C10 miercuri, 24 ianuarie 2024 23:24													
Sintaxa logicii propoziționale													
Un <i>limbaj</i> e definit prin simbolurile sale și regulile după care combinăm corect s	imbolurile (<i>sintaxa</i>)												
11 A 24 1	Simbolurile logicii propoziționale: propoziții: notate deobicei cu litere p, q, r, etc. operatori (conectori logici): negație ¬, implicație → , paranteze ()												
	Formulele logicii propoziționale: definite prin inducție structurală (construim formule complexe din altele mai simple)												
O formulă e: orice <i>propoziție</i> (numită și formulă ato	mică)												
$(\neg a)$ dacă a este o formulă $(a \rightarrow \beta)$ dacă a și β sunt formule (a, β)	β numite subformule)												
Alţi operatori (conectori) logici													
Air operatori (correctori) logici													
Deobicei, dăm definiții <i>minimale</i> (cât mai	ouține cazuri)												

Deobicei, dăm definiții <i>minimale</i> (cât mai puține cazuri) (orice raționament ulterior trebuie făcut pe toate cazurile)		
Operatorii cunoscuți pot fi definiți folosind \neg și \rightarrow : $a \land \beta^{def} \neg (a \rightarrow \neg \beta) \text{(SI)}$		
$a \vee \beta^{def} \neg a \rightarrow \beta$ (SAU)		
$a \leftrightarrow \beta^{d\underline{e}\underline{f}} (a \rightarrow \beta) \land (\beta \rightarrow a)$ (echivalență) Omitem parantezele redundante, definind precedența operatorilor.		
Ordinea precedenței: \neg , \land , \lor , \rightarrow , \leftrightarrow Implicația e asociativă <i>la dreapta</i> ! $p \rightarrow q \rightarrow r = p \rightarrow (q \rightarrow r)$		
Implicação e asociativa la arcapta: p = q = 1 = p = (q = 1)		
Semantica unei formule: funcții de adevăr		
Definim riguros cum calculăm valoarea de adevăr a unei formule = dăm o semantică (înțeles) formulei (formula=noțiune sintactică)		
O funcție de adevăr v atribuie oricărei formule o valoare de adevăr ∈ {T, F} astfel încât:		
$v(p)$ e definită pentru fiecare <i>propoziție</i> atomică p . $v(\neg a) = \begin{array}{c} T & dacă \ v(a) = F \\ F & dacă \ v(a) = T \end{array}$		
$V(\neg a) - F \operatorname{dacă} V(a) = T$		

Sintaxă și semantică	-		
Silitaxa și Selilalitica			
Pentru logica propozițională, am discutat:			
Sintaxa: o formulă are forma: propoziție sau (¬ formulă) sau (formulă → formulă)			
propoziție sau (* ioimula) sau (ioimula → ioimula)			
Semantica: calculăm valoarea de adevăr (înțelesul), pornind de la cea a propozițiilor			
$v(\neg a) = T \frac{\text{dacă } v(a) = F}{\text{F} \text{dacă } v(a) = T}$			
$v(a \rightarrow \beta) = \begin{cases} F & \text{dacă } v(a) = T \text{ și } v(\beta) = F \\ T & \text{în caz contrar} \end{cases}$			
Deducții logice			
Deducția ne permite să demonstrăm o formulă în mod <i>sintactic</i> (folosind doar structura ei)			
E bazată pe o regulă de inferență (de deducție)			
$A A \rightarrow B$			

	1 1	1 1	1	
E bazată pe o <i>regulă de inferență</i> (de deducție)				
$\frac{A A \rightarrow B}{B}$ modus ponens				
(din $A \neq B$ deducem/inferăm B ; A , B formule oarecare)				
și un set de <i>axiome</i> (formule care pot fi folosite ca premise/ipoteze) A1: $a \rightarrow (\beta \rightarrow a)$				
A2: $(a \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((a \rightarrow \beta) \rightarrow (a \rightarrow \gamma))$ A3: $(\neg \beta \rightarrow \neg a) \rightarrow (a \rightarrow \beta)$ în care a , β etc. pot fi înlocuite cu <i>orice</i> formule				
A1 - A3 sunt tautologii				
	_			
Deducție (demonstrație)				
Informal, o deducție (demonstrație) e o înșiruire de afirmații în care fiecare rezultă (poate fi derivată) din cele anterioare.				
Riguros, definim:				
Fie H o mulțime de formule (ipoteze). O deducție (demonstr.) din H e un șir de formule $A_1, A_2,, A_n$,				
astfel ca ∀i ∈ [1, n]				
1. A _i este o axiomă, sau				
2. Ai este o ipoteză (o formulă din H), sau				
3. A_i rezultă prin modus ponens din A_i , A_k anterioare $(i, k < i)$				

 2. A_i este o <i>ipoteză</i> (o formulă din H), sau 3. A_i rezultă prin <i>modus ponens</i> din A_j, A_k anterioare (j, k < i) Spunem că A_n rezultă din H (e deductibil, e o consecință). Notăm: H ⊢ A_n 		
Exemplu de deducție		
Demonstrăm că $A \rightarrow A$ pentru orice formulă A $(1) A \rightarrow ((A \rightarrow A) \rightarrow A)) \qquad A1 \text{ cu } a = A, \ \beta = A \rightarrow A$ $(2) A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (A \rightarrow A))) \rightarrow (A \rightarrow A))$ $A2 \text{ cu } a = \gamma = A, \ \beta = A \rightarrow A$ $(3) (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A) \qquad MP(1,2)$		
(3) $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow A)$ MP(1,2) (4) $A \rightarrow (A \rightarrow A)$ A1 cu $a = \beta = A$ (5) $A \rightarrow A$ MP(3,4) Verificarea unei demonstrații e un proces simplu, mecanic		
 (verificăm motivul indicat pentru fiecare afirmație; o simplă comparație de șiruri de simboluri). Găsirea unei demonstrații e un proces mai dificil. 		

Alte reguli de deducție Modus ponens e suficient pentru a formaliza logica propozițională dar sunt si alte reguli de deductie care simplifică demonstratiile $p \rightarrow q \qquad \neg q$ modus tollens (reducere la absurd) $\frac{p}{p \vee q}$ generalizare (introducerea disjuncției) $\frac{p \land q}{p}$ specializare (simplificare) $\frac{p \lor q \quad \neg p}{q}$ eliminare (silogism disjunctiv) $\frac{p \to q \qquad q \to r}{p \to r} \qquad tranzitivitate (silogism ipotetic)$ Deducția (exemplu) Fie $H = \{a, \neg b \lor d, a \to (b \land c), (c \land d) \to (\neg a \lor e)\}.$ Arătati că $H \vdash e$. ipoteză, H₁ (1) a (2) $a \rightarrow (b \land c)$ ipoteză, H3

Consecința logică (semantică) Interpretare = atribuire de adevăr pentru propozițiile unei formule. O formulă poate fi adevărată sau falsă într-o interpretare. Def.: O mulțime de formule $H = \{H_1, \ldots, H_n\}$ implică o formulă C dacă orice interpretare care satisface (formulele din) H satisface C Notăm: $H \models C$	(1) a (2) a → (b (3) b ∧ c (4) b (5) d (6) c (7) c ∧ d (8) ¬a ∨ 6 (9) e					spe elimi spe odus po	ipoteza ipoteza iponens (ecializar inare (4 ecializar (5) : onens (7 minare ($A_1, H_3 = (1, 2)$ re A_2, H_2 re A_3, H_2 re A_4, H_2 re A_4, H_3					
Interpretare = atribuire de adevăr pentru propozițiile unei formule. O formulă poate fi adevărată sau falsă într-o interpretare. Def.: O mulțime de formule $H = \{H_1, \ldots, H_n\}$ implică o formulă C dacă orice interpretare care satisface (formulele din) H satisface C													
formulă C dacă <i>orice interpretare</i> care satisface (formulele din) H satisface C	Interpreta unei form	re = atrib	buire de a ormulă po										
		într-o interpretare. Def.: O mulțime de formule $H = \{H_1, \ldots, H_n\}$ implică o formulă C dacă orice interpretare care satisface (formulele din) H satisface C											

100	C e o consecință logică / consecință semantică a ootezelor H)			
Ca in Ca	secința logică (semantică) a să stabilim consecința semantică trebuie să aterpretăm formule (cu valori/funcții de adevăr) \Rightarrow lucrăm cu semantica (înțelesul) formulelor exemplu: arătăm $\{A \lor B, C \lor \neg B\} \vDash A \lor C$ azul 1: $v(B) = T$. Atunci $v(A \lor B) = T$ și $v(C \lor \neg B) = C$ (C). Dacă $v(C) = T$, atunci $v(A \lor C) = T$, deci firmația e adevărată. azul 2: $v(B) = F$. La fel, reducem la $\{A\} \vDash A \lor C$ adevărat).			

Consistență și completitudine		
H ⊢ C : deducție (pur sintactică, din axiome și reguli de		
inferență) H ⊨ C : implicație, consecință semantică (valori de adevăr)		
Consistență:		
Dacă H e o mulțime de formule, și C este o formulă astfel ca $H \vdash C$, atunci $H \models C$		
(Orice teoremă e <i>validă</i> ;		
orice afirmație obținută prin deducție e întotdeauna adevărată).		
Consistență și completitudine		
H ⊢ C : deducție (pur sintactică, din axiome şi reguli de inferență)		
H ⊨ C : implicație, consecință semantică (valori de adevăr)		

Completitudine:				
Dacă H e o mulțime de formule, și C e o formulă astfel ca				
$H \models C$, atunci $H \vdash C$.				
(Orice tautologie e o teoremă,				
orice consecință semantică poate fi dedusă din aceleași ipoteze).				
	-			
Consistență și completitudine				
$H \vdash C$: deducție (pur sintactică, din axiome și reguli de				
inferență) H ⊨ C : <i>implicație, consecință semantică</i> (valori de adevăr)				
Logica propozițională e consistentă și completă:				
Ca să demonstrăm o formulă, putem arăta că e validă.				
Pentru aceasta, verificăm că negatia ei nu e				

	validă. Pentru aceasta, verificăm că negația ei nu e realizabilă.														