Supplementary materials to "Prevalence and risk factors of community-associated methicillin-resistant *Staphylococcus aureus* (CA-MRSA) carriage in Asia-Pacific region from 2000 to 2016: A systematic review and meta-analysis"

Appendix I. Search strategy for and number of records returned from MEDLINE, EMBASE and PubMed	3
Appendix II. Reference list of the 27 articles adopted from Annex 2 of "World Health Organization Antimicrobial Resistance: Global Report on Surveillance"	
Appendix III. Eligible criteria for studies included in this systematic review	8
Appendix IV. Data extraction form for an individual study	9
Appendix V. Risk of bias assessment checklist for cross-sectional study	. 10
Appendix VI. Risk of bias assessment checklist for cohort study	. 11
Appendix VII. Risk of bias assessment checklist for case-control study	. 12
Appendix VIII. Details of 152 included studies (132 articles)	. 13
Appendix IX. Reference list for the 132 included articles	. 26
Appendix X. Characteristics of the 152 included studies	. 38
Appendix XI. Types of CA-MRSA definition employed by the 152 included studies	. 39
Appendix XII. The 119 studies included for meta-analysis. Studies with low risk of bia are underlined	
Appendix XIII. Risk factors for CA-MRSA carriage	. 41
Appendix XIV. Protective factors for CA-MRSA carriage	. 42
Appendix XV. Pooled country-specific prevalence of CA-MRSA among general members	. 43
Appendix XVI. Pooled CA-MRSA carriage prevalence among different population groups stratified based on settings	. 44
Appendix XVII. Pooled prevalence of CA-MRSA antibiotic resistance among general members stratified based on settings	
Appendix XVIII. Included studies for meta-analysis of antibiotics resistance among general members	. 46
Appendix XIX. Included studies for evaluating sources of heterogeneity of CA-MRSA carriage prevalence among general members	
Appendix XX. Results of bias assessment of 134 cross-sectional studies	. 48
Appendix XXI. Results of bias assessment of 8 case-control studies	. 53
Appendix XXII. Results of bias assessment of 10 cohort studies	. 54
Appendix XXIII. CA-MRSA carriage prevalence based only on low-risk studies	. 55

Appendix XXIV. Reasons for exclusion for studies excluded from meta-analysis	56
Appendix XXV. Included studies reporting CA-MRSA carriage prevalence among different age groups	57
Appendix XXVI. Included studies reporting antibiotics resistance among general members	58

Appendix I. Search strategy for and number of records returned from MEDLINE, EMBASE and PubMed

This search strategy was developed based on a list of terms related to CA-MRSA and was reviewed by authors. Literature searches were performed with three electronic databases including MEDLINE (via OvidSP, 1946 onwards), EMBASE (via OvidSP, 1910 onwards) and PubMed from January 2000 to May 2017. The search strategy and the results of record breakdowns returned from the three databases are shown one by one below:

MEDLINE

Step	Terms input	Results
1	CA-MRSA* or methicillin resistant staphylococcus aureus* or	23863
	community acquired methicillin resistant staphylococcus aureus* or	
	community associated methicillin resistant staphylococcus aureus* or	
	MRSA*	
2	community* or community-acquired* or community setting* or	410019
	community-associated* or community-onset*	
3	Prevalence* or Risk factors* or Frequency* or Colonization* or	1894600
	Carriage* or Protective factors* or Predictive factors*	
4	Bangladesh* or Bhutan* or Korea* or India* or Indonesia* or	906146
	Maldives* or Myanmar* or Burma* or Nepal* or Sri Lanka* or Thai*	
	or Thailand* or Timor-Leste* or Australia* or Brunei* or Cambodia*	
	or China* or Cook Islands* or Fiji* or Japan* or Kiribati* or Lao* or	
	Malaysia* or Marshall Islands* or Micronesia* or Mongolia* or	
	Nauru* or New Zealand* or Niue* or Palau* or Papua New Guinea* or	
	Philippines* or Samoa* or Singapore* or Solomon* or Tonga* or	
	Tuvalu* or Vanuatu* or Vietnam* or Hong Kong* or Taiwan*	
5	1 and 2 and 3 and 4	299
6	Limit to 01/01/2000 to 19/05/2017	289
7	Limit to human subjects	283

EMBASE

Step	Terms input	Results
1	CA-MRSA* or methicillin resistant staphylococcus aureus* or	47808
	community acquired methicillin resistant staphylococcus aureus* or	
	community associated methicillin resistant staphylococcus aureus* or	
	MRSA*	
2	community* or community-acquired* or community setting* or	539323
	community-associated* or community-onset*	
3	Prevalence* or Risk factors* or Frequency* or Colonization* or	2623635
	Carriage* or Protective factors* or Predictive factors*	
4	Bangladesh* or Bhutan* or Korea* or India* or Indonesia* or	1513268
	Maldives* or Myanmar* or Burma* or Nepal* or Sri Lanka* or Thai*	
	or Thailand* or Timor-Leste* or Australia* or Brunei* or Cambodia*	
	or China* or Cook Islands* or Fiji* or Japan* or Kiribati* or Lao* or	
	Malaysia* or Marshall Islands* or Micronesia* or Mongolia* or	
	Nauru* or New Zealand* or Niue* or Palau* or Papua New Guinea* or	
	Philippines* or Samoa* or Singapore* or Solomon* or Tonga* or	
	Tuvalu* or Vanuatu* or Vietnam* or Hong Kong* or Taiwan*	
5	1 and 2 and 3 and 4	481
6	Limit to 01/01/2000 to 19/05/2017	469
7	Limit to human subjects	392

PubMed

Step	Terms input	Results
1	CA-MRSA* or methicillin resistant staphylococcus aureus* or	26237
	community acquired methicillin resistant staphylococcus aureus* or	
	community associated methicillin resistant staphylococcus aureus* or	
	MRSA*	
2	community* or community-acquired* or community setting* or	557105
	community-associated* or community-onset*	
3	Prevalence* or Risk factors* or Frequency* or Colonization* or	2048751
	Carriage* or Protective factors* or Predictive factors*	
4	Bangladesh* or Bhutan* or Korea* or India* or Indonesia* or	4440826
	Maldives* or Myanmar* or Burma* or Nepal* or Sri Lanka* or Thai*	
	or Thailand* or Timor-Leste* or Australia* or Brunei* or Cambodia*	
	or China* or Cook Islands* or Fiji* or Japan* or Kiribati* or Lao* or	
	Malaysia* or Marshall Islands* or Micronesia* or Mongolia* or	
	Nauru* or New Zealand* or Niue* or Palau* or Papua New Guinea* or	
	Philippines* or Samoa* or Singapore* or Solomon* or Tonga* or	
	Tuvalu* or Vanuatu* or Vietnam* or Hong Kong* or Taiwan*	
5	1 and 2 and 3 and 4	462
6	Limit to 01/01/2000 to 19/05/2017	448
7	Limit to human subjects	373

Appendix II. Reference list of the 27 articles adopted from Annex 2 of "World Health Organization Antimicrobial Resistance: Global Report on Surveillance"

- 1. Dutta S, Hassan MR, Rahman F, Jilani MS, Noor R. Study of antimicrobial susceptibility of clinically significant microorganisms isolated from selected areas of Dhaka, Bangladesh. *Bangladesh Journal of Medical Science*. 2013;12(1):34.
- 2. Singhi S, Ray P, Mathew JL, Jayashree M. Nosocomial bloodstream infection in a pediatric intensive care unit. *Indian J Pediatr*. 2008;75(1):25-30.
- 3. Bandekar N, Vinodkumar CS, Basavarajappa KG, Prabhakar PJ, Nagaraj P. Bacteriology and antibiogram of burn infection at a Tertiary Care Center. *Appl Microbiol.* 2011;5(1):781-786.
- 4. Batabyal BI, Biswas S, Mandal B, Desai PD, De Sarkar. Oral suffering and antimicrobial susceptibility of Staphylococcus aureus in a dental hospital in Kolkata, India. *Int J Pharm Bio Sci.* 2012; 3(4):620-629.
- 5. Chande CA, Shrikhande SN, Jain DL, Kapale S, Chaudhary H, Powar RM. Prevalence of methicillin-resistant Staphylococcus aureus nasopharyngeal carriage in children from urban community at Nagpur. *Indian J Public Health*. 2008;53(3):196-198.
- 6. Dubey D, Rath S, Sahu MC, Pattnaik L, Debata NK, Padhy RN. Surveillance of infection status of drug resistant Staphylococcus aureus in an Indian teaching hospital. *Asian Pac J Trop Dis.* 2013; 3(2):133-142.
- 7. Hanumanthappa AR, Jayasimha VL, Vishwanath G, Vijayanath V. Methicillin resistant Staphylococcus aureus amongst the patients in burns unit. *Appl Microbiol*. 2012;6(1):475-478.
- 8. Indian Network for Surveillance of antimicrobial resistance (INSAR) group. Methicillin resistant Staphylococcus aureus (MRSA) in India: Prevalence & susceptibility pattern. *Indian J Med Res.* 2013;137(2):363.
- 9. Martínez-Aguilar G, Avalos-Mishaan A, Hulten K, Hammerman W, Mason Jr EO, Kaplan SL. Community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus musculoskeletal infections in children. *Pediatr Infect Dis J.* 2004;23(8):701-706.
- 10. Kumar S, Joseph N, Easow J, et al. Prevalence and current antibiogram of staphylococci isolated from various clinical specimens in a tertiary care hospital in Pondicherry. *Internet J Microbiol.* 2012;10(1):1937-43.
- 11. Patted SM, Chinagudi S, Soragavi VR, Bhavi SB. The prevalence of MRSA infection in orthopaedic surgery in a Medical College Hospital: A 2-year analysis. *Biomed Res*. 2013; 24(1).

- 12. Ramana KV, Mohanty SK, Wilson CG. Staphylococcus aureus colonization of anterior nares of school going children. *Indian J Pediatr.* 2009;76(8):813-816.
- 13. Rongpharpi SR, Hazarika NK, Kalita H. The prevalence of nasal carriage of Staphylococcus aureus among healthcare workers at a tertiary care hospital in assam with special reference to MRSA. *J Clin Diagn Res.* 2013;7(2):257.
- 14. Pathak A, Marothi Y, Kekre V, Mahadik K, Macaden R, Lundborg CS. High prevalence of extended-spectrum β-lactamase-producing pathogens: results of a surveillance study in two hospitals in Ujjain, India. *Infect Drug Resist.* 2012;5:65.
- 15. Kaistha N, Mehta M, Singla N, Garg R, Chander J. Neonatal septicemia isolates and resistance patterns in a tertiary care hospital of North India. *J Infect Dev Ctries*. 2009; 4(01):055-057.
- 16. Eshwara VK, Munim F, Tellapragada C, Varma M, Lewis LE, Mukhopadhyay C. Upsurge of MRSA bacteraemia in south Indian tertiary care hospital: An observational study on clinical epidemiology and resistance profile. *Int J Infect Dis.* 2012;16:e224.
- 17. Jha LK. Prevalence of methicillin resistant Staphylococcus aureus (MRSA) among skin infection cases at a hospital in Chitwan, Nepal. *Nepal Med Coll J.* 2010;12(4): 224-228.
- 18. Easow JM, Joseph NM, Dhungel BA, Chapagain B, Shivananda PG. Blood Stream Infections among febrile patients attending a Teaching Hospital in Western Region of Nepal. *Australas Med J.* 2010;3(10):633-637.
- 19. Kumari N, Mohapatra TM, Singh YI. Prevalence of Methicillin-resistant Staphylococcus aureus (MRSA) in a Tertiary-Care Hospital in Eastern Nepal. *J Nepal Med Assoc.* 2008;47(170):53-56.
- 20. Tiwari HK, Das AK, Sapkota D, Sivrajan K, Pahwa VK. Methicillin resistant Staphylococcus aureus: prevalence and antibiogram in a tertiary care hospital in western Nepal. *J Infect Dev Ctries*. 2009;3(09):681-684.
- 21. Rijal KR, Pahari N, Shrestha BK, et al. Prevalence of methicillin resistant Staphylococcus aureus in school children of Pokhara. *Nepal Med Coll J.* 2008;10(3): 192-195.
- 22. Sapkota K, Basnyat SR, Shrestha CD, Shrestha J, Dumre SP, Adhikari N. Prevalence of Methicillin Resistant Staphylococcus aureus (MRSA) in tertiary referral hospital in Nepal. *International Journal of Infectious Diseases*. 2010;14:e347.
- 23. Shrestha B, Pokhrel B, Mohapatra T. Study of nosocomial isolates of Staphylococcus aureus with special reference to methicillin resistant S. aureus in a tertiary care hospital in Nepal. *Nepal Med Coll J.* 2009;11(2):123-126.

- 24. Shrestha B, Pokhrel BM, Mohapatra TM. Staphylococcus aureus nasal carriage among health care workers in a Nepal Hospital. *Braz J Infect Dis.* 2009;13(5):322.
- 25. Gomes PL, Malavige GN, Fernando N, et al. Characteristics of Staphylococcus aureus colonization in patients with atopic dermatitis in Sri Lanka. *Clin Exp Dermatol*. 2011;36(2):195-200.
- 26. Bao L, Peng R, Ren X, Ma R, Li J, Wang Y. Analysis of some common pathogens and their drug resistance to antibiotics. *Pak J Med Sci.* 2013;29(1):135.
- 27. Lim LG, Tan XX, Woo SJ, et al. Risk factors for mortality in cirrhotic patients with sepsis. *Hepatol Int.* 2011;5(3):800-807.

Appendix III. Eligible criteria for studies included in this systematic review

Items	Description										
(1) Study design	Observational studies including case-control studies ¹ , cohort studies										
	and cross-sectional studies										
(2) Population	General population or a clearly defined sub-group population										
(3) Region	Countries within Asia-Pacific region which included member states										
	listed in the WHO regional offices for South-East Asia and Western Pacific, additionally with Hong Kong and Taiwan										
	Pacific, additionally with Hong Kong and Taiwan										
(4) Definitions of	In so far as the articles reported										
CA-MRSA	(i) MRSA in the community; and/ or										
	(ii) MRSA diagnosed in hospital within 48 hours of admission,										
	and the subjects did not expose to any healthcare risk factors										
	in prior to the admission, where healthcare risk factors										
	included but not limited to exposure to hemodialysis, surgery,										
	residence in a long-term care facility or hospitalization during										
	the previous year, or had previous isolation of MRSA; and/or										
	(iii) MRSA isolates from human subjects matched with a known										
	CA-MRSA strain; and/or										
	(iv) Other definitions of CA-MRSA stated in the articles.										
(5) Outcomes	In so far as the articles reported										
	(i) Prevalence of CA-MRSA carriage, respectively, in community										
	and hospital settings, within Asia-Pacific region; and/ or										
	(ii) Risk factors and/or protective factors of CA-MRSA carriage.										
	Carriage of CA-MRSA is defined as any clinical or sub-clinical										
	carrier of CA-MRSA. To this end, we included studies that reported										
	the prevalence of CA-MRSA colonization and/or infection										
(6) Study period	Between 1 January 2000 and 31 December 2016										
(7) Settings	Community or hospital-based										
(8) Language	Chinese or English										

Remarks:

1. The inclusion of case-control studies allows for data collection among subgroups.

Appendix IV. Data extraction form for an individual study

Title:		
Basic information		
Author		
Country		
Journal		
Year of publication		
Source of funding		
Methods		
Study design		
Study population		
Study setting		
Recruitment time period		
Recruitment location		
Definitions of CA-MRSA		
Data collection		
Methods of isolates collection		
Methods of isolates testing		
Outcome measurements		
Age range		
Sex	Male:	Female:
Health status		
Overall CA-MRSA prevalence rate		
CA-MRSA prevalence rate among		
MRSA		
CA-MRSA prevalence rate among		
S.aureus		
Significant risk factors for CA-MRSA		
carriage		
Drug resistance		11 1

Remarks: If the data were reported as composite measures, review authors would make a judgment to extract the most comprehensive and accurate data from the composites and used in analysis.

Appendix V. Risk of bias assessment checklist for cross-sectional study

	Y = Yes
	P= Partial
	N= No
External validity	
1. Was the sampling frame a true or close representation of the target population?	Y/ P/ N
Remarks and description:	
Internal validity	
2. Were data collected directly from the subjects (as opposed to a proxy)?	Y/ P/ N
Remarks and description:	
3. Was an acceptable case definition used in the study?	Y/ P/ N
Remarks and description:	
4. Was the study instrument that test MRSA of interest shown to have validity and	Y/ P/ N
reliability?	
Remarks and description:	
5. Was the same mode of data collection used for all subjects?	Y/ P/ N
Remarks and description:	
6. Were the numerator(s) and denominator(s) for the parameter of interest	Y/ P/ N
appropriate?	
Remarks and description:	
Overall risk of bias	Low/ High

Remarks:

- 1. A study was classified as low risk of bias if all of the answers in the checklist are yes. Studies that failed to fulfill these criteria would be classified as high risk of bias.
- 2. The checklist is modified from Hoy D, Brooks P, Woolf A, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. *J Clin Epidemiol*. 2012;65(9):934-939.

Appendix VI. Risk of bias assessment checklist for cohort study

Selection

- 1) Appropriate representativeness of the exposed cohort?
 - a) Truly representative of the average CA-MRSA of community members or population subgroups in the community
 - b) Somewhat representative of the average CA-MRSA carriage of community members or population subgroups in the community
 - c) Selected group of users e.g. nurses, volunteers
 - d) No description of the derivation of the cohort
- 2) Appropriate selection of the non-exposed cohort?
 - a) Drawn from the same community as the exposed cohort
 - b) Drawn from a different source
 - c) No description of the derivation of the non-exposed cohort
- 3) Appropriate ascertainment of exposure?
 - a) Secure record (e.g. surgical records)
 - b) Structured interview
 - c) Written self-report
 - d) No description

Comparability

- 4) <u>CA-MRSA being controlled?</u>
 - a) Study controls for CA-MRSA carriage
 - b) No description

Outcome

- 5) Appropriate assessment of outcome?
 - a) Independent blind assessment
 - b) Record linkage
 - c) Self report
 - d) No description
- 6) Adequacy follow up for all subjects?
 - a) Complete follow up all subjects accounted for
 - b) Subjects lost to follow up unlikely to introduce bias small number lost > _____ % (select an adequate %) follow up, or description provided of those lost)
 - c) Follow up rate < _____% (select an adequate %) and no description of those lost
 - d) No statement

Overall risk of bias: Low/ High

Remarks:

- 1. A study was considered as low risk of bias if Q1=a/b, Q2=a/b, Q3=a/b, Q4=a, Q5=a/b, Q6=a. Studies that failed to fulfill these criteria would be classified as high risk of bias.
- 2. This checklist is modified from Wells GA, Shea B, O'connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed August 7, 2017.

Appendix VII. Risk of bias assessment checklist for case-control study

Selection

- 1) <u>Is the case definition adequate?</u>
 - a) Yes, with independent validation
 - b) Yes, e.g. record linkage or based on self-reports
 - c) No description
- 2) Appropriate representativeness of the cases?
 - a) Consecutive or obviously representative series of cases
 - b) Potential for selection biases or not stated
- 3) Appropriate selection of controls?
 - a) Community controls
 - b) Hospital controls
 - c) No description

Comparability

- 4) CA-MRSA controlled between cases and controls?
 - a) Study controls for CA-MRSA
 - b) No description

Exposure

- 5) Appropriate ascertainment of exposure?
 - a) Secure record (e.g. surgical records)
 - b) Structured interview where blind to case/control status
 - c) Interview not blinded to case/control status
 - d) Written self-report or medical record only
 - e) No description
- 6) Same response rate in case group and control group?
 - a) Same rate for both groups
 - b) Non respondents described
 - c) Rate different and no designation

Overall risk of bias: Low/ High

Remarks:

- 1. A study was considered as low risk of if Q1=a/b, Q2=a, Q3=a, Q4=a, Q5=a, Q6=a. Studies that failed to fulfill the criteria would be classified as high risk of bias.
- 2. This checklist is modified from Wells GA, Shea B, O'connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed August 7, 2017.

Appendix VIII. Details of 152 included studies (132 articles)

The article numbers (i.e the second column) correspond to the order of article list in Appendix IX.

Study Article	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number of individuals with		
No.	No.		publication		Date	Date		design				CA-MRSA	Size	CA- MRSA	MRSA	SA
1	1	Ansari et al.	2016	Commu nity	Mar 2014	Mar 2014	Nepal	Cross- sectional	Medical students who were studying in their first year of medical education and were not exposed to their clinical posting	Nose	A medical college	Not defined	200	8	8	30
*2	2	Batabyal et al.	2012	Commu nity	Mar 2011	May 2012	India	Cross- sectional	Oral-suffering patients	Oral cavity	Various departments of a dental hospital	Not defined	223	6	6	109
*3	3	Bennett et al.	2014	NAª	Apr 2006	Sep 2006	Australia	Cross- sectional	Patients with community-onset <i>S. aureus</i> infection not admitted to major hospitals	General; Blood; Urine; Respiratory Specimens	Community doctors and community hospitals	Epidemiological	2094	49	49	2094
*4	4	Bhat et al.	2016	Commu nity	Feb 2013	Jul 2013	India	Cross- sectional	Patients with primary pyodermas aged from 3-65 years old	Pus or exudates from lesions	Outpatient department of Dermatology of a hospital	Not defined	110	54	54	89
*5	5	Bounchiat et al.	2015	Hospital	Nov 2011	Feb 2012	India	Cross- sectional	Patients with S. aureus infections	Infection sites (blood, urine, respiratory, bone and joint, skin)	A hospital	Epidemiological	92	29	48	92
6	6	Brennan et al.	2013	Hospital	Nov 2009	Dec 2009	Australia	Cross- sectional	Patients within 48 hours of hospital admission	Nose; Throat; Skin lesions	General medical, general surgical, and orthopedic wards of a hospital	Molecular	225	2	5	69
7	6	Brennan et al.	2013	Hospital	Feb 2010	Mar 2010	Australia	Cross- sectional	Patients who had stayed as hospital inpatients for five or more days	Nose; throat; skin lesions	General medical, general surgical, and orthopedic wards of a hospital	Molecular	201	21	38	70
*8	7	Britton and Andresen	2013	Hospital	2008	2008	Australia	Cohort (Retrosp ective)	Pediatric patients with community-associated <i>S. aureus</i>	Wound; pus; blood; urine	A pediatric hospital (wards not specified)	Epidemiological	431	83	83	431
*9	8	Buntaran et al.	2013	Hospital	2012	2012	Indonesia	Cross- sectional	Patients with <i>S. aureus</i> isolates	Urine; Sputum; Pus; Throat; Blood; Bronchial discharge	Two hospitals (wards not specified)	Not defined	11	1	4	11
10	9	Chang et al.	2015	Hospital	Jun 2014	Aug 2014	Taiwan	Cross- sectional	Janitors working in two hospitals	Nose	Two hospitals (wards not specified)	Not defined	111	4	4	17
11	9	Chang et al.	2015	Commu nity	Jun 2014	Aug 2014	Taiwan	Cross- sectional	Janitors working in non-medical institutions	Nose	Nine universities and three department stores	Not defined	75	1	1	10
*12	10	Changchien et al.	2011	Hospital	Dec 2004	Nov 2008	Taiwan	Cross- sectional	Patients with necrotizing fasciitis	Wound; Blood	A hospital (wards not specified)	Epidemiological	247	25	49	91
*13	11	Changchien et al.	2016	Hospital	Jan 2008	Nov 2008	Taiwan	Cross- sectional	Patients with S.aureus skin and soft tissue infections (SSTIs)	Blood; and others	A hospital (wards not specified)	Epidemiological	307	68	177	307

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.		publication		Date	Date		design	•			CA-MRSA	Size	CA- MRSA	MRSA	SA
14	12	Chatterjee et al.	2009	Commu nity	Jan 2005	Jun 2005	India	Cross- sectional	School children aged 5-15 years old	Nose	Two districts (rural, urban, and peri-urban slum)	Not defined	489	16	19	256
*15	13	Chen et al.	2005	Hospital	Jul 2000	Jun 2001	Taiwan	Cross- sectional	Hospitalized children with <i>S. aureus</i> infections aged 2 weeks-17 years old	Any body sites	A children hospital	Epidemiological	191	54	NA ^b	191
*16	14	Chen et al.	2010	Commu nity	Jan 2001	Dec 2007	Taiwan	Cross- sectional	Adults with S. aureus bacteremia	Blood	Emergency department of a hospital	Epidemiological; Molecular	819	34	290	819
17	15	Chen et al.	2010	Hospital	Jun 2008	Jul 2008	Taiwan	Cross- sectional	Hospitalized adult patients in an intensive units (ICUs)	Nose	Medical ICUs and Surgical ICUs of a university- affiliated hospital	Not defined	177	6 ^{am}	57	74
18	16	Chen et al.	2011	Commu nity	Jul 2005	Jun 2008	Taiwan	Cross- sectional	Healthy children who visited general checkup clinics aged 2-60 months	Nose; Nasopharyngeal	Three hospitals (general checkup clinics) located in suburban area and metropolitan areas	Not defined	6057	473	473	1404
*19	17	Chen et al.	2012	Commu nity	Jan 2001	Dec 2010	Taiwan	Cross- sectional	Adults with community-onset <i>S. aureus</i> bacteremia	Blood	Emergency department of a university- affiliated hospital	Epidemiological	1166	54	380	1166
*20	18	Chen et al.	2014	NA ^a	May 2011	June 2012	China	Cross- sectional	Patients with S. aureus isolates	Respiratory tract; Wound; Skin and soft tissue; Blood; Body fluid; Drainage; Urine; Others (Pus; Cerebral spinal fluid; Catheter; etc)	Hospitals in 7 cities (outpatient/emer gency departments, intensive care units, other inpatient departments)	Epidemiological	322	27 ^{am}	151	322
21	19 ^h	Chen et al.	2015	Commu nity	Oct 2013	Mar 2014	China	Cross- sectional	Community residents	Nose	Campuses of a university	Not defined	297	1	1	75
*22	20	Chou et al.	2015	Commu nity	Jan 2012	Dec 2013	Taiwan	Case- control ^e	Cases: Patients of new-onset SSTIs due to MRSA; Controls: Patients of new-onset SSTIs not due to MRSA	Nose; wound	Hospital- affiliated outpatient clinics	Not defined	100	29	29	39
*23	21	Chung et al.	2008	Commu nity	Jun 2004	Apr 2005	South Korea	Cross- sectional	Children with atopic dermatitis	Skin lesions	Pediatric allergy clinic of a hospital	Not defined	115	16	16	87
24	22	Coombs et al.	2013	Hospital	Jul 2011	Nov 2011	Australia	Cross- sectional	Hospital inpatients admitted for ≥ 48 hours and with S.aureus isolates	Skin and soft tissue; respiratory; blood; urine; sterile body cavity; cerebrospinal fluid	Hospitals (wards not specified)	Molecular	2357	275 ^{am}	713	2357
25	23	Deng et al.	2012	Commu nity	Sep 2005	Dec 2010	China	Cross- sectional	Healthy children aged 2-18 years old	Nose	Secondary and primary schools; Kindergartens	Not defined	2373	27	27	430
26	24	Dey et al.	2013	Commu nity	Jan 2008	Apr 2010	India	Cross- sectional	Children attending <i>anganwaries</i> (pre-schools) aged 1-6 years old	Nose	100 anganwaries (preschools)	Not defined	1002	102	102	351

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.	124444	publication	Seeming	Date	Date	Country	design	2 opunion		2004401	CA-MRSA	Size	CA- MRSA	MRSA	SA
*27	25	Douglas et al.	2004	Hospital	Jan 2000	Dec 2000	Australia	Cross- sectional	Inpatients with bloodstream infections	Blood	A teaching hospital (wards not specified)	Epidemiological	257	3	19	73
*28	26	Eshwara et al.	2013	Hospital	Aug 2010	Jul 2011	India	Cohort (Prospec tive)	Inpatients with <i>S. aureus</i> bacteremia	Blood	Various specialties of a tertiary care hospital (wards not specified)	Clinical;Epidemi ological	70	27	38	70
29	27	Fan et al.	2011	Commu nity	Sep 2005	Dec 2005	China	Cross- sectional	Healthy children aged 2-7 years old	Nose	Five kindergartens	Not defined	801	9	9	147
30	28	George et al.	2016	Hospital	Apr 2012	May 2013	India	Cross- sectional	Patients within 24 hours of admission	Nose	Surgical, orthopedics, and subspecialty wards of a hospital	Clinical	683	16	16	16
*31	29	Ghanznavi- Rad et al.	2010	Hospital	Oct 2007	Sep 2008	Malaysia	Cross- sectional	Hospitalized patients aged 4 days- 88 years old with MRSA isolates	Pus; cellulitis; abscess; respiratory specimen; blood; medical devices; cerebrospinal fluid; conjunctiva; body fluids; urine; bone marrow	Wards (General medicine, Pediatrics, General surgery, Urology/nephrol ogy, Neurosurgery, Orthopedic surgery, Maternity, ICU) of a hospital	Not defined	389	28	389	389
32	30 ^h	Goud et al.	2011	Commu nity	Apr 2003	Dec 2007	India	Cross- sectional	Community residents from upper, middle and lower economic class	Nose; forearm; dorsum; palm	A city and the adjacent district	Not defined	738	122	122	167
33	31	Govindan et al.	2015	Commu	Jul 2009	Dec 2010	India	Cross- sectional	School children aged 5-16 years old	Nose	Schools in a district	Molecular	1503	7	17	441
34	32	Gowrishank ar et al.	2013	Commu	2009	2010	India	Cross- sectional	Pharyngitis patients aged 14-65 years old	Throat	Thoracic Science Department (Outpatient) of a hospital	Epidemiological	265	63	63	165
35	33	Hart et al.	2015	Commu nity	Sep 2010	Sep 2011	Australia	Cross- sectional	Patients with Type 1 or Type 2 diabetes drawn from an urban population	Nose; axillae; blood ¹	Assessment center (explicit location not mentioned)	Not defined	660	8	8	258
36	34 ⁱ	Hayashi et al.	2012	Hospital	May 2009	Sep 2009	Australia	Cross- sectional	Patients with laboratory-confirmed 2009 pandemic influenza A(H1N1) within 2 days of admission ⁱ	Respiratory tract; blood; urine	Public hospitals	Molecular ^m	4491	2 ^{am}	2	13
*37	35	Hennam et al.	2012	Hospital	Dec 2009	Jan 2011	Australia	Cross- sectional	Women undergoing caesarean section	Wounds; Tissue; Aspirates	Hospital (emergency and outpatient settings excluded)	Not defined	583	8 am	8	18
*38	36	Heo et al.	2007	Commu nity	Jan 2000	Aug 2005	South Korea	Case- control ^e	Patients with S. aureus bacteremia	Blood	Emergency department of a hospital	Not defined	231	63	63	231
39	37	Hirakata et al.	2005	Commu nity	Dec 2001	Apr 2002	Japan	Cross- sectional	Adult outpatients with acute respiratory tract infection	Nasopharyngeal ; Throat	29 clinics and 16 hospitals (outpatient)	Not defined	930	22	22	242
40	38	Hisata et al.	2005	Commu nity	Jul 2001	Mar 2002	Japan	Cross- sectional	Healthy children	Nose	5 day care centres and 2 kindergartens	Not defined	818	35	35	231
41	39	Ho et al.	2007	Commu nity	Jan 2004	Dec 2005	Hong Kong	Cross- sectional	Household members of CA- MRSA patients	Nose; axillary skin; cutaneous wound lesions	Home visit; in- charge doctors' office	Epidemiological	46	6	6	6

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.		publication		Date	Date	,	design	•			CA-MRSA	Size	CA- MRSA	MRSA	SA
*42	40	Ho et al.	2008	Commu nity	Nov 2006	Feb 2007	Hong Kong	Cross- sectional	Outpatients with purulent SSTIs of less than 7 days duration	Wound	Emergency departments in 6 regional hospitals	Epidemiological	298	13	19	126
43	41	Ho et al.	2012	Commu nity	Sep 2009	Apr 2010	Hong Kong	Cross- sectional	Children aged 2-5 years old	Nose; Nasopharyngeal	Day care centres and kindergartens	Molecular	2211	12	28	610
44	42	Huang and Chen	2015	Commu nity ^o	Sep 2009	Nov 2011	Taiwan	Cross- sectional	Children aged from newborn (within 3 days of life) to 2 years old with \geq 9 samples	Nose; Umbilicus (for newborn only)	Newborn: nursery in a hospital	Not defined	273 ^p	110 ^p	110 ^p	243 ^p
45	42	Huang and Chen	2015	Commu	Sep 2009	Nov 2011	Taiwan	Cross- sectional	Mothers of children aged 2 years old	Nose	Not explicitly stated stated	Not defined	262	21	21	21
46	43	Huang and Hung	2006	Commu nity	Oct 2000	Mar 2003	Taiwan	Cross- sectional	Outpatients with acute rhinosinusitis	The side of nasal cavity with more purulent discharge	A hospital (outpatient)	Epidemiological	601	16	16	NA ^b
47	44	Huang et al.	2007	Commu nity ^q	Jul 2005	Oct 2006	Taiwan	Cross- sectional	Children presented for a well-child health care visit aged 2 months-5 years old	Nose	Three medical centers (well- child health visit)	Not defined	3046	221	221	713
48	45	Huang et al.	2007	Commu nity	Aug 2004	May 2005	Taiwan	Cross- sectional	Household members of CA- MRSA children patients	Nose	Households recruited at a children's hospital	Not defined ^r	121	30	30	30
49	46 ^h	Huang et al.	2013	Commu nity	Apr 2010	Apr 2010	Taiwan	Cross- sectional	Pediatricians affiliated to clinics	Nose	During a conference	Not defined	94	8	8	8
50	47	Hwang et al.	2002	Commu nity	Aug 2000	Feb 2002	Taiwan	Cross- sectional	Outpatients presenting with otorrhea aged 1-85 years old	External auditory canal (near the tympanic membrane)	Outpatient settings	Not defined	221	27	27	98
51	48	Hwang et al.	2002	Commu nity	Aug 2000	Jun 2001	Taiwan	Cross- sectional	Outpatients presenting with otorrhea aged 1-85 years old	External auditory canal (near the tympanic membrane)	A local teaching hospital (Outpatient)	Not defined	161	22	22	NA ^b
52	49 ^h	Indian Network for	2013	Commu nity	Jan 2008	Dec 2009	India	Cross- sectional	Outpatients with S.aureus isolates	Pus; Blood; Respiratory	15 Indian tertiary care centres	Not defined	3358 °	936 °	936 °	3358 °
		Surveillance of Antimicrobi al Resistance (INSAR) group								samples; Urine; Sterile body fluids; Tissue; Others (ear, nose, Skin, body fluids)	(outpatients)		(isolate)	(isolate)	(isolate)	(isolate)
53	50	Ishida et al.	2015	Hospital	Oct 2010	Sep 2013	Japan	Cross- sectional	Patients (bedridden & non- bedridden) with community- acquired pneumonia	Blood; sputum (if available); pharyngeal (if available)	A hospital	Epidemiological	531	4	4	17
54	51	Ito et al.	2015	Hospital	2005	2012	Japan	Cross- sectional	Patients with MRSA isolates	Not reported	A tertiary care hospital (excluding emergency department)	Not defined	2178	210	2178	2178

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.		publication		Date	Date	•	design	•			CA-MRSA	Size	CA- MRSA	MRSA	SA
55	51	Ito et al.	2015	Commu nity	2005	2012	Japan	Cross- sectional	Patients with MRSA isolates	Not reported	A tertiary care hospital (Emergency department)	Not defined	161	161	161	161
56	52 ^h	Jain et al.	2014	Commu nity	Oct 2006	Nov 2007	India	Cross- sectional	Apparent healthy individuals accompanying patients attending outdoor services for the first time	Nose; Axilla; Throat	Outdoor service of a tertiary care hospital s	Epidemiological	200	47	47	116
57	53	Jamaluddin et al.	2008	Commu nity	Jul 2001	May 2003	Japan	Cross- sectional	Healthy children	Nose	5 day-care centres and 2 kindergartens	Not defined	1285 ^{al}	49	49	49
*58	54 ^h	Jenney et al.	2014	Commu nity	2006	2006	Fiji	Cohort (Prospec tive)	School children with impetigo	Infected skin lesion	Three primary schools	Molecular	455	14 ^{am}	14	14
*59	54 ^h	Jenney et al.	2014	Hospital	Sep 2006	May 2007	Fiji	Cross- sectional	Hospitalized patients with MRSA isolates from clinical specimens	Sterile and non- sterile site;	A hospital (wards not	Molecular	36 c (isolates)	22 ^c (isolates)	36 ° (isolates)	36 ^c (isolates)
60	55	Joo et al.	2012	Hospital	Jan 2007	Dec 2009	South Korea	Cohort (Retrosp ective)	Hospitalized patients with infections caused by ST72-MRSA-IV	Blood Blood; Pus; Sputum; Body fluids	specified) A hospital (wards not specified)	Epidemiological	124	23	124	124
*61	56	Joo et al.	2012	Hospital	Jan 2007 t	Dec 2009 t	South Korea	Case- control	Cases: Hospitalized patients with community-onset infections caused by ST72-MRSA-IV strains; Controls: Hospitalized patients with community-onset methicillin-susceptible S. aureus infections ^u	Blood; Pus; Sputum; Body fluids	A hospital (wards not specified)	Epidemiological	NA ^d	NA ^d	NA ^d	NA ^d
62	57	Joshi et al.	2017	Hospital	Oct 2014	Apr 2015	Nepal	Cross- sectional	Healthcare workers (nurses, ward attendants, doctors, laboratory workers) and patients	Nose	Patients: Intensive care unit and hospital wards Healthcare workers: different departments of a hospital	Not defined	536	4	29	135
63	58	Jung et al.	2013	Hospital	Jan 2008	Dec 2011	South Korea	Cross- sectional	Hospitalized patients with pneumonia	Respiratory (Broncho- alveolar lavage fluid; Pleural effusion; Lung abscess or Sputum); Blood	A hospital (wards not specified)	Epidemiological	943	21	78	129
64	59	Kang et al.	2012	Commu nity	Jan 2011	Jun 2011	Taiwan	Cross- sectional	Patients undergoing hemodialysis	Nose	Outpatient hemodialysis clinics	Not defined	284 ^g	11 ^g	11 ^g	45 ^g
65	60	Kawaguchiy a et al.	2011	Commu nity	Jan 2009	Jul 2009	Japan	Cross- sectional	Outpatients with S.aureus isolates	Urine; Pus; Sputum; Otorrhea; Nasal discharge; Eye discharge; Skin	Outpatient settings	Epidemiological	1015 ^c (isolates)	189 ^c (isolates)	189 ^c (isolates)	1015 ^c (isolates)
66	61	Kim et al.	2007	NA ^a	Jan 2005	Jun 2005	South Korea	Cross- sectional	Patients with non-duplicate S.aureus clinical isolates	Various body sites	Outpatient clinics, emergency rooms and other wards of 7 hospitals	Epidemiological	3251	112	1900	3251

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.		publication	3	Date	Date		design	•			CA-MRSA	Size	CA- MRSA	MRSA	SA
*67	62	Kim et al.	2014	Hospital	May 2012	Dec 2012	South Korea	Cross- sectional	Patients with invasive S.aureus infection	Sterile body fluid (Blood; Abscesses in internal body sites; Bone and organ tissue; Joint fluid; Ear discharge; Pleural fluid; Ascites; Cerebrospinal fluid; Pericardial fluid)	16 hospitals (wards not specified)	Epidemiological	1627	102	355	1627
68	63	Kitti et al.	2011	Commu nity	Oct 2009	Sep 2010	Thailand	Cross- sectional	Healthy third-year students and graduates aged 19-25 years old	Nose	A university	Not defined	200	2	2	30
69	64	Ko et al.	2008	Commu nity	Dec 2005	Feb 2006	South Korea	Cross- sectional	Children aged 1-11 years old	Nose	An outpatient of a tertiary care hospital	Epidemiological	296	14	18	95
*70	65	Krishna et al.	2004	NA ^a	Jun 2001	Dec 2001	India	Cross- sectional	Outpatients and inpatients with S.aureus isolates and with no contact with healthcare facilities in the past two years	Abscesses; Boils; Wound Discharge; Ear Discharge; Pus	A facility (inpatients and outpatients)	Epidemiological	116	6	21	116
71	66	Kuo et al.	2013	Hospital	Oct 2011	Dec 2011	Taiwan	Cross- sectional	Hospitalized infants	Nose; umbilicus	Neonatal intensive care units of 7 medical centers	Not defined	251	11	11	33
72	67	Kwon et al.	2011	Hospital	Oct 2008	May 2009	South Korea	Cross- sectional	Patients with MRSA bacteremia or MRSA nasal carriage	Blood; Nose	10 intensive-care units	Molecular; Epidemiological	258	37 ^k	258	258
73	68 ^v	Lee et al.	2011	Commu nity	Sep 2008	Oct 2008	South Korea	Cross- sectional	Apparently healthy pre-school children	Nose	7 day care centres	Not defined	428	40	40	164
*74	69	Lee et al.	2014	Hospital	Jan 2004	Sep 2012	South Korea	Cohort (Prospec tive)	Adult patients with community-acquired <i>S. aureus</i> bacteremia	Blood	A hospital (ward not specified)	Epidemiological	169	31	31	169
*75	70	Lee et al.	2015	Hospital	Jan 2013	Dec 2013	Taiwan	Cohort (Retrosp ective)	Hospitalized adults with (purulent and non-purulent) cellulitis	Blood; Pus; Skin biopsy	A hospital (ward not specified)	Epidemiological	465	22	32	64
*76	71	Leung et al.	2012	Hospital	Feb 2009	Dec 2010	Hong Kong	Matched Case- control	Cases: Hospitalized persons with CA-MRSA infection; Controls: Hospitalized persons without any MRSA infection	Not reported	14 acute public hospitals (wards not specified)	Clinical; Epidemiological; Molecular	NA ^d	NA ^d	NA ^d	NA ^d
*77	72	Li et al.	2013	Hospital	Jun 2005	Dec 2011	China	Cross- sectional	Hospitalized children with CC59 MRSA infection	Sputum; Pus; Pharyngeal; Sterile body sites (Blood; Bones and joints; Cerebrospinal fluid; Lung; Pleural cavity; Peritoneal cavity; Deep seated soft tissue)	8 hospitals (wards not specified)	Epidemiological	110	90	110	110
*78	73	Liao et al.	2005	Commu nity	Jun 2001	May 2002	Taiwan	Cross- sectional	Patients with S. aureus bacteremia identified within 48 hours of arrival	Blood	Emergency department of a hospital	Epidemiological	101	1	NA ^b	101

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.	. 14411/1	publication		Date	Date		design	- Spannon	assumed sitt		CA-MRSA	Size	CA- MRSA	MRSA	SA
*79	74	Lim et al.	2014	Commu nity	Jan 2002	Dec 2011	Australia	Matched Case- control	Cases: Adults with community- onset bloodstream infection (COBSI) due to a multidrug- resistant (MDR) organism; Controls: Adults with COBSI due to non-MDR organisms	Blood	Emergency departments of a hospital	Not defined	360	NA ^d	NA ^d	NA ^J
*80	75	Lin et al.	2011	Hospital	Nov 2003	Jul 2007	Taiwan	Cross- sectional	Inpatients with SSTIs	Wound	A hospital (dermatological outpatients)	Epidemiological	130	31	41	73
*81	75	Lin et al.	2011	Commu nity	Nov 2003	Jul 2007	Taiwan	Cross- sectional	Outpatients with SSTIs	Wound	A hospital (dermatological	Epidemiological	313 ^c (isolate)	84 ° (isolate)	84 ^c (isolate)	163 ^c (isolate)
*82	76	Lin et al.	2015	Hospital	Jan 2008	Dec 2011	Taiwan	Cross- sectional	Patients with septic arthritis	Not reported	outpatients) Two hospitals (wards nor specified)	Not defined w	194	31	38	93
83	77	Lin et al.	2017	Commu nity	Apr 2014	May 2015	China	Cross- sectional	Diabetic population	Nose	Community settings (not explicitly stated)	Not defined	529	22	22	46
84	77	Lin et al.	2017	Commu nity	Apr 2014	May 2015	China	Cross- sectional	Non-diabetic population	Nose	Community settings (not explicitly stated)	Not defined	427	12	12	25
*85	78	Liu et al.	2012	Hospital	2005	2009	China	Cross-	Children patients with MRSA	Blood; Pus;	9 children	Not defined	134 °	99 °	134 °	134 ^c
								sectional	isolates	Nasopharyngeal ; Respiratory tract; Wound; Puncture; Secretion	hospitals (wards not specified)		(isolate)	(isolate)	(isolate)	(isolate)
*86	79	Liu et al.	2016	Commu nity	2011	2013	China	Cross- sectional	Outpatients with SSTIs	Infection site	Outpatient clinics (surgical and dermatological) in 3 hospitals	Epidemiological	1400	21	21	203
87	80	Lo et al.	2008	Commu nity	2004	2006	Taiwan	Cross- sectional	Children with no acute medical problem	Nose	Health maintenance clinic or kindergartens	Not defined	1615	131	131	454
88	81 ^h	Lu et al.	2005	Commu nity	Apr 2001	Oct 2001	Taiwan	Cross- sectional	Community residents and students	Nose	Four villages and four schools (kindergarten, elementary school, junior high school, senior high school)	Not defined	1838	64	64	463
89	82	Ma and Luo	2011	Commu nity	2009	2010	China	Cross- sectional	Medical university students	Nose	A medical university	Not defined	1634	41	41	239
90	83	Ma et al.	2011	Commu	May 2008	Oct 2009	China	Cross- sectional	Healthy third year preclinical medical students	Nose	A medical university	Not defined	2103	22	22	234
*91	84	McMullan et al.	2016	nity Hospital		Dec 2012	Australia and New Zealand	Cohort (Prospec tive)	Children with S. aureus	Blood	33 pediatric, general and adult hospitals (wards not specified)	Epidemiological	1073	69	142	1073
*92	85	Mekviwatta nawong et al.	2006	Hospital	Jan 2005	May 2005	Thailand	Cross- sectional	Hospitalized patients with <i>S. aureus</i> infection	Blood; Joint fluid; Pleural fluid; Peritoneal fluid; Pus; Sputum; Bronchial fluid; Urine; Tissue; Others	A tertiary care hospital (Wards not specified)	Epidemiological	448	2	186	448

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample		of individua	
No.	No.		publication		Date	Date		design				CA-MRSA	Size	CA- MRSA	MRSA	SA
*93	86	Mine et al.	2013	Commu nity	Jun 2008	Nov 2010	Japan	Cross- sectional	Outpatient with SSTIs	Purulent skin lesions	Outpatient settings	Not defined	497	99	99	274
*94	87	Moon et al.	2010	Hospital	Jan 2003	Dec 2005	South Korea	Cross- sectional	Patients with S.aureus bacteremia	Blood (Not explicitly stated)	A hospital (ward not specified)	Epidemiological	241	2 am	129	241
95	88	Munckhof et al.	2009	Commu nity	Jul 2005	Mar 2006	Australia	Cross- sectional	Volunteer adult populations (≥18 years old)	Nose	A general medical practice and a electoral roll	Epidemiological	699	2	5	202 ^x
96	89	Nickerson et al.	2011	Commu nity	Sep 2008	Oct 2008	Cambodia	Cohort (Prospec tive)	Outpatient children	Nose	Outpatient department of a children hospital	Epidemiological	2485	28	87	87
97	89	Nickerson et al.	2011	Hospital	Sep 2008	Oct 2008	Cambodia	Cohort (Prospec tive)	Inpatient children	Nose; axillae; throat; (if ventilated) tracheal sunction	A hospital (wards not specified)	Epidemiological	145	2	6	6
*98	90	Nimmo et al.	2013	Hospital	2000	2012	Australia	Cross- sectional	Inpatients with S. aureus carriage	Blood; Pus; Tissue; Sterile fluid	Public hospitals	Molecular	114980	NA ^j	NA ^j	11498 0
*99	90	Nimmo et al.	2013	Commu nity	2000	2012	Australia	Cross- sectional	Outpatients with S. aureus carriage	Blood; Pus; Tissue; Sterile fluid	Public health care facilities	Molecular	142726	NA ^j	NA ^j	14272 6
100	91	Nozaki et al.	2015	Commu nity	NA ^j	NA ^j	South Korea	Cross- sectional	College students	Nose; Hands	A college	Not defined	100	NA ^b	NA ^b	NA ^b
101	91	Nozaki et al.	2015	Commu nity	NA ^j	NA ^j	Japan	Cross- sectional	University students	Nasal vestibule; Back of ear auricle	A university	Molecular	94	0	3	3
102	91	Nozaki et al.	2015	Commu nity	Sep 2013	Nov 2013	The Philippines	Cross- sectional	University students	Nose; Palms	A university	Molecular	100 ^y	NA ^b	NA ^b	NA ^b
103	92 ^h	Ozaki et al.	2009	Commu nity	2006	2007	Japan	Cross- sectional	Pediatric outpatients with upper respiratory tract infections	Nose	Outpatient sections of hospitals	Epidemiological	426	3	3	125
104	92 ^h	Ozaki et al.	2009	Commu nity	2007	2008	Japan	Cross- sectional	Healthy children in the community living with their families	Nose	Not explicitly stated	Epidemiological	136	5	5	55
*105	93	Park et al.	2009	Hospital	Oct 2004	Nov 2007	South Korea	Cross- sectional	Patients with MRSA bloodstream infection	Blood (Not explicitly stated)	4 hospitals (wards not specified)	Epidemiological; Molecular	76	2 ^k	76	76
*106	94	Park et al.	2015	NA ^a	Mar 2014	Jun 2014	South Korea	Cross- sectional	Pediatric patients with community-associated S.aureus skin infections	Infected lesion (Not explicitly stated)	A hospital (inpatient and outpatient; wards not specified)	Epidemiological	69	28	28	69
107	95	Park et al.	2016	Hospital	2007	Mar 2014	South Korea	Cross- sectional	Newly admitted patients	Nose	A hospital (wards not specified)	Not defined	24977	637 ^z	637	637
108	96	Pathak et al.	2010	Commu nity	Nov 2007	Feb 2009	India	Cross- sectional	Pediatric outpatients without suspected infections (upper respiratory tract / skin infection) or need for hospital admission / emergency care	Nose	Pediatric outpatient clinics of two hospitals	Not defined	1562	16	16	98
*109	97	Patil et al.	2006	Commu nity	Feb 2004	Jul 2004	India	Cross- sectional	Patients with community-acquired primary pyodermas	Infected lesion (exudate / pus)	Dermatology outpatient clinic in a hospital	Not defined	86	1	1	70
110	98	Qiao et al.	2013	Hospital	2006	2011	China	Cross- sectional	Hospitalized patients ≤ 14 years old	Sterile body site; Lung aspirate; Empyema; Others (not explicitly stated)	A hospital (wards not specified)	Epidemiological	235767	29	161	161

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.		publication	s	Date	Date		design	· F · · · · · · · · · · · · · · · · · ·			CA-MRSA	Size	CA- MRSA	MRSA	SA
*111	99	Qiao et al.	2014	Hospital	Dec 2011	Feb 2013	China	Cross- sectional	Patients with invasive community-acquired S. aureus infections	Sterile body site; other (not explicitly stated)	Three regional children's hospitals (wards not specified)	Epidemiological	163	71	71	163
*112	100	Ravishankar et al.	2014	Commu nity	Feb 2013	Aug 2013	India	Cross- sectional	Patients with community-acquired SSTIs	Purulent materials	Outpatient department / Emergency of a surgical unit in a hospital	Epidemiological	73	11	11	45
113	101	Rijal et al.	2008	Commu nity	Jul 2007	Nov 2007	Nepal	Cross- sectional	School children aged 1-15 years old	Nose	School (not explicitly stated)	Not defined	184	32	32	57
114	102	Ro et al.	2012	Commu nity	Jan 2007	Dec 2008	South Korea	Cross- sectional	All patients visiting the emergency department	Blood; Sputum; Urine; Body fluid; Rectal	A hospital (emergency department)	Not defined	89206	939	939	939
*115	103	Sahoo et al.	2014	Commu nity	Jul 2009	Dec 2010	India	Cross- sectional	Patients with SSTIs	Pus	Outpatient clinic of a hospital	Not defined	590	251	251	387
*116	104	Shetty et al.	2014	Commu nity	Jul 2010	Sep 2010	India	Cross- sectional	Children attending well-child visits or a school	Nose	A well-child clinic of a hospital / a school	Not defined	500	4	4	126
*117	105	Sit et al.	2017	Hospital	Jan 2011	Dec 2012	Malaysia	Cross- sectional	Adult inpatients (>16 years old) with MRSA infection	Sterile sites (Cerebrospinal fluid; Synovial fluid; Tissue; Bone; Pus; Blood)	A hospital (ward not specified)	Epidemiological	209	65	209	209
*118	106	Song et al.	2011	Hospital	Sep 2004	Aug 2006	South Korea	Cross- sectional	Patients with S. aureus infection	Sputum; Blood; Pus; Urine	Tertiary- or secondary-care teaching hospitals in urban areas (wards not specified)	Epidemiological	852 °	23 °	570 °	852 °
*119	106	Song et al.	2011	Hospital	Sep 2004	Aug 2006	Taiwan	Cross- sectional	Patients with S. aureus infection	Sputum; Blood; Pus; Urine	Tertiary- or secondary-care teaching hospitals in urban areas (wards not specified)	Epidemiological	844 ^c	94 ^c	467 ^c	844 °
*120	106	Song et al.	2011	Hospital	Sep 2004	Aug 2006	Hong Kong	Cross- sectional	Patients with S. aureus infection	Sputum; Blood; Pus; Urine	Tertiary- or secondary-care teaching hospitals in urban areas (wards not specified)	Epidemiological	427 °	7°	203 °	427 °
*121	106	Song et al.	2011	Hospital	Sep 2004	Aug 2006	The Philippines	Cross- sectional	Patients with S. aureus infection	Sputum; Blood; Pus; Urine	Tertiary- or secondary-care teaching hospitals in urban areas (wards not specified)	Epidemiological	190 °	28 °	65 °	190 °

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.	124444	publication	Seeming	Date	Date	Country	design	z opumon		Boomion	CA-MRSA	Size	CA- MRSA	MRSA	SA
*122	106	Song et al.	2011	Hospital	Sep 2004	Aug 2006	Thailand	Cross- sectional	Patients with S. aureus infection	Sputum; Blood; Pus; Urine	Tertiary- or secondary-care teaching hospitals in urban areas (wards not specified)	Epidemiological	438 °	3 °	183 °	438 °
*123	106	Song et al.	2011	Hospital	Sep 2004	Aug 2006	Vietnam	Cross- sectional	Patients with S. aureus infection	Sputum; Blood; Pus; Urine	Tertiary- or secondary-care teaching hospitals in urban areas (wards not specified)	Epidemiological	801 °	197 °	306°	801 °
*124	106	Song et al.	2011	Hospital	Sep 2004	Aug 2006	India	Cross- sectional	Patients with S. aureus infection	Sputum; Blood; Pus; Urine	Tertiary- or secondary-care teaching hospitals in urban areas (wards not specified)	Epidemiological	139 °	2 °	23 °	139 °
*125	106	Song et al.	2011	Hospital	Sep 2004	Aug 2006	Sri Lanka	Cross- sectional	Patients with S. aureus infection	Sputum; Blood; Pus; Urine	Tertiary- or secondary-care teaching hospitals in urban areas (wards not specified)	Epidemiological	426 °	19 °	345 °	426 ^c
126	107	Tangchaisur iya et al.	2014	Commu nity	2010	2011	Thailand	Cross- sectional	Healthy children	Nose	3 primary schools	Not defined	217	5	5	78
*127	108	Tong et al.	2009	Hospital	Apr 2006	Apr 2007	Australia	Case- control ^e	Patients with <i>S. aureus</i> clinical isolates	Various sites (Not explicitly stated)	Three top end hospitals (wards not explicitly stated) ^{aa}	Molecular	1499 ^{ab}	226 ^{ab}	333 ^{ab}	1499 ab
*128 ac	109	Tong et al.	2010	Hospital	Apr 2006	Apr 2007	Australia	Case- control ^e	Patients with <i>S. aureus</i> clinical isolates	Various sites (Not explicitly stated)	A top end hospitals (emergency department excluded)	Molecular	965 ^{ad}	174 ^{ad}	282 ^{ad}	965 ^{ad}
*129	110	Tsao et al.	2014	Hospital	Jan 2006	Dec 2010	Taiwan	Cross- sectional	Patients with MRSA isolates causing invasive infections	Sterile sites (Blood; Pleural effusion; Ascites; Biopsied tissues; Synovial fluid; Lymph node aspiration; Broncho- alveolar lavage; Cerebrospinal fluid)	20 medical centers and regional hospitals (wards not specified)	Molecular	670	240	670	670
*130	111	Umashankar Nagaraju et al.	2004	Commu nity	Jan 2000	Jul 2001	India	Cross- sectional	Patients with community-acquired pyoderma attending outreach camp	Skin lesions; Nose	Outreach camp	Not defined	250	22	22	202
131	112	Van Nguyen et al.	2014	Commu nity	Feb 2012	Jun 2012	Vietnam	Cross- sectional	Children and adults	Nose; Throat	Two districts (urban and rural)	Not defined	1016	80	80	303

Study	Article	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No.	No.	Author	publication	Setting	Date	Date	Country	design	1 opulation	isolation site	Location	CA-MRSA	Size	CA- MRSA	MRSA	SA
132	113	Verwer et al.	2012	Hospital	Dec 2007	Apr 2008	Australia	Cross- sectional	Health care workers (nurse, doctor, allied health, patient care assistant, others)	Nose	An adult tertiary hospital (wards not specified)	Molecular	1542	43 ^b	52	52
133	114	Vlack et al.	2006	Commu nity	Oct 2004	Oct 2004	Australia	Cross- sectional	Primary school children living in an indigenous community	Nose; Throat; Skin lesions	A local primary school	Not defined	92	14	14	27
134	115	Wan et al.	2012	Commu nity	Jul 2008	Nov 2009	Taiwan	Cross- sectional	Pet owners	Nose	A university veterinary hospital, and several private veterinary clinics	Not defined	787	22	22	94
*135	116	Wang et al.	2008	Commu nity	Jan 2001	Dec 2006	Taiwan	Cross- sectional	Patients with community-onset <i>S. aureus</i> bacteremia ^{ae}	Blood	A hospital (emergency department)	Epidemiological	580	30	30	580
136	117	Wang et al.	2009	Commu nity	Oct 2007	Dec 2007	Taiwan	Cross- sectional	Adults who attended mandatory health examinations	Nose	Three medical centres (mandatory health checkup)	Not defined	3098	119	119	686
137	117	Wang et al.	2009	Commu nity	Oct 2007	Dec 2007	Taiwan	Cross- sectional	Household members of CA- MRSA carriers	Nose	Households	Not defined	242	64	64	64
*138	118	Wang et al.	2010	Hospital	Jan 2006	Dec 2006	Taiwan	Cross- sectional	Hospitalized adults (>16 years) with MRSA bacteremia	Blood	A university hospital (wards not specified)	Epidemiological	159	7	159	159
*139	119	Wang et al.	2010	Hospital	Jan 2006	Dec 2008	Taiwan	Cross- sectional	Hospitalized adults (>18 years) with MRSA bloodstream infection	Blood	A hospital (wards not specified)	Molecular	308	47 ^{am}	308	308
140	120	Wang et al.	2010	Hospital	Jan 2004	Dec 2006	China	Case- control ^e	Hospitalized patients with Type 2 diabetes with foot ulcers	Ulcer sites	A hospital (Diabetic foot care center)	Epidemiological	118	7	21	NA ^b
141	121	Wang et al.	2010	Hospital	Sep 2008	Sep 2009	Taiwan	Cross- sectional	Hospitalized patients	Nostril; Throat/ Sputum; Axillae; Inguinal area	A hospital (intensive care unit)	Molecular	1703 ^{af}	31	81	81
*142	122	Wang et al.	2015	Hospital	Jan 2011	Dec 2013	Taiwan	Cohort (Retrosp ective)	Hospitalized adults (>18 years) with S. aureus bacteremia	Blood	Two hospitals (wards not specified)	Molecular	353	59	160	353
143	123	Warren	2012	NA ^a	Jan 2011	Feb 2011	Australia	Cross- sectional	Clinical staff, nonclinical staff, patients, carers and family members	Nose	A general practice	Not defined	100	3	3	26
144	124	Williamson et al.	2013	Commu nity	2005	2011	New Zealand	Cross- sectional	The entire population	Not reported	The entire population	Epidemiological	100000 ag	9.3 ^{ag, ah}	18 ag, ah	18 ag, ah
*145	125	Wu et al.	2010	Commu nity	Aug 2008	Jul 2009	China	Cross- sectional	Children with SSTIs	Skin and soft tissue (not explicitly stated)	A hospital (outpatient)	Not defined	1104 ^{ai}	14	14	351 ^{aj}
146	126	Wu et al.	2011	Hospital	Jul 2004	Jul 2009	Taiwan	Cross- sectional	Hospitalized adults (≥18 years) with infective endocarditis	Blood	A hospital (wards not specified)	Epidemiological	192 ^b	NA ^b	NA ^b	NA ^b
147	127	Wu et al.	2013	Hospital	2007	2007	Taiwan	Cross- sectional	Patients with pneumonia	Sputum; Tracheal aspirates; Broncho- alveolar lavage fluid; Pleural effusions; Blood; Urine	Six hospitals (wards not specified)	Epidemiological	1646	19	49	84
*148	128	Wu et al.	2013	Hospital	Jan 2004	Dec 2008	Taiwan	Cross- sectional	Patients with community-onset MRSA bacteremia and end-stage renal disease	Blood; vascular catheter tip	A hospital (wards not specified)	Molecular	57	10	57	57
149	129	Wu et al.	2017	Commu nity	Oct 2009	Feb 2010	Taiwan	Cross- sectional	HIV-infected outpatients	Nose ak	Three hospitals (outpatients)	Not defined	714 ^{ak}	28 ^{ak}	28 ^{ak}	228 ak

	rticle	Author	Year of	Setting	Start	End	Country	Study	Population	Isolation site	Location	Definition of	Sample	Number	of individua	als with
No. No	lo.		publication		Date	Date		design				CA-MRSA	Size	CA-	MRSA	SA
														MRSA		
150 130	30	Xie et al.	2016	Hospital	Jan	Dec	China	Cross-	Hospitalized patients with S.aueus	Skin lesion;	A hospital	Epidemiological	587	23 am	67	587
					2006	2011		sectional	infection	Pus; Sputa;	(wards not					
										Bone	specified)					
*151 13	31	Yao et al.	2010	Hospital	Dec	Jun	China	Cross-	Hospitalized patients with purulent	Pus from	A hospital	Epidemiological	111	24	60	111
				_	2002	2008		sectional	SSTIs	infected lesion	(wards not					
											specified)					
*152 133	32	Zhao et al.	2012	Commu	Jan	Aug	China	Cross-	Outpatients with SSTIs	Infected sites	Four hospitals	Epidemiological	501	5	5	164
				nity	2009	2010		sectional	*		(surgical/dermat					
				•							ological					
											outpatient clinic)					

Notes: *Studies reporting CA-MRSA carriage prevalence among *S.* aureus/MRSA/Bloodstream infected patients.

^b Numbers only available in number of episodes / isolates/ strains (not individual):

Study 15: 106 episodes

Study 46: 53 episodes

Study 51: 77 isolates

Study 78: 32 episodes (i.e. 32 or 31 individuals)

Study 100: 100 subjects / 3 strains / 3 strains / 3 strains

Study 102: 100 subjects / 5 strains / 5 strains / 5 strains

Study 132: 43 isolates (i.e. 42/43 subjects) (values leading to higher prevalence was assumed)

Study 140: 41 isolates

Study 146: 192 subjects giving 200 episodes / 14 episodes / 44 episodes / 109 episodes

^d Inappropriate study design to infer CA-MRSA prevalence

Study 61: case-control; 168 / 84 / 84 / 84

Study 76: matched case-control: 254 / 27 / 27 / 27

Study 79: matched case-control; 360 / 134 / 134 / not provided

^e The analysis approach is case-control, but the recruitment regime is "cross-sectional"

f Cross-sectional more than once

Study 25: Twice (Sept 2005 – Dec 2007, Jul 2008 – Dec 2010)

Study 144: annual

g The study design was partly longitudinal, but the longitudinal data was not used in this review or in the original article.

Study 35: Patients found to be colonized with S. aureus in the cross-sectional study were asked to return for follow-up swabs to measure the persistence of carriage.

Study 40: 236 children attended study twice in Miyagi. But the article uses cross-sectional approach to analyze data

Study 44: This study was longitudinal in nature, but the way we extracted our data was "cross-sectional": number of individuals with at least one specimen positive for MRSA/SA is regarded as "number of individuals carrying SA/MRSA".

Study 57: And longitudinal as well

Study 64: The study was longitudinal in nature, but the way we extracted our data was cross-sectional.

For Round I, # of individual = 245, # of SA = 30 + 9 = 39, # of MRSA = 9, MRSA / Total = 3.7%

For Round II, # of individual = 284, # of SA = 34 + 11 = 45, # of MRSA = 11, MRSA / Total = 3.9%

Data of the study round with higher MRSA prevalence is taken.

h The article contains additional studies which are not included in this review. These additional studies were not included as the article did not define explicitly for CA-MRSA nor the conditions list in Appendix 3 were not fulfilled.

Study 21: It contains another study about isolating MRSA (without defining HA- and CA-) in hospitals among HCWs (doctor/nursing staff/.../cleaners)

Study 32: Doctors, nurses and inpatients were not included in this appendix because they were affiliated to hospitals and information from the article is not sufficient to distinguish CA-MRSA

Study 49: Only pediatricians affiliated to clinics are considered. For those affiliated to hospitals, CA-MRSA was not defined in the article, nor the conditions in Appendix 3 Item 4(ii)(iii) were fulfilled.

Study 52: Only outpatients were included (but not ICU / wards) because CA-MRSA was not defined in the article, nor the conditions in Appendix 3 Item 4(ii)(iii) were fulfilled.

Study 55: Another study was described by this article: 100 randomly selected indoor patients from a surgical ward were asked to provide one nasal swab. The nasal swabs was collected at the time of admission. 26/100 patients were shown to carry S. aureus, and no work was further done to isolate MRSA from these 26 patients. On the other hand, among 74/100 patients NOT carrying S.aureus at the time of admission, 28 were shown to carry HA-MRSA later (after 72 hours of admission). Since no data is related to CA-MRSA, this study was not extracted in this Appendix.

Study 58, 59: A third study was documented by this article to investigate the incidence of S.aureus bacteremia in hospital settings. The unit used in reporting is "number of isolates" (not individuals). There were 128 episodes of S.aureus bacteremia (i.e. 128 S.aureus isolates). Three out of 128 isolates were MRSA. However, because not further information was given to distinguish CA-MRSA, this study was not extracted in this Appendix.

Study 88: This article also documented another study consisting of 393 individuals from health-care facility-related setting. Since there is no way to define CA-MRSA from this study, it is not included in this Appendix.

Study 103, 104: This article also documents family analysis for 4 families with one MRSA-positive healthy children. Since (i) results were only mentioned for 3 families in the article, (ii) the epidemiological assessment for whether family members fulfill CA-MRSA definition are not mentioned, we therefore do not include this family-member study in this Appendix.

^a No clear classification between community and hospital settings in this study population.

^c These four numbers were all "numbers of isolates" and the corresponding number of individuals were not provided.

¹ There was another group of study population: Patients with laboratory-confirmed 2009 pandemic influenza A(H1N1) > 2 days of admission. But the data was not used.

^j Not provided

k Stricter definition (both molecular and epidemiological were fulfilled) were adopted to extract this number of CA-MRSA cases

¹ Serum was for measuring 25OH(D).

^m The article uses non-multi resistant MRSA (nmMRSA) to define CA-MRSA. But when the article really reports, they use "MRSA" but not "nmMRSA".

- ⁿ Survey time for Kyoto and Saga are not explicitly stated.
- ^o "Nursery" and this "not-explicitly-stated" locations were assumed to be community settings.
- ^p These numbers are derived from longitudinal samples with meaning that: (for example) There are 110 subjects EVER positive for MRSA among the 243 subjects EVER positive for SA.
- ^q Well-child health visit should be part of the outpatient setting in a hospital
- ^T Epidemiological definition for CA-MRSA infection ("MRSA infection documented within 72 hours of admission") was only available for the index case children.
- ^s "Outdoor services" was interpreted as outpatient settings as "indoor patients" was used to describe inpatients in a surgical ward.
- ^t Exact month is extracted from Study 60
- ^u ST72-MRSA-IV is assumed to be one of the CA-MRSA representative strain.
- This study is described in the method section of Article 68. For full details of Study 73, please refer to this article: "Nasal carriage of Staphylococcus aureus from Healthy children Attending Day Care Center" which is excluded in the current review because the full text is in Korean.
- "They use the term "community-acquired". But this term is not defined explicitly in the article. The article only explicitly define "healthcare-associated"
- ^x It was reported in the abstract that the MSSA carriage was 202/699, but in the main text (Table 1) it was reported that the S.aureus carriage was 202/699. We take it that: S.aureus = 202/699. On the other hand, it is also possible that the 5 specimens can co-host MRSA and MSSA.
- y After reading the main text, the sample size being 200 for Philippines should be a typo. It was mentioned "100 college students" and "200 samples (nose / palm)" in the main text.
- ^z The term "community-associated" is implicitly used among "newly admitted patients", and the way to define "newly admitted patients" is in lack. This number is extracted based on the assumption that "newly admitted patients" fulfilled the conditions list in Appendix III Item 4 Point (ii).
- ^{aa} Three Top End Hospitals include Royal Darwin Hospital (RDH)
- ab Based on overall recruited samples from the 3 Top End Hospitals minus the data from emergency department of RDF.
- ^{ac} Data already included in Study 127.
- ^{ad} Data from emergency department (as identified from Study 127 / Article 108) were excluded.
- ae "community-onset" was not defined.
- ^{af} Excluding 203 patients who had already carried MRSA before being admitted to ICU.
- ag This number was after adjusting the "3323 MRSA isolates identified from 2005-2011 throughout New Zealand" to the population data
- ^{ah} The largest yearly prevalence was selected from 2005 to 2011
- ai It is not explicitly stated whether these 1104 children were Saureus SSTI or simply SSTI, But it was taken to mean that they were simply SSTI.
- ^{aj} According to the article, the 351 cases are Saureus SSTI fulfilling inclusion criteria of the study (which we interpret as the criteria for "community-acquired"), i.e. 351 CA-MRSA cases. Since the number of HA-MRSA was not reported, this number (i.e. 351) represents the conservative number of individuals with SA in this sample.
- ak To detect S.aureus and MRSA colonization, 714 patients ("all-patient group") gave nasal specimens among whom 457 patients ("457-patient subgroup") additionally gave oral specimens. To allow comparisons, only results from "all-patient group" were extracted.
- ^{al} These 1285 subjects consists of 103 Kyoto subjects who joined the survey twice.
- am The number of CA-MRSA cases here represent a conservative estimate out of the sample size because not all related samples were test.
 - Study 17: Only 38 (out of 57) MRSA isolates were used to identify the 6 CA-MRSA cases
 - Study 20: Only 127 (out of 151) MRSA isolates were used to identify the 27 CA-MRSA cases
 - Study 24: Only 703 (out of 713) MRSA isolates were used to identify the 275 CA-MRSA cases
 - Study 36: Among 57 (out of 4491) subjects with positive respiratory tract culture, 7 were excluded (due to chronic suppurative lung disease) and only 50 of them were tested for S.aureus and MRSA.
 - Study 37: Among 40 (out of 583) subjects with surgical site infection, only 28 (out of 40) were tested for S.aureus and MRSA.
 - Study 58: 455 subjects provided 563 samples, and 323 samples (out of 563) were S.aureus. Only 299 (out of 323) samples were used to identify 20 CA-MRSA samples (from 14 subjects).
 - Study 94: Only 78 (out of 129) MRSA isolates were available from laboratory to classify CA-MRSA
 - Study 139: Only 253 (out of 308) non-duplicated MRSA isolates were eligible for microbiological analysis
 - Study 150: Only 62 (out of 67) were used to identify CA-MRSA because there were 5 samples from which strains could not be recovered.

Appendix IX. Reference list for the 132 included articles

The order of articles in this reference list corresponds to the article number (i.e the second column) in Appendix VIII.

- 1. Ansari S, Gautam R, Shrestha S, Ansari SR, Subedi SN, Chhetri MR. Risk factors assessment for nasal colonization of Staphylococcus aureus and its methicillin resistant strains among pre-clinical medical students of Nepal. *BMC Res Notes*. 2016;9(1):214.
- 2. Batabyal BI, Biswas S, Mandal B, Desai PD, De Sarkar NA. Oral suffering and antimicrobial susceptibility of Staphylococcus aureus in a dental hospital in Kolkata, India. *Int J Pharm Bio Sci.* 2012;3(4):620-629.
- 3. Bennett CM, Coombs GW, Wood GM, et al. Community-onset Staphylococcus aureus infections presenting to general practices in South-eastern Australia. *Epidemiol and Infect.* 2014;142(3):501-511.
- 4. Bhat YJ, Hassan I, Bashir S, Farhana A, Maroof P. Clinico-bacteriological profile of primary pyodermas in Kashmir: a hospital-based study. *J R Coll Physocoams Edinb*. 2016;46(1):8-13.
- 5. Bouchiat C, El-Zeenni N, Chakrakodi B, Nagaraj S, Arakere G, Etienne J. Epidemiology of Staphylococcus aureus in Bangalore, India: emergence of the ST217 clone and high rate of resistance to erythromycin and ciprofloxacin in the community. *New Microbes New Infect*. 2015;7:15-20.
- 6. Brennan L, Lilliebridge RA, Cheng AC, Giffard PM, Currie BJ, Tong SY. Community-associated meticillin-resistant Staphylococcus aureus carriage in hospitalized patients in tropical northern Australia. *J Hosp Infect*. 2013;83(3):205-211.
- 7. Britton PN, Andresen DN. Paediatric community-associated Staphylococcus aureus: A retrospective cohort study. *J Paediatr Child Health*. 2013;49(9):754-759.
- 8. Buntaran L, Hatta M, Sultan AR, Dwiyanti R, Sabir M. Scc mec type II gene is common among clinical isolates of methicillin-resistant Staphylococcus aureus in Jakarta, Indonesia. *BMC Res Notes*. 2013;6(1):110.
- 9. Chang CJ, Chen NC, Lao CK, Huang YC. Nasal Staphylococcus aureus and methicillin-resistant S. aureus carriage among janitors working in hospitals in northern Taiwan. *PLoS One*. 2015;10(9):e0138971.
- 10. Changchien CH, Chen YY, Chen SW, Chen WL, Tsay JG, Chu C. Retrospective study of necrotizing fasciitis and characterization of its associated Methicillin-resistant Staphylococcus aureus in Taiwan. *BMC Infect Dis.* 2011;11(1):297.

- 11. Changchien CH, Chen SW, Chen YY, Chu C. Antibiotic susceptibility and genomic variations in Staphylococcus aureus associated with Skin and Soft Tissue Infection (SSTI) disease groups. *BMC Infect Dis.* 2016;16(1):276.
- 12. Chatterjee SS, Ray P, Aggarwal A, Das A, Sharma M. A community-based study on nasal carriage of Staphylococcus aureus. *Indian J Med Res.* 2009;130(6):742-748.
- 13.Chen CJ, Huang YC, Chiu CH, Su LH, Lin TY. Clinical features and genotyping analysis of community-acquired methicillin-resistant Staphylococcus aureus infections in Taiwanese children. *Pediatr Infect Dis J.* 2005;24(1):40-45.
- 14.Chen SY, Wang JL, Chen TH, et al. Differences between methicillin-resistant Staphylococcus aureus bacteremic isolates harboring type IV and type V staphylococcal cassette chromosome mec genes based on prior patient healthcare exposure. *Eur J Clin Microbiol Infect Dis.* 2010;29(12):1539-1546.
- 15.Chen CB, Chang HC, Huang YC. Nasal meticillin-resistant Staphylococcus aureus carriage among intensive care unit hospitalised adult patients in a Taiwanese medical centre: one time-point prevalence, molecular characteristics and risk factors for carriage. *J Hosp Infect*. 2010;74(3):238-244.
- 16.Chen CJ, Hsu KH, Lin TY, Hwang KP, Chen PY, Huang YC. Factors associated with nasal colonization of methicillin-resistant Staphylococcus aureus among healthy children in Taiwan. *J Clin Microbiol*. 2011;49(1):131-137.
- 17. Chen SY, Chiang WC, Ma MM, et al. Predicting methicillin resistance among community-onset Staphylococcus aureus bacteremia patients with prior healthcare-associated exposure. *Eur J Clin Microbiol Infect Dis.* 2012;31(10):2727-2736.
- 18. Chen Y, Liu Z, Duo L, Xiong J, Gong Y, Yang J, Wang Z, Wu X, Lu Z, Meng X, Zhao J. Characterization of Staphylococcus aureus from Distinct Geographic Locations in China: An Increasing Prevalence of spa-t030 and SCC mec Type III. *PLoS One*. 2014;9(4):e96255.
- 19. Chen B, Dai X, He B, Pan K, Li H, Liu X, Bao Y, Lao W, Wu X, Yao Y, Huang S. Differences in Staphylococcus aureus nasal carriage and molecular characteristics among community residents and healthcare workers at Sun Yat-Sen University, Guangzhou, Southern China. *BMC Infect Dis.* 2015;15(1):303.
- 20. Chou YH, Lee MS, Lin RY, Wu CY. Risk factors for methicillin-resistant Staphylococcus aureus skin and soft-tissue infections in outpatients in Taiwan. *Epidemiology & Infection*. 2015;143(4):749-753.
- 21. Chung HJ, Jeon HS, Sung H, Kim MN, Hong SJ. Epidemiological characteristics of methicillin-resistant Staphylococcus aureus isolates from children with eczematous atopic dermatitis lesions. *J Clin Microbiol*. 2008;46(3):991-995.
- 22. Coombs GW, Pearson JC, Nimmo GR, et al. Antimicrobial susceptibility of Staphylococcus aureus and molecular epidemiology of meticillin-resistant S.

- aureus isolated from Australian hospital inpatients: Report from the Australian Group on Antimicrobial Resistance 2011 Staphylococcus aureus Surveillance Programme. *J Glob Antimicrob Resist.* 2013;1(3):149-156.
- 23. Deng JJ, Wan CM, Mu DZ, et al. Nasal carriage of community-acquired staphylococcus aureus and drug sensitivity tests in healthy children in Chengdu. *Journal of Sichuan University*. 2012;43(3):391-394.
- 24. Dey S, Rosales-Klintz S, Shouche S, Pathak JP, Pathak A. Prevalence and risk factors for nasal carriage of Staphylococcus aureus in children attending anganwaries (preschools) in Ujjain, India. *BMC Res Notes*. 2013;6(1):265.
- 25. Douglas MW, Lum G, Roy J, Fisher DA, Anstey NM, Currie BJ. Epidemiology of community- acquired and nosocomial bloodstream infections in tropical Australia: a 12- month prospective study. *Trop Med Int Health*. 2004;9(7):795-804.
- 26. Eshwara VK, Munim F, Tellapragada C, et al. Staphylococcus aureus bacteremia in an Indian tertiary care hospital: observational study on clinical epidemiology, resistance characteristics, and carriage of the Panton–Valentine leukocidin gene. *Int J Infect Dis.* 2013;17(11):e1051-e1055.
- 27. Fan J, Zhou W, Shu M, et al. Nasal carriage of community-acquired methicillin-resistant Staphylococcus aureus in healthy children from Chengdu. *Chinese journal of contemporary pediatrics*. 2011;13(1):16-19.
- 28. George K, Abdulkader JK, Sugumar M, Rajagopal GK. Prevalence of MRSA Nasal Carriage in Patients Admitted to a Tertiary Care Hospital in Southern India. *J Clin Diagn Res.* 2016;10(2):DC11.
- 29. Ghaznavi-Rad E, Shamsudin MN, Sekawi Z, et al. Predominance and emergence of clones of hospital-acquired methicillin-resistant Staphylococcus aureus in Malaysia. *J Clin Microbiol*. 2010;48(3):867-872.
- 30. Goud R, Gupta S, Neogi U, et al. Community prevalence of methicillin and vancomycin resistant Staphylococcus aureus in and around Bangalore, southern India. *Rev Soc Bras Med Trop.* 2011;44(3):309-312.
- 31. Govindan S, Maroli AS, Ciraj AM, Bairy I. Molecular epidemiology of methicillin resistant staphylococcus aureus colonizing the anterior Nares of school children of Udupi Taluk. *Indian J Med Microbiol*. 2015;33(5):129.
- 32. Gowrishankar S, Thenmozhi R, Balaji K, Pandian SK. Emergence of methicillin-resistant, vancomycin-intermediate Staphylococcus aureus among patients associated with group A Streptococcal pharyngitis infection in southern India. *Infect Genet Evol.* 2013;14:383-389.
- 33. Hart J, Hamilton EJ, Makepeace A, et al. Prevalence, risk factors and sequelae of Staphylococcus aureus carriage in diabetes: the Fremantle Diabetes Study Phase II. *J Diabetes Complications*. 2015;29(8):1092-1097.

- 34. Hayashi Y, Vaska VL, Baba H, Nimmo GR, Davis L, Paterson DL. Influenza-associated bacterial pathogens in patients with 2009 influenza A (H1N1) infection: impact of community-associated methicillin-resistant Staphylococcus aureus in Queensland, Australia. *Intern Med J.* 2012;42(7):755-760.
- 35. Henman K, Gordon CL, Gardiner T, et al. Surgical site infections following caesarean section at Royal Darwin Hospital, Northern Territory. *Healthc Infect* 2012;17(2):47-51.
- 36. Heo ST, Peck KR, Ryu SY, Kwon KT, Ko KS, Oh WS, Lee NY, Song JH. Analysis of methicillin resistance among Staphylococcus aureus blood isolates in an emergency department. *J Korean Med Sci.* 2007;22(4):682-686.
- 37. Hirakata Y, Yanagihara K, Miyazaki Y, et al. Antimicrobial susceptibilities of potential bacterial pathogens in adults with acute respiratory tract infections: Prospective Epidemiological Network Investigating Community-acquired Infection SurveiLLance In Nagasaki (PENICILLIN) Study. *Diagn Microbiol Infect Dis.* 2005;51(4):271-280.
- 38. Hisata K, Kuwahara-Arai K, Yamanoto M, et al. Dissemination of methicillinresistant staphylococci among healthy Japanese children. *J Clin Microbiol*. 2005; 43(7):3364-3372.
- 39. Ho PL, Cheung C, Mak GC, et al. Molecular epidemiology and household transmission of community-associated methicillin-resistant Staphylococcus aureus in Hong Kong. *Diagn Microbiol Infect Dis.* 2007;57(2):145-151.
- 40. Ho PL, Chuang SK, Choi YF, Lee RA, Lit AC, Ng TK, Que TL, Shek KC, Tong HK, Cindy WS, Tung WK. Community-associated methicillin-resistant and methicillin-sensitive Staphylococcus aureus: skin and soft tissue infections in Hong Kong. *Diagn Microbiol Infect Dis.* 2008;61(3):245-250.
- 41. Ho PL, Chiu SS, Chan MY, et al. Molecular epidemiology and nasal carriage of Staphylococcus aureus and methicillin-resistant S. aureus among young children attending day care centers and kindergartens in Hong Kong. *J Infect*. 2012;64(5):500-506.
- 42. Huang YC, Chen CJ. Nasal carriage of methicillin-resistant Staphylococcus aureus during the first 2 years of life in children in Northern Taiwan. *Pediatr Infect Dis J.* 2015; 34(2):131-135.
- 43. Huang WH, Hung PK. Methicillin-Resistant Staphylococcus aureus Infections in Acute Rhinosinusitis. *Laryngoscope*. 2006;116(2):288-291.
- 44. Huang YC, Hwang KP, Chen PY, Chen CJ, Lin TY. Prevalence of methicillin-resistant Staphylococcus aureus nasal colonization among Taiwanese children in 2005 and 2006. *J Clin Microbiol*. 2007;45(12):3992-3995.
- 45. Huang YC, Ho CF, Chen CJ, Su LH, Lin TY. Nasal carriage of methicillinresistant Staphylococcus aureus in household contacts of children with

- community-acquired diseases in Taiwan. *Pediatr Infect Dis J.* 2007;26(11):1066-1068.
- 46. Huang YC, Su LH, Lin TY. Nasal carriage of methicillin-resistant Staphylococcus aureus among pediatricians in Taiwan. *PLoS One*. 2013;8(11):e82472.
- 47. Hwang JH, Tsai HY, Liu TC. Community-acquired methicillin-resistant Staphylococcus aureus infections in discharging ears. *Acta Octolaryngol*. 2002; 122(8):827-830.
- 48. Hwang JH, Chu CK, Liu TC. Changes in bacteriology of discharging ears. *J Laryngol Otol.* 2002;116(9):686-689.
- 49. Indian Netwoek for Surveillance of Antimicrobial Resistance (INSAR) group. Methicillin resistant Staphylococcus aureus (MRSA) in India: Prevalence & susceptibility pattern. *Indian J Med Res.* 2013;137(2):363-369.
- 50. Ishida T, Tachibana H, Ito A, et al. Clinical characteristics of pneumonia in bedridden patients receiving home care: A 3-year prospective observational study. *J Infect Chemother*. 2015;21(8):587-591.
- 51. Ito A, Nakaminami H, Fujii T, Utsumi K, Noguchi N. Increase in SCCmec type IV strains affects trends in antibiograms of meticillin-resistant Staphylococcus aureus at a tertiary-care hospital. *J Med Microbiol*. 2015;64(7):745-751.
- 52. Jain B, Agarwal J, Singh M. Observations on community associated methicillin resistant Staphylococcus aureus carriage. *Clin Epidemiol Glob Health*. 2014; 2(1):15-18.
- 53. Jamaluddin TZ, Kuwahara-Arai K, Hisata K, et al. Extreme genetic diversity of methicillin-resistant Staphylococcus epidermidis strains disseminated among healthy Japanese children. *J Clin Microbiol*. 2008;46(11):3778-3783.
- 54. Jenney A, Holt D, Ritika R, et al. The clinical and molecular epidemiology of Staphylococcus aureus infections in Fiji. *BMC Infect Dis.* 2014;14(1):160.
- 55. Joo EJ, Chung DR, Ha YE, et al. Community-associated Panton–Valentine leukocidin-negative meticillin-resistant Staphylococcus aureus clone (ST72–MRSA-IV) causing healthcare-associated pneumonia and surgical site infection in Korea. *J Hosp Infect*. 2012;81(3):149-155.
- 56. Joo EJ, Chung DR, Ha YE, et al. Clinical predictors of community-genotype ST72-methicillin-resistant Staphylococcus aureus-SCC mec type IV in patients with community-onset S. aureus infection. *J Antimicrob Chemother*. 2012;67(7): 1755-1759.
- 57. Joshi PR, Acharya M, Aryal R, et al. Emergence of staphylococcal cassette chromosome mec type I with high-level mupirocin resistance among methicillin-resistant Staphylococcus aureus. *Asian Pac J Trop Biomed*. 2017;7(3):193-197.

- 58. Jung WJ, Kang YA, Park MS, et al. Prediction of methicillin-resistant Staphylococcus aureus in patients with non-nosocomial pneumonia. *BMC Infect Dis.* 2013;13(1):370.
- 59. Kang YC, Tai WC, Yu CC, Kang JH, Huang YC. Methicillin-resistant Staphylococcus aureus nasal carriage among patients receiving hemodialysis in Taiwan: prevalence rate, molecular characterization and de-colonization. *BMC Infect Dis.* 2012;12(1):284.
- 60. Kawaguchiya M, Urushibara N, Kuwahara O, Ito M, Mise K, Kobayashi N. Molecular characteristics of community-acquired methicillin-resistant Staphylococcus aureus in Hokkaido, northern main island of Japan: identification of sequence types 6 and 59 Panton-Valentine leucocidin–positive community-acquired methicillin-resistant Staphylococcus aureus. *Microb Drug Resist*. 2011; 17(2):241-250.
- 61. Kim ES, Song JS, Lee HJ, et al. A survey of community-associated methicillinresistant Staphylococcus aureus in Korea. *J Antimicrob Chemother*. 2007;60(5):1108-1114.
- 62. Kim ES, Kim HB, Kim G, et al. Clinical and epidemiological factors associated with methicillin resistance in community-onset invasive Staphylococcus aureus infections: prospective multicenter cross-sectional study in Korea. *PLoS One*. 2014; 9(12):e114127.
- 63. Kitti T, Boonyonying K, Sitthisak S. Prevalence of methicillin-resistant Staphylococcus aureus among university students in Thailand. *Southeast Asian J Trop Med Public Health*. 2011;42(6):1498-1504.
- 64. Ko KS, Lee JY, Baek JY, et al. Characterization of Staphylococcus aureus nasal carriage from children attending an outpatient clinic in Seoul, Korea. *Microb Drug Resist.* 2008;14(1):37-44.
- 65. Krishna BV, Patil AB, Chandrasekhar MR. Community-acquired methicillin-resistant Staphylococcus aureus infections in a south Indian city. *Southeast Asian J Trop Med Public Health*. 2004;35(2):371-374.
- 66. Kuo CY, Huang YC, Huang DT, et al. Prevalence and molecular characterization of Staphylococcus aureus colonization among neonatal intensive care units in Taiwan. *Neonatology*. 2014;105(2):142-148.
- 67.Kwon JC, Kim SH, Park SH, et al. Molecular epidemiologic analysis of methicillin-resistant Staphylococcus aureus isolates from bacteremia and nasal colonization at 10 intensive care units: multicenter prospective study in Korea. *J Korean Med Sci.* 2011;26(5):604-611.
- 68. Lee J, Sung JY, Kim YM, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus obtained from the anterior nares of healthy Korean children attending daycare centers. *Int J Infect Dis.* 2011;15(8):e558-e5563.

- 69. Lee JY, Chong YP, Kim T, et al. Bone and joint infection as a predictor of community-acquired methicillin-resistant Staphylococcus aureus bacteraemia: a comparative cohort study. *J Antimicrob Chemother*. 2014;69(7):1966-1971.
- 70. Lee CY, Tsai HC, Kunin CM, Lee SS, Chen YS. Clinical and microbiological characteristics of purulent and non-purulent cellulitis in hospitalized Taiwanese adults in the era of community-associated methicillin-resistant Staphylococcus aureus. *BMC Infect Dis.* 2015;15(1):311.
- 71. Leung YH, Lai RW, Chan AC, et al. Risk factors for community-associated methicillin-resistant Staphylococcus aureus infection in Hong Kong. *J Infect*. 2012;64(5):494-499.
- 72. Li J, Wang L, Ip M, Sun M, et al. Molecular and clinical characteristics of clonal complex 59 methicillin-resistant Staphylococcus aureus infections in Mainland China. *PLoS One*. 2013;8(8):e70602.
- 73. Liao CH, Chen SY, Chang SC, Hsueh PR, Hung CC, Chen YC. Characteristics of community-acquired and health care-associated Staphylococcus aureus bacteremia in patients treated at the emergency department of a teaching hospital. *Diagn Microbiol Infect Dis.* 2005;53(2):85-92.
- 74. Lim CJ, Cheng AC, Kong DC, Peleg AY. Community-onset bloodstream infection with multidrug-resistant organisms: a matched case-control study. *BMC Infect Dis.* 2014;14(1):126.
- 75. Lin TC, Chang CH, Hong SJ, Tsai YC, Chang CH. Methicillin-resistant Staphylococcus aureus in skin and soft tissue infections and minocyclin treatment experience in the dermatological setting of eastern Taiwan. *Dermatologica Sinica*. 2011;29(3):86-90.
- 76. Lin WT, Wu CD, Cheng SC, et al. High prevalence of methicillin-resistant staphylococcus aureus among patients with septic arthritis caused by staphylococcus aureus. *PLoS One*. 2015;10(5):e0127150.
- 77. Lin J, Xu P, Peng Y, et al. Prevalence and characteristics of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus nasal colonization among a community-based diabetes population in Foshan, China. *J Diabetes Investig.* 2017; 8(3):383-391.
- 78. Liu YC, Geng WJ, Wu DJ, et al. Molecular characteristics of methicillin resistant Staphylococcus aureus isolated from Chinese children. *Chinese journal of pediatrics*. 2012;50(1):38-44.
- 79. Liu X, Liang J, Jiang Y, et al. Molecular characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains isolated from outpatients with skin and soft tissue infections in Wuhan, China. *Pathog Dis.* 2016;74(4):ftw026.
- 80. Lo WT, Lin WJ, Tseng MH, Wang SR, Chu ML, Wang CC. Risk factors and molecular analysis of panton-valentine leukocidin-positive methicillin-resistant

- Staphylococcus aureus colonization in healthy children. *Pediatr Infect Dis J.* 2008;27(8):713-718.
- 81. Lu PL, Chin LC, Peng CF, et al. Risk factors and molecular analysis of community methicillin-resistant Staphylococcus aureus carriage. *J Clin Microbiol* 2005;43(1):132-139.
- 82. Ma XX, Luo EJ. Distribution of Staphylococcus aureus strains colonized in healthy community population and molecular epidemiological characteristics for MRSA strains. *Chinese journal of epidemiology*. 2011;32(8):804-807.
- 83. Ma XX, Sun DD, Wang S, et al. Nasal carriage of methicillin-resistant Staphylococcus aureus among preclinical medical students: epidemiologic and molecular characteristics of methicillin-resistant S. aureus clones. *Diagn Microbiol Infect Dis.* 2011;70(1):22-30.
- 84. McMullan BJ, Bowen A, Blyth CC, et al. Epidemiology and mortality of Staphylococcus aureus bacteremia in Australian and New Zealand children. *JAMA Pediatr*. 2016;170(10):979-986.
- 85. Mekviwattanawong S, Srifuengfung S, Chokepaibulkit K, Lohsiriwat D, Thamlikitkul V. Epidemiology of Staphylococcus aureus infections and the prevalence of infection caused by community-acquired methicillin-resistant Staphylococcus aureus in hospitalized patients at Siriraj Hospital. *J Med Assoc Thai*. 2006;89(Supp 5):S106-S117.
- 86. Mine Y, Nakasone I, Yamamoto Y, et al. Dissemination of Panton–Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in Okinawa, Japan. *J Dermatol.* 2013;40(1):34-38.
- 87. Moon SY, Lee HJ, Lee MS. Molecular characteristics of methicillin-resistant Staphylococcus aureus blood isolates: clonal spread of staphylococcal cassette chromosome mec type IVA between the community and the hospital. *Microb Drug Resist.* 2010;16(3):217-222.
- 88. Munckhof WJ, Nimmo GR, Schooneveldt JM, et al. Nasal carriage of Staphylococcus aureus, including community-associated methicillin-resistant strains, in Queensland adults. *Clin Microbiol Infect.* 2009;15(2):149-155.
- 89. Nickerson EK, Wuthiekanun V, Kumar V, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus carriage in children in Cambodia. *Am J Trop Med Hyg.* 2011;84(2):313-317.
- 90. Nimmo GR, Bergh H, Nakos J, et al. Replacement of healthcare-associated MRSA by community-associated MRSA in Queensland: confirmation by genotyping. *J Infect*. 2013;67(5):439-447.
- 91. Nozaki C, Masaki T, Kim SJ, et al. Comparative Prevalence of Community-Acquired-Methicillin-resistant Staphyloccocus aureus (CA-MRSA) among Students of Centro Escolar University (Philippines), Kumamoto Health Science

- University (Japan) and Daegu Health College (Korea). *Biomed Res.* 2015;26(2): 259-265.
- 92. Ozaki K, Takano M, Higuchi W, et al. Genotypes, intrafamilial transmission, and virulence potential of nasal methicillin-resistant Staphylococcus aureus from children in the community. *J Infect Chemother*. 2009;15(2):84-91.
- 93. Park SH, Park C, Yoo JH, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated bloodstream infections in Korea. *Infect Control Hosp Epidemiol*. 2009;30(2):146-155.
- 94. Park SH, Kim KJ, Kim BK, Hwang SM. Molecular Characterization of Community-Associated Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Isolates from Children with Skin Infections in Busan, Korea. *J Bacteriol.* 2015;45(2):104-111.
- 95. Park SY, Chung DR, Yoo JR, et al. Sequence type 72 community-associated meticillin-resistant Staphylococcus aureus emerged as a predominant clone of nasal colonization in newly admitted patients. *J Hosp Infect*. 2016;93(4):386-389.
- 96. Pathak A, Marothi Y, Iyer RV, et al. Nasal carriage and antimicrobial susceptibility of Staphylococcus aureus in healthy preschool children in Ujjain, India. *BMC Pediatr.* 2010;10(1):100.
- 97. Patil R, Baveja S, Nataraj G, Khopkar U. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in community-acquired primary pyoderma. *Indian J Dermatol.* 2006;72(2):126-128.
- 98. Qiao Y, Dong F, Song W, Wang L, Yang Y, Shen X. Hospital-and community-associated methicillin-resistant Staphylococcus aureus: a 6-year surveillance study of invasive infections in Chinese children. *Acta Paediatr*. 2013;102(11):1081-6.
- 99. Qiao Y, Ning X, Chen Q, et al. Clinical and molecular characteristics of invasive community-acquired Staphylococcus aureus infections in Chinese children. *BMC Infect Dis.* 2014;14(1):582.
- 100.Ravishankar A, Singh S, Rai S, Sharma N, Gupta S, Thawani R. Socio-economic profile of patients with community-acquired skin and soft tissue infections in Delhi. *Pathog Glob Health*. 2014;108(6):279-282.
- 101.Rijal KR, Pahari N, Shrestha BK, et al. Prevalence of methicillin resistant Staphylococcus aureus in school children of Pokhara. *Nepal Med Coll J.* 2008; 10(3):192-195.
- 102.Ro YS, Do Shin S, Noh H, Cho SI. Prevalence of positive carriage of tuberculosis, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococci in patients transported by ambulance: a single center observational study. *J Prev Med Public Health*. 2012;45(3):174-180.

- 103.Sahoo KC, Sahoo S, Marrone G, Pathak A, Lundborg CS, Tamhankar AJ. Climatic Factors and Community—Associated Methicillin-Resistant Staphylococcus aureus Skin and Soft-Tissue Infections—A Time-Series Analysis Study. *Int J Environ Res Public Health*. 2014;11(9):8996-9007.
- 104.Shetty V, Trumbull K, Hegde A, Shenoy V, Prabhu R. Prevalence of community-acquired methicillin-resistant Staphylococcus aureus nasal colonization among children. *J Clin Diagn Res.* 2014;8(12):DC12-5.
- 105. Sit SP, Teh CS, Idris N, et al. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infection and the molecular characteristics of MRSA bacteraemia over a two-year period in a tertiary teaching hospital in Malaysia. *BMC Infect Dis*. 2017;17(1):274.
- 106.Song JH, Hsueh PR, Chung DR, et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. *J Antimicrob Chemother*. 2011;66(5):1061-1069.
- 107. Tangchaisuriya U, Yotpanya W, Kitti T, Sitthisak S. Distribution among Thai children of methicillin-resistant Staphylococcus aureus lacking cna, fnbA and icaAD. Southeast Asian J Trop Med Public Health. 2014; 459(1):149.
- 108.Tong SY, Bishop EJ, Lilliebridge RA, et al. Community-associated strains of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus in indigenous Northern Australia: epidemiology and outcomes. *J Infect Dis.* 2009; 199(10):1461-1470.
- 109. Tong SY, Lilliebridge RA, Bishop EJ, et al. Clinical correlates of Panton-Valentine leukocidin (PVL), PVL isoforms, and clonal complex in the Staphylococcus aureus population of Northern Australia. *J Infect Dis.* 2010; 202(5): 760-769.
- 110.Tsao SM, Wang WY, Ko WC, et al. Trend in vancomycin susceptibility and correlation with molecular characteristics of methicillin-resistant Staphylococcus aureus causing invasive infections in Taiwan: results from the Tigecycline in vitro Surveillance in Taiwan (TIST) study, 2006–2010. *Diagn Microbiol Infect Dis*. 2014;80(2):162-167.
- 111.Nagaraju U, Bhat G, Kuruvila M, Ganesh SP, Ravindra PB. Methicillin-resistant Staphylococcus aureus in community-acquired pyoderma. *Int J Dermatol*. 2004;43(6):412-414.
- 112. Van Nguyen K, Zhang T, Thi Vu BN, et al. Staphylococcus aureus nasopharyngeal carriage in rural and urban northern Vietnam. *Trans R Soc Trop Med Hyg.* 2014;108(12):783-790.
- 113. Verwer PE, Robinson JO, Coombs GW, et al. Prevalence of nasal methicillinresistant Staphylococcus aureus colonization in healthcare workers in a Western Australian acute care hospital. *Eur J Clin Microbiol Infect Dis.* 2012;31(6):1067-1072.

- 114. Vlack S, Cox L, Peleg AY, et al. Carriage of methicillin-resistant Staphylococcus aureus in a Queensland Indigenous community. *Med J Aust.* 2006;184(11):556-559.
- 115. Wan MT, Fu SY, Lo YP, Huang TM, Cheng MM, Chou CC. Heterogeneity and phylogenetic relationships of community-associated methicillin-sensitive/resistant Staphylococcus aureus isolates in healthy dogs, cats and their owners. *J Appl Microbiol.* 2012;112(1):205-213.
- 116. Wang JL, Chen SY, Wang JT, et al. Comparison of both clinical features and mortality risk associated with bacteremia due to community-acquired methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus. *Clin Infect Dis.* 2008;46(6):799-806.
- 117. Wang JT, Liao CH, Fang CT, et al. Prevalence of and risk factors for colonization by methicillin-resistant Staphylococcus aureus among adults in community settings in Taiwan. *J Clin Microbiol*. 2009; 47(9):2957-2963.
- 118. Wang JL, Wang JT, Chen SY, Chen YC, Chang SC. Distribution of staphylococcal cassette chromosome mec types and correlation with comorbidity and infection type in patients with MRSA bacteremia. *PLoS One*. 2010;5(3):e9489.
- 119.Wang JT, Wang JL, Fang CT, et al. Risk factors for mortality of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection: with investigation of the potential role of community-associated MRSA strains. *J Infect*. 2010;61(6):449-457.
- 120. Wang SH, Sun ZL, Guo YJ, et al. Meticillin-resistant Staphylococcus aureus isolated from foot ulcers in diabetic patients in a Chinese care hospital: risk factors for infection and prevalence. *J Med Microbiol*. 2010;59(10):1219-1224.
- 121. Wang JT, Liao CH, Fang CT, et al. Incidence of and risk factors for community-associated methicillin-resistant Staphylococcus aureus acquired infection or colonization in intensive-care-unit patients. *J Clin Microbiol*. 2010;48(12):4439-4444.
- 122. Wang JT, Hsu LY, Lauderdale TL, Fan WC, Wang FD. Comparison of outcomes among adult patients with nosocomial bacteremia caused by Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus: a retrospective cohort study. *PLoS One*. 2015;10(12):e0144710.
- 123. Warren R. Staphylococcus aureus: A cross sectional study of prevalence and risk factors in one general practice. *Aust Fam Physician*. 2012;41(5):325-328.
- 124. Williamson DA, Roberts SA, Ritchie SR, et al. Clinical and molecular epidemiology of methicillin-resistant Staphylococcus aureus in New Zealand: rapid emergence of sequence type 5 (ST5)-SCC mec-IV as the dominant community-associated MRSA clone. *PLoS One*. 2013;8(4):e62020.

- 125.Wu D, Wang Q, Yang Y, et al. Epidemiology and molecular characteristics of community-associated methicillin-resistant and methicillin-susceptible Staphylococcus aureus from skin/soft tissue infections in a children's hospital in Beijing, China. *Diagn Microbiol Infect Dis.* 2010;67(1):1-8.
- 126.Wu KS, Lee SS, Tsai HC, et al. Non-nosocomial healthcare-associated infective endocarditis in Taiwan: an underrecognized disease with poor outcome. *BMC Infect Dis.* 2011;11(1):221.
- 127.Wu CL, Ku SC, Yang KY, et al. Antimicrobial drug-resistant microbes associated with hospitalized community-acquired and healthcare-associated pneumonia: a multi-center study in Taiwan. *J Formos Med Assoc.* 2013;112(1):31-40.
- 128.Wu HS, Kuo SC, Chen LY, et al. Comparison between patients under hemodialysis with community-onset bacteremia caused by community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus strains. *J Microbiol Immunol Infect*. 2013;46(2):96-103.
- 129.Wu CJ, Ko WC, Ho MW, et al. Prevalence of and risk factors for methicillinresistant Staphylococcus aureus colonization among human immunodeficient virus—infected outpatients in Taiwan: oral Candida colonization as a comparator. *J Oral Microbiol*. 2017;9(1):1322446.
- 130.Xie X, Bao Y, Ouyang N, et al. Molecular epidemiology and characteristic of virulence gene of community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus isolates in Sun Yat-sen Memorial hospital, Guangzhou, Southern China. *BMC Infect Dis.* 2016;16(1):339.
- 131.Yao D, Yu FY, Qin ZQ, et al. Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections (SSTIs). *BMC Infect Dis*. 2010;10(1):133.
- 132.Zhao C, Liu Y, Zhao M, et al. Characterization of community acquired Staphylococcus aureus associated with skin and soft tissue infection in Beijing: high prevalence of PVL+ ST398. *PLoS One*. 2012;7(6):e38577.

Appendix X. Characteristics of the 152 included studies

		nunity ings	Hosp setti		Aml	biguous	Over	all
	(N =	=81)	(N =	66)	(N	N = 5)	(N=1:	52)
	n	%	n	%	n	%	n	%
Study design								
Cross-sectional	76	94	53	80	5	100	134	88
Cohort	2	2	8	12	0	0	10	7
Case-control	3	4	5	8	0	0	8	5
Country								
Australia	6	7	12 *	18	1	20	19 *	13
Cambodia	1	1	1	2	0	0	2	1
China	10	12	7	11	1	20	18	12
Fiji	1	1	1	2	0	0	2	1
Hong Kong	3	4	2	3	0	0	5	3
India	15	19	4	6	1	20	20	13
Indonesia	0	0	1	2	0	0	1	1
Japan	9	11	2	3	0	0	11	7
Malaysia	0	0	2	3	0	0	2	1
Nepal	2	2	1	2	0	0	3	2
New Zealand	1	1	1 *	2	0	0	2 *	1
South Korea	6	7	10	15	2	40	18	12
Sri Lanka	0	0	1	2	0	0	1	1
Taiwan	23	28	18	27	0	0	41	27
Thailand	2	2	2	3	0	0	4	3
The Philippines	1	1	1	2	0	0	2	1
Vietnam	1	1	1	2	0	0	2	1
Study start year								
2000-2004	23	28	20	30	1	20	44	29
2005-2009	38	47	31	47	2	40	71	47
2010-2016	18	22	15	23	2	40	35	23
Not reported	2	2	0	0	0	0	2	1
Language								
Chinese	3	4	1	2	0	-	4	3
English	78	96	65	98	0	-	148	97
Isolation site								
Multiple body site	31	38	46	70	5	100	82	54
Nose only	38	47	6	9	0	0	44	29
Blood only	6	7	11	17	0	0	17	11
Throat only	1	1	0	0	0	0	1	1
Oral cavity only	1	1	0	0	0	0	1	1
Throat only	2	2	0	0	0	0	2	1
Not reported	2	2	3	5	0	0	5	3

^{*} One study conducted in New Zealand and Australia

Appendix XI. Types of CA-MRSA definition employed by the 152 included studies

Definition Types		Community settings		Hospital settings	Unclassified		
	No. of study	Study Numbers	No. of study	Study Numbers	No. of study	Study Numbers	
Epidemiological	20	16 ^a ,19,34,41,42,46,56,65,69,78,81,86, 95,96,103,104,112,135,144,152	40	5,8,12,13,15,27,28 ^b ,53,60,61,63,67, 72 ^a ,74,75,76 ^c ,77,80,91,92,94,97,105 ^a , 110,111,117,118,119,120,121,122, 123,124,125,138,140,146,147,150, 151	5	3,20,66,70,106	
Molecular	7	16 ^a ,33,43,58,99,101,102	17	6,7,24,36,59, 72 ^a , 76 ^c , 98, 105 ^a , 127,128,129,132,139,141,142,148	0	-	
Clinical	0	-	3	28 ^b ,30, 76 ^c	0	-	
Not defined	54	1,2,4,11,14,18,21,22,23,25,26,29,32,35, 38,39,40,44,45,47,48,49,50,51,52,55, 57,64,68,73,79,83,84,87,88,89,90,93,10 0,108,109,113,114,115,116,126,130,13 1,133,134,136,137,145,149	12	9,10,17,31,37,54,62,71,82,85,107, 143	0	-	

^a Both epidemiological and molecular definitions were adopted ^b Both epidemiological and clinical definitions were adopted

^c All epidemiological, molecular and clinical definitions were adopted

Appendix XII. The 119 studies included for meta-analysis. Studies with low risk of bias are underlined.

Appendix AII. The 119 studies ind		Community settings		Hospital settings		Both settings
	No. of studies (low risk)	Study number	No. of studies (low risk)	Study number	No. of studies (low risk)	Study number
General	(10 11 11511)		(10 11 12511)		(10 11 11011)	_
General members	9 (2)	21,32, <u>56</u> ,88, <u>95</u> ,114,131,136,14 4	9 (4)	<u>6,7</u> ,10,17, <u>30</u> ,62,107,132, <u>141</u>	18 (6)	<u>6,7</u> ,10,17,21, <u>30</u> ,32, <u>56</u> ,62,88, <u>95</u> ,107,114,131,1 32,136, <u>141</u> ,144
Subgroups without specific health condit	tions					
Children ≤ 6 years old	10 (3)	18,26, <u>43</u> ,44,47, <u>69,104*</u> ,108, 113,131	1 (0)	71	11 (3)	18,26, <u>43</u> ,44,47, <u>69</u> ,71, <u>104*</u> ,108,113,131
Children aged 7-18 years old	3 (2)	<u>69, 104*,</u> 113	-	-	-	-
Adults > 18 years old	5 (1)	68,89,90, <u>95</u> ,131	-	-	-	-
University students	5 (0)	1, 68, 89, 90, 101	-	-	-	-
Household members of CA-MRSA carriers	3 (0)	41,48,137	-	-	-	-
Pediatricians	1 (0)	49	-	-	-	-
Mothers of children aged 2 years	1 (0)	45	-	-	-	-
Janitors	1 (0)	11	1 (0)	10	2	10,11
Pet owners	1 (0)	134	-	-	-	-
Population without diabetes	1 (0)	84	-	-	-	-
Subgroups with these specific health con						
S. aureus carriage	63 (13)	1,2,4,11,14,16,18,19,21,22,23, 25,26,29,32, <u>33,34</u> ,35,38,39,40, <u>42,43</u> ,44,47,50,52, <u>56</u> ,65,68, <u>69</u> , 73, <u>78</u> ,81,83,84, <u>86</u> ,87,88,89,90, 93, <u>95</u> ,101, <u>103</u> ,104,108,109, <u>112</u> ,113,115,116,126,130,131, 133,134,135,136,144,145,149, 152	42 (4)	5,6,7,8,9,10,12,13,15,17, 24,27,28,36,37,53,62,63, 64,67,71,74,75,80,82,91, 92,94,111,118,119,120, 121,122,123,124,125, 127,142,147,150,151	105 (17)	1,2,4,5, <u>6</u> ,7,8,9,10,11,12,13,14,15, <u>16</u> ,17,18,19, 21,22,23,24,25,26, <u>27</u> ,28,29,32, <u>33</u> ,34,35,36,37 ,38,39,40, <u>42</u> ,43,44,47,50,52,53, <u>56</u> ,62,63,64, 65,67,68, <u>69</u> ,71,73,74,75, <u>78</u> ,80,81,82,83,84, <u>86</u> ,87,88,89,90,91,92,93,94, <u>95</u> ,101, <u>103</u> ,104,108, 109,111, <u>112</u> ,113,115,116,118,119,120,121, 122,123,124,125,126, <u>127</u> ,130,131,133,134, 135,136,142,144,145,147,149,150,151,152
Skin and soft tissue infections (SSTIs)	14 (3)	4,22,23, <u>42</u> ,58,81, <u>86</u> ,93,109, <u>11</u> <u>2</u> ,115,130,145,152	4 (0)	12,75,80,151	18 (3)	4,12,22,23, <u>42</u> ,58,75,80,81, <u>86</u> ,93,109, <u>112</u> ,115, 130,145,151,152
S.aureus SSTIs	-	-	1(0)	13	-	-
Oral related conditions	1 (0)	2	-	-	-	-
Respiratory system related Conditions	2 (1)	39, <u>103</u>	4 (0)	36,53,63,147	6 (1)	36,39,53,63, <u>103</u> ,147
Bacteremia	-	-	1(1)	<u>27</u>	-	-
S.aureus bacteremia	5 (2)	<u>16,</u> 19,38, <u>78,</u> 135	5 (0)	28,74,91,94,142	10(2)	<u>16,</u> 19,28,38,74, <u>78,</u> 91,94,135,142
Septic arthritis	-	-	1 (0)	82	-	-
Ear, Nose and Throat (ENT) related conditions	4 (1)	<u>34</u> ,46,50,51	-	-	-	-
Diabetes Mellitus (DM)	3 (0)	35,83,140	-	-	-	-
Human immunodeficiency virus (HIV) carriage	1 (0)	149	-	-	-	-
Renal system related conditions	-	-	1 (0)	64	-	-
Caesarean section	-	-	1 (0)	37	-	-

^{*}Extracted numbers embedded Study 102

Appendix XIII. Risk factors for CA-MRSA carriage

Settings	Target population	Risk factor	Study number
Community	General members	Gastrointestinal diseases	88
		Recent hospital admission	88
		Age <5 years old	131
		Age 6-12 years old	131
		Age 20-29 years old	131
		Wealth index >3	131
		Presence of household members under aged 7	136
	Subgroups without	Using antibiotics within the past year	136
	specific health conditions	T''' 1.4 . 1.1	1.4
	Children under 18	Living in mud-thatch houses	14
		Number of children in the family	18
		Residing in northern Taiwan	18
		Age 2-6 months	18
		Children attending pre-school	108
		Children attending school	108
		Family size > 10 members Antibiotic use in past 12 months	108 87
	I Iniversity students		
	University students	Co-morbidities with upper respiratory tract infections (URTIs)	1
		Contact with pet (dog)	1
		Recent visit to public amusement places	1
	Subgroups with these specific health conditions		
	SSTI patients	Filipino ethnicity	42
		Previous exposure to an individual who had surgery within last year	22
		MRSA nasal carriage	22
		Recent antibiotics treatment for SSTIs in the year before infection	22
	HIV carriage	Incarceration	149
Hospital	General members	Aboriginal Australian	7
		Presence of a nasogastric tube	123
		Prior usage of antipseudomonal penciling	123
		Prior usage of antifungals	123
		Being female	61
		Prior hospitalization with previous year	61
		Severe sepsis or septic shock	61
		Surgical site infection	61
	Subgroups with these specific health conditions	Sharing of personal items with other persons	76
	S.aureus carriage	Abscess formation	8
	S.aureus carriage	Completed at least 48 hours of anti-MSSA antibiotics at infection presentation	8
		Age greater than 1 year	8
		Family history of staphylococcal infection of SSTIs	8
		Infection presentation in spring	8
		Aboriginal ethnicity	8
		Being female	127
		Remote residence	127
		Bone and joint infection	74
		Cutaneous abscess	135
		Necrotizing pneumonia or empyema	135
		recrouzing pheumoma or empyema	133

Appendix XIV. Protective factors for CA-MRSA carriage

Settings	Target population	Protective factor	Study number
Community	General members	Smoking habits	136
	Subgroups without specific health conditions		
	Children under 18 years old	Breast feeding	108
		Colonization with Streptococcus pneumonia	108
Hospital	General members	Hand washing frequency of 10-19 times per day	76
		History of acne	76
		Prior usage of carbapenems	123

Appendix XV. Pooled country-specific prevalence of CA-MRSA among general members

			Commun	ity settings					Hospital	settings					Both se	ettings		
Country	Study No.	No. of studies	Pooled population	Prevalence (95% CI) ^a	Range	\mathbf{I}^2	Study No.	No. of studies	Pooled population	Prevalence (95% CI) ^a	Range	I ²	Study No.	No. of studies	Pooled population	Prevalence (95% CI) ^a	Range	\mathbf{I}^2
China	21	1	297	0.3 (0.0, 1.4)	-	-							21	1	297	0.3 (0.0, 1.4)		
India	32,56	2	938	19.5 (13.1, 26.7)	16.5-23.5	79.7	30	1	683	2.3 (1.3, 3.6)	-	-	30,32,56	3	1621	12.3 (2.2, 28.9)	2.3-23.5	98.5
Taiwan	88,136	2	4936	3.7 (3.2, 4.3)	3.5-3.8	0	10,17,141	3	1991	2.3 (1.1, 3.9)	1.8-3.6	43.0	10,17,88, 136,141	5	6927	3.0 (2.0, 4.1)	1.8-3.8	77.3
Australia	95	1	699	0.3 (0, 0.9)	-	-	6,7,132	3	1968	3.8 (0.7, 8.9)	0.9-10.4	87.8	6,7,95,13 2	4	2667	2.6 (0.6,5.8)	0.3-10.4	92.6
South Korea	114	1	89206	1.1 (1.0, 1.1)	-	-	107	1	24977	2.6 (2.4, 2.8)	-	-	107,114	2	114183	1.7 (0.6, 3.5)	1.1-2.6	99.6
Nepal	-	-	-	-	-	-	62	1	536	0.7 (0.2, 1.7)	-	-	62	1	536	0.7 (0.2, 1.7)		-
New Zealand	144	1	100000	0.0	-	-					-	-	144	1	100000	0.0*		-
Vietnam	131	1	1016	7.9 (6.3, 9.6)	-	-	-	-	-	-	-	-	131	1	1016	7.9 (6.3, 9.6)		-
Overall	21, 32, 56, 88, 95, 114, 131, 136,144	9	197092	3.9 (2.0, 6.3)	0.0 – 23.5	99.7	6, 7, 10, 17, 30, 62, 107, 132, 141, 143	9	30155	2.5 (1.7, 3.3)	0.7-10.4	81.2	6,7,10,17 ,21,30,32 ,56,62,88 ,95,107, 114,131, 132,136, 141, 144	18	227247	3.3 (2.0, 4.8)	0.0-23.5	99.6

Appendix XVI. Pooled CA-MRSA carriage prevalence among different population groups stratified based on settings

		Co	ommunity settings				H	lospital settings			Both settings				
	No. of studies	Pooled population	Prevalence (95%CI) ^a	I ² (%)	Range	No. of studies	Pooled population	Prevalence (95%CI) ^a	I ² (%)	Range	No. of studies	Pooled population	Prevalence (95%CI) ^a	I ² (%)	Range
General members															
General members	9	197092	3.9(2.0, 6.3)	99.7	0.0-23.5	9	30155	2.3 (1.5, 3.4)	87.4	0.7-10.4	18	227247	3.1 (2.0, 4.5)	99.4	0.0-23.5
Subgroups without specific health	n conditions														
Children ≤ 6 years old	10	14697	8.0(4.1,13.0)	98.7	0.5-40.3	1	251	4.4 (1.9, 6.9)	-	-	11	14948	7.6 (4.0,12.2)	98.6	0.5-40.3
Children aged 7-18 years old	3	218	3.2 (0.7, 6.5)	31.8	1.4-6.5	-	-	-	-	-	-	-	-	-	
Adults > 18 years old	5	5106	1.6 (0.7, 3.0)	88.8	0.4-4.2	-	-	-	-	-	-	-	-	-	-
University students	5	4231	1.7 (0.7, 2.9)	76.7	0.0-4.0	-	-	-	-	-	-	-	-	-	-
Household members of CA- MRSA carriers	3	409	23.0 (16.8, 29.8)	50.5	13.0-26.4	-	-	-	-	-	-	-	-	-	
Pediatricians	1	94	8.5 (3.7, 16.1)	-	-	-	-	-	-	-	-	-	-	-	
Mothers of children aged 2	1	262	8.0 (5.0, 11.6)	-	-	-	-	-	-	-	-	-	-	-	
Janitors	1	75	1.3 (0, 5.6)	-	-	1	111	3.6 (1.0, 9.0)	-	-	2	186	2.6 (0.6, 5.5)	0	1.3-3.6
Pet owners	1	787	2.8 (1.7, 4.1)	-	-	-	-	-	-	-	-	-	-	-	
Population without diabetes	1	427	2.8 (1.4, 4.6)	-	-	-	-	-	-	-	-	-	-	-	
Subgroups with these specific hea	lth condition	ns													
S. aureus carriage	63	19416	18.3 (14.3, 22.6)	98.1	0.0-74.4	42	14945	14.4 (11.2, 18.0)	96.6	0.0-43.6	105	34361	16.8 (14.0, 19.7)	97.8	0.0-74.4
SSTIs	14	5892	12.1 (5.3, 21.2)	98.8	1.0-49.1	4	953	13.7 (5.6, 24.6)	94.0	4.7-23.8	18	6845	12.5 (6.5, 19.9)	98.5	1.0-49.1
S. aureus SSTIs	-	-	-	-	-	1	307	22.1 (17.6, 27.2)	-	-	-	-	-	-	-
Oral-related conditions	1	223	2.7 (1.0, 5.8)	-	-	-	-	-	-	-	-	-	-	-	-
Respiratory system-related conditions	2	1356	1.5 (0.3, 3.5)	80.2	0.7-2.4	4	7611	0.8 (0, 2.4)	95.9	0.0-2.2	6	8967	1.0 (0.2, 2.3)	95.1	0.0-2.4
Bacteremia	-	-	-	-	-	1	257	1.2 (0.2, 3.4)	-	-					
S. aureus bacteremia	5	2897	6.8 (2.6,12.6)	96.1	1.0-27.3	5	1906	3.1 (5.1, 24.0)	96.7	0.8-38.6	10	4803	9.5 (5.5, 14.6)	96.2	0.8-38.6
Septic arthritis	-	-	-	-	-	1	194	15.9 (11.1, 21.9)	-	-		-	-	-	-
ENT-related conditions	4	1248	11.8 (3.3, 24.6)	96.9	2.7-23.8	-	-	-	-	-	-	-	-	-	
Diabetes Mellitus (DM)	3	1307	3.2 (0.9, 6.7)	86.2	1.2-5.9	-	-	-	-	-	-	-	-	-	
HIV carriage	1	714	3.9 (2.6, 5.6)	-	-	-	-	-	-	-	-	-	-	-	
Renal system related conditions	-	-	-	-	-	1	284	3.9 (1.9, 6.8)	-	-	-	-	-	-	
Caesarean section	-	-	-	-	-	1	583	1.4 (0.6, 2.7)	-	-	-	-	-	-	

^a Freeman-Tukey transformed proportion.

Abbreviations: BSI, blood stream infection; CA-MRSA, community associated methicillin-resistant *Staphylococcus aureus*; CI, confidence interval; DM, diabetes mellitus; ENT, ear, nose and throat; HIV, human immunodeficiency virus; No., number; *S. aureus*, *Staphylococcus aureus*; SSTIs, skin and soft tissue infections

^bTwo studies provided one combined data (Appendix XII, Appendix XXV)

Note: i) Combined estimates were generated using a DerSimonian-Laird random-effects model.

ii) Pooled estimates of studies should be interpreted in caution due to the high heterogeneity (12) reported in general.

Appendix XVII. Pooled prevalence of CA-MRSA antibiotic resistance among general members stratified based on settings

			Community settin	gs				Hospital settings					Both settings		
Antibiotics	No. of studies	No. of isolates	Pooled prevalence (95%CI) ^a	I ² (%)	Range	No. of studies	No. of isolates	Pooled prevalence (95%CI) ^a	I ² (%)	Range	No. of studies	No. of isolates	Pooled prevalence (95%CI) ^a	I ² (%)	Range
Macrolide	·				_					_					
Erythromycin	4^{b}	295	80.4 (54.0, 98.5)	90.0	46.8- 100.0	4	30	91.2 (71.0, 100.0)	33.2	50.0-100.0	8 ^b	325	84.7 (67.5, 97.1)	80.6	46.8-100.0
Tetracycline															
Tetracycline	1	64	95.3 (86.9, 99.0)	-	-	-	-	-	-	-	-	-	-	-	-
Minocycline	1 ^b	183	1.1 (0.1, 3.9)	-	-	-	-	-	-	-	-	-	-	-	-
Fluoroquinolones															
Ofloxacin	1	64	12.5 (5.6, 23.2)	-	-	-	-	-	-	-	-	-	-	-	-
Ciprofloxacin	2^{b}	230	7.9 (0.0, 42.3)	96.3	0.5-23.4	2	8	50.0 (6.0, 94.0)	37.7	25.0-75.0	4^{b}	238	19.2 (0.0, 57.1)	92.3	0.5-75.0
Moxifloxacin	1	64	1.6 (0.0, 8.4)	-	-	-	-	-	-	-	-	-	-	-	-
Cephalosporin															
Cephalexcin	-	-	-	-	-	1	16	100.0 (79.4, 100.0)	-	-	-	-	-	-	-
Cefoxitin	-	-	-	-	-	1	16	100.0 (79.4, 100.0)	-	-	-	-	-	-	-
Aminoglycosides															
Gentamicin	3^{b}	294	35.5 (12.2, 63.2)	94.7	21.9-64.1	1	16	100.0 (79.4, 100.0)	-	-	4^{b}	310	51.8 (21.1, 81.8)	96.0	21.9-100.0
Co-trimoxazole	2^{b}	247	12.3 (0.0, 62.4)	98.3	0.5-35.9	2	20	72.2 (0.8, 100.0)	88.1	25.0-100.0	4^{b}	267	36.4 (0.0, 88.2)	97.9	0.5-100.0
Miscellaneous															
Clindamycin	4 ^b	295	69.8 (32.0, 98.0)	94.9	25.5- 100.0	1	4	100.0 (39.8, 100.0)	-	-	5 ^b	299	73.7 (40.1, 98.0)	93.2	25.5-100.0
Mupirocin	-	-	-	-	-	1	4	25.0 (0.6, 80.6)	-	-	-	-	-	-	-
Rifampin	1	64	3.1 (0.4 10.8)	-	-	-	-	-	-	-	-	-	-	-	-

Note: Pooled estimates of studies should be interpreted in caution due to the high heterogeneity (I²) among studies.

Abbreviations: No., number

 ^a Freeman-Tukey transformed proportion
 ^b Two study provided one combined data on antibiotic resistance (Appendix XVIII, Appendix XXVI)

Appendix XVIII. Included studies for meta-analysis of antibiotics resistance among general members

	Con	nmunity settings	Hospit	al settings	Both settings			
Antibiotic	No. of studies	Study Number	No. of studies	Study number	No. of studies	Study number		
Macrolide								
Erythromycin	4	21,56,88,136*	4	10,17,30, 62	8	10,17,21,30,56,62,88,1 36*		
Tetracycline								
Tetracycline	1	88	-	-	-	-		
Minocycline	1	136*	-	-	-	-		
Fluoroquinolones								
Ofloxacin	1	88	-	-	-	-		
Ciprofloxacin	2	56,136*	2	10,62	4	10,56,62,136*		
Moxifloxacin	1	88	-	-	-	-		
Cephalosporin								
Cephalexcin	-	-	1	30	-	-		
Cefoxitin	-	-	1	30	-	-		
Aminoglycosides								
Gentamicin	3	56,88,136*	1	30	4	30, 56,88,136*		
Co-trimoxazole	2	88,136*	2	30, 62	4	30,88,127,136*		
Miscellaneous								
Clindamycin	4	21,56,88,136*	1	10	5	10,21,56,88,136*		
Mupirocin	-	-	1	62	-	-		
Rifampin	1	88	-	-	-	-		

Appendix XIX. Included studies for evaluating sources of heterogeneity of CA-MRSA carriage prevalence among general members

		Communi	ity settings			Hospital settings					
Sources of heterogeneity	No. of studies	Study number	Pooled Prevalence	95% CI	Sample Size	No. of studies	Study number	Pooled Prevalence	95% CI	Sample Size	
Gender											
Female	3	21,114,136	1.6%	(0.1, 4.6)	43176	2	7,141	5.5%	(0.0, 20.8)	1222	
Male	3	21,114,136	1.7%	(0.4, 3.9)	49404	2	7,141	4.8%	(0.2, 13.9)	682	
Settings											
Outpatient or emergency visits	3	56,114,136	6.5%	(2.1, 13.1)	92504	-	-	-	-	-	
Others ^a	6	21,32,88,95,131,144	2.9%	(0.1, 9.1)	104588	-	-	-	-	-	
Isolation sites											
Single	4	21,88,95,136	1.7%	(0.4, 3.7)	5932	5	10,30,62,107,132	2.2%	(1.6, 2.9)	27849	
Multiple	4	32,55,114,131	10.2%	(1.9, 24.1)	91160	3	6,7,141	3.4%	(0.4, 8.8)	2129	
Study year (Start year)											
2000-2004	2	32,88	8.9%	(0.5, 25.5)	2576	0		-	-	-	
2005-2009	5	56,95,114,136,144	2.6%	(0.9, 5.0)	193203	6	6,7,17,107,132,141	2.8%	(1.9, 3.9)	28825	
2010-2016	2	21,131	3.1%	(0.0, 14.4)	1313	3	10,30,62	1.8%	(0.5, 3.7)	1330	
Study year (Mid-year)											
2000-2004	1	88	3.5%	(2.7, 4.4)	1838	0		-	-	-	
2005-2009	6	32,56,95,114,136,144	4.2%	(2.0, 7.1)	193941	5	6,7,17,132,141	3.1%	(1.5,5.2)	3848	
2010-2016	2	21,131	3.1%	(0.0, 14.4)	1313	4	10,30,62,107	2.0%	(1.1, 3.1)	26307	
Study year (End year)											
2000-2004	1	88	3.5%	(2.7, 4.4)	1838	0					
2005-2009	5	32,56,95,114,136	6.2%	(2.1, 12.4)	93941	5	6,7,17,132,141	3.1%	(1.5, 5.2)	3848	
2010-2016	3	21,131,144	1.4%	(0.0, 9.7)	101313	4	10,30,62,107	2.0%	(1.1, 3.1)	26307	
Publication year				, , ,					, , ,		
2000-2008	1	88	3.5%	(2.7, 4.4)	1838	0					
2009-2014	7	32,56,95,114,131,136,144	4.7%	(2.4, 7.6)	194957	5	6,7,17,132,141	3.1%	(1.6,5.2)	3848	
2015-2016	1	21	0.3%	(0.0, 1.4)	297	4	10,30,62,107,	2.0%	(1.1,3.1)	26307	
Definition of CA-MRSA											
Presence	3	56,95,144	3.4%	(0.0, 13.7)	100899	5	6,7,30,132,141	2.9%	(1.5,4.7)	4354	
Absence	6	21,32,88,114,131,136	4.3%	(1.6, 8.4)	96193	4	10,17,62,107	2.1%	(1.0,3.6)	25801	
Countries' status											
	2	22.50	10.50/	(13.1,	029	2	20.62	1 50/	(0.2.2.4)	1010	
High-mortality developing	2	32,56	19.5%	26.7)	938	2	30,62	1.5%	(0.3, 3.4)	1219	
Low-mortality developing	5	21,88,114,131,136	2.8%	(1.0, 5.6)	95455	4	10,17,107,141	2.2%	(1.7,2.9)	26968	
Developed	2	95,144	0.1%	(0.0, 0.6)	100699	3	6,7,132	3.8%	(0.7, 8.9)	1968	
Laboratory procedures											
CLSI guidelines	7	21,32,56,88,95,131,136	5.8%	(2.4, 10.5)	7886	7	6, 7,10,17,30,62,141	2.6%	(1.3, 4.4)	3636	
No specific guideline	2	114,144	0.3%	(0.0, 2.2)	189206	2	107,132	2.6%	(2.4,2.7)	26519	

^a Others include: urban and rural areas of communities, schools and day care centers.

Abbreviations: CA-MRSA, community-associated methicillin-resistant Staphylococcus aureus; CI, confidence interval; CLSI, Clinical and Laboratory Standards Institute

Study Number	Article Numb er	Study (Year)	Q1. True or close representatio n of targeted population?	Q2. Data collected directly from the subjects?	Q3. Acceptable CA-MRSA definition used in the study?	Q4. Study instrument used to measure the parameter of interest shown to have validity and reliability?	Q5. Same mode of data collection used for all subjects?	Q6. Appropriate numerator(s) and denominato r (s) for the parameter of interest?	Overall risk of bias
1	1	Ansari et al. 2016	Yes	Yes	No	Yes	Yes	Yes	High
2	2	Batabyal et al. 2012	Yes	Yes	No	Yes	Yes	Yes	High
3	3	Bennett et al. 2014	Yes	Yes	Yes	Yes	Unknown	Yes	High
4	4	Bhat et al. 2016	Yes	Yes	No	Yes	Yes	Yes	High
5	5	Bounchiat et al. 2015	Yes	Yes	Yes	Yes	Unknown	Yes	High
6,7	6	Brennan et al. 2013	Yes	Yes	Yes	Yes	Yes	Yes	Low
9	8	Buntaran et al. 2013	Yes	Yes	No	Yes	No	Yes	High
10,11	9	Chang et al. 2015	Yes	Yes	No	Yes	Yes	Yes	High
12	10	Changchien et al. 2011	Yes	Yes	Yes	Yes	No	Yes	High
13	11	Changchien et al. 2016	Yes	Yes	Yes	Yes	Unknown	Yes	High
14	12	Chatterjee et al. 2009	Yes	Yes	No	Yes	Yes	Yes	High
15	13	Chen et al. 2005	Yes	Yes	Yes	Yes	Unknown	No	High
16	14	Chen et al. 2010	Yes	Yes	Yes	Yes	Yes	Yes	Low
17	15	Chen et al. 2010	Yes	Yes	No	Yes	Yes	No	High
18	16	Chen et al. 2011	Yes	Yes	No	Yes	Yes	Yes	High
19	17	Chen et al. 2012	Yes	Yes	Yes	No	Yes	Yes	High
20	18	Chen et al. 2014	Yes	Partial	Yes	Yes	Unknown	No	High
21	19	Chen et al. 2015	Yes	Yes	No	Yes	Yes	Yes	High
23	21	Chung et al. 2008	Yes	Yes	No	Yes	Yes	Yes	High
24	22	Coombs et al. 2013	Yes	Yes	Yes	Yes	Unknown	No	High
25	23	Deng et al. 2012	Yes	Yes	No	Yes	Yes	Yes	High
26	24	Dey et al. 2013	Yes	Yes	No	Yes	Yes	Yes	High
27	25	Douglas et al. 2004	Yes	Yes	Yes	Yes	Yes	Yes	Low
29	27	Fan et al. 2011	Yes	Yes	No	Yes	Yes	Yes	High
30	28	George et al. 2016	Yes	Yes	Yes	Yes	Yes	Yes	Low
31	29	Ghanznavi-Rad et al. 2010	Yes	Yes	No	Yes	Unknown	Yes	High
32	30	Goud et al. 2011	Yes	Yes	No	Yes	Yes	Yes	High
33	31	Govindan et al. 2015	Yes	Yes	Yes	Yes	Yes	Yes	Low

Study Number	Article Numb er	Study (Year)	Q1. True or close representation of targeted population?	Q2. Data collected directly from the subjects?	Q3. Acceptable CA-MRSA definition used in the study?	Q4. Study instrument used to measure the parameter of interest shown to have validity and reliability?	Q5. Same mode of data collection used for all subjects?	Q6. Appropriate numerator(s) and denominato r (s) for the parameter of interest?	Overall risk of bias
34	32	Gowrishankar et al. 2013	Yes	Yes	Yes	Yes	Yes	Yes	Low
35	33	Hart et al. 2015	Yes	Yes	No	Yes	Yes	Yes	High
36	34	Hayashi et al. 2012	Yes	Yes	Yes	No	No	Yes	High
37	35	Henman et al. 2012	Yes	Yes	No	No	Yes	No	High
39	37	Hirakata et al. 2005	Yes	Yes	No	Yes	Unknown	Yes	High
40	38	Hisata et al. 2005	Yes	Yes	No	Yes	Yes	Yes	High
41	39	Ho et al. 2007	Yes	Yes	Yes	Yes	Yes	Yes	Low
42	40	Ho et al. 2008	Yes	Yes	Yes	Yes	Yes	Yes	Low
43	41	Ho et al. 2012	Yes	Yes	Yes	Yes	Yes	Yes	Low
44, 45	42	Huang and Chen 2015	Yes	Yes	No	Yes	Yes	Yes	High
46	43	Huang and Hung 2006	Yes	Yes	Yes	Yes	Yes	No	High
47	44	Huang et al. 2007	Yes	Yes	No	Yes	Yes	Yes	High
48	45	Huang et al. 2007	Yes	Yes	No	Yes	Yes	Yes	High
49	46	Huang et al. 2013	Yes	Yes	No	Yes	Yes	No	High
50	47	Hwang et al. 2002	Yes	Yes	No	No	Yes	Yes	High
51	48	Hwang et al. 2002	Yes	Yes	No	No	Yes	No	High
52	49	INSAR 2013	Yes	Yes	No	Yes	Unknown	Yes	High
53	50	Ishida et al. 2015	Yes	Yes	Yes	No	Partial	Yes	High
54,55	51	Ito et al. 2015	Yes	Yes	No	Yes	Unknown	No	High
56	52	Jain et al. 2014	Yes	Yes	Yes	Yes	Yes	Yes	Low
57	53	Jamaluddin et al. 2008	Yes	Yes	No	Yes	Yes	Yes	High
59	54	Jenney et al. 2014	Yes	Yes	Yes	Yes	Unknown	No	High
62	57	Joshi et al. 2017	Yes	Yes	No	Yes	Yes	Yes	High
63	58	Jung et al. 2013	Yes	Yes	Yes	No	Unknown	Yes	High
64	59	Kang et al. 2012	Yes	Yes	No	Yes	Yes	Yes	High
65	60	Kawaguchiya et al. 2011	Yes	Yes	Yes	Yes	Unknown	Yes	High
66	61	Kim et al. 2007	Yes	Yes	Yes	Yes	Unknown	Yes	High
67	62	Kim et al. 2014	Yes	Yes	Yes	No	Unknown	Yes	High
68	63	Kitti et al. 2011	Yes	Yes	No	Yes	Yes	Yes	High
69	64	Ko et al. 2008	Yes	Yes	Yes	Yes	Yes	Yes	Low

Study Number	Article Numb er	Study (Year)	Q1. True or close representatio n of targeted population?	Q2. Data collected directly from the subjects?	Q3. Acceptable CA-MRSA definition used in the study?	Q4. Study instrument used to measure the parameter of interest shown to have validity and reliability?	Q5. Same mode of data collection used for all subjects?	Q6. Appropriate numerator(s) and denominato r (s) for the parameter of interest?	Overall risk of bias
70	65	Krishna et al. 2004	Yes	Yes	Yes	Yes	Unknown	Yes	High
71	66	Kuo et al. 2013	Yes	Yes	No	Yes	Yes	Yes	High
72	67	Kwon et al. 2011	Yes	Yes	Yes	Yes	No	No	High
73	68	Lee et al. 2011	Yes	Yes	No	Yes	Yes	Yes	High
77	72	Li et al. 2013	Yes	Yes	Yes	Yes	Unknown	Yes	High
78	73	Liao et al. 2005	Yes	Yes	Yes	Yes	Yes	Yes	Low
80, 81	75	Lin et al. 2011	Yes	Yes	Yes	Yes	Unknown	Yes	High
82	76	Lin et al. 2015	Yes	Yes	No	Yes	Unknown	Yes	High
83, 84	77	Lin et al. 2016	Yes	Yes	No	Yes	Yes	Yes	High
85	78	Liu et al. 2012	Yes	Yes	No	No	Unknown	No	High
86	79	Liu et al. 2016	Yes	Yes	Yes	Yes	Yes	Yes	Low
87	80	Lo et al. 2008	Yes	Yes	No	Yes	Yes	Yes	High
88	81	Lu et al. 2005	Yes	Yes	No	Yes	Yes	Yes	High
89	82	Ma and Luo 2011	Yes	Yes	No	Yes	Yes	Yes	High
90	83	Ma et al. 2011	Yes	Yes	No	Yes	Yes	Yes	High
92	85	Mekviwattanawong et al. 2006	Yes	Yes	Yes	No	Unknown	Yes	High
93	86	Mine et al. 2013	Yes	Yes	No	Yes	Yes	Yes	High
94	87	Moon et al. 2010	Yes	Yes	Yes	Yes	Yes	No	High
95	88	Munckof et al. 2008	Yes	Yes	Yes	Yes	Yes	Yes	Low
98, 99	90	Nimmo et al. 2013	Yes	Yes	Yes	Yes	Unknown	No	High
100, 101, 102	91	Nozaki et al. 2015	Yes	Yes	Partial	Yes	Unknown	Yes	High
103, 104	92	Ozaki et al. 2009	Yes	Yes	Yes	Yes	Yes	Yes	Low
105	93	Park et al. 2009	Yes	Yes	Yes	No	Yes	Yes	High
106	94	Park et al. 2015	Yes	Yes	Yes	No	Unknown	Yes	High
107	95	Park et al. 2016	Yes	Yes	No	No	Unknown	Yes	High
108	96	Pathak et al. 2010	Yes	Yes	No	Yes	Yes	Yes	High
109	97	Patil et al. 2006	Yes	Yes	No	Yes	Yes	No	High
110	98	Qiao et al. 2013	Yes	Yes	Yes	Yes	Unknown	Yes	High

Study Number	Article Numb er	Study (Year)	Q1. True or close representation of targeted population?	Q2. Data collected directly from the subjects?	Q3. Acceptable CA-MRSA definition used in the study?	Q4. Study instrument used to measure the parameter of interest shown to have validity and reliability?	Q5. Same mode of data collection used for all subjects?	Q6. Appropriate numerator(s) and denominato r (s) for the parameter of interest?	Overall risk of bias
111	99	Qiao et al. 2014	Yes	Yes	Yes	No	Unknown	Yes	High
112	100	Ravishankar et al. 2014	Yes	Yes	Yes	Yes	Yes	Yes	Low
113	101	Rijal et al. 2008	Yes	Yes	No	Yes	Yes	Yes	High
114	102	Ro et al. 2012	Yes	Yes	No	No	Unknown	Yes	High
115	103	Sahoo et al. 2014	Yes	Yes	No	Yes	Yes	Yes	High
116	104	Shetty et al. 2014	Yes	Yes	No	Yes	Yes	Yes	Low
117	105	Sit et al. 2017	Yes	Yes	Yes	Yes	Unknown	Yes	Low
118,119, 120,121, 122,123, 124,125	106	Song et al. 2011	Yes	Yes	Yes	Yes	Unknown	Yes	High
126	107	Tangchaisuriya et al. 2014	Yes	Yes	No	Yes	Yes	Yes	High
129	110	Tsao et al. 2014	Yes	Yes	Yes	Yes	Unknown	No	High
		Umashankar Nagaraju et al.							J
130	111	2004	Yes	Yes	No	Yes	Yes	Yes	High
131	112	Van Nguyen et al. 2014	Yes	Yes	No	Yes	Yes	Yes	High
132	113	Verwer et al. 2011	Yes	Yes	Yes	Yes	Yes	No	High
133	114	Vlack et al. 2006	Yes	Yes	No	No	Yes	Yes	High
134	115	Wan et al. 2011	Yes	Yes	No	Yes	Yes	Yes	High
135	116	Wang et al. 2008	Yes	Yes	Yes	Yes	Unknown	Yes	High
136, 137	117	Wang et al. 2009	Yes	Yes	No	Yes	Yes	Yes	High
138	118	Wang et al. 2010	Yes	Yes	Yes	Yes	Unknown	Yes	High
139	119	Wang et al. 2010	Yes	Yes	Yes	Yes	Yes	No	High
141	121	Wang et al. 2010	Yes	Yes	Yes	Yes	Yes	Yes	Low
143	123	Warren 2012	Yes	Yes	No	No	Yes	Yes	High
144	124	Williamson et al. 2013	Yes	Yes	Yes	No	Unknown	No	High
145	125	Wu et al. 2010	Yes	Yes	No	Yes	Unknown	Yes	High
146	126	Wu et al. 2011	Yes	Yes	Yes	No	Unknown	No	High
147	127	Wu et al. 2013	Yes	Yes	Yes	Yes	Unknown	Yes	High
148	128	Wu et al. 2013	Yes	Yes	Yes	Yes	Unknown	Yes	High

Study Number	Article Numb er	Study (Year)	Q1. True or close representatio n of targeted population?	Q2. Data collected directly from the subjects?	Q3. Acceptable CA-MRSA definition used in the study?	Q4. Study instrument used to measure the parameter of interest shown to have validity and reliability?	Q5. Same mode of data collection used for all subjects?	Q6. Appropriate numerator(s) and denominato r (s) for the parameter of interest?	Overall risk of bias
149	129	Wu et al. 2017	Yes	Yes	No	Yes	Yes	Yes	High
150	130	Xie et al. 2016	Yes	Yes	Yes	Yes	Unknown	No	High
151	131	Yao et al. 2010	Yes	Yes	Yes	No	Yes	Yes	High
152	132	Zhao et al. 2012	Yes	Yes	Yes	Yes	Unknown	Yes	High

Appendix XXI. Results of bias assessment of 8 case-control studies

Study Number	Article Number	Study (Year)	Q1: Adequate case definition?	Q2. Appropriate representativeness of the cases?	Q3. Appropriate selection of controls?	Q4. CA-MRSA controlled between cases and control?	Q5. Appropriate ascertainment of outcome?	Q6. Same response rate in case group and control group?	Overall risk of bias
22	20	Chou et al. 2015	No	Yes	Yes	Yes	Yes	Yes	High
38	36	Heo et al. 2007	No	Yes	Yes	Yes	Yes	Yes	High
61	56	Joo et al. 2012	Yes	Yes	Yes	Yes	Yes	Yes	Low
76	71	Leung et al. 2012	Yes	Yes	Yes	Yes	Yes	Yes	Low
79	74	Lim et al. 2014	No	Yes	Yes	Yes	Yes	Yes	High
127	108	Tong et al. 2009	Yes	Yes	Yes	Yes	Yes	Yes	Low
128	109	Tong et al. 2010	Yes	Yes	Yes	Yes	Yes	Yes	Low
140	120	Wang et al. 2010	Yes	Yes	Yes	No	Yes	Yes	High

Q1: "Yes" refers to case definition that has been independently validated or record linked or self-reported.

Q2: "Yes" refers to consecutive or obviously representative series of cases.

Q3: "Yes" refers to community/hospital controls.

Q4: "Yes" refers the control of CA-MRSA in the study among cases and controls.

Q5: "Yes" refers to secure record or method to ascertain the outcome of study.

Q6: "Yes" refers to same response rate in case group and control group.

A study is considered as low risk of bias if all answers are "Yes", otherwise the study will be considered as high risk of bias.

Appendix XXII. Results of bias assessment of 10 cohort studies

Study Number	Article Number	Study (Year)	Q1: Appropriate representation of the exposed cohort?	Q2. Appropriate selection of non-exposed group?	Q3. Appropriate ascertainment of exposure?	Q4. CA-MRSA being controlled?	Q5. Appropriate ascertainment of outcome?	Q6. Adequate follow up for all subjects?	Overall risk of bias
8	7	Britton and Andresen 2013	Yes	No	Yes	Yes	Yes	Yes	High
28	26	Eshwara et al. 2013	Yes	No	Yes	Yes	Yes	Yes	High
58	54	Jenny et al. 2014	Yes	No	Yes	Yes	Yes	Yes	High
60	55	Joo et al. 2012	Yes	No	Yes	No	Yes	Yes	High
74	69	Lee et al. 2014	Yes	No	Yes	Yes	Yes	Yes	High
75	70	Lee et al. 2015	Yes	Yes	Yes	No	Yes	Yes	High
91	84	McMullan et al. 2016	Yes	No	Yes	Yes	Yes	Yes	High
96,97	89	Nickerson et al. 2011	Yes	Yes	Yes	No	Yes	Yes	High
142	122	Wang et al. 2015	Yes	No	Yes	Yes	Yes	Yes	High

Q1: "Yes" refers to a true or close representation of targeted population drawn in the community.

Q2: "Yes" refers to appropriate selection of non-exposed group from the same community as exposed group.

Q3: "Yes" refers to ascertainment of exposure by secure records.

Q4: "Yes" refers to the control of CA-MRSA in the control group.

Q5: "Yes" refers to ascertainment of outcomes by independent blind assessment or secure records.

Q6: "Yes" refers to complete follow up for all subjects in the study.

A study is considered as low risk of bias if all answers are "Yes", otherwise the study will be considered as high risk of bias.

Appendix XXIII. CA-MRSA carriage prevalence based only on low-risk studies

			Community setti	ngs	_	_	Hospital settings					Both settings			
	No. of studies	Pooled population	Prevalence (95%CI) ^a	Range	I ² (%)	No. of studies	Pooled population	Prevalence (95%CI) ^a	Range	I ² (%)	No. of studies	Pooled population	Prevalence (95%CI) ^a	Range	I ² (%)
General members	-										-				
General members	2	899	7.6 (0, 43.6)	0.3-23.5	98.4	4	2812	3.0 (1.1, 5.9)	0.9-10.4	90.0	6	3711	4.3 (1.2, 9.2)	0.3-23.5	96.8
Subgroups without specific health c	onditions														
Children ≤ 6 years old	3	2632	1.2 (0, 3.4)	0.5-3.9	84.2	-	-	-	-	-	-	-	-	-	-
Children aged 7-18 years old	2	163	3.7(0.3, 10.0)	1.4-6.5	60.1	-	-	-	-	-	-	-	-	-	-
Adults > 18 years old	1	507	0.4 (0, 1.2)	-	-	-	-	-	-	-	-	-	-	-	-
University students	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Household members of CA- MRSA carriers	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pediatricians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mothers of children aged 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Janitors	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pet owners	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Population without diabetes	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Subgroups with these specific health	n conditions														
S. aureus carriage	13	3688	11.4 (3.9, 21.9)	1.0-40.5	98.5	4	1711	11.3 (3.9, 21.8)	2.9-30.0	90.3	17	5399	11.4 (5.6, 18.8)	1.0-40.5	98.0
SSTIs	3	1771	5.2 (1.0, 12.1)	1.5-15.1	92.8	-	-	-	-	-	-	-	-	-	-
S.aureus SSTIs	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oral-related conditions	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Respiratory system related Conditions	1	426	0.7 (0.1, 1.8)	-	-	-	-	-	-	-	-	-	-	-	-
Bacteremia	-	-	-	-	-	1	257	1.2 (0.2, 3.4)	-	-	-	-	-	-	-
S.aureus bacteremia	2	920	2.8 (0.6, 6.2)	1.0-4.2	63.2	-	-	-	-	-	-	-	-	-	-
Septic arthritis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ear, Nose and Throat (ENT) related conditions	1	265	23.8 (18.8, 29.4)	-	-	-	-	-	-	-	-	-	-	-	-
Diabetes Mellitus (DM)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Human immunodeficiency virus (HIV) carriage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Renal system related conditions	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caesarean section	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^a Freeman-Tukey transformed proportion. Combined estimates were generated by use of a DerSimonian-Laird random-effects model.

Appendix XXIV. Reasons for exclusion for studies excluded from meta-analysis.

Study Number	Reasons for exclusion
3	Ambiguous distinction between community and hospital settings
20	Ambiguous distinction between community and hospital settings
31	The denominator was number of MRSA cases.
54	The denominator was number of MRSA cases.
55	The denominator was number of MRSA cases.
57	Age group is not specified, nor information on S.aureus was given.
59	The denominator was number of MRSA cases.
60	The denominator was number of MRSA cases.
61	Inappropriate study design to estimate CA-MRSA prevalence
66	Ambiguous distinction between community and hospital settings
70	Ambiguous distinction between community and hospital settings
72	The denominator was number of MRSA cases.
76	Inappropriate study design to estimate CA-MRSA prevalence
77	The denominator was number of MRSA cases.
79	Inappropriate study design to estimate CA-MRSA prevalence
85	The denominator was number of MRSA cases.
96	Age group was not specified, nor information on S.aureus was given.
97	Age group was not specified, nor information on S.aureus was given.
98	The denominator was not reported aggregately.
99	The denominator was not reported aggregately.
100	Unmatched reporting units
102	Unmatched reporting units
105	The denominator was number of MRSA cases.
106	Ambiguous distinction between community and hospital settings
110	Age group was not specified, nor information on S.aureus was given.
117	The denominator was number of MRSA cases.
128	Duplicated data, as included in Study 127 already.
129	The denominator was number of MRSA cases.
138	The denominator was number of MRSA cases.
139	The denominator was number of MRSA cases.
143	Ambiguous distinction between community and hospital settings
146	Unmatched reporting units
148	The denominator was number of MRSA cases.

Appendix XXV. Included studies reporting CA-MRSA carriage prevalence among different age groups

Subgroups without specific health conditions	Study No.	Author	Year of publication	Settings	Sample size	CA-MRSA reported
Children ≤ 6 years old	18	Chen et al.	2011	Community	6057	473
	26	Dey et al.	2013	Community	1002	120
	43	Ho et al.	2012	Community	2211	12
	44	Hunag and Chen	2015	Community	273	110
	47	Huang et al.	2007	Community	3046	221
	69	Ko et al.	2008	Community	204	8
	71	Kuo et al.	2013	Hospital	251	11
	104*	Ozaki et al.	2009	Community	217	1
	108	Pathak et al.	2010	Community	1562	16
	113	Rijal et al.	2008	Community	40	13
	131	Van Nguyuen et al.	2014	Community	85	10
Children aged 7-18 years	69	Ko et al.	2008	Community	92	6
	104*	Ozaki et al.	2009	Community	71	1
	113	Rijal et al.	2008	Community	55	1
Adults > 18 years old	68	Kitti et al.	2011	Community	200	2
·	89	Ma and Luo	2011	Community	1634	41
	90	Ma et al.	2011	Community	2103	22
	95	Munckhof et al.	2009	Community	507	2
	131	Van Nguyuen et al.	2014	Community	662	28

^{*}Extracted data embedded Study 102

Appendix XXVI. Included studies reporting antibiotics resistance among general members

	Study No.	Author	Year of Publication	Settings	CA-MRSA sample size	Resistance reported
Macrolide group						
Erythromycin	21	Chen et al.	2015	Community	1	1
	56	Jain et al.	2014	Community	47	22
	88	Lu et al.	2005	Community	64	58
	136*	Wang et al.	2009	Community	183	152
	10	Chang et al.	2015	Hospital	4	4
	17	Chen et al.	2010	Hospital	6	6
	30	George et al.	2016	Hospital	16	16
	61	Joshi et al.	2017	Hospital	4	2
Tetracycline grou	up					
Tetracycline	88	Lu et al.	2005	Community	64	61
Minocycline	136*	Wang et al.	2009	Community	183	2
Fluoroquinolone	s group					
Ofloxacin	88	Lu et al.	2005	Community	64	8
Ciprofloxacin	56	Jain et al.	2014	Community	47	11
	136*	Wang et al.	2009	Community	183	1
	10	Chang et al.	2015	Hospital	4	1
	62	Joshi et al.	2017	Hospital	4	3
Moxifloxacin	88	Lu et al.	2005	Community	64	1
Cephalosporin gr	roup					
Cephalexcin	30	George et al.	2016	Hospital	16	16
Cefoxitin	30	George et al.	2016	Hospital	16	16
Aminoglycosides	group					
Gentamicin	56	Jain et al.	2014	Community	47	11
	88	Lu et al.	2005	Community	64	41
	136*	Wang et al.	2009	Community	183	40
	30	George et al.	2016	Hospital	16	16
Co-trimoxazole	88	Lu et al.	2005	Community	64	23
	136*	Wang et al.	2009	Community	183	1
	30	George et al.	2016	Hospital	16	16
	62	Joshi et al.	2017	Hospital	4	1
Miscellaneous						
Clindamycin	56	Jain et al.	2014	Community	47	12
	88	Lu et al.	2005	Community	64	58
	21	Chen et al.	2015	Community	1	1
	136*	Wang et al.	2009	Community	183	137
	10	Chang et al.	2015	Hospital	4	4
Rifampin	88	Lu et al.	2005	Community	64	2
Mupirocin	62	Joshi et al.	2017	Hospital	4	1

^{*}Extracted data embedded Study 137