Quantization theory

- Dépendentization: transformation of analog signals to discrete outputs
- 2) Coding: Assign the outputs to a digital code.

Analog - 10 - Digital convertes (A/P) 8-bit, 10-bit, 12-bit, ...

Resolution: 2ⁿ n: bits of A/D converter.

Example: 3-bit AD: 23 = 8 lends. (Resolution)

Example 2:

The input voltage is in the range of 0-4 V. How can we use a 3-bit

AlD converter to analyze the imput voltage

Number of levels = 2 = 8

quantization			Coding
	Voltage	State	Binary code
	0-0.5	1	000
	0.5-1	2	001
	1-1.5	3	010
	1.5-2	4	01)
	2~2,5	5	100
	2.5-3	L	10)
	3-3.5	7	16
	3·5 - 4	8	[[]

- Input Voltage = 3.2 V => (ode 110
- Quantization size =
$$\frac{V_{max} - V_{in}}{2^n}$$
 => $\frac{4-0}{2^3}$ = 0.5 V
Using a 10-bit => $\frac{4-0}{2!}$ \(\tau_{oo4} \) V

1) Sensor: measures physical quantity & converts to voltage

a) non-inverting op-amp b) anuplify & isolate the output from input

3) low-pass filter: assumes the Vin has
(RC) high frequency voise

Analog to Digital Converters

- 1) Successive approximation converter
- 2) Flash Converter
- 1) Successive approximation converter

₩ = 5 <

$$6V \Rightarrow 0110$$

$$0(x^{2})+1(x^{2})+1(x^{2})+0(x^{2})=0+4+2+0=6$$

$$0-16V$$

=) It took 4 cycles to interpret the 4 digits. For n-bits, it will take a time of nT

Clock

This is time consuming (DIS)

=) ADVANTAGE: Require very for electronic components.