

FSIV

MAS Tección: modelo proyectivo.

Motivación

• ¿Dónde se verán los puntos 3D en el plano imagen?

Visión 3D

- Contenidos:
 - Modelo pin-hole: parámetros intrínsecos.
 - Relación de la cámara con el mundo: parámetros extrínsecos.
 - Calibración de la cámara.

Modelo Pin-Hole

La cámara ideal.

Por semejanza de triángulos:

$$\frac{x}{f} = \frac{X}{Z} \rightarrow x = f \times \frac{X}{Z}$$

$$\frac{y}{f} = \frac{Y}{Z} \rightarrow y = f \times \frac{Y}{Z}$$

Expresado de forma matricial:

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Paso de coordenada homogéneas a normales.

Modelo Pin-Hole

- En realidad necesitamos mejorar el modelo.
 - El centro de la imagen no coincide con el centro proyectivo.
- A Queremos coordenadas discretas.

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}, \quad x = \frac{u}{w}, \quad y = \frac{v}{w}$$

 Además la lente introduce distorsiones geométricas.

Lo que llega al sensor

La realidad

Modelo Pin-Hole

Parámetros intrínsecos.

Distorsión radial

Distorsión tangencial

Visión 3D

- Contenidos:
 - Modelo pin-hole: parámetros intrínsecos.
 - Relación de la cámara con el mundo: parámetros extrínsecos.

 Calibración de la cámara.

Relación con el mundo

• Parámetros extrínsecos.

$$P_{c} = R_{x} R_{y} R_{z} (P_{w} - T) \rightarrow R P_{w} - RT \rightarrow \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$R = R_x R_y R_z , R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}, \dots$$

Relación con el mundo

Poniendo todo junto: Matriz Proyectiva.

Matriz de proyección P:

$$P = M*[R|t]$$

$$x = P X$$

$$\vec{v} = P^{+} x$$

$$r = C_{0} + \lambda \vec{v}$$

$$P^{+} P = I$$

Matriz <mark>P</mark>

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x & 0 \\ 0 & f_y & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 & t_x \\ r_4 & r_5 & r_6 & t_y \\ r_7 & r_8 & r_9 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_{\text{ext}} \\ Y_{\text{ext}} \\ Z_{\text{ext}} \\ 1 \end{bmatrix}$$

$$x_{c}' = [x/w, y/w]$$

- Contenidos:
 - Modelo pin-hole: parámetros intrínsecos.
 - Relación de la cámara con el mundo: parámetros extrínsecos.
 - Calibración de la cámara.

- Homografías (I):
 - Define un mapeo proyectivo de un plano en otro, por ejemplo un patrón de calibración sobre la imagen.

- - Física: localiza el plano W=[RT] (6 incógnitas)
 - Proyectiva: matriz M. (4 incógnitas).

$$\tilde{q} = sMW \, \tilde{Q} = sM \, [RT] \, \tilde{Q}$$

Homografías (II):

- H tiene dos partes:
 - Física: localiza el plano **W**=[RT].

• Física: localiza el plano
$$W=[RT]$$
. $\tilde{q}=sMW\ \tilde{Q}=s\ M\ [RT]\ \tilde{Q}$
• Proyectiva: matriz M . Como el patrón es plano podemos asumir que $Z=0$ $W=[R_1R_2R_3T]\begin{bmatrix} X\\Y\\0\end{bmatrix}=[R_1R_2T]\begin{bmatrix} X\\Y\\1\end{bmatrix}$

- De esta forma H=MW es una matriz 3x3. Tenemos:
 - 4 parámetros intrínsecos comunes (M)
 - 6 parámetros extrínsecos por vista (W)
- Cada vista K nos da 2 (x,y)*N (puntos) ecuaciones pero 6 nuevas incógnitas
- Así tenemos: 2·N·K >= 4+6·K → (N-3)·K >= 2
- Necesitamos al menos dos vistas ya que sólo son informativos cuatro puntos por vista para la homografía y $(N=4-3)K \ge 2 \rightarrow K > 1$.

El patrón de calibración.

Calibración Intrínseca con OpenCV.

Necesitamos varias (de 7 a 9) vistas del patrón de calibración. Sólo las esquinas internas del patrón son utilizadas: patrón de 6x5 -> 5x4=20 puntos.

Generar vector de puntos 3D: {{0,0,0}, {s, 0, 0}, ... {0,s,0}, {s,s,0}...{5*s,4*s, 0}}

Para cada vista:

Detectar patrón y puntos 2D findChesboardCorners.

Refinar puntos 2D con cornerSubPix.

Añadir vector puntos 2D al vector de vectores 2D.

Añadir vector puntos 3D al vector de vectores 3D.

Utilizar calibrateCamera.

El valor devuelto es el error de re-proyección (<1).

$$M = | f_x | 0 | c_x |$$
 D: [k1,k2,p1,p2,k3]
| 0 | 0 | 0 | 1 |

Calibración Extrínseca con OpenCV.

Necesitamos 1 vista del patrón (se supone que tenemos los parámetros intrínsecos).

Sólo las esquinas internas del patrón son utilizadas: patrón de 6x5 -> 5x4=20 puntos.

Generar vector de puntos 3D: {{0,0,0}, {s, 0, 0}, ... {0,s,0}, {s,s,0}...{5*s,4*s, 0}} Detectar patrón y puntos 2D con **findChesboardCorners**.

Refinar puntos 2D con cornerSubPix.

Utilizar solvePnP.

Podemos usar **rodriguez()** para pasar de notación "vector rotación" a matriz R y al revés.

Ahora ya puedo proyectar puntos del Mundo en mi cámara: projectPoints.

[R|T]

Resumiendo

- Usamos el modelo proyectivo Pin-Hole.
- Los parámetros intrísecos explican cómo proyectar un punto 3D (sist. coord, de la cámara) en la imagen y corregir la distorsión.
- Los parámetros extrínsecos explican cómo relacionar la cámara con el mundo.
- El proceso de calibración permite obtener todos estos parámetros.

- Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, 2011.
- Adrian Kaehler and Gary Bradski, "Learning OpenCV 3", O'Reilly, 2017.

MASTER ICIOT UCO