

Rapport de Projet Langage C++ PARKING INTELLIGENT

Auteurs:

TRAORE Moussa SARIH Hassan

Année académique : 2024-2025

Table des matières

1	Introduction	2
2	Présentation du projet 2.1 Objectif du système	2 2 2 2
3	2.3 Fonctionnalités principales	3 3 3
4	Diagramme de Classe	3
5	Conclusion 5.1 Améliorations possibles	4 4

1 Introduction

Dans le cadre de l'UF Langage C++, il nous a été demandé de réaliser un bureau d'études dont l'objectif est de développer un système innovant. Nous avons choisi de concevoir un parking intelligent. Le projet a été codé en langage orienté objet C++ en utilisant des capteurs et des actionneurs. Ce BE a pour but de nous familiariser avec la programmation orientée objet et d'affiner nos connaissances sur des concepts comme l'héritage, l'encapsulation et le polymorphisme.

Le support principal est une carte **ESP8266** d'Expressif Systems intégrant le WiFi. Nous avons utilisé l'IDE Arduino pour programmer la carte et y connecter des capteurs et actionneurs.

- Entrées : 2 capteurs ultrasons pour détecter les véhicules.
- **Sorties :** 2 servomoteurs pour contrôler les barrières et un écran LCD pour afficher les données.

2 Présentation du projet

2.1 Objectif du système

L'objectif principal du projet est de simuler la gestion d'un parking :

- Détecter les véhicules à l'entrée et à la sortie.
- Contrôler l'ouverture et la fermeture des barrières.
- Afficher en temps réel les places disponibles via un écran LCD et une interface web.

2.2 Matériel utilisé

Voici les composants principaux du projet et leurs connexions :

Composants	Connexion
Capteur ultrason (entrée)	connecté à D7
Capteur ultrason (sortie)	connecté à D8
Servo moteur (barrière d'entrée)	connecté à D3
Servo moteur (barrière de sortie)	connecté à D5
Afficheur LCD	Connecté via I2C
ESP8266	Microcontrôleur principal

Table 1 – Liste des capteurs/actionneurs et leurs connexions.

2.3 Fonctionnalités principales

Le projet offre les fonctionnalités suivantes :

- Détection des véhicules à l'aide des capteurs ultrasons.
- Gestion autonome des barrières grâce aux servomoteurs.
- Affichage des places restantes et des informations critiques sur l'écran LCD.
- Suivi des événements (entrées/sorties) via un journal interne et une interface web.

3 Interface graphique HTML

Une interface graphique a été développée en **HTML** pour permettre la visualisation des données en temps réel.

3.1 Caractéristiques de l'interface

L'interface permet d'afficher les informations suivantes :

- Nombre de véhicules présents dans le parking.
- Capacité maximale du parking.
- Journal des événements, incluant les entrées, sorties, heure et date.
- Heure actuelle du système.

3.2 Mise à jour dynamique

L'interface est mise à jour dynamiquement toutes les 5 secondes grâce à des requêtes JavaScript envoyées à l'ESP8266. Les données sont reçues sous forme de JSON, ce qui facilite leur traitement et affichage.

FIGURE 1 – Interface graphique affichant les données en temps réel.

4 Diagramme de Classe

Parking : Gère la logique du parking (détection, contrôle des barrières, affichage LCD, gestion des événements et des voitures).

- Hérite de BaseParking.
- Utilise Servo pour contrôler les barrières.
- Utilise rgb_lcd pour afficher les informations.

- Contient une liste d'objets Event pour enregistrer les événements.
- Gère la communication MQTT via la classe MqttClient.

Event : Représente un événement (entrée ou sortie d'un véhicule) avec une description, une heure et une date.

MqttClient: Gère la connexion et la communication avec le serveur MQTT.

— Contient des méthodes pour se connecter au serveur MQTT et publier des données.

Servo: Contrôle les servomoteurs pour les barrières d'entrée et de sortie.

rgb_lcd : Gère l'affichage des informations sur l'écran LCD.

5 Conclusion

Ce projet a permis de mettre en œuvre des concepts avancés de la programmation orientée objet, tels que :

- L'encapsulation pour organiser les données et les méthodes.
- L'héritage pour structurer les composants de manière modulaire.
- La gestion des événements pour assurer le suivi des véhicules.

Le parking intelligent est fonctionnel, offrant une gestion autonome des véhicules avec un suivi en temps réel via une interface web.

5.1 Améliorations possibles

Parmi les évolutions possibles, nous pouvons envisager :

- Intégration d'un système de réservation et de paiement en ligne.
- Utilisation de capteurs plus performants pour une détection précise.
- Ajout de fonctionnalités comme la reconnaissance des plaques d'immatriculation.