RandLib documentation

Aleksandr Samarin

November 14, 2017

Contents

Ι	General information	2	
1	Calculation of sample moments		
II	Continuous univariate distributions	4	
2	Beta distribution2.1 Arcsine distribution2.2 Balding-Nichols distribution2.3 Uniform distribution	4 6 7 7	
3	Beta-prime distribution	9	
4	Exponentially-modified Gaussian distribution	11	
5	F-distribution	12	
6	Gamma distribution6.1 Chi-squared distribution6.2 Erlang distribution6.3 Exponential distribution	13 14 14 15	
7	Geometric Stable distribution 7.1 Asymmetric Laplace distribution	16 16 16	
8	Noncentral Chi-Squared distribution	17	
9	Planck distribution	18	

10 Stable distribution	19
10.1 Normal distribution	19
10.2 Cauchy distribution	19
10.3 Levy distribution	19
10.4 Holtsmark distribution	20
10.5 Landau distribution	20
11 Pareto distribution	21
12 Weibull	24
III Discrete univariate distributions	26
13 Beta-binomial distribution	2 6
14 Binomial distribution	26
14.1 Bernoulli	26
15 Poisson distribution	27
IV Bivariate distributions	31
16 Bivariate Normal distribution	31
17 Normal-Inverse-Gamma distribution	31
18 Trinomial distribution	31
V Circular distributions	32
19 von Mises distribution	32
20 Wrapped Exponential distribution	32
VI Singular distributions	33
21 Cantor distribution	33

Part I

General information

1 Calculation of sample moments

We use extension of Welford's method from Knuth. For every n-th element x we have

$$\delta = x - m_1,$$

$$m'_1 = m_1 + \frac{\delta}{n},$$

$$m'_2 = m_2 + \delta^2 \frac{n-1}{n},$$

$$m'_3 = m_3 + \delta^3 \frac{(n-1)(n-2)}{n^2} - 3\delta \frac{m_2}{n},$$

$$m'_4 = m_4 + \delta^4 \frac{(n-1)(n^2 - 3n + 3)}{n^3} + 6\delta^2 \frac{m_2}{n^2} - 4\delta \frac{m_3}{n}.$$

Then m_1' , $\frac{m_2}{n}$, Skew $(X) = \frac{\sqrt{n}m_3'}{m_2'^{3/2}}$ and $\operatorname{Kurt}(X) = \frac{nm_4'}{m_2'^2}$ (we return excess kurtosis).

Part II

Continuous univariate distributions

2 Beta distribution

Search of the median. In general, the value of median is unkwnown and calculated numerically with initial value:

$$m \approx a + (b-a) \frac{\alpha - \frac{1}{3}}{\alpha + \beta + \frac{2}{3}}$$

for $\alpha, \beta \geq 1$. However, there are analytical solutions for some particular values:

- $m = \frac{a+b}{2}$, for $\alpha = \beta$,
- $m = a + (b a)(1 2^{-\frac{1}{\beta}})$, for $\alpha = 1$,
- $m = a + (b a)2^{-\frac{1}{\alpha}}$, for $\beta = 1$.

Calculation of characteristic function. For $\alpha, \beta \geq 1$ we use numerical integration by definition

$$\phi(t) = \int_{a}^{b} \cos(tx) f(x) dx + i \int_{a}^{b} \sin(tx) f(x) dx.$$

For shape parameters < 1, f(x) has singularity points at 0 or 1 or both of them, and numerical integration is impossible. Then we use the following technique: firstly, we can show that

$$\phi(t|a,b) = \mathbb{E}[e^{it(a+(b-a)X)}] = e^{ita}\phi(z|0,1)$$

with z = (b - a)t. Hence, w.l.o.g. we can consider standard case a = 0, b = 1. Then

$$\Re(\phi(z)) = \frac{1}{B(\alpha, \beta)} \int_0^1 \cos(zx) x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

$$= \frac{1}{B(\alpha, \beta)} \int_0^1 (\cos(zx) - 1) x^{\alpha - 1} (1 - x)^{\beta - 1} dx + 1$$

$$= \frac{1}{B(\alpha, \beta)} \int_0^1 \frac{(\cos(zx) - 1) x^{\alpha - 1} - (\cos(z) - 1)}{(1 - x)^{1 - \beta}} dx + 1 + \frac{\cos(z) - 1}{bB(\alpha, \beta)}.$$

The integrand now doesn't have any singularities, neither for $\alpha < 1$, nor for $\beta < 1$. Analogously we transform the imaginary part:

$$\Im(\phi(z)) = \frac{1}{B(\alpha, \beta)} \int_0^1 \sin(zx) x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$
$$= \frac{1}{B(\alpha, \beta)} \int_0^1 \frac{\sin(zx) x^{\alpha - 1} - \sin(z)}{(1 - x)^{1 - \beta}} dx + \frac{\sin(z)}{bB(\alpha, \beta)}.$$

Estimation of shapes with known support. Assume that a = 0, b = 1 and we have a sample $X = (X_1, \ldots, X_n)$. Then a log-likelihood function is

$$\ln \mathcal{L}(\alpha, \beta | X) = \sum_{i=1}^{n} \ln f(X_i; \alpha, \beta)$$

$$= (\alpha - 1) \sum_{i=1}^{n} \ln X_i + (\beta - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(\alpha, \beta).$$
(1)

Differentiating with respect to the shapes, we obtain

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = \sum_{i=1}^{n} \ln X_i + n(\psi(\alpha + \beta) - \psi(\alpha)),$$

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \sum_{i=1}^{n} \ln(1 - X_i) + n(\psi(\alpha + \beta) - \psi(\beta)).$$

Differentiating again we get the Hessian matrix:

$$H(\ln \mathcal{L}(\alpha, \beta | X)) = n \cdot \begin{pmatrix} \psi_1(\alpha + \beta) - \psi_1(\alpha) & \psi_1(\alpha + \beta) \\ \psi_1(\alpha + \beta) & \psi_1(\alpha + \beta) - \psi_1(\beta) \end{pmatrix}.$$

Then we can find the estimators numerically, using Newton's procedure. The initial values of estimators are found via method of moments:

$$\hat{\alpha}_0 = \overline{X}_n \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right),$$

$$\hat{\beta}_0 = (1 - \overline{X}_n) \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right).$$

These values are applicable only if $\hat{s}_n^2 < \overline{X}_n(1 - \overline{X}_n)$. If this condition is not satisfied, we set $\hat{\alpha}_0 = \hat{\beta}_0 = 0.001$.

In the general case, when $a \neq 0$ or $b \neq 1$, we use the following transformation:

$$Y_i = \frac{X_i - a}{b - a}$$

and estimate parameters, using sample Y.

2.1 Arcsine distribution

Relation to Beta distribution:

$$X \sim B(1-\alpha,\alpha,a,b).$$

Estimation of shape. For Arcsine distribution log-likelihood function (1) turns into

$$\ln \mathcal{L}(\alpha|X) = -\alpha \sum_{i=1}^{n} \ln X_i + (\alpha - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(1 - \alpha, \alpha).$$

Taking the derivative with respect to α we get

$$\frac{\partial \ln \mathcal{L}(\alpha|X)}{\partial \alpha} = \sum_{i=1}^{n} \ln \frac{1 - X_i}{X_i} + n\pi \cot(\pi \alpha).$$

Therefore, maximum-likelihood function is

$$\hat{\alpha} = -\frac{1}{\pi} \operatorname{atan} \left(\frac{n\pi}{\sum_{i=1}^{n} \ln \frac{1-X_i}{X_i}} \right).$$

If $\hat{\alpha}$ is negative, we add 1, because $\frac{\text{atan}}{\pi} \in (-0.5, 0.5)$, while $\alpha \in (0, 1)$.

2.2 Balding-Nichols distribution

Notation:

$$X \sim \text{Balding} - \text{Nichols}(p, F)$$

with $p, F \in (0, 1)$. Relation to Beta distribution:

$$X \sim B(pF', (1-p)F')$$

with
$$F' = (1 - F)/F$$
.

2.3 Uniform distribution

Relation to Beta distribution:

$$X \sim B(1, 1, a, b).$$

Estimation of support.

Frequentist inference. Likelihood function is

$$\mathcal{L}(a,b|X) = \frac{1}{(b-a)^n} \mathbf{1}_{\{X_i \in [a,b] \ \forall i=1,...,n\}}.$$

Therefore, $\mathcal{L}(a,b|X)$ is the largest for $\hat{b}=X_{(n)}$ and $\hat{a}=X_{(1)}$. However, using the fact that $X_{(k)}\sim B(k,n+1-k,a,b)$, these are biased estimators:

$$\mathbb{E}[X_{(1)}] = \frac{an+b}{n+1} \quad \text{and} \quad \mathbb{E}[X_{(n)}] = \frac{a+bn}{n+1}.$$

To get unbiased estimators we make the transformations:

$$\tilde{a} = \frac{nX_{(1)} - X_{(n)}}{n-1}$$
 and $\tilde{b} = \frac{nX_{(n)} - X_{(1)}}{n-1}$.

Then we get

$$\mathbb{E}[\tilde{a}] = \frac{n\mathbb{E}[X_{(1)}] - \mathbb{E}[X_{(n)}]}{n-1} = \frac{n(an+b) - (a+bn)}{n^2 - 1} = a.$$

Analogously, $\mathbb{E}[\tilde{b}] = b$.

Bayesian inference. Let us say, we try to estimate $\theta = b - a$ with known a. We set the prior distribution $\theta \sim \text{Pareto}(\alpha, \sigma)$:

$$h(\theta|\alpha,\sigma) = \frac{\alpha\sigma^{\alpha}}{\theta^{\alpha+1}} \mathbf{1}_{\{\theta \ge \sigma\}}.$$

The density of posterior distribution is

$$f(\theta|X) \propto \frac{\alpha \sigma^{\alpha}}{\theta^{\alpha+n+1}} \mathbf{1}_{\{\theta \geq \max(\sigma, X_{(n)} - a)\}} \sim \operatorname{Pareto}(\alpha + n, \max(\sigma, X_{(n)} - a)).$$

Hence, Bayesian estimator is

$$\mathbb{E}[\theta|X] = \frac{\alpha + n}{\alpha + n - 1} \max(\sigma, X_{(n)} - a)$$

and MAP estimator is

$$\theta_{MAP} = \max(\sigma, X_{(n)} - a).$$

3 Beta-prime distribution

Relation to other distributions:

$$\frac{X}{1+X} \sim B(\alpha, \beta),$$

$$\frac{\beta}{\alpha}X \sim F(2\alpha, 2\beta).$$

Search of the median. For $\alpha = \beta$ we have m = 1. Otherwise, we use the relation $m = \frac{m'}{1-m'}$, where m' is the median of beta-distribution $B(\alpha, \beta)$.

Calculation of characteristic function. For $\alpha \geq 1$ one can use numerical integration from section For $\alpha < 1$ we have $\lim_{x\to 0} f(x) \to \infty$ and $\int_0^\infty \cos(tx) f(x) dx$ is impossible to compute directly. Then we split the integral:

$$\int_{0}^{\infty} \cos(tx) f(x) dx = \int_{0}^{1} (\cos(tx) - 1) f(x) dx + F(1) + \int_{1}^{\infty} \cos(tx) f(x) dx.$$

The limit of the integrand in the first term for $x \to 0$ is 0, regardless of the value of the shape α .

Estimation of shapes. Using relationship with Beta distribution we transform the sample:

$$Y_i = \frac{X_i}{1 + X_i}, \quad 1 \le i \le N,$$

and run estimation for beta-distributed Y.

4 Exponentially-modified Gaussian distribution

Notation	$X \sim \text{EMG}(\mu, \sigma, \lambda)$
Parameters	$\mu \in \mathbb{R}, \sigma > 0, \lambda > 0$
Support	$x \in \mathbb{R}$
f(x)	
F(x)	
$\mathbb{E}[X]$	$\mu + 1/\lambda$
$\operatorname{Var}(X)$	$\sigma^2 + 1/\lambda^2$
Median	Searched numerically
Mode	Searched numerically
$\phi(t)$	

5 F-distribution

Notation	$X \sim \mathrm{F}(d_1, d_2)$
Parameters	$d_1, d_2 > 0$
Support	$x \in \mathbb{R}^+$
f(x)	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB\left(\frac{d_1}{2},\frac{d_2}{2}\right)}$
F(x)	$I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2},\frac{d_2}{2}\right)$
$\mathbb{E}[X]$	$\frac{d_2}{d_2 - 2} \text{ for } d_2 > 2$
Var(X)	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)} \text{ for } d_2 > 4$
Median	Searched numerically
Mode	$\max\left(\frac{d_2(d_1-2)}{d_1(d_1+2)}, 0\right)$
$\phi(t)$	Calculated numerically

Relation to other distributions:

$$\frac{d_1X}{d_2+d_1X} \sim B\left(\frac{d_1}{2}, \frac{d_2}{2}\right),$$
$$\frac{d_1}{d_2}X \sim B'\left(\frac{d_1}{2}, \frac{d_2}{2}\right).$$

6 Gamma distribution

Estimation of parameters.

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\alpha, \beta | X) = n\alpha \ln \beta - n \ln \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \ln X_i - \beta \sum_{i=1}^{n} X_i.$$

Derivatives:

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = n \ln \beta - n \psi(\alpha) + \sum_{i=1}^{n} \ln X_i,$$
$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \frac{n \alpha}{\beta} - \sum_{i=1}^{n} X_i.$$

While the solution for the second equation is analytic:

$$\hat{\beta} = \frac{\alpha}{\overline{X}_n},$$

the first equation is solved numerically, using second derivative:

$$\frac{\partial^2 \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha^2} = -n\psi_1(\alpha),$$

or if β is unknown:

$$\frac{\partial^2 \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha^2} = -n\psi_1(\alpha) + \frac{n}{\alpha},$$

Moreover, the maximum-likelihood estimation of rate β is biased. Unbiased estimator would be

 $\tilde{\beta} = \frac{\alpha}{\overline{X}_n} \left(1 - \frac{1}{n} \right).$

Bayesian inference. We suppose that prior distribution of rate β is $\Gamma(\kappa, \gamma)$:

$$h(\beta) = \frac{\gamma^{\kappa}}{\Gamma(\kappa)} \beta^{\kappa - 1} e^{-\gamma \beta}.$$

Then

$$f(\beta|X) \propto \beta^{\alpha n} e^{-\beta \sum_{i=1}^{n} X_i} \cdot \beta^{\kappa-1} e^{-\gamma \beta} \sim \Gamma\left(\alpha n + \kappa, \gamma + \sum_{i=1}^{n} X_i\right).$$

Therefore, Bayesian estimator is

$$\mathbb{E}[\beta|X] = \frac{\alpha n + \kappa}{\gamma + \sum_{i=1}^{n} X_i},$$

and MAP estimator is

$$\beta_{MAP} = \frac{\alpha n + \kappa - 1}{\gamma + \sum_{i=1}^{n} X_i}.$$

6.1 Chi-squared distribution

Notation:

$$X \sim \chi_k^2$$
.

Relation to Gamma distribution:

$$X \sim \Gamma\left(\frac{k}{2}, \frac{1}{2}\right).$$

6.2 Erlang distribution

Notation:

$$X \sim \text{Erlang}(k, \beta)$$
.

The only difference between Gamma and Erlang distributions is that a second one takes an integer shape parameter k.

6.3 Exponential distribution

Relation to Gamma distribution:

$$X \sim \Gamma(1, \lambda)$$
.

Hence, estimation of parameter λ is the particular case of estimation of rate β for Gamma distribution.

7 Geometric Stable distribution

7.1 Asymmetric Laplace distribution

7.2 Laplace distribution

8 Noncentral Chi-Squared distribution

9 Planck distribution

10 Stable distribution

10.1 Normal distribution

Relation to Stable distribution:

$$X \sim S_2(\cdot, \sigma^2/2, \mu)$$

10.2 Cauchy distribution

Relation to Stable distribution:

$$X \sim S_1(0, \gamma, \mu)$$

10.3 Levy distribution

Relation to Stable distribution:

$$X \sim S_{\frac{1}{2}}(1, \gamma, \mu)$$

10.4 Holtsmark distribution

Relation to Stable distribution:

$$X \sim S_{\frac{3}{2}}(0, \gamma, \mu)$$

10.5 Landau distribution

Relation to Stable distribution:

$$X \sim S_1(1, \gamma, \mu)$$

11 Pareto distribution

Estimation of parameters.

Frequentist inference. Log-likelihood function is

$$\ln \mathcal{L}(\alpha, \sigma | X) = n \ln \alpha + n\alpha \ln \sigma - (\alpha + 1) \sum_{i=1}^{n} \ln X_i.$$

We assume that $\sigma \leq X_{(1)}$, otherwise sample X couldn't have been generated from such distribution. It is obvious, that $\ln \mathcal{L}(\alpha, \sigma | X)$ is an increasing function in terms of σ , therefore $\hat{\sigma} = X_{(1)}$ is an optimal estimator. Let's take derivative with respect to α :

$$\frac{\partial \ln \mathcal{L}(\alpha, \sigma | X)}{\partial \alpha} = \frac{n}{\alpha} + n \ln \sigma - \sum_{i=1}^{n} \ln X_{i}.$$

From this we conclude that the maximum-likelihood estimator of shape is

$$\hat{\alpha} = \frac{1}{\frac{1}{n} \left(\sum_{i=1}^{n} \ln X_i \right) - \ln \hat{\sigma}}.$$

It is known that $\hat{\sigma} \sim \operatorname{Pareto}(n\alpha, \sigma)$ and $\hat{\alpha} \sim \operatorname{Inv-}\Gamma(n-1, n\alpha)$ and they are independent. Then

 $\mathbb{E}[\hat{\sigma}] = \frac{\sigma}{1 - \frac{1}{n\alpha}}$

and

$$\mathbb{E}[\hat{\alpha}] = \frac{n\alpha}{n-2}.$$

Therefore, in order to get unbiased estimators we need to make the following transformations:

$$\tilde{\alpha} = \frac{n-2}{n}\hat{\alpha}$$
 and $\tilde{\sigma} = \hat{\sigma}\left(1 - \frac{1}{(n-1)\hat{\alpha}}\right)$.

Note that if we estimate parameters separately, then $\hat{\alpha} \sim \text{Inv-}\Gamma(n, n\alpha)$ and transformations are different.

Bayesian inference. We now assume that σ is known and prior distribution of α is $\Gamma(\kappa, \beta)$:

$$h(\alpha) = \frac{\beta^{\kappa}}{\Gamma(\kappa)} \alpha^{\kappa - 1} e^{-\beta \alpha}.$$

The density of posterior distribution is

$$f(\alpha|X) \propto \prod_{i=1}^{n} \frac{\sigma^{\alpha}}{X_{i}^{\alpha-1}} \cdot \alpha^{\kappa+n-1} e^{-\beta\alpha} \propto \alpha^{\kappa+n-1} e^{-(\beta+\sum_{i=1}^{n} \ln(X_{i}/\sigma))\alpha}.$$

Therefore, $\alpha | X \sim \Gamma(\kappa + n, \beta + \sum_{i=1}^{n} \ln(X_i/\sigma))$ and Bayesian estimator is

$$\mathbb{E}[\alpha|X] = \frac{\kappa + n}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

MAP estimator is

$$\alpha_{MAP} = \frac{\kappa + n - 1}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

Note on fitting scale with Bayes: let it be vice versa, α is known while σ is not. Then we say that a priori $\sigma \sim \operatorname{Pareto}(\kappa, \theta)$:

$$h(\sigma) = \frac{\kappa \theta^{\kappa}}{\sigma^{\kappa+1}}.$$

Then posterior distribution is:

$$f(\sigma|X) \propto \prod_{i=1}^{n} \frac{1}{X_i^{\alpha-1}} \cdot \sigma^{\alpha n - \kappa - 1} \mathbf{1}_{\{\theta < \sigma < X_{(1)}\}} \sim \text{Bounded-Pareto}(\kappa - \alpha n, \theta, X_{(1)}).$$

This imposes the following additional constraints on the prior hyperparameters: $\kappa > \alpha n$ and $\theta < X_{(1)}$. Bayesian estimator:

$$\mathbb{E}[\sigma|X] = \frac{\theta^{\alpha'}}{1 - \left(\frac{\theta}{X_{(1)}}\right)^{\alpha'}} \cdot \left(\frac{\alpha'}{\alpha' - 1}\right) \cdot \left(\frac{1}{\theta^{\alpha'}} - \frac{1}{X_{(1)}^{\alpha'}}\right)$$

with $\alpha' = \kappa - \alpha n$. MAP estimator is just

$$\sigma_{MAP} = \theta$$
.

However, Bounded-Pareto distribution is not yet supported in RandLib.

12 Weibull

Estimation of scale

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\lambda, k|X) = n(\ln k - \ln \lambda) + (k-1)\sum_{i=1}^{n} (\ln X_i - \ln \lambda) - \frac{1}{\lambda^k}\sum_{i=1}^{n} X_i^k.$$

The derivative with respect to scale:

$$\frac{\partial \ln \mathcal{L}(\lambda, k|X)}{\partial \lambda} = -\frac{nk}{\lambda} + \frac{k}{\lambda^{k+1}} \sum_{i=1}^{n} X_i^k = 0.$$

Therefore, maximum-likelihood estimation for λ is

$$\hat{\lambda} = \left(\sum_{i=1}^{n} X_i^k\right)^{\frac{1}{k}}.$$

Bayesian inference. Assume k is known. Instead of estimating λ we give an estimation for λ^k . Let's say that prior distribution of λ^k is Inv- $\Gamma(\alpha, \beta)$:

$$h(\lambda^k) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{-k(\alpha+1)} e^{-\beta/\lambda^k}.$$

Posterior distribution then:

$$f(\lambda^k|X) \propto \lambda^{-k(\alpha+1+n)} e^{-\frac{1}{\lambda^k}(\beta + \sum_{i=1}^n X_i^k)} \sim \text{Inv-}\Gamma(\alpha + n, \beta + \sum_{i=1}^n X_i^k).$$

Bayesian estimator:

$$\mathbb{E}[\lambda^k|X] = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n - 1},$$

MAP estimator:

$$\lambda_{MAP}^k = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n + 1}.$$

Part III

Discrete univariate distributions

13 Beta-binomial distribution

14 Binomial distribution

Notation	$X \sim \operatorname{Bin}(n, p)$
Parameters	$n\in\mathbb{N}, p\in[0,1]$
Support	$k \in \{0, \dots, n\}$
P.m.f.	$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$
F(x)	$\mathbb{P}(X \le k) = I_{1-p}(n-k, 1+k)$
$\mathbb{E}[X]$	np
Var(X)	np(1-p)
Median	[np]
Mode	[(n+1)p]
$\phi(t)$	$(1 - p + pe^{it})^n$

14.1 Bernoulli

Notation:

 $X \sim \text{Bernoulli}(p)$.

Relation to Binomial distribution:

 $X \sim \text{Bin}(1, p)$.

15 Poisson distribution

Notation	$X \sim \text{Po}(\lambda)$
Parameters	$\lambda > 0$
Support	$k \in \mathbb{N}_0$
P.m.f.	$\mathbb{P}(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$
F(x)	$\mathbb{P}(X \le k) = Q(k+1, \lambda)$
$\mathbb{E}[X]$	λ
$\operatorname{Var}(X)$	λ
Median	$\sim \max\left(\left[\lambda + \frac{1}{3} - \frac{0.02}{\lambda}\right], 0\right)$
Mode	$[\lambda]$
$\phi(t)$	$\exp\{\lambda(e^{it}-1)\}$

Generator (let $\delta = \mu \in \mathbb{Z}$). (There is a mistake in Lemma 3.8 in first inequality). Recall that

$$q(X) = X \ln(\lambda) - \ln\left(\frac{(\mu + X)!}{\mu!}\right).$$

We denote acceptance probability $\mathbb{P}(W \leq q(X))$ by p.

• $k = \mu$. Probability to be in this setting is 1/c.

$$\mathbb{P}(X=0|W\leq q(X)) = \frac{\mathbb{P}(X=0,W\leq q(X))}{\mathbb{P}(W\leq q(X))} = \frac{1}{pc}.$$

On the other hand it should be equal to:

$$\frac{1}{pc} = \frac{\lambda^{\mu} e^{-\lambda}}{\mu!}.$$

• $k = \mu + 1$.

$$\begin{split} \mathbb{P}(X=1|W\leq q(X)) &= \frac{\mathbb{P}(X=1,W\leq q(X))}{\mathbb{P}(W\leq q(X))} = \frac{\lambda}{p(\mu+1)c} \\ &= \frac{\lambda^{\mu+1}e^{-\lambda}}{(\mu+1)!}. \end{split}$$

• $k < \mu$. Here was mistake in the book. We adjust the probabilities. Probability to be in this setting is $\sqrt{\pi \mu/2e}/c$.

$$\mathbb{P}(W \leq q(X), X = k - \mu | U \leq c_1) = \mathbb{P}\left(-\frac{N^2}{2} + \frac{1}{2} - E < q(\lfloor -|N|\sqrt{\mu}\rfloor), \lceil |N|\sqrt{\mu}\rceil = \mu - k\right)$$

$$= \mathbb{P}\left(-\frac{N^2}{2} + \frac{1}{2} - E < \lfloor -|N|\sqrt{\mu}\rfloor \ln(\lambda) - \ln\left(\frac{(\mu + \lfloor -|N|\sqrt{\mu}\rfloor)!}{\mu!}\right), \frac{\mu - k - 1}{\sqrt{\mu}} \leq |N| < \frac{\mu - k}{\sqrt{\mu}}\right)$$

$$= \mathbb{P}\left(U < \exp\left\{\frac{N^2}{2} - \frac{1}{2} + \lfloor -|N|\sqrt{\mu}\rfloor \ln(\lambda) - \ln\left(\frac{(\mu + \lfloor -|N|\sqrt{\mu}\rfloor)!}{\mu!}\right)\right\}$$

$$= \frac{\mu - k - 1}{\sqrt{\mu}} \leq |N| < \frac{\mu - k}{\sqrt{\mu}}\right)$$

$$= \sqrt{\frac{2}{e\pi}} \int_{\frac{\mu - k - 1}{\sqrt{\mu}}}^{\frac{\mu - k}{\sqrt{\mu}}} \exp\left\{\lfloor -|n|\sqrt{\mu}\rfloor \ln(\lambda) - \ln\left(\frac{(\mu + \lfloor -|n|\sqrt{\mu}\rfloor)!}{\mu!}\right)\right\} dn$$

$$= \sqrt{\frac{2}{e\pi\mu}} \int_{\mu - k - 1}^{\mu - k} \exp\left\{\lfloor -z\rfloor \ln(\lambda) - \ln\left(\frac{(\mu + \lfloor -z\rfloor)!}{\mu!}\right)\right\} dz$$

$$= \sqrt{\frac{2}{e\pi\mu}} \exp\left\{(k - \mu) \ln(\lambda) - \ln\left(\frac{k!}{\mu!}\right)\right\}$$

$$= \sqrt{\frac{2}{e\pi\mu}} \lambda^{k - \mu} \frac{\mu!}{k!}$$

Hence,

$$\begin{split} \mathbb{P}(X = k - \mu | W \leq q(X)) &= \frac{\mathbb{P}(W \leq q(X), X = k - \mu)}{\mathbb{P}(W \leq q(X))} \\ &= \sqrt{\frac{2}{\pi \mu e}} \lambda^{k - \mu} \frac{\mu!}{k!} \cdot \sqrt{\pi \mu e/2} \frac{\lambda^{\mu} e^{-\lambda}}{\mu!} \\ &= \frac{\lambda^k e^{-\lambda}}{k!} \end{split}$$

• $k \in [\mu + 2, 2\mu]$. Probability to be in this setting is $\sqrt{\frac{3\pi\mu}{4}}e^{\frac{1}{3\mu}}/c$. We also have

$$W = \frac{-Y^2 + 2Y}{3\mu} - E = \frac{1}{3\mu} - \frac{N^2}{2} - E.$$

Then

$$\begin{split} \mathbb{P}(W \leq q(X)|X = k - \mu|U \in \ldots) &= \mathbb{P}\bigg(\frac{1}{3\mu} - \frac{N^2}{2} - E < q(\lceil 1 + |N|\sqrt{3\mu/2} \rceil), \lceil 1 + |N|\sqrt{3\mu/2} \rceil) = k - \mu \\ &= \mathbb{P}\bigg(U < \exp\Big\{-\frac{1}{3\mu} + \frac{N^2}{2} + q(\lceil 1 + |N|\sqrt{3\mu/2} \rceil)\Big\}, \\ &= \frac{k - \mu - 2}{\sqrt{3\mu/2}} < |N| \leq \frac{k - \mu - 1}{\sqrt{3\mu/2}}\bigg) \\ &= \sqrt{\frac{2}{\pi}} e^{-\frac{1}{3\mu}} \int_{\frac{k - \mu - 1}{\sqrt{3\mu/2}}}^{\frac{k - \mu - 1}{\sqrt{3\mu/2}}} \exp\Big\{q(\lceil 1 + |n|\sqrt{3\mu/2} \rceil)\Big\} dn \\ &= \sqrt{\frac{4}{3\pi\mu}} e^{-\frac{1}{3\mu}} \int_{k - \mu - 1}^{k - \mu} \exp\Big\{\lceil z \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil z \rceil)!}{\mu!}\bigg)\Big\} dz \\ &= \sqrt{\frac{4}{3\pi\mu}} e^{-\frac{1}{3\mu}} \mu! \frac{\lambda^{k - \mu}}{k!}. \end{split}$$

• $k > 2\mu$. Probability to be in this setting is $6e^{-\frac{2+\mu}{6}}/c$.

$$\begin{split} \mathbb{P}(W \leq q(X)|X = k - \mu|U \in \ldots) &= \mathbb{P}\bigg(-\frac{2 + \mu}{6} - V - E < q(\lceil \mu + 6V \rceil), \lceil \mu + 6V \rceil = k - \mu\bigg) \\ &= \mathbb{P}\bigg(-\frac{2 + \mu}{6} - V + \ln(U) < \lceil \mu + 6V \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil \lambda + 6V \rceil)!}{\mu!}\bigg) \\ &= \mathbb{P}\bigg(U < \exp\bigg\{\frac{2 + \mu}{6} + V + \lceil \mu + 6V \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil \mu + 6V \rceil)!}{\mu!}\bigg)\bigg\} \\ &= \frac{k - 2\mu - 1}{6} < V \leq \frac{k - 2\mu}{6}\bigg) \\ &= \int_{\substack{k - 2\mu - 1 \\ 6}}^{\frac{k - 2\mu}{6}} \exp\bigg\{\frac{2 + \mu}{6} + \lceil \mu + 6v \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil \mu + 6v \rceil)!}{\mu!}\bigg)\bigg\} dv \\ &= \frac{e^{\frac{2 + \lambda}{6}}}{6} \int_{k - \mu - 1}^{k - \mu} \exp\bigg\{\lceil z \rceil \ln(\lambda) - \ln\bigg(\frac{(\mu + \lceil z \rceil)!}{\mu!}\bigg)\bigg\} dz \\ &= \frac{e^{\frac{2 + \lambda}{6}}}{6} \exp\bigg\{(k - \mu) \ln(\lambda) - \ln\bigg(\frac{k!}{\mu!}\bigg)\bigg\} \\ &= \frac{e^{\frac{2 + \lambda}{6}}}{6} \lambda^{k - \mu} \frac{\mu!}{k!} \end{split}$$

$$\mathbb{P}(X = k - \mu | W \le q(X)) = \frac{\mathbb{P}(W \le q(X), X = k - \mu)}{\mathbb{P}(W \le q(X))}$$
$$= \frac{e^{\frac{2+\lambda}{6}}}{6} \lambda^{k-\mu} \frac{\mu!}{k!} \cdot \frac{6e^{-\frac{2+\mu}{6}}}{pc}$$
$$= \frac{\lambda^k e^{-\lambda}}{k!}$$

Part IV Bivariate distributions

- 16 Bivariate Normal distribution
- 17 Normal-Inverse-Gamma distribution
- 18 Trinomial distribution

Part V Circular distributions

- 19 von Mises distribution
- 20 Wrapped Exponential distribution

Part VI Singular distributions

21 Cantor distribution