Complete this assignment using the homework LaTeX template on the course web page, and submit a PDF on Gradescope. This is a solo assignment, meaning that you should write your own solutions, without reference to anyone else's written materials, online or in person. Never search online for the solution to a homework problem.

1. For each of the following pairs of functions, indicate whether f = o(g), $f = \omega(g)$, $f = \Theta(g)$, or none of these hold. You don't need to prove you answers.

	f(n)	g(n)
(a)	n - 100 (a	a) $n - 200$	
(b)	$n^{1/2} (b$	b) $n^{2/3}$	
(c)	$100n + \log n \tag{6}$	c) $n + (\log n)^2$	
(d)	$n \log n$ (d	$d) \ 10n\log(10n)$	
(e)	$\log(2n)$ (ϵ	e) $\log(3n)$	
(f)	$10\log n$ (f	f) $\log(n^2)$	
(g)	$n2^n$ (g	g) 3^n	
(h)	2^n (h	h) 2^{n+1}	
(i)	$n^2/\log n$ (i	(i) $n \cdot (\log n)^2$	
(j)	$n^{1.01}$ (2)	$(j) n \cdot (\log n)^2$	
(k)	$n^{0.1}$ (k	$k) (\log n)^{10}$	
(l)	•	$(1) (\log n)^3$	
		n) $5^{\log n}$	
(n)	$n^{1+(-1)^n} \tag{n}$	n) n	
(o)	· ·	o) 2^n	
(p)	$(\log n)^{\log n} \tag{p}$	p) $2^{(\log n)^2}$	

- 2. For each of the following statements, either prove (using the formal definition of big O) that it is true for all functions f, g, and h from positive integers to positive reals, or give a counterexample.
 - (a) If f = O(g) and g = O(h), then f = O(h).
 - (b) If f = O(h) and g = O(h), then f + g = O(h).
 - (c) If f = O(h) and g = O(h), then $f \cdot g = O(h)$.
 - (d) If f(n) = O(g(n)), then $\log f(n) = O(\log g(n))$.
 - (e) If f(n) = O(g(n)), then $2^{f(n)} \neq O(2^{g(n)})$.
 - (f) f(n) = O(f(n/2)).