Semester 1

Board Tutorial for Week 2

2017

- Given points A(4, -1, 5) and B(6, -1, -2) in space, find 6.
 - (i) the position vectors of A and B in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} ;
 - (ii) the displacement vector \overrightarrow{AB} in terms of i, j and k;
 - (iii) the unit vector pointing from A towards B;
 - (iv) the unit vector pointing from B towards A.
- Let $\mathbf{v} = 2\mathbf{i} 6\mathbf{j} + 9\mathbf{k}$ and $\mathbf{w} = 4\mathbf{i} + 2\mathbf{j} 4\mathbf{k}$. Find

 - (i) $-\mathbf{v}$ (ii) $\mathbf{w} \mathbf{v}$ (iii) $2\mathbf{v}$ (iv) $3\mathbf{w}$ (v) $2\mathbf{v} 3\mathbf{w}$ (vi) $|\mathbf{v}|$ (vii) $|\mathbf{w}|$ (viii) $\hat{\mathbf{v}}$ (ix) $\hat{\mathbf{w}}$ (x) $|\mathbf{v} + \mathbf{w}|$ (vi)
- Let ABCDEF be a regular hexagon. True or false:
 - $(i) \quad \overrightarrow{AC} = \overrightarrow{FD} \quad (ii) \quad \overrightarrow{AC} = \overrightarrow{DF} \quad (iii) \quad \overrightarrow{AC} = \overrightarrow{BD} \quad (iv) \quad |\overrightarrow{AC}| = |\overrightarrow{BD}|$
 - (v) $|\overrightarrow{AC}| = |\overrightarrow{AD}|$ (vi) The line segments AD and BE bisect each other.
- 9. Consider the following points in space:

$$O(0,0,0)$$
, $P(1,1,1)$, $Q(-1,-1,0)$, $R(0,1,2)$, $S(2,3,3)$.

(i) Find the Cartesian forms of

$$\overrightarrow{OP}$$
, \overrightarrow{OQ} , \overrightarrow{OR} , \overrightarrow{OS} , \overrightarrow{PQ} , \overrightarrow{QP} , \overrightarrow{QR} , \overrightarrow{RS} , \overrightarrow{SP} .

- (ii) Verify that the figure PQRS is a rhombus, that is, a parallelogram in which side lengths are equal. How can you tell that it is not a square?
- 10. Let i and j denote displacements of 1 km east and north respectively. An aeroplane travels 300km southeast and then 150 km in the direction 30° west of north. Find
 - (i) the above displacements of the aeroplane and their vector sum in terms of the unit vectors \mathbf{i} and \mathbf{j} ;
 - (ii) the final distance (to the nearest km) and direction (to nearest degree, south of east) of the aeroplane from the starting position.
- 11. Suppose that v and w are non-zero vectors which are not parallel (so are linearly independent) and the following vector equation holds for some scalars α and β :

$$\mathbf{v} + \alpha(\mathbf{w} - \mathbf{v}) = \beta(\mathbf{v} + \frac{1}{2}\mathbf{w}).$$

Find α and β .

Prove that any three geometric vectors in the plane are linearly dependent.

13.* Let D be the point which divides the side BC of the triangle ABC in the ratio $\alpha : \beta$.

Carefully prove that $\overrightarrow{AD} = \frac{\beta \overrightarrow{AB} + \alpha \overrightarrow{AC}}{\alpha + \beta}$. Is there any natural interpretation if one of α or β is negative? What if both are negative?

14.* Show that $\operatorname{span}(\mathbf{i}, \mathbf{i} + \mathbf{j}, \mathbf{i} + \mathbf{j} + \mathbf{k})$ is the set of all vectors in \mathbb{R}^3 . Show that $\operatorname{span}(\mathbf{j} + 2\mathbf{k}, -\mathbf{i} + 3\mathbf{k}, -2\mathbf{i} - 3\mathbf{j})$ does not contain the vector $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

If you are done with all these have a look at 19. in the exercise sheet for this week.