# Study of pulse-coupled neural networks for glioma segmentation.

Brad Niepceron, Ahmed Nait-Sidi-Moh and Filippo Grassia. University of Picardie Jules Vernes

Speaker: Brad Niepceron. brad.niepceron@etud.u-picardie.fr

#### 01

#### CONTEXT

### Towards lighter diagnosis solutions

- High interest for computer aided diagnosis
- Deep Learning as a solution for medical image analysis
  - Training models is **time** consuming
  - Need for expensive dedicated hardware
  - High energy cost
- Rise of biologically plausible solutions
- Image processing using Pulse-coupled neural networks



Fig 1. Example of MRI

#### Dataset info:

- Pre-operative MRI scans
- Manually segmented by 1-4 raters
- Four MRI sequences: Flair, T2, T1, T1C
- Contains 3 unhealthy cell labels
- Focused on segmentation and overall survival



Fig 2. MRI cases taken from the BRaTS Dataset

Pixel intensity normalization and histogram matching applied



Fig 3. MRI sequence histogram matching

## METHODS BRaTS 2020 Dataset

Fusion strategy using Discrete Wavelet Transform



Fig 4. DWT computation tree



Fig 5. Sequences and fused image

#### **Standard PCNN:**

- Laterally-connected neurons
- 2D input image
- Feeding: Computes voltage with input stimulus
- Linking: Updates neuron's internal activity
- Pulse: Fire if membrane potential exceeds threshold



Fig 6. Standard PCNN

#### **Unit-linking**

- Simplified version of PCNN
- Reduced computational cost
- Reduced parameters

#### Changes

- Feeding: Now equal to the intensity of a pixel
- Linking: Allows a neuron to fire when one or more neighbors fired

#### Fast-linking

- Uses Spiking cortical neurons
- Fast linking synapses
- Neurons fire faster

#### Changes

- Feeding: As for Unit-linking
- Pulse: Combines stimulus and synaptic modulation to charge the membrane



#### Parameters settings:

- Differential Evolution for optimization
- Dice Score as loss function  $\frac{2|Y\cap Y|}{|Y|+|\hat{Y}|}$
- Iteration number constrained to 10

| Model              | Standard PCNN       | ULPCNN | FLSCM |
|--------------------|---------------------|--------|-------|
| $\overline{\beta}$ | 0.47                | 0.47   | 0.44  |
| $lpha_{	heta}$     | 0.0125              | 0.015  | _     |
| $lpha_F$           | 0.96                | _      | _     |
| $lpha_L$           | 0.81                | _      | _     |
| $V_{	heta}$        | 20                  | 20     | 20    |
| $V_F$              | 0.21                | _      | _     |
| $V_L$              | 0.36                | -      | -     |
| W                  | 3x3 gaussian kernel | _      | -     |
| M                  | $\mathbf{W}$        | _      | -     |
| $lpha_U$           | -                   | -      | 0.49  |

Table 1. Parameters used for our experiments

- Segmentation evaluated with Dice Score
- Iteration can be stopped if best dice score has been found.
- Fast-linking average running time: 17 seconds
- Unit-linking average running time: 17 seconds
  - PCNN average running time: 60 seconds



Fig7. Results of PCNN based segmentation

#### CONCLUSION

- Experiments proved the efficiency of PCNN models
- Fast computation makes PCNN a perfect fit for diagnosis tasks
- Differential Evolution coupled with Dice Loss appeared efficient for segmentation parameters optimization

- Multi-channel versions could be use for semantic segmentation
- PCNN can be coupled with a spiking classifier

## Thank you.

Brad Niepceron, Ahmed Nait-Sidi-Moh and Filippo Grassia. University of Picardie Jules Vernes

Speaker: Brad Niepceron. brad.niepceron@etud.u-picardie.fr