ACTOnco® + Report

PATIENT	
Identifier: 黃憲儒	Patient ID: 37863095
Date of Birth: Feb 21, 1960	Gender: Male
Diagnosis: Pancreatic cancer	
ORDERING PHYSICIAN	
Name: 姜乃榕醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11291501A Collection site: Adrenal gland	Type: FFPE tissue
Date received: May 19, 2023 Lab ID: AA-23-03249	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in P	atient's Cancer Type	Probable Sensitive in Other
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types
	Not de	tected	

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
KRAS G12R	-	Cetuximab, Panitumumab
STK11 L105fs	Everolimus, Trametinib	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 20

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
KRAS	G12R	16.3%
STK11	L105fs	36.3%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
	Not	detected	

- Fusions

Fusion Gene & Exon	Transcript ID
N	o fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	0.7 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 33% tumor purity.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **2** of **20**

ACTOnco®+ Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect
Level 3A		
KRAS G12R	Cetuximab, Panitumumab	resistant
Level 4		
STK11 L105fs	Everolimus, Trametinib	sensitive

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
ЗА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345%35F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **3** of **20**

黃憲儒

Project ID: C23-M001-01546 Report No.: AA-23-03249_ONC Date Reported: Jun 01, 2023

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
Not o	etected

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to hormonal therapies.

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **4** of **20**

VARIANT INTERPRETATION

KRAS G12R

Biological Impact

The V-Ki-Ras2 Kirsten Rat Sarcoma 2 Viral Oncogene Homolog (KRAS) gene encodes a small GTPase protein, a member of the RAS family of small GTPases, which catalyze the hydrolysis of GTP to GDP. RAS proteins cycle between an active (GTP-bound) and an inactive (GDP-bound) state, to activate the downstream oncogenic pathways, including the PI3K/AKT/mTOR and MAPK pathways^[1]. KRAS mutations occur primarily in three hotspots G12, G13 and Q61, and less frequently in codon A146[1][2]. These are activating mutations that lead to constitutive activation and persistent stimulation of the downstream signaling pathways[3][4]. Mutations in KRAS have been reported in a diverse spectrum of human malignancies, including pancreatic carcinomas (>80%)[1][5], colon carcinomas (40-50%)[6][7], and lung carcinomas (30-50%)[8][9], but are also present in biliary tract malignancies, endometrial cancer, cervical cancer, bladder cancer, liver cancer, myeloid leukemia and breast cancer[2].

KRAS G12R is a hotspot mutation that lies within a GTP binding region of the KRAS protein (UniProtKB). G12R results in decreased KRAS GTPase activity and increased activation of downstream signaling in vitro[10][11].

Therapeutic and prognostic relevance

Cetuximab and panitumumab are FDA-approved for treating RAS wild-type metastatic colorectal cancer. The NCCN for CRC recommends cetuximab and panitumumab use only if both KRAS and NRAS genes are normal.

KRAS mutation has been determined as an inclusion criterion for the trials evaluating MEK inhibitors efficacies in various types of solid tumors (NCT03704688, NCT02399943, NCT02285439, NCT03637491, NCT04214418).

KRAS mutations are associated with a lack of efficacy of EGFR TKIs^{[12][13][14]}. Some case reports suggest that MEK inhibitors may benefit patients with KRAS mutations, as shown in cervical and ovarian cancer cases (Am J Clin Exp Obstet Gynecol 2015;2(3):140-143]^{[15][16]}. However, a randomized Phase II study did not find trametinib to be superior to docetaxel in KRAS-mutant non-small cell lung cancer patients[17]. MEK inhibitors as a monotherapy have limited response[18].

Combining MEK and mTOR inhibitors is being evaluated as a potential strategy in RAS-mutant CRC[19][20]. The combination of trametinib and palbociclib has resulted in objective responses in KRAS mutant models[21].

Sorafenib has been shown to be beneficial in KRAS-mutant CRC/NSCLC, and KRAS-amplified melanoma^{[22][23][24]}. KRAS mutations in exon 2 (codon 12 or 13) and codon 61 have been associated with poor prognosis in CRC[25].

Patients with KRAS or BRAF mutations in low-grade serous carcinoma of the ovary or peritoneum had better overall survival than those with wild-type genes[26]. In ovarian serous borderline tumor, KRAS G12V mutation was linked to shorter survival time[27].

In 242 patients with unresectable pancreatic cancer, the presence of KRAS G12R (N=17) or G12D (N=92) was associated with poorer prognosis (overall survival HR 1.6; 95% confidence interval 1.11-2.28)[28].

In a Phase II trial, a patient with Erdheim-Chester disease harboring KRAS G12R and ARAF P216A achieved a complete response to cobimetinib treatment[29]. An exploratory study demonstrated that pancreatic cancer patients with KRAS G12R mutation had better response to the combination of gemcitabine and cobimetinib than patients with KRAS G12D and G12V. One of six patients with KRAS G12R had partial response and five had stable disease and median PFS was 6 months[30].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 5 of 20

黃憲儒

Project ID: C23-M001-01546 Report No.: AA-23-03249_ONC Date Reported: Jun 01, 2023

ACTOnco® + Report

STK11 L105fs

Biological Impact

The serine/threonine kinase 11 (STK11, also known as LKB1) gene encodes the multifunctional serine/threonine kinase, a tumor suppressor that functions as an inhibitor for the mTOR signaling pathway^{[31][32]}. STK11 is a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[33][34]}. In the mouse model, loss of STK11 promotes aggressive endometrial and squamous cell carcinomas^{[35][36]}. Mutations in STK11 have been found in lung, breast, cervical, testicular, and liver cancers, as well as malignant melanoma, pancreatic and biliary carcinoma^[37]. Germline mutations in STK11 are found in 30-70% of Peutz-Jeghers syndrome^[38].

L105fs mutation results in a change in the amino acid sequence beginning at 105, likely to cause premature truncation of the functional STK11 protein (UniProtKB). This mutation is predicted to lead to a loss of STK11 protein function, despite not being characterized in the literature.

Therapeutic and prognostic relevance

A clinical study in a pancreatic cancer patient with Peutz-Jeghers syndrome whose tumor harboring an STK11 D194E mutation coupled with the loss of heterozygosity of the other STK11 allele displayed partial response to the everolimus treatment^[39]. In another clinical case study, an adrenocorticotropic pituitary carcinoma patient whose tumor bearing an STK11 inactivating mutation responded to a combination of everolimus and radiotherapy^[40].

Preclinical data suggested that lung cancer cell lines with STK11 inactivating mutations may confer increased sensitivity to the MEK-1 and MEK-2 inhibitor, trametinib^[41].

Inactivating mutations of STK11 was shown to be associated with resistance to immune checkpoint blockade in KRAS-mutant lung adenocarcinoma (LUAC) and NSCLC (DOI: 10.1200/JCO.2017.35.15_suppl.9016)[42][43][44]. It was proposed that loss of STK11 negatively impacts the number and function of tumor-infiltrating T cells (TILs) and PD-L1 expression on tumor cells and therefore results in an ineffective response to PD-1-targeting antibodies[45].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 6 of 20

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[46]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)
NCT01524783	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]
DOI 500 0[47]	Breast cancer (Approved on 2012/07/20)
BOLERO-2 ^[47] NCT00863655	ER+/HER2-
NC10003033	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]
EXIST-2	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on 2012/04/26)
NCT00790400	
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]
RADIANT-3 ^[48]	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)
NCT00510068	•
110100010000	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]
EXIST-1 ^[49]	Subependymal giant cell astrocytoma (Approved on 2010/10/29)
NCT00789828	Everolimus vs. Placebo [ORR(%): 35.0]
RECORD-1 ^[50]	Renal cell carcinoma (Approved on 2009/05/30)
NCT00410124	-
NG 1004 10 124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]

Trametinib (MEKINIST)

Trametinib is an anti-cancer inhibitor which targets MEK1 and MEK2. Trametinib is developed and marketed by GlaxoSmithKline (GSK) under the trade name MEKINIST.

- FDA Approval Summary of Trametinib (MEKINIST)

0000400004	Low-grade glioma (Approved on 2023/03/09)	
CDRB436G2201	BRAF V600E	
NCT02684058	Dabrafenib + trametinib vs. Carboplatin + vincristine [ORR(%): 46.6 vs. 10.8]	
BRF117019, NCI-MATCH,	Cancer (Approved on 2022/06/22)	
CTMT212X2101	BRAF V600E	
NCT02034110,		
NCT02465060,	Dabrafenib + trametinib [ORR(adult patients)(%): 41.0, ORR(pediatric patients)(%): 25.0]	
NCT02124772		
DDE447040[51]	Anaplastic thyroid cancer (Approved on 2018/05/04)	
BRF117019 ^[51] NCT02034110	BRAF V600E	
	Dabrafenib + trametinib [ORR(%): 61.0]	

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **7** of **20**

ACTOnco®+ Report

BRF113928 ^[52]	Non-small cell lung cancer (Approved on 2017/06/22)					
NCT01336634	BRAF V600E					
NC101330034	Trametinib + dabrafenib vs. Dabrafenib [ORR(%): 63.0 vs. 27.0, DOR(M): 12.6 vs. 9.9]					
COMBI-d ^[53]	Melanoma (Approved on 2014/01/10)					
NCT01584648	BRAF V600E/K					
NC101304040	Trametinib + dabrafenib vs. Dabrafenib + placebo [PFS(M): 9.3 vs. 8.8]					
METRIC ^[54]	Melanoma (Approved on 2013/05/29)					
NCT01245062	BRAF V600E/K					
NC101245002	Trametinib vs. Dacarbazine or paclitaxel [PFS(M): 4.8 vs. 1.5]					

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345%35F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 8 of 20

黄憲儒

Project ID: C23-M001-01546 Report No.: AA-23-03249_ONC Date Reported: Jun 01, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **9** of **20**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
KRAS	G12R	2	c.34G>C	NM_004985	COSM518	16.3%	2877
STK11	L105fs	2	c.314del	NM_000455	-	36.3%	592

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-23-03249

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **10** of **20**

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene Amino Acid Change		Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ATRX	I901V	I901V 9 c.2		NM_000489	-	99.5%	373
BTK	R28H	2	c.83G>A	NM_000061	-	31.8%	362
DDR2	A115D	5	c.344C>A	NM_006182	-	43.6%	1406
EP300	K639R	10	c.1916A>G	NM_001429	-	42.3%	997
ERCC5	G805R	11	c.2413G>A	NM_000123	-	52.2%	1760
GATA1	H71R	2	c.212A>G	NM_002049	-	99.7%	379
JAK2	I724T	17	c.2171T>C	NM_004972	-	64.7%	102
KMT2D	D966V	11	c.2897A>T	NM_003482	-	39.9%	646
LRP1B	R2165W	41	c.6493C>T	NM_018557	-	36.5%	595
MUC16	T8397I	3	c.25190C>T	NM_024690	-	29.2%	1592
MUC6	Splice region	-	c.1453+4C>T	NM_005961	COSM2108620	47.1%	238
NOTCH1	A2548T	34	c.7642G>A	NM_017617	COSM6903808	48.6%	321
PIK3R3	P41S	2	c.121C>T	NM_003629	-	38.0%	645
RAD52	R55H	3	c.164G>A	NM_134424	COSM2064088	42.1%	1155

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **11** of **20**

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: May 16, 2023
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11291501A
- Collection site: Adrenal gland
- Examined by: Dr. Yun-An Chen
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 20%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 50%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - 5. Additional comment: NA
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

- Panel: ACTOnco®+

DNA test

- Mean Depth: 849x
- Target Base Coverage at 100x: 95%

RNA test

- Average unique RNA Start Sites per control GSP2: 149

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 12 of 20

黄憲儒

Project ID: C23-M001-01546 Report No.: AA-23-03249_ONC Date Reported: Jun 01, 2023

ACTOnco® + Report

LIMITATIONS

- 1. This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage \geq 20, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \geq 85\%$ with a mean coverage \geq 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco $^{\otimes}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to \geq 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to \leq 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is \leq 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be \geq 10.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

 минисковить
 Email: service@actgenomics.com
 Т: +886-2-2795-3660
 F: +886-2-2795-5016

AG4-QP4001-02(07) page 13 of 20

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號 Yun Yu Chen

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-50

AG4-QP4001-02(07) page **14** of **20**

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	МҮС	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NОТСНЗ</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGER	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1	
		EGFK											

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **15** of **20**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Not Applicable.

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

1: Everolimus; 2: Trametinib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **16** of **20**

黄憲儒

Project ID: C23-M001-01546 Report No.: AA-23-03249_ONC Date Reported: Jun 01, 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 20

ACTOnco® + Report

REFERENCE

- PMID: 2453289; 1988, Cell;53(4):549-54

 Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.
- PMID: 2114981; 1990, Eur J Clin Invest;20(3):225-35 ras oncogenes: their role in neoplasia.
- PMID: 20617134; 2010, J Biomed Biotechnol;2010():150960
 Clinical relevance of KRAS in human cancers.
- PMID: 21993244; 2011, Nat Rev Cancer;11(11):761-74 RAS oncogenes: weaving a tumorigenic web.
- PMID: 3047672; 1988, Nucleic Acids Res;16(16):7773-82
 KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas.
- PMID: 3587348; 1987, Nature;327(6120):293-7
 Prevalence of ras gene mutations in human colorectal cancers.
- PMID: 1942608; 1991, Nihon Shokakibyo Gakkai Zasshi;88(8):1539-44
 [Prevalence of K-ras gene mutations in human colorectal cancers].
- PMID: 2252272; 1990, Am Rev Respir Dis;142(6 Pt 2):S27-30
 The ras oncogenes in human lung cancer.
- PMID: 1486840; 1992, Environ Health Perspect;98():13-24
 Role of proto-oncogene activation in carcinogenesis.
- PMID: 23455880; 2013, J Cancer Res Clin Oncol;139(6):953-61
 KRAS allel-specific activity of sunitinib in an isogenic disease model of colorectal cancer.
- PMID: 26037647; 2015, Mol Cancer Res;13(9):1325-35
 Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations.
- PMID: 18349398; 2008, J Clin Oncol;26(9):1472-8
 Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib.
- 13. PMID: 23401440; 2013, J Clin Oncol;31(8):1112-21 KRAS mutation: should we test for it, and does it matter?
- PMID: 18024870; 2007, J Clin Oncol;25(33):5240-7
 Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer.
- PMID: 29946554; 2018, Gynecol Oncol Rep;25():41-44
 Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment.
- PMID: 26075998; 2014, Gynecol Oncol Rep;10():28-9
 Response to MEK inhibitor in small cell neuroendocrine carcinoma of the cervix with a KRAS mutation.
- 17. PMID: 25722381; 2015, Ann Oncol;26(5):894-901
 A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC)†.
- 18. PMID: 24947927; 2014, Clin Cancer Res;20(16):4251-61
 Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 20

ACTOnco® + Report

- PMID: 27340376; 2016, Curr Colorectal Cancer Rep;12():141-150
 Molecular Subtypes and Personalized Therapy in Metastatic Colorectal Cancer.
- 20. PMID: 22392911; 2012, Clin Cancer Res;18(9):2515-25 Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas.
- PMID: 26369631; 2016, Clin Cancer Res;22(2):405-14
 Sensitivity of KRAS-Mutant Colorectal Cancers to Combination Therapy That Cotargets MEK and CDK4/6.
- 22. PMID: 24407191; 2014, Br J Cancer;110(5):1148-54
 Sorafenib and irinotecan (NEXIRI) as second- or later-line treatment for patients with metastatic colorectal cancer and KRAS-mutated tumours: a multicentre Phase I/II trial.
- 23. PMID: 23224737; 2013, Clin Cancer Res;19(3):743-51
 A phase II study of sorafenib in patients with platinum-pretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation.
- 24. PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82 Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.
- PMID: 15923428; 2005, Ann Oncol;16 Suppl 4():iv44-49
 Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies.
- PMID: 26484411; 2015, Br J Cancer;113(9):1254-8
 Impact of mutational status on survival in low-grade serous carcinoma of the ovary or peritoneum.
- 27. PMID: 24549645; 2013, J Pathol;231(4):449-56
 KRAS (but not BRAF) mutations in ovarian serous borderline tumour are associated with recurrent low-grade serous carcinoma.
- 28. PMID: 22983505; 2013, J Gastroenterol;48(5):640-6
 Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer.
- PMID: 30867592; 2019, Nature;567(7749):521-524
 Efficacy of MEK inhibition in patients with histiocytic neoplasms.
- 30. PMID: 34901697; 2021, J Pancreat Cancer;7(1):65-70 Cobimetinib Plus Gemcitabine: An Active Combination in KRAS G12R-Mutated Pancreatic Ductal Adenocarcinoma Patients in Previously Treated and Failed Multiple Chemotherapies.
- PMID: 19029933; 2008, Oncogene;27(55):6908-19
 LKB1; linking cell structure and tumor suppression.
- PMID: 19584313; 2009, Physiol Rev;89(3):777-98
 LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism.
- PMID: 20142330; 2010, Dis Model Mech;3(3-4):181-93
 Lkb1 inactivation is sufficient to drive endometrial cancers that are aggressive yet highly responsive to mTOR inhibitor monotherapy.
- PMID: 17676035; 2007, Nature; 448(7155):807-10
 LKB1 modulates lung cancer differentiation and metastasis.
- PMID: 18245476; 2008, Cancer Res;68(3):759-66
 Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas.
- PMID: 18172296; 2008, Cancer Res;68(1):55-63
 LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis.
- 37. PMID: 25244018; 2014, Int J Mol Sci;15(9):16698-718

 Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 19 of 20

黃憲儒

Project ID: C23-M001-01546 Report No.: AA-23-03249_ONC Date Reported: Jun 01, 2023

ACTOnco® + Report

- PMID: 9425897; 1998, Nat Genet;18(1):38-43
 Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase.
- PMID: 21189378; 2011, J Clin Oncol;29(6):e150-3
 mTOR inhibitor treatment of pancreatic cancer in a patient With Peutz-Jeghers syndrome.
- PMID: 27615706; 2016, CNS Oncol;5(4):203-9
 Widely metastatic atypical pituitary adenoma with mTOR pathway STK11(F298L) mutation treated with everolimus therapy.
- 41. PMID: 27821489; 2017, Cancer Res;77(1):153-163
 A Transcriptional Signature Identifies LKB1 Functional Status as a Novel Determinant of MEK Sensitivity in Lung Adenocarcinoma.
- 42. PMID: 29764856; 2018, Clin Cancer Res;24(22):5710-5723
 TP53, STK11, and EGFR Mutations Predict Tumor Immune Profile and the Response to Anti-PD-1 in Lung Adenocarcinoma.
- PMID: 29773717; 2018, Cancer Discov;8(7):822-835
 STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma.
- 44. PMID: 29337640; 2018, J Clin Oncol;36(7):633-641
 Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing.
- 45. PMID: 26833127; 2016, Cancer Res;76(5):999-1008 STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.
- 46. PMID: 26703889; 2016, Lancet;387(10022):968-977
 Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
- PMID: 22149876; 2012, N Engl J Med;366(6):520-9
 Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.
- 48. PMID: 21306238; 2011, N Engl J Med;364(6):514-23 Everolimus for advanced pancreatic neuroendocrine tumors.
- 49. PMID: 23158522; 2013, Lancet;381(9861):125-32 Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.
- 50. PMID: 18653228; 2008, Lancet; 372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 51. PMID: 29072975; 2018, J Clin Oncol;36(1):7-13

 Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer.
- 52. PMID: 27080216; 2016, Lancet Oncol;17(5):642-50
 Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.
- PMID: 25265492; 2014, N Engl J Med;371(20):1877-88
 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- PMID: 22663011; 2012, N Engl J Med;367(2):107-14
 Improved survival with MEK inhibition in BRAF-mutated melanoma.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 20