SAMUEL MAINA GACHURU : BCS-05-0407/2022 CAT:2

DATA SCIENCE

Guidilines

Type of machine learning Algorithm for this task.

My reasoning.

<u>Random Forest</u> could be suitable for this task. These algorithms handle both categorical and continuous data well, can manage high-dimensional datasets, and provide insights into feature importance, which is crucial for understanding which factors influence enrollment and graduation success.

What features from the student data would be most relevant for predicting enrollment and graduation success?

Rel	evant	features	may	inci	lud	e:
-----	-------	----------	-----	------	-----	----

Academic performance metrics:

GPA, standardized test scores, course completion rates.

Demographic information:

Age, gender, socioeconomic background, first-generation college status.

Previous enrollment history:

Programs previously enrolled in and retention rates.

Engagement metrics:

Participation in extracurricular activities, attendance records.

Support services utilized:

Tutoring, counseling services, etc.

DATA USED:

For Data part, I have used synthetic data which I have generated programmatically within the code itself,the data generated has features that mimics the real world data.

Here is the detailed breakdown of my synthetic data I have used.

	GPA	Test_Scores	Attendance_Rate	Extracurricular_Activity	First_Gen_College	Socioeconomic_Status	Engagement_Scor
0	2.749080	811	67.316088	0	1	0	0.69386
1	3.901429	1117	61.952767	0	0	1	0.30581
2	3.463988	1391	75.486212	0	0	1	0.75923
3	3.197317	1015	91.264305	1	0	1	0.61974
4	2.312037	1138	63.985177	0	0	0	0.07741
995	2.183164	913	55.548876	1	0	1	0.43094
996	3.834627	1548	81.721207	0	1	1	0.19800
997	2.273637	1377	88.539031	1	1	1	0.43802
998	3.900475	1160	50.144063	0	0	1	0.40874
999	2.892012	1140	92.947834	1	0	0	0.42891

How to protect the privacy of student data while still using it to develop predictive models.

Privacy can be safeguarded by:

Anonymizing data:

Removing personally identifiable information (PII) such as names and student Ids.

Data aggregation:

Using aggregated data rather than individual records to draw insights.

Compliance with regulations:

Adhering to laws like FERPA (Family Educational Rights and Privacy Act), ensuring students' data rights are respected.

Ways to communicate the results of your model to educational institutions in a way that is actionable and informative.

Results can be communicated through:

Visualizations:

Graphs and charts that illustrate key findings, such as predictors of enrollment success.

Dashboards:

Interactive tools for stakeholders to explore data insights relevant to their specific needs.

Reports:

Concise summaries with practical recommendations for interventions based on model outputs, focusing on identifying at-risk students and tailored support programs.

This structured approach ensures a comprehensive understanding of the predictive modeling process, while addressing ethical considerations and practical applications.