Algebra I – Prof. Christian Urech

Mitschrift: Franz Nowak

Herbstsemester 2025

Vorlesung 1

Definition 1. Eine **Gruppe** ist eine Menge G zusammen mit einer Verknüpfung $*: G \to G, (g,h) \to g * h, sodass:$

- (1) (Assoziativität) $\forall g, h, k \in G: (g * h) * k = g * (h * k)$
- (2) (Neutrales Element) $\exists e \in G : g * e = e * g = g \quad \forall g \in G$
- (3) (Inverses Element) $\forall g \in G \exists g^{-1} \in G \text{ s.d. } g * g^{-1} = g^{-1} * g = e$

Eine Gruppe ist **abelsch** (kommutativ), wenn $\forall g, h \in G, g * h = h * g$.

Wir schreiben oft 1 oder 1_G für e und gg' für g*g' mit $g,g' \in G$. Wenn G kommutativ ist, dann schreiben wir e=0 und a+b für a*b. Des Weiteren ist $a^n:=\overbrace{a\cdots a}^{\text{n-mal}}$ und $a^0:=1$.

Bemerkung 1. Wenn G assoziativ ist, dann ist $g_1g_2 \cdots g_n$ eindeutig definiert $(f\ddot{u}r \ g_1, g_2, \dots, g_n \in G)$.

Satz 1. (a) Das neutrale Element ist eindeutig.

(b) Das Inverse von jedem Element ist eindeutig.

Beweis: (a) Seien $e, e' \in G$ neutrale Elemente. Dann ist e = ee' = e'.

(b) Seien \overline{g}, g^{-1} Inverse von $g \in G$. Dann ist $\overline{g} = \overline{g}g = \overline{g}gg^{-1} = eg^{-1} = g^{-1}$.

Satz 2. Seien G eine Gruppe und $a, b, c \in G$, sodass ab = ac. Dann ist b = c.

Beweis:

$$ab = ac \implies \underbrace{a^{-1}a}_{e}b = \underbrace{a^{-1}a}_{e}c \implies b = c$$

Beispiele

- Ganze Zahlen mit Addition, $(\mathbb{Z}, +)$ oder \mathbb{Z}^+
- Reelle Zahlen mit Addition, $(\mathbb{R}, +)$ oder \mathbb{R}^+
- Körper K mit Addition, (K, +) oder K^+ . (Bemerkung: Keine Gruppe mit Multiplikation, wenn 0 enthalten ist.)
- Vektorraum V mit Addition, (V, +) oder V^+ .
- Allgemeine lineare Gruppe, $GL_n(K)$
- Spezielle lineare Gruppe, $SL_n(K) := \{A \in GL_n(K) \mid \det A = 1\}$
- Orthogonale Gruppe, O_n
- Unitäre Gruppe, U_n

Permutationsgruppen

Sei $\operatorname{Sym}(M)$ die Menge der Bijektionen von einer Menge M zu sich selbst, zusammen mit der Verknüpfung von Abbildungen. Die **symmetrische Gruppe** $S_n := \operatorname{Sym}(\{1, 2, \dots, n\})$ ist eine Gruppe mit n! Elementen.

Bemerkung 2. Jedes Element in S_n ist ein Produkt von Transpositionen.

Erinnerung: Eine **Transposition** ist eine Permutation, die genau zwei Elemente vertauscht und die übrigen gleich lässt.

Beispiel 1. S_3 , die Gruppe der Permutationen von $\{1, 2, 3\}$. Seien $\sigma, \tau \in S_3$,

$$\sigma \colon \begin{cases} 1 \to 2 \\ 2 \to 1 \\ 3 \to 3 \end{cases} \qquad \tau \colon \begin{cases} 1 \to 2 \\ 2 \to 3 \\ 3 \to 1 \end{cases}$$

Dann sind $\sigma^2 = id$ und $\tau^3 = id$.

$$\left. \begin{array}{l}
 \sigma\tau(1) = 1 \\
 \tau\sigma(1) = 3
 \end{array} \right\} \to \sigma\tau \neq \tau\sigma$$

D.h. S_3 ist nicht abelsch.

Untergruppen

Definition 2. Sei G eine Gruppe. Eine Untergruppe $H \leq G$ ist eine Teilmenge $H \subseteq G$ sodass

- (a) $\forall a, b \in H, ab \in H$
- (b) $1_G \in H$
- (c) $\forall a \in H, a^{-1} \in H$

Bemerkung 3. Jede Untergruppe ist eine Gruppe $(H, *_H)$. $*_G$ induziert $*_H$.

Bemerkung 4. $H \subseteq G$ mit $H \neq \{\emptyset\}$ ist eine Untergruppe von G genau wenn $\forall a, b \in H, ab^{-1} \in H$.

Beweis: " \Rightarrow ": klar.

"\(= \)": Bedingung: Seien $a, b \in H$.

- (a) $\Longrightarrow b^{-1} \in H$ $\Longrightarrow ab = a(b^{-1})^{-1} \in H$
- (b) $\implies aa^{-1} \in H, d.h.1_G \in H$
- (c) $\implies 1_G a^{-1} \in H \text{ d.h. } a^{-1} \in H$

Bemerkung 5. Jede Gruppe G hat als Untergruppen immer $\{1\}$ (die triviale Untergruppe) und G selbst. Andere Untergruppen heissen **echte** Untergruppen.

Beispiele

- $SL_n(K) \leq GL_n(K)$
- $n\mathbb{Z} \leq \mathbb{Z} \quad \forall n \in \mathbb{Z}$
- Sei $S^1 := \{c \in \mathbb{C}^* \mid |C| = 1\}. \ S^1 \leq \mathbb{C}^*. \ (\mathbb{C}^* := (\mathbb{C} \setminus \{0\}, \cdot))$
- $B_n(K) := \{A \in GL_n(K) \mid A \text{obere Dreiecksmatrix} \}.$ $B_n \leq GL_n(K).$
- $O_n \leq GL_n(\mathbb{R})$
- Die alternierende Gruppe $A_n \leq S_n$ ist die Untergruppe aller Permutationen, die das Produkt einer geraden Anzahl von Transpositionen sind.

Bemerkung 6. Seien G eine Gruppe und $a \in G$. Dann ist

$$\langle a \rangle := \{ \dots, a^{-2}, a^{-1}, a^0, a, a^2, \dots \}$$

eine Untergruppe von G, genannt die von a erzeugte zyklische Gruppe.

Bemerkung 7. $\langle a \rangle$ ist abelsch: $a^m a^n = a^{m+n} = a^{n+m} = a^n a^m$

Lemma 1. Sei $X \subseteq \mathbb{Z}$ die Menge der Zahlen n, sodass $a^n = 1$. Dann ist $X = m\mathbb{Z}$ für ein $m \in \mathbb{Z}$.

Beweis: X ist eine Untergruppe von \mathbb{Z} :

- (a) Seien $m, n \in X$, dann ist $a^{m+n} = a^m a^n = 1_G \implies m+n \in X$
- (b) $a^0 = 1_G \implies 0 \in X$
- (c) $n \in X \implies a^{-n} = a^n a^{-n} = 1_G \implies -n \in X$

Gemäss Übung ist X von der Form $m\mathbb{Z}$ für ein $m \in \mathbb{Z}$.

Falls $m \neq 0$:

Für $n \in \mathbb{Z}$, schreibe n = km + r für ein $k \in \mathbb{Z}$ s.d. $0 \le r < m$. Dann ist $a^n = a^{km+r} = a^{km}a^r = a^r$. $\Longrightarrow \langle a \rangle = \{1, a, \dots, a^{m-1}\}$ und all diese Elemente sind verschieden. (Falls $a^r = a^{r'} \implies a^{r-r'} = 1 \implies r - r' \in m\mathbb{Z} \implies r = r'$ $0 \le r, r' < m$)

Falls m = 0:

Dann ist $\langle a \rangle = \{\dots, a^{-2}, a^{-1}, 1, a, a^2, \dots\}$ und alle Partitionen sind verschieden.

Vorlesung 2

Definition 3. Die **Ordnung** |G| einer Gruppe G ist die Anzahl der Elemente in G (kann ∞ sein). Die **Ordnung des Elements** $a \in G$ ist $|\langle a \rangle|$, wobei $\langle a \rangle = \{1, a, \dots, a^{m-1}\}$ mit m > 0 die kleinste Zahl s.d. $a^m = 1$.

Beispiele

- $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in GL_2(\mathbb{R})$ hat Ordnung 6.
- $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in GL_2(\mathbb{R})$ hat Ordnung ∞ .

Homomorphismen

Definition 4. Seien G, G' zwei Gruppen. Ein **Homomorphismus** ist eine Abbildung $\phi: G \to G'$ s.d. $\phi(ab) = \phi(a)\phi(b) \quad \forall a, b \in G$.

Definition 5. Ein Isomorphismus ist ein bijektiver Homomorphismus.

Beispiele

- det: $GL_n(K) \to K^*$
- signum sign: $S_n \to \mathbb{Z}/2\mathbb{Z}$, $\operatorname{sign}(x) = \begin{cases} 0: & \text{gerade Anzahl von Transpositionen} \\ 1: & \text{ungerade Anzahl von Transpositionen} \end{cases}$
- Fixiere $a \in G$. $\phi \colon \mathbb{Z} \to G$, $\phi(n) = a^n$. ϕ ist injektiv $\Leftrightarrow \operatorname{Ord}(a) = \infty$.
- $H \leq G$, die Inklusion $\iota : H \to G$, $\iota(x) = x$.

Satz 3.

- (1) Falls $\phi: G \to G'$ und $\psi: G' \to G''$ Homomorphismen sind, so auch $\psi \circ \phi: G \to G''$.
- (2) Falls $\phi: G \to G'$ ein Isomorphismus ist, so auch $\phi^{-1}: G' \to G$.

Beweis: (1) $\psi \circ \phi(ab) = \psi(\phi(a)\phi(b)) = \psi \circ \phi(a)\psi \circ \phi(b)$

(2) zu zeigen: ϕ^{-1} ist ein Homomorphismus.

Seien
$$a', b' \in G'$$
. Dann gibt es $a, b \in G$ s.d. $\phi(a) = a', \phi(b) = b'$

Es gilt
$$\phi(ab) = \phi(a)\phi(b) = a'b' \implies \phi^{-1}(a'b') = \phi^{-1}(a')\phi^{-1}(b')$$

Bemerkung 8. Zwei zuklische Gruppen gleicher Ordnung sind immer isomorph.

Beweis: Seien $G = \langle a \rangle, G' = \langle b \rangle$ und $\phi \colon G \to G', \quad \phi(a^n) \mapsto b^n$.

Falls |G| = |G'| endlich ist, so ist $G = \{1, a, \dots, a^{m-1}\}$, $G' = \{1, b, \dots, b^{m-1}\}$. Somit ist ϕ wohldefiniert, bijektiv und ein Homomorphismus.

Falls $|G|=|G'|=\infty$, so ist ϕ wohldefiniert, bijektiv und ein Homomorphismus.

Wir schreiben C_n für die zyklische Gruppe der Ordnung n.

Satz 4. Sei ϕ : $G \to G'$ ein Homomorphismus. Dann sind $\phi(1_G) = 1_{G'}$ und $\phi(a^{-1}) = \phi(a)^{-1} \ \forall a \in G$

Beweis:

$$\begin{aligned} \mathbf{1}_G &= \mathbf{1}_G \mathbf{1}_G \\ &\implies \phi(\mathbf{1}_G) = \phi(\mathbf{1}_G \mathbf{1}_G) = \phi(\mathbf{1}_G) \phi(\mathbf{1}_G) \\ &\underset{\text{kürzen}}{\Longrightarrow} \mathbf{1}_{G'} = \phi(\mathbf{1}_G) \end{aligned}$$

Ausserdem:

$$\phi(a^{-1}\phi(a) = \phi(a^{-1}a) = \phi(1_G) = 1_{G'}$$

$$\implies \phi(a^{-1} = \phi(a)^{-1}$$

Definition 6. Ein **Automorphismus** ist ein Isomorphismus $\phi: G \to G$ von einer Gruppe G zu sich selbst.

Beispiel 2. Für $f \in G$ definiere $\phi \colon G \to G$, $\phi(g) := fgf^{-1}$ (fgf⁻¹ ist das Konjugierte von g unter f). ϕ ist ein Automorphismus.

Beweis: Homomorphismus: $\phi(gh)=fghf^{-1}=fg(f^{-1}f)hf^{-1}=\phi(g)\phi(h)$. Bijektiv: $\phi^{-1}(g)=f^{-1}gf$

Definition 7. Für einen Homomorphismus $\phi: G \to G'$ definiere:

$$Bild \phi := \{ x \in G' \mid x = \phi(a) \text{ für ein } a \in G \}$$

$$Kern \phi := \{ a \in G \mid \phi(a) = 1 \}$$

Übung: Zeige, dass beides Untergruppen von G' bzw. G sind.

Beispiele

- det: $GL_n(K) \to K^*$, Kern det = $SL_n(K)$
- $\operatorname{sign} S_N \to C_2$, Kern $\operatorname{sign} = A_n$

Bemerkung 9. Seien $\phi \colon G \to G'$ ein Homomorphismus und $a \in Kern \phi$ und $b \in G$. Dann ist

$$\phi(bab^{-1}) = \phi(b)\phi(a)\phi(b)^{-1} = 1$$
$$\implies bab^{-1} \in Kern \phi$$

Definition 8. Eine Untergruppe $N \leq G$ heisst **Normalteiler**, falls $a \in N$ und $\forall b \in G \ bab^{-1} \in N$.

 $\stackrel{\text{Bem. 9}}{\Longrightarrow}$ Kern ϕ ist immer ein Normalteiler.

Vorlesung 3

Erinnerung: Eine Untergruppe $N \leq G$ ist ein Normalteiler, falls:

$$\forall a \in N, \forall b \in G : bab^{-1} \in N$$

- . Clicker Frage zu Normalteilern \leq :
 - 1. $B_n(K) \leq GL_n(K)$ ist kein Normalteiler.
 - 2. $Z^+ \subseteq R^+$ ist Normalteiler (weil R^+ abelsch)
 - 3. $SL_n(K) \leq GL_n(K)$, weil $\det(ABA^{-1}) = \det(A) \det(B) \det(A)^{-1} = \det(B)$, oder bemerke, dass $SL_n(K) = \text{Kern det}$
 - 4. $A_n \leq S_n$ weil $A_n = \text{Kern sign}$.

Partitionen

Sei $\phi: G \to G'$ ein Homomorphismus. Für jedes Element $h \in H$ betrachte die **Faser** $\phi^{-1}(h) = \{g \in G \mid \phi(g) = h\}$ (Urbild von G in H). Die Fasern bilden eine Partition von G.

Beispiel 3. Sei $\phi \colon \mathbb{C}^* \to \mathbb{R}^*_{>0}$, $\phi(z) \mapsto |z|$. Allgemein: $\phi^{-1} = \operatorname{Kern} \phi$.

Satz 5. Sei $U: G \to G'$ ein Homomorphismus mit Kern N. Für $a, b \in G$ gilt $\phi(a) = \phi(b) \Leftrightarrow \exists n' \in N \text{ s.d. } b = an, \text{ d.h. } a^{-1}b \in N$.

Beweis: " \Rightarrow ": Falls $\phi(a) = \phi(b)$, dann it $U(a)^{-1}\phi(b) = \phi(a^{-1}b) = 1$, d.h. $\exists n \in \mathbb{N}$, s.d. $a^{-1}b = n \implies b = an$.

"\(=\)" Falls
$$b = an$$
 f\(\text{iii} \) $n \in \mathbb{N}$, dann ist $\phi(b) = \phi(a)\phi(n) = \phi(a)$.

Aus dem Satz folgt, dass die Fasern von ϕ alle von der folgenden Form sind:

$$aN = \{g \in G \mid g = an \text{ für ein } n \in N\}$$

Korollar 1. Ein Homomorphismus $\phi: G \to G'$ ist injektiv $\Leftrightarrow Kern \phi = \{1\}$.

Beweis: " \Rightarrow " klar.

"\(\infty\)" Man nehme an, dass der Kern
$$\phi = \{1\}$$
. $\phi(a) = \phi(b) \Leftrightarrow a^{-1}b \in \operatorname{Kern} \phi$, d.h. $a^{-1} + b = 1 \implies a = b$.

Nebenklassen

Erinnerung: Sei X eine Menge. Eine Äquivalenzrelation auf X ist eine binäre Relation \sim so dass:

- i) (Transitivität) Falls $a \sim b$ und $b \sim c$, dann ist $a \sim c$.
- ii) (Symmetrie) Falls $a \sim b$, so ist $b \sim a$.

iii) (Reflexivität) $a \sim a$ für alle $a \in X$.

Gesehen: Jede Äquivalenzrelation definiert eine Partition von X. Diese besteht aus den Äquivalenzklassen, d.h. Teilmengen von der Form $[a] := \{b \in X \mid b \sim a\}$.

Sei \overline{X} die Menge der Äquivalenzklassen. Dann erhalten wir eine surjektive Abbildung $\pi \colon X \to \overline{X}, \qquad \pi(a) := [a]$. Dann ist $\pi^{-1}([a]) = \{b \in X \mid b \sim a\}$.

Gesehen: "Rechnen modulo m". \mathbb{Z} mit Äquivalenzrelation \equiv , wobei $a \equiv b$ falls $a - b \in m\mathbb{Z}$.

Menge der Äquivalenzklassen: $\mathbb{Z}/m\mathbb{Z}$. $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \dots, [m-1]\}.$

Ausserdem können wir die Klassen in $\mathbb{Z}/m\mathbb{Z}$ miteinander addieren, so dass [a+b]=[a]+[b].

 $\mathbb{Z}/m\mathbb{Z}$ mit Addition ist somit eine Gruppe, und die Quotientenabbildung $\pi \colon \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, $\pi(n) := [n]$ ist ein Homomorphismus.

Definition 9. Sei $H \leq G$ eine Untergruppe. Eine **Linksnebenklasse** von H ist eine Teilmenge von der Form $aH = \{ah \mid h \in H\}$ für ein $a \in G$.

Beispiel 4. $m\mathbb{Z}^+ \leq \mathbb{Z}^+$. Dann sind die Linksnebenklassen $m\mathbb{Z}$ die Teilmengen von der Form $0 + m\mathbb{Z}, 1 + m\mathbb{Z}, \dots, (m-1) + m\mathbb{Z}$.

Wir schreiben $a \equiv b$, falls ein $h \in H$ existiert, so dass b = ah, d.h. falls $b \in aH$.

Satz 6. Die Relation "\equivalent ist eine Äquivalenzrelation."

Beweis: 1. Falls $a \equiv b$ und $b \equiv a \implies \exists h, h' \in H$, so dass b = ah und $c = bh' \implies c = a\underbrace{hh'}_{\in H} \implies c \equiv a$.

2. falls
$$a \equiv b$$
, so $\exists h \in H$ s.d. $b = ah \implies a = b \underbrace{h^{-1}}_{\in H} \implies b \equiv a$.

3. $a = a \cdot 1$ und $1 \in H \implies a \equiv a$.

$$\phi \colon X \to Y$$
 Abbildung $\phi^{-1}(y) = \{x \in X \mid \phi(x) = y\}$ für $y \in Y$.

Korollar 2. Die Linksnebenklassen bilden eine Partition von G.

Beweis:
$$aH = bH \Leftrightarrow a \equiv b$$
.

Definition 10. Die Anzahl der Linksnebenklassen von H in G ist der sogenannte **Index von** H **in** G. Wir schreiben [G:H] für den Index. ([G in H] kann ∞ sein.)

Beispiel 5. $m \ge 1$, $[\mathbb{Z} : m\mathbb{Z}] = m$.

Satz 7. Sei G eine endliche Gruppe und $H \leq G$. Dann ist |G| = |H|[G:H].

Beweis: Die Abbildung $\phi: H \to aH$, $\phi(h) = ah$.

 ϕ ist eine Bijektion. $\Longrightarrow |H| = |aH|$.

Die Linksnebenklassen bilden eine Partition von $G. \implies |G| = |H|[G:H]$

Daraus folgt direkt:

Korollar 3 (Satz von Lagrange). Seien G eine Gruppe und $H \leq G$ eine Untergruppe. Dann ist |H| ein Teiler von |G|.

Bemerkung 10. Falls $a \in G$, dann folgt mit Lagrange, dass $|\langle a \rangle| \mid |G|$, d.h. Ord(a) teilt die Ordnung von G.

Korollar 4. Sei G eine Gruppe, s.d. |G| prim ist. Sei $a \in G, a \neq 1$, dann ist $G = \langle a \rangle$.

Beweis: ord $a \mid p$, da ord a > 1 ist, ord a = p, d.h. $|\langle a \rangle| = p \implies \langle a \rangle = G$. \square

Korollar 5. Seien G, G' endliche Gruppen und $\phi: G \to G'$ ein Homomorphismus. Dann gilt:

$$|G| = |Kern \phi| \cdot |Bild \phi|$$

Beweis: Gesehen: Die Linksnebenklassen von Kern ϕ sind die Fasern von ϕ .

$$\implies |\operatorname{Bild} \phi| = [G: \operatorname{Kern} \phi]$$

$$\implies |G| = |\operatorname{Kern} \phi| \cdot [G : \operatorname{Kern} \phi]$$
$$= |\operatorname{Kern} \phi| \cdot |\operatorname{Bild} \phi|$$

Definition 11. Sei G eine Gruppe und $H \leq G$. Die **Rechtsnebenklassen** von H in G sind die Mengen $Ha := \{ha \mid h \in H\}$.

Definiere $a \equiv_R b$, falls es ein $h \in H$ gibt, so dass b = ha.

Dies definiert eine Äquivalenzrelation auf G und die Rechtsnebenklassen sind die Äquivalenzklassen bezüglich dieser Relation. \rightsquigarrow Partition von G.

Satz 8. Eine Untergruppe $H \leq G$ ist ein Normalteiler \Leftrightarrow jede Linksnebenklasse ist auch eine Rechtsnebenklasse. In diesem Fall ist aH = Ha.

Beweis: " \Rightarrow " H Normalteiler. Sei $h \in H$ und $a \in G$.

$$\implies ah = \underbrace{(aha^{-1})}_{=:k \in H} a = ka$$

$$\implies aH \subset Ha$$

Analog zeigt man $Ha \subset aH$. $\Longrightarrow aH = Ha$.

" \Leftarrow " Man nehme an, H ist kein Normalteiler.

- $\implies \exists h \in H, g \in G \text{ s.d. } aha^{-1} \not\in H, \text{ d.h. es gibt kein } h' \in H \text{ s.d. } ah = h'a.$
- $\implies ah \in aH$, aber $ah \notin Ha$, d.h. $aH \neq Ha$.

Gleichzeitig ist $a \in aH \cap Ha \neq \emptyset$

 $\implies aH$ ist in keiner anderen Rechtsnebenklasse enthalten. D.h. Rechts- und Linksnebenklassen definieren zwei verschiedene Partitionen.