

Introduction to Linux & R

Abu Bakar Siddique

Bioinformatician, SLUBI

Introduction to Linux

GUI

GUI vs Linux

Graphical User Interface (GUI):

• **visual** representations

Command Line Interface (CLI): WSL, Terminal, LINUX, Ubuntu, UNIX etc

- text representations
- shell (or bash) is a program that allows you to control CLI with keyboard


```
abuslu@vbsg-asiddique × + | ~

(base) abuslu@vbsg-asiddique:~$ cd /mnt/c/Users/auue0001/Downloads
(base) abuslu@vbsg-asiddique:/mnt/c/Users/auue0001/Downloads$ |
```


Why Linux?

- A powerful command-line interface (CLI)
- Built for multi-user systems.
- An enormous amount of software is freely available
- Bioinformatics tools can only be used through a
 CLI

- shell makes your work less boring
- shell makes your work less error-prone
- shell makes your work more reproducible
- Computationally intensive job
- Remote computer or cloud computing

Full Tutorial

The Unix shell

Linux way

cd – change working directory

```
abuslu@vbsg-asiddique × + v

(base) abuslu@vbsg-asiddique:/$

(base) abuslu@vbsg-asiddique:~$ cd /mnt/c/Users/auue0001/Downloads
(base) abuslu@vbsg-asiddique:/mnt/c/Users/auue0001/Downloads$
```

```
(base) abuslu@vbsg-asiddique:/mnt/c/Users/auue0001/Downloads$ cd shell-lesson-data/(base) abuslu@vbsg-asiddique:/mnt/c/Users/auue0001/Downloads/shell-lesson-data$
```

```
(base) abuslu@vbsg-asiddique:/mnt/c/Users/auue0001/Downloads/shell-lesson-data$ cd shell-lesson-data/
(base) abuslu@vbsg-asiddique:/mnt/c/Users/auue0001/Downloads/shell-lesson-data/shell-lesson-data$
```


• ls – list content of directory

pwd – present working directory

```
(base) abuslu@vbsg-asiddique:~$ pwd
/home/abuslu
```

(base) abuslu@vbsg-asiddique:/mnt/c/Users/auue0001/Downloads/shell-lesson-data/shell-lesson-data\$ pwd /mnt/c/Users/auue0001/Downloads/shell-lesson-data/shell-lesson-data

Absolute/Relative path

- Absolute paths
 - Starts with a /
 - Defined from the root of the file system

/mnt/c/Users/auue0001/Downloads/shell-lesson-data/shell-lesson-data/

– Like an address:

Sweden, Uppsala, Ultuna, Biocentre, 4th floor, room A436

SLU

Absolute/Relative path

- Relative paths
 - Does not start with a /
 - Relative to where you are when using it

```
exercise-data/numbers.txt
```

- ../exercise-data/numbers.txt
- Like a direction (from Campus ultuna):
 'straight, then turn left, 4th floor, right, then left'

Summary

- ls list content of directory
- cd change working directory
- o pwd print working directory
- o absolute/relative paths

More practice (after lunch)

- ○ Is list content of directory
- o cd change working directory
- o pwd print working directory
- o absolute/relative paths
- o mkdir make a directory
- cp copy a file
- o mv move a file
- ○ less view a file
- o nano view and edit a file
- ○ rm remove a file

- o head / tail
- o grep
- find
- o wildcards
- o tab completion use it!!!
- ○ top see active processes
- o man manual pages or anycommand --help
- o exit Log out current terminal

30 minutes.

Computer cluster

Computer cluster

Local computer

Login nodes

Computation nodes

Computer cluster

Online materials

- Unix/Linux
- Data Carpentry datacarpentry/shell-genomics | website
- Teaching materials at the Harvard Chan Bioinformatics
 Core hbctraining/Intro-to-shell-flipped | website
- Ted Laderas laderast/bash_for_bioinformatics | website
- SIB Swiss Institute of Bioinformatics sib-swiss/unix-first-steps-training
- Software Carpentry swcarpentry/shell-novice | website
- The Carpentries Lab carpentries-lab/metagenomics-shell | website
- <u>UC Davis Bioinformatics Core Training Page ucdavis-bioinformatics-training/2023-September-Introduction-to-the-Command-Line-for-Bioinformatics</u>

- Online terminal
- https://www.terminaltemple.com/
- https://copy.sh/v86/?profile=linux26&ref=itsfoss.com
- 17 Best Online Linux Terminals and Online Bash Editors

Introduction to basic R

Contents

- About R
- R vs Rstudio
- Timeline
- Setting a project or working directory
- Interacting with R
- Packages

- Assign values or objects
- Data types
- Data structures
- How to import and export data or results
- Housekeeping

Basic about R

R is ...

- a programming language
- a programming platform (= environment + interpreter)
- a software project driven by the core team and the community
- a very powerful tool for statistical computing
- a very powerful computational tool in general

Yet ...

- it is very elegant
- it becomes more and more feature-rich

R is not ...

- a tool to replace a statistician
- the very best programming language
- the most elegant programming solution
- the most efficient programming language

R: Engine

R

Programming language

- For data analysis and graphics
- Refers to both the language and the software that interprets it's scripts
- Free and open source

RStudio

- User interface for working with R
- Wrapper around the R language
- Extends what R can do and facilitates writing R code
- Free and open source

- ca. 1992 conceived by <u>Robert Gentleman</u> and <u>Ross</u> <u>Ihaka</u> (R&R) at the University of Auckland, NZ as a tool for **teaching statistics**
- 1994 initial version
- 2000 stable version
- 2011 RStudio, first release by J.J. Allaire

• ca. 2017 — <u>Tidyverse</u> by Hadley Wickham

The working directory

- Where R will look for and save files
- Check working directory with the getwd(), setwd() functions

```
> getwd()
[1] "C:/Users/auue0001/OneDrive - Sveriges lantbruksuniversitet/Dokument"
```

> setwd("C:/Users/auue0001/OneDrive - Sveriges lantbruksuniversitet/Dokument")

Suggested subdirectories

data/ for raw data and intermediate datasets

data_output/ modified versions of raw data

documents/ outlines, drafts, other text

fig_output/ graphics generated by scripts

scripts/
 R scripts for different analyses or plotting

create subdirectory
dir.create(path = "path to working directory/data output")

▲ Name

A_W _ABS Biplob_15_10_2023.pptx

bvg00190.pathview.png

bvg01200.pathview.png

bva00190.pna

bvg00190.xml

Application management ABS Biplob....

A W ABS Biplob 16 06 2023 final for... 17.8 MB

Modified

Nov 4, 2023, 12:10 AM

Nov 4, 2023, 12:09 AM

Oct 17, 2023, 9:46 AM

Oct 14, 2023, 10:32 PM

Nov 27, 2022, 5:30 PM

Feb 28, 2023, 2:22 PM

Feb 28, 2023, 2:22 PM

Feb 28, 2023, 2:22 PM

Feb 13, 2023, 4:34 PM

7.2 MB

38.8 KB

18.5 MB

4.3 MB

133.5 KB

143.6 KB

64.5 KB

5 KB

Packages

- developed by the community
- cover several very diverse areas of science/life
- uniformly structured and documented
- organized in repositories:
 - CRAN

```
install.packages("tidyverse")
library("tidyverse")
```


Packages

- developed by the community
- cover several very diverse areas of science/life
- uniformly structured and documented
- organized in repositories:
 - CRAN
 - Bioconductor
 - R-Forge
 - GitHub

```
if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
BiocManager::install(version = "3.18")
```


Assign values to objects

```
p <- 3
```

$$x <- c(1, 6, 8)$$

Types of vectors and objects

• Scalar (0 dimention):

```
p <- 3
```

• Vector (arrays -1 dimention):

```
x <- c(1, 6, 8)
y <- ("car", "truck")
```

```
1 > vec1 = c(1,4,6,8,10)
2 > vec1
3 [1]  1  4  6  8  10
4 > vec1[5]
5 [1]  10
```

• Matrix (2 dimension):

```
mat=matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)
```


Types of vectors and objects

- character: y <- ("car", "truck")
- numeric: x <- c(1.1, 6.2, 8.4)
- integer: z <- 2
- logical: TRUE, FALSE
- complex: 1+4i (complex numbers with real and imaginary parts)

R has many functions to examine features of vectors and other objects:,

- •class() what kind of object is it (high-level)?
- •typeof() what is the object's data type (low-level)?
- •length() how long is it? What about two dimensional objects?
- •attributes() does it have any metadata?

Data structures

- Matrix
- Data frames
- Factors (r assign a level for each values)
- Arrays
- Lists

```
> x <-1:12

> # Create a 3 x 4 array from the vector

> my_array <- array(values, dim = c(3, 4))

> # Print the array

> print(my_array)

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> values

[1] 1 2 3 4 5 6 7 8 9 10 11 12
```

```
mat=matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),ncol=3)

matrix(data=c(9,2,3,4,5,6),nco
```

```
1 > L = list(one=1, two=c(1,2),
2  five=seq(0, 1, length=5))
3 > L
4  $one
5  [1]  1
6  $two
7  [1]  1  2
```


Ways to get data in R or in RStudio

Manually:

- data.frame() function in Base R,
- or the tibble() function in the tidyverse.

Import it from a file:

- Tabular data: CSV, TSV (read.table() or read_delim() function or readr package which contains read csv())
- Excel: XLSX (xlsx package)
- Google sheets: (googlesheets package)

Data import with the tidyverse:: CHEAT SHEET

Student ID, Full Name, favourite. food, mealPlan, AGE

1, Sunil Huffmann, Strawberry yoghurt, Lunch only, 4 2, Barclay Lynn, French fries, Lunch only, 5

3, Jayendra Lyne, N/A, Breakfast and lunch, 7

4, Leon Rossini, Anchovies, Lunch only,

5, Chidiegwu Dunkel, Pizza, Breakfast and lunch, five

6,Güvenç Attila, Ice cream, Lunch only, 6

Table 7.1 shows a representation of the same data as a table.

Table 7.1: Data from the students.csv file as a table.

Student ID Full Name	favourite.food	mealPlan	AGE
1 Sunil Huffmann	Strawberry yoghurt	Lunch only	4
2 Barclay Lynn	French fries	Lunch only	5
3 Jayendra Lyne	N/A	Breakfast and lunch	7
4 Leon Rossini	Anchovies	Lunch only	NA
5 Chidiegwu Dunkel	Pizza	Breakfast and lunch	five
6 Güvenç Attila	Ice cream	Lunch only	6

country	year	cases	population		
Afghanstan	100	45	18.57071		
Afghanistan	2000	2666	20!95360		
Brazil	1999	37737	172006362		
Brazil	2000	80488	174:04898		
China	1999	212258	1272915272		
Chin	2 0	21 66	1280 28583		
variables					

Processes

How to export or save as results or data

write.csv(df , file = "path/to/your/saving/folder/df.csv")

writexl::write_xlsx (test_df, path = "C:/Users/your_username/test_df.xlsx",
col_names = TRUE, format_headers = TRUE)

How to export or save as plot

```
dev.print (device=jpeg, file="path/to/your/saving/plots/figure_1a.jpg", width=par("din")[1]*300, res=300, quality=100)
```

ggsave("path/to/your/saving/plots/figure_1a.png", plot = p1, bg ="white")

Seeking help

- RStudio help interface
 - ?sum
 - help.search(), with term in "" inside parentheses
- Google or chatgpt "R <task>"
- When asking others
 - Use correct words
 - Reduce to reproducible example
 - Always include output of sessionInfo() function

Good housekeeping strategies for scripts

- Comments, Structure:
 - Use #
 - Outline
- Consistent Naming Conventions:
 - Use consistent naming conventions for variables, functions, and objects
 - Avoid duplicating code. create a function or use a loop
- Version Control:
 - Git. Platforms like GitHub or GitLab repositories.
- Imports and Dependencies:
 - List all package imports at the top of your script
 - call rhistory: sessionInfo()

- File Organization
 - Separate your R scripts, data, documentation, and output files into logical folders.
- Reproducibility.
 - Use Quarto, R Markdown Documents:
 - Documentation Files:
 - Create README files

Filtering of genotype data

- · Subset data, metadata
 - Based on "rows (observations)", "variable" or "values"
 - Filter
- Missing data ("NA", stat, summary)

height_sub_12 <- subset(data, height<12)

data_filter_na <- data[!is.na(data\$height).]

- <u>mutate()</u> adds new variables that are functions of existing variables
- <u>select()</u> picks variables based on their names.
- <u>filter()</u> picks cases based on their values.
- <u>summarise()</u> reduces multiple values down to a single summary.
- <u>arrange()</u> changes the ordering of the rows.

Questions?!

Acknowledgements

- NBIS(RaukR)
- Shannon Alexandra Sheridan