Review of Research Papers Related to V₄-cordial Labeling of Graphs

N. B. Rathod

Research Scholar, R. K. University, Rajkot-360020, Gujarat, India.

Review of a Research Paper entitled, "Some *V*₄-cordial graphs"

Concise Summary:

Authors: M. Seenivasan & A. Lourdusamy. Published in: Sciencia Acta Xaveriana, Vol. 1(1)(2009), 91-99.

In this research paper authors investigate a necessary condition for an Eulerian graph to be V_4 -cordial. They also proved that all trees except P_4 and P_5 are V_4 -cordial and the cycle C_n is V_4 -cordial, $n \neq 4$ or n does not congruent to 2(mod 4).

Evaluation of Paper:

1. Positive Aspects:

- (i) All the figures are very nicely drawn so any one can understand easily.
- (ii) The proof of Theorem 2.4 "Let f be a V_4 -cordial labeling of a graph G with P_4 and uv be an edge of G such that f(u) = 0 and f(u) = f(v)." is very useful to find some more graphs which admits V_4 -cordial labeling and also this proof can be used for finding V_4 -cordiality of generalized graph of any graph.

2. Negative Aspects:

- (i) The proof of Lemma 2.6 "If all trees on 4m vertices are V_4 -cordial then all trees on 4m+1, 4m+2, 4m+3 vertices are also V_4 -cordial." contains very less explanation and not given any illustration so it's very difficult to understand.
- (ii) The proof of Theorem 2.7 "All trees except P_4 and P_5 are V_4 -cordial." is divided into two cases. In each case the explanation is difficult and authors are not given any illustrations so it is very difficult to understand the proof.

3. Discrepancy:

In Corollary 2.3 "The cycle C_n is not V_4 -cordial, where $n \equiv 2 \pmod{4}$, the generalized Peterson graph P(n,k), where $n \equiv 2 \pmod{4}$ and $C_m \times C_n$, where m and n are odd are not V_4 -cordial." there is no given any proof about V_4 -cordiality of Peterson graph P(n,k) and

 $C_m \times C_n$.

Further comments:

- (i) The authors use V_4 -coordiality and this labeling is such a nice combination of group theory and graph theory. This labeling can be use in application of abstract algebra in graph theory.
- (ii) The authors give the proof of V_4 -cordial labeling of standard graphs Path and cycle. By using these graphs there may be found more graphs which may contain V_4 -cordiality.
- (iii) Authors should have to give some illustration so anyone can understand.

Review of a Research Paper entitled, "Generalized Graph Cordiality"

Concise Summary:

Authors: O. Pechenik & J. Wise.

Published in: Discussiones Mathematicae Graph Theory, Vol. 32 (3) (2012), 557-667.

In this paper authors investigate some A-cordial graphs, V_4 -cordial graphs and Q-cordial graphs. Authors proved the following results. All complete bipartite graphs are V_4 -cordial except $K_{m,n}$, where $m,n \equiv 2(mod4)$. All Paths P_n are V_4 -cordial except P_4 and P_5 . All cycles C_n are V_4 -cordial except C_4 , C_5 and C_k , where $k \equiv 2(mod4)$. All ladders $P_2 \times P_k$ are V_4 -cordial except C_4 . All prisms are V_4 -cordial except $P_2 \times C_k$, where $k \equiv 2(mod4)$. All hypercube are V_4 -cordial, except C_4 .

Evaluation of Paper:

1. Positive Aspects:

In this paper authors proved all ladders $P_2 \times P_k$ and all prisms $P_2 \times C_k$ are V_4 -cordial. These graphs ladders and prisms are obtained by operation on standard graphs, which is very hard, but the authors make it very easy.

2. Negative Aspects:

(i) In Theorem 3.4 authors proved that the path P_n is V_4 -coordial unless n=4, 5. They proved this result by induction on n. But in 2009 Seenivasan and Lourdusamy[4] have been already proved that all trees except P_4 and P_5 are V_4 -coordial and path P_n is one type of tree.

www.ijaers.com Page | 20

[Vol-4, Issue-3, Mar- 2017] ISSN: 2349-6495(P) | 2456-1908(O)

- (ii) In theorem 3.5 authors proved that the cycle C_n is V_4 -cordial for n does not congruent to 2(mod4) and $n \neq 4$, 5. But Seenivasan and Lourdusamy[4] have been already given a proof for V_4 -cordiality of cycle C_n .
- (iii) In this paper all symbols of graph operation do not appear properly.
- (iv) The authors prove that the d-dimensional hypercube Q_d is V_d -cordial, but the authors have not been introduced the definition of d-dimensional hypercube Q_d .

Further comments:

- (i) This paper contains three types of labeling defined as A-cordial labeling, V₄-cordial labeling and Q-cordial labeling. Using this combination of labeling authors can see the behavior of graphs in different labeling.
- (ii) Authors must have to give the definitions of new words.

Review of a Research Paper entitled, " Z^2_2 -coordiality of K_n and $K_{m,n}$ "

Concise Summary:

Authors: Adrian Riskin.

Published in: Cite: arXiv:0709.0290v1

[math.CO](2013).

In this paper author introduce new graph labeling known as Z^2_2 -cordial labeling (V_4 -cordial labeling). Author study the Z^2_2 -cordiality of K_n and $K_{m,n}$. Author proved few minor results and questions on the Z^2_2 -cordiality of trees.

Evaluation of Paper:

1. Positive Aspects:

- (i) The author has introduced the new labeling Z^2_2 -cordial labeling (V_4 -cordiality) obtained from A-cordial labeling.
- (ii) Author have been given a Z^2 -coordiality of two graphs K_n and $K_{m,n}$ and these two graphs have many applications in engineering.

2. Negative Aspects:

- (i) In this paper author introduce Z^2 -coordiality, but the author does not give an exact definition of Z^2 -coordiality.
- (ii) The author does not give any illustrations in all theorems.

Further comments:

- (i) The result $K_{m,n}$ complete bipartite graph is Z^2_2 -cordial can be extended to more generalize as complete k-partite graphs are Z^2_2 -cordial or not.
- (ii) Author must have to give enough illustration for better understanding.

REFERENCES

- [1] J. A. Gallian, A dynamic survey of graph labeling, *The Electronics Journal of Combinatorics*, 19(2016) #DS₆.
- [2] O. Pechenik and J. Wise, Generalized graph cordiality, *Discussiones Mathematicae Graph Theory*, 2(3), 557-567(2012).
- [3] A. Riskin, Z^2 -coordingty of K_n and $K_{m,n}$, arXiv:0709.0290 (2013).
- [4] M. Seenivasan and A. Lourdusamy, Some V_4 -cordial graphs, *Sciencia Acta Xaveriana*, 1(1), 91-99(2009).

www.ijaers.com Page | 21