```
In [1]:
             import numpy as np
             import pandas as pd
          2
          3
             import matplotlib.pyplot as plt
             import seaborn as sns
          5
          6
             %matplotlib inline
          7
            import os
          9
             print(os.listdir())
         10
             import warnings
         11
             warnings.filterwarnings('ignore')
         12
```

['.anaconda', '.android', '.atom', '.bash_history', '.conda', '.condarc', '.con tinuum', '.gitconfig', '.idlerc', '.ipynb_checkpoints', '.ipython', '.jupyter', '.matplotlib', '.ms-ad', '.virtualenvs', '3D Objects', 'abalone.csv', 'anaconda 3', 'Anaconda3-2022.05-Windows-x86_64.exe', 'AppData', 'Application Data', 'ass ignment 4.ipynb', 'auducity', 'ChromeSetup.exe', 'Contacts', 'Cookies', 'Creati ve Cloud Files', 'd4ac4633ebd6440fa397b84f1bc94a3c.7z', 'DA Assignment 3 Pytho n.ipynb', 'Documents', 'Downloads', 'Exploratory data analysis.ipynb', 'Favorit es', 'filmora-idco_setup_full1901.exe', 'Git-2.37.3-64-bit.exe', 'Heart_Disease nittk.ini', 'inst.ini', 'kav21.1.15.500en_26175.exe', 'Links', 'Local Setting s', 'MicrosoftEdgeBackups', 'Music', 'My Documents', 'my-venv-1', 'NetHood', 'N ox_share', 'NTUSER.DAT', 'ntuser.dat.LOG1', 'ntuser.dat.LOG2', 'NTUSER.DAT $\{e04c\}$ 8bc8-36e4-11ec-aaca-f0ebe5b2f12a}.TM.blf', 'NTUSER.DAT{e04c8bc8-36e4-11ec-aacaf0ebe5b2f12a}.TMContainer00000000000000001.regtrans-ms', 'NTUSER.DAT{e04c8bc 8-36e4-11ec-aaca-f0ebe5b2f12a}.TMContainer000000000000000000.regtrans-ms', 'n tuser.ini', 'nuuid.ini', 'OneDrive', 'Pipfile', 'PrintHood', 'Recent', 'Saved G ames', 'scikit learn data', 'Searches', 'SendTo', 'source', 'Start Menu', 'Temp lates', 'Untitled.ipynb', 'Untitled1.ipynb', 'Untitled2.ipynb', 'Untitled3.ipyn b', 'Untitled4.ipynb', 'useruid.ini', 'Videos', 'vMixDesktopCaptureNDI.zip', 'v mlogs']

```
In [2]: 1 dataset = pd.read_csv("Heart_Disease_Prediction.csv")
In [3]: 1 type(dataset)
Out[3]: pandas.core.frame.DataFrame
In [4]: 1 dataset.shape
Out[4]: (270, 14)
```

In [5]:

1 dataset.head(5)

Out[5]:

	Age	Sex	Chest pain type	ВР	Cholesterol	FBS over 120	EKG results	Max HR	Exercise angina	ST depression	Slope of ST	Number of vessels fluro
0	70	1	4	130	322	0	2	109	0	2.4	2	3
1	67	0	3	115	564	0	2	160	0	1.6	2	0
2	57	1	2	124	261	0	0	141	0	0.3	1	0
3	64	1	4	128	263	0	0	105	1	0.2	2	1
4	74	0	2	120	269	0	2	121	1	0.2	1	1

In [6]:

1 dataset.sample(5)

Out[6]:

	Age	Sex	Chest pain type	ВР	Cholesterol	FBS over 120	EKG results	Max HR	Exercise angina	ST depression	Slope of ST	Number of vessels flurc
43	46	1	2	101	197	1	0	156	0	0.0	1	С
175	62	0	4	138	294	1	0	106	0	1.9	2	3
24	54	0	2	132	288	1	2	159	1	0.0	1	1
99	50	0	2	120	244	0	0	162	0	1.1	1	C
143	51	1	1	125	213	0	2	125	1	1.4	1	1
4												>

In [7]: 1 dataset.describe()

Out[7]:

	Age	Sex	Chest pain type	ВР	Cholesterol	FBS over 120	EKG results	Ma
count	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.000000	270.00
mean	54.433333	0.677778	3.174074	131.344444	249.659259	0.148148	1.022222	149.67
std	9.109067	0.468195	0.950090	17.861608	51.686237	0.355906	0.997891	23.16
min	29.000000	0.000000	1.000000	94.000000	126.000000	0.000000	0.000000	71.00
25%	48.000000	0.000000	3.000000	120.000000	213.000000	0.000000	0.000000	133.00
50%	55.000000	1.000000	3.000000	130.000000	245.000000	0.000000	2.000000	153.50
75%	61.000000	1.000000	4.000000	140.000000	280.000000	0.000000	2.000000	166.00
max	77.000000	1.000000	4.000000	200.000000	564.000000	1.000000	2.000000	202.00

4

In [8]:

1 dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 270 entries, 0 to 269
Data columns (total 14 columns):

	`		
#	Column	Non-Null Count	Dtype
0	Age	270 non-null	int64
1	Sex	270 non-null	int64
2	Chest pain type	270 non-null	int64
3	BP	270 non-null	int64
4	Cholesterol	270 non-null	int64
5	FBS over 120	270 non-null	int64
6	EKG results	270 non-null	int64
7	Max HR	270 non-null	int64
8	Exercise angina	270 non-null	int64
9	ST depression	270 non-null	float64
10	Slope of ST	270 non-null	int64
11	Number of vessels fluro	270 non-null	int64
12	Thallium	270 non-null	int64
13	Heart Disease	270 non-null	object
	, , , , , , , , , , , , , , , , , ,		

dtypes: float64(1), int64(12), object(1)

memory usage: 29.7+ KB

```
info = ["age","1: male, 0: female","chest pain type, 1: typical angina, 2: a
 In [9]:
           1
           2
           3
           4
              for i in range(len(info)):
           5
           6
                  print(dataset.columns[i]+":\t\t\t"+info[i])
         Age:
                                  age
         Sex:
                                  1: male, 0: female
         Chest pain type:
                                                  chest pain type, 1: typical angina, 2:
         atypical angina, 3: non-anginal pain, 4: asymptomatic
         BP:
                                  resting blood pressure
         Cholesterol:
                                           serum cholestoral in mg/dl
         FBS over 120:
                                          fasting blood sugar > 120 mg/dl
         EKG results:
                                          resting electrocardiographic results (values 0,
         1,2)
         Max HR:
                                   maximum heart rate achieved
                                                  exercise induced angina
         Exercise angina:
                                          oldpeak = ST depression induced by exercise rel
         ST depression:
         ative to rest
         Slope of ST:
                                          the slope of the peak exercise ST segment
         Number of vessels fluro:
                                                           number of major vessels (0-3) c
         olored by flourosopy
         Thallium:
                                          thal: 3 = normal; 6 = fixed defect; 7 = reversa
         ble defect
           1 dataset["Heart Disease"].describe()
In [18]:
Out[18]: count
                        270
         unique
                          2
         top
                   Absence
         frea
                        150
         Name: Heart Disease, dtype: object
In [19]:
           1 dataset["Heart Disease"].unique()
```

Out[19]: array(['Presence', 'Absence'], dtype=object)

```
In [21]: 1 print(dataset.corr()["BP"].abs().sort_values(ascending=False))
```

BP	1.000000
Age	0.273053
ST depression	0.222800
Cholesterol	0.173019
FBS over 120	0.155681
Slope of ST	0.142472
Thallium	0.132045
EKG results	0.116157
Number of vessels fluro	0.085697
Exercise angina	0.082793
Sex	0.062693
Chest pain type	0.043196
Max HR	0.039136

Name: BP, dtype: float64

```
In [15]:
               y = dataset["BP"]
            1
            2
            3
               sns.countplot(y)
            4
            5
            6
               target_temp = dataset.BP.value_counts()
            7
            8
               print(target_temp)
          120
                  34
          130
                  31
                  30
          140
          110
                  17
          150
                  17
          160
                  11
          125
                  10
          138
                   9
                   9
          112
          128
                   9
                   7
          118
          132
                   6
          135
                   6
          108
                   6
                   5
          124
                   5
          145
                   4
          134
                   4
          100
          152
                   4
          180
                   3
                   3
          136
                   3
          115
                   3
          105
                   3
          126
          122
                   3
                   3
          142
                   2
          94
                   2
          102
                   2
          178
          170
                   2
          104
                   1
          200
                   1
          155
                   1
          101
                   1
          129
                   1
          123
                   1
          192
                   1
          117
                   1
          158
                   1
                   1
          146
          156
                   1
                   1
          165
          174
                   1
                   1
          144
          106
                   1
                   1
          148
```

172 1 Name: BP, dtype: int64

Percentage of patience with heart problems: 0.0 Percentage of patience with heart problems: 0.0

```
In [27]: 1 dataset["Sex"].unique()
```

Out[27]: array([1, 0], dtype=int64)

```
In [28]: 1 sns.barplot(dataset["Sex"],y)
```

Out[28]: <AxesSubplot:xlabel='Sex', ylabel='BP'>


```
In [31]: 1 #Analysing the 'Chest Pain Type' feature
2 dataset["Chest pain type"].unique()
```

Out[31]: array([4, 3, 2, 1], dtype=int64)

```
In [32]: 1 sns.barplot(dataset["Chest pain type"],y)
```

Out[32]: <AxesSubplot:xlabel='Chest pain type', ylabel='BP'>


```
In [34]:
           1 dataset["FBS over 120"].describe()
Out[34]: count
                   270.000000
         mean
                     0.148148
                     0.355906
         std
                     0.000000
         min
         25%
                     0.000000
         50%
                     0.000000
         75%
                     0.000000
                     1.000000
         Name: FBS over 120, dtype: float64
           1 dataset["FBS over 120"].unique()
In [35]:
```

```
In [36]: 1 sns.barplot(dataset["FBS over 120"],y)
```

Out[36]: <AxesSubplot:xlabel='FBS over 120', ylabel='BP'>


```
In [38]: 1 #Analysing the restecg feature
2 dataset["EKG results"].unique()
```

Out[38]: array([2, 0, 1], dtype=int64)

```
In [39]: 1 sns.barplot(dataset["EKG results"],y)
```

Out[39]: <AxesSubplot:xlabel='EKG results', ylabel='BP'>


```
In [40]: 1 #Analysing the 'exang' feature
2 dataset["Exercise angina"].unique()
```

Out[40]: array([0, 1], dtype=int64)

```
In [41]: 1 sns.barplot(dataset["Exercise angina"],y)
```

Out[41]: <AxesSubplot:xlabel='Exercise angina', ylabel='BP'>

Out[42]: array([2, 1, 3], dtype=int64)

```
In [43]: 1 sns.barplot(dataset["Slope of ST"],y)
```

Out[43]: <AxesSubplot:xlabel='Slope of ST', ylabel='BP'>

Out[44]: array([3, 7, 6], dtype=int64)

```
In [45]: 1 sns.barplot(dataset["Thallium"],y)
```

Out[45]: <AxesSubplot:xlabel='Thallium', ylabel='BP'>


```
In [46]: 1 sns.distplot(dataset["Thallium"])
```

Out[46]: <AxesSubplot:xlabel='Thallium', ylabel='Density'>


```
In [51]:
              from sklearn.model_selection import train_test_split
           1
           2
              predictors = dataset.drop("BP",axis=1)
           3
           4
              target = dataset["BP"]
           5
              X_train,X_test,Y_train,Y_test = train_test_split(predictors,target,test_size
           6
           7
           8
              from sklearn.model_selection import train_test_split
           9
              predictors = dataset.drop("BP",axis=1)
          10
          11
              target = dataset["BP"]
          12
             X_train,X_test,Y_train,Y_test = train_test_split(predictors,target,test_size
          13
```

```
In [52]: 1 X_train.shape
Out[52]: (216, 13)
In [53]: 1 X_test.shape
Out[53]: (54, 13)
In [54]: 1 Y_train.shape
Out[54]: (216,)
In [55]: 1 Y_test.shape
Out[55]: (54,)
In []: 1
```