Bosonic Field Theories in Condensed Matter Physics

Jinyuan Wu

January 11, 2022

This article is a reading note of Wen's famous textbook [3]. It is mainly a reconstruction of material related to the KT phase transition covered in Chapter 3.

1 A simplest interacting boson system

(3.3.1) in Section 3.3.1 provides a simplest interacting bosonic system with a complex scalar field

Section 3.3.1

$$S = \int d^{d}\boldsymbol{x} dt \left(i\varphi^{*}\partial_{t}\varphi - \frac{1}{2m}\partial_{\boldsymbol{x}}\varphi^{*}\partial_{\boldsymbol{x}}\varphi + \mu|\varphi|^{2} - \frac{V_{0}}{2}|\varphi|^{4}\right). \tag{1}$$

The prefactor of the interaction term makes the corresponding term in the EOM of φ and φ^* not have a numerical factor, but it introduces a numerical factor in the vertex in Feynman diagrams. The sign of the mass term is derived as follows: first we have a $-\varphi^*\nabla^2\varphi/2m$ term in the Hamiltonian, and therefore we have a $\varphi^*\nabla^2\varphi/2m$ term in the Lagrangian, and by integration by parts we have $\varphi^*\nabla^2\varphi/2m \simeq -\partial_x\varphi^*\partial_x\varphi/2m$.

Eq. (3.3.1)

The semiclassical approximation from (3.3.1) to (3.3.2) can be justified when the temperature is high and therefore the most economical path does not have imaginary time evolution at all. It can also be derived using the ideas behind (3.4.1), where with a finite temperature, we can always integrate out modes with non-zero Matsubara frequencies. This gives a physical picture behind dynamic density functional theories and also explains why "classical" statistical physics is still relevant today. It should be noted that when the temperature is low, parameters in the "classical" theory obtained by integrating out non-zero Matsubara frequencies are different with the truly classical approximation, though they have exactly the same form. The fact can also be seen in the comparison between classical DFT and DFT in the context of hard condensed matter physics.

Section 3.3.2

The following contents from Eq. (3.3.3) to Eq. (3.3.4) are also covered in this note. The discussion between Eq. (3.3.4) to the end of Section 3.3.2 is important, which illustrates the Ginzburg-Landau paradigm and why it is almost always associated with symmetries (or otherwise it is highly unlikely that we have several minima of the energy functional that share the same energy, so that we have a smooth phase transition shown in Fig. 3.5), though the concept of order parameters can also be used in a first-order phase transition (see here, for example).

2 Quantum XY model from (1)

Note that if there is no BEC when $\mu < 0$. This is often justified by the argument that the Bose-Einstein distribution function is not well-defined when $\epsilon < \mu$, and if $\mu > 0$, there must be a finite number of particles condensed on the ground state. The fact is also shown in the discussion around (86) in this note. The derivation of (3.3.10) is also done in (89) in this note, in the form of an imaginary time field theory.

Section 3.3.3

We call (3.3.10) a quantum XY model. It is easy to see that its classical approximation is exactly the coarse-grained version of a classical XY model, and since θ is a real bosonic field, the simplest way to give it time evolution ("quantum fluctuation") is to add a $(\partial_t \theta)^2$ term. An interesting question may be how can we write down a quantum version of the *lattice* XY model whose continuum field theory is (3.3.10). TODO: is this just [1,4]?

The method the author used to derive (3.3.13) and (3.3.14) is not really necessary in this case, since we all know what θ actually means, but it is a general method to connect the original degrees of freedom to the degrees of freedom in the effective theory so that we are able to calculate physical quantities defined in the original theory.

The quasiparticles corresponding to the θ field have linear dispersion. They are spin waves when the field $\varphi \sim S^x + iS^y$. In Section 6.1.1

3 KT phase transition

The KT phase transition in the *classical* XY model - which is most frequently seen in introduction to KT phase transition itself - is covered in this note. It should be noticed that the XY model is not restricted to the classical region - we may define quantum XY degrees of freedom, just as is the case in Section 2.

TODO: For example, the θ degrees of freedom in this note can be realized with quantum rotors, which are introduced in the first chapter in [2].

References

- [1] Takeo Matsubara and Hirotsugu Matsuda. A Lattice Model of Liquid Helium, I. *Progress of Theoretical Physics*, 16(6):569–582, 12 1956.
- [2] Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2009.
- [3] Xiao-Gang Wen. Quantum Field Theory of Many-Body Systems. Oxford University Press, September 2007.
- [4] Juan Pablo Álvarez Zúñiga, Gabriel Lemarié, and Nicolas Laflorencie. Spin wave theory for 2d disordered hard-core bosons. In AIP Conference Proceedings. AIP Publishing LLC, 2014.