

Sistemas de informação

enterprise analytics and data warehousing

Prof^o Fabiano J. Cury Marques

https://br.linkedin.com/in/fabianocury

enterprise analytics and data warehousing

Volumetria

Introdução

Introdução a volumetria de dados

Pontos a serem considerados:

- ✗ Um DataWarehouse deve receber cargas de dados periódicas ao longo de seu ciclo de vida;
- Uma etapa importante do processo elaboração de um DataWarehouse consiste em conhecer o dinâmica de adição de dados em cada um dos Data Marts;
- ✗ Essa informação é importante para estimar os limites de capacidade de armazenamento independentemente do modelo de infra adotado (on premisse ou cloud computing);

Pontos a serem considerados:

- Conhecer a priori o volume de dados inserido em um Data Mart pode não ser uma tarefa fácil;
- Vuma abordagem possível pode considerar um questionamento, ao time de negócio, acerca da produção periódica de dados na empresa. Note que, neste caso, as informações podem vir carregadas de subjetividade;
- Outra abordagem possível pode passar por uma investigação na base de dados operacional existente, afim de conhecer a quantidade de registros inseridos em algumas tabelas de interesse;

Calcular o tamanho do registro de uma tabela:

- ✗ Cada banco de dados pode adotar uma estratégia diferente para realizar o armazenamento do dado em cada uma de suas tabelas em disco rígido.
- ✗ O SQL Server 2000, por exemplo, limita o tamanho da linha em 8060 bytes e utiliza um mecanismo de paginação por blocos, de modo que cada MB contem 128 páginas.;
- Realizar um calculo de volumetria de dados considerando um banco de dados especifico exigiria conhece-lo em detalhes, o quê parece ser um preciosismo para uma abordagem numérica de caráter aproximativo;

Calcular o tamanho do registro de uma tabela:

- ✗ Considera-se neste estudo o calculo baseado no tamanho dos registros.
- Outros elementos, tais como índices, foram desprezados das contas, mas podem ser facilmente considerados;
- ✗ O primeiro passo é conhecermos o tamanho de cada registro de cada tabela do datawarehouse;
- Conhecer o tamanho de cada registro passa por conhecer o tamanho de cada campo;

Datatype	Description	Column Length and Default
CHAR (size)	Fixed-length character data of length size bytes.	Fixed for every row in the table (with trailing blanks); maximum size is 2000 bytes per row, default size is 1 byte per row. Consider the character set (one-byte or multibyte) before setting size.
VARCHAR2 (size)	Variable-length character data.	Variable for each row, up to 4000 bytes per row. Consider the character set (one-byte or multibyte) before setting size. A maximum size must be specified.
	Fixed-length character data of length size characters or bytes, depending on the national character set.	Fixed for every row in the table (with trailing blanks). Column size is the number of characters for a fixed-width national character set or the number of bytes for a varying-width national character set. Maximum size is determined by the number of bytes required to store one character, with an upper limit of 2000 bytes per row. Default is 1 character or 1 byte, depending on the character set.
	Variable-length character data of length size characters or bytes, depending on national character set. A maximum size must be specified.	Variable for each row. Column size is the number of characters for a fixed-width national character set or the number of bytes for a varying-width national character set. Maximum size is determined by the number of bytes required to store one character, with an upper limit of 4000 bytes per row. Default is 1 character or 1 byte, depending on the character set.
CLOB	Single-byte character data.	Up to 2^32 - 1 bytes, or 4 gigabytes.
NCLOB	Single-byte or fixed-length multibyte national character set (NCHAR) data.	Up to 2^32 - 1 bytes, or 4 gigabytes.
LONG	Variable-length character data.	Variable for each row in the table, up to 2/31 - 1 bytes, or 2 gigabytes, per row. Provided for backward compatibility.
NUMBER (p, s)	Variable-length numeric data. Maximum precision p and/or scale s is 38.	Variable for each row. The maximum space required for a given column is 21 bytes per row.
	Fixed-length date and time data, ranging from Jan. 1, 4712 B.C.E. to Dec. 31, 4712 C.E.	Fixed at 7 bytes for each row in the table. Default format is a string (such as DD-MON-YY) specified by NLS_DATE_FORMAT parameter.
BLOB	Unstructured binary data.	Up to 2^32 - 1 bytes, or 4 gigabytes.
BFILE	Binary data stored in an external file.	Up to 2^32 - 1 bytes, or 4 gigabytes.
RAW (size)	Variable-length raw binary data.	Variable for each row in the table, up to 2000 bytes per row. A maximum size must be specified. Provided for backward compatibility.
LONG RAW	Variable-length raw binary data.	Variable for each row in the table, up to 2/31 - 1 bytes, or 2 gigabytes, per row. Provided for backward compatibility.
ROWID	Binary data representing row addresses.	Fixed at 10 bytes (extended ROWID) or 6 bytes (restricted ROWID) for each row in the table.
MLSLABEL	Trusted Oracle datatype.	See the Trusted Oracle documentation.

Oracle data types:

Calcular o tamanho do registro de uma tabela:

- **X** Considerando os campos:
 - ID = 4 bytes, DIASEMANA= 45 bytes, DATA = 7 bytes, DIA = 4bytes, MÊS = 4 bytes e ANO = 4 bytes, temos um total de 68 bytes por registro
- Considerando os campos:
 - ID = 4 bytes, PAIS = 45 bytes, ESTADO = 45 bytes, CIDADE = 45 bytes, CINEMA = 45 bytes, SALA = 45 bytes e CAPACIDADE = 4 bytes, temos um total de 233 bytes por registro

Carga Inical

Carga de dados Inicial

Carga de dados inicial:

É comum que um projeto de Data Warehouse receba uma expressiva carga de dados inicial;

- A carga de dados inicial pode, inclusive, ser dividida em algumas fases, permitindo realizar testes no modelo recém desenhado;
- É comum que esse processo seja feito de forma manual, com auxilio do time de TI, para depois ser automatizado utilizando ferramenta apropriada;

Podemos calcular o volume de uma carga de dados inicial da seguinte forma:

$$C_0 = \sum_{j=1}^{m} T_j * Q0_j$$

Onde,

- índice da tabela
- quantidade total de tabelas no data warehouse;
- Tamanho (em bytes) do registro da tabela j;
- Quantidade inicial aproximada de registros inseridos na tabela j;
- Carga inicial em bytes (período 0);

Considerando o tamanho do registro de cada tabela abaixo, calcule a

Nome		
Tabela1	123	200
Tabela2	132	300
Tabela3	45	150
Tabela4	88	1000
Tabela5	99	280
Tabela6	125	3650
Tabela7	110	50000

Nome	
Tabela1	24600
Tabela2	39600
Tabela3	6750
Tabela4	88000
Tabela5	27720
Tabela6	456250
Tabela7	5500000
	6142920

Note que se fossemos escrever um programa para fazer essas contas poderíamos escreve-lo da forma abaixo :

1 - Dados:

Nome		
Tabela1	123	200
Tabela2	132	300
Tabela3	45	150
Tabela4	88	1000
Tabela5	99	280
Tabela6	125	3650
Tabela7	110	50000

2 - Código em linguagem C:

```
#include <stdio.h>
int main()
  int m = 7:
  int T[]=\{123, 132, 45, 88, 99, 125, 110\};
  int Q0[]={200,300,150,1000,280,3650,50000}
  int C = 0;
  int soma = 0;
  for(int j=0; j< m; j++)</pre>
    soma += T[j]*Q0[j];
    printf("T%d: %8d \n", j+1, T[j]*Q0[j]);
  C = soma;
  return 0;
```

```
\left( \sum_{j=1}^{m} T_{j} * Q 0 \right)
```

3 - Resultado:

```
- ./main
T1: 24600
T2: 39600
T3: 6750
T4: 88000
T5: 27720
T6: 456250
T7: 5500000
C0: 6142920
```


Considerando o tamanho do registro de cada tabela abaixo, calcule a carga de dados inicial:

Nome		MB
Tabela1	24600	0.02346
Tabela2	39600	0.037766
Tabela3	6750	0.006437
Tabela4	88000	0.083923
Tabela5	27720	0.026436
Tabela6	456250	0.435114
Tabela7	5500000	5.245209
	6142920	5.858345

X Geralmente a fato!

 \times Carga inicial = 6142920 bytes, ~5.8 MB!

Exercício 1 - Volumetria

✗ Considerando os dados para a carga inicial em um data warehouse calcule o volume inserido em cada tabela e o valor total da carga:

Nome		
Tabela1	100	500
Tabela2	200	2000
Tabela3	210	3650
Tabela4	350	45
Tabela5	400	30
Tabela6	100	200
Tabela7	125	30000

Resposta:

./main

T1: 50000

T2: 400000

T3: 766500

T4: 15750

T5: 12000

T6: 20000

T7: 3750000

C0: 5014250

-

Carga Periódica

Carga de dados periódica

Podemos calcular o volume de uma carga de dados em um período da seguinte forma (para i > 0):

$$C_i = \sum_{j=1}^m T_j * Q_j$$

Onde,

- índice associado ao período definido (dia, mês, ano,..)
- índice da tabela
- quantidade total de tabelas no data warehouse;
- Tamanho (em bytes) do registro da tabela j;
- Quantidade média aproximada de registros inseridos na tabela j;
- Carga em bytes no período i;

FIMP

Volumetria de dados

- 1. Qual é o tamanho do registro (), em bytes, para cada tabela?
- 2. Qual é o intervalo() de cargas ()? (por exemplo)

 R: mensal (diária, semanal, ...)
- 3. Qual é a quantidade média de registros () por tabela ? (por exemplo) R: T1 = 200, T2 = 300, Tn = 1200
- 4. Qual a quantidade de períodos () analisados?R: 10 meses
- 5. Qual é o volume total () armazenado em cada intervalo ()? R: 0, (35*200 + 42*300 + 18*1200)*1, (35*200 + 42*300 + 18*1200)*2, (35*200 + 42*300 + 18*1200)*3, ..., (35*200 + 42*300 + 18*1200)*10

FIMP

Volumetria de dados

O volume total de dados inseridos no Data warehouse no -ézimo período pode ser estimado:

$$VT_n = \sum_{i=1}^n C_i = \sum_{i=1}^n \left(\sum_{j=1}^m T_j * Q_j \right)$$

Onde,

- índice associado ao período definido (dia, mês, ano,..)
- índice da tabela
- quantidade total de tabelas no data warehouse;
- Tamanho (em bytes) do registro da tabela j;
- Quantidade média aproximada de registros inseridos na tabela j;
- Carga em bytes no período i;
- Volume total, em bytes, no período i;

Exercício 2 - Volumetria

★ Considerando o tamanho do registro de cada tabela abaixo, calcule a carga de dados periódica ao longo de n=10 períodos (mensais):

Nome		
Tabela1	100	0
Tabela2	200	20
Tabela3	210	30
Tabela4	350	5
Tabela5	400	1
Tabela6	100	0
Tabela7	125	300

Considerando o tamanho do registro de cada tabela abaixo, calcule a carga de dados periódica ao longo de n=10 períodos (mensais):

Nome		
Tabela1	100	0
Tabela2	200	20
Tabela3	210	30
Tabela4	350	5
Tabela5	400	1
Tabela6	100	0
Tabela7	125	300

```
2 – Código em linguagem C :
```

```
#include <stdio.h>
     int main()
       int m = 7, n = 10;
5
       int T[]=\{100,200,210,350,400,100,125\};
            Q[]={0, 20, 30, 5, 1, 0, 300};
       int C[]=\{0,0,0,0,0,0,0,0,0,0,0,0,0\};
       int soma, VT = 0;
9
       for(int i=0; i< n; i++)
10
         printf(" Periodo %d:\n", i+1);
         for(int j=0; j< m; j++)</pre>
           C[i] += T[j]*Q[j];
           printf(" T%d: %8d \n", j+1, T[j]*Q[j]);
16
         VT += C[i];
         printf("VT%2d: %8d \n\n", i+1, VT);
21
       return 0;
```


Exercício 2 - Volumetria

X Resposta:

./mai	n										
Perio	Periodo 1:		odo 1: Periodo 3:		odo 3:	Perio	odo 5:	Perio	odo 7:	Perio	odo 9:
T1:	0	T1:	0	T1:	0	T1:	0	T1:	0		
т2:	4000	т2:	4000	т2:	4000	т2:	4000	т2:	4000		
т3:	6300	т3:	6300	т3:	6300	т3:	6300	т3:	6300		
т4:	1750	т4:	1750	T4:	1750	т4:	1750	т4:	1750		
т5:	400	т5:	400	т5:	400	T5:	400	т5:	400		
т6:	0	т6:	0	T6:	0	т6:	0	т6:	0		
т7:	37500	т7:	37500	т7:	37500	т7:	37500	т7:	37500		
VT 1:	49950	VT 3:	149850	VT 5:	249750	VT 7:	349650	VT 9:	449550		
Perio	do 2:	Perio	odo 4:	Periodo 6:		Perio	odo 8:	Perio	odo 10:		
T1:	0	T1:	0	T1:	0	T1:	0	T1:	0		
т2:	4000	т2:	4000	т2:	4000	т2:	4000	т2:	4000		
т3:	6300	т3:	6300	т3:	6300	т3:	6300	т3:	6300		
т4:	1750	т4:	1750	Т4:	1750	T4:	1750	т4:	1750		
т5:	400	т5:	400	т5:	400	T5:	400	т5:	400		
т6:	0	т6:	0	т6:	0	т6:	0	т6:	0		
т7:	37500	т7:	37500	т7:	37500	т7:	37500	т7:	37500		
VT 2:	99900	VT 4:	199800	VT 6:	299700	VT 8:	399600	VT10:	499500		

$$VT_{n} = \sum_{i=1}^{n} C_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} T_{j} * Q_{j} \right)$$

- X Note que no modelo apresentado trabalhamos com tamanhos médios aproximados de registros fixos em cada período
- ✗ Uma abordagem mais realista deveria considerar valores médios aproximados variáveis em cada período i,

$$VT_{n} = \sum_{i=1}^{n} C_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} T_{j} * Q_{ij} \right)$$

- Nesta abordagem os valores médios aproximados podem variar em cada período i
- * A expressão acima permite utilizar diversos modelos de previsão para mensurar variações (crescimento/decrescimento) do volume de dados inseridos nas tabelas do data warehouse, aumenta assim a qualidade da estimativa.

Nome					
Tabela1	10	510	520	530	540
Tabela2	15	71	72	73	74
Tabela3	20	810	820	830	840

Para a carga no período 1, temos:

$$C1 = T1 * Q11 + T2 * Q12 + T3 * Q13 =$$

$$C1 = 10 * 510 + 15 * 71 + 20 * 810 = 22365$$

Para a carga no período 2, temos:

$$C2 = T1 * Q21 + T2 * Q22 + T3 * Q23 =$$

$$C2 = 10 * 520 + 15 * 72 + 20 * 820 = 22680$$

Para a carga no período 3, temos:

$$C3 = T1 * O31 + T2 * O32 + T3 * O33 =$$

$$C3 = 10 * 530 + 15 * 73 + 20 * 830 = 22995$$

Para a carga no período 4, temos:

$$C4 = T1 * Q41 + T2 * Q42 + T3 * Q43 =$$

$$C4 = 10 * 540 + 15 * 74 + 20 * 840 = 23310$$

Exemplo - Volumetria

Considerando o tamanho do registro de cada tabela abaixo, calcule a carga de dados periódica ao longo de n=4 períodos (mensais):

Para a carga no período 1, temos:

$$VT_n = \sum_{i=1}^n C_i = C_1 + C_2 + C_3 + C_4 =$$

$$VT_n = \sum_{i=1}^n C_i = 22365 + 22680 + 22995 + 23310 = 91350$$

Lembrando que:

$$VT1 = C1 = 22365$$

 $VT2 = C1 + C2 = 22365 + 22680 = 45045$
 $VT3 = C1 + C2 + C3 = 22365 + 22680 + 22995 = 68040$

$$VT4 = C1 + C2 + C3 + C4 = 22365 + 22680 + 22995 + 23310 = 91350$$

Exercício 3 - Volumetria

Considerando o tamanho do registro de cada tabela abaixo, calcule a carga de dados periódica ao longo de n=10 períodos (mensais):

						- 100					
Nome											
Tabela1	100	0	0	0	1	0	0	2	0	0	0
Tabela2	200	20	21	22	24	25	27	28	27	27	28
Tabela3	210	30	30	30	30	30	30	30	30	30	30
Tabela4	350	5	5	5	6	5	5	7	5	8	5
Tabela5	400	1	1	0	1	1	0	0	1	1	1
Tabela6	100	0	0	0	0	0	0	0	0	0	0
Tabela7	125	300	310	315	320	315	340	345	340	350	355

Volumetrja de dados. Código em linguagem C :

Considerando o tamanho do registro de cada tabela abaixo, calcule a carga de dados periódica ao longo de n=10 períodos (mensais):

Nome											
Tabela 1	100	0	0	0	1	0	0	2	0	0	0
Tabela 2	200	20	21	22	24	25	27	28	27	27	28
Tabela 3	210	30	30	30	30	30	30	30	30	30	30
Tabela 4	350	5	5	5	6	5	5	7	5	8	
Tabela 5	400	1	1	0	1	1	0	0	1	1	1
Tabela 6	100	0	0	0	0	0	0	0	0	0	0
Tabela 7	125	300	310	315	320	315	340	345	340	350	355

```
int main()
  int m = 7, n = 10;
                                             0, 300,
                                             0, 310,
                                             0, 315,
                                             0, 320,
                                             0.315.
                                             0, 340,
                                             0.345.
  int VT = 0
  for(int i=0; i< n; i++)
     printf("Periodo %d \n", i+1);
      for(int j=0; j< m; j++)
       C[i] += T[j] *Q[i][j];
        printf(" T%d: %8d \n", j+1, T[j]*Q[i][j]);
     VT += C[i];
      printf("VT%d: %8d \n\n", i+1, VT);
  return 0;
```


Exercício 3 - Volumetria

X Resposta:

./main									
Periodo 1		Periodo 3		Periodo 5		Periodo 7		Periodo 9	
T1:	0	T1:	0	T1:	0	T1:	200	T1:	0
T2:	4000	T2:	4400	T2:	5000	T2:	5600	T2:	5400
т3:	6300	т3:	6300	Т3:	6300	т3:	6300	т3:	6300
т4:	1750	Т4:	1750	T4:	1750	T4:	2450	T4:	2800
т5:	400	т5:	0	T5:	400	Т5:	0	T5:	400
т6:	0	т6:	0	Т6:	0	Т6:	0	т6:	0
т7:	37500	т7:	39375	т7:	39375	т7:	43125	т7:	43750
VT1:	49950	VT3:	153175	VT5:	259700	VT7:	373325	VT9:	488325
	13303								
Periodo 2		Periodo 4		Periodo 6		Periodo 8		Periodo 10	
T1:	0	T1:	100	T1:	0	T1:	0	T1:	0
T2:	4200	T2:	4800	T2:	5400	T2:	5400	T2:	5600
т3:	6300	т3:	6300	т3:	6300	т3:	6300	т3:	6300
T4:	1750	Т4:	2100 🕨	Т4:	1750	T4:	1750	T4:	1750
T5:	400	т5:	400	т5:	0	т5:	400	т5:	400
T6:	0	т6:	0	т6:	0	т6:	0	т6:	0
т7:	38750	т7:	40000	т7:	42500	т7:	42500	т7:	44375
		VT4:	206875	VT6:	315650	VT8:	429675	VT10:	546750
VT2:	101350	V 1 1 .	200013	V10.	313030				010,00

FIMP

Volumetria de dados

O volume total de dados inseridos no Data warehouse no -ézimo, juntamente com a carga inicial, pode ser estimado pela expressão:

Nº de registros variável por tabela

Exercício – Modelagem Dimensional

- Utilizando o Data Mart de distribuidora de filmes estudado anteriormente, apresente um estudo para estimar a volumetria de dados, considerando:
- Utilizar nº fixo de registros;
- Definir juntamente com o seu grupo os valores de e ;
- Calcular a carga de dados inicial;
- Calcular a carga de dados periódica (mensal), com n=24;

Referências

- ✗ KIMBALL, R., ROSS, M. The Data Warehouse Toolkit. 2ª ed., John Wiley Professional, 2002.
- ✗ MACHADO, F. N. R. Tecnologia e Projeto de Data Warehouse. 1º ed., São Paulo: Ed. Érica, 2004.

Copyright © 2019 Prof. MSc. Eng. Wakim B. Saba

https://br.linkedin.com/in/wakimsaba

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).