

8 BIT PIPO SHIFT REGISTER WITH ASYNCHRONOUS CLEAR

- HIGH SPEED : f_{MAX} = 80MHz (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A = 25$ °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}|=I_{OL}=6mA (MIN) FOR QA'TO QH' |I_{OH}|=I_{OL}=4mA (MIN) FOR QA TO QH
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 299

The M74HC299 is an high speed CMOS 8 BIT PIPO SHIFT REGISTER (3-STATE) fabricated with silicon gate C²MOS technology.

This device has four modes (HOLD, SHIFT LEFT, SHIFT RIGHT and LOAD DATA). Each mode is chosen by two function select inputs (SO, S1). When one or both enable inputs, (G1, G2) are

ORDER CODES

PACKAGE	TUBE	T&R
DIP	M74HC299B1R	
SOP	M74HC299M1R	M74HC299RM13TR
TSSOP		M74HC299TTR

high, the eight input/output terminals are in the high impedance state; however sequential operation or clearing of the register is not affected. Clear function on the M74HC299 is asynchronous to CLOCK.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/13

IINPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION				
1, 19	S0, S1	Mode Select Inputs				
2, 3	G1, G2	3-State Output Enable Inputs (Active LOW)				
7, 13, 6, 14, 5, 15, 4, 16	A/QA to H/QH	Parallel Data Inputs or 3-State Parallel Outputs (Bus Driver)				
8, 17	QA' to QH'	Serial Outputs (Standard Output)				
9	CLEAR	Asynchronous Master Reset Input (Active LOW)				
11	SR	Serial Data Shift Right Input				
12	CLOCK	Clock Input (LOW to HIGH, Edge-triggered)				
18	SL	Serial Data Shift Left Input				
10	GND	Ground (0V)				
20	V _{CC}	Positive Supply Voltage				

TRUTH TABLE

			INF	PUTS			IN	IPUTS/O	UTPUTS	3	OUTPUTS	
MODE	CLEAR	FUNCTION SELECTED			OUTPUT CONTROL		SER	RIAL	A/QA	H/QH	QA'	QH'
	-	S1	S0	G1*	G2*		SL	SR				
Z	L	Н	Н	Х	Х	Х	Х	Х	Z	Z	L	L
CLEAR	L	L	Х	L	L	Х	Х	Х	L	L	L	L
CLEAR	L	Χ	L	L	L	Х	Х	Х	L	L	L	L
HOLD	Н	L	L	L	L	Х	Х	Х	QA0	QH0	QA0	QH0
SHIFT	Н	L	Н	L	L	7	Х	Н	Н	QGn	Н	QGn
RIGHT	Н	L	Н	L	L		Х	L	L	QGn	L	QGn
SHIFT	Н	Н	L	L	L		Н	Х	QBn	Н	QBn	Н
LEFT	Н	Н	L	L	L		L	Х	QBn	L	QBn	L
LOAD	Н	Н	I	Х	Х	J	Х	Х	а	h	а	h

^{*} When one or both output controls are high, the eight input/output terminals are in the high impedance state: however sequential operation or clearing of the register is not affected.

Z : High Impedance
Qn0 : The level of An before the indicated steady state input conditions were established.
Qnn : The level of Qn before the most recent active transition indicated by OR
a, h : The level of the steady state inputs A, H, respectively.
X : Don't Care

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Source Sink Current Per Output Pin (QA-QH)	± 35	mA
Io	DC Output Source Sink Current Per Output Pin (QA'-QH')	± 235	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
T_L	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not t implied

(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
V _I	Input Voltage	0 to V _{CC}	V	
V _O	Output Voltage	0 to V _{CC}	V	
T _{op}	Operating Temperature		-55 to 125	°C
	Input Rise and Fall Time	V _{CC} = 2.0V	0 to 1000	ns
t _r , t _f		$V_{CC} = 4.5V$	0 to 500	ns
		V _{CC} = 6.0V	0 to 400	ns

DC SPECIFICATIONS

		7	Test Condition				Value				
Symbol	Parameter	v _{cc}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	4.5				1.35		1.35		1.35	V
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LP ab L avail Outrat	6.0	1 00 1			1.8		1.8		1.8	
VOH	V _{OH} High Level Output Voltage	2.0	I _O =-20 μA	1.9	2.0		1.9		1.9		
		4.5	I _O =-20 μA	4.4	4.5		4.4		4.4		
	6.0	I _O =-20 μA	5.9	6.0		5.9		5.9			
	QA to QH	4.5	I _O =-6.0 mA	4.18	4.31		4.13		4.10		V
		6.0	I _O =-7.8 mA	5.68	5.8		5.63		5.60		
	044-014	4.5	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
	QA' to QH'	6.0	I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V _{OL}	Low Level Output	2.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	Voltage	4.5	I _O =20 μA		0.0	0.1		0.1		0.1	
		6.0	I _O =20 μA		0.0	0.1		0.1		0.1	
	24 . 211	4.5	I _O =6.0 mA		0.17	0.26		0.33		0.40	V
	QA to QH	6.0	I _O =7.8 mA		0.18	0.26		0.33		0.40	
		4.5	I _O =4.0 mA		0.17	0.26		0.33		0.40	
	QA' to QH'	6.0	I _O =5.2 mA		0.18	0.26		0.33		0.40	
II	Input Leakage Current	6.0	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{OZ}	High Impedance Output Leakage Current	6.0	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			± 0.5		± 5		± 10	μΑ
I _{CC}	Quiescent Supply Current	6.0	$V_I = V_{CC}$ or GND			4		40		80	μА

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ns}$)

		7	Test Co	ondition				Value						
Symbol	Parameter	v _{cc}			Т	A = 25°	C	-40 to	85°C	-55 to	125°C	Unit		
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.			
t _{TLH} t _{THL}	Output Transition	2.0				25	60		75		90			
	Time	4.5	50			7	12		15		18	ns		
	(QA, QH)	6.0				6	10		13		15			
t _{TLH} t _{THL}	Output Transition	2.0				30	75		95		110			
	Time	4.5	50			8	15		19		22	ns		
	(QA', QH')	6.0				7	13		16		19			
t _{PLH} t _{PHL}	Time (CLOCK - QA', QH')	2.0				85	170		215		255			
		4.5	50			23	34		43		51	ns		
		6.0				18	29		37		43			
t _{PHL}	Propagation Delay	2.0				85	175		220		265			
	Time	4.5	50			24	35		44		53	ns		
	(CLEAR - QA', QH')	6.0				18	30		37		45			
t _{PLH} t _{PHL}	Propagation Delay	2.0				80	160		200		240			
	Time	4.5	50			21	32		40		48	ns		
	(CLOCK - QA, QH)	6.0				17	27		34		41			
		2.0				100	200		250		300			
		4.5	150			26	40		50		60	ns		
		6.0				21	34		43		51			
t _{PZL} t _{PZH}	High Impedance	2.0				60	130		165		195			
Output Enable Time	4.5	50	$R_L = 1 \text{ K}\Omega$		17	26		33		39	ns			
	6.0		_		13	22		28		33				
		2.0				78	170		15		255			
		4.5	150	$R_L = 1 \text{ K}\Omega$		23	34		43		51	ns		
		6.0		_		17	29		37		43			
t _{PLZ} t _{PHZ}	High Impedance	2.0				54	150		190		225			
1 62 1112	Output Disable	4.5	50	$R_I = 1 K\Omega$		19	30		38		45	ns		
	Time	6.0		L		16	26		32		38			
f _{MAX}	Maximum Clock	2.0			6	12		4.8		4				
IVIAA	Frequency	4.5	50		30	58		24		20		MHz		
		6.0			35	80		28		24				
t _{M//1}	Minimum Pulse	2.0					75		95		110			
t _{W(H)}	Width (CLOCK)	4.5	50				15		19		22	ns		
**()		6.0					13		16		19			
t _{W(L)}	Minimum Pulse	2.0					75		95		110			
-vv(L)	Width (CLEAR)	4.5	50				15		19		22	ns		
		6.0					13		16		19			
t _s	Minimum Set-up	2.0					100		125		150			
٠.5	Time (S0, S1)	4.5	50				20		25		30	ns		
	(SL, SR, A, H)	6.0					17		21		26			
t _h	Minimum Hold	2.0					0		0		0			
11	Time (S0, S1)	4.5	50				0		0		0	ns		
	(SL, SR, A, H)	6.0					0		0		0			
t _{REM}	Minimum Removal	2.0					50		65		75			
-KEIVI	Time (CLEAR)	4.5	50				10		13		ns			
	Time (CLEAR)	Time (CLEAR)	Time (CLEAR)	6.0	- •				9		11		13	

CAPACITIVE CHARACTERISTICS

		Test Condition		Value							
Symbol Parameter	V _{CC}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit		
		(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
C _{IN}	Input Capacitance	5.0			5	10		10		10	pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			170						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}

TEST CIRCUIT

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 $C_L = 50 pF/150 pF$ or equivalent (includes jig and probe capacitance) $R_1 = 1 K \Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM 1: PROPAGATION DELAY TIMES, MINIMUM PULSE WIDTH (f=1MHz; 50% duty cycle)

WAVEFORM 2: SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 3 :PROPAGATION DELAY AND REMOVAL TIME, MINIMUM PULSE WIDTH (f=1MHz; 50% duty cycle)

WAVEFORM 4: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50% duty cycle)

Plastic DIP-20 (0.25) MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
a1	0.254			0.010				
В	1.39		1.65	0.055		0.065		
b		0.45			0.018			
b1		0.25			0.010			
D			25.4			1.000		
E		8.5			0.335			
е		2.54			0.100			
e3		22.86			0.900			
F			7.1			0.280		
I			3.93			0.155		
L		3.3			0.130			
Z			1.34			0.053		

SO-20 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.1		0.2	0.004		0.008		
a2			2.45			0.096		
b	0.35		0.49	0.014		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.5			0.020			
c1			45°	(typ.)		•		
D	12.60		13.00	0.496		0.512		
E	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.40		7.60	0.291		0.300		
L	0.50		1.27	0.020		0.050		
М			0.75			0.029		
S			8° (ı	max.)				

TSSOP20 MECHANICAL DATA

DIM.		mm.		inch				
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0089		
D	6.4	6.5	6.6	0.252	0.256	0.260		
E	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
К	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

