Chapter 3: The Data Link Layer

Our goals:

- understand principles behind data link layer services:
 - framing
 - error detection, correction
 - o reliable data transfer
 - sharing a broadcast channel: multiple access

Overview:

- □ link layer services
- framing
- error detection, correction
- reliable data transfer
- multiple access protocols

Multiple Access Links and Protocols

Three types of "links":

- point-to-point (single wire, e.g. PPP, SLIP)
- broadcast (shared wire or medium; e.g, Ethernet, Wavelan, etc.)

switched (e.g., switched Ethernet, ATM etc)

Multiple Access protocols

- single shared communication channel
- two or more simultaneous transmissions by nodes: interference
 - only one node can send successfully at a time
- multiple access protocol:
 - distributed algorithm that determines how stations share channel, i.e., determine when station can transmit
 - o communication about channel sharing must use channel itself!
 - what to look for in multiple access protocols:
 - synchronous or asynchronous
 - information needed about other stations
 - robustness (e.g., to channel errors)
 - performance

Multiple Access protocols

- □ claim: humans use multiple access protocols all the time
- class can "guess" multiple access protocols
 - o multiaccess protocol 1:
 - o multiaccess protocol 2:
 - multiaccess protocol 3:
 - multiaccess protocol 4:

MAC Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - divide channel into smaller "pieces" (time slots, frequency)
 - allocate piece to node for exclusive use
- □ Random Access
 - allow collisions
 - o "recover" from collisions
- "Taking turns"
 - tightly coordinate shared access to avoid collisions

Goal: efficient, fair, simple, decentralized

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- □ example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Channel Partitioning (CDMA)

CDMA (Code Division Multiple Access)

- unique "code" assigned to each user; ie, code set partitioning
- used mostly in wireless broadcast channels (cellular, satellite,etc)
- □ all users share same frequency, but each user has own "chipping" sequence (ie, code) to encode data
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence
- allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")

Random Access protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more trasnmitting nodes -> "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- □ Examples of random access MAC protocols:
 - ALOHA
 - slotted ALOHA
 - CSMA and CSMA/CD

Pure ALOHA

- unslotted Aloha: simpler, no synchronization
- pkt needs transmission:
 - send without awaiting for beginning of slot
- collision probability increases:
 - \circ pkt sent at t_0 collide with other pkts sent in $[t_0-1, t_0+1]$

Pure Aloha (cont.)

P(success by given node) = P(node transmits).

P(no other node transmits in $[p_0-1,p_0]$.

P(no other node transmits in $[p_0,p_0+1]$

$$= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1} = p \cdot (1-p)^{2(N-1)}$$

P(success by any node)

$$= Np(1-p)^{2(N-1)}$$

... choosing optimum p as n -> infinity = 1/(2e) = .18Slotted Aloha
eff
thr

Pure Aloha G = 0.5 G = offered load = Np

protocol constrains effective channel throughput!

3-11

Slotted Aloha

- □ time is divided into equal size slots (= pkt trans. time)
- node with new arriving pkt: transmit at beginning of next slot
- if collision: retransmit pkt in future slots with probability p, until successful.

Success (S), Collision (C), Empty (E) slots

Slotted Aloha efficiency

Q: what is max fraction slots successful?

A: Suppose N stations have packets to send

- o each transmits in slot with probability p
- o prob. successful transmission S is:

```
by single node: S = p(1-p)^{(N-1)}
```

```
by any of N nodes

S = \text{Prob (only one transmits)}

= N p (1-p)^{(N-1)}

... choosing optimum p as n -> infty ...

= 1/e = .37 \text{ as } N \rightarrow infty
```

At best: channel use for useful transmissions 37% of time!

CSMA: Carrier Sense Multiple Access

CSMA: listen before transmit:

- □ If channel sensed idle: transmit entire pkt
- □ If channel sensed busy: defer transmission
 - Persistent CSMA: retry immediately with probability p when channel becomes idle (may cause instability)
 - Non-persistent CSMA: retry after random interval
- human analogy: don't interrupt others!

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

t₁

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- o collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- o persistent or non-persistent retransmission
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: receiver shut off while transmitting
- human analogy: the polite conversationalist

CSMA/CD collision detection

CSMA/CD (Collision Detection)

CSMA/CD efficiency

- $\Box T_{prop} = max prop delay between 2 nodes in LAN$
- Tt_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- □ efficiency goes to 1
 - \circ as t_{prop} goes to 0
 - \circ as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

"Taking Turns" MAC protocols

channel partitioning MAC protocols:

- o share channel efficiently at high load
- inefficient at low load: delay in channel access,
 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

"Taking Turns" MAC protocols

Polling:

- master node "invites" slave nodes to transmit in turn
- □ Request to Send,Clear to Send msgs
- concerns:
 - o polling overhead
 - latency
 - single point of failure (master)

Token passing:

- control token passed from one node to next sequentially.
- □ token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Reservation-based protocols

Distributed Polling:

- time divided into slots
- begins with N short reservation slots
 - reservation slot time equal to channel end-end propagation delay
 - station with message to send posts reservation
 - reservation seen by all stations
- after reservation slots, message transmissions ordered by known priority

Summary of MAC protocols

- □ What do you do with a shared media?
 - Channel Partitioning, by time, frequency or code
 - Time Division, Code Division, Frequency Division
 - Random partitioning (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technoligies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - Taking Turns
 - polling from a central cite, token passing

Chapter 3: Summary

- principles behind data link layer services:
 - framing
 - o error detection, correction
 - o reliable data transfer
 - o sharing a broadcast channel: multiple access
- □ Next, various link layer technologies
 - LAN model
 - Ethernet
 - WLAN