Emulating target trials for nutritional studies: Instrumental variable methods

Society for Epidemiologic Research June 15, 2022

Joy Shi, PhD

CAUSALab and Department of Epidemiology Harvard T.H. Chan School of Public Health

Overview

Instrumental variable (IV) methods

Mendelian randomization (MR) as an application of IV

Alcohol intake and CVD

Simple analogy between MR and randomized controlled trials

Target trial emulation using MR

Threats to emulation success

Instrumental variable conditions

Need a variable (i.e., an instrument, Z) that meets three conditions:

1. Relevance

Associated with exposure

2. Exclusion restriction

Does not affect outcome except through potential effect on exposure

3. Independence

No common causes (or other sources of lack of exchangeability) with outcome

To estimate a point effect, need homogeneity or monotonicity

Canonical IV DAG

Mendelian randomization (MR) studies of nutritional factors as an application of IV

- Increasingly popular application of IV
- Genetic variants used as proposed instruments
- Leverage genetic data to estimate the effect of a non-genetic exposure on an outcome

Z: genetic variant(s) related to alcohol intake

A: alcohol intake

Y: coronary heart disease

The appeal of MR studies

Identify causal effects even with unmeasured confounding

"Natural analogue" of a randomized controlled trial

Estimate the long-term ("lifetime") effects of exposures

A simplistic analogy between MR and RCTs

See Sanderson et al. (Nat Rev Methods Primers 2022), Larsson (Curr Opin Lipidol 2021), Smith & Ebrahim (BMJ 2005)

The appeal of MR studies

The New York Times

Does Moderate Drinking Protect Your Heart? A Genetic Study Offers a New Answer.

"Because the variants are distributed randomly in a population, they can serve in a study as the equivalent of randomly assigning people to abstain or to drink at varying levels."

Why explicitly emulate a target trial for MR studies?

Ideal Reality

Distinguish between the target trials:

- Can realistically emulate using MR

Avoid methodological pitfalls

Inform the plans to use or avoid a MR approach

Consider a target trial for alcohol intake and CVD

Protocol component	Target trial specification	Target trial emulation	
Eligibility criteria	 ≥50 years old No history of CVD, alcohol/substance abuse No intolerance or allergy to alcohol No chronic kidney or liver disease 	 Same, plus Must have available genetic data 	
Treatment strategies	 Never drink One standard serving (~14 g) daily of a preferred alcohol beverage 	Same	
Assignment procedures	Randomly assigned at baseline; unblinded	Randomly assigned at conception, assuming IV conditions hold	

Consider a target trial for alcohol intake and CVD

	Protocol component	Target trial specification	Target trial emulation
	Follow-up period	Start: at randomization End: development of the outcome, loss to follow-up, or administrative end of follow-up	Start: time of eligibility criteria/outcome recording End: same
	Outcome	Time to first occurrence of CVD event	Same
	Causal contrasts of interest	Per-protocol effect	Same
>	Analysis plan	Per-protocol analysis accounting for time-varying adherence	Same

The follow-up period in the target trial vs. MR

Unified "time zero"

(1) Randomization /
treatment assigned
(2) Eligibility criteria applied
(3) Outcome recording begins

Time since
start of
follow-up

End of
follow-up

Misaligned "time zero"

Swanson et al. (Epidemiology 2017)

The follow-up period in the target trial vs. MR

Emulate RCTs with a lag between time of randomization and time of eligibility/outcome recording

- Lag time can be years or decades
- Average age of 50+ years for participants in MR studies of nutritional factors

Post-randomization selection may introduce bias

- Genetic factor (instrument) related to survival, eligibility, etc.
- Violation of instrumental conditions

11/1/11/11

Analysis plan: (Adherence to a given) diet changes over time...

Expect per-protocol analysis to incorporate repeated measures of adherence

Estimate long-term effects of a given dietary intervention

Conventional Mendelian randomization

Generally conducted on a single measurement of "adherence" / exposure

MR estimate often interpreted as a "lifetime effect"

Requires strong, unverifiable assumptions about genetic effects over time[†]

Analysis plan: (Adherence to a given) diet changes over time...

- Methods which can accommodate repeated measures of a time-varying exposure, e.g.
 - o G-estimation of structural nested models[†]
- Note that No
 - o Multiple causal estimands can be targeted
 - o Different assumptions needed

What types of causal estimands can we target?

Point effect: e.g., effect of alcohol at age 50

Period effect: e.g., effect of alcohol from age 50-60

Lifetime effect

Takeaways

Mendelian randomization (and IV methods) are an appealing alternative to confounding-adjustment methods

Given the complexities of studying nutritional factors, more explicit target trial emulation in MR studies can clarify:

- ➤ Sources of potential biases (e.g., misalignments in time zero)
- An appropriate analytical strategy that accommodates the timevarying nature of diet (e.g., g-estimation of SMMs)
- The causal estimand of interest

Acknowledgements

Sonja A. Swanson

Miguel A. Hernán

- N Elizabeth W. Diemer
- **** CAUSALab
- ➤ VA-CAUSAL Methods Core (CSP#2032)

A Center to Learn What Works

SCHOOL OF PUBLIC HEALTH

Questions

Email: joyshi@hsph.harvard.edu

