☑ Q1. Unified Batch + Streaming Pipeline in PySpark

Problem:

You want both batch and streaming consumers to read/write to the same storage (e.g., Delta Lake) to ensure a unified data view.

Design Approach:

- Use **Delta Lake** as the sink and source
- Stream and batch can both write to and read from the same Delta table
- Use merge or update logic in batch, and append/upsert in streaming
- Ensure isolation: mergeSchema + optimize + version control

Example:

- Batch load daily product catalog
- Stream real-time clickstream events
- Join the two downstream for personalization

Takeaway:

Delta Lake = bridge between batch and streaming

Enables idempotent writes, schema enforcement, ACID compliance

Use MERGE INTO or UPDATE in batch to avoid overwrite errors

Always **checkpoint** streaming jobs + use **OPTIMIZ**E to compact files

Stage 1: Processing in PySpark

Yes — all types of joins or processing:

- A Batch + Batch
- Satch + Streaming (via broadcast or temp view)
- Streaming + Streaming (via watermark joins)
- All are implemented and executed in PySpark code, before writing to the Delta Lake.

So the actual business logic — joins, filters, transformations — happens inside PySpark.

Q2. Handling Out-of-Order Data in Streaming

Problem:

Events arrive late due to network lag. If not handled, they get dropped or placed in wrong window.

Solution:

- Use withWatermark() on event time
- Allow a tolerance window (e.g., 15 minutes)
- Set event-time windowing correctly

python

CopyEdit

```
df.withWatermark("event_time", "15 minutes") \
    .groupBy(window("event_time", "10 minutes")) \
    .agg(...)
```

Trade-off:

Larger watermark \rightarrow more memory usage \rightarrow higher latency Smaller watermark \rightarrow risk of data loss

Q3. Reprocessing Historical Kafka Data

Scenario:

Bug in transformation logic. Need to reprocess last 7 days of events.

Steps:

- 1. Use **Kafka offset reset** (e.g., earliest or manual seek)
- 2. Re-run the Spark job with **new checkpoint directory**
- 3. Write to separate staging Delta table \rightarrow validate \rightarrow upsert to prod
- 4. Enable **mergeSchema = true** if schema evolved

Config:

python

CopyEdit

```
.option("startingOffsets", "earliest")
.option("endingOffsets", "latest")
```

Takeaway:

Never reuse the same checkpoint when reprocessing. Ensure idempotent writes (e.g., merge).

In Structured Streaming, checkpointing does save Kafka offsets — along with Spark state.

It stores:

- 1. **Offsets** read from Kafka (source progress)
- 2. Watermark info
- 3. **Aggregated state** (e.g., for groupBy, window, etc.)
- 4. Sink progress (whether data was written successfully)

Q4. Streaming Compaction in Delta Lake

Problem:

When Spark Structured Streaming writes data to Delta Lake, it writes a new file per micro-batch.

If you're writing every 10 seconds:

- That's **8640 files/day** (10 sec × 24 hrs × 6).
- Over a week → 60,000+ small files.

This leads to:

- Read slowness (too many files to scan)
- Increased metadata overhead
- Higher cloud storage costs (S3, GCS)

X Solution: Streaming Compaction

You run a separate batch job periodically to compact those small files.

Two ways to compact:

Delta Lake OPTIMIZE command

(Built-in compaction for Databricks or Delta-compatible engines)

```
sql
CopyEdit
OPTIMIZE delta.`/path/to/table`
ZORDER BY (user_id)
1.
```

Manual coalesce + overwrite (if OPTIMIZE isn't available)

```
python
CopyEdit
df = spark.read.format("delta").load("/path/to/table")
```

df.coalesce(1).write.mode("overwrite").format("delta").save("/tmp/co
mpacted")

2.

How You Schedule It:

• Run daily or hourly via Airflow, Apache Oozie, or a simple cron job.

Where is the final data stored?

Still in the same Delta table directory, like /mnt/delta/transactions.

But only the **newly compacted files** are marked active in the _delta_log version file.

Old small files:

- Are retained temporarily (until vacuum)
- But not used for query results anymore

🔐 Column Consistency Check — your concern:

"Won't merging files with different column names/types break things?"

Answer: It won't break — if the schema is evolved properly.

Delta enforces schema consistency during writes. If your data has schema drift:

Use:

```
python
CopyEdit
spark.conf.set("spark.databricks.delta.schema.autoMerge.enabled",
"true")
```

- Or explicitly cast/align schema before writes.
- During compaction, Delta already knows the **active schema** from metadata (_delta_log). Only compatible files are read + merged.

If a file has incompatible schema \rightarrow compaction will fail unless schema evolution is handled correctly.

Metric	Before	After
# of Files	10,200	53
Read Latency	14s	2.1s
Metadata Scan Time	3.5s	0.5s
Problem	Delta + Merge Fixes	Compaction Fixes
	Delta - Merge Fixes	Compaction rixes
Exactly-once (deduplication)	✓ Yes	X No
Exactly-once (deduplication)	✓ Yes	X No
Exactly-once (deduplication) Handling CDC events	✓ Yes ✓ Yes	X No

Q5. Joining Streaming Facts with Batch Dimensions

Problem:

Need to enrich streaming data (e.g., user events) with **slower-changing batch data** (e.g., user profiles)

Fix:

- Use **broadcast join** with periodic reload of batch dimension
- Use temp view or DF reload every few mins i.e Periodic Reload

Bonus: Periodic Reload

The batch dimension might change (e.g., user tier updated).

So you should:

- Reload it every 5–10 mins inside a scheduled job or trigger
- Broadcast the refreshed DF

Q6. Using AQE in Streaming Jobs

1. Skew Join Handling

- If streaming data is skewed (e.g., some user_id has too many events), Spark splits the skewed partition and avoids long straggler tasks.
- W Helps when one key receives too much data in streaming joins.

2. Dynamic Join Strategy Switching

- Suppose Spark initially planned a Sort-Merge Join.
- But during actual stream processing, the **batch dimension table is small enough** for a Broadcast Join.
- Spark automatically switches to a broadcast join to optimize.

3. Partition Coalescing

- Streaming often creates small files or many partitions.
- AQE dynamically coalesces partitions to reduce shuffle and I/O costs.

Q7. Common Drift Challenge in Streaming Pipelines

Scenario:

Kafka source starts adding new fields → jobs fail

Fixes:

- Use **Delta Lake schema evolution** (mergeSchema)
- Use external **schema registry** (e.g., Confluent + Avro)
- Add alerting on schema mismatch failures

• Use try/catch logic in parsing logic

Proactive:

- Add schema version column
- Auto-promote minor field changes

★ Scenario:

You pushed **bad data** (e.g., due to a bug in streaming logic or a batch job) into a **Delta table** in the past 2 hours. Now, you want to **undo** it.

✓ Delta Time Travel – Core Idea:

Delta Lake **keeps older versions** of your table (as snapshots). You can **"travel back"** in time to a specific version or timestamp.

Recovery Options:

Option 1: Overwrite Current Table

- Load an old version (e.g., version 387)
- Validate it
- Overwrite the current bad data

\red Option 2: Stage ightarrow Validate ightarrow Promote

- Load old version into a staging Delta table
- Run validations or unit tests
- Then **overwrite the prod table** or use it downstream safely

✓ Use Cases of Time Travel:

Use Case	Benefit
Revert corrupted writes	Quick rollback
Re-run jobs on past state	Supports reproducibility, debugging
Auditing data changes	Track who changed what and when
Compare versions	For schema drift or business validation

Key Takeaway:

- Delta Lake versioning gives streaming + batch / Streaming + Streaming / Batch
 + Batch rollback capability.
- It's critical for bug recovery, auditability, and safe reprocessing.