Sensibilisation à la programmation multimedia

Christophe Vestri

Plan du cours

- 1^{er} TD: Intro, github, carto/geo, leaflet/mapBox, rest Api
- 2em TD: 2D/3D: Canvas, WebGL et Three.js/babylon.js
- 3em TD: Three/babylon.js + Leaflet.js cartographie
- 4em TD: IA

Objectifs du cours:

- Bases de géolocalisation et de la cartographie
- Initiation multimédia: 2D/3D, carto/géo et infographie
- Expérimenter quelques méthodes et outils web geo/3D
- Réaliser un petit projet (combinera ce qu'on a vu)

Plan Cours 4

- Rappel dernier cours
- Questions Three.js et réponses
- Exercice:
 - Three.js/babylonJS + Géolocalisation + Rest Api
 - Intéractions Device, Leafletjs et Threejs

Géo + Html5 + LeafLet.js

- Repères Géo et carto
- Acces capteur caméra: Géolocalisation, DeviceOrientation, DeviceMotion
- <u>Leafletjs</u>, Mapbox, mapQuest
- Données géolocalisées (REST API)

3D Three.js et Babylon.js

3D sur le web

- Libraries 3D dehaut niveau de WebGL
- Cross-plateforme et gratuit

Scenes, Cameras, Renderer, Geometry, Materials, Textures, Lights, loaders

- -https://threejs.org/
- https://www.babylonjs.com/

Rappels avant exercices

6

3D Clipping

 Objects that are partially within the viewing volume need to be clipped – just like the 2D case

Attention au 3D Clipping

Il vous faut:

- 1 scene
- 1 camera
- 1 light
- Un renderer

Les principaux problèmes

- 1. Scene mal éclairée (éclairage directif):
 - Solution: éclairage ambiant pour commencer
- 2. Objet géométrique non visible
 - Choisissez une position de caméra, placer l'objet devant
 - Faites 1 dessin sur papier pour être sur de ce que vous faites
 - Problème de clipping?
- 3. Mon modèle 3D ne s'affiche pas:
 - Vérifiez la console de votre navigateur (les erreurs...)
 - Enlevez la texture, mettez un matériau simple
 - Vérifiez l'échelle de votre objet et les positions (voir 2)
 - Utilisez un serveur local (slide précédent)
 - Utilisez un modèle glTf/obj des exemples de Three.js avant d'utiliser le votre
- 4. Mon objet ne bouge pas
 - Vérifiez que vous appelez bien : renderer.setAnimationLoop(animate); ou engine.runRenderLoop(renderLoop);
 - Il doit y avoir une variable (angle/position/scale) qui varie, testez avec un breakpoint

Questions?

- Pb principaux:
 - modèles trop gros/local pour github
 - synthaxe, three avant import
 - CORS lien models ou fichiers json externes
 - scene, lights, model 3D, texture...

Géolocalisation sur terre

- Exercice partie 1: Three.js ou Babylon.js
 - Créez une scène + caméra + light + renderer
 - Créez une sphère de rayon 1 (ou valeurs réelles)
 - Texturez cet objet avec image de planète terre
 - Créer/trouvez une fonction Lat/Lon to cartésien (3D XYZ)
 - Récupérer votre position et afficher un marqueur/objet3D
 - Récupérer les positions de plusieurs pays et afficher le drapeau sur un objet: https://restcountries.com/v3.1/all

Géolocalisation sur terre

- Exercice Partie 2: Ajoutez un leaflet à côté
 - LeafletJs -> 3D

Qd on clique sur carte/marqueur -> positionner la terre sur cet endroit (leaflet handlers)

- 3D ->Leafletjs
 - Qd on clique sur 1 pays (Raycaster), on recentre la carte
- Demo

Publiez sur votre Github pour que je puisse corriger

Exercice bonus

- Partie 3 (bonus): Objets géolocalisé dans caméra
 - Code exemple:
 - Afficher le flux de la caméra
 - Récupérer géolocalisation et orientation
 - Ajouter des objets géolocaliser (three.js ou babylonJS)
 - Vérifier avec smartphone que ca fonctionne
 - Améliorez le système
 - Autres données

Publiez sur votre Github pour que je puisse corriger

- https://ar-js-org.github.io/AR.js-Docs/location-based/
- Autre...