Bayesian Networks

Doug Downey EECS 349 Machine Learning

Answering Queries: Summing Out

		Intelligence = i ¹		Intelligence=i ²	
		Time=t ¹	Time= t^2	Time=t ^I	Time= t^2
Grade	gl	0.05	0.02	0.15	0.03
	g ²	0.14	0.14	0.05	0.0
	g^3	0.10	0.25	0.01	0.02

$$P(Grade | Time = t^{l})$$
?

$$\sum_{v \in Val(Intelligence)} P(Grade, Intelligence = v \mid Time = t^1)$$

Answering Queries: Solved?

Given the joint distribution, we can answer any query by summing

...but, joint distribution2^500 - I paramete

For non-trivial prousing the joint dist

Way too much con

Boolean variables has)^150)

boolean r.v.s or more), uires

compute the sum

- Way too many observations to learn the parameters
- Way too much space to store the joint distribution

Bayesian Networks

- A general framework for modeling probability distributions
 - Expresses conditional independencies
- Begin with a graph
 - Nodes: Random variables (e.g. attributes, classes)
 - Directed Edges: Causal relationships

What does this wacky thing do?

- ▶ BNs represent the joint distribution compactly
- You can obtain the BN's probabilities for an event by multiplying the relevant values from each CPT:

$$P(i^1, d^0, g^2, s^1, l^0) = \cdots$$

What does this wacky thing do?

- BNs represent the joint distribution compactly
- You can obtain the BN's probabilities for an event by multiplying the relevant values from each CPT:

$$P(i^{1}, d^{0}, g^{2}, s^{1}, l^{0})$$

$$= P(i^{1})P(d^{0})P(g^{2}|i^{1}, d^{0})P(s^{1}|i^{1})P(l^{0}|g^{2})$$

$$= 0.3 \cdot 0.6 \cdot 0.08 \cdot 0.8 \cdot 0.4 = 0.004608$$

Building a Bayes Net

Create a node for each attribute or class variable

- Connect nodes with causal edges
 - How? Domain knowledge
 (or learn from data more on this in 395/495 PGMs course)
- Obtain CPTs
 - ▶ How? Use data, or write from domain knowledge

Bayes Net Advantages

Compactness

- Our "student" network has 15 independent parameters
- Vs. how many for a full joint distribution table?

Ease of inference

(more on this later)

Computational Complexity

How does training time and testing time complexity compare between decision trees and nearest-neighbor?

Think/Pair/Share

What's an upper-bound on the number of parameters in a Bayes Net?

| Think
Start

| End

Think/Pair/Share

What's an upper-bound on the number of parameters in a Bayes Net?

|Pair Start

| End

Think/Pair/Share

What's an upper-bound on the number of P(A I B, C, D) matrixL parameters in a Bayes Net? = 8 independent parameters

but if A is conditionally independent of C and D given B: P(A I B) matrixL = 2 independent parameters

once we know the value of B, the prob of A is unchanged if we also learn the values of C and D

Conditional Independence

 $P(A (upsidedownT) B | C) \iff P(A | C) * P(B | C) = P(A, B | C)$

 $\langle = \rangle P(A \mid B, C) = P(A \mid C)$

k = max number of parents v = max number of variable values n = number of random variables

~Bayes Net~ $UB(\#params) = n*v^k*(v-1) < n*v^(k+1)$

> ^^ where v^k = parent configs

^ not very big compared to the joint:

~Joint~ v^n - 1

~Bayes Net~ 500 binary max 2 parents $< 500 * 2^3 = 4000$

~Joint~

2^500 - 1

From Graphs to Independencies

- The Bayes Net encodes independencies
 - Independencies are what allow BN compactness
- Question:

Which independencies are encoded in a given BN graph?

Global Semantics

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | Pa(X_i))$$

Local Independences

Each node is conditionally independent of its nondescendants given its parents.

► Theorem: Local Independences ⇔ Global Semantics

What does the graph look like...

- No independence?
- All variables independent?
- Common Cause? Common Effect?
 - Correlation != causation
 - "Explaining away"

Active Trails and D-separation

- ▶ Two nodes in G are d-separated unless there is an active trail between them
- An Active Trail between nodes X and Y given evidence nodes E is any path between X and Y such that
 - For any v-structure (A => C <= B) on the path, either C or one of its descendents is in $\textbf{\textit{E}}$
 - No other nodes on the path are in **E**


```
(Gas \bot Radio)? (Radio \bot Ignition)? (Radio \bot Ignition | Battery)? (Gas \bot Radio | Moves)?
```

Think

Start

End


```
(Gas \bot Radio)? (Radio \bot Ignition)? (Radio \bot Ignition | Battery)? (Gas \bot Radio | Moves)?
```

Pair

Start

End


```
(Gas \bot Radio)? (Radio \bot Ignition)? (Radio \bot Ignition | Battery)? (Gas \bot Radio | Moves)?
```

Share