Rechnerbeschaffung

- 1. HPC-Versorgung in Deutschland
- 2. Phasenmodell Beschaffung
- 3. Antragstellung
- 4. Markerkundung und Ausschreibung
- 5. Vertragsverhandlungen
- 6. Rechnerraumumbau und Installation
- 7. Produktionsbetrieb

HPC-Versorgung in Deutschland

DKRZ: 3,6 PFLOPS, 100.000 Kerne

Versorgungspyramide HPC

- "Höchstleistungs"rechner (Ebene 1)
 - Versorgung f
 ür Europa, Bund und Land
 - Gauss Center for Supercomputing
 - LRZ (Garching), HLRS (Stuttgart), JSC (Jülich)
- "Hochleistungs"rechner (Ebene 2)
 - Versorgung f
 ür Bund und Land
 - Z.B. Dresden, Aachen, Darmstadt, Hamburg (DKRZ)
- "Hochleistungs"rechner (Ebene 3)
 - Versorgung Land
 - Z.B. Erlangen, Kaiserslautern

Geographische Verteilung

- Nicht alle Bundesländer vertreten
- Nordbundesländer im HLRN zusammengefasst
- Schwerpunkte in den industriereichen
 Bundesländern

Finanzmittel

Ergebnis politischer Entscheidungen

- Ebene 1
 - Aktuell ca. 130 M€ pro Beschaffungszyklus und System
 - Beinhaltet auch Betriebskosten und Rechnergebäude
- Ebene 2
 - Typischerweise 15+ M€ pro Beschaffungszyklus und System
 - Ausnahme DKRZ mit 40+ M€ pro System
 - Andere Ausnahmen für Zentren mit anderen Finanziers
- Ebene 3
- Typischerweise einige M€ pro Beschaffungszyklus und System Künftige neues Finanzierungskonzept im Rahmen des Nationalen Hoch- und Höchstleistungsrechnens (NHR)

Phasenmodell Beschaffung

Regelmäßige Beschaffung z.B. alle 5 Jahre

- Antragstellung
- Markterkundung
- Ausschreibung
- Verhandlungen
- Kaufentscheidung
- Rechnerraumumbau
- Installation
- Produktionsbetrieb

Dauerhaft: Politische Aktivitäten

Antragstellung

- Absehbar in 4 Jahren
 - Alter Rechner überlastet (DKRZ: ca. 4fach überbucht)
 - Wissenschaft nicht mehr optimal unterstützt
- Am Anfang steht das Geld
 - Festlegung eines Rahmens liegt meistens vor
 - Üblicherweise: kontinuierliche Weiterentwicklung der Zentren, ihrer Systeme und Dienste
- Struktur eines Antrags (50-150 Seiten)
 - Darstellung neuer wissenschaftlicher Ziele (=Bedarf)
 - Darstellung neuer technischer Möglichkeiten im HPC (=Möglichkeiten der Bedarfsdeckung)
 - Abschätzung von verfügbarer Hardware, ihrer Beschaffungs- und Betriebskosten (=Umsetzungsplan)
 - Beschaffungs- und Betriebskonzept (=Details)

Neue wissenschaftliche Ziele

DRKZ und Klimaforschung: relativ homogenes Profil

- Neue Methoden der Wissenschaftler
 - Höhere räumliche und zeitliche Auflösung der Modelle
 - Mehr Prozesse (Wolken, Chemie und anderes)
 - Mehr Ensemble-Mitglieder Ensemble-Berechnungen: Verrechnungen statistischer Schwankungen der Ergebnisse bei modifizierten Eingaben

Allgemeine Rechenzentren

- Verschiedene Wissenschaftsbereiche mit unterschiedlichen Programmcode-Strukturen und Abläufen in der computerbasierten Modellierung und Datenauswertung
 - Teilweise nur kleinere Datenmengen benötigt
 - Manchmal gut auf Beschleunigerhardware implementierbar/portierbar
 - ...

Neue wissenschaftliche Ziele...

Darstellung im Antrag

- Künftige Bedarfe an
 - Rechenzeit
 - Speicherplatz
 - Spezial-Hardware (Beschleunigung, Visualisierung, Nachverarbeitung...)
- Erwünschter Ausbau am DKRZ: Faktor 10...100

Problem

- Wir befinden uns 4 Jahre vor Inbetriebnahme des Systems
- Wissenschaftsentwicklung schwer vorhersagbar

Neue technische Möglichkeiten

Entwicklung in der Hardware

- Prozessoren
 - Prozessorfamilien von Intel; sonst noch Firmen?
- Speichersysteme
 - Insbesondere Dateisysteme: Lustre oder GPFS?
 - SSD-Burst-Buffer? Non volatile memory?
- Vernetzungen
 - Infiniband; wenige Überraschungen
- Spezialhardware
 - Beschleuniger: GPGPU, FPGA, Xeon Phi ...
 - Visualisierung
 - Bandspeicherung (HSM)

Problem

- Wir befinden uns 4 Jahre vor Inbetriebnahme des Systems
- Technische Entwicklung schwer vorhersagbar

Abschätzung der verfügb. HW und Kosten

Beschaffungs- und Betriebskosten

- Aus getrennten Budgets: Beschaffung durch Beantragung, Betrieb aus Jahreshaushalt
- Muss am Ende zusammenpassen
- Problem: wenn ich alles Geld für HW ausgebe, kann ich dann den Strom des Systems bezahlen?

Speziell am DKRZ

Aufteilung der Ausgaben für Rechnen und Speichern

Abschätzung der verfügb. HW und Kosten...

Abschätzung der verfügb. HW und Kosten...

Abschätzung HLRE-3 im Antrag 2011

Rechnersystem: 31M€ - HSM: 5M€ - Umbauten: 5M€

Characteristic	HLRE-2	HLRE-3	Factor
a) Peak performance	158 TFLOPS	~ 3,000 TFLOPS	~ 20
b) No. of processor cores	8,300	~ 120,000	~ 14
c) Mean memory per core	3 GB (cores with 4GB and 2GB)	~ 3 GB (cores with 4GB and 2GB)	~ 1
d) Main memory	20 TB	~ 360 TB	~ 18
e) Storage on disk	6 PB	~ 120 PB	~ 20
f) Memory-to-disk	30 GB/s	~ 600 GB/s	~ 20
g) Full memory dump to disk	< 1 hour	< 1 hour	~ 1
h) Storage on tape	65 PB	~ 650 PB	~ 10
i) Disk-to-tape	3 GB/s	~ 30 GB/s	~ 10
j) Annual data production	10 PB/year	~ 100 PB/year	~ 10
k) Overall power consumption	2 MW	2 MW	1

Beschaffungs- und Betriebskonzept

Mehrphasige Installation

- Installation in zwei Phasen mit einem Jahr Abstand
- Ziel
 - Im ersten Jahr ist der Rechner noch nicht ausgelastet
 - Kleineres System genügt; wir sparen Strom
 - Wir sparen Geld auf für bessere Technik
 - HLRE-3: Haswell- und Broadwell-Prozessoren
 - Nachteil: System ist in den Komponenten heterogen
 - Erschwerte Verwaltung, Jobs eher nicht auf beiden Teilen zugleich

Alternativen

- Z.B. mehrere Systeme, die im Wechsel oder in Ergänzung hochgezogen werden (z.B. in Jülich)
- Nachteil: wiederholte vollständige Beschaffungen notwendig

Markterkundung

Zeitpunkt: 3 Jahre vor Inbetriebnahme Ziel

- Frühzeitige Kontaktaufnahme mit potentiellen Anbietern
- Übersicht über Entwicklungslinien bei
 - Prozessoren
 - Speichersystemen
 - Anderen HW- und SW-Systemen
- Grobe erste Ideen von PFLOPS/M€ und PByte/M€
- Erste Abschätzungen von Stromverbrauchen
- Kommunikation unserer Zielvorstellungen an Hersteller

Wichtig: Ausschreibung muss damit umsetzbar sein

Ausschreibung

- Zeitpunkt: 2 Jahre vor Inbetriebnahme
- Europaweite Ausschreibung nach den Regularien aus dem öffentlichen Bereich
 - Strenge rechtliche Abwicklungsvorgaben zur Erzielung von Chancengleichheit, Korruptionsfreiheit usw.
 - Vermeide IT-Elbphilharmonie ©
- Üblich bei anderen Produkten
 - Bedarf definieren Ausschreibung gewinnt der Bieter mit dem wirtschaftlichsten Angebot (nicht notwendigerweise das billigste)
- Üblich bei HPC-Ausschreibungen
 - Geldsumme festlegen Ausschreibung gewinnt der Bieter mit der am besten bewerteten Leistung (oft: meiste Hardware)
- Bewertungsschema mit Ausschreibung festgeschrieben

Vergabeunterlagen (RFP – Request for Proposals)

- Festlegung der Wertung der Angebote
- Systempreis und Preise für Erweiterungen
- Leistungsanforderungen Rechnen (Phase 1 und 2)
- Leistungsanforderungen Speichern (Phase 1 und 2)
- Unterstützende HW und SW
- Elektrische Leistungsaufnahme
- Integration in bestehende Infrastruktur
- Benchmarks

Umfang: ca. 50 Seiten am DKRZ

Festlegung der Wertung der Angebote

- Als Excel-Tabelle mit etwa folgenden Gewichtungen
 - Preis (1/4 der Punkte)
 - Preise für Erweiterungen (TFLOPS, PByte)
 - Rechenleistung (ca. 1/3 der Punkte)
 - Speichersystem (ca. die Hälfte der Rechenleistung)
 - Punkte f
 ür Software und andere (weiche) Faktoren
- Die Ausschreibung gewinnt der Bieter mit der höchsten Punktezahl
- Muss alles rechtssicher dokumentiert werden
- Klagen bei Fehlern sind wahrscheinlich!

Leistungsanforderungen Rechnen (Phase 1 und 2)

- Integrale Leistung über beide Phasen angefordert
- Leistungsbewertung aufgrund von Benchmarks

Leistungsanforderungen Speichern (Phase 1 und 2)

- Speicherkapazitäten z.B. vorgegeben
 - Für beide Phasen getrennt
- Anzahl zu speichernder Dateien vorgegeben
- Forderung nach qualitativem Dateisystem
 - Z.B. Zeit zum Neustart nach Absturz
- Problem: es gibt nur Lustre und GPFS
 - IBM liefert GPFS, alle anderen Lustre

Unterstützende Hardware und Software

- Zusätzliche Rechnerknoten mit Grafikkarten für Visualisierungen
 - Direkt angebunden an das Speichersystem
- Testsystem
 - Für Tests neuer Software und Firmware
- Software-Komponenten
 - Linux
 - Batch-Scheduler mit Vorgabe bzgl. Steuermöglichkeiten
 - Backup-Software
 - Compiler Fortran/C/C++, Bibliotheken, MPI, OpenMP
 - Werkzeuge zur Fehlersuche und Leistungsanalyse

Elektrische Leistungsaufnahme

- Vorgabe eines maximalen akzeptierten Verbrauchs
 - Grund: Finanzierung von Strom und steigenden Energiesteuern ist kritisch
- Ermittelt durch Mix von realistischen Benchmark-Programmen
 - LINPACK nur geeignet, um Maximalverbrauch zu testen
 - Hier
 - Maschine mit Anwendungsbenchmarks vollpacken Dann Leistungsaufnahme messen

Integration in bestehende Infrastruktur

- Vorgabe der Stellflächen
- Vorgabe der Bodenbelastungen
- Vorgabe der Stromschienen und Stromverteiler
- Vorgabe der Kühlsysteme

Weitere Kleinigkeiten

- Deckenhöhen
- Säulenabstände
- Türweiten und Belastbarkeit der Aufzüge

Leistungsanforderungen aus Kundensicht

- Anzahl geeigneter Bieter: ca. 3-6 Hersteller
- Was hindert Bieter an einer Teilnahme?
 - Z.B. zu strenge Vorgaben für Dateisystem
 - Z.B. zu enges Strombudget
- Folge: Ausschreibung bleibt ohne Angebote
 - Ist an anderer Stelle bereits geschehen
 - Neuausschreibung erforderlich
 - Zeitverlust, Reputationsverlust
 - Probleme mit Finanzierung von altem und neuem Rechner

Leistungsanforderungen aus Bietersicht

- Bieter bietet viel Leistung
 - Höhere Gewinnchancen im Wettbewerb
 - Muss dann aber auch die nötige Hardware liefern, wenn er gewinnt
- Bieter ist vorsichtig mit Leistungsprognosen
 - Verringerte Gewinnchancen
 - Im Gewinnfall aber auch realistische Hardware-Lieferung

IT-Branche allgemein: schwieriges Geschäft

Beteiligung an Ausschreibung teuer für Bieter

Benchmarks

- Benchmarking ist eine Kunst
- Es gibt unzählige Vorgehensvarianten
- Vielleicht einfachste: LINPACK-Benchmark verwenden
- Unser Ansatz
 - Rechenleistung
 Anwendungsbenchmarks
 Mix relevanter Modelle der Kunden mit MPI und OpenMP
 Methode: Erhöhung des Jobdurchsatzes
 - Speichersystemleistung
 Synthetische Benchmarks
 Methode: Vorgabe von Leistungsdaten

Ausschreibungsdokument... Benchmarking

Anwendungsbenchmarks – Vorgehensmodell (1)

- Wir bestimmen eine Referenzlaufzeit für einen Modellcode, z.B. 10 Minuten (dazu benötigen wir n Kerne)
 - Wir ermitteln auf unserer alten Maschine, wieviele Jobs wir pro Sekunde auf der vollen Maschine durchbekommen
- Der Bieter ermittelt die kleinste Anzahl von Kernen, mit denen er die Referenzzeit unterschreitet
- Für die von ihm gebotene Anzahl Kerne bestimmt er den Durchsatz für seine volle Maschine
- Der Quotient der beiden Durchsätze ist die Durchsatzsteigerung für diesen Benchmark

Ausschreibungsdokument... Benchmarking

Anwendungsbenchmarks – Vorgehensmodell (2)

- Nicht ein Benchmarkcode sondern ein halbes Dutzend
- Jeweils evaluiert in zwei Varianten
 - Unoptimiert (nur Compilereinstellungen)
 Zeigt uns, was das System und der Compiler können
 - Optimiert
 Zeigt uns, was das Team des Bieters leisten kann
- Macht ein Dutzend Varianten
 - Unterschiedliche Gewichtung pro Benchmark (optimierte geringer)
- Getrennt angegeben für Phase 1 und Phase1+Phase2
- Gewinner ist der Bieter mit dem höchsten Wert

Ausschreibungsdokument... Benchmarking

E/A-Benchmarks

- Single stream Posix-Transferrate von/zu Rechnerknoten
- Aggregierte Posix-Streaming-Transferrate
- Leistungen für HDF5 und NetCDF
- Parallele E/A mit MPI auf eine Datei
- Metadaten-Leistung

Hier jeweils Vorgaben an den Bieter, die er einhalten muss

Vertragsverhandlungen

Zeitpunkt: ca. 1,5-2 Jahre vor Inbetriebnahme

- Bieter liefern Angebot
 - Dokument mit 200+ Seiten
 - Technische Spezifikation
 - Ergebnisse des Benchmarking
 - Konditionen f
 ür Lieferung, Inbetriebnahme, Wartung usw.
- Typischerweise stellen beide Seiten Problembereiche im Ausschreibungsdokument fest
 - Weitere Detaillierung der Ausschreibung
 - Kommunikation an alle
 - Neue Runde mit Angeboten
- Nach mehreren Runden konvergiert das Verfahren

Ergebnisse des Benchmarking ©

Probleme

- Anwendungsbenchmarks: Zielprozessor existiert nicht
 - Alle Angaben sind Hochrechnungen
 - Erstellt auf einem existierenden Prozessor (Vorgängermodell)
 - Hintergrundinformation des Prozessorherstellers über Leistungszuwachse der kommenden Generation am Bieter
 - Hochrechnungen und Simulationen beim Bieter
 - Datum der Markeinführung nicht genau bestimmbar
 - Varianten des Prozessor bei Markteinführung im Voraus nicht final bekannt
 - Preise auch nicht final bekannt
- Somit: Bieter spielt Benchmark-Poker
- Verfehlen der Leistungszusagen
 - Erfolgreicher Bieter muss soviel HW nachliefern, bis Leistungszusage erfüllt

Ergebnisse des Benchmarking... ©

Probleme

- E/A-Benchmarks: System der ausgeschriebenen Größe existiert noch gar nicht
 - Leistungsangaben sind Hochrechnungen
 - Insbesondere bei Dateisystemen unklar, ob sie die geforderte Größe und Skalierbarkeit mit allen Qualitätsforderungen erfüllen können
- Somit: Bieter spielt Benchmark-Poker
- Verfehlen der Leistungszusagen
 - Erfolgreicher Bieter muss soviel HW nachliefern, bis Leistungszusage erfüllt

Rechnerraumumbau und Installation

Rechnerraumumbau und Installation...

Umbauten am Rechnerraum (HLRE-3)

- Stromversorgung
 - Batteriepufferung (höhere Verfügbarkeit)
 - Weiterer Mittelspannungstransformator (höhere Verfügbarkeit)
 - Umbau der Stromschienen (andere Aufstellung im Raum)
- Kühlung
 - Rechnersysteme mit Hochtemperaturflüssigkeitskühlung
 - Ermöglicht ganzjährige freie Kühlung über das Dach ohne weitere Kühlaggregate
- Bandarchiv mit Sauerstoffreduktionsanlage
 - Reduktion von 20,5% (normal) auf 17% und 15%
 - Entstehung von Bränden weitestgehend verhindert

Batteriepufferung

Produktionsbetrieb

DKRZ ist wieder im Rennen

Rechnerbeschaffung

Zusammenfassung

- Zeitdauer der Beschaffung: >4 Jahre
- Antragstellung sehr früh mit erster Abschätzung zu Wissenschaft und HPC-Technik
- DKRZ: Aufteilung der Finanzmittel auf Rechnen und Speichern wichtig und schwierig
- Beschaffung mit zwei Installationsphasen
- Ausschreibung ist aufwendig
- Bieterverfahren muss rechtskonform ablaufen
- Problem für Kunde: Definition geeigneter Benchmarks
- Problem für Bieter: Benchmark-Hochrechnungen bei nichtexistierender Ziel-Hardware

Rechnerbeschaffung

Die wichtigsten Fragen

- In wievielen Phasen soll die Installation ablaufen?
- Wie könnte ein Benchmarking für eine zu beschaffende Maschine aussehen?
- Was muss der Kunde beachten?
- Welche Probleme stellen sich für den Bieter?