Parallel Ensembles

Framework of Ensemble

Get a set of classifiers

$$\circ f_1(x), f_2(x), f_3(x), \dots$$

They should be diverse.

Aggregate the classifiers (properly)

Ensemble: Bagging

Review: Bias Versus Variance

Review: Bias Versus Variance, Cont'd

Bagging: Part I

The Bootstrap Sample (Sampling With Replacement)

Bagging: Part II

This approach would be helpful when your model is complex, easy to overfit. For example, the following decision tree.

Random Forest: Part III

- Decision tree:
 - o Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - o Resampling training data is not sufficient
 - o Randomly restrict the features/questions used in each split

Randomize in two Ways

- For each tree:
 - Pick bootstrap sample of data
- For each split:
 - Pick random sample of features
- More trees are always better

Random Forest: Part IV

train	f_1	f ₂	f ₃	f ₄
X^1	0	Χ	0	X
x^2	0	Χ	Χ	0
χ^3	Χ	0	0	Χ
X^4	Χ	0	Χ	0

- Out-of-bag validation for bagging
 - o Using RF = f_2+f_4 to test x^1
 - o Using RF = f_2+f_3 to test x^2
 - o Using RF = f_1+f_4 to test x^3
 - \circ Using RF = f_1+f_3 to test x^4

Out-of-bag (OOB) error
Good error estimation
of testing set

Random Forests

Impact of max_features

Random Forest: Pros and Cons

Pros

- Widely used, excellent prediction performance on many problems.
- Doesn't require careful normalization of features or extensive parameter tuning.
- Like decision trees, handles a mixture of feature types.
- Easily parallelized across multiple CPUs.

Cons

- The resulting models are often difficult for humans to interpret.
- Like decision trees, random forests may not be a good choice for very highdimensional tasks (e.g., text classifiers) compared to fast, accurate linear models.

