1. A general construction of multivariente markor chains.

Let (S_1, \dots, S_n) be an n-tuple discrete sets, and P_1, \dots, P_n be stochastic matrices defining Markov chains $S_4 \to S_k$.

leg. S= { e°. e 2 mi/3. e 4 mi/3 }.

Let 1:. --. 1. be stochastic links between these sets:

 $\bigwedge_{k=1}^{k}: S_{k} \times S_{k-1} \rightarrow [0, 1], \qquad \underset{y \in S_{k-1}}{\overline{\sum}} \bigwedge_{k=1}^{k} (\pi, y) = 1.$

Assume that they satisfy the commutation relations $\Delta_{k-1}^{k} = \Lambda_{k-1}^{k} P_{k-1} = P_{k} \Lambda_{k-1}^{k}.$

or equivalently.

 $\Delta_{k-1}^k(x,y) = \sum_{z \in S_{k-1}} \Lambda_{k-1}^k(x,z) \, P_{k-1}(z,y) = \sum_{w \in S_k} P_k(x,w) \, \Lambda_{k-1}^k(w,y).$

Then define the multivariate Markov chain on

 $S^{(n)} = \left\{ (\chi_1, \dots, \chi_n) \in S_1 \times \dots \times S_n \mid \prod_{k=1}^n \Lambda_{k+1}^{k} (\chi_k, \chi_{k+1}) \neq 0 \right\}$

with the transition matrix P(n) on S(n) as

 $P^{(h)}(\chi_{n}, Y_{n}) = P_{n}(\chi_{n}, y_{n}) \frac{1}{k_{n}} \frac{P_{k}(\chi_{k}, y_{k}) \Lambda_{k-1}^{k}(y_{k}, y_{k-1})}{\Delta_{k-1}^{k}(\chi_{k}, y_{k-1})}$

We understand the dynamics on $S^{(n)}$ as a sequential update from S_i to S_n . First, x_i moves to J_i with transition

probability $P_{i}(x_{i}, y_{i})$; after \mathbf{X}_{i} , \cdots , x_{k-i} having moved to $y_{i,-}, y_{k-i}$, x_{k} moves to y_{k} under the condition that $A_{k-i}^{k}(y_{k}, y_{k-i}) \neq 0$, with transition probability court, $P_{k}(x_{k}, y_{k})$ $A_{k-i}^{k}(y_{k}, y_{k-i})$.

Proposition: Let m_n be a probability measure on S_n . Let $m^{(n)}$ be a probability measure on $S^{(n)}$ defined by

 $m^{(n)}(\chi_n) = m_n(\chi_n) \wedge \bigwedge_{i=1}^n (\chi_i, \chi_{n+1}) - \cdots \wedge \bigwedge_{i=1}^n (\chi_i, \chi_i).$

Set $\widetilde{m}_n = m_n P_n$ (m_n evolves by one step) and let $\widetilde{m}^{(n)}(X_n) = \widetilde{m}_n(x_n) \Lambda_{n-1}^n(x_n, x_{n-1}) - \Lambda_1^n(x_n, x_n)$

Then m (n) p (n) = m (n).

Rudimentary example:

 $S_k: \Upsilon(k) = \{ \text{ Young tableanx with } k \text{ sows } \}$ $= \{ (\lambda_1, --, \lambda_n) \mid \lambda_1 \geq \lambda_1 \geq \cdots \geq \lambda_n \geq 0 \}$

 $\Lambda_{k-1}^{k}((\lambda_{1},-\lambda_{k}),(M_{1},-M_{k-1})) = \begin{cases}
0 & \text{if } M \neq \lambda, \text{ i.e. } \lambda_{1} \geq \dots \geq M_{n-1} \geq \lambda_{n} \\
& \text{is not satisfied.} \\
\hline
\#\{\nu \in Y(k-1) \mid \nu \leq \lambda\} & \text{if } M \leq \lambda
\end{cases}$

Dynamics! $\lambda_{i}^{(1)}-3$ $\lambda_{i}^{(2)}-1$ $\lambda_{i}^{(2)}-1$ $\lambda_{i}^{(1)}-1$ $\lambda_{i}^{(1)}-1$ $\lambda_{i}^{(1)}-1$

2. Martiviate Markov chain defined by Macdonald polynomials

Let λ , $\mu \in \Upsilon(k)$ and $\nu \in \Upsilon(k-1)$. Define for any $\alpha_1, \dots, \alpha_k$, $P_{\lambda \mu}^{\tau}(\alpha_1, \dots, \alpha_k; b) = \frac{1}{\Pi(\alpha_1, \dots, \alpha_k; b)} \frac{P_{\mu}(\alpha_1, \dots, \alpha_k)}{P_{\lambda}(\alpha_1, \dots, \alpha_k)} Q_{\mu/\lambda}(b).$ $P_{\lambda \nu}^{\tau}(\alpha_1, \dots, \alpha_k) = \frac{P_{\nu}(\alpha_1, \dots, \alpha_k; b)}{P_{\lambda}(\alpha_1, \dots, \alpha_k)} P_{\lambda/\nu}(\alpha_k).$

Then define the $\infty \times \infty$ matrices

 $P^{+}(a_{1}, -, a_{k}; b) = [P_{\lambda M}(a_{1}, -, a_{k}; b)]_{\lambda, M},$ $P^{+}(a_{1}, -, a_{k}) = [P_{\lambda V}(a_{1}, -, a_{k})]_{\lambda, V}.$

which are stochastic:

 $\sum_{n \in Y(k)} P_{Nn}(a_{i}, -a_{k}; b) = 1$. $\sum_{v \in Y(k-i)} P_{Nv}(a_{i}, -a_{k}) = 1$.

Thus $[P_{Nn}]$ defines a transition matrix for Y(k), and $[P_{Nv}]$ defines a stochastic link fetween Y(k) and Y(k-i).

We can check that they satisfy the commutation relation $P^{*}(a_{i}, -a_{k}; b) P^{*}(a_{i}, -a_{k}) = P^{*}(a_{i}, -a_{k}) P^{*}(a_{i}, -a_{k-i}; b)$.

or more explicitly

 $\sum_{M \in \Upsilon(k)} P_{NM}^{\uparrow}(a_{1}, -a_{k}; b) P_{MU}(a_{1}, -a_{k}) = \sum_{M \in \Upsilon(k)} \frac{P_{U}(a_{1}, -a_{k}; b)}{P_{N}(a_{1}, -a_{k})} \frac{P_{U}(a_{1}, -a_{k})}{P_{N}(a_{1}, -a_{k})} Q_{M/N}(b) P_{M/N}(a_{k})$ $\sum_{M \in \Upsilon(k-1)} P_{NM}^{\downarrow}(a_{1}, -a_{k}) P_{MU}^{\uparrow}(a_{1}, -a_{k-1}; b) = \sum_{M \in \Upsilon(k-1)} \frac{P_{U}(a_{1}, -a_{k+1}; b)}{P_{N}(a_{1}, -a_{k})} Q_{M/U}(b) P_{N/M}(a_{k})$ $\left(\text{If is equivalent to check} \quad \frac{\sum_{M \in \Upsilon(k)} Q_{M/N}(b) P_{M/U}(a_{k})}{\sum_{M \in \Upsilon(k-1)} Q_{M/U}(b) P_{N/M}(a_{k})} = \frac{\prod (a_{1}, -a_{k-1}; b)}{\prod (a_{1}, -a_{k}; b)} \right)$

Now we define $S_k = \Upsilon(k)$, $P_k = P^{\Upsilon}(a_1 - a_k; b)$. $\Lambda_{k-1}^k = P^{\Psi}(a_1, -a_k)$. Then $S^{(n)}$ is the set of Gelfond-Teetlin patterns $S^{(n)} = \{(\lambda^{(i)}, \dots, \lambda^{(n)}) \mid \lambda^{(i)} \neq \lambda^{(i)} \neq \dots \neq \lambda^{(n)}\}$.

and the transition matrix P(n) is

$$P^{(n)}((\lambda^{(i)}, -..., \lambda^{(n)}), (M^{(i)}, -..., M^{(n)})) = P^{+}_{\lambda^{(i)}, M^{(i)}}(\alpha_{i}; \beta) \prod_{k=2}^{n} \frac{P^{+}_{\lambda^{(k)}, M^{(k)}}(\alpha_{i}, -..., \alpha_{k}; \beta) P^{+}_{\lambda^{(k)}, M^{(k-1)}}(\alpha_{i}, -..., \alpha_{k})}{\sum_{\nu \in Y(k)} P^{+}_{\lambda^{(k)}, \nu}(\alpha_{i}, -..., \alpha_{k}; \beta) P^{+}_{\nu, M^{(k-1)}}(\alpha_{i}, -..., \alpha_{k})}$$

$$= \frac{n}{k+1} P_{\alpha_{k}, \beta} \left(M^{(k)} \parallel M^{(k-1)}, \lambda^{(k)} \right).$$

where

$$P_{a_{k},b}(v||\lambda,u) = \begin{cases} P_{\mu\nu}^{+}(a_{i};b) = const. P_{\nu}(a_{k}) Q_{\nu}(b) & \text{if } k=1 \\ \frac{P_{\mu\nu}^{+}(a_{i}-a_{k};b) P_{\nu\lambda}^{+}(a_{i}-a_{k})}{\sum_{k \in Y(k)} P_{\mu\kappa}^{+}(a_{i}-a_{k};b) P_{\kappa\lambda}^{+}(a_{i}-a_{k})} = const. P_{\nu\lambda}(a_{k}) Q_{\nu/\mu}(b) \\ & \text{otherwise}, \end{cases}$$

Furthermore, let m, be the Macdonald measure on Si=Y(n):

 $m_n(\lambda^{(n)}) = P_{\lambda^{(n)}}(\alpha_i, -, \alpha_n) Q_{\lambda^{(n)}}(\delta_i, -, \delta_m) / \prod (\alpha_i, -, \alpha_n; \delta_i, -, \delta_m).$

We have that

 $\widetilde{m}_{n}(\lambda^{(n)}) = \sum_{M \in Y(n)} m_{n}(M) P_{M\lambda^{(n)}}(\alpha_{i}, -, \alpha_{k}; b), \\
= P_{\lambda^{(m)}}(\alpha_{i}, -, \alpha_{n}) Q_{\lambda^{(n)}}(b_{i}, -, b_{m}, b) / (\alpha_{i}, -, \alpha_{n}; b_{i}, -, b_{m}, b),$

is also a Mardonald measure, with the more 6-parameter. We can also check that

m (a) ()(1), --.)(a) = Pain (a) Pauy (a) Pauy (a) ... Pain (a) Q(6, -. 6,)/T(a, -. a, 6, -. 6,)

So by the Proposition, $\widetilde{m}^{(n)}(\lambda^{(n)}, -, \lambda^{(n)}) = m^{(n)} P^{(n)}$

 $=P_{\lambda^{(i)}}(a_i)P_{\lambda^{(i)}/\lambda^{(i)}}(a_1)\cdots P_{\lambda^{(m)}/\lambda^{(m)}}(a_n)\left(Q(b_i,-b_m,b)\middle| TT(a_i-a_n;b_i,-b_m,b)\right)$ is again the mechanish process.

3. Profabilistic meaning of a simple model.

Consider the simplest case of the Macdonald process: q:t.50 both P_A and Q_A are the Schur polynomial S_A . Let $a::=a_n=1$ and $b=p\in(0,1)$. Note that

 $S_{N/A}(x) = \begin{cases} 0 & \text{if } M \not\in \lambda. \\ \chi^{|\lambda|-|M|} & \text{if } M \not\in \lambda. \end{cases}$

The movement of the Gelfond-Tsetlin pattern $(\lambda^{(1)}, -\cdot, \lambda^{(n)})$ to $(\lambda^{(n)}, -\cdot, \lambda^{(n)})$ can be described as follows, equivalent to $P^{(n)}$:

First. $\lambda^{(n)}$ jumps right to $\lambda^{(n)} > \lambda^{(n)}$, with probability count. $P^{(n)}$, where count = (-P).

Second. $\Lambda^{(2)}$ jumps right to $M^{(2)} > \max(\Lambda^{(2)}, M^{(1)})$ with probability court p $M^{(2)} - \lambda^{(2)}$, and $\Lambda^{(2)}$ jumps right to $M^{(2)}$ that satisfies $\Lambda^{(2)}_{\perp} \leq M^{(2)}_{\perp} \leq M^{(1)}_{\perp}$, with probability court p $M^{(2)}_{\perp} - \lambda^{(2)}_{\perp}$. Here the two combants depend on $\lambda^{(2)}$, $\mu^{(1)}$ but not $M^{(2)}$.

Third. $\lambda^{(3)}$ jumps right to $\mu^{(3)} > \max(\lambda^{(3)}, \mu^{(2)})$.

 $\lambda_{1}^{(3)}$ jrungs right to $\lambda_{2}^{(3)}$ such that $\max_{i} (\lambda_{1}^{(3)}, \lambda_{2}^{(2)}) \in \lambda_{2}^{(3)} \leq \lambda_{1}^{(2)}$ $\lambda_{3}^{(3)}$ jrungs right to $\lambda_{3}^{(3)}$ such that $\lambda_{3}^{(3)} \leq \lambda_{3}^{(3)} \leq \lambda_{2}^{(2)}$.

with probabilities count. $p^{M_{ij}^{(2)}-M_{ij}^{(2)}}$, i=1,2,3, where the countents depend on $\lambda^{(3)}$ and $M^{(2)}$ but not $M^{(3)}$

It is clear that the movement of $\lambda^{(1)}$, $\lambda^{(2)}$, ..., $\lambda^{(n)}$ is independent to other entries in the Gelfond-Tsetlin pattern. Suppose $X_k = \lambda^{(k)} - k$ and positions of particles on \mathbb{Z} , $X_1 > X_2 > \cdots > X_n$. Then Their movement, in one slep. is:

First. x, jumps to the right k, units in probability (1-p) p^{k_1} . (k, = 0.1, 2, ---).

Second. X_{2} jumps to the right k_{2} units in probability $\frac{1-P}{1-pX_{1}+k_{1}-X_{2}}P^{k_{2}}$. ($k_{2}=0.1.$ --. $X_{1}+k_{2}-X_{2}-1$).

Third. χ_s jramps to the right k_s units in probability $\frac{1-p}{1-p\chi_2+k_1-\chi_3}p^{k_3}$. ($k_s=0.1,-...\chi_2+k_2-\chi_3-1$)

Question: if x==-k (k:1,..., n) initially, what's the

distribution of x_n after m steps: Answer: the same as the distribution of $\overline{\Lambda}^{(n)} - n$, where

 $\lambda^{(n)} = (\lambda^{(n)}, -\lambda^{(n)})$ is in the Macdonald measure

MM([.--. : P.--P) (actually Schur measure)

m steps

Initially. ($\lambda^{(1)}$, --, $\lambda^{(n)}$) are frozen to $\lambda^{(k)}$: (0, --, 0), sine they are in the distribution of the Macdonald process with α .=.:a.:1. β = 0.

Ofter m steps. (1". -. 1") are in the distribution of the Macdonald process with $\alpha_1 = - = a_n = 1$. $b_1 = - = b_m = p$ (after each step. one p is added). (actually Schur process)

(The figures above show $\lambda_j^{(k)}$ - j to make dots not overlapped.).

4. Continuous limits.

It is straight forward to get the continuous limit of the particle model considered above, as $p\to 0_+$.

Each particle X_k has an exponential clock what is working as long as its right neighbour site is not occupied by X_{k-1} , otherwise

the exponential clock is passed until x_{k-1} moves away. When the clock clicks, x_k moves to the right by one unit. This is the celebrated totally asymmetric simple exclusive process (TASEP).

The distribution of x_n after time t is given by $h^{(n)} - h$ where $h^{(n)}$ is in the macdonald (schur measure MM(1,-,1; P), and f is the limiting <u>Plancherel</u> specialization depending on t. a varietion of TASEP: Each particle x_k has an exponential clock that is slower if x_{k-1} is near to it: The parameter is $(1-q^{x_{k-1}-x_{k-1}})$. (So if x_{k-1} is not the right neighbour site to x_k , the exponential clock stops.). This is called the q-TASEP.

The distribution of X_n after time t, suppose the initial condition is $X_k := -k$, is given again by $\Lambda^{(n)} - n$, where $\Lambda^{(n)}$ is in the Macdonald measure $MM(\underbrace{1:-1}:P)$, but now the t and q parameters are $t \to 0$, q = q. This is the q-whitteher measure.