Du fonctionnement d'Internet

Ronan Keryell

rk@enstb.org

Département Informatique, ENSTBr

24 janvier 2006 F2B402A Ingénierie des réseaux Version 1.5

- Copyright (c) 1986–2037 by Ronan. Keryell@enstb.org. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).
- Si vous améliorez ces cours, merci de m'envoyer vos modifications!
- Transparents 100 % à base de logiciels libres (LaTEX,...)

- Révolution : télégraphe, téléphone, télévision,... Internet
- Internet : LE réseau DES réseaux, ébauche des autoroutes de l'information
- 10^7 (1997) utilisateurs $\nearrow \rightsquigarrow 10^9$ (2006)
- Outil de travail utile
- Importance stratégique /
- Opportunités de télétravail, dématérialisation...
- Fonctionnement peu connu chez les utilisateurs
- ...ni les professionnels du domaine!
- Constatation que les élèves connaissaient bien les trames Ethernet et Corba ou SOAP mais pas trop entre les 2 ⊕ → ressorti cours de 1997 aux Mines

Utile pour utilisation correcte et résoudre les problèmes

- Histoire et réseaux
- Protocoles & services
- Futur

- Interconnexion de machines (ordinateurs)
- Graphe : nœuds (ordinateurs, routeurs) et arcs (liaisons transportant de l'information)

- Faire communiquer les machines entre elles
- Local (LAN): Ethernet (10 Mbit/s–10 Gbit/s, ATM

Histoir

155+Mbit/s)

- Distant (WAN): liaisons spécialisées (64 Kbit/s–10 Gbit/s),
 satellite, ATM (155 Mbit/s, 622 Mbit/s, 2,5 Gbit/s...)
- Multiplexage en longueur d'onde sur fibre optique (DWDM) : // débit

- **1957 :** Création de l'*Advanced Research Project Agency* par le DoD américain (guerre froide...)
- **1961 :** Article de Kleinrock vantant la commutation de paquets ≠ téléphone
- 1962 : Étude pour l'US Air Force d'un réseau très décentralisé et maillé : pas de point central → résiste à une destruction partielle
- **1968 :** Réseau à commutation de paquets au *National Physical Laboratories*, UK
- **1969 :** Premier échange sur ARPANET entre ordinateur à UCLA and SRI. Création de la documentation, *Request For Comments* (RFC)
- 1970: Définition du Network Control Protocol

- **1972 :** Création de *InterNetwork Working Group* pour concevoir des protocoles de communication communs avec tolérance aux pannes et aux pertes. Définition d'une architecture : réseaux autonomes interconnectés par des passerelles. ARPANET. *E-mail*
- **1972** Projet Cyclades au CNET de réseau à commutation de paquets avec Louis Pouzin
- 1972-1974: protocoles telnet, FTP, TCP
- **1976 :** protocole UUCP pour échanger des données entre machines UNIX
- **1977 :** Format des messages électroniques. Création de *TheoryNet* basé sur UUCP

- **1979 :** ARPA crée *Internet Configuration Control Board* pour gérer l'évolution. Usenet (échange des *News*) basé sur UUCP. Création de CompuServe (messagerie, fora, échanges de fichiers)
- **1980 :** Protocole IP mis dans le domaine public --interconnexion TheoryNet avec ARPANET. Téletel en
 France avec des terminaux vidéotex
- **1981 :** Création de *Because It's Time NETwork* (BITNET), 4000 listes de discussions (listserv). Culture plus conservatrice que sur Usenet
- **1983**: Changement NCP → IP sur ARPANET
- **1986 :** Optimisation d'Usenet avec NNTP. Création des groupes alt. pour échapper à la censure. Création de

FidoNet regroupant des serveurs de BBS (messagerie, échange de fichiers)

1987: Intelmatique pour utilisation du Minitel via Internet

1989 : World-Wide-Web développé au CERN pour accéder à des informations hypertextuelles délocalisées

Histoi

Internet n'appartient à personne mais...

Internet Society (ISOC): organisation destinée à promouvoir l'interconnexion ouverte des systèmes et Internet. *Board of Trustees* élus par les membres de l'ISOC dirige plusieurs comités

Internet Architecture Board (IAB): évolution des protocoles de communication

Internet Assigned Number Authority (IANA): gère tous les numéros et codes qui doivent être uniques dans Internet. Délègue à InterNIC/RIPE/NIC France l'allocation des adresses IP

Internet Engineering Task Force (IETF): fédère groupes développant les nouvelles technologies. Dirigé

par l'Internet Engineering Steering Group (IESG)

Internet Research Task Force (IRTF): fédère groupes de recherche à long terme. Dirigé par l'Internet Research Steering Group (IRSG)

Système de développement des standards plus souple et plus rapide qu'ISO & ITU

- Standards disponibles gratuitement sur Internet : Requests
 For Comments (RFC)
- Spécifications ISO : payantes...
- UNIX arrivait avec IP gratuitement...

RÉseau NATional de l'Enseignement et de la Recherche http://www.renater.fr

RENATER ≠ Internet en France → politique de communication entre les réseaux français

SFINX: service payant d'interconnexion (85kF/an connexion Ethernet + LS)

http://www.renater.fr/international/interaccueil.html

RENATER 4 (2006)

- Sockets UNIX : tuyau (≈ file descriptor) sur lequel on peut envoyer et recevoir une suite d'octets
- socket() crée un tuyau. IP si domaine PF_INET. Type
 SOCK_STREAM, SOCK_DGRAM, SOCK_RAW,...
- connect() connecte une socket à une autre machine (appel)
- bind() associe une adresse à une socket (pour permettre à quelqu'un d'autre de la nommer)
- listen() déclare une socket comme attendant des connexions
- accept() traite une connexion en attente
- getpeername() donne l'adresse du connecté à l'autre bout

read(), write(), send(), recv(),...

- Internet Protocol
- Niveaux 3 (réseau) dans le monde OSI (ultérieur)
- Assure le routage de datagrammes (petits paquets de données)
- Contient adresse de source (envoyeur) et de destination
- Type de protocole
- Longueur
- Gestion de la fragmentation des paquets en morceaux
- Durée de vie
- Somme de vérification
- Pas de garantie de l'ordre d'arrivée, du chemin, ni de... l'arrivée!

Rangement des octets : grand indien

Numéros de machines sur 32 bits séparés en classes, les « réseaux », de différente importance

Classe A	0	Réseau (7 bits)				Machine (24 bits)		
Classe B	1	0	Réseau (14 bits)				Machine (16 bits)	
Classe C	1	1	0	Réseau (21 bi			ts)	Machine (8 bits)
Classe D	1	1	1	0	Multicast (28 bits)			

Classe E 11111 pour extensions futures

Surcharge du réseau ~~

- Apparition du CIDR (Classless Inter-Domain Routing)
- Notion de numéros locaux (privés) style 10.x.y.z
- Fontainebleau: 2 classes C sur le même support physique 192.54.148 & 192.54.172

Protoco

- Niveau OSI 4 : transport
- Transmission de datagrammes
- Pas de connexion
- IP + port d'émission & port de réception pour avoir plusieurs services + somme de vérification : protocole 17
- Pas de gestion d'erreur...
- Certains numéros de port sont standardisés par IANA pour des services précis
- Pour des raisons de sécurité l'ouverture des ports < 1024 nécessitent d'être root

Protoco

- Niveau OSI 4 : transport
- Transmission + robuste de données (retransmission si nécessaire)
- Notion de connexion
- UDP + numéro de séquence + accusé de réception + taille de fenêtre + urgence... : protocole 6
- Numéro de séquence pour remettre les octets dans l'ordre (sécurité : numéro de séquence initial choisi au hasard à la connexion)
- Fenêtre d'accusé de réception pour pipeliner le temps de transfert (autorise l'émetteur à prendre de l'avance)
- Protocole d'établissement, de resynchronisation et de fin de connexion

Utilisation des ports semblable à UDP (/etc/services)

Notions de service :

- Fonctionnement asymétrique
- Demande une page WWW
- Demander un affichage à l'écran
- Recherche dans une base de donnée
- Se connecter à distance
- Écrire sur un serveur disque NFS

- Besoin humain d'un annuaire nom de machine
 → numéro
 IP
- Trop de machines
 hiérarchisation des noms et délégation :
 - Serveur racine (.)
 - Serveurs pour zones .fr, .edu, .com, .org, .gov, .net,... Problème : des millions d'entrées dans .com!
 - Délégation : envoyer vers un autre serveur qui sert une zone
 - Serveurs pour .enst-bretagne.fr, .ensmp.fr,
 .univ-rennes1.fr, .gouv.fr, .asso.fr,...
- Traduction de numéros vers noms : faux domaine
 hiérarchique sur les numéros inversés in-addr.arpa :

200.172.54.192.in-addr.arpa name = chailly.ensmp.fr

- Décorrélation entre hiérarchie des noms et des numéros
- Échange d'information sur le port domain (53, TCP ou UDP)
- Serveur primaire secondé par des serveurs secondaires
- Système de cache : garder dans un coin les informations récentes
- Système de cache de non-existence aussi (cache négatif) : répondre à des erreurs de configuration
- Géré en UNIX souvent par named (BIND)

- Informations SOA (description de la zone), NS (serveur de nom pour délégation), A (adresse), PTR (nom), CNAME (donne un alias), MX (échangeur de mail),...
- Problèmes de saturation et de marques déposées...
- Déclaration des noms auprès des responsables : NIC
 France pour .fr

dig pour demander des informations :

```
dig enstb.org any
                                                  1 minou.info.enstb.org.
enstb.org.
                         3600
                                 IN
                                         ΜX
enstb.org.
                                                  193.50.97.146
                         3600
                                 IN
                                         AAAA
enstb.org.
                         3600
                                 IN
                                                  2001:660:7302:e771:201:2ff:fefa:64ee
enstb.org.
                                         A6
                                                  0 2001:660:7302:e771:201:2ff:fefa:64ee
                         3600
                                 IN
                                                  dns2.enstb.org. keryell.cri.ensmp.fr. 2006011300 7200 3600 6048
enstb.org.
                         3600
                                         SOA
                                 IN
                                                 dns-cri.ensmp.fr.
enstb.org.
                        3600
                                 IN
                                         NS
enstb.org.
                                         NS
                                                 rsm.rennes.enst-bretagne.fr.
                        3600
                                 IN
                                                  dns2.enstb.org.
enstb.org.
                                 IN
                         3600
enstb.org.
                                 IN
                                                  dns3.enstb.org.
                         3600
                                         NS
```



```
;; ADDITIONAL SECTION:
minou.info.enstb.org.
                                 IN
                                                 193.50.97.146
                        3600
minou.info.enstb.org.
                                         AAAA
                        3600
                                 IN
                                                 2001:660:7302:e771:201:2ff:fefa:64ee
rsm.rennes.enst-bretagne.fr. 3475 IN
                                                 192.44.77.1
dns2.enstb.org.
                                                 193,50,97,146
                        3600
                                IN
dns2.enstb.org.
                        3600
                                IN
                                         AAAA
                                                 2001:660:7302:e771:201:2ff:fefa:64ee
dns3.enstb.org.
                                 IN
                        3600
                                                 193.50.97.139
dns-cri.ensmp.fr.
                        102673
                                IN
                                                 193.48.171.215
```

- Service extrêmement sensible
 - Si comportement faux : détournements de services ©
 - Cible d'attaques, de dénis de service
- NSSEC sécurisé avec cryptographie à clé publique

- Le succès d'Internet → confusion... ☺
- TCP port 80
- « Document » référencé par *Universal Resource Locator* (URL)
 - proto://nom@machine:port/CheminFichier#fragment
- HTTP gère le transport (GET demande une page, HEAD méta-information, POST envoie une requête, PUT envoie une page ,...)
- HTML décrit la structure des documents. Langage de marquage (≈ LATEX) avec des balises SGML/XML
- Possibilité de lancer d'autres applications (plug-in) via MIME

- ECMAScript/JavaScript rajoute de la programmation côté navigateur (AJAX avec du XML RPC)
- Langage JAVA permettant de télécharger et d'exécuter des applications

- Accéder à des machines puissantes (supercalculateurs...)
- Émulation de terminal
- Protocoles de connexion indépendant du système
- Pas de graphisme
- telnet TCP port 23, Émulation VT-100 et IBM 3270
 - Mot de passe en clair sur le réseau...

- telnet accepte un numéro de port : utile pour tester d'autres ports TCP/IP
 - Debug de serveur de mail telnet enstb.org 25
- ∃ Version sécurisée avec Kerberos et TLS

- rlogin TCP port 513
 - Terminal plus complet (passe la taille du terminal local)
 - Mot de passe en clair aussi mais .rhosts & /etc/hosts.equiv préférable...
 - ∃ Version sécurisée avec Kerberos et TLS
- ssh
 - Utilisation cryptographie forte
 - Chiffrement des communications et authentifications
 - Authentification par mot de passe ou clé publique
 - Agent d'authentification pour éviter de retaper sans arrêt des mots de passe

- ► Téléportation de ports TCP : tunnels dans Intranet...
- Permet aussi de recopier des fichiers à distance ou lancer des commandes à distance
- ► ~ Solution moderne conseillée

- Lancer des commandes à distance
- Autorisation avec .rhosts & /etc/hosts.equiv
- rsh nom@machine TCP port 514
- on TCP port 512. Passe l'environnement et le répertoire courant. Problèmes de sécurité connus...
- Williser encore ssh!

File Transfer Protocole (FTP)

- Ancêtre des protocoles --- concepts repris souvent par d'autre protocoles
 - Commandes courtes + arguments textuels
 - Réponse à 3 chiffres + commentaires textuels pour humains
- FTP anonymous pour transférer des fichiers dans ~ftp sans avoir besoin de compte
- FTP guest idem mais avec mot de passe
- ∃ Versions sécurisées, mais pourquoi pas ssh plutôt?
- Trivial FTP tftp: simplifié, pas de mot de passe. Utilisé pour initialiser des machines et terminaux X sur le réseau.
 - à bien restreindre l'accessibilité des fichiers avec -s

- Échange asynchrone de messages entre plusieurs utilisateurs
- Simple Mail Transfer Protocol, proche de FTP
- nom@machine, nom%machine3%machine2@machine (test)
- Spam (pourriel)...
- Entêtes standard: From:, To:, Subject:,...
- Démon sendmail TCP port 25
- Algorithme : envoyer à l'échangeur de mail de la destination sauf si c'est soi-même (distribué en local).
 Plein de paramétrages...
- Déclaration des échangeurs de mail : MX dans le DNS

- Problèmes d'authentification (faux mails faciles à faire).
 Regarder de près les entêtes...
- Confidentialité faible si pas de chiffrement (root...)
- Métaprotocole : les smileys :-) ©

Accès par des machines qui n'ont pas de démon SMTP

- Démons POP3 (TCP port 110) & IMAP4 (plus récent) qui tournent sur le serveur
- Possibilité de télécharger des messages sur un poste, gérer des dossiers...

Protocole qui décrit le codage et le type de document

```
MIME-Version: 1.0
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 8bit
Content-Length: 104411
```

- Son, images, texte enrichi
- Gestion de plusieurs parties
- Problème si le récepteur ne comprend pas MIME=?ISO-8859-1?Q?Re:_e-038_-_...
- Utilisé pour le mail, les news, WWW,...

- Diffusion de messages sur toute la planète, classés par newsgroup
- Network News Transfer Protocol, TCP port 119
- Démons qui parlent entre eux
- Path: contient la liste des machines traversées et est utilisé pour empêcher de repasser par une machine
- Mode serveur interrogé par les interfaces utilisateurs des news
- Souvent inn sous UNIX

- Exécuter des procédures à distance (mode client/serveur)
- rpcbind/portmap UDP/TCP port 111 transforme un service en un port temporaire vers le serveur. ≈ annuaire
- rpcinfo -p donne la liste des services disponibles
- Services: NFS, bootparam, rstatd, walld, sprayd,...

- Network File System 2, 3 & 4
- Utilisation transparente d'un fichier résidant sur le disque d'une autre machine
- Utilise les RPC
- mountd sert les demandes de montage
- nfsd sert les transferts de données
- Dans NFS 2 écritures synchrones seulement.
 Performances \
- Version 4 : modèle plus asynchrone, sécurité plus fine des sessions

Autres systèmes : DCE DFS, CIFS (Samba met protocole MicroSoft dans UNIX), Coda, AFS,...

- Affichage à distance
- Extensions graphiques génériques
- Contrôle la souris, le clavier, le fond d'écran, etc.
- TCP port 6000 + d
- Protocole LBX comprimant les ordres graphiques si limité en bande passante
- Authentification
 - Par machine via xhost
 - Toutes les personnes d'une machine peuvent se connecter!
 - Par fichier de secret (MIT-MAGIC-COOKIE)

- Connexion autorisée si le client et le serveur arrivent à lire le même fichier
- Protégé en lecture des regards indiscrets 😩

- Nécessaire de synchroniser les machines (NFS, makefile, corrélation d'événements (logs)...)
- rdate resynchronise sur un serveur. Problème du temps de propagation...
- Network Time Protocol : resynchronise sur un serveur en corrigeant avec des statistiques sur le temps de réponse

```
chailly-keryell > ntpq -p
                    refid
                              st t when poll reach
                                                   delay
                                                          offset
                                                                   disp
    remote
                                                32.94
+resone.univ-ren .PPS.
                               1 u
                                    80 1024
                                            377
                                                           9.737
                                                                   4.32
+canon.inria.fr .TDF.
                                    25 1024 377 23.82
                                                           9.917
                                                                  26.87
                               1 u
                                   868 1024 377
*yseult.sis.past .TDF.
                              1 u
                                                  481.43
                                                          59.655
                                                                  52.12
```


- De plus en plus de systèmes sur Internet --- contrôle à distance
- Définition d'un protocole de commande standard : Simple Network Management Protocol
- Contrôle de routeurs, imprimantes, ordinateurs,...
 chailly-keryell > hpnpadmin -v strasbourg
 strasbourg is a network peripheral
 ready to print
 chailly is allowed access to strasbourg
 Frontpanel message : 00 PRET
- Protéger les accès...

Encapsulation pour accès modem

- Connexion entre ordinateurs par liaisons séries ou ADSL (PPPoE, PPTP)
- Coder IP pour le faire passer
- Point to Point Protocol (PPP)
- Multiprotocoles (IP cas particulier)
- Compression des entêtes et du contenu
- Typiquement accès à la maison
- Possibilité de lancer PPP dans une fenêtre de login...
- Authentification par PAP (envoi d'un mot de passe) ou CHAP (échange de preuves de secret)
- Utilisation aussi pour tunnels

Identification Protocol: identification de l'utilisateur au bout d'une socket. Information à titre informatif sur utilisateur de WWW

talk: Discussion à 2

- Interdit à l'exportation aux USA au départ
- Usage cryptographie forte interdit en France pendant longtemps (arme de guerre)
- PGP Pretty Good Privacy/GnuPG: chiffrement à clé publique
 - Exploite relation chiffrement par une clé TRÈS secrète et déchiffrement par une clé publique ou réciproque
 - Signature : chiffrement par clé privée & tout destinataire peut déchiffrer en utilisant la clé publique de l'envoyeur
 - Chiffrement : chiffrement par clé publique du destinataire & décodage par la clé secrète du destinataire

- Combinaison des 2
- Combinaison avec algorithmes symétriques pour aller plus vite
 - Chiffre avec algorithme symétrique rapide
 - Joint la clé de session chiffrée avec algorithme à clé publique

- Niveau liaison
- Carrier Sence Multiple Access with Collision Detection (CSMA/CD)
- Paquet Ethernet avec source et destination (adresses Ethernet)
- Encapsulation d'un paquet IP dans un paquet Ethernet (tcpdump -e)
- Nécessité de traduire les adresses IP en adresse Ethernet avant de pouvoir envoyer un paquet IP : ARP

- Address Resolution Protocol
- Traduit une adresse IP en adresse Ethernet
- Envoie un message de diffusion demandant la traduction
- Quelqu'un (en principe la machine destination) répond la traduction
- tcpdump arp:

05:26:44.046284 arp who-has node07 tell node06

05:28:07.252011 arp who-has akanthos tell cmm02

- Machines sans disque : pas de quoi stocker leur numéro IP lors du démarrage...
- Nécessiter de le retrouver à partir du numéro Ethernet (qui est unique, assigné par le constructeur)
- Reverse Address Resolution Protocol
- rarpd sur un serveur avec /etc/ethers
- Lorsque la machine a son adresse IP, envoie d'une demande de chargeur de noyau pour son adresse IP a tous les serveurs TFTP
- tcpdump rarp

 05:34:38.479046 rarp who-is 0:0:c9:10:c3:ef tell 0:0:c9:10:c3:ef
- Plutôt remplacé par DHCP plus complet

- Dynamic Host Configuration Protocol étend protocole BOOTP plus ancien sur même protocole vers UDP 67 (requêtes) et 68 (réponses)
- Permet d'attribuer automatiquement paramètres réseau pour simplifier administration/configuration
 - Statique
 - Dynamique (visiteurs, réseaux WiFi publics...)
- Paramètres
 - Netmask
 - Adresse
 - Routeur
 - Serveurs DNS

- Nom de domaine et liste de domaines à essayer
- Serveurs d'impression
- Serveurs de journaux de fonctionnement (log)
- Serveur de boot et fichier d'image, fichier de swap
- **...**
- Pas (encore) sécurisé → difficile de faire une installation système automatisée *et* sécurisée...

- Protocoles utilisés pour mettre en place un réseau local privé
 - ► En IPv4 beaucoup moins d'adresses privées que de MAC → besoin d'allouer des adresses IPv4 aux dispositifs ②
 - Sans infrastructure particulière (serveur DHCP...)
 - Ressources limitées (téléviseur, réveil, cafetière...)
 - En IPv6, contraire → possible de générer adresse privée unique à partir adresse MAC → pas de problème ☺
- RFC 3927

- Comment faire transiter des paquets d'un bout à l'autre de la planète?
- Utiliser des routes de destination : « pour aller là-bas, passer par là »...
- Comment trouver les routes?
 - Déclarées statiquement :

```
roazhon-keryell > netstat -r
Routing tables
Destination
                                          Flags
                                                   Refcnt Use
                     Gateway
                                                                     Interf
localhost
                     localhost
                                          UH
                                                          488704
                                                                     100
                                                   3
ecuelles
                     roazhon
                                          UH
                                                   3
                                                         17090
                                                                     ppp0
                                                   2
default
                    routeur-172
                                          UG
                                                          37036
                                                                     le0
ensmp-private
                    roazhon
                                                                     le0
ensmp-fbleau2
                    roazhon
                                          U
                                                   106
                                                          7848007
                                                                     le0
```

Utiliser un protocole de routage qui va les calculer

- Internet Control Message Protocol, IP protocole 1
- Écho (base de ping)
- Messages d'erreur : destination non atteignable
- Suspension de la transmission
- Message de redirection : rajoute une route vers la machine destination
- Distribution de route

 Durée de vie excédée : base de traceroute (envoi de paquets avec des TTL croissants à partir de 0)

```
roazhon-keryell > traceroute cactus.insead.fr
traceroute to cactus.insead.fr (193.105.56.2), 30 hops max, 40 byte packets
1 chailly-qe0 (192.54.172.201) 1 ms 1 ms 1 ms
2 routeur-148 (192.54.148.101) 4 ms 4 ms 5 ms
3 194.214.157.1 (194.214.157.1) 6 ms 4 ms 4 ms
4 evry.rerif.ft.net (193.48.56.9) 15 ms 20 ms 18 ms
5 insead-fontainebleau.rerif.ft.net (193.48.56.50) 39 ms 39 ms 73 ms
6 194.57.233.1 (194.57.233.1) 41 ms 39 ms 41 ms
7 insead.fr (193.105.56.2) 40 ms 53 ms 40 ms
```


- Simplification du routage sur les machines λ
- Si on ne sait pas : on envoie à la route par défaut, censée tomber sur un routeur intelligent...
- Définition des machines (non) locales par un netmask
- Adresse a locale si $a \wedge \text{netmask} = \lambda \wedge \text{netmask}$
- Dans notre cas, si numéro commence par 192.54.172

```
roazhon-keryell > ifconfig -a
le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING>
    inet 192.54.172.226 netmask ffffff00 broadcast 192.54.172.0
```


Nécessité d'envoyer des messages à tout le monde (questions, charge, routage,...) --- utilisation d'adresses spéciales :

255.255.255 : diffusion limitée, ne passe pas les routeurs

réseau.255 : envoie à toutes les machines du réseau

réseau.x.255 : à tout un sous réseau contrôlé par netmask (ici 255.255.255.0)

réseau.255.255 : tous les sous-réseaux contrôlés par netmask (ici 255.255.255.0)

Routag

- Internet : plusieurs réseaux, plusieurs entités avec des politiques de routages (Autonomous System, AS)
- Au sein d'une même entité (École des Mines)
- Par exemple Routing Information Protocol (RIP),
 RFC 1058, démon routed, gated, xorp, quagga...
- Messages de diffusion des routes disponibles par chaque routeur avec métrique
- Construction d'une table de destination à partir des messages reçus des autres routeurs
- Choix de la route de destination avec plus petite métrique

- Connexion de plusieurs AS entre eux
- Rôle de médiateur
- Exemple du Border Gateway Protocol (BGP 4) RFC 1467, gated
- Échange information sur la connectivité avec les autres systèmes BGP avec les chemins d'AS à traverser pour atteindre ces réseaux
- Construction d'une carte de connexion
- Politique : notion d'AS qui ne fait que du transfert local, connecté à d'autres AS mais avec transit interdit ou transit autorisé → définition des connectivités entre fournisseurs, pays, etc...

- Recalcule l'état en fonction des routeurs en panne
- Classless Inter-Domain Routing permet de diminuer le nombre de routes : agrégation

- Besoin de diffuser de l'information au lieu d'envoyer n copies --- meilleure utilisation de la bande passante
- Pas prévu dans IP de base, ni dans les routeurs
- extensions des News (application) vers niveau paquet IP (transport)
- Multidifusion au dessus d'Internet entre mrouters
- Encapsulation dans du protocole standard (IP dans IP, RFC)
- 1988 entre BBN & Stanford, « répandu » à partir de 1992
- Pas encore accessible au grand public ©
- Choix d'une topologie efficace pour éviter de saturer des liens physiques

http://www.univ-rennes1.fr/CRU/Multicast/presentation_mcast_mbone.ar

- Diffusion de son et d'images (navette spatiale)
- Téléconférence & télé-enseignement (thèses, conférences)
- Tableau blanc distribué avec distribution de transparents
- Éditeur de texte distribué
- Extension du WWW commandé à distance
- Magnétoscopes virtuels

Outil d'annonce d'application : sdr

- Consultation avec calendrier des événements (sdr)
- Lancement des applications nécessaires
- Création et annonce de ses propres événements
- Envoie chaque annonce SAP toutes les 8 minutes via...
 MBone! Gestion distribuée
- Restriction de certaines sessions par chiffrement
- Protocoles à la base de la téléphonie sur IP et autres visio-conférences (SAP, SDP, RTP...)

- RFC 1112
- Utilisation d'une plage d'adresse plutôt que d'ajouter directement un protocole
- Adresses 1110 224.0.0.0 à 239.255.255.255 : 2^{28} adresses de groupes avec protocole spécial
- Extension des sockets : paquet diffusé vers toutes les autres sur le même adresse/port
- Fonction joindre et quitter groupe
- Utilisation du TTL pour restreindre la diffusion : 31 site,
 127 l'univers
- 224.0.0.1 : machines du réseau local

- Internet Group Management Protocol (protocole IP numéro 2)
- Gestion du transit dans MBone
- Messages d'abonnement et de désabonnement à un groupe
- Envoie information aux routeurs du voisinage pour savoir si intéressé par un groupe
- Demande si participation à un groupe

- Utilisation du broadcast d'Ethernet
- Adresse IP D (28 bits) → Ethernet 01-00-5E-xy-zt-uv (23 bits), recouvrement non gênant
- Messages IGMP pour joindre/quitter envoyés en local

- Comment atteindre les membres d'un groupe sur tout Internet?
- Comment économiser la bande passante? Ne transmettre que si des abonnés
- Optimisation des échanges entre routeurs : dire ce qu'on veut recevoir ou au contraire ce qu'on ne veut pas recevoir?
- Mode dense : suppose plein de machines intéressées & absence de membre = exception (DVMRP, PIM-DM)
- Mode clairsemé : suppose peu de machines intéressées & absence de membre = règle (PIM-SM). Mécanisme de rendez-vous

PIM (Protocol Independent Multicast) développé par CISCO

Multi-diffusior

- RFC 1075, implémentation sous UNIX mrouted, IGMP type
 3
- Version multicast de RIP
- Réseau virtuel de tunnels IP-IP entre routeurs
- Adresses 224.0.0.0 à 224.0.0.255 réservées pour protocoles de routage
- Métrique : « distance » pour prendre le plus court chemin
- Barrières de TTL pour délimiter des zones de propagation
- TTL décrémenté de 1 à chaque routeur
- Limitations possible du débit réservé à MBone
- Propagation de routes avec métriques

- Choix des routes avec métrique minimale
- Élagage sur les transmissions inutiles (prunning)

- Internet basé sur la confiance (1960...)
- Beaucoup de changements avec le commerce
- Faire confiance aux machines
- Création du Computer Emergency Response Team (CERT) en 1988
- Listes de points faibles qui traînent sur le réseau. À double tranchant...
- Logiciels qui testent des points de sécurité (SATAN, ISS, Crack,...)

- Restriction des possibilités dangereuses par logiciel et/ou matériel
- Interdiction de certains protocoles (rlogin depuis l'extérieur, connexion X11 depuis l'extérieur) depuis certaines machines/réseaux
- N'empêche pas les chevaux de Troie (virus apporté par un utilisateur interne ou récupéré sur le réseau)

- L'Expérience...
- Approche haut w bas :
 - 1. Niveau application (ps)
 - 2. Niveau système (ps)
 - 3. Niveau routage (netstat -r)
 - 4. Niveau transport (tcpdump)
 - 5. Niveau matériel (analyseur réseau)

- Acheter un PC sans produit MicroSoft
- Acheter des modems
- Installer un UNIX du domaine publique
- Gérer les modems avec PPP
- Prendre un accès IP auprès d'un gros fournisseur avec un liaison spécialisé rapide
- Gérer le routage avec gated

- Croissance anarchique du réseau
- Pénurie d'adresses IP (comme le téléphone en France...)
 IPv6
- Renumérotation en attendant pour simplifier les tables de routage
- Baisse des performances : évolution du nombre d'utilisateurs trop rapide
- Nécessité d'injecter des capitaux privés → autoroutes de l'information (1997 ©)
- Serveurs miroirs, compression, caches WWW
- Augmentation du bruit par les nouveaux « qui ne savent pas », spam...

- Sécurité basée d'abord sur la confiance...
- Nécessité d'avoir des protocoles sécurisés (télépaiement...)

- Adresses sur 128 bits, place pour plus de hiérarchie
- Réservation des ressources possibles (téléconférence)
- Prend en compte des contraintes de temps réel
- Chiffrement et authentification
- Multidiffusion plus hiérarchisée
- Optimisation des entêtes (plus de sommes de contrôles superflues
- Pas de fragmentation dans les routeurs
- Entêtes d'extension
- Étiquette de flot sur 24 bits (simplifie le routage)

- Comprendre comment cela fonctionne
- Beaucoup de mécanismes « transparents » peuvent ralentir le réseau s'ils sont mal utilisés
- Résoudre les problèmes quand il n'y a personne pour les résoudre...
- Faire des choix techniques (applications, fournisseurs)
- Gagner des sous, télétravail, téléconférence
- Transférer expérience Minitel française dans Internet? (1997 ©)
- Importance socio-économico-politique capitale : disparition des frontières physiques et culturelles...

Table des matières 87

1	Titre 0	12 Interface programmeur 20
2	Copyright (c)	11 Protocole 19
3	Introduction 2	13 Protocole IP
	Introduction 1	13 Flotocole IP
		14 Espace d'adressage 24
	Plan 4	15 User Datagramm Protocol (UDP) 25
5	Réseau? 5	16 Transmission Control Protocol (TCP) 26
1	Histoire 4	
		17 Clients & serveurs 28
6	Origine	18 Service de nom
7		19 World Wide Web
8	RENATER (1997)	20 Connexion à distance
7	France 12	21 Exécution à distance
7	RENATER 12	22 Transferts de fichier
9	GIX RENATER (1997)	23 Messagerie électronique 40
10	Connexion internationale (1997) 18	24 MIME
11	RENATER 4 (2006)	25 Nouvelles

26	Remote Procedure Call 44	38 Routage 59
27	Partage de fichiers 45	40 Protocole ICMP 6
28	XWindow System 11 46	41 Route par défaut 63
29	Distribution du temps 48	42 Diffusion
30	Contrôle SNMP 49	
31	Encapsulation pour accès modem 50	43 Routage interne 65
32	Divers	44 Routage externe 66
		45 MBone
33	Chiffrement	44 Multi-diffusion 67
34	Ethernet	46 Application de MBone
33	Niveau physique	47 Annonce des sessions
	- MAC 53	48 Espace d'adressage de MBone
35	Protocole ARP	49 Protocole IGMP
36	Protocole RARP	50 MBone sur Ethernet
37	DHCP	
		51 Routage sur MBone
38	Zeroconf	52 DVMRP
39	Le routage 60	53 Problèmes de sécurité
	Internet (F2B402A Ingénie	rie des réseaux) a Conclusion

52	Sécurité	78
54	Pare-feu	80
55	Résoudre les problèmes	81
54	Production	80
56	Faites votre fournisseur Internet	82
55	Futur	81

57	Problèmes	83
58	IPv6	85
57	Futur	84
59	Conclusion	86
58	Conclusion	85
60	Table des matières	87

