

Definiția 1.68

Un literal este o

- variabilă (în care caz spunem că este literal pozitiv) sau
- negația unei variabile (în care caz spunem că este literal negativ).

Exemple: v_1, v_2, v_{10} literali pozitivi; $\neg v_0, \neg v_{100}$ literali negativi

Definiția 1.69

O formulă φ este în formă normală disjunctivă (FND) dacă φ este o disjuncție de conjuncții de literali.

Aşadar,
$$\varphi$$
 este în FND ddacă $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j}\right)$, unde fiecare $L_{i,j}$ este literal.

Definiția 1.70

O formulă φ este în formă normală conjunctivă (FNC) dacă φ este o conjuncție de disjuncții de literali.

Aşadar,
$$\varphi$$
 este în FNC ddacă $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$, unde fiecare $L_{i,j}$ este literal.

Exemple

- $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- $ightharpoonup v_1 \wedge \neg v_5 \wedge v_4$ este atât în FND cât și în FNC
- $ightharpoonup \neg v_{10} \lor v_{20} \lor v_4$ este atât în FND cât și în FNC
- $(v_1 \lor v_2) \land ((v_1 \land v_3) \lor (v_4 \land v_5))$ nu este nici în FND, nici în FNC

Notație: Dacă L este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

Propoziția 1.71

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c\right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Funcția asociată unei formule

Exemplu: Arătați că $\vDash v_1 \rightarrow (v_2 \rightarrow (v_1 \land v_2))$.

v_1	<i>V</i> ₂	$v_1 ightarrow (v_2 ightarrow (v_1 \wedge v_2))$
0	0	1
0	1	1
1	0	1
1	1	1

Acest tabel definește o funcție $F:\{0,1\}^2 o \{0,1\}$

$arepsilon_{1}$	$arepsilon_2$	$F(arepsilon_1,arepsilon_2)$
0	0	1
0	1	1
1	0	1
1	1	1

Funcția asociată unei formule

Fie φ o formulă și $Var(\varphi) = \{x_1, \dots, x_n\}$.

Fie $(\varepsilon_1, \ldots, \varepsilon_n) \in \{0, 1\}^n$. Definim $e_{\varepsilon_1, \ldots, \varepsilon_n} : Var(\varphi) \to \{0, 1\}$ astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}(x_i)=\varepsilon_i$$
 pentru orice $i\in\{1,\ldots,n\}$.

Definim $e_{\varepsilon_1,...,\varepsilon_n}^+(\varphi) \in \{0,1\}$ astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi):=e^+(\varphi),$$

unde $e: V \to \{0,1\}$ este orice evaluare care extinde $e_{\varepsilon_1,...,\varepsilon_n}$, adică, $e(x_i) = e_{\varepsilon_1,...,\varepsilon_n}(x_i) = \varepsilon_i$ pentru orice $i \in \{1,...,n\}$.

Conform Propoziției 1.13, definiția nu este ambiguă.

Definiția 1.72

Funcția asociată lui φ este $F_{\varphi}: \{0,1\}^n \to \{0,1\}$, definită astfel:

$$F_{\varphi}(\varepsilon_1,\ldots,\varepsilon_n)=e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi)$$
 pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$.

Aşadar, F_{φ} este funcția definită de tabela de adevăr pentru φ .

Funcția asociată unei formule

Propoziția 1.73

- (i) Fie φ o formulă. Atunci
 - (a) $\models \varphi$ ddacă F_{φ} este funcția constantă 1.
 - (b) φ este nesatisfiabilă ddacă F_{φ} este funcția constantă 0.
- (ii) Fie φ, ψ două formule. Atunci
 - (a) $\varphi \vDash \psi$ ddacă $F_{\varphi} \leq F_{\psi}$.
 - (b) $\varphi \sim \psi$ ddacă $F_{\varphi} = F_{\psi}$.
- (iii) Există formule diferite φ, ψ a.î. $F_{\varphi} = F_{\psi}$.

Caracterizarea funcțiilor booleene

Definiția 1.74

O funcție booleană este o funcție $F: \{0,1\}^n \to \{0,1\}$, unde $n \ge 1$. Spunem că n este numărul variabilelor lui F.

Exemplu: Pentru orice formulă φ , F_{φ} este funcție Booleană cu n variabile, unde $n = |Var(\varphi)|$.

Teorema 1.75

Fie $n \ge 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă φ în FND a.î. $H = F_{\varphi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=0$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$,

luăm
$$\varphi := \bigvee_{i=0}^n (v_i \wedge \neg v_i)$$
. Avem că $Var(\varphi) = \{v_0, \dots, v_{n-1}\}$,

așadar, $F_{\varphi}:\{0,1\}^n \to \{0,1\}$. Cum $v_i \land \neg v_i$ este nesatisfiabilă pentru orice i, rezultă că φ este de asemenea nesatisfiabilă. Deci, F_{φ} este de asemenea funcția constantă 0.

Caracterizarea funcțiilor booleene

Altcumva, mulțimea

$$T:=H^{-1}(1)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=1\}$$

este nevidă.

Considerăm formula

$$arphi := igvee_{(arepsilon_1,...,arepsilon_n) \in T} \left(igwedge_{arepsilon_i = 1} v_i \wedge igwedge_{arepsilon_i = 0}
eg v_i
ight).$$

Deoarece $Var(\varphi) = \{v_1, \ldots, v_n\}$, avem că $F_{\varphi} : \{0, 1\}^n \to \{0, 1\}$.

Se demonstrează că $H = F_{\varphi}$ (exercițiu suplimentar).

Caracterizarea funcțiilor booleene

Teorema 1.76

Fie $n \ge 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă ψ în FNC a.î. $H = F_{\psi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=1$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$, atunci luăm

$$\psi := \bigwedge_{i=0}^{n-1} (v_i \vee \neg v_i).$$

Altcumva, mulțimea

$$F:=H^{-1}(0)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=0\}$$

este nevidă.

Considerăm formula
$$\psi := \bigwedge_{(\varepsilon_1, \dots, \varepsilon_n) \in F} \left(\bigvee_{\varepsilon_i = 1} \neg v_i \lor \bigvee_{\varepsilon_i = 0} v_i \right).$$

Se demonstrează că $H = F_{\psi}$ (exercițiu suplimentar).

Caracterizarea funcțiilor Booleene

Exemplu: Fie $H: \{0,1\}^3 \rightarrow \{0,1\}$ descrisă prin tabelul:

$arepsilon_1$	$arepsilon_2$	$arepsilon_3$	$H(arepsilon_1,arepsilon_2,arepsilon_3)$	
0	0	0	0	$D_1 = v_1 \vee v_2 \vee v_3$
0	0	1	0	$D_2 = v_1 \vee v_2 \vee \neg v_3$
0	1	0	1	$C_1 = \neg v_1 \wedge v_2 \wedge \neg v_3$
0	1	1	0	$D_3 = v_1 \vee \neg v_2 \vee \neg v_3$
1	0	0	1	$C_2 = v_1 \wedge \neg v_2 \wedge \neg v_3$
1	0	1	1	$C_3 = v_1 \wedge \neg v_2 \wedge v_3$
1	1	0	1	$C_4 = v_1 \wedge v_2 \wedge \neg v_3$
1	1	1	1	$C_5 = v_1 \wedge v_2 \wedge v_3$

$$arphi=C_1ee C_2ee C_3ee C_4ee C_5$$
 în FND a.î. $H=F_{arphi}.$ $\psi=D_1\wedge D_2\wedge D_3$ în FNC a.î. $H=F_{\psi}.$

Teorema 1.77

Orice formulă φ este echivalentă cu o formulă φ^{FND} în FND și cu o formulă φ^{FNC} în FNC.

Dem.:

Fie $Var(\varphi) = \{x_1, \ldots, x_n\}$ și $F_{\varphi} : \{0,1\}^n \to \{0,1\}$ funcția booleană asociată. Aplicând Teorema 1.75 cu $H := F_{\varphi}$, obținem o formulă φ^{FND} în FND a.î. $F_{\varphi} = F_{\varphi^{FND}}$. Așadar, conform Propoziției 1.73.(ii), $\varphi \sim \varphi^{FND}$.

Similar, aplicând Teorema 1.76 cu $H:=F_{\varphi}$, obţinem o formulă φ^{FNC} în FNC a.î. $F_{\varphi}=F_{\varphi^{FNC}}$. Prin urmare, $\varphi\sim\varphi^{FNC}$.

'Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 și $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi)$$
 cu $\neg\varphi \land \neg\psi$ și $\neg(\varphi \land \psi)$ cu $\neg\varphi \lor \neg\psi$.

Pasul 3. Pentru FNC, se aplică distributivitatea lui ∨ fața de ∧, pentru a înlocui

$$\varphi \lor (\psi \land \chi) \text{ cu } (\varphi \lor \psi) \land (\varphi \lor \chi) \quad \text{ si } \quad (\psi \land \chi) \lor \varphi \text{ cu } (\psi \lor \varphi) \land (\chi \lor \varphi).$$

Pentru FND, se aplică distributivitatea lui ∧ fața de ∨, pentru a înlocui

$$\varphi \wedge (\psi \vee \chi) \operatorname{cu} (\varphi \wedge \psi) \vee (\varphi \wedge \chi) \quad \text{si} \quad (\psi \vee \chi) \wedge \varphi \operatorname{cu} (\psi \wedge \varphi) \vee (\chi \wedge \varphi).$$

Exemplu

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

Avem

$$arphi \sim \neg(\neg v_0
ightarrow \neg v_2) \lor (v_0
ightarrow v_2)$$
 Pasul 1
 $\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (v_0
ightarrow v_2)$ Pasul 1
 $\sim \neg(\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2)$ Pasul 1
 $\sim \neg(v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2)$ Pasul 2
 $\sim (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2)$ Pasul 2
 $\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2$ Pasul 2

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \\
\sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua $\varphi^{FNC} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$. Se observă, folosind idempotența și comutativitatea lui \lor , că $\varphi^{FNC} \sim \neg v_0 \lor v_2$.

Clauze

Definiția 1.78

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obținem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 1.79

Fie C o clauză și e : $V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă există $L \in C$ a.î. $e \models L$.

Definiția 1.80

O clauză C se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare e : $V \rightarrow \{0,1\}$ este model al lui C.

Definiția 1.81

O clauză C este trivială dacă există un literal L $a.\hat{i}. L, L^c \in C.$

Propoziția 1.82

- (i) Orice clauză nevidă este satisfiabilă.
- (ii) Clauza vidă □ este nesatisfiabilă.
- (iii) O clauză este validă ddacă este trivială.

Clauze

 $S = \{C_1, \dots, C_m\}$ este o mulțime de clauze. Dacă m = 0, obținem mulțimea vidă de clauze \emptyset .

 \mathcal{S} este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

Definiția 1.83

Fie $e: V \to \{0,1\}$. Spunem că e este model al lui S sau că e satisface S și scriem $e \models S$ dacă $e \models C_i$ pentru orice $i \in \{1, ..., m\}$.

Definiția 1.84

 ${\cal S}$ se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare e : $V \rightarrow \{0,1\}$ este model al lui \mathcal{S} .

Clauze

Propoziția 1.85

- ightharpoonup Dacă S conține clauza vidă \square , atunci S nu este satisfiabilă.
- ▶ ∅ este validă.

Dem.: Exercițiu.

Exemplu

$$S = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\}$$
 este satisfiabilă.

Dem.: Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu

$$S = \{ \{ \neg v_1, v_2 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1 \}, \{ v_3 \} \}$$
 nu este satisfiabilă.

Dem.: Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$ și, deoarece $e \models \{\neg v_3, \neg v_2\}$, trebuie să avem $e(v_2) = 0$. Rezultă că $e(v_2) = e^+(\neg v_1) = 0$, deci e nu satisface $\{\neg v_1, v_2\}$. Am obținut o contradicție.

Unei formule φ în FNC îi asociem o mulțime de clauze \mathcal{S}_{φ} astfel: Fie

$$\varphi := \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right),$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obținută considerând toți literalii $L_{i,j}, j \in \{1, \ldots, k_i\}$ distincți. Fie \mathcal{S}_{φ} mulțimea tuturor clauzelor $C_i, i \in \{1, \ldots, n\}$ distincte.

 S_{φ} se mai numește și forma clauzală a lui φ .

Propoziția 1.86

Pentru orice evaluare $e:V \to \{0,1\}$, $e \vDash \varphi$ ddacă $e \vDash \mathcal{S}_{\varphi}$.

Clauze și FNC

Unei mulțimi de clauze S îi asociem o formulă φ_S în FNC astfel:

$$C = \{L_1, \ldots, L_n\}, n \geq 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \ldots \vee L_n.$$

$$\triangleright \square \longmapsto \varphi_{\square} := v_0 \land \neg v_0.$$

Fie $\mathcal{S} = \{C_1, \dots, C_m\}$ o mulțime nevidă de clauze. Formula asociată lui \mathcal{S} este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{\mathcal{C}_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_{\emptyset} := v_0 \vee \neg v_0$. Formula $\varphi_{\mathcal{S}}$ nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în \mathcal{S} , dar se observă imediat că: $\mathcal{S} = \mathcal{S}'$ implică $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$.

Propoziția 1.87

Pentru orice evaluare e : $V \rightarrow \{0,1\}$, $e \models S$ ddacă $e \models \varphi_S$.

Definiția 1.88

Fie C_1 , C_2 două clauze. O clauză R se numește rezolvent al clauzelor C_1 , C_2 dacă există un literal L a.î. $L \in C_1$, $L^c \in C_2$ și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

Regula Rezoluției

Rez
$$\frac{C_1, C_2}{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})}, L \in C_1, L^c \in C_2$$

Notăm cu $Res(C_1, C_2)$ mulțimea rezolvenților clauzelor C_1, C_2 .

- Rezoluția a fost introdusă de Blake (1937) și dezvoltată de Davis, Putnam (1960) și Robinson (1965).
- Multe demonstratoare automate de teoreme folosesc rezoluţia. Limbajul PROLOG este bazat pe rezoluţie.

Exemplu

$$C_1 = \{v_1, v_2, \neg v_5\}, C_2 = \{v_1, \neg v_2, v_{100}, v_5\}.$$

- Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- ▶ Dacă luăm $L':=v_2$, atunci $L'\in C_1$ și $L'^c=\neg v_2\in C_2$. Prin urmare, $R'=\{v_1, \neg v_5, v_{100}, v_5\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu

 $C_1 = \{v_7\}, C_2 = \{\neg v_7\}.$ Atunci clauza vidă \square este rezolvent al clauzelor C_1, C_2 .

Rezoluție

Fie S o mulțime de clauze.

Definiția 1.89

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență C_1, C_2, \ldots, C_n de clauze $a.\hat{i}$. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) C_i este o clauză din S_i
- (ii) există j, k < i a.î. C_i este rezolvent al clauzelor C_j, C_k .

Definiția 1.90

Fie C o clauză. O derivare prin rezoluție a lui C din S este o S-derivare prin rezoluție C_1, C_2, \ldots, C_n a.î. $C_n = C$.

Exemplu

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

O derivare prin rezoluție a clauzei vide \square din \mathcal{S} este următoarea:

$$\begin{array}{lll} C_1 &=& \{ \neg v_4 \} & C_1 \in \mathcal{S} \\ C_2 &=& \{ \neg v_2, \neg v_3, v_4 \} & C_2 \in \mathcal{S} \\ C_3 &=& \{ \neg v_2, \neg v_3 \} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 &=& \{ v_3 \} & C_4 \in \mathcal{S} \\ C_5 &=& \{ \neg v_2 \} & C_5 \text{ rezolvent al clauzelor } C_3, C_4 \\ C_6 &=& \{ \neg v_1, v_2 \} & C_6 \in \mathcal{S} \\ C_7 &=& \{ \neg v_1 \} & C_7 \text{ rezolvent al clauzelor } C_5, C_6 \\ C_8 &=& \{ v_1 \} & C_8 \in \mathcal{S} \\ C_9 &=& \square & C_9 \text{ rezolvent al clauzelor } C_7, C_8. \end{array}$$