find the shortest path using Dijikstra's algorithm.	[6]
C)	That the shortest path ashig Dijikstra's argorithms	[0]
	3 3 5	

P.T.O.

Q 2)	a)	Let 'G' be a connected planar graph with 20 vertices and the degree of each vertex is 3. Find the number of edges and regions in the graph. [6]							
	b)	Explain the following types of graphs with the help of examples: [6]							
		i)	Bipartite Graph	ii)	Complete Graph				
		iii)	Regular Graph	iv)	Spanning Subgraph				
	c)		under what conditions Kr ulerian circuit.	n, n the co	mplete bipartite graph wil	l have [6]			
Q 3)	a)		pose that the relation R on flexive, symmetric, and/or		_	M _R . Is [6]			
	1								
	b)	.	the homogeneous solutio			[6]			
	-)		$6 a_{n-1} - 11 a_{n-2} + 6 a_{n-3}$ with			- C 1			
	c)		f(x) = x + 2, $g(x) = x-2$, $h(x)bers Find i) gof ii) fog$			[5]			
Q 4)	a)	Find	Relation Matrix,	7		[6]			
		i)	If $A = \{1, 2, 3, 4, 5, 6\}$ a	nd a R b i	ff a divides b for a, b ε A				
		ii)	$R = \{(a, b)/a < b\} \text{ for a,}$	bεA.					
	b)	Let A	$A = \{1, 2, 3, 4\}, B = \{a, b\}$	$\{a, b\}$, and R	$= \{(1, a), (2, a), (3, a), (4, a), ($	1, a)},			
		Find	((1, 4), (1, 6), (3, 4), (3,	0))	9,85	[0]			
		i)	$A \times B$	ii)	~ R				
		iii)	~ S	iv)	~ K() ~ S				
	c)	Desc	cribe:	ĺ	(C) 100	[5]			
	,	i)	Identity function	Ć					
		ii)	Composite function		6.73				
		iii)	Inverse function						
[586	59] -	- 28	If $A = \{1, 2, 3, 4, 5, 6\}$ at $R = \{(a, b)/a < b\}$ for a, $A = \{1, 2, 3, 4\}$, $B = \{a, b\}$ $\{(4, a), (4, b), (3, a), (3, a)\}$ A \times B \sim S exibe: Identity function Composite function Inverse function	S. C.					

Q 5) a)		prime facto	orization	of each o		•	eger.	[6]	
	i) 664	7		ÇÜ	4550	0			
	iii) 10!	1	1		26 2			[6]	
*									
	Extended Euclidian algorithm. Also find GCD. Find the values of the following using modular arithmetic.								
			ie follov	ving using	modulai	rariinmei	ic.	[6]	
	/	mod 9 0 mod 13	8.						
	11) 311	U IIIUB 13	2	OR					
Q6) a)	Solve the	etollowing	using F		ttle theor	em.		[6]	
	and the same of th	mod 23						[~]	
	· A	1 mod 13					_		
b)	Find Eul	er Totient I	unction	of the fol	lowing n	umbers.	0	[6]	
	i) 75			ii)	5488				
	iii) 🐬								
c)	K.O.	e GCD of th		ving using	Euclide	an algorit	hm.	[6]	
		D (831, 36			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V			
×	(1) GC.	D (2222, 1	234)	8	3.5				
07 (a)	Canaida	th a (2, 6)	an a a din	a Sundian	9, 2(00)	- 10000	n	[7]	
		the (2, 6)	encodin	g runeilor	e. e(00)	- 100000	0,	[7]	
	e(10) = 101010 e(01) = 001110, e(11) = 101001								
		imum dist							
		ny errors w	.~/	\bigcirc \checkmark				200	
		•			800°} and	1 * = bina	ary operation	on, so	
					-	•	cessive rota	itions	
	•	then by b.	()-·			-		[6]	
-		at the follo	\ ; —				. V	[4]	
	$G = \{0, 1, 2, 3, 4, 5\}$ multiplication mod 6 is not a group.							_	
		0	1	2	3	40'	03		
	0	0	1	2	3	A	5		
	1	1	2	3	4	5,0	0		
	2	2	3	4	750	0	1		
	3	3	4	5	60	1	2		

- Determine whether description of a binary **Q8**) a) operation on the set.
 - On R, a*b = ab (ordinary multiplication)
 - On Z +, a*b = a/bii)

 - as LCM (a roup or not. $S = \{1, 2, 3, 6, 12\}$, where a*b is defined as LCM (a, b). b) **[7]** Determine whether it is an Abelian Group or not.
 - Define Ring. **[4]** c)

Total No. of Questions: 8] SEAT No.: PA-1242 [Total No. of Pages: 4 [5925]-265 S.E.(TT) **DISCRETE MATHEMATICS** (2019 Pattern) (Semester-III) (214441) *Time* : 2½ *Hours*] [Max. Marks: 70] Instructions to the candidates: Answer Q.1, or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8. *2*) Figures to the right indicate full marks. Find the Shortest Path algorithm using Dijikstra's Shortest path algorithm. **Q1**) a) **[6]** Construct an optimal tree for the weights 3, 4, 5, 6, 12 Find the weight b) of the optimal tree. Find the maximum flow for the following transport network. c) OR

Define Following with examples: **Q2**) a)

- i) rooted tree
- ii) Spanning tree
- **Binary Tree** iii)

Use nearest Neighbourhood method to solve Travelling Salesman b) problem.

- Explain Hamiltonian and Euler path and circuits with example. c) [6]
- 2, 3, 6, 12, 24, 36} and x<=y iff x divides y. Find **Q3**) a) **[6]**
 - **Maximal Element**
 - Minimal Element
 - Draw the graph and its equivalent hasse diagram for divisibility on iii) the set: {2, 3, 6, 12, 24, 36}.
 - What are the ordered pairs in the relation R represented by the directed b) AR. 16.23 Old Paris Property of the Control of the graph shown in below Figures?

Let functions f and g be defined by c)

$$f(X) = 2X+1, g(X) = X^2-2$$

Find

- gof (4) and fog (4) i)
- gof (a+2) and fog (a+2)ii)
- iii) fog(5)
- gof(a+3)iv)
- gof(a+4)v)

OR

<i>Q4</i>)	a)	What is the reflexive closure of the relation $R = \{(a, b) \mid a < b\}$ on the set
		of integers and symmetric closure of the relation $R = \{(a,b) \mid a > b\}$ on the
		set of positive integers? [6]
	b)	Determine whether the relations for the directed graphs shown in Figure
		are reflexive, symmetric, antisymmetric, and/or transitive. [6]
	c)	Let $X \ni \{a, b, c\}$. Define $f: X -> X$ such that $f = \{(a, b), (b, a), (c, c)\}$ [5]
		Find
		i) f-1.
		ii) f of
		iii) of of 1
<i>Q5</i>)	a)	Solve the congruence $8x = 13 \mod 29$ [6]
	b)	For each pair of integer a and b, find integers q and r such that
		$a = bq + r$ such that $0 \le r \le b$, where a is dividend, b is divisor, q is
		quotient and r is remainder. [8]
		i) $a = -381$ and $b=14$
		ii) $a = -433$ and $b = -17$
	c)	Find all positive divisors of [4]
		i) 256 = 28
		ii) 392 = 23. 72
0.0		OR OR
Q6)	a)	Which of the following congruence is true? Justify the answer. [6]
		i) $446 \equiv 278 \pmod{7}$
		ii) $793 \equiv 682 \pmod{9}$
	b)	iii) $445 \equiv 536 \pmod{18}$ Compute CCD of the following using Euclidean elevation: [6]
	b)	Compute GCD of the following using Euclidian algorithm. [6] i) GCD (2071, 206)
		ii) GCD (2071, 200) ii) GCD (1276, 244)
	c)	Using Chinese Remainder Theorem, find the value of P using following
	C)	data. [6]
		$p=2 \mod 3$
		p=2 mod 5 p=2 mod 5
		$p=3 \mod 7$
		= (<u>1</u> - •

Let $R = \{00, 450, 900, 1350, 1800, 2250, 2700, 3150\}$ and *= binary **Q7**) a) operation, so that a*b is overall angular rotation corresponding to successive rotations by a and then by b. Show that (R,*) is a Group. [9] Let I be the set of all integers. For each of the following determine whether b) *is an commutative operation or not: a*b=max(ab)i) ii) a*b=min(a+2,b)a*b=2a-2biii) a*b = min(2a-b, 2b-a)iv) a*b=LCM(a,b)V) vi) a*b=a/b a*b=power (a,b) viii) a*b=a 2 + 2b+abOR Show that set G of all numbers of the form $a+b \vee 2$, a, b $\in 1$ forms a **Q8**) a) group under the operation addition i.e. $(a+b\sqrt{2}) + (c+\sqrt{d} 2) = (a+c) + (a+$ (b+d) $\sqrt{2}$. b) Determine whether the set together with the binary operation is a semigroup, group a monoid, or neither. $S = \{1, 2, 5, 10, 20\}$, where a*b is defined as GCD (a,b) [8] Resident State of the state of

Total No. of Questions: 8]	26	SEAT No. :
P-1540		[Total No. of Pages : 2

[6002]-169 S.E. (Information Technology) BASIC OF COMPUTER NETWORK

DASIC OF CONFUER NETWORK							
	(2019 Pattern) (Semester - III) (214445)						
Time: 21/2		Marks : 70					
	ns to the candidates:						
1)	Answer Question 1 or 2, 3 or 4, 5 or 6 and 7 or 8.						
2)	Neat diagrams must be drawn wherever necessary.						
3)	Figures to the right indicate full marks.						
4)	Assume Suitable data, if necessary.						
0.1		501					
Q1) a)	Discuss CSMA/CD in details.	[9]					
b) \	Explain Reservation, Polling & Token passing.	[9]					
	OR						
Q2) a)	Write short note on IEEE 802.4(Token Bus) and IEEE 802.5(Tol	ken Ring).					
_		[9]					
b)	Discuss CSMA/CA random access technique. How collision a	avoidance					
	is achieved in the same?	[9]					
Q3) a)	Explain Subnetting and Supernetting with example.	19 1					
b)	Describe Packet format of IPv6 in detail with suitable diagram.	[8]					
U)		رام المارية					
0.4)	OR						
Q4) a)	Explain Network Address Translation with suitable diagram.	[9]					
b)	Discuss in detail fragmentation in terms of IPv4.	[8]					
Q 5) a)	Explain Interdomain and Intradomain routing protocol in detail	. [9]					
b)	Discuss EIGRP protocol in detail.	[9]					
- /	OR	E 3					
06) a)		[0]					
Q6) a)	Explain RIP message format in detail.	[9]					
b)	Discuss Distance Vector Routing protocol in detail.	[9]					
		P.T.O.					

Q7) a)	Explain three way handshake algorithm for TCP connection establishment. [9]
b)	What is congestion Control? Explain Leaky bucket algorithm. [8]
Q 8) a)	What is Socket? List & explain the socket primitives in client side & server side TCP connection. [9]
b)	Compare TCP and UDP Header with suitable diagram. [8]

[6002]-169

Tota	ıl No	No. of Questions : 8] SEAT No. :	
P9 2	137	[Total N	o. of Pages : 2
		S.E. (Information Technology)	
		BASICS OF COMPUTER NETWORKS	
		(2019 Pattern) (Semester - III) (214445)	
Tim	2		un Manka . 70
		2½ Hours] [Mo	ıx. Marks : 70
	<i>1</i>)		
	<i>2) 3)</i>		
	<i>4</i>)		
		Cy 30	
Q1)	a)) Explain the various controlled access methods.	[6]
	b)	Draw & Explain each Field of MAC frame format of IEEE	802.3 [6]
	c)) Compare TDMA & CDMA with neat Diagram.	[6]
		OR O	
Q2)	a)	Explain the following physical layer implementations in stand	ard Ethernet:
			[6]
		i) 10 Base 5	
		ii) 10 Base T	
		iii) 10 Base F	C,
	b)		[6]
		i) IEEE 802.4 (Token Bus)	
		ii) IEEE 802.5 (Token Ring)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	c)	Discuss CSMA/CA & CSMA/CD. Also comment on the each.	_ ')
		each.	[6]
Q 3)	a)) Explain network layer services with example.	[6]
Q 3)	b)		
	0)	i) Number of valid subnets	27 [0]
		ii) Number of actual hosts per subnet	
		iii) Network and broadcast address for each subnet	
	c)	6.	[5]
	- /	OR So.	[-]
			_
			P.T.O.

Q4)	a)	For class C IP address 8 bits is used for subnet. Each subnet has atle 60 nodes, so calculate subnet mask.	ast [6]
	b)	. Ci	[6]
	c)		[5]
Q 5)	a)	Explain Bellman-Ford Algorithm with help of example. Also wr advantages & Disadvantages of Bellman-Ford Algorithm.	rite [6]
	b)		ing [6]
	c)	Explain Message format of RIPVI & RIPV2. OR	[6]
Q6)	a)	Discuss the advantages and disadvantages of OSPF and BGP routi	ing
	1 . \		[6]
	b) c)		[6] [6]
o = \			
<i>Q</i> 7)	a)b)		[6] [6]
	c)	Explain Three Way Handshake algorithm for TCP connecti	
		establishment.	[5]
		OR	C
Q 8)	a)	What is a socket? Explain the various socket primitives and types socket with Example.	of [6]
	b)	Discuss flow control and congestion control mechanisms in TCP.	[6]
	c)	Discuss flow control and congestion control mechanisms in TCP. Compare: TCP & UDP.	[5]

Total 2	No.	of	Questions	:	8]
---------	-----	----	-----------	---	----

[6261]-63

SEAT No.	:	
[Tota	al No. of Pages :	2

S.E. (Information Technology) BASICS OF COMPUTER NETWORK

(2019 Pattern) (Semester- III) (214445)

		(2013) (Semester 111) (211118)	
Time	: 2	½ Hours] [M	lax. Marks : 70
Instr	ucti	ons to the candidates:	
	<i>1</i>)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.	
	<i>3</i>)	Figures to the right side indicate full marks.	
	<i>4</i>)	Assume Suitable data if necessary.	
Q 1)	a)	Explain FDMA, TDMA & CDMA with neat diagram.	[9]
	1 \	So the state of th	101
	b)	Draw and Explain MAC Frame Format of 802.3.	[9]
		OR SP	
Q2)	a)	Discuss CSMA/CA random access technique. How collision	on avoidance
		is achieved in the same?	[9]
	1 \		
	b)	Write short note on IEEE 802.4(Token Bus) and IEEE 802.50	Token Ring).
			%. %. %. %. %. %. %. %. %. %. %. %. %. %
Q 3)	a)	Discuss Network Layer Services. Illustrate IPv4 addresses	with respect
		to classess.	[9]
	1 \		101
	b)	Explain Classful and Classless Addressing with example.	[8]
		OR	
Q4)	a)	Describe Subnetting and Supernetting with example.	[9]
~ -/	,		F- 1
	b)	Explain in detail fragmentation in terms of IPv4.	[8]
		\mathfrak{S} .	<i>P.T.O.</i>

<i>Q5</i>)	a)	Discuss Distance Vector Routing protocol in detail.	[9]
	b)	Explain EIGRP protocol in detail	[9]
		OR	
Q6)	a)	Discuss OSPF protocol in detail.	[9]
	b)	Explain Link State Routing protocol in detail.	[9]
Q7)	a)	What is congestion Control? Explain leaky bucket algorithm.	[9]
	b)	Explain the use of different timers in TCP.	[8]
		OR ST	
Q 8)	a)	Explain various socket primitives used in connection oriented client approach.	server [9]
	b)	Discuss with neat diagram TCP header format.	[8]
			\\ \(\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
		RAP. AR. A.	

[6261]-63

Total No	. of Qu	estions: 8]	SEAT No. :
PA-12	246		[Total No. of Pages : 2
		[5925] 269	
		S.E. (Information Technol	logy)
		BASICS OF COMPUTER NE	TWORK
		(2019 Pattern) (Semester - III)	
		(201) Intering (Semester - 111)	(21445)
Time . 21	/ Uour		[Max Marks , 70
Time: 2 ¹		the candidates.	[Max. Marks : 70
1) 1)		pt Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.	
2)		ingrams must be drawn wherever necessary.	
<i>3</i>)	(es to the right side indicate full marks.	0-0
4)	_	f Calculator is allowed.	
5)	_	ne Suitable data if necessary.	
	29		13
	J.		9.
Q1) a)	Def	ine controlled access and list three proto	cols in this category. Explain
	any	two protocols.	[8]
b)	Wri	te short note with reference to MAC lay	er and Physical Layer on:[9]
	i)	Standard Ethernet	
	ii)	Fast Ethernet	
	iii)	Gigabit Ethernet	
		OR	
Q2) a)		te short note on:	[8]
	i)	IEEE 802.3 Standard	
	ii)	IEEE 802.4 Standard	
b)		scribe different channelization techniques	mentioned below in short:[9]
	i)	FDMA 🔊	5
	ii)	TDMA	
	iii)	CDMA	0,00
0.21		1	
Q3) a)		plain the operation of NAT with suitable	
b)		mpare and Contrast Subnetting, Super nted the block 172.16.0.0/18. Design the	
	_	nets? Find how many hosts per subnet?	177
		at is the broadcast address for last subne	
	hos	ts in last subnet?	[9]
		OR OR	
		Ø.*	P.T.O.
		₩	1.1.0.

Q4)	a)	What is the need of IPv6? Explain different types of IPv6 address. [8]			
	b)	Explain following terms: [9]			
		i) Private IPv4 address			
		ii) Public IPv4 addresses			
		iii) NAT			
Q 5)	a)	Compare and contrast distance vector routing with link state routing.			
		List out and explain key features of EIGRP that makes it superior to OSPF. [9]			
	b)	What is routing? List out and explain different metrics used in various routing protocols. [9]			
		OR OR			
Q6)	a)	Compare and Contrast Intra Domain and Inter Domain Routing Protocols. List out and explain key features of OSPF that makes it superior to RIP.[9]			
	b)	What is BGP? How it avoids count to infinity problem? Explain the difference between internal BGP and external BGP. [9]			
Q7)	a)	Explain TCP with its header format. [9]	6		
	b)	What is a Socket? Explain various socket primitives used in client-server interaction with neat diagram for a stream socket.			
		OR OR			
Q 8)	a)	What is silly window syndrome? List different solutions to overcome it. Explain one solution at sender side and receiver side each. [9]			
	b)	What do you mean by congestion control in transport layer? What are the different methods to alleviate it? [9]			
		+ + + + · · · · · · · · · · · · · · · ·			
[F 0.2	.51.2	~ v			
[592	25]-2	2			