Gumbel Softmax Estimation for Binary Random Variables

Zijing Ou¹

In this script, we will show that given a normalized Bernoulli logit $\alpha = [p, 1 - p]$, the corresponding Gumbel softmax estimation is

$$\sigma \left\{ -\frac{1}{\tau} \left(\log \frac{p}{1-p} + \log \frac{u}{1-u} \right) \right\},\tag{1}$$

where $\sigma(x) = \frac{1}{1+e^{-x}}$ is a sigmoid function, τ is a temperature coefficient, $u \sim \text{Uniform}(0,1)$. It turns out that $p(\lim_{\tau \to 0} x = 1) = p$. Similarly, if given an unnormalized Bernoulli logit $\alpha = [\alpha_1, \alpha_2]$, the corresponding Gumbel softmax estimation is

$$\sigma \left\{ -\frac{1}{\tau} \left(\log \frac{\alpha_1}{\alpha_1 + \alpha_2} + \log \frac{u}{1 - u} \right) \right\}. \tag{2}$$

It turns out that $p(\lim_{\tau \to 0} x = 1) = \frac{\alpha_1}{\alpha_1 + \alpha_2}$.

Let's first recall the Gumbel softmax [1] estimation for Category random variables. Given am unnormalized categorical logits $\alpha = [\aleph_1, \dots, \alpha_n]$, the Gumbel softmax estimation is

$$\frac{\exp\left\{(\log \alpha_k + g_k)/\tau\right\}}{\sum_i \exp\left\{(\log \alpha_i + g_i)/\tau\right\}},\tag{3}$$

where $g = [g_1, \ldots, g_n]$ is standard Gumbel random variables. It turns out that $p(\lim_{\tau \to 0} x_k = 1) = \frac{\alpha_k}{\sum_{i \neq k} a_i}$.

Next, it is helpful to know that the difference of two independent Gumbel random variables $X_1 \sim \text{Gumbel}(a_1), X_2 \sim \text{Gumbel}(a_2)$ follows a Logistic distribution, i.e., $X_1 - X_2 \sim \text{Logistic}(\alpha_1 - \alpha_2)$ (see section 1.2 in my another note for details). Moreover, sampling from a standard logistic distribution can be done by $x \sim \text{Logistic}(1) \Leftrightarrow x = \log \frac{u}{1-u}, u \sim \text{Uniform}(0,1)$. Now, we establish sufficient prerequisites to prove Gumbel softmax estimation for the binary case. Specifically,

Binary Gumbel Softmax =
$$\frac{\exp \{(\log p + g_1)/\tau\}}{\exp \exp \{(\log p + g_1)/\tau\} + \exp \exp \{(\log (1 - p) + g_2)/\tau\}}$$
=
$$\frac{1}{1 + \exp \{(\log (1 - p) - \log p + g_2 - g_1)/\tau\}}$$
=
$$\frac{1}{1 + \exp \{(\log (1 - p) - \log p + \log u - \log (1 - u))/\tau\}}$$
=
$$\sigma \left\{ -\frac{1}{\tau} \left(\log \frac{p}{1 - p} + \log \frac{u}{1 - u} \right) \right\}.$$

 $^{^{1}}$ z.ou22@imperial.ic.uk

References

[1] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. $arXiv\ preprint\ arXiv:1611.01144$, 2016.