1

2

1

2

1

CLAIMS

What is claimed is:

1	1.	A method of patterning a recording medium comprising:
2		selectively thermally coupling said recording medium and a heat source to
3	alter a	chemical composition of said recording medium.

- 1 2. The method according to claim 1, wherein said chemical composition is 2 altered according to a predetermined pattern.
 - 3. The method according to claim 2, wherein said predetermined pattern comprises one of concentric circles and parallel tracks.
 - 4. The method according to claim 1, wherein altering said chemical composition causes an altered magnetic order of said recording medium.
- The method according to claim 1, wherein altering said chemical
 composition causes an altered dielectric constant of said recording medium.
- 1 6. The method according to claim 5, wherein altering said dielectric constant causes an altered reflectivity of said recording medium.
 - 7. The method according to claim 1, wherein altering said chemical

- 2 composition causes an altered electrical conductivity of said recording medium.
- The method according to claim 7, wherein altering said electrical 1 8.
- 2 conductivity causes an altered electron transport property of said recording
- 3 medium.
- 9. The method according to claim 1. wherein altering said chemical 1 2 composition causes an altered thermal conductivity of said recording medium.

depositing said recording medium on a substrate.

- 10. 1 The method according to claim 1, further comprising: 2
- The method according to claim 1, wherein said selectively thermally 1 11. 2 coupling comprises selectively directing an incident thermal wave from said heat source to said recording medium to form a direct thermal coupling between said 3 heat source and said recording medium. 4
- 12. The method according to claim 1. wherein said medium comprises cobalt 1 2 and chromium.
- 1 13. The method according to claim 1, wherein said substrate comprises one of 2 glass, silicon, quartz, sapphire, AlMg and a ceramic substrate.

- 1 14. The method according to claim 1, wherein said heat source comprises one of a near-field thermal probe and a nanoheater.
- 1 15. The method according to claim 1, wherein said heat source physically contacts said recording medium.
- 1 16. The method according to claim 1, wherein said heat source is physically separated from said recording medium.
- 1 17. The method according to claim 1, wherein said chemical composition is 2 altered by one of interfacial mixing, interfacial reactions, selective oxidation, 3 structural relaxation, phase segregation and phase change.
- 1 18. The method according to claim 1, wherein altering said chemical composition transforms said medium from a paramagnetic medium to a ferromagnetic medium.
- 1 19. The method according to claim 1, wherein altering said chemical composition transforms said medium from a ferromagnetic medium to a paramagnetic medium.

l	20.	The method	according to	claim I	. wherein	altering	said o	chemical
2	compo	sition alters a	magnetic ax	is orien	tation of s	aid medi	ium.	

- 1 21. The method according to claim 1, wherein altering said chemical composition reduces at least one of magnetization and coercivity of said medium.
- The method according to claim 1, wherein said selectively thermally coupling comprises selective near-field radiative coupling of blackbody radiation from said heat source to said recording medium.
- The method according to claim 1, wherein said medium comprises

 Co₁Cr₁₋₁, where x is in a range from 0.63 to 0.75.
 - 24. The method according to claim 1, wherein thermal energy is transferred to said medium by conductive heating.
- The method according to claim 1, wherein thermal energy is transferred to said medium by radiative heating.
- 26. An apparatus for patterning a recording medium, comprising:
 a heat source for generating and directing an incident thermal wave to a
 recording medium, said thermal wave altering a chemical composition of a

4	record	ing medium; and	
5		a controller for coordinating a mutual position of said incident thermal	
6	wave and said recording medium so as to thermally couple said heat source and		
7	said re	ecording medium.	
1	27.	The apparatus according to claim 26. wherein said heat source comprises:	
2		a heating plate for developing a thermal energy field which couples said	
3	heat source to said recording medium; and		
4		a heat sink connected to said heating plate.	
1	28.	The apparatus according to claim 27, wherein said heating plate comprises	
2	a tip f	for concentrating and directing a thermal energy.	
1	29.	The apparatus according to claim 27, further comprising:	
2		an optical waveguide coupled to said heat sink, for carrying a focused laser	
3	beam		
1	30.	The apparatus according to claim 29, wherein said optical waveguide	
2	comp	rises an optical fiber.	

The apparatus according to claim 29, wherein said optical waveguide

comprises a planar optical waveguide.

31.

1

2

8

1	32.	The apparatus according to claim 27, further comprising.
2		a resistive heating element thermally coupled to said heat sink.
1	33.	The apparatus according to claim 26, wherein said heat source comprises
2	an ato	omic force microscope probe.
1	34.	The apparatus according to claim 26, wherein said heat source comprises
2	one o	f a nanoheater and a near-field thermal probe.
1	35.	The apparatus according to claim 26, wherein said controller coordinates
2	said n	nutual position of said incident thermal wave and said recording medium to
3	induc	e a direct thermal coupling that subsumes at least one portion of a thermal
4	near-i	field.
1	36.	A read/write head assembly, comprising:
2		a read/write head;
3		a heat source connected to said read/write head for generating and
4	direct	ing an incident thermal wave to a recording medium, said thermal wave
5	alterii	ng a chemical composition of a recording medium; and
6		a controller for coordinating a mutual position of said incident thermal
7	wave	and said recording medium so as to thermally couple said heat source and

said recording medium.

1

2

41.

1	37.	The read/write head assembly according to claim 36, wherein heat source	
2	comprises one of a nanoheater and a near field thermal probe.		
1	38.	The read/write head assembly according to claim 36, wherein said	
2	chemic	cal composition is altered according to a predetermined pattern, and wherein	
3	said heat source patterns said recording medium during a read/write operation of		
4	said read/write head assembly.		
1	39.	A patterned recording medium, comprising:	
2		a substrate; and	
3		a single layer medium formed on said substrate having a portion which has	
4	been p	eatterned by altering a chemical composition of said medium using selective	
5	thermal coupling.		
1	40.	A method for manufacturing a patterned magnetic disk, comprising:	
2		depositing a recording medium on a substrate;	
3		selectively thermally coupling said recording medium and a heat source so	
4	as to a	lter a chemical composition of said recording medium, and	
5		depositing a protective coating on said recording medium.	

A programmable storage medium tangibly embodying a program of

machine-readable instructions executable by a digital processing apparatus to

- perform a method for patterning a recording medium, said method comprising:
- 4 selectively thermally coupling said recording medium and a heat source to
- 5 alter a chemical composition of said recording medium.