1. Maximum Speedup—Parallel Program Example

Given:

- Problem size: n = 10,000
- Sequential I/O time: 18000 + n = 28,000 μsec
- Parallelizable computation: n² / 100 = 10,000² / 100 = 1,000,000 μsec
- Step 1: Maximum speedup without communication overhead

Maximum speedup formula: Speedup = Total sequential + parallel time / Sequential part + Parallel part / p

- Sequential part (T_s) = 28,000 μsec
- Parallel part (T_p) = 1,000,000 μsec
- For ideal infinite processors, parallel part \rightarrow 0
- Maximum speedup = $(T_s + T_p) / T_s = (28,000 + 1,000,000) / 28,000 \sim = ~ 36.7$
- Step 2: Include parallel communication overhead
 - Number of communication points: $\lceil \log n \rceil = \lceil \log 10,000 \rceil \sim = \sim 14$
 - Communication time at each point: n [log p] + n/10 μsec
 - Assume very large p, [log p] grows slowly; just include n/10 as main term
 - Total overhead $\sim = \sim 14 \times (10,000 / 10) = 14 \times 1,000 = 14,000 \,\mu sec$
 - New sequential equivalent = 28,000 + 14,000 = 42,000 μsec

Maximum speedup with overhead: Speedup = (28,000 + 1,000,000) / 42,000 ~=~ 24.8

2. Parallel Code Segment Outcomes

All possible final values (x, y):

	У
3	5
4	2
4	3
4	5
4	6
6	8

3. Maximum Achievable Speedup for 8% Sequential Computation

- Fraction sequential, f = 0.08
- Fraction parallel, 1 f = 0.92

hw2.md 2025-10-03

(a) Amdahl's Law (for very large $p \rightarrow \infty$):

Maximum speedup = 1/f = 1/0.08 = 12.5

(b) Gustafson-Barsis Law (scales with problem size):

Speedup = $f + (1 - f) \times p$ = For very large p, speedup scales almost linearly with p

- Maximum speedup grows, essentially unbounded in theory
- (c) When to prefer Amdahl vs Gustafson-Barsis:
 - Use Amdahl: When problem size is fixed, and you want to know the maximum speedup possible by parallelization.
 - Use Gustafson-Barsis: When problem size can increase with more processors, and you want to predict realistic scaling with larger workloads.