Task

Structure of the Function

Load Shapefile
Bounding Box
Create Grid
Within Query
Unite sublists
Set radiometric
resolution
Flip array

ssues

GIS+ Project

Rasterizer

Luka Kern, Nele Stackelberg and Felix Rentschler

University of Freiburg

July 5th, 2018

Task: Rasterizer

Task

Structure of the Function Load Shapefile Bounding Box Create Grid Within Query Unite sublists Set radiometric resolution Flip array

lecues

Figure: from shape to raster

Load Shapefile with Fiona Package

Task

Structure of the Function

Load Shapefile

Bounding Box Create Grid Within Query Unite sublists Set radiometric resolution Flip array

issues

```
# collect geometries of shape file
geometry_coll = spg.collection.GeometryCollection(
        [shape(pol['geometry']) for pol in fiona.open(filepath)]
)
```

Bounding Box

Bounding Box

Create a grid

Tack

Structure of the Function Load Shapefile Bounding Box Create Grid Within Query Unite sublists

Within Query Unite sublists Set radiometric resolution Flip array

lecuee

Within query

90

91

92

94

95

96 97

98

99

100

104

105

106 107

108

109

```
Гаsk
```

Function
Load Shapefile
Bounding Box
Create Grid
Within Query
Unite sublists
Set radiometric
resolution

Save as ti

```
within list = []
for i in range(0, len(geometry coll)):
    if isinstance(geometry coll[i], spg.polygon.Polygon):
        step = [pixel.within(geometry coll[i]) for pixel in geom pixels]
    if isinstance(geometry coll[i], spg.point.Point):
        step = [
                    (pixel.x > (geometry coll[i].x - 0.5 * resolution)) &
                    (pixel.x <= (geometry_coll[i].x + 0.5 * resolution))
            ) &
                    (pixel.y > (geometry coll[i].y - 0.5 * resolution)) &
                    (pixel.v <= (geometry coll[i].v + 0.5 * resolution))
            ) for pixel in geom pixels
        1
    if isinstance(geometry coll[i], spq.linestring.LineString):
        step = [pixel.within(geometry coll[i].buffer(float(resolution)))
                for pixel in geom pixels1
    print('The process is running: {}% completed'.format(
        (round(100 * i / len(geometry coll), 2))))
   within list.append(step)
```

Unite sublists

Tack

Structure of the Function

Bounding Box Create Grid Within Query

Unite sublists

resolution
Flip array

lecuee

Set radiometric resolution

```
Task
```

```
Structure of the Function
Load Shapefile
Bounding Box
Create Grid
Within Query
Unite sublists
Set radiometric resolution
```

```
I.....
```

```
# set radiometric resolution to 8bit
within_list_sum = np.round_(255 * (np.true_divide(within_list_sum,
max(within_list_sum))))
```

Flip array

129

130

Task

Structure of the Function Load Shapefile Bounding Box Create Grid Within Query Unite sublists Set radiometric

Flip array Save as tifl

```
# flip array for correct presentation
flipped_array = np.flipud(within_array)
```

Save as tiff

139

140

141

Task

Structure of the Function Load Shapefile Bounding Box Create Grid Within Query Unite sublists Set radiometric

Flip array Save as tif

```
##write image data to tiff file
sk.external.tifffile.imsave(outputname, flipped_array)
```

Issues

Task

Structure of th Function Load Shapefile Bounding Box Create Grid Within Query Unite sublists Set radiometric resolution Flip array Save as tiff

Issues

Solved

- Set accurate resolution even if you dont know the range of the coordinates
- Raster-conversion for shp-types point, line and polygon
- Git

Issues

Task

Structure of th Function Load Shapefile Bounding Box Create Grid Within Query Unite sublists Set radiometric resolution Flip array

Issues

unsolved

- Save tiff-file with reference-system
- Define grey-values in tiff-file according to a specific attribute of the shapefile
- Possibility to choose radiometric resolution of tiff-file