Analytical Number Theory

Razafy Rindra

Fall 2019

1 Notation

Definition 1.1. Landau's Big-Oh, Little-Oh and \sim . Let a be finite or infinite:

1. We say that $f(x) \sim g(x)$ as a $x \to a$, if

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

2. Big-oh: We say that f(x) = O(g(x)) as $x \to \infty$, if there exists $x_0 \in \mathbb{R}$, and c > 0, such that:

$$|f(x)| \le cg(x)$$
 for all $x > x_0$

We say that f(x) = O(g(x)) as $x \to a$, if there exists $\delta > 0$, and c > 0, such that:

$$|f(x)| \le cg(x)$$
 for all $|x - a| < \delta$

3. Little-oh: We say that f(x) = o(g(x)) as $x \to a$, if

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

Example 1.1.1. For \sim :

- 1. $\sin(x) \sim x$, as $x \to 0$.
- 2. Stirlings: $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$, as $n \to \infty$.

Example 1.1.2. For Big-Oh:

- 1. $\sin(x) = O(1)$. As $x \to \infty$ since $\sin(x)$ is bounded.
- 2. $\sin(x) = x \frac{x^3}{3!} + O(x^5)$. As $x \to 0$ since:

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1!)} \Rightarrow \sin(x) - x - \frac{x^3}{3!} = \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

Example 1.1.3. For Little-Oh: $n! = o(n^n)$, since

$$\frac{n!}{n^n} \sim \frac{\sqrt{2\pi n}}{e^n} = \sqrt{2\pi} e^{\frac{1}{2}\log(n) - n}$$

2 Summation by parts

Let f be a function from \mathbb{Z}^+ to \mathbb{R} or \mathbb{C} , and g a real or complex valued function of a real variable. If g' exists and is continuous on [1, x] for some $x \in R$. We find that:

$$\sum_{1 \le n \le x} f(n)g(n) = (\sum_{1 \le n \le x} f(n))g(x) - \int_{1}^{x} \sum_{1 \le n \le t} f(t)g'(t)dt$$
 (1)

Proof.

$$f(n)g(n) = f(n)g(x) - f(n) \int_{n}^{x} g'(t)dt$$
$$\sum_{1 \le n \le x} f(n)g(n) = \sum_{1 \le n \le x} f(n)g(x) - \sum_{1 \le n \le x} f(n) \int_{n}^{x} g'(t)dt$$

We can bring in all the f(n) where $n \leq t$, inside the same integral, and this gives us our result.

Proof. Alternate proof using telescoping: Since $\int_1^x = \int_1^2 + \int_2^3 + \cdots + \int_{|x|}^x$

$$\sum_{1 \le n \le x} f(n)g(x) - \int_{1}^{x} (\sum_{1 \le n \le t} f(n))g'(t)dt = (\sum_{1 \le n \le x} f(n))g(x) - f(1)(g(2) - g(1)) - (f(1) + f(2))(g(3) - g(2)) - \dots - (\sum_{1 \le n \le x} f(n))(g(x) - g(\lfloor x \rfloor))$$

By telescoping we get the desired result.

2.1 $\sum_{1 \leq n \leq \lfloor x \rfloor}$

 $\sum_{1 \le n \le \lfloor x \rfloor} \frac{1}{n}$, in this situation we have f(n) = 1 and $g(x) = \frac{1}{x}$. So, we have: $\sum_{1 \le n \le x} 1 = \lfloor x \rfloor$. We define x to be the fractional part of x, so that $\lfloor x \rfloor = x - \{x\}$.

Hence we have:

$$\sum_{1 \le n \le \lfloor x \rfloor} \frac{1}{n} = \lfloor x \rfloor \frac{1}{x} + \int_{1}^{x} \lfloor t \rfloor \frac{1}{t^{2}} dt$$

$$= 1 - \frac{\{x\}}{x} + \log(x) - \int_{1}^{x} \frac{\{t\}}{t^{2}} dt$$

$$= 1 - \frac{\{x\}}{x} + \log(x) - (\int_{1}^{\infty} \frac{\{t\}}{t^{2}} dt - \int_{x}^{\infty} \frac{\{t\}}{t^{2}} dt)$$

Since $-\frac{\{x\}}{x} = O(\frac{1}{x})$ and $\int_x^\infty \frac{\{t\}}{t^2} dt = O(\frac{1}{x})$, we finally get at the end:

$$\sum_{1 \leq n \leq x} \frac{1}{n} = \log(x) + (1 - \int_{1}^{\infty} \frac{\{t\}}{t^2} dt) + O(\frac{1}{x})$$

We call $1 - \int_1^\infty \frac{\{t\}}{t^2} dt = \gamma = 0.5772 \cdots$ Euler's constant.

This example tells us that:

$$\lim_{x \to \infty} \left(\sum_{1 \le n \le x} \frac{1}{n} - \log(x) \right) = \gamma$$

2.2 $\log(m!)$

Consider: $\log(m!) = \sum_{1 \le n \le m} \log(n)$; let f(n) = 1 and $g(x) = \log(x)$.

$$\log(m!) = m \log(m) - \int_1^m \frac{\lfloor t \rfloor}{t} dt$$

$$= m \log(m) - \int_1^m \frac{t - \{t\}}{t} dt$$

$$= m \log(m) - (m - 1) + \int_1^m \frac{\{t\}}{t} dt$$

Since $0 < \int_1^m \frac{\{t\}}{t} dt < \log(m)$, we have $m \log(m) - (m-1) < \log(m!) < (m+1) \log(m) - (m-1)$. Thus:

$$\frac{m^m}{e^{m-1}} < m! < \frac{m^{m+1}}{e^{m-1}} \text{ in reality } m! \sim (\frac{m}{e})^m \sqrt{2\pi m}$$