# Report UNIT 3 WEEK 11.2

Malware analysis IDA

1. Individuare l'indirizzo della funzione DLLMAIN (esadecimale).



L'indirizzo della funzione **DLLMAIN** è 1000D02E.

2. Dalla scheda <<imports>> individuare la funzione <<gethostbyname>>. Qual è l'indirizzo dell'import?



L'indirizzo della funzione gethostbyname è 100163CC.

- 3. Quante sono le variabili locali della funzione alla locazione di memoria 0x10001656?
- 4. Quanti sono i parametri della funzione sopra?



Le variabili sono tutte quelle con offset negativo (20), i parametri quelle con offset positivo (1).

### 5. Inserire altre considerazioni macro-livello sul malware (comportamento).

| szAnsi       | (nFunctions) |
|--------------|--------------|
| GDI32.dll    | 17           |
| PSAPI.DLL    | 2            |
| WS2_32.dll   | 15           |
| iphlpapi.dll | 1            |
| KERNEL32.dll | 89           |
| USER32.dll   | 26           |
| ADVAPI32.dll | 32           |
| ole32.dll    | 5            |
| OLEAUT32.dll | 2            |
| MSVFW32.dll  | 5            |
| WINMM.dll    | 7            |
| MSVCRT.dll   | 52           |

Vengono importate diverse librerie:

#### **ADVAPI32**

accesso alle funzionalità avanzate dei servizi di Windows.

### **GDI32**

interazione con i dispositivi di visualizzazione.

### **KERNEL32**

gestione dei processi, dei thread, dei file, della memoria e delle operazioni di I/O.

### **MSVCRT**

funzioni di runtime per i programmi scritti in linguaggio C o C++.

### MSVFW32

gestione dei formati video e la riproduzione dei file multimediali.

#### **OLEAUT32**

automazione dei componenti software, consentendo la comunicazione tra applicazioni e la manipolazione degli oggetti.

#### **PSAPI**

funzioni per ottenere informazioni dettagliate sui processi in esecuzione nel sistema.

### USER32

gestione dell'interfaccia utente di Windows.

### **WINMM**

gestione di funzionalità multimediali di base.

#### WS2 32

programmazione di applicazioni di rete utilizzando il protocollo TCP/IP.

### iphlpapi

accesso alle informazioni di rete.

### ole32

gestione degli oggetti COM (Component Object Model) in Windows.

```
; BOOL __stdcall DllMain HINSTANCE hinstDLL,DWORD fdwReason,LPVOID lpvReserved)
_DllMain@12 proc near
```

```
hinstDLL= dword ptr 4
fdwReason= dword ptr 8
lpvReserved= dword ptr 0Ch
```

La **DIIMain** esegue una **DLL injection** per inserire una DLL all'interno di un processo in esecuzione. Quando un sistema avvia o termina un processo o un thread, viene chiamata la funzione DIIMain per ogni DLL caricata, consentendo l'iniezione della DLL nel processo. Questo serve per evitare il rilevamento, assicurando persistenza. La DIIMain accetta tre parametri:

#### hinstDLL

handle per il modulo DLL.

#### fdwReason

variabili che costituiscono l'entry point della funzione.

La DLL verrà chiamata per quattro motivi (Reason): quando si collega una DLL (**DLL\_PROCESS\_ATTACH**), quando si scollega un processo (**DLL\_PROCESS\_DETACH**), quando si allega un thread (**DLL\_THREAD\_ATTACH**) e quando si scollega un thread (**DLL\_THREAD\_DETACH**).

#### **IpvReserved**

NULL o non-NULL in base al valore di fwdReason.

La funzione DIlMain restituisce TRUE o FALSE. Se la funzione LoadLibrary, che a sua volta chiama il punto di ingresso della DLL, fallisce (FALSE) il sistema richiamerà immediatamente il punto di ingresso, questa volta con il codice DLL\_PROCESS\_DETACH. Successivamente, la DLL viene scaricata.

Nella sezione xdoors\_d possiamo vedere il funzionamento della backdoor.

```
; HMODULE hModule
hModule dd 0

; HANDLE hThread
hThread dd 0

; HANDLE dword_18093898
dword_18093898 dd 0

align 18h
; char byte_18093818[]
byte_18893818 db 288h dup(8)
dword_18093218 dd 28h
```

### **HMODULE hModule**

chiama la funzione **GetModuleFileNameA** per ottenere il percorso del file eseguibile o di un modulo caricato in memoria.

### HANDLE hTread e HANDLE dword\_10093008

chiamano le funzioni **CreateThread** e **SuspendThread** da DllMain per creare un nuovo thread di esecuzione nel processo corrente.

#### char byte

chiama **RegOpenKeyA** per aprire una chiave di registro, **RegEnumKeyA** per enumerare le chiavi di registro figlie di una chiave di registro e **\_ftol**, che converte un float/double in int/long.

```
; HIC hic
                                            dd 0
                           hit:
                           dword 10093248
                                            dd 0
; HGLOBAL hMem
                           dword_1009324C
                                            dd 0
hMem
                 dd 0
                           dword_10093250
                                            dd 0
dword 10093230
                dd 0
                          byte_10093254
                                            db 0
dword 10093234
                dd 0
                                            aliqn 4
; size t dword 10093238
                           ; HIC dword 10093258
dword_10093238
                dd 0
                           dword 10093258
                                            dd 0
dword_1009323C
                dd 0
                           dword 1009325C
                                            dd 0
```

### HGLOBAL hMem e size t\_dword\_10093238

chiamano **GlobalUnlock** per sbloccare un blocco di memoria globale, **GlobalFree** per liberare un blocco di memoria globale precedentemente allocato e **??@YAPAXI@Z**, una firma di funzione in C++ per creare spazio di memoria per un oggetto nel programma.

#### Hic hic

chiama **ICCompress** e **ICImageCompress** per la compressione di immagini, **Sleep** per mettere in pausa l'esecuzione del programma (millisecondi), **SystemParametersInfoA** per ottenere/impostare informazioni di configurazione e **SendMessageA** per inviare un messaggio ad una finestra specificata.

### char aRundll64\_exe

chiama \_stricmp per identificare rundll64.exe.

## Char aRundll32\_exe

chiama GetCurrentProcessId per ottenerne l'ID.

### **Char CmdLine**

chiama WinExec per eseguire ipconfig/flushdns da cmd.

In seguito, vengono caricate varie funzioni da librerie in runtime:

xkey.dll (Plug\_KeyLog\_Main), xproxy.dll (Plug\_Proxy\_Main), xflood.dll (Plug\_Flood\_Main), xacq.dll (Plug\_Acq\_Main), xdev.dll (Plug\_Dev\_Main), xsys.dll (Plug\_Sys\_Main).

Si procede poi all'escalation dei privilegi con iniezione di codice in processi, iniezione di librerie a collegamento dinamico, hijacking di thread, modifica delle autorizzazioni dei file e delle directory, manipolazione di token di accesso, modifica del registro, modifica dell'attributo dei file e rilevamento di ambienti virtualizzati.

```
; char aXsys_dll[]
; char aFgets[]
                                                         db 'xsys.dll',0
                                          axsys dll
                 db 'fgets',0
aFqets
                                                         align 10h
                 align 4
                                          aPlug_sys
                                                         db 'plug_sys',0
; char aMessage[]
                                                          align 4
                 ob 'message',0
amessage
                                                          db 'update',0
                                          aUpdate
; char aStartxservices[]
                                                          align 4
aStartxservices on 'startxservices',0
                                         aLogoff
                                                         db 'logoff',0
                 align 10h
                                                          align 4
                                                         db 'shutdown',0
; char aStartxprocess[]
                                          aShutdown
                db 'startxprocess',0
                                                          align 4
aStartxprocess
                                          aReboot
                                                         db 'reboot',0
                 align 10h
```

Segue la scoperta della configurazione di rete, la scoperta dei processi, l'interrogazione delle informazioni di sistema, la scoperta di file e directory, il rilevamento di software in esecuzione e la cattura di schermate.

```
; char aStartxsound[]
aStartxsound db 'startxsound',0
                                          : char aleuser[]
aStartxsound
                                                               db 'IEuser@',0
                                         aIeuser@
; char aStartxvideo[]
aStartxvideo db 'startxvideo',0
; char aStartxreg[]
aStartxreq db 'startxreg',0
                                           <u>char aAno</u>nymous[]
                                                               db 'anonymous',0
aStartxred
                                         aAnonymous
; char aStartxfile[]
db 'startxfile',0
                                                                aliqn 4
aStartxfile
                                          : char aFtp 1[]
                  align 10h
                                                                db 'FTP://',0
 char aStartxscreen[]
                                         aFtp_1
                  db 'startxscreen',0
aStartxscreen
                                                                aliqn 4
                  align 10h
                                          ; char aFtp_0[]
  char aStartxcmd[]
                                                                db 'ftp://',0
                                         aFtp_0
                  db 'startxcmd',0
aStartxcmd
 char aConnectionKeep[]
aConnectionKeep db 'Connection: Keep-Alive',0
                                      ; DATA XREF: sub_10002CCE+409To
               align 10h
; char aUserAgentMozi1[]
aUserAgentMozi1 db 'User-Agent: Mozilla/4.0 (compatible; MSIE 6.00; Windows NT 5.1)',0
                                       ; DATA XREF: sub_10002CCE+3EBTo
 char aAcceptImageGif[]
aAcceptImageGif db 'Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, appl'
                                        DATA XREF: sub 10002CCE+3CDTo
               db 'ication/x-shockwave-flash, application/vnd.ms-excel, application/'
               db 'vnd.ms-powerpoint, application/msword, */*',0
aAdjusttokenpri db 'AdjustTokenPrivileges',0 aOpenprocesstok db 'OpenProcessToken',0; DATA XREF: su
                                                                                             ; sub_10005778+
                                                ; sub
                                                                      align 10h
                   align 10h
align 10h ; char a0_0_0_0[]

aLookupprivileg db 'LookupPrivilegeValue',0 ; a0_0_0_0 db '0.0.0.0',0
                                                                                             ; DATA XREF: su
                                                       ; char aMicrosoftTvVid[]
aMicrosoftTvVid db 'Microsoft TV/Video Connection',0
                                                ; sub
                   align 4
; char Name[]
                       SeDebugPrivilege',0; DAT; char aUmwareVirtualE[]
aUmwareVirtualE db 'UMware Virtual Ethernet Adapter',0
Name
 '*******,0Dh,0Ah
 '[BackDoor Server Update Setup]',0Dh,0Ah
 '*******, ODh, OAh
```

Considerando i comportamenti descritti, la DLL sembra avere caratteristiche di un Trojan.