GCE January, 2019

Jiamin JIAN

Exercise 1:

Let $E := [0,1] - S_{\mathbb{Q}} = [0,1] \cap (S_{\mathbb{Q}})^c$ where $S_{\mathbb{Q}} := \{x \in [0,1] | x = \frac{\sqrt{p}}{q} \text{ for some } p,q \in \mathbb{Z}^+\}$. Prove or disprove: There exists a closed, uncountable subset $F \subset E$.

Solution:

This proposition is true. Since $S_{\mathbb{Q}}$ is a countable set, there exists a bijection between $S_{\mathbb{Q}}$ and the positive rational number in the interval [0,1], so we can enumerate the set $S_{\mathbb{Q}}$ as $\{a_n|n\in\mathbb{N}\}$. That is to say we have $S_{\mathbb{Q}}=\{a_n|n\in\mathbb{N}\}$. And then we consider the union

$$\bigcup_{n=1}^{+\infty} (a_n - \frac{\epsilon}{2^n}, a_n + \frac{\epsilon}{2^n}),$$

it is an open set, we denote it as A, then $A = \bigcup_{n=1}^{+\infty} (a_n - \frac{\epsilon}{2^n}, a_n + \frac{\epsilon}{2^n})$. And when $\epsilon \to 0$, we know that $A \subset [0,1]$ and $S_{\mathbb{Q}} \subset A$.

Since A is an open set, then $[0,1] \cap (A)^c$ is a closed set. We denote $F = [0,1] \cap (A)^c$, since the measure of set A is

$$m(A) = 2\sum_{n=1}^{+\infty} \frac{\epsilon}{2^n} = 2\epsilon,$$

then we have $m(F) = 1 - 2\epsilon > 0$, so, the set F is uncountable. Since $F \subset E$ and it is both closed and uncountable, then the proposition is true.

For any countable set $S, S \subset [0, 1]$, let E = [0, 1] - S, we can find a closed, uncountable subset $F \subset E$, and we have the supremum of the measure of F is 1.

Exercise 2:

For x in [-1, 1] set $P_n(x) = c_n(1 - x^2)^n$ where c_n is such that $\int_{-1}^1 P_n = 1$.

- (i) Show that there is a positive constant C such that $c_n \leq C\sqrt{n}$.
- (ii) Let f be a real valued continuous function on [0,1] such that f(0)=f(1)=0. Set for x in [0,1]

$$f_n(x) = \int_0^1 P_n(x-t)f(t) dt$$

Show that f_n is uniformly convergence to f.

(iii) Let g be in $L^1((0,1))$. Defining $g_n(x) = \int_0^1 P_n(x-t)g(t) dt$, is g_n uniformly convergence to g in (0,1)? Does g_n converge to g in $L^1((0,1))$?

Solution:

(i) Method 1:

Since $\int_{-1}^{1} c_n (1-x^2)^n dx = 1$, then we have

$$c_n = \frac{1}{2\int_0^1 (1-x^2)^n \, dx}.$$

Next we need to find a lower bound of the integral term $\int_0^1 (1-x^2)^n dx$. Since for n>1,

$$\int_0^1 (1 - x^2)^n dx \ge \int_0^{\frac{1}{\sqrt{n}}} (1 - x^2)^n dx$$

$$\ge \frac{1}{\sqrt{n}} (1 - \frac{1}{n})^n,$$

then we have $c_n \leq \frac{\sqrt{n}}{2(1-\frac{1}{n})^n}$. We just need to find a lower bound of $(1-\frac{1}{n})^n$. Since $(1-\frac{1}{n})^n = 1 - C_{n\frac{1}{n}}^{1\frac{1}{n}} + C_{n\frac{1}{n^2}}^{2\frac{1}{n^2}} + \dots + (-\frac{1}{n})^n > \frac{1}{3} - \frac{2}{6n^2} > \frac{1}{4}$ as n > 1, then we set C = 2, we have $c_n \leq C\sqrt{n}$ for n > 1. For n = 1, we get $c_1 = \frac{3}{4} < 2$, then when C = 2, we have $c_n \leq C\sqrt{n}$ holds.

Method 2:

We change the element and define $x = \sin y$, then we have $\int_0^{\frac{\pi}{2}} c_n \cos^{2n+1} y \, dy = \frac{1}{2}$. Since

$$\int_0^{\frac{\pi}{2}} \cos^{2n+1} y \, dy = 2n \int_0^{\frac{\pi}{2}} \cos^{2n-1} y \, dy - 2n \int_0^{\frac{\pi}{2}} \cos^{2n+1} y \, dy,$$

we denote $I_{2n+1} = \int_0^{\frac{\pi}{2}} \cos^{2n+1} y \, dy$, then we have $(2n+1)I_{2n+1} = 2nI_{2n-1}$. Since $I_1 = \int_0^{\frac{\pi}{2}} \cos y \, dy = 1$, we have $\int_0^{\frac{\pi}{2}} \cos^{2n+1} y \, dy = \frac{(2n)!!}{(2n+1)!!}$. And since

$$\frac{(2n)!!}{(2n+1)!!} = \frac{2n(2n-2)\cdots 2}{(2n+1)(2n-1)\cdots 3}$$

$$\geq \frac{\sqrt{2n+1}\sqrt{2n-1}\sqrt{2n-1}\sqrt{2n-3}\cdots\sqrt{3}\sqrt{1}}{(2n+1)(2n-1)\cdots 3}$$

$$= \frac{1}{\sqrt{2n+1}},$$

then we have $c_n \leq \frac{\sqrt{2n+1}}{2}$. We set C=1, then we have $c_n \leq C\sqrt{n}$.

(ii) Firstly we extend f(x) to a function from \mathbb{R} to \mathbb{R} by zero. Then we have

$$f_n(x) = \int_0^1 P_n(x-t)f(t) dt = \int_{\mathbb{R}} P_n(x-t)f(t) dt,$$

then we change the element as x - t = y, we have

$$f_n(x) = \int_{\mathbb{R}} P_n(y) f(x - y) \, dy.$$

Then we know that

$$|f_n(x) - f(x)| = \left| \int_{\mathbb{R}} P_n(y) f(x - y) \, dy - \int_{-1}^1 P_n(y) f(x) \, dy \right|$$

$$= \left| \int_{-1}^1 P_n(y) (f(x - y) - f(x)) \, dy + \int_{([-1,1])^c} P_n(y) f(x - y) \, dy \right|$$

$$\leq \int_{-1}^1 P_n(y) |(f(x - y) - f(x))| \, dy + \int_{([-1,1])^c} |P_n(y) f(x - y)| \, dy.$$

Since when $x \in [0,1]$ and $y \in ([-1,1])^c$, we have x-y>1 or x-y<0, then we have f(x-y)=0, so we have

$$|f_n(x) - f(x)| \le \int_{-1}^1 P_n(y) |(f(x-y) - f(x))| dy.$$

And by the definition of continuous, we have $\forall \epsilon > 0$, there $\exists \delta$, when $|x - y - x| < \delta$, we have $|f(x - y) - f(x)| < \epsilon$. We denote $S = [-1, 1] \cap [-\delta, \delta]$, since f(x) is continuous in \mathbb{R} , we denote $\sup_{x \in [0,1]} f(x) = M$, then we have $M < +\infty$ and

$$|f_n(x) - f(x)| \leq \int_{-\delta}^{\delta} P_n(y) |(f(x - y) - f(x))| \, dy + \int_{S} P_n(y) |(f(x - y) - f(x))| \, dy$$

$$\leq \epsilon \int_{-\delta}^{\delta} P_n(y) \, dy + 2M \int_{S} P_n(y) \, dy$$

$$\leq \epsilon + 2M \int_{S} c_n (1 - y^2)^n \, dy$$

$$\leq \epsilon + 4MC\sqrt{n} \int_{\delta}^{1} (1 - y^2)^n \, dy$$

$$\leq \epsilon + 4MC\sqrt{n} (1 - \delta)(1 - \delta^2)^n.$$

Since $\lim_{n\to+\infty} 4MC\sqrt{n}(1-\delta)(1-\delta^2)^n = 0$, then we can say that there exists a $N \in \mathbb{N}$, when n > N, we have $4MC\sqrt{n}(1-\delta)(1-\delta^2)^n < \epsilon$. Overall, we know that $\forall x \in [0,1], \forall \epsilon > 0$, there exists a $N \in \mathbb{N}$, when n > N, we have $|f_n(x) - f(x)| < 2\epsilon$, so that f_n is uniformly converges to f.

(iii) Firstly, the $g_n(x)$ is not uniformly convergent to g in (0,1), we can give an counter example as following. We define

$$g(x) = \begin{cases} 1, & x = \frac{1}{2} \\ 0, & x \in (0, \frac{1}{2}) \bigcup (\frac{1}{2}, 1), \end{cases}$$

obviously g(x) is not continuous in (0,1), but we have $g_n(x) = \int_0^1 P_n(x-t)g(t) dt = 0, \forall x \in (0,1)$. Then $g_n(x)$ is continuous in [0,1]. Since g(x) is not continuous in (0,1), we can say that $g_n(x)$ is not uniformly convergent to g(x) in (0,1).

Secondly, we can show that $g_n(x)$ convergent to g(x) in $L^1((0,1))$. Since the continuous functions with compact support are dense in L^1 space, then for all $\epsilon > 0$, there exist

a continuous function $f(x) \in C_c([0,1])$, such that $||f-g||_1 < \epsilon$. We define the $f_n(x)$ as the section (ii), then we have

$$||g - g_n||_1 \le ||g - f||_1 + ||f - f_n||_1 + ||f_n - g_n||_1.$$

Since f_n is uniformly converges to f, for all $\epsilon > 0$, there exists a $N \in \mathbb{N}$, when n > N, we have $||f - f_n||_1 < \epsilon$. And for the same ϵ , by the property that continuous function is dense in L^1 space, we have $||f - g||_1 < \epsilon$. Next we verify that $||f_n - g_n||_1 < \epsilon$. Since

$$||f_n - g_n||_1 = \int_0^1 \left| \int_0^1 P_n(x - t)g(t) - \int_0^1 P_n(x - t)f(t) dt \right| dx$$

$$= \int_0^1 \left| \int_0^1 P_n(x - t)(g(t) - f(t)) dt \right| dx$$

$$\leq \int_0^1 \int_0^1 P_n(x - t)|g(t) - f(t)| dt dx,$$

and $P_n(x-t)$ is continuous for $t \in [0,1]$, then we can find the upper bound for $P_n(x-t)$, we denote it as C, then we have

$$||f_n - g_n||_1 \leq \int_0^1 \int_0^1 P_n(x - t)|g(t) - f(t)| dt dx$$

$$\leq C \int_0^1 \int_0^1 |g(t) - f(t)| dt dx$$

$$= C \int_0^1 |g(t) - f(t)| dt$$

$$= C||g - f||_1.$$

Since $||g - f||_1 < \epsilon$, we have $||g - g_n||_1 < (2 + \frac{1}{C})\epsilon$ for all $\epsilon > 0$. So, we know that $g_n(x)$ convergent to g(x) in $L^1((0,1))$.

Exercise 3:

Give an example of $f_n, f : \mathbb{R} \mapsto [0, \infty)$ such that $f_n \in L^1(\mathbb{R})$ for every $n \in \mathbb{N}$, $f \in L^2(\mathbb{R})$, $f_n \leq f$ for every $n \in \mathbb{N}$, $f_n \to 0$ a.e., and $\int f_n \to 0$.

Solution:

We define the $f(x) = \frac{1}{x} \mathbb{I}_{[1,+\infty)}$ and $f_n(x) = \frac{1}{x} \mathbb{I}_{[n,n^2]}$. For a fixed n, we have

$$\int_{\mathbb{D}} |f_n(x)| \, dx = \int_{n}^{n^2} \frac{1}{x} \, dx = \ln n,$$

so we have $f_n \in L^1(\mathbb{R})$ for every $n \in \mathbb{N}$. And since

$$\int_{\mathbb{R}} |f(x)|^2 dx = \int_{1}^{+\infty} \frac{1}{x^2} dx = 1,$$

so we know that $f \in L^2(\mathbb{R})$. Since for all n, f_n is just a part of f and f > 0, then we have $f_n \leq f$ for every $n \in \mathbb{N}$. When $n \to +\infty$, we have $f_n(x) \leq \frac{1}{n}$, so that $f_n \to 0$ almost everywhere. And we calculate the integral of f_n , we have

$$\int_{\mathbb{R}} f_n(x) dx = \int_n^{n^2} \frac{1}{x} dx = \ln n,$$

when $n \to +\infty$, $\ln n \to +\infty$, so we can get $\int f_n \nrightarrow 0$.