1.a

```
```{r 1.a}
##1.a
college <- read.csv("E:/WSU Graduate/CPT_S 575 Data Science/College.csv")
...</pre>
```

# 

# 1.c I firstly checked which features are numeric then I plot a scatterplot to show the relation ship between colleges' application and acceptance.



## 1.d

```
/ ```{r 1.d}
##1.d
 college$overall = college$F.Undergrad + college$P.Undergrad
 college_private <- subset(college, Private == "Yes")</pre>
 college_public <- subset(college, Private == "No")</pre>
 hist(college_private$overall, xlab = "enrollment numbers", main = "Private schools overall enrollment numbers")
 hist(college_public$overall, xlab = "enrollment numbers", main = "Public schools overall enrollment numbers")
 Private schools overall enrollment numbers
 Public schools overall enrollment numbers
 300
 90
 20
 200
 4
 30
 100
 20
 9
 5000
 10000
 15000
 25000
 0
 20000
 30000
 0
 10000
 20000
 30000
 40000
 enrollment numbers
```

#### 1.e







Totally there are 26 top universities.



I would like to take a deep look in graduate rates of top schools and other schools. My hypotheses was top schools had lower graduate rate since they are intuitively 'better' than other schools. However, the interesting fact is that top schools generally have higher graduate rate (around 90%) than others (around 60%). The reason probably is the students in top schools are better at studying so even it is more difficult to graduate, top schools sill have higher graduate rates.

#### 2.a

```
##2.a forestfires <- read.csv("E:/wSU Graduate/CPT_S 575 Data Science/forestfires.csv")

sapply(forestfires,class)

print("'FFMC', 'DMC', 'DC', 'ISI', 'temp', 'RH', 'wind', 'rain', 'area' can be considered as quantitative predictors. 'month' and 'day' can be considered as quantitative predictors but they are easily represented as quantitative predictors.")
```

'FFMC', 'DMC', 'ISI', 'temp', 'RH', 'wind', 'rain', 'area' can be considered as quantitative predictors. 'month' and 'day' can be considered as qualitative predictors, but they are easily represented as quantitative predictors."

#### 2.b

				<i>□</i>
Predictors <chr></chr>	range <dbl></dbl>	mean <db ></db >	standard_deviation <dbl></dbl>	
FFMC	77.50	90.64468085	5.5201108	
DMC	290.20	110.87234043	64.0464822	
DC	852.70	547.94003868	248.0661917	
ISI	56.10	9.02166344	4.5594772	
temp	31.10	18.88916828	5.8066253	
RH	85.00	44.28820116	16.3174692	
wind	9.00	4.01760155	1.7916526	
rain	6.40	0.02166344	0.2959591	
area	1090.84	12.84729207	63.6558185	

### 2.c

9 rows

```
'``{r 2.c}
##2.c
dfremain <- forestfires[-c(20:70),]</pre>
 ∰ ¥ ▶
```

Predictors <chr></chr>	range <dbl></dbl>	mean <dbl></dbl>	standard_deviation <dbl></dbl>
FFMC	77.50	90.62188841	5.7429895
DMC	290.20	113.52167382	65.7845884
DC	852.70	548.04012876	249.1977150
ISI	22.70	8.98927039	4.1109312
temp	31.10	18.94163090	5.9027226
RH	85.00	44.59442060	16.5912495
wind	9.00	4.01244635	1.8179084
rain	6.40	0.02403433	0.3116754
area	1090.84	14.25332618	66.9058989

9 rows

#### 2.d

```
print("As the barplot shows, august has the most count of forest fires.")
```



As the bar plot shows, august has the most count of forest fires.

2.e I firstly transferred all "month" and "day" data to numeric data.

```
```{r}
  ##2.e
  forestfires[forestfires == "jan"] <- 1
forestfires[forestfires == "feb"] <- 2</pre>
  forestfires[forestfires == "mar"] <- 3
  forestfires[forestfires == "apr"] <- 4
forestfires[forestfires == "may"] <- 5
forestfires[forestfires == "jun"] <- 6
forestfires[forestfires == "jul"] <- 7
  forestfires[forestfires == "aug"] <- 8
  forestfires[forestfires == "sep"] <- 9
forestfires[forestfires == "oct"] <- 10
  forestfires[forestfires == "nov"] <- 11
  forestfires[forestfires == "dec"] <- 12
  forestfires[forestfires == "mon"] <- 1
forestfires[forestfires == "tue"] <- 2
  forestfires[forestfires == "wed"] <- 3
  forestfires[forestfires == "thu"] <- 4
  forestfires[forestfires == "fri"] <- 5
forestfires[forestfires == "sat"] <- 6
forestfires[forestfires == "sun"] <- 7
- ```{r}
   forestfires$month <- as.numeric(forestfires$month)</pre>
  forestfires$day <- as.numeric(forestfires$day)</pre>
  forestfires$RH <- as.numeric(forestfires$RH)</pre>
   sapply(forestfires, class)
      month day FFMC DMC DC ISI temp RH wind rain area "numeric" "numeri
```

Then create correlation matrix for all relevant variables.

```
forestfires.cor = cor(forestfires)
corrplot(forestfires.cor)
...
```


2.f As above figure shown, temperature in degrees Celsius(temp) and relative humidity(RH) might be useful in predicting area since the area burned by the forest fire has higher positive correlation coefficient with temp, and higher negative correlation coefficient with RH, which means the burned area goes up with the higher temperature and lower relative humidity in some cases.