(a) Publication number:

0 270 356 A2

(E)

EUROPEAN PATENT APPLICATION

- Application number: 87310612.4
- Date of filling: 02.12.57

(9) Int. a.t. C 12 N 15/00 A 01 H 1/00, C 12 N 5/00, C 12 M 1/00

- (2) Priority 05.12.25 US \$32570
- Date of publication of application:
 08.05.23 Bulletin 82/23
- Designated Contracting States:

 AT BE CH DE ES FR GB GR IT LI LU NL SE
- Applicant: AGRACETUS
 SECOUniversity Green
 Migdleton Wisconsin 52561 (US)
- thventor: McCabe, Dennis E 8777 Airport Road Middleton Wisconsin \$3562 (US)

Swain, William F. 4922 Marathon Drive Madison Wisconsin 53705 (US)

Martinell, Brian J. 4854 Institute Macison Wisconsin 50711 (US)

Representative: Wain, Christopher Paul et al All THORNTON & CO. Northumberland House 200-206 High Holborn London WCTV TLE (CE)

The microorganism(s) has (have) been deposited with American Type Culture Collection under-number(s) 57255.

Potten-mediated plant transformation.

A method and apparatus is disclosed for the genetic transformation of plants and plant lines by polien mediated transformation. Foreign genes are introduced into polien by coating on carrier particles which are physicilly accelerated into plant pollen. The treated plant pollen is then hand politicated and the progeny are recovered, a portion of which will contain in their genome the loreign gene. The procedure may be used to create genetically engineered maize plant and lines.

FIG. 1

EP 0 270 356 A2

Description

POLLEN-MEDIATED PLANT TRANSFORMATION

10

35

Field of the Invention

The present invention relates to the general field of genetic engineering of plants and relates, in particular to the transformation of exogenous genetic material into the germ line of a plant line by physically introducing the genetic material into pollen of the plant.

Background of the Invention

There exists much current effort and research being expended toward the genetic transformation of plant species, it is believed that the development of efficient means for transforming foreign genes into plant germ lines will allow the diversity of the genetic stock in commercially important crop species to be widened and to allow functional genes of specific interest to be selectively introduced into crop species. The effort and research to date on the transformation, or genetic engineering, of plant species has applied results which vary outle dramatically depending on the species of plant.

The principal mechanism which has been used heretatore for the introduction of exogenous genes into plants has begun with the transformation of single plant cells either as protoplasts or in a undifferentiated tissue mass known as a callus. Chimeric genes functional in plant cells have been introduced into single cell plant protoplasts by electroporation and microinjection. However, the most widery used transformation technique used to date has taken advantage of a natural trait of the plant pathogen Acrobactenum tumefaciens, which has the innate ability to transfer a portion of the DNA from a Ti (Tumor-inducing) plasmid harbored in it into an infected plant ceil. By insening foreign genes into plasmics in Agropactenum which carry certain sequences from the Ti prasmic, the bacreral transformations, traitiosn be used to transport the foreign genes into the genome of the infected plant defici Apropagierium-mediated plant cell transformation has been found to work reasonably well in many model crop species, such as lobacco, pelunia and carrot, but does suffer from two significant limitations. The first limitation is that the mediation can only be done on an individual cellular level, typically with somatic tissues, which then must be regenerated artifically into a whole plant. This fimils the applicability of Agrobacterium-mediated genetic transformation to those crop species which can readily be regenerated from types of tissues which are susceptible to Agrobacterium infection, A secand limitation is that the natural host range of Agrobacterium includes only dicatyledonous plants and a limited number of monocot species of the Liliaceae family, Therefore Agrobacterum-mediated transformation has not been proven to be an effective tool for monocal species of commercial interests, such as the cereal crop species. Another difficulty with Agrobacterium-inediated transformations is the generation of somocional varants, which spontaneously arise in plant tissues in tissue culture, which may complicate identification of transformants.

It has been demonstrated that at least some chumeric gene constructions are effective for expression of foreign genes in most plant cells. The functionality of these chimeric constructions in monocots as well as doots has been demonstrated by the transformation of maize protoplasts in culture through such techniques as electroporation. However, no currently known methodology exists to regenerate whole maize plants, or whole plants of any other important crop species, from such protoplasts. No whole, intact transformed maize plants, for example, are known to have been generated. Nevertheless genetic transformation of lines of maize and other crop species is a desired objective because of the great agricultural value of the common crop plants and the potential to improve their value and productivity.

There has been at least one suggestion previously that marce process can be generically transformed by genetic transformation of their policin. Published PCT patent application WO 85/01858 to DeWer purportedly describes a method for the transfer of exogenous genes into Bowering plants by transforming the policin of the plants. Attempts by others to verify this technique and reproduce the experiment have failed. Santord et al., Theor. Appl. Genet., 69 (5-5), 571-74 (1985). A report or one similar result has been made. Onta, Prod. Natl. Acad. Sci. USA, 801715-719 (1985).

Summary of the Invention

The present invention is summarized in that a method of genetically transforming a plant line comprises the steps of preparing a DNA sequence individing a foreign gene and regulatory sequences; Foositing the DNA sequence onto biologically linest particles physically appearating the particles carrying the DNA at pollen of the plant to longe the particles in the pollen; pollinating a female parent plant with the pollen; and selecting from progeny of the pollination for transformed plants.

The present invention is also directed toward maize lines having functional expressed foreign genes inserted in them.

The present invention is further directed toward the genetic transformation of not only maize but other important crop plants through pollen transformation and without the need for tissue culture or regeneration of plants.

It is an advantage of the present invention in that the process is relatively quick and efficient, readily verifiable, and rememble.

It is an advantage of the process of the present invention and the materials produced therefrom that foreign genetic material, characterized or uncharactenzed, can readily and rapidly be introduced into any desired genetic background of maize for crop breeding, molecular bology, or other similar agron-

omic or scientific purposes.

An additional advantage of the process of the present invention is that numerous, i.e. thousands, of transformant events are possible and teasible because of the ease of performing the process in Contrast to prior sometic-cell transformation techniques or inscro-injuction which are difficult to perform or require cell by-cell treatment.

Other objects, advantages and features of the present evention will become apparent from the following specification when taken in conjunction with the accompanying drawings.

Brief Description of the Drawings

Fig 1 is an explicated perspective view of an apparatus constnicted to perform the method of the present invention.

Fig. 2 is a schematic illustration of the plasnuc manipulations in the process of making plasmid pCMC 1008.

Fig. 3 is a schematic allustration of the plasmid manipulations in the process of making the plasmin pCMC 1000.

Detailed Description of the Invention

In the practice of pollen-mediated plant genetic transformation conducted in accordance with the present invention, DNA is physically delivered into the cytosal of plant pollen, the DNA being carried on individual small particles of biologically inert material which are accelerated at the pollen so that the particles enter the individual pollen cells but neither destroy nor inconscitate them. It has been found that DNA devered in such a fashion will be incorporated into the genetic material of the progeny of this pollen. Thus transforming pollen in this fashion allows for the genetic engineering of plants and plant lines.

There are several factors which influence successful poven-mediated transformations. The manner in which the particles are accelerated is preferably coreliusy arranged so that the individual DNA-bearing particles have a proper momentum and velocity, and the particles themselves are in a relatively uniform pottern, when contacting the potten that they penetrate a significant number of polien cells without biologically disabiling them. Furthermore, the DNA on the particles should be stable and capable of transforming plant calls and expressing the desirable trait in the plant cells, in accition, the DNA itself may contain a selectable marker which can be detected in putatively transformed plant seeds or plantlets in order to verily the specific plants in which genetic transformation has occurred. It the transformation frequency is high enough, such a selectable marker may not be necessary.

There are many types of mechanical systems which can be envisioned to accelerate biologically inert small carrier particles. Possible mechanisms might include traffictic explosive acceleration of particles, contribugal acceleration of particles, electrastatic acceleration of particles of any other analogous system canable of providing momentum and velocity to small inert particles. One novel

method preferred by the applicants here is itsustrated in schematic tashon in Fig. 1. The method Businalmi here mukes use of a shock wave created by high sultury: electional discharge, in Fig. 1, and gunerally instruction at its, as my accordance for accolerates; the sect portions today this method. Also shown in Fig. 1, and quincilly male ated at 22, is a target studied for carrying the police larget thereon.

The accelerator 10 consists of several parts. A Spark discharge chamber 12 has provided extending into its interior a pair of electrodes 14. The geometry of the spark charmage churcher 12 is not believed to be critical to the present amention as long as the chamber is configured to develop and present a strack wave of proper character and proper direction that it can be used to propel the carrier particles. The applicants have found that a section of 13 millimeter interior diameter polyvinyl chloride plastic pipe is satisfactory for use as the spark discharge section 12. The electrodes 14 are extending appositely into the interior mounted approximately 5 millimeters below the top of the spark chamber 12. The electrodes 14 themselves are formed by threaded bolts extending into sustable threads formed in the interior sidewall surfaces of the spack champer 12 wall itself. The ends of the threaded botts forming the electrodes 14 are protected with an arc resistant alloy obtained from high electric voltage relay contact points cut to a size of approximately 2 millimeters by 2 millimeters by 3 millimeters and soldered to the ends of the threaded bolts. The gap between the electrodes 14 can be adjusted by appropriately threading the bolts into or out of the spark charmoor 12. The preferred gap for discharge voltage of approximately 15 kilovoits between the ends of the electrodes is between 1 and 1.5 millimeters. The method of tophostory and mounting the electrodes 14 themselves is plearly subject to wide variation, atthough a is preferred that the electrones be highly durable and that the distance of the space gain network the electronous be readily -

A spacer mng 16 is provided above the spark chamber 12. The spacer ring 16 may be constructed out of the samp PVC plos as the poor's pharmoer 12 itself and proforably be out to a vertical length of 6 millimeters, in a fixed apparatus for transformations of a single grop species, the spacer mag 16 could be constructed merely as a vertical extension of the spark discharge chamber 12, although a removable and regiscable spacer ring 16 allows adjustment of the distance from spark discharge to currier sheet to be varied so that the force of particle accoleration can be varied by conditions or by species. The spacer ring 10 may be left open at the top if a large carner sheet 18 is used, but may also advantageously have its top opening partially restricted by a suitable closure to form a rectangular opening approximately 9 by 13 millimeters. Placed alon the spacer 12 is a currier shoul 18. The carrier sheet 18 is a picnar, light sheet formed of suitable size to be placed resting atop the spacer ring 16. The carrier Sheet 18 is thrimed at flexible biologically inert sheet material capable of carrying biologically inert small

particles thereon. The carrier sheet 18 functions to transfer the force of a snock wave from a spark discharge into acceleration of the carrier particles. It has been found that the carrier sheet 18 may advantageously be formed from 1 mil or 0.5 mil plastic coated aluminized mylar, with the 0.5 mil sheets being preferred since in practice they result in better penetration into the pollen. As a general practice the smaller the actual surface area of the carrier sheet 18, the better penetration is obtained by the carner particles into the pollen. This consideration regarding penetration is balanced by the need to have the carrier sheet of a size which is easy to handle and which provides an impact pattern over a large enough field to be able to impact large numbers of pollen cells in each individual injection. A carrier sheet size of 9 by 11 millimeters has been found to provide a good size yielding good penetration in a desirable impact pattern of the particles onto the pollen larget.

The carrier sheet also functions to arrange the pattern of the particles as they contact the target surface. An even uniform pattern of particles is highly desirable to ensure that as many cells on the target as possible are impacted, in order to maximize the yield of transformants. Non-transformed cells, pollen or otherwise, may be at a competitive advantage with transformants or may be partially depilitated by the carrier particles. Therefore it is desirous to reach as close to 100 percent injection into the target cells as is possible, and a uniform layer and pattern of particles on a carrier sheet 18 aids this objective.

As to the carner particles themselves, any high density material which is biologically inert should be appearable for use as the DNA partier particles within the context of the present invention. Metallo materials are preferred, such as tungsten and gold. which have a donetry of 19 Indium might also be preferable, having a density value of 32, but has not been used by the applicants because it is only easily available in a relatively course gowder, whereas sonerical particles are preterred. Tungsten is also probably less desirable compared to goid because it tends to existing in air in the presence of even trace moisture. Such an exication layer on the carner particles tends to bind the particles together causing severe increase in average particle size as the particles aggregate together. Particles which are clumped in irregular aggregations are less desirable for the practice of the present invention since such aggregations will vary widely in their mass and size. thus leading to difficulty in obtaining regularly replicable results, it has been found that gold is an optimal material for the particles within the present invention since it has high density, is relatively inert to both biological insterials and to exidation, and is readily commercially available in the form of spheres having a diameter of 1 to 3 micrometers. Suitable DNA sequences may be applied to the gold particles and the gold particles may be applied to the carner sheet in a mariner which will be discussed in further G6:34 3310/4

Located above the carrier sheet 18 is a retainer screen 20. The retainer screen 20 is a 100 mesh

stainless steel screen physically mounted in a plastic holder approximately 5 millimeters above the top of the spacer ring 16. The retainer screen 20 functions to restrain the carrier sheet 18 so that it does not proceed to the target.

The target surface 22 is a planar sheet of material capable of suspending the target cells, i.e. pollen or other plant cells, thereon, in practice it has been found that an easily useable target is a petri dish 60 millimeters by 15 millimeters inverted over the top of the assembly holding the retainer screen. Spacing from the retaining screen 20 to the target cells on the target surface 22 is therefore preferably approximately 15 millimeters. Spacing greater than 15 millimeters, under the conditions of voltage and atmospheric pressure described below, leads to reduced penetration of camer particles into the pollen while a spacing of tess than 10 millimeters results in crushed cells in the event that the retaining screen 20 deforms under the force of the blast.

If pollen is used as the target cells, the pollen must be applied to the target in such a fashion that the target may be inverted with the pollen remaining viazie. Since polen in general is sensitive to moisture, the method used to achere the pollen to the target should be as moisture-free as possible. It has been found that mineral oil is useful as such an achesive. If a thin layer of mineral oil is applied to the bottom of a Peth dish to be used as the target surface 22, pollen is dusted into the dish, and then the dish overturned to remove excess pollen, it has been found that a relatively uniform monolayer of pollen grains remains on the target which will remain in place dunny particle injection and which remains viable, if ce's other than pollen are used in this apparatus other support media, such as agair, may be more appropriate.

The entire assembly of the barriols appelerator 10 and the target surface 20 must be partially evapurated so as to prevent the force of atmospheric drag from stowing the particles and or the damer sheet 18. The vacuum should be only a partial vacuum shall a high vacuum would designore the target poten decisioned from non-visible. A vacuum of 450 to 450 millimeters of meroupy has been found sufficient and advantageous.

In the simplest explanation of the operation apparatus of Fig. 1, the process of fining the accelerator 10 begins with the placement of a drop 24 of distilled or demineralized water between the electrodes 14. The amount of water must be selected so as not to dampen the arc which will occur between the electrodes but yet be of sufficient volume to create a shock wave in the interior of the spark chainder 12 when the discharge does occur. The preferred volume of water has been found to be approximately 2-4 microliters. This amount of water may be applied by pipette suspended between the ends of the electrodes 14. The water droplet 24 will bridge the gap between the electrodes and remain in place.

The spacer ring 16 is then placed upon the top of the space chamber 12 and the carner sheet 18 is placed on the top of the spacer ring 16. The retaining screen 20 is mounted in place 5 malmeters above

45

the carner sheet 18 and the target surface 22 consisting of the overturned Petri dish is placed above the mounting of the retaining screen 20. The assembly is then evacuated to 480 millimeters of mercury.

External to the apparatus illustrated in Fig. 1, a voltage supply is connected to generate 15,000 volts DC. The 15 000 voits DC is then applied to a 1 microfarad capacitor, which is then disconnected from the voltage source. By throwing a suitable switch, the 15,000 volt charge on the capacitor is then applied between the electrodes 14.

When the voltage is applied, an electric discharge arc jumps between the two electrodes 14. The arc instantly vaporizes the small water drop extending between the electrodes. A shack wave from the explosive vaporization of the water drop propagates throughout the interior of the spark chamber 12. When the shock wave reaches the carrier sheet 18, the carrier sheet 18 is litted vertically off the spacer ring 16 and is appalerated toward the retaining screen 20. When the camer sheet 18 hits the retaining screen 20 the corner sheet 18 is restrained in place and the particles darried on the partier sheet 18 leave the carrier sheet and tly freely across the distance to the cells resting on the target surface 22. If the apparatus has been properly constructed and adjusted, and the procedure properly followed, a significant percentage of the carrier particles will arrive at the target with a correct velocity to penetrate the cells carned on the target surface 22. without destroying an unacceptable percentage of the delis. The cells on the larger surface 22 may then be removed from the target surface 22 and selected as appropriate to segregate transformants from monytransformants. If pottenis used, as preferred, in the process, the pollen is then removed from the target surface 22 and hond polinated onto femile female flowers, such as maide silks, which will then set seed, or kernels. The seed can be harvested, planted and evaluated for the morphological or biddhemics: traits conditioned by the DNA carned on the partier particles into the pollen. Alternatively, immature emoryos may be excised from the developing seed bisdues and the empryos grown out in appropriate tissue culture into small plantlets or into whole plants. The plants or plantlets, or tissues from them, can then be tested for selection on the basis of a selectable marker carned in the DNA transformed into the potten cells. Suitable selectable markers would include exogenous resistance traits. such as herbicide or antibiotic resistance, or dominant morphological traits whose expression can be observed.

It is to be understood that while the apparatus of Fig. 1 has been specifically developed for the process of pollen mediated plant transformation in accordance with the present invention, the apparatus itself is also useful for accelerated particle transformation of other tissue types, plant, animal or bacterial, as well The apparatus allows for easy adjustment of the particle force by varying the spacing or the discharge voltage. It is relatively simple to quertie, efficient and stable to that results may be replicated

Within the professor process of the present invention, the process for applying the DNA sequences to the particles, the process for layering the particles into the marker sheet, and this process for preparing the DNA for plust transformation all may require particular attention. Each of these details will be discussed at him.

:.

The DNA sequence sulluring a foreign gene prepared in the form suitable for plant transformation can be simply dried onto naked gold or lungsten petters. However, DNA molecules in such a form tend to have a relatively short period of stability and tend to degrane rainer rapidly due to chemical reactions with the metallic or operate substrate of the particle itself. It has been found, by contrast, that if the carrier particles are hist coated with an encappulating agent the DNA strands have greatly improved stability and do not degrade significantly even over a time perior of several weeks. A suitable encapsulating agent has been found to be polylysine (molecular weight 200,000) which can be applied to the carrier particles before the DNA morecules are applied. Other endadsulating agents, polymeric or otherwise, are also belaved useful as similar encapsulating agents. The polytysine is applied to the particles by rinsing the gold particles in a solution of 0.02% polylysine and then air drying or heat drying the particles thus coared. Once the metallic particles coated with polytysine have been properly dried, DNA strands can then be loaded onto the particles. The DNA may be loaded onto the particles at a rate of between 3 and 30 micrograms of DNA per miligram of gold basic spheres. The practice has been to soo to 100 micrograms of DNA and 30 milligrams or 1-3 micron gold soneres precoated with polyhema, sequentially 5 microliters or 10 mM NaghiF Du ann then 5 microwers of 10 mM CaCly to provide a fine CamPOs prehipitate which forms as the solution dries. The prepiotate carries Au the DNA with it onto the bends. Once the beads and the phosphale and colour chioride sorution have been mixed with the CNA, the suspension is direc under a nitrogen (N2) stream with treduent stirring. Once died the prodotate is immediately resuspended in 1000's ethanol for the process of placing the gardicles onto the camer sheet.

In analying the partities to the carner sheet, it is preferred for the successful operation of this procedure to form a uniform and reproducible layer of the carrier particles on the carrier sheet. To do this, the particles cannot be simply dusted onto the carrier sheet, since they tend to aggregate and are thus distributed uneversity in a non-reproducible fashion on the sheet. In particular, moisture or water Content on the sheet will disrupt the application of the particles to the sheet and result in undesirable aggregations. Therefore, it is first necessary to precoat the mylar share: with a hydroconilic coating intended to prevent water spotting when applying the carner particles. It has been found that hydroxy ethyl collulate is upon over the plastic coaled

ethyl cellulate works will for this purpose, although other similar treatments, such as acid hydrolyzed cellulose, are also leasible. A solution of 194 hydroxy

aluminized mylur, which is then noted with ignized

25

water and air dried. The carrier particles, with the precipitated coating containing the DNA strands. suspended in 1000 einanol, is then applied to the carrier sheet. It has been found that 50 or 100 microliters of a well stirred suspension of the ethanol with the carrier particles can be successfully pipetted onto the mylar sheet in a reasonably uniform and reproducible fashion. The piperted aliquot of this suspension is then allowed to settle in a closed peth dish for at least 30 seconds. The peth dish must be closed to prevent eddy currents from forming from room air currents and from a high rate of evaporation, such edgy currents potentially causing excessive drifting of the particles and therefore a non-uniform distribution of particles on the sheet. After the settling period, the meniscus is broken and the excess ethanol is drained away. The residual ethanol is removed by evaporation in a partially opened peth dish.

This process is intended to place the carrier particles opated with the precipitate containing DNA strands on the mylar carner sheet. A good median rate which is found successful within the present invention is approximately 0.1 milligram of carrier particles carrying the precipitate and DNA applied to a 9 by 13 millimeter area of the carrier sheet. Such a density of carrier particle application to the carrier sheet gets good survival of pollen and also a high penetration of pollen grains by the accelerated particles. The actual acceleration and penetration of the grains by the particles will vary both with the polien size and diameter, and the number of carner particles can obviously be varied to give more or fewer particles per cross-sectional area of the target cells as desired.

The DNA for use within the present invention must be constructed in a vector appropriate for expression of the exogenous gene in the dels of maids, or whatever other plant is being utilized within the present invention. The DNA sequence can be enimeno, but tul Intact non-chimeno genes from other plants species or lines of the same species may also be used. Vectors suitable for expression in plants generally must include, besides the coding sequence of the desired exogenous gene, appropriate tranking regulatory sequences such as a suitable promotor capable of promoting transcription and expression in vivo in plant calls and a translation terminator capable of signalling the end of transcription or the appropriate processing of the RNA in such a fashion that will allow suitable translation of messenger to produce protein synthesis. It has been previously demonstrated that plant gene promoters capable of causing coding sequence transcription and expression in dicot plant cells are also effective in monocots, such as com, on a callular level although with lowered efficiency in some cases. Fromm et al., Froc. Natt. Acad. Sci. USA. 82:5524-5828, September 1985. Such promoters include the nopoline synthese promoter from the plant pathogen Agrobacterium tumelaciens and the Calify 355 promoter derived from the couldower masaic virus sequence. A suitable termination sequence effective in plants is the polyadenylation sequence from the nopaline synthase gene of Agrobacterium tumefaciens. The plant expression vector may also contain a selectable marker operative in plant cells to allow for selection of transformant plants. The selectable marker may condition a trait which may be assayed biochemically or a phenotypic trait which may be observed in the progeny plant. Cleany if a non-chimeno mact gene, with Itanking regulatory sequences, from the same or another plant is used in the present process, chimeno promoter or control sequences are unnecessary and the gene may be used with its native sequence.

While the process of the present invention has been described in particular detail with regard to pollen-mediated transformation of maize, it should be understood that there is nothing intrinsic to the process that is of necessity fimited to maize, and the process is equally suitable for pollen transformation of other cereal crops as well as dicot crops such as soybean and cotton, and most other plants as well. The procedure for handling pollen of other species may need to be varied and the spacing of the parts of the apparatus or load to carrier particle velocity may need to be varied depending on the species, but the basic apparatus and procedure may be used in other plant species.

In addition, while the process of the present invention is directed toward pollen-mediated plant transformation, the apparatus disclosed herein is equally suitable for use in transformation of other plant tissues, such as emoryogenic callus or somatic emoryos, or any other plant or other tissue in culture.

Since not all of the pollen will have carrier particles inserved into them, and since not all pollen dells or progeny bygotes will uptake the DNA unto their genome, it will be necessary to screen the progeny prants at some stage to select for transformants, if it is desired to transform a given foreign gene into a plant, the gene may be inseried into a chimeric expression vector. The chimero expression vector cours then be transformed into diant detalating with a selectable marker plasmid, such as bCMC 1022 desambed herein below. The two vectors (foreign gene and selectable marker) dan de ligated together to make one plasmid, or the two vectors can be cloned separately and then applied together to the same carner particles, in either event, the progeny produced are screened for the marker to select transformed progeny. While the use of such a selectable marker may be desirable in some directionstances, it may be omitted if a suitable morphological or biochemical test exists to screen for the transformed progeny. A morphological screening test could be for a dominant phenotypic trait in the progeny. A suitable biochemical screening test could be a so-called "Southern" blot hypndizing prope for the existence of the transforming DNA itself in the genome of the progeny plants.

EXAMPLES

1. Construction of Vestors

10.3/1771

A. Antibiotic Resistance.

The construction of sustable plant expression vectors is illustrated in schematic fashion in Figs. 2 and 3. Fig. 2 distrates, in schematic form, the construction of a plant expression vector pCMC 1208. The construction of the plasmid pCMC 1208 began with the digestion of the plasmid pER 325 (Balivar, F. Gene 4 121-136 (1978)) with the restriction endonuclease Tag I. The plasmid pBR 325 contains a coding sequence for the antibiotic resistance gene chloramphenicol acetyl transferase (CAT) which is exised from the remainder of the plasmid by Taq I digestion. After digestion of pBR 325, the fragments were resolved by electrophoresis in an agardsa get and the fragment containing the CAT gene was excised. The CAT traginent was then licated into the plasmid pUC 9 (Viera & Messing, Gene, 19,259-263 (1982)) which had previously been digested with the restriction enzyme Act I. The fragment ends produced by Taq I and Add I are complementary in this case and thus the strands were directly ligarable. The resulting clasmic, designated publication Fig. 2, contained the CAT coding sequence tranked by portions of the polylinker from pUC 9. This plasmid was digested with Pst I and Bam HI, and the smaller of the two fragments was isolated by gel electrophoresis. This fragment was then ligated to an intermediate plant expression vector pCMC 55, which had been previously digested with Pst I and Eam HI, to form the CAT expression plasmid pCMC 1205. The plasmid pCMC 68 contains the noceshe symmase promoter (Nos Pri from Agrobacterium tymeraciens and a hopaline synthase. polyacenylation sequence (Poly A), from the same organism, surrounding six plasmid unique restriction sires. The plasmus oCMC 66 also carries a version of the betailabramase gene (bia) which expresses resistance to the antibiotic ampiciting in bactera, so than ample. Ein registance can be weed as a selection marker in subsequent recombinations denotined in <u>e.</u> C:

The plasmic pCaMV 10 (Gardner et al., Nucl. Acids Res 9 2571-2555(1551)) was digested with Stull and the tragment containing the cauliflower mosaid virus 35 promoter (CaMV 35s) was joined to synthetic Xho I oligonucleotice linkers. The fragment was then digested with Hph I, treated with a DNA polymerase to generate blunt ends, and then joined to synthetic Hind III oligonucleotide linkers. Digestion of this tragment with both Xho I and Hind III produced a tragment containing the CaMv35s promoter and transcription start site modified at its ends by the addition of the restriction site sequences.

The nogaline synthase promoter was excised from pCMC 1205 by digestion of the plasmid with Xho I and Hind III. The larger of the two fragments thus produced was figated with the CalMv35s promoter fragment to produce pCMC 1203, a plant expression vector having the CaMv35s promoter, the CAT coding sequence and the nopaline synthase polyacenylation sequence in order. The CaMv35s promoter and poly A sequences served as the flanking regulatory sequences for the CAT coding sequence.

Both of the placehids pCMC 1205 and pCMC 1205 were tosted for activity in maize by electroporation

into protoplasts, followed by an assay for CAT activity. Both constructions proved active in maize cells, but pCMC 1208 proved significantly higher in level of activity, and thus was selected for plant transformation experiments.

The plasmid pCMC 1008 was used for the pollen-mediated genetic transformation of maize in the apparatus and process of the present invention. However, it was found that the assay for CAT activity bad a high background level in maize tissue and thus the CAT gene was considered not an optimal marker in maize. Accordingly, the plasmid was further manipulated to insert another antibiotic resistance gene, of more selectivity in maize, in the vector in place of the CAT gene, as illustrated in Fig. 3.

The plasmid pCMC 1021 contains the nopaline synthase promoter and the nopoline synthase polyadenylation sequence flanking a coding region for the enzyme aminoglycoside-3-phosphotransferase B (APH 3'll) which conditions for resistance to aminogyposide antibiotics such as kanamycin. Since electroporation experiments revesed the CaMv35s promoter to be much more effective in maize than the blos Pr. it was decided to transfer the Camv35s promoter to pCMC 1021. The Camv35s fragment from pCMC 1208, as illustrated in Fig. 3, was isolated by digestion with Xho I and Hind III and isolation by electrophoresis. The plasmid pCMC 1021 was also digested with Xho I and Hind III and the larger fragment isolated and ligated with the CaMy 35's fragment to produce pCMC 1022. In plasmic pCMC 1022 the opting sequence from APHS It is flanked by the requisiony Cartivists and Nos på sequences

The prasmids pGMC 1208 and pGMC 1020 were both demonstrated to be effective for transformation and expression in individual dails of topacco, dotton, soybesh and port intrough electroporation transformation and protein assays. Plant devis transformed in culture with the APmC III have been demonstrated to be resistant to kanamyon for dotton, soybesh and cornicals.

B. Endosperm color marker.

45

A plasmid referred to as pMS2AI was obtained which contains an approximately \$9 kilobase \$50 AI fragment of the maize genomic DNA which includes the entire gene encoding the enzyme UOP glucoseflavored glucosyl transferase, an enzyme which is required for the synthesis of anthocyanin pigments in com. The genomic fragment contains extensive both \$1 and \$1 flanking DNA and thus is expected to include appropriate registrory sequences effective in maize to express the gene. Since the cloned gene is a full-length copy of the normal, functional maize gene, it would be expected that the cloned gene would be half active and function appropriately in maize cells.

The enzyme itself, UDP glucose-flavorial glucosyl transferase, is useful as a selectable marker for genetic transformation in maize because marze lines are available which carry recessive mutations which inactivate the encogenius gene. Since the enzyme is non-essential for plant growth and development, the plants of the mutant lines are normal except for

the lack of the red anthocyanin pigments produced in various tissues of wild-type or non-mutant maize plants. Introduction of the wild-type gene into homozygous mutant lines results in the production of the enzyme and thus ultimately the production of anthocyanins, so that transformant plants can be easily identified due to their characteristic dish with a brush and hand pollinated onto the silks of female plants of Kaltenberg 390 and CFS 5504 hybrids. The silks were physically segregated from

13

nyorids. The sixs were projection

From the ears pollinated in this fashion, 52 kernels were produced. The immature embryos were excised from the ears 14 days after pollination and placed in culture on a corn embryo tissue culture medium containing 50 parts per million Kanamycin. The seedings which grew up on the medium were assayed directly for APH3' II activity and three seedlings assayed positive, indicating the APH3' II enzyme was being expressed in the tissues of the seedling thus indicating successful transformation of these plants.

One of these plants were glaced on a nonselective medium before transfer to a greenhouse for further growth. Leaf tissue was analyzed for continued APH

3' If activity which was positive.

The presence of pCMC 1022 sequences in the DNA isolated from this plants and from one plant which did not assay positive was demonstrated by the Southern hybridization-technique, Southern, J. Mol. Bio., 98:502-577 (1975). DNA was isolated from control and test corn leaf samples by micromodification of the catys-tomathylammonium bromide procedure of Taylor and Rowell, Focus, 4:4-5 (1882), 10 up of each ONA sample was digested with the restriction entrythes Ava I and Hind III, resolved by eleptrophores s in an agarose gel, transferred to a nylon memorane, and hypotolized with a Philabeled proce corresponding to the non-coding strand of the APH II coding region. After washing the filter, hyphological CNA tragments were visualized by auto raciography.

The expected the fragment was not found in either plant. However, each or the plants exhibited an approximately 4kb fragment which hyphologed with the APH-3' if prope and which was not found in any of the control non-transformed control samples of maize DNA. One of the two plants (the one positive for APH II) also exhibited a 3.7 kb specifically hypricizing fragment. The fact that the observed fragment is not the expected size is not too surpnsing since complex restriction patterns are generally observed for DNA transfected into plant and animal cells. Perucho et al., Call. 22:309-317 (1980); Kiens et al., Plant Mol. Biol., 5:223-224 (1985); Paszkowski et al., EMBO J., 3:2717-2722 (1984); Riggs and Bates Proc. Natl. Acad. Sci. USA. 83.5602-5506 (1285). Furthermore, in eucaryotic calls DNA can be modified, e.g. by methylation, in ways that after its expected restriction digestion pattern Changler and Walbot, Proc. Natl Acad. Sci. USA, 83 1767-1771 (1986), Boin Ava I and Hind III, the restriction endunisticases used in this example. are known to be issubited by specific methylation within their recognition sequences. McCelland and Nelson, Nucleic Acids Res. 13:r201-r207 (1965). The 4 kb fragment length is equivalent to the plasmid until length of the pCarC 1022 plasmid and suggests that these plants contain landemly duplicated copies of the plasmid. Digestion with either enzyme alone would then produce the plasmid-length fragments observed. The 3.7 kb fragment appears to result from a rearrangement of the plasmid, perhaps at its juncture with indigenous maize DNA.

Two additional replicates were done utilizing the identical procedure as described above with pollen from CFS 5504 plants placed on sitks of CFS 5504 plants. Two plants generated from the procedure were selected at random from the plants produced, and were assayed for APH 3" If and were analyzed by Southern blot, Both plants failed to show APH 3" If activity but evidenced the 4.0 kb hybridizing frag-

ment in their genome.

Another replicate using identical procedues with pollen from A183 and a Filint maternal plant again resulted in progeny from which a plant was selected at random for analysis. The leaves of this plant tested positive for APH 31 II and also evidenced the 40 kb fragment in the Southern biot analysis.

3. Use of pCMC 1022 with Other Genes

To transform other genes of interest into maize or other plants, plasmid pCMC 1022 may be used in any of several ways. The APHI' II coding sequence can be deleted by digestion of pCMC 1022 with Hind III and Barn HI and another gene sequence of interest prepared with appropriate ends can be signted in its place. If the gene of interest can reasonably be selected for, the glasmic may then be directly used for transformations. If the gene of interest is separately prepared with appropriate regulatory sequences, and a selectable marker is desired, the gene of interest with its regulatory sequences can be inserted in any of the sites in the polylinker upstream of the CAMV35s sequence in pCMC 1022. Another atternative to make use of the pCMC 1022 selectable marker is to prepare the gene of interest. in pCMC 1022 or in any other plant expression vector, and to cost pCMC 1022 and the gene expression vector together onto carner particles as disclosed herein for transformation into plant ceils.

The plasmid pCMC 1022 was deposited with the American Type Culture Collection, 12301 Panklawn Drive, Rockville, MO, USA, on November 14, 1985 under ATCC accession No. 87253.

The above deposit was made pursuant to a contract between the ATCC and the Cetus Corporation, a partner in the assignee of the present invention. The contract with the ATCC provides for permanent availability of the progeny of these cell lines to the public on the issuance of the US patent describing and identifying the deposit or the publication or taying open to the public of any US or foreign patent application, whichever comes first, and for availability of the progeny of these cell lines to one determined by the US Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC Section 122 and the Commissioner's rules pursuant thereto linealing 37 CFR Section 1.14 with particular reference to 855 0 G S38). The assignee of

5

10

22

25

45

50

55

15

The present invention is not to be limited in scape by the microorganisms deposited, since the deposited embodiment is intended as a single Bustration of one aspect of the invention and any microorganisms which are functionally equivalent are within the scape of this invention.

It is also to be understood that all base pair sizes given for nucleotides are approximate and are used for purpose of description.

In one aspect the invention relates to a maize plant comprising in its genome a foreign gene wherein the foreign gene was introduced into the plant by physical injection, into the pollen of the pollen parent of the plant. The foreign gene is preferably coated onto carrier particles accelerated into the pollen.

The foreign gene may include a cooling sequence and appropriate flanking regulatory sequences so that the cooling sequence is expressed in tissues of the plant.

Claims

1. A method of making a genetically transformed line of plants characterised in that it comprises the steps of; preparing copies of a foreign gene including a coding region and flanking regulatory sequences effective to express the coding region in the plant cells; joining codies of the foreign gene to biologically inem carrier particles; physically accelerating the particles carrying the gene copies at pollent of the plant in such a fashion that some particles looge in the interior of some of the pollen; pollinating female organs of the plant with the pollen so treated; and screening among the progeny from this pollination for transformed progeny.

2. A method as claimed in claim 1, characterised in that the biologically lined particles are metallic.

 A method as claimed in claim 2, charactensed in that the metallic particles are gold spheres.

4. A method as claimed in either claim 2 or claim 3, characterised in that it includes the step of coating the metallic particles with an encapsulating agent before the gene copies are joined to them.

5. A method as claimed in claim 4, characterised in that the encapsulating agent is

polytysine.

6. A method as claimed in either claim 4 or claim 5, characterised in that the step of joining the foreign gene copies to the metallic particles includes drying a solution of the gene copies onto the particles.

7. A method as claimed in claim 6, charactensed in that a solution of the gene copies includes CAMPO, which is precipitated with the gene copies onto the metalic particles.

8. A method as claimed in any one of the preceding claims, characterised in that the step of physically accelerating the particles includes layering the particles on a planar carrier sheet (18), accelerating the carner sheet by impacting it with a shock wave, and restraining the carrier sheet such that the momentum of the carner particles carries them from the sheet.

9. A method as claimed in claim 8, characterised in that the shock wave generated to impact the carrier sheet (18) is generated by high-voltage electric discharge through a spark gap bridged by a water droplet (24).

10. A method as claimed in any one of the preceding claims, characterised in that the step of accelerating the particles at plant pollen includes placing a monolayer of pollen on a target surface and placing the target surface in the acceleration pain of the carrier particles.

11. A method as diamed in diam 10, characterised by the steps of addying a layer of minera but to the target surface, dusting pollen thereon, and removing the excess therefrom.

12. A method as claimed in either claim 10 or claim 11, characterised in that the step of pollinating female organs of the plant is accomplished by brushing pollen into which particles have been accelerated off the target surface with a brush and dusting that pollen onto the female organs of a selected female parent plant.

13. A method as daimed in any one of the preceding diaims, characterised in that the screening among the progeny is done on the basis of a prognemical assay.

14 A method as diamed in daim 10, characterised in that the assay is for antibiotic resistance.

15. A method as disimed in any one of daims 1 to 10 characterised in that the screening among the progeny is done on the basic of a morphological plant trait.

16. A method as daimed in any one of the preceding claims, characterised in that the plants are maide.

17. Plants genetically transformed by a method as daimed in any one of the preceding daims.

18. A method of making a genetically transformed maize plant characterised in that it comprises the steps of; physically injecting a foreign gene including a coding region and appropriate regulatory sequences into maize potten from a male parent plant; hand pottinating the potten onto the mature maize sits of a female parent plant and segregating the sitks from other potten sources; growing up progeny produced from the fertilized female parent plant.

19. A method as chimed in claim 18, characterised in that the step of physical injection includes joining copies of the foreign gene to carner particles and accelerating the particles at the maize potten.

20. A method as daimed in daim 19, charac-

terised in that the carrier particles are gold beads coated with an encapsulating agent, preferably polyfysine.

21. Maize plants produced by a method as claimed in any one of claims 18 to 20.

22. A maize plant which has a parent plant as claimed in either claim 17 or claim 21.

23. Maize pollen comprising in it a foreign chimeric gene and at least one carrier particle which physically carried the foreign gene into the pollen.

24. Maize pollen as claimed in claim 23. characterised in that the foreign gene includes a coding sequence and appropriate flanking regulatory sequences so that the coding sequence is expressed in progeny of the pollen.

25. Apparatus for injecting carner particles carrying ONA into living cells characterised in that it comprises: a spark discharge chamber [12]: Two electrodes (14) extending into the spark discharge chamber and spaced apart by a spark gap, the electrones being adapted for attachment to an external source of high voltage discharge; a carrier sheet (18) held spaced above the spark discharge chamber, the carrier sheet receiving the carrier particles thereon; a retaining screen (20) fixed in place above the carrier sheet; and a target surface (22) held spaced above the retaining screen (20) and carrying the sells so that a spark discharge generating a shock wave in the discharge champer (12) will accelerate the parrier sheet (18) into the retaining screen (20) so that the partier particles are appalerated into the cails on the target surface (22).

25. Apparatus as plained in claim 25, characterised in that a water propiet (24) is disposed bringing between the electrodes (14).

27. Apparatus as otalmed in either claim 25 or claim 25 characterised in that it includes a vacuum champer to allow the apparatus to be operated in a partial vacuum.

28. Apparatus as claimed in any one of claims 25 to 27, characterised in that the spark gab between the electrodes is between 1 and 1.5 millimeters.

25. Apparatus as claimed in any one of claims 25 to 28, characterised in that a spacer ring (16) is positioned above the spark discharge chamber (12) but below the carner sheet (18) and with at least a partial opening at its top.

S

10

15

27

25

30

?5

40

15

50

45

60

FIG. 1

FIG. 2

FIG. 3