Kernel Density Adaptive Random Testing

Matthew Patrick and Yue Jia

13 April 2015

Outline

- Diversification and Intensification
- Kernel Density Adaptive Random Testing (KD-ART)
- Is KD-ART more effective than ART?
- Finding the optimal switch point
- Conclusions

Suppose we selected the red test suite, and found it is good at killing mutant

Which test should be execute next?

Diversify:

Use a wide range of test inputs to increase the chances of killing new mutants

Intensify:

Select test inputs which are similar to those previously shown to be successful

Adaptive Random Testing (ART)

 Generate test cases evenly over the input domain, so as to diversify the test selection

 Select test cases that maximise the (Euclidean) distance to the previously selected test cases

Failure Patterns

Block pattern:

```
if (x >= 10 && x <= 12) && (y >= 8 && y <= 11)
  z = x / 2 * y;  // 2 should be 7
else
  z = x * y;
return z;</pre>
```

Strip pattern:

Diversification may be more effective

Compound Failure Patterns


```
Block and strip pattern: // 11 should be 12 Strip and block pattern:
if (x \ge 10 \&\& x \le 12) \&\& (y \ge 8 \&\& y \le 11)
 z = x / 2 * y; // 2 should be 7
else
 z = x * y;
return z;
```

```
If (2 * x - y > 10) // 10 should be 18
  z = x / 2 * y; // also need && y > 7
 else
   z = x * y;
 return z;
```

Intensification may be more effective

Kernel Density Adaptive Random Testing (KD-ART)

 Generate test inputs according to the distribution of successful test cases

 Use Kernel Density Estimation to interpolate the test case values evaluated

Kernel Density Estimation

Sampling strategy

Sample ten test cases for every one selected

KD-ART (intensify) maximises the density

KD-ART (diversify) minimises the density

Experimental setup

Eight C programs, used before in ART research

Selective set of mutation operators (MILU)

 20 trials of 5000 candidate tests: use ART and KD-ART to select one test case from every ten

plgndr

bessj0

Averaged over eight programs

erfcc switch

Airy switch

PROGRAM PROPERTIES AND OPTIMAL SWITCH POINT

	KD-ART (intensify)		KD-ART (diversify)	
	Pearson's r	p-value	Pearson's r	p-value
Mutants	0.768	0.013	0.171	0.342
LOC	0.529	0.089	0.315	0.224

Conclusions

It is not always best to diversify the test suite,
 sometimes intensification should be used too

 The switch point between traditional ART and KD-ART has a significant effect on the results

 The optimal switch point can be predicted using easily calculable program properties

ANY QUESTIONS?

AVERAGE TIME TAKEN TO RUN KDT AND ART (IN SECONDS)

	Selecting test inputs				
Program	KD–ART	KD-ART	ART	mutants	
	(intensify)	(diversify)			
erfcc	0.878	0.890	1.132	104.3	
probks	0.954	0.970	1.079	74.48	
bessj0	0.328	0.350	1.209	192.6	
plgndr	0.350	0.345	1.593	260.0	
airy	0.265	0.268	1.284	269.6	
triangle	0.485	0.479	2.160	314.1	
gammq	0.397	0.434	1.411	330.2	
tcas	0.480	0.505	61.01	99.37	