The LNM Institute of Information Technology, Jaipur Mid-Term Examination (September 2016) Sub: Mathematics-III Max.Marks: 14+16

Dura	tion: 90 minutes		
N	ame: <u>Shubham Soha</u> I	Roll No.: 1500 CS 139	Date: 12-09-2016
appro	ote: Submit Part-I after 45 minutes of opriate answer for objective type questions. Out to present the page of main answer sheet for rough work en by pencils will not be evaluated.	commencement of the exame Overwriting will be treated as a and calculation. Use only pendiculation.	n. Encircle/Tick the most a wrong answer. Use only to write answers. Answers
	I	Part-I	
	(To be returned within 45 minutes)		
) ^{1.}	Which of the following function is bounded (a) $\sin z$ (b) $z^2 - i$	on complex plane \mathbb{C} $(c) \cos^2 z$	$\int_{a}^{a} \left[\begin{array}{c} 1 \text{ mark} \\ e^{iRe(z)} \end{array} \right]$
12.	The function $f(z) = Log(z) + z ^2$ is (a) Differentiable in \mathbb{C} except 0 (c) Differentiable at the origin		[1 mark] (b) Differentiable nowhere (d) Analytic at the origin.
1	 3. Which of the following statement is true (a) Contour integral of an analytic function defined on a simply connected domain is independent of path. (b) If f(z) is analytic in a simply connected domain, then for any curve C, ∫_C f(z)dz = 0. (c) If f(z) is analytic and non-constant function on the entire complex plane C, then f(z) can be a bounded function on C. (d) If f(z) is any function defined n a domain D such that ∫_C f(z)dz = 0, then f(z) is analytic. 		
4.	Which of the following statement is always (a) $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$ (c) $Log(z_1z_2) = Log(z_1) + Log(z_2)$	true for two complex numbers \checkmark (b) ar	$egin{array}{ll} z_1 & ext{and } z_2 & [1 ext{ mark}] \ g(rac{z_1}{z_2}) = arg(z_1) - arg(z_2) \ (d) & z_1 + z_2 = z_1 + z_2 \end{array}$
1	Which of the following statement is false for (a) $\sin iz = i \sinh z$ (c) $\sin i\overline{z} = i \sinh \overline{z}$	r the complex numbers z	[1 mark] (b) $\cos iz = \cosh z$ (d) $\cos i\overline{z} = \cosh \overline{z}$
6.	The value of contour integral $\oint_C \frac{e^z}{z^2+1} dz$ is,	where $C: z+\pi =2$	[1 mark]
)	$(a) \frac{-ie^{-i}}{2} \qquad \qquad (b) \frac{ie^{-i}}{2}$	$(c) \frac{-ie^{\epsilon}}{2}$	$\sqrt{(d)} 0.$
27.	(a) $\frac{-ie^{-i}}{2}$ (b) $\frac{ie^{-i}}{2}$ The principle value of $(-1-i)^{3i}$ is ℓ	1 (as (2 lay) ; sin (2 lay 2)	[2 mark]
V 8.	The zeroes of the function $\sin(i2z - 1)$ are	$\frac{\left(\eta_{\kappa-1}\right)^{s}\int_{-2}^{2}$	(2 mark)
	The value of $\oint_C \frac{\sin z}{z(z-5)} dz$ where $C: z-1 =$		[2 mark]
O 10.	The sufficient conditions for the function $f(are/is U_2, U_2, U_3, U_4, U_5, U_7)$ are Continuous	z) = u(x, y) + iv(x, y) to be diff	ferentiable at the point z_0 [2 mark]