Konstanten	1
Geometrie	1
Allgemeines	1
Wellen	2

Elektrische Feldkonstante

Permittivität von Vakuum

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$$

$$[\varepsilon_0] = \frac{F}{m} = \frac{As}{Vm} = \frac{C^2}{Nm^2}$$

Lichtgeschwindigkeit

$$c_0 = 2.99792 \times 10^8 \text{m/s} = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = \frac{E_0}{B_0}$$

$$[c_0] = \frac{\mathbf{m}}{\mathbf{s}}$$

Magnetische Feldkonstante

Permeabilität von Vakuum

$$\mu_0 = 4\pi \times 10^{-7} \mathrm{H/m}$$

$$[\mu_0] = \frac{H}{m} = \frac{Vs}{Am} = \frac{Tm}{A}$$

Masse des Elektrons

(Ruhemasse, $v \ll c_0$)

$$m_e = 9.109 \times 10^{-31} \text{ kg}$$

$$[m_e] = kg$$

Sphärische Koordinaten

Elementarladung (Ladung

des Elektrons
$$q_e = -e$$
)

$$e = 1.602 \times 10^{-19} \rm C$$

$$[e] = As = C$$

Kartesische Koordinaten

Volumenelement: dv = dxdydz

Kreis Umfang $U = 2\pi r$

Kreis Fläche $U = 2\pi r^2$

Vektorprodukt $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$

Skalar
produkt $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

Volumenelement: $dv = rdrd\phi dz$

Oberfläche $A = 2\pi rh + 2\pi r^2$

Volumen $V = \pi r^2 h$

$$\begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

$$\left(egin{array}{c} a_x \ a_y \ a_z \end{array}
ight) \cdot \left(egin{array}{c} b_x \ b_y \ b_z \end{array}
ight) = a_x b_x + a_y b_y + a_z b_z = \vec{a} \cdot \vec{b}$$

Zylindrische Koordinaten

Volumenelement: $dv = r^2 \sin \theta dr d\theta d\phi$

Oberfläche $A=4\pi r^2$

Volumen $V = \frac{4}{3}\pi r^3$

 $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ a_x $= a_x b_x + a_y b_y + a_z b_z = \vec{a} \cdot \vec{b} \qquad \cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$

Geometrie

Arbeit,	Energie
---------	---------

$$\Delta W = \int_L \mathbf{F} \cdot d\mathbf{l} = W_1 - W_2$$

$$[\Delta W] = [W] = J = Ws,$$

$$[F] = N = kg \cdot m/s^2$$

Drehmoment

$$T = r \times F$$
 (T auf Drehachse)

$$[T] = Nm = kg \cdot m^2/s^2, [r] = m$$

Zentripedalkraft

$$\mathbf{F} = \frac{mv^2}{r}(-\hat{\mathbf{r}}) = -m\omega^2 \mathbf{r}$$

$$[m] = \mathrm{kg}, [r] = \mathrm{m}, \\ [v] = m/s, [\omega] = \mathrm{rad}/s$$

Lorenzkraft

$$\mathbf{F}_L = \mathbf{F}_C + \mathbf{F}_A = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

$$[E] = V/m, [B] = A/m$$

 $[v] = m/s, [l] = m$

Drehimpuls

$$oldsymbol{L} = oldsymbol{r} imes oldsymbol{p}$$

$$[L] = \mathrm{kg}\cdot\mathrm{m}^2/\mathrm{s}$$

Drallsatz

$$M = \dot{L}$$

Gesamtenergiedichte

ro Schickli	Physik 2	FS21: 27. Juli 2021
Wellengleichung 1 und 3 Dimensional	$\frac{\partial^2 \xi}{\partial t^2} - v^2 \frac{\partial^2 \xi}{\partial x^2} = 0 \qquad \frac{\partial^2 \vec{\xi}}{\partial t^2} - v^2 \Delta \vec{\xi} = 0$	Allg. Lösung $\xi(x,t) = f(x \pm vt)$
Harmonische Lösung:	$\xi(x,t) = \xi_0 \sin(k(x \pm vt)) = \xi_0 \sin(kx \pm vt)$ $\xi_0 e^{i(kx \pm \omega t)}$	$-\omega t$) = $-v$ rechtslaufend $+v$ linkslaufend
Wellenlänge & Wellenzahl	$\lambda = \frac{v}{f} = \frac{2\pi}{k} = v \cdot T$ $k = \mathbf{k} = \omega \sqrt{\varepsilon \mu} = \frac{\omega}{v} = \frac{2\pi}{\lambda}$	$[\lambda]=\mathrm{m}\ [k]=\mathrm{rad/m}$
Seilwelle Transversal (Zugspannung S)	$v^2 = \frac{S}{\rho}$, $S = \frac{F}{A}$, $\rho = \frac{m}{V}$	$[F] = kg \cdot m/s^2$ Dichte $[\rho] = kg/m^3$
Festkörper Longitudalwelle $(E \text{ Elastizit\"{a}tmodul})$	$v^2 = \frac{E}{\rho} , E = \sigma \frac{l}{\Delta l}$	$[E] = N/m^{-2}$ Normalspannung $[\sigma] = \frac{dF_{\perp}}{da} N/m^{-2}$
Ebene Welle harmonische Welle	$\vec{\xi}(x,y,z,t) = \vec{A}e^{i(\vec{k}\cdot\vec{r}-\omega t)}$	(Die zu \vec{k} senkrechte Ebene ist $\vec{k} \cdot \vec{r} = \text{konst.}$)
Kugel Welle harmonische Welle	$\vec{\xi}(\vec{r},t) = \frac{\overrightarrow{A_1}}{r} f_1(\vec{k} \cdot \vec{r} - wt) + \frac{\overrightarrow{A_2}}{r} f_2(\vec{k} \cdot \vec{r} - wt)$	$I + wt$) $I = \frac{P}{4\pi r^2}$ Intensität I Leistung P über r^2
Vertikale Polarisation Horizontale Polari	risation Kombination Linkszirkular	Rechtszirkular Elliptisch
ξξ	ξ_y ξ_x	
Gesetzt von Malus Polarisationsfilter	$I = I_0 \cdot \cos^2(\alpha)$	α Polarisationswinkel I_0 Intensität

Superposition Harmonische Wellen	$\xi = \underbrace{A\sin(kx - \omega t)}_{\xi_1(x,t)} + \underbrace{A\sin(k(x + \Delta x) - \omega t + \frac{1}{2}(x,t))}_{\xi_2(x,t)}$ $2A\cos\left(\frac{1}{2}(\delta + k\Delta x)\right)\sin\left(kx - \omega t + \frac{1}{2}(\delta + k\Delta x)\right)$	$(-\delta) = (-\delta)$
narmonische wenen	$\frac{2A\cos\left(\frac{1}{2}(\theta + k\Delta x)\right)}{\text{Amplitude}} \text{ sin } \left(\frac{kx - \omega t + \frac{1}{2}(\theta + k\Delta x)}{2}\right)$	
Kontruktive/Destruktive Interferenz	$\frac{1}{2}(\delta + k\Delta x) = n\pi$ $\frac{1}{2}(\delta + k\Delta x) = (n + \frac{1}{2})\pi$	
Reflexion/Transmission Auftreffend Welle	$\xi_A = Ae^{i(k_1x - \omega t)}$ Transversal	$k_2 = \omega \sqrt{\frac{\rho_2}{S_2}}, \ \alpha = \sqrt{\frac{S_2 \rho_2}{S_1 \rho_1}}$
Reflektierte Welle	$\xi_R = Re^{i(-k_1x - \omega t + \delta_R)}$ Longitudinal	$k_2 = \omega \sqrt{\frac{\rho_2}{E_2}}, \alpha = \sqrt{\frac{E_2 \rho_2}{E_1 \rho_1}}$
Transmitierte Welle	$\xi_T = Te^{i(k_2x - \omega t + \delta_T)}$	gesucht: $R, T, \delta_R, \delta_T, k_2$
Phase	$\delta_R = 0$ $\delta_R = \pi$ $\delta_T = 0$	
Amplitude	$R = \frac{1-\alpha}{1+\alpha}A$ $R = -\frac{1-\alpha}{1+\alpha}A$ $T = \frac{2A}{1+\alpha}$	$(R \ge 0)$
Spezialfall festes (Seil-)Ende $(\alpha \to \infty)$	$\underbrace{\delta R = \pi}_{\pi \text{ Phasensprung}} \lim_{\alpha \to \infty} R = A \lim_{\alpha \to \infty} T = 0$	$(\alpha=0$ nur bei übergang zu Vakuum. mech. Welle kann nicht ins Vakuum, d.h $T=0$ statt $T=2A)$
loses (Seil-) Ende $(\alpha \to 0)$	$\underbrace{\delta R = 0}_{\text{kein Phasensprung}} , \ \lim_{\alpha \to \infty} R = A, \ \lim_{\alpha \to \infty} T = 0$	
Stehende Wellen gegeenlaufende Harmonische Wellen	$\xi(x,t) = \underbrace{A\sin(kx - \omega t)}_{\xi_1(x,t)} + \underbrace{A\sin(kx + \omega t + \omega t)}_{\xi_2(x,t)} + \underbrace{A\sin(kx + \omega t)}_{\xi_2(x,t)} + A\sin(kx$	$\underline{\delta)} =$
Saite fest-fest (n-te Normalschwingung)	$\xi_n(x,t) = A_n \sin\left(\frac{n\pi}{l}x\right) \cos\left(\frac{n\pi}{l}vt + \varphi_n\right)$	
Saite fest-offen	$\xi_n(x,t) = A_n \sin\left(\frac{2n+1}{2}\frac{\pi}{l}x\right) \cos\left(\frac{2n+1}{2}\frac{\pi}{l}vt + \varphi_n\right)$	
Prinzip von Huygens	Jeder Punkt einer bestehenden Wellenfläche (trum einer neuen kugelförmigen Elementarw dieser Elementarwellen ergibt dann die Welle punkt.	elle aufgefasst. Die Umhüllende
Einzelspalt	$\langle I \rangle \propto A^2 \frac{\sin^2\left(\frac{\Delta\varphi}{2}\right)}{\left(\frac{\Delta\varphi}{2}\right)^2} \text{ mit } \Delta\varphi = kd\sin(\alpha)$	$\Delta \varphi$ Phasendifferenz
Beispiel	d $L = 1.6 \mathrm{m}$	$\begin{split} \langle I \rangle \sim A^2 \frac{\sin^2\left(\frac{1}{2}\Delta\varphi\right)}{\left(\frac{1}{2}\Delta\varphi\right)^2}, \text{mit} \\ \Delta\varphi &= 2\pi\frac{d}{\lambda}\sin\alpha\ I \text{ verschwindet} \\ \text{bei } \frac{1}{2}\Delta\varphi &= n\pi, n \in \mathbb{N} \\ \Rightarrow d &= n\frac{\lambda}{\sin\alpha} = n\frac{\lambda}{b/L} \end{split}$

Wellen	Snellius'sche Brechungsgesetz	$\frac{\sin \alpha_1}{\sin \alpha_2} = \frac{\lambda_1}{\lambda_2}$ A C B 2	$\frac{\sin\left(\alpha_1\right)}{\sin\left(\alpha_2\right)} = \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$
W	Fermat'sches Prinzip	Nach dem Fermat'schen Prinzip läuft eine Westets jenen Weg, für den die Laufzeit einer Phaten minimal wird.	9.
	Dopplereffekt	$f_B = \frac{c + v_b}{c - v_q} f_q$ $c_{\text{Luft}} = 340 m/s$	$\stackrel{q}{\bullet}_{v_q}$ $\stackrel{b}{\bullet}_{v_b}$
	Schockwelle	$\vartheta = \arcsin\left(\frac{u}{v_Q}\right)$	ϑ Halber Öffnungswinkel Machscher Kegel

Elektrische Feldstärke	$ec{E} = \lim_{q \to 0} rac{ec{F}}{q} \qquad \qquad ec{F} = q ec{E}$ $ec{E}(ec{r}) = rac{1}{4\pi\varepsilon_0} \sum_{i=1}^n rac{q_i}{ ec{r} - ec{r_i} ^3} (ec{r} - ec{r_i})$	$[E] = rac{ ext{V}}{ ext{m}}$
für n Ladungen	$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{q_i}{ \vec{r} - \vec{r_i} ^3} (\vec{r} - \vec{r_i})$	
Ladungsverteilung	$\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathbb{R}^3} \frac{\rho(r')}{ \vec{r} - \vec{r}' ^3} (\vec{r} - \vec{r}') dx' dy' dz'$	(Ladungsdichte ρ)
Punktladung	$ec{E}(ec{r}) = rac{1}{4\piarepsilon_0} rac{q\hat{r}}{r^2}$	
Kugeloberfläche	$\vec{E}(\vec{r}) = \begin{cases} 0 & r < R \\ \frac{1}{4\pi\varepsilon_0} \frac{q\hat{r}}{r^2} & r > R \end{cases}$	$\infty ext{-}\mathbf{Draht} \qquad ec{E}(ec{r}) = rac{\lambda}{2\piarepsilon_0 r}$
∞ -Zylinder	$\vec{E}(\vec{r}) = \begin{cases} 0 & r < R \\ \frac{\lambda \hat{r}}{2\pi\varepsilon_0 r} & r > R \end{cases}$	$\infty ext{-}\mathbf{E}\mathbf{bene} \qquad ec{E}(ec{r}) = rac{\sigma}{2arepsilon_0}$
Coulombsches Gesetz	$\vec{F}_{21} = k \frac{q_1 q_2}{r_{21}^2} \hat{r}_{21}$	$k = \frac{1}{4\pi\varepsilon_0}$
Earnshaw-Theorem	Kein System stationärer Ladung ist in ein wicht unter der alleinigen Wirkung elektris	~
Elektrische Flussdichte	$D = \epsilon E = \epsilon_0 \epsilon_r E \qquad (\epsilon_r = 1 + \chi_e)$	$[D] = \frac{C}{m^2}$
Elektrischer Fluss	$\Psi_D = \int_A \vec{D} \cdot \mathrm{d} \vec{s} \qquad \Psi_E = \int_A \epsilon_0 \vec{E} \cdot \mathrm{d} \vec{s}$	$[\Psi] = C(Coulomb) = As$
bei geschlossener Oberfläche	$\Psi_D = \oint_{\text{H\"{u}ille}} \vec{D} \cdot d\vec{s} = Q_{umschlossen}$	$\Psi = CU = Q$
Elektrischer Fluss im Vakuum	$\mathrm{d}\Phi = \vec{E} \cdot \mathrm{d}\vec{a} \qquad \Rightarrow \qquad \Phi = \frac{\Psi}{\epsilon_0} = \int_{\partial V} \vec{E} \cdot$	
Gaussches Gesetz	$\Phi = \int_{\partial V} \epsilon_0 \vec{E} \cdot d\vec{a} = \int_V \rho dV = \sum_V q = Q$	$\Psi_D = \oint_{\mathrm{H\"ulle}} ec{D} \cdot \mathrm{d}ec{s} = Q_{frei}$
Energiedichte	$w = \frac{\mathrm{d}W}{\mathrm{d}V} = \frac{\varepsilon_0}{2}E^2$	
Potentielle Energie	$W = \int_V w \mathrm{d}V = \int_V \frac{\varepsilon_0}{2} E^2 \mathrm{d}V$	
E-Feld konservativ	$\oint \vec{E} \cdot d\vec{s} = 0 \qquad \Leftrightarrow \qquad \vec{E} = -\nabla \phi$	
Potentialdifferenz	$U_{AB} = \phi(A) - \phi(B) = \int_A^B \vec{E} \cdot d\vec{s}$	[U] = V
Potential mehrere Ladungen	$\phi(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \iiint_{\mathbb{R}^3} \frac{\rho(\vec{r'})}{ \vec{r} - \vec{r'} } dx' dy' dz'$	
Potentielle Energie einer Ladungsverteilung (ρ)	$W = \frac{1}{2} \iiint_{\mathbb{R}^3} \phi(\vec{r}) \rho(\vec{r}) dx dy dz$	
	$U_{BA} = E\Delta z$	Plattenkondensator

 $U_{BA} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$

 $U_{BA} = \frac{1}{4\pi\varepsilon_0} \frac{q}{\sqrt{x^2 + R^2}}$

 $U_{BA} = \frac{\sigma}{2\varepsilon_0} \left(\sqrt{x^2 + R^2} - x \right)$

Potentiale einfacher

Ladungsverteilung

Punktladung

Ringladung

Scheibe

FS21: 27. Juli 2021

- (1) Das elektrische Potential ϕ besitzt im Innern und auf der Oberfläche denselben Wert (Oberflächen sind Äquipotentialflächen).
- (2) Das E-Feld verschwindet im Innern und ist ausserhalb orthogonal auf die Oberfläche

$$\vec{E} = \frac{\sigma}{\varepsilon_0} \hat{n}$$

 $(\sigma \text{ lokale Flächenladungsdichte}, \\ \vec{n} \text{ Normalenvektor})$

- (3) Je kleiner Krümmung der Oberfläche, umso grösser die Oberfläche
ladungsdichte $\sigma.$
- (4) Die Gesamtladung ist durch Integration über die Oberfläche gegeben

$$q = \int_A \sigma \, \mathrm{d}a = \varepsilon_0 \int_A E \, \mathrm{d}a$$

		J_A J_A	
	Magnetische Flussdichte Gesetzt von Biot-Savart Ladungsdichte	$\mathbf{B} = \frac{\mu_0}{4\pi} \int_V \frac{(\mathbf{J}dv) \times \hat{\mathbf{R}}}{R^2} = \frac{\mu_0}{4\pi} \int_L \frac{(Id\mathbf{l}) \times \hat{\mathbf{R}}}{R^2}$	$[B] = T = \frac{\mathbf{Wb}}{\mathbf{m}^2}$
	Magnetische Feldstärke Magnetische Hilfsgrösse	$\mathbf{H} = rac{\mathbf{B}}{\mu_0} - \mathbf{M}$	$[H] = rac{ ext{A}}{ ext{m}}$
	Magn. Materialgleichung magn. Permeabilität μ	$\mathbf{B} = \mu \mathbf{H} = \mu_0 \mu_r \mathbf{H} = \mu_0 (\mathbf{H} + \mathbf{M})$	$(\mu_r = 1 + \chi_m)$
	Magnet. Vektorpotential	$\mathbf{A} = \frac{\mu_0}{4\pi} \int_V \frac{\mathbf{J} dv}{R} = \frac{\mu_0}{4\pi} \int_L \frac{I d\mathbf{l}}{R}$	[A] = Wb/m (nicht Fläche A)
	Magnetische Spannung und Umlaufsspannung μ	$V_m = \int_L \mathbf{H} \cdot d\mathbf{l}, \overset{\circ}{V}_m = \oint_C \mathbf{H} \cdot d\mathbf{l}$	$[V_m] = A$
k	Magnet. Dipolmoment (einer Stromschleife)	$\mathbf{m} = \hat{\mathbf{n}}IA (\hat{\mathbf{n}} \perp A) \Rightarrow \mathbf{T} = \mathbf{m} \times \mathbf{B}$	$[m] = \mathrm{Am}^2$
ostati	Magnetisierung (im linearen Bereich)	$\mathbf{M} = \chi_m \mathbf{H} = \frac{d}{dv} \left[\sum_n \mathbf{m}_n \right]_{\text{in } dv} = N_m \mathbf{m}$	$[m] = rac{ ext{A}}{ ext{m}}$
Magnetostatik	Magnetischer Fluss und magn. Widerstand R_m	$\Phi = \int_{A} \mathbf{B} \cdot d\mathbf{s} = \oint_{C = \partial A} \mathbf{A} \cdot d\mathbf{l} = \frac{V_{m}}{R_{m }} = V_{m} \Lambda$	$[\Phi] = Wb = Tm^2$
	Induktivität Selbst- & Gegeninduktivität	$L = \frac{\Phi_1}{I_1} = L_a + L_i, M = \frac{\Phi_2}{I_1} = k\sqrt{L_1 L_2}$	[L] = [M] = H (nicht Magnet.M!)
	Gespeicherte Energie einer Induktivität	$W_m = \frac{1}{2}LI^2 = \frac{1}{2}\frac{\Phi^2}{L}$	$[W_m] = J = Ws$
	Energiedichte des magnetischen Felds	$w_m = \frac{dW_m}{dv} = \frac{1}{2}\mathbf{B} \cdot \mathbf{H} = \frac{1}{2}\mu H^2 = \frac{B^2}{2\mu}$	$[w_m] = \frac{J}{m^3}$
	Magnetkraft Maxwellsche Zugkraftformel	$\mathbf{F} = \frac{dW_m}{dl}\hat{\mathbf{l}} = \frac{B^2A}{2\mu_0}\hat{\mathbf{n}} (\hat{\mathbf{n}} \perp A)$	[F] = N
	Ampèresche Gesetze Durchflutungssatz $\Theta = \stackrel{\circ}{V}_m$	$\oint_{C=\partial A} \mathbf{B} \cdot d\mathbf{l} = \mu_0 \int_A \mathbf{J} \cdot d\mathbf{s}, \oint_{C=\partial A} \mathbf{H} \cdot d\mathbf{l}$	$= \int_A \mathbf{J_{frei}} \cdot d\mathbf{s} = \Theta$
	Gausssches Gesetz Flusskontinuität	$\oint_{\text{H"ulle}} \mathbf{B} \cdot d\mathbf{s} = 0 \qquad \Leftrightarrow \qquad \sum_{n} \Phi_{n} = 0$	

Differentialgleichung

Dynamik an Induktivitäten

	Stromdichte Bewegte Ladungsdichte	$\mathbf{J} = \rho \mathbf{v} = \sigma \mathbf{E}$	$[J] = rac{ ext{A}}{ ext{m}^2}$
ng	Elektrische Leitfähigkeit Konduktanz	$\sigma = \underbrace{n_e q_e}_{ ho} \mu_e$	$(+n_p q_p \mu_p)$ $[\sigma] = \frac{S}{m}$
Stationäre Strömung	Elektrischer Strom Elektrische Strömung	$I = \int_{A} \mathbf{J} \cdot d\mathbf{s} = \left. \frac{dQ}{dt} \right _{\text{durch } A} (Il = q\mathbf{v})$	$[I] = \mathbf{A} = \frac{\mathbf{C}}{\mathbf{s}}$
näre S	Leitwert (Kehrwert: Widerstand)	$G = \frac{I}{U} \Leftrightarrow R = \frac{1}{G} = \frac{U}{I}$	$[G] = S = \frac{1}{\Omega}$
Station	Leistung am Widerstand/Leitwert	$P=UI=\frac{U^2}{R}=GU^2=I^2R=\frac{I^2}{G}$	$[P] = W = \frac{J}{s}$
	Leistungsdichte des Strömungsfelds	$p = \frac{dP}{dv} = \mathbf{J} \cdot \mathbf{E} = \sigma E^2$	$[p] = \frac{\mathrm{W}}{\mathrm{m}^3}$
	Gausssches Gesetz Kirchhoffscher Knotensatz	$\oint_{\text{Holle}} \mathbf{J} \cdot d\mathbf{s} = 0 \Leftrightarrow \sum_{n} I_{n} = 0$	
	Kapazität	$C = \frac{Q}{U}$	$[C] = F = \frac{C}{V}$
	Plattenkondensator	$C = \varepsilon_0 \varepsilon_{\rm r} \cdot \frac{A}{d}$ $E = \frac{Q}{\varepsilon_0 \varepsilon_{\rm r} A}$	d ϵ
	Zylinderkondensator	$C = 2\pi\varepsilon_0\varepsilon_{\rm r}\frac{l}{\ln\left(\frac{R_2}{R_1}\right)}$ $E(r) = \frac{Q}{2\pi r l \varepsilon_0\varepsilon_{\rm r}}$	R ₂
Kondensator	Plattenkondensator	$C = 4\pi\varepsilon_0\varepsilon_r \left(\frac{1}{R_1} - \frac{1}{R_2}\right)^{-1}$ $E(r) = \frac{Q}{4\pi r^2\varepsilon_0\varepsilon_r}$	R_2
Ā	Gespeicherte Energie einer Kapazität	$W_e = \frac{Q^2}{2C} = \frac{CU^2}{2} = \frac{QU}{2}$	$[W_e] = J = Ws$
	Energiedichte eines Elektrischen Feldes	$w_e = \frac{\delta W_e}{\delta v} = \frac{1}{2} \vec{D} \cdot \vec{E} = \frac{1}{2} \epsilon E^2$	$[w_e] = \frac{J}{m^3} = \frac{Ws}{m^3}$
	Serie / Parallelschaltung	$\frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_i} \qquad \text{resp.} \qquad C = \sum_{i=1}^{n} C_i$	
	DGL Kondensator	$\frac{\delta u_c}{\delta t} = \frac{i_c}{C}$	
	Lade / Entladestrom Kondensator	$I_L(t) = \frac{U_0}{R} \exp^{-\frac{t}{RC}} = -I_E(t)$	$\tau=RC$ mit 5τ lade/entlade Zeit
t	Induktivität Selbst- & Gegeninduktivität	$L = \frac{\Phi_1}{I_1} = L_a + L_i, M = \frac{\Phi_2}{I_1} = k\sqrt{L_1 L_2}$	[L] = [M] = H (nicht Magnet.M!)
ivitä	Spule	$L = \frac{AN^2}{l} = \mu_0 \frac{AN^2}{l}$	$[C] = F = \frac{C}{V}$
nduktivität	Gespeicherte Energie einer Induktivität	$W_m = \frac{1}{2}LI^2 = \frac{1}{2}\frac{\Phi^2}{L}$	$[W_L] = J = Ws$

 $\frac{di_L}{dt} = \frac{u_L}{L}$

 $\frac{di_1}{dt} = \frac{u_2}{M}$

bzw.

(Zeitkonstante: $\tau = L/R$

Maschen-/Kreisstrommethode

Knotenpotentialmethode

Ersatzschaltung I(U)

$$\begin{bmatrix} \underline{I}_1 \\ \underline{I}_2 \end{bmatrix} = \underline{\mathbf{Y}} \begin{bmatrix} \underline{U}_1 \\ \underline{U}_2 \end{bmatrix} = \underline{\mathbf{Z}}_T^{-1} \begin{bmatrix} \underline{U}_1 \\ \underline{U}_2 \end{bmatrix}$$

- Unbekannte: Maschen- bzw. Kreisströme j
 - Anzahl Unbekannte: m-1-i
- Impedanzmatrix Z:
 - $\underline{Z}_{xx} = \left[\sum_{n} \underline{Z}_{n}\right]_{\text{in } J_{x}}$
 - $\underline{Z}_{xy} = \pm \left[\sum_n \underline{Z}_n\right]_{\text{in }\underline{J}_x \ \cap \ \underline{J}_y}$
 - Steuerparameter von gesteuerte Quellen
- (Spannungs-) Quellenvektor u:
- $\underline{U}_x = \mp \left[\sum_n \underline{U}_{q,n}\right]_{\text{in }\underline{J}_x}$ (pos.: $\underline{U}_{q,n}$ entg. \underline{J}_n)

- Unbek.: Knotenspannungen $\underline{\mathbf{u}}$ (bzw. Potentiale φ)
 - Anzahl Unbekannte: k-1-v
- Admittanzmatrix Y:
 - $\underline{Y}_{xx} = \left[\sum_{n} \underline{Y}_{n}\right]_{\text{an }\underline{U}_{x}}$

 - $\underline{Y}_{xy} = -\left[\sum_n \underline{Y}_n\right]_{\text{an }\underline{U}_x \ \& \ \underline{U}_y}$ Steuerparameter von gesteuerte Quellen
- (Strom-) Quellenvektor i:
 - $\underline{I}_x = \pm \left[\sum_n \underline{I}_{q,n}\right]_{\text{an }U_x}$ (positiv: in \underline{U}_x hinein)

Kreisgüte Serie-SK: Q_S , Parallel-SK: Q_P	$Q = \frac{1}{B_{\rm rel}} = \frac{\omega_m W}{P} \Rightarrow Q_S = \frac{1}{R} \sqrt{\frac{L}{C}}, Q_P = \frac{1}{G} \sqrt{\frac{C}{L}}$	
Resonanzfrequenz Eigenfrequenz $\omega_0 = \omega_{rverlustlos}$	$\omega_r : \operatorname{Im} Z(\omega_r) = 0$ bzw. $\operatorname{Im} Y(\omega_r) = 0$	
Extremalfrequenz	1-4 34	

Bandbreite $B = \omega_m \pm \omega_{3dB}$

$$\omega_m = \arg \max_{\omega} |Z(\omega)|$$
 bzw. $\omega_m = \arg \max_{\omega} |Y(\omega)|$

Dämpfungsgrad Zeitkonstante τ

$$\zeta = \frac{1}{2Q} = \frac{1}{\omega_0 \tau}$$

$$[\zeta]=1$$

Natürliche Frequenz Gedämpfte Eigenfrequenz

$$\omega_n = \omega_0 \sqrt{1 - \zeta^2}$$

$$[\omega_n] = \text{rad/s}$$

Natürliche Schwingung

Freies Ausschwingen

$$a(t) = a_0 e^{-t/\tau} \sin(\omega_n t + \phi)$$
 $a(t) = u(t)$ bzw. $i(t)$

Verstimmung

normierte(r) Frequenz(gang)

$$\nu = \frac{\omega}{\omega_m} - \frac{\omega_m}{\omega}$$
 $\Omega = \nu Q$
 $\frac{Z}{R} = 1 + j\Omega$

$$\Omega = \nu Q$$

$$\frac{Z}{R} = 1 + j\Omega$$

$\oint_{C=\partial A} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{A} \mathbf{B} \cdot d\mathbf{s} \qquad u_i(t) = -\frac{d\Phi}{dt}(t)$ **Faradaysches** $\mathbf{Gesetz}("Total induktion")$ $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J} + \mu_0 \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t}$

Ampèresches Gesetz

(vollst. Durchflutungssatz)

 $\oint_{C=\theta A} \mathbf{H} \cdot d\mathbf{l} = \int_{A} \left(\mathbf{J}_{\text{frei}} + \frac{d\mathbf{D}}{dt} \right) \cdot d\mathbf{s} \qquad \qquad \mathring{V}_{m} \left(t \right) = \Theta(t) + \frac{d\Psi}{dt} (t)$

$$\overset{\circ}{V}_{m}(t) = \Theta(t) + \frac{d\Psi}{dt}(t)$$

Gaussiches Gesetz (des elektrischen Felds)

$$\oint_{A=\partial V} \mathbf{D} \cdot d\mathbf{s} = \int_{V} \rho_{\text{frei}} dv$$

$$\stackrel{\circ}{\Psi}(t) = Q_{\text{frei}}(t)$$

Gaussiches Gesetz (des Magnetfelds)

$$\oint_{A=\partial V} \mathbf{B} \cdot d\mathbf{s} = 0$$

$$\overset{\circ}{\Phi}\left(t\right) =0$$

Spezielle Relativitätstheorie

Vierervektor	x^{μ}
Kontravariantor	Viororvoletor

$$x^{\mu} = \left[egin{array}{c} ct \ ec{x} \end{array}
ight] = \left[egin{array}{c} x^0 \ x^1 \ x^2 \ x^3 \end{array}
ight]$$

$$x_{\mu} = \begin{bmatrix} ct \\ \vec{x} \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = x^{\mu}$$

Metrischer Tensor

 x_{μ} Kovarianter Vierervektor

$$x_{\mu} = g_{\mu v} x^{v}$$

$$g_{\mu v} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Gallileitransformation $x^{'\mu} = M_G^{\mu v} x_v$

$$M_G^{\mu v} = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \\ -eta^1 & 1 & 0 & 0 \\ -eta^2 & 0 & 1 & 0 \\ -eta^3 & 0 & 0 & 1 \end{array}
ight]$$

Grundlagen Einstein RT

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} \quad \text{und} \qquad \beta = \frac{v}{c}$$

Zeitdilitation

$$\Delta t = \gamma \Delta t'$$

Längenkontraktion

$$l = \frac{l'}{\gamma}$$

Lorentz-Transformation

$$\begin{bmatrix} t' \\ x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \gamma \left(t - \frac{v}{c^2} z \right) \\ x \\ y \\ \gamma (z - vt) \end{bmatrix}$$

$$\begin{bmatrix} t \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \gamma \left(t' + \frac{v}{c^2} z' \right) \\ x \\ y \\ \gamma (z' + vt') \end{bmatrix}$$

 $(\mathcal{K} \xrightarrow{v_z} \mathcal{K}': \text{ für } \vec{v} = v\vec{e_z} \text{ eine}$ Bewegung des Systems \mathcal{K}' in z-Richtung)

$$x'^{\mu} = \Lambda^{\nu}_{\mu} x^{\nu}$$

$$\Lambda^{
u}_{\mu} = \left[egin{array}{ccccc} \gamma & 0 & 0 & -eta \gamma \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ -eta \gamma & 0 & 0 & \gamma \end{array}
ight]$$

Metrischer Tensor

$$x_{\mu} = g_{\mu\nu}x^{\nu}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Geschwindigkeitsaddition
$$u' = \frac{u - v}{1 - \frac{u - u}{1 -$$

$$u' = \frac{u - v}{1 - \frac{uv}{2}}$$

 $u' = \frac{u - v}{1 - \frac{uv}{c^2}} \quad \text{und} \quad u = \frac{u' + v}{1 + \frac{u'v}{c^2}} \quad u' \text{ Geschwindigkeit in } \mathcal{K}', \text{ wobei}$ $\mathcal{K} \xrightarrow{v} \mathcal{K}'$

$$E_0 = mc^2$$

Vierergeschwindigkeit/impuls

$$u^{\mu} = \left[\begin{array}{c} c\gamma \\ c\gamma\vec{\beta} \end{array} \right]$$

$$p^{\mu} = \left[egin{array}{c} mc \ mec{v} \end{array}
ight] = \left[egin{array}{c} E/c \ ec{p} \end{array}
ight]$$

$$E = m\gamma c^2$$
 un

$$\vec{p} = m\vec{v}\gamma$$

Betragsquadrat des Viererimpulses

$$p^2 = p^{\mu}p_{\mu} = \frac{E^2}{c^2} - \vec{p}^2 = m^2c^2$$

Kraft

$$m\gamma \vec{a} = \vec{F} - \frac{1}{c^2} (\vec{F} \cdot \vec{v}) \vec{v}$$

Allgemeiner Dopplereffekt des Lichts

$$\cos(\vartheta) = \frac{\cos \vartheta' + \beta}{1 + \beta \cos \vartheta'}$$

$$\frac{f}{f'} = \frac{1}{\gamma(1 - \beta\cos\theta)}$$

 (\mathcal{K}') bewegt sich mit v in pos z-Richtung rel. zu \mathcal{K} mit ϑ' Aussendungswinkel zur z-Achse)

Longitudinaler Dopplereffekt des Lichts

$$\left. \frac{f}{f'} \right|_{\vartheta=0} = \sqrt{\frac{1+\beta}{1-\beta}} \ge 1$$

Transversaler Dopplereffekt des Lichts

$$\left. \frac{f}{f'} \right|_{\vartheta = \frac{\pi}{2}} = \sqrt{1 - \beta^2} < 1$$