Name: Prema Sunil Jadhav

Sapid: 60004220127

Batch: C2-2

(Sundaram)

course: Advance Algorithm lab

EXP7

AIM: Implement convex Hull using Graham scan

THEORY: A convex hull is the smallest convex polygon that contains a given set of points. It is a seful concept in computational grometry and has applications in various fields such as computer graphus, image processing and collision detection.

A convex polygon is a polygon in which all interior angles are less than 180 degrees. A convex hull can be constructed for any set of points, regardless of their arrangement. Graham scan Abgorithm: It is a simple and efficient algorithm for computing the convex hull of a set of point. It works by iteratively adding points to the convex hull until all points have been added.

The algorithm starts by finding the points with the smallest y-woordinate. This point is always on the wonvex hum. The algorithm then sorts the remaining points by their polar angle with respect to starting point.

- The algorithm then iteratively adds points to the water hull. At each step, the algorithm check whether the last two points added to the convex hall form a right turn. If they do, then the last point is unroved for the convex hull. Otherwise, the next point in the souted list is added to the convex hull -> The algorithm terminates when all points have pos been added to the convex hull. CONCLUSION: Hence, we implemented convex hull using anaham scan.

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

Name:	Prerna Sunil Jadhav
Sap Id:	60004220127
Class:	T. Y. B. Tech (Computer Engineering)
Course:	Advance Algorithm Laboratory
Course Code:	DJ19CEL602
Experiment No.:	07

AIM: Implement Convex Hull using Graham Scan.

CODE:

```
from functools import cmp_to_key
class Point:
    def __init__(self, x = None, y = None):
        self.x = x
        self.y = y
# A global point needed for sorting points with reference
# to the first point
p0 = Point(0, 0)
# A utility function to find next to top in a stack
def nextToTop(S):
    return S[-2]
# A utility function to return square of distance
def distSq(p1, p2):
    return ((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y))
# To find orientation of ordered triplet (p, q, r).
# The function returns following values
# 0 --> p, q and r are collinear
# 1 --> Clockwise
# 2 --> Counterclockwise
def orientation(p, q, r):
    val = ((q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y))
    if val == 0:
        return 0 # collinear
    elif val > 0:
        return 1 # clock wise
    else:
        return 2 # counterclock wise
```

SVKM

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

```
# points with respect to the first point
def compare(p1, p2):
    # Find orientation
    o = orientation(p0, p1, p2)
    if o == 0:
        if distSq(p0, p2) >= distSq(p0, p1):
            return -1
        else:
            return 1
    else:
        if o == 2:
            return -1
        else:
            return 1
# Prints convex hull of a set of n points.
def convexHull(points, n):
    # Find the bottommost point
    ymin = points[0].y
    min = 0
    for i in range(1, n):
        y = points[i].y
        # Pick the bottom-most or choose the left
        # most point in case of tie
        if ((y < ymin)) or
            (ymin == y and points[i].x < points[min].x)):</pre>
            ymin = points[i].y
            min = i
    # Place the bottom-most point at first position
    points[0], points[min] = points[min], points[0]
    # Sort n-1 points with respect to the first point.
    # A point p1 comes before p2 in sorted output if p2
    # has larger polar angle (in counterclockwise
    # direction) than p1
    p0 = points[0]
    points = sorted(points, key=cmp_to_key(compare))
```

SVKM

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

```
# If two or more points make same angle with p0,
# Remove all but the one that is farthest from p0
# Remember that, in above sorting, our criteria was
# to keep the farthest point at the end when more than
# one points have same angle.
m = 1 # Initialize size of modified array
for i in range(1, n):
   # Keep removing i while angle of i and i+1 is same
    # with respect to p0
    while ((i < n - 1)) and
    (orientation(p0, points[i], points[i + 1]) == 0)):
        i += 1
    points[m] = points[i]
    m += 1 # Update size of modified array
# If modified array of points has less than 3 points,
# convex hull is not possible
if m < 3:
    return
# Create an empty stack and push first three points
S = []
S.append(points[0])
S.append(points[1])
S.append(points[2])
# Process remaining n-3 points
for i in range(3, m):
    # Keep removing top while the angle formed by
    # points next-to-top, top, and points[i] makes
    # a non-left turn
    while((len(S)>1) and (orientation(nextToTop(S),S[-1],points[i])!=2)):
        S.pop()
    S.append(points[i])
# Now stack has the output points,
# print contents of stack
while S:
    p = S[-1]
    print("(" + str(p.x) + ", " + str(p.y) + ")")
```

SVKIM

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Academic Year: 2022-2023

OUTPUT:

```
PS C:\Users\Jadhav\Documents\BTech\Docs\6th Sem\AA\Code> & C:/msys64/min
gw64/bin/python.exe "c:/Users/Jadhav/Documents/BTech/Docs/6th Sem/AA/Cod
e/Convex_Hull.py"
(0, 3)
(4, 4)
(3, 1)
(0, 0)
PS C:\Users\Jadhav\Documents\BTech\Docs\6th Sem\AA\Code>
```