

★秘 密★

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	2/35

VGA CMOS Image Sensor BF3703 应用说明

Revision History

Revised. Date	Revision	Brief Description	Author	Proofread	Authorize
A/0	2010-8-16	Initial release	Wang Jun	Zhou Lei	Hu Wenge

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	3/35

目录

1.	. 摘要	4
2.	PIXEL ARRAY	5
3.	. TIMING CONTROLLER	8
	3.1 Array 控制	8
	3.2 Frame Rate Timing	
	3.2.1 系统时序调节	
	3.2.2 Dummy Pixel Adjustment	
	3.2.3 Dummy Row (dummy line) Adjustment	
	3.3 Exposure 控制	12
	3.3.1 曝光时间	
	3.3.2 Banding Filter	
	3.3.3 Manual Exposure 控制	
	3.3.4 Auto Exposure(AE) 控制	
	3.4 同步信号输出	15
4.	. 模拟信号处理单元	16
	4.1 GLOBAL GAIN 控制	16
	4.2 COLOR GAIN 控制	16
5.	. 图像信号处理(ISP)	17
	5.1 镜头阴影校正(Lens Shading Correction)	17
	5.2 曲线调整(GAMMA CORRECTION)	17
	5.3 去噪声(DENOISE)	18
	5.4 边缘增强(EDGE ENHANCEMENT)	
	5.5 特效(Special Effect)	19
	5.6 色彩校正(COLOR CORRECTION)	
	5.7 自动白平衡(AUTO WHITE BALANCE)	
	5.8 对比度(SATURATION)	
	5.9 对比度与亮度(CONTRAST AND BRIGHTNESS)	
	5.10 Test Pattern	22
6.	. 窗口选取(WINDOWING)	23
	6.1 前端 WINDOW	
	6.2 后端 WINDOW	24
7.	. 输出端口控制	26
8.	. 数据输出格式	26
9.	. CKGATE SUBSAMPLE	30

文件名称	BF3703CS Application Note			文件编号	TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页 次	4/35

10. SKIP FRAME 功能	32
11. FIX VSYNC&HSYNC	32
12. TWO-WIRE SERIAL INTERFACE & 芯片控制功能	32
12.1 Two-wire serial interface	32
12.2 系统状态转换	33
12.2.1 寄存器复位	33
12.2.2 芯片 standby 模式控制	34
13. 应用时序图	34

1. 摘要

此文档为设计者了解 BF3703 提供简要说明,针对 BF3703 在寄存器设定及应 用上给与指导,方便设计者成功建立应用方案。

BF3703 功能模块包括:

• Pixel Array (653x493)

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	5/35

- Timing Controller
- Column CDS
- Analog Signal Processing
- A/D Converter
- ISP Processing
- Data Format
- Two-wire Serial Interface

图例 1-1 BF3703 功能模块图

2. Pixel Array

BF3703 的像素阵列大小为 653 列,493 行,另外阵列上端还有两行 dark row。BF3703 的像素阵列上覆盖着彩色滤波片(color filter),并且彩色滤波片以 BG/GR 行交互模式排列,如图例 2-1。由于每个像素单元只能覆盖一种彩色滤波片,因此每个像素只能获得一种色彩信息,其它两种色彩信息只能通过色彩插值算法获得。RAW Bayer 数据格式就是一种没有经过色彩插值并且每个像素只有一种色彩信息的数据格式。

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	6/35

BF3703 Pixel Array

图例 2-1 BF3703 像素阵列图

BF3703 的数据输出格式有 RAW Bayer, Processed Bayer, RGB565, RGB555, RGB444, YCbCr4:2:2。其中 RAW Bayer 的输出顺序为 BG/GR; Processed Bayer 的输出顺序也为 BG/GR(输出顺序可以配置); RGB565/RGB555/RGB444 输出顺序可以通过寄存器配置; YCbCr4:2:2 的输出顺序可以配置。详细配置参考《章节 8. 数据输出格式》。

输出格式的选择具体参考表格 2-1。

表格 2-1 Output Data Format

Format	Pixel Data Output	Register Setting		
Format	Fixei Data Output	0x12[2]	0x12[0]	
Raw Bayer	8-bit R/8-bit G/ 8-bit B	0	1	
Processed RAW	8-bit R/8-bit G/8-bit B	1	1	
YCbCr4:2:2	8-bitY,8-bit U/8-bit Y, 8-bitV	0	0	
RGB565(0x3a[4:0]=00h~09h)	5-bit R ,6-bit G , 5-bit B	1	0	
RGB555(0x3a[4:0]=0ah~11h)	1-bit0,5-bit R ,5-bit G , 5-bit B	1	0	

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	7/35

RGB444(other)	4-bit0,4-bit R ,4-bit G , 4-bit B	1	0
---------------	-----------------------------------	---	---

BF3703 的 Resolution format 有多种,ISP 内部的预处理程序产生 VGA Resolution,QVGA Resolution,使用者也可以对 window 的参数进行配置来获得其它的 Resolution(参考说明 6 窗口选取)。同时针对 Raw Bayer,Processed Bayer 数据输出格式,BF3703 提供 VGA Resolution,QVGA Resolution。具体配置请参考表格 2-2。

表格 2-2 Resolution Register Setting

Resolution	Address	Value	Description (24MHz Input Clock)
	0x11	0x80	
	0x12	0x00	30fps VGA YUV
	0x11 0x80 30fps VGA RGB565/ RGB555/ RGB444		30fps VGA PGR565/ PGR555/ PGR444
	0x12	0x04	301ps VGA (GB300) (GB333) (GB444
VGA	0x11	0x80	30fps VGA Raw Bayer RGB mode
	0x12	0x01	301ps VGA Raw Bayer RGB Hidde
	0x11	0x80	30fps VGA Processed RGB mode
	0x12	0x05	30.p0 10/11/0000000 1102 mode
QVGA 及其他	0x11	0x80	30fps QVGA YUV
模式	0x12	0x10	Sulps QVGA TUV
	0x11	0x80	30fps QVGA RGB565/ RGB555/ RGB444
	0x12	0x14	301ps QVGA NGB303/ NGB444
	0x11	0x11 0x80	
	0x12	0x01	99.25 fps 1/2Subsample (QVGA) Raw Bayer RGB mode
	0x20	0x00	99.23 tps 1/23ubsample (QVGA) Naw Dayer NGD mode
	0x4A	0x67	
	0x11	0x80	
	0x12	0x01	51.37 fps 1/2Subsample (326colx492row) Raw Bayer RGB
	0x4A	0x77	mode
	0x20	0x03	
	0x11	0x80	
	0x12	0x05	99.25 fps QVGA Processed RGB mode
	0x20	0x00	30.20 Ips QVOAT Toolessed NOD mode
	0x4A	0x67	
	0x11	0x80	51.37 fps 1/2Subsample (326colx492row) Raw Bayer RGB
	0x12	0x05	mode
	0x4A	0x77	

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0		次	8/35

		,
0x20	0x03	
0x11	0x80	
0x12	0x00	99.25 fps QVGA YUV mode
0x20	0x00	99.25 lps QVGA 10V mode
0x4A	0x67	
0x11	0x80	
0x12	0x00	51.37 fps 1/2Subsample (326colx492row) Raw Bayer RGB
0x4A	0x77	mode
0x20	0x03	
0x11	0x80	
0x12	0x04	99.25 fps VGA RGB565/ RGB555/ RGB444
0x20	0x00	99.23 lps VGA (GB300) (GB300) (GB444
0x4A	0x67	
0x11	0x80	
0x12	0x04	51.37 fps 1/2Subsample (326colx492row) Raw Bayer RGB
0x4A	0x77	mode
0x20	0x03	

3. Timing Controller

BF3703 的时序控制包含以下几个部分:

- Array 控制
- Frame Rate 控制
- Exposure 控制
- 外部时钟输出(VSYNC, HREF, VCLK)

3.1 Array 控制

BF3703 采用逐行扫描的方式把阵列产生的信号依次输入到模拟信号处理单元,最开始的行计为 0 行,偶行数据输出顺序为 BGBG,奇行数据输出顺序为 GRGR。在寄存器的默认值下,Sensor 的阵列数据输出顺序是从上到下,从右到左。BF3703的扫描方向受寄存器 0x1e 控制,具体参照表格 3-1。Sensor 阵列默认输出大小为652X492,其它大小的阵列输出都由652X492 经过 Subsample 及 Window 得到,BF3703 可以通过寄存器 0x4a 控制实现 1/2Subsample(阵列输出 326X246)。

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	9/35

表格 3-1 扫描方向控制方式

Function	Address Description		
Horizontal Mirror	0v4o[5]	1'b0: Normal	
Horizontal Wilfror	0x1e[5]	1'b1: Horizontal Mirror	
Vertical Mirror	0v4 o[4]	1'b0: Normal	
vertical wirror	0x1e[4]	1'b1: Vertical Mirror	
Normal	0x4a[2]	1'b0:output 652X492	
1/2Subsample	0x4a[2:0]	3'b111:ouput 326X246	

输出模式变化的同时,需要修改窗口配置,窗口由寄存器 0x17,0x18,0x19,0x1a,0x03 控制。其中{0x17,0x03[1:0]}可设置窗口的水平方向的起始地址,{0x18,0x03[3:2]}可设置窗口的水平方向的结束地址;{0x19,0x03[5:4]}可设置窗口的垂直方向的起始地址,{0x1a,0x03[7:6]}可设置窗口的垂直方向的结束地址。例如,要输出 1/2Subsample,窗口大小为 326x246 ,则需满足:

(0x18[7:0]*4-0x17[7:0]*4)+ (0x03[3:2]-0x03[1:0]) = 326;(0x1a[7:0]*4-0x19[7:0]*4)+(0x03[7:6]-0x03[5:4]) = 246.

3.2 Frame Rate Timing

BF3703 有三种 Frame Rate 调整方式:

- 时钟预分频(Clock Pre-scalar)
- Dummy Pixel Adjustment
- Dummy Line (Dummy Row) Adjustment

注: 做 subsample 会改变 Frame Rate (帧率)。因为做 subsample 会改变默认的帧长和行长: normal 输出时,默认帧行长分别为 510 和 784; 1/2subsample 时,默认帧行长分别为 264 和 458。

3.2.1 系统时序调节

(1) 系统内部时钟调节

Sensor 的内部时钟通过时钟模块控制实现。外部时钟输入后,送入到 MCLKDIV 模块,通过 CLKRC(0X11)寄存器控制 sensor 内部输入时钟频率,从而改变内部时钟频率。具体的时钟控制方式,请参考以下表格:

MCLKDIV 模块:系统时钟分频

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	10/35

F(XCLK): 芯片输入时钟频率 F(MCLK): 内部主时钟频率

相关寄存器见表 3-2。

表格 3-2 MCLK-DIV 寄存器说明

Function	Address	Description
		when 0x11[6]=0
	0x11[7]	1'b0: Max MCLK=1/2(XCLK)
		1'b1: Max MCLK=XCLK
	0x11[6]	1'b1:F(MCLK)=F(XCLK)
		when 0x11[7]=1
		2'b00 : divided by 1 F(MCLK)=F(XCLK)
时钟分频		2'b01 : divided by 2 F(MCLK)=F(XCLK)/2
时护力频		2'b10 : digital standby mode(Internal clock frozen)
	0 44 55 41	2'b11 : divided by 4 F(MCLK)=F(XCLK)/4
	0x11 [5:4]	when 0x11[7]=0
		2'b00 : divided by 1 F(MCLK)=F(XCLK)/2
		2'b01 : divided by 2 F(MCLK)=F(XCLK)/4
		2'b10 : digital standby mode(Internal clock frozen)
		2'b11 : divided by 4 F(MCLK)=F(XCLK)/8

时钟预分频主要是改变 sensor 输出图像的最大帧率,如下表 3-3

表格 3-3 sensor 输出图像的最大帧率与时钟频率的关系

Format	F _{XCLK} (MHz)	CLKRC (0x11)	F _{MCLK} (MHz)	F _{VCLK} (MHz)	Frame Rate
YUV/YCbCr /RGB565 (VGA)	24	0x80	24	24	30
Bayer RGB (VGA)	24	0x80	24	12	30

3.2.2 Dummy Pixel Adjustment

BF3703 可以通过插入 Dummy pixel 来调整帧率。

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	11/35

图例 3-1 Dummy Pixel 插入位置

插入 Dummy pixel 可以改变行长,而积分时间和帧长都是以行为单位来计算的, 因此当行长变长,而帧长和积分时间不变时,每一帧实际占用的时间(即 pclk 数) 增大,从而导致帧率变慢。

插 Dummy pixel 功能是由寄存器 0x2a 和 0x2b 控制的,只能插在 HREF 下降沿后面 (HREF 低电平无效期间),具体的计算公式如下

LINE_LENGTH = LINE_LENGTH_DF + {0x2a[7:4], 0x2b[7:1],1'B0}; (LINE_LENGTH_DF 即默认的行长, normal: 784; 1/2subsample: 458)。

3.2.3 Dummy Row (dummy line) Adjustment

BF3703 可以通过插入 Dummy Row 或者 Dummy Line 来改变帧率。

首先说明两个信号: VSYNC_DAT,和有效数据行完全对应的帧同步信号; VSYNC_IMAGE,包括了 DUMMY LINE 的帧同步信号,一般情况下都比有效帧同步信号 VSYNC_DAT 长(默认情况下 DUMMY LINE 的值非零,把 DUMMY LINE 的 4 个寄存器都写为 0,则 VSYNC_DAT 与 VSYNC_IMAGE 会一样长)。芯片输出的 VSYNC 信号是 VSYNC_DAT 还是 VSYNC_IMAGE 由寄存器 0x15[5]控制,默认情况下 0x15[5]为 0,即选择的是 VSYNC_IMAGE 信号输出。

插入 Dummy Row 和 Dummy line 可以改变一帧中的空白行数,从而达到改变 帧率的目的,但在实际应用中两者又有以下差别(下面假定输出的 VSYNC 高电平 有效):

- a) 两者对同步信号 VSYNC 的影响不同, Dummy Row 是插在 VSYNC_IMAGE 信号的无效期间(低电平期间,即 vertical blank), Dummy line 是插在 VSYNC_IMAGE 信号的有效期间(高电平期间); VSYNC_DAT 的高电平始终不受影响。
 - b) 两者插入方式的异同:

Dummy line 只能手写插入,是由寄存器 0x93、0x92、0xe3、0xe4 控制的,0x93

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	12/35

和 0x92 控制具体插入多少行 dummy line 在有效数据(即 VSYNC_DAT 信号)之后, 而 0xe3、0xe4 控制具体插入多少行 dummy line 在有效数据(即 VSYNC_DAT 信号) 之前,最终一帧中插入的 Dummy line 数等于{0xe4[7:0], 0xe3[7:0] } + {0x93[7:0], 0x92[7:0] }。插入 dummy line 不会改变 vblank 的宽度,如图 3-2 所示

c) 当积分时间+3 大于最小帧长(插入 Dummy line 数+输出有效帧长+默认 4 行 vblank) 时,vblank 数等于积分时间(INT_TIM)+3 与插入 Dummy line 数+输出有效帧长之差。

图例 3-2 插入 Dummy Row 或 Dummy line, Vsync 高电平有效

表格 3-4 Dummy Row and Dummy pixel register

Function	Address	Name	Description
Dummy Line1	{0x93,	{DMLINEH1[7:0],	1 digital count is equal to 1 line(insert before
Dummy Line1	0x92}	DMLINEL1[7:0]}	active row)
Dummy Line2	{0xe4,	{DMLINEH2[7:0],	1 digital count is equal to 1 line(insert after active
Dummy Line2 0xe3}		DMLINEL2[7:0]}	row)
{0x2a,		{DPIXELH[7:4],	1 digital count is equal to 1 pixel(insert after
Dummy Pixel	0x2b}	DPIXELL[7:0]}	active pixel)

3.3 Exposure 控制

BF3703 有自动曝光和手动曝光两种曝光控制方式,由 0x13 寄存器进行控制。 BF3703 的曝光方式采用'rolling shutter',即以行时间为单位进行逐行曝光。

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	13/35

3.3.1 曝光时间

曝光时间单位为行间隔时间。

Texposure=AEC[15:0]x trow interval

 $AEC[15:0]={0x8c[5:0],0x8d[7:0]}$

t_{ROW INTERVAL}=(默认行长+dummy pixes) x t_{INTCLK}

注: t_{INTCLK}: 内部时钟

t EXPOSURE: 曝光时间

t ROW INTERVAL: 行间隔时间

曝光时间的用法要点:

(1) 0x8c、0x8d 在0x13[0]=0时才能手写;

(2)) 无论是自动曝光还是手动曝光,曝光时间AEC[15:0] = { 0x8c[5:0], 0x8d[7:0]}。

3.3.2 Banding Filter

50hz 或者 60hz 光源下,曝光时间必须是光源 1/2 周期的整数倍才能避免 Sensor产生 Banding。通过公式换算,可以从光源的周期得到消除 Banding 的最小时间,50HZ 下为 1/100s,60HZ 下为 1/120s,它们对应的行数即分别为 50hz 及 60hz 光源下消除 Banding 的最小步长,实际曝光时间必须是这个步长的整数倍才能消除 Banding。寄存器{0x89[4],0x9d}存储 50HZ 的最小 Banding 步长,{0x89[5],0x9e}存储 60HZ 的最小 Banding 步长。

表格 3-5 Exposure 和 Banding Filter 寄存器

Function	Address	Description		
曝光时间寄存器	0x8c[7:0], 0x8d[7:0]	Real integration time.		
Banding Filter	0x9d,0x89[4],	50hz banding Filter ={0x89[4],0x9d}		
Banding Filter	0x9e,0x89[5]	60hz banding Filter ={0x89[5],0x9e}		
Banding Filter	0x80[0]	1'b0: Select 60hz banding Filter		
Selection	ολου[υ]	1'b1: Select 50hz banding Filter		
Experience time can be less		INT_TIM lower than INT_STEP_5060 or not.		
Exposure time can be less	0x80[6]	1'b0: Limit int_tim>=step(no flicker),		
than 1/100s or 1/120s		1'b1: Int_tim can be less than 1*int_step(existing		

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	14/35

		flicker).
--	--	-----------

3.3.3 Manual Exposure 控制

0x13[0] 为 0 时进入 Manual Exposure 方式,此时后端处理可以在 AEC[15:0] 写入曝光时间。写入的曝光时间必须是光源 1/2 周期的整数倍以避免产生 banding 噪声。

3.3.4 Auto Exposure (AE) 控制

设置 0x13[0]以及 0x13[2]为 1'b1 进入 Auto Exposure (AE)方式,此时曝光量不受后端写入控制,只根据 AE 算法自动调整曝光时间和模拟增益。AE 算法根据当前的亮度值调整曝光时间和模拟增益,使当前的亮度向目标亮度区间靠拢。如果环境很暗, AE 算法将会通过提高增益和拉长曝光时间来调整整幅图像的亮度,如果增益和曝光时间都达到了给定的最大值,但还没有达到目标亮度区间,则 AE 算法将认为这就是调整的极限,将不会继续调整。如果周围的环境非常亮,AE 算法通过减少增益和曝光时间来调整图像的亮度,直到使当前的图像亮度更接近目标亮度区间。

表格 3-6 Auto Exposure 寄存器

Function	Address	Description
AEC Enable	0x13[0]	Bit[0]: AEC Enable. 1'b0:OFF, 1'b1: ON.
AGC Enable	0x13[2]	Bit[2]: AGC Enable. 1'b0:OFF, 1'b1: ON.
AE Speed	0x81[8:0]	Frame count value for AE speed

表格 3-7 AE 控制寄存器

Address	Name	Default Value	Description
			Bit[3]: Select when to use small steps to adjust the int_time:
			0:when INT_TIM lower than 10ms,
0x13	0x13 COM8	0x07	1:when INT_TIM lower than 20ms.
			Bit [2]: AGC Enable. 1'b0: OFF, 1'b1: ON.
			Bit [0]: AEC Enable. 1'b0: OFF, 1'b1: ON.
0x24	AE_LOCK1	0x8a	Y target value 1.
0x25	AE_LOCK2	0x7a	Y target value 2
0,,00		0.45	AE control mode.
0x80	AE_MODE	0x45	Bit[7]: AE mode selection,

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	15/35

			1'b0: Use Y (from color space module).			
			1'b1: Use rawdata (from gamma module), when special			
			effect in color interpolation module is selected,0x80[7] must			
			set to be 1.			
			Bit[6]: INT_TIM lower than INT_STEP_5060 or not.			
			1'b0: Limit int_tim>=step(no flicker),			
			1'b1: Int_tim can be less than 1*int_step(existing flicker).			
			Bit[5:4]: center window select.			
			2'b00: ROW*12/16, COL*12/16,			
			2'b01: ROW*10/16, COL*10/16,			
			2'b10: ROW* 8/16, COL*8/16,			
			2'b11: ROW* 6/16, COL*6/16.			
			Bit[3:1]: Weight select. 3'b000: 4/8*center+4/8*border, 3'b001: 5/8*center+3/8*border,			
			3'b010: 6/8*center+2/8*border,			
			3'b011: 7/8*center+1/8*border,			
			3'b1xx: Center 100%.			
			Bit[0]: Banding filter value select.			
			1'b0: Select {0x89[5],0x9E[7:0]} as Banding Filter Value.			
0.00			1'b1: Select {0x89[4],0x9D[7:0]} as Banding Filter Value.			
0x82	GLB_GAIN_MIN	0x0a	Global Gain Minimum			
0x83	GLB_GAIN_L	0x1a	GLB_GAIN_MEANL.			
0x84	GLB_GAIN_M	0x1B	GLB_GAIN_MEANM.			
0x85	GLB_GAIN_H	0x26	GLB_GAIN_MEANH.			
0x86	GLB_GAIN_MAX	0x2c	Global Gain Maximum, (the max value is limited to 0x3f)			
0x87	GLB_GAIN	0x16	Global gain register(read only)			
0x8b	INT_TIM_MIN	0x06	Integration time min, effective only when 0x80[6]=1'b1.			
0x8c	INT_TIM[15:8]	0x01	Real integration time.			
0x8d	INT_TIM[7:0]	0xcb	- Iteal integration time.			
0x8e	INT_TIM_MAX_H	0x0b	Maximum Integration.			
0x8f	INT_TIM_MAX_L	0Xf5	maximum integration.			

3.4 同步信号输出

BF3703 输出两种同步信号: VSYNC_IMAEG/ VSYNC_DAT 和 HREF/HSYNC。当 0x15[6]置'0'时,行同步信号为 HREF; .当 0x15 [6] 置'1'时,行

文件名称	BF3703CS Application Note			文件编号	TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页 次	16/35

同步信号为 HSYNC; 当 0x15[5]置'0'时,行同步信号为 VSYNC_IMAEG; .当 0x15 [5] 置'1'时,行同步信号为 VSYNC_DAT。默认输出 HREF 和 VSYNC_IMAEG。建议应用端如无特殊要求,统一使用 HREF 输出,即 0x15 [6]置 0。

VSYNC_IMAEG/VSYNC_DAT, HREF/HSYNC 的极性分别由寄存器 0x15[1], 0x15[0]控制。建议接收端使用 VCLK 上升沿采集数据。

表格 3-8 输出同步信号控制寄存器

Function	Address	Description
HSYNC Polarity	0x15[0]	1'b1: positive
VSYNC Polarity	0x15[1]	1'b1: Negative
Output HSVNC or HREE	0v45[6]	1'b0: HREF
Output HSYNC or HREF	0x15[6]	1'b1: HSYNC
Output HSVNC or HDEE	0v45[5]	1'b0: VSYNC_IMAEG
Output HSYNC or HREF	0x15[5]	1'b1: VSYNC_DAT

4. 模拟信号处理单元

4.1 Global gain 控制

BF3703 的 Global gain 是非线性的。当 AEC 处于自动模式下,Global gain 根据 AE 算法自动调整;当 AEC 处于手动方式,Global gain 可以写 0~0x3f 之间的任意值。

4.2 Color gain 控制

BF3703 的 Color Gain 是线性的,它包括 RED GAIN,BLUE GAIN 和 GREEN GAIN。GGAIN(0x6A,0x23)只能手动配置。当白平衡处于自动模式下,RGIAN (0x02),BGAIN (0x01)将根据白平衡算法自动调整,使图像实时处于白平衡状态下。当白平衡处于手动模式下,用户可在 RGAIN (0x02)、BGAIN(0x01)寄存器中写入任意值,RGAIN(0x02),BGAIN(0x01)范围在 0-0x3f 之间;GGAIN{0x6A,0x23}范围在 0-0x3f 之间。通过调整 color gain 可以使图像在不同色温下达到白平衡,其

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	17/35

中 GGAIN 的调整还区分奇偶列,从而校正奇偶输出的差异。

GREEN ODD GAIN={0x6A[2:0],0x23[2:0]};

GREEN EVEN GAIN={0x6A[2:0],0x23[6:4]}.

5. 图像信号处理(ISP)

图像信号处理模块包括 Lens Shading Correction, Gamma Correction, Bad Pixel Correction, Color Interpolation, Low Pass Filter, Edge Enhancement, Color Correction, Color Space Conversion, Auto White Balance, Saturation, Contrast 等功能模块。

5.1 镜头阴影校正(Lens Shading Correction)

由于经过镜头的光线存在从中心到四角的衰减,位于边缘的像素采集的光亮度远远小于中心像素采集的光亮度,表现在图像上的效果就是亮度从图像中心到四周逐渐衰减,且离图像中心越远亮度越暗。为了补偿四周的亮度,引入了 Lens Shading Correction 模块。相关的寄存器如下表 5-1。

表格 5-1 Lens Shading Correction 寄存器

Address	Name	Default value	Description
			Lens shading offset selection.
0x33	OFFSET_MODE	0x00	Bit[7] 1'b0: use black_aver as offset
			1'b1: use register OFFSET_REG as offset
0x34	OFFSET_REG	0x38	lens shading offset(reg)
0x35	R_COEF	0x46	lens shading gain of R
0x65	G_COEF	0x46	lens shading gain of G
0x66	B_COEF	0x46	lens shading gain of B

5.2 曲线调整 (Gamma Correction)

BF3703 的 gamma curve 分为 15 段分别作线性校正,包含 gamma offset。 Gamma offset 及 gamma curve 的斜率都是可编程的,表 5-2 列出了 gamma control 相关的寄存器。

表格 5-2 Gamma Correction 寄存器

文件名称	BF3703CS Application Note			文件组	编号	TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	18/35

Address	Name	Default value	Description
0x39	OFFSET2	0x80	Gamma Offset 2: Bit[7]: 0: Positive; 1: Negative Bit[6:0]: Value.
0x3f	OFFSET1	0x9a	GammaOffset 1: Bit[7]: 1'b0: Use black_aver as offset. 1'b1: Use register OFFSET1[6:0] as offset. Bit[6:0]:OFFSET1 value.
0x40	k0	0x50	Gamma Correction Slop Coefficients
0x41	k1	0x50	Gamma Correction Slop Coefficients
0x42	k2	0x58	Gamma Correction Slop Coefficients
0x43	k3	0x55	Gamma Correction Slop Coefficients
0x44	k4	0x50	Gamma Correction Slop Coefficients
0x45	k5	0x49	Gamma Correction Slop Coefficients
0x46	k6	0x44	Gamma Correction Slop Coefficients
0x47	k7	0x3e	Gamma Correction Slop Coefficients
0x48	k8	0x38	Gamma Correction Slop Coefficients
0x49	k9	0x34	Gamma Correction Slop Coefficients
0x4b	k10	0x30	Gamma Correction Slop Coefficients
0x4c	k11	0x2d	Gamma Correction Slop Coefficients
0x4e	k12	0x28	Gamma Correction Slop Coefficients
0x4f	k13	0x23	Gamma Correction Slop Coefficients
0x50	k14	0x20	Gamma Correction Slop Coefficients

5.3 去噪声 (Denoise)

该功能可以实现自动去噪。相关寄存器见表格 5-3。

表格 5-3 Denoise 寄存器

Address	Name	Default value	Description			
0x70	IntCtr	0x6f	Bit[0]:Lpf_Switchlow pass filter on/off 1'b0:off 1'b1:on			
0x72	DenCtr	0x4f	Bit[7:4]:Base_VARbase threshold for denoise			
0x73	EdgCtr	0x2f	Bit[7:4]:Edg_Off_basebased value for edge modify			

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	19/35

r				
l	0x74	DaECtr	0x27	Bit[3:0]:Base_gl_gaindefault global gain value

注: 0x72[7:4]写值越大,噪声越小; 0x73[7:4]写值越大,噪声越小; 0x74[3:0]写值越小,噪声越小。

5.4 边缘增强 (Edge Enhancement)

边缘增强模块对边缘进行强化,使整个图像看起来更加清晰锐利。相关寄存器 见表格 5-4。

表格 5-4 边缘增强寄存器

Address Name	Default value	Description		
0x70 IntCtr	0x6f	Bit[7:6]:Edge_Gain_Ppositive edge enhancement gain 2'b00:0.5 2'b01:1.0 2'b10:1.5 2'b11:2.0 Bit[5:4]:Edge_Gain_Nnegative edge enhancement gain 2'b00:0.5 2'b01:1.0 2'b10:1.5 2'b11:2.0 Bit[3]:Edge_Switchedge enhancement on/off 1'b0:off 1'b1:on		

注: 0x70[7:6]写值越大,边缘的亮边越亮,即边缘增强越明显; 0x70[5:4]写值越大,边缘的暗边越暗,即边缘增强越明显。

5.5 特效 (Special Effect)

在 BF3703 中实现了浮雕(常规素描,蓝雕,铜雕,黑雕,白雕,灰雕)以及素描等特效功能,相关寄存器见表格 5-5。

注意: 做浮雕和素描特效时,需要将 AE 和 AWB 关闭,即将寄存器 0x13 写 8'h00。 表格 5-5 浮雕与素描寄存器设置

Address	Name	Default value	Description
			Bit[7]:Spe_Eff_Enspecial effect output on/off
			1'b1:on b0:off
			Bit[6:4]:Spe_Eff_Selspecial effect choice
0x76	EffCtr	0x00	3'b011:sketch
			3'b100:cuprum relievo 3'b101:blue relievo
			3'b110:black relievo 3'b111:white relievo
			default: normal relievo

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	20/35

5.6 色彩校正(Color Correction)

Color Correction 起到色彩校正作用,用以消除由 color filter 及 micro lens 等产生的 crosstalk 和其它色彩失真,还原真实色彩。色彩校正系数是一个 3*3 的矩阵。相关寄存器描述见表 5-6。

表格 5-6 Color Correction 寄存器

Address	Name	Default value	Description	
0x51	TARGET1	0x01	Color Correction Coefficients 1.	
0x52	TARGET2	0x0d	Color Correction Coefficients 2.	
0x53	TARGET3	0x0e	Color Correction Coefficients 3.	
0x54	TARGET4	0x0a	Color Correction Coefficients 4.	
0x57	TARGET5	0x42	Color Correction Coefficients 5.	
0x58	TARGET6	0x4c	Color Correction Coefficients 6.	
0x59	TARGET7	0x55 Color Correction Coefficients 7.		
0x5a	TARGET8	0x76 Color Correction Coefficients 8.		
0x5b	TARGET9	0x21	Color Correction Coefficients 9.	
0x5c	TARGET	0X0e	BIT[7]:ADJUST ENABLE 1'b1:DISABLE; 1'b0:ENABLE; BIT[4] :sign of Color Correction Coefficients 9 BIT[3:0]:adjust Color Correction Coefficient	
0x5d	TARGET_SIGN	0X9c	BIT[0]: sign of Color Correction Coefficients 1 BIT[1]: sign of Color Correction Coefficients 2 BIT[2]: sign of Color Correction Coefficients 3 BIT[3]: sign of Color Correction Coefficients 4 BIT[4]: sign of Color Correction Coefficients 5 BIT[5]: sign of Color Correction Coefficients 6 BIT[6]: sign of Color Correction Coefficients 7 BIT[7]: sign of Color Correction Coefficients 8	
0x60	GLB_GAIN_TH	0X20	BIT[6:0] : GLB_GAIN_TH for CC adjust	

5.7 自动白平衡(Auto White Balance)

BF3703 支持自动白平衡以及手动白平衡。设置 0x13[1]为 1'b1 时,自动白平衡功能开启;设置 0x13[1]为 1'b0 时,手动白平衡功能开启。在不同色温环境下,自动或者手动调节 Color Gain 可以使白色的物体还原为白色。相关寄存器见表 5-7。

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	21/35

表格 5-7 Auto White Balance 寄存器

衣俗 5-7	Auto Wille Balance 可什品	Default	
Address	Name	value	Description
			Bit[1]: YCBCR limit enable.
			bit[0]:For manual write RGAIN/BGAIN mode:
			0: RGAIN/BGAIN can't be wrote if AWB_EN=0 not
0Xa0	UPDATE_MODE	0x07	strides over vsync's negedge
			1: RGAIN/BGAIN can be wrote no matter
			AWB_EN=0 strides over vsync's negedge or not
			bit[1]:YCBCR limit enable
0Xa1	AWB_LOCK	0x31	bit[7:4]:Auto White Balance Lock Boundary
	AWB_SPEED		bit[3:0]:AWB Update Speed
0Xa2	BLUE_GAIN_LOW_IN	0x0a	The low limit value of blue gain
0Xa3	BLUE_GAIN_HIGH_IN	0X20	The high limit value of blue gain
0Xa4	RED_GAIN_LOW_IN	0X0c	The low limit value of red gain
0Xa5	RED_GAIN_HIGH_IN	0X26	The high limit value of red gain
0Xa6	COUNT_EN	0X04	AWB criterion: white pixels count threshold, '1'
			equal to 1024 pixels
0Xa7	CB_TARGET	0X80	Cb frame average target value
0Xa8	CR_TARGET	0X80	Cr frame average target value
0Xa9	CB_LIMIT	0X1e	AWB criterion :CB
0Xaa	CR_LIMIT	0X19	AWB criterion :CR
0Xab	CBCR_LIMIT	0X1e	AWB criterion :CBCR
0Xac	Y_LOW	0X3c	AWB criterion :Y_LOW
0Xad	Y_HIGH	0Xf0	AWB criterion :Y_HIGH
0X6a	GNGAINREG	0X81	bit[2:0]G channel Gain
UNUA	GNGAINNEG	0/(01	(bit2~bit0 is used as GreenGain[5:3]).
			GreenGain[2:0]:
			Bit[6:4]: For even column (used as
0X23	GLGAINREG	0X33	GreenEgain[2:0]).
			Bit[2:0]: For odd column (used as
			GreenOgain[2:0]).
0X02	RED_GAIN	0X15	red gain register
0X01	BLUE_GAIN	0X19	blue gain register

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	22/35

5.8 对比度(Saturation)

Saturation 模块调整图像的色彩饱和度,使图像的色彩鲜艳。相关寄存器见表 5-8。

表格 5-8 Saturation 寄存器

Address	Name	Default value	Description
0xb0	SAT_CTR1	0xc0	saturation control: Bit[7] saturation mode 1'b0: normal 1'b1: auto.
0xb1	CB_COEF	0xc6	Cb Coefficient for Color Saturation.
0xb2	CR_COEF	0xcc	Cr Coefficient for Color Saturation.

5.9 对比度与亮度(Contrast and Brightness)

Contrast 模块调整图像的对比度,使图像的亮度层次分明,由寄存器 0x56 控制。当 0x56 写值大于 0x40,值越大,对比度越强;当 0x56 写值小于 0x40,值越小,对比度越弱。Brightness 调整图像的整体亮度,由寄存器 0x55 控制。0x55 寄存器的最高位为符号位,值为 1 时,亮度变暗,值为 0 时,亮度变亮。相关寄存器见表5-9。

表格 5-9 Contrast and Brightness 寄存器

Address	Name	Default value	Description		
0x55	BRIGHT	0x00	Brightness control Bit[7] :1'b0:positive; 1'b1:negative Bit[6:0] : value		
0x56	Y_COEF	0x40	Y Coefficient for Contrast		

5.10 Test Pattern

BF3703 提供多种 pattern 模式,由 0xb9 控制。0xb9[7]为使能位,为 1'b1 时启动 pattern 模式,为 1'b0 时关闭 pattern 模式。0xb9[6:5]控制 pattern 输出模式,2'b00 对应彩条图 (color bar pattern)模式,2'b01 对应连续渐变 (gradual pattern)模式,2'b10 对应手写模式,2'b11 对应自动浏览模式。设置 0xb9[4]为 1'b1 时,输出 vertical

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	技术文件版本号		页	次	23/35

pattern;设置 0xb9[4]为 1'b0 时,输出 horizontal pattern。0xb9[3:0]控制 gradual pattern 的类型。相关寄存器见表 5-10。

表格 5-10 test pattern 寄存器

Address	Name	Default value	Description		
0xb6	MAN_R	0x80	Define R value		
0xb7	MAN_G	0x80	Define G value		
0xb8	MAN_B	0x80	Define B value		
0xb9	TEST_MODE	0x00	Bit[7]: 1'b1: test pattern enable. 1'b0: bypass test pattern. Bit[6:5]: 2'b00: output color bar pattern. 2'b01: output gradual pattern. 2'b10: output manual write R/G/B. 2'b11: auto mode. Bit[4]: 1'b0:vertical pattern; 1'b1:horizontal pattern. Bit[3:0]: gradual gray pattern mode control.		

6. 窗口选取(Windowing)

6.1 前端 window

BF3703 可以通过修改前端 window 的初始的行起始结束地址及列起始结束地址输出任意大小的 pixel 阵列,由寄存器 0x4a[3],0xd9,0xda,0xdb,0xdc, 0xdd控制。0x4a[3]决定是否做前端 window,设置 0x4a[3]为 1'b0 不做前端 window,设置 0x4a[3]为 1'b1 做前端 window。

行起始地址{0xd9[7:0], 0xdd[5:4]} 可设置窗口的水平方向的起始地址; 行结束地址{0xda[7:0], 0xdd[7:6]}可设置窗口的水平方向的结束地址; 列起始地址{0xdb[7:0], 0xdd[1:0]} 可设置窗口的垂直方向的起始地址; 列结束地址{0xdc[7:0], 0xdd[3:2]} 可设置窗口的垂直方向的结束地址; 图像宽 IMAGE_H_LENGTH= {0xda[7:0], 0xdd[7:6]}- {0xd9[7:0], 0xdd[5:4]}, 图像高 IMAGE_V_LENGTH= {0xdc[7:0], 0xdd[3:2]}- {0xdb[7:0], 0xdd[1:0]}。 例如: 如果要输出 600 x500 的阵列大小,则需满足:

{0xda[7:0], 0xdd[7:6]}- {0xd9[7:0], 0xdd[5:4]}=600;

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	24/35

 $\{0xdc[7:0], 0xdd[3:2]\}-\{0xdb[7:0], 0xdd[1:0]\}=500;$

起始地址前与结束地址后的行列不读取数据。

图例 6-1 取 Windows 的形式

前端 window 设置的相关寄存器见表 6-1。

表格 6-1 前端 window 寄存器

Address	Name	Default value	Description
0x4a	SUBSAMPLE	0x60	Bit[3]:Window enable.
0			1: Realize window, 0: Normal output(default).
0xd9	H START H	0x00	When subsample[3]==1'b1,that in window mode,
OXGS	II_OTAKI_II	0,00	X_WIN_START [9:2].
0xda	H END H	H END H 0xa3 When subsample[3]==1'b1,that in window mod	
UXUA	DXUA		,X_WIN_END[9:2].
0xdb	V START H	0x00	When subsample[3]==1'b1,that in window mode,
UXUD	0xdb V_START_H		Y_WIN_START [8:2].
Ovdo	V END H	0x7b	When subsample[3]==1'b1,that in window mode,
Oxuc	0xdc V_END_H 0x		Y_WIN_END [8:2].
			In window mode.
			Bit [1:0]:X_WIN_START [1:0].
0xdd	VH_ADD_L	0x00	Bit [3:2]:X_WIN_END [1:0].
			Bit[5:4]:Y_WIN_START[1:0].
			Bit[7:6]:Y_WIN_END[1:0].

6.2 后端 window

后端 window 针对 Raw Bayer/YUV/RGB565/RGB555/RGB444 输出有效,可 实现任意位置、任意大小的窗口输出,由寄存器 0x17, 0x18, 0x19, 0x1a, 0x03

文件名称	BF3703CS Application Note			文件	编号	TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	25/35

控制。其中{0x17,0x03[1:0]}可设置窗口的水平方向的起始地址,{0x18,0x03[3:2]}可设置窗口的水平方向的结束地址;{0x19,0x03[5:4]}可设置窗口的垂直方向的起始地址,{0x1a,0x03[7:6]}可设置窗口的垂直方向的结束地址。例如,要输出窗口大小为480x360的图像,则需满足

[0x18[7:0]*4-0x17[7:0]*4]+ (0x03[3:2]-0x03[1:0]) = 480;[0x1a [7:0]*4-0x19[7:0]*4]+ (0x03[7:6]-0x03[5:4]) = 360.

表格 6-2 窗口设置举例

Window	640x480	480x360						
Address	Value	Value						
0x17	0x00	0x0f						
0x18	0xa0	0x87						
0x19	0x00	0x0f						
0x1a	0x78	0x69						
0x03	0x00	0x00						

图例 6-2 取窗示意图

后端 window 设置的相关寄存器见表 6-3。

表格 6-3 后端 window 寄存器

Address	Name	Default value	Description
0x17	H_START_H	0x00	Output Format-Horizontal Frame(HREF column)start high 8-Bit(low 2Bits are at VHREF[1:0])
0x18	H END H	0xa0	Output Format-Horizontal Frame(HREF column)end high
	1,77,71		8-Bit(low 2 Bits are at VHREF[3:2]) Output Format Vartical Frame(row)start high 8 Bit(low 2 Bits
0x19	V_START_H	0x00	Output Format-Vertical Frame(row)start high 8-Bit(low 2 Bits are at VHREF[5:4])
0x1a	V_END_H	0x78	Output Format-Vertical Frame(row)end high 8-Bit(low 2 Bits
			are at VHREF[7:6])

文件名称	BF3703CS Application Note			文件编	号	TS-SEN-PD-0008
文件属性	技术文件版本号		A/0		次	26/35

			VREF and HREF control.
			Bit[7:6]: VREF end low 2 Bits(high 8 Bit at VSTOP[7:0])
0x03	VH_ADD_L	0x00	Bit[5:4]: VREF start low 2 Bits(high 8 Bit at VSTART[7:0])
			Bit[3:2]: HREF end 2 LSB(high 8 MSB at register HSTOP)
			Bit[1:0]: HREF start 2 LSB(high 8 MSB at register HSTART)

7. 输出端口控制

0x09的低两位可以用来调整 I/O的驱动电流。

表格 7-1 输出驱动电流

Function	Address	Description
输出驱动能力	0x09[1:0] 0x20[6]	when 0x20[6]=0 0x09 [1:0]: data & clk & hsync output drive capability 00:1x 01:2x 10:3x 11:4x when 0x20[6]=1 Bit[1:0]: data output drive capability 00:1x 01:2x 10:3x 11:4x Bit[3:2]: hsyc output drive capability 00: 1x 01: 2x 10: 3x 11: 4x Bit[7:6]: vclk output drive capability 00: 1x 01: 2x 10: 3x 11: 4x

8. 数据输出格式

BF3703 提供 Raw data, YUV4:2:2,RGB565,, RGB555, RGB444 等多种数据输出格式。相关寄存器见表 8-1。

表格 8-1 数据输出格式配置

Function	Address	Description			
		Bit[2]和 Bit[0]的组合情况是对数据的			
		输出格式进行配置,具体如下:			
		{Bit[2],Bit[0]}			
数·拓·校 - + 24: 12	0v42	YUV 00			
数据格式选择 	0x12	RGB565/			
		RGB555/			
		RGB444 10 (use with 0x3a)			
		Bayer RAW 01			

文件名称	BF3703CS Application Note			文件	编号	TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	27/35

		Process RAW 11		
		00:YUYV		
VIIV 校山 I I I I I I I I I I I I I I I I I I	00-14-01	01:YVYU		
YUV 输出顺序选择	0x3a[1:0]	10:UYVY		
		11:VYUY		
		00: even: BGBGBG		
		odd: GRGRGR		
		01: even: GBGBGB		
Process Bayer 输出顺序选择	0,00[5,4]	odd: RGRGRG		
(当 0x0c[7]=1'b0 时)	0x0c[5:4]	10: even: GRGRGR		
		odd: BGBGBG		
		11: even: RGRGRG		
		odd: GBGBGB		
		00h: R5G3 _H ,G3 _L B5		
		01h: B5G3 _H ,G3 _L R5		
		02h: B5R3 _H ,R2 _L G6		
		03h: R5B3 _H ,B2 _L G6		
RGB565 输出顺序选择	0X3a[4:0]	04h: G3 _H B5,R5G3 _L		
(当{0x12[2],0x12[0]}=2'b10 时)		05h: G3 _L B5,R5G3 _H		
		06h: G3 _H R5,B5G3 _L		
		07h: G3 _L R5,B5G3 _H		
		08h: G6B2 _H ,B3 _L R5		
		09h: G6R2 _H ,R3 _L B5		
		0ah: 1'b0R5G2 _H ,G3 _L B5		
		0bh: G3 _L B5,1'b0R5G2 _H		
		0ch: R5G3 _H ,G2 _L B51'b0		
RGB555 输出顺序选择	0X3a[4:0]	0dh: G2 _L B51'b0, R5G3 _H		
(当{0x12[2],0x12[0]}=2'b10 时)	07.00[1.0]	0eh: B5G3 _H ,G2 _L 1'b0,R5		
		0f h: R5G3 _H ,G2 _L 1'b0,B5		
		10h: B51'b0G2 _H ,G3 _L R5		
		11h: R51'b0G2 _H ,G3 _L B5		
		12h: 4'b0R4,G4B4		
		13h: G4B4,4'b0R4		
RGB444 输出顺序选择		14h: 4'b0B4,G4R4		
		15h: G4R4,4'b0B4		
	0X3a[4:0]	16h: R4G4,B44'b0		
(当{0x12[2],0x12[0]}=2'b10 时)	5.104[1.0]	17h: B44'b0,R4G4		
		18h: B4G4,R44'b0		
		19h: R44'b0,B4G4		
		1ah: B4G4,R4B4		
		1bh: R4G4,B4R4		

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	28/35

图例 8-1 RAW Bayer/Process Bayer 数据输出格式

图例 8-2 YUV4:2:2/RGB565/RGB555/ RGB444 数据输出格式

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	29/35

图例 8-3 Normal Frame Timing(YUV422 输出)(default)

图例 8-4 Normal Frame Timing(Bayer Raw data 输出)

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	30/35

图例 8-5 1/2Subsample Frame Timing(YUV422 输出)

图例 8-6 1/2Subsample Frame Timing(Raw data 输出)

9. Ckgate subsample

Ckgate subsample 模块通过对输出时钟的控制实现列 subsample,通过对

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	31/35

HREF 信号的控制实现行 subsample。行和列可以做不同的 subsample,由寄存器 0x0A, 0x10, 0x3D, 0x6B 控制。

Ox0A 和 Ox3D[3:0]控制列 ckgate subsample,采样方法是:设 Ox0A[3:0] =M1, Ox0A [7:4] =M2, Ox3D[3:0]=M3, M1<=M2<=M3,以 M3 为周期,每 M2 组数据中采 M1 组有效数据,可以采到 M4 组有效数据,即列做 M4/M3 subsample。例如, Ox0A==8'h21, Ox3D[3:0]==4'h9,Ox6B[1:0]=2'b11,以 9 为周期,每 2 组数采 1 组数,可以采到 5 组有效数据,即做列 5/9 subsample。

行 subsample 与列 subsample 类似。例如行做 3/5 subsample 可以写 0x10=8'h21,0x3D[7:4]=4'h5,0x6B[1:0]=2'b11。

图例 9-2 行 3/5subsample

相关寄存器见表 9-1。

表格 9-1 CKgate subsample 寄存器

Address	Name	Default value	Description		
			Common control 5.		
0x0a	COM5 0x21		Bit[7:4]: Total column number1 for gate sub.		
			Bit[3:0]: Column select number1 for gate sub.		
			Common control 4.		
0x0b	COM4	0x00	Bit[7]: 1'b0: Select even row, 1'b1:select odd row.		
			Bit[6]: 1'b0: Select even column, 1'b1:select odd column.		

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	32/35

0x10) COM6 0x21		Bit[7:4]: Total row number1 for gate sub	
0.10			Bit[3:0]: Row select number1 for gate sub.	
	0x3d COM11 0x59		Common control 11.	
0x3d			Bit[7:4]:Total row number2 for gate sub.	
			Bit[3:0]: Total column number2 for gate sub.	
0x6b	СОМ9	0x02	Bit[0]: 1'b0:No gate sub, 1'b1: Gate sub enable.	

10. Skip Frame 功能

该功能由寄存器 0x0B 控制,在若干帧之后输出有效数据。例如,要在 3 帧后输出有效数据 0x0B 写 0x03。

11. Fix VSYNC&HSYNC

该功能由寄存器 0x0B 控制,可以输出具有固定值的 VSYNC&HSYNC。例如,输出 VSYNC==1'b1&HSYNC==1'b1, 0x0B 写 0x30;输出 VSYNC=1'b0&HSYNC=1'b0, 0x0B 写 0x20。

12. Two-wire serial interface & 芯片控制功能

12.1 Two-wire serial interface

Two-wire serial interface 是一种控制总线。 BF3703 的各个模块的读写控制功能都是通过这个总线进行控制,BF3703 的设备地址为 0x6e。

Copyright © BYD Company Limited

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	33/35

图例 12-1 Two-wire serial interface R1=R2=4.7~10K

12.2 系统状态转换

系统状态转换图如下:

12.2.1 寄存器复位

所有的寄存器都复位有三种方式:

- 一: Reset pin 接低电平。
- 二: 芯片上电复位。
- 三: 通过 Two-wire serial interface 总线,在 sensor 初始化时使寄存器 0x12=0x 80。

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	34/35

12.2.2 芯片 standby 模式控制

把芯片置于 Standby 模式有两种方式:

- 一: PDN pin 接入高电平。这种方式会降低功耗,内部时钟停止,寄存器值保持不变。
- 二:通过 Two-wire serial interface 总线,使 0x09[4]置 1,.这种方式会使所有电路停止工作,但在保持 Xclk 存在的条件下寄存器值可读写(PDN pin 接低电平)。 表格 12-1 Two-wire serial interface 控制寄存器

Function	Address	Description		
		Bit[7]: SCCB Register Reset.		
寄存器复位	0x12[7]	1'b0: No change.		
		1'b1: Resets all registers to default values.		
		Bit[4]: Standby mode.		
Ctondby 博士自动	0x09[4]	1'b0:Disable standby mode.		
Standby 模式启动		1'b1:Enable standby mode.(使芯片进入 Standby		
		模式 I2C 可读写)		

13. 应用时序图

图例 13-1 Power-on sequence

★秘 密★

文件名称	BF3703CS Application Note			文件编号		TS-SEN-PD-0008
文件属性	技术文件	版本号	A/0	页	次	35/35

