Lecture 6 Note - Moments I (Moments in 2D)

Textbook Chapter 4.1-4.4

What is a moment?

- A force vector that makes a body turn about an axis
 - They have magnitude, direction, & point of application
 - Affects rigid bodies (an object that can turn)
 - Moment = (Force)(distance) → M = Fd
 - A moment's axis is best imagined as an axle.
 - Where does a moment point? Use the right hand rule:
 If your hand is O and your fingers curl with the rotation, your thumb points with
 M_a

How to solve 2D moment problems:

- In 2D moments rotate either clockwise (CW) or counterclockwise (CCW, + by default).
- A scalar approach can be used to solve 2D problems: $\frac{CCW}{M_B} = \frac{\sum (Fd)}{\sum (Fd)}$
- Varignon's Theorem: Moments can be broken up into their component pieces and then applied over distance.
 The moment of a force acting on any point equals the ∑ of the moments' components acting on that point.

Skip calculating the distance from F_o to O!

How to solve 3D moment problems (using cross product):

- 3D problems can be solved with the cross product table method from high school.
- The moment vector of a force about a point can be described by $\mathbf{A} \times \mathbf{B} = \mathbf{C}$, such that:
 - C is the moment about point O; A is its force vector and B its position vector from O to that force vector. C is perpendicular to the plane containing A and B (the cross product of two vectors gives a 3rd vector perpendicular to both)
 - Note that position vector \mathbf{B} doesn't have to be perpendicular to \mathbf{A} , as long as it touches \mathbf{A} 's line of action. The \mathbf{d} in $\mathbf{F}\mathbf{d}$ equals \mathbf{r} sin $\mathbf{\theta}$, where \mathbf{r} is the distance from \mathbf{B} to \mathbf{A} 's line of action, and $\mathbf{\theta}$ is \mathbf{B} 's angle of elevation to \mathbf{A} 's line of action.
 - Key definitions: $C = A \times B = \frac{\text{(AB sin}\theta)\mathbf{u}_c}{\text{(AB sin}\theta)\mathbf{u}_c}$; The magnitude of $C = \frac{AB \sin\theta}{\text{(AB sin}\theta)\mathbf{u}_c}$
 - The direction of *C* can be obtained using the right-hand rule mentioned earlier.
- <u>Tip: Pick the simplest position vector with the most 0s to simplify calculations.</u> As long as it starts on the axis of the moment and ends on the line of action of the force, it's OK.
- M_r about point O equals the sum of moments $M_1 + M_2 + M_3$ about point O, OR F_R crossed with a position vector from it to point O.