Electrochemical Energy Storage via Batteries: Prospects and Limitations

Aninda J. Bhattacharyya

Solid State and Structural Chemistry Unit
Division of Chemical Sciences
Indian Institute of Science, Bengaluru, INDIA

Funding & Infrastructure: DST, SERB, ISRO-STC, CSIR, IISc

Acknowledgements:

Shyamal K. Das, Monalisa Patel, Supti Das, Subhra Gope, Sudeshna Sen, Ravindra Bhardwaj, Ruth Gomes, Suman Das

Group Research @ SSCU-IISc, Bengaluru

Experimental Physical & Materials Chemistry

 diverse electrochemical processes (in chemistry & biology): energy harvest & generation; catalysis; sensing; actuation

Energy

Storage Renewables Excess Baseload and Renewable Generation (Sent to Storage)

Baseload

18:00

0:00

Dunn et al Science **2011**, 334, 928

12:00

Time of Day

> prevention of wastage, optimal usage of resources, protection of environment (greenhouse gases),

6:00

0:00

Energy

Generation

Mechanical
Electrical
Chemical
Electrochemical

Mechanical: flywheels, CAES, pumped hydro (1-20000 MW; few (min to h); 10-25 yr; 70-90 %)

Electrical: Superconductive electromagnetic (SMES)

(1 MW; 1 - 30 min; 20 yr; > 90 %)

Chemical: Hydrogen

(10 MW, > 10 h; > 40-50 %)

Electrochemical: **Batteries**, **Supercapacitors**

Secondary (0.5-1 MW; 1-8 h; 7-20 yr; >75%) Flow (12MW; \approx 10 h; 10 yr; > 70%)

Battery basics*

☐ Amount of energy storage (Wh.kg⁻¹)

$$E_{\text{specific}} = V_{\text{OC}} \times Capacity = V_{\text{OC}} \times \frac{n_{\text{electron}} \; F}{a_{\text{MW}}}$$

K intercalation in C-Graphite

Electrochemical devices.....Genesis

Electrochemical devices.....Genesis

Heller,

Basu,

Mizushima, Yazami,

Yoshino, Manthiram

Rechargeable batteries: Lithium-ion (LiB)

"Rocking chair" Li-ion Battery (Commercial Launch: Sony, 1991)

- ♣ 0.5 C₆Li + Li_{0.5}CoO₂ \leftrightarrow 3C + LiCoO₂
- ♣ Practical specific energy: 140 Whkg⁻¹

< 1 e⁻ rev. process

Yoo et al *Mater. Today* **2014**, *17*, 110

Large LiBs: High performance, cost effective, safe

Materials exploration: (higher operational voltage, higher storage)

Improved LiBs

- ➤ Materials exploration: (higher operational voltage, higher storage)
- > Tailored architectures: manipulating charge transport @ small length scale

Nano-wall networks in ALDgrown MoS₂ films

Improved LiBs

- ➤ Materials exploration: higher operational voltage, higher storage
- > Tailored architectures: manipulating charge transport @ small length scale
- ➤ Newer electrolyte designs: Liquid → Solid-like ion conductors

Improved rechargeable batteries...cost, safe, sustainable

Beyond Li-ion → Earth abundant and cheaper

Element	Crustal compositio n	E ⁰ / V	mAhg ⁻¹	mAhml ⁻¹	>1 e ⁻ process	
Li	0.002	-3.0	3861	2062	Higher valency	Higher valency ♣ Mg ²⁺ , Ca ²⁺ ♣ Al ³⁺
Na	2.4	-2.7	1166	1128	Na-based ♣ Mg ²⁺ , Ca ²⁺	
Mg	2.1	-2.4	2205	3833	♣ Al ³⁺	
Al	8.1	-1.7	2980	8046		
Ca	3.6	-2.9	1337	2073	lower performance, non-treelectrochemistry	non-trivial
K	2.8	-2.9	685	591		
Zn	0.008	-0.8	820	5851		
Ве	0.002	-1.9	5948	11003		
Pb	0.001	-0.13	258	3000		

Beyond Li-ion

➤ Compound → Elements (+multi-electron processes)

$$\mathsf{E}_{\mathsf{specific}} = \mathsf{V}_{\mathsf{OC}} \times \mathsf{Capacity} = \mathsf{V}_{\mathsf{OC}} \times \frac{\mathsf{n}_{\mathsf{electron}} \, \mathsf{F}}{\mathsf{a}_{\mathsf{MW}}}$$

Chemical couples

Metal-air (O₂) battery

Metal: Li, Na, Zn, Mg..

Metal-S battery: Li-S

Anode poisoning

 $\Delta V_{cathode}$

(Mg: 36%, Li: 80%, Na: 310%)

Insulators: S, M_xS

Efficient Li-SBs

S-cathode scaffolds: high S-load, efficient encapsulants

Li-S battery: S-cathode scaffolds

❖ S-content: > 75% (scaffold characteristics)

Li-S battery

mAhg-1

- \bullet Entrap soluble S_n^{2-} /control anode poisoning
- $\Delta V : S \rightarrow L_2S_n$

Host structure is crucial: S-loading

□ S-conformation → Packing density

 \square **S** \leftrightarrow M₂S_n: Extent of reversibility

(in situ spectroscopy/microscopy + electrochemistry)

$$S \rightarrow L_2S_8 \rightarrow L_2S_6 \rightarrow Li_2S_4 \rightarrow Li_2S_2 \rightarrow Li_2S$$
1675 4 260 377 687 1165

Metal: Chalcogenide Batteries

Na, Mg, Ca, Al (earth abundant)

lower energy output

Several challenges

- > sluggish ion motion
- \gt S/S_n²⁻ confinement
- \triangleright S \Leftrightarrow M₂S_n

lower specific capacities, higher electrode conductivity, easier manipulation of polychalcogenides

Leap forward.... Improved, safer, cheaper batteries

- ➤ Gasoline → Electric mobility
- > E-chem storage integration with Electric Grid/ Renewables
- ✓ sustainable, cheaper materials, (new) battery chemistries
- ✓ in operando monitoring of battery health, optimizes performance under diverse conditions
- ✓ Theoretical studies:
 - materials discovery
 - modelling battery operations on varying length/time scale
- ✓ Collaborative research

No Mental block!

