21b - AV2

Avaliação 2 - Elementos de Sistemas

AV	Pontos HW	Pontos SW
Prática	35	5

- Trabalhar sozinho.
- 100 min total.
- Ficar conectado no canal geral (para ouvir instruções)
- Commit a cada 15 minutos
- Lembre de dar push ao final

Para testar basta descomentar o módulo que deseja validar no arquivo config_testes.txt e executar o comando python3 ./testeHW.py .

1. Novo adder

Existem vários topologias de somadores (adder) cada um com uma vantagem e desvantagem, o proposto a seguir tem o intuito de minimizar o tempo de cálculo da soma, para isso utiliza um FullAdder modificado com a adição de dois sinais de saída 'g' e 'p':

Com este FA é possível implementar o Adder com skip, conforme diagrama a seguir:

1 of 5

1a. Implementando

Arquivo	pnts
src/FullAdder_skip.vhd	5 HW
src/add4_skip.vhd	5 HW

Usando o HalfAdder.vhd e o Mux2Way.vhd implemente o FullAdder_skip.vhd e e na sequência o Add4_skip.vhd conforme diagramas anteriores..

Lembre de descomentar o módulo no arquivo config_testes.txt e testar com ./testeHW.py

2 of 5 24/09/2021 16:27

2. (10 HW/ 0 SW) Adder Overflow

Arquivo	pnts
src/add4.vhd	10 (HW)

Um problema da soma binária de vetores sinalizados (que podem ser positivos ou negativos) é que pode acontecer um estouro na soma, este estouro acontece quando somamos dois valores e o resultado não cabe na quantidade de bits reservado para armazenar o resultado. Note nos exemplos a seguir (4 bits) que a indicação de estouro é diferente do carry out.

Agora modifique o somador de 4 bits (add4.vhd) para que o sinal de estouro represente quando aconteceu um estouro de verdade.

Lembre de descomentar o módulo no arquivo config_testes.txt e testar com ./testeHW.py

3. Circuito misterioso?

Arquivo	pnts
src/q3.vhd	5 (HW)

Analise o circuito a seguir e responda no arquivo src/q3.vhd qual o valor de q1 e q0 nos instantes (b), (c), (d), (e). Você deve responder no arquivo VHDL, use como exemplo a resposta do instante (a).

3 of 5 24/09/2021 16:27

Essa questão não tem teste!

4. Paridade

Arquivo	pnts
src/paridade.vhd	5 (HW)

Vocês devem desenvolver em VHDL um componente que identifica a paridade de um vetor de 4 bits, indicando quando a soma de bits 1 é ímpar ou par (saídas), conforme o exemplos a seguir:

• Não pode fazer uso de with nem when.

Lembre de descomentar o módulo no arquivo config_testes.txt e testar com ./testeHW.py

5. ULA

Arquivo	pnts	
src/q5.vhd	5 (HW) / 5 (SW)	

Vamos falar um pouco da ULA desenvolvida no projeto C-ULA, no arquivo q5.txt responda:

• Como um programa de alto nível usa a ULA e consegue executar operações não existentes nela, como Multiplicação ou Divisão?

4 of 5 24/09/2021 16:27

5 of 5