CURS 9 TEHNICA DE PROGRAMARE "BACKTRACKING"

1. Prezentare generală

Tehnica de programare Backtracking este utilizată, de obicei, pentru determinarea tuturor soluțiilor unei probleme într-un mod progresiv, astfel încât să se evite generarea întregului spațiu al soluțiilor problemei. Practic, soluțiile se construiesc componentă cu componentă și se testează la fiecare pas validitatea lor (se verifică dacă sunt *soluții parțiale*), iar în cazul în care se constată faptul că nu se poate obține o soluție a problemei plecând de la soluția parțială curentă, aceasta este abandonată. Astfel, se evită o *rezolvare de tip forță-brută* a problemei, adică generarea și testarea tuturor soluțiilor posibile pentru a determina soluțiile problemei. Totuși, complexitatea algoritmilor de tip Backtracking rămâne una ridicată, deoarece se va genera și testa un procent semnificativ din întregul spațiu al soluțiilor.

De exemplu, să considerăm problema generării tuturor permutărilor mulțimii $A = \{1,2,...,n\}$ pentru n = 6.

O rezolvare de tip forță-brută presupune generarea tuturor posibilelor soluții, adică a tuplurilor de forma $p=(p_1,p_2,p_3,p_4,p_5,p_6)$ cu $p_1,\ldots,p_6\in\{1,2,\ldots,6\}$, și selectarea celor care sunt permutări, adică au toate valorile diferite între ele $(p_1\neq p_2\neq\cdots\neq p_6)$. Se observă foarte ușor faptul că se vor genera și testa $6^6=46656$ tupluri, din care doar 6!=720 vor fi permutări, deci eficiența acestei metode este foarte mică - în jurul unui procent de 1.5%! Eficiența scăzută a acestei metode este indusă de faptul că se generează multe tupluri inutile, care nu sunt sigur permutări. De exemplu, se vor genera toate tuplurile de forma $p=(1,1,p_3,p_4,p_5,p_6)$, adică $6^4=1296$ de tupluri inutile deoarece $p_1=p_2$, deci, evident, aceste tupluri nu pot fi permutări!

O rezolvare de tip Backtracking presupune generare progresivă a soluțiilor, evitând generarea unor tupluri inutile, astfel (vom ține cont de faptul că $p_1, ..., p_6 \in \{1, 2, ..., 6\}$):

- p = (1) este o soluție parțială (componentele sale sunt diferite între ele, deci poate fi o permutare), dar nu este o soluție a problemei (nu are 6 componente), astfel că trebuie să adăugăm cel puțin încă o componentă;
- p = (1,1) nu este o soluție parțială (componentele sale sunt egale, deci nu vom obține o permutare indiferent de ce valori vom adăuga în continuare), astfel că nu are sens să adăugăm încă o componentă, ci vom genera următorul tuplu tot cu două componente;
- p = (1,2) este o soluție parțială, dar nu este o soluție a problemei;
- p = (1,2,1)p = (1,2,2) - nu sunt soluții parțiale;
- p = (1,2,3) este o soluție parțială, dar nu este o soluție a problemei;
- p = (1,2,3,1)• p = (1,2,3,2) p = (1,2,3,3)- nu sunt soluții parțiale;
- p = (1,2,3,4) este o soluție parțială, dar nu este o soluție a problemei;

$$p = (1,2,3,4,1)$$

$$p = (1,2,3,4,2)$$

$$p = (1,2,3,4,3)$$

$$p = (1,2,3,4,4)$$
- nu sunt soluții parțiale;

• p = (1,2,3,4,5) – este o soluție parțială, dar nu este o soluție a problemei;

- p = (1,2,3,4,5,6) este o soluție parțială care este și soluție a problemei, deci o memorăm sau o prelucrăm (de exemplu, o afișăm), după care vom încerca generarea următorul tuplu. Deoarece ultima componentă are valoarea 6 (ultima posibilă), înseamnă că am epuizat toate valorile posibile pentru aceasta, deci o vom elimina și vom genera următorul tuplu format doar din 5 componente;
- p = (1,2,3,4,6) este o soluție parțială, dar nu este o soluție a problemei;

$$p = (1,2,3,4,6,1)$$

$$p = (1,2,3,4,6,2)$$

$$p = (1,2,3,4,6,3)$$

$$p = (1,2,3,4,6,4)$$
- nu sunt soluții parțiale;
$$p = (1,2,3,4,6,4)$$

- p = (1,2,3,4,6,5) este o soluție parțială care este și soluție a problemei, deci o memorăm sau o prelucrăm, după care vom genera următorul tuplu;
- p = (1,2,3,4,6,6) nu este o soluție parțială, dar ultima componentă are valoarea maxim posibilă 6, deci o vom elimina și vom genera următorul tuplu format doar din 5 componente;
- p = (1,2,3,4,6) ultima componentă are valoarea maxim posibilă 6, deci o vom elimina și vom genera următorul tuplu format doar din 4 componente;
- p = (1,2,3,5) este o soluție parțială, dar nu este o soluție a problemei;
- •
- p = (6,5,4,3,2,1) este o soluție parțială care este și ultima soluție a problemei, deci o memorăm sau o prelucrăm, după care vom încerca generarea următorului tuplu. Se observă cu ușurință faptul că, pe rând, nu vom mai găsi niciun tuplu convenabil, deci algoritmul se va termina.

Observație importantă: Determinarea exactă a complexității unui algoritm de tip Backtracking nu este simplă. Totuși, plecând de la observația că un algoritm nu poate avea o complexitate mai mică decât citirea datelor de intrare și/sau afișarea datelor de ieșire, de obicei, putem aproxima complexitatea unui astfel de algoritm prin numărul soluțiilor pe care el le afișează. De exemplu, algoritmul pentru generarea permutărilor de ordin n are complexitatea minimă egală cu $\mathcal{O}(n!)$, deoarece vor fi afișate n! permutări. O astfel de complexitate este foarte mare, depășind-o pe cea exponențială!

2. Forma generală a unui algoritm de tip Backtracking

Vom începe prin a preciza faptul că majoritatea problemele de generare pot fi formalizate astfel: "Fie mulțimile nevide $A_1, A_2, ..., A_n$ și un predicat $P: A_1 \times ... \times A_n \rightarrow \{0,1\}$. Să se genereze toate tuplurile de forma $S = (s_1, s_2, ..., s_n)$ pentru care $s_1 \in A_1, ..., s_n \in A_n$ și $P(s_1, s_2, ..., s_n) = 1$." Practic, predicatul P cuantifică o proprietate pe care trebuie să o îndeplinească componentele tuplului S (o soluție a problemei) sub forma unei funcții de tip boolean (0 = false și 1 = true).

De exemplu, problema generării permutărilor poate fi formalizată în acest mod considerând $A_1 = \cdots = A_n = \{1, 2, ..., n\}$ și $P(s_1, s_2, ..., s_n) = (s_1 \neq s_2) \land (s_2 \neq s_3) \land ... \land (s_{n-1} \neq s_n)$, unde prin \land am notat operatorul logic AND.

În continuare, vom prezenta câteva notații, definiții și observații:

- pentru orice componentă s_k vom nota cu min_k cea mai mică valoare posibilă a sa, iar cu max_k pe cea mai mare;
- vom nota cu succ(x) următoarea valoare posibilă după x (în foarte multe cazuri, succ(x) = x + 1);
- într-un tuplu $(s_1, s_2, ..., s_k)$, componenta s_k se numește *componentă curentă* (asupra sa se acționează în momentul respectiv);
- condițiile de continuare reprezintă condițiile pe care trebuie să le îndeplinească tuplul curent $(s_1, s_2, ..., s_k)$ astfel încât să aibă sens extinderea sa cu o nouă componentă s_{k+1} sau, altfel spus, există valori pe care le putem adăuga la el astfel încât să obținem o soluție $S = (s_1, ..., s_n)$ a problemei;
- *condițiile de continuare* se deduc din predicatul *P* și sunt neapărat necesare, fără a fi întotdeauna și suficiente;
- tuplul curent $(s_1, ..., s_k)$ este o *soluție parțială* dacă el îndeplinește condițiile de continuare;
- orice *soluție* a problemei este implicit și soluție parțială, dar trebuie să mai îndeplinească și alte condiții suplimentare.

Folosind observațiile anterioare, forma generală a unui algoritm de tip Backtracking, implementat folosind o funcție recursivă este următoarea:

```
//k reprezintă indicele componentei curent s[k] dintr-un
//tablou unidimensional s indexat de la 1
void bkt(k)
{
  int v;

  //parcurgem toate valorile posibile v pentru s[k]
  for(v = mink; v <= maxk; v = succ(v))
  {
     //atribuim componentei curente s[k] valoarea v
     s[k] = v;</pre>
```

```
//dacă s[1],...,s[k] este soluție parțială
if(s[1],...,s[k] este soluție parțială)
    //dacă s[1],...,s[k] este o soluție
    if(s[1],...,s[k] este soluție)
        prelucrăm soluția curentă s[1],...,s[k]
    //s[1],...,s[k] este soluție parțială, dar nu este
    //soluție, deci adăugăm o nouă componentă s[k+1]
    else
        bkt(k+1);
}
```

Referitor la algoritmul general de Backtracking prezentat mai sus trebuie făcute câteva observații:

- bucățile de cod scrise cu rosu trebuie particularizate pentru fiecare problemă;
- am considerat tabloul s indexat de la 1, ci nu de la 0, pentru a permite o scriere naturală a unor condiții în care se utilizează indicii tabloului;
- mink și maxk se deduc din semnificația componentei s [k] a unei soluții;
- aşa cum am menţionat anterior, în majoritatea problemelor, succ (v) =v+1;
- testarea faptului că s[1], ..., s[k] este soluție parțială se realizează, de obicei, în cadrul unei funcții (în exemplele pe care le vom prezenta ulterior în limbajul C vom utiliza o funcție int solp(int k));
- pentru a testa că s[1],...,s[k] este soluție vom ține cont de faptul că s[1],...,s[k] este soluție parțială, deci nu vom retesta condițiile de continuare, ci doar pe cele suplimentare lor;
- dacă s[1],...,s[k] nu este soluție parțială, atunci nu vom adăuga o nouă componentă s[k+1] prin apelul recursiv bkt (k+1), deci instrucțiunea for va continua și componentei curente s[k] i se va atribui următoarea valoare posibilă v, dacă aceasta există, iar în cazul în care aceasta nu există, instrucțiunea for corespunzătoare componentei curente s[k] se va termina și, implicit, apelul funcției bkt corespunzător, deci se va reveni la componenta anterioară s[k-1].

De exemplu, pentru a genera toate permutările de ordin n, observațiile de mai sus se particularizează, astfel:

- s[k] reprezintă un element al permutării, deci $min_k=1$ și $max_k=n$;
- succ (v) =v+1, deoarece valorile posibile pentru s[k] sunt numere naturale consecutive cuprinse între 1 și n;
- s[1],...,s[k-1],s[k] este soluție parțială dacă valoarea componentei curente s[k] nu a mai fost utilizată anterior, adică s[k]≠s[i] pentru orice i∈{1,2,...,k-1}. Se observă faptul că această condiție este dedusă din predicatul *P* (care impune ca toate cele *n* valori s[1],...,s[n] dintr-o permutare de ordin *n* să fie distincte) și este neapărat necesară (dacă s[1],...,s[k] nu sunt distincte, atunci, indiferent de ce valori am atribui celorlalte n-k componente s[k+1],...,s[n] nu vom obține o permutare de ordin n), fără a fi și suficientă (dacă valorile s[1],...,s[k] sunt distincte nu înseamnă că ele formează o permutare de ordin n, ci trebuie impusă condiția suplimentară k=n);

pentru a testa că s[1],...,s[k] este soluție vom ține cont de faptul că s[1],...,s[k] este soluție parțială, deci nu vom retesta condițiile de continuare (s[k]≠s[i] pentru orice i∈{1,2,...,k-1}), ci doar condiția suplimentară k=n.

Aplicând observațiile anterioare în forma generală a algoritmului de Backtracking, obținem următoarea implementare în limbajul C a algoritmului de generare a tuturor permutărilor mulțimii $\{1,2,\ldots,n\}$:

```
#include<stdio.h>
int s[101], n;
int solp(int k)
    int i;
    for(i = 1; i < k; i++)</pre>
        if(s[k] == s[i])
             return 0;
    return 1;
}
void bkt(int k)
    int i, v;
    for(v = 1; v <= n; v++)
        s[k] = v;
        if(solp(k) == 1)
             if(k == n)
                 for(i = 1; i <= k; i++)</pre>
                      printf("%d ", s[i]);
                 printf("\n");
             }
             else
                 bkt(k+1);
    }
}
int main()
    printf("n = ");
    scanf("%d", &n);
    bkt(1);
    return 0;
}
```

Așa cum am menționat deja, complexitatea minimă a acestui algoritm este $\mathcal{O}(n!)$.

3. Probleme de generări combinatoriale

Pe lângă generarea permutărilor unei mulțimi, algoritmii de tip Backtracking mai pot fi utilizați și pentru rezolvarea altor probleme de generări combinatoriale, cum ar fi generarea aranjamentelor sau a combinărilor unei mulțimi. În continuare, vom exemplifica algoritmii pe care îi vom prezenta pentru mulțimea $A = \{1, 2, ..., n\}$, deoarece elementele oricărei alte mulțimi cu n elemente pot fi accesate considerând elementele mulțimii A ca fiind indicii elementelor sale.

3.1. Generarea aranjamentelor

Aranjamentele cu m elemente ale unei mulțimi cu n elemente ($m \le n$) reprezintă toate tuplurile care se pot forma utilizând m elemente distincte dintre cele n ale mulțimii. Numărul lor se notează cu A_n^m și este dat de formula $\frac{n!}{(n-m)!}$. De exemplu, numărul aranjamentelor cu m=3 elemente ale unei mulțimi cu n=5 elemente este $A_5^3=60$, o parte a lor fiind: $(1,2,3), (1,3,2), \dots, (3,2,1), \dots, (1,3,5), \dots, (5,3,1), \dots, (3,4,5), \dots, (5,4,3)$.

Se observă foarte ușor faptul că singura diferență față de generarea permutărilor o constituie lungimea unei soluții, care în acest caz este m în loc de n. De fapt, pentru m=n, aranjamentele unei mulțimi sunt chiar permutările sale!

La fel ca și în cazul generării permutărilor, putem aproxima complexitatea minimă a acestui algoritm prin numărul soluțiilor pe care le va afișa, deci prin $\mathcal{O}(A_n^m)$.

3.2. Generarea combinărilor

Combinările cu m elemente ale unei mulțimi cu n elemente ($m \le n$) reprezintă toate submulțimile cu m elemente ale unei mulțimi cu n elemente. Numărul lor se notează cu C_n^m și este dat de formula $\frac{n!}{m!(n-m)!}$. De exemplu, numărul tuturor submulțimilor cu m=3 elemente ale unei mulțimi cu n=5 elemente este $C_5^3=10$, toate aceste submulțimi fiind: $\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,4\},\{1,3,5\},\{1,4,5\},\{2,3,4\},\{2,3,5\},\{2,4,5\}$ și $\{3,4,5\}$.

Spre deosebire de tupluri, în care contează ordinea elementelor (de exemplu, tuplurile (1,2,3) și (1,3,2) sunt considerate diferite), în cazul submulțimilor aceasta nu contează (de exemplu, submulțimile {1,2,3} și {3,1,2} sunt considerate egale). Din acest motiv, trebuie să găsim o posibilitate de a evita prelucrarea unei soluții care are aceleași elemente ca o altă soluție generată anterior, dar în altă ordine. În acest sens, o variantă simplă, dar ineficientă, o reprezintă prelucrarea doar a soluțiilor care au elementele în ordine strict crescătoare, dar astfel vom încălca chiar principiul de bază al metodei Backtracking, acela de a evita generarea și testarea unor tupluri inutile cât mai devreme posibil. O altă variantă o reprezintă generarea doar a soluțiilor cu elemente în ordine strict crescătoare, această restricție putând fi impusă soluției curente în mai multe etape ale unui algoritm de tip Backtracking:

- când testăm condițiile de continuare, verificând faptul că s [k] > s [k-1] această variantă este mai eficientă decât prima, dar, totuși se vor genera și testa multe tupluri inutile. De exemplu, pentru a extinde soluția parțială (1, 3), se vor genera și testa inutil tuplurile (1,3,1), (1,3,2) și (1,3,3), deși este evident faptul că la tuplul (1,3) are sens să adăugăm doar o valoare cel puțin egală cu 4;
- inițializând componenta curentă cu prima valoare strict mai mare decât componenta anterioară ($\min_k = s[k-1]+1$) este cea mai eficientă variantă posibilă, deoarece nu se generează și testează tupluri inutile și, mai mult, orice

tuplu este soluție parțială (elementele sale sunt generate direct în ordine strict crescătoare, deci sunt distincte), ceea ce înseamnă că putem renunța la testarea condițiilor de continuare!

Astfel, vom obţine următorul algoritm eficient de tip Backtracking pentru generarea combinărilor:

```
#include<stdio.h>
int s[101], n, m;
void bkt(int k)
    int i, v;
    for (v = s[k-1]+1; v \le n; v++)
        s[k] = v;
        if(k == m)
             for(i = 1; i <= k; i++)</pre>
                 printf("%d ", s[i]);
             printf("\n");
        }
        else
            bkt(k+1);
    }
}
int main()
    printf("n = ");
    scanf("%d", &n);
    printf("m = ");
    scanf("%d", &m);
    bkt(1);
    return 0;
}
```

Pentru k=1, variabila v din ciclul for va fi inițializată cu valoarea s[0]+1, respectiv chiar cu valoarea corectă 1, deoarece tabloul s este declarat global, deci elementele sale sunt inițializate automat cu 0.

La fel ca și în cazul generării permutărilor, putem aproxima complexitatea minimă a acestui algoritm prin numărul soluțiilor pe care le va afișa, deci prin $\mathcal{O}(C_n^m)$.