Werner's theory:

- Every complex compound has a central metal ion or atom.
- The metal in a complex exhibits two types of valencies
 - a) Primary valency
 - b) Secondary valency
- Central metal ion/ atom forms dative bonds with electron pair donors or ligands.

Primary valency or Ionizable valency:

- It is equal to oxidation state of metal ion
- It is satisfied by negative ions. The groups bound by primary valency will ionise.
- These are held by electrostatic attraction by the metal ion, like ionic bond.
- These group are connected to the metal- ions, shown by broken line in the formula, or shown outside the square bracket.
- These are non-directional.

Secondary valency or non-ionizable valency:

- Secondary valency is equal to co-ordination number or number of coordinate covalent bonds.
- Secondary valency may be satisfied by neutral groups NH₃, H₂O or negative ions. CN⁻, Cl⁻ or even positive ion like NO⁺.
- The groups satisfying secondary valency are called ligands.
- The number of unidentate ligands around the metal is known as coordination number.
- Ligands donate lone pairs to the metal atom or ion and form coordinate covalent bonds.
- Ligands act as Lewis bases and metal ion/atom acts as Lewis acid.
- Ligands are connected to the metal by thick line or shown inside the square bracket.
- Some ligands may satisfy both primary and secondary valences and they do not ionize.
- Ligands are directed in space around the metal in a symmetric order and acquired a specific shape. Secondary valency is directional in nature and it determines the shape of the complex.

No of lignads	Shape of complex
2	Linear
3	Trigonal planar
4	Tetrahedral (or) Square planar
5	Square pyramidal (or) Trigonal bipyramidal
6	Octahedral
7	Pentagonal bipyramidal

Example:

Complex	No of ligands (or) Coordination no.	Werner Structure	
1. CoCl₃ 6NH₃	6	Octahedral - Three Cl ⁻ ions satisfy pimary valency - Six NH ₃ molecules satisfy secondary valency - No.of ions in solution = 4 - AgCl molecules precipitated on adding excess of AgNO ₃ = 3AgCl	NH ₃ NH ₃ NH ₃ CI ⁻ CI NH ₃ NH ₃ CI ⁻
2. CoCl₃ 5NH₃	6	Octahedral - 2Cl ⁻ satisfy primary valency - One Cl ⁻ satisfies both primary and secondary valency - 5NH ₃ molecules satisfy secondary valency - No.of ions in solution = 3 - AgCl molecules precipitated on adding excess of AgNO ₃ = 2	NH ₃ NH ₃ CI ⁻ CO ³⁺ NH ₃ CI ⁻ NH ₃ CI ⁻ NH ₃
3. CoCl₃ 4NH₃	6	Octahedral - 2 Cl ⁻ & 4NH ₃ molecules satisfy both primary and secondary valency - One Cl ⁻ satisifies only	NH ₃ NH ₃ CI CO ³⁺ CI NH ₃

		primary valency - No.of ions in solution =2 - AgCl molecules precipitated = 1	
4. CoCl₃ 3NH₃	6	Octahedral - The three Cl ⁻ ions satisfy both primary and secondary valencies and 3NH ₃ molecules satisfy secondary valency - No.of species in solution = 1 - AgCl molecules precipitated by adding excess of AgNO ₃ is zero.	NH ₃ CI NH ₃ CI

Defects in Werner's theory:

- This theory does not explain the role of the electronic configuration of metal in forming complexes.
- It is known now in through coordinate bond formation that the metal tries to acquire the nearest inert gas configuration during the formation of complex.
- This theory does not explain the reason for the color of the complex.
- This theory does not explain the magnetic behavior of complex.