Centrality and Other Measures

CS 579 Online Social Network Analysis

Dr. Cindy Hood 9/23/25

Homework Assignments

- HW #3 Network Metrics
 - Assigned soon
 - Good prep for Exam 1
- HW #4 Chicago Community Areas + Census Data
 - ▶ You may work in groups up to 4 students (no exceptions) on this hw
 - Assigned later this week
- Please contact TAs with questions on hw grading

Exams and Final Project Poster Presentation

- Exam 1 Oct 9 in class
- Exam 2 Dec 2 in class
- ► Final Project Poster Session Dec 4 in class
- Online students (sections 2 and 3) will have remote options

Teaching Assistants

- Siva Krishna Golla
 - ► sgolla2@hawk.illinoistech.edu
 - Mondays 2-3pm on zoom
- Khush Dhiren Patel
 - kpatel210@hawk.illinoistech.edu
 - ► Wednesdays 11-12 online
- Aswith Sama
 - <u>asama@hawk.illinoistech.edu</u>
 - ► Thursdays 3-4pm on zoom

Reference

https://link.springer.com/book/10.1007/978-3-031-84712-7

Recall - Degree Centrality

- Total number of connections a vertex has
 - Degree of vertex
 - ► Total number of edges connected to a vertex
- Directed network
 - ▶ In-degree
 - Out-degree
- Can be considered a popularity measure
 - ► Is it a good popularity measure?

Recall - Betweenness Centrality

Another way of looking at centrality is by considering how important nodes are in connecting other nodes

Linton Freeman

$$C_b(v_i) = \sum_{s \neq t \neq v_i} \frac{\sigma_{st}(v_i)}{\sigma_{st}}$$

 σ_{st} The number of shortest paths from vertex s to t – a.k.a. information pathways

 $\sigma_{st}(v_i)$ The number of **shortest paths** from s to t that pass through v_i

Recall - Closeness Centrality

The intuition is that influential/central nodes can quickly reach other nodes

These nodes should have a smaller average shortest path length to others

Linton Freeman

Closeness centrality:
$$C_c(v_i) = \frac{1}{\overline{l}_{v_i}}$$

$$\bar{l}_{v_i} = \frac{1}{n-1} \sum_{v_j \neq v_i} l_{i,j}$$

Page Rank Centrality

- Measure of global centrality
 - Uses entire network to assess the significance of single node
- Assesses node's relevance based on importance of nodes that link to it
- Iterative process that estimates a node's importance in the network
 - Calculate centrality of a node based on importance of neighbors

Page Rank Calculation (Simple)

To begin with, each node is equally important:

$$PR_i^0 = \frac{1}{n}, \forall i$$
 n = number of nodes/pages

- Each node distributes its centrality equally to the nodes it links to (outgoing)
- Page Rank of a node is calculated by adding the Page Rank fractions of the vertices that have edges to it from the previous iteration

$$PR_i^{t} = \sum_{j=1}^{n} a_{ji} \frac{PR_j^{t-1}}{d_j^{out}}, \forall t \in \{1,k\}$$
 t = iteration

where d_j^{out} is the number of hyperlinks on the node/page j.

Page Rank Calculation

► The first iteration is

$$PR_i^1 = \frac{1}{n} \sum_{j=1}^n a_{ji} \frac{1}{d_j^{out}}$$

- Iterations continue until Page Rank values converge
 - ▶ When the difference between PR^{t+1} and PR^t is very small and is converging to 0

Page Rank Example

Fig. 3.7 Graph example

 Table 3.2 Example of PageRank computation (second step)

Nodes	Iteration 1	Iteration 2	Iteration 3	Final rank
A	1/5	1/20	1/40	5
В	1/5	5/20	3/40	4
С	1/5	1/10	5/40	3
D	1/5	5/20	15/40	2
E	1/5	7/20	16/40	1

PRo = 5 (and down to alborate and down to a d = 15(0+1+1+1+1-2+0)= 1/20

Node Strength (for weighted graphs)

For an undirected network, the W matrix defines the strength s_i of a node as the sum of the weights of the edges incident on a node as follows:

$$s_i = \sum_{j \in \mathbb{N}} w_{ij} \tag{3.12}$$

If the network is directed, there are two factors that determine the node strength: the quantity of incoming (s_i^{in}) and outgoing (s_i^{out}) weighted edges:

$$s_{i}^{in} = \sum_{j} w_{ji}$$

$$s_{i}^{out} = \sum_{j \in \mathbb{N}} w_{ij}$$

$$s_{i} = \sum_{j \in \mathbb{N}} w_{ij}$$
(3.13)

Total strength is finally defined as:

$$s_i = s_i^{in} + s_i^{out} \tag{3.14}$$

Node Strength

- Similar to degree, can obtain the strength distribution P(s)
- ▶ In case of directed networks, two distributions
 - $ightharpoonup P(s^{in})$
 - ► P(s^{out})
- Nodes with significantly greater strength than the rest of the network's nodes are referred to as hubs

Where might we use weighted graphs?

Recall Node's Neighborhood

A nodes neighborhood includes the group of nodes that it is connected to

$$N_i(G) = \left\{j : g_{ij} = 1\right\}$$

- Studying the neighborhood aids in identifying nodes or communities of nodes that share specific characteristics
- When individuals are motivated to emulate the behavior of their neighbors, cascading effects can occur
 - Can be observed when a new behavior initiates with a small group of early adopters and then spreads radially outward through the network

Neighborhood Degree Sequence

The neighborhood degree sequence for the node i, s_i , is derived from:

$$s_{i} = \left\{k_{1}^{i}, k_{2}^{i} k_{3}^{i} \dots, k_{n}^{i}\right\}$$
 (3.19)

with k_i equal to the degree of the nodes to which i is connected. Being a sequence of degrees:

$$k_1^i \le k_2^i \le k_3^i \dots \le k_n^i \tag{3.20}$$

Neighborhood Degree Sequence

- Analysis
 - May help in examining variance of neighborhood degree sequences
 - Context of hierarchical complexity
 - May analyze neighbors of same degree to determine how similar they are

Example Neighborhood Degree Sequence

Fig. 3.4 Graph example

Extra Credit #4: List degree sequences for each node

Section 1: in class only

Sections 2 and 3: submit to canvas

by 9/25

