MATEMÁTICA DISCRETA

GRAFOS

- Un grafo G es un par (V,E) donde:
 - $V = \{v_1, ..., v_n\}$ es un conjunto de vértices
 - E = { $e_1,...,e_m$ } es un conjunto de aristas, con cada $e_k \in \{v_i, v_j\}$, con $v_i, v_j \in V$, $v_i \neq v_j$
- Los vértices se representan como puntos y las aristas como líneas entre vértices
- Ejemplo:
 - G = (V,E)
 - $V = \{a,b,c,d\}$
 - $E = \{\{a,b\}, \{b,c\}, \{a,c\}, \{a,d\}, \{d,b\}\}$

Ejemplo: red de computadoras

- Es importante recordar que un mismo grafo puede tener diferentes representaciones gráficas
- Ejemplo:

Dos representaciones del mismo grafo

G=({a,b,c,d,e,f},{{a,b},{a,e},{a,f}{e,f},{b,c},{c,d},{e,d},{d,f}})

Si el orden influye en la aristas se habla de grafos dirigidos:

- En este caso a las aristas se les llama arcos y se representan como pares ordenados para indicar el orden:
 - V = { a,b,c,d,e}
 - $A = \{(e,a), (a,b), (b,a), (d,a), (c,d), (d,c), (b,c), (c,b)\}$

Si se permite que haya más de una arista se habla de multigrafos:

- Dos vértices se dicen adyacentes si existe una arista que los une;
- Los vértices que forman una arista son los extremos de la arista;
- Si "v" es un extremo de una arista "a", se dice que "a" es incidente con "v";
- El **grado de un vértice** "v", gr(v) es el número de aristas incidentes en "v".

Œjemplo:

$$gr(1) =$$

Teorema (de los "apretones de manos")
Sea G=(V,A) un grafo. Entonces:

 $\sum gr(v) = 2|A|$, para todo $v \in V$.

Significado: la suma de los grados de todos dos vértices es igual a 2 veces el número de aristas.

Ejemplo:

Para cada n≥1 se llama grafo completo de orden n, y se representa por Kn, al grafo de n vértices conectados de todas las formas posibles:

Pregunta: ¿Cuántas aristas tiene en general Kn?

Se llama ciclo de grado n, y se denota Cn, a G=({v₁,...,v_n}, {v₁, v₂}, {v₂, v₃},..., {v₁, v_n}, {v₁, v₂}, {v₂, v₃},...

Nota: A menudo sólo se consideran ciclos para n≥3

REPRESENTACIÓN DE GRAFOS

- Para representar los grafos a menudo se utiliza la llamada matriz de adyacencia.
- Se construye imaginando que en las filas y las columnas corresponden a los vértices. Se pone un 0 para indicar que 2 vértices no son adyacentes, y un 1 para indicar que sí lo son:

	1	2	3	4	5	
1	/0	1 0	0	0	1	0/
2	1	0	1	0	1	0
3	0	1	1 0 1 0	1	0	0
,	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0/
	_					

Matriz de Adyacencia de G

Para representarla en una computadora se utiliza una matriz de valores lógicos (booleanos). True (1) hay arista, False (0) no hay arista.

REPRESENTACIÓN DE GRAFOS

En el caso de un grafo no dirigido la matriz será simétrica. No ocurre lo mismo para grafos dirigidos:

Se supone que la fila representa el vértice origen, y la columna el vértice destino del arco

REPRESENTACIÓN DE GRAFOS

- En informática a menudo en lugar de la matriz se usa la lista de adyacencia.
- A cada vértice le corresponde una lista con sus adyacentes:
 □→2

SUBGRAFOS

- Sea G=(V,A). G'=(V',A') se dice subgrafo de G si:
 - 1. V'⊆ V
 - 2. A' ⊆ A
 - 3. (V',A') es un grafo

- Resultado fácil de comprobar:
 - Si G'=(V',A') es subgrafo de G, para todo v e G se cumple:

gr(G',v)≤ gr(G,v)

SUBGRAFOS

Ejemplo:

G1 y G2 son subgrafos de G

SUBGRAFOS

- Un grafo se dice cíclico cuando contiene algún ciclo como subgrafo
- Ejemplo:

Contiene dos ciclos de longitud 3:

Contiene un ciclo de longitud 6:

¿Contiene algún ciclo más? ____

GRAFO COMPLEMENTARIO

- El complementario G' de un grafo G=(V,A) tiene:
 - Los mismos vértices que G
 - Si {u,v} ∈ G, entonces {u,v} ∉ G'
 - Si {u,v} ∉ G, entonces {u,v} ∈ G'

- Una forma de construirlo:
 - Dibujar el grafo completo Kn, con n=|V|
 - Fliminar de Kn las aristas {u,v} ∈ G

GRAFO COMPLEMENTARIO

Ejemplo: Complementario de

1º Representar K6

2º Marcar las aristas de G

3° Eliminarlas

- Un recorrido en un grafo G = (V,A) es una sucesión de vértices v₀, v₁, ..., v_k tal que {v_i,v_{i+1}}∈ A para todo 0 ≤i < k
- La longitud de un recorrido v₀, v₁, ..., v_k es
- Ejemplo:

f,b,c,f,e,d es un recorrido de longitud 5 sobre G

- Observación: Un recorrido puede repetir vértices, y puede comenzar y acabar en vértices diferentes
- Un camino es un recorrido v₀, v₁, ..., v_k en el que v_i ≠ v_i para 0 ≤i,j ≤ k, con i ≠0 o j ≠k
- Es decir en un camino todos los vértices son distintos entre sí, excepto quizás el primero y el último

Ejemplo:

a,b,e,c,d es un camino

- Si existe un camino entre dos vértices se dice que están conectados
- Sea G=(V,A) un grafo. La relación xRy ↔ x e y están conectados
 - es de equivalencia (R ⊆ ___)
- Si para todo par de vértices de un grafo están conectados se dice que el grafo es conexo.

■ **Ejemplo**. Consideramos el grafo:

- Se tiene que:
 - G no es conexo: no hay camino entre a y b, por ejemplo.
 - $[a] = \{a,c,e\} [c] = \{a,c,e\} [e] = \{a,c,e\} [b] = \{b,d\} [d] = \{b,d\}$
 - $G/R = \{[a],[b]\}$

- Un recorrido v_0 , v_1 , ..., v_k tal que $v_0 = v_k$ es un circuito
- Un camino $v_0, v_1, ..., v_k$ tal que $v_0 = v_k$ es un ciclo

C

a,b,f,c,e,f,a es un circuito

f,c,b,e,f es un ciclo

- Un problema interesante en un grafo es determinar su número cromático:
- ¿Cuántos colores son necesarios para pintar los vértices de forma que cada arista una siempre colores distintos?
- Ejemplo: Grafo con número cromático 4

- Aplicación: coloreado de mapas
- ¿Cuántos colores se necesitan para colorear un mapa de forma que no haya dos regiones con frontera con el mismo color?

Idea: Transformar el mapa en un grafo, donde cada vértice representa una región y cada arista un límite entre regiones:

¿Cuántos colores se necesitan?

¿número cromático de este grafo?

- Resultado: Todos los mapas se pueden colorear con un máximo de 4 colores
- Solución propuesta en 1879, probada en <u>1976</u> por K. Appel y W. Haken con la ayuda de un ordenador.

- Vamos a interesarnos en un caso particular: aquellos grafos que se pueden colorear en dos colores (grafos bipartitos)
- Definición: Sea G=(V,A). Se dice que G es bipartito si existen V₁, V₂ tales que:
 - 1. $V_1 \cup V_2 = V$
 - 2. $V_1 \cap V_2 = \emptyset$
 - 3. Para toda {v_i,v_j}∈ A se cumple v_i∈ V_{1,} v_j∈ V₂

Ejemplos:

¿Es bipartito?

 $Si; V1 = \{2,5\}, V2 = \{0,1,3,4,6,7\}$

- Idea de cómo pintarlo:
 - Empezar por un vértice cualquiera, de color C1
 - Dibujar todos los adyacentes de color C2
 - Seguir este proceso hasta haber terminado

Parece que No es bipartito, pero ...

¿cómo estar seguros?

Teorema: Una grafo es bipartito si y sólo si no tiene ciclos de longitud impar

■ **Ejemplo anterior**: No bipartito; contiene ciclos de longitud impar.

Ciudad de Könisberg, en XVIII:

Pregunta: ¿sería posible dar un paseo pasando por cada uno de los siete puentes, sin repetir ninguno, comenzando y acabando en el mismo punto?

Representación propuesta por Leonard Euler en 1736:

¿Existe un circuito que pase por todas las aristas una sola vez?

- A estos circuitos se les llama circuitos eulerianos, y a los grafos que los contienen grafos eulerianos
- Grafo o multigrafo euleriano: admite un recorrido que pasa por todas las aristas una sola vez, empezando y terminando en el mismo vértice. Los vértices sí se pueden repetir.

Ejemplo: Grafo euleriano.

Circuito euleariano: a,b,c,d,b,f,d,e,a,c,e,f,a

Ejemplo: El siguiente grafo es euleriano

Encuentra un circuito euleriano:

- ¿Cómo saber si un grafo (o multigrafo) es euleriano?
 - Teorema de Euler: Un grafo conexo es euleriano (no tiene vértices de grado impar)
- **│ Ejemplo**:

Tiene grado 3, el grafo de los puentes no es euleriano.

Si el grafo/multigrafo tiene sólo dos vértices de grado impar se llama semi-euleriano. Se puede convertir en euleriano añadiéndole una arista:

Semi-euleriano

(__,__ grado impar)

Euleriano

RECORRIDOS HAMILTONIANOS

- Un grafo se dice hamiltoniano si existe un ciclo que recorre todos sus vértices. Al ciclo se le llama ciclo hamiltoniano
- Ejemplos:

RECORRIDOS HAMILTONIANOS

- No existe un método sencillo para saber si un grafo es no hamiltoniano (problema muy complejo)
- Ejemplo: Este grafo es hamiltoniano

____pero este no ¡difícil de probar!

Arbol: Grafo conexo y sin ciclos

Ejemplo:

A menudo se selecciona un nodo especial al que se llama raíz, y se dibuja con la raíz en la parte superior, sus adyacentes más abajo y así sucesivamente:

Ejemplo: Una estructura de carpetas y ficheros es un árbol

Ejemplos:

Análisis de expresiones

Árboles de búsqueda

- Un poco de terminología
 - Los vértices de un árbol se llaman nodos
 - Los nodos descendientes inmediatos de un nodo son sus hijos, y el nodo superior es el padre
 - A una secuencia descendente de nodos se le llama rama
 - Los nodos sin hijos se llaman hojas, y los que sí tienen hijos nodos internos
 - Un conjunto de árboles es un bosque

Algunas propiedades.

Sea G =(V,A) un árbol. Entonces:

- Entre cada par de vértices x,y hay un único camino
- Al quitar de A cualquier arista resulta un bosque con 2 árboles
- Al añadir una arista nueva siempre se obtiene un ciclo
- |A| = |V| -1