BoW Statistical Channel Model Simulations

Elad Alon, Eric Chang, Eric Naviasky

Feb. 9th, 2022

Global Setup: Channel / TX / RX Models

- TX/RX simplified models currently use the same parasitic capacitance on both sides
 - But these can be decoupled; in general we've seen similar SI impact from cap on either side
 - Unterminated signaling modeled by setting R_{RX} to a large value (e.g., ~10K Ω)
- Note that as of 12-1-201, risetime is <u>before</u> the RC filter, which is slightly pessimistic
 - Results so far show that risetime does not have a significant impact on margin

Global Setup: Channel / TX / RX Models

- LPF = Low-Pass Filter
 - Modeled as a first-order filter
 - Bandwidth of this filter is set to achieve continuous time bandwidth of 2/3/Tbit
 (as required in the spec) considering the filtering caused by the channel driving
 R_{RX} and C_{par}
 - (For reasonable values of R_{RX} and C_{par} , most of the bandwidth is really set by the LPF)

- All TX data ports are excited with data, and responses/statistics on all data RX ports are computed
 - In channels that include TX ports for the CLK, those ports are excited with differential clocks
 - In channels that include RX ports for the CLK, those are used to compute jitter due crosstalk
 - Clock RX common-mode to differential voltage conversion gain assumed to be 0.2
- Timing margins are always reported from whatever the worst-case RX data port within a given channel model is
- From BoW spec (as of 12-1-2021), 68% margin is required for a channel to be compliant
 - 50% (eye opening at RX) + 18% (skew / jitter for TX)

- Items not yet included in the analysis (as of 1-3-2022):
 - Interaction between TX circuit skew and crosstalk statistics
 - Allowed channel skew (all margin numbers assume no skew or perfect per-bit adjustment)

Updated Global Setup (1-12-2022)

- Current spec for line-to-line skew on the channel allows for +/-1mm, which without per-bit correct capabilities, requires an additional ~21.3% of UI additional peak-to-peak margin at 16Gb/s
 - Basically implies that one would have to support per-bit delay correction at 16Gb/s for channels with this kind of skew
 - Or that we need to tighten the length mismatch and recover margin elsewhere
- All previous sims lumped true random voltage noise at RX into sensitivity figure
 - This is (intentionally) pessimistic, but may want to revisit this choice to close the overall link budget

BLUE CHEETAH ANALOG DESIGN

Proposals from 1-12-2022 Meeting

- (1) Reduce capacitance from 300fF to 250fF for BoW 256 (and scale capacitance for other rates accordingly)
- (2) Tighten 20% 80% risetime to 23% UI
 - Combination of (1) and (2) improves margin by ~7% UI
- (3) Split TX and RX timing budgets into deterministic and random
 - Reduces pessimism by ~5% UI
- (4) Split RX voltage sensitivity into deterministic and random
 - Reduces pessimism by ~4% UI
- (5) Readjust TX vs. RX total timing budgets to reduce burden on TX
 - Roughly, reduced ~50% eye at RX to ~40%
 - Tighten RX deterministic timing error at lowest rates (BoW 64 and BoW 32) in order to relax RX voltage sensitivity requirements
- (6) Tighten nominal allowed channel skew to +/-2% UI
 - But will note that implementers may choose to implement per-bit deskew and exceed this
- (7) Tighten RX sensitivity to 100mV for BoW 128, 150mV for BoW 64 & BoW 32
 - Original RX sensitivity made even very low rates non-functional due to shape of eye diagram and significant reflections with unterminated signaling

Proposed Timing Budgets

BoW-256, BoW-128

Item	Value	Required Range	Remaining One- Sided Margin
TX Risetime + Channel (ISI + XTALK + CLK DJ) Eye Opening (UI)	64.00%		0.32
Channel Residual Static Clk-Data Skew (UI, p2p)	4.00%		0.3
TX Deterministic Clk-Data + Duty Cycle Error (UI, p2p)	14.00%		0.23
Deterministic Margin at RX (UI)	46.00%		0.23
RX Deterministic Clk-Data Error (UI, p2p)	32.00%		0.07
One-Sided Margin for Jitter (UI)		14.00%	0.07
Random Jitter Subcomponents		Value in ps at 16Gb/s	
TX Random Jitter After RX Delay (σ, UI)	0.69%	0.43	
Total TX Random Jitter @ 1e-15 (UI, p2p)	11.00%	6.875	
RX Random Jitter (σ, UI)	0.54%	0.34	
Total RX Random Jitter @ 1e-15 (UI, p2p)	8.66%	5.41	
Total Random Jitter After RX Delay (σ, UI)	0.88%	0.55	
Total Random Jitter @ 1e-15 (UI, p2p)	14.00%	8.75	

BoW-64, BoW-32

Item	Value	Required Range	Remaining One- Sided Margin
TX Risetime + Channel (ISI + XTALK + CLK DJ) Eye Opening (UI)	60.00%		0.3
Channel Residual Static Clk-Data Skew (UI, p2p)	4.00%		0.28
TX Deterministic Clk-Data + Duty Cycle Error (UI, p2p)	14.00%		0.21
Deterministic Margin at RX (UI)	42.00%		0.21
RX Deterministic Clk-Data Error (UI, p2p)	28.00%		0.07
One-Sided Margin for Jitter (UI)		14.00%	0.07
		Value in ps at	
Random Jitter Subcomponents		16Gb/s	
TX Random Jitter After RX Delay (σ, UI)	0.69%	0.43	
Total TX Random Jitter @ 1e-15 (UI, p2p)	11.00%	6.875	
RX Random Jitter (σ, UI)	0.54%	0.34	
Total RX Random Jitter @ 1e-15 (UI, p2p)	8.66%	5.41	
Total Random Jitter After RX Delay (σ, UI)	0.88%	0.55	
Total Random Jitter @ 1e-15 (UI, p2p)	14.00%	8.75	

Available Channel Models

Channel models contributed by Namhoon Kim ("Full Slice")

- Representative only not associated with any real design/project
- Full 16 data wires + clocks for each slice; slices on layers 2 (stripline) and 4 (stripline) are included in a single model
 - Worst-case RX within both slices is found / reported
- 2mm, 10mm, 25mm reach

Channel models developed by ARM

- Full 18 data wires + clocks
- Layers 2 (stripline), 4 (stripline), and 8 (stripline), ~20mm reach

Channel model from Keysight

- Includes only 5 wires
 - For clock jitter, run a separate sim with two of the middle lines chosen as CLK+/CLK-
- 6mm reach

Channel		Full Slice 2mm	Full Slice 10mm	Full Slice 25mm	ARM Layer A	ARM Layer B	ARM Layer D	Keysight
Rate / Term	Scenario							
16 Gb/s, Doubly Terminated	$C = 250 \text{fF}, t_r = 23\%$ $\sigma_{rx,vn} = 2.2 \text{mV}, V_{\text{sens,det}} = 40 \text{mV}$	68.4% (72% / 3.6%)	64.8% (67.6% / 2.8%)	64.8% (67.2% / 2.4%)	71.2% (74% / 2.8%)	63.4% (66% / 3.6%)	49.6% (54.4% / 4.8%)	66.8% (71.6% / 4.8%)
	$C = 200 \text{fF}, t_r = 23\%$ $\sigma_{\text{rx,vn}} = 2.2 \text{mV}, V_{\text{sens,det}} = 40 \text{mV}$			67.6% (70% / 2.4%)	74.4% (76.4% / 2%)	66.4% (69.2% / 2.8%)	<mark>54%</mark> (58% / 4%)	
16 Gb/s, Source Terminated	$C = 200 fF, t_r = 23\%$ $\sigma_{rx,vn} = 2.2 mV, V_{sens,det} = 40 mV$	59.6% (65.6% / 6%)						
8 Gb/s, Source Terminated	$C = 500 \text{fF}, t_r = 23\%$ $\sigma_{rx,vn} = 3.14 \text{mV}, V_{sens,det} = 100 \text{mV}$	74% (75.6% / 1.6%)	47.6% (55.2% / 7.6%)					58.8% (61.6% / 2.8%)
	$C = 400 fF, t_r = 23\%$ $\sigma_{rx,vn} = 3.14 mV, V_{sens,det} = 100 mV$	78.4% (79.6% / 1.2%)						62.4% (64.4% / 2%)
4 Gb/s, Doubly Terminated	$C = 1pF, t_r = 23\%$ $\sigma_{rx,vn} = 2.2mV, V_{sens,det} = 65mV$			71.2% (73.2% / 2%)			68% (71.2% / 3.2%)	76.4% (78% / 1.6%)
	$C = 800 fF, t_r = 23\%$ $\sigma_{rx,vn} = 2.2 mV, V_{sens,det} = 65 mV$							
4 Gb/s, Source Terminated	$C = 1pF, t_r = 23\%$ $\sigma_{rx,vn} = 3.14mV, V_{sens,det} = 150mV$	61.2% (63.2% / 2%)	60% (63.6% / 3.6%)		48.8% (56.8% / 8%)		39.2% (48.8% / 9.6%)	68.8% (71.2% / 2.4%)
	$C = 800 fF, t_r = 23\%$ $\sigma_{rx,vn} = 3.14 mV, V_{sens,det} = 150 mV$							

Update 2-9-2022

- New set of channel models from ARM
 - Now have full set of slices (layers 2, 4, 6, and 8)
 - Improvements were made to the package design, particularly to address reduced margins available on deeper layers

Channel Rate / Term	Scenario	Full Slice 2mm	Full Slice 25mm	ARM Layer A	ARM Layer B	ARM Layer C	ARM Layer D	Keysight
16 Gb/s, Doubly Terminated	$C = 250 fF, t_r = 23\%$ $\sigma_{rx,vn} = 2.2 mV, V_{sens,det} = 40 mV$	68.4% (72% / 3.6%)	64.8% (67.2% / 2.4%)					66.8% (71.6% / 4.8%)
	$C = 200 fF, t_r = 23\%$ $\sigma_{rx,vn} = 2.2 mV, V_{sens,det} = 40 mV$		67.6% (70% / 2.4%)	74% (76.4% / 2.4%)	65.6% (68.8% / 3.2%)	60.8% (64.4% / 3.6%)	57.6% (61.2% / 3.6%)	
16 Gb/s, Source Terminated	$C = 200 \text{fF}, t_r = 23\%$ $\sigma_{\text{rx,vn}} = 2.2 \text{mV}, V_{\text{sens,det}} = 40 \text{mV}$	59.6% (65.6% / 6%)						
8 Gb/s, Source Terminated	$C = 500 \text{fF}, t_r = 23\%$ $\sigma_{rx,vn} = 3.14 \text{mV}, V_{sens,det} = 100 \text{mV}$	74% (75.6% / 1.6%)						58.8% (61.6% / 2.8%)
	$C = 400 \text{fF}, t_r = 23\%$ $\sigma_{rx,vn} = 3.14 \text{mV}, V_{\text{sens,det}} = 100 \text{mV}$	78.4% (79.6% / 1.2%)						62.4% (64.4% / 2%)
4 Gb/s, Doubly Terminated	$C = 1pF, t_r = 23\%$ $\sigma_{rx,vn} = 2.2mV, V_{sens,det} = 65mV$		71.2% (73.2% / 2%)				68% (71.2% / 3.2%)	76.4% (78% / 1.6%)
	$C = 800 fF, t_r = 23\%$ $\sigma_{rx,vn} = 2.2 mV, V_{sens,det} = 65 mV$							
4 Gb/s, Source Terminated	$C = 1pF, t_r = 23\%$ $\sigma_{rx,vn} = 3.14mV, V_{sens,det} = 150mV$	61.2% (63.2% / 2%)						68.8% (71.2% / 2.4%)
	$C = 800 fF, t_r = 23\%$ $\sigma_{rx,vn} = 3.14 mV, V_{sens,det} = 150 mV$			56.4% (62.8% / 6.4%)		51.4% (58% / 7.6%)		

16Gb/s Doubly Terminated

Full Slice 2mm Results:

20%-80% risetime = 23% UI, Cpar = 250fF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 72% / 3.6%

Full Slice 10mm Results:

20%-80% risetime = 23% UI, Cpar = 250fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 67.6% / 2.8%

Full Slice 25mm Results:

Sample time (s)

Signal (V)

0.1

0.0

-15.0

-17.5

-20.0

1e-11

20%-80% risetime = 23% UI, Cpar = 250fF

-0.1

-0.2 -

Sample time (s)

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 67.2% / 2.4%

- -15.0

- -17.5

-20.0

1e-11

Full Slice 25mm Results:

Sample time (s)

0.0

-20.0

1e-11

20%-80% risetime = 23% UI, Cpar = 200fF

-0.2 -

Sample time (s)

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 70% / 2.4%

-20.0

1e-11

ARM Layer A Results:

20%-80% risetime = 23% UI, Cpar = 250fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 74% / 2.8%

ARM Layer A Results:

BLUE CHEETAH ANALOG DESIGN

20%-80% risetime = 23% UI, Cpar = 200fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 76.4% / 2%

(2-9-2022) ARM Layer A Results: 20%-80% risetime = 23% UI, Cpar = 200fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 76.4% / 2.4%

ARM Layer B Results:

20%-80% risetime = 23% UI, Cpar = 250fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 66% / 3.6%

ARM Layer B Results:

20%-80% risetime = 23% UI, Cpar = 200fF

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 69.2% / 2.8%

(2-9-2022) ARM Layer B Results: 20%-80% risetime = 23% UI, Cpar = 200fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 68.8% / 3.2%

(2-9-2022) ARM Layer C Results: 20%-80% risetime = 23% UI, Cpar = 200fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 64.4% / 3.6%

ARM Layer D Results:

20%-80% risetime = 23% UI, Cpar = 250fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 54.4% / 4.8%

ARM Layer D Results:

20%-80% risetime = 23% UI, Cpar = 200fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 58% / 4%

ARM Layer D Results:

23% UI, 200fF, RTX = 45Ω, RRX = 55Ω

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 59.2% / 4.4%

2-9-22 ARM Layer D Results: 20%-80% risetime = 23% UI, Cpar = 200fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 61.2% / 3.6%

Keysight Results:

20%-80% risetime = 23% UI, Cpar = 250fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 71.6% / 4.8%

16Gb/s Source Terminated

Full Slice 2mm Results:

20%-80% risetime = 23% UI, Cpar = 200fF

Worst Data Eye Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 65.6% / 6%

8Gb/s Source Terminated

Full Slice 2mm Results:

20%-80% risetime = 23% UI, Cpar = 500fF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 65.6% / 1.6%

Full Slice 2mm Results:

20%-80% risetime = 23% UI, Cpar = 400fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 79.6% / 1.2%

Full Slice 10mm Results:

20%-80% risetime = 23% UI, Cpar = 500fF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 55.2% / 7.6%

Keysight Results:

20%-80% risetime = 23% UI, Cpar = 500fF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 61.6% / 2.8%

Keysight Results:

20%-80% risetime = 23% UI, Cpar = 400fF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 64.4% / 2%

4Gb/s Doubly Terminated

Full Slice 25mm Results:

20%-80% risetime = 23% UI, Cpar = 1pF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 73.2% / 2%

ARM Layer D Results:

20%-80% risetime = 23% UI, Cpar = 1pF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 71.2% / 3.2%

Keysight Results:

20%-80% risetime = 23% UI, Cpar = 1pF

BLUE CHEETAH ANALOG DESIGN

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 78% / 1.6%

4Gb/s Source Terminated

Full Slice 2mm Results:

20%-80% risetime = 23% UI, Cpar = 1pF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 63.2% / 2%

Full Slice 10mm Results:

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 63.6% / 3.6%

ARM Layer A Results:

20%-80% risetime = 23% UI, Cpar = 1pF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 56.8% / 8%

(2-9-2022) ARM Layer A Results: 20%-80% risetime = 23% UI, Cpar = 800fF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 62.8% / 6.4%

(2-9-2022) ARM Layer C Results: 20%-80% risetime = 23% UI, Cpar = 800fF

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 58% / 7.6%

ARM Layer D Results:

20%-80% risetime = 23% UI, Cpar = 1pF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 48.8% / 9.6%

Keysight Results:

20%-80% risetime = 23% UI, Cpar = 1pF

Worst Data Eye

Diff. Clock

Worst line timing margin / crosstalk jitter @ 1e-15 BER: 71.2% / 2.4%