## Théorie des langages et Compilation : Analyse Lexicale

Didier Lime

École Centrale de Nantes – LS2N

Année 2017 - 2018

#### Plan

Introduction

Langages

Automates Finis Déterministes

Automates Finis Non Déterministes

Lex

Conclusion

#### Plan

#### Introduction

Langages

Automates Finis Déterministes

Automates Finis Non Déterministes

Lex

Conclusion

### Analyse lexicale

- Le but de l'analyse lexicale est de transformer une suite de caractères en mots (lexèmes ou *tokens*).
- L'analyse syntaxique vient ensuite examiner l'agencement des mots
- L'analyseur syntaxique est strictement plus puissant que l'analyseur lexical
- ▶ La passe « analyse lexicale » est faite par commodité

#### Première idée

#### Exemple

```
void readIdentifier(char* token, char * s) {
    int i = 0;
    char c:
    while ((c = getc()) != EOF && c >= 'a' && c <= 'z') {</pre>
        s[i] = c;
        i++;
    if (!contains(keyword_table, s))
       strcpy(token, IDENTIFIER);
    else
       strcpy(token, KEYWORD);
void readInteger(char* token, char * id) { ... }
```

(Inspiré de l'exemple du cours de Compilation de J. Ferber, Montpellier)

#### Première idée

- ► Chaque fonction reconnaît assez bien les mots composés par la répétition *C*\* de caractères d'une même classe *C*
- Pour des constructions plus compliquées les fonctions deviennent lourdes
- Quelle fonction appeler?
- Nécessité d'une approche globale et donc générique

#### Plan

Introduction

#### Langages

Automates Finis Déterministes

Automates Finis Non Déterministes

Lex

Conclusion

### Langages Formels

#### Lettres et mots :

- Soit un ensemble fini Σ. On l'appelle alphabet;
- Les éléments de Σ sont appelés lettres;
- Les **mots** sont des séquences de lettres  $a_1 \dots a_N$ ;
- ▶ On note  $\Sigma^*$  l'ensemble des mots sur  $\Sigma$
- ► On note *uv* le mot obtenu par **concaténation** de deux mots *u* et *v*;
- La concaténation est associative;
- ▶ On note son élément neutre  $\epsilon$ , appelé mot vide;

### Langages Formels

#### Lettres et mots :

- Soit un ensemble fini Σ. On l'appelle alphabet;
- Les éléments de Σ sont appelés lettres;
- Les **mots** sont des séquences de lettres  $a_1 \dots a_N$ ;
- ▶ On note  $\Sigma^*$  l'ensemble des mots sur  $\Sigma$
- ▶ On note *uv* le mot obtenu par **concaténation** de deux mots *u* et *v*;
- ► La concaténation est associative :
- ▶ On note son élément neutre  $\epsilon$ , appelé mot vide;

#### Langages :

- ▶ Un langage sur  $\Sigma$  est un sous-ensemble de  $\Sigma^*$ ;
- ▶ Soient U et V deux langages sur  $\Sigma$ ,  $UV = \{uv | u \in U, v \in V\}$ ;
- ▶  $U^* = \{u_0 \dots u_n | n \ge 0, \forall i, u_i \in U\}$ ;

### Langages Réguliers

- On veut reconnaître des langages;
- Le problème est a priori indécidable;
- On doit donc se contenter de langages particuliers;
- ➤ On veut en plus que l'analyse soit efficace : on choisit les langages réguliers.

### Langages Réguliers

- On veut reconnaître des langages;
- Le problème est a priori indécidable;
- On doit donc se contenter de langages particuliers;
- ➤ On veut en plus que l'analyse soit efficace : on choisit les langages réguliers.

#### Définition (Langages réguliers)

Un langage est dit régulier s'il est reconnu par un automate fini.

### Plan

Introduction

Langages

Automates Finis Déterministes

Automates Finis Non Déterministes

Lex

Conclusion

## Automates Finis Déterministes (DFA)

### Définition (DFA)

Un automate fini déterministe (DFA) est un quintuplet  $(Q, \Sigma, \delta, q_0, F)$  où :

- Q est un ensemble fini d'états;
- Σ est un alphabet fini;
- δ : Q × Σ → Q est une fonction partielle appelée fonction de transition;
- ▶  $q_0 \in Q$  est l'état initial;
- ▶  $F \subseteq Q$  est l'ensemble des **états accepteurs** (ou terminaux).

## Automates Finis Déterministes (DFA)

### Définition (DFA)

Un automate fini déterministe (DFA) est un quintuplet  $(Q, \Sigma, \delta, q_0, F)$  où :

- Q est un ensemble fini d'états;
- Σ est un alphabet fini;
- δ : Q × Σ → Q est une fonction partielle appelée fonction de transition;
- ▶  $q_0 \in Q$  est l'état initial;
- ▶  $F \subseteq Q$  est l'ensemble des **états accepteurs** (ou terminaux).



## Automates Finis Déterministes (DFA)

#### Définition (DFA)

Un automate fini déterministe (DFA) est un quintuplet  $(Q, \Sigma, \delta, q_0, F)$  où :

- Q est un ensemble fini d'états;
- Σ est un alphabet fini;
- δ : Q × Σ → Q est une fonction partielle appelée fonction de transition;
- q<sub>0</sub> ∈ Q est l'état initial;
- ▶  $F \subseteq Q$  est l'ensemble des **états accepteurs** (ou terminaux).



Soit un DFA  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ 

•  $\delta$  peut être étendu sur  $Q \times \Sigma^*$  :

$$\forall w \in \Sigma^* \text{ t.q. } |w| \ge 2, \exists a \in \Sigma, w' \in \Sigma^* \text{ t.q. } w = aw'.$$

Alors, 
$$\delta(q, w) = \delta(\delta(q, a), w')$$
;

Soit un DFA  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ 

- ▶  $\delta$  peut être étendu sur  $Q \times \Sigma^*$ :  $\forall w \in \Sigma^*$  t.q.  $|w| \ge 2, \exists a \in \Sigma, w' \in \Sigma^*$  t.q. w = aw'. Alors,  $\delta(q, w) = \delta(\delta(q, a), w')$ ;
- ▶ Un mot  $w \in \Sigma^*$  est **accepté** (ou reconnu) par  $\mathcal{A}$  si  $\delta(q_0, w) \in F$ .

Soit un DFA  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ 

- ▶  $\delta$  peut être étendu sur  $Q \times \Sigma^*$ :  $\forall w \in \Sigma^*$  t.q.  $|w| \ge 2, \exists a \in \Sigma, w' \in \Sigma^*$  t.q. w = aw'. Alors,  $\delta(q, w) = \delta(\delta(q, a), w')$ ;
- ▶ Un mot  $w \in \Sigma^*$  est accepté (ou reconnu) par A si  $\delta(q_0, w) \in F$ .
- ▶ Le langage  $\mathcal{L}(\mathcal{A})$  de  $\mathcal{A}$  est l'ensemble des mots acceptés par  $\mathcal{A}$ .





$$\mathcal{L}(\mathcal{A}) = \{a^mb^n|m,n\in\mathbb{N}\setminus\{0\}\}$$

#### Exemple



$$\mathcal{L}(\mathcal{A}) = \{a^m b^n | m, n \in \mathbb{N} \setminus \{0\}\}$$



#### Exemple



$$\mathcal{L}(\mathcal{A}) = \{a^m b^n | m, n \in \mathbb{N} \setminus \{0\}\}$$

#### Exemple



$$\mathcal{L}(\mathcal{A}) = \{ab\} \cup \{ba\} = \{ab, ba\}$$

Année 2017 - 2018

## Expressions Régulières

Pour décrire les langages, on utilise le formalisme des expressions régulières (aussi appelées rationnelles).

### Définition (Expressions Régulières (RE))

Les expressions régulières sont définies inductivement par :

- ▶ Ø est une expression régulière
- $ightharpoonup \epsilon$  est une expression régulière
- ▶  $\forall a \in \Sigma$ , a est un expression régulière
- ▶ Pour toutes expressions régulières r et s, rs et r | s sont des expressions régulières
- Pour toute expression régulière r,  $r^*$  est une expression régulière

## Expressions Régulières

À chaque RE, on associe un langage :

### Définition (Langage associé aux RE)

Le langage  $\mathcal{L}(r)$  d'une RE r est défini par :

- $\triangleright \mathcal{L}(\emptyset) = \emptyset$ ;
- $\mathcal{L}(\epsilon) = \{\epsilon\};$
- ▶  $\forall a \in \Sigma, \mathcal{L}(a) = \{a\};$
- ▶ Pour toutes RE r et s,  $\mathcal{L}(rs) = \mathcal{L}(r)\mathcal{L}(s)$  et  $\mathcal{L}(r|s) = \mathcal{L}(r) \cup \mathcal{L}(s)$ ;
- ▶ Pour toute RE r,  $\mathcal{L}(r^*) = \mathcal{L}(r)^*$ .

## Expressions Régulières

À chaque RE, on associe un langage :

#### Définition (Langage associé aux RE)

Le langage  $\mathcal{L}(r)$  d'une RE r est défini par :

- $\triangleright \mathcal{L}(\emptyset) = \emptyset$ ;
- $\mathcal{L}(\epsilon) = \{\epsilon\};$
- ▶  $\forall a \in \Sigma, \mathcal{L}(a) = \{a\};$
- ▶ Pour toutes RE r et s,  $\mathcal{L}(rs) = \mathcal{L}(r)\mathcal{L}(s)$  et  $\mathcal{L}(r|s) = \mathcal{L}(r) \cup \mathcal{L}(s)$ ;
- ▶ Pour toute RE r,  $\mathcal{L}(r^*) = \mathcal{L}(r)^*$ .

L'union, la concaténation et l'étoile sont les opérations dites régulières sur les langages.

### Expressions Régulières et Langages Réguliers

#### Théorème (Théorème de Kleene 1)

Pour toute expression régulière r, son langage  $\mathcal{L}(r)$  est régulier.

### Expressions Régulières et Langages Réguliers

#### Théorème (Théorème de Kleene 1)

Pour toute expression régulière r, son langage  $\mathcal{L}(r)$  est régulier.

#### Théorème (Théorème de Kleene 2)

Pour tout langage régulier  $\mathcal{L}$ , il existe une expression régulière r telle que  $\mathcal{L}(r)=\mathcal{L}$ .

# Expressions Régulières Étendues

À partir des expressions précédentes, on peut définir les **raccourcis** suivants :

- ightharpoonup [abc] = a|b|c;
- ▶ Si  $\Sigma$  est ordonné,  $[a_1 a_2] = \{b \in \Sigma | a_1 \le b \le a_2\}$ ;
- $ightharpoonup r? = r|\epsilon;$
- $r^+ = rr^*$ :
- $[\hat{a}bc] = \Sigma \setminus \{a, b, c\};$
- $[\hat{a}_1 a_2] = \Sigma \setminus [a_1 a_2];$
- $\cdot = \Sigma$  et  $* = \Sigma^*$ .

Soit un DFA  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ .

- ▶ On note  $\mathcal{L}_{ij}$  le langage de  $\mathcal{A}$  obtenu entre l'état  $q_i$  et l'état  $q_j$ ;
- ▶ Si  $F = \{q_N, \dots, q_{N+k}\}$  alors  $\mathcal{L}(\mathcal{A}) = \mathcal{L}_{0N}| \cdots | \mathcal{L}_{0N+k}$ ;
- ▶ Si  $q_{i+1}, \ldots, q_{i+k}$  sont les sucesseurs de  $q_i$  alors  $\mathcal{L}_{ij} = \mathcal{L}_{ii+1}\mathcal{L}_{i+1j}|\cdots|\mathcal{L}_{ii+k}\mathcal{L}_{i+kj}$ ;
- S'il existe  $a_1, \ldots, a_k$  tels que  $\delta(q_i, a_1) = \cdots = \delta(q_i, a_k) = q_j$  alors  $\mathcal{L}_{ij} = a_1 | \cdots | a_k$ ;
- ▶ Si  $\mathcal{L}_{ij} = r\mathcal{L}_{ij}|s$  alors  $\mathcal{L}_{ij} = r^*s$ ;
- ▶ Si  $q_i$  n'a pas de boucle  $(a \in \Sigma \text{ t.q. } \delta(q_i, a) = q_i)$  alors  $\mathcal{L}_{ii} = \epsilon$ .













$$\mathcal{L}(\mathcal{A}) = \mathcal{L}_{04}$$
 $\mathcal{L}(\mathcal{A}) = a\mathcal{L}_{14}$ 
 $\mathcal{L}(\mathcal{A}) = ab\mathcal{L}_{24}$ 
 $\mathcal{L}(\mathcal{A}) = aba\mathcal{L}_{34}$ 
 $\mathcal{L}_{34} = c\mathcal{L}_{44}|a\mathcal{L}_{14}|b\mathcal{L}_{04}$ 
 $\mathcal{L}_{34} = c\epsilon|a\mathcal{L}_{14}|ba\mathcal{L}_{14}$ 



$$\mathcal{L}(\mathcal{A}) = \mathcal{L}_{04}$$
 $\mathcal{L}(\mathcal{A}) = a\mathcal{L}_{14}$ 
 $\mathcal{L}(\mathcal{A}) = ab\mathcal{L}_{24}$ 
 $\mathcal{L}(\mathcal{A}) = aba\mathcal{L}_{34}$ 
 $\mathcal{L}_{34} = c\mathcal{L}_{44}|a\mathcal{L}_{14}|b\mathcal{L}_{04}$ 
 $\mathcal{L}_{34} = c\epsilon|a\mathcal{L}_{14}|ba\mathcal{L}_{14}$ 
 $\mathcal{L}_{34} = c|(\epsilon|b)a\mathcal{L}_{14}$ 

## Calcul du Langage d'un DFA



## Calcul du Langage d'un DFA



$$\mathcal{L}(\mathcal{A}) = \mathcal{L}_{04}$$
 $\mathcal{L}(\mathcal{A}) = a\mathcal{L}_{14}$ 
 $\mathcal{L}(\mathcal{A}) = ab\mathcal{L}_{24}$ 
 $\mathcal{L}(\mathcal{A}) = aba\mathcal{L}_{34}$ 
 $\mathcal{L}_{34} = c\mathcal{L}_{44}|a\mathcal{L}_{14}|b\mathcal{L}_{04}$ 
 $\mathcal{L}_{34} = c\epsilon|a\mathcal{L}_{14}|ba\mathcal{L}_{14}$ 
 $\mathcal{L}_{34} = c|(\epsilon|b)a\mathcal{L}_{14}$ 
 $\mathcal{L}_{34} = c|(\epsilon|b)aba\mathcal{L}_{34}$ 
 $\mathcal{L}_{34} = ((\epsilon|b)aba\mathcal{L}_{34})^*c$ 

## Calcul du Langage d'un DFA



$$\mathcal{L}(\mathcal{A}) = \mathcal{L}_{04}$$
 $\mathcal{L}(\mathcal{A}) = a\mathcal{L}_{14}$ 
 $\mathcal{L}(\mathcal{A}) = ab\mathcal{L}_{24}$ 
 $\mathcal{L}(\mathcal{A}) = aba\mathcal{L}_{34}$ 
 $\mathcal{L}_{34} = c\mathcal{L}_{44}|a\mathcal{L}_{14}|b\mathcal{L}_{04}$ 
 $\mathcal{L}_{34} = c\epsilon|a\mathcal{L}_{14}|ba\mathcal{L}_{14}$ 
 $\mathcal{L}_{34} = c|(\epsilon|b)a\mathcal{L}_{14}$ 
 $\mathcal{L}_{34} = c|(\epsilon|b)aba\mathcal{L}_{34}$ 
 $\mathcal{L}_{34} = ((\epsilon|b)aba\mathcal{L}_{34})$ 
 $\mathcal{L}_{34} = ((\epsilon|b)aba\mathcal{L}_{34})$ 
 $\mathcal{L}_{34} = ((\epsilon|b)aba\mathcal{L}_{34})$ 
 $\mathcal{L}_{34} = ((\epsilon|b)aba\mathcal{L}_{34})$ 

## Calcul du Langage : Exercice

#### Exercice

Calculez des expressions rationnelles représentant les langages des automates (non déterministe pour celui de gauche) suivants :



### Exemple



Didier Lime (ECN - LS2N)

```
int etat = 0; char t;
                               scanf("%c", &t);
                               while (t<='z' && t >='a') {
               q_1
                                   switch (etat) {
                                        case 3:
                       b
        а
                                            switch (t) {
                                                 case 'a': etat=1; break;
   q_0
                          q_2
                                                 case 'b': etat=0; break;
                                                 case 'c': etat=4; break;
                                                 default: printf("erreur");
                       a
        b
                                             } break;
               q3
                                        case 0:
                                            switch (t) { ... } break;
                 C
                                   scanf("%c", &t);
               q4
                               if (etat == 4) printf("reconnu !");
Didier Lime (ECN - LS2N)
                                   TLANG
                                                           Année 2017 - 2018
                                                                          21 / 51
```

```
int etat = 0; char t;
                          scanf("%c", &t);
                          while (t<='z' && t >='a') {
           q_1
                               switch (t) {
                                   case 'a':
                  b
    а
                                        switch (etat) {
                                            case '0': etat=1; break;
90
                      q_2
                                            case '2': etat=3; break;
                                            case '3': etat=1; break;
                                            default: printf("erreur");
                  a
    b
                                        } break;
           q3
                                   case 'c':
                                        switch (t) { ... } break;
             C
                               scanf("%c", &t);
           q4
                           if (etat == 4) printf("reconnu !");
                              TLANG
                                                      Année 2017 - 2018
                                                                     22 / 51
```

### Exemple



Didier Lime (ECN - LS2N)



## Complétion d'un DFA

### Définition (Complétude)

Un DFA  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$  est dit **complet** si  $\delta$  est définie pour tout  $q \in Q$  et tout  $a \in \Sigma$  ( $\delta$  est une fonction totale).

## Complétion d'un DFA

### Définition (Complétude)

Un DFA  $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$  est dit **complet** si  $\delta$  est définie pour tout  $q \in Q$  et tout  $a \in \Sigma$  ( $\delta$  est une fonction totale).

- ▶ Pour rendre un automate complet, une méthode est de rajouter un état  $\ll$  erreur  $\gg$   $q_{err}$  qui prend en compte les comportements imprévus;
- ▶ Si, pour  $q \in Q$  et  $a \in \Sigma$ ,  $\delta(q, a)$  n'est pas défini alors on définit  $\delta(q, a) = q_{err}$ ;
- C'est fait implicitement dans les implémentations précédentes.

#### Premier Bilan

- On sait qu'un langage régulier peut-être reconnu par un DFA;
- On sait implémenter un DFA;
- ▶ On sait exprimer un langage régulier par une expression régulière ;
- Étant donné un DFA, on sait calculer son langage

#### Premier Bilan

- On sait qu'un langage régulier peut-être reconnu par un DFA;
- On sait implémenter un DFA;
- On sait exprimer un langage régulier par une expression régulière;
- Étant donné un DFA, on sait calculer son langage

#### Reste:

- Comment savoir si un langage donné est régulier?
- ► Comment construire l'automate reconnaissant une RE particulière?

## Prouver qu'un langage est régulier

Pour prouver qu'un langage  $\mathcal L$  est régulier :

ightharpoonup Exprimer  ${\cal L}$  comme le résultat d'opérations régulières sur des langages réguliers

## Prouver qu'un langage est régulier

#### Pour prouver qu'un langage $\mathcal L$ est régulier :

- ightharpoonup Exprimer  $\mathcal L$  comme le résultat d'opérations régulières sur des langages réguliers
- $\triangleright$  Construire l'automate qui reconnaît  $\mathcal{L}$  (preuve constructive)

# Prouver qu'un langage est régulier

#### Pour prouver qu'un langage $\mathcal L$ est régulier :

- ightharpoonup Exprimer  $\mathcal L$  comme le résultat d'opérations régulières sur des langages réguliers
- ▶ Construire l'automate qui reconnaît L (preuve constructive)

#### Exercice

- ▶ Montrer que  $\mathcal{L} = \{a^m b^n | m, n \in \mathbb{N}\}$  est régulier;
- Montrer que tout langage fini est régulier;
- Montrer que si ∠ est un langage régulier alors son inverse (l'ensemble de ses éléments inversés) est un langage régulier (p.ex. l'inverse de abc est cba);
- ▶ Idem pour son complémentaire.

# Prouver qu'un langage n'est pas régulier

### Lemme (Lemme de l'étoile (Pumping Lemma))

Pour tout langage régulier  $\mathcal{L}$ , il existe un entier n tel que pour tout mot w de longueur |w| supérieure à n, il existe des mots x, u et y de  $\Sigma^*$  tels que  $u \neq \epsilon$ ,  $|xu| \leq n$ , w = xuy et  $\forall k \geq 0, xu^k y \in \mathcal{L}$ .

#### Exercice

Prouver que  $\{a^nb^n, n \in \mathbb{N}\}$  n'est pas régulier

# Prouver qu'un langage n'est pas régulier

### Lemme (Lemme de l'étoile (Pumping Lemma))

Pour tout langage régulier  $\mathcal{L}$ , il existe un entier n tel que pour tout mot w de longueur |w| supérieure à n, il existe des mots x, u et y de  $\Sigma^*$  tels que  $u \neq \epsilon$ ,  $|xu| \leq n$ , w = xuy et  $\forall k \geq 0, xu^k y \in \mathcal{L}$ .

#### Exercice

Prouver que  $\{a^nb^n, n\in\mathbb{N}\}$  n'est pas régulier

#### Exercice

- 1. Prouver avec le lemme de l'étoile que  $\{a^mb^n, m > n\}$  n'est pas régulier;
- 2. Prouver avec le lemme de l'étoile que  $\{a^mb^n, m \neq n\}$  n'est pas régulier;
- 3. Prouver que si  $L_1$  et  $L_2$  sont réguliers alors  $L_1 \cap L_2$  aussi ;
- 4. En déduire une autre preuve que  $\{a^mb^n, m \neq n\}$  n'est pas régulier.

### Plan

Introduction

Langages

Automates Finis Déterministes

Automates Finis Non Déterministes

Lex

Conclusion

#### Traduire une RE en un DFA

## Théorème (Theorème de Kleene (rappel))

Les expressions régulières décrivent exactement les langages réguliers.

#### Traduire une RE en un DFA

## Théorème (Theorème de Kleene (rappel))

Les expressions régulières décrivent exactement les langages réguliers.

## Définition (Langages réguliers (rappel))

Un langage est dit régulier s'il est reconnu par un automate fini.

#### Traduire une RE en un DFA

### Théorème (Theorème de Kleene (rappel))

Les expressions régulières décrivent exactement les langages réguliers.

## Définition (Langages réguliers (rappel))

Un langage est dit régulier s'il est reconnu par un automate fini.

Traduire une RE en DFA n'est pas pratique : on va passer par les automates finis non déterministes.

### Définition (NFA)

Un automate fini non déterministe (NFA) est un quintuplet  $(Q, \Sigma, \delta, Q_0, F)$  où :

- Q est un ensemble fini d'états;
- Σ est un alphabet fini;
- ▶  $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathbf{2}^{\mathbf{Q}}$  est une fonction partielle appelée **fonction de transition**;
- ▶ Q<sub>0</sub> ⊆ Q est l'ensemble des états initiaux;
- ▶  $F \subseteq Q$  est l'ensemble des **états accepteurs** (ou terminaux).

### Définition (NFA)

Un automate fini non déterministe (NFA) est un quintuplet  $(Q, \Sigma, \delta, Q_0, F)$  où :

- Q est un ensemble fini d'états;
- Σ est un alphabet fini;
- ▶  $\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathbf{2}^{\mathbf{Q}}$  est une fonction partielle appelée **fonction de transition**;
- ▶ Q<sub>0</sub> ⊆ Q est l'ensemble des états initiaux;
- ▶  $F \subseteq Q$  est l'ensemble des **états accepteurs** (ou terminaux).

#### Différences avec les DFA:

- On peut avoir plusieurs états initiaux et plusieurs transitions avec la même étiquette sortant d'un même état;
- Les transitions  $\epsilon$  ne changent pas le mot qui est reconnu

La relation de transition d'un NFA est :

$$\delta: Q \times \Sigma \cup \{\epsilon\} \to \mathbf{2^Q}$$

La relation de transition d'un NFA est :

$$\delta: Q \times \Sigma \cup \{\epsilon\} \rightarrow \mathbf{2^Q}$$

▶ Et on a un ensemble d'états initiaux :

$$Q_0 \subseteq Q$$

La relation de transition d'un NFA est :

$$\delta: Q \times \Sigma \cup \{\epsilon\} \rightarrow \mathbf{2^Q}$$

▶ Et on a un ensemble d'états initiaux :

$$Q_0 \subseteq Q$$

► En exécutant l'automate sur un mot w on obtient donc un ensemble d'états :

$$\delta(Q_0, w) \in 2^Q$$

La relation de transition d'un NFA est :

$$\delta: Q \times \Sigma \cup \{\epsilon\} \rightarrow \mathbf{2^Q}$$

▶ Et on a un ensemble d'états initiaux :

$$Q_0 \subseteq Q$$

► En exécutant l'automate sur un mot w on obtient donc un ensemble d'états :

$$\delta(Q_0, w) \in 2^Q$$

Le mot est accepté si au moins l'un de ces états est final :

$$\delta(Q_0, w) \cap F \neq \emptyset$$





$$\mathcal{L}(\mathcal{A}) = a^*b^*$$

### Exemple



$$\mathcal{L}(\mathcal{A}) = a^*b^*$$



### Exemple



$$\mathcal{L}(\mathcal{A}) = a^*b^*$$



$$\mathcal{L}(\mathcal{A}) = \epsilon |a|$$
aa

Les **atomes** des RE se codent aisément avec les DFA et donc les NFA :

Les **atomes** des RE se codent aisément avec les DFA et donc les NFA :



Les **atomes** des RE se codent aisément avec les DFA et donc les NFA :



$$\rightarrow q_0$$

$$\mathcal{L}(\mathcal{A}) = \epsilon$$

Les atomes des RE se codent aisément avec les DFA et donc les NFA :

## Exemple



► Restent à coder : les opérations régulières

# Union : $r_1 | r_2$





# Union : $r_1 | r_2$



# Concaténation : $r_1r_2$



# Concaténation : $r_1r_2$



# Fermeture (Étoile) de Kleene : $r^*$



# Fermeture (Étoile) de Kleene : $r^*$



# Fermeture (Étoile) de Kleene : $r^*$



# Implémentation d'un NFA

```
list<int> T[5][3], E, nE;
                          list<int>::iterator i; char t;
                          E.push_back(0);
                          T[0][0].push_back(1); // q0 -a-> q1
                          T[0][0].push_back(2); // q0 -a-> q2
                          T[1][1].push_back(3); // q1 -b-> q3
           a
                          T[1][1].push_back(4); // q1 -b-> q4
  а
                          T[3][2].push_back(1); // q3 -\epsilon > q1
                          cin >> t:
               q_2
   q_1
                          while (t<='z' && t >='a') {
           b
b
        \epsilon
               q_4
                              E = nE; nE.clear();
   q3
                              cin >> t;
```

```
for (i=E.begin(); i != E.end(); i++) {
      nE.append(T[*i][t-'a']); // mais append
      epsilon-fermeture(nE); // n'existe pas
if (find(E.begin(), E.end(), 4) != E.end())
   cout << "reconnu" << endl;
```

# Équivalence NFA - DFA

#### Théorème

Pour tout automate fini non déterministe A, il existe un automate fini déterministe  $\Delta(A)$  qui reconnaît le même langage que A.

# Équivalence NFA - DFA

#### Théorème

Pour tout automate fini non déterministe A, il existe un automate fini déterministe  $\Delta(A)$  qui reconnaît le même langage que A.

Calculer  $\Delta(A)$  est appelé « Déterminisation de A ».

Le principe est le même que celui utilisé pour l'implémentation précédente.

Soit 
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$
. On définit  $\Delta(\mathcal{A}) = (Q', \Sigma, \delta', q'_0, F')$ 

▶  $Q' = 2^Q$ ;

Le principe est le même que celui utilisé pour l'implémentation précédente. Soit  $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ . On définit  $\Delta(\mathcal{A}) = (Q', \Sigma, \delta', q'_0, F')$ 

$$P Q' = 2^Q :$$

• 
$$q_0' = Q_0$$
;

Le principe est le même que celui utilisé pour l'implémentation précédente.

Soit 
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$
. On définit  $\Delta(\mathcal{A}) = (Q', \Sigma, \delta', q'_0, F')$ 

- ▶  $Q' = 2^Q$ ;
- $q_0' = Q_0$ ;
- ►  $F' = \{ S \in 2^Q \mid F \cap S \neq \emptyset \} ;$

Le principe est le même que celui utilisé pour l'implémentation précédente. Soit  $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ . On définit  $\Delta(\mathcal{A}) = (Q', \Sigma, \delta', g'_0, F')$ 

- $Q' = 2^Q$ :
- $ightharpoonup q'_0 = Q_0$ ;
- ►  $F' = \{ S \in 2^Q \mid F \cap S \neq \emptyset \} ;$
- ▶  $\forall q' \in Q', \forall a \in \Sigma, \delta'(q') = \epsilon \mathcal{F}(\bigcup_{q \in q'} \delta(q, a))$  où  $\epsilon \mathcal{F}$  est le point fixe de la fonction  $S \mapsto S \cup \{q | \exists q', q \in \delta(q', \epsilon)\}.$





















#### Déterminisation d'un NFA : Exercice

#### Exercice

Déterminisez les automates suivants :





#### **Exercices**

#### Exercice

Construisez un automate fini déterministe et complet qui reconnaît le langage  $(a\Sigma^*b\Sigma^*a)^*$  pour  $\Sigma = \{a, b\}$ .

#### Exercices

#### Exercice

Construisez un automate fini déterministe et complet qui reconnaît le langage  $(a\Sigma^*b\Sigma^*a)^*$  pour  $\Sigma = \{a, b\}$ .

#### Exercice

- 1. Construisez un NFA sur  $\Sigma = \{a\}$  qui reconnaît le langage  $\{(aaa)^m(aaaa)^n \mid m, n \geq 0\}$ ;
- 2. Construisez un DFA qui reconnaît son complémentaire;
- 3. Déduisez-en l'ensemble des nombres qui ne s'écrivent pas 3m + 4n avec m, n entiers naturels.

- La déterminisation fournit des automates potentiellement très gros;
- On définit une relation d'équivalence entre les états de l'automate;

- La déterminisation fournit des automates potentiellement très gros;
- On définit une relation d'équivalence entre les états de l'automate;

## Définition (relation ≡)

On dit que deux états q et q' de  $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$  sont équivalents si  $\forall w\in\Sigma^*,\delta(q,w)\in F\Leftrightarrow\delta(q',w)\in F.$  On note alors  $q\equiv q'.$ 

- ▶ La déterminisation fournit des automates potentiellement très gros;
- On définit une relation d'équivalence entre les états de l'automate;

## Définition (relation ≡)

On dit que deux états q et q' de  $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$  sont équivalents si  $\forall w\in\Sigma^*,\delta(q,w)\in F\Leftrightarrow\delta(q',w)\in F.$  On note alors  $q\equiv q'.$ 

Les états d'une même classe d'équivalence pourront être confondus.

- ▶ La déterminisation fournit des automates potentiellement très gros;
- On définit une relation d'équivalence entre les états de l'automate;

## Définition (relation ≡)

On dit que deux états q et q' de  $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$  sont équivalents si  $\forall w\in\Sigma^*,\delta(q,w)\in F\Leftrightarrow\delta(q',w)\in F.$  On note alors  $q\equiv q'.$ 

- Les états d'une même classe d'équivalence pourront être confondus.
- ▶ Pour construire les classes d'équivalence de  $\equiv$ , on définit  $\equiv_n$ :

## Définition (relation $\equiv_n$ )

On dit que deux états q et q' de  $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$  sont n-équivalents si  $\forall w\in\Sigma^*$  t.q.  $|w|\leq n$ ,  $\delta(q,w)\in F\Leftrightarrow \delta(q',w)\in F$ . On note alors  $q\equiv_n q'$ .

▶ De façon assez immédiate, la partition de Q induite par  $\equiv_0$  est  $\{F, Q \setminus F\}$ ;

- De façon assez immédiate, la partition de Q induite par ≡<sub>0</sub> est {F, Q \ F};
   Supposons qu'on a une partition P pour ≡ Soit P P' ∈ P Alors
- ▶ Supposons qu'on a une partition  $\mathcal{P}_n$  pour  $\equiv_n$ . Soit  $P, P' \in \mathcal{P}_n$ . Alors  $\forall a \in \Sigma, \{q \in P | \delta(q, a) \in P'\}$  définit un élément de  $\mathcal{P}_{n+1}$ ;

- ▶ De façon assez immédiate, la partition de Q induite par  $\equiv_0$  est  $\{F,Q\setminus F\}$ ;
- ▶ Supposons qu'on a une partition  $\mathcal{P}_n$  pour  $\equiv_n$ . Soit  $P, P' \in \mathcal{P}_n$ . Alors  $\forall a \in \Sigma, \{q \in P | \delta(q, a) \in P'\}$  définit un élément de  $\mathcal{P}_{n+1}$ ;
- Le nombre d'éléments de  $\mathcal{P}_{n+1}$  est supérieur ou égal à celui de  $\mathcal{P}_n$ ;

- ▶ De façon assez immédiate, la partition de Q induite par  $\equiv_0$  est  $\{F, Q \setminus F\}$ ;
- ▶ Supposons qu'on a une partition  $\mathcal{P}_n$  pour  $\equiv_n$ . Soit  $P, P' \in \mathcal{P}_n$ . Alors  $\forall a \in \Sigma, \{q \in P | \delta(q, a) \in P'\}$  définit un élément de  $\mathcal{P}_{n+1}$ ;
- Le nombre d'éléments de  $\mathcal{P}_{n+1}$  est supérieur ou égal à celui de  $\mathcal{P}_n$ ;
- ▶ Le nombre de façons de partitionner Q est fini, donc  $\exists k$  t.q.  $\mathcal{P}_{k+1} = \mathcal{P}_k$ . Alors  $\equiv_k = \equiv$ .

on cherche des états en loqueur eugivanlent, mot vide





# Exemple b $\{s_1,s_3\}$ **S**3













## Minimisation d'un DFA: Exercice

#### Exercice

Minimisez les automates suivants :



### Plan

Introduction

Langages

Automates Finis Déterministes

Automates Finis Non Déterministes

Lex

▶ lex est un constructeur d'analyseur lexical pour Unix;

- ▶ lex est un constructeur d'analyseur lexical pour Unix;
- Il génère un automate fini déterministe;

- lex est un constructeur d'analyseur lexical pour Unix;
- ▶ Il génère un automate fini déterministe ;
- ▶ Un outil ayant ses fonctionalités fait partie du standard POSIX ;

- lex est un constructeur d'analyseur lexical pour Unix;
- Il génère un automate fini déterministe;
- ▶ Un outil ayant ses fonctionalités fait partie du standard POSIX ;
- ► En pratique, on en utilise souvent une implémentation *open source* : flex.

- lex est un constructeur d'analyseur lexical pour Unix;
- Il génère un automate fini déterministe;
- Un outil ayant ses fonctionalités fait partie du standard POSIX;
- En pratique, on en utilise souvent une implémentation open source :
   flex.

Définitions

%%

Syntaxe du fichier de définition : Règles (Expressions régulières)

%%

Code C

# Lex – Exemple : eval.l

### Plan

Introduction

Langages

Automates Finis Déterministes

Automates Finis Non Déterministes

Lex

Les expressions rationelles fournissent un bon compromis entre :

- Les expressions rationelles fournissent un bon compromis entre :
  - puissance d'expression;

- Les expressions rationelles fournissent un bon compromis entre :
  - puissance d'expression;
  - et efficacité.

- Les expressions rationelles fournissent un bon compromis entre :
  - puissance d'expression;
  - et efficacité.
- On peut en dériver automatiquement un DFA qui s'implémente facilement et efficacement;

- Les expressions rationelles fournissent un bon compromis entre :
  - puissance d'expression;
  - et efficacité.
- On peut en dériver automatiquement un DFA qui s'implémente facilement et efficacement;
- ▶ Il existe des outils pour créer ces analyseurs lexicaux;

- Les expressions rationelles fournissent un bon compromis entre :
  - puissance d'expression;
  - et efficacité.
- On peut en dériver automatiquement un DFA qui s'implémente facilement et efficacement;
- Il existe des outils pour créer ces analyseurs lexicaux;
- Les automates finis sont également très utilisés pour modéliser ou analyser des systèmes à événements discrets :

- Les expressions rationelles fournissent un bon compromis entre :
  - puissance d'expression;
  - et efficacité.
- On peut en dériver automatiquement un DFA qui s'implémente facilement et efficacement;
- Il existe des outils pour créer ces analyseurs lexicaux;
- Les automates finis sont également très utilisés pour modéliser ou analyser des systèmes à événements discrets :
  - programmes;

- Les expressions rationelles fournissent un bon **compromis** entre :
  - puissance d'expression;
  - et efficacité.
- On peut en dériver automatiquement un DFA qui s'implémente facilement et efficacement;
- Il existe des outils pour créer ces analyseurs lexicaux;
- Les automates finis sont également très utilisés pour modéliser ou analyser des systèmes à événements discrets :
  - programmes;
  - systèmes biologiques;

- Les expressions rationelles fournissent un bon **compromis** entre :
  - puissance d'expression;
  - et efficacité.
- On peut en dériver automatiquement un DFA qui s'implémente facilement et efficacement;
- ▶ Il existe des outils pour créer ces analyseurs lexicaux ;
- Les automates finis sont également très utilisés pour modéliser ou analyser des systèmes à événements discrets :
  - programmes;
  - systèmes biologiques;
  - systèmes de production;

- Les expressions rationelles fournissent un bon **compromis** entre :
  - puissance d'expression;
  - et efficacité.
- On peut en dériver automatiquement un DFA qui s'implémente facilement et efficacement;
- Il existe des outils pour créer ces analyseurs lexicaux;
- Les automates finis sont également très utilisés pour modéliser ou analyser des systèmes à événements discrets :
  - programmes;
  - systèmes biologiques;
  - systèmes de production;
  - scénarios (de jeux);

- Les expressions rationelles fournissent un bon **compromis** entre :
  - puissance d'expression;
  - et efficacité.
- On peut en dériver automatiquement un DFA qui s'implémente facilement et efficacement;
- Il existe des outils pour créer ces analyseurs lexicaux;
- Les automates finis sont également très utilisés pour modéliser ou analyser des systèmes à événements discrets :
  - programmes;
  - systèmes biologiques;
  - systèmes de production;
  - scénarios (de jeux);
  - **.** . . .