PRIMER CURSO GRUPO B

EJERCICIOS DEL TEMA 3 Sucesiones de Números Reales

Ejercicios del Tema 3. Sucesiones de números reales.

Ejercicio 1.

Calcula los límites siguientes:

1.1.
$$\lim \frac{n^2 - 3n + 5}{n^{\frac{5}{2}} + n + 1}$$
 (sol.: 0).

1.2.
$$\lim \frac{n^{\frac{9}{4}} + n}{n^2 + 7}$$
 (sol.: $+\infty$).

1.3.
$$\lim \frac{3n^2 + 5n + 2}{4n^2 + 2n + 1}$$
 (sol.: $\frac{3}{4}$).

1.3.
$$\lim \frac{3n^2 + 5n + 2}{4n^2 + 2n + 1}$$
 (sol.: $\frac{3}{4}$).
1.4. $\lim \frac{4n^3 + \sqrt[3]{2n^9 - 3n^2}}{n^2 + \sqrt[4]{16n^{12} + 5n + 1}}$ (sol.: $\frac{4 + \sqrt[3]{2}}{2}$).

1.5.
$$\lim (\sqrt{n+1} - \sqrt{n})$$
 (sol.: 0).

1.6.
$$\lim \frac{\sqrt{n^2+2}-\sqrt{n^2-2}}{\sqrt{n^2+2}+\sqrt{n^2-2}}$$
 (sol.: 0).

1.7.
$$\lim \left(\sqrt[3]{n^2 + 1} - \sqrt[3]{(n+1)^2} \right)$$
 (sol.: 0).

1.8.
$$\lim \left(\sqrt[3]{n^{\frac{4}{3}} + n + 1} - n^2 \right)$$
 (sol.: $-\infty$).

1.9.
$$\lim \left(\frac{n^2}{n+1} - \frac{2n^2+3}{2n-1}\right)$$
 (sol.: $-\frac{3}{2}$).

1.10.
$$\lim \left(\sqrt[3]{\frac{1-n}{1-2n}}\right)^{\frac{1+3n}{2n+1}}$$
 (sol.: $\frac{1}{\sqrt{2}}$).

1.11.
$$\lim \left(\frac{4^{n^2+n+2}}{4^{n^2+n+3}}\right)^{n^2+n+1}$$
 (sol.: 0).

1.12.
$$\lim \left(\sqrt[3]{\frac{1+n^2}{1+2n}}\right)^{\frac{1-3n^2}{2n+1}}$$
 (sol.: 0).

1.13.
$$\lim \left(\frac{4n+\pi}{4n+2\pi}\right)^{\sqrt{16n^2+4n+8}}$$
 (sol.: $e^{-\pi}$).

1.14.
$$\lim \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+n)^2} \right)$$
 (sol.: 0).

1.15.
$$\lim \left(\sqrt{\frac{2n^2+n+1}{3n^2+2}}\right)^{\frac{3n^2+4n^3+16n^4}{\frac{4}{\sqrt{256n^{16}+n^2+1}}}}$$
 (sol.: $\frac{4}{9}$).

1.16.
$$\lim_{n \to \infty} \left(\frac{\sqrt{n^2 + 1}}{\sqrt[3]{n^3 - 2}} \right)^n$$
 (sol.: 1).

1.17.
$$\lim \left(\frac{3^n - 2^n}{3^n + 2^n}\right)^{2^n}$$
 (sol.: 0).

Ejercicio 2.

Calcula los límites siguientes:

2.1.
$$\lim \frac{\log n}{n}$$
.

2.2.
$$\lim_{n \to \infty} \frac{1!+2!+...+n!}{n!}$$

2.3.
$$\lim \frac{\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}}{\frac{1}{3} + \frac{1}{2^2} + \dots + \frac{1}{3^n}}$$

2.4.
$$\lim_{n \to \infty} \frac{1}{n^2} \left(2^2 + \frac{3^2}{2} + \dots + \frac{(n+1)^2}{n^{n-1}} \right)$$
.

2.5.
$$\lim_{n \to \infty} \frac{1}{n} \left(\left(a + \frac{1}{n} \right)^2 + \left(a + \frac{2}{n} \right)^2 + \dots + \left(a + \frac{n}{n} \right)^2 \right)$$
.

2.6.
$$\lim \left(\frac{1+3+\ldots+2n-1}{n+1} - \frac{2n+1}{2} \right)$$
.

2.7.
$$\lim \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \right)$$
.

2.8.
$$\lim \frac{1}{\sqrt{n+1}} \left(\frac{\sqrt{1}}{2} + \frac{\sqrt{2}}{3} + \dots + \frac{\sqrt{n}}{n+1} \right)$$

2.9.
$$\lim \left(\frac{1^2+3^2+\ldots+(2n-1)^2}{4n^3}\right)^{2n}$$
.

2.10.
$$\lim_{n \to \infty} \frac{1}{n} \sqrt[n]{(n+1) + (n+2) + \dots + (n+n)}$$

2.11.
$$\lim \sqrt[n]{1 \cdot \sqrt{2} \cdot \sqrt[3]{3} \cdot \dots \cdot \sqrt[n]{n}}$$
.

2.12.
$$\lim \sqrt[n]{(n+1) \cdot (n+2) \cdot ... \cdot (n+n)}$$
 (sol.: $+\infty$).

2.13.
$$\lim \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{n^2}\right)$$
.

2.14.
$$\lim \frac{\left(2-\frac{1}{2}\right)\left(3-\frac{1}{3}\right)...\left(n-\frac{1}{n}\right)}{n!}$$
.

2.15.
$$\lim \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$
, con $p \in \mathbb{R}$.

2.16.
$$\lim \left(\frac{1^p + 2^p + \dots + n^p}{n^p} - \frac{n}{p+1}\right)$$
, con $p \in \mathbb{N}$.

2.17.
$$\lim \frac{\log 1 + \log 2 + ... + \log n}{1 + 2 + ... + n}$$

Una solución.

2.1. Dado que la sucesión (n) es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{\log n}{n} = \lim \frac{\log n - \log(n-1)}{n - (n-1)} = \lim \log \frac{n}{n-1} = 0$$

2.2. Dado que la sucesión (n!) es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{1! + 2! + \dots + n!}{n!} = \lim \frac{n!}{n! - (n-1)!} = \lim \frac{n}{n-1} = 1$$

2.3. Dado que $\lim \left(\frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}\right) = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}$ (se llega a este resultado sumando los términos de la progresión geométrica), no se puede aplicar el Criterio de Stolz-Cesàro.

$$\lim \frac{\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}}{\frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}} = \frac{\frac{\frac{1}{2}}{1 - \frac{1}{2}}}{\frac{\frac{1}{3}}{1 - \frac{1}{2}}} = \frac{1}{\frac{1}{2}} = 2$$

2.4. Dado que la sucesión (n^2) es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{1}{n^2} \left(2^2 + \frac{3^2}{2} + \dots + \frac{(n+1)^2}{n^{n-1}} \right) = \lim \frac{\frac{(n+1)^2}{n^{n-1}}}{n^2 - (n-1)^2} =$$

$$= \lim \frac{(n+1)^2}{n^{n-1}(2n-1)} = 0$$

2.5. Dado que la sucesión (n) es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{1}{n} \left(\left(a + \frac{1}{n} \right)^2 + \left(a + \frac{2}{n} \right)^2 + \dots + \left(a + \frac{n}{n} \right)^2 \right) =$$

$$= \lim \frac{(a+1)^2}{n - (n-1)} = (a+1)^2$$

2.6. Sumando la progresión aritmética y operando, se llega a

$$\lim \left(\frac{1+3+\ldots+2n-1}{n+1} - \frac{2n+1}{2}\right) = \lim \frac{-3n-1}{2n+2} = -\frac{3}{2}$$

2.7. Dado que la sucesión (\sqrt{n}) es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} \right) = \lim \frac{\frac{1}{\sqrt{n}}}{\sqrt{n} - \sqrt{n-1}} = \lim \frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n}(n-(n-1))} = 2$$

2.8. Dado que la sucesión $(\sqrt{n+1})$ es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{1}{\sqrt{n+1}} \left(\frac{\sqrt{1}}{2} + \frac{\sqrt{2}}{3} + \dots + \frac{\sqrt{n}}{n+1} \right) =$$

$$= \lim \frac{\frac{\sqrt{n}}{n+1}}{\sqrt{n+1}} = 0$$

2.9. Comencemos analizando cuál es el límite de la base. Dado que la sucesión $(4n^3)$ es de términos positivos, monótona creciente y no está acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{1^2 + 3^2 + \dots + (2n - 1)^2}{4n^3} = \lim \frac{(2n - 1)^2}{4n^3 - 4(n - 1)^3} = \frac{1}{3}$$

Por tanto, $\lim \left(\frac{1^2+3^2+...+(2n-1)^2}{4n^3}\right)^{2n} = 0.$

2.10. Sumando la progresión aritmética dentro de la raíz y operando:

$$\lim_{n \to \infty} \frac{1}{n} \sqrt[n]{(n+1) + (n+2) + \dots + (n+n)} = \lim_{n \to \infty} \frac{1}{n} \sqrt[n]{\frac{3n^2 + n}{2}}$$

Por otra parte, recordamos que, en caso de existir $\lim \frac{a_{n+1}}{a_n}$, entonces $\lim \sqrt[n]{a_n}$ también existe, y es tal que $\lim \sqrt[n]{a_n} = \lim \frac{a_{n+1}}{a_n}$ (como vimos en el apartado 12.1.6. de la parte teórica). Aplicando este resultado a $a_n = \frac{3n^2+n}{2}$, es facil ver que $\lim \frac{a_{n+1}}{a_n} = 1$, por lo que $\lim \sqrt[n]{\frac{3n^2+n}{2}} = 1$. En definitiva,

$$\lim \frac{1}{n} \sqrt[n]{\frac{3n^2 + n}{2}} = 0$$

2.11. Tomando logaritmos:

$$\log \lim \sqrt[n]{1 \cdot \sqrt{2} \cdot \sqrt[3]{3} \cdot \dots \cdot \sqrt[n]{n}} = \lim \frac{\log 1 + \log \sqrt{2} + \log \sqrt[3]{3} + \dots + \log \sqrt[n]{n}}{n}.$$

Dado que la sucesión (n) es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{\log 1 + \log \sqrt{2} + \log \sqrt[3]{3} + \dots + \log \sqrt[n]{n}}{n} = \lim \log \sqrt[n]{n} = 0$$

(aplicando el resultado del apartado 12.1.6. de la parte teórica, se llega fácilmente a que lim $\sqrt[n]{n} = 1$). Por tanto,

$$\lim \sqrt[n]{1 \cdot \sqrt{2} \cdot \sqrt[3]{3} \cdot \dots \cdot \sqrt[n]{n}} = e^0 = 1$$

(a este mismo resultado se llega aplicando el resultado del apartado 12.1.6. de la parte teórica desde un principio).

2.13. Operando y simplificando:

$$\lim \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{n^2}\right) =$$

$$= \lim \left(\frac{2^2 - 1}{2^2}\right) \left(\frac{3^2 - 1}{3^2}\right) \left(\frac{4^2 - 1}{4^2}\right) \dots \left(\frac{(n - 1)^2 - 1}{(n - 1)^2}\right) \left(\frac{n^2 - 1}{n^2}\right) =$$

$$= \lim \left(\frac{(2 - 1)(2 + 1)}{2 \cdot 2}\right) \left(\frac{(3 - 1)(3 + 1)}{3 \cdot 3}\right) \left(\frac{(4 - 1)(4 + 1)}{4 \cdot 4}\right) \dots$$

$$\dots \left(\frac{(n - 2)n}{(n - 1)(n - 1)}\right) \left(\frac{(n - 1)(n + 1)}{n \cdot n}\right) = \lim \frac{n + 1}{2n} = \frac{1}{2}$$

2.14. Operando y simplificando:

$$\lim \frac{\left(2 - \frac{1}{2}\right)\left(3 - \frac{1}{3}\right) \dots \left(n - \frac{1}{n}\right)}{n!} = \lim \frac{\frac{2^2 - 1}{2} \frac{3^2 - 1}{3} \dots \frac{n^2 - 1}{n}}{n!} =$$

$$= \lim \frac{(2+1)(2-1)(3+1)(3-1)\dots(n+1)(n-1)}{2 \cdot 3 \cdot \dots \cdot n \cdot n!} =$$

$$= \lim \frac{(n+1)!(n-1)!}{2 \cdot n! \cdot n!} = \lim \frac{n+1}{2n} = \frac{1}{2}$$

2.15. Si p=-1, la sucesión es $\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)$, y sabemos que

$$\lim \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) = +\infty.$$

Si p < -1, $\frac{1^p + 2^p + \ldots + n^p}{n^{p+1}} > \frac{1}{n^{p+1}} \to +\infty$, por lo que $\lim \frac{1^p + 2^p + \ldots + n^p}{n^{p+1}} = +\infty$. Finalmente, si es p > -1, la sucesión $\binom{n^{p+1}}{n}$ es de términos positivos, monótona creciente y no acotada superiormente, por lo que podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{1^p + 2^p + \dots + n^p}{n^{p+1}} = \lim \frac{(n+1)^p}{(n+1)^{p+1} - n^{p+1}} =$$

$$= \lim \frac{(n+1)^p}{(n+1)^{p+1} \left(1 - \left(\frac{n}{n+1}\right)^{p+1}\right)} = \lim \frac{1}{(n+1)(p+1)\left(1 - \frac{n}{n+1}\right)} =$$

$$= \frac{1}{p+1}$$

2.16. Operando en la expresión del límite, se llega a

$$\lim \left(\frac{1^p + 2^p + \dots + n^p}{n^p} - \frac{n}{p+1}\right) = \lim \frac{(p+1)(1^p + 2^p + \dots + n^p) - n^{p+1}}{(p+1)n^p}$$

Dado que la sucesión (n^p) es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro. Operando y aplicando la Fórmula del Binomio de Newton, queda:

$$\lim \frac{(p+1)\left(1^{p}+2^{p}+\ldots+n^{p}\right)-n^{p+1}}{(p+1)n^{p}} =$$

$$= \lim \frac{(p+1)n^{p}-n^{p+1}+(n-1)^{p+1}}{(p+1)(n^{p}-(n-1)^{p})} =$$

$$= \lim \frac{(p+1)n^{p}-n^{p+1}+n^{p+1}-(p+1)n^{p}+\frac{p(p+1)}{2}n^{p-1}}{(p+1)(n^{p}-n^{p}+pn^{p-1})} = \frac{1}{2}$$

2.17. Dado que la sucesión (1+2+...+n) es de términos positivos, monótona creciente y no acotada superiormente, podemos aplicar el Criterio de Stolz-Cesàro:

$$\lim \frac{\log 1 + \log 2 + \dots + \log n}{1 + 2 + \dots + n} = \lim \frac{\log n}{n} = 0$$

 $(\lim \frac{\log n}{n} = 0 \text{ como vimos en el ejercicio } 2.1.)$

Ejercicio 3.

Sea (a_n) una sucesión de números reales no nulos.

- a) Prueba que si $\lim \left| \frac{a_{n+1}}{a_n} \right| < 1$, entonces $\lim a_n = 0$.
- b) Utiliza el resultado del apartado anterior para calcular los siguientes límites:

$$\lim \frac{n!}{n^n}$$

$$\lim \frac{n^a}{b^n}, \text{ con } a,b \in \mathbb{R} \text{ y } b > 1$$

Una solución.

- a) Si $\lim \left|\frac{a_{n+1}}{a_n}\right| < 1$, entonces $\exists N \in \mathbb{N}$ tal que $\forall n \geq N : \left|\frac{a_{n+1}}{a_n}\right| \leq r$, con 0 < r < 1. Por tanto, $|a_{N+1}| \leq r |a_N|$, $|a_{N+2}| \leq r |a_{N+1}| \leq r^2 |a_N|$, ..., $|a_{N+p}| \leq r^p |a_N|$. De aquí se deduce que $\forall n \geq N : |a_n| \leq r^{-N} |a_N| \cdot r^n \Rightarrow -r^{-N} |a_N| \cdot r^n \leq a_n \leq r^{-N} |a_N| \cdot r^n$, y aplicando el Teorema del Sandwich (al ser 0 < r < 1, observa que $r^n \to 0$) resulta que $\lim a_n = 0$.
- b) $\lim \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n!}} = \lim \left(\frac{n}{n+1}\right)^n = e^{\lim n\left(\frac{-1}{n+1}\right)} = e^{-1} < 1$. Applicando la anterior propiedad, se deduce que $\lim \frac{n!}{n^n} = 0$. $\lim \frac{\frac{(n+1)^a}{b^n+1}}{\frac{n^a}{b^n}} = \frac{1}{b} \lim \left(\frac{n+1}{n}\right)^a = \frac{1}{b} < 1$. Aplicando la anterior propiedad, se deduce que $\lim \frac{n^a}{b^n} = 0$.

Ejercicio 4.

- a) El límite de la sucesión de término general $a_n = \frac{2n+1}{n+1}$ es a=2. Sea $\epsilon=0.1$. Determina el menor número natural n_0 tal que $\forall n\geq n_0$ los términos de dicha sucesión se mantienen en el intervalo $(2-\epsilon,2+\epsilon)$, es decir, dichos términos a_n son tales que $|a_n-a|<\epsilon, \forall n\geq n_0$.¿Cuáles serían dichos números n_0 en los casos $\epsilon=0.01$ y $\epsilon=0.0001$?
- b) Id. apartado anterior con la sucesión de término general $a_n = \frac{2n^2+1}{n^2+1}$, cuyo límite es también a=2.

Una solución.

- a) Obligando a que sea $\left|\frac{2n+1}{n+1}-2\right|<\epsilon$, se llega a que $n>\frac{1}{\epsilon}-1$. Esto supone que, para los valores $\epsilon=0.1,\,\epsilon=0.01$ y $\epsilon=0.0001$ los números naturales pedidos sean $n_0=10,\,n_0=100$ y $n_0=10000$, respectivamente.
- b) Obligando a que sea $\left|\frac{2n^2+1}{n^2+1}-2\right|<\epsilon$, se llega a que $n>\sqrt{\frac{1}{\epsilon}-1}$. Esto supone que, para los valores $\epsilon=0.1,\ \epsilon=0.01$ y $\epsilon=0.0001$ los números naturales pedidos sean $n_0=4,\ n_0=10$ y $n_0=100$, respectivamente.

Ejercicio 5.

En cada uno de los siguientes casos, da un ejemplo o prueba la no existencia de una sucesión (o unas sucesiones) que sea(n):

- 5.1. Convergente y no monótona.
- 5.2. Acotada y no convergente.
- 5.3. Convergente y no acotada.
- 5.4. Monótona y no acotada.
- 5.5. Divergente a $+\infty$ y no monótona.
- 5.6. Monótona y acotada, pero no convergente.
- 5.7. No acotada y no monótona.
- 5.8. De términos positivos y convergente, pero no monótona.
- 5.9. Tal que ($|a_n|$) converge pero (a_n) no converge.
- 5.10. Tal que (a_n) converge pero $(|a_n|)$ no converge.
- 5.11. Tales que (a_n) y (b_n) no sean convergentes, pero (a_n+b_n) sea convergente.

- 5.12. Tales que (a_n) y (a_n+b_n) sean convergentes, pero (b_n) no sea convergente.
- 5.13. Tales que $(a_n + b_n)$ sea convergente, pero (a_n) y (b_n) no sean convergentes.
- 5.14. Tales que (a_n) y $(a_n \cdot b_n)$ sean convergentes, pero (b_n) no sea convergente.

Una solución.

- 5.1. $(-1)^n \frac{1}{n}$ es convergente a 0 y no es monótona.
- 5.2. $(-1)^n$ está acotada y no es convergente.
- 5.3. Sabemos que si una sucesión es convergente, entonces está acotada. Por tanto, no es posible plantear un ejemplo de sucesión convergente y no acotada.
- 5.4. (n) es monótona y no está acotada.
- 5.5. La sucesión $(1,1^2,2,2^2,3,3^2,...)$ es divergente a $+\infty$ y no es monótona.
- 5.6. Sabemos que toda sucesión monótona y acotada es convergente. Por tanto, no es posible plantear un ejemplo de sucesión monótona y acotada, pero no convergente.
- 5.7. $(-1)^n n$ es no acotada y no monótona.
- 5.8. $(\frac{1}{1}, \frac{1}{1^2}, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{3}, \frac{1}{3^2}, ...)$ es de términos positivos y convergente a 0, pero no es monótona.
- 5.9. $(-1)^n$ es tal que $(|a_n|)$ converge a 1 pero (a_n) no converge.
- 5.10. Es evidente que si $(a_n) \to a$, entonces $(|a_n|) \to |a|$. Por tanto, no es posible plantear un ejemplo de sucesión tal que (a_n) converge pero $(|a_n|)$ no converge.
- 5.11. $(a_n) = n$ y $(b_n) = -n$ son tales que (a_n) y (b_n) no son convergentes, pero $(a_n + b_n) = (0)$, que es convergente.
- 5.12. Dado que (a_n) y $(a_n + b_n)$ son convergentes, también

$$(b_n) = ((a_n + b_n) + (-a_n))$$

lo es, por ser la suma de dos sucesiones convergentes.

- 5.13. Vale el ejemplo dado en 5.11.
- 5.14. $(a_n) = \frac{1}{n}$ y $(b_n) = n$ son tales que (a_n) converge a 0 y $(a_n \cdot b_n)$ converge a 1, pero $(b_n) = n$ no es convergente.

Ejercicio 6.

Cierta sucesión de números reales se define por la ley de recurrencia

$$a_{n+1} = \frac{2a_n}{1 + a_n}$$

Se pide:

- a) En el supuesto de que el primer término sea $a_1=2$, prueba que la sucesión es monótona decreciente y acotada inferiormente, calculando $\lim a_n$.
- b) En el supuesto de que el primer término sea $a_1 = \frac{1}{2}$, prueba que la sucesión es monótona creciente y acotada superiormente, calculando $\lim a_n$.

Una solución.

Dado que

$$a_{n+1} - a_n = \frac{2a_n}{1+a_n} - \frac{2a_{n-1}}{1+a_{n-1}} = \frac{2(a_n - a_{n-1})}{(1+a_n)(1+a_{n-1})}$$

siempre que sean $a_n > -1$ y $a_{n-1} > -1$, la sucesión (a_n) será monótona. En particular (y siempre que sean $a_n > -1$ y $a_{n-1} > -1$), cuando $a_2 > a_1$ la sucesión (a_n) será monótona creciente, y cuando $a_2 < a_1$ la sucesión (a_n) será monótona decreciente.

a) $a_1 = 2 \Rightarrow a_2 = \frac{4}{3} < a_1$, por lo que (a_n) es monótona estrictamente decreciente, es decir, $a_{n+1} < a_n$. Veamos que está acotada inferiormente por 1.

Figura 1

La Figura 1 muestra en color rojo (en el plano a_n-a_{n+1}) la gráfica de la curva $a_{n+1}=\frac{2a_n}{1+a_n}$ para $a_n>-1$, así como las rectas auxiliares $a_{n+1}=2$ (asíntota horizontal), $a_{n+1}=1$, y $a_n=-1$ (asíntota vertical). Supongamos que $a_n>1$. Entonces, de la gráfica anterior se deduce que $a_{n+1}=\frac{2a_n}{1+a_n}>1$, por lo que 1 es cota inferior de (a_n) . Dado que (a_n) es monótona decreciente acotada inferiormente, (a_n) es convergente. Sea $a\in\mathbb{R}$ el límite de (a_n) , es decir, $\lim a_n=a$. Entonces, pasando al límite en la expresión $a_{n+1}=\frac{2a_n}{1+a_n}$, se llega a que $a=\frac{2a}{1+a}\Rightarrow a^2-a=0\Rightarrow a=0$ o a=1. Dado que 1 es cota inferior de (a_n) y (a_n) es monótona decreciente, es evidente que en este caso $a_1=2$, será $\lim a_n=1$. La Figura 2 muestra como convergen las sucesivas iteraciones de (a_n) a 1 en este caso $a_1=2$.

Figura 2

De la gráfica anterior también se deduce (como ya sabíamos) que, siempre que sea $a_1 > 1$, la sucesión (a_n) es monótona decreciente y convergente a 1

b) $a_1 = \frac{1}{2} \Rightarrow a_2 = \frac{2}{3} > a_1$, por lo que (a_n) es monótona estrictamente creciente, es decir, $a_{n+1} > a_n$. Veamos que está acotada superiormente por 1. De la gráfica anterior se deduce que, siempre que sea $0 < a_n < 1$, se verifica que $a_{n+1} = \frac{2a_n}{1+a_n} < 1$, por lo que 1 es cota superior de (a_n) en este caso. Dado que 1 es cota superior de (a_n) y (a_n) es monótona creciente, es evidente que en este caso $a_1 = \frac{1}{2}$, será también $\lim a_n = 1$. La Figura 3 muestra como convergen las sucesivas iteraciones de (a_n) a 1 en este caso

 $a_1 = \frac{1}{2}$.

Figura 3

De la gráfica anterior también se deduce (como ya sabíamos) que, siempre que sea $0 < a_1 < 1$, la sucesión (a_n) es monótona creciente y convergente a 1.

Ejercicio 7.

Razona la veracidad o falsedad de las siguientes afirmaciones:

- 7.1. Si (a_n) es una sucesión de números reales tal que $\forall n \in \mathbb{N}, \frac{a_{n+1}}{a_n} > 1$, entonces $\lim a_n = +\infty$.
- 7.2. Si (a_n) es una sucesión de números reales tal que $\forall n \in \mathbb{N}, \frac{a_{n+1}}{a_n} > 1$, entonces (a_n) es convergente.
- 7.3. Si (a_n) es una sucesión de números reales tal que el conjunto $\{a_n\}_{n\in\mathbb{N}}$ tiene dos puntos de acumulación distintos, entonces (a_n) no es convergente.
- 7.4. Si (a_n) es una sucesión de números reales no convergente, entonces el conjunto $\{a_n\}_{n\in\mathbb{N}}$ no tiene ningún punto de acumulación.

- 7.5. Si (a_n) es una sucesión de números reales acotada superiormente y no convergente, entonces (a_n) no es monótona creciente.
- 7.6. Si (a_n) es una sucesión de números reales monótona decreciente acotada inferiormente por 0, entonces $\lim a_n = 0$.
- 7.7. Si (a_n) es una sucesión de números reales, entonces $((-1)^n a_n)$ no es monótona creciente.
- 7.8. Si (a_n) y (b_n) son dos sucesiones de números reales positivos tales que $\frac{a_n}{b_n}$ es convergente, entonces (a_n) y (b_n) son ambas convergentes.

Una solución.

- 7.1. Si (a_n) es una sucesión de números reales tal que $\forall n \in \mathbb{N}, \frac{a_{n+1}}{a_n} > 1$, entonces (a_n) es monótona creciente, pero no podemos asegurar que lim $a_n = +\infty$ (puede suceder, por ejemplo, que (a_n) esté acotada superiormente). Como contraejemplo, puede tomarse la sucesión $\left(\frac{n}{n+1}\right)$, que es monótona creciente pero lim $a_n = 1 \neq +\infty$.
- 7.2. Falso (contraejemplo: (n)).
- 7.3. Verdadero, por la unicidad del elemento límite.
- 7.4. Falso. Como contraejemplo, puede tomarse la sucesión $\left((-1)^n \frac{n+1}{n}\right)$, que tiene dos puntos de acumulación $\{-1,1\}$, pero no es convergente (ya que $\liminf (-1)^n \frac{n+1}{n} = -1 \neq \limsup (-1)^n \frac{n+1}{n} = 1$).
- 7.5. Verdadero. Se sigue de la proposición contrarecíproca de "si (a_n) es una sucesión de números reales monótona creciente y acotada superiormente, entonces (a_n) es convergente", que establece que "si (a_n) es una sucesión de números reales no convergente, entonces o (a_n) no es monótona creciente o (a_n) no está acotada superiormente".
- 7.6. Falso. Como contraejemplo, puede tomarse $\left(\frac{n+1}{n}\right)$, que es monótona decreciente, tiene a 0 por cota inferior, pero $\lim a_n = 1 \neq 0$ (observa que $\inf\left\{\frac{n+1}{n}: n \in \mathbb{N}\right\} = 1$).
- 7.7. Falso. Como contraejemplo, puede tomarse $a_n = (-1)^n n$, que verifica que $((-1)^n a_n) = (n)$, que es monótona creciente.
- 7.8. Falso. Como contraejemplo, puede tomarse $a_n = n$ y $b_n = n$, que son tales que $\frac{a_n}{b_n} = 1$ (sucesión constante 1), pero (a_n) y (b_n) no son convergentes.

Ejercicio 8.

Es bien sabido que una sucesión de números reales $a_1, a_2, ..., a_n, ...$ puede ser definida por una ley de recurrencia del tipo $a_{n+1} = f(a_n)$, dependiendo el carácter de la sucesión, en general, no solo de la función f, sino también del primer término a_1 . Se pide:

- a) Prueba que las sucesiones definidas mediante las leyes de recurrencia $a_{n+1} = \frac{a_n-1}{a_n}$, con $a_n \neq 0, \forall n \in \mathbb{N}$, y $b_{n+1} = \frac{b_n-1}{b_n+1}$, con $b_n \neq -1, \forall n \in \mathbb{N}$, no son convergentes, para cualquiera que sean a_1 y b_1 .
- b) Prueba que la sucesión definida mediante la ley de recurrencia $c_{n+1} = \frac{1}{4(1-c_n)}$, con $c_n \neq 1, \forall n \in \mathbb{N}$, es convergente, para cualquiera que sea c_1 . Calcula su límite
- c) Estudia la convergencia de la sucesión definida mediante la ley $d_{n+1} = \frac{3d_n-2}{d_n}$, con $d_n \neq 0, \forall n \in \mathbb{N}$, según los distintos valores de d_1 .

Una solución.

- a) En el supuesto de que (a_n) y (b_n) fueran convergentes, es decir, $\lim a_n = a \in \mathbb{R}$ y $\lim b_n = b \in \mathbb{R}$, pasando al límite en $a_{n+1} = \frac{a_n 1}{a_n}$ y en $b_{n+1} = \frac{b_n 1}{b_n + 1}$, se llega a las ecuaciones $a^2 a + 1 = 0$ y $b^2 + 1 = 0$, que no tienen raíces reales. Por tanto, dado que no existen $a, b \in \mathbb{R}$ verificando dichas condiciones, (a_n) y (b_n) no pueden ser convergentes.
- b) En el supuesto de que (c_n) sea convergente, es decir, $\lim c_n = c \in \mathbb{R}$, pasando al límite en $c_{n+1} = \frac{1}{4(1-c_n)}$, se verifica que $c = \frac{1}{4(1-c)}$. Esta ecuación tiene una única raíz real, que es $c = \frac{1}{2}$. Por tanto, de ser convergente la sucesión (c_n) , será $\lim c_n = \frac{1}{2}, \forall c_1 \in \mathbb{R}$. La Figura 4 muestra la gráfica de $c_{n+1} = \frac{1}{4(1-c_n)}$ en el plano $c_n c_{n+1}$

(dicha gráfica es tangente a la bisectriz en el punto de abscisa $\frac{1}{2}$).

Figura 4

Para estudiar la convergencia de (c_n) , consideraremos tres casos: a) si $c_1 < \frac{1}{2}$, entonces vemos en la Figura 4 que $c_2 > c_1$, y de

$$c_{n+1} - c_n = \frac{1}{4(1 - c_n)} - \frac{1}{4(1 - c_{n-1})} = \frac{c_n - c_{n-1}}{4(1 - c_n)(1 - c_{n-1})}$$

se deduce que (c_n) es monótona creciente. Veamos que (c_n) está acotada superiormente por $\frac{1}{2}$. Razonando por inducción, la propiedad es cierta para n=1, porque $c_1<\frac{1}{2}$. Y en el supuesto de que sea $c_n<\frac{1}{2}$, entonces $c_{n+1}=\frac{1}{4(1-c_n)}<\frac{1}{2}$. Por tanto, en caso de que sea $c_1<\frac{1}{2}$, (c_n) es convergente y $\lim c_n=\frac{1}{2}$.

- convergente y $\lim c_n = \frac{1}{2}$. b) si $c_1 = \frac{1}{2}$, entonces $(c_n) = (\frac{1}{2})$ (sucesión constante $\frac{1}{2}$), por lo que (c_n) es convergente y $\lim c_n = \frac{1}{2}$. c) si $c_1 > \frac{1}{2}$, entonces, iterando a partir de c_1 , vemos con la ayuda de la
- c) si $c_1 > \frac{1}{2}$, entonces, iterando a partir de c_1 , vemos con la ayuda de la Figura 4 que $\exists n_0 \in \mathbb{N}$ tal que $c_{n_0} < \frac{1}{2}$ (concretamente, $n_0 = 2$ siempre que sea $c_1 > \frac{1}{2}$), por lo que, aplicando los resultados del apartado a), (c_n) también es convergente (por ser, a partir de n_0 , monótona creciente y acotada superiormente), y $\lim c_n = \frac{1}{2}$.
- c) En el supuesto de que (d_n) sea convergente, es decir, $\lim d_n = d \in \mathbb{R}$, pasando al límite en $d_{n+1} = \frac{3d_n-2}{d_n}$, se verifica que $d = \frac{3d-2}{d}$. Esta ecuación tiene dos raíces reales, que son $l_1 = 1$ y $l_2 = 2$. Por tanto, de ser convergente la sucesión (d_n) , será $\lim d_n = 1$ (para ciertos valores de d_1) o

 $\lim d_n = 2$ (para ciertos valores de d_1). La Figura 5 muestra la gráfica de $d_{n+1} = \frac{3d_n-2}{d_n}$ en el plano $d_n - d_{n+1}$ (dicha gráfica corta a la bisectriz en los puntos de abscisa 1 y 2).

Figura 5

Para estudiar la convergencia de (d_n) , consideraremos los casos siguientes: a) si $d_1 > 2$, se deduce de la Figura 5 que $d_2 < d_1$, y de

$$d_{n+1} - d_n = \frac{3d_n - 2}{d_n} - d_n = -\frac{(d_n - 1)(d_n - 2)}{d_n}$$

se deduce que, en este caso, (d_n) es monótona decreciente. Veamos que (d_n) está acotada inferiormente por 2. Razonando por inducción, la propiedad es cierta para n=1, porque $d_1>2$. Y en el supuesto de que sea $d_n>2$, entonces $d_{n+1}=\frac{3d_n-2}{d_n}=3-\frac{2}{d_n}>2$. Por tanto, en caso de que sea $d_1>2$, (d_n) es convergente y $\lim d_n=2$.

b) si $d_1 = 2$, entonces $(d_n) = (2), \forall n \in \mathbb{N}$ (sucesión constante 2), por lo que (d_n) es convergente y $\lim d_n = 2$.

c) si $1 < d_1 < 2$, se deduce de la Figura 5 que $d_2 > d_1$, y de

$$d_{n+1} - d_n = \frac{3d_n - 2}{d_n} - d_n = -\frac{(d_n - 1)(d_n - 2)}{d_n}$$

se deduce que, en este caso, (d_n) es monótona creciente. Veamos que (d_n) está acotada superiormente por 2. Razonando por inducción, la propiedad es cierta para n = 1, porque $1 < d_1 < 2$. Y en el supuesto de que sea

 $1 < d_n < 2$, entonces $d_{n+1} = \frac{3d_n-2}{d_n} = 3 - \frac{2}{d_n} < 2$. Por tanto, en caso de que sea $1 < d_1 < 2$, (d_n) es convergente y $\lim d_n = 2$.

d) si $d_1 = 1$, entonces $(d_n) = (1), \forall n \in \mathbb{N}$ (sucesión constante 1), por lo que (d_n) es convergente y $\lim d_n = 1$.

e) si $d_1 < 1$, entonces, iterando a partir de d_1 , vemos con la ayuda de la Figura 5 que $\exists n_0 \in \mathbb{N}$ tal que $d_{n_0} > 2$ (concretamente, $n_0 = 4$ para $\frac{2}{3} < d_1 < 1$, $n_0 = 3$ para $0 < d_1 < \frac{2}{3}$ y $n_0 = 2$ para $d_1 < 0$), por lo que, aplicando los resultados del apartado a), (d_n) también es convergente (por ser, a partir de n_0 , monótona decreciente y acotada inferiormente), y $\lim d_n = 2$.

Ejercicio 9.

Dadas las sucesiones de números reales (a_n) y (b_n) definidas mediante

$$a_{n+1} = \sqrt{\frac{1}{2}(1 + a_n)}$$

$$a_1 = \frac{1}{2}(x + \frac{1}{x})$$

$$b_{n+1} = \frac{b_n}{a_{n+1}}$$

$$b_1 = \frac{1}{2}(x - \frac{1}{x})$$

donde x representa un número real positivo arbitrario. Se pide:

- a) Prueba que (a_n) está acotada inferiormente por 1 y es monótona decreciente. Calcula su límite.
- b) Obtén razonadamente una fórmula para a_n en términos de n y de x. Comprueba el límite obtenido en el apartado anterior mediante esta fórmula.
- c) Obtén razonadamente una fórmula para b_n en términos de n y de x. Calcula $\lim b_n$.

Una solución.

a) Aplicando el método de inducción, veamos que (a_n) está acotada inferiormente por 1. La propiedad es cierta para n=1, porque $a_1=\frac{1}{2}(x+\frac{1}{x})\geq$

 $1, \forall x \in \mathbb{R}$ tal que x > 0 (ver Figura 6). Tan solo es $a_1 = 1$ cuando x = 1.

Figura 6

Supongamos ahora que $a_n \ge 1$. Entonces, es evidente que

$$a_{n+1} = \sqrt{\frac{1}{2}(1+a_n)} \ge 1,$$

resultando que (a_n) está acotada inferiormente por 1.

Veamos que (a_n) es monótona decreciente. Esto se deduce de que, al ser $a_n \geq 1, \forall n \in \mathbb{N}$, se verifica que

$$a_{n+1} = \sqrt{\frac{1}{2}(1+a_n)} \le \sqrt{\frac{1}{2}(a_n+a_n)} = \sqrt{a_n} \le a_n$$

Por tanto, (a_n) es convergente, es decir, $\exists a \in \mathbb{R}$: $\lim a_n = a$. Pasando al límite en $a_{n+1} = \sqrt{\frac{1}{2}(1+a_n)}$, se llega a la ecuación $a = \sqrt{\frac{1}{2}(1+a)}$. Elevando al cuadrado, se obtiene la ecuación $2a^2 - a - 1 = 0$, cuyas raíces son $1 \text{ y } -\frac{1}{2}$, pero solo la primera es raíz de la ecuación original $(-\frac{1}{2}$ es una "solución extraña" introducida al elevar al cuadrado). En definitiva, resulta que $\lim a_n = 1$.

b) Dado que $a_1 = \frac{x^2+1}{2x}$, $a_2 = \frac{x+1}{2x^{\frac{1}{2}}}$, $a_3 = \frac{x^{\frac{1}{2}}+1}{2x^{\frac{1}{4}}}$, $a_4 = \frac{x^{\frac{1}{4}}+1}{2x^{\frac{1}{8}}}$,..., se deduce que

$$a_n = \frac{\left((x)^{\frac{1}{2^{n-2}}}\right) + 1}{2(x)^{\frac{1}{2^{n-1}}}}$$

y se comprueba que $\lim a_n = 1$.

c) Dado que $b_1 = \frac{x^2+1}{2x}$, $b_2 = \frac{x-1}{x^{\frac{1}{2}}}$, $b_3 = \frac{2 \cdot \left(x^{\frac{1}{2}}-1\right)}{x^{\frac{1}{4}}}$, $b_4 = \frac{2^2 \cdot \left(x^{\frac{1}{4}}-1\right)}{x^{\frac{1}{8}}}$, $b_5 = \frac{2^2 \cdot \left(x^{\frac{1}{4}}-1\right)}{x^{\frac{1}{8}}}$

$$\frac{2^3 \cdot \left(x^{\frac{1}{8}} - 1\right)}{x^{\frac{1}{16}}}, \dots$$
, se deduce que

$$b_n = \frac{2^{n-2} \cdot \left((x)^{\frac{1}{2^{n-2}}} - 1 \right)}{(x)^{\frac{1}{2^{n-1}}}}$$

y se verifica que

$$\lim b_n = \lim \frac{2^{n-2} \cdot \left((x)^{\frac{1}{2^{n-2}}} - 1 \right)}{(x)^{\frac{1}{2^{n-1}}}} = \lim \frac{2^{n-2} \cdot \frac{1}{2^{n-2}} \cdot \log x}{1} = \log x$$

Por ello, el anterior algoritmo, basado en las sucesiones recurrentes (a_n) y (b_n) , puede ser utilizado para obtener una aproximación al logaritmo neperiano de cualquier número real positivo.

Ejercicio 10.

Calcula los límites siguientes:

10.1.
$$\lim_{n \to \infty} \frac{\sqrt[3]{n+\sqrt{n^2-1}} - \sqrt[3]{n-\sqrt{n^2-1}}}{n}$$
 (sol.: 0).

10.2.
$$\lim \frac{n^{2n}}{(1+n^2)^n}$$
 (sol.: 1).

10.3.
$$\lim \sqrt[n]{2^n + 3^n}$$
 (sol.: 3).

10.4.
$$\lim (n + \sqrt{n}) \log \left(1 + \frac{1}{2n-1}\right)$$
 (sol.: $\frac{1}{2}$).

10.5.
$$\lim \frac{(a+n)(n-1)^{n-1}}{n^n}$$
, con $a \in \mathbb{R}$ (sol.: e^{-1}).

10.6.
$$\lim_{n \to \infty} \left(\frac{a^n+1}{a^n}\right)^{2^n}$$
, con $a > 0$ (sol.: si $0 < a < 2$, $\lim_{n \to \infty} 1 = +\infty$; si $a = 2$, $\lim_{n \to \infty} 1 = 2$

10.7.
$$\lim \left(\sqrt{\frac{n-1}{n+2}}\right)^{\sqrt{n}}$$
 (sol.: 1).

10.8.
$$\lim_{n \to \infty} \left(\frac{\sqrt{n^2 - 1}}{\sqrt[3]{n^3 - 2}} \right)^n$$
 (sol.: 1).

10.9.
$$\lim \left(\sqrt{\frac{1+3n}{5+3n}}\right)^{\frac{n^2}{2n-1}}$$
 (sol.: $e^{-\frac{1}{3}}$).

10.10.
$$\lim \left(\frac{\log(n^2+1)}{\log(n^2-1)}\right)^{n^2 \log n}$$
 (sol.: e).

10.11.
$$\lim (2+3n^4)^{\frac{1}{3+2\log(n+1)}}$$
 (sol.: e^2).

10.12.
$$\lim \left(1 + \log \frac{3n^2 + 2n + 1}{3n^2 + 5n}\right)^{4n + 1}$$
 (sol.: e^{-4}).

10.13.
$$\lim \frac{2^{2n}(n!)^2 \sqrt{n}}{(2n+1)!}$$
 (sol.: $\frac{\sqrt{\pi}}{2}$).

10.14.
$$\lim \left(\cos \frac{a}{n}\right)^{n^2}$$
, $\operatorname{con} a \in \mathbb{R}$ (sol.: $e^{-\frac{a^2}{2}}$).

10.15.
$$\lim_{n \to \infty} e^{n(\log(n+1) - \log n)}$$
 (sol.: e).

10.16.
$$\lim \left(1 + 3\tan^2 \frac{1}{n}\right)^{\cot^2 \frac{1}{n}}$$
 (sol.: e^3).

10.17.
$$\lim \frac{e^{\frac{a^2}{n}} - e^{\frac{b^2}{n}}}{\sec \frac{a}{n} - \sec \frac{b}{n}}$$
, con $a \neq b$ y $a, b \in \mathbb{R}$ (sol.: $a + b$).

10.18.
$$\lim \frac{\sqrt{n}}{4^n} {2n \choose n}$$
 (sol.: $\frac{1}{\sqrt{\pi}}$).

10.19.
$$\lim (\cos (\sqrt{n+1}) - \cos (\sqrt{n}))$$
 (sol.: 0).

10.20.
$$\lim \left[\left(\cosh \left(\frac{1}{n} \right) \right)^{n^2} \right]$$
 (sol.: \sqrt{e}).

10.21.
$$\lim n^a \operatorname{sen}\left(\frac{b}{n}\right)$$
, $\operatorname{con} a, b > 0$ y $a, b \in \mathbb{R}$ (sol.: $\lim = 0$, $\operatorname{si} a < 1$; $\lim = b$, $\operatorname{si} a = 1$; $\lim = \infty$, $\operatorname{si} a > 1$).

10.22.
$$\lim (\log(\operatorname{senh} n) - n)$$
 (sol.: $-\log 2$).

10.23.
$$\lim (\cos \pi a)^{2n}$$
, con $a \in \mathbb{R}$ (sol.: $\lim = 1$, si $a \in \mathbb{Z}$; $\lim = 0$, si $a \in \mathbb{R} \setminus \mathbb{Z}$).

Ejercicio 11.

Un cultivo consta inicialmente de N_0 bacterias, y se estudia durante un período de tiempo T, a lo largo del cual, y a intervalos de tiempo de igual longitud $\frac{T}{n}$, la población de bacterias aumenta proporcionalmente al producto de su número y de la longitud de dicho intervalo, con constante de proporcionalidad r > 0. Se pide: a) ¿Cuántas bacterias habrá al final del período T? b) ¿Cuántas bacterias habrá al final del período T si el número de intervalos tiende a hacerse infinito $(n \longrightarrow +\infty)$?

Una solución.

a) Designando por $0, \frac{T}{n}, \frac{2T}{n}, ..., \frac{(n-1)T}{n}, T$ los extremos de cada uno de los subintervalos del intervalo [0,T], y por $N(0)=N_0,N(\frac{T}{n}),N(\frac{2T}{n}),...,N(T)$ los correspondientes niveles poblacionales, es evidente que

$$N\left(\frac{T}{n}\right) = N(0) + rN(0)\frac{T}{n} = N_0\left(1 + r\frac{T}{n}\right)$$

$$N\left(\frac{2T}{n}\right) = N_0\left(1 + r\frac{T}{n}\right) + rN_0\left(1 + r\frac{T}{n}\right)\frac{T}{n} = N_0\left(1 + r\frac{T}{n}\right)^2$$
.....
$$N(T) = N_0\left(1 + r\frac{T}{n}\right)^n$$

b) $\lim_{n\to\infty} N(T) = N_0 e^{rT}$ (ley de crecimiento exponencial).

Ejercicio 12.

Uniendo los puntos medios de los lados de un cuadrado de lado l, se obtiene otro, en el que volvemos a hacer la misma operación, y así se continua indefinidamente. Calcula la suma de las áreas de los infinitos cuadrados obtenidos.

Una solución.

 $S=\lim_{n\to\infty}\left(l^2+\frac{1}{2}l^2+\frac{1}{2^2}l^2+\ldots+\frac{1}{2^n}l^2+\ldots\right)=\frac{1}{1-\frac{1}{2}}l^2=2l^2$ (dado que se trata de una progresión geométrica ilimitada de razón $\frac{1}{2}$ y primer término 1).

Ejercicio 13.

- a) Se invierte un capital inicial C_0 , a un interés compuesto anual i (tanto por uno), abonado en n períodos iguales cada año durante t años. Obtén el capital acumulado a su vencimiento.
- b) Calcula dicho capital acumulado cuando los intereses se acumulan en cada instante (es decir, cuando $n \to \infty$).

Una solución.

a) Llamando C(t) al capital acumulado al final del período de capitalización, y aplicando la fórmula de capitalización a interés compuesto con n períodos de capitalización cada año durante t años, se verifica que

$$C(t) = C_0(1 + \frac{i}{n})^{nt}$$

En esta expresión, $\frac{i}{n}$ representa el tipo de interés referido a la unidad de tiempo de capitalización y nt el número total de períodos de capitalización.

b) Pasando al límite en la anterior expresión cuando $n \to \infty$, se llega a $C = C_0 e^{it}$, que es la fórmula de capitalización con interés continuo.

Ejercicio 14.

Utilizando la identidad $H_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}=\log n+\gamma+\epsilon_n$, donde $\gamma=0.57721556649...=\lim(H_n-\log n)$ es la llamada Constante de Euler-Mascheroni (que no debe ser confundida con el número e=2.718281828459045...), y ϵ_n es un infinitésimo, es decir, una sucesión tal que $\lim \epsilon_n=0$:

a) Calcula

$$\lim \left(\frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{n+n}\right)$$

b) Prueba que la sucesión $\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)$ no está acotada, y que

$$\lim \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = +\infty.$$

Una solución.

a) Teniendo en cuenta que

$$\frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{n+n} = H_{2n} - H_n =$$

$$= \log(2n) + \gamma + \epsilon_n - (\log n + \gamma + \epsilon'_n) = \log 2 + \epsilon_n - \epsilon'_n$$

se deduce que

$$\lim \left(\frac{1}{1+n} + \frac{1}{2+n} + \frac{1}{3+n} + \dots + \frac{1}{n+n} \right) = \log 2.$$

b) Pasando al límite en

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \log n + \gamma + \epsilon_n$$

se deduce que

$$\lim\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)=\lim\log n+\gamma+0=+\infty.$$

Por tanto, la sucesión

$$\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)$$

no está acotada.

Ejercicio 15.

a) Prueba que si (a_n) es una sucesión de números reales y $\alpha \in \mathbb{R}$ es un número real tal que $\alpha < 1$, y se verifica que

$$\forall n \in \mathbb{N}, \text{ con } n \geq 2 : |a_{n+1} - a_n| \leq \alpha \cdot |a_n - a_{n-1}|,$$

entonces (a_n) es una sucesión de Cauchy.

b) Aplica el anterior resultado para probar que la sucesión definida por la ley de recurrencia

$$a_1 = 1, \ a_{n+1} = 1 + \frac{1}{a_n}, \forall n \in \mathbb{N}$$

es una sucesión de Cauchy. Calcula $\lim a_n$.

Una solución.

a) Aplicando sucesivamente la condición dada, se verifica $\forall n \in \mathbb{N}$ que

$$|a_{n+1} - a_n| \le \alpha \cdot |a_n - a_{n-1}| \le \alpha^2 \cdot |a_{n-1} - a_{n-2}| \le \dots \le \alpha^{n-1} \cdot |a_2 - a_1|$$

Por tanto, $\forall m, n \in \mathbb{N}$, con m > n, se verifica que

$$|a_{m} - a_{n}| \leq |a_{m} - a_{m-1}| + |a_{m-1} - a_{m-2}| + \dots + |a_{n+1} - a_{n}| \leq$$

$$\leq |a_{2} - a_{1}| \cdot (\alpha^{m-2} + \alpha^{m-3} + \dots + \alpha^{n-1}) =$$

$$= |a_{2} - a_{1}| \cdot \alpha^{n-1} \cdot \frac{1 - \alpha^{m-n}}{1 - \alpha} \leq |a_{2} - a_{1}| \cdot \alpha^{n-1} \cdot \frac{1}{1 - \alpha}$$

Si $a_2 = a_1$, entonces se deduce de la anterior expresión que $\forall n \in \mathbb{N} : a_n = a_1$, por lo que (a_n) es una sucesión de Cauchy. Supongamos que $a_2 \neq a_1$. Entonces, al ser $\alpha < 1$, sabemos que la sucesión (α^n) converge a 0, por lo que $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se verifica que

$$\alpha^{n-1} < \frac{\epsilon \cdot (1 - \alpha)}{|a_2 - a_1|}$$

de donde se sigue que $\forall m, n \in \mathbb{N}$, con $m, n \geq n_0$, se verifica que $|a_m - a_n| < \epsilon$, por lo que (a_n) es una sucesión de Cauchy.

b) Dado que $a_1 = 1$ y $a_{n+1} = 1 + \frac{1}{a_n}$, es evidente que $\forall n \in \mathbb{N} : a_n \ge 1$. Por tanto

$$a_n a_{n-1} = \left(1 + \frac{1}{a_{n-1}}\right) a_{n-1} = 1 + a_{n-1} \ge 2, \forall n \in \mathbb{N} \text{ con } n \ge 2.$$

Aplicando el anterior resultado, se verifica que

$$|a_{n+1} - a_n| = \left| \left(1 + \frac{1}{a_n} \right) - \left(1 + \frac{1}{a_{n-1}} \right) \right| =$$

$$= \left| \frac{1}{a_n} - \frac{1}{a_{n-1}} \right| = \left| \frac{a_n - a_{n-1}}{a_n a_{n-1}} \right| \le \frac{1}{2} \cdot |a_n - a_{n-1}|, \forall n \in \mathbb{N} \text{ con } n \ge 2$$

por lo que, aplicando la propiedad del apartado a), (a_n) es una sucesión de Cauchy. Designando por lim $a_n = a$, y pasando al límite en

$$a_{n+1} = 1 + \frac{1}{a_n}$$

se llega a la ecuación $a^2-a-1=0$, cuyas raíces son $a=\frac{1\pm\sqrt{5}}{2}$. Dado que $\forall n\in\mathbb{N}$ es $a_n\geq 1$, necesariamente ha de ser

$$\lim a_n = \frac{1+\sqrt{5}}{2}$$