Enunciado

Un vértice v de un grafo G es un punto de articulación si $G \setminus v$ tiene más componentes conexas que G. Por otro lado, un grafo es biconexo si es conexo y no tiene puntos de articulación.

Demostrar, usando inducción en la cantidad de vértices, que todo grafo de n vértices que tiene más de $\frac{(n-1)(n-2)}{2}$ aristas es conexo. Opcionalmente, puede demostrar la misma propiedad usando otras técnicas de demostración.

Solución por inducción en la cantidad de nodos

Sea
$$G=(V,E)$$
 quiero ver que $|V|=n \wedge |E|=m>\frac{(n-1)(n-2)}{2}\Rightarrow G$ conexo.

Por inducción en la cantidad de nodos:

Hipótesis inductiva:

$$P(n-1):m'>\frac{(n-2)(n-3)}{2}\Rightarrow G' \ \text{conexo}.$$

Caso base:

$$P(2): m > \frac{(2-1)(2-2)}{2} \Rightarrow m > 0 \Rightarrow n = 2 \land m = 1$$
 por lo que es conexo.

Paso inductivo: $P(n-1) \Rightarrow P(n)$

Tenemos
$$P(n): m > \frac{(n-1)(n-2)}{2}$$

Y $\frac{(n-1)(n-2)}{2} = \binom{n-1}{2} < m$, y $\binom{n-1}{2}$ es la cantidad de aristas máxima de K_{n-1} , y tenemos n nodos y al menos una arista más, por lo que la única chance es que el nodo restante esté conectado por una o más aristas a K_{n-1} tal que sea conexo.

Luego consideremos G' tal que sacamos un nodo $v \in V$ cualquiera a G, nos queda que m' = m - d(v)

Por H.I:
$$m' = m - d(v) > \frac{(n-2)(n-3)}{2} \Rightarrow G'$$
 conexo

Entonces si agregamos v de nuevo, G' sigue siendo conexo ya que agregarle las aristas que conectaban v no reduce m

Por lo tanto, cualquier grafo con n vértices y más de ${n-1 \choose 2}$ aristas es conexo.