EM Algorithm, Stochastic Optimization

732A90 Computational Statistics

Krzysztof Bartoszek (krzysztof.bartoszek@liu.se)

12 XII 2022 (R41)
Department of Computer and Information Science
Linköping University

Stochastic and combinatorial optimization

- So far: Unconstrained optimization
 - Predictor variables are continuous
 - Response function is differentiable

• We discussed Steepest descent, Newton, BFGS, CG

- But: predictors can be discrete (scheduling problems, travelling salesman)
- But: outcome can be discrete, noisy or multi-modal

Stochastic and combinatorial optimization

Given a (large) set of states S, find

$$\min_{s \in S} f(s)$$

- Exhaustive search (shortest path algorithm)
- Often exhaustive search is NP-hard (TSP)
- Alternative: stochastic methods random search

Simulated annealing

Motivation from physics: cooling of metal

Parameters:
Energy of metal
(decreasing, but not strictly monotonic)
Temperature (decreasing)

• Aim: find global minimum energy

Simulated annealing

```
1: Initialize k = 1, \theta_0, T(1) = T_0, i = 0
2: while k < k_{max} + 1 do
      generate new state \xi, compute \Delta f = f(\xi) - f(\theta)
3:
      if \Delta f < 0 then
4:
        accept \xi (\theta_k = \xi)
5:
6:
      else
        accept \xi (\theta_k = \xi) with P(\Delta f, T(k))
7:
      end if
8:
9: k = k + 1
      {WE CAN ALSO HAVE A SEARCH LOOP FOR EACH
      T(k) level
10: end while
```

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equations of state calculations by fast computing machines. J. Chem. Phys. 21:1087-1092, 1953.

Simulated annealing

- https://www.youtube.com/watch?v=iaq_Fpr4KZc
- Generating new state:
 - Continuous: choose a new point a (random) distance from the current one
 - Discrete: similar or some rearrangement

- Selection probability: e.g $\exp(-\Delta f(x)/T)$: decreasing with f(x), increasing with T
- Temperature function: constant, proportional to k, or

$$T(k+1) = b(k)T(k), \quad b(k) = (\log(k))^{-1}$$

Remember: A smaller value is better than one on the path to the global minimum! Always keep track of smallest found.

Simulated annealing: TSP example

Assume constant temperature

```
1: Choose initial configuration (Town_1, ..., Town_n)

2: k = 1

3: while k < k_{max} + 1 do

4: Generate new configuration by rearrangement,
```

$$\begin{array}{cccc} (1,2,3,4,5,6,7,8,9) & \rightarrow & (1,6,5,4,3,2,7,8,9) \\ (1,2,3,4,5,6,7,8,9) & \rightarrow & (1,7,8,2,3,4,5,6,9) \end{array}$$

Measure difference in path length (Δf) between old and

- new configuration
- 6: **if** shorter path found **then**
- 7: accept it
- 8: else
- 9: accept it with probability $P(\Delta f)$
- 10: **end if**

5:

11: k + +12: **end while**

Genetic algorithm

- Inspiration from evolutionary theory: survival of the fittest
- Variables=genotypes
- Observation=organism, characterized by genetic code
- State space=population of organisms
- Objective function=fitness of organism

New points are obtained from old points by crossover and mutation, the population only retains the fittest organisms (with better objective function).

https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications

Genetic algorithm

Encoding points

- lacktriangle Enumerate each element of the state space, S
- $oldsymbol{2}$ Code for observation i is binary representation of i (or something else)

Mutation and recombination rules

Crossover: $(1010\ 1110, 1100\ 0110) \longrightarrow 1010\ 0110$

Inversion: $11001011 \longrightarrow 11010011$

 $Mutation: 110101111 \longrightarrow 110111111$

Clone: $11010111 \longrightarrow 11010111$

Genetic algorithm

- 1: Initialize i = 0, population \mathbf{P}_0 and calculate fitness
- 2: while end criteria not met do
- 3: Choose individuals \mathbf{T}_i from \mathbf{P}_i for reproduction
- 4: $\mathbf{T}_i' = \text{crossover between individuals from } \mathbf{T}_i$
- 5: $\mathbf{O}_i = \text{randomly inverte, mutate, clone } \mathbf{T}'_i$
- 6: Calculate fitness and obtain \mathbf{P}_i from \mathbf{O}_i
- 7: i = i + 1
- 8: end while

ALWAYS KEEP BEST INDIVIDUAL

Genetic algorithm: TSP example

Encoding and crossover

• Encode tours as A_1, \ldots, A_n but

Parent 1: FAB|ECGD Parent 2: DEA|CGBF

Child: FAB|CGBF Child: DEA|ECGD

Instead

- Remove FAB from DEACGBF \longrightarrow DECG. Child becomes FABDECG.
- Second child will be by taking prefix from Parent 2: DEAFBCG

Genetic algorithm: Mutations

- If a population is small and only crossover: the input domain becomes limited and may converge to a local minimum.
- Large initial populations are computationally heavy.
- Mutations allow one to explore more of S: jump out of local minimum.
- In TSP: mutation move a city in the tour to another position.
- Reproduction: Among m tours selected at step 2, two best are selected for reproduction, two worst replaced by children.
- If m is large, some tours might never be parents, global solution may be missed. Random chance of reproduction?
- Mutation probability is usually small (unless you want to jump wildly)

EM algorithm

Fundamental algorithm of computational statistics!

Model depends on the data which are observed (known) ${\bf Y}$ and latent (unobserved) data ${\bf Z}$.

The data's (**both Y**'s and **Z**'s) distribution depends on some parameters θ .

AIM: Find MLE of θ .

- All data is known: Apply unconstrained optimization (discussed in Lecture 2)
- Unobserved data
 - **Sometimes** it is possible to look at the marginal distribution of the observed data.
 - Otherwise: EM algorithm

EM algorithm

Let

$$Q(\theta, \theta^k) = \int \log p(\mathbf{Y}, \mathbf{z} | \theta) p(\mathbf{z} | \mathbf{Y}, \theta^k) \mathrm{d}\mathbf{z} = \mathrm{E}\left[\mathrm{loglik}(\theta | \mathbf{Y}, \mathbf{Z}) | \theta^k, \mathbf{Y} \right]$$

1:
$$k = 0, \, \theta^0 = \theta^0$$

- 2: while Convergence not attained and $k < k_{max} + 1$ do
- 3: **E**-step: Derive $Q(\theta, \theta^k)$
- 4: \mathbf{M} -step: $\theta^{k+1} = \operatorname{argmax}_{\theta} Q(\theta, \theta^k)$
- 5: k + +
- 6: end while

Example: Normal data with missing values (but here analytical approach is also possible)

EM algorithm: R

 $732 \texttt{A} 90_\texttt{ComputationalStatistics} \texttt{HT} 2022_\texttt{Lecture} 06 \texttt{codeSlide} 15. \texttt{Recture} 15$

EM algorithm: R

```
> Y<-rnorm(100)
> Y[sample(1:length(Y),20,replace=FALSE)]<-NA</p>
> EM.Norm(Y,0.0001,100)
[1]
      1.0000 0.1000 -997.5705
[1] 0.1341894 1.3227095 -128.2789837
[1] -0.03897274 1.38734070 -126.86036252
[1] -0.07360517 1.39307050 -126.80801589
[1] -0.08053165 1.39392861 -126.80593837
[1] -0.08191695 1.39408871 -126.80585537
> mean(Y,na.rm=TRUE)
[1] -0.08226328
> var(Y,na.rm=TRUE)
[1] 1.411775
```

Notice: can be done by studying marginal distribution of observed data.

EM algorithm: Applications

Mixture models Z is a latent variable, $P(Z = k) = \pi_k$

- Mixed data comes from different sources (e.g. for regression, classification)
- Clustering
 - Density in each cluster is normally distributed.
 - 2 Cluster label is latent (we do not know what are the chances an observation is from the given cluster)

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\vec{\mu}_k, \Sigma_k) \quad \text{(informally)}$$

Direct MLE leads to numerical problems. Introduce latent class variables and use EM.

EM algorithm: Gaussian mixtures

- 1: **input:** observations $\vec{x}_1, \ldots, \vec{x}_n, K$ number of clusters
- 2: Initialize $r = 0, (\vec{\mu}_1^0, \dots, \vec{\mu}_K^0), (\Sigma_1^0, \dots, \Sigma_K^0)$
 - 3: **while** end criteria not met **do**

$$w_{jk} = \frac{\mathcal{N}\left(x_{j} | \vec{\mu}_{k}^{r}, \boldsymbol{\Sigma}_{k}^{r}\right)}{\sum_{k} \pi_{i} \mathcal{N}\left(\vec{x}_{j} | \vec{\mu}_{i}^{r}, \boldsymbol{\Sigma}_{i}^{r}\right)}, \quad j = 1, \dots, n$$

M-step for $k = 1, \dots, K$ 5:

6:

7: r = r + 18: end while

5: Wi-step for
$$\kappa = 1, \dots, I$$

$$n_k = \sum_{i=1}^n w_{ik}, \quad \pi_k^r = r$$

 $n_k = \sum_{j=1}^n w_{jk}, \quad \pi_k^r = n_k/n,$

$$\pi_k^r = n_{k/r}$$

$$\pi_k^r = n_k/n,$$

$$=n_k/n,$$

$$n_k/n$$
,

$$\mathbf{r}_k/n,$$
 $\mathbf{r}_r -$

$$\mathbf{\Sigma}^r$$
 —

$$\vec{\mu}_k^r = (n_k)^{-1} \sum_{j=1}^n w_{jk} \vec{x}_j, \quad \mathbf{\Sigma}_k^r = (n_k)^{-1} \sum_{j=1}^n w_{jk} (\vec{x}_j - \vec{\mu}_k^r) (\vec{x}_j - \vec{\mu}_k^r)^T$$

 $\log \mathcal{L}(\{\pi_k^r, \vec{\mu}_k^r, \mathbf{\Sigma}_k^r\}_{k=1}^K) = \sum_{k=1}^n \log \left(\sum_{k=1}^K \pi_k^r \mathcal{N}\left(\vec{x}_j | \vec{\mu}_k^r, \mathbf{\Sigma}_k^r\right)\right)$

Gaussian mixtures: example

$$P(1) = P(2) = P(3) = P(4) = 0.25$$

- draw class $Z \in \{1, 2, 3, 4\}$ uniformly
- ② draw normal distribution $\mathcal{N}(Z,Z)$ with density $\phi_{Z,Z}(\cdot)$

We can write the mixture density as

$$f(x) = 0.25\phi_{1,1}(x) + 0.25\phi_{2,2}(x) + 0.25\phi_{3,3}(x) + 0.25\phi_{4,4}(x).$$

Summary

Random walk over the state space in search of minimum

- Follow decreasing path
- **BUT** with a certain probability go to higher values, to avoid local minima traps.
- Never forget best found conformation!
- Simulated annealing, Genetic algorithm,
 EM algorithm,

Stochastic gradient descent (see 2016 slides)