

www.vishay.com

Vishay Siliconix

Dual N-Channel 30 V (D-S) MOSFETs

PRODUCT SUMMARY							
	V _{DS} (V)	R _{DS(on)} (Ω) (MAX.)	I _D (A)	Q _g (TYP.)			
Channel-1	30	0.0075 at V _{GS} = 10 V	40 ^g	6.9 nC			
Channel-1	30	0.0120 at $V_{GS} = 4.5 \text{ V}$	32 ^g	0.9110			
Channel-2	30	0.0041 at V _{GS} = 10 V	60	15.4 nC			
Grianner-2	30	0.0052 at $V_{GS} = 4.5 \text{ V}$	60	13.4110			

Ordering Information:

SiZ988DT-T1-GE3 (lead (Pb)-free and halogen-free)

FEATURES

- TrenchFET® Gen IV power MOSFETs
- 100 % R_g and UIS tested

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

ROHS COMPLIANT HALOGEN FREE

APPLICATIONS

- CPU core power
- Computer / server peripherals
- P∩I
- Synchronous buck converter
- Telecom DC/DC

ABSOLUTE MAXIMUM RATINGS (7	$T_A = 25$ °C, unless	s otherwise n	oted)		
PARAMETER	SYMBOL	CHANNEL-1	CHANNEL-2	UNIT	
Drain-Source Voltage		V _{DS}	30		V
Gate-Source Voltage		V_{GS}	+20		
	$T_C = 25 ^{\circ}C$		40 g	60 ^a	
Continuous Drain Current (T _{.I} = 150 °C)	T _C = 70 °C		32 ^g	60 ^a	
Continuous Drain Current (1) = 150 °C)	T _A = 25 °C	l _D	17.5 ^{b, c}	27 b, c	
	T _A = 70 °C	1	14 b, c	21.7 b, c	Α
Pulsed Drain Current (t = 100 μs)		I _{DM}	70	140	A
Continuous Courses Ducin Diada Coursest	T _C = 25 °C	- I _S	16.8	33.6	
Continuous Source Drain Diode Current	T _A = 25 °C		3.2 b, c	4 b, c	
Single Pulse Avalanche Current		I _{AS}	10	20	
Single Pulse Avalanche Energy L = 0.1 mH		E _{AS}	5	20	mJ
	T _C = 25 °C	P _D	20.2	40	
Maximum Dawar Dissination	T _C = 70 °C		12.9	25.8	W
Maximum Power Dissipation	T _A = 25 °C		3.8 b, c	4.8 b, c	VV
	T _A = 70 °C		2.4 b, c	3.1 b, c	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150		°C
Soldering Recommendations (Peak Temperature) d, e			2	60	C

THERMAL RESISTANCE RATING	as .						
PARAMETER		SYMBOL	CHANNEL-1		CHANNEL-2		UNIT
PANAMETEN		STWIBOL	TYP.	MAX.	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient b, f	t ≤ 10 s	R _{thJA}	26	33	21	26	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	4.7	6.2	2.5	3.1	G/W

Notes

- a. Package limited
- b. Surface mounted on 1" x 1" FR4 board.
- c t = 10 s
- d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 68 °C/W for channel-1 and 57 °C/W for channel-2.
- g. $T_C = 25$ °C.

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Static							<u>I</u>	
Durin On the During the College	\ \ \ \ \	V _{GS} = 0 V, I _D = 250 μA	Ch-1	30	-	-	.,	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30	-	-	V	
Onto The control of Malline a	.,	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-1	1.2	-	2.4	.,	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-2	1.1	-	2.2	V	
Cata Sauraa Laakaga	,	V - 0 V V - + 20 V 16 V	Ch-1	-	-	± 100	nA	
Gate Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}, -16 \text{ V}$	Ch-2	-	-	± 100	IIA	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1	-	-	1		
Zero Gate Voltage Drain Current	l	VDS = 30 V, VGS = 0 V	Ch-2	-	-	1		
	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V, T _J = 55 °C	Ch-1	-	1	10	μΑ	
		V _{DS} = 30 V, V _{GS} = 0 V, T _J = 33 C	Ch-2	-	-	10		
On-State Drain Current ^b	l ₌ ,	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	25	-	-	А	
On Otate Diam Culterit	I _{D(on)}	v _{DS} ≥ 3 v, v _{GS} = 10 v	Ch-2	25	1	-		
Drain-Source On-State Resistance ^b		$V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$	Ch-1	-	0.0057	0.0075		
		V _{GS} = 10 V, I _D = 19 A	Ch-2	-	0.0028	0.0041		
	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 8 \text{ A}$	Ch-1	-	0.0077	0.0120	Ω	
		$V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$	Ch-2	-	0.0040	0.0052		
Converd Transcenductones h	~	V _{DS} = 10 V, I _D = 10 A	Ch-1	-	54	-	S	
Forward Transconductance b	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 10 \text{ A}$	Ch-2	-	52	-		
Dynamic ^a								
Input Capacitance	C _{iss}		Ch-1	-	1000	-		
mput Capacitarios	Oiss		Ch-2	-	2425	-		
Output Capacitance	C _{oss}	Channel-1	Ch-1	-	280	-	pF	
Sulput Sapacitance	Ooss	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2	-	730	-	Pi	
Reverse Transfer Capacitance	C_{rss}	Channel-2	Ch-1	-	34	-	-	
Tovorse Transfer Supusitance	Orss	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2	-	65	-		
C _{rss} / C _{iss} Ratio			Ch-1	-	0.034	0.068		
Orss / Olss Hatio			Ch-2	-	0.027	0.054		
		V _{DS} = 15 V, V _{GS} = 10 V, I _D = 10 A	Ch-1	-	14.3	21.5]	
Total Gate Charge	0	VDS = 13 V, VGS = 10 V, ID = 10 A	Ch-2	-	34	51		
Total Gate Orlange	Q _g		Ch-1	-	6.9	10.5		
		Channel-1	Ch-2	-	15.4	23.1		
Gate-Source Charge	0	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 10 \text{ A}$	Ch-1	-	2.8	-	r.C	
Jate-Jouice Charge	Q_{gs}	Channel-2	Ch-2	-	5.8	-	nC	
Gata Drain Chargo	0	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$	Ch-1	-	1.6	-		
Gate-Drain Charge	Q_{gd}		Ch-2	-	2.6	-		
Output Chargo	Q _{oss}	V 45VV 6V	Ch-1	-	7.8	-		
Output Charge		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2	-	20	-		
Cata Dagistanas		£ 4 MII.	Ch-1	0.4	1.6	3.2		
Gate Resistance	R_{g}	f = 1 MHz	Ch-2	0.3	1.7	3.4	Ω	

www.vishay.com

Vishay Siliconix

DADAMETED	CVA4DO:	nerwise noted)		BAIL	TVD	MAN	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Dynamic ^a	I				ſ	1	1
Turn-On Delay Time	t _{d(on)}		Ch-1	-	15	30	
	=(=-,	Channel-1	Ch-2	-	20	40	
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-1	-	10	20	-
		$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-2	-	15	30	
Turn-Off Delay Time	t _{d(off)}	Channel-2 $V_{DD} = 15 \text{ V, R}_{L} = 1.5$	Ch-1	-	15	30	
<u> </u>	α(σ)	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-2	-	25	50	
Fall Time	t _f		Ch-1	-	7	15	
			Ch-2	-	10	20	ns
Turn-On Delay Time	t _{d(on)}		Ch-1	-	10	20	
<u> </u>	u(on)	Channel-1	Ch-2	-	10	20	
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-1	-	10	20	
	-1	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-2	-	10	20	
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1	ı	15	30	
Tam on Boldy Time	- a(on)	V_{DD} = 15 V, R_L = 1.5 Ω $I_D \cong$ 10 A, V_{GEN} = 10 V, R_g = 1 Ω	Ch-2	-	27	50	
Fall Time	t _f		Ch-1	-	5	10	
Tun Time	ζ,		Ch-2	-	10	20	
Drain-Source Body Diode Characterist	ics						
Continuous Source-Drain Diode Current	l _S	T _C = 25 °C	Ch-1	1	-	16.8	A
Continuous Source-Drain Diode Current	is	10 - 23 0	Ch-2	ı	-	33.6	
Pulse Diode Forward Current (t = 100 μs)	Laur		Ch-1	ı	-	70	
Fulse Diode Forward Current (t = 100 μs)	I _{SM}		Ch-2	ı	-	140	
Pady Diada Valtaga	V _{SD}	$I_{S} = 5 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-1	-	0.77	1.2	V
Body Diode Voltage		I _S = 10 A, V _{GS} = 0 V	Ch-2	-	0.8	1.2] v
Dadu Diada Davissa Dasawa Tima			Ch-1	-	19	35	
Body Diode Reverse Recovery Time	t _{rr}		Ch-2	-	31	62	ns
		Channel-1	Ch-1	-	7	14	0
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 5 \text{ A}$, dl/dt = 100 A/ μ s, $T_J = 25 ^{\circ}\text{C}$	Ch-2	-	19	40	nC
Daviana Daganan Fall Time		Channel-2	Ch-1	-	10	-	
Reverse Recovery Fall Time	t _a	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2	-	14	-	1
			Ch-1	-	9	-	ns
Reverse Recovery Rise Time	t _b		Ch-2	-	17	-	1

Notes

- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Output Characteristics

On-Resistance vs. Drain Current

Gate Charge

Transfer Characteristics

Capacitance

On-Resistance vs. Junction Temperature

 $I_D = 10 A$

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

0.030

0.024

Source-Drain Diode Forward Voltage

 $\label{eq:VGS} V_{GS} \mbox{-} \mbox{Gate-to-Source Voltage (V)}$ On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

Single Pulse Power, Junction-to-Ambient

Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Power, Junction-to-Case

Note

a. The power dissipation P_D is based on T_J (max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Output Characteristics

On-Resistance vs. Drain Current

20 16 12 T_C = 25 °C T_C = 25 °C T_C = -55 °C V_{GS} - Gate-to-Source Voltage (V)

Transfer Characteristics

Capacitance

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

0.010

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

Single Pulse Power, Junction-to-Ambient

Safe Operating Area

Power, Junction-to-Case

Note

a. The power dissipation P_D is based on T_J (max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?66937.

PowerPAIR® 6 x 5 Case Outline

		MILLIMETERS			INCHES		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	0.028	0.030	0.032	
A1	0.00	-	0.10	0.000	-	0.004	
A3	0.15	0.20	0.25	0.006	0.007	0.009	
b	0.43	0.51	0.61	0.017	0.020	0.024	
b1		0.25 BSC			0.010 BSC		
D	4.90	5.00	5.10	0.192	0.196	0.200	
D1	3.75	3.80	3.85	0.148	0.150	0.152	
Е	5.90	6.00	6.10	0.232	0.236	0.240	
E1 Option AA (for W/B)	2.62	2.67	2.72	0.103	0.105	0.107	
E1 Option AB (for BWL)	2.42	2.47	2.52	0.095	0.097	0.099	
E2	0.87	0.92	0.97	0.034	0.036	0.038	
е	1.27 BSC 0.050 BSC						
K Option AA (for W/B)		0.45 typ.		0.018 typ.			
K Option AB (for BWL)		0.65 typ.		0.025 typ.			
K1	0.66 typ. 0.025 typ.						
L	0.33	0.43	0.53	0.013	0.017	0.020	
L3	0.23 BSC 0.009 BSC						
Z	0.34 BSC			0.013 BSC			

Revision: 22-Dec-14 1 Document Number: 63656

Recommended Minimum PAD for PowerPAIR® 6 x 5

Dimensions in millimeters (inch)

Note

• Linear dimensions are in black, the same information is provided in ordinate dimensions which are in blue.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.