Práctica 4: Biprisma de Fresnel

29/10/2025

Universidad de Granada, Facultad de Ciencias

Grado en Físicas

Óptica I

UNIVERSIDAD DE GRANADA

Jorge del Rio López Paula Roca Gómez

${\bf \acute{I}ndice}$

apítulos Pa				ágina ——	
1	Cor	ıclusioı	nes	2	
2	Agr	adecin	nientos	2	
3	Ape	éndices		3	
	3.1	A1: Cá	álculo de incertidumbres	3	
		3.1.1	Cálculo de la desviación estándar	3	
		3.1.2	Incertidumbre tipo A	3	
		3.1.3	Incertidumbre tipo B	3	
		3.1.4	Incertidumbre Combinada	3	
		3.1.5	Incertidumbre debida a medida indirecta	3	
		3.1.6	Incertidumbre por cambio de unidades	3	
		3.1.7	Incertidumbre de la suma	4	
		3.1.8	Incertidumbre de la inversa	4	
		3.1.9	Incertidumbre del índice de refracción	4	
		3 1 10	Incertidumbre del número de Abbe	4	

Resumen

- 1. Conclusiones
- 2. Agradecimientos

3. Apéndices

3.1. A1: Cálculo de incertidumbres

3.1.1. Cálculo de la desviación estándar

La desviación estándar se usará para el cálculo de la incertidumbre tipo A; su ecuación sería:

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})}$$
 (1)

3.1.2. Incertidumbre tipo A

La incertidumbre tipo A se evalúa mediante análisis estadístico de datos repetidos, basada en su dispersión o desviación estándar, para lograr dar un valor que se asemeje lo máximo posible al real; su ecuación es la siguiente:

$$u_A = \frac{s}{\sqrt{n}} \tag{2}$$

donde s sería la desviación estándar y n el número de medidas realizadas.

3.1.3. Incertidumbre tipo B

La incertidumbre tipo B se debe al error que ocasiona el medir con instrumentos inexactos, su ecuación involucra la resolución (δ) del instrumento que se haya usado:

$$u_B = \frac{\delta}{\sqrt{12}} \tag{3}$$

3.1.4. Incertidumbre Combinada

Tras obtener la incertidumbre tipo A y tipo B debemos juntarlas para dar un valor de incertidumbre concreto, se calcularía de la siguiente forma:

$$u_C = \sqrt{(u_A)^2 + (u_B)^2} \tag{4}$$

3.1.5. Incertidumbre debida a medida indirecta

Debido a la que usaremos este tipo de incertidumbre en varias ocasiones, la dejaremos aquí definida para evitar tener que repetir el proceso cada vez. Sea $f(x_1, x_2, ..., x_n)$ una funcion con n variables, la incertidumbre de esta función se calcularía mediante la propagación de incertidumbres, y obtendríamos la siguiente ecuación:

$$u_C(f(x_1, x_2, \dots, x_n)) = \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 u_C(x_i)^2}$$
 (5)

Donde $\frac{\partial f}{\partial x_i}$ es la derivada parcial de f respecto a la variable x_i , y $u_C(x_i)$ es la incertidumbre combinada de la variable x_i . Este cálculo nos proporciona la incertidumbre de una función que depende de varias variables, teniendo en cuenta las incertidumbres individuales de cada variable.

3.1.6. Incertidumbre por cambio de unidades

Esta incertidumbre la usaremos cuando un valor se encuentre en unas unidades distintas a las del SI, se llevará a cabo mediante la propagación de incertidumbres, suponiendo la siguiente ecuación: $f(x) = \frac{x}{K}$

siendo k un valor cualquiera real, entonces, $u_C(f(x)) = \sqrt{(\frac{\partial f(x)}{\partial x})^2 u_C(x)^2}$ y como $\frac{\partial f(x)}{\partial x} = \frac{1}{K}$, finalmente obtenemos:

$$u_C(f(x)) = \frac{u_C(x)}{K} \tag{6}$$

3.1.7. Incertidumbre de la suma

Supongamos que tenemos la ecuación $f(x) = x_1 + x_2$, la incertidumbre de esta suma se calcularía con la propagación de incertidumbre, y obtendríamos la siguiente ecuación:

$$u_C(f(x)) = \sqrt{u_C(x_1)^2 + u_C(x_2)^2}$$
(7)

3.1.8. Incertidumbre de la inversa

Sea $f(x) = \frac{1}{x}$, haciendo el proceso de propagación de incertidumbres obtenemos su incertidumbre como:

$$u_C(f(x)) = \frac{u_C(x)}{x^2}$$
(8)

La incertidumbre del poder dispersivo vendría dada por esta fórmula.

3.1.9. Incertidumbre del índice de refracción

Sea $n = \frac{\operatorname{sen}(\frac{\alpha + \delta_m}{2})}{\operatorname{sen}(\frac{\alpha}{2})}$, haciendo el proceso de propagación de incertidumbres y sabiendo que $\frac{\partial n}{\partial \delta_m} = \frac{\operatorname{sen}(\frac{\alpha + \delta_m}{2})}{\operatorname{sen}(\frac{\alpha}{2})}$

$$\frac{1}{2} \frac{\cos(\frac{\alpha + \delta_m}{2})}{\sin(\frac{\alpha}{2})}$$
 obtenemos su incertidumbre como:

$$u_C(n) = \frac{1}{2} \frac{\cos(\frac{\alpha + \delta_m}{2})}{\sin(\frac{\alpha}{2})} u_C(\delta_m)$$
(9)

3.1.10. Incertidumbre del número de Abbe

Sea $\nu_D=\frac{n_D-1}{n_F-n_C}$, haciendo el proceso de propagación de incertidumbres y sabiendo que: $\frac{\partial \nu_D}{\partial n_F}=\frac{n_D-1}{(n_F-n_C)^2}, \frac{\partial \nu_D}{\partial n_C}=\frac{n_D-1}{(n_F-n_C)^2}$ y $\frac{\partial \nu_D}{\partial n_D}=-\frac{1}{n_F-n_C}$ obtenemos su incertidumbre como:

$$u_C(\nu_D) = \frac{n_D - 1}{n_F - n_C} \sqrt{\left(\frac{u_C(n_F)}{n_F - n_C}\right)^2 + \left(\frac{u_C(n_C)}{n_F - n_C}\right)^2 + \left(\frac{u_C(n_D)}{(n_D - 1)^2}\right)^2}$$
(10)

Referencias