PHY 4102: Numerical Simulation techniques in Physics

Amal Medhi

School of Physics, IISER Thiruvananthapuram, Kerala 695016

Varsha 2015

Basic Error Analysis

(Also see: arXiv:1210.3781v2)

• We are interested in the expectation value of a quantity \hat{A} , given by

$$\langle A \rangle = \frac{1}{Z} \sum_{x} A_{x} e^{-\beta E_{x}}$$

The variance of $\langle A \rangle$ is, $\sigma^2 = \langle A^2 \rangle - \langle A \rangle^2$. σ is the standard deviation.

Basic Error Analysis

(Also see: arXiv:1210.3781v2)

• We are interested in the expectation value of a quantity \hat{A} , given by

$$\langle A \rangle = \frac{1}{Z} \sum_{x} A_{x} e^{-\beta E_{x}}$$

The variance of $\langle A \rangle$ is, $\sigma^2 = \langle A^2 \rangle - \langle A \rangle^2$. σ is the standard deviation.

• In Monte Carlo we estimate the quantity by the estimator,

$$\bar{A} = \frac{1}{M} \sum_{i=1}^{M} A_{x_i}$$

where the states x_i -s is selected from the proby distribution $p(x_i) = e^{-\beta E_{x_i}}/Z$.

• \bar{A} is also called the *sample average* and the quantities A_{x_i} , which are the *samples*.

 \bullet Imagine that we keep repeating the simulation many times. Then the quantity \bar{A} will keep fluctuating.

- Imagine that we keep repeating the simulation many times. Then the quantity \bar{A} will keep fluctuating.
- According a theorem in statistics, called the *central limit theorem*, **if** A_{x_i} -s are *independent* **then** \bar{A} is normally distributed around $\langle A \rangle$ with a standard deviation σ_A . We need to calculate σ_A .

- Imagine that we keep repeating the simulation many times. Then the quantity \bar{A} will keep fluctuating.
- According a theorem in statistics, called the *central limit theorem*, **if** A_{x_i} -s are *independent* **then** \bar{A} is normally distributed around $\langle A \rangle$ with a standard deviation σ_A . We need to calculate σ_A .

First let us show that, $\langle \bar{A} \rangle = \langle A \rangle$:

$$\langle \bar{A} \rangle = \left\langle \frac{1}{M} \sum_{i=1}^{M} A_{x_i} \right\rangle = \frac{1}{M} \sum_{i=1}^{M} \langle A_{x_i} \rangle = \frac{1}{M} \sum_{i=1}^{M} \langle A \rangle = \langle A \rangle$$
 (showed)

- Imagine that we keep repeating the simulation many times. Then the quantity \bar{A} will keep fluctuating.
- According a theorem in statistics, called the *central limit theorem*, **if** A_{x_i} -s are *independent* **then** \bar{A} is normally distributed around $\langle A \rangle$ with a standard deviation σ_A . We need to calculate σ_A .

First let us show that, $\langle \bar{A} \rangle = \langle A \rangle$:

$$\langle \bar{A} \rangle = \left\langle \frac{1}{M} \sum_{i=1}^{M} A_{x_i} \right\rangle = \frac{1}{M} \sum_{i=1}^{M} \langle A_{x_i} \rangle = \frac{1}{M} \sum_{i=1}^{M} \langle A \rangle = \langle A \rangle$$
 (showed)

- What is the meaning of $\langle A_{x_i} \rangle$ in this context? Think of it as follows.
- We repeat the simulations very large number of times, that is, create a large number of Markov chains. From each chain, pick the states x_i realized at the i-th time step. Thus we have very large number of samples x_i picked from the same probability distribution $p(x_i)$. The average of these very large number of samples is $\langle A_{x_i} \rangle = \langle A \rangle$.

Next, let us calculate the quantity $\langle \bar{A}^2 \rangle$

$$\langle \bar{A}^2 \rangle = \left\langle \left(\frac{1}{M} \sum_{i=1}^M A_{x_i} \right)^2 \right\rangle = \frac{1}{M^2} \sum_{i=1}^M \sum_{j=1}^M \langle A_{x_i} A_{x_j} \rangle$$
$$= \frac{1}{M^2} \sum_{i=1}^M \langle A_{x_i}^2 \rangle + \frac{1}{M^2} \sum_{i=1}^M \sum_{j=1}^M \langle A_{x_i} A_{x_j} \rangle$$

Next, let us calculate the quantity $\langle \bar{A}^2 \rangle$

$$\langle \bar{A}^2 \rangle = \left\langle \left(\frac{1}{M} \sum_{i=1}^M A_{x_i} \right)^2 \right\rangle = \frac{1}{M^2} \sum_{i=1}^M \sum_{j=1}^M \langle A_{x_i} A_{x_j} \rangle$$
$$= \frac{1}{M^2} \sum_{i=1}^M \langle A_{x_i}^2 \rangle + \frac{1}{M^2} \sum_{i=1}^M \sum_{j=1}^M \langle A_{x_i} A_{x_j} \rangle$$

Now *if* the samples are *independent*, $\langle A_{x_i} A_{x_j} \rangle = \langle A_{x_i} \rangle \langle A_{x_j} \rangle$ for $i \neq j$. Therefore,

$$\begin{split} \langle \bar{A}^2 \rangle = & \frac{1}{M^2} \frac{1}{M} \sum_{i=1}^{M} \langle A^2 \rangle + \frac{M^2 - M}{M} \langle A \rangle^2 \\ = & \frac{1}{M} \langle A^2 \rangle + \frac{M - 1}{M} \langle A \rangle^2 \end{split}$$

$$\begin{split} \sigma_A^2 &= \left\langle \left(\bar{A} - \langle A \rangle \right)^2 \right\rangle = \langle \bar{A}^2 \rangle - \langle A \rangle^2 \\ &= \frac{1}{M} \langle A^2 \rangle + \frac{M-1}{M} \langle A \rangle^2 - \langle A \rangle^2 \quad \text{(using the prev. result)} \\ &= \frac{1}{M} \langle A^2 \rangle - \frac{1}{M} \langle A \rangle^2 = \frac{1}{M} \sigma^2 \end{split}$$

$$\begin{split} \sigma_A^2 &= \left\langle \left(\bar{A} - \langle A \rangle \right)^2 \right\rangle = \langle \bar{A}^2 \rangle - \langle A \rangle^2 \\ &= \frac{1}{M} \langle A^2 \rangle + \frac{M-1}{M} \langle A \rangle^2 - \langle A \rangle^2 \quad \text{(using the prev. result)} \\ &= \frac{1}{M} \langle A^2 \rangle - \frac{1}{M} \langle A \rangle^2 = \frac{1}{M} \sigma^2 \end{split}$$

• Very good. We could now estimate the *experimental error* σ_A in the measurement of the quantity $\langle A \rangle$.

$$\begin{split} \sigma_A^2 &= \left\langle \left(\bar{A} - \langle A \rangle \right)^2 \right\rangle = \langle \bar{A}^2 \rangle - \langle A \rangle^2 \\ &= \frac{1}{M} \langle A^2 \rangle + \frac{M-1}{M} \langle A \rangle^2 - \langle A \rangle^2 \quad \text{(using the prev. result)} \\ &= \frac{1}{M} \langle A^2 \rangle - \frac{1}{M} \langle A \rangle^2 = \frac{1}{M} \sigma^2 \end{split}$$

- Very good. We could now estimate the *experimental error* σ_A in the measurement of the quantity $\langle A \rangle$.
- But for the fact that *neither* do we know $\langle A \rangle$ *nor* do we know σ beforehand.

$$\begin{split} \sigma_A^2 &= \left\langle \left(\bar{A} - \langle A \rangle \right)^2 \right\rangle = \langle \bar{A}^2 \rangle - \langle A \rangle^2 \\ &= \frac{1}{M} \langle A^2 \rangle + \frac{M-1}{M} \langle A \rangle^2 - \langle A \rangle^2 \quad \text{(using the prev. result)} \\ &= \frac{1}{M} \langle A^2 \rangle - \frac{1}{M} \langle A \rangle^2 = \frac{1}{M} \sigma^2 \end{split}$$

- Very good. We could now estimate the *experimental error* σ_A in the measurement of the quantity $\langle A \rangle$.
- But for the fact that *neither* do we know $\langle A \rangle$ *nor* do we know σ beforehand.
- We do however know the sample variance s^2 ,

$$s^{2} = \frac{1}{M-1} \sum_{i=1}^{M} (A_{x_{i}} - \bar{A})^{2}$$

$$\begin{split} \sigma_A^2 &= \left\langle \left(\bar{A} - \langle A \rangle \right)^2 \right\rangle = \langle \bar{A}^2 \rangle - \langle A \rangle^2 \\ &= \frac{1}{M} \langle A^2 \rangle + \frac{M-1}{M} \langle A \rangle^2 - \langle A \rangle^2 \quad \text{(using the prev. result)} \\ &= \frac{1}{M} \langle A^2 \rangle - \frac{1}{M} \langle A \rangle^2 = \frac{1}{M} \sigma^2 \end{split}$$

- Very good. We could now estimate the *experimental error* σ_A in the measurement of the quantity $\langle A \rangle$.
- But for the fact that *neither* do we know $\langle A \rangle$ *nor* do we know σ beforehand.
- We do however know the sample variance s^2 ,

$$s^2 = \frac{1}{M-1} \sum_{i=1}^{M} (A_{x_i} - \bar{A})^2$$

• The best thing we can do is replace σ^2 by s^2 . In fact it can be shown that $\langle s^2 \rangle = \sigma^2$.

• Finally, we can estimate *experimental error* of the Monte Carlo measurement as

$$\sigma_{A} = \left[\frac{1}{M(M-1)} \sum_{i=1}^{M} (A_{x_{i}} - \bar{A})^{2} \right]^{1/2}$$

 Finally, we can estimate experimental error of the Monte Carlo measurement as

$$\sigma_{A} = \left[\frac{1}{M(M-1)} \sum_{i=1}^{M} (A_{x_{i}} - \bar{A})^{2} \right]^{1/2}$$

• Notice also that,

$$\sigma_A = \frac{s}{\sqrt{M}}$$

• Usually *s* does not vary much with *M*. Hence,

$$\sigma_A \propto \frac{1}{\sqrt{M}}$$

How do we get it?

• The samples generarated in successive MC steps in the Markov chain are highly *correlated*.

How do we get it?

- The samples generarated in successive MC steps in the Markov chain are highly *correlated*.
- A simple stategy to obtain independent samples is to discard many states in between two measurements.

How do we get it?

- The samples generarated in successive MC steps in the Markov chain are highly *correlated*.
- A simple stategy to obtain independent samples is to discard many states in between two measurements.
- But discard how many many exactly?

How do we get it?

- The samples generarated in successive MC steps in the Markov chain are highly *correlated*.
- A simple stategy to obtain independent samples is to discard many states in between two measurements.
- But discard how many many exactly?
- A rigorous answer to the question would need calculation of a quantity called *autocorrelation time* τ_A . Time autocorrelation function,

$$\chi(t) = \int dt' \left[A(t')A(t'+t) - \bar{A}^2 \right]$$
$$\chi(t) \sim e^{-t/\tau_A}$$