GRILĂ DE NOTARE - Clasa a XII –a Problema I

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Soluție problema I – <i>Optică pe bucăți de lentilă</i>		Punctaj
l.a	Pentru: raza calotei sferice $r = \sqrt{h(2R - h)}$	0,50p	2,50p
	distanța focală a lentilei $f = \frac{R}{(n_{sticle} - 1)}$	0,50p	
	Obs: deoarece sursa punctiformă de lumină este așezată la dublul distanței focale față de lentilă imaginea se va forma la dublul distanței focale. Cum grosimea lentilei este sub pragul stabilit prin enunț pentru precizia rezultatelor, imaginea se va afla la $d=1m$ de O sau V - cele două puncte fiind coincidente în sensul preciziei recomandate.	0,75p	
	rezultat final: $r \approx 2.7 \times 10^{-2} m$	0,25p	
	f = 0.5 m	0,25p	
l.b	d = 1 m Pentru:	0,25p	1,00p
	S S ₂ S ₁		
	$S_1S_2 = 2 \cdot a$	0,50p	
	rezultat final: $S_1S_2 = 2 \times 10^{-3} m$	0,50p	
l.c	Pentru: $\begin{cases} x_1^{(1)} = -(d-\delta) = -(2f-\delta) \\ x_1^{(2)} = -(d+\delta) = -(2f+\delta) \end{cases}$ distanțele de la sursă la cele două semilentile $\begin{cases} x_1^{(1)} = -(d-\delta) = -(2f+\delta) \\ x_1^{(2)} = -(d+\delta) = -(2f+\delta) \end{cases}$	1,00p	3,50p
	$\begin{cases} x_2^{(1)} = \frac{x_1^{(1)} \cdot f}{x_1^{(1)} + f} = \frac{-(2f - \delta) \cdot f}{-f + \delta} \\ x_2^{(2)} = \frac{x_1^{(2)} \cdot f}{x_2^{(2)} + f} = \frac{-(2f + \delta) \cdot f}{-f - \delta} \end{cases}$	1,00p	
	distanța Δ dintre cele două imagini $ \begin{cases} \Delta = \left \frac{-(2f - \delta) \cdot f}{-f + \delta} - \frac{-(2f + \delta) \cdot f}{-f - \delta} \right \\ \Delta = \frac{2 \cdot \delta \cdot f^2}{f^2 - \delta^2} = \frac{2\delta}{1 - \left(\delta^2/f^2\right)} \approx 2\delta \end{cases} $	1,00p	
	$\Delta = 2a$	0,25p	
	rezultat final: $\delta = a = 1 \times 10^{-3} m$	0,25p	
l.d	Pentru: sistemul echivalent:	0,50p	1,50p

lentila centrală produce o imagine la distanța $\begin{cases} x_1^{(3)} = -d = -2f \\ x_2^{(3)} = \frac{x_1^{(3)} \cdot (f/2)}{x_1^{(1)} + (f/2)} \\ x_2^{(3)} = \frac{2f}{3} \end{cases}$	0,25p
rezultat final: imaginile sunt plasate în punctele de coordonate $\begin{cases} S_1^{(d)} = \left(1m, 4 \times 10^{-3} m\right) \\ S_2^{(d)} = \left(1m, -4 \times 10^{-3} m\right) \\ S_3^{(d)} = \left(0,33 m, 0\right) \end{cases}$	0,75p
Pentru: iluminarea determinată în centrul ecranului de către sursa S având intensitatea I $\begin{cases} E_{direct} = \frac{I}{(D+d)^2} \\ E_{direct} = \frac{I}{(8f)^2} \end{cases}$	0,25p
S_1,S_2,S_3 - imaginile furnizate de cele două semilentile. Dacă porțiunile Σ_1,Σ_2 din lentile sunt înnegrite, singura imagine care apare este aceea marcată cu S_3 .	
Σ ₁ S ₃ P Q Ecran	
distanța dintre sursa S_3 și ecranul de observare $S_3 Q = D - \frac{2f}{3} = 6f - \frac{2f}{3} = \frac{16f}{3}$	0,25p
fluxul de lumină determinat de sursa S pe suprafața Σ , de suprapunere între lentile $\begin{cases} \varphi_{\Sigma} = \frac{I \cdot \Sigma}{d^2} \\ \varphi_{\Sigma} = \frac{I \cdot \Sigma}{df^2} \end{cases}$	0,50p
o sursă ipotetică, având intensitatea luminoasă I_{img} , așezată în punctul S_3 , ar determina la nivelul suprafeței de suprapunere între lentile același flux luminos	
$\left\{egin{aligned} arphi_{\Sigma} &= rac{I_{img} \cdot \Sigma}{\left(rac{2f}{3} ight)^2} \ arphi_{\Sigma} &= 9 \cdot rac{I_{img} \cdot \Sigma}{f^2} \end{aligned} ight.$	0,50p
intensitatea sursei S_3 de lumină $I_{img} = \frac{I}{9}$	0,50p

iluminarea determinată în centrul ecranului de către sursa S_3 $\begin{cases} E_{lentila} = \frac{I_{img}}{(S_3Q)^2} \\ E_{lentila} = \frac{I/9}{(16f/3)^2} \\ E_{lentila} = \frac{I}{(16f)^2} \end{cases}$	0,50p	
rezultat final: $\frac{E_{lentila}}{E_{direct}} = \frac{1}{4}$	0,50p	
I.f Pentru:		2,50p
S ₁ M ₁ P M ₂ N ₁ Ecran	0,50p	
$\begin{cases} S_1 Q = a \\ S_1 Q = 1 \times 10^{-3} m \end{cases} \begin{cases} OS_1 = d \\ OS_1 = 1m \end{cases}$	0,25p	
distanța $\begin{cases} OQ = \sqrt{(OS_1)^2 - (QS_1)^2} \\ OQ = \sqrt{d^2 - a^2} \\ OQ \cong 1m \end{cases}$ distanța de la planul surselor marcate cu S_1 și S_2 la ecran $\begin{cases} \Delta' = QP = D - d \\ \Delta' = 2m \end{cases}$	0,25p 0,25p	
zona de pe ecran unde apare interferența (zona iluminată simultan de ambele surse) este M_1M_2 . relația de asemănare în triunghiurile SS_1S_2 și SM_1M_2 $\frac{2a}{2d} = \frac{M_1M_2}{d+D}$ $\begin{cases} M_1M_2 = \frac{a}{d}(d+D) \\ M_1M_2 = 4 \times 10^{-3} \ m \end{cases}$	0,25p	
rezultat final: - sistemul celor două imagini ale fantei din S este echivalent cu un dispozitiv Young cu fante paralele situate la distanța $2a$ una de alta și cu distanța fante – ecran Δ un astfel de dispozitiv Young formează o figură de interferență cu franjă luminoasă pe axul optic principal al sistemului, în centrul figurii de interferență $- \text{lărgimea câmpului de interferență } M_1 M_2 = 1 \times 10^2 \ m \ .$ - interfranja dispozitivului Young echivalent este $\begin{cases} i = \frac{\lambda \cdot \Delta}{2a} \\ i = \frac{650 \times 10^{-9} \times 2}{2 \times 10^{-3}} = 6,5 \times 10^{-4} \ m \end{cases}$	0,25p 0,25p 0,25p 0,25p	
Total problema I		14p

Prof. Drd. Delia Davidescu – Inspector de Fizică –Serviciul Național de Evaluare și Examinare– MEdC– București Prof. Dr. Adrian Dafinei – Facultatea de Fizică – Universitatea București Prof. Sorin Trocaru - Inspector General de Fizică – MEdC – București

GRILĂ DE NOTARE - Clasa a XII –a Problema II

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Soluție problema II – <i>Camera digitală</i>		Punctaj
II.a	Pentru: $\Delta x = f \cdot \theta_{rezolvat} = 1,22 \frac{f \cdot \lambda}{D}, \text{ unde } \Delta x \text{ reprezintă distanța dintre două puncte din imaginea formată}$	2,00p	4,00p
	în planul focal al lentilei și care mai pot fi distinse unul față de celălalt	0,50p	
	$\Delta x = 1{,}22\lambda \cdot F\#$	1,00p	
	Δx_{\min} se obține pentru $F\#=2$	0,50p	
	rezultat final: $\Delta x_{\min m} = 1,22 \times 500 nm \times 2 = 1,22 \mu m$		
II.b	Pentru: $L^2 = N \cdot (\Delta x_{\min})^2$	1,00p	1,50p
	rezultat final: $N \cong 823 MPix$	0,50p	
II.c	Pentru: expresia distanței δ dintre două puncte din imaginea tipărită $\delta = \frac{d}{N_{puncte}}$, unde	1,00p	2,50p
	$d = 1 inch = 25,4 mm \text{ şi } N_{puncte} = 300$		
	$\frac{\delta}{z} = tg\phi \cong \phi$	1,00p	
	rezultat final: $z \cong 14,53 cm$	0,50p	
Total pro	blema II		8p

Prof. Drd. Delia Davidescu – Inspector de Fizică –Serviciul Național de Evaluare și Examinare– MEdC- București

Prof. Dr. Adrian Dafinei – Facultatea de Fizică – Universitatea București

Prof. Sorin Trocaru - Inspector General de Fizică – MEdC – București

GRILĂ DE NOTARE - Clasa a XII –a Problema III

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Pentru: puterea electrică pe unitatea de arie obținută prin conversie $P_{utilelectric}/\Delta A = \eta_Ep = 240~W/m^2$ $P_{electriczi} = \left(P_{utilelectric}/\Delta A\right)S_{zi}$	0,50p	
$P_{electriczi} = \left(P_{utilelectric} / \Delta A\right) S_{zi}$		1
	0,25p	3,50p
suprafața panourilor necesară pentru asigurarea energiei electrice în timpulul $s_{zi} = 5 m^2$	0,25p	
suprafața panourilor necesară pentru asigurarea energiei electrice în timpulul nopții $S_{noapte} = 10 m^2$	0,25p	
suprafața totală a panourilor solare electrice $S = S_{zi} + S_{noapte} = 15m^2$ nr. de celule solare ce trebuiesc legate în serie, pentru obținerea tensiunii nominale necesare	0,25p	
funcționării consumatorilor $\begin{cases} n = \frac{U}{E} \\ n = 25 \end{cases}$	0,5p	
nr. total de celule solare necesare alimentării electrice $N = \frac{S}{A}$	0,50p	
rezultat final: $N = 375 celule$, $n = 25 celule$ în serie	1,00p	
Pentru:	0,25p	1,75p
suprafața panourilor solare termice $\Sigma - S = s = 25 m^2$ puterea termică furnizată de aceste panouri solare $\begin{cases} P_{termic} = \eta_{termic} \cdot p \cdot (\Sigma - S) \\ P_{termic} = 15kW \end{cases}$	0,50p	1,100
$m_{apa} c_{apa} \Delta \theta = P_{termic} t$	0,50p	
rezultat final: $m_{apa} \cong 3428,6 \ kg$	0,50p	
Pentru: energia produsă (ziua şi noaptea) de panourile solare electrice $W_{electric} = s \cdot x \cdot p \cdot \eta_E \cdot t$, unde x este fracția din suprafața disponibilă a acoperișului alocată panourilor solare electrice	0,50p	2,75p
energia produsă de panourile termice $W_{termic} = s \cdot (1 - x) \cdot p \cdot \eta_T \cdot t$	0,50p	
energia termică folosită ziua $W_{zi,termic} = s \cdot p \cdot t(1-x) \cdot \eta_T$	0,25p	
energia termică folosită noaptea (provenită din energia electrică) $W_{noapte,termic} = s \cdot p \cdot t \cdot x \cdot \eta_E$ Obs: deoarece randamentul conversiei termice este mai mare decât cel al conversiei electrice, este neeconomică folosirea pe timpul zilei a energiei electrice pentru obținerea de energie termică	0,25p	
$W_{zi,termic} = W_{noapte,termic}$	0,25p	

$\begin{cases} (1-x) \cdot \eta_T = x \cdot \eta_E \\ x = \frac{\eta_T}{\eta_T + \eta_E} \\ x = \frac{5}{7} \end{cases}$ 0,25p	
puterea termică furnizată în acest regim, $W_{zi-noapte,termic} = p \cdot s \cdot x \cdot \eta_E$ 0,25p	
rezultat final: $W_{zi-noapte,termic} = 4,28 kW$ 0,50p	
Total problema III	8p

Prof. Drd. Delia Davidescu – Inspector de Fizică –Serviciul Național de Evaluare și Examinare– MEdC– București Prof. Dr. Adrian Dafinei – Facultatea de Fizică – Universitatea București Prof. Sorin Trocaru - Inspector General de Fizică – MEdC – București