SCHOOL OF COMPUTER ENGINEERING KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY DEEMED TO BE UNIVERSITY BHUBANESWAR

Course: Operating System (Credits 3) (L-T-P) (3-0-0)

Course Code: CS20002 Session: Spring, 2024

Course Outcomes:

- 1. Able to understand the difference between different types of modern operating systems, virtual machines and their structure of implementation and applications.
- 2. Able to understand the difference between process & thread, issues in the scheduling of user-level processes/threads.
- 3. Able to understand and analyze the use of locks, semaphores, monitors for synchronizing multiprogramming / multithreaded systems and design solutions for multithreaded programs.
- 4. Able to understand the concepts of deadlock in operating systems and how they can be managed/avoided.
- 5. Able to understand the design and management concepts along with issues and challenges of main memory, virtual memory, and file system.
- 6. Able to understand the types of I/O management, disk scheduling, protection and security problems faced by operating systems and how to minimize these problems.

2 | Page Course Handout: Operating System (CS2002)

Modified Post-mid-sem. Syllabus					
Deadlock	Deadlock and its conditionsResource Allocation Graph	3	Day 16		
	Handling deadlockDeadlock prevention		Day 17		
	 Deadlock avoidance Resource allocation state(Safe/Unsafe State) Resource Allocation Graph algorithm 		Day 18		
	Deadlock avoidance (Banker's Algorithm) Safety algorithm Resource Request algorithm				
	Deadlock DetectionRecovery mechanism from deadlock				
Memory Management	Multiprogramming memory management using partitioning Fixed Partitioning, Drawbacks		Day 19		
	Dynamic Partitioning, DrawbacksPaging		Day 20		
	 Paging implementation with Translation look-aside buffers (TLBs) Hierarchical paging, 		Day 21		
	Segmentation		Day 22		
	 Virtual Memory and Demand Paging Dealing with Page faults		Day 23		
	 Page replacement algorithm First-In-First-Out(FIFO) Optimal Page Replacement (OPT) 				
	 Page replacement algorithm Least Recently Used (LRU) Most Recently Used (MRU) Thrashing 	5			
File Management	File conceptAccess MethodsDirectory structure.	3	Day 24		
	File system mountingFile System structure		Day 25		
	File system ImplementationAllocation methodsFree space management		Day 26		
I/O Management	I/O DevicesDevice controllerDevice Drivers	2	Day 27		

3 | Page Course Handout: Operating System (CS2002)

	Application I/O Interface		Day 28	
Disk Management	 Disk Structure Disk Scheduling FCFS SCAN 	1	Day 29	
	 Disk Scheduling C-SCAN LOOK C-LOOK 			

Course Coordinator Spring, 2024