SpecMix: audio data augmentation method

Pavel Lukianov

Moscow, 2021

Image Augmentation

Augmentation - method used to increase the amount of data by adding modified copies of already existing data or created synthetic data from existing data.

Figure: Flipping

SpecAugment

Figure: Original, Time warping, Frequency masking, Time masking

Mixup

There are two training samples (x_i, y_i) , (x_j, y_j)

$$egin{aligned} & x_{new} = \lambda x_i + (1 - \lambda) x_j \ & y_{new} = \lambda y_i + (1 - \lambda) y_j, \ ext{where} \ \lambda \sim \textit{Beta}(lpha, lpha) \end{aligned}$$

Linear interpolations of feature vectors should lead to linear interpolations of the associated targets.

Cutmix

There are two training samples (x_i, y_i) , (x_j, y_j)

$$egin{aligned} & \mathbf{x}_{new} = \mathbf{M} \odot \mathbf{x}_i + (1 - \mathbf{M}) \odot \mathbf{x}_j \ & \mathbf{y}_{new} = \lambda \mathbf{y}_i + (1 - \lambda) \mathbf{y}_j, \text{ where } \lambda \sim \textit{Beta}(\alpha, \alpha) \end{aligned}$$

Bounding box coordinates $B = (r_x, r_y, r_w, r_h)$:

$$r_x \sim Unif(0, W), r_w = W\sqrt{1-\lambda}$$

 $r_y \sim Unif(0, H), r_h = H\sqrt{1-\lambda}$

$$\frac{r_w r_h}{HW} = 1 - \lambda$$

Mixup and Cutmix

Figure: Mixup, Cutmix, Specaugment and Specmix

SpecMix

There are two training samples (x_i, y_i) , (x_j, y_j)

$$x_{new} = M \odot x_i + (1 - M) \odot x_j$$

$$y_{new} = \lambda y_i + (1 - \lambda)y_j$$

 λ - share of x_i in x_{new}

Masking strategy:

- Time masking
- Frequency masking

SpecMix

Figure: SpecMix

Experiments

- cross-entropy loss
- batch size = 32

Model: ResNet-101	Accuracy(%)
No augmentation	59.60
Mixup [15]	58.15
Cutmix [18]	59.54
Specaugment [11]	57.68
Specmix $\gamma = 0.3$	62.13

Figure: TAU Urban Acoustic Scenes 2020 Mobile benchmark

Experiments

- cross-entropy loss
- batch_size = 32

Model : [5]	Accuracy(%)
No augmentation	68.90
Mixup [15]	71.29
Cutmix [18]	70.92
Specaugment [11]	69.07
Specmix $\gamma = \mathcal{U}[0,1]$	71.60

Figure: TAU Urban Acoustic Scenes 2020 Mobile benchmark

Experiments

- cross-entropy loss
- batch_size = 32

Model: ResNet-101	Accuracy(%)
No augmentation	96.07
Mixup [15]	95.87
Cutmix [18]	95.66
Specaugment [11]	96.90
Specmix $\gamma = \mathcal{U}[0,1]$	97.11

Figure: SECL UMONS benchmark