Subobject Classifiers

Following

Sheaves in Geometry and Logic Chapter I, Sections 3 & 4

Guide: Josh Chen

17 June '22

Notts-Bergen SGL reading group meeting

We begin with the ur-example. Recall that in Set, for any $A \subseteq S$ we have

$$A \xrightarrow{!} * \begin{cases} 0 \\ \downarrow 0 \\ S \xrightarrow{\chi_A} \{0, 1\} \end{cases}$$

where

$$\chi_A(s) = \begin{cases} 0 \text{ if } s \in A\\ 1 \text{ otherwise.} \end{cases}$$

That is, the mono $A \stackrel{i}{\hookrightarrow} S$ is a pullback of the mono $* \stackrel{0}{\hookrightarrow} 2$ along the characteristic function χ_A . From this we can already extract the ideas for the following two definitions:

Definition 1. A subobject of X is an isomorphism class of monos into X.

To elaborate: for any category \mathcal{C} and $X \in \mathcal{C}$, the monos into X form a full subcategory $\operatorname{Mono}_{\mathcal{C}}(X)$ of \mathcal{C}/X . This is a preorder, so "being isomorphic" is a property (not structure). Such an isomorphism class is a subobject.

Example 2. In Set, $\{0,1\} \subset \{0,1,2\}$, and the inclusion $i: \{0,1\} \hookrightarrow \{0,1,2\}$ witnesses $\{0,1\}$ as a subobject of $\{0,1,2\}$. But also the injection

$$f: \{2,3\} \mapsto \{0,1,2\},\$$

where f(2) = 1, f(3) = 0, represents ("is") the same subobject.

Definition 3. A subobject classifier in a category \mathcal{C} with terminal 1 consists of an object Ω and a mono $\top \colon \mathbf{1} \to \Omega$, such that any mono arises as the pullback of \top along a unique arrow into Ω .

Explicitly: for any $X \in \mathcal{C}$ and mono $m \colon S \rightarrowtail X$, there's a unique characteristic map $\chi_S \colon X \to \Omega$ making

$$S \xrightarrow{!} \mathbf{1}$$

$$m \downarrow \qquad \downarrow^{\top}$$

$$X \xrightarrow{-}_{XS} \Omega$$

a pullback.

Exercise 4. If $T \rightarrow X$ represents the same subobject as $S \rightarrow X$ then

is also a pullback square. That is, the characteristic map χ is the same for isomorphic monos. This justifies the name "subobject" classifier (as opposed to "mono" classifier).

For every preorder \lesssim we get a partial order by quotienting by

$$\sim := (\lesssim \cap \gtrsim).$$

Applying this to $\operatorname{Mono}_{\mathcal{C}}(X)$ gives $\operatorname{Sub}_{\mathcal{C}}(X)$, the class of subobjects of X (in fact, this is a category, but we won't use this). So for every object X we have a class $\operatorname{Sub}_{\mathcal{C}}(X)$ of subobjects of X. This is functorial: for $X \xrightarrow{f} Y$ we have the pullback map

$$f^*: \mathcal{C}/Y \to \mathcal{C}/X$$

which restricts to

$$f^* : \operatorname{Mono}_{\mathcal{C}}(Y) \to \operatorname{Mono}_{\mathcal{C}}(X)$$

(because pullbacks of monos are mono), and which further passes to the quotient

$$f^* \colon \mathrm{Sub}_{\mathcal{C}}(Y) \to \mathrm{Sub}_{\mathcal{C}}(X),$$

acting via $f^*[g] = [f^*g]$ (one can check that this is well defined). The upshot is that

$$\operatorname{Sub}_{\mathcal{C}} \colon \mathcal{C}^{op} \to \operatorname{Set}$$

is a (possibly large) presheaf on C.

Definition 5. \mathcal{C} is well powered if for all $X \in \mathcal{C}$, $Sub_{\mathcal{C}}(X)$ is small.

What's the significance of all this to subobject classifiers? Well, the definition of a subobject classifier as

"A mono $\mathbf{1} \xrightarrow{\top} \Omega$ (representing a subobject), such that every subobject (represented by) $S \xrightarrow{m} X$ arises uniquely as a pullback of \top "

amounts to saying that

$$hom(X, \Omega) \cong Sub_{\mathcal{C}}(X)$$

as classes—and furthermore, by properties of pullback, this isomorphism ends up being natural in X. That is, the (target of the) subobject classifier Ω is a representing object for the subobject functor. The converse is also true.

Proposition 6 (Proposition 1, SGL I§3). A locally small category \mathcal{C} with terminal object and "enough" pullbacks has a subobject classifier if and only if

$$\operatorname{Sub}_{\mathcal{C}} \colon \mathcal{C}^{op} \to \operatorname{Set}$$

is representable.

Proof. In meeting. Maybe I'll type it up later.

Corollary 6.1. A locally small category with subobject classifier is well powered.¹

Corollary 6.2. Subobject classifiers are unique up to isomorphism.

¹i.e. each object has set-many subobjects, which I think means (later) that the power object is nice and can be defined.