

1/29

TWO TYPES OF HAPAXOMERS

• INTERNAL PALINDROMIC TYPE II ENZYMES -e.g., Sfi I

G G C C N N N N^N G G C C C C G G N^N N N N C C G G

OUTSIDE CUTTERS (TYPE IIS)
-e.g., Sap I
G C T C T T C N^N N N
C G A G A A G N N N N^

FIG. 1

CAGNNNCTG

FIG. 2A

FIG. 2B

FIG. 3

3/29

	Sap I (0)	(C)	Sfi 1 (0+1)	Sfi (0-2) 3gl	/Pme l	Sap 1 (0	o I (0+1) Sap	1 (0-2)	
Hs Fna	56.72		96.72	98.91	97.45	56.7	84.67	94.82	
Mac	61.98		97.94	99.70	98.14	61.9	90.31	97.60	
E coli	86.71		100.00	100.00	93.52	86.7	98.37	99.53	
C elegans	65.93		99.97	100.00	98.55	62.9	90.38	97.19	
S cerevisiae	80.02		96.68	100.00 97.17	97.17	80.0	2 96.68 9	99.29	3,
Arabidopsis	70.83	99.56	100.00	100.00	97.57	70.8	93.37	98.63	/29

FIG. 4

SERIAL NO.: 10/702228

- .	_	4.1	L _	
7+	G	ш	æ	rs

7+ Cutters							
Enzymes	Recognition Sequence	HsFna	MGC	Ec	Се	Sc	At
Aarl	CACCTGCNNNN^NNNN	7142	5355			<u> </u>	1138
Abel	CC^TCA_GC not available	7970	5836	141	90	374	1833
Ascl	GG^CGCG_CC	515	336	152	10	13	26
AsiSI	GCG_AT^CGC	108	62	207	39	29	178
BbvCl	CC^TCA_GC	7970	5836	141	90	374	1833
CciNI	GC^GGCC_GC	1444	823	19	33	31	97
Cpol	CG^GWC_CG	1119	781	347			
Cspl	CG^GWC_CG	1119	781	347			
CspBI	GC^GGCC_GC not available	1444	823	19	33	31	97
Fsel	GG CCGG^CC	1139	740	5	9	10	70
Mabl	A^CCWGG_T						
MchAl	GC^GGCC GC not available	1444	823	19	33	31	97
Mlu1106I	RGGWCCY not available						
Noti	GC^GGCC GC	1444	823	19	33	31	97
Pacl	TTA AT^TAA	708	395	66	8	213	138
Pf1271	RG^GWC CY not available						
PpuMI	RG^GWC_CY						
PpuXI	RG^GWC_CY						
Psp5II	RG^GWC CY						
PspPPI	RG^GWC CY						
RsrII	CG^GWC_CG	1119	781	347			
Rsr2l	CG^GWC CG	1119	781	347			
SanDl	GG^GWC_CC						<u> </u>
Sapl	GCTCTTCN^NNN_	7260	4785	584	1296	1362	8870
Sbfl	CC TGCA^GG	2591	1802	60	13	66	251
Sdal	CC TGCA^GG	2591	1802	60	13	66	251
Sdil	GGCCN_NNN^NGGCC not available	2214	1634	28	18.	54	121
SexAl	A^CCWGG T						
Sfil	GGCCN NNN*NGGCC	2214	1634	28	18	54	121
Sgfl	GCG AT^CGC	108	62	207	39	29	178
SgrAl	CR^CCGG YG						
Sse2321	CG^CCGG CG not available	708	448	29	43	23	446
Sse18251	GG^GWC CC not available						
Sse83871	CC TGCA^GG	2591	1802	60	13	66	251
Sse86471	AG^GWC CT not available						
VpaK32I	GCTCTTCN^NNN not available	7260	4785	584	1296	1362	8870

FIG. 5A

5/29

						_								_		_	_	_
	At	2422	1705	2164	3078	1824	2576		5450	12141	3616	6782	2992	8244	7092	8419	8078	82.29
	Sc	507	549	885	537	337	750		1583	2911	856	1238	1317	2466	737	2289	3843	3018
•	Ce	558	263	165	705	295	469		092	1652	792	1047	305	1346	800	919	1049	494
	Ec	1070	498	435	1000	926	1333		442	1167	463	438	442	470	156	1378	1008	296
	MGC	209	449	621	512	1019	8989		4551	5850	944	4305	2755	4132	2402	2435	5167	6243
	HsFna	830	701	1080	842	1049	8827		6683	8401	1515	6426	4098	6536	3651	3789	7484	8455
כוא סמווכו פ	Recognition Sequence		CAGTAC G	TACAGTA	CG AT^CG	A^CGCG T	GCCN NNNANGGC	CTCTTCN^NNN	TGTACA	GAANNANTTC	GATCGA C	GAGATC C	G_GTAC^C	GAATT C	CATCGA G	GATATC	AAA^TTT	TTT^AAA
3	Enzymes	Nroi	Spll	SnaBl	Pvul	Miul	Bgl	Ear i	BsrGl	Xmul	Sall	BamHi	Kpnl	EcoRI	Xhol	EcoRV (Oral

FIG. 5B

490 317 317 490 30 At 317 Sc 379 379 379 152 152 379 379 848 848 173 173 8888 HsFna 1204 1204 1204 1204 1204 1433 Recognition Sequence 2995~2229 GTTT'AAAC GTTT'AAAC ATTT'AAAT **ATTT^AAAT ATTT^AAAT ATTT^AAAT** 7+ Blunt Cutters BstRZ2461 Enzymes MspSWI **BstSWI** Pmel Mssi Smil Swal

FIG. 5C

7/29

8/29

Sfi

- HOW TO MAKE Sfi I "ONE WAY"
 - -METHYLASES
 - -Bgl, NOT Sfi I SITS, IN ACCEPTOR VECTORS
 - G G C C N N N N^N G G C C
 - C C G G N^N N N N C C G G
 - G C C N N N N^N G G C
 - C G G N^N N N N C C G
 - -LETHAL GENES IN STUFFER FRAGMENTS

FIG. 7

FIG. 8

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

14/29

RES THAT CAN MAKE Sfi I ONE-WAY

3' 3b OVERHANG	RESTICTION ENZYME	RECOGNITION SEQUENCE
CNG	FmuI	G GNC^C
CNG	PssI	RG_GNC^CY
CWG	Psp03I	G GWC^C
GNC	BthCI	G CNG^C
GSC	TauI	G CSG^C
NNN	AlwNI	CAG_NNN^CTG
NNN	BglI	GCCN_NNN^NGGC
NNN	BsiYI	CCNN_NNN^NNGG
NNN	BstAPI	GCAN NNN^NTGC
NNN	DraIII	CAC NNN^GTG
NNN	MwoI	GCNN_NNN^NNGC
NNN	PflMI	CCAN_NNN^NTGG
NNN	RleAI	CCCACANNNNNNNNNN_NNN^
NNN	SfiI	GGCCN_NNN^NGGCC

FIG. 11

15/29

16/29

Sap I

- HOW TO MAKE Sap I "ONE WAY"
 - -METHYLASES
 - -ORIENTATION OF SITES IN VECTOR BACKBONE IN DONOR VECTOR AND IN ACCEPTOR VECTOR
 - -LETHAL GENES IN STUFFER FRAGMENTS
 - -Ear I, NOT Sap I SITES, IN ACCEPTOR VECTORS
 - G C T C T T C N^N N N
 - C G A G A A G N N N N^
 - C T C T T C N^N N N
 - GAGAAGNNNN^
- KEY ADVANTAGE OF Sap I
 ONLY THREE BASES PER EXCHANGE SITE
 LEFT IN ACCEPTOR VECTOR

FIG. 13

17/29

TWO ENZYME APPROACH

• Sgf I - CUTTER OF HUMAN cDNAs, TWO BASE 3' OVERHANG

G C G A T^C G C

C G C^T A G C G

• Pme I - CUTTER, BLUNT END CUTTER

G T T T^A A A C

C A A A^T T T G

FIG. 14A

FIG. 14B

18/29

FIG. 15

19/29

N-TERMINAL Sgf I SITE CAN ALLOW N-TERMINAL FUSION OR NO FUSION

NAAGGAGCGATCGCCATGg --RBS- Kozak--

VAAGGAGCGATCGCCATG KEQGlyAlAIleAlaMet

FIG. 16

C-TERMINAL Pme I SITE ALLOWS TERMINATION (+1AA) OR C-TERMINAL FUSIONS

NNNGTTTAAACN XaaValTer

NNNGTTTATCN with EcoRV XaaValTyr

NNNGTTTCCAN with Ball, etc. XaaValSer

FIG. 17

FIG. 18

21/29

N-TERMINAL Pac I--Sgf I FUSION SITE

NAAGGATTAATCGCCATGG

KEQGlyLeuIleAlaMet

C-TERMINAL Pme I--Swa I FUSION SITE

NNNGTTTAAATN

XaaValTer

FIG. 19A

N-TERMINAL Pac I--Sgf I FUSION SITE

NAAGGATTAATCGCCATGG

--RBS Kozak--

C-TERMINAL Pme I--Swa I FUSION SITE

NNNGTTTAAATN

XaaValTer

FIG. 19B

FIG. 20A

TITLE: VECTORS FOR DIRECTIONAL CLONING INVENTORS NAME: Michael R. Slater et al. SERIAL NO.: 10/702228

23/29

 λ no $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$ $\frac{2}{1}$ $\frac{4}{1}$ i

FIG. 20B

MAL NO.: 10/702220

29/29

FIG. 22B