

Title: Targeted Delivery of Informational Content with Privacy Protection Inventor: Juels
Serial No. Not yet assigned
Atty Docket No. RSA-044 (7216/66)
Atty/Agent: Ira V. Heffan
Express Mail Mailing Label No. EL750476114US

FIGURE 2

Title: Targeted Delivery of Informational Content with

Privacy Protection Inventor: Juels

Serial No. Not yet assigned Atty Docket No. RSA-044 (7216/66)

Atty/Agent: Ira V. Heffan

Express Mail Mailing Label No. EL750476114US

STEP 31

$$C_i$$
 computes $r_i = f(P_{Ci})$

STEP 32

$$C_i \xrightarrow{r_i} A$$

STEP 33

STEP 34

$$C_i \leftarrow A$$

STEP 35

Title: Targeted Delivery of Informational Content with Privacy Protection Inventor: Juels Serial No. Not yet assigned

Atty Docket No. RSA-044 (7216/66) Atty/Agent: Ira V. Heffan

$$C_1$$
 computes $r_1 = f(P_{C1})$
 C_2 computes $r_2 = f(P_{C2})$
 C_3 computes $r_3 = f(P_{C3})$

$$C_{1} \xrightarrow{r_{1}} PS$$

$$C_{2} \xrightarrow{r_{2}} PS$$

$$C_{3} \xrightarrow{r_{3}} PS$$

$$C_{3} \xrightarrow{r_{3}} PS$$

$$(x_1, r_1) (x_2, r_2) (x_3, r_3)$$
PS ______ A STEP 44

r_i causes A to select ad_{ri} **STEP 45**

$$(x_1, ad_1) (x_2, ad_2) (x_3, ad_3)$$
PS
A STEP 46

$$C_1, C_2, C_3 \stackrel{ad_i}{\longleftarrow} PS \qquad STEP 47$$

Title: Targeted Delivery of Informational Content with 4 **Privacy Protection**

Inventor: Juels Serial No. Not yet assigned

Atty Docket No. RSA-044 (7216/66) Atty/Agent: Ira V. Heffan

STEP 51
$$C_1, C_2, C_3 \leftarrow$$

STEP 52
$$C_1$$
 computes $r_1 = f(P_{C1})$ and encrypts $E_y[r_1]$ C_2 computes $r_2 = f(P_{C2})$ and encrypts $E_y[r_2]$ C_3 computes $r_3 = f(P_{C3})$ and encrypts $E_y[r_3]$

STEP 53

$$C_{1} \xrightarrow{\{E_{y}[r_{1}], x_{1}\}} BB$$

$$C_{2} \xrightarrow{\{E_{y}[r_{2}], x_{2}\}} BB$$

$$C_{3} \xrightarrow{\{E_{y}[r_{3}], x_{3}\}} BB$$

STEP 54 Servers collect
$$V_1 = \{ E_y[r_i], x_i \}_{i=1}^k$$

STEP 55 Servers mix
$$V_1$$
 by random secret permutation σ_1 to obtain $V_2 = \{r_{\sigma l}(i), E_y[\sigma_1(i)]\}_{i=1}^k$

STEP 56 Servers replace each
$$r_j$$
 in V_2 with ad_{rj} to obtain $V'_2 = \{ad_r, E_y[\sigma_1(i)]\}_{i=1}^k$

STEP 57 Servers mix V'₂ by random secret permutation
$$\sigma_2$$
 to obtain V₃ = $\{(E_y[ad_{\sigma_2(i)}], \sigma_2(i)\}_{i=1}^k$

STEP 58 Servers apply quorum controlled asymmetric proxy re-encryption to obtain
$$V_4 = (E_{yci}[ad_{ri}], i)_{i=1}^k$$

STEP 59
$$C_1, C_2, C_3 \leftarrow A$$

FIGURE 5

Title: Targeted Delivery of Informational Content with Privacy Protection Inventor: Juels

Srial No. Not yet assigned y Docket No. RSA-044 (7216/66)

Aty/Agent: Ira V. Heffan Express Mail Mailing Label No. EL750476114US

STEP 61	C • A
STEP 62	C computes $r = f(P)$ and encrypts $E_y[r]$
STEP 63	$C \xrightarrow{E_y[r_1]} BB$
STEP 64	Servers encrypt ad_i to generate $U_1 = \{(j, E_y[ad_j])\}_{j=1}^n$
STEP 65	Servers mix U_1 by random secret permutation σ to obtain $U_2 = (E_y[\sigma(j)], E_y[ad_{\sigma(j)}])^n_{j=1}$
STEP 66	Servers perform a distributed plaintext equality test to find $E_y[j] \sim E_y[r]$ and obtain $U_3 = (E_y[r], E_y[ad_r])$
STEP 67	Servers apply quorum controlled asymmetric proxy re-encryption to obtain $E_{yci}[ad_r]$
STEP 68	$\mathbf{C} \leftarrow \mathbf{A}$
STEP 69	C decrypts E _{yci} [ad _r] to receive ad _r

FIGURE 6