Variational Autoencoders (VAEs)

Jayin Khanna CSD662: ADL

Latent Variable Models & The Learning Goal

1. What is a Latent Variable Model?

We assume our observed data $D = \{x_1, x_2, ..., x_{\square}\}$ is generated from some true but unknown distribution $p_x(x)$.

A latent variable model explains this data by introducing an unobserved (latent) variable **z**.

$$p\theta(x) = \Sigma(z) p\theta(x, z)$$

or equivalently
 $p\theta(x) = \int_{C} z p\theta(x, z) dz$

Intuition:

- Discrete z (e.g., z ∈ {1, ..., M}):
 - The latent variable \mathbf{z}_i acts as a cluster assignment for each data point \mathbf{x}_i .
 - → Example: Gaussian Mixture Models (GMMs)
- Continuous z (e.g., $z \in \mathbb{R}^k$, with $k \ll d$):

The latent variable \mathbf{z}_i is a low-dimensional feature vector or compressed representation of \mathbf{x}_i .

→ Foundation of Autoencoders and Variational Autoencoders (VAEs)

<u>Example — Mixture of Gaussians (Discrete Latent Variable)</u> 1D Mixture of Gaussians

In a **1D** mixture of Gaussians, the latent variable **z** is discrete, and the prior **Pr(z)** is a **categorical distribution** with one probability $\lambda \Box$ for each possible value of **z**.

$$Pr(z = n) = \lambda \square$$

The **likelihood** of the data **x** given **z** = **n** is normally distributed with mean $\mu\Box$ and variance $\sigma\Box^2$:

$$Pr(x \mid z = n) = \mathcal{N}_x(\mu \square, \sigma \square^2)$$

By marginalizing over all possible latent variable values, we get the overall data distribution: $P_{Pr(x)} = \sum_{pr(x)}^{N} Pr(x, y = p)$

$$Pr(x) = \sum_{n=1}^{N} Pr(x, z = n)$$

$$= \sum_{n=1}^{N} Pr(x|z = n) \cdot Pr(z = n)$$

$$= \sum_{n=1}^{N} \lambda_n \cdot \text{Norm}_x[\mu_n, \sigma_n^2].$$

Interpretation:

From **simple components** (a prior over z and Gaussian likelihoods), we can construct a **complex multi-modal distribution**.

Each mode corresponds to a **cluster**, and the mixture weights $\lambda \Box$ control their relative importance.

Figure 17.1 Mixture of Gaussians (MoG). a) The MoG describes a complex probability distribution (cyan curve) as a weighted sum of Gaussian components (dashed curves). b) This sum is the marginalization of the joint density Pr(x, z) between the continuous observed data x and a discrete latent variable z.

Nonlinear Latent Variable Models

Continuous Multivariate Latent Variable Model

In the nonlinear latent variable model, both the data x and the latent variable z are continuous and multivariate.

Prior:

$$Pr(z) = \mathscr{N}_{z}(0, 1)$$

Likelihood:

The likelihood of \mathbf{x} given \mathbf{z} and parameters $\mathbf{\phi}$ is also Gaussian,

but its **mean** is a **nonlinear function** of **z**, modeled by a neural network $f[z, \phi]$, and its covariance is $\sigma^2 I$ (spherical):

$$Pr(x \mid z, \phi) = \mathcal{N}_x(f[z, \phi], \sigma^2I)$$

Marginalizing over z:

$$Pr(\mathbf{x}|\boldsymbol{\phi}) = \int Pr(\mathbf{x}, \mathbf{z}|\boldsymbol{\phi})d\mathbf{z}$$

$$= \int Pr(\mathbf{x}|\mathbf{z}, \boldsymbol{\phi}) \cdot Pr(\mathbf{z})d\mathbf{z}$$

$$= \int \text{Norm}_{\mathbf{x}} \left[\mathbf{f}[\mathbf{z}, \boldsymbol{\phi}], \sigma^{2} \mathbf{I} \right] \cdot \text{Norm}_{\mathbf{z}} \left[\mathbf{0}, \mathbf{I} \right] d\mathbf{z}.$$

Interpretation:

This can be viewed as an **infinite mixture of Gaussians**, where each **z** contributes a Gaussian centered at **f**[**z**, ϕ], weighted by **Pr**(**z**). The network **f**[**z**, ϕ] captures the key structure of the data, and σ ²I represents residual noise.

General Principle for Learning Latent Variable Models

Suppose we are given data

$$\mathcal{D} = \{x_i\}_{i=1}^n \quad \text{i.i.d.} \quad \sim p_X.$$

Let $p_{\theta}(x) = \int_{z} p_{\theta}(x, z) dz$ be a latent variable model. The goal is to estimate the model parameters θ given data \mathcal{D} .

$$\theta^* = \arg\min_{\theta} \mathrm{KL}(p_X || p_{\theta}).$$

Expanding the KL divergence:

ence: Dropping the constant entropy term
$$H(p_X) = -\int_x p_X(x) \log p_X(x) dx$$
 (independent of $\theta^* = \arg\min_{\theta} \left[\int_x p_X(x) \log \frac{p_X(x)}{p_{\theta}(x)} dx \right]$. $\theta^* = \arg\min_{\theta} \left[-\int_x p_X(x) \log p_{\theta}(x) dx \right]$.

● The KL minimization objective compares the true data distribution px with the model distribution pe. Minimizing it makes the model approximate the data as closely as possible.

$$heta^* = rg \max_{lpha} \mathbb{E}_{p_X}[\log p_{ heta}(x)].$$

Denoting the log-likelihood as $\ell(\theta) = \log p_{\theta}(x)$, this is precisely the **Maximum Likelihood** Estimation (MLE) principle:

$$heta^* = rg \max_{a} \ell(heta) = rg \max_{a} \mathbb{E}_{p_X}[\log p_{ heta}(x)].$$

In a latent variable model:

a latent variable model:
$$p_{ heta}(x) = \int_{z} p_{ heta}(x,z) \, dz,$$

so the log-likelihood involves integrating out the latent variable z.

Evidence Lower Bound (ELBO)

Jensen's Inequality

Jensen 5 Inequality:

$$\log E() \geq E \log ()$$

$$l(0) = \log E \left(\frac{p_0(x,t)}{q(z|x)}\right) \geq E \log \left(\frac{p_0(x,t)}{q(z|x)}\right)$$

$$denote \ win \ J_0(q)$$

$$l(0) \geq J_0(q), \ (alled \ the \ Evidence \ lower \ Bound \ (ELBO)$$

$$J_0(q) \ is \ a \ fin \ q \ both \ the \ model \ parameters & 2 \ the \ densite on \ 7, \ q(z|x)$$

ENCODER AND DECODER IN VAEs

The Reparameterization trick

There is one more complication; the network involves a sampling step, and it is difficult to differentiate through this stochastic component. However, differentiating past this step is necessary to update the parameters θ that precede it in the network.

Fortunately, there is a simple solution; we can move the stochastic part into a branch of the network that draws a sample ϵ^* from $\operatorname{Norm}_{\epsilon}[0, \mathbf{I}]$ and then use the relation:

$$\mathbf{z}^* = \boldsymbol{\mu} + \boldsymbol{\Sigma}^{1/2} \boldsymbol{\epsilon}^*, \tag{17.25}$$

det
$$q_{q}(z|x) = \mathcal{N}(z; \mathcal{M}_{p}(x), \leq_{q}(x))$$

$$\Rightarrow \mathcal{M}_{q}(z)$$

Params of $q_{q}(z|x)$

for a given input x

$$\Rightarrow \leq_{p}(x)$$

Let $E \subseteq \mathcal{N}(0, \mathbb{T})$, then

$$z = \mathcal{M}_{q}(x) + \leq_{p}(x) \in = q(z)$$

$$z \subseteq \mathcal{N}(z; \mathcal{M}_{p}(z), \leq_{q}(x))$$

then we have $X_i \in \mathbb{R}^d$; $Z_i \in \mathbb{R}^k$; $M_{\beta}(x_i) \in \mathbb{R}^k$; $Z_{\beta}(x_i) \in \mathbb{R}^{k \times k}$ $P_{\beta}(x_i)$ $P_{\beta}(x_i)$ $P_{\beta}(x_i)$

Xi Ei ~N henceg

 $\mathcal{E}_{i} \sim N(0, \Sigma)$ $\mathcal{E}_{i} = \mathcal{M}_{\beta}(x_{i}) + \mathcal{E}_{\beta}(x_{i}) \cdot \mathcal{E}$

 $\begin{array}{c|c}
 & po(x|z) \\
 & \leq_{\phi}(x) \cdot \xi
\end{array}$

params of po(x/z)

 $\nabla \phi \stackrel{\mathcal{E}}{=} \log \operatorname{bo}(x|z) = \nabla \phi \stackrel{\mathcal{E}}{=} \log \operatorname{bo}(x|g(z))$ $= \nabla \phi \left(\frac{1}{M} \stackrel{\mathcal{E}}{=} \log \operatorname{bo}(x|g(z)) \right)$

parameterize
$$p_{\Theta}(x|z)$$
 tria some known distribution \triangle use the decoder to output its params

$$\underbrace{\text{Eg:}}_{P_{\Theta}}(x|z) = \mathcal{N}(x; \widehat{X}_{\Theta}(z), \underline{\Gamma})$$

$$=) \log p_{\Theta}(x|z) = \log \left(\frac{1}{(2\bar{N})^{d/2}} \exp^{-\left[\left(1 \times - \widehat{X}_{\Theta}(z)\right)\right]_{2}^{2}}\right)$$

$$= -\left[1 \times - \widehat{X}_{\Theta}(z)\right]_{2}^{2}$$
hence g

To compute log po(x lg(&)):

$$= \bigvee \phi \left[-\frac{1}{M} \sum_{j=1}^{N} |X_i - X_0(z_j)|_2 \right]$$
Where $Z_i = \mathcal{M}\phi(X_i) + \mathcal{E}_i \not\subseteq \phi(X_i)$,
$$\mathcal{E}_1, \mathcal{E}_2, -\cdot, \mathcal{E}_j & \mathcal{N}(0, \mathbb{I})$$

Training the Network:

1. The Encoder


```
po(z): hatent prior, typically assumed to be N(0, I)
· : Dul [ 90(21x) 11 po(2)]
 = Onl (Ma(x), Ep(x)) N(O, I)
             Can be Estimated
```

2. The Decoder

