Commutative Rings

August 15, 2024

The Zero Set of Simultaneous Equations Forms a Topology

Definitions and Preliminaries

- **Topological Space**: A set X with a collection $\mathcal{T} \subseteq 2^X$ is a topological space if \mathcal{T} satisfies the following:
 - 1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$ (inclusion of the empty set and the entire space).
 - 2. \mathcal{T} is closed under arbitrary unions, i.e., if $\{U_{\alpha}\}_{\alpha\in A}\subseteq \mathcal{T}$, then $\bigcup_{\alpha\in A}U_{\alpha}\in \mathcal{T}$.
 - 3. \mathcal{T} is closed under finite intersections, i.e., if $U_1, U_2, \dots, U_n \in \mathcal{T}$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

- $\mathbb{C}[x] = \left\{ \sum_{i=0}^{n} a_i x^i : a_i \in \mathbb{C}, n \in \mathbb{Z}_{\geq 0} \right\}$
- $\mathbb{C} = \{\alpha : \alpha \in \mathbb{C}\}$
- Note that $\mathbb{C} \subseteq \mathbb{C}[x]$ since $\mathbb{C} = \{\alpha : \alpha \in \mathbb{C}\} = \{0x^n + 0x^{n-1} + \dots + \alpha x^0 : \alpha \in \mathbb{C}\}$
- Consider

$$\phi_{\alpha} : \mathbb{C}[x] \longrightarrow \mathbb{C}$$

$$f \longmapsto f(\alpha)$$

and

• Consider $f(x) \in \mathbb{C}[x]$ s.t.

$$f : \mathbb{C} \longrightarrow \mathbb{C}$$
$$\alpha \longmapsto f(\alpha)$$

- By the first isomorphism theorem, we have $\mathbb{C}[x]/\langle x-\alpha\rangle\simeq\mathbb{C}$
- $\langle x \alpha \rangle = \{(x \alpha)f(x) : f(x) \in \mathbb{C}[x]\} \subseteq \mathbb{C}[x]$
- $\mathbb{C}[x]/\langle x-\alpha\rangle$;

$$-p(x) = (x - \alpha)q(x) + r(x) = (x - \alpha)q(x) + r$$

$$-\ \mathbb{C}[x]/\langle x-\alpha\rangle = \big\{r+\langle x-\alpha\rangle: r\in\mathbb{C}\big\}$$

	I			
Mapping	$\psi_p : \mathbb{Z} \longrightarrow \mathbb{Z}_p$	ϕ_a : $\mathbb{C}[x]$ \longrightarrow \mathbb{C}		
	$n \longmapsto n \bmod p = \psi_p(n)$	$f(x) \mapsto f(a) = \phi_a(f(x))$		
Additive Homo.	$\psi_p(a+b) := (a+b) \bmod p$	$\phi_a(f+g) := f(a) + g(a)$		
Multiplicative Homo.	$\psi_p(ab) \coloneqq (ab) \bmod p$	$\phi_a(fg) := f(a)g(a)$		
Kernel	$\ker(\psi_p) = p\mathbb{Z}$	$\ker(\phi_a) = (x - a)\mathbb{C}[x]$		
Image	\mathbb{Z}_p	C		
Ideal	$p\mathbb{Z} = \langle p \rangle$	$(x-a)\mathbb{C}[x] = \langle x-a \rangle$		
Prime Ideal	$\langle p \rangle$ is prime	$\langle x - a \rangle$ is prime		
Maximal Ideal	$\langle p \rangle$ is maximal	$\langle x-a \rangle$ is maximal		
Isomorphism	$\mathbb{Z}_p \simeq \mathbb{Z}/p\mathbb{Z}$	$\mathbb{C} \simeq \mathbb{C}[x]/\langle x - a \rangle$		
Element of Domain	n : arg2 → arg3	$f: \{\langle x - \alpha \rangle : \alpha \in \mathbb{C}\} \longrightarrow \coprod_{\alpha} \mathbb{C}[x]/\langle x - \alpha \rangle$		
	arg4 → arg5	$\langle x - \alpha \rangle \longmapsto arg5$		

		2	3	5	7
$\varphi(2\mathbb{Z})$	 →2ℤ	1	0	0	0
$\varphi(3\mathbb{Z})$		0	1	0	0
$\varphi(5\mathbb{Z})$	 >5ℤ	0	0	1	0

Prime numbers p