Exercícios - Notação Assintótica - Ω , Θ

Prof. André Vignatti

Exercício 1. (a) Sejam $f_1(n) = O(g_1(n))$ e $f_2(n) = O(g_2(n))$. Prove que $f_1(n) + f_2(n) = O(\max\{g_1(n), g_2(n)\})$.

(b) Sejam $f_1(n) = \Omega(g_1(n))$ e $f_2(n) = \Omega(g_2(n))$. Prove que $f_1(n) + f_2(n) = \Omega(\min\{g_1(n), g_2(n)\})$.

Exercício 2. Sejam $f_1(n) = \Theta(g_1(n))$ e $f_2(n) = \Theta(g_2(n))$.

- (a) É verdade que $f_1(n) + f_2(n) = \Theta(g_1(n) + g_2(n))$? Justique.
- **(b)** É verdade que $f_1(n) + f_2(n) = \Theta(\max\{g_1(n), g_2(n)\})$? Justique.
- (c) É verdade que $f_1(n) + f_2(n) = \Theta(\min\{g_1(n), g_2(n)\})$? Justique.

Exercício 3. Seja $f(n) = a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0$ onde a_0, \ldots, a_k são números reais, e $a_k \neq 0$. Mostre que $f(n) = \Theta(n^k)$.

Exercício 4. Sejam f e g funções. Mostre que f(n) = O(g(n)) se e somente se $g(n) = \Omega(f(n))$.

Exercício 5. O que significa uma função ser $\Omega(1)$? E $\Theta(1)$? Justifique.

Exercício 6. As notações O, Ω, Θ tem definições alternativas usando limites. Para cada uma das definições alternativas abaixo, mostre que são definições exatamente equivalentes às definições originais:

- (a) $f(n) \in O(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.
- **(b)** $f(n) \in \Omega(g(n))$ se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$.
- (c) $f(n) \in \Theta(g(n))$ se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.

Exercício 7. Mostre que $\log n! = \Omega(n \log n)$. (Dica: Mostre que $\log n! \ge (n \log n)/4$ para n > 4 e usando o fato que $n! > n(n-1)(n-2) \dots \lceil n/2 \rceil$)

Exercício 8. Sejam $a \in b$ constantes, com b > 0. Mostre que $(n+a)^b \in \Theta(n^b)$.