Задачи по блоку лекций "Сложность матриц и аппроксимация"

1 Коммуникационная сложность (детерминированная модель)

Задача 1.1. Докажите неравенство $C(f) \ll \log^2 \chi(f)$.

2 Коммуникационная сложность (вероятностная модель)

Задача 2.1°. Чему равен ${\rm rank}_{\pm}({\rm EQ})$? (На диагонали 1, вне: -1.)

Задача 2.2. Рассмотрим функцию

$$LE(x,y) = \begin{cases} 1, & x \leq y, \\ -1, & x > y, \end{cases}$$

где $x, y \in \{1, \dots, N\}$. Оцените C(LE), R(LE) и U(LE).

3 Жёсткость матриц

Задача 3.1°. Пусть $n \times n$ матрица A неотрицательно определена и $||A||_{\infty} \le 1$. Докажите оценку $\mathrm{rank}_{\varepsilon}(A) \le C \varepsilon^{-2} \log n$.

Задача 3.2. Докажите, что для достаточно малого $\varepsilon > 0$ и всех достаточно больших $n \in \mathbb{N}$ существуют $n \times n$ сигнум матрицы с $\mathrm{Rig}(M, \varepsilon n) > \varepsilon n^2$.

4 Факторизационная γ_2 -норма

Задача 4.1. Верно ли, что $\gamma_2(AB) \leqslant \gamma_2(A)\gamma_2(B)$ для $A, B \in \mathbb{R}^{n \times n}$?

Задача 4.2. Докажите, что нормы Шаттена $\|A\|_{S_p} := \|\sigma(A)\|_p$ действительно являются нормами: $\|A + B\|_{S_p} \leqslant \|A\|_{S_p} + \|B\|_{S_p}$.

Задача 4.3. Пусть $A = U \operatorname{diag}(\sigma_1, \dots, \sigma_n) V^t$ — сингулярное разложение матрицы A. Докажите, что

$$\gamma_2(A) \leqslant ||A||_{\Sigma} ||U||_{\infty} ||V||_{\infty},$$

где $\|\cdot\|_{\Sigma}$ это следовая норма (сумма сингулярных чисел), а $\|\cdot\|_{\infty}$ это ℓ_{∞} -норма (максимум модуля элементов).

5 Реализация матриц с большим отступом

6 Аппроксимативный ранг и поперечники

Задача 6.1. Докажите, что для достаточно малого $\varepsilon > 0$ и всех достаточно больших n существует $n \times n$ сигнум-матрица A, такая что

$$\min_{\text{rank } B \leqslant \varepsilon n} \sum_{i,j} |A_{i,j} - B_{i,j}| \geqslant \varepsilon n^2.$$

Задача 6.2. Докажите, что для достаточно малого $\varepsilon > 0$ и всех достаточно больших n во множестве вершин единичного куба $\{-1,1\}^n$ найдётся подмножество W из n элементов, такое что

$$d_{\varepsilon n}(W, \ell_1^n) \geqslant \varepsilon n.$$

Задача 6.3. Рассмотрим следующий метод улучшения аппроксимации. Пусть многочлен $p \in \mathbb{R}[t]$ степени d удовлетворяет условию:

$$\max_{|t-\xi| \le \varepsilon} |p(t) - \xi| \le \delta, \quad \xi = +1, -1.$$

Докажите, что тогда $\operatorname{rank}_{\delta}(S)\leqslant \operatorname{rank}_{\varepsilon}(S)^d$ для любой сигнум-матрицы. Получите оценку вида $d\leqslant d(\varepsilon,\delta)$ на минимальную степень такого многочлена.

7 Ранг тензоров

Задача 7.1. Постройте тензор, для которого $\operatorname{rank} T - \operatorname{\underline{rank}} T \geqslant 2$.

8 Сложность булевых функций, матриц и графов

Задача 8.1. Докажите оценку $\deg_{\varepsilon}(\mathrm{OR})\leqslant Cn^{1/2}\log(1/\varepsilon)$ для дизъюнкции $\mathrm{OR}(x):=x_1\vee x_2\vee\ldots\vee x_n.$