EE336 Project Presentation

Music Generation and Visualization

Mohit Manoj - 200102106

Sanskar Kejriwal - 200102082

Manish Kumar - 200102108

Midi Files

WHAT ARE THESE ?

A file with the .MID or .MIDI file extension is a Musical Instrument Digital Interface file. Unlike regular audio files like MP3s or WAVs, these don't contain actual audio data and are therefore much smaller in size. They instead explain what notes are played, when they're played, and how long or loud each note should be.

MIDI	Note	Keyboard	Frequency	Period	
number	нате		Hz	ms	
21 23 22	A0 B0		27.500 30.868 29.135	36.36 32.40 34.32	
24 25 26 27 28	C1 D1		32.703 36.708 34.648 41.203 38.891	30.58 27.24 28.86 24.27 25.71	
28 ²⁷ 29 20	El Fl		43.654	22.91	
29 30 31 32 33 34 35	G1 Al		48,999 46,249 55,000 51,913 61,735 58,270	20.41 21.62 18.18 19.26 16.20 17.16	
36 37	B1 C2 D2	_	65.406 73.416 69.296	15.29 13.62 14.29	
40	E2 F2		82.407 77.782 87.307	12.13 12.86 11.45	
41 42 43 44 45 46	G2 A2		97.999 92.499 110.00 103.83	10.20 10.81 9.091 9.631	
45 46 47 48	B2 C3		123,47 116.54 130.81	8.099 8.581 7.645	
48 49 50 51 52	D3 E3		146.83 138.59 164.81 155.56	6.811 7.216 6.068 6.428	
53 54 55 56 57 58 59	F3 G3		174.61 196.00 185.00 220.00 207.65	5.727 5.102 5.405 4.545 4.816	0
57 58 59	A3 B3	***************************************	246.94 233.08 261.63	4.050 4.290 3.822	
60 61 62 63 64	C4 D4 E4		293.67 277.18 329.63 311.13	3.405 3.608 3.034 3.214	
65 66	F4 G4		349.23 392.00 369.99	2.863 2.551 2.703	-
69 68 71 70	A4 B4		440.00 415.30 493.88 466.16	2.273 2.408 2.025 2.145	
72 73 74 75	C5 D5		523.25 587.33 554.37 659.26 622.25	1.910 1.703 1.804 1.517 1.607	
76 77 70	E5 F5		698.46 783.99 739.99	1.432 1.276 1.351	
79 80 81 82 83	G5 A5 B5		880.00 830.61 987.77 932.33	1.136 1.204 1.012 1.073	
84 85	C6 D6		1046.5 1174.7 1108.7	0.9556 0.8513 0.9020	
88	E6 F6		13 18 5 1244.5 1396 9 1568 0 1480.0	0.7584 0.8034 0.7159 0.6378 0.6757	
91 92 93 94	G6 A6		1760.0 1661.2	0.5682 0.6020	
95 24 96 97 98 99	B6 C7		1975.5 1864.7 2093.0 2349.3 2217.5	0.5062 0.5363 0.4778 0.4257 0.4510	
00	D7 E7 F7		2637.0 2489.0 2793.0	0.3792 0.4018 0.3580	
01 102 03 104 05 106	G7 A7		3136.0 2960.0 3520.0 3322.4	0.3189 0.3378 0.2841 0.3010	
07 106 08	B7 C8	J. Wolfe, UNSW	3951.1 3729.3 4186.0	0.2531 0.2681 0.2389	

Midi Files

MIDI messages are made up of 8-bit words that are transmitted serially at a rate of 31.25 kbps. The first bit of each word identifies whether the word is a status byte or a data byte, and is followed by seven bits of information. A start bit and a stop bit are added to each byte for framing purposes, so a MIDI byte requires ten bits for transmission.

Markov Chains

VERY BASIC MODEL

Markov Chain

- Discrete-time stochastic process.
- Follows Markovian Property

P(Yn|X1, X2, ... Xn-1) = P(Yn|Xn-1)

What we did?

STEPS:

- Representing Midi sequence as vectors of size 88* N.
- Elements of vectors contain notes of velocity in range 0-128.
- Represent all unique vectors as states.
- Construct a Transition Matrix using the frequency of notes transition.
- Doing random walk to generate new notes

Results

Without Memory

With Memory

LSTMS

LONG SHORT TERM MEMORY

LSTMs(Neural Network)

WHAT IS LSTM?

LSTM stands for **long short-term memory networks**, used in the field of Deep Learning. It is a variety of recurrent neural networks (RNNs) that are capable of learning long-term dependencies, especially in sequence prediction problems.

STEPS INVOLVED:

- Extract Notes from Midi file.
- Prepare input and output sequence for training and mapping the sequence to integers.
- Training the neural network
- Taking a random sequence and predict next notes from it by unmapping using same dictionary.
- Convert the notes predicted into Midi file.

Results

GAN

GENERATIVE ADVERSERIAL NETWORK

GANS

WHAT ARE GANS?

GANs are a class of Generative Models, i.e, they create new models that resemble the training data. It is composed of two neural networks - a generator and a discriminator which compete against each other. The generator creates fake samples and the discriminator decides whether these samples are fake or real.

$$\min_{G} \sum_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} ig[log D(x)ig] + \mathbb{E}_{z \sim p_z(z)} ig[log (1 - D(G(z)))ig]$$

DCGANS

Deep Convolutional GANs uses convolutional and transpose convolutional layers in the discriminator and generator respectively. DCGANs use images to train and generate new examples that resemble the training data.

Steps followed

PREPROCESSING

- Load Dataset containing MIDI files.
- Preprocess all MIDI files into numpy arrays.
- Convert all MIDI files into images of shape (106, 106)

BUILDING AND TRAINING THE MODEL

- Using tensorflow, build models of the Generator and Discriminator.
- Train on the model.
- Generate new images from the trained model.
- Convert the generated images into MIDI files.

Results (plots)

Visualization

BONUS :)

Thanks