COMP9414: Artificial Intelligence

Lecture 9a: Neural Networks

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW ©W. Wobcke et al. 2019

COMP9414 Neural Networks

This Lecture

- Neurons Biological and Artificial
- Perceptron Learning
- Linear Separability
- Multi-Layer Networks
- Backpropagation
- Application ALVINN

COMP9414 Neural Networks 2

Sub-Symbolic Processing

©W. Wobcke et al. 2019

COMP9414 Neural Networks 3

Brain Regions

UNSW

COMP9414 Neural Networks 4 COMP9414 Neural Networks

Brain Functions

UNSW © W. Wobcke et al. 2019

Biological Neurons

The brain is made up of neurons (nerve cells) which have

- A cell body (soma)
- Dendrites (inputs)
- An axon (outputs)
- Synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

When the inputs reach some threshold, an action potential (electrical pulse) is sent along the axon to the outputs

UNSW © W. Wobcke et al. 2019

COMP9414 Neural Networks

COMP9414

Neural Networks

_

Structure of a Typical Neuron

Variety of Neuron Types

5

The Big Picture

■ Human brain has 100 billion neurons with an average of 10,000 synapses each

Neural Networks

- Latency is about 3-6 milliseconds
- Therefore, at most a few hundred "steps" in any mental computation, but massively parallel

UNSW (©) W. Wobcke et al. 2019

COMP9414 Neural Networks

Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

- Input edges, each with some weight
- Output edges (with weights)
- An activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning)

The input function is the weighted sum of the activation levels of inputs

The activation level is a non-linear transfer function g of this input

$$activation_i = g(s_i) = g(\sum_j w_{ij}x_j)$$

Some nodes are inputs (sensing), some are outputs (action)

McCulloch & Pitts Model of a Single Neuron

COMP9414 Neural Networks 11

Transfer Function

Originally, a (discontinuous) step function

Later, other transfer functions which are continuous and smooth

UNSW

Linear Separability

Question: What kind of functions can a perceptron compute?

Answer: Linearly separable functions

Examples

AND
$$w_1 = w_2 = 1.0, \quad w_0 = -1.5$$

OR
$$w_1 = w_2 = 1.0, \quad w_0 = -0.5$$

NOR
$$w_1 = w_2 = -1.0, \quad w_0 = 0.5$$

Question: How can we train a perceptron net to learn a new function?

UNSW

© W. Wobcke et al. 2019

COMP9414 Neural Networks 13

Perceptron Learning Rule

Adjust the weights as each input is presented

Recall
$$s = w_1 x_1 + w_2 x_2 + w_0$$

if
$$g(s) = 0$$
 but should be 1, if $g(s) = 1$ but should be 0,

$$w_k \leftarrow w_k + \eta x_k$$

$$w_k \leftarrow w_k - \eta x$$

$$w_0 \leftarrow w_0 + \eta$$
 $w_0 \leftarrow w_0 - \eta$

$$w_0 \leftarrow w_0 - \eta$$

so
$$s \leftarrow s + \eta \left(1 + \sum_{k} x_{k}^{2}\right)$$

so
$$s \leftarrow s + \eta \left(1 + \sum_{k} x_k^2\right)$$
 so $s \leftarrow s - \eta \left(1 + \sum_{k} x_k^2\right)$

otherwise weights are unchanged ($\eta > 0$ is called the **learning rate**)

Theorem: This will eventually learn to classify the data correctly, as long as they are linearly separable.

Perceptron Learning Example

COMP9414 Neural Networks 15

Training Step 1

Training Step 2

Neural Networks

COMP9414 Neural Networks 17

Training Step 3

Final Outcome

COMP9414 Neural Networks 19

Limitations

Problem: Many useful functions are not linearly separable (e.g. XOR)

Possible solution

UNSW

 x_1 XOR x_2 can be written as $(x_1 \text{ AND } x_2) \text{ NOR } (x_1 \text{ NOR } x_2)$

Recall that AND, OR and NOR can be implemented by perceptrons

Multi-Layer Neural Networks

Question: Given an explicit logical function, we can design a multi-layer neural network by hand to compute that function – but if we are just given a set of training data, can we train a multi-layer network to fit this data?

UNSW (©) W. Wobcke et al. 2019

COMP9414 Neural Networks 21

Historical Context

In 1969, Minsky and Papert published a book highlighting the limitations of Perceptrons, and lobbied various funding agencies to redirect funding away from neural network research, preferring instead logic-based methods such as expert systems.

It was known as far back as the 1960s that any given logical function could be implemented in a 2-layer neural network with step function activations. But, the the question of how to learn the weights of a multi-layer neural network based on training examples remained an open problem. The solution, which we describe in the next section, was found in 1976 by Paul Werbos, but did not become widely known until it was rediscovered in 1986 by Rumelhart, Hinton and Williams.

Training as Cost Minimization

Define an **error function** E to be (half) the sum over all input patterns of the square of the difference between actual output and desired output

$$E = \frac{1}{2} \sum (z - t)^2$$

If we think of E as "height", this gives an error "landscape" on the weight space. The aim is to find a set of weights for which E is very low.

UNSW © W. Wobcke et al. 2019

COMP9414 Neural Networks 23

Local Search in Weight Space

Problem: Because of the step function, the landscape will not be smooth but will instead consist almost entirely of flat local regions and "shoulders", with occasional discontinuous jumps

Key Idea

Replace the (discontinuous) step function with a differentiable function, such as the sigmoid

Neural Networks

$$g(s) = \frac{1}{1 + e^{-s}}$$

or hyperbolic tangent

$$g(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}} = 2\left(\frac{1}{1 + e^{-2s}}\right) - 1$$

Neural Networks

UNSW

COMP9414

© W. Wobcke et al. 2019

25

Gradient Descent

Recall that the **error function** E is (half) the sum over all input patterns of the square of the difference between actual output and desired output

$$E = \frac{1}{2} \sum (z - t)^2$$

The aim is to find a set of weights for which E is very low.

If the functions are smooth, use multi-variable calculus to define how to adjust the weights so error moves in steepest downhill direction

$$w \leftarrow w - \eta \frac{\partial E}{\partial w}$$

Parameter η is called the learning rate

Chain Rule

If

$$y = y(u)$$

$$u = u(x)$$

Then

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$$

This principle can be used to compute the partial derivatives in an efficient and localized manner. Note that the transfer function must be differentiable (usually sigmoid, or tanh).

Note: if
$$z(s) = \frac{1}{1 + e^{-s}}$$
 $z'(s) = z(1 - z)$

if
$$z(s) = \tanh(s)$$
 $z'(s) = 1 - z^2$

UNSW © W. Wobcke et al. 2019

COMP9414 Neural Networks 27

Forward Pass

$$u_1 = b_1 + w_{11}x_1 + w_{12}x_2$$

$$y_1 = g(u_1)$$

$$s = c + v_1 y_1 + v_2 y_1$$

$$z = g(s)$$

$$E = \frac{1}{2} \sum (z - t)$$

Backpropagation

= g'(s) = z(1-z)

 $\frac{dy_1}{du_1} = y_1(1-y_1)$

Partial Derivatives

Neural Networks

$$\delta_{\text{out}} = \frac{\partial E}{\partial s} \quad \delta_1 = \frac{\partial E}{\partial u_1} \quad \delta_2 = \frac{\partial E}{\partial u_2}$$

$$\delta_{\text{out}} = (z-t) z (1-z)$$

$$\frac{\partial E}{\partial v_1} = \delta_{\text{out}}$$

$$\frac{\partial E}{\partial v_1} = \delta_{\text{out}} y_1$$

$$\delta_1 = \delta_{\text{out}} v_1 y_1 (1 - y_1)$$

$$\frac{\partial E}{\partial w_{11}} = \delta_1 x$$

Partial derivatives can be calculated efficiently by backpropagating deltas through the network

UNSW

© W. Wobcke et al. 2019

ALVINN

COMP9414

Neural Networks

29

COMP9414

UNSW

Neural Networks

31

© W. Wobcke et al. 2019

Neural Network – Applications

- Autonomous Driving
- Game Playing
- Credit Card Fraud Detection
- Handwriting Recognition
- Financial Prediction

ALVINN

- Autonomous Land Vehicle In a Neural Network
- Later version included a sonar range finder
 - \triangleright 8 × 32 range finder input retina
 - ▶ 29 hidden units
 - ▶ 45 output units
- Supervised Learning, from human actions (Behavioural Cloning)
 - ▶ Additional "transformed" training items to cover emergency situations
- Drove autonomously from coast to coast across US

Training Tips

- \blacksquare Re-scale inputs and outputs to be in the range 0 to 1 or -1 to 1
- Initialize weights to very small random values
- On-line or batch learning
- Three different ways to prevent overfitting:
 - Limit the number of hidden nodes or connections
 - ▶ Limit the training time, using a validation set
 - ▶ Weight decay
- Adjust learning rate (and momentum) to suit the particular task

UNSW

© W. Wobcke et al. 2019

COMP9414 Neural Networks 33

Summary

- Neural networks are biologically inspired
- Multi-layer networks can learn non-linearly separable functions
- Backpropagation is effective and widely used