Grade A Wine EDA/Pre-processing

Raam Pravin

2024-12-28

```
Importing necessary libraries, importing data, and readying data for analysis

setwd("-/Downloads")

redwine <- read.csv("winequality-red.csv")

whitewine <- read.csv("winequality-white.csv")

## Creating variable Names Red Wine")

## Creating variable Names Red Wine

redwine_seperated <- str_split_fixed(redwine fixed.acidity.volatile.acidity.citric.acid.residual.sugar.

redwine_seperated <- data.frame(redwine_seperated)

cat("Creating variable Names White Wine")

## Creating variable Names White Wine

whitewine_seperated <- str_split_fixed(whitewine fixed.acidity.volatile.acidity.citric.acid.residual.sugar.

whitewine_seperated <- data.frame(whitewine fixed.acidity.volatile.acidity.citric.acid.residual.sugar.)
```

```
redwine_seperated <- redwine_seperated %>%
  rename(fixed_acidity = 'X1')
redwine_seperated <- redwine_seperated %>%
  rename(volatile_acidity = 'X2')
redwine_seperated <- redwine_seperated %>%
  rename(citric_acid = 'X3')
redwine_seperated <- redwine_seperated %>%
  rename(residual_sugar = 'X4')
redwine_seperated <- redwine_seperated %>%
  rename(chlorides = 'X5')
redwine_seperated <- redwine_seperated %>%
  rename(free_sulfur_dioxide = 'X6')
redwine_seperated <- redwine_seperated %>%
  rename(total_sulfur_dioxide = 'X7')
redwine_seperated <- redwine_seperated %>%
  rename(density = 'X8')
redwine_seperated <- redwine_seperated %>%
  rename(pH = 'X9')
redwine_seperated <- redwine_seperated %>%
  rename(sulphates = 'X10')
```

```
redwine_seperated <- redwine_seperated %>%
  rename(alcohol = 'X11')
redwine_seperated <- redwine_seperated %>%
  rename(quality = 'X12')
whitewine_seperated <- str_split_fixed(whitewine$fixed.acidity.volatile.acidity.citric.acid.residual.su
whitewine seperated <- data.frame(whitewine seperated)</pre>
whitewine_seperated <- whitewine_seperated %>%
  rename(fixed_acidity = 'X1')
whitewine_seperated <- whitewine_seperated %>%
  rename(volatile_acidity = 'X2')
whitewine_seperated <- whitewine_seperated %>%
  rename(citric_acid = 'X3')
whitewine_seperated <- whitewine_seperated %>%
  rename(residual_sugar = 'X4')
whitewine_seperated <- whitewine_seperated %>%
  rename(chlorides = 'X5')
whitewine_seperated <- whitewine_seperated %>%
  rename(free_sulfur_dioxide = 'X6')
whitewine_seperated <- whitewine_seperated %>%
 rename(total_sulfur_dioxide = 'X7')
whitewine_seperated <- whitewine_seperated %>%
  rename(density = 'X8')
whitewine_seperated <- whitewine_seperated %>%
  rename(pH = 'X9')
whitewine_seperated <- whitewine_seperated %>%
  rename(sulphates = 'X10')
whitewine_seperated <- whitewine_seperated %>%
  rename(alcohol = 'X11')
whitewine_seperated <- whitewine_seperated %>%
  rename(quality = 'X12')
redwine_seperated <- apply(redwine_seperated,2,as.numeric)</pre>
whitewine_seperated <- apply(whitewine_seperated,2,as.numeric)</pre>
redwine_seperated <- data.frame(redwine_seperated)</pre>
whitewine_seperated <- data.frame(whitewine_seperated)</pre>
redwine_seperated$type <- 'red'</pre>
whitewine_seperated$type <- 'white'</pre>
redwine_seperated$type <- as.factor(redwine_seperated$type)</pre>
whitewine_seperated$type <- as.factor(whitewine_seperated$type)
wine <- full_join(redwine_seperated, whitewine_seperated)</pre>
```

Exploratory Data Analysis Getting Descriptive Statistics for Red and White Wine

${\it \#Getting~descriptive~stats~for~Red~Wine}$

skim(redwine_seperated)

Table 1: Data summary

Name	redwine_seperated
Number of rows	1599
Number of columns	13
Column type frequency:	
factor	1
numeric	12
Group variables	None

Variable type: factor

skim_variable	n_missing	$complete_rate$	ordered	n_unique top_counts
type	0	1	FALSE	1 red: 1599

Variable type: numeric

skim_variable	n_missing compl	ete_rat	emean	sd	p0	p25	p50	p75	p100	hist
fixed_acidity	0	1	8.32	1.74	4.60	7.10	7.90	9.20	15.90	
volatile_acidity	0	1	0.53	0.18	0.12	0.39	0.52	0.64	1.58	
citric_acid	0	1	0.27	0.19	0.00	0.09	0.26	0.42	1.00	
residual_sugar	0	1	2.54	1.41	0.90	1.90	2.20	2.60	15.50	
chlorides	0	1	0.09	0.05	0.01	0.07	0.08	0.09	0.61	
free_sulfur_dioxide	0	1	15.87	10.46	1.00	7.00	14.00	21.00	72.00	
total_sulfur_dioxide	e 0	1	46.47	32.90	6.00	22.00	38.00	62.00	289.00	
density	0	1	1.00	0.00	0.99	1.00	1.00	1.00	1.00	
рН	0	1	3.31	0.15	2.74	3.21	3.31	3.40	4.01	
sulphates	0	1	0.66	0.17	0.33	0.55	0.62	0.73	2.00	
alcohol	0	1	10.42	1.07	8.40	9.50	10.20	11.10	14.90	
quality	0	1	5.64	0.81	3.00	5.00	6.00	6.00	8.00	

#Basic Stats

summary(redwine_seperated)

```
volatile_acidity citric_acid
##
   fixed_acidity
                                                   residual_sugar
  Min. : 4.60
                          :0.1200
                                         :0.000
                                   Min.
                                                         : 0.900
  1st Qu.: 7.10
                   1st Qu.:0.3900
                                    1st Qu.:0.090
                                                   1st Qu.: 1.900
## Median : 7.90
                   Median :0.5200
                                    Median :0.260
                                                   Median : 2.200
##
  Mean
         : 8.32
                          :0.5278
                                          :0.271
                                                         : 2.539
                   Mean
                                   Mean
                                                   Mean
  3rd Qu.: 9.20
                   3rd Qu.:0.6400
                                    3rd Qu.:0.420
                                                   3rd Qu.: 2.600
## Max.
          :15.90
                   Max.
                          :1.5800
                                   Max.
                                          :1.000
                                                   Max.
                                                          :15.500
##
     chlorides
                     free_sulfur_dioxide total_sulfur_dioxide
                                                                density
## Min. :0.01200
                    Min. : 1.00
                                        Min. : 6.00
                                                             Min.
                                                                    :0.9901
## 1st Qu.:0.07000
                     1st Qu.: 7.00
                                        1st Qu.: 22.00
                                                             1st Qu.:0.9956
## Median :0.07900
                     Median :14.00
                                        Median : 38.00
                                                             Median :0.9968
```

```
:0.08747
   Mean
                     Mean :15.87
                                        Mean : 46.47
                                                             Mean
                                                                    :0.9967
##
   3rd Qu.:0.09000
                     3rd Qu.:21.00
                                        3rd Qu.: 62.00
                                                             3rd Qu.:0.9978
          :0.61100
                                               :289.00
  Max.
                     Max. :72.00
                                        Max.
                                                            Max.
                                                                    :1.0037
##
                     sulphates
                                      alcohol
         рΗ
                                                      quality
                                                                    type
## Min.
          :2.740
                   Min.
                          :0.3300
                                   Min.
                                         : 8.40
                                                   Min.
                                                          :3.000
                                                                  red:1599
##
  1st Qu.:3.210
                   1st Qu.:0.5500
                                    1st Qu.: 9.50
                                                   1st Qu.:5.000
## Median :3.310
                   Median :0.6200
                                   Median :10.20
                                                   Median :6.000
         :3.311
## Mean
                          :0.6581
                                         :10.42
                                                   Mean
                                                          :5.636
                   Mean
                                    Mean
## 3rd Qu.:3.400
                   3rd Qu.:0.7300
                                    3rd Qu.:11.10
                                                   3rd Qu.:6.000
## Max.
         :4.010
                   Max.
                          :2.0000
                                          :14.90
                                                          :8.000
                                    Max.
                                                   Max.
```

#Getting descriptive stats for White Wine
skim(whitewine_seperated)

Table 4: Data summary

Name Number of rows	whitewine_seperated 4898
Number of columns	13
Column type frequency:	
factor	1
numeric	12
Group variables	None

Variable type: factor

skim_variable	n_missing	$complete_rate$	ordered	n_unique	top_counts
type	0	1	FALSE	1	whi: 4898

Variable type: numeric

skim_variable	n_missing comple	te_rat	temean	sd	p0	p25	p50	p75	p100	hist
fixed_acidity	0	1	6.85	0.84	3.80	6.30	6.80	7.30	14.20	
volatile_acidity	0	1	0.28	0.10	0.08	0.21	0.26	0.32	1.10	
citric_acid	0	1	0.33	0.12	0.00	0.27	0.32	0.39	1.66	
residual_sugar	0	1	6.39	5.07	0.60	1.70	5.20	9.90	65.80	
chlorides	0	1	0.05	0.02	0.01	0.04	0.04	0.05	0.35	
free_sulfur_dioxide	e = 0	1	35.31	17.01	2.00	23.00	34.00	46.00	289.00	
total_sulfur_dioxid	le 0	1	138.36	42.50	9.00	108.00	134.00	167.00	440.00	
density	0	1	0.99	0.00	0.99	0.99	0.99	1.00	1.04	
рН	0	1	3.19	0.15	2.72	3.09	3.18	3.28	3.82	
sulphates	0	1	0.49	0.11	0.22	0.41	0.47	0.55	1.08	
alcohol	0	1	10.51	1.23	8.00	9.50	10.40	11.40	14.20	
quality	0	1	5.88	0.89	3.00	5.00	6.00	6.00	9.00	

#Basic Stats
summary(whitewine_seperated)

```
fixed_acidity
                      volatile_acidity citric_acid
                                                          residual_sugar
##
##
          : 3.800
                              :0.0800
                                        Min.
                                                :0.0000
                                                                  : 0.600
    Min.
                      Min.
                                                          Min.
                      1st Qu.:0.2100
##
    1st Qu.: 6.300
                                        1st Qu.:0.2700
                                                          1st Qu.: 1.700
    Median : 6.800
##
                      Median :0.2600
                                        Median :0.3200
                                                          Median : 5.200
##
    Mean
           : 6.855
                      Mean
                              :0.2782
                                        Mean
                                                :0.3342
                                                          Mean
                                                                  : 6.391
##
    3rd Qu.: 7.300
                      3rd Qu.:0.3200
                                        3rd Qu.:0.3900
                                                          3rd Qu.: 9.900
           :14.200
                              :1.1000
                                        Max.
                                                :1.6600
                                                                  :65.800
##
    Max.
                      Max.
                                                          Max.
                       free_sulfur_dioxide total_sulfur_dioxide
                                                                      density
##
      chlorides
##
    Min.
           :0.00900
                       Min. : 2.00
                                            Min.
                                                  : 9.0
                                                                   Min.
                                                                           :0.9871
##
    1st Qu.:0.03600
                       1st Qu.: 23.00
                                            1st Qu.:108.0
                                                                   1st Qu.:0.9917
##
    Median :0.04300
                       Median : 34.00
                                            Median :134.0
                                                                   Median :0.9937
           :0.04577
                               : 35.31
                                                    :138.4
                                                                   Mean
                                                                           :0.9940
##
    Mean
                       Mean
                                            Mean
                       3rd Qu.: 46.00
##
    3rd Qu.:0.05000
                                            3rd Qu.:167.0
                                                                   3rd Qu.:0.9961
           :0.34600
                               :289.00
                                                                           :1.0390
##
    Max.
                       Max.
                                            Max.
                                                    :440.0
                                                                   Max.
##
          рΗ
                       sulphates
                                          alcohol
                                                           quality
                                                                             type
##
    Min.
           :2.720
                     Min.
                             :0.2200
                                       Min.
                                               : 8.00
                                                        Min.
                                                                :3.000
                                                                         white:4898
                     1st Qu.:0.4100
##
    1st Qu.:3.090
                                       1st Qu.: 9.50
                                                        1st Qu.:5.000
    Median :3.180
                     Median: 0.4700
                                       Median :10.40
                                                        Median :6.000
                            :0.4898
                                                        Mean
##
    Mean
           :3.188
                     Mean
                                       Mean
                                               :10.51
                                                                :5.878
    3rd Qu.:3.280
                     3rd Qu.:0.5500
                                       3rd Qu.:11.40
                                                        3rd Qu.:6.000
##
    Max.
           :3.820
                     Max.
                             :1.0800
                                       Max.
                                               :14.20
                                                        Max.
                                                                :9.000
```

EDA Continued: Exploring Data by viewing distributions, and frequency of outliers for each variable Box Plot of Fixed Acidity by Wine Type

Box Plot of Citric Acid by Wine Type

Box Plot of Residual Sugar by Wine Type

Wine Type

Box Plot of Total Sulfur Dioxide by Wine Type

Box Plot of Density by Wine Type

Box Plot of Alcohol by Wine Type

Box Plot of Quality by Wine Type

CountPlot of Quality by Wine Type

Examining the CountPlot of Wine Type, the purpose of this investigation
since less than 25% of wines in both red and white wines have high wine
ratings greater than 7, Grade A wine is defined as those with an rating of 7
or greater. The purpose of this investigation is to predict Grade A wine
and be able to define characteristics of Grade A wine

Correlation Plotof all chlorides fixed_acidity volatile_acidity citric_acid residual_sugar chlorides free_sulfur_dioxide total_sulfur_dioxide density рН sulphates alcohol quality

EDA Continued: Checking Correlation of all Variables with correlation plot

Since summary statistics showed that variables were on different scales and there was a lot of difference observed between variables must apply scaling method to normalize data.

```
#Applying Min-max scaling
min_max_scaling_white <- preProcess(whitewine_seperated[1:11], method = "range")
white_wine_scaled <- predict(min_max_scaling_white,whitewine_seperated)
white_wine_scaled$quality <- as.factor(white_wine_scaled$quality)</pre>
min_max_scaling_red <- preProcess(redwine_seperated[1:11], method = "range")
red wine scaled <- predict(min max scaling red,redwine seperated)</pre>
red_wine_scaled$quality <- as.factor(red_wine_scaled$quality)</pre>
redwine_randomforest_columns12 <- c("fixed_acidity", "volatile_acidity",</pre>
                                                                                                                     "citric acid", "residual sugar", "chlorides",
                                                                                                                     "free_sulfur_dioxide", "total_sulfur_dioxide",
                                                                                           "density", "pH", "sulphates", "alcohol", "quality")
\label{lem:columns12} whitewine\_randomforest\_columns12 <- c("fixed\_acidity", "volatile\_acidity", "volatile\_acidity, "v
                                                                                                                            "citric_acid", "residual_sugar", "chlorides",
                                                                                                                            "free_sulfur_dioxide", "total_sulfur_dioxide",
                                                                                           "density", "pH", "sulphates", "alcohol", "quality")
red_wine_scaled <- red_wine_scaled[, redwine_randomforest_columns12,</pre>
                                                                                                                 drop = FALSE ]
```

Since summary statistics showed that variables were on different scales and there was a lot of difference observed between variables must apply scaling method to normalize data.

Splitting Data into 31 random train/test to effectively evaluate model performance

```
# Randomly shuffling the data and dividing into train/test
white_wine_indexes <- sample(2, nrow(white_wine_scaled),</pre>
                              replace = TRUE, prob = c(0.8,0.2))
white_wine_train <- white_wine_scaled[white_wine_indexes==1,]</pre>
white_wine_test <- white_wine_scaled[white_wine_indexes==2,]</pre>
red_wine_indexes <- sample(2, nrow(red_wine_scaled),</pre>
                            replace = TRUE, prob = c(0.8,0.2))
red wine train <- red wine scaled[red wine indexes==1,]</pre>
red_wine_test <- red_wine_scaled[red_wine_indexes==2,]</pre>
# Set up 30 random train/test splits for white and red wine data
set.seed(123) # for reproducibility
# Generate indexes for 30 iterations
white_wine_indexes_list <- replicate(31, sample(2,</pre>
                                                  nrow(white_wine_scaled),
                                                  replace = TRUE,
                                                  prob = c(0.8, 0.2)),
                                       simplify = FALSE)
red_wine_indexes_list <- replicate(31, sample(2, nrow(red_wine_scaled),</pre>
                                                replace = TRUE,
                                                prob = c(0.8, 0.2)),
                                     simplify = FALSE)
# Vectorized approach with lapply
white_wine_train_list <- lapply(white_wine_indexes_list, function(index) white_wine_scaled[index == 1,
white_wine_test_list <- lapply(white_wine_indexes_list, function(index) white_wine_scaled[index == 2, ]
red_wine_train_list <- lapply(red_wine_indexes_list, function(index) red_wine_scaled[index == 1, ])</pre>
red_wine_test_list <- lapply(red_wine_indexes_list, function(index) red_wine_scaled[index == 2, ])</pre>
```

Since data is very unbalanced with Grade A Wine representing less than 25% of respective wine types randomly sampling with replacement fom original data to synthetically replicate minority class of Grade A Wine in both red wine and white wine data so that model can pick up complex relationships

```
# Defining oversampling functions
oversample_data_red <- function(my_data) {
   data <- my_data
   return(ovun.sample(quality ~ ., data = data, method = "over", N = 2150)$data)
}
oversample_data_white <- function(my_data) {</pre>
```