群同构第二定理的证明

LYNX

2018/3/24

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

证明 3/3 群同构第一定理

群同构第二定理

Theorem.

Let H be a subgroup of a group G and N a normal subgroup of G. Then

- HN is a subgroup of G
- $H \cap N$ is a normal subgroup of H
- $H/(H \cap N) \cong (HN)/N$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

证明 3/3 群同构第一定理

門疋恩

1
$$HN \leq G, HN = \{hn : h \in H, n \in N\}$$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3

Theorem 10.

证明 2/3

证明 3/3 群同构第一定理

1 $HN < G, HN = \{hn : h \in H, n \in N\}$

Proof.

1.1 封闭性

Suppose that $h_1 n_1, h_2 n_2 \in HN$, N is normal in G According to Theorem 10.3 $(h_2)^{-1} n_1 h_2 \in N$, $((h_2)^{-1} n_1 h_2) n_2 \in N$ $(h_1 n_1)(h_2 n_2) = h_1 h_2((h_2)^{-1} n_1 h_2) n_2$ is in HN

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10 3

TID 0/2

证明 3/3 群同构第一定理

Theorem 10.3

Theorem.

Let G be a group and N be a subgroup of G. Then the following statements are equivalent

- N ⊲ G
- For all $g \in G$, $gNg^{-1} \subset N$
- For all $g \in G$, $gNg^{-1} = N$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

证明 3/3 群同构第一定理

1 $HN \leq G, HN = \{hn : h \in H, n \in N\}$

Proof.

1.2 单位元存在

Since $H, N \le G, e \in H \cap N$ $\forall hn \in HN, (hn)e = e(hn) = hn$ 群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

.....

群同构第一定理

回趨

1 $HN \leq G, HN = \{hn : h \in H, n \in N\}$

Proof.

1.3 逆元存在

$$\forall hn \in HN, (hn)^{-1} = n^{-1}h^{-1} = (h^{-1}h)nh^{-1}$$

 $(h^{-1}h)n^{-1}h^{-1} \in G$ because
 $(h^{-1}h)n^{-1}h^{-1} = h^{-1}(hnh^{-1})$ and $h^{-1} \in H, (hnh^{-1}) \in N$

群同构第二定理 的证明

LYNX

群同构第二定埋

证明 1/3 Theorem 10.3

证明 2/3

证明 3/3 群同构第一定理

2 $H \cap N$ is normal in H

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3

证明 2/3

证明 3/3 群同构第一定理

2 $H \cap N$ is normal in H

Proof.

 $\forall h \in H, n \in H \cap N$

• $hnh^{-1} \in H$ because $h, n, h^{-1} \in H$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

证明 3/3 群同构第一定理

2 $H \cap N$ is normal in H

Proof.

 $\forall h \in H, n \in H \cap N$

- $hnh^{-1} \in H$ because $h, n, h^{-1} \in H$
- $hnh^{-1} \in N$ because $n \in N$, N is normal in G and $h \in G$

群同构第二定理

LYNX

群同构第二定理

证明 1/3

证明 2/3

2 $H \cap N$ is normal in H

Proof.

 $\forall h \in H, n \in H \cap N$

- $hnh^{-1} \in H$ because $h, n, h^{-1} \in H$
- $hnh^{-1} \in N$ because $n \in N$, N is normal in G and $h \in G$
- $hnh^{-1} \in H \cap N$, so $H \cap N$ is normal in H

許问构第二定题 的证明

LYNX

辟同构第二定理

IERA 1/3 Theorem 10.3

证明 2/3

证明 3/3 群同构第一定理

3
$$(HN)/N \cong H/(H \cap N)$$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3

证明 2/3

证明 3/3 群同构第一定理

3
$$(HN)/N \cong H/(H \cap N)$$

Proof.

• $(HN)/N = \{hnN : hn \in HN\} = \{hN : h \in H\}$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

群同构第一定理

 $3 (HN)/N \cong H/(H \cap N)$

Proof.

- $(HN)/N = \{hnN : hn \in HN\} = \{hN : h \in H\}$
- define $\phi: H \to (HN)/N$ by $h \mapsto hN$ the map ϕ is onto: $\forall hN \in (HN)/N, \phi(h) = hN$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

证明 3/3 群同构第一定理

3
$$(HN)/N \cong H/(H \cap N)$$

Proof.

define $\phi: H \to (HN)/N$ by $h \mapsto hN$

• ϕ is homomorphism:

$$\forall h_1, h_2 \in H, \phi(h_1h_2) = h_1h_2N = h_1Nh_2N = \phi(h_1)\phi(h_2)$$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

证明 3/3 群同构第一定理

$$3 (HN)/N \cong H/(H \cap N)$$

Proof.

define $\phi: H \to (HN)/N$ by $h \mapsto hN$

 Because ϕ is a homomorphism, according to First Isomorphism Theorem 群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

群同构第一定理

问题

群同构第一定理

Theorem.

- If $\phi: H \to (HN)/N$ is a group homomorphism and $K = \ker \phi$, then K is normal in H
- Let $\phi_1: H \to H/K$ be the canonical homomorphism then there exists a unique isomorphism $\phi_2: H/K \to \phi(H)$ such that $\phi = \phi_2 \phi_1$

群同构第二定理 的证明

LYNX

群同构第二定理

正明 1/3 Theorem 10.3

证明 2/3

群同构第一定理

門定盟

3 $(HN)/N \cong H/(H \cap N)$

Proof.

- $K = \ker \phi, K \triangleleft H$
- $\phi: H \to (HN)/N$ homomorphism
- $\phi_1: H \to H/K$ canonical homomorphism
- $\phi_2: H/K \to \phi(H) = (HN)/N$ unique isomorphism
- $\bullet \ \phi = \phi_2 \phi_1$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3

群同构第一定理

3 $(HN)/N \cong H/(H \cap N)$

Proof.

• $HN/N = \phi(H) \cong H/K$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3

证明 2/3 证明 3/3

群同构第一定理

$$3 (HN)/N \cong H/(H \cap N)$$

Proof.

- $(HN)/N = \phi(H) \cong H/K$
- $$\begin{split} \bullet & \ K = \phi^{-1}(\{\mathrm{eN}\}) = \phi^{-1}(\{\mathrm{N}\}) \\ & \ K \unlhd H, \ \mathrm{nN} = N \\ & \ K = H \cap N \end{split}$$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.3

证明 2/3 证明 3/3

群同构第一定理

미趣

20 / 24

3
$$(HN)/N \cong H/(H \cap N)$$

Proof.

- $(HN)/N = \phi(H) \cong H/K$
- $K = H \cap N$
- $(HN)/N = \phi(H) \cong H/(H \cap N)$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3 Theorem 10.

证明 2/3

证明 3/3 群同构第一定理

回趣

问题

Proof.

define a map ϕ from H to HN/N by $H\mapsto hN$. The map ϕ is onto, since any coset hnN=hN is the image of h in H. We also know that ϕ is a homomorphism because

$$\phi(hh') = hh'N = hNh'N = \phi(h)\phi(h')$$

By the First Isomorphism Theorem, the image of ϕ is isomorphic to $H/\ker \phi$:

$$\mathit{HN/N} = \phi(\mathit{H}) \cong \mathit{H}/\ker \phi$$

群同构第二定理 的证明

LYNX

¥同构第二定理

E明 1/3 Theorem 10.3

F明 3/3

群同构第一定理

问题

Definition.

A homomorphism between groups (G,\cdot) and (H,\circ) is a map $\phi:G\to H$ such that

$$\phi(\mathsf{g}_1\cdot\mathsf{g}_2)=\phi(\mathsf{g}_1)\circ\phi(\mathsf{g}_2)$$

请问我们是否可以不用证明 the ϕ is onto, 只证明:

- \bullet the ϕ is well defined
- and the image of homomorphism is subset of (HN)/N?

然后根据 First Isomorphism Theorem 得出 $(HN)/N \cong H/K$

群同构第二定理 的证明

LYNX

群同构第二定理

正明 1/3 Theorem 10.3

正明 2/3

准明 3/3 群同构第一定理

问题

•
$$(HN)/N \stackrel{1}{=} \phi(H) \stackrel{2}{\cong} H/K \stackrel{3}{=} H/(H \cap N)$$

群同构第二定理 的证明

LYNX

群同构第二定理

证明 1/3

证明 2/3

证明 3/3 群同构第一定理