Tidyverse crash course @ iDiv

Emilio Berti

23/09/2022

Today's program

- General intro (10 minutes).
- Packages and hands-on sessions.
- Datasets: kalenji.csv and garmin.csv.

Today's program

- General intro (10 minutes).
- Packages and hands-on sessions.
- Datasets: kalenji.csv and garmin.csv.

Figure 1: Sampling equipment

Today's program

- General intro (10 minutes).
- Packages and hands-on sessions.
- Datasets: kalenji.csv and garmin.csv.

Figure 2: Sampling equipment

- Introduce packages, functionalities, and data wrangling.
- Transform tables into what you want.
- Work with more than one table: merge them, compare them, etc.

What is the tidyverse?

GitHub Actions for R developers, v2 Gábor Csárdi

We have updated our GitHub Actions at r-lib/actions. Consider upgrading to the new v2 version, for faster and more reliable GHA jobs.

roxygen2 7.2.0 Hadley Wickham

roxygen2 7.2.0 brings improvements to NAMESPACE generation, better multiparameter argument inheritance, and improved warnings.

Where to find these slides

 ${\tt https://emilio-berti.github.io/Teaching.html}$

Why the tidyverse? Because it's for lazy people.

d

```
##
                   km
                         time
            date
## 1
      10/27/2021 6.0 0:34:28
      10/27/2021 6.0 0:33:24
## 2
      10/31/2021 10.3 0:59:19
## 3
## 4
       11/6/2021 8.7 0:54:00
## 5
      11/13/2021 8.7 0:49:00
## 6
      11/17/2021
                 4.6 0:25:28
      11/21/2021 10.4 1:02:00
## 7
## 8
      11/30/2021
                  6.0 0:34:08
      11/30/2021 6.0 0:33:03
## 9
      12/5/2021 6.2 0:35:00
## 10
## 11
       12/9/2021 6.2 0:37:33
## 12 12/19/2021 6.2 0:35:22
##
  13 12/22/2021 6.2 0:36:00
  14 12/28/2021 6.2 0:35:00
##
##
   15 12/31/2021
                  6.2 0:33:12
## 16
      1/2/2022
                  6.2 0:33:43
## 17
       1/12/2022
                  6.0 0:33:44
       1/12/2022
## 18
                  6.0 0:33:45
```

Why the tidyverse? Because it's for lazy people.

```
as_tibble(d)
## # A tibble: 51 x 3
##
     date
                  km time
##
     <chr> <dbl> <chr>
##
   1 10/27/2021
                  6 0:34:28
##
   2 10/27/2021 6 0:33:24
##
   3 10/31/2021 10.3 0:59:19
   4 11/6/2021 8.7 0:54:00
##
##
   5 11/13/2021 8.7 0:49:00
##
   6 11/17/2021 4.6 0:25:28
##
   7 11/21/2021 10.4 1:02:00
   8 11/30/2021 6 0:34:08
##
   9 11/30/2021 6 0:33:03
##
   10 12/5/2021
                  6.2 0:35:00
##
  # ... with 41 more rows
```

Why the tidyverse? Because pipelines are good!

```
d[d$km > 4 & d$km < 6, ]

## date km time
## 6 11/17/2021 4.6 0:25:28
```

Why the tidyverse? Because pipelines are good!

```
d %>%
  as_tibble() %>%
  filter(km > 4, km < 6)

## # A tibble: 1 x 3</pre>
```

```
## # A tibble: 1 x 3
## date km time
## <chr> <dbl> <chr> ## 1 11/17/2021 4.6 0:25:28
```

Why the tidyverse? Because it makes the code more readable.

```
sub_d <- d[d$km > 4, ]
sub_d <- sub_d[sub_d$km < 6, ]
summary(sub_d$km)</pre>
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.6 4.6 4.6 4.6 4.6 4.6
```

Why the tidyverse? Because it makes the code more readable.

```
d %>%
    as_tibble() %>%
    filter(km > 4, km < 6) %>%
    pull(km) %>%
    summary()
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.6 4.6 4.6 4.6 4.6 4.6
```

Why the tidyverse? Because you will learn SQL without knowing it.

```
d %>%
 tibble() %>%
 filter(km > 4, km < 6) \%
 pull(km) %>%
 summary()
     Min. 1st Qu. Median Mean 3rd Qu. Max.
##
                    4.6 4.6 4.6 4.6
##
      4.6 4.6
In SQL:
SELECT
km
FROM
d
WHERE km > 4 AND km < 6;
```

Basic ideas of tidyverse

- Tables are the fundamental units of your analysis.
- 2 Tidy data: forces good practices for data science.
- Omplex table manipulations can be evaluated on the fly.
- Table manipulations can be organized in modules.
- Modules can be pipelined: %>%.

Basic ideas of tidyverse

```
read_csv("kalenji.csv", show_col_types = FALSE) %>%
  transmute(
    time = minute(time) + hour(time) * 60, #total minutes
    Distance = round(km) #round distance
) %>%
  group_by(Distance) %>% #evalute by group
  summarize(
    `Total distance` = sum(Distance),
    `Fastest time` = min(time)
) %>%
  arrange(desc(`Total distance`)) %>%
  knitr::kable()
```

Distance	Total distance	Fastest time
6	246	28
9	54	45
10	20	59
8	8	43
5	5	25

tibble

Emilio Berti

tibble - goal

Goal: table data keeping only good features of data.frame.

Pros:

- cleaner
- better problem detection
- no implicit modifications
- better print method
- can handle complex names: e.g., variable with spaces and / \$.

Cons:

• Some packages still requires a data.frame object.

tibble - what is looks like

d

```
##
            date
                   km
                        time
      10/27/2021 6.0 0:34:28
## 1
      10/27/2021 6.0 0:33:24
## 2
## 3
      10/31/2021 10.3 0:59:19
## 4
      11/6/2021 8.7 0:54:00
## 5
      11/13/2021 8.7 0:49:00
## 6
      11/17/2021 4.6 0:25:28
      11/21/2021 10.4 1:02:00
## 7
## 8
      11/30/2021 6.0 0:34:08
      11/30/2021 6.0 0:33:03
## 9
## 10
      12/5/2021 6.2 0:35:00
## 11
      12/9/2021 6.2 0:37:33
## 12 12/19/2021 6.2 0:35:22
## 13 12/22/2021 6.2 0:36:00
## 14 12/28/2021 6.2 0:35:00
## 15 12/31/2021 6.2 0:33:12
## 16
      1/2/2022 6.2 0:33:43
## 17
      1/12/2022 6.0 0:33:44
       1/12/2022
## 18
                 6.0 0:33:45
```

tibble - from data.frames

```
as_tibble(d)
## # A tibble: 51 x 3
##
     date
                  km time
##
     <chr> <dbl> <chr>
##
   1 10/27/2021
                 6 0:34:28
##
   2 10/27/2021 6 0:33:24
##
   3 10/31/2021 10.3 0:59:19
   4 11/6/2021 8.7 0:54:00
##
##
   5 11/13/2021 8.7 0:49:00
##
   6 11/17/2021 4.6 0:25:28
##
   7 11/21/2021 10.4 1:02:00
   8 11/30/2021 6 0:34:08
##
##
   9 11/30/2021 6 0:33:03
  10 12/5/2021
                 6.2 0:35:00
##
```

... with 41 more rows

tibble - from matrices

```
mat <- matrix(1:100, 50, 2)
colnames(mat) <- c("x", "y")</pre>
as_tibble(mat)
## # A tibble: 50 \times 2
##
          Х
##
     <int> <int>
##
          1
              51
##
     2 52
         3 53
##
##
            54
   5
            55
##
   6
              56
##
            57
##
## 8
              58
              59
##
```

60 # ... with 40 more rows

10

10

tibble - from lists

```
1 \leftarrow list(x = 1:10, y = 1:10)
as_tibble(1)
## # A tibble: 10 x 2
##
           Х
##
      <int> <int>
   1
##
           1
##
    3
      3
                 3
##
##
    4
           4
                 4
          5
                 5
##
    5
          6
                 6
##
##
                 8
##
          8
```

9

10

9

10

9

10

##

tibble - create new data

```
tibble(x = LETTERS[1:10], y = 1:10)
## # A tibble: 10 x 2
## x
## <chr> <int>
##
   1 A
   2 B
##
##
   3 C
##
   4 D
   5 E
##
##
   6 F
   7 G
##
## 8 H
##
   9 T
## 10 J
              10
```

tibble - compatibility issues with packages

moveHMM::prepData(as_tibble(1))

```
## Warning: Unknown or uninitialised column: `ID`.
## <error/vctrs_error_subscript_oob>
## Error in `vectbl_as_col_location()`:
## ! Can't subset columns past the end.
## i Location 2 doesn't exist.
## i There is only 1 column.
## ---
## Backtrace:
## 1. base::tryCatch(moveHMM::prepData(as_tibble(1)), error = function(e) :
## 5. moveHMM::prepData(as_tibble(1))
## 7. tibble:::`[.tbl df`(x, i)
```

##

8. tibble:::vectbl_as_col_location(j, length(x), names(x), j_arg = j_ar

tibble - compatibility issues: as.data.frame()

```
moveHMM::prepData(as.data.frame(1))
```

```
ID
##
                  step
                            angle
                                        1
## 1
      Animal1 156.8744
                                 NΑ
                                     1
## 2
      Animal1 156.8276 0.0004610422
## 3
      Animal1 156.7574 0.0006155637
                                     3 3
## 4
      Animal1 156.6639 0.0007703128
## 5
      Animal1 156.5472 0.0009253809
                                     5 5
      Animal1 156.4073 0.0010808595
                                       6
## 6
      Animal1 156.2444 0.0012368401
## 7
## 8
      Animal1 156.0586 0.0013934143
                                     8
      Animal1 155.8500 0.0015506736
##
  10 Animal1
                    NΑ
                                 NA 10 10
```

tibble - printing options

... with 6 more rows

3 3 ## 4 4

tibble - practical 1 - problem

- Create two vectors x and y with 10 random numbers (e.g. runif()).
- ② Create a tibble with columns x and y.

tibble - practical 1 - solution

 $x \leftarrow runif(10)$

- Create two vectors x and y with 10 random numbers (e.g. runif()).
- Create a tibble with columns x and y.

```
y <- runif(10)
tibble(x, y)

## # A tibble: 10 x 2

## x y

## <dbl> <dbl>
## 1 0.170 0.750

## 2 0.905 0.238

## 3 0.140 0.419

## 4 0.589 0.980

## # ... with 6 more rows
```

tibble - practical 2 - problem

- Oreate a vector x with 10 random numbers (e.g. runif()).
- Create a vector y with 5 random numbers (e.g. runif()).
- \odot Create a data.frame with columns x and y.
- Oreate a tibble with columns x and y.

tibble - practical 2 - solution

x <- runif(10)
v <- runif(5)</pre>

- Create a vector x with 10 random numbers (e.g. runif()).
- Create a vector y with 5 random numbers (e.g. runif()).
- Oreate a data.frame with columns x and y.

```
data.frame(x, y)
##
              х
## 1
     0.69535660 0.8371373
     0.88381959 0.6586669
## 2
## 3 0.47503467 0.9086980
## 4
     0.86059995 0.8063882
## 5 0.22528592 0.3268901
## 6
     0.47531883 0.8371373
     0.2223699 0.6586669
## 7
## 8 0.33453224 0.9086980
     0.05976845 0.8063882
## 9
```

10 0.03120932 0.3268901

tibble - practical 2 - solution

 $x \leftarrow runif(10)$

- Create a vector x with 10 random numbers (e.g. runif()).
- Oreate a vector y with 5 random numbers (e.g. runif()).
- Oreate a data.frame with columns x and y.
- Create a tibble with columns x and y.

```
v <- runif(5)</pre>
tibble(x, y)
## <error/tibble_error_incompatible_size>
## Error:
##! Tibble columns must have compatible sizes.
## * Size 10: Existing data.
## * Size 5: Column at position 2.
## i Only values of size one are recycled.
## ---
## Backtrace:
## 1. base::tryCatch(...)
    5. tibble::tibble(x, y)
##
##
    6. tibble:::tibble_quos(xs, .rows, .name_repair)
    7. tibble:::vectbl_recycle_rows(res, first_size, j, given_col_names[[j]
##
```

tibble - practical 2 - solution

... with 6 more rows

4 0.386

readr

Emilio Berti

readr - goal

Goal: load tabular data from delimited files (coma-separated).

Pros:

- fast and friendly
- support many types of data
- informative table summary and problem reports

Cons:

syntax can be sometimes frustrating

readr - read data

```
d <- read.csv("kalenji.csv")
str(d)

## 'data.frame': 51 obs. of 3 variables:
## $ date: chr "10/27/2021" "10/27/2021" "10/31/2021" "11/6/2021" ...
## $ km : num 6 6 10.3 8.7 8.7 4.6 10.4 6 6 6.2 ...
## $ time: chr "0:34:28" "0:33:24" "0:59:19" "0:54:00" ...</pre>
```

readr - read data

d <- read_csv("kalenji.csv")</pre>

```
## Rows: 51 Columns: 3
## -- Column specification -----
## Delimiter: ","
## chr (1): date
## dbl (1): km
## time (1): time
##
## i Use `spec()` to retrieve the full column specification for this data.
```

i Specify the column types or set `show_col_types = FALSE` to quiet this

readr - read data - suppress messages

d <- read_csv("kalenji.csv", show_col_types = FALSE) #suppress summary</pre>

readr - returns a tibble

readr loads directly a tibble:

... with 47 more rows

readr - good column guessing

readr is smart:

```
d <- read_csv("kalenji.csv", show_col_types = FALSE)
d$time[2] - d$time[1]</pre>
```

```
## Time difference of -64 secs
```

readr - read general text delimited file

readr - write to file

```
readr can, of course, write to files.
```

```
write_csv(d, "copy-of-kalenji.csv")
```

readr - practical 1 - problem

- Create a tibble with 10 random x and 10 random y.
- 2 Save it as random-numbers.csv.
- Save it as random-numbers.txt using; as separator.
- Load them both.

readr - practical 1 - solution

- Create a tibble with 10 random x and 10 random y.
- 2 Save it as random-numbers.csv.
- Save it as random-numbers.txt using; as separator.
- Load them both.

```
d <- tibble(x = runif(10), y = runif(10))
# write files
write_csv(d, "random-numbers.csv")
write_delim(d, "random-numbers.txt", delim = ";")
# read files
d_csv <- read_csv("random-numbers.csv", show_col_types = FALSE)
d_semi <- read_delim("random-numbers.csv", show_col_types = FALSE, delim =</pre>
```

readr - really faster?

For a 24 Mb table with 29,000 rows:

	test	replications	elapsed	relative
2	base	10	4.942	5.291
3	data.table	10	0.934	1.000
1	readr	10	3.457	3.701

magrittr - pipe

Before going deeper: *magrittr* pipe %>%.

command_1 PIPE command_2 PIPE command_3

 $\mathsf{PIPE} = \mathsf{take}$ output from left and pass it as input to right.

EXECUTE command_1 AND PASS ITS OUPTUT TO command_2 AND PASS ITS OUTPUT TO command_3.

round(mean(abs(x))) = x %>% abs() %>% mean() %>% round()

magrittr - what's a pipe?

Before going deeper: *magrittr* pipe %>%.

command PIPE command PIPE command

```
d <- read_csv("kalenji.csv", show_col_types = FALSE)
d <- d[, c("km", "time")]
plot(d)</pre>
```


magrittr - pipe your way to glory!

Before going deeper: magrittr pipe %>%.

command PIPE command PIPE command

```
read_csv("kalenji.csv", show_col_types = FALSE) %>% #output = tibble
  select(km, time) %>% #output = tibble
 plot() #output = figure
```


• Create a tibble with x, y (runif(10)) and plot it without saving objects in the RAM.

magrittr - pipe practical 1 - solution

• Create a tibble with x, y (runif(10)) and plot it without saving objects in the RAM. tibble(x = runif(10), y = runif(10)) %>% plot()

magrittr - pipe practical 2 - problem

• Load *kalenji.csv* and plot it without saving objects in the RAM.

magrittr - pipe practical 2 - solution

• Load *kalenji.csv* and plot it without saving objects in the RAM.

dplyr

dplyr - goal

Goal: Standardize data manipulation.

Pros:

- intuitive verbs: select, filter, etc.
- extremely versatile.
- compact and modular complex data manipulaitons.

Cons:

more complex manipulations can be scaring.

dplyr - lifecycle

Figure 3: Life cycle of tidyverse functions

dplyr - lifecycle in help()

mutate_all {dplyr}

Mutate multiple columns

Description

lifecycle superseded

Scoped verbs (_if, _at, _all) have been superseded by the use of across()

Figure 4: A superseded example

dplyr - key verbs

Common verbs:

- filter(): retain rows conditionally.
- select(): select columns and drop the rest.
- mutate(): create a new column.
- pull(): extract one column as a vector.
- summarize(): summarize columns.
- group_by(): groups tables into sub-tables. Each groups is manipulated separately.
- arrange(): sort rows by values.
- slice(): select rows by ID, randomly, firsts, etc.
- join(): joins tables.

dplyr - filter()

 ${\tt filter()}\ \ {\tt retains}\ \ {\tt rows}\ \ {\tt conditionally}.$

dplyr - filter() - example

```
filter() retains rows conditionally.
d %>% filter(km < 6)

## # A tibble: 1 x 2
## km time
## <dbl> <time>
## 1 4.6 25'28"
```

dplyr - filter() - more examples

```
filter() retains rows conditionally.
d %>% filter(km < 6)
d %>% filter(km == 6)
d %>% filter(km > 4, km < 8) #greater than 4 AND less than 8</pre>
```

d %>% filter(km < 4 | km > 8) #less than 4 OR greater than 8

dplyr - filter() - practical - problem

- Retain only observations with even number of km (%% 2 == 0).
- Retain only observations between 5 and 7 km.

dplyr - filter() - practical - solution

• Retain only observations with even number of km (% 2 == 0).

```
## # A tibble: 24 x 2

## km time

## <dbl> <time>

## 1 6 34'28"

## 2 6 33'24"

## 3 6 34'08"

## 4 6 33'03"

## # ... with 20 more rows
```

d %>% filter(km %% 2 == 0)

dplyr - filter() - practical - solution

- Retain only observations with even number of km (\% 2 == 0).
- Retain only observations between 5 and 7 km.

```
## # A tibble: 41 x 2

## km time

## (dbl> <time>

## 1 6 34'28"

## 2 6 33'24"

## 3 6 34'08"

## 4 6 33'03"

## # ... with 37 more rows
```

d %% filter(km >= 5, km <= 7)

dplyr - select()

 ${\tt select()}$ selects some columns and drops the rest.

dplyr - select() - example

select() selects some columns and drops the rest.

```
d %>% select(km) #d[, "km"]
## # A tibble: 51 x 1
## km
## <dbl>
## 1 6
## 2 6
## 3 10.3
## 4 8.7
## # ... with 47 more rows
```

dplyr - select() - also reversed

You can also non-select columns with -

```
## # A tibble: 51 x 1
## time
## <time>
## 1 34'28"
## 2 33'24"
## 3 59'19"
## 4 54'00"
## # ... with 47 more rows
```

d %>% select(-km)

dplyr - tidyselect intermezzo

What if we want to select several columns conditionally?

```
tidysel <- tibble(</pre>
 Outcome = runif(10, 2, 3),
  Predictor 1 = runif(10, -1, 1),
 `Predictor 2` = runif(10, 10, 150),
 `First levels` = rep(c("A", "B"), 5),
 `Second levels` = rep(c("C", "D"), 5)
tidysel
## # A tibble: 10 x 5
##
    Outcome 'Predictor 1' 'Predictor 2' 'First levels' 'Second levels'
      <dbl>
##
                  <dbl>
                                <dbl> <chr>
                                                   <chr>
## 1 2.37
                 0.328
                                72 2 A
## 2 2.78 -0.619
                                87.7 B
                                                   D
## 3 2.12 -0.924
                                133. A
## 4 2.66 0.282
                                64.6 B
                                                   D
## # ... with 6 more rows
```

tidyselect allows this flexibility.

dplyr - tidyselect intermezzo - select columns starting with "Pred"

64.6

0.282

... with 6 more rows

4

dplyr - tidyselect intermezzo - select columns containing "levels"

tidysel %>% select(contains("levels"))

dplyr - tidyselect intermezzo - select only numeric columns

For this, we need to use also the where helper, which checks conditions on columns.

Conditions must return TRUE or FALSE, e.g. is.numeric.

tidysel %>% select(where(is.numeric))

```
## # A tibble: 10 x 3
##
    Outcome 'Predictor 1' 'Predictor 2'
##
      <dbl>
                 <dbl>
                             <dbl>
    2.37
                              72.2
## 1
                0.328
## 2 2.78
                            87.7
               -0.619
## 3 2.12
              -0.924
                             133.
## 4 2.66 0.282
                              64.6
## # ... with 6 more rows
```

dplyr - tidyselect intermezzo - where

where is extremely useful for many verbs in dplyr. We will see more cases later.

You can already appreciate its simplicity, though:

```
# in base R
pca <- prcomp(tidysel[, c("Outcome", "Predictor 1", "Predictor 2")])
# in tidyverse
pca <- tidysel %>%
    select(where(is.numeric)) %>%
    prcomp()
```

Application: PCAs on climate data

dplyr - tidyselect intermezzo - selection alternatives

```
In base R there are several way to do the same as:
```

```
tidysel %>% select(where(is.numeric))
```

This is not safe:

```
tidysel[, c(1, 2, 3)]
#what if the position of columns changes?
```

This is not scalable:

```
tidysel[, c("Outcome", "Predictor 1", "Predictor 2")]
#what if you add a new numeric column?
```

The only safe and scalable way except the tidyverse one is:

```
coltypes <- sapply(colnames(tidysel), \(x) class(tidysel[[x]]))
tidysel[, coltypes == "numeric"]</pre>
```

15 minutes break

Figure 5: Don't drink soap.

71 / 145

dplyr - mutate()

 ${\tt mutate()}$ creates new columns (or modifies existing ones).

dplyr - mutate() - example

```
mutate() creates new columns (or modifies existing ones).
library(lubridate) #this will save you time
d <- read_csv("kalenji.csv", show_col_types = FALSE)
d <- d %>% mutate(Date = as_date(date, format = "%m/%d/%y"))
```

dplyr - mutate() - compact it please.

```
d <- read_csv("kalenji.csv", show_col_types = FALSE)
d <- d %>% mutate(Date = as_date(date, format = "%m/%d/%y"))
```

Can you compress this even more and make it more readable?

Do we need the old date column?

dplyr - mutate() - compacted

```
d <- read_csv("kalenji.csv", show_col_types = FALSE) %>%
mutate(date = as_date(date, format = "%m/%d/%y"))
```

dplyr - mutate() - practical - problem

• Create three new columns (month, week, day) using lubridate month(), week(), and day().

dplyr - mutate() - practical - solution

• Create three new columns (month, week, day) using lubridate month(), week(), and day().

```
mutate(
   month = month(date, label = TRUE, abbr = FALSE),
   week = week(date),
   day = day(date)
d
## # A tibble: 51 x 6
    date km time month week
##
                                         dav
##
    <date> <dbl> <time> <ord> <dbl> <int>
## 1 2020-10-27 6 34'28" October
                                    43
                                          27
## 2 2020-10-27 6 33'24" October 43 27
## 3 2020-10-31 10.3 59'19" October 44
                                          31
## 4 2020-11-06 8.7 54'00" November 45
                                         6
## # ... with 47 more rows
```

d <- d %>%

dplyr - mutate() - tidyselect

```
mutate() can make use of tidyselect, but within the across() helper.
```

The syntax always looks like: mutate(across(where(condition), fn)).

tidysel %>% mutate(across(starts_with("Pred"), round, 2))

```
## # A tibble: 10 x 5
##
    Outcome 'Predictor 1' 'Predictor 2' 'First levels' 'Second levels'
##
      <dbl>
                 <dbl>
                             <dbl> <chr>
                                               <chr>>
## 1
    2.37
                 0.33
                             72.2 A
                                               C
## 2 2.78
               -0.62
                            87.7 B
                                               D
## 3 2.12
               -0.92
                           133. A
## 4 2.66
                             64.6 B
                                               D
                 0.28
## # ... with 6 more rows
```

tidysel %>% mutate(across(where(is.character), tolower))

```
## # A tibble: 10 x 5
##
     Outcome 'Predictor 1' 'Predictor 2' 'First levels' 'Second levels'
       <dbl>
##
                    <dbl>
                                  <dbl> <chr>
                                                       <chr>>
## 1
     2.37
                   0.328
                                   72.2 a
                                                       С
    2.78 -0.619
## 2
                                  87.7 b
                                                       d
       2.12
## 3
                   -0.924
                                   133. a
                                                        С
                                                                      78 / 145
        Emilio Rerti
```

Tidvverse crash course @ iDiv 23/09/2022

dplyr - pull()

 ${\tt pull}$ () extracts one column as vector.

dplyr - pull() - example

```
pull() extracts one column as vector.
```

```
d %>% pull(km)
```

```
[1]
       6.0
          6.0 10.3 8.7
                        8.7 4.6 10.4 6.0 6.0 6.2 6.2 6.2
##
  [16]
       6.2 6.0 6.0 6.2
                        6.0 6.0 6.2 6.0 6.0 6.2 6.0
                                                     6.0
                                                         6.2 6
  [31] 8.7
           6.2 8.7 6.0
                        6.0 8.1 6.4 6.4 6.2 8.7 6.0
                                                     6.0
## [46]
       8.7
           6.0
               6.0 6.2
                        6.0 6.0
```

dplyr - pull() - practical - problem

• Get the table() of *month* and sort it by count.

dplyr - pull() - practical - solution

• Get the table() of *month* and sort it by count.

```
d %>%
  pull(month) %>%
  table() %>%
  sort()
## .
```

```
## .
##
        May
                  June
                            July
                                    August September
                                                      April
                                                                  October
##
                     0
                               0
                                         0
                                                                        3
   December
               January February March
##
                                        12
##
           6
                    10
                              11
```

dplyr - summarize()

 ${\tt summarize()} \ {\tt summarizes} \ {\tt columns}.$

dplyr - summarize() - example

```
summarize() summarizes columns.
```

```
## `shortest distance` `average distance` `maximum distance`
## <dbl> <dbl> <dbl> <dbl> ## 1 4.6 6.58 10.4
```


• Summarize Total km as sum of all distances and Total time as sum of all times.

dplyr - summarize() - practical 1 - solution

Summarize Total km as sum of all distances and Total time as sum of all times (as hours).

```
d %>%
  summarize(
    Total km` = sum(km),
    Total time` = (time %>% sum() %>% as.numeric()) / 3600
)

## # A tibble: 1 x 2
## Total km` Total time`
```

```
## # A tibble: 1 x 2
## 'Total km' 'Total time'
## <dbl> <dbl>
## 1 335. 30.7
```

dplyr - summarize() - tidyselect

dplyr - summarize() - practical 2 - problem

• Summarize all numeric variables to get mean and median values.

dplyr - summarize() - practical 2 - solution

Summarize all numeric variables to get mean and median values.

1

```
dplyr - group_by()
```

dplyr operations can also be performed on groups within tables by using $group_by()$.

For instance, the sum of all distances for the whole *kalenji* dataset is:

dplyr - group_by() - example

To get the summary *sum* for each month separately, we just need to specify *month* as the grouping variable. dplyr would then perform the next operation on each group separately:

```
d %>%
  group_by(month) %>%
  summarize(`Total distance` = sum(km))
## # A tibble: 7 x 2
##
     month 'Total distance'
     <ord>
                         <dbl>
##
  1 January
                          60.8
## 2 February
                          73.9
## 3 March
                          78.6
## 4 April
                          18.2
## # ... with 3 more rows
```

dplyr - group_by() - practical 1 - problem

Ount the number of observation in each month

dplyr - group_by() - practical 1 - solution 1

Count the number of observation in each month

```
summarize(n = length(km))
## # A tibble: 7 x 2
## month n
## <ord> <int>
## 1 January 10
## 2 February 11
## 3 March 12
## 4 April 3
## # ... with 3 more rows
```

group_by(month) %>%

d %>%

```
dplyr - group_by() - practical 1 - tally()
```

Count the number of observation in each month

```
tally()

## # A tibble: 7 x 2

## month n

## <ord> <int>
## 1 January 10

## 2 February 11

## 3 March 12

## 4 April 3

## # ... with 3 more rows
```

group_by(month) %>%

d %>%

dplyr - group_by() - practical 2 - problem

Calculate the total distance per week within months

dplyr - group_by() - practical 2 - solution

Calculate the total distance per week within months

```
d %>%
 group_by(month, week) %>%
 summarize(`Total km` = sum(km)) %>%
 filter(week > 3) #simply to show you why week and month
## `summarise()` has grouped output by 'month'. You can override using the
## `.groups` argument.
## # A tibble: 24 x 3
## # Groups: month [7]
##
    month week 'Total km'
## <ord> <dbl> <dbl>
## 1 January 4 18.2
## 2 January 5 6.2
## 3 February 5 12
```

... with 20 more rows
The output is still grouped.

4 February 6 18.2

dplyr - group_by() - practical 2 - ungroup()

```
If you don't need groups, ungroup() the table, or you may get unexpected results later on.
d %>%
   group_by(month, week) %>%
   summarize(`Total km` = sum(km), .groups = "drop")
```

```
or
```

```
d %>%
group_by(month, week) %>%
summarize(`Total km` = sum(km)) %>%
ungroup()
```

`summarise()` has grouped output by 'month'. You can override using the
`.groups` argument.

```
## # A tibble: 27 x 3
## month week `Total km`
## <ord> <dbl> <dbl> ## 1 January 1 6.2
## 2 January 2 12
```

3 January 3 18.2

4 January 4 18.2

dplyr - group_by() - practical 2 - lifecycle?

.groups lifecycle experimental Grouping structure of the result.

- "drop_last": dropping the last level of grouping. This was the only supported option before version 1.0.0.
- "drop": All levels of grouping are dropped.
 "keep": Same grouping structure as .data.
- "rowwise": Each row is its own group.

When .groups is not specified, it is chosen based on the number of rows of the results:

- · If all the results have 1 row, you get "drop last".
- · If the number of rows varies, you get "keep".

In addition, a message informs you of that choice, unless the result is ungrouped, the option "dplyr.summarise.inform" is set to FALSE, or when summarise() is called from a function in a package.

Figure 6: Always read the documentation

Lunch break

Figure 7: We'll be back at 1.

23/09/2022

dplyr - join()

dplyr - join()

dplyr - join() - example

3 C 2.54

3 D 0.149

dplyr - join() - types

Output tables has:

- full_join(left_table, right_table) all levels
- inner_join(left_table, right_table) only levels in both
- 1 left_join(left_table, right_table) only levels in left_table
- right_join(left_table, right_table) only levels in right_table

left_table right table ## # A tibble: 3 x 2 ## # A tibble: 3 x 2 ## Group ## Group х V ## <chr> <dbl> ## <chr> <dbl> ## 1 A -1.52 ## 1 B 0.849 ## 2 B 0.959 ## 2 C -2.05 ## 3 C 2.54 ## 3 D 0.149

dplyr - join() - full join

```
right_table
left_table
## # A tibble: 3 x 2
                               ## # A tibble: 3 x 2
##
    Group x
                               ##
                                   Group
## <chr> <dbl>
                               ##
                                   <chr> <dbl>
## 1 A -1.52
                               ## 1 B 0.849
## 2 B 0.959
                               ## 2 C -2.05
## 3 C 2.54
                               ## 3 D 0.149
full_join(left_table, right_table)
## Joining, by = "Group"
## # A tibble: 4 x 3
##
    Group x
## <chr> <dbl> <dbl>
## 1 A -1.52 NA
```

4 D

2 B 0.959 0.849 ## 3 C 2.54 -2.05

NA 0.149

dplyr - join() - inner join

```
left_table
                                right_table
## # A tibble: 3 x 2
                                ## # A tibble: 3 x 2
##
    Group x
                                ##
                                    Group y
## <chr> <dbl>
                                    <chr> <dbl>
                                ##
## 1 A -1.52
                                ## 1 B 0.849
                                ## 2 C -2.05
## 2 B 0.959
## 3 C 2.54
                                ## 3 D 0.149
inner_join(left_table, right_table)
## Joining, by = "Group"
## # A tibble: 2 x 3
```

Group x y ## <chr> <dbl> <dbl> ## 1 B 0.959 0.849 ## 2 C 2.54 -2.05

##

dplyr - join() - left join

```
left_table
                               right_table
## # A tibble: 3 x 2
                               ## # A tibble: 3 x 2
                               ## Group y
## Group x
## <chr> <dbl>
                                   <chr> <dbl>
                               ##
## 1 A -1.52
                               ## 1 B 0.849
## 2 B 0.959
                               ## 2 C -2.05
## 3 C 2.54
                               ## 3 D 0.149
left_join(left_table, right_table)
## Joining, by = "Group"
## # A tibble: 3 x 3
##
    Group x
```

dplyr - join() - right join

```
left_table
                               right_table
## # A tibble: 3 x 2
                               ## # A tibble: 3 x 2
##
    Group x
                                   Group y
                               ##
##
    <chr> <dbl>
                               ##
                                   <chr> <dbl>
## 1 A
         -1.52
                               ## 1 B 0.849
## 2 B 0.959
                               ## 2 C -2.05
## 3 C 2.54
                               ## 3 D 0.149
```

dplyr - join() - right join

```
left_table
                                right_table
## # A tibble: 3 x 2
                                ## # A tibble: 3 x 2
## Group x
                                ##
                                    Group y
## <chr> <dbl>
                                    <chr> <dbl>
                                ##
## 1 A -1.52
                                ## 1 B 0.849
## 2 B 0.959
                                ## 2 C -2.05
## 3 C 2.54
                                ## 3 D 0.149
right_join(left_table, right_table)
## Joining, by = "Group"
## # A tibble: 3 x 3
##
    Group x
```

##

<chr> <dbl> <dbl>

1 B 0.959 0.849 ## 2 C 2.54 -2.05 ## 3 D NA 0.149

```
dplyr - join() - by?
```

```
Joining requires (at least) one joining variable. Avoid ambiguity: specify it.
```

left_table %>% left_join(right_table, by = "Group")

3 C 2.54 -2.05

dplyr - join() - by multiple variables

You can join by **multiple** variables.

```
left_table <- tibble(`First level` = sample(LETTERS, 100, replace = TRUE),</pre>
                    `Second level` = sample(letters, 100, replace = TRUE),
                    x = rnorm(100)
right_table <- tibble(`First level` = sample(LETTERS, 100, replace = TRUE),
                     `Second level` = sample(letters, 100, replace = TRUE)
                     v = rnorm(100)
inner_join(left_table, right_table, by = c("First level", "Second level"))
## # A tibble: 18 x 4
## `First level` `Second level`
                                  x y
                                 <dbl> <dbl>
## <chr>
           <chr>
                                 0.426 0.659
## 1 H
                  h
                               0.836 2.27
## 2 V
                  v
## 3 V
                               0.657 - 2.35
                  x
## 4 X
                               -1.34 1.64
                  m
## # ... with 14 more rows
```

dplyr - join() - by different names

Variables do not need to have the same name.

```
## # A tibble: 19 \times 4
## `First level` `Second level`
                                       X
## <chr>
            <chr>
                                   <dbl> <dbl>
                                 0.00847 0.00265
## 1 E
## 2 N
                                 0.303 - 0.175
## 3 G
                  t.
                                0.285 -0.260
## 4 N
                                -0.0797 0.0125
                  n
## # ... with 15 more rows
```

dplyr - join() - practical - problem

I have the name of the routes.

A tibble: 6 x 2

```
routes <- read_csv("routes.csv", show_col_types = FALSE)
routes</pre>
```

- Assign the route names to the kalenji.csv table.
- Count the number of km I ran for each route.
- Arrange them in decreasing order.
- Rename missing routes as: "no name".

dplyr - join() - practical - solution

- Assign the route names to the kalenji.csv table.
- ② Count the number of km I ran for each route.
- Arrange them in decreasing order.
- Rename missing routes as: "no name".

```
d %>%
  left_join(routes, by = c("km" = "distance")) %>%
  group_by(`route name`) %>%
  summarise(`Total km` = sum(km)) %>%
  arrange(desc(`Total km`)) %>%
  mutate(`route name` = ifelse(is.na(`route name`), "no name", `route name`
```

The garmin.csv dataset

garmin dataset

garmin

```
garmin <- read_csv("garmin.csv", show_col_types = FALSE)

## New names:
## * `Avg Run Cadence` -> `Avg Run Cadence...10`
## * `Max Run Cadence` -> `Max Run Cadence...11`
## * `Avg Run Cadence` -> `Avg Run Cadence...20`
```

A tibble: 51 x 41

Emilio Berti

* `Max Run Cadence` -> `Max Run Cadence...21`

2 Running 2022-08-08 16:26:07 FALSE Leipzig~ 5.81 46
3 Running 2022-08-07 11:25:14 FALSE Leipzig~ 8.08 64
4 Running 2022-08-06 10:10:19 FALSE Leipzig~ 6.15 46

... with 47 more rows, and 34 more variables: `Avg HR` <dbl>, `Max HR`
`Avg Run Cadence...10` <dbl>, `Max Run Cadence...11` <dbl>,

`Avg Pace` <chr>, `Best Pace` <chr>, `Total Ascent` <chr>,
`Total Descent` <chr>, `Avg Stride Length` <dbl>,
`Avg Vertical Ratio` <dbl>, `Avg Vertical Oscillation` <dbl>,

DDI>, AVE VERTICAL USCILLATION <DI>, Tidyverse crash course @ iDiv 23/09/2022

115 / 145

garmin dataset - practical 1 - problem

- Filter only *Running* entries.
- 2 Select only relevant columns: Date, Distance, Time, Avg HR.
- **3** Create new column Speed = Distance / Time (km/h).
- Plot them using pairs().

- Filter only Running entries.
- Select only relevant columns: Date, Distance, Time, Avg HR.

```
garmin <- read_csv("garmin.csv", show_col_types = FALSE) %>%
filter(`Activity Type` == "Running") %>%
select(Date, Distance, Time, `Avg HR`)
```

```
## * `Avg Run Cadence` -> `Avg Run Cadence...10`
## * `Max Run Cadence` -> `Max Run Cadence...11`
## * `Avg Run Cadence` -> `Avg Run Cadence...20`
## * `Max Run Cadence` -> `Max Run Cadence...21`
```

New names:

- Filter only Running entries.
- 2 Select only relevant columns: Date, Distance, Time, Avg HR.
- **3** Create new column Speed = Distance / Time (km/h).

- Filter only Running entries.
- Select only relevant columns.
- Create new column Speed = Distance / Time (km/h).
- Plot them using pairs().

pairs(garmin, pch = 20, cex = 1.5)

garmin dataset - practical 2 - problem

- Round distances for both datasets kalenji and garmin to integers.
- 2 Calculate average *Speed* per *Distance*.
- (Full) join the tables returning *Distance*, *Time*, and *Average Speed* (km/h).

- Round distances for both datasets kalenji and garmin to integers.
- Calculate average Speed per Distance.
- Join the tables returning Distance, Time, and Average Speed (km/h).

For each dataset: round() %>% summarize() %>% join().

- Quantity Round distances for both datasets kalenji and garmin to integers.
- 2 Calculate average Speed per Distance.
- Join the tables returning Distance, Time, and Average Speed (km/h).

For each dataset: round() %>% summarize() %>% join().

```
However, one round() %>% summarize() can be nested into join():
```

```
left_table %>%
round() %>%
summarize() %>%
join(
right_table() %>%
round() %>%
summarize()
)
```

- Round distances for both datasets kalenji and garmin to integers.
- 2 Calculate average *Speed* per *Distance*.
- Join the tables returning Distance, Time, and Average Speed (km/h).

```
avg_speed <- kalenji %>%
  mutate(Distance = round(Distance)) %>%
  group_by(Distance) %>%
  summarize(`Average Speed` = mean(Speed)) %>%
  full_join(
  garmin %>%
    mutate(Distance = round(Distance)) %>%
    group_by(Distance) %>%
    summarize(`Average Speed` = mean(Speed)),
  by = "Distance",
  suffix = c(" - kalenji", " - garmin")
)
```

Line indentations (should) matter

- Round distances for both datasets kalenji and garmin to integers.
- Calculate average Speed per Distance.
- 3 Join the tables returning Distance, Time, and Average Speed (km/h).

avg_speed

```
## # A tibble: 8 x 3
     Distance `Average Speed - kalenji` `Average Speed - garmin`
##
##
        <dbl>
                                    <dbl>
                                                               <dbl>
                                     10.8
                                                               10.8
## 1
## 2
                                     11.0
                                                               10.8
            8
                                     11.2
                                                               10.5
## 3
## 4
                                     10.8
                                                                9.68
     ... with 4 more rows
```

garmin dataset - practical 2 - line indentations matter

```
avg_speed <- kalenji %>%
  mutate(Distance = round(Distance)) %>%
  group_by(Distance) %>%
  summarize(`Average Speed` = mean(Speed)) %>%
  full_join(
  garmin %>%
    mutate(Distance = round(Distance)) %>%
    group_by(Distance) %>%
    summarize(`Average Speed` = mean(Speed)),
  by = "Distance",
  suffix = c(" - kalenji", " - garmin")
)
```

garmin dataset - practical 2 - no consistent indentations = you're a monster

garmin dataset - practical 2 - how do you even write?

```
del
cammin di nostra vita, mi
ritrovai perunaselvaoscura
che
la
diritta
via era smarrita.
```

Nel mezzo

garmin dataset - practical 2 - writing and coding are not that different

Nel mezzo del cammin di nostra vita, mi ritrovai per una selva oscura che la diritta via era smarrita.

One line = one operation

One block = one coherent prodecure

lines -> blocks -> pipeline

garmin dataset - practical 2 - considerations

- Round distances for both datasets kalenji and garmin to integers.
- 2 Calculate average Speed per Distance.
- Join the tables returning Distance, Time, and Average Speed (km/h).

All manipulations were done *on the fly*, i.e. without saving objects to memory unless specifically stated: avg_speed <- is the only new object. Old tables are still the same:

```
garmin$Distance #not rounded
```

```
##
    [1]
        5.79
              5.81
                    8.08
                          6.15
                                 5.38
                                       5.83
                                            5.77
                                                   4.38
                                                         1.40
                                                              9.29
                                                                     5.71
                                 6.61
##
   Г137
        5.80
              6.07
                    7.02
                          6.53
                                       8.42 10.49
                                                   6.04
                                                         5.96
                                                              6.97
                                                                     8.42
   [25]
        5.73
              5.78 5.58 5.04
                                 6.01
                                       5.71
                                            4.50 10.01
                                                                     5.91
##
                                                         5.75
                                                              5.84
                                            5.71
   [37]
       10.10
              6.00
                    6.07
                          6.21
                                 6.05
                                       5.66
                                                   7.89
```

garmin dataset - practical 2 - more considerations

Let's say we want to compare *Average Speed* between the two methods, e.g. boxplot().

How would you manipulate this table?

avg_speed

```
## # A tibble: 8 x 3
##
     Distance `Average Speed - kalenji` `Average Speed - garmin`
        <dbl>
##
                                    <dbl>
                                                              <dbl>
            5
                                     10.8
                                                              10.8
## 1
                                     11.0
## 2
            6
                                                              10.8
            8
                                     11.2
                                                              10.5
## 3
                                     10.8
                                                                9.68
## 4
    ... with 4 more rows
```

Tidy data: one row = one observation.

tidyr

tidyr - goal

Goal: To achieve tidy data.

Pros:

- Very powerful: few commands to achieve tidy data.
- Extremely versatile.

Cons:

• Syntax can be counter-intuitive.

tidyr - long and wide tables

The most frequent use of tidyr is for pivotting: from long to wide and back again.

Long table

Wide table

tidyr - wide to long

1 A -0.203 ## 2 B -2.35 ## 3 C 1.50

tidyr - wide to long and back again

```
pivot_longer(): wide to long.
wide %>% pivot_longer(cols = everything(),
                     names_to = "Group",
                     values to = "x")
## # A tibble: 3 \times 2
## Group x
## <chr> <dbl>
## 1 A -0.203
## 2 B -2.35
## 3 C 1.50
pivot_wider(): long to wide.
long %>% pivot_wider(names_from = Group,
                    values_from = x)
## # A tibble: 1 x 3
##
        A B
## <dbl> <dbl> <dbl>
```

tidyr - practical - problem

avg_speed

```
## # A tibble: 8 x 3
     Distance `Average Speed - kalenji` `Average Speed - garmin`
##
        <dbl>
##
                                   <dbl>
                                                              <dbl>
                                     10.8
                                                              10.8
## 1
## 2
                                     11.0
                                                              10.8
## 3
                                     11.2
                                                              10.5
## 4
                                     10.8
                                                               9.68
## # ... with 4 more rows
```

- Make avg_speed table longer: three columns Distance, Speed, and Method.
- Method should have values kalenji or garmin only.
- Speed ~ Method.

tidyr - practical - solution

Make avg_speed table longer: three columns Distance, Speed, and Method.

tidyr - practical - solution

- Make avg_speed table longer: three columns Distance, Speed, and Method.
- Method should have values kalenji or garmin only.

```
avg_speed <- avg_speed %>%
  mutate(Method = gsub("[[:alpha:]]+ [[:alpha:]]+ - ", "", Method))
```

tidyr - practical - solution

- Make avg_speed table longer: three columns Distance, Speed, and Method.
- Method should have values kalenji or garmin only.
- Boxplot: Speed ~ Method.

```
boxplot(Speed ~ Method, data = avg_speed)
grid(col = "grey20", lwd = .5)
```


tidyverse - final practical - problem

- OPIot total distance per week, coloring points according to sampling method.
- Plot average speed per week, coloring points according to sampling method.

tidyverse - final practical - solution

```
d <- read_csv("kalenji.csv", show_col_types = FALSE) %>%
  mutate(date = as_date(date, format = "%m/%d/%y"),
         week = week(date).
         speed = km / ( hour(time) + minute(time) / 60 )) %>%
  group by (week) %>%
  summarize(`Total km` = sum(km),
            'Avg speed' = mean(speed)) %>%
  mutate(method = "Kalenji") %>%
  bind rows(
    read_csv("garmin.csv", show_col_types = FALSE) %>%
      filter(`Activity Type` == "Running") %>%
      mutate(Date = as_date(Date),
             week = week(Date).
             speed = Distance / ( hour(Time) + minute(Time) / 60 )) %>%
      group_by(week) %>%
      summarize(`Total km` = sum(Distance),
                `Avg speed` = mean(speed)) %>%
      mutate(method = "Garmin")
  ) %>%
  mutate(week = ifelse(week > 40, week - 53, week)) #these are last year we
```

tidyverse - final practical - plot

```
par(mfrow = c(1, 2))
with(d, plot(week, `Total km`, col = as.factor(method)))
with(d, plot(week, `Avg speed`, col = as.factor(method)))
```


I probably wasn't so accurate with the Kalenji watch.

The end

