

Комбинирование нейронных сетей и синтаксического анализа для обработки вторичной структуры последовательностей

Автор: Лунина Полина Сергеевна, 444 группа Научный руководитель: доцент, к.ф-м.н. Григорьев С.В. Рецензент: специалист по анализу данных ООО "Интеллоджик" Малыгина Т.С.

Санкт-Петербургский государственный университет Кафедра системного программирования

24 мая 2019г.

Введение

- Анализ последовательностей, обладающих синтаксической структурой
- Существующие подходы:
 - N-граммы
 - ▶ Скрытые марковские модели
 - Ковариационные модели
 - Вероятностные грамматики

Постановка задачи

Цель — разработка подхода для анализа вторичной структуры последовательностей с использованием комбинации синтаксического анализа и нейронных сетей

Задачи:

- Разработать архитектуру решения, независимую от конкретной области применения и используемых технологий
- Провести экспериментальные исследования

Описание подхода

- Описание характерных особенностей вторичной структуры исследуемых последовательностей с помощью грамматики
- Извлечение этих особенностей с помощью алгоритма синтаксического анализа
- Обучение нейронных сетей на полученных данных для решения конкретной задачи

Генерация данных с помощью синтаксического анализатора

- Входные данные грамматика и исследуемые последовательности
- Результат работы для входной строки w и нетерминала N верхнетреугольная булева матрица разбора M_N , где $M_N[i,j]=1$, если подстрока w[i,j-1] выводима из N
- Форматы выходных данных:
 - Числовые вектора
 - Черно-белые изображения

Обучение нейронных сетей

- Обучение нейронной сети на векторах или изображениях
- Для использования обученной модели необходимо снова использовать синтаксический анализатор
- Проблема: времязатратность синтаксического анализа
- Решение: расширить обученную нейронную сеть верхними слоями, принимающими исходную последовательность

Архитектура решения

Биоинформатика — область применения

- Задачи анализа нуклеотидных и аминокислотных последовательностей
- Шпильки вторичной структуры РНК можно описать грамматикой

s1: stem<s0>
s0: G U A C U U stem<s>:
 A s U | G s C | U s A | C s G

Эксперименты

Задачи:

- Классификация тРНК эукариотов и прокариотов
- Классификация тРНК архей, бактерий, грибов и растений

Технологии:

- Платформа YaccConstructor, разработанная на кафедре системного программирования СПбГУ
- Библиотека Keras и фреймворк Tensorflow

Базы данных:

- tRNADB-CE
- Genomic tRNA database

Эксперименты

- Обучение нейронных сетей на векторах и на изображениях
- Обучение на их основе нейронных сетей, принимающих исходные последовательности
- Тестирование и сравнение результатов

Классификация тРНК: эукариоты и прокариоты

train:valid:test = 20000:5000:10000

accuracy	vector-based approach	image-based approach
base model	94.1%	96.2%
extended model	97.5%	97.8%

class	vector-based approach		image-based approach	
	precision	recall	precision	recall
prokaryotic	95.8%	99.4%	96.2%	99.4%
eukaryotic	99.4%	95.6%	99.4%	99.5%

Классификация тРНК: археи, бактерии, растения и грибы

train:valid:test = 8000:1000:3000

accuracy	vector-based approach	image-based approach
base model	86.7%	93.3%
extended model	96.2%	95.7%

class	vector-based approach		image-based approach	
	precision	recall	precision	recall
archaeal	91.1%	99.2%	91.6%	98.5%
bacterial	96.6%	95.1%	95.2%	95.5%
fungi	98.5%	94.9%	97.5%	94.3%
plant	99.4%	95.7%	99.2%	94.7%

Результаты

- Разработана архитектура решения для использования предложенного подхода
- Проведены экспериментальные исследования предложенного подхода применительно к следующим задачам биоинформатики:
 - Классификация тРНК эукариотов и прокариотов
 - Классификация тРНК архей, бактерий, грибов и растений
- Результаты представлены на конференциях:
 - ▶ Постер "16s rRNA Detection by Using Neural Networks"на конференции Biata 2018
 - Статья "The Composition of Dense Neural Networks and Formal Grammars for Secondary Structure Analysis" на конференции BIOINFORMATICS 2019
 - ▶ Постер "Improved Architecture of Artificial Neural Network for Secondary Structure Analysis"на конференции Biata 2019