COSC 444/541: Automata

Lecture 4: DFAs, NFAs

Today's Agenda

- Continue DFA (Chapter 2.1)
- Break at 1:50 PM
- Start NFA (Chapter 2.2)
- Early Semester Check-In Survey

DFA Definition

DEFINITION 2.1

A deterministic finite accepter or dfa is defined by the quintuple $M = (Q, \Sigma, \delta, q_0, F)$,

where

Q is a finite set of **internal states**, Σ is a finite set of symbols called the **input alphabet**, $\delta: Q \times \Sigma \to Q$ is a total function called the **transition** function, $q_0 \in Q$ is the **initial state**, $F \subseteq Q$ is a set of **final states**.

Q is the set of states. There are only finitely many.

 Σ is the input alphabet. The set of symbols the machine can read.

 δ is the transition function.

q₀ is the initial state.

F is the set of final or accepting states.

DFAs

In-class Exercise: 3(d) left from last lecture

[Textbook page 48, exercise 3]

- 3. For $\Sigma = \{a, b\}$, construct dfa's that accept the sets consisting of
 - (a) all strings of even length.
 - (b) all strings of length greater than 5.
 - (c) all strings with an even number of a's.
 - (d) all strings with an even number of a's and an odd number of b's.

- Every finite automaton accepts some language.
- The set of all such languages forms a family of languages.
- We call this family regular languages.
- To show that any language is regular, we find a dfa for it.

DEFINITION 2.3

A language L is called **regular** if and only if there exists some deterministic finite accepter M such that

$$L = L(M).$$

Example 2.5 in textbook:

Show that the language $L = \{awa: w \in \{a,b\}^*\}$ is regular.

Example 2.5:

Show that the language

 $L = \{awa: w \in \{a,b\}^*\}$

is regular.

Example 2.5:

Show that the language

 $L = \{awa: w \in \{a,b\}^*\}$

is regular.

Trace:

aba abaaaaba abbab abb

Example 2.6 in textbook:

Let L = {awa: $w \in \{a,b\}^*$ }. Show that L² is regular.

Example 2.6 in textbook:

Let L = {awa: $w \in \{a,b\}^*$ }. Show that L² is regular.

 $L^2 = \{aw_1 aaw_2 a : w_1, w_2 \in \{a,b\}^*\}$

Example 2.6 in textbook: Show that $L^2=\{aw_1aaw_2a: w_1, w_2 \in \{a,b\}^*\}$ is regular.

In-Class Example 1:

[Textbook page 50, exercise 13]

13. Show that the language $L = \{vwv : v, w \in \{a, b\}^*, |v| = 3\}$ is regular.

In-Class Example 2:

[Textbook page 50, exercise 14]

14. Show that $L = \{a^n : n \geq 3\}$ is regular.

In-Class Example 3:

[Textbook page 50, exercise 16]

16. Show that the language $L = \{a^n : n \text{ is either a multiple of three or a multiple of 5}\}$ is regular.

In-Class Exercise 1:

[Textbook page 50, exercise 15]

15. Show that the language $L = \{a^n : n \ge 0, n \ne 3\}$ is regular.

In-Class Exercise 2:

[Textbook page 50, exercise 17]

17. Show that the language $L = \{a^n : n \text{ is a multiple of three, but not a multiple of 5} \}$ is regular.

NFAs

What is Nondeterminism?

- Deterministic FA: one move in each situation.
- Nondeterministic FA (NFA): may have multiple possible moves.
 - Transition function returns a set of states.

NFAs

Why Nondeterminism?

- Simpler and more concise representation
 - Fewer states
 - Repetitions are easy to express

NFAs and DFAs recognize the same class of languages (regular).

NFA Definition

DEFINITION 2.4

A nondeterministic finite accepter or nfa is defined by the quintuple

$$M = (Q, \Sigma, \delta, q_0, F),$$

where Q, Σ , q_0 , F are defined as for deterministic finite accepters, but

$$\delta: Q \times (\Sigma \cup {\lambda}) \rightarrow 2^Q$$
.

Range of function is a subset of Q.

λ: nfa can make a transition without consuming an input.

NFA Example

If any walk on the graph labeled with the input ends in a final state, the string is accepted.

The string 10 is accepted, but 101 is not.

NFA Language Definition

DEFINITION 2.6

The language L accepted by an nfa $M = (Q, \Sigma, \delta, q_0, F)$ is defined as the set of all strings accepted in the above sense. Formally,

$$L(M) = \{ w \in \Sigma^* : \delta^* (q_0, w) \cap F \neq \emptyset \}.$$

In words, the language consists of all strings w for which there is a walk labeled w from the initial vertex of the transition graph to some final vertex.

NFA Example

$$L = \{(10)^n : n \ge 0\}$$

In-Class Example 1: [Textbook page 57, exercise 3]

3. Find a dfa that accepts the language defined by the nfa in Figure 2.8.

In-Class Example 2: [Textbook page 57, exercise 6]

6. In Figure 2.10, find δ^* (q_0, a) and δ^* (q_1, λ) .

In-Class Example 3: [Textbook page 57, exercise 13]

13. Which of the strings 00, 01001, 10010, 000, 0000 are accepted by the following nfa?

In-Class Example 3: [Textbook page 57, exercise 13]

13. Which of the strings 00, 01001, 10010, 000, 0000 are accepted by the following nfa?

01001 and 000

Today's Takeaways

DFAs

NFAs

Regular language

HW 1 posted on Canvas

Due Tuesday 9/16/2025 at the start of class.

Answer on paper and submit before class.

Early Semester Check-In Survey

Complete the anonymous survey at:

https://forms.gle/zyP5DSsbP5BCET86A