CIS 471/571 (Fall 2020): Introduction Artificial Intelligence

Lecture 12: Probability WeChat: cstutores

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder

- Project 3: Reinforcement Learning
 - Deadline: Nov 10th, 2020

Assignment Project Exam Help

https://tutorcs.com

- Homework 3: MDPswardhareinforcement Learning
 - Deadline: Nov 10th, 2020

Thanh H. Nguyen 11/9/20

Today

- Probability
 - Random Variables
 - Joint and Margina A Distribution Project Exam Help

WeChat: cstutorcs

- Conditional Distribution
- Product Rule, Chain Rule, Bayes Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g. Exam Help sensor readings or symptoms)
 - Unobserved variables: Agensie edst of Feason about other aspects (e.g. where an object is or what disease is present)

 WeChat: cstutorcs
 - **Model**: Agent knows something about how the known variables relate to the unknown variables

 Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold? Assignment Project Exam Help
 - D = How long will it take to drive to work?
 - L = Where is the ghost? https://tutorcs.com
- We denote random variables With hapitastletters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in $[0, \infty)$
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

Assignment Project Examether

https://tutorcs.com

- (- //)		
T	P	
hot	0.5	
cold	0.5	

P(W)

W	P
sun	0.6
rain	0.1
\log	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions

P(T)0.5 hot cold

Shorthand notation:

Ssignment Project Exam Help(
$$hot$$
) = $P(T = hot)$,

https://tutorcs.com
 $P(cold) = P(T = cold)$,
 $P(rain) = P(W = rain)$,
for We.Chat: cstutorcs

OK if all domain entries are unique

• A probability (lower case value) is a single number

A distribution is a TABLE of probabilities of values

$$P(W = rain) = 0.1$$

• Must have: $\forall x \ P(X=x) \ge 0$ and $\sum P(X=x) = 1$

Joint Distributions

• A *joint distribution* over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_{S\overline{S}}, x_2, x_3)$$
 Exam Help

$$P(x_1, x_2, \dots x_n)$$
 https://tutorcs.com

• Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

WeChat: cstutorcs

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

P(T,W)

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Models

 A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

Assignment Proj

• (Random) variables with domains

Assignments are called outcomes https://tutor

Joint distributions: say whether assignments (outcomes) are likely
 WeChat: cstutores

• *Normalized:* sum to 1.0

• Ideally: only certain variables directly interact

- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

	T	W	P
•	hot	sun am He	$10^{0.4}$
J	hot	rain	$^{1}P_{0.1}$
^(søbm	sun	0.2
	cold	rain	0.3
11	ntorce		

Constraint over T,W

T	W	P
hot	sun	\mathbf{T}
hot	rain	\mathbf{F}
cold	sun	\mathbf{F}
cold	rain	$\overline{\mathbf{T}}$

Events

• An *event* is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n) \in E} P(x_1...x_n)$$

$$(x_1...x_n) \in E \text{ Assignment Project Exam Help}$$

- From a joint distribution, we can/tutorcs.com calculate the probability of any event
 - Probability that it's hot AND sunny. eChat: cstutorcs
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

P(+x, +y)?

P(+x)?

• P(-y OR +x)?

P(X,Y)

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

-		
X	Y	P
+ _X	+y	0.2
+ _X	-y	0.3
-X	+ y	0.4
-X	-y	0.1

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P	T	7	\overline{W})
	\ —	7	• •	

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Assignment Project Exam $\frac{P(T)}{Help}$

https	://tutor	cs.com
uups	.//tutor	GS.COIII

P(t)	WeChat!	cstutorcs
	s	

$P(s) = \sum P(t, s)$	
t	

am fie T	Р
hot	0.5
cold	0.5

P(W)
-----	---

W	P
sun	0.6
rain	0.4

Quiz: Marginal Distributions

P(X,Y)

X	Y	P
+x	+y	0.2
+ _X	-y	0.3
-X	+ y	0.4
-X	-y	0.1

Assignment Project Ex

$$P(x)$$
 https://tutorcs.com

WeChat: cstutorcs

$D(\cdot)$	
P(y) =	$=\sum P(x,y)$
(0)	
	x

P(X)			
am ^X He	ln P		
+ _X	ıþ		
-X			

D(V)

Y	P
+y	_
-y	

P(Y)

Conditional Probabilities

- A simple relation between joint and marginal probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

$$P(+x | +y)$$
?

P(X,Y)

X	Y	P
+x	+y	0.2
+ _X	-y	0.3
-X	+y	0.4
-X	-y	0.1

Assignment Project Exam Help

https://tutorcs.com P(-x | +y)?

WeChat: cstutorcs

$$P(-y \mid +x)$$
?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distribution Assignment Project Exam Help

P(W	T	=	hot)
-----	---	---	------

W	P
sun	0.8
rain	0.2

$$P(W|T = cold)$$

P(W|T)

W	P
sun	0.4
rain	0.6

https://tutorcs.com

WeChat: cstutorcs

Joint Distribution

P(T, W)

${f T}$	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

${f T}$	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$
Assignment Project P(W = s, T = c)
$$P(W = s, T = c)$$

WeChat: estutores

$$P(W = r|T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

P(W|T=c)

W	P
sun	0.4
rain	0.6

Normalization Trick

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

 $P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$ $= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$

Assignment Project Exam Help

SELECT the joint

probablities://tutorcs.com matching the P(c,W)

evidence Chatr cstutorce cold sun 0.2

cold rain 0

NORMALIZE the selection (make it sum to one)

P(W)	T	=	c)
------	---	---	----

W	P
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

Normalization Trick

${f T}$	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint

P(W|T=c)

W	P
sun	0.4
rain	0.6

• Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

 $P(X \mid Y=-y)$?

P(X,Y)

X	Y	P
+ _X	+y	0.2
+ _X	-y	0.3
-X	+ y	0.4
-X	- y	0.1

SELECTE the identification of the probabilities selection (make it sum to one)

matching by /tutorcs.com evidence

Probabilistic Inference

 Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint) Assignment Project Exam H

• We generally compute conditions of the series of the ser

P(on time | no reported accidents) = 0.90
 These represent the agent's beliefs given the evidences

- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

• General case:

Evidence variables:

• Query* variable:

Hidden variables:

 $E_1 \dots E_k = e_1 \dots e_k$ Q $H_1 \dots H_r$ Assignment ProjecteExam Help

• Step 2: Sum out H to get

hours end on dence

Step 1: Select the entries consistent with the evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

We want:

* Works fine with multiple query variables.

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration

• P(W)?

Assignment Project Exam H

P(W | winter)?

https://tutorcs.com

WeChat: cstutorcs

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

• P(W | winter, hot)?

Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dn)
 - Assignment Project Exam Help
 Space complexity O(dn) to store the joint distribution

https://tutorcs.com

WeChat: cstutorcs

The Product Rule

 Sometimes have conditional distributions but want the joint

$$P(y)P(x|y)$$
 ssign for Project from Help $P(x|y) = \frac{P(x,y)}{P(y)}$

https://tutorcs.com

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Assignment Project Exam Help

• Example:

P(W)

\mathbf{R}	P
sun	0.8
rain	0.2

https://tutorcs.com

D	Weci	nag:	cstutorcs
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

P(D,W)

D	W	P
wet	sun	
dry	sun	
wet	rain	
dry	rain	-

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1, x_2, \dots, x_n) = \prod_{i} \frac{\text{https://tutores.com}}{\text{WeChat: cstutores}}$$

• Why is this always true?

Bayes Rule

Bayes Rule

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$
Assignment Project Exam Help

• Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)} P(x)$$
Example 2: cstutores

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple

• In the running for most important AI equation!

That's my rule!

Quiz

•Given:

•What is P(W | dry)?

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$
Assignment Project Exam Help

- Example:
 - M: meningitis, S: stiff neck

https://tutorcs.com
$$P(+m) = 0.0001$$
 Well established $P(+s|-m) = 0.01$ Example givens
$$P(+s|-m) = 0.01$$

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?