Notation: $\hat{\Gamma} \vdash \delta_1, ..., \delta_n$ means $\hat{\Gamma} \vdash \delta_1$ and $\hat{\Gamma} \vdash \delta_2$ and ... and $\hat{\Gamma} \vdash \delta_n$, where each δ_i is a judgement.

Lemma 1 (Substitution (Values)). If $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε and $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}'$ with \varnothing , then $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e} : \hat{\tau}$ with ε

Proof. By induction on the derivation of $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε . We show for those extra cases in polymorphic CC.

Case: ε -PolyTypeAbs. Then $\hat{e} = \lambda X <: \hat{\tau}_1.\hat{e}_1$, and $[\hat{v}/x]\hat{e} = \lambda X <: \hat{\tau}_1.[\hat{v}/y]\hat{e}_1$. By inversion and inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyTypeAbs, we get the conclusion.

Case: ε -PolyFxAbs. Then $\hat{e} = \lambda \phi \subseteq \varepsilon_1.\hat{e}_1$, and $[\hat{v}/x]\hat{e} = \lambda \phi \subseteq \varepsilon_1.[\hat{v}/x]\hat{e}_1$. By inversion and inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyFxAbs, we get the conclusion.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \ \hat{\tau}_1$, and $[\hat{v}/x]\hat{e} = [\hat{v}/x]\hat{e}_1 \ \hat{\tau}_1$. By inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyTypeApp, we get the conclusion.

Case: ε -PolyFxApp. Then $\hat{e} = \hat{e}_1 \varepsilon$, and $[\hat{v}/x]\hat{e} = [\hat{v}/x]\hat{e}_1 \varepsilon$. By inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}$, $x : \hat{\tau}'$. Then by applying ε -PolyFxApp, we get the conclusion.

Lemma 2 (Type Substitution Preserves Subsetting). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$ and $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$ then $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$.

Case: ε -FxSet. Trivial.

[Case: ε -FxVar.] Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \phi \subseteq \varepsilon_2$, and either (1) $\phi \subseteq \varepsilon_2 \in \hat{\Gamma}$ or (2) $\phi \subseteq \varepsilon_2 \in \hat{\Delta}$. If (1) then $\hat{\Gamma} \vdash \phi \subseteq \varepsilon_2$, so by widening $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash \phi \subseteq \varepsilon_2$. Otherwise (2), in which case $\phi \subseteq \varepsilon_2 \in [\hat{\tau}'/X]\hat{\Delta}$ by the definition of type-variable substitution on a context, so $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash \phi \subseteq \varepsilon_2$.

Lemma 3 (Type Substitution Preserves Subtyping). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau} \text{ then } \hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$.

Case: S-Reflexive. Then $\hat{\tau}_1 = \hat{\tau}_2$, so $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$ by S-Reflexive. Then by widening, $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$

Case: S-Transitive. Let $\hat{\tau}_1 = \hat{\tau}_A$ and $\hat{\tau}_2 = \hat{\tau}_B$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Applying the inductive assumption to these judgements, we get $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_A <: [\hat{\tau}'/X]\hat{\tau}_B$ and $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}_C$. Then by S-Transitive, $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_A <: [\hat{\tau}'/X]\hat{\tau}_C$.

Case: S-RESOURCESET. Sets of resources are unchanged by type-variable substitution, so $[\hat{\tau}'/X]\{\overline{r_1}\}=\{\overline{r_1}\}$ and $[\hat{\tau}'/X]\{\overline{r_2}\}=\{\overline{r_2}\}$. Then the subtyping judgement in the conclusion of the theorem can be the original one from the assumption.

Case: S-Arrow. Then the subtyping judgement from the assumption is $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A \rightarrow_{\varepsilon} \hat{\tau}_B <: \hat{\tau}_A \rightarrow_{\varepsilon'} \hat{\tau}_B'$. By inversion we have judgements (1-3),

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_B'$
- 3. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon \subset \varepsilon'$

By applying the inductive hypothesis to (1) and (2), we get (4) and (5),

- 4. $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}'_A <: [\hat{\tau}'/X]\hat{\tau}_A$
- 5. $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}_B'$

By inspection, type-variable bindings do not affect judgements of the form $\hat{\Gamma} \vdash \varepsilon \subseteq \varepsilon$. Furthermore, the types in a context do not affect judgements of this form. Therefore, we can rewrite (3) as (6),

7.
$$\hat{\Gamma}$$
, $[\hat{\tau}'/X]\hat{\Delta} \vdash \varepsilon \subseteq \varepsilon'$

From (4-6), we may apply S-ARROW to get $\hat{\Gamma}$, $[\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_A \to_{\varepsilon} [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}_A \to_{\varepsilon'} [\hat{\tau}'/X]\hat{\tau}_B'$. By applying the definition of substitution on an arrow type in reverse, we can rewrite this judgement as $\hat{\Gamma}$, $\hat{\Delta} \vdash [\hat{\tau}'/X](\hat{\tau}_A \to_{\varepsilon} \hat{\tau}_B) <: [\hat{\tau}'/X](\hat{\tau}_A' \to_{\varepsilon'} \hat{\tau}_B')$, which is the same as $\hat{\Gamma}$, $[\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$.

Case: S-TypeVar. Then $\hat{\Gamma}, X <: \hat{\tau} \vdash Y <: \hat{\tau}_2$. There are two cases, depending on whether X = Y.

Subcase 1. X = Y. Then $\hat{\Gamma}, X <: \hat{\tau} \vdash X <: \hat{\tau}$. We want to show (1) $\hat{\Gamma}, X <: \hat{\tau} \vdash [\hat{\tau}'/X]X <: [\hat{\tau}'/X]\hat{\tau}$. Firstly, $[\hat{\tau}'/X]X = \hat{\tau}'$. Secondly, because $\mathtt{WF}(\hat{\Gamma}, X <: \hat{\tau})$ then $X \notin \mathtt{free-vars}(\hat{\tau})$, so $[\hat{\tau}'/X]\hat{\tau} = \hat{\tau}$. Therefore, judgement (1) is the same as $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}' <: \hat{\tau}$, which is true by assumption.

Subcase 2. $X \neq Y$. Then $X <: \hat{\tau}$ is not used in the derivation, so $\hat{\Gamma}, X <: \hat{\tau} \vdash Y <: \hat{\tau}_2$ is true by widening the context in the judgement $\hat{\Gamma} \vdash Y <: \hat{\tau}_2^1$. Then $\hat{\Gamma} \vdash [\hat{\tau}'/X]Y <: [\hat{\tau}'/X]\hat{\tau}_2$ by inductive assumption. By widening, $\hat{\Gamma}, X <: \hat{\tau} \vdash [\hat{\tau}'/X]Y <: [\hat{\tau}'/X]\hat{\tau}_2$.

Lemma 4 (Type Substitution Preserves Typing). If $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau}$ with ε and $\hat{\Gamma} \vdash \hat{\tau}'' <: \hat{\tau}'$, then $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e} : [\hat{\tau}''/X]\hat{\tau}$ with ε

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -VAR, ε -RESOURCE. Then $\hat{e} = [\hat{\tau}''/X]\hat{e}$, so the typing judgement in the consequent can be the one from the antecedent.

Case: ε -OPERCALL. Then $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1.\pi$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}\}$. By inversion we have (1). Noting that $[\hat{\tau}''/X]\{\bar{r}\} = \{\bar{r}\}$, we can apply the inductive hypothesis to get (2),

- 1. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \{\bar{r}\} \text{ with } \varepsilon_1$ 2. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e}_1 : \{\bar{r}\} \text{ with } \varepsilon_1$
- Then from (2), we can apply ε -OPERCALL to get $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X](\hat{e}_1.\pi)$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}\}$. Since $[\hat{\tau}''/X]$ Unit = Unit, we're done.

Case: ε -Subsume. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}$ with ε . By inversion, (1) and (2) are true.

1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_2 <: \hat{\tau}$

¹ Note there is no explicit widening rule; be careful with this one.

2.
$$\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_2 \subseteq \varepsilon$$

3. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_2 \text{ with } \varepsilon_2$

By a previous lemma, type substitution preserves subtyping. Applying this to (1) yields (4). On the other hand, only effect-variable bindings in a context will affect subsetting judgements. Based on this, we can delete the binding $X <: \hat{\tau}$ and perform the substitution $[\hat{\tau}''/X]\Delta$, neither of which will change any effect-variable bindings, and in doing so obtain judgement (5). Lastly, we can apply the inductive hypothesis to (3), obtaining (6).

- $\begin{array}{l} 5. \ \hat{\varGamma}, [\hat{\tau}''/X] \hat{\varDelta} \vdash [\hat{\tau}''/X] \hat{\tau}_2 <: [\hat{\tau}''/X] \hat{\tau} \\ 6. \ \hat{\varGamma}, [\hat{\tau}''/X] \hat{\varDelta} \vdash \varepsilon_2 \subseteq \varepsilon \\ 7. \ \hat{\varGamma}, [\hat{\tau}''/X] \hat{\varDelta} \vdash [\hat{\tau}''/X] \hat{e} : [\hat{\tau}''/X] \hat{\tau}_2 \ \text{with} \ \varepsilon_2 \end{array}$

From (4-6) we can apply ε -Subsume to get $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e} : [\hat{\tau}''/X]\hat{\tau}$ with ε_2 .

Case: ε -ABS. Then $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda y : \hat{\tau}_2.\hat{e}_3 : \hat{\tau}_2 \to_{\varepsilon_3} \hat{\tau}_3$ with \varnothing . By inversion, we have (1). By setting $\hat{\Delta}' = \hat{\Delta}, y : \hat{\tau}_2$, this can be rewritten as (2). From inductive hypothesis we get (3). Then by simplifying $\hat{\Delta}'$, this simplifies to (4).

- 1. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}, y : \hat{\tau}_2 \vdash \hat{e}_3 : \hat{\tau}_3 \text{ with } \varepsilon_3$
- $\begin{array}{l} 2. \ \hat{\varGamma}, X<:\hat{\tau}', \hat{\varDelta}' \vdash \hat{e}_3:\hat{\tau}_3 \ \text{with} \ \varepsilon_3 \\ 3. \ \hat{\varGamma}, [\hat{\tau}''/X] \hat{\varDelta}' \vdash [\hat{\tau}''/X] \hat{e}_3:[\hat{\tau}''/X]\hat{\tau}_3 \ \text{with} \ \varepsilon_3 \end{array}$
- 4. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}, y: [\hat{\tau}''/X]\hat{\tau}_2 \vdash [\hat{\tau}''/X]\hat{e}_3: [\hat{\tau}''/X]\hat{\tau}_3$ with ε_3

From (4) we can apply ε -ABS to get $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash \lambda y : [\hat{\tau}''/X]\hat{\tau}_2 . [\hat{\tau}''/X]\hat{\tau}_3 : [\hat{\tau}''/X]\hat{\tau}_2 \to_{\varepsilon_3} [\hat{\tau}''/X]\hat{\tau}_3$ with \varnothing . This can be rewritten as $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X](\lambda y : \hat{\tau}_2.\hat{e}_3) : [\hat{\tau}''/X](\hat{\tau}_2 \to_{\varepsilon_3} \hat{\tau}_3)$ with \varnothing .

Case: ε -APP. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \ \hat{e}_2 : \hat{\tau}_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$. By inversion, we have:

- 1. $\hat{\Gamma}, X <: \hat{\tau}_1, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3$ with ε_1
- 2. $\hat{\Gamma}, X <: \hat{\tau}_1, \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$

Applying inductive hypothesis to (1) and (2) gives (3) and (4),

- 3. $\hat{\Gamma}, \hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e}_1 : [\hat{\tau}''/X](\hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3)$ with ε_1 4. $\hat{\Gamma}, \hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e}_2 : [\hat{\tau}''/X]\hat{\tau}_2$ with ε_2

Then from (3) and (4) we can apply ε -APP to get $\hat{\Gamma}$, $\hat{\Delta} \vdash [\hat{\tau}''/X](\hat{e}_1 \ \hat{e}_2) : [\hat{\tau}''/X]\hat{\tau}_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$.

Case: ε -PolyTypeAbs, Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda Y <: \hat{\tau}_B.\hat{e}_A : \forall Y <: \hat{\tau}_B.\hat{\tau}_A \text{ cap } \varepsilon_A \text{ with } \emptyset$. By inversion, we have (1). Setting $\hat{\Delta}' = \hat{\Delta}, Y <: \hat{\tau}_B$, we can rewrite it as (2). Inductive hypothesis gives us (3). Expanding $\hat{\Delta}'$ lets us rewrite this as (4).

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, Y <: \hat{\tau}_B \vdash \hat{e}_A : \hat{\tau}_A \text{ with } \varepsilon_A$
- $2. \ \hat{\varGamma}, X <: \hat{\tau}, \hat{\varDelta'} \vdash \hat{e}_A : \hat{\tau}_A \ \text{with} \ \varepsilon_A$
- 3. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}' \vdash [\hat{\tau}''/X]\hat{e}_A : [\hat{\tau}''/X]\hat{\tau}_A$ with ε_A
- 4. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}, Y <: [\hat{\tau}''/X]\hat{\tau}_B \vdash [\hat{\tau}''/X]\hat{e}_A : [\hat{\tau}''/X]\hat{\tau}_A \text{ with } \varepsilon_A$

From (4) we can apply ε -POLYTYPEABS, giving (5), which can be rewritten as (6).

- 5. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash \lambda Y <: [\hat{\tau}''/X] \hat{\tau}_B. [\hat{\tau}''/X] \hat{e}_A : \forall Y <: [\hat{\tau}''/X] \hat{\tau}_B. [\hat{\tau}''/X] \hat{\tau}_A \text{ cap } \varepsilon_A \text{ with } \varnothing$ 6. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] (\lambda Y <: \hat{\tau}_B. \hat{e}_A : \forall Y <: \hat{\tau}_B. \hat{\tau}_A \text{ cap } \varepsilon_A) \text{ with } \varnothing$

Case: ε -PolyFxAbs. | Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon_A.\hat{e}_B : \forall \phi \subseteq \varepsilon_A.\hat{\tau}_B \text{ cap } \varepsilon_B \text{ with } \emptyset$. By inversion we have (1). Setting $\hat{\Delta}' = \hat{\Delta}, \phi \subseteq \varepsilon_A$, this can be rewritten as (2). The inductive hypothesis gives us (3). Expanding $\hat{\Delta}'$ lets us rewrite that as (4).

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, \phi \subseteq \varepsilon_A \vdash \hat{e}_B : \hat{\tau}_B \text{ with } \varepsilon_B$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_B : \hat{\tau}_B \text{ with } \varepsilon_B$
- 3. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}' \vdash [\hat{\tau}''/X]\hat{e}_B : [\hat{\tau}''/X]\hat{\tau}_B \text{ with } \varepsilon_B$ 4. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}, \phi \subseteq \varepsilon_A \vdash [\hat{\tau}''/X]\hat{e}_B : [\hat{\tau}''/X]\hat{\tau}_B \text{ with } \varepsilon_B$

From (4) we can apply ε -PolyFxABS, giving (5), which an be rewritten as (6).

- 5. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon_A. [\hat{\tau}''/X] \hat{e}_B : \forall \phi \subseteq \varepsilon_A. [\hat{\tau}''/X] \hat{\tau}_B \text{ cap } \varepsilon_B \text{ with } \varnothing$ 6. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] (\lambda \phi \subseteq \varepsilon_A. \hat{e}_B) : [\hat{\tau}''/X] (\forall \phi \subseteq \varepsilon_A. \hat{\tau}_B \text{ cap } \varepsilon_B) \text{ with } \varnothing$

Case: ε -POLYTYPEAPP. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \hat{\tau}'_A : [\hat{\tau}'_A/Y]\hat{\tau}_B$ with $[\hat{\tau}'_A/Y]\varepsilon_B \cup \varepsilon_C$, where we get (1) and

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \forall Y <: \hat{\tau}_A.\hat{\tau}_B \text{ caps } \varepsilon_B \text{ with } \varepsilon_C$ 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A' <: \hat{\tau}_A$

By inductive hypothesis on (1) we get (3). By a previous lemma, type substitution preserves subtyping, so from (2) we obtain (4).

- 3. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] \hat{e}_1 : [\hat{\tau}''/X] (\forall Y <: \hat{\tau}_A.\hat{\tau}_B \text{ caps } \varepsilon_B) \text{ with } \varepsilon_C$ 4. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] \hat{\tau}_A' <: [\hat{\tau}''/X] \hat{\tau}_A$

From (3-4), applying ε -POLYTYPEAPP gives (5).

5. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] (\hat{e}_1 \ \hat{\tau}'_A) : [\hat{\tau}''/X] ([\hat{\tau}'_A/Y] \hat{\tau}_B)$ with $[\hat{\tau}'_A/Y] \varepsilon_B \cup \varepsilon_C$

Case: ε -PolyFxApp Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \ \varepsilon'_A : [\varepsilon'_A/\phi]\hat{\tau}_B \text{ with } [\varepsilon'_A/\phi]\hat{\varepsilon}_B \cup \varepsilon_C$, where we get (1) and (2) from inversion.

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \forall \phi \subseteq \varepsilon_A.\hat{\tau}_B \text{ caps } \varepsilon_B \text{ with } \varepsilon_C$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon'_{A} \subseteq \varepsilon_{A}$

By inductive hypothesis on (1) we get (3). Applying the lemma that type substitution preserves subsetting, we obtain (4) from (2).

- 3. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] \hat{e}_1 : [\hat{\tau}''/X] (\forall \phi \subseteq \varepsilon_A. \hat{\tau}_B \text{ caps } \varepsilon_B) \text{ with } \varepsilon_C$ 4. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash \varepsilon_A' \subseteq \varepsilon_A$

From (3-4), applying ε -POLYFXAPP gives (5).

5. $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X](\hat{e}_1 \ \varepsilon_{\Delta}') : [\hat{\tau}''/X]([\varepsilon_{\Delta}'/\phi]\hat{\tau}_B)$ with $[\varepsilon_{\Delta}'/\phi]\hat{\varepsilon}_B \cup \varepsilon_C$

Case: ε -Import TODO

Lemma 5 (Effect Substitution Preserves Subsetting). If $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$ and $\hat{\Gamma} \vdash \varepsilon'' \subseteq \varepsilon'$ then $\hat{\Gamma}, [\varepsilon''/\phi] \hat{\Delta} \vdash [\varepsilon''/\phi] \varepsilon_1 \subseteq [\varepsilon''/\phi] \varepsilon_2$

Proof. By induction on the derivation of $\hat{\Gamma}$, $\phi \subseteq \varepsilon'$, $\hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$.

 $\boxed{\varepsilon\text{-FxSet.}}$ By $\varepsilon\text{-FxSet}$, $\hat{\Gamma}$, $[\varepsilon''/\phi]\hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$. Because ε_1 and ε_2 are concrete sets of effects, then $[\varepsilon''/\phi]\varepsilon_1 = \varepsilon_1$ and $[\varepsilon''/\phi]\varepsilon_2 = \varepsilon_2$, so we are done.

 ε -FXVAR. Then $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash \Phi \subseteq \varepsilon''$. We know that $\Phi \subseteq \varepsilon''$ occurs in the context somewhere, so consider case-by-case which part.

Subcase: $\Phi = \phi$. Then $[\varepsilon''/\phi]\varepsilon_1 = \varepsilon''$. By well-formedness, $\phi \notin \mathtt{freevars}(\varepsilon_2)$, so $[\varepsilon''/\phi]\varepsilon_2 = \varepsilon_2$. By inversion on the rule, $\varepsilon_2 = \varepsilon'$. We already know by assumption that $\hat{\Gamma} \vdash \varepsilon'' \subseteq \varepsilon'$, so by widening, $\hat{\Gamma}, [\varepsilon''/X] \hat{\Delta} \vdash \varepsilon'' \subseteq \varepsilon'$.

Lemma 6 (Effect Substitution Preserves Subtyping). If $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2 \text{ and } \hat{\Gamma} \vdash \varepsilon'' \subseteq \varepsilon' \text{ then}$ $\hat{\Gamma}, [\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]\hat{\tau}_1 <: [\varepsilon''/\phi]\hat{\tau}_2$

Proof. By induction on derivations of $\hat{\Gamma}$, $\phi \subseteq \varepsilon'$, $\hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$.

S-Reflexive. Use S-Reflexive to get the desired judgement directly.

S-Transitive. By inversion we have (1) and (2). Applying the inductive assumption to these yields (3) and (4), which can be used to apply S-Transitive, giving judgement (5).

- 1. $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_C$
- 1. \hat{I} , $\phi \subseteq \varepsilon$, $\Delta \vdash \hat{I}_1 < \cdot I_C$ 2. $\hat{\Gamma}$, $\phi \subseteq \varepsilon'$, $\hat{\Delta} \vdash \hat{\tau}_C <: \hat{\tau}_2$ 3. $\hat{\Gamma}$, $[\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]\hat{\tau}_1 <: [\varepsilon''/\phi]\hat{\tau}_C$ 4. $\hat{\Gamma}$, $[\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]\hat{\tau}_C <: [\varepsilon''/\phi]\hat{\tau}_2$ 5. $\hat{\Gamma}$, $[\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]\hat{\tau}_1 <: [\varepsilon''/\phi]\hat{\tau}_2$

S-RESOURCESET. Substitution on a resource set leaves it unchanged, so the judgement in the antecedent can be used for the judgement in the consequent.

S-Arrow. Then we have (1). By inversion, we also have (2-4).

- 1. $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash \hat{\tau}_A \to_{\varepsilon_C} \hat{\tau}_B <: \hat{\tau}'_A \to_{\varepsilon'_C} \hat{\tau}'_B$
- $\begin{array}{l} 2. \ \ \hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\varDelta} \vdash \hat{\tau}_A' <: \hat{\tau}_A \\ 3. \ \ \hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\varDelta} \vdash \hat{\tau}_B <: \hat{\tau}_B' \end{array}$
- 4. $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash \varepsilon_C \subseteq \varepsilon'_C$

Applying the inductve assumption to (2) and (3) yields (5) and (6). By a previous lemma, we know that effect substitution preserves subsetting. Applying this lemma to (4) yields (7).

- 5. $\hat{\Gamma}, [\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]\hat{\tau}'_A <: [\varepsilon''/\phi]\hat{\tau}_A$ 6. $\hat{\Gamma}, [\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]\hat{\tau}_B <: [\varepsilon''/\phi]\hat{\tau}'_B$ 7. $\hat{\Gamma}, [\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]\varepsilon_C \subseteq [\varepsilon''/\phi]\varepsilon'_C$

With (5-7) we can apply S-ARROW, giving (8), which is the same as (9).

- 8. $\hat{\Gamma}, [\varepsilon''/\phi] \hat{\Delta} \vdash [\varepsilon''/\phi] \hat{\tau}_A \rightarrow_{[\varepsilon''/\phi]\varepsilon'_C} [\varepsilon''/\phi] \hat{\tau}_B <: [\varepsilon''/\phi] \hat{\tau}'_A \rightarrow_{[\varepsilon''/\phi]\varepsilon_C} [\varepsilon''/\phi] \hat{\tau}'_B$
- 9. $\hat{\Gamma}, [\varepsilon''/\phi] \hat{\Delta} \vdash [\varepsilon''/\phi] (\hat{\tau}_A \to_{\varepsilon_C} \hat{\tau}_B) <: [\varepsilon''/\phi] (\hat{\tau}'_A \to_{\varepsilon'_C} \hat{\tau}'_B)$

S-TypePoly. Then we have (1). By inversion, we also have (2-3).

- $\begin{array}{ll} 1. & \hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash (\forall X <: \hat{\tau}_1.\hat{\tau}_2) <: (\forall Y <: \hat{\tau}_1'.\hat{\tau}_2') \\ 2. & \hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash \hat{\tau}_1' <: \hat{\tau}_1 \\ 3. & \hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta}, Y <: \hat{\tau}_1' \vdash \hat{\tau}_2 <: \hat{\tau}_2' \end{array}$

By applying the inductive hypothesis to (2), we obtain (4).

4. $\hat{\Gamma}$, $[\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]\hat{\tau}_1' <: [\varepsilon''/\phi]\hat{\tau}_1$

Now, let $\hat{\Delta}' = \hat{\Delta}, Y <: \hat{\tau}'_1$. Then we can rewrite (3) as (5), and apply the inductive assumption to get (6). By simplifying $\hat{\Delta}'$, we get (7).

- 5. $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta}' \vdash \hat{\tau}_2 <: \hat{\tau}_2'$ 6. $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta}' \vdash [\varepsilon''/\phi]\hat{\tau}_2 <: [\varepsilon''/\phi]\hat{\tau}_2'$ 7. $\hat{\Gamma}, [\varepsilon''/\phi]\hat{\Delta}, Y <: [\varepsilon''/\phi]\hat{\tau}_1' \vdash [\varepsilon''/\phi]\hat{\tau}_2 <: [\varepsilon''/\phi]\hat{\tau}_2'$

From (2) and (7) we can apply S-TYPEPOLY to get (8), which can be rewritten as the more readable (9).

8.
$$\hat{\Gamma}, [\varepsilon''/\phi] \hat{\Delta} \vdash (\forall X <: [\varepsilon''/\phi] \hat{\tau}_1. [\varepsilon''/\phi] \hat{\tau}_2) <: (\forall Y <: [\varepsilon''/\phi] \hat{\tau}_1'. [\varepsilon''/\phi] \hat{\tau}_2')$$
9. $\hat{\Gamma}, [\varepsilon''/\phi] \hat{\Delta} \vdash [\varepsilon''/\phi] (\forall X <: \hat{\tau}_1. \hat{\tau}_2) <: [\varepsilon''/\phi] (\forall Y <: \hat{\tau}_1'. \hat{\tau}_2')$

S-TypeVar. Then $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash X <: \hat{\tau}$. By inversion, there is a binding $X <: \hat{\tau}$ in the context, so consider case-by-case where it is.

Subcase: $X <: \hat{\tau} \in \hat{\Delta}$. Then $X <: [\varepsilon''/\phi]\hat{\tau} \in [\varepsilon''/\phi]\hat{\Delta}$, so $[\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]X <: [\varepsilon''/\phi]\hat{\tau}$. By widening, $\hat{\Gamma}, [\varepsilon''/\phi]\hat{\Delta} \vdash [\varepsilon''/\phi]X <: [\varepsilon''/\phi]\hat{\tau}$.

Subcase: $X <: \hat{\tau} \in \hat{\Gamma}$. TODO

Lemma 7 (Effect Substitution Preserves Types and Effects). If $\hat{\Gamma}, \phi \subseteq \varepsilon', \hat{\Delta} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{\Gamma} \vdash \phi \subseteq \varepsilon'$ then $\hat{\Gamma}, [\varepsilon'/\phi]\hat{\Delta} \vdash [\varepsilon'/\phi]e : [\varepsilon'/\phi]\hat{\tau}$ with $[\varepsilon'/\phi]\varepsilon$

Proof. TODO

Definition 1 (Domain). For any $\hat{\Gamma}$, define $dom(\hat{\Gamma})$ as follows:

```
\begin{array}{l} -\operatorname{dom}(\varnothing)=\varnothing\\ -\operatorname{dom}(\hat{\varGamma},x:\hat{\tau})=\operatorname{dom}(\hat{\varGamma})\cup\{x\}\\ -\operatorname{dom}(\hat{\varGamma},X<:\hat{\tau})=\operatorname{dom}(\hat{\varGamma})\cup\{X\}\\ -\operatorname{dom}(\hat{\varGamma},\varPhi\subseteq\varepsilon)=\operatorname{dom}(\hat{\varGamma})\cup\{\varPhi\} \end{array}
```

Lemma 8 (Reverse Narrowing 1). If $\hat{\Gamma} \vdash [\varepsilon/\Phi](\varepsilon_1 \subseteq \varepsilon_2)$ and $\Phi \notin \text{dom}(\hat{\Gamma})$ then $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \varepsilon_1 \subseteq \varepsilon_2$.

Proof. By induction on the derivation of $\hat{\Gamma} \vdash [\varepsilon/\Phi](\varepsilon_1 \subseteq \varepsilon_2)$.

S-Reflex. Then $\varepsilon_1 = \varepsilon_2$. By S-Reflex, $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \varepsilon_1 \subseteq \varepsilon_1$.

S-Trans. By inversion and inductive assumption, $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \varepsilon_1 \subseteq \varepsilon_2, \varepsilon_2 \subseteq \varepsilon_3$. By S-Trans, $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \varepsilon_1 \subseteq \varepsilon_3$.

S-FxSet. Concrete sets of effects are invariant under substitution, so $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \varepsilon_1 \subseteq \varepsilon_2$.

S-FxVar. Then $\hat{\Gamma}, \Phi_2 \subseteq \varepsilon_2 \vdash [\varepsilon/X](\Phi_2 \subseteq \varepsilon_2)$. Because $\Phi \notin dom(\hat{\Gamma})$, then $\hat{\Gamma}, \Phi_2 \subseteq \varepsilon_2, \Phi \subseteq \varepsilon \vdash \Phi_2 \subseteq \varepsilon_2$ by S-FxVar.

Lemma 9 (Reverse Narrowing 2). If $\hat{\Gamma} \vdash [\varepsilon/\Phi](\hat{\tau}_1 <: \hat{\tau}_2)$ and $\Phi \notin \text{dom}(\hat{\Gamma})$ then $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \hat{\tau}_1 <: \hat{\tau}_2$.

Proof. By induction on the derivation of $\hat{\Gamma} \vdash [\varepsilon/\Phi](\hat{\tau}_1 <: \hat{\tau}_2)$.

S-Reflex. Then $\hat{\Gamma} \vdash [\varepsilon/\Phi](\hat{\tau}_1 <: \hat{\tau}_1)$, and $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \hat{\tau}_1 <: \hat{\tau}_1$ by S-Reflex.

S-TypeVar. Then $\hat{\Gamma}, X <: \hat{\tau} \vdash [\varepsilon/\Phi](X <: \hat{\tau})$. Because Φ is an effect-variable, and not a type-variable, then $\hat{\Gamma}, X <: \hat{\tau}, \Phi \subseteq \varepsilon \vdash X <: \hat{\tau}$ byS-TypeVar.

S-ResourceSet. By S-RESOURCESET, $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \{\overline{r_1}\} <: \{\overline{r_2}\}.$

S-Trans. Then $\hat{\Gamma} \vdash [\varepsilon/\Phi](\hat{\tau}_1 <: \hat{\tau}_3)$. By inversion and induction, we have $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \hat{\tau}_1 <: \hat{\tau}_2, \hat{\tau}_2 <: \hat{\tau}_3$. Then by S-Trans, $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \hat{\tau}_1 <: \hat{\tau}_3$.

S-Arrow. Then $\hat{\Gamma} \vdash [\varepsilon/\Phi]((\hat{\tau}_1 \to_{\varepsilon_3} \hat{\tau}_2) <: (\hat{\tau}'_1 \to_{\varepsilon'_3} \hat{\tau}'_2))$. By inversion, we know (1-3):

- 1. $\hat{\Gamma} \vdash [\varepsilon/\Phi](\hat{\tau}'_1 <: \hat{\tau}_1)$ 2. $\hat{\Gamma} \vdash [\varepsilon/\Phi](\hat{\tau}_2 <: \hat{\tau}'_2)$ 3. $\hat{\Gamma} \vdash [\varepsilon/\Phi](\varepsilon_3 \subseteq \varepsilon'_3)$

By applying the inductive assumption to (1-2) we get (4-5). By applying Reverse Narrowing 1 to 3, we get 6.

- 4. $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \hat{\tau}'_1 <: \hat{\tau}_1$
- 5. $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \hat{\tau}_2 <: \hat{\tau}_2'$ 6. $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash \varepsilon_3 \subseteq \varepsilon_3'$

From (4-6), we can use S-ARROW to get the judgement $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash (\hat{\tau}_1 \to_{\varepsilon_3} \hat{\tau}_2) <: (\hat{\tau}'_1 \to_{\varepsilon'_2} \hat{\tau}'_2)$.

S-PolyType. Then $\hat{\Gamma} \vdash [\varepsilon/\Phi]((\forall X <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_3) <: (\forall Y <: \hat{\tau}_1'.\hat{\tau}_2' \text{ caps } \varepsilon_3'))$. By inversion, we know (1-3):

- $\begin{array}{ll} 1. & \hat{\varGamma} \vdash [\varepsilon/\varPhi](\hat{\tau}_1' <: \hat{\tau}) \\ 2. & \hat{\varGamma}, Y <: \hat{\tau}_1' \vdash [\varepsilon/\varPhi](\hat{\tau}_2 <: \hat{\tau}_2') \\ 3. & \hat{\varGamma}, Y <: \hat{\tau}_1' \vdash [\varepsilon/\varPhi](\varepsilon_3 \subseteq \varepsilon_3') \end{array}$

By applying the inductive assumption to (1-3), we get (4-6).

- $\begin{array}{l} 4. \ \ \hat{\varGamma}, \varPhi \subseteq \varepsilon \vdash \hat{\tau}_1' <: \hat{\tau} \\ 5. \ \ \hat{\varGamma}, Y <: \hat{\tau}_1', \varPhi \subseteq \varepsilon \vdash \hat{\tau}_2 <: \hat{\tau}_2' \\ 6. \ \ \hat{\varGamma}, Y <: \hat{\tau}_1', \varPhi \subseteq \varepsilon \vdash \varepsilon_3 \subseteq \varepsilon_3' \end{array}$

5 can be rewritten as 7, and 6 as 8.

- 7. $\hat{\Gamma}, \Phi \subseteq \varepsilon, Y <: \hat{\tau}'_1 \vdash \hat{\tau}_2 <: \hat{\tau}'_2$ 8. $\hat{\Gamma}, \Phi \subseteq \varepsilon, Y <: \hat{\tau}'_1 \vdash \varepsilon_3 \subseteq \varepsilon'_3$

From (4,7,8) we can apply S-PolyType to get $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash (\forall X <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_3) <: (\forall Y <: \hat{\tau}_1'.\hat{\tau}_2' \text{ caps } \varepsilon_3')$.

S-PolyFx. Then $\hat{\Gamma} \vdash [\varepsilon/\Phi]((\forall \Phi_1 \subseteq \varepsilon_1.\hat{\tau}_2 \text{ caps } \varepsilon_3) <: (\forall \Phi'_1 \subseteq \varepsilon'_1.\hat{\tau}'_2 \text{ caps } \varepsilon'_3))$. By inversion we know (1-3):

- $\begin{array}{ll} 1. & \hat{\varGamma} \vdash [\varepsilon/\varPhi](\varepsilon_1' \subseteq \varepsilon_1) \\ 2. & \hat{\varGamma}, \varPhi_2 \subseteq \varepsilon' \vdash [\varepsilon/\varPhi](\hat{\tau}_1 <: \hat{\tau}_1') \\ 3. & \hat{\varGamma}, \varPhi_2 \subseteq \varepsilon' \vdash [\varepsilon/\varPhi](\varepsilon_3 \subseteq \varepsilon_3') \end{array}$

By applying the Reverse Narrowing Lemma 1 to (1), we get (3). By applying the inductive assumption to (2-3), we get (5-6).

- $\begin{array}{l} 4. \ \ \hat{\Gamma}, \varPhi \subseteq \varepsilon \vdash \varepsilon_1' \subseteq \varepsilon_1 \\ 5. \ \ \hat{\Gamma}, \varPhi_2 \subseteq \varepsilon', \varPhi \subseteq \varepsilon \vdash \hat{\tau}_1 <: \hat{\tau}_1' \\ 6. \ \ \hat{\Gamma}, \varPhi_2 \subseteq \varepsilon'. \varPhi \subseteq \varepsilon \vdash \varepsilon_3 \subseteq \varepsilon_3' \end{array}$

5 can be rewritten as 7, and 6 as 8.

- 7. $\hat{\Gamma}, \Phi \subseteq \varepsilon, \Phi_2 \subseteq \varepsilon' \vdash \hat{\tau}_1 <: \hat{\tau}'_1$ 8. $\hat{\Gamma}, \Phi \subseteq \varepsilon, \Phi_2 \subseteq \varepsilon' \vdash \varepsilon_3 \subseteq \varepsilon'_3$

With (4,7,8), we can apply S-PolyFx to get $\hat{\Gamma}, \Phi \subseteq \varepsilon \vdash (\forall \Phi_1 \subseteq \varepsilon_1.\hat{\tau}_2 \text{ caps } \varepsilon_3) <: (\forall \Phi'_1 \subseteq \varepsilon'_1.\hat{\tau}'_2 \text{ caps } \varepsilon'_3).$

Lemma 10. $[\varnothing/\Phi]\varepsilon\subseteq\varepsilon$.

Proof. If $\varepsilon \neq \Phi$ then $[\varnothing/\Phi]\varepsilon = \varepsilon$. Otherwise, $[\varnothing/\Phi]\varepsilon = \varnothing \subseteq \varepsilon$.

Lemma 11. For any $\hat{\tau}$, effects($[\varnothing/\Phi]\hat{\tau}$) \subseteq effects($\hat{\tau}$) and ho-effects($[\varnothing/\Phi]\hat{\tau}$) \subseteq ho-effects($\hat{\tau}$).

Proof. By simultaneous induction on the form of $\hat{\tau}$. First, consider effects($[\varnothing/\Phi]\hat{\tau}$) \subseteq effects($\hat{\tau}$).

 $\hat{\tau} = \{\overline{r}\}.$ Then $[\varnothing/\Phi]\hat{\tau} = \hat{\tau}$, so the result is trivial.

 $\widehat{\tau} = \widehat{\tau}_1 \to_{\varepsilon_3} \widehat{\tau}_2. \text{ Then } [\varnothing/\varPhi]\widehat{\tau} = [\varnothing/\varPhi]\widehat{\tau}_1 \to_{[\varnothing/\varPhi]\varepsilon_3} [\varnothing/\varPhi]\widehat{\tau}_2. \text{ By definition, effects}(\widehat{\tau}) = \text{ho-effects}(\widehat{\tau}_1) \cup \varepsilon_3 \cup \text{effects}(\widehat{\tau}_2). \text{ By inductive hypothesis, we know ho-effects}([\varnothing/\varPhi]\widehat{\tau}_1) \subseteq \text{ho-effects}(\widehat{\tau}_1) \text{ and effects}([\varnothing/\varPhi]\widehat{\tau}_2) \subseteq \text{effects}(\widehat{\tau}_2). \text{ We also have } [\varnothing/\varPhi]\varepsilon_3 \subseteq \varepsilon_3 \text{ by the previous lemma.}$

 $\hat{\tau} = \forall \Phi \subseteq \varepsilon_1.\hat{\tau}_2 \text{ caps } \varepsilon_2.$ Then $\text{effects}(\hat{\tau}) = \varepsilon_2 \cup [\varnothing/\Phi]\hat{\tau}_2.$ By the previous lemma, $[\varnothing/\Phi]\varepsilon_2 \subseteq \varepsilon_2$, and it is trivial that $\text{effects}([\varnothing/\Phi]\hat{\tau}_2) \subseteq \text{effects}([\varnothing/\Phi]\hat{\tau}_2).$

•

Now consider ho-effects($[\emptyset/\Phi]\hat{\tau}$) \subseteq ho-effects($\hat{\tau}$).

 $|\hat{\tau} = {\bar{r}}.$ Same as above; trivial.

 $\widehat{\tau} = \widehat{\tau}_1 \to_{\varepsilon_3} \widehat{\tau}_2. \text{ Then } [\varnothing/\varPhi]\widehat{\tau} = [\varnothing/\varPhi]\widehat{\tau}_1 \to_{[\varnothing/\varPhi]\varepsilon_3} [\varnothing/\varPhi]\widehat{\tau}_2. \text{ By definition, ho-effects}(\widehat{\tau}) = \texttt{effects}(\widehat{\tau}_1) \cup \texttt{ho-effects}(\widehat{\tau}_2). \text{ By inductive hypothesis, we know effects}([\varnothing/\varPhi]\widehat{\tau}_1) \subseteq \texttt{effects}(\widehat{\tau}_1) \text{ and ho-effects}([\varnothing/\varPhi]\widehat{\tau}_2) \subseteq \texttt{ho-effects}(\widehat{\tau}_2).$

 $\widehat{\tau} = \forall \Phi \subseteq \varepsilon_1. \widehat{\tau}_2 \text{ caps } \varepsilon_2.$ Then ho-effects $(\widehat{\tau}) = \varepsilon_1 \cup [\varnothing/\Phi]\widehat{\tau}_2.$ By the previous lemma, we know $[\varnothing/\Phi]\varepsilon_1 \subseteq \varepsilon_1.$ It is trivial that ho-effects $([\varnothing/\Phi]\widehat{\tau}_2)\subseteq \text{ho-effects}([\varnothing/\Phi]\widehat{\tau}_2).$

 $\mathbf{Lemma\ 12.\ safe}([\varnothing/\Phi]\hat{\tau},\varepsilon_s) \implies \mathbf{safe}(\hat{\tau},\varepsilon_s)\ and\ \mathsf{ho}\text{-safe}([\varnothing/\Phi]\hat{\tau},\varepsilon_s) \implies \mathsf{ho}\text{-safe}(\hat{\tau},\varepsilon_s).$

Proof. TODO

Lemma 13 (Approximation 1). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and effects $(\hat{\tau}) \subseteq \varepsilon_s$ and ho-safe $(\hat{\tau}, \varepsilon_s)$ then $\hat{\tau} <:$ annot(erase $(\hat{\tau}), \varepsilon_s$).

Lemma 14 (Approximation 2). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and ho-effects $(\hat{\tau}) \subseteq \varepsilon_s$ and safe $(\hat{\tau}, \varepsilon_s)$ then annot(erase $(\hat{\tau}), \varepsilon_s$) <: $\hat{\tau}$.

Proof. By simultaneous induction on derivations of safe and ho-safe, and then on derivations of $\hat{\Gamma} \vdash \hat{e}$: $\hat{\tau}$ with ε .

 $[\varepsilon\text{-PolyFxAbs.}]$ Then \hat{e} has the form given in (1). The definition of effects is (2). From a previous lemma, ho-safe $(\hat{\tau}_2, \varepsilon_s) \implies$ ho-safe $([\varnothing/\Phi]\hat{\tau}_2, \varepsilon_s)$, so we know (3). With (2-3) we can apply the inductive hypothesis to $[\varnothing/\Phi]\hat{\tau}_2$, giving (4).

- 1. $\hat{e} = \forall \Phi \subseteq \varepsilon_1.\hat{\tau}_2 \text{ caps } \varepsilon_2$
- 2. $\operatorname{effects}(\hat{\tau}) = \varepsilon_2 \cup \operatorname{effects}([\varnothing/\Phi]\hat{\tau}_2) \subseteq \varepsilon_s$
- 3. ho-safe($[\varnothing/\Phi]\hat{\tau}_2, \varepsilon_s$)
- 4. $\Gamma \vdash [\varnothing/\Phi]\hat{\tau}_2 <: \mathtt{annot}(\mathtt{erase}([\varnothing/\Phi]\hat{\tau}_2), \varepsilon_s)$

But we want $\hat{\tau}_2 <: \mathtt{annot}(\mathtt{erase}(\hat{\tau}_2), \varepsilon_s)$.

Theorem 1 (Progress). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and \hat{e} is not a value, then $\hat{e} \longrightarrow \hat{e}' \mid \varepsilon$, for some \hat{e}', ε .

Proof. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -PolyTypeAbs. Trivial; \hat{e} is a value.

Case: ε -PolyFxAbs. Trivial; \hat{e} is a value.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \ \hat{\tau}'$. If \hat{e}_1 is not a value then $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$ by inductive hypothesis, and applying E-PolyTypeApp1 gives the reduction $\hat{e}_1 \ \hat{\tau}' \longrightarrow \hat{e}''\hat{\tau}' \mid \varepsilon$. Otherwise, \hat{e} is a value, so $\hat{e} = \lambda X <: \hat{\tau}_1.\hat{e}_2$,

and applying E-PolyTypeApp2 gives the reduction $(\lambda X <: \hat{\tau}_1.\hat{e}_2)\hat{\tau}' \longrightarrow [\hat{\tau}'/X]\hat{e}_2 \mid \varnothing$.

Case: ε -PolyFxAPP. Then $\hat{e} = \hat{e}_1 \varepsilon'$. If \hat{e}_1 is not a value then $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$ by inductive hypothesis, and applying E-PolyFxAPP1 gives the reduction $\hat{e}_1 \varepsilon' \longrightarrow \hat{e}'_1 \varepsilon' \mid \varepsilon$. Otherwise, \hat{e} is a value, so $\hat{e} = \lambda \phi \subseteq \varepsilon_1.\hat{e}_2$, and applying E-PolyFxAPP2 gives the reduction $(\lambda \phi \subseteq \varepsilon_1.\hat{e}_2)\varepsilon' \longrightarrow [\varepsilon'/\phi]\hat{e}_2$.

Theorem 2 (Preservation). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{\tau}_B <: \hat{\tau}_A$ and $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$, for some $\hat{e}_B, \varepsilon, \hat{\tau}_B, \varepsilon_B$.

Proof. By induction on the derivations of $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Case: ε -PolyTypeAbs. | Trivial; \hat{e} is a value.

Case: ε -PolyFxAbs. Trivial; \hat{e} is a value.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \hat{\tau}'$. The typing rule from the judgement can be rewritten as (1). From inversion, we also have (2) and (3).

- 1. $\hat{\Gamma} \vdash \hat{e}_1 \ \hat{\tau}' : [\hat{\tau}'/X]\hat{\tau}_2 \text{ with } \varepsilon_1 \cup \varepsilon_2$
- 2. $\hat{\Gamma} \vdash \hat{e}_1 : \forall X \mathrel{<:} \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$
- 3. $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}_1$

Now consider which reduction rule was used.

Subcase: E-POLYTYPEAPP1. Then \hat{e}_1 $\hat{\tau}' \longrightarrow \hat{e}_1'$ $\hat{\tau}' \mid \varepsilon$. By inversion on the reduction rule, $\hat{e}_1 \longrightarrow \hat{e}_1' \mid \varepsilon$. With (2), we can apply the inductive assumption and ε -Subsume to get (4). With (4) and (3), we can then apply ε -PolyTypeApp to get (5). Then by comparing (1) and (6), we see $\hat{\tau}_B = \hat{\tau}_A$ and $\hat{\varepsilon} = \hat{\varepsilon}_A = \hat{\varepsilon}_B$.

- 4. $\hat{\Gamma} \vdash \hat{e}'_1 : \forall X <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$ 5. $\hat{\Gamma} \vdash \hat{e}'_1 \hat{\tau}' : [\hat{\tau}'/X]\hat{\tau}_2 \text{ with } \varepsilon_1 \cup \varepsilon_2$
- **Subcase:** E-POLYTYPEAPP2. Then $(\lambda X <: \hat{\tau}_1.\hat{e}')\hat{\tau}' \longrightarrow [\hat{\tau}'/X]\hat{e}' \mid \varnothing$. Because of the form of \hat{e}_1 in this subcase, the only rule which could have been applied to obtain judgement (2) is ε -TYPEABS. By inversion on this rule we get (4). From (4) and (3), we can apply the lemma that type-and-effect judgements are preserved under type variable substitution to obtain (5). Finally, by comparing (1) and (5) we see $\hat{\tau}_A = [\hat{\tau}'/X]\hat{\tau}_2 = \hat{\tau}_B$, and $\varepsilon_B \cup \varepsilon = \varepsilon_1 \subseteq \varepsilon_1 \cup \varepsilon_2 = \varepsilon_A$.
- 4. $\hat{\Gamma}, X <: \hat{\tau}_1 \vdash \hat{e}' : \hat{\tau}_2 \text{ with } \varepsilon_1$ 5. $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{e}' : [\hat{\tau}'/X]\hat{\tau}_2 \text{ with } \varepsilon_1$

Case: ε -PolyFxApp. Then $\hat{e} = \hat{e}_1 \varepsilon'$. Consider which reduction rule was used.

Subcase: E-POLYFXAPP1. Then $\hat{e}_1 \in \mathcal{E}' \longrightarrow \hat{e}'_1 \in \mathcal{E}' \mid \varepsilon$. By inversion, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. With the inductive hypothesis and subsumption, \hat{e}'_1 can be typed in $\hat{\Gamma}$ the same as \hat{e}_1 . Then by ε -POLYFXAPP, $\hat{\Gamma} \vdash \hat{e}'_1 \in \mathcal{E}'$: $\hat{\tau}_A$ with ε_A . That $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$ follows by inductive hypothesis.

Subcase: E-POLYFXAPP2. Then $(\lambda \phi \subseteq \varepsilon_3.\hat{e}')\varepsilon' \longrightarrow [\varepsilon'/X]\hat{e}' \mid \varnothing$. The result follows by the substitution lemma.