MATH453 Elementary Number Theory

Lecture 2: Congruence and The Division Algorithm

Lecturer: Bruce Berndt Scribe: Kevin Gao

2.1 Congruence and Sum of Two Squares

Recall that $a \equiv b \mod c$ if and only if $c \mid (a - b)$.

If $p \equiv 1 \mod 4$, we will show that $p = a^2 + b^2$ for some integers a and b. Such pair of a, b where $a, b \in \mathbb{Z}$ is called a *lattice point*.

Theorem 2.1 (Fermat's theorem on sum of two squares). An odd prime p can be expressed as $p = x^2 + y^2$ with integers x and y if and only if $p \equiv 1 \mod 4$.

Let $r_2(n)$ denote the number of representations of n as a sum of two squares. We would like to study the behavior of $\sum_{n \le x} r_2(n)$.

We start with **Gauss's attempt** in trying to bound $\sum_{n \leq x} r_2(n)$. As we can see, each lattice point can be represented as the coordinate (m, n) of a point on a plane. If we draw a circle with radius r, then all lattice points within the circle have the property

$$m^2 + n^2 < r^2$$

Then, the problem of bounding $\sum_{n \leq x} r_2(n)$ for some x is the same as finding the number of lattice points within the circle centered at (0,0) with radius \sqrt{x} . Because of this, the problem is also known as **Gauss** circle problem.

Figure 2.1: Gauss's circle problem

Theorem 2.2 (Gauss's solution).

$$\sum_{n \le x} r_2(n) = \pi x + O(\sqrt{x}) = \pi x + \underbrace{E(x)}_{\text{error term}}$$

So, $E(x) \in O(x^{1/2})$.

Proof. We associate each representation of a number as two squares with a square on the plane, enclosed within the circle of radius \sqrt{x} .

Then, the number of such lattice points is bounded above by the area of the larger circle and bounded below by the smaller circle.

$$\pi(\sqrt{x}-1)^2 \le \sum_{n \le x} r_2(n) \le \pi(\sqrt{x}+1)^2$$

We can further rearrange this to get

Figure 2.2: Using area to bound the number lattice points.

$$\pi(x - 2\sqrt{x+1}) \le \sum_{n \le x} r_2(n) \le \pi(x + 2\sqrt{x} + 1)$$

Then,
$$\sum_{n \leq x} r_2(n) = \pi x + O(\sqrt{x})$$
.

Over the years, there have been numerous improvements on bounding the error term.

$$\sum_{n \le x} r_2(n) = \pi x + O(x^{1/3})$$

2.2 Integer Partition

Next, we will consider the integer partition. A **partition** of an integer $n \in \mathbb{Z}^+$ is one way of representing n as a sum of **more than one** (possibly repeating) integers.

We define P(n) to be the number of ways of writing $n \in \mathbb{Z}^+$ as a sum of positive integers (ways to partition n).

For example, P(4) = 5 because 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1. Note that 4 itself does not count since we need at least 2 integers for it to be a valid partition.

Conjecture (Ramanujan's Conjecture on Integer Partition). $P(5n+4) \equiv 0 \mod 5$, $P(7n+5) \equiv 0 \mod 7$, $P(11n+6) \equiv 0 \mod 11$.

2.3 Division Algorithm

2.3.1 Propositions About Division

Before we talk about the division algorithm, we first introduce some useful propositions about division.

```
Proposition 2.1. a \mid b \text{ and } b \mid c \implies a \mid c.
```

Proof. The proof is straightforward from the definition of the division relation.

Since $a \mid b$, $\exists c_1 \in \mathbb{Z}$. $b = c_1 a$. Similarly, $\exists c_2 \in \mathbb{Z}$. $c = c_2 b$ since $b \mid c$. We can then rewrite c as $c = c_2 b = c_1 c_2 a = (c_1 c_2) a$. Since c_1 and c_2 are all integers, $c_1 c_2$ is also an integer. Then, by definition, $a \mid c$.

```
Proposition 2.2. If c \mid a and c \mid b, then \forall m, n \in \mathbb{Z}. c \mid (ma + nb).
```

Proof. Again, this is immediate from the definition and basic arithmetics.

```
Since c \mid a, \exists c_1 \in \mathbb{Z}. \ a = c_1 c. Since c \mid b, \exists c_2 \in \mathbb{Z}. \ b = c_2 c.
```

Let $m, n \in \mathbb{Z}$ be arbitrary. Then, $ma + mb = mc_1c + nc_2c = c(mc_1 + nc_2)$. By definition, $c \mid (ma + mb)$.

2.3.2 Floor and Ceiling

Definition 2.1 (Floor). The floor of x, denoted |x|, is the greatest integer less than or equal to x.

Similarly, we define the ceiling as follows

Definition 2.2 (Ceiling). The ceiling of x, denoted $\lceil x \rceil$, is the smallest integer greater than or equal to x.

Remark. In his lecture notes, Professor Berndt used $[\cdot]$ for floor. I decided to use the more standard notation in my notes to avoid confusion.

```
Lemma 2.4. For x \in \mathbb{R}, x - 1 < \lfloor x \rfloor \le x.
```

Proof. By contradiction. Suppose not, then there exists some $x \in \mathbb{R}$ such that $x - 1 \ge \lfloor x \rfloor$. Take such x and add 1 to both sides of the inequality, yielding $x \ge \lfloor x \rfloor + 1$. But by definition, $\lfloor x \rfloor$ is the greatest integer less than or equal to x. The fact that $\lfloor x \rfloor + 1$, which is strictly greater than $\lfloor x \rfloor$, is also less than or equal to x contradicts the definition of floor. Therefore, the original lemma holds.

2.3.3 The Division Algorithm

The division algorithm is also known as the quotient remainder theorem. The statement is as follows.

Theorem 2.5 (The Division Algorithm). Let $a, b \in \mathbb{Z}$ such that b > 0. Then, there exists unique $q, r \in \mathbb{Z}$ such that a = bq + r and $0 \le r < b$.

Proof. We divide the proof into two parts: existence and uniqueness. We first prove **existence** by construction.

Take q = |a/b| and r = a - b|a/b|. Then, we have

$$a = b \left\lfloor \frac{a}{b} \right\rfloor + r$$

This proves that a = bq + r. Next, we show that $0 \le r < b$. By Lemma 2.4,

$$\left| \frac{a}{b} - 1 < \left\lfloor \frac{a}{b} \right\rfloor \le \frac{a}{b} \right|$$

Since b > 0, we can multiply both sides by b, yielding

$$a-b < \left| \frac{a}{b} \right| b \le a$$

Mutiply by -1 and reversing the signs, and then add a to both sides

$$b - a > -\left\lfloor \frac{a}{b} \right\rfloor b \qquad \ge -a$$

$$b > -\left\lfloor \frac{a}{b} \right\rfloor b + a \qquad \ge 0$$

Since r = a - b|a/b|, by substitution, $b > r \ge 0$. This proves the existence of such q, r.

Next, we prove the **uniqueness** of such q and r by contradiction. Suppose for contradiction that there exists some $q' \neq q$ and $r' \neq r$ such that a = bq' + r' and $0 \leq r' < b$. Then,

$$a - a = 0 = b(q - q') + (r - r')$$

|r - r'| < b because both r < b and r' < b. WLOG, suppose r' > r. Then, r' - r = b(q' - q) by rearranging the previous inequality. This implies that r' - r is a multiple of b. But since r' - r is strictly less than b,

$$0 < r' - r < b$$

r'-r must be 0. This contradicts the assumption that $r \neq r'$. Similarly, q = q' since r = r', which is also a contradiction.