Principe : k=1 et exploitation des *Suivant*

Un analyseur SLR(1) prend en compte le symbole sous la tête de lecture (k=1, cf LL(1)) pour décider d'une réduction :

Réduction par $X \to \alpha$ seulement si tête lecture \in Suivant(X)

Repose comme l'analyse LR(0) sur l'automate LR-AFD.

Permet d'arbitrer certains conflits LR(0) S/R et R/R.

Conflits shift/reduce au sens SLR(1)

Un état de LR-AFD provoque un conflit S/R au sens SLR(1) s'il contient à la fois :

- ▶ un item de la forme $[Y \rightarrow \cdots \bullet a \dots]$
- ▶ un item de la forme $[X \to \alpha \bullet]$ avec $a \in Suivant(X)$

Comparer avec LR(0) : conflit S/R au sens LR(0) si l'état contient les items $[Y \to \cdots \bullet a \dots]$ et $[X \to \alpha \bullet]$

Conflits reduce/reduce au sens SLR(1)

Un état de LR-AFD provoque un conflit R/R au sens SLR(1) s'il contient à la fois :

- ▶ un item de la forme $[Y \to \beta \bullet]$
- ▶ un item de la forme $[X \to \alpha \bullet]$
- ▶ avec $Suivant(X) \cap Suivant(Y) \neq \emptyset$

Comparer avec LR(0) : conflit R/R au sens LR(0) si l'état contient les items $[Y \to \beta \bullet]$ et $[X \to \alpha \bullet]$

Grammaire SLR(1)

Une grammaire est dite SLR(1) si l'automate LR-AFD ne contient pas de conflits au sens SLR(1).

Construction de la table des actions SLR(1)

```
Pour tout a \in V_T et q \in Q:
si q contient un item de la forme [X \to \cdots \bullet a \dots]
alors mettre decale dans la case (q,a)
```

Pour tout $q \in Q$, $q \neq q_f$ et tout $a \in V_T \cup \{\#\}$:

- ▶ si q contient un item terminal de la forme $X \to \alpha \bullet$;
- ▶ alors, si $a \in Suivant(X)$, mettre réduction $X \to \alpha$ dans la case (q, a).

Mettre acceptation dans la case $(q_f, \#)$.

Mettre erreur dans les cases encore vides.

Exemple: table des actions SLR(1)

$$Suivant(S) = \{\#\}$$
 $Suivant(L) = \{\#\}$
 $Suivant(E) = \{",",\#\}$

	<i>E</i> 0	<i>E</i> 1	E2	<i>E</i> 3	E4	<i>E</i> 5
X	decale	erreur	erreur	erreur	decale	erreur
,	red	erreur	decale	red	red	erreur
	$E o \epsilon$			$E \rightarrow x$	$E o \epsilon$	
#	red	accepte	red	red	red	red
	$E o \epsilon$		$L \rightarrow E$	$E \rightarrow x$	$E o \epsilon$	$L \rightarrow E, L$

Caractérisation d'une grammaire SLR(1)

La grammaire est SLR(1) si sa table des actions contient pour chaque case :

- une seule action
- ou erreur.

Remarques

Une grammaire LR(0) ou SLR(1) n'est pas ambiguë.

Une grammaire ambiguë n'est ni LR(0) ni SLR(1).

Comparaison SLR(1) - LR(0)

Méthode SLR(1) basée comme LR(0) sur l'automate LR-AFD:

- ▶ les tables des successeurs LR(0) et SLR(1) sont identiques;
- ▶ les tables LR(0) et SLR(1) ont le même encombrement mémoire.

Comparaison SLR(1) - LR(0)

Grâce au k = 1:

- l'analyse SLR(1) est strictement plus puissante que l'analyse LR(0);
- = elle engendre moins de conflits.

$$LR(0) \subset SLR(1)$$

Néanmoins beaucoup de grammaires (non ambiguës) ne sont pas SLR(1).

Exemple $1: G_1$

$$S \rightarrow A \mid xb$$

 $A \rightarrow aAb \mid x$

 G_1 grammaire non ambiguë (mais non LL(1)):

- ▶ si $xb : S \Rightarrow xb$;
- ightharpoonup si $a^n x b^n : S \Rightarrow A \Rightarrow^n a^n A b^n \Rightarrow a^n x b^n$.

Automate LR-AFD de G₁

Conflit pour *G*₁

L'automate LR-AFD contient un conflit S/R au sens LR(0) dans l'état E3 :

$$[S \to x \bullet b]$$
$$[A \to x \bullet]$$

Pour savoir si c'est un conflit au sens SLR(1), calcul des Suivant :

- $Suivant(S') = Suivant(S) = \{\#\};$
- $Suivant(A) = Suivant(S) \cup \{b\} = \{\#, b\}$;

 $b \in Suivant(A)$ donc E3 contient un conflit S/R au sens SLR(1).

Conflit SLR(1) pour G_1 : origine

Conflit dans E3 car $b \in Suivant(A)$. Et pourtant...

... la lecture de b impose la dérivation $S' \Rightarrow S \Rightarrow xb$.

... mais *Suivant* trop imprécis pour le voir.

Comment être plus précis?

Conflit SLR(1) pour G_1 : solution

Les A de E1 et E3 ne peuvent être suivis que d'un #, pas d'un b.

Ce A (suivi par b) n'est pas expansé dans E1 et E3, mais dans E6.

Si on considère les symboles de $V_T \cup \{\#\}$ qui peuvent suivre A dans E3, on fait sauter le conflit.

Restriction des symboles de look-ahead

L'analyse LR(1) ne considère pas tous l'ensemble Suivant(X) pour réduire par $X \to \dots$

Elle calcule :

- ▶ pour chaque item $[X \to \alpha]$ d'un état E;
- un ensemble L ⊆ Suivant(X);
- contenant les symboles qui peuvent suivre X dans E.

L peut parfois être égal à Suivant(X).

Exemple 2 : G_2

$$S \rightarrow G = D \mid D$$

 $G \rightarrow *D \mid i$
 $D \rightarrow G$

Grammaire G_2 non ambiguë:

- ▶ la présence ou l'absence du = indique s'il faut choisir $S \rightarrow G = D$ ou $S \rightarrow D$;
- ▶ la grammaire de productions $\{G \to *D \mid i, D \to G\}$ est LL(1).

Automate LR-AFD pour G₂

Conflit pour *G*₂

L'automate LR-AFD contient un conflit S/R au sens LR(0) dans l'état 5:

$$\begin{bmatrix}
E5 \\
[S \to G \bullet = D] \\
[D \to G \bullet]
\end{bmatrix}$$

Pour savoir si c'est un conflit au sens SLR(1), calcul des Suivant :

- Suivant(S') = Suivant(S) = {#};
- ▶ $Suivant(G) = \{=\} \cup Suivant(D);$
- ▶ $Suivant(D) = Suivant(S) \cup Suivant(G)$;

D'où
$$Suivant(G) = Suivant(D) = \{\#, =\}.$$

 $=\in Suivant(D)$ donc E_5 contient un conflit S/R au sens SLR(1).

Conflit SLR(1) pour G_2 : origine

Conflit car $"=" \in Suivant(D)$.

Pourtant il n'existe pas de dérivation t.q. $S \Rightarrow^* w_1 D = w_2$

Suivant(D) contient ici un "=" jamais rencontré comme look-ahead dans une analyse effective.

Restriction des symboles de look-ahead

Si on particularise les symboles de look-ahead aux états E0 et E5 :

$$\begin{bmatrix}
E0 \\
[S' \to \bullet S] \\
[S \to \bullet D] \\
[S \to \bullet G = D] \\
[G \to \bullet * D] \\
[G \to \bullet i] \\
[D \to \bullet G]
\end{bmatrix}$$

$$\xrightarrow{G}$$

$$\begin{bmatrix}
E5 \\
[S \to G \bullet = D] \\
[D \to G \bullet]
\end{bmatrix}$$

En E0 et E5, D ne peut être suivi que par # : levée du conflit.