INTRODUÇÃO À META-HEURÍSTICAS

LIVE DA SEMANA 03

MODELOS DE PROGRAMAÇÃO LINEAR

Autor: Anibal Tavares de Azevedo

Carteira de Investimentos

A Tabela 1 mostra os dados dos títulos existentes.

Determine qual o percentual do total deve ser aplicado em cada tipo título.

Título	Retorno anual	Anos para vencimento	Risco
1	8,7%	15	1 - Muito baixo
2	9,5%	12	2 - Regular
3	12,0%	8	4 - Alto
4	9,0%	7	2 - Baixo
5	13,0%	11	4 - Alto
6	20,0%	5	5 - Muito Alto

Carteira de Investimentos

MODELO COMPLETO

Max
$$0.087 \left(\frac{P_1}{100}\right) + 0.095 \left(\frac{P_2}{100}\right) + 0.12 \left(\frac{P_3}{100}\right) + 0.09 \left(\frac{P_4}{100}\right) + 0.13 \left(\frac{P_5}{100}\right) + 0.20 \left(\frac{P_6}{100}\right)$$

$$P_1 + P_2 + P_3 + P_4 + P_5 + P_6 = 100$$

$$P_1 \le 25; P_2 \le 25; P_3 \le 25; P_4 \le 25; P_5 \le 25; P_6 \le 25$$

$$P_3 + P_5 + P_6 \le 50$$

$$P_1 + P_2 + P_5 \ge 50$$

$$P_1, P_2, P_3, P_4, P_5, P_6 \ge 0$$

Carteira de Investimentos

EXERCÍCIO 1

MODIFICAR O MODELO DE MODO QUE:

- (A) Todo dinheiro pode ser alocado no máximo em até 100% do total.
- (B) As aplicações 2 e 6 devem ter um mínimo de 5% do total.
- (C) O total aplicado em títulos de risco baixo ou regular deve ser no mínimo de 15%.
- (D) Associar ao retorno de cada aplicação uma probabilidade de ocorrência e achar o retorno médio esperado.

Um acordo sindical diz que um empregado que trabalha 5 dias consecutivos deve folgar em seguida 2 dias.

#	Dom	Seg	Ter	Qua	Qui	Sex	Sab
G1	N1	N1	N1	N1	N1		
G2		N2	N2	N2	N2	N2	
G3			N3	N3	N3	N3	N3
G4	N4			N4	N4	N4	N4
G5	N5	N5			N5	N5	N5
G6	N6	N6	N6			N6	N6
G7	N7	N7	N7	N7			N7

#	Dom	Seg	Ter	Qua	Qui	Sex	Sab
G1	N1	N1	N1	N1	N1		
G2		N2	N2	N2	N2	N2	
G3			N3	N3	N3	N3	N3
G4	N4			N4	N4	N4	N4
G5	N5	N5			N5	N5	N5
G6	N6	N6	N6			N6	N6
G7	N7	N7	N7	N7			N7

Dia	Dom	Seg	Ter	Qua	Qui	Sex	Sab
#	11	18	12	15	19	14	16

$$N_1 + N_4 + N_5 + N_6 + N_7 \ge 11$$

MODELO COMPLETO

$$Min N_1 + N_2 + N_3 + N_4 + N_5 + N_6 + N_7$$

```
S.a.:

N_1 + N_4 + N_5 + N_6 + N_7 \ge 11

N_1 + N_2 + N_5 + N_6 + N_7 \ge 18

N_1 + N_2 + N_3 + N_6 + N_7 \ge 12

N_1 + N_2 + N_3 + N_4 + N_7 \ge 15

N_1 + N_2 + N_3 + N_4 + N_5 \ge 19

N_2 + N_3 + N_4 + N_5 + N_6 \ge 14

N_3 + N_4 + N_5 + N_6 + N_7 \ge 16

N_1, N_2, N_3, N_4, N_5, N_6, N_7 \ge 0
```


EXERCÍCIO 2

MODIFICAR O MODELO DE MODO QUE:

- (A) Todo funcionário que começar a trabalhar no sábado ou domingo deverá folgar 3 e não 2 dias.
- (B) A partir do modelo original impor que todo funcionário que trabalhar no sábado ou domingo deverá folgar 3 dias.
- (C) Alterar os custos do modelo original de modo que quem trabalha no sábado ou no domingo tem uma remuneração 50% maior.

Variáveis de Decisão:

MODELO COMPLETO SIMPLIFICADO

Min
$$0.5(x_{ar} + x_{as}) + 0.75(x_{br} + x_{bs}) + 1.0(x_{sr} + x_{ss}) + 1.5(x_{1r} + x_{1s})$$

```
S.a.:  \mathbf{x}_{ar} + \mathbf{x}_{br} + \mathbf{x}_{1r} + \mathbf{x}_{sr} = 100 
 \mathbf{x}_{as} + \mathbf{x}_{bs} + \mathbf{x}_{1s} + \mathbf{x}_{ss} = 250 
 0,35\mathbf{x}_{ar} + 0,05\mathbf{x}_{br} + 0,75\mathbf{x}_{sr} - 0,25\mathbf{x}_{1r} \ge 0 
 -0,1\mathbf{x}_{ar} + 0,2\mathbf{x}_{br} - 0,5\mathbf{x}_{sr} + 0,5\mathbf{x}_{1r} \ge 0 
 0,4\mathbf{x}_{as} + 0,1\mathbf{x}_{bs} + 0,8\mathbf{x}_{ss} - 0,2\mathbf{x}_{1s} \ge 0 
 0,1\mathbf{x}_{as} - 0,2\mathbf{x}_{bs} + 0,5\mathbf{x}_{ss} - 0,5\mathbf{x}_{1s} \ge 0 
 \mathbf{x}_{ar}, \mathbf{x}_{br}, \mathbf{x}_{1r}, \mathbf{x}_{sr}, \mathbf{x}_{as}, \mathbf{x}_{bs}, \mathbf{x}_{1s}, \mathbf{x}_{ss} \ge 0
```


MODELO COMPLETO

Min
$$0.5(x_{ar} + x_{as}) + 0.75(x_{br} + x_{bs}) + 1.0(x_{sr} + x_{ss}) + 1.5(x_{lr} + x_{ls})$$

```
S.a.: \mathbf{x}_{ar} + \mathbf{x}_{br} + \mathbf{x}_{1r} + \mathbf{x}_{sr} = 100

\mathbf{x}_{as} + \mathbf{x}_{bs} + \mathbf{x}_{1s} + \mathbf{x}_{ss} = 250

0.6\mathbf{x}_{ar} + 0.3\mathbf{x}_{br} + 1.0\mathbf{x}_{sr} \ge 0.25(\mathbf{x}_{ar} + \mathbf{x}_{br} + \mathbf{x}_{1r} + \mathbf{x}_{sr})

0.4\mathbf{x}_{ar} + 0.7\mathbf{x}_{br} + 1.0\mathbf{x}_{1r} \ge 0.5(\mathbf{x}_{ar} + \mathbf{x}_{br} + \mathbf{x}_{1r} + \mathbf{x}_{sr})

0.6\mathbf{x}_{as} + 0.3\mathbf{x}_{bs} + 1.0\mathbf{x}_{ss} \ge 0.2(\mathbf{x}_{as} + \mathbf{x}_{bs} + \mathbf{x}_{1s} + \mathbf{x}_{ss})

0.4\mathbf{x}_{as} + 0.7\mathbf{x}_{bs} + 1.0\mathbf{x}_{1s} \le 0.5(\mathbf{x}_{as} + \mathbf{x}_{bs} + \mathbf{x}_{1s} + \mathbf{x}_{ss})

\mathbf{x}_{ar}.\mathbf{x}_{br}.\mathbf{x}_{1r}.\mathbf{x}_{sr}.\mathbf{x}_{as}.\mathbf{x}_{bs}.\mathbf{x}_{1s}.\mathbf{x}_{ss} \ge 0
```


EXERCÍCIO 3

MODIFICAR O MODELO DE MODO QUE:

- (A) O total produzido de tinta SR é igual a 150 e SS é de 150.
- (B) O total produzido de tinta SR é menor ou igual à 100 e de tinta SS é menor ou igual à 250.
- (C) Cada litro de tinta SR e SS precisa no mínimo de 45% de linhaça.

TEMA 1 – COMBUSTÍVEL

TEMA 1: A Voe Bem precisa decidir a quantidade de querosene para combustível de seus jatos que adquire de 3 companhias vendedoras. Seus jatos são regularmente abastecidos nos aeroportos de Congonhas, Viracopos, Galeão e Pampulha. As companhias vendedoras poderão fornecer no próximo mês as seguintes quantidades de combustível:

Companhia	Galões [litros]
1	250.000
2	500.000
3	600.000

As necessidade em cada aeroporto é dada por:

Aeroporto	Galões [litros]
Congonhas	100.000
Viracopos	200.000
Galeão	300.000
Pampulha	400.000

TEMA 1 – COMBUSTÍVEL

O custo por galão, incluindo o preço do transporte (em R\$/Litro), de cada companhia para cada aeroporto é dado por:

Aeroporto	Companhia 1	Companhia 2	Companhia 3
Congonhas	12	9	10
Viracopos	10	11	14
Galeão	8	11	13
Pampulha	11	13	9

Formule o problema de programação linear e obtenha sua solução por meio do GLPK.

TEMA 2 – REFINARIA

TEMA 2: Uma refinaria capaz de processar 100.000 barris por dia de petróleo em gás, gasolina, óleo diesel e resíduo, precisa determinar seu programa de produção. Todos os produtos podem ser vendidos diretamente, exceto o resíduo que precisa ser combinado com querosene para produzir óleo pesado (10% querosene e 90% resíduo) ou óleo leve (20% querosene e 80% resíduo).

A refinaria precisa satisfazer um mínimo de contratos de venda e um máximo de produção estabelecido pelo governo (tab.1). A refinaria pode comprar petróleo de 3 diferentes países, cujas disponibilidades diárias estão na tabela 2. Sabe-se ainda que ela se comprometeu a comprar pelo menos 10.000 barris por dia da Arábia Saudita. Formule o modelo de PL.

TEMA 2 – REFINARIA

TABELA 1

Produto	Preço de Venda [R\$]	Produção Máxima Barris/dia	Produção mínima Barris/dia
Gás	2.10	10.000	5.000
Gasolina	3.50	20.000	13.000
Querosene	3.30	20.000	15.000
Óleo diesel	3.10	25.000	10.000
Óleo pesado	2.50	20.000	10.000
Óleo leve	2.80	20.000	12.000

TEMA 2 – REFINARIA

TABELA 2

Origem	Custo /barril [R\$]		Porcentagem dos Componentes				
		Gás	Gasolina	Diesel	Querosene	Resíduo	
Kwait	2.00	10	10	10	10	60	70.000
Arábia S.	2.50	10	15	15	15	45	100.000
Líbia	3.00	10	20	20	20	30	50.000

Formule o problema de programação linear e obtenha sua solução por meio do GLPK.

TEMA 3 – LIGAS METÁLICAS

TEMA 3: Duas ligas metálicas A e B são feitas de quatro metais distintos I, II, III e IV, de acordo com a seguinte especificação dada na Tabela 1.

TABELA 1

Liga	Especificação	Preço de Venda [R\$/ton]
Α	no máximo 80% de I	200,00
	no máximo 30% de II	
	no mínimo 50% de IV	
В	entre 40% e 60% de II	300,00
	no mínimo 30% de III	
	no máximo 70% de IV	

TEMA 3 – LIGAS METÁLICAS

Os quatro metais são extraídos de três minérios diferentes, cujas percentagens em peso, quantidades máximas dos minérios e custos por tonelada são dados na Tabela 2.

TABELA 2

Liga	Quant. Max. [ton]		Componentes (%)					
		1	П	Ш	IV	Outros		
1	1.000	20	10	30	30	10	30,00	
2	2.000	10	20	30	30	10	40,00	
3	3.000	5	5	70	20	0	50,00	

Formule o problema de programação linear e obtenha sua solução por meio do GLPK.

TEMA 4 – RAÇÃO ANIMAL

TEMA 4: Um fabricante de rações quer determinar a fórmula mais econômica de uma certa ração. A composição nutritiva dos ingredientes disponíveis no mercado e os seus custos são dados na Tabela 1.

TABELA 1

	Ingredientes [%]				
Nutrientes	Soja	Milho	Cana		
Cálcio	0,2	1	3		
Proteína	50	9	0		
Carbo-Hidratos	0,8	2	2		
Custo/quilo	15,00	20,00	8,00		

TEMA 4 – RAÇÃO ANIMAL

Um fabricante deve entregar 1000 quilos de ração por dia e garantir que esta contenha os requisitos contidos na Tabela 2.

TABELA 2

Nutriente	Máximo [%]	Mínimo [%]
Cálcio	1,2	0,8
Proteína	-	22,0
Carbo-Hidratos	20,0	-

Formule o problema de programação linear e obtenha sua solução por meio do GLPK.

OBRIGADO!!!