Probability Mass Function

- Diskrete [[Zufallsvariable]] X
 - PMF von X
 - $\ast \ p_k = P(X = x_k)$
 - * Wahrscheinlichkeit, dass $X = x_k$
- \bullet jede diskrete ZV partitioniert [[Stichproben
raum]] Ω in abzählbar viele Ereignisse A_k
= $\{X = x_k\}$ mit Wahrscheinlichkeiten p_k

PMF Kurzformen

 $X \sim \mathsf{Unif}(\Omega)$

 $X \sim H_{n,w,s}$

 $X \sim B_{n,p}$

 $X \sim G_{D}$

 $X \sim P_{\lambda}$

Gleichverteilung auf Ω .

hypergeom. Vert. mit Parametern w und s.

Binomialverteilung mit Parametern *n* und *p*.

geometrische Verteilung mit Parametern p.

Poisson-Verteilung mit Parametern λ .

Beispiel

• Urne

Wir ziehen 5x aus einer Urne (10 weiße und 6 schwarze Kugeln) mit Zurücklegen. Sei X die Anzahl der weißen Kugeln. Wie lautet die PMF von X?

$$X = \text{Anzohl noui} \text{Be kuyeln}$$

$$P_k = P(X = k) \qquad (k = 0, ..., 5)$$

$$= {5 \choose k} {10 \choose 16}^k {6 \choose 16}^{5-k}$$

$$(P(\text{Anzohl noui} \text{Se kuyeln is } k)$$

• Binomialverteilung

Sei X binomalverteilt mit p = 0.3 und n = 4. Bestimme P(X ist eine gerade Zahl).

• Kurzform geometrische Verteilung

Sei
$$X \sim G_{0.5}$$
. Man bestimme $P(X > 2)$.
$$P(X > 2) = 1 - P(X \le 2) = 1 - P(X = 1)$$

$$= 1 - 0.5 - 0.5^{2}$$

• Kurzform Poisson Verteilung

Sei
$$X \sim P_2$$
. Man bestimme $P(2 < X \le 4)$.

$$\begin{array}{c} X \sim P_2 \\ P(2 < X < 4) = P(3X = 3) \\ P(X = 4) = \frac{e^{-2} 2^{8}}{3!} + \frac{e^{-2} 2^{4}}{4!} \end{array}$$