

Local Model-Agnostic Methods

Explainable Artificial Intelligence
Dr. Stefan Heindorf

Outlook

- ICE
- LIME
- Anchors

Individual Conditional Expectation (ICE)

Individual conditional expectation (ICE)

Example

Individual conditional expectation (ICE)

Display one line per instance showing how the instance's prediction changes when a feature changes

Similar to partial dependence plots

- PDP averages over all instances (global method)
- ICE shows single instances (local method)

Why consider single instances instead of all?

 Partial dependence plots can obscure a heterogeneous relationship created by interactions (average can hide important relationships)

Formal definition

- $\hat{f}_S^{(i)}(\mathbf{x}_S) = \hat{f}(\mathbf{x}_S, \mathbf{x}_C^{(i)})$ (in contrast to PDP, there is no average)
- The curve $\hat{f}_S^{(i)}(\mathbf{x}_S)$ is plotted for every instance i

Centered ICE plot (c-ICE)

Problem of ICE plots

 Can be hard to tell whether the ICE curves differ between individuals (because they start at different predictions)

Solution

 Display only the difference in the prediction to an anchor point (usually curves are anchored to the lower end)

Definition

$$\hat{f}_{S,cent}^{(i)}(\mathbf{x}_S) = \hat{f}_S^{(i)}(\mathbf{x}_S) - \hat{f}_S^{(i)}(\mathbf{x}_S^a)$$

Where

$$\hat{f}_{S}^{(i)}$$
 ICE plot

 \mathbf{x}_{S}^{a} anchor point (usually the smallest value \mathbf{x}_{S} that is plotted)

Centered ICE Plot (c-ICE)

Example: Bike rental

Individual conditional expectation (ICE)

Advantages and disadvantages

Advantages

- Even more intuitive than partial dependence plots
- One line per instance
- Can uncover heterogeneous relationships (e.g., some ICE curves go up and some down)

Disadvantages

- Can only display one feature meaningfully
- If feature is correlated with other features
 - → Some points in the lines might be invalid
- If many ICE curves are drawn
 - → Plot can become overcrowded (and you will not see anything)
 - → Solution 1: add transparency to the lines
 - → Solution 2: draw a sample of the lines
- It might be difficult to see the average
 - → Solution: Combine ICE plot and PDP plot

Local Surrogate (LIME)

LIME

Local interpretable model-agnostic explanations [Ribeiro, 2016]

Assumptions

- Underlying model is a black box
- Original data is not available anymore
- Only the inputs and outputs of the black box model can be observed

Task

Explain single prediction

Solution

- Probe the black box model \hat{f} near the prediction
- Train local surrogate model *g* (surrogate model can be any interpretable model, e.g., LASSO, decision tree)

LIME: Example for tabular data

A

- Black box predictions given features x₁ and x₂
- Predicted classes: 1 (dark) or 0 (light)

B

- Instance of interest (big dot)
- Data sampled from a normal distribution (small dots)

C

 Assign higher weight to points near the instance of interest

D

- Signs of the grid show the classifications of the locally learned model from the weighted samples
- The white line marks the decision boundary (P(class=1) = 0.5)

LIME: General framework

explanation(x) =
$$arg \min_{g \in G} L(\hat{f}, g, \pi_x) + \Omega(g)$$

 $\begin{array}{ll} \text{G} & \text{family of interpretable models} \\ \text{(e.g., linear regression models)} \\ \text{L} & \text{loss (e.g., mean squared error)} \\ g\colon \mathbb{R}^M \to \mathbb{R} & \text{interpretable explanation model} \\ \hat{f}\colon \mathbb{R}^p \to \mathbb{R} & \text{original model (usually complex model, e.g., xgboost)} \\ \pi_{\mathbf{x}}(z) & \text{proximity measure between instance } \mathbf{x} \text{ and } \mathbf{z} \\ \text{(to define "size of neighborhood" of } \mathbf{x}) \\ \Omega(g) & \text{model complexity (e.g., number of features)} \\ \end{array}$

Note:

- feature space of interpretable model can be different from original model (e.g., g uses set-of-word features and \hat{f} uses features after PCA)
- Interpretable model g often uses binary features {0, 1} (e.g., features of f are discretized via binning)

LIME: Algorithm for training local surrogate models

[Ribeiro et al., 2016]

Algorithm

- **Require:** model \hat{f} , number of samples N $(\hat{f} \text{ is black box model})$
- **Require:** instance x, its interpretable version x' (x is instance of interest)
- **■** for i ∈ {1, 2, ..., N} do:
 - $\mathbf{z}_i' \leftarrow perturb(\mathbf{x}')$
 - $Z \leftarrow Z \cup \langle \mathbf{z}'_i, \hat{f}(\mathbf{z}_i), \pi_{\mathbf{x}}(\mathbf{z}_i) \rangle$ (interpretable version \mathbf{z}'_i is transformed to \mathbf{z}_i)
- end for
- train weighted, interpretable model g on perturbed instances Z
- return g

What surrogate model g to use?

- Common choice: linear regression
- The number of features *K* is often chosen in advance (LASSO)
- Decrease the regularization parameter, until K features reached

How to perturb the data?

- Text: "Turn single words on or off"
- Image: "Turn single (super)pixels on or off"
- Tabular: Perturb each feature individually: Draw from a normal distribution with mean and standard deviation taken from the feature (mean and stddev of column)

LIME for sparse linear explanations

[Ribeiro et al., 2016]

Let G be the class of linear models, such that

$$g(\mathbf{z}') = \beta_0 + \sum_{j=1}^{M} \beta_j z_j' = \mathbf{z}'^{\mathrm{T}} \boldsymbol{\beta}$$

We use the locally weighted square loss:

$$L(\hat{f}, g, \pi_{\mathbf{x}}) = \sum_{\mathbf{z}, \mathbf{z}' \in Z} \pi_{\mathbf{x}}(\mathbf{z}) (\hat{f}(\mathbf{z}) - g(\mathbf{z}'))^{2}$$

where

$$\pi_{\mathbf{x}}(\mathbf{z}) = exp\left(-\frac{D(\mathbf{x}, \mathbf{z})^2}{\sigma^2}\right)$$

and

- D is a distance function (e.g., L2 distance)
- σ a width (an arbitrary hyperparameter)

Note: The loss measures local fidelity, i.e., how well the surrogate model approximates the original model in the neighborhood of instance x

LIME: Example for tabular data

x_1	x_2	y
1	6	9000
3	2	11000

- Task: Explain row (3, 2) of the linear model $3000x_1 + 1000x_2$, with distance measure L2 and kernel width $\sigma = 0.75 \sqrt{2} \approx 1.1$ (LIME default: 0.75 times sqrt of feature count)
- $Mean(x_1) = 2$, $stddev(x_1) = \sqrt{\frac{(1^2 + 1^2)}{2 1}} = \sqrt{2} \approx 1.4$
- $Mean(x_2) = 4$, $stddev(x_2) = \sqrt{\frac{(2^2 + 2^2)}{2 1}} = \sqrt{8} \approx 2.8$
- Sample new datapoints Z that serve as training data for new explainable model

z_1	z_2	$\hat{y} = \hat{f}(z_1, z_2)$	$\pi_{\chi}(z)$
2	4	10000	?
2	2	8000	?

$$\pi_{(3,2)}((2,4)) = \exp\left(-\frac{\|(2,4)-(3,2)\|_2^2}{1.1^2}\right) = \exp\left(-\frac{5}{1.1^2}\right) \approx 0.02$$

■
$$\pi_{(3,2)}((2,2))\exp\left(-\frac{\|(2,2)-(3,2)\|_2^2}{1.1^2}\right) = \exp\left(-\frac{1}{1.1^2}\right) \approx 0.44$$
 \rightarrow then train g as on previous slide

LIME: Example for tabular data

Example of two penguin instances: predict whether female

Actual prediction: 0.07 LocalModel prediction: 0.46

Actual prediction: 0.95 LocalModel prediction: 0.64

LIME: Example for text

Classify YouTube comments as spam / no spam

Predictions g(x) of black box model g for instance x

	CONTENT (x)	CLASS
267	PSY is a good guy	0
173	For Christmas Song visit my channel! ;)	1

Perturbations of instance 173

For	Christmas	Song	visit	my	channel!	;)	prob	weight
1	0	1	1	0	0	1	0.17	0.57
0	1	1	1	1	0	1	0.17	0.71
1	0	0	1	1	1	1	0.99	0.71
1	0	1	1	1	1	1	0.99	0.86
0	1	1	1	0	0	1	0.17	0.57

• prob predicted score $g(\mathbf{z})$ of model g for perturbed instance \mathbf{z}

• weight $\pi_{\mathbf{x}}(\mathbf{z}) := 1$ – proportion of removed words (e.g., 1 - 3 / 7 = 0.57)

LIME: Example for text

Two sentences

■ case 1: no spam

■ case 2: spam

case	label_prob	feature	feature_weight
1	0.1701170	is	0.000000
1	0.1701170	good	0.000000
1	0.1701170	а	0.000000
2	0.9939024	channel!	6.180747
2	0.9939024	;)	0.000000
2	0.9939024	visit	0.000000

Visualization by coloring single words

- is a good
- visit channel;)

LIME example for images

Image classification

Problem: perturbations of single pixels

- Hardly changes prediction
- Hardly visible

Solution: perturbations of super pixels

- Super pixel: interconnected pixels with similar colors
- Obtained via segmentation

Middle and right: LIME explanations for the top 2 classes (bagel, strawberry)

Issue with LIME

Dependence on kernel width σ

- X: Explanation for instance x = 1.6
- Thick line: predictions of black box model (on a single feature)
- Rugs: data distribution
- Thin lines: local surrogate models (with different kernel widths)
- Problem: Does the feature have a negative, positive or no effect for x = 1.6?

$$\pi_{x}(z) = \exp\left(-\frac{D(x,z)^{2}}{\sigma^{2}}\right)$$

LIME

Advantages

Model \hat{f} can be changed independently of explanation model g

- Example: Replace BB neural network by xgboost or vice versa (if it gives better predictions)
- Example: Replace linear model by short decision trees (if preferred by users)

Generates human-friendly explanations

- When using LASSO or short trees: explanations are short (=selective)
- Suitable for lay persons
- Not suitable for complete attributions (e.g., compliance scenarios requiring a full explanation)

LIME works for tabular data, text and images

The explanations created with local surrogate models can use other (interpretable) features than the original model was trained on

- Example: explanation model relies on word features, original model on word embeddings
- Example: features can be normalized/transformed, but the original features serve as explanations

LIME

Disadvantages

"Correct" definition of neighborhood is an unsolved problem

- Try many different kernel widths
- See what kernel width makes sense for your dataset and task

"Correct" perturbation function is an unsolved problem

- Data points sampled from Gaussian distribution (in current LIME implementation)
- Correlation between features is ignored
- → Unlikely data points might be sampled

Instability of the explanations [Alvarez-Melis, 2018]

- Explanations of two close points can vary greatly
- Different explanations for two repetitions of the sampling process (perturbation function)
- → instability makes it difficult to trust the explanations

Explanations can be manipulated to hide biases [Slack, 2020]

→ Difficult to trust explanations

Scoped Rules (Anchors)

Scoped rules (Anchors)

Introduction: A toy visualization [Ribeiro, 2018]

- Explanations in terms of IF-THEN rules, called anchors (in contrast to linear regression and feature weights)
- Each rule has a clear scope (expressing when it holds and when not) (in contrast to LIME's problematic neighborhood definition)

Anchors

Example: Predict whether a passenger survived the Titanic disaster

Feature	Value
Age	20
Sex	female
Class	first
Ticket price	300\$
More attributes	•••
Survived	true

Anchor explanation

IF SEX = female AND Class = first THEN

PREDICT Survived = true

WITH PRECISION 97% AND COVERAGE 15%

(rule covers 15% of instances in perturbation space, 97% accurate for these)

Anchors: Rules and feature predicates

Examples [Ribeiro et al, 2018]

How exactly do rules (conjunctions of feature predicates) look like?

- Depends on data type (e.g., table, image, text, ...)
- Depends on use case, ...

Example for tabular data (from previous slide):

IF SEX = female AND Class = first THEN

Example for NLP data

Instance	If	Predict
I want to play(V) ball.	previous word is PARTICLE	play is VERB.
I went to a play(N) yesterday.	previous word is DETERMINER	play is NOUN.
I play(V) ball on Mondays.	previous word is PRONOUN	play is VERB.

Table 1: Anchors for Part-of-Speech tag for the word "play"

Definition of scoped rules (Anchors)

General idea

A is an anchor of x if

$$\mathbb{E}_{\mathcal{D}_{\mathbf{x}}(\mathbf{z}|A)} \left[1_{\hat{f}(\mathbf{x}) = \hat{f}(\mathbf{z})} \right] \ge \tau, A(\mathbf{x}) = 1$$

wherein

- x represents the instance being explained (e.g., one row in a tabular data set)
- $A(\mathbf{x})$ is a set of feature predicates such that $A(\mathbf{x}) = 1$ when all feature predicates defined by A correspond to \mathbf{x} 's feature values
- \hat{f} denotes the classification model to be explained. It can be queried to predict a label for x and its perturbations z
- $\mathcal{D}_{\mathbf{x}}(\cdot | A)$ indicates the distribution of neighbors of \mathbf{x} , matching A
- $0 \le \tau \le 1$ specifies a precision threshold. Only rules that achieve a local fidelity of at least τ are considered a valid result

Informally: A is an anchor of an instance x if A is a set of feature predicates that are all fulfilled for x, and most neighbors z of x that fulfill A, too, yield the same prediction as x.

Finding anchors

- Problem: Finding exact solution is infeasible
 - Evaluating $1_{\hat{f}(\mathbf{x})=\hat{f}(\mathbf{z})}$ for all $\mathcal{D}_{\mathbf{x}}(\mathbf{z}|A)$ is infeasible in infinite/large input spaces
- Solution: Probabilistic definition
- Probabilistic precision threshold:

$$P(prec(A) \ge \tau) \ge 1 - \delta$$
 with $prec(A) = \mathbb{E}_{\mathcal{D}_{x}(\mathbf{z}|A)} [1_{\hat{f}(\mathbf{x}) = \hat{f}(\mathbf{z})}]$

- Coverage: an anchor's probability of applying to its neighbors $cov(A) = \mathbb{E}_{\mathcal{D}_{(\mathbf{z})}}[A(\mathbf{z})]$
- Anchor's final definition

$$\max_{A \text{ s.t. } P(prec(A) \ge \tau) \ge 1 - \delta} \text{cov}(A)$$

- Goal: find rule that has the highest coverage among all eligible rules (rules that satisfy probabilistic precision threshold)
- Still a problem: Number of possible anchors A is exponential in the number of potential feature predicates
 - → Efficient methods necessary to find suitable anchor (e.g., using multi-armed bandits and beam search, see Ribeiro 2018)

Some remarks

- Rules with more predicates tend to have higher precision
- In particular: If a rule fixes every feature of x, only identical instances are evaluated
- Thus, all neighbors are classified equally and the rule's precision is 1 (if there is no noise in the training data)
- A rule that fixes many features tends to be very specific and only applicable to a few instances
- → There is a tradeoff between precision and coverage

Tabular data example

Bike rental data

Task

Predict whether the number of bicycles lies 'above' or 'below the trend line

Candidate generation

- Maintain the feature's values that are subject to the anchors' predicates
- Replace non-fixed features with values from another randomly sampled instance
- → New instances are similar to the explained one, but have some feature values from other random instances

Tabular data example

Anchors for instances with **simple** explanations

Below average bikes were rented because of low temperature/bad weather

The rules shown were generated with π =0.9.

■ base □ temp □ weathersit

Tabular data example

Anchors for instances with **complex** explanations

Low

Anchors

Advantages

Rules are easy to interpret

- Anchors state a measure of importance (coverage)
- Anchors state a measure of accuracy (precision)
- Works when model predictions are non-linear or complex

Model-agnostic

Works with every model

Runtime

- Highly efficient
- Can be parallelized with multi-armed bandits (MAB) that support batch sampling (e.g., BatchSAR)

Libraries

For example: integrated in Alibi library: https://github.com/SeldonIO/alibi

Anchors

Disadvantages

Highly configurable and impactful setup (many hyperparameters that strongly influence the explanations)

- Beam width
- Perturbation functions

Discretization of features and target might be necessary

- For example, binning of similar feature values
- Otherwise, rules are too specific and have low coverage
- Best discretization technique might depend on dataset

Many calls to the black-box model necessary

- Is somewhat mitigated by MAB
- But: anchor's runtime still depends on model's runtime

Coverage is undefined in some domains

Unclear how superpixels in one image compare to superpixels in other images

References

- Alvarez Melis, David, and Tommi Jaakkola. "Towards robust interpretability with self-explaining neural networks." *Advances in neural information processing systems* 31 (2018).
- Kaufmann, Emilie, and Shivaram Kalyanakrishnan. "Information complexity in bandit subset selection." In *Conference on Learning Theory*, pp. 228-251. PMLR, **2013**.
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1135-1144. **2016**.
- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Anchors: High-precision model-agnostic explanations." In *Proceedings of the AAAI conference on artificial intelligence*, vol. 32, no. 1. **2018**.
- Slack, Dylan, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. "Fooling lime and shap: Adversarial attacks on post hoc explanation methods." In *Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society*, pp. 180-186. 2020.
- Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. MIT press, 2018.