Q.1 Question 1

In an industrial facility, refrigerant R-22 is used in a geothermal heat pump system as shown in Fig. 1. Assuming that a heat pump uses underground water to produce a heating capacity of 15 tons (1 ton = 210 kJ.min^{-1}), determine:

Figure 1: Heat pump cycle.

(i) Specific enthalpies and entropies, h_i , s_i with $i = \{1, 2, 3, 4\}$; [8 marks] Solution:

Calculating all properties:

1: At $P_1 = 3$ bar and $T_1 = 21.5^{\circ}C \rightarrow T_1 > T_{sat}$ (=-14.66°C), thus the fluid is superheated vapour with

$$\mathbf{h_1} = 268.88 \ kJ.kg^{-1} \ and$$

$$\mathbf{s_1} = 1.03915 \ kJ.(kg.K)^{-1}.$$

2: The fluid undertakes an isentropic compression to $P_2 = 24$ bar, with

 $\mathbf{s_2} = \mathbf{s_1} = \mathbf{1.03915} \text{ kJ.}(\mathbf{kg.K})^{-1}$. $s_2 > s_g (P_2 = 24 \text{ bar})$, therefore the fluid is superheated vapour with $T_2 = 131.41^{\circ}C$ and

$$h_2 = 332.50 \ kJ.kg^{-1}.$$

3: $P_3 = 24$ bar and $T_3 = T_{sat}(P_3) = 59.46^{\circ} C$, with

$$\mathbf{h_3} = 121.56 \ kJ.kg^{-1} \ and$$

[1/8]
$$s_3 = 0.4241 \ kJ.(kg.K)^{-1}$$
.

4: Isenthalpic expansion to $P_4 = P_1 = 3$ bar and

[1/8]
$$\mathbf{h_4} = \mathbf{121.56} \ kJ.kg^{-1}$$
 and

In order to calculate the entropy, we need first to calculate the quality of the vapour:

$$x_4 = \frac{h_4 - h_f}{h_a - h_f} = 0.4321$$

[1/8] and

[1/8]

[1/8]

[1/8]

[1/8]

[1/8]

$$x_4 = \frac{s_4 - s_f}{s_g - s_f} = 0.4321 \Longrightarrow \mathbf{s_4} = \mathbf{0.4755} \ kJ.(kg.K)^{-1}.$$

(ii) Mass flow rate (in kg.s⁻¹) of the R-22 refrigerant fluid; [3 marks] Solution:

[3/3] Energy balance across the condenser with $Q_H = 15 \text{ tons} = 52.5 \text{ kJ.s}^{-1}$:

$$Q_H = \dot{m}_R (h_3 - h_2) \implies \dot{\mathbf{m}}_{\mathbf{R}} = \mathbf{0.2499} \ kg.s^{-1}$$

(iii) Compressor power (W_C) and heat supplied (Q_C) by the evaporator (in kW); [4 marks]

Solution:

[2/4] Energy balance across the compressor:

$$\mathbf{W_C} = \dot{m}_R (h_2 - h_1) = 15.84 \text{kW}.$$

[2/4] Energy balance across the evaporator:

$$\mathbf{Q_C} = \dot{m}_R (h_1 - h_4) = \mathbf{36.67kW}.$$

- (iv) Sketch the Ts (temperature \times specific entropy) and Ph (pressure \times specific enthalpy) diagrams of the cycle indicating all stages, isotherms and isobars. [5 marks] Solution:
- [2.5/5] Ts diagram:

[2.5/5] Ph diagram:

Q.2 Question 2

- (a) In an ideal air-standard Brayton cycle, air enters the compressor at 1 bar and 300 K, with a mass flow rate of 6 kg.s⁻¹. The compressor ratio is 10, and the turbine inlet temperature is 1400 K.
 - (i) Sketch the schematics of the cycle, Ts (temperature \times specific entropy) and Pv (pressure \times specific volume) diagrams. Indicate the numbering of each stage as used in your calculations; [3 marks] Solution:

[3/3]

(ii) Calculate the net power in MW;

[4 marks]

Solution:

Given $P_1 = 1$ bar, $T_1 = 300$ K, $T_3 = 1400$ K, $r_P = \left(\frac{P_2}{P_1}\right) = 10$ and $\dot{m} = 6$ kg.s⁻¹, the net power (\mathcal{P}_{net}) can be expressed as:

 $\mathcal{P}_{net} = Power \ produced \ by \ the \ Turbine - Power \ consumed \ by \ the \ Compressor$ $= \left| \dot{W}_T + \dot{W}_C \right| = \dot{m}C_p \left| (T_4 - T_3) + (T_2 - T_1) \right|.$

 T_2 and T_4 can be calculated through:

[1/4] 1-2: Isentropic compression:

$$T_1 P_1^{\frac{1-\gamma}{\gamma}} = T_2 P_2^{\frac{1-\gamma}{\gamma}} \rightarrow \mathbf{T_2} = \mathbf{579.21} K$$

[1/4] 3-4: Isentropic expansion:

$$T_3 P_3^{\frac{1-\gamma}{\gamma}} = T_4 P_4^{\frac{1-\gamma}{\gamma}} \rightarrow \mathbf{T_4} = 725.13 \ K$$

[2/4] Thus, $\mathcal{P}_{net} = 2385.83 \text{ kJ.s}^{-1} = 2.38 \text{ MW}.$

[1/4]

[1/4]

(iii) Calculate the efficiency of the cycle;

[3 marks]

Solution:

The efficiency is given by

$$\eta_{Brayton} = \frac{Heat \ Supplied - Heat \ Rejected}{Heat \ Supplied} = \frac{\dot{Q}_{in} - \dot{Q}_{out}}{\dot{Q}_{in}}$$

[1/3] where heat supplied is:

$$\dot{\mathbf{Q}}_{in} = \dot{m} (h_3 - h_2) = \dot{m} C_p (T_3 - T_2) = 4949.36 \ kJ.s^{-1}$$

[1/3] where heat rejected is:

$$\dot{\mathbf{Q}}_{\mathbf{out}} = \dot{m} (h_1 - h_4) = \dot{m} C_p (T_1 - T_4) = -2563.53 \text{ kJ.s}^{-1}$$

- [1/3] The resulting efficiency is 48.20%.
 - (b) The displacement volume of an internal combustion engine is 6400 cm^3 . Each cylinder in the engine operates as an air-standard Diesel cycle with cut-off ratio of 2.4. In the beginning of the compression, the conditions are: $P_1 = 0.90 \text{ bar}$, $T_1 = 27^{\circ}\text{C}$ and $V_1 = 6.8 \times 10^{-3} \text{ m}^3$.
 - (i) Determine V_2 , V_3 (in m^3), P_2 and P_4 (in bar); [4 marks] Solution:

Given:

- $V_1 = 6.8 \times 10^{-3} \text{ m}^3$
- $V_1 V_2 = 6.4 \times 10^{-3} \text{ m}^3 \rightarrow \mathbf{V}_2 = \mathbf{0.4} \times \mathbf{10}^{-3} \text{ m}^3 \text{ and } r = \frac{V_1}{V_2} = 17$
- $\rho = \frac{V_3}{V_2} = 2.4$
- $P_1 = 0.90 \text{ bar and } T_1 = 300.15 \text{ K}$
- [1/4] 1-2: isentropic compression calculating $P_2=P_3$:

$$P_1V_1^{\gamma} = P_2V_2^{\gamma} \rightarrow \mathbf{P_2} = \mathbf{47.52} \ bar = P_3$$

now calculating T_2 :

$$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1} \rightarrow T_2 = 932.22 \ K$$

2-3: expansion at constant volume – with the cut-off ratio $\rho = \frac{V_3}{V_2} = 2.4 \rightarrow \mathbf{V}_3$ = $\mathbf{0.96} \times \mathbf{10}^{-3} \ \mathbf{m}^3$

$$\frac{T_2}{V_2} = \frac{T_3}{V_2} \rightarrow T_3 = 2237.33 \ K$$

[1/4] 3-4: isentropic expansion – calculating P_4 and T_4 :

$$P_3V_3^{\gamma} = P_4V_4^{\gamma} \to \mathbf{P_4} = P_3 \left(\frac{V_3}{V_4}\right)^{\gamma} = P_3 \left(\frac{\rho}{r}\right)^{\gamma} = \mathbf{3.07} \ bar$$
 (1)

(ii) Calculate the thermal efficiency of the cycle;

[3 marks]

Solution:

[3/3]Thermal efficiency is defined as

$$\eta = \frac{Heat \ Supplied - Heat \ Rejected}{Heat \ Supplied} = \frac{C_p \left(T_3 - T_2\right) - C_v \left(T_4 - T_1\right)}{C_p \left(T_3 - T_2\right)}$$

$$= 1 - \frac{T_4 - T_1}{\gamma \left(T_3 - T_2\right)} = \mathbf{0.6047}$$

(iii) Calculate the net work (in kJ) using the following expression: [3 marks]

$$W_{\text{net}} = \frac{P_1 V_1 r^{\gamma - 1} \left[\gamma \left(\rho - 1 \right) - r^{1 - \gamma} \left(\rho^{\gamma} - 1 \right) \right]}{\gamma - 1},$$

where r and ρ are the compression and cut-off ratios, respectively.

[1/3] Solution: With
$$\mathbf{r} = \frac{\mathbf{V_1}}{\mathbf{V_2}} = \mathbf{17}$$
 and

[1/3]
$$\rho = \frac{V_3}{V_2} = 2.4 ,$$

$$\mathbf{W}_{net} = \frac{P_1 V_1 r^{\gamma - 1} \left[\gamma \left(\rho - 1 \right) - r^{1 - \gamma} \left(\rho^{\gamma} - 1 \right) \right]}{\gamma - 1}$$
$$= 0.05632 \ bar.m^3 = \mathbf{5.63} \ kJ$$

[1/3]

Assume that air behaves as an ideal gas with the following properties: $MW = 29 \text{ g.mol}^{-1}$, $C_p = 1.005 \text{ kJ.(kg.K)}^{-1}$ and $C_v = 0.718 \text{ kJ.(kg.K)}^{-1}$, where MW is the molar mass and C_p and C_v are the heat capacities at constant pressure and volume, respectively. Also, given the following relations for isentropic operations with $\gamma = \frac{C_p}{C}$:

$$TV^{\gamma-1} = \text{constant}, TP^{\frac{1-\gamma}{\gamma}} = \text{constant} \text{ and } PV^{\gamma} = \text{constant}$$

Q.3 Question 3

The ideal regenerative Rankine cycle (open feedwater heater, Fig. 2) shown below is operated with water-steam as working fluid to produce power (W_T) . Some properties of the cycle are shown in Table 1 and the mass flow rate leaving the boiler is 1 kg.s⁻¹.

Figure 2: Regenerative Rankine cycle.

Stage	P	T	State	Quality	h	s
	(bar)	$(^{\circ}\mathbf{C})$			$(\mathrm{kJ.kg^{-1}})$	$(\mathrm{kJ.(kg.K})^{-1})$
1	200	480	(a)	_	(b)	(c)
2	30	(d)	Wet vapour	(e)	(f)	(g)
3	5	_	Wet vapour	(h)	(i)	(j)
4	(k)	_	(1)	_	_	_
5	30	_	_	_	(\mathbf{m})	_
6	30	_	_	_	(n)	_
7	(o)	_	_	_	(p)	_

Table 1: Conditions of the ideal regenerative Rankine cycle.

(a) Determine (a-p) in Table 1; [16 marks] Solution:

- [1/16] Stage 1: At $P_1 = 200$ bar and $T_1 = 480^{\circ}$ C the fluid is superheated fluid (SHF) with:
- [1/16] $h_1 = 3170.8 \; kJ.kg^{-1}$ and
- [1/16] $s_1 = 6.0518 \text{ kJ.}(kg.K)^{-1}$

[1/16]

[1/16]

Stage 2: At $P_2 = 30$ bar, the temperature of the wet vapour is the same as the saturated temperature, i.e., $\mathbf{T}_2 = T_{sat} = \mathbf{233.9^{\circ}C}$. The fluid suffered an isentropic expansion, i.e., $\mathbf{s}_2 = s_1 = \mathbf{6.0518} \ \mathbf{kJ.(kg.K)^{-1}}$.

[1/16] We can calculate the quality of the vapour as,

$$s_2 = s_{f2} + x_2 (s_{g2} - s_{f2}) \rightarrow \mathbf{x_2} = \mathbf{0.9618}$$

[1/16] and the enthalpy

$$h_2 = h_{f2} + x_2 (h_{g2} - h_{f2}) \rightarrow \mathbf{h_2} = \mathbf{2735.60} \ kJ.kg^{-1}$$

Stage 3: At $P_3 = 5$ bar (and using the same procedure as in Stage 2):

[1/16] •
$$\mathbf{s}_3 = s_1 = 6.0518 \text{ kJ.}(\text{kg.K})^{-1}$$

[1/16] • $x_3 = 0.8449$

[1/16] • $h_3 = 2421.68 \text{ kJ.kg}^{-1}$

[1/16] Stage 4: Fluid leaving the condenser is saturated liquid (SL) with

$$[1/16]$$
 • $P_4 = P_3 = 5$ bar

• $h_4 = h_f(P = 5 \text{ bar}) = 640.23 \text{ kJ.kg}^{-1}$

•
$$v_4 = v_f(P = 5 \text{ bar}) = 1.0926 \times 10^{-3} \text{ m}^3.\text{kg}^{-1}$$

[1/16] Stage 5: Fluid is assumed incompressible with dh = vdP and

$$\mathbf{h_5} = h_4 + v_4 (P_5 - P_4) = \mathbf{642.96} \ kJ.kg^{-1}$$

Stage 6: Fluid leaving the regenerator is saturated liquid with

[1/16] •
$$\mathbf{h}_6 = h_f(P = 30 \ bar) = 1008.4 \ kJ.kg^{-1}$$

•
$$v_6 = v_f(P = 30 \text{ bar}) = 1.2165 \times 10^{-3} \text{ m}^3.kg^{-1}$$

[1/16] Stage 7: Fluid is assumed incompressible with dh = vdP with $P_7 = P_1 = 200$ bar and

$$\mathbf{h_7} = h_6 + v_6 (P_7 - P_6) = \mathbf{1029.08} \ kJ.kg^{-1}$$

[1/16]

Stage	P	${f T}$	State	Quality	h	\mathbf{s}
	(bar)	$(^{\circ}\mathbf{C})$			$(\mathbf{kJ}.\mathbf{kg}^{-1})$	$(\mathrm{kJ.(kg.K})^{-1})$
1	200	480	(a) SHF	_	(b) 3170.80	(c) 6.0518
2	30	(d) 233.90	$Wet\ vapour$	(e) 0.9618	(f) 2735.60	(g) 6.0518
3	5	_	$Wet\ vapour$	(h) 0.8449	(i) 2421.68	(j) 6.0518
4	(k) 5	_	(l) SL	_	_	_
5	30	_	_	_	(m) 642.96	_
6	30	_	_	_	(n) 1008.40	_
γ	(o) 200	_	_	_	(p) 1029.08	_

(b) Calculate the heat supplied by the boiler (Q_{Boiler}) , the power produced by the turbine $(W_{Turbine})$ and the power required by the pumps (W_{Pump1}) and W_{Pump2} . All these quantities in kW. [4 marks]

Solution:

Before calculating the power and heat associated with the cycle, we first need to obtain the fraction (m) of water-steam that is driven to the regenerator. An energy balance around the regenerator leads to:

$$mh_2 + (1-m)h_5 = 1 \times h_6 \rightarrow m = 0.1746 \text{ kg.s}^{-1}$$

[1/4] •
$$\mathbf{Q}_{Boiler} = m(h_1 - h_7) = \mathbf{2141.2} \ kW$$

[1/4] •
$$\mathbf{T}_{Turbine} = (1-m)h_3 + mh_2 - h_1 = -694.31 \ kW$$

[1/4] •
$$\mathbf{W}_{Pump1} = (1-m)(h_5 - h_4) = \mathbf{0.48} \ kW$$

[1/4] •
$$\mathbf{W}_{Pump2} = h_7 - h_6 = \mathbf{20.68} \ kW$$

To solve this problem, you should assume that the saturated liquid streams are incompressible, and therefore dh = vdP (where h, v and P are specific enthalpy, volume and pressure, respectively). Quality of the vapour is expressed as

$$x_j = \frac{\Psi_j - \Psi_f}{\Psi_q - \Psi_f}$$
 with $\Psi = \{h, s\}$, where s is the specific entropy.

Q.4 Question 4

(a) Gas flows along a pipe of constant cross section A (m^2), in the direction of increasing x. By considering the rate of change of the mass of gas within a small section of pipe and the gas mass fluxes into and out of this section of pipe, show that

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho u \right) = 0.$$

Here the gas velocity u and the gas density ρ are functions of x and time t. [5 marks]

Solution:

[1/5] The total mass contained in a section of pipe of length Δx is $\rho A \Delta x$.

The rate of change of mass in this section of pipe equals the mass flux entering the pipe ρuA , minus the mass flux leaving the other end of the pipe section

$$\rho uA + \Delta x \frac{\partial}{\partial x} \left(\rho uA \right).$$

[2/5] [Obtained via a linearized Taylor expansion.]

Hence mass conservation implies

$$\frac{\partial}{\partial t} (\rho A \Delta x) = \rho u A - \rho u A - \Delta x \frac{\partial}{\partial x} (\rho u A).$$

[2/5] and hence dividing by $A\Delta x$ and rearranging gives the result.

(b) Explain what is meant by a steady flow and show that for steady flow in a pipe of constant cross section

$$\frac{1}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}x} + \frac{1}{u} \frac{\mathrm{d}u}{\mathrm{d}x} = 0.$$

[4 marks]

Solution:

The flow is steady if the density, velocity and cross section depend only on x and not time t. In this case the result from (a) gives

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\rho u\right) = 0.$$

Therefore via the chain rule

[2/4]

$$\rho \frac{\mathrm{d}u}{\mathrm{d}x} + u \frac{\mathrm{d}\rho}{\mathrm{d}x} = 0.$$

[2/4] Finally dividing by ρu gives the required result.

(c) The beginning of a pipe of constant cross section is located at x = 0, where the gas velocity into the pipe u = 4 m/s. If the gas density profile along the pipe is

$$\rho(x) = (1 - 0.02x) \,\mathrm{kg/m}^3,$$

then determine the gas velocity at x = 2 m.

[7 marks]

Solution:

Substituting in the formula from the previous section

$$\frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{1}{\rho}\frac{\mathrm{d}\rho}{\mathrm{d}x} = -\frac{-0.02}{1 - 0.02x} = \frac{0.02}{1 - 0.02x}.$$

[2/7]

Integrating with respect to x

$$\int_{4}^{u} \frac{\mathrm{d}\tilde{u}}{\tilde{u}} = \int_{0}^{2} \frac{0.02 \,\mathrm{d}x}{1 - 0.02x}.$$

[2/7]

Hence

$$[\log(\tilde{u})]_4^u = [-\log(1 - 0.02x)]_0^2$$

$$\log\left(\frac{u}{4}\right) = -\log(1 - 0.04) + \log(1) = \log\left(\frac{1}{0.96}\right),$$

[1/7][2/7]

Exponentiating both sides gives $u = 4/0.96 = 4.1667 \, m/s$.

(d) Gas flows into and out of a steady flow device at a total of three different locations. At the first location gas with density $\rho = 1.4 \,\mathrm{kg/m^3}$ flows into the device with velocity $u = 4 \,\mathrm{m/s}$ through a pipe of cross section $A = 0.2 \,\mathrm{m^2}$. At the second location gas with density $0.9 \,\mathrm{kg/m^3}$ flows out of the device with velocity $u = 5 \,\mathrm{m/s}$ through a pipe of cross section $A = 0.4 \,\mathrm{m^2}$. At the third location, determine whether gas is flowing into or out of the device.

Solution:

The mass flux into the device at the first location is $\rho uA = 1.4 \times 4 \times 0.2 = 1.12 \, kg/s$.

[1/4]

The mass flux out of the device at the second location is $\rho uA = 0.9 \times 5 \times 0.4 = 1.8 \, kg/s$.

[1/4]

More gas is flowing out of the device at the second location than is flowing into the device at the first location, and therefore there must be an additional mass flux into the device at the third location.

[2/4]

Q.5 Question 5

(a) Air in an air-conditioning system is mixed adiabatically with air from outside in a steady process. If the inlets to the mixing chamber are labelled 1 and 2, and the outlet is labelled 3, then state equations that correspond to the mass conservation of dry air, the mass conservation of water vapour and the conservation of energy in this situation. Hence, show that

$$\frac{\dot{m}_{a_1}}{\dot{m}_{a_2}} = \frac{h_3 - h_2}{h_1 - h_3} = \frac{\omega_3 - \omega_2}{\omega_1 - \omega_3},$$

where \dot{m}_a is a mass flux of dry air, h is a specific enthalpy and ω is a specific humidity. [8 marks]

Solution:

In the mixing section

Conservation of dry air: $\dot{m}_{a_1} + \dot{m}_{a_2} = \dot{m}_{a_3}$, Conservation of water vapour: $\dot{m}_{a_1}\omega_1 + \dot{m}_{a_2}\omega_2 = \dot{m}_{a_3}\omega_3$, Conservation of energy: $\dot{m}_{a_1}h_1 + \dot{m}_{a_2}h_2 = \dot{m}_{a_3}h_3$.

[3/8]

Using the dry air mass conservation equation to eliminate \dot{m}_{a_3} from the other two expressions, gives

$$\dot{m}_{a_1}\omega_1 + \dot{m}_{a_2}\omega_2 = (\dot{m}_{a_1} + \dot{m}_{a_2})\,\omega_3,$$

$$\dot{m}_{a_1}h_1 + \dot{m}_{a_2}h_2 = (\dot{m}_{a_1} + \dot{m}_{a_2})\,h_3.$$

[2/8]

Collecting all the terms involving \dot{m}_{a_2} on the left-hand side and all the terms involving \dot{m}_{a_3} on the right-hand side gives

$$\dot{m}_{a_2}\omega_2 - \dot{m}_{a_2}\omega_3 = \dot{m}_{a_1}\omega_3 - \dot{m}_{a_1}\omega_1, \dot{m}_{a_2}h_2 - \dot{m}_{a_1}h_3 = \dot{m}_{a_2}h_3 - \dot{m}_{a_1}h_1.$$

[1/8]

Rearranging

$$\dot{m}_{a_2} (\omega_3 - \omega_2) = \dot{m}_{a_1} (\omega_1 - \omega_3),$$

 $\dot{m}_{a_2} (h_3 - h_2) = \dot{m}_{a_2} (h_1 - h_3).$

[1/8]

Finally

$$\frac{\dot{m}_{a_1}}{\dot{m}_{a_2}} = \frac{\omega_3 - \omega_2}{\omega_1 - \omega_3}, \quad and \quad \frac{\dot{m}_{a_2}}{\dot{m}_{a_2}} = \frac{h_3 - h_2}{h_1 - h_3},$$

[1/8] which gives the necessary result.

(b) Inlet 1 draws saturated air from the cooling section of the air conditioning system at a dry bulb temperature of 5°C. Inlet 2 takes air from outside with a specific humidity of 0.025 kg water/kg dry air. The dry bulb temperature of the resulting mixture is 20°C. If liquid water is not produced in the mixing chamber, then determine the minimum dry bulb temperature of air entering the system through inlet 2. [4 marks] Solution:

Liquid water is not produced in the mixing chamber, so the relative humidity of the mixed gas is equal or less than 100%.

On the psychrometric chart the line linking $(T_1 = 5^{\circ}C, \phi_1 = 100\%)$ and $(T_3 = 20^{\circ}C, \phi_3 = 100\%)$ intersects the line $\omega_2 = 0.025$ kg water/kg dry air when $T_2 = 36^{\circ}C$.

Any temperature $T > T_3$ will not produce liquid water in the mixing chamber, so the minimum temperature in inlet 2 is $36^{\circ}C$.

- (c) Additionally, it is known that the gas mass flux in inlet 2 is twice the gas mass flux in inlet 1.
 - (i) Determine the specific and relative humidity of the mixture; [6 marks] Solution:

From the psychrometric chart the specific humidity of inlet 1 is $\omega_1 = 0.0055 \, kg$ water/kg dry air.

Rearrange equation part (a) to give

$$\left(1 + \frac{\dot{m}_{a_1}}{\dot{m}_{a_2}}\right)\omega_3 = \omega_1 + \frac{\dot{m}_{a_1}}{\dot{m}_{a_2}}\omega_2.$$

[2/6]

Therefore

$$\omega_3 = \frac{0.0055 + (0.5 \times 0.025)}{1 + 0.5} = 0.012 kg \text{ water/kg dry air.}$$

 $\frac{[2/6]}{[2/6]}$

From the psychrometric chart, the relative humidity of the mixture is 82%.

(ii) Determine the dry bulb temperature at inlet 2. [2 marks] Solution:

On the psychrometric chart the line linking $(T_1 = 5^{\circ}C, \phi_1 = 100\%)$ and $(T_3 = 5^{\circ}C, \omega_3 = 0.012 \, kg \, water/kg \, dry \, air)$ intersects the line $\omega_2 = 0.025 \, kg \, water/kg \, dry \, air \, when \, T_2 = 48.5^{\circ}C$. Therefore the temperature of the gas in inlet 2 is $48.5^{\circ}C$.

[2/2]

Appendix A: Physical Constants and Conversion Factors

PHYSICAL CONSTANTS

```
Avogadro's number, N_A=6.023\times 10^{26} molecules/kgmole Boltzmann's constant, k=1.381\times 10^{-23} J/(molecule·K) Electron charge, e=1.602\times 10^{-19} C Electron mass, m_e=9.110\times 10^{-31} kg Faraday's constant, F=96,487 kC/kgmole electrons = 96,487 kJ/(V·kgmole electrons) Gravitational acceleration (standard), g=32.174 ft/s² = 9.807 m/s² Gravitational constant, k_G=6.67\times 10^{-11} m³/(kg·s²) Newton's second law constant, g_c=32.174 lbm·ft/(lbf·s²) = 1.0 kg·m/(N·s²) Planck's constant, \hbar=6.626\times 10^{-34} J·s/molecule Stefan-Boltzmann constant, \sigma=0.1714\times 10^{-8} Btu/(h·ft²·R⁴) = 5.670\times 10^{-8} W/(m²·k⁴) Universal gas constant \Re=1545.35 ft·lbf/(lbmole·R) = 8314.3 J/(kgmole·K) = 8.3143 kJ/(kgmole·K) = 1.9858 Btu/(lbmole·R) = 1.9858 kcal/(kgmole·K) = 1.9858 cal/(gmole·K) = 0.08314 bar·m³/(kgmole·K) = 82.05 L·atm/(kgmole·K) Velocity of light in a vacuum, c=9.836\times 10^8 ft/s = 2.998\times 10^8 m/s
```

UNIT DEFINITIONS

```
1 coulomb (C) = 1 A·s
                                                                      1 ohm (\Omega) = 1 \text{ V/A}
1 dyne = 1 \text{ g} \cdot \text{cm/s}^2
                                                                      1 pascal (Pa) = 1 \text{ N/m}^2
1 erg = 1 dyne·cm
                                                                      1 poundal = 1 lbm \cdot ft/s^2
1 farad (F) = 1 \text{ C/V}
                                                                      1 siemens (S) = 1 A/V
1 henry (H) = 1 \text{ Wb/A}
                                                                      1 slug = 1 lbf \cdot s^2/ft
1 hertz (Hz) = 1 cycle/s
                                                                      1 tesla (T) = 1 Wb/m^2
1 joule (J) = 1 \text{ N} \cdot \text{m}
                                                                      1 volt (V) = 1 W/A
                                                                      1 watt (W) = 1 J/s
1 lumen = 1 candela·steradian
                                                                      1 weber (Wb) = 1 V·s
1 lux = 1 lumen/m<sup>2</sup>
1 newton (N) = 1 \text{ kg} \cdot \text{m/s}^2
```

CONVERSION FACTORS

Length	Energy
$1 \text{ m} = 3.2808 \text{ ft} = 39.37 \text{ in} = 10^2 \text{ cm} = 10^{10} \text{ Å}$	$1 \text{ J} = 1 \text{ N} \cdot \text{m} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^2 = 9.479 \times 10^{-4} \text{ Btu}$
$1 \text{ cm} = 0.0328 \text{ ft} = 0.394 \text{ in} = 10^{-2} \text{ m} = 10^{8} \text{ Å}$	1 kJ = 1000 J = 0.9479 Btu = 238.9 cal
$1 \text{mm} = 10^{-3} \text{m} = 10^{-1} \text{cm}$	$1 \text{ Btu} = 1055.0 \text{ J} = 1.055 \text{ kJ} = 778.16 \text{ ft} \cdot \text{lbf} = 252 \text{ cal}$
1 km = 1000 m = 0.6215 miles = 3281 ft	$1 \text{ cal} = 4.186 \text{ J} = 3.968 \times 10^{-3} \text{ Btu}$
1 in = 2.540 cm = 0.0254 m	1 Cal (in food value) = $1 \text{ kcal} = 4186 \text{ J} = 3.968 \text{ Btu}$
1 ft = 12 in = 0.3048 m	$1 \text{ erg} = 1 \text{ dyne} \cdot \text{cm} = 1 \text{ g} \cdot \text{cm}^2/\text{s}^2 = 10^{-7} \text{J}$
1 mile = 5280 ft = 1609.36 m = 1.609 km	$1 \text{ eV} = 1.602 \times 10^{-19} \text{J}$

(Continued)

CONVERSION FACTORS

(Continued)

Area

$$1 m^{2} = 10^{4} cm^{2} = 10.76 ft^{2} = 1550 in^{2}$$

$$1 ft^{2} = 144 in^{2} = 0.0929 m^{2} = 929.05 cm^{2}$$

$$1 cm^{2} = 10^{-4} m^{2} = 1.0764 \times 10^{-3} ft^{2} = 0.155 in^{2}$$

$$1 in^{2} = 6.944 \times 10^{-3} ft^{2} = 6.4516 \times 10^{-4} m^{2} = 6.4516 cm^{2}$$

Volume

$$\begin{split} 1 \text{ m}^3 &= 35.313 \text{ ft}^3 = 6.1023 \times 10^4 \text{ in}^3 = 1000 \text{ L} = 264.171 \text{ gal} \\ 1 \text{ L} &= 10^{-3} \text{m}^3 = 0.0353 \text{ ft}^3 = 61.03 \text{ in}^3 = 0.2642 \text{ gal} \\ 1 \text{ gal} &= 231 \text{ in}^3 = 0.13368 \text{ ft}^3 = 3.785 \times 10^{-3} \text{ m}^3 \\ 1 \text{ ft}^3 &= 1728 \text{ in}^3 = 28.3168 \text{ L} = 0.02832 \text{ m}^3 = 7.4805 \text{ gal} \\ 1 \text{ in}^3 &= 16.387 \text{ cm}^3 = 1.6387 \times 10^{-5} \text{ m}^3 = 4.329 \times 10^{-3} \text{ gal} \end{split}$$

Mass

1 kg =
$$1000 \, \text{g}$$
 = $2.2046 \, \text{lbm}$ = $0.0685 \, \text{slug}$
1 lbm = $453.6 \, \text{g}$ = $0.4536 \, \text{kg}$ = $3.108 \times 10^{-2} \, \text{slug}$
1 slug = $32.174 \, \text{lbm}$ = $1.459 \times 10^4 \, \text{g}$ = $14.594 \, \text{kg}$

Force

1 N =
$$10^5$$
 dyne = $1 \text{ kg} \cdot \text{m/s}^2 = 0.225 \text{ lbf}$
1 lbf = $4.448 \text{ N} = 32.174 \text{ poundals}$
1 poundal = $0.138 \text{ N} = 3.108 \times 10^{-2} \text{ lbf}$

Power

$$\begin{array}{l} 1~W=1~J/s=1~kg\cdot m^2/s^3=3.412~Btu/h=1.3405~\times 10^{-3}~hp\\ 1~kW=1000~W=3412~Btu/h=737.3~ft\cdot lbf/s=1.3405~hp\\ 1~Btu/h=0.293~W=0.2161~ft\cdot lbf/s=3.9293~\times 10^{-4}~hp\\ 1~hp=550~ft\cdot lbf/s=33000~ft\cdot lbf/min=2545~Btu/h=746~W\\ \end{array}$$

Pressure

$$\begin{split} 1 \ lbf/in^2 &= 6894.76 \ Pa = 0.068 \ atm = 2.036 \ in \ Hg \\ 1 \ atm &= 14.696 \ lbf/in^2 = 1.01325 \times 10^5 \ Pa \\ &= 101.325 \ kPa = 760 \ mm \ Hg \\ 1 \ bar &= 10^5 \ Pa = 0.987 \ atm = 14.504 \ lbf/in^2 \\ 1 \ dyne/cm^2 &= 0.1 \ Pa = 10^{-6} \ bar = 145.04 \times 10^{-7} \ lbf/in^2 \\ 1 \ in \ Hg &= 3376.8 \ Pa = 0.491 \ lbf/in^2 \\ 1 \ in \ H_2O &= 248.8 \ Pa = 0.0361 \ lbf/in^2 \end{split}$$

 $1 \text{ Pa} = 1 \text{ N/m}^2 = 1 \text{ kg/(m} \cdot \text{s}^2) = 1.4504 \times 10^{-4} \text{ lbf/in}^2$

MISCELLANEOUS UNIT CONVERSIONS

Specific Heat Units

 $1 \ Btu/(lbm \cdot {}^{\circ}F) = 1 \ Btu/(lbm \cdot R)$ $1 \ kJ/(kg \cdot K) = 0.23884 \ Btu/(lbm \cdot R) = 185.8 \ ft \cdot lbf/(lbm \cdot R)$ $1 \ Btu/(lbm \cdot R) = 778.16 \ ft \cdot lbf/(lbm \cdot R) = 4.186 \ kJ/(kg \cdot K)$

Energy Density Units

1 kJ/kg = $1000 \,\text{m}^2/\text{s}^2 = 0.4299 \,\text{Btu/lbm}$ 1 Btu/lbm = $2.326 \,\text{kJ/kg} = 2326 \,\text{m}^2/\text{s}^2$

Energy Flux

1 W/m² = 0.317 Btu/(h·ft²) 1 Btu/(h·ft²) = 3.154 W/m²

Heat Transfer Coefficient

1 W/($m^2 \cdot K$) = 0.1761 Btu/($h \cdot ft^2 \cdot R$) 1 Btu/($h \cdot ft^2 \cdot R$) = 5.679 W/($m^2 \cdot K$)

Thermal Conductivity

 $1 \text{ W/(m\cdot K)} = 0.5778 \text{ Btu/(h\cdot ft\cdot R)}$ $1 \text{ Btu/(h\cdot ft\cdot R)} = 1.731 \text{ W/(m\cdot K)}$

Temperature

$$\begin{split} T(^{\circ}\text{F}) &= \frac{9}{5} \, T(^{\circ}\text{C}) + 32 = T(\text{R}) - 459.67 \\ T(^{\circ}\text{C}) &= \frac{5}{9} \, [T(^{\circ}\text{F}) - 32] = T(\text{K}) - 273.15 \\ T(\text{R}) &= \frac{9}{5} \, T(\text{K}) = (1.8) T(\text{K}) = T(^{\circ}\text{F}) + 459.67 \\ T(\text{K}) &= \frac{5}{9} \, T(\text{R}) = T(\text{R})/1.8 = T(^{\circ}\text{C}) + 273.15 \end{split}$$

Density

1 lbm/ft³ = 16.0187 kg/m³ 1 kg/m³ = 0.062427 lbm/ft³ = 10⁻³ g/cm³ 1 g/cm³ = 1 kg/L = 62.4 lbm/ft³ = 10³ kg/m³ **Viscosity** 1 Pa·s = 1 N·s/m² = 1 kg/(m·s) = 10 poise 1 poise = 1 dyne·s/cm² = 1 g/(cm·s) = 0.1 Pa·s 1 poise = 2.09 × 10⁻³ lbf·s/ft² = 6.72 × 10⁻² lbm/(ft·s)

1 centipoise = 0.01 poise = 10^{-3} Pa·s 1 lbf·s/ft² = 1 slug/(ft·s) = 47.9 Pa·s = 479 poise 1 stoke = 1 cm²/s = 10^{-4} m²/s = 1.076×10^{-3} ft²/s 1 centistoke = 0.01 stoke = 10^{-6} m²/s = 1.076×10^{-5} ft²/s 1 m²/s = 10^4 stoke = 10^6 centistoke = 10.76 ft²/s

720 Tables in SI Units

TABLE A-2 Properties of Saturated Water (Liquid–Vapor): Temperature Table

				Internal kJ/			Enthalpy kJ/kg		Enti		
Temp. °C	Press. bar	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor v _g	Sat. Liquid u _f	Sat. Vapor u _g	Sat. Liquid $h_{ m f}$	Evap. h_{fg}	Sat. Vapor $h_{\rm g}$	Sat. Liquid $s_{\rm f}$	Sat. Vapor	Temp.
.01	0.00611	1.0002	206.136	0.00	2375.3	0.01	2501.3	2501.4	0.0000	9.1562	.01
4	0.00813	1.0001	157.232	16.77	2380.9	16.78	2491.9	2508.7	0.0610	9.0514	4
5	0.00872	1.0001	147.120	20.97	2382.3	20.98	2489.6	2510.6	0.0761	9.0257	5
6	0.00935	1.0001	137.734	25.19	2383.6	25.20	2487.2	2512.4	0.0912	9.0003	6
8	0.01072	1.0002	120.917	33.59	2386.4	33.60	2482.5	2516.1	0.1212	8.9501	8
10	0.01228	1.0004	106.379	42.00	2389.2	42.01	2477.7	2519.8	0.1510	8.9008	10
11	0.01312	1.0004	99.857	46.20	2390.5	46.20	2475.4	2521.6	0.1658	8.8765	11
12	0.01402	1.0005	93.784	50.41	2391.9	50.41	2473.0	2523.4	0.1806	8.8524	12
13	0.01497	1.0007	88.124	54.60	2393.3	54.60	2470.7	2525.3	0.1953	8.8285	13
14	0.01598	1.0008	82.848	58.79	2394.7	58.80	2468.3	2527.1	0.2099	8.8048	14
15	0.01705	1.0009	77.926	62.99	2396.1	62.99	2465.9	2528.9	0.2245	8.7814	15
16	0.01818	1.0011	73.333	67.18	2397.4	67.19	2463.6	2530.8	0.2390	8.7582	16
17	0.01938	1.0012	69.044	71.38	2398.8	71.38	2461.2	2532.6	0.2535	8.7351	17
18	0.02064	1.0014	65.038	75.57	2400.2	75.58	2458.8	2534.4	0.2679	8.7123	18
19	0.02198	1.0016	61.293	79.76	2401.6	79.77	2456.5	2536.2	0.2823	8.6897	19
20	0.02339	1.0018	57.791	83.95	2402.9	83.96	2454.1	2538.1	0.2966	8.6672	20
21	0.02487	1.0020	54.514	88.14	2404.3	88.14	2451.8	2539.9	0.3109	8.6450	21
22	0.02645	1.0022	51.447	92.32	2405.7	92.33	2449.4	2541.7	0.3251	8.6229	22
23	0.02810	1.0024	48.574	96.51	2407.0	96.52	2447.0	2543.5	0.3393	8.6011	23
24	0.02985	1.0027	45.883	100.70	2408.4	100.70	2444.7	2545.4	0.3534	8.5794	24
25	0.03169	1.0029	43.360	104.88	2409.8	104.89	2442.3	2547.2	0.3674	8.5580	25
26	0.03363	1.0032	40.994	109.06	2411.1	109.07	2439.9	2549.0	0.3814	8.5367	26
27	0.03567	1.0035	38.774	113.25	2412.5	113.25	2437.6	2550.8	0.3954	8.5156	27
28	0.03782	1.0037	36.690	117.42	2413.9	117.43	2435.2	2552.6	0.4093	8.4946	28
29	0.04008	1.0040	34.733	121.60	2415.2	121.61	2432.8	2554.5	0.4231	8.4739	29
30	0.04246	1.0043	32.894	125.78	2416.6	125.79	2430.5	2556.3	0.4369	8.4533	30
31	0.04496	1.0046	31.165	129.96	2418.0	129.97	2428.1	2558.1	0.4507	8.4329	31
32	0.04759	1.0050	29.540	134.14	2419.3	134.15	2425.7	2559.9	0.4644	8.4127	32
33	0.05034	1.0053	28.011	138.32	2420.7	138.33	2423.4	2561.7	0.4781	8.3927	33
34	0.05324	1.0056	26.571	142.50	2422.0	142.50	2421.0	2563.5	0.4917	8.3728	34
35	0.05628	1.0060	25.216	146.67	2423.4	146.68	2418.6	2565.3	0.5053	8.3531	35
36	0.05947	1.0063	23.940	150.85	2424.7	150.86	2416.2	2567.1	0.5188	8.3336	36
38	0.06632	1.0071	21.602	159.20	2427.4	159.21	2411.5	2570.7	0.5458	8.2950	38
40	0.07384	1.0078	19.523	167.56	2430.1	167.57	2406.7	2574.3	0.5725	8.2570	40
45	0.09593	1.0099	15.258	188.44	2436.8	188.45	2394.8	2583.2	0.6387	8.1648	45

TABLE A-2 (Continued)

		Specific Volume m³/kg		Internal kJ/			Enthalpy kJ/kg		Entr		
Temp.	Press. bar	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor $v_{\rm g}$	Sat. Liquid u _f	Sat. Vapor $u_{\rm g}$	Sat. Liquid h_{f}	Evap. h_{fg}	Sat. Vapor $h_{\rm g}$	Sat. Liquid	Sat. Vapor	Temp.
50	.1235	1.0121	12.032	209.32	2443.5	209.33	2382.7	2592.1	.7038	8.0763	50
55	.1576	1.0146	9.568	230.21	2450.1	230.23	2370.7	2600.9	.7679	7.9913	55
60	.1994	1.0172	7.671	251.11	2456.6	251.13	2358.5	2609.6	.8312	7.9096	60
65	.2503	1.0199	6.197	272.02	2463.1	272.06	2346.2	2618.3	.8935	7.8310	65
70	.3119	1.0228	5.042	292.95	2469.6	292.98	2333.8	2626.8	.9549	7.7553	70
75	.3858	1.0259	4.131	313.90	2475.9	313.93	2321.4	2635.3	1.0155	7.6824	75
80	.4739	1.0291	3.407	334.86	2482.2	334.91	2308.8	2643.7	1.0753	7.6122	80
85	.5783	1.0325	2.828	355.84	2488.4	355.90	2296.0	2651.9	1.1343	7.5445	85
90	.7014	1.0360	2.361	376.85	2494.5	376.92	2283.2	2660.1	1.1925	7.4791	90
95	.8455	1.0397	1.982	397.88	2500.6	397.96	2270.2	2668.1	1.2500	7.4159	95
100	1.014	1.0435	1.673	418.94	2506.5	419.04	2257.0	2676.1	1.3069	7.3549	100
110	1.433	1.0516	1.210	461.14	2518.1	461.30	2230.2	2691.5	1.4185	7.2387	110
120	1.985	1.0603	0.8919	503.50	2529.3	503.71	2202.6	2706.3	1.5276	7.1296	120
130	2.701	1.0697	0.6685	546.02	2539.9	546.31	2174.2	2720.5	1.6344	7.0269	130
140	3.613	1.0797	0.5089	588.74	2550.0	589.13	2144.7	2733.9	1.7391	6.9299	140
150	4.758	1.0905	0.3928	631.68	2559.5	632.20	2114.3	2746.5	1.8418	6.8379	150
160	6.178	1.1020	0.3071	674.86	2568.4	675.55	2082.6	2758.1	1.9427	6.7502	160
170	7.917	1.1143	0.2428	718.33	2576.5	719.21	2049.5	2768.7	2.0419	6.6663	170
180	10.02	1.1274	0.1941	762.09	2583.7	763.22	2015.0	2778.2	2.1396	6.5857	180
190	12.54	1.1414	0.1565	806.19	2590.0	807.62	1978.8	2786.4	2.2359	6.5079	190
200	15.54	1.1565	0.1274	850.65	2595.3	852.45	1940.7	2793.2	2.3309	6.4323	200
210	19.06	1.1726	0.1044	895.53	2599.5	897.76	1900.7	2798.5	2.4248	6.3585	210
220	23.18	1.1900	0.08619	940.87	2602.4	943.62	1858.5	2802.1	2.5178	6.2861	220
230	27.95	1.2088	0.07158	986.74	2603.9	990.12	1813.8	2804.0	2.6099	6.2146	230
240	33.44	1.2291	0.05976	1033.2	2604.0	1037.3	1766.5	2803.8	2.7015	6.1437	240
250	39.73	1.2512	0.05013	1080.4	2602.4	1085.4	1716.2	2801.5	2.7927	6.0730	250
260	46.88	1.2755	0.04221	1128.4	2599.0	1134.4	1662.5	2796.6	2.8838	6.0019	260
270	54.99	1.3023	0.03564	1177.4	2593.7	1184.5	1605.2	2789.7	2.9751	5.9301	270
280	64.12	1.3321	0.03017	1227.5	2586.1	1236.0	1543.6	2779.6	3.0668	5.8571	280
290	74.36	1.3656	0.02557	1278.9	2576.0	1289.1	1477.1	2766.2	3.1594	5.7821	290
300	85.81	1.4036	0.02167	1332.0	2563.0	1344.0	1404.9	2749.0	3.2534	5.7045	300
320	112.7	1.4988	0.01549	1444.6	2525.5	1461.5	1238.6	2700.1	3.4480	5.5362	320
340	145.9	1.6379	0.01080	1570.3	2464.6	1594.2	1027.9	2622.0	3.6594	5.3357	340
360	186.5	1.8925	0.006945	1725.2	2351.5	1760.5	720.5	2481.0	3.9147	5.0526	360
374.14	220.9	3.155	0.003155	2029.6	2029.6	2099.3	0	2099.3	4.4298	4.4298	374.14

Source: Tables A-2 through A-5 are extracted from J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, Steam Tables, Wiley, New York, 1969.

TABLE A-3 Properties of Saturated Water (Liquid-Vapor): Pressure Table

			Volume /kg	Internal kJ/			Enthalpy kJ/kg		Entı kJ/k		
Press.	Temp.	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor $v_{\rm g}$	Sat. Liquid $u_{\rm f}$	Sat. Vapor u _g	Sat. Liquid $h_{ m f}$	Evap. h_{fg}	Sat. Vapor $h_{\rm g}$	Sat. Liquid $s_{\rm f}$	Sat. Vapor s _g	Press.
0.04 0.06 0.08 0.10 0.20	28.96 36.16 41.51 45.81 60.06 69.10	1.0040 1.0064 1.0084 1.0102 1.0172	34.800 23.739 18.103 14.674 7.649 5.229	121.45 151.53 173.87 191.82 251.38 289.20	2415.2 2425.0 2432.2 2437.9 2456.7 2468.4	121.46 151.53 173.88 191.83 251.40 289.23	2432.9 2415.9 2403.1 2392.8 2358.3 2336.1	2554.4 2567.4 2577.0 2584.7 2609.7 2625.3	0.4226 0.5210 0.5926 0.6493 0.8320 0.9439	8.4746 8.3304 8.2287 8.1502 7.9085 7.7686	0.04 0.06 0.08 0.10 0.20
0.40 0.50 0.60 0.70	75.87 81.33 85.94 89.95	1.0265 1.0300 1.0331 1.0360 1.0380	3.993 3.240 2.732 2.365 2.087	317.53 340.44 359.79 376.63 391.58	2477.0 2483.9 2489.6 2494.5	317.58 340.49 359.86 376.70 391.66	2319.2 2305.4 2293.6 2283.3 2274.1	2636.8 2645.9 2653.5 2660.0 2665.8	1.0259 1.0910 1.1453 1.1919	7.6700 7.5939 7.5320 7.4797 7.4346	0.40 0.50 0.60 0.70
0.80 0.90 1.00 1.50 2.00	96.71 99.63 111.4 120.2	1.0380 1.0410 1.0432 1.0528 1.0605	1.869 1.694 1.159 0.8857	391.38 405.06 417.36 466.94 504.49	2498.8 2502.6 2506.1 2519.7 2529.5	391.66 405.15 417.46 467.11 504.70	2274.1 2265.7 2258.0 2226.5 2201.9	2670.9 2675.5 2693.6 2706.7	1.2329 1.2695 1.3026 1.4336 1.5301	7.4346 7.3949 7.3594 7.2233 7.1271	0.80 0.90 1.00 1.50 2.00
2.50	127.4	1.0672	0.7187	535.10	2537.2	535.37	2181.5	2716.9	1.6072	7.0527	2.50
3.00	133.6	1.0732	0.6058	561.15	2543.6	561.47	2163.8	2725.3	1.6718	6.9919	3.00
3.50	138.9	1.0786	0.5243	583.95	2546.9	584.33	2148.1	2732.4	1.7275	6.9405	3.50
4.00	143.6	1.0836	0.4625	604.31	2553.6	604.74	2133.8	2738.6	1.7766	6.8959	4.00
4.50	147.9	1.0882	0.4140	622.25	2557.6	623.25	2120.7	2743.9	1.8207	6.8565	4.50
5.00	151.9	1.0926	0.3749	639.68	2561.2	640.23	2108.5	2748.7	1.8607	6.8212	5.00
6.00	158.9	1.1006	0.3157	669.90	2567.4	670.56	2086.3	2756.8	1.9312	6.7600	6.00
7.00	165.0	1.1080	0.2729	696.44	2572.5	697.22	2066.3	2763.5	1.9922	6.7080	7.00
8.00	170.4	1.1148	0.2404	720.22	2576.8	721.11	2048.0	2769.1	2.0462	6.6628	8.00
9.00	175.4	1.1212	0.2150	741.83	2580.5	742.83	2031.1	2773.9	2.0946	6.6226	9.00
10.0	179.9	1.1273	0.1944	761.68	2583.6	762.81	2015.3	2778.1	2.1387	6.5863	10.0
15.0	198.3	1.1539	0.1318	843.16	2594.5	844.84	1947.3	2792.2	2.3150	6.4448	15.0
20.0	212.4	1.1767	0.09963	906.44	2600.3	908.79	1890.7	2799.5	2.4474	6.3409	20.0
25.0	224.0	1.1973	0.07998	959.11	2603.1	962.11	1841.0	2803.1	2.5547	6.2575	25.0
30.0	233.9	1.2165	0.06668	1004.8	2604.1	1008.4	1795.7	2804.2	2.6457	6.1869	30.0
35.0	242.6	1.2347	0.05707	1045.4	2603.7	1049.8	1753.7	2803.4	2.7253	6.1253	35.0
40.0	250.4	1.2522	0.04978	1082.3	2602.3	1087.3	1714.1	2801.4	2.7964	6.0701	40.0
45.0	257.5	1.2692	0.04406	1116.2	2600.1	1121.9	1676.4	2798.3	2.8610	6.0199	45.0
50.0	264.0	1.2859	0.03944	1147.8	2597.1	1154.2	1640.1	2794.3	2.9202	5.9734	50.0
60.0	275.6	1.3187	0.03244	1205.4	2589.7	1213.4	1571.0	2784.3	3.0267	5.8892	60.0
70.0	285.9	1.3513	0.02737	1257.6	2580.5	1267.0	1505.1	2772.1	3.1211	5.8133	70.0
80.0	295.1	1.3842	0.02352	1305.6	2569.8	1316.6	1441.3	2758.0	3.2068	5.7432	80.0
90.0	303.4	1.4178	0.02048	1350.5	2557.8	1363.3	1378.9	2742.1	3.2858	5.6772	90.0
100.	311.1	1.4524	0.01803	1393.0	2544.4	1407.6	1317.1	2724.7	3.3596	5.6141	100.
110.	318.2	1.4886	0.01599	1433.7	2529.8	1450.1	1255.5	2705.6	3.4295	5.5527	110.

TABLE A-3 (Continued)

		Specific Volume m ³ /kg		Internal Energy kJ/kg		Enthalpy kJ/kg			Entropy kJ/kg · K		
Press.	Temp. °C	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor $v_{ m g}$	Sat. Liquid u _f	Sat. Vapor u _g	Sat. Liquid h _f	Evap. $h_{ m fg}$	Sat. Vapor $h_{ m g}$	Sat. Liquid s _f	Sat. Vapor s _g	Press.
120.	324.8	1.5267	0.01426	1473.0	2513.7	1491.3	1193.6	2684.9	3.4962	5.4924	120.
130.	330.9	1.5671	0.01278	1511.1	2496.1	1531.5	1130.7	2662.2	3.5606	5.4323	130.
140.	336.8	1.6107	0.01149	1548.6	2476.8	1571.1	1066.5	2637.6	3.6232	5.3717	140.
150.	342.2	1.6581	0.01034	1585.6	2455.5	1610.5	1000.0	2610.5	3.6848	5.3098	150.
160.	347.4	1.7107	0.009306	1622.7	2431.7	1650.1	930.6	2580.6	3.7461	5.2455	160.
170.	352.4	1.7702	0.008364	1660.2	2405.0	1690.3	856.9	2547.2	3.8079	5.1777	170.
180.	357.1	1.8397	0.007489	1698.9	2374.3	1732.0	777.1	2509.1	3.8715	5.1044	180.
190.	361.5	1.9243	0.006657	1739.9	2338.1	1776.5	688.0	2464.5	3.9388	5.0228	190.
200.	365.8	2.036	0.005834	1785.6	2293.0	1826.3	583.4	2409.7	4.0139	4.9269	200.
220.9	374.1	3.155	0.003155	2029.6	2029.6	2099.3	0	2099.3	4.4298	4.4298	220.9

TABLE A-4 Properties of Superheated Water Vapor

IADL	LAT	roperties	or superin	calcu water	vapoi				
<i>T</i> °C	v m³/kg	<i>u</i>	h	S 1-1/1 1/		<i>v</i>	<i>u</i>	h	S 1-1/1 I/
		kJ/kg	kJ/kg	kJ/kg · K		m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	<i>p</i> =	$= 0.06 \text{ bar}$ $(T_{\text{sat}} =$	r = 0.006 36.16°C)	MPa 		<i>p</i> :		r = 0.035 $72.69^{\circ}C)$	MРа
Sat.	23.739	2425.0	2567.4	8.3304		4.526	2473.0	2631.4	7.7158
80	27.132	2487.3	2650.1	8.5804		4.625	2483.7	2645.6	7.7564
120	30.219	2544.7	2726.0	8.7840		5.163	2542.4	2723.1	7.9644
160	33.302	2602.7	2802.5	8.9693		5.696	2601.2	2800.6	8.1519
200	36.383	2661.4	2879.7	9.1398		6.228	2660.4	2878.4	8.3237
240	39.462	2721.0	2957.8	9.2982		6.758	2720.3	2956.8	8.4828
280	42.540	2781.5	3036.8	9.4464		7.287	2780.9	3036.0	8.6314
320	45.618	2843.0	3116.7	9.5859		7.815	2842.5	3116.1	8.7712
360	48.696	2905.5	3197.7	9.7180		8.344	2905.1	3197.1	8.9034
400	51.774	2969.0	3279.6	9.8435		8.872	2968.6	3279.2	9.0291
440	54.851	3033.5	3362.6	9.9633		9.400	3033.2	3362.2	9.1490
500	59.467	3132.3	3489.1	10.1336		10.192	3132.1	3488.8	9.3194
	p	= 0.70 ba	r = 0.07 1	MPa		p	= 1.0 ba	r = 0.10 N	/IPa
		$(T_{\rm sat} =$	89.95°C)				$(T_{\rm sat} =$	99.63°C)	
Sat.	2.365	2494.5	2660.0	7.4797		1.694	2506.1	2675.5	7.3594
100	2.434	2509.7	2680.0	7.5341		1.696	2506.7	2676.2	7.3614
120	2.571	2539.7	2719.6	7.6375		1.793	2537.3	2716.6	7.4668
160	2.841	2599.4	2798.2	7.8279		1.984	2597.8	2796.2	7.6597
200	3.108	2659.1	2876.7	8.0012		2.172	2658.1	2875.3	7.8343
240	3.374	2719.3	2955.5	8.1611		2.359	2718.5	2954.5	7.9949
280	3.640	2780.2	3035.0	8.3162		2.546	2779.6	3034.2	8.1445
320	3.905	2842.0	3115.3	8.4504		2.732	2841.5	3114.6	8.2849
360	4.170	2904.6	3196.5	8.5828		2.917	2904.2	3195.9	8.4175
400	4.434	2968.2	3278.6	8.7086		3.103	2967.9	3278.2	8.5435
440	4.698	3032.9	3361.8	8.8286		3.288	3032.6	3361.4	8.6636
500	5.095	3131.8	3488.5	8.9991		3.565	3131.6	3488.1	8.8342
	p	= 1.5 bar	= 0.15 N	Л Ра		p	= 3.0 bas	r = 0.30 N	Л Ра
		$(T_{\rm sat} =$	111.37°C)				$(T_{\rm sat} =$	133.55°C)	
Sat.	1.159	2519.7	2693.6	7.2233		0.606	2543.6	2725.3	6.9919
120	1.188	2533.3	2711.4	7.2693					
160	1.317	2595.2	2792.8	7.4665		0.651	2587.1	2782.3	7.1276
200	1.444	2656.2	2872.9	7.6433		0.716	2650.7	2865.5	7.3115
240	1.570	2717.2	2952.7	7.8052		0.781	2713.1	2947.3	7.4774
280	1.695	2778.6	3032.8	7.9555		0.844	2775.4	3028.6	7.6299
320	1.819	2840.6	3113.5	8.0964		0.907	2838.1	3110.1	7.7722
360	1.943	2903.5	3195.0	8.2293		0.969	2901.4	3192.2	7.9061
400	2.067	2967.3	3277.4	8.3555		1.032	2965.6	3275.0	8.0330
440	2.191	3032.1	3360.7	8.4757		1.094	3030.6	3358.7	8.1538
500	2.376	3131.2	3487.6	8.6466		1.187	3130.0	3486.0	8.3251
600	2.685	3301.7	3704.3	8.9101		1.341	3300.8	3703.2	8.5892

 TABLE A-4 (Continued)

IADI	LE A-4	(Continued	ι)					
T	<i>v</i>	и	<i>h</i>	s	v	и	<i>h</i>	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	p	$= 5.0 \text{ bar}$ $(T_{\text{sat}} = 1)$	= 0.50 M 151.86°C	[Pa	p		r = 0.70 M 164.97°C)	¶Pa
Sat.	0.3749	2561.2	2748.7	6.8213	0.2729	2572.5	2763.5	6.7080
180	0.4045	2609.7	2812.0	6.9656	0.2847	2599.8	2799.1	6.7880
200	0.4249	2642.9	2855.4	7.0592	0.2999	2634.8	2844.8	6.8865
240	0.4646	2707.6	2939.9	7.2307	0.3292	2701.8	2932.2	7.0641
280	0.5034	2771.2	3022.9	7.3865	0.3574	2766.9	3017.1	7.2233
320	0.5416	2834.7	3105.6	7.5308	0.3852	2831.3	3100.9	7.3697
360	0.5796	2898.7	3188.4	7.6660	0.4126	2895.8	3184.7	7.5063
400	0.6173	2963.2	3271.9	7.7938	0.4397	2960.9	3268.7	7.6350
440	0.6548	3028.6	3356.0	7.9152	0.4667	3026.6	3353.3	7.7571
500	0.7109	3128.4	3483.9	8.0873	0.5070	3126.8	3481.7	7.9299
600	0.8041	3299.6	3701.7	8.3522	0.5738	3298.5	3700.2	8.1956
700	0.8969	3477.5	3925.9	8.5952	0.6403	3476.6	3924.8	8.4391
	<i>p</i>	T = 10.0 ba $T_{\text{sat}} = 1$	ur = 1.0 M 179.91°C)	IPa			ar = 1.5 M 198.32°C)	ЛРа
Sat.	0.1944	2583.6	2778.1	6.5865	0.1318	2594.5	2792.2	6.4448
200	0.2060	2621.9	2827.9	6.6940	0.1325	2598.1	2796.8	6.4546
240	0.2275	2692.9	2920.4	6.8817	0.1483	2676.9	2899.3	6.6628
280	0.2480	2760.2	3008.2	7.0465	0.1627	2748.6	2992.7	6.8381
320	0.2678	2826.1	3093.9	7.1962	0.1765	2817.1	3081.9	6.9938
360	0.2873	2891.6	3178.9	7.3349	0.1899	2884.4	3169.2	7.1363
400	0.3066	2957.3	3263.9	7.4651	0.2030	2951.3	3255.8	7.2690
440	0.3257	3023.6	3349.3	7.5883	0.2160	3018.5	3342.5	7.3940
500	0.3541	3124.4	3478.5	7.7622	0.2352	3120.3	3473.1	7.5698
540	0.3729	3192.6	3565.6	7.8720	0.2478	3189.1	3560.9	7.6805
600	0.4011	3296.8	3697.9	8.0290	0.2668	3293.9	3694.0	7.8385
640	0.4198	3367.4	3787.2	8.1290	0.2793	3364.8	3783.8	7.9391
	<i>p</i>	t = 20.0 ba $(T_{\text{sat}} = 2)$	ar = 2.0 M 212.42°C)	IPa			ar = 3.0 M 233.90°C)	ЛРа
Sat.	0.0996	2600.3	2799.5	6.3409	0.0667	2604.1	2804.2	6.1869
240	0.1085	2659.6	2876.5	6.4952	0.0682	2619.7	2824.3	6.2265
280	0.1200	2736.4	2976.4	6.6828	0.0771	2709.9	2941.3	6.4462
320	0.1308	2807.9	3069.5	6.8452	0.0850	2788.4	3043.4	6.6245
360	0.1411	2877.0	3159.3	6.9917	0.0923	2861.7	3138.7	6.7801
400	0.1512	2945.2	3247.6	7.1271	0.0994	2932.8	3230.9	6.9212
440	0.1611	3013.4	3335.5	7.2540	0.1062	3002.9	3321.5	7.0520
500	0.1757	3116.2	3467.6	7.4317	0.1162	3108.0	3456.5	7.2338
540	0.1853	3185.6	3556.1	7.5434	0.1227	3178.4	3546.6	7.3474
600	0.1996	3290.9	3690.1	7.7024	0.1324	3285.0	3682.3	7.5085
640	0.2091	3362.2	3780.4	7.8035	0.1388	3357.0	3773.5	7.6106
700	0.2232	3470.9	3917.4	7.9487	0.1484	3466.5	3911.7	7.7571

 TABLE A-4 (Continued)

IADI	LE A-4 (C	ontinuea)	,		
<i>T</i>	<i>v</i>	и	<i>h</i>	s	v u h s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg kJ/kg kJ/kg kJ/kg·K
	p	$= 40 \text{ bar}$ $(T_{\text{sat}} = 2$	= 4.0 MI 250.4°C)	Pa	p = 60 bar = 6.0 MPa $(T_{\text{sat}} = 275.64^{\circ}\text{C})$
Sat.	0.04978	2602.3	2801.4	6.0701	0.03244 2589.7 2784.3 5.8892 0.03317 2605.2 2804.2 5.9252 0.03876 2720.0 2952.6 6.1846
280	0.05546	2680.0	2901.8	6.2568	
320	0.06199	2767.4	3015.4	6.4553	
360	0.06788	2845.7	3117.2	6.6215	0.04331 2811.2 3071.1 6.3782 0.04739 2892.9 3177.2 6.5408 0.05122 2970.0 3277.3 6.6853
400	0.07341	2919.9	3213.6	6.7690	
440	0.07872	2992.2	3307.1	6.9041	
500	0.08643	3099.5	3445.3	7.0901	0.05665 3082.2 3422.2 6.8803 0.06015 3156.1 3517.0 6.9999 0.06525 3266.9 3658.4 7.1677
540	0.09145	3171.1	3536.9	7.2056	
600	0.09885	3279.1	3674.4	7.3688	
640	0.1037	3351.8	3766.6	7.4720	0.06859 3341.0 3752.6 7.2731 0.07352 3453.1 3894.1 7.4234 0.07677 3528.3 3989.2 7.5190
700	0.1110	3462.1	3905.9	7.6198	
740	0.1157	3536.6	3999.6	7.7141	
	p	$= 80 \text{ bar}$ $(T_{\text{sat}} = 2)$	= 8.0 MI 95.06°C)	Pa	p = 100 bar = 10.0 MPa $(T_{\text{sat}} = 311.06^{\circ}\text{C})$
Sat. 320 360	0.02352 0.02682 0.03089	2569.8 2662.7 2772.7	2758.0 2877.2 3019.8	5.7432 5.9489 6.1819	0.01803 2544.4 2724.7 5.6141 0.01925 2588.8 2781.3 5.7103 0.02331 2729.1 2962.1 6.0060
400	0.03432	2863.8	3138.3	6.3634	0.02641 2832.4 3096.5 6.2120 0.02911 2922.1 3213.2 6.3805 0.03160 3005.4 3321.4 6.5282
440	0.03742	2946.7	3246.1	6.5190	
480	0.04034	3025.7	3348.4	6.6586	
520	0.04313	3102.7	3447.7	6.7871	0.03394 3085.6 3425.1 6.6622 0.03619 3164.1 3526.0 6.7864 0.03837 3241.7 3625.3 6.9029
560	0.04582	3178.7	3545.3	6.9072	
600	0.04845	3254.4	3642.0	7.0206	
640	0.05102	3330.1	3738.3	7.1283	0.04048 3318.9 3723.7 7.0131 0.04358 3434.7 3870.5 7.1687 0.04560 3512.1 3968.1 7.2670
700	0.05481	3443.9	3882.4	7.2812	
740	0.05729	3520.4	3978.7	7.3782	
	p =	$= 120 \text{ bar}$ $(T_{\text{sat}} = 3)$	= 12.0 M 24.75°C)	IPa	p = 140 bar = 14.0 MPa $(T_{\text{sat}} = 336.75^{\circ}\text{C})$
Sat.	0.01426	2513.7	2684.9	5.4924	0.01149 2476.8 2637.6 5.3717 0.01422 2617.4 2816.5 5.6602 0.01722 2760.9 3001.9 5.9448
360	0.01811	2678.4	2895.7	5.8361	
400	0.02108	2798.3	3051.3	6.0747	
440	0.02355	2896.1	3178.7	6.2586	0.01954 2868.6 3142.2 6.1474 0.02157 2962.5 3264.5 6.3143 0.02343 3049.8 3377.8 6.4610
480	0.02576	2984.4	3293.5	6.4154	
520	0.02781	3068.0	3401.8	6.5555	
560	0.02977	3149.0	3506.2	6.6840	0.02517 3133.6 3486.0 6.5941 0.02683 3215.4 3591.1 6.7172 0.02843 3296.0 3694.1 6.8326
600	0.03164	3228.7	3608.3	6.8037	
640	0.03345	3307.5	3709.0	6.9164	
700	0.03610	3425.2	3858.4	7.0749	0.03075 3415.7 3846.2 6.9939 0.03225 3495.2 3946.7 7.0952
740	0.03781	3503.7	3957.4	7.1746	

 TABLE A-4 (Continued)

IADI	LE A-4 (Continuea,						
T	v	и	<i>h</i>	s	<i>v</i>	и	<i>h</i>	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	p	$= 160 \text{ bar}$ $(T_{\text{sat}} = 3$	= 16.0 M 47.44°C)	IPa	p	= 180 bar $(T_{\text{sat}} = 3)$	r = 18.0 N 357.06°C)	⁄IPa
Sat.	0.00931	2431.7	2580.6	5.2455	0.00749	2374.3	2509.1	5.1044
360	0.01105	2539.0	2715.8	5.4614	0.00809	2418.9	2564.5	5.1922
400	0.01426	2719.4	2947.6	5.8175	0.01190	2672.8	2887.0	5.6887
440	0.01652	2839.4	3103.7	6.0429	0.01414	2808.2	3062.8	5.9428
480	0.01842	2939.7	3234.4	6.2215	0.01596	2915.9	3203.2	6.1345
520	0.02013	3031.1	3353.3	6.3752	0.01757	3011.8	3378.0	6.2960
560	0.02172	3117.8	3465.4	6.5132	0.01904	3101.7	3444.4	6.4392
600	0.02323	3201.8	3573.5	6.6399	0.02042	3188.0	3555.6	6.5696
640	0.02467	3284.2	3678.9	6.7580	0.02174	3272.3	3663.6	6.6905
700	0.02674	3406.0	3833.9	6.9224	0.02362	3396.3	3821.5	6.8580
740	0.02808	3486.7	3935.9	7.0251	0.02483	3478.0	3925.0	6.9623
	p	$= 200 \text{ bar}$ $(T_{\text{sat}} = 3)$	= 20.0 M 65.81°C)	IPa	p	= 240 baı	r = 24.0 N	⁄IPa
Sat. 400 440	0.00583 0.00994 0.01222	2293.0 2619.3 2774.9	2409.7 2818.1 3019.4	4.9269 5.5540 5.8450	0.00673 0.00929	2477.8 2700.6	2639.4 2923.4	5.2393 5.6506
480	0.01399	2891.2	3170.8	6.0518	0.01100	2838.3	3102.3	5.8950
520	0.01551	2992.0	3302.2	6.2218	0.01241	2950.5	3248.5	6.0842
560	0.01689	3085.2	3423.0	6.3705	0.01366	3051.1	3379.0	6.2448
600	0.01818	3174.0	3537.6	6.5048	0.01481	3145.2	3500.7	6.3875
640	0.01940	3260.2	3648.1	6.6286	0.01588	3235.5	3616.7	6.5174
700	0.02113	3386.4	3809.0	6.7993	0.01739	3366.4	3783.8	6.6947
740	0.02224	3469.3	3914.1	6.9052	0.01835	3451.7	3892.1	6.8038
800	0.02385	3592.7	4069.7	7.0544	0.01974	3578.0	4051.6	6.9567
	p	= 280 bar	= 28.0 M	IPa	\overline{p}	= 320 baı	r = 32.0 N	Л Ра
400	0.00383	2223.5	2330.7	4.7494	0.00236	1980.4	2055.9	4.3239
440	0.00712	2613.2	2812.6	5.4494	0.00544	2509.0	2683.0	5.2327
480	0.00885	2780.8	3028.5	5.7446	0.00722	2718.1	2949.2	5.5968
520	0.01020	2906.8	3192.3	5.9566	0.00853	2860.7	3133.7	5.8357
560	0.01136	3015.7	3333.7	6.1307	0.00963	2979.0	3287.2	6.0246
600	0.01241	3115.6	3463.0	6.2823	0.01061	3085.3	3424.6	6.1858
640	0.01338	3210.3	3584.8	6.4187	0.01150	3184.5	3552.5	6.3290
700	0.01473	3346.1	3758.4	6.6029	0.01273	3325.4	3732.8	6.5203
740	0.01558	3433.9	3870.0	6.7153	0.01350	3415.9	3847.8	6.6361
800	0.01680	3563.1	4033.4	6.8720	0.01460	3548.0	4015.1	6.7966
900	0.01873	3774.3	4298.8	7.1084	0.01633	3762.7	4285.1	7.0372

730 Tables in SI Units

TABLE A-7 Properties of Saturated Refrigerant 22 (Liquid–Vapor): Temperature Table

	Specific Volume m³/kg			Internal kJ/			Enthalpy kJ/kg		Entro kJ/kg		
Temp. °C	Press.	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor $v_{ m g}$	Sat. Liquid u _f	Sat. Vapor u _g	Sat. Liquid $h_{ m f}$	Evap. h_{fg}	Sat. Vapor $h_{\rm g}$	Sat. Liquid s _f	Sat. Vapor $s_{\rm g}$	Temp.
-60	0.3749	0.6833	0.5370	-21.57	203.67	-21.55	245.35	223.81	-0.0964	1.0547	-60
-50	0.6451	0.6966	0.3239	-10.89	207.70	-10.85	239.44	228.60	-0.0474	1.0256	-50
-45	0.8290	0.7037	0.2564	-5.50	209.70	-5.44	236.39	230.95	-0.0235	1.0126	-45
-40	1.0522	0.7109	0.2052	-0.07	211.68	0.00	233.27	233.27	0.0000	1.0005	-40
-36	1.2627	0.7169	0.1730	4.29	213.25	4.38	230.71	235.09	0.0186	0.9914	-36
-32	1.5049	0.7231	0.1468	8.68	214.80	8.79	228.10	236.89	0.0369	0.9828	-32
-30	1.6389	0.7262	0.1355	10.88	215.58	11.00	226.77	237.78	0.0460	0.9787	-30
-28	1.7819	0.7294	0.1252	13.09	216.34	13.22	225.43	238.66	0.0551	0.9746	-28
-26	1.9345	0.7327	0.1159	15.31	217.11	15.45	224.08	239.53	0.0641	0.9707	-26
-22	2.2698	0.7393	0.0997	19.76	218.62	19.92	221.32	241.24	0.0819	0.9631	-22
-20	2.4534	0.7427	0.0926	21.99	219.37	22.17	219.91	242.09	0.0908	0.9595	-20
-18	2.6482	0.7462	0.0861	24.23	220.11	24.43	218.49	242.92	0.0996	0.9559	-18
-16	2.8547	0.7497	0.0802	26.48	220.85	26.69	217.05	243.74	0.1084	0.9525	-16
-14	3.0733	0.7533	0.0748	28.73	221.58	28.97	215.59	244.56	0.1171	0.9490	-14
-12	3.3044	0.7569	0.0698	31.00	222.30	31.25	214.11	245.36	0.1258	0.9457	-12
-10	3.5485	0.7606	0.0652	33.27	223.02	33.54	212.62	246.15	0.1345	0.9424	-10
-8	3.8062	0.7644	0.0610	35.54	223.73	35.83	211.10	246.93	0.1431	0.9392	$ \begin{array}{c c} -8 \\ -6 \\ -4 \\ -2 \\ 0 \end{array} $
-6	4.0777	0.7683	0.0571	37.83	224.43	38.14	209.56	247.70	0.1517	0.9361	
-4	4.3638	0.7722	0.0535	40.12	225.13	40.46	208.00	248.45	0.1602	0.9330	
-2	4.6647	0.7762	0.0501	42.42	225.82	42.78	206.41	249.20	0.1688	0.9300	
0	4.9811	0.7803	0.0470	44.73	226.50	45.12	204.81	249.92	0.1773	0.9271	
2	5.3133	0.7844	0.0442	47.04	227.17	47.46	203.18	250.64	0.1857	0.9241	2
4	5.6619	0.7887	0.0415	49.37	227.83	49.82	201.52	251.34	0.1941	0.9213	4
6	6.0275	0.7930	0.0391	51.71	228.48	52.18	199.84	252.03	0.2025	0.9184	6
8	6.4105	0.7974	0.0368	54.05	229.13	54.56	198.14	252.70	0.2109	0.9157	8
10	6.8113	0.8020	0.0346	56.40	229.76	56.95	196.40	253.35	0.2193	0.9129	10
12	7.2307	0.8066	0.0326	58.77	230.38	59.35	194.64	253.99	0.2276	0.9102	12
16	8.1268	0.8162	0.0291	63.53	231.59	64.19	191.02	255.21	0.2442	0.9048	16
20	9.1030	0.8263	0.0259	68.33	232.76	69.09	187.28	256.37	0.2607	0.8996	20
24	10.164	0.8369	0.0232	73.19	233.87	74.04	183.40	257.44	0.2772	0.8944	24
28	11.313	0.8480	0.0208	78.09	234.92	79.05	179.37	258.43	0.2936	0.8893	28
32	12.556	0.8599	0.0186	83.06	235.91	84.14	175.18	259.32	0.3101	0.8842	32
36	13.897	0.8724	0.0168	88.08	236.83	89.29	170.82	260.11	0.3265	0.8790	36
40	15.341	0.8858	0.0151	93.18	237.66	94.53	166.25	260.79	0.3429	0.8738	40
45	17.298	0.9039	0.0132	99.65	238.59	101.21	160.24	261.46	0.3635	0.8672	45
50	19.433	0.9238	0.0116	106.26	239.34	108.06	153.84	261.90	0.3842	0.8603	50
60	24.281	0.9705	0.0089	120.00	240.24	122.35	139.61	261.96	0.4264	0.8455	60

Source: Tables A-7 through A-9 are calculated based on equations from A. Kamei and S. W. Beyerlein, "A Fundamental Equation for Chlorodifluoromethane (R-22)," Fluid Phase Equilibria, Vol. 80, No. 11, 1992, pp. 71–86.

TABLE A-8 Properties of Saturated Refrigerant 22 (Liquid–Vapor): Pressure Table

		Specific m ³ /		Internal kJ/			Enthalpy kJ/kg		Entropy kJ/kg · K		
Press.	Temp. °C	Sat. Liquid $v_{\rm f} \times 10^3$	Sat. Vapor $v_{\rm g}$	Sat. Liquid u _f	Sat. Vapor u _g	Sat. Liquid $h_{ m f}$	Evap. h_{fg}	Sat. Vapor $h_{\rm g}$	Sat. Liquid s _f	Sat. Vapor	Press.
0.40	-58.86	0.6847	0.5056	-20.36	204.13	-20.34	244.69	224.36	-0.0907	1.0512	0.40
0.50	-54.83	0.6901	0.4107	-16.07	205.76	-16.03	242.33	226.30	-0.0709	1.0391	0.50
0.60	-51.40	0.6947	0.3466	-12.39	207.14	-12.35	240.28	227.93	-0.0542	1.0294	0.60
0.70	-48.40	0.6989	0.3002	-9.17	208.34	-9.12	238.47	229.35	-0.0397	1.0213	0.70
0.80	-45.73	0.7026	0.2650	-6.28	209.41	-6.23	236.84	230.61	-0.0270	1.0144	0.80
0.90	-43.30	0.7061	0.2374	-3.66	210.37	-3.60	235.34	231.74	-0.0155	1.0084	0.90
1.00	-41.09	0.7093	0.2152	-1.26	211.25	-1.19	233.95	232.77	-0.0051	1.0031	1.00
1.25	-36.23	0.7166	0.1746	4.04	213.16	4.13	230.86	234.99	0.0175	0.9919	1.25
1.50	-32.08	0.7230	0.1472	8.60	214.77	8.70	228.15	236.86	0.0366	0.9830	1.50
1.75	-28.44	0.7287	0.1274	12.61	216.18	12.74	225.73	238.47	0.0531	0.9755	1.75
2.00	-25.18	0.7340	0.1123	16.22	217.42	16.37	223.52	239.88	0.0678	0.9691	2.00
2.25	-22.22	0.7389	0.1005	19.51	218.53	19.67	221.47	241.15	0.0809	0.9636	2.25
2.50	-19.51	0.7436	0.0910	22.54	219.55	22.72	219.57	242.29	0.0930	0.9586	2.50
2.75	-17.00	0.7479	0.0831	25.36	220.48	25.56	217.77	243.33	0.1040	0.9542	2.75
3.00	-14.66	0.7521	0.0765	27.99	221.34	28.22	216.07	244.29	0.1143	0.9502	3.00
3.25	-12.46	0.7561	0.0709	30.47	222.13	30.72	214.46	245.18	0.1238	0.9465	3.25
3.50	-10.39	0.7599	0.0661	32.82	222.88	33.09	212.91	246.00	0.1328	0.9431	3.50
3.75	-8.43	0.7636	0.0618	35.06	223.58	35.34	211.42	246.77	0.1413	0.9399	3.75
4.00	-6.56	0.7672	0.0581	37.18	224.24	37.49	209.99	247.48	0.1493	0.9370	4.00
4.25	-4.78	0.7706	0.0548	39.22	224.86	39.55	208.61	248.16	0.1569	0.9342	4.25
4.50	-3.08	0.7740	0.0519	41.17	225.45	41.52	207.27	248.80	0.1642	0.9316	4.50
4.75	-1.45	0.7773	0.0492	43.05	226.00	43.42	205.98	249.40	0.1711	0.9292	4.75
5.00	0.12	0.7805	0.0469	44.86	226.54	45.25	204.71	249.97	0.1777	0.9269	5.00
5.25	1.63	0.7836	0.0447	46.61	227.04	47.02	203.48	250.51	0.1841	0.9247	5.25
5.50	3.08	0.7867	0.0427	48.30	227.53	48.74	202.28	251.02	0.1903	0.9226	5.50
5.75	4.49	0.7897	0.0409	49.94	227.99	50.40	201.11	251.51	0.1962	0.9206	5.75
6.00	5.85	0.7927	0.0392	51.53	228.44	52.01	199.97	251.98	0.2019	0.9186	6.00
7.00	10.91	0.8041	0.0337	57.48	230.04	58.04	195.60	253.64	0.2231	0.9117	7.00
8.00	15.45	0.8149	0.0295	62.88	231.43	63.53	191.52	255.05	0.2419	0.9056	8.00
9.00	19.59	0.8252	0.0262	67.84	232.64	68.59	187.67	256.25	0.2591	0.9001	9.00
10.00	23.40	0.8352	0.0236	72.46	233.71	73.30	183.99	257.28	0.2748	0.8952	10.00
12.00	30.25	0.8546	0.0195	80.87	235.48	81.90	177.04	258.94	0.3029	0.8864	12.00
14.00	36.29	0.8734	0.0166	88.45	236.89	89.68	170.49	260.16	0.3277	0.8786	14.00
16.00	41.73	0.8919	0.0144	95.41	238.00	96.83	164.21	261.04	0.3500	0.8715	16.00
18.00	46.69	0.9104	0.0127	101.87	238.86	103.51	158.13	261.64	0.3705	0.8649	18.00
20.00	51.26	0.9291	0.0112	107.95	239.51	109.81	152.17	261.98	0.3895	0.8586	20.00
24.00	59.46	0.9677	0.0091	119.24	240.22	121.56	140.43	261.99	0.4241	0.8463	24.00

TABLE A-9 Properties of Superheated Refrigerant 22 Vapor

IABL	L A-J II	operaes of		ieu Kenige	14111 22 Vaj	,,,,,			
<i>T</i> °C	v m³/kg	и kJ/kg	h 1-1/1-2	S Ir I/Irox - W		$\frac{v}{\text{m}^3/\text{kg}}$	и 1-1/1-с	h	S Ir I / Irox . I/
			kJ/kg	kJ/kg · K			kJ/kg	kJ/kg	kJ/kg · K
	<i>p</i>	= 0.4 bar $(T_{\text{sat}} = -$	= 0.04 M ·58.86°C)	Pa 		p = 0.6 bar = 0.06 MPa $(T_{\text{sat}} = -51.40^{\circ}\text{C})$			
Sat.	0.50559	204.13	224.36	1.0512		0.34656	207.14	227.93	1.0294
-55 -50	0.51532 0.52787	205.92 208.26	226.53 229.38	1.0612 1.0741		0.34895	207.80	228.74	1.0330
-45	0.54037	210.63	232.24	1.0868		0.35747	210.20	231.65	1.0459
$-40 \\ -35$	0.55284 0.56526	213.02 215.43	235.13 238.05	1.0993 1.1117		0.36594 0.37437	212.62 215.06	234.58 237.52	1.0586 1.0711
-30	0.57766	217.88	240.99	1.1239		0.38277	217.53	240.49	1.0835
$-25 \\ -20$	0.59002 0.60236	220.35 222.85	243.95 246.95	1.1360 1.1479		0.39114 0.39948	220.02 222.54	243.49 246.51	1.0956 1.1077
-15	0.61468	225.38	249.97	1.1597		0.40779	225.08	249.55	1.1196
-10	0.62697	227.93	253.01	1.1714		0.41608	227.65	252.62	1.1314
-5	0.63925	230.52	256.09	1.1830		0.42436	230.25	255.71	1.1430
0	0.65151	233.13	259.19	1.1944		0.43261	232.88	258.83	1.1545
	p	$= 0.8 \text{ bar}$ $(T_{\text{sat}} = -$		Pa		p		r = 0.10 M -41.09°C)	I Pa
Sat.	0.26503	209.41	230.61	1.0144		0.21518	211.25	232.77	1.0031
-45 40	0.26597	209.76	231.04	1.0163		0.21622	211.70	222.42	1.0050
-40	0.27245	212.21	234.01	1.0292		0.21633	211.79	233.42	1.0059
$-35 \\ -30$	0.27890 0.28530	214.68 217.17	236.99 239.99	1.0418 1.0543		0.22158 0.22679	214.29 216.80	236.44 239.48	1.0187 1.0313
-25	0.29167	219.68	243.02	1.0666		0.22079	219.34	242.54	1.0438
-20	0.29801	222.22	246.06	1.0788		0.23712	221.90	245.61	1.0560
-15	0.30433	224.78	249.13	1.0908		0.24224	224.48	248.70	1.0681
-10	0.31062	227.37	252.22	1.1026		0.24734	227.08	251.82	1.0801
-5	0.31690	229.98	255.34	1.1143		0.25241	229.71	254.95	1.0919
0	0.32315	232.62	258.47	1.1259		0.25747	232.36	258.11	1.1035
5 10	0.32939 0.33561	235.29 237.98	261.64 264.83	1.1374 1.1488		0.26251 0.26753	235.04 237.74	261.29 264.50	1.1151 1.1265
10	0.55501	237.96	204.63	1.1400		0.20733	237.74	204.50	1.1203
		1.5.1	0.15.34	D.			201	0.20.1	m.
	p	$= 1.5 \text{ bar}$ $(T_{\text{sat}} = -$		Pa		p		r = 0.20 M -25.18°C	IPa
Sat.	0.14721	214.77	236.86	0.9830		0.11232	217.42	239.88	0.9691
-30	0.14872	215.85	238.16	0.9883		0.11242	217.51	240.00	0.0606
-25	0.15232	218.45	241.30	1.0011		0.11242	217.51	240.00	0.9696
$-20 \\ -15$	0.15588 0.15941	221.07 223.70	244.45 247.61	1.0137 1.0260		0.11520 0.11795	220.19 222.88	243.23 246.47	0.9825 0.9952
-10	0.16292	226.35	250.78	1.0200		0.11793	225.58	249.72	1.0076
-5	0.16640	229.02	253.98	1.0502		0.12336	228.30	252.97	1.0199
0	0.16987	231.70	257.18	1.0621		0.12603	231.03	256.23	1.0310
5	0.17331	234.42	260.41	1.0738		0.12868	233.78	259.51	1.0438
10	0.17674	237.15	263.66	1.0854		0.13132	236.54	262.81	1.0555
15	0.18015	239.91	266.93	1.0968		0.13393	239.33	266.12	1.0671
20 25	0.18355	242.69 245.49	270.22 273.53	1.1081		0.13653	242.14 244.97	269.44 272.79	1.0786 1.0899
23	0.18693	243.49	213.33	1.1193		0.13912	2 44 .97	212.19	1.0899

TABLE A-9 (Continued)

			1.				1.	
°C	<i>v</i> m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K	<i>v</i> m³/kg	и kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K
			= 0.25 M				= 0.30 N	MPa
	P		·19.51°C)	1 4	P		-14.66°C)	
Sat.	0.09097	219.55	242.29	0.9586	0.07651	221.34	244.29	0.9502
-15	0.09303	222.03	245.29	0.9703				
-10	0.09528	224.79	248.61	0.9831	0.07833	223.96	247.46	0.9623
-5	0.09751	227.55	251.93	0.9956	0.08025	226.78	250.86	0.9751
0 5	0.09971 0.10189	230.33 233.12	255.26 258.59	1.0078 1.0199	0.08214 0.08400	229.61 232.44	254.25 257.64	0.9876 0.9999
10 15	0.10405 0.10619	235.92 238.74	261.93 265.29	1.0318 1.0436	0.08585 0.08767	235.28 238.14	261.04 264.44	1.0120 1.0239
20	0.10831	241.58	268.66	1.0552	0.08949	241.01	267.85	1.0357
25	0.11043	244.44	272.04	1.0666	0.09128	243.89	271.28	1.0472
30	0.11253	247.31	275.44	1.0779	0.09307	246.80	274.72	1.0587
35	0.11461	250.21	278.86	1.0891	0.09484	249.72	278.17	1.0700
40	0.11669	253.13	282.30	1.1002	0.09660	252.66	281.64	1.0811
	p		= 0.35 M	Pa	p		= 0.40 N	I Pa
			10.39°C)				-6.56°C)	
Sat.	0.06605	222.88	246.00	0.9431	0.05812	224.24	247.48	0.9370
$-10 \\ -5$	0.06619 0.06789	223.10 225.99	246.27 249.75	0.9441 0.9572	0.05860	225.16	248.60	0.9411
0	0.06956	228.86	253.21	0.9700	0.06011	228.09	252.14	0.9542
5	0.00730	231.74	256.67	0.9700	0.06160	231.02	225.66	0.9670
10	0.07284	234.63	260.12	0.9948	0.06306	233.95	259.18	0.9795
15	0.07444	237.52	263.57	1.0069	0.06450	236.89	262.69	0.9918
20	0.07603	240.42	267.03	1.0188	0.06592	239.83	266.19	1.0039
25	0.07760	243.34	270.50	1.0305	0.06733	242.77	269.71	1.0158
30	0.07916	246.27	273.97	1.0421	0.06872	245.73	273.22	1.0274
35 40	0.08070	249.22	227.46	1.0535	0.07010	248.71 251.70	276.75	1.0390 1.0504
45	0.08224 0.08376	252.18 255.17	280.97 284.48	1.0648 1.0759	0.07146 0.07282	254.70	280.28 283.83	1.0504
15	0.00570	233.17	201.10	1.0737	0.07202	23 1.70	203.03	1.0010
	n	- 45 ber	= 0.45 M	D ₀		= 5 0 bar	= 0.50 N	/IDo
	P		- 0.43 M -3.08°C)	1 a	P		0.12°C)	11 a
Sat.	0.05189	225.45	248.80	0.9316	0.04686	226.54	249.97	0.9269
0	0.05275	227.29	251.03	0.9399	0.0.000	220.0	,,,,	0.5205
5	0.05411	230.28	254.63	0.9529	0.04810	229.52	253.57	0.9399
10	0.05545	233.26	258.21	0.9657	0.04934	232.55	257.22	0.9530
15	0.05676	236.24	261.78	0.9782	0.05056	235.57	260.85	0.9657
20	0.05805	239.22	265.34	0.9904	0.05175	238.59	264.47	0.9781
25	0.05933	242.20	268.90	1.0025	0.05293	241.61	268.07	0.9903
30 35	0.06059 0.06184	245.19 248.19	272.46 276.02	1.0143 1.0259	0.05409 0.05523	244.63 247.66	271.68 275.28	1.0023 1.0141
40	0.06308	251.20	279.59	1.0374	0.05636	250.70	278.89	1.0257
45	0.06308	251.20	283.17	1.0374	0.05748	253.76	282.50	1.0237
50	0.06552	257.28	286.76	1.0600	0.05859	256.82	286.12	1.0484
55	0.06672	260.34	290.36	1.0710	0.05969	259.90	289.75	1.0595

TABLE A-9 (Continued)

TABL	E A-9 (Continued)								
<i>T</i>	v	u	<i>h</i>	s	v	и	<i>h</i>	s		
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K		
	р	$o = 5.5 \text{ bar}$ $(T_{\text{sat}} =$	= 0.55 M 3.08°C	Pa	p	p = 6.0 bar = 0.60 MPa $(T_{\text{sat}} = 5.85^{\circ}\text{C})$				
Sat.	0.04271 0.04317	227.53 228.72	251.02 252.46	0.9226 0.9278	0.03923	228.44	251.98	0.9186		
10	0.04433	231.81	256.20	0.9411	0.04015	231.05	255.14	0.9299		
15	0.04547		259.90	0.9540	0.04122	234.18	258.91	0.9431		
20	0.04658	241.01	263.57	0.9667	0.04227	237.29	262.65	0.9560		
25	0.04768		267.23	0.9790	0.04330	240.39	266.37	0.9685		
30	0.04875		270.88	0.9912	0.04431	243.49	270.07	0.9808		
35	0.04982	250.20	274.53	1.0031	0.04530	246.58	273.76	0.9929		
40	0.05086		278.17	1.0148	0.04628	249.68	277.45	1.0048		
45	0.05190		281.82	1.0264	0.04724	252.78	281.13	1.0164		
50	0.05293	259.46	285.47	1.0378	0.04820	255.90	284.82	1.0279		
55	0.05394		289.13	1.0490	0.04914	259.02	288.51	1.0393		
60	0.05495		292.80	1.0601	0.05008	262.15	292.20	1.0504		
	p	$o = 7.0 \text{ bar}$ $(T_{\text{sat}} = 1)$	= 0.70 M 10.91°C)	Pa	p		= 0.80 M 15.45°C)	I Pa		
Sat.	0.03371 0.03451	230.04 232.70	253.64 256.86	0.9117 0.9229	0.02953	231.43	255.05	0.9056		
20	0.03547		260.75	0.9363	0.03033	234.47	258.74	0.9182		
25	0.03639		264.59	0.9493	0.03118	237.76	262.70	0.9315		
30	0.03730		268.40	0.9619	0.03202	241.04	266.66	0.9448		
35	0.03819		272.19	0.9743	0.03283	244.28	270.54	0.9574		
40	0.03906	251.78	275.96	0.9865	0.03363	247.52	274.42	0.9700		
45	0.03992		279.72	0.9984	0.03440	250.74	278.26	0.9821		
50	0.04076		283.48	1.0101	0.03517	253.96	282.10	0.9941		
55 60 65 70	0.04160 0.04242 0.04324 0.04405	261.29 264.48	287.23 290.99 294.75 298.51	1.0216 1.0330 1.0442 1.0552	0.03592 0.03667 0.03741 0.03814	257.18 260.40 263.64 266.87	285.92 289.74 293.56 297.38	1.0058 1.0174 1.0287 1.0400		
	<i>p</i>	$0 = 9.0 \text{ bar}$ $(T_{\text{sat}} = 1)$	= 0.90 M 19.59°C)	Pa	<i>p</i> :		r = 1.00 N 23.40°C)	МРа		
Sat. 20	0.02623	232.92	256.25 256.59	0.9001 0.9013	0.02358	233.71	257.28	0.8952		
30 40 50 60	0.02789 0.02939 0.03082 0.03219	246.37 252.95	264.83 272.82 280.68 288.46	0.9289 0.9549 0.9795 1.0033	0.02457 0.02598 0.02732 0.02860	238.34 245.18 251.90 258.56	262.91 271.17 279.22 287.15	0.9139 0.9407 0.9660 0.9902		
70	0.03353		296.21	1.0262	0.02984	265.19	295.03	1.0135		
80	0.03483		303.96	1.0484	0.03104	271.84	302.88	1.0361		
90	0.03611		311.73	1.0701	0.03221	278.52	310.74	1.0580		
100 110 120	0.03736 0.03860 0.03982	292.63 299.42	319.53 327.37 335.26	1.0913 1.1120 1.1323	0.03337 0.03450 0.03562	285.24 292.02 298.85	318.61 326.52 334.46	1.0794 1.1003 1.1207		
130	0.04103	313.21	343.21	1.1523	0.03672	305.74	342.46	1.1408		
140	0.04223		351.22	1.1719	0.03781	312.70	350.51	1.1605		
150	0.04342		359.29	1.1912	0.03889	319.74	358.63	1.1790		

 TABLE A-9 (Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(0	ommuea)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T		u 1-1/1	h	S 1-1/1 V		u 1-1/1	h		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sat.	0.01955	235.48	258.94	0.8864	0.01662	236.89	260.16	0.8786	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		n =	= 16.0 har	= 1.60 N	 (ГРа		= 18 0 ba	r = 1.80 N	ΜРа	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>ν</i> -			11 a	<i>ν</i>			vii a	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sat.	0.01440	238.00			0.01265	238.86		0.8649	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.02142				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.1666					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			= 20.0 bar	= 2.00 N	 1Pa		= 24.0 ba	ar = 2.4 N	1Pa	
60 0.01212 247.20 271.43 0.8873 0.00913 240.78 262.68 0.8484 70 0.01300 255.35 281.36 0.9167 0.01006 250.30 274.43 0.8831 80 0.01381 263.12 290.74 0.9436 0.01085 258.89 284.93 0.9133 90 0.01457 270.67 299.80 0.9689 0.01156 267.01 294.75 0.9407 100 0.01528 278.09 308.65 0.9929 0.01222 274.85 304.18 0.9663 110 0.01596 285.44 317.37 1.0160 0.01284 282.53 313.35 0.9906 120 0.01663 292.76 326.01 1.0383 0.01343 290.11 322.35 1.0137 130 0.01727 300.08 334.61 1.0598 0.01400 297.64 331.25 1.0361 140 0.01789 307.40 343.19 1.0808 0.01456 305.14		r								
70 0.01300 255.35 281.36 0.9167 0.01006 250.30 274.43 0.8831 80 0.01381 263.12 290.74 0.9436 0.01085 258.89 284.93 0.9133 90 0.01457 270.67 299.80 0.9689 0.01156 267.01 294.75 0.9407 100 0.01528 278.09 308.65 0.9929 0.01222 274.85 304.18 0.9663 110 0.01596 285.44 317.37 1.0160 0.01284 282.53 313.35 0.9906 120 0.01663 292.76 326.01 1.0383 0.01343 290.11 322.35 1.0137 130 0.01727 300.08 334.61 1.0598 0.01400 297.64 331.25 1.0361 140 0.01789 307.40 343.19 1.0808 0.01456 305.14 340.08 1.0577 150 0.01850 314.75 351.76 1.1013 0.01562 320.16										
80 0.01381 263.12 290.74 0.9436 0.01085 258.89 284.93 0.9133 90 0.01457 270.67 299.80 0.9689 0.01156 267.01 294.75 0.9407 100 0.01528 278.09 308.65 0.9929 0.01222 274.85 304.18 0.9663 110 0.01596 285.44 317.37 1.0160 0.01284 282.53 313.35 0.9906 120 0.01663 292.76 326.01 1.0383 0.01343 290.11 322.35 1.0137 130 0.01727 300.08 334.61 1.0598 0.01400 297.64 331.25 1.0361 140 0.01789 307.40 343.19 1.0808 0.01456 305.14 340.08 1.0577 150 0.01850 314.75 351.76 1.1013 0.01509 312.64 348.87 1.0787 160 0.01910 322.14 360.34 1.1214 0.01562 320.16 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
90 0.01457 270.67 299.80 0.9689 0.01156 267.01 294.75 0.9407 100 0.01528 278.09 308.65 0.9929 0.01222 274.85 304.18 0.9663 110 0.01596 285.44 317.37 1.0160 0.01284 282.53 313.35 0.9906 120 0.01663 292.76 326.01 1.0383 0.01343 290.11 322.35 1.0137 130 0.01727 300.08 334.61 1.0598 0.01400 297.64 331.25 1.0361 140 0.01789 307.40 343.19 1.0808 0.01456 305.14 340.08 1.0577 150 0.01850 314.75 351.76 1.1013 0.01509 312.64 348.87 1.0787 160 0.01910 322.14 360.34 1.1214 0.01562 320.16 357.64 1.0992 170 0.01969 329.56 368.95 1.1410 0.01613 327.70 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
100 0.01528 278.09 308.65 0.9929 0.01222 274.85 304.18 0.9663 110 0.01596 285.44 317.37 1.0160 0.01284 282.53 313.35 0.9906 120 0.01663 292.76 326.01 1.0383 0.01343 290.11 322.35 1.0137 130 0.01727 300.08 334.61 1.0598 0.01400 297.64 331.25 1.0361 140 0.01789 307.40 343.19 1.0808 0.01456 305.14 340.08 1.0577 150 0.01850 314.75 351.76 1.1013 0.01509 312.64 348.87 1.0787 160 0.01910 322.14 360.34 1.1214 0.01562 320.16 357.64 1.0992 170 0.01969 329.56 368.95 1.1410 0.01613 327.70 366.41 1.1192								1		
110 0.01596 285.44 317.37 1.0160 0.01284 282.53 313.35 0.9906 120 0.01663 292.76 326.01 1.0383 0.01343 290.11 322.35 1.0137 130 0.01727 300.08 334.61 1.0598 0.01400 297.64 331.25 1.0361 140 0.01789 307.40 343.19 1.0808 0.01456 305.14 340.08 1.0577 150 0.01850 314.75 351.76 1.1013 0.01509 312.64 348.87 1.0787 160 0.01910 322.14 360.34 1.1214 0.01562 320.16 357.64 1.0992 170 0.01969 329.56 368.95 1.1410 0.01613 327.70 366.41 1.1192							1			
120 0.01663 292.76 326.01 1.0383 0.01343 290.11 322.35 1.0137 130 0.01727 300.08 334.61 1.0598 0.01400 297.64 331.25 1.0361 140 0.01789 307.40 343.19 1.0808 0.01456 305.14 340.08 1.0577 150 0.01850 314.75 351.76 1.1013 0.01509 312.64 348.87 1.0787 160 0.01910 322.14 360.34 1.1214 0.01562 320.16 357.64 1.0992 170 0.01969 329.56 368.95 1.1410 0.01613 327.70 366.41 1.1192								1		
130 0.01727 300.08 334.61 1.0598 0.01400 297.64 331.25 1.0361 140 0.01789 307.40 343.19 1.0808 0.01456 305.14 340.08 1.0577 150 0.01850 314.75 351.76 1.1013 0.01509 312.64 348.87 1.0787 160 0.01910 322.14 360.34 1.1214 0.01562 320.16 357.64 1.0992 170 0.01969 329.56 368.95 1.1410 0.01613 327.70 366.41 1.1192										
140 0.01789 307.40 343.19 1.0808 0.01456 305.14 340.08 1.0577 150 0.01850 314.75 351.76 1.1013 0.01509 312.64 348.87 1.0787 160 0.01910 322.14 360.34 1.1214 0.01562 320.16 357.64 1.0992 170 0.01969 329.56 368.95 1.1410 0.01613 327.70 366.41 1.1192										
150 0.01850 314.75 351.76 1.1013 0.01509 312.64 348.87 1.0787 160 0.01910 322.14 360.34 1.1214 0.01562 320.16 357.64 1.0992 170 0.01969 329.56 368.95 1.1410 0.01613 327.70 366.41 1.1192										
160 0.01910 322.14 360.34 1.1214 0.01562 320.16 357.64 1.0992 170 0.01969 329.56 368.95 1.1410 0.01613 327.70 366.41 1.1192								1		
170 0.01969 329.56 368.95 1.1410 0.01613 327.70 366.41 1.1192								1		