CSCE 222 [501, 502] Discrete Structures for Computing Spring 2015 – Hyunyoung Lee

Problem Set 10

Due dates: Electronic submission of hw10.pdf file of this homework is due on Wednesday, 4/29/2015 before 23:59 on http://ecampus.tamu.edu. Please do not archive or compress the file. A signed paper copy of the PDF file is due on Thursday, 4/30/2015 at the beginning of class.

Name: Natalie Cluck Section: 501

Resources. (All people, books, articles, web pages, etc. that have been consulted when producing this homework)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature:	

In this problem set, you will earn total 100 + 20 (extra credit) points.

Problem 1. (9 points) Section 13.1, Exercise 4, page 856

Solution.

- a.) S \to 1S \to 11S \to 111S \to 11100A \to 111000. Hence, 111000 belongs to the language generated by G.
- b.) Any sentence of the language generated by G has to end with 0, because the sentence always ends with A, which is 0. Therefore, 11001 does not belong to the language generated by G.
- c.) $L(G) = \{1^m 0^n | m > 0, n > 3\}.$

Problem 2. (15 points) Section 13.1, Exercise 6, page 856

Solution.

- a.) $\{aabb\}$
- b.) $\{aba, aa\}$
- c.) $\{abb, abab\}$
- d.) $\{a^n | n \ge 4\} \bigcup \{b^m | m \ge 1\}$
- e.) $\{a^n b^{n+m} a^m | m \ge 0, n \ge 0\}$

Problem 3. (16 points) Section 13.1, Exercise 14, page 856

Solution.

- a.) Let $L = \{10, 01, 101\}$
- . Then, G = (V, T, S, P) is a phrase structure grammar which generates the

language L if V = $\{0,1,S\}$, T = $\{0,1\}$, S is the starting symbol and the productions are S \rightarrow 10, S \rightarrow 01, S \rightarrow 101.

b.) Let $L = \{a | a \text{ is a bit string that starts with } 00 \text{ and ends with one or more } 1s \}$.

Then, G = (V, T, S, P) is a phrase structure grammar which generates the language L if $V = \{0, 1, S, A, B\}$, $T = \{0, 1\}$, S is the starting symbol and the productions are $S \to 00AB$, $A \to AA$, $A \to 0$, $A \to 1$, $B \to BB$, $B \to 1$.

c.) $L = \{a | \text{ a is a bit string consisting of an even number of 1s followed by a final 0 }.$

Then, $G = \{V, T, S, P\}$ is a phrase structure grammar which generates the language L if $V = \{0, 1, S, A, B\}$, $T = \{0, 1\}$, S is the starting symbol and the productions are $S \to 11SB$, $S \to A$, $A \to 11A$, $A \to 11$, $A \to \lambda$, $B \to 0$

d.) Let $L = \{a \mid a \text{ is a bit string that has neither two consecutive 0s or two consecutive 1s}\}.$

Then G = (V,T,S,P) is a phrase structure grammar which generates the language L if V = {0,1,S,A,B}, T = {0,1}, S is the starting symbol and the productions are S \rightarrow A, A \rightarrow AA, A \rightarrow A0, A \rightarrow 01, A \rightarrow λ S \rightarrow B, B \rightarrow BB, B \rightarrow B1, B \rightarrow 10, B \rightarrow λ

Problem 4. (12 points) Section 13.1, Exercise 18, page 856 Solution.

a.) $L = \{01^{2n} | n \ge 0\}.$

Then G = (V,T,S,P) is a phrase structure grammar which generates the language L if V = $\{0,1,S,A\}$, $T = \{0,1\}$, S is the starting symbol and the productions are $S \to 0A$, $A \to \lambda$, $A \to AA$, $A \to 11$

b.) $L = \{0^n 1^{2n} | n \ge 0\}.$

Then G = (V,T,S,P) is a phrase structure grammar which generates the language L if V = {0,1,S,A}, T = {0,1}, S is the starting symbol and the productions are $S \to 0AB, A \to 0A, A \to 0, A \to \lambda, B \to BB, B \to 11, B \to \lambda$

c.) L = $\{0^n 1^m 0^n | m \ge 0, n \ge 0\}$.

Then G = (V,T,S,P) is a phrase structure grammar which generates the language L if V = $\{0,1,S,A\}$, $T = \{0,1\}$, S is the starting symbol and the productions are $S \to ABA$, $A \to 0A$, $A \to 0$, $A \to \lambda$, $B \to \lambda$, $B \to 1B$, $B \to 1$

Problem 5. (15 points) Section 13.1, Exercise 24, page 857 **Solution.**

a.)

b.)

c.)

Problem 6. (5 points) Section 13.2, Exercise 2 a), page 864 Solution.

	f		g	
	Input		out Input	
State	0	1	0	1
$\overline{s_0}$	s_1	s_2	1	0
s_1	s_0	s_3	1	0
s_2	s_3	s_0	0	0
s_3	$ s_1 $	s_2	1	1

Problem 7. (5 points) Section 13.2, Exercise 4 a), page 864 Solution.

a.) 0 0 1 1 0

Problem 8. (10 points) Section 13.2, Exercise 18, page 865 (explain your FSM)

Solution.

In this FSM, if a 1 is in the string, it is one step closer to 5 consecutive ones. Same with 11, 111, 1111. Anytime a 0 is entered, it returns to the original

state. Once 5 1s are detected, the string is valid as long as the rest of the string consists of 1s only. If a 0 is detected, the machine returns back to the original state again.

Problem 9. (12 points) Section 13.3, Exercise 8 a), b), e) and f), page 875

- a.) If A contains v, $v \in V$, $A = \{v\}$. The set A^2 is $\{vv\}$. Hence, by counterexample, A is not contained in A^2 .
- b.) $\lambda \notin A$, so the conclusion is false.
- e.) If the statement equals $A^0A = A^0$, the equality would not hold. Therefore the statement is false.
- f.) If $A = \{1, 11\}$, A^2 would be $\{11, 111, 1111\}$, with cardinality 3. If A is 2 and n is 2, the statement would be 3 = 4. The statement is proven false.

Problem 10. (6 points) Section 13.3, Exercise 10 b), d) and f), page 875

Solution.

Solution.

- b.) It is not present.
- d.) It is present
- f.) It is not present.

Problem 11. (5 points) Section 13.3, Exercise 16, page 876

Solution.

$$L = \{\lambda\} \bigcup \{1\}\{0,1\}^* \bigcup \{0\}\{1\}^*\{0\}\{0,1\}^*$$

Problem 12. (5 points) Section 13.3, Exercise 18, page 876

Solution.

$$L = \{\lambda\} \bigcup \{0\}\{1\}^*$$

Problem 13. (5 points) Section 13.3, Exercise 28, page 876

Solution.

Checklist:

- \Box Did you add your name and section?
- □ Did you disclose all resources that you have used?

 (This includes all people, books, websites, etc. that you have consulted.)
- □ Did you sign that you followed the Aggie honor code?
- $\hfill\Box$ Did you solve all problems?
- □ Did you submit the PDF file of your homework on eCampus?
- □ Did you submit a signed hardcopy of the PDF file in class?