IN THE CLAIMS:

Please cancel claim 1 and add new claims 66-86. The claims are presented as follows:

1-65. (Canceled)

66. (New) A catheter assembly, comprising:

a catheter body including:

a proximal portion, an intermediate portion extending from the proximal portion, the intermediate portion defining a longitudinal axis, and a distal portion extending from the intermediate portion and terminated by a distal end of the catheter body, the distal portion forming a coil about a central loop axis, the central loop axis substantially parallel to the longitudinal axis,

an ablation section formed along the coil, and

a first lumen extending through the proximal portion and the intermediate portion to the distal portion and terminated at an opening proximal to the ablation section; and

an ablation electrode formed within the ablation section;

wherein, when the ablation electrode is activated, a lesion is formed in tissue contacting the ablation section.

67. (New) The catheter assembly of claim 66, further comprising a fluid source and wherein the catheter body further includes:

a second lumen extending through the proximal portion, the intermediate portion and the distal portion and terminated at the distal end of the catheter body, and

a porous wall including an exterior surface, the porous wall formed about the second lumen in the ablation section:

wherein the fluid source is coupled to the second lumen and, while the ablation electrode is activated, the fluid source supplies a conductive liquid,

through the second lumen, to the exterior surface of the ablation section in contact with the tissue, the conductive liquid being energized by the ablation electrode.

- 68. (New) The catheter assembly of claim 66, wherein the central loop axis of the distal portion is substantially aligned with the longitudinal axis formed by the intermediate portion.
- 69. (New) The catheter assembly of claim 66, further comprising a locating device slideably engaged by the first lumen.
- 70. (New) The catheter assembly of claim 69, wherein the locating device comprises a guide wire.
- 71. (New) The catheter assembly of claim 66, further comprising a sensing element coupled to the distal portion of the catheter body.
- 72. (New) The catheter assembly of claim 71, wherein the sensing element is positioned distal to the ablation section.
- 73. (New) The catheter assembly of claim 71, wherein the sensing element is positioned proximal to the ablation section.
- 74. (New) The catheter assembly of claim 71, wherein the sensing element comprises an electrode adapted to sense electrical activity of tissue.
- 75. (New) The catheter assembly of claim 71, wherein the sensing element comprises a thermocouple.
- 76. (New) The catheter assembly of claim 71, further comprising a second sensing element.

- 77. (New) The catheter assembly of claim 76, wherein the sensing element is positioned proximal to the ablation section and the second sensing element is positioned distal to the ablation section.
- 78. (New) The catheter assembly of claim 67, wherein the porous wall comprises a microporous polymer.
- 79. (New) The catheter assembly of claim 78, wherein the microporous polymer comprises expanded polytetrafluoroethylene.
- 80. (New) The catheter assembly of claim 67, wherein the porous wall comprises a polymer having pores formed therethrough via a secondary process.
- 81. (New) The catheter assembly of claim 67, wherein the porous wall comprises pores, the pores having, on average, a diameter between approximately 5 microns and approximately 100 microns.
- 82. (New) The catheter assembly of claim 81, wherein the diameter is between approximately 5 microns and approximately 25 microns.
- 83. (New) The catheter assembly of claim 66, further comprising a guide catheter slideably engaging the catheter body.
- 84. (New) A method for forming an ablation pattern to electrically isolate a pulmonary vein for treatment of cardiac arrhythmia, comprising:

passing a locating device through a lumen of a catheter body, the lumen of the catheter body extending through a proximal portion of the catheter body and an intermediate portion of the catheter body, extending from the proximal portion, and terminated in an opening proximal to an ablation section formed

along a coil formed by a distal portion of the catheter body extending from the intermediate portion;

passing a distal tip of the locating device through the distal portion of the catheter body to locate a pulmonary vein from within a left atrium; and advancing the catheter body over the locating device; and pressing the ablation section formed along the coil against tissue surrounding the pulmonary vein.

- 85. (New) The method of claim 84, further comprising measuring electrical activity of the tissue via electrodes coupled to the distal portion of the catheter body in proximity to the ablation section.
- 86. (New) The method of claim 84, further comprising irrigating the ablation section via fluid flow through a second lumen of the catheter body, the second lumen extending through the proximal portion, the intermediate portion and the distal portion of the catheter body.