CNN

February 20, 2025

```
[]: ['''
         Convolutional Neural Networks -->
         Introduction -->
         Convolutional Neural Networks (CNNs) are specialized deep learning
         models designed to process grid-like data, particularly images.
         They mimic the way the human brain processes visual information,
         recognizing patterns, edges, textures, and hierarchical structures
         automatically.
     ,,,
[]: '''
         Intuition Behind CNNs -->
         Why Not Traditional Neural Networks ?
         Traditional fully connected neural networks (FCNNs) struggle with
         high-dimensional image data due to:
         Parameter Explosion: Fully connected layers require enormous numbers
         of weights when handling high-resolution images.
         Spatial Redundancy: Pixels in an image have local dependencies;
         FCNNs fail to leverage these relationships efficiently.
         Translation Variance: A simple shift in an image can affect FCNN
         predictions drastically.
         CNNs address these issues by:
         Using local receptive fields instead of fully connected layers.
         Sharing weights across the image using kernels.
         Applying downsampling (pooling) to reduce dimensions while preserving
         essential features.
     ,,,
[]: '''
         Core Components of CNNs -->
```

1. Convolutional Layer

The core idea of CNNs lies in convolution operations, which apply a small filter (kernel) over the input image to extract essential features such as edges, corners, and textures.

Filters (Kernels): Small matrices that slide over the image.

Stride: Defines the step size for moving the filter.

Padding: Controls how borders of the image are handled (zero-padding or valid-padding).

Feature Maps: The output of convolution layers after applying activation functions.

2. Activation Function (ReLU)

ReLU introduces non-linearity, allowing CNNs to learn complex patterns. ReLu(x) = max(0,x)

3. Pooling Layer

Pooling reduces spatial dimensions while retaining significant information.

Max Pooling: Retains the highest value in a region.

Average Pooling: Takes the average of pixel values in a region.

Pooling helps with:

Reducing computation.
Enhancing feature robustness.
Mitigating overfitting.

4. Fully Connected Layer

After extracting meaningful features, CNNs flatten the feature maps and pass them through dense layers to make predictions.

5. Softmax (Output Layer)

 ${\it Converts \ logits \ into \ probability \ distributions \ for \ classification.}$

[]: ['''

Applications of CNNs -->

Image Classification (e.g., CIFAR-10, ImageNet)
Object Detection (e.g., YOLO, SSD)

```
Facial Recognition

Medical Image Analysis

Autonomous Vehicles
```

Libraries Imported !

```
[40]: # Image Augmentation [Training Set] -->

train_datagen = ImageDataGenerator(
    rescale = 1./255,
    shear_range = 0.2,
    zoom_range = 0.2,
    horizontal_flip = True
)

training_set = train_datagen.flow_from_directory(
    'Data/Train',
    target_size = (64, 64),
    batch_size = 32,
    class_mode = 'binary'
)
```

Found 8000 images belonging to 2 classes.

```
[41]: # Image Augmentation [Test Set] -->

test_datagen = ImageDataGenerator(
    rescale = 1./255
)

test_set = test_datagen.flow_from_directory(
    'Data/Test',
    target_size = (64, 64),
    batch_size = 32,
    class_mode = 'binary'
```

```
Found 2000 images belonging to 2 classes.
          Building The CNN -->
[42]: #
      model = Sequential([
          Input(shape=(64, 64, 3)),
          Conv2D(filters=32, kernel_size=3, activation='relu'),
          MaxPooling2D(pool_size=2, strides=2),
          Flatten(),
          Dense(units=128, activation='relu'),
          Dense(units=1, activation='sigmoid')
      ])
      print("Model Built !")
     Model Built!
[43]: #
          Summarizing The Model -->
      model.summary()
     Model: "sequential_2"
       Layer (type)
                                              Output Shape
                                                                                    Ш
      →Param #
       conv2d_2 (Conv2D)
                                              (None, 62, 62, 32)
                                                                                        Ш
      ⇔896
      max_pooling2d_2 (MaxPooling2D)
                                             (None, 31, 31, 32)
                                                                                        ш
      flatten_2 (Flatten)
                                              (None, 30752)
       dense_4 (Dense)
                                              (None, 128)
      ⇒3,936,384
                                              (None, 1)
       dense_5 (Dense)
      ⇔129
      Total params: 3,937,409 (15.02 MB)
```

```
Trainable params: 3,937,409 (15.02 MB)

Non-trainable params: 0 (0.00 B)
```

```
[44]: # Compiling The Model -->
      model.compile(optimizer='adam', loss='binary_crossentropy',_

→metrics=['accuracy'])
      print("Model Compiled !")
     Model Compiled !
[46]: # Training The Model -->
      model.fit(
          x = training_set,
          validation_data = test_set,
          epochs = 25
      )
     Epoch 1/25
     250/250
                         147s 588ms/step -
     accuracy: 0.5650 - loss: 0.7286 - val accuracy: 0.6850 - val loss: 0.6020
     Epoch 2/25
     250/250
                         59s 234ms/step -
     accuracy: 0.6760 - loss: 0.6050 - val_accuracy: 0.6840 - val_loss: 0.5908
     Epoch 3/25
     250/250
                         57s 227ms/step -
     accuracy: 0.7007 - loss: 0.5746 - val_accuracy: 0.7210 - val_loss: 0.5473
     Epoch 4/25
     250/250
                         81s 225ms/step -
     accuracy: 0.7228 - loss: 0.5492 - val_accuracy: 0.7090 - val_loss: 0.5640
     Epoch 5/25
     250/250
                         83s 227ms/step -
     accuracy: 0.7326 - loss: 0.5304 - val_accuracy: 0.7125 - val_loss: 0.5655
     Epoch 6/25
     250/250
                         57s 227ms/step -
     accuracy: 0.7414 - loss: 0.5197 - val_accuracy: 0.6980 - val_loss: 0.6099
     Epoch 7/25
     250/250
                         61s 245ms/step -
     accuracy: 0.7482 - loss: 0.5013 - val_accuracy: 0.7430 - val_loss: 0.5394
     Epoch 8/25
                         78s 228ms/step -
     250/250
     accuracy: 0.7658 - loss: 0.4814 - val_accuracy: 0.7605 - val_loss: 0.5189
     Epoch 9/25
     250/250
                         61s 244ms/step -
```

```
accuracy: 0.7706 - loss: 0.4734 - val_accuracy: 0.7365 - val_loss: 0.5420
Epoch 10/25
250/250
                   56s 225ms/step -
accuracy: 0.7676 - loss: 0.4699 - val_accuracy: 0.7635 - val_loss: 0.5221
Epoch 11/25
250/250
                   82s 225ms/step -
accuracy: 0.7865 - loss: 0.4480 - val accuracy: 0.7610 - val loss: 0.5144
Epoch 12/25
250/250
                   83s 230ms/step -
accuracy: 0.7832 - loss: 0.4500 - val_accuracy: 0.7710 - val_loss: 0.5115
Epoch 13/25
250/250
                   82s 229ms/step -
accuracy: 0.7959 - loss: 0.4357 - val_accuracy: 0.7720 - val_loss: 0.5070
Epoch 14/25
250/250
                   81s 226ms/step -
accuracy: 0.7976 - loss: 0.4240 - val_accuracy: 0.7710 - val_loss: 0.5227
Epoch 15/25
250/250
                   81s 223ms/step -
accuracy: 0.8122 - loss: 0.4058 - val_accuracy: 0.7750 - val_loss: 0.5124
Epoch 16/25
250/250
                   58s 230ms/step -
accuracy: 0.8294 - loss: 0.3862 - val accuracy: 0.7520 - val loss: 0.5687
Epoch 17/25
250/250
                   59s 235ms/step -
accuracy: 0.8313 - loss: 0.3797 - val_accuracy: 0.7500 - val_loss: 0.5987
Epoch 18/25
250/250
                   62s 248ms/step -
accuracy: 0.8371 - loss: 0.3684 - val_accuracy: 0.7720 - val_loss: 0.5321
Epoch 19/25
250/250
                   61s 244ms/step -
accuracy: 0.8525 - loss: 0.3290 - val_accuracy: 0.7545 - val_loss: 0.5417
Epoch 20/25
250/250
                   61s 243ms/step -
accuracy: 0.8589 - loss: 0.3265 - val_accuracy: 0.7630 - val_loss: 0.5772
Epoch 21/25
250/250
                   57s 228ms/step -
accuracy: 0.8538 - loss: 0.3291 - val accuracy: 0.7745 - val loss: 0.5574
Epoch 22/25
250/250
                   58s 233ms/step -
accuracy: 0.8527 - loss: 0.3285 - val_accuracy: 0.7565 - val_loss: 0.6065
Epoch 23/25
250/250
                   80s 227ms/step -
accuracy: 0.8745 - loss: 0.2939 - val_accuracy: 0.7560 - val_loss: 0.6208
Epoch 24/25
250/250
                   82s 228ms/step -
accuracy: 0.8656 - loss: 0.3037 - val_accuracy: 0.7530 - val_loss: 0.6938
Epoch 25/25
250/250
                   57s 229ms/step -
```

```
accuracy: 0.8811 - loss: 0.2796 - val_accuracy: 0.7630 - val_loss: 0.6182
[46]: <keras.src.callbacks.history.History at 0x2c0ab61dc60>
[51]: # Accuracy -->
      test_loss, test_acc = model.evaluate(test_set)
      print(f"Test Accuracy: {test_acc * 100:.2f}%")
     63/63
                       6s 99ms/step -
     accuracy: 0.7739 - loss: 0.6049
     Test Accuracy: 76.30%
[50]: #
          Predicting Results For Single Image -->
      test_image = image.load_img('Data/Sample/cat_or_dog_1.jpg', target_size=(64,64))
      test_image = image.img_to_array(test_image)
      test_image = np.expand_dims(test_image, axis=0)
      result = model.predict(test_image)
      training_set.class_indices
      if (result[0][0] == 1) :
         print("It is a Dog !")
      else :
          print("It is a Cat !")
     1/1
                     Os 140ms/step
     It is a Dog!
[52]: #
        Predicting Results For Test Set -->
      true_labels = test_set.classes
      predictions = model.predict(test_set) # This returns probabilities
      predicted_labels = np.argmax(predictions, axis=1) # Convert to class indices
      correct_predictions = np.sum(predicted_labels == true_labels)
      total_images = len(true_labels)
      accuracy = (correct_predictions / total_images) * 100
      print(f"Correct Predictions: {correct_predictions}/{total_images}")
      print(f"\nTest Accuracy: {accuracy:.2f}%")
     63/63
                       6s 89ms/step
     Correct Predictions: 1000/2000
     Test Accuracy: 50.00%
```