Teoria da Computação Conceitos Básicos Gramáticas

Prof. Jefferson Magalhães de Morais

10 de março de 2021

- São dispositivos generativos e de síntese (geração de cadeias)
- Baseiam-se em regras de substituição
- As regras sintetizam o conjunto das cadeias que compõem uma linguagem
- Construídas com notações matemáticas rigorosas
- As notações recebem o nome de **metalinguagens**

Definição

 Uma gramática G pode ser definida como sendo uma quádrupla

$$G = (V, \Sigma, P, S)$$

- V: é o conjunto (finito e não-vazio) de símbolos, i.e., o vocabulário
- Σ: é o conjunto (finito e não-vazio) dos símbolos terminais (alfabeto)
- P: é o conjunto (finito e não-vazio) de produções ou regras de substituição
- S: é a raiz (ou símbolo inicial), $S \in V$
- $N = V \Sigma$ é o conjunto dos símbolos não-terminais

- ullet Σ tem símbolos que por justaposição formam sentenças da linguagem
- N tem símbolos intermediários utilizados na geração de sentenças
- P é o conjunto das produções gramaticais, que obedecem à forma geral

$$\alpha \to \beta$$
, com $\alpha \in V^*NV^*$ e $\beta \in V^*$

 α é uma cadeia qualquer constituída por elementos de V, contendo pelo menos um símbolo não terminal, e β é uma cadeia qualquer, eventualmente vazia, de elementos de V

ullet " \to " é uma relação sobre os conjuntos V^*NV^* e V^* , uma vez que

$$P = \{(\alpha, \beta) \mid (\alpha, \beta) \in V^* N V^* \times V^* \}$$

Exemplo

- Seja $G_1 = (V_1, \Sigma_1, P_1, S)$, com
 - $V_1 = \{0, 1, 2, 3, S, A\}$
 - $\Sigma_1 = \{0, 1, 2, 3\}$
 - $N_1 = \{S, A\}$
 - $P_1 = \{S \rightarrow 0S33, S \rightarrow A, A \rightarrow 12, A \rightarrow \varepsilon\}$
- É fácil verificar que G_1 está formulada de acordo com as regras gerais acima enunciadas para a especificação de gramáticas

Forma sentencial

- É uma cadeia obtida pela aplicação das seguintes regras de substituição
 - 1 S é por definição uma forma sentencial
 - ② Seja $\alpha\rho\beta$ uma forma sentencial, com α e β cadeias quaisquer de terminais e/ou não terminais, e seja $\rho \to \gamma$ uma produção da gramática. A aplicação dessa produção à forma sentencial produz uma nova forma sentencial $\alpha\gamma\beta$

Derivação direta

 A substituição anterior é chamada de derivação direta, na forma

$$\alpha\rho\beta \Rightarrow_{\mathsf{G}} \alpha\gamma\beta$$

G informa que a produção aplicada $(\rho \to \gamma) \in P$

- Pode-se suprimir G quando a gramática é facilmente identificada
- Note a diferenciação dos símbolos
 - "→" denota a produção da gramática (relação P)
 - "⇒" denota a derivação

Derivação, derivação não-trivial e sentença

- **Derivação** é uma sequência de zero ou mais derivações diretas $\alpha \Rightarrow \beta \Rightarrow \ldots \Rightarrow \mu$, e pode ser abreviada como $\alpha \Rightarrow^* \mu$
- Derivação não-trivial é aquela em que ocorre a aplicação de pelo menos uma produção, denotada por $\alpha \Rightarrow^+ \mu$
- Se da aplicação de uma derivação não-trivial à raiz S, for possível obter uma cadeia w formada exclusivamente de símbolos terminais, então
 - w é uma forma sentencial
 - w é uma sentença
- E a notação utilizada é da forma

$$S \Rightarrow^+ w$$

 O processo de substituição começa na raiz S e finaliza assim que uma forma sentencial isenta de símbolos não-terminais seja obtida

Exemplo

$$G_1 = \{\{0, 1, 2, 3, S, A\}, \{0, 1, 2, 3\}, \{S \rightarrow 0S33, S \rightarrow A, A \rightarrow 12, A \rightarrow \varepsilon\}, S\}$$

- S é por definição uma forma sentencial
- 0533 é uma forma sentencial, pois $S \Rightarrow 0533$
- 00S3333 e 00A3333 são **formas sentenciais**, pois 0S33 \Rightarrow 00S3333 \Rightarrow 00A3333 através da produção $S \to 0S$ 33 e $S \to A$
- $S \Rightarrow 0.533$ é uma derivação direta
- $00S3333 \Rightarrow^* 00S33333$ e $0S33 \Rightarrow^* 00A3333$ são exemplos de derivações
- $S \Rightarrow^+ 00A3333$ e $S \Rightarrow^+ 0S33$ são derivações não-triviais
- 12 e 00123333 são sentenças

Linguagem definida por uma gramática

- É o conjunto de todas as sentenças w geradas por uma gramática G
- Formalmente

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^+ w \}$$

Exemplo

• Pela inspeção das produções da gramática G_1 , pode concluir que

$$L_1(G_1) = \{0^m 1^n 2^n 3^{2m} \mid m > = 0 \text{ e } (n = 0 \text{ ou } n = 1)\}$$

• São exemplos de sentenças pertencentes a $L_1: \varepsilon, 12,033,01233,003333,00123333,\dots$

Linguagem definida por uma gramática

- Definir L(G) é uma tarefa que exige **abstração** e **prática**
- **Exemplo**: considere $G_2 = \{V_2, \Sigma_2, P_2, S\}$
 - $V_2 = \{a, b, c, S, B, C\}$
 - $\Sigma_2 = \{a, b, c\}$
 - $P_2 = \{S \rightarrow aSBC, S \rightarrow abC, CB \rightarrow BC, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$
- A linguagem gerada por G_2 é $\{a^nb^nc^n \mid n>=1\}$
 - Repetidas aplicações de $S \to aSBC$, uma aplicação de $S \to abC$, repetidas aplicações de $CB \to BC$ e $bB \to bb$ resulta em

$$S \Rightarrow^i a^i S(BC)^i \Rightarrow a^i abC(BC)^i \Rightarrow^i a^{i+1}bB^i C^{i+1} \Rightarrow^i a^{i+1}b^{i+1}C^{i+1}$$

• Uma aplicação de bC o bc, repetidas aplicações de cC o cc, resulta em

$$\Rightarrow^i a^{i+1}b^{i+1}cC^i \Rightarrow^i a^{i+1}b^{i+1}c^{i+1}$$

Linguagem definida por uma gramática

A forma sequencial

$$a^{i+1}b^{i+1}c^{i+1}$$

gera as sentenças *aabbcc*, *aaabbbccc*, etc. A sentença *aabbcc*, por exemplo, é derivada da seguinte forma nessa gramática

$$S \Rightarrow aSBC \Rightarrow aabCBC \Rightarrow aabBCC \Rightarrow aabbbcC \Rightarrow aabbb$$

pela aplicação, respectivamente, das produções

$$S o aSBC, S o abC, CB o BC, bB o bb, bC o bc ext{ e } cC o cc$$

Gramáticas equivalentes

- Uma mesma linguagem pode ser definida por meio de duas ou mais gramáticas distintas
- As gramáticas que definem a mesma linguagem são sintaticamente equivalentes (ou equivalentes) uma à outra
- Exemplo
 - As gramáticas G_3 e G_4 a seguir são equivalentes

$$G_3 = (\{a, b, S\}, \{a, b\}, \{S \to aS, S \to a, S \to bS, S \to b, S \to aSb\}, S)$$

 $G_4 = (\{a, b, S, X\}, \{a, b\}, \{S \to XS, S \to X, X \to a, X \to b\}, S)$

• Conclui-se que $L_3(G_3) = L_4(G_4) = \{a, b\}^+$

Notações

- Existem diversas notações (metalinguagens) para expressar gramáticas
- Utilizamos até o momento a notação algébrica
- Alguns exemplos
 - Expressões regulares
 - BFN (Backus-Naur Form ou Notação de Backus-Naur)
 - Notação de Wirth (expressões regulares estendidas)
 - Diagramas de sintaxe (diagramas ferroviários)

Exercício

- Obter gramáticas que geram as linguagens seguintes. Considerar $\Sigma = \{a, b\}$
 - Começam com aa
 - Não começam com aa
 - Contém a subcadeia aabb
 - Possuem comprimento maior ou igual a 3
 - Possuem comprimento par
 - Possuem comprimento ímpar
 - Possuem comprimento múltiplo de 4