# Введение в численные методы

Практическая работа

Вариант №5.2

Григорьев Денис Андреевич, 213 группа

### Математическая постановка задачи

Дана система вида:

$$-\gamma * y_{i-1} + 2 * y_i + \gamma * y_{i+1} = f_i ; i = \overline{1, N-1};$$
 
$$y_0 = f_0 , y_N = f_N \quad \frac{1}{5} \le \gamma \le 1$$

Правая часть  $f_i$ , где і =  $\overline{0,N}$ , задана.

Требуется решить систему линейных алгебраических уравнений и найти влияние величины у на решения при фиксированном N, а также обосновать выбор метода и почему он применим.

Условие задачи:

$$\gamma = \frac{1}{3}, \frac{1}{2}, 1$$
; N = 100, 1000;

$$f = \begin{cases} 0, & i = \overline{1,29}; \\ 0.1, & i = \overline{30,45}; \\ 0, & i = \overline{46,N}; \end{cases}$$

## Выбор метода решения и обоснование его применимости

Для решения данной задачи я выбрал метод прогонки.

Далее будет приведено его теоретическое изложение:

Пусть задана система линейных алгебраических уравнений вида

(1) 
$$A_i * y_{i-1} + C_i * y_i + B_i * y_{i+1} = F_i$$
,  $i = \overline{1, N-1}$ .

с краевыми условиями  $y_0$  =  $q_0$  ,  $y_N$  =  $q_N$  , где  $A_i$  ,  $B_i$  ,  $C_i$  - коэффициенты, а правые части  $F_i$  ( i=1,...,n-1 ) вместе с  $q_0$  ,  $q_N$  даны.

Используем теперь то, что  $y_0 = q_0$ ,  $y_N = q_N$  и подставим их в уравнения. Теперь систему можно будет переписать в виде:

$$C_1 * y_1 + B_1 * y_2 = F_1 - A_1 * q_0$$

$$A_2 * y_1 + C_2 * y_2 + B_1 * y_3 = F_2$$

.....

$$A_{N-1} * y_{N-2} + C_{N-1} * y_{N-1} = F_{N-1} - B_{N-1} * q_N$$

Составим матрицу коэффициентов данной системы:

•••••

Данная матрица называется трехдиагональной. Системы с трехдиагональными матрицами можно достаточно просто решить с помощью метода прогонки. Данный метод

основывается на предположении, что решения системы связаны рекуррентным соотношением:

$$y_i$$
=  $\alpha_{i+1}*y_{i+1}$ +  $\beta_{i+1}$ , где i =  $\overline{0,N-1}$ . (2)

Величины  $\alpha$  и  $\beta$  называются прогоночными коэффициентами. Теперь найдем их.

Для этого выразим из предыдущего соотношения (2)  $y_{i-1}$  и  $y_i$  через  $y_{i+1}$  и подставим их в исходные уравнения (1):

$$y_{i-1} = \alpha_i * y_i + \beta_i = \alpha_i * (\alpha_{i+1} * y_{i+1} + \beta_{i+1}) + \beta_i,$$

$$A_i * (\alpha_i * (\alpha_{i+1} * y_{i+1} + \beta_{i+1}) + \beta_i) + C_i * (\alpha_{i+1} * y_{i+1} + \beta_{i+1}) + B_i * y_{i+1} - F_i = 0$$

Сгруппируем коэффициенты при  $y_{i+1}$ :

$$(A_i * \alpha_i * \alpha_{i+1} + C_i * \alpha_{i+1} + B_i) * y_{i+1} + A_i * \alpha_i * \beta_{i+1} + A_i * \beta_i + C_i * \beta_{i+1} - F_i = 0$$
, где i =  $\overline{1, N-1}$ 

Данное равенство будет выполнятся независимо от решения, если потребовать следующее:

$$A_i * \alpha_i * \alpha_{i+1} + C_i * \alpha_{i+1} + B_i = 0$$

$$A_i * \alpha_i * \beta_{i+1} + A_i * \beta_i + C_i * \beta_{i+1} - F_i = 0$$

Из этих соотношений составляем рекуррентное соотношение для прогоночных коэффициентов:

$$\alpha_{i+1} = \frac{-B_i}{A_i * \alpha_i + C_i}$$
 $\beta_{i+1} = \frac{F_i - A_i * \beta_i}{A_i * \alpha_i + C_i}$  (3)

Для выполнения краевых условий ( $y_0 = q_0$ ) достаточно положить:

$$\alpha_1 = 0, \beta_1 = q_0$$

Далее последовательно находим остальные прогоночные коэффициенты из (3). Теперь пользуемся тем, что  $y_N = q_N$  и отсюда, уже в обратном порядке, находим остальные неизвестные по формуле (2).

Теперь приведем обоснование, почему данный метод применим для решения задачи. Для этого сформулируем теорему достаточного условия корректности метода прогонки.

**Теорема**. Пусть коэффициенты исходной системы **(1)** удовлетворяют неравенствам:

1) 
$$|C_i| \ge |A_i| + |B_i|$$
, где  $i = \overline{2, N-2}$ ,

2) 
$$|C_{N-1}| > 0$$
,  $|C_1| > 0$ ,  $|A_i| > 0$ ,  $|B_i| > 0$ ,  $|B_i| > 0$ ,  $|C_1| > 0$ 

3)  $|C_1| \ge |B_1|$ ,  $|C_{N-1}| \ge |A_{N-1}|$ , причем хотя бы одно из неравенств 1), 3) строгое. (Т. е. матрица имеет диагональное преобладание).

Тогда метод прогонки будет применим, причем прогоночные коэффициенты будут удовлетворять неравенствам:

$$|\alpha_i| \leq 1$$

В моей задаче дано, что  $\frac{1}{5} \le \gamma \le 1$ . При данных значениях  $\gamma$  выполняется условие предыдущей теоремы (C = 2, A = - $\gamma$ , B =  $\gamma$ ), следовательно метод прогонки применим. Также заметим, что неравенство  $|\alpha_i| \le 1$  делает прогонку устойчивой, т. е. при вычислениях ошибка из-за округления значений не будет нарастать.

Следует отметить, что метод прогонки достаточно эффективен в области своего применения.

Например, сложность вычислений методом Гаусса будет пропорционально  $N^3$ , в то время как метод прогонки потребует лишь несколько циклов для вычислений прогоночных коэффициентов, а затем решений, следовательно, сложность вычислений будет пропорциональна N.

### Анализ графиков и влияния у на решение

На следующих изображениях будут представлены графики решений СЛАУ при фиксированном N, но при разных γ (линия графика для соответствующего γ будет выделена своим цветом и подписана). Для построения графиков использовалась программа gnuplot.

### При N = 100:



#### При N = 1000:



При анализе графиков становится понятно, что с ростом у незначительно увеличивается различие между соседними решениями (более сильные скачки значений на графике, выделенным синим цветом), но сильного влияния на решения не оказывается. Если сравнить графики для N = 100 и N = 1000, то они окажутся одинаковыми при N от 0 до 100. Это происходит потому, что после 45 номера все уравнения являются однородными независимо от N.

### Программная реализация

Ниже будет представлен код программы, написанной на языке С, решающей СЛАУ (1) для различных начальных данных (ү и N выбираются посредством ввода с

### клавиатуры), а также результаты вывода программы на экран в каждом случае:

```
#include <stdio.h>
void <mark>getAlpha(double gamma, int n) {</mark> //получение коэффициентов альфа
void getBetta(double gamma, int n) { //получение коэффициентов бетта
       gamma = exp(-log(3)); // 1/3
```

```
} else if (inp == 2) {
    gamma = 0.5; // 1/2
} else if (inp == 3) {
    gamma = 1.; // 1
} else {
    exit(0); // неверный ввод
}
printf("Choose N: 1) 100, 2) 1000\n"); // Выбор N
scanf("%d", &inp);
if (inp == 1) {
    N = 100;
} else if (inp == 2) {
    N = 1000;
} else {
    exit(0); // неверный ввод
}
printf("N = %d. Gamma = %lf \n\n", N, gamma);
getAlpha(gamma, N); //коэффициенты, которые нужны для
getBetta(gamma, N); //метода прогонки
for (int k = N; k >= 0; k--) { //подсчет решений в обратном порядке
    y (k, N);
}
for(int k = 0 ; k <= N ; k++) { //вывод на экран
    printf("y( %d ) %.201f\n", k, arrayOfSolutions[k]); //точность 20
Знаков после запятой
}
return 0;
}
```

### N = 100, y = 1/3:

```
30 ) 0.04081138830083246016
32 ) 0.04975802674089450928
34 ) 0.04999362785315879937
40 ) 0.04999925457904877413
42 ) 0.04997169804969023299
43 ) 0.05017440445675168392
44 ) 0.04892527130918015998
45 ) 0.05662277660167069904
46 ) 0.00918861169915597721
47 ) 0.00149110640673482818
48 ) 0.00024197325874700766
49 ) 0.00003926685425278223
  ) 0.00000016780400493481
53 ) 0.00000002723084128770
54 ) 0.00000000441895720859
    0.00000000071709803619
56 ) 0.0000000011636899142
   ) 0.0000000001888408764
    0.0000000000000005596
    0.0000000000000000147
    0.00000000000000000024
    0.00000000000000000004
    0.00000000000000000001
    0.00000000000000000000
    0.00000000000000000000
    0.00000000000000000000
    0.000000000000000000000
```

### $N = 100, \gamma = 1/2$

```
-0.00000000000000000000
       -0.00000000000000000043
       -0.00000000000000000766
       0.0000000000000003246
   8 ) 0.0000000000000058249
  20 ) 0.00000001944658896927
у(
  21 ) -0.00000008237707280431
У(
  22 ) 0.00000034895488018652
У(
у(
  23 ) -0.00000147819659355040
  25 ) -0.00002652516161110290
  26 ) 0.00011236238769879972
  27 ) -0.00047597471240630180
  28 ) 0.00201626123732400690
  29 ) -0.00854101966170232874
   30 ) 0.03618033988413332097
   31 ) 0.04673762080176438460
     ) 0.04922985667707578672
   33 ) 0.04981819409346122107
   34 ) 0.04995708030323089965
   35 ) 0.04998987288053762662
   36 ) 0.04999758878108039040
      ) 0.04999951775621607614
   38 ) 0.04999951775621608308
     ) 0.05000144673135176188
     ) 0.04999373083080900504
      ) 0.05002652340811573894
        0.00326237921218916049
        0.00077014326245885244
        0.00018180616235375098
        0.00004291861304384840
        0.00001013171017835738
        0.00000056462085668194
```

```
54 ) 0.00000013328890369110
55 ) 0.00000003146524191752
58 ) 0.00000000041394468710
66 ) 0.0000000000000399245
67 ) 0.0000000000000094249
68 ) 0.00000000000000022249
70 ) 0.0000000000000001240
71 ) 0.0000000000000000293
74 ) 0.00000000000000000004
  0.00000000000000000000
   0.00000000000000000000
   0.00000000000000000000
```

### $N = 100, \gamma = 1$

```
14 ) 0.0000001877278546800
  27 ) -0.00177669396249509424
  28 ) 0.00428931866044205117
  29 ) -0.01035533128337919571
  30 ) 0.02499998122720044000
  31 ) 0.03964470626221994198
  32 ) 0.04571056870276056505
  33 ) 0.04822356885669882437
  36 ) 0.04987001723341698278
     ) 0.04995667241113899149
  38 ) 0.04995667241113899149
     ) 0.05004332758886100019
  40 ) 0.04987001723341698278
     ) 0.05030329312202703324
     ) 0.04926343098936292186
       0.02499998122720044000
  46
     ) 0.00428931866044205030
       0.00177669396249509424
  49
       0.00073593073545186313
       0.00005230098705311386
       0.00002166377816289942
       0.00000897343072731503
  56
       0.00000371691670826935
       0.00000153959731077633
       0.00000010941581203084
     ) 0.0000001877278546836
  72 ) 0.0000000000279107729
y( 77 ) 0.0000000000003403247
```

### $N = 1000, \gamma = 1/3$

```
0 ) 0.0000000000000000000
y(11) -0.000000000000000004034
y(14) 0.000000000000943890
y(16) 0.000000000035842945
y(17) -0.0000000000220874181
y(18) 0.000000001361088028
y(19) -0.0000000008387402350
  21 ) -0.00000000318500415112
     ) 0.00000001962687992800
  23 ) -0.00000012094628371911
  24 ) 0.00000074530458224266
  25 ) -0.00000459277377717504
  26 ) 0.00002830194724529292
     ) 0.04850889359332298534
       0.04975802674089450928
       0.04996073314795595327
       0.04999362785315879937
   34
       0.04999896602900312514
       0.04999983167914004434
       0.04999997595416286189
```

```
38 ) 0.04999997595416286189
39 ) 0.05000012022918567944
40 ) 0.04999925457904877413
45 ) 0.05662277660167069904
49 ) 0.00003926685425278223
50 ) 0.00000637213323031427
51 ) 0.00000103405487089658
52 ) 0.00000016780400493481
53 ) 0.00000002723084128770
54 ) 0.00000000441895720859
55 ) 0.0000000071709803619
  ) 0.0000000011636899142
57 ) 0.0000000001888408764
60 ) 0.0000000000008069976
  ) 0.00000000000000212515
    0.0000000000000034486
64 ) 0.0000000000000005596
  ) 0.0000000000000000000024
68 ) 0.000000000000000000004
    0.00000000000000000000
    0.00000000000000000000
    0.00000000000000000000
    0.00000000000000000000
83
```

```
117
137
  138
  139
140
  141
  142
143
  0.00000000000000000000
144
  0.00000000000000000000
145
  0.000000000000000000000
146
  0.000000000000000000000
147
  148
  149
```

```
У(
) 0.00000000000000000000
204
  206
  0.00000000000000000000
  0.00000000000000000000
  0.00000000000000000000
  210
  0.000000000000000000000
211
  0.000000000000000000000
```

```
231 )
242 ) 0.00000000000000000000
244
246
 ) 0.00000000000000000000
 ) 0.00000000000000000000
 ) 0.00000000000000000000
 270
  0.00000000000000000000
  0.00000000000000000000
  0.00000000000000000000
  0.000000000000000000000
```

```
У(
329
 330
 331
332
 333
334
 0.00000000000000000000
335
 0.00000000000000000000
336
 0.00000000000000000000
 341
342
343
344
345
 346
347
348
```

```
) 0.00000000000000000000
 ) 0.00000000000000000000
 ) 0.00000000000000000000
0.00000000000000000000
  397
  0.00000000000000000000
  0.00000000000000000000
  0.00000000000000000000
  0.000000000000000000000
  0.00000000000000000000
  0.000000000000000000000
  411
418
```

```
0.00000000000000000000
460
 0.00000000000000000000
463
 0.00000000000000000000
464
 0.00000000000000000000
 0.000000000000000000000
 0.00000000000000000000
 0.000000000000000000000
 478
479
```

```
) 0.00000000000000000000
523
524
 526
 0.00000000000000000000
 0.00000000000000000000
 0.00000000000000000000
 0.00000000000000000000
 0.000000000000000000000
```

```
564
 ) 0.00000000000000000000
566
 ) 0.00000000000000000000
0.00000000000000000000
  0.00000000000000000000
  0.00000000000000000000
  0.00000000000000000000
  0.000000000000000000000
594
  0.00000000000000000000
  0.000000000000000000000
```

```
628 ) 0.00000000000000000000
 629 ) 0.00000000000000000000
 630 ) 0.00000000000000000000
 642
 643
 647
   649
   0.00000000000000000000
 653
   0.00000000000000000000
 654
   0.00000000000000000000
   0.00000000000000000000
 656
   0.00000000000000000000
   0.000000000000000000000
   0.00000000000000000000
 664
```

```
692 ) 0.00000000000000000000
694
 ) 0.00000000000000000000
) 0.00000000000000000000
707
 714
717
  0.00000000000000000000
718
  0.00000000000000000000
719
  0.00000000000000000000
  0.00000000000000000000
  734
738
```

```
744
748
 ) 0.00000000000000000000
 ) 0.00000000000000000000
 ) 0.00000000000000000000
 0.00000000000000000000
783
 0.00000000000000000000
784
 0.00000000000000000000
  787
788
789
 794
```

```
822 ) 0.00000000000000000000
) 0.00000000000000000000
838
840 )
  841
  842
  0.00000000000000000000
843
844
  845
846
  0.00000000000000000000
847
  0.00000000000000000000
848
  0.00000000000000000000
  0.000000000000000000000
  0.00000000000000000000
  0.000000000000000000000
  0.000000000000000000000
```

```
871 )
0.00000000000000000000
 0.00000000000000000000
 0.00000000000000000000
912
 0.00000000000000000000
 914
 0.000000000000000000000
915
 923
924
```

```
0.00000000000000000000
 0.00000000000000000000
974
 0.00000000000000000000
 0.00000000000000000000
976
 0.00000000000000000000
 0.000000000000000000000
 984
```

### $N = 1000, \gamma = 1/2$

```
-0.00000000000000000043
       -0.00000000000000000766
       0.00000000000000003246
      0.0000000000000058249
   9) -0.0000000000000246747
   11 ) -0.0000000000004427689
y(13) -0.0000000000079451663
  24 ) 0.00000626174125438812
У(
  25 ) -0.00002652516161110290
У(
  26 ) 0.00011236238769879972
  27 ) -0.00047597471240630180
  29 ) -0.00854101966170232874
  30 ) 0.03618033988413332097
  31 ) 0.04673762080176438460
  32 ) 0.04922985667707578672
  33 ) 0.04981819409346122107
   34 ) 0.04995708030323089965
   35 ) 0.04998987288053762662
   36 ) 0.04999758878108039040
   37 ) 0.04999951775621607614
  38 ) 0.04999951775621608308
  40 ) 0.04999373083080900504
  41 ) 0.05002652340811573894
     ) 0.04988763719834606730
     ) 0.05047597461473149472
     ) 0.04798373873942009260
     ) 0.05854101965705114929
       0.00077014326245885244
       0.00001013171017835738
        0.00000239177233041886
        0.00000056462085668194
        0.00000013328890369110
        0.00000003146524191752
        0.00000000742793602101
        0.00000000175349783348
```

```
58 ) 0.00000000041394468710
    0.00000000009771908508
 62 ) 0.0000000000128555491
 63 ) 0.0000000000030347835
 70 ) 0.00000000000000001240
 72 ) 0.00000000000000000069
 73 ) 0.00000000000000000016
 74 ) 0.00000000000000000004
 75 ) 0.000000000000000000001
   0.00000000000000000000
     0.00000000000000000000
 104
```

```
У(
160
 161
 162
163
 0.00000000000000000000
164
 0.00000000000000000000
 0.00000000000000000000
```

```
У(
) 0.00000000000000000000
  223
224
  226
   0.00000000000000000000
  0.00000000000000000000
228
  0.00000000000000000000
   0.000000000000000000000
  0.000000000000000000000
234
  0.000000000000000000000
```

```
264
 ) 0.00000000000000000000
 ) 0.00000000000000000000
 0.000000000000000000000
  290
  0.00000000000000000000
291
  0.00000000000000000000
292
  0.00000000000000000000
  294
  0.000000000000000000000
295
  0.000000000000000000000
296
```

```
329
345
347
 349
 0.000000000000000000000
 354
 0.00000000000000000000
 0.00000000000000000000
356
 0.00000000000000000000
 364
 374
```

```
394
 ) 0.00000000000000000000
 ) 0.00000000000000000000
409
 413
 414
 415
416
  417
418
  0.00000000000000000000
419
  0.00000000000000000000
420
  0.00000000000000000000
421
  422
  423
  0.000000000000000000000
 430
431
432
433
434
437
438
```

```
443)
456
 470
471
472
475
476
 478
 479
 481
 0.00000000000000000000
483
 0.00000000000000000000
484
 0.00000000000000000000
 0.000000000000000000000
486
 0.000000000000000000000
 0.000000000000000000000
 494
498
```

```
521
) 0.00000000000000000000
543
544
 545
546
 0.00000000000000000000
547
 0.00000000000000000000
548
 0.00000000000000000000
 0.000000000000000000000
 554
```

```
0.00000000000000000000
607
 0.00000000000000000000
611
 0.00000000000000000000
612
 0.00000000000000000000
 0.000000000000000000000
 623
624
```

```
648 ) 0.00000000000000000000
649 ) 0.00000000000000000000
663
  670
671
  0.00000000000000000000
674
  0.00000000000000000000
675
  0.00000000000000000000
676
  0.00000000000000000000
677
  684
```

```
704
707
) 0.00000000000000000000
737
738
 0.00000000000000000000
 0.00000000000000000000
740
 0.00000000000000000000
```

```
767
768
780 ) 0.00000000000000000000
 0.00000000000000000000
 0.00000000000000000000
 0.00000000000000000000
804
 0.00000000000000000000
 0.00000000000000000000
 0.000000000000000000000
```

```
860 )
 862
863
865
 0.00000000000000000000
866
 0.00000000000000000000
867
 0.00000000000000000000
868
 0.00000000000000000000
 870
 871
872
 0.000000000000000000000
```

```
927
0.00000000000000000000
929
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
934
940
941
```

```
970 ) 0.0000000000000000000
972 ) 0.0000000000000000000
0.00000000000000000000
 0.00000000000000000000
996
 0.00000000000000000000
 0.00000000000000000000
```

## $N = 1000, \gamma = 1$

```
14 ) 0.0000001877278546800
  27 ) -0.00177669396249509424
  28 ) 0.00428931866044205117
  29 ) -0.01035533128337919571
  30 ) 0.02499998122720044000
  31 ) 0.03964470626221994198
  32 ) 0.04571056870276056505
  33 ) 0.04822356885669882437
  36 ) 0.04987001723341698278
     ) 0.04995667241113899149
  38 ) 0.04995667241113899149
     ) 0.05004332758886100019
  40 ) 0.04987001723341698278
     ) 0.05030329312202703324
     ) 0.04926343098936292186
       0.02499998122720044000
  46
     ) 0.00428931866044205030
       0.00177669396249509424
  49
       0.00073593073545186313
       0.00005230098705311386
       0.00002166377816289942
        0.00000897343072731503
   56
       0.00000371691670826935
       0.00000153959731077633
       0.00000026415313734293
       0.00000010941581203084
y( 61 ) 0.00000004532151328124
     ) 0.0000001877278546836
  72 ) 0.0000000000279107729
y( 77 ) 0.0000000000003403247
```

```
0.0000000000000583905
80 ) 0.0000000000000241861
82 ) 0.00000000000000041497
84 ) 0.00000000000000007120
89 ) 0.0000000000000000087
90 ) 0.0000000000000000036
92 ) 0.0000000000000000006
93 ) 0.0000000000000000000
113
   114
115
116
   117
   118
119
   0.00000000000000000000
120
   0.00000000000000000000
   0.000000000000000000000
   0.000000000000000000000
   0.000000000000000000000
```

```
У(
180
  183
  0.00000000000000000000
184
  0.00000000000000000000
  0.000000000000000000000
  0.000000000000000000000
  0.000000000000000000000
```

```
221
 0.000000000000000000000
 ) 0.00000000000000000000
 234
235
238
240
 244
 246
 0.00000000000000000000
247
 0.00000000000000000000
248
 0.00000000000000000000
249
 254
```

```
271 )
284
 286
 ) 0.00000000000000000000
 ) 0.00000000000000000000
 ) 0.00000000000000000000
 306
  0.00000000000000000000
307
  0.00000000000000000000
311
  0.00000000000000000000
  0.00000000000000000000
  0.000000000000000000000
314
  0.000000000000000000000
  0.000000000000000000000
  322
323
324
```

```
349
) 0.00000000000000000000
) 0.00000000000000000000
367
 0.000000000000000000000
 374
 0.00000000000000000000
 0.00000000000000000000
376
 0.00000000000000000000
 384
```

```
) 0.00000000000000000000
429
430
431
432
  433
  434
  435
436
  437
438
  0.00000000000000000000
439
  0.00000000000000000000
440
  0.00000000000000000000
441
  442
  0.000000000000000000000
443
  0.000000000000000000000
444
  445
446
448
449
```

```
467
494
 0.00000000000000000000
 0.00000000000000000000
 0.00000000000000000000
504
 0.00000000000000000000
 0.000000000000000000000
 0.000000000000000000000
 0.000000000000000000000
```

```
541
) 0.00000000000000000000
0.00000000000000000000
 565
566
 0.00000000000000000000
567
 0.00000000000000000000
568
 0.00000000000000000000
 0.000000000000000000000
```

```
605 ) 0.00000000000000000000
624
   625
   626
   0.00000000000000000000
627
   629
630
   0.00000000000000000000
631
   0.00000000000000000000
632
   0.00000000000000000000
633
   0.000000000000000000000
634
   0.000000000000000000000
   0.000000000000000000000
640
   641
  643
645 ) 0.00000000000000000000
y( 653 ) 0.000000000000000000000
```

```
) 0.00000000000000000000
689
 0.00000000000000000000
694
 0.00000000000000000000
 0.00000000000000000000
696
 0.00000000000000000000
 0.000000000000000000000
 0.000000000000000000000
704
```

```
724
728
 0.000000000000000000000
 733
 ) 0.00000000000000000000
 ) 0.00000000000000000000
 747
 753
  0.00000000000000000000
  0.00000000000000000000
760
  0.00000000000000000000
  762
  763
```

```
783 )
794
796
 ) 0.00000000000000000000
 ) 0.00000000000000000000
817
 818
819
821
 0.00000000000000000000
822
 0.00000000000000000000
823
 0.00000000000000000000
824
 0.00000000000000000000
 834
```

```
847
) 0.00000000000000000000
878
 881
 882
883
884
 0.00000000000000000000
886
 0.00000000000000000000
887
 0.00000000000000000000
 0.00000000000000000000
 894
896
 0.000000000000000000000
```

```
924
 927 ) 0.0000000000000000000
928 ) 0.0000000000000000000
942
943
944
 0.00000000000000000000
  949
  0.00000000000000000000
  0.00000000000000000000
  0.00000000000000000000
953
  954
  961
 0.000000000000000000000
962
```