Authentication based on face recognition for preschoolers

Outline

- Introduction
- Problem definition
- State of the art
- Proposed approach
- The application
- Numerical results
- Conclusions and future work

Introduction

Face recognition is one of the most important application of image analysis

Represents a software application able to identify a person

from a digital image/video

• Different applications in:

- identity verification
- security
- multimedia data management
- computer entertainment

Problem definition

- The necessity of this application came from the fact that preschoolers cannot read or write in order to get authenticated in an application
- Nowadays preschoolers have access to many applications that require authentication so face recognition can be a good candidate for this problem

State of the art

- CNN-S,M,L
- Fusion algorithm
- RF classifiers
- Histogram of Oriented Gradients (HOG)
- Local geometric feature and shape matching
- Detect => align => represent => classify

Proposed approach

A single 'triplet' training step:

login page

Application

child

teacher

play game page

teacher's page

Numerical results

	Algorithm without alignment		Algorithm with alignment		Deep Residual Learning
	Kids	Adults	Kids	Adults	on ResNet-34
Number of images	50	4910	50	4910	3million
Number of people	10	276	10	276	
Matching tolerance	0.6	0.6	0.5	0.5	
Accuracy	30%	90%	64.74%	95.28%	99.38%

Conclusions and future work

- our approach did not reach a better accuracy than the state-of-the-art
- it has showed us that maybe we can tune more the parameters or use a different approach such as deep learning to make it more performant
- as future work, besides trying to use deep learning or Local Binary Patterns Histograms (LPBH), we would like to invest some time in collecting images with children

ANY QUESTIONS?