TAT Database Program Manual

July 2018

Contents

1	\mathbf{Des}	cription of Database TAT	3
	1.1	Table targets	3
	1.2	Table data_file	3
	1.3	Table observatory	4
2	Pro	${f gram}\ TAT_database_update$	6
	2.1	Pre-requirements	6
	2.2	Install this program $TAT_{-}database_{-}update$	6
	2.3	Running	6
	2.4	Source Files	7
	2.5	Authority	7
	2.6	Uninstall	7

1 Description of Database TAT

- Database *TAT* records data for Taiwan Automated Telescope.
- Database *TAT* contains three tables: targets, data_file, observatory

1.1 Table targets

- Table *targets* shows information of the targets for observation.
- Table *targets* contains the following keys: ID, NAME, RA(deg), DEC(deg), RA, DEC, MAGNITUDE, PERIOD, TYPE, BFE0, F0, BFE1, F1, BFE2, F2, BFE3, F3, BFE4, F4, BFE5, F5, BFE6, F6
- The meaning of each key is:
 - ID is the identification number for every data and it is unique.
 - **NAME** is the name of target and it is unique.
 - RA(deg) is the right ascension of the target and its unit is degree.
 - **DEC(deg)** is the declination of the target and its unit is degree.
 - RA is the right ascension of the target and its type is HH:MM:SS.
 - **DEC** is the declination of the target and its type is DEG:ARCMIN:ARCSEC.
 - MAGNITUDE is the cataloged relative magnitude of the target.
 - **PERIOD** is the period of magnitude oscillation.
 - **TYPE** is the type of target. Example: star, galaxy...
 - BFE0,1,2,3,... is the best exposure time for filter 0,1,2,3,...
 - **F0,1,2,3,...** is the filter 0,1,2,3,...
- The following table is an example:

Table 1: Example for table targets

	ID	NAME	RA(deg)	DEC(deg)	RA	DEC	MAGNITUDE	PERIOD	TYPE	BFE0	F0	BFE1	F1	BFE2	F2	BFE3	F3	BFE4	F4	BFE5	F5
ſ	1	IC5146	328.35	47.266	21:53:24	47:16:00	0	0	star	0	A	0	В	0	C	0	N	0	R	0	V

1.2 Table data_file

- Table data_file shows the information of images.
- Table data_file contains the following keys:

 ID, FILENAME, FILEPATH, FILTER, RA(deg), DEC(deg), RA, DEC, SITENAME, CCDTEMP,
 EXPTIME, DATE-OBS, TIME-OBS, MJD-OBS, AIRMASS, JD, SUBBED, DIVFITTED

- The meaning of each key is:
 - ID is the identification number for every data and it is unique.
 - FILENAME is the filename of image and it is unique.
 - **FILEPATH** is the path of data file.
 - **FILTER** is the one of filters in the band A, B, C, N, R, or V.
 - RA(deg) is the right ascension of the center of image and its unit is degree.
 - **DEC(deg)** is the declination of the center of image and its unit is degree.
 - RA is the right ascension of the center of image and its type is HH:MM:SS.
 - **DEC** is the declination of the center of image and its type is DEG:ARCMIN:ARCSEC.
 - **SITENAME** is the location of site.
 - **CCDTEMP** is the CCD temperature.
 - **EXPTIME** is the exposure time.
 - **DATE-OBS** is the date and its type is YYYY/MM/DD.
 - TIME-OBS is the observation time and its type is HH:MM:SS.SS
 - MJD-OBS the Modified Julian Date.
 - **AIRMASS** provides the condition to compare.
 - **JD** is the Julian Date.
 - **SUBBED** if the file has been subbed or not.
 - FLATDIVED if the file has been divided by flat or not.
- The following table is an example:

Table 2: Example for table data_file

	Table 2. Enample for table auta-jue																
ID	FILENAME	FILEPATH	FILTER	RA(deg)	DEC(deg)	RA	DEC	SITENAME	CCDTEMP	EXPTIME	DATE-OBS	TIME-OBS	MJD-OBS	AIRMASS	JD	subbed	divfitted
1	AStarTF20180705_215223.fit	/home2/TAT/data/raw/TF/image/20180705	A	0	0	19:20:30	11:02:01	TF	-16.2883	600	2018-07-05	21:52:23.26	58304.918345	NULL	2458305.41834	0	0
2	AStarTF20180705_221349.fit	/home2/TAT/data/raw/TF/image/20180705	A	0	0	19:20:30	11:02:01	TF	-30.0856	600	2018-07-05	22:13:49.26	58304.933229	NULL	2458305.43323	0	0
3	AStarTF20180705_223518.fit	/home2/TAT/data/raw/TF/image/20180705	A	0	0	19:20:30	11:02:01	TF	-30.0385	600	2018-07-05	22:35:18.26	58304.94816	NULL	2458305.44816	0	0

1.3 Table observatory

- Table observatory contains the following key:
 ID, SITENAME, SITELAT, SITELONG, SITEALT
- The meaning of each key:
 - ID is the identification number for data and it is unique.
 - **SITENAME** is the location of observatory and it is unique.

- ${\bf SITELAT}$ is the latitude of the observatory.
- **SITELONG** is the longitude of the observatory.
- **SITEALT** is the altitude of the observatory.
- The following table is an example:

Table 3: Table observatory

ID	SITENAME	SITELAT	SITEALT				
1	TF	28.30	-16.51	2300			
2	LI-JIANG	26.69	100.03	3330			

2 Program $TAT_{-}database_{-}update$

• This program updates the data of images which saved in the path written in the file back_up_path.txt in database TAT

2.1 Pre-requirements

- This program uses python 2.7.11 and mysql in CentOS 7.
 - 1. Install python with:

```
yum install python2
```

2. Install python-pip with:

```
yum install epel-release
yum install python-pip
```

- 3. Install MariaDB
 - (1) Install MariaDB with yum:
 yum install mariadb-server mariadb
 - (2) After the installation are completed, start MariaDB with: systemctl start mariadb

2.2 Install this program TAT_database_update

- Download this program and follow the steps to install.
 - Download from github, using this command: git clone https://github.com/yun-yan/TAT_db
 - 2. Create the database TAT, using the command:

```
mysql < TAT_create_db.sql</pre>
```

3. Install the modules for the file $update_to_TAT_db.py$, the command:

```
pip install -r requirements.txt
```

4. Let the file $update_to_TAT_db.py$ be used in anywhere, the command: make install

2.3 Running

• Insert the data of images stored in the path written in the file back_up_path.txt to database TAT with this command:

```
update_to_TAT_db.py
```

2.4 Source Files

- The files are located in the path /home2/TAT/program/TAT_database
- It contains the following files:
 - **INSTALL** is the simple manual which describes how to install and execute.
 - **README.md** illustrates what this program can do.
 - back_up_path.txt contains the path you want to process.
 - update_to_TAT_db.py inserts the data of images in the path written into file back_up_path.txt to database TAT.
 - Makefile is the convenient file to provide to use the command make
 - TAT_create_db.sql is the file to create the database TAT.
 - requirement.txt provides the modules for installation.
 - log.txt records the path already checked.

2.5 Authority

- TAT@localhost has the privileges of selecting and modifying the database TAT, and its password is 1234
- read@localhost has the only privilege of selecting database TAT, and its password is 1234

2.6 Uninstall

- Remove the file $update_to_TAT_db.py$ from /usr/local/bin with this command: make uninstall
- Clean the log from *log.txt* with: make clean
- Remove the database TAT, following the steps:
 - Enter mysql with this command: mysql
 - 2. Delete the database *TAT* with this command: drop database TAT;