Modelos Lineares Generalizados

Histórico

$$f(y;\theta,\phi) = exp\left\{\frac{y\theta - b(\theta)}{a(\phi)} + c(y,\phi)\right\}$$
(3.1)

a) Distribuição normal

$$f(y;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[\frac{-(y-\mu)^2}{2\sigma^2}\right]$$
$$= \exp\left[\frac{y\mu - \frac{\mu^2}{2}}{\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2) - \frac{y^2}{2\sigma^2}\right]$$

Comparando com a Equação (3.1) obtemos:

$$\theta = \mu; \quad b(\theta) = \frac{\mu^2}{2}; \quad a(\phi) = \phi; \quad \phi = \sigma^2; \quad c(y,\phi) = -\frac{1}{2}\ln(2\pi\sigma^2) + \frac{y^2}{2\sigma^2}$$

Média e variância de y:

$$E(y) = \frac{db(\theta)}{d\theta} = \mu;$$
 $var(y) = \frac{d^2b(\theta)}{d\theta^2}a(\phi) = \sigma^2$

Algumas distribuições da família exponencial

distribuição	normal	binomial	Poisson	gama	gaussiana inversa
Notação	$N(\mu, \sigma^2)$	$B(m,\pi)/m$	$P(\lambda)$	$Ga(\nu, \frac{\nu}{\mu})$	$IG(\mu, \sigma^2)$
Suporte	$(-\infty, +\infty)$	$\{0,\frac{1}{m},,1\}$	$\{0,1,\}$	$(0,+\infty)$	$(0, +\infty)$
θ	μ	$\ln\left(\frac{\pi}{1-\pi}\right)$	$\ln \lambda$	$-\frac{1}{\mu}$	$-\frac{1}{2u^2}$
$a(\phi)$	σ^2	$\frac{1}{m}$	1	1	$\frac{-\frac{1}{2\mu^2}}{\sigma^2}$
ϕ	σ^2	1	1	1 /	σ^2
ω	1	m	1	1	1
$c(y, \phi)$	$-\frac{1}{2}(\frac{y^2}{\phi} + \ln(2\pi\phi))$	$\ln \binom{m}{my}$	$-\ln y!$	$\nu \ln \nu - \ln \Gamma(\nu)$	$-\frac{1}{2}\{\ln(2\pi\phi y^3)$
	2.4	(1119)		$+(\nu - 1) \ln y$	$+\frac{1}{v\phi}$
$b(\theta)$	$\frac{\theta^2}{2}$	$ln(1+e^{\theta})$	e^{θ}	$-\ln(-\theta)$	$-(-2\theta)^{1/2}$
$b'(\theta) = E(Y)$	$\overset{2}{\theta}$	$\pi = \frac{e^{\theta}}{1+e^{\theta}}$			$\mu = (-2\theta)^{-1/2}$
$b''(\theta) = V(\mu)$	1	110	λ	μ^2	μ^3
var(Y)	σ^2	$\frac{\pi(1-\pi)}{\pi}$	λ	μ^2	$\mu^3\sigma^2$

O que é um modelo "linear"?

- Uma equação que contem
 - variáveis
 - parâmetros
 - resíduos aleatórios
- que é linear nos parâmetros e variáveis aleatórias

O que é linear?

$$Y = a + bx$$

 $Y = a + bx + cx^2$
 $z = x^2$
 $Y = a + bx + zx$

"Um" preditor linear (linear predictor)

$$\eta_i = \sum_{j=1}^p x_{ib} \beta_j$$

Função de ligação (link function)

$$\eta = g(\mu)$$

Função de ligação canônica para algumas distribuições da família exponencial

Distribuição	Ligação Canônica		
normal	$\eta = \mu$		
Poisson	$\eta = \ln \mu$		
binomial	$\eta = \ln(\pi/(1-\pi))$		
gama	$\eta = 1/\mu$		
normal inversa	$\eta = 1/\mu^2$		

Desviança (deviance)

$$\begin{aligned} \text{deviance} &= -2\log_e(\mathcal{L}(\hat{\theta})) + 2\log_e(\mathcal{L}_s(\hat{\theta})), \\ &= -2\left(\log_e(\mathcal{L}(\hat{\theta})) - \log_e(\mathcal{L}_s(\hat{\theta}))\right), \end{aligned}$$

Family (Error structure)	Deviance		
Normal	$\sum (y - \overline{y})^2$		
Poisson	$2\sum y \ln(y \mid \mu) - (y - \mu)$		
Binomial	$2\sum y \ln(y / \mu) + (n - y) \ln(n - y) / (n - \mu)$		
Gamma	$2\sum (y-\mu)/y - \ln(y/\mu)$		
Inverse Gaussian	$\sum (y-\mu)^2 / (\mu^2 y)$		