班级 <u>计科 3 列</u> 学号 <u>220110 315</u> 姓名 <u>② 正达</u> 教师签字 ② 扩 实验日期 <u>2023.9.14</u> 预习成绩 总成绩

实验名称 液体表面张力系数测量

一. 实验预习

- 1. 什么是表面张力? 液体表面张力系数与哪些因素有关?
- 2. 拉脱法测量液体表面张力的实验原理是什么?
- 答: 1. 表面致力指的复液体试图获得最小表面积的倾向。 液体表面张力系数与液体的种类,纯度,温度和 液体上方的气体成分有关。

其中下勺拉起液膜破裂时的张力F, m. 勺圈环慢, g为重力加速度, 内, 队分别勺圈环内外径长度, 几勺圈

二. 实验现象及原始数据记录

1. 吊环的内、外直径 (单位: mm)

测量次数	1	2	3	4	5	平均值
内径 D 内	32.80	32.86	32.84	32.80	32.82	32,824
外径 D **	34.80 34.76	34.76 34.14	34:74	34.78	34.80	34.776

2. 利用逐差法求仪器的转换系数 K:

先记录砝码盘等作为初始读数 V_0 ______mV,然后每次增加一个砝码 500mg,(该标准砝码符合国家标准,相对误差为 0.05%)

砝码质量	增重读数	减重读数	$V_i = \frac{V_i' + V_i''}{2} \text{(mV)}$
10 ⁻⁶ Kg	$V_i'(mV)$	$V_i''(mV)$	2
0	1.403	1.403	1.403
500.00	1.881	1.884	1.8823
1000.00	2.362	2.363	2.363
1500.00	2.843	2.845	2.844
2000.00	3.322	3.325	3.3235
2500.00	3.803	3.810	3.8065
3000.00	4.284	4.283	4.2835
3500.00	4.762	4.762	4.7620

利用逐差法求出每 500mg 对应的电子秤的读数 ΔV ,则 $\overline{K} = \frac{mg}{\Delta V} = \frac{1.02 \times 10^{-2}}{1.02 \times 10^{-2}}$

3. 用拉脱法求拉力对应的电子秤读数:

表 1 室温下表面张力系数测量表

水温(室温) <u>タデンス・</u>で、电子秤初始读数 V_{6−} <u>スカッ</u> mV

Nad EE Vir Wir	拉脱时最大读数	吊环读数	表面张力对应读数(mV)
测量次数	<i>V</i> ₁ (mV)	V ₂ (mV)	$V=V_1-V_2$
1	3.318	2.132	±## 1.186
2	3.329	2.128	1.201
3	3.320	2.126	1.194
4	3.318	751.5	1.191
5	3.300	2.127	1-193
平均值	3.32	2.128	<u>V</u> = 1.193

表 2 不同温度下表面张力系数测量表

	拉脱时最大读数	吊环读数	表面张力对应读数(mV)	
测量次数	<i>V</i> ₁ (mV)	$V_2(\text{mV})$	$V=V_1-V_2$	
1	3.271	2-138	1.133	
2	3.269	2.139	1.130	
3	3.271	2.140	1.131	
4	3. 270	2.140	1.130	
5	3.275	2.139	1.136	
平均值	3.2712	2.1392	V = 1.132	

教师	姓名	
签字	王抗	

三. 数据处理

1. 测量室温下水的表面张力系数,并计算不确定

$$\overline{L} = \pi (\overline{D_{y_1}} + \overline{D_{y_1}})$$

$$\overline{\alpha} = \frac{\overline{K} \cdot \overline{V}}{\overline{L}}$$

$$\left(\frac{\Delta \alpha}{L}\right)^2 = \left(\frac{\Delta K}{K}\right)^2 + \left(\frac{\Delta V}{V}\right)^2 + \left(\frac{\Delta L}{L}\right)^2$$

$$\alpha = \alpha + \Delta \alpha$$

- 2. 从附录中查出室温下水的表面张力系数α的理论值,把实验结果与此值比较求相对误差, 并进行分析。
- 3. 测量不同温度下表面张力系数,并与室温下水的表面张力系数理论值作分析比较。

1.
$$27.3\% \cdot \overline{L} = \pi (\overline{D}A + \overline{D}A) = 242.372 \text{ (mm)}$$

$$\overline{\alpha} = \frac{\overline{K} \cdot \overline{V}}{T} = 5.729 \times 10^{-2} (N/m)$$

$$\Delta V = \frac{0.001}{13} = 0.000577. \quad \Delta L = \frac{0.02}{13} = 0.011547, \quad \Delta K = 0.025$$

$$\Delta \alpha = 0.106 \times 10^{-2} \qquad \alpha = (5.7 \pm 0.1) \times 10^{-2} N/m$$

$$30.7\% \cdot \overline{\alpha} = \frac{\overline{K} \cdot \overline{V}}{\overline{U}} = 5.437 \times 10^{-2} (N/m)$$

$$\Delta \alpha = 0.106 \times 10^{-2}$$

$$\alpha = (3.4 \pm 0.1) \times 10^{-2} N/m$$

$$2. \quad 27.3\% , \quad \delta = \frac{3.729 - 7.197}{7.197} \times 100\% = -20.4\%$$

$$30.7\% , \quad \delta = \frac{3.437 - 2.118}{7.118} \times 100\% = -23.6\%$$

3. 30.7°0下水的表面张力系数相比于室遇下水的表面 张力系数而言更小,但实允程度不太。

四. 实验结论及现象分析

(讨论液体表面张力系数测量中误差的来源,如何提高测量精度?)

误差来源于对吊环内外径测量、仪器读数的固有误差, 也有测量吊环张力的过程中吊环不与水面平行,读数不及时的主观误差。

对于固有误差,可以果取多次测量取平均值来提高精度,对于主观误差,可以尽可能保持吊环水平,及时读数来提高精度。

五. 讨论题

- 1. 在推导液体表面张力系数测量公式中作了哪些近似?式中各量的物理意义是什么?
- 2. 若考虑拉起液膜的重量,实验结果应如何修正?

1.
$$\alpha = \frac{F - m_{og}}{\pi (D4 + D4)}$$

将 F- Cm+mo)g 近似为F-mog, m为薄膜质量,相对于mo较小。

F为拉起液膜破裂时的表面张力, mo为吊环质量, g为重力加速度, DA, DA)分别为吊环内,外径, 几为国 周率。

2. 应符公式修正为 $\alpha = \frac{F - (m_0 + m)g}{\pi (Dh + Dh)}$, 实验结果应更小。