CS22401

OPERATING SYSTEMS

(Common to CS and AD)

L	T	P	C
3	0	0	3

OBJECTIVES

- To understand the basics and functions of operating systems.
- To analyze scheduling algorithms and process synchronization
- To understand the concept of deadlocks and analyze various memory management schemes
- To be familiar with I/O management and file systems.
- To be familiar with the Influential Operating Systems

UNIT I INTRODUCTION

9

Computer System - Organization and Architecture- Operating System Overview - Evolution of Operating System- Operating System Structures - Operating System Services - User and Operating System Interface - System Calls - System Programs - Design and Implementation - Operating System Generation and System Boot.

UNIT II PROCESS MANAGEMENT AND PROCESS SYNCHRONIZATION

9

Processes - Process Concept - Process Scheduling - Operations on Processes - Inter-process Communication- CPU Scheduling - Scheduling criteria - Scheduling algorithms. Threads - Multithread Models - Threading issues. Process Synchronization - The Critical-Section problem - Synchronization hardware - Semaphores - Mutex - Classical problems of synchronization - Monitors.

UNIT III DEADLOCK AND MEMORY MANAGEMENT

9

Deadlock - Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock. Memory- Memory Partitioning - Memory Allocation Algorithms - Segmentation - Paging. Virtual Memory - Demand Paging - Copy on Write - Page Replacement Algorithms - Allocation of Frames - Thrashing.

UNIT IV STORAGE MANAGEMENT

9

Mass Storage system – Disk Structure - Disk Scheduling and Management, File-System Interface - File concept - Access methods - Directory Structure - Directory organization - File system mounting - File Sharing and Protection; File System Implementation - File System Structure - Directory implementation - Allocation Methods - Free Space Management; I/O Systems – I/O Hardware, Application I/O interface, Kernel I/O subsystem.

UNIT V INFLUENTIAL OPERATING SYSTEMS

q

Feature Migration-Early Systems- Atlas- XDS-940- THE- RC 4000- CTSS- MULTICS- IBM OS/360-TOPS-20- MS/DOS- Macintosh Operating System- Mach-Case Study-The Linux System

OUTCOMES:

CO	CO statements Upon successful completion of the course, the students should be able to	
CO1	Infer the OS features and operations while working in operating system	
CO2	Analyze various scheduling algorithms and process synchronization	
CO3	Evaluate the performance of various memory management techniques	5
CO4	Design a simple file system and analyze the performance	4
CO5	Work with some popular operating systems like Linux, Windows	5

1- Remember, 2- Understand, 3- Apply, 4- Analyse, 5- Evaluate, 6- Create

TEXT BOOKS

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 10th Edition, John Wiley and Sons Inc., 2018.
- 2. Andrew S Tanenbaum, "Modern Operating Systems", Pearson, 5th Edition, 2022 New Delhi.

REFERCENCES

- **1.** Ramaz Elmasri, A. Gil Carrick, David Levine, "Operating Systems A Spiral Approach", Tata McGraw Hill Edition, 2010.
- **2.** William Stallings, "Operating Systems: Internals and Design Principles", 7 th Edition, Prentice Hall, 2018
- 3. Achyut S.Godbole, Atul Kahate, "Operating Systems", McGraw Hill Education, 2016
- **4.** Neil Smyth, —iPhone iOS 4 Development Essentials Xcode, Fourth Edition, Payload media, 2011.