### Motivation

# **Compression based on SVD**

- FWSVD
  - Preliminary study: competitive with structure pruning on language modeling
  - Compatible with quantization
- To be improved:
  - Computationally demanding
  - Need peft for calibration



### **Two Direction**

## **LoRA Weighted SVD**

- Degradation on other domains
  - Retuning-free base model with competitive LM ability
- Memory footprint
  - Utilize LoRA to avoid computing full params' gradient, saving 25% GPU mem
  - QLoRA is also compatible
- Further improvement
  - Layer-wise compressing strategy
  - Kernel for efficient SVDLinear OP

#### **Two Direction**

## **Theoretical Research**

- Current trend: low-rank + quant/sparse
  - LQ-LoRA: low-bit weights + LoRA
  - LoSparse: SP weight matrix + LoRA
  - Layer-Selective Rank Reduction: components with lower singular values may introduce "noise"
- Topic:
  - Low order/coherent parts的作用



values. Therefore, the coherent parts of neurons can be well approximated by the low-rank matrix computed by singular value thresholding.



Figure 3. Singular values in language models. (a) Singular values of weight matrices of the 10<sup>th</sup> decoder layer in BART-large; (b) Singular values of weight matrices of the 14<sup>th</sup> encoder layer in DeBERTaV3-large.

LQ-LORA (MIT)
LoSparse (ICML 2023)
Layer-Selective Rank Reduction (MIT)

#### LASER indicates that SO头部斜值已经可以做出错过模 ②指尾鹟实际会结出一些相似词(noise)

values. Therefore, the coherent parts of neurons can be well approximated by the low-rank matrix computed by singular value thresholding.



Figure 3. Singular values in language models. (a) Singular values of weight matrices of the 10<sup>th</sup> decoder layer in BART-large; (b) Singular values of weight matrices of the 14<sup>th</sup> encoder layer in DeBERTaV3-large.



Figure 4. Neuron importance scores of selected linear projections when compressing DeBERTaV3-base on SST-2 with ITP (blue) and LoSparse (orange). It shows LoSparse successfully separates incoherent parts of neurons and make it easy to prune the non-expressive components.

## Lo Sparse:头部等异值(coherent parts)使用SVD保留,拖尾部用结构化剪枝(SP)

# Topic: coherent part 在 L M 中有什么作用

Hypo: 解抗 global pattern, houtput feature这一个ground,由推尾部分进彩微调