SCGSR final report

2023-06-21

Sample Summary

Soils from northwest Alaska were homogenized and pre-incubated at -2 and -6 degrees Celsius for three months after which they were incubated at 2,4,6,8,10 degrees Celsius for one week. After the week long incubation soils were extracted using 0.5M K2SO4, and chloroform extracted to measure microbial biomass and nutrient concentrations. Sub-samples were also sent to PNNL for MPLEx (Methanol chloroform extraction) to provide more comprehensive analysis of the molecular composition of organic matter using FT-ICR, NMR, GC-MS and LC-MS techniques. Lipidomics were also performed to ascertain if there were any significant shifts in microbial biomass.

Respiration Results

Respiration measurements were taken daily during the incubation using a Li-850 bench top respiration unit. Below are the respiration rates for each sample, as well as the calculates total C respired. Linear mixed effects model showed significant respiration variation by incubation and pre incubation temperatures. An asterisks indicates a significant (p <= 0.05, ANOVA) difference in pre-incubation temperature.

Soil Nutrients

Soil K2SO4 extracts were utilized to measure ammonium, Nitrate, Total free primary amines, phosphate, Total reducing sugars. Below are the concentration data. An asterisks indicates a significant (p<=0.05, ANOVA) difference in pre-incubation temperature.

Microbial Biomass

Soil K2SO4 extracts were utilized to measure ammonium, Nitrate, Total free primary amines, phosphate, Total reducing sugars. Below is the concentration data. An asterisks indicates a significant ($p \le 0.05$, ANOVA) difference in pre-incubation temperature.

GC-MS

Below is the relative quantification of compounds identified by gas chromatography within the MPLEx extracts. Little to no variation was identified that corresponds to the more broad metrics above in the soil nutrient section. The majority of compounds measured were unidentified. Volcano plot can be used to identify the compounds that are significantly greater between pre incubation temperature (p<0.05, ANOVA). After which we used a PCA to visualize separation between the pre incubation temperatures across significantly different compounds. PERMANOVA results are displayed in the table below the PCAs to show variation between treatments.

GC volcano

LC-MS

Below is the relative quantification of compounds identified by liquid chromatography within the MPLEx extracts. Little to no variation was identified that corresponds to the more broad metrics above in the soil nutrient section. The majority of compounds measured were unidentified. Volcano plot can be used to identify the compounds that are significantly greater between pre incubation temperature (p<0.05, ANOVA). After which we used a PCA to visualize separation between the pre incubation temperatures across significantly different compounds. PERMANOVA results are displayed in the table below the PCAs to show variation between treatments.

LC volcano

Table 1: Permanova results significant compounds only

	Df	SumOfSqs	R2	F	Pr(>F)
pre	1	0.0025136	0.1534787	7.235920	0.001
inc	5	0.0032903	0.2009044	1.894371	0.015
pre:inc	5	0.0025839	0.1577713	1.487660	0.098
Residual	23	0.0079896	0.4878455	NA	NA
Total	34	0.0163774	1.0000000	NA	NA

Lipids

Lipid analysis was done via liquid chrometography on MEPLEx extracts. Some variation was identified between pre-incubation temperatures, though little was biologically significant. Conclusion that small changes in biomass were present but not significant. A big missing piece to this analysis would be community composition. Little no no variation was observed within this data set. PCAs below show little to no separation between incubation and pre incubation temperatures.

Table 2: Permanova results all

	Df	SumOfSqs	R2	F	Pr(>F)
Pre	1	0.0000127	0.0312988	1.259669	0.302
Inc	5	0.0000742	0.1823599	1.467871	0.175
Pre:Inc	5	0.0000773	0.1900165	1.529501	0.168
Residual	24	0.0002427	0.5963247	NA	NA
Total	35	0.0004071	1.0000000	NA	NA

Table 3: Permanova results pos

	Df	SumOfSqs	R2	F	<u>Pr(>F)</u>
Pre	1	0.0000064	0.0153686	0.5551514	0.594
Inc	5	0.0000636	0.1537306	1.1106287	0.366
Pre:Inc	5	0.0000689	0.1664960	1.2028526	0.328
Residual	24	0.0002749	0.6644048	NA	NA
Total	35	0.0004138	1.0000000	NA	NA

Table 4: Permanova results neg

	Df	SumOfSqs	R2	F	Pr(>F)
Pre	1	0.0000268	0.0346902	1.933659	0.170
Inc	5	0.0002308	0.2982330	3.324750	0.009
Pre:Inc	5	0.0001830	0.2365126	2.636681	0.035
Residual	24	0.0003332	0.4305642	NA	NA
Total	35	0.0007739	1.0000000	NA	NA

FT-MS (FT-ICR)

FTICR was performed on MEPLEx extracts to gain a qualitative understanding of the changes in organic matter composition after the incubation. There appear to be differences between pre-incubation temperatures, particularly in terms of the number of unique compounds, which could be indicative of microbial processing of organic matter and production of new organic compounds.

FTICR Van krevelen diagrams:

FTICR Common vs unique peaks by treatment:

 \mathbf{All}

NULL

Table 5: Unique between preincubation temperatures at each incubation temperature $\,$

	-	-	-	-	-	-	-	-	-	_	_	
Class	$2_{\rm Pre}$	$6_{\rm Pre}$	2_2	6_2	2_4	6_4	2_6	6_6	2_8	6_{-8}	2_10	6_10
aliphatic	313	114	465	49	402	56	408	46	520	14	566	60
aromatic	34	13	18	16	21	14	13	18	48	3	21	35
condensed	15	2	27	3	NA	18	9	3	25	NA	7	9
aromatic												
unsaturated/lignin	85	79	86	54	69	42	57	27	166	9	69	75

Polar

Table 6: Unique between preincubation temperatures at each incubation temperature polar

		_	_	_	_	_	_	_	_	_	_	
Class	$2_{\rm Pre}$	$6_{\rm Pre}$	2_2	6_2	2_4	6_4	2_6	6_6	2_8	6_8	2_10	6_10
aliphatic	100	126	122	50	67	74	57	63	265	13	46	105
aromatic	28	14	10	17	12	14	8	20	42	3	10	38
condensed	13	3	18	3	NA	18	7	3	24	NA	4	10
aromatic												
unsaturated/lignin	67	84	42	60	45	43	31	28	142	9	28	84

Non-Polar

NULL

Table 7: Unique between preincubation temperatures at each incubation temperature nonpolar

	_	_	_	_	_	_	_	_	_	_	_	
Class	$2_{\rm Pre}$	$6_{\rm Pre}$	2_2	6_2	2_4	6_4	2_6	6_6	2_8	6_8	2_10	6_10
aliphatic	272	34	456	15	445	13	449	3	411	8	633	3
aromatic	13	1	13	1	14	NA	10	NA	11	1	20	NA
condensed	5	NA	11	NA	2	NA	3	NA	4	NA	4	NA
aromatic												
unsaturated/lignin	a 49	20	111	3	77	6	102	NA	68	2	116	1

Class 2_Pre 6_Pre 2_2 6_2 2_4 6_4 2_6 6_6 2_8 6_8 2_10 6_10

FTICR relative abundance and PCAs:

Table 8: Permanova results: Axis class Polar only

	Df	SumOfSqs	R2	F	Pr(>F)
pre	1	0.0004596	0.0321579	10.58298	0.001
inc	5	0.0066832	0.4676090	30.77754	0.001
pre:inc	5	0.0029803	0.2085238	13.72482	0.001
Residual	96	0.0041692	0.2917093	NA	NA

	Df	SumOfSqs	R2	F	Pr(>F)
Total	107	0.0142922	1.0000000	NA	NA

Table 9: Permanova results: Axis class Non-Polar only

pre 1 0.0050061 0.1717359 26.4653827 0.001 inc 5 0.0052433 0.1798715 5.5438239 0.001 pre:inc 5 0.0009308 0.0319305 0.9841303 0.428 Residual 95 0.0179699 0.6164622 NA NA						
inc 5 0.0052433 0.1798715 5.5438239 0.001 pre:inc 5 0.0009308 0.0319305 0.9841303 0.429 Residual 95 0.0179699 0.6164622 NA NA		Df	SumOfSqs	R2	F	Pr(>F)
pre:inc 5 0.0009308 0.0319305 0.9841303 0.429 Residual 95 0.0179699 0.6164622 NA NA	pre	1	0.0050061	0.1717359	26.4653827	0.001
Residual 95 0.0179699 0.6164622 NA NA	inc	5	0.0052433	0.1798715	5.5438239	0.001
	pre:inc	5	0.0009308	0.0319305	0.9841303	0.429
Total 106 0.0291500 1.00000000 NA NA	Residual	95	0.0179699	0.6164622	NA	NA
	Total	106	0.0291500	1.0000000	NA	NA

Session Info

Date run: 2023-07-13

```
## R version 4.2.3 (2023-03-15 ucrt)
```

Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

##

Matrix products: default

##

locale:

[1] LC_COLLATE=English_United States.utf8

[2] LC_CTYPE=English_United States.utf8

[3] LC_MONETARY=English_United States.utf8

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

```
##
## attached base packages:
## [1] grid
                 stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
## other attached packages:
  [1] ropls_1.30.0
                            trelliscopejs_0.2.6 pmartR_2.4.0
   [4] agricolae_1.3-6
                            knitr_1.43
                                                 nlme 3.1-162
## [7] cowplot_1.1.1
                            ggpubr_0.6.0
                                                 janitor_2.2.0
## [10] pracma_2.4.2
                            reshape2_1.4.4
                                                 ggbiplot_0.55
## [13] scales_1.2.1
                            plyr_1.8.8
                                                 vegan_2.6-4
                                                 lubridate_1.9.2
## [16] lattice_0.20-45
                            permute_0.9-7
                                                 dplyr_1.1.2
## [19] forcats_1.0.0
                            stringr_1.5.0
## [22] purrr_1.0.1
                            readr_2.1.4
                                                 tidyr_1.3.0
## [25] tibble_3.2.1
                            ggplot2_3.4.1
                                                 tidyverse_2.0.0
## [28] tarchetypes_0.7.7
                            targets_1.2.0
##
## loaded via a namespace (and not attached):
##
     [1] backports_1.4.1
                                     qqman_0.1.8
##
     [3] igraph_1.5.0
                                     lazyeval 0.2.2
##
     [5] splines_4.2.3
                                     AlgDesign_1.2.1
                                     GenomeInfoDb 1.34.9
##
     [7] listenv_0.9.0
##
     [9] digest 0.6.33
                                     foreach_1.5.2
##
    [11] htmltools 0.5.5
                                     fansi 1.0.4
  [13] magrittr_2.0.3
                                     checkmate_2.2.0
   [15] base64url_1.4
                                     cluster_2.1.4
##
   [17] tzdb_0.4.0
                                     limma_3.54.2
##
   [19] globals_0.16.2
                                     matrixStats_1.0.0
##
  [21] timechange_0.2.0
                                     prettyunits_1.1.1
  [23] colorspace_2.1-0
                                     haven_2.5.3
##
   [25] xfun_0.39
                                     callr_3.7.3
##
   [27] crayon_1.5.2
                                     RCurl_1.98-1.12
##
   [29] jsonlite_1.8.7
                                     iterators_1.0.14
##
   [31] glue_1.6.2
                                     gtable_0.3.3
##
    [33] zlibbioc 1.44.0
                                     XVector 0.38.0
##
  [35] webshot_0.5.5
                                     DelayedArray_0.24.0
  [37] questionr 0.7.8
                                     car 3.1-2
##
  [39] BiocGenerics_0.44.0
                                     abind_1.4-5
   [41] rstatix_0.7.2
                                     miniUI_0.1.1.1
##
##
  [43] Rcpp_1.0.11
                                     MultiDataSet_1.26.0
  [45] viridisLite 0.4.2
                                     xtable 1.8-4
##
  [47] progress_1.2.2
                                     mclust_6.0.0
##
   [49] stats4_4.2.3
                                     httr 1.4.6
##
  [51] htmlwidgets_1.6.2
                                     calibrate_1.7.7
  [53] ellipsis_0.3.2
                                     farver_2.1.1
##
   [55] pkgconfig_2.0.3
                                     utf8_1.2.3
##
   [57] labeling_0.4.2
                                     tidyselect_1.2.0
##
  [59] rlang_1.1.1
                                     later_1.3.1
  [61] munsell_0.5.0
                                     tools_4.2.3
##
   [63] cli_3.6.1
                                     generics_0.1.3
## [65] broom_1.0.5
                                     evaluate_0.21
## [67] fastmap_1.1.1
                                     yaml_2.3.7
## [69] processx_3.8.2
                                     fs_1.6.2
## [71] future.callr_0.8.1
                                     future 1.33.0
```

```
## [73] mime_0.12
                                     ggExtra_0.10.0
                                     rstudioapi_0.15.0
##
   [75] compiler_4.2.3
   [77] plotly_4.10.2
                                     ggsignif_0.6.4
## [79] klaR_1.7-2
                                     stringi_1.7.12
   [81] highr_0.10
##
                                     ps_1.7.5
##
  [83] Matrix_1.6-0
                                     vctrs_0.6.3
## [85] pillar 1.9.0
                                     lifecycle 1.0.3
## [87] furrr_0.3.1
                                     combinat_0.0-8
##
   [89] data.table_1.14.8
                                     bitops_1.0-7
##
  [91] httpuv_1.6.11
                                     GenomicRanges_1.50.2
## [93] R6_2.5.1
                                     promises_1.2.0.1
## [95] IRanges_2.32.0
                                     parallelly_1.36.0
## [97] codetools_0.2-19
                                     MASS_7.3-58.2
## [99] SummarizedExperiment_1.28.0 withr_2.5.0
## [101] S4Vectors_0.36.2
                                     autocogs_0.1.4
## [103] GenomeInfoDbData_1.2.9
                                     mgcv_1.8-42
## [105] parallel_4.2.3
                                     hms_1.1.3
## [107] MultiAssayExperiment_1.24.0 labelled_2.12.0
## [109] rmarkdown_2.23
                                     snakecase_0.11.0
## [111] MatrixGenerics 1.10.0
                                     carData_3.0-5
## [113] DistributionUtils_0.6-0
                                     Biobase_2.58.0
## [115] shiny_1.7.4.1
                                     base64enc_0.1-3
```