Chapter 14

Introduction to Multiple Regression

Learning Objectives

In this chapter, you learn:

- How to develop a multiple regression model
- How to interpret the regression coefficients
- How to determine which independent variables to include in the regression model
- How to determine which independent variables are most important in predicting a dependent variable
- How to use categorical independent variables in a regression model
- How to predict a categorical dependent variable using logistic regression
- How to identify individual observations that may be unduly influencing the multiple regression model

The Multiple Regression Model

DCOVA

Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X_i)

Multiple Regression Model with k Independent Variables:

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \dots + \beta_{k} X_{ki} + \epsilon_{i}$$
 Random Error

Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

Multiple regression equation with k independent variables:

In this chapter we will use Excel to obtain the regression slope coefficients and other regression summary measures.

Example: 2 Independent Variables

DCOV<u>A</u>

 A distributor of frozen dessert pies wants to evaluate factors thought to influence demand

```
    Dependent variable: Pie sales (units per week)
```

Independent variables: Price (in \$)
 Advertising (\$100's)

Data are collected for 15 weeks

Pie Sales Example

Week	Pie Sales	Price (\$)	Advertising (\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

DCOVA Multiple regression equation:

Sales =
$$b_0 + b_1$$
 (Price)
+ b_2 (Advertising)

Minitab Multiple Regression Output

DCOVA

Sales = 306.526 - 24.975(Price) + 74.131(Advertising)

```
The regression equation is Sales = 307 - 25.0 Price + 74.1 Advertising
```

```
        Predictor
        Coef
        SE Coef
        T
        P

        Constant
        306.50
        114.30
        2.68
        0.020

        Price
        -24.98
        10.83
        -2.31
        0.040

        Advertising
        74.13
        25.97
        2.85
        0.014
```

$$S = 47.4634$$
 R-Sq = 52.1% R-Sq(adj) = 44.2%

Analysis of Variance

```
Source DF SS MS F P
Regression 2 29460 14730 6.54 0.012
Residual Error 12 27033 2253
Total 14 56493
```

The Multiple Regression Equation

DCOVA

Sales = 306.526 - 24.975(Pri ce) + 74.131(Adv ertising)

where

Sales is in number of pies per week Price is in \$ Advertising is in \$100's.

b₁ = -24.975: sales will decrease, on average, by 24.975 pies per week for each \$1 increase in selling price, net of the effects of changes due to advertising

b₂ = 74.131: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

Using The Equation to Make Predictions

DCOVA

Predict sales for a week in which the selling price is \$5.50 and advertising is \$350:

Predictions in Minitab

DCOVA

Confidence interval for the mean value of Y, given these X values

Predicted Values for New Observations

New

Obs Fit SE Fit 95% CI 95% PI

1 428.6 17.2 (391.1, 466.1) (318.6, 538.6)

Predicted Ŷ value

Values of Predictors for New Observations

New

Obs Price Advertising

1 5.50 3.50

Input values

Prediction interval for an individual Y value, given these X values

The Coefficient of Multiple Determination, r²

DCOVA

Reports the proportion of total variation in Y explained by all X variables taken together

$$r^2 = \frac{SSR}{SST} = \frac{regressionsum of squares}{total sum of squares}$$

Multiple Coefficient of Determination In Minitab

DCOVA

The regression equation is Sales = 307 - 25.0 Price + 74.1 Advertising

S = 47.4634 R-Sq = 52.1% R-Sq(adj) = 44.29

$$r^2 = \frac{SSR}{SST} = \frac{29460.0}{56493.3} = .52148$$

Analysis of Variance

52.1% of the variation in pie sales is explained by the variation in price and advertising

Adjusted r²

DCOVA

- r² never decreases when a new X variable is added to the model
 - This can be a disadvantage when comparing models
- What is the net effect of adding a new variable?
 - We lose a degree of freedom when a new X variable is added
 - Did the new X variable add enough explanatory power to offset the loss of one degree of freedom?

Adjusted r²

DCOVA

 Shows the proportion of variation in Y explained by all X variables adjusted for the number of X variables used

$$r_{adj}^2 = 1 - \left[(1 - r^2) \left(\frac{n - 1}{n - k - 1} \right) \right]$$

(where n = sample size, k = number of independent variables)

- Penalizes excessive use of unimportant independent variables
- Smaller than r²
- Useful in comparing among models

Adjusted r² in Minitab

DCOV<u>A</u>

The regression equation is Sales = 307 - 25.0 Price + 74.1 Advertising

Predictor Coef SE Coef T P
Constant 306.50 114.30 2.68 0.020
Price -24.98 10.83 -2.31 0.040
Advertising 74.13 25.97 2.85 0.014

S = 47.4634 R-Sq = 52.1% R-Sq(adj) = 44.2%

Analysis of Variance

Source DF SS MS F P Regression 2 29460 14730 6.54 0.012 Residual Error 12 27033 2253 Total 14 56493

$$r_{adj}^2 = .44172$$

44.2% of the variation in pie sales is explained by the variation in price and advertising, taking into account the sample size and number of independent variables

Is the Model Significant?

DCOVA

- F Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the X variables considered together and Y
- Use F-test statistic
- Hypotheses:

$$H_0$$
: $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ (no linear relationship)

 H_1 : at least one $\beta_i \neq 0$ (at least one independent variable affects Y)

F Test for Overall Significance

DCOVA

Test statistic:

$$F_{STAT} = \frac{MSR}{MSE} = \frac{\frac{SSR}{k}}{\frac{SSE}{n-k-1}}$$

where F_{STAT} has numerator d.f. = k and denominator d.f. = (n - k - 1)

F Test for Overall Significance In **Minitab**

DCOVA

The regression equation is Sales = 307 - 25.0 Price + 74.1 Advertising

Predictor Coef SE Coef 306.50 114.30 2.68 0.020 Constant Price -24.98 10.83 -2.31 0.040 Advertising 74.13 25.97 2.85 0.014

S = 47.4634 R-Sq = 52.1% R-Sq(adj) = 44.2%

Analysis of Variance

Source DF SS MS

2 29460 14730 6.54 0.012 Regression

Residual Error 12 27033 2253

14 56493 Total

> With 2 and 12 degrees of freedom

=6.5386 $F_{STAT} =$ **MSE** 2252.8

14730.0

MSR

P-value for the F Test

F Test for Overall Significance

(continued)

DCOVA

 H_1 : β_1 and β_2 not both zero

$$\alpha = .05$$

Test Statistic:

$$F_{STAT} = \frac{MSR}{MSE} = 6.5386$$

Decision:

Since F_{STAT} test statistic is in the rejection region (p-value < .05), reject H_0

Conclusion:

There is evidence that at least one independent variable affects Y

Residuals in Multiple Regression

DCOVA

Two variable model

Multiple Regression Assumptions

DCOVA

Errors (residuals) from the regression model:

$$e_i = (Y_i - \hat{Y}_i)$$

Assumptions:

- The errors are normally distributed
- Errors have a constant variance
- The model errors are independent

Residual Plots Used in Multiple Regression

DCOVA

- These residual plots are used in multiple regression:
 - Residuals vs. Y_i
 - Residuals vs. X_{1i}
 - Residuals vs. X_{2i}
 - Residuals vs. time (if time series data)

Use the residual plots to check for violations of regression assumptions

Are Individual Variables Significant?

DCOV<u>A</u>

- Use t tests of individual variable slopes
- Shows if there is a linear relationship between the variable X_j and Y holding constant the effects of other X variables
- Hypotheses:
 - H_0 : $β_j$ = 0 (no linear relationship)
 - H_1 : $\beta_j \neq 0$ (linear relationship does exist between X_i and Y)

Are Individual Variables Significant?

(continued)

DCOV<u>A</u>

 H_0 : $\beta_j = 0$ (no linear relationship between X_j and Y)

 H_1 : $\beta_j \neq 0$ (linear relationship does exist between X_j and Y)

Test Statistic:

$$t_{STAT} = \frac{b_j - 0}{S_{b_j}}$$

$$(df = n - k - 1)$$

Are Individual Variables Significant? Minitab Output

DCOV<u>A</u>

The regression equation is Sales = 307 - 25.0 Price + 74.1 Advertising

Predictor Coef SE Coef T P
Constant 306.50 114.30 2.68 0.020
Price -24.98 10.83 -2.31 0.040
Advertising 74.13 25.97 2.85 0.014

S = 47.4634 R-Sq = 52.1% R-Sq(adj) = 44.2%

Analysis of Variance

Source DF SS MS F P
Regression 2 29460 14730 6.54 0.012
Residual Error 12 27033 2253
Total 14 56493

t Stat for Price is $t_{STAT} = -2.31$, with p-value .040

t Stat for Advertising is $t_{STAT} = 2.85$, with p-value .014

Inferences about the Slope: t Test Example

H_0 : $\beta_j = 0$ H_1 : $\beta_j \neq 0$

$$d.f. = 15-2-1 = 12$$

 $\alpha = .05$

 $t_{\alpha/2} = 2.1788$

From the Excel output:

For Price $t_{STAT} = -2.306$, with p-value .0398

For Advertising $t_{STAT} = 2.855$, with p-value .0145

The test statistic for each variable falls in the rejection region (p-values < .05)

Decision:

Reject H₀ for each variable **Conclusion:**

> There is evidence that both Price and Advertising affect pie sales at $\alpha = .05$

Confidence Interval Estimate for the Slope

Confidence interval for the population slope β_i

$$b_j \pm t_{lpha/2} S_{b_j}$$
 where t has (n – k – 1) d.f.

	Coefficients	Standard Error
Intercept	306.52619	114.25389
Price	-24.97509	10.83213
Advertising	74.13096	25.96732

Here, t has
$$(15-2-1) = 12$$
 d.f.

Example: Form a 95% confidence interval for the effect of changes in price (X_1) on pie sales:

$$-24.975 \pm (2.1788)(10.832)$$

So the interval is (-48.576, -1.374)

(This interval does not contain zero, so price has a significant effect on sales)

Confidence Interval Estimate for the Slope

DCOV<u>A</u>

(continued)

Confidence interval for the population slope β_i

	Coefficients	Standard Error	 Lower 95%	Upper 95%
Intercept	306.52619	114.25389	 57.58835	555.46404
Price	-24.97509	10.83213	 -48.57626	-1.37392
Advertising	74.13096	25.96732	 17.55303	130.70888

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of \$1 in the selling price, holding the effect of advertising constant

Testing Portions of the Multiple Regression Model

DCOVA

Contribution of a Single Independent Variable X_j

SSR(X_j | all variables except X_j)

= SSR (all variables) - SSR(all variables except X_i)

 Measures the contribution of X_j in explaining the total variation in Y (SST)

Testing Portions of the Multiple Regression Model

(continued)

DCOVA

Contribution of a Single Independent Variable X_j , assuming all other variables are already included (consider here a 2-variable model):

From ANOVA section of regression for

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$$

From ANOVA section of regression for

$$\hat{\mathbf{Y}} = \mathbf{b}_0 + \mathbf{b}_2 \mathbf{X}_2$$

Measures the contribution of X₁ in explaining SST

The Partial F-Test Statistic

DCOVA

Consider the hypothesis test:

H₀: variable X_j does not significantly improve the model after all other variables are included

H₁: variable X_j significantly improves the model after all other variables are included

Test using the F-test statistic:

(with 1 and n-k-1 d.f.)

$$F_{STAT} = \frac{SSR (X_j | all variables except j)}{MSE}$$

DCOVA

Example: Frozen dessert pies

Test at the α = .05 level to determine whether the price variable significantly improves the model given that advertising is included

(continued)

H₀: X₁ (price) does not improve the model with X₂ (advertising) included

DCOVA

H₁: X₁ does improve model

$$\alpha = .05$$
, df = 1 and 12

$$F_{0.05} = 4.75$$

(For X_1 and X_2)

ANOVA			
	df	SS	MS
Regression	2	29460.02687	14730.01343
Residual	12	27033.30647	2252.775539
Total	14	56493.33333	

(For X_2 only)

ANOVA		
	df	SS
Regression	1	17484.22249
Residual	13	39009.11085
Total	14	56493.33333

(continued)

DCOVA

(For X_1 and X_2)

(For X_2 only)

ANOVA			
	df	SS	MS
Regression	2	29460.02687	14730.01343
Residual	12	27033.30647	2252.775539
Total	14	56493.33333	

ANOVA		
	df	SS
Regression	1	17484.22249
Residual	13	39009.11085
Total	14	56493.33333

$$F_{STAT} = \frac{\text{SSR } (X_1 | X_2)}{\text{MSE(all)}} = \frac{29,460.03 - 17,484.22}{2252.78} = 5.316$$

Conclusion: Since $F_{STAT} = 5.316 > F_{0.05} = 4.75$ Reject H_0 ; Adding X_1 does improve model

(continued)

H₀: X₂ (advertising) does not improve the model with X₁ (price) included

DCOVA

H₁: X₂ does improve model

$$\alpha = .05$$
, df = 1 and 12

$$F_{0.05} = 4.75$$

(For X_1 and X_2)

ANOVA			
	df	SS	MS
Regression	2	29460.02687	14730.01343
Residual	12	27033.30647	2252.775539
Total	14	56493.33333	

(For X_1 only)

ANOVA		
	df	SS
Regression	1	11100.43803
Residual	13	45392.8953
Total	14	56493.33333

(continued)

DCOVA

(For X_1 and X_2)

(For X_1 only)

ANOVA			
	df	SS	MS
Regression	2	29460.02687	14730.01343
Residual	12	27033.30647	2252.775539
Total	14	56493.33333	

ANOVA		
	df	SS
Regression	1	11100.43803
Residual	13	45392.8953
Total	14	56493.33333

$$F_{STAT} = \frac{\text{SSR}(X_2 | X_1)}{\text{MSE(all)}} = \frac{29,460.03 - 11,100.44}{2252.78} = 8.150$$

Conclusion: Since $F_{STAT} = 8.150 > F_{0.05} = 4.75$ Reject H_0 ; Adding X_2 does improve model

Coefficient of Partial Determination for k variable model

DCOVA

```
\frac{r_{\text{Yj.(all variables except j)}}^{2}}{\text{SSR}\left(X_{j} \mid \text{all variables except j}\right)}
= \frac{\text{SSR}\left(X_{j} \mid \text{all variables except j}\right)}{\text{SST-SSR}(\text{all variables}) + \text{SSR}(X_{j} \mid \text{all variables except j})}
```

 Measures the proportion of variation in the dependent variable that is explained by X_j while controlling for (holding constant) the other independent variables

Coefficient of Partial Determination in Excel

DCOVA

- Coefficients of Partial Determination can be found using Excel:
 - PHStat | regression | multiple regression ...
 - Check the "coefficient of partial determination" box

Regression Analysis Coefficients of Partial Determination				
Intermediate Calculations				
SSR(X1,X2)	29460.02687			
SST	56493.33333			
SSR(X2)	17484.22249	SSR(X1	X2)	11975.80438
SSR(X1)	11100.43803	SSR(X2	X1)	18359.58884
Coefficients				
r2 Y1.2	0.307000188			
r2 Y2.1	0.404459524			

Using Dummy Variables

DCOV<u>A</u>

- A dummy variable is a categorical independent variable with two levels:
 - yes or no, on or off, male or female
 - coded as 0 or 1
- Assumes the slopes associated with numerical independent variables do not change with the value for the categorical variable
- If more than two levels, the number of dummy variables needed is (number of levels - 1)

Dummy-Variable Example (with 2 Levels)

DCOVA

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$$

Let:

Y = pie sales

 $X_1 = price$

 X_2 = holiday (X_2 = 1 if a holiday occurred during the week) (X_2 = 0 if there was no holiday that week)

Dummy-Variable Example (with 2 Levels)

(continued)

DCOVA

$$\hat{Y} = b_0 + b_1 X_1 + b_2 (1) = (b_0 + b_2) + b_1 X_1$$
 Holiday
$$\hat{Y} = b_0 + b_1 X_1 + b_2 (0) = b_0 + b_1 X_1$$
 No Holiday
Different Same intercept slope

intercept Y (sales)

If H_0 : $\beta_2 = 0$ is rejected, then "Holiday" has a significant effect on pie sales

Interpreting the Dummy Variable Coefficient (with 2 Levels)

Example:

$$Sales = 300 - 30(Price) + 15(Holiday)$$

Sales: number of pies sold per week

Price: pie price in \$

Holiday: {1 If a holiday occurred during the week 0 If no holiday occurred

 $b_2 = 15$: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

Dummy-Variable Models (more than 2 Levels)

- The number of dummy variables is one less than the number of levels
- Example:

Y = house price; $X_1 = \text{square feet}$

If style of the house is also thought to matter:

Style = ranch, split level, colonial

Three levels, so two dummy variables are needed

Dummy-Variable Models (more than 2 Levels)

(continued)

DCOVA

Example: Let "colonial" be the default category, and let X_2 and X_3 be used for the other two categories:

Y = house price

 X_1 = square feet

 $X_2 = 1$ if ranch, 0 otherwise

 $X_3 = 1$ if split level, 0 otherwise

The multiple regression equation is:

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

Interpreting the Dummy Variable Coefficients (with 3 Levels)

DCOVA

Consider the regression equation:

$$\hat{Y} = 20.43 + 0.045X_1 + 23.53X_2 + 18.84X_3$$

For a colonial:
$$X_2 = X_3 = 0$$

$$\hat{Y} = 20.43 + 0.045X_1$$

For a ranch:
$$X_2 = 1$$
; $X_3 = 0$

$$\hat{Y} = 20.43 + 0.045X_1 + 23.53$$

For a split level:
$$X_2 = 0$$
; $X_3 = 1$

$$\hat{Y} = 20.43 + 0.045X_1 + 18.84$$

With the same square feet, a ranch will have an estimated average price of 23.53 thousand dollars more than a colonial.

With the same square feet, a split-level will have an estimated average price of 18.84 thousand dollars more than a colonial.

Interaction Between Independent Variables

- Hypothesizes interaction between pairs of X variables
 - Response to one X variable may vary at different levels of another X variable
- Contains two-way cross product terms

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$$

$$= b_0 + b_1 X_1 + b_2 X_2 + b_3 (X_1 X_2)$$

Effect of Interaction

DCOVA

Given:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

- Without interaction term, effect of X₁ on Y is measured by β₁
- With interaction term, effect of X₁ on Y is measured by β₁ + β₃ X₂
- Effect changes as X₂ changes

Interaction Example

DCOVA

Suppose X_2 is a dummy variable and the estimated regression equation is $\hat{Y} = 1 + 2X_1 + 3X_2 + 4X_1X_2$

Slopes are different if the effect of X₁ on Y depends on X₂ value

Significance of Interaction Term

DCOVA

 Can perform a partial F test for the contribution of a variable to see if the addition of an interaction term improves the model

- Multiple interaction terms can be included
 - Use a partial F test for the simultaneous contribution of multiple variables to the model

Simultaneous Contribution of Independent Variables

- Use partial F test for the simultaneous contribution of multiple variables to the model
 - Let m variables be an additional set of variables added simultaneously
 - To test the hypothesis that the set of m variables improves the model:

$$F_{STAT} = \frac{[SSR(all) - SSR (all except new set of m variables)] / m}{MSE(all)}$$

(where F_{STAT} has m and n-k-1 d.f.)

Chapter Summary

In this chapter we discussed

- The multiple regression model
- Testing the significance of the multiple regression model
- Adjusted r²
- Using residual plots to check model assumptions
- Testing individual regression coefficients
- Testing portions of the regression model
- Using dummy variables
- Evaluating interaction effects