Chapter 4 Problem 22

Alan Arnholt

March 27, 2014

Let
$$X_1, X_2, \dots X_n \stackrel{iid}{\sim} F$$
 with corresponding pdf $f(x) = 3x^2, 0 \le x \le 1$.

(a) Find the pdf for X_{\min} .

2/8

Alan Arnholt Chapter 4 Problem 22 March 27, 2014

Let $X_1, X_2, ... X_n \stackrel{iid}{\sim} F$ with corresponding pdf $f(x) = 3x^2, 0 \le x \le 1$.

- (a) Find the pdf for X_{\min} .
- (b) Find the pdf for X_{max} .

2/8

Alan Arnholt Chapter 4 Problem 22 March 27, 2014

Let $X_1, X_2, \dots X_n \stackrel{iid}{\sim} F$ with corresponding pdf $f(x) = 3x^2, 0 \le x \le 1$.

- (a) Find the pdf for X_{\min} .
- (b) Find the pdf for X_{max} .
- (c) If n=10, find the probability that the largest value, $X_{\rm max}$, is greater than 0.92

Alan Arnholt Chapter 4 Problem 22 March 27, 2014 2 / 8

Let $X_1, X_2, ... X_n \stackrel{iid}{\sim} F$ with corresponding pdf $f(x) = 3x^2, 0 \le x \le 1$.

- (a) Find the pdf for X_{\min} .
- (b) Find the pdf for X_{max} .
- (c) If n=10, find the probability that the largest value, $X_{\rm max}$, is greater than 0.92
- (d) If n = 10, find the expected value of X_{max} .

Alan Arnholt Chapter 4 Problem 22 March 27, 2014 2 / 8

$f_{\min}(x)$

(a) The pdf for X_{\min} is:

$$f_{\min}(x) = n(1 - F(X))^{n-1} f(x)$$
 (1)

Since $F(x) = \int_0^x 3t^2 dt = x^3, 0 \le x \le 1$, it follows that

$$f_{\min}(x) = n (1 - x^3)^{n-1} 3x^2, 0 \le x \le 1$$

Alan Arnholt Chapter 4 Problem 22 March 27, 2014 3 / 8

$f_{\max}(x)$

(b) The pdf for X_{max} is:

$$f_{\max}(x) = nF^{n-1}(x)f(x) \tag{2}$$

Since $F(x) = \int_0^x 3t^2 dt = x^3, 0 \le x \le 1$, it follows that

$$f_{\max}(x) = n(x^3)^{n-1} 3x^2, 0 \le x \le 1$$

Alan Arnholt Chapter 4 Problem 22 March 27, 2014 4 / 8

$P(X_{\rm max} > 0.92)$

(c) Using (2) gives:

$$f_{\text{max}}(x) = 10(x^3)^{10-1}3x^2 = 30x^{29}, 0 \le x \le 1$$

$$P(X_{\text{max}} > 0.92) = \int_{0.92}^{1} 30x^{29} dx$$

f <- function(x) $\{30*x^29\}$ ans <- integrate(f, 0.92, 1)\$value ans

[1] 0.918

$$P(X_{\text{max}} > 0.92) = \int_{0.92}^{1} 30x^{29} dx = 0.918.$$

Alan Arnholt Chapter 4 Problem 22 March 27, 2014 5 / 8

$E[X_{\rm max}]$

(d)
$$E[X_{\text{max}}] = \int_0^1 x_{\text{max}} f_{\text{max}}(x) = \int_0^1 30x^{30}$$

$$E[X_{\rm max}] = 0.9677$$

Alan Arnholt Chapter 4 Problem 22

6 / 8

What does the pdf look like?

Alan Arnholt Chapter 4 Problem 22 March 27, 2014 7 / 8

What does the pdf look like with ggplot2?

```
library(ggplot2)
ggplot(data = data.frame(x = c(0.85, 1)), aes(x = x)) +
    stat_function(fun = f, color = "purple") +
    theme_bw() +
    geom_vline(xinter = ans, lty = "dashed", color = "red") +
    labs(x = expression(x[max]), y = expression(f[max](x)))
```


8 / 8