

Class 06 – Series Circuits Ohm's & Watts Law Analysis

SIERRA Callege

- Lecture Objectives
 - Series circuits
 - Series resistance
 - Kirchoff's Voltage Law
 - Voltage dividers

- Lab
 - Series circuits
 - Voltage dividers
 - Transistors & diodes in series

- Series Circuits
 - Any circuit having a single current path
 - Characteristics
 - Single current path
 - Current is equal in all parts of the circuit

SIERRA COLLEGE

- Series Circuits
 - Series total resistance is equal to the sum of all series connected resistance.

$$R_T = R_1 + R_2 + ...R_N$$

$$R_T = 250\Omega + 1k\Omega$$

$$R_T = 1,250\Omega$$

- Series Circuits
 - Series total resistance is directly proportional to total voltage and inversely proportional to total current.

$$R_T = \frac{V_T}{I_T}$$

$$R_T = \frac{12V}{48mA} = 250\Omega$$

SIERRA

- Series Circuits
 - Component Voltage Drops

$$\begin{split} V_{R1} &= I_T \times R_1 \\ V_{R1} &= 2mA \times 100 k\Omega \\ V_{R1} &= 200 V \end{split}$$

- **Series Circuits**
 - **Component Voltage Drops**

$$V_{R2} = I_T \times R_2$$

$$V_{R2} = 2mA \times 27k\Omega$$
$$V_{R2} = 54V$$

$$V_{R2} = 54V$$

SIERRA

- **Series Circuits**
 - **Component Voltage Drops**

$$V_{R3} = I_T \times R_3$$

$$V_{_{R3}}=2mA\!\times\!10k\Omega$$

$$V_{R3} = 20V$$

- Series Circuits
 - Kirchhoff's Voltage Law the sum of circuit voltage drops equals the source voltage.

SIERRA COLLEGE

- Series Circuits
 - Kirchhoff's Voltage Law the sum of circuit voltage drops equals the source voltage.

$$V_S = V_{R1} + V_{R2} + V_{R3}$$

 $V_S = 200V + 54V + 20V$
 $V_S = 274V$

SIERRA

MECH 10 Fundamentals of Electronics

- Series Circuits
 - KVL example

$$\begin{aligned} V_{R1} &= I_T \times R_{R1} \\ V_{R2} &= I_T \times R_{R2} \\ V_{R3} &= I_T \times R_{R3} \end{aligned}$$

$$\begin{split} V_{R1} &= 250 \mu A \times 250 k \Omega = 62.5 \\ V_{R2} &= 250 \mu A \times 100 k \Omega = 25 V \\ V_{R3} &= 250 \mu A \times 50 k \Omega = 12.5 V \\ V_{T} &= V_{R1} + V_{R2} + V_{R3} = 100 V \end{split}$$

$$\begin{split} V_T &= I_T \times R_T \\ V_T &= 250 \,\mu\text{A} \times 400 k\Omega = 100 V \end{split}$$

 $V_{R1} = I_T \times R_T = 2.5 \text{mA} \times 4k\Omega = 10V$

 $V_{R4} = I_T \times R_4 = 2.5 mA \times 1k = 2.5V$

$$\begin{split} V_{R2} &= I_T \times (R_2 + R_3 + R_4) = 2.5 mA \times 3k = 7.5V \\ V_{R3} &= I_T \times (R_3 + R_4) = 2.5 mA \times 2k = 5.0V \end{split}$$

SIERRA

- Series Circuits
 - KVL voltage divider
 - (+) Easily split voltages for component level needs
 - (-) Backbone circuit losses are large

- Power in Series Circuits
 - **Component Power**

$$P_{R1} = I_T^2 \times R_{R1}$$

$$P_{R2} = I_T^2 \times R_{R2}$$

$$P_{R3} = I_T^2 \times R_{R3}$$

$$P_{p_2} = I_r^2 \times R_{p_2} = (2A)^2 \times 50\Omega = 200W$$

$$\begin{cases} {}^{+}_{50\Omega} & P_{R2} = I_{T}^{2} \times R_{R2} = (2A)^{2} \times 50\Omega = 200W \\ {}^{-}_{10\Omega} & P_{R3} = I_{T}^{2} \times R_{R3} = (2A)^{2} \times 10\Omega = 40W \end{cases}$$

SIERRA Cellege

- Power in Series Circuits
- - **Net Power**

$$P_{T} = P_{R1} + P_{R2} + P_{R3}$$

$$P_T = V_T \times I_T$$

$$P_T = I_T^2 \times R_T$$

$$P_T = \frac{V_T^2}{R_T}$$

$$P_T = P_{R1} + P_{R2} + P_{R3}$$

$$P_T = 160W + 200W + 40W$$

$$P_T = V_T \times I_T$$

$$P_T = 200V \times 2A$$

Lab 06 - Series Circuits

Learning Objectives

- Build series circuits as per a schematic diagram
 Measure electrical values using a digital voltmeter
 Use Ohm's Law to validate field measurements
- Use a data table and schematic diagrams to capture field measurements

		Points Possible
Documentation	Quality of documentation (neatness, clarity, spelling, grammar), Expected and measured values recorded on schematic diagram	10
Circuit 1	Expected and measured resistance values recorded in data table with percent error	5
	Expected and measured total resistance and circuit current recorded in data table with percent error	5
	Expected and measured resistor voltage drops recorded in table with percent error	5
Circuit 2	Expected and measured total resistance and circuit current recorded in data table with percent error	5
	Expected and measured resistor voltage drops recorded in table with percent error	5
Circuit 3	Min / max voltage levels recorded	5
Circuit 4	Expected and measured total resistance and circuit current recorded in data table with percent error	5
	Expected and measured resistor voltage drops recorded in table with percent error	5
Circuit 5	V _S , V _{LED} , V _{R1} , V _{CE} recorded. Total voltage drop calculated and compared with V _S using the % Error formula	5
Conclusions	Qestions answered completely & accurately	10
	Total	65