

Relatório 9 – Grupo G2

OBJETIVOS:

- Observar e diferenciar atrito estático e cinético.
- Medir a dependência da força de atrito estático em função da força normal.
- Determinar os coeficientes de atrito estático e cinético de diferentes materiais na mesma superfície.

MATERIAL UTILIZADO:

- Caixa de MDF com base lisa e recobertas de Durex, lixa e EVA.
- Massas de 50g.
- Dinamômetro de 2N/1N.
- Balança.

PROCEDIMENTO EXPERIMENTAL

Tabela 1: Massas que compõem o sistema

Caixa MDF-D	Caixa MDF-L	Caixa MDF-E	Massa1 de 50g	Massa2 de 50g
$(0.01245 \pm 0.00001) \mathrm{kg}$	$(0.01371 \pm 0.00001) \mathrm{kg}$	$(0.0125 \pm 0.00001) \mathrm{kg}$	$(0.04793 \pm 0.00001) \mathrm{kg}$	$(0.04793 \pm 0.00001) \mathrm{kg}$
Massa3 de 50g	Massa4 de 50g	Massa5 de 50g	Massa6 de 50g	Massa7 de 50g
$(0.04749 \pm 0.00001) \text{ kg}$	$(0.0474 \pm 0.00001) \mathrm{kg}$	$(0.04728 \pm 0.00001) \text{ kg}$	$(0.04788 \pm 0.00001) \text{ kg}$	$(0.04754 \pm 0.00001) \mathrm{kg}$

Tabela 2: Força medida nas condições estáticas e dinâmicas da caixa MDF - D

Cx+M1	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.14 \pm 0.02) \text{ N}$					
dinâmico	$(0.12 \pm 0.02) \text{ N}$	$(0.12 \pm 0.02) \text{ N}$	$(0.10 \pm 0.02) \text{ N}$	$(0.12 \pm 0.02) \text{ N}$	$(0.12 \pm 0.02) \text{ N}$	$(0.12 \pm 0.02) \text{ N}$
M2	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.36 \pm 0.02) \text{ N}$	$(0.36 \pm 0.02) \mathrm{N}$	$(0.36 \pm 0.02) \mathrm{N}$	$(0.36 \pm 0.02) \mathrm{N}$	$(0.35 \pm 0.02) \text{ N}$	$(0.36 \pm 0.02) \mathrm{N}$
dinâmico	$(0.32 \pm 0.02) \text{ N}$	$(0.30 \pm 0.02) \mathrm{N}$	$(0.32 \pm 0.02) \text{ N}$	$(0.31 \pm 0.02) \mathrm{N}$	$(0.32 \pm 0.02) \text{ N}$	$(0.31 \pm 0.02) \mathrm{N}$
М3	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.58 \pm 0.02) \mathrm{N}$	$(0,60 \pm 0,02) \text{ N}$	$(0.60 \pm 0.02) \mathrm{N}$	$(0.60 \pm 0.02) \text{ N}$	$(0.62 \pm 0.02) \mathrm{N}$	$(0,60 \pm 0,02) \text{ N}$
dinâmico	$(0.46 \pm 0.02) \text{ N}$	$(0.46 \pm 0.02) \text{ N}$	$(0.44 \pm 0.02) \mathrm{N}$	$(0.40 \pm 0.02) \text{ N}$	$(0.42 \pm 0.02) \text{ N}$	$(0.44 \pm 0.02) \text{ N}$
M4	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.82 \pm 0.02) \mathrm{N}$	$(0.80 \pm 0.02) \mathrm{N}$	$(0.80 \pm 0.02) \mathrm{N}$	$(0.80 \pm 0.02) \mathrm{N}$	$(0.82 \pm 0.02) \text{ N}$	$(0.81 \pm 0.02) \mathrm{N}$
dinâmico	$(0,60 \pm 0,02) \text{ N}$	$(0,60 \pm 0,02) \text{ N}$	$(0,60 \pm 0,02) \text{ N}$	$(0.58 \pm 0.02) \mathrm{N}$	$(0,60 \pm 0,02) \text{ N}$	$(0,60 \pm 0,02) \text{ N}$
M5	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(1,04 \pm 0,02)$ N	$(1,00 \pm 0,02) \text{ N}$	$(1,04 \pm 0,02)$ N	$(1,04 \pm 0,02)$ N	$(1,06 \pm 0,02)$ N	$(1,04 \pm 0,02) \text{ N}$
dinâmico	$(0.72 \pm 0.02) \text{ N}$	$(0.74 \pm 0.02) \text{ N}$	$(0.76 \pm 0.02) \text{ N}$	$(0.76 \pm 0.02) \mathrm{N}$	$(0.76 \pm 0.02) \text{ N}$	$(0.75 \pm 0.02) \mathrm{N}$
M6	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(1,14 \pm 0,02)$ N	$(1,22 \pm 0,02)$ N	$(1,10 \pm 0,02) \text{ N}$	$(1,16 \pm 0,02)$ N	$(1,18 \pm 0,02)$ N	$(1,16 \pm 0,02) \text{ N}$
dinâmico	$(1,01 \pm 0,02) \text{ N}$	$(1,02 \pm 0,02)$ N	$(1,01 \pm 0,02) \text{ N}$	$(1,00 \pm 0,02) \text{ N}$	$(1,02 \pm 0,02)$ N	$(1,01 \pm 0,02) \text{ N}$
M 7	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(1,40 \pm 0,02) \text{ N}$	$(1,44 \pm 0,02) \text{ N}$	$(1,44 \pm 0,02) \text{ N}$	$(1,42 \pm 0,02) \text{ N}$	$(1,40 \pm 0,02) \text{ N}$	$(1,42 \pm 0,02) \text{ N}$
dinâmico	$(1.18 \pm 0.02) \text{ N}$	$(1,20 \pm 0,02) \text{ N}$	$(1,22 \pm 0,02)$ N	$(1.18 \pm 0.02) \text{ N}$	$(1,16 \pm 0,02) \text{ N}$	$(1,19 \pm 0,02) \text{ N}$

Força Média x Força Normal

Força Média x Força Normal

Fm = 0,21N - 0,05

Fm = 0,21N - 0,0714

The static of the property of

Gráfico 1: Força Média x Força Normal referente a Tabela 2

Ao analisar as formulas apresentadas no gráfico, e compará-las com a formula de Atrito Estático: $Fat_e = \mu_e.N_e$ Atrito Dinâmico: $Fat_d = \mu_d.N$

Podemos chegar à conclusão que o coeficiente de Atrito Estático do objeto é: 0,21. Enquanto o coeficiente de Atrito Dinâmico é: 0,1757.

Tabela 3: Força medida nas condições estáticas e dinâmicas da caixa MDF - L

Cx+M1	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.04 \pm 0.02) \text{ N}$	$(0.04 \pm 0.02) \text{ N}$	$(0.04 \pm 0.02) \text{ N}$	$(0.04 \pm 0.02) \text{ N}$	$(0.04 \pm 0.02) \text{ N}$	$(0.04 \pm 0.02) \mathrm{N}$
dinâmico	$(0.02 \pm 0.02) \mathrm{N}$	$(0.02 \pm 0.02) \text{ N}$	$(0.02 \pm 0.02) \text{ N}$	$(0.02 \pm 0.02) \text{ N}$	$(0.02 \pm 0.02) \text{ N}$	$(0.02 \pm 0.02) \mathrm{N}$
M2	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.10 \pm 0.02) \text{ N}$	$(0.10 \pm 0.02) \text{ N}$	$(0.12 \pm 0.02) \text{ N}$	$(0.10 \pm 0.02) \text{ N}$	$(0.12 \pm 0.02) \text{ N}$	$(0.11 \pm 0.02) \mathrm{N}$
dinâmico	$(0.08 \pm 0.02) \mathrm{N}$	$(0.08 \pm 0.02) \text{ N}$	$(0.08 \pm 0.02) \mathrm{N}$	$(0.08 \pm 0.02) \text{ N}$	$(0.08 \pm 0.02) \mathrm{N}$	$(0.08 \pm 0.02) \mathrm{N}$
М3	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.20 \pm 0.02) \text{ N}$	$(0.22 \pm 0.02) \text{ N}$	$(0.20 \pm 0.02) \text{ N}$	$(0.22 \pm 0.02) \text{ N}$	$(0.20 \pm 0.02) \text{ N}$	$(0.21 \pm 0.02) \text{ N}$
dinâmico	$(0.16 \pm 0.02) \text{ N}$	$(0.18 \pm 0.02) \text{ N}$	$(0.18 \pm 0.02) \text{ N}$	$(0.18 \pm 0.02) \text{ N}$	$(0.16 \pm 0.02) \text{ N}$	$(0.17 \pm 0.02) \text{ N}$
M4	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.28 \pm 0.02) \mathrm{N}$	$(0.30 \pm 0.02) \text{ N}$	$(0.30 \pm 0.02) \mathrm{N}$	$(0.30 \pm 0.02) \mathrm{N}$	$(0.28 \pm 0.02) \mathrm{N}$	$(0.29 \pm 0.02) \mathrm{N}$
dinâmico	$(0.24 \pm 0.02) \text{ N}$	$(0.26 \pm 0.02) \text{ N}$	$(0.26 \pm 0.02) \text{ N}$	$(0.28 \pm 0.02) \text{ N}$	$(0.24 \pm 0.02) \text{ N}$	$(0.26 \pm 0.02) \mathrm{N}$
M5	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.42 \pm 0.02) \mathrm{N}$	$(0.44 \pm 0.02) \text{ N}$	$(0.44 \pm 0.02) \text{ N}$	$(0.44 \pm 0.02) \mathrm{N}$	$(0.42 \pm 0.02) \text{ N}$	$(0.43 \pm 0.02) \mathrm{N}$
dinâmico	$(0.34 \pm 0.02) \text{ N}$	$(0.38 \pm 0.02) \text{ N}$	$(0.38 \pm 0.02) \text{ N}$	$(0.36 \pm 0.02) \text{ N}$	$(0.36 \pm 0.02) \text{ N}$	$(0.36 \pm 0.02) \text{ N}$
M 6	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.58 \pm 0.02) \mathrm{N}$	$(0.56 \pm 0.02) \text{ N}$	$(0.58 \pm 0.02) \mathrm{N}$	$(0,60 \pm 0,02) \mathrm{N}$	$(0.58 \pm 0.02) \mathrm{N}$	$(0.58 \pm 0.02) \mathrm{N}$
dinâmico	$(0.44 \pm 0.02) \mathrm{N}$	$(0.48 \pm 0.02) \text{ N}$	$(0.46 \pm 0.02) \text{ N}$	$(0.42 \pm 0.02) \text{ N}$	$(0.46 \pm 0.02) \text{ N}$	$(0.45 \pm 0.02) \mathrm{N}$
M 7	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.66 \pm 0.02) \mathrm{N}$	$(0.70 \pm 0.02) \text{ N}$	$(0.68 \pm 0.02) \text{ N}$	$(0.66 \pm 0.02) \mathrm{N}$	$(0.64 \pm 0.02) \mathrm{N}$	$(0.67 \pm 0.02) \mathrm{N}$
dinâmico	$(0.58 \pm 0.02) \mathrm{N}$	$(0,60 \pm 0,02) \text{ N}$	$(0.58 \pm 0.02) \text{ N}$	$(0.58 \pm 0.02) \mathrm{N}$	$(0.58 \pm 0.02) \text{ N}$	$(0.58 \pm 0.02) \mathrm{N}$

Gráfico 2: Força Média x Força Normal referente a Tabela 3

Ao analisar as formulas apresentadas no gráfico, e compará-las com a formula de Atrito Estático: $\mathbf{Fat}_e = \mu_e.N_e.N_e.N_e.$ Atrito Dinâmico: $\mathbf{Fat}_d = \mu_d.N$

Podemos chegar à conclusão que o coeficiente de Atrito Estático do objeto é: 0,1089. Enquanto o coeficiente de Atrito Dinâmico é: 0,0932.

Tabela 4: Força medida nas condições estáticas e dinâmicas da caixa MDF - E

		t mas comarções				
Cx+M1	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0,40 \pm 0,02) \text{ N}$	$(0,40 \pm 0,02) \text{ N}$	$(0.42 \pm 0.02) \text{ N}$	$(0,40 \pm 0,02) \text{ N}$	$(0,42 \pm 0,02)$ N	$(0.41 \pm 0.02) \text{ N}$
dinâmico	$(0.38 \pm 0.02) \mathrm{N}$	$(0.36 \pm 0.02) \text{ N}$	$(0.36 \pm 0.02) \mathrm{N}$	$(0.34 \pm 0.02) \text{ N}$	$(0.38 \pm 0.02) \text{ N}$	$(0.36 \pm 0.02) \text{ N}$
M2	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.80 \pm 0.02) \mathrm{N}$	$(0.80 \pm 0.02) \text{ N}$	$(0.82 \pm 0.02) \mathrm{N}$	$(0.80 \pm 0.02) \text{ N}$	$(0.82 \pm 0.02) \text{ N}$	$(0.81 \pm 0.02) \text{ N}$
dinâmico	$(0,60 \pm 0,02) \text{ N}$	$(0.62 \pm 0.02) \mathrm{N}$	$(0.62 \pm 0.02) \mathrm{N}$	$(0.60 \pm 0.02) \text{ N}$	$(0.64 \pm 0.02) \text{ N}$	$(0.62 \pm 0.02) \text{ N}$
M3	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(0.98 \pm 0.02) \text{ N}$	$(0.98 \pm 0.02) \text{ N}$	$(1,00 \pm 0,02) \text{ N}$	$(1,20 \pm 0,02) \text{ N}$	$(1,00 \pm 0,02) \text{ N}$	$(1,03 \pm 0,02)$ N
dinâmico	$(0.80 \pm 0.02) \text{ N}$	$(0.82 \pm 0.02) \text{ N}$	$(0.82 \pm 0.02) \mathrm{N}$	$(0.84 \pm 0.02) \text{ N}$	$(0.84 \pm 0.02) \text{ N}$	$(0.82 \pm 0.02) \text{ N}$
M4	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(1,26 \pm 0,02) \text{ N}$	$(1,28 \pm 0,02) \text{ N}$	$(1,30 \pm 0,02) \text{ N}$	$(1,30 \pm 0,02) \text{ N}$	$(1,28 \pm 0,02) \text{ N}$	$(1,28 \pm 0,02) \text{ N}$
dinâmico	$(1,04 \pm 0,02) \mathrm{N}$	$(1,06 \pm 0,02)$ N	$(1,08 \pm 0,02) \text{ N}$	$(1,08 \pm 0,02) \text{ N}$	$(1,06 \pm 0,02)$ N	$(1,06 \pm 0,02)$ N
M5	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(1,44 \pm 0,02) \text{ N}$	$(1,46 \pm 0,02) \text{ N}$	$(1,48 \pm 0,02) \text{ N}$	$(1,50 \pm 0,02) \text{ N}$	$(1,46 \pm 0,02) \text{ N}$	$(1,47 \pm 0,02)$ N
dinâmico	$(1,24 \pm 0,02) \text{ N}$	$(1,26 \pm 0,02)$ N	$(1,28 \pm 0,02) \text{ N}$	$(1,30 \pm 0,02) \text{ N}$	$(1,34 \pm 0,02)$ N	$(1,28 \pm 0,02) \text{ N}$
M 6	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(1,56 \pm 0,02) \text{ N}$	$(1,60 \pm 0,02) \text{ N}$	$(1,58 \pm 0,02) \text{ N}$	$(1.58 \pm 0.02) \mathrm{N}$	$(1,60 \pm 0,02) \text{ N}$	$(1,58 \pm 0,02) \text{ N}$
dinâmico	$(1,30 \pm 0,02) \text{ N}$	$(1,36 \pm 0,02)$ N	$(1,36 \pm 0,02) \text{ N}$	$(1,38 \pm 0,02) \text{ N}$	$(1,38 \pm 0,02) \text{ N}$	$(1,36 \pm 0,02) \text{ N}$
M 7	F1 (N)	F2 (N)	F3 (N)	F4 (N)	F5 (N)	Média (N)
estático	$(2,00 \pm 0,02) \text{ N}$	$(1,96 \pm 0,02)$ N	$(1,96 \pm 0,02) \text{ N}$	$(1,98 \pm 0,02) \text{ N}$	$(1,98 \pm 0,02)$ N	(1.98 ± 0.02) N
dinâmico	$(1,62 \pm 0,02) \text{ N}$	$(1,60 \pm 0,02)$ N	$(1,62 \pm 0,02) \text{ N}$	$(1,64 \pm 0,02) \text{ N}$	$(1,62 \pm 0,02)$ N	$(1,62 \pm 0,02)$ N

Gráfico 3: Força Média x Força Normal referente a Tabela 4

Ao analisar as formulas apresentadas no gráfico, e compará-las com a formula de Atrito Estático: $Fat_e = \mu_e.N_e$ Atrito Dinâmico: $Fat_d = \mu_d.N$

Podemos chegar à conclusão que o coeficiente de Atrito Estático do objeto é: 0,2389. Enquanto o coeficiente de Atrito Dinâmico é: 0,2043.

O atrito estático é a força que atua sobre um objeto e que o dificulta de iniciar qualquer tipo de movimento, já o atrito dinâmico é a força que atua sobre um corpo em movimento sendo oposição a trajetória em que está se movendo. Ao observar as tabelas de comparação entre os dois, é possível perceber que o atrito estático sempre é maior que o dinâmico. Logo é possível dizer que é mais difícil iniciar um movimento do que mantêlo ativo.

Mesmo com diferenças distintas, é necessário que para a comparação de ambas as forças a área de testes seja a mesma, ou a mais parecida possível, pois é uma variável muito importante nesses tipos de experimentos para se calcular a magnitude do atrito. Além da área de contato, outros fatores também podem afetar a magnitude da força de atrito, como a textura e a rugosidade das superfícies em contato como visto nos experimentos anteriores. Por isso, é importante considerar todos esses fatores ao analisar o atrito entre duas superfícies.

Desta forma, mostramos que nosso experimento foi um sucesso, pois, conforme a teoria, nossos experimentos mostraram que o atrito estático é sempre maior que o atrito dinâmico estando sob um mesmo cenário.