College of Industrial Technology King Mongkut's University of Technology North Bangkok

เล	ชที่นั่งส อบ	

Final	Exa	mina	tion	of	Sem	nester	1	
Subje	ct.	3411	51	Flo	ctric	Circui	itc I	

Date: 17 October 2019

Year: 2019

Section: 05-06

Time: 10.00-12.00

Name	_ID:	-	-ield	of	Study:

Directions: The test is designed to measure your comprehension. The test is divided into 3 sections. There will be 10 pages (including this page) and they are worth 55

- · Answer the questions on this test papers.
- Books, documents and lecture notes are not allowed.
- You must be in the room for one hour after the exam is started and, while taking the exam, you cannot go out except in an emergency case.
 Before leaving, make sure you do not bring this test outside.
 Do not use any electronic communication device.
 Calculators can be used in this test.

Now begin the test.

Cheating in the exam is considered an extremely serious offence which will result in expulsion from the University. Part 1 (10 points) True/False

Instruction: Mark "True" or "False" for the following questions in THE PROVIDED ANSWER SHEET (SEE LAST PAGE).

- 1. When using the superposition theorem, each ideal current source must be replaced by an open circuit.
- 2. Norton's theorem permits the reduction of any two-terminal linear dc network to one having a single voltage source and series resistance.
- 3. For any physical network, we can experimentally measure the open-circuit voltage across the load terminals E_{Th} .
- 4. The total capacitance in series and parallel can be found in the same way as conductance in series and parallel.
- 5. All practical sources have some internal resistance.
- 6. For loads connected directly to a dc-voltage supply, maximum power will be delivered to the load when the Thévenin resistance is equal to the internal resistance of the 7. At the maximum power, the efficiency is also 100%.
 8. Capacitance is a measure of a capacitor's ability to store charge inside the dielectric.
 9. The unit of magnetic flux is in real to the content of the content of

- 9. The unit of magnetic flux is in webers (Wb) 1831 system.
- 10. Open circuit between terminals is equivalent to zero voltage.

Part 2 (20 points) Multiple choices

Instruction: Mark the correct answer for the following questions in THE PROVIDED ANSWER SHEET.

1. Convert the current source to a voltage source of circuit in Figure 1.

- (A) 12 V and 2 Ω (B) 6 V and 2 Ω
- (C) 12 V and 4 Ω (D) 6 V and 4 Ω

2. What is the determinant of this matrix?

2. What is the determinant of this matrix?
$$\begin{bmatrix} 2 & 1 & 4 \\ 4 & 5 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$
(A) 0 (B) 40 (D) 20
3. Find the value of x in the matrix below:
$$x + 0y - 2z = -1$$

$$0x + 3y + 1z = 2$$

$$x + 0y - 2z = -1$$
$$0x + 3y + 1z = 2$$
$$1x + 2y + 3z = 0$$

- (A) x=-15/13
- (B) x=15/13
- (C) x=9/13
- (D) x=25/13

- 4. See Figure 2. At mesh #1, which of the following terms describes the voltage across the 6 Ω resistor when using the mesh analysis?
 - (A) $(6 \Omega) (I_2 + I_1)$
- (B) $(6 \Omega) (I_2 I_1)$
- (C) $(6 \Omega)(I_1 + I_2)$
- (D) $(6 \Omega) (I_1 I_2)$
- 5. See Figure 2. The equation obtained from performing mesh analysis on mesh #1 is:
 - $(A) -7l_1 + 6l_2 = 5$
- (B) $-7l_1+6l_2=10$
- (C) $6l_1 8l_2 = -10$
- (D) $61_1-81_2=5$
- 6. See Figure 2. The equation obtained from performing mesh analysis on mesh #2 is:
 - $(A) -7l_1 + 6l_2 = 5$
- (B) $-7l_1+6l_2=10$
- (C) $6l_1 8l_2 = -10$
- (D) $6l_1-8l_2=5$

Figure 3.

- 7. From Figure 3, what is the KVL equation of the supermesh?
 - (A) $10l_1 + 12l_2 = 32$
- (B) $10l_1 + 2l_2 = 32$
- (C) $2l_1+2l_2=32$
- (D) $10l_1+20l_2=32$
- 8. Find the value of voltage V_s from the figure below.

- (A) 0 V
- (B) 8 V
- (C) 18 V
- (D) 28 V
- 9. What the following is correct when all three resistors in delta network are equal?
 - (A) $R_{\Delta} = 3R_{Y}$
- (B) $R_{\Delta} = 3/R_{Y}$
- (C) $R_{\Delta} = R_{Y}$
- (D) $R_{\Delta} = 1/R_{Y}$
- 10. E_{th} is the ______ voltage at the two-terminal network.
 - (A) short circuit
- (B) load
- (C) fully loaded
- (D) open circuit

ir. Thevenin's the		you can replac	e a DC net	work with an	equivalent
circuit consisting					
	urce and a series r				
	arce and a series re				
(C) a current sou	arce and a parallel	resistor.			
(D) a voltage sou	urce and a paralle	l resistor.			
12. Find the R_{TH} of t	he figure below.				
	$R_1 = \begin{cases} 0.8 \text{ k}\Omega^{R_2} \\ - \\ E_1 = \begin{cases} 6 \text{ V } E_2 \end{cases} \end{cases}$			• a	
 (A) 2 kΩ 13. Norton's theorem (A) open circuit v (B) short circuit v 	(B) 6.7 k Ω	(C) 3	kΩ	্যু নির্বৃত্তি এই	SU SUSSI
13 Norton's theore	m states that the I	Norton current	a Equal to		
(A) open circuit	roltage at the net	work terminals	s equal to_		
(B) short circuit v	voltage at the net	work terminals			
	current at the net				
	current at the netv				
(D) Short circuit (current at the net	work terminats.			
14. For loads conn	ected directly to	a dc-voltage	supply, m	aximum pov	ver will be
delivered to the	load when the _		is equal t	to the interna	l resistance
of the source.					
(A) total resistan	ce	(B) Norton re	esistance		
(C) load resistance	ce	(D) Thévenin	resistance		
15. A capacitor has	a capacitance of	1 farad if 1	0	of charge is de	eposited on
the plates by a	ootential differenc	e of 1 volt acro	ss the plate	ès.	
(A) particle	(B) amp	(C) at	tom	(D) coul	lomb

1 0

- 16. What is the total inductor for two series inductors of 2 H and 2 H ?
 - (A) 1 H
- (B) 2 H
- (C) 4 H

- 17. What is the unit of magnetic flux in SI unit?
 - (A) Farad
- (B) Hertz
- (C) Henry
- (D) Weber
- 18. What are the values of resistors after converting the delta to star ?

- (A) all in 1 Ω
- (B) all in 2 Ω
- (C) all in 3 Ω
- (D) all in 6 Ω
- 19. What is the correct property from the circuit below?

- (A) $Q_1 = Q_2 = Q_3$

- (D) $E = Q_T C_T$
- 20. Find the total resistance RT of the figure below.

- (A) 3.27 Ω
- (B) 6.7 Ω
- (C) 4 Ω
- (D) 6 Q

Part 3 (25 points) Calculation

Instruction: Show the mathematical expression and answers of following problems.

1. (5 points) For the network in below, determine the voltage across capacitor C_4

2. (5 points) Determine the current I_1 , I_2 and I_{R2} by using mesh analysis method.

3. (5 points) Use Δ to Y of 3 k Ω resistors in the network below and find the current Is.

4. (5 points) Convert the Δ of 6.8 k Ω resistors in network below to a Y configuration and find the current I.

- 5. (5 points)
- (a) Find the Thevenin equivalent circuit at resistance R=10 Ω .
- (b) Determine the voltage of $R=10\Omega$ by using Thevenin method.

รงยาลัยเทคโนโลยีอุตสาหกรรม

Instructors Assoc. Prof. Dr. Titipong Lertwiriyaprapa,
Asst. Prof. Dr. Kittisak Phaebua

Answer Sheet		
Name:	ID:	
Subject: 341151 Electric Circuits I		เลขที่นั่งสอบ

Part 1

Part 2

	True	False
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		

	А	В	С	D	
1.					
2.					
3.					
4.					
5.					
6.					
7.					MATHOUS S
8.			. <	250	ब हु, ,
9.		Nev.	4/57	6,	
10	18178	De.			
11.					
12.					
13.					
14.					
15.					
16.					
17.					
18.					
19.					
20.					