In [3]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import seaborn as sns
%matplotlib inline
plt.rcParams['figure.figsize'] = (12,8)
dataFrame=pd.read_csv('healthcare-dataset-stroke-data.csv')
print(dataFrame)
             gender
                                           heart_disease ever_married \
         id
                       age
                            hypertension
0
       9046
               Male
                                                                    Yes
                      67.0
                                        0
                                                        1
1
      51676
             Female
                      61.0
                                        0
                                                        0
                                                                    Yes
2
               Male 80.0
                                        0
      31112
                                                        1
                                                                    Yes
3
      60182 Female
                     49.0
                                        0
                                                        0
                                                                    Yes
4
       1665
             Female
                      79.0
                                        1
                                                        0
                                                                    Yes
        . . .
                 . . .
                       . . .
                                                                    . . .
5105
      18234
             Female
                      80.0
                                        1
                                                        0
                                                                    Yes
5106 44873
             Female
                                        0
                                                        0
                                                                    Yes
                      81.0
5107
     19723
             Female
                      35.0
                                        0
                                                        0
                                                                    Yes
     37544
                                        0
5108
               Male 51.0
                                                        0
                                                                    Yes
5109 44679 Female 44.0
                                        0
                                                        0
                                                                    Yes
          work_type Residence_type avg_glucose_level
                                                           bmi
                                                                  smoking_status
\
0
            Private
                              Urban
                                                  228.69
                                                          36.6
                                                                 formerly smoked
1
      Self-employed
                              Rural
                                                  202.21
                                                           NaN
                                                                    never smoked
2
            Private
                              Rural
                                                  105.92
                                                          32.5
                                                                    never smoked
3
            Private
                              Urban
                                                  171.23
                                                          34.4
                                                                          smokes
4
      Self-employed
                                                  174.12 24.0
                              Rural
                                                                    never smoked
                                 . . .
                                                           . . .
. . .
                 . . .
                                                     . . .
5105
            Private
                              Urban
                                                   83.75
                                                           NaN
                                                                    never smoked
5106
      Self-employed
                              Urban
                                                  125.20 40.0
                                                                    never smoked
      Self-employed
                                                   82.99 30.6
5107
                              Rural
                                                                    never smoked
5108
            Private
                              Rural
                                                  166.29 25.6 formerly smoked
5109
           Govt_job
                              Urban
                                                   85.28
                                                          26.2
                                                                         Unknown
      stroke
0
           1
1
           1
2
           1
3
           1
4
           1
. . .
5105
           0
           0
5106
5107
           0
           0
5108
5109
           0
[5110 rows x 12 columns]
```

In [15]:

dataFrame.describe()

Out[15]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000
4						•

In [4]:

df= dataFrame.drop_duplicates()

In [5]:

df.describe()

Out[5]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000
4						>

```
In [6]:
```

```
df.isnull().sum()
```

Out[6]:

id 0 0 gender 0 age 0 hypertension heart_disease 0 0 ever_married work_type 0 0 Residence_type avg_glucose_level 0 201 smoking_status 0 0 stroke dtype: int64

In [7]:

```
df['bmi'].fillna(df['bmi'].median(), inplace=True)
```

In [8]:

```
df.isnull().sum()
```

Out[8]:

id 0 0 gender 0 age 0 hypertension heart_disease 0 0 ever_married work_type 0 Residence_type 0 avg_glucose_level 0 bmi 0 0 smoking_status stroke 0 dtype: int64

In [9]:

sns.boxplot(x='bmi',data=df)

Out[9]:

<AxesSubplot:xlabel='bmi'>

In [9]:

id

```
q1=df.quantile(0.25)
q3=df.quantile(0.75)
IQR= q3-q1
print(q1)
print(q3)
print(IQR)
```

	1,, 11,150
age	25.000
hypertension	0.000
heart_disease	0.000
<pre>avg_glucose_level</pre>	77.245
bmi	23.800
stroke	0.000
Name: 0.25, dtype:	float64
id	54682.00
age	61.00
hypertension	0.00
heart_disease	0.00
<pre>avg_glucose_level</pre>	114.09
bmi	32.80
stroke	0.00
Name: 0.75, dtype:	float64
id	36940.750
age	36.000
hypertension	0.000
heart_disease	0.000
<pre>avg_glucose_level</pre>	36.845
bmi	9.000
stroke	0.000
dtype: float64	

17741.250

In [10]:

```
sns.boxplot(x='avg_glucose_level',data=df)
```

Out[10]:

<AxesSubplot:xlabel='avg_glucose_level'>

In [11]:

```
sns.boxplot(x='age',data=df)
```

Out[11]:

<AxesSubplot:xlabel='age'>

In [16]:

```
print(y1)
0
        1
1
        1
2
        1
3
        1
4
        1
5105
        0
5106
        0
5107
        0
5108
        0
5109
Name: stroke, Length: 5110, dtype: int64
```

```
In [17]:
```

```
df['gender'] = df['gender'].replace({'Male':0,'Female':1,'Other':-1}).astype(np.uint8)
```

In [27]:

```
X1=df.drop(["id"], axis=1)
```

In [28]:

X1.head()

Out[28]:

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_gl
0	0	67.0	0	1	Yes	Private	Urban	
1	1	61.0	0	0	Yes	Self- employed	Rural	
2	0	80.0	0	1	Yes	Private	Rural	
3	1	49.0	0	0	Yes	Private	Urban	
4	1	79.0	1	0	Yes	Self- employed	Rural	
4								>

In [39]:

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import sklearn
from sklearn import svm
from sklearn.datasets import make_blobs

from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,LabelEncoder
svm_pipeline = Pipeline(steps = [('scale',StandardScaler()),('SVM',SVC(random_state=42, pro
```

In [40]:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X1, y1)
```

```
from imblearn.over_sampling import SMOTE

oversample = SMOTE()
X_train_resh, y_train_resh = oversample.fit_resample(X_train, y_train.ravel())
```

In [34]:

```
gender'] = df['gender'].replace({'Male':0,'Female':1,'Other':-1}).astype(np.uint8)
Residence_type'] = df['Residence_type'].replace({'Rural':0,'Urban':1}).astype(np.uint8)
work_type'] = df['work_type'].replace({'Private':0,'Self-employed':1,'Govt_job':2,'children'
ever_married'] = df['ever_married'].replace({'Yes':1, 'No':0}).astype(np.uint8)
smoking_status'] = df['smoking_status'].replace({'never_smoked':0,'Unknown':1,'formerly_smoked'
```

In [35]:

X1=df

In [36]:

X1.head()

Out[36]:

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type
0	9046	0	67.0	0	1	1	0	1
1	51676	1	61.0	0	0	1	1	0
2	31112	0	80.0	0	1	1	0	0
3	60182	1	49.0	0	0	1	0	1
4	1665	1	79.0	1	0	1	1	0
4								>

In [41]:

```
from imblearn.over_sampling import SMOTE

oversample = SMOTE()
X_train_resh, y_train_resh = oversample.fit_resample(X_train, y_train.ravel())
```

In [45]:

```
from sklearn.model_selection import train_test_split,cross_val_score
svm_cv = cross_val_score(svm_pipeline,X_train_resh,y_train_resh,cv=10,scoring='f1')
svm_cv.mean()
```

Out[45]:

0.8749045394396754

```
In [46]:
from sklearn.metrics import confusion_matrix

svm_pipeline.fit(X_train_resh,y_train_resh);
svm_train_predict = svm_pipeline.predict(X_train)
svm_pred = svm_pipeline.predict(X_test)
svm_cm = confusion_matrix(y_train,svm_train_predict)
svm_cm

Out[46]:
```

array([[3096, 547], [71, 118]], dtype=int64)

In [14]:

In []: