## **Neural Network Basics**

10/10 分 (100%)

测验, 10 个问题

# ✔ 恭喜!您通过了!

下一项



1/1分

1,

What does a neuron compute?

- A neuron computes an activation function followed by a linear function (z = Wx + b)
- A neuron computes a function g that scales the input x linearly (Wx + b)
- A neuron computes a linear function (z = Wx + b) followed by an activation function

#### 正确

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

A neuron computes the mean of all features before applying the output to an activation function



1/1分

2。

Which of these is the "Logistic Loss"?

- $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} \hat{y}^{(i)})$
- $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} \hat{y}^{(i)}|^2$
- $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = |y^{(i)} \hat{y}^{(i)}|$
- $\mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1 y^{(i)})\log(1 \hat{y}^{(i)}))$

正确

Correct, this is the logistic loss you've seen in lecture!



1/1分

Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

## **Neural Network Basics**

10/10 分 (100%)

测验, 10 个问题

|   | x = img.reshape((3,32*32))    |
|---|-------------------------------|
|   | x = img.reshape((32*32,3))    |
|   | x = img.reshape((1,32*32,*3)) |
| 0 | x = img.reshape((32*32*3,1))  |
|   |                               |

正确



1/1分

4。

Consider the two following random arrays "a" and "b":

```
1  a = np.random.randn(2, 3) # a.shape = (2, 3)
2  b = np.random.randn(2, 1) # b.shape = (2, 1)
3  c = a + b
```

What will be the shape of "c"?



正确

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

- c.shape = (2, 1)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (3, 2)



1/1分

Consider the two following random arrays "a" and "b":

| Neural Ne  | twork Basicon.randn(4, 3) # a.shape = (4, 3)                  | 10/10 分 (100%) |
|------------|---------------------------------------------------------------|----------------|
| 测验, 10 个问题 | 2 b = np.random.randn(3, 2) # b.shape = (3, 2)<br>3 c = $a*b$ | 10/10/0        |

What will be the shape of "c"?

|          | c.shape = (4, 3)                                                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | The computation cannot happen because the sizes don't match. It's going to be "Error"!                                                                                |
|          | ed! In numpy the "*" operator indicates element-wise multiplication. It is different n "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2). |
|          | c.shape = (4,2)                                                                                                                                                       |
|          | c.shape = (3, 3)                                                                                                                                                      |
|          |                                                                                                                                                                       |
| <b>~</b> | 1/1分                                                                                                                                                                  |
|          | se you have $n_x$ input features per example. Recall that $X=[x^{(1)}x^{(2)}\dots x^{(m)}]$ . What is nension of X?                                                   |
|          | (1,m)                                                                                                                                                                 |
|          | $(m,n_x)$                                                                                                                                                             |
| 0        | $(n_x, m)$                                                                                                                                                            |
| 正确       |                                                                                                                                                                       |
|          | (m,1)                                                                                                                                                                 |
| <b>~</b> | 1/1分                                                                                                                                                                  |

Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a\*b" performs an element-wise multiplication.

## **Neural Network Basics**

10/10 分 (100%)

测验, 10 个问题 Consider the two following random arrays "a" and "b":



What is the shape of c?

- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (150,150)
- c.shape = (12288, 45)

#### 正确

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because :

"number of columns of a = 150 = number of rows of b"

c.shape = (12288, 150)



1/1分

8。

Consider the following code snippet:

```
1  # a.shape = (3,4)
2  # b.shape = (4,1)
3
4  for i in range(3):
5   for j in range(4):
6   c[i][j] = a[i][j] + b[j]
```

How do you vectorize this?



正确

- c = a.T + b
- c = a + b
- c = a.T + b.T



1/1分

Consider the following code:

#### 

10/10 分 (100%)

What will be c? (If you're not sure, feel free to run this in python to find out).

This will invoke broadcasting, so b is copied three times to become (3,3), and \* is an element-wise product so c.shape will be (3,3)

正确

This will invoke broadcasting, so b is copied three times to become (3, 3), and \* invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)

This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).

It will lead to an error since you cannot use "\*" to operate on these two matrices. You need to instead use np.dot(a,b)



1/1分

10。

Consider the following computation graph.



What is the output J?

J = (c - 1)\*(b + a)

 $\int J = (a - 1) * (b + c)$ 

正确

Yes. J = u + v - w = a\*b + a\*c - (b + c) = a \* (b + c) - (b + c) = (a - 1) \* (b + c).

J = a\*b + b\*c + a\*c