

(* D'après le a) Tra est dans NP ** clique se reduit polynomialment a tra at clique est NP difficile, donc tra est NP olificile. 2-a) Donc tra est NP complet. 2-a) d' tableau de taille a. size. Court = 0 for in range (6, size) of [i] = gues (0, size) of [i] = gues (6, size) for in range (6 size) if (not d'[i]) then Formal = John Per j'm range (6, size) if (r. A [i] [j] and d'[i] then france france (sh. size) if mot found then setten Folse.	ik S	leseite 2 façons de jour
DonorNotive non - det- Rominant - set (h, l) d' tableau de taille (h. sisse. Count =0 for i'in range (h. sisse) of [i] = guen (0, n) count + = d[i] For i'in range (h. size) i'E (not d[i]) rlen Formal = Jelre For j'in range (h. size) i'f (h, A [i]) [j] and d [i] then found = true bread i'f not found then return Folse.		D'après le a) Isa est dans IVP Clique se redut polynomialement a Isa et clique est
mar - det_ Dominont - Set (G, R) d' tableau de taille G. sisse. count =0 for in range (G, sisse) count = d[i] = guen (O, N) count = d[i] For i in range (G size) if (not d[i]) Hen Formol = Jelse For j in range (G. size) if C, A [i] [j] and d [li], then break if not found = true break	(NP-0	difficile, donc too est NP_olificile.
for i'm range (G, size) of [i] = gues (O, N) count + = d[i] For i'm range (G, size) i'F (not d[i]) Hen Formol = Jelse For j'm range (G, size) i'f G, A [i] [j] and d [i] then found = true break i'f not found then return Folse.	Quiservative	
Count = JEi] For i in range (h. size) [P (not dEi]) Hen [Pomol = Jolse Por j in range (h. size) [J Cr. A [i] [] and I [i] then [Journal = true [Jou		Count = 0
if (not d[i]) blen Found = Jelse For j in range (h. size) If G. A [i][j] and I [i] then I found = true break if not found blen return Folse.		of [i] = quen (0, 2) count + = d[i]
if not found then return Folse.		For i'm range (braise)
		1 1 Council = True