Question 1. Que vaut $1 + \ln(\ln(e))$?

Comme
$$\ln(e) = 1$$
 on a donc $\ln(\ln(e)) = \ln(1) = 0$
et donc $1 + \ln(\ln(e)) = 1 + 0 = 1$

Question 2. Quelle est la limite de $\ln(\frac{5}{x})$ quand $x \to +\infty$?

Posons
$$X = \frac{5}{x}$$
, ainsi $\ln(\frac{5}{x}) = \ln(X)$

par quotient lorsque $x \to +\infty$ alors $\frac{5}{x}$ tend vers 0.

En composant avec la fonction ln:

$$\lim_{x \to +\infty} \ln\left(\frac{5}{x}\right) = \lim_{X \to 0} \ln(X) = -\infty$$

Question 3. Ensemble de définition de $x \mapsto \ln(2-x)$

- La fonction l
n est définie sur]0;+ ∞ [
- Ainsi on ne peut calculer $\ln(2-x)$ que si 2-x>0 c'est-à-dire si 2>x autrement dit si $x\in]-\infty;2[$