A-10 B-11 C-12 D-13 CS60065 E-14 E-15

Indian Institute of Technology Kharagpur

AUTUMN Semester, 2016-17 COMPUTER SCIENCE AND ENGINEERING

CS60065: Cryptography and Network Security

Mid-semester Examination

Full Marks: 50

Time allowed: 2 hours

INSTRUCTIONS: This exam is closed book and closed notes. Calculators are allowed. This question paper has two pages. ANSWER ALL QUESTIONS.

ap+bq=d

- II. (a) Suppose a and b are given positive integers. Define the set $T = \{ax + by \mid x, y \text{ are integers}\}$. Then, prove that T is the set of all multiples of $d = \gcd(a, b)$.
 - (b)) If gcd(a, b) = 1, prove that gcd(a, a + b) = 1.

(2 marks)

- (c) Using the result proved in parts (a) and (b) above, or otherwise, prove that if gcd(a,b) = 1, then gcd(a+b,ab) = 1. (3 marks)
- Prove that \mathbb{Z}_m is a field if and only if m is prime.

(5 marks)

- 2. (a) Determine the inverse of the following matrix over \mathbb{Z}_{26} , if it exists: $\begin{pmatrix} 2 & 5 \\ 9 & 5 \end{pmatrix}$ (4 marks)
 - (b) Decryption of the Hill Cipher requires a matrix inversion operation to be carried out over a specified integer ring. Prove that if p is prime, the number of 2×2 matrices that are invertible over \mathbb{Z}_p is $(p^2-1)(p^2-p)$. (Hint: recall that a matrix is invertible if its rows are linearly independent. Matrix rows $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are linearly dependent, if there exist scalars $\lambda_1, \lambda_2, \cdots, \lambda_n$, not all zero, such that $\sum_{i=1}^{n} \lambda_i \mathbf{v}_i = 0$.)

(c) Using the result obtained in part-(b), prove that the number of invertible $d \times d$ matrices over \mathbb{Z}_p is $\prod_{i=0}^{d-1} (p^d - p^i).$ (Hint: you may consider using mathematical induction.) (4 marks)

- 3. Prove that the decryption in a Fiestel structure can be done by applying the encryption algorithm with the key schedule reversed.
- (5 marks) Prove that $\{02\} \cdot \{0E\} \oplus \{03\} \cdot \{09\} \oplus \{0D\} \oplus \{0B\} = \{01\}$, where the notation has its usual significance (Fint: note that this result partially justifies the InvMixComumns step of AES). (10 marks)

- 2

CS60065

4. (a) Consider a cryptosystem in which $\mathcal{P} = \{a, b, c\}$, $\mathcal{K} = \{K_1, K_2, K_3\}$ and $\mathcal{C} = \{1, 2, 3, 4\}$. Consider the following encryption matrix:

	u	b	C
K_1	1	2	3
K_2	2	3	4
K_3	3	4	1

Suppose the keys are chosen equiprobably, and the plaintext probability distribution is: $\Pr[a] = \frac{1}{2}$, $\Pr[b] = \frac{1}{3}$ and $\Pr[c] = \frac{1}{6}$, calculate H(P), H(C), and H(K|C). (6 marks)

Prove that in any cryptosystem, $H(K|C) \ge H(P|C)$.

(5 marks)