CS 107, Probability, Spring 2019 Lecture 36

Michael Poghosyan

AUA

17 April 2019

Content

- Transformation of Random Vectors
- Independent Random Variables

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z.

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z. **Note:** First, note that although (X,Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z.

Note: First, note that although (X, Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Example: $Z_1 = X^2 + 3X \cdot Y$ is continuous, and

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z. **Note:** First, note that although (X,Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Example: $Z_1 = X^2 + 3X \cdot Y$ is continuous, and $Z_2 = [X + Y]$ or

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z.

Note: First, note that although (X, Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Example: $Z_1 = X^2 + 3X \cdot Y$ is continuous, and $Z_2 = [X + Y]$ or

$$Z_3 = \begin{cases} -2, & X^2 - Y \le 2\\ 3, & X^2 - Y > 2 \end{cases}$$

are Discrete.

Now assume X and Y are Continuous r.v.s with Joint PDF $f_{X,Y}(x,y)$. Also, $g: \mathbb{R}^2 \to \mathbb{R}$ is a given function. Let Z=g(X,Y). Again we are interested in the Distribution of Z.

Note: First, note that although (X, Y) is continuous, Z is not always continuous: it can be both Discrete or Continuous.

Example: $Z_1 = X^2 + 3X \cdot Y$ is continuous, and $Z_2 = [X + Y]$ or

$$Z_3 = \begin{cases} -2, & X^2 - Y \le 2\\ 3, & X^2 - Y > 2 \end{cases}$$

are Discrete.

Note: Second, we can find the CDF of *Z* by:

$$F_Z(x) = \mathbb{P}(g(X, Y) \leq x) = \iint_{g(u,v) \leq x} f_{X,Y}(u, v) dudv.$$

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy.

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy. In principle, we can calculate first the CDF by the formula above, and then differentiate it (if Z is continuous) to obtain the PDF.

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy. In principle, we can calculate first the CDF by the formula above, and then differentiate it (if Z is continuous) to obtain the PDF. Try to solve some problems for yourself!

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy. In principle, we can calculate first the CDF by the formula above, and then differentiate it (if Z is continuous) to obtain the PDF. Try to solve some problems for yourself!

Here we will consider one very important case:

Now, finding the PMF or the PDF of Z = g(X, Y) in the Continuous case is not so easy. In principle, we can calculate first the CDF by the formula above, and then differentiate it (if Z is continuous) to obtain the PDF. Try to solve some problems for yourself!

Here we will consider one very important case: we will restrict our attention to the sum of X and Y,

$$Z = X + Y$$
.

Sums of Discrete and Jointly Continuous R.V.s

Now, assume

$$Z = X + Y$$
.

Sums of Discrete and Jointly Continuous R.V.s

Now, assume

$$Z = X + Y$$
.

• If X and Y are **Discrete**, then Z = X + Y will be Discrete too, with a PMF

$$\mathbb{P}(Z=x)=\mathbb{P}(X+Y=x)=\sum_{x_i+y_j=x}\mathbb{P}(X=x_i,Y=y_j).$$

Sums of Discrete and Jointly Continuous R.V.s

Now, assume

$$Z = X + Y$$
.

• If X and Y are **Discrete**, then Z = X + Y will be Discrete too, with a PMF

$$\mathbb{P}(Z=x) = \mathbb{P}(X+Y=x) = \sum_{x_i+y_j=x} \mathbb{P}(X=x_i, Y=y_j).$$

• If X and Y are **Jointly Continuous** with the Joint PDF $f_{X,Y}(x,y)$, then Z=X+Y will be a Continuous r.v. with the PDF

$$f_{X+Y}(x) = \int_{-\infty}^{\infty} f_{X,Y}(t,x-t) dt \quad \forall x \in \mathbb{R}.$$

Recall that for Events A and B, we say that A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Recall that for Events A and B, we say that A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

The idea was that knowledge about the Probability of happening one of A or B is not changing the Probability of happening of the other one.

Recall that for Events A and B, we say that A and B are independent if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

The idea was that knowledge about the Probability of happening one of A or B is not changing the Probability of happening of the other one.

Now, we define the Independence of 2 r.v. in a similar way.

Assume X and Y are two r.v. on the same Experiment:

Assume X and Y are two r.v. on the same Experiment:

Independence of R.V.

We say that r.v.s X and Y are (Statistically) **Independent**, and we write $X \perp \!\!\!\perp Y$ or $X \perp Y$, if

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B)$$

for any $A, B \subset \mathbb{R}$, i.e., if the Events $\{X \in A\}$ and $\{Y \in B\}$ are Independent.

Assume X and Y are two r.v. on the same Experiment:

Independence of R.V.

We say that r.v.s X and Y are (Statistically) **Independent**, and we write $X \perp \!\!\!\perp Y$ or $X \perp Y$, if

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B)$$

for any $A, B \subset \mathbb{R}$, i.e., if the Events $\{X \in A\}$ and $\{Y \in B\}$ are Independent.

The explanation of Independence is that the knowledge of the values of, say, Y, is not changing the probability that X is in some set.

Assume X and Y are two r.v. on the same Experiment:

Independence of R.V.

We say that r.v.s X and Y are (Statistically) **Independent**, and we write $X \perp \!\!\!\perp Y$ or $X \perp Y$, if

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B)$$

for any $A, B \subset \mathbb{R}$, i.e., if the Events $\{X \in A\}$ and $\{Y \in B\}$ are Independent.

The explanation of Independence is that the knowledge of the values of, say, Y, is not changing the probability that X is in some set.

If X and Y are not Independent, then we say they are Dependent.

Independence of R.V.s

Independence of R.V.s

The followings are equivalent:

• X and Y are Independent, $X \perp \!\!\! \perp Y$;

Independence of R.V.s

- X and Y are Independent, $X \perp \!\!\! \perp Y$;
- $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$ for any $x,y \in \mathbb{R}$, where $F_{X,Y}$, F_X , F_Y are the Joint CDF of X, Y and the Marginal CDFs of X and Y, respectively;

Independence of R.V.s

- X and Y are Independent, $X \perp \!\!\! \perp Y$;
- $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$ for any $x,y \in \mathbb{R}$, where $F_{X,Y}$, F_X , F_Y are the Joint CDF of X, Y and the Marginal CDFs of X and Y, respectively;
- If X and Y are Discrete, then $\mathbb{P}(X = x_i, Y = y_j) = \mathbb{P}(X = x_i) \cdot \mathbb{P}(Y = y_j)$, for all i, j

Independence of R.V.s

- X and Y are Independent, $X \perp \!\!\! \perp Y$;
- $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$ for any $x,y \in \mathbb{R}$, where $F_{X,Y}$, F_X , F_Y are the Joint CDF of X, Y and the Marginal CDFs of X and Y, respectively;
- If X and Y are Discrete, then $\mathbb{P}(X = x_i, Y = y_j) = \mathbb{P}(X = x_i) \cdot \mathbb{P}(Y = y_j)$, for all i, j
- If X and Y are Jointly Continuous, then $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$ for any f_X , f_Y are the Joint PDF of f_X , f_Y and the Marginal PDFs of f_X and f_Y , respectively.

^aAlmost any.

Note: We use Independence in two ways:

Note: We use Independence in two ways:

 Case 1: We know the Joint Distribution of X and Y, say, we know their Joint CDF.

Note: We use Independence in two ways:

 Case 1: We know the Joint Distribution of X and Y, say, we know their Joint CDF. Then we can study the Independence of X and Y,

Note: We use Independence in two ways:

 Case 1: We know the Joint Distribution of X and Y, say, we know their Joint CDF. Then we can study the Independence of X and Y, say, by calculating the Marginal CDFs and checking that

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \quad \forall x, y \in \mathbb{R}.$$

Note: We use Independence in two ways:

 Case 1: We know the Joint Distribution of X and Y, say, we know their Joint CDF. Then we can study the Independence of X and Y, say, by calculating the Marginal CDFs and checking that

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \quad \forall x, y \in \mathbb{R}.$$

• Case 2: We know, from the description of *X* and *Y*, that they are Independent.

Note: We use Independence in two ways:

 Case 1: We know the Joint Distribution of X and Y, say, we know their Joint CDF. Then we can study the Independence of X and Y, say, by calculating the Marginal CDFs and checking that

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \quad \forall x,y \in \mathbb{R}.$$

 Case 2: We know, from the description of X and Y, that they are Independent. Then we can construct the Joint Distribution of X and Y from the Distributions of X and Y separately,

Note: We use Independence in two ways:

 Case 1: We know the Joint Distribution of X and Y, say, we know their Joint CDF. Then we can study the Independence of X and Y, say, by calculating the Marginal CDFs and checking that

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \quad \forall x, y \in \mathbb{R}.$$

 Case 2: We know, from the description of X and Y, that they are Independent. Then we can construct the Joint Distribution of X and Y from the Distributions of X and Y separately, say, having the CDFs of X and Y, we can find the Joint CDF of (X, Y):

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y), \quad \forall x, y \in \mathbb{R}.$$

Independence of Discrete R.V.s

Assume X and Y are Discrete r.v.s with the PMFs

Values of
$$X \mid x_1 \mid x_2 \mid \dots$$

$$\mathbb{P}(X = x) \mid p_1 \mid p_2 \mid \dots$$

Independence of Discrete R.V.s

Assume X and Y are Discrete r.v.s with the PMFs

Values of
$$Y \mid y_1 \mid y_2 \mid \dots$$

$$\mathbb{P}(Y=y) \mid q_1 \mid q_2 \mid \dots$$

Then $X \perp \!\!\! \perp Y$ if and only if their Joint PMF has the form:

$Y \setminus X$	<i>x</i> ₁	<i>x</i> ₂		P(Y=y)
<i>y</i> ₁	$p_1 \cdot q_1$	$p_2 \cdot q_1$		q_1
<i>y</i> ₂	$p_1 \cdot q_2$	$p_2 \cdot q_2$		q ₂
:	÷	:	٠	:
$\mathbb{P}(X=x)$	p_1	p_2		

Note: Assume X and Y are Independent, and $g, h : \mathbb{R} \to \mathbb{R}$ are any functions. Then g(X) and h(Y) are Independent too.

¹measurable

Note: Assume X and Y are Independent, and $g, h : \mathbb{R} \to \mathbb{R}$ are any functions. Then g(X) and h(Y) are Independent too.

Example: If X and Y are Independent, then so are X^2 and

 $\cos(2Y+1)$, i.e., $X^2 \perp \!\!\! \perp \cos(2Y+1)$.

¹measurable

Note: We can define the Pairwise and Mutual Independence (or just Independence) of several r.v.s, say, $X_1, X_2, ..., X_n$.

• Pairwise Independence is that for any i, j, r.v.s X_i and X_j are Independent.

- Pairwise Independence is that for any i, j, r.v.s X_i and X_j are Independent.
- Mutual Independence is that for any subsets $A_k \subset \mathbb{R}$, $\mathbb{P}(X_1 \in A_1, ..., X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \cdot ... \cdot \mathbb{P}(X_n \in A_n)$

- Pairwise Independence is that for any i, j, r.v.s X_i and X_j are Independent.
- Mutual Independence is that for any subsets $A_k \subset \mathbb{R}$, $\mathbb{P}(X_1 \in A_1, ..., X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \cdot ... \cdot \mathbb{P}(X_n \in A_n)$
- Mutual Independence implies Pairwise Independence, but the inverse implication is not correct, in general.

- Pairwise Independence is that for any i, j, r.v.s X_i and X_j are Independent.
- Mutual Independence is that for any subsets $A_k \subset \mathbb{R}$, $\mathbb{P}(X_1 \in A_1, ..., X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \cdot ... \cdot \mathbb{P}(X_n \in A_n)$
- Mutual Independence implies Pairwise Independence, but the inverse implication is not correct, in general.
- Later, and in Statistics, we will use a lot the statement $X_1, ..., X_n$ are Independent, Identically Distributed (IID) r.v.s, meaning that X_k -s are Mutually Independent, and they are Identically Distributed.

Example: Assume X and Y are the height and weight of a (randomly chosen) person. Are X and Y Independent?

Example: Assume X and Y are the height and weight of a

(randomly chosen) person. Are X and Y Independent?

Example: Assume $X, Y \sim \mathcal{N}(0, 1)$. Are X and Y Independent?

Example: Assume X and Y are the height and weight of a (randomly chosen) person. Are X and Y Independent?

Example: Assume $X, Y \sim \mathcal{N}(0, 1)$. Are X and Y Independent? **Example:** Assume X and Y are Discrete with the following PMFs.

Values of
$$X \parallel -2 \parallel 0 \parallel 1$$
 Values of $Y \parallel 10 \parallel 20$
 $\mathbb{P}(X = x) \parallel 0.1 \parallel 0.6 \parallel 0.3$
 $\mathbb{P}(Y = y) \parallel 0.2 \parallel 0.8$

Values of
$$Y$$
1020 $\mathbb{P}(Y=y)$ 0.20.8

Assume also that $X \sqcup Y$.

- Find the Joint PMF of X and Y:
- Calculate $\mathbb{P}(X \cdot Y < 10)$.

Type 1 Examples: Given the Joint Distribution, we study the Independence.

Type 1 Examples: Given the Joint Distribution, we study the Independence.

• Assume $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$. Are X and Y Independent?

Type 1 Examples: Given the Joint Distribution, we study the Independence.

- Assume $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$. Are X and Y Independent?
- Assume X ~ Unif[0,1] and Y ~ Unif[2,4]. Are X and Y Independent?

Type 1 Examples: Given the Joint Distribution, we study the Independence.

- Assume $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$. Are X and Y Independent?
- Assume X ~ Unif[0,1] and Y ~ Unif[2,4]. Are X and Y Independent?
- Assume $(X, Y) \sim \textit{Unif}(T)$, where T is the triangle with the vertices at (0,0), (0,1) and (1,0). Are X and Y Independent?

Type 1 Examples: Given the Joint Distribution, we study the Independence.

- Assume $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$. Are X and Y Independent?
- Assume X ~ Unif[0,1] and Y ~ Unif[2,4]. Are X and Y Independent?
- Assume $(X, Y) \sim \textit{Unif}(T)$, where T is the triangle with the vertices at (0,0), (0,1) and (1,0). Are X and Y Independent?

Type 2 Examples: Given Individual Distributions of X and Y, and Independence, we form the Joint Distribution and calculate Probabilities.

Type 1 Examples: Given the Joint Distribution, we study the Independence.

- Assume $(X, Y) \sim \textit{Unif}([0, 1] \times [2, 4])$. Are X and Y Independent?
- Assume X ~ Unif[0,1] and Y ~ Unif[2,4]. Are X and Y Independent?
- Assume $(X, Y) \sim \textit{Unif}(T)$, where T is the triangle with the vertices at (0,0), (0,1) and (1,0). Are X and Y Independent?

Type 2 Examples: Given Individual Distributions of X and Y, and Independence, we form the Joint Distribution and calculate Probabilities.

• Assume $X \sim \textit{Unif}[0,3]$, $Y \sim \textit{Exp}(2)$ and $X \perp \!\!\! \perp Y$. Find $\mathbb{P}(X^2 + Y^2 \leq 1)$.

