Las aves parásitas de cría ponen huevos en nidos de otras especies para que crían al pichón parásito. Hay dos especies hospederas que son indistinguibles a simple vista, la principal diferencia entre estas especies es el grado de discriminación y remoción de huevos parásitos de sus nidos.

La especie "aceptadora" de huevos parásitos, remueve del nido sólo el 30% de los huevos parásitos. Y la especie "rechazadora" remueve el 80% de los huevos parásitos.

Las aves parásitas de cría ponen huevos en nidos de otras especies para que crían al pichón parásito. Hay dos especies hospederas que son indistinguibles a simple vista, la principal diferencia entre estas especies es el grado de discriminación y remoción de huevos parásitos de sus nidos.

La especie "aceptadora" de huevos parásitos, remueve del nido sólo el 30% de los huevos parásitos. Y la especie "rechazadora" remueve el 80% de los huevos parásitos. Sea

$$Y = \begin{cases} R & \text{rechazador} \\ A & \text{aceptador} \end{cases}$$

Las aves parásitas de cría ponen huevos en nidos de otras especies para que crían al pichón parásito. Hay dos especies hospederas que son indistinguibles a simple vista, la principal diferencia entre estas especies es el grado de discriminación y remoción de huevos parásitos de sus nidos.

La especie "aceptadora" de huevos parásitos, remueve del nido sólo el 30% de los huevos parásitos. Y la especie "rechazadora" remueve el 80% de los huevos parásitos. Sea

$$Y = \left\{ egin{array}{ll} R & {
m rechazador} \ A & {
m aceptador} \ . \end{array}
ight.$$

El 90% de los nidos son de la especie "aceptadora" y el 10% a la especie "rechazadora".

$$P(Y = A) = 0.9$$
$$P(Y = R) = 0.1$$

Clasificación - El patito feo

El objetivo es conociendo el número de huevos removidos predecir si la especie es rechazadora o aceptadora.

Clasificación - El patito feo

El objetivo es conociendo el número de huevos removidos predecir si la especie es rechazadora o aceptadora.

Supongamos que en un nido se colocan n=8 huevos parasitarios.

Sea X = número de huevos removidos.

Clasificación - El patito feo

El objetivo es conociendo el número de huevos removidos predecir si la especie es rechazadora o aceptadora.

Supongamos que en un nido se colocan n=8 huevos parasitarios.

Sea X= número de huevos removidos. Sabemos,

$$X|_{Y=A} \sim Bi(8,0.3)$$
, es decir $p_{X|_{Y=A}}(x) = \binom{8}{x} 0.3^x 0.7^{8-x}$

$$X|_{Y=R} \sim Bi(8,0.8)$$
, es decir $p_{X|_{Y=R}}(x) = {8 \choose x} 0.8^x 0.2^{8-x}$

Cuál es la distribución de X??

Cuál es la distribución de X?? $p_X(x)$?

Cuál es la distribución de X?? $p_X(x)$?

$$p_X(x) = p_{X|Y=R}(x)P(Y=R) + p_{X|Y=A}(x)P(Y=A)$$
$$= 0.1 {8 \choose x} 0.8^x 0.2^{8-x} + 0.9 {8 \choose x} 0.3^x 0.7^{8-x}$$

0	1	2	3	4	5	6	7	8
0.052	0.178	0.267	0.230	0.127	0.057	0.038	0.035	0.017

Distribuciones condicionales y puntual

Distribuciones conjunta

$$p_{XY}(x,y) = p_{X|Y=y}(x)P(Y=y)$$

Y/X									
R	0.000	0.000	0.000	0.001	0.005	0.015	0.029	0.034	0.017
Α	0.052	0.178	0.267	0.229	0.123	0.042	0.009	0.001	0.000

Cómo hacemos para decidir mirando un nido con 8 huevos parasitarios y dependiendo cuantos huevos sean removidos si la especie es rechazadora o aceptadora.

Si se remueven 5 huevos; es decir si X=5

Cómo hacemos para decidir mirando un nido con 8 huevos parasitarios y dependiendo cuantos huevos sean removidos si la especie es rechazadora o aceptadora.

Si se remueven 5 huevos; es decir si $X=5\ {\it i}$ de qué clase de nido diría que se trata?

Si se remueven 3 huevos; (X=3) ¿de qué clase de nido diría que se trata?

Una Regla (de clasificación) asigna a $x \in \{0,1,\dots,8\}$ un tipo de hospedador: $\{A,R\}$ es decir, buscamos

$$h: \{0, 1, \dots, 8\} \to \{A, R\}$$

Por ejemplo, si remueve 5 huevos o más es rechazadora

\overline{x}	0	1	2	3	4	5	6	7	8
clasificador h_1	Α	Α	Α	Α	Α	R	R	R	R

Una Regla (de clasificación) asigna a $x \in \{0,1,\dots,8\}$ un tipo de hospedador: $\{A,R\}$ es decir, buscamos

$$h: \{0, 1, \dots, 8\} \to \{A, R\}$$

Por ejemplo, si remueve 5 huevos o más es rechazadora

\overline{x}	0	1	2	3	4	5	6	7	8
clasificador h_1	Α	Α	Α	Α	Α	R	R	R	R

Otro clasificador, si remueve un número par de huevos es rechazadora

								7	
clasificador h_2	R	Α	R	Α	R	Α	R	Α	R

Otra manera de escribirlo

					4				
clasificador h_1	Α	Α	Α	Α	Α	R	R	R	R

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

Otra manera de escribirlo

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \\ R & x \in \{0, 2, 4, 6, 8\} \end{cases}$$

Otra manera de escribirlo

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \\ R & x \in \{0, 2, 4, 6, 8\} \end{cases}$$

Cuál es más razonable??

Error de Clasificación Medio: $L(h) = \mathbb{P}(h(X) \neq Y)$

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

$$P(h_1(X) \neq Y)$$

Error de Clasificación Medio: $L(h) = \mathbb{P}(h(X) \neq Y)$ Por ejemplo con el clasificador h_1 ,

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

 $=P(h_1(X) \neq Y|Y=R)P(Y=R) + P(h_1(X) \neq Y|Y=A)P(Y=A)$

$$h_1(x) = \begin{cases} R & x \in \{5, 1, 2, 8, \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

 $P(h_1(X) \neq Y) =$

Error de Clasificación Medio: $L(h) = \mathbb{P}(h(X) \neq Y)$ Por ejemplo con el clasificador h_1 ,

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

 $=P(h_1(X) \neq Y|Y=R)P(Y=R) + P(h_1(X) \neq Y|Y=A)P(Y=A)$ $=P(X \in \{0,1,2,3,4\}|Y=R)P(Y=R) + P(X \in \{5,6,7,8\}|Y=A)$

$$P(h_1(X) \neq Y) =$$

 $P(h_1(X) \neq Y) =$

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

$$=P(h_1(X) \neq Y|Y=R)P(Y=R) + P(h_1(X) \neq Y|Y=A)P(Y=A)$$

$$=P(X \in \{0,1,2,3,4\}|Y=R)P(Y=R) + P(X \in \{5,6,7,8\}|Y=A)$$

$$=\sum_{x=0}^{4} {8 \choose x} 0.8^x 0.2^{8-x} 0.1 + \sum_{x=5}^{8} {8 \choose x} 0.3^x 0.7^{8-x} 0.9$$

$$=0.05779905$$

 $P(h_1(X) \neq Y) =$

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

$$=P(h_1(X) \neq Y|Y=R)P(Y=R) + P(h_1(X) \neq Y|Y=A)P(Y=A)$$

$$=P(X \in \{0,1,2,3,4\}|Y=R)P(Y=R) + P(X \in \{5,6,7,8\}|Y=A)$$

$$=\sum_{x=0}^{4} {8 \choose x} 0.8^x 0.2^{8-x} 0.1 + \sum_{x=5}^{8} {8 \choose x} 0.3^x 0.7^{8-x} 0.9$$

$$=0.05779905$$

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \\ R & x \in \{0, 2, 4, 6, 8\} \end{cases}$$

Error de Clasificación Medio: $L(h) = \mathbb{P}(h(X) \neq Y)$ Con el clasificador h_2 ,

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \\ R & x \in \{0, 2, 4, 6, 8\} \end{cases}$$

$$R \quad x \in \{0, 2, 4, 6\}$$

 $P(h_2(X) \neq Y) =$

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \end{cases}$$

 $=P(h_2(X) \neq Y|Y=R)P(Y=R) + P(h_2(X) \neq Y|Y=A)P(Y=A)$

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \\ R & x \in \{0, 2, 4, 6, 8\} \end{cases}$$

$$P(h_2(X) \neq Y) =$$
 $P(h_2(Y) \neq Y|Y)$

$$P(h_2(X) \neq Y) =$$

$$= P(h_2(X) \neq Y | Y = R) P(Y = R) + P(h_2(X) \neq Y | Y = R)$$

$$=P(h_2(X) \neq Y|Y=R)P(Y=R) + P(h_2(X) \neq Y|Y=A)P(Y=A)$$
$$=P(X \in \{1,3,5,7\}|Y=R)P(Y=R) + P(X \in \{0,2,4,6,8\}|Y=A)$$

=0.4994551

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \\ R & x \in \{0, 2, 4, 6, 8\} \end{cases}$$

$$P(h_2(X) \neq Y) =$$

$$= P(h_2(X) \neq Y | Y = R) P(Y = R) + P(h_2(X) \neq Y | Y = A) P(Y = A)$$

$$= P(X \in \{1, 3, 5, 7\} | Y = R) P(Y = R) + P(X \in \{0, 2, 4, 6, 8\} | Y = A)$$

$$= \sum_{x=1,3,5,7} {8 \choose x} 0.8^x 0.2^{8-x} 0.1 + \sum_{x=0,2,4,6,8} {8 \choose x} 0.3^x 0.7^{8-x} 0.9$$

=0.4994551

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \\ R & x \in \{0, 2, 4, 6, 8\} \end{cases}$$

$$P(h_2(X) \neq Y) =$$

$$= P(h_2(X) \neq Y | Y = R) P(Y = R) + P(h_2(X) \neq Y | Y = A) P(Y = A)$$

$$= P(X \in \{1, 3, 5, 7\} | Y = R) P(Y = R) + P(X \in \{0, 2, 4, 6, 8\} | Y = A)$$

$$= \sum_{x=1,3,5,7} {8 \choose x} 0.8^x 0.2^{8-x} 0.1 + \sum_{x=0,2,4,6,8} {8 \choose x} 0.3^x 0.7^{8-x} 0.9$$

Error de clasificación de h

Error de Clasificación Medio: $L(h) = \mathbb{P}(h(X) \neq Y)$

$$h_1(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4\} \\ R & x \in \{5, 6, 7, 8\} \end{cases}$$

$$P(h_1(X) \neq Y) = .05779905$$

$$h_2(x) = \begin{cases} A & x \in \{1, 3, 5, 7\} \\ R & x \in \{0, 2, 4, 6, 8\} \end{cases}$$

$$P(h_2(X) \neq Y) = 0.4994551$$

Error de Clasificación Medio: $L(h) = \mathbb{P}(h(X) \neq Y)$

$$h_t(x) = \begin{cases} A & x \in \{0, \dots t - 1\} \\ R & x \in \{t, \dots, 8\} \end{cases}$$

$$P(h_t(X) \neq Y)$$

$$h_t(x) = \begin{cases} A & x \in \{0, \dots t - 1\} \\ R & x \in \{t, \dots, 8\} \end{cases}$$

$$P(h_t(X) \neq Y) =$$

= $P(h_t(X) \neq Y | Y = R)P(Y = R) + P(h_t(X) \neq Y | Y = A)P(Y = A)$

Estimación del error de clasificación de h

Error de Clasificación Medio: $L(h) = \mathbb{P}(h(X) \neq Y)$ Por ejemplo con el clasificador h_t ,

$$h_t(x) = \begin{cases} A & x \in \{0, \dots t - 1\} \\ R & x \in \{t, \dots, 8\} \end{cases}$$

 $=P(h_t(X) \neq Y|Y=R)P(Y=R) + P(h_t(X) \neq Y|Y=A)P(Y=A)$ $=P(X \in \{0, ..., t-1\}|Y=R)P(Y=R) + P(X \in \{t, ..., 8\}|Y=A)$

$$(R x \in \{l, \dots, \infty\})$$

$$P(h_t(X) \neq Y) =$$

Estimación del error de clasificación de h

Error de Clasificación Medio: $L(h) = \mathbb{P}(h(X) \neq Y)$ Por ejemplo con el clasificador h_t ,

$$h_t(x) = \begin{cases} A & x \in \{0, \dots t - 1\} \\ R & x \in \{t, \dots, 8\} \end{cases}$$

$$P(h_t(X) \neq Y) =$$

$$= P(h_t(X) \neq Y | Y = R) P(Y = R) + P(h_t(X) \neq Y | Y = A) P(Y = A)$$

$$= P(X \in \{0, \dots t - 1\} | Y = R) P(Y = R) + P(X \in \{t, \dots, 8\} | Y = A)$$

$$= \sum_{t=1}^{t-1} {8 \choose t} 0.8^x 0.2^{8-x} 0.1 + \sum_{t=1}^{t-1} {8 \choose t} 0.3^x 0.7^{8-x} 0.9$$

Estimación del error de clasificación de $\it h$

$$h_t(x) = \begin{cases} A & x \in \{0, \dots t - 1\} \\ R & x \in \{t, \dots, 8\} \end{cases}$$

$$P(h_t(X) \neq Y) = \sum_{x=0}^{t-1} {8 \choose x} 0.8^x 0.2^{8-x} 0.1 + \sum_{x=t}^{8} {8 \choose x} 0.3^x 0.7^{8-x} 0.9$$

$$X > 0$$
 1 2 3 4 $P(h_t(X) \neq Y)$ 0.9000 0.8481 0.6702 0.4035 0.1757

$$egin{array}{c|ccccc} X & 5 & 6 & 7 & 8 & todos A \\ \hline P(h_t(X)
eq Y) & 0.0578 & 0.0305 & 0.0508 & 0.0833 & 0.100 \\ \hline \end{array}$$

Estimación del error de clasificación de h

$$h_t(x) = \begin{cases} A & x \in \{0, \dots t - 1\} \\ R & x \in \{t, \dots, 8\} \end{cases}$$

$$P(h_t(X) \neq Y) = \sum_{x=0}^{t-1} {8 \choose x} 0.8^x 0.2^{8-x} 0.1 + \sum_{x=t}^{8} {8 \choose x} 0.3^x 0.7^{8-x} 0.9$$

$$X > P(h_t(X) \neq Y)$$
 0.9000 0.8481 0.6702 0.4035 0.1757

Estimación del error de clasificación de $\it h$

$$h_6(x) = \begin{cases} A & x \in \{0, \dots 5\} \\ R & x \in \{6, \dots, 8\} \end{cases}$$

$$P(h_6(X) \neq Y) = \sum_{x=0}^{5} {8 \choose x} 0.8^x 0.2^{8-x} 0.1 + \sum_{x=6}^{8} {8 \choose x} 0.3^x 0.7^{8-x} 0.9$$

$$\begin{array}{c|c} X & 6 \\ \hline P(h_t(X) \neq Y) & \textbf{0.0305} \end{array}$$

Clasificación: Marco Teórico

- $X \in \mathcal{X}, Y \in \mathcal{Y}$. (en nuestro caso $\mathcal{X} = \{0,1,\dots,8\}$ y $\mathcal{Y} = \{A,R\}$)
- (X,Y) vector aleatorio, con puntual p_{XY} .
- Clasificador: Regla (de clasificación) que asigna a cada $x \in \mathcal{X}$ un elemento $y \in \mathcal{Y}$

Clasificador
$$h: \mathcal{X} \to \mathcal{Y}$$

Error de Clasificación Medio del clasificador h

$$L(h) = \mathbb{P}(h(X) \neq Y)$$

 Objetivo (teórico): Encontrar h que minimice el error medio de clasificación.

Teorema: El clasificador definido como

$$h_{opt}(x) = \begin{cases} A & x \in \{z : P(Y = A | X = z) \ge P(Y = R | X = z)\} \\ R & x \in \{z : P(Y = R | X = z) > P(Y = A | X = z)\} \end{cases}$$

es óptimo en el sentido que minimiza $L(h) = \mathbb{P}(h(X) \neq Y)$.

Teorema: El clasificador definido como

$$h_{opt}(x) = \begin{cases} A & x \in \{z : P(Y = A | X = z) \ge P(Y = R | X = z)\} \\ R & x \in \{z : P(Y = R | X = z) > P(Y = A | X = z)\} \end{cases}$$

es óptimo en el sentido que minimiza $L(h) = \mathbb{P}(h(X) \neq Y)$.

Demostración: Primero notemos que

$$h_{opt}(x) = \begin{cases} A & x \in \{z : p_{Y|X=z}(A) \ge p_{Y|X=z}(R)\} \\ R & x \in \{z : p_{Y|X=z}(R) > p_{Y|X=z}(A)\} \end{cases}$$

$$= \begin{cases} A & x \in \{z : \frac{p_{X|Y=A}(z)p_{Y}(A)}{p_{X}(z)} \ge \frac{p_{X|Y=R}(z)p_{Y}(R)}{p_{X}(z)}\} \\ R & x \in \{z : \frac{p_{X|Y=R}(z)p_{Y}(R)}{p_{X}(z)} > \frac{p_{X|Y=A}(z)p_{Y}(A)}{p_{X}(z)}\} \end{cases}$$

Luego

$$h_{opt}(x) = \begin{cases} A & x \in \{z: p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\} \\ R & x \in \{z: p_{X|Y=R}(z)p_Y(R) > p_{X|Y=A}(z)p_Y(A)\} \end{cases}$$

Luego

$$h_{opt}(x) = \begin{cases} A & x \in \{z : p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\} \\ R & x \in \{z : p_{X|Y=R}(z)p_Y(R) > p_{X|Y=A}(z)p_Y(A)\} \end{cases}$$

Notemos que cualquier clasificador es de la forma

$$h(x) = \begin{cases} A & x \in C_A \\ R & x \in C_R \end{cases}$$

Entonces debemos probar que si tomamos

$$C_A = \{z : p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\}$$
 minimiza $L(h)$.

Luego

$$h_{opt}(x) = \begin{cases} A & x \in \{z : p_{X|Y=A}(z)p_{Y}(A) \ge p_{X|Y=R}(z)p_{Y}(R)\} \\ R & x \in \{z : p_{X|Y=R}(z)p_{Y}(R) > p_{X|Y=A}(z)p_{Y}(A)\} \end{cases}$$

Notemos que cualquier clasificador es de la forma

$$h(x) = \begin{cases} A & x \in C_A \\ R & x \in C_R \end{cases}$$

Entonces debemos probar que si tomamos

$$C_A = \{z : p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\}$$
 minimiza $L(h)$.

$$L(h) = \mathbb{P}(h(X) \neq Y) = \sum_{x} p_{X|Y=R}(z)p_Y(R) + \sum_{x} p_{X|Y=A}(z)p_Y(A)$$

Luego

$$h_{opt}(x) = \begin{cases} A & x \in \{z : p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\} \\ R & x \in \{z : p_{X|Y=R}(z)p_Y(R) > p_{X|Y=A}(z)p_Y(A)\} \end{cases}$$

Notemos que cualquier clasificador es de la forma

$$h(x) = \begin{cases} A & x \in C_A \\ R & x \in C_R \end{cases}$$

Entonces debemos probar que si tomamos

$$C_A = \{z : p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\}$$
 minimiza $L(h)$.

$$L(h) = \mathbb{P}(h(X) \neq Y) = \sum_{x \in C_A} p_{X|Y=R}(z) p_Y(R) + \sum_{x \in C_R} p_{X|Y=A}(z) p_Y(A)$$
$$= \sum_{x \in C_A} p_{X|Y=R}(z) p_Y(R) + \sum_{x \in C_R} p_{X|Y=A}(z) p_Y(A)$$

+
$$\sum_{x \in C_A} p_{X|Y=A}(z) p_Y(A) - \sum_{x \in C_A} p_{X|Y=A}(z) p_Y(A)$$

$$L(h) = \sum_{x \in C_A} p_{X|Y=R}(z) p_Y(R) + \sum_{x \in C_R} p_{X|Y=A}(z) p_Y(A) + \sum_{x \in C_A} p_{X|Y=A}(z) p_Y(A) - \sum_{x \in C_A} p_{X|Y=A}(z) p_Y(A)$$

$$L(h) = \sum_{x \in C_A} p_{X|Y=R}(z)p_Y(R) + \sum_{x \in C_R} p_{X|Y=A}(z)p_Y(A)$$

$$+ \sum_{x \in C_A} p_{X|Y=A}(z)p_Y(A) - \sum_{x \in C_A} p_{X|Y=A}(z)p_Y(A)$$

$$= \sum_{x \in C_A} (p_{X|Y=R}(z)p_Y(R) - p_{X|Y=A}(z)p_Y(A))$$

$$+ \sum_{x \in C_R} p_{X|Y=A}(z)p_Y(A) + \sum_{x \in C_A} p_{X|Y=A}(z)p_Y(A)$$

$$= \sum_{x \in C_A} (p_{X|Y=R}(z)p_Y(R) - p_{X|Y=A}(z)p_Y(A)) + p_Y(A)$$

Entonces L(h) es mínimo si para todo $x \in C_A$ se tiene que $(p_{X|Y=R}(z)p_Y(R) - p_{X|Y=A}(z)p_Y(A)) < 0$. Pero justamente

$$h_{opt}(x) = \begin{cases} A & x \in \{z : p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\} \\ R & x \in \{z : p_{X|Y=R}(z)p_Y(R) > p_{X|Y=A}(z)p_Y(A)\} \end{cases}$$

Clasificador Óptimo: Pátito feo

$$h_{opt}(x) = \begin{cases} A & x \in \{z : p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\} \\ R & x \in \{z : p_{X|Y=R}(z)p_Y(R) > p_{X|Y=A}(z)p_Y(A)\} \end{cases}$$

Clasificador Óptimo: Pátito feo

$$h_{opt}(x) = \begin{cases} A & x \in \{z : p_{X|Y=A}(z)p_Y(A) \ge p_{X|Y=R}(z)p_Y(R)\} \\ R & x \in \{z : p_{X|Y=R}(z)p_Y(R) > p_{X|Y=A}(z)p_Y(A)\} \end{cases}$$

Queremos comprar $p_{X|Y=A}(z)p_Y(A)$ vs $p_{X|Y=R}(z)p_Y(R)$. Que en este caso es como mirar la conjunta $p_{XY}(x,A)$ vs $p_{XY}(x,R)$

$$h_{opt}(x) = \begin{cases} A & x \in \{0, 1, 2, 3, 4, 5\} \\ R & x \in \{6, 7, 8\} \end{cases}$$

$$L(h_{opt}) = \mathbb{P}(h_{opt}(X) \neq Y) = 0.0305$$