Cálculo Numérico

Sistemas Lineares: Método de Gauss - Jacobi

Wellington José Corrêa

Universidade Tecnológica Federal do Paraná

12 de julho de 2021

Antes de estudarmos os métodos iterativos, devemos conhecer o conceito de norma de matriz.

Definição 1.1

Antes de estudarmos os métodos iterativos, devemos conhecer o conceito de norma de matriz.

Definição 1.1

Antes de estudarmos os métodos iterativos, devemos conhecer o conceito de norma de matriz.

Definição 1.1

- $||\lambda A|| = |\lambda| \cdot ||A||, \, \forall \, \lambda \in \mathbb{R}.$

Antes de estudarmos os métodos iterativos, devemos conhecer o conceito de norma de matriz.

Definição 1.1

- $||\lambda A|| = |\lambda| \cdot ||A||, \, \forall \, \lambda \in \mathbb{R} \,.$
- $||A + B|| \le ||A|| + ||B||; \, \forall A, B \in M_n(\mathbb{R}).$

(i) Norma do Máximo (norma linha):
$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|;$$

(i) Norma do Máximo (norma linha):
$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{\infty} |a_{ij}|;$$

(iii Norma da Soma (norma coluna):
$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|;$$

- (i) Norma do Máximo (norma linha): $||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{m} |a_{ij}|;$
- (iii Norma da Soma (norma coluna): $\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1} |a_{ij}|;$

(iii) Norma Euclidiana:
$$||A||_E = \sqrt{\sum_{i,j=1}^n a_{ij}^2}$$

Exemplo

Exemplo 1.1

Calcule $||A||_{\infty}$, $||A||_1$ e $||A||_E$ da seguinte matriz:

$$A = \begin{pmatrix} 3 & -5 & 7 \\ 1 & -2 & 4 \\ -8 & 1 & -7 \end{pmatrix}$$

Solução:

- Cálculo de $||A||_{\infty}$:
 - *i* : 1.

$$\sum_{i=1}^{3} |a_{1j}| = |a_{11}| + |a_{12}| + |a_{13}| = |3| + |-5| + |7| = 3 + 5 + 7 = 15.$$

■ *i* : 2.

$$\sum_{i=1}^{3} |a_{2j}| = |a_{21}| + |a_{22}| + |a_{23}| = 1 + 2 + 4 = 7.$$

■ *i* : 3.

$$\sum_{i=1}^{3} |a_{3j}| = |a_{31}| + |a_{32}| + |a_{33}| = 8 + 1 + 7 = 16.$$

Logo,
$$||A||_{\infty} = \max_{1 \le i \le 3} \sum_{i=1}^{3} |a_{ij}| = \max\{15, 7, 16\} = 16$$
.

- Cálculo de $||A||_1$:
 - **■** *j* : 1.

$$\sum_{i=1}^{3} |a_{i1}| = |a_{11}| + |a_{21}| + |a_{31}| = |3| + |1| + |-8| = 3 + 1 + 8 = 12.$$

- Cálculo de || A ||₁ :
 - **■** *j* : 1.

$$\sum_{i=1}^{3} |a_{i1}| = |a_{11}| + |a_{21}| + |a_{31}| = |3| + |1| + |-8| = 3 + 1 + 8 = 12.$$

■ *j* : 2.

$$\sum_{i=1}^{3} |a_{i2}| = |a_{12}| + |a_{22}| + |a_{32}| = 8.$$

- Cálculo de || A ||₁ :
 - j:1.

$$\sum_{i=1}^{3} |a_{i1}| = |a_{11}| + |a_{21}| + |a_{31}| = |3| + |1| + |-8| = 3 + 1 + 8 = 12.$$

■ *j* : 2.

$$\sum_{i=1}^{3} |a_{i2}| = |a_{12}| + |a_{22}| + |a_{32}| = 8.$$

■ *j* : 3.

$$\sum_{i=1}^{3} |a_{i3}| = |a_{13}| + |a_{23}| + |a_{33}| = 18.$$

- Cálculo de || A ||₁ :
 - *j* : 1.

$$\sum_{i=1}^{3} |a_{i1}| = |a_{11}| + |a_{21}| + |a_{31}| = |3| + |1| + |-8| = 3 + 1 + 8 = 12.$$

■ *j* : 2.

$$\sum_{i=1}^{3} |a_{i2}| = |a_{12}| + |a_{22}| + |a_{32}| = 8.$$

■ *j* : 3.

$$\sum_{i=1}^{3} |a_{i3}| = |a_{13}| + |a_{23}| + |a_{33}| = 18.$$

Logo,
$$||A||_1 = \max_{1 \le j \le 3} \sum_{i=1}^{s} |a_{ij}| = \max\{12, 8, 18\} = 18$$
.

■ Cálculo de $||A||_E$:

$$||A||_{E} = \sqrt{\sum_{i,j=1}^{n} a_{ij}^{2}}$$

$$= \left[3^{2} + (-5)^{2} + 7^{2} + 1^{2} + (-2)^{2} + 4^{2} + (-8)^{2} + 1 + (-7)^{2}\right]^{1/2}$$

$$= \sqrt{218} \approx 14,76482306.$$

Métodos Iterativos

Em certos casos, os chamados métodos iterativos são melhores que os métodos exatos vistos anteriormente, pois utilizam menos memória do computador e reduzem os erros de arredondamento na solução obtida pelos métodos exatos.

Métodos Iterativos

Em certos casos, os chamados métodos iterativos são melhores que os métodos exatos vistos anteriormente, pois utilizam menos memória do computador e reduzem os erros de arredondamento na solução obtida pelos métodos exatos.

Critério da Parada

Usaremos o critério

$$\frac{\|X^{(k+1)} - X^{(k)}\|_{\infty}}{\|X^{(k+1)}\|_{\infty}} < \varepsilon$$

onde ε é a precisão pré-fixada.

Nasceu em Potsdam, Prússia, atual Alemanha, em 1804;

- Nasceu em Potsdam, Prússia, atual Alemanha, em 1804;
- Diferentemente de vários matemáticos de sua época, Jacobi era um professor nato e gostava de transmitir suas ideias. Na Universidade de Berlim Jacobi obteve o título de Ph.D. em 1825;

- Nasceu em Potsdam, Prússia, atual Alemanha, em 1804;
- Diferentemente de vários matemáticos de sua época, Jacobi era um professor nato e gostava de transmitir suas ideias. Na Universidade de Berlim Jacobi obteve o título de Ph.D. em 1825;
- Seus principais trabalhos foram no campo da Teoria das Funções Elípticas e da Teoria dos Determinantes. Nesta última, Jacobi preocupou-se com a notação adequada para os determinantes, criando algoritmos e regras práticas para sua utilização e acabando assim por formular uma teoria completa sobre este assunto.

- Nasceu em Potsdam, Prússia, atual Alemanha, em 1804;
- Diferentemente de vários matemáticos de sua época, Jacobi era um professor nato e gostava de transmitir suas ideias. Na Universidade de Berlim Jacobi obteve o título de Ph.D. em 1825;
- Seus principais trabalhos foram no campo da Teoria das Funções Elípticas e da Teoria dos Determinantes. Nesta última, Jacobi preocupou-se com a notação adequada para os determinantes, criando algoritmos e regras práticas para sua utilização e acabando assim por formular uma teoria completa sobre este assunto.
- Em 1845, introduziu o método iterativo para resolver sistemas lineares;

- Nasceu em Potsdam, Prússia, atual Alemanha, em 1804;
- Diferentemente de vários matemáticos de sua época, Jacobi era um professor nato e gostava de transmitir suas ideias. Na Universidade de Berlim Jacobi obteve o título de Ph.D. em 1825;
- Seus principais trabalhos foram no campo da Teoria das Funções Elípticas e da Teoria dos Determinantes. Nesta última, Jacobi preocupou-se com a notação adequada para os determinantes, criando algoritmos e regras práticas para sua utilização e acabando assim por formular uma teoria completa sobre este assunto.
- Em 1845, introduziu o método iterativo para resolver sistemas lineares;
- Em 1829 Jacobi usou pela primeira vez os determinantes "especiais" análogos para funções de várias variáveis, que vieram a ser chamados de "Jacobianos";

Sua reputação como excelente professor atraía muitos estudantes. Ele introduziu novos métodos de ensino, a exemplo dos seminários, criando também avanços nos métodos didáticos para o estudo de matemática de sua época.

Figura: Carl Gustav Jacobi

Considere o sistema linear AX = B onde $A = (a_{ij}), i, j = 1, 2, ..., n, det(A) \neq 0$ com a diagonal principal $a_{ii} \neq 0, i = 1, 2, ..., n$:

Considere o sistema linear AX = B onde $A = (a_{ij}), i, j = 1, 2, ..., n, det(A) \neq 0$ com a diagonal principal $a_{ii} \neq 0, i = 1, 2, ..., n$:

(1)
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + \dots + a_{1n} x_n &= b_1 \\ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + \dots + a_{2n} x_n &= b_2 \\ \vdots &\vdots &\vdots &\vdots &\vdots \\ a_{n1} x_1 + a_{n2} x_2 + a_{n3} x_3 + \dots + a_{nn} x_n &= b_n \end{cases}$$

Podemos reescrever o sistema (1) como

(2)
$$\begin{cases} x_1 &= \frac{1}{a_{11}} \left(b_1 - a_{12} x_2 - a_{13} x_3 - \dots - a_{1n} x_n \right) \\ x_2 &= \frac{1}{a_{22}} \left(b_2 - a_{21} x_1 - a_{23} x_3 - \dots - a_{2n} x_n \right) \\ \vdots &\vdots \\ x_n &= \frac{1}{a_{nn}} \left(b_n - a_{n1} x_1 - a_{n2} x_2 - \dots - a_{nn-1} x_{n-1} \right) \end{cases}$$

Matricialmente, o sistema (2) é dado por:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 & -\frac{a_{12}}{a_{11}} & -\frac{a_{13}}{a_{11}} & \dots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & -\frac{a_{23}}{a_{22}} & \dots & -\frac{a_{2n}}{a_{22}} \\ -\frac{a_{31}}{a_{33}} & -\frac{a_{32}}{a_{33}} & 0 & \dots & -\frac{a_{3n}}{a_{33}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & -\frac{a_{n3}}{a_{nn}} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ x_3 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \\ \frac{a_{nn}}{a_{nn}} \end{pmatrix}$$

Pondo x = F x + g, onde $F = (f_{ij})$ sendo

$$f_{ij} = \begin{cases} 0, & i = j \\ -\frac{a_{ij}}{a_{ii}}, & i \neq j \end{cases}$$

e
$$g = (g_i)$$
 onde $g_i = \frac{b_i}{a_{ii}}, i = 1, 2, ..., n$.

Pondo x = F x + g, onde $F = (f_{ij})$ sendo

$$f_{ij} = \begin{cases} 0, & i = j \\ -\frac{a_{ij}}{a_{ii}}, & i \neq j \end{cases}$$

e $g=(g_i)$ onde $g_i=\frac{b_i}{a_{ii}}, i=1,2,\ldots,n$. O método iterativo de Gauss - Jacobi é

$$X^{(k+1)} = F X^{(k)} + g, k = 0, 1, 2, \dots,$$

De modo geral, temos:

$$\begin{cases} x_1^{(k+1)} &= \frac{1}{a_{11}} \left(b_1 - a_{12} x_2^{(k)} - a_{13} x_3^{(k)} - \dots - a_{1n} x_n^{(k)} \right) \\ x_2^{(k+1)} &= \frac{1}{a_{22}} \left(b_2 - a_{21} x_1^{(k)} - a_{23} x_3^{(k)} - \dots - a_{2n} x_n^{(k)} \right) \\ \vdots &\vdots \\ x_n^{(k+1)} &= \frac{1}{a_{nn}} \left(b_n - a_{n1} x_1^{(k)} - a_{n2} x_2^{(k)} - \dots - a_{nn-1} x_{n-1}^{(k)} \right) \end{cases}$$

Convergência

Há um resultado que diz que se $\|F\|_{\infty} < 1$ ou $\|F\|_1 < 1$, o método de Gauss - Jacobi converge.

Convergência

Há um resultado que diz que se $\|F\|_{\infty} < 1$ ou $\|F\|_1 < 1$, o método de Gauss - Jacobi converge.

Definição 2.1

Considere $A = (a_{ij}), i, j = 1, 2, ..., n$. Dizemos que A é estritamente diagonalmente dominante se

(5)
$$\sum_{\substack{j=1\\ i\neq i}}^{n} |a_{ij}| < |a_{ii}|, \ i = 1, 2, \dots, n.$$

Exercício 2.1

Mostre que se A é estritamente diagonalmente dominante, então, $||F||_{\infty} < 1$.

Exercício 2.1

Mostre que se A é estritamente diagonalmente dominante, então, $||F||_{\infty} < 1$.

Convergência do Método de Gauss - Jacobi

Assim, pelo exercício anterior, se A for estritamente diagonalmente dominante (e.d.d.), o método de Gauss - Jacobi convergirá.

Podemos usar o seguinte esquema:

Exemplo

Exemplo 2.1

Usando o método de Gauss - Jacobi, considerando $X^{(0)}=(0,0,0)^t$, determine uma solução para o sistema

$$\begin{pmatrix} 10 & 2 & 1 \\ 1 & 5 & 1 \\ 2 & 3 & 10 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 14 \\ 11 \\ 8 \end{pmatrix}$$

 $com \varepsilon \leq 10^{-2}$.

Norma de Matriz Método de Gauss-Jacobi

Solução: Primeiramente, vejamos se a matriz dos coeficientes é estritamente diagonalmente dominante.

Solução: Primeiramente, vejamos se a matriz dos coeficientes é estritamente diagonalmente dominante. Com efeito,

$$|a_{12}| + |a_{13}| = 2 + 1 = 3 < 10 = |a_{11}|$$

 $|a_{21}| + |a_{23}| = 1 + 2 < 5 = |a_{22}|$
 $|a_{31}| + |a_{32}| = 2 + 3 < 5 < 10 = |a_{33}|$

logo, a matriz é estritamente diagonalmente dominante, o que garante a convergência da solução deste sistema pelo método de Gauss-Jacobi.

(6)
$$\begin{cases} x_1^{(k+1)} &= \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} \\ x_2^{(k+1)} &= \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} \Rightarrow \begin{cases} x_1^{(k+1)} &= 1, 4 - 0, 2 x_2^{(k)} - 0, 1 x_3^{(k)} \\ x_2^{(k+1)} &= 2.2 - 0, 2 x_1^{(k)} - 0, 2 x_3^{(k)} \\ x_3^{(k+1)} &= 0, 8 - 0, 2 x_1^{(k)} - 0, 3 x_2^{(k)} \end{cases}$$

(6)
$$\begin{cases} x_1^{(k+1)} &= \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} \\ x_2^{(k+1)} &= \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} \Rightarrow \begin{cases} x_1^{(k+1)} &= 1, 4 - 0, 2 x_2^{(k)} - 0, 1 x_3^{(k)} \\ x_2^{(k+1)} &= 2.2 - 0, 2 x_1^{(k)} - 0, 2 x_3^{(k)} \\ x_3^{(k+1)} &= 0, 8 - 0, 2 x_1^{(k)} - 0, 3 x_2^{(k)} \end{cases}$$
 e, a partir de $X^{(0)} = (\underbrace{0}_{x_1^{(0)}}, \underbrace{0}_{x_2^{(0)}}, \underbrace{0}_{x_3^{(0)}})^t$ temos para

(6)
$$\begin{cases} x_1^{(k+1)} &= \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} \\ x_2^{(k+1)} &= \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} \Rightarrow \begin{cases} x_1^{(k+1)} &= 1, 4 - 0, 2 x_2^{(k)} - 0, 1 x_3^{(k)} \\ x_2^{(k+1)} &= 2.2 - 0, 2 x_1^{(k)} - 0, 2 x_3^{(k)} \\ x_3^{(k+1)} &= \frac{b_3}{a_{33}} - \frac{a_{31}}{a_{33}} x_1^{(k)} - \frac{a_{32}}{a_{33}} x_3^{(k)} \end{cases}$$
e, a partir de $X^{(0)} = (\underbrace{0}_{x_1^{(0)}}, \underbrace{0}_{x_2^{(0)}}, \underbrace{0}_{x_3^{(0)}})^t$ temos para

e, a partir de
$$X^{(0)}=(\underbrace{0}_{x_1^{(0)}},\underbrace{0}_{x_2^{(0)}},\underbrace{0}_{x_3^{(0)}})^t$$
 temos para

$$k=0$$

$$\begin{cases} x_1^{(1)} = 1, 4 - 0, 2x_2^{(0)} - 0, 1x_3^{(0)} = 1, 4 - 0, 2 \cdot 0 - 0, 1 \cdot 0 = 1, 4 \end{cases}$$

Assim, as iterações são da forma.
$$\begin{cases} x_1^{(k+1)} &= \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} \\ x_2^{(k+1)} &= \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} \Rightarrow \begin{cases} x_1^{(k+1)} &= 1, 4 - 0, 2 x_2^{(k)} - 0, 1 x_3^{(k)} \\ x_2^{(k+1)} &= 2.2 - 0, 2 x_1^{(k)} - 0, 2 x_3^{(k)} \\ x_3^{(k+1)} &= \frac{b_3}{a_{33}} - \frac{a_{31}}{a_{33}} x_1^{(k)} - \frac{a_{32}}{a_{33}} x_3^{(k)} \end{cases} \Rightarrow \begin{cases} x_1^{(k+1)} &= 1, 4 - 0, 2 x_2^{(k)} - 0, 1 x_3^{(k)} \\ x_2^{(k+1)} &= 2.2 - 0, 2 x_1^{(k)} - 0, 2 x_3^{(k)} \\ x_3^{(k+1)} &= 0, 8 - 0, 2 x_1^{(k)} - 0, 3 x_2^{(k)} \end{cases}$$
e, a partir de $X^{(0)} = (\underbrace{0}_{x_1^{(0)}}, \underbrace{0}_{x_2^{(0)}}, \underbrace{0}_{x_3^{(0)}})^t$ temos para

e, a partir de
$$X^{(0)}=(\underbrace{0}_{x_1^{(0)}},\underbrace{0}_{x_2^{(0)}},\underbrace{0}_{x_3^{(0)}})^t$$
 temos para

$$k = 0$$

$$\begin{cases} x_1^{(1)} &= 1, 4 - 0, 2x_2^{(0)} - 0, 1x_3^{(0)} = 1, 4 - 0, 2 \cdot 0 - 0, 1 \cdot 0 = 1, 4 \\ x_2^{(1)} &= 2, 2 - 0, 2x_1^{(0)} - 0, 2x_3^{(0)} = 2, 2 - 0, 2 \cdot 0 - 0, 2 \cdot 0 = 2, 2 \end{cases}$$

(6)
$$\begin{cases} x_1^{(k+1)} &= \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}} x_2^{(k)} - \frac{a_{13}}{a_{11}} x_3^{(k)} \\ x_2^{(k+1)} &= \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}} x_1^{(k)} - \frac{a_{23}}{a_{22}} x_3^{(k)} \Rightarrow \begin{cases} x_1^{(k+1)} &= 1, 4 - 0, 2 x_2^{(k)} - 0, 1 x_3^{(k)} \\ x_2^{(k+1)} &= 2.2 - 0, 2 x_1^{(k)} - 0, 2 x_3^{(k)} \end{cases} \\ x_3^{(k+1)} &= \frac{b_3}{a_{33}} - \frac{a_{31}}{a_{33}} x_1^{(k)} - \frac{a_{32}}{a_{33}} x_3^{(k)} \end{cases} \begin{cases} x_1^{(k+1)} &= 1, 4 - 0, 2 x_2^{(k)} - 0, 1 x_3^{(k)} \\ x_2^{(k+1)} &= 2.2 - 0, 2 x_1^{(k)} - 0, 2 x_3^{(k)} \\ x_3^{(k+1)} &= 0, 8 - 0, 2 x_1^{(k)} - 0, 3 x_2^{(k)} \end{cases}$$
 e, a partir de $X^{(0)} = (\underbrace{0}_{x_1^{(0)}}, \underbrace{0}_{x_2^{(0)}}, \underbrace{0}_{x_3^{(0)}})^t$ temos para

e, a partir de
$$X^{(0)}=(\underbrace{0}_{x_1^{(0)}},\underbrace{0}_{x_2^{(0)}},\underbrace{0}_{x_3^{(0)}})^t$$
 temos para

$$k = 0$$

$$\begin{cases} x_1^{(1)} &= 1, 4 - 0, 2 \, x_2^{(0)} - 0, 1 \, x_3^{(0)} = 1, 4 - 0, 2 \cdot 0 - 0, 1 \cdot 0 = 1, 4 \\ x_2^{(1)} &= 2, 2 - 0, 2 \, x_1^{(0)} - 0, 2 \, x_3^{(0)} = 2, 2 - 0, 2 \cdot 0 - 0, 2 \cdot 0 = 2, 2 \\ x_3^{(1)} &= 0, 8 - 0, 2 \cdot x_1^{(0)} - 0, 3 \cdot x_2^{(0)} = 0, 8 - 0, 2 \cdot 0 - 0, 3 \cdot 0 = 0, 8. \end{cases}$$

Deste modo, $X^{(1)} = (1.4, 2.2, 0.8)^t$, donde

Deste modo, $X^{(1)} = (1.4, 2.2, 0.8)^t$, donde

$$\frac{\|X^{(1)}-X^{(0)}\|_{\infty}}{\|X^{(1)}\|_{\infty}} = \frac{\|(1.4,\,2.2,\,0.8)^t-(0,0,0)^t\|_{\infty}}{\|(1.4,\,2.2,\,0.8)^t\|_{\infty}} = \frac{\|(1.4,\,2.2,\,0.8)^t\|_{\infty}}{\|(1.4,\,2.2,\,0.8)^t\|_{\infty}} = \frac{1}{1} = 1 > \varepsilon$$

$$k = 1$$
:

$$\begin{cases} x_1^{(2)} = 1, 4 - 0, 2x_2^{(1)} - 0, 1x_3^{(1)} = 1, 4 - 0, 2 \cdot 2, 2 - 0, 1 \cdot 0, 8 = 0, 88 \end{cases}$$

$$k = 1$$
:

$$\begin{cases} x_1^{(2)} = 1, 4 - 0, 2x_2^{(1)} - 0, 1x_3^{(1)} = 1, 4 - 0, 2 \cdot 2, 2 - 0, 1 \cdot 0, 8 = 0, 88 \\ x_2^{(2)} = 2, 2 - 0, 2x_1^{(1)} - 0, 2x_3^{(1)} = 2, 2 - 0, 2 \cdot 1, 4 - 0, 2 \cdot 0, 8 = 1, 76 \end{cases}$$

$$k = 1$$

$$\begin{cases} x_1^{(2)} &= 1, 4 - 0, 2x_2^{(1)} - 0, 1x_3^{(1)} = 1, 4 - 0, 2 \cdot 2, 2 - 0, 1 \cdot 0, 8 = 0, 88 \\ x_2^{(2)} &= 2, 2 - 0, 2x_1^{(1)} - 0, 2x_3^{(1)} = 2, 2 - 0, 2 \cdot 1, 4 - 0, 2 \cdot 0, 8 = 1, 76 \\ x_3^{(2)} &= 0, 8 - 0, 2 \cdot x_1^{(1)} - 0, 3 \cdot x_2^{(1)} = 0, 8 - 0, 2 \cdot 1, 4 - 0, 3 \cdot 2, 2 = -0, 14. \end{cases}$$

Assim, $X^{(2)} = (.88, 1.76, -0.14)^t$, donde pelo critério da parada resulta que

Assim, $X^{(2)} = (.88, 1.76, -0.14)^t$, donde pelo critério da parada resulta que

$$\frac{\|X^{(2)} - X^{(1)}\|_{\infty}}{\|X^{(2)}\|_{\infty}} = \frac{\|(.88, 1.76, -0.14)^{t} - (1.4, 2.2, 0.8)^{t}\|_{\infty}}{\|(.88, 1.76, -0.14)^{t}\|_{\infty}}$$

$$= \frac{\|(-.52, -.44, -.94)^{t}\|_{\infty}}{\|(.88, 1.76, -0.14)^{t}\|_{\infty}}$$

$$= \frac{-0.94}{1.76} = 0,534090909090909 > \varepsilon$$

$$k = 2$$
:

$$\begin{cases} x_1^{(3)} = 1, 4 - 0, 2x_2^{(2)} - 0, 1x_3^{(2)} = 1, 4 - 0, 2 \cdot 1, 76 - 0, 1 \cdot (-0, 14) = (-0, 14) = 1,062 \end{cases}$$

k = 2:

$$\begin{cases} x_1^{(3)} &= 1, 4 - 0, 2x_2^{(2)} - 0, 1x_3^{(2)} = 1, 4 - 0, 2 \cdot 1, 76 - 0, 1 \cdot (-0, 14) = (-0, 14) = 1,062 \\ x_2^{(3)} &= 2, 2 - 0, 2x_1^{(2)} - 0, 2x_3^{(2)} = 2, 2 - 0, 2 \cdot 0, 88 - 0, 2 \cdot (-0, 14) = 2,052 \end{cases}$$

k = 2:

$$\begin{cases} x_1^{(3)} &= 1, 4 - 0, 2x_2^{(2)} - 0, 1x_3^{(2)} = 1, 4 - 0, 2 \cdot 1, 76 - 0, 1 \cdot (-0, 14) = (-0, 14) = 1,062 \\ x_2^{(3)} &= 2, 2 - 0, 2x_1^{(2)} - 0, 2x_3^{(2)} = 2, 2 - 0, 2 \cdot 0, 88 - 0, 2 \cdot (-0, 14) = 2,052 \\ x_3^{(3)} &= 0, 8 - 0, 2 \cdot x_1^{(2)} - 0, 3 \cdot x_2^{(2)} = 0, 8 - 0, 2 \cdot 0, 88 - 0, 3 \cdot 1, 76 = 0,096. \end{cases}$$

Assim, $X^{(3)} = (1.062, 2.052, 0.096)^t$, donde pelo critério da parada resulta que

Assim, $X^{(3)} = (1.062, 2.052, 0.096)^t$, donde pelo critério da parada resulta que

$$\frac{\|X^{(3)} - X^{(2)}\|_{\infty}}{\|X^{(3)}\|_{\infty}} = \frac{\|(1.062, 2.052, 0.096)^{t} - (.88, 1.76, -0.14)^{t}\|_{\infty}}{\|(1.062, 2.052, 0.096)^{t}\|_{\infty}}$$
$$= 0.1423001949317739 > \varepsilon$$

Assim, $X^{(3)} = (1.062, 2.052, 0.096)^t$, donde pelo critério da parada resulta que

$$\frac{\|X^{(3)} - X^{(2)}\|_{\infty}}{\|X^{(3)}\|_{\infty}} = \frac{\|(1.062, 2.052, 0.096)^{t} - (.88, 1.76, -0.14)^{t}\|_{\infty}}{\|(1.062, 2.052, 0.096)^{t}\|_{\infty}}$$
$$= 0.1423001949317739 > \varepsilon$$

Prosseguindo com o cálculo das iterações, obtemos a tabela:

Norma de Matriz Método de Gauss-Jacobi

k	$X^{(k)}$	$\frac{\ X^{(k+1)} - X^{(k)}\ _{\infty}}{\ X^{(k)}\ _{\infty}}$
0	$(0,0,0)^t$	
1	$(1.4, 2.2, 0.8)^t$	1
2	$(.88, 1.76, -0.14)^t$	0,5340909090909092
3	$(1.062, 2.052, 0.096)^t$	0.1423001949317739
4	$(0.98, 1.9684, -0.028)^t$	0.0629953261532209
5	$(1.00912, 2.0096, 0.01348)^t$	0.020640923566878983
6	$(0.996732, 1.99548, -0.004704)^t$	0.009112594463487481

Tabela: Iterações $X^{(k)}$

Norma de Matriz Método de Gauss-Jacobi

k	$X^{(k)}$	$\frac{\ X^{(k+1)} - X^{(k)}\ _{\infty}}{\ X^{(k)}\ _{\infty}}$
0	$(0,0,0)^t$	
1	$(1.4, 2.2, 0.8)^t$	1
2	$(.88, 1.76, -0.14)^t$	0,5340909090909092
3	$(1.062, 2.052, 0.096)^t$	0.1423001949317739
4	$(0.98, 1.9684, -0.028)^t$	0.0629953261532209
5	$(1.00912, 2.0096, 0.01348)^t$	0.020640923566878983
6	$(0.996732, 1.99548, -0.004704)^t$	0.009112594463487481

Tabela: Iterações $X^{(k)}$

Portanto, a solução do sistema $A \cdot X = B$ é

$$X \approx X^{(6)} = (0.996732, 1.99548, -0.004704)^t$$
.

Exemplo

Exemplo 2.2

Considere o seguinte sistema de equações lineares:

$$\begin{pmatrix} -10 & 2 & 2 \\ 1 & 6 & 0 \\ -1 & 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -8 \\ 7 \\ 0 \end{pmatrix}$$

Caso haja convergência garantida, resolva o sistema anterior usando o método iterativo de Gauss - Jacobi a partir de $X^{(0)}=(0,0,0)^t$ e $\varepsilon \leq 10^{-1}$.

