2.3 Aufgabenstellung

2.3.1 Tiefpass (proportionales System mit Verzögerung)

Stellen Sie am Pulsgenerator eine Rechteckimpulsfolge mit einer Frequenz f = 40 Hz, einem Tastgrad k = 0,2 und positiven Impulsen von 1V Maximalspannung ein.

- a) Stecken Sie einen Tiefpass mit einer Zeitkonstante $T_1 = 1$ ms.
 - Messen Sie die Zeitkonstante, Anstiegszeit und Impulsdauer.
 - Drucken Sie das Ein- und Ausgangssignal aus.
- b) Verändern Sie die Zeitkonstante auf 100 μ s, indem Sie den Widerstand R_2 im Rückkoppelzweig mit einen $1k\Omega$ - Widerstand ersetzen.
 - Messen Sie die Zeitkonstante, Anstiegszeit und Impulsdauer.
 - Drucken Sie das Ein- und Ausgangssignal aus.
 - Warum ändert sich der stationäre Endwert?
- c) Verringern Sie die Impulsdauer des Eingangssignals auf 200 μs. Die Zeitkonstante wird wieder auf 1 ms erhöht.
 - Wie groß ist die maximale Spannung des Ausgangssignals?
 - Stellen Sie das Signal über zwei Perioden dar, und drucken Sie das Oszillogramm aus.

2.3.2 Hochpass (differenzierendes Übertragungsglied mit Verzögerung)

Stecken Sie einen Hochpass mit einer Zeitkonstante von 1 ms.

- a) Stellen Sie eine Impulsdauer von 5 ms ein. Behalten sie die Frequenz f = 40 Hz bei.
 - Ermitteln Sie durch geeignete Messung aus dem Oszillogramm die Zeitkonstante des Systems, sowie die Abfallzeit t_f der Sprungantwort.
 - Drucken Sie die Sprungantwort, dargestellt über 10 ms (2t_i), aus.
- b) Ändern Sie die Impulsdauer bis ein Dachabfall von 10% auftritt. Welche Impulsdauer hat das Eingangssignal?

2.3.3 Schwingkreis

Bauen Sie ein rückgekoppeltes System nach Bild 4 auf.

Stellen Sie eine Rechteckimpulsfolge mit einer Frequenz von 10 Hz und einem Tastgrad $k = \frac{1}{2}$ ein, um den Ausgleichsvorgang darzustellen.

Variieren Sie den Widerstand R₂, um aperiodische und abklingende periodische Vorgänge zu erzeugen.