

Fakultät Informatik – Institut SMT – Professur Computergraphik und Visualisierung

Aufgabenkomplex Beleuchtung

- HA 1. Erklären Sie anhand einer Skizze, wie weiche Schatten zustande kommen.
 - 2. Beschreiben Sie, was durch die bidirektionale Reflektanzverteilungsfunktion (BRDF) berechnet wird unter Verwendung der Eingabegrößen.
- HA 3. Nennen Sie mindestens 2 Beleuchtungseffekte, die lokale Beleuchtungsmodelle nicht abbilden können.
- HA 4. Ordnen Sie die aus der Vorlesung bekannten Beleuchtungsverfahren entweder den lokalen oder globalen Techniken zu:
 Ambient Occlusion, Blinn-Phong-Beleuchtungsmodell, Ambiente Beleuchtung nach OpenGL, Bidirektionales Pathtracing, Radiosity-Verfahren, Oren Nayar, Subsurface Scattering, ideal spekulare Reflexion
 - 5. Wie berechnet sich der normierte Halbvektor \hat{h} aus dem Blinn-Phong Modell?
 - 6. Wie berechnet sich der reflektierte Vektor \hat{r} im Phong-Modell aus der Normale \hat{n} und der Richtung \hat{l} zur Lichtquelle. (Alle Vektoren seien normiert.)
 - 7. Gegeben seien der Normalenvektor \hat{n} , der Richtungsvektor zur Lichtquelle \hat{l} und der Richtungsvektor zum Betrachter \hat{v} . Berechnen Sie daraus den normierten Halbvektor aus dem Blinn-Phong-Modell und den ideal reflektierten Vektor aus dem Phong-Modell.

a)
$$\hat{\boldsymbol{n}} = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), \hat{\boldsymbol{l}} = (-\frac{6}{7}, \frac{2}{7}, \frac{3}{7}), \hat{\boldsymbol{v}} = (\frac{2}{7}, \frac{6}{7}, \frac{3}{7}),$$
 Lösung: $\hat{\boldsymbol{r}} = \frac{1}{7}(6,3,2)^T, \hat{\boldsymbol{h}} = \frac{1}{\sqrt{29}}(-2,4,3)^T$ b) $\hat{\boldsymbol{n}} = (\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}), \hat{\boldsymbol{l}} = (-\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}), \hat{\boldsymbol{v}} = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3}),$ Lösung: $\hat{\boldsymbol{r}} = \frac{1}{27}(26,7,2)^T, \hat{\boldsymbol{h}} = \frac{1}{\sqrt{10}}(-1,3,0)^T$

- 8. a) Erklären Sie das Gesetz von Snellius mit der entsprechenden Formel. Fertigen Sie eine Skizze an, die das Gesetz veranschaulicht.
 - b) Was versteht man unter dem Grenzwinkel?
- 9. Ein Diamant ($\theta_D \approx 2.42$) ist vollständig von Eis ($\theta_E \approx 1.31$) umhüllt. Ist es möglich, dass ein Lichtstrahl im Inneren des Diamanten Totalreflexion erfährt? Begründen Sie.
- HA 10. Nennen Sie einen Lichtquellentyp aus der Vorlesung (OpenGL v1/v2) und zeigen Sie dessen Strahlenverlauf in einer Skizze
- HA 11. Erklären Sie den Unterschied zwischen einem **Schattierungs**modell (z.B. Gouraud shading) und einem **Beleuchtungs**modell (z.B. Blinn-Phong reflection model).

Fakultät Informatik – Institut SMT – Professur Computergraphik und Visualisierung

HA 12. Ordnen Sie den Abbildungen ein Schattierungsverfahren (Gouraud/Flat/Phong)-Shading zu:

Lösung: (A) Flat, (B) Gouraud, (C) Phong

HA 13. Was unterscheidet das Phong-Modell vom Blinn-Phong-Modell?

HA 14. Der spekulare Anteil des Blinn-Phong-Beleuchtungsmodells bestimmt wie Highlights auf der Oberfläche eines Objektes dargestellt werden (Glattheit). Wie verändert sich die visuell wahrnehmbare Größe des Highlights mit größer werdendem Exponenten $m_{shininess}$?

HA 15. Folgende Abbildung zeigt ein und dieselbe Szene einer Kugel, welche mittels Phong-Modell beleuchtet ist. Geben Sie die Reihenfolge der Abbildungen für steigenden Exponenten des spekularen Terms an.

Lösung: B,C,D,A

HA 16. Kreuzen Sie in der folgenden Tabelle an, wovon die jeweiligen Beleuchtungsanteile eines lokalen Beleuchtungsmodells abhängig sind.

		Normale d. Oberfläche	Richtung zur Lichtquelle	Richtung zum Beobachter
	ambient			
	diffus			
	spekular			

Lösung:

Χ	Х	
Х	Х	Χ