Exercise 4

Zhiwei Ying

1.

- *a*) $(\neg p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor r)$
- b) For any J, let $[[p_1]]_J \equiv [[q \oplus r]]_J$, $[[p_2]]_J \equiv [[p \to (q \oplus r)]]_J$. Then ϕ is satisfiable iff $\psi = ((q \oplus r) \leftrightarrow p_1) \land ((p \to p_1) \leftrightarrow p_2) \land p_2$ is satisfiable.

2.

a) Pick: $p_1 \mapsto T$, $p_3 \mapsto F$.

UnitPro: $p_2 \mapsto T$, $p_5 \mapsto T$, $p_4 \mapsto T$, $p_6 \mapsto T$.

There is no conflict in this total truth assignment.

b) Pick: $p_3 \mapsto F$.

UnitPro: $p_2 \mapsto T$, $p_4 \mapsto T$.

Pick: $p_1 \mapsto T$.

UnitPro: $p_5 \mapsto T$, $p_6 \mapsto T$.

There is no conflict in this total truth assignment.

c) Pick: $p_3 \mapsto T$, $p_5 \mapsto T$.

UnitPro: $p_2 \mapsto T$, $p_4 \mapsto T$.

Then the true value of $\neg p_3 \lor \neg p_4$ must be false, which means the true value of the compound proposition is false. So $UnitPro(J_3)$ causes a conflict on the compound proposition.

3.

- a) $p_1 \wedge p_5 \wedge \neg p_2$ causes the conflict. $p_3 \wedge p_5$ will be added.
- b) Unpick: p_1 , p_5 .
- c) UnitPro: $p_5 \mapsto T$, $p_6 \mapsto T$.

Pick: $p_1 \mapsto T$.

There is no conflict in this total truth assignment.

4.

- a) UnitPro: $p_9 \mapsto F$, $p_6 \mapsto F$, $p_{10} \mapsto T$.
- b) UnitPro: $p_5 \mapsto T$, $p_4 \mapsto T$.

Conflict!

- c) $p_1 \wedge p_5$ causes the conflict. $p_1 \wedge p_4 \wedge \neg p_7$ will be added.
- d) Unpick: p_1, p_5, p_7 .
- *e*) UnitPro: $p_1 \mapsto T$.

5.

- a) $\exists x (C(x) \land D(x) \land F(x))$
- *b*) $\forall x (C(x) \lor D(x) \lor F(x))$
- c) $\exists x (C(x) \land \neg D(x) \land F(x))$
- *d*) $\forall x (\neg C(x) \lor \neg D(x) \lor \neg F(x)) \text{ or } \neg \exists x (C(x) \land D(x) \land F(x))$
- $e) (\exists x C(x)) \wedge (\exists x D(x)) \wedge (\exists x F(x))$