

### Feature importance

Bram Droppers

## Workshop

- Three sections
  - Impurity feature importance
  - Permutation feature importance
  - SHAP feature importance



## Workshop

- Three sections
  - Impurity feature importance
  - Permutation feature importance
  - SHAP feature importance
- Per section
  - Small exercise
  - Presentation and questions



# Why feature importance?



# Why feature importance?

- Common sense check
- Uncertainty analysis
- Reducing model size and complexity



#### Impurity feature importance



## Impurity feature importance

- Also called:
  - Gini importance
  - Mean decrease impurity
- Decrease in node impurity, weighted by the probability of reaching that node





## Impurity feature importance

- Also called:
  - Gini importance
  - Mean decrease impurity
- Decrease in node impurity, weighted by the probability of reaching that node
- + Already calculated

- Only for random-forest models



#### Permutation feature importance



### Permutation feature importance

• Difference in model output after permutation of input features

























### Permutation feature importance

- Difference in model output after permutation of input features
- + Applicable to all models
- Slow
- Limited accounting for complex non-linear interactions





 Represents the marginal contribution of a feature's value to the prediction averaged over all possible combinations







- Represents the marginal contribution of a feature's value to the prediction averaged over all possible combinations
  - Theoretically requires permutation of all features for every timestep



- Represents the marginal contribution of a feature's value to the prediction averaged over all possible combinations
  - Theoretically requires permutation of all features for every timestep
  - In practice only a few permutations and a generalized additive model to estimate relations







- Represents the marginal contribution of a feature's value to the prediction averaged over all possible combinations
  - Theoretically requires permutation of all features for every timestep
  - In practice only a few permutations and a generalized additive model to estimate relations

+ Applicable to all models

- Even slower





- We do not know how our models handle correlated input features
  - Ignore one
  - Use both





- We do not know how our models handle correlated input features
  - Ignore one
  - Use both
- This is reflected in the feature importance analysis



- Combine correlated features
- Omit correlated features
- Design a better train-test set





### Feature importance

Bram Droppers