Lista 1

Aluno: Gustavo Luiz Bispo dos Santos - 117210400 Aluno: Diego Amancio Pereira - 116210716

Data: 07/05/2022

Questão 1

O que é Distribuição de Frequências? Explique e apresente um exemplo.

Resposta: é um arranjo de valores que uma ou mais variáveis tomam em uma amostra. Cada entrada na tabela contém a frequência ou a contagem de ocorrências de valores dentro de um grupo ou intervalo específico, e deste modo, a tabela resume a distribuição dos valores da amostra.

Exemplo:

Rank	Grau de confiança	Números
1	Concordo	20
2	Concordo em parte	30
3	não tenho certeza	20
4	Discordo em parte	15
5	Discordo	15

Questão 2

Explique de forma intuitiva e ou de forma formal o que é uma Variável Aleatória. Apresente um (1) ou mais exemplos.

Resposta: Uma variável aleatória é uma variável quantitativa, cujo resultado (valor) depende de fatores aleatórios. Um exemplo de uma variável aleatória é o resultado do lançamento de um dado que pode dar qualquer número entre 1 e 6. Embora possamos conhecer os seus possíveis resultados, o resultado em si depende de fatores de sorte. Uma variável aleatória pode ser uma medição de um parâmetro que pode gerar valores diferentes.

Questão 3

Como podem ser classificadas as Variáveis Aleatórias? Apresente um exemplo de cada tipo

Resposta: As variáveis aleatórias podem ser classificadas em variáveis aleatórias discretas, contínuas e mistas.

Discreta: Uma variável aleatória discreta pode assumir valores que podem ser contados. O lançamento de um dado de seis lados é um exemplo de variável aleatória discreta finita. O dado fornece um valor inteiro em todos os lançamentos, de modo que não existe a possibilidade de ele cair de lado e fornecer um valor fracionário como 2,5555.

Contínua: Uma variável aleatória contínua pode assumir qualquer valor numérico em um determinado intervalo ou série de intervalos. O resultado de lançamento de martelo nas Olimpíadas é um exemplo de

variável aleatória contínua. Sabe-se que os valores do lançamento de martelo atingem a distância máxima de 60 metros e a distância mínima classificatória de 30 metros. Todos os lançamentos poderão assumir uma infinidade de possibilidades dentro no intervalo entre 60 metros e 30 metros, pois sempre existirá uma fração para medir a menor diferença possível entre os lançamentos como 59 metros, 25 centímetros, 12 milímetros e assim por diante.

Mista: Existem situações práticas, em que a variável aleatória pode tanto assumir valores discretos $X_1, X_2, X_3...$ quando assumir todos os valores em um determinado intervalo. Um exemplo de uma variável aleatória mista pode ser um experimento em que uma moeda é lançada e uma roleta é girada se o resultado do lançamento da moeda for cara, X é igual ao valor da roleta. Se o resultado do lançamento da moeda for coroa, X é igual a -1. Há a probabilidade de essa variável aleatória ter o valor -1, e de ficar no intervalo [0,360].

Questão 4

Apresente a definição e um exemplo de função de probabilidade (f.p.).

Resposta: é uma função que associa um valor de probabilidade à cada possível ocorrência de uma variável aleatória discreta. Por exemplo, se tomarmos a variável aleatória discreta "resultado de um dado", as possíveis ocorrências são 1, 2, 3, 4, 5 e 6. Se considerarmos um dado não viciado, a função de probabilidade associará a cada uma destas ocorrências uma probabilidade igual a $\frac{1}{6}$.

Questão 5

O que é uma Distribuição de Probabilidades?

Resposta: uma distribuição de probabilidade descreve o comportamento aleatório de um fenômeno dependente do acaso. A distribuição de probabilidade pode modelar incertezas e descrever fenômenos físicos, biológicos, econômicos, entre outros.

Questão 6

Existe alguma semelhança entre **Distribuição de Probabilidades** e **Distribuição de Frequências**? Explique.

Resposta: Não. A distribuição de probabilidades associa uma probabilidade a cada resiultado numérico de um experimento, por exemplo, no lançamento de um dado cada face tem a mesma probabilidade de ocorrência de $\frac{1}{6}$. Já a distribuição de frequências é um conjunto de valores que uma ou mais variáveis tomam em uma amostra, ou seja, são dados que servirão de base para cálculos posteriores, enquanto a distribuição de probabilidades já se trata de resultados aplicados.

Questão 7

Descreva situações ou **experimentos aleatórios** em que o fenômeno (dados) a ser estudado/investigado pode ser representado por uma **Distribuição Bernoulli**.

Resposta: Podem ser estudados e aferidos com a Distribuição Bernoulli, qualquer experimentos ou situações que envolvam soluções binárias (0 ou 1) que possam ser resumidos em sucesso ou fracasso, por exemplo: "Acertar uma questão", "tomar um copo de água", "assistir uma série".

Questão 8

Qual ou quais são os parâmetros da **Distribuição Bernoulli** que deve(m) ser conhecidos para que seja possível calcular a probabilidade de algum evento de interesse?

Resposta: Os parâmetros são: o conjunto de dados (exemplo: uma questão objetiva de 5 opções) e o critério probabilístico (exemplo: chutar a questão). Nesse caso, teríamos a probabilidade de sucesso quando acertar e a probabilidade de fracasso quando errar a questão.

Questão 9

Apresente a f.p. da **Distribuição Bernoulli** e dê um exemplo de problema cuja solução requeira o cálculo de probabilidade usando a mesma. Apresente o cálculo manual e usando função (ões) do R.

Resposta: A função de probabilidade f dessa distribuição é

$$f(k;p) = \begin{cases} p, & k = 1\\ 1 - p, & k = 0 \end{cases}$$

Exemplo: Um aluno responde um questão objetiva de 5 opções. Queremos a probabilidade de, no chute, acertar e errar a questão.

Manualmente:

X: chutar a questão

$$P(S) = P(x = 1) = \frac{1}{5}$$

$$P(F) = P(x = 0) = \frac{4}{5}$$

Probabilidade de sucesso $p = \frac{1}{5}$

Probabilidade de fracasso $1 - p = \frac{4}{5}$

Em R:

```
x <- seq(0, 1, by = 1) # sucesso ou fracasso
prob <- dbern(x, prob = 0.2) # probabilidade de fracasso de 80% e sucesso de 20%
prob # fracassos e sucesso respectivamente</pre>
```

[1] 0.8 0.2

Questão 10

Descreva situações ou **experimentos aleatórios** em que o fenômeno (dados) a ser estudado/investigado pode ser representado por uma **Distribuição Binomial**.

Resposta: Utilizamos a Distribuição Binomial quando precisamos achar repetidamente a probabilidade em experimentos de soluções binárias (0 ou 1) resumidas em sucesso ou fracasso, por exemplo: "A probabilidade de acertar 3 questões no chute entre 4 questões totais" ou "a probabilidade de 4, entre 12 peças fabricadas, serem defeituosas".

Questão 11

Qual ou quais são os parâmetros da Distribuição Binomial que deve(m) ser conhecido(s) para que seja possível calcular a probabilidade de algum evento de interesse?

Resposta: Os parâmetros são: o número de sucessos que queremos, o número de repetições e a probabilidade de sucesso.

Questão 12

Apresente a f.p. da **Distribuição Binomial** e dê um exemplo de problema cuja solução requeira o cálculo de probabilidade usando a mesma. Apresente o cálculo manual e usando função (ões) do R.

Resposta:

A função de probabilidade f dessa distribuição é

$$f(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Exemplo: A probabilidade de acertar 3 questões (com 5 alternativas) no chute entre 4 questões totais.

Manualmente:

X: n^o acertos totais

 $k: n^{\circ} \text{ sucessos } (3)$

n: nº repetições (4)

p: probabilidade de sucesso $(\frac{1}{5})$

$$P(X = 3) = ?$$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$P(X = 3) = {4 \choose 3} \cdot 0.2^3 \cdot (1 - 0.2)^{4-3}$$

$$P(X=3) = \frac{4!}{3!(4-3)!}0.2^3 * 0.8 = 0,0256$$

Probabilidade é de 0.0256

Em R:

```
prob <- dbinom(x = 3,size = 4, prob = 0.2)
prob # probabilidade</pre>
```

[1] 0.0256

Questão 13

Apresente a definição e um exemplo de função densidade de probabilidade (f.d.p.)

Resposta: a função densidade de probabilidade (FDP), ou densidade de uma variável aleatória contínua, é uma função que descreve a verossimilhança de uma variável aleatória tomar um valor dado. A função densidade pode ser obtida a partir da função distribuição acumulada a partir da operação de derivação (quando esta é derivável). A função que define a FDP é uma derivada de Radon–Nikodym:

$$f = \frac{dX_*P}{d\mu}$$

Isto é, f é qualquer função mensurável com a propriedade:

$$Pr[X \in A] = \int_{X^{-1}A} dP = \int_A f \, d\mu$$

para qualquer conjunto mensurável $A \in \mathcal{A}$.

Exemplo prático: Qual é a probabilidade de que uma bactéria viva exatamente 5 horas? A resposta é de 0%. Muitas bactérias vivem por aproximadamente 5 horas, mas não há nenhuma chance de que qualquer bactéria morra em exatamente 5.000000000 horas.

Em vez disso, poderíamos perguntar: qual é a probabilidade de que a bactéria morra entre 5 horas e 5.01 horas? Vamos dizer que a resposta é de 0.02 (ou seja, 2%). A seguir: qual é a probabilidade de que a bactéria morra entre 5 horas e 5.001 horas? A resposta é provavelmente em torno de 0.002, uma vez que este é um décimo do intervalo anterior. A probabilidade de que a bactéria morre entre 5 horas e 5.0001 horas é provavelmente cerca de 0.0002, e assim por diante.

Questão 14

Descreva situações ou **experimentos aleatórios** em que o fenômeno (dados) a ser estudado/investigado pode ser representado por uma **Distribuição Normal**.

Resposta: Podemos utilizar da Distribuição Normal, principalmente, para modelar fenômenos naturais e para analisar variáveis aleatória contínuas, como por exemplo "analisar o peso em gramas de 100 recém nascidos".

Questão 15

Qual ou quais são os parâmetros da **Distribuição Normal** que deve(m) ser conhecido(s) para que seja possível calcular a probabilidade de algum evento de interesse?

Resposta: Os parâmetros são: o valor central μ e a variabilidade σ^2 .

Questão 16

Apresente a f.p. da **Distribuição Normal** e dê um exemplo de problema cuja solução requeira o cálculo de probabilidade usando a mesma. Apresente o cálculo manual e usando função(ões) do R.

Resposta:

A função de probabilidade f dessa distribuição é

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Entretanto, quando temos uma $Normal\ Padrão$, utilizamos a tabela da normal padrão junto a notação $P(Z \le z)$

Exemplo: Em um hospital o tempo médio de uma cirurgia X é de de 129 minutos com um desvio padrão de 14 minutos. Qual a probabilidade, desse tipo de cirurgia, requerer um tempo maior do que dois desvios-padrão acima da média?

Manualmente:

$$p = 1 - P(Z < z)$$

$$p = 1 - P(Z < 2)$$

$$p = 1 - 0.9772$$

p = 0.0228

Em R:

```
prob <- 1 - pnorm(2)
prob # probabilidade</pre>
```

[1] 0.02275013

Questão 17

Diga e descreva resumidamente quais são as principais **Etapas/Fases** de uma **Pesquisa Estatística**. Dê um exemplo.

Resposta: As fases do método estatístico são:

- 1. Definição do problema: determinar como a recolha de dados pode solucionar um problema;
- 2. Planejamento: elaborar como fazer o levantamento dos dados;
- 3. Coleta de dados: reunir dados após o planejamento do trabalho pretendido, bem como definição da periodicidade da coleta (contínua, periódica, ocasional ou indireta);
- 4. Correção dos dados coletados: conferir dados para afastar algum erro por parte da pessoa que os coletou;
- 5. Apuração dos dados: organização e contagem dos dados;
- 6. **Apresentação dos dados:** montagem de suportes que demonstrem o resultado da coleta dos dados (gráficos e tabelas);
- 7. **Análise dos dados:** exame detalhado e interpretação dos dados.