

JUN 2 7 1995

950623

Interim Response Action

Basin F Liquid Incineration Project

DRAFT HUMAN HEALTH RISK ASSESSMENT

Volume II

Preplaced Remedial Action Contract Contract No. DACW-45-90-D-0015

January 1991

Rocky Mountain Arsenal Information Center Commerce City, Colorado

U.S. Army Corps of Engineers Omaha District

This document has been approved for public release and sale; its distribution is unlimited.

DTIC QUALITY INSPECTED 5

RMA 91-0371 /4

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Davis Highway, suite 1204, Armigion, VA 2220			
1. AGENCY USE ONLY (Leave bla	nk) 2. REPORT DATE 01/00/91	3. REPORT TYPE AND	D DATES COVERED
4. TITLE AND SUBTITLE INTERIM RESPONSE ACTION, BAS HEALTH RISK ASSESSMENT -	IN F LIQUID INCINERATION PROJE	CT, DRAFT HUMAN	5. FUNDING NUMBERS
6. AUTHOR(S)		-	DACW 45 90 D 0015
7. PERFORMING ORGANIZATION	IAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
ROY F. WESTON, INC. LAKEWOOD, CO		*	91122R03
		*)	
9. SPONSORING/MONITORING AC	ENCY NAME(S) AND ADDRESS(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
ARMY CORPS OF ENGINEERS. OMA	HA DISTRICT		
OMAHA, NE			
11. SUPPLEMENTARY NOTES			
	,		
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC F	ELEASE; DISTRIBUTION 1	S UNLIMITED	
13. ABSTRACT (Maximum 200 wor			
RISK ASSESSMENT PREPARABLE OBJECTIVE OF THE RISK THE INCINERATION OF PROSSIBLE DIRECT AND DESCRIPTION OF THE ASSESSMENT IS 1. INCINERATION 2. DESCRIPTION OF THE ASSESSMENT OF	COMPREHENSIVE, MULTIL ARED FOR THE BASIN F L. ASSESSMENT IS TO ESTA BASIN F LIQUIDS WHICH A CONDINECT EXPOSURE PATHY CLUDED THAT THE INCINITY CARCINOGENIC RISK TO A DIVIDED INTO THE FOLL OF FACILITY DESCRIPTION OF SURROUNDING AREA OLLUTANT IDENTIFICATION OF EMISSION RATES FRO AND DEPOSITION MODELING OF KEY PATHWAYS AND	QUID INTERIM RESABLISH CHEMICAL EARE PROTECTIVE OF VAYS AND SENSITIVE POPULATION SENSITIVE POPULATIONS: N AND SELECTION OF ANALYSIS POLLUTANTS	PPONSE ACTION. THE EMISSION LIMITS FOR THUMAN HEALTH. ALL VE SUBPOPULATIONS WERE POSES NEITHER ULATION.
		Date	SORTH IT MINISTED O
14. SUBJECT TERMS			15. NUMBER OF PAGES
AIR QUALITY, EMISSION RATES	, TOXICITY ASSESSMENT, IRA F, S	QI	16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	CATION 20. LIMITATION OF ABSTRACT

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

LIST OF APPENDICES

<u>Title</u>
Data On Designated Fishing Areas
Derivation of Emission Rates for Dioxins/Furans and the Inorganics
Estimate of Organic Mass Emission Rates From Incineration of Basin F Liquids
Ambient Air Quality Modeling and Health Risk Assessment Protocols, Rocky Mountain Arsenal Basin "F" Liquid Incineration System Design
Derivation of Surface Water Pollutant Concentrations for Engineers Lake, Tier 1 and 2 Analysis
Derivation of Soil Pollutant Concentrations
Methodology for Calculating Pollutant Concentrations in Vegetables
Methodology for Determining Pollutant Uptake Through Milk and Beef Consumption
Calculation of the Estimated Daily Intake for the Soil/Dust Ingestion Route of Exposure
Calculation of the Estimated Daily Intake for the Fish Ingestion Route of Exposure
Calculation of the Estimated Daily Intake for the Dermal Absorption Route of Exposure
Methodology for Calculating Organic Pollutant Concentrations in Mother's Milk
Carcinogenic Risk for Individuals Under all Scenarios
Derivation of Selected Oral Reference Doses (RfDs)
Derivation of Selected Inhalation Reference Doses (RfDs)

Accesi	on For	/
NTIS	CRA&I	N
DTIC	TAB	
	ounced	
Justific	cation	
By Distrib		0 1
A	vailability	Codes
Dist	Avail ar Spec	d/or ial
A-l		

APPENDIX 3A DATA ON DESIGNATED FISHING AREAS

531C/S3

STATE OF COLORADO Roy Romer, Governor DEPARTMENT OF NATURAL RESOURCES

DIVISION OF WILDLIFE

AN EQUAL OPPORTUNITY EMPLOYER

Perry D. Olson, Director 6060 Broadway Denver, Colorado 80216 Telephone: (303) 297-1192

October 3, 1990

Nathan Mottl Roy F. Weston Inc. 1 Weston Way Bldg. 51 West Chester, PA 19380

Dear Mr. Mottl:

In response to your telephone request, I am providing the following information:

Within a 5 km radius of the center of the Rocky Mountain Arsenal we are only aware of the ponds on the Arsenal as being open to public (although limited) fishing.

Within a 5-10 km radius, we have identified 7 ponds which are open to public fishing, four of which are at the same site. Here are the names and locations of the ponds:

T3S, R68W, S2 T2S, R68W, S36 Clear Creek Pond Adams County Engineer's Lake Adams County Rotella Park Pond Adams County T2S, R68W, S35 Grandview Ponds 1-4 Adams County T2S, R67W, S18

Here is a summary of recent fish stocking information:

Clear Creek Pond - not stocked, but fish are present and fishing takes place

Engineer's Lake

1985: Stocked with 1100 4" Channel Catfish

1987: Stocked with 800 4" Largemouth Bass and 1500 6" Channel Catfish

Rotella Park Pond

1985: Stocked with 100 7" Bluegills

Grandview Pond #1

1988: Stocked with 20 15" Hybrid Grass Carp and 100 7" Largemouth Bass

Grandview Pond #2

1988: Stocked with 40 12" Hybrid Grass Carp and 200 7" Largemouth Bass

(continued)

REFER TO:

Grandview Pond #3

1988: Stocked with 10 12" Hybrid Grass Garp and 100 7" Largemouth Bass

Grandview Pond #4

1988: Stocked with 20 12" Hybrid Grass Carp and 100 7" Largemouth Bass

The attached map shows the location of all 4 areas and provides some additional data - I have drawn in Grandview Ponds on it.

Let me know if you have any questions.

Sincerely,

Dave Weber

Habitat Biologist

cc: Jim Satterfield, Pat Tucker

bass, yellow perch, and rainbow trout (catchable size stocked).

Agency: Adams County Parks & Recreation.

Comments: Open 5 a.m. to 11 p.m. No boats. Fishing pier on the south shore. Playground and restrooms. Extreme water level fluctuation. Hard surface foot trail.

Butts Park Pond

Location: Northwest of the intersection of W. 94th Ave. and Perry Street. Parking area is off of Perry Street just south of 96th Ave. or off of 94th Ave. next to the ice rink.

Size: 3 acres; 5 feet maximum depth.

Fish: Bluegill, bullhead, channel catfish, crappie, green sunfish, sucker, and yellow perch.

Agency: Hyland Hills Recreation & Park District.

Comments: Open daylight hours. No boats. Recreation Center and playground.

6 Standley Lake

Location: W. 88th Ave. and Kipling Street. Parking area is off of Kipling. Access also on the west side of the lake via Alkire Street at 87th Ave.

Size: 1,210 acres; 80 feet maximum depth.

Fish: Bluegill, carp, channel catfish, green sunfish, largemouth bass, smallmouth bass, sucker, walleye, yellow perch, and rainbow trout (catchable size stocked).

Agency: South and southwest shore, Jefferson County Open Space. Remaining shore and lake itself, City of Westminster Parks & Recreation.

Comments: Open 5 a.m. to 11 p.m. for walk-in visitors. Open 8 a.m. to 7 p.m. for vehicles and boats. All boats need Westminster boat permit. Fee area for vehicles at Kipling & W. 88th Ave. Walk-in fishing is free. Extreme water level fluctuation. Two boat ramps on east shore. No fishing from dam.

MAY BE CLOSED DUE TO INSURANCE PROBLEMS: CONTACT MANAGING AGENCY.

7 Pomona Lake,

Location: In Meadow Glen Park. North of W. 80th Ave. and one-quarter mile west of Wadsworth Blvd. Main parking area can be reached via 80th Ave. by going north on Club Crest Drive, and then east on W. 81st Place.

Size: 31 acres; 8 feet maximum depth.

Fish: Largemouth bass, yellow perch, bullhead, channel catfish, crappie, and green sunfish.

Agency: North Jeffco Parks & Recreation.

Comments: Open dawn to 11 p.m. No boats. Hard surface foot trail.

8 Lake Arbor

Location: North of W. 80th Ave. between Wadsworth Blvd. and Sheridan Blvd. Both the north and south shores of the lake can be reached via 80th Ave. To reach the south shore, take 80th Ave. to Lamar Street. Go north on Lamar to 80th Place. Take 80th Place east to the cul-de-sac. To reach the north shore take Lamar Street north past 80th Place on to Pomona Drive. Go east on Pomona around the north end of the lake to the parking area.

Size: 37 acres, 19 feet maximum depth.

Fish: Bluegill, bullhead, carp, channel catfish, crappie, green sunfish, largermouth bass, pumpkinseed sunfish, and sucker. Grass carp stocked to control aquatic plants.

Agency: North Jeffco Recreation & Park District and City of Arvada.

Comments: Open dawn to 11 p.m. Non-motorized boats only. Fishing piers located on the north shore. Artificial fish habitat structures in lake. Playground. Hard surface foot trail.

Faversham Park Pond

Location: Sheridan and 72nd Ave.

Size: 6 acres; 11 feet maximum depth.

Fish: Bluegill.

Agency: City of Westminster Parks & Recreation.

Comments: Open sunrise to 11 p.m. No boats. No wading or swimming. Kids 15 years old and under.

Camenisch Park Pond

Location: West of Pecos Street, south of W. 90th Ave. at Fontaine Street. Parking area south of 90th Ave.

Size: 3 acres; 10 feet maximum depth.

Fish: Largemouth bass, pumpkinseed sunfish, sucker, bluegill, bullhead, channel catfish, crappie, and green sunfish.

Agency: Hyland Hills Recreation & Park District.

Comments: Open dawn to 10 p.m. No boats. Playground and restrooms. Hard surface foot trail.

Bell Roth Park Pond

Location: On the east side of Pecos Street, 2 blocks north of W. 84th Ave.

Size: 3 acres; 8 feet maximum depth.

Fish: Channel catfish, crappie, green sunfish, sucker, yellow

perch, bluegill, bullhead, and carp.

Agency: Hyland Hills Recreation & Park District.

Comments: Open dawn to 10 p.m. No boats. Playground.

Kiwanis Park Pond

Location: W. 80th Ave. east of Zuni Street. Parking area south of 80th Ave.

Size: 3 acres; 2 feet maximum depth. Fish: Bullhead and green sunfish.

Agency: Hyland Hills Recreation & Park District.

Comments: Open dawn to half hour after sunset. No boats.

13 Rotella Park Pond

and N. York Street. Parking north of 78th Ave. or south of Coronado Drive So.

Size: 3 acres; 10 feet maximum depth.

Fish: Bluegill, bullhead, channel catfish, largemouth bass, and pumpkinseed sunfish.

Agency: Adams County Parks.

Comments: Open 7 a.m. to 11 p.m. No boats. Extreme water level fluctuation. Playground and restrooms. Hard surface foot trail.

14 Engineers Lake

Location: From 1-76 go to Hwy 224. Travel west on 224. Parking area is south of 224, just west of the South Platte River. The lake is

at the confluence of Clear Creek and the South Platte River. Hard surface foot trail across the river.

Size: 11 acres: 25 feet maximum depth.

Fish: Bullhead

Agency: Adams County Parks & Recreation.

Comments: Open 7 a.m. to 11 p.m. No boats. Walk-in trail and

neen shoreline. Picnic shelter.

15 Clear Creek Pond

York Street. Parking area is south of Hwy 224, and east of Washington Street.

Size: 3 acres; 9 feet maximum depth.

Fish: Bluegill, bullhead, carp, channel catfish, crappie, green sunfish, largemouth bass, pumpkinseed sunfish, and yellow perch.

Agency: Adams County Parks & Recreation.

Comments: Open 7 a.m. to 11 p.m. No boats. Hard surface trail along south side of pond.

Twin Lakes Park Ponds

Location: Just west of Broadway on 70th . W. Parking area south from 70th Ave.

Size: 2 ponds; 7 acres total; 16 feet maximum depth.

Fish: Bullhead, carp, channel catfish, crappie, green sunfish, largemouth bass, sucker, and yellow perch.

Agency: Adams County Parks.

Comments: Open 7 a.m. to 11 p.m. No boats. Hard surface foot trail, which connects with Clear Creek Trail.

Arvada Reservoir (not shown on map)

Location: Between Highway 93 and Indiana on W. 66th Ave.

Size: 180 acres; 77 feet maximum depth.

Fish: Rainbow trout, walleye, largemouth bass, smallmouth bass, yellow perch.

Agency: City of Arvada

Comments: City of Arvada permit required; available only at Arvada City Hall. No ice fishing. Non-motorized boats only. Open dawn to dusk. Special regulations apply.

Carl Park Pond

Location: West of Federal Blvd., on W. 54th Ave. at Steade Street. Parking area north of 54th Ave.

Size: 4 acres; 8 feet maximum depth.

Fish: Largemouth bass, bluegill, and bullhead.

Agency: Hyland Hills Recreation & Park District.

Comments: Open dawn to 10 p.m. No boats.

Birdland Lake

Location: W. 51st Ave. and Garrison Street. Parking area west of Garrison at south end of the lake.

Size: 3 acres; 10 feet maximum depth.

Fish: Bluegill, channel catfish, green sunfish, largemouth bass, pumpkinseed sunfish, and yellow perch.

Agency: North Jeffco Recreation & Park District.

Comments: Open dawn to 11 p.m. Non-motorized boats only. No ice fishing. Playground and hard surface foot trail.

Ward Road Pond

Location: Northeast of the intersection of I-70 and Ward Road. Parking area east of Ward Road and south of W. 48th Ave.

Size: 7 acres; 30 feet maximum depth.

Fish: Largemouth bass, pumpkinseed, bluegill, bullhead, crappie, and green sunfish.

Agency: City of Arvada and Division of Wildlife.

Comments: Non-motorized boats only. Belly-boats allowed. Pond open for fishing only. Good bass fishing. Restrooms.

Special Regulations: 1. Fishing by artificial flies or artificial lures only; 2. All fish caught must be returned to the water immediately

New Ponds Not Yet In Quide NOW PURE POLICE

Lowell Ponds - Adams County- At Lowell Street and 56th Way

Size: 3 ponds - 11 acres, 2 acres, 2 acres + Sheets Lake, 5 acres leased from City of Westminster. Maximum Depth - 10 feet.

Fish: Largemouth and smallmouth bass, channel cattish, bluegill

crappie and bullhead.

Agency: Colorado Division of Wildlife Comments: Belly boats allowed for fishing, except on Sheets Lake: Special Regulation: All largemouth and smallmouth bass possessed must be 15 inches or longer.

Ketner Lake - Jefferson County - Off of 100th Ave. and County Side Driv.
Size: 25 acres

Agency: City of Westminster Fish: Largemouth bass, crappie, bluegill, green sunfish, yellow perch

and bullhead

Comments: Belly boats allowed for fishing but no other types of boats. Ice fishing is prohibited. Special Regulation: All largemouth & smallmouth bass possessed must be 15 inches or longer.

Grandview Ponds Adams County - Off of 104th and Riverdale Road

Agency: Colorado Division of Wildlife
Fish: Largemouth bass, bluegill, channel catfish, crappole builties
green sunfish and yellow perch.
Special Regulation: All largemouth and smallsouth bass possessed in
the best or longer.

be 15 inches or longer.

Adams County Fairgrounds Lake (Dublish and smallmouth bass possesse

Adams County Fairgrounds Lake (Public Works Lake) - Adams County -124th at Adams County Fairgrounds.

Size: 20 acres

Agency: Adams County Parks and Recreation

Fish: Largemouth bass, blurgill, channel catfish, crappie and yello Amen's Carlo

Special Regulation: All largemouth and smallmouth bass possessed must be 15 inches or longer. and the same of the same

Boating Changes

Cottonwood Park Lake - Page 9 - No boating is allowed. Kendrick Reservoir - Page 9 - No boating is allowed Quincy Reservoir - Page 12 - Boat rental available Own boat allowed with Aurora permit - Non-motorized boats only Waneka Lake - Page 14 - Boat rental now available

Phone Number Changes

Bear Creek Reservoir - 987-7880 Chatfield Reservoir - 791-7275 Foothills Parks & Recreation - 987-3602

ACENCY YEARTES

Webster Lake - Page 4 - Agency City of Northglend Main Reservoir - Page 9 - Agency: Lakewood Department of Community Resources East Reservoir - Page 9 - Agency: Lakewood Department of Community Resources Smith Reservoir - Page 9 - Agency! Lakewood Department of Comunity Resources Kendrick Reservoir - Page 9 - Agency: Foothills Parks & Recreation Teller Lake - Page 14 - Agency: City of Boulder Open Space

FISH SPECIES ADDITIONS

9 J. 🗕 6

Barr Lake - Page 4 - Tiger Muskie Standley Lake - Page 5 - Wiper 1 10 Jag Overland Park Pond - Page 8 - Bullhead Bear Creek Reservoir - Page 9 - Tiger Auskie Chatfield Reservoir - Page 11 - Walleye Cherry Creek Reservoir - Page 11 & 12 - Wiper & Tiger Muskie Quincy Reservoir - Page 12 - Tiger Muskie Gross Reservoir - Page 15 & 16 - Tiger Muskie Evergreen Lake - Page 23 - Tiger Muskie

Colorado fishing regulations before fishing any water. IAG AND POSSESSION LIMITS FOR SPECIFIC FISH

hay arinden species or any be

IN ADDITION TO THE ALOVE DESCRIBED ECHT FEN DAILY BAC and possession units for trout, a person may take Chimothol sall by hove so lives the vortoming

	- Carrie	Law Co.
Mot Jour & more or leave	10	
Lebence Salmon Angling Feb. 1-Ang	DE 100	90
Acting or saying Sept. 14 and 11	40	46
Wide Company of the Company	16 9 36 - 4	- 32-20. ·
active .	10	10
がある。	STATE OF THE	- N.46:
San San	10	19
	A.21710-12-	10:
hand Calle	10	10
	and district the same	-
	THE PERSON NAMED IN	
his bes or vipes - Administra	ablan der d	- 40 - 40 · ·
his bas or vipus - Admentis desiry Court Courtis - 20 & or that 6 on he 20 inches or he	A b appear	Chira bonni
this bass or wipes - Administration of the Commission of the Commi	A b appear	Chira bonni
his bas or vipus - Admentis desiry Court Courtis - 20 & or that 6 on he 20 inches or he	A b appear	Chira bonni
this best or wipes - Administration of the S can be 20 inches or be	A b appear	Chira bonni
this bass or wipes - Administration of the Commission of the Commi	A b appear	
who have or whom - Administration of the common than 6 can be 20 inches or the common than the	A b appear	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
who have or whom - Administration of the control of	A b appear	, d 444 a
Allo best or when - Administration of the Committee of th	No.	20
Allo best or when - Administration of the Committee of th	A b appear	29 29 20 Me Limit
Auto bem or wipen - Administration of the Committee of th	No Section of the Sec	29 29 29 Me Limit
Auto bem or when - Administration of the Committee of the	No.	20 20 20 20 20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40

APPENDIX 5A

DERIVATION OF EMISSION RATES FOR DIOXINS/FURANS AND THE INORGANICS

5A.1 INTRODUCTION

Once the pollutants are identified, the next step in identifying process emissions is to predict the mass of these pollutants emitted from the stack over time. Emission factors are used to predict or estimate the concentrations and emission rates of the pollutants likely to be emitted from proposed facilities or from facilities for which there are no emissions data. Emission factors account for variations in emissions with respect to facility capacities and stack gas conditions (i.e., moisture content, temperature, and excess air) so that they can be used to estimate likely emissions from a facility that is basically similar in design and operation. Therefore, it is important that the emission factors be developed from data for the specific waste to be burned or from emissions data from comparable operating facilities. This section presents the emission factors and the resulting emission rates for the identified pollutants and provides the basis for the selection of the emission factors.

5A.2 OVERVIEW

The current analyses of emissions for four separate groups of pollutants are reported in this section. These categories are: polychlorinated dibenzo-p-dioxins (dioxins or PCDDs) and polychlorinated dibenzofurans (furans or PCDFs); inorganics (trace metals); volatile and semi-volatile organics (including products of incomplete combustion (PICs) and principal organic hazardous constituents (POHCs); and criteria pollutants (for which national ambient air quality standards have been established) and acid gases. The emission factors for each category of pollutants were derived from several methods and were based on:

- The test burn data for the Basin F waste obtained by T-THERMAL in February 1989 and August 1990
- The expected waste feed rate and composition (based on previous Basin F sampling data) and published EPA control equipment removal efficiencies
- Federal and Colorado emission limitations
- Emission test data obtained from other hazardous waste incineration facilities (from WESTON's comprehensive database)

The first method used to estimate emissions was based on the test burn conducted by T-THERMAL in August 1990. This test burn was comprised of nine test runs performed on a pilot-scale incinerator, which burned Basin F liquid and hydrazine wastewater. Most of the test runs could not be used to develop emission factors because dried waste clogged the atomizing tip of the nozzle during testing. There were several methods used to remove the waste buildup from the nozzle tip. In some instances, a hammer was used to gently hit the injector tip. Another method was passing steam or high pressure atomizing air through the injector. During these periods, the waste, the atomizing air flow, and the sampling trains were shut down; however, discontinuities in emissions were likely. There were no equipment operating difficulties during test runs 4 and 8; therefore, only test runs 4 and 8 were used to develop emission factors for dioxins and furans. Test run 4 was used to develop emission factors for metals and other ingranics (criteria pollutants and acid gases). The averages of all the test runs, including the unacceptable ones, were considered in developing upper bound sensitivity case emission factors. Tables 5A-1 and 5A-2 describe the problems that occurred during organic and inorganic testing, respectively.

The second method used to estimate the emissions was based on the expected feed rate of the waste being incinerated. WESTON investigated, collected, and assembled previous analytical data on the Basin F liquids. Sources of information and test data included Rocky Mountain Arsenal, Woodward Clyde Consultants, T-THERMAL, Waterway Experiment Station, Ebasco, and Shell Oil Company. Testing by these companies occurred from 1978 through 1989. WESTON also performed a series of tests on the pond and storage tanks in August and October 1989, and in February and April 1990. All of the test data were reviewed and converted into common units, parts per million by weight. Then the arithmetic mean and the maximum values were determined for each of the groups of data (historical Basin F, pond, and storage tanks). The maximum of the arithmetic means was determined by taking the highest value of the arithmetic means for the historical Basin F, pond, and storage tank data. Similarly, the maximum of the maximums was determined by taking the highest value of the maximums determined for each group of data. Table 5A-3 presents the basic analytical data and the averages and maximums for each group of data.

Table 5A-1
Problems During Organic Testing

Test Date	Tesi Time	Sample Time (min)	Run Number		Problems During Testing
14-Aug-90	10:04 10:58	54	1	1.) 2.)	10:30 - rapping was performed on the nozzle to help reduce increasing CO levels.
14-Aug-90	15:30 16:31	56	2	1.) 2.) 3.) 4.) 5.)	15:05 - restarted the incinerator. 15:35, 16:00 & 16:05 - rapping was performed on the nozzle to help reduce CO levels. 16:05 & 16:20 - a shot of high pressure atomizing air was injected into the nozzle.
15-Aug-90	08:45 09:25	32	3	1.) 2.) 3.)	8:30 - Basin F liquid waste was introduced.
16-Aug-90	08:55 12:08	180	4	1.) 2.)	8:46 - Basin F liquid waste was introduced. 9:45 - highest CO readings (212 ppmdv @ 7% O2).
16-Aug-90	12:51 17:09	180	5	2.) 3.) 4.) 5.)	high CO levels. 14:30 - Basin F liquid waste was introduced.
16-Aug-90	18:10 21:43	180	6	1.) 2.) 3.) 4.)	17:40 - the waste interlock tripped due to low water levels in the venturi sump. 18:00 - Basin F liquid waste was introduced.
17-Aug-90	08:02 11:29	120	7	1.) 2.) 3.) 4.) 5.) 6.)	7:41 - Basin F liquid waste was introduced. 8:03 - hydazine waste water was also introduced. 9:45 - the injectors were steamed for 10 minutes and the liquid was reintroduced after CO levels spiked over 100 ppm. Once the waste was reintroduced the O2 levels fell below 1.7% which automatically shutoff the waste. 10:00 - the injectors were replaced twice. 10:45 - the waste was reintroduced. 10:33 - highest CO readings (102 ppmdv @ 7% O2).
17-Aug- 9 0	12:10 14:13	113	8	1.) 2.)	12:08 - rapping was performed on the nozzle to help reduce CO levels. 12:58 - highest CO readings (150 ppmdv @ 7% O2).
17-Aug-90	14:51 16:51	120	9	1.) 2.)	14:45, 15:35 & 16:11 - rapping was performed on the nozzle to help reduce CO levels. 15:30 - highest CO readings (227 ppmdv @ 7% O2).

Note

Rapping - hitting the liquid pipe portion of the injector with a hammer to remove the dried waste clogging the atomizing air slots of the waste injector nozzle atomizing tip. It manifested itself by an increase in CO.

Other actions - passing steam or high pressure atomizing air throughout the passages of the injector.

During these periods, the waste and the atomizing air flow was shutoff. Also the emission sampling trains were shut down.

Table 5A-2
Problems During Metal Testing

Test Date	Tesi Time	Sample Time (min)	Run Numbe		Problems During Testing
14-Aug-90	10:17	29	1	1.	9:40 - Basin F liquid waste was introduced.
	10:58				10:30 - rapping was performed on the nozzle
					to help reduce increasing CO levels.
				3.	10:34 - highest CO readings (301 ppmdv @ 7% O2).
14-Aug-90	15:29	51	2	1.)	15:05 - restarted the incinerator.
	16:31		4	2.)	15:35, 16:00 & 16:05 - rapping was performed on
					the nozzle to help reduce CO levels.
				3.)	
					air was injected into the nozzle.
				4.)	16:10 - the atomizing air temp. was increased to 200 F.
				5.)	16:20 - the nozzle was lowered 1/2" further into
					into chamber.
				6.)	16:05 - highest CO readings (212 ppmdv @ 7% O2).
15-Aug-90	08:47	31	3	1.)	8:30 - Basin F liquid waste was introduced.
	09:26			2.)	9:00 & 9:30 - steam was injected through the nozzle.
				3.)	
16-Aug-90	09:08	120	A	11	
	11:20	44V	4	1.)	
	4 4 4 4 4			2.)	9:45 - highest CO readings (212 ppmdv @ 7% O2).
16-Aug-90	11:42	120	5	1.)	12:22 - compressor went down
	15:13			2.)	12:30 - Basin F liquid waste was introduced.
					14:00 - the injectors were changed to help reduce
				4.5	high CO levels.
				4.)	
				5.)	I I I I I I I I I I I I I I I I I I I
				6.)	the nozzle to help reduce CO levels.
96 4 20	40				13:06 - highest CO readings (319 ppmdv @ 7% O2).
16-Aug-90	15:58	120	6	1.)	17:40 - the waste interlock tripped due to
	18:53				low water levels in the venturi sump.
				2.)	18:00 - Basin F liquid waste was introduced.
				3.)	18:15 - rapping was performed on
					the nozzle to help reduce CO levels.
				4.)	18:12 - highest CO readings (258 ppmdv @ 7% O2).
16-Aug-90	19:09	120	7	1.)	20:30 & 21:00 - rapping was performed on
	21:27				the nozzle to help reduce CO levels.
				2.)	20:28 - highest CO readings (356 ppmdv @ 7% O2).
17-Aug-90	08:07	120	8	1.)	7:41 - Basin F liquid waste was introduced.
	11:55			2.)	8:03 - hydazine waste water was also introduced.
				3.)	9:45 - the injectors were steamed for 10 minutes
					and the liquid was reintroduced after CO levels
					spiked over 100 ppm. Once the waste was reintroduced
					the O2 levels fell below 1.7% which automatically
					shutoff the waste.
				4.)	10:00 - the injectors were replaced twice.
				5.)	10:45 - the waste was reintroduced.
				6.)	10:33 - highest CO readings (102 ppmdv @ 7% O2).
17-Aug-90	13:26	120	9	1.)	14:45 & 15:35 - rapping was performed on the nozzle
	15:51				to help reduce CO levels.
				2.)	14:29 - highest CO readings (356 ppmdv @ 7% O2).

Note:

Rapping - hitting the liquid pipe portion of the injector with a hammer to remove the dried waste clogging the atomizing air alots of the waste injector nozzle atomizing tip. It manifested itself by an increase in CO.

Other actions - passing steam or high pressure atomizing air throughout the passages of the injector.

During these periods, the waste and the atomizing air flow was shutoff. Also the emission sampling trains were shut down.

Table 5A-3

Chemical Characterization of Basin F Liquid

Compounds				Maximum				Maximum
(moll or mm hi mt)		Ariumetric Mean		of the	Max	Maximum Value		of the
ingle of Ppin of with	History	Pond	Tanks	Average	History	Pond	Tents	Maximum
Volatification of the contraction of the contractio	3							
1.12-Trehlomethana	NA	NA	NA	Y Z	Ϋ́	Ž	2	2
1 - Nehlomethane	YZ.	NA	NA	NA	NA	NA	NA	NAM
1 Dehometone	¥ _N	NA	NA	NA	NA	NA	AN	AN
12-Dichlomethane	Y _N	1.5E-06	2.2E-01	2.2E-01	NA	1.5E-06	32E-01	32E-01
12. Dichlomothene (fetal)	Y.V	NA	NA	NA	NA	NA	NA	NA
12-Dichlomannana	YZ .	NA	1.0E-05	1.0E-05	NA	NA	3.4E.05	3.4E-05
2 Dental Constant	NA	NA	5.5E-01	5.5E-01	NA	NA	1.1E+00	1 15+00
2 Chlomosh ulbonions	YN.	NA	4.6E-02	4.6E-02	NA	NA NA	12E-01	125-01
Acelore	AN	NA	NA	NA	NA	NA	NA	NA
Ammonia	AN A	NA	1.9E+00	1.9E+00	NA	NA	1.9E+00	1.9E+00
Renzena	5.8E+U4	NA	NA	5.8E+04	72E+04	NA	NA	72E+04
Bmmoform	¥2E-U3	1.3E.01	VA	1.3E-01	9.5E-03	13E-01	NA	1.3E-01
Brimomethane	NA NA	NA	NA	NA	NA	NA	NA	AN
Control Description	9.0E-U3	NA	NA	9.0E-03	1.8E-02	NA	NA	1.8E-02
Chembersone Chembersone	V N	1.5E-01	NA	1.5E-01	NA	1.5E-01	NA	1.5E-01
Chlomoform	AN A	Y.	4.0E-02	4.0E-02	NA	ΥN	1.1E-01	1.1E-01
Diceconantadiana	Z.3E-03	1.7E-01	2.6E-01	2.6E-01	3.1E-03	1.7E-01	3.5E-01	3.5E-01
Ethylhenze	AN	NA.	YZ.	NA	NA	NA	NA	NA
Methanol	Ç.	νγ	8.2E-02	8.2E-02	NA	NA	1.6E-01	1.6E-01
Methylme Chloride	4 2	Y'N	4.7E+03	4.7E+03	VΥ	ΥN	4.7B+03	4.7E+03
Totach love han	₹V.	AN	2.5E+00	2.5E+00	NA	NA	1.1E+01	1.1E+01
Tologo	YZ .	NA	1.4E-01	1.4E-01	NA	NA	1.5E-01	1.5E-01
Techonomy	9.1E-03	۷V	2.3E-02	2.3E-02	9.8E-03	NA	4.2E-02	4.2E-02
Villag Value	٧X	4.4E-01	6.9E-02	4.4E-01	NA	4.4E-01	1.1E-01	4.4E-01
Aylene (total)	A Z	1 25 71	N N N N	- X X X				and the state of t

Compounds	Arith	Arithmetric Mean	Maximum of the	X.	Mavimum Value		Maximum
(mg/tz or ppm by wr.)	History	Pond Tanks	~	History	Pond	Tanks	or the Maximum
12,4-Trichlorobenzene	NA	AN AN	A Z	V			
L'+ L'ICHIDIT DE HIZENE	NA	NA		VAI.	NA.	NA	NA
4-Chlorophenylmethylsulfone	1.0E-01	6.9E-02 1 4E-01	-	NA	NA	AN	NA
4-Cniorophenyimethylsulfoxide	1.7E+01	•		Z.3E-01	1.15:01	3.0E-01	3.0E-01
4-Nitrophenol	1.0E+01			3.2E+UI	VA.	AN	32B+01
Acenaphinene	NA			1.05+01	NA	NA	1.8E+01
Aldrin	1.2E+00	9.0	ľ	NA NA	NA	Ϋ́	NA
Atrazine	2.7E.01	0.0		2.9E+00	NA	1.0E+00	2.9E+00
Cyanide	1.25.00			2.7E-01	Y V	٧×	2.7E-01
Dieldrin	2,4571			1.9E+00	NA	NA	1.9E+00
Disopropyl Methylphosphonate	4 3E-01			5.7E-01	NA	NA	5.7E-01
Dimethyl Methylphosphonate	1 18403			1.5E+02	NA	NA	1.5E+02
Dimethyldisulfide	1.25±00	VN VN	1.18+03	2.5E+03	NA	NA	2.5B+03
Dimethylphosphate	AN			1.5E+02	NA	8.4E+01	1.5E+02
Dithlane	4 45.00	767		NA	2.8E+02	82E+02	8.2E+02
Endrin	9 55.01			12E-01	NA	NA	12E-01
Hexachlorocyclopentadiene	3 35.400			7.4E-01	NA	NA	7.4E-01
Bodrin	Z.52.7.1		2.3E+00	2.3E+00	NA	NA	2.3E+00
Malathion	10E-00	4 2	6.55-01	2.5E+00	NA	NA	2.5E+00
Parathion	1.01.10		1.0E+00	1.0E+00	NA	NA	1.0E+00
Pyrene	I D-Sati		1.4E-01	1.4E-01	NA	NA	1.4E-01
Supons	VAI V		NA	NA	NA	NA	NA
Urea	1 OF 1 OF		42E-01	42E-01	NA	NA	4.2E.01
Vapona	1.85+03		1.8E+05	1.8E+05	NA	NA	1.8E+05
DODOE	1.18+00		1.1E+00	1.1E+00	NA	NA	1.18+00
IQQaa	1.485-01		1.4E-01	1.4E-01	NA	NA	1.4E-01
	4.4E-01	AZ AZ	4.2E-01	42E-01	NA	VΝ	4.2E-01

. .. i

Table 5A-3 (Continued)

Compounds	Ari	Arithmetric Mean		Maximum of the	Ma	Maximum Value		Maximum
(mg/L or ppm by wt.)	History	Pond	Tento	Average	History	Pond	Tanks	Maximum
Metals								
Anminum	4.2E+00	NA	YZ V	4.2E+00	5.5E+00	Y Z	Z	5.58+00
Antumony	7.3E.01	NA	NA	7.3E-01	1.1E+00	NA	NA	115100
Arbenic	4.1E+00	NA	2.4E+00	4.1E+00	9.9E+00	AN	2 4E+00	0 00.00
Barrum	4.0E-01	NA	1.4B+00	1.4E+00	4.0E-01	¥Z	145.00	140.00
Boron	2.0E+01	NA	NA	2.0E+01	2.1E+01	AN	NA	2 15.01
Cadmium	6.4E-04	4.6E-02	12E-01	12E-01	2.5E-03	7 512.00	0 CE 01	2.15+01
Calctum	1.8E+02	NA	NA	1.8E+02	3.3E+02	NA	ANA NIA	2.3E-01
Chloride	1.3B+05	VΥ	NA	1.38+05	2.0R±05	N.A	414	3.35+02
Chromlum	1.2E+00	NA	1.4E+00	1.4F±00	1 0F+M	V V	NA.	2.0E+U5
Cobalt	9.0E.01	NA	NA	O DE OI	0.35.01	VII	1.46+00	1.95+00
Copper	3.8E+03	1.9E+03	3.0F±03	1 BE 103	7.35-03	NA TE	AN WA	9.36-01
Fluoride	1.18+02	NA.	NA	11840	7.18±00	3.15+03	7.05+03	7.3E+03
Iron	5.5E+01	NA	NA	5 55.01	0 35.01	V.	42	Z.1E+0Z
per	1.3E+00	NA	1.2E+00	1.3E+00	2.5E+01	Y.	AN A	9.3E+01
Magnesium	1.6E+02	NA	NA	1.6E+02	2.7E+02	AN	NA	275-00
Manganese	7.0B+00	NA	AN	7.0E+00	728+00	NA	AN	7.78-00
Mercury	2.3E-01	NA	7.4E-02	2.3E-01	3.4E-01	NA	7.4E-02	3.4E-01
Molybdenum	2.5E+00	NA	NA	2.5E+00	2.6E+00	NA	AN	2.6E+00
Nickei	3.3E+01	NA	NA	3.3E+01	3.4E+01	NA	NA	3.4E+01
Nitrate	1.3E+03	NA	AN	1.3E+03	1.3E+03	NA	NA	1.3E+03
Nitrogen	6.9E+04	NA	ΥN	6.9E+04	1.0E+05	NA	NA	1.0E+05
Phosphorus (total)	2.0E+04	NA	VΑ	2.0E+04	8.6E+04	NA	YN	8.6E+04
Potaestum	1.3E+03	NA	NA	1.3E+03	2.9E+03	NA	NA	2.9E+03
Selentum	NA	NA	2.1E+03	2.1E+03	NA	NA	2.1E+03	2.1E+03
Silver	NA	NA	5.4E+02	5.4E+02	NA	NA	5.4E+02	5.4E+02
Sodium	5.3E+04	4.1E+04	1.3E+05	1.3E+05	8.1E+04	8.8E+04	3.3E+05	3.3E+05
Sulfate	3.5E+04	NA	NA	3.5E+04	5.8E+04	NA	NA	5.8E+04
Vanadlum		NA.	NA	2.7B+00	3.0E+00	NA	NA	3.0E+00
Zinc	1.9E+01	1.6E+01	1.4E+01	1.9E+01	2.7E+01	3.8E+01	2.0E+01	3.8E+01
1961				6.4E+05				1.0E+06

Table 5A-3 (Continued)

Compounds	Arithmetric Mean	2	Maximum of the	M	Maximum Value		Maximum
(mg/L or ppm by we.)	History Pond	Tanks	Average	History	Pard Part	Touch	or the
Parameters						1 minus	MUMINATION
Alkalinity	1.8E+03 NA	Z		20.700	;		
3				Z.UE+W3	Z	Y Z	
Conductivity, umhos/cm	3 8	NA		2.3E+05	NA	NA	
Hardness		- VA		1.1E+05	NA	AN	
Coording County	3.0E+03 NA	NA		3.5F±03	N.A		
Specific Gravity	12E+00 NA	NA		1.5E.M	VAL	V.	
3	5.3F+04			1.4E+W	NA	AZ	
Total Organic Halide (TOX)		YZ.		1.2E+05	NA	NA	
Total Suppended Solide		A'N		5.7E+02	NA	NA	
Viscosity 10° C cm		NA		1.6B+03	NA	NA	
Viamelty 15° C	3.6E+00 NA	NA		3.8E+00	NA	NA	
Viscosity 20° C cn	3.0E+00 NA	NA		3.1E+00	NA	V	
Viscosity 25° C. cm		NA		2.6E+00	NA	NAN	
Viscosity 2° C. co		NA		2.3E+00	NA	NA	
Hd	00	NA		5.0E+00	NA	NA	
	0,1E+00	NA		7.2E+00	NA	NA	

For certain inorganics, the maximum of the arithmetic mean and maximum of the maximum waste feed values were used to estimate the expected (i.e., base case) and reasonable worst case (i.e., sensitivity case) emissions, respectively. For metals, the volatilization and removal efficiencies for the individual elements were based on the <u>Guidance on Metals and HCl Controls from Hazardous Waste Incineration</u> (EPA, 1989). For acid gases, criteria, and other inorganic pollutants, conversion and removal efficiencies were based on regulatory requirements, the literature, and data for similar pollutants.

The maximum of the arithmetic means in the waste feed were the basis of expected emission estimates for volatile and semi-volatile organics other than dioxins/furans. Destruction efficiencies and PIC formation rates were estimated by Dr. Barry Dellinger of the University of Dayton Research Institute and were based on the results of his experimental studies. Dr. Dellinger's report is presented as Appendix 5B.

The third method used to estimate emissions was based on Tier II guideline emission levels given by the EPA (1989). Tier II metal emission guidelines were developed for complex and noncomplex terrain, urban and rural areas. These guidelines were developed as emission levels that would generate acceptable concentrations of metals from the perspective of inhalation health risk such that a more refined risk analysis would not be required. The sum of the ratios of the expected total emission rates of carcinogenic metals (arsenic, beryllium, cadmium, and chromium) to the Tier II carcinogenic metals emission rates must not exceed 1.0, or more refined dispersion modeling and risk assessment must be conducted. These Tier II levels were not applicable to this facility because more refined modeling and risk assessment were conducted; however, the Tier II values were used to develop the sensitivity case emission rates for metals.

The fourth method used to determine emission factors was based on a comprehensive database of air emissions from waste burning facilities developed by WESTON. The database contains information compiled from 12 hazardous waste incineration facilities. Because there is wide variation among these facilities in terms of incinerator design, processing capacities, stack gas conditions, combustion conditions, and other parameters,

emission factors, which are independent of these parameters, are used to standardize emissions data. Emission factors are usually calculated as the mass emissions per unit weight of waste processed (e.g., pounds of pollutant per ton of waste processed), or as the mass emissions per standardized stack gas volume (e.g., nanograms per normal cubic meter of stack gas). This is in contrast to the emission rates that are reported in units of mass emission per unit of time (e.g., grams per second or pounds per hour). Consequently, emission factors can be used to estimate the emission rates for facilities that may be similar in concept, but that may vary in design and operation. The sensitivity case for dioxins and furans was based on the 95 percent confidence interval (log normal of the mean) of the emission factors calculated for the facilities in the database.

5A.3 DIOXIN/FURAN EMISSIONS

5A.3.1 Expected Emissions

The Rocky Mountain Arsenal predicted air contaminant emissions from the proposed hazardous waste incinerator system were determined by performing test burns of the waste. T-THERMAL performed nine source tests of the waste in a pilot incinerator in August 1990. Table 5A-4 shows the diaxin/furan emission results of the individual test runs converted into nanograms per dry Normal (32°F) cubic meter corrected to 12 percent CO₂ (ng/Nm³, dry @ 12 percent CO₂). During the series of tests, dried waste accumulated on the atomizing tip of the waste injector nozzle. As described in detail in Table 5A-1, procedures were taken to remove the waste. Because these injector clogging problems prevented normal incinerator operating conditions, many of the test runs were excluded; only test runs 4 and 8 were used to determine the base case in estimating the expected emission rates at the proposed RMA facility. A statistical analysis of all of the test runs and of test runs 4 and 8 alone is presented in Table 5A-5. The variation is much less for test runs 4 and 8.

The dioxin and furan concentrations were then converted into toxic equivalence factors (TEF). The TEF is the currently acceptable method for evaluating such emissions, and is a weighing scheme in which the measured congeners of dioxins and furans are normalized

Tab. A.4 Dioxin Emissions Test Burn Results (ng/Nm³, dry @ 12% CO₂)

			-	ng/Nm', dry	(ng/Nm', dry @ 12% CO ₂)				
Dłoxins/Furans	1	2	8	4	Test Runs 5	9	7	œ	đ
23,7,8-TCDF	0.226	0.173	0.104	0.146	0.149	0.139	0.138	0.112	613
Total TCDF	1.075	0.778	0.424	0.644	0.639	0.617	0.630	0.495	0.581
2,3,7,8-TCDD	0.008	0.011	0.015	0.003	0.003	0.003	0.004	0.004	0000
Total TCDD	0.046	0.059	0.017	0.043	0.024	0.003	0.042	0.060	0.023
12,3,7,8-PeCDF	0.042	0.032	0.018	0.024	0.025	0.028	5000	0.00	1000
2,3,4,7,8-PeCDF	0.721	0.059	0.034	0.055	0.051	0.065	0.051	0.045	0.025
Total PeCDF	0.635	0.460	0.254	0.369	0.349	0.424	0.367	0.350	0.366
1,2,3,7,8-PeCDD	0.001	0.001	0.002	0.000	0.000	0.000	0.001	0.001	0000
I otal l'eCDD	0.015	0.027	0.002	9000	0.008	0.005	0.009	0.023	0.032
12,3,4,7,8-HxCDF	0.087	0.047	0.040	0.061	0.055	0.062	, 0.053	2000	000
12,3,6,7,8-HxCDF	0.072	0.038	0.024	0.036	0.031	0.037	0.029	0.027	0.023
12,3,7,8,9-HxCDF	690.0	090.0	0.053	0.043	0.039	0.043	0.040	0.037	0.037
7.5,4,78,4-HXCDF	0.007	0.008	0.008	0.004	0.004	9000	0.004	0.004	0.003
I odal fixe.Dr	0.613	0.345	0.197	0.267	0.238	0.262	0.246	0.211	0.220
1,2,3,4,7,8-HxCDD	0.003	0.002	0.006	0.001	1000	0.001	0000	8	000
12,3,6,7,8-HxCDD	0.007	0.008	0.013	0.003	0.003	0000	0.001	0.002	0.001
1,2,3,7,8,9-HxCDD	0.007	0.008	0.010	0.003	0.00	0.002	0.003	0.00	0.003
Total HxCDD	0.037	0.058	0.121	0.029	0.042	0.032	0.013	0.022	0.046
12,3,4,6,7,8-HpCDF	0.009	0.012	0.081	0.09	0.081	90.0	0.075	900	0.00
12,34,78,9-HpCDF	0.020	0.020	0.013	0.011	0.014	0.015	0.012	0.009	0.011
Total HpCDF	0.089	0.064	0.093	0.133	0.128	0.131	0.115	0.092	0.099
12,3,4,6,7,8-HpCDD	0.129	0.159	0.340	0.061	0.051	0.054	0.068	0.043	0.087
Total HpCDD	0.248	0.605	1272	0.198	0.200	0.174	0.126	0.080	0.180
OCDF	860.0	960'0	0.059	0.473	0.081	0.077	0.063	0.042	9500
OCDD	1.614	1.872	5.723	1.031	0.766	1.080	1.089	0.660	1.161
U.S.EPA TEF	0.422	0.081	0.070	0.065	0.061	690:0	0.062	0.052	0.053

Table 5A-5
Dioxin Emissions Test Burn Results
(ng/Nm³, dry @ 12% CO₂)

		A 11 Tr			ı		
	4	CALLER KUNB			Runs 4 & B	46.8	Emission
Dioxins/Furans	Average	Deviation	Standard	Average	Standard	Standard	Rate
2,3,7,8-TCDF Total TCDF	0.145	0.037	0.253	0.129	0.024	0.186	2.62E-09
2,3,7,8-TCDD Total TCDD	0.006	0.004	0.688	0.004	0.001	0.255	7.64E-11
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.027 0.125 0.397	0.007 0.224 0.105	0.251 1.788 0.265	0.023 0.050 0.360	0.001	0.045	4.65E-10 1.03E-09 7.32E-09
1,2,3,7,8-PeCDD Total PeCDD	0.001	0.001	0.836	0.001	0.001	1.414	1.13E-11 2.99E-10
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.051	0.019	0.362	0.030	0.024	0.551	8.86E-10
12,3,7,8,9-HxCDF 2,3,4,7,8,9-HxCDF Total HxCDF	0.047 0.005 0.289	0.011	0.245 0.325 0.446	0.004	0.005	0.116 0.054 0.163	8.10E-10 8.68E-11 4.87E-09
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.002 0.005 0.005 0.044	0.002 0.004 0.003	0.806 0.685 0.537 0.712	0.002 0.004 0.003 0.025	0.001 0.001 0.000 0.005	0.519 0.255 0.054 0.183	3.30E-11 7.64E-11 6.51E-11 5.18E-10
12,3,4,6,7,8-HpCDF 12,3,4,7,8,9-HpCDF Total HpCDF	0.063 0.014 0.105	0.031 0.004 0.024	0.493 0.272 0.225	0.010	0.021 0.002 0.029	0.269	1.61E-09 2.05E-10 2.29E-09
12,3,4,6,7,8-HpCDD Total HpCDD	0.110	0.094	0.856	0.052	0.012	0.237	1.06E-09 2.83E-09
OCDF OCDD	0.116	0.135	1.162	0.257	0.305	1.183	5.24E-09 1.72E-08
U.S.EPA TEF	0.104	0.120	1.152	0.058	600.0	0.154	1.19E-09

or weighted by their toxicity relative to that of a single congener (i.e., 2,3,7,8-tetrachloro-dibenzo-p-dioxin [2,3,7,8-TCDD]). This congener is the most studied and most toxic congener. Table 5A-6 illustrates the international weighing scheme adopted by the EPA.

5A.3.2 Upper Bound Emissions

For the sensitivity or upper bound case, data on hazardous waste facilities from the WESTON comprehensive database were used. Unfortunately, most of the available dioxin and furan data compiled from these facilities lacked the information required to calculate TEFs. In a number of cases, only amounts of total PCDD and PCDF, and frequently of total tetrachlorinated dibenzo-p-dioxin (TCDD) and total tetrachlorinated dibenzo-furan (TCDF) homologues are reported along with the 2,3,7,8-TCDD congener, if detected.

In order to deal most effectively with this absence of data and the need to establish TEFs, the following process was used:

- TEFs were calculated for the available data sets. Because most of the facility tests measured all congener groups needed to calculate the TEF, the available data were used in conjunction with ratios of homologue emissions to TCDD emissions and of 2,3,7,8-substituted emissions of a homologue to the total emissions of the homologue in order to establish TEF emissions for each facility. The ratios of emissions used were calculated from emission test data for municipal solid waste (MSW) incinerators (Siebert et al., 1989). These ratios are conservatively higher (from a risk assessment perspective) than the theoretical splits based on the possible number of congeners.
- Geometric mean and confidence intervals of the mean based on a log normal distribution of estimated TEF values were used to establish the range of TEF emissions. A log normal distribution was assumed among facilities because it is common for emissions data and has been demonstrated for dioxin/furan TEF emissions from MSW incinerators (Siebert et al., 1988).

This approach would not be the preferred approach if more congener-specific data were available; however, it is considered the most appropriate approach in light of the limited quantity and quality of the available data.

Table 5A-6
U.S. EPA 2,3,7,8-TCDD Toxic Equivalency Factors (TEFs)¹

Homologue/Congener ²	TEF ³
Mono through trichloro dibenzo-p-dioxins and dibenzofuran	ns 0
2,3,7,8-TCDD	1
Other TCDDs	0
2,3,7,8-PeCDD	0.5
Other PeCDDs	0
2,3,7,8-HxCDDs	0.1
Other HxCDDs	0
2,3,7,8-HpCDDs	0.01
Other HpCDDs	0
OCDDs	0.001
2,3,7,8-TCDF	0.1
Other TCDFs	. 0
1,2,3,7,8-PeCDF	0.05
2,3,4,7,8-PeCDF	0.5
Other PeCDFs	0
2,3,7,8-HxCDFs	0.1
Other HxCDFs	0
2,3,7,8-HpCDFs	0.01
Other HpCDFs	0
OCDFs CONTRACTOR OF THE PROPERTY OF THE PROPER	0.001

Source: Bellin J.S., and D.G. Barnes, "Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and Dibenzofurans and 1989 Update", U.S. EPA Risk Assessment Forum, EPA/625/3-89/016, March 1989.

² The following abbreviations are used for dioxin/furan homologues and congeners:

Homologues TCDD PeCDD HxCDD HyCDD OCDD TCDF PeCDF HxCDF HyCDF OCDF Congeners 2,3,7,8 Other		tetrachlorinated dibenzo-p-dioxin (4 chlorines) pentachlorinated dibenzo-p-dioxin (5 chlorines) hexachlorinated dibenzo-p-dioxin (6 chlorines) heptachlorinated dibenzo-p-dioxin (7 chlorines) octachlorinated dibenzo-p-dioxin (8 chlorines) tetrachlorinated dibenzo-furans (4 chlorines) pentachlorinated dibenzo-furans (5 chlorines) hexachlorinated dibenzo-furans (6 chlorines) heptachlorinated dibenzo-furans (7 chlorines) octachlorinated dibenzo-furans (8 chlorines) 2,3,7,8-substituted congeners of homologue. All congeners of homologue other than the 2,3,7,8-substituted congeners.
³ TEF	=	Toxic equivalency factor.

Several key points need to be made about all the dioxin/furan data used to establish emissions and its applicability to the RMA incinerator:

- A number of the facilities used in the analysis burn significantly different wastes than those to be burned in the RMA incinerator. In fact, many of the tested incinerators burn large quantities of PCBs. Although the formation mechanisms for dioxins/furans are not clearly understood, the presence of PCBs or other likely dioxin/furan precursors in the waste stream would probably tend to increase dioxin/furan emissions.
- The data sets used in this analysis generally were not taken directly from original comprehensive test reports, but from partial results reported in the literature. This makes standardization of the data difficult.
- An inherent assumption is that the homologue/TCDD ratios and 2,3,7,8/total homologue ratios are relatively consistent for municipal solid waste and hazardous waste incineration.

Table 5A-7 summarizes the EPA toxic equivalent data for each facility and the resulting geometric mean and confidence interval. Also displayed is a summary of the T-THERMAL test results for all the tests, the acceptable tests, the emission rate in pounds per hour (lb/hr) based upon the % CO₂, the actual temperature and the moisture content of the flue gas during the trial burns of the Basin F waste, and the expected flue gas flow rate for the full-scale submerged quench incinerator proposed for RMA. The emission rates, which were used for the base case, were the average of the acceptable test run from the trial burn of the RMA-Basin F waste, while those used for the sensitivity case were the upper 95 percent confidence limit of test results from facilities in the WESTON database.

5A.4 INORGANICS EMISSIONS

5A.4.1 Expected Emissions

Emission factors for metals and other inorganics (such as criteria pollutants and acid gases) were derived by several methods. For the base case or expected emissions, the maximum value was selected from the acceptable test burn emission results and the emissions derived from the maximum average concentration of metals in the waste feed to the incinerator,

534CC/ASA 1/20/91

Table 5A-7

Summary of Dioxin/Furan Toxic Equivalent Emissions from the Hazardous Waste Incinerators

	U.S. EPA TEF I	<u>Emissior</u>
	Factor	Rate
Facility	(ng/Nm^3 @ 12% CO2)	(lbs/hr)
Ross	0.048	
American Cyanamid	0.054	
DuPont	0.044	
UpJohn	0.104	
Mitchell	0.236	
Plant B (Outlet Location)	7.295	
SCA	0.872	
Rollins (Deer Park, Texas)	1.519	
ENSCO	0.103	
Rollins (Bridgeport, New Jersey) Biebesheim	0.620	
SIEDESTIEMIT	1.050	
Geometric Mean	0.300	6.11E-09
Jpper 95% Confidence Interval	0.931	1.90E-08
ower 95% Confidence Interval	0.097	1.97E-09
locky Mountain Arsenal		
All Tests	0.104	2.11E-09
Acceptable Tests	0.058	1.19E-09
namen and the contract of the		are and a
	12 gan - 12 - 13 - 13 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15	

ng day @ 12% CCC v		(273.15)N °C	(10.10)A % CO2	(100 - 6.74) moist	Ъ	3600 sec
,dry @ 12% CO2 x 4	1.12 X -	***************************************	x		χ	x
Nm^3	sec	(394.30)A °C	12% CO2	100	453.6°10^9 ng	

assuming that the volatilization fraction and the efficiencies of the air pollution control (APC) equipment are equal to those given by EPA.

For the first approach, the test burn data were converted into emission factors in pounds of metal and other inorganics per ton of waste incinerated (lb/ton) and evaluated to see if the operating conditions were representative of the expected RMA submerged quench incinerator conditions. Table 5A-8 illustrates the results of the converted test burn data for metals. As displayed in Table 5A-2, upset conditions occurred during every test run except test run 4; therefore it is considered acceptable and representative of the expected conditions. Table 5A-9 presents a statistical analysis of all the test runs and compares the results with test run 4 alone.

The second approach was based on information regarding the concentrations of metals and other inorganics in the waste feed. The calculations for metals are given in Table 5A-9. The uncontrolled emissions are based on the maximum average concentrations from each of the historical tests of the Basin F waste and the series of tests WESTON performed both on the tanks and on the pond. The results were converted into lb/ton based on the density of the waste.

The controlled emission rate was based on expected feed rate, the percent of metals volatilized (and subsequently condensed and adsorbed onto particles), and the removal efficiency of the air pollution control equipment. After identifying the input of waste stream metals, the next step was to determine the fractions of those metals that would be expected to volatilize and later condense and adsorb onto particles. This adsorption process is necessary for the collection of metals by the air pollution control (APC) system. Based on EPA (1989), all metals in liquid waste will volatilize during combustion.

Removal efficiencies (considering both adsorption and collection) were estimated for a packed scrubber in series with a 60-inch pressure drop Venturi scrubber in the incinerator APC system. EPA (1989) only provided efficiency values for selected metals controlled by

Table 5A-8

Metal Emissions Test Burn Results (lb/ton)

Metals Emissions Test Burn Results (1b/ton)

	9	All Test Runs			
		Standard	Standard	Run 4	4
Metals	Average	Devlation	Error	(lb/ton)	(1p/Jra.)
Silver	5.72E-06	4.19E-06	0.7322	3.38E.06	1 74E.05
Alumhum	1.38E-03	3.03E-04	0.2189	9.98E-04	5.15E-03
Arsenic	1.62E-05	1.10E-05	0.6760	9.46E-06	4.88E-05
Boron	2.01E-03	1.0E-03	0.4976	1.48E-03	7.65E-03
Barlum	1.91E-05	1.98E-05	1.0369	4.87E.05	2.51E-04
Beryllhum	3.99E-06	2.92E-06	0.7315	2.03E-06	1.05E-05
Calctum	5.50E-03	2.79E-03	0.5070	3.61E-03	1.87E-02
Cadmium	1.86E-06	2.13E-06	1.1433	6.76E-07	3.49E-06
Cobalt	1.70E-06	1.46E-06	0.8590	6.76E-07	3.49E-06
Chromium	3.41E-06	2.42E-06	0.7092	2.03E-06	1.05E-05
Copper	6.65E-03	6.68E-03	1.0045	2.10E-02	1.08E-01
Iron	1.15E-03	1.50E-03	1.3046	5.15E-04	2.66E-03
Mercury	5.72E-06	4.19E-06	0.7322	3.38E-06	1.74E-05
Potassfum	5.76E-04	4.13E-04	0.7178	320E-04	1.65E-03
Lithtum	1.15E-05	827E-06	0.7214	6.08E-06	3.14E-05
Magnesium	4.76E-03	3.66E-03	0.7693	3.88E-03	2.00E-02
Manganese	3.84E-04	1.05E-03	2.72%	5.61E-05	2.90E-04
Molybdenum	5.72E-06	4.19E-06	0.7322	3.38E-06	1.74E-05
Sodium	3.08E+01	8.58E+01	27906	3.59E+00	1.85E+01
Nickel	3.59E-05	9.31E-05	25946	3.38E-06	1.74E-05
Phosphorus	3.77E-02	326E-02	0.8647	9.80E-02	5.06E-01
Lead	8.44E-05	1.53E-04	1.8103	6.08E-06	3.14E-05
Sulfur	1.41E+00	4.11E+00	2,9031	9.82E-02	5.07E-01
Antimony	7.46E-05	1.95E-04	2.6128	6.08E-06	3.14E-05
Selenium	2.92E-04	5.17E-04	1.7687	9.46E-06	4.88E-05
Silicon	1.05E-02	7.95E-03	0.7594	8.76E-03	4.52E-02
Tin	4.87E-04	622E-04	12778	4.48E-04	2.31E-03
Strontium	3.13E-06	2.35E-06	0.7504	2.03E-06	1.05E-05
Titanium	5.95E-06	4.63E-06	0.7785	3.38E-06	1.74E-05
Thallfum	4.74E-04	7.30E-04	1.5400	5.12E-04	2.64E-03
Vanadium	1.19E-06	7.62E-07	0.6385	6.76E-07	3.49E-06
Yittrium	1.18E-06	4.26E-07	0.3604	Ϋ́	Ϋ́Z
Zinc	1.19E-03	2.87E-03	24168	2.72E-04	1.40E-03

a packed scrubber in series with a 20-inch pressure drop Venturi scrubber and a 20-inch or 60-inch pressure drop Venturi scrubber alone. Therefore, the removal efficiency of the packed scrubber was calculated and added to the removal efficiency of the 60-inch pressure drop Venturi scrubber. It should be noted, that it was conservatively assumed that no metals were removed in the incinerator quench pit; similarly, no metals in the waste feed or in the flue gas entering the APC devices were assumed to be removed. Several documents provided information for conservatively estimating removal efficiencies of the metals not noted in EPA (1989), based on the efficiencies given in EPA (1989). The detailed assumptions and results of this approach are presented in Table 5A-10.

For acid gases, criteria, and other inorganic pollutants, the same two approaches were used. However, the controlled emissions based on the waste stream data considered the conversion of the waste stream component to its emitted chemical form and assumed removal efficiencies based on a number of sources. The basis of the assumed removal efficiencies included regulatory requirements, literature values, and data for similar pollutants. The base case expected emissions analysis (along with the sensitivity case maximum upper bound analysis) is presented in Table 5A-11.

5A.4.2 Upper Bound Emissions

The upper bound emissions or sensitivity case for metals and other inorganics was based upon the average of all runs during the test burn, the maximum controlled emission rate based on the waste feed data, and in the case of metals, the EPA Tier II values. The highest value of those generated by these three approaches was used.

The first approach for estimating the upper bound emissions was based on the average of all the runs from the test burn (acceptable or not). The second approach was based on the highest of the maximum waste feed rate values and the volatilization and removal efficiency methodology applied to the expected feed rate, explained in the previous section. Table 5A-12 presents the assumptions and results of these two approaches for metals. The assumptions and results for other inorganics are given in Table 5A-11.

Table 5A-10

Expected Metal Emissions Based on Test Burn Emissions and Waste Stream Data

				Bas	ed upon Acceptabl	e Maximum	
			ste Stream Data		Test Burn Data	Emissions	
	Uncontrolled	Metals to	Removal	Controlled	Controlled	Between the	
Metals	Emissions (1)		2) Efficiency (3)		Emissions (5)	🧗 Two Scenarios	
	(lb/ton)	(%)	(%)	(lb/tom)	(lb/ton)	(thison) (tb/hr)	
Aluminum	6.7E-03	100	97 (6.	2.02E-04	9.985-04	9.96E-04 5.15E-0	В
Antimony	1.2E-03	100	97	3.51E-05	6.08E-06	3.51E-05 1.81E-0	
Arsenic	6.6E-03	100	97	1.99E-04	9.46E-06	1.99E-04 1.03E-0	
Bartum	2.3E-03	100	99.4	1.37E-05	4.87E-05	4.87E-05 2.51E-0	
Beryllium	NA	100	99.4	NA	2.03E-06	2.03E-06 1.05E-0	
Boron	3.2E-02	100	97 (8)		1.48E-03	1.48E-03 7.65E-0	
Cadmium	1.9E-04	100	97	5.78E-06	6.76E-07	5.78E-06 2.98E-0	
Calcium	2.8E-01	100	97 (7)		3.61E-03	8.51E-03 4.39E-0	
Chromium	2.3E-03	100	99.4	1.37E-05	2.03E-06	1.37E-05 7.05E-0	
Cobalt	1.5E-03	100	97 (6)		6.76E-07	4.37E-05 2.25E-0	
Copper	6.2E+00	100	97 (6)		2.10E-02	1.86E-01 9.59E-0	
Iron	8.8E-02	100	97 (6)	2.64E-03	5.15E-04	2.64E-03 1.36E-0	
Lead	2.1E-03	100	97	6.22E-05	6.08E-06	6.22E-05 3.21E-0	
Lithium	NA	100	NA	NA	6.08E-06	6.08E-06 3.14E-0	
Magnesium	2.6E-01	100	97 (6)	7.90E-03	3.88E-03	7.90E-03 4.08E-0	
Manganese	1.1E-02	100	97 (6)	3.41E-04	5.61E-05	3.41E-04 1.76E-0	
Mercury	3.7E-04	100	85	5.50E-05	3.38E-06	5.50E-05 1 2.84E-0	•
Molybdenum	4.1E-03	100	85 (6)	6.11E-04	3.38E-06	6.11B-04 3.15B-0	
Nickel	5.3E-02	100	97 (6)	1.58E-03	3.38E-06	1.58E-03 8.18E-0	
Potassium	2.1E+00	100	97 (7)	6.29E-02	3.20E-04	6.29E-02 3.25E-0	
Selenium	3.4E+00	100	85 (6)	5.09E-01	9.46E-06	5.09E-01 1 2.63E+0	
Silicon	NA	100	NA NA	NA.	8.76E-03	8.76E-03 4.52E-0	
liver	8.8E-01	100	99.4	5.27E-03	3.38E-06	5.27E-03 2.72E-0	
lium	2.2E+02	100	97 (9)	6.47E+00	3.59E+00	6.47E+00 3.34E+0	
wontium	NA	100	97 (8)	NA	2.03E-06	2.03E-06 1.05E-0	
hallium	NA	100	97	NA.	5.12E-04	5.12E-04 2.64E-0	
lin	NA	100	97 (7)	NA.	4.48E-04	4.48E-04 1 2.31E-0	
Iltanium	NA	100	97 (6)	NA	3.38E-06	3.38E-06 1.74E-0	
/anadium	4.3E-03	100	97 (6)	1.29E-04	6.76E-07	1.29E-04 1 6.68E-0	
littrium .	NA	100	97 (8)	NA	NA	0.00E+00 0.00E+0	
Linc	3.0E-02	100	97 (6)	9.01E-04	2.72E-04	9.01E-04 1 4.65E-0	

- (1) Based upon the maximum of the averages emission concentration from historical test data (tons/yr) and multiplying by 2000 lbs/ton / ((10,325 lbs of waste/hr / 2000 lbs/ton) x 7,000 operating hrs/yr).
- (2) Percent of metal volatilization is estimated at 100% for all metals in liquid waste based on EPA Guidance on Metals and HCI Controls from Hazardous Waste Incineration, Draft Final Report, August 1989, Table III-9.
- (3) Based on EPA Guidance (note 2), Table III-8. The removal efficiency of the wet scrubber in series with the Venturi scruber at 20" of water was calculated. This removal efficiency was used in series with the removal efficiency of the Venturi scrubber at 60" of water.
- (4) Controlled Emissions = Uncontrolled Emissions x % Metals to APCD x (1- % Removal Efficiency)
- (5) Based upon the emissions during the one acceptable test run from the test burn by T-Thermal in Aug. 1990.
- (6) Assumed removal efficiency of antimony, arsenic, cadmium, lead and thallium or of mercury per footnote (3), based on scrubber efficiency similar to those compounds in "Hazardous Waste Stream Trace Metal Concentrations and Emissions", Mitre Corp., U.S.EPA Office of Solid Waste, November 1983.
- (7) Similar to copper, cobalt and titanium in showing no concentration with particle size per Davision, Natusch, et al. "Trace Elements in Fly Ash", Environmental Science & Technology, Vol. 8, No. 13, December 1974. Therefore, assumed scrubber efficiency similar.
- (8) Similar emissions to feed ratio to that of iron and aluminum per Kaakinen Jorden, et al., "Trace Element Behavior in Coal-Fired Power Plant", Environmental Science & Technology, Vol. 9, No. 9, September 1975. Therefore, assumed scrubber efficiency similar.
- (9) Similar control efficiency to that of calcium, iron and potassium per Klein, Andren, et al., "Pathways of Thirty-seven Trace Elements Through Coal-Fired Power Plant", Environmental Science & Technology, Vol. 9, No. 10, October 1975. Therefore, assumed scrubber efficiency similar.

Expected Acid and Other Compounds Emissions Based on Test Burn Emissions and Waste Stream Data

Dased upon Acceptable Maximum	Controlled Emissions (4)	NA NA 1 4.00 (6) 0.261 0.261 1.35 NA NA 1.35 (8) NA 0.009 1 0.05 NA 0.213 1 1.10 1.778 1.778 1 9.18 0.098 0.190 1 0.98 NA 0.58 1 2.97 NA NA NA 1 6.98 (8)
es O	Controlled Emissions (3)	NA NA 11.1 0.009 0.213 362.9 0.190 0.6
: Stream Data	folled Removal lons (2) Efficiency (%)	NA NA NA NA 221.7 95 95 95 2.1 90 362.9 0 31.7 99.4 57.6 99 NA
Based on Waste Stream Data	Converted Uncontrolled Pollutant Emissions (1b/ton)	
		PM CO HCI HF HNO3 NO2 PO4 HZSO4
	Waste Feedrate (1) (1b/ton)	NA NA 215.5 0.18 2.1 110.5 31.7 56.4 NA
Original	Pollutant	Particulate Matter (PM) Carbon Monoxide (CO) Chloride (CI) Fluoride (F) Nitrate (NO3) Nitrogen (N) Phosphorus (P) Sulfate (SO4)

Maximum Acid and other Compound Emissions Based on Test Burn Emissions and Waste Stream Data

			Based on	Based on Waste Stream Data	m Data		Based upon	Max	Meximum
Pollutant	Waste Feedrate (lb/ton)	Converted (1) Pollutant		Incontrolled Emissions (Ib/ton)	Removal (2) Efficiency (%)	Controlled Emissions (3) (1b/ton)		Betwe Two Sc	Emissions Between the Two Scenarios (5)
Particulate Matter (PM)	Z	PM							
Carbon Monoxide (CO)	¥ Z	<u> </u>		4 2	YZ :	NA	V	٧Z	1 4.00 (6)
Chloride (Cl)	3180	D I		AN C	NA	Y N	0.403 (7)	0.403	
Fluoride (F)	0.34			327.1	92	16.4	Y N	AN	4.00 (9)
Vitrate (NO3)	, ,			0.4	95	0.018	Y Z	0.018	
Vitrogen (N)	168 4	SONIA		2.1	8	0.213	NA	0.213	1.10
hosphorus (P)	138.7	202		553.0	0	553.0	NA	AN	40.92 (9)
Sulfate (SO4)	136.7	- C3C1		138.7	4.66	0.832	0.038	0.832	
Sulfur (S)	S. A.	105504 503		96.0	66	1.0	NA A	96.0	4.96
	UNI	30%		Z	8	¥Z	₹Z	NA	197 00000

(1) Based upon the maximum of the averages emission concentration and the maximum of the maximums emission concentration from historical test data (tons/yr) and for expected and maximum emissions, respectively, multiplying by 2000 lbs/ton / ((10,325 lbs of waste/hr / 2000 lbs/ton) x 7,000 operating hrs/yr).

(2) Based upon the waste feed rate x the molecular weight of the converted pollutant the molecular weight of the orginal pollutant.

Controlled Emissions = Uncontrolled Emissions x (1-% Removal Efficiency)
 Based upon the average emission during the test burn by T-Thermal in Aug. 1990.
 The maximum values were used for all pollutants, except NO2, for which the test burn data was used, and otherwise noted.
 Particulate matter is based upon Colorado regulations of 0.08 gr/dscf @ 12% CO2.
 Carbon monoxide is based upon Federal regulations of 100 ppm.
 Based upon February 1989 test burn which tested for the specific compounds.
 d upon vendor registrance gia contact.

d upon vendor rerformans guarontosa.

Table 5A-12

Maximum Metal Emissions Based on Test Burn Emissions and Waste Stream Data

		Based on Waste	Stream Data		Based upon Test Burn Data	Maxii Emlas	
Metals	Uncontrolled Emissions (1) (lb/ton)	Metals to APCD (2) (%)	Removal Efficiency (3 (%)	Controlled Emissions (4) (lb/ton)	Controlled	Between Two Sci	enarios
	(10)		(70)	(sojson)	(w)toto	(suppost)	(rolut)
Aluminum	8.9E-03	100	97 (6) 2.66E-04	1.38E-03	1.385-03	7.14E-03
Antimony	1.8E-03	100	97	5.32E-05	7.46E-05		. 3.85E-04
Arsenic	1.6E-02	100	97	4.80E-04	1.62E-05	4.80E-04 I	2.48E-03
Barium	2.3E-03	100	99.4	1.37E-05	1.91E-05	1.91E-05 I	9.87E-05
Beryllium	NA	100	99.4	NA	3.99E-06	3.99E-06 1	2.06E-05
Boron	3.4E-02	100	97 (8) 1.02E-03	2.01E-03	2.01E-03 I	1.04B-02
Cadmium	4.0E-04	100	97	1.20E-05	1.86E-06	1.20E-05 I	6.19B-05
Calcium	5.4E-01	100	97 (7) 1.62E-02	5.50E-03	1.625-02 1	8.36E-02
Chromium	3.1E-03	100	99.4	1.84E-05	3.41E-06	1.84E-05 I	9.495-05
Cobalt	1.5E-03	100	97 (6	4.50E-05	1.70E-06	4.50E-05 I	2.32E-04
Copper	1.2E+01	100	97 (6		6.65E-03	3.52E-01 I	1.82B+00
Iron	1.5E-01	100	97 (6	4.50E-03	1.15E-03	4.50E-03	2.32E-02
Lead	4.0E-03	100	97	1.20E-04	8.44E-05	1.20E-04 I	6.20E-04
Lithium	NA	100	NA	NA	1.15%-05	1.15E-05 I	5.92E-05
Magnesium	4.4E-01	100	97 (6		4.76E-03	1.32E-02 I	6.81E-02
Manganese	1.2E-02	100	97 (6	3.48E-04	3.84E-04	3.84E-04	1.98E-03
Mercury	5.5E-04	100	85	8.23E-05	5.72E-06	8.23E-05	4.25E-04
Molybdenum	4.2E-03	100	85 (6)		5.72E-06	6.29E-04	3.25E-03
Nickel	5.5E-02	100	97 (6)	1.65E-03	3.59E-05	1.65E-03 I	8.49B-03
Potassium	4.7E+00	100	97 (7)		5.76E-04	1.406-01 1	724B-01
Selenium	3.4E+00	100	85 (6)		2.92E-04	5.09E-01	2.63E+00
Silicon	NA	100	NA	NA	1.05E-02	1,05E-02 I	5.41E-02
Silver	8.8E-01	100	99.4	5.27E-03	5.72E-06	5.27E-03 I	2.72E-02
tum	5.3E+02	100	97 (9)		3.08E+01	3.08E+01 I	1.59B+02
ontium	NA	100	97 (8)		3.13E-06	3.13E-06	1.626-05
Thallium	NA	100	97	NA	4.74E-04	4.74E-04	2.45E-03
Tin	NA	100	97 (7)		4.87E-04	4.87E-04 1	2.51B-03
litanium	NA	100	97 (6)	NA	5.95E-06	5.95E-06	3.07E-05
Vanadium	4.8E-03	100	97 (6)	1.45E-04	1.19E-06	1.45E-04 I	7.49E-04
Ylttrium	NA	100	97 (8)	NA	1.18E-06	1.18E-06	6.11E-06
Zinc	6.2E-02	100	97 (6)	1.85E-03	1.19E-03	1.85E-03 l	9.54B-03

- (1) Based upon the maximum of the maximums emission concentration from historical test data (tons/yr) and multiplying by 2000 lbs/ton / ((10,325 lbs of waste/hr / 2000 lbs/ton) x 7,000 operating hrs/yr).
- (2) Percent of metal volatilization is estimated at 100% for all metals in liquid waste based on EPA Guidance on Metals and HCl Controls from Hazardous Waste Incineration, Draft Final Report, August 1989, Table III-9.
- (3) Based on EPA Guidance (note 2), Table III-8. The removal efficiency of the wet scrubber in series with the Venturi scrubber at 20" of water was calculated. This removal efficiency was used in series with the removal efficiency of the Venturi scrubber at 60" of water.
- (4) Controlled Emissions = Uncontrolled Emissions x % Metals to APCD x (1- % Removal Efficiency)
- (5) Based upon the average emission during the test burn by T-Thermal in Aug. 1990.
- (6) Assumed removal efficiency of antimony, arsenic, cadmium, lead and thalltum or of mercury per footnote (3), based on scrubber efficiency similar to those compounds in "Hazardous Waste Stream Trace Metal Concentrations and Emissions", Mitre Corp., U.S.EPA Office of Solid Waste, November 1983.
- (7) Similar to copper, cobalt and titanium in showing no concentration with particle size per Davision, Natusch, et al. "Trace Elements in Fly Ash", Environmental Science & Technology, Vol. 8, No. 13, December 1974. Therefore, assumed scrubber efficiency similar.
- (8) Similar emissions to feed ratio to that of iron and aluminum per Kaakinen Jorden, et al., "Trace Element Behavior in Coal-Fired Power Plant", Environmental Science & Technology, Vol. 9, No. 9, September 1975. Therefore, assumed scrubber efficiency similar.
- (9) Similar control efficiency to that of calcium, iron and potassium per Klein, Andren, et al., "Pathways of Thirty-seven Trace Elements Through Coal-Fired Power Plant", Environmental Science & Technology, Vol. 9, No. 10, October 1975. Therefore, assumed scrubber efficiency similar.

The third approach for estimating upper bound metal emissions was used for all the metals listed in EPA (1989). This approach derived emission factors from the Tier I Feed Rate and Tier II Emission Rate screening values in (EPA 1989). Tier I and II values represent limits on feed and emission rates of metals to the incinerator that EPA has proposed as one part of its national performance standards for hazardous waste incinerator emissions. These Tier I and II screening values are designed to provide a simple and conservatively protective approach to regulating metals emissions (from a health risk perspective) and do not consider any reduction in emissions from metals either not volatilized or captured in the air pollution control equipment.

The EPA screening limits are based on conservatively low estimates of potential ambient air dispersion (i.e., resulting in higher ambient concentrations than normally expected for a given emission rate). Therefore, the specific appropriate values are dependent on key dispersion modeling parameters such as terrain, urban or rural area, and effective terrain-adjusted stack height. The dispersion modeling for the RMA incinerator unit assumed complex terrain, rural land use, and the following stack parameters: height of 28.96 meters (m), temperature of 449.8 K, and flow rate of 7.3 m³/sec. From Table B-1 of EPA (1989), the predicted plume rise for these stack parameters is 7m.

Considering the measured terrain elevations used in the dispersion modeling in the original analysis, the terrain-adjusted effective stack height per Table B, Step 3 of EPA (1989) is:

Terrain-adjusted Stack Height = stack height + plume rise

- = (maximum elevation base elevation)
- = 28.96m + 7m (58.5m 0m) = -22.54m

Since the terrain-adjusted stack height is less than zero, the minimum terrain-adjusted stack height in the EPA tables of 4 meters was assumed. The Tier I feed rates in pounds per hour for complex terrain, rural land use, and a 4-meter, terrain-adjusted stack height from EPA (1989) are given for all listed metals in Table 5A-13.

Stack Parameters and Tier I Expected and Maximum Feed Rates for Complex Terrain

Stack Parameters	
English Units	
Stack Height (ft)	95
Stack Height (ft) Velocity (ft/sec) Diameter (ft) Flowrate (acfs)	60
Diameter (ft)	2.34
Flowrate (acfs)	258
Exhaust temperature (deg. F)	350
Metric Units (calculated):	350
	20.04
Stack Height (m)	28.96
Velocity (m/sec)	18.29
Diameter (ft)	0.713
Flowrate (m^3/sec)	7.30
Exhaust temperature (deg. K)	449.8
Type of Terrain:	complex, rural
Plume Rise Values vs. Stack Parameter	7
Maximum Terrain Rise (m)	58.5
Terrain-adjusted Effective Stack Height	4
Dier L'Feed Rate Limits (Ibs/hr)	
Non-carcinogenic Metals	
	2 177 00
Antimony	3.1E-02
Barium	5.2E+00
Lead	9.4E-03
Mercury	3.1E-02
Silver	3.1E-01
Thallium	3.1E-02
Carcinogenic Metals	
Arsenic	2.4E-04
Beryllium	4.4E-04
Cadmium	5.8E-03
Chromium	8.7E-05
Total Chlorine	
	2.6E-01
Expected Feed Rates (lbs/hr)	U
Non-carcinogenic Metals	
Antimony	6.0E-03
Barium	1.2E-02
Lead	1.1E-02
Mercury	1.9E-03
Silver	4.5E+00
Thallium	NA
Carcinogenic Metals	
Arsenic	3.4E-02
Beryllium	NA
Cadmium	9.9E-04
Chromium	1.2E-02
Sum of the Ratios of Expected Feed Rate/	1.26-02
	277 0
Tier I Feed Rate Limit for Carcinogenic Metals	277.8
Total Chlorine	1.1E+03
	1
Maximum Feed Rates (lbs/hr)	
Non-carcinogenic Metals	
Antimony	9.2E-03
Barium	1.2E-02
Lead	2.1E-02
Mercury	2.8E-03
Silver	4.5E+00
Thallium	NA
Carcinogenic Metals	0.00
Arsenic	8.3E-02
Beryllium	NA
Cadmium	2.1E-03
Chromium	1.6E-02
Sum of the Ratios of Maximum Feed Rate/	
Tier I Feed Rate Limit for Carcinogenic Metals	526.4
Total Chlorine	1.7E+02
- June California	

The expected and maximum feed rates were compared with the Tier I results. The sum of the ratios of the expected total carcinogenic metals (arsenic, beryllium, cadmium, and chromium) feed rates to the Tier I carcinogenic metals feed rates must not exceed 1.0, or Tier II emission rate limitations must be applied. The sum of the ratios exceeded 1.0 by 277.8. The maximum feed rates were also evaluated. The results are presented in Table 5A-12.

Tier II limits follow the same methodology as the Tier I limits, but use the emission rates of the proposed facility. The Tier II emission rates in grams per second are given for all listed metals in Table 5A-14 as well as the expected and maximum emission rates. The sum of the ratios also exceeded 1.0. Therefore, for the carcinogenic metals, the maximum emission rates were assumed to be limited to the values in calculated from the Tier II estimates. These values are extremely conservative estimates of upper bound emissions because they are not related to the actual Basin F waste. Rather the Tier II values are estimates of what EPA considers the maximum acceptable emissions from a risk perspective, without conducting refined dispersion modeling and risk assessment such as conducted in this study.

5A.5 SUMMARY OF EMISSIONS

Table 5A-15 is a compilation of all the emission estimates developed in this section as well as the organic emission estimate developed as explained in Appendix 5B. The emissions were converted to mass-per-unit time using the projected waste feed rate (10,325 lb/hr) and annual operating schedule (7,000 hours per year) for the RMA facility. These rates were used to determine the predicted ambient concentrations and deposition rates.

Stack Parameters and Tier II Expected and Maximum Emission Rates for Complex Terrain

tack Parameters English Units	
Stack Height (ft)	95
Velocity (ft/sec)	60
Diameter (ft)	2.34
Flowrate (acfs)	258
Exhaust temperature (deg. F)	350
Metric Units (calculated):	330
	20.04
Stack Height (m)	28.96
Velocity (m/sec)	18.29
Diameter (ft)	0.713
Flowrate (m^3/sec)	7.30
Exhaust temperature (deg. K)	449.8
Type of Terrain:	complex, rural
Plume Rise Values vs. Stack Parameter	7
Maximum Terrain Rise (m)	58.5
Terrain-adjusted Effective Stack Height	4
Tier II Emission Rate Limits (g/s)	
Non-carcinogenic Metals	
Antimony	3.9E-03
Barium	6.6E-01
Lead	1.2E-03
Mercury	3.9E-03
Silver	3.9E-02
Thallium	3.9E-03
Carcinogenic Metals	
Arsenic	3.1E-05
. Beryllium	5.5E-05
Cadmium	7.3E-05
Chromium	1.1E-05
Hydrogen Chloride	3.3E-02
Expected Emission Rates (g/s)	3.31-02
Non-carcinogenic Metals	
Antimony	2.3E-05
Barium	3.2E-05
Lead	4.0E-05
Mercury	3.6E-05
Silver	3.4E-03
Thallium	3.3E-04
Carcinogenic Metals	0.02 01
Arsenic	1.3E-04
Beryllium	1.3E-06
Cadmium	3.8E-06
Chromium	8.9E-06
Sum of the Ratios of Expected Emission Rate/	0.72-00
Tier II Emission Rate Limit for Carcinogenic Metals	5.06
Hydrogen Chloride	1.5E+01
Trydrogen Chloride	1.52.701
Maximum Emission Rates (g/s)	
Non-carcinogenic Metals	
	4.9E-05
Antimony	
Barium	1.2E-05
Lead	7.8E-05
Mercury	5.4E-05
Silver	3.4E-03
Thallium	3.1E-04
Carcinogenic Metals	
Arsenic	3.1E-04
Beryllium	2.6E-06
Cadmium	7.8E-06
Chromium	1.2E-05
Sum of the Ratios of Maximum Emission Rate/	
Tier II Emission Rate Limit for Carcinogenic Metals	11.31
Hydrogen Chloride	2.2E+01

Table 5A-15
Emission Rates for Rocky Mountain Arsenal Basin F Waste Submerged Quench Incinerator

Category/ Pollutant	(hh)	Base Case (a)	(-1)	(1)	Sensitivity Case (b)	
	(ton/yr)	(lb/hr)	(g/sec)	(ton/yr)	(lb/hr)	(g/sec)
Dioxins/Furans						
U.S. EPA TEF	4.16E-09	1.19E-09	1.50E-10	6.63E-08	1.90E-08	2.39E-09
M-1-1-						
Metals	1 00E 00	E 15E 02	(10E 01	2 505 02	E 4 17 00	
Aluminum	1.80E-02	5.15E-03	6.49E-04	2.50E-02	7.14E-03	8.99E-04
Antimony	6.34E-04	1.81E-04	2.28E-05	1.08E-01	3.10E-02	3.90E-03
Arsenic Barium	3.59E-03	1.03E-03	1.29E-04	8.67E-03	2.48E-03	3.12E-04
	8.79E-04	2.51E-04	3.16E-05	1.83E+01	5.24E+00	6.60E-01
Beryllium Boron	3.66E-05	1.05E-05	1.32E-06	1.53E-03	4.37E-04	5.50E-05
	2.68E-02	7.65E-03	9.63E-04	3.63E-02	1.04E-02	1.31E-03
Cadmium	1.04E-04	2.98E-05	3.76E-06	2.03E-03	5.79E-04	7.30E-05
Calcium	1.54E-01	4.39E-02	5.53E-03	2.93E-01	8.36E-02	1.05E-02
Chromium	2.47E-04	7.05E-05	8.88E-06	3.32E-04	9.49E-05	1.20E-05
Cobalt	7.89E-04	2.25E-04	2.84E-05	8.13E-04	2.32E-04	2.93E-05
Copper Iron	3.35E+00	9.59E-01	1.21E-01	6.35E+00	1.82E+00	2.29E-01
	4.77E-02	1.36E-02	1.72E-03	8.13E-02	2.32E-02	2.93E-03
Lead	1.12E-03	3.21E-04	4.05E-05	3.33E-02	9.52E-03	1.20E-03
Lithium	1.10E-04	3.14E-05	3.96E-06	2.07E-04	5.92E-05	7.45E-06
Magnesium	1.43E-01	4.08E-02	5.14E-03	2.39E-01	6.81E-02	8.59E-03
Manganese	6.16E-03	1.76E-03	2.22E-04	6.93E-03	1.98E-03	2.50E-04
Mercury	9.93E-04	2.84E-04	3.57E-05	1.08E-01	3.10E-02	3.90E-03
Molybdenum Nickel	1.10E-02	3.15E-03	3.97E-04	1.14E-02	3.25E-03	4.09E-04
Potassium	2.86E-02	8.18E-03	1.03E-03	2.97E-02	8.49E-03	1.07E-03
Selenium	1.14E+00	3.25E-01	4.09E-02	2.54E+00	7.24E-01	9.13E-02
Silicon	9.20E+00 1.58E-01	2.63E+00	3.31E-01	9.20E+00	2.63E+00	3.31E-01
Silver	9.52E-02	4.52E-02	5.70E-03	1.89E-01	5.41E-02	6.81E-03
Sodium		2.72E-02	3.43E-03	1.08E+00	3.10E-01	3.90E-02
Strontium	1.17E+02	3.34E+01	4.21E+00	5.56E+02	1.59E+02	2.00E+01
Thallium	3.66E-05	1.05E-05	1.32E-06	5.66E-05	1.62E-05	2.04E-06
Tin	9.25E-03	2.64E-03	3.33E-04	1.08E-01	3.10E-02	3.90E-03
Titanium	8.09E-03	2.31E-03	2.91E-04	8.79E-03	2.51E-03	3.16E-04
Vanadium	6.10E-05	1.74E-05	2.20E-06	1.07E-04	3.07E-05	3.87E-06
Yttrium	2.34E-03	6.68E-04	8.42E-05	2.62E-03	7.49E-04	9.44E-05
Zinc	NA 1.635.00	NA 4 (ST. 82	NA	2.14E-05	6.11E-06	7.70E-07
Zinc	1.63E-02	4.65E-03	5.86E-04	3.34E-02	9.54E-03	1.20E-03
rganics						
1,1-Dichloroethene	3.81E-11	1.09E-11	1.37E-12			
1,2-Dichloroethene	2.65E-11	7.57E-12	9.53E-13			
1,2-Dichloropropane	3.07E-12	8.77E-13	1.11E-13			
1,3-Dimethylbenzene	2.72E-08	7.77E-09	9.79E-10			
Acetone	1.07E-11	3.07E-12	3.87E-13			
Ammonia	3.26E-03	9.32E-04	1.17E-04			•
Benzene	1.40E-07	3.99E-08	5.03E-09			
Bromomethane	1.36E-08	3.89E-09	4.90E-10			
Carbon Tetrachloride	4.34E-11	1.24E-11	1.56E-12			
Chlorobenzene	3.37E-08	9.62E-09	1.21E-09			
Chloroform	6.87E-12	1.96E-12	2.47E-13			
Ethylbenzene	4.08E-08	1.17E-08	1.47E-09			
Methanol	1.63E-07	4.65E-08	5.86E-09			
Methylene Chloride	1.36E-08	3.89E-09	4.90E-10			
Tetrachlorethene	5.43E-10	1.55E-10	4.90E-10 1.95E-11			
Toluene	6.80E-08	1.94E-08				
Trichloroethene	8.33E-11		2.45E-09			
Xylene	2.72E-08	2.38E-11	3.00E-12			
4-Chlorophenylmethylsulfone	2.72E-08 2.52E-11	7.77E-09	9. 7 9E-10			
4-Chlorophenylmethylsulfoxide	2.52E-11 9.40E-11	7.21E-12	9.08E-13			
4-Nitrophenol	5.76E-11	2.69E-11 1.64E-11	3.38E-12			
Aldrin	6.91E-12		2.07E-12			
Atrazine	1.54E-12	1.97E-12 4.39F-13	2.49E-13 5.53F-14			
	1.J**E*1Z	47771.5	7 7 1 2 - 14	,		

Atrazine

1.54E-12

4.39E-13

5.53E-14

Table 5A-15 (continued)

Pollutant	(tom tom)	Base Case (a)	4.1	Sensitivity	
The second secon	(ton/yr)	(lb/hr)	(g/sec)	(ton/yr) (lb/hr	·) (g/sec)
Organics Under Control					
Hydrogen Cyanide	6.46E-08	1.85E-08	2.32E-09		
Dieldrin	1.42E-12	4.06E-13	5.11E-14		
Diisopropyl Methylphosphonate	2.49E-10	7.13E-11	8.98E-12		
Dimethyl Methylphosphonate	5.95E-09	1.70E-09	2.14E-10	ļ	
Dimethyldisulfide	6.91E-10	1.97E-10	2.49E-11		
Dimethylphosphate	1.63E-09	. 4.66E-10	5.87E-11		
Dithiane	2.49E-13	7.13E-14	8.98E-15		
Endrin	1.38E-12	3.95E-13	4.97E-14		
Hexachlorocyclopentadiene	1.28E-11	3.67E-12	4.63E-13		•
Isodrin	3.64E-12	1.04E-12	1.31E-13		
Malathion	5.56E-12	1.59E-12	2.00E-13		
Parathion	7.68E-13	2.19E-13	2.76E-14		
Supona	2.30E-12	6.58E-13	8.29E-14		
Urea	9.98E-07	2.85E-07	3.59E-08		
Vapona	6.14E-12	1.75E-12	2.21E-13		
p,p-DDE	1.15E-08	3.29E-09	4.14E-10		
p,p-DDT	2.30E-12	6.58E-13	8.29E-14		
ICs with Specific Precursors					
Vinyl Chloride	1.36E-07	3.89E-08	4.90E-09		
Methyl Chloride	1.36E-07	3.89E-08	4.90E-09		
Styrene	1.36E-07	3.90E-08	4.91E-09		
Phenol	7.37E-07	2.11E-07	2.65E-08		
Benzaldehyde	1.42E-07	4.05E-08	5.10E-09		
Benzoic Acid	6.86E-08	1.96E-08	2.47E-09		
Acetonitrile	6.52E-10	1.86E-10	-		
Acrylonitrile	6.52E-10 6.52E-11	1.86E-10 1.86E-11	2.35E-11		
Cyanogen	6.52E-11 6.52E-12		2.35E-12		
Hexachlorobenzene	6.52E-12 4.64E-10	1.86E-12	2.35E-13		
Pentachlorobenzene		1.32E-10	1.67E-11		
Tetrachlorobenzene	2.07E-10	5.93E-11	7.47E-12		
Trichlorobenzene	8.75E-11	2.50E-11	3.15E-12		
Dichlorobenzene	4.62E-11	1.32E-11	1.66E-12		
	2.45E-11	6.99E-12	8.81E-13		
Biphenyl 4-Chlombiphenyl	6.82E-08	1.95E-08	2.45E-09	•	
4-Chlorobiphenyl	7.88E-08	2.25E-08	2.84E-09		
4,4-Chlorobiphenyl	1.03E-09	2.95E-10	3.72E-11		
Benzonitrile Pyridine	6.52E-11 6.52E-12	1.86E-11 1.86E-12	2.35E-12 2.35E-13		
Carbazole	1.30E-11	3.73E-12	4.70E-13		
Quinoline	3.26E-11	9.32E-12	1.17E-12		
Cs without Specific Precursors					
Benzofuran	2.72E-07	7.77E-08	9.79E-09		•
Dibenzofuran	1.36E-08	3.88E-09	4.89E-10		
Acenaphthalene	6.80E-08	1.94E-08	2.45E-09		
Acenaphthene	6.80E-08	1.94E-08	2.45E-09		
Fluoranthene	4.08E-08	1.17E-08	1.47E-09		
Phenanthrene	2.72E-08	7.77E-09	9.79E-10		
Pyrene	1.36E-08	3.88E-09	4.89E-10		
Fluorene	1.36E-08	3.88E-09	4.89E-10		
Benzo(a)pyrene	1.36E-08	3.88E-09	4.89E-10 4.89E-10		
Dibenzo(a)anthracene	1.36E-08	3.88E-09			
~.~	1.30E-00	3.00E-U9	4.89E-10		

Table 5A-15 (continued)

Category/ Pollutant	(ton/yr)	Base Case (a) (lb/hr)	(g/sec)		nsitivity Case (b	-
Acid Gases & Other Compounds		(sojiu)	(8/586)	(ton/yr)	(lb/hr)	(g/sec)
Particulate Matter Carbon Monoxide Hydrogen Chloride Hydrogen Fluoride Nitric Acid Nitrogen Dioxide Phosphate Sulfuric Acid Sulfur Dioxide	14.00 (c) 4.71 4.73 (d) 0.17 3.85 32.13 3.44 10.40 24.43 (d)	4.00 1.35 1.35 0.049 1.10 9.18 0.98 2.97 6.98	0.50 0.17 0.17 0.006 0.14 1.16 0.12 0.37 0.88	14.00 7.29 (e) 14.00 (f) 0.32 3.85 143.22 (f) 15.04 17.34 101.50 (f)	4.00 2.08 4.00 0.092 1.10 40.92 4.30 4.96 29.00	0.50 0.26 0.50 0.012 0.14 5.16 0.54 0.62 3.65

⁽a) These estimates are based upon the acceptable results during the test burn for dioxins/furans and the maximum of the acceptable test results or the maximum of the averages waste stream data for inorganics (including metals, acid gases and other compounds). The volatile and semi-volatile organic emissions are based upon Dellinger's analysis of the maximum of the averages wastestream data.

⁽b) For metals: based upon the maximum value of the test results from the test burn, the maximum of the maximum values from the wastestream data, and the EPA Guidance Tier II limits for complex terrain.

For dioxins/furans: based upon the 95% confidence interval from WESTON's hazardous waste incinerator emissions database. For acid gases & other compounds: based upon the maximum value of the test results from the test burn and the maximum of the maximum values from the wastestream data.

⁽c) Based upon Colorado's emission limitation of 0.08 gr/dscf @ 12% CO2.

⁽d) Based upon the February 1989 test burn, which tested for the specific compound.

⁽e) Based upon Federal emission limitation of 100 ppm.

⁽f) Based upon vendor performance guarentees.

APPENDIX 5A

CITED REFERENCES

EPA (U.S. Environmental Protection Agency). 1989. <u>Guidance on Metals and HCI Controls from Hazardous Waste Incineration</u>, <u>Draft Final Report</u>. August, 1989.

Siebert, P.C., D.R. Alston, J.F. Walsh, and K.H. Jones, "Effects on Control Equipment and Operating Parameters on Municipal Solid Waste (MSW) Incinerator Trace Emissions." Paper 88-98.3 presented at the 81st Annual APCA Meeting, Dallas, Texas, 24 June 1988.

Siebert, P.C., D.R. Alston, and K.H. Jones, "Toxic Trace Pollutants from Incineration." Presented at the AIChE National Meeting, Philadelphia, Pennsylvania, 23 August 1989.

APPENDIX 5B

ESTIMATE OF ORGANIC MASS EMISSION RATES FROM INCINERATION OF BASIN F LIQUIDS

531C/S5 1/21/91

Estimate of Organic Mass Emission Rates from the Incineration of Basin F Liquids

prepared by:

Barry Dellinger, Ph. D. 10168 Atchison Rd. Spring Valley, OH 45370

for:

R. F. Weston Inc. Weston Way Westchester, PA 19380

October 27, 1990

Based on the estimated feed composition furnished by Mr. Paul Siebert of Weston Inc., an estimate of the organic emissions from the controlled incineration of Basin F liquids has been prepared. The difficulties in making accurate predictions of mass emission rates of organic pollutants is well documented. However, by making some reasonable assumptions it is possible to prepare an estimate of the <u>relative</u> emission rates of organic compounds, both Principal Organic Hazardous Constituents (POHCS) and Products of Incomplete Combustion (PICs). These relative emission rates can then be converted to absolute emission rates by "normalizing" these estimated emissions to actual measurements on the incinerator for a few selected compounds. When these measurements are not available, one can alternatively use the current EPA emissions regulations as a calibration technique.

The relative emission estimate identifies the theoretically most stable POHC, assuming its DRE to be 99.99% (the worst allowable case), the relative emission rate of every other POHC and PIC in the estimate may be ratioed to the emission rate of the most stable POHC to give calibrated emission rates for all of the potential emissions. These calibrated emission rates can then be used in conjunction with conventional risk assessment techniques to estimate the health risks due to the stack emissions.

The following paragraphs summarize the general scientific approach used to develop the relative emission rate data for POHCs and PICs. This is a very complex subject and a detailed discussion of the estimate of the emission rate for each compound is beyond the scope of this report. However, a short discussion of the emissions estimation procedure for several compounds of special interest based on various criteria is included. Polychlorinated dibenzo-p-dioxin and furans are not included in the emissions estimate because of their predicted ultra-trace yields for the compounds listed in the Basin F liquids.

At the conclusion of the report, a brief discussion of the results of this emissions estimate versus emissions measurements from other full scale facilities is presented. Appendix 1 presents the final emissions estimation results. The key to the table displays the actual calculation procedure used to obtain the relative emission rate estimates and the final calibrated or normalized emissions estimate. Appendix 2 contains the estimated PIC yields for input into the emissions estimate in Appendix 1.

BACKGROUND

Calculations and experimental observations have shown that the emissions of undestroyed, residual POHCs are kinetically, not thermodynamically controlled. [1,2] The destruction efficiency (DE) of POHCs is dominated by the temperature, time, and reaction atmosphere experienced by the POHCs in the high temperature zones of incinerators. Thus determination of the exact time, temperature, and reaction atmosphere history of all the molecules in an incinerator is necessary to determine the actual DE of a POHC. This type of information is, of course, not currently available. However, less information is required to estimate the relative DE of potential POHCS.

Simple conceptual and more complex computer models suggest that the gas-phase residence time, temperature, and reaction atmosphere in the post-flame or thermal zones of incinerators control the relative emissions of most POHCs. [3-5] The basic reasoning behind this is that all molecules entering the flame zone of an incinerator are essentially destroyed and only the small fraction of the material escaping the flame zone may be emitted for the facility. Various flame zone "failure modes" exist which may cause residual POHCs to be emitted. Once in the post-flame zone, gas-phase thermal decomposition kinetics controls the rate of POHC destruction and formation and destruction of PICs.

calculations using available kinetic data indicate that the emissions observed from full scale incinerators are several orders of magnitude higher than those calculated using oxidation kinetics and residence times and temperatures anywhere near the mean values in the post-flame zone of the incinerator. [6] This suggests that oxygen depleted pathways must be responsible for most POHC and PIC emissions since the rate of POHC destruction is significantly slowed and the rate of PIC formation is increased under pyrolysis.

Even though the facility may be operating under nominally excess air conditions, poor mixing will result in oxygen-deficient pockets where the rate of POHC destruction is low and PIC formation is favored. Consequently, it is believed that gas-phase thermal stability under sub-stoichiometric oxygen conditions may be an effective predictor of POHC relative incinerability.

A recent study compared the incinerability predictions of several proposed POHC ranking methods with results of 10 pilot or full-scale test burns. (6) The ranking methods include heat of combustion, autoignition temperature, ignition delay time, flame failure modes, theoretical flame

mode kinetics, thermal stability of pure compounds under excess air conditions, thermal stability of mixtures under oxidative conditions, and thermal stability of mixtures under oxygen-starved conditions. Correlations of the prediction of the rankings with field results were poor except for thermal stability of mixtures under oxygen-starved conditions. Although the laboratory data base used to predict full-scale POHC DREs were very limited, statistically significant correlations in 7 of 10 cases were observed using this ranking approach. The results of this comparison along with theoretical considerations suggest that pyrolysis kinetics may be used to develop relative mass emission rate estimates (i.e. ranking of incinerability). Experimental studies have recently been undertaken to obtain stability data for Appendix VIII compounds using this approach. [7]

POHC STABILITY

In most general terms, the decomposition of a molecule can be initiated by either radical attack (i.e., bimolecular pathway) or by an internal redistribution of energy such that the molecule decomposes or rearranges (i.e., unimolecular pathway).

Unimplecular reactions can be further subclassified into bond homolysis, which involves breaking of the weakest bond, and concerted elimination, which involves an internal rearrangement and elimination of a stable species such as HCl, H2O, or CO2. [8]

An example of bond homolysis is carbon-chlorine bond rupture in carbon tetrachloride by reaction 1.

$$\xrightarrow{c} \xrightarrow{rca_3 + c} (rxn. 1)$$

This reaction involves breaking of a relatively low energy bond of approximately 70 kcal/mole. Other Appendix VIII organics such as nitroglycerine, tetranitromethane, hydrazine, methyl hydrazine, 1,1,dimethylhydrazine are documented to proceed by bond homolysis. Many other compounds such as difluorodichloromethane, hexachloroethane, and benzenethiol are expected to decompose largely by bond homolysis.

Concerted eliminations largely fall into two categories, four center processes and six-center processes. An interesting example of a four-center process is the decomposition of hexachlorocyclohexane depicted in reaction 2.

This pathway which results in ethylene and trichlorobenzene formation is expected to have a very low activation energy of about 55 kcal/mole. Practically any organic molecule with hydrogen and chlorine atoms on carbons connected by a single bond will undergo this type of process. Thus, species such as 1,1-dichloropropane, 2,2-dichloropropane; and 1,1,1-trichloroethane are known to undergo this process. Many other Appendix VIII organics are suspected of decomposing through this pathway.

The best documented examples of molecules undergoing six -center concerted elimination are secondary esters. An example of this process is the decomposition of diethyl phthalate shown in reaction 3.

These reactions have activation energies on the order of 45-50 kcal/mole and are consequently very fast. Almost all of the phthalates listed in Appendix VIII can decompose by this mechanism and are consequently considered quite fragile. Other classes of molecules are isoelectronic with organic esters and are suspected of proceeding by similar pathways. These types of compounds include phosphoric acid esters, sulfonates, some amides, and thioesters.

Other compounds may undergo more rare three-center processes. The best documented example of a possible three-center decomposition of an Appendix VIII molecule is the decomposition of chloroform shown in reaction 4

$$chci_3 \longrightarrow c \longrightarrow cci_2 + hci \qquad (rxn. 4)$$

Bimolecular reaction pathways involving radical attack may be largely subdivided into three classes; atom metathesis, electrophilic addition, and displacement. An example of an Appendix VIII organic suspected of decomposing by simple hydrogen abstraction is trichloroethylene. (see rxn. 5)

$$\frac{c_{1}}{c_{2}}c=c_{1}^{H}+c_{1}+c_{2}+\cdots +c_{n}^{H}c=c_{n}^{H}c=c_{n}^{H}c+c_{n}^{H}c$$
(FXn. 5)

The radical initiating the abstraction may in principle be any number of species; but under oxidative conditions, the hydroxyl radical is suspected of being the dominant reactive radical. Hydrogen atoms and chlorine atoms are suspected of playing a larger role under pyrolytic conditions. Some possible pathways may be eliminated on thermodynamic grounds. Halogenated alkyls (that cannot undergo bond homolysis or concerted elimination) may decompose by this mechanism,

Displacement reactions largely involve the substitutions of one radical for another. An example would be the displacement of a chlorine atom by a hydrogen atom in o-dichlorobenzene (see rxn. 6).

The rate of this reaction would increase with increasing chlorine substitution. In the case of chlorobenzenes, if displacement by hydrogen atoms dominates over addition or abstraction by hydroxyl radical, the relative incinerability rankings would be reversed from that predicted from a mechanism based on hydroxyl radical attack.

PIC FORMATION MECHANISMS

From a purely chemical reaction kinetic viewpoint, one may classify known mechanisms of PIC formation into three general groups: 1) concerted

molecular eliminations, 2) radical-molecule reactions, and 3) radical-atom or radical-radical recombination reactions. As illustrated in Table 1, these mechanisms occur in different regions of the incinerator and can result in PICs of different structure and stability. Consequently, the nature of PICs formed and their potential destruction will be dependent on the different exposure conditions. The reaction rates for PIC formation processes increase from zero- to second-order in the radical concentration as one proceeds from mechanism 1 to mechanism 3. Thus, stoichiometry and elemental composition of the waste/fuel feed may significantly impact PIC yields for radical-molecule and radical-radical reaction pathways.

TABLE 1

DESCRIPTION OF HAZARDOUS WASTE INCINERATOR PIC FORMATION ZONES AND DOMINANT PIC FORMATION MECHANISMS

ZONE Preflame Zone	REACTION CONDITIONS T = 200-1000°C R.T. < 1 s [O2] = 0-50% EA®	PIC MECHANISMS ^a Mechanism 1 ^b Mechanism 2 ^c Mechanism 3 ^d
Flame Zone	T = 1000-1800°C R.T. < 1 s [O ₂] = 50% EA ^e	Mechanism 2 Mechanism 1 Mechanism 3
Postflame Zone (afterburner)	T = 600-1100°C R.T. = 1-3 s [O ₂] = 50-100% EA ^e	Mechanism 2 Mechanism 1 Mechanism 3
Cool Zone (APCD and stack)	T = 80-600°C R.T. = 2-20 s [O2] = 3-9%	Mechanism 3

³PIC formation mechanisms listed in decreasing order of importance.

bConcerted molecular elimination reactions.

^CRadical-molecule reactions.

dRadical-atom or radical-radical recombination reactions.

e.Average values; localized deviations due to poor mixing can result in pyrolytic conditions.

Concerted molecular elimination to form stable PICs is a subclass of unimolecular reactions, viz., reactions only involving the parent compound. Since a second molecule or radical is not involved in the reaction, the PIC yield is dependent only upon time, temperature and the Arrhenius parameters of the molecular elimination reaction:

 $PIC YIELD = [PIC]/[POHC] \times 100 = 100[1-exp{-At exp (-Ea/RT)}] (Eqn. 1)$

where. [POHC] =concentration of the parent POHC; [PIC] = concentration of the PIC; t= reaction time; A= Arrhenius coefficient for the reaction; Ea= the activation energy for the reaction; T= the reaction temperature; and R= the universal gas constant.

Kinetic parameters for many reactions of this type have been tabulated. [8] The reaction rates for these molecules are all energetically favorable under incineration conditions with an extent of reaction greater than 99% at temperatures below 700 C. Because these PIC formation pathways occur so rapidly, the resultant PIC can experience almost the full gas-phase residence time experienced by the parent POHC. Thus, PICs produced by molecular elimination may undergo decomposition resulting in secondary PIC formation, or the reaction may proceed to the formation of thermodynamically stable combustion products.

Examples of bimolecular reactions that result in stable PIC formation are radical-molecule reactions. Once the decomposition of the parent PDHC is initiated and a pool of reactive radicals is formed, radical-molecule reactions will usually be the dominant pathway for PIC formation. Hydroxyl (OH) radicals are the dominant reactive species under stoichiometric and oxidative conditions, while H atoms are the dominant reactive species under pyrolytic conditions. In addition, polyatomic organic radicals are also believed to play an important role in the formation of PICs that are of higher molecular weight than the parent compound.

Figure 1 illustrates the formation of several of the major products from the decomposition of chloroform (CHCl3) under 50% excess air conditions. Of particular interest is the formation hexachlorobenzene (C6Cl6) which is stable at high temperatures and is formed in percent yields. A mechanism has been proposed where CHCl3 rapidly forms C2HCl5, which decomposes to produce C2Cl4 and trichloroethene (C2HCl3). [9] This is followed by a radical-molecule mechanism resulting in the formation of C6Cl6 from C2HCl3 through experimentally observed intermediates such as dichloroacetylene (C2Cl2) and 1,3-hexachlorobutadiene (C4Cl6).

It should be recognized that since the rate of PIC formation is dependent on the concentration of both the radical and molecule reaction

partners, the observed PIC yield will generally increase with increasing waste feed rate. It is also important to note that many reaction steps may be required for the formation of given PIC, e.g. C6Cl6. Thus, the high-temperature, gas-phase residence time may be very short for such PICs, and their DE be much less than expected based on the full residence time in the incinerator. This is in contrast to PICs formed by concerted molecular elimination and suggests that for identical PIC formation yields for these pathways, the radical-molecular route will result in greater PIC emission rates.

Recombination reactions of radicals or atoms to form stable molecules are expected to occur only when molecule concentrations are very low or radical concentrations are high. These reaction rates are second order with respect to radical concentration and are temperature independent or exhibit small negative temperature dependencies. Since radical concentrations in the combustion zone are at least a factor of 100 times less than stable molecule concentrations, it can be shown that the overall forward reaction rate for radical-molecule reactions are typically greater than 50 times the radical-radical reaction rates at temperatures in excess of 1200 C. At lower temperatures, e.g. 800 C, due to the higher activation energy for the radical-molecular reactions, the ratio of rates decreases to about 10. Since product distributions are exponentially dependent on the

reaction rate, radical-molecule reactions are clearly kinetically favored routes as compare to recombination reactions at temperature greater the 600 C.

Once in the cool zone, temperatures may be sufficiently low that radical-molecule reactions with stable combustion endproducts now present in high concentrations, e.g. CO2, H2O, and HC1, occur at a much slower rate. As a result, radical-radical recombination routes may now become kinetically significant. If the temperature is rapidly quenched downstream of the post-flame zone, the concentrations of these radicals may be predicted from equilibrium calculations at the temperature just upstream of the quenching boundary. With this information, the recombination product concentrations downstream of the quenching boundary can be generally related to the predicted radical concentrations. Once formed, these molecules are not subjected to high temperatures and may exit the incinerator undestroyed.

SPECIFIC EXAMPLES FOR THE BASIN F LIQUID

Several specific examples have been selected for more detailed discussion of their origin and fate for the Basin F liquid. These compounds were selected to be of interest due to 3 factors: toxicity, high predicted relative mass emission rate, and prevalence in emissions from other incinerators. A brief discussion of the organic mass emissions estimate follows.

Hexachlorobenzene - Once formed, hexachlorobenzene is expected to be a very stable compound due to its resistance to oxidative attack by hydroxyl radical. [4] It has also been shown to be formed from the thermal degradation of chloroform, carbon tetrachloride, and tetrachloroethene in laboratory studies [8,9] A simple mechanism for its formation from chloroform was delineated in the previous paragraphs of this report. The highly chlorinated pesticides Aldrin, Dieldrin, Endrin, hexachlorocyclopentadiene, and Isodrin are expected to form hexachlorobenzene in moderate yields from a primarily unimolecular mechanism.

Penta-, tetra-, tri-, and di-chlorinated benzenes - The chlorobenzenes are formed primarily through the same mechanisms as hexachlorobenzene. The hexachlorobenzene initially formed is successively dechlorinated by the favorable displacement of chlorine by hydrogen atoms. For trichlorobenzene and dichlorobenzene, additional routes for formation are available from molecular growth pathways from 1,1-dichloroethene and 1,2-dichloroethene.

<u>Vinul Chloride</u> - Vinul chloride is expected to be formed from a number of the waste feed components in relatively low yields. It is most

readily formed from 1,1-dichlorethene and 1,2-dichloroethene by chlorine displacement by hydrogen atoms.

Acetonitrile and Acrylonitrile - The stability of the nitrile radical is expected to be largely responsible for the formation of these compounds. The nitrile radical, which can be liberated by hydrogen abstraction from hydrogen cyanide, can readily recombine with methyl radicals or vinyl radicals in the cool zones of the incinerator to form acetonitrile and acrylonitrile, respectively.

Benzene - Benzene has been shown to be very stable under pyrolytic conditions. [7] Its estimated stability as a POHC was determined using actual laboratory data. Because of its kinetic and thermodynamic stability, it can be readily formed as a PIC from many sources. Its major route of formation in the waste is expected to be via a displacement reaction of vinyl, methyl, chloro and other substituent groups by hydrogen atoms from species such as styrene, toluene, xylene, chlorobenzene etc. In addition, a relatively large yield by unspecified pathways has been included for formation from the organic waste matrix. Mechanisms for its formation via molecular growth pathways which are generally analogous to that previously described for hexachlorobenzene can result in benzene formation from simple aliphatic and olefinic hydrocarbons. The yield used for this estimate is based on yields and mass emission rates found in full scale incineration studies. [1,10]

Chlorobenzene - The emission of chlorobenzene is predicted based on its stability as a POHC and potential for formation in relatively low yields from a number of components of this waste stream. The pesticides Supona, DDE, and DDT are expected to form chlorobenzene in high yields by simple displacement reactions of substuent groups by hydrogen atoms to directly form chlorobenzene. The only available mode for its destruction under oxygen starved conditions is chlorine displacement by hydrogen atoms which is very slow. The predicted stability is based on laboratory data.(7)

1.1-Dichloroethene - From laboratory studies, 1,1-dichloroethene is known to form from the thermal degradation of methylene chloride, tetrachloroethene, and trichloroethylene. It is also expected to be readily formed from Aldrin, Dieldrin, and Endrin. However, once formed it is not expected to be particularly stable. Its low pridected DE is primarily due to its very low feed rate in combination with a moderated PIC yield.

<u>Bromomethane</u> - All bonds in bromomethane are relatively strong and its is generally resistant to radical attack. Its emission is primarily due to its thermally refractive nature.

<u>Tetrachloroethene</u> – This compound has been previously observed in laboratory studies of the thermal degradation of carbon tetrachloride and chloroform in large yields. [9] In fact it is the major product from these compounds, and once formed it is expected to be very difficult to destroy.

Toluene - Toluene is a readily formed PIC from a variety of compounds. Its mechanism of formation is similar to that of benzene in that it is expected to proceed through fast molecular growth reactions. In addition, the benzyl radical is a very stable radical which might be expected to survive the combustion zones of the incinerator and form toluene in the cool zones by recombination with hydrogen atoms. Its primary mode of formation in this waste stream is expected to be very fast, favorable displacement reactions for 1,3-dimethylbenzene, chlorobenzene, ethylbenzene, and xylene. In these reactions hydrogen atoms would displace methy, chloro, ethyl, and vinyl substituents respectively.

Carbon Tetrachloride - Carbon tetrachloride is a relatively fragile POHC. Laboratory studies have shown that it is decomposed by greater than 99.99% DE at temperatures below 900 C. [7] Consequently, residual POHC emissions are not expected for this or any other moderately well operated incinerator. However, the trichloromethyl radical is a stable radical and can recombine with chlorine atoms in cool zones of the incinerator. For this waste stream, chloroform, methylene chloride, and tetrachloroethene are expected to be the major sources of carbon tetrachloride. Carbon tetrachloride has been demonstrated in laboratory studies to be formed in moderate yields from the thermal degradation of both chloroform and tetrachloroethene.

Acenaphhalene, Acenaphthene, Fluoranthene, Phenanthrene, Pyrene, Fluorene, Benzo-[a]-pyrene, Dibenzo-[a]-Anthracene, and Chrysene - These nine polynuclear aromatic hydrocarbons (PNAs) have been commonly observed as emissions from full scale hazardous and municipal waste incinerators. [1] Their formation is through a mechanism similar to that described for benzene (and hexachlorobenzene) and generally involves addition of substituted vinyl radicals to olefinic substituents on already formed aromatics. These are complex mechanisms and it is difficult to predict their yields accurately. As a result yields and mass emission rate were based on full scale emission measurements and general principals of reaction kinetics. [1,7,10] The emission estimates for benzo-[a]-pyrene, dibenzo-[a]-anthracene, and chrysene are worst case estimates based on measured emission data of other PNAs, but are included because of their relatively high carcinogenicity.

EMISSION MEASUREMENTS AT FULL SCALE INCINERATORS

Full scale incinerator emissions measurements have resulted in measured PIC to POHC emission ratios of 1:1 to 3:1. Commonly observed PICs have been chloroform, carbon tetrachloride, bromoform, other brominated and chlorinated methanes, trichloroethane, trichloroethylene, and various phthalates, benzene, and toluene. [1] The emissions of such

compounds as chloroform, bromoform, 1,1,1-trichloroethane and diethyl phthalte appear puzzling at first because they are all known to be very fragile materials. However, the emissions of brominated compounds from incinerators which are not reported as burning brominated wastes is very suggestive of an alternative source of introduction of these pollutants.

In fact, it has been shown that many of these halogenated compounds are commonly found as contaminants in the scrubber inlet water. [1] Since they are very volatile, they can be volatilized by hot combustion gases and stripped into the flue gas. Trenholm has shown that in many cases the quantities of these compounds in the scrubber inlet water can account for all of the observed emissions. Phthalates are common plasticizers and can be easily introduced as sampling or analysis artifacts. They have been apparently anamolously observed air pollution studies. [10]

Since it appears that these compounds are not produced in the combustion system, they have not been included in the emissions estimate. Measurement or estimation of volatile halocarbons in the scrubber water must be made as a first step to estimating this potential source of emissions.

Footnotes to table - Estimate of Organic Emissions

- B,C. Compounds and feed rate furnished by R.F. Weston
- D. Based on actual laboratory generated experimental thermal decomposition data or extrapolated based on theory. DE (Thermal) is the destruction efficiency at 900 C achieved under laboratory non-flame conditions in a pyrolytic atmosphere
- E. Dased on the assumption that 99% of each POHC passes through the flame and is completely destroyed. The DE of the remaining 1% which is destroyed in the post-flame zone is assumed to be equal to DE (Thermal) Theoretical DE at 900C= 99.0000+0.01*DE(Thermal)
- F. Emission Rate of POHC=Feed Rate*(1-Theoretical DE at 900C/100)
- 6. Emission Rate as PIC is based on the data included in the PIC estimate tables. The formation of each POHC as a PIC from every other POHC has been estimated. Also the contribution to PIC formation of poorly characterized reactions involving the waste feed as a whole have been included. Emission rates of other PICs have also been included at the bottom of the table.
- H. Emission Rate as POHC and PIC= Emission Rate POHC+Emission Rate PIC
- Effective Theoretical DE of POHC=100*(1-Emission Rate as POHC and PIC/Feed Rate)
- J. Assumes that the incinerator achieves 99.99% DRE for the POHC which is most difficult to destroy. Toluene had the lowest Effective Theoretical DE of 47.8756% due to its very low feed rate and large propensity for PIC formation from a variety of compounds. Normalized Emission Rate=Emission as POHC and PIC*(0.0001/0.521244).
- K. Normalized DE=100*(1-Normalized Emission Rate as POHC and PIC/ Feed Rate)

REFERENCES

- 1. A. Trenholm, P. Gorman, and G. Jungelaus, *Performance Evaluation of Full Scale Incineration*, MRI Report under EPA contract 68-02-3177.
- 2 W. Tsang and W. Shaub, "Chemical Process in the Incineration of Hazardous Materials," *Detoxification of Hazardous Waste*, J. Exner, ed., Ann Arbor, 1982, pp. 41–59.
- 3. W. Clark, M. Heap, W. Richter, and W. Seeker, "The prediction of Liquid Injection Hazardous Waste Incinerator Performance," ASME/AICHE 22nd National Heat Transfer Conference, 1984.
- 4 8. Dellinger, J. Torres, W. Rubey, D. Hall, J. Graham, and R. Carnes, *Haz. and Haz. Mat.*, 1, No. 2, 1984, pp. 137–157.
- 5. M. Graham, P. Taylor, and B. Dellinger, "A Model Study of Vaporization and Thermal Oxidation of a Multicomponent Hazardous Waste Droplet," presented at ESS-CI, 1986.
- B. Dellinger, W. Rubey, D. Hall, and J. Graham, Haz. Waste and Haz. Mat., 3, No. 2, 1986, pp. 139-150.
- 7. P. H. Taylor and B. Dellinger, "A Thermal Stability Based Ranking of Hazardous Organic Compound Incinerability," Proceedings of the International Symposium on Incineration of Hazardous, Municipal, and other Wastes, Palm Springs, CA 1987.
- 8. S. W. Benson and H. E. O'Neal, *Kinetic Data on Gas Phase Unimolecular Reactions*, NSRDS-NBS 21, February 1970.
- 9. B. Dellinger, et. al., "Products of Incomplete Combustion from the High Temperature Pyrolysis of Chlorinated Methanes," Presented at the 195th National Meeting of the American Chemical Society, Toronto, Ontario, Canada, June 1986.
- B. Dellinger, M. Graham, and D. Tirey, Haz. Waste and Haz. Mat., 3, No. 2., 1986, pp. 139-150.
- 11. W. A. Rubey, et al., *Chemosphere*, 14, No. 10, 1985, pp. 1483-1494.

Appendix 1

Estimate of Organic POHC and PIC Mass Emission Rates from the Incineration of Basin F Liquids

		2001		OE	33
	Compound	(tons/yr)DE	(Thermal)	C (%) of	OHC (to
4	1 1.1 - Dichloroethene	5E-0	Ģ.	0000	500F_0
Ī	2 1,2-Dichloroethene	0E-0		0000	OCCE-1
	5 1,2-Dichloropropane	6E-0	0	000	S COLUMN
:	1,3-Dirnethylbenzer	3E-0	9	0000	SCORE D
8	Acetone	6E-0	Ū,	00000	600F-0
	6 Ammonia	75+0	C	0006	700F+0
0	:	86-0	Ē	9 510	8625-0
<u> </u>	B Bromorthane	2 6E-04	97 00	90 9 700	0 - 3200 C
12	9 Carbon Tetrachloride	3E-0	G	0000	X00F-0
_	0 Chlorobenzene	2F-0		005 6	2006-0
-	11 Chloroform	55-0	σ	0000	500F-0
15	2 Ethulbenzene	4E-0	, c	0000	ACOF-D
1 9 1		4E+0	66	6666	400F-0
_	•	3E-0	6	6666	300F-0
13	:	9E-0	9	6666	9006-0
61		8E-0	Ū,	5666	624F-0
20	7 Trichloroethene	3E-0	9	6666	SCICE-0
21	•	.6E-0	6	6666	800E-1
22		0 - 36	6	6666	90.0E-0
23		0 - 36	Ç.	6666	90.0E-0
	4	.0E-0	9.9	6666	0-3000°
25	2 Aldrin	.6E-0	Ü. Ü	666 6	0-3009
26	Atrazi	.0 E- 0	9.9	6666	0-3000°
27	.4 i Hydrogen Cyanide	4E-0	<u>.</u>	9010	366E-0
28	Dieldrin	4E-0	Ę.	6666	400E-0
29	6 Diisopropyl Methylphosphonate	36+0	Ç.	6666	300E-0
30		1E+0	9.9	6656	.100E-0
31		6E+ 0	Ç,	6666	0-3009
_		5E+0	G.	6656	500E-0
33	Dithian	3E-0	Q,	66666	3005-0
34	•••••	2E-0	9.9	6666	200E-1
35	52 Hey achlorocyclopentadiene	7E-0	Ç,	6666	700E-0
36		9E-0	Ę	6666	900E-0
37	34 Malathion	9E - 0	6	6666	900E-0
38	5 Parathi	0E-0	9.9	6656	0-3000
59	36	.2E-0	9.9	66666	200E-0
40		2E+0	9.9	6666	200E-0
41	.ខ្លួ	2E - 0	œ.	6656	200E-0
	•••••	0-36	Ę	ტიტ ტ	0-3006
2.7	1,1		0	000	

•	89		-	3	
44			2	7	
45	PICS With Specific Precursors	•			
46					
47	Methyl Chloride				
	Styrene				
	Phenol		•		
	Benzaldehyde				
_	Benzoic Acid	•			
	Acetonitrile				
-	Acrylonitrile				
54	Cyanogen	10 10 10 10 10 10 10 10 10 10 10 10 10 1			***************************************
52	obenzen	•••••	•		
56	Pentachlorobenzene				
57					
58	••••••				
59	Dichlorobanzane	***************************************	•		
60	Biphenyl				
61	4-Chlorobiphenyl				
62	4,4'-Chlorobiphenyl				
63	Benzonitrile				
64	Puridine				
65	Carbazole				
99	Quinoline				
29		•	***************************************		
-	PICS WITHOUT SPECIFIC PRECURSORS				
-	Benzofuran				
-	Dibenzofuran			***************************************	
	Acenaphthalene	* * * * * * * * * * * * * * * * * * *			
	Acenaphthene				
	Fluoranthene	•			***************************************
-	Phenanthrene				
75	Pyrene	•			
76	Fluorene				***************************************
77	Benzo-[a]-parene	0			
28	3 - anth	•			
79	Chrysene				

1					*
_	sion Rate	nission Ra	ctive [Normalized Emission No	rinalized DE
2 4	<u> </u>	POHC and PIC (tons/yr)	DE at 900C (%)	Rate (tons /yr)	(%)
74	2E-0	1.987E-0	9666	812	0000
2	1 380E-07	1.380E-07	53.999	2.648E-11	99.9912
9	ijΕ+0	1.600E-0	6666	070E-1	0.00.0
7	417E-0	1,4176-0	850.6	719E-1	266.6
8	000E+0	5.600E-0	9.999	074E-1	0 000 0
6	0.000 ± 0	1.700E+0	9.000	262E-0	666.6
0	101E-0	7.288E-0	3.821	398E-0	9 996
-	0-3980	7.093E-0	2717	361E-0	466 6
2	218E-0	2.261E-0	994	338E-1	0.000
3	743E-0	1.755E-D	5.375	367E-0	266 6
4	830E-0	3.580E-0	6666	869E	0.000
2	126E-0	2.126E-0	14-	0-36-0	9 998
	036E-0	8.486E-0	6666	628E-0	0.00.0
~	092E-0	7.092E-0	9.028	361E-0	6666
8	790E-0	2.829E-0	9.927	428E-1	0000
19	544E-0	3.5446-0	7.875	801E-0	9990
20	691E-0	4.341E-0	966.6	329E-1	0.000
21	417E-0	1.418E-0	3. 4.24	720E-0	6666
22	276E-0	1.315E-1	366.6	523E-1	0000
23	00000	4.900E-0	5 5 5 5	401E-1	0.00.0
24	000E+C	3.000E-0	9.999	756E-1	0.000
25	000E+C	3.600E-0	555.G	907E-1	0.000
26	000E+C	8.000E-0	5 5 5 6 6	535E-1	0.00.0
27	000E+C	3.366E-D	9.010	458E-0	666 E
28	0000 + 3000	7.400E-0	9999	420E-1	0.00.0
29	000E+C	1.300E-1	556 G	454E-1	0.000
30	000E+C	3.100E-0	5 5 5 5	948E-0	0.000
31	000E+C	3.600E-1	5555	907E-1	0.00.0
32	000E+	500E-0	566 b	631E-0	0.000
33	000E+0	300E-0	თ თ თ	494E-1	9.000
34	0.000E + 0	.200E-0	9.999	381E-1	0.00
35	000E+0	700E-0	6566	285E-1	000
36	000E	900E-1	656.6	6456-1	000
37	000E+0	900E - 1	0,00,0	.564E-1	000
38	0006 + 0	.000E-1	6 6 6 6	675E-1	00.0
39	0000E+0	.200E-1	666.6	302E-1	0.00
40)0£÷	0.0E - 0	555.5	9776-0	8
41	000E+0	200E-0	000	<u>-</u>	8
42	000E	0.006-0	8.46.1	-:	gn:
43		200E-1	505.6	30	

	5	-	-	Ж
च				
<u>ئ</u> ئ				
46	095E-0	.095E-0	F. 1F.	-;⊂
43	086E-0	0 = 3930	1 0 0 X	9;c
48	7 111E-04	7.111E-04	3605	-177
49	8436-0	.843E-D	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	?:⊂
20	386E-0	386E-0	1175	· C
r)	573E-0	5736-0	95.56	>:⊂
52	400E-0	400E-0	5 2 3 F	-
N N	400E-0	400E-0	7 7 7 7	- :
54	400E-0	400E-0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
55	417E-0	.417E-0	637F	- ;
56	081E-0	081E - 0	074F	
57	560E-0	.560E-0	749F	- :
58	410E-0	410E-0	624F	
59	276E-0	.276E-0	448F	- :
09	553E-0	553E-0	817F	-:⊂
9	107E-0	.107E-0	8 8 8 8):⊂
62	332E-0	382E-0	033F):⊂
63	400E-0	400E-0	523F	•
64	400E-0	400E-0	50 3E	
65	800E-0	800E-0	305F	
99	700E-0	700E-0	262F	- ;
67))	• •
89				
69	417E-0	.417E-0	719E	
70	036E-0	0-3980	359E	
	543E-0	.543E-0	797E	
72	543E-0	.543E-0	797E	÷⊃
5	126E-0	126E-0	078E	
74	417E-0	.417E-0	719E	
25	0865-0	.086E-0	3598	
76	03980	086E-0	3535	
20	036E-0	.086E-0	3596	
28	7086E-05	7.086£-05	365	-08
62	0.3980	.086E-0	359E	

Footnotes to table - Estimate of Organic Emissions

- B,C. Compounds and feed rate furnished by R.F. Weston
- D. Based on actual laboratory generated experimental thermal decomposition data or extrapolated based on theory. DE (Thermal) is the destruction efficiency at 900 C achieved under laboratory non-flame conditions in a pyrolytic atmosphere
- E. Based on the assumption that 99% of each POHC passes through the flame and is completely destroyed. The DE of the remaining 1% which is destroyed in the post-flame zone is assumed to be equal to DE (Thermal)

 Theoretical DE at 900C= 99.0000+0.01*DE(Thermal)
- F. Emission Rate of POHC=Feed Rate*(1-Theoretical DE at 900C/100)
- 6. Emission Rate as PIC is based on the data included in the PIC estimate tables. The formation of each POHC as a PIC from every other POHC has been estimated. Also the contribution to PIC formation of poorly characterized reactions involving the waste feed as a whole have been included. Emission rates of other PICs have also been included at the bottom of the table.
- H. Emission Rate as POHC and PIC= Emission Rate POHC+Emission Rate PIC
- Effective Theoretical DE of POHC=100*(1-Emission Rate as POHC and PIC/Feed Rate)
- J. Assumes that the incinerator achieves 99.99% DRE for the POHC which is most difficult to destroy. Toluene had the lowest Effective Theoretical DE of 47.8756% due to its very low feed rate and large propensity for PIC formation from a variety of compounds.

 Normalized Emission Rate=Emission as POHC and PIC*(0.0001/0.521244)
- K. Normalized DE=100*(1-Normalized Emission Rate as POHC and PIC/ Feed Rate)

Appendix 2

Estimate of PIC Yields for the Incineration of Basin F Liquids

	A	В	C	D	E	F	C
1			Feed Rate			PIC Yield (%)
2	*	Parent POHC	(tons/yr)				
)				1,1-Dichloroe	1,2-Dichloroe	1,2-Dichlorop	1,3-Dimethyll
4	1	1,1-Dichloroethene	6.5E-03				
_5	2	1,2-Dichloroethene	3.0E-07				
6	3	1,2-Dichloropropane	1.6E-02				
7	4	1,3-Dimethylbenzene	1.3E-03				
8	5	Acetone	5.6E-02				
9	6	Ammonia	1.7E+03				
10	7	Benzene	3.8E-03				
11	8	Bromomethane	2.6E-04				
112	9	Car bon Tetrachloride	4.3E-03	·			
13	10	Chlorobenzene	1.2E-03				
14	111	:Chloroform	7.5E-03	2.0E-04			
15	12	Ethylbenzene	2.4E-03				
16	13	Methanol	1.4E+02				
17	14	Methylene Chloride	7.3E-03	1.0E-04	2.0E-04		
18		Tetrachloroethene	3.9E-03	1.0E-04	2.0E-04		
19	16	Toluene	6.8E-04				1.0E-04
20	17	Trichloroethene	1.3E-02	1.0E-03	5.0E-04		
21	18	Mulene	7.6E-03				
22	19	4-Chlorophenylmethylsulfone	3.9E-03				
23		4-Chlorophenylmethylsulfoxide	4.9E-01				
24	21	4-Nitrophenol	3.0E-01				
25	22	Aldrin	3.6E-02	1.0E-04	1.0E-04		
4	23	Atrazine	8.0E-03				
7	24	Hydrogen Cyanide	3.4E-02				
28		Dieldrin	7.4E-03	*******************************	1.0E-04		
29		Diisopropyl Methylphosphonate	1.3E+00				<u></u>
30		Dimethyl Methylphosphonate	3.1E+01				
31		Dimethyldisulfide	3.6E+00				
32	*********	Dimethylphosphate	8.5E+00				
33	30	Dithiane	1.3E-03				
34		Endrin	7.2E-03		1.0E-04		
35		Hexachlorocyclopentadiene	6.7E-02				
36			1.9E-02				
37		Malathion	2.9E-02				
38		Parathion	4.0E-03				
39	**********	Supona	1.2E-02				
40		Urea	5.2E+03				
41		Yapona	3.2E-02				
42	39	p,p-DDE	3.9E-03				
43	40	p,p-DDT	1.2E-02				
44			3.5.5				2 0005 07
45		Total Organic Feed Rate=	7.1E+03				2.000E-06
46		1		1 0005 07	1 7005 07	0.0000.00	1 4175 04
47		Total PIC Emission Rate (t/y	r)=	1.922E-07	1.380E-07	0.000E+00	1.417E-04

	Н	1	J	K	L	М	N	0
1				PIC Yield (%				
2			:	·	***************************************	•	· · · · · · · · · · · · · · · · · · ·	:
3	Acetone	Ammonia	Benzene	Bromomethane	Carbon Tetraci	Chlorobenzene	Chloroform	Ethylbenzen
4					***************************************	1.0E-04		\$
5				***	**************************************	1.0E-04	*************************************	**************************************
6					***************************************		**************************************	• · · · · · · · · · · · · · · · · · · ·
7			5.0E-04	*		1.0E-04	• • • • • • • • • • • • • • • • • • •	***************************************
8			***************************************	**************************************	######################################	**************************************		**************************************
9				**************************************		**************************************	0	
10				4		2.0E-04	**************************************	\$
11		*	***************************************	**************************************	1 04 444 1 0 0 7 4 0 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**************************************	*************************************	***************************************
12		**************************************	***************************************		************************************	•	1.0E-04	\$ 40000 where a made was on a decrease to a consequent of a co
13	***************************************	711; 100 to or	1.0E-03					
14		*	***************************************		1.0E-03	•		
15	7 *** *** *** ** *** *** *** *** *** **	***************************************	1.0E-03		******************************	5.0E-04	-4 + 0 	*****************************
16		***************************************			**************************************	***************************************	***************************************	******************************
17	***************************************	***************************************	• • • • • • • • • • • • • • • • • • • •	***************************************	1.0E-04			**************
18		:) <u>(</u>	5.0E-04	<u> </u>	***************************************	···········
19		***************************************	1.0E-03			5.0E-04		1.0E-04
20		•		·	***************************************	• • • • • • • • • • • • • • • • • • •	***************************************	***************************************
21	•	******************************	5.0E-04	·		1.0E-04	***************************************	************************************
22				· · · · · · · · · · · · · · · · · · ·	*	5.0E-03	***************************************	••••••••••••••••••••••••••••••••••••••
23		***************************************		***************************************	***************************************	5.0E-03		
24	*** * ***** *** *** *** *** *** *** **	***************************************	5.0E-04	***************************************	***************************************	1.0E-04	*************	
25							**************************************	
26		•			************************		*******************************	***************************************
27		**************************************	•		****************	***************************************	******************************	****
28		:			*******************	· · · · · · · · · · · · · · · · · · ·	***************************************	
29	**************************************	**************************************		***************************************	14 - 14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	***************************************		
30	***************************************	•••••••••••••••••••••••••••••••••••••••		***************************************	***************************************	***************************************		***********************
31	*****************************	·		•••••••••••••••••••••••••••••••••••••••	**************************************	***************************************	***************************************	
32	***************************************	***************************************		***************************************	***************************************			
33				•••••••••••••••••••••••••••••••••••••••				***************************************
34					•	***************************************		
35				***************************************	***************************************		***************************************	
36					:	***************************************	•	***************************************
37		*	0		***************************************	***************************************	***************************************	1
38				***************************************	•	***************************************		***************************************
39		***************************************		······································	***************************************	5.0E-02	***************************************	······································
40	······································	7		**************************************			***************************************	
41		*			***************************************	***************************************	*	
42				***************************************	***************************************	1.0E-02	***************************************	************************
43			·	•••••••••••••••••••••••••••••••••••••••	1.0E-03	1.0E-02	2.0E-04	······································
44								
45			1.000E-05	1.000E-06	**************************************	2.000E-06		3.000E-06
46			**************************************		•••••••••••••••••••••••••••••••••••••••		······································	7
17	0.000E+00	0.000E+00	7.101E-04	7.086E-05	2.218E-07	1.743E-04	2.830E-08	2.126E-04

Р	Q	R	S	T	U	¥	W
1			PIC Yield (%	()			
2							
Methanol	Methylene Chlo	Tetrachloroeth	Toluene	Trichloroethen	Xylene	1,4-Dichlorob	4-Chlorophen
4	1.0E-04					3.0E-04	
5	· · · · · · · · · · · · · · · · · · ·					3.0E-04	
6	***************************************		******************	••••••••••••••••••••••••••••••••••••••			
7	***************************************		1.0E-03		******************	******************************	
8	***************************************			***************************************	******	·····	
9	••••••	***************************************			*******************************		******************************
10		•	4				
11	***************************************						***********
12		3.0E-02		3.0E-03		2.0E-04	
13			1.0E-04				
14	5.0E-04	2.0E-02		2.0E-03		2.0E-04	
15			1.0E-03				
16							
17	***************************************	***************************************		7.0E-04		,	
18	1.0E-04			1.0E-03		5.0E-04	
19					1.0E-04		
20	1.0E-04					5.0E-04	
21			1.0E-03				
22				,			
23							
24							
25							
36	:					:	
· <u>1</u>	***************************************	**************************************			:		
28			***************************************				
29							
30				***************************************			
31		***************************************		•		· · · · · · · · · · · · · · · · · · ·	>
52					· · · · · · · · · · · · · · · · · · ·		
33				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
34							
35						······································	***************************************
6							
57			***************************************				
88							
59			****				*************************************
10							
41							
12 13							
43				,			***************
14				.,			
45 1.000E-	05 1.000E-06		5.000E-06		2.000E-06		•
16							
7.086E-	04 7.092E-05	2.790E-06	3.544E-04	3.691E-07	1.417E-04	1.276E-07	0.000E+00

	X	Y	Z	AA	AB	AC	AD	AE
1				PIC Yield (%)	100	- Als	1 512
2					:		· · · · · · · · · · · · · · · · · · ·	***************************************
3	4-Chlorophen	₹4-Nitropheno	l Aldrin	Atrazine	Hydrogen Cyan	: :Dieldrin	Diisopropyl M	in methuldis
4		-1					- Биооргордии	EDINOCIIGIAIO
5		**************************************	··••··································	***************************************				**************************************
6	***************************************	· ••••••••••••••••••••••••••••••••••••		···	***************************************	• •		: •
7			***************************************		•••••••••••••••••••••••••••••••••••••••	***************************************		******************************
8		*****************************				• • • • • • • • • • • • • • • • • • •		·
9			•	*******************************	÷	: :	; ••••••••••••••••••••••••••••••••••••	******************************
10	***************************************	•	:			• •		·
11	***************************************	***************************************	; ·••··································	:	· •			· • •
12		• ••••••••••••••••••••••••••••••••••••	***************************************	÷	************************	· •	• • • • • • • • • • • • • • • • • • •	•
13	 	*****************************	********************************	:	•	• • • • •		
Annual Contract of the Contrac		•		÷	***************************************	: •	*************************************	÷
14]		÷		÷	- - - - 	•	• • •
15	***************************************			•		·	*************************************	••••••••••••••••••••••••••••••••••••••
16	•	• • •	÷		•	*****************************	•	*
17	***************************************	· •	· · ·	***************************************	***************************************			
18	. AC 144 BOOK 124 FAA 6 6 6 625 AQ 60 60 60 60 60 60 60 60 60 60 60 60 60	# - - - - - - - - - - - - -	• • • • • • • • • • • • • • • • • • •					•
19	*************************	· · ·					•	
20						P	***************************************	•
21	************************	-				**************************************	***************************************	7047700
22	***************************************				•) 	***************************************	• • • • • • • • • • • • • • • • • • •
23		***************************************			***************************************	***************************************	***************************************	***************************************
24							10 ************************************	•
25			•	**************************************	.	***************************************	ф••••••••••••••••••••••••••••••••••••	***************************************
26				Q************************************	*	***************************************	***************************************	\$ ***** **** **** ********************
27		***********************************		**************************************	*	******************************	 	***************************************
28	**************************************	*******************************	****************************	••••••••••••••••••••••••••••••••••••••		****************************		
29	***************************************	*****************************	***************************************	- 		***********************	·	
50	······		**********************	• •		************************		
31	***************************************		***** * * * * * * * * * * * * * * * *	* ***********************************	•	*****************************	* ************************************	
32	***************************************		******************************	* ************************************	······	*************************	- - - - - - - - - - - - - - - - - - -	
33		·	***************************************	***************************************	***************************************	************************	• · · · · · · · · · · · · · · · · · · ·	***************************************
d	***************************************	······································	***************************************	***************************************	***************************************	***************************************	***************************************	·
5		***************************************	• • • • • • • • • • • • • • • • • • • •	***********************	***************************************		**************************************	**************
5			***************************************	•		***************************	***************************************	*******************************
54 55 66 67			*****************************	***************************************	***************************************	***************************************	•••••	*****************************
8	·····		***************************************	*****************************	******************************	***************************************	**************	**************************
0			***************************	*************	***************************************	***************************************	***************************************	***************************************
9	************************************	***************************************	***************************************	**********************	***********************************	***************************************	***************************************	777 000 337446844444400000000000000000000000000000
0		<u></u>		•••••••••••••••••••••••••••••••••••••••		******************************	***************************************	
1				***************************************	***************************************			
2	***************************************		*******************************	***************************************				
3	*******************************							·*************************************
4	***************************************	744154 500 0004 00 404 0000 0000 0000						***********************************
5			*		***************************************		***************************************	77 722 207227400000000000000000000000000000
6			**********	***************************************		***************************************	***************************************	-
7	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.0005+00	0.000E+00

	AF	AG	НА	Al	LA	AK	AL	AM
1				PIC Yield (%	5)			
2			:	• · · · · · · · · · · · · · · · · · · ·				
	Dimethylphosp	Dithiane	Endrin	Hexachlorocycl	Isodrin	Malathion	Parathion	Supona
4				• • • • • • • • • • • • • • • • • • •				
- 5	***************************************		* • • • • • • • • • • • • • • • • • • •	•				
6	***************************************		**************************************					
7		- 40 I I - 1 4 4 40 W 1 44 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •					
8								
9			•					
10				4				
11		***************************************						
12								*****************************
13								·····
14								
15	**************************************	4 40 8 3 9 2 8 9 2 2 9 4 4 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	•					
16	***************************************							
17				94 20 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				
18	:	***************************************						
19	***************************************	*****************************			<u></u>			
20								
21	***************************************							
22	***************************************	**************						
23	***************************************							
24								
25								
1								
7								
28					· · · · · · · · · · · · · · · · · · ·	************************		
29								
30								
31	<u></u>							
32 33								
33								
34 35								
35								
36 37							***	
37								
38								
39								
40								
41								
42								***************************************
43								***************************************
44			**************************************				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
45							•	***************************************
46	0.0005 .00	0.0005 .00	D 000F - 00	0.0005.00	0.0005 . 00	0.0005+00	0.0005+00	0.0005+0
47	0.000E+00	0.0001+00	0.000E+00	U.UUUL+UU	0.0001+00	0.0001+00	0.0002+00	0.00000

	AN	AO	AP	AQ	AR	AS	AT	AU
1				PIC Yield (%)		:	
2				•		***************************************	······································	**************************************
3	Urea	Yapona	p,p-DDE	p,p-DDT			• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
Ą		:		**************************************	***************************************	***************************************	***************************************	···
5		***************************************	**************************************	***************************************	···	**************************************	***************************************	:
6				···	······································	***************************************	***************************************	··•
7			•	*************************	··••··································	***************************************	***************************************	***************************************
8	***************************************	 	***************************************	***************************************		; ••••••••••••••••••••••••••••••••••••		·÷····································
9	-	***************************************			÷	*******************************	···	
0				÷	:	······································	***************************************	•
1	***************************************		** ***********************************	:	÷	***************************************	**************************************	
2		***************************************	****************************	÷		; ************************************	400000000000000000000000000000000000000	***************************************
3			·	**************************************		*****************	***************************************	
14		**************************************	***********************	÷	*			÷
5	}·····	······································	• • • • • • • • • • • • • • • • • • •	: :	·		•••	
6	1	· · · · · · · · · · · · · · · · · · ·		÷	***************************************	: 	***************************************	************************************
-		***************************************	·		····		•	***************************************
7	1	÷		÷	***************************************	÷	***************************************	; ;
8		***************************************	***************************************	***************************************	÷			
9		÷						***************************************
20					***************************************			**************************************
1		*		**************************************	**************************************	***************************************		
22		:	:	·			***************************************	÷
23		***************************************	• • • • • • • • • • • • • • • • • • •	***************************************	·	······································	**************************************	***************************************
4		•	• • • • • • • • • • • • • • • • • • •	*		.	***************************************	·
5		**************************************	• · · · · · · · · · · · · · · · · · · ·		<u> </u>		:	
6				• · · · · · · · · · · · · · · · · · · ·				•••••••••••••••••••••••••••••••••••••••
7) 2000 00 00 00 00 00 00 00 00 00 00 00 00		\$	**************************************	÷	······································		
8	***************************************	ф************************************	******************************	• · · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		÷
9	***************************************	*	•		• • • • • • • • • • • • • • • • • • • •			
Ū		• • • • • • • • • • • • • • • • • • • 	***************************************	• •	· · · · · · · · · · · · · · · · · · ·	· • · · · · · · · · · · · · · · · · · ·		; •
4	440444444444444444444444444444444444444	***************************************	•••••••••••••••••••••••••••••••••••••••	***************************************	: 	***************************************	:	······································
2	*****	·	*****************************	: }	: :	÷		÷
3	***************************************	***************************************	·	***************************************	: •	***************************************	÷	••••••
	*****************************				***********************			÷
4 5		***************************************		************************************	; * **********************************		***************************************	***************************************
2	***************************************		-	***************************************	***************************************	•		• • • • • • • • • • • • • • • • • • •
6 7	****************************	****···		***************************************	***************************************	***************************************	· ·	
4	*************************	·····		······································		• • • •	***************************************	• • • • • • • • • • • • • • • • • • •
8	***************************************			***************************************	••••••	***************************************	•	
9	******************************		: :		***************************************			:
3	75-44-04-01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	***************************************				*		
						:	÷	
2					*****************************	•	·	•·····································
3	***************************************		5.0E-01	•••••••••••••••••••••••••••••••••••••••			• • • • • • • • • • • • • • • • • • •	- - - - -
4	:	•	***************************************	***************************************	***************************************	• · · · · · · · · · · · · · · · · · · ·		* ***********************************
5	**************************************	· · · · · · · · · · · · · · · · · · ·		:	***************************************	j 17 700 200 200 200 200 200 200 200 200 20	• • • • • • • • • • • • • • • • • • •	
6	•			***************************************	******	· • · · · · · · · · · · · · · · · · · ·	***************************************	
7	0.0005+00	0.000E+00	6 0005-05	0.0005±00	*****************************		?	***************************************
		U.UUUL . UU.	U.UUUL UU:	0.000L 1001		•		

	AV	٨W	AX	AY	AZ	BA	BB	BC
1			YIELD OF PIC	S WITH SPE	CIFIC PRECUE	SORS (%)		
2					:			
	Yinyl Chloridel	Methyl Chlorid	Styrene	Phenol	Benzaldehyde	Benzoic Acid	Acetonitrile	Acrylonitrile
4	1.0E-03	* 0 * # 10 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	* * * * * * * * * * * * * * * * * * *	*********************************				
5	1.0E-03							0 0 0 0
6	***************************************		* * * * * * * * * * * * * * * * * * *					
7		······································		*******************************				
8		********************************		*****************************	• • • • • • • • • • • • • • • • • • •			
9	•	***********************						·
10			•••••••••	. 1.0E-03	1.0E-04	######################################	4 4 5 1 4 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	***************************************
11	***************************************				*******************************			÷
12		*************	•		***************************************		· · · · · · · · · · · · · · · · · · ·	
13	***************************************	00 0 TO 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.0E-04	3.0E-04				
14								
15	**************************************		1.0E-01	5.0E-04	1.0E-04			
16								
17	: :	1.0E-03						
18	1.0E-04				**************************************	****	•	
19	**************************************	• • • • • • • • • • • • • • • • • • •		5.0E-04	1.0E-04	***************************************		
20	2.0E-03	***************************************		***************************************		**************		•
21	*************************************	***************************************						
22	1.0E-04							
23 24	1.0E-04							
24				1.0E-01	1.0E-02	1.0E-03		
25								
66								•
	· · · · · · · · · · · · · · · · · · ·		***************************************				1.0E-02	1.0E-03
28					***************************************			
29			**************			***************************************		· · · · · · · · · · · · · · · · · · ·
30						······································		-
31	······································					9978888		
32		······						, - -
33					•••••••••••••			•
34 35			***************************************			04.000 200000000000000000000000000000000		• • • • • •
35	1.0E-04			:				
36 37	1.0E-04							
37								
38						••••	••••••••••••••••	
39		<u>.</u>			•••••••••••		• • • • • • • • • • • • • • • • • • • •	
40						**************************	***************************	
41			5.0E-04					
12	1.0E-04		2.0E-04			**************************	*************************	***************************************
43	******		*************************					***************************************
44							***************************************	
45	1.0E-05	1.0E-05	1.0E-05	5.0E-05	1.0E-05	5.0E-06		·
46				•				***************************************
47	7.095E-04	7.036E-04	7.111E-04	3.843E-03	7.386E-04	3.573E-04	3.400E-06	3.400E-07

	BD	BE	BF	BG	ВН	BI	BJ	BK
1	-		YIELD OF PI	CS WITH SPEC	CIFIC PRECUE	SORS (%)		
2					+ 0 = 1 = 0 # 0 = = = = = = 0 = = = = 0 = 0 = = 0			
3	Cyanogen	Hexachloroben	Pentachlorobe	Tetrachlorober	Trichlorobenze	Dichlorobenzer	Biphenyl	4-Chlorobip
5			, , , , , , , , , , , , , , , , , , ,	***************************************	2.0E-04			2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4
6		• • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • •	2.0E-04	3.0E-04		·····
7			***************************************	**************************************	************************		······	
8		* ************************************		• • • • • • • • • • • • • • • • • • •	***	*******************************	*****************************	· • • • • • • • • • • • • • • • • • • •
9			***************************************				******************************	***************************************
10			***************************************		*******************************		1.0E-02	1.0E-03
11		***************************************	**************************************	*****************************	**************************************		1.01-02	1.01-03
12		5.0E-03	2.0E-03	1.0E-03	5.0E-04	2.0E-04	****************************	* ************************************
13	*****************************	0.02	2.02 00	1.02.00	5.02 07	2.01-04	1.0E-03	5.0E-03
14		5.0E-03	2.0E-03	1.0E-03	5.0E-04	2.0E-04		J.0L-0.
15	***************************************					2.02 0-7	2.0E-03	2.0E-04
16	***************************************		******	***************************************	***************************************	***************************************	2.02 00	2.01 04
17	***************************************		***************************************		***************************************	•	***************************************	*****************************
18		1.0E-02	5.0E-03	2.0E-03	1.0E-03	5.0E-04	******************	***************************************
19	***************************************		***************************************	•	***************************************		1.0E-03	1.0E-04
20		1.0E-02	5.0E-03	2.0E-03	1.0E-03	5.0E-04	******************************	**************************************
21		***************************************	***************************************		******************************			***************************************
22	***************************************		*************************	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• • • • • • • • • • • • • • • • • • •	1.0E-04	
23	***************************************		•	***************************************			1.0E-04	5.0E-02
24 25	•	1.05.04	***************************************	······		***************************************		*******************
26	***************************************	1.0E-04	•••••••••••••••••••••••••••••••••••••••		······	······································	*********************	***********************************
27	1.0E-04	······	*********************	······································				******************************
28	1.01-04:	1.0E-04		***************************************	***************************************		****************************	
29	· · · · · · · · · · · · · · · · · · ·	1.01-04:	***************	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••			***************************************
30	······································	***************************************	·····					***************************************
31	***************************************	······································		······	***************************************	······································	***************************************	***************************************
32		***************************************	•			***************************************	***************************************	**********************
33	:		······································			······································	***************************************	******************************
34		1.0E-04	:		<u> </u>	***************************************		***************************************
35		1.0E-04				******************************	* *** *** * * **** *** *** *** *** ***	***********************************
36		1.0E-04					****************	**************************************
37								
38				•	***************************************	***************************************	1.0E-04	
9	***************************************			***************************************			1.0E-04	5.0E-02
10		***************************************		•••••••••••••••••••••••••••••••••••••••	***************************************		***************************************	***********************
11	·	***************************************		***************************************	**************************			
13	•••••	······································		***************************************			1.0E-04	1.0E-01
4		•••••••••••••••••••••••••••••••••••••••					1.0E-04	1.0E-01
15	***************************************		***************************************	•••••••••••••••••••••••••••••••••••••••				
16				*******************************			5.0E-06	2.0E-06
7	3.400E-08	2.417E-06	1.081E-06	4560F 07	2.410E-07	1.276E-07	7 FEZE 0.4	4.107E-04
- 1	J. 700L 00:	L.711L 00	1.001L-00:	7.JUUL-U/:	Z.41UE*U/:	1 / (01-11/)	2 2225 - 114:	4 111 // - 114

	BL	BM	BN	BO	Bb	BQ	BR	BS
1			YIELD OF PI	CS WITH SPE	CIFIC PRECUR	SORS (%)		
2								
	4,4'-Chlorobi	Benzonitrile	Pyridine	Carbazole	Quinoline	:		•
4			· · · · · · · · · · · · · · · · · · ·			:	***************************************	
5		**************************************	∰	* * * * * * * * * * * * * * * * * * *	**************************************		· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••
6	**************************************		***************************************	•			*****************************	:
7		***************************************	••••••••••••••••••••••••••••••••••••••	***************************************	•		******************************	•
8	***************************************			• • • • • • • • • • • • • • • • • • •			***************************************	÷
9	***************************************	******************************	***************************************			•	·····	:
0	1.0E-04	***************************************	***************************************			***************************************	***************************************	<u> </u>
1	***************************************	***************************************	• • • • • • • • • • • • • • • • • • • •	······································	· · · · · · · · · · · · · · · · · · ·			:
2	***************************************	*******************************						<u></u>
3	1.0E-04	••••••	***************************************	:	•	•••••••••••••••••••••••••••••••••••••••	***********************	
4	1.01-04		***************************************	: 		·····		
5	***************************************		····	***************************************	· · · · · · · · · · · · · · · · · · ·			
6			***************************************	: 			***************************************	
7	***************************************							<u> </u>
8		***************************************	***********************	: 			•	<u>:</u>
9	*************************			***************************************				<u>:</u>
_	***************************************	70 00 v · 100	***************************************	: •				
0			*******************************		***************************************		•••••	
	1.05.07	***************************************	***************************************	•				<u> </u>
2	1.0E-03					······································	****	
3	1.0E-03			•				·
4			·····					
5								<u> </u>
6			*****************************					<u> </u>
7		1.0E-03	1.0E-04	2.0E-04	5.0E-04			
8								
9								
0								
1				·				
2								
2 3								
	:		***************************************					
5								ou can on canadar a con a pa con haif about a b b
4 5 6 7 8 9 0					······································			
7	**************************************	······································				······································		
8			***************************************		<u>-</u>			***************************************
9	1.0E-03	•				•		
0					•		********************	
1		•••••••••••••••••••••••••••••••••••••••				•		
2	2.0E-03					······································		
3	2.0E-03				······································	······································		
4	2.01-03				·····			
5								•••••
6								

	BT	BU	BY	BW	ВХ	BY	BZ	CA
1			YIELD		HOUT SPECIF	IC PRECURSO	RS(%)	
2								
3	Benzofuran	Dibenzofuran	Acenaphthalen	Acenaphthene	Fluoranthene	Phenanthrene	Pyrene	Fluorene
4					•	***************************************	******************************	
5			***************************************	•		**************************************	***************************************	***************************************
6			•				************************************	Ф·•
7	•	***************************************				*	•	·
8						•	***************************************	**************************************
9				•			***************************************	:
10	······································	***************************************		4				* * * * * * * * * * * * * * * * * * *
11	***************************************	•	· · ·	• • • • • • • • • • • • • • • • • • •				**************************************
12	· · · · · · · · · · · · · · · · · · ·	***************************************	* * * * * * * * * * * * * * * * * * *	•			•	•
13	P	• ••••••••••••••••••••••••••••••••••••	* * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • •				**************************************
14	***************************************		·	***************************************	• • • • • • • • • • • • • • • • • • •		6	***************************************
15		***************************************	***************************************	•	,	• • • • • • • • • • • • • • • • • • •		700000000000000000000000000000000000000
16	······································		••••••••••••••••••••••••••••••••••••••	***************************************	• • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • •	***************************************
17	•	• • • • • • • • • • • • • • • • • • •	***************************************	· •	***************************************	•	***************************************	
18	***************************************	***********************************	***************************************	***************************************	•	b	•	
19	***************************************	• •	************************************		6 8 9 9 9 9 9 9 9 9 9 9 9 9 9	· · · · · · · · · · · · · · · · · · ·		
20	- 1 1000 0 0 1 1000 000 000 000 000 000	***************************************		***************************************	* * * * • *****************************			
21	*******************************	***************************************	*****	·	, , , , , ,	• • • •		
22	********	***************************************	************************	***************************************	************************			
23	***************************************	*****	***************************************	*******************************	**********************	*		
24				***************************************	·····	***************************************	** **********************************	
25		***************************************		***************************************		••••	*******************************	*******************************
26		**************		***************************************)		***********************	****************
27		***********************			****	••••••	*************************	**********
8	***************	***************************************	**************************************	·	***************************************	******************************	181500000000000000000000000000000000000	********************************
29				***************************************	******************************		***************************************	
30	N/7011-11-71-71-01-01-01-01-01-01-01-01-01-01-01-01-01	*************************	**********************	•	************************	***************************************	*******************************	
31			·	*******************************	***************************************	***************************************	*************************************	*********
32				***************************************	·····	***************************************	*************	•
33	•			***************************************			······································	······
54 55	***************************************				***************************************	*************	***************************************	
6	***************************************	····						
57		·····	***************************************		***************************************	***************************************	***************************************	
88			***************************************	P	***************************************		***************************************	****************************
9	***************************************			********************************	***************************************	***************************************	*******************************	***************************************
10	······································			***************************************		·····	***************************************	
1		·		•••••••••••••••••••••••••••••••••••••••			***************************************	***************************************
2	***************************************				***************************************	***************************************		***************************************
3	***************************************	······································		•		***************************************	***************************************	
4	·			•			******************************	***************************************
5	2.0E-05	1 05 06	E DE DZ	E 05 04	7.05.04			
6	2.01-05	1.0E-06	5. 0E- 06	5.0E-06	3.0E-06	2.0E-06	1.0E-06	1.0E-06
7	1.417E-03	7.086E-05	Z E 4ZE 04	7 5 4 7 5 0 4	2 1 2 / 5 / 5	1 4175 0	7.0025 35	
3	1.7116-03	7.0001-05	3.543E-04	3.543E-04	2.126E-04	1.417E-04	7.086E-05	7.086E-05

	CB	CC	CD	CE IC PRECURSO	CF
. 1	YIELD	OF PICS WIT	HOUT SPECIF	IC PRECURSO	RS(%)
2					
	Benzo-[a]-pyi	Dibenzo-(a)-a	Chrysene	* * * * * * * * * * * * * * * * * * *	
4		*	······································	•	**************************************
5		**************************************	**************************************	**************************************	के कर है कर म ब + 20 d E + 244 कर सबसे <u>करूर क्रायक्त के कर करों है</u> कर ब ब
6		• · · · · · · · · · · · · · · · · · · ·	**************************************	• • • • • • • • • • • • • • • • • • •	**************************************
7	***************************************	20 1 2 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0	• · · · · · · · · · · · · · · · · · · ·	**************************************	•••••••••• •••••••••••••
8	***************************************	7 *** 1 ***** *** *** *** *** *** *** **	1	• • • • • • • • • • • • • • • • • • •	**************************************
9	• • • • • • • • • • • • • • • • • • •			**************************************	••••••••••••••••••••••••••••••••••••••
10	***************************************			• • • • • • • • • • • • • • • • • • •	***************************************
11		***************************************			••••••••••••••
12	***************************************	***************************************		•	***************************************
13	, , , , , , , , , , , , , , , , , , , 				************************************
14					
15	*****************************				***************************************
16	*************************		***************************************		
17	***************				
18		************	*******************************		***************************************
19	***************************************	****			
20	· · · · · · · · · · · · · · · · · · ·	***********************			**************************
21					***************************************
22	***************************************				***************************************
23					****************************
24		. 804			*******************************
25	**************************************				
25	***************************************		****	************************	
			***************************************	***************************************	
28		***************************************		***************************************	
29					*****
30				***************************************	
31	***************************************	······································			***************************************
32	· ····································	***************************************			*****************************
33	······································		***************************************		********************************
34					
35			***************************************		*******************************
36					
37					*******************************
38					
39			2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 ·		
40					
41					14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
42	:			***************************************	
43					*******************
44					********************************
	1.0E-06	1.0E-06	1.0E-06		***************************************
45	1.05-06	ו.טב-טם	ו.טנ־טס		
46	7.0045.05	7 00/5 05	7 0045 05		
47	7.086E-05	7.086E-05	7.086E-05	:	

APPENDIX 6A

AMBIENT AIR QUALITY MODELING AND HEALTH RISK ASSESSMENT PROTOCOLS

ROCKY MOUNTAIN ARSENAL
BASIN "F" LIQUID INCINERATION SYSTEM DESIGN

U.S. ARMY CORPS OF ENGINEERS OMAHA DISTRICT OMAHA, NEBRASKA

Preplanned Remedial Action Contract (PRAC) Contract No. DACA45-90-D-0015

Task Order No. 1 Document Control No. 3886-44-01-AATT

REVISED DRAFT

AMBIENT AIR QUALITY MODELING AND HEALTH RISK ASSESSMENT PROTOCOLS

FOR

ROCKY MOUNTAIN ARSENAL
BASIN "F" LIQUID INCINERATION SYSTEM DESIGN
Commerce City, CO

Revised 25 November 1990

Prepared by:

ROY F. WESTON, INC. West Chester, Pennsylvania

TABLE OF CONTENTS

Section	<u>Title</u>	Page
1.0	INTRODUCTION	1-1
	1.1 Facility Location and Process Description 1.1.1 Facility Description	1-1 1-1
	1.1.2 Process Description	1-2
	1.2 Physical Emissions Characteristics	1-3
	1.3 Good Engineering Practice Analysis	1-3
2.0	AIR QUALITY MODELING PROTOCOL	2-1
	2.1 Model Selection	2-1
	2.1.1 Model for Inhalable Concentrations	2-1
	2.1.2 Model for Deposition	2-2
	2.2 Model Input Data	2-6
	2.2.1 Receptor Grid Network	2-6
	2.2.2 Meteorological Data	2-8
	2.2.3 Model Options	2-8
	2.3 Air Quality Analysis	2-8
	2.4 References	2-12
3.0	HEALTH RISK ASSESSMENT PROTOCOL	3-1
	3.1 Introduction	3-1
	3.2 Contaminant Identification	3-4
	3.2.1 Contaminant Identification	3-4
	3.2.2 Emission Rates	3-8
	3.2.3 Final Selection of Contaminants of Con	ncern 3-8
	3.3 Toxicity Assessment	3-10
	3.4 Exposure Assessment	3-11
	3.4.1 Exposure Scenarios	3-11
	3.4.2 Inhalation Exposure	3-13
	3.4.3 Ingestion Exposure	3-14
	3.4.4 Dermal Exposure	3-22
	3.5 Risk Characterization	3-22
	3.5.1 Evaluation of Risk	3-22
	3.5.2 Uncertainty Analysis	3-23
	3.6 References	3-24

LIST OF APPENDICES

APPENDIX A PRELIMINARY DATA AND SUPPORTING DOCUMENTATION FOR THE HEALTH RISK ASSESSMENT

LIST OF TABLES

<u>Tables</u>	<u>Title</u>	Page
1-1	RCRA Incinerator Requirements	1-4
2-1	Scavenging Coefficients	2-7
2-2	Regulatory Default Options Proposed	2-10

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	Page
2-1	Annual Wind Rose for the Denver Airport	2-9

SECTION 1 INTRODUCTION

The following protocols describe the ambient air quality modeling and health risk assessment approach that will be used to establish numeric emission limits for the Submerged Quench Incinerator (SQI) at the Rocky Mountain Arsenal (RMA) in Denver, Co. RMA is required to install and operate the SQI to destroy the Basin F liquids currently stored in the (3) three tanks and a double lined pond at the Arsenal. The action is part of the Interim Remedial Action (IRA) selected to treat and dispose of the Basin F liquid. These protocols describe the method to be used to establish stack gas emission limits for the incinerator which correspond to the allowable risk level/hazard index (as identified in the decision document) for the nearest exposed population. The protocols are based on U.S. EPA guidelines on air quality modeling and risk assessments and WESTON's experience gained through similar work assignments. The remaining portion of Section 1 presents a brief facility and process description. Section 2 provides a description of the air quality models, input data, and modeling approach to be used and Section 3 provides a description of the health risk assessment approach and methodology for contaminant identification, toxicity assessment, and exposure assessment.

1.1 FACILITY LOCATION AND PROCESS DESCRIPTION

1.1.1 Facility Description

The following facility description is a summary of the information provided in the Final Decision Document for the Basin F Liquid Interim Remedial Action (IRA). Rocky Mountain Arsenal (RMA) occupies over 17,000 acres (approximately 27 square miles) in Adams County, directly northeast of metropolitan Denver, Colorado. RMA was established in 1942 and has been the site of manufacture of chemical incendiary munitions and chemical munitions demilitarization. Agricultural chemicals including pesticides were manufactured at RMA from 1947 to 1982.

In 1956, an evaporation pond called Basin F was constructed in the northern part of RMA. Basin F had a surface area of 92.7 acres and a capacity of approximately 243 million gallons. From August 1957 until its use was discontinued in December 1981, Basin F was the only evaporative disposal facility in service at RMA.

In 1986, the Department of the Army, Shell Oil Company, and the U.S. Environmental Protection Agency (EPA) Region VIII, agreed that an accelerated remediation be undertaken pursuant to CERCLA (Comprehensive Environmental Response, Compensation and Liability Act) to contain the liquid and contaminated soils in and under Basin F. In a June 5, 1987 report to the court, the Organizations and the State agreed that fourteen interim actions, including the Basin FIRA, were necessary to expedite the cleanup of RMA.

In the first part of Basin F remediation, Basin F liquid was transferred to three lined steel storage tanks and to one double-lined covered pond. Transfer of Basin F liquid to tanks and Pond A for interim storage was initiated in May, 1988 and completed in December 1988. Presently approximately 4 million gallons of liquid are stored in the tank farm and 4.5 million gallons are stored in Pond A.

The Army has selected submerged quench incineration (SQI) to thermally treat 8.5 million gallons of stored liquid from Basin F at Rocky Mountain Arsenal as an Interim Remedial Action. The SQI consists of a feed system to inject the Basin F liquid into the incinerator; the high temperature incinerator with a quench chamber to cool the gases and dissolve the molten salts from combustion; a spray dryer; and associated air pollution control equipment.

1.1.2 Process Description

The submerged quench incineration process will use a vertical downfired liquid incinerator. The liquid to be incinerated would be injected at the top of the furnace into a gas flame. Burning the liquid at high temperature (about 1,900°F) is expected to destroy the organic compounds in Basin F liquid. After incineration, all the combustion products will be forced

downward and cooled in a liquid quench tank, to aid in washing out particulates and cleaning the exhaust gases. The high temperatures will melt noncombustible components of the Basin F liquid, producing molten salts which will flow down the walls of the incinerator and also be cooled in a quench chamber. The exhaust gases, which will include a mixture of combustion byproducts and other gases, will be passed through air pollution control devices which include a venturi scrubber and a packed tower. The brine from this process may be disposed of offsite as a liquid.

Operation of the submerged quench incineration process will require the transportation onto the Arsenal of 2,600 cubic yards per year of sodium hydroxide, a caustic compound used in the air pollution control process. The submerged quench incineration process will produce salts, of about 25 percent of the original volume of the Basin F liquid. These salts which contain metals will be disposed of in an off-site hazardous waste landfill.

1.2 PHYSICAL EMISSION CHARACTERISTICS

The physical emission characteristics of the submerged quench incinerator have not been finalized at this time. The incinerator will be designed and operated to meet the RCRA incinerator requirements which are presented in Table 1-1. The trial burn will be required to demonstrate the ability of the incinerator to achieve the performance requirements outlined in the Final Decision Document(May, 1990).

1.3 GOOD ENGINEERING PRACTICE ANALYSIS

Section 123 of the Clean Air Act defines Good Engineering Practice (GEP), with respect to stack heights, as "the height necessary to ensure that emissions from the stack do not result in excessive concentrations of any pollutant in the immediate vicinity of the source as a result of atmospheric downwash, eddies or wakes which may be created by the source

Table 1-1

RCRA Incinerator Requirements^a

Destruction and Removal Efficiencies

Dioxin and Dibenzofurans	99.9999%		
Polychlorinated Biphenyls	99.9999%		
All other Organic Compounds	99.99%		
Particulates Emissions	0.08 grains		
	per dry standard cubic ft.		
	@ 7% O ₂		
Hydrogen Chloride Emissions	1.8 kg/hour		
	4.0 lb/hour		

^a 40 CFR 264.343 (Performance Standards)

itself, nearby structures or nearby terrain obstacles." For this analysis, 40 CFR 51.1(ii) defines nearby as "that distance up to five times the lesser of the height or the (projected)

width dimension of a structure, but not greater than 0.8 km

"According to 40 CFR 51.1(ii), GEP stack height means the greater of the following 3 factors.

- 1. 65 meters, measured from the ground-level elevation at the base of the stack,
- 2. For stacks in existence after January 12, 1979,

$$Hg = H + 1.5 L$$

Where:

Hg = GEP stack height

H = height of nearby structure(s) measured from the ground level elevation at the base of the stack.

L = lesser of height or projected width of nearby structures.

3. The height demonstrated by fluid model or field study which satisfies the definition of GEP in Section 123 of the Clean Air Act.

This GEP stack height analysis will be based upon the EPA (1985) guideline document. The GEP determination will be made for each building, and then the stack will be associated with the nearby building which would result in the greatest GEP. The stack height for the SQI has not been specified at this time. When the stack height is finalized the GEP analysis described above will be performed to determine if building downwash of the stack gases could occur and if building downwash effects will be incorporated into the modeling analyses.

SECTION 2 AIR QUALITY MODELING PROTOCOL

2.1 MODEL SELECTION

Models to be used as input to the exposure assessment and establishment of numerical limits for the incinerator will be EPA-approved UNAMAP Version VI dispersion models and an enhanced version of a UNAMAP model which calculates dry and wet deposition. The procedures used in executing the models will follow those outlined in EPA's <u>Guideline on Air Quality Models</u> (Revised) (1986a, 1987a).

A preliminary review of the geographical setting and a review of the land use pattern near the Rocky Mountain Arsenal was conducted to classify land use for modeling purposes, according to the method of Auer (1978; copy attached). The preliminary review was based on inspection of the typographic maps of the SQI incinerator location out to 3 km. Based on their approximate evaluation, it was determined that greater than 50% of land use was rural. Therefore, models which include rural dispersion coefficients will be used to assess the air quality impact of the facility.

Furthermore, it is expected that there will be no areas near the arsenal where the terrain elevation exceeds stack top. As a result, a USEPA UNAMAP Version VI, rural flat terrain model was selected for the air quality modeling analysis for inhalable concentration calculations and a WESTON modified version of the ISCST model (WESTDEP) was selected for wet, dry, and total deposition calculations. Each of these models are described in the following subsections.

2.1.1 Model for Inhalable Concentrations

The Industrial Source Complex (ISC) model is a steady-state Gaussian plume model which can be sued to assess airborne pollutant concentrations from a wide variety of sources. The

ISC model is part of EPA's UNAMAP VI series models (EPA, 1986b) and consists of a short-term (ISCST) and a long-term (ISCLT) module. It is listed as an EPA-approved "Appendix A" model.

The ISCST model will be used to calculate 1-hour, 3-hour, 8-hour, 24-hour, and annual air concentrations from the facility at receptors no higher than the stack height plus its base elevation. Receptor elevations higher than this are treated by the model as elevations equal to stack height plus base elevation. If the proposed stack height is less than the formula GEP stack height, building wake-effect induced downwash will be accounted for in the model otherwise no downwash effects will be evaluated.

2.1.2 Model for Deposition

The two major mechanisms for the accumulation of materials in surface soils and in surface water are wet and dry deposition. No EPA-approved model or modeling techniques currently exist which appropriately calculate both dry and wet deposition due to source emissions. WESTON has modified the EPA ISCST model to calculate wet, and total dry deposition as suggested in EPA guidance (EPA 1986c). A discussion of the WESTON approach to model these processes is included below.

2.1.2.1 Dry Deposition

Dry deposition is driven by atmospheric processes, the properties of the surfaces upon which materials deposit, and the properties of the particles being deposited. Previous studies of dry deposition have used only gravitational settling velocities to remove particles from the atmosphere. In particular, the EPA's Industrial Source Complex (ISC) model, which contains a gravitational algorithm, has been used in the past to calculate dry deposition. However, this model generally could not account for the properties of the particles deposited, the properties which effect dry deposition, or hourly meteorological effects other than stability.

Work by Sehmel and Hodgsen (1978) has resulted in a parameterization of the dry deposition process which takes more fully into account hourly meteorological conditions (e.g., wind speed, stability, etc.), particle properties (e.g., density, size) and the surface properties (e.g., surface roughness) upon which material is dry deposited.

The basic approach to dry deposition involves calculation of the ambient ground level concentration and the deposition velocity. The deposition flux is given by:

$$-F = V_d \cdot X_i$$

Where:

-F = downward flux of material (dry deposition).

 V_d = the deposition velocity.

 X_i = is the ambient concentration for pollutant i.

Therefore, if an estimate of the deposition velocity and the ambient concentrations for a pollutant can be made, then the dry deposition flux can be calculated. Ransieri and Croes of the California Air Resources Board (CARB) have developed computer algorithms based on Sehmel and Hodgsen's work which provide hourly values of dry deposition velocity using pre-processed meteorological data which can be obtained using the EPA preprocessor program.

WESTON has modified the EPA UNAMAP Version VI of the ISCST model to incorporate the CARB algorithms to calculate dry deposition and renamed the model WESTDEP. The WESTDEP model calculates hourly ambient ground-level pollutant concentrations as well as hourly deposition velocities to predict the dry deposition flux at each receptor. The model is conservative in that no plume depletion is assumed so that the computed air concentration and deposition rates represent the upper bound limit values. The WESTDEP model allows for building wake effects, terrain adjustments, and incorporates a separate surface roughness coefficient (z_0) for each receptor. Source information required for the model include:

- Source emission parameters:
- Stack height;
- Stack gas velocity;
- Stack gas temperature;
- Pollutant emission rate;
- Building dimensions (for wake effects options);
- Mass particle size distribution.
- Particle density, by size (2 grams/cm³ will be used for all particle sizes).

The particle size distribution used in the modeling will be based on specification, design and control efficiency of the selected air position control equipment for the incinerator. Meteorological information required is provided by the standard UNAMAP meteorological preprocessor file. In addition, a value for the surface roughness coefficient (Z_0) must be supplied for each receptor. Based upon the typical land use around the RA, a Z_0 will be conservatively selected and used in the air quality modeling to represent the impact area. WESTDEP model output includes annual average pollutant concentration at each receptor, total annual dry deposition at each receptor, and average annual dry deposition velocity at each receptor.

2.1.2.2 Wet Deposition

The wet deposition process involves removal of particles via precipitation. Currently, no widely accepted wet deposition models are available. Several studies have developed mechanisms for removal of particles from the atmosphere during precipitation events. These studies assume that particle washout or scavenging is proportional to the mass of the plume exposed to the precipitation event, the intensity and duration of the event, and the size distribution of the particles in the plume, (Radke et al., 1980, Scire and Lurman, 1983).

The scavenging coefficients which have developed in these studies are themselves based on a very limited number of original studies and are generally related to removal of sulfate

aerosols. For example, the work of Scier and Lurman is for sulfate and nitrate aerosols. Radke et al. included measurements in power plant, pulp and paper boilers and volcanic plumes which all have large concentrations of sulfate aerosols. Since these aerosols are hygroscopic, i.e., they have a great affinity for absorbing water in the air, it is likely that scavenging coefficients based on these sources will be higher than for other less water-soluble species such as the pollutants emitted by the facility. Unfortunately, there is no quantifiable data available upon which to base a more reasonable scavenging coefficient. Therefore, the scavenging coefficients used in the WESTDEP model are conservative and provide an upper bound on the amount of wet deposition likely to occur in the area of the RMA.

The EPA (EPA, 1986c) has developed an algorithm which uses scavenging coefficients to calculate wet deposition based on the work of Bowman (1987), and Radke (1980). The algorithm developed includes particle size and rainfall intensity dependent washout coefficients to calculate wet deposition. Table 2-1 includes the scavenging coefficients that will be used in the modeling analysis. The algorithm is based on the mass of pollutants in a vertical column of air which extends from the bottom to the top of the plume. WESTON has integrated this algorithm into the WESTDEP model in order to conservatively calculate wet deposition due to precipitation events.

In order to compute wet deposition, the same information used for the dry deposition calculation is required (i.e., source emission characteristics and hour-by-hour meteorology). In addition, rainfall intensity and rainfall type (e.g., thunderstorm, showers, steady precipitation) is also needed. Furthermore, the WESTDEP model has been modified to compute dry deposition only when no wet deposition i.e., no rainfall is occurring.

The WESTDEP model has been approved for use in the preparation of numerous health risk assessments for hazardous waste incinerators and resource recovery facilities in Kentucky, Maryland, Michigan, Minnesota, New Jersey, Pennsylvania, and Rhode Island.

Therefore, the wet and dry algorithms, which are now a part of the WESTON modified EPA ISC model (WESTDEP) enable WESTON to predict total deposition due to emissions from specific facilities for use in multipathway risk assessments.

2.2 MODEL INPUT DATA

In addition to emission rates and physical emission characteristics of the incinerator other input data are needed to estimate the incremental and overall air quality impact of the incinerator. Specifically, a receptor grid network, meteorological data, and model options are required as input to both the ISC and WESTDEP models.

2.2.1 Receptor Grid Network

A coarse receptor grid network will be established to find the approximate location of maximum estimated air quality impact due to emissions from the facility. From this analysis, the nearest critical receptor(s) can be identified for evaluation in the exposure analysis. A polar coordinate system with a radial every ten degrees beginning with north, centered upon the stack will be used as a basis for receptor deployment for the ISC model application. Receptor points for ISCST will be placed at the following distances from the stack: 2,000m, 2,500m, 3,000m, 4,000m, 5,000m, 6,000m, 8,000m, 10,000m, 12,000m 15,000m, 17,500m, 20,000m, 22,500m and 25,000m. Terrain elevations selected for the receptor grid will be based upon the highest contour between the receptor point and half the distance to any neighboring receptor point. Discrete receptor points will be located at sensitive areas such as hospitals, schools, parks, etc., and along the property line of the RMA. A refined receptor grid with spacing of 100 meters will be used in areas of maximum concentrations identified by the initial course receptor grid. Receptors points will also be placed in 100 meter increments along 10 degree radials from the RMA property line to the first receptor ring. No receptor points will be placed within the RMA property.

Table 2-1 Scavenging Coefficients

Rainfall	Particle	Size Categorie	es (Microns)
Intensity	<2µ	$2\text{-}10\mu$	> 10 \mu
Light ^(a)	0.22 x 10 ⁻³	0.18 x 10 ⁻³	0.969 x 10 ⁻²
Moderate ^(b)	0.56 x 10 ⁻³	0.893 x 10 ⁻³	0.969 x 10 ⁻²
Heavy ^(c)	0.146 x 10 ⁻²	0.464 x 10 ⁻²	0.969 x 10 ⁻²

⁽a) Light is less than 0.1 inches per hour.(b) Moderate is 0.11-0.3 inches per hour.

⁽c) Heavy is greater than 0.31 inches per hour.

2.2.2 Meteorological Data

The meteorological data base for the modeling of annual impacts will consist of surface data collected at the Denver Stapleton Airport, for the most recent, available five-year period 1985-1989. The Airport is located approximately 5 miles south of the incinerator.

Selection of the meteorologic data is consistent with the recommendations in Section 6.6 of EPA's On-Site Meteorological Program Guidance for Regulatory Modeling Applications (1987). An annual wind rose for the Airport data showing the prevailing wind directions and wind speed classes is presented in Figure 2-1. Coincident mixing heights will be derived by merging surface temperatures with twice daily upper air data, both obtained from Denver Airport for the period 1985-1989. The raw meteorological surface data and mixing heights will be prepared for input to the ISCST models by using the EPA preprocessor program. Precipitation data from the Denver Airport during the period 1985-1989 will also be merged with the preprocessed data for use in the WESTDEP model for deposition calculations.

2.2.3 Model Options

The ISCST model has various options to simulate different dispersion conditions for emissions from a stack. The U.S. EPA has recommended (EPA, 1986a) various options to be used in dispersion modeling for regulatory purposes. These recommended regulatory default options, shown in Table 2-2, will be used in the air quality impact analysis for the incinerator.

2.3 AIR QUALITY ANALYSIS

The air quality analysis will be conducted using the models, options, and procedures discussed in previous sections of this protocol. The WESTON model will be employed to estimate annual concentrations, wet/dry and total depositions for each of the five years

FIGURE 2-1

1985-1989. Since the expected operational period for the SQI is 18 months, the year with the highest concentration and deposition rates will be used as input to the risk assessment.

Table 2-2

Regulatory Default Options Proposed for the ISCST Model

	The second secon	
٠		Stack-tip downwash.
•		Final plume rise.
•		Buoyancy induced dispersion (BID).
		Vertical potential temperature gradients of 0.0, 0.0, 0.0, 0.0, 0.02, 0.035, for stability classes A through F, respectively.
•		Automatic treatment of calms.
•		Wind profile exponents of 0.07, 0.07, 0.010, 0.15, 0.35, 0.55 for stability classes A through F, respectively.
•		Infinite pollutant half-life.

2.4 REFERENCES

Auer, A. H. Jr., 1978. "Correlation of Land Use and Cover with Meteorological Anomalies". Journal of Applied Meteorology 17:636-643.

Bowman, D., et al., 1987. "Incorporation of Wet Deposition in the Industrial Source Complex Model."

EPA (U.S. Environmental Protection Agency), 1985. <u>Guideline for Determination of Good Engineering Practice Stack Height (Technical Support Document for the Stack Height Regulations)</u> (Revised). Research Triangle Park, NC. (NTIS No. PB 85-225241).

-----, 1986a. Guideline on Air Quality Models (Revised). EPA 450/2-78-027R. Research Triangle Park, NC.

-----, 1986b. <u>User's Network for Applied Modeling of Air Pollution (UNAMAP6)</u>, <u>Version 3.4. (Computer Programs on Tape)</u>. National Technical Information Service, Springfield, VA. (NTIS No. PB 86-222361).

-----, 1986c. Methodology for the Assessment of Health Risks Associated with Multiple Pathway Exposure to Municipal Waste Combustor Emissions (Draft). Environmental Criteria and Assessment Office, Cincinnati, Ohio.

-----, 1987a. <u>Supplement A to the Guideline on Air Quality Models (Revised)</u>. EPA 450/2-78-027R, Supplement A.

....., 1987b. Ambient Monitoring Guidelines for Prevention of Significant Deterioration (PSD). EPA 450/4-87-007. Research Triangle Park, NC.

Radke, J., et al., 1980. "Scavenging of Aerosol Particles by Precipitation." <u>Applied Meteorology</u> 19: 715.

Ransieri and Croes, California Air Resources Board (CARB), personal communication with John Barone of WESTON.

Scire, J., and F. Lurman, 1983. <u>Development of the Mesopuff II Dispersion Model</u>. Presented at the Sixth Symposium on Turbulence and Diffusion, American Meteorological Society.

Sehmel and Hodgsen, 1978. "A Model for Predicting Dry Deposition of Particles and Gases to Environmental Surfaces." U.S. DE Contract EY-76-C-06-1830, January 1978.

SECTION 3 RISK ASSESSMENT PROTOCOL

3.1 INTRODUCTION

The objective of the health risk assessment to be conducted by WESTON for Rocky Mountain Arsenal (RMA) is to assist in the establishment of chemical emissions limits for the Basin F Submerged Quench Incinerator (SQI). The resultant emissions limits are to be protective of human health, as stated in the <u>Final Decision Document</u> (May, 1990). The risk characterization results and a discussion of ARARs will be initially presented in the <u>Implementation Document</u> to be submitted to RMA on December 14, 1990, and which will be used to evaluate possible design changes in the SQI. The detailed risk assessment document will be submitted immediately thereafter.

The purpose of this section of the protocol is to present the specific methodology and exposure assumptions to be used by WESTON in the risk assessment. Preliminary data concerning the contaminants of concern are also initially presented. In addition to the <u>Final Decision Document</u>, the approach and methodology draws upon the guidance set forth in the recently revised U.S. EPA <u>Risk Assessment Guidance for Superfund</u>: <u>Human Health Evaluation Manual</u> (EPA, 1989a) and the U.S. EPA <u>Methodology for Assessing Health Risks Associated With Indirect Exposure to Combustor Emissions</u> (EPA, 1990a). These and other pertinent guidance documents are indicated in the appropriate sections, and are listed in the protocol in Subsection 3.7.

A risk assessment for the proposed SQI was previously performed by Woodward-Clyde Consultants (Jan., 1990) to assist in the screening and selection of interim remedial actions (IRAs) as required under CERCLA and the National Contingency Plan. Additionally, on-site (Ebasco Report) and off-site (HLA/ESE Report) human health risk assessments have been performed for RMA with respect to worker and residential exposures, respectively, to existing onsite contamination. To maintain consistency with these studies, WESTON

reviewed the data from these previous on-site and off-site evaluations and, where relevant utilized previously developed exposure assumptions and input parameters, toxicity criteria and background data. These parameters have been appropriately cited in the remainder of this protocol or its attachments.

This risk assessment will be a comprehensive evaluation of both direct and indirect exposure pathways, and will use as the basis for estimating human exposure the results of the air dispersion and deposition modeling, the methods of which are described in Section 2 of this protocol. To be consistent with the most recent EPA guidance (EPA, 1989a; 1990a), WESTON will be considering certain pathways of indirect exposure that were not originally considered in the SQI risk assessment as part of the IRA prepared by Woodward-Clyde Consultants (Jan., 1990). These additional pathways include: breast milk consumption; ingestion of fish from contaminated surface waters; vegetable root uptake of metals and organics; and, beef and dairy cattle exposure with subsequent human consumption of homegrown or commercially-produced beef and cow's milk.

In accordance with the guidance set forth in the <u>Final Decision Document</u>, the risk assessment process will be used to establish emission limits as follows:

- Emission rates (both average and upper 95% confidence limits, where possible) will be determined from evaluation of historical waste stream characterization data, test burn data, and WESTON's hazardous waste incinerator emissions inventory, as described in detail in Section 3.2.
- These emissions data will be used in conjunction with the air modeling, exposure assessment and toxicity assessment results to calculate noncarcinogenic hazard indices and carcinogenic risk for each chemical and pathway in each proposed exposure scenario.

- As directed in the <u>Final Decision Document</u> (p.9-6), cumulative excess carcinogenic risk and noncarcinogenic hazard indices will be determined for each exposure scenario. Assuming excess cancer risk does not exceed 1E-06, and the noncarcinogenic hazard index does not exceed 1 for the nearest most reasonable maximally-exposed individual, the emission rates for the contaminants of concern will be considered protective of human health. WESTON has developed four exposure scenarios, described in detail in Section 3.4.1, which represent reasonable maximally-exposed individuals in the vicinity of the facility. The facility is assumed to operate for two years.
- Should the cumulative cancer risk or noncarcinogenic hazard index exceed the limits described above for the most reasonable maximally-exposed individual, each contaminant and pathway assessed in that scenario will be evaluated to develop a profile of the major contributor(s) to risk. A report summarizing these findings will be presented to the appropriate agencies, as outlined in the Final Decision Document, to determine whether a change in the design of the treatment system is necessary.

The protocol is divided into four sections:

- 1. Contaminant Identification, Selection and Emission Rate Determination (Section 3.2)
- 2. Toxicity Assessment (Section 3.3)
- 3. Exposure Assessment (Section 3.4)
- 4. Risk Characterization (Section 3.5)

These sections of the protocol will correspond to the general format to be used in the final risk assessment document. For the final document, detailed calculations and supporting

information that are applicable to the material presented in each of the sections of the final risk assessment document will be included in corresponding appendices.

3.2 <u>CONTAMINANT IDENTIFICATION, SELECTION AND EMISSION RATE</u> DETERMINATION

Initial identification of potentially emitted contaminants, and estimation of their emission rates will be based on an analysis of the composition of the waste stream and its theoretical products of incomplete combustion, valid test burn data, and comparison with WESTON's hazardous waste incinerator emissions database. This approach should be consistent with the <u>Final Decision Document</u> and yield a very conservative estimate of the emitted chemicals and their likely emission rates. This information will be supplemented or verified by additional Basin F liquid analyses being conducted currently, if the analytical results are available when the contaminant identification phase of the risk assessment is performed.

3.2.1 Contaminant Identification

Four groups of pollutants and their respective emission rates will be developed. These chemicals are generally categorized as principal organic hazardous constituents (POHCs), products of incomplete combustion (PICs), metals, and criteria pollutants (gases, particulates, and acid gases). The detailed lists of initially identified potential pollutants and emission rates are presented in Tables 1 and 2 (Appendix A). The remainder of this section discusses the methodology used for selecting the chemicals of concern.

3.2.1.1 Analysis of Waste Stream Composition

The following methodology was used to evaluate the waste stream composition for the Basin F liquid material at the RMA:

- The historical characterization data from 1978 through 1988 for the basin and the recent WESTON analyses for the pond and for the tanks were converted to a common basis of mg/l. (This involved a density correction considering the 1.24 g/ml density of the waste for the historical data that had been reported as ppm or ppb).
- The average and maximum of the reported values were taken for the values from the basin, pond and tank, each taken separately. (If a range was reported for a particular source of analyses, the midpoint of the range was assumed to represent the average).
- The maximum of the average values of the basin, pond and tank analyses were calculated, as well as the maximum of the maximum values.
- The maximum of the average and maximum of the maximum values were summed for all compounds (organics and metals).
- Because the total of the maximums of the maximum values was about 1 million mg/l, or about 100%, this approach was considered too overly conservative, even for risk assessment purposes. The total of maximums of the averages, however, was about 640,000 mg/l (about the same value as the portion of the waste stream that is not water).

Therefore, the maximums of the average values from each of the basin, pond, and tanks were taken as a reasonable worst case estimate of the composition of the waste stream. These values were then converted to tons of component per year for the design incinerator capacity of 10,325 lb/hr. These data were used by Dr. Barry Dellinger to predict the PICs and POHCs as discussed in more detail below.

3.2.1.2 Evaluation of Test Burn Data

Emissions testing results conducted during the test burns of Basin F waste performed by T-Thermal (August, 1990) were evaluated by the WESTON Air Permitting and Engineering staff. A number of the test runs were considered unacceptable for emissions estimation because of feed clogging followed by rapping or oxygen blasts into the feed nozzles. Two dioxin/furan runs, and one metals run were considered valid. The remaining runs have been discarded for evaluation purposes.

Compared to other hazardous waste incinerators, the dioxin/furan TEF for the two runs appears relatively small (0.06 ng/Nm3) compared to WESTON's emissions database values. However, the risk this poses cannot as yet be determined. For the risk analysis base case (i.e., average conditions), we will use the average of the two test burn runs; for the sensitivity case (i.e., upper bound conditions), we will use the upper 95% confidence limit of the WESTON database for hazardous waste incinerators.

The test burn data for the one acceptable run for metals compare well with the emission estimates based on the waste stream data (average of the maximums) and removal efficiencies published by the U.S. EPA for hazardous waste incinerators. Therefore, we will use the maximum of these two data sets for the base case. U.S. EPA Tier I and Tier II guidance values, values based on the "maximum of the maximums" of the waste stream data and emission test runs from the test burn will be considered in the sensitivity analysis.

For pesticides and PCBs, we will use Dr. Dellinger's POHC and PIC data. These potential pollutants were not detected during the test burn emission testing

3.2.1.3 Key Organic Pollutants in the Waste Profile

Organic compounds were identified either as POHCs from an analysis of the waste stream composition (Section 3.2.1.1) or from the analysis of PICs resulting form combustion of the

POHCs (Section 3.2.1.4). Toluene was predicted to be the most difficult compound to destroy, and, therefore it was used to normalize destruction removal efficiency (DRE) for all POHCs by assuming toluene would be destroyed with a 99.99% DRE as verified by a trial burn. Historical data indicate that organics present in the waste stream include volatiles, semi-volatiles, and pesticides. Dioxins and furans, determined from an evaluation of the test burn data discussed above, are listed separately and are expressed as toxic equivalents based on the most recent U.S. EPA guidance (EPA, 1989b).

3.2.1.4 Products of Incomplete Combustion (With or Without Precursors)

Products of incomplete combustion (PICs) are organic compounds present in emissions from an incinerator and which are formed from the thermal breakdown of chemicals present in the waste stream, reformation reactions, or some other process subsequent to incineration (Trenholm and Hathaway, 1984; Oppelt, 1987). Specific PICs, with or without precursors, have been identified and their emission rates estimated by Dr. Barry Dellinger, who has been subcontracted for this effort.

3.2.1.5 Metals

Identification of metals and determination of their emission rates will be based on waste stream characteristics, test burn data and the U.S. EPA guidance document as discussed under Section 3.2.1.2.

3.2.1.6 Criteria Pollutants and Acid Gases

Selected criteria pollutants (particulate matter, sulfur dioxide, nitrogen dioxide, and carbon monoxide) and acid gases (primarily hydrogen chloride and hydrogen fluoride) will be evaluated both for potential acute and chronic health effects by the inhalation pathway. Their emissions rates were determined from test burn data, vendor guarantees and WESTON's hazardous waste emissions inventory database.

3.2.2 Emission Rates

Table 1 of Appendix A summarizes the initial list of emitted organic and inorganic chemicals with estimated emissions rates. Base case emissions rates are conservatively high estimates of the emissions which would be expected during the course of normal operation. Their methods of determination are footnoted in the table. Sensitivity case emissions rates represent upper bound or maximum worst case expected rates. Refer to the footnotes in Table 1 for specific methods of determination. Criteria pollutants, gases, and particulates are presented in detail in Table 2.

3.2.3 Final Selection of Contaminants of Concern

The final contaminants of concern will be selected from the initial list for each medium of potential exposure (air, soil, surface water) based on various conservative criteria discussed in detail below. The purpose of this part of the evaluation is to eliminate from the large list of chemicals those that will not be of significance in the risk characterization.

3.2.3.1 Air

All contaminants, both carcinogens and noncarcinogens, will be evaluated in the air pathway, including the criteria pollutant gases and particulates.

3.2.3.2 Soil

All carcinogens (by the oral route) will be retained for final evaluation in all soil pathways. Volatile organics (VOCs) will be excluded from soil pathways based on the following rationale:

- VOCs are likely to be emitted as vapors
- VOCs are unlikely to be deposited in soils following their emission
- VOCs are unlikely to be persistent in soil, if deposited

For purposes of this screening procedure, a VOC is defined as any chemical (carcinogen or noncarcinogen) with a vapor pressure greater than 1E+02 mm Hg and/or Henry's Law constants greater than 1E-03 atm-m³/mol (Lyman, et al., 1982). The vapor pressure criterion was derived from inspection of the range of vapor pressures of chemicals that EPA classifies as volatiles (EPA, 1986).

Metals (except oral carcinogens) were screened based on comparison with regional background metals concentrations. Background data were obtained from data WESTON gathered for Rocky Flats (WESTON, 1989). Metals were excluded from further analysis through soil pathways if their predicted soil concentrations based upon the maximum total deposition at the points of exposure (refer to Section 3.4.1 for specific locations of reasonable maximally-exposed individuals) were greater than or equal to 1 percent of the mean background concentrations for the respective metal.

3.2.3.3 Surface Water

Land use evaluation and the deposition modeling isopleths revealed that Engineer's Lake, a designated manmade recreational fishing area (refer to Section 3.4 for more detail) was impacted by facility emissions. Contaminants of concern were evaluated for consideration in the surface water pathway (i.e., fish consumption) based on several criteria:

- all oral carcinogens will be included in the final surface water pathway
 evaluation
- VOCs were excluded from this pathway based on the same rationale as previously discussed for soils
- a modified Tier I analysis was performed to evaluate the remaining chemicals
 for possible exclusion from the surface water pathway. The basis of this
 screening analysis is to estimate a highly conservative concentration of the

chemical contaminants in the impacted surface water body and compare this to the Ambient Water Quality Criteria (AWQC) for fish consumption by humans. If a chemical had no designated AWQC, it was excluded from this analysis, and will be included in the more detailed surface water pathway evaluation in the actual risk assessment. The total areal deposition for the 32 acre watershed of Engineer's Lake was determined from the modeled isopleths. Lakewater concentrations for each chemical were determined by dividing the total amount deposited in the lake by the total volume of the lake. It was conservatively assumed that the lake had a 0.5 year hydraulic retention time and that all chemicals adsorbed to soil runoff was desorbed into the water. Table 3 in Appendix A shows the results of this analysis. It was concluded that the nine chemicals evaluated in this screen could be excluded from further evaluation based on the criterion that their conservatively predicted water concentrations were less than 10 percent of their respective AWQCs.

3.3 TOXICITY ASSESSMENT

The <u>Integrated Risk Information System</u> (IRIS) computer data base (EPA, 1990b) will be referred to for the most recent U.S. EPA reference doses and cancer potency factors. Other EPA sources, including EPA's quarterly <u>Health Effects Assessment Summary Tables</u> (EPA, 1990c), will also be used for those chemicals for which toxicity values are unavailable on IRIS.

For those chemicals for which EPA-derived potency factors or reference doses are unavailable, toxicity values will be derived from health-based criteria or toxicity data. Derived toxicity values published in the on-post and off-post exposure assessments will be used if possible. All approaches for the derivation of reference doses or cancer potency factors will be fully discussed in the risk assessment. The use of derived toxicity values and the methods by which they will be derived will be subject to the review of U.S. EPA Region

VIII and RMA. Tables 4A and 4B in Appendix A list the chemicals of concern with their carcinogenic slope factors and reference doses, respectively.

To evaluate dioxins and furans, WESTON will follow, if applicable, the guidelines set forth in the Interim Procedures for Estimating Risks Associated with Mixtures of CDDs and CDFs (EPA, 1989b).

3.4 EXPOSURE ASSESSMENT

3.4.1 Exposure Scenarios

The exposure scenarios have been evaluated based upon the air dispersion and deposition modeling results. Theoretically, to determine emissions limits, it is necessary to evaluate only one scenario, the most reasonable maximally-exposed individual (RMEI). Reasonable maximum exposure is defined by the U.S. EPA as "the highest exposure that is reasonably expected to occur at a site" (EPA, 1989a). However, the RMEI cannot always be determined based on the modeling results alone. Therefore, it is recommended that several exposure scenarios be evaluated in the risk assessment. The scenario ultimately resulting in the greatest risk (i.e., most exposed), as directed in the <u>Final Decision Document</u>, will be used to assess numerical chemical emissions limits.

Based on available information regarding current off-site and on-site land usage, and the results of the air deposition modeling, four potential RMEIs have been identified. The scenarios presented below represent present use conditions. No future use scenarios were included since hypothetical exposures in this case would not likely exceed any present use exposures; this is based on the assessment that pathways of exposure and areas of maximum impact of emissions would not be different from any present use condition. The four potential RMEIs are:

- An individual currently living within the residential area where total deposition (dry plus wet) is maximal (i.e., just south of the property fenceline).
- An individual currently living within the residential area where dry deposition
 will be maximal (i.e., just north of fenceline).
- An individual currently living on a local cattle farm where total deposition is highest for that land use (i.e., just northwest of site).
- A maintenance worker on the site who is exposed to an area weighted air concentration and wet/dry deposition as determined from the modeling results.

The respective locations of these RMEIs are indicated on the site diagram in Appendix A (Figure 1). The isopleths developed for the air modeling are not provided here but will presented in the final report. Note that all residential exposure scenarios include a fish consumption pathway based on the finding that Engineer's Lake, a recreational fishing area, is impacted by the deposition analysis. The Lake is located just west of RMA near Adams City.

Subsections 3.4.2 through 3.4.4 detail the specific equations or approaches for determining media concentrations, and the exposure algorithms and input parameters that will be employed by WESTON in determining estimated daily intakes (i.e., doses) of each of the pollutants. When available, site-specific or more recently developed input factors (e.g., ingestion rates) will be used in preference to the factors presented in the protocol. Table 5 of Appendix A is a summary of the key input parameters for air and soil pathways which has been developed in consultation with Dr. Chris Weis of EPA VIII and following a review of the offsite and onsite exposure assessments performed previously for RMA. Additional parameters are discussed with the algorithms in Sections 3.2.2 through 3.2.4. Depending on the results of the evaluation of local land and water usages and final contaminant pathways

analysis, it is possible that some of these algorithms will not be included. The exposure algorithms presented in these subsections estimate daily exposure doses based on expected media concentrations determined through the dispersion and deposition modeling results. Adjustments to lifetime exposure doses will be determined in the risk characterization section. Section 3.5 discusses this in more detail.

A groundwater exposure pathway has not been included in this protocol. It has been WESTON's experience that groundwater contamination from incinerator facility emissions is minimal and makes no significant contribution to total risk. Current EPA guidance for assessing health risks associated with combustor emissions indicates that the evaluation of the groundwater pathway is unnecessary due to limited potential for groundwater contamination (EPA, 1990a). However, should groundwater recharge patterns and private well use be significant factors at the proposed site, this pathway can be further evaluated.

3.4.2 Inhalation Exposure

3.4.2.1 Air Concentrations of Pollutants

The concentrations of pollutants in the ambient air will be determined based on the dispersion modeling results.

3.4.2.2 Exposure through Inhalation

Dose From Ambient Air Respiration
$$\frac{1}{\text{Inhalation}}$$
 Concentration x Rate x Body Weight (mg/kg/day) (mg/m^3) (m^3/day) (kg)

Where:

• Respiration Rate = 20 m³/day - adult (EPA, 1989c), 10 m³/day - child (USNRC, 1977), 3.8 m³/day - infant (NCRP, 1984)

Body Weight = 70 kg - adult, 15.5 kg - child, 9 kg - infant (0-1 yr old) (EPA,
 1989c; EBASCO, 1989)

3.4.3 Ingestion Exposure

3.4.3.1 Soil Concentrations of Pollutants

Contaminants with no expected significant degradation:

Maximum Contaminant Concentration	Total Deposition Rate 10^3 mg $= (g/m^2/year) \times g$	Facility Life x (years)
in Soil (mg/kg)	Soil Density x Soil Mix (kg/m³) (n	ing Depth

Where:

- Expected Facility Life = 2 years
- Soil Density = site specific
- Soil Mixing Depth = 0.1 m (for untilled soil) (EPA, 1990a) = 0.2 m (for tilled soil) (EPA, 1990a)

Contaminants with expected significant degradation:

Where:

k = Decay Coefficient (yr⁻¹), chemical specific

t = Expected Facility Life = 2 years*

*An average concentration is also calculated for the contaminants with expected loss using a computerized model which takes into account daily degradation over 70 years.

3.4.3.2 Exposure from Soil/Dust Ingestion

Dust concentrations are assumed to be equal to the 0.1 m mixing depth soil concentrations and are calculated collectively with soils concentration.

Where:

- Annual average soil/dust ingestion rate = 5.0E-05 kg/day adult maintenance worker (EBASCO); 1.0E-04 kg/day adult farmer resident (EPA, Region VIII); 2.0E-04 kg/day child farmer/resident (EPA, Region VIII).
- Body Weight = 70 kg adult, 15.5 kg child (EPA, 1989c; EBASCO).

3.4.3.3 Garden Produce Ingestion

For root vegetables, the second term of this equation (i.e., the contribution of contaminant deposition on the plant) drops out. The second term also drops out when calculating the contaminant concentrations in/on leafy vegetables and garden fruits during the years after the facility is closed.

Where:

- Soil concentration is calculated with an assumed mixing depth of 20 cm (EPA, 1990a).
- Root Uptake Factor chemical specific (inorganics: Baes et al., 1984;
 organics calculated based on Briggs et al., 1982 (root vegetables) and Travis and Arms, 1988).
- Vertical Surface Deposition Factor = $\frac{r(1-e^{-kt})}{yk}$
 - r = Interception fraction of the plant (unitless) (Baes et al., 1984).
 - k = Total rate constant for degradation process (seconds⁻¹) (Baes et al., 1984).
 - t = Growing Time (seconds)
 - y = Plant Yield (wet weight) (kg/m^2)

Contaminant Dose from Produce Ingestion (mg/kg/day)	Contaminant Leafy Concentration Vegetal in Leafy Consumpt = Vegetables x Rate (mg/kg) (kg/da	ble ion Fractions e x Homegrown	+
Contaminant Concentration in Root x Vegetables (mg/kg)	Root Vegetable Consumption Rate x Fraction + (kg/day) Homegrown	Contaminant Concentration in Garden x Fruits (mg/kg)	Garden Fruit Consumption Rate (kg/day)
	1		

Body Weight (kg)

Where:

X

Fraction

Homegrown

• Consumption Rates in Wet Weight (calculated from EPA, 1990 and Baes et al., 1984).

leafy vegetables = 1.19E-02 kg/day - adult; 1.24E-03 kg/day - child.

root vegetables = 6.53E-02 kg/day - adult; 3.11E-03 kg/day - child.

garden fruits = 6.4E-02 kg/day - adult; 3.34E-02 kg/day - child.

- Body Weight = 70 kg adult, 15.5 kg child (EPA, 1989c; EBASCO).
- Fraction Homegrown = 0.58 adult and child resident (HLA Report); 0.90 adult and child farmer (EPA, Region VIII).

To the extent possible, local consumption rates and homegrown fractions will be further investigated as part of the land use analysis.

3.4.3.4 Surface Water Concentrations of Pollutants

If the surface water pathway is determined to be a key exposure route, surface water concentrations will be determined using a Tier 2 analysis (EPA, 1990a). If requested, the details of the surface water model will be provided in a supplementary memorandum.

3.4.3.5 Drinking Water Ingestion

Where:

- Surface Water Consumption Rate = 1.4 L/day adult, 1 L/day child (EPA, 1989c)
- Body Weight = 70 kg adult, 15.5 kg child (EPA, 1989c; EBASCO).

3.4.3.6 Fish Ingestion

Contaminant Contaminant Adjusted
Concentration Concentration
in Fish = in Water x Factor
(mg/kg) (mg/L) (L/kg)

Where:

 Adjusted Bioconcentration Factor: compound specific, adjusted to account for difference in lipid content in test and study organism (if information is available) =

Bioconcentration Factor x LC Study LC Test

Where:

- LC study = Lipid concentration in study organism
- LC test = Lipid concentration in test organism

If data are available, an adjustment of the predicted contaminant concentration in the whole body of the fish to a concentration in the edible portion of the fish will be made.

Contaminant Contaminant Daily Fish 1

Dose from = Concentration x Consumption x Fish Ingestion in Fish Rate Body Weight (mg/kg/day) (mg/kg) (kg/day) (kg)

- Fish Consumption Rate = 9.84E-03 kg/day resident/farmer adult (HLA Report); 2.42E-03 kg/day child.
- Body Weight = 70 kg adult, 15.5 kg child (EPA, 1989c; EBASCO).

3.4.3.7 Ingestion of Meat and Milk

Only the first term of the equation applies for calculating contaminant concentration in grain. The second term also drops out when calculating contaminant concentrations in/on other animal feed during the years after the facility is closed.

Where:

- Vertical Surface Deposition Factor (see Section 3.2.3).
- Root Uptake Factor chemical specific.

Contaminant Concentration in Animal Diet (mg/kg)	=	Contaminant Concentration in Animal Feed Concentration (mg/kg)	x	Daily Intake of Feed (kg/day)	+	Contaminant Concentration in Soil x (mg/kg)	Daily Intake of Soil (kg/day)
		Daily of I (kg,	Fee	d	+	Daily Into of Soil (kg/day)	

Where:

Daily Intake

Feed = dependent on area-specific farming practices and type of cattle Soil = 2 percent of grazing diet (Fries, 1986) • Soil Concentration - Calculated using a 0.1 m mixing depth for untilled soil (e.g., pasture grass) and a 0.20 m mixing depth for tilled soil (e.g., corn, grain, hay). (EPA, 1990a).

Contaminant						
Concentration		Animal		Tissue		Total Feed
In Animal Product	=	Intake	X	Uptake	x	Intake*
(mg/kg)		(mg/kg)		Factor		(kg/day)
				(day/kg)		

- Tissue Uptake Factor contaminant specific (Baes et al., 1984; Fries, 1986; Travis et al., 1988).
- * Total feed intake is not used in determining dioxin concentrations in animal products and the dioxin tissue uptake factor is unitless.

Where:

• Product Consumption Rates:

Beef = 0.037 kg/day - child (Pao et al., 1982), 0.067 kg/day - adult (Fries, 1986).

Beef fat = 0.009 kg/day - child (EPA, 1986), 0.015 kg/day - adult (Fries, 1986).

Milk = 0.39 kg/day - child (Pao et al., 1982), 0.305 kg/day - adult (Fries, 1986).

Milk fat = 0.016 kg/day - child (EPA, 1986), 0.01 kg/day - adult (Fries, 1986)

• Fraction home-produced or obtained from a local source (rural)

Beef = 1.00 - Farm Household (WESTON); 0.05 Residential Household - (WESTON)

Milk = 1.00- Farm Household (WESTON); 0.05 - Residential Household (WESTON).

Body Weight = 70 kg - adult, 15.5kg - child (EPA, 1989c; EBASCO).

3.4.3.8 Breast Milk Ingestion

Breast Milk		Sum of Contaminant		Breast Milk
Concentration	=	Doses to Mother	x	Transfer Factor
(mg/kg)		(mg/kg/day)		(day)

Where:

- Sum of Contaminant Doses: Total dose through all exposure routes
- Breast Milk Transfer Factor: chemical specific (Smith, 1987; Travis et al., 1988)

The breast milk pathway will be evaluated for organic contaminants only due to insufficient information regarding breast milk transfer factors (based on estimated daily intakes) for metals in human milk.

Infant Contaminant Dose (mg/kg/day)	=	Contaminant Concentration in Breast Milk (mg/kg)	x	Milk Ingestion Rate (kg/day)
		Infant I	ody '(kg)	Weight

Where:

- Milk Ingestion Rate = 0.8 kg/day (Smith, 1987)
- Infant Body Weight (0-1 yr old) = 9 kg (EPA, 1989c)

3.4.4 Dermal Exposure

Where:

- Exposed Skin Surface (arm and hand) Area: 1,700 cm² adult (EBASCO); 2,188 cm² child (EPA, 1989c).
- Soil Adherence Factor 3.5 mg/cm² adult maintenance worker/farmer (EBASCO); 0.51 mg/cm² resident adult and farmer/residential child (EBASCO).
- Dermal Absorption Factor = 0.01 metals; 0.10 organics (EBASCO).
- Body Weight = 70 kg adult, 15.5 kg child (EPA, 1989c; EBASCO).

3.5 RISK CHARACTERIZATION

3.5.1 Evaluation of Risk

3.5.1.1 Noncarcinogenic Risk

Noncarcinogenic risk will be evaluated for each scenario by comparing contaminant doses to chronic reference doses. The contaminant dose: reference dose ratios (i.e., hazard quotients) will be summed to calculate the total chroni hazard index. Separate hazard indices will be calculated for the adult, child, and infant. If a chronic hazard index exceeds

one, the potential for acute health effects will also be determined, by comparing the contaminant doses to available or derived short-term toxicity values.

3.5.1.2 Carcinogenic Risk

The carcinogenic risk posed by each contaminant through each exposure route will be calculated using the following equation:

Cancer Contaminant Carcinogenic Exposure
Risk = Dose x Potency x Duration
$$(mg/kg/day)$$
 Factor Adjustment
 $(mg/kg/day)^{-1}$

The exposure duration adjustment takes into account the length of exposure, in effect averaging the calculated daily contaminant dose over a 70-year lifetime. The total risk posed by each contaminant will be calculated by adding the risks posed by the contaminant through all exposure routes. The lifetime incremental cancer risk posed by all contaminants will be estimated by summing the risks posed by all contaminants through all exposure routes.

3.5.2 Uncertainty Analysis

All key assumptions and uncertainties and their potential effects on the risk estimates presented in the risk characterization will be summarized. A quantitative sensitivity analysis will be performed for some of the assumptions that are indicated to have the greatest impact on the calculation of total risk.

3.6 REFERENCES

Anderson, E., Browne, N., Puletsky, S., And T. Warn, 1985. <u>Development of Statistical Distribution of Ranges or Standard Factors Used in Exposure Assessments</u> (Draft Report). Prepared for the U.S. EPA Office of Health and Environmental Assessment, Contract No. 68-02-3510, Washington, DC.

Baes, C., Sharp, R.D., Sjoreen, A.L., and R.W. Shor, 1984. <u>A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture.</u> Prepared by Oak Ridge National Laboratory for the U.S. Department of Energy, ORNL-5786.

Briggs, G., R.H. Bromilow, and A.A. Evans, 1982. Relationships between lipophilicity and root uptake, and translocation of nonionized chemicals by barley. <u>Pesticide Science</u> 13:495.

EPA (U.S. Environmental Protection Agency), 1986. <u>Superfund Public Health Exposure Manual</u> (SPHEM), Appendix C. OERR, Washington, DC, EPA 540/1-86/060.

-----, 1989a. <u>Risk Assessment Guidance for Superfund: Human Health Evaluation</u>

<u>Manual, Part A.</u> Interim Final. Office of Solid Waste and Emergency Response. OSWER

Directive 9285.701A.

-----, 1989b. <u>Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and Dibenzofurans (CDDs and CDFs) and 1989</u>
<u>Update</u>. Risk Assessment Forum, March 1989. EPA/625/3-89/016.

-----, 1989c. Exposure Factors Handbook. Office of Health and Environmental Assessment, Washington, D.C. EPA/600/8-89/043.

-----, 1990a. Methodology for Assessing Health Risks Associated With Indirect Exposure to Combustor Emissions, Office of Health and Environmental Assessment, Washington, D.C. EPA/600/6-90/003.

-----, 1990b. Integrated Risk Information System (IRIS), on-line. Environmental Criteria and Assessment Office, Cincinnati, Ohio.

-----, 1990c. <u>Health Effects Assessment Summary Tables</u>, (most recent update). Environmental Criteria and Assessment Office. OERR 9200.6-303.

Final Decision Document for the Interim Response Action, Basin F Liquid Treatment, Volume 1, May, 1990. Prepared for Rocky Mountain Arsenal by Woodward-Clyde Consultants, Contract No. DAAA15-88-D-0022/0001, Version 3.2.

Fries, G., 1986. <u>Assessment of Potential Residues in Foods Derived from Animals Exposed</u> to TCDD-Contaminated Soil. Presented at Dioxin 86. Lyman, .1982

Lyman, W.J., W.F. Reehl and D.H. Rosenldatt, 1982. <u>Handbook of Chemical Estimation</u>

Methods: Environmental Behavior of Organic Compounds, McGraw-Hill, NY.

National Council on Radiation Protection and Measurements (NCRP), 1984. <u>Radiological Assessment: Predicting the Transport, Bioaccumulation, and Uptake by Man of Radionuclides Released to the Environment.</u> NCRP Report No. 76.

Oppelt, E.T., 1987 "Incineration of Hazardous Waste: A Critical Review," <u>J. Air Pollution</u> Control Association 37:558.

Pao, E.M., K.H. Fleming, P.M. Guenther, and S.J. Mickle, 1982. <u>Foods Commonly Eaten by Individuals: Amounts Per Day and Per Eating Occasion</u>. Consumer Nutrition Center, Human Nutrition Information Service, U.S. Department of Agriculture, Hyattsville, Maryland.

Poiger, H., and C. Schlatter, 1980. "Influence of Solvents and Adsorbents on Dermal and Intestinal Absorption of TCDD." Fd. Cosmet. Toxicol. 18:447.

Skog, E. and J. Wahlberg, 1964. "A Comparative Investigation of the Percutaneous Absorption of Metal Compounds in the Guinea Pig by Means of the Radioactive Isotopes: ⁵¹Cr, ⁵⁸Co, ⁶⁵Zn, ^{110m}Ag, ^{115m}Cd, ²⁰³Hg." <u>J. Invest. Dermatol</u>. 43:187.

Smith, A.H., 1987. Infant exposure assessment for breast milk dioxins and furans derived from waste incinerator emissions. Risk Analysis 7:347.

Travis, C. and A. Arms, 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation." Environ. Sci. Technol. 22:271.

Travis, C.C., H.A. Hattemer-Frey, and A.D. Arms, 1988. "Relationship between dietary intake of organic chemicals and their concentrations in human adipose tissue and breast milk." Arch, Environ. Contam. Toxicol. 17:473.

Trenholm, A. 2nd Hathaway, R., 1984. "Products of Incomplete Combustion from Hazardous Waste Incinerators," in <u>Proceedings 10th Annual Hazardous Waste Research Symposium</u>, Incineration of Hazardous Waste, U.S. EPA, EPA-600/9-84-022.

U.S. Nuclear Regulatory Commission (USNRC), 1977. Regulatory Guide 1.109 Revision 1, Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliances with 10 CFR Part 50, Appendix I. Office of Standards Development, U.S. Nuclear Regulatory Commission, Washington, DC.

WESTON, Inc., 1989. <u>Draft Background Geographical Characterization Report, Rocky Flats Plant, Golden, Colorado</u>. Prepared by Roy F. Weston, Inc., Lakewood, Colorado, Dec., 1989.

APPENDIX A

PRELIMINARY DATA AND SUPPORTING DOCUMENTATION FOR HEALTH RISK ASSESSMENT PROTOCOL

APPENDIX A

PRELIMINARY DATA AND SUPPORTING DOCUMENTATION FOR HEALTH RISK ASSESSMENT PROTOCOL

EMISSION KATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR

Category/ Pollutant	(ton/yr)	Base Case (a) (Ib/lar)	(g/sec)	(ton/yr)	Sensitivity Case (b) (lb/lw)	(g/sec)
	(ton/yr/	(LD/NF)	(g/sec)	(son/yr)	(ID/NF)	(8/32)
Dioxine/Furane						
U.S. EPA TEF	4.16E-09	1.19E-09	1.50E-10	6.63E-08	1.90E-08	2.39E-09
March 1						
Metala						
Aluminum Antimony	1.80E-02	5.15E-03	6.49E-04	2.50E-02	7.14E-03	8.99E-04
Amenic	6.34E-04	1.81E-04	2.28E-05	1.08E-01	3.10E-02	3.90E-03
Barium	3.59E-03 8.79E-04	1_03E-03 2_51E-04	1.29E-04 3.16E-05	8.67E-03 1.83E+01	2.48E-03 5.24E+00	3.12E-04
Beryllhum	3.66 E-05	1.05E-05	1.32E-06	1.53E-03	4.37E-04	6.60E-01 5.50E-05
Boron	2.68E-02	7.65E-03	9.63E-04	3.63E-02	1.04E-02	1.31E-03
Cadmium	1.04E-04	2.98E-05	3.76E-06	2.03E-03	5.79E-04	7.30E-05
Caldum	1.54E-01	4.39E-02	5.53E-03	2.93E-01	8.36E-02	1.05E-02
Chromium	2.47E-04	7.05E-05	8.88E-06	3.32E-04	9.49E-05	1.20E-05
Cobalt	7.89E-04	2.25E-04	2.84E-05	8.13E-04	2.32E-04	2.93E-05
Copper	3.35E+00	9.59E-01	1.21E-01	6.35E+00	1.82E+00	2.29E-01
Iron	4.77E-02	1.36E-02	1.72E-03	8.13E-02	2.32E-02	2.93E-03
Lead	1.12E-03	3.21E-04	4.05E-05	3.33E-02	9.52E-03	1.20E-03
Lithium	1.10E-04	3.14E-05	3.96E-06	2.07E-04	5.92E-05	7.45E-06
Magnesium	1.43E-01	4.08E-02	5.14E-03	2.39E-01	6.81E-02	8.59E-03
Manganese	6.16E-03	1.76E-03	2.22E-04	6.93E-03	1.98E-03	2.50E-04
Mercury	9.93E-04	2.84E-04	3.57E-05	1.08E-C1	3.10E-02	3.90E-03
Molybdenum	1.10E-02	3.15E-03	3.97E-04	1.14E-02	3.25E-03	4.09E-04
Nickel	2.86E-02	8.18E-03	1.03E-03	2.97E-02	8.49E-03	1.07E-03
Potassium	1.14E+00	3.25E-01	4.09E-02	2.54E+00	7.24E-01	9.13E-02
Selentum	9.20E+00	2.63E+00	3.31E-01	9.20E+00	2.63E+00	1E-01 د. 3
Silicon Silver	1.58E-01	4.57E-02	5.70E-03	1.89E-01	5.41E-02	6.81E-03
Sodium	9.52E-02	2.72E-02	3.43E-03	1.08E+00	3.10E-01	3.90E-02
Strontium	1.17E+02	3.34E+01	4.21E+00	5.56E+02	1.59E+02	2.00E+01
Thallium	3.66 E-05 9.25 E-0 3	1.05E-05	1.32E-06	5.66E-05	1.62E-05	2.04E-06
Tin	8.09E-03	2.64E-03 2.31E-03	3.33E-04	1.08E-01 8.79E-03	3.10E-02	3.90E-03
Titanium	6.10E-05	1.74E-05	2.91E-04 2.20E-06	1.07E-04	2.51E-03	3.16E-04
Vanadium	2.34E-03	6.68E-04	8.42E-05	2.62E-03	3.07E-05 7.49E-04	3.87E-06 9.44E-05
Yittrium	NA NA	NA NA	NA NA	2.14E-05	6.11E-06	7.70E-07
Zinc	1.63E-02	4.65E-03	5.86E-04	3.34E-02	9.54E-03	1.20E-03
					,	
ganica	_					
1,1-Dichloroethene	3.81E-11	1.09E-11	1.37E-12			
1,2-Dichloroethene	2.65E-11	7.57E-12	9.53E-13	l l		
1,2-Dichloropropane	3.07E-12	8.77E-13	1.11E-13			
1,3-Dimethylbenzene	2.72E-08	7.77E-09	9.79E-10	i		
Acetone Anumonia	1.07E-11	3.07E-12	3.87E-13			
Benzene	3.26E-03 1.40E-07	9.32E-04 3.99E-08	1.17E-04			
Bromomethane			5.03E-09			•
Carbon Tetrachloride	1.36E-08 4.34E-11	3. 8 9E-09 1.24E-11	4.90E-10	1		
Chlorobenzene	3.37E-08	9.62E-09	1.56E- 12 1.21E- 09	1		
Chloroform	6.87E-12	1.96E-12	2.47E-13	1		
Ethylbenzene	4.08E-08	1.17E-08	2.47E-13 1.47E-09			
Methanol	1.63E-07	1.17E-08 4.45E-08	5.86E-09			
Methylene Chloride	1.36E-08	3.59E-09	4.90E-10			
Tetrachlorethene	5.43E-10	1.35E-10	1.95E-11			
Toluene	6.80E-08	1 = 4E-08	2.45E-09	1		
Trichloroethene	8.33E-11	2.35E-11	3.00E-12	1		
Xylene	2.72E-08	E-09	9.79E-10			
Chlorophenylmethylsulfone	2.52E-11	7.21.E-12	9.08E-13	1		
4-Chlorophenylmethylsulfoxide	9.40E-11	2.69E-11	3.38E-12	1		
4-Nitrophenol	5.76E-11	1.64E-11	2.07E-12			
Aldrin	6.91E-12	1.97E-12	2.49E-13			
Atrazine	1.54E-12	4.39E-13	5.53E-14			

TABLE 1 (con'd). EMISSION RATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR

Category/ Pollutant	41-1-1	Buse Cuse (a)			ensitivity Case (b)	
. on wen	(ton/yr)	(lb/hr)	(g/sec)	(ton/yr)	(lb/hr)	(g/s
Organica						
Hydrogen Cyanide	6.46E-08	1.85E-08	2.32E-09			
Dieldrin	1.42E-12	4.06E-13	5.11E-14]		
Disopropyl Methylphosphonate	2.49E-10	7.13E-11	8.98E-12			
Dimethyl Methylphosphonate	5.95E-09	1.70E-09	2.14E-10			
Dimethyldisulfide	6.91E-10	1.97E-10	2.49E-11	1		
Dimethylphosphate	1.63E-09	4.66E-10	5.87E-11			
Dithiane	2.49E-13	7.13E-14	8.98E-15			
Endrin	1.38B-12	3.95E-13	4.97E-14	1		
Hexachlorocyclopentadiene	1.28E-11	3.67E-12	4.63E-13	İ		
Isodrin	3.64E-12	1.04E-12	1.31E-13			
Malathion	5.56E-12	1.59E-12	2.00E-13		•	
Parathion	7.68E-13	2.19E-13	2.76E-14	ĺ		
Supona	2.30E-12	6.58E-13	8.29E-14	1		
Urea	9.98E-07	2.85E-07	3.59E-08			
Vapona						
p,p-DDE	6.14E-12	1.75E-12	2.21E-13			
p,p-DDT	1.15E-08	3.29E-09	4.14E-10	1		
4,4-001	2.30E-12	6.58E-13	8.29E-14			
Ca w/ Specific Precursors						
Vinyl Chloride	1.36E-07	3.89E-08	4.90E-09			
Methyl Chloride	1.36E-07	3.89E-08	4.90E-09			
Styrene	1.36E-07	3.90E-08	4.91E-09			
Phenol	7.37E-07	2.11E-07	2.65E-08	1		
Benzaldehyde	1.42E-07	4.05E-08	5.10E-09	İ		
Benzoic Acid	6.86E-08	1.96E-08	2.47E-09	1		
Acetonitrile	6.52E-10	1.86E-10	2.35E-11			
Acrylonitrile	6.52E-11	1.86E-11	2.35E-12			
Cyanogen	6.52E-12	1.86E-12	2.35E-13	1		
Hexachlorobenzene	4.64E-10	1.32E-10	1.67E-11			
Pentachlorobenzene	2.07E-10	5.93E-11	7.47E-12	j		
Tetrachlorobenzene	8.75E-11	2.50E-11	3.15E-12	1		
Trichlorobenzene	4.62E-11	1.32E-11	1.66E-12			
Dichlorobenzene	2.45E-11	6.99E-12	8.81E-13			
Biphenyl	6.82E-08	1.95E-08				
4-Chlorobiphenyl	7.88E-08	1.95E-08 2.25E-08	2.45E-09			
4,4-Chlorobiphenyl	1.03E-09	2.25E-08 2.95E-10	2.84E-09			
Benzonitrile	6.52E-11	2.95E-10 1.86E-11	3.72E-11			
Pyridine	6.52E-11 6.52E-12	1.86E-11 1.86E-12	2.35E-12 2.35E-13			
Carbazole	1.30E-11	3.73E-12	4.70E-13	1		
Quinoline	3.26E-11	9.32E-12	1.17E-12	1		
Ca w/ Specific Precursors				1		
Benzofuran	2.72E-07	7.77E-08	9.79E-09			
Dibenzofuran	1.36E-08	3.SSE-09	4.89E-10	1		
Acenaphthalene	6.80E-08	1.94E-08	2.45E-09			
Acenaphthane Acenaphthene				1		
Acena primene Fluoranthene	6.80E-08	1.94E-08	2.45E-09	1		
riuoranthene Phenanthrene	4.08E-08	1.17E-08	1.47E-09			
	2.72E-08	7.77E-09	9.79E-10			
Pyrene	1.36E-08	3 59E-09	4.89E-10	1		
Fluorene	1.36E-08	3.89E-09	4.89E-10			
Benzo(a)pyrene	1.36E-08	3.88E-09	4.59E-10			
Dibenzo(a)anthracene	1.36E-08	3 43E-09	4.59E-10			
Chrysene	1.36E-08	3.88E-09	4.89E-10	1		

TABLE 1 (con'd). EMISSION RATES FOR ROCKY MOUNTAIN ARSENAL BASIN F WASTE SUBMERGED QUENCH INCINERATOR

ite gory/ Polintant	(1	Base Case (a)	(-1)		(lb/hr)	(g/sec)
FORMAL	(ton/yr)	(lb/ler)	(g/sec)	(ton/yr)	(10/10/	18/20
id Gases & Other Compounds						
Particulate Matter	14.00	4.00	0.50	14.00	4.00	0.50
Carbon Monoxide	4.71	1.35	0.17	7.29	2.08	0.26
Hydrogen Chloride	4.73	1.35	0.17	14.00	4.00	0.50
Hydrogen Fluoride	0.17	0.049	0.006	0.32	0.092	0.012
Nitric Acid	3.85	1.10	0.14	3.85	1.10	0.14
Nitrogen Dioxide	32.13	9.18	1.16	143.22	40.92	5.16
Phosphate	3.44	0.98	0.12	15.04	4.30	0.54
Sulfuric Acid	10.40	2.97	0.37	17.34	4.96	0.62
Sulfur Dioxide	24.43	6.98	0.88	101.50	29.00	3.65

⁽a) These estimates are based upon the acceptable results during the test burn for dioxins/furans and the maximum of the acceptable test results or the maximum of the averages waste stream data. The organics emissions are based upon Dellinger's analysis of the maximum of the averages wastestream data.

⁽b) For metals: based upon the maximum value of the test results from the test burn, the maximum of the maximum values from the wastestream data, and the EPA Guidance Tier II limits for complex terrain.

For dioxins/furans: based upon the 95% confidence interval from WESTON's hazardous waste incinerator emissions database.

EXPECTED ACID & OTHER COMPOUNDS EMISSIONS BASED ON TEST BURN EMISSIONS & WASTE STREAM DATA

			Based	Based on Waste Stream Data	Data	Hand.	Based upon Acceptable	Maximum	unu.
Original	Waste Feedrate (lb/ton)	æ	Converted	Uncontrolled Emissions (2 (lb/ton)	Kemoval (2) Efficiency (%)	Controlled Emissions (3)	Controlled Emissions (4)	Emissions Between the Two Scenarios	ions in the inarlos (5)
Particulate Matter (PM) Carbon Monoxide (CO) Chiaride (C1) Fluoride (F) Nitrate (NO3) Nitrate (NO3) Phosphorus (P) Sulfate (SO4) Sulfate (SO4)	NA NA 215.3 0.18 2.1 110.5 31.7 56.4 NA		PM CO CO HIC1 HIN03 NNO2 PO4 HZSO4 SO2	NA NA 221.7 02 2.1 32.9 31.7 57.6 NA	 V \$ \$ 8 8 9 7 8 8	NA NA NA 11.1 0.009 0.213 362.9 0.190 0.6	AN AN AN AN AN AN AN AN AN AN AN AN AN A	NA 1 0.009 1 0.009 1 0.009 1 0.009 1 0.019 1 0.190 1 0.190 1 0.58	4.00 (6) 1.35 1.35 1.35 0.05 1.10 9.18

MAXIMUM ACID & OTHER COMPOUNDS EMISSIONS BASED ON TEST BURN EMISSIONS & WASTE STREAM DATA

			Based	Based on Waste Stream Data	n Dete		Based upon	Maximum	mnm
Original Polistant	Waste Conver Feedrate (1) Polluta (1b/10m)	3	Converted Pollutant	Uncontrolled Emissions (1b/ton)	Removal (2) Efficiency (%)	Controlled Emissions (3) (Ib/ton)	Controlled Emissions (4) (1b/10n)	Between the Two Scenarios	en the
Particulate Matter (PM)	Ž		74	;					
			¥ (۲ ۲	Y Z	ž	ž	×	400 (6)
Caroon Monoxide (CO)	YZ		3	ž	ž	~ 2	0.403 77	6070	200
Chloride (CI)	318.0		E	327.1	8	77.		co.	2.08
Flooride (F)	20				2 :	10.4	۷ ۷	- V V	4.00 (3)
	5			4.0	95	0.018	٧	0.018	200
Allumine (IACO)	1.7		HINGS	2.1	8	0213	Ž	0213	01.1
VICTORIEN (IV)	168.4		NO2	553.0	0	553.0	YZ.	2	40.00
Thosphorus (P)	138.7		2	138.7	7.66	0.830	0.038	200	4.30
Sulfate (SO4)	3 .0		HZSO	98.0	8	101	S.O.O	7000	9.30
Sulfur (S)	Ž		Ş	***			4	96.5	4.90

Based upon the maximum of the maximums emission concentration from historical test data (tons/yr) and multiplying by 2000 lbs/ton / ((10,325 lbs of waste/hr / 2000 lbs/ton) x 7,000 operating hrs/yr). 9

Based upon the waste feed rate x the molecular weight of the converted pollutant 8

the molecular weight of the orginal pollutant.

Controlled Emissions = Uncontrolled Emissions x (1- % Removal Efficiency)

Besed upon the average emission during the test burn by T-Thermal in Aug. 1990.

The maximum values were used for all pollutants, except NO2, for which the test bum data was used. Particulate is based upon Colorodo regulations of 0.08 gr/dscf @ 12% CCQ. @ @ @ @

Based upon February 1989 test burn which tested for the sperific compounds. Carbon monoxide is based upon Federal regulations of 100 ppm. 3

Based upon vendor performance guarentees. **9** 9

TABLE 3

Chemicals of Concern Evaluated in Tier 1 Surface Water Screening Analysis For Rocky Mountain Arsenal

A 4 5	В С	03-Dec-90 02:46:14 PM	D	E	F	G	Н
5 6 7 8 9 10	POLLUTANTS ORGANICS		EMISSION RATE (g/sec)	TOTAL DEPOSITION RATE (g/m2*yr)	TOTAL BASIN DEPOSITION (g/yr)	WATER CONCENTRATION (mg/l)	AWQCs FISH INGESTION (mg/l)
12 13 14 15 16	Fluoranthene Pentachlorobenze Tetrachlorobenze INORGANICS	ne ne	1.91E-09 9.73E-12 4.11E-12	1.72E-12 8.76E-15 3.70E-15	2.23E-07 1.13E-09 4.79E-10	3.23E-13 1.64E-15 6.93E-16	5.40E-02 8.50E-02 4.80E-02
17 18 19 20 21 22 23 24 25 26 27	Antimony ° Chromium (III) Manganese Mercury Nickel Thallium		3.90E-03 1.20E-05 2.50E-04 3.90E-03 1.07E-03 3.90E-03	3.51E-06 1.08E-08 2.25E-07 3.51E-06 9.63E-07 3.51E-06	4.55E-01 1.40E-03 2.91E-02 4.55E-01 1.25E-01 4.55E-01	6.58E-07 2.02E-09 4.22E-08 6.58E-07 1.81E-07 6.58E-07	4.50E+01 3.43E+03 1.00E-01 1.46E-04 1.00E-01 4.80E-02
25 26 27 28 29 30 31 32 33 34			5.00E-01 H 3.45E+05 L 1.00E-03 C	otal deposition otal basin area ydraulic reside ake volume (m3) onversion facto onversion facto	nce time (yr nce time (yr		
33 34 35 36 37		TBO	= ER*TDF = TDR*TBA ter = TBD*HR1				

^{*} All chemicals evaluated in this analysis will be excluded from the surface water pathway in the risk assessment.

FIGURE 1. Locations of Reasonable, Maximally-Exposed Individuals Based Upon Ambient Air and Deposition Modeling Data.

(A) Area of maximum total deposition (residential); (B) Area of maximum dry deposition and maximum ambient groundlevel air concentration (residential); (C) Area of maximum total deposition for local cattle farm; (D) A maintenance worker on-site emposed to area weighted total deposition and ambient groundlevel air concentrations.

TABLE 4A
Rocky Mountain Amenal (RMA)
Stope Factors for
Carcinogenic Health Effects
(mg/kg/day*-1)

				Slope Factor	Factor	Factor	Factor
Poliulant	Classification	Classification	Slope Factor	Inhalation	Slope	Oral Slope	Slope
	Carcinogenicity	Carcinogenicity	Route	Basis of	Route	Basis of	Route
	EPA	WAC .	inhalation	Reference or	Oral	Reference or	Dermal

Organics

•							
Acrytonitrile	B1	2A	2 40E-01	.RIS, 1990	5.40E-01	IRIS, 1990	NC
Aldrin	B2	3	1.70E+01	iRIS, 1990	1.70E+01	IRIS, 1990	3.40E+01
Benzene	Ā	1	2 90E -02	iRIS, 1990	2.90E-02	IRIS, 1990	NC
Carbazole	82	3	2.00E-02	OSF	2.00E-02	EBASCO, 1990	4.00E-02
Carbon Tetrachloride	82	28	1.30E-01	IRIS, 1990	1.30E-01	IRIS, 1990	NC
Chioroform	B2	28	8.10E-02	IRIS, 1990	6.10E-03	IRIS, 1990	NC
DOE	82		3.40E-01	OSF	3.40E-01	IRIS, 1990	6.80E-01
DOT	82	28	3.40E-01	IRIS, 1990	3.40E-01	IRIS, 1990	6.80E-01
1,4-Dichlorobenzene	82	26	2.40E-02	ORD EPA, 1990	2.40E-02	EPA, 1990	NC
1,1-Dichlorosthene	С		1.20E+00	IRIS, 1990	6.00E-01	IRIS, 1990	NC
1,2-Dichloropropane	82	3	6.80E-02	ORD EPA, 1990	6.80E-02	EPA, 1990	NC
Dieldrin	82	3	1.60E+01	IRIS, 1990	1.60E+01	IRIS, 1990	3.20E+01
Diaxins/Furans (as 2,3,7,8 TCDD)	82	28	1.13E+05	EPA, 1990	1.50E+05	EPA, 1990	3.00E+05
Hexachlorobertzene	82	28	1.60E+ 0 0	EPA, 1990	1.60E+00	EPA, 1990	3.20E+00
Methyl Chicride	С	3	6.30E-03	EPA, 1990	1.30E-02	EPA, 1990	NC
Methylane Chioride	82		1 40E-02	EPA, 1990	7.50E-03	EPA, 1990	NC
PAHs	_	_	-	-	-	-	-
Berzo(a)pyrene	82	24	6.10E+00	EPA, 1986	1.15E+01	EPA, 1986	2.30E+01
Chrysene	82	3	6.10E+00	EPA, 1986	1.15E+01	EPA, 1986	2.30E+01
Dibenzo(a)anthracene		243	6.10E+00	EPA, 1986	1.15E+01	EPA, 1986	2.30E+01
Parathion	С						
Quinoline	С		1 20E+01	ORD	1.20E+01	EPA, 1990	2.40E+01
Styrene	82	28	2 :0€ -03	EPA, 1990	3.00E-02	EPA, 1990	NC
Tetrachiorosthene	82				5.10E-02	EPA, 1990	NC
Trichloroethene	82	3	1 10€ 402	EPA, 1990	1.10E-02	EPA, 1990	NC
Vapona	82	3	2 30E-01	ORD	2.90E-01	IRIS, 1990	5.80E- 0 1
Vinyl Chloride	A	1	2 35E 01	EPA, 1990	2.30E+00	EPA, 1990	NC

TABLE 4A (continued)

Rocky Mountain Arsenal (RMA) Slope Factors for Carcinogenic Health Effects (mg/kg/dsy*-1)

	EPA	WAC .	Inhalation	Reference or	Oral	Reference or	Dermal
	Carcinogenicity	Carcinogenicity	Route	Basis of	Route	Basis of	Route
Politant	Classification	Classification	Slope Factor	Inhabition	Slope	Oral Slope	Slope
				Slope Factor	Factor	Factor	Factor

Inorganics

Ansenic
Beryllium
Cadmium
Chromium (VI)
Lead
Nickel (as soluble salts)

A	1	1.50E+01	IRIS, 1990	1.75E+00	EPA, 1990	3.50E+01
82		8.40E+00	IRIS, 1990	4.30E+00	IRIS, 1990	8.60E+01
B 1	2A	6.10E+00	IRIS, 1990	NC	-	NC
A	1	4.10E+01	IRIS, 1990	· NC	-	NC
B 2	28					
A	1	2.00E-02	IRIS, 1990	NC	_	NC

NC = Not of concern

NE = Not evaluated

TABLE 4B

Rocky Mountain Arsenal (RMA) Reference Doses (RfDs) for Noncarcinogenic Health Effects (mg/kg/day)

	lab alata a	D-1	0	Determen	D
	Inhaiation	Reference or	Ora	Reference or	Dermai
	Route	Basis of	Route	Basis of	Route
Pollutant	RID	Inhalation RfD	RID	Oral RfD	RfD

Organica

Acetone
Acetonitrie
Acrylonatrile
Aldm
Atrezine
Benzaidehyde
Benzene
Benzoturan
Benzoic Acid
Benzonitrile
Biphenyl
Bromomethane
Carbazcie
Carbon Tetrachloride
Chlorobenzene
4-Chiorobiphenyl
4,4'-Chiorobiphenyl
Chioroform
4-Chlorophenylmethylsulfone
4-Chlorophenylmethylsulfaxide
DDE
DDT
Dibenzofuran
Dichlorobenzene
1,4-Dichlorobenzene
1,1-Dichloroethene
1,2-Dichloroethene(total)
1,2-Dichioropropene

1.82E+00	ACGIH-TWA	1.00E-01	EPA, 1990	NC
1.00E-02	EPA,1990	6.00E-02	EPA, 1990	3.00E-02
4.39E-03	ACGIH-TWA	2.70E-04	Derived	NC
2.55E-04	ACGIH-TWA	3.00E-05	IRIS, 1990	1.50E-05
5.10E-03	ACGIH-TWA	5.00E-03	IRIS, 1990	2.50E-03
1.00E-01	Oral RID	1.00E-01	IRIS, 1990	5.00E-02
3.26E-02	ACGIH-TWA	1.00E-03	Derived	NC
5.00E-03	Oral RfD	5.00E-03	Derived	2.50E-03
4.00E+00	Oral RfD	4.00E+00	IRIS, 1990	2.00E+00
8.00E-03	Oral RID	8.00E-03	Derived	4.00E-03
1.33E-03	ACGIH-TWA	5.00E-02	EPA, 1990	NC
1.71E-02	EPA, 1990	1.40E-03	IRIS, 1990	NC
5.00E-03	Oral RID	5.00E-03	Derived	2.50E-03
3.16E-02	ACGIH-TWA	7.00E-04	IRIS, 1990	NC
5.00E-03	EPA, 1990	2.00E-02	IRIS, 1990	NC
2.45E-02	Oral RfD	2.45E-02	Denved	1.22£-02
2.33E-02	Oral RID	2.33E-02	Derived	1.16E-02
5.00E-02	ACGIH-TWA	1.00E-02	IRIS, 1990	NC
1.98E-02	Oral RID	1.98E-02	EBASCO, 1990	9.90E-03
1.98E-02	Oral RfD	1.98E-02	EBASCO, 1990	9.90E-03
5.00E-04	Oral RID	5.00E-04	IRIS, 1990	2.50E-04
1.02€-03	ACGIH-TWA	5.00E-04	IRIS, 1990	2.50E-04
4.00E-02	EPA, 1990	9.00E-02	EPA, 1990	NC
2.04E-02	ACGIH TWA	9.00E-02	EPA, 1990	NC
2.00E-02	Ora: A:D	9.00E-03	IRIS, 1990	NC
3.54E-01	ACGIH-TWA	2.00E-02	IRIS, 1990	NC

TABLE 4B (continued)

Radiy Moursain Arsensi (RMA) Reference Doses (REDs) for Honcarolnogenic Health Effects (mg/kg/day)

	Inhalation	Reference or	Oral	Reference or	Dermai
	Route	Beais of	Route	Basis of	Route
Policiant	RfD	inhalation RfD	RID	Oral RID	RID
Dieldrin	2.55E-04	ACGIH-TWA	5.00E-05	IRIS, 1990	2.50E-05
Disapropyl Methylphosphonate	6.005-02	Oral RfD	8.00E-02	IRIS, 1990	4.00E-02
1,3-Dimethybenzene	2.00E-01	EPA, 1990	5.00E-02	Derived	2.50E-02
Dimethyldisulfide	8.10E-03	Oral RfD	8.10E-03	EBASCO, 1990	NC
Dimethyl Methylphosphonate	1.80E-02	Oral RfD	1.80E-02	EBASCO, 1990	9.00E-03
Dimethylphosphate	8.71E-02	Oral RID	8.71E-02	Derived	4.36E-02
Dioxins/Furans (as 2,3,7,8 TCOD)	1.00E-09	Oral RfD	1.00E-09	ATSDR, 1989	5.00E-10
Dithiane	1.00E-02	Oral RID	1.00E-02	EBASCO, 1990	5.00E-03
Endrin *	1.02E-04	ACGIH-TWA	3.00E-04	IRIS, 1990	1.50E-04
Ethybenzene	4.43E-01	ACGIH-TWA	1.00E-01	IRIS, 1990	NC
Hexachlorobenzene	8.00E-04	Oral RID	8.00E-04	IRIS, 1990	4.00E-04
Hexachlorocyclopentadiene (HCCPD)	2.00E-05	EPA, 1990	7.00E-03	IRIS, 1990	3.50E-03
leadrin	7.00E-05	Oral RfD	7.00E-05	EBASCO, 1990	3.50E-05
Malethion	1.025-02	ACG:H-TWA	2.00€-02	IRIS, 1990	1.00E-02
Methanol	2.67E-01	ACGIH-TWA	5.00E-01	IRIS, 1990	2.50E-01
Methyl Chloride	1.05E-01	ACGIH-TWA	1.80E-02	Derived	NC
dethylene Chloride	8.57E-01	EPA, 1990	6.00E-02	EPA, 1990	NC
-Nitrophenal	2.50€-03	Oral RfD	2.50E-03	Derived	1.25E-03
PAHs	-	-	-	-	_
Acenaphthalene	6.00E-02	Oral RfD	6.00E-02	IRIS, 1990	3.00€-02
Acsnaphthene	6 00E-02	Oral RfD	6.00E-02	EPA, 1990	3.00E-02
Benzo(a)pyrene	3.00€-02	Oral RfD	3.00E-02	IRIS, 1990	1.50€-02
Chrysene	3.00E-02	Oral RID	3.00E-02	IRIS, 1990	1.50E-02
Dibenzo(a)anthracene	3.00E-02	Oral RfD	3.00E-02	IRIS, 1990	1.50E-02
Fluoranthene	4 00E-02	Oral RID	4.00E-02	EPA, 1990	2.00E-02
Fluorene	4.00E-02	Oral RfD	4.00E-02	IRIS, 1990	2.00E-02
Phenanthrene	3.00E-02	Oral RfD	3.00E-02	EPA, 1990	1.50E-02
Pyrene	3.00€-02	Oral RfD	3.00E-02	IRIS, 1990	1.50E-02
arathion	5.10E-35	REL	6.00E-03	EPA, 1990	3.00E-03
entachlorobenzene	8 00E-04	Oral RfD	8.00E-04	IRIS, 1990	4.00E-04

TABLE 4B (continued)

Rody Mourtain Arenal (RMA) Reference Doses (RIDs) for Noncarcinopenic Health Effects (mo/ro/dsy)

	Inhalation	Reference or	Ciral	Reference or	Dermal
	Route	Basis of	Route	Basis of	Route
Pollutant	RfD	Inhalation RfD	RfD	Oral RED	RfD
Phenoi	1.94E-02	ACGIH-TWA	6.00E-01	IRIS, 1990	3.00E-01
Pyridine	1.63E-02	ACGIH-TWA	1.00E-03	IRIS, 1990	NC
Quinoline	2.00E-01	Oral RID	2.00E-01	FRIS, 1980	1.00E-01
Styrene	2.17E-01	ACCIH-TWA	2.00E-01	IRIS, 1990	NC
Supona	1.50E-04	Oral RfD	1.50E-04	EBASCO, 1990	7.50E-05
Tetrachlorobenzene	3.00E-04	Oral RfD	3.00E-04	IRIS, 1990	1.50E-04
Tetrachioroethene	3.46€-01	AWT-HIEDA	1:00E-02	FRIS, 1990	NC
Toluene	5.71E-01	EPA, 1990	2.00E-01	IRIS, 1980	NC NC
Trichiorobenzene	3.00€-03	EPA, 1990	2.00E-02	EPA, 1990	1.00E-02
Trichloroethene	2.74E-01	ACGIH-TWA	7.35E-03	EPA, 1987	NC
Urea	8.47E-02	Oral RfD	8.47E-02	Derived	4.28E-02

8.00E-04

1.33E-02

8.57E-02

Oral RID

ACGIH-TWA

EPA, 1990

inorganics

Vapona

Vinyl Chloride

Xylenes (total)

Alumnum
Ammonst
Antimony
Ansenic
Berium
Berylium
Boron
Cadmum
Calcium
Chromum (III)
Chromum (VI)

2.04E-03	ACGIH-TWA	NE	-	NC
1.73E-02	ACGIH-TWA	NE	-	NC
5.10E-04	ACGIH-TWA	4.00E-04	IRIS, 1990	2.00E-05
2.04E-04	ACGIH-TWA	1.00E-03	EPA, 1980	5.00E-05
1.00E-04	EPA, 1990	7.00E-02	IRIS, 1990	3.50E-03
2.04E-06	ACGIH-TWA	5.00E-03	IRIS, 1990	2.50E-04
4.11E-03	ACGIH-TWA	NE	-	NC
5.10E-05	ACGIH-TWA	1.00E-03	IRIS, 1990	NC
1.46E-03	ACGIH-TWA	NC	_	NC
5.10E-04	ACGIH-TWA	NE	-	NC
5.10E-05	ACGIH-TWA	5.00E-03	IRIS, 1990	NC
5.10E-05	ACGIH-TWA	2.30E-03	Derrved	NC

8.00E-04

1.30E-03

2.00E+00

IRIS, 1990

Derived EPA, 1900 4.00E-04

NC

NC

TABLE 4B (continued)

Rocky Mountain Arsenal (RMA) Reference Doses (RfDs) for Noncercinogenic Health Effects (mp/kg/dsy)

	Inhalstion	Reference or	Oras	Reference or	Dermal
	Route	Bases of	Route	Base of	Rouse
Poliutant	RfD	Inhaistion RID	RID	Oral RfD	RID

Capper
Cyanogen
Hydrogen Cyanide
iron
Lead
Lithium
Magnesium
Manpanese
Mercury
Molybdenum
Nickel
Phosphate
Potessium
Salenium
Sticon
Siver
Scdium
Strantium
Thallium
Tin
Titanium
Vanadium
Yttnum
Zinc

		1		
1,00E-J2	EBASCO, 1990	3.80E-02	EBASCO, 1990	1.90E-03
2.14E-02	ACG → TWA	NE		NC
5.10E-03	ACG - TWA	NE	-	NC
1 02€-03	ACC HITWA	NE	-	NC
4.30E-04	EBASCO. 1990	1.40E-03	EBASCO, 1990	7.00E-05
1.00E-04	Denved	NE	-	NC
6.15E-03	ACG/m-TWA	NE.	-	NC
3 00E-04	EPA, 1990	NE	_	. NC
8.57E-05	EPA, 1990	3.00E-04	EPA, 1990	1.50E-05
5.10E-03	ACG:H-TWA	NE	-	NC
1.02€-04	ACG:H-TWA	NE	_	NC
		NC	-	NC
		NC	-	NC
2.04E-04	ACGIH-TWA	3.00€-03	EPA, 1990	1.50E-04
5.10E-05	ACCIH-TWA	NC	-	NC
1.02£-05	ACG H-TWA	3.00€-03	:RIS, 1990	1 50E-04
		NC	-	NC
		NE		NC
1.02€-04	ACG:H-TWA	7.00E-05	EPA, 1990	3.50E-06
2.04E-03	ACG:H-TWA	NE	-	NC
6.11E-03	ACGIH-TWA	NE	-	NC
5.10E-05	ACG.=:TWA	7.00E-03	EPA, 1990	NC
1.025-03	ACCIT-TWA	NE	_	NC
8 19E 03	AGG - TWA	2.00€-01	EPA, 1990	NC

TABLE 4B (continued)

Rocky Mountain Areans' (FMA) Reference Doses (RIDs) for Noncerchappenic Health Effects (mg/kg/day)

	inhalation	Reference or	Oral	Reference or	Dermai
	Route	Base of	Route	Basis of	Route
Pollutant	RID	Inhalation RTD	RID	Oral RfD	RID

Other Acid Gases/ Orbaria Pollutares

Carbon Monoxide
Hydrogen Chloride
Hydrogen Fluoride
Nitric Acid
Nitrogen Oxides
Particulate Matter

Sulfur Diaxide

5.81E-02	ACGIH-TWA		
7.65E-03	ACGIH-TWA		
2.65£-03	ACGIH-TWA		
5.30E-03	ACGIH-TWA		
2.86E-02	NAAQS		
4.29E-02	NAAQS		
2.29E-02	NAAOS		

NC = Not of concern

NE = Not Evaluated

TABLE 5. Exposure Parameters* to be Used in Human Health Risk Assessment - Rocky Mountain Arsenal

Pathways and Parameters	Maintenance Worker	Farm House- hold-Adult	Farm House- hold-Child	Resident -	Resident - Child
AIR PATHWAY					
· Breathing rate	10 m³/day (EBASCO)	20 m ³ /day (Woodward Clyde)	10 m³/day	20 m ³ /day (Woodward Clyde)	10 m³/day
· Exposure frequency	250 days/yrª	365 days/yr	365 days/yr	365 days/yr	365 days/yr
SOIL PATHWAY					
· Boil ingestion rate	50 mg/day (EBASCO)	100 mg/day (EPA, Region VIII)	200 mg/day (EPA, Region VIII)	100 mg/day (EPA, Region VIII)	200 mg/day (EPA, Region VIII)
· Exposure fre- quency for soil ingestion	225 days/yr*	365 days/yr	365 days/үг	365 days/yr	365 days/yr
· Bkin surface area	1700 cm ² (EBASCO)	1700 cm ² (EBASCO)	2188 cm ^{2 b}	1700 cm ² (EBASCO)	2188 cm ^{2 b}
· Boil adherence factor	3.5 mg/cm ² (EBASCO)	3.5 mg/cm ² (EBASCO)	0.51 mg/cm ² (EBASCO)	0.51 mg/cm ² (EBASCO)	0.51 mg/cm ² (EBASCO)
· Soil matrix factor	0.15 (EBASCO)	0.15 (EBASCO)	0.15 (EBASCO)	0.15 (EBASCO)	0.15 (EBASCO)

TABLE 5. Exposure Parameters* to be Used in Human Health Risk Assessment - Rocky Mountain Arsenal (cont'd.)

Pathways and Parameters	Maintenance Worker	Farm House- hold-Adult	Farm House- hold-Child	Resident -	Resident -
BOIL PATHWAY			•		
· Dermal absorp-		0.01	0.01	0.01	0.01
tion ractor	(metals) 0.10	(metals) 0.10	(metals)	(metals)	(metals)
	(organics) (EBASCO)	(organics) (EBASCO)	(organics) (EBASCO)	(organics) (EBASCO)	(organics)
· Exposure fre-	195 days/yr ^c (5 days/wk;	195 days/yrc	195 days/yrc	117 days/yr ^c (3 days/wk:	195 days/yr ^c
dermal contact	35 wks/yr)			35 Wks/yr)	
· Vegetable					
-Root	-	65.3 g/day	31.1 g/day	11.7 g/day	3.88 g/day
		(includes	(includes	(excludes	(excludes
-Fruiting	1	64 g/day	33.6 g/day	64 g/day	33.6 q/day
-Leafy	1	11.9 g/day	1.24 g/day	11.9 g/day	1.24 g/day
· Percent Vege-	!	90% (EPA,	90 % (EPA,	58% (HLA)	58% (HLA)
grown		Region VIII)	Region VIII)		
. Milk Ingestion Rate		305 g/day	390 g/day	305 g/day	390 g/day

TABLE 5. Exposure Parameters* to be Used in Human Health Risk Assessment Rocky Mountain Arsenal (cont'd.)

Pathways and Parameters	Maintenance Worker	Farm House- hold-Adult	Farm House- hold-Child	Resident - Adult	Resident -
SOIL PATHWAY					
· Milk Fat inges- tion rate	***	11 g/day	16 g/day	11 g/day	16 g/day
· Percent milk locally-produced	1	100% (home- produced)	100% (home- produced)	5% (locally -obtained)	5% (locally -obtained)
• Beef ingestion rate		67 g/day	37 g/day	Kup/6 19	37 g/day
· Beef fat ingestion rate	-	15 g/day	Kup/b 6	15 g/day	9 g/day
· Percent beef locally-produced	!	100% (home- produced)	100% (home- produced)	5% (locally -obtained)	5% (locally -obtained)
· Fish ingestion rate	-	4.84 g/day (HLA)	2.42 g/day (1/2 adult rate)	4.84 g/day (HLA)	2.42 g/day (1/2 adult rate)
ALL PATHWAYS					
· Body weight	70 kg (EBASCO)	70 kg (EBABCO)	15.5 kg (EBABCO)	70 kg (EBASCO)	15.5 kg (EBASCO)

*Infant Exposure Parameters: Inhalation rate = 3.8 m³/day; Breast milk ingestion rate = 800 Body weight = 9 kg.

^bBased on arms and hands exposed 50% of the time, and arms, hands, and legs exposed 50% of oIt was assumed that during the colder months, dermal exposure would be insignificant due *Based on 90% of time spent outside (Don Marlow, personal communication, 1990). the time (Exposure Factors Handbook, EPA/600/8-89/043, July, 1989)

dall vegetable ingestion rates are expressed in wet weight and are cited from Methodology for to such factors as snow cover, frozen ground, and greatly reduced exposed skin surface area. Assessing Health Risks Associated with Indirect Exposure to Combustor Emissions. (EPA/600/6-90/003, 1990).

elt was assumed that a subsistence farmer would consume 100% home-produced beef and milk. We have conservatively assumed 5 percent of beef and milk intake for adult and child resident is from locally-produced sources.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION VIII

999 18th STREET - SUITE 500 DENVER, COLORADO 80202-2405

OCT 18 1990

Ref: 8HWM-FF

Donald Campbell
Office of the Program Manager
ATTN: AMXMR-PM
Rocky Mountain Arsenal
Commerce City, Colorado 80022-2180

Re: Rocky Mountain Arsenal (RMA), Basin F Liquid Incinerator, Comments on Air/Risk Assessment Protocol.

Dear Mr. Campbell:

In general we found that this document adequately addresses the Air Modeling and Risk Assessment for the Basin F incinerator.

The current lack of information regarding incinerator emission rate, incinerator efficiency, heat related transformation of Basin F liquid and photochemical reaction products virtually eliminates the ability to derive empirical data for input to the risk assessment process. As a result, no useful assessment of incinerator risk is possible at this time. No conclusions from this risk assessment can or should be drawn from the results of the proposed modeling effort or related risk assessment.

The approach presented will be (with the minor revisions as stated in attached Exhibits A and B) a useful tool for assessment of risk once empirical site-specific data is derived for the incinerator from the trial burn (see Decision Document, Section 9.2.2, page 9-5 thru 9-8).

Sincerely,

Connally E. Mears
EPA Coordinator for RMA
Cleanup

enclosure cc: Glenn Tucker, ATSDR Robert Williams, ATSDR Bruce Huenefeld, RMA Major Larry Rouse, DA Brad Bridgewater, Department of Justice David Shelton, CDH Jeff Edson, CDH Ellen Mangione, CDH Vicky Peters, Colorado AG's Office Robert O. Warwick, Weston Lou Millitana, Weston Chris Hahn, Shell Oil Company George Roe, Shell Oil Company all with enclosure

EXHIBIT A

Ambient Air Quality

GENERAL COMMENTS:

In general, we have found that this document adequately addresses the modeling of air quality in the vicinity of the incinerator. We feel that this model, along with the modifications that have been made by Weston, is an appropriate model for this application.

SPECIFIC COMMENTS:

Comment 1. Page 1-4, Table 1-1 Specify "all other compounds".

Per the Decision Document (DD), a hazardous waste
incinerator must achieve the RCRA substantive DRE of 99.99% for
each principle organic hazardous constituent (POHC) designated
for each waste feed. Include in the text that the trial burn is
required to demonstrate the incinerator's ability to achieve the
DD performance requirements.

Comment 2. Page 2-1, 2nd Paragraph Describe the "preliminary review" conducted to determine the area's classification. The area's classification should be based on the locations of the potential receptors. The west and south sides of the arsenal, where most to the sensitive receptors will most likely be located, are urban.

Give a description of the classification of Auer.

- Comment 3. Page 2-1, 3rd Paragraph Note that channelling due to buildings or valleys can lead to higher concentrations than predicted by assuming flat terrain in the model. Again, a description of the geographical setting in the area is needed, as well as a consideration of the locations of the sensitive receptors in the area.
- Comment 4. Page 2-2, 1st Paragraph List the Primary pollutants for which concentrations will be predicted.
- Comment 5. Page 2-2, 3rd Paragraph The WESDEP allows for terrain adjustments. Will this be utilized for the area? The terrain adjustments should be used to more accurately predict the concentrations of pollutants to the south and west of the arsenal (i.e., Commerce City and Denver). Describe how the terrain adjustments are utilized in the WESDEP.

- Comment 6. Page 2-4, 1st Paragraph Include in the text (here, or elsewhere) all included output of the WESDEP model (i.e., will output include meteorological data for specific day, highest and second highest concentration values, etc.).
- Comment 7. Page 2-7, 2nd Paragraph What areas will be designated as sensitive receptors? What are the sensitive receptors in the area? Present a figure showing the receptor points for the area. Include the receptor points that will be located in sensitive areas. Show what each sensitive area represents.
- Comment 8. The overall dispersion modeling protocol appears to be satisfactory. The use of EPA ISCST model for the inhalation concentrations follows EPA recommendations. The use of the WESTON WESTDEP model for wet and dry calculations is acceptable for risk assessment from Superfund/RCRA type analyses.

The use of National Weather Service (NWS) data (1985-1989) from Stapleton Airport is acceptable. The Proposed receptor grid, including a refined receptor grid with 100 meter resolution, is satisfactory. The modeling of wet deposition during precipitation events is correct. The plan to use different surface roughness lengths for each receptor should include calculation of surface roughness along the path from the stack to each receptor. The protocol did not address the issue of dispersion modeling and risk assessment for short term upset conditions. Malfunction upset conditions can produce high concentrations during a short time period.

EXHIBIT B

Health Risk Assessment Protocols

GENERAL COMMENTS:

1. The Risk Assessment Protocol is comprehensive with clearly stated objectives. The following specific comments apply primarily to issues needing further clarification.

SPECIFIC COMMENTS:

- Comment 1. Page 3-1, Bullet 5 The risk assessment should not be concerned with the "technological feasibility of lowering (or raising) limits" for the proposed incinerator.
- Comment 2. Page 3-2 We suggest that the DD should be consulted for reference concerning acceptable air concentrations (see page 9-1 thru 9-7).
- Comment 3. Page 3-2 It is not clear why the authors have chosen to break out the assessment of acute health effects into its own section. Normally, acute, subchronic and chronic effects are dealt with in the toxicity and risk characterization sections of the risk assessment.
- Comment 4. Page 3-3 Contaminant identification: "Historical data" which is intended for use in the risk assessment should be clearly defined and referenced. It seems that, although information regarding the waste stream might be useful supporting information, the central question is: what is the nature and rate of incinerator emissions?
- Comment 5. Page 3-3 Contaminant Identification: Please provide references for the source of information regarding "anticipated destruction removal efficiencies (DRE)".
- Comment 6. Page 3-3, first bullet What historical periods will be used to determine initial emissions data? Which parties will participate in finalizing exposure parameters and scenarios and when is that likely to occur? Guidance on this is contained in the DD, Section 9.

The term "hazard index" pertains to non-carcinogens.

Comment 7. Page 3-3 Consider a pathway that includes deposition of contaminants on leafy vegetables also.

We suggest that information developed in the Human Health Exposure Assessment should be used for applicable contaminants (already developed and checked).

- Comment 8. Page 3-4, last paragraph, line 8 How will background levels be determined?
- Comment 9. Page 3-4 Contaminant Identification: Please provide references for the source of information regarding "accepted theories of destruction and reformation".

Exactly how the relationship between toxicity and predicted emission rates will result in the selection of pollutants of concern is explained in the DD. A statement referencing this in the risk assessment protocol might be added for clarification.

Please explain the rationale for not assessing non-carcinogenic risk through the soil and surface water pathways. Please provide a brief description of the Tier 1 analysis for the reader.

Comment 10. Page 3-5, Section 3.3, second paragraph, line 3
Should read: "duration of toxic values" (?)

The Human Health Exposure Assessment (ExA) contains toxicity values for most chemicals likely to be of concern. We recommend that these be used rather than deriving new ones.

We commend the use of reasonable maximum exposure values. Make sure the values used in this deliverable are consistent with the RME values that were used in the Exposure Assessment (ExA) (see attached, Exhibit C) and those of Chris Weis, of this office, (ph. 303/294-7655), that were developed for the off-post RI.

- Comment 11. Page 3-5 Toxicity Assessment: Contaminants or expected contaminants for which no numerical estimates of toxicity are available should be identified to the EPA.
- Comment 12. Page 3-6 Exposure assessment: The final paragraph on page 3-6 indicates that site specific exposure parameters will be employed when available. The use of such site specific parameters must be approved by the EPA prior to application for quantitative risk assessment. Wherever applicable, the exposure parameters used in the off-post risk assessment will be consistent with those applied to the on-post Exposure Assessment.

- Comment 13. Page 3-5 & 3-6, Section 3.4.1 There is no scenario (RMIE) which consists of "an individual currently living within the area where the effect on the air quality will be maximal".
- Comment 14. Page 3-7 to 3-15 Except for dermal exposure, none of the exposure scenarios appear to consider absorbtion or bioavailability factors. Will a factor of "one" be assumed throughout? The dermal exposure values used are too low, check them against those values used in the ExA attached.
- Comment 15. Page 3-9 Exposure Assessment: The authors apply soil/dust ingestion rates derived from 1989 Exposure Factors Handbook. Please see OSWER Directive 9850.4, January 27, 1989, "Interim Final Guidance for Soil Ingestion Rates".

Estimates of uptake of contaminants into garden vegetables should be based on empirical data derived from Travis and Arms (1988).

The fraction of homegrown fruits and vegetables which may be ingested by a farm family should be assumed to be 90%.

- Comment 16. Page 3-11 Exposure Assessment: It seems very unlikely that exposure to surface water will occur at the rate indicated on page 3-11 of the Risk Assessment Protocol. To our knowledge, no one in the area is presently using surface water as a primary drinking water source.
- Comment 17. Page 3-15, Section 3.5.1.1 What will be the exposure duration considered for noncarcinogenic effects?
- Comment 18. Page 3-16 Use of a "quantitative" uncertainty analysis is not recommended. See Risk Assessment Guidance for Superfund (RAGS), Page 8-19.

Re: acute health effects. The assessment should consider other health effects that are not related to inhalations, like burning eyes, etc.

- Comment 19. Exposure Assessment: Please apply Bioconcentration factors from EPA-503/8-89/002, September 1989 where applicable.
- Comment 20. Exposure Assessment: Much information exists regarding the transfer of metals (particularly lead) from maternal sources to breast milk. It will not be acceptable to dismiss this pathway for the proposed incinerator.

EXHIBIT C

7470K

REASONABLE HAXIMIN EXPOSURE (RHE) ESTIMATES FOR THE EXPOSURE ASSESSMENT SCREENING EVALUATION

Parameter Hame	Recreational Visitors	Regulated/Casual Visitors	Commercial Morkers	
Dermal Absorption (All compounds)	0.01 (metals) 0.10 (organics)	0.01 (metals) 0.10 (organics)	0.01 (metals) 0.10 (organics)	0.01 (metals) 0.10 (organics)
Body Helght	Adult: 70 kg Adult: 70 kg Child: 10th percentile(M&F) Child: 10th percentile(M&F)	Adult: 70 kg Child: 10th percentile(H&)	70 kg	70 11
Area of Basement	HA1/	ž	138 m ²	138 m²
Basement Volume	Ξ	AA	210 m ³	210 m ³
Basement Volume/ Surface Area Ratio	* ***	МА	1.52 m	1.52 m
Depth of Basement Below Soil	₹-	МА	2 a	2 m
Volume of Basement Air Inhaled	 .≦	ž	0.75 m³/day	9.75 m ³ /day
Time Per Basement Air Change		· ·	O.069 days/exchange	0.069 days/exchange
Soil Temperature	\$	¥	13.0	13°C
Soll Density	. X	NA NA	0.45 g/cm³	0.45 g/cm³
Soil Porosity - Air Space - Hater Content	≨-	NA NA	O.64 cm ³ /cm ³ site specific	0.64 cm ³ /cm ³ site specific site specific
Soil Organic Content	≨	Ş	0.001 (fraction)	0.001 (fraction)
1/ Not applicable				

TABLE 8
REASONABLE HAXIMIM EXPOSURE (RNE) ESTIMATES
FOR THE EXPOSURE ASSESSMENT SCREENING EVALUATION

SENT BY: A

Parameter Hame	Recreational Visitors	Regulated/Casual Visitors	Commercial Morkers	Industrial Morkers
Soll Ingestion	2 1/2 250 mg/day 6 250 mg/day Adult 100 mg/day	2 1/2 250 mg/day 6 250 mg/day Adult 100 mg/day	100 mg/day	100 mg/day
Breathing Rate	2 1/2 8.3 1/min 6 20.3 1/min Adult 24 1/min	2 1/2 4.2 1/min 6 13.3 1/min Adult 10 1/min	4.8 m³/day	20 m³/day
Dust Load Factor	0.042 mg/m3	0.042 mg/m³	0.021 mg/m3	0.042 mg/m ³
Pulmonary Retention	0.75	0.75	0.75	0.75
Pulmonary Absorption (All compounds)) (100 percent)	i (100 percent)	(100 percent)	i (100 percent)
Exposure Period (Daily)	6 hours	6 hours	8 hours	8 hours
Exposure frequency (Annual)	108 days/year	108 days/year	253 days/year	253 days/year
Exposure Duration (Lifetime)	70 years	30 years	30 years	30 years
Skin Surface Area	2 1/2 2,100 cm ² 6 2,500 cm ² Adult 4,500 cm ²	2 1/2 2,100 cm ² 6 2,500-cm ² Adult 4,500 cm ²	1,120 cm²	3200 cm ²
Soil Covering	0.51 mg/cm ²	0.51 mg/cm2	0.11 mg/cm ²	1.5 mg/cm ²
Call Matrix			0	1.0

7470K

WESTON WAY WEST CHESTER, PA 19380 PHONE. 215-692-3030 TELEX: 83-5348

December 26, 1990

Rocky Mountain Arsenal Building 11 Commerce City, CO 80022-2180

Attn: Mr. Bruce Huenefeld

Office of the Program Manager

AMX RM-PM

PRAC Contract No. DACW45-90-0015

Delivery Order 5001 DCN: 3886-44-01-AATT

Subject: Rocky Mountain Arsenal

Basin F Liquid Incinerator

Response to Comments on WESTON Air Model/Risk

Assessment Protocol

Dear Mr. Huenefeld:

This letter summarizes WESTON's responses to the protocol review prepared by EPA Region VIII and received by WESTON on 19 Oct 90. We hope EPA and RMA concerns have been adequately addressed while maintaining as much consistency as possible with the previous published on-site and off-site exposure assessment work. Attached is a revised protocol which reflects the substance of the comments and WESTON's proposed modifications. We have also included the final list of contaminants, emissions data, a table of exposure parameters, and a table of toxicity criteria in an attachment to the revised protocol.

We received assistance from Dr. Chris Weis (EPA VIII) and Edwin Berry and Charlie Scharman (RMA) in terms of developing the final exposure assumptions and in obtaining background information on the "Off-Post FS" (i.e., the HLA/ESE Report).

RESPONSES TO COMMENTS

WESTON Comment to Cover Letter from Connally Mears to Don Campbell (18 Oct 90)

WESTON has provided clarification and more detail in the revised protocol on the methods used to determine the Submerged Quench Incinerator (SQI) emission rates for organics, metals, and products of incomplete combustion (PICS). WESTON's methodology incorporates comparison of predicted emissions from the waste stream and test burn data with an extensive emissions database for hazardous waste and municipal solid waste facilities. In the absence of empirical data, this approach provides a comprehensive and statistically defensible prediction of average and upper bound emission rates

U.S. Environmental Protection Agency December 26, 1990 Mr. Bruce Huenefeld

Page 2

which can be meaningfully applied to the estimation of exposure in the risk assessment.

The exposure assumptions presented in the protocol have been revised to be as consistent as possible with both on-post (EBASCO Report) and off-post (HLA/ESE Report; Woodward Clyde Report) exposure assessments.

RESPONSES TO EPA VIII COMMENTS (EXHIBIT A)

AMBIENT AIR QUALITY MODELING PROTOCOL

- "All Other Compounds" refers to organic compounds Comment 1 other than dioxins/furans and PCBs. This has been corrected in the revised protocol. The statement concerning the trial burn has been added into Section 1.2 of the revised protocol.
- Comment 2 A preliminary review was based on inspection of the typographic maps of the SQI incinerator location out to 3 km to determine the approximate percentage of each of the land use as defined by Auer. Based on their approximate evaluation the percentage of land which could be classified as either rural or urban for air quality modeling purposes was greater Thus the preliminary review indicates than 50%. the area shown be classified as rural. A copy of method (Auer, 1978) for land classification for air quality modeling purposes is attached.
- Comment 3 Receptors in the grid network used for modeling will include both areas of flat and elevated terrain.
- Concentrations will be estimated for all pollutants Comment 4 expected to be emitted by the SQI facility. listing of the pollutants to be modeled is provided in the revised protocol (Appendix A).
- Comment 5 Terrain adjustments will be utilized in the WESDEP model. The terrain adjustments used in the WESDEP model are the same as those found in the USEPA Industrial Source Complex Short Term (ISCST) model and generally reduce the plume centerline distance to account for elevated terrain.

U.S. Environmental Protection Agency December 26, 1990 Mr. Bruce Huenefeld

Page 3

- Comment 6 The WESDEP model outputs annual averages of concentration, dry deposition, deposition velocity, wet deposition, and total deposition for each receptor point.
- Comment 7 Refer to Section 3.4.1 (Exposure Scenarios) of the revised protocol.
- Surface roughness will be determined for each Comment 8 receptor by evaluating the area halfway to the adjacent receptors and assigning an appropriate surface roughness for the area reviewed.

RESPONSES TO EPA VIII COMMENTS (EXHIBIT B)

HEALTH RISK ASSESSMENT PROTOCOL

- Comment 1 The "technological feasibility" statement has been deleted. It was not the intent of the statement to imply that the risk assessment was concerned with "technological feasibility" of lowering emissions limits. Rather it was to indicate that the risk assessors would provide assistance to the design engineering staff at WESTON in evaluating the individual chemical emission rates relative to health risk.
- Comment 2 The Final Decision Document has been incorporated as a reference for quidance for the risk assessment.
- Comment 3 Acute health effects will be addressed in the risk characterization phase should noncarcinogenic hazard indices exceed unity. last section of the protocol was inappropriately identified as "Acute Health Effects" instead of the intended "Upset Conditions Analysis". Note that "upset conditions" has been deleted from the revised protocol. It was WESTON's understanding from meeting with the Army and EPA that an upset condition analysis was not relevant to establishment of emissions limits since a chronic toxicity assessment would be more conservative.

U.S. Environmental Protection Agency Mr. Bruce Huenefeld

December 26, 1990 Page 4

Comment 4

The "Contamination Identification" section of the protocol has been rewritten to address all concerns expressed by EPA relative to estimating emission rates for the contaminants of concern. All sources of information used have been clearly indicated.

Comment 5

The reference for destruction removal efficiency (DRE) is 40 CFR 264.343 ("Performance Standards). This reference has also been incorporated into Table 1-1 of the revised protocol.

Comment 6

Historical data used to calculate emissions rates for the risk assessment have been thoroughly discussed and cited in the revised protocol (Section 3.2). The revised protocol (Section 3.4.1 and Appendix A) presents key exposure parameters based on consultation with Dr. Chris Weis and Charlie Scharmann, and on review by WESTON of the off-post FS (HLA/ESE Report) and on-post (Ebasco Report) exposure assessments. The term "Hazard Index" has been appropriately clarified to indicate it refers to non-carcinogenic risk.

Comment 7

Deposition (both wet and dry) on leafy vegetable pathways is addressed in the protocol and will be evaluated in the risk assessment. We have reviewed the off-post exposure assessment (HLA/ESE Report) and incorporated for consistency and where appropriate, essential exposure parameters and all other pertinent, site specific background data for the risk assessment.

Comment 8

We will employ locally available soil concentrations for background metals if possible. Mr. Edwin Berry has referred us to Dr. William Trautman to obtain such data.

Comment 9

References for theories of PIC formation are Trenholm and Hathaway (1984) and Oppelt (1987) and are cited in the revised protocol. A statement referencing the Final Decision Document for pollutant selection has been incorporated in the revised protocol. We will be assessing non-carcinogenic risk through the soil and surface water pathways, and the protocol has been clarified appropriately. The "tier 1" analysis for surface water contamination is a screening method with very conservative assumptions to provide an initial cut

WESTER

U.S. Environmental Protection Agency Mr. Bruce Huenefeld

December 26, 1990 Page 5

for contaminant selection. The method is described in more detail in the revised protocol (Section 3.1).

- Comment 10
- WESTON has reviewed the Human Health Exposure Assessment Report (HLA/ESE). Appendix A contains a table summarizing those contaminants requiring derivation of toxicity criteria, and indicates those that follow the HLA Report. Preference will be given to IRIS (U.S. EPA Integrated Risk Information System) and to the most current U.S. EPA Health Effects Assessment Summary Tables. Dr. Chris Weis (EPA VIII) will be consulted for any questions concerning toxicity criteria or the development of exposure assumptions and scenarios. Attachment C (which contained various on-site exposure parameters) that was sent to us with EPA Region VIII comments was apparently taken from an older draft of the on-post Ebasco report. We have obtained all the current off-post and on-post exposure assessment assumptions and incorporated these parameters in a table of assumptions included in the revised protocol.
- Comment 11 Dr. Chris Weis will be consulted on our approach in deriving any toxicity criteria.
- Any site specific exposure parameters used will be discussed with Dr. Chris Weis of EPA VIII. We have strived to be as consistent as possible between the off-post and on-post exposure assumptions previously developed.
- Comment 13 The RMEI at the point of maximum off-site dry deposition will also be exposed to the maximum off-site ambient ground level air concentration, based on the air modeling results. This is discussed in greater detail in Section 3.3.
- Toxicity criteria for ingestion and inhalation are based on administered dose, and therefore, it is not necessary to adjust for absorption. Where doses must be extrapolated from one route to another, absorption factors have been adjusted according to the guidance established in RAGS (U.S. EPA, 1989, Interim Final). Bioavailability for the inhalation and dermal pathways will be considered by using an inhalation retention factor of 0.75 and

WESTERN

U.S. Environmental Protection Agency Mr. Bruce Huenefeld

December 26, 1990 Page 6

a soil matrix factor of 0.15, respectively. In terms of dermal exposure parameters being too low, we assume EPA is referring to exposed skin surface area. The values in the Ebasco report (on-site) were based on a recreational use scenario and were, therefore, larger than the values we recommend which are more appropriate for a residential or worker scenario.

- Comment 15
- The soil/dust ingestion rates that will be used are those in OSWER Directive 9850.4 (1/27/89). Garden vegetable (leafy; fruits) uptake data are consistent with Travis and Arms (1988) and have been appropriately cited. We are in agreement with the 90% ingestion value of homegrown vegetables and fruits for farm families. These changes have been reflected in the revised protocol.
- Comment 16-
- The surface water pathway for drinking water will not be applicable in this risk assessment. However, it was included in our protocol to indicate to EPA how we would initially approach evaluating exposure. Note that surface water will be a pathway in terms of fish consumption, as discussed in Section 3.4 of the revised protocol.
- Comment 17
- WESTON calculates a yearly average dose for soil-related exposure routes based on the maximum predicted soil concentration, which will occur at the end of the facility lifetime (i.e., at the end of year two). A yearly average dose is also calculated for the inhalation exposure route based on the predicted air concentration, which is assumed to remain constant during the operation of the facility. These predicted annual exposure doses are compared with non-carcinogenic reference doses (RFDs) in order to assess potential non-carcinogenic effects.
- Comment 18
- The uncertainty analysis to be presented will be consistent with RAGS (p 8-19). The statement on p. 3-16 of the original protocol was referring to a "sensitivity analysis". Acute "inhalation" criteria many times are based on acute irritant effects (mucous membranes; eyes; nasal passages; skin).

U.S. Environmental Protection Agency Mr. Bruce Huenefeld

December 26, 1990 Page 7

Comment 19

The revised protocol cites bioconcentration factors

from EPA-503/8-89/002 where appropriate.

Comment 20

Dr. Chris Weis has indicated to us that transfer factor data for metals from maternal sources to milk are available and has provided a reference to this effect. We are evaluating this currently.

Please inform us in writing of your approval of this protocol, and/or of any additional comments or concerns you may have. If you have any immediate questions, call me (215-430-7276), Lou Militana (215-430-7217) or Paul Siebert (215-430-7207) concerning the risk assessment, air modeling or emission rate determination, respectively.

Sincerely,

ROY F. WESTON, INC

Robert O. Warwick, Jr., Ph.D., DABT Section Manager, Risk Assessment

JOW/kh Attachments

cc: Edwin Berry, RMA Amit Sarkar, WESTON Quintin Todd, WESTON Lou Militana, WESTON Charles Dobroski, WESTON John Barone, WESTON Gary Lage, WESTON Paul Siebert, WESTON

Correlation of Land Use and Cover with Meteorological Anomalies

AUGUST H. AUER, JR.

Department of Atmospheric Science, The University of Wyoming, Larumie 82071 (Manuscript received 26 January 1976, in final form 1 November 1977)

ARSTRACT

Aerial reconnaissance of the greater St. Louis area has led to the identification and classification of land use types. The land use classification provides as much compatibility as possible with other classification systems, yet offers the inclusion of percentage vegetative cover as an innovative characteristic of the land use description. The observed meteorological (thermodynamic, kinematic and radiative) anomalies in the vicinity of the metropolitan area are shown to be affiliated with "meteorologically significant" land cover characteristics.

It is suggested that the specific details of population, areal extent and type of metropolitan land cover must be considered in estimating the potential for inadvertent weather modification.

1. Introduction

It has been established in numerous empirical studies that city mesoclimates are markedly different from those over surrounding, more natural areas; i.e., city environments are usually warmer, drier, less wind, cloudier and have a larger particulate burden than their rural counterparts. The most extensive study of urban meteorology has been conducted under the auspices of Project METROMEX (Changnon et al., 1971). The contrasting atmospheric properties seem to be the direct result of differential urban-rural energy disposition brought about by significant physical differences between cities and their surroundings; namely, the contrasting character of surface material (e.g., vegetation versus concrete), landscape shape and structure, heat sources and retention, and evapotranspiration.

While meteorologists for several decades have published information on urban climates, there is now a need to correlate these meteorological anomalies with more specific land use identification and description than are now used (such as "downtown, center of the city, residential, commercial," etc.). The purpose of this article is to identify some certain features of the land use in St. Louis that are unique and may be "meteorologically significant" in explaining some thermodynamic, kinematic and radiative anomalies associated with the overriding atmosphere of the metropolitan St. Louis area.

2. Procedure

Low-level airborne mapping and photography were used to establish our "meteorological" land use mosaic for Metropolitan St. Louis. As a standard procedure in its research activities, the University of Wyoming

operated a Queen Air aircraft in the airspace over St. Louis. Aside from the computer-directed collection and recording of the meteorological and aircraft operational parameters, the data acquisition system is also equipped with an event marker. Event information, which is a discrete signal used to indicate up to 30 selected events such as specific land uses or photography, can be received from the pilot, copilot (scientist) and technician positions. In this manner, a designated event marker corresponding to a unique land use could be activated during the entire overflight of that land use. Among the aircraft operational parameters recorded are heading. VOR azimuth and DME position which allow plotting the aircraft flight path to within ±1° and 0.2 km, respectively. Thus, flight paths, time and corresponding event markers were plotted yielding a land use mosaic. Only those flights or portions thereof at 150-300 m AGL (above ground level) were used to collect land use information to minimize downward line of sight errors. Scores of photographs were also taken to identify what was meant by a particular land use type as well as to aid in establishing the areal extent of the land use type. Voice recorders were utilized by crew members for complementary information regarding use of event markers and photography. Since the research flight paths were many and varied across the entire metropolitan area, an adequate density of land use data was acquired. No major modification in land use in the metropolitan area was noted in the observational period 1973-76.

There is no one ideal classification of land use and land cover, and it is unlikely that one could ever be developed. In developing our classification system, every effort has been made to provide as much compatibility as possible with other classification systems

0021-8952/78/0636-0643\$05.00

^{© 1978} American Meteorological Society

nd

St.

currently being used by the various Federal agencies involved in land use inventory and mapping (e.g., Anderson & al., 1976). Our system satisfies the three major attributes of the classification process as outlined by Grigg (1965): 1) it gives names to categories by simply using accepted terminology; 2) it enables the classification scheme to be transferable; and 3) it allows inductive generalizations to be made. The classification system is capable of further refinement on the basis of more extended and varied use.

The approach to land use and land cover classification embodied in our system described herein is "meteorologically oriented," in contrast, for example, with the "people orientation" of Land Use Coding developed by the U. S. Urban Renewal Administration and the Bureau of Public Roads (1965).

3. Results

The analysis of the land use determination is shown in Fig. 1. The land use types in this classification as-

signed to the St. Louis Metropolitan area are listed in Table 1 along with a brief description of each. The types of land use and land cover categorization developed in this classification system can be related to other systems which classify the potential for any particular activity or land value. The classification is general enough to find utility in describing any metropolitan area land use as well as specific enough for association with relevant metropolitan anomalies.

For our use, the term "Metropolitan St. Louis area" has been assigned to that area encompassed by the outlying boundary of the normal residential (R1) land use. The Alton-Wood River, Ill., area (extreme northeast) has not been included in this metropolitan area, since it will be addressed separately. According to 1970 Census Bureau statistics, the City of St. Louis has a population of 622 236 (ranks 18) with a population density 3938 people per square kilometer (ranks 7). Census Bureau figures show a population of 2 363 017

AUGUST H. AUER, JR.

Fig. 1. Land use mosaic for the Metropolitan St. Louis area. Circled numbers with arrows show the location, viewing direction and figure number of accompanying photographs depicting examples of land use classification.

d. st

aj

re

of tl c F

ł

1

TABLE 1. Identification and classification of land use types found in Metropolitan St. Louis

_	Descriptio	n
Туре	Use and structures	Vegetation
- II	Heavy industrial	
– I2	Major chemical, steel and fabrication industries; generally 3-5 story buildings, flat roofs Light-moderate industrial	Grass and tree growth extremely rare; $<5\%$ vegetation
	Rail yards, truck depots, warehouses, indus- trial parks, minor fabrications; generally 1-3 story buildings, flat roofs	Very limited grass, trees almost total absent; <5% vegetation
CI	Commercial	
	Office and apartment buildings, hotels; >10 story heights, flat roofs	Limited grass and trees; <15% vegetation
R1	Common residential	
	Single family dwelling with normal easements; generally one story, pitched roof structures; frequent driveways	Abundant grass lawns and light-moderately wooded; >70% vegetation
- R2	Compact residential	
	Single, some multiple, family dwelling with close spacing; generally <2 story, pitched roof structures; garages (via alley), no driveways	Limited lawn sizes and shade trees; <30% vegetation
- R3	Compact residential	
	Old multi-family dwellings with close (<2 m) lateral separation; generally 2 story, flat roof structures; garages (via alley) and ashpits, no driveways	Limited lawn sizes, old established shade trees; <35% vegetation
R4	Estate residential	
	Expansive family dwelling on multi-acre tracts	Abundant grass lawns and lightly wooded; >80% vegetation
A1	Metropolitan natural	•
	Major municipal, state, or federal parks, golf courses, cemeteries, campuses; occasional single story structures	Nearly total grass and lightly wooded; >95% vegetation
A2	Agricultural rural	Local crops (e.g., corn, soybean); >95% vegetation
A .3	Undeveloped	
	Uncultivated; wasteland	Mostly wild grasses and weeds, lightly wooded; >90% vegetation
A4	Undeveloped rural	Heavily wooded; >95% vegetation
A.5	Water surfaces	,,,
	Rivers, lakes	

for a Metropolitan St. Louis. An inspection of Fig. 1 collaborates the population density statistics since land use type R3 is seen to comprise approximately 40% of the area within the city limits.

Fig. 1 also shows the packing of land use types I1, I2, C1, R2 and R3 in the center of the metropolitan area. Since these land uses are comprised of only 5-30% vegetation and contain an abundance of man-made structures, a probable influence on meteorological anomalies is anticipated more than from a more "industrial" or "residential" classification.

Figs. 2-6 show representative views of some land use types shown in Fig. 1 and described in Table 1. An

unabridged listing of land use photographs may also be found in Auer (1975b).

In particular, Figs. 4 and 5 highlight type R3. Since these residential structures seem to be coincident with most of the surface meteorological anomalies reviewed later, some additional description may be worthwhile. These multi-family dwellings (mostly two-family flats) were built circa 1915. Two features stand out clearly in Figs. 4 and 5: 1) nearly all dwellings are two-story and have flat, tarred roofs; and 2) the spacing between the buildings is very narrow (<2 m) with symmetry block after block. On-site estimates of the vegetative cover are less than 35%.

Table 2 gives a summary of the areal contributions according to land use types found in Metropolitan St. Louis. The contribution of streets, sidewalks and alleys to the total land use has not been included in Table 2. However, from input gleaned from aerial photographs,

¹ A more recent estimate compiled by the St. Louis Chapter of the American Statistical Association (St. Louis Globe-Democrat, 21 January 77) and the U. S. Census Bureau Report for 1975 Urban Population Estimates (The Denser Post, 13 April 77) still places the metropolitan population at 2.4 million but reduces the city population to 532 000.

Fig. 2. View of normal residential land use (R1) in the northwestern suburbs of the metropolitan area. Flight altitude is 265 m AGL.

detailed road maps and Abell (1975),² area estimates of street and sidewalk thoroughfares for St. Louis city and the metropolitan area can be made, and as a first approximation, may be assumed proportionately distributed through land use types I-C-R. Within the city limits, 21.6 km² of street pavement and 6.5 km² of sidewalk are estimated, corresponding to 13.6% and 4.1%, respectively, of the total city area. Suburban estimates are placed at 147.1 km² (14.9%) and 46.8 km² (4.7%), respectively.

It should also be pointed out that the areal coverage of metropolitan natural (A1) land use is dominated by the contributions of a few large recreational parks and cemeteries throughout the metropolitan area (e.g., Forest Park, Calvary-Bellefontaine Cemetery). While there are numerous (over 175) examples of A1 land use, the vast majority are small in size and their effect is obscured by surrounding anthropogenic alterations.

Within the city limits of St. Louis, the integrated vegetative cover is estimated at approximately 45%. However, 70% (109 km²) of the city area consists of I1-I2-C1-R2-R3 land use, adjacently located in the center of the city. These land uses collectively account for only a 25% vegetative surface. For the St. Louis Metropolitan area, the integrated vegetative cover is estimated at 65%.

th

ະຄ

ry

าร

At the extreme northeastern edge of the metropolitan area is the Alton-Wood River industrial complex. The principal industries in this area consist of steel smeltering and several petroleum refining complexes, dominated

terms of petroleum products output. The Alton-Wood River complex is addressed separately here because it has been demonstrated to be associated with some unusual and substantial increases in rainfall statistics (Schickedanz, 1974a) and clouds (Auer, 1976), although it is not large in areal extent and somewhat displaced from the other I1-I2-C1 land uses. The land use consists of types I1 and I2 with areas of 6.2 and 15.3 km², respectively; the associated domicile use is generally R1, covering about 50 km². While the land use may not seem impressive and conducive to weather anomalies, it should be noted that the refinery complex ranks as one of the strongest localized sources of heat $(7 \times 10^{11} \text{ cal h}^{-1})$ and water vapor $(3 \times 10^8 \text{ g h}^{-1})$ output in the St. Louis region.

by the Shell Oil Refinery (see Fig. 6) at Wood River

which ranks nationally among the top 12 refineries in

TABLE 2. Summary of areal coverages (km²) of specific land uses for Metropolitan St. Louis, excluding waterways, thoroughfares and the Alton-Wood River industrial complex. Numbers in parentheses are percents.

Land use	City of	Sub	urbe	Metropolitai
type	St. Louis	Missouri	Illinois	area
11	5.4 (3)	4.2 (<1)	6.7 (3)	16.3 (1)
12	21.4 (14)	14.6 (2)	33.9 (13)	69.9 (6)
C1	5.9 (4)	1.1 (≪1)	0.2 (<<1)	7.2 (<1)
Ri	29.2 (18)	629.4 (87)	198.2 (75)	856.8 (75)
R2	13.3 (9)	2.2 (≪1)	_	15.5 (1)
R3	63.4 (40)	1.8 (<1)		65.2 (6)
R4	_	53.3 (7)	_	53.3 (5)
A1	19.8 (12)	20.4 (3)	24.4 (9)	64.6 (6)
	158.4 (100)	727.0 (100)	263.4 (100)	1148.8 (100)
Total area	990.4			

³ Abell, W., 1975: Personal communication. Administrative Assistant to the Director of Streets, Room 322, City Hall, St. Louis, Mo. 63103.

Fig. 3. View of light-moderate industrial land use (I2), foreground, with backdrop of commercial land use (C1), in the vicinity just south of "downtown" St. Louis. Flight altitude is 305 m AGL.

4. Implications

Certain types of land use, when adjacently located, can effectively alter surface characteristics, landscape structure, heat source and retention, and evapotranspiration, thereby increasing the dimensions of what has been termed "the urban area" in the literature on urban meteorology.

Like most large cities, St. Louis has a marked surface heat island $(\pm 1.5 \text{ to } \pm 3.0^{\circ}\text{C})$ and a coincident (in

space and time) identifiable minimum specific humidity $(-0.5 \text{ to } -1.5 \text{ g kg}^{-1})$ evident in the summer afternoon climatology (Jones, 1973; Jones and Schickedanz, 1974) as well as in summertime case studies (Dirks, 1974a,b; Sisterson, 1975). Temperature increases $(+1^{\circ}\text{C})$ and specific humidity deficits (-1 g kg^{-1}) often extend a kilometer or more above the city and through the mixing layer to cloud bases (Auer and Changnon, 1977). An example of the thermodynamic anomalies in Fig. 7 is reproduced from Dirks (1974b) and clearly shows the

Fig. 4. View of compact residential land use (R3) to the south of "downtown" St. Louis. Flight altitude is 305 m AGL.

he

Fig. 5. Closeup view of compact residential land use (R3) in the southern sections of the City of St. Louis. Flight altitude is 235 m AGL.

developed mid-afternoon urban heat island and specific humidity deficit at 305 m AGL essentially associated with R1-R2-C1-R3 land use. Note the small area of 1.5 g kg⁻¹ humidity deficit just to the west of the city limits which seems to coincide with the I2-C1 land use of downtown Clayton and nearby industrial parks. Dirks (1974a) and Sisterson (1975) suggested that the lack of evaporating surfaces, such as comprise the I1-I2-C1-R3 land use, could account for a significant reduction in evapotranspiration over these portions of

the metropolitan area, observable as a specific humidity deficit.

Thermal perturbations, along with the effect of increased surface friction, may alter the airflow across a metropolitan area. The low-level airflow under light and moderate wind conditions has been found to be markedly perturbed by the city and often results in distinct convergence in or just downwind of the city center (Ackerman, 1974a,b, 1977; Auer, 1975a; Sisterson, 1975; Kropfli and Kohn, 1977; Wong and Dirks, 1978).

The thermodynamic anomalies in the mixing layer over the city are reflected in the preferred areas in and downwind of the urban area for the initiation of cumulus clouds, seasonally (Schickedanz, 1974b) and by case study (Auer, 1974, 1976). Convective cloud bases are generally higher by 200–600 m over and slightly downwind of the city (Ackerman and Appleman, 1974; Boatman and Auer, 1974; Semonin and Changnon, 1974; Changnon et al., 1976; Shea and Auer, 1978).

Anomalies in radiation parameters have also been documented in St. Louis. A nighttime infrared surface heat island has been shown to stand out clearly over the downtown St. Louis area (Braham, 1974). Reduced albedo values of 11-13% have been found for commercial-industrial-old residential sites contrasted with albedo values of 16-22% for surrounding rural areas (Dabberdt and Davis, 1974; White et al., 1978). Variations in albedo and emitted terrestrial radiation, related to mesoscale changes in land use and cover, have been found responsible for differences in net radiation accumulated within the St. Louis metropolitan and surrounding rural areas (White et al., 1978).

Fig. 6. Closeup view of heavy industrial land use (II) showing the Wood River, Ill., oil refinery complex, with adjoining normal residential (R1) and agricultural rural (A2) land uses. Flight altitude is 455 m AGL.

G № ti S-

 \mathbf{R}

B

Fig. 7. Analysis of urban temperature (°C, solid) and specific humidity (g kg⁻¹, dashed) anomalies with respect to upwind values at 305 m AGL for 1145–1500 CDT 23 August 71 (after Dirks, 1974b). The land use analysis is repeated from Fig. 1.

It is recognized that no single land use type may, by itself, be responsible for a particular thermodynamic, kinematic or radiative anomaly. There may indeed be interactive and feedback processes between land use types and anomalies which are not yet clearly understood. However, evidence from METROMEX nourishes the premise that there is a direct interaction between land use type and anomaly since certain land use types are coincident with some observed surface anomaly locations.

Schickedanz (1974a) has documented anomalous characteristics of summertime convective rainfall across the Metropolitan St. Louis area. Grosh and Semonin (1973), Boatman and Auer (1974), Changnon and Semonin (1975) and Changnon & d. (1976) have observed thunderstorm occurrence of the type studied by Schickedanz and concluded that temperature and specific humidity anomalies associated with the urban surface and overriding mixing layer can alter storm behavior and possibly explain the 20–30% precipitation increases (Huff and Vogel, 1977) in the localized area within 40 km of the city center.

In his review of urban climatic rainfall patterns, Changnon (1976) concluded that a critical size of metropolitan population (>1000000) must be attained before a metropolitan area affects rainfall downwind. Furthermore, since sizeable rainfall increases were found in non-industrial cities, as well as in industrial cities with widely varying industrial bases, the rainfall anomalies seem associated with thermodynamic and/or kinematic characteristics of the land cover.

Thus, it appears that some specific details of population, size and type of natural landscape alteration must be considered in estimating the potential of inadvertent precipitation modification. Land use types of I1-I2-C1-R2-R3, which cover as little as 100 km² in the case of St. Louis, should be suspect for mesoscale thermodynamic anomalies sufficient to cause inadvertent precipitation modification.

If meteorological land use types, as listed in Table 1, and areas of coverage, as shown in Table 2, can be identified for other urban studies, better comparisons and transfer of analyses can be made through stratification by land use. Eventually it is hoped that the recognition of the meteorological land use typerproposed herein will find their place in the format of enning are inscribing the anomaly, identifying responsible that processes, linking these processes to anthropogenic

643

activities, and ultimately relating these findings to the translation and prediction of anomalies in other metropolitan areas.

Acknowledgments. This research was performed under Grant AEN 73-07881 as part of the research on METROMEX, sponsored by the Weather Modification Program, Research Applied Directorate, National Science Foundation, and by the Environmental Protection Agency, Grant R-800875 to the Department of Atmospheric Science, College of Engineering, University of Wyorning.

REFERENCES

- Ackerman, B., 1974a: METROMEX: Wind fields over St. Louis in undisturbed weather. Bull. Amer. Meteor. Soc., 55, 93-95.
- ..., 1974b: Wind fields over the St. Louis metropolitan area.

 J. Air Pollut. Control Assoc., 24, 232-236.
- —, 1977: Mesoscale wind field over St. Louis. Preprints Sixth Conf. Planned and Inadvertent Weather Modification, Urbana, Amer. Meteor. Soc., 5-8.
- —, and H. Appleman, 1974: Boundary layer program. Interim Report of METROMEX Studies, NSF Grant GI-38317, Illinois State Water Survey, Urbana, 121-143.
- Anderson, J. R., E. E. Hardy, J. T. Roach and R. E. Witner, 1976: A land use and land cover classification system for use with remote sensor data, U.S.G.S. Prof. Pap. 964, 28 pp.
- Auer, A. H., Jr., 1974: Cumulus congestus growth downwind of St. Louis, Missouri: Case study. J. Wea. Modif., 6, 229-237.
- —, 1975a: Calculations of divergence from the wind field over an urban area. Proc. 2nd U. S. Nat. Conf. on Wind Engineering Res., Fort Collins, Colo., I-20-1-I-20-3.
- , 1975b: Meteorological land use in the Metropolitan St. Louis area. Rep. No. AS116, Department of Atmospheric Science, College of Engineering, University of Wyoming, 29 pp.
- —, 1976: Observations of an industrial cumulus. J. Appl. Meteor., 15, 406-413.
- _____, and S. A. Changnon, Jr., 1977: Non-precipitation weather anomalies in St. Louis. Preprints Sixth Conf. Planned and Inadvertent Wea. Modif., Urbana, Amer. Meteor. Soc., 1-4.
- Boatman, J. R., and A. H. Auer, Jr., 1974: Inadvertent thunderstorm modification by an urban area. Preprints Fourth Conf. Weather Modification, Fort Lauderdale, Amer. Meteor. Soc., 336-373.
- Braham, Jr., R. R. 1974: Cloud physics of urban weather modification—a preliminary report. Bull. Amer. Meteor. Soc., 55, 100-106.
- Changnon, S. A., Jr., 1976: Cities can modify rainfall—a new concept. J. Wea. Modif., 8, 12-28.
- , and R. G. Semonin, Eds., 1975: Studies of selected precipitation cases from METROMEX. Rep. Investigation No. 81, Illinois State Water Survey, 329 pp.
- ---, F. A. Huff and R. G. Semonin, 1971: METROMEX: an

- investigation of inadvertent weather modification. Bull. Amer. Meteor. Soc., 52, 958-967.
- ----, R. G. Semonin and F. A. Huff, 1976: A hypothesis for urban rainfall anomalies. J. Appl. Meteor., 15, 544-560.
- Dabberdt, W. F., and P. A. Davis, 1974: Determination of energetic characteristics of urban-rural surfaces in the greater St. Louis area. Preprints Symp. Atmospheric Diffusion and Air Pollution, Santa Barbara, Amer. Meteor. Soc., 133-141.
- Dirks, R. A., 1974a: Urban atmosphere: warm, dry envelope over St. Louis. J. Geophys. Res., 79, 3473-3475.
- —, 1974b: Urban modification of urban heat and moisture fields. Preprints Fourth Conf. Weather Modification, Fort Lauderdale, Amer. Meteor. Soc., 362-365.
- Grigg, D., 1965: The logic of regional systems. Ann. Assoc. Amer. Geograph., 55, 465-491.
- Grosh, R. C., and R. G. Semonin, 1973: Moisture budgets and wind fields of thunderstorms passing over an urban area in the midwest. Preprints Eighth Conference on Severe Local Storms, Denver, Amer. Meteor. Soc., 130-137.
- Huff, F. A., and J. L. Vogel, 1977: The urban rainfall anomaly at St. Louis. Preprints Sixth Conf. Planned and Inadvertent Wea. Modif., Urbana, Amer. Meteor. Soc., 61-64.
- Jones, D. M. A., 1973: Network surface temperatures and humidity. Summary Report of METROMEX Studies: 1971-1972, F. A. Huff, Ed., Rep. Investigation No. 74, Illinois State Water Survey, 95-97.
- —, and P. Schickedanz, 1974: Surface temperature, moisture and wind studies. Interim of METROMEX Studies: 1971– 1973, F. A. Huff, Ed., NSF GI-38317, Illinois State Water Survey, 98-120.
- Kropfli, R. A., and N. M. Kohn, 1977: Persistent horizontal rolls in the urban mixing layer as revealed by dual-Doppler radar. Preprints Sixth Conf. Planned and Inadvertent Weather Modification, Urbana, Amer. Meteor. Soc., 13-16.
- Schickedanz, P., 1974a: Inadvertent rain modification as indicated by surface raincells. J. Appl. Meteor., 13, 891-900.
- ---, 1974b: METROMEX cloud camera studies for 1971-73. Interim Report of METROMEX Studies 1971-1973, F. A. Huff, Ed., NSF GI-38317, Illinois State Water Survey, 143-146.
- Semonin, R. G., and S. A. Changnon, Jr., 1974: METROMEX: Summary of 1971-72 results. Bull. Amer. Meteor. Soc., 55, 95-100.
- Shea, D. M., and A. H. Auer, Jr., 1978: Thermodynamic properties and aerosol patterns in the plume downwind of St. Louis. Accepted by J. Appl. Meteor., 17, 689-698.
- Sisterson, D. L., 1975: Studies on the urban moisture budget. Rep. No. AS114, Dept. Atmos. Sci., University of Wyoming, Laramie, 52 pp.
- U. S. Urban Renewal Administration, Housing Finance Agency, and Bureau of Public Roads, 1965: Standard land use coding manual, a standard system for identifying and coding land use activities, 111 pp.
- White, J. M., F. D. Eaton and A. H. Auer, Jr., 1978: The net radiation budget of the St. Louis Metropolitan area. J. Appl. Meteor., 17, 593-599.
- Wong, K. K., and R. A. Dirks, 1978: Mesoscale perturbations on airflow in the urban mixing layer. J. Appl. Meteor., 17, 677-688.

APPENDIX 7A

DERIVATION OF SURFACE WATER POLILITANT CONCENTRATIONS FOR ENGINEERS LAKE

TIER 1 AND 2 ANALYSIS

APPENDIX 7A

DERIVATION OF SURFACEWATER POLLUTANT CONCENTRATIONS FOR ENGINEERS LAKE

7A.1 INTRODUCTION

This appendix presents a detailed discussion of the methods used to determine the surface water contaminant concentrations for Engineers Lake. The Tier 1 analysis describes the technique used initially to screen contaminants from further evaluation in the surface water pathways (EPA, 1986). The Tier 2 analysis explains the derivation of final contaminant concentrations used in estimating the exposure doses for the surface water pathways in the risk assessment.

7A.2 TIER 1 ANALYSIS

Water concentrations of certain contaminants were predicted using the conservative Tier 1 methodology and compared with the appropriate health-based criteria. Contaminants predicted to have water concentrations exceeding these criteria will be selected for further evaluation in the risk assessment. Those contaminants with concentrations less than the health-based criteria will not be subsequently evaluated.

The focus of the Tier 1 screening was to eliminate contaminants from the fish ingestion pathway, which is the only surface water-related pathway, evaluated in the risk assessment. As a result, only a subset of the total list of contaminants was screened using the Tier 1 methodology. Volatile organic compounds were not considered in this analysis since they are neither expected to accumulate in surface water nor bioaccumulate in fish.

With the objective of developing a conservative carcinogenic risk estimate, all oral

carcinogens are arbitrarily evaluated through all relevant exposure pathways in the final risk assessment, therefore were not screened in the Tier 1 analysis.

The final criterion for inclusion in the Tier 1 screening was the availability of appropriate health-based water quality values. Only those nonvolatile, noncarcinogenic compounds, which had ambient water quality criteria for the protection of human health through fish ingestion, were screened in the Tier 1 analysis. These factors resulted in the evaluation of the three organic and six inorganic contaminants listed below.

Organics
Fluoranthene
Pentachlorobenzene
Tetrachlorobenzene

Inorganics
Antimony
Chromium (III)
Manganese
Mercury
Nickel
Thallium

Sensitivity case emission rates, which represent the maximum or upper-bound range of facility emissions, were used in the Tier 1 screening to maximize the contaminant concentrations in Engineers Lake. It was conservatively assumed that all contaminants deposited in the watershed of Engineers Lake in a one-year period would enter the lake as runoff. The decay and degradation of contaminants in surface water, soil, or air were not considered in this analysis, further maximizing the predicted lake water concentrations. The equations employed in the Tier 1 screening are presented as follows in the following text.

The total annual basin deposition rate was calculated using the following equation:

TBD = ER * DR * BA

Where:

TBD = Total basin deposition (g/yr)

ER = Sensitivity case emission rates (g/sec)

DR = Total (wet plus dry) deposition factor, 9.00E-04

 $(g/m^2 vr)/(g/sec)$

BA = Basin area, $1.30E + 05 \text{ m}^2$

The water concentration in Engineers Lake was calculated using the following equation:

Where:

Cwater = Contaminant concentration in Engineers Lake (mg/L).

TBD = Total basin deposition (g/ π).

HRT = Hydraulic residence time (assumed 0.5 yr).

CF1 = Conversion factor, 1.00E-03 m³/L. CF2 = Conversion factor, 1.00E+03 mg/g.

VOL = Lake volume, 3.45E + 05 m (Adams County Parks Department).

The emission rates, water concentrations, and ambient water quality criteria used in the Tier 1 screening are presented in Table 7A-1. Table 7A-1 shows that none of the contaminants eligible for the Tier 1 screening exceeds 10 percent of their respective ambient water quality criteria for protection of human health through fish ingestion. As a result, these compounds are not evaluated in the fish ingestion pathway.

7A.3 TIER 2 ANALYSIS

A Tier 2 transport model was developed to predict surface water contaminant concentration from soil runoff and aerial deposition of pollutants in Engineers Lake for the fish ingestion pathway. The Tier 2 model has less conservative assumptions and provides more realistic values than the Tier 1 model. Water concentrations were calculated for all pollutants except particulate matter, acid gases, volatile organic compounds, and contaminants

Table 7A-1

Tier 1 Surface Water Pollutant

Concentrations and Comparison To Standards

Pollutant	Sensitivity Case Emission Rate (g/sec)	Predicted Annual Surface Water Concentration (mg/L)	AWQC for Protection of Human Health* (mg/L)
Organics			
Fluoranthene	1.91E-09	3.23E-13	5.40E-02
Pentachlorobenzene	9.73E-12	1.64E-15	8.50E-02
Tetrachlorobenzene	4.12E-12	6.93E-16	4.80E-02
Inorganics			
Antimony	3.90E-03	6.58E-07	4.50E+01
Chromium (III)	1.20E-05	2.02E-09	3.43E+03
Manganese	2.50E-04	4.22E-08	1.00E-01
Mercury	3. 90E-0 3	6.58E-07	1.46E-04
Nickel	1.07E-03	1.81E-07	1.00E-01
Thallium	390E-03	6.58E-07	4.80E-02

^{*} U.S. EPA. 1986. Quality Criteria for Water. 1986. Office of Water Regulations and Standards. EPA 440/5-86-001.

excluded as a result of the Tier 1 analysis. The technical approach and assumptions of the Tier 2 model are presented in the subsections that follow.

7A.3.1 Prediction of Surface-Water Concentrations of Pollutants

To estimate the potential exposure to the pollutants through fish consumption, surface water pollutant concentrations were predicted using the following steps:

- Calculation of the average deposition rate within the watershed
- Estimation of soil loss to Engineers Lake within the watershed
- Determination of pollutant concentrations in Engineers Lake

This approach to determining surface-water concentrations is based on the estimation of pollutant deposition on Engineers Lake and watershed soils and the subsequent runoff of pollutants to the lake. The concentrations are based on an assumed facility life of two years.

7A.3.2 Calculation of the Average Deposition Rate (DR) Within the Watershed

The first step in estimating the chronic surface-water concentrations involves a determination of the deposition factor for the impacted area. The watershed of Engineers Lake is limited in size and surrounded by major roadways. Due to the small size of the watershed, deposition in the entire area was described by a single rate, which precluded having to average the deposition over a wider area. The total deposition factor for the watershed is $9.00E-04 (g/m^2yr)/(g/sec)$.

7A.3.3 Estimation of Soil Loss to Engineer's Lake

Data that could be used to predict soil erosion within the Engineers Lake watershed were not available. As a result, soil loss was conservatively estimated at 1.5 tons/acre-yr or 336 g/m^2 -yr.

7A.3.3.1 Contaminant Loss Rate

To estimate the soil contaminant concentrations being transported to the lake, it is first necessary to estimate the rate constants for contaminant loss from soils. The contaminant loss rate is based on contaminant loss through the two potential loss mechanisms. They include the surface runoff rate (K_1r) , which is based on the loss of soil particles as they are transported to the lake, and the chemical degradation rate (K_1d) , which is based on the half-life of the contaminants in the soil.

The surface water runoff rate (K₁r) was calculated as follows:

$$K_1 r = X_1 / (B * d)$$

Where:

Estimated Value

$$K_1r$$
 = Surface runoff rate = 0.00118 per year
 X_1 = Total sediment loss rate = 336.24 g/m²-yr
B = Bulk density = 1,425,000 g/m³ (Alan Price, personal communication, 1990)
d = Depth of incorporation = 0.2 meter

The chemical degradation rate $(K_{\parallel}I)$ was calculated for each chemical of concern as follows:

$$K_1 d = \ln 2/t_{1/2}$$

Where:

$$K_1d$$
 = Chemical degradation rate (per year).
 $t_{1/2}$ = Chemical half-life in soil (years).

The combined contaminant loss rate was calculated using the following equation:

$$K_1 = K_1 r + K_1 d$$

The contaminant loss rates for soils in the Engineers Lake watershed are presented in Table 7A-2, along with the chemical half-lives in soils used in these calculations.

No allowances were made for infiltration losses. Although these losses can be significant, it is beyond the scope of this analysis to determine the extent of groundwater recharge in the basin. Therefore, it is conservatively assumed that no loss to groundwater occurs. This conservative assumption increases the soil concentrations and thus the surface water concentrations.

7A.3.3.2 Determination of Steady State Soil Concentrations

Based on the rate of deposition and the loss of contaminants in soil from surface runoff and degradation, the steady state soil concentrations for each contaminant evaluated that will accumulate during the operation of the facility were calculated as follows:

Mn =
$$(K_2/K_1) * (1-e^{-K1}) * CF/(d * B)$$

Where:

Mn = Maximum contaminant soil concentration (g/kg).

 K_2 = Annual deposition rate for contaminant (g/m²-year).

 K_1 = Contaminant loss rate (per year).

t = Life of the incinerator (2 yrs).

d = Depth of incorporation (0.2 m).

B = Bulk density $(1.425E + 06 \text{ g/m}^3)$.

CF = Conversion factor (1,000 g/kg).

Table 7A-2

Contaminant Loss Rates and Half-Lives for Soils in the Engineers Lake Watershed

Pollutant	K1 (per year)	Half Life (years)
ORGANICS		
Acetonitrile	1.87E-03	1.00E÷03
Aldrin	1.87E-03	1.00E+03
Atrazine	1.39E+00	5.00E-01
Benzaldehyde	1.87E-03	1.00E+03
Benzofuran	1.87E-03	1.00E+03
Benzoic Acid	1.87E-03	1.00E+03
Benzonitrile	1.87E-03	1.00E+03
Biphenyl	1.87E-03	1.00E+03
Carbazole	1.87E-03	1.00E+03
4-Chlorobiphenyl	1.87E-03	1.00E+03
4,4-Chlorobiphenyl	1.87E-03	1.00E+03
4Chlorophenylmethylsulfone	6.94E-01	1.00E+00
4-Chlorohpenylmethylsulfoxide	6.94E-01	1:00E+00
p.p-DDE	7.82E-02	9-00E+00
p,p-DDT	7.82E-02	9.00E+00
Dibenzofuran	1.87E-03	1_D0E+03
Dieldrin	1.87E-03	1.002+03
Diisopropyl Methylphosphonate	3.488	2.00E*10
1,3-Dimethylbenzene	1.871-03	1.00E+03
Dimethyl Methylphosphonate	2.045+01	3.40E-02
Dimethylphosphate	1.872-03	1.00E+03
Dioxins/Furans (EPA TEFs)	5.89E-02	1.20E+01
Dithiane	1.87E-03	1.00E+03
Endrin	7,052-02	1.00E+01
Hexach Lorobenzene	1.174-01	6.00E+00
Hexachlorocyclopentadiene	1.87E-03	1.00E+03
Isodrin	1.87E-03	1.00E+03
Malathion	1.87至-03	1.00E+03
Methanol	1.87E-03	1.00E+03
4-Nitrophenol	1.87E-03	1.00E+03
PAHs	*****	
Acenaphthaletts	1.87E-03	1.00E+03
Acenaphthema	1.87E-03	1.00E+03
Benzo(a)permene	8.20E-01	8.47E-01
Chrysene	6.55E-01	1.06E+00
Dibenzo(a,h) minracene	6.04E-01	1.15E+00
Fluorene	1.87E-03	1.00E+03
Phenanthrene	9.45E-01	7.34E-01
Pyrene	9.74E-01	7.12E-01
Parathion	1.87E-03	1.00E+03
Phenol	1.87E-03	1.00E+03
Pyridine	1.87E-03	1.00E+03
Quinoline	1.87E-03	1.00E+03
Supona	1.87E-03	1.00E+03
Trichlorobenzene	1.87E-03	1.00E+03
Urea	1.87E-03	1.00E+03
Vapona	1.87E-03	1.00E+03
INORGANICS		
Atuminum	1.87E-03	1.00E+03
Arsenic	1.87E-03	1.00E+03
Barium	1.87E-03	1.00E+03
Beryllium	1.87E-03	1.00E+03
Boron	1.87E-03	1.00E+03
Cadmium	1.87E-03	1.00E+03
Calcium	1.87E-03	1.00E+03
Chromium (III)	1.87E-03	1.00E+03
Chromium (VI)	1.87E-03	1.00E+03
Cobalt	1.87E-03	1.00E+03
Copper	1.87E-03	1.00E+03
Iron	1.87E-03	1.00E+03
Lead	1.87E-03	1.00E+03
Lithium	1.87E-03	1.00E+03
W-1-1170071	110.6	

Table 7A-2 (continued)

Manganese	1.87E-03	1.00E+03
Molybdenum	1.87E-03	1.00E+03
Phosphorus (total)	1.87E-03	1.00E+03
Potassium	1.87E-03	1.00E+03
Selenium	1.87E-03	1.00E+03
Silicon	1.87E-03	1.00E+03
Silver	1.87E-03	1.00E+03
Sodium	1.87E-03	1.00E+03
Strontium	1.87E-03	1.00E+03
Tin	1.87E-03	1.00E+03
Titanium	1.87E-03	1.00E+03
Vanadium	1.87E-03	1.00E+03
Yttrium	1.87E-03	1.00E+03
Zinc	1.87E-03	1.00E+03
ZITIC		

The annual deposition rates (K_2) were calculated by multiplying the chemical-specific emission rates by the deposition factor of 9.00E-04 g/m²-year per g/sec. The maximum contaminant soil concentrations, as well as the emission rates and annual deposition rates used in the calculations, are presented in Table 7A-3.

7A.3.4 Determination of Contaminant Concentration (C) in the Receiving Water

The receiving water contaminant concentration is a function of the suspended solids in the inflow and outflow, as well as the concentration of contaminants in the soil. No data were available for the suspended solids concentration of Engineers Lake. Therefore, it was assumed that the lake had a suspended solids outflow concentration of 100 mg/L.

The inflowing suspended solids concentration was based on the conservative assumption that 95 percent of inflowing suspended sediments settle out in Engineers Lake. The equations used to calculate the impoundment contaminant concentration are:

$$Si = So/(1-RE)$$

 $Ci = Si * Mn * CF$

Where:

Si = Suspended solids concentration in inflow (mg/L)

So = Suspended solids concentration in outflow (100 mg/L) (assumed value)

RE = Suspended solids removal efficiency (assume 95 percent)

Ci = Inflow total concentration (ng/L)

Mn = Maximum soil concentration (g/kg)

CF = Conversion factor, 1,000 mg/g

Table 7A-3

Maximum Contaminant Soil Concentrations, Emission Rates, and Annual Deposition Rates in the Engineers Lake Watershed

		5 11.001.00	41
Dallutant	Soil Concent	EMISSION RATE	Annual Deposition
Pollutant	(g/Kg)	g/sec	(g/m2-year)
ORGANICS	(8/ (8/	3 , 500	(9) / 0 /
Acetonitrile .	1.48E-16	2.35E-11	2.11E-14
Aldrin	1.57E-18	2.49E-13	2.24E-16
Atrazine	1.18E-19	5.53E-14	4.98E-17
Benzaldehyde	3.22E-14	5.10E-09	4.59E-12
Benzofuran	6.17E-14	9.79E-09	8.81E-12
Benzoic Acid	1.56E-14	2.47E-09 2.35E-12	2.22E-12 2.11E-15
Benzonitrile	1.48E-17 1.54E-14	2.45E-09	2.71E-15 2.20E-12
Biphenyl	2.96E-18	4.70E-13	4.23E-16
Carbazole 4-Chlorobiphenyl	1.79E-14	2.84E-09	2.56E-12
4,4-Chlorobiphenyl	2.35E-16	3.72E-11	3.35E-14
4Chlorophenylmethylsulfone	3.10E-18	9-08E-13	8.17E-16
4-Chlorohpenylmethylsulfoxide	1.15E-17	3.38E-12	3.04E-15
p.p-DDE	2.42E-15	4.14E-10	3.73E-13
p,p-DDT	4.85E-19	8-29E-14	7.46E-17
Dibenzofuran	3.08E-15	4.89E-10	4.40E-13
Dieldrin	3.225-19	5.11E-14	
Diisopropyl Methylphosphonate	4.091-17	8.98E-12 9.79E-10	8.08E-15 8.81E-13
1,3-Dimethylbenzene Dimethyl Methylphosphonate	6.17E-15 3.31E-17	2.14E-10	1.93E-13
Dimethyl Methylphosphonate Dimethylphosphate	3.70E-16	5.87E-11	5.28E-14
· Dioxins/Furans (EPA TEFs)	5.19E-16	8.71E-11	7.84E-14
Dithiane	5.86E-20	8.98E-15	8.08E-18
Endrin	2.936-19	4.97E-14	4.47E-17
Hexachlorobenzene	9.41E-17	1.67E-11	1.50E-14
Hexachlorocyclopentadiene	2.92E-18	4.63E-13	4.17E-16
Isodrin	8.26E-19	1.31E-13	1.18E-16
Malathion	1,26E-18	2.00E-13	1.80E-16
Methanol	3.58E-14	5.68E-09	5.11E-12
4-Nitrophenol	1.30E-17	2.07E-12	1.86E-15
PAHs Acenaphthatahe	1.54E-14	2.45E-09	2.20E-12
Acenaph thene	1.54E-14	2.45E-09	2.20E-12
Benzo(a)pyrene	1.52E-15	4.89E-10	4.40E-13
Chrysene	1.72E-15	4.89E-10	4.40E-13
Dibenzo(a,h)anthracene	1.79E-15	4.89E-10	4.40E-13
Fluorene	3.08E-15	4.89E-10	4.40E-13
Phenanthrene	2.78E-15	9.79E-10	8.81E-13
Pyrene	1.36E-15	4.89E-10	4.40E-13
Parathion	1.74E-19 1.67E-13	2.76E-14 2.65E-08	2.48E-17 2.38E-11
Phenol	1.48E-18	2.35E-13	2.11E-16
Pyridine Quinoline	7.38E-18	1.17E-12	1.05E-15
Supona	5.23E-19	8.29E-14	7.46E-17
Trichlorobenzene	1.05E-17	1.66E-12	1.49E-15
Urea	2.26E-13	3.59E-08	3.23E-11
Vapona	1.39E-18	2.21E-13	1.99E-16
•			
INORGANICS	/ por po	6.49E-04	5.84E-07
Aluminum	4.09E-09 8.13E-10	1.29E-04	1.16E-07
Arsenic	1.99E-10	3.16E-05	2.84E-08
Barium Beryllium	8.32E-12	1.32E-06	1.19E-09
Boron	6.07E-09	9.63E-04	8.67E-07
Cadmium	2.37E-11	3.76E-06	3.38E-09
Calcium	3.49E-08	5.53E-03	4.98E-06
Chromium (III)	5.41E-11	8.58E-06	7.72E-09
Chromium (VI)	1.90E-12	3.02E-07	2.72E-10
Cobalt	1.79E-10	2.84E-05	2.56E-08
Copper	7.63E-07	1.21E-01	1.09E-04
Iron	1.08=-08 2.55=-10	1.72E-03	1.55E-06 3.64E-08
Lead	2.301-10	4.05E-05	3.046-00

Table 7A-3 (continued)

Lithium	2.50E-11	3.96E-06	3.56E-09
Manganese	3.24E-08	5.14E-03	4.63E-06
Not ybdenum	2.50E-09	3.97E-04	3.57E-07
Phosphorus (total)	7.75E-07	1.23E-01	1.11E-04
Potassium	2.58E-07	4.09E-02	3.68E-05
Selenium	2.09E-06	3.31E-01	2.98E-04
Silicon	3.598-08	5.70E-03	5.13E-06
Silver	2.16E-08	3.43E-03	3.09E-06
Sedium	2.65E-05	4.21E+00	3.79E-03
Strontium	8.32E-12	1.32E-06	1.19E-09
Tin	1.83E-09	2.91E-04	2.62E-07
Titanium	1.39E-11	2.20E-06	1.98E-09
Vanadium	5.31E-10	8.42E-05	7.58E-08
Yttrium	4.85E-12	7.70E-07	6.93E-10
Zinc	3.69E-09	5.86E-04	5.27E-07
21110			

7A.3.5 Aerial Deposition on Engineers Lake

Direct aerial deposition onto Engineers Lake represents an additional source of pollutants. The contribution by direct deposition was calculated by first determining the total deposition factor for the lake. This factor, 9.00E-04, is the same as that described previously for soil loss.

The concentration due to deposition was calculated by determining the mass of pollutants falling onto 1 square meter of lake surface. The pollutant mass was then mixed in the volume of water underlying the square meter of lake surface, which was based on an average depth of six meters (Nancy Koenig, Personal Communication, 1990). An assumed hydraulic residence time of 0.5 year was factored into the final equation to account for pollutant loss by outflowing water. The equation used to calculate the concentration from direct deposition is:

Where:

Md = Mass deposited directly into unit volume (grams)

SA = Unit surface area (1 m²)

K2i = Area-weighted deposition $(g/yr m^2)$

Tr = Hydraulic residence time (0.5 year)

The contaminant concentration from sedimentation and aerial deposition were combined in the following equation to form an intermediate water concentration:

$$Ci2 = Ci + ((Md * NGG)/Vp)$$

Where:

Ci2 = Intermediate unit volume concentration (ng/L)

Ci = Contaminant concentration due to erosion losses (ng/L)

Md = Mass due to aerial deposition (g)

Vp = Volume of water under 1 m² of lake surface (L), based on average depth of 6.0 meters (Adams County Parks Dept, 1990)

NGG = Conversion factor for grams to nanograms (1E+09 ng/g)

The concentration of contaminants in Engineers Lake is a function of the intermediate concentration, Ci2, the suspended solids concentration in outflow and inflow, and partitioning of the contaminant between dissolved and solid phases. The equation, which is presented below, represents the total water column concentration and takes into account dissolved and particle bound contaminants.

$$Ct = Ci2 * (1+(So * Kp * KGMG))/(1+Si * Kp * KGMG))$$

Where:

Ct = Total water column concentration

Ci2 = Intermediate unit volume concentration (ng/L)
So = Suspended solids concentration in outflow (mg/L)

Kp = Partition coefficient (L/kg)

KGMG = Conversion factor (1E-06 kg/mg)

Si = Suspended solids concentration in inflow (mg/L)

The water concentrations and partition coefficients used in the fish ingestion pathway are presented in Tables 7A-4 and 7A-5, respectively.

Table 7A-4

Surface Water Concentrations for Contaminents of Concern in Fish Ingestion Exposure Pathways

Pollutant	Water Concentration for Fish Pathway (mg/L)
ORGANICS	To Train racinally (mg/L)
Acetonitrile	2.03E-15
Aldrin	1.08E-18
Atrazine	2.31E-18
Benzaldehyde	4.17E-13
Benzofuran	4.58E-13
Benzoic Acid	1.87E-13
Benzonitrile	1.90E-16
Biphenyl	6.23E-14
Carbazole	9.91E-18
4-Chlorobiphenyl	1.37E-14
4,4-Chlorobiphenyl	1.65E-16
4Chlorophenylmethylsulfone	7.11E-17
4-Chiorohpenylmethylsulfoxid	e 2 <u>.62</u> E-16
p,p-DDE	##80E-15
p,p-DDT	3.56E-19
Dibenzofuran	3.5E-15
Dieldrin	2.226-19
Diisopropyl Methylphosphonat	
1,3-Dimethylbenzene	2.35E-14
Dimethyl Methylphosphonate	1.59E-14
Dimethylphosphate	5.07E-15
Dioxins/furans (EPA TEFs)	3.76E-16
Dithiane	7,68E-19
Endrin	2.68E-19
Hexach Lorobenzene	7.33E-17
Hexachlorocyclopentadie	2.06E-18
Isodrin	5.68E-19
Malathion	7.30E-18
Methanol	4.91E-13
4-Nitrophenol	7.37E-17
Acemphiliplene	1.88E-14
Asenaph thene	2.20E-14
Benzo(a)pyrene	1.96E-15
Chrysene	2.01E-15
Dibanzo(a, h) anthracene	1.99E-15
Fluoren	2.93E-15
Phenanthrehe	4.87E-15
Pyrene	2.06E-15
Parathion	2.82E-19
Phenol	2.17E-12
Pyridine	2.01E-17
Quinoline	8.42E-17
Supona	2.26E-18
Trichlorobenzene	1.40E-17
Ures	3.10E-12
Vapona	1.82E-17
INORGANICS	
Aluminum	3.10E-09
Arsenic	6.16E-10
Barium	1.40E-10
Beryllium	5.84E-12
Boron	4.60E-09
Cadmium	1.68E-11
Calcium	2.45E-08
Chromium (III)	3.80E-11
Chromium (VI)	1.34E-12
Cobalt	1.26E-10
Copper	5.48E-07 7.61E-09
Iron	1.83E-10
Lead Lithium	1.75E-11
LICHICAN	1./35-11

Table 7A-4 (continued)

Manganese	2.27E-08
Not ybdenum	1.76E-09
Phosphorus (total)	5.87E-07
Potassium	2.18E-07
Selenium	1.58E-06
Silicon	2.72E-08
Silver	1.62E-08
Scdium	1.86E-05
Strontium	5.84E-12
Tin	1.32E-09
Titanium	9.73E-12
Vanadium	3.73E-10
Yttrium	3.41E-12
Zinc	2.65E-09

Table 7A-5

Position Coefficients for Contaminants of Concern in Surface Water/Fish Ingestion Pathway

in Surface Water/Fish	ingestion realismy
Pollutant	Partition Coefficient (Kp) (L/kg)
ORGANICS	
Acetonitrile	4.57E-01
Aldrin	2.51E+07
Atrazine	4.79E+02
Benzaldehyde .	3.02E+01
Benzofuran	4.68E+02
Benzoic Acid	7.41E+01
Benzonitrile	3.63E+01
Biphenyl	1.45E+03
Carbazole	1.95E+03
4-Chlorobiphenyl	7.94E+04
4,4-Chlorobiphenyl	3.80E+05
4Chlorophenylmethylsulfo	
4-Chlorohpenylmethylsulf	oxide 2.14E+01
	4.20E+05
p,p-DDE	2 29E+06
p,p-DDT	1.32E+04
Dibenzofuran	1.58E+06
Dieldrin	
Diisopropyl Methylphosph	1.58E+03
1,3-Dimethylbenzene	
Dimethyl Methylphosphone	735 03
Dimethylphosphate	1.32E-02
Dioxins/Furans (EPA TEFS	
Dithiane	5.89E+00
Endrin	3.63E+04
Hexachlorobenzene	2.95E+05
Hexachlorocyclopentad em	e 3.24E+05
Isodrin	3.24E+06
Malathion	7.76E+02
Methanol	1.51E-01
4-Nitrophenol	8.13E+02
PAHS	Toning to the control of the control
Acenaphthalene	1.17E+04
Acemagisthane	8.32E+03
Berizo(a)perene	2.63E+06
Thrysene	6.17E+05
Dibenzo(a, himthrace	ne 3.16E+06
Fluorene	2.40E+04
Phenanthrene	3.72E+04
Pyrene	1.51E+05
	6.46E+03
Parathion	2.88E+01
Phenol	4.57E+00
Pyridine	1.07E+02
Quinoline	
Supona	1.29E+03
Trichlorobenzene	9.55E+03
Urea	1.07E-03
Vapona	2.51E+01
INORGANICS	9.00E+04
Atuminum	
Arsenic	9.00E+04
Barium	4.00E+05
Beryllium	4.00E+05
Boron	9.00E+04
Cadmium	3.00E+05
Calcium	4.00E+05
Chromium (III)	4.00E+05
Chromium (VI)	4.00E+05
-	4.00E+05
Cobalt	2.00E+05
Copper	4.00E+05
Iron	2.00E+05
Lead	4.00E+05
Lithium	4.00E+05
Manganese	4.005703

Table 7A-5 (continued)

Molybdenum		4.00E+05

Phosphorus	(total)	9.00E+04
Potassium		4.00E+04
Selenium		9.00E+04
Silicon		9.00E+04
Silver		1.00E+05
Sedium		4.00E+05
Strentium	4	4.00E+05
Tin		2.00E+05
Titanium		4.00E+05
Vanadium		4.00E+05
Yttrium		4.00E+05
Zinc		2.00E+05

APPENDIX 7A

CITED REFERENCES

EPA (U.S. Environmental Protection Agency). 1986. "Methodology for the Assessment of Health Risks Associated with Multiple Pathway Exposure to Municipal Waste Combustion Emissions." Environmental Criteria and Assessment Office, Cincinnati, OH.

EPA (U.S. Environmental Protection Agency). 1985. "Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants in Surface and Groundwater - Part I." EPA 600/6-85/002a.

Koenig, N. 1990. Personal Communication. Adams County Parks Department.

Price, A. 1990. Personal Communication. USDA Soil Conservation Service, Denver, Colorado.

APPENDIX 8A

DERIVATION OF SOIL POLLUTANT CONCENTRATIONS

APPENDIX 8A

DERIVATION OF SOIL POLLUTANT CONCENTRATIONS

This appendix presents a detailed discussion of the methods used to determine the soil pollutant concentrations. These values were used to determine exposure through the soil pathway.

Pollutant levels in soil were calculated for those pollutants, identified in Section 7, to be of concern through the soil pathway. They include semi-volatile organics and trace metals predicted to increase in the soil by 1 percent or more of the background concentration. Soil pollutant levels were calculated based on deposition over a 2-year period. It was assumed that trace metal pollutant levels in the soil are unaffected by degradation or other loss processes. For organics, degradation was evaluated only for those pollutants for which half-life data in soils were available. Thus, degradation through first order rate loss was calculated for atrazine, 4-chlorophenylmethylsulfone, 4-chlorophenylmethysulfoxide, DDE, DDT, diisopropyl methylphosphonate, dioxins/furans, endrin, hexachlorobenzene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, fluoranthene, phenanthrene, and pyrene.

The equations used to calculate soil contaminant concentrations are as follows.

No Degradation

The formula for determining the maximum concentration of a pollutant in soil with no chemical degradation is:

$$C_{\text{soil-max}} = D_{\text{total}} \times \frac{1}{BD} \times \frac{1}{SD} \times T \times CF$$

Where:

C_{soil-max} = Maximum pollutant concentration in soil due to deposition (mg/kg).

 D_{total} = Total deposition rate (g/m²/yr).

T = Accumulation time (2 years), life of incinerator.

CF = Conversion factor (1,000 mg/g).

SD = Mixing depth of soil (0.1 or 0.2 meters).

BD = Bulk density of soil $(1,425 \text{ kg/m}^3)$.

The soil bulk density, which was used (1,425 kg/m³), was based on an average value from the various soil types that occur in the Rocky Mountain Arsenal vicinity (Price, 1990).

Average soil pollutant concentrations that would occur over the 70-year lifetime of an individual, assuming no chemical degradation, were calculated as follows:

$$C_{\text{soil-max}} = \frac{2 \text{ years}}{70 \text{ years}} = \frac{C_{\text{soil-max}}}{2} + \frac{68 \text{ years}}{70 \text{ years}}$$

Where:

C_{soil-avz} = Average pollutant concentration in soil due to deposition (mg/kg).

C_{soil-max} = Maximum pollutant concentration in soil due to deposition (mg/kg).

The first term in this equation accounts for the two years of deposition, and the second term accounts for the years following the facility lifetime.

Degradation

The following equation was used to calculate the maximum concentration of a pollutant in soil, assuming that degradation is occurring:

$$C_{\text{soil-max}} = D_{\text{total}} \times \underbrace{1}_{\text{BD}} \times \underbrace{1}_{\text{SD}} \times \underbrace{(1-e^{-kt})}_{\text{k}} \times \text{CF}$$

Where:

e = The base of the natural logarithms.

k = First order decay constant (yr⁻¹).

All other variables are as previously defined in this appendix.

The first order decay constant, k, was calculated as:

 $k = \ln(2)/T$ -half

Where:

ln(2) = 0.6931472

T-half = Chemical half-life in soil (yr).

- Atrazine = 0.5 years (Ebasco, 1990).
- 4-Chlorophenylmethylsulfone 1 year (Ebasco, 1990).
- 4-Chlorophenylmethylsulfexide = 1 year (Ebasco, 1990).
- DDE = 9 years (Ebasco, 1990).
- DDT = 9 years (Ehasco, 1990).
- Diisoprupyl methylphosphonate = 2 years (Ebasco, 1990).
- Dimethyl methylphosphonate = 0.03397 years (Ebasco, 1990).
- Dioxins/Furans = 12 years (EPA, 1986a).
- Endrin = 10 years (Ebasco, 1990).
- Hexachlorobenzene = 6 years (EPA, 1986a).
- PAHs
 - Benzo(a)pyrene = 0.847 years (Park et al., 1990).
 - Chrysene = 1.06 years (Park et al., 1990).
 - Dibenzo(a,h)anthracene = 1.15 years (Park et al., 1990).
 - Fluoranthene = 1.03 years (Park et al., 1990).
 - Phenanthrene = 0.734 years (Park et al., 1990).
 - Pyrene = 0.712 years (Park et al., 1990).

An average soil concentration based on degradation was determined by calculating a soil concentration for every day over 70 years. For the 2 years of facility operation, it was assumed that each successive day would involve a new day's worth of deposition as well as the amount left over from the previous day after degradation. The first equation presented in this appendix was used to calculate a soil concentration for the first day of deposition by assuming T=1/365=2.74E-03. Degradation was calculated using the following equation:

$$C_T = C_0 e^{-kT}$$

Where:

 C_T = Concentration of organic in soil at day end (mg/kg). C_c = Concentration of organic in soil at day start (mg/kg).

T = Time (2.74E-03 vr).

The concentration in soil left after the first day's degradation (C_r) was added to the amount of contaminant deposited on the second day. It was assumed that this process would continue each day over 2 years. The pollutant concentration at the end of year 2 represents the maximum soil concentration expected over the 70-year lifetime of an individual. The pollutants were assumed to continue to degrade from year 3 to the end of year 70 so that each successive day involves only the amount left after the previous day's degradation, without any new deposition occurring.

Soil concentrations for all pollutants of concern were calculated for each of the exposure scenarios (i.e., Resident-A, Resident-B, Farmer, Worker) based on total deposition rates specific to each receptor location. Based on the selection of the routes of exposure under the soil pathway, two mixing depths were used to calculate soil concentrations, 0.1 meter (10 cm) and 0.2 meter (20 cm).

Pollutant concentrations in soil determined for a 0.1-meter mixing depth were used in predicting exposure through the following routes of exposure:

Exposure through child soil/dust ingestion.

- Exposure through child dermal absorption.
- Exposure through adult soil/dust ingestion.
- Exposure through adult dermal absorption.

For these exposure routes, the pollutants were assumed to be uniformly distributed in the top 0.1 meter of the soil.

Pollutant concentrations in soil established for a 0.2-meter mixing depth were used for the following routes of exposure:

- Exposure through vegetable consumption.
- · Intake by cattle through grain, hay, and corn silage ingestion.

The 0.2-meter mixing depth was based on the assumption that only the top 0.2 meter (8 inches) of soil would be disturbed by diking or rototilling (EPA, 1986b).

For all pollutants, maximum soil concentrations were used in estimating potential noncarcinogenic effects. Average soil concentrations were used in calculating carcinogenic risk for children and adults, since the calculation of carcinogenic risk is based on a 70-year lifetime exposure. Since infants are exposed for only 1 year during which exposure concentrations will be at a maximum, maximum soil concentrations were used in the calculation of carcinogenic risk to the infant.

Tables 8A-1 through 8A-4 present the pollutant concentrations in soil based on the Resident-A, Resident-B, Farmer, and Worker scenarios, respectively. It should be noted that the soil concentrations calculated for the Farmer scenario also were used in the Resident-A and Resident-B scenarios in estimating pollutant uptake through milk and beef consumption.

Table 8A-1 Soil Concentrations

Resident-A Scenario

·	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
ORGANICS					
Acetone	NA	NA	AK	NA	NA
Acetonitrile	8.22E-14	5.69E-13	5.77E-13	1.14E-12	1.15E-12
Acrylenitrile	NA	NA	NA	MA	MA
Aldrin	8.71E-16	6.03E-95	6.12E-15	1.21E-14	1.22E-14
Atrazine	1.94E-16	1.39E-17	4.57E-16	2.78E-17	9.14E-16
Benza i dehyde	1.78E-11	1.23E-10	1.25E-10	2.47E-10	2.51E-10
Benzene	NA	NA	NA	NA	NA
Benzofuren	3.43E-11	2.37E-10	2.40E-10	4.74E-10	4.81E-10
Benzoic Acid	8.64E-12	5.98E-11	6.07E-11	1.20E-10	1.21E-10
Benzonitrile	8.22E-15	5.69E-14	5.77E-14	1.14E-13	1.158-13
Biphenyl	NA	MA	NA	NA	NA
Bromomethene	MA	NA	MA	NA	NA
Carbazole	1.64E-15	1.14E-14	1.15E-14	2.28E-14	2.31E-14
Carbon Tetrachloride	NA	₩A	MA	MA	MA
Chlorobenzene	NA	NA .	MA	WA	NA
4-Chlorobiphenyl	9.94E-12	6.88E-11	6.98E-11	1.38E-10	1.40E-10
4,4-Chlorobiphenyl	1.306-13	9.01E-13	9.14E-13	1.80E-12	1.83E-12
Chloroform	NA	NA FOE A	NA NA	NA .	NA
4-Chlorophenylmethylaulfone	3.185-15	4.58E-16	1.205-14	9.15E-16	2.40E-14
4-Chlorophenylmethylaulfoxide p.p-DDE	1.18E-14 1.45E-12	1.70E-15	4.47E-14	3.41E-15	8.94E-14
p,p-001	2.90E-16	1.87E-12 3.75E-16	9.398-12	3.74E-12	1.885-11
Dibenzofuran	1.715-12	1.18E-11	1.88E-15 1.20E-11	7.49E-16 2.37E-11	3.768-15
Dichlorobenzenes (total)	MA	NA	NA	2.3/E-11	2.40E-11 MA
1.4-Dichlorobenzene	MA	NA	MA	NA NA	NA NA
1,1-Dichloroethene	MA	NA	NA	NA.	MA
1,2-Dichloroethene	NA	NA.	NA	NA	MA
1,2-Dichloreprepane	NA	NA	NA AM	MA	MA
Dieldrin	1.798-16	1.24E-15	1.26E-15	2.47E-15	2.51E-15
Diisopropyl Methylphosphonate	3.16E-16	9.06E-15	1.598-13	1.81E-14	3.17E-13
1.3-Dimethylbenzene	3.43E-12	2.37E-11	2.40E-11	4.74E-11	4.81E-11
Dimethyldisulfide	NA	NA	MA	MA	NA
Dimethyl Methylphosphonate	7.498-13	3.57E-15	1.25E-13	7.14E-15	2.50E-13
Dimethylphosphate	2.05E-13	1.42E-12	1.44E-12	2.84E-12	2.88E-12
Dioxins/Furans (EPA TEFS)	5.25E-13	8.91E-13	3.47E-12	1.78E-12	6.93E-12
Dithiene	3.14E-17	2.17E-16	2.21E-16	4.35E-16	4.41E-16
Endrin	1.74E-16	2.49E-16	1.14E-15	4.97E-16	2.27E-15
Ethylbenzene	NA	NA	NA	NA	NA
Hexachlorobenzene	5.84E-14	5.05E-14	3.65E-13	1.01E-13	7.30E-13
Mexachlorocyclopentadiene	1.62E-15	1.12E-14	1.14E-14	2.24E-14	2.27E-14
Isodrin	4.58E-16	3.17E-15	3.22E-15	6.34E-15	6.44E-15
Malathion	7.00E-16	4.84E-15	4.91E-15	9.68E-15	9.82E-15
Methanol	1.99E-11	1.38E-10	1.40E-10	2.75E-10	2.79E-10
Methyl Chloride	NA	NA	NA	NA	NA
Methylene Chloride	NA	NA	NA	NA	NA
4-Nitrophenol	7.24E-15	5.01E-14	5.08E-14	1.00E-13	1.02E-13

Table 8A-1 (continued)

TOTAL DEPOSITION RATE GALCULATED COMC IN SOIL				•			
PAHS			DEPOSITION RATE	CALCULATED CONC IN SOIL	CALCULATED CONC IN SOIL	CALCULATED CONC IN SOIL	CALCULATED CONC IN SOIL .1M
Acensphthalene 8.57E-12 5.93E-11 6.02E-11 1.19E-10 1.20E-10 Acensphthene 8.57E-12 5.93E-11 6.02E-11 1.19E-10 1.20E-10 Acensphthene 8.57E-12 5.93E-11 6.02E-11 1.19E-10 1.20E-10 Acensphthene 1.71E-12 2.09E-13 5.88E-12 4.17E-13 1.38E-11 Chrysene 1.71E-12 2.64E-13 6.95E-12 6.67E-13 1.33E-11 Chrysene 1.71E-12 2.84E-13 6.95E-12 5.67E-13 1.39E-11 1.3			g/R2/ y1		mg/Kg	mg/Kg	mg/Kg
Acensphthalene 8.57E-12 5.93E-11 6.02E-11 1.19E-10 1.20E-10 Acensphthene 8.57E-12 5.93E-11 6.02E-11 1.19E-10 1.20E-10 Acensphthene 8.57E-12 5.93E-11 6.02E-11 1.19E-10 1.20E-10 Acensphthene 1.71E-12 2.09E-13 5.88E-12 4.17E-13 1.38E-11 Chrysene 1.71E-12 2.64E-13 6.95E-12 6.67E-13 1.33E-11 Chrysene 1.71E-12 2.84E-13 6.95E-12 5.67E-13 1.39E-11 1.3							
Acenaphthene Acenaphthene Benzo(a)pyrame 1.71E-12 2.09E-13 6.02E-11 1.19E-10 1.20E-10 Benzo(a)pyrame 1.71E-12 2.09E-13 6.67E-12 5.23E-13 1.33E-11 Chryssene Dibenzo(a,h)anthracene 1.71E-12 2.64E-13 6.95E-12 5.23E-13 1.39E-11 Dibenzo(a,h)anthracene 1.71E-12 2.64E-13 6.95E-12 5.23E-13 1.39E-11 Fluorente Fluorene 1.71E-12 1.68E-13 1.90E-11 1.53E-12 3.96E-11 Fluorene 1.71E-12 1.10E-11 1.20E-11 2.37E-11 2.40E-13 Pyrene Phenanthrene 3.43E-12 3.62E-13 1.00E-11 7.24E-13 2.15E-11 Pyrene 1.71E-12 1.76E-13 5.27E-12 3.51E-13 1.05E-11 Pyrene 1.71E-12 1.76E-13 5.27E-12 3.51E-13 1.05E-11 Pyrene 1.71E-12 1.76E-13 5.27E-12 3.51E-13 1.05E-11 Pyrene Parathion Pentachiorobenzene 2.61E-14 1.81E-13 1.83E-13 3.62E-13 3.62E-13 Phenol Pyridine 1.8A NA			e E7E-12	5 03F-11	6.02E-11	1.19E-10	
Acengritished 1,71E-12 2,00E-13 5,88E-12 4,17E-13 1,18E-11 1,71E-12 2,61E-13 6,67E-12 5,67E-13 1,39E-11 1,39E-11 1,71E-12 2,61E-13 6,67E-12 5,67E-13 1,39E-11 1,39E-11 1,59E-12 5,67E-13 1,39E-11 1,59E-12 1,59E-11 1,59E-12 1,59E-13 1,59E-11 1,59E-13 1,59E-11 1,59E-13 1,59					6.02E-11	1.19E-10	
1,71E-12 2,61E-13 6,67E-12 5,23E-13 1,33E-13 1,33E-13 1,33E-13 1,71E-12 2,64E-13 6,95E-12 5,67E-13 1,33E-13 1,39E-11 1,53E-12 3,96E-11 1,53E-13 1,03E-11 1,26E-13 1,03E-11 1,26E-13 1,03E-13					5.88E-12		
Dibenzo(a,h)anthracene				2.61E-13	6.67E-12		
Fluorantheme				2.84E-13	6.95E-12		
Fluorene				7.65E-13			
Phenanthrene				1.18E-11			
1.71E-12 1.76E-13 5.27E-12 3.51E-13 1.05E-11				3.62E-13	1.08E-11		
Parathion				1.76E-13	5.27E-12	• • • • • • • • • • • • • • • • • • • •	
Pentachlorobenzene							
Phenol		,		1.81E-13			
NA			9.27E-11	6.42E-10			
Quinoline			NA	NA			
Styrene Supora 2.90E-16 2.01E-15 2.04E-15 4.01E-15 4.07E-15 Supora Tetrachlorobenzene 1.10E-14 7.63E-14 7.74E-14 1.53E-13 1.55E-13 1.55E-14 1.53E-13 1.55E-14 1.53E-13 1.55E-14 1.53E-13 1.55E-14 1.53E-13 1.55E-13 1.55E-14 1.53E-13 1.55E-14 1.53E-13 1.55E-14 1.53E-13 1.55E-14 1.53E-13 1.55E-14 1.53E-13 1.55E-14 1.53E-14 1.53E-14 1.53E-14 1.55E-14 1.53E-14 1.53E-14 1.55E-14 1.55			4.09E-15	2.83E-14			
Supona			NA				
Tetrachlorobenzene Tetrachloroethere Tetrachloroethere Toluene Toluene Trichlorobenzene Trichlorobene Trichlorobenzene Trichlorobenzene Trichlorobenzene Trichlorobene Trichlorobenzene Trichlorobenzene Trichlorobene Tr	1	= -/	2.90E-16				
Tetrachloroethene Toluene Toluene Toluene Trichlorobenzene Trichloroethene Tri			1.10E-14	7.63E-14			
Toluene Trichlorobenzene NA NA NA NA NA NA NA NA NA NA NA NA NA			NA				
Trichlorobenzene					****	****	****
Trichloroethene Urea 1.26E-10 8.69E-10 8.82E-10 1.76E-09 1.76E-09 1.76E-09 1.76E-09 1.76E-09 1.76E-09 1.76E-09 1.76E-09 1.76E-09 1.09E-14 1.09E-16 1.10E-06 1.11E-07 1.10E-06 1.11E-06 1.12E-06		Trichlorobenzene	5.81E-15				
Tree		Trichloroethene					
Vapons Vinyl Chloride Xylene 7.35-16 MA 5.35-15 MA 5.35-15 MA MA		urea					
Vinyl Chloride		Vapona					
INORGANICS		Vinyl Chloride					****
Aluminum Ammonia Anmonia An		Xylene	NA	MA	R.A	WA.	•••
Aluminum	10	KORGANICS			**	MA.	MA
Ammonia Antimorry Antimorr		Aluminum					
Antimorry Antimo		Ammonia	****				
Arsenic 1.11E-07 7.65E-07 7.76E-07 1.53E-06 1.55E-06 Barium 4.62E-09 3.20E-08 3.24E-08 6.39E-08 6.48E-08 Beryllium 4.62E-09 3.20E-08 3.24E-08 6.39E-08 6.48E-08 Beryllium NA NA NA NA NA NA NA NA NA NA NA NA NA		Antimony	,.,				
Barium 1.11E-07 7.85E-07 7.85E-08 6.39E-08 6.48E-08		Arsenic	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
Beryllium		Barium					
Boron		Beryllium					
Cadmium		Boron	****				****
Calcium Chrismium (III) Chromium (VI) Chromium (VI) NA NA NA NA NA NA NA NA NA NA NA NA NA		Cadmium	****	****		****	••••
Chrismium (III) Chromium (VI) NA NA NA NA NA NA NA NA NA N		Calcium					-
Chromium (VI) RA NA NA NA NA NA NA NA NA NA				****	****		****
Cobalt 4.23E-04 2.93E-03 2.97E-03 5.86E-03 5.94E-03 Copper 4.23E-04 2.93E-03 2.97E-03 5.86E-03 5.94E-03 Copper MA NA					****	****	
Copper 4.23E-04 2.93E-03 2.97E-03 3.55C-03 MA MA MA MA Cyanogen MA MA MA MA MA MA MA MA MA MA MA MA MA							
Cyanogen							• • • • • • • • • • • • • • • • • • • •
Hydrogen Cyanide NA			••••	•		****	
1ron 1.42E-07 9.81E-07 9.95E-07 1.96E-06 1.99E-06 Lead NA NA NA NA NA NA NA NA			****				****
Lead 1.42E-07 9.81E-07 9.93E-07 1.42E-07 9.81E-07 9.93E-07	, =						
Lithium NA NA NA NA NA							, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			••••		****		
			NA	NA	MA	HA.	nn.

Table 8A-1 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
Manganese	NA	NA	NA	NA	NA
Mercury	1.25E-07	8.64E-07	8.77E-07	1.738-06	1.75E-06
Holybdenum	MA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	MA
Phosphate	MA	NA	NA	NA	MA
Potassium	NA	NA	NA	NA	MA
Selenium	1.16E-03	8.01E-03	8.138-03	1.60E-02	1.63E-02
Silicen	MA	NA	NA	MA	AM
Silver	1.20E-05	8.308-05	8.42E-05	1.66E-04	1.68E-04
Sedium	NA	NA	NA	NA	NA
Strontium	NA	NA	MA	MA	MA
Thallium	1.17E-06	8.06E-06	8.18E-06	1.61E-05	1.64E-05
Tin	NA	NA	NA	NA	MA
Titanium	MA	NA	NA	NA	MA
Vanadium	NA	NA	MA	MA	MA
Yittrium	NA	NA	NA	NA	MA
Zinc	NA	AM	NA	NA	MA

Table 8A-2

Soil Concentrations

Resident-B Scenario

		AVERAGE	MAXIMUM	AVERAGE	MAXIPUM
	TOTAL	CALCULATED	CALCULATED	CALCULATED	CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/H2/yr	.2H	.2M	. 1M	. 114
	9 /112/ /·	mg/Kg	ang/Kg	mg/Kg	mg/Kg
ORGANICS	NA	NA	NA	NA	MA
Acetone	1.19E-13	8.23E-13	8.34E-13	1.65E-12	1.67E-12
Acetonitrile	NA	NA	NA	NA	NA
Acrylonitrile	1.26E-15	8.72E-15	8.84E-15	1.74E-14	1.77E-14
Aldrin	2.80E-16	2.01E-17	6.60E-16	4.03E-17	1.32E-15
Atrazine	2.58E-11	1.79E-10	1.81E-10	3.57E-10	3.62E-10
Benzaldehyde	NA NA	NA	NA	WA	MA
Benzene	4.95E-11	3.43E-10	3.48E-10	6.85E-10	6.95E-10
Benzofuran .	1.25E-11	8.65E-11	8.77E-11	1.73E-10	1.75E-10
Benzoic Acid	1.19E-14	8.23E-14	8.34E-14	1.65E-13	1.67E-13
Benzonitrile	NA NA	NA	MA	NA	MA
Biphenyl	WA	NA	NA	NA	MA
Bromomethane	2.38E-15	1.65E-14	1-67E-14	3.29E-14	3.34E-14
Carbazole	NA NA	WA	NA	NA	MA
Carbon Tetrachloride	NA.	NA	NA	NA	MA
Chlorobenzene	1.44E-11	9.94E-11	1.01E-10	1.99E-10	2.02E-10
4-Chlorobiphenyl	1.88E-13	1.30E-12	1.32E-12	2.60E-12	2.64E-12
4,4-Chlorobiphenyl	NA NA	NA	MA	MA	NA
Chloroform	4.59E-15	6.62E-16	1.74E-14	1.32E-15	3.47E-14
4-Chlorophenylmethylaulfone	1.71E-14	2.46E-15	6.46E-14	4.92E-15	1.29E-13
4-Chlorophenylmethylsulfaxide	2.09E-12	2.70E-12	1.36E-11	5.41E-12	2.72E-11
p,p-DDE	4.19E-16	5.41E-16	2.72E-15	1.08E-15	5.44E-15
p,p-DDT	2.47E-12	1.71E-11	1.74E-11	3.42E-11	3.47E-11
Dibenzofuren	NA NA	MA	MA	NA	MA
Dichlorobenzenes (total)	NA.	NA.	NA	NA	MA
1,4-Dichlorobenzene	WA.	MA	NA	NA	MA
1,1-Dichloroethene	NA NA	WA	WA	MA	MA
1,2-Dichloroethene	NA NA	NA	NA	MA	MA
1,2-Dichloropropane		1.79E-15	1.81E-15	3.58E-15	3.63E-15
Dieldrin	2.59E-16	1.31E-14	2.29E-13	2.62E-14	4.58E-13
Diisopropyl Methylphosphonate	4.54E-14		44	6-85E-11	6.95E-11
1,3-Dimethylbenzene	4.95E-12	NA NA	NA.	NA	MA
Dimethyldisulfide	NA ODS 43				3.61E-13
Dimethyl Hethylphosphonate	1.08E-12	40			4.17E-12
Dimethylphosphate	2.97E-13				
Dioxins/Furans (EPA TEFS)	7.59E-13				
Dithiane	4.54E-17				
Endrin	2.51E-16		NA NA	NA NA	MA
Ethylbenzene	NA	NA TOT 4			
Hexachlorobenzene	8.45E-14				
Hexachlorocyclopentadiene	2.34E-15				
Isodrin	6.63E-16				
Malathion	1.01E-15				
Methanol	2.87E-11			NA NA	NA NA
Methyl Chloride	NA	NA	NA	NA NA	NA
Methylene Chloride	NA	NA .	NA TES A		
4-Nitrophenol	1.05E-14	7.25E-14	7.35E-14	1.432*13	1.412-13

Table 8A-2 (continued)

	TOTAL DEPOSITION	AVERAGE CALCULATED CONC IN	MAXIMUM CALCULATED CONC IN	AVERAGE CALCULATED CONC IN	MAXIMUM CALCULATED CONC IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/M2/yr	.24	.24	. 1M	.14
	8/HE/ y1	mg/Kg	mg/Kg	mg/Kg	mg/Kg
		may reg	Mg/ Ag		
PAHs					
Acenaphthalene	1.24E-11	8.58E-11	8.70E-11	1.725-10	1.74E-10
Acenach thene	1.24E-11	8.58E-11	8.70E-11	1.72E-10	1.74E-10
Benzo(a)pyrene	2.47E-12	3.01E-13	8.50E-12	6.03E-13	1.70E-11
Chrysens	2.47E-12	3.78E-13	9.64E-12	7.55E-13	1.93E-11
Dibenzo(a,h)enthrecene	2.47E-12	4.10E-13	1.01E-11	8.20E-13	2.01E-11
Fluoranthene	7.448-12	1.11E-12	2.86E-11	2.21E-12	5.72E-11
Fluorene	2.47E-12	1.71E-11	1.74E-11	3.42E-11	3.47E-11
Phenanthrene	4.95E-12	5.248-13	1.56E-11	1.05E-12	3.11E-11
Pyrene	2.47E-12	2.54E-13	7.61E-12	5.07E-13	1.52E-11
Parathion	1.40E-16	9.66E-16	9.80E-16	1.93E-15	1.96E-15
Pentachlorobenzene	3.78E-14	2.61E-13	2.65E-13	5.23E-13	5.31E-13
Phenol	1.34E-10	9.28E-10	9.41E-10	1.86E-09	1.88E-09
Pyridine	NA	NA	MA	MA	NA
Quinoline	5.92E-15	4.10E-14	4.15E-14	8.19E-14	8.31E-14
Styrene	NA	NA	NA	NA	NA
Supona	4.19E-16	2.908-15	2.94E-15	5.80E-15	5.89E-15
Tetrachlorobenzene	1.59E-14	1.10E-13	1.12E-13	2.21E-13	2.24E-13
Tetrachloreethene	MA	NA	MA	MA	MA
Toluene	NA	MA	MA	MA	NA
Trichlorebenzene	8.40E-15	5.81E-14	5.89E-14	1.16E-13	1.18E-13
Trichlorcethene	NA	MA	NA	NA	NA
Urea	1.82E-10	1.26E-09	1.27E-09	2.51E-09	2.55E-09
Vacona	1.12E-15	7.74E-15	7.85E-15	1.55E-14	1.57E-14
Vinyl Chloride	MA	MA	NA	NA	MA
Aylene	MA	MA	MA	MA	MA
Inorganics					
Aluminum	MA	MA	MA	MA	MA
Amenia	NA	MA	MA	NA	NA
Antimony	1.15E-07	7.988-07	8.10E-07	1.60E-06	1.62E-06
Arsenic	6.53E-07	4.528-06	4.58E-06	9.03E-06	9.16E-06
S arium	1.60E-07	1.11E-06	1.12E-06	2.21E-06	2.24E-06
Beryllium	6.68E-09	4.62E-08	4.69E-08	9.248-08	9.37E-08
Boren	MA	MA	NA	NA	MA
Cadmium	NA	NA	MA	NA	MA
Calcium	NA	MA	NA	MA	NA
Chronium (III)	NA	MA	MA	MA	NA
Chromium (VI)	NA	NA	MA	MA	NA
Cebalt	MA	MA	MA	MA	NA
Copper	6.12E-04	4.24E-03	4.30E-03	8.47E-03	8.59E-03
Cyanogen	NA	NA	MA	NA	NA
Mydregen Cyanida	NA	MA	NA	MA	MA
1 ran	NA	NA	NA	NA	NA
Lead	2.05E-07	1.42E-06	1.44E-06	2.84E-06	2.88E-06
Lithium	NA	NA	NA	NA	NA
Magnesium	NA	NA	NA	NA	NA
Magnes i um	NA	NA	NA	NA	NA

Table 8A-2 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1H mg/Kg	MAXIMEM CALCULATED CONC IN SOIL .1H mg/Kg
Manganese Mercury Molybdenum Nickel Phosphate Potassium Selenium Silver Sodium Strontium Thallium Tin	1.81E-07 MA NA NA NA 1.67E-03 NA 1.74E-05 NA NA 1.68E-06 NA	NA 1.25E-06 NA NA NA 1.16E-02 NA 1.20E-04 NA 1.17E-05 NA	1.27E-06 NA NA NA NA 1.18E-02 NA 1.22E-04 NA 1.18E-05 NA	2.50E-06 MA NA NA NA 2.32E-02 MA 2.40E-04 NA 2.33E-05 NA	2.54E-06 MA MA MA 2.35E-02 MA 2.44E-04 MA 2.36E-05 MA
Vanadium Yittrium	WA WA WA	NA NA NA	NA NA NA	MA MA MA	AM AM AM

8A-11

Table 8A-3

Soil Concentrations

Farmer Scenario

ORGANICS ACCEONS NA NA NA NA	NA 9.89E-13 NA 1.05E-14
THE THE THE THE THE THE THE THE THE THE	9.89E-13 NA 1.05E-14
	9.89E-13 NA 1.05E-14
Acetonitrile 7.05E-14 4.88E-13 4.95E-13 9.75E-13	1.05E-14
Acrylenitrile MA NA NA NA	
Aldrin 7.47e-16 5.17e-15 5.24e-15 1.03e-14	
Atrezine 1.66E-16 1.19E-17 3.92E-16 2.39E-17	7.83E-16
Banzaldehyde 1.53E-11 1.06E-10 1.07E-10 2.12E-10	2.15E-10
Benzene NA NA NA NA	MA
Benzofuran 2.94E-11 2.03E-10 2.06E-10 4.06E-10	4.12E-10
Benzoic Acid 7.41E-12 5.13E-11 5.20E-11 1.03E-10	1.04E-10
Benzonitrile 7.05E-15 4.88E-14 4.95E-16 9.75E-14	9.89E-14
Biphonyl NA NA NA NA	NA
Bromomethome NA NA NA NA	NA
Carbazole 1.41E-15 9.75E-15 9.89E-15 1.95E-14	1.98E-14
Carbon Tetrachloride NA NA NA NA	MA
Chlorebenzene NA NA NA NA	MA
4-Chlorobiphenyl 8.52E-12 5.89E-11 5.98E-11 1.18E-10	1.20E-10
4,4-Chlorebiphenyl 1.12E-13 7.72E-13 7.83E-13 1.54E-12	1.57E-12
Chloroform NA NA NA NA	NA
4-Chlorophenylmethylaulfane 2.72E-15 3.92E-16 1.03E-16 7.84E-16	2.065-14
4-Chlorophenylmethylaulfoxide 1.01E-14 1.46E-15 3.83E-16 2.92E-15	7.66E-14
P,P-DDE 1.24E-12 1.60E-12 8.05E-12 3.21E-12	1.61E-11
P.P-99T 2.49E-16 3.21E-16 1.61E-15 6.42E-16	3.22E-15
Dibenzofuran 1.47E-12 1.01E-11 1.03E-11 2.03E-11	2.06E-11
Dichlorobenzenes (total) NA NA NA NA	MA
1,4-Dichlorobenzone NA NA NA NA	MA
1,1-Dichlorosthere NA NA NA NA	MA
1,2-Dichloroethone NA NA NA NA	MA
1,2-Dichlereprepane NA NA NA NA	MA
Dieldrin 1.53E-16 1.06E-15 1.08E-15 2.12E-15	2.15E-15
Disopropyl Nethylphosphonate 2.69E-16 7.76E-15 1.36E-13 1.55E-14	2.725-13
1,3-Dimethylbenzene 2.94E-12 2.03E-11 2.06E-11 4.06E-11	4.12E-11
Dimethyldiaulfide NA NA NA NA	NA
Dimethyl Methylphosphonate 6.42E-13 3.06E-15 1.07E-13 6.12E-15	2.14E-13
Dimethylphosphate 1.76E-13 1.22E-12 1.24E-12 2.44E-12	2.47E-12
Dioxins/Furans (EPA TEFs) 4.50E-13 7.64E-13 2.97E-12 1.53E-12	5.94E-12
Dithiene 2.69E-17 1.86E-16 1.89E-16 3.73E-16	3.788-16
Endrin 1.49E-16 2.13E-16 9.73E-16 4.26E-16	1.958-15
Ethylbenzene NA NA NA NA	HA
Hexachlorobenzone 5.01E-14 4.33E-14 3.13E-13 8.66E-14	6.26E-13
Hexachlorecyclepentediene 1.39E-15 9.61E-15 9.75E-15 1.92E-14	1.95E-14
1sedrin 3.93E-16 2.72E-15 2.76E-15 5.44E-15	5.52E-15
Melathicn 6.00E-16 4.15E-15 4.21E-15 8.30E-15	8.42E-15
Methanol 1.70E-11 1.18E-10 1.20E-10 2.36E-10	2.39E-10
Methyl Chloride NA NA NA NA	NA
Methylene Chloride NA NA NA NA	NA
4-Nitrophenol 6.21E-15 4.30E-14 4.36E-14 8.59E-14	8.72E-14

Table 8A-3 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
PAHs					
Acenaphthalene	7.35E-12	5.08E-11	5.16E-11	1.02E-10	1.03E-10
Acenaphthene	7.35E-12	5.08E-11	5.16E-11	1.02E-10	1.03E-10
Benzo(a)pyrene	1.47E-12	1.79E-13	5.04E-12	3.58E-13	1.01E-11
Chrysene	1.47E-12	2.24E-13	5.72E-12	4.48E-13	1.14E-11
Dibenzo(a,h)anthracene	1.47E-12	2.43E-13	5.96E-12	4.86E-13	1.19E-11
Fluoranthene	4.41E-12	6.56E-13	1.70E-11	1.31E-12	3.39E-11 2.06E-11
Fluorene	1.47E-12	1.01E-11	1.03E-11	2.03E-11 6.21E-13	1.84E-11
Phenanthrene	2.94E-12	3.10E-13	9.22E-12 4.51E-12	3.01E-13	9.02E-12
Pyrene	1.47E-12	1.50E-13	5.81E-16	1.15E-15	1.16E-15
Parathion	8.28E-17	5.73E-16 1.55E-13	1.57E-13	3.10E-13	3.15E-13
Pentach Lorobenzene	2.24E-14 7.95E-11	5.50E-10	5.58E-10	1.10E-09	1.12E-09
Phenol	NA NA	NA NA	NA I	MA	NA
Pyridine . * Quinoline	3.51E-15	2.43E-14	2.46E-14	4.86E-14	4.93E-14
Styrene	WA	NA NA	NA	NA	MA
Supona	2.49E-16	1.72E-15	1.75E-15	3.44E-15	3.49E-15
Tetrachiorobenzene	9.45E-15	6.54E-14	6.63E-14	1.31E-13	1.33E-13
Tetrachioroethene	NA	NA	NA	MA	NA
Toluene	NA	NA	MA	MA	MA
Trichlorobenzene	4.98E-15	3.44E-14	3.49E-14	6.89E-14	6.99E-14
Trichloroethene	WA	NA	NA	MA	NA .
Urea	1.08E-10	7.45E-10	7.56E-10	1.49E-09	1.51E-09
Vapona	6.63E-16	4.59E-15	4.65E-15	9.17E-15	9.31E-15
Vinyl Chloride	NA	NA	MA	MA	NA NA
Xylene	NA	NA	NA	MA	MA
INORGANICS			***		WA
Aluminum	MA	NA	NA NA	MA MA	MA
Ammonia	NA	NA TO OT	4.80E-07	9.46E-07	9.60E-07
Antimony	6.84E-08	4.73E-07 2.68E-06	2.72E-06	5.35E-06	5.43E-06
Arsenic	3.87E-07 9.48E-08	6.56E-07	6.65E-07	1.31E-06	1.33E-06
Barium	3.96E-09	2.74E-08	2.78E-08	5.48E-08	5.56E-08
Beryllium	3.902-07 NA	NA NA	NA NA	MA	NA
Boron	NA NA	NA	HA	MA	NA
Cedmium	WA	NA	NA	NA	NA
Calcium	MA	AM	MA	MA	WA
Chromium (III) Chromium (VI)	NA NA	NA	NA	NA	NA
Cobelt Cobelt	WA	WA	NA	NA	MA
• • • • • • • • • • • • • • • • • • • •	3.63E-04	2.51E-03	2.55E-03	5.02E-03	5.09E-03
Copper Cyanogen	NA	NA	NA	MA	MA
Hydrogen Cyanide	WA	NA	NA	MA	MA
lron	NA	MA	NA	NA	NA .
Lead	1.21E-07	8.40E-07	8.53E-07	1.68E-06	1.71E-06
Lithium	NA	NA	NA	NA	NA
Magnesium	NA	NA	MA	NA	NA

Table 8A-3 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2H mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg
Manganase	WA	NA	NA	NA	NA
Mercury	1.07E-07	7.41E-07	7.52E-07	1.48E-06	1.50E-06
Not ybdenuse	MA	MA	NA	NA	MA
Nickel	NA	NA	MA	NA	NA
Phosphate	MA	NA	MA	MA	MA
Potassium	MA	MA	MA	社会	MA
Selenium	9.93E-04	6.87E-03	6.97E-03	1.37E-02	1.39E-02
Silicen	WA	MA	NA	NA	NA
Silver	1.03E-05	7.12E-05	7.22E-05	1.42E-04	1.44E-04
Sedium	NA	MA	MA	MA	MA
Strontium	NA	MA	MA ·	NA	NA
Thallium	9.99E-07	6.91E-06	7.01E-06	1.38E-05	1.402-05
Tin	NA	MA	NA	NA	MA
Titenium	NA	NA	MA	MA	MA
Vanadium	MA	MA	MA	MA	MA
Yittrium	NA	MA	NA	MA	NA
Zinc	MA	MA	NA	MA	NA

Table 8A-4

Soil Concentrations

Worker Scenario

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M wg/Kg
ORGANICS					N/A
Acetone	NA	NA .	NA	NA .	NA 1.51E-12
Acetonitrile	1.08E-13	7.46E-13	7.57E-13	1.49E-12	1.51E-12
Acrylonitrile	NA	WA	NA OF A	NA 1.58E-14	1.60E-14
Aldrin	1.14E-15	7.91E-15	8.02E-15	3.65E-17	1.20E-15
Atrazine	2.54E-16	1.83E-17	5.99E-16 1.64E-10		3.29E-10
Benza i dehyde	2.34E-11	1.62E-10	NA	3.24E-10	NA
Benzene	NA 4.49E-11	3.11E-10	3.15E-10	6.22E-10	6.31E-10
Benzofuran	1.13E-11	7.84E-11	7.96E-11	1.57E-10	1.59E-10
Benzoic Acid	1.08E-14	7.46E-14	7.57E-14	1.49E-13	1.51E-13
Benzonitrile	NA	NA NA	NA .	MA	NA
Biphenyl Bromomethane	NA A	NA.	MA	NA	NA
Carbazole	2.16E-15	1.49E-14	1.51E-14	2.98E-14	3.03E-14
Carbon Tetrachloride	NA	MA	NA	NA	NA
Chiorobenzene	NA	NA	NA	NA	NA
4-Chlorobiphenyl	1.30E-11	9.02E-11	9.15E-11	1.80E-10	1.83E-10
4.4-Chlorobiphenyl	1.71E-13	1.18E-12	1.20E-12	2.36E-12	2.40E-12
Chloroform	NA	AM	MA	NA	NA .
4-Chlorophenylmethylsulfone	4.17E-15	6.00E-16	1.57E-14	1.20E-15	3.15E-14
4-Chlorophenylmethylsulfoxide	1.55E-14	2.23E-15	5.86E-14	4.47E-15	1.17E-13
P.P-DDE	1.90E-12	2.45E-12	1.23E-11	4.90E-12	2.46E-11 4.93E-15
p,p-DDT	3.81E-16	4.91E-16	2.47E-15	9.82E-16	3.15E-11
Dibenzofuren	2.24E-12	1.55E-11	1.58E-11	3.11E-11	J. IJE-11
Dichlorobenzenes (total)	MA	MA	NA NA	NA NA	NA NA
1,4-Dichlorobenzene	NA	MA	NA NA	NA AM	WA
1,1-Dichloroethene	MA	MA MA	NA NA	NA.	NA
1,2-Dichloroethene	NA NA	NA AM	NA.	NA.	NA
1,2-Dichloropropane	2.35E-16	1.6ZE-15	1.65E-15	3.24E-15	3.29E-15
Dieldrin	4.12E-14	1,19E-14	2.08E-13	2.37E-14	4.16E-13
Diisopropyl Methylphosphonate	4.49E-12	3.11E-11	3.15E-11	6.22E-11	6.31E-11
1,3-Dimethylbenzene	NA	NA	NA	MA	MA
Dimethyldisulfide Dimethyl Methylphosphonste	9.82E-13	4.68E-15	1.64E-13	9.36E-15	3.28E-13
	2.69E-13	1.86E-12	1.89E-12	3.73E-12	3.78E-12
Dimethylphosphate Dioxins/Furans (EPA TEFS)	6.89E-13	1.17E-12	4.55E-12	2.34E-12	9.09E-12
Dithiane	4.12E-17	2.85E-16	2.89E-16	5.70E-16	5.79E-16
Endrin	2.28E-16	3.26E-16	1.49E-15	6.52E-16	2.98E-15
Ethylbenzene	WA	NA	NA	NA	MA
Hexachlorobenzene	7.67E-14	6.6ZE-14	4.79E-13	1.32E-13	9.57E-13
Hexachlorocyclopentadiene	2.13E-15	1.47E-14	1.49E-14	2.94E-14	2.98E-14
landrin	6.01E-16	4.16E-15	4.22E-15	8.32E-15	8.44E-15
Malathion	9.18E-16	6.35E-15	6.44E-15	1.27E-14	1.29E-14
Methanol	2.61E-11	1.80E-10			3.66E-10 NA
Methyl Chloride	NA	MA	NA	NA Na	NA NA
Methylene Chloride	NA .	NA	NA .		
4-Nitrophenol	9.50E-15	6.57E-14	6.67E-14	1.315-13	1.335 13

Table 8A-4 (continued)

		•			
		AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
	TOTAL	CALCULATED	CALCULATED	CALCULATED	CALCULATED
	DEPOSITION	CONC IN	CONC IN	CONC IN	COME IN
	RATE	SOIL	SOIL	SOIL	SOIL
	g/M2/yr	.214	.2H	.1M	. 18
		mg/Kg	mg/Kg	mg/Kg	ang/Kg
PAHs					
Acenaphthalone	1.12E-11	7.78E-11	7.89E-11	1.56E-10	1 ERF 40
Acenephthene	1.12E-11	7.78E-11	7.89E-11	1.56E-10	1.58E-10 1.58E-10
Benzo(a)pyrene	2.24E-12	2.74E-13	7.71E-12	5.47E-13	1.54E-11
Chrysene	2.24E-12	3.43E-13	8.75E-12	6.85E-13	1.75E-11
Dibenzo(a,h)enthrocene	2.245-12	3.72E-13	9.12E-12	7.44E-13	1.82E-11
Fluoranthene	6.75E-12	1.00E-12	2.59E-11	2.01E-12	5.19E-11
fluorene	2.24E-12	1.55E-11	1.58E-11	3.11E-11	3.15E-11
Phenonthrene	4.49E-12	4.75E-13	1.41E-11	9.50E-13	2.82E-11
Pyrene	2.24E-12	2.30E-13	6.91E-12	4.60E-13	1.38E-11
Parathion	1.27E-16	8.76E-16	8.89E-16	1.75E-15	1.785-15
Pentachlorobenzene	3.43E-14	2.37E-13	2.41E-13	4.74E-13	4.81E-13
Phenol	1.22E-10	8.41E-10	8.54E-10	1.68E-09	1.71E-09
Pyridine	MA	NA	NA	NA	MA
Quinotine	5.37E-15	3.71E-16	3.77E-14	7.43E-14	7.54E-14
Styrene Su cen a	NA .	NA	MA	NA	NA
Tetrachlorobenzene	3.81E-16	2.63E-15	2.67E-15	5.26E-15	5.34E-15
	1.45E-14	1.00E-13	1.01E-13	2.00E-13	2.03E-13
Tetrachioroethene Toluene	NA	NA	MA	NA	NA
Trichlorobenzene	NA NA	NA	MA	NA	MA
Trichlorcethene	7.62E-15	5.27E-14	5.35E-14	1.05E-13	1.07E-13
Urea	NA	NA	NA	MA	MA
Vaccha	1.65E-10	1.14E-09	1.16E-09	2.28E-09	2.31E-09
Vinyl Chloride	1.01E-15	7.02E-15	7.12E-15	1.40E-14	1.42E-14
Xylens	NA Na	NA	NA	NA	NA
,	AM	MA	NA	NA	HA
INORGANICS Aluminum					
Amenia	MA	MA	MA	MA	NA
Antimony	NA	MA	_ NA	MA	NA
Arsenic	1.05E-07	7.24E-07	7.34E-07	1.45E-06	1.47E-06
Barium	5.92E-07	4.10E-06	4.16E-06	8.198-06	8.31E-06
Beryllium	1.45E-07 6.06E-09	1.00E-06	1.025-06	2.01E-06	2.04E-06
Borca		4.19E-08	4.25E-08	8.38E-08	8.50E-08
Cochica	MA	NA	NA	MA	NA
Calcium	NA Na	NA	MA	NA	MA
Chronium (III)	MA	NA	NA	MA	NA
Chromium (VI)	NA	WA Ma	NA	NA	NA
Cobalt	****	••••	NA	NA	MA
Copper	NA 5.55E-04	NA 2 0/5 02	NA 7 cos es	NA .	NA
Cyanogen	3.335°US	3.84E-03	3.90E-03	7.68E-03	7.798-03
Hydrogen Cyanide		NA	NA	NA	MA
Iron	NA Na	NA Na	NA	NA	NA
Lead	1.86E-07	1.29E-06	NA 1.30E-06	NA DE	NA .
Lithium	NA	NA	1.30E-US	2.57E-06	2.61E-06
Magnesium	NA NA	NA NA	NA NA	NA MA	NA.
	MA	HA	神具	利品	NA

Table 8A-4 (continued)

	TOTAL DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	AVERAGE CALCULATED CONC IN SOIL .1H mg/Kg	MAXIMUM CALCULATED CONC 1N SOIL .1M mg/Kg
Manganese Mercury Molybdenum Mickel Phosphate Potassium Selanium Silicon Silver Sodium Strontium Thallium Tin Titanium Vanadium Zinc	1.64E-07 NA NA NA NA 1.52E-03 NA 1.57E-05 NA 1.53E-06 NA NA NA	1.13E-06 NA NA NA NA 1.05E-02 NA 1.09E-04 NA 1.06E-05 NA NA	1.15E-06 NA NA NA 1.07E-02 NA 1.10E-04 NA 1.07E-05 NA NA	2.27E-06 NA NA NA NA 2.10E-02 NA 2.18E-04 NA NA 2.11E-05 NA NA NA	NA 2.30E-06 NA NA NA 2.13E-02 NA 2.21E-04 NA 2.15E-05 NA NA

APPENDIX 8A

CITED REFERENCES

Ebasco Services, Inc. 1990. Final Human Health Exposure Assessment for Rocky Mountain Arsenal. Volumes II and III. Toxicity Assessment. Prepared for U.S. Army Program Manager's Office for the Rocky Mountain Arsenal Contamination Cleanup. Version 4.1. Contract No. DAAA15-88-0024.

EPA (U.S. Environmental Protection Agency). 1986a. <u>Superfund Public Health Evaluation Manual</u>. Office of Emergency and Remedial Response, EPA 540/1-86-060, Washington, D.C.

EPA (U.S. Environmental Protection Agency). 1986b. Methodology for the Assessment of Health Risks Associated with Multiple Pathway Exposure to Municipal Waste Combustor Emissions, Draft. Environmental Criteria and Assessment Office, Cincinnati, OH.

Park, K.S., R.C. Sims, R.R. Dupont, and W.J. Doucette. 1990. "Fate of PAH Compounds in Two Soil Types: Influence of Volatilization, Abiotic Loss and Biological Activity," Environ. Tox. and Chem., 9:2. 1990.

Price, A. 1990. Personal Communication. Sail Conservation Service.

APPENDIX 8B

METHODOLOGY FOR CALCULATING POLLUTANT CONCENTRATIONS IN VEGETABLES

APPENDIX 8B

METHODOLOGY FOR CALCULATING POLLUTANT CONCENTRATIONS IN VEGETABLES

This appendix presents a detailed discussion of the methods used to determine the pollutant concentrations in vegetables that are considered in the vegetable consumption exposure route. Three vegetables (carrots, lettuce, and tomatoes) were selected to represent the vegetables that may be grown in a household garden in the area surrounding the Rocky Mountain Arsenal.

8B.1 CARROTS

8B.1.1 General Approach

The pollutant concentration (C_u) in carrots resulting from uptake from the soil is expressed by the following equation:

C_u (mg/kg) = Pollutant concentration in soil (mg/kg) x RUF

Where:

RUF = Root uptake factor (unitless)

The soil concentrations used in the calculations are presented in Tables 8A-1, 8A-2, and 8A-3 for the Resident-A, Resident-B, and Farmer scenarios, respectively. The derivation of the root uptake factors is described in the following subsection.

8B.1.2 Derivation of Root Uptake Factors for Carrots

Organics

Root uptake factors (RUFs) were derived based on the work by Briggs et al. (1982). Briggs et al. (1982) studied the uptake of organic chemicals from solution by barley shoots and established the following relationship between the root concentration factor (RCF) and the K_{pa} (octanol/water partition coefficient) for the organics tested:

$$log (RCF - 0.82) = 0.77 log K_{ow} - 1.52$$

Where:

RCF = C_{root}/C_{solution}

C_{root} = Pollutant concentration in the root (mg/kg).

C_{solution} = Pollutant concentration in water (mg/L).

Given the following relationship between pollutant distributions in soil and water phases:

$$\frac{C_{\text{soil}}}{C_{\text{colution}}} = (K_{\text{oc}}) (f_{\text{oc}})$$

Where:

C_{soil} = Pollutant concentration in soil (mg/kg).

 C_{solution} = Pollutant concentration in water (mg/L).

K_{cc} = Organic carbon partition coefficient.

 f_{cc} = Fraction of organic carbon in the soil, 1.42 percent (Price, 1990).

The RUF for each compound could be determined from the RCF as shown in the following equation:

$$RUF = \frac{RCF}{(K_{oc})(f_{oc})} = \frac{C_{root}/C_{solution}}{C_{soil}/C_{solution}} = \frac{C_{root}}{C_{soil}}$$

RCFs and RUFs were calculated for the pollutants of concern using $K_{\infty}s$ and $K_{\infty}s$ from EPA (1986) and a soil organic carbon content (f_{∞}) of 1.42 percent (Price, 1990). Log K_{∞} and K_{∞} values used in the calculation of RUFs are presented in Table 8B-1. K_{∞} data were not available for several chemicals. In these instances, the values were calculated based on the log K_{∞} . If the chemical was an aromatic with a log K_{∞} between 2 to 6.6, the following equation was used:

$$\log K_{\infty} = 0.937 \log K_{\infty} - 0.006 \text{ (Lymn et al., 1982)}$$

For aromatics with a log K_{ow} falling cutside the given range, as well as all other organic substances, the following equation was used:

$$\log K_{\infty} = 0.544 \log K_{\infty} + 1.377$$
 (Lyman et al., 1982).

Inorganics

The RUFs used for the inorganic compounds were based on transfer coefficients developed by Baes et al. (1984) for tubers. Tubers are similar to carrots in that most tubers grow underground and serve as food storage organs. The transfer coefficients, which are expressed as dry weight plant concentrations divided by dry weight soil concentrations, were converted to wet weight by assuming a water content for carrots of 88 percent (Baes et al., 1984).

RUFs used to determine inorganic uptake by carrots can be found in Tables 8B-2 through 8B-7. It should be noted that, although the chemical composition of a plant reflects its

Table 8B-1

log Kos and Kos

Acetonitrile -3.4	Log Ka	Source	K	Source
	.3.40E-01	EPA, 1986	. 2.20E+00	EPA, 1986
Aldrin 7.4	7.40E+00	EPA, 1989	9.60E+04	EPA, 1986
Atrazine 2.6	2.68E+00	EPA, 1987	3.20E+02	Calculated (a)
Benzaldehyde 1.4	1.48E+00	Verschildren, 1983	1.52E + 02	Calculated (b)
Benzofuran 2.6	2.67E+00	Verschueren 1983	3.13E+02	Calculated (a)
Benzoic Acid 1.8	1.87E+00	Verschunden, 1983	2.48E+02	Calculated (b)
Benzonitrile 1.5	1.56E+00	Verschueren, 1983	1.68E+02	Calculated (b)
Carbazole 3.2	3.29E+00	Verschueren, 1983	1.19E+03	Calculated (a)
4-Chlorobiphenyl 4.9	4.90E+00	EPA, 1987	\$ 85E+04	Calculated (a)
4,4-Chlorobiphenyl 5.5	5.58E+00	EPA, 1987	1.67E+05	Calculated (a)
4-Chlorophenylmethylsulfone 1.2	1.20E+00	Ebasco, 1990	1.26E+02	Ebasco, 1990
4-Chlorophenylmethylsulfoxide 1.3	1.33E+00	Ebasco, 1990	1.07E+02	Ebasco, 1990
p,p-DDE 5.6	5.69E+00	EPA, 1989	4.40E+06	EPA, 1989
p,p-DDT 6.3	6.36E+00	EPA, 1989	2.43E+05	EPA, 1989
Dibenzofuran 4.1	4.12E+00	HSDB, 1990	7.15E+03	Calculated (a)
Dieldrin 6.2	6.20E+00	EPA, 1989	1.70E+03	EPA, 1986

(a) Calculated using log $K_{oc} = 0.937$ log K_{ow} -0.006 (Lyman et al., 1982). (b) Calculated using log $K_{oc} = 0.544$ log K_{ow} + 1.377 (Lyman et al., 1982). (c) NTA = Not available

Table 8B-1 (continued)

Organic Compounds	Log K.	Source	K _{oc}	Source
Diisopropyl Methlphosphonate	1.73E+00	Ebasco, 1990	2.08E+02	Ebasco, 1990
1,3-Dimethylbenzene	3.20E+00	Verschueren, 1983	9.83E+02	Calculated (a)
Dimethyl Methylphosphonate	-1.88E+00	Ebasco, 1990	2.30E+00	Calculated (b)
Dimethylphosphate	NTA (c)		NTA (c)	
Dioxins/Furans (EPA TEFs)	6.10E+00	EPA, 1989	3.30E+06	EPA, 1986
Dithiane	7.70E-01	Einsco, 1990	6.20E+01	Calculated (b)
Endrin	4.56E+00	EPA, 1989	5.60E+06	Verschueren, 1983
Hexachlorobenzene	5.47E+00	EPA, 1989	5.00E+04	Howard, 1989
Hexachlorocyclopentadiene	5.51E+00	EPA, 1989	4.80E+03	EPA, 1986
Isodrin	6.51E+00	Ebasco, 1990	5.80E+03	Ebasco, 1990
Malathion	2.89E+00	EPA, 1987	1.80E+03	Ebasco, 1990
Methanol	-8.20E-01	Verschueren, 1983	8.50E+00	Calculated (b)
4-Nitrophenol	2.91E+00	EPA, 1989	5.26E+02	Calculated (a)
PAHs				
Acenaphthalene	4.07E+00	EPA, 1989	2.50E+03	EPA, 1986
Acenaphthene	3.92E+00	EPA, 1989	4.60E+03	EPA, 1986
Вепго(а)рутепе	6.42E+00	EPA, 1989	5.50E+06	EPA, 1986

(a) Calculated using log $K_{oc} = 0.937$ log K_{ow} -0.006 (Lyman et al., 1982). (b) Calculated using log $K_{oc} = 0.544$ log $K_{ow} + 1.377$ (Lyman et al., 1982). (c) NTA = Not available

Table 8B-1 (continued)

Chrysene 5.79E+00 Dibenzo(a,h)anthracene 6.50E+00 Fluoranthene 5.22E+00 Fluorene 4.38E+00 Phenanthrene 4.57E+00 Pyrene 5.18E+00	EPA, 1989 EPA, 1989		
nthracene		2.00E+05	EPA, 1986
		3.30E+06	EPA, 1986
	EPA, 1989	3.80E+04	EPA, 1986
	EPA, 1989	7.30E+03	EPA, 1986
	EPA, 1989	1.40E+04	EPA, 1986
	EFA, 1989	3.80E+04	EPA, 1986
Parathion 3.81E+00	EPA, 1989	3.66E+03	Calculated (a)
Pentachlorobenzene 5.08E + 00	EPA, 1987	1.30E+04	EPA, 1986
Phenol 1.46E+00	EPA, 1989	1.40E+01	EPA, 1986
Quinoline 2.03E+00	Verschueren, 1983	7,90E+m	Calculated (a)
Supona 3.11E+00	Ebasco, 1990	1.TTE+03	Ebasco, 1990
Tetrachlorobenzene 4.37E+00	EPA, 1987	1.60E+03	EPA, 1986
Trichlorobenzene 3.98E+00	EPA, 1989	9.20E + 03	EPA, 1986
Urea -2.97E+00	Verschueren, 1983	5.80E-01	Calculated (b)
Vapona 1.40E+00	Ebasco, 1990	1.38E+02	Calculated (b)

(a) Calculated using log $K_{oc} = 0.937$ log K_{ow} -0.006 (Lyman et al., 1982). (b) Calculated using log $K_{oc} = 0.544$ log K_{ow} +1.377 (Lyman et al., 1982). (c) NTA = Not available

16, 1/1

Average Pollutant Concentration in Carrots, and

ł

Adult and Child Daily Intake at the Resident-A Location

	AVERAGE CALCULATED CONC IN SOIL .2M	log Kow	Koc	ROOT UPTAKE FACTOR	AVERAGE CONC. DUE TO UPTAKE Mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE mg/kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE
ORGANICS							
Acetonitrile	5.69E-13	-0.34	2.2	2.68E+01	1.52E-11	1.48E-15	2.21E-15
Aldrin	6.03E-15	7.4	000%	1.116+01	6.66E-14	6.46E-18	9.67E-18
Atrazine	1.39E-17	2.68	320	9.50E-01	1.32E-17	1.285-21	1.92E-21
Benzaldehyde	1.23E-10	1.48	152	5.73E-01	7.07E-11	6.86E-15	1.03E-14
Benzofuran	2.37E-10	2.67	313	9.57E-01	2.27E-10	2.20E-14	3.295-14
Benzoic Acid	5.98E-11	1.87	248	4.69E-01	2.80E-11	2.72E-15	4.07E-15
Benzonitrile	5.69E-14	1.56	891	5.45E-01	3,106-14	<u>-</u>	4.50E-18
Carbazole	1.14E-14	2.2	1193	6.57E-01	7.48E-15	7.25E-19	1.095-18
4-Chlorobiphenyl	6.88E-11	6.4	38486	3.29E-01	2.26E-11	2.196-15	3.296-15
4,4-Chlorobiphenyl	9.01E-13	5.58	166901	2.53E-01	2.28E-13	2.21E-17	3.306-17
4-Chlorophenyimethylsulfone	4	1.2	126	6.00E-01	2.75E-16	2.66E-20	3.996-20
4-Chlorophenylmethylsulfoxide	÷	1.33	107	7.50E-01	1.28E-15	1.24E-19	1.85E-19
p,p-00E		5.69	4400000	1.16E-02	2.18E-14	2.11E-18	3.16E-18
p,p-00T	3.75E-16	6.36	243000	6.91E-01	2.59E-16	2.51E-20	3.76E-20
Dibenzofuran	1.18E-11	4.12	7152	4.50E-01	5.33E-12	5.17E-16	7.74E-16
Dieldrin	1.24E-15	6.2	1700	7.44E+01	9.20E-14	8.92E-18	1.34E-17
Diisopropyl Methylphosphonate	9.06E-15	2.7	208	4.97E-01	4.50E-15	4.376-19	6.54E-19
1, 3-Dimethylbenzene	2.37E-11	3.2	289	6.88E-01	1.63E-11	1.586-15	2.37E-15
Dimethyl Methylphosphonate	3.57E-15	-1.58	5.3	2.516+01	8.97E-14	8.70E-18	1.30E-17
Dimethylphosphate	1.426-12	4 400-00					
Dioxins/furens (EPA IEFS)	6.71E-13	0.10E+00	3.305.00	3.4 IE-02	7.00E-14	2.77E-18	4.156-18
Dithiane	2.1/E-10	2.0	20007	3/1.0/2400	7.32E-10	2.005.33	2.305-20
Endrin	6.4%-10	00.	200000	1.24E-U3	2.5%	3.00E-23	4.4VE-23
Hexachlorobenzene	5.05E-14	2.4	20000	6.94E-01	3.51E-14	5.40E-18	5.0%-18
Hexach lorocyclopentadiene	1.12E-16	12.5	4800	7.76E+00	6.70E-14	5.43E-18	1.265-17
Isodrin	3.1/E-15	6.5	000	3.78E+U1	1.20E-13	1.106-17	1.74E-17
Metathion	4.046-13	6.00	300	(acc.00	0 /35 40	- 100 - 100	1.025-19
Methanol	1.386-10	2.5	6.5	0.63E+00	7.42E-10	y. 135-14	1.5/5-15
4-Witrophenol	5.01E-14	14.7	976	6.146-01	4.00E-14	3.725-18	3.YZE-18
Account the Lane	5 OTE-11	70 7	2500	1 185+00	7 01E-11	A 705-15	1 025-14
Acenaphthene	5.03E-11	1 02	0097	4 95F-01	2.94F-11	2.85E-15	4.265-15
Beoro(a)cycena	2 005-13	6.42	5500000	3.40F-02	7.005-15	6.875-19	1.03F-18
Chrysene	2.61E-13	2	200000	3.06E-01	7.995-14	7.75E-18	1.166-17
Dibenzo(a.h)anthracene	2.84E-13	6.5	3300000	6.52E-02	1.85E-14	1.795-18	2.69E-18
Fluoranthene	7.65E-13	5.22	38000	5.87E-01	4.496-13	4.35E-17	6.52E-17
Fluorene	1.18E-11	4.38	7300	6.95E-01	8.23E-12	7.98E-16	1.196-15
Phenanthrene	3.62E-13	4.57	14000	5.06E-01	1.83E-13	1.785-17	2.66E-17
Pyrene	1.76E-13	5.18	38000	5.47E-01	9.59E-16	9.306-18	1.396-17
Parathion	6.68E-16	3.81	3664	5.14E-01	3.43E-16	3.336-20	4.99E-20
Pentachlorobenzene	1.81E-13	5.08	13000	1.346+00	2.42E-13	2.35E-17	3.52E-17
Phenol	6.42E-10	1.46	14	6.15E+00	3.94E-09	3.82E-13	5.73E-13
Quinol ine	2.83E-14	2.03	ድ	1.72E+00	4.86E-14	4.71E-18	7.05E-18

٠.																				
	1.46E-19	3.45E-17	1.60E-18	1.26E-11	4.68E-19			2.89E-13	3.26E-13	2.00F-13	R 45c-14	0.325	1.286-08	1.54E-13	3.01F-12	00-307 E	1.47E 07	1.45E-10	5.62E-14	
	9.72E-20	2.306-17	1.07E-18	B. 39E - 12	3.136-19			1.93E-13	2.18E-13	1.33E-13	5 5AF - 14	200	0.32E-09	1.03E-13	2.01E-12	2 336-00	10 100	9.66E-11	3.75E-14	
	1.006-15	2.38E-13	1.10E-14	8.66E-08	3.23E-15		000	I. YAE - US	2.25E-09	1.38E-09	5.75F-12	10 TOL 0	0.77.00	1.06E-09	2.07E-08	2.408-05	100	9.97E-07	3.87E-10	
	5.00E-01	3.12E+00	Z. 75E-01	9.96E+01	6.03E-01		# 40c 02	200 - 100 ·	1.20E-04	1.80E-03	1.80E-04	T OUE . D.	200.0	1.00E-03	2.40E-02	3.00E-03	200	20-202-1	4.80E-05	
	2211	1000	0074	0.58	138															
	3.11	7 C	000	14.2	\$ ·															
	2.01E-15	A 025 14	A AOE - 10	20.07C	01-300-0		5.52E-07	2 37E-04	2 ARR 24	1.636-0	3.206-05	2.93E-03	0 A1E-07	20.010	0.000	G.OTE-03	20-10% ex	7000	00-200-0	
	Supons Tetrachiorofenzens	Trichlorobenzena	200	Varions		INORGANICS	Antimony	Arsenic			פבו אנו ותא	Copper	Lead	No.			SILVET	The I feet		

Average Pollutant Concentration in Carrots, and Adult and

Child Daily Intake at the Resident-B Location

)				AVEBACE		5
	CALCULATED	tog Kow	Koc	ROOT UPTAKE	CONC. DUE	AVERAGE	AVERAGE
	CONC 1N SOIL .2M				TO UPTAKE Mg/Kg	DAILY	DAILY
	mg/Kg					MQ/Kg/OAy	ABO /BY /B
ORGANICS			r	2 485401	2 206-11	21-371 6	1 20E-15
Acetonitrile	8.236-13	4.0-	2.2	1 115+01	0 63F-14	9.34E-18	1.406-17
Aldrin	3.045 47		2000	0 506-01	1.016-17	1.85E-21	2.77E-21
Atrazine	2.01E-17	00.7	950	5 746.01	1 025-10	0 OfF-15	1 485-14
Benzaldehyde	1.7%-10	2	111	0 575-01	1 28F-10	3, 186-14	4.76E-14
Benzofuran	3.436-10	2.07	870	4 A9F-01	4.05F-11	3.936-15	5.896-15
Benzoic Acid	6.65E-11	72.	871	5 45F-01	4.485-14	4.35E-18	6.51E-18
Benzonitrile	8.23E-14	. 70	101	A 57E-01	1.085-14	1.05E-18	
Carbazole	1.65E-14	67.0	18/84	1 20E-01	1 275-11	3, 17E-15	4.75E-15
4-Chlorobiphenyl	9.94E-11		146001	2 536-01	3 205-13	3.196-17	
4,4-Chlorobiphemyl		0.0	104001	4 note .01	1 075-16	3. ASF-20	
4-Chlorophenylmethylsulfone	•	7.	101	7 SOF-01	1. RSF-15	1.795-19	2.68E-19
4-Chiorophemyimethylsulfoxide	N	25.5	20000	1 165-02		3,05E-18	4.57E-18
p, p-00E		2.04	0000176	4 015-01	1 74E-16	3.63F-20	5.43E-20
D.D-D0T	5.41E-16	0.0	24500	20.715	7 715-12	7 475-16	1 125-15
Dibenzofuran	1.71E-11	4.12	2017	4.305-01	1 115 12	1 205-17	1 045-17
Dieldrin	•	2.9	32	1.44E+01	1.335.13	4 215-10	0 756-10
niteonrow! Methylphosphonate	-	1.7	208	4.9/E-01	0.215-13	2 201 45	
1 3-Dimethylbenzene	m	3.2	28.	6.585-01	2.306-1	1 345-17	1 BRC-17
nimethy! Wethylphosphonate	5.16E-15	1.88	2.3	2.51E+01	1.306-13	11.307.1	300.1
Dimethylphosphate	2.05E-12				******	4 O15-10	A DOE. 18
Dioxine/Firene (FPA TEFE)	1.295-12	6.10E+00	3.306+06	3.21E-02	4.135-14	4.01E-10	0.000
Sithings Care	3.14E-16	0.71	3	1.07=+00	3.35E-16	3.25t-20	4.00c-20
	3.596-16	4.56	2600000	1.24E-03	6.4/E-19	4.33E-23	4 4/4 48
Married Conference	7.30E-14	2.47	20000	6.94E-01	5.07E-14	4.91E-18	200-10
Hexach to contact and and	1.62E-16	5.51	4800	7.76E+00	1.26E-13	1.22E-17	1.63E-17
Mexach torocyclopentalism	4. SOF - 15	6.51	5800	3.78E+01	1.73E-13	1.68E-17	2.51E-1/
in the state of th	7.00F-15	2.89	1800	2.31E-01	1.61E-15	1.565-19	2.34E-19
	1 005-10	-0.82	8.5	6.85E+00	1.36E-09	1.32E-13	1.986-15
Methanol	7.25E-16	2.91	\$26	8.14E-01	5.89E-14	5.71E-18	8.565-15
A-MICROPHENOL							
	A 5AF-11	70.4	2500	1.18E+00	1.01E-10	9.826-15	1.4/E-14
Acenaphtnatene	A 5.6E-11	3.92	0097	4.95E-01	4.24E-11	4.11E-15	6.16E-15
Acenaphthene	4 Off. 14	6.42	5500000	3.406-02	1.02E-14	9.92E-19	1.496-18
Benzo(a)pyrene	1 78E-11	2	200000	3.06E-01	1.15E-13	1.12E-17	- 1
Chrysene	106.13	5.9	3300000	6.52E-02	2.67E-14	2.59E-18	m
Dipenzo(a,n)anthracene	446.43	2 22	3,0000		6,496-13	6.29E-17	9.42E-1
fluoranthene	1 716 4	25.7	2300	6.95E-01	1.196-11		1.73E-15
Fluorene	1.715.11	7 57	14000		2.65E-13	2.57E-17	-,
Phenanthrene	2.246-13		18000	10-1/2 S	1.396-13		2.01E-
Pyrene	2.345-13		1441	5 14E-01	4. 97E-16	4	,-
Parathion	9.00-10	0.0	1000	1 145+00	3.50E-13		'n
Pentachlorobenzene	2.61E-13	8.0	2000	4 155+00	\$ 70F-09		•
Phenol	9.28E-10	9.6	2 2		7.02E-14	•	_
Quinotine	4.10E-14	CO.7		1.162.00			

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	Parker (1994) Tarihin Marina Tarihin Marina	2.10E-19 4.99E-17 2.32E-18 1.82E-11	4.17E-13	4.72E-13 2.89E-13 1.21E-15 1.64E-08	2.22E-13 4.35E-12 5.05E-09 2.09E-10 8.12E-14
		1.41E-19 3.33E-17 1.55E-18 1.21E-11	2.79E-13	3.15E-13 1.93E-13 8.06E-16 1.23E-08	1.48E-13 2.91E-12 3.37E-09 1.40E-10 5.42E-14
		1.45E-15 3.44E-13 1.60E-14 1.25E-07 4.66E-15	2.87E-09	3.25E-09 1.99E-09 8.32E-12 1.27E-04	1.53E-09 3.0E-08 3.48E-05 1.44E-06 5.59E-10
		5.00e-01 3.12e+00 2.75e-01 9.96e+01 6.03e-01	3.60E-03	1.80E-03 1.80E-04 3.00E-02	1.08E-03 2.40E-02 3.00E-03 1.20E-02 4.80E-05
Table 8B-3	continued)	1172 1600 9200 0.58			
	O	3.93 8.93 72.97			
		2.90e-15 1.10e-13 5.81e-14 1.26e-09 7.74e-15	7.98E-07 4.52E-06	1.11E-06 6.62E-08 6.24E-03 1.62E-06	1.25E-06 1.16E-02 1.20E-04 1.17E-05
		Supona Tetrachlorobenzene Trichlorobenzene Urea	INGRGANICS Antimony Arsenic	Berium Beryllium Copper Leed	Mercury Selenium Silver Thelitum

Average Pollutant Concentration in Carrots, and Adult and

CHAIL THE

	AVERAGE CALCULATED CONC IN SOIL .2M	log Kow	Koc	ED LOG KOM KOC ROOT UPTAKE CONC.DU N FACTOR 10 UPTA MG/Kg	AVERAGE CONC.DUE TO UPTAKE	ADULT AVERAGE ESTIMATED DAILY INTAKE	CHILD AVERAGE ESTIMATED DAILY INTAKE
	mg/Kg					mg/Kg/day	mg/Kg/day
ORGANICS							
Acetonitrile	4.88E-13	-0.34	2.2	2.68E+01	1.316-11	1.106-14	2.365-14
Aldrin	5.17E-15	7.4	\$6000	1.11E+01	5.71E-16	4.795-17	1.03E-16
Atrezine	1.196-17	2.68	320	9.50E-01	1.13E-17	9.51E-21	2.05E-20
Benzaldehyde	1,066-10	1.48	152	5.73E-01	6.06E-11	5.00E-14	1.006-13
Renzofuran	2.03E-10	2.67	313	9.57E-01	1.94E-10	1.67F-13	1.516-13
Renzolc Acid	5.136-11	1.87	248	6.69E-01	2,406-11	2.02F-14	71-372 7
Benzonitrile	4. NAF-14	1.56	168	\$ 45F-01	2 665-14	2 23F-17	4 ROE-17
Carbarole	9.75E-15	3.20	1193	6.57E-01	6.416-15	5 18F-18	1 165-17
4-Chlorobiohenvi	5.896-11	6.4	38486	3.295-01	1.94E-11	1.636-16	3.506-14
4 4-Chlorobiohenvi	7.72E-13	5.58	166901	2.53E-01	1.956-13	1.64F-16	1,575-16
4-Chlorophenylmethyl sul fore	3.92E-16	1.2	126	6.00E-01	2.35E-16		4. 25F-10
4-Chlorophenylmethylaulfoxide	1.466-15	1.33	107	7.506-01	1.096-15	9.196-19	1.986-18
n n-00F	1.60E-12	5.69	0000077	1.16E-02			1 17-17
100.00	1.21F-16	3	243000	6.01F-01	2.22F-16	1 AKE-10	4 Off-10
Dibereduran	1.01E-11	4.12	7152	4.50E-01	4.57E-12		8.25E-15
Dieldrin	1.066-15	6.2	1700	7.44F+01	7.895-14	6.62F-17	1.42F-16
Disconney! Methylphosphonate	7.765-15	1.73	208	4.97E-01	3.866-15	3.24E-18	6. 97F-18
	2.035-11	3.2	280	6. 88E-01	1.406-11	1.176-16	2.536-16
Disethyl Methylphopophonate	3.066-15	1.88	2.3	2.51E+01	7.695-14	6.465-17	1.305-1
Dimethylphosphete	1.22E-12						
Dioxine/Furane (EPA TEFs)	7.64E-13	6.10E+00	3.30€+06	3.21E-02	2.45E-14	2.06E-17	4.43E-17
Dithiane	1.865-16	0.77	62	1.07E+00	1.996-16	1.67E-19	3.596-19
Endrin	2.13E-16	4.56	2600000	1.24E-03	2.65E-19	2.22E-22	4.78E-22
Hexachlorobenzene	4.33E-14	5.47	20000	6.94E-01	3.01E-14	2.52E-17	5.43E-17
Hexach (orocyc opentadiene	9.61E-15	5.51	4800	7.76€+00	7.46E-14	6.26E-17	1.35E-16
Isodrin	2.72E-15	6.51	2800	3.78€+01	1.03E-13	8.62E-17	1.85E-16
Melathion	4.15E-15	2.89	1800	2.31E-01	9.57E-16	8.03E-19	1.736-18
Methanol	1.186-10	-0.82	8.5	6.85E+00	8.08E-10	6.78E-13	1.466-12
4-Nitrophenol	4.30E-16	2.91	256	8.14E-01	3.496-14	2.93E-17	6.31E-17
PANS							
Acenaphthalene	5.08E-11	4.07	2500	1.18E+00	6.00E-11	5.04E-14	1.08E-13
Acenaphthene	5.08E-11	3.92	4600	4.95E-01	2.52E-11	2.11E-14	4.54E-14
Benzo(a)pyrene	1.796-13	6.42	2200000	3.40E-02	6.07E-15	5.10E-18	1.106-17
Chrysene	2.24E-13	2.3	200000	3.06E-01	6.85E-14	5.756-17	1.24E-16
Dibenzo(a,h)anthracene	2.43E-13	6.5	3300000	6.52E-02	1.59E-14	1.336-17	2.86E-17
Fluoranthene	6.56E-13	5.22	38000	5.87E-01	3.85E-13		6.95E-16
Fluorene	1.01E-11	4.38	7300	6.95E-01	7.05E-12	5.92E-15	1.276-14
Phenanthrene	3.106-13	4.57	14000	S.06E-01	1.57E-13	1.32E-16	2.84E-16
Pyrene	1.506-13	5.18	38000	5.47E-01	8.22E-14	6.906-17	1.48E-16
Parathion	5.73E-16	3.81	3664	5.146-01	2.94E-16	2.476-19	5.32E-19
Pentachlorobenzene	1.55E-13	S. 08	13000	1.34E+00	2.08E-13	1.74E-16	3.75E-16
Phenot	\$.50E-10	1.46	14	6.15E+00	3.386-09	2.84E-12	6, 10E-12

1.55E-18 3.68E-16 1.71E-17 1.34E-10 4.99E-18	3.08E-12 3.48E-12 2.13E-12 8.90E-15 1.64E-12 3.21E-03 1.54E-04 5.99E-13
7.22E-19 1.71E-16 7.94E-18 6.23E-11 2.32E-18	1.43E-12 1.62E-12 9.91E-13 4.14E-15 6.32E-08 7.62E-13 1.49E-11 1.73E-08 7.17E-10
8.59E-16 2.04E-13 9.46E-15 7.42E-08 2.76E-15	1.70E-09 1.18E-09 1.18E-09 4.93E-12 7.53E-05 9.08E-10 1.78E-08 8.54E-07 3.32E-10
5.00E-01 3.12E+00 2.75E-01 9.96E+01 6.03E-01	3.60E-03 7.20E-04 1.80E-03 1.80E-04 3.00E-02 3.00E-03 3.00E-03 4.80E-03
1172 1600 9200 0.58 138	
₩ 4 ₩ 4 ₩ 4 ₩ 4 ₩ 4 ₩ 4 ₩ 4 ₩ 4 ₩ 4 ₩ 4	
1.72E-15 6.54E-14 3.44E-14 7.45E-10 4.59E-15	4.73E-07 2.68E-06 6.56E-07 2.74E-08 2.51E-03 8.61E-07 7.12E-03 7.12E-03
Supona Tetrachlorobenzena Trichlorobenzena Urea	INORGANICS Antimony Arsenic Borium Borium Copper Lead Mercury Selenium Silver

Maximum Pollutant Concentration in Carrots, and

Adult and Child Daily Intake at the Resident-A Location

	MAXIMUM				MAXIMUM	ADULT	CHILD
	CALCULATED COMC IN SOIL . 2M	log Kow	20	ROOT UPTAKE FACTOR	CONC.DUE TO UPTAKE Mg/Kg	MAXIMUM ESTIMATED DAILY INTAKE MG/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE MQ/Kg/day
05174540							
Acetositriie	5.77E-13	-3.40E-01	2.20€+00	2.68E+01	1.55E-11	1.506-15	2.24E-15
Aldrin 100	6.12E-15	7.40E+00	9.60E+04	1.116+01	6.76E-14	6.55E-18	9.81E-18
Act 100	4.57E-16	2.68E+00	3.20E+02	9.50E-01	4.34E-16	4.21E-20	6.30E-20
Benzal debode	1.25E-10	1.48E+00	1.52E+02	5.73E-01	7.18E-11	6.96E-15	1.04E-14
Renzofuran	2.40E-10	2.67E+00	3.13E+02	9.57E-01	2.30E-10	2.23E-14	3.34E-14
Renzoic Acid	6.07E-11	1.87E+00	2.48E+02	4.69E-01	2.85E-11	2.76E-15	4.13E-15
Benzonitrile	5.77E-14	1.56E+00	1.68E+02	5.45E-01	3.15E-14	3.05E-18	4.57E-18
Carbazole	1.15E-14	3.296+00	1.19E+03	6.576-01	7.59E-15	7.35E-19	1.106-18
4-Chlorobiphenyl	6.98E-11	4.90E+00	3.85E+04	3.29E-01	2.30E-11	2.23E-15	3.35E-15
4,4-Chlorobiphenyl	9.14E-13	5.58E+00	1.6/E+03	2.33E-01	7 245 45	71-342-7	1 055-10
4-Chiorophenylmethylsulfone	1.20E-14	1.205+00	1.20E+UZ	7 FOF 01	1 155.1	7 25E-18	
4-Chlorophenylmethylsulfoxide	4.47E-14	1.35E+00	1.0/E+02	1.50E-01	3.33E-14	3.63E-10	4.07E-10
p,p-00E	9.39E-12	5.69E+00	4.40E+06	1.105.02	1 205-15	1 265-17	1 805-10
p,p-001	7.585-15	425.00	7 155403	6.71E-01	5 41E-12	-	7.85F-16
Dibenzofuran	1.50E-11	4 305400	1 70E+04	7 445+01	4 - 47E 0	0.05F-18	1.36E-17
Dieldrin	21-202-1	1 735+00	2 DAE+02	6. 97F-01	7.886-14	7.64E-18	1.14E-17
Dileopropyl Metnylphosphomic	2 406-11	1 20E+00	0 A3F+02	6.88E-01	1.665-11	1.60E-15	2.40E-15
	1 256-13	-1.88E+00	2.30E+00	2.51E+01	3.14E-12	3.04E-16	4.56E-16
Dimethyl hernythologicale	1.44E-12						
	3.47E-12	6.10E+00	3.30€+06	3.21E-02	1.11E-13	1.08E-17	1.62E-17
	2.21E-16	7.70E-01	6.20E+01	1.07E+00	2.35E-16	2.28E-20	3.41E-20
Fodrio	1.146-15	4.56E+00	5.60E+06	1.24E-03	1.41E-18	1.57E-22	2.05E-22
Hexachlorobenzene	3.65E-13	5.476+00	5.00E+04	6.94E-01	2.53E-13	2.46E-17	3.665-17
Hexachlorocyclopentadiene	1.146-14	5.51E+00	4.80E+03	7.76E+00	8.82E-14	6.556-18	1.205-17
Isodrín	3.22E-15	6.51E+00	5.80E+03	3.786+01	1.226-15	1.106-17	1.705-17
Malathion	4.91E-15	2.89E+00		2.31E-01	1.135-13	0 275 47	105-11
Methanol	1.40€-10	-8.20E-01	8.506+00	6.85E+00	7.306-10	7.2/E-14	4 016-18
4-Nitrophenol	5.08E-14	2.91E+00	3.26E+UZ	0.145.01	* 145 - 14	4.015	2
PAHS	*******	00.40	200000	1 185+00	7 115-11	A ROF - 15	1.036-14
Acenaphthalene	6.02E-11	# 07E+00	7.305.03	4 OSE-01	2 ORF-11	2 APE-15	4.326-15
Acenaphthene	6.02E-11	3.72E+00	6 505+03	1 40E-02	2 ODF-13	1.94E-17	2.90E-17
Benzo(a)pyrene	7.005-12	5 70E+00	2 00E+05	3.06E-01	2.04E-12	1.98E-16	2.96E-16
Chrysene	4 OCE 12	A 506+00	4 40F+04	6.52F-02	4.53E-13	4.406-17	6.58E-17
Dibenzo(a,n)anthracene	1 085-11	\$ 22E+00	3 AOF+04	5.87E-01	1.166-11	1.13E-15	1.69E-15
Fluoranthene	206-11	4 18F+00	7 30F+03	6.95E-01	8.35E-12	8.09E-16	1.216-15
Luorene	1 086-11	4. 57F+00	1 40F+04	5.06E-01	5.44E-12	5.27E-16	7.90E-16
	\$ 275.12	5.18F+00	3.80E+04	5.47E-01	2.88E-12	2.79E-16	4.18E-16
Pyrene 	A 785-16	3.81F+00	3.66F+03	5.14E-01	3.48E-16	3.38E-20	5.06E-20
Parathion	1 ATE-11	5.08E+00	1.30E+04		2.46E-13	2.38E-17	3.572-17
Pentachi oropenzene	A 51F-10	1.46E+00	1.40E+01	•	4.00E-09	3.88E-13	5.81E-13
Prefix Control in the	2.87E-14	2.03E+00	7.90E+01		4.93E-14	4.78E-18	7.166-18
מחוומו ווצ							

Supone	2 DAE-15	2 115,00	4 4 75.00				
Tetrachlorobenzene	7 765-17	7 375 00	1.17E+03	5.00E-01	1.02E-15		1.48E-19
ichlorchenzene	7 300 7	#.3/E+00	1.00E+03	3.12E+00	2.416-13	2.34E-17	3.50F-17
TO SECULE CINE	41 - 300 - a	3.985+00	9.20E+03	2.75E-01	1.12F-14		1 48c 10
30	6.82E-10	-2.97F+00	S AOF-O1	0 047.00	100		01-369
Vapona	G 48E 95	00.107	10.000.0	V. VOE+UI	8. 78E - 08		1.27E-11
	61 362.6	1.40c+00	1.38E+02	6.03E-01	3.27E-15		4.75E-19
INORGANICS							
nt imony	5.605-07						
raenic	2 17E-04		c	3.60E-03	2.02E-09	1.95E-13	2.93E-13
	7 745-07			7.20E-04	2.28E-09	2.21E-13	3.316-13
	37.00			1.80E-03	1.40E-09	1.35E-13	2.03E-13
	00-3*7·C			1.80E-04	5.8%E-12	5.665-16	8.475-16
in the second	4.9/E-03			3.00E-02	8 92F-05	8 ALE-00	1 20c - 0e
	9.956-07			1 OBC DE	100	10.00	1.EVE-00
rcury	A 77E-07			50-200-	1.0/E-09	7.046-13	1.56E-13
- Jones	0 160			4.40E-02	2.10E-08	2.04E-12	3.06E-12
	6.13E-US			3.005-03	2.44E-05	2 36F-00	0U-375 %
LAGE	B.42E-05			1 205-02	4 045 04		0.575
	AC-261			1.600.00	00-310-9	V. 60E-11	1.6/E-10
	201.00			4.50E-05	3.936-10	3.81E-14	5.705-36
							1

534C 19.51

Maximum Pollutant Concentration in Carrots, and

Adult and Child Daily Intake at the Resident-B Location

	CALCULATED CONC IN	log Kou	X X	ROOT UPTAKE FACTOR	CONC. DUE	ADULT MAXIMUM ESTIMATED	CHILD MAXIMUM ESTIMATED
	. 24 40/Kg			*	BY / P	INTAKE INTAKE Mg/Kg/dey	INTAKE Mg/Kg/day
ORGANICS	1		90.100		3 375 44	3 175 16	1 2/6-15
Acetonitrile	8.346-15	- 5.40E-01	2.20E+00	1 115401	71-367-0	0 475-18	1 475-17
Aldrin	6.64E-15	2 485400	1 20C+04	0 505-01	A 27E-16	6.085-20	9.11E-20
Atrazine	1 815-10	1 485+00	1 52F+02	5.73E-01	1.04E-10	1.01E-14	1.516-14
Benzaldenyde	1 4AF-10	2.675+00	3.13E+02	9.57E-01	3.33E-10	3.23E-14	4.83E-14
senzoturan	8.77E-11	1.87E+00	2.48E+02	4.69E-01	4.11E-11	3.99E-15	5.97E-15
Benzonitrile	8.345-14	1.56€+00	1.68€+02	5.45E-01	4.55E-14	4.41E-18	6.60E-18
Carbazole	1.67E-14	3.296+00	1.19E+03	6.57E-01	1.10E-14	1.06E-18	1.5%-15
4-Chlorobiphenyl	1.016-10	4.90E+00	3.85E+04	3.2%-01	3.52E-11	3.22E-15	4.82E-17
4,4-Chlorobiphenyl	1.32E-12	3.285+00	1.0/5+03	A 005-01	1 0KF-14	1.016-18	1.51E-18
4-Chlorophemylmethyleultone		1.50E+00	1 075402	7 505-01	4. 85F-14	4. 70E - 18	7.04E-18
4-Chlorophemylmethylsulfoxide	ċ٠	5 49C+00	4 405+04	1.165-02	1.585-13	1.53E-17	2.306-17
p,p-00E	2 726-15	A 36F+00	2.43E+05	6.91E-01	1.886-15	1.82E-19	2.73E-19
p, p-001	1 74F-11	4.12E+00	7.15E+03	4.50E-01	7.82E-12	7.58E-16	1.14E-15
Diode Color	1.81E-15	6.20€+00	1.70E+03	7.44E+01	1.35E-13	1.31E-17	1.966-17
Discorport Methylphosphonate	۰~	1.73E+00	2.08E+02	4.97E-01	1.146-13	1.106-17	1.65E-17
1.3-Dimethylbenzene	•		9.83E+02	6.88E-01	2.396-11	2.52E-15	5.4/E-15
Dimethyl Methylphosphonate	1.81E-13	-1.88€+00	2.30€+00	2.51E+UI	4.345.12	01 - 304 - 4	0.375-10
Dimethylphosphate	2.086-12	00.200	T TOCAGE	1 216.02	1 415-13	1.565-17	2.34E-17
Dioxine/Furane (EPA TEFS)	5.01E-12	7 705-01	5.30E+00	1075+00	3.406-16	3.296-20	4.93E-20
Dithiene	3. TVE- 10	4 565+M	5. 60F+06	1.24E-03	2.04E-18	1.98E-22	2.96E-22
Endrin	5 2AE-18	5. 47F+00	5.00E+04	6.94E-01	3.66E-13	3.55E-17	5.326-17
Hexach or openication	1 645-16	5.51E+00	4.80E+03	7.76€+00	1.28E-13	1.24E-17	1.85E-17
Tenda in	4.65E-15	6.51E+00	5.80E+03	3.786+01	1.76E-13	1.706-17	2.55E-17
	7.106-15	2.89E+00	1.80E+03	2.316-01	1.64E-15	1.59E-19	2.386-19
Metherol	2.02E-10	-8.20E-01		6.85E+00	1.386-09	1.346-15	2.01E-15
4-Nitrophenol	7.35E-14	2.91E+00	5.26E+02	8.14E-01	3.VBE- 14	3.005-10	0.005
PAHS		001-201	2 606401	1 185+00	1.03F-10	9.966-15	1.496-14
Acenaphthalene	0.70E-1	# 02E+00	4 ANE+03	4. 95F-01	4.316-11	4.17E-15	•
Acenephthene	6.70E-11	4 42E+00	S 50F+06	3.40E-02	2.896-13	2.80E-17	
Benzo(s)pyrene	0.305-12	5 70F+00	2.00E+05	3.066-01	2.95E-12	2.86E-16	
	1 016-11	6.50E+00	3.30E+06	6.52E-02	6.55E-13	6.35E-17	9.516-17
pipenzo(a,n)antmi acene	2 AAE-11	5.22E+00	3.80E+04	5.87E-01	1.68E-11	1.63E-15	2.44E-15
	1.74E-11	4.38E+00	7.30E+03	6.95E-01	1.21E-11	1.176-15	1.75E-15
Phenosthrane	1.56E-11	4.57E+00	1.40E+04	S.06E-01	7.87E-12	7.65E-16	1.146-15
Parent of the pa	7.61E-12	5.18E+00	3.80E+04	5.47E-01	4.16E-12	4.03E-16	6. UAE - 10
Signal and a second	9.80E-16	3.81E+00	3.66E+03	5.14E-01	5.04E-16	4.88E-20	7.51E-20
Pentachiorobenzene	2.65E-13	5.08E+00	1.30E+04		3.556-13	3.44E-17	8 405-14
Phenol	9.41E-10	1.46€+00	1.40E+01	•	7 435 47	2.01E-13	1 046-17
Quinofine	4.15E-14	2.03E+00	7.90E+01	1./ZE+UU	1.136-14		:

2.14E-19 5.06E-17 2.35E-18 1.64E-11 6.87E-19	4.23E-13 4.79E-13 2.93E-13 1.22E-15 1.87E-08 2.25E-13 4.42E-12 5.12E-10
1.43E-19 3.38E-17 1.57E-18 1.23E-11 4.59E-19	2.63E-13 3.20E-13 1.96E-13 6.16E-16 1.25E-08 1.51E-13 2.95E-12 3.42E-09 1.42E-10
1.47E-15 3.48E-13 1.62E-14 1.27E-07 6.73E-15	2.91E-09 3.30E-09 2.02E-09 8.4E-12 1.29E-04 1.55E-09 3.04E-08 3.53E-05 1.46E-06 5.68E-10
5.00E-01 3.12E+00 2.75E-01 9.96E+01 6.03E-01	3.60E-03 7.20E-04 1.80E-03 1.80E-04 3.00E-03 2.40E-03 3.00E-03 4.80E-03
1.17E+03 1.60E+03 9.20E+03 5.60E-01 1.36E+02	
3.11E+00 4.37E+00 3.98E+00 -2.97E+00 1.40E+00	
2.94E-15 1.12E-13 5.89E-14 1.27E-09 7.85E-15	8.10e-07 4.58e-06 1.12e-06 4.50e-08 4.30e-03 1.27e-06 1.22e-06 1.18e-05
Supona Tetrachlorobenzena Trichlorobenzena Urea Vapona	Antimony Argenic Berium Berylium Copper Leed Mercury Selenium Silver Thellium

Maximum Pollutant Concentration in Carrots, and

Location	
Farmer	
at the	
Intake	
Daily	
d Child	
Adult and	
<	

		•					
	MAXIMUM CALCULATED CONC IN SOIL .ZM MQ/Kg	log Kow	8	ROOT UPTAKE FACTOR	MAXIMUM COMC.DUE TO UPTAKE Mg/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE
ORGANICS	A 95E-13	-3.40E-01	2.20E+00	2.68E+01	1.32E-11	1.116-14	2.396-14
Acetonitrite	5 24E-15	7.40E+00	9.60E+04	1.11E+01	5.79E-14	4.86E-17	1.05E-16
Aldrin	1 025-16	2 68F+00	3.20E+02	9.50E-01	3.72E-16	3.12E-19	6.72E-19
Atrazine	1 075-10	1 485+00	1.52E+02	5.73E-01	6.15E-11	5.166-14	1.11E-13
Benzal dehyde	2 0/5-10	2 47E+00	4 17F+02	9.57E-01	1.97E-10	1.66E-13	3.56E-13
Benzofuran	E 200-11	1 875+00	2 4RF+02	4.69E-01	2.44E-11	2.05E-14	4.40E-14
Benzoic Acid	7 - 20E - 14	1 5AE+00	1.685+02	5.45E-01	2.70E-14	2.26E-17	4.87E-17
Benzonitrile	0 ROF-15	1 20F+00	1.19E+03	6.57E-01	6.50€-15	5.46E-18	1.17E-17
Carbazole	5 ORF-11	6. 90E+00	3.85E+04	3.296-01	1.976-11	1.65E-14	3.55E-14
4-Chloroophenyt	7.834-13	5.58E+00	1.67E+05	2.536-01	1.98E-13	1.66E-16	3.57E-16
4, 4-Chioropiphenyi	1 07E-16	1.20E+00	1.26E+02	6.00E-01	6.18E-15	5.19E-18	1.12E-17
4-Chlorophenylmetnylsulfore	- ,	1.33E+00	1.07E+02	7.50E-01	2.87E-14	2.41E-17	5.196-17
4-Chloropheny laterny Laurick Loc	•	5.69E+00	4.40E+06	1.166-02	9.37E-14	7.87E-17	1.69E-16
p,p-00t	1.61F-15	6.36E+00	2.43E+05	6.91E-01	1.116-15	9.35E-19	2.01E-18
p.p-001	1.076-11	4.12E+00	7.15E+03	4.50E-01	4.64E-12	3.898-15	8.376-15
Dibenzoruran	1 086-15	6.20E+00	1.70E+03	7.44E+01	8.00E-14	6.72E-17	1.44E-16
Dieldrin	•	1, 73E+00	2.08E+02	4.97E-01	6.75E-14	5.67E-17	1.22E-16
Dileopropyt Hernythiosphiomer		3.20E+00	9.83€+02	6.88E-01	1.42E-11	1.196-14	2.56E-14
1,5-01metnytbenzene	1.07-13	-1.88E+00	2.30E+00	2.51E+01	2.69E-12	2.26E-15	4.866-15
Dimethy! Methytphosphorate	1.24E-12				;		
Dimetny (prospinate	2 97E-12	6.10E+00	3.30€+06	3.21E-02	9.54E-14	8.01E-17	1.72-10
	1.896-16	7.706-01	6.20E+01	1.07E+00	2.01E-16	1.69E-19	3.64E-19
	0 73E-16	4.56E+00	5.60E+06	1.24E-03	1.21E-18	1.02E-21	2.186-21
Endrin	3, 136-13	5.47E+00	5.00E+04	6.94E-01	2.176-13	1.82E-16	5.VZE-10
Hexach Loronal and and	0 75F-15	5.51E+00	4.80E+03	7.76E+00	7.56E-14	6.35E-1/	1.3/E-10
Hexach to rocyclopentarien	2,765-15	6.51E+00	5.80E+03	3.78E+01	1.04E-13	8.74E-17	1.585-16
180grin	4.216-15	2.89E+00	1.80E+03	2.31E-01	9.71E-16	8.15E-19	
	1.20E-10	-8.20E-01	8.50E+00	6.85E+00	8.196-10	6.88E-13	71.406-12
A-Mitrophenol	4.366-14	2.91E+00	5.26E+02	8.146-01	3.35E-14	7. YOE - 11	•
PARS				001361	4 005-11	5 115-14	1,106-13
Acenach that ene	S. 16E-11	4.07E+00	2.50E+U3	1.100.400	2 KSE-11	21.371.6	4. 61F-16
Acenaph thene	5.16E-11	3.92E+00	4.00E+03	1,705.02	1 715-11	91-377	3.09E-16
Benzo(a)pyrene	5.04E-12	6.42E+00	3.506+00	1 045-01	1.75F-12		3.16E-15
Chrysene	5.72E-12	2.775	200-104 200-104	i •	1 AOF - 13		7.02E-16
Dibenzo(a,h)anthracene	5.96E-12	6.50E+00	3.30E+00		9.95E-12	8.35E-1	1.80E-14
Fluoranthene	1.70E-11	5.22E+00	3.00E+0*		7, 15F-12	6.01E-15	1.29E-14
Fluorene	1.03E-11	4.38E+00	* . Oct 40.		4. 665-12	_	8.42E-15
Phenanthrene	9.22E-12	4.3/E+00	2 BOE 100		2.47E-12	•	4.45E-15
Pyrene	4.51E-12	3.10E+00	3.00E+04		2.995-16	2.51E-19	5.396-19
Perethion	5.81E-10	3.015400	1 TOF+04		2.11E-13		
Pentachlorobenzene	1.5/6-15	1,465	1 40F+01		3.43E-09	2.885-12	6.196-12
Phenol	3.28E-10	2 036+00	7 OF +01		4.23E-14		
Quinol ine	41 - 304 · 7	20.360.7					

Supone	1.75E-15	3.116+00	1.17E+03	5.00E-01	8.72E-16	7.326-19	1.576-18
Tetrachlorobenzene	6.63E-14	4.37E+00	1.60E+03	3.12E+00	2.07E-13	1.73E-16	3.73E-16
Trichlorobenzene	3.496-14	3.98E+00	9.20E+03	2.75E-01	9.59€-15	8.05E-18	1.73E-17
Urea	7.56E-10	-2.97E+00	5.80E-01	9.96E+01	7.53E-08	6.32E-11	1.366-10
Vapona	4.65E-15	1.40E+00	1.386+02	6.03E-01	2.806-15	2.35E-18	5.07E-18
INORGANICS				c			
Antimony	4.80E-07			3.60E-03	1.73E-09	1.45E-12	3.12E-12
Argenic	2.72E-06			7.20E-04	1.96E-09	1.64E-12	3.53E-12
	6.65E-07			1.80E-03	1.20E-09	1.01E-12	2.16E-12
	2.788-08			1.80E-04	5.00E-12	4.20E-15	9.03E-15
Conser	2.556-03			3.00E-02	7.64E-05	6.42E-08	1.38E-07
-	8.538-07			1.08E-03	9.21E-10	7.73E-13	1.668-12
Marchin	7.528-07			2.40E-02	1.80€-08	1.51E-11	3.26E-11
	6.975-03			3.00E-03	2.095-05	1.76E-08	3.786-08
Tex - S	7.226-05			1.20€-02	8.67E-07	7.286-10	1.566-09
That fees	7.016-06			4.806-05	3.37E-10	2.83E-13	6.08E-13

growth medium, the rate of metals uptake by plants is highly variable and is influenced by many factors. These factors include parameters specific to the plant (species, age) and to the properties of the soil (pH, organic content, cation exchange capacity, concentration of other inorganics, temperature, aeration). Thus, in the absence of specific information regarding garden soil characteristics in the RMA area, the calculated RUFs should be viewed as best approximations.

Average concentrations of pollutants in carrots and average daily intakes are summarized for the adult and child for the Resident-A, Resident-B, and Farmer scenarios in Tables 8B-2, 8B-3, and 8B-4, respectively. The maximum pollutant concentration in carrots and the maximum daily intakes are summarized in Tables 8B-5, 8B-6, and 8B-7.

8B.2 TOMATOES AND LETTUCE

8B.2.1 Surface Deposition of Pollutants on Tomatoes and Lettuce

The plant pollutant concentration resulting from surface deposition (C_d) is expressed by the equation:

$$C_d$$
 = (DR) (VSDF)
(maximum)
 C_d = (DR) (VSDF) (2/70)
(average)

Where:

DR = Pollutant dry deposition rate (mg/m²s). This includes only dry deposition. Pollutants falling on plant surfaces from wet deposition are washed off the plant and incorporated into the soil.

VSDF = Vegetable surface deposition factor (m^2s/kg) .

In calculating the average pollutant concentration from surface deposition, exposure duration was adjusted using a factor of 2/70. This factor is based on the assumption that pollutant deposition resulting from the 2 years of facility operation is averaged over a 70-year lifetime.

The VSDF is calculated according to the following equation (Holton et al., 1984):

$$VSDF = \underline{r (1 - e^{-kt})}$$

$$Yk$$

Where:

r = Interception fraction of the plant (unitless) (Baes et al., 1984).

k = Total rate constant for degradation process (s⁻¹) (Baes et al., 1984).

t = Growing time(s) (Ells, 1990)

Y = Plant yield (wet weight) (kg/m^2) (Ennis, 1990).

The interception fraction refers to that fraction of the airborne material falling on a given growing area that is deposited upon (intercepted by) edible portions of the plant. The interception fractions used for letture (0.15) and tomatoes (0.068) are those computed by Baes et al. (1984) based on a theoretical model accounting for growth characteristics of the plants during their maturation in the field.

A number of degradation processes can affect the final concentrations of pollutants deposited on plant surfaces. These include weathering (mainly washoff by precipitation), volatilization, and photolysis. This analysis considered only weathering as a potential mechanism for loss of surface-deposited contamination. It was assumed that pollutants would remain sorbed to ash particles; therefore, only negligible amounts would undergo either volatilization or photolysis. Thus, the total rate constant for degradation processes (k) would be equal to the weathering loss removal constant (k_w). The weathering removal loss constant was calculated as follows (Baes et al., 1984):

$$k_w = \frac{\ln 2}{\ln 10^{-7} \text{ s}^{-1}}$$

half-life

A half-life of 14 days (1.2 x 10⁶ seconds), the value used by the U.S. Nuclear Regulatory Commission for particles (NCRP, 1984), was considered to be average for ash-bound pollutants. To be conservative, it was assumed in this assessment that no attenuation of surface contamination (e.g., by washing) takes place between the time the vegetables are harvested and eaten. The amount of a pollutant that can be removed by washing is highly variable, depending partially on the extent the pollutant is sorbed to, or can penetrate, the leaf (e.g., only about 10 percent of benzo(a) pyrene deposited on tomatoes and lettuce can be removed by cold water washing) (EPA, 1980).

Growing times for vegetables in the area surrounding RMA were estimated to be approximately 45 days (3.89E+06 seconds) for tomatoes from fruit set until harvest and 65 days (5.62E+06 seconds) for lettuce from initial leaf formation to harvest time (Ells, 1990). Average crop yields for the RMA area were estimated to be approximately 1.34 kg/m² and 1.58 kg/m² for tomatoes and lettuce, respectively (Ennis, 1990).

The concentrations of pollutants in lettuce resulting from surface deposition are summarized in Tables 8B-8 through 8B-13 for the three exposure scenarios. The concentrations of pollutants in tomatoes resulting from surface deposition are summarized in Tables 8B-14 through 8B-19 for the three exposure scenarios.

8B.2.2 Plant Uptake of Pollutants by Tomatoes and Lettuce

The accumulation of pollutants in edible parts of plants as a result of uptake from the soil is dependent on two processes: root absorption and translocation to the edible portion.

Average Pollutant Concentration in Lettuce, and

Adult and Child Daily Intake at the Resident-A Location

	DEPOSITION RATE	AVERAGE CALCULATED CONC IN	PLANT UPTAKE FACTOR	AVERAGE COMC.DUE TO UPTAKE	AVERAGE COMC. CM	AVERAGE CONC ON	ADULT AVERAGE	CHILD AVERAGE
	g/#2/yr	SOIL . 24 Eng/Kg		mg/Kg	SURFACE mg/Kg	Mg/Kg	DAILY INTAKE	DAILY DAILY BUTAKE RQ/Kg/dey
ORGANICS								•
Acetonitrile	4.39E-14	5.69E-13	3.06E+00	1.74E-12	6.29E-15	1.75E-12	1.72E-16	8.11E-17
Atterine	4.00E-10	6.03E-15	9.93E-05	5.99E-19	6.67E-17	6.73E-17	6.63E-21	3.12E-21
Benzal dehvde	0 54F-12	1 246-10	2 40E-01	4 13C-11	1.405-1/	1.506-17	1.55E-21	7.22E-22
Benzofuran	1.83E-11	2.37E-10	5.50E-02	1.306-11	2, 62F-12	1 575-11	3.42E-15	1.61E-15
Benzoic Acid	4.62E-12	S.98E-11	1.60E-01	9.57E-12	6.61E-13	1.02E-11	1.016-15	4.75F-16
Benzonitrile	4.39E-15	5.69E-14	2.42E-01	1.386-14	6.29E-16	1.446-16	1.42E-18	6.69E-19
Carbazole	8.79E-16	1.14E-14	2.40E-02	2.73E-16	1.26E-16	3.996-16	3.94E-20	1.85E-20
4-Chlorobiphenyl	5.51E-12	6.88E-11	2.80E-03	1.92E-13	7.60E-13	9.53E-13	9.40E-17	4.42E-17
4, 4-Uniorooiphenyi 4-Chlorophenyimethylesii fore	5 70E-14	V.UTE-15	1.13E-03	1.02E-15	9.96E-15	1.10E-14	1.08E-18	5.096-19
4-Chlorotherylaethylaufoxide	A 42F-15	1 70F-15	3.V2E-01	5. A1E-14	2.43E-16	4.22E-16	4. 16E-20	1.96E-20
p.p-006	7.74E-13	1.87E-12	9.74E-06	1.82F-15	1.116-13	145-13	1.435-19	6.60k-20
p,p-001	1.55E-16	3.75E-16	3.98E-04	1.49E-19	2.22E-17	2.23E-17	2.20F-21	1 046-21
Dibenzofuran	9.146-13	1.186-11	7.93E-03	9.395-14	1.31E-13	2.25E-13	2.22E-17	1.04E-17
Dieldrin	9.568-17	1.246-15	4.93E-04	6.10E-19	1.376-17	1.43E-17	1.41E-21	6.63E-22
Disopropy! Methylphosphonate	1.68E-14	9.06E-15	1.93E-01	1.756-15	2.40E-15	4.15E-15	4.09E-19	1.936-19
of anti-	1.83E-12	2.3/E-17	Z. ME-02	6.4ZE-13	2.62E-13	9.04E-13	8.92E-17	4.20E-17
Dimetnyl Metnylphosphonate	4.00E-13	3.5/E-15	Z.40E+01	8.35E-14	5.73E-14	1.43E-13	1.41E-17	6.63E-18
Dioxing (Firebe (EDB TEEs)	2 805-13	0 01E-12	E 415-01	E 035. 44	1.3/E-14	1.5/E-14	1.55E-18	7.296-19
Dithiane	1.686-17	2.17E-16	6.96F-01	1.516-16	2.40F-18	1 566-16	1 515-20	7 13E-21
Endrin	9.295-17	2.495-16	4.41E-03	1.10€-18	1.336-17	1.44E-17	1.42E-21	6.68E-22
Mexachlorobenzene	3.12E-14	5.056-14	1.31E-03	6.60E-17	4.47E-15	4.54E-15	4.47E-19	2.11E-19
Nexachlorocyclopentadiene	8.66E-16	1.12E-16	1.24E-03	1.396-17	1.24E-16	1.386-16	1.36E-20	6.40E-21
Isodrin	2.45E-16	3.176-15	3.26E-04	1.03E-18	3.51E-17	3.61E-17	3.56E-21	1.68E-21
	3.74E-16	4.84E-15	4.10E-02	1.98E-16	5.36E-17	2.52E-16	2.49E-20	1.17E-20
Methanol 6 - Mitrophenol	4 A75 - 15	1.58E-10	3.87E+00	3.00E-10	7.526-12	8.01E-10	7.906-14	3.72E-14
PAHS			7.77	E. 000. 13	3.7.6	6.336-13	41-37C-7	11.195-19
Acenaphthalene	4.58E-12	5.93E-11	8.48E-03	5.03E-13	6.56E-13	1.16E-12	1.14E-16	5.30E-17
Acenaphthene	4.58E-12	5.93E-11	1.04E-02	6.14E-13	6.56E-13	1.27E-12	1.25E-16	5.906-17
Benzo(a)pyrene	9-16E-13	2.096-13	3.68E-04	7.67E-17	1.316-13	1.31E-13	1.296-17	6.08E-18
Chrysene	9.14E-13	2.61E-13	8.53E-04	2.236-16	2.276-13	1.316-13	1.29E-17	6.09E-18
Diberzo(a, h) anthracene	9.16E-13	Z.84E-15	3.30E-04	9.37E-17	1.516-13	1.31E-13	1.29E-17	6.08E-18
Fluoranthena	2. DE-12	7.658-13	1.83E-03	1.406-15	3.94E-13	3.95E-13	3.89E-17	1.83E-17
Procede	V. 16E-15	1.18E-11	5.60E-US	6.63E-14	1.51E-15	1.9/E-13	1.95E-17	9.15E-18
	21-3CE-1	1 765-13	1 046-03	1.3/E-15	1 415-14	1 415-14	1 20c - 17	4.00c-18
Contract	S. 16F-17	6 ARE-16	1 20F-02	A 025-18	7 405-18	1 546-17	1 525.21	7 156-22
Pentachlorobenzene	1.406-14	1.81E-13	2.20E-03	3.986-16	2.00E-15	2.406-15	2.365-19	1.116-19
Phenot	4.96E-11	6.42E-10	2.77E-01	1.78€-10	7.106-12	1.85E-10	1.82E-14	8.57E-15
Quinoline	2.196-15	2.83E-14	1.29E-01	3.66E-15	3.13E-16	3.986-15	3.92E-19	1.84E-19

5.HC 1151

3.88E-21 5.92E-20 3.85E-20 4.14E-12 7.72E-20	5.39E-13 1.89E-13 6.59E-12 6.59E-13 1.71E-14 4.22E-09 6.06E-13 7.56E-09 1.20E-10 4.21E-12
8.24E-21 1.26E-19 8.17E-20 8.80E-12 1.64E-19	1.15E-12 4.02E-12 1.40E-12 3.64E-14 6.97E-09 1.29E-12 4.78E-12 9.73E-09 2.54E-10 8.95E-12
8.35E-17 1.28E-15 8.29E-16 8.93E-08 1.66E-15	1.16E-08 4.08E-08 1.42E-08 3.69E-10 9.10E-05 1.31E-08 4.65E-08 9.86E-05 2.58E-06 9.08E-06
2.22E-17 8.43E-16 4.45E-16 9.61E-12 5.92E-17	6.11E-09 3.45E-08 8.46E-09 3.53E-10 3.24E-05 1.08E-08 9.56E-09 9.16E-05 9.18E-07
6.13E-17 4.33E-16 3.84E-16 8.93E-08 1.60E-15	5.52E-09 6.25E-09 5.74E-09 1.60E-11 5.86E-05 2.21E-09 1.00E-05 1.66E-06
3.06E-02 5.68E-03 9.56E-03 1.03E+02 3.00E-01	1,00e-02 2,00e-03 7,50e-03 5,00e-04 2,00e-02 1,25e-03 1,25e-03 2,00e-04
2.01e-15 7.63e-14 4.02e-14 8.69e-10 5.35e-15	5.52E-07 3.12E-06 7.65E-07 3.20E-08 2.93E-03 9.81E-07 8.64E-07 8.30E-05 8.30E-05
1.55E-16 5.89E-15 3.10E-15 6.71E-11	4.26E-08 2.41E-07 5.91E-09 2.47E-09 2.26E-04 7.57E-08 6.49E-04 6.41E-06
Supona Tetrachlorobenzene Trichlorobenzene Urea	INORGANICS Antimory Arsenic Barium Barium Copper Lead Mercury Selenium Silver Thallium

534CA8B51

ġ.

Average Pollutant Concentration in Lettuce, and

Acation
Resident-B
the
-
Intake
Daily
Child
and
Adult

			•		TOTAL TOTAL	HOIR		
	DRY DEPOSITION RATE 9/H2/yr	AVERAGE CALCULATED CONC 18 SOIL . 2M	PLANT UPTAKE FACTOR	AVERAGE COMC.DUE TO UPTAKE Mg/Kg	AVERAGE CONC. ON PLANT SURFACE PR/Kg	AVERAGE CONC ON PLANT Mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE MQ/Kg/day	CHILD AVERAGE ESTIMATED DAILY INTAKE
ORGANICS								
Acetonitrile	6.16E-15	8.236-13	3.06E+00	2.52E-12	8.825-16	2 525-12	2 4RE-14	117.11
Aldrin	6.52E-17	8.72E-15	9.93E-05	8.65E-19	9.34E-18	1.02E-17	1.016-21	4 745-22
Atrazine	1.45E-17	2.01E-17	S.43E-02	1.09€-18	2.07E-18	3.176-18	3, 125-22	1 675-22
Benzaldehyde	1.34E-12	1.76-10	2.69E-01	4.81E-11	1.916-13	4.83E-11	4.765-15	2.24E-15
Benzofuran	2.56E-12	3.436-10	5.50E-02	1.886-11	3.67E-13	1.92E-11	1.896-15	8.91E-16
Benzoic Acid	6.47E-13	8.65E-11	1.60E-01	1.386-11	9.27E-14	1.39E-11	1.37E-15	6.46E-16
Benzonitrile	6.166-16	8.23E-16	2.42E-01	1.996-14	8.82E-17	2.00E-14	1.97E-18	
Carbazole	1.23E-16	1.65E-14	2.40E-02	3.95E-16	1.76E-17	4.13E-16	4.07E-20	1.92E-20
4-Chlorobiphenyl	7.44E-13	9.94E-11	2.80E-03	2.786-13	1.07E-13	3.85E-13	3.796-17	1.795-17
4, 4-Lnioropiphenyl	9.75E-15	1.506-12	1.13E-03	1.47E-15	1.40E-15	2.87E-15	2.82E-19	1.33E-19
4 - Chiorophemy methy suitone	A. 305 - 10	0.02E-10	3.92E-01	2.5VE-16	5.41E-17	2.93E-16	2.89E-20	1.366-20
D D-DOF	1 085-13	2 705-12	0 7/6-0/	2 47E-15	1.2/E-10	9.3/E-16	9.24E-20	4.35E-20
100-00	2.176-17	5 41F-14		2 145-10	1.33E-14	1.62E-14	1. /VE-18	8.43E-19
Dibenzofuran	1.28E-13	1.716-11	7.93F-03	1 36-13	1 835-16	3.575	3.20E-22	1.34E-22
Dieldrin	1.34E-17	1.796-15	6.93E-04	8.82E-19	1.92E-18	2.80F-18	2 76E-22	1 405-22
Diisopropyl Methylphosphonate	2.35E-15	1.31E-14	1.936-01	2.53E-15	3.37E-16	2. B&F-15	2 R2F-10	1 375-10
1, 3-Dimethylbenzene	2.56E-13	3.436-11	2.71E-02	9.296-13	3.67E-14	9.65E-13	9.52E-17	4.48E-17
Dimethyl Methylphosphonate	5.61E-14	5.166-15	2.40E+01	1.246-13	8.03E-15	1.32E-13	1.30E-17	6.11E-18
Dimethylphosphate	1.546-14	2.05E-12		:	2.20E-15	2.20E-15	2.17E-19	1.02E-19
Dioxins/Furans (EPA TEFs)	3.93E-14	1.296-12	5.64E-04	7.26E-16	5.63E-15	6.35E-15	6.26E-19	2.95E-19
DI CHIBDE	2.35E-18	3. 14E-16	6.96E-01	2.19E-16	3.37E-19	2.19E-16	2.16E-20	1.02E-20
Move of the Company	1.30E-1/	2.39E-10	4.47E-US	2 2	1.86E-18	3.45E-18	3.40E-22	1.60E-22
Nexach orocycl opensadiene	1 216-16	4 A2E-34	8 24E-03	7.33E-17	4 7/E-15	7 - 22E - 10	7.12E-20	5.35E-20
landrin	3.67F-17	6 50F-15	3 24F-04	9 5	A 015-18	A 416-18	A 125.22	2 076-23
Malathion	5.24E-17	7.006-15	4.10E-02	2.87E-16	7.506-18	2.946-16	2.90F-20	1.37F-20
Methanol	1.49E-12	1.996-10	5.81E+00	1.16E-09	2.136-13	1.16E-09	1.14E-13	5.366-14
4-Witrophenol	5.42E-16	7.25E-14	3.996-02	2.89E-15	7.77E-17	2.97E-15	2.93E-19	1.386-19
PAHS								
Acenaphthalene	6.42E-13	6.58E-11	8.48E-03	7.27E-13	9.196-14	8.19E-13	8.08E-17	3.80E-17
Acenaphthene	6.42E-13	6.58E-11	1.04E-02	8.88E-13	9.196-16	9.80E-13	9.67E-17	4.55E-17
genzo(a)pyrene	4 20E 42	5.01E-13	2.00E-U4	1.11E-16	1.83E-14	1.65E-14	1.82E-18	8.56E-19
Diffeetor a blanthracens	1 28E-13	A 10F-13	8 305-04	3.22E-10	1.63E-14	1.0/E-16	1.04E-78	6.00c-19
6 Line and bane	2 855.12	9 145 2	4 Bar - 04	3 026-16	K K4K-14	E 725 46	B 477 48	3 466.48
Fluctore	1 2AF-18	1 716-18	4 Ane-na	0 505-14	1 FAE-14	9 145-14	2 1 2 E 1 1 2	6 100.2 8 10c.18
Phenanthrene	2 56F-18	F1-37C 5	A 45E-03	2 2AE-15	8 A7E-14	2 OUE-16	1 BKE 10	2.30E.18
Pyrene	1.28F-13	2,546-33	1 04F - 04	-	1.83E-14	1 ARF-14	1 AKE-18	8 765-19
Parethion	7.23E-18	9.66E-16	1.205-02	1.165-17	1.04E-18	1.265-17	1 24F-29	S. R6E-22
Pentachlorobenzene	1.965-15	2.61E-13	2.20F-03	5. 75E-16	2.80E-16	8.56E-16	B. 44F-20	¥ 97E-20
Phenot	6.94E-12	9.28E-10	2.77E-01	37E-1	9.94E-13	2.586-10	2.54E-16	1.205-14
Quinol ine	3.07E-16	4.10E-14	1.29E-01	5.29E-15	4.39E-17	5.34E-15	5.266-19	2.48E-19

Supona Tetrachlorobenzene Trichlorobenzene Urea	2.17E-17 8.25E-16 4.35E-16 9.41E-12 5.79E-17	2.90e-15 1.10e-13 5.81e-14 1.26e-09 7.74e-15	3.06E-02 5.68E-03 9.56E-03 1.03E+02 3.00E-01	6.26E-16 6.26E-16 5.56E-16 1.29E-07 2.32E-15	3.11E-18 1.18E-16 6.23E-17 1.35E-12 8.29E-18	9.18E-17 7.44E-16 6.18E-16 1.29E-07 2.33E-15	9.05E-21 7.34E-20 6.09E-20 1.27E-11 2.30E-19
INORGANICS Antimony Arsenic Barium Beryllium Copper Lead Mercury Selenium Silver Thallium	5.97E-09 3.38E-08 6.28E-09 3.46E-10 3.17E-05 1.06E-08 9.35E-09 8.67E-05 8.67E-05	7.98E-07 4.52E-06 4.24E-08 4.24E-08 1.22E-06 1.25E-06 1.10E-02 1.10E-04	1.00e-02 2.00e-03 7.50e-03 5.00e-04 2.25e-03 4.50e-02 1.25e-03 2.00e-02	7.98E-09 9.03E-09 8.30E-09 2.31E-11 8.47E-05 3.19E-09 5.62E-08 1.45E-05 2.40E-06 2.33E-09	6.55E-10 4.84E-09 1.19E-09 4.95E-11 4.54E-06 1.34E-09 1.24E-05 1.24E-05 1.25E-09	8.84E-09 1.39E-08 9.48E-09 7.26E-11 8.92E-05 4.71E-09 5.76E-08 2.69E-05 2.53E-06	8.71E-13 1.37E-12 9.35E-13 7.16E-15 7.64E-13 5.68E-12 2.65E-09 2.45E-10

Average Pollutant Concentration in Lettuce, and

Adult and Child Daily Intake at the Farmer Location

			•					
	DRY DEPOSITION RATE 9/H2/yr	AVERAGE CALCULATED CONC IN SOIL .ZM	PLANT UPTAKE FACTOR	AVERAGE COMC.DUE TO UPTAKE MG/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	AVERAGE CONC ON PLANT mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE	CHILD AVERAGE ESTIMATED DAILY IMTAKE
ORGANICS							•	
Acetonitrile	1.52E-14	4.88E-13	3.06E+00	1.495-12	2 175-15	1 505-13	2 206.44	
Aldrin	1.618-16	5.17E-15	9.93E-05	5.13E-19	2.30E-17	2.35F-17	3 AMF-21	1.08E-16
ALTERINE	3.57E-17	1.196-17	5.43E-02	6.47E-19	5.11E-18	5.756-18	A AGE-22	4 145.23
Benzal dehyde	3.296-12	1.06E-10	2.69E-01	2.85E-11	4.71E-13	2.90E-11	4. 64F-15	2 000-15
Benzofuren		2.03E-10	5.50E-02	1.12E-11	9.04E-13	1.21E-11	1.856-15	8 70F-14
Benzolc Acid	1.596-12	5.13E-11	1.60E-01	8.20E-12	2.28E-13	8.43E-12	1.296-15	6.07E-16
Carbarole		4.88E-14	2.42E-01	1.18E-14	2.17E-16	1.20E-14	1.84E-18	8.66E-19
4-Thlorohipheral	9.03E-10	9.75E-15	2.40E-02	2.34E-16	4.34E-17	2.78E-16	4.25E-20	2.00E-20
6 6-Chlorobiohenvi	2 40E-12	2.6%-11	2.80E-03	1.65E-13	2.62E-13	4.27E-13	6.54E-17	3.08E-17
4Chlorophenylmethylaul fone	5 BAE-14	7 . / ZE - 15	7.13E-03	8.71E-16	3.44E-15	4.31E-15	6.5%E-19	3.10E-19
6-Chlorophenylmethylaul foxide	10	3.725-10	3.VZE-01	1.54E-16	8.39E-17	2.37E-16	3.63E-20	1.71E-20
p.p-00E	10	1 405-12	0 7/6-0	4.01E-10	3.125-16	7.93E-16	1.216-19	5.71E-20
D0-0,0	5.356-17	3.216-16	\$ 08F-04	1 285-13	7.0CE-14	3.V8E-14	6.09E-18	2.87E-18
Dibenzofuran	3.156-13	1.01E-11	7.93E-03	8.05E-14	6.525-16	1 265-10	1.1%E-21	5.eVE-22
Dieldrin	M	1.068-15	4.93E-04	5.23E-19	6.72E-18	5 24F-18	A 03E-32	# 77E-33
Diisopropyl Methylphosphonate	ق	7.768-15	1.93E-01	1.506-15	8.29E-16	2.33F-15	7 56F-10	1 ARE-10
1, 3-0 imethy (benzene	6.31E-13	2.03E-11	2.71E-02	5.51E-13	9.04E-14	6.41E-13	9.816-17	6.618-17
Dimetnyl Methylphosphonate	1.385-13	3.06E-15	2.40E+01	7.33E-16	1.98E-14	9.30E-14	1.42E-17	6.705-18
Diceing (Foreste Afre)	3.75-16	1.22E-12			5.42E-15	5.42E-15	8.29E-19	3.90E-19
Dithians	7.00E-14	7.04E-13	3.04E-U4	4.30E-16	1.396-14	1.436-14	2.19E-18	1.036-18
Endrin	# 21E-17	2 1 3E-14	0.306-01	01-30C-0	8.275-19	1.50E-16	2.00E-20	9.39E-21
Hexachlorobenzene	1.08F-14	A 44F-14	4.410.03	5 44E 97	4.3VE-18	3.53E-18	8.46E-22	3.98E-22
Mexachlorocyclopentadiene	2.99E-16	9.61E-15	1.24F-03	1 105-17	4 28E-17	5 47E . 47	6 345 34	7.15E-19
Isodrin	8.45E-17	2.72E-15	3.26E-04	8.86E-19	1.21E-17	1.30F-17	1 005-21	0 355-22
Helethion	1.29€-16	6.15E-15	4.10E-02	1.70E-16	1.85E-17	1.89€-16	2.89E-20	1.365-20
Metherol	3.666-12	1.18E-10	5.81E+00	6.85E-10	3.25E-13	6.86E-10	1.05E-13	4.94E-16
6-Witrophenol	1.34E-15	4.30E-14	3.996-02	1.716-15	1.91E-16	1.91E-15	2.92E-19	1.37E-19
Account that one	1 KAE. 12	E ORE: 44	00 101 B	20 704 7				
Aceneohthene	1 585-12	F 086-11	4 07E-03	4.51E-15	2.205-13	6.5/E-13	1.01E-16	4.73E-17
Benzo(a)pyrene	3 155-13	705-13	3 ARF-DA	A 575-17	4 52E-14	7.33E-13	4 025 48	70.4CE-1/
Chrysene	3, 15E-13	2.246-13	8.53E-04		6.52F-16	AL -375 A	6.92E-10	207.C
Dibenzo(a,h)anthrecene	3.15E-13	2.43E-13	3.306-04	8.03E-17	4.52E-14	4.52E-16	6.92F-18	3, 26F-18
fluoranthene	9.48E-13	6.56E-13	1.83E-03	1.20E-15	1.36E-13	1.376-13	2.10E-17	9.866-18
Fluorene	3.156-13	1.01E-11	5.60E-03	5.69E-14	4.52E-14	1.02E-13	1.56E-17	7.35E-18
Phenanthrene	6.316-13	3.10E-13	4.35E-03	1.35E-15	9.04E-14	9.18E-14	1.40E-17	6.61E-18
Pyrene	3.15E-13	1.50E-13	1.93E-03	2.90E-16	4.52E-16	4.55E-14	6.95E-18	3.27E-18
Parathion	1.786-17	5.73E-16	1.20E-02	6.87E-18	2.55E-18	9.42E-18	1.44E-21	6.78E-22
Pentachioropenzene	4.82E-15	1.55E-13	Z.20E-03	3.41E-16	6.90E-16	1.03E-15	1.586-19	7.42E-20
Prierol (m.)	1./1E-11	5.50E-10	2.77E-01	1.52E-10	2.45E-12	1.55E-10	2.37E-14	1.116-16
	7.35E-16	2.43E-14	1.2%-01	3.146-15	1.08E-16	3.25E-15	4.97E-19	2.346-19

	-
	- đi
	-
	=
The same	***
-	_
-	-
	্ত
_	_

							1	ı
Supply	5.35E-17	1.72E-15	3.06E-02	5.26E-17	7.66E-18	6.02E-17	9.216-21	4.34E-21
Tetrachlorobenzene	2.03E-15	6.54E-14	5.68E-03	3.71E-16	2.91E-16	6.62E-16	1.01E-19	4.77E-20
Trichlorobenzene	1.07E-15	3.44E-14	9.56E-03	3.29E-16	1.53E-16	4.83E-16	7.396-20	3.48E-20
	2.32E-11	7.45E-10	1.03E+02	7.65E-08	3.32E-12	7.65E-08	1.176-11	5.51E-12
Vapona	1.43E-16	4.59E-15	3.00E-01	1.38E-15	2.04E-17	1.406-15	2.146-19	1.00E-19
HOBGANICS								
Antimony	1.47E-08	4.73E-07	1.00E-02	4.73E-09	2.11E-09	6.84E-09	1.05E-12	4.92E-13
Areanic	8.32E-08	2.68E-06	2.00E-03	5.35E-09	1.196-08	1.73E-08	2.64E-12	1.24E-12
	2.04E-08	6.56E-07	7.50E-03	4.92E-09	2.92E-09	7.84E-09	1.206-12	5.64E-13
	8.51E-10	2.74E-08	5.00E-04	1.37E-11	1.22E-10	1.36E-10	2.07E-14	9.76E-15
Const	7.80E-05	2.51E-03	2.00E-02	5.02E-05	1.12E-05	6.14E-05	9.39E-09	4.42E-09
	2.61E-08	8.40E-07	2.25E-03	1.89E-09	3.74E-09	5.63E-09	8.62E-13	4.05E-13
	2.30E-08	7.41E-07	4.50E-02	3.336-08	3.30E-09	3.66E-08	5.61E-12	2.64E-12
	2, 136-06	6.87E-03	1.25E-03	8.59E-06	3.06E-05	3.92E-05	5.99E-09	2.82E-09
	2.21E-06	7.12E-05	2.00E-02	1.42E-06	3.17E-07	1.74E-06	2.66E-10	1.25E-10
Th. 4.1	2.156-07	6.91E-06	2.00E-04	1.386-09	3.08E-08	3.21E-08	4.92E-12	2.316-12

Maximum Pollutant Concentration in Lettuce, and

Adult and Child Daily Intake at the Resident-A Location

	DBV	MAY SAIDS						
٠	DEPOSITION	CALCULATED CONC IN	PLANT UPTAKE FACTOR	MAXIMUM CONC. DUE TO UPTAKE	MAXIMUM COMC. OM PLANT	PLAXIPUM CONC ON BLANK	ADUL T HAX I PRUM	CHILD
	9/H2/yr	5011 . 24 mg/Kg		mg/Kg	SURFACE Mg/Kg	Mg/Kg	DAILY	ESTIMATED DAILY INTAKE
ORGANICS							mg/kg/oay	#g/Kg/dey
Acetonitrile	4.39E-14	5.77E-13	T DAF+DO					
Aldrin	4.66E-16	6.12E-15	9.93E-05	A 07E-10	2.20E-13	1.99E-12	1.966-16	9.22E-17
Atrazine	1.036-16	4.57E-16	5.436-02	2 48E-17	6 10F 12	2.55E-15	2.30E-19	1.08E-19
Benzaldehyde	9.54E-12	1.25E-10	2 40F-01	2 10c 1	70E-16	5.43E-16	5.35E-20	2.52E-20
Benzofuran	1.83E-11	2.40E-10	5.505-02	1 200-11	4.78E-11	8.16E-11	8.04E-15	3.78E-15
Benzoic Acid	4.62E-12	6.07E-11	1 KOF-01	0 74E-11	y.18E-11	1.05E-10	1.04E-14	4.87E-15
Benzonitrile	4.39E-15	5.77-16	2 425-01	7.71E-12	2.31E-11	3.29E-11	3.24E-15	1.52E-15
Carbazole	8.79E-16	1.15F-14	2 405-02	2 40E 14	2.20E-14	3.60E-14	3.55E-18	1.67E-18
4 - Chlorobiphenyl	5.31E-12	6.08F-11	2 BOE-02	4 OFF 48	4.40E-15	4.68E-15	4.62E-19	2.17E-19
6,4-Chlorobiphenyl	6.96E-14	9 14F-13	1 135.03	1.92E-13	Z.66E-11	2.68E-11	2.64E-15	1.24E-15
4-Chlorophenylmethylaulfone	1.70E-15	1.205-14	2 02C-05	1.035-15	3.49E-13	3.50E-13	3.45E-17	1.62E-17
4-Chlorophenylmethylsulfoxide	6.32E-15	4.675-14	1 20c-01	4.70r-15	8.51E-15	1.32E-14	1.30E-18	6.13E-19
p,p-00E	7.746-13	0 305-12	0 272 0	91.3/6.1	3.1/E-14	4.64E-14	4.57E-18	2.15E-18
700-d,q	1.55E-16	1 885-15	# 08E-04	7 /05 45	2.00-12	3.89E-12	3.83E-16	1.80E-16
Dibenzofuran	9.16E-13	1.204-11	7 OTE AT	6.49E-19	7.7E-16	7.78E-16	7.67E-20	3.61E-20
Dieldrin	9.565-17	9 26E-15	7 O SE . 07	7.33E-16	4.586-12	4.68E-12	4.61E-16	2.17E-16
Disopropyl Methylphosphonate	1.68E-16	505-13	4.755.04	0.1%E-19	4.70E-16	4.80E-16	4.73E-20	2.23E-20
1,3-Dimethylbenzene	1.83E-12	2. 40F-11	2 716-02	3.00E-14	5.42E-14	1.15E-13	1.136-17	5.32E-18
Dimethyl Methylphosphonate	4.005-13	1.256-13	2 405401	9.32E-13	7.186-12	9.83E-12	9.69E-16	4.56E-16
Dimethylphosphate	1.106-13	1 646-12	10.30	4.VYE-12	2.01E-12	5.00E-12	4.93E-16	2.32E-16
Dioxins/Furers (EPA TEFs)	2.805-13	4 A7E-12	K 44E.04	20 0	5.50E-13	5.506-13	5.42E-17	2.55E-17
Dithiene	1.68E-17	2 216-14	A OKE 0	1.72E-13	1.41E-12	1.41E-12	1.396-16	6.53E-17
Endrin	9.295-17	1.146-15	A 41E-02	6 04F 10	0.42E-1/	2.38E-16	2.34E-20	1.10E-20
Hexach Lorobenzene	3.125-16	\$ 65F-93	2 2 2 2 2 2	2.01E-16	4.00E-16	4.71E-16	4.64E-20	2.18E-20
Mexach lorocyclopentediene	8.665-16	26-37E-16	1 246-02	9 / 4E - 47	1.5/E-15	1.57E-13	1.55E-17	7.28E-18
Isodrin	2.45E-16	\$ 225-15	8 24E-04	4 05r 40	4.34E-13	4.35E-15	4.29E-19	2.02E-19
Melathion	3.74E-16	4.016-18	4 105-03	2 035-10	0.635-13	1.23E-15	1.216-19	5.70E-20
Methanol	1.06€-11	1.40F-10	5 A15+00	9 115.40	1.0/E-13	2.08E-15	2.05E-19	9.63E-20
6-Witrophenol	3.076-15	S.08E-14	4 00F-02	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.376-11	8.64E-10	8.52E-14	4.01E-14
PAHS			70.7.	£ - 0.55 - 1.3	1. Yuc - 14	Z.19E-16	Z.11E-18	9.94E-19
Acenaph that ene	4.58E-12	6.02E-11	R ARE.OR	E 10E 13	20 70%		1	
Acenaphthene	4.58E-12	6.02E-13	1 DAF-02	A 216-12	200.70	2.35E-11	2.31E-15	1.0%E-15
Benzo(a)pyrene	9.14E-13	S. 88F-12	A ARE-DA	2 9 4 KE 9 E	4 EBE 43	7.30E-13	Z. 33E-15	1.09E-15
Chrysene	9.14E-13	6.67E-12	8.53E-04	K 406-15	4 CBE 13	4.0%-12	4.52E-16	2, 136-16
Oibenzo(a,h)anthracene	9.14E-13	6.95E-12	30E-04	2 202 2	21.300.4	4.0VE-12	4.52E-16	2.13E-16
Fluorenthene	2.75E-12	1 ORF-11	1 AKE-DE	2 49E-94	4.30C-16	4.5%e-12	4.52E-16	2.13E-16
fluorene	9.146-13	1 20E-11	4 Ans. 02	100	1.30c-11	7.30E-11	1.366-15	6.41E-16
Phenanthrene	1.83F-12	1 ORE-13	4 25E-03	4 475-14	4.30c-12	6.65E-12	4.59E-16	2.16E-16
Pyrene	9.14F-14	\$ 27E-12	4.33E-03	4.0/6.19	V. 10E-12	9.22E-12	9.09E-16	4.285-16
Parathion	5.165-17	A 785-14	1 205.03	431.016	4.20E-12	6.59E-12	4.53E-16	2.13E-16
Pentachlorobenzene	1.40F-14	1 BKE-18	20-202-02	0.135-10	2.3%E-16	2.67E-16	2.63E-20	1.24E-20
Phenot	6 OKF-19	A 516-10	2 775.03	0 - 10 e	7.00E-16	7.0%E-16	6.94E-18	3.27E-18
Quinoline	2 105-15	3 87E 10	9 202 00	1.60E-10	6.48E-10	6.29E-10	4.23E-14	1.995-14
	F . 171. 13	41 - 310 · 7	1.0%-01	3.71E-15	1.106-14	1.47E-14	1.45E-18	6.816-19

7.0

e grade

Supona Tetrachlorobenzene Trichlorobenzene	1.55E-16 5.89E-15 3.10E-15	2.04E-15 7.74E-14 4.08E-14	3.06E-02 5.68E-03 9.56E-03	6.22E-17 4.39E-16 3.90E-16	7.77E-16 2.95E-14 1.56E-14	8.39e-16 3.00e-14 1.59e-14	8.27E-20 2.95E-18 1.57E-18	3.89E-20 1.39E-18 7.40E-19
Urea	6.71E-11 4.13E-16	8.82E-10 5.43E-15	1.03E+02 3.00E-01	9.05E-08 1.63E-15	3.36E-10 2.07E-15	9.09E-08 3.70E-15	8.96E-12 3.65E-19	4.22E-12 1.72E-19
INORGANICS	4.265-08	5.60E-07	1.00E-02	5.60E-09	2.14E-07	2.19E-07	2.16E-11	1.02E-11
Arsenic	2.41E-07	3.176-06	2.00E-03	6.34E-09	1.21E-06	1.22E-06	1.20E-10	5.64E-11
Sorica Ca	5.91E-08	7.76E-07	7.50E-03	5.82E-09	2.96E-07	3.02E-07	2.98E-11	1.406-11
Beryllius	2.47E-09	3.24E-08	5.00E-04	1.62E-11	1.24E-08	1.24E-08	1.22E-12	5.75E-13
Conner	2.26E-04	2.97E-03	2.00E-02	5.94E-05	1.13E-03	1.19E-03	1.18E-07	5.546-08
pad 1	7.57E-08	9.95E-07	2.25E-03	2.24E-09	3.80E-07	3.82E-07	3.76E-11	1.77E-11
Merciry	6.68E-08	8.77E-07	4.506-02	3.95E-08	3.35E-07	3.74E-07	3.696-11	1.74E-11
a local as	6.195-04	8.13E-03	1.25E-03	1.02E-05	3.10E-03	3.11E-03	3.07E-07	1.44E-07
Zilvar.	6.41E-06	8.42E-05	2.00E-02	1.68E-06	3.21E-05	3.386-05	3.34E-09	1.576-09
That i fam	6.235-07	8.186-06	2.00E-04	1.64E-09	3.12E-06	3.12E-06	3.086-10	1.45E-10

Maximum Pollutant Concentration in Lettuce, and

ORGANICS

4. C. Salary

¥	dult and	hild Dail	Child Daily Intake at the Resident-B Location	the Resider	nt-B Location	u o		
	DRY DEPOSITION RATE g/M2/yr	MAXIMUM CALCULATED CONC IN SOIL . 2M mg/Kg	PLANT UPTAKE FACTOR	MAXINUM CONC. DUE TO UPTAKE Mg/Kg	MAXIMUM CONC. ON PLANT SURFACE PG/Kg	MAXIMUM CONC OW PLANT MG/Kg	ADULT MAXIMGH ESTIMATED DAILY INTAKE mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY IMTAKE Mg/Kg/day
27								
Acetonitrile	6.16E-15	8.34E-13	3.066+00	2.56E-12	3.09E-14	2.59E-12	2.55E-16	1.206-16
Aldrin	6.52E-17	8.84E-15	9.93E-05	8.78E-19	3.27E-16	3.28E-16	3.23E-20	1.52E-20
Atrazine	1.45E-17	6.60E-16	5.43E-02	3.586-17	7.26€-17	1.08E-16	1.07E-20	5.03E-21
Benzaldehyde	1.346-12	1.81E-10	2.69E-01	4.88E-11	6.70E-12	5.55E-11	5.47E-15	
genzofuran	2.56E-12	3.48E-10	5.50E-02	1.916-11	1.29E-11	3.206-11	3.15E-15	1.48E-15
Benzolc Acid	6.47E-13	8.77E-11	1.60E-01	1.40E-11	3.246-12	1.736-11	1.706-15	8.02E-16
Benzonitrile	6.16E-16	8.346-14	2.42E-01	2.02E-14	3.09E-15	2.33E-14	2.305-18	1.08E-18
Carbazole	1.23E-16	1.67E-14	2.40E-02	4.01E-16	6.17E-16	1.02E-15	1.00E-19	4.72E-20
4-Chlorobiphemyl	7.44E-13	1.01E-10	2.80E-03	2.82E-13	3.736-12	4.01E-12	3.966-16	1.86E-16
4,4-Chlorobiphenyl	9.75E-15	1.326-12	1.13E-03	1.49E-15	4.88E-14	5.05E-14	4 . YOE - 18	2.54E-16
4-Chlorophenylmethylsulfone	2.38E-16	1.74E-14	3.92E-01	0.60E-15	1.1%-15	0.00E-13	7 EVE 18	4 10c 18
4-Chlorophenylmethylsulfoxide	8.86E-16	6.465-14	3.2%-01	4 12E-14	4.44E-13	5.3/E-18	5 405-17	2 SRF-17
p,p-00E	1.08E-13	1.306-11	7.74E-04	1 086-18	1 005-16	1 105-16	1.08F-20	5.10E-21
p,p-001	1 295-17	1 74E-11	7.03F-03	1.385-13	6.42E-13	7.80E-13	7.696-17	3.62E-17
District	1 44F-17	1.81E-15	4.93E-04	8.95E-19	6.71E-17	6.80E-17	6.70E-21	3.15E-21
Discorport Methylphosphonate	~ ~	2.29€-13	1.93E-01	4.42E-14	1.18E-14	5.60E-14	5.52E-18	2.60E-18
1.3-Dimethylbenzene	~	3.48E-11	2.71E-02	9.42E-13	1.291-12	2.23E-12	2.20E-16	1.03E-16
Dimethyl Hethylphosphonate	5.61E-14	1.81E-13	2.40E+01	4.33E-12	2.81E-13	4.6%E-12	4.54E-16	Z. 14E-16
Dimethylphosphate	1.54E-14	2.086-12			7.71E-14	7.71E-14	1.60E-18	5.50E-16
Dioxins/Furane (EPA TEFs)	3.93E-16	5.01E-12	5.64E-04	2.62E-15	1.V/E-13	2 34E-15	2 405.20	1 DAE-20
Dithiane	2.35E-18	3.19E-16	6. VOE - U1	7 24E-18	A 51E-17	7.25F-17	7.15E-21	3.365-21
Endrin	1.30E-17	6 20C 42	4.4.E.O.	A 905-16	2 196-16	2.26F-16	2.23E-18	1.056-18
Hexach lorobenzene	4 246-14	9.40E-18	1 246-03	2.04F-17	6.08E-16	6.28E-16	6.20€-20	2.92E-20
Rexact for ocyclopent and ene	7 6 3F - 17	6.65E-15	3.26E-04	1.52E-18	1.72E-16	1.74E-16	1.71E-20	8.05E-21
and a factorial	S.24E-17	7.106-15	4.10E-02	2.91E-16	2.63E-16	5.54E-16	5.46E-20	2.57E-20
Methanol	1.496-12	2.02E-10	5.816+00	1.17E-09	7.46E-12	1.18E-09	1.16E-13	5.48E-14
6-Witrophenol	5.42E-16	7.35E-14	3.99E-02	2.936-15	2.72E-15	5.65E-15	3.3/E-19	41 . 370.7
PAHS		904 6	10 10 E	7 186C - 12	E 226-12	8 OSE-12	4 One - 16	1.83E-16
Acenaphthalene	6.42E-13	6 70E-11	6.48E-US	0.000-13	\$ 22E-12	A 12E-12	4.068-16	1.916-16
Acenaphthene	61-324-0	6 KOK 42	1.04E-02	1 125-15	A 42F-13	6.45E-13	6.368-17	2.996-17
Benzo(a)pyrene	4 20E-13	0 646-13	A 5 3 11 - 0 4	8.22E-15	6.42E-13	6.506-13	6.41E-17	3.02E-17
Chrysene	4 38E-13	250	•	W 32E-15	6.42E-13	6.45E-13	6.368-17	2.995-17
Closer sola in Januar accine	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 BAF-11	1.83F-03	5.22E-14	1.93E-12	1.98E-12	1.95E-16	9.20E-17
	1 28F-13	1.766-11	5.60E-03	9.73E-14	6.42E-13	7.396-13	7.29E-17	3.43E-1/
Ohanenthrane	2.56E-13	1.56E-11	4.35E-03	6.76E-14	1.296-12	1.35E-12	1.336-16	6.28E-1/
Pyrene	1.28E-13	7.61E-12	1.93E-03	1.476-14	6.42E-13	6.57E-13	6.485-17	3.U2E-1/
Parathion	7.236-18	9.80E-16	¢==	1.18E-17	3.626-17	4.80E-17	4.73E-21	2.25E-21
Pentachlorobenzene	1.966-15	1.00	1.6	5.84E-16	9.81E-15	1.04E-14	1.02E-18	41-320.4
Phenol	6.94E-12	9.41E	2.77E	2.60E-10	3.48E-11	6. 97E - 10	A A1F-19	3,206-19
Quinoline	3.07E-16	4.15E-14	1.29E-01	5.3/E-13	1. J4E - 1.	2. 41.		

Ş,

Supone	2.176-17	2.94E-15	3.06E-02	9.00E-17	1.09E-16	1.99E-16	1.96E-20	9.22E-21
Tetrachlorobenzene	8.25E-16	1.12E-13	5.68E-03	6.35E-16	4.14E-15	4.77E-15	4.70E-19	2.21E-19
Trichtorobenzene	4.35E-16	5.89E-14	9.56E-03	5.64E-16	2.18E-15	2.74E-15	2.70E-19	1.27E-19
11.00	9.41E-12	1.27E-09	1.03E+02	1.31E-07	4.71E-11	1.31E-07	1.296-11	6.08E-12
Vepone	5.79E-17	7.85E-15	3.00E-01	2.35E-15	2.90E-16	2.64E-15	2.61E-19	1.23E-19
RGANICS								
Antimony	5.976-09	8.10E-07	1.00E-02	8.10E-09	2.9%-08	3.80E-08	3.75E-12	1.76E-12
Areanic	3.38E-08	4.58E-06	2.00E-03	9.16E-09	1.69E-07	1.796-07	1.76E-11	8.28E-12
	8.28E-09	1.12E-06	7.50E-03	8.42E-09	4.15E-08	4.99E-08	4.92E-12	2.32E-12
	3.46E-10	6.69E-08	5.00E-04	2.34E-11	1.73E-09	1.76E-09	1.73E-13	8.15E-14
Coope	3.17E-05	4.30E-03	2.00E-02	8.596-05	1.59E-04	2.45E-04	2.41E-08	1.14E-08
	1.06E-08	1.44E-06	2.25E-03	3.246-09	5.32E-08	5.64E-08	5.566-12	2.62E-12
Tean Tean	0 15F-00	1.27E-06	4.50E-02	5.706-08	4.69E-08	1.04E-07	1.02E-11	4.82E-12
	8.67E-05	1.18E-02	1.25E-03	1.47E-05	4.35E-04	70-367.7	4.43E-08	2.08E-08
2616116	8 00F-07	1.225-04	2.00E-02	2.44E-06	4.50E-06	6.94E-06	6.84E-10	3.226-10
Thelife	8.726-08	1.18E-05	2.00E-04	2.36E-09	4.37E-07	4.40E-07	4.33E-11	2.04E-11

Maximum Pollutant Concentration in Lettuce, and

Adult and Child Daily Intake at the Farmer Location

	DRY DEPOSITION RATE g/H2/yr	MAXIMUM CALCULATED CONC 1W SOIL .ZM MG/Kg	PLANT UPTAKE FACTOR	MAXINUM COMC. DUE TO UPTAKE EQ/KG	MAXIMEM CONC. ON PLANT SURFACE RG/KG	MAXIMAM CONC ON PLANT EQ/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE FREJABY	CHILD MAXINUM ESTIMATED DAILY INTAKE
ORGANICS								•
Acetonitrile	1.52E-14	4.95E-13	3.06E+00	1.52E-12	7.60E-14	1.59E-12	2.43E-16	1.15E-16
Aldrin	1.61E-16	5.24E-15	9.93E-05	5.216-19	8.05E-16	8.05E-16	1.236-19	5.806-20
Banes (Ashinda	3.3/E-1/	3.V.E-10	5.43E-02	2.12E-17	1.79E-16	2.00E-16	3.06E-20	1.44E-20
Benzofuran	3.cve-12	1.0/E-10	Z.69E-01	2.696-11	1.65E-11	4.54E-11	6.95E-15	3.27E-15
Benzole Acid	1 30F-12	\$ 20c-10	3.30E-02	0.13E-11	3. 10E-11	4.306-11	6.58E-15	3.0%-15
Benzonitrile	1.52E-15	4.95E-14	2.42E-01	1.205-14	7.60E-15	1 966-16	\$ 005-18	1.172-15
Carbazole	3.03E-16	9.89E-15	2.40E-02	2.386-16	1.52E-15	1.76E-15	2.69E-19	1.275-10
6-Chlorobiphenyl	1.83E-12	5.986-11	2.80E-03	1.67E-13	9.18E-12	9.35E-12	1.436-15	6.73E-16
4,4-Chlorobiphemyl	2.40E-14	7.83E-13	1.136-03	8.84E-16	1.20E-13	1.216-13	1.85E-17	8.72E-18
4-Chlorophenylmethylsulfone	7.505-10	1.03E-14	3.92E-01	4.03E-15	2.94E-15	6.97E-15	1.07E-18	5.02E-19
a n-DOF	2 475-13	3.63E-14	3. CME - 01	7 8/6-14	1.0%E-14	2.35E-14	3.605-18	2.70E-18
D'D-001	5.356-17	1.61E-15	3.986-04	6.42E-19	2.68E-16	2, 69F - 16	6.116-20	1 046-20
Dibenzofuran	3.15E-13	1.036-11	7.93E-03	8.166-14	1.58E-12	1.66€-12	2.54E-16	1.20€-16
Dieldrin	3.306-17	1.08E-15	4.93E-04	5.308-19	1.65E-16	1.66€-16	2.54E-20	1.196-20
Diisopropyl Methylphosphonate	5.796-15	1.366-13	1.936-01	2.62E-14	2.90E-14	5.52E-14	8.456-18	3.986-18
1, 3-Dimethylbenzene	6.51E-13	2.065-17	2.71E-02	5.58E-13	3.166-12	3.72E-12	5.70E-16	2.68E-16
Dissernyl Metnylphosphonate	2 - 30E - 13	1.0/E-13	€.40€+01	2.3/E-12	6.92E-13	3.266-12	4.98E-16	2.34E-16
Dioxina/Furene (FDA TEFE)	0 KRE-14	2 075-12	A 415-04	36 27. 9	1. YUE - 13	1. VOE - 13	6. VAE-17	1.3/E-1/
Dithiane	5.705-18	1.805-16		1 318-16	2 005-17	1 615-15	2 46F-20	3.506-17
Endrin	3.216-17	9.736-16		4.296-18	1.61E-16	1.65E-16	2.52E-20	1.195-20
Mexachlorobenzene	1.08€-14	3.136-13	1.31E-03	4.09E-16	5.40E-14	5.44E-16	8.32E-18	3.926-18
Mexach lorocyclopentadiena	2.99E-16	9.75E-15	1.246-03	1.21E-17	1.50E-15	1.51E-15	2.31E-19	1.005-19
Isodrin	8.45E-17	2.768-15		8.99€-19	4.23E-16	4.24E-16	6.49E-20	3.066-20
Melethion	1.29E-16	4.21E-15	4.10E-02	1.736-16	6.47E-16	8.19E-16	1.256-19	5.90E-20
Methanol	3.66E-12	1.20€-10	5.81E+00	6.95E-10	1.84E-11	7.14E-10	1.096-13	5.146-14
6-Witrophenol Paka	1.346-15	4.36E-14	3.996-02	1.74E-15	6.69E-15	8.43E-15	1.29E-18	6.07E-19
Acenaphthalene	1.586-12	5.166-11	8.485-03	6. 475-13	7.928-12	8 TAF- 12	1 2AF-15	6 02F-16
Acenaphthene	1.586-12	5.166-11	1.04E-02	5.348-13	7.92E-12	8.45E-12	1.295-15	6.096-16
Benzo(a)pyrena	3.15E-13	S.04E-12	3.68E-04	1.85E-15	1.586-12	1.586-12	2.42E-16	1.146-16
Chrysene	3.15E-13	S. 72E-12	8.53E-04	4.88E-15	1.586-12	1.59E-12	2.43E-16	1.14E-16
Dibenzo(a,h)anthracene	3.15E-13	5.96E-12	4	1.976-15	1.586-12	1.58E-12	2.42E-16	1.14E-16
fluoranthene	9.686-13	1.706-11		3.106-14	4.75E-12	4.78E-12	7.32E-16	3.44E-16
Fluorene	S-136-13	1.03E-11		5.77E-14	1.58E-12	1.64E-12	2.51E-16	1.18E-16
Phenanthrene	0.51E-15	V. 62E-12	4.35E-US	6.01E-14	5. TOE - 12	3.206-12	4.90E-16	2.31E-16
Darathion	1 785-17	5 815 16	1 20E-03	A 075-18	R 02E-17	0 A26-17	1 475-20	A 036-24
Denterh Corphansene	A R2E-15	2.575.2	2 205-04	4 KAE-36	2 416-14	127	3 75E-18	1 76F-18
phenol	1 715-11	5.587-10	2775-03	1 546 - 10	8.576-11	2 40F 10	3 A7E-16	7. 7K- 16
Quinoline	7.55E-16	2.465-14		3, 186-15	3.786-15	6.97E-15	1.07E-18	5.026-19

guoding	5.356-17	1.75E-15	3.06E-02	5.336-17	2, 68F - 16	1 21E-16	7 025-30	2 145.30	
Tetrachlorobenzene	2.03E-15	71-314 9	S ARE.DE	1 775. 14	2000	3.5.15	07-324.4	6.3 IE-20	
	100		2000	01.37.10	1.025-14	1.00E-14	1.62E-18	7.60E-19	
Trichtoropenzene	1.0/E-15	3.496-14	9.56E-03	3.34E-16	5.37E-15	5, 70F - 15	A. 72F-10	4 The-10	
- Cres	2 42F-11	7 565-10	1 DIELOZ	7 74E 08	60 470 0			1	
			30.75	00 - 20 - 1	1.105-10	20-3V.	1.1%-11	5.606-12	
Vapona	1.43E-16	4.65E-15	3.00E-01	1.406-15	7.14E-16	2.11E-15	3.23E-19	1.52E-19	
RGANICS									
Antimony	1.47E-08	4.80E-07	1.00E-02	4.80E-09	7,375-08	7 856-08	1 206-11	5 KEC. 13	
Areanin	A 125-04	2 725-04	2 000 - 01	C 175.00	24.	30.0	707.	21.075	
	0.355	3	F. 00L	10-3C4-C	4. I/E '0/	4.22E-U	0.405-11	5.04E-11	
	2.046-08	6.65E-07	7.506-03	8-96-9 9-98-9	1.02E-07	1.07E-07	1.64E-11	7.71F-12	
Beryllium	8.51E-10	2.78E-08	5.00E-04	1.396-11	4.27E-00	4. 2RF-10	6.55F-13	X 08E-12	
Copper	7.80E-05	2.55E-03	2.00E-02	5 DOF-05	1 01E-04	4 42E-D4	4 7KE-08	2 10r 5	
	S 445 C	P. C. P. C.	-	100		1	3	3.106-00	
Lead	2.01E-00	0.33E-U/	6.63E-U3	1.92E-09	1.31E-07	1.33E-07	2.03E-11	9.565-12	
Mercury	2.30E-08	7.52E-07	4.50E-02	3.386-08	1.15E-07	1.496-07	2.285-11	1.075-11	
Selenion	2.13E-04	6.97E-03	1.25E-03	8.71E-06	1.07F-01	1 085-01	1 655.07	7 775 00	
	20 244 6	-	200				1	8 31	
SILVE	4.41E-U0	1.44E-15	Z. DOE - UZ	7.44E-06	1.116-05	1.25E-05	1.92E-09	9.02E-10	
That Lien	2.15E-07	7.01E-06	2.00E-04	1.40E-09	1.085-05	1 DRE-DA	1 456-10	7 745-11	

Average Pollutant Concentration in Tomatoes, and

· 在 (1)

Adult and Child Daily Intake at the Resident-A Location

	DRY	AVERAGE		AVEDACE	ANCHACE				
	DEPOSITION	CALCULATED	PLANT UPTAKE	COMC. DUE	COMC. OW	CONC ON	AVERAGE	AVERAGE	
	9/H2/yr	S01L	TAC I OF	END UP I AKE	PLANT	PLANT Mg/Kg	ESTIMATED DAILY	ESTIMATED DAILY	
		ENG/Kg			mg/Kg		INTAKE MOVING	INTAKE	
ORGANICS							And And And	App /Bu /Bu	
Acetonitrile	4.39E-14	5,605-13	\$ ARE+DO	2 not. 13	4 4 4 4 4 6		1		
Aldrin	4.66E-16	6.03E-15	1.195-04	7 1AE-10	3.13E-13	2.0%E-12	1.11E-15	2.63E-15	
Atrazine	1.036-16	1.396-17	6.51E-02	0 DAF- 10	7 365-19	3.37E-17	1.505-20	4.26E-20	
Benzaldehyde	9.54E-12	1.23E-10	3.23E-01	3.905-11	A 705-13	0.272.0 A DAE: 113	4.37E-21	1.0%E-20	
Benzofuran	1.835-11	2.37E-10	6.60E-02	1.56F-11	1 305-12	1 406-11	8 00F 4F	5.11E-14	
Benzoic Acid	4.62E-12	5.986-11	1.92E-01	1.15F-11	¥ 205-14	1.075-11	6. YYE - 13	6.13E-14	
Benzonitrile	4.39E-15	S.69E-16	2.91E-01	1.65E-14	3.135-16	1 486-14	8 OTE-19	2 426 47	
Carbazole		1.14E-14	2.88E-02	3.28F-16	6 26F-17	\$ 01E.14	2 075-10	7.166-17	
4-Chlorobiphenyl	5.31E-12	6.88E-11	3.36E-03	2.3tE-13	3.785-13	A 10F-18	2 24E-14	7 44E-19	
4,4-Chlorobiphenyl	6.96E-14	9.01E-13	1.35E-03	1.226-15	4.95E-15	6 17-15	3,235.	7 745-10	
4-Chlorophenylmethylsulfone	1.706-15	4.58E-16	4.70E-01	2.15E-16	1.21F-16	4 4KE-1K	1 785-10	7 225 40	
4-Chlorophenylmethylsulfoxide	6.32E-15	1.70€-15	3.95E-01	6.73E-16	6.50F-16	1 125-15	5 OAE- 10	4. CCE- 17	
p,p-00E	7.74E-13	1.87E-12	1.17E-03	8	5.516-14	5 73E-12	2 0/E 17	01. 11. 10. V	
p,p-00T	1.55E-16	3.75E-16	6.78F-06	705-10	1 105-17	1 125-14	3.04E-17	4 . 45 70	
Dibenzofuran	9.14E-13	1.186-11	0.526-01	1 136-13	4 51c-14	1 200 6	3.72E-21	1.478-20	
Dieldrin	9.565-17	1.24E-15	5 92F-04	7 42F-10	A MIE-18	7 5/5-13	7.43E-17	6.24E-10	
Diisopropyl Methylphosphonate	1.686-14	9.065-15	2.32F-01	2 105-15	1 206 15	2 30c 10	4.00E-21	V.48E-21	
1,3-Dimethylbenzene	1.83E-12	2.37E-11	3 25F-02	7 715-13	1 305-18	0.015-12	1.735-16	6.14E-18	
Dimethyl Methylphosphonate	4.00E-13	3.57E-15	2.87E+01	1 0 TF - 1%	2 856-14	1 41E-12	4. 10C - 10	1.13E-13	
Dimethylphosphate	1.105-13	1.67E-12		7000	7 825.15	7 825-15	0.73E-1/	1.03E-10	
Dioxins/Furans (EPA TEFs)	2.80€-13	8.01F-13	4. 74F-04	A 1185.14	2 006-14	2 046-14	4 00r 47	7.63E-16	
Dithiane	1.68E-17	2.175-16	8 35E-01	1 815-16	20c-18	9 976 14	9. 40r 30	71-345-7	
Endrin	9.205-17	2 40F-16	£ 20c-03	1 22E. 18	01 -302 - 7	7 075 10	7.07E-20		
Hexach lorobenzene	¥ 125-14	A 056-16	•	7 625 47	מוימסיס.	7 305 45	4.21E-21	9.986-21	
Mexach lorocyclonentadiene	A 665-16	1 125-14	1.37C-03	11.326.1	2. 22E-13	2.30E-15	1.22E-18	2.90E-18	
landrin	2 456-14	2 175.45	2 04E 05	1.0/E-1/	6.1/E-1/	7.83E-17	4.15E-20	9.85E-20	
Selethion	8 746-14	A B.C. 15	A 035-03	21 - 242 - 10	1./45-1/	1.8/E-1/	9.91E-21	2.35E-20	
Metherof	9 DAE- 11	9 28F-40		6.306.10	7. 201-12 1. 201-12	2.65E-16	1.40E-19	3.33E-19	
6 - Bitrophenol	4 A7E-15	S 01E-16		7 - 200 - A	7.306-13	7.60E-10	5.0%-15	1.21E-12	
PAHG	3000	10.5	4.175 06	C1 - 204. 7	01.30/.7	2.00E-13	1.42E-18	3.305-18	
Acenaphthalene	4.58F-12	5.04F-11	1 025-02	A DIC. 12	Tt. 3AC T	0 20E. 42	10 750 1	90 950 0	
Acenaphthene	6.58E-12	S. 03F-11	1.24F-02	7 47E-14	# 24E-11	1 OKE-12	6 47E-10	4 2/5 55	
Benzo(a)pyrene	9.148-13	2.00E-13	70-317 Y	0 205-17	A K1E-16	4 525.16	3.04E 47	2 - 74C - 8	
Chrysene	9.14E-13	2.616-13	1.02F-03	2 A7E-16	A 51E-14	A 5/E-14	2 40C - 17	0.505-17 0.336-47	
Dibenzo(a,h)anthracene	9.14E-13	2.84F-13	3 OKF-04	1 125-16	A 51E-14	4 525.14	71 - 216 - 27	0.66E-17	
Fluorenthene	2.755-12	7 658-13	2 10F-01	486.15	2 20	4 02C 14	3.40c.17	0.60E-17	
Flintene	31 77 0	2000 P	•	7 000-13	L. YOE - 13	1.V/E-13	1.05E-16	-48E-	
Ohenenehrene	1 225.93	1 10C 11	E 335 02	4 - YOU - 14	0.016-14	1.408-13	7.00E-1/	1.8ZE-16	
Disperse	20.00	3.0CE 13	20.227.C	1.696-15	1.30E-13	1.32E-13	7.01E-17	1.665-16	
- V	V. 19E- 13	1.705-13		4.05E-16	6.51E-14	6.55E-14	3.476-17	8.24E-17	
Parathion	3.10E-17	6.68E-16	1.44E-02	9.62E-18	3.685-18	1.336-17	7.05E-21	1.67E-20	
Pentachloropenzene	1.40E-14	1.876-13	2.64E-03	4.78E-16	9.95E-16	1.47E-15	7.81E-19	1.85E-18	
Phenol	4.96E-11	6.42E-10	3.32E-01	2.13E-10	3.53E-12	2.17E-10	1.156-13	2.72E-13	
Quinotine	2.196-15	2.83E-14	1.55E-01	4.39E-15	1.56E-16	4.55E-15	2.41E-18	5.726-18	

1.06E-19	1.186-18	8.58E-19	1.358-10	2.466-18		5.07E-12	2.306-11	6.165-12	2.25E-13	7.556-08	7.45E-12	1.90E-11	7.05E-08	1.20E-09	5.60E-11
4.49E-20	4.98E-19	3.62E-19	5.685-11	1.04E-18		2.14E-12	9.71E-12	2.60E-12	9.47E-14	3.186-08	3.14E-12	8.02E-12	2.98E-08	5.06E-10	2.36E-11
8.46E-17	9.39E-16	6.82E-16	1.07E-07	1.95E-15		4.03E-09	1.83E-08	4.90E-09	1.796-10	6.01E-05	5.92E-09	1.51E-08	5.61E-05	9.55E-07	4.45E-08
1.10E-17	4.20E-16	2.21E-16	4.78E-12	2.94E-17		3.04E-09	1.72E-08	4.21E-09	1.76E-10	1.61E-05	5.396-09	4.75E-09	4.41E-05	4.57E-07	4.43E-08
7.365-17	5.20E-16	4.61E-16	1.07E-07	1.93E-15		9.94E-10	1.12E-09	6.89E-10	2.88E-12	4.396-05	5.29E-10	1.04E-08	1.206-05	4.98E-07	1.93E-10
3.67E-02	6.82E-03	1.15E-02	1.23E+02	3.60E-01		1.80E-03	3.60E-04	9.00E-04	9.00E-05	1.50E-02	5.40E-04	1.20E-02	1.50E-03	6.00E-03	2.40E-05
2.01E-15	7.03E-14	4.02E-14	8.69E-10	5.35E-15		5.52E-07	3.126-06	7.65E-07	3.206-08	2.93E-03	9.81E-07	8.64E-07	8.01E-03	8.30E-05	8.06E-06
1.55E-16	5.6%E-15	3.106-15	6.71E-11	4.13E-16		4.266-08	2.41E-07	5.91E-08	2.47E-09	2.26E-04	7.57E-08	6.68E-08	6.19E-04	6.41E-06	6.23E-07
Supone	Tetrachloropenzene	Trichlorobenzene	Urea	Vapona	INORGANICS	Ant imony	Arsenic	Barica	Beryllium	Copper	Lead	Hercury	Selentum	Silver	Thettium

. Watel

Average Pollutant Concentration in Tomatoes, and

	Adult an	d Child D	Adult and Child Daily Intake at the Resident-13 Location	at the Resi	dent-B Loc	afion		
	DRY DEPOSITION RATE g/M2/yr	AVERAGE CALCULATED COMC 14 SOIL . 24 EQ/Kg	PLANT UPTAKE FACTOR	AVERAGE CONC.DUE TO UPTAKE Mg/Kg	AVERAGE CONC. ON PLANT SURFACE mg/Kg	AVERAGE COMC ON PLANT PRANT	ADULT AVERAGE ESTIMATED DAILY INTAKE	CHILD AVERAGE ESTIMATED DAILY INTAKE
RGANICS								
Acetonitrile	6.16E-15	8.236-13	T KAF+00	\$ 02E-12	76-302 7	2 025 43	400 40	
Aldrin	6.52E-17	8.72E-15	1 105-06	1 DAE-18	4.30C-10	5.UZE-12	1.00E-15	3.80E-15
Atrazine	1.45E-17	2.01E-17	6.51F-02	2 2 2 2	1 046 10	3 2/6 18	3.01E-21	7.15E-21
Benzeldehyde	1.346-12	1.70F-10	3 21F-01	5 77E-11	0 525-10	6.34C-10	1.645-61	2.74E-21
Benzofuran	2.56E-12	3.436-10	6.60F-02	2 26F-11	F 120 6	2 20E-11	3.0/E-14	7.2/E-14
Benzoic Acid	6.47E-13	8.65E-11	1.92E-01	1.66F-11	6.61E-16	1 475-11	9 01E-14	2.8/E-14
Benzonitrile	6.165-16	8.23E-14	2.91E-01	2.305-16	6 TRF-17	2 305-14	9 275 12	Z 015 47
Carbazole	1.23E-16	1.65E-14	2.88E-02	4.745-16	B. 77F-18	6 A3F-16	2 SAE-10	5.01E-17
4-Chlorobiphenyl	7.44E-13	9.94E-11	3.36E-03	3.346-13	5.30E-14	3.87E-13	2.05E-16	4 RAF-14
4,4-Chlorobiphemyl	9.75E-15	1.30€-12	1.35E-03	1.76E-15	6.94E-16	2.46E-15	1.30F-18	3 DOC-18
4-Chlorophemylmethylsulfone	2.38E-16	6.62E-16	4.70E-01	3.11E-16	1.69E-17	3.28E-16	1.746-19	4.12E-19
4-Chlorophenylmethylsulfoxide	8.86E-16	2.46E-15	3.95E-01	9.73E-16	6.31E-17	1.04E-15	5.49E-19	1.30E-18
p,p-00E	1.086-13	2.70E-12	1.17E-03	3.16E-15	7.72E-15	1.096-14	5.77E-18	1.37E-17
p,p-0-0	2.17E-17	5.41E-16	4.78E-04	2.59E-19	1.55E-18	1.816-18	9.57E-22	2.27E-21
Dibenzoturan	1.28E-13	1.71E-11	9.52E-03	1.63E-13	9.12E-15	1.72E-13	9.12E-17	2.16E-16
Dietarin	1.34E-17	1.7%E-15	5.92E-04	1.06E-18	9.53E-19	2.01E-18	1.07E-21	2.53E-21
4 3-5 impeliations	2.35E-13	7.57E-16	Z.32E-01	3.03E-15	1.68E-16	3.20E-15	1.706-18	4.02E-18
Dimethyl Methylphosphometo	2.30E-13	3.436-11	3.25E-02	1.11E-12	1.83E-14	1.13E-12	6.01E-16	1.42E-15
Dimethyl thombate	1 5/E-14	2 066-13	4.8/E+UI	1.406-13	5.9%-15	1.52E-13	8.08E-17	1.91E-16
Dioxina/furana (FPA TFFe)	\$ 04E-96	1 205-12	4 74E.04	A 715.16	7 - 10E - 15	1.10E-15	5.81E-19	1.58E-18
Dithiane	2.35E-18	3 165-16	8 35E-01	2 625-16	1 ARE-10	2.0/5-15	1.V2E-16	4.01E-18
Endrin	1.306-17	3.596-16	5.296-03	1.906-18	9.27E-19	2.83E-18	1 50E-21	3.50E-19
Mexachlorobenzene	4.38E-15	7.30€-14	1.57E-03	1.15E-16	3.12E-16	4.26E-16	2.26F-10	5 4KF-10
Mexachlorocyclopentediene	1.27E-16	1.62E-14	1.49E-03	2.41E-17	8.64E-18	3.27E-17	1.74E-20	4. 12F-20
Isodrín	3.436-17	4.596-15	3.916-04	1.795-18	2.44E-18	4.24E-18	2.25E-21	5.33E-21
Malathion	5.24E-17	7.005-15	4.92E-02	3.44E-16	3.73E-18	3.48E-16	1.85E-19	4.38E-19
Hethenol	1.49E-12	1.996-10	6.98E+00	1.396-09	1.06E-13	1.396-09	7.36E-13	1.74E-12
PARS	3.47E-10	1.DE-14	4. rye-02	3.47E-15	3.866-17	3.51E-15	1.86E-18	6.41E-18
Acenachthalens	8 4.3C. 98	S CAE: 14	1 025.03	# 77E 48	1 C 775 - 11	44 764 6	70	40.00
Acenaphthene	6.42E-13	5.585	1.248-02	107-12	6.57F-16	1 116-12	5 00E 16	4 405-15
Benzo(a)pyrene	1.28E-13	3.01E-13	4.61F-04	4 4 TE - 16	0 126-15	0 245-15	A 01E-18	1 145-17
Chrysene	1.28E-13	3.786-13	1.02E-03	3.86E-16	9.12E-15	9.516-15	S. O.F. 18	1 205-17
Oibenzo(a,h)anthracene	1.28E-13	4.10E-13	3.96E-04	1.63E-16	9.12E-15	9.296-15	6.92E-18	1.176-17
Fluorenthene	3.85E-13	-	2.195-03	2.42E-15	2.74E-14	2.996-14	1.58E-17	3.756-17
fluorene	1.286-13	1.716-11	6.73E-03	1.15E-13	9.12E-15	1.24E-13	6.59E-17	1.568-16
Phenanthrene	2.56E-13	5.24E-13	5.22E-03	2.73E-15	1.83E-14	2.10E-16	1.116-17	2.646-17
Pyrene	1.28E-13	2.54E-13	2.316-03	5.86E-16	9.12E-15	9.716-15	5.15E-18	1.226-17
Parathion	7.23E-18	9.66E-16	1.44E-02	1.39E-17	5.15E-19	1.44E-17	7.658-21	1.81E-20
Pentachlorobenzene	1.96E-15	2.61E-13	2.64E-03	6.90E-16	1.39E-16	8.30E-16	4.40E-19	1.04E-18
Phenol	6.94E-12	9.28E-10	3.32E-01	3.08E-10	4.94E-13	3.09E-10	1.64E-13	3.88E-13
quinotine	3.07E-16	4.106-14	1.556-01	6.35E-15	2.166-17	6.37E-15	3.38E-18	8.01E-15

534CARB.51

00, ../21

ORGANICS

Supone	2.17E-17	2.90E-15	3.67E-02	1.06E-16	1.55E-18	1.08F-16	5.72E-20	1, 765-10
T. t. z. z. b. b. anahamana	A 256-14	1 105.12	A BOE. DE	7 645 44		200	1 100	40 100
letrachtorochzene	01-367-0	C1 - 301 - 1	0.025-03	7.31E-10	2.00-1/	5.10E-16	4.30E-19	1.02E-18
Trichlorobenzene	4.35E-16	5.81E-14	1.15E-02	6.67E-16	3.10E-17	6.98E-16	3.706-19	8.77E-19
lirea	9.41E-12	1.26E-09	1.23E+02	1.55F-07	6 70F-11	1 55F-07	A 21F-11	1 955-10
Vapone	5.796-17	7.74E-15	3.606-01	2.78E-15	4.12E-18	2.79E-15	1.48E-18	3.506-18
•								
INORGANICS								
Ant imony	5.97E-09	7.98E-07	1.80E-03	1.446-09	4.25E-10	1.86E-09	9.87E-13	2.34E-12
Arsenic	3.386-08	4.52E-06	3.606-04	1.63E-09	2.41E-09	4.03E-09	2.14E-12	S.07E-12
	8.28E-09	1.11E-06	9.00E-04	9.956-10	5.906-10	1.59E-09	8.41E-13	1.995-12
Berylling	3.466-10	4.62E-08	9.00E-05	4.16E-12	2.46E-11	2.886-11	1.536-14	3.62E-14
Comper	3.17E-05	4.24E-03	1.50E-02	6.358-05	2.26E-06	6.586-05	3.496-08	8.27E-08
pae	1.065-08	1.42E-06	5.40E-04	7.65E-10	7.568-10	1.52E-09	8.07E-13	1.91E-12
Mercury	9.35E-09	1.25E-06	1.20E-02	1.50E-08	6.66E-10	1.57E-08	8.30E-12	1.976-11
Selenia	8.67E-05	1.16E-02	1.50€-03	1.74E-05	6.18E-06	2.36E-05	1.25E-08	2.96E-08
Silver	8.99E-07	1.206-04	6.00E-03	7.206-07	6.40E-08	7.84E-07	4.16E-10	9.86E-10
Thattiem	8.72E-08	1.176-05	2.40E-05	2.80€-10	6.21E-09	6.496-09	3.446-12	8.16E-12

Average Pollutant Concentration in Tomatoes, and

Adult and Child Daily Intake at the Farmer Location

	DRY DEPOSITION	AVERAGE CALCULATED	PLANT UPTAKE	AVERAGE COMC. DUE	AVERAGE COMC. ON	AVERAGE COMC ON	ADULT AVERAGE	CHILD
	RATE 9/N2/yr	CONC IN SOIL . 2M ma/Kg	FACTOR	TO UPTAKE @g/Kg	PLANT SURFACE mg/Kg	PLANT mg/Kg	ESTIMATED DAILY INTAKE mg/kg/day	ESTIMATED DAILY INTAKE
ORGANICS								
Acetonitrile	1.52E-14	4.88E-13	3.68E+00	1.795-12	1.08E-15	1.79E-12	1.48E-15	3.506-15
Aldrin	1.618-16	5.17E-15	1.19E-04	6.16E-19	1.14E-17	1.216-17	9.92E-21	2.35E-20
Atrazine	3.576-17	1.19€-17	6.51E-02	7.77E-19	2.54E-18	3.32E-18	2.73E-21	6.47E-21
Benzal dehyde	3.296-12	1.06E-10	3.23E-01	3.42E-11	2.346-13	3.456-11	2.84E-14	6.72E-14
Benzofuran	6.31E-12	2.03E-10	6.60E-02	1.34E-11	4.50E-13	1.396-11	1.146-14	2.70E-14
Benzolc Acid	1.59€-12	5.13E-11	1.92E-01	9.85E-12	1.13E-13	9.96E-12	8.20E-15	1.94E-14
Benzonitrile	1.52E-15	4.88E-14	2.91E-01	1.42E-14	1.08E-16	1.43E-14	1.18E-17	2.79E-17
Carbazole	3.036-16	9.75E-15	2.88E-02	2.81E-16	2.16E-17	3.03E-16	2.49E-19	5.91E-19
6-Chlorobiphemyl	1.83E-12	5.89E-11	3.36E-03	1.98E-13	1.30E-13	3.28E-13	2.70E-16	6.41E-16
4,4-Chlorobiphenyl	2.40E-14	7.72E-13	1.35E-03	1.05E-15	1.71E-15	2.75E-15	2.27E-18	5.37E-18
4-Chlorophenylmethylaulfone	5.86E-16	3.92E-16	4.70E-01	1.84E-16	4.17E-17	2.26E-16	1.86E-19	4.41E-19
4-Chlorophenylmethylsulfoxide	2.186-15	1.46E-15	3.95E-01	S.77E-16	1.55E-16	7.32E-16	6.02E-19	1.43E-18
p,p-00£	2.67E-13	1.60E-12	1.17E-03	1.87E-15	_	2.09E-14	1.72E-17	4.08E-17
T00-q,q	5.35E-17	3.21E-16	4.78E-04		3.81E-18	3.96E-18	3.26E-21	7.73E-21
Dibenzofuran	3.15E-13	1.01E-11	9.52E-03	9.66E-14	2.25E-14	1.196-13	9.80E-17	2.32E-16
Dieldrin	3.305-17	1.06E-15	5.92E-04	6.27E-19	2.35E-18	2.97E-18	2.45E-21	5.80E-21
Diisopropyl Methylphosphonate	S. 79E-15	7.76E-15	2.32E-01	1.80E-15	4.12E-16	2.21E-15	1.82E-18	4.31E-18
1, 3-Dimethylbenzene	6.31E-13	2.03E-11	3.25E-02	6.61E-13	4.50E-14	7.065-13	5.81E-16	1.386-15
Dimethyl Methylphosphonate	1.386-13	3.066-15	2.87E+01	8.79E-14	9.83E-15	9.77E-14	8.04E-17	1.91E-16
Dimethy (phosphate	3.795-14	1.22E-12			200	2.706-15	2.22E-18	5.26E-18
Dioxins/Furans (EPA TEFs)	9.68E-14	7.64E-13	6.76E-06	5.16E-16	6.89E-15	7.41E-15	6.0%-18	1.45E-17
Dithiene	5.7%-18	1.86E-16	8.35E-01	1.56E-16	4.12E-19	1.506-16	1.28E-19	3.04E-1V
Endrin	3.21E-1/	2.13E-16	5.CME-U5	1.136-18	2.705-16	3.41E-18	2.81E-21	0.035-61
Mexach lorobenzene	1.08E-14	4.33E-14	1.5/E-03	6. /ye-1/	7.0/E-10	8.35E-16	6.6/E-19	0.035-10
Mexachlorocyclopentadiene	2.99€-16	9.616-15	1.49E-03	1.43E-17	Z.13E-17	3.56E-17	2.93E-20	07-3%4.9
Isodrin	B.45E-17	Z. 72E-15	3.91E-04	1.065-18	6.02E-18	7.08E-18	5.835-21	1.305-70
Matathion	1.29E-16	4.15E-15	4.92E-02	2.0%E-16	9.1VE-16	2.13E-16	7.705-19	4 44E-17
Methenol	3.668-12	1.186-10	6.98E+00	8.22E-10	Z.61E-13	8.25E-10	6.77E-15	1.016-16
4-Nitrophenol	1.346-15	4.30E-14	4. rye-02	2.066-15	9.51E-1/	2.15E-15	1.1/16-18	9.20E-10
Acenerhthelene	1 585-12	S DAE-11	1.028-02	5 175-13	1.13F-13	6.308-13	5.186-16	1.236-15
Acetachehene	1 5.8F-12	1 197	1 24F-02	6.32E-13	1.136-13	7.45E-13	6.13E-16	1.45E-15
Second shortens	4 95F-13	,	6.6 1F-04	7.895-17	2.25E-14	2.25E-14	1.85E-17	4.40E-17
Chrystop	1 25E-12	27-196	1.02F-03	2.295-16	2.25E-14	2.27E-14	1.87E-17	4.43E-17
O ibenzo(a.h)anthracene	2. 15E-13	2.63E-13	3.968-04	9.64E-17	2.25E-14	2.26€-14	1.86E-17	4.40E-17
Fluorent hane	0 ARE-14	A 56F-14	2 105-03	51-177	6.75E-14	6.90E-14	5.67E-17	1.356-16
Fluorens	1.15E-13	1.01E-11	6.736-03	6.82E-14	2.25E-14	9.07E-14	7.46E-17	1.77E-16
Shananthrana	A 41F-14	, ha.	5 22F-03	1.625-15	4.508-14	4.66E-14	3.836-17	9.09E-17
DVTPDS	3 15E-1	, =	2.316-03	3.47E-16	2.25E-14	2.28E-14	1.886-17	4.45E-17
Darachio	1 7RE-17	87	1.64F-02	8.25E-18	1.278-18	9.51E-18	7.83E-21	1.86E-20
Pentach orchenzene	4.82E-15	1.55E-13	2.64E-03	4.09E-16	3.43E-16	7.52E-16	6.19E-19	1.67E-18
Phenol	1 715-99	S. SOF - 10	3 32F-01	1.83E-10	1.226-12	1.84E-10	1.516-13	3.596-13
Definal fae	7.558-16	2.436-14	1.556-01	3.77E-15	5.37E-17	3.826-15	3,14E-18	7.45E-18
adina inc								

_

,								4
Supone	5.35E-17	1.72E-15	3.67E-02	6.315-17	3.81E-18	6 KOE-17	5 505-20	1 115.10
Company of the Compan	20 075 45	10 212 1	**	2		10.0	7.706	1.316.19
letrachi or openzene	C1-3C0-2	0.048-14	6.82E-U3	4.46E-16	1.45E-16	5.90E-16	4-86E-19	1,156-18
Trichlorobenzene	1.07E-15	3.44E-14	1.15F-02	3 OSE-14	7 435-17	715-14	T 895-10	100
		1		2	1 360.	21111	3.000	V. CUE - 19
Cree	2.32E-11	7.458-10	1.23E+02	9.18E-08	1.65E-12	9.18F-08	7.55E-11	1 705-10
Vepone	1.43E-16	4.596-15	3.60E-01	1.65E-15	1.02E-17	1.666-15	1.376-18	3.246-18
INORGANICS								
Antimony	1.47E-08	4.73E-07	1.80€-03	8.52F-10	1 055-00	1 OUE-DO	1 545-12	7 me. 43
				2	1000	10101	31.75	21.001.0
Arsenic	8.32E-08	2.68E-06	3.606-04	9.64E-10	5.93E-09	6.89E-09	5.67E-12	1.34F-11
	2.04E-08	6.56F-07	9 DOF - 04	5 OUE-10	1 456-00	2 07.5.00	1 485-12	1 00 H
		200	100	2.101	10-36-1	F. CAL. 03	21 - 200 - 1	2.705-12
Beryllica	8.51E-10	2.74E-08	9.00E-05	2.47E-12	6.06E-11	6.31E-11	5.196-14	1.236-13
Copper	7.806-05	2.51E-03	1.50E-02	3.77E-05	5.566-06	4.32F-05	3.56F-08	8 43E-08
-	2 KIE-DA	8 40E-07	70-307 \$	4 5/5-10	00 278	2 245	-	200
	3 10:3	10.40	1010	0 17.	1.000-07	6.31E-0y	1. YUE - 12	4.31E-12
Mercury	2.30E-08	7.41E-07	1.20E-02	8.89E-09	1.64E-09	1.05E-08	8.66E-12	2.05E-11
Selenium	2.136-04	6.87E-03	1.506-03	1.03E-05	1.52E-05	2.55E-05	2.10E-08	4. ORF - DR
Silver	2.21E-06	7.12E-05	6.00E-03	4.27E-07	1.58F-07	5. ASE-07	4 A1F-10	1 1/6-00
1.7.1.4	9 4EF 07	A 015 04	20 101 6		-	111111111111111111111111111111111111111		100 1100
	70-361-7	8-416-0	5	200.	- 325-108	225-108	1.7/	

Maximum Pollutant Concentration in Tomatoes, and

447.3

Location
Resident-A
t the
Intake a
Daily
Child
and
Adult

			and minder	at the Resident-A		Ocation		
	DRY DEPOSITION RATE	CALCULATED CONC. 18	PLANT UPTAKE	CONC. DUE	MAXINUM CONC. ON	MAXIMUM CONC ON	ADULT MAX I MUM	CHILD
	9/H2/yr	SOIL . 24 Rg/Kg		Mg/Kg	SURFACE mg/Kg	PLANT mg/Kg	ESTIMATED DAILY INTAKE	ESTIMATED DAILY INTAKE
ORGANICS								
Acetonitrile	4.39E-14	5.77E-13	3.68E+00	2.12E-12	1.10E-13	2.23E-12	1.1AF-15	2 805.15
Aldrin	4.66E-16	6.12E-15	1.196-04	7.295-19	1.166-15	1.16E-15	6.16F-19	\$ 46F-18
Atrazine	1.03E-16	4.57E-16	6.51E-02	2.98E-17	2.58E-16	2.88E-16	1.52E-19	3.61F-19
Benzaldehyde	9.54E-12	1.25E-10	3.23E-01	4.05E-11	2.386-11	6.43E-11	3.41E-16	8.08F-14
Benzofuran	1.83E-11	2.406-10	6.60E-02	1.59E-11	4.56E-11	6.15E-11	3.26E-14	7.73E-16
Benzoic Acid	4.62E-12	6.07E-11	1.92E-01	1.17E-11	1.15E-11	2.32E-11	1.23E-14	2.91E-14
Benzonitrile	4.39E-15	5.77E-16	2.91E-01	1.68E-14	1.10E-14	2.77E-14	1.47E-17	3.49E-17
Carbazole	8.79E-16	1.15E-14	2.88E-02	3.336-16	2.19E-15	2.52E-15	1.34E-18	3.17E-18
4-Chlorobiphenyl	5.31E-12	6.986-11	3.366-03	2.34E-13	1.32E-11	1.35E-11	7.14E-15	1.69E-14
4,4-Chlorobiphenyl	6.96E-14	9.14E-13	1.35E-03	1.24E-15	1.73E-13	1.75E-13	9.265-17	2.20E-16
4-Chiorophenyimethyisuitone	1.70E-15	1.205-14	4.70E-01	5.64E-15	4.23E-15	9.886-15	5.24E-18	1.246-17
4-Lniorophenyimetnyisuitoxide	0.32E-15	6.4/E-16	3.95E-01	1.77E-14	1.58E-14	3.34E-14	1.77E-17	4.20E-17
P, P-00E	0 666 15	9.39E-12	1.1/E-03	1.10E-14	1.936-12	1.94E-12	1.03E-15	2.44E-15
Dibara of irea	0 475-10	1.856-15	6.78E-U4	8.9VE-19	3.86E-16	3.87E-16	2.05E-19	4.87E-19
DiDenzoruran Dielatie	V. 14E-15	1.20E-11	9.52E-03	7.14E-15	2.28E-12	2.39E-12	1.27E-15	3.01E-15
Dietarin Mathilatan	V.306-1/	21-307-13	3.92E-04	7.43E-19	2.38E-16	2.39E-16	1.27E-19	3.00E-19
1 2-Dimethylbonesphonere		1.3%E-13	2.32E-01	3.6/E-14	4.195-14	7.868-14	4.17E-17	9.88E-17
Director Machinists	71.00.1	6 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30-302-06	7.02E-13	4.30E-12	3.35E-12	2.83E-15	6.72E-15
Disserting necessity and more	4 105-13	1.202-13	Z.0/E+UI	3.3VE-12	7.V/E-13	4.5VE-12	Z. 43E-15	5.77E-15
Dioxins/Furane (FPA TEFe)	2 AME-13	8 67E-12	A 7AE-DA	21.371 C	6 - 14E - 13	7 025-13	1.40E-10	3.44E-10
Dithiane	1.68E-17	2.216-16		1.84F-16	4 105-17	2 26E-16	1 205-10	0.62E-10
Endrin	9.29E-17	1.146-15	5.296-03	6.01E-18	2.32E-16	2.385-16	1 265-10	2 005-10
Hexachlorobenzene	3.12E-14	3.65E-13	1.57E-03	5.72E-16	7.785-14	7.84F-16	4. 1AF-17	0 RAF-17
Mexachtorocyctopentadiene	B.66E-16	1.14E-14	1.49E-03	1.69E-17	2.16E-15	2.18E-15	1.156-18	2.735-18
Isodrin	2.45E-16	3.22E-15	3.91E-04	1.26E-18	6.11E-16	6.12E-16	3.24E-19	7.69E-19
Malathion	3.74E-16	4.91E-15	4.92E-02	2.42E-16	9.32E-16	1.17E-15	6.22E-19	1.48E-18
Methanol	1.06E-11	1.40E-10	6.98E+00	9.73E-10	2.65E-11	1.00E-09	5.30E-13	1.26E-12
4-Nitrophenol	3.87E-15	5.086-14	4.79E-02	2.446-15	9.658-15	1.21E-14	6.416-18	1.52E-17
		00 500	-	***	4			
Acendon marene	4.38E-12	6.02E-11	1.02E-02	6.12E-13	1.74E-11	1.20E-11	6.386-15	1.51E-14
Berry (a) Protection	0 1/2.42	E 685-13	20-242-1	2000	100000	11.227.1	0.436-13	
Chryspan	0 17E-12	A A7E-12	40-21-5-64 40-21-5-64	4 926 12	21 -202 - 2	21 - 202 - 2	20.20.	C. 0/E. 13
Otherzofa hlanthracera	0 146-18	A 956-12	1.05E-03	2 746-15	2 286-12	2 286-12	1.215.15	2 875-15
Floorence	2 756-13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 105.02	7 * 3E- 1	4 856.13	4 000- 12	2 44C 4E	6 475 96
Figures and a second	0 1/6.1%	206.1	A 74E-02	1 100 B	2 286-12	A A E	9 255.45	2 075 35
Phenanthrene	1 R4E-13	1 DAE-11		S A1E-14	4 54F-12	6 42E-12	2 655.45	26.97 E 618.35
Our and	37 JULY 0	A 274-12	2 44E-03	1 225-14	2 28E-12	2 - 200. 6	9 - 300 6	J. G. 17
Sec. Hande	G 44E-47	A 705-14		PI - 277 0	3 205-14	4 205-94	C1 - 372 - 1	0 2/2 0
Series of the series	4 / Oct - 4/	0. 70C 10	30 375 C	7.10C-10	1.67C-10	7 E 7 E 4	0 87F 67	46 367
	- 30c - 4	4 8 98 40	Z 25 03	4.0%E-10	3. 40E - 14	3.33E-18	1.0/E-1/	4 99E-1
Outpol to	2 10E 1E	2 675-16	10-326.6	4. 16E-10	7 .56.15	0.406.10	C 26E-13	4.2/E-17
Z	E. 17E - 13	£,01E. 17	יים שרביי		71476	V. VIE 12	01.307.0	11-362-11

Supona Tetrachlorobenzene Trichlorobenzene Urea Vapona INORGANICS Antimony	1.55E-16 5.08E-15 3.10E-15 6.71E-11 4.13E-16 4.26E-08 2.41E-07 5.01E-07	2.04E-15 7.74E-14 4.08E-14 8.08E-10 5.43E-15 5.60E-07 3.17E-06	3.67E-02 6.82E-03 1.23E-02 1.23E-02 3.60E-01 3.60E-04 9.00E-04	7.47E-17 5.28E-16 4.68E-16 1.09E-17 1.95E-15 1.01E-09 1.14E-09	3.06E-16 1.47E-14 7.74E-15 1.67E-10 1.03E-15 1.06E-07 6.01E-07	4.61E-16 1.52E-14 8.21E-15 1.09E-17 2.98E-15 1.07E-07 6.02E-07	2.45E-19 6.07E-18 4.35E-18 5.77E-11 1.58E-18 5.69E-11 3.19E-10	5.80E-19 1.91E-17 1.03E-17 1.37E-10 3.75E-18 1.35E-10 7.57E-10
Beryllium	2.47E-09	3.24E-08 2.97E-03	9.00E-05	2.92E-12 4.46E-05	6.15E-09 5.64E-04	6.16E-09 6.09E-04	3.26E-12 3.23E-07	7.74E-12 7.65E-07
Lend	7.57E-08	9.95E-07	5.406-04	5.37E-10	1.89E-07	1.89E-07	1.00E-10 9.38E-11	2.38E-10 2.22E-10
Selenium	6.196-04	8.136-03	1.506-03	1.226-05	1.54E-03	1.56E-03	8.25E-07	1.96E-06
Silver	6.236-07	8.18E-06	2.40€-05	1.966-10	1.55E-06	1.55E-06	8.236-10	1.95E-09

Maximum Pollutant Concentration in Tomatoes, and

Adult and Child Daily Intake at the Resident-B Location

	DRY	HAXIMIM		STAY I AN ILA	AZ A V I ASI MA	MAN W. BAM MA		
	DEPOSITION RATE 9/W2/yr	CONC IN SOIL SOIL	PLANT UPTAKE FACTOR	CONC. DUE TO UPTAKE	CONC. ON PLANT SURFACE Mg/Kg	COMC OW PLANT BQ/Kg	MAXIMUM ESTIMATED DAILY INTAKE	CHILD MAXIMUM ESTIMATED DAILY INTAKE
CARANICS							mg/Kg/dey	mg/Kg/day
Aretonitrile	36 376 7	0 1/6 0						
	0.10E-13	51-340-0	3.68E+00	5.0/E-12	1.53E-14	3.08E-12	1.63E-15	3.88E-15
Aldrin	6.32E-1/	8.848-15	1.195-04	1.05E-18	1.63E-16	1.64E-16	8.68E-20	2.06E-19
Atterine	1.45E-17	6.605-16	6.51E-02	4.30E-17	3.618-17	7.91E-17	4.20E-20	9.95E-20
Benzal dehyde	1.34E-12	1.81E-10	3.23E-01	5.86E-11	3.336-12	6.19E-11	3.28E-14	7.785-16
Benzofuran	2.56E-12	3.486-10	6.60E-02	2.29E-11	6.395-12	2.93F-11	1.565-94	3 40c-14
Benzoic Acid	6.47E-13	8.77E-11	1.92E-01	1.68€-11	1.616-12	1.856-11	2000	2 325-14
Benzonitrile	6.16E-16	8.34E-16	2.91E-01	2.42E-14	1.536-15	2.585-16	1 475-17	8 24E-17
Carbazote	1.236-16	1.67E-14	2.88E-02	4.81E-16	3.07E-16	7.88F-16	6 186-10	0 016-10
4-Chlorobiphenyl	7.44E-13	1.01E-10	3.36E-03	3.396-13	1.85F-12	2 105-12	1 165-15	2 745-15
4,4-Chlorobiphenyl	9.75E-15	1.32E-12	1.35E-03	1.796-15	2.43E-16	2.61E-14	1.485-17	2 28F-17
4-Chlorophenylmethylsulfone	2.38E-16	1.746-14	4.70E-01	8.165-15	5.036-16	8 76F-15	4 AAE-18	1 105-17
6-Chlorophenyimethylaulfoxide	8.86E-16	6.465-14	3.95E-01	2.55E-14	2.21E-15	2775-16	1 475-17	4 405-17
p,p-00£	1.08E-13	1.36€-11	1.17E-03	1.596-14	2.705-13	2 RAF-11	1 525-16	3 40E-14
T00-0'd	2.175-17	2.72E-15	4.78E-06	1.30E-18	5.41F-17	21-375 5	2 04E-20	A 075-20
Dibenzofuran	1.28E-13	1.746-11	9.52E-03	1.65E-13	3.195-13	4.85F-13	2.578-16	6 not - 16
Dietdrin	1.34E-17	1.816-15	5.92E-04	1.07E-18	3.34F-17	71-377 F	1 RAE-20	4 446-20
Dilsopropyl Methylphosphonate	2.35E-15	2.295-13	2.32E-01	5.316-16	5.86E-15	5.895-16	3, 12F-17	7.616-17
1,3-Dimethylbenzene	2.56E-13	3.48E-11	3.25E-02	1.136-12	6.396-13	1.77E-12	9. 38F - 16	2.28F-15
Dimethyl Methylphoaphonate	5.61E-14	1.81E-13	2.87E+01	5.19E-12	1.405-13	5.336-12	2.83E-15	6.705-15
Dimethylphosphate	1.54E-14	2.086-12			3.83E-14	3.83E-14	2.03E-17	4.82E-17
Dioxina/Furens (EPA TEFs)	3.936-16	5.01E-12	6.76E-04	3.396-15	9.80E-14	1.01E-13	S.37E-17	1.27E-16
Oithiane	2.35E-18	3.196-16	8.35E-01	2.666-16	5.86€-18	2.72E-16	1.44E-19	3.42E-19
Endrin	1.30€-17	1.64E-15	5.296-03	8.685-18	3.25E-17	4.11E-17	2.18E-20	5.176-20
Hexach Lorobenzene	4.38E-15	5.28E-13	1.57E-03	8.27E-16	1.096-14	1.17E-14	6.22E-18	1.486-17
Hexach lorocyclopentadiene	1.21E-16	1.648-14	1.49E-03	2.44E-17	3.02E-16	3.27E-16	1.73E-19	4.11E-19
Isodrin	3.43E-17	6.65E-15	3.916-04	1.82E-18	8.566-17	8.74E-17	4.63E-20	1,106-19
Melathion	5.24E-17	7.106-15	4.92E-02	3.498-16	1.31E-16	4.80E-16	2.55E-19	6.035-19
Methanol	1.49E-12	2.02E-10	6.98E+00	1.41E-09	3.71E-12	1.41E-09	7.48E-13	1.77E-12
6-Witrophenol	5.42E-16	7.35E-14	4.79E-02	3.52E-15	1.35E-15	4.87E-15	2.586-18	6.13E-18
PAHS								
Acenaphthalene	6.42E-13	8.70E-11	1.02E-02	8.85E-13	1.60€-12	2.49E-12	1.328-15	3.12E-15
Acenephthene	6.42E-13	6.705-11	1.24E-02	1.00E-12	1.60E-12	2.68E-12	1.42E-15	3.37E-15
Benzo(a)pyrene	1.286-13	8.50E-12	4.41E-04	3.75E-15	3.196-13	3.23E-13	1.71E-16	4.06E-16
Chrysene	1.286-13	9.64E-12	1.02E-03	9.87E-15	3.196-13	3.296-13	1.75E-16	4.14E-16
Dibenzo(a,h)anthracene	1.286-13	1.01E-11	3.96E-04	3.98E-15	3.196-13	3.23E-13	1.71E-16	4.07E-16
Fluorenthene	3.65E-13	2.86E-11	2.196-03	6.26E-14	9.60E-13	1.02E-12	5.42E-16	1.296-15
Fluorene	1.286-13	1.74E-11	6.73E-03	1.176-13	3.196-13	4.366-13	2.31E-16	S.48E-16
Phenanthrena	2.56E-13	1.56E-11	5.22E-03	8.11E-14	6.39E-13	7.20E-13	3.82E-16	9.06E-16
Pyrene	1.28E-13	7.61E-12	2.31E-03	1.76E-14	3.196-13	3.37E-13	1.79E-16	4.24E-16
Parathion	7.23E-18	9.80E-16	1.44E-02	1.616-17	1.80E-17	3.21E-17	1.70E-20	4.04E-20
Pentachlorobenzene	1.96E-15	2.65E-13	2.64E-03	7.00E-16	4.88E-15	5.586-15	2.96E-18	7.016-18
Phenol	6.94E-12	9.41E-10	3.32E-01	3.136-10	1.73E-11	3.306-10	1.756-13	4.15E-13
Quinoline	3.07E-16	4.15E-14	1.556-01	6.44E-15	7.64E-16	7.21E-15	3.82E-18	9.06E-18

5340-49,51

00	
-	7
1	ĕ
	=
Sea.	:=
-	Ξ
_	5
್ಷಷ	ಾ
-	

Supone	2.17E-17	2.94E-15	3.67E-02	1.085-16	217217	1 435-14	6 COC. 30	
Tetrachlorobenzene	8.25E-16	1.12E-13	6.82E-03	7 625-16	2 OKE 15	3 926 16	1 505 10	Z.U4E-19
Trichlorohanzana	A 15E-14	K 80c. 1/	4 466.03	7,000	51-200-5	C. 220.7	1.20E-10	3.54E-18
		7.07E-14	20.301.1	0.705-10	1.086-15	1.76E-15	9.34E-19	2.21E-18
Urea	9.41E-12	1.27E-09	1.23E+02	1.57E-07	2.34E-11	1.575-07	8.335-11	1 085-10
Vapona	5.79E-17	7.85E-15	3.60E-01	2.82E-15	1.44E-16	2.97E-15	1.57E-18	3.736-18
INORGANICS								
Antimony	5.97E-09	8.10E-07	1.80E-03	1.665-00	1 400.08	1 435.00	6 475-43	2 0/1
9	SO THE P	1 EST 04	10 107 #		200	1.035 00	3/0.0	11.300.7
Arsenic	2.306-00	4.38E-Uo	2.00.0	1.65E-09	8.42E-08	8.596-08	4.55E-11	1.08E-10
Berica	8.28E-09	1.12E-06	9.00E-04	1.016-09	2.06E-08	2.16F-08	1.15F-11	2 775-11
Beryllium	3.466-10	4.69E-08	9.00E-05	4.22E-12	8.62F-10	8 AAF-10	11-305 7	1 000-13
Comper	3,176-05	10-305 9	1 SOF-02	\$0-377 Y	7 OUE . DS	1 /35-07	7 495 00	30.076
	-		30 300	50	10 304 · 1	to until	1.01E-00	1.00E-07
Lead	300-100	1.44E-00	5.40E-04	7.77E-10	2.64E-08	2.72E-08	1.44E-11	3.42E-11
Mercury	9.35E-09	1.276-06	1.20E-02	1.52E-08	2.336-08	3.85E-08	2.04E-11	4 A4F-11
Selenium	8.67E-05	1.186-02	1.506-03	1.766-05	2.165-04	2 TKF - 04	1 24F-07	2 045-07
Silver	A 00F-07	1 22F-04	A DOF-DE	7 416-07	2 24E-04	2 075.06	200	27.2
		1	50 -00 -00 -00 -00 -00 -00 -00 -00 -00 -	10 JI	2.242.00	2.Y/E-U0	1.306-07	2.745-05
	8.72.68	1.186-05	2.406-05	2.84E-10	2,175-07	2 1AF-07	1 156-10	2 74E-10

	DRY DEPOSITION RATE G/M2/yr	MAXIMIM CALCULATED CONC IN SOIL	PLANT UPTAKE FACTOR	MAXIMUM CONC.DUE TO UPTAKE mg/Kg	MAXIPHIN CONC. ON PLANT SURFACE	MAXIMUM CONC ON PLANT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY	CHILD MAXIHUM ESTIMATED DAILY
		EN/Ka			Mg/Kg		INTAKE mg/kg/day	INTAKE mg/Kg/dey
ORGANICS	;							
Acetonitrile	1.52E-14	4.95E-13	3.68E+00	1.82E-12	3.78E-14	1.86E-12	1.53E-15	3.62E-15
Aldrin	1.61E-16	3.24E-15	1.196-04	6.25E-19	4.00E-16	4.01E-16	3.306-19	7.82E-19
A 11 8 2 11 75 8	2 20E - 12	9 D7E- 10	0.31E-02	Z.33E-1/	6.67E-1/	1.146-16	9.41E-20	2.23E-19
	3.27E-12 A 41E-13	1.0/E-10	3.63E-UI	3.6/E-11	6.20E-12	4.29E-11	3.53E-14	8.37E-14
Benzole Acid	1.50E-12	5.20F-11	1.92F-01	0 00F-12	₹ 97E-12	1 406-11	1 156-16	2.72E-14
Benzonitrile	1.526-15	4.95E-14	2.91E-01	1.44E-14	3.786-15	1.82E-14	1.49E-17	3.546-17
Carbazole	3.036-16	9.89E-15	2.88E-02	2.85E-16	7.56E-16	1.04E-15	8.57E-19	2.03E-18
4-Chlorobiphemyl	1.836-12	5.98E-11	3.36E-03	2.016-13	4.57E-12	4.77E-12	3.926-15	9.306-15
4,4-Chlorobiphenyl	2.40£-14	7.83E-13	1.35E-03	1.06E-15	5.98E-14	6.09E-14	5.01E-17	1.19E-16
4-Interceptentimetry sufference	2 18E-15	1.03E-14	4 OSE-01	4.64E-15	1.40E-15	6.50E-15	5.18E-18	1.256-17
D. O-DDE	2.67E-13	8.05E-12	1.175-03	0.41F-15	6.66F-13	A 75F-14	5 55E-16	1 425-15
D.D-07	5.35E-17	1.61E-15	6.78E-04	7.70€-19	1.33E-16	1.34E-16	1.106-19	2.625-19
Dibenzofuran	3.15E-13	1.03E-11	9.52E-03	9.805-14	7.86E-13	8.84E-13	7.286-16	1.72E-15
Dieldrin	3.306-17	1.08E-15	5.92E-04	6.37E-19	8.22E-17	8.28E-17	6.81E-20	1.62E-19
Dijsopropyl Methylphosphonate	5.79E-15	1.36E-13	2.32E-01	3.14E-14	1.44E-14	4.596-14	3.786-17	8.95E-17
1, 3-Dimethylbenzene	6.51E-13	2.005-11	3.25E-02	6.70E-13	1.5/E-12	2.24E-12	1.85E-15	4.306-15
Dimethyl Methylphosphonate	1.38E-13	1.0/E-13	₹.8/E+U1	3.000-12	5.44E-13	5.425-12	2.82E-13	0.00E-15
Dioxina/Europa (EDA TEFA)	0 ARE-16	2 076-12	A 765-04	2 016-15	21-317 C	7 445-14	2 005-94	1.0%E-16
Dithiare	5.796-18	1.89€-16	8.35E-01	1.58E-16	1.44E-17	1.72E-16	1.42E-19	3.366-19
Endrin	3.21E-17	9.73E-16	5.29E-03	5.15E-18	7.99E-17	8.51E-17	7.00E-20	1.66E-19
Hexachlorobenzene	1.08E-14	3.13E-13	1.576-03	4.91E-16	2.68E-16	2.73E-14	2.25E-17	5.336-17
Mexachlorocyclopentadiene	2.99E-16	9.75E-15	1.496-03	1.45E-17	7.44E-16	7.59E-16	6.24E-19	1.686-18
Isodrin	8.45E-17	2.76E-15	3.91E-04	1.08E-18	2.11E-16	2.12E-16	1.74E-19	4.13E-19
Matethion	1.29E-16	4.21E-15	4.92E-02	2.07E-16	3.22E-16	5.29E-16	6.35E-19	1.036-18
Methanol	3.666-12	1.20E-10	6.98E+00	3 AGE - 10	7.13E-12	8.43E-10	6.946-13	1.65E-12
PAHR	1.345-13	107.8	30-361-6	61-340-7	7.335-17	C1-376.C	91-304-4	
Aceraphthalene	1.58E-12	5.16E-11	1.02E-02	5.25E-13	3.94E-12	4.46E-12	3.67E-15	8.71E-15
Acenaphthene	1.586-12	5.16E-11	1.24E-02	6.41E-13	3.94E-12	4.58E-12	3.776-15	8.94E-15
Benzo(a)pyrene	3.15E-13	5.04E-12	4.41E-04	2.22E-15	7.86E-13	7.886-13	6.49E-16	1.54E-15
Chrysene	3.15E-13	S. 72E-12	1.02E-03	S.85E-15	7.86E-13	7.92E-13	6.52E-16	1.556-15
Dibenzo(a,h)anthracene	3.15E-13	S.96E-12	3.96E-04	2.36E-15	7.86E-13	7.896-13	6.49E-16	1.54E-15
Fluoranthene	9.488-13	1.706-11	2.19E-03	3.71E-14	2.36E-12	2.40E-12		4.656-15
fluorene	3.15E-13	1.03E-11	6.73E-03	6.92E - 14	7.865-13	8.35E-13	7.04E-16	1.6/1-13
Phenanthrene	6.31E-13	9.22E-12	5.22E-03	4.61E-14	1.5/E-12	1.62E-12	1.55E-15	5. 70E-13
Pyrene	3. 15E-13	6.31E-12	2.31E-03	1.04E-14	. GOE-13	7.V/E-13	0.335-10	9 036-40
Parathion	1.78E-17	5.81E-16	1.44E-UZ	6.37E-10	9 20E - 17	3.2/E-1/	4.346-60	2 426-17
Pertach or openzens	4 74K-19	8 48c 10	2 3 2 2 C 1 2 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	1 856-10	4 26F-11	2 2AE-10	ARE-13	6.45E-13
Quinoline	7.55E-16	2.46E-14	1.556-01	3.62E-15	1.88E-15	5.70E-15	4.69E-18	1.11E-17
	1	•						

534CA8B.51

∞	_
 *	7
	<u> </u>
25	=
4	-=
~	Ξ
9	=
ၟၹႄ	Ü
)

Suppose	5.35E-17	1.75E-15	3.67E-02	6.40E-17	1.336-16	1.97E-16	1.62E-19	3.85E-19	
Tetrachlorobenzene	2.03E-15	6.63E-14	6.82E-03	4.52E-16	5.06E-15	5.52E-15	4.54E-18	1.08E-17	
Trichtorobenzene	1.07E-15	3.49E-14	1.15E-02	4.01E-16	2.67E-15	3.07E-15	2.53E-18	5.996-18	
Urea	2.32E-11	7.56E-10	1.23E+02	9.31E-08	5.77E-11	9.32E-08	7.67E-11	1.82E-10	
Vapona	1.436-16	4.65E-15	3.606-01	1.67E-15	3.55E-16	2.03E-15	1.67E-18	3.96E-18	
SOLMEGORAL									
Antimony	1.476-08	4.80E-07	1.80E-03	8.64E-10	3.676-08	3.75E-08	3.09E-11	7.326-11	
Arsenic	8.326-08	2.72E-06	3.60E-04	9.78E-10	2.07E-07	2.08E-07	1.71E-10	4.07E-10	
Maritan	2.04E-08	6.65E-07	9.00E-04	5.996-10	5.08E-08	5.14E-08	4.23E-11	1.00E-10	
Bervi I is	8.51E-10	2.78E-08	9.00E-05	2.50E-12	2.12E-09	2.12E-09	1.75E-12	4.15E-12	
Comer	7.80€-05	2.55E-03	1.50E-02	3.82E-05	1.95E-04	2.33E-04	1.92E-07	4.54E-07	
Page 1	2.61E-08	8.53E-07	5.40E-04	4.60E-10	6.51E-08	6.56E-08	5.40E-11	1.28E-10	
Mercilic	2.306-08	7.52E-07	1.20E-02	9.02E-09	5.74E-08	6.64E-08	5.47E-11	1.30E-10	
an in a	2.136-04	6.97E-03	1.506-03	1.05E-05	5.32E-04	5.43E-04	4.46E-07	1.066-06	
56710	2.21E-06	7.22E-05	6.00E-03	4.33E-07	5.51E-06	5.95E-06	4.89E-09	1.166-08	
	2.15E-07	7.01E-06	2.40E-05	1.68E-10	5.35E-07	5.36E-07	4.41E-10	1.04E-09	

In the case of the carrot, which is a modified taproot, the translocation distance is minimal, and the concentration predicted for the edible portion is essentially the root concentration (see preceding subsection). In the case of tomatoes and lettuce, where the edible portions (leaves in lettuce, fruit in tomatoes) are above ground, the potential for transport from the roots to the aerial portions of the plant also has to be considered.

The pollutant concentration (C_u) in the edible portions of tomato and lettuce plants resulting from uptake from the soil is expressed by the following equation:

Where:

The potential for the translocation of pollutants to aboveground plant parts varies considerably with the nature of the pollutant and the plant. The subsection that follows addresses the translocation potentials for the pollutants of concern and derives uptake factors for those that might potentially accumulate at significant concentrations.

Organics

Travis and Arms (1988) presented the following relationship between the log K_{ow} and the plant uptake factor:

$$PUF = 38.9 K_{ov}^{-0.58}$$

The uptake factors calculated by using the preceding equation were converted from dry weight to wet weight by assuming that lettuce and tomatoes have water contents of 95 and 94 percent, respectively (Baes et al., 1984).

The calculated PUFs for the pollutants of concern are presented in Tables 8B-8 through 8B-13 (lettuce) and Tables 8B-14 through 8B-19 (tomatoes).

Inorganics

The potential for the translocation of inorganics from roots to the aerial parts of the plants is influenced by numerous factors. These include the presence of chelating ligands (carriers), pH, oxidation-reduction state, competing cations, hydrolysis, polymerization, and the formation of insoluble salts (Kabata-Pendias and Pendias, 1985). However, a general distinction can be made between those inorganics that are easily translocated and those that tend to remain in the roots.

The uptake factors used for the inorganic compounds in tomatoes are based on transfer coefficients developed by Baes et al. (1984) for fruit. Tomatoes, although commonly referred to as vegetables, are actually fruit. The uptake factors used for inorganics in lettuce are based on the transfer coefficients developed by Baes et al. (1984) for vegetative parts of plants, since the edible parts of the lettuce are the leaves. The coefficients developed by Baes et al. (1984) were converted from dry weight to wet weight by assuming that lettuce and tomatoes have water contents of 95 and 94 percent, respectively. The uptake factors for the inorganic compounds are presented in Tables 8B-8 through 8B-13 (lettuce) and Tables 8B-14 through 8B-19 (tomatoes).

Average concentrations of pollutants in lettuce and average daily intakes are summarized for the adult and child for the Resident-A, Resident-B, and the Farmer exposure scenarios in Tables 8B-8, 8B-9, and 8B-10, respectively. Maximum lettuce concentrations and maximum daily intakes are presented in Tables 8B-11, 8B-12, and 8B-13. Average concentrations of pollutants in tomatoes and average daily intakes are summarized for the adult and child for the Resident-A, Resident-B, and Farmer, exposure scenarios in Tables 8B-14, 8B-15, and 8B-16, respectively. Maximum tomato concentrations and maximum daily intakes are presented in Tables 8B-17, 8B-18, and 8B-19.

APPENDIX 8B

CITED REFERENCES

Baes, C., et al. 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture." Prepared by Oak Ridge National Laboratory for the U.S. Department of Energy. ORNL-5786.

Briggs, G., et al. 1982. "Relationships Between Lipophilicity and Root Uptake, and Translocation of Nonionized Chemicals by Barley." Pesticide Science, 13:495.

Ebasco Services, Inc. 1990. Final Health Exposure Assessment for Rocky Mountain Arsenal. Volumes II and III. Toxicity Assessment. Prepared for the U.S. Army Program Manager's Office for the Rocky Mountain Arsenal Contract No. DAAA15-88-0024.

Ells, J. 1990. Personal Communication. Extension Vegetable Crops Specialist, Colorado State University.

Ennis, B. 1990. Personal Communication. Adams County Agricultural Extension.

EPA (U.S. Environmental Protection Agency). 1980. Ambient Water Ouality Criteria for Polynuclear Aromatic Hydrocarbons. Office of Water Regulations and Standards. EPA 440/5-80-069.

EPA (U.S. Environmental Protection Agency). 1986. Superfund Public Health Evaluation Manual. Office of Emergency and Remedial Response. EPA 540/1-86-060.

EPA (U.S. Environmental Protection Agency). 1987. <u>Processes. Coefficients, and Models for Simulating Toxic Organics and Heavy Metals in Surface Waters</u>. EPA-600/3-87/015.

EPA (U.S. Environmental Protection Agency). 1989. Assessing Human Health Risk from Chemically Contaminated Fish and Shellfish - A Guidance Manual. Office of Marine and Estuarine Protection and the Office of Water Regulations and Standards. EPA-503/8-89-002.

Holton, G.A., C.G. Travis, E.L. Etnier, F.R. O'Donnell, D.M. Hetrick, and E. Dixon. 1984. Multiple-Pathways Screening-Level Assessment of a Hazardous Waste Incineration Facility. Prepared for the U.S. EPA and the U.S. DOE by Oak Ridge National Laboratory. ORNL/TM 8652; DE 85000156.

Howard, P.H. 1989. <u>Handbook of Environmental Fate and Exposure Data. Volume I.</u> Lewis Publishers, Michigan.

HSDB (Hazardous Substances Data Bank). 1990. National Library of Medicine. (On-line computer database.)

Kabata-Pendias, A. and H. Pendias. 1985. <u>Trace Elements in Soils and Plants</u>. CRC Press, Inc., Boca Raton, Florida.

Lyman, W., W. Reehl, and D. Rosenblatt. 1982. <u>Handbook of Chemical Property Estimation Methods</u>. McGraw-Hill Book Company, New York.

NCRP (National Council on Radiation Protection and Measurements). 1984. Radiological Assessment: Predicting the Transport, Bioaccumulation, and Uptake by Man of Radionuclides Released to the Environment. NCRP Report No. 76.

Price, A. 1990. Personal Communication. Soil Conservation Service.

Travis, C.C. and A.D. Arms. 1988. "Bioconcentration of Organics in Beef, Milk, and Vegetation." Environ. Sci. and Tech. 22:271-274.

Verschueren, K. 1983. <u>Handbook of Environmental Data on Organic Chemicals. second edition</u>. Van Nostrand Reinhold Company, New York.

APPENDIX 8C

METHODOLOGY FOR DETERMINING POLLUTANT UPTAKE THROUGH MILK AND BEEF CONSUMPTION

APPENDIX 8C

METHODOLOGY FOR DETERMINING POLLUTANT UPTAKE THROUGH MILK AND BEEF CONSUMPTION

8C.1 INTRODUCTION

The calculation of pollutant intakes via the consumption of dairy and beef products involves a number of steps:

- Calculation of the pollutant concentration in locally grown cattle feed resulting from surface deposition and uptake from contaminated soil.
- Calculation of the concentration of the pollutant in the products (milk, beef).
- Prediction of daily intake of dairy and beef products by humans.

This appendix will address all of these issues.

8C.2 CONCENTRATIONS RESULTING FROM PLANT UPTAKE

The methodology used in calculating pollutant concentrations in cattle feed through plant uptake from soil was the same as that described for garden vegetables, and is described by the equation:

$$C_{plant} = (C_{soil}) (PUF)$$

Where:

C_{plant} = Pollutant concentration in plant resulting from root uptake (mg/kg).

C_{soil} = Pollutant concentration in soil (mg/kg).

PUF = Plant uptake factor, the ratio between pollutant concentration in soil and plant (unitless).

It was assumed that hay, grain, and corn are grown in fields that are regularly tilled; therefore, soil pollutant concentrations were based on a 20-cm mixing depth. The contaminant soil concentrations are based on deposition at the Farmer scenario location over the 2-year life of the incinerator and are calculated as described in Appendix 8A. As discussed in Subsection 8.1.1, for all scenarios, a farm is assumed to be located in the area of highest deposition and air concentration where cows were observed grazing.

8C.2.1 Inorganics

Plant uptake factors were derived for antimony, arsenic, barium, beryllium, copper, lead, mercury, selenium, silver, and thallium. These are the inorganics that have been identified as contributing greater than I percent of background concentrations.

The uptake factors that were used for antimony in corn silage and hay were derived by dividing the antimony concentrations that have been reported in corn grain and grass, respectively, by a mean concentration for antimony reported in soils (Kabata-Pendias and Pendias, 1985). A transfer coefficient developed by Baes et al. (1984) for reproductive portions of plants was used as the uptake factor for antimony in grain.

The arsenic uptake factors for grain were based on data reported for barley grain, (Kabata-Pendias and Pendias, 1985). The uptake factors for arsenic by hay and corn are presented in NRCC (1978).

The barium uptake factor used for hay was derived by dividing the mean barium concentration reported in alfalfa hay, by a mean concentration for barium reported in

soil. A transfer coefficient developed by Baes et al. (1984) for reproductive portions of plants was used as the uptake factor for barium in grain and corn silage.

A transfer coefficient developed by Baes et al. (1984) for reproductive portions of plants was used as the uptake factor for beryllium in grain and corn silage. Baes et al. (1984) also developed a transfer coefficient for vegetative portions of plants for beryllium, which was used as the uptake factor for hay.

For copper, uptake factors in hay and grain were based on data reported for pasture herbage and barley grain, respectively (Kabata-Pendias and Pendias, 1985). An uptake factor for corn silage was derived by dividing the mean copper concentration in corn grain by a mean soil concentration (Kabata-Pendias and Pendias, 1985).

The uptake factors that were used for lead in grain, corn silage, and hay were derived by dividing mean lead concentrations in wheat grain, corn grain, and clover, respectively, by a mean lead concentration reported in soils (Kabata-Pendias and Pendias, 1985).

Uptake factors for mercury in corn silage and hay were derived by dividing the mean mercury concentration in corn grain and alfalfa by a mean mercury concentration in soils (Kabata-Pendias and Pendias, 1985). A transfer coefficient for mercury developed for the reproductive parts of plants was used as an uptake factor for mercury in grain (Baes et al., 1984).

Uptake factors for selenium in corn silage and hay were based on data reported for corn and rye grass, respectively (Kabata-Pendias and Pendias, 1985). A transfer coefficient for selenium developed for reproductive parts of plants was used as an uptake factor for selenium in grain (Baes et al., 1984).

Transfer coefficients developed by Baes et al. (1984) for silver and thallium, based on reproductive portions of plants, were used as uptake factors for silver and thallium in grain and corn silage. Baes et al. (1984) also developed transfer coefficients for

vegetative portions of plants for silver and thallium, which were used as uptake factors for hay. The uptake factors are presented in Tables 8C-1, 8C-2, and 8C-3 for grain, hay, and corn silage, respectively, along with pollutant concentrations for these feeds.

8C.2.2 Organics

Plant uptake factors for organic compounds were calculated using the same methodology as that described for tomatoes and lettuce, and are expressed by the following equation developed by Travis and Arms (1988):

$$PUF = 38.9 \, \text{K}_{ov}^{-0.58}$$

8C.3 CONCENTRATION FROM SURFACE DEPOSITION

The concentrations of pollutants in cartle feed resulting from surface deposition (C_d) were calculated using equations similar to those used for lettuce and tomatoes in Appendix 8B:

$$C_d$$
 = (DR)(SDF)
(maximum)
 C_d = (DR)(SDF)(2/70)
(average)

Where:

DR = Pollutant dry deposition rate (mg/m²s). This includes only dry deposition. Pollutants falling on plant surfaces from wet deposition are washed off the plant and are incorporated into the soil.

SDF = Surface deposition factor (m^2s/kg) .

Table 8C-1

Average and Maximum Pollutant Concentration in Grain at the Farm Location

	AVERAGE CALCULATED CONC IN SOIL .2M ' mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	PLANT UPTAKE FACTOR	AVERAGE CALCULATED CONC. IN GRAIN mg/Kg	MAXIMUM CALCULATED CONC. IN GRAIN MG/Kg
ORGANICS					
Acetonitrile	4.88E-13	4.95E-13		2.99E-11	3.03E-11
Aldrin	5.17E-15	5.24E-15	1.99E-03	1.03E-17	1.04E-17
Atrazine	1.19E-17	3.92E-16	1.09E+00	1.29E-17	4.25E-16
Benzal dehyde	1.06E-10	1.07E-10		5.70E-10	5.79E-10
Benzofuran	2.03E-10	2.06E-10		2.23E-10	2.27E-10
Benzoic Acid	5.13E-11	5.20E-11	3.20E+00	1.64E-10	1.66E-10
Benzonitrile	4.88E-14	4.95E-14	4.84E+00	2.36E-13	2.40E-13
Carbezole	9.75E-15	9.89E-15	4.81E-01	4.69E-15	4.76E-15
4-Chlorobiphenyl	5.89E-11	5.98E-11	5.60E-02	3.30€-12	3.35E-12
4,4-Chlorobiphenyl	7.72E-13	7.83E-13	2.26E-02	1.74E-14	1.77E-14
4-Chlorophenylmethylsulfone	3.92E-16	1.03E-14	7.83E+00	3.07E-15	8.07E-14
4-Chlorophenyimethyisuifoxide		3.83E-14	6.58E+00	9.61E-15	2.52E-13
p,p-00E	1.60E-12	8.05E-12	1.95E-02	3.12E-14	1.57E-13
p,p-00T	3.21E-16	1.61E-15	7.96E-03	2.56E-18	1.28E-17
Dibenzofuran	1.01E-11	1.03E-11	1.59E-01	1.61E-12	1.638-12
Dieldrin	1.06E-15	1.08E-15	9.86E-03	1.05E-17	1.06E-17 5.24E-13
Diisopropyl Hethylphosphonate		1.36E-13	3.86E+00	3.00E-14	1.12E-11
1,3-Dimethylbenzene	2.03E-11	2.06E-11	5.42E-01	1.10E-11	5.13E-11
Dimethyl Methylphosphonate	3.06E-15	1.07E-13	4.79E+02	1.47E-12	5.136-11
Dimethylphosphate	1.22E-12	1.24E-12		0 /4F 4E	3.35E-14
Dioxins/Furans (EPA TEFs)	7.64E-13	2.97E-12		8.61E-15 2.59E-15	2.63E-15
Dithiane	1.86E-16	1.89E-16		1.88E-17	8.58E-17
Endrin	2.13E-16	9.73E-16		1.13E-15	8.186-15
Hexach Lorobenzene	4.33E-14	3.136-13		2.38E-16	2.42E-16
Hexachlorocyclopentadiene	9.61E-15 2.72E-15	9.75E-15 2.76E-15		1.77E-17	1.80E-17
Isodrin	4.15E-15	4.21E-15	8.20E-01	3.40E-15	3.45E-15
Malathion	1.18E-10	1.20E-10		1.37E-08	1.39E-08
Methanol	4.30E-14	4.36E-14		3.43E-14	3.48E-14
4-Nitrophenol	4.306-14	4.300-14	7.700-01	31436 14	3.400
PAHS	5.08E-11	5.16E-11	1.70E-01	8.62E-12	8.75E-12
Acenaphthalene Acenaphthane	5.08E-11	5.16E-11	2.07E-01	1.05E-11	1.07E-11
Benzo(a)pyrene	1.79E-13	5.04E-12		1.31E-15	3.71E-14
Chrysene	2.24E-13	5.72E-12		3.82E-15	9.75E-14
Dibenzo(a,h)anthracene	2.43E-13	5.96E-12		1.61E-15	3.94E-14
Fluoranthene	6.56E-13	1.70E-11	3.65E-02	2.39E-14	6.19E-13
Fluorene	1.01E-11	1.03E-11	1.12E-01	1.14E-12	1.15E-12
Phenanthrene	3.10E-13	9.22E-12		2.70E-14	8.02E-13
Pyrene	1.50E-13	4.51E-12		5.79E-15	1.74E-13
Parathion	5.73E-16	5.81E-16		1.37E-16	1.39E-16
Pentachiorobanzena	1.55E-13	1.57E-13		6.82E-15	6.92E-15
Phenol	5.50E-10	5.58E-10		3.04E-09	3.09E-09
Quinoline	2.43E-14	2.46E-14		6.28E-14	6.37E-14
Supona	1.72E-15	1.75E-15		1.05E-15	1.07E-15
Tetrachiorobanzene	6.54E-14	6.63E-14		7.43E-15	7.53E-15
1 P F MP 1 F A Separate P A Se					

Table 8C-1 (Continued)

3.448-14	3.49E-14	1.91E-01	6.598-15	6.68E-15
7.45E-10	7.56E-10	2.05E+03	1.538-06	1.55E-06
4.59E-15	4.65E-15	6.00E+00	2.75E-14	2.798-14
4.73E-07	4.80E-07	3.00E-02	1.42E-08	1.44E-08
2.685-06	2.72E-06	3.30€-03	8.83E-09	8.96E-09
6.56E-07	6.65E-07	1.50E-02	9.848-09	9.988-09
2.74E-08	2.78E-08	1.50E-03	4.11E-11	4.17E-11
2.51E-03	2.55E-03	1.70E-01	4.27E-04	4.33E-04
8.40E-07	8.538-07	2.46E-02	2.07E-08	2.10E-08
7-41E-07	7.52E-07	2.00E-01	1.48E-07	1.50E-07
6.87E-03	6.97E-03	2.50E-02	1.72E-04	1.74E-04
	7.22E-05	1.00E-01	7.12E-06	7.22E-06
6.91E-06	7.01E-06	4.00E-04	2.76E-09	2.80E-09
	7.45E-10 4.59E-15 4.73E-07 2.68E-06 6.56E-07 2.74E-08 2.51E-03 8.40E-07 7.41E-07 6.87E-03 7.12E-05	7.45E-10 7.56E-10 4.59E-15 4.65E-15 4.73E-07 4.80E-07 2.68E-06 2.72E-06 6.56E-07 6.65E-07 2.74E-08 2.78E-08 2.51E-03 2.55E-03 8.40E-07 8.53E-07 7.41E-07 7.52E-07 6.87E-03 6.97E-03 7.12E-05 7.22E-05	7.45E-10 7.56E-10 2.05E+03 4.59E-15 4.65E-15 6.00E+00 4.73E-07 4.80E-07 3.00E-02 2.68E-06 2.72E-06 3.30E-03 6.56E-07 6.65E-07 1.50E-02 2.74E-08 2.78E-08 1.50E-03 2.51E-03 2.55E-03 1.70E-01 8.40E-07 8.53E-07 2.46E-02 7.41E-07 7.52E-07 2.00E-01 6.87E-03 6.97E-03 2.50E-02 7.12E-05 7.22E-05 1.00E-01	7.45E-10 7.56E-10 2.05E+03 1.53E-06 4.59E-15 4.65E-15 6.00E+00 2.75E-14 4.73E-07 4.80E-07 3.00E-02 1.42E-08 2.68E-06 2.72E-06 3.30E-03 8.83E-09 6.56E-07 6.65E-07 1.50E-02 9.84E-09 2.74E-08 2.78E-08 1.50E-03 4.11E-11 2.51E-03 2.55E-03 1.70E-01 4.27E-04 8.40E-07 8.53E-07 2.46E-02 2.07E-08 7.41E-07 7.52E-07 2.00E-01 1.48E-07 6.87E-03 6.97E-03 2.50E-02 1.72E-04 7.12E-05 7.22E-05 1.00E-01 7.12E-06

A STATE OF THE PARTY OF THE PAR

Average and Maximum Pollutant Concentration in Hay at the Farm Location

	AVERAGE CALCULATED CONC IN SOIL . ZH MQ/Kg	MAXIMUM CALCULATED COMC IN SOIL . 2M	DRY DEPOSITION RATE 9/N2/yr	PLANT UPTAKE FACTOR	AVERAGE CONC. DUE TO UPTAKE Mg/Kg	MAXIMUM CONC. DUE TO UPTAKE MG/Kg	AVERAGE CONC. ON PLANT SURFACE	MAXIMUM CONC. OW PLANT SURFACE MG/Kg	AVERAGE CALCULATED CONC IN HAY MG/Kg	MAXIMUM CALCULATED CONC IN NAY
Actonitrile Actonitrile Aldrin Attazine Benzaldehyde Benzofuran Benzofuran Benzoit Acid Benzoitrile Carbazole 4-Chlorobiphenyl 4-Chlorobiphenyl 4-Chlorobiphenyl 6-Chlorophenylmethylaulfone 4-Chlorophenylmethylaulfone bp.p-DDT pp.DDT	4.88e-13 1.19e-17 1.06e-10 2.03e-10 2.03e-10 2.03e-14 9.75e-13 1.66e-15 1.06e-15 1.06e-15 1.06e-15 1.06e-15 1.06e-15 1.06e-16 1.0	2.98 2.98	2.40e-25-25-25-25-25-25-25-25-25-25-25-25-25-	6.13E-01 1.99E-03 1.09E-03 1.09E-00 3.39E-00 4.84E-00 5.60E-02 7.96E-02 7.96E-03 1.39E-01 4.79E-02 7.96E-03 7.9	2.38 5.70 6.70 6.70 7.70	3.03E-11 4.25E-16 5.77E-16 1.66E-10 2.27E-10 1.66E-10 1.77E-14 8.07E-14 1.57E-13 1.57E-13 1.57E-13 1.57E-14 2.52E-15 1.68E-17 1.68E-17 2.68E-17 3.35E-16 1.16E-13 1.16E-13 1.36E-17 1.36E-17 1.36E-17 1.36E-17 1.36E-17	3.42e-14 3.62e-16 6.05e-17 7.42e-17 3.60e-12 3.60e-12 4.13e-14 7.12e-15 7.12e-13 7.12e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14 1.31e-14	2.126-127-128-128-128-128-128-128-128-128-128-128	2.99E-11 9.37E-11 1.68E-10 1.68E-10 1.68E-10 1.745E-13 1.27E-13 1.27E-14 1.27E-14 1.27E-14 1.27E-14 1.27E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14 1.37E-14	3.15E-11 3.25E-14 2.92E-10 2.92E-10 3.95E-10 3.95E-10 1.91E-12 2.65E-11 2.65E-11 2.99E-12 2.65E-13 2.99E-13 3.99E-13 3.99E-13 3.99E-13 4.24E-
Acenaphthalene Acenaphthalene Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthrane Phenanthrane Parathion Pentachlorobenzene Bupona Tetrachlorobenzene	5.08E-11 5.08E-11 7.78E-13 2.24E-13 2.45E-13 6.56E-13 1.01E-11 1.50E-13 5.75E-16 1.55E-16 5.50E-10 5.50E-10	5.16E-11 5.16E-11 5.06E-12 5.72E-12 5.96E-12 1.70E-11 1.03E-11 5.91E-12 5.91E-12 5.91E-13 5.91E-14 6.51E-13 6.5	1.58e-12 3.15e-12 3.15e-13 3.15e-13 3.15e-13 3.15e-13 3.15e-13 3.15e-13 4.60e-13 1.76e-15 5.55e-15 5.5	1.70e-01 7.35e-03 1.71e-01 6.61e-03 3.65e-02 1.12e-01 1.12e-01 4.60e-02 5.54e+00 5.54e+00 6.11e-01	8.62E-12 1.05E-11 1.05E-11 1.61E-15 2.39E-14 1.14E-12 2.70E-14 5.79E-15 5.79E-16 6.82E-15 6.82E-15 7.5E-16	8.75E-12 3.71E-14 3.97E-14 6.19E-13 1.15E-12 8.02E-13 1.39E-16 6.92E-15 6.92E-15 7.92E-15 7.92E-15	3.57E-12 3.57E-12 7.12E-13 7.12E-13 7.12E-13 1.43E-12 7.12E-13 1.43E-12 7.12E-13 7.12E-13 1.09E-14 1.09E-14 1.70E-15 6.59E-16	1.25E-10 1.25E-10 2.49E-11 2.49E-11 2.49E-11 2.49E-11 1.41E-15 3.81E-13 1.35E-09 5.22E-15	1,22E-11 1,41E-11 7,13E-13 7,16E-13 2,16E-12 1,65E-12 1,77E-14 3,00E-09 6,45E-14 1,77E-14	1.34E-10 1.36E-10 2.50E-11 2.50E-11 7.55E-11 2.61E-11 2.51E-11 1.55E-15 1.25E-15 1.25E-15 1.25E-15 1.25E-15 1.25E-15

8C-2	nned)
Table	(Conti

9.13E-14 1.55E-06 3.92E-14	1.186-06	7.12E-06	2.72E-06	7.446-03	2.13€-06	2.9H-05	1.83E-02	2.04E-04	1.70E-05
9.00e-15 1.53E-06 2.78E-14	€.69E-08	7.23E-07	1.51E-07	1.436-03	1.24E-07	2.22E-07	1.86E-03	3.35E-05	5.12E-07
8.46E-14 1.83E-09 1.13E-14	1.16E-06	6.57E-06	4.72F-08	6.166-03	2.06E-06	1.82E-06	1.69€-02	1.75E-04	1.706-05
2.42E-15 5.23E-11 3.22E-16	3.32E-08	1.88€-07	4.60E-08	1.76E-04	5.90E-08	5.206-08	4.82E-04	4.996-06	4.85E-07
6.68E-15 1.55E-06 2.79E-14	1.39£-08	5.436-07	2.78F-10	1.27E-03	6.57E-08	1.73E-07	1.39E-03	2.89E-05	2.80E-08
6.59E-15 1.53E-06 2.75E-14	1.37E-08	5.356-07	2.74E-10	1.26E-03	6.478-08	1.706-07	1.37E-03	2.85E-05	2.76E-08
1.91E-01 2.05E+03 6.00E+00	2.90E-02	2.005-01	1.00E-02	5.006-01	7.70E-02	2.30E-01	2.00E-01	4.00E-01	4.00E-03
1.07E-15 2.32E-11 1.43E-16	1.47E-08	8.32E-08	8.51E-10	7.806-05	2.61E-08	Z.30E-08	2.136-06	2.21E-06	2.15E-07
3.49E-14 7.56E-10 4.65E-15	4.80E-07	2.72E-06 4.45E-07	2.785-08	2.556-03	8.53E-07	7.52E-07	6.97E-03	7.22E-05	7.01E-06
3.44E-14 7.45E-10 4.59E-15	4.73E-07	2.68E-06	2.74E-08	2.51E-03	8.40E-07	7.41E-07	6.87E-03	7.12E-05	6.91E-06
Trichlorobenzena Urea Vepona	INORGANICS Ant fromy	arren c	Beryl fua	Copper	Lead	Mercury	Selenium	Silver	The County

Average and Maximum Pollutant Concentration in Corn Silage at the Farm Location

According the According to the According	FACTOR TO UPTAKE TO UPTAKE RQ/Kg RQ/Kg	PLANT SURFACE Mg/Kg	CONC. ON PLANT SURFACE MQ/Kg	CALCULATED CONC IN CORN SILAGE MQ/Kg	CALCHATED CORC IN CORN SILAGE
1.00 1.00	2 000-44	9	20 026- 17	500 6	
hydron (1.100-17) 2.02-16 1.570-17 1.000-00 1.200-17 (2.201-17) 2.02-17 1.000-00 1.200-17 1.0	1 OTC - 11 5.	2.01E-13	2 156-15	7 18E-17	3.05E-11
hydre (1.06-10 1.07-10 3.29-12 5.39-00 5.70-10 5.70-10 6.50-10	7 200-17		4 78E-14	2 665-17	0 616-14
Action 2.08E-10 2.08E-10 1.08E-10 1.08E-10 1.08E-10 1.08E-10 2.08E-11 1.08E-10 2.08E-11 1.08E-10 1.08E-10 2.08E-11 1.08E-10 2.08E-11 2.08E-11 1.08E-10 2.08E-11 2.08E-11 2.08E-11 2.08E-11 2.08E-12 2.08E-12 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E-12 2.08E-13 2.08E	5 705-10 S	1 2/6-12	4 416-11	K 72E-10	4.00C-10
Action 5.13E-11 5.20E-11 1.59E-12 3.20E-00 1.66E-10 1.66E-10 rile 6.08E-14 4.95E-14 1.59E-15 3.20E-00 3.50E-10 3.66E-10 3.66E-10 3.20E-00 3.50E-10 3.66E-10	2 245.10	2 425-12	A 445-11	2 245-10	1 115-10
rife (1 446-10 1	A 10E-13	2 146-11	1 455-10	1 886-10
biptery 5.90	2.366-13 2.	5.81E-16	2.03E-14	2.37E-13	2.605-13
## Special State 1.03E-17 1.03E-12 1.03E-12 1.03E-12 1.03E-12 1.03E-12 1.03E-12 1.03E-13 1.03E-14 1.0	4.695-15	1.16E-16	4.06E-15	4.80E-15	8.82E-15
roblishery 7.72E-13 7.88E-13 2.40E-14 2.26E-02 1.77E-14 5 phenylautifore 3.92E-16 1.03E-14 2.16E-15 6.58E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.59E-00 3.07E-15 6.07E-15 6.07E-15 6.07E-17 3.06E-18 1.09E-17 1.09E	3.30E-12 3.	7.02E-13	2.46E-11	4.00E-12	2.796-11
phenylmethylaulitore 3.92E-16 1.03E-14 5.06E-16 7.03E-00 3.07E-15 2.0FE-13 1.95E-00 3.07E-15 2.0FE-13 1.95E-00 3.07E-15 2.0FE-13 1.95E-00 3.12E-14 1.06E-15 3.08E-14 3.15E-13 1.95E-00 3.12E-14 1.06E-15 3.08E-14 3.15E-13 1.95E-00 3.12E-14 1.06E-15 3.06E-10 3.15E-13 1.95E-00 3.12E-14 1.06E-15 3.06E-10 3.15E-13 1.95E-00 1.06E-15 1.06E-15 3.06E-10 3.15E-13 1.95E-13 1.06E-10 1.06E-15 1.06E-15 3.06E-10 3.10E-17 1.06E-15 1.06E-15 1.06E-15 3.06E-10 3.06E-10 1.06E-17 1.06E-15 1.06E-15 1.06E-10	1.74E-14 1.	9.19E-15	3.22E-13	2.66E-14	3.396-13
turan 1.66E-12 2.16E-15 2.56E-00 9.61E-15 2.16E-17 1.66E-12 2.56F-13 1.99E-02 3.12E-14 1.61E-17 1.66E-15 3.59E-17 1.99E-03 3.12E-14 1.61E-17 1.00E-15 3.26E-10 1.66E-17 1.66E-17 1.00E-15 3.26E-10 3.00E-17 1.06E-17 1.00E-17 3.26E-10 3.00E-17 1.06E-17 1.00E-17 3.26E-10 3.00E-17 3.0	3.07E-15 8.	2.24E-16	7.85E-15	3.306-15	8.65E-14
1.60E-12 2.6F-13 1.9SE-02 3.12E-14 1.9SE-03 1.50E-15 1.0SE-17 1.0SE-17 1.0SE-18	9.61E-15 2.	8.35E-16	2.92E-14	1.04E-14	2.82E-13
3.21E-16 1.01E-17 1.02E-17 1.0	3.12E-14 1.57E	1.02E-13	3.586-12	1.34E-13	3.74E-12
Unitary Unit	2.56E-18 1.28E	2.05E-1/	/.1/E-10	7.30c-1/	6 94E-10
1.00e-15 1.08e-15 5.50e-17 7.06e-16 1.00e-17 1.00e-15 1.56e-15 1.56e-15 1.56e-15 1.56e-15 1.56e-15 1.07e-13 1.38e-15 4.79e-02 1.47e-12 5.05e-15 1.02e-15 1.07e-13 1.38e-15 4.79e-02 1.47e-12 5.06e-15 1.07e-13 1.38e-15 4.79e-02 1.47e-12 5.06e-16 1.08e-16 5.79e-16 1.39e-03 1.39e-15 5.08e-16 5.79e-16 1.39e-03 1.39e-15 5.08e-16 5.79e-16 2.48e-02 1.38e-17 8.81e-02 1.38e-17 8.81e-02 1.38e-17 8.81e-02 1.38e-17 8.81e-02 1.38e-17 8.81e-02 1.38e-17 8.81e-03 1.77e-17 1.20e-16 1.20e-16 1.20e-16 1.20e-16 1.20e-16 1.20e-16 1.20e-16 1.20e-16 1.20e-16 1.20e-17 8.20e-16 1.30e-16 1.30e-16 1.20e-17 8.20e-17 1.18e-17 8.20e-17 8.2	1.01E-12 1.03E	1 245-17	7.255-16	2 115-17	4 526-14
2.03E-11 2.02E-13 3.78E-14 4.77E-01 1.10E-11 1.22E-12 1.24E-12 3.79E-14 1.13E-02 6.61E-15 5.02E-15 1.24E-12 3.79E-14 1.13E-02 6.61E-15 5.02E-16 1.09E-16 1.39E-01 2.59E-15 2.13E-16 9.778E-16 5.79E-16 1.39E-01 2.59E-15 2.13E-16 9.778E-16 5.79E-16 2.61E-02 1.13E-15 5.03E-16 2.03E-17 6.25E-03 1.77E-17 1.22E-15 2.72E-15 2	# 000-14 5 24E	2 226-15	7 765-14	1 225-16	A 026-13
3.06E-15 1.07E-13 1.36E-14 4.77E-02 1.47E-12 5.64E-15 1.54E-12 3.77E-14 1.38E-02 6.61E-15 3.77E-14 1.38E-02 6.61E-15 3.77E-14 1.38E-01 2.59E-15 3.77E-17 3.26E-17 3.26E-17 <td< td=""><td>1 105-11 1 175</td><td>2.476-11</td><td>8.465-12</td><td>1.136-11</td><td>1.96E-11</td></td<>	1 105-11 1 175	2.476-11	8.465-12	1.136-11	1.96E-11
1.22E-12 1.24E-12 3.77E-14 1.13E-02 6.61E-15 3. 1.64E-13 2.97E-12 9.66E-14 1.13E-02 6.61E-15 3. 1.66E-16 1.69E-16 3.21E-17 8.81E-02 1.68E-17 6.32E-14 2.51E-02 1.39E-17 6.32E-14 3.32E-14 3.75E-15 2.72E-15 2.72E-15 2.72E-15 2.72E-15 2.72E-15 2.72E-15 2.72E-16 8.25E-03 1.77E-17 1.68E-17 6.52E-03 1.77E-17 1.68E-17 6.52E-03 1.77E-17 1.68E-17 6.52E-03 1.77E-17 1.68E-16 1.20E-11 1.20E-10 1.20E-11 1.56E-12 1.16E+02 1.37E-04 1.77E-17 1.20E-11 1.56E-12 1.70E-01 3.43E-14 3.68E-12 1.70E-01 1.05E-11 1.56E-12 2.07E-01 1.05E-11 1.79E-13 5.04E-12 3.15E-13 1.72E-01 1.16E-12 1.16E-12 1.16E-13 3.65E-12 2.07E-01 1.05E-11 1.03E-14 3.15E-13 3.65E-02 2.39E-14 6.56E-13 1.16E-13 3.65E-02 2.39E-14 6.51E-13 1.16E-13 3.65E-03 1.16E-15 3.10E-13 1.50E-13 1.70E-11 1.03E-14 1.70E-11 1.75E-15 1.77E-10 1.75E-15 1.77E-17 1.75E-15 1.75E-17 1.75E-	1.472-12 5.135	5.296-14	1.856-12	1.528-12	5.32E-11
7.64E-13 2.97E-12 9.66E-14 1.13E-02 6.61E-15 3. 1.86E-16 1.89E-16 5.79E-18 1.39E-01 2.59E-15 2.13E-16 9.73E-16 1.39E-01 2.59E-16 2.13E-17 8.81E-02 1.38E-17 6.52E-03 1.77E-17 1.38E-15 2.72E-15 2.72E-15 2.72E-15 2.72E-15 2.72E-17 6.52E-03 1.77E-17 1.28E-16 1.20E-10 1.20E-10 1.20E-10 1.20E-10 1.20E-10 1.20E-10 1.20E-10 1.20E-11 1.20E-10 1.20E-11 1.58E-12 1.70E-01 1.37E-12 1.77E-17 1.79E-13 5.08E-11 5.16E-11 1.58E-12 1.70E-01 1.05E-11 1.79E-13 5.08E-11 1.58E-12 1.77E-03 1.31E-15 1.77E-17 1.20E-11 1.79E-13 1.75E-13 1.75E-13 1.75E-13 1.75E-13 1.75E-13 1.75E-13 1.75E-14 1.75E-15 1.75E-17		-	5.08E-13	1.45E-14	5.00E-13
1.86E-16 1.89E-16 5.79E-18 1.39E+01 2.59E-15 2. 2.13E-16 9.73E-16 3.21E-17 8.81E-02 1.88E-17 8.61E-02 1.88E-17 8.61E-02 1.88E-17 8.61E-02 1.88E-17 8.61E-02 1.88E-17 8.61E-02 1.88E-17 8.61E-02 1.88E-16 2.72E-15 2.72E-15 2.72E-15 2.72E-17 6.52E-03 1.77E-17 1.8E-16 1.20E-16 8.20E-01 3.40E-15 3.40E-15 1.29E-16 8.20E-01 3.40E-15 3.60E-17 1.86E-12 1.70E-01 3.40E-15 3.60E-11 1.88E-12 1.70E-01 3.43E-14 3.60E-11 1.70E-11 5.16E-11 1.58E-12 1.70E-01 1.05E-11 1.70E-13 5.04E-12 3.15E-13 1.71E-02 3.82E-15 3.61E-15 1.70E-11 1.03E-11 1.03E-11 3.15E-13 3.65E-02 2.70E-14 6.51E-15 3.10E-13 9.22E-12 6.31E-13 3.65E-02 2.70E-14 6.51E-15 3.10E-13 1.72E-11 1	8.61E-15 3.35E	m	1.306-12	4.57-14	1.336-12
2.13E-16 9.73E-16 3.21E-17 8.81E-02 1.88E-17 6.52E-19 1.89E-17 6.52E-19 1.89E-17 6.52E-19 1.89E-17 6.52E-19 1.77E-17 1.27E-15 2.48E-16 2.48E-02 2.48E-16 2.76E-15 2.48E-16 2.48E-02 2.48E-16 2.76E-15 1.20E-17 6.52E-19 1.77E-17 1.27E-16 1.20E-10 3.66E-12 1.66E-02 1.77E-17 1.20E-10 1.20E-10 3.66E-12 1.66E-02 1.37E-15 3.70E-16 1.20E-11 1.20E-10 3.66E-12 1.66E-02 1.37E-14 3.40E-15 2.26E-11 1.20E-11 1.50E-12 1.70E-11 1.50E-13 1.70E-11 1.7	2.596-15	٠i٠	7.76E-17	2.596-15	Z. /1E-13
A 5.35E-14 3.13E-15 1.00E-14 2.01E-02 1.13E-15 0.77E-17 1.29E-16 2.45E-02 2.36E-16 2.72E-15 2.72E-15 2.72E-15 2.72E-15 2.72E-16 2.45E-02 1.37E-17 1.29E-16 1.20E-01 3.40E-15 1.77E-17 1.20E-16 1.20E-16 1.20E-16 1.20E-17 1.16E-02 1.37E-03 1.77E-17 1.20E-11 2.0E-11 2.0E-11 2.0E-11 2.0E-11 1.50E-12 1.10E-02 1.37E-03 1.37E-15 2.0E-11 2.0E-11 2.0E-11 1.50E-12 1.70E-01 3.43E-15 3.0E-12 1.70E-01 1.05E-11 1.79E-13 2.24E-13 5.04E-12 3.15E-13 1.71E-02 3.82E-15 9.22E-13 5.04E-13 3.65E-02 2.39E-14 5.50E-13 1.00E-11 3.15E-13 1.12E-01 1.14E-15 3.10E-13 4.51E-13 1.12E-01 1.14E-15 1.50E-14 1.50E-14 1.50E-14 1.50E-14 1.70E-14 1.50E-15 6.31E-15 3.56E-00 3.04E-09 3.65E-15 6.56E-14 1.75E-14 1.55E-15 1.77E-16 1.77E-16 1.77E-16 1.77E-16 1.77E-16 1.77E-16 1.77E-16 1.77E-16 1.77E-17 1.77E-16 1.77E-17 1.77E-16 1.77E-17	1.886-17	<u>-</u> ,	4.30E-16	5.11E-1/	7. IOC - 10
Lopentedlene 9.61E-15 9.72E-15 2.76E-10 6.52E-03 1.77E-17 1.26E-16 6.52E-03 1.77E-17 1.26E-16 1.56E-12 1.16E+02 1.37E-17 1.56E-12 1.16E+02 1.37E-04 1.56E-12 1.16E+02 1.37E-04 1.56E-12 1.16E+02 1.37E-04 1.56E-12 1.16E+02 1.37E-04 1.56E-12 1.16E+02 1.37E-04 1.56E-12 1.16E+02 1.37E-04 1.56E-12 1.76E-11 1.56E-12 1.76E-11 1.56E-12 1.76E-11 1.56E-12 1.76E-11 1.56E-12 1.76E-11 1.56E-12 1.76E-11 1.56E-12 1.76E-11 1.56E-12 1.76E-11 1.56E-12 1.76E-11 1.56E-12 1.76E-13	1.136-15	4.136-13	1.44E-13	7 525-14	4 245-15
tene 5.08E-11 5.16E-12 1.29E-16 6.20E-01 3.40E-15 1.16E+02 1.16E+02 1.37E-08 1.29E-16 1.29E-11 1.16E+02 1.37E-08 1.29E-14 4.36E-14 1.34E-15 7.99E-01 3.43E-14 3.43E-14 1.36E-12 1.79E-01 3.43E-14 3.43E-14 1.36E-12 1.79E-01 1.05E-11 1.79E-13 5.04E-12 3.15E-13 7.35E-03 1.31E-15 3.24E-14 3.56E-12 1.79E-13 5.04E-12 3.15E-13 1.77E-02 3.82E-15 9.56E-13 1.79E-13 1.77E-02 3.82E-15 9.56E-13 1.79E-13 1.77E-02 3.82E-15 9.56E-13 1.70E-11 1.79E-13 1.76E-13 1.77E-14 1.77E-14 1.77E-14 1.77E-14 1.77E-14 1.77E-15 1.77E-14 1.77E-15 1.77E-14 1.77E-15 1.77E-1	2 775-17	1 24E-17	1.136-15	5.01E-17	1.156-15
tene 5.08E-11 5.16E-12 1.10E+02 1.37E-08 1.1	3.60E-15	•	1.756-15	3.45E-15	5.10E-15
tiene 5.08E-14 4.36E-14 1.58E-15 7.96E-01 3.43E-14 3. Trene 5.08E-11 5.16E-11 1.58E-12 2.07E-01 1.05E-11 1.05E-11 1.05E-12 2.07E-01 1.05E-11 1.05E-11 1.05E-12 2.07E-01 1.05E-11 1.05E-11 1.05E-12 2.07E-01 1.05E-11 1.05E-11 1.05E-12 3.15E-13 7.35E-03 1.31E-15 3.05E-12 3.15E-13 1.71E-03 1.31E-15 3.05E-12 3.15E-13 1.71E-03 1.61E-15 3.05E-12 1.01E-11 1.03E-11 9.46E-13 3.65E-02 2.39E-14 6.10E-11 1.03E-11 3.15E-13 1.02E-02 2.39E-14 6.10E-11 1.03E-11 3.15E-13 3.65E-02 2.39E-14 6.10E-11 1.05E-13 4.51E-12 3.15E-13 3.65E-02 2.70E-14 6.10E-14 1.70E-17 2.40E-07 3.05E-15 6.02E-15 6.02E-15 6.02E-15 6.02E-15 6.02E-15 6.02E-15 6.02E-15 6.03E-14 2.46E-14 7.55E-16 2.59E+00 6.28E-14 6.58E-14 7.55E-16 1.14E-01 1.05E-15 1.75E-15 1.75E	1.37E-08	- -	4.91E-11	1.376-06	1.406-06
trene 5.08E-11 5.16E-11 1.58E-12 2.07E-01 6.62E-12 6.79E-11 1.05E-11 1.05E-	3.436-14 3.	5.11E-16	1.76-14	3.486-14	5.2Æ-14
thelene 5.08E-11 5.16E-11 1.38E-12 1.70E-01 6.05E-12 1.70E-12 1.70E-13 1.31E-15 2.07E-01 1.05E-11 1.30E-12 2.07E-01 1.05E-11 1.70E-13 5.04E-12 3.15E-13 1.73E-03 1.31E-15 3.04E-13 5.24E-13 1.75E-03 1.31E-15 3.04E-13 5.04E-13 1.76E-03 1.61E-15 3.04E-13 5.04E-13 3.05E-02 2.39E-14 6.56E-13 1.70E-11 1.03E-11 3.15E-13 1.70E-02 2.39E-14 6.51E-13 1.50E-13 1.50E-13 1.50E-14 1.30E-14 1.30E-13 1.50E-13 1.50E-14 1.30E-14 1.30E-14 1.30E-14 1.30E-13 1.50E-15 1.30E-14 1.30E-14 1.30E-14 1.30E-15 1.30	• (3. 5)	4 OKE 41	3 135-11	0 246-12	2,005-11
1.70e-11 5.10e-11 1.50e-12 5.20e-11 1.50e-12 5.20e-13 1.51e-13 1.75e-13 1.51e-13 1.51e-13 1.75e-13 1.51e-13 1.5	6.02E-12 0.	A 05E-13	2 125-11	1.116-11	3.196-11
Dipyrene 1,772-13 5,745-14 5,155-13 7,757-03 1,517-15 5,246-13 5,746-13 5,746-13 1,757-03 1,516-13 5,446-13 1,757-03 1,516-15 5,546-13 1,756-14 6,546-13 1,756-14 6,546-13 1,756-14 1,016-14 1,0	1 245-15	1 215-13	4 236-12	1.226-13	4.27E-12
Action of the contraction of the	1.31E-13	1.216-13	4.236-12	1.25E-13	4.336-12
thene 6.56E-13 1.70E-11 9.48E-13 3.65E-02 2.39E-14 6. threne 1.01E-11 1.03E-11 3.15E-13 1.12E-01 1.14E-12 1. threne 3.10E-13 9.22E-12 6.31E-13 8.70E-02 2.70E-14 8. 5.73E-16 5.81E-16 1.78E-17 2.40E-01 1.37E-16 1. 5.50E-10 5.50E-10 1.71E-11 5.54E-00 3.04E-09 3. 7.40E-02 6.28E-14 7.55E-15 6.35E-16 2.59E+06 6.28E-16 6. 7.40E-02 6.28E-14 7.55E-16 2.59E+00 6.28E-14 6. 7.40E-02 6.28E-14 7.55E-16 7.59E-10 1.05E-15 1.72E-15 1.72E-15 1.72E-15 1.75E-15 7. 7.43E-14 6.63E-14 2.03E-15 1.74E-01 7.43E-15 7.	1.615-15	1.21E-13	4.23E-12	1.22E-13	4.27E-12
threne 1.01E-11 1.03E-11 3.15E-13 1.12E-01 1.14E-12 1. threne 3.10E-13 9.22E-12 6.31E-13 8.70E-02 2.70E-14 8. 1.50E-13 4.51E-12 3.15E-13 3.05E-02 2.70E-14 8. 5.73E-16 5.01E-16 1.70E-17 2.40E-01 1.37E-16 1. 5.50E-10 5.50E-10 1.71E-11 5.54E-00 3.04E-09 3. 2.43E-14 2.46E-14 7.55E-16 2.59E+00 6.28E-14 6. 1.72E-15 1.75E-15 5.35E-17 6.11E-01 1.05E-15 1. 1.72E-14 6.63E-14 2.03E-15 1.14E-01 7.43E-15 7.	2.39€-14 6.	3.63E-13	1.27E-11	3.87E-13	1.336-11
threne 3.10E-13 9.22E-12 6.31E-13 8.70E-02 2.70E-14 8. 1.50E-13 4.51E-13 3.65E-02 5.79E-15 1.50E-13 4.51E-13 3.65E-02 5.79E-15 1.50E-13 1.57E-14 1.78E-17 2.40E-01 1.37E-16 1.55E-13 1.57E-13 1.57E-13 4.60E-02 6.62E-15 6.550E-10 5.56E-10 1.71E-11 5.54E-00 3.04E-09 3.65E-14 2.46E-14 7.55E-16 2.59E+00 6.28E-14 6.55E-15 1.72E-15 1.75E-15 5.35E-17 6.11E-01 1.05E-15 1.75E-15 7.43E-15 7	1.146-12 1.	1.216-13	4.23E-12	1.26E-12	5.386-12
1,506-13 4,516-12 3,156-13 3,856-02 5,796-15 1. 5,736-16 5,816-16 1,786-17 2,406-01 1,376-16 1. 5,756-13 1,576-13 4,826-15 4,406-02 6,826-15 6. 5,506-10 5,586-10 1,716-11 5,546-00 3,446-09 3. 6,546-14 2,466-14 7,556-16 2,596+00 6,286-14 6. 1,726-15 1,756-15 5,356-17 6,116-01 1,056-15 1.	2.70E-14 8.	3 2.42E-13	8.46E-12	2.69E-13	9.276-12
S.73E-16 S.81E-16 1.78E-17 2.40E-01 1.37E-16 1. 1.55E-13 1.57E-13 4.82E-15 4.40E-02 6.82E-15 6. 2.50E-10 5.58E-10 1.71E-11 5.54E+00 3.04E-09 3. 2.45E-14 2.46E-14 7.55E-16 2.59E+00 6.28E-14 6. 1.72E-15 1.75E-15 5.35E-17 6.11E-01 1.05E-15 1. robenzene 6.54E-14 6.63E-14 2.03E-15 1.14E-01 7.43E-15 7.	5.796-15 1.	1.21E-13	-	_	4.406-12
robenzene 1.55E-13 1.57E-13 4.02E-15 4.40E-02 6.02E-15 6. 5.50E-10 5.50E-10 1.71E-11 5.54E+00 3.04E-09 3. 2.43E-14 2.46E-14 7.55E-16 2.59E+00 6.28E-14 6. 1.72E-15 1.75E-15 5.35E-17 6.11E-01 1.05E-15 1. robenzene 6.54E-14 6.63E-14 2.03E-15 1.14E-01 7.43E-15 7.	1.37E-16 1.	•	2.39E-16	- 1	3./DE-10
5.50E-10 5.50E-10 1.71E-11 5.54E+00 3.04E-09 3. 2.43E-14 2.46E-14 7.55E-16 2.50E+00 6.28E-14 6. 1.72E-15 1.75E-15 5.35E-17 6.11E-01 1.05E-15 1. robenzene 6.54E-14 6.63E-14 2.03E-15 1.14E-01 7.43E-15 7.	6.82E-15 6.	<u>-</u>	6.46E-14	ri 1	1 25C-10
2.43E-14 2.46E-14 7.55E-16 2.59E+00 6.2BE-14 6. 1.72E-15 1.75E-15 5.35E-17 6.11E-01 1.05E-15 1. robenzene 6.54E-14 6.63E-14 2.03E-15 1.14E-01 7.43E-15 7.	3.046-09	ė r	2.2%-10	3.036-07	7 305-16
1,72E-15 1,75E-15 5,33E-17 6,11E-01 1,03E-15 1,14E-01 7,43E-15 7,	6.28E-14 6.	2 05F-17	7 175-14	1.07E-15	1.786-1
0.54E-14 0.65E-14 6.01E 15 114E 01	7.636-15	. ~	2.726-14	8.20E-15	3.486-14
			! !		

7	Š
S	n
9	ıtii
e Q	Ö
	\mathcal{L}

In calculating the average pollutant concentration from surface deposition, the factor of 2/70 accounts for the 2 years of pollutant deposition from the facility that would occur over a 70-year lifetime of an individual.

The surface deposition factor was calculated using the following formula (Holton, 1984):

SDF
$$(m^2s/kg) = r(1-e^{-kt})$$

Yk

Where:

r = Interception fraction of the plants (unitless) (Baes et al., 1984).

k = Total rate constant for degradation processes (s1) (Baes et al., 1984)

t = Growing time (s) (Personal Communication).

Y = Plant yield (dry weight) (kg/1112)

Pollutant concentrations were determined in terms of dry weight. The dry weight productivity factors (plant yields) that were used were based on information from Ron Jepson (Adams County Agricultural Extension Agency, Personal Communication, 1990). The plant yield used for hay (0.35 kg/m²) was based on one crop of alfalfa hay. The plant yield for one crop of corn silage was assumed to be 1.80 kg/m².

An interception fraction for hay was calculated using the following formula (Baes et al., 1984):

Interception fraction = $1 - e^{(-2.88Y)}$

Where:

Y = Productivity in dry weight (kg/m²).

Using the preceding productivity factor, an interception fraction of 0.635 was obtained for hay. An average interception fraction of 0.44 was used for corn silage (Baes et al., 1984).

As in the case of vegetable produce, only weathering was considered as a source of pollutant loss. The derivation of the weathering loss constant, $5.78 \times 10^{-7} s^{-1}$, is discussed in Appendix 8B.

A growing time of 4.5 weeks (2.72E+06 seconds) was assumed for one crop of alfalfa hay, and 130 days (1.12E+07 seconds) for one crop of corn silage (Ron Jepson, Adams County Agricultural Extension Agency, Personal Communication, 1990).

For the Resident-A, Resident-B, and Farmer scenarios, it was conservatively assumed that all hay, corn, and grain fed to the cattle were grown at the farm location. As discussed in Subsection 8.1.1, for all scenarios, a farm is assumed to be located in the area of highest deposition and air concentration where cows were observed grazing.

8C.4 ESTIMATE OF POLLUTIANT UPTAKE BY CATTLE

It was assumed that dairy carele consume 22.45 kg (dry weight) of feed per day, and beef cattle consume 13 kg (dry weight) of feed per day (Dr. Tim Stanton, Colorado State University, Personal Communication, 1990). It was assumed that in the Rocky Mountain Arsenal area, a dairy cow's average diet consists of 55 percent grain, 17.5 percent corn silage, 17.5 percent hay, and 10 percent protein supplement. The average diet of beef cattle consists of 80 percent grain, 5 percent corn silage, 5 percent hay, and 10 percent protein supplement (derived from information provided by Dr. Tim Stanton, Colorado State University, Personal Communication, 1990). It was assumed that protein supplement is not exposed to pollutants in the area, and thus does not contribute to pollutants that cattle receive through their diet.

In addition, although some cattle in the area may graze, lactating dairy cattle and finishing stock do not graze, and thus, pasture grass and incidental soil ingested while grazing will not be evaluated.

The average pollutant concentration in the feed from all sources was calculated using the following general equation:

$$C_{\text{feed}} = [(C_{\text{hay}} \times DI_{\text{hay}}) + (C_{\text{corn}} \times DI_{\text{corn}}) + (C_{\text{grain}} \times DI_{\text{grain}})]/DI_{\text{feed}}$$

Where:

C_{feed} = Pollutant concentration in cattle feed, mg/kg.

C_{hav} = Pollutant concentration in hay, mg/kg,

DI_{hav} = Daily intake of hay, dry weight, kg/day.

C_{com} = Pollutant concentration in corn slage, mg/kg.

DI_{com} = Daily intake of corn silage, dry weight, kg/day.

C_{grain} = Pollutant concentration in grain, mg/kg.

DI_{grain} = Daily intake of grain, dry weight, kg/day.

 $DI_{feed} = DI_{hay} + DI_{eem} + DI_{grant} kg/day.$

The calculated average dairy cattle feed pollutant concentrations are presented for the Resident-A and Resident-B scenarios in Table 8C-4, and for the Farmer scenario in Table 8C-5. The maximum dairy cattle feed pollutant concentrations are presented in Tables 8C-6 and 8C-7. The calculated average beef cattle feed pollutant concentrations are presented in Tables 8C-8 and 8C-9, and the maximum beef cattle feed pollutant concentrations are presented in Tables 8C-10 and 8C-11.

Average Pollutant Concentration in Milk for the Resident-A and Resident-B Scenarios

	AVERAGE CALCULATED CONC IN DIET (milk)	DIET UPTAKE MILK Unitiess	TRANSFER COEFFICIENT MILK Day/Kg	AVERAGE CALCULATED CONC 18 MILK RQ/KQ	AVERAGE CALCULATED CONC IN MILK FAT	ADULT AVERAGE ESTIMATED DATLY INTAKE	CHILD AVERAGE ESTIMATED DAILY INTAKE
CONTRACTOR						A 184 / 184	ABO /Bu /Bu
Acetonitrile	2.69€-11		3,725-00	2 24E-18			
Aldrin	8.34E-17		2.04E-01	3.826-16		4.0%-22 A 44E-20	2.8ZE-21
ATTORING	2.81E-17		3.896-06	2.46E-21		5. 35F.25	4.01E-19
Benzal Denyog	5.15E-10		2.45E-07	2.84E-15		6.181-19	2 57E-28
Record Aria	2.04E-10		3.80E-06	1.74E-14		3.79E-18	2.19E-17
Renzonitrile	0 40E-10		6.03E-07	2.01E-15		4.37E-19	2.53E-18
Carbazole	A 46E-15		2.95E-07	1.41E-18		3.08E-22	1.78E-21
6-Chlorobinhenvi	# B16-13		1.36E-U3	1.556-18		3.386-22	1.95E-21
4.4-Chlorobiphenyl	2 ARE-16		8.40E-04	5.53E-14		1.20E-17	6.96E-17
4-Chlorophenylmethylaulfone	3.06F-15		3.0%E-03	6 765 3		4.05E-19	2.34E-18
4-Chlorophenyimethylaulfoxide	0		1.76F-07	1 775-20		1.91E-24	1.10E-23
p,p-00E			T ORE-OF	1 355.14		8.21E-24	4.74E-23
7.00-d,q	2.705-17		1 A6F-03	1 146-17		2.95E-18	1.705-17
Dibenzofuran	1.591-12		107-04	7 AKE-18		6 17- 10t- 21	1.42E-20
Dieldrin	N		204-02	7 146-18		0.30E-19	4.836-18
Diisopropyl Methylphosphonate			4.37E-07	2 OUE - 10		4 22C-3E	5. VOE - 21
1,3-Dimethylbenzene	=		1.295-05	2 956-15		6.33E-23	3.03E-22
Dimethyl Methylphosphonste	1.366-12		1.076-10	3. 33F-29		7 256.26	3.7 IE-18
Dimethylphosphate	1.75E-16					1.675 67	47 - 201 - 4
Dioxina/Furana (EPA TEFs)	5.24E-14	5.00E+00			2.62E-13	2.065-18	1 456-17
Dithiene	2.34E-15		4.796-08	2.51E-21		5.47E-25	3. 16F-24
	3.17E-17		2.95E-04	2.10E-19		4.58E-23	2.64F-22
Hexach lorobanzana	5.99E-15		2.406-03	3.236-16		7.03E-20	6 OAF - 10
Hexach lorocyclopentadiene	3.52E-16		2.63E-03	2.08E-17		6.53E-21	2.675-20
180drin	5.50E-17		2.63E-02	3.25E-17		7.07E-21	6. DBF - 20
Metation	3.126-15		6.31E-06	4.42E-19		9.63E-23	5.56F-22
Methanol	1.236-08		1.236-09	3.41E-16		7.42E-20	4.29E-19
% - MICFophenol	3.15E-14		6.61E-06	4.67E-18		1.02E-21	5.87E-21
Acerechthelene	A 40E-12		S KKE DE	10 750 0			1
Acenaphthene	1.025-11		4 74E . 05	1.02E-14		3.V/E-18	2.29E-17
Benzo(a)pyrene	1.476-13		2 144-02	7 058-15		0.00E-10	7.92E-1/
Chrysene	1.695-13		5.01E-04	1 ARE-14		1.34E-16	0.0/E-1/
Dibenzo(a,h)anthracene	1.478-13		2.575-02	8 40F - 14		9.00c-10	4 OTE 11
fluoranthene	6.60E-13		1.35E-03	1.396-16		4 0%e-18	1.0/E-10
Fluorene	1.176-12		1.95F-06	S. 12F-15		1 125.18	11-361-1
Phenanthrene	3.16E-13		3.02E-04	2.14F-15		6 A75-10	2 YAC 10
Pyrene	1.516-13		1.23F-03	6.17F-15		0 086-10	8 3/C 3
Perethion	1.32E-16		5.25E-05	1.556-19		7 30E-28	1 046-22
Pentachlorobenzene	8.37E-15		9.77E-04	1.84E-16		4.00E-20	2 415-10
Phenol	2.756-09		2.34E-07	1.456-14		3.156-18	1.825-17
Quinoline	5.68E-14		8.71E-07	1.11E-18		2.42E-22	1.406-21
Supon	9.71E-16		1 05E-05	2.28E-19		4.97E-23	2.87E-22
Tetrachiorobenzene	7.62E-15		90-y	1.26E-17		7 10E-21	4. 10F . 3n
			- Miller				

5 ~- 1 4

8C-4	med)
Table	Contin
	9

1.41E-20 3.39E-19 1.43E-22	4.85E-14 4.15E-11 3.45E-13 1.20E-13 2.23E-08 3.02E-13 1.59E-12 7.61E-08 6.31E-08
2.44E-21 5.87E-20 2.48E-23	8.40e-15 7.18e-12 5.98e-14 2.07e-18 3.86e-09 5.22e-14 2.75e-13 1.07e-09 1.04e-12
1.12E-17 2.69E-16 1.14E-19	3.85E-11 3.30E-08 2.74E-10 9.52E-15 1.77E-05 1.26E-09 6.05E-05 5.01E-06
7.76E-05 0.71E-12 2.04E-07	1.00E-04 6.00E-03 3.50E-04 9.00E-07 1.50E-04 4.50E-04 4.50E-04 2.00E-03 2.00E-03
6.42E-15 1.36E-06 2.48E-14	1,72E-08 2,45E-07 3,49E-08 4,71E-10 5,26E-04 4,27E-08 1,25E-07 1,12E-05 1,06E-07
Trichlorobenzene Urea Vapona	INORGANICS Antimory Araenic Barium Beryllium Copper Lead Mercury Selenium Silver

Average Pollutant Concentration in Milk for the Farmer Scenario

	AVERAGE CALCULATED COMC 18 DIET (milk)	DIET UPTAKE MILK Unitiess	TRANSFER COEFFICIENT MILK Day/Kg	AVERAGE CALCULATED COMC IN WILK PROKG	AVERAGE CALCULATED CONC IN MILK FAT mg/Kg	ADULT AVERAGE ESTIMATED DAILY INTAKE	CHILD AVERAGE ESTIMATED DAILY INTAKE
OBCANICS							
Acetonitrile	2.69E-11		3.72E-09	2.24E-18		0 775-21	S 64.6.20
Aldrin	8.34E-17		2.04E-01	3.82E-16		1.67E-18	9.62E-18
Atrazine	2.81E-17		3.896-06	2.46E-21		1.07E-23	6.18E-23
Benzaldehyde	5.156-10		2.45E-07	2.84E-15		1.24E-17	7.14E-17
Benzoturen	2.04E-10		3.80E-06	1.74E-14		7.59E-17	4.386-16
Benzolc Acid	2 44E-44		0.03E-U/	2.01E-15		8.75E-18	5.05E-17
Carbazole	4.366-15		1.58E-05	1.556-18		6.765-21	3.505-20
4-Chlorobiphenyl	3.81E-12		6.468-04	5.536-14		2.41E-16	1.396-15
4,4-Chlorobiphenyl	2.68E-14		3.096-03	1.86E-15		8.095-18	4.67E-17
4-Chiorophenylmethylsulfone			1.296-07	8.786-21		3.83E-23	2.21E-22
A - Chiophenyimethyisulfoxide			7.74E-07	3.77E-20		1.64E-22	9.48E-22
100-0	2,706-17		1 RAF-02	9 145-17		4 02E-20	3.4 IE-10
Dibenzofuran	1.59E-12		1.076-04	3.846-15		1.67E-17	9.658-17
Dieldrin			1.29€-02	7.13E-18		3.10€-20	1.79€-19
Offsopropyl Methylphosphonate			4.37E-07	2.90E-19		1.27E-21	7.31E-21
1, 3-Dimethylbanzena	1.02E-11		1.29E-05	2.95E-15		1.29E-17	7.42E-17
Dimethyl Methylphosphonete	1.58E-12		1.07E-10	3.33E-21		1.45E-23	8.37E-23
Dioxing/prospers	8 26E-16	\$ 000+000			7 43E-17	4 125.17	2 746.44
	2.34E-15		6.79E-08	2.51E-21		1.00E-23	6.31F-23
Endrin	3.17E-17		2.958-06	2.106-19		9.15E-22	5.29E-21
Mexachlorobenzens	5.99E-15		2.40E-03	3.236-16		1.416-18	8.12E-18
Mexach lorocyclopentadiene	3.52E-16		2.63E-03	2.08E-17		9.06E-20	S.23E-19
Bookin	5.506-17		2.63E-02	3.25E-17		1.41E-19	B. 17E-19
Helethion	3.12E-15		6.37E-06	4.42E-19		1.936-21	1.11E-20
A M Consultance	00-367-1		1.C3C-07	01-316-6		21.204.6	0.3/E-10
PANS	S - 3C - 7		0.016-00	4.0/E-10		4.03E-20	1.1/2-19
Acenaph that ene	8.49E-12		9.55E-05	1.82E-14		7.93E-17	4.58E-16
Acenaph there	1.026-11		6.76E-05	1.55E-14		6.75E-17	3.90E-16
@enzo(a)pyrene	1.67E-13		2.14E-02	7.05E-14		3.07E-16	1.77E-15
Chrysene	1.496-13		5.01E-03	1.68E-16		7.316-17	4.22E-16
Dibenzo(a,h)anthracene	1.678-13		2.57E-02	8.49E-16		3.70E-16	2.14E-15
Fluoranthene	9.00.0		1.358-03	1.386.1		6.00E-17	3.505-16
Fluorene	1.176-12		1.95E-06	5.12E-15		71-352-2	1.295-16
Phenenthrene	3.16E-13		3.02E-06	6.145-13		9.35E-16	5.5%-1/
Pyrens	2 -37E-13		1.23E-03	4 EFE-13		1.6ZE-1/	1.05E-16
	01.376.10		0.202-03	9 6/2-44		9 200 90	3.715.6
Pentachi orobenzene	8.3/E-15		3 1/E-US	01 - 24E - 14		A 305-17	8.62E-18
Priemo!	6 . ()E - UV		8 74E-07	AL 176 B		A RAKE 21	2.0%5.10
Service of the	9,0000.14		1 056-05	2 2RF-19		0 OFF-22	8 748.21
	7 425-16		2	1 26F-17		1.42F-10	B 205-10
	1.066.15					,	***

. __

Maximum Pollutant Concentration in Milk for the Resident-A and Resident-B Scenarios

	MAXIMUM CALCULATED CONC 18 DIET (milk)	DIET UPTAKE MILK Unitless	TRANSFER COEFFICIENT MILK Day/Kg	MAXIMUM CALCULATED COMC IN MILK #Q/Kg	MAXIMUM CALCULATED COMC IN MILK FAT	ADULT MAXIMUM ESTIMATED DAILY INTAKE MQ/KQ/day	CHILD HAXIHUM ESTIMATED DAILY INTAKE
Acetonitrile Atdrin Atrazine Berzaldehyde Berzofuran Berzofuran Berzofuran Berzofuran Carbazole 4-Chlorobiphenyl 4-Chlorophenylmethylaulfone 4-Chlorophenylmethylaulfone 5-P-DOE P-P-DOE Diberzofuran Disapropyl Methylphosphonate 1.3-Dimethylberzena	2.75E-11 9.59E-16 9.59E-16 3.76E-10 3.76E-10 9.18E-13 9.18E-13 8.56E-11 5.65E-12 5.65E-12 5.65E-16 5.65E-16		3.72E-09 2.04E-01 3.89E-06 5.89E-07 5.89E-07 6.46E-05 1.29E-07 1.29E-07 1.29E-02 1.29E-02 1.29E-02 1.29E-02 1.29E-02	2.30e-16 3.16e-17 2.36e-15 2.36e-15 3.27e-18 3.27e-18 2.37e-19 3.98e-14		5.00e-22 2.60e-18 6.89e-19 5.69e-19 3.47e-22 1.03e-16 6.10e-18 5.17e-23 5.17e-22 5.17e-23 1.03e-16 5.16e-18 3.44e-18 3.44e-18	2.89E-21 1.50E-17 1.05E-23 3.96E-18 2.99E-18 5.95E-16 5.95E-17 5.95E-17 1.99E-17 1.99E-17 1.99E-17
Dimethyl Methylphosphonate Dimethylphosphate Dioxins/Furane (EPA TEFs) Dithiene Endrin Hexachlorobenzene Hexachlorocyclopentadiene Isodrin Melathion Melathion Melathion Melathion Melathion	4.84E-11 1.59E-12 1.59E-12 1.82E-13 5.05E-15 1.38E-15 1.26E-08	5.00€+00	1.07e-10 2.95e-04 2.95e-04 2.63e-03 2.63e-03 6.31e-06 1.23e-09	2.64E-21 3.95E-18 9.78E-15 6.16E-16 7.36E-19 7.36E-19 7.36E-19	7.97E-12	6.26E-23 6.26E-17 5.76E-25 8.60E-22 2.78E-19 1.78E-19 1.60E-22 7.57E-20	4.11E-16 5.33E-24 4.96E-21 1.35E-17 3.75E-18 9.25E-22 4.37E-19
PAHS Acenaphthalene Acenaphthee Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Phenanthrene Pyrene Fluoranthrene Pyrene Fluoranthrene Fluoranthrene Fluoranthrene Fluoranthrene Fluoranthrene Frachlorobenzene	3.34e-11 3.35e-11 5.36e-12 6.46e-12 6.46e-12 6.41e-12 6.41e-14 8.41e-14 8.96e-10 8.96e-12		9.55E-05 6.76E-05 2.14E-05 5.01E-03 1.35E-02 1.23E-04 1.23E-04 5.25E-05 9.77E-04 2.34E-07 1.05E-05	7.17E-14 5.34E-14 2.46E-12 2.96E-12 2.96E-12 4.81E-13 1.45E-14 1.45E-19 1.85E-19 1.85E-19 1.36E-16		1.56E-17 1.16E-17 1.27E-16 6.46E-16 1.05E-16 5.85E-18 1.61E-17 3.16E-17 3.16E-17 3.96E-22 9.34E-23	9.01E-17 8.72E-17 3.10E-17 7.34E-16 8.05E-16 9.32E-17 1.33E-17 1.33E-17 2.32E-18 2.32E-17 1.71E-21 5.60E-22

.534C**8C

80-18

	_
٥	ed
20	ij
ğ	ont
=	<u>U</u>

Trichlorobenzene	2.33E-14	7.76E-05	4.07E-17	8.86E-21	5.11E-20
lices	1.406-06	8.71E-12	2.73E-16	5.95E-20	3.44E-19
Vapona	2.74E-14	2.046-07	1.26E-19	2.74E-23	1.58E-22
INOPGANICS		•			
Antimony	2.48E-07	1.006-04	5.57E-10	1.216-13	7.01E-13
Arenir	1.55E-06	6.00E-03	2.09E-07	4.56E-11	2.63E-10
	3.55E-07	3.506-04	2.796-09	6.08E-13	3.51E-12
	1.386-08	9.006-07	2.806-13	6.09E-17	3.52E-16
	1.765-03	1.50E-03	5.926-05	1.296-08	7.45E-08
	70-3E5-9	2.506-04	2.54E-09	5.54E-13	3.20E-12
	A 88F-07	4.506-04	4.935-09	1.07E-12	6.20E-12
	FO-370 A	4.006-03	3.625-04	7.895-08	4.56E-07
	4.61E-05	2.006-02	2.07E-05	4.51E-09	2.60E-08
19114	90-397 E	2.006-03	1.56E-07	3.406-11	1.97E-10

Maximum Pollutant Concentration in Milk for the Farmer Scenario

	MAXIMUM CALCULATED COMC IN DIET (milk)	DIET UPTAKE MILK Unitless	TRANSFER COEFFICIENT MILK Day/Kg	MAXIMUM CALCULATED CONC 18 HILK mg/Kg	MAXIMUM CALCULATED COMC IN MILK FAT MQ/Kg	ADULT MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/dey	CHILD MAXIMUM ESTIMATED DAILY INTAKE
ORGANICS Acetonitrile Aldrin Atrazine Benzeidehyde Benzeiranitrile Carbazole 4-Chlorobiphenyl 4,4-Chlorobiphenyl 6,4-Chlorobiphenyl 6,0-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone 6-Chlorophenylmethylsulfone 7-Chlorophenylmethylsulfone 6-Chlorophenylmethylsulfone 7-Chlorophenylmethylsulfonide 9,p-DDT Dibenzofuran Dienzofuran Dientrin Dientrin Dientrin			3.72E-09 3.89E-06 3.89E-06 3.89E-06 5.03E-07 1.58E-07 1.29E-07 1.66E-02 1.29E-07 1.29E-07 1.29E-07 1.29E-07 1.29E-07	2.30e-18 8.38e-20 2.56e-15 2.36e-15 3.27e-18 3.27e-18 2.37e-13 3.28e-14 3.98e-13 1.58e-14 1.58e-14 1.58e-14 1.58e-14		1.00E-20 5.20E-17 3.65E-22 1.38E-17 1.4E-16 1.62E-21 1.22E-16 1.60E-15 1.60E-16 1.60E-18 6.89E-17 6.89E-17 5.07E-22	5.78E-20 3.01E-16 2.11E-21 7.96E-17 6.57E-16 5.29E-17 7.05E-16 7.05E-16 9.22E-18 9.22E-18 3.96E-16 1.47E-16 2.93E-19
Dimethylphosphate Dioxins/Furens (EPA TEFs) Dithiere Endrin Hexachlorobenzene Hexachlorocyclopentadiene Isodrin Malathion Methanol A-Witrophenol	6.12E-13 1.59E-12 2.46E-15 5.96E-13 1.38E-15 1.38E-15 1.26E-08 5.79E-15	3.00E+00	6.79E-06 2.95E-04 2.40E-03 2.63E-03 6.31E-06 1.23E-09 6.1E-06	2.64E-21 3.95E-18 9.78E-15 2.99E-16 7.36E-19 3.47E-16	7.97E-12	1.25E-15 1.75E-23 1.72E-20 4.26E-17 1.30E-18 3.56E-18 3.20E-21 1.51E-18	8.236-15 6.65E-23 9.93E-20 2.46E-16 7.50E-18 1.85E-20 6.74E-18 1.97E-19
PAHs Acenaphthalene Acenaphthere Acenaphthere Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthrane Phenanthrane Pyrene Parathion Pentachionobenzene Phenot Guinoline Supone	3.34E-111 5.13E-121 5.13E-121 6.14E-121 6.15E-111 6.55E-1116 6.55E-1116 6.55E-116 6.55E-116 6.55E-116 6.55E-1416 6.		9.55e-05 6.76e-05 2.14e-05 5.01e-03 1.35e-05 1.35e-05 1.23e-05 5.25e-05 9.77e-04 2.34e-07 1.07e-04	7.17E-14 2.34E-14 2.34E-14 2.34E-12 2.94E-12 4.81E-14 1.45E-13 1.61E-14 1.61E-14 1.61E-14 1.61E-14		3.12E-16 1.07E-16 1.07E-16 2.54E-15 1.29E-16 3.23E-16 5.33E-16 6.33E-16 7.01E-17 1.87E-21 1.87E-21	1.80E-15 1.34E-15 6.20E-14 7.46E-14 1.21E-14 6.76E-15 1.23E-20 1.23E-20 1.23E-20 1.05E-17 4.05E-17 4.05E-17

Table 8C-7 (Continued)

Trichlorobenzene Urea Vapona	2.33e-14 1.40e-06 2.74e-14	7.76E-05 8.71E-12 2.04E-07	4.07E-17 2.73E-16 1.26E-19	1,77E-19 1,19E-18 5,48E-22	1.02E-18 6.87E-18 3.16E-21
INORGANICS	2 485-07	1 000	00 242 3		
Arsenic	1.556-06	6.00F-03	2.00E-07	0 125-10	5 27E-00
Berium	3.558-07	3.506-04	2.796-00	1,225-11	7.03F-11
Beryl (fum	1.38E-08	9.00€-07	2.806-13	1,225-15	7. OKE-15
Copper	1.766-03	1.50€-03	5.92E-05	2.586-07	1.496-06
Lead	4.53E-07	2.506-04	2.54E-09	1.116-11	6.40E-11
Mercury	4.88E-07	4.50E-04	4.93E-09	2.15E-11	1.24E-10
Selenium	4.04E-03	4.00E-03	3.62E-04	1.585-06	9.12E-06
Silver	4.61E-05	2.00E-02	2.07E-05	9.01E-08	5.20E-07
Thattiem	3.48€-06	2.00E-03	1.566-07	6.81E-10	3.936-09

Average Pollutant Concentration in Beef for the Resident-A and Resident-B Scenarios

	AVERAGE CALCULATED CONC IN DIET (beef)	DIET UPTAKE BEEF Unitless	TRANSFER COEFFICIENT BEEF Day/Kg	AVERAGE CALCULATED COMC 1N BEEF mg/kg	AVERAGE CALCULATED CONC 10 BEEFFAT	ADULT AVERAGE ESTIMATED DAILY INTAKE	CHILD AVERAGE ESTIMATED DAILY
ORGANICS		,				mg/Kg/day	mg/Kg/day
Acetonitrile	2.695-11		1 156.00	90 100 7			
Aldrin	3.04E-17		6.31E-01	2.405-16		1.92E-22	4.78E-22
Atrezine Benzeldehode	1.64E-17		1.20€-05	2.558-21		1.226-25	2.9/E-20
Benzofuran	2 025 40		7.59E-07	5.06E-15		2.42E-19	6.03E-19
Benzolc Acid	1.686-10		1.17E-05	3.085-14		1.476-18	3.67E-18
Benzonitrile	2.136-13		0 125-07	3.5/E-15		1.71E-19	4.26E-19
Carbazole	4.26E-15		4.90E-05	2.716-18		1.20E-22	3.00E-22
4-Chlorobiphenyl	3.21E-12		2.00E-03	8.31E-14		3 ORF-18	37-367-6
4,4-Unioropiphenyl	1.88E-14		9.55E-03	2.33E-15		1.12E-19	2.70F-10
6-Chlorophenylmethylaulfoxide	A 045-15		3.98E-07	1.47E-20		7.02E-25	1.75E-24
p,p-00E	6.34E-16		3.3/E-U/	6.23E-20		2.98E-24	7.43E-24
P, p-00T	9.366-18		5 75F-02	4 ORE-14		4.84E-19	1.21E-18
Dibenzofuran	1.49 12		3.316-04	6 40F-15		3.34E-22	8.34E-22
Dieldrin	1.38E-17		3.98E-02	7.115-18		3.006-19	7.64E-19
Dilaopropyl Hethylphosphonate	2.77E-14		1.35E-06	4.85E-19		2 426-24	5 70E 22
Dimethal Methalshooth	9.99E-12		3.98E-05	5.16E-15		2.47E-19	6.166-19
Dimethylohoschate	\$ 000 JE		3.31E-10	5.74E-21		2.75E-25	6.85E-25
Dioxine/Furana (EPA TEFA)	2.05E-14	5 me+m					
Dithlane	2.33E-15		1 4.05-07	1C-387.7	1.036-13	1.10E-16	2.96E-18
Endrin	2.11E-17		9.12E-04	2.50F-10		1 20c - 22	5.34E-25
Hexachlorobenzene	2.44E-15		7.41E-03	2.35E-16		1 125-20	2 805-30
Mexach lorocyclopentadiene	2.54E-16		8.136-03	2.67E-17		1 2AF-21	2 30c 3
I BOOKIN	2.71E-17		8.13E-02	2.86E-17		1.376-29	3 41F-21
Methernot	3.08E-15		1.95E-05	7.796-19		3.73E-23	9.306-23
6-Mitrophenol	2 - C3E - UG		3.806-09	6.08E-16		2.91E-20	7.26E-20
РАНВ	301.5		2.0%E-05	8.22E-18		3.936-22	9.81E-22
Acenaph that ene	7.97E-12		2.95E-06	3.058-14		1 445-10	2 417
Acenaphthena	9.695-12		2.09E-06	2.63E-16		1 265-18	3 - 24E - 10
Benzo(B)pyrene	4.28E-14		6.61E-02	3.67E-14		1.76F-18	A 485-18
o themselve the state of	6.51E-14		1.55E-02	9.05E-15		4.33E-19	1.085-18
Fluorenthere	4.51E-14		7.94E-02	6.44E-14		2.12E-18	5.30E-18
Fluorene	1 075.12		4.17E-US	7.V3E-13		3.80E-19	9.471-19
Phenanthrane	100 F		0.03E-U4	6.35E-15		3.986-19	9.94E-19
Pyrene	6.6RF-16		20-20-4 20-20-4	2 × 45 × 5		6.24E-20	1.56E-19
Parathion	1.26E-16		1 62F-04	2 456-10		1.116.19	2.76E-19
Pentachl orobenzene	6.78E-15		3 02F-03	2 65F-16		1 275 20	3.10E-23
Phenot	2.74E-09		7.24E-07	2.58E-14		1 246-18	2 07E - 20
Outrol ine	5.66E-14		2.69E-06	1.98E-18		9.468-23	3.0/E-10
Suporing	9.53E-16		3.24E-05	4.00E-19		1.91E-24	A 775-28
Tetrachlorobenzene	6.95E-15		7 496 - 04	5.31E-17		2.54E-21	6.346-21

2.25E-21 5.74E-20 2.42E-23	2.17E-14 2.34E-13 3.70E-15 2.49E-16 6.57E-09 1.10E-14 5.07E-11 7.03E-09 3.61E-11
9.04E-22 2.30E-20 9.70E-24	8.71E-15 9.39E-14 1.52E-15 9.99E-17 2.64E-09 4.75E-15 2.03E-11 2.82E-09 1.45E-11
1.89E-17 4.81E-16 2.03E-19	1.82E-10 1.96E-09 3.17E-11 2.09E-12 5.51E-05 9.25E-11 4.24E-07 3.02E-07 1.66E-08
2.40E-04 2.69E-11 6.31E-07	1.00E-03 2.00E-03 1.50E-04 1.00E-03 1.00E-02 3.00E-04 2.50E-01 1.50E-02 4.00E-03
6.07E-15 1.36E-06 2.46E-14	1.40e-08 7.56e-08 1.63e-08 1.61e-10 4.25e-04 2.55e-04 1.31e-07 3.03e-04 7.77e-06 3.21e-08
Trichlorobenzene Urea Vapona	INORGANICS Antimory Arsenic Barium Beryllium Copper Lead Mercury Selenium Silver

B

Average Pollutant Concentration in Beef for the Farmer Scenario

	AVERAGE CALCULATED CONC 18 DIET (beef) #0/Kg	DIET UPTAKE BEEF Uhitless	TRANSFER COEFFICIENT BEEF Day/Kg	AVERAGE CALCULATED CONC IN BEEF	AVERAGE CALCULATED COMC 18 BEEFFAT RQ/Kg	ADULT AVERAGE ESTIMATED DATAKE	CHILD AVERAGE ESTIMATED DAILY INTAKE
ORGANICS Acetonitrile Aldrin Atrazine Benzaldehyde Benzofuran Benzofuran Benzofu Acid Benzofe Acid Benzofe Acid Benzofe Heid 4-Chlorobiphenyl 4-Chlorobiphenyl 4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfone 5-DOE P.P-DOE P.P-DOE Discorduran Discorduran Discordyl Hethylphosphonate 1,3-Disasthylbenzana Discordyl Hethylphosphonate	2.66e-11 2.04e-17 2.04e-17 2.04e-10 2.02e-10 2.04e-13 2.04e-15 2.04e-15 2.04e-15 2.04e-15 2.04e-16 2.0		1.15e 08 6.31e-01 1.20e-05 7.59e-07 1.17e-05 1.86e-06 2.00e-03 9.55e-03 3.96e-07 5.37e-07 5.37e-02 3.75e-02 3.96e-03 3.96e-03 3.96e-05 3.96e-05 3.96e-05	4.00e-16 2.55e-16 5.05e-15 3.08e-14 3.08e-14 2.75e-18 2.37e-15 6.23e-20 6.23e-20 6.23e-20 6.29e-18 6.96e-18 7.11e-18		3.63E-21 2.38E-19 2.38E-19 2.95E-19 3.42E-18 2.95E-17 7.95E-17 7.95E-17 7.95E-18 7.95E-18 6.68E-18 6.69E-21 6.69E-21 6.69E-21 6.69E-21 6.69E-21	9.56E-21 5.95E-19 6.09E-24 1.35E-17 7.35E-18 6.01E-21 6.46E-21 1.49E-22 1.49E-22 1.49E-22 1.49E-23 1.49E-27 1.53E-17 1.35E-17 1.35E-17
Dioxins/Furens (EPA TEFs) Dithians Endrin Hexachlorocyclopentadiens laodrin Malachion Methenol 6-Nitrophenol PANs	2.05E-15 2.18E-15 2.75E-17 3.76E-17 3.10E-17	5.00E+00	1.46E-07 9.12E-04 7.41E-03 6.13E-03 1.95E-05 2.04E-05	6.48E-21 2.50E-19 2.35E-16 2.67E-17 7.79E-19 6.08E-16	1.036-13	2.20E-17 4.29E-24 2.39E-22 2.25E-19 2.56E-20 7.85E-20 7.87E-21 7.87E-21	5.946-17 1.076-23 5.976-23 5.406-19 6.396-20 6.826-20 1.456-18
Acenaphthalene Acenaphthane Berzo(a)pyrene Chysene Oibenzo(a,h)anthrecene Fluoranthene Fluoranthene Pyrene Parathion Pentachlorobenzene Phenol Guinolina Supone	7.976-12 9.696-12 4.586-14 4.316-14 1.076-12 1.086-13 4.686-14 6.786-16 6.786-19 5.666-16 6.958-16		2.95E-04 2.09E-04 6.61E-02 7.94E-02 4.17E-03 6.03E-04 9.33E-04 3.80E-03 1.62E-04 3.24E-07 5.69E-05 5.69E-05	3.05e-14 2.63e-14 3.67e-14 7.95e-15 7.95e-15 1.30e-15 2.31e-15 2.65e-19 2.65e-16 1.98e-16 1.98e-16 5.31e-17		2.92E-17 2.51E-17 3.51E-17 6.67E-18 7.97E-18 7.97E-18 2.21E-18 2.54E-22 2.54E-22 2.54E-22 3.84E-22 5.08E-20	7.28E-17 6.27E-17 6.76E-17 2.16E-17 1.06E-16 1.99E-17 3.11E-18 5.51E-18 6.33E-22 6.34E-17 6.15E-17 4.72E-21

2 7-7 4

Table 8C-9 (Continued)

4.51E-20 1.15E-18 4.84E-22	4.34e-13 4.68e-12 7.57e-14 4.98e-15 1.31e-07 2.37e-13 1.01e-09 1.41e-07 7.21e-10
1.81E-20 4.60E-19 1.94E-22	1,74E-13 1,88E-12 3,03E-14 2,00E-15 5,27E-08 9,49E-14 4,06E-10 5,64E-08 2,89E-10 1,59E-11
1.89E-17 4.81E-16 2.03E-19	1.82E-10 1.96E-09 3.17E-11 2.09E-12 5.51E-05 9.92E-11 4.24E-07 5.89E-05 3.02E-07
2.40E-04 2.69E-11 6.31E-07	1,00E-03 2,00E-03 1,50E-04 1,00E-03 3,00E-04 2,50E-01 1,50E-02 4,00E-03
6.07E-15 1.38E-06 2.48E-14	1.40E-08 7.56E-08 1.63E-08 1.61E-10 4.25E-04 2.55E-04 1.31E-07 3.03E-04 7.77E-06
Trichlorobenzene Urea Vapona	INORGANICS Antimory Arsenic Berium Beryllium Copper Lead Hercury Selenium Silver

Maximum Pollutant Concentration in Beef for the Resident-A and Resident-B Scenarios

	MAXIMUM CALCULATED COMC IN DIET (boef)	DIET UPTAKE BEEF Unitless	TRANSFER COEFFICIENT BEEF Day/Kg	MAXIMUM CALCULATED CONC IN BEEF MQ/Kg	MAXIMUM CALCULATED COMC IN GEEFFAT mg/Kg	ADULT MAXIMUM ESTIMATED DAILY IMTAKE Mg/Kg/day	CHILD MAXIMUM ESTIMATED DAILY INTAKE
ORGANICS							
Acetonitrile	2.73E-11		1.15E-08	4.07E-18		1.95E-22	4.86E-22
Aldrin	7.51E-16		6.31E-01	6.15E-15		2.94E-19	7.346-19
Atrezine	5.47E-16		1.20E-05	8.536-20		4.08E-24	1.02E-23
Benzaldehyde	5.36E-10		7.596-07	5.27E-15		2.52E-19	6.295-19
Benzofuran	2.33E-10		1.176-05	3.55E-14		1.70E-18	6.24E-18
Benzolc Acid	1.5/E-10		1.86E-06	3.80E-15		1.82E-19	4.53E-19
Senzonitrile Cerbarole	4.23E-13		9.12E-07	Z.63E-18		1.26E-22	3.14E-22
A-Chlorobinery!	1 158-11		2 POE-03	3.01E-10		1.73E-22	4.31E-22
4.4-Chlorobipheryl	1.276-13		9.55E-03	1.578-16		7.51F-10	1 A7E-18
4-Chlorophenylmethylsulfone	~		3.986-07	3.89E-19		1.86E-23	4.64E-23
4-Chlorophenylmethylmulfoxide	<i>C</i> 3 ·		5.37E-07	1.65E-18		7.91E-23	1.97E-22
p, p-006	1.37E-12		1.23E-02	2.196-13		1.05E-17	2.62E-17
p.p-pol	2.59E-16		5.75E-02	1.93E-16		9.24E-21	2.306-20
	1.62F-16		3.51E-05	8 35E-17		6.02E-19	0.0%-18
Olisopromy Methylphosphorate	A OPE-13		9 45E-06	R 725-18		4 17E-22	1 0/8-21
2.3-Disserbibenzene	1.306-1		3.985-05	6.706-15		3,205-19	7 995-10
Dimethyl Methylphosphonate	4.60E-11		3.316-10	2.01E-19		9.62E-24	2.406-23
O imethylphosphate	1.75E-13						
Dioxins/Furans (EPA TEFs)	4.77E-13	5.00E+00			2.39E-12	2.566-17	6.93E-17
	2.5%E-15		1.48E-07	4.5%E-21		2.20E-25	5.466-23
Endrin	8.25E-16		9.12E-04	2.6/E-18		1.28E-22	3.18E-22
MEXACTION CONTRACTOR	9 . / JE - 14		6 41F 03	0.49E-13		6.03E-19	0.33E-1V
Revection of ocyclopented rene	4 07E-13		0.13E-03	1.00E - 10 A 20E - 34		3.00E-21	6. 976.30
State 197	2 70F-15		1 OSE-05	0 4AE-10		07-260.3 7 486-38	1 126-22
Wethano!	1.25E-08		3.80F-09	6.18E-16		2.965-20	7 186-20
6-Witrophenol	3.756-14		2.04E-05	9.92E-18		4.75E-22	1.186-21
PANS							
Acenaphthal ene	0.405.40		2.95E-04	5.03 EE - 14		2.78E-18	6.9%-16
	4 ADE 42		A 44E-03	4 Jac 43		6 195-10	9.475.10
	C1-175		4 55F-02	4 10F-13		1 406-17	4 ME-17
0 ibenzo(a.h)anthracene	1.605-12		7.94E-02	1.546-12		7.36E-17	1.84E-16
Fluoranthane	4.94E-12		4.17E-03	2.67E-13		1.28E-17	3.196-17
fluorene	2.50E-12		6.03E-04	1.95E-14		9.33E-19	2.336-18
Phenenthrene	3.64E-12		9.336-04	4.408-14		2.11E-18	5.26E-18
Pyrena	1.61E-12		3.806-03	7.96E-14		3.81E-18	9.50E-18
Parathion	2.08E-16		1.62E-04	4.37E-19		2.09E-23	5.22E-23
Pentachlorobenzene	2.85E-14		3.02E-03	1.12E-15		5.34E-20	1.33E-19
Phenol	2.86E-09		7.24E-07	2.6%E-14		1.2%-18	3.21E-18
Guinol Ing	6.085-14		4.6VE-U0	C. 12E-10		1.02E-22	4.33E-44
ambana	0 43E 6		50 - 24E - 07	1 246-14		5 01F-21	9 A7E-20
lettechtoropenzene	61 . 370 · I		,	1.64		4	1

= - - - -

Table 8C-10 (Continued)

4.07E-21	5.82E-20	2.525-23		1.246-13	1.396-12	2.51E-14	6.16E-15	1.216-08	6.64E-14	9.14E-11	2.94E-08	8.27E-11	6.176-11
1.63E-21	2.33E-20	1.016-23		4.98E-14	5.59E-13	1.01E-14	2.47E-15	4.85E-09	2.66E-14	3.66E-11	1.18E-08	3.326-11	2.47E-11
3.416-17	4.88E-16	2.11E-19		1.04E-09	1.17E-08	2.10E-10	5.17E-11	1.01E-04	5.57E-10	7.66E-07	2.46E-04	6.93E-07	5.17E-07
2.40E-04	2.69E-11	6.31E-07		1.00€-03	2.00E-03	1.50€-04	1,00€-03	1.00E-02	3.006-04	2.506-01	1.50E-02	3.00E-03	4.00E-02
1.10€-14	1.40E-06	2.58E-14		8.02E-08	4.50E-07	1.08E-07	3.986-09	7.81E-04	1.43E-07	2.36E-07	1.27E-03	1.786-05	9.96E-07
Trichtorobenzene	Urea	Vapona	SCINE SOCIAL	Antimony	Arsenic	anjus s	Beryllium	Copper	peel	Mercury	Selenium	S - S	1001

Maximum Pollutant Concentration in Beef for the Farmer Scenario

	MAXIMUM CALCULATED COMC 18 D1ET (beef)	DIET UPTAKE BEEF Unitless	TRANSFER COEFFICIENT BEEF Day/Kg	MAXIMUM CALCULATED CONC IN BEEF mg/Kg	MAXIMUM CALCULATED COMC IN BEEFFAT	ADULT MAXIMUM ESTIMATED DATLY INTAKE	CHILD MAXINGM ESTINATED OBILY INTAKE
ORGANICS						100	ARD /RY /Re
Acetonitrile	2.736-11		1, 15F-AR	4 075-48			
Aldrin	7.51E-16		6.31E-01	6.158-15		3.90E-21	9.72E-21
Atrazine	5.47E-16		1.206-05	8.53F-20		3.68E-16	1.4/E-17
Benzaldehyde	5.366-10		7.598-07	5.27E-15		S 05E-18	4.0%E-22
Benzoluran Benzolo Acid	2.33E-10		1.17E-05	3.55E-14		3.406-17	R 4RF-17
Servonitriie	1.3/E-10		1.86E-06	3.80E-15		3.63E-18	9.066-18
Carbazole	5.63E-15		9.12E-07	2.63E-18		2.52E-21	6.29€-21
4-Chlorobiphenyl	1.15E-11		2 000-03	3.01E-18		3.45E-21	8.61E-21
6,4-Chlorobiphenyl	1.27E-13		9.55F-03	1 575-15		2.84E-16	7.09E-16
6-Chlorophenylmethylaulfone	7.53E-14		3.98E-07	3.896-19		3 725-22	3.75E-17
a - Chicophemy (methy) sulfoxide	2.372-13		5.37E-07	1.65E-18		1.586-21	3.94E-21
100.0	1.3/E-12		1.23E-02	2.19E-13		2.10E-16	5.24E-16
Dibenzofuran	2 OTE-10		5.75E-02	1.93E-16		1.85E-19	4.61E-19
Dieldrin	1.425-14		3.31E-Us	7.26E-14		1.206-17	3.00E-17
Dijsopropyl Methylphosphonete	6.98F-13		3.70E-02	6.35E-17		8.00E-20	1.99€-19
1,3-Dimethylbanzene	1.306-11		4 OSE - OS	4 me. 16		8.35E-21	2.08E-20
Dimethyl Wethylphosphonate	4.666-11		4 41E-10	2 015-13		6.41E-18	1.606-17
Dimethylphosphate	1.75E-13			10:3		1.9CE-22	4 - BUE - 22
Dioxins/Furama (EPA TEFs)	4.77.13	5.00E+00			2.396-12	5.118-16	1 105.15
	2.396-15		1.48E-07	4.596-21		4.40E-26	1,105-23
Hexach orobassass	Z.25E-16		9.12E-04	2.67E-18		2.55E-21	6.36E-21
Wexach orocur oranted one	4 40E 4E		7.41E-03	5.49E-15		5.26E-18	1.31E-17
landrin	4 07E-15		8.136-03	1.68E-16		1.61E-19	4.02E-19
Ne (ethion	4 ME-15		9.13E-02	4.29E-16		4.10E-19	1.02E-18
Methanol	1.25F-08		1.Y2E-U3	V. 36E-19		8.96E-22	2.24E-21
6-Hitrophenol	3.75E-16		2.04E-05	9.92E-18		0 50F-21	2 175-20
PAHS Agentache had	90 45 20 0					10000	7.316.3
Acenaphthere	1 406-11		2.95E-04	5.81E-14		5.56E-17	1.396-16
Benzo(a)pyrene	1 605-12		6.07E-04	4.38E-14		4.39E-17	1.09E-16
Chrysene	1.54E-12		1 558-02	21-202-1		2 075 44	3.05E-15
Dibenzo(a,h)anthracene	1.49E-12		7.94E-02	1.54F-12		6 47E-15	4 47E-10
Fluoranthene	4.94E-12		4.17E-03	2.67E-13		2.56F-16	A 275-35
Fluorene	2.50E-12		6.03E-04	1.95E-14		1.875-17	4.668-17
Phenenthrene	3.64E-12		9.336-04	4.40E-14		4.22E-17	1.05E-16
Derethin	1.61E-12		3.80E-03	7.96E-14		7.61E-17	1.90E-16
Deste of the second of the sec	2.00E-16		1.62E-04	4.37E-19		4.18E-22	1.04E-21
Phenol Openzene	2 84E-00		3.02E-03	1.12E-15		1.07E-18	2.665-18
Quinotine	6 OBE - 14		10-957.1	2.07E-14		2.5/E-17	6.416-17
Supona	1.215-15		00-37C E	E 07E-10		7.03E-21	5.07E-21
Tetrachtorobenzene	1.62E-14		5.895-04	1.23E-16		1.185-10	1.21E-21
				,		5	K.V3E-19

1/1/

Table 8C-11 (Continued)

Trichlorobenzene	1.106-14	2.406-04	3.416-17	3.26E-20	8.14E-20
Ures	1.40E-06	2.69E-11	4.88E-16	4.67E-19	1.166-18
Vapona	2.586-14	6.316-07	2.11E-19	2.02E-22	5.03E-22
INORGANICS					
Antimony	8.026-08	1.00E-03	1.04E-09	9.96E-13	2.48E-12
Arsenic	4.50E-07	2.00E-03	1.176-08	1.12E-11	2.796-11
Boritan	1.08E-07	1.506-04	2.10E-10	2.01E-13	5.01E-13
Beryllium	3.98E-09	1.00E-03	5.17E-11	4.94E-14	1.23E-13
Corper	7.81E-04	1.00€-02	1.01E-04	9.69E-08	2.42E-07
Lead	1.43E-07	3.006-04	5.57E-10	5.33E-13	1.33E-12
Mercury	2.36E-07	2.50E-01	7.66E-07	7.33E-10	1.83E-09
Selenium	1.27E-03	1.50€-02	2.46E-04	2.36E-07	5.87E-07
Siver	1.78E-05	3.00€-03	6.93E-07	6.63E-10	1.65E-09
Theilie	20-396-6	4.00E-02	5.17E-07	4.95E-10	1.23E-09
					֡

534C/A8C

8C.5 CALCULATION OF THE POLLUTANT CONCENTRATION IN FARM PRODUCTS

The pollutant concentration in beef and dairy products resulting from ingestion of hay, grain, and corn silage by beef and dairy cattle is calculated as follows:

$$C_{product} = C_{diet} \times DUF$$

Where:

C_{product} = Pollutant concentration in farm product (milk, beef) (mg/kg).

C_{diet} = Average pollutant concentration in total animal diet (mg/kg).

DUF = Diet uptake factor, pollutant concentration ratio between farm product and feed. Specific to pollutant and product (unitless).

8C.5.1 Dioxins

The DUFs for dioxin were taken from current research that has investigated the feed/product pollutant relationship. Fries and Paustenbach (1990) reported a steady-state transfer ratio for dioxin of 5-to-1 between milk fat and dairy feed (dry weight), and between beef fat and cattle feed (dry weight). These DUFs were used to calculate dioxin concentrations in milk fat and beef fat.

8C.52 Other Pollutants

Concentrations for inorganics as well as all other organics were calculated in milk and beef. The DUFs for these pollutants were calculated by multiplying transfer coefficients (day/kg) by the daily feed intake, 22.45 kg/day (dairy cattle), and 13 kg/day (beef

cattle). Transfer coefficients (TC) for the organics were derived using equations developed by Travis et al. (1988):

$$TC_{milk} = 10^{(-8.09 + Log K_{ow})}$$

$$TC_{beef} = 10^{(-7.6 + Log K_{ow})}$$

The log K_{ow} can be found in Appendix 8B, Table 8B-1.

Transfer coefficients for the inorganics were identified by Baes et al. (1984) for dairy and beef cattle.

The calculated pollutant concentrations in milk and milk fat as well as daily intakes are summarized in Tables 8C-4 and 8C-5 (average levels) and Tables 8C-6 and 8C-7 (maximum levels). Beef and beef fat pollutant concentrations and daily intakes are summarized in Tables 8C-8 and 8C-9 (average levels) and Tables 8C-10 and 8C-11 (maximum levels).

APPENDIX 8C

CITED REFERENCES

Baes, C., et al. 1984. "A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides Through Agriculture." Prepared by Oak Ridge National Laboratory for the U.S. Department of Energy, ORNL-5786.

Fries, G. 1986. "Assessment of Potential Residues in Foods Derived from Animals Exposed to TCDD-Contaminated Soil." Presented at Dioxin 86.

Fries, G.F. and D.J. Paustenbach. 1990. "Evaluation of Potential Transmission of 2,3,7,8 - Tetrachlorodibenzo-p-Dioxin-Contaminated Incinerator Emissions to Humans Via Food." J. Toxicol Environ. Health 29:1-43.

Holton, G., et al. 1984. "Multiple-Pathways Screening - Level Assessment of a Hazardous Waste Incineration Facility." Prepared for the U.S. EPA and the U.S. DOE by Oak Ridge National Laboratory, DRNL/TM 8652; DE 85000156.

Kabata-Pendias, A., and H. Pendias. 1985. <u>Trace Elements in Soils and Plants</u>. CRC Press, Inc., Boca Raton, Florida.

Morris County Agricultural Extension Service, Memo from E. Milewski to C.J. Warren (Alaimo Engineering Co.). 2 January 1990.

NRCC (National Research Council of Canada). 1978. "Effects of Arsenic in the Canadian Environment." NRCC/CNRC, Ottawa. Publication No. NRCC 15391 of the Environmental Secretariat.

Travis, C.C., and A.D. Arms. 1988. Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. Technol. 22:271-274.

APPENDIX 8D

CALCULATION OF THE ESTIMATED DAILY INTAKE FOR THE SOIL/DUST INGESTION ROUTE OF EXPOSURE

Table 8D-1

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Adult, Resident-A Scenario

	AVEDA	·E	MAXIML	M
	AVERAC	EDI	C soil	EDI
	C soil	ESTIMATED	CALCULATED	ESTIMATED
	CALCULATED	DAILY	CONC IN	DAILY
	CONC IN		SOIL	INTAKE
	SOIL	INTAKE	.1M	mg/Kg/day
	.1M	mg/Kg/day		HB/KB/GBY
	mg/Kg		mg/Kg	
ORGANICS		== .=		4 455 40
Acetonitrile	1.14E-12	1.63E-18	1.15E-12	1.65E-18
Aldrin	1.21E-14	1.72E-20	1.22E-14	1.75E-20
Atrazine	2.78E-17	3.98E-23	9.14E-16	1.31E-21
Benzal dehyde	2.47E-10	3.53E-16	2.51E-10	3.58E-16
Benzofuran	4.74E-10	6.77E-16	4.81E-10	6.87E-16
Benzoic Acid	1.20E-10	1.71E-16	1.21E-10	1.73E-16
Benzonitrile	1.14E-13	1.63E-19	1.15E-13	1.65E-19
Carbazole	2.28E-14	3.25E-20		3.30E-20
4-Chlorobiphenyl	1.38E-10	1.96E-16	1.40E-10	1.99E-16
4,4-Chlorobiphenyl	1.80E-12	2.57E-18	1.83E-12	2.61E-18
4-Chlorophenylmethylsulfone	9.15E-16	1.31E-21	2.40E-14	3.43E-20
4-Chlorophenylmethylsulfoxid	3.41E-15	4.87E-21	8.94E-14	1.28E-19
p,p-DDE	3.74E-12	5.34E-18	1.88E-11	2.68E-17
p.p-DDT	7.49E-16	1.07E-21	3.76E-15	5.37E-21
Dibenzofuran	2.37E-11	3.38E-17	2.40E-11	3.43E-17
Dieldrin	2.47E-15	3.53E-21	2.51E-15	3.59E-21
Dijsopropyl Methylphosphonate	e 1.81E-14	2.59E-20	3.17E-13	4.53E-19
1.3-Dimethylbenzene	4.74E-11	6.77E-17	4.81E-11	6.87E-17
Dimethyl Methylphosphonate	7.14E-15	1.02E-20	2.50E-13	3.57E-19
Dimethylphosphate	2.84E-12	4.06E-18	2.88E-12	4.12E-18
Dioxins/Furans (EPA TEFs)	1.78E-12	2.55E-18	6.93E-12	9.91E-18
Dithiane	4.35E-16	6.21E-22	4.41E-16	6.30E-22
Endrin	4.97E-16	7.10E-22	2.27E-15	3.25E-21
Hexach Lorobenzene	1.01E-13	1.44E-19	7.30E-13	1.04E-18
Hexachlorocyclopentadiene	2.24E-14	3.20E-20	2.27E-14	3.25E-20
Isodrin	6.34E-15	9.06E-21	6.44E-15	9.19E-21
Malathion	9.6 8 E-15	1.38E-20	9.82E-15	1.40E-20
Methanol	2.75E-10	3.93E-16	2.79E-10	3.99E-16
4-Nitrophenol	1.00E-13	1.43E-19	1.02E-13	1.45E-19
PAHS				
Acenephthalene	1.19E-10	1. 69 E-16		1.72E-16
Acenaphthene	1.19E-10	1.69E-16		1.72E-16
Benzo(a)pyrene	4.17E-13	5.96E-19		1.68E-17
Chrysene	5.23E-13	7.47E-19		1.91E-17
Dibenzo(a,h)anthracene	5.67E-13	8.11E-19		1.99E-17
Fluoranthene	1.53E-12	2.19E-18		5.65E-17
Fluorene	2.37E-11	3.38E-17	2.40E-11	3.43E-17
Phenenthrene	7.24E-13	1.03E-18	2.15E-11	3.07E-17
Pyrene	3.51E-13	5.01E-19		1.50E-17
Parathion	1.34E-15	1.91E-21	1.36E-15	1.94E-21
Pentachlorobenzene	3.62E-13	5.17E-19		5.24E-19
Phenol	1.28E-09	1.83E-15	1.30€-09	1.86E-15
Quinoline	5.67E-14	8.09E-20	5.75E-14	8.21E-20
WILLIAM THE				

Table 8D-1

(continued)

Supone	4.01E-15	5.73E-21	4.07E-15	5.82E-21
Tetrachlorobenzene	1.53E-13	2.18E-19	1.55E-13	2.21E-19
Trichlorobanzena	8.04E-14	1.15E-19	8.15E-14	1.16E-19
Urea	1.74E-09	2.48E-15	1.76E-09	2.52E-15
Vaccina	1.07E-14	1.53E-20	1.09E-14	1.55E-20
INORGANICS				
Antimony	1.10E-06	1.58E-12	1.12E-06	1.60E-12
Arsenic	6.25E-06	8.92E-12	6.34E-06	9.05E-12
Borium	1.53E-06	2.19E-12	1.55E-06	2.22E-12
Beryllium	6.39E-08	9.13E-14	6.48E-08	9.26E-16
Copper	5.86E-03	8.37E-09	5.94E-03	8.49E-09
Lead	1.96E-06	2.80E-12	1.99E-06	2.84E-12
Mercury	1.73E-06	2.47E-12	1.75E-06	2.51E-12
Selenium	1.60E-02	2.29E-08	1.63E-02	2.32E-08
Silver	1.66E-04	2.37E-10	1.68E-04	2.41E-10
Thallium	1.61E-05	2.30E-11	1.64E-05	2.34E-11

Annual average soil/dust ingestion rate (100 mg/day) Exposure frequency (365 days/year) Body weight (70 kg)

Table 8D-2

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Adult, Resident-B Scenario

	AVERA	GF	NAXIN	M
	C soil	ED1	C soil	EDI
	CALCULATED	ESTIMATED	CALCULATED	ESTIMATED
	CONC IN	DAILY	CONC IN	DAILY
	SOIL	INTAKE	SOIL	INTAKE
	. 1M	mg/Kg/day	. 1M	mg/Kg/day
	mg/Kg		mg/Kg	
ORGANICS				
Acetonitrile	1.65E-12	2.35E-18	1.67E-12	2.38E-18
Aldrin	1.74E-14	2.49E-20	1.77E-14	2.53E-20
Atrazine	4.03E-17	5.75E-23	1.32E-15	1.89E-21
Benzaldehyde	3.57E-10	5.10E-16	3.62E-10	5.17E-16
Benzofuran	6.85E-10	9.79E-16	6.95E-10	9.93E-16
Benzoic Acid	1.73E-10	2.47E-16	1.75E-10	2.51E-16
Benzonitrile	1.65E-13	2.35E-19	1.67E-13	2.38E-19
Carbazole	3.29E-14	4.70E-20	3.34E-14	4.77E-20
4-Chlorobiphenyl	1.99E-10	2.84E-16	2.02E-10	2.88E-16
4,4-Chlorobiphenyl	2.60E-12	3.72E-18	2.64E-12	3.77E-18
4-Chlorophenylmethylsulfone	1.32E-15	1.89E-21	3.47E-14	4.96E-20
4-Chlorophenylmethylsulfoxide		7.03E-21	1.29E-13	1.85E-19
p,p-DDE	5.41E-12	7.73E-18	2.72E-11	3.88E-17
P. P-00T	1.08E-15	1.55E-21	5.44E-15	7.77E-21
Dibenzofuran	3.42E-11	4.89E-17	3.47E-11	4.96E-17
Dieldrin	3.58E-15	5.11E-21	3.63E-15	5.18E-21
Diisopropyl Methylphosphonete		3.74E-20	4.58E-13	6.55E-19
1.3-Dimethylbenzene	6.85E-11	9.79E-17	6.95E-11	9.93E-17
Dimethyl Methylphosphonate	1.03E-14	1.47E-20	3.61E-13	5.16E-19
Dimethyl hethylphosphorate	4.11E-12	5.87E-18	4.17E-12	5.96E-18
	2.58E-12	3.68E-18	1.00E-11	1.43E-17
Dioxins/furens (EPA TEFs)	6.29E-16	8.98E-22	6.38E-16	9.11E-22
Dithians				
Endrin	7.19E-16	1.03E-21	3.28E-15	4.69E-21
Hexach Lorobenzene	1.46E-13	2.09E-19	1.06E-12	1.51E-18
Hexachlorocyclopentadiene	3.24E-14	4.63E-20	3.29E-14	4.70E-20
Isodrin	9.17E-15	1.31E-20	9.30€-15	1.33E-20
Malathion	1.40E-14	2.00E-20	1.42E-14	2.03E-20
Hethanol	3.98E-10	5.68E-16	4.03E-10	5.76E-16
4-Nitrophenol	1.45E-13	2.07E-19	1.47E-13	2.10E-19
PAHS				
Acenaph tha lene	1.72E-10	2.45E-16	1.74E-10	2.49E-16
Acenephthene	1.72E-10	2.45E-16	1.74E-10	2.49E-16
Benzo(a)pyrene	6.03E-13	8.62E-19	1.70E-11	2.43E-17
Chrysene	7.55E-13	1.08E-18	1.93E-11	2.76E-17
Dibenzo(a,h)anthracene	8.20E-13	1.17E-18	2.01E-11	2.87E-17
Fluoranthene	2.21E-12	3.16E-18	5.72E-11	8.17E-17
Fluorene	3.42E-11	4.89E-17	3.47E-11	4.96E-17
Phenenthrene	1.05E-12	1.50E-18	3.11E-11	4.44E-17
Pyrene	5.07E-13	7.25E-19	1.52E-11	2.17E-17
Parathion	1.93E-15	2.76E-21	1.96E-15	2.80E-21
Pentachionobenzene	5.23E-13	7.47E-19	5.31E-13	7.58E-19
	1.86E-09	2.65E-15	1.88E-09	2.69E-15
Phenol	8.19E-14	1.17E-19	8.31E-14	1.19E-19
Quinoline	0.176-14	1.1/6-19	0.312-14	1.175-17

Table 8D-2

(continued)

Supena	5.808-15	8.295-21	5.89E-15	8.41E-21
Tetrachlorobenzene	2.21E-13	3.15E-19	2.24E-13	3.20E-19
Trichlorobenzene	1.16E-13	1.66E-19	1.185-13	1.68E-19
Urea	2.51E-09	3.59E-15	2.55E-09	3.64E-15
Vapona	1.55E-14	2.21E-20	1.57E-14	2.248-20
INORGANICS				
Antimony	1.60E-06	2.28E-12	1.62E-06	2.31E-12
Arsenic	9.03E-06	1.29E-11	9.16E-06	1.316-11
Barium	2.21E-06	3.16E-12	2.24E-06	3.216-12
Beryllium	9.24E-08	1.32E-13	9.37E-08	1.34E-13
Copper	8.47E-03	1.21E-08	8.59E-03	1.23E-08
Lead	2.84E-06	4.05E-12	2.88E-06	4.11E-12
Hercury	2.50E-06	3.57E-12	2.54E-06	3.62E-12
Selenium	2.32E-02	3.31E-08	2.35E-02	3.368-08
Silver	2.40E-06	3.43E-10	2.44E-04	3.485-10
Thailium	2.33E-05	3.33E-11	2.36E-05	3.385-11

Annual average soil/dust ingestion rate (100 mg/day) Exposure frequency (365 days/year) Body weight (70 kg)

Table 8D-3

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Adult, Farmer Scenario

	41554	or	NAXIM	Manager
	AVERA		C soil	EDI
	C soil	EDI		ESTIMATED
	CALCULATED	ESTIMATED	CALCULATED	
	CONC IN	DAILY	CONC IN	DAILY
	SOIL	INTAKE	SOIL	INTAKE
	, 1M	mg/Kg/day	. 1#	mg/Kg/day
	mg/Kg		mg/Kg	
COCANTOC				
ORGANICS Acetonitrile	9.75E-13	1.39E-18	9.89E-13	1.41E-18
Aldrin	1.03E-14	1.48E-20	1.05E-14	1.50E-20
Atrazine	2.39E-17	3.41E-23	7.83E-16	1.12E-21
	2.12E-10	3.02E-16	2.15E-10	3.07E-16
Benzaldehyde	4.06E-10	5.80E-16	4.12E-10	5.89E-16
Benzofuran	1.03E-10	1.46E-16	1.04E-10	1.49E-16
Benzoic Acid	9.75E-14	1.39E-19	9.89E-14	1.41E-19
Benzonitrile	1.95E-14	2.79E-20	1.98E-14	2.83E-20
Carbazole	1.18E-10	1.68E-16	1.20E-10	1.71E-16
4-Chlorobiphenyl	1.54E-12	2.21E-18	1.57E-12	2.24E-18
4,4-Chlorobiphenyl	7.84E-16	1.12E-21	2.06E-14	2.94E-20
4-Chlorophenylmethylsulfone		4.17E-21	7.66E-14	1.09E-19
4-Chlorophenylmethylsulfoxide		4.58E-18	1.61E-11	2.30E-17
p,p-DDE	3.21E-12		3.22E-15	4.60E-21
p,p-00T	6.42E-16	9.17E-22		2.94E-17
Dibenzofuran	2.03E-11	2.90E-17	2.06E-11	3.07E-21
Dieldrin	2.12E-15	3.03E-21	2.15E-15	3.88E-19
Diisopropyl Methylphosphonate		2.22E-20	2.72E-13	
1,3-Dimethylbenzene	4.06E-11	5.80E-17	4.12E-11	5.89E-17
Dimethyl Methylphosphonate	6.12E-15	8.74E-21	2.14E-13	3.06E-19
Dimethylphosphate	2.44E-12	3.48E-18	2.47E-12	3.53€-18
Dioxins/Furans (EPA TEFs)	1.53E-12	2.18E-18	5.94E-12	8.49E-18
Dithiane	3.73E-16	5.32E-22	3.78E-16	5.40€-22
Endrin	4.26E-16	6.09E-22	1.95E-15	2.78E-21
Hexach Lorobanzana	8.66E-14	1.24E-19	6.26E-13	8.94E-19
Hexachlorocyclopentadiene	1.92E-14	2.75E-20	1.95E-14	2.78E-20
Isodrin	5.44E-15	7.77E-21	5.52E-15	7.88E-21
Malathion	8.30E-15	1.19E-20	8.42E-15	1.20E-20
Methanol	2.36E-10	3.37E-16	2.39E-10	3.42E-16
4-Nitrophenol	8.59E-14	1.23E-19	8.72E-14	1.25E-19
PAHS				
Acenephthalene	1.02E-10	1.45E-16	1.03E-10	1.47E-16
Acenephthene	1.02E-10	1.45E-16	1.03E-10	1.47E-16
Benzo(a)pyrene	3.58E-13	5.11E-19	1.01E-11	1.44E-17
Chrysene	4.48E-13	6.40E-19	1.14E-11	1.63E-17
Dibenzo(a,h)anthracene	4.86E-13	6.95E-19	1.19E-11	1.70E-17
Fluorenthene	1.31E-12	1.87E-18	3.39E-11	4.85E-17
Fluorene	2.03E-11	2.90E-17	2.06E-11	2.94E-17
Phenenthrene	6.21E-13	8.87E-19	1.84E-11	2.63E-17
	3.01E-13	4.30E-19	9.02E-12	1.29E-17
Pyrene	1.15E-15	1.64E-21	1.16E-15	1.66E-21
Parathion	3.10E-13	4.43E-19	3.15E-13	4.49E-19
Pentach Lorobanzone		1.57E-15	1.12E-09	1.59E-15
Phenol	1.10E-09	6.94E-20	4.93E-14	7.04E-20
Quinoline	4.86E-14	0.745 20	4.736"14	1.046-20

Table 8D-3

(continued)

Supona	3.44E-15	4.92E-21	3.49E-15	4.99E-21
Tetrachiorobenzene	1.31E-13	1.87E-19	1.33E-13	1.896-19
Trichlorobenzens	6.89E-14	9.84E-20	6.99E-14	9.988-20
Urea	1.49E-09	2.13E-15	1.51E-09	2.16E-15
Vapona	9.17E-15	1.31E-20	9.31E-15	1.33E-20
INORGANICS				
Antimony	9.46E-07	1.35E-12	9.60E-07	1.37E-12
Arsenic	5.35E-06	7.65E-12	5.43E-06	7.76E-12
Serium	1.31E-06	1.87E-12	1.33E-06	1.90E-12
Beryllium	5.48E-08	7.83E-14	5.56E-08	7.94E-14
Copper	5.02E-03	7.17E-09	5.09E-03	7.28E-09
Lead	1.68E-06	2.40E-12	1.71E-06	2.44E-12
Mercury	1.48E-06	2.12E-12	1.50E-06	2.15E-12
Selenium	1.37E-02	1.96E-08	1.39E-02	1.99E-08
Silver	1.42E-04	2.03E-10	1.44E-04	2.06E-10
Thallium	1.38E-05	1.97E-11	1.40E-05	2.00E-11

Annual average soil/dust ingestion rate (100 mg/day) Exposure frequency (365 days/year) Body weight (70 kg)

Table 8D-4

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Adult, Worker Scenario

C Soil CALCULATED CONC IN SOIL INTAKE Mg/Kg/day Mg		AVERAG	£	NAXIMU	4
CALCULATED CONC. IN					EDI
CONC IN SOIL INTAKE SO				CALCULATED	ESTIMATED
Name					DAILY
ORGANICS Acetonitrile Acetonitrile Aldrin Acetonitrile Aldrin Acetonitrile Aldrin Acetonitrile Acetonitrile Aldrin Acetonitrile Acetonitrile Acetonitrile Acetonitrile Acetonitrile Acetonitrile Benzaldehyde Benzaldehyde Benzaldehyde Benzaldehyde Benzaldehyde Benzofuren Benzoitrile Benzoitrile Benzoitrile Benzoitrile Carbazole Achtorobiphenyl Achtorobiphenyl Achtorobiphenyl Achtorobiphenyl Achtorobiphenyl Achtorophenylmethylsulfone Achtorophenylmethylmenate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Achtorophenylmethylphosphonate Ac				SOIL	INTAKE
No. No.					ma/Ka/dey
Acetonitrile			mg/kg/cay		mg/ mg//
Acetonitrile Aldrin 1.58e-14 Aldrin 3.65e-17 1.61e-23 1.20e-15 5.27e-22 Arazine 3.24e-10 1.45e-16 Benzaldehyde 3.24e-10 Benzofuran 6.22e-10 Benzofuran 6.22e-10 Benzoir Acid Benzoir Acid 1.57e-10 Benzoir Acid 1.57e-10 Benzoir Acid 1.57e-10 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Ben		mg/Kg		met va	
Acetonitrile Aldrin 1.58e-14 Aldrin 3.65e-17 1.61e-23 1.20e-15 5.27e-22 Arazine 3.24e-10 1.45e-16 Benzaldehyde 3.24e-10 Benzofuran 6.22e-10 Benzofuran 6.22e-10 Benzoir Acid Benzoir Acid 1.57e-10 Benzoir Acid 1.57e-10 Benzoir Acid 1.57e-10 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Acid 1.49e-13 Benzoir Ben	- CONTROL CO				
Atdrin Attrazine 3.65E-17 3.26E-10 3.36E-17 3.36E-10 3.36E-17 3.36E-10 3.36E-17 3.36E-10 3.36E-1	OKGANICS	1.49E-12			
Atrazine Benzaldehyde Benzaldehyde Benzofuran Benzofuran 1.57E-10 Benzofuran 1.57E-10 Benzofuran 1.57E-10 Benzoritrile 1.69E-13 Benzoritrile 1.69E-13 Benzoritrile 2.98E-14 1.31E-20 3.03E-14 1.33E-20 4.Chlorobiphemyl 1.80E-10 7.94E-17 1.83E-10 8.06E-17 4.4-Chlorobiphemyl 1.80E-10 7.94E-17 1.83E-10 8.06E-12 1.04E-18 2.40E-12 1.37E-20 3.03E-14 1.39E-20 3.15E-14 1.39E-20 3.15E-14 1.39E-20 3.15E-16 1.37E-20 3.15E-16 1.04E-18 2.40E-17 1.07E-21 1.17E-13 5.16E-20 1.17E-13 1.100E-18 1.100E-18 1.100E-18 1.100E-18 1.100E-		1.58E-14	6.96E-21		
Senzaldehyde		3.65E-17			
Benzofuran Sezion		3.24E-10	1.43E-16		
Serizor Seri	Benzalcenyoe	6.22E-10	2.74E-16		
Senzonitrile			6.91E-17	1.59E-10	
Serizont Frie 2,98E-14 1,31E-20 3,03E-14 1,33E-20 4,-Chlorobiphenyl 1,80E-10 7,94E-17 1,83E-10 8,06E-17 4,4-Chlorobiphenyl 1,80E-10 1,04E-18 2,40E-12 1,06E-18 1,06E-18 4,4-Chlorobiphenyl 1,20E-15 5,28E-22 3,15E-14 1,39E-20 4,-Chlorophenyl 1,20E-15 5,28E-22 3,15E-14 1,39E-20 4,-Chlorophenyl 1,20E-15 5,28E-22 3,15E-14 1,08E-17 1,08E			6.57E-20		
### Chlorobiphernyl 1.80E-10				3.03E-14	
4Chlorobiphenyl 4.4-Chlorobiphenyl 4.4-Chlorophenylmethylsulfone 4.Chlorophenylmethylsulfoxide			7.94E-17	1.83E-10	• • • • • • • • • • • • • • • • • • • •
4-Chlorophenylmethylsulfone 4-Chlorophenylmethylsulfoxide 4-Chlorophenylmethylsulfoxide 4-Chlorophenylmethylsulfoxide 4-Chlorophenylmethylsulfoxide 4-Chlorophenylmethylsulfoxide 4-Oberla 2.16E-18 2.46E-11 1.08E-17 p.p-00E 9.82E-16 4.32E-22 4.93E-15 2.17E-21 p.p-00T 3.11E-11 1.37E-17 3.15E-11 1.39E-17 Dibenzofuran 3.24E-15 1.43E-21 3.29E-15 1.45E-21 Dibenzofuran 3.24E-15 1.43E-21 3.29E-15 1.45E-21 Diseldrin 3.24E-15 1.43E-21 3.29E-15 1.45E-21 Diseldrin 3.24E-15 1.43E-21 3.29E-15 1.45E-21 Dimethylbosphonate 2.37E-14 1.05E-20 4.16E-13 1.83E-19 Dimethyl Methylphosphonate 9.36E-15 4.12E-21 3.28E-13 1.44E-19 Dimethylphosphate 3.78E-12 1.64E-18 3.78E-12 1.67E-18 Dioxina/Furans (EPA TEFs) 2.34E-12 1.03E-18 9.09E-12 4.00E-18 Dioxina/Furans (EPA TEFs) 2.34E-12 1.03E-18 9.09E-12 4.00E-18 Dioxina/Furans (EPA TEFs) 5.70E-16 2.51E-22 5.79E-16 2.55E-22 Dithiane 5.70E-16 2.51E-22 5.79E-16 2.55E-22 Dithiane 6.52E-16 2.87E-22 2.98E-15 1.31E-21 Endrin 6.52E-16 2.87E-22 2.98E-15 1.31E-21 Isodrin 8.32E-13 3.66E-21 1.29E-14 5.67E-21 Isodrin 8.32E-15 3.66E-21 1.29E-14 5.67E-21 Isodrin 1.27E-14 5.59E-21 1.29E-14 5.67E-21 Isodrin 1.27E-14 5.59E-21 1.29E-14 5.67E-21 Acenaphthalene 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Acenaphthalene 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Acenaphthene 5.47E-13 2.41E-19 1.54E-11 7.71E-18 Dibenzo(a,h)anthracene 7.44E-13 3.28E-19 1.52E-11 7.71E-18 Dibenzo(a,h)anthracene 7.44E-13 3.28E-19 1.82E-11 1.39E-17 Fluorene 9.50E-13 4.18E-19 2.82E-11 1.29E-14 Phenanthrene 9.50E-13 4.18E-19 2.82E-11 1.29E-17 Phenanthrene 9.50E-13 4.18E-19 2.82E-11 1.24E-17 Phenanthrene 4.76E-13 2.09E-19 4.81E-13 2.12E-19 Phenanthrene 4.76E-13 2.09E-19 4.81E-13 2.12E-19 Phenanthrene 4.76E-13 2.09E-19 4.81E-13 2.12E-19 Phenanthrene 4.76E-13 2.09E-19 4.81E-13 2.12E-19 Phenanthrene 4.76E-13 2.09E-19 4.81E-13 2.12E-19 Phenanthrene 4.76E-14 3.32E-20	4-Chlorobiphenyl			2.40E-12	1.06E-18
4-Chloropherylmethylsulfoxide 4-Chloropherylmethylsulfoxide 4-AFE-15	4,4-Chlorobiphenyl			3.15E-14	
## A-Chlorophenylmethylsulfoxide 4.90E-12 2.16E-18 2.46E-11 1.08E-17 p.p-DDE p.p-DDT 9.82E-16 4.32E-22 4.93E-15 2.17E-21 1.39E-17 3.15E-11 3.29E-13 3.28E-13	4-Chlorophenylmetnylaultone				5.16E-20
p,p-00E p,p-DDT Dibenzofuran Dieldrin Diisopropyl Methylphosphonate 1,3-Dimethylbosphonate 1,3-Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphate Dioxins/Furans (EPA TEFs) Dithiane Endrin Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Isodrin Melathion Sale-13 Isoge-15 Isodrin Melathion Acenaphthalene Acenaphthalene Acenaphthalene Acenaphthalene Dibenzo(a,h)anthracene Fluorane Fluorane Pyrene Pyrene Parathion Phenol PARS Parathion Pentachlorobenzene Pyrene Phenol PARS Parathion Phenol PARS-15 Isoge-15 Isoge-15 Isoge-17 Isoge-17 Isoge-17 Isoge-18 Isoge-13 Isoge-1					
Dipersorum Dip	p,p-00E				2.17E-21
Dibenzofuran Dieldrin Diisopropyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethyl Methylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dimethylphosphonate Dioxins/Furans (EPA TEFs) Dihliane Dioxins/Furans (EPA TEFs) Dithiane Dioxins/Furans (EPA TEFs) Dibliane Dioxins/Furans (EPA TEFs) Dibliane Dioxins/Furans (EPA TEFs) Dividinate Dioxins/Furans (EPA TEFs) Dibliane Dioxins/Furans (EPA TEFs) Dioxins/Furans (EPA TEFs) Dibliane Dioxins/Furans (EPA TEFs) Dioxins/Furans (EPA TeFs) Dioxins/Furans (EPA TeFs) Dioxins/Furans (EPA TeFs) Dioxins/Furans (EPA TeFs) Dioxins/Furans (EPA TeFs) Dioxins/Furans (EPA TeFs) Dioxins/Furans (EPA TeFs) Dioxins/Furans (EPA TeFs) Diox	p,p-DDT				
Disiopropyl Nethylphosphonate 2.37E-14 1.05E-20 4.16E-13 1.83E-19	Dibenzofuran				
Diisopropyl Hethylphosphonate 1,3-Dimethylbenzere 6,22E-11 2,74E-17 6,31E-11 2,78E-17 2,78E-17 6,31E-11 2,78E-17 2,78E-18 2,78E-17 1,58E-10 2,98E-15 1,31E-21 2,98E-15 1,31E-21 2,98E-15 2,78E-15 2,78E-15 2,78E-17 2,78E-1	Dieldrin				
1,3-Dimethyl Bethylphosphonate Dimethyl Rethylphosphonate Dimethylphosphate Dimethylphosphate Dioxins/Furans (EPA TEFs) Dithiane Endrin Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Lisodrin Hethanol Hethanol A-Nitrophenol PAHs Acenaphthalene Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Pyrene Parathion Pentachlorobenzene Dibenzo(benzene Dibenzo(benzene Dibenzo(a, h)anthracene Dibenzo(a) Pyrene Dibenzo(benzene Dibenzo(benzene Dibenzo(benzene Dibenzo(a) Dithiane Dib		2.3/E-14			
Dimethyl Methylphosphorate Dimethylphosphate Dimethylphosphate Dioxins/Furans (EPA TEFs) Dithiane Endrin Hexachlorobenzene Hexachlorocyclopentadiene Diberzocyclopentadiene Hexachlorocyclopentadiene He	1,3-Dimethylbenzene			3 286-13	
Dimethylphosphate	Dimethyl Methylphosphonate				
Dioxins/Furans (EPA TEFs) 2.346-12 1.036-18 2.576-22 Dithiane 5.706-16 2.576-22 2.986-15 1.316-21 Endrin 6.526-16 2.876-22 2.986-15 1.316-21 Endrin 6.526-13 3.666-21 3.446-15 3.726-21 Endrin 6.526-15 3.666-21 3.446-15 3.726-21 Endrin 6.576-21 6.576-	Dimethylphosphate				
Dithiene	Dioxins/Furans (EPA TEFs)				
Endrin Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene 1.32E-13 5.83E-20 9.57E-13 4.21E-19 1.31E-20 2.98E-14 1.31E-20 2.98E-14 1.31E-20 2.98E-14 1.31E-20 2.98E-14 1.31E-20 2.98E-15 3.66E-21 8.44E-15 3.72E-21 1.29E-14 5.67E-21 1.29E-16 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.58E-10 6.95E-17 1.28E-11 1.29E-11 1.29E-12 1.28E-11 1.29E-12 1.28E-11 1.29E-12 1.28E-11 1.29E-12 1.28E-11 1.29E-12 1.28E-11 1.29E-12 1.29E-14 1.29E-12 1.29E-14 1.29E-20 1.29E-14 1.29E-20 1.29E-14 1.29E-20 1.29E-14 1.29E-20 1.29E-17 1.29E-16 1.29E-17 1.29E-16 1.29E-17 1.29E-16 1.29E-17 1.29E-16 1.29E-17 1.29E-16 1.29E-17 1.29E-16 1.29E-17 1.29				45	
Hexachlorobenzere	Endrin				
Nexachiorocyclopentadiene	Hexach Lorobenzene				
Isodrin	Hexachi procyclopentadiena				
Nation 1.27E-14 3.59E-21 1.27E-15 3.66E-10 1.61E-16 3.66E-10 1.61E-16 3.66E-10 1.33E-13 5.87E-20 1.38E-10 6.95E-17 1.58E-10 6.95E-17 1.38E-11 6.98E-18 6.96E-18					
Nethanol 1.31E-13 5.79E-20 1.33E-13 5.87E-20				1.292-14	
4-Nitrophenol 1.31E-13 5.79E-20 1.33E-13 5.79E-20 PAHs Acenaphthalene 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Acenaphthene 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Acenaphthene 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Acenaphthene 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Benzo(a)pyrane 5.47E-13 2.41E-19 1.54E-11 6.79E-18 Chrysene 6.85E-13 3.02E-19 1.75E-11 7.71E-18 Dibenzo(a,h)anthracene 7.44E-13 3.28E-19 1.82E-11 8.03E-18 Fluorenthene 2.01E-12 8.84E-19 5.19E-11 2.28E-17 Fluorene 3.11E-11 1.37E-17 3.15E-11 1.39E-17 Phenanthrane 9.50E-13 4.18E-19 2.82E-11 1.24E-17 Phenanthrane 4.60E-13 2.03E-19 1.38E-11 6.08E-18 Pyrane 1.75E-15 7.72E-22 1.78E-15 7.83E-22 Parathion 4.74E-13 2.09E-19 4.81E-13 2.12E-19 Pentachlorobenzene 1.68E-09 7.41E-16 1.71E-09 7.55E-16 Phenol				45	
PAHs 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Acenaphthalene 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Acenaphthene 1.56E-10 6.85E-17 1.58E-10 6.95E-17 Benzo(a)pyrane 5.47E-13 2.41E-19 1.54E-11 6.79E-18 Chrysene 6.85E-13 3.02E-19 1.75E-11 7.71E-18 Chrysene 7.44E-13 3.28E-19 1.82E-11 8.03E-18 Fluoranthene 2.01E-12 8.84E-19 5.19E-11 2.28E-17 Fluorene 3.11E-11 1.37E-17 3.15E-11 1.39E-17 Phenanthrene 9.50E-13 4.18E-19 2.82E-11 1.24E-17 Pyrane 4.60E-13 2.03E-19 1.38E-11 6.08E-18 Pyrane 1.75E-15 7.72E-22 1.78E-15 7.83E-22 Parathion 4.74E-13 2.09E-19 4.81E-13 2.12E-19 Phenol 1.68E-09 7.41E-16 1.71E-09 7.52E-16 1.68E-09 7.41E-16 1.71E-09		1.31E-13	5.79E-20	1.336-13	3.0/6-20
Acenephthalene					4 06E-17
Acenephthene 1.56E-10 6.39E-17 1.54E-11 6.79E-18 Benzo(a)pyrene 5.47E-13 2.41E-19 1.54E-11 7.71E-18 Chrysene 6.85E-13 3.02E-19 1.75E-11 7.71E-18 Dibenzo(a,h)enthracene 7.44E-13 3.28E-19 1.82E-11 8.03E-18 Fluorenthene 2.01E-12 8.84E-19 5.19E-11 2.28E-17 Fluorene 3.11E-11 1.37E-17 3.15E-11 1.39E-17 Phenenthrene 9.50E-13 4.18E-19 2.82E-11 1.24E-17 Phyrene 1.75E-15 7.72E-22 1.78E-15 7.83E-22 Parathion 4.74E-13 2.09E-19 4.81E-13 2.12E-19 Pentachlorobenzene 1.68E-09 7.41E-16 1.71E-09 7.52E-16 Phenol 7.43E-14 3.27E-20 7.54E-14 3.32E-20		1.56E-10			
Benzo(a)pyrene 5.47E-13 2.47E-19 1.75E-11 7.71E-18 Chrysene 6.85E-13 3.02E-19 1.82E-11 8.03E-18 Dibenzo(a,h)enthracene 7.44E-13 3.28E-19 1.82E-11 8.03E-18 Fluorenthene 2.01E-12 8.84E-19 5.19E-11 2.28E-17 Fluorene 3.11E-11 1.37E-17 3.15E-11 1.39E-17 Phenenthrene 9.50E-13 4.18E-19 2.82E-11 1.24E-17 Pyrene 4.60E-13 2.03E-19 1.38E-11 6.08E-18 Parathion 1.75E-15 7.72E-22 1.78E-15 7.83E-22 Pentachlorobenzene 1.68E-09 7.41E-16 1.71E-09 7.52E-16 Phenol 7.63E-14 3.32E-20 7.54E-14 3.32E-20		1.56E-10			
6.85E-13 3.02E-19 1.75E-11 7.71E-16 Chrysene 7.44E-13 3.28E-19 1.82E-11 8.03E-18 Dibenzo(a,h)enthracene 7.44E-13 3.28E-19 1.82E-11 8.03E-18 Fluorenthene 3.11E-11 1.37E-17 3.15E-11 1.39E-17 Phenanthrene 9.50E-13 4.18E-19 2.82E-11 1.24E-17 Phenanthrene 4.60E-13 2.03E-19 1.38E-11 6.08E-18 Pyrene 1.75E-15 7.72E-22 1.78E-15 7.83E-22 Parathion 4.74E-13 2.09E-19 4.81E-13 2.12E-19 Pentachlorobenzene 1.68E-09 7.41E-16 1.71E-09 7.52E-16 Phenol 7.43E-14 3.27E-20 7.54E-14 3.32E-20		5.47E-13			
Dibenzo(a,h)anthracene		6.85E-13			
Fluorenthene 2.01E-12 3.37E-17 3.15E-11 1.39E-17 Fluorene 3.11E-11 1.37E-17 3.15E-11 1.39E-17 3.15E-11 1.24E-17 Phenenthrene 9.50E-13 4.18E-19 2.82E-11 1.24E-17 9.50E-13 2.03E-19 1.38E-11 6.08E-18 9.79E-15 7.72E-22 1.78E-15 7.83E-22 9.79E-15 7.72E-22 1.78E-15 7.83E-22 9.79E-19 4.81E-13 2.12E-19 9.79E-16 9.79E-16 9.79E-17 7.52E-16 9.79E-17 7.54E-18 3.32E-20 7.54E-18 3.2E-20 7.54E-18 3.32E-20 7.54E-18 3.2E-20 7.54E-18	Diberro(s h)enthracens	7.44E-13	3.28E-19		
Section Sect		2.01E-12	8.84E-19		
Phenenthrene 9.50E-13 4.18E-19 2.82E-11 1.24E-17 Phenenthrene 4.60E-13 2.03E-19 1.38E-11 6.08E-18 Pyrene 1.75E-15 7.7ZE-22 1.78E-15 7.83E-22 Parathion 4.74E-13 2.09E-19 4.81E-13 2.12E-19 Pentachlorobenzene 1.68E-09 7.41E-16 1.71E-09 7.52E-16 Phenol 7.43E-14 3.27E-20 7.54E-14 3.32E-20		3.11E-11	1.37E-17		
Pyrene 4.60E-13 2.03E-19 1.38E-11 6.08E-10 Pyrene 1.75E-15 7.7ZE-22 1.78E-15 7.83E-22 Parathion 4.7EE-13 2.09E-19 4.81E-13 2.12E-19 Pentachlorobenzene 1.68E-09 7.41E-16 1.71E-09 7.52E-16 Phenol 7.63E-14 3.27E-20 7.54E-14 3.32E-20					
Pyrame 1.75E-15 7.72E-22 1.78E-15 7.83E-22 Parathion 4.74E-13 2.09E-19 4.81E-13 2.12E-19 Pentachlorobenzene 1.68E-09 7.41E-16 1.71E-09 7.52E-16 Phenol 7.43E-14 3.72E-20 7.54E-14 3.32E-20		4.40E-13	2.03E-19	1.38E-11	
Parathion 4.74E-13 2.09E-19 4.81E-13 2.12E-19 Pentachlorobenzene 4.76E-13 2.09E-19 7.51E-16 1.71E-09 7.52E-16 Phenol 7.63E-14 3.32E-20 7.54E-14 3.32E-20					
Pentachtoropenzene 1.68E-09 7.41E-16 1.71E-09 7.52E-16 Phenol 7.53E-14 3.77E-20 7.54E-14 3.32E-20				4.81E-13	
Phenol 7.435-14 3.275-20 7.545-14 3.325-20				1.71E-09	
Quinoline					3.32E-20
	Quinoline	1.436-14			

Table 8D-4

(continued)

Supona	5.26E-15	2.32E-21	5.34E-15	2.35E-21
Tetrachlorobenzena	2.00E-13	8.81E-20	2.03E-13	8.94E-20
Trichlorobenzena	1.05E-13	4.64E-20	1.07E-13	4.71E-20
Urea	2.28E-09	1.00E-15	2.31E-09	1.02E-15
Vapona	1.40E-14	6.18E-21	1.42E-14	6.27E-21
INORGANICS Antimony Arsenic Barium Beryllium Copper Lesd Mercury Selenium Silver Thallium	1.45E-06	6.37E-13	1.47E-06	6.47E-13
	8.19E-06	3.61E-12	8.31E-06	3.66E-12
	2.01E-06	8.84E-13	2.04E-06	8.96E-13
	8.38E-08	3.69E-14	8.50E-08	3.74E-14
	7.68E-03	3.38E-09	7.79E-03	3.43E-09
	2.57E-06	1.13E-12	2.61E-06	1.15E-12
	2.27E-06	9.98E-13	2.30E-06	1.01E-12
	2.10E-02	9.25E-09	2.13E-02	9.39E-09
	2.18E-04	9.59E-11	2.21E-04	9.73E-11
	2.11E-05	9.31E-12	2.15E-05	9.45E-12

Annual average soil/dust ingestion rate (50 mg/day) Exposure frequency (225 days/year) Body weight (70 kg)

Table 8D-5

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Child, Resident-A Scenario

	AVERAC	E	MAXIM	M
	C soil	ED1	C soil	EDI
		ESTIMATED	CALCULATED	ESTIMATED
	CALCULATED	DAILY	CONC IN	DAILY
	CONC IN		SOIL	INTAKE
	SOIL	INTAKE		
	. 114	mg/Kg/day	. 1M	mg/Kg/day
	mg/Kg		mg/Kg	
ORGANICS				
Acetonitrile	1.14E-12	1.47E-17	1.15E-12	1.49E-17
Aldrin	1.21E-14	1.56E-19	1.22E-14	1.58E-19
Atrazine	2.78E-17	3.59E-22	9.14E-16	1.18E-20
Benza i dehyde	2.47E-10	3.19E-15	2.51E-10	3.23E-15
Benzofuran	4.74E-10	6.12E-15	4.81E-10	6.21E-15
Benzoic Acid	1.20E-10	1.54E-15	1.21E-10	1.57E-15
Benzonitrile	1.14E-13	1.47E-18	1.15E-13	1.49E-18
Carbazole	2.28E-14	2.94E-19	2.31E-14	2.98E-19
4-Chlorobiphenyl	1.38E-10	1.77E-15	1.40E-10	1.80E-15
4,4-Chlorobiphenyl	1.80E-12	2.32E-17	1.83E-12	2.36E-17
4-Chigrophenylmethylsulfone	9.15E-16	1.18E-20	2.40E-14	3.10E-19
4-Chlorophenylmethylsulfoxide	3.41E-15	4.40E-20	8.94E-14	1.15E-18
p.p-00E	3.74E-12	4.83E-17	1.88E-11	2.42E-16
p.p-00T	7.49E-16	9.67E-21	3.76E-15	4.85E-20
Dibenzofuran	2.37E-11	3.06E-16	2.40E-11	3.10E-16
Dieldrin	2.47E-15	3.19E-20	2.51E-15	3.24E-20
Diisopropyl Methylphosphonate	44	2.34E-19	3.17E-13	4.09E-18
1,3-Dimethylbenzene	4.74E-11	6.12E-16	4.81E-11	6.21E-16
Dimethyl Hethylphosphonete	7.14E-15	9.21E-20	2.50E-13	3.22E-18
Dimethylphosphate	2.84E-12	3.67E-17	2.88E-12	3.72E-17
Dioxins/Furens (EPA TEFs)	1.78E-12	2.30E-17	6.93E-12	8.95E-17
Dithiane	4.35E-16	5.61E-21	4.41E-16	5.69E-21
Endrin	4.97E-16	6.42E-21	2.27E-15	2.93E-20
Hexach Lorobenzene	1.01E-13	1.30E-18	7.30E-13	9.42E-18
Hexachiorocyclopentadiena	2.24E-14	2.89E-19	2.27E-14	2.93E-19
Isodrin	6.34E-15	8.18E-20	6.44E-15	8.30E-20
Halathion	9.68E-15	1.25E-19	9.82E-15	1.27E-19
	2.75E-10	3.55E-15	2.79E-10	3.60E-15
Methanol	1.00E-13	1.29E-18	1.02E-13	1.31E-18
4-Nitrophenol	1.002-13	1.272 10		,,,,,,
PAHs	1.19E-10	1.53E-15	1.20E-10	1.55E-15
Acenaphthalene	1.196-10	1.53E-15	1.20E-10	1.55E-15
Acenaphthene	4.17E-13	5.38E-18		1.52E-16
Benzo(a)pyrene		6.75E-18		1.72E-16
Chrysene	5.23E-13	7.32E-18		1.79E-16
Dibenzo(a,h)anthracens	5.67E-13	1.97E-17		5.11E-16
Fluoranthene	1.53E-12			3.10E-16
Fluorene	2.37E-11	3.06E-16		2.78E-16
Phenenthrene	7.24E-13	9.34E-18		1.36E-16
Pyrene	3.51E-13	4.53E-18		1.75E-20
Parathion	1.34E-15	1.72E-20		
Pentach Lorobenzene	3.62E-13	4.67E-18		4.73E-18 1.68E-14
Phenol	1.28E-09	1.66E-14		7.42E-19
Quinoline	5.67E-14	7.31E-19	5.75E-14	1.425-19

Table 8D-5

(continued)

Supona	4.01E-15	5.18E-20	4.07E-15	5.25E-20
Tetrachlorobanzana	1.53E-13	1.97E-18	1.55E-13	2.00E-18
Trichlorobanzana	8.04E-14	1.04E-18	8.15E-14	1.05E-18
Urea	1.74E-09	2.24E-14	1.76E-09	2.28E-14
Vapona	1.07E-14	1.38E-19	1.09E-14	1.40E-19
INORGANICS Antimony Arsenic Barium Beryllium Copper Lead Mercury Selenium Silver Thallium	1.10E-06	1.42E-11	1.12E-06	1.45E-11
	6.25E-06	8.06E-11	6.34E-06	8.18E-11
	1.53E-06	1.97E-11	1.55E-06	2.00E-11
	6.39E-08	8.25E-13	6.48E-08	8.37E-13
	5.86E-03	7.56E-08	5.94E-03	7.67E-08
	1.96E-06	2.53E-11	1.99E-06	2.57E-11
	1.73E-06	2.23E-11	1.75E-06	2.26E-11
	1.60E-02	2.07E-07	1.63E-02	2.10E-07
	1.66E-04	2.14E-09	1.68E-04	2.17E-09
	1.61E-05	2.08E-10	1.64E-05	2.11E-10

Annual average soil/dust ingestion rate (200 mg/day) Exposure frequency (365 days/year) Body weight (15.5 kg)

Table 8D-6

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Child, Resident-B Scenario

	AVERAG	£	MAXIMU	M
	C soil	EDI	C soil	ED1
	CALCULATED	ESTIMATED	CALCULATED	ESTIMATED
	CONC IN	DAILY	CONC IN	DAILY
	SOIL	INTAKE	SOIL	INTAKE
		ag/Kg/day	.14	mg/Kg/day
	. 1M	and I kell can	mg/Kg	
	mg/Kg			
ORGANICS				2 485 47
Acetonitrile	1.65E-12	2.12E-17	1.67E-12	2.15E-17
Aldrin	1.74E-14	2.25E-19	1.77E-14	2.285-19
Atrazine	4.03E-17	5.19E-22	1.32E-15	1.70E-20
Senza i dehyde	3.57E-10	4.61E-15	3.62E-10	4.67E-15
Benzofuren	6.85E-10	8.84E-15	6.95E-10	8.97E-15
Benzoic Acid	1.73E-10	2.23E-15	1.75E-10	2.26E-15
Benzonitrile	1.65E-13	2.12E-18	1.67E-13	2.15E-18
Carbazole	3.29E-14	4.25E-19	3.34E-14	4.31E-19
4-Chlorobiphenyl	1.99E-10	2.57E-15	2.02E-10	2.60E-15
4,4-Chlorobiphenyl	2.60E-12	3.36E-17	2.64E-12	3.41E-17
4-Chlorophenylmethylsulfone	1.32E-15	1.71E-20	3.47E-14	4.48E-19
4-Chlorophenylmethylsulfoxid	4.92E-15	6.35E-20	1.29E-13	1.67E-18
p,p-DOE	5.41E-12	6.98E-17	2.72E-11	3.50E-16
p,p-00T	1.08E-15	1.40E-20	5.44E-15	7.02E-20
Dibenzofuran	3.42E-11	4.42E-16	3.47E-11	4.48E-16
Dieldrin	3.58E-15	4.62E-20	3.63E-15	4.68E-20
Diisopropyl Methylphosphonat	e 2.62E-14	3.38E-19	4.58E-13	5.91E-18
1,3-Dimethylbenzene	6.85E-11	8.84E-16	6.95E-11	8.97E-16
Dimethyl Methylphosphonate	1.03E-14	1.33E-19	3.61E-13	4.66E-18
Dimethylphosphate	4.11E-12	5.30E-17	4.17E-12	5.38E-17
Dioxine/Furans (EPA TEFs)	2.58E-12	3.32E-17	1.00E-11	1.29E-16
Dithiane	6.29E-16	8.11E-21	6.38E-16	8.23E-21
Endrin	7.19E-16	9.27E-21	3.28E-15	4.24E-20
Hexachiorobenzene	1.46E-13	1.89E-18	1.06E-12	1.36E-17
Hexachlorocyclopentadiene	3.24E-14	4.18E-19	3.29E-14	4.24E-19
Isodrin	9.17E-15	1.18E-19	9.30€-15	1.20E-19
Melathion	1.40E-14	1.81E-19		1.83E-19
Methanol	3.96E-10	5.13E-15	4.03E-10	5.20E-15
4-Nitrophenol	1.45E-13	1.87E-18	1.47E-13	1.90E-18
PAHS		_		
Acenephthalene	1.72E-10	2.21E-15		2.25E-15
Acensolthens	1.72E-10	2.21E-15		2.25E-15
Benzo(a)pyrene	6.03E-13	7.78E-18		2.19E-16
Chrysene	7.55E-13	9.75E-18		2.49E-16
Dibenzo(a,h)enthracene	8.20E-13	1.06E-17		2.59E-16
Fluoranthens	2.21E-12	2.85E-17		7.38E-16
Fluorene	3.42E-11	4.42E-16	3.47E-11	4.48E-16
Phenanthrene	1.05E-12	1.35E-17		4.01E-16
* * * * * * * * * * * * * * * * * * * *	5.07E-13	6.55E-18	1.52E-11	1.96E-16
Pyrene	1.93E-15	2.49E-20		2.53E-20
Parathion	5.23E-13	6.75E-18	5.31E-13	6.85E-18
Pentach Lorobenzene	1.86E-09	2.39E-14		2.43E-14
Phenol	8.19E-14	1.06E-18		1.07E-18
Quinoline	•••••			

Table 8D-6

(continued)

Supona	5.80E-15	7.49E-20	5.89E-15	7.60E-20
Tetrachlorobanzene	2.21E-13	2.85E-18	2.24E-13	2.89E-18
Trichlorobenzene	1.16E-13	1.50E-18	1.18E-13	1.52E-18
Urea	2.51E-09	3.24E-14	2.55E-09	3.29E-14
Vapona	1.55E-14	2.00€-19	1.57E-14	2.03E-19
INORGANICS				
Antimony	1.60E-06	2.06E-11	1.62E-06	2.09E-11
Arsenic	9.03E-06	1.17E-10	9.16E-06	1.18E-10
Sarius	2.21E-06	2.85E-11	2.24E-06	2.90E-11
Beryllium	9.24E-08	1.19E-12	9.37E-08	1.21E-12
Copper	8.47E-03	1.09E-07	8.59E-03	1.11E-07
Lesd	2.84E-06	3.66E-11	2.88E-06	3.71E-11
Hercury	2.50E-06	3.22E-11	2.54E-06	3.27E-11
Selenium	2.32E-02	2.99E-07	2.35E-02	3.03E-07
Silver	2.40E-04	3.10E-09	2.44E-04	3.14E-09
Thallium	2.33E-05	3.01E-10	2.36E-05	3.05E-10

Annual average soil/dust ingestion rate (200 mg/day) Exposure frequency (365 days/year) Body weight (15.5 kg)

Table 8D-7

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Soil/Dust Ingestion Route of Exposure Child, Farmer Scenario

	445746	P	HAXIHU	·
	AVERAG	EDI	C soil	EDI
	C soil		CALCULATED	ESTIMATED
	CALCULATED	ESTIMATED	CONC IN	DAILY
	CONC IN		SOIL	INTAKE
	SOIL	INTAKE	.14	mg/Kg/day
	. 184	mg/Kg/day	mg/Kg	mg/ mg//
	mg/Kg		MQ/ NV	
ORGANICS		1.26E-17	9.89E-13	1.28E-17
Acetonitrile	9.75E-13	1.33E-19	1.05E-14	1.35E-19
Aldrin	1.03E-14	3.08E-22	7.83E-16	1.01E-20
Atrazine	2.39E-17	2.73E-15	2.15E-10	2.77E-15
Benzaldehyde	2.12E-10	5.24E-15	4.12E-10	5.32E-15
Benzofuran	4.06E-10	1.32E-15	1.04E-10	1.34E-15
Benzoic Acid	1.03E-10	1.26E-18	9.89E-14	1.28E-18
Benzonitrile	9.75E-14	2.52E-19	1.98E-14	2.55E-19
Carbazole	1.95E-14	1.52E-15	1.20E-10	1.54E-15
4-Chlorobiphenyl	1.18E-10		1.57E-12	2.02E-17
4 A-Chlorobiphenyl	1.54E-12	1.99E-17	2.06E-14	2.66E-19
4. Chi acanhery i methy i sul Tone	7.84E-16	1.01E-20	7.66E-14	9.89E-19
4-Chlorophenylmethylsulfoxid	e 2.92E-15	3.77E-20	1.61E-11	2.08E-16
p,p-00E	2.512.15	4.14E-17	3.22E-15	4.16E-20
p,p-00T	6.42E-16	8.28E-21	2.06E-11	2.66E-16
Dibenzofuran	2.03E-11	2.62E-16		2.78E-20
Dieldrin	2.12E-15	2.74E-20		3.51E-18
Diisopropyl Methylphosphonet	e 1.55E-14	2.00E-19		5.32E-16
1,3-Dimethylbenzene	4.006	5.24E-16		2.76E-18
Dimethyl Methylphosphonate	6.12E-15	7.89E-20		3.19E-17
Dimethylphosphate	2.44E-12	3.14E-17		7.67E-17
Dioxins/Furans (EPA TEFs)	1.53E-12	1.97E-17		4.88E-21
Dithiane	3.73E-16	4.81E-21		2.51E-20
Endrin	4.26E-16	5.50E-21		8.07E-18
Hexachlorobenzene	8.66E-14	1.12E-18		2.52E-19
Hexachlorocyclopentadiene	1.92E-14	2.48E-19		7.12E-20
Isodrin	5.44E-15	7.02E-20		1.09E-19
Malathion	8.30E-15	1.07E-19		3.09E-15
Methanol	2.36E-10	3.04E-15	41	1.12E-18
4-Hitrophenol	8.59E-14	1.11E-18	0.725-14	11100 10
PAHS		4 745 45	1.03E-10	1.33E-15
Acenaphthalene	1.02E-10	1.31E-1		1.33E-15
Acenephthene	1.02E-10	1.31E-1	44	1.30E-16
Benzo(a)pyrene	3.58E-13	4.61E-1		1.48E-16
Chrysene	4.48E-13	5.78E-1		1.54E-16
Dibenzo(e,h)anthracene	4.86E-13	6.27E-1	44	4.38E-16
Fluoranthene	1.31E-12	1.69E-1		2.66E-16
	2.03E-11	2.62E-1	6 2.06E-11	2.38E-16
Fiuorene Phenanthrene	6.21E-13	8.01E-1		
	3.01E-13	3.88E-1		
Pyrene	1.15E-15	1.48E-2		
Parathion	3.10E-13	4.00E-1		
Pentachlorobenzene	1.10E-09	1.42E-1		
Phenol	4.86E-14		9 4.93E-14	6.300-19
Quinoline	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Table 8D-7

(continued)

Supone	3.44E-15	4.44E-20	3.49E-15	4.50E-20
Tetrachlorobenzene	1.31E-13	1.69E-18	1.33E-13	1.71E-18
Trichlorobenzene	6.89E-14	8.89E-19	6.99E-14	9.02E-19
Urea	1.49E-09	1.92E-14	1.51E-09	1.95E-14
Vapone	9.17E-15	1.18E-19	9.31E-15	1.20E-19
INORGANICS Antimorry Arosnic Berium Beryllium Copper Lead Mercury Selenium Silver Thellium	9.46E-07	1.22E-11	9.60E-07	1.24E-11
	5.35E-06	6.91E-11	5.43E-06	7.01E-11
	1.31E-06	1.69E-11	1.33E-06	1.72E-11
	5.48E-08	7.07E-13	5.56E-08	7.17E-13
	5.02E-03	6.48E-08	5.09E-03	6.57E-08
	1.68E-06	2.17E-11	1.71E-06	2.20E-11
	1.48E-06	1.91E-11	1.50E-06	1.94E-11
	1.37E-02	1.77E-07	1.39E-02	1.80E-07
	1.42E-04	1.84E-09	1.44E-04	1.86E-09
	1.38E-05	1.78E-10	1.40E-05	1.81E-10

Annual average soil/dust ingestion rate (200 mg/day) Exposure frequency (365 days/year) Body weight (15.5 kg)

APPENDIX 8E CALCULATION OF THE ESTIMATED DAILY INTAKE FOR THE FISH INGESTION ROUTE OF EXPOSURE

APPENDIX 8E

CALCULATION OF THE ESTIMATED DAILY INTAKE FOR THE FISH INGESTION ROUTE OF EXPOSURE

The accumulation of substances in fish tissue involves the processes of bioconcentration and biomagnification. The bioconcentration of pollutants generally refers to the uptake of pollutants from water, primarily through passive transport across the gill membrane. Thus, the bioconcentration factor (BCF) describes the equilibrium between the pollutant concentration in the fish tissue and the pollutant concentration in the water. Bioaccumulation is similar to bioconcentration, however, bioaccumulation is a broader term that describes the uptake from both food and water (Clark et al., 1988). Biomagnification takes into account the relationship between the pollutant concentration in the fish tissue and the trophic transfer of pollutants. Thus, biomagnification refers to the accumulation of pollutants due to uptake of food through the find chain. Few data are presently available to verify pollutant uptake specific to biomagnification. Current investigations are attempting to address the contribution of biomagnification to total bioaccumulation (Connoly and Pedersen, 1988; McKay et al., 1986; Stevens, 1988). Most of the results are highly speculative.

Tissue pollutant concentrations increase until the rate of excretion is equal to the rate of uptake (i.e., a state of equilibrium is reached). At such a time, the body burden (fish tissue concentration) may be many times the concentration in the water. The BCF represents the ratio of pollutant concentration in tissue to the pollutant level in water at equilibrium.

BCFs were obtained for the pollutants of concern using the following procedure:

- The first step was to use BCFs currently recognized by the Environmental Protection Agency (EPA) for those pollutants of concern where available (EPA, 1989, 1987, 1986).
- If a BCF was not available through the EPA, additional sources (Verschueren, 1983; and Lyman et al., 1982) were searched for BCFs.

For those organic chemicals for which no BCF was found, a BCF was calculated from the octanol-water partition coefficient (K_{ow}) and the soil adsorption coefficient (K_{ow}) , where possible, using the following equations obtained from Lyman et al. (1982):

log BCF =
$$0.76 \log K_{ow} - 0.23$$

log BCF = $1.119 \log K_{ov} - 1.579$

Where a BCF was able to be calculated from both a K_{ow} and a K_{oe} , the most conservative value (the highest BCF) was chosen for the pollutant. The specified input range for K_{ow} and K_{oe} in the regression equations is 7.9 to 8.1 x 10^6 mL/g and <1 to 1.2×10^6 mL/g, respectively. If a K_{ow} for a particular chemical was below the input range (7.9) and no other alternative existed for deriving a BCF, 7.9 was used to derive a conservative estimate of the BCF.

There was one organic compound (dimethyl phosphate) and eleven metals (aluminum, barium, boron, iron, lithium, magnesium, molybdenum, strontium, tin, titanium, and yittrium) for which BCFs were not available or could not be derived. However, the contribution of fish ingestion to the total carcinogenic risk varies from less than 1 percent to 1.2 percent for the various scenarios. In addition, the hazard index ranges from 5 to 6 orders of magnitude below one. Therefore, even if the BCFs for these chemicals are high, it is anticipated that their contribution to risk would be minimal.

A summary of the BCFs used for the pollutants of concern is presented in Table 8E-1. This table also presents where the BCFs were obtained or how they were derived.

At best, BCFs are approximations made through laboratory experiments, field studies, correlations with physico-chemical factors such as octanol/water partition coefficients, and models based on pollutant biokinetics coupled with fish metabolism (EPA, 1986). Normally, bioconcentration studies determine the average pollutant uptake as a function of the entire fish. However, for the evaluation of human exposure, consumption is generally restricted to the edible portion of the fish (i.e., with head, tail, and visceral mass removed). For this assessment, consumption of filleted fish was assumed.

Table 8E-1
Bioconcentration Factors (BCFs) Used for the Pollutants of Concern

Pollutant	BCF (L/kg)	Derivationa	References
ORGANICS	•		
Acetonitrile	0.06	OR	EPA, 1986
Aldrin	28	OR	EPA, 1986
Atrazine	0	OR	EPA, 1987
Benzaldehyde	8	$\log K_{ow}$ (1.48)	Verschueren, 1983
Benzofuran	63	$\log K_{ow}$ (2.67)	Verschueren, 1983
Benzoic Acid	15.5	$\log \mathbf{K}_{ow}$ (1.87)	Verschueren, 1983
Benzonitrile	9	$\log K_{ow}$ (1.56)	Verschueren, 1983
Carbazole	186	log K. (3.29)	Verschueren, 1983
4-Chlorobiphenyl	590	OR	EPA, 1987
4,4-Chlorobiphenyl	215	OR	EPA, 1987
4-Chlorophenylmethylsulfone	6	K _{cc} (1.26)	Ebasco, 1990
4-Chlorophenylmethylsulfoxide	e 6	log K _{ow} (1.33)	Ebasco, 1990
p,p-DDE	51,000	OR	EPA,1986
p,p-DDT	54,000	OR	EPA, 1986
Dibenzofuran	796.5	$\log K_{ow}$ (4.12)	HSDB, 1990
Dieldrin	5,800	OR	EPA, 1987
Diisopropyl Methylphosphona		$\log K_{ow} (1.73)$	Ebasco, 1990
1,3-Dimethylbenzene	159	$\log K_{ow}$ (3.20)	Verschueren, 1983
Dimethyl Methylphosphonate	2.8	$\log K_{ow} (0.9)^b$	Lyman, et al., 1982
Dimethylphosphate	NTA		
Dioxins/Furans (EPA TEFs)	. 5,000	OR	EPA, 1986
Dithiane	2.8	$\log K_{ow} (0.9)^b$	Lyman et al., 1982
Endrin	680	OR	EPA, 1987
Hexachlorobenzene	8,690	OR	EPA, 1986
Hexachlorocyclopentadiene	488	OR	EPA, 1987
Isodrin	52,000	$\log K_{ow}$ (6.51)	Ebasco, 1990
Malathion	0	OR	EPA, 1987
Methanol	2.8	$\log K_{ow} (0.9)^{b}$	Lyman et al., 1982
4-Nitrophenol	96	$\log K_{ow}$ (2.91)	EPA, 1989
PAHs		.	
Acenaphthalene	730	$\log K_{ow} (4.07)$	EPA, 1986
Acenaphthene	242	OR " `	EPA, 1986
Benzo(a)pyrene	930	OR	EPA, 1987
Chrysene	23,000	K_{oc} (2.0E+05)	EPA, 1986
Dibenzo(a,h)anthracene	520,000	$K_{\infty}^{(3.3E+06)}$	EPA, 1986

Table 8E-1 (continued)

Pollutant	BCF (L/kg)	Derivation ^a	References
Fluorene	1,300	OR	EPA, 1986
Phenanthrene	2,630	OR	EPA, 1986
Pyrene	5,100	$\log K_{ow}$ (5.18)	EPA, 1986
Parathion	335	OR	EPA, 1987
Phenol	1.4	OR	EPA, 1986
Quinoline	21	$\log K_{ow} (2.03)$	Verschueren, 1983
Supona	136	$\log K_{ow}$ (3.11)	Ebasco, 1990
Trichlorobenzene	991	ORc	EPA, 1987
Urea	2.8	$\log K_{ow} (0.9)^b$	Lyman et al., 1982
Vapona	7.0	log K	Ebasco, 1990
INORGANICS			
Aluminum	NTA -		
Arsenic	350	OR	EPA, 1989
Barium	NTA		20111, 1707
Beryllium	19	OR	EPA, 1986
Boron	NTA		
Cadmium	326	OR	EPA, 1979
Chromium (VI)	155	OR	EPA, 1986
Cobalt	20	OR	Lyman et al., 1982
Copper	1,183	OR	EPA, 1989
Iron	NTA		D 111, 1909
Lead	180	OR	EPA, 1989
Lithium	NTA		22112, 1707
Magnesium	NTA	Dee	
Molybdenum	NTA		
Selenium	16	OR	EPA, 1986
Silver	3,080,	OR	EPA, 1979
Strontium	NTA	OK	LIA, 1979
Tin	NTA		
Titanium	NTA	•••	
Vanadium	10	OR	Lyman, et al., 1982
Yttrium	NTA		Lyman, Ct at., 1902
Zinc	578	OR	EPA, 1989

Table 8E-1 (continued)

Key:

 K_{∞} - Soil adsorption coefficient

K - Octanol-water partition coefficient

NTA - Not available

OR - BCF obtained directly from reference

^aIf a BCF could not be obtained from the EPA (1989, 1987, 1986) or other reference documents (Lyman, et al., 1982; Verschueren, 1983), a BCF was calculated, where appropriate, using values listed in this column as described in this appendix.

^bBased on lower limitations of the regression equation.

'The average of the BCFs for two tricholobenzenes - 182 (1,2,4-trichlorobenzene), and 1800 (1,2,5-trichlorobenzene).

The pollutants present in the fish tissue are concentrated in lipids (fatty materials) found in those tissues. Thus, pollutant levels within the tissue are directly related to lipid concentration. A fillet lipid content of 10 percent was used to calculate adult and child estimated daily intakes.

Table 8E-2 presents the surface water contaminant concentrations, BCFs, and adult and child estimated daily intakes for the fish ingestion pathway.

Table 8E-2

Daily Exposure to the Pollutants of Concern Through the Fish Ingestion Route of Exposure Adult and Child - Resident-A, Resident-B, and Farmer Scenarios

,	SURFACE WATER CONCENTRAT. Mg/L	BIO. CONC. FACTOR	ADULT ESTIMATED DAILY INTAKE mg/kg/day	CHILD ESTIMATED DAILY INTAKE mg/kg/day
ORGANICS		0.04	0 /25-22	1.90E-21
Acetonitrile	2.03E-15	0.06	8.42E-22 2.08E-22	4.71E-22
Aldrin	1.08E-18	28	0.00E+00	0.00E+00
Atrazine	2.31E-18	0 8	2.31E-17	5.21E-17
Benzal dehyde	4.17E-13	63	1.99E-16	4.50E-16
Benzofuran	4.58E-13	15.5	2.01E-17	4.53E-17
Benzoic Acid	1.87E-13	15.5	1.18E-20	2.67E-20
Benzonitrile	1.90E-16 9.91E-18	186	1.27E-20	2.88E-20
Carbazole	1.37E-14	590	5-60E-17	1.26E-16
4-Chlorobiphenyl	1.65E-16	215	2.45E-19	5.53E-19
4,4-Chlorobiphenyl	7.11E-17	213	2.95E-21	6.66E-21
4-Chlorophenylmethylsulfone		6	1.09E-20	2.45E-20
4-Chlorophenylmethylsulfoxide	1.80E-15	51000	6.36E-16	1.44E-15
p,p-DDE	3.56E-19	54000	1.33E-19	3.00E-19
p,p-DDT	3.58E-15	796.5	1.97E-17	4.45E-17
Dibenzofuran	2.22E-19	5800	8.91E-21	2.01E-20
Dieldrin Diisopropyl Methylphosphonate		12	5.61E-20	1.27E-19
1,3-Dimethylbenzene	2.35E-14	159	2.58E-17	5.84E-17
Dimethyl Methylphosphonate	1.59E-14	2.8	3.07E-19	6.94E-19
Dimethylphosphate	5.07E-15			
Dioxins/Furans (EPA TEFs)	6.48E-16	5000	2.24E-17	5.06E-17
Dithiane	7.68E-19	2.8	1.49E-23	3.36E-23
Endrin	2.68E-19	680	1.26E-21	2.84E-21
Hexach Lorobenzene	7.33E-17	869 0	4.41E-18	9.95E-18
Hexachlorocyclopentadiene	2.06E-18	488	6.95E-21	1.57E-20
Isodrin	5.68E-19	52000	2.04E-19	4.61E-19
Malathion	7.30E-18	0	0.00E+00	0.00E+00
Methanol	4.91E-13	2.8	9.50E-18	2.15E-17
4-Nitrophenol	7.37E-17	96	4.89E-20	1.10E-19
PAHS				
Acenaphthalene	1.88E-14	730	9.49E-17	2.14E-16
Acenaphthene	2.20E-14	242	3.68E-17	8.31E-17
Benzo(a)pyrene	1.96E-15	930	1.26E-17	2.85E-17
Chrysene	2.01E-15	23000	3.19E-16	7.21E-16
Dibenzo(a,h)anthracene	1.99E-15	520000	7.16E-15	1.62E-14
Fluorene	2.93E-15	1300	2.64E-17	5.95E-17
Phenanthrene	4.87E-15	2630	8.86E-17	2.00E-16 1.64E-16
Pyrene	2.06E-15	5100	7.27E-17	
Parathion	2.82E-19	335	6.54E-22	1.48E-21
Phenol	2.17E-12	1.4	2.10E-17	4.75E-17 2.76E-20
Quinoline	8.42E-17	21	1.22E-20	4.80E-21
Supona	2.26E-18	136	2.13E-21	2.16E-19
Trichlorobenzene	1.40E-17	991	9.56E-20	1.36E-16
Urea	3.10E-12	2.8	6.01E-17 8.82E-22	1.996-21
Vapona	1.82E-17	7.0	0.025-22	1.775 61

Table 8E-2 (continued)

INORGANICS				
Aluminum	3.10E-09			
Arsenic	6.16E-10	350	1.49E-11	3.37E-11
Barium	1.40E-10			
Beryllium	5.84E-12	19	7.67E-15	1.73E-14
Boron	4.60E-09			
Cadmium	1.68E-11	326	3.78E-13	8.53E-13
Chromium (VI)	1.34E-12	155	1.43E-14	3.23E-14
Cobalt	1.26E-10	20	1.74E-13	3.92E-13
	5.48E-07	1183	4.48E-08	1.01E-07
Copper	7.61E-09	1165	4.400.00	1.012.01
Iron		400	2 205 42	F 48F 45
Lead	1.83E-10	180	2.288-12	5.15E-12
Lithium	1.75E-11			
Magnes i um	2.27E-08			
Molybdenum	1.76E-09			
Selenium	1.58E-06	16	1.75E-09	3.95E-09
Silver	1.62E-08	3080	3.46E-09	7.80E-09
Strontium	5.84E-12			
Tin	1.32E-09			
	9.73E-12			
Titanium		40	2 505 47	£ 00c 47
Vanadium	3.73E-10	10	2.58E-13	5.82E-13
Yittrium	3.41E-12			
Zinc	2.65E-09	578	1.06E-10	2.392-10

Percent body lipid in fillet (10%) Adult fish ingestion rate (4.84 g/day) Child fish ingestion rate (2.42 g/day) Adult body weight (70 kg) Child body weight (15.5 kg)

• •

APPENDIX 8E

CITED REFERENCES

Clark, T., K. Clark, S. Paterson, and D. Mackay. 1988. "Wildlife Monitoring, Modeling, and Fugacity." Environ. Sci. Technol., 22:120-127.

Connolly, J.P., and C.J. Pedersen. 1988. "A Thermodynamic-based Evaluation of Organic Chemical Accumulation in Aquatic Animals." <u>Environ. Sci. Technol.</u>, 22:99-103.

Ebasco Services, Inc. 1990. <u>Final Health Exposure Assessment for Rocky Mountain Arsenal Vol. II-III</u>. Version 4.1. Prepared for the U.S. Army Program Managers Office for the Rocky Mountain Arsenal Contamination Cleanup.

EPA (U.S. Environmental Protection Agency). 1986. Superfund Public Health Evaluation Manual. Office of Emergency and Remedial Response, Washington, D.C. OSWER Directive 9285.4-1.

EPA (U.S. Environmental Protection Agency). 1987. Processes, Coefficients, and Models for Simulating Toxic Organics and Heavy Metals in Surface Waters. EPA 600/3-87/015.

EPA (U.S. Environmental Protection Agency). 1989. Assessing Human Health Risk from Chemically Contaminated Fish and Shell Fish - A Guidance Manual. Office of Marine and Estuarine Protection, Office of Water Regulations and Standards. Washington DC.

HSDB (Hazardous Substances Database) 1990. National Library of Medicine (On-line).

Lyman, W.J., W.F. Reehl, and O.H. Rosenblatt. 1982. <u>Handbook of Chemical Property Estimation Methods</u>. McGraw-Hill Book Company, New York.

McKay, D., S. Paterson, and W.H. Schroeder. 1986. "Model Describing the Rates of Transfer Processes of Organic Chemicals Between Atmosphere and Water." <u>Environ. Sci. Technol.</u>,20(8):810-816.

Stevens, J.B. 1988. "Health Risk Assessment for the Proposed Resource Recovery Facility in Winona, Minnesota," Vol. I, <u>Polycholorinated Dioxins/Polychlorinated Furans</u>. Minnesota Pollution Control Agency.

Verschueren, K. 1983. <u>Handbook of Environmental Data on Organic Chemicals</u>. Second Edition.

APPENDIX 8F

CALCULATION OF THE ESTIMATED DAILY INTAKE FOR THE DERMAL ABSORPTION ROUTE OF EXPOSURE

Table 8F-1

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Adult, Resident-A Scenario

	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS	5.69E-13	5.77E-13	1.00E-01	3.39E-20	3.44E-20
Acetonitrile	6.03E-15	6.12E-15	1.00E-01	3.59E-22	3.64E-22
Aldrin	1.39E-17	4.57E-16	1.00E-01	8.29E-25	2.72E-23
Atrazine Benzaldehyde	1.23E-10	1.25E-10	1.00E-01	7.35E-18	7.46E-18
Benzofuran	2.37E-10	2.40E-10	1.00E-01	1.41E-17	1.43E-17
Benzoic Acid	5.98E-11	6.07E-11	1.00E-01	3.56E-18	3.61E-18
Benzonitrile	5.69E-14	5.77E-14	1.00E-01	3.39E-21	3.44E-21
Carbazole	1.14E-14	1.15E-14	1.00E-01	6.78E-22	6.87E-22
4-Chlorobiphenyl	6.88E-11	6.98E-11	1.00E-01	4.09E-18	4.15E-18 5.44E-20
4.4-Chlorobiphenyl	9.01E-13	9.14E-13	1.00E-01	5.36E-20	7.15E-22
4-Chlorophenylmethylsulfone	4.58E-16	1.20E-14	1.00E-01	2.73E-23 1.01E-22	2.66E-21
4-Chlorophenylmethylsulfoxide	1.70E-15	4.47E-14	1.00E-01	1.11E-19	5.59E-19
p,p-DDE	1.8/E-12	9.39E-12	1.00E-01	2.23E-23	1.12E-22
p.p-DDT	3.75E-16	1.88E-15	1.00E-01	7.05E-19	7.15E-19
Dibenzofuran	1.18E-11	1.20E-11	1.00E-01	7.37E-23	7.47E-23
Dieldrin	1.24E-15	1.26E-15	1.00E-01	5.39E-22	9.44E-21
Diisopropyl Methylphosphonate	9.06E-15	1.59E-13	1.00E-01	1.41E-18	1.43E-18
1.3-Dimethylbenzene	2.37E-11	2.40E-11	1.00E-01 1.00E-01	2.13E-22	7.44E-21
Dimethyl Methylphosphonate	3.57E-15	1.25E-13	1.00E-01	8.46E-20	8.59E-20
Dimethylphosphate	1.42E-12	1.44E-12	1.00E-01	5.31E-20	2.06E-19
Dioxins/furans (EPA TEFs)	8.91E-13	3.47E-12	1.00E-01	1.29E-23	1.31E-23
Dithiane	2.17E-16	2.21E-16	1.00E-01	1.48E-23	6.77E-23
Endrin	2.49E-16	1.14E-15 3.65E-13	1.00E-01	3.01E-21	2.17E-20
Hexach Lorobenzene	5.05E-14	1.14E-14	1.00E-01	6.68E-22	6.77E-22
Hexachlorocyclopentadiene	1.12E-14	3.22E-15	1.00E-01	1.89E-22	1.92E-22
Isodrin	3.17E-15	4.91E-15	1.00E-01	2.88E-22	2.93E-22
Malathion	4.84E-15 1.38E-10	1.40E-10	1.00E-01	8.19E-18	8.31E-18
Methanol	5.01E-14	5.08E-14	1.00E-01	2.98E-21	3.03E-21
4-Nitrophenol	3.012-14	3.000			
PAHS	5.93E-11	6.02E-11	1.00E-01	3.53E-18	3.58E-18
Acenaphthalene	5.93E-11	6.02E-11	1.00E-01	3.53E-18	3.58E-18
Acenaphthene	2.09E-13	5.88E-12	1.00E-01	1.24E-20	3.50E-19
Benzo(a)pyrene	2.61E-13	6.67E-12	1.00E-01	1.56E-20	3.97E-19
Chrysene Dibenzo(a,h)anthracene	2.84E-13	6.95E-12	1.00E-01	1.69E-20	4.14E-19
fluoranthene	7.65E-13	1.98E-11	1.00E-01	4.56E-20	1.18E-18
	1.18E-11	1.20E-11	1.00E-01	7.05E-19	7.15E-19
fluorene	3.62E-13	1.08E-11	1.00E-01	2.16E-20	6.40E-19
Phenanthrene	1.76E-13	5.27E-12		1.05E-20	3.14E-19
Pyrene Parathion	6.68E-16	6.78E-16		3.98E-23	4.04E-23
Pentachiorobenzene	1.81E-13	1.83E-13		1.08E-20	1.09E-20
	6.42E-10	6.51E-10		3.82E-17	3.88E-17
Phenol Quinoline	2.83E-14	2.87E-14		1.69E-21	1.71E-21
Supona	2.01E-15	2.04E-15		1.20E-22	1.21E-22
Tetrachlorobenzene	7.63E-14	7.74E-14	1.00E-01	4.54E-21	4.61E-21
I E F I MOIT CO. ADDITION					

Table 8F-1

(continued)

Trichlorobenzene	4.02E-14	4.08E-14	1.00E-01	2.39E-21	2.43E-21
Urea	8.69E-10	8.82E-10	1.00E-01	5.18E-17	5.25E-17
Vapona	5.35E-15	5.43E-15	1.00E-01	3.19E-22	3.23E-22
INORGANICS Antimony Arsenic Barium Beryllium Copper Lead Mercury Selenium Silver Thellium	5.52E-07 3.12E-06 7.65E-07 3.20E-08 2.93E-03 9.81E-07 8.64E-07 8.01E-03 8.30E-05 8.06E-06	5.60E-07 3.17E-06 7.76E-07 3.24E-08 2.97E-03 9.95E-07 8.77E-07 8.13E-03 8.42E-05 8.18E-06	1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02	3.29E-15 1.86E-14 4.56E-15 1.90E-16 1.74E-11 5.84E-15 5.15E-15 4.77E-11 4.95E-13 4.80E-14	3.33E-15 1.89E-14 4.62E-15 1.93E-16 1.77E-11 5.92E-15 5.22E-15 4.84E-11 5.02E-13 4.87E-14

Number of exposure events per year (117 days/yr) Exposed surface area (1,700 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (0.15) Body weight (70 kg)

Table 8F-2

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Adult, Resident-B Scenario

	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .2M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS	8.23E-13	8.34E-13	1.00E-01	4.90E-20	4.97E-20
Acetonitrile	8.72E-15	8.84E-15	1.00E-01	5.19E-22	5.27E-22
Aldrin	2.01E-17	6.60E-16	1.00E-01	1.20E-24	3.93E-23
Atrazine	1.79E-10	1.81E-10	1.00E-01	1.06E-17	1.08E-17
Benzaldehyde Benzofuran	3.43E-10	3.48E-10	1.00E-01	2.04E-17	2.07E-17
Benzoturan Benzoic Acid	8.65E-11	8.77E-11	1.00E-01	5.15E-18	5.22E-18
Benzonitrile	8.23E-14	8.34E-14	1.00E-01	4.90E-21	4.97E-21
Carbazole	1.65E-14	1.67E-14	1.00E-01	9.80E-22	9.94E-22 6.01E-18
4-Chlorobiphenyl	9.94E-11	1.01E-10	1.00E-01	5.92E-18	7.87E-20
4.4-Chlorobiphenyl	1.30E-12	1.32E-12	1.00E-01	7.75E-20 3.94E-23	1.03E-21
4-Chiorophenylmethylsulfone	6.62E-16	1.74E-14	1.00E-01	1.47E-22	3.85E-21
4-Chlorophenylmethylsulfoxide	2.46E-15	6.46E-14	1.00E-01	1.61E-19	8.09E-19
P.P-DDE	2.70E-12	1.36E-11	1.00E-01	3.22E-23	1.62E-22
P.P-DDT	5.41E-16	2.72E-15	1.00E-01	1.02E-18	1.03E-18
Dibenzofuran	1.71E-11	1.74E-11	1.00E-01 1.00E-01	1.07E-22	1.08E-22
Dieldrin	1.79E-15	1.81E-15	1.005-01	7.80E-22	1.36E-20
Diisopropyl Methylphosphonate	1.31E-14	2.29E-13	1.00E-01	2.04E-18	2.07E-18
1,3-Dimethylbenzene	3.43E-11	3.48E-11	1.00E-01	3.07E-22	1.08E-20
Dimethyl Methylphosphonate	5.16E-15	1.81E-13 2.08E-12	1.00E-01	1.22E-19	1.24E-19
Dimethylphosphate	2.05E-12	5.01E-12	1.00E-01	7.67E-20	2.98E-19
Dioxins/Furans (EPA TEFS)	1.29E-12 3.14E-16	3.19E-16	1.00E-01	1.87E-23	1.90E-23
Dithiane	3.59E-16	1.64E-15	1.00E-01	2.14E-23	9.78E-23
Endrin	7.30E-14	5.28E-13	1.00E-01	4.35E-21	3.14E-20
Hexach Lorobenzene	1.62E-14	1.64E-14	1.00E-01	9.65E-22	9.79E-22
Hexachlorocyclopentadiene	4.59E-15	4.65E-15	1.00E-01	2.73E-22	2.77E-22
Isodrin	7.00E-15	7.10E-15	1.00E-01	4.17E-22	4.23E-22
Malathion	1.99E-10	2.02E-10	1.00E-01	1.18E-17	1.20E-17
Methanol	7.25E-14	7.35E-14	1.00E-01	4.31E-21	4.38E-21
4-Nitrophenol	11000				
PAHS	8.58E-11	8.70E-11	1.00E-01	5.11E-18	5.18E-18
Acenaphthalene Acenaphthene	8.58E-11	8.70E-11	1.00E-01	5.11E-18	5.18E-18
Benzo(a)pyrene	3.01E-13	8.50E-12		1.80E-20	5.06E-19
Chrysene	3.78E-13	9.64E-12		2.25E-20	5.74E-19
Dibenzo(a,h)anthracene	4.10E-13	1.01E-11	1.00E-01	2.44E-20	5.99E-19
Fluoranthene	1.11E-12	2.86E-11	1.00E-01	6.59E-20	1.70E-18 1.03E-18
Fluorene	1.71E-11	1.74E-11	1.00E-01	1.02E-18	9.26E-19
Phenanthrene	5.24E-13	1.56E-11	1.00E-01	3.12E-20	4.53E-19
Pyrene	2.54E-13	7.61E-12		1.51E-20	5.84E-23
Parathion	9.66E-16			5.75E-23	1.58E-20
Pentachiorobenzene	2.61E-13	2.65E-13		1.56E-20 5.52E-17	5.60E-17
Phenol	9.28E-10			2.44E-21	2.47E-21
Quinoline	4.10E-14	4.15E-14		1.73E-22	1.75E-22
Supona	2.90E-15			6.57E-21	6.66E-21
Tetrachlorobenzene	1.10E-13	1.12E-13	1.00E-01	0.316-21	9,002 21

Table 8F-2

(continued)

Trichlorobenzene Urea Vapona	5.81E-14 1.26E-09 7.74E-15	5.89E-14 1.27E-09 7.85E-15	1.00E-01 1.00E-01 1.00E-01	3.46E-21 7.48E-17 4.61E-22	3.51E-21 7.59E-17 4.67E-22
INORGANICS Antimony Arsenic Barium Beryllium Copper Lead Mercury Selenium Silver	7.98E-07 4.52E-06 1.11E-06 4.62E-08 4.24E-03 1.42E-06 1.25E-06 1.16E-02 1.20E-04 1.17E-05	8.10E-07 4.58E-06 1.12E-06 4.69E-08 4.30E-03 1.44E-06 1.27E-06 1.18E-02 1.22E-04 1.18E-05	1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02	4.75E-15 2.69E-14 6.59E-15 2.75E-16 2.52E-11 8.44E-15 7.44E-15 6.90E-11 7.15E-13 6.94E-14	4.82E-15 2.73E-14 6.68E-15 2.79E-16 2.56E-11 8.56E-15 7.55E-15 7.00E-11 7.25E-13 7.04E-14

Number of exposure events per year (117 days/yr) Exposed surface area (1,700 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (0.15) Body weight (70 kg)

Table 8F-3

	AVERAGE CALCULATED CONC IN SOIL .2M mg/Kg	MAXINUM CALCULATED CONC IN SOIL .2M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
		47	1.00E-01	3.32E-19	3.37E-19
ORGANICS Acetonitrile	4.88E-13	4.95E-13	1.00E-01	3.52E-21	3.57E-21
Aldrin	5.17E-15	5.24E-15 3.92E-16	1.00E-01	8.13E-24	2.67E-22
Atrazine	1.19E-17	1.07E-10	1.00E-01	7.21E-17	7.31E-17
Benzaldehyde	1.06E-10	2.06E-10	1.00E-01	1.38E-16	1.40E-16
Benzofuran	2.03E-10 5.13E-11	5.20E-11	1.00E-01	3.49E-17	3.54E-17
Benzoic Acid	4.88E-14	4.95E-14	1.00E-01	3.32E-20	3.37E-20
Benzonitrile	9.75E-15	9.89E-15	1.00E-01	6.64E-21	6.74E-21 4.07E-17
Carbazole	5.89E-11	5.98E-11	1.00E-01	4.01E-17	5.33E-19
4-Chlorobiphenyl	7.72E-13	7.83E-13	1.00E-01	5.26E-19	7.02E-21
4,4-Chlorobiphenyl	3.92E-16	1.03E-14	1.00E-01	2.67E-22	2.61E-20
4-Chlorophenyimethylsulfone		3.83E-14	1.00E-01	9.95E-22 1.09E-18	5.48E-18
4-Chlorophenylmethylsulfoxide	1.60E-12	8.05E-12	1.00E-01	2.19E-22	1.10E-21
P,P-DDE	3.21E-16	1.61E-15	1.00E-01	6.91E-18	7.01E-18
p.p-DDT	1.01E-11	1.03E-11	1.00E-01	7.22E-22	7.33E-22
Dibenzofuran	1.06E-15	1.08E-15	1.00E-01	5.29E-21	9.25E-20
Dieldrin Diisopropyl Methylphosphonate	7.76E-15	1.36E-13		1.38E-17	1.40E-17
1,3-Dimethylbenzene	2.03E-11	2.06E-11		2.08E-21	7.30E-20
Dimethyl Hethylphosphonate	3.06E-15			8.30E-19	8.42E-19
n imathyl phosphate	1.22E-12			5.20E-19	2.02E-18
Dioxins/Furans (EPA TEFs)	7.64E-13			1.27E-22	1.29E-22
pithiane	1.86E-16			1.45E-22	6.63E-22
Endrin	2.13E-16			2.95E-20	2.13E-19
Havach Lorobenzene	4.33E-14	45		6.54E-21	6.64E-21
Hexachlorocyclopentadiene	9.61E-15 2.72E-15			1.85E-21	1.88E-21
Isodrin	4.15E-15			2.83E-21	2.87E-21
Malathion	1.18E-10		1.00E-01	8.03E-17	8.15E-17
Methanol	4.30E-14		1.00E-01	2.93E-20	2.97E-20
4-Mitrophenol	4.306-14	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			3.51E-17
PAHS	5.08E-1	1 5.16E-1	1 1.00E-01	3.46E-17	
Acenaphthalene	5.08E-1		1 1.00E-01	3.46E-17 1.22E-19	
Acenaphthene	1.79E-1	3 5.04E-1		1.53E-19	48
Benzo(a)pyrene	2.24E-1	3 5.72E-1	2 1.00E-01	4 44= 40	
Chrysene	2.43E-1	3 5.96E-1			
Dibenzo(a,h)anthracene	6.56E-1	3 1.70E-1			
Fluoranthene	1.01E-1	1 1.03E-1			
Fluorene	3.10E-1	3 9.22E-1	2 1.00E-01		
Phenanthrene	1.50E-1	3 4.51E-1			3.96E-22
Pyrene	5.73E-1				
Parathion Pentachlorobenzene	1.55E-1	3 1.57E-1			41
	5.50E-1	0 5.58E-			1.68E-20
Phenol	2.43E-1	4 2.46E-		4 4 100 10	1.19E-21
Quinoline	1.72E-1				
Supona Tetrachiorobenzene	6.54E-1	4 6.63E-	1.002.0		
I ET I BOIL OF CORE					

Table 8F-3

(continued)

Trichlorobenzene Urea Vapona	3.44E-14 7.45E-10 4.59E-15	3.49E-14 7.56E-10 4.65E-15	1.00E-01 1.00E-01 1.00E-01	2.35E-20 5.07E-16 3.12E-21	2.38E-20 5.15E-16 3.17E-21
INORGANICS Antimony Arsenic Barium Beryllium Copper Lead Mercury Selenium Silver	4.73E-07 2.68E-06 6.56E-07 2.74E-08 2.51E-03 8.40E-07 7.41E-07 6.87E-03 7.12E-05 6.91E-06	4.80E-07 2.72E-06 6.65E-07 2.78E-08 2.55E-03 8.53E-07 7.52E-07 7.52E-05 7.01E-06	1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02	3.22E-14 1.82E-13 4.47E-14 1.87E-15 1.71E-10 5.72E-14 5.05E-14 4.68E-10 4.85E-12 4.71E-13	3.27E-14 1.85E-13 4.53E-14 1.89E-15 1.74E-10 5.81E-14 4.75E-10 4.92E-12 4.78E-13

Number of exposure events per year (195 days/yr) Exposed surface area (1,700 cm²) Skin adherence factor for soil (3.5 mg/cm²) Soil matrix factor (0.15) Body weight (70 kg)

Table 8F-4

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Adult, Worker Scenario

	AVERAGE CALCULATED CONC IN SOIL L2M mg/Kg	MAXINUM CALCULATED CONC IN SOIL .2M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS	7.46E-13	7.57E-13	1.00E-01	5.08E-19	5.16E-19
Acetonitrile	7.46E-13	8.02E-15	1.00E-01	5.39E-21	5.46E-21
Aldrin	1.83E-17	5.99E-16	1.00E-01	1.24E-23	4.08E-22
Atrazine	1.62E-10	1.64E-10	1.00E-01	1.10E-16	1.12E-16
Benzaldehyde	3.11E-10	3.15E-10	1.00E-01	2.12E-16	2.15E-16
Benzofuran	7.84E-11	7.96E-11	1.00E-01	5.34E-17	5.42E-17
Benzoic Acid Benzonitrile	7.46E-14	7.57E-14	1.00E-01	5.08E-20	5.16E-20
Carbazole	1.49E-14	1.51E-14	1.00E-01	1.02E-20	1.03E-20
4-Chlorobiphenyl	9.02E-11	9.15E-11	1.00E-01	6.14E-17	6.23E-17
4.4-Chlorobiphenyl	1.18E-12	1.20E-12	1.00E-01	8.05E-19	8.16E-19
4-Chlorophenylmethylsulfone	6.00E-16	1.57E-14	1.00E-01	4.09E-22	1.07E-20
4-Chlorophenylmethylsulfoxide	2.23E-15	5.86E-14	1.00E-01	1.52E-21	3.99E-20
p,p-DDE	2.45E-12	1.23E-11	1.00E-01	1.67E-18	8.39E-18
p,p-00T	4.91E-16	2.47E-15	1.00E-01	3.35E-22	1.68E-21
Dibenzofuran	1.55E-11	1.58E-11	1.00E-01	1.06E-17	1.07E-17
Dieldrin	1.62E-15	1.65E-15	1.00E-01	1.11E-21	1.12E-21
Diisopropyl Methylphosphonate	1.19E-14	2.08E-13	1.00E-01	8.09E-21	1.42E-19
1,3-Dimethylbenzene	3.11E-11	3.15E-11	1.00E-01	2.12E-17	2.15E-17
Dimethyl Hethylphosphonate	4.68E-15	1.64E-13	1.00E-01	3.19E-21	1.12E-19
Dimethylphosphate	1.86E-12	1.89E-12	1.00E-01	1.27E-18	1.29E-18
Dioxins/Furans (EPA TEFs)	1.17E-12	4.55E-12	1.00E-01	7.96E-19	3.10E-18
Dithiane	2.85E-16	2.89E-16	1.00E-01	1.94E-22	1.97E-22
Endrin	3.26E-16	1.49E-15	1.00E-01	2.22E-22	1.01E-21 3.26E-19
Hexach Lorobenzene	6.62E-14	4.79E-13	1.00E-01	4.51E-20	1.02E-20
Hexachlorocyclopentadiene	1.47E-14	1.49E-14	1.00E-01	1.00E-20 2.83E-21	2.87E-21
Isodrin	4.16E-15	4.22E-15	1.00E-01	4.33E-21	4.39E-21
Malathion	6.35E-15	6.44E-15	1.00E-01 1.00E-01	1.23E-16	1.25E-16
Methanol	1.80E-10	1.83E-10	1.00E-01	4.48E-20	4.54E-20
4-Nitrophenol	6.57E-14	6.67E-14	1.002-01	4.402 20	4.542 20
PAHS	7.78E-11	7.89E-11	1.00E-01	5.30E-17	5.38E-17
Acenaphthalene	7.78E-11	7.89E-11	1.00E-01	5.30E-17	5.38E-17
Acenaphthene	2.74E-13	7.71E-12	1.00E-01	1.86E-19	5.25E-18
Benzo(a)pyrene	3.43E-13	8.75E-12	1.00E-01	2.34E-19	5.96E-18
Chrysene	3.72E-13	9.12E-12	1.00E-01	2.53E-19	6.21E-18
Dibenzo(a,h)anthracene	1.00E-12	2.59E-11	1.00E-01	6.83E-19	1.77E-17
Fluoranthene	1.55E-11	1.58E-11	1.00E-01	1.06E-17	1.07E-17
Fluorene	4.75E-13	1.41E-11	1.00E-01	3.23E-19	9.61E-18
Phenanthrene	2.30E-13	6.91E-12	1.00E-01	1.57E-19	4.70E-18
Pyrene	8.76E-16	8.89E-16	1.00E-01	5.97E-22	6.06E-22
Parathion	2.37E-13	2.41E-13	1.00E-01	1.62E-19	1.64E-19
Pentachlorobenzene	8.41E-10	8.54E-10	1.00E-01	5.73E-16	5.81E-16
Phenol	3.71E-14	3.77E-14	1.00E-01	2.53E-20	2.57E-20
Quinoline	2.63E-15	2.67E-15	1.00E-01	1.79E-21	1.82E-21
Supona Tetrachlorobenzene	1.00E-13	1.01E-13	1.00E-01	6.81E-20	6.91E-20
I STLECH COLODES IN SER					

Table 8F-4

(continued)

Trichlor oben ze ne Urea Vepona	5.27E-14 1.14E-09 7.02E-15	5.35E-14 1.16E-09 7.12E-15	1.00E-01 1.00E-01 1.00E-01	3.59E-20 7.76E-16 4.78E-21	3.64E-20 7.88E-16 4.85E-21
INORGANICS	•				41002 61
Antimony Arsenic Barium Beryllium Copper Lead Mercury Selenium Silver Thallium	7.24E-07 4.10E-06 1.00E-06 4.19E-08 3.84E-03 1.29E-06 1.13E-06 1.05E-02 1.09E-04 1.06E-05	7.34E-07 4.16E-06 1.02E-06 4.25E-08 3.90E-03 1.30E-06 1.15E-06 1.07E-02 1.10E-04 1.07E-05	1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02	4.93E-14 2.79E-13 6.83E-14 2.85E-15 2.62E-10 8.76E-14 7.72E-14 7.16E-10 7.42E-12 7.20E-13	5.00E-14 2.83E-13 6.93E-14 2.90E-15 2.65E-10 8.89E-14 7.83E-14 7.26E-10 7.53E-12 7.31E-13

Number of exposure events per year (195 days/yr) Exposed surface area (1,700 cm²) Skin adherence factor for soil (3.5 mg/cm²) Soil matrix factor (0.15) Body weight (70 kg)

Table 8F-5

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Child, Resident-A Scenario

	AVERAGE CALCULATED CONC IN SOIL .1M	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
·					
ORGANICS	1.14E-12	1.15E-12	1.00E-01	6.56E-19 6.96E-21	6.66E-19 7.06E-21
Acetonitrile	1.21E-14	1.22E-14	1.00E-01	1.61E-23	5.27E-22
Aldrin	2.78E-17	9.14E-16	1.00E-01	1.42E-16	1.45E-16
Atrazine Benzaldehyde	2.47E-10	2.51E-10	1.00E-01 1.00E-01	2.73E-16	2.77E-16
Benzofuran	4.74E-10	4.81E-10	1.00E-01	6.90E-17	7.00E-17
Benzoic Acid	1.20E-10	1.21E-10	1.00E-01	6.56E-20	6.66E-20
Benzonitrile	1.14E-13	1.15E-13	1.00E-01	1.31E-20	1.33E-20
Carbazole	2.28E-14	2.31E-14 1.40E-10	1.00E-01	7.93E-17	8.05E-17
4-Chlorobiphenyl	1.38E-10	1.83E-12	1.00E-01	1.04E-18	1.05E-18
4 4-chlorobiphenvi	1.80E-12	2.40E-14	1-00E-01	5.28E-22	1.39E-20
4. chi orochemylmethylsultone	9.15E-16	8.94E-14	1.00E-01	1.97E-21	5.16E-20
4-Chiorophenylmethylsulfoxice	3.41E-15	1.88E-11	1.00E-01	2.16E-18	1.08E-17
p.p-DDE	3.74E-12 7.49E-16	3.76E-15	1.00E-01	4.32E-22	2.17E-21
p.p-DDT	2.37E-11	2.40E-11	1.00E-01	1.37E-17	1.39E-17
Dibenzofuran	2.47E-15	2.51E-15	1.00E-01	1.43E-21	1.45E-21
Dieldrin			1.00E-01	1.04E-20	1.83E-19 2.77E-17
Diisopropyl Methylphosphonate	4.74E-11	4.81E-11	1.00E-01	2.73E-17	1.44E-19
1,3-Dimethylbenzene	7.14E-15	2.50E-13	1.00E-01	4.12E-21	1.66E-18
Dimethyl Methylphosphonate	2.84E-12		1.00E-01	1.64E-18	4.00E-18
Dimethylphosphate	1.78E-12	6.93E-12		1.03E-18 2.51E-22	2.54E-22
Dioxins/Furans (EPA TEFs)	4.35E-16	4.41E-16	1.00E-01	2.87E-22	1.31E-21
Dithiane	4.97E-16	2.27E-15		5.83E-20	4.21E-19
Endrin Hexachlorobenzone	1.01E-13	7.30E-13		1.29E-20	1.31E-20
Hexachlorocyclopentadiene	2.24E-14	2.27E-14		3.66E-21	3.71E-21
Isodrin	6.34E-15			5.59E-21	5.67E-21
Malathion	9.68E-15			1.59E-16	1.61E-16
Methanol	2.75E-10			5.78E-20	5.87E-20
4-Nitrophenol	1.00E-13	1.02E-13	1.002 01	••••	
PAHS		1.20E-1	1.00E-01	6.84E-17	6.94E-17
Acenaphthalene	1.19E-1			6.84E-17	6.94E-17
Acenaphthene	1.19E-1				6.79E-18
Benzo(a)pyrene	4.17E-1			3.02E-19	
Cheveane	5.23E-1 5.67E-1			3.27E-19	
Dibenzo(a,h)anthracene	1.53E-1			8.83E-19	
Fluoranthene	2.37E-1			1.37E-17	
Fluorene	7.24E-1			4.18E-19	40
Phenanthrene	3.51E-1		1 1.00E-01		
Pyrene	1.34E-1		5 1.00E-01		
Parathion	3.62E-1	3 3.67E-1	3 1.00E-01		4 /
PentachLorobenzene	1.28E-0	0 1.30E-0	9 1.00E-01		
Phenol	5.67E-1	4 5.75E-1	1.00E-0		
Quinoline	4.01E-1	5 4.07E-1	1.00E-0		
Supona	1.53E-1		1.00E-0	1 5.005-2	J. 752 20
Tetrachlorobenzene					

Table 8F-5

(continued)

Trichlorobenzene Urea Vapona	8.04E-14 1.74E-09 1.07E-14	8.15E-14 1.76E-09 1.09E-14	1.00E-01 1.00E-01 1.00E-01	4.64E-20 1.00E-15 6.17E-21	4.70E-20 1.02E-15 6.26E-21
INORGANICS Antimony Arsenic Berium Beryllium Copper Lead Mercury Selenium Silver Thallium	1.10E-06 6.25E-06 1.53E-06 6.39E-08 5.86E-03 1.96E-06 1.73E-06 1.60E-02 1.66E-04 1.61E-05	1.12E-06 6.34E-06 1.55E-06 6.48E-08 5.94E-03 1.99E-06 1.75E-06 1.63E-02 1.68E-04 1.64E-05	1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02	6.37E-14 3.60E-13 8.83E-14 3.69E-15 3.38E-10 1.13E-13 9.97E-14 9.25E-10 9.58E-12 9.30E-13	6.46E-14 3.66E-13 8.96E-14 3.74E-15 3.43E-10 1.15E-13 1.01E-13 9.38E-10 9.72E-12 9.44E-13

Number of exposure events per year (195 days/yr) Exposed surface area (2,188 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (0.15) Body weight (15.5 kg)

Table 8F-6

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption **Route of Exposure** Child, Resident-B Scenario

	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/Kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS			4 005 01	9.49E-19	9.63E-19
Acetonitrile	1.65E-12	1.67E-12	1.00E-01	1.01E-20	1.02E-20
Aldrin	1.74E-14	1.77E-14	1.00E-01 1.00E-01	2.32E-23	7.62E-22
Atrazine	4.03E-17	1.32E-15 3.62E-10	1.00E-01	2.06E-16	2.09E-16
Benza I dehyde	3.57E-10	6.95E-10	1.00E-01	3.95E-16	4.01E-16
Benzofuran	6.85E-10	1.75E-10	1.00E-01	9.98E-17	1.01E-16
Benzoic Acid	1.73E-10 1.65E-13	1.67E-13	1.00E-01	9.49E-20	9.63E-20
Benzonitrile	3.29E-14	3.34E-14	1.00E-01	1.90E-20	1.93E-20
Carbazole	1.99E-10	2.02E-10	1.00E-01	1.15E-16	1.16E-16
4-Chlorobiphenyl	2.60E-12	2.64E-12	1.00E-01	1.50E-18	1.52E-18
4,4-Chlorobiphenyl 4-Chlorophenylmethylsulfone	1.32E-15	3.47E-14	1.00E-01	7.63E-22	2.00E-20
4-Chlorophenytmethylsulfoxid		1.29E-13	1.00E-01	2.84E-21	7.46E-20
p,p-DDE	5.41E-12	2.72E-11	1.00E-01	3.12E-18	1.57E-17
p,p-00T	1.08E-15	5.44E-15	1.00E-01	6.25E-22	3.14E-21
Dibenzofuran	3.42E-11	3.47E-11	1.00E-01	1.97E-17	2.00E-17 2.09E-21
Dieldrin	3.58E-15	3.63E-15	1.00E-01	2.06E-21	2.64E-19
Diisopropyl Methylphosphonat	e 2.62E-14	4.58E-13	1.00E-01	1.51E-20 3.95E-17	4.01E-17
1.3-Dimethylbenzene	6.85E-11	6.95E-11	1.00E-01	5.95E-21	2.08E-19
Dimethyl Methylphosphonate	1.03E-14	3.61E-13	1.00E-01	2.37E-18	2.41E-18
Dimethylphosphate	4.11E-12	4.17E-12	1.00E-01	1.49E-18	5.78E-18
Dioxins/Furans (EPA TEFs)	2.58E-12	1.00E-11	1.00E-01 1.00E-01	3.63E-22	3.68E-22
Dithiane	6.29E-16	6.38E-16	1.00E-01	4.15E-22	1.89E-21
Endrin	7.19E-16	3.28E-15	1.00E-01	8.43E-20	6.09E-19
Hexachiorobenzene	1.46E-13	1.06E-12 3.29E-14	1.00E-01	1.87E-20	1.90E-20
Hexachlorocyclopentadiene	3.24E-14	9.30E-15	1.00E-01	5.29E-21	5.37E-21
Isodrin	9.17E-15 1.40E-14	1.42E-14	1.00E-01	8.08E-21	8.19E-21
Malathion	3.98E-10	4.03E-10	1.00E-01	2.29E-16	2.33E-16
Methanol	1.45E-13	1.47E-13	1.00E-01	8.36E-20	8.48E-20
4-Nitrophenol	1.436-13	11416 15	11002 01		
PAHS	1.72E-10	1.74E-10	1.00E-01	9.89E-17	1.00E-16
Acenaphthalene	1.72E-10	1.74E-10		9.89E-17	1.00E-16
Acenaphthene	6.03E-13	1.70E-11	1.00E-01	3.48E-19	9.81E-18
Benzo(a)pyrene	7.55E-13	1.93E-11	1.00E-01	4.36E-19	1.11E-17
Chrysene Dibenzo(a,h)anthracene	8.20E-13	2.01E-11	1.00E-01	4.73E-19	1.16E-17
Fluoranthene	2.21E-12	5.72E-11	1.00E-01	1.28E-18	3.30E-17
Fluorene	3.42E-11	3.47E-11	1.00E-01	1.97E-17	2.00E-17
Phenanthrene	1.05E-12			6.04E-19	1.79E-17 8.78E-18
Pyrene	5.07E-13			2.93E-19	1.13E-21
Parathion	1.93E-15			1.11E-21	3.06E-19
Pentachlorobenzene	5.23E-13			3.02E-19	1.09E-15
Phenol	1.86E-09			1.07E-15 4.73E-20	4.79E-20
Quinoline	8.19E-14			3.35E-21	3.40E-21
Supona	5.80E-15			1.27E-19	1.296-19
Tetrachlorobenzene	2.21E-13	2.24E-13	1.00E-01	1.2/6-19	1.676 17
1661 661140. 3601.					

Table 8F-6

(continued)

Trichlorobenzens Urea Vapona	1.16E-13 2.51E-09 1.55E-14	1.18E-13 2.55E-09 1.57E-14	1.00E-01 1.00E-01 1.00E-01	6.70E-20 1.45E-15 8.93E-21	6.80E-20 1.47E-15 9.05E-21
INORGANICS					
Antimony	1.60E-06	1.62E-06	1.00E-02	9.21E-14	9.34E-14
Arsenic	9.03E-06	9.16E-06	1.00E-02	5.21E-13	5.29E-13
Barium	2.21E-06	2.24E-06	1.00E-02	1.285-13	1.29E-13
Beryllium	9.24E-08	9.37E-08	1.00E-02	5.33E-15	5.41E-15
Copper	8.47E-03	8.59E-03	1.00E-02	4.89E-10	4.96E-10
Lead	2.84E-06	2.88E-06	1.00E-02	1.64E-13	1.66E-13
Hercury	2.50E-06	2.54E-06	1.00E-02	1.44E-13	1.46E-13
Selenium	2.32E-02	2.35E-02	1.00E-02	1.34E-09	1.36E-09
	2.40E-04	2.44E-04	1.00E-02	1.39E-11	1.41E-11
Silver	2.33E-05	2.36E-05	1.00E-02	1.34E-12	1.36E-12
Thallium	2.332-03	2.302 03	1.002-02	1.545-16	1.50

Number of exposure events per year (195 days/yr) Exposed surface area (2,188 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (0.15) Body weight (15.5 kg)

Table 8F-7

Average and Maximum Daily Exposure to the Pollutants of Concern Through the Dermal Absorption Route of Exposure Child, Farmer Scenario

	AVERAGE CALCULATED CONC IN SOIL .1M mg/Kg	MAXIMUM CALCULATED CONC IN SOIL .1M mg/Kg	ABSORPTION FACTOR	AVERAGE ESTIMATED DAILY INTAKE mg/kg/day	MAXIMUM ESTIMATED DAILY INTAKE mg/Kg/day
ORGANICS					
Acetonitrile	9.75E-13	9.89E-13	1.00E-01	5.63E-19	5.71E-19
Aldrin	1.03E-14	1.05E-14	1.00E-01	5.96E-21	6.05E-21
Atrazine	2.39E-17	7.83E-16	1.00E-01	1.38E-23	4.52E-22
Benzal dehyde	2.12E-10	2.15E-10	1.00E-01	1.22E-16	1.24E-16
Benzofuran	4.06E-10	4.12E-10	1.00E-01	2.34E-16	2.38E-16
Benzoic Acid	1.03E-10	1.04E-10	1.00E-01	5.91E-17	6.00E-17
Benzonitrile	9.75E-14	9.89E-14	1.00E-01	5.63E-20	5.71E-20
Carbazole	1.95E-14	1.98E-14	1.00E-01	1.13E-20	1.14E-20
4-Chlorobiphenyl	1.18E-10	1.20E-10	1.00E-01	6.80E-17	6.90E-17
4,4-Chlorobiphenyl	1.54E-12	1.57E-12	1.00E-01	8.91E-19	9.04E-19
4-Chlorophenylmethylsulfone	7.84E-16	2.06E-14	1.00E-01	4.53E-22	1.19E-20
4-Chlorophenylmethylsulfoxide		7.66E-14	1.00E-01	1.68E-21 1.85E-18	4.42E-20 9.29E-18
p,p-DDE .	3.21E-12	1.61E-11	1.00E-01	3.70E-22	1.86E-21
p,p-DDT	6.42E-16	3.22E-15 2.06E-11	1.00E-01 1.00E-01	1.17E-17	1.19E-17
Dibenzofuran	2.03E-11 2.12E-15	2.15E-15	1.00E-01	1.22E-21	1.24E-21
Dieldrin	1.55E-14	2.72E-13	1.00E-01	8.95E-21	1.57E-19
Diisopropyl Methylphosphonate	4.06E-11	4.12E-11	1.00E-01	2.34E-17	2.38E-17
1,3-Dimethylbenzene	6.12E-15	2.14E-13	1.005-01	3.53E-21	1.24E-19
Dimethyl Methylphosphonate Dimethylphosphate	2.44E-12	2.47E-12	1.00E-01	1.41E-18	1.43E-18
Dioxins/Furans (EPA TEFs)	1.53E-12	5.94E-12	1.00E-01	8.81E-19	3.43E-18
Dithiane	3.73E-16	3.78E-16	1.00E-01	2.15E-22	2.18E-22
Endrin	4.26E-16	1.95E-15	1.00E-01	2.46E-22	1.12E-21
Hexachlorobenzene	8.66E-14	6.26E-13	1.00E-01	5.00E-20	3.61E-19
Hexachlorocyclopentadiene	1.92E-14	1.95E-14	1.00E-01	1.11E-20	1.12E-20
Isodrin	5.44E-15	5.52E-15	1.00E-01	3.14E-21	3.18E-21
Malathion	8.30E-15	8.42E-15	1.00E-01	4.79E-21	4.86E-21
Methanol	2.36E-10	2.39E-10	1.00E-01	1.36E-16	1.38E-16
4-Nitrophenol	8.59E-14	8.72E-14	1.00E-01	4.96E-20	5.03E-20
PAHS					
Acenaphthalene	1.02E-10	1.03E-10	1.00E-01	5.87E-17	5.95E-17
Acenaphthene	1.02E-10	1.03E-10	1.00E-01	5.87E-17	5.95E-17
Benzo(a)pyrene	3.58E-13	1.01E-11	1.00E-01	2.06E-19	5.82E-18
Chrysene	4.48E-13	1.14E-11	1.00E-01	2.58E-19	6.60E-18
Dibenzo(a,h)anthracene	4.86E-13	1.19E-11	1.00E-01	2.81E-19	6.88E-18
Fluoranthene	1.31E-12	3.39E-11	1.00E-01	7.57E-19	1.96E-17
Fluorene	2.03E-11	2.06E-11	1.00E-01	1.17E-17	1.19E-17
Phenanthrene	6.21E-13	1.84E-11	1.00E-01	3.58E-19	1.06E-17
Pyrene	3.01E-13	9.02E-12	1.00E-01	1.74E-19	5.21E-18
Parathion	1.15E-15	1.16E-15	1.00E-01	6.61E-22	6.70E-22
Pentach Lorobenzene	3.10E-13	3.15E-13	1.00E-01	1.79E-19	1.81E-19
Phenol	1.10E-09	1.12E-09	1.00E-01	6.35E-16	6.44E-16
Quinoline	4.86E-14	4.93E-14	1.00E-01	2.80E-20	2.84E-20
Supona	3.44E-15	3.49E-15	1.00E-01	1.99E-21	2.01E-21
Tetrachlorobenzene	1.31E-13	1.33E-13	1.00E-01	7.54E-20	7.65E-20

Table 8F-7

(continued)

Trichlorobenzene	6.89E-14	6.99E-14	1.00E-01	3.97E-20	4.03E-20
Urea	1.49E-09	1.51E-09	1.00E-01	8.60E-16	8.72E-16
Vapona	9.17E-15	9.31E-15	1.00E-01	5.29E-21	5.37E-21
INORGANICS Antimony Arsenic Barium Beryllium Copper Lead Mercury Selenium Silver Thallium	9.46E-07 5.35E-06 1.31E-06 5.48E-08 5.02E-03 1.68E-06 1.48E-06 1.37E-02 1.42E-04 1.38E-05	9.60E-07 5.43E-06 1.33E-06 5.56E-08 5.09E-03 1.71E-06 1.50E-06 1.39E-02 1.44E-04 1.40E-05	1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02	5.46E-14 3.09E-13 7.57E-14 3.16E-15 2.90E-10 9.70E-14 8.55E-14 7.93E-10 8.21E-12 7.97E-13	5.54E-14 3.13E-13 7.68E-14 3.21E-15 2.94E-10 9.84E-14 8.67E-14 8.04E-10 8.33E-12 8.09E-13

Number of exposure events per year (195 days/yr) Exposed surface area (2,188 cm²) Skin adherence factor for soil (0.51 mg/cm²) Soil matrix factor (0.15) Body weight (15.5 kg)

APPENDIX 8G

METHODOLOGY FOR CALCULATING ORGANIC POLLUTANT CONCENTRATIONS IN MOTHER'S MILK

APPENDIX 8G

METHODOLOGY FOR CALCULATING ORGANIC POLLUTANT CONCENTRATIONS IN MOTHER'S MILK

This appendix presents a discussion of the methods used to determine the organic pollutant concentrations in mother's milk. These concentrations are used in the calculation of the daily intakes of pollutants by infants through the consumption of mother's (i.e., breast) milk.

The concentration of dioxins in breast milk was calculated using the following equation that was developed for dioxins (Smith, 1987):

$$C_{DBM} = \frac{\text{TEDI x } f_1 \text{ x } f_2}{f_3 \text{ x x } k}$$

Where:

C_{DBM} = Concentration of dioxins in breast milk (mg/kg).

TEDI = Total Estimated Daily Intake, the maximum daily intake of diexins by the mother through all potential exposure routes (mg/kg/day).

 f_1 = Proportion of dioxins stored in body fat (unitless).

 f_2 = Proportion of breast milk that is fat (unitless).

 f_3 = Proportion of body weight that is fat (unitless).

k = Rate constant (days⁻¹).

The maximum total estimated daily intake of the mother was used to estimate breast milk concentrations for dioxins as well as all other organics.

Values of 0.8, 0.04, and 0.3 were used for f_1 , f_2 , and f_3 , respectively (Smith, 1987). A rate constant of 3.27E-04 days⁻¹ was calculated as follows. Assuming a half-life ($t_{1/2}$) of dioxins in the human body of 2,120 days (ATSDR, 1989a):

$$k' = \frac{\ln 2}{t_{1/2}}$$

The equation developed by Smith (1987) was applied to the other organic pollutants of concern using available information. Data were available on the half-lives of ten organics (in addition to dioxin) in humans and mammals. A half-life of 8 hours was used for acrylonitrile; the half-life of acrylonitrile in humans is reported to range from 7 to 8 hours (ATSDR, 1989b). A half-life of 3 hours was used for benzene; the half-life of benzene in humans is reported to range from 1 to 3 hours (Baselt, 1982). Half-lives in humans of 240 days and 120 days were used for DDE and DDT, respectively. These values are based on half-lives in rats of 24 days and 12 days for DDE and DDT, respectively (ATSDR, 1988a). An uncertainty factor of 10 was applied to the 24 and 12 day half-lives to account for the absence of human data. A half-life in humans of 45 hours was used for 1,1-dichloroethene This value is based on a half-life in rats (1,1-dichloroethene) and an unreported species (phenol) of 4.5 hours (ATSDR, 1988b; Baselt, 1982). An uncertainty factor of 10 was applied to the half-life of 4.5 hours to account for the absence of human data. A half-life of 266 days in humans was used for dieldrin (ATSDR, 1989c). A half-life of 60 days has been reported for hexachlorobenzene in humans (Baselt, 1982). This half-life also was assumed for all other semi-volatile chlorinated benzenes (i.e., trichlorobenzene, tetrachlorobenzene, and pentachlorobenzene). A half-life of 7.5 hours in humans was used for toluene (Baselt, 1982), whereas a half-life of 1.5 hours in humans was used for xylene (Baselt, 1982). For those semi-volatile organics, for which half-life data in humans or mammals were not available, the half-life of dieldrin (266 days) was used. The half-life of dieldrin is the longest half-life available for the semi-volatile, other than dioxin. Since there are few organics that would accumulate in breast milk to the extent of dioxin, it would be overly conservative to apply the half-life for dioxins in humans to all semi-volatile organics.

Thus, the next highest half-life (i.e., dieldrin) was used. The half-life for 1,1-dichloroethene of 45 hours in humans was applied to all volatile organics (as defined in Subsection 7.4.2) for which half-life data were not available. This is the longest half-life that is assumed for the volatile organics, which are being evaluated.

From the available or calculated half-lives, the following rate constants (k) were calculated: acrylonitrile (2.08E+00 day⁻¹); benzene (5.54E+00 day⁻¹); DDE (2.89E-03 day⁻¹); DDT (5.77E-03 day⁻¹); 1,1-dichloroethene, phenol, and those volatile organics for which insufficient half-life data were available (3.70E-01 day⁻¹); dieldrin, and those semi-volatile organics for which insufficient half-life data were available (2.61E-03 day⁻¹); trichlorobenzene, tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene (1.15E-02 day⁻¹); toluene (2.22E+00); and xylene (1.11E+01 day⁻¹). The proportion of these organics stored in body fat (f₁) was assumed to be the same as that of dioxin (0.8).

Tables 8G-1 through 8G-3 present pollutant concentrations in breast milk for the Resident-A, Resident-B, and Farmer scenarios, respectively.

Table 8G-1

Pollutant Concentrations in Breast Milk, Resident-A Scenario

	Maximum Total Daily Intake (mg/kg/day)	Breast milk Transfer Factor (day)	Maximum Breast milk Conc. mg/kg	Maximum Estimated Daily Intake mg/kg/day
ORGANICS			4 //5 47	4 205 49
Acetone	5.04E-17	2.89E-01	1.46E-17	1.29E-18
Acetonitrile	5.94E-15	4.09E+01	2.43E-13	2.16E-14 1.40E-18
Acrylonitrile	3.06E-16	5.13E-02	1.57E-17	1.56E-16
Aldrin	4.28E-17	4.09E+01	1.75E-15	2.71E-17
Atrazine	7.45E-18	4.09E+01	3.05E-16 2.92E-11	2.60E-12
8enzal dehyde	7.14E-13	4.09E+01		1.12E-15
Benzene	6.55E-13	1.92E-02	1.26E-14 5.49E-11	4.88E-12
Benzofuran	1.34E-12	4.09E+01	1.39E-11	1.24E-12
Benzoic Acid	3.40E-13	4.09E+01	1.34E-14	1.19E-15
Benzonitrile	3.28E-16	4.09E+01	1.34E-14	1.16E-12
Biphenyl	3.19E-13		1.84E-14	1.64E-15
Bromomethane	6.38E-14	2.89E-01	2.61E-15	2.32E-16
Carbazole	6.38E-17	4.09E+01 2.89E-01	5.87E-17	
Carbon Tetrachloride	2.03E-16	2.89E-01	4.55E-14	
Chlorobenzene	1.58E-13	4.09E+01	1.57E-11	1.39E-12
4-Chlorobiphenyl	3.82E-13 5.01E-15	4.09E+01	2.05E-13	
4,4-Chlorobiphenyl	3.22E-17	2.89E-01	9.29E-18	
Chloroform	1.26E-16	4.09E+01	5.14E-15	
4-Chlorophenylmethylsulfone	4.66E-16	4.09E+01	1.91E-14	
4-Chlorophenylmethylaulfoxide	5.61E-14	3.69E+01	2.07E-12	
p,p-DDE	1.14E-17	1.85E+01	2.11E-16	
p,p-DDT	6.60E-14	4.09E+01	2.70E-12	
Dibenzofuran	1.15E-16	2.89E-01	3.31E-17	
Dichlorobenzenes (total) 1.4-Dichlorobenzene	7.25E-18	2.898-01	2.09E-18	
	1.785-16	2.89E-01	5.15E-17	
1,1-Dichloroethene	1.24E-16	2.89E-01	3.58E-17	
1,2-Dichloroethene	1.45E-17	2.89E-01	4.17E-18	
1,2-Dichloropropene Dieldrin	1.59E-17	4.09E+01	6.52E-16	
Diisopropyl Methylphosphonate	1.23E-15	4.09E+01	5.04E-14	
1.3-Dimethylbenzene	1.33E-13	4.09E+01	5.45E-12	4.84E-13
Dimethyldisulfide	3.24E-15	4.09E+01	1.33E-13	1.18E-14
Dimethyl Methylphosphonate	3.11E-14	4.09E+01	1.27E-12	1.13E-13
Dimethylphosphate	7.85E-15	4.09E+01	3.21E-13	2.86E-14
Dioxins/Furans (EPA TEFS)	2.02E-14	3.26E+02	6.59E-12	5.85E-13
Dithiane	1.34E-18	4.09E+01	5.47E-17	4.86E-18
Endrin	6.65E-18	4.09E+01	2.72E-16	2.42E-17
Ethylbenzene	1.92E-13	2.89E-01	5.53E-14	4.91E-15
Hexach Lorobenzene	2.27E-15	9.24E+00	2.09E-14	1.86E-15
Hexachlorocyclopentadiene	7.06E-17	4.09E+01	2.898-15	2.57E-16
Isodrin	2.97E-17	4.09E+01	1.22E-15	1.08E-16
Malathicn	2.70E-17	4.09E+01	1.11E-15	
Methanol	1.45E-12	4.09E+01	5.93E-11	
Methyl Chloride	6.38E-13	2.89E-01	1.84E-13	
Methylene Chloride	6.38E-14	2.89E-01	1.84E-14	
4-Nitrochenol	2.82E-16	4.09E+01	1.16E-14	1.03E-15

Table 8G-1 (continued)

	Maximum Total Daily Intake (mg/kg/day)	Breast milk Transfer Factor (day)	Maximum Breast milk Conc. mg/kg	Maximum Estimated Daily Intake mg/kg/day
PAHs				4 222 42
Acenaphthalene	3.35E-13	4.09E+01	1.37E-11	1.22E-12
Acenaphthene	3.31E-13	4.09E+01	1.36E-11	1.20E-12
Benzo(a)pyrene	6.60E-14	4.09E+01	2.70E-12	2.40E-13
Chrysene	6.61E-14	4.09E+01	2.70E-12	2.40E-13
Dibenzo(a,h)anthracene	7.33E-14	4.09E+01	3.00E-12	2.67E-13
Fluoranthene	1.98E-13	4.09E+01	8.10E-12	
Fluorene	6.63E-14	4.09E+01	2.71E-12	
Phenanthrene	1.32E-13	4.09E+01	5.39E-12	4.79E-13
Pyrene	6.58E-14	4.09E+01	2.69E-12	
Parathion	3.73E-18	4.09E+01	1.53E-16	
Pentachiorobenzene	1.02E-15	9.24E+00	9.45E-15	
Phenol	4.06E-12	2.89E-01	1.17E-12	
Pyridine	3.06E-17	4.09E+01	1.25E-15	1.11E-16
Quinoline	1.64E-16	4.09E+01	6.72E-15	
Styrene	6.40E-13	2.89E-01	1.85E-13	
Supona	1.12E-17	4.09E+01	4.60E-16	
Tetrachiorobenzene	4.45E-16	9.24E+00	4.11E-15	
Tetrachloroethene	2.54E-15	2.89E-01	7.33E-16	
Toluene	3.19E-13	4.81E-02	1.54E-14	
Trichlorobenzene	2.24E-16	9.24E+00	2.06E-15	
Trichloroethene	3.91E-16	2.89E-01	1.13E-16	
Urea	7.99E-11	4.09E+01	3.27E-09	
Vapona	3.11E-17	4.09E+01	1.27E-15	
Vinyl Chloride	6.38E-13	2.89E-01	1.84E-13	
Yviana	1.28E-13	9.62E-03	1.23E-15	1.09E-16

Table 8G-2

Pollutant Concentrations in Breast Milk, Resident-B Scenario

	Maximum Total Daily Intake (mg/kg/day)	Breast milk Transfer Factor (day)	Maximum Breast milk Conc. mg/kg	Maximum Estimated Daily Intake mg/kg/day
ORGANICS	7 005 40	2.89E-01	2.28E-18	2.03E-19
Acetone	7.89E-18	4.09E+01	1.868-13	1.65E-14
Acetonitrile	4.54E-15	5.13E-02	2.468-18	2.19E-19
Acrylonitrile	4.79E-17 1.76E-17	4.09E+01	7.20E-16	6.40E-17
Aldrin	1.24E-18	4.09E+01	5.09E-17	4.53E-18
Atrazine	1.53E-13	4.09E+01	6.26E-12	5.57E-13
Benzaldehyde	1.03E-13	1.92E-02	1.97E-15	1.75E-16
Benzene	2.52E-13	4.09E+01	1.03E-11	9.17E-13
Benzofuran	6-61E-14	4.09E+01	2.71E-12	2.41E-13
Benzoic Acid	6.86E-17	4.09E+01	2.81E-15	2.50E-16
Benzonitrile	5.00E-14	4.09E+01	2.05E-12	1.82E-13
Biphenyl	1.00E-14	2.89E-01	2.88E-15	2.56E-16
Bromomethame Carbazole	1.12E-17	4.09E+01	4.60E-16	
Carbon Tetrachloride	3.18E-17	2.89E-01	9.18E-18	
Chiorobenzene	2.47E-14	2.89E-01	7.12E-15	
4-Chlorobiphenyl	6.32E-14	4.09E+01	2.59E-12	
4.4-Chlorobiphenyl	8.21E-16	4.09E+01	3.36E-14	
Chloroform	5.04E-18	2.89E-01	1.45E-18	
4-Chlorophenylmethylsulfone	2.50E-17	4.09E+01	1.02E-15	
4-Chlorophenylmethylsulfoxide	9.11E-17	4.09E+01	3.73E-15	
p.p-DDE	9.44E-15	3.69E+01	3.49E-13	
p,p-00T	2.14E-18	1.85E+01	3.96E-17	
Dibenzofuran	1.11E-14	4.09E+01	4.56E-13	
Dichlorobenzenes (total)	1.80E-17	2.89E-01	5.19E-18 3.28E-19	
1,4-Dichlorobenzene	1.14E-18	2.89E-01	8.07E-18	
1,1-Dichloroethene	2.79E-17	2.89E-01	5.61E-18	
1,2-Dichloroethene	1.94E-17	2.89E-01 2.89E-01	6.54E-19	
1,2-Dichloropropane	2.26E-18	4.09E+01	5.82E-16	
Dieldrin	1.42E-17	4.09E+01	9.49E-15	
Diisopropyl Methylphosphonate	2.32E-16 2.36E-14	4.09E+01	9.65E-13	
1,3-Dimethylbenzene	5.08E-16	4.09E+01	2.08E-14	
Dimethyldisulfide	8.09E-15	4.09E+01	3.31E-13	
Dimethyl Methylphosphonate	1.23E-15	4.09E+01	5.04E-14	
Dimethylphosphate	3.27E-15	3.26E+02	1.07E-12	41
Dioxins/Furans (EPA TEFS)	3.84E-19	4.09E+01	1.57E-17	1.40E-18
Dithiane	1.05E-18	4.09E+01	4.30E-17	7 3.82E-18
Endrin	3.00E-14	2.89E-01	8.65E-15	
Ethylbenzene	3.93E-16	9.24E+00	3.63E-15	3.23E-16
Hexachlorobenzene Hexachlorocyclopentadiene	2.22E-17	4.09E+01	9.08E-16	
	2.02E-17	4.09E+01	8.268-16	
Isodrin Malathion	4.57E-18	4.09E+01	1.87E-16	
Matathion Methanol	1.12E-12	4.09E+01	4.57E-1	
Methyl Chloride	1.00E-13	2.89E-01		
Methylene Chloride	1.00E-14	2.898-01	2.88E-1	
4-Nitrophenol	5.14E-17	4.09E+01	2.11E-1	1.87E-16
4 MIC Abuse				

Table 8G-2 (continued)

	Maximum Total Daily Intake (mg/kg/day)	Breast milk Transfer Factor (day)	Maximum Breast milk Conc. mg/kg	Maximum Estimated Daily Intake mg/kg/day
PAHS				
Acenaphthalene	6.20E-14	4.09E+01	2.54E-12	2.26E-13
Acenaphthene	5.63E-14	4.09E+01	2.30E-12	2.05E-13
Benzo(a)pyrene	1.09E-14	4.09E+01	4.45E-13	3.96E-14
Chrysene	1.10E-14	4.09E+01	4.50E-13	4.00E-14
Dibenzo(a,h)anthracene	1.82E-14	4.09E+01	7.44E-13	6.62E-14
Fluoranthene	3.26E-14	4.09E+01	1.33E-12	1.18E-13
Fluorene	1.15E-14	4.09E+01	4.72E-13	4.20E-14
Phenanthrene	2.14E-14	4.09E+01	8.76E-13	7.79E-14
Pyrene	1.08E-14	4.09E+01	4.40E-13	3.91E-14
Parathion	6.37E-19	4.09E+01	2.61E-17	2.32E-18
Pentach Lorobenzene	1.92E-16	9.24E+00	1.77E-15	1.58E-16
Phenot	1.31E-12	2.89E-01	3.78E-13	3.36E-14
Pyridine	4.79E-18	4.09E+01	1.96E-16	1.74E-17
Quinoline	3.54E-17	4.09E+01	1.45E-15	1.29E-16
Styrene	1.00E-13	2.89E-01	2.89E-14	2.57E-15
Supona	1.95E-18	4.09E+01	7.98E-17	7.10E-18
Tetrachlorobenzene	1.00E-16	9.24E+00	9.27E-16	8.24E-17
Tetrachloroethene	3.98E-16	2.89E-01	1.15E-16	1.02E-17
Toluene	5.00E-14	4.81E-02	2.40E-15	2.14E-16
Trichlorobenzene	3.69E-17	9.24E+00	3.41E-16	3.03E-17
Trichloroethene	6.12E-17	2.89E-01	1.77E-17	1.57E-18
Urea	1.09E-10	4.09E+01	4.47E-09	3.98E-10
Vapona Várost de London	6.83E-18	4.09E+01	2.79E-16	2.48E-17
Vinyl Chloride	1.00E-13	2.89E-01	2.88E-14	2.56E-15
Xylene	2.00E-14	9.62E-03	1.92E-16	1.71E-17

Table 8G-3

Pollutant Concentrations in Breast Milk, Farmer Scenario

	Maximum Total Daily Intake (mg/kg/day)	Breast milk Transfer Factor (day)	Maximum Breast milk Conc. mg/kg	Maximum Estimeted Daily Intake mg/kg/day
ORGANICS			F 44F 40	4.54E-19
Acetone	1.77E-17	2.89E-01	5.11E-18 5.72E-13	5.08E-14
Acetonitrile	1.40E-14	4.09E+01	5.51E-18	4.90E-19
Acrylonitrile	1.07E-16	5.13E-02	4.85E-15	4.315-16
Aldrin	1.18E-16	4.09E+01	1.21E-16	1.08E-17
Atrazine	2.97E-18	4.09E+01 4.09E+01	1.34E-11	1.19E-12
Benzaldehyde	3.27E-13	1.92E-02	4.42E-15	3.93E-16
Benzene	2.30E-13	4.09E+01	2.64E-11	2.356-12
Benzofuran	6.45E-13	4.09E+01	6.04E-12	5.37E-13
Benzoic Acid	1.48E-13	4.09E+01	6.07E-15	5.39E-16
Benzonitrile	1.48E-16	4.09E+01	4.59E-12	
Biphenyl	1.12E-13	2.89E-01	6.46E-15	5.75E-16
Bromomethane	2.24E-14	4.09E+01	1.15E-15	
Carbazole	2.81E-17	2.89E-01	2.06E-17	
Carbon Tetrachloride	7.13E-17 5.53E-14	2.89E-01	1.60E-14	
Chlorobenzene	1.54E-13	4.09E+01	6.32E-12	
4-Chlorobiphenyl	2.08E-15	4.09E+01	8.50E-14	
4,4-Chlorobiphenyl	1.13E-17	2.89E-01	3.26E-18	
Chloroform	5.30E-17	4.09E+01	2.17E-15	1.93E-16
4-Chlorophenylmethylsulfone	1.99E-16	4.09E+01	8.16E-15	
4-Chlorophenylmethylsulfoxide	2.24E-14	3.69E+01	8.27E-13	7.35E-14
p,p-DDE	6.80E-18	1.85E+01	1.26E-16	1.12E-17
p,p-DDT	2.74E-14	4.09E+01	1.12E-12	9.96E-14
Dibenzofuran Dichlorobenzenes (total)	4.03E-17	2.89E-01	1.16E-17	
1,4-Dichlorobenzene	2.55E-18	2.89E-01	7.35E-19	6.53E-20
	6.26E-17	2.89E-01	1.81E-17	1.612-18
1,1-Dichloroethene	4.36E-17	2.89E-01	1.268-17	
1,2-Dichloroethene	5.07E-18	2.89E-01	1.468-18	
1,2-Dichloropropane Dieldrin	7.04E-17	4.09E+01	2.888-15	
Diisopropyl Methylphosphonate	5.14E-16	4.09E+01	2.10E-14	
1,3-Dimethylbenzene	5.92E-14	4.09E+01	2.42E-12	
Dimethyldisulfide	1.14E-15	4.09E+01	4.66E-14	
Dimethyl Methylphosphonate	1.54E-14	4.09E+01	6.29E-13	
Dimethylphosphate	2.79E-15	4.09E+01	1.14E-13	
Dioxins/Furans (EPA TEFS)	9.01E-15	3.26E+02		
Dithiane	7.47E-19	4.09E+01	3.06E-17	
Endrin	2.39E-18		9.80E-17	
Ethylbenzene	6.72E-14	2.89E-01		
Hexach Lorobenzene	1.03E-15			
Hexachlorocyclopentadiene	8.70E-17			
Isodrin	9.79E-17			
Malathion	1.05E-17			
Methanol	1.75E-12			
Methyl Chloride	2.24E-13			4 5.75E-15
Methylene Chloride	2.24E-14			
4-Nitrophenol	1.30E-16	4.09E+01	5.34E-1	5 4.75E-16

Table 8G-3 (continued)

	Maximum Total Daily Intake (mg/kg/day)	Breast milk Transfer Factor (day)	Maximum Breast milk Conc. mg/kg	Maximum Estimated Daily Intake mg/kg/day
PAHS				
Acenaphthalene	1.69E-13	4.09E+01	6.91E-12	6.14E-13
Acenaphthene	1.39E-13	4.09E+01	5.69E-12	5.06E-13
Benzo(a)pyrene	3.54E-14	4.09E+01	1.45E-12	1.29E-13
Chrysene	2.79E-14	4.09E+01	1.14E-12	1.02E-13
Dibenzo(a,h)anthracene	4.51E-14	4.09E+01	1.85E-12	1.64E-13
Fluoranthene	8.07E-14	4.09E+01	3.30E-12	2.94E-13
Fluorene	2.95E-14	4.09E+01	1.21E-12	1.07E-13
Phenanthrene	5.10E-14	4.09E+01	2.09E-12	1.86E-13
Pyrene	2.61E-14	4.09E+01	1.07E-12	9.51E-14
Parathion	1.58E-18	4.09E+01	6.45E-17	5.74E-18
Pentachlorobenzene	5.42E-16	9.24E+00	5.00E-15	4.45E-16
Phenol	4.32E-12	2.89E-01	1.25E-12	1.11E-13
Pyridine	1.07E-17	4.09E+01	4.40E-16	3.91E-17
Quinoline	9.48E-17	4.09E+01	3.88E-15	3.45E-16
Styrene	2.24E-13	2.89E-01	6.48E-14	5.76E-15
Supona	4.74E-18	4.09E+01	1.94E-16	1.73E-17
Tetrachlorobenzene	3.25E-16	9.24E+00	3.00E-15	2.67E-16
Tetrachioroethene	8.91E-16	2.89E-01	2.57E-16	2.29E-17
Toluene	1.12E-13	4.81E-02	5.39E-15	4.79E-16
Trichlorobenzene	8.78E-17	9.24E+00	8.11E-16	7.20E-17
Trichloroethene	1.37E-16	2.89E-01	3.96E-17	3.52E-18
Urea	1.53E-10	4.09E+01	6.28E-09	5.58E-10
Vapona	1.45E-17	4.09E+01	5.92E-16	5.27E-17
Vinyt Chloride	2.24E-13	2.89E-01	6.46E-14	5.75E-15
Xylene	4.48E-14	9.62E-03	4.31E-16	3.83E-17

APPENDIX 8G

CITED REFERENCES

ATSDR (Agency for Toxic Substances and Disease Registry). 1989a. <u>Toxicological Profile</u> for 2.3.7.8-Tetrachlorodibenzo-p-dioxin. Prepared by Syracuse Research Corporation. PB89-214522.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989b. <u>Toxicological Profile</u> for Acrylonitrile. Draft. Prepared by Life Systems and Clement Associates.

ATSDR (Agency for Toxic Substances and Disease Registry). 1989c. <u>Toxicological Profile</u> for Aldrin/Dieldrin. Prepared by Dynamac Corporation.

ATSDR (Agency for Toxic Substances and Disease Registry). 1988a. <u>Toxicological Profile</u> for p.p/DDT, p.p/-DDE, p.p/-DDD. Draft. Prepared by Clement Associates.

ATSDR (Agency for Toxic Substances and Disease Registry). 1988b. <u>Toxicological Profile</u> for 1.1-Dichloroethene. Draft. Prepared by Clement Associates.

Baselt, R.C. 1982. <u>Disposition of Toxic Drugs and Chemicals in Man.</u> 2nd edition. Biomedical Publications, Davis, CA.

Smith, A. H. 1987. "Infant Exposure Assessment for Breast Milk Dioxins and Furans Derived from Waste Incineration Emissions," Risk Analysis 7(3):347-353.

APPENDIX 8H CARCINOGENIC RISK FOR INDIVIDUALS UNDER ALL SCENARIOS

Table 8H-1

Carcinogenic Risk Through all Routes of Exposure for the Adult, Resident-A Scenario

•	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL ADULT CARC. RISK
ORGANICS Acrylonitrile Addrin Benzene Carbazole Carbazole Chloroform P.P-DDE P.P-DDE 1,4-Dichloropenee 1,2-Dichloropropane Distins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Methylene Chloride PAHS Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Parathion Quinoline Styrene Trichloroethene Trichloroethene Trichloroethene Vapona Vinyl Chloride Vapona Cedmium Cadmium Cadmium Cadmium Cadmium Cedmium	1.01E-16 1.03E-20 1.38E-17 1.03E-20 1.38E-17 5.07E-16 5.07E-16 5.07E-16 5.18E-16 5.18E-16 8.25E-17 8.25E-17 8.25E-17 8.25E-17 8.25E-17	1.29E-18 6.18E-24 NAA 7.64E-22 NAA 1.03E-10 1.61E-16 1.03E-17 1.95E-16 NAA NAA NAA NAA NAA NAA NAA NAA NAA NA	1.85E-19 2.37E-24 1.65E-19 1.04E-22 1.64E-22 1.64E-21 1.56E-18 2.56E-18 1.56E-13 1.56E-13 1.56E-13 1.56E-13	2.68E-19 8.94E-22 8.94E-22 8.94E-22 8.94E-22 8.94E-22 8.94E-22 8.94E-22 8.94E-22 8.94E-19 8.95E-18 8.98E-19	3.246-21 2.336-22 NA 1.986-16 4.136-20 NA 1.376-19 3.076-19 3.076-19 3.076-19 1.346-19 1.346-19 NA NA NA NA NA NA NA NA NA NA	2.486-23 NA NA NA 6.926-23 1.396-23 NA NA NA NA NA NA NA NA NA NA	1.03E-16 1.03E-16 1.38E-20 1.31E-16 5.29E-20 1.42E-17 1.4
Hickel	NA 2.53E-11	1.18E-11	3.01E-13	1.50E-11	NA 2.70E-11	NA 6.25E-13	MA 8.00E-11

2

Carcinogenic Risk Through all Routes of Exposure for the Adult, Resident-B Scenario

	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL ADULT CARC. RISK
ORGANICS			;	;	:	;	•
Acrylonitrile	Z Z	MA	× ×	¥	~	*	¥
Aldrin	1.456-16	1.29E-18	1.85E-19	3.87E-19	3.246-21	1.61E-20	1.47E-16
Benzene	A B	MA	X	X	N.	V	NA N
Carbazole	2.46E-20	6.18E-24	2.376-24	8.59E-22	2.33E-22	3.586-23	2.57E-20
Carbon Tetrachloride	M	¥	M.	××	MA	Z Z	X
Chloroform	Z Z	¥	*	Z Z	W.	¥ ×	VH.
p, p-00£	3.306-18	9.17E-19	1.50E-19	2.40E-18	1.98E-16	1.00E-19	2.05E-16
p,p-00T	1.17E-20	7.64E-22	1.04E-22	4.81E-22	4.13E-20	2.00E-23	5.44E-20
1,4-Dichlorobenzene	¥	×	X.	×	¥	2	*
1,1-Dichloroethene	A	Z.	MA	M.	¥	¥:	¥:
1,2-Dichloropropane	× ×	M.	AM.	W.	2	VH.	Y W
Dieldrin	1.896-16	2.27E-20	4.97E-21	7.48E-20	1.30E-19	3. 12E-21	1.89E-16
Dioxins/furans (EPA TEFs)	9.02E-13	2.83E-13	1.516-13	5.05E-13	3.07E-12	2.10E-14	4.93E-12
Hexachlorobenzene	7.62E-18	1.036-19	1.64E-20	3.05E-19	6.45E-18	1.27E-20	1.45E-17
Methyl Chloride	A M	AM.	M	M.	Z	Z.	X
Methylene Chloride	NA A	Z	KA	MA	¥	A.	K
PAHS							*******
Benzo(a)pyrene	8.12E-17	1.61E-16	1.85E-17	9.06E-18	1.33E-16	3.78E-19	4.03E-16
Chrysene	1.90E-16	3.84E-17	4.56E-18	1.13E-17	3.566-15	4.75E-19	3.00E-13
Dibenzo(a,h)anthracene	9.82E-17	1.956-16	Z.23E-11	1.236-17	4.72E-14	3. 13E- 19	#1 -30C-/
Parathion		7.5	T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	4 402-44
Quinol ine	1.186-16	2.66E-21	1.04E-21	1.286-18	1.34E-19	5.35E-20	1.175-10
Styrene	A :	4	Z :	Z :	4	4 2	£ 2
Tetrachloroethene		Z :	Z		T	< :	Z 2
Trichloroethene	Y .	YH .	Z	ZZ 6	2	TAN C	MA 705 10
Vepone	5.736-19	6.5/E-24	4.3/E-24	3.80E-21	23-24-75	23-244-2	2.175-19
Vinyl Chloride	MA	e E	AM.	M	X	MM	Z.
INORGANICS			•			1	9 9 9
Arsenic	6.11E-12	1.156-11	1.506-13	Z.06E-11	2.398-11	8.60E-15	6.31E-11
Beryllium	9.13E-14	8.156-18	3.93E-16	S. 19E-13	3.02E-14	2.165-14	6.63E-13
Cadmium	AM	MA	×		NA	4	
Chromium (VI)	A M	4	X	2	Y :	Z :	4
Lead	ш :	ii c	E :	2 3 20 4	35 S	37 Z	u
Mickel	e e	~	**	VE.	ď.	4	C
Total	7.11E-12	1.186-11	3.01E-13	2.17E-11	2.70E-11	9.038-13	6.88E-11

s :: - (

12/27/90

539C/a8H

Table 8H-3

Carcinogenic Risk Through all Routes of Exposure for the Adult, Farmer Scenario

	VEGETABLE	MILK	BEEF	SOIL/DUST	FISH	DERMAL	TOTAL
	INGESTION	INGESTION	INGESTION	INGESTION	INGESTION	EXPOSURE	ADULT
	CARC.	CARC.	CARC.	CARC.	CARC.	CARC.	CARC.
	RISK	RISK	RISK	RISK	RISK	RISK	RISK
Acrylonitrile Atdrin Benzene Carbazole Carbazole Carbon Tetrachloride Chloroform P.P.DDE P.P.DDE P.P.DDE I.4-Dichlorobenzene I,1-Dichloroethene I,2-Dichloroethene I,2-Dichloroethene I,2-Dichloroethene I,2-Dichloroethene I,2-Dichloroethene I,2-Dichloroethene I,2-Dichloroethene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Chrysene Trichloroethene Tetrachloroethene Trichloroethene Trichloroethene Vapona Vinyl Chloride	7.45E-16 1.04E-19 1.04E-19 1.21E-17 5.93E-20 8.69E-16 8.69E-16 8.68E-16 4.08E-16 4.08E-16 8.74E-16 8.7	2.59E-17 1.24E-22 1.24E-22 1.83E-17 1.53E-20 1.55E-19 5.65E-19 5.65E-19 7.69E-16 3.89E-15 1.31E-22 1.31E-22	3.71E-18 3.71E-18 3.01E-18 3.08E-21 3.08E-21 3.08E-16 4.47E-16 5.14E-23	2.29E-19 5.10E-22 NA 1.42E-18 2.95E-22 NA NA 7.30E-18 7.46E-19 8.37E-18 7.46E-19 8.37E-18 8.34E-19 8.34E-19 8.34E-19 8.34E-19	3.24E-21 NA 1.98E-16 4.13E-20 NA NA 1.30E-19 3.07E-12 6.45E-18 NA NA 1.34E-19 1.34E-19 NA NA NA NA NA NA NA NA NA NA	2.436-19 NA 2.436-22 NA 6.796-19 1.366-22 NA NA 2.116-20 1.436-13 8.636-20 NA NA NA NA NA NA NA NA NA NA NA NA NA	7.75E-16 1.05E-19 1.05E-19 1.16E-19 1.61E-11 4.76E-15 8.00E-15 8.00E-15 8.00E-15 8.00E-15 8.00E-15 8.00E-15 8.00E-15
INORGANICS Arsenic Beryllium Codmium Chromium (VI) Leed Nickel	1.59E-11	2.30E-10	3.00E-12	1.22E-11	2.39E-11	5.84E-12	2.91E-10
	3.02E-13	1.63E-16	7.86E-15	3.08E-13	3.02E-14	1.47E-13	7.95E-13
	NA	NA	NA	NA	NA	NA	NA
	NA	NA	NA	NA	NA	NE	NA
	NA	NA	NA	NA	NA	NE	NA
Total	2.02E-11	2.35E-10	6.03E-12	1.28E-11	2.705-11	6.12E-12	3.086-10

2::_:

9

Carcinogenic Risk Through all Routes of Exposure for the Adult, Worker Scenario

	INHALATION CARC. RISK	SOIL/DUST INGESTIOM CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL Worker Carc. RISK
ORGANICS Acrylonitrile Aldrin Benzene Carbazole Carbazole Carbon Tetrachloride Chloroform P.P-DDE T.4-Dichlorobenzene 1,1-Dichloropropane Dieldrin Dioxins/Furans (EPA TEFs) Hexachlorobenzene Methyl Chloride Hettylene Chloride PAHs Benzo(a)pyrene Chrysene Dibenzo(a,h)anthracene Parathion Quinoline Styrene	2.11E-19 1.56E-18 5.46E-17 7.60E-20 7.49E-21 5.27E-17 5.06E-20 5.06E-19 6.16E-19 6.35E-12 1.10E-17 1.12E-15 1.12E-15 3.68E-18 3.68E-18	5.07E-20 NA 1.13E-22 NA NA 7.85E-20 1.74E-22 NA 4.87E-19 9.75E-23 NA 1.52E-20 1.02E-13 6.19E-20 NA NA NA NA NA NA NA NA NA NA	2.11E-19 1.71E-18 3.66E-17 3.61E-21 7.49E-21 1.07E-20 5.35E-17 5.35E-19 6.52E-12 1.16E-17 1.12E-15 1.12E-15 1.12E-15 1.12E-15 1.12E-15	
Tetrachloroethene Trichloroethene Vapona Vinyl Chloride	2.41E-20 1.24E-20 2.40E-20 2.70E-16	NA NA 7.686-22 NA	NA NA 1.19E-21 NA	2.41E-20 1.24E-20 2.60E-20 2.70E-16
INORGANICS Arsenic Beryllium Cadhium Chromium (VI) Lead Nickel	7.25E-10 4.15E-12 8.59E-12 4.64E-12 7.72E-12	2.71E-12 6.80E-14 NA NA NE NA NA	4.18E-12 1.05E-13 NA NE NE HA 4.39E-12	7.32E-10 4.33E-12 8.59E-12 4.64E-12 7.72E-12

12/27/90

Carcinogenic Risk Through all Routes of Exposure for the Child, Resident-A Scenario

	INHALATION CARC. RISK	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL CHILD CARC. RISK
Acrylonitrile Atdrin Benzene Carbazole Carbazole Carbon Tetrachloride Chloroform p,p-DDT 1,4-Dichlorobenzene 1,2-Dichloroptene 1,2-Dichloroptene 1,2-Dichloroptene 1,2-Dichloroptene 1,2-Dichloroptene Mexachlorobenzene Methyl Chloride Methyl Chloride Methyl Chloride Methylene Chloride PAHS Benzo(a)pyrene Chrysene Chrysene Dibenzo(a)pyrene Chrysene Trichloroethene Tetrachloroethene Trichloroethene Vapona	2.37E-18 6.13E-16 5.15E-16 5.52E-19 8.52E-19 8.41E-20 5.62E-14 1.18E-19 7.12E-14 1.25E-14 1.36E-17	1.18E-17 2.28E-21 NA 1.95E-18 1.28E-21 NA NA 1.53E-17 3.42E-17 NA NA NA NA NA NA NA NA NA NA NA NA NA	5.84E-19 NA 2.79E-24 NA 4.14E-19 3.45E-22 NA 1.02E-20 1.45E-13 4.64E-20 NA NA NA NA NA NA NA NA NA NA NA NA NA	3.616-20 NA 4.616-25 NA 2.936-20 2.026-23 3.206-21 3.606-18 8.886-19 4.356-18 NA NA NA NA NA NA NA NA NA NA NA NA NA	1.89E-19 NA 4.20E-22 NA 1.17E-18 2.35E-22 NA NA 1.49E-19 4.42E-18 6.01E-18 6.01E-18 NA NA NA NA NA NA NA NA NA NA NA NA NA	5.716-22 NA 4.116-23 NA 3.496-17 7.296-21 NA NA 1.166-18 1.166-18 1.166-17 2.376-17 5.926-16 1.336-17 8.926-17	1.69E-20 NA 3.75E-23 NA 1.05E-19 2.10E-23 NA NA 3.26E-19 5.38E-19 5.38E-19 NA NA NA NA NA NA NA NA NA NA NA NA NA	2.37E-18 6.13E-16 4.23E-20 8.52E-19 8.52E-19 6.36E-16 1.28E-19 5.62E-21 6.91E-18 3.17E-20 1.38E-17 7.26E-11 1.15E-16 1.30E-14 1.30E-14 1.30E-14 2.60E-14 2.60E-14 2.60E-14 1.32E-14
INORGANICS Arsenic Beryllium Cadmium Chromium (VI) Lead Nickel	8.13E-09 4.66E-11 9.64E-11 5.20E-11 8.66E-11	3.15E-12 7.45E-14 NA NA NE NA NA 3.57E-12	5.18E-12 3.68E-18 NA NA NE NA S.33E-12	2.93E-14 7.65E-17 NA NA NA NE NE NA 6.13E-14	1.01E-11 2.53E-13 NA NA NE NE NE 1.06E-11	4.21E-12 5.32E-15 NA NA NE NE NA AA	9.01E-13 2.27E-14 NA NA NE NE NA	8.16E-09 4.70E-11 9.64E-11 5.20E-11 NE 8.66E-11

5 ti _ F

Table 8H-6

9

Carcinogenic Risk Through all Routes of Exposure for the Child, Resident-B Scenario

INHALATION CARC. RISK	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL CHILD CARC. RISK
3.71E-19	¥.	¥¥	¥	¥	×	MA	3.71E-19
2.795-18	1.705-17	5.84E-19	3.61E-20	2.73E-19	5.71E-22	2.44E-20	2.07E-17
9.60E-17	4	W.A.	¥.¥	₹	Z	Z.	9.60E-17
6.19E-21	3.146-21	2.79E-24	4.61E-25	6.06E-22	4.11E-23	5.42E-23	1.00E-20
1.336-19	¥	¥.	M.	×	Z :	4	1.35E-19
1.32E-20	¥.	KA	Z Z	VN.	¥ .	SH C	1.32E-20
9.26E-17	4.64E-19	4.14E-19	2.936-20	1.69E-18	3.49E-17	1.52E-19	1.505-10
1.85E-20	1.386-21	3.45E-22	2.02E-23	3.396-22	7.29E-21	3.036-23	2. rye-20
8.79E-22	A.M.	¥	¥.	¥	¥	*	6. rye-22
1.08E-18	MA	¥	Z.	M	¥	¥ :	1.08E-18
4.97E-21	A.	MA	¥	Z Z	NA.		4.97E-21
5.38E-19	2.21E-17	1.02E-20	9.69E-22	5.28E-20	2.30E-20	4.72E-21	2.27E-17
1,126-11	1.17E-13	1.45E-13	3.196-14	3.566-13	5.42E-13	3.18E-14	1.24E-11
1.76E-17	9.06E-19	4.64E-20	3.20E-21	2.15E-19	1.14E-18	1.93E-20	1.99E-17
2.03E-17	M.	¥	X	Z Z	X.	₹ :	2.03E-17
4.51E-18	MA	¥.	Z	¥	¥.	×	4.316-18
					**	A 725 40	3 00c t
1.96E-15	1.15E-17	7.296-17	3.60E-18	6.396-18	2.34E-17	7 145-10	2 635-15
1.96E-15	2.43E-17	1.73E-17	6.88E-19	8.01E-18	3.YZE-10	7 100-17	2 K/E-94
1.96E-15	1.35E-17	8.78E-17	4.35E-18	5.0%-10	#1 - 300 · 1	AL SILVE	מיים ש
2	7	- E	ALC: OF	A 11/4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 40E-30	2 41E-17
9.246-18	1.586-17	1.206-21	Z.02E-22	V. UOE - 19	6.3/E-20	07-201-0	4 44E-18
6.46E-18	MA	₹		Z :	4 3	4 4	0204-0 0204-0
4.236-20	Z Z	Y.	¥X:	* :	e e	E a	3 475-30
2.17E-20	4		A P	A I	F .	AN P	4 46. 40
4.22E-20	8.89E-20	2.966-24	5.01E-25	4.14E-21	4.13E-23	3.7UE-22	7/5 44
4.74E-16	N	E	S	V	<	4	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
5		S 185.13	2 075-16	1.46F-11	4.21E-12	1.305-12	1.306-09
1.27E-09	61-261-1	3, 100 16	7 455.47	7 KKE-92	R 20E-15	21 - 37 C F	7 714-12
7.30E-12		3.685-18	1.026-1	2,000.0	J. JC. C	7 P	1 5 4E - 1 5
1.516-11		¥ :		4	< 4 2 2	Z 2	2.27.20
8.15E-12		V		ď L	C 12	C 12	2 2
및	포	2	보 :	1 2		1 4	1 4KE-13
1.366-11	≪	«	Z.	E		Š	
1 445-00	9.03E-13	5.33E-12	6.13E-14	1.536-11	4.77E-12	1.37E-12	1.36E-09
3							

Carcinogenic Risk Through all Routes of Exposure for the Child, Farmer Scenario

	INHALATION CARC. RISK	VEGETABLE INGESTION CARC. RISK	MILK INGESTION CARC. RISK	BEEF INGESTION CARC. RISK	SOIL/DUST INGESTION CARC. RISK	FISH INGESTION CARC. RISK	DERMAL EXPOSURE CARC. RISK	TOTAL CHILD CARC. RISK
2000								
Acrylonitrile	8.32E-19	×	¥	*	W	KA	*	8.37E-19
Aldrin	6.246-18	1.25E-16	1.176-17	7.22E-19	1.62E-19	5.71E-22	1.45E-20	1.44E-16
Benzene	2.15E-16	¥.	*	×	¥	*	×	2.15E-16
Carbazole	1.39E-20	1.74E-20	5.57E-23	9.22E-24	3.60E-22	4.11E-23	3.22E-23	3.18E-20
Carbon Tetrachloride	2.996-19	××	¥	¥	¥	¥	¥	2.99E-19
Chloroform	2.95E-20	¥¥	¥¥	¥	¥.	¥¥	, XX	2.95E-20
p,p-00E	2.08E-16	1.88E-18	8.27E-18	5.86E-19	1.00E-18	3.49E-17	8.98E-20	2.54E-16
p, p-001	4.16E-20	9.93E-21	6.90E-21	4.05E-22	2.01E-22	7.296-21	1.80E-23	6.63E-20
1,4-Dichlorobenzene	1.97E-21	¥	¥	¥	¥	¥	¥	1.97E-21
1,1-Dichloroethene	2.42E-18	K.	¥	¥	¥	¥N	¥	2.42E-18
1,2-Dichloropropane	1.11E-20	*	×	¥ z	¥	¥	¥	1.11E-20
Dieldrin	1.21E-18	1.63E-16	2.05E-19	1.94E-20	3.13E-20	2.30E-20	2.80E-21	1.64E-16
Dioxins/Furans (EPA TEFs)	2.50E-11	6.40E-13	2.90E-12	6.38E-13	2.11E-13	5.42E-13	1.89E-14	2.99E-11
Hexachlorobenzene	3.94E-17	6.40E-18	9.286-19	6.40E-20	1.28E-19	1.14E-18	1.14E-20	4.81E-17
Methyl Chloride	4.55E-17	₹:	¥	¥	¥	¥	¥	4.55E-17
Methylene Chloride	1.01E-17	¥.	¥	¥	¥	¥	¥	1.01E-17
PATS			******					100
Benzo(a)pyrene	4.40E-15	4.78E-17	1.46E-15	7.19E-17	3.796-18	2.34E-17	3.396-19	6.00E-15
Chrysene	4.40E-13	1.41E-10	5.4/E-10	1./8E-1/	6 . / SE - 18	3.92E-16	4.25E-19	5.50E-15
Derethion	C1 - 304**	0.23C17	C1 - 30/-1	1 - 20 - 12 NE	3. 13E-10	#1 -32C-1	4.01E-19	NE TE
	2 07E-17	7 115-17	2 406-20	4 n4E-21	K 175-10	2 175-20	A 80E-20	0 2/E-17
	1 456-17	- AN	NA L	NA L	NA AN	NA LA	4.00E-20	1 455-17
Tetrachionosthens	07-367-6	X X	Z Z	Z Z	Z Z	X X	Z Z	0 40F-20
Trichloroethene	4.87E-20	¥	×	×	*	¥	¥	4.87E-20
Vepone	9.45E-20	1,73E-19	5.93E-23	1.00E-23	2.45E-21	4.13E-23	2.196-22	2.70E-19
Vinyl Chloride	1.06E-15	¥	¥.	¥¥	¥.	¥	¥	1.06E-15
INORGANICS								
Arsenic	2.85E-09	2.27E-12	1.04E-10	5.85E-13	8.64E-12	4.21E-12	7.72E-13	2.976-09
Beryllium	1.64E-11	4.35E-14	7.366-17	1.53E-15	2.176-13	5.32E-15	1.946-14	1.66E-11
Codmica	3.38E-11	K Z	¥	X	¥	X X	¥	3.386-11
Chromium (VI)	1.83E-11	¥	¥	¥	X	¥	X	1.836-11
Lead	¥ ;	발	¥ :	¥ :	발 :	¥ :	발	¥ ,
Mickel	3.04E-11	¥ E	¥	< <u>*</u>	¥	Š	Š	3.04E-11
Total	2.98E-09	2.95E-12	1.07E-10	1.236-12	9.06E-12	4.77E-12	8.11E-13	3.10E-09

₽#**-**=

2

Carcinogenic Risk Through all Routes of Exposure for the Infant, Resident-A Scenario

	INHALATION CARC. RISK	BREAST MILK INGESTION CARC. RISK	TOTAL INFANT CARC. RISK
ORGANICS Acrytonitrile Aldrin Benzene Carbazole Carbazole Carbazole Chioroform P.P-DDE 1,4-Dichlorocthene 1,2-Dichlorocthene 1,	1.55E-18 2.50E-17 2.50E-20 3.68E-21 3.68E-21 3.68E-21 4.55E-18 5.50E-17 7.55E-18 6.49E-17 1.69E-17 1.69E-17 1.76E-19	1.08E-20 6.64E-19 6.64E-20 9.64E-21 7.19E-21 8.95E-16 9.12E-20 1.25E-09 1.25E-09 1.25E-09 1.25E-17 3.95E-14 4.38E-14 4.75E-19 1.08E-18 1.08E-14 4.75E-20 1.88E-21 1.08E-16 7.08E-18 8.56E-19 8.395E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14 8.88E-14	4.94E-17 4.02E-16 9.22E-20 5.67E-17 1.28E-15 1.69E-19 1.69E-19 1.69E-19 1.59E-19 1.50E-18 1.16E-16 1.16E-16 1.16E-16 1.16E-16 1.16E-16 1.16E-16 1.16E-16 2.26E-19 9.23E-20 6.33E-11 3.40E-11 3.40E-11
Total	5.55E-09	1.25E-09	6.81E-09

Table 8H-9

Carcinogenic Risk Through all Routes of Exposure for the Infant, Resident-B Scenario

	INHALATION CARC. RISK	BREAST MILK INGESTION CARC. RISK	TOTAL INFANT CARC. RISK
STINES			
Acrylonitrile	2.43E-19	1.69E-21	2.45E-19
Aldrin	1.82E-18	1.566-17	1.746-17
Benzene	6.28E-17	7.27E-20	6.29E-17
Carbazole	4.05E-21	1.17E-20	1.57E-20
Carbon Tetrachloride	8.73E-20	1.52E-21	8.89E-20
Chtoroform	8.62E-21	1.13E-23	8.63E-21
p,p-00E	6.06E-17	1.51E-16	2.11E-16
p,p-001	1.21E-20	1.71E-20	2.92E-20
1,4-Dichlorobenzene	5.76E-22	9.99E-24	5.85E-22
1,1-Dichloroethere	7.086-19	6.13E-21	7 145-19
Dieldrin	3.23E-21	1 186-17	3.31E-21
Dioxins/Furans (EPA TEFs)	7.30E-12	2.04E-10	2.11E-10
	1,15E-17	7.37E-18	1.89E-17
Methyl Chloride	1.336-17	4.76E-19	1.38E-17
Methylene Chloride	2.95E-18	2.75E-20	2.98E-18
PAHS		•	
Benzo(a)pyrene	1.28E-15	6.50E-15	7.79E-15
Chrysene	1.28E-15	6.57E-15	7.86E-15
Dibenzo(a,h)anthracene	1.285-15	1.096-14	1.22E-14
Parathion	¥ ,	¥ ;	¥ .
duinol ine	6.05E-18	2.21E-17	Z.81E-17
Styrene	4.23E-18	1.10E-18	5.33E-18
Tetrachloroethene	2.77E-20	7.44E-21	3.51E-20
Trichloroethene	1.42E-20	2.47E-22	1.45E-20
Vapona	2.76E-20	1.03E-19	1.316-19
Vinyl Chloride	3.10E-16	8.43E-17	3.94E-16
INORGANICS			
Arsenic	8,33E-10	믶	8.33E-10
Beryllium	4.785-12	및	4.78E-12
Cadhium	9.88E-12	×	9.88E-12
Chromium (VI)	5.33E-12	X	5.33E-12
Lead	8 675 43	W 4	B 675.13
	0.075	E E	0.075
Total	8.69E-10	2.04E-10	1.07E-09

Table 8H-10

Ì

Carcinogenic Risk Through all Routes of Exposure for the Infant, Farmer Scenario

	INHALATION CARC.	BREAST HILK INGESTION CARC. RISK	TOTAL INFANT CARC. RISK
Acrylonitrile Addrin Benzee Carbazole Carbazole Carbon Tetrachloride Chloroform P.P-DDF 1,4-Dichloroethene 1,2-Dichloroethene	5.44E-19 1.41E-16 9.07E-21 1.96E-19 1.93E-20 1.35E-16 7.28E-21 7.28E-21 7.28E-21 7.28E-17 6.62E-18 6.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18 8.62E-18	3.78E-21 1.05E-16 1.63E-19 2.93E-20 3.40E-21 2.52E-23 3.57E-16 5.66E-17 5.66E-17 5.66E-17 5.66E-17 5.66E-14 2.77E-18 6.16E-20 7.93E-17 1.67E-14 2.77E-16 5.92E-17 2.57E-16 1.67E-16 1.67E-16 1.67E-16 1.67E-16 1.67E-16 1.67E-16 1.67E-16 1.67E-16	5.48E-19 1.09E-16 1.41E-16 3.83E-20 1.99E-19 1.93E-20 4.93E-16 8.14E-21 7.41E-21 5.93E-17 5.75E-17 5.09E-14 1.96E-14 1.9
INORGANICS Arsenic Beryllium Cachium Chromium (VI) Lead Nickel	1.87E-09 1.07E-11 2.21E-11 1.19E-11 NE 1.99E-11	22222 22222	1.87E-09 1.07E-11 2.21E-11 1.19E-11 NE 1.99E-11
Total	1.95E-09	5.60E-10	2.516-09

APPENDIX 9A DERIVATION OF SELECTED ORAL REFERENCE DOSES (RfDs))

APPENDIX 9A

DERIVATION OF SELECTED ORAL REFERENCE DOSES (RfDs)

In many instances it was necessary to derive an oral RfD from existing toxicity data. Chronic oral toxicity data were used, when available. In the absence of chronic data subchronic or acute oral toxicity data were used.

9A.1 Derivation from No-Observable-Adverse-Effect Levels (NOAELs)

In two cases (benzene and vinyl chloride) oral RfDs were calculated from NOAELS according to EPA guidelines (EPA, 1989). The RfD for benzene was based on a NOAEL of 1 mg/kg/day from a 26-week study in rats. The toxic endpoints manifested in the rats were leucopenia and erythrocytopenia (Wolfe et al., 1956). To extrapolate the oral RfD from the NOAEL, uncertainty factors (UFs) were included. The total UF of 1,000 was calculated by multiplying by 10 for each of the following categories: subchronic to chronic exposure, animal to humans, and human variation. The chronic RfD was then calculated by dividing the NOAEL by the UF of 1,000.

The RfD for vinyl chloride was based on a three-generational study in rats (ATSDR, 1989a). In this case, a reported NOAEL of 0.13 mg/kg/day was established from a lifetime dietary study in rats, in which decreased survival and hepatotoxicity were the most sensitive toxic endpoints (Til et. al., 1983). An uncertainty factor of 100 was applied, 10 for extrapolating from animals to humans, and 10 for human variation.

9A.2 Derivation from Oral Lethality Data

In the absence of chronic and subchronic toxicity data, an oral LD_{50} was used to derive the chronic oral RfD. An LD_{50} is the dose that is lethal to 50 percent of the test animals. This process was used for many chemicals in the report (see Table 9A-1). The chronic oral RfD was calculated by dividing the LD_{50} by an uncertainty factor (UF) of 100,000 in accordance with the approach developed by Layton et. al., (1987).

Chemical	LD50	Test Species	Chronic Oral RfD (mg/kg/day)
Acrylonitrile	27	mouse	2.70E-04
Benzofuran	500	mouse	5.00E-02
Benzonitrile	800	cat, mouse	8.00E-03
Carbazole	500	rat	5.00E-03
4-Chlorobiphenyl	2,450	r at	2.45E-02
4,4'-Chlorobiphenyl	2,330	Tal	2.33E-02
.,3-Dimethylbenzene	5,000	rai	5.00E-02
Dimethylphosphate	8,714	rat	8.71E-02
Methyl Chloride	1,800	rat	2.50E-03
4-Nitrophenol	8,471	rat	8.47E-02

Reference: RTECS, 1990

2

APPENDIX 9A

CITED REFERENCES

ATSDR (Agency for Toxic Substances and Disease Registry). 1989. <u>Toxicological Profile for Benzene</u>. Prepared by Oak Ridge National Laboratory for ATSDR and USEPA. PBS9-209464.

EPA (U.S. Environmental Protection Agency). 1989. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual - Part A. Interim Final Office of Solid Waste and Emergency Response. Washington, DC. OSWER Directive 9285.7-01a.

Layton, D.W., B.J. Mallon, D.H. Rosenblatt, and M.J. Small. 1987. Deriving Allowable Daily Intakes for Systemic Toxicants Lacking Chronic Toxicity Data. Regl. Toxicol. Pharmacol. 7:96-112.

Til, H.P., Immel, H.R. and V.J. Feron. 1983. Lifespan oral carcinogenicity study of vinyl chloride in rats. Final report. CIVO Institutes, TNO. Report No. V93.285/291099. (Cited in ATSDR, 1989b).

Wolf, M.A., V. K. Rowe, D.D. McCollister, R.L. Hollingsworth, and F. Oyen. 1956. Toxicological studies of certain alkylated benzenes and benzene. AMA Arch. Ind. Health 14:387 (cited in ATSDR, 1989b).

APPENDIX 9B DERIVATION OF SELECTED INHALATION REFERENCE DOSES (RfDs)

APPENDIX 9B

DERIVATION OF SELECTED INHALATION REFERENCE DOSES (RfDs)

An inhalation RfD was derived for only one chemical, lithium, based on toxicity data. Lithium hydride was the only form of lithium for which inhalation toxicity data were available. Lithium hydride is intensely irritating and corrosive to the skin and mucous membranes; its TLV-TWA of 0.025 mg/m³ (ACGIH, 1986) is based on its irritant properties. However, concentrations of lithium hydride ranging from 0.025 to 0.10 mg/m³, associated with a tickling sensation in the nose and a mild nasal discharge, have been reported to be tolerated by workers continuously exposed (Clayton and Clayton, 1981).

Lithium would not be expected to be present as the hydride in stack emissions and there has been no evidence of industrial health hazards being associated with the inhalation of other forms of lithium (Clayton and Clayton, 1981). Therefore, the use of the TLV-TWA for lithium hydride in deriving an inhalation RD for lithium would be expected to be overly conservative. However, in the absence of inhalation data for other forms of lithium, the upper limit of the tolerated range for lithium hydride (i.e., 0.10 mg/m³) was assumed to be an acceptable exposure level for workers for all other forms of lithium. Substituting this value as the "TLV-TWA" in the equation presented in Subsection 9.4.2, Table 9-5, an inhalation RfD for lithium of 1.0E-04 mg/kg/day was derived which would be appropriate for the general public.

APPENDIX 9B

CITED REFERENCES

ACGIH (American Conference of Governmental Industrial Hygienists). 1986. Documentation of the Threshold Limit Values and Biological Exposure Indices, 5th ed., ACGIH, Cincinnati, OH. (including updated supplements).

Clayton, G.D. and F.E. Clayton. 1981. Patty's Industrial Hygiene and Toxicology, Vol. I. John Wiley and Sons. New York, New York.

