

Likely to Sell Prediction

Analytics in Practice Spring 2020

Aditi K. | Aneesh G.| Mihir A. | Metika S. | Yassine T.

Unlocking Property Intelligence

Introduction

Feature Engineering

Model **Exploration**

About

Reonomy **leverages big data**, partnerships and **machine learning** to connect the fragmented, disparate world of commercial real estate.

100 **sources of data**, including multiple public and proprietary data feeds and crowdsourced information, and then uses **artificial intelligence** to crunch it to provide market intelligence

The platform is used by developers, investors, acquirers and anyone else who works in the **area of commercial property**.

Problem Statement

- "Will that property be sold next year?" Real Estate Associates
- The **objective** of this project is to use **historical transactional** data to build a model that predicts if a property is likely to be sold next year
- Having this kind of intelligence enables the platform users (Realtors, brokers, etc) act fast and create value by approaching property owners well in advance.

Dimensions to sale of a property

- The sale of the property depends on the owner as well as on a buyer who is ready.
- Factors that influence sales such as
 - Age of owner
 - Marital Status
 - Mortgage period
 - Cannot be incorporated in the model
- The property type comes with it's own seasonality behaviour.
- The data we have includes properties belonging to Multi-family, Offices, Retail, Industrial and Hospitality class.

Aggregate trend of Sales

Granular look into seasonality

Geospatial Overview

Unlocking Property Intelligence

Introduction

Feature Engineering

Model **Exploration**

Need for Feature Engineering

Need for Feature Engineering

Feature Engineering

Features (2018)

Multifamily property in SF county built in year 1961

Feature Engineering

Features (2018)

Multifamily property in SF county built in year 1961

Ratio of sq ft area of property to avg. sqft are of sales in that Category, zip code, year

of total sales in that year for category, zip code

Data Map

Property_id		Time features Number of times sold in				Sold/Not Sold			
5									
	Market Value		Building Area		1 year	2 years		10 years	
	Category	County	Zipcode	City	1.5	1.5		0.00,40	
004dfdf-71	Multifamily	San Fransisco	94016	San Fransisco	0	1		3	0
004dfdf-82	Retail	Alameda	94501	Oakland	1	1		4	1
004dfdf-86	Retail	San Jose	94088	San Jose	0	0		2	1
004dfdf-87	Office	Santa Clara	94020	Palo Alto	0	1		3	1
004dfdf-88	Industrial	Santa Clara	94043	Sunnyvale	0	0		0	0
004dfdf-89	Mixed Use	Alameda	94501	Oakland	2	3		9	1
004dfdf-90	Industrial	San Fransisco	94016	San Fransisco	6	1		8	0

Unlocking Property Intelligence

Introduction

Feature **Engineering**

Model **Exploration**

Model Selection

Gradient Boosting was chosen as the model of choice due to the following reasons:

- Logistic Regression showed that the relationship between the features and label was non-linear
- Tree based ensemble models were able to capture the trend better as they are non parametric
- Gradient Boosting takes into account the unbalanced nature of the data set
- The algorithm is sequential & provides with many weak learners which reach the optimal solution
- The learning rate of these learners can be tweaked
- It also gives a feature importance graph which can be used to derive business insights

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes to the training data (X,r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i).$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$

Model Fitting

Getting the data ready for modelling:

- The converted data set was highly imbalanced as properties were sold only a few times from 1990-2019
- The model was run on a subset of the data to get the top features which affect sale in the next year
- The top 10 features were used to create 10 year lags in order to make the data balanced and use the entire train data
- The train set from 2010-2017 was made balanced by downsampling the labels
- The validation set and test set were used to pick the optimal threshold

Train

2010-2017

Validate

2018

Test

2019

Parameter Tuning

To avoid **overfitting** we choose the **number of trees** that **maximizes AUC** on the validation set.

For **Retail**, this is **368** Trees.

Best Threshold

Unlocking Property Intelligence

Introduction

Feature Engineering

Model **Exploration**

Туре	Trees	AUC	Threshold	Recall	Precision	Important Features
Multifamily	997	0.57	0.48 0.62	46% 11%	12% 20%	years since last sale baths/avg_baths_year_category_zipcode category_zipcode_sales/total_sales
Retail	368	0.59	0.55 0.64	25% 9%	14% 21%	years since last sale sqft/avg_sqft_year_category_zip category_zipcodes_sales/total_sales
Industrial	326	0.61	0.52 0.61	36% 10%	12% 19%	years since last sale category_sales/properties_category sqft/avg_sqft_year_cat_zip
Office	306	0.60	0.54 0.61	28% 6%	18% 30%	years since last sale category_zipcode_sales/total_sales sqft/avg_sqft_year_category_zipcode
Mixed Use	44	0.55	0.49 0.54	34% 12%	13% 16%	years since last sale sqft/avg_sqft_year_category_zipcode rooms/avg_rooms_year_category_zipcode
Hospitality	69	0.61	0.49 0.59	33% 4%	14% 19%	years since last sale baths/avg_baths_year_category_zipcode rooms/avg_rooms_year_category_zipcode

Туре	Trees	AUC	Threshold	Recall	Precision	Important Features
Multifamily	997	0.57	0.48 0.62	46% 11%	12% 20%	years since last sale baths/avg_baths_year_category_zipcode category_zipcode_sales/total_sales
Retail	368	0.59	0.55 0.64	25% 9%	14% 21%	years since last sale sqft/avg_sqft_year_category_zip category_zipcodes_sales/total_sales
Industrial	326	0.61	0.52 0.61	36% 10%	12% 19%	years since last sale category_sales/properties_category sqft/avg_sqft_year_cat_zip
Office	306	0.60	0.54 0.61	28% 6%	18% 30%	years since last sale category_zipcode_sales/total_sales sqft/avg_sqft_year_category_zipcode
Mixed Use	44	0.55	0.49 0.54	34% 12%	13% 16%	years since last sale sqft/avg_sqft_year_category_zipcode rooms/avg_rooms_year_category_zipcode
Hospitality	69	0.61	0.49 0.59	33% 4%	14% 19%	years since last sale baths/avg_baths_year_category_zipcode rooms/avg_rooms_year_category_zipcode

2019 Prediction

Confidence of Sale

Highly likely to sell

Likely to sell

Not likely to sell

2019 Prediction

- Higher recall & precision in densely populated areas
- zip codes can be used as a targeting strategy for brokers

Thank you

Team RE03