SkaiWD - Laboratorium 4

PCA – przykład

Dane: X

	x_1	x_2
	-2	-2
	-1	0
	0	1
	1	-1
	2	2
avg	0	0

. Macierz kowariancji: ${\cal S}_{\bf X}$

Wykres:

	x_1	x_2
x_1	25	1,75
x_2	1.75	2.5

Miejsce na obliczenia:

$$S_{x} = \frac{1}{4} \left(X_{c}^{T} \times X_{c} \right)$$

$$\begin{vmatrix} 2.5 - \lambda & 1.7 \\ 1.7 & 2.5 - \lambda \end{vmatrix} \rightarrow (2.5 - \lambda)^{2} - 1.7 \cdot 2 \rightarrow \lambda^{2} - 5\lambda - 3.20 \Rightarrow \sqrt{4} \approx 3.5 \rightarrow \lambda_{1} = 4.25 \quad \lambda_{2} = 0.75$$

$$\lambda_{1} \rightarrow \lambda = y \rightarrow V = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow V = \begin{pmatrix} 0.707 \\ 0.707 \end{pmatrix}$$

$$\lambda_{2} \rightarrow \lambda = y \rightarrow V = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow V = \begin{pmatrix} 0.707 \\ 0.707 \end{pmatrix}$$

$$A_2 \rightarrow x = -y \rightarrow v = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \rightarrow v = \begin{pmatrix} -0.707 \\ 0.707 \end{pmatrix}$$

$$S_y = \frac{1}{4} \left(Y_C^T * Y_C \right)$$

Posortowane malejąco wartości i wektory własne (znormalizowane):

$$\lambda_1 = 4.25$$

$$\lambda_2 = \mathbf{0.75}$$

$$k_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}$$

$$k_1 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}$$
 $k_2 = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}$

$$K = \begin{bmatrix} 0.707 & -0.207 \\ 0.707 & 0.307 \end{bmatrix}$$

Dane po PCA:

$$Y = XK = \begin{bmatrix} y_1 & y_2 \\ -2.53 & 0 \\ 0.707 & 0.707 \\ 0.707 & 0.707 \\ 0 & -1.414 \\ 2.53 & 0 \end{bmatrix}$$

	y_1	y_2
y_1	4.25	0
y_2	0	0.75

$$y_1(x_1, x_2) = 0.101 x_1 + 0.101 x_2$$

$$y_2(x_1, x_2) = 0.707x_1 + 0.707x_2$$