Upper Bound Notation

- InsertionSort's runtime is
 O(n²)
 - runtime is in $O(n^2)$
 - Read O as "Big-O"

Upper Bound Notation

- InsertionSort's runtime is
 O(n²)
 - runtime is in $O(n^2)$
 - Read O as "Big-O"
- In general, a function
 - f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$

- Proof:
 - Use the formal definition of O to demonstrate that $an^2 + bn + c = O(n^2)$

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

- Proof:
 - Use the formal definition of O to demonstrate that $an^2 + bn + c = O(n^2)$

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

If any of a, b, and c are less than 0 replace the constant with its absolute value

- Proof:
 - Use the formal definition of O to demonstrate that $an^2 + bn + c = O(n^2)$

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

If any of a, b, and c are less than 0 replace the constant with its absolute value

o $0 \le f(n) \le k \cdot g(n)$ for all $n \ge n_0$ (k and n_0 must be positive)

- Proof:
 - Use the formal definition of O to demonstrate that $an^2 + bn + c = O(n^2)$

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

- If any of a, b, and c are less than 0 replace the constant with its absolute value
 - o $0 \le f(n) \le k \cdot g(n)$ for all $n \ge n_0$ (k and n_0 must be positive)
 - $0.0 \le an^2 + bn + c \le kn^2$

- Proof:
 - Use the formal definition of O to demonstrate that $an^2 + bn + c = O(n^2)$

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

- If any of a, b, and c are less than 0 replace the constant with its absolute value
 - o $0 \le f(n) \le k \cdot g(n)$ for all $n \ge n_0$ (k and n_0 must be positive)
 - $0 0 \le an^2 + bn + c \le kn^2$
 - o $0 \le a + b/n + c/n^2 <= k$

- Proof:
 - Use the formal definition of O to demonstrate that $an^2 + bn + c = O(n^2)$

```
O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}.
```

If any of a, b, and c are less than 0 replace the constant with its absolute value

```
o 0 \le f(n) \le k \cdot g(n) for all n \ge n_0 (k and n_0 must be positive)
```

$$0 0 \le an^2 + bn + c \le kn^2$$

o
$$0 \le a + b/n + c/n^2 <= k$$

- Question
 - Is InsertionSort *O*(*n*)?

Lower Bound Notation

• InsertionSort's runtime is $\Omega(n)$

Lower Bound Notation

- InsertionSort's runtime is $\Omega(n)$
- In general, a function
 - f(n) is $\Omega(g(n))$ if there exist positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$

Lower Bound Notation

- InsertionSort's runtime is $\Omega(n)$
- In general, a function
 - f(n) is $\Omega(g(n))$ if there exist positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$
- Proof:
 - Suppose runtime is an + b

o
$$0 \le cn \le an + b$$

o
$$0 \le c \le a + b/n$$

Asymptotic Tight Bound

- A function f(n) is $\Theta(g(n))$ if there exist positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- Theorem
 - f(n) is $\Theta(g(n))$ iff f(n) is both O(g(n)) and $\Omega(g(n))$

■ Use the formal definition of Θ

```
\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.
```

to demonstrate that
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

• Use the formal definition of Θ

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

to demonstrate that
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Solution:

$$0 \le c_1 n^2 \le \frac{1}{2} n^2$$
 -3n $\le c_2 n^2$ for all $n \ge n_0$ Note that $c_1 \in c_2$ must be **positive** constants

■ Use the formal definition of Θ

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

to demonstrate that
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Solution:

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$
 for all $n \ge n_0$

Note that c_1 e c_2 must be **positive** constants

$$\frac{1}{2} - \frac{3}{n} \le c^2$$

$$\frac{1}{2} \le c^2$$

For sufficiently large n, the term $\frac{1}{2}$ is kept

• Use the formal definition of Θ

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

to demonstrate that
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Solution:

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$
 for all $n \ge n_0$

Note that c₁ e c₂ must be **positive** constants

$$\frac{1}{2} - \frac{3}{n} \le c^2$$

$$\frac{1}{2} \le c^2$$

For sufficiently large n, the term $\frac{1}{2}$ is kept

$$c1 \le \frac{1}{2} - \frac{3}{n}$$

 $c_1 \le \frac{1}{14} \text{ for } n \ge 7$

n=7 is the smallest value for c_1 to be a positive constant

¹Within set notation, a colon means "such that"

■ Use the formal definition of Θ

```
\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.
```

to demonstrate that $6n^3 \neq \Theta(n^2)$

■ Use the formal definition of Θ

$$\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$
.

to demonstrate that $6n^3 \neq \Theta(n^2)$

Solution:

$$c_1 n^2 \le 6n^3 \le c_2 n^2$$
 for all $n \ge n_0$
 $6n \le c_2 : n \le \frac{c_2}{6}$

This can not be true for sufficiently large n since c₂ must be a constant

Other Asymptotic Notations

• A function f(n) is o(g(n)) if for any positive constant c > 0, \exists a constant $n_0 > 0$ such that $0 \le f(n) < c g(n) \ \forall \ n \ge n_0$

Other Asymptotic Notations

- A function f(n) is o(g(n)) if for any positive constant c > 0, \exists a constant $n_0 > 0$ such that $0 \le f(n) < c \ g(n) \ \forall \ n \ge n_0$
- A function f(n) is $\omega(g(n))$ if for any positive constant c > 0, \exists a constant $n_0 > 0$ such that $0 \le c g(n) < f(n) \forall n \ge n_0$

Other Asymptotic Notations

- A function f(n) is o(g(n)) if for any positive constant c > 0, \exists a constant $n_0 > 0$ such that $0 \le f(n) < c \ g(n) \ \forall \ n \ge n_0$
- A function f(n) is $\omega(g(n))$ if for any positive constant c > 0, \exists a constant $n_0 > 0$ such that $0 \le c g(n) < f(n) \forall n \ge n_0$
- Intuitively,
 - o() is like <</p>
- ω() is like >
- Θ() is like =

- O() is like ≤
- Ω () is like \geq

Asymptotic Comparisons

 We can draw an analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b

$$f(n) = O(g(n))$$
 is like $a \le b$,
 $f(n) = \Omega(g(n))$ is like $a \ge b$,
 $f(n) = \Theta(g(n))$ is like $a = b$,
 $f(n) = o(g(n))$ is like $a < b$,
 $f(n) = \omega(g(n))$ is like $a < b$.

Asymptotic Comparisons

 We can draw an analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b

```
f(n) = O(g(n)) is like a \le b,

f(n) = \Omega(g(n)) is like a \ge b,

f(n) = \Theta(g(n)) is like a = b,

f(n) = o(g(n)) is like a < b,

f(n) = \omega(g(n)) is like a < b.
```

Abuse of notation:

•
$$f(n) = O(g(n))$$
 indicates that $f(n) \in O(g(n))$

Summary

- Analyse the running time used by an algorithm via asymptotic analysis
 - asymptotic (O, Ω , Θ , o, ω) notations
 - use a generic uniprocessor random-access machine
 - Time and space complexity (input size)
 - Best, average and worst-case