

Digital Image Processing (750474) Lecture 8

Basic Relationships between Pixels

Outline of the Lecture

- > Neighbourhood
- > Adjacency
- **Connectivity**
- > Paths
- > Regions and boundaries
- **Distance Measures**
- > Matlab Example

Neighbors of a Pixel

- 1. $N_4(p)$: 4-neighbors of p.
 - Any pixel $\mathbf{p}(\mathbf{x}, \mathbf{y})$ has two vertical and two horizontal neighbors, given by $(\mathbf{x}+1,\mathbf{y})$, $(\mathbf{x}-1,\mathbf{y})$, $(\mathbf{x},\mathbf{y}+1)$, $(\mathbf{x},\mathbf{y}-1)$
 - This set of pixels are called the 4-neighbors of P, and is denoted by $N_4(P)$
 - Each of them is at a **unit distance** from **P**.

2. $N_D(p)$

- This set of pixels, called 4-neighbors and denoted by N_p (p).
- N_D(**p**): four diagonal neighbors of **p** have coordinates:

$$(x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)$$

- Each of them are at **Euclidean distance** of **1.414** from **P**.
- 3. N_8 (p): 8-neighbors of p.
 - $N_4(P)$ and $N_D(p)$ together are called 8-neighbors of p, denoted by $N_8(p)$.
 - $N_8 = N_4 U N_D$
 - Some of the points in the N₄, N_D and N₈ may fall <u>outside</u> image when P lies on the <u>border</u> of image.

F(x-1, y-1)	F(x-1, y)	F(x-1, y+1)
F(x, y-1)	F(x,y)	F(x, y+1)
F(x+1, y-1)	F(x+1, y)	F(x+1, y+1)

N₈ (p)

Dr. Qadri Hamarsheh

Adjacency

- Two pixels are **connected** if they are neighbors and their gray levels satisfy some specified criterion of similarity.
- For example, in a binary image two pixels are connected if they are 4-neighbors and have same value (0/1)
- Let v: a set of intensity values used to define adjacency and connectivity.
- In a binary Image $v=\{1\}$, if we are referring to adjacency of pixels with value 1.
- In a <u>Gray scale image</u>, the idea is the same, but v typically contains more elements, for example v= {180, 181, 182,...,200}.
- If the possible intensity values 0 to 255, v set could be any subset of these 256 values.

Types of adjacency

- 1. 4-adjacency: Two pixels **p** and **q** with values from **v** are 4-adjacent if **q** is in the set **N**₄ (**p**).
- **2. 8-adjacency:** Two pixels \mathbf{p} and \mathbf{q} with values from \mathbf{v} are **8-adjacent** if \mathbf{q} is in the set $\mathbf{N_8}$ (\mathbf{p}).
- **3.** m-adjacency (mixed): two pixels p and q with values from v are m-adjacent if:
 - \triangleright q is in N_4 (p) or
 - \triangleright q is in N_D (P) and
 - ▶ The set N_4 (p) \cap N_4 (q) has no pixel whose values are from v (No intersection).
 - **Mixed adjacency** is a modification of 8-adjacency "introduced to eliminate the ambiguities that often arise when 8- adjacency is used. (eliminate multiple path connection)
 - Pixel arrangement as shown in figure for **v**= {**1**}

Example:

Path

- A digital path (or curve) from pixel **p** with coordinate (x,y) to pixel **q** with coordinate (s,t) is a sequence of distinct pixels with coordinates $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$, where $(x_0, y_0) = (x,y), (x_n, y_n) = (s,t)$
- $(\mathbf{x}_i, \mathbf{y}_i)$ is adjacent pixel $(\mathbf{x}_{i-1}, \mathbf{y}_{i-1})$ for $1 \le j \le n$,
- **n** The *length* of the path.
- If $(x_0, y_0) = (x_n, y_n)$: the path is *closed path*.
- We can define 4-,8-, or m-paths depending on the type of adjacency specified.

Dr. Qadri Hamarsheh Connectivity

- Let **S** represent a subset of pixels in an image, Two pixels **p** and **q** are said to be connected in **S** if there exists a path between them.
- Two image subsets **\$1** and **\$2** are adjacent if some pixel in **\$1** is adjacent to some pixel in **\$2**

Region

- Let **R** to be a subset of pixels in an image, we call a **R** a region of the image. If **R** is a *connected* set.
- Region that are not adjacent are said to be **disjoint**.
- *Example*: the two regions (of Is) in figure, are adjacent only if 8-adjacany is used.

- 4-path between the two regions does not exist, (so their union in not a connected set).
- <u>Boundary (border)</u> image contains **K** disjoint regions, **R**_k, **k=1, 2,, k**, none of which touches the image border.

Dr. Qadri Hamarsheh

- Let: R_u denote the union of all the K regions, $(R_u)^c$ denote its complement. (Complement of a set S is the set of points that are not in s).
 - $\mathbf{R}_{\mathbf{u}}$ called **foreground**; $(\mathbf{R}_{\mathbf{u}})^{\mathbf{c}}$ called **background** of the image.
- **Boundary (border or contour)** of a region **R** is the set of points that are adjacent to points in the **complement** of **R** (another way: the border of a region is the set of pixels in the region that have at least are background neighbor).

We must specify the connectivity being used to define adjacency

Distance Measures

• For pixels **p**, **q** and **z**, with coordinates (**x**,**y**), (**s**,**t**) and (**u**,**v**), respenctively, **D** is a <u>distance function</u> or metric if:

$$D(p,q) \ge 0$$
, $D(p,q) = 0$ if p=q

$$D(p,q) = D(q,p)$$
, and

$$D(p,z) \leq D(p,q) + D(q,z)$$

- p(x,y)
- The following are the different *Distance measures*:
- 1. Euclidean Distance (D_e)

$$D_e(p,q) = \sqrt[2]{[(x-s)^2 + (y-t)^2]}$$

- The points contained in a disk of radius r centred at (x,y).
- 2. D₄ distance (city-block distance)

$$D_4(p,q) = |x-s| + |y-t|$$

Pixels having a D₄ distance from (x,y) less than or equal to some value r form a
 Diamond centred (x,y),.

Example 1: the pixels with $D_4=1$ are the 4-nighbors of (x, y).

3. D₈ distance (chess board distance)

$$D_8(p,q) = \max(|x-s|,|y-t|)$$

- square centred at (x, y)
- $D_8 = 1$ are 8-neighbors of (x,y)

Example: D_8 distance ≤ 2

4. D_m distance:

- Is defined as the **shortest m-path** between the points.
- The distance between pixels depends only on the values of pixels.

Example: consider the following arrangement of pixels

$$\begin{array}{ccc} & \textbf{P}_3 & \textbf{P}_4 \\ \textbf{P}_1 & \textbf{P}_2 & \\ \textbf{P} & \end{array}$$

and assume that P_1 P₂ have value 1 and that P_1 and P_3 can have a value of 0 or 1 Suppose, that we consider adjacency of pixels value 1 ($v=\{1\}$)

a) if P_1 and P_3 are 0:

Then
$$D_m$$
 distance = 2

b) if
$$P_1 = 1$$
 and $P_3 = 0$
m-distance = 3;

c) if
$$P_1=0$$
; and $P_3=1$

d) if
$$P1=P3=1$$
;

$$m$$
-distance=4 $path = p p_1 p_2 p_3 p_4$

Matlab Code

```
bw = zeros(200,200); bw(50,50) = 1; bw(50,150) = 1;
bw(150,100) = 1;
D1 = bwdist(bw,'euclidean');
D2 = bwdist(bw,'cityblock');
D3 = bwdist(bw,'chessboard');
D4 = bwdist(bw,'quasi-euclidean');
figure
subplot(2,2,1), subimage(mat2gray(D1)), title('Euclidean')
hold on, imcontour(D1)
subplot(2,2,2), subimage(mat2gray(D2)), title('City block')
hold on, imcontour(D2)
subplot(2,2,3), subimage(mat2gray(D3)), title('Chessboard')
hold on, imcontour(D3)
subplot(2,2,4), subimage(mat2gray(D4)), title('Quasi-Euclidean')
hold on, imcontour(D4)
```

