

Equity and Equality in Fair Federated Learning

Hamid Mozaffari, Amir Houmansadr

College of Information and Computer Sciences, University of Massachusetts Amherst

Introduction and Motivation

- ► Federated Learning (FL) enables data owners to train a shared global model without sharing their private data.
- ► Unfortunately, FL is susceptible to an intrinsic **fairness issue**:
 - Due to heterogeneity in clients' data distributions, the final trained model can give disproportionate advantages across the participating clients.
- ▶ In this work, we look at FL fairness with **two different lenses**:
 - ▶ **Equality**: whose goal is providing similar performances for all individual clients.
 - ▶ **Equity**: whose goal is providing similar performances across all groups of clients (i.e., groups of majority and minority), where a group is defined as a set of clients with similar data distributions.

► The key question we try to answer is: Can we design an efficient federated learning algorithm that achieves both equality and equity concurrently?

E2FL: Equal and Equitable Federated Learning

- ► The key insight used in E2FL is converting the problem of model weight optimization (in standard FL) to the problem of **ranking** model edges.
- ► A single E2FL round with six clients from three groups and network of 6 edges.
 - \triangleright Server: Initialization phase (only for round t=1)
 - \triangleright Clients: Calculating the **ranks** (for each round t).
 - \triangleright Server: **Majority vote** (for each round t).

E2FL when Group IDs are Unknown

- ► In this setting, there are federated clients that have small amount of data with no known protected attribute.
- ► For instance, people with their own style of handwriting want to learn a global model without sharing their images of their handwriting.
- ► Proposed approaches for estimating Group ID:
 - Server-side: Rank Clustering.
 - Client-side: Lowest Loss.
 - ▶ Client-side: Entropy of the output (**OneShot Inference**, Binary Search).

Experiments: FairMNISTPerm

FairMNISTPerm: To measure the equity and equality, we release a new dataset for fairness experiments in FL application.

- ► We create this dataset by **rotating** the images in MNIST for each group.
- ▶ In this dataset, we assign same number of data samples to 1000 clients with 10 different data distributions (with different number of users in each group).
- ► There are **majority groups** with large number of clients, e.g., G6 with 257 clients, and there are **minority groups** with small number of clients, e.g., G1 with 8 clients.

Our Results

Our experimental results on FairMNISTPerm (with 1000 clients) show that:

- ► Clients have **motivation** to participate in FL compared to train local models.
- ► FedAvg gives more attention to majority groups.
- ► **q-FFL** improves equality while worsens equity. q-FFL is helping the majority groups by ignoring the minorities.
- ► Training 10 different FLs (i.e., **IFCA**) is not the best situation for the minorities.
- ► E2FL is providing equality and equity.
 - ▶ our algorithm can reduce both variance of clients and groups by 93% and 95% respectively compared to FedAvg.

	Metric									
Approach	Group-level Fairness (Equity)				User-level Fairness (Equality)				Comm Cost	
	Avg	Worst	Best	Variance	Avg	Worst	Best	Variance	Up	Down
		(10%)	(10%)			(10%)	(10%)		(MB)	(MB)
Local training	84.78	84.28	85.35	0.11	85.03	81.36	87.78	3.44	0	0
FedAvg	93.89	81.88	98.32	31.81	97.61	92.87	98.32	4.49	6.20	6.20
IFCA	97.78	95.01	99.08	1.98	98.79	96.86	99.08	0.35	6.20	62.0
q-FFL	92.23	77.31	98.42	57.46	97.56	93.33	98.42	4.32	6.20	6.20
Our E2FL (GM)	95.41	91.68	97.18	3.38	96.67	94.93	97.18	0.57	4.05	5.99
Our E2FL	96.52	93.90	97.81	1.63	97.48	96.07	97.81	0.33	4.05	5.99
				,					1	1