

第十二章图的矩阵表示

本章各节间的关系概图

图的矩阵表示在计算机科学技术相关领域的应用

定义12.1 设G= $\langle V, E \rangle$ 为简单图,它有n个结点 $V=\{v_1, v_2, ..., v_n\}$,则n

阶方阵 $A(G) = (a_{ij})$ 称为G的邻接矩阵。

其中,
$$a_{ij} = \begin{cases} 1, v_i \% 接 v_j \\ 0, v_i \% & \text{ } \end{cases}$$

邻接矩阵举例:

$$A(G) = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad A(G_1) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad A(G_2) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$A(G_1) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$A(G_2) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

邻接矩阵的性质:

设 $G=\langle V, E \rangle$ 是有向图,|V|=n,A是G的邻接矩阵。

1) AA^T的元素的意义:

$$B=[b_{ij}]=AA^{T}$$

$$=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ik} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{j1} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{j2} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{jk} & \cdots & a_{nk} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{jn} & \cdots & a_{nn} \end{bmatrix}$$

若有 $b_{ij} = \sum_{k=1}^{n} a_{ik} \cdot a_{jk} = m(m \ge 0)$ 则表示存在m个k使得 a_{ik} 和 a_{jk} 均等于1。如图:

 b_{ij} 表示这样的结点个数:从 v_i 和 v_j 均有边引出(指向)到该结点。

2) ATA的元素的意义:

$$B=[b_{ij}]=A^{T}A$$

$$=\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{j1} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{j2} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{1k} & a_{2k} & a_{jk} & a_{jk} & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{jn} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ik} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} & \cdots & a_{nn} \end{bmatrix}$$

若有 $b_{ij} = \sum_{k=1}^{n} a_{ki} \cdot a_{kj} = m \ (m \ge 0)$,则表示存在m个k使得 a_{ki} 和 a_{kj} 均等于1。

如图:

 b_{ij} 表示这样的结点个数:以该结点为始点既有边引入(指向)到 \mathbf{v}_i ,又有边引入(指向)到 \mathbf{v}_i 。

3) A⁽ⁿ⁾的元素的意义:

$$B=[b_{ij}]=A^{(2)}$$

$$=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ik} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ik} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} & \cdots & a_{nn} \end{bmatrix}$$

若有 $b_{ij} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj} = m \ (m \ge 0)$,则表示存在m个k使得 a_{ik} 和 a_{kj} 均等于1。

如图:

b_{ij}表示从v_i到v_j长度为2的路径的总数。

定理12.1 设A(G)为图G的邻接矩阵,则 $(A(G))^l$ 中的i行 j列元素 $a_{ij}^{(l)}$ 等于G中连接结点 $v_i = v_j$ 的长度为I的路的数目。

证: 用归纳法证明。

- 1) 当1=2时,由上得知是显然成立。
- 2)设命题对 I成立,由 $(A(G))^{I+1} = A(G) \cdot (A(G))^{I}$ 故 $a_{ij}^{(I+1)} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}^{(I)}$ 根据邻接矩阵的定义 a_{ik} 表示连接 $v_i = v_k$ 长度为1的路径的数目,而 $a_{kj}^{(I)}$ 是连接 $v_k = v_j$ 长度为 I的路径的数目,上式的每一项表示由 v_i 经过一条边到 v_k ,再由 v_k 经过长度为 I的路到 v_j 的,总长度为 I+1的路的数目。对所有的k求和,即是所有从 到 v_i 的 v_j 度为 I+1的路的数目,故命题成立。

证毕

定义(推广)设有向图 $D=\langle V,E\rangle$, $V=\{v_1,v_2,...,v_n\}$, $E=\{e_1,e_2,...,e_m\}$, 令 a_{ij} 为 顶点 v_i 邻接到顶点 v_j 边的条数,称为D的邻接矩阵,记作A(D),或简记为A.

$$A(D) = \begin{matrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ v_3 & 0 & 0 & 1 \\ v_4 & 0 & 0 & 1 & 1 \end{matrix}$$

定理设 A为有向图 D 的邻接矩阵, $V=\{v_1, v_2, ..., v_n\}$ 为顶点集,则 A 的 l 次幂 $A^{(l)}$ ($l \ge 1$) 中元素

 $a_{ij}^{(l)}$ 为D中 v_i 到 v_j 长度为l的通路数,其中

 $a_{ii}^{(l)}$ 为 v_i 到自身长度为l的回路数,而

 $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(l)} 为 D 中长度为 l 的通路总数,$

 $\sum_{i=1}^{n} a_{ii}^{(l)}$ 为D 中长度为l 的回路总数.

推论 设 $B_l = A + A^{(2)} + ... + A^{(l)}$ ($l \ge 1$),则 B_l 中元素 $\sum_{i=1}^{n} \sum_{j=1}^{n} b_{ij}^{(l)}$ 为D中长度小于或等于 l 的通路数.

 $\sum_{i=1}^{n} b_{ii}^{(l)}$ 为D中长度小于或等于l 的回路数

- * 证明: (归纳法) (1)r=1: a_{ij} ⁽¹⁾= a_{ij} , 结论显然.
 - (2) 设r≤k时结论成立, 当r=k+1时,

 $a_{it}^{(k)}a_{ij}^{(1)}=$ 从 v_i 到 v_i 最后经过 v_t 的长度为k+1的通路总数,

$$a^{(k+1)}_{ij} = \sum_{t=1}^{n} a_{it}^{(k)} a_{tj}^{(1)} = \text{从}v_i$$
到 v_j 的长度为 $k+1$ 的通路总数.

例 有向图**D**如图所示,求**A**,**A**⁽²⁾,**A**⁽³⁾,**A**⁽⁴⁾,并回答诸问题:

- (1) D 中长度为1, 2, 3, 4的通路各有多少条? 其中回路分别为多少条?
- (2) D 中长度小于或等于4的通路为多少条? 其中有多少条回路?

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad A^{(2)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$
$$A^{(3)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 3 & 0 & 1 & 0 \end{bmatrix} \qquad A^{(4)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 5 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$

(1) D中长度为1的通路为8条,其中有1条是回路.

D中长度为2的通路为11条,其中有3条是回路.

D中长度为3和4的通路分别为14和17条,回路分别为1与3条.

(2) D中长度小于等于4的通路为50条,其中有8条是回路.

掌握图的邻接矩阵的定义与性质;关于邻接矩阵的思维形式注记图如下图所示。

定义12. 2设D=<V,E>为有向图. $V=\{v_1, v_2, ..., v_n\}$, 令

$$p_{ij} = \begin{cases} 1, & v_i 可达v_j \\ 0, & 否则 \end{cases}$$

称 $(p_{ii})_{n\times n}$ 为D的可达矩阵,记作P(D),简记为P.

由于 $\forall v_i \in V$, v_i 可达 v_i ,所以P(D)主对角线上的元素全为1.

由定义不难看出, D强连通当且仅当 P(D)为全1矩阵.

由 B_{n-1} 的元素 $b_{ij}^{(n-1)}(i,j=1,2,...$ n且i<>j)是否为0可写出有向图D的可达矩阵,但 P_{ii} 总为1.下图所示有向图D的可达矩阵为

$$v_1$$
 v_2
 v_3

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

结论:如果把邻接矩阵看作是结点集V上关系R的关系矩阵,则可达矩阵P即为E+M_t。 求可达矩阵的方法:

求
$$C_n$$
= $E+A^1+...+A^{n-1}$ 将 C_n 中不为 0 的元素改为 1 ,为 0 的不变

可达矩阵的概念可以推广到无向图中,只要将无向图的每条边看成是具有相反方向的两条边即可,无向图的邻接矩阵是对称矩阵,其可达矩阵称为连通矩阵。

无向图G是连通图当且仅当它的可达矩阵P的所有元素均为1.

利用邻接矩阵A和可达矩阵P,可以判断图的连通性:

- 1) 有向图G是强连通图,当且仅当它的可达矩阵P的所有 元素均为1;
- 2) 有向图G是单侧连通图,当且仅当PvP^T的所有元素均为1;
- 3)有向图G是弱连通图,当且仅当以A v A T 作为邻接矩阵 求得的可达矩阵P'中所有元素均为1。

练习: 求下图的可达矩阵

掌握图的可达矩阵的定义与性质,掌握求可达矩阵的方法步骤。关于图的可达矩阵的思维形式注记图如下图所示。

12.3 关联矩阵

定义12.3 无向图 $G=\langle V,E\rangle$, $V=\{v_1,v_2,...,v_n\},E=\{e_1,e_2,...,e_m\}$,令 m_{ij} 为 v_i 与 e_i 的关联次数,称 $(m_{ij})_{n\times m}$ 为G的关联矩阵,记为M(G).

性质

(1)
$$\sum_{i=1}^{n} m_{ij} = 2$$
 $(j = 1, 2, ..., m)$

(2)
$$\sum_{j=1}^{m} m_{ij} = d(v_i)$$
 ($i = 1, 2, ..., n$)

$$(3) \sum_{i,j} m_{ij} = 2m$$

(4) 平行边的列相同

定义12.4 设有向图D=<V, E>中无环, $V=\{v_1,v_2,...,v_n\}$, $E=\{e_1,e_2,...,e_m\}$,令

$$m_{ij} = \begin{cases} 1, & v_i \ge e_j \text{ 的始点} \\ 0, & v_i \le e_j \text{ 不关联} \\ -1, & v_i \ge e_j \text{ 的终点} \end{cases}$$

则称 $(m_{ii})_{n\times m}$ 为D的关联矩阵,记为M(D).

性质

(1)
$$\sum_{i=1}^{n} m_{ij} = 0$$
 $(j = 1, 2, ..., m)$

(2)
$$\sum_{j=1}^{m} (m_{ij} = 1) = d^{+}(v_{i}), \qquad \sum_{j=1}^{m} (m_{ij} = -1) = -d^{-}(v_{i}), \qquad i = 1, 2, \dots, n$$

$$(3) \quad \sum_{i,j} m_{ij} = 0$$

(4) 平行边对应的列相同

掌握关联矩阵的定义与性质。关于图的关联矩阵的思维形式注记图如下图所示。

12.4 常见题型解析

- 1) 邻接矩阵和可达矩阵。
- 2) 邻接矩阵和关联矩阵。
- 3)给出一种矩阵形式求另一种。

1) 邻接矩阵和可达矩阵

例12.2 设有向图D=〈V, E〉如下图所示,请用计算回答下面的问题:

- (1) D中v₁到v₄长度为3的初级路径有多少条?
- (2) D是哪种类型的连通图?

解: (1) G的邻接矩阵为:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

分别计算A²、A³得到:

$$\mathbf{A}^{2} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{A}^{3} = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

由 A^3 (1, 4) = 2 知, V_1 到 V_4 共有 2 条长度为 3 的路径。 计算过程:

$$A^{3} (1, 4) = A^{2} (1,1) \times A (1,4) + A^{2} (1,2) \times A(2,4) + A^{2} (1,3) \times A(3,4) + A^{2} (1,4) \times A(4,4) = 1 \times 1 + 0 \times 0 + 1 \times 1 + 1 \times 0 = 2 + A^{2} (1, 1) = A (1,1) \times A (1,1) + A (1,2) \times A(2,1) + A (1,3) \times A(3,1) + A (1,4) \times A(4,1) = 0 \times 0 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1, 3) = A (1,1) \times A (1,3) + A (1,2) \times A(2,3) + A (1,3) \times A(3,3) + A (1,4) \times A(4,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) + A (1,4) \times A(4,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + 1 \times 1 + 1 \times 0 = 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2} (1,3) \times A(3,3) = 0 \times 1 + A^{2$$

即这两条长度为3的路径为(v_1 , v_2 , v_1 , v_4)和(v_1 , v_2 , v_3 , v_4)。 其中(v_1 , v_2 , v_3 , v_4)是一条初级路径,所以D中到长度为3的初级路 径有1条。

(2) 计算G的可达矩阵:

$$\mathbf{P} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

显然G不是强连通的。G是单侧连通的,因为对于任意顶点偶对,至少一个结点到另一个结点是可达的

2) 邻接矩阵和关联矩阵

例12.3 设M是无向图G的关联矩阵,而A是图G的邻接矩阵。

- 1) 试证明: M的列和为2。
- 2) A的列和是多少?

证: (1)按M的定义,它的第 j列是对应 e,和V(G)中结点的关联次数所成的向量,由于一条边只有两个端点,故M的列和为2。

(2)根据定义,A的第i列的列和恰为与 v_i 关联的边的数目。

证毕

3)给出一种矩阵形式求另一种

例12.4 设图G的邻接矩阵为:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

求G的可达性矩阵。

解:

$$\mathbf{A}^{2} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad \mathbf{A}^{3} = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

故:

由此可知图G中任意两个结点间均是可达的,此图是连通图。

本章小结

