УТВЕРЖДЕНО

Заместитель председателя оргкомитета заключительного этапа республиканской олимпиады

	К.С. Фарино.
«	» декабря 2006 года

Республиканская физическая олимпиада (III этап) 2007 год Теоретический тур

<u>9 класс.</u>

Задание 1. «Рабочая разминка»

В этой задаче считайте ускорение свободного падения равным $g = 10.0 \text{м/c}^2$.

1.1 В связи с дорожными работами потребовалось разобрать брусчатую мостовую. Для хранения было решено складывать плитки в одну кучу. Масса одной плитки $m=10\ \kappa z$, размеры (длина - a,

ширина - b, высота - c) $a \times b \times c = 20cM \times 20cM \times 5,0cM$

- **1.1.1** Какую наименьшую работу необходимо совершить, чтобы сложить из плиток прямоугольный параллелепипед размерами $A \times B \times C = 2,0 \text{ M} \times 1,0 \text{ M}$?
- **1.1.2** Какую наименьшую работу необходимо совершить, чтобы сложить плитки в ящик таких же размеров?
- **1.1.3.** Какую минимальную работу необходимо совершить, чтобы плитки из мостовой (массу и характерные размеры смотрите в пункте 1) сложить в пирамиду высотой H=0,5 M и квадратным основанием с длиной стороны L=2,0 M?

- **1.2** Для того, чтобы заполнить водой из озера небольшой бассейн (или большой аквариум) размерами $A \times B \times C = 2,0 \text{ M} \times 2,0 \text{ M} \times 1,0 \text{ M}$ используют электронасос, который создает давление $5,0 \text{ к} \Pi a$. Какую работу по заполнению водой бассейна совершит насос,
- 1.2.1 если шланг подсоединить к отверстию вблизи дна;
- 1.2.2 если шланг перекинуть через бортик?

Плотность воды равна $\rho = 1000 \kappa \epsilon / M^3$.

1.3. Какую минимальную работу необходимо совершить, чтобы смести в центр песок, равномерно рассыпанный по круглой асфальтовой площадке радиусом R = 100 M в кучу в форме пирамиды высотой H = 0,50 M и стороной основания L = 2,0 M? Коэффициент трения песка об асфальт и песка о песок равен $\mu = 0,15$, плотность песка $\rho = 2,4 \cdot 10^3 \, \kappa z / M^3$.

Примечание.

Возможно, Вам понадобится следующая информация:

$$1+2+...+n=\frac{n(n+1)}{2}$$
; $1^2+2^2+...+n^2=\frac{n(n+1)(n+2)}{6}$; $1^3+2^3+...+n^3=\left\lceil\frac{n(n+1)}{2}\right\rceil^2$;

Объем пирамиды и конуса равен $V = \frac{1}{3}SH$, (S - площадь основания, H - высота).

Центр масс однородной пирамиды находится на высоте $h = \frac{H}{4}$ от основания.

Задание 2. «Водная феерия»

- **2.1** В сосуде под крышкой находится перегретая вода, находящаяся при температуре $t_0 = 120^{\circ}C$. Какая доля (массовая) воды выкипит, если открыть крышку?
- **2.2** В теплоизолированном сосуде находится переохлажденная вода при температуре $t_0 = -5$ °C. Какая доля (массовая) воды замерзнет, если в сосуд бросить несколько маленьких кусочков льда?
- **2.3** В теплоизолированном сосуде находится $m_0 = 300\varepsilon$ льда, находящегося при температуре $t_0 = -10^{\circ}C$. В сосуд впускают водяной пар, находящийся при температуре $t_1 = 100^{\circ}C$. Постройте примерный график зависимости температуры, установившейся в сосуде после достижения теплового равновесия, от массы впущенного пара (для массы, изменяющейся от нуля до $m_{\rm max} = 120\varepsilon$)

Во всех пунктах данной задачи теплоемкостью сосуда пренебречь. Удельная теплоемкость воды $c_1 = 4.2 \frac{\kappa / 2 \pi}{\kappa z \cdot {}^{\circ} C}$, удельная теплоемкость льда $c_0 = 2.1 \frac{\kappa / 2 \pi}{\kappa z \cdot {}^{\circ} C}$, удельная теплота плавления льда $\lambda = 330 \frac{\kappa / 2 \pi}{\kappa z}$, удельная теплота парообразования воды $L = 2.2 \frac{M / 2 \pi}{\kappa z}$. Давление газов в сосуде считать равным нормальному атмосферному давлению.