La fonction racine carrée

La fonction racine carrée est donnée par la relation algébrique suivante $f: x \longmapsto \sqrt{x}$

- 1. Pour tout nombre réel positif $x \in [0; +\infty[$ il existe une racine carrée du nombre x que l'on note \sqrt{x} . Le domaine de définition de la fonction racine carrée est $\mathbb{R}^+ = [0; +\infty[$.
- 2. Ci-dessous un tableau de valeurs pour la fonction racine carré sur l'intervalle [0; 16], tel que les images sont arrondies à 10^{-1} près.

				3										13	1		
\sqrt{x}	0	1	1,4	1,7	2	2,2	2,4	2,6	2,8	3	3,1	3,3	3,4	3,6	3,7	3,9	4

3. Le tableau de signes de la fonction racine carrée sur l'intervalle [0 ; 16].

x 0 16 f(x) 0 +

4. Le tableau de variations de la fonction racine carrée sur l'intervalle [0 ; 16].

 $\begin{array}{c|cccc}
x & 0 & 16 \\
\hline
f(x) & 0 & 4 \\
\end{array}$

5. (a) Soit a et b deux réels positifs.

 $f(a) - f(b) = \sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{\sqrt{a^2} - \sqrt{b^2}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$

(b) Si $a \le b$ alors $a - b \le 0$. De plus $\sqrt{a} + \sqrt{b}$ est une somme de nombre positifs donc c'est un nombre positif. **0.5**/

$$f(a) - f(b) \le 0 \iff f(a) \le f(b)$$

La fonction racine carrée respecte l'ordre entre les abscisses et les ordonnées sur $[0; +\infty[$.

(c) La fonction racine carrée est croissante sur $[0; +\infty[$. $[0; +\infty[$.

1/

1/

1/

6. Dans cette question on considère un point A qui se déplace sur la courbe représentative de la fonction racine carrée dans un repère orthonormé. Nous noterons x l'abscisse du point A et O l'origine du repère orthonormé.

(a) **2**/

- (b) L'ordonnée du point A est \sqrt{x} et les coordonnées du point O sont (0;0).
- (c) Les coordonnées du vecteur :

$$\overrightarrow{OA} \left(\begin{array}{c} x \\ \sqrt{x} \end{array} \right)$$

(d)
$$\|\overrightarrow{OA}\| = \sqrt{x^2 + \sqrt{x^2}} = \sqrt{x^2 + x}$$

(e)
$$OA = \|\overrightarrow{OA}\| = \sqrt{x^2 + x} = \sqrt{x(x+1)} = \sqrt{x} \times \sqrt{x+1} = f(x) \times f(x+1)$$