Exercice 1 (Question de cours.)

Donner l'énoncé et la démonstration de l'inégalité de convexité.

EXERCICE 2 (Question de cours.)

Donner l'énoncé du résultat de cours concernant la dérivation d'une intégrale à paramètre.

EXERCICE 3 (Exercice préparé.)

Pour $x \in \mathbb{R}$, on pose

$$F(x) = \int_{-\infty}^{+\infty} e^{-t^2} e^{xt} dt.$$

- 1. Montrer que F est bien définie et continue sur \mathbb{R} .
- 2. Montrer que F est de classe C^1 et calculer sa dérivée F'.
- 3. En utilisant une intégration par partie, montrer que F est solution d'une équation différentielle (que l'on déterminera), et en déduire une expression simple de F. Indication : on rappelle que $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.

Exercice 4 (Exercice préparé.)

- 1. Montrer que la famille $\left(\frac{1}{p^q}\right)_{p\geq 2,\,q\geq 2}$ est sommable, et calculer sa somme.
- 2. Montrer que la famille $\left(\frac{1}{p^q}\right)_{p\geq 1,\,q\geq 2}$ n'est pas sommable.
- 3. Montrer que la famille $\left(\frac{1}{p^q}\right)_{p\geq 2,\,q\geq 1}$ n'est pas sommable.

Exercice 5

Déterminer la limite, lorsque n tend vers $+\infty$, des suites suivantes.

1)
$$\int_1^{+\infty} \frac{dt}{1+t^n}$$
 2) $\int_0^1 f(t^n)dt$ avec $f:[0,1]\to\mathbb{R}$ continue 3) $\int_0^{\pi/4} \tan(t)^n dt$

Exercice 6

Étudier la nature des intégrales suivantes :

1)
$$\int_0^{+\infty} e^{-t^2} dt$$
 2) $\int_0^{+\infty} x \sin(x) e^{-x} dx$ 3) $\int_0^1 \frac{dt}{(1-t)\sqrt{t}}$
4) $\int_0^1 \frac{\cosh(t) - \cos(t)}{t^{5/2}} dt$ 5) $\int_{\frac{2}{\pi}}^{+\infty} \ln\left(\cos\frac{1}{t}\right) dt$ 6) $\int_0^{+\infty} \frac{\sqrt{t}\sin(1/t^2)}{\ln(1+t)} dt$

Exercice 7

Soit $f:]0,1[\to \mathbb{R}$ une fonction continue, croissante, telle que l'intégrale $\int_0^1 f(t)dt$ converge.

1. Montrer que

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(t)dt.$$

Exercice 8

Dans cet exercice on se propose de calculer l'intégrale de Gauss. On pose

$$F(x) = \int_0^{+\infty} \frac{e^{-x(1+t^2)}}{1+t^2} dt.$$

- 1. Montrer que F est définie et continue sur $[0, +\infty[$ et déterminer $\lim_{x\to +\infty} F(x)$.
- 2. Montrer que F est dérivable sur $]0, +\infty[$ et démontrer que

$$F'(x) = -\frac{e^{-x}}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du.$$

3. En intégrant F' sur $]0, +\infty[$, montrer que

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Exercice 9

Soit C_1, C_2 deux parties convexes d'un espace vectoriel réel E et soit $s \in [0, 1]$. On pose $C = sC_1 + (1 - s)C_2 = \{sx + (1 - s)y \mid x \in C_1, y \in C_2\}$. Montrer que C est convexe.

Exercice 10

Soit f une fonction convexe de classe \mathcal{C}^1 sur [a,b]. Montrer que

$$(b-a)f\left(\frac{a+b}{2}\right) \le \int_a^b f(t)dt \le (b-a)\frac{f(a)+f(b)}{2}.$$

Exercice 11

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe croissante. Montrer que f est constante ou que $\lim_{x \to +\infty} f(x) = +\infty$.

Exercice 12

Soit f une fonction convexe sur l'intervalle borné]a,b[.

- 1. Montrer que f est minorée.
- 2. La fonction f est-elle nécessairement majorée ?