Rough Sets: Theoretical aspects of reasoning about data

wu

July 12, 2019

Contents

1	Knowledge	
	1.1	Knowledge base
	1.2	Equivalence, generalization and specialization of knowledge
2	Imprecise categories, approximations and rough sets	
	2.1	Rough sets
	2.2	Approximations of set
	2.3	Properties of approximations
	2.4	Approximations and membership relation
	2.5	Numerical characterization of imprecision
	2.6	Topological characterization of imprecision
	2.7	Approximation of classifications
	2.8	Rough equality of sets
	2.9	Rough inclusion of sets
3	Reduction of knowledge	
	3.1	Reduct and Core of Knowledge
	3.2	Relative reduct and relative core of knowledge

1 Knowledge

1.1 Knowledge base

Given a finite set $U \neq \emptyset$ (the universe). Any subset $X \subset U$ of the universe is called a **concept** or a **category** in U. And any family of concepts in U will be referred to as **abstract knowledge** about U.

partition or **classification** of a certain universe U is a family $C = \{X_1, X_2, \dots, X_n\}$ s.t. $X_i \subset U, X_i \neq \emptyset, X_i \cap X_j = \emptyset$ and $\bigcup X_i = U$

A family of classifications is called a **knowledge base** over U

R an equivalence relation over U, U/R family of all equivalence classes of R, referred to be **categories** or **concepts** of R, and $[x]_R$ denotes a category in R containing an element $x \in U$

By a **knowledge base** we can understand a relational system $K = (U, \mathbf{R})$, \mathbf{R} is a family of equivalence relations over U

If $P \subset R$ and $P \neq \emptyset$, then $\bigcap P$ is also an equivalence relation, and will be denoted by IND(P), called an **indiscernibility relation** over P

$$[x]_{IND(\mathbf{P})} = \bigcap_{R \in \mathbf{P}} [x]_R$$

 $U/IND({\bf P})$ called ${\bf P}$ -basic knowledge about U in K. For simplicity, $U/{\bf P}=U/IND({\bf P})$ and ${\bf P}$ will be also called ${\bf P}$ -basic knowledge . Equivalence classes of $IND({\bf P})$ are called basic categories of knowledge ${\bf P}$. If $Q\in {\bf R}$, then Q is a Q-elementary knowledge and equivalence classes of Q are referred to as Q-elementary concepts of knowledge ${\bf R}$

The family of all P-basic categories for all $\neq P \subset R$ will be called the family of basic categories in knowledge base K = (U, R)

Let $K = (U, \mathbf{R})$ be a knowledge base. By IND(K) we denote the family of all equivalence relations defined in K as $IND(K) = \{IND(\mathbf{P}) : \emptyset \neq \mathbf{P} \subseteq \mathbf{R}\}$.

Thus IND(K) is the minimal set of equivalence relations.

Every union of P-basic categories will be P-category

The family of all categories in the knowledge base $K = (U, \mathbf{R})$ will be referred to as K-categories

1.2 Equivalence, generalization and specialization of knowledge

Let $K = (U, \mathbf{P}), K' = (U, \mathbf{Q})$. K and K' are **equivalent** $K \simeq K', (\mathbf{P} \simeq \mathbf{Q})$ if $IND(\mathbf{P}) = IND(\mathbf{Q})$. Hence $K \simeq K'$ if both K and K' have the same set of elementary categories. This means that knowledge in knowledge bases K and K' enables us to express exactly the same facts about the universe.

If $IND(\mathbf{P}) \subset IND(\mathbf{Q})$ then knowledge \mathbf{P} is finer than knowledge \mathbf{Q} (coarser). \mathbf{P} is specialization of \mathbf{Q} and \mathbf{Q} is generalization of \mathbf{P}

2 Imprecise categories, approximations and rough sets

2.1 Rough sets

Let $X \subseteq U$. X is R-definable or R-exact if X is the union of some R-basic categories. otherwise R-undefinable, R-rough, R-inexact .

2.2 Approximations of set

Given $K = (U, \mathbf{R}), R \in IND(K)$

$$\underline{R}X = \bigcup \left\{ Y \in U/R : Y \subseteq X \right\}$$

$$\overline{R}X = \bigcup \left\{ Y \in U/R : Y \cap X \neq \emptyset \right\}$$

called the R-lower and R-upper approximation of X

 $BN_R(X) = \overline{R}X - \underline{R}X$ is R-boundary of X. $BN_R(X)$ is the set of elements which cannot be classified either to X or to -X having knowledge R

$$POS_R(X) = \underline{R}X, R$$
-positive region of X
 $NEG_R(X) = U - \overline{R}X, R$ -negative region of X
 $BN_R(X) - R$ -borderline region of X

If $x \in POS(X)$, then x will be called an R-positive example of X

Proposition 2.1. 1. X is R-definable if and only if $\underline{R}X = \overline{R}X$

2. X is rought w.r.t. R if and only if $RX \neq \overline{R}X$

2.3 Properties of approximations

Proposition 2.2 (2.2). 1. $\underline{R}X \subseteq X \subseteq \overline{R}X$

2.
$$\underline{R}\emptyset = \underline{R}\emptyset = \emptyset;$$
 $\underline{R}U = \overline{R}U = U$

3.
$$\overline{R}(X \cup Y) = \overline{R}X \cup \overline{R}Y$$

$$4. \ \underline{R}(X \cap Y) = \underline{R}X \cap \underline{R}Y$$

- 5. $X \subseteq Y$ implies $\underline{R}X \subseteq \underline{R}Y$
- 6. $X \subseteq Y$ implies $\overline{R}X \subseteq \overline{R}Y$
- 7. $R(X \cup Y) \subseteq RX \cup RY$
- 8. $R(-X) = -\overline{R}X$
- 9. $\overline{R}(-X) = -\underline{R}X$
- 10. $\overline{R}(-X) = -RX$
- 11. $RRX = \overline{R}RX = RX$
- 12. $\overline{RR}X = R\overline{R}X = \overline{R}X$

The equivalence relation R over U uniquely defines a topological space T = (U, DIS(R)) where DIS(R) is the familty of all open and closed set in T and U/R is a base for T. The R-lower and R-upper approximation of X in A are **interior** and **closure** operations in the topological space T

2.4 Approximations and membership relation

$$x \subseteq_R X$$
 if and only if $x \in R X$
 $x \in_R X$ if and only if $x \in R X$

where \subseteq_R read "x surely belongs to X w.r.t. R" and $\overline{\in}_R$ - "x possibly belongs to X w.r.t. R". The lower and upper membership.

Proposition 2.3. 1. $x \in X$ implies $x \in X$ implies $x \in X$

- 2. $X \subset Y$ implies $(x \in X \text{ implies } x \in Y \text{ and } x \in X \text{ implies } x \in Y)$
- 3. $x \in (X \cup Y)$ if and only if $x \in X$ or $x \in Y$
- 4. $x \in (X \cap Y)$ if and only if $x \in X$ and $x \in Y$
- 5. $x \in X$ or $x \in Y$ implies $x \in (X \cup Y)$
- 6. $x \in X \cap Y$ implies $x \in X$ and $x \in Y$
- 7. $x \in (-X)$ if and only if non $x \in X$
- 8. $x \in (-X)$ if and only if non $x \in X$

2.5 Numerical characterization of imprecision

accuracy measure

$$\alpha_R(X) = \frac{card \ \underline{R}}{card \ \overline{R}}$$

2.6 Topological characterization of imprecision

- **Definition 2.1.** 1. If $\underline{R}X \neq \emptyset$ and $\overline{R}X \neq U$, then we say that X is **roughly R-definable**. We can decide whether some elements belong to X or -X
 - 2. If $\underline{R}X = \emptyset$ and $\overline{R}X \neq U$, then we say that X is **internally Rundefinable**. We can decide whether some elemnts belong to -X
 - 3. If $\underline{R}X \neq \emptyset$ and $\overline{R}X = U$, then we say that X is **externally R-undefinable**. We can decide whether some elements belong to X
 - 4. If $\underline{R}X = \emptyset$ and $\overline{R}X = U$, then we say that X is **totally R-undefinable**. unable to decide
- **Proposition 2.4** (2.4). 1. Set X is R-definable (roughly R-definable, totally R-undefinable) if and only if so is -X
 - 2. Set X is externally R-undefinable if and only if -X is internally R-undefinable

Proof. 1.

$$\begin{split} R\text{-definable} &\Leftrightarrow \underline{R}X = \overline{R}X, \underline{R} \neq \emptyset, \overline{R} \neq U \\ &\Leftrightarrow -\underline{R}X = -\overline{R}X \\ &\Leftrightarrow \overline{R}(-X) = \underline{R}(-X) \end{split}$$

$$X$$
 is roughly R -definable $\Leftrightarrow \underline{R}X \neq \emptyset \land \overline{R}X \neq U$
 $\Leftrightarrow -\underline{R}X \neq U \land -\overline{R}X \neq \emptyset$
 $\Leftrightarrow \overline{R}(-X) \neq U \land R(-X) \neq \emptyset$

2.7 Approximation of classifications

If $F = \{X_1, \dots, X_n\}$ is a family of non empty sets, then $\underline{R}F = \{\underline{R}X_1, \dots, \underline{R}X_n\}$ and $\overline{R}F = \{\overline{R}X_1, \dots, \overline{R}X_n\}$, called the R-lower approximation and the R-upper approximation of the family F

The accuracy of approximation of F by R is

$$\alpha_R(F) = \frac{\sum card \ \underline{R}X_i}{\sum card \ \overline{R}X_i}$$

quality of approximation of F by R

$$\gamma_R(F) = \frac{\sum card \ \underline{R}X_i}{card \ U}$$

Proposition 2.5 (2.5). Let $F = \{X_1, ..., X_n\}$ where n > 1 be a classification of U and let R be an equivalence relation. If there exists $i \in \{1, 2, ..., n\}$ s.t. $\underline{R}X_i \neq \emptyset$, then for each $j \neq i$ and $j \in \{1, ..., n\}$, $\overline{R}X_j \neq U$

Proof. If $\underline{R}X_i \neq \emptyset$ then there exists $x \in X$ s.t. $[x]_R \subseteq X$, which implies $[x]_R \cap X_j = \emptyset$ for each $j \neq i$. This yields $\overline{R}X_j \cap [x]_R = \emptyset$.

Proposition 2.6 (2.6). Let $F = \{X_1, \ldots, X_n\}$, n > 1 be a classification of U and let R be an equivalence relation. If there exists $i \in \{1, \ldots, n\}$ s.t. $\overline{R}X_i = U$, then for each $j \neq i$ and $j \in \{1, \ldots, n\}$ $\underline{R}X_j = \emptyset$

Proposition 2.7 (2.7). Let $F = \{X_1, \ldots, X_n\}$, n > 1 be a classification of U and let R be an equivalence relation. If for each $i \in \{1, 2, \ldots, n\}$ $\underline{R}X_i \neq \emptyset$ holds, then $\overline{R}X_i \neq U$ for each $i \in \{1, \ldots, n, \}$

Proposition 2.8. Let $F = \{X_1, \ldots, X_n\}, n > 1$ be a classification of U and let R be an equivalence relation. If for each $i \in \{1, 2, \ldots, n\}$ $\overline{R}X_i = U$ holds, then $\underline{R}X_i = \emptyset$ for each $i \in \{1, \ldots, n\}$

2.8 Rough equality of sets

Definition 2.2. Let $K = (U, \mathbf{R})$ be a knowledge base, $X, Y \subseteq U$ and $R \in IND(K)$, then

- 1. Sets X and Y are **bottom** R-equal $(X \equiv_R Y)$ if RX = RY
- 2. Sets X and Y are top $R equal(X \simeq_R Y)$ if $\overline{R}X = \overline{R}Y$

3. Sets X and Y are R-equal $(X \approx_R Y)$ if $X \simeq_R Y$ and $X \approx_R Y$

Proposition 2.9 (2.9). 1. X = Y iff $X \cap Y = X$ and $X \cap Y = Y$

- 2. $X \simeq Y$ iff $X \cup Y \simeq X$ and $X \cup Y \simeq Y$
- 3. If $X \simeq X'$ and $Y \simeq Y'$ then $X \cup Y \simeq X' \cup Y'$
- 4. If X = X' and Y = Y' then $X \cap Y = X' \cap Y'$
- 5. If $X \simeq Y$, then $X \cup -Y \simeq U$
- 6. If X = Y, then $X \cap -Y = \emptyset$
- 7. If $X \subseteq Y$ and $Y \simeq \emptyset$, then $X \simeq \emptyset$
- 8. If $X \subseteq Y$ and $X \subseteq U$ then $Y \subseteq U$
- 9. $X \simeq Y$ iff $-X \approx -Y$
- 10. If $X = \emptyset$ or $Y = \emptyset$, then $X \cap Y = \emptyset$
- 11. If $X \simeq U$ or $Y \simeq U$, then $X \cup Y \simeq U$

Proposition 2.10 (2.10). For any equivalence relation R

- 1. RX is the intersection of all $Y \subseteq U$ s.t. $X \subset_R Y$
- 2. \overline{R} is the union of all $Y \subseteq U$ s.t. $X \simeq_R Y$

2.9 Rough inclusion of sets

Definition 2.3. Let $K = (U, \mathbf{R})$ be a knowledge base, $X, Y \subseteq U$ and $R \in IND(K)$.

- 1. Set X is **bottom** R-**included** in Y $(X \subseteq_R Y)$ iff $\underline{R}X \subseteq \underline{R}Y$
- 2. Set X is top R-included in Y $(X \subset_R Y)$ iff $\overline{R}X \subseteq \overline{R}Y$
- 3. Set X is R-included in Y $(X \subseteq_R Y)$ iff $X \subseteq_R Y$ and $X \subseteq_R Y$

Proposition 2.11 (2.11). 1. If $X \subseteq Y$, then $X \subseteq Y, X \subset Y$ and $X \subseteq Y$

- 2. If $X \subseteq Y$ and $Y \subseteq X$, then X = Y
- 3. If $X \cong Y$ and $Y \cong X$, then $X \simeq Y$
- 4. If $X \subseteq Y$ and $Y \subseteq X$ then $X \approx Y$

- 5. $X \cong Y$ iff $X \cup Y \simeq Y$
- 6. $X \subseteq Y$ iff $X \cap Y = X$
- 7. If $X \subseteq Y, X = X', Y = Y'$, then $X' \subseteq Y'$
- 8. If $X \subseteq Y, X \simeq X', Y \simeq Y'$, then $X' \cong Y'$
- 9. If $X \subseteq Y, X \approx X', Y \approx Y'$, then $X' \subseteq Y'$
- 10. If $X' \cong X$ and $Y' \cong Y$, then $X' \cup Y' \cong X \cup Y$
- 11. If $X' \subseteq X, Y' \subseteq then X' \cap Y' \subseteq X \cap Y$
- 12. $X \cap Y \subseteq X \subset X \cup Y$
- 13. If $X \subseteq Y$ and X = Z then $Z \subseteq Y$
- 14. If $X \cong Y$ and $X \simeq Z$ then $Z \cong Y$
- 15. If $X \subseteq Y$ and $X \approx then Z \subseteq Y$

3 Reduction of knowledge

3.1 Reduct and Core of Knowledge

Let R be a family of equivalence relations and let $P \in R$. R is **dispensable** in R if $IND(R) = IND(R - \{R\})$. Otherwise R is **indispensable** in R. The family of R is **independent** if each $R \in R$ is indispensable in R. Otherwise R is **dependent**

Proposition 3.1 (3.1). If R is independent and $P \subseteq R$, then P is also independent

Proof.
$$IND(\mathbf{R}) = IND(\mathbf{P} \cup (\mathbf{R} - \mathbf{P})) = IND(\mathbf{P}) \cap IND(\mathbf{R} - \mathbf{P})$$

 $Q \subseteq R$ is a **reduct** of P if Q is independent and IND(Q) = IND(P)The set of all indispensable relations in P is called the **core** of P denoted by CORE(P)

Proposition 3.2 (3.2).

$$CORE(\boldsymbol{P}) = \bigcap RED(\boldsymbol{P})$$

where $RED(\mathbf{P})$ is the family of all reducts of \mathbf{P}

Proof. If Q is a reduct of P and $R \in P - Q$, then IND(P) = IND(Q). If $Q \subseteq R \subseteq P$ then IND(Q) = IND(R). Assuming $R = P - \{R\}$ then $R \notin CORE(P)$

If $R \notin CORE(\mathbf{P})$. This means $IND(\mathbf{P}) = IND(\mathbf{P} - \{R\})$ which implies that there exists an independent subset $\mathbf{S} \subseteq \mathbf{P} - \{R\}$ s.t. $IND(\mathbf{S}) = IND(\mathbf{P})$. Hence $R \notin \bigcap RED(\mathbf{P})$

3.2 Relative reduct and relative core of knowledge

Let P and Q be equivalence relations over UP-positive

$$POS_P(Q) = \bigcup_{X \in U/Q} \underline{P}X$$

The P-positive region of Q is the set of all objects of the universe U which can be properly classified to classes of U/Q employing knowledge expressed by the classification U/P

Let P and Q be families of equivalence relations over U $R \in P$ is Q-dispensable in P if

$$POS_{IND(\mathbf{P})}(IND(\mathbf{Q})) = POS_{IND(\mathbf{P}-\{R\})}(IND(\mathbf{Q}))$$

otherwise R is \boldsymbol{Q} -indispensable in \boldsymbol{P} If every R