

Going Bust:

A Machine Learning Model for Corporate Bankruptcy Prediction

Date: Dec 11, 2023

Prepared by: Lanz Fermin, Robert Leung, & Francis Velaque

Outline

- Background and Objectives
- Dataset
- Methodology
- Results
- Insights
- Conclusion and Recommendations

Introduction

In any economic environment, financial stability is a <u>pillar</u> of sustained growth.

Bankruptcy is a judicial recognition that a company can no **longer repay its debts.** Once a company is declared bankrupt, it typically **liquidates its assets**, **closes operations**, or **enters a loan restructuring agreement**.

Predicting corporate bankruptcies, especially from early warning signs, is a notoriously difficult task. Thus, there is a pressing need to develop robust automated prediction systems for bankruptcy.

Objective:

Develop and train **two supervised classifiers** on the Taiwanese Bankruptcy Prediction Dataset

Achieve over 90% test accuracy for both classifiers

Taiwanese Bankruptcy Prediction

6819

Instances

6599 Non Bankrupt 220

Bankrupt

Taiwanese Bankruptcy Prediction

- Uploaded in 2020 under a CC BY 4.0 License (for research use)
- 96 features, all financial indicators
- All feature values pre normalized (range from 0 to 1)
- Minimal need for cleaning, no missing/empty/problematic values

Taiwanese Bankruptcy Prediction

- -1 Bankrupt?
- 0 ROA(C) before interest and depreciation before interest
- 1 ROA(A) before interest and % after tax
- 2 ROA(B) before interest and depreciation after tax
- 3 Operating Gross Margin
- 4 Realized Sales Gross Margin
- 5 Operating Profit Rate
- 6 Pre-tax net Interest Rate
- 7 After-tax net Interest Rate
- 8 Non-industry income and expenditure/revenue
- 9 Continuous interest rate (after tax)
- 10 Operating Expense Rate
- 11 Research and development expense rate
- 12 Cash flow rate
- 13 Interest-bearing debt interest rate
- 14 Tax rate (A)
- 15 Net Value Per Share (B)
- 16 Net Value Per Share (A)
- 17 Net Value Per Share (C)
- 18 Persistent EPS in the Last Four Seasons
- 19 Cash Flow Per Share
- 20 Revenue Per Share (Yuan ¥)
- 21 Operating Profit Per Share (Yuan ¥)
- 22 Per Share Net profit before tax (Yuan ¥)
- 23 Realized Sales Gross Profit Growth Rate
- 24 Operating Profit Growth Rate
- 25 After-tax Net Profit Growth Rate
- 26 Regular Net Profit Growth Rate
- 27 Continuous Net Profit Growth Rate
- 28 Total Asset Growth Rate
- 29 Net Value Growth Rate
- 30 Total Asset Return Growth Rate Ratio

- 31 Cash Reinvestment %
- 32 Current Ratio
- 33 Quick Ratio
- 34 Interest Expense Ratio
- 35 Total debt/Total net worth
- 36 Debt ratio %
- 37 Net worth/Assets
- 38 Long-term fund suitability ratio (A)
- 39 Borrowing dependency
- 40 Contingent liabilities/Net worth
- 41 Operating profit/Paid-in capital
- 42 Net profit before tax/Paid-in capital
- 43 Inventory and accounts receivable/Net value
- 44 Total Asset Turnover
- 45 Accounts Receivable Turnover
- 46 Average Collection Days
- 47 Inventory Turnover Rate (times)
- 48 Fixed Assets Turnover Frequency
- 49 Net Worth Turnover Rate (times)
- 50 Revenue per person
- 51 Operating profit per person
- 52 Allocation rate per person
- 53 Working Capital to Total Assets
- 54 Quick Assets/Total Assets
- 55 Current Assets/Total Assets
- 56 Cash/Total Assets
- 57 Quick Assets/Current Liability
- 58 Cash/Current Liability
- 59 Current Liability to Assets
- 60 Operating Funds to Liability
- 61 Inventory/Working Capital62 Inventory/Current Liability
- 63 Current Liabilities/Liability
- 64 Working Capital/Equity
- 65 Current Liabilities/Equity

- 66 Long-term Liability to Current Assets
- 67 Retained Earnings to Total Assets
- 68 Total income/Total expense
- 69 Total expense/Assets
- 70 Current Asset Turnover Rate
- 71 Quick Asset Turnover Rate
- 72 Working capitcal Turnover Rate
- 73 Cash Turnover Rate
- 74 Cash Flow to Sales
- 75 Fixed Assets to Assets
- 76 Current Liability to Liability
- 77 Current Liability to Equity
- 78 Equity to Long-term Liability
- 79 Cash Flow to Total Assets
- 80 Cash Flow to Liability
- 81 CFO to Assets
- 82 Cash Flow to Equity
- 83 Current Liability to Current Assets
- 84 Liability-Assets Flag
- 85 Net Income to Total Assets
- 86 Total assets to GNP price
- 87 No-credit Interval
- 88 Gross Profit to Sales
- 89 Net Income to Stockholder's Equity
- 90 Liability to Equity
- 91 Degree of Financial Leverage (DFL)
- 92 Interest Coverage Ratio (Interest expense 37
- 93 Net Income Flag
- 94 Equity to Liability

Methodology

I. Feature Selection & Engineering
II. Model Development
III. Model Evaluation

I. Feature Selection and Engineering

Problem: Too many features delays training times and may lead to less accurate results/failed convergence (ran into this problem for Linear Kernel SVM)

Solution: 3 Phase Preprocessing

1. Filtering

Highly correlated feature pairs were dropped out, leaving **79 features**

2. Selection

The **7 best fit** features were chosen using SKLearn's in-built feature selection package

3. Split

Data was split into test and train sets in a 7:3 ratio ~ 4773 training instances and 2046 test instances

I. Feature Selection and Engineering

Features Selected:

- Operating profit per share
- After Tax Net Profit Growth Rate
- Net Assets
- Borrowing Dependency
- Inventory Turnover Rate
- Working Capital
- Working Capital Turnover Rate

II. Model Development

Two models were developed for this project: a **Support Vector Classifier (SVC)** and a **Random Forest Classifier (RF)**

II. Model Development - Support Vector Classifier

- One of the most common and reliable classification algorithms
- Works by plotting instances in a multi-dimensional feature space and finding a dividing "hyperplane" to sort them
- Parameters for this project:
 - Polynomial kernel used when data is not linearly separable (earlier attempts with Linear kernel would often fail to converge or have poor accuracy)
 - Balance class weight since instances of bankrupt and non bankrupt
 companies are unequal, we adjust model parameters to consider balance
 - Scaled gamma weights features equally

II. Model Development - Random Forest

- Fits a number of decision trees on data based on available features then takes aggregate results
- Commonly used in financial classification tasks such as credit card fraud detection, risk assessment, and options pricing determination
- Default sklearn parameters used
 - n_estimators = 100 :: 100 forests taken in aggregate

III. Model Evaluation

A series of metrics were used to evaluate model performance

01. Test Accuracy

Raw accuracy of models evaluated on testing set, given by number of correct predictions over total number of predictions

02. Confusion Matrix

Plot of model predictions vs. actual labels per category.
Used to compute:

- Precision = TP/(TP+FP)
- Recall = TP/(TP+FN)
- F1 = 2* (Precision*Recall)/(Precision+Recall)

03. Cross-fold Validation

Measures test accuracy over a number of resamples of the data to more accurately assess performance on unseen instances. In this project, we used **5-fold** validation

Results

Test Accuracy | Confusion Matrix | Cross-Fold

Test Accuracy

While both models performed well (over 90%), on the surface it seems like RF performed better. To validate this, we need to analyze deeper metrics

5-Cross Fold Validation

The results of the 5-Fold Cross validation support the RF model being more accurate than the SVC, suggesting that the data (like other financial datasets) is more suited to RF classification.

Non-normalized Confusion Matrices

Precision-Recall-F1

SVC

RF

	Non Bankrupt	Bankrupt
Precision	0.97	0.07
Recall	0.94	0.13
F1	0.96	0.09

	Non Bankrupt	Bankrupt
Precision	0.97	0.65
Recall	1	0.22
F1	0.99	0.33

Both models performed very well at correctly identifying non bankrupt companies, but struggled to identify bankrupt ones, with the RF performing notably better. **But why?**

Interpreting Results

Possible reasons why models struggled to classify bankrupt companies:

- Imbalance in dataset. Comparatively few instances of bankrupt companies to base predictions on. Both models were **underpredicting** bankruptcy
- Soon-to-be-bankrupt companies are very very difficult to distinguish from non-bankrupt ones (if shareholders knew, they would have already sold their stock!)
 - Financial and economic conditions can change rapidly
- Lack of time series data
 - Company financials need to be looked at over a period of time rather than just one slice as in the bankruptcy dataset

Interpreting Results

Why RF Outperformed

• The ensemble nature of Random Forest may provide better resilience against overfitting and contribute to its superior performance.

Interpretability vs. Performance

• Understanding how each tree contributes to the performance can be challenging making it harder to pinpoint the exact features and their interactions influencing the prediction

Potential Overfitting

• SVC's relatively higher recall but lower precision may suggest a propensity for overfitting, capturing more bankrupt instances but at the cost of increased false positives.

Conclusion

Conclusion

The two models developed were able to successfully classify bankrupt vs. non-bankrupt companies at above 90% test accuracy (both raw and cross fold validated).

Across all evaluation metrics used, the RF classifier performed better than the SVC, however both struggled with underpredicting bankrupt instances.

Recommendations

Addressing Data Imbalances

- Wang and Liu (2021) presents a three-step framework.
- Consider undersampling techniques to address data imbalance.
- Mix and match unersampling techniques and machine learning models to achieve optimality.

Time Series Analysis of Features

- Relevant trends and patterns may be revealed when considering time series data.
- Temporal dynamics between financial and economic conditions can be observed.

Feature Importance, Ensemble Techniques

- Demystify the complexity of random forest decision-making process.
- Strike a balance between model interpretability and performance.
- Leverage domain knowledge as a guide for feature selection and engineering.

References

References

- Brownlee, J. (2018, May 22). A Gentle Introduction to k-fold Cross-Validation.
 MachineLearningMastery.Com. https://machinelearningmastery.com/k-fold-cross-validation/
- IBM. (2023). What is Random Forest? | IBM. https://www.ibm.com/topics/random-forest
- Shung, K. P. (2020, April 10). Accuracy, Precision, Recall or F1? Medium.
 https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
- Sklearn.svm.SVC scikit-learn 1.3.2 documentation. (n.d.). Retrieved December 9, 2023,
 from https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
- Soriano, F. (2020). Company Bankruptcy Prediction. Kaggle.
 https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction
- Wang, H., & Liu, X. (2021). Undersampling bankruptcy prediction: Taiwan bankruptcy data. PLOS ONE, 16(7), e0254030–e0254030. https://doi.org/10.1371/journal.pone.0254030