

Sentiment AnalysisOn Amazon Food Product Reviews

Jiali Han han.jial@northeastern.edu

- Sentiment Analysis in NLP
- Sentiment Analysis in E-commerce
- Challenges and Evolution

Cord length Charging power Value for money Add to Cart Reviews with images Charging power Add to Cart Reviews with images Charging power Add to Cart

- Sentiment Analysis in NLP
- Sentiment Analysis in E-commerce
- Challenges and Evolution

Reviews with images

 \Box

Add to Cart

- Sentiment Analysis in NLP
- Sentiment Analysis in E-commerce
- Challenges and Evolution

Classification of Amazon food product review

Goya Lady Fingers 7.0 OZ > Customer reviews

Reviewed in the United States on September 21, 2023

Exactly what you want from lady fingers. Crispy, tasty, dry.

Top critical review

Critical reviews >

Reviewed in the United States on January 1, 2022

Way to expensive, walmart has the same package for \$1.24.

I understand it may be the commodity, that you don't have to go to the store and search for them, but at the same time mine arrived all in pieces and the ones from walmart were all good.

For me it was a waste of money, but if you don't have an option I guess is ok to try your luck.

6 people found this helpful

Scope

- Sentiment Analysis of Amazon food product reviews
- English-language review texts
- Excludes non-textual and non-English reviews

Objectives

- Model Evaluation
- Model Innovation
- Comparative Analysis
- Results and Impact
- Future Direction and Applications

Related Works

2011 &2015
 Twitter
 Advanced methods like

2009 & 2012

Movie Reviews

Feature selection methods and ML classifiers like SVM, Naive Bayes, etc. Advanced methods like POS-enhanced and unsupervised model with sentiment lexicons **~ 2019 & 2020**

Evolutions

Deep-learning neural networks like RNNs, CNN, and BiGRU

Product reviews

2015 & 2018

Supervised models like perceptron Naives Bayes, SVM, Logistic Regression, Random Forest

Despite advancements, there remains a **research gap** in accurately capturing the nuanced sentiment expressions specific to Amazon product reviews.

Methodology

Data Collection and Preprocessing

- Data Compilation
- Preprocessing and Cleaning
- Class Transformation for Sentiment Analysis
- Word Cloud Analysis and Sentiment Complexity
- Dataset Partitioning and Resampling Techniques

Dataset

Hugging Face

Dataset Card

https://huggingface.co/datasets/jhan21/amazon-food-reviews-dataset

Example of dataset's structure and format

=	Id	ProductId	UserId	ProfileName	${\tt HelpfulnessNumerator}$	HelpfulnessDenominator	Score	Time	Summary	Text
0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	5	1303862400	Good Quality Dog Food	I have bought several of the Vitality canned d
1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	1	1346976000	Not as Advertised	Product arrived labeled as Jumbo Salted Peanut
2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	4	1219017600	"Delight" says it all	This is a confection that has been around a fe
3	4	B000UA0QIQ	A395BORC6FGVXV	Karl	3	3	2	1307923200	Cough Medicine	If you are looking for the secret ingredient i
4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0	5	1350777600	Great taffy	Great taffy at a great price. There was a wid
568449	568450	B001E07N10	A28KG5XORO54AY	Lettie D. Carter	0	0	5	1299628800	Will not do without	Great for sesame chickenthis is a good if no
568450	568451	B003S1WTCU	A3I8AFVPEE8KI5	R. Sawyer	0	0	2	1331251200	disappointed	I'm disappointed with the flavor. The chocolat
568451	568452	B004l613EE	A121AA1GQV751Z	pksd "pk_007"	2	2	5	1329782400	Perfect for our maltipoo	These stars are small, so you can give 10-15 o
568452	568453	B004l613EE	A3IBEVCTXKNOH	Kathy A. Welch "katwel"	1	1	5	1331596800	Favorite Training and reward treat	These are the BEST treats for training and rew
568453	568454	B001LR2CU2	A3LGQPJCZVL9UC	srfell17	0	0	5	1338422400	Great Honey	I am very satisfied ,product is as advertised,

568454 rows x 10 columns

568454 rows x 10 columns

Example of an Amazon food product review

Dataset

- Utilized 568,454 Amazon food product reviews from Kaggle.
- Dataset includes 10 fields:

Id, ProductId, UserId, ProfileName,
HelpfulnessNumerator, HelpfulnessDenominator,
Score, Time, Summary, and Text.

	Id	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	e Time	Summary	Text
0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1		1303862400	Good Quality Dog Food	I have bought several of the Vitality canned d
1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0		1346976000	Not as Advertised	Product arrived labeled as Jumbo Salted Peanut
2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	4	1219017600	"Delight" says it all	This is a confection that has been around a fe
3	4	B000UA0QIQ	A395BORC6FGVXV	Karl	3	3	2	2 1307923200	Cough Medicine	If you are looking for the secret ingredient i
4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0		1350777600	Great taffy	Great taffy at a great price. There was a wid
568449	568450	B001E07N10	A28KG5XORO54AY	Lettie D. Carter	0	0		1299628800	Will not do without	Great for sesame chickenthis is a good if no
568450	568451	B003S1WTCU	A3I8AFVPEE8KI5	R. Sawyer	0	0	2	2 1331251200	disappointed	I'm disappointed with the flavor. The chocolat
568451	568452	B004I613EE	A121AA1GQV751Z	pksd "pk_007"	2	2		1329782400	Perfect for our maltipoo	These stars are small, so you can give 10-15 o
568452	568453	B004I613EE	A3IBEVCTXKNOH	Kathy A. Welch "katwel"	1	1		1331596800	Favorite Training and reward treat	These are the BEST treats for training and rew
568453	568454	B001LR2CU2	A3LGQPJCZVL9UC	srfell17	0	0	ŧ	1338422400	Great Honey	I am very satisfied ,product is as advertised,

568454 rows × 10 columns

Data Preprocessing and Cleaning

- Removed duplicate reviews
- Focused on key columns:

Score and Text

- Reduced to 393,933 unique data points
- Conducted distribution analysis

Data Preprocessing and Cleaning

Adapted 5-category score system into a 3-class framework:

Positive (scores > 3)
$$\rightarrow$$
 1

Neutral (scores == 3)
$$\rightarrow$$
 0

Negative (scores
$$< 3) \rightarrow -1$$

Reclassification aimed to address class imbalance.

Dataset's composition

Word Clouds for Each Sentiment Category

Positive

Negative

Neutral

Data Partitioning and Resampling Technique

Dataset partitioning:

The first 80% for training and validation (80/20).

The remaing 20% reserved for model evaluation.

 Employed data undersampling for the majority class to address dataset imbalance

Feature Extraction Methods

- Frequency-Based Techniques:
- Bag of Words (BoW)
- > TF-IDF
- Word Embedding Techniques:
- ➤ GloVe
- ➤ Word2Vec
- > BERT Embeddings

Sentiment Classification Tool / Algorithms

- Sentiment Analysis Tool:
- > VADER (lexicon-based)
 - Machine Learning Classifiers:
- Logistic Regression (LG)
- Naive Bayes (NB)
- Support Vector Machines (SVM)

DistilBERT Model

10000 DistilBERT's 66 million parameters make it 40% smaller MegatronLM and 60% faster than BERT-base, all while retaining more than 95% of BERT's performance. **DVIDIA**. 5000 OpenAI UNIVERSITY of WASH 2500 Grover-GPT-2 Google Al Transformer ® OpenAI ELMo **BERT-Large** MT-DNN DistilBERT 330 110 Mellon University

Sanh et al., <u>DistilBERT</u>, a distilled version of BERT: smaller, faster, cheaper and lighter (2019), arXiv:1910.01108

Finetuned DistilBERT Model

- Hyperparameter Tuning in DistilBERT:
- Manual tuning: learning rate, batch size, and training epochs
- 2 iterations due to computational limits
- Regulation Strategies:
- Weight decay to prevent overfitting
- Early Stopping to optimize training duration

Model Evaluation Metrics

Model Evaluation Metrics

Experiment Workflow

Model Performance

Recall (%)

F1-Score (%)

Fig. 13

Fig. 12

Accuracy (%)

Model

VADER

Fig. 11

VADER + undersampling

Precision (%)

Fine-tuned DistilBERT Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 1st model 2nd model

Model F1-Score (%) Accuracy (%) Precision (%) Recall (%) GloVE + LG Word2Vec + LG BERT embedding + LG

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
BoW + LG	0.86	0.68	0.60	0.62
BoW + NB	0.83	0.62	0.61	0.62
BoW + SVM	0.86	0.70	0.57	0.58
BoW + LG + Undersampling	0.71	0.70	0.71	0.70
BoW + NB + Undersampling	0.70	0.71	0.70	0.70

Model Performance

Fig. 12

		VA	DER + undersampling			
Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score	€ (%)	
TF-IDF + LG	0.86	0.70	0.59	0.61		
TF-IDF + NB	0.79	0.56	0.36	0.34		

0.71

0.68

0.46

0.68

0.83

0.68

 Model
 Accuracy (%)
 Precision (%)
 Recall (%)
 F1-Score (%)

 VADER
 0.73
 0.55
 0.47
 0.47

 + undersampling
 0.58
 0.54
 0.46
 0.46

0.48

0.68

Fig. 13

Fine-tuned DistilBERT Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1st model 0.78 0.26 0.33 0.29

Fig. 10

TF-IDF + SVM

TF-IDF + LG + Undersampling

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
GloVE + LG	0.82	0.60	0.48	0.49
Word2Vec + LG	0.82	0.60	0.48	0.49
BERT embedding + LG	0.84	0.70	0.52	0.55

1st model	0.78	0.26	0.33	0.29
2nd model	0.87	0.71	0.77	0.73
b)				

Fig. 11

Model Performance

BoW outperforms TF-IDF 5

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
BoW + LG	0.86	0.68	0.60	0.62
BoW + NB	0.83	0.62	0.61	0.62
BoW + SVM	0.86	0.70	0.57	0.58
BoW + LG + Undersampling	0.71	0.70	0.71	0.70
BoW + NB + Undersampling	0.70	0.71	0.70	0.70

Fig. 9

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
TF-IDF + LG	0.86	0.70	0.59	0.61
TF-IDF + NB	0.79	0.56	0.36	0.34
TF-IDF + SVM	0.83	0.71	0.46	0.48
TF-IDF + LG + Undersampling	0.68	0.68	0.68	0.68

Fig. 10

BoW

- Effective by capturing domain-specific terms
- Effective by focusing on word presence (not context)

TF-IDF

Less effective from contextual weighting due to review lengths and specific terms in food product reviews

BoW outperforms Word Embeddings 😱

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
BoW + LG	0.86	0.68	0.60	0.62
BoW + NB	0.83	0.62	0.61	0.62
BoW + SVM	0.86	0.70	0.57	0.58
BoW + LG + Undersampling	0.71	0.70	0.71	0.70
BoW + NB + Undersampling	0.70	0.71	0.70	0.70

Fig. 9

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
GloVE + LG	0.82	0.60	0.48	0.49
Word2Vec + LG	0.82	0.60	0.48	0.49
BERT embedding + LG	0.84	0.70	0.52	0.55

Fig. 11

BoW

- Effective by aligning dataset's straightforward characteristic
- Effective by handling negations as distinct features

Word Embeddings

- Less effective for specific sentiment contexts in food product reviews
- Less effective due to potential classifier confusion

BoW outperforms VADER 😄

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
BoW + LG	0.86	0.68	0.60	0.62
BoW + NB	0.83	0.62	0.61	0.62
BoW + SVM	0.86	0.70	0.57	0.58
BoW + LG + Undersampling	0.71	0.70	0.71	0.70
BoW + NB + Undersampling	0.70	0.71	0.70	0.70

Fig. 9

Model	Accuracy (%)	Precision (%)	Recall (%)	F1-Score (%)
VADER	0.73	0.55	0.47	0.47
VADER + undersampling	0.58	0.54	0.46	0.46

Fig. 12

BoW + LG

- Effective after training on the specific dataset
- Effective in understanding unique nuances and vocab

VADER

 Less effective due to predefined rules and scores for sentiment intensity

Impact of Undersampling Strategy 👍

- Mitigate Data Imbalance
- Enhance Model Efficacy

Impact of Undersampling Strategy

- Mitigate Data Imbalance
- Enhance Model Efficacy

Implication:

Consider the specific operational mechanisms when applying dataset manipulation techniques.

Model Performance

Model Comparison Based on Macro-Avg F1-Score

Parameters	1st training	2nd training	
Learning rate	2e-4	5e-5	
Batch size	8	8	
Number of epochs	4	5	
Weight decay	0.01	0.01	
Seed	0	0	
Optimizer	AdamW	AdamW	

Lower learning rate

More precise weight adjustments

More training epochs

Deeper learning from the data patterns

1st iteration

trainer.train()

		[7500/23480	1:52:36 < 3:59:	:59, 1.11 it/s	, Epoch 1/4]
Step	Training Loss	Validation Loss	Accuracy	Precision	Recall	F1
500	1.008900	0.756776	0.784388	0.261463	0.333333	0.293056
1000	1.010300	0.772518	0.784388	0.261463	0.333333	0.293056
1500	1.014700	0.789708	0.784388	0.261463	0.333333	0.293056
2000	1.013800	0.797439	0.784388	0.261463	0.333333	0.293056
2500	1.011200	0.750883	0.784388	0.261463	0.333333	0.293056
3000	1.020800	0.780068	0.784388	0.261463	0.333333	0.293056
3500	1.019000	0.776988	0.784388	0.261463	0.333333	0.293056
4000	1.017200	0.789884	0.784388	0.261463	0.333333	0.293056
4500	1.005400	0.743515	0.784388	0.261463	0.333333	0.293056
5000	1.012300	0.733742	0.784388	0.261463	0.333333	0.293056
5500	1.006400	0.808375	0.784388	0.261463	0.333333	0.293056
6000	1.005700	0.746866	0.784388	0.261463	0.333333	0.293056
6500	1.010000	0.785966	0.784388	0.261463	0.333333	0.293056
7000	1.015400	0.761455	0.784388	0.261463	0.333333	0.293056
7500	1.013800	0.764767	0.784388	0.261463	0.333333	0.293056

Lower learning rate

- More precise weight adjustments
- More training epochs
- Deeper learning from the data patterns

Parameters	1st training	2nd training	
Learning rate	2e-4	5e-5	
Batch size	8	8	
Number of epochs	4	5	
Weight decay	0.01	0.01	
Seed	0	0	
Optimizer	AdamW	AdamW	

Lower learning rate

More precise weight adjustments

More training epochs

Deeper learning from the data patterns

2nd iteration

2nd iteration

2nd iteration

Fine-tuned DistilBERT Model Card

Conclusion

- Problem Addressed
- Simplicity Over Complexity
- Importance of Hyperparameter Optimization
- Strategic Insights and practical implications

Ethics

- Data Privacy Compliance
- Transparency and Reproducibility
- Social Impact and Ethical Use
- Future Ethical Considerations

Limitations & Future Work

- Computational Constraints
- Dataset Specificity Limitations
- Scope of Methodologies
- Data Manipulation and Hyperparameter
- Future work to improve model performance: cross-validation, regulation, random search/grid search

Fine-tuning a pre-trained Model is like "voodoo". — Dr. Church

- Lack of predictability
- Intuition and experience
- Sensitivity to small changes
- Trials and error process

HOW TO CONFUSE MACHINE LEARNING

MACHINE LEARNING

References

Yaylı, A., & Bayram, M. (2012). E-WOM: The effects of online consumer reviews on purchasing decisions. International Journal of Internet Marketing and Advertising, 7(1), 51-64.

Fang, X., & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2(1), 1-14.

Anees et al. (2020). Survey paper on sentiment analysis: Techniques and challenges. EasyChair, 2516-2314.

Xu et al. (2015). Sentiment analysis of yelp's ratings based on text reviews. In 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC) (Vol. 17, No. 1, pp. 117-120).

Sharma, A., & Dey, S. (2012). A comparative study of feature selection and machine learning techniques for sentiment analysis. In Proceedings of the 2012 ACM research in applied computation symposium (pp. 1-7).

O'Keefe, T., & Koprinska, I. (2009). Feature selection and weighting methods in sentiment analysis. In Proceedings of the 14th Australasian document computing symposium, Sydney (pp. 67-74).

Shrestha, N., & Nasoz, F. (2019). Deep learning sentiment analysis of amazon. com reviews and ratings.

Elmurngi, E. I., & Gherbi, A. (2018). Unfair reviews detection on Drummond, C., & Holte, R. C. (2003). C4. 5, class amazon reviews using sentiment analysis with supervised learning techniques. J. Comput. Sci., 14(5), 714-726.

Yang et al. (2020). Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE access, 8, 23522-23530.

Agarwal at al.. (2011). Sentiment analysis of twitter data. In Proceedings of the workshop on language in social media.

Pandarachalil et al. (2015). Twitter sentiment analysis for large-scale data: an unsupervised approach. Cognitive computation, 254-262.

Fujino et al. (2008). Multi-label text categorization with model combination based on f1-score maximization. In Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-II.

Goldberg, Y., & Hirst, G. (2017). Neural network methods in natural language processing. morgan & claypool publishers.

Shelke et al. (2017). A review on imbalanced data handling using undersampling and oversampling technique. Int. J. Recent Trends Eng. Res, 3(4), 444-449.

imbalance, and cost sensitivity: why under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets II (Vol. 11, pp. 1-8).

Elbagir, S., & Yang, J. (2019). Twitter sentiment analysis using natural language toolkit and VADER sentiment. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 122, p. 16).

Qaiser, S., & Ali, R. (2018). Text mining: use of TF-IDF to examine the relevance of words to documents. International *Journal of Computer Applications*, 181(1), 25-29.

Sanh et al. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Li et al. (2020). Rethinking the hyperparameters for fine-tuning. arXiv preprint arXiv:2002.11770.