МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 2.2.3 Измерение теплопроводности воздуха при атмосферном давлении

Автор: Тихонов Дмитрий Романович, студент группы Б01-206

Введение

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; магазин сопротивлений.

Теоретические сведения

Теплопроводность - это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье.

$$\overrightarrow{q} = -\kappa \cdot \nabla T \tag{1}$$

где \overrightarrow{q} $[\frac{\mathbf{B_T}}{\mathbf{m}^2}]$ - плотность потока энергии, $\kappa \sim \lambda \bar{v} \cdot nc_v$ - коэффициент теплопроводности.

Длина свободного пробега может быть оценена как $\lambda=1/n\sigma$, где σ — эффективное сечение столкновений молекул друг с другом. Отсюда, коэффициент теплопроводности газа не зависит от плотности газа и определяется только его температурой. В простейшей модели твёрдых шариков $\sigma=const$, и коэффициент теплопроводности пропорционален корню абсолютной температуры: $\kappa \propto \bar{v}/\sigma \propto \sqrt{T}$. На практике эффективное сечение $\sigma(T)$ следует считать медленно убывающей функцией T.

Рассмотрим стационарную теплопроводность в цилиндрической геометрии (рис. 1). Если цилиндр длинный $(L\gg r_0)$, можно пренебречь теплоотводом через его торцы. Тогда все параметры газа можно считать зависящими только от расстояния до оси системы r а поток тепла \overrightarrow{q} направленным строго радиально. Для стационарного режима и малого перепада температуры между нитью и стенками цилиндра:

$$Q = -2\pi r L \cdot \kappa \frac{dT}{dr} = \frac{2\pi L}{\ln \frac{r_0}{r_1}} \kappa \cdot \Delta T \tag{2}$$

Рис. 1: Геометрия измерений

Методика измерений и используемое оборудование

Схема установки представлена на рис. 2. Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально. Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления).

Рис. 2: Схема установки

Для большинства металлов изменение сопротивления из-за нагрева невелико: при изменении температуры на $\Delta t = 1^{\circ}C$ относительное изменение сопротивления нити может составлять приблизительно от 0.5% (в зависимости от её материала). Следовательно, измерение важно провести с высокой точностью.

Электрическая схема установки на рис. 3. Для измерения напряжения и тока используется два мультиметра, работающие в режимах вольтметра и амперметра соответственно. По двум проводам (токовая пара I_+ и I_-) через сопротивление пропускается измерительный ток, а два других (потенциальная пара U_+ и U_-) используются для параллельного подключения вольтметра. Заметим, что при такой схеме внутреннее сопротивление приборов и сопротивление подводящих проводов практически не влияет на измерения: сопротивление амперметра не влияет на результат вовсе, а сопротивление вольтметра составляет обычно 1–100 МОм, что при $R_{\rm H}=20$ Ом вносит относительную ошибку не более 10^{-5} .

Рис. 3: Электрическая схема установки

Ток цепи регулируется с помощью магазина сопротивлений, включенного последовательно с источником напряжения. Измерение нагрузочных кривых позволяет получить температурную зависимость сопротивления нити (при $Q \to 0$, $T \approx T_0$). Для исследуемых температур:

$$R(t) = R_{273} \cdot (1 + \alpha t) \tag{3}$$

 $\alpha = \frac{1}{R_{273}}\frac{dR}{dT}$ - температурный коэффициент сопротивления материала.

Результаты измерений и обработка данных

Исследование зависимости R(Q) при разных температурах

Снимем зависимость сопротивления нити от мощности R(Q) для каждой из температур (табл. 1). Значения U и I будем снимать, когда установится стационарный режим. Вычислим значения погрешности для R и Q и также занесём эти данные в таблицу 1.

T, °C	22,0								
U, мВ	38,455	146,280	487,180	733,050	1171,360	1310,640	1800,870	2073,620	2160,230
I, мА	1,916	7,289	24,199	36,266	57,320	63,870	86,111	97,978	101,672
Q, м B т	0,074	1,066	11,789	26,585	67,142	83,711	155,074	203,170	219,634
R, Om	20,072	20,069	20,133	20,213	20,435	20,520	20,913	21,164	21,247
T, °C	32,0								
U, мВ	751,689	1123,100	1349,500	1526,300	1672,720	1803,750	1917,810	2031,250	2119,400
I, мА	35,931	53,248	63,561	71,464	77,901	83,599	88,471	93,256	96,966
Q, мВт	27,009	59,803	85,776	109,075	130,307	150,792	169,671	189,426	205,510
R, Om	20,920	21,092	21,232	21,358	21,472	21,576	21,677	21,781	21,857
T, °C	47,0								
U, MB	833,158	1155,590	1382,310	1558,280	1707,970	1832,120	1943,720	2047,740	2140,610
I, мА	37,871	52,179	62,055	69,595	75,915	81,096	85,683	89,932	93,674
Q, м B т	31,553	60,298	85,779	108,448	129,660	148,577	166,545	184,158	200,520
R, Om	22,000	22,147	22,276	22,391	22,499	22,592	22,685	22,770	22,852
T, °C	62,0								
U, MB	860,674	1186,705	1413,710	1588,620	1736,640	1858,290	1968,140	2069,940	2160,340
<i>I</i> , мА	37,323	51,151	60,607	67,792	73,804	78,686	83,050	87,051	90,572
Q, м B т	32,123	60,701	85,681	107,695	128,171	146,222	163,454	180,190	195,666
R, Om	23,060	23,200	23,326	23,434	23,530	23,616	23,698	23,779	23,852
T, °C	77,0								
U, MB	314,325	887,557	1216,960	1444,170	1617,700	1763,970			
І, мА	13,102	36,792	50,163	59,239	66,103	71,805			
Q, MBT	4,118	32,655	61,046	85,551	106,935	126,662			
R, Om	23,990	24,124	24,260	24,379	24,472	24,566			

Таблица 1: Результаты измерений U и I и результаты вычислений R и Q при разных температурах

Приведем расчётные формулы для значений R и Q:

$$R_{\rm H} = \frac{U}{I} \tag{4}$$

$$Q = UI (5)$$

Отсюда, находим погрешность вычисления этих величин:

$$\sigma_{R_{\rm H}} = R_{\rm H} \cdot \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(\frac{\Delta I}{I}\right)^2} \approx 10^{-2} \text{ MOM}$$
 (6)

$$\sigma_Q = Q \cdot \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(\frac{\Delta I}{I}\right)^2} \approx 10^{-2} \text{ MBT}$$
 (7)

где $\Delta I=10^{-2}$ мА, $\Delta U=10^{-2}$ мВ (данные взяты из технических параметров установки). Заметим, что в масштабе графика $R_{\rm H}(Q)$ кресты погрешностей нанести не получится.

Для каждой температуры прибора построим график зависимости сопротивления нити R от выделяемой мощности Q. Аппроксимацию прямой произведем методом наименьших квадратов в компьютерной программе $Origin\ Pro\ 2023$, в которой определим наклон dR/dQ с погрешностью и сопротивление нити $R|_{Q=0}$ при температуре термостата, то есть при нулевой выделяемой мощности. Полученные данные занесём в таблицу 2. Графики представлены на рис. 4, рис. 5, рис. 6, рис. 7, рис. 8.

Рис. 4: График зависимости $R_{\mbox{\tiny H}}(Q)$ при $T=22^{\circ}{\rm C}$

Рис. 5: График зависимости $R_{\mbox{\tiny H}}(Q)$ при $T=32^{\circ}{\rm C}$

Рис. 6: График зависимости $R_{\mbox{\tiny H}}(Q)$ при $T=47^{\circ}{\rm C}$

 Φ РКТ М Φ ТИ, 2023

Рис. 7: График зависимости $R_{\mbox{\tiny H}}(Q)$ при $T=62^{\circ}{\rm C}$

Рис. 8: График зависимости $R_{\mbox{\tiny H}}(Q)$ при $T=77^{\circ}{\rm C}$

 Φ РКТ М Φ ТИ, 2023 6

T, °C	22,0	32,0	47,0	62,0	77,0
$R _{Q=0}$, Om	20,073	20,777	21,840	22,908	23,972
$\sigma_{R _{Q=0}}, O_{M}$	0,004	0,003	0,002	0,002	0,002
dR/dQ, OM/BT	5,36	5,30	5,06	4,84	4,70
$\sigma_{dR/dQ}, \mathrm{Om/BT}$	0,03	0,02	0,01	0,01	0,03

Таблица 2: Результаты вычислений.

Исследование зависимости R(T). Определение температурного коэффициента сопротивления материала нити α

Построим по значениям $R|_{Q=0}$ график (рис. 9) зависимости сопротивления нити от температуры T. Аппроксимацию прямой и расчет наклона dR/dT произведем аналогично предыдущему пункту.

Рис. 9: График зависимости R = R(T)

Экспериментальные точки отлично ложатся на прямую, имеющую наклон: $dR/dT = (0,0709 \pm 0,0007)$ Ом/K.

Рассчитаем температурный коэффициент сопротивления материала нити $\alpha=\frac{1}{R_{273}}\frac{dR}{dT}$, где $R_{273}=20$ Ом – сопротивление платиновой нити при 0 °C. Получим, что температурный коэффициент сопротивления материала нити $\alpha=(3,545\pm0,035)\cdot 10^{-3}~K^{-1}$. Сравнивая это значение с табличным: $\alpha_{\text{табл}}=3,8\cdot 10^3~K^{-1}$, замечаем, что полученный коэффициент равен табличному по порядку величины.

Определение экспериментальной зависимости $\kappa(T)$

Для каждой температуры прибора определим значение коэффициента теплопроводности газа по формуле $\kappa = \frac{dQ}{dR} \frac{dR}{dT} \frac{1}{2\pi L} \ln \frac{r_0}{r_1}$, где $2r_1 = (50 \pm 3)$ мкм, $2r_0 = (7, 0 \pm 0, 1)$ мм и $L = (400 \pm 2)$ мм.

Предполагая, что зависимость коэффициента теплопроводности от температуры имеет вид $\kappa = AT^{\beta}$, по полученным значениям построим аппроксимированную кривую рис. 11. Чтобы определить показатель степени β построим график зависимости $\ln \kappa$ от $\ln T$. Результаты вычислений представлены в таблице 3.

T, K	295	305	320	335	350
dR/dQ, Ом/Вт	5,36	5,3	5,06	4,84	4,7
$\sigma_{dR/dQ}, { m Om/BT}$	0,03	0,02	0,01	0,01	0,03
dQ/dR, Вт/Ом	0,1866	0,1887	0,1976	0,2066	0,2128
$\sigma_{dQ/dR}, { m Bt/Om}$	0,0010	0,0007	0,0004	0,0004	0,0014
dR/dT, Ом/К			0,0709		
$\sigma_{dR/dT}, \mathrm{Om/K}$			0,0007		
$\kappa, \mathrm{Bt/(K \cdot m)}$	26,0	26,3	27,6	28,8	29,7
$\sigma_{\kappa}, \operatorname{Bt/(K \cdot m)}$	1,0	1,1	1,1	1,2	1,2
$\ln \kappa$	3,26	3,27	3,32	3,36	3,39
$\sigma_{\ln \kappa}$	0,04	0,04	0,04	0,04	0,04
$\ln T$	5,6870	5,7203	5,7683	5,8141	5,8579

Таблица 3: Результаты вычислений коэффициентов теплопроводности газа κ для каждой температуры термостата T_0

Рис. 10: График зависимости $\kappa(T)$

Рис. 11: График зависимости $\ln \kappa (\ln T)$

Аппроксимацию прямой (рис. 11) произведем методом наименьших квадратов в компьютерной программе Origin Pro 2023. Имеем: $\beta = (0.81 \pm 0.05)$.

Заключение

В ходе данной работы мы определили коэффициент теплопроводности воздуха при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде. В среднем каждое значение коэффициента теплопроводности отличается от табличного при данной температуре не более, чем на 5%. По полученным результатам рассчитали коэффициент β в формуле $\kappa = AT^{\beta}$: $\beta = (0,81\pm0,05)$. Однако полученный результат с учетом погрешности не соотвествует теоретическому значению $\beta = 0,5$ ($\kappa \propto \sqrt{T}$), то есть наш результат завышен на 62%. Удивительно, что если построить аналогичным образом прямую, используя табличные значения коэффициента теплопроводности воздуха при атмосферном давлении, то $\beta = 0,81$, что сходится с полученным значением. Разница в результатах, во-первых, может быть связана с неучтенными тепловыми потерями через основания цилиндра. Во-вторых, при выводе формулы (2) не учитывалась зависимость теплопроводности от температуры (поэтому она справедлива только при $\Delta T \ll T$) и молекулы воздуха рассматривались, как одинаковые m6 срафые шарики. И наконец, возникновение термо-ЭДС (эффект Зеебека) повлияло на точность вольтметра.

Также был определён температурный коэффициент сопротивления материала нити $\alpha=(3,545\pm0,035)\cdot 10^{-3}~K^{-1}$, что сходится с табличным $\alpha_{\rm табл}=3,8\cdot 10^3~K^{-1}$ по порядку величины.