# UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Dois Vizinhos

Especialização em Ciência de Dados

PADRÕES EPIDEMIOLÓGICOS DA COVID-19 NO ESTADO DE SÃO PAULO – MÓDULO 2

Brenda Sabrina Copatti Gustavo Henrique Migliorini Marcos Antonio Vincenzi Luiz Fernando Giolo Alves

# UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

Campus Dois Vizinhos Especialização em Ciência de Dados

> Brenda Sabrina Coppati Gustavo Henrique Migliorini Marcos Antonio Vincenzi Luiz Fernando Giolo Alves

# PADRÕES EPIDEMIOLÓGICOS DA COVID-19 NO ESTADO DE SÃO PAULO – MÓDULO 2

Relatório apresentado ao Curso de Especialização em Ciência de Dados da Universidade Tecnológica Federal do Paraná - Campus Dois Vizinhos, como requisito da disciplina Projeto Integrador Módulo II.

Dois Vizinhos

# Sumário

| 1. | . Introdução geral                                             | 2  |
|----|----------------------------------------------------------------|----|
| 2. | . Objetivo geral                                               | 2  |
| 3. | . Disciplina – Administração e Gerenciamento de Banco de Dados | 3  |
|    | 3.1. Índices                                                   | 3  |
|    | 3.2. Trigger                                                   | 6  |
|    | 3.3. Usuários                                                  | 7  |
|    | 3.4. Transações                                                | 9  |
|    | 3.4.1. Transação 1                                             | 9  |
|    | 3.4.2. Transação 2                                             | 10 |
| 4. | . Disciplina - Linguagens de Programação para Ciência de Dados | 11 |
|    | 4.1. Introdução                                                | 11 |
|    | 4.2. Fatores de risco                                          | 12 |
|    | 4.3. Vacinação                                                 | 13 |
|    | 4.4. Medidas de restrição                                      | 17 |
|    | 4.5. Conclusão                                                 | 19 |
| 5. | . Bibliografia                                                 | 20 |
| 6  | S ANEXO – Plano de ensino e plano de aula                      | 21 |

# 1. Introdução geral

Com mais de 540 mil mortes, o Brasil é um dos países mais impactados pela COVID-19 em todo o mundo. Desse total, mais de 134 mil ocorreram somente no estado de São Paulo, para o qual, por ser o estado mais populoso do país, é esperado ter número elevado de casos e óbitos.

Atualmente, sabe-se que a presença de determinadas comorbidades no paciente com COVID-19 funciona como um potencializador dos efeitos do coronavírus. Portanto, é fundamental considerar tais aspectos para uma melhor compreensão de como a doença afeta as pessoas. Neste estudo, buscamos descrever a progressão da pandemia de COVID-19 no estado de São Paulo, através dos dados disponibilizados pela secretaria de saúde, previamente armazenados em banco de dados PostgreSQL e, manipulados e analisados através de ferramentas robustas em linguagem Python. Posteriormente, os métodos e ferramentas utilizadas serão apresentados em disciplina ofertada para o curso de pós-graduação.

# 2. Objetivo geral

O presente estudo teve por objetivo avaliar e identificar padrões na evolução da COVID-19 no estado de São Paulo, e avaliar possíveis impactos de medidas de controle como *lockdown* e vacinação. Especificamente, investigamos:

- 1 Distribuição de comorbidades por idade dos pacientes;
- 2 Taxa de letalidade e idade dos pacientes;
- 3 Variação temporal no número de casos e na taxa de letalidade na cidade de Serrana, onde foi conduzido um projeto de vacinação em massa, comparando com cidades com tamanho populacional semelhante;
- 4 Variação temporal da taxa de isolamento e no número de casos e óbitos na cidade de Araraquara, a qual teve aplicação de paralisação total de atividades (*lockdown*);
- 5 Variação temporal da taxa de letalidade em diferentes faixas etárias observando o início das campanhas de vacinação.

# Disciplina – Administração e Gerenciamento de Banco de Dados 3.1. Índices

Índice criado no campo data\_inicio\_sintomas.

```
create index IdxCasoInicioSintomas on caso(data_inicio_sintomas);
```

Exemplo de query: busca todos os casos com data superior ao dia primeiro de janeiro.

```
explain select * from caso where data_inicio_sintomas >= '2021-01-01';
```



Figura 1 – Resultado da consulta antes da criação do índice

```
ADDE QUERY PLAN

1 Bitmap Heap Scan on caso (cost=15452.03..55088.15 rows=1383690 width=24)

2 Recheck Cond: (data_inicio_sintomas >= '2021-01-01'::date)

3 -> Bitmap Index Scan on idxcasoiniciosintomas (cost=0.00..15106.10 rows=1383690 width=0)

4 Index Cond: (data_inicio_sintomas >= '2021-01-01'::date)
```

Figura 2 – Resultado da consulta depois da criação do índice

Índice criado em campo discreto (bitmap), campo gênero da tabela paciente.

```
create extension btree_gin;
create index IdxPacienteGenero on paciente using gin (genero);
```

```
explain select * from paciente where genero = 'FEMININO';
```

```
Page QUERY PLAN

Seq Scan on paciente (cost=0.00..57330.00 rows=1614116 width=19)

Filter: ((genero)::text = 'FEMININO'::text)
```

Figura 3 - Resultado da consulta depois da criação do índice

```
Page QUERY PLAN

1 Bitmap Heap Scan on paciente (cost=14934.92..54536.79 rows=1619990 width=19)

2 Recheck Cond: ((genero)::text = 'FEMININO'::text)

3 -> Bitmap Index Scan on idxpacientegenero (cost=0.00..14529.92 rows=1619990 width=0)

Index Cond: ((genero)::text = 'FEMININO'::text)
```

Figura 4 - Resultado da consulta depois da criação do índice

Índice particionado criado no campo idade da tabela paciente.

```
create index IdxPacienteIdade on paciente(genero) where idade >= 60;
```

Exemplo de query: busca o genero dos pacientes com idade igual ou superior a 60.

```
explain select genero from paciente where idade >= 60;
```

```
    QUERY PLAN
    Seq Scan on paciente (cost=0.00..57330.00 rows=491075 width=9)
    Filter: (idade >= 60)
```

Figura 5 - Resultado da consulta antes da criação do índice

```
QUERY PLAN

Index Only Scan using idxpacienteidade on paciente (cost=0.42..9206.35 rows=500395 width=9)
```

Figura 6 - Resultado da consulta depois da criação do índice

Índice em chave estrangeira criado no campo comorbidade da tabela comorbidade\_paciente.

```
create index IdxComorbidadePacienteComorbidade on
comorbidade_paciente(comorbidade);
```

Exemplo de query: busca todos os códigos de pacientes relacionados à comorbidade Diabete.

```
explain select * from comorbidade_paciente

join comorbidade on comorbidade.codigo = comorbidade_paciente.comorbidade

where comorbidade.descricao = 'Diabetes';
```



Figura 7 - Resultado da consulta antes da criação do índice

```
Pilter: ((descricao)::text = 'Diabetes'::text)

Index Cond: (comorbidade = comorbidade codigo)
```

Figura 8 - Resultado da consulta depois da criação do índice

Índice particionado criado no campo idade da tabela paciente.

```
create index IdxPacienteIdadeCrianca on paciente(genero) where idade
<= 12;</pre>
```

Exemplo de query: busca o gênero dos pacientes com idade igual ou inferior a 12.

explain select genero from paciente where idade <= 12;</pre>

```
| Gather (cost=1000.00..47124.47 rows=109483 width=9)
| Workers Planned: 2 | -> Parallel Seq Scan on paciente (cost=0.00..35176.17 rows=45618 width=9) | Filter: (idade <= 12)
```

Figura 9 - Resultado da consulta antes da criação do índice



Figura 10 - Resultado da consulta depois da criação do índice

# 3.2. Trigger

Cria trigger que preenche o campo data\_obito da tabela paciente com a data atual da atualização do caso para óbito.

#### 3.3. Usuários

Cenário de exemplo: A administração estadual possui acesso total para alterações de dados nas tabelas de região administrativa, município e isolamento.

```
create user administracao_estadual;
grant select, insert, update, delete on regiao_administrativa to
administracao_estadual;
grant select, insert, update, delete on municipio to
administracao_estadual;
grant select, insert, update, delete on isolamento to
administracao_estadual;
```

Cenário de exemplo: O médico possui privilégio total para alterar os dados das tabelas de caso, comorbidade do paciente e pacientes. Possui também, privilégio de visualização nas tabelas de comorbidade e município.

```
create user medico;
grant select, insert, update, delete on caso to medico;
grant select, insert, update, delete on comorbidade_paciente to
medico;
grant select, insert, update, delete on paciente to medico;
grant select on comorbidade to medico;
grant select on municipio to medico;
grant select on regiao_administrativa to medico;
```

Cenário de exemplo: O recepcionista possui privilégio total na tabela de paciente. Possui também, privilégio de visualização nas tabelas de município e região administrativa.

```
grant select, insert, update, delete on paciente to recepcionista;
grant select on municipio to recepcionista;
grant select on regiao_administrativa to recepcionista;
```

# 3.4. Transações

# 3.4.1. Transação 1

A transação 1 realiza a leitura de uma comorbidade filtrando pela descrição "Comorbidade exemplo", após isso insere um novo paciente, e após isso insere a comorbidade "Comorbidade exemplo" para o paciente que foi incluído anteriormente.

```
begin;
set transaction isolation level read committed;
--Select comorbidade
select codigo from comorbidade where descricao = 'Comorbidade
exemplo';
--Insert paciente
insert into paciente (codigo, genero, idade, municipio) values
((select max(paciente.codigo) + 1 from paciente),
'MASCULINO',
25,
3550308);
-- Insert comorbidade do paciente
insert into comorbidade_paciente (paciente, comorbidade) values
((select max(paciente.codigo) from paciente), (select codigo from
comorbidade where descricao = 'Comorbidade exemplo'));
commit;
```

# 3.4.2. Transação 2

A transação 2 insere um novo registro na tabela comorbidade com a descrição "Comorbidade exemplo".

```
begin;
set transaction isolation level read committed;
--Insert comorbidade
insert into comorbidade (codigo, descricao) values ((select
max(codigo) + 1 from comorbidade), 'Comorbidade exemplo');
commit;
```

Para esse exemplo do uso das transações, os comandos devem ser executados da seguinte forma:

- 4. Transação 1: Select comorbidade: não retornará registro, pois ainda não existe o registro dessa comorbidade no banco.
- 5. Transação 2: Executa transação 2 por completo, realiza o insert da comorbidade "Comorbidade de exemplo".
- 6. Transação 1: Insert paciente.
- 7. Transação 1: Executa o insert da comorbidade do paciente, buscando pela comorbidade que foi inserida pela transação 2.

Como a transação 1 tem o *isolation level* igual a *read committed*, após a transação 2 commitar as alterações a transação 1 consegue fazer a leitura dos registros inseridos, assim sendo possível relacionar a comorbidade "Comorbidade exemplo" com o paciente.

# 4. Disciplina - Linguagens de Programação para Ciência de Dados

## 4.1. Introdução

Os dados abertos do estado de São Paulo<sup>1</sup> sobre a evolução da COVID-19 (doença provocada pelo vírus SARS-COV-2) foram analisados no primeiro projeto integrador realizado pelo grupo<sup>2</sup>. Nestes seis novos meses de vivência na pandemia, algumas novas variáveis foram introduzidas como o início da campanha de vacinação e o decretamento das restrições mais rígidas de locomoção (*lockdown*) em algumas cidades do estado. Neste texto tentaremos verificar se já é possível observar alguma influência destes novos fatores nos números gerados e coletados pelas secretarias de saúde deste estado.

#### 4.2. Fatores de risco

No trabalho anterior<sup>2</sup> observou-se uma letalidade maior nos pacientes de idade mais avançada e em pessoas com comorbidade. Com a atualização dos dados essa prevalência continua, como mostra o gráfico de dispersão abaixo. É possível ver uma relação muito forte entre as variáveis idade e letalidade, confirmada pelos cálculos de correlação.



Figura 1: Relação entre idade e a taxa de letalidade da doença. Temos na abscissa a taxa percentual de letalidade e na ordenada a idade em anos dos pacientes.

A correlação de Pearson encontrada é de 0,855 com um p-valor de 7,899  $\times$  10<sup>-33</sup> e se usarmos a correlação com os rankings de Spearman (mais adequada para relações não lineares) obtemos 0,96 e seu p-valor é 3,474  $\times$  10<sup>-62</sup>.

Outro dado curioso que podemos extrair é prevalência de comorbidades em determinadas faixas etárias. Estudos encontraram algumas comorbidades como fatores de agravamento para a doença<sup>3</sup>. Condições como cardiopatia e diabetes são considerados fatores de risco da COVID-19. É observado que até os 70 anos os fatores de risco aumentam sua contagem juntamente com a idade, e voltando à figura 1 observamos que até por volta de 60 anos é onde temos maior inclinação na relação, o que pode indicar uma possível combinação destes fatores e, também, reforçar sua independência na atuação.

#### Prevalência de comorbidade por faixa etária



Figura 2: Prevalência de comorbidade por faixa etária. As frequências contadas para esta representação são da população do estado de São Paulo que testaram para covid-19, seja o resultado do teste positivo ou negativo.

## 4.3. Vacinação

No dia 17 de fevereiro de 2021 a enfermeira Mônica Calazans do Instituto de Infectologia Emílio Ribas, foi a primeira pessoa, fora dos estudos clínicos, a ser vacinada contra a Covid-19 no estado e também no país, marcando o início da campanha de vacinação<sup>4</sup>.

Com as faixas de vulnerabilidades bem definidas, depois dos profissionais da saúde os governos, de modo geral, optaram por começar a vacinação pela população idosa e acrescentando posteriormente os cidadãos que possuem alguma comorbidade, o que parece ter sido uma escolha acertada.

Nesta série temporal podemos observar que, em números absolutos, a contagem de óbitos das faixas que começaram seu processo de imunização, tendem a ficar abaixo de outras que ainda não iniciaram, mesmo estas sendo mais novas.



Figura 3: Média móvel de óbitos por intervalo de idade. As linha verticais marcam, aproximadamente, a data de início da vacinação para cada faixa etária

Destaque para o grupo de pessoas com mais de 85 anos que passam a ter a média de óbitos menor que a do grupo de 25 a 39 anos à partir do dia 29 de março de 2021. E também para o grupo dos cidadãos com idade entre 70 e 84 que passam a ter uma contagem menor que a do grupo classificados com 40 a 54 anos à partir do dia 29 de abril de 2021.

É claro que apenas com estas informações não podemos atribuir uma relação de causa e consequência, mas é uma boa hipótese a ser testada.

Tabela 1: Descrição estatística dos dados da figura 3

| Dado     | 25 - | 25 a 39 | 40 a 54 | 55 a 69 | 70 a 84 | 85+   |
|----------|------|---------|---------|---------|---------|-------|
| contagem | 166  | 166     | 166     | 166     | 166     | 166   |
| média    | 3,07 | 28,52   | 88,8    | 170,21  | 130,57  | 37,79 |
| desvio   | 1,16 | 15,28   | 46,65   | 85,04   | 70,47   | 11,18 |
| mín      | 1,34 | 6,4     | 20,48   | 69,14   | 68,87   | 22,4  |
| 25%      | 2,08 | 10,91   | 34,13   | 89,99   | 81,07   | 29,86 |
| mediana  | 2,72 | 30,97   | 96,06   | 170,93  | 97,76   | 34,59 |
| 75%      | 3,99 | 39,94   | 124,62  | 205,43  | 153,23  | 42,85 |
| máx      | 5.55 | 55.98   | 175.87  | 367.96  | 315.29  | 63.89 |

Para testar esta hipótese, o instituto Butantan imunizou toda a população adulta da cidade de Serrana-SP em experimento batizado de projeto S. Segundo reportagem publicada em sua página no dia 31 de maio de 2021<sup>5</sup>.

Para tentar observar resultado similar, filtramos os dados de Serrana, Garça e Jardinópolis, cidades com população parecida e data do primeiro caso próxima à de Serrana, sendo Jardinópolis da mesma região administrativa e Garça de uma região mais distante.

Tabela 2: Cidades escolhidas para comparar o efeito da vacina massiva no número de casos e óbitos

| Cidade       | Região Administrativa | População             | Primeiro caso |
|--------------|-----------------------|-----------------------|---------------|
| Serrana      | Ribeirão Preto        | 44434                 | 12/02/2020    |
| Jardinópolis | Ribeirão Preto        | 42893 (Serr. – 3,59%) | 15/02/2020    |
| Garça        | Marília               | 42483 (Serr. – 4,59%) | 20/02/2020    |

Analisando os dados de 2021 sobre a média de casos por dia e taxa de letalidade obtivemos o seguinte gráfico.

Projeto S - Vacinação em Serrana-SP e cidades similares



Figura 4: Projeto S. As linhas verticais na figura apontam o início e o fim da vacinação da população adulta na cidade de Serrana. A taxa de letalidade neste gráfico é calculada com o cumulativo de número de óbitos com o cumulativo do número de casos.

O gráfico aponta para uma tendência de queda nos números de casos e também na taxa de óbitos mais acentuada na cidade de Serrana, comparada às outras.

Para incidência de casos observamos as seguintes descrições estatísticas dos conjuntos:

Tabela 3: Descrição estatística do gráfico de casos da figura 4

| Dado     | Serrana | Jardinópolis | Garça |
|----------|---------|--------------|-------|
| contagem | 166     | 166          | 166   |
| média    | 15,55   | 14,35        | 18,42 |
| desvio   | 6,86    | 6,19         | 7,22  |
| mín      | 5,26    | 5,94         | 5,89  |
| 25%      | 9,28    | 8,65         | 13,77 |
| mediana  | 15,2    | 14,53        | 17,68 |

| 75% | 20,81 | 18,75 | 23,16 |
|-----|-------|-------|-------|
| máx | 30,07 | 26,43 | 32,87 |

# 4.4. Medidas de restrição

Além da medida preventiva farmacológica (vacina), as principais autoridades sanitárias também sugerem medidas não farmacológicas como uso de máscaras adequadas e distanciamento físico social<sup>6</sup> e em casos extremos até o chamado *lockdown*<sup>7</sup>.

O prefeito da cidade de Araraquara, Edinho Silva, decretou que a cidade entraria em *lockdown* no dia 21/02/2021 para tentar conter o avanço nas contaminações.

Com o intuito de verificar se há efetividade na medida, pegamos os dados da cidade de Araraquara e mais duas similares, Americana e Hortolândia, para avaliarmos a taxa de isolamento, número de casos e número de óbitos.

Tabela 4: Cidades escolhidas para comparar os efeitos do aumento no isolamento social nos casos e óbitos.

| Cidade      | Região Administrativa | População             | Primeiro caso |
|-------------|-----------------------|-----------------------|---------------|
| Araraquara  | Central               | 227618                | 12/02/2020    |
| Americana   | Campinas              | 233458 (Ara. + 2,56%) | 15/02/2020    |
| Hortolândia | Campinas              | 230268 (Ara. + 1,16%) | 20/02/2020    |



Figura 5: Isolamento, casos e óbitos em Araraquara, Americana e Hortolândia. A linha tracejada representa uma translação de -15 dias nos dados. A linha vertical marca o natal

Nas análises anteriores a data inicial é 1 de janeiro de 2021, mas para esta resolvemos iniciar no dia 1 de novembro de 2020 para verificarmos se as festas de final de ano nos remete a alguma característica observável.

Um atributo importante do gráfico é a linha tracejada que translada o número de casos e óbitos 15 dias no passado, assim podemos tentar associar os efeitos das taxas de mobilidade estes. O número 15 foi escolhido pois este é o intervalo máximo para a doença se manifestar após a contaminação.

O primeiro aspecto que podemos apontar é que frequentemente quando observamos picos nas curvas de isolamento, estes ficam no rumo dos vales das curvas pontilhadas e contrário também parece verdadeiro, vales das curvas de isolamento coincidem com picos das curvas pontilhadas. A exceção é pico de isolamento que vem logo após o natal.

Podemos especular que este pico acontece de forma natural (sem a necessidade de decretar um *lockdown*) por conta das festividades e feriados de final de ano, em que as pessoas naturalmente acabam ficando em casa.

Porém alinhado aos picos natalinos verificamos uma tendência de aumento nas linhas pontilhadas de Araraquara e Hortolândia.

A hipótese é que este aumento se deva por famílias que resolveram abrir uma exceção nesta época de festividades para se encontrar com familiares que não visitavam a muito tempo,

justamente em virtude da pandemia, e isto poderia ter "estourado" algumas bolhas de proteção. Esta hipótese é uma analogia do que ocorreu no feriado norte-americano de ação de graças nos Estados Unidos<sup>8</sup>.

Quanto ao *lockdown* em Araraquara, observa-se um aumento significativo no índice de isolamento logo após o decreto, assim como uma queda acelerada nos casos e óbitos, porém parece que depois da revogação da medida os números de circulação e infecção estão voltando aos patamares que levaram ao decreto.

Tabela 5: Descrição estatística das séries que dão origem a figura 5.

| cidade   | Araraqı | ıara    |         | America | nna     |         | Hortolâ | ndia    |         |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| métrica  | isol.   | casos   | óbitos  | isol.   | casos   | óbitos  | isol.   | casos   | óbitos  |
| contagem |         | 227     |         |         | 227     |         |         | 227     |         |
| média    | 38,6066 | 62,4263 | 2,13368 | 38,8776 | 65,9377 | 2,6118  | 38,4748 | 52,3393 | 2,3956  |
| desvio   | 2,37009 | 22,3187 | 1,32623 | 1,58782 | 29,0609 | 1,14007 | 1,60731 | 21,3039 | 1,31532 |
| mín      | 35,6939 | 22,9738 | 1       | 36,7988 | 10,7085 | 1       | 36,1283 | 13,3032 | 1       |
| 25%      | 37,1647 | 46,2653 | 1,36071 | 37,6939 | 45,9271 | 1,6749  | 37,0787 | 41,7347 | 1,45544 |
| mediana  | 37,9621 | 56,9942 | 1,63192 | 38,1487 | 60,6181 | 2,32459 | 38,1953 | 48,4315 | 1,99223 |
| 75%      | 39,8557 | 74,9665 | 2,21701 | 40,398  | 80,7464 | 3,43683 | 39,7172 | 58,1327 | 2,80904 |
| máx      | 46,7376 | 117,242 | 5,83965 | 42,5248 | 131,041 | 5,11467 | 41,4257 | 107,618 | 5,90087 |

# 4.5. Conclusão

A primeira metade do ano de 2021 ainda mostra níveis elevados de casos e óbitos provocados pela doença causada pelo vírus SARS-COV-2, porém ao segmentarmos os pacientes por idade, observamos uma tendência de redução nos casos e óbitos à medida que inicia-se a vacinação em cada segmento.

Além disso medidas não farmacológicas como o incentivo ao isolamento social pode ser um importante aliado no controle da doença enquanto a vacinação não chega a toda a população.

# 5. Bibliografia

- Governo do Estado de São Paulo, Dados Abertos SP, 2021, https://www.saopaulo.sp.gov.br/planosp/simi/dados-abertos/
- Brenda Sabrina Copatti, Gustavo Henrique Migliorini, Marcos Antonio Vincenzi, Padrões epidemiológicos da covid-19 no estado de São Paulo, 2021
- CDC Centers for Disease Control and Prevention, Evidence used to update the list of underlying medical conditions that increase a person's risk of severe illness from COVID-19, 2021, https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlyingevidence-table.html
- 4. Lívia Machado, Alessandro Feitosa Junior, Paula Paiva Paulo e Rodrigo Rodrigues, Logo após aprovação da Anvisa, governo de SP aplica em enfermeira a 1ª dose de vacina contra Covid-19 no Brasil, 2021, https://g1.globo.com/sp/sao-paulo/noticia/2021/01/17/apos-aprovacao-da-anvisa-governo-de-sp-aplica-1a-dose-da-coronavac-antes-do-inicio-do-plano-nacional-de-vacinacao.ghtml
- 5. Instituto Butantan, Projeto S: imunização em Serrana faz casos de Covid-19 despencarem 80% e mortes, 95%, , https://butantan.gov.br/noticias/projeto-s-imunizacao-em-serrana-faz-casos-de-covid-19-despencarem-80-e-mortes-95
- 6. World Health Organization, Coronavirus disease (COVID-19) advice for the public, , https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
- 7. World Health Organization, Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19, https://www.who.int/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19
- 8. Luiz Carlos Pavão, Alta de casos de covid após Ação de Graças nos EUA expõe risco de festas no Brasil, 2020, https://noticias.uol.com.br/ultimas-noticias/agencia-estado/2020/12/15/covid-alta-de-casos-apos-acao-de-gracas-nos-eua-expoe-risco-de-festas-no-brasil.htm

6. ANEXO – Plano de ensino e Plano de aula (disciplina Preparação Pedagógica)

# **PLANO DE ENSINO**

| CURSO | Ciência de Dados na Saúde |
|-------|---------------------------|
|       |                           |

| DISCIPLINA/UNIDADE CURRICULAR                   | CÓDIGO | PERÍODO | CARGA HORÁRIA (qtde. aulas) |
|-------------------------------------------------|--------|---------|-----------------------------|
| Tratamento e interpretação de dados<br>COVID-19 | TDC20  | 3       | 10                          |

| PRÉ-REQUISITOS | Noções de programação em Python. |
|----------------|----------------------------------|
|                | Visualização de dados            |

# **OBJETIVOS**

Apresentar os Dados Abertos de Covid no Estado de São Paulo.

Apresentar a obtenção e tratamento dos dados em Python. Organização das informações em gráficos e tabelas.

Interpretação de resultados.

# **EMENTA**

Dados abertos de Covid (Estado de São Paulo). Tratamento inicial de dados. Carga de dados para Python.

| CONTE | CONTEÚDO PROGRAMÁTICO                            |                                                                                                                                                                              |  |  |  |
|-------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ITEM  | EMENTA                                           | CONTEÚDO                                                                                                                                                                     |  |  |  |
| 1     | Dados abertos de Covid (Estado de<br>São Paulo). | <ul><li>Introdução ao tema Covid;</li><li>Acesso aos dados abertos.</li><li>Conceituação das tabelas disponíveis.</li></ul>                                                  |  |  |  |
| 2     | Tratamento de dados                              | <ul> <li>Crítica inicial de dados;</li> <li>Preparação para importação.</li> <li>Funções em Python para tratamento de dados:</li> <li>filtros, merge, sumarização</li> </ul> |  |  |  |
| 3     | Sumarização: tabelas                             | - Apresentação de dados em tabelas.                                                                                                                                          |  |  |  |
| 4     | Gráficos.                                        | <ul><li>Funções em Python para visualização: gráficos</li><li>Apresentação de dados em gráficos.</li></ul>                                                                   |  |  |  |
| 5     | Interpretação de resultados.                     | - Interpretação dos resultados obtidos. Prática a partir de uma cidade escolhida.                                                                                            |  |  |  |

| PROFESSORES                 | TURMA   |
|-----------------------------|---------|
| Brenda Sabrina Copatti      |         |
| Gustavo Henrique Migliorini | T202402 |
| Luiz Fernando Giolo Alves   | T202102 |
| Marcos Antonio Vincenzi     |         |

| PROGRAMAÇÃO E CONTEÚDOS DAS AULAS (PREVISÃO) |                                                                                                                                                       |                    |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| Dia/Mês ou<br>Semana                         | Conteúdo das Aulas                                                                                                                                    | Número de<br>Aulas |  |
| 03/ago                                       | Introdução ao Curso. Plano de Ensino. Formato da avaliação.<br>Introdução ao tema Covid.<br>Acesso aos dados abertos - Governo do Estado de São Paulo | 1                  |  |
| 05/ago                                       | Conceituação das tabelas disponíveis.<br>Crítica inicial de dados.<br>Preparação de dados para importação.                                            | 1                  |  |

| 10/ago | Funções em Python para tratamento de dados: importação, filtros, merge, sumarização | 1 |
|--------|-------------------------------------------------------------------------------------|---|
| 12/ago | Apresentação de dados em tabelas.                                                   | 1 |
| 17/ago | Funções em Python para visualização: gráficos                                       | 1 |
| 19/ago | Apresentação de dados em gráficos. Interpretação dos resultados obtidos.            | 1 |
| 24/ago | Aula prática - trabalhando com dados de uma cidade.                                 | 1 |
| 26/ago | Revisão para avaliação. Entrega dos trabalhos.                                      | 1 |
| 31/ago | Avaliação                                                                           | 1 |
| 02/set | Fechamento das notas. Comentários finais.                                           | 1 |

#### PROCEDIMENTOS DE ENSINO

#### **AULAS TEÓRICAS**

Aulas expositivas com os tópicos a serem trabalhados. Estudos de caso com a participação dos alunos.

Brainstormings.

Haverá recursos didáticos disponíveis (notebook, projetor) para ilustração dos temas e aplicação prática em Python.

#### **AULAS PRÁTICAS**

Nos dias de atividades guiadas ou em conjunto as aulas serão no laboratório de Informática, permitindo aos alunos a prática dos conceitos vistos em teoria, como a tabulação de dados, elaboração de gráficos e tabelas, cálculos estatísticos.

#### PROCEDIMENTOS DE AVALIAÇÃO

**Nota Final** = (P \* 0.65) + (Trab \* 0.35)

Onde: P: Prova.

Trab: Trabalho avaliativo

Obs.: Todas as notas são atribuídas de 0 (zero) a 10 (dez).

Caso a Nota Final seja menor que 6, os alunos em recuperação terão nova oportunidade de uma prova antes do início do semestre seguinte.

#### **REFERÊNCIAS**

## Referências Básicas:

GOVERNO DO ESTADO DE SÃO PAULO. **Dados Abertos.** c2021. Disponível em < https://www.saopaulo.sp.gov.br/planosp/simi/dados-abertos/>. Acesso em: 09 jul.2021.

MCKINNEY, Wes. **Python Para Análise de Dados**: tratamento de dados com pandas, numpy e ipython. São Paulo: Novatec Editora, 2018. 616 p.

#### Referências Complementares:

GRUS, Joel. Data science do zero: primeiras regras com o python. Rio de Janeiro: Alta Books, 2016. 336 p.

| ORIENTAÇÕES GERAIS                 |                                    |
|------------------------------------|------------------------------------|
| Prof.: Brenda Sabrina Copatti      | Assinatura do Coordenador do Curso |
| Prof.: Gustavo Henrique Migliorini |                                    |
| Prof.: Luiz Fernando Giolo Alves   |                                    |
| Prof.: Marcos Antonio Vincenzi     |                                    |

# **PLANO DE AULA**

| IDENTIFICAÇÃO |                                                                                                         |  |
|---------------|---------------------------------------------------------------------------------------------------------|--|
| Disciplina:   | atamento e interpretação de dados COVID-19                                                              |  |
| Professores:  | enda Sabrina Copatti<br>ıstavo Henrique Migliorini<br>iz Fernando Giolo Alves<br>arcos Antonio Vincenzi |  |

#### **TEMA DA AULA**

Aula 3 - Tratamento de dados em Python

#### **PRÉ-REQUISITOS**

Noções de programação em Python.

#### **OBJETIVOS**

Capacitar o aluno a importar e tratar bases de dados em Python.

## CONTEÚDO PROGRAMÁTICO - APRESENTAÇÃO

Biblioteca Pandas: series e dataframes Importando a(s) tabela(s) de dados: read\_csv Tratando as colunas de um dataframe Filtros

#### **DESENVOLVIMENTO DO TEMA**

O conteúdo programático será desenvolvido juntamente com os alunos, que acompanharão as atividades em paralelo nos seus notebooks/computadores. Os passos são os seguintes:

- acesso ao site de Dados Abertos (Gov. de São Paulo);
- download da tabela "casos e óbitos por município e data";
- importação para um dataframe do Pandas;
- escolha de uma cidade para as atividades filtro;
- crítica dos dados (casos negativos, missings, etc);
- describe do dataframe filtrado:
- sumarização de casos e óbitos (geral e por mês).
- discussão sobre os resultados obtidos.

## **RECURSOS DIDÁTICOS**

**Aula presencial (em laboratório de informática):** Notebook com acesso à internet, e projetor. Software Spyder (Anaconda)

#### Aula à distância:

Notebook - sala virtual (Google Meet ou Teams), Software Spyder (Anaconda) -

# **AVALIAÇÃO**

A avaliação da disciplina se fará por meio de uma atividade extra-classe para entrega e uma avaliação. O aprendizado do aluno nessa aula será feito por meio de feedbacks e atividades curtas propostas durante a aula, sem peso na nota final.

## **BIBLIOGRAFIA**

GOVERNO DO ESTADO DE SÃO PAULO. **Dados Abertos.** c2021. Disponível em <a href="https://www.saopaulo.sp.gov.br/planosp/simi/dados-abertos/">https://www.saopaulo.sp.gov.br/planosp/simi/dados-abertos/</a>>. Acesso em: 09 jul.2021.

GRUS, Joel. Data science do zero: primeiras regras com o python. Rio de Janeiro: Alta Books, 2016. 336 p.

MCKINNEY, Wes. **Python Para Análise de Dados**: tratamento de dados com pandas, numpy e ipython. São Paulo: Novatec Editora, 2018. 616 p.