Feuille d'exercice n° 14 : Séries entières

I. Rayon de convergence

Exercice 1 (\nearrow) Soit $\sum_{n} a_n z^n$ une série entière de rayon de convergence R. On pose $b_n = \frac{a_n}{1 + |a_n|}$ et on note R' le rayon de convergence de $\sum_{n} b_n z^n$.

- 1) Montrer que $R' \ge \max(1, R)$.
- 2) Établir que si R' > 1 alors R' = R.
- 3) Exprimer R' en fonction de R.

Exercice 2 (%)

- 1) Montrer que si la série entière $\sum a_n z^n$ est de rayon de convergence R > 0, alors la série entière $\sum a_n z^{2n}$ est de rayon de convergence \sqrt{R} .
- 2) Soient R_1 et R_2 les rayons de convergence respectifs des séries $\sum a_{2n}z^n \text{ et } \sum a_{2n+1}z^n.$

Montrer que le rayon de convergence R de la série entière $\sum a_n z^n$ vaut min $(\sqrt{R_1}, \sqrt{R_2})$, et que, si |z| < R, on a

$$\sum_{n=0}^{+\infty} a_n z^n = \sum_{n=0}^{+\infty} a_{2n} z^{2n} + \sum_{n=0}^{+\infty} a_{2n+1} z^{2n+1}$$

Exercice 3 (%)

Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. Quel est le rayon de convergence de la série entière $\sum \frac{a_n}{n!} z^n$?

Exercice 4 (\bigcirc) Déterminer le rayon de convergence R des séries entières suivantes :

- 1) $\sum_{n\geqslant 0} \frac{n^2+1}{n^3+2} z^n$ 3) $\sum_{n\geqslant 1} \frac{\ln(n^2+1)}{\ln(n^3+1)} z^n$ 5) $\sum_{n\geqslant 0} e^{\sin n} z^n$
- 2) $\sum_{n\geqslant 0} \frac{2^n + n^2}{3^n n^2} z^n$ 4) $\sum_{n\geqslant 0} \binom{2n}{n} z^n$ 6) $\sum_{n\geqslant 0} (\sqrt{n+2} \sqrt{n}) z^n$.

Exercice 5 (\bigcirc **)** Déterminer le rayon de convergence de $\sum \binom{2n}{n} z^{3n}$.

Exercice 6 Déterminer le rayon de convergence de la série entière $\sum \frac{z^n}{\sin(n\pi\sqrt{3})}.$

Exercice 7 Soit $\sum_{n\geqslant 0} a_n x^n$ une série entière de rayon de convergence égal à 1. On note S sa somme et l'on suppose qu'il existe $\ell\in\mathbb{R}$ vérifiant

$$S(x) \xrightarrow[x < 1]{x \to 1} \ell.$$

- 1) La série $\sum_{n\geqslant 0} a_n$ est-elle nécessairement convergente ?
- 2) Dans le cas où $\forall n \in \mathbb{N}, \ a_n \geqslant 0$, montrer que $\sum_{n\geqslant 0} a_n$ converge et $\sum_{n=0}^{+\infty} a_n = \ell.$

II. Régularité

Exercice 8 ($^{\infty}$) Calculer la somme de la série $\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n+1}$.

Exercice 9 ()

Soit f la fonction définie sur \mathbb{R} par f(0) = 1/2 et pour $x \neq 0$ par $f(x) = \frac{1 - \cos x}{x^2}$. Montrer que f est de classe \mathscr{C}^{∞} sur \mathbb{R} .

Exercice 10 (%)

- 1) Montrer que si le rayon de convergence de $\sum a_n x^n$ est R, si $R \in]0, +\infty[$, et si $\sum |a_n| R^n$ converge, alors $S : x \longmapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue sur [-R, R].
- 2) Montrer que $S: x \longmapsto \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$ vérifie les hypothèses de la question précédente et qu'elle n'est pas dérivable en 1.

Exercice 11

Soit, pour $n \in \mathbb{N}$, $a_n = \int_0^1 \frac{t^n}{1+t^2} dt$. Déterminer le rayon de convergence de la série entière de terme général $a_n x^n$ et calculer sa somme.

Indication : pour $t \in [0,1]$ et |x| < 1, on pourra utiliser l'égalité $\frac{1}{(1+t^2)(1-tx)} = \frac{1}{1+x^2} \left(\frac{1+tx}{1+t^2} + \frac{x^2}{1-tx} \right).$

III. Développements en série entière

Exercice 12 ()

Développer en série entière la fonction $f: x \mapsto \cos(x+1)$ et préciser le ravon de convergence.

Exercice 13 () Calculer le rayon de convergence et la somme des séries entières suivantes (z: variable complexe, x: variable réelle):

1)
$$\sum_{n \ge 0} n^2 x^n$$

$$3) \sum_{n\geqslant 0} \operatorname{sh} nz^n$$

3)
$$\sum_{n>0} \frac{n^3 + n^2 - 1}{n+1} x^n$$

$$4) \sum_{n\geqslant 1} \frac{n+1}{n!} z^n$$

1)
$$\sum_{n\geqslant 0} n^2 x^n$$
 3) $\sum_{n\geqslant 0} \sinh nz^n$ 6) $\sum_{n\geqslant 0} \frac{n^3 + n^2 - 1}{n+1} x^n$ 4) $\sum_{n\geqslant 1} \frac{n+1}{n!} z^n$ 7) $\sum_{n\geqslant 0} \left(n^2 + 1\right) (-1)^n x^{2n}$.

2) $\sum_{n\geqslant 1} \frac{(n+1)^2}{n} x^n$ 5) $\sum_{n\geqslant 1} n^{(-1)^n} x^n$

2)
$$\sum_{n>1} \frac{(n+1)^2}{n} x^n$$

5)
$$\sum_{n\geqslant 1}^{n(-1)^n} x^n$$

Exercice 14 () Pour les fonctions f des exemples suivants, où l'on donne f(x) (x : variable réelle), montrer que f est développable en série entière et calculer son DSE. On précisera le rayon de convergence R.

1)
$$\frac{x^3+2}{x^2-1}$$

3)
$$(1-x)\ln(1-x)$$

$$6) \frac{\sin 4x}{\sin x}$$

1)
$$\frac{x^3 + 2}{x^2 - 1}$$
 3) $(1 - x) \ln(1 - x)$ 6) $\frac{\sin 4x}{\sin x}$ 2) $\frac{1}{x^4 - 3x^2 + 2}$ 5) $\ln(x^2 - 8x + 15)$ 7) $\frac{\sin x}{x}$.

7
$$\sqrt{1+x}$$

5) $\ln(x^2-8x+15)$

7)
$$\frac{\sin x}{x}$$
.

Exercice 15 (%)

En effectuant un produit de Cauchy, développer en série entière la fonction $f: x \mapsto \frac{\ln(x+1)}{1+x}$ et préciser le rayon de convergence.

Exercice 16 (%)

Soit $\varphi: x \mapsto \int_0^{\pi/2} \sqrt{1 + x \sin 2t} \, dt$. Donner le développement en série entière de φ sur]-1,1[

Exercice 17 (%)

- 1) Déterminer le rayon de convergence R et calculer pour tout $x \in]-R,R[$, la somme $S(x)=\sum_{n=0}^{+\infty}\left(n^2+n+1\right)x^n.$
- 2) Mêmes questions lorsque $S(x) = \sum_{n=0}^{+\infty} \frac{n^2 + n + 1}{n!} x^n$.

Exercice 18 (\bigcirc) Justifier l'existence de $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)3^n}$ et calculer sa valeur.

Exercice 19 ()

1) Soient $f \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$, et $a \in \mathbb{R}$ tel que f(a) = 0. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $f^{(n)}(a) \neq 0$. Montrer que a est isolé c'est-à-dire qu'il existe h > 0 tel que :

$$\forall y \in]a - h, a + h[\setminus \{a\}, f(y) \neq 0.$$

- 2) En déduire que si f est non nulle et développable en série entière autour de chaque point sur \mathbb{R} , alors les zéros de f sont isolés.
- 3) La fonction

$$f: x \in \mathbb{R} \mapsto \begin{cases} e^{-\frac{1}{x^2}} \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

est-elle développable en série entière en 0 ?

Exercice 20 (\(\blacktriangle\)

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-x^2} \int_0^x e^{t^2} dt$.

- 1) Montrer que f est développable en série entière sur \mathbb{R} .
- 2) Etablir que f est solution de l'équation différentielle y' + 2xy = 1.
- 3) Déterminer le développement en série entière de la fonction f.

