- 1. Let S be a set. The indiscrete topological space I(S) is the space whose set of points is S and whose only open subsets are \emptyset and S itself. Imitating Example 0.5, find a universal property satisfied by the space I(S).
- 2. Find three examples of categories not mentioned above.
 - (a) Mat_R is the category whose objects are positive integers, and where the set of morphisms from n to m is the set of $m \times n$ matrices with values in \mathbb{R} . Composition is by matrix multiplication, and identity for $n \in \mathbb{Z}_{>0}$ is the $n \times n$ identity matrix.
 - (b) We can form a category out of regular languages, since strings form a monoid under concatenation.
 - (c) Meas has measurable spaces as objects and measurable functions as morphisms.
- 3. Show that a map in a category can have at most one inverse. That is, given a map $f: A \to B$, show that there is at most one map $g: B \to A$ such that $gf = 1_A$ and $fg = 1_B$.

Solution: Suppose there are two such mappings, $g, h : B \to A$ so that $fg = fh = 1_B$ and $gf = hf = 1_A$. Then left-compose with g:

$$fg = fh$$

$$gfg = gfh$$

$$1_A g = 1_A h$$

$$g = h.$$

So an inverse for f must be unique.

4. Let \mathscr{A} , \mathscr{B} be categories. The construction of the product category:

$$ob(\mathscr{A} \times \mathscr{B}) = ob(\mathscr{A}) \times ob(\mathscr{B})$$

$$Hom(\mathscr{A} \times \mathscr{B}) = Hom(\mathscr{A}) \times Hom(\mathscr{B})$$

has only one choice for compositions and identities. Give both.

Solution: Let f, g, h be morphisms in $\mathscr{A} \times \mathscr{B}$. Write $f = (f_1, f_2), g = (g_1, g_2), h = (h_1, h_2)$. Then the sensible composition is $gf = (g_1f_1, g_2f_2)$. And associativity follows;

$$h(gf) = h(g_1f_1, g_2f_2) = (h_1(g_1f_1), h_2(g_2f_2)) = ((h_1g_1)f_1, (h_2g_2)f_2) = (hg)(f).$$

Then for an object $(a, b) \in \mathcal{A} \times \mathcal{B}$, the sensible identity is $1_{(a,b)} = (1_a, 1_b)$. Then for a morphism $f = (f_1, f_2)$ with domain (a, b), we have

$$f1_{(a,b)} = (f_11_a, f_21_b) = (f_1, f_2) = f.$$

And likewise for some $g = (g_1, g_2)$ with codomain (a, b), we have:

$$1_{(a,b)}g = (1_ag_1, 1_bg_2) = (g_1, g_2) = g.$$

- 5. Find three examples of functors not mentioned above.
- 6. Show that functors preserve isomorphism. That is, prove that if $F: \mathscr{A} \to \mathscr{B}$ is a functor and $A, A' \in \mathscr{A}$ with $A \cong A'$, then $F(A) \cong F(A')$.

Proof: Suppose $F: \mathscr{A} \to \mathscr{B}$ is a functor, and $A \cong A'$ in \mathscr{A} . Then there exists a pair of morphisms $f: A \to A'$ and $g: A' \to A$ with $fg = 1_{A'}$ and $gf = 1_A$. And, the functor F gives another pair of morphisms Ff, Fg. Verify:

$$(Ff)(Fg) = F(fg) = F1_{A'} = 1_{FA'}$$

and likewise:

$$(Fq)(Ff) = F(qf) = F1_A = 1_{FA}$$
.

And so we have $FA \cong FA'$.

- 7. Two categories \mathscr{A} and \mathscr{B} are isomorphic, written as $\mathscr{A} \cong \mathscr{B}$, if they are isomorphic as objects of Cat.
 - (a) Let G be a group, regarded as a one-object category all of whose maps are isomorphisms. Then its opposite G^{op} is also a one-object category all of whose maps are isomorphisms, and can therefore be regarded as a group too. What is G^{op} , in purely group-theoretic terms? Prove that G is isomorphic to G^{op} .

Proof: Take the functors $F: G \to G^{op}$, and $F': G^{op} \to G$. Define, for $g \in G$ and $h^{op} \in G^{op}$:

$$F(g) = (g^{-1})^{op}, F'(h^{op}) = h^{-1}.$$

We first check that these functors compose to identity:

$$FF'(g^{op}) = F(g^{-1})$$

$$= ((g^{-1})^{-1})^{op}$$

$$= g^{op}$$

$$FF' = 1_{G^{op}}$$

$$F'F(g) = F'((g^{-1})^{op})$$

$$= (g^{-1})^{-1}$$

$$= g$$

$$F'F = 1_G.$$

And then we check that these mappings are indeed functors. Clearly F, F' map the single object in G to G^{op} , and vice versa. Then we check the morphism identities for F and F'. Let $g, h \in G$;

$$F(gh) = ((gh)^{-1})^{op}$$

$$= (h^{-1}g^{-1})^{op}$$

$$= (g^{-1})^{op} (h^{-1})^{op}$$

$$= F(g)F(h).$$

Then, if q^{op} , $h^{op} \in G^{op}$;

$$F'(g^{op}h^{op}) = F'((hg)^{op})$$

$$= (hg)^{-1}$$

$$= g^{-1}h^{-1}$$

$$= F(g^{op})F(h^{op}).$$

And all that is left to verify is that F, F' send identities to identities. Let $g \in G$, and $g^{op} \in G^{op}$. We wish to show that $F(1_G) = (1_G)^{op} = 1_{G^{op}}$, and that $F'(1_{G^{op}}) = 1_G$. Take $g^{op} \in G^{op}$, which we know to have a preimage g^{-1} under F.

$$(1_G)^{op}g^{op} = F(1_G)g^{op}$$

= $F(1_G)F(g^{-1})$
= $F(1_Gg^{-1})$
= $F(g^{-1})$
= g^{op} .

And so $1_{G^{op}} = (1_G)^{op} = F(1_G)$ (Since identity of right composition follows from the same argument). Now for $g \in G$,

$$F'(1_{G^{op}}) = F'((1_G)^{op})$$

= 1_G^{-1}
= 1_G .

So F and F' are functors which serve as inverses for one another, and $G \cong G'$.

(b) Find a monoid which is not isomorphic to its opposite.

Solution: Take \mathbb{N} ,

8. Find a universal property of the indiscrete topology, defined on any set by letting the open sets be exactly \emptyset , S.

Solution: We observe that if $f: X \to S$ is a function on a topological space X, that the preimage of \emptyset is \emptyset and the preimage of S is X. So the preimage of our two open sets are both open, and f is continuous. So given any function from $f: X \to S$ we define a function $\bar{f}: X \to I(S)$ which is continuous:

