Grundlagen der Informatik

Prof. Dr. J. Schmidt Fakultät für Informatik

GDI – WS 2018/19
Information und Quellencodierung
Lauflängencodierung / LZW-Kompression

Lauflängen-Kodierung (1)

- "RLE" / "RLC"
 - Engl. "run-length-encoding" / "run-length-coding"
- Eindimensionale Lauflängen-Kodierung
 - Ergänzung eines Zählers
 - zusätzlich zu den kodierten Daten
- Speicherung
 - Lauflänge = Anzahl der Wiederholungen eines Zeichens
 - Speicherung von Zahlenpaaren etwa der Art (f,n)
 - f gibt den Datenwert an und
 - n gibt die Lauflänge an (gerechnet ab Anfang des Datenstroms bzw. ab Ende der vorherigen Sequenz)

Lauflängen-Kodierung (2)

- Einfaches Beispiel
 - Lauflängen-Kodierung eines Binärbildes

- Übertragung Zahlenpaare (Datenwert, Lauflänge)
 - Lauflängen: 001=1 010=2 011=3 100=4 101=5 110=6 111=7 000=8
- Kompression von 64 auf 56 Bit wird erreicht

Lauflängen-Kodierung (3)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Anwendungsbeispiel: Fax schicken

Original

Lauflängen-Kodierung (4)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Anwendungsbeispiel: Fax schicken

Gitternetz

Lauflängen-Kodierung (5)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Anwendungsbeispiel: Fax schicken

Rasterbild

Lauflängen-Kodierung (6)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Anwendungsbeispiel: Fax schicken

Rasterpunkt=Speicher-

stelle

Lauflängen-Kodierung (7)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Anwendungsbeispiel: Fax schicken

Speicherung

625 Bit

0 = weiß

1 = schwarz

00000000000010000000000 00000000000110000000000 00000000000111000000000

Lauflängen-Kodierung (8)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Anwendungsbeispiel: Fax schicken

Lauflängen

0 = weiß 1 = schwarz

63 1 23 2 23 3 21 2 1 1 20 2 3 1 19 1 5 1 16 2 7 1 ...

Lauflängen-Kodierung (9)

- Anwendungsbeispiel: Fax schicken
 - Lauflängen
 63 1 23 2 23 3 21 2 1 1 20 2 3 1 19 1 5 1 16 2 7 1 ...
 - Weitere Verbesserung
 - Berücksichtigung der Häufigkeiten der Lauflängen
 - Code-Baum mit variabler Code-Länge
 - Faxgeräte
 - Eingespeicherte "Standard Code-Bäume"

Lauflängen-Kodierung (10)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Beobachtungen

- Effiziente Komprimierung nur möglich,
 - falls in den Daten zahlreiche homogene Bereiche auftreten,
 - die durch ein einziges Code-Wort charakterisiert werden können
- Anwendung v.a. in
 - computergenerierten Bildern und Grafiken
 - sowie Binärbilder mit zwei Helligkeitsstufen
 - oft in Kombination mit Huffman (z.B. in JPEG)
- Vergrößerung der Datei möglich
 - Bei wenigen längeren Sequenzen von identischen Daten

LZW-Algorithmus (1)

- Erfinder des Algorithmus
 - Lempel, Ziv und Welch (1978/83)
- Zugrunde liegende Idee
 - Erweiterung RLC: Nicht nur Kodierung von Einzelzeichen, sondern auch von Zeichengruppen unterschiedlicher Länge
 - Berücksichtigung von Häufigkeiten der Einzelzeichen sowie Redundanzen, die auf der Korrelation aufeinander folgender Zeichen beruhen
 - Erkennen von redundanten Zeichenfolgen, die durch k\u00fcrzeren Code ersetzt werden

LZW-Algorithmus (2)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Auswirkungen

- LZW-Algorithmus minimiert die Redundanzen, die dadurch entstehen, dass identische Zeichenfolgen sich in den Eingabedaten mehrmals wiederholen
- Die Kompressionswirkung ist umso besser, je häufiger solche Wiederholungen auftreten und je länger die sich wiederholenden Zeichenfolgen sind
- Ergebnis ist eine weitgehend unkorrelierte Zeichenfolge, die verlustfrei nicht mehr weiter komprimierbar ist

LZW-Algorithmus (3)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Prinzip

- Dynamische Generierung einer Code-Tabelle
- Jeder Eintrag besteht aus
 - einer Zeichenfolge mit Zeichen aus dem Quell-Alphabet
 - und dem zugehörigen komprimierten Code
- Code-Tabelle
 - wird zu Beginn mit allen Einzelzeichen des Quell-Alphabets vorbesetzt
 - wird während der Kompression nach und nach erweitert und an die Eingabe angepasst

LZW-Algorithmus (4)

- Charakteristische Eigenschaften
 - Benötigt keine Informationen über die Statistik des Eingabetextes
 - (z.B. Auftrittswahrscheinlichkeiten der Einzelzeichen)
 - Code-Tabelle muss nicht zusammen mit den kodierten Daten gespeichert bzw. übertragen werden
 - Wird bei Dekodierung aus den kodierten Daten in identischer Weise wieder erzeugt

LZW-Algorithmus (5)

- Anwendung
 - Bild- und Dokumentformate
 - Zum Sparen von Speicherplatz
 - Beispiele
 - GIF, TIFF, PDF, Postscript

LZW-Algorithmus (6)

- LZW-Kompression eines Strings Z
 - Initialisiere die Code-Tabelle mit den Einzelzeichen
 - Weise dem Präfix P den Leerstring zu
 - Wiederhole, solange Eingabezeichen vorhanden sind:
 - Lies nächstes Eingabezeichen c aus dem Eingabestring Z
 - Wenn Pc in der Code-Tabelle gefunden wird:
 - Setze P=Pc
 - Sonst:
 - Trage Pc in die n\u00e4chste freie Position der Code-Tabelle ein
 - Gib den Code f
 ür P aus
 - Setze P=c
 - Ende der Schleife
 - Gib den Code für das letzte Präfix P aus

LZW-Algorithmus (7)

- Beispiel: Kodierung der Zeichenkette Z = ABABCBABAB
 - Vorbereitung
 - Initialisiere die Code-Tabelle mit den Einzelzeichen

Präfix	Code
А	0
В	1
С	2

LZW-Algorithmus (8)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Beispiel: Kodierung der Zeichenkette Z = ABABCBABAB

Kodierungsvorgang

Zeichen c	Präfix P	Ausgabe
	1	
А	А	
В	В	0
А	А	1
В	AB	
С	C	3
В	В	2
А	BA	
В	В	4
А	ВА	
В	BAB	
		7

Code-Tabelle

Präfix	Code
Α	0
В	1
С	2
AB	3
ВА	4
ABC	5
СВ	6
BAB	7

Lies nächstes Eingabezeichen cWenn (Pc in der Code-Tabelle) Setze P=PcSonst

Trage Pc in Code-Tabelle ein Gib den Code für P aus Setze P=c

Gib den Code für das letzte Präfix *P* aus

→ Kodierte Nachricht: 013247

LZW-Algorithmus (9)

- LZW-Dekompression einer Nachricht
 - Initialisiere die Code-Tabelle mit den Eingabezeichen
 - Weise dem Präfix P den Leerstring zu
 - Wiederhole, solange Eingabezeichen vorhanden sind:
 - Lies nächstes Eingabezeichen c
 - Wenn c in der Code-Tabelle enthalten ist:
 - Gib den zu c gehörenden String aus
 - Setze k = erstes Zeichen dieses Strings
 - Trage *Pk* in die Code-Tabelle ein, falls noch nicht enthalten
 - Setze P = zum Code c gehörender String
 - Sonst (Sonderfall):
 - Setze k = erstes Zeichen von P
 - Gib Pk aus
 - Trage Pk in die Code-Tabelle ein
 - Setze P = Pk
 - Ende der Schleife

LZW-Algorithmus (10)

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

Beispiel: Dekomprimierung Kompressions-Ergebnis 013247

Dekodierungsvorgang

Code c	k	Präfix P	Ausgabe
		-	
0	Α	А	А
1	В	В	В
3	Α	AB	AB
2	С	С	С
4	В	ВА	BA
7	В	BAB	BAB

Code-Tabelle

Präfix	Code
Α	0
В	1
С	2
AB	3
ВА	4
ABC	5
СВ	6
BAB	7

Wenn (c in Code-Tabelle) Gib den zu c gehörenden String aus Setze k = erstes Zeichen dieses Strings Trage Pk in Code-Tabelle ein, falls nicht enth. Setze P = zum Code c gehörender String Sonst Setze k = erstes Zeichen von PGib Pk aus

Lies nächstes Eingabezeichen c

Trage Pk in die Code-Tabelle ein

Dekodierte Nachricht: ABABCBABAB

Setze P = Pk

Aufgabe

Kapitel 3: Information und Quellencodierung – Lauflängencodierung / LZW-Kompression

 Kodieren Sie die Zeichenkette ABBABABAC mit Hilfe des LZW-Algorithmus.

> Lies nächstes Eingabezeichen cWenn (Pc in der Code-Tabelle) Setze P=PcSonst Trage Pc in Code-Tabelle ein Gib den Code für P aus Setze P=c

Gib den Code für das letzte Präfix *P* aus

