Algebra II Winter 2021 Frank Sottile

1 March Seventh Homework

Write your answers neatly, in complete sentences, and prove all assertions. Start each problem on a new page (this makes it easier in Gradescope). Revise your work before handing it in, and submit a .pdf created from a LaTeX source to Gradescope. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Due Monday 8 March.

- 1. Let M_R and $_RN$ be right- and left- modules over a ring R and P be an abelian group. Prove that the first two (additive) conditions on a balanced map $f\colon M\times N\to P$ imply that f(0,n)=f(m,0)=0 and that f(-m,n)=-f(m,n)=f(m,-n). (Remember, -a is the additive inverse of a.)
- 2. Let A be an abelian group and $m \geq 1$ a positive integer. Show that $A \otimes_{\mathbb{Z}} (\mathbb{Z}/m\mathbb{Z}) \simeq A/mA$. Use this to deduce that $\mathbb{Z}/m\mathbb{Z} \otimes \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/\gcd(m,n)\mathbb{Z}$ and to describe the tensor product of any two finitely generated abelian groups.
- 3. Let A be a module over a commutative ring R. Show that $A \times A^* \to R$ defined by $(a, f) \mapsto f(a)$ is R-bilinear (balanced). Show that $A \otimes_R A^*$ has a natural map to $\operatorname{End}_R(A)$.
- 4. Let $f: M_R \to M_R'$ and $g: {}_RN \to {}_RN'$ be R-module homomorphisms. Explain the difference between the induced homomorphism $f \otimes g$ of tensor products of R-modules and the element $f \otimes g$ of the tensor product of abelian groups $\operatorname{Hom}_R(M,M') \otimes \operatorname{Hom}_R(N,N')$
- 5. Consider an attempt to define an \mathbb{R} -linear map

$$f: \mathbb{C} \otimes_{\mathbb{C}} \mathbb{C} \longrightarrow \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$$
 or $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \longrightarrow \mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$,

in either direction given by the formula

$$f(x \otimes y) = x \otimes y$$
.

In which direction is this map well-defined? Is it then surjective? Is it injective?

- 6. Let m>1 be an integer. Consider the exact sequence $0\to\mathbb{Z}\xrightarrow{\cdot m}\mathbb{Z}\to\mathbb{Z}/m\mathbb{Z}\to 0$, where $\cdot m$ is the map with image $m\mathbb{Z}$ induced by $1\mapsto m$.
 - Apply the tensor product functor $_ \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}$ to this exact sequence, determining all groups and maps. Do you obtain an exact sequence ?
- 7. Let R be a commutative ring and $I,J\subset R$ ideals of R. Prove that there is an R-module isomorphism $R/I\otimes_R R/J\simeq R/(I+J)$.
- 8. Let $\varphi \colon R \to S$ be a ring homomorphism. Show that this induces on S the structure of an R-R bimodule. Let M be a left R-module and show that $S \otimes_R M$ is a left S-module. (This is called $base\ extension$, and induces a functor from R-mod to S-mod.)