MATH 355 Notes

Liam Wrubleski

September 10 2019

1 Topic 1 - Functions and Cardinality (cont)

Example Invertible functions

- (i) $f := mapABRR, f(x) = x^3$ The inverse is $f^{-1}(x) = \sqrt[3]{(x)}$.
- (ii) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 + 3x + 2$ Inverse is hard to find. $f'(x) = 3x^2 + 3 > 0$ So f is strictly increasing $\Longrightarrow f$ is injective. $\lim_{x \to \infty} f(x) = \infty, \lim_{x \to -\infty} f(x) = -\infty$ So f is surjective.
- (iii) $g: \mathbb{Z} \to \mathbb{N}$

$$g(n) = \begin{cases} \frac{n}{2}, & n \text{ even} \\ \frac{n+1}{2}, & n \text{ n odd} \end{cases}$$

Example If $f:A\to B, g:B\to C$ are invertible, then so is $g\circ f:A\to C$ and $(g\circ f)=f^{-1}\circ g^{-1}$

Example (Composition of invertibles)

$$f: \mathbb{R} \to (0, \infty) f(x) = e^x$$

$$f^{-1}: (0, \infty) \to \mathbb{R} f^{-1}(x) = \log(x)$$

$$g: (0, \infty) \to (1, \infty) g(x) = x^3 + 1$$

$$g^{-1}: (1, \infty) \to (0, \infty) g^{-1}(x) = \sqrt[3]{x - 1}$$

$$\mathbb{R} \xrightarrow{f} (0, \infty) \xrightarrow{g} (1, \infty)$$

$$g \circ f: \mathbb{R} \to (1, \infty)$$

$$g \circ f: \mathbb{R} \to (1, \infty)$$

$$f^{-1}(g^{-1}(x)) = f^{-1}(\sqrt[3]{x - 1}) = \log(\sqrt[3]{x - 1})$$

1.1 Cardinality

Definition Two sets A, B are **equinumerous** if \exists a bijection $f : A \to B$. We write $A \sim B$ in this case.

Proposition "" is an equivalence relation on sets. i.e.

- (i) $A \sim A$
- (ii) $A \sim B \implies B \sim A$
- (iii) $A \sim B \wedge B \sim C \implies A \sim C$

Definition Suppose A is a set and $I_n = \{1, 2, ..., n\}, n \in \mathbb{N}$.

- (i) A is **finite** if $A \sim I_n$ for some $n \in \mathbb{N}$.
- (ii) A is **infinite** if it is not finite.
- (iii) A is **denumerable** if $A \sim \mathbb{N}$.
- (iv) A is **countable** if A is either finite xor denumerable.
- (v) A is **uncountable** if A is not countable.

Example We know $\mathbb{N} \sim \mathbb{Z}$, so \mathbb{Z} is denumerable.

The function $f: \mathbb{N} \cup \{ \not\vdash \} \to \mathbb{N}, f(n) = n+1$ is invertible. So $\mathbb{N} \cup \{0\} \sim \mathbb{N}$.

This implies that if A is denumerable then $A \cup \{a\}$ is denumerable.

This extends to: If A is denumerable and B finite, then $A \cup B$ is denumerable.

Proposition If B is countable and $A \subseteq$, then A is countable.

Proof Check that if B is finite, then so is A.

Assume B is denumerable and $A \subseteq B$.

Write $B = \{b_1, b_2, \dots\}$ (here the map $f(n) = b_n$ is the bijection $\mathbb{N} \to B$).

Since $A \subseteq B$, we can find increasing natural numbers

$$n_1 < n_2 < n_3 \dots$$

so that $A = \{b_{n_1}, b_{n_2}, \dots\}.$

If there are only finitely many n_i , A is finite.

If not, the map $g: A \to \mathbb{N}, g(b_{n_i}) = i$ is a bijection. (check). \square

Corollary If A is uncountable and $A \subseteq B$, then B is uncountable.

Proof This is the contrapositive of the proposition above.

Theorem The following are equivalent.

- (i) A is countable.
- (ii) \exists an injection $f: A \to \mathbb{N}$.
- (iii) \exists an surjection $g: \mathbb{N} \to A$.

Proof We will show that $(i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (i)$.

(i) \Longrightarrow (ii) Either $A \sim I_n$ or $A \sim \mathbb{N}$. If $A \sim \mathbb{N}$, we are done, as a bijection is an injection.

If $A \sim I_n$, write $A = \{a_1, a_2, ..., a_n\}$.

The function $\hat{f}: A \to I_n, \hat{f}(f)(a_j) = j$ is a bijection.

Now define $f: A \to \mathbb{N}$ by $f(a_i) = \hat{f}(a_i) = i$. f is an injection since \hat{f} is.

(ii) \Longrightarrow (ii) Suppose $f:A\to\mathbb{N}$ is an injection. Then $f:A\to f(A)$ is surjective and hence bijective. So $f^{-1}:f(A)\to A$ is also a bijection, and $f^{-1}(f(a)) = a$. Define $g : \mathbb{N} \to A$ by

$$g(n) = \begin{cases} f^{-1}(n), & \text{if } n \in f(A) \\ a, & \text{if } n \notin f(A) \end{cases}$$

where a is some fixed arbitrary element in A. g is a surjection, since if $b \in A$ we have $g(f(b)) = f^{-1}(f(b)) = b$.

(iii) \Longrightarrow (i) Let $g: \mathbb{N} \to A$ be a surjection. Define $h: A \to \mathbb{N}$ by $h(a) = \min\{n \in \mathbb{N} | g(n) = a\}$, which always has a solution by the well-ordering principle, since g is surjective. h is injective since if h(a) = h(b), then n is the minimal natural number with g(n) = a and g(n) = b, so a = b. Therefore $h: A \to h(A)$ is a bijection, so $A \sim h(A) \subseteq \mathbb{N}$, so A and h(A) are subsets of countable sets and so are also countable.

Proposition Suppose $A, B, A_1, A_2, A_3, \ldots$ are countable sets. Then

- (i) $A \times B$ is countable.
- (ii) $\bigcup_{n=1} \infty A_n$ is countable.

Proof We assume the extreme case that all of these sets are denumerable.

- (i) $A \sim B \sim \mathbb{N}$. So we show $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$. From (ii) in the previous theorem, it is enough to find an injection $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. $f: \mathbb{N} \times \mathbb{N} \sim \mathbb{N}$, $f(m, n) = 2^m 3^n$, which is injective by the fundamental theorem of algebra.
- (ii) Write the elements of each $A_i \sim \mathbb{N}$ as lists:

$$A_1 = (a_{11}, a_{12}, a_{13}, \dots)$$

$$A_2 = (a_{21}, a_{22}, a_{23}, \dots)$$

$$A_3 = (a_{31}, a_{32}, a_{33}, \dots)$$

:

Without loss of generality, we can assume $A_i \cap A_j = \emptyset \forall i \neq j$. Now define $f: \bigcup_{n=1} \infty A_n \to \mathbb{N}$ by diagonalization, which is a bijection. Or $g: \bigcup_{n=1} \infty A_n \to \mathbb{N}$ by $g(a_{ij}) = 2^i 3^j$, whih is an injection.