VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

SEMESTRÁLNÍ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV TELEKOMUNIKACÍ

DEPARTMENT OF TELECOMMUNICATIONS

MIDI PO ETHERNETU

SEMESTRÁLNÍ PRÁCE

SEMESTRAL THESIS

AUTOR PRÁCE

AUTHOR

Vojtěch Lukáš

VEDOUCÍ PRÁCE

SUPERVISOR

Ing. Ondřej Krajsa, Ph.D.

BRNO 2020

Semestrální práce

bakalářský studijní program **Audio inženýrství** specializace Zvuková produkce a nahrávání Ústav telekomunikací

Student: Vojtěch Lukáš ID: 211572

Ročník: 3 Akademický rok: 2020/21

NÁZEV TÉMATU:

MIDI po Ethernetu

POKYNY PRO VYPRACOVÁNÍ:

Navrhněte a realizujte přípravek pro přenos protokolu MIDI po Ethernetu. Přípravek bude mít dva vstupní porty a dva výstupní porty s možností přepnutí do režimu Thru. Data přenášená po Ethernetu pak budou v dalším přípravku odeslána na patřičné MIDI porty. V rámci semestrální práce proveďte návrh zařízení a testování dílčích částí s využitím vývojového kitu.

DOPORUČENÁ LITERATURA:

[1] LINSLEY HOOD, John. Audio Electronics. Kent: Elsevier Science, 1995. ISBN 9780750621816

[2] GUÉRIN, Robert. Velká kniha MIDI: standardy, hardware, software. Brno: Computer Press, 2004, 340 s. ISBN 80-7226-985-2

Termín zadání: 2.10.2020 Termín odevzdání: 11.12.2020

Vedoucí práce: Ing. Ondřej Krajsa, Ph.D.

doc. Ing. Jiří Schimmel, Ph.D. předseda rady studijního programu

UPOZORNĚNÍ:

Autor semestrální práce nesmí při vytváření semestrální práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

PROHLÁŠENÍ

Prohlašuji, že svou semestrální práci na téma "MIDI po Ethernetu" jsem vypracoval samostatně pod vedením vedoucího semestrální práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené semestrální práce dále prohlašuji, že v souvislosti s vytvořením této semestrální práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a/nebo majetkových a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

Brno	
	podpis autora

Obsah

Ú	vod		9		
1	Pro	tokol MIDI	10		
	1.1	Hardwarová vrstva	10		
		1.1.1 MIDI výstup	10		
		1.1.2 MIDI vstup	11		
	1.2	Softwarová vrstva	12		
		1.2.1 Výjimky	13		
2	Náv	rh přípravku	14		
	2.1	Hardware	14		
	2.2	Software	15		
		2.2.1 Databáze spojení	15		
		2.2.2 Logická vrstva	15		
3	Prů	běh komunikace	16		
	3.1	Připojení k lokální síti	16		
	3.2	Upozornění na vlastní přítomnost	16		
	3.3	Rozpoznání zařízení na síti	17		
	3.4	Přijetí MIDI zprávy	17		
	3.5	Přijetí UDP zprávy	17		
Zá	ivěr		18		
Li	terat	ura	19		
Se	znan	n symbolů, veličin a zkratek	21		
Se	znan	n příloh	22		
\mathbf{A}	MII	DI STATUS BAJTY	23		
В	Výp	ois kódu pro příjem a zpracování MIDI zprávy	24		
\mathbf{C}	Něk	teré příkazy balíčku thesis	26		
	C.1	Příkazy pro sazbu veličin a jednotek	26		
		Příkazy pro sazbu symbolů	26		
\mathbf{D}	Dru	Druhá příloha			

${f E}$	Příklad sazby zdrojových kódů	28
	E.1 Balíček listings	28
\mathbf{F}	Obsah přiloženého CD	32

Seznam obrázků

1.1	Schéma MIDI výstupu [1]	11
1.2	Schéma MIDI vstupu [1]	11
1.3	Bity obou druhů MIDI bajtů [1]	12
1.4	Struktura zprávy Změna kontroléru [1]	12
2.1	Schéma prototypu [3]	14
2.2	Kódování zdrojového a cílového kanálu v bajtu srcdstChannel	15
D.1	Alenčino zrcadlo	27

Seznam tabulek

A.1	Tabulka MIDI STATUS	BAJTŬ	$\lfloor 1 \rfloor$.	 	 			•			23
C.1	Přehled příkazů			 	 						26

Seznam výpisů

E.1	Ukázka sazby zkratek	28
E.2	Příklad Schur-Cohnova testu stability v prostředí Matlab	30
E.3	Příklad implementace první kanonické formy v jazyce C	31

Úvod

Protokol MIDI¹ je již dlouhá léta zavedeným standardem nejen pro komunikaci mezi elektronickými hudebními nástroji, ale také pro řízení studiové nebo scénické techniky, časovou synchronizaci dvou a více zařízení a podobně. V

Tato práce se věnuje oblasti MIDI (Musical Instrument Digital Interface – digitální rozhraní hudebního nástroje), zejména jevům, které nastanou při nedodržení Nyquistovy podmínky pro vzorkovací kmitočet (f_{vz}) .

Šablona je nastavena na *dvoustranný tisk*. Pokud máte nějaký závažný důvod sázet (a zejména tisknout) jednostranně, nezapomeňte si přepnout volbu **twoside** na oneside!

¹Musical Instrument Digital Interface – digitální rozhraní hudebního nástroje

 $^{^2\}mathrm{Tato}$ věta je pouze ukázkou použití příkazů pro sazbu zkratek.

1 Protokol MIDI

Tento protokol umožňuje přenos zejména hudebních informací mezi dvěma (i více) elektronickými hudebními nástroji, sekvencery, počítači a dalšími přístroji. Původně byl zamýšlen pro použití "v reálném čase", tedy při živé produkci. [1] S nástupem moderních DAW¹ ale přišla možnost povely také nahrávat, upravovat a znovu přehrávat.

MIDI se však netýká výhradně hudby a hudebních dat. Umožňuje též přenos kontrolních povelů a synchronizačních značek. Přirozeně se tedy rozšířilo i do nahrávacích studií, divadel a dalších zařízení, kde umožňuje globální řízení jednotlivých přehrávačů nebo vzdálené ovládání parametrů řídících konzolí.

1.1 Hardwarová vrstva

Pro přenos MIDI dat se tradičně používá zásuvka a vidlice DIN 5². Kabel mezi dvěma zařízeními by neměl být delší než 15 m a tvořit by jej měla stíněná kroucená dvojlinka. Toto stínění by mělo být připojeno k pinu 2 na obou koncích.

Výměna informací je realizována pomocí 5mA proudové smyčky. Při protékání proudu je zaznamenána logická 0, v opačném případě logická 1. [1]

Přesná specifika obvodů pro zpracování příchozích a odchozích MIDI signálů upravuje kapitola *Hardware* z dokumentu [1]. Tato pasáž byla v roce 2014 aktualizována normou [2], která adaptovala protokol i pro zařízení s 3,3V logikou a přidává další prvky pro zamezení zejména RF³ interferencí. V následujících schématech bude však zobrazeno originální schéma z původní normy,

1.1.1 MIDI výstup

Výstupní port MIDI sběrnice je ve své podstatě jednoduchý. Z UART⁴ čipu jsou přes napětové sledovače nebo tranzistory vedeny logické impulzy na pin 5, zatímco na pin 4 je přivedeno stálé napětí. Pin 2 je v tomto případě uzemněn. [1]

Podle aktualizační normy [2] je možné přidat za každý rezistor feritové jádro pro zamezení vysokofrekvenčních interferencí. V případě použití zařízení s 3,3V logikou jsou pak použity rezistory s menšími hodnotami odporů. Na obr. 1.1 je schéma k nahlédnutí.

¹Digital Audio Workstation – digitální pracovní stanice pro náběr a úpravu vícestopého záznamu.

²Dnes je častější využití USB sběrnice nebo technologie Bluetooth pro obousměrný přenos.

³Radio Frequency

⁴Universal Asynchronous Receiver/Transmitter – univerzální asynchronní přijímač/vysílač.

Obr. 1.1: Schéma MIDI výstupu [1].

1.1.2 MIDI vstup

Vstupní port MIDI sběrnice je mnohem složitější. Z obr. 1.2 je patrné, že s cílem eliminovat zemní smyčky, které jsou ve zvukové technice nepřípustné, je vstup každého MIDI zařízení skrz optočlen galvanicky oddělen. Z téhož důvodu je také pin 2 – na rozdíl od výstupního portu – zapojen naprázdno (podle [1]).

Některá zařízení disponují také výstupem MIDI THRU. Ten "kopíruje" data ze vstupu MIDI IN a tak umožňuje komplexní řetězení zařízení za sebou. Jeho schéma je totožné s tím na obr. 1.1.

Aktualizační norma [2] pak umožňuje přidání feritových jader za piny 4 a 5, přes kondenzátor nízké kapacity uzemnění pinu 2 a při použití 3,3V logiky snížení odporu rezistoru na vstupu optočlenu.

Obr. 1.2: Schéma MIDI vstupu [1].

Bude-li do tohoto vstupu připojen výstup jiného zařízení, které vyšle logickou 1 objeví se na pinech 4 a 5 stejné napětí, v obvodu tedy neprochází žádný proud – LED⁵ v optočlenu nesvítí. Vstupní UART čip přijímá logickou 1. Vyšle-li jiné zařízení logickou 0, na pinu 5 poklesne napětí oproti pinu 4, LED v optočlenu se rozsvítí, obvodem prochází proud a UART čip přijímá logickou 1.

⁵Light-Emiting Diode – Dioda, která vyzařuje viditelné světlo.

1.2 Softwarová vrstva

MIDI protokol přenáší informace (příkazy) po sériové lince přenosovou rychlostí 31250 bps. Komunikace je jednosměrná, pro obousměrnou komunikaci je třeba využít dvou rozhraní (vstupu a výstupu) na všech zúčastněných zařízeních.

Příkazy se skládají z bajtů, jichž rozeznáváme dva typy:

- STATUS BAJT v sobě kóduje druh příkazu (*Nota stlačena, Změna kontroléru...*) a cílový kanál (1-16).
- DATA BAJT vyjadřuje hodnotu s jakou je příkaz posílán (0-127).

Obr. 1.3: Bity obou druhů MIDI bajtů [1]

Na obrázku 1.3 je patrná struktura obou bajtů. Za pozornost stojí především jejich MSB⁶: STATUS BAJT má MSB vždy s hodnotou 1. Naproti tomu MSB DATA BAJTU je vždy nulový.

Pomineme-li výjimky, každý příkaz začíná jedním STATUS BAJTEM, za nímž následuje jeden, nebo dva DATA BAJTY. Na obr. 1.4 je uvedena struktura ukázkové zprávy.

Obr. 1.4: Struktura zprávy Změna kontroléru [1].

Z prvního bajtu zprávy z obr. 1.4 lze dekódovat druh a cílový kanál příkazu. Jedná se o Control Change - Změna kontroléru na kanálu 1^7 Druhý bajt představuje číslo kontroléru (2 - Modulation) a třetí jeho hodnotu (54).

Pro potřeby tohoto semestrálního projektu bude nutné, aby každý přípravek dokázal rozeznat kanál k němu příchozí MIDI zprávy, popř. jej pro další přenos pozměnil. DATA BAJTY budou jen "kopírovány" a nebude se do nich nijak zasahováno.

⁶Most Significant Bit – Nejvýznamnější bit (většinou v bajtu).

 $^{^{7}0000}_{2} \sim \text{kanál } 1 \dots 1111_{2} \sim \text{kanál } 16.$

1.2.1 Výjimky

Je třeba alespoň okrajově zmínit výjimečné stavy, které v rámci MIDI protokolu mohou nastat. V této fázi semestrální práce tyto výjimky zatím nejsou ošetřeny.

Running Status

Pracuje-li MIDI vysílač v tomto stavu, neposílá STATUS BAJT v opakující se zprávě stejného druhu. Přijímač si tedy musí uložit poslední platný STATUS BAJT do paměti, kterou přemaže, obdrží-li zprávu s jiným, novým STATUS BAJTEM. Tento mód výrazně šetří přenesená data, zejména je-li použit při odesílání zprávy $Změna\ kontroléru$ kontinuálních ovladačů. [1]

Zprávy Real-Time

Tyto zprávy slouží pro synchronizaci MIDI zařízení, které pracují s časovou osou nebo časem obecně. Skládají se pouze z jediného bajtu a mají nejvyšší prioritu. Přijímač by měl být připraven i na to, že je obdrží uprostřed standardní zprávy nebo SysEx zprávy. [1]

Zprávy SysEx

SysEx (*System Exlusive*) zprávy se skládají z většího a libovolného počtu bajtů. Jsou víceúčelové a univerzální, používají se například pro posun na časové ose (komplementárně ke zprávám **Real-Time**), MSC⁸ apod. [1]

⁸MIDI Show Control – subprotokol pro ovládání scénické techniky, zejména pomocí příkazů GO, STOP, popř. RESUME.

2 Návrh přípravku

V rámci semestrální práce byl vytvořen prototyp zařízení na platformě Arduino UNO, která disponuje čipem ATMEL ATmega 328P. Arduinu sekunduje Ethernet Shield V1, který je osazen čipem WizNet W5100.

Přípravek umožňuje výměnu MIDI příkazů přes lokální sít, využívá první čtyři vrstvy ISO/OSI modelu. Zároveň poskytuje pokročilé možnosti směrování jednotlivých MIDI kanálů.

2.1 Hardware

Obr. 2.1: Schéma prototypu [3]

Z obr. 2.1 je patrné zapojení přípravku. Je využito standardní zapojení MIDI vstupu a výstupu v souladu se schématy na obr. 1.1 a 1.2. Jak již bylo řečeno v kapitole 1, MIDI využívá pro komunikaci sériovou linku. V tomto případě je vstupní linka zapojena k Arduinu na pinu 2 a výstupní k pinu 3¹.

Ve schématu na obr. 2.1 je pro zjednodušení značka "Arduino" chápána jako "Arduino + Wiznet Shield".

Přípravek je v této fázi vývoje napájen skrz USB sběrnici Arduina napětím 5 V.

¹Arduino umožňuje softwarové přepnutí pinů z režimu výstupu na režim vstup a naopak.

2.2 Software

Software přípravku byl vyvíjen za účelem maximalizace variability směřování MIDI příkazů. Na funkční rovině je inspirován systémem *Dante*, který se používá pro přenos zvukového signálu přes počítačovou sít. *Dante* umožňuje pokročilé směřování signálů napříč sítovými zařízeními, ovládané pomocí přehledné matice na kontrolním PC. Do této fáze by měl být vyvinut i systém MoE².

2.2.1 Databáze spojení

S cílem docílit již zmiňované velké variability ve směřování zpráv napříč přípravky byla do zdrojového kódu implementována tzv. databáze spojení subscriptions[]:

```
typedef struct subscription
{
    byte srcdstChannel;
    byte dstIPnib;
} _subscriptions[MAX_SUBS];
```

Toto pole struktur subscription je pro celý MoE protokol zásadní. Jedno "spojení", tedy jeden prvek v tomto poli, propojuje jeden MIDI kanál lokálního zařízení s jedním MIDI kanálem cílového zařízení. Toto pole si lze představit jako virtuální patchbay. Jeden patch-kabel odpovídá jednomu prvku v poli (záznamu v databázi).

Každý záznam je tvořen dvěma bajty:

- srcdstChannel v sobě kóduje zdrojový MIDI kanál, který se týká lokálního zařízení, a cílový MIDI kanál ten se týká zařízení cílového. "Kódování" je uskutečněno způsobem vyobrazeným na obr. 2.2. Jeden kanál je vyjádřen pomocí čtyř bitů (viz kapitolu 1.2), jeden bajt tedy "pojme" akorát dva kanály.
- dstIPnib vyjadřuje část IP adresy cílového zařízení (více v TODO!)

2.2.2 Logická vrstva

Jedna MoE zpráva obsahuje *čtyři bajty*. První bajt určuje

²MIDI over Ethernet – MIDI po Ethernetu

Obr. 2.2: Kódování zdrojového a cílového kanálu v bajtu srcdstChannel

3 Průběh komunikace

V této kapitole bude popsán průběh připojení přípravku k síti, automatické rozpoznání a zacházení s přijatými MIDI a UDP zprávami.

3.1 Připojení k lokální síti

Každému přípravku byla do prvních šesti bajtů EEPROM paměti uložena unikátní MAC adresa. Při zapnutí a následné inicializaci je adresa načtena a přiřazena. Nejprve proběhne pokus o získání IP adresy pomocí DHCP serveru sítě. V případě neúspěchu použije přípravek uživatelem napevno nastavenou IP adresu.

Díky knihovně EthernetUdp.h jsou výše zmíněné operace otázkou pouze několika málo řádků:

```
if (Ethernet.begin())
{
    //DHCP server zdárně přidělil zařízení IP adresu
    Serial.println(Ethernet.localIP());
}
else
{
    Ethernet.begin(_myMac, _userIP);
    //Přidělení IP adresy napevno
    Serial.println(Ethernet.localIP());
}
```

3.2 Upozornění na vlastní přítomnost

Ihned po zdárném připojení k lokální síti je vyslána zpráva beacon, jejíž účel je upozornit všechna zařízení v lokální síti na vlastní přítomnost. Zpráva se skládá ze čtyř bajtů:

```
OxFF, OxFF, OxFF, OxFF
```

a je poslána na broadcast adresu sítě.

```
_broadcastIP = Ethernet.localIP();
_broadcastIP[3] = 255;
EthernetUdp eUDP;
eUDP.begin(MOE_PORT);
eUDP.beginPacket(_broadcastIP, MOE_PORT);
```

```
eUDP.write(_beacon, sizeof(_beacon));
eUDP.endPacket();
```

3.3 Rozpoznání zařízení na síti

V případě přijetí zprávy beacon je rozpoznána IP adresa odesílatele a vytvořen nový záznam do databáze spojení subscriptions. V této fázi projektu přípravek napevno přiřazuje kanál 1 lokální příchozí MIDI sběrnice kanálu 1 výstupní MIDI sběrnice cílového zařízení. V další fázi bude operace přiřazení uskutečňována pravděpodobně přes kontrolní SW na PC připojeného do též sítě.

```
switch(_incomingUDP[0])
{
    //...
    case 0xFF:
      addSubscription(1, eUDP.remoteIP()[3], 1);
    break;
    //...
}
```

3.4 Přijetí MIDI zprávy

Při přijímání MIDI zpráv je nejdříve třeba rozlišit, jedná-li se o zprávou dvoubajtovou, nebo tříbajtovou. Toto lze vyřešit jednoduchým větvením switch. V dalším kroku je nutné dekódovat kanál MIDI zprávy z DATA BAJTU – tuto "extrakci" lze vyřešit pomocí bitového maskování. Takto získaný bajt je pak porovnáván s prvním nibblem bajtu srcdstChannel každého záznamu databáze subscriptions. Dojde-li ke shodě, začíná konstrukce odchozí zprávy podle dalších informací v odpovídajícím záznamu databáze spojení. Výpis kódu je k dispozici jako příloha B

3.5 Přijetí UDP zprávy

Díky architektuře odesílané zprávy (viz podkapitolu 3.4) je veškeré směrování dokončeno již na straně odesílatele. Přijímač může obdrženou zprávu tedy rovnou poslat do MIDI výstupu.

Závěr

Shrnutí studentské práce.

Literatura

- [1] THE MIDI MANUFACTURERS ASSOCIATION. MIDI 1.0 Detailed Specification. Document Version 4.2.1. Los Angeles, CA: MMA, 1996.
- [2] MMA TECHNICAL STANDARDS BOARD/AMEI MIDI COMMITTEE. MIDI 1.0 Electrical Specification Update. 2014.
- [3] GHASSAEI, Amanda. Send and Receive MIDI With Arduino [online]. [cit. 1.12.2020]. Dostupné z URL: https://www.instructables.com/Send-and-Receive-MIDI-with-Arduino/.
- [4] VUT v Brně: Úprava, odevzdávání a zveřejňování vysokoškolských kvalifikačních prací na VUT v Brně [online]. Směrnice rektora č. 2/2009. Brno: 2009, poslední aktualizace 24. 3. 2009 [cit. 23. 10. 2015]. Dostupné z URL: https://www.vutbr.cz/uredni-deska/vnitrni-predpisy-a-dokumenty/smernice-rektora-f34920/.
- [5] ČSN ISO 690 (01 0197) Informace a dokumentace Pravidla pro bibliografické odkazy a citace informačních zdrojů. 40 stran. Praha: Český normalizační institut, 2011.
- [6] ČSN ISO 7144 (010161) Dokumentace Formální úprava disertací a podobných dokumentů. 24 stran. Praha: Český normalizační institut, 1997.
- [7] ČSN ISO 31-11 Veličiny a jednotky část 11: Matematické znaky a značky používané ve fyzikálních vědách a v technice. Praha: Český normalizační institut, 1999.
- [8] BIERNÁTOVÁ, O., SKŮPA, J.: Bibliografické odkazy a citace dokumentů dle ČSN ISO 690 (01 0197) platné od 1. dubna 2011 [online]. 2011, poslední aktualizace 2.9.2011 [cit. 19.10.2011]. Dostupné z URL: http://www.citace.com/CSN-ISO-690.pdf
- [9] *Pravidla českého pravopisu*. Zpracoval kolektiv autorů. 1. vydání. Olomouc: FIN PUBLISHING, 1998. 575 s. ISBN 80-86002-40-3.
- [10] WALTER, G. G.; SHEN, X. Wavelets and Other Orthogonal Systems. 2. vyd. Boca Raton: Chapman & Hall/CRC, 2000. 392 s. ISBN 1-58488-227-1
- [11] SVAČINA, J. Dispersion Characteristics of Multilayered Slotlines a Simple Approach. *IEEE Transactions on Microwave Theory and Techniques*, 1999, vol. 47, no. 9, s. 1826–1829. ISSN 0018-9480.

[12] RAJMIC, P.; SYSEL, P. Wavelet Spectrum Thresholding Rules. In *Proceedings* of the International Conference Research in Telecommunication Technology, Žilina: Žilina University, 2002. s. 60–63. ISBN 80-7100-991-1.

Seznam symbolů, veličin a zkratek

MIDI Musical Instrument Digital Interface – digitální rozhraní hudebního

nástroje

DAW Digital Audio Workstation – digitální pracovní stanice pro náběr a

úpravu vícestopého záznamu.

USB Universal Serial Bus – univerzální sériová sběrnice pro komunikace

hosta s jeho periferiemi.

RF Radio Frequency

UART Universal Asynchronous Receiver/Transmitter – univerzální

asynchronní přijímač/vysílač.

LED Light-Emiting Diode – Dioda, která vyzařuje viditelné světlo.

MSB Most Significant Bit – Nejvýznamnější bit (většinou v bajtu).

MSC MIDI Show Control – subprotokol pro ovládání scénické techniky,

zejména pomocí příkazů GO, STOP, popř. RESUME.

MoE MIDI over Ethernet – MIDI po Ethernetu

Šířka levého sloupce Seznamu symbolů, veličin a zkratek je určena šířkou

parametru prostředí acronym (viz řádek 1 výpisu zdrojáku na str. 28)

KolikMista pouze ukázka vyhrazeného místa

DSP číslicové zpracování signálů – Digital Signal Processing

 $f_{\rm vz}$ vzorkovací kmitočet

Seznam příloh

A	MIDI STATUS BAJTY	23
В	Výpis kódu pro příjem a zpracování MIDI zprávy	24
\mathbf{C}	Některé příkazy balíčku thesis C.1 Příkazy pro sazbu veličin a jednotek	
D	C.2 Příkazy pro sazbu symbolů Druhá příloha	20 27
${f E}$	Příklad sazby zdrojových kódů E.1 Balíček listings	28 28
\mathbf{F}	Obsah přiloženého CD	32

A MIDI STATUS BAJTY

	Název	Hex. hodnota	Bin. hodnota
Note-Off	Nota vypnuta	8n	1000 nnnn
Note-On	Nota zapnuta	9n	1001 nnnn
Poly Key Pressure	Polyfonický tlakový ovladač	An	1010 nnnn
Control Change	Změna kontroléru	Bn	1011 nnnn
Program Change	Změna programu	Cn	1100 nnnn
Channel Pressure	Monofonický tlakový ovladač	Dn	1101 nnnn
Pitch Bend	Ohyb výšky tónu	En	1110 nnnn

Tab. A.1: Tabulka MIDI STATUS BAJTŮ [1].

B Výpis kódu pro příjem a zpracování MIDI zprávy

```
void handleMIDI()
  int numIncBytes = midiSerial.available();
  if (numIncBytes)
  {
    switch (numIncBytes)
      //...
      case 3:
        byte data0, data1, data2;
        data0 = midiSerial.read();
        data1 = midiSerial.read();
        data2 = midiSerial.read();
        sendUDP(data0, data1, true, data2);
      break;
      //...
    }
  }
void sendUDP(byte data0, byte data1, bool threeByte,
  byte data2)
  byte srcCh = data0 & 0x0F;
 for (byte i = 0; i < MAX_SUBS; i++)</pre>
    if (srcCh == (_subscriptions[i].srcdstChannel
      & 0xF0) >> 4)
      data0 = data0 & 0xF0;
      data0 = data0 | (_subscriptions[i].srcdstChannel
              & 0x0F);
      IPAddress remoteIP = Ethernet.localIP();
      remoteIP[3] = _subscriptions[i].dstIPnib;
      eUDP.beginPacket(remoteIP, MOE_PORT);
      eUDP.write(0xAA);
      eUDP.write(data0);
```

```
eUDP.write(data1);
if (threeByte)
    eUDP.write(data2);
eUDP.endPacket();
}
}
```

C Některé příkazy balíčku thesis

C.1 Příkazy pro sazbu veličin a jednotek

Tab. C.1: Přehled příkazů pro matematické prostředí

Příkaz	Příklad	Zdroj příkladu	Význam				
	β_{\max}	<pre>\$\beta_\textind{max}\$</pre>	textový index				
	$\mathrm{U_{in}}$	<pre>\$\const{U}_\textind{in}\$</pre>	konstantní veličina				
	$u_{ m in}$	<pre>\$\var{u}_\textind{in}\$</pre>	proměnná veličina				
	$oldsymbol{u}_{ m in}$	<pre>\$\complex{u}_\textind{in}\$</pre>	komplexní veličina				
	y	\$\vect{y}\$	vektor				
	${f Z}$	\$\mat{Z}\$	matice				
	kV	$\$ \unit{kV}\ \cdot \unit{kV}	jednotka				

C.2 Příkazy pro sazbu symbolů

- \E, \eul sazba Eulerova čísla: e,
- \J, \jmag, \I, \imag sazba imaginární jednotky: j, i,
- \dif sazba diferenciálu: d,
- \sinc sazba funkce: sinc,
- \mikro sazba symbolu mikro stojatým písmem¹: μ,
- \uppi sazba symbolu π (stojaté řecké pí, na rozdíl od \pi, což sází π).

Všechny symboly jsou určeny pro matematický mód, vyjma \mikro, jenž je použitelný rovněž v textovém módu.

¹znak pochází z balíčku textcomp

D Druhá příloha

Obr. D.1: Zlepšené Wilsonovo proudové zrcadlo.

Pro sazbu vektorových obrázků přímo v LATEXu je možné doporučit balíček TikZ. Příklady sazby je možné najít na TEXample. Pro vyzkoušení je možné použít programy QTikz nebo TikzEdt.

E Příklad sazby zdrojových kódů

E.1 Balíček listings

Pro vysázení zdrojových souborů je možné použít balíček listings. Balíček zavádí nové prostředí lstlisting pro sazbu zdrojových kódů, jako například:

```
\section{Balíček lstlistings}
Pro vysázení zdrojových souborů je možné použít
balíček \href{https://www.ctan.org/pkg/listings}%
{\texttt{listings}}.
Balíček zavádí nové prostředí \texttt{lstlisting} pro
sazbu zdrojových kódů.
```

Podporuje množství programovacích jazyků. Kód k vysázení může být načítán přímo ze zdrojových souborů. Umožňuje vkládat čísla řádků nebo vypisovat jen vybrané úseky kódu. Např.:

Zkratky jsou sázeny v prostředí acronym:

```
6 \begin{acronym}[KolikMista]
```

Šířka textu volitelného parametru KolikMista udává šířku prvního sloupce se zkratkami. Proto by měla být zadávána nejdelší zkratka nebo symbol. Příklad definice zkratky f_{vz} je na výpisu E.1.

Výpis E.1: Ukázka sazby zkratek

Ukončení seznamu je provedeno ukončením prostředí:

```
26
       [Šířka levého sloupce Seznamu symbolů, veličin a zkratek]
27
       {je určena šířkou parametru prostředí \texttt{acronym} (viz řádek~1
28
                          % rozvinutí zkratky
29
30
     \acro{zkDummy}
31
       [KolikMista]
32
       {pouze ukázka vyhrazeného místa}
33
     \acro{DSP}
34
                    % název/zkratka
35
       {číslicové zpracování signálů -- Digital Signal Processing}
36
                          % rozvinutí zkratky
37
     %%% bsymfvz
```

```
38 \acro{symfvz} % název
39 [\ensuremath{f_\textind{vz}}] % symbol
40 {vzorkovací kmitočet} % popis
41 %%% esymfvz
42
43 \end{acronym}
```

Poznámka k výpisům s použitím volby jazyka czech nebo slovak:

Pokud Váš zdrojový kód obsahuje znak spojovníku -, pak překlad může skončit chybou. Ta je způsobená tím, že znak - je v českém nebo slovenském nastavení balíčku babel tzv. aktivním znakem. Přepněte znak - na neaktivní příkazem \shorthandoff{-} těsně před výpisem a hned za ním jej vratte na aktivní příkazem \shorthandon{-}. Podobně jako to je ukázáno ve zdrojovém kódu šablony.

Výpis E.2: Příklad Schur-Cohnova testu stability v prostředí Matlab.

```
%% Priklad testovani stability filtru
3 % koeficienty polynomu ve jmenovateli
a = [5, 11.2, 5.44, -0.384, -2.3552, -1.2288];
5 disp( 'Polynom:'); disp(poly2str( a, 'z'))
7 | disp('Kontrola pomoci korenu polynomu:');
8 | zx = roots(a);
  if ( all(abs(zx) < 1))
       disp('System i je i stabilni')
10
  else
11 |
       disp('System_je_nestabilni_nebo_na_mezi_stability');
12
  end
13
14
15 disp('u'); disp('KontrolaupomociuSchur-Cohn:');
16 | ma = zeros( length(a)-1,length(a));
17 \mid ma(1,:) = a/a(1);
  for (k = 1: length(a) - 2)
18
       aa = ma(k, 1: end - k + 1);
19
       bb = fliplr( aa);
20
      ma(k+1,1:end-k+1) = (aa-aa(end)*bb)/(1-aa(end)^2);
21
  end
22
23
  if( all( abs( diag( ma.'))))
24
       disp('System i je i stabilni')
25
26 else
       disp('System_je_nestabilni_nebo_na_mezi_stability');
27
  end
```

Výpis E.3: Příklad implementace první kanonické formy v jazyce C.

```
// první kanonická forma
                                                                    1
                                                                    2
short fxdf2t( short coef[][5], short sample)
                                                                    3
 static int v1[SECTIONS] = {0,0}, v2[SECTIONS] = {0,0};
                                                                    4
                                                                    5
  int x, y, accu;
                                                                    6
  short k;
                                                                    7
  x = sample;
                                                                    8
  \underline{for}(k = 0; k < SECTIONS; k++){
                                                                    9
    accu = v1[k] >> 1;
                                                                    10
    y = _sadd( accu, _smpy( coef[k][0], x));
                                                                    11
    y = _sshl(y, 1) >> 16;
                                                                    12
                                                                    13
    accu = v2[k] >> 1;
                                                                    14
    accu = _sadd( accu, _smpy( coef[k][1], x));
                                                                    15
    accu = _sadd( accu, _smpy( coef[k][2], y));
                                                                    16
    v1[k] = _sshl( accu, 1);
                                                                    17
                                                                    18
    accu = \_smpy(coef[k][3], x);
                                                                    19
    accu = _sadd( accu, _smpy( coef[k][4], y));
                                                                    20
    v2[k] = _sshl( accu, 1);
                                                                    21
                                                                    22
                                                                    23
    x = y;
  }
                                                                    24
                                                                    25
  return( y);
}
                                                                    26
```

F Obsah přiloženého CD

Nezapomeňte uvést, co čtenář najde na přiloženém médiu. Je vhodné okomentovat obsah každého adresáře, specifikovat, který soubor obsahuje důležitá nastavení, který soubor je určen ke spuštění atd. Také je dobře napsat, v jaké verzi software byl kód testován (např. Matlab 2010b).

Pokud je souborů hodně a jsou organizovány ve více složkách, je možné pro výpis adresářové struktury použít balíček dirtree.

/ kořenový adresář přiloženého CD
logologa školy a fakulty
BUT_abbreviation_color_PANTONE_EN.pdf
BUT_color_PANTONE_EN.pdf
FEEC_abbreviation_color_PANTONE_EN.pdf
FEKT_zkratka_barevne_PANTONE_CZ.pdf
UTKO_color_PANTONE_CZ.pdf
UTKO_color_PANTONE_EN.pdf
VUT_barevne_PANTONE_CZ.pdf
VUT_symbol_barevne_PANTONE_CZ.pdf
VUT_zkratka_barevne_PANTONE_CZ.pdf
obrazkyostatní obrázky
soucastky.png
spoje.png
ZlepseneWilsonovoZrcadloNPN.png
ZlepseneWilsonovoZrcadloPNP.png
pdf pdf stránky generované informačním systémem
student-desky.pdf
student-titulka.pdf
student-zadani.pdf
text zdrojové textové soubory
literatura.tex
prilohy.tex
reseni.tex
uvod.tex
vysledky.tex
zaver.tex
zkratky.tex
 sablona-obhaj.tex hlavní soubor pro sazbu prezentace k obhajobě
 sablona-prace.tex hlavní soubor pro sazbu kvalifikační práce
thesis.stybalíček pro sazbu kvalifikačních prací