# **GRAPH THEORY**

Presented by

Dr. B. MALLIKARJUNA

Assistant Professor

Department of Mathematics

# Connected and Disconnected Graphs

Def: Consider a graph G or order greater than or equal to two. Two vertices in G are said to be *CONNECTED* if there is at least one path from one vertex to the other.

Simply a graph G is a CONNECTED graph if every pair of distinct vertices in G are connected. Otherwise it is called as DISCONNECTED graph.



Indicate which of the following graphs are connected.



# Connected and Disconnected Graphs

#### Note:

- In a graph G all walks and therefore, all trails, all circuits, all paths and all cycles are connected subgraphs of G.
- It is obvious that every graph G consists of one or more connected graphs. Each such connected graph is a subgraph of G and is called as COMPONENT of G.
- The number of components of graph G is denoted by K(G).
- How many components in connected graph?

Sol: Only one

How many components in Disconnected graph?

Sol: Two or More.

# Connected and Disconnected Graphs

If u and v are two vertices in a connected graph G, then the length of the shortest path is called the **DISTANCE** between u and v.

Find the distance between the vertex v1 and the vertices v3, v5, v6 and v11 in the following graph.



# Connected and Disconnected Graphs

#### **PROPERTIES:**

- If a graph has exactly two vertices of odd degree, then there must be a path connecting these vertices.
- A simple graph with n vertices and k components can have at most  $\frac{1}{2}(n-k)(n-k+1)$  number of edges.
- If  $m \ge \frac{1}{2}(n-1)(n-2)$  then a simple graph with n vertices and m edges is connected.
- A connected graph with n vertices has at least n-1 edges.
- A graph G is disconnected if and only if its vertex set V can be partitioned into two non-empty disjoint subsets V1 and V2 such that there exists no edge in G whose one end vertex is in V1 and the other is in V2

## **PROBLEM**

Prove that a connected graph G remains connected after removing an edge *e* from G if and only if *e* is a part of some cycle in G.

## PROBLEM 2

Let G be a disconnected graph of even order n with two components each of which is complete. Prove that G has a minimum of n(n-2)/4 edges.

## **Euler Circuits and Euler Trails**

Definition: Let G be a connected graph G. If there is a circuit in G that contains all the edges of G, then that circuit is called an *EULER CIRCUIT* in G.

If there is a trail in G that contains all the edges of G, then that trail is

called an EULER TRAIL in G



# Euler and Semi-Euler Graph

Definition: A connected graph that contains an Euler circuit is called an EULER graph (or Eulerian graph).

A connected graph that contains an Euler trail is called a SEMI-EULER graph (or semi-Eulerian graph)











### **PROPERTIES**

- A connected graph G has an Euler circuit if an only if all vertices of G are of even degree.
- A connected graph G has an Euler circuit if and only if G can be decomposed into edge-disjoint cycles.

# **Hamilton Cycles and Hamilton Paths**

Definition: Let G be a connected graph. If there is a cycle (path) in G that contains all the vertices of G, then that cycle (path) is called a HAMILTON CYCLE (PATH) in G.

Definition: A graph that contains a Hamilton cycle is called a HAMILTON

graph (or Hamiltonian graph)



# **Hamilton Cycles and Hamilton Paths**

Definition: Let G be a connected graph. If there is a cycle (path) in G that contains all the vertices of G, then that cycle (path) is called a HAMILTON CYCLE (PATH) in G.

Definition: A graph that contains a Hamilton cycle is called a HAMILTON

graph (or Hamiltonian graph)



Verify the following are Hamiltonian graphs or Hamiltonian paths



Prove that the following graph is a Hamilton graph



## Exhibit the following:

- A graph which has both an Euler circuit and a Hamilton cycle.
- A graph which has an Euler circuit but no Hamilton cycle
- A graph which has a Hamilton cycle but no Euler circuit.
- A graph which has neither a Hamilton cycle nor an Euler circuit.



# Which of the following are Hamiltonian graphs



# Prove that the following graphs are Hamiltonian but not Eulerian



# Which of the following graphs are Hamiltonian or Eulerian





### TREES and THEIR BASIC PROPERTIES

Definition: A graph G is said to be a TREE if it is connected and has no cycles.



Property: A tree has to be a simple graph

Def: Each tree possesses at least two pendant vertices. A pendant vertex of a tree is also called a LEAF.

Def: If each component of the disconnected graph is a tree, then that is called as a FOREST.



#### **PROPERTIES**

- A graph G is a tree if and only if there is one and only one path between every pair of vertices in G.
- A tree with n vertices has n-1 edges
- A graph with n vertices is a tree if and only of it is connected and has n-1 edges.
- A connected graph G is a tree if and only if adding an edge between any two vertices in G creates exactly one cycle in G

# SPANNING (SKELETON OR SCAFFOLDING) TREES

Definition: Let G be a connected graph. A subgraph T of G is called a SPANNING TREE of G if T is a tree which includes all vertices of G.

Since it includes all vertices of G it is also called as maximal subgraph of G.

Every spanning tree is called as maximal tree.

The edges of a spanning tree are called its branches.

If T is a spanning tree of a graph G, then the edges of G which are not in T are called the chords of G with respect to T.

The set of all chords of G is called complement of T in G or chord-set of T in

G which is denoted by  $\bar{T}$ 

Therefore,  $G = T \cup \overline{T}$ 



## **PROPERTIES**

- A graph is connected if and only if it has a spanning tree.
- With respect to any of its spanning trees, a connected graph of n vertices and m edges has n-1 branches and m-n+1 chors

PROBLEM-1 Find all the spanning trees of the following graphs



#### WEIGHTED GRAPH

Definition: Let G be a graph and suppose there is a positive real number associated with each edge of G. Then G is called a WEIGHTED graph and the positive real number associated with an edge e is called the WEIGHT of the edge e.

If G is a connected, weighted graph, then the weight of an edge e of G is denoted by wt(e) and the weight of a spanning tree T of G is denoted by wt(T).



### MINIMAL SPANNING TREE

Def: A spanning tree whose weight is the least is called **MINIMAL SPANNING TREE** of the graph. This tree is not unique.



# Algorithms for Minimal Spanning Tree

- 1) Kruskal's Algorithm
- 2) Prim's Algorithm

## Algorithms for Minimal Spanning Tree

## Kruskal's Algorithm: Steps involved in this are:

- 1) Given a connected, weighted graph G with n vertices, List the edges of G in the order of non-decreasing weiths.
- 2) Starting with a smallest weighted edge, proceed sequentially by selecting one edge at a time such that no cycle is formed.
- 3) Stop the process of Step 2 when (n-1) edges are selected.

These (n-1) edges constitute a MINIMAL SPANNING TREE of G.

Using Kruskal's algorithm, find a minimal spanning tree of the following weighted graphs

Using Kruskal's algorithm, find a minimal spanning tree of the following weighted graphs

