Para V1 = 24V, I1 = 0.5A, R1 = 12ohmios, R2 = 8ohmios, R3 = 5.2ohmios. El equivalente Nr es:

- O a. 1.2A en paralelo con 10ohmios
- O b. 2.5A en paralelo con 10ohmios
- O c. 0.5A en paralelo con 10ohmios
- O d. 3A en paralelo con 10ohmios

Para R1 = 4ohmios, R2 = 2ohmios, R3 = 3ohmios. Rth = ?

- O a. 2.22ohmios
- Ob. 6.5ohmios
- O c. No puede determinarse
- Od. 9ohmios

Para V1 = 24V, I1 = 0.5A, R1 = 12ohmios, R2 = 8ohmios, R3 = 5.2ohmios. El equivalente Nr es:

- a. 1.2A en paralelo con 10ohmios
- O b. 2.5A en paralelo con 10ohmios
- O c. 0.5A en paralelo con 10ohmios
- O d. 3A en paralelo con 10ohmios

El equi	valente de Th y Nr de un circuito es:
Selecci	one una:
	Un circuito reducido
O b.	La expresión mínima de un circuito dado que actúa igual que el original frente a lo que le conectemos
O c.	La máxima expresión del análisis de circuitos
○ d.	Una herramienta más, como superposición
○ e.	La aplicación de Transformación de Fuentes

Para V1 = 25V, V2 = 5V, R1 = 40hmios, R2 = 60hmios y R3 = 1.60hmios. El equivalente de Nr es igual a

- O a. 2.5A en paralelo con 4ohmios
- O b. 5A en paralelo con 4 ohmios
- O c. 7.5A en paralelo con 4ohmios
- Od. 4.25A en paralelo con 40hmios

- O a. Encuentro Voc, que sería Vc en el circuito tal como está; luego isc, que sería ib, eliminando R4, ya que el corto la anula. Hago estos dos análisis aparte, luego divido Voc/Isc para encontrar Rth.
- O b. Encuentro Voc, que sería Vc en el circuito tal como está; luego isc, que sería ib. Hago estos dos análisis aparte, luego divido Voc/Isc para encontrar Rth.
- O c. Encuentro Voc, que sería Vc en el circuito tal como está; Rth sería R4 que está en las terminales del equivalente, luego Isc se puede obtener por transformación de fuentes, Isc = Voc/Rth.
- O d. Encuentro Voc, que sería Vc en el circuito tal como está; luego isc, que sería ib + ic. Hago estos dos análisis aparte, luego divido Voc/Isc para encontrar Rth.

Dado R1 = 10ohmios, R2 = 10ohmios, R3 = 3ohmios, R4 = 12ohmios; el valor de R para la MTP es:

O a. 12ohmios

Ob. 7.4ohmios

O c. 4.8ohmios

Od. 3.5ohmios

 La máxima transferencia de potencia establece que Seleccione una: a. P = v x i b. Dada una fuente de voltaje en serie con dos resistencias, la primera con valor fijo y la segunda variable, se consigue el mayor valo de watts posible en la segunda si se iguala al ohmiaje de la primera c. Dos resistencias del mismo valor en serie se reducen para dar el doble, pues se suman d. Encontramos el valor mediante Th y Nr e. La eficiencia máxima se puede conseguir y en general es deseable Quitar mi elección	or
Quitar IIII election	