

5 V low dropout voltage regulator

Datasheet - production data

Features

Max DC supply voltage	Vs	40 V
Max output voltage tolerance	$\Delta V_{\mathbf{o}}$	±2%
Max dropout voltage	V _{dp}	500 mV
Output current	I ₀	150 mA
Quiescent current	Iq	50 μA ⁽¹⁾

- 1. Typical value.
- Operating DC supply voltage range 5.6 V to 40 V
- Low dropout voltage

- · Low quiescent current
- Precison output voltage 5 V ±2%
- Very wide stability range with low value output capacitor
- Thermal shutdown and short-circuit protection
- Wide temperature range (T_j = -40 °C to 150 °C)

Description

L5150BN is a low dropout linear 5 V regulator particularly suitable for automotive applications.

High output voltage accuracy (2%) is kept over wide temperature range line and load variation.

Its sophisticated design allows to have extremely low quiescent current.

The maximum input voltage is 40 V.

The regulator output current is internally limited and the device is protected against short-circuit, overload and overtemperature conditions. In addition, only low-value ceramic capacitor on output is required for stability.

Table 1. Device summary

Package	Orde	r codes
	Tube	Tape & reel
SOT-223	L5150BN	L5150BNTR

Contents L5150BN

Contents

1	Bloc	ck diagram and pins description	. 5
2	Elec	trical specifications	. 6
	2.1	Absolute maximum ratings	. 6
	2.2	Thermal data	. 6
	2.3	Electrical characteristics	. 7
	2.4	Electrical characteristics curves	. 8
	2.5	Application information	10
3	Pacl	kage and PCB thermal data	12
	3.1	SOT-223 thermal data	12
4	Pacl	kage information	15
	4.1	SOT-223 package information	15
	4.2	SOT-223 packing information	16
5	Revi	ision history	17

L5150BN List of tables

List of tables

	Device summary	1
Table 2.	Pins description	5
	Absolute maximum ratings	
Table 4.	Thermal data	6
Table 5.	General	7
Table 6.	SOT-223 thermal parameter	14
Table 7.	SOT-223 package mechanical data	15
Table 8.	Document revision history	17

List of figures L5150BN

List of figures

Figure 1.	Block diagram	5
Figure 2.	Output voltage vs. T _i	
Figure 3.	Output voltage vs. V _S	
Figure 4.	Drop voltage vs. output current	
Figure 5.	Current consumption vs. output current	8
Figure 6.	Current consumption vs. output current (at light load condition)	8
Figure 7.	Current consumption vs. input voltage (lo = 0.1 mA)	8
Figure 8.	Current consumption vs. input voltage (lo = 75 mA)	9
Figure 9.	Current limitation vs. T _i	9
Figure 10.	Current limitation vs. input voltage	9
Figure 11.	Short-circuit current vs. T _i	9
Figure 12.	Short-circuit current vs. input voltage	9
Figure 13.	PSRR	9
Figure 14.	Application schematic	. 10
Figure 15.	Stability region	. 11
Figure 16.	Maximum load variation response	. 11
Figure 17.	SOT-223 PC board	. 12
Figure 18.	Rthj-amb vs. PCB copper area in open box free air condition	
Figure 19.	SOT-223 thermal impedance junction ambient single pulse	
Figure 20.	Thermal fitting model of Vreg in SOT-223	. 13
Figure 21.	SOT-223 package outline	. 15
Figure 22	SOT-223 tane and real chinment (cuffix "TP")	16

Block diagram and pins description

_ Vo START-UP Power 1.25V Driver Voltage Reference GND Current Thermal Shutdown Limiter GAPGPS01369

Figure 1. Block diagram

Table 2. Pins description

N°	Pin name ⁽¹⁾	Function
1	V _S	Supply voltage, block directly to GND on the IC with a capacitor.
2	GND	Ground reference
3	V _o	5 V regulated output. Block to GND with a ceramic capacitor ($C_0 \ge 220$ nF for regulator stability)

^{1.} For the pins configuration see outlines at page 1.

Electrical specifications 2

2.1 **Absolute maximum ratings**

Stressing the device above the rating listed in the Table 3: Absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE program and other relevant quality documents.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{sdc}	DC supply voltage	-0.3 to 40	V
I _{sdc}	Input current	internally limited	
V _o	DC output voltage	-0.3 to 6	V
Io	DC output current	internally limited	
T _j	Junction temperature	-40 to 150	°C
V _{ESD HBM}	ESD voltage level (HBM-MIL STD 883C)	±2	kV
V _{ESD CDM}	ESD voltage level (CDM AEC-Q100-011)	±750	V

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value ⁽¹⁾	Unit
R _{thj-case}	Thermal resistance junction to case: SOT-223	20	°K/W
R _{thj-amb}	Thermal resistance junction to ambient: SOT-223	79	°K/W

The values quoted are for PCB 58 mm x 58 mm x 2 mm, FR4, double copper layer with single heatsink layer, copper thickness 35 µm, copper area 2 cm²

6/20 DocID15541 Rev 10

2.3 Electrical characteristics

Values specified in this section are for V_S = 5.6 V to 31 V, T_j = -40 °C to +150 °C unless otherwise stated.

Table 5. General

Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vo	V _{o_ref}	Output voltage	V _S = 8 V to 18 V, Io = 8 mA to 150 mA	4.9	5.0	5.1	V
Vo	V _{o_ref}	Output voltage	V _S = 5.6 V to 31 V, I _o = 8 mA to 150 mA	4.85	5.0	5.15	V
Vo	V _{o_ref}	Output voltage	V _S = 5.6 V to 31 V, I _o = 0.1 mA to 8 mA	4.75	5.0	5.25	V
V _o	I _{short}	Short-circuit current	V _S = 13.5 V	0.65	1.10	1.45	Α
V _o	I _{lim}	Output current limitation ⁽¹⁾	V _S = 13.5 V	0.28	0.45	0.66	Α
V_S, V_O	Vline	Line regulation voltage	$V_S = 6 \text{ V to } 28 \text{ V, I}_0 = 30 \text{ mA}$	_	_	40	mV
			V _S = 8 V to 18 V, I _o = 8 mA to 150 mA	-	-	55	
V _o	V _o V _{load} Load regulation voltage		$V_S = 13.5 \text{ V},$ $T_j = 25 \text{ °C},$ $I_0 = 8 \text{ mA to } 150 \text{ mA}$	_	_	40	mV
V_S, V_O	V _{dp}	Drop voltage ⁽²⁾	I _o = 150 mA	-	-	500	mV
V_S, V_o	SVR	Ripple rejection	$f_r = 100 \text{ Hz}^{(3)}$	-	48	_	dB
Vo	I _{oth_H}	Normal consumption mode output current	V _S = 8 V to 18 V	8	_	_	mA
Vo	I _{oth_L}	Very low consumption mode output current	V _S = 8 V to 18 V	_	_	1.1	mA
Vo	I _{oth_Hyst}	Output current switching threshold hysteresis	V _S = 13.5 V, T _j = 25 °C	_	0.8	_	mA
V _S , V _o	I _{qn_1}	Current consumption	$V_S = 13.5 \text{ V},$ $I_0 = 0.1 \text{ mA to 1 mA, Tj} = 25 ^{\circ}\text{C}$	_	50	80	μA
· · · · · ·			$V_S = 13.5 \text{ V}, I_O = 0.1 \text{ mA to } 1 \text{ mA},$	1		95	
V _S , V _o	I _{qn_150}	Current consumption $I_{qn_{150}} = I_{Vs} - I_{o}$	V _S = 13.5 V, I _o = 150 mA	_	3.2	4.2	mA
_	T _w	Thermal protection temperature	-	150		190	°C
_	T _{w_hy}	Thermal protection temperature hysteresis	_	_	10	-	°C

Measured output current when the output voltage has dropped 100 mV from its nominal value obtained at 13.5 V and I_o = 75 mA.

V_S - V_o measured dropout when the output voltage has dropped 100 mV from its nominal value obtained at 13.5 V and I_o = 75 mA.

^{3.} Guaranteed by design.

2.4 Electrical characteristics curves

Vdp(V)

0.5
0.4
0.35
0.25
0.2
0.15
0.1
0.05
0 15 30 45 60 75 90 105 120 135 150 165 lo(mA)

8/20 DocID15541 Rev 10

Figure 8. Current consumption vs. input voltage (lo = 75 mA)Iqn(mA) 4.6 4.2 3.8 3.4 2.6 2.2 1.8 15 13 19 21 Vs(V) GAPGCFT00142

Application information 2.5

The voltage regulator uses a p-channel mos transistor as a regulating element. With this structure a very low dropout voltage at current up to 150 mA is obtained. The output voltage is regulated up to input supply voltage of 40 V. The high-precision of the output voltage (2%) is obtained with a pre-trimmed reference voltage. The voltage regulator automatically adapts its own quiescent current to the output current level. In light-load conditions the quiescent current goes to 55 µA only (low consumption mode). This procedure features a certain hysteresis on the output current (see Figure 6). Short-circuit protection to GND and a thermal shutdown are provided.

L5150BN **GND**

Figure 14. Application schematic

The input capacitor $C_1 \ge 100 \ \mu F$ is necessary as backup supply for negative pulses which may occur on the line. The second input capacitor $C_2 \ge 220$ nF is needed when the C_1 is too distant from the V_S pin and it compensates smooth line disturbances. The C₀ ceramic capacitor, connected to the output pin, is for bypassing to GND the high-frequency noise and it guarantees stability even during sudden line and load variations. Suggested value is $C_0 = 220 \text{ nF with ESR} \ge 100 \text{ m}\Omega.$

Stability region is reported in Figure 15.

10/20 DocID15541 Rev 10

Electrical specifications

Figure 15. Stability region

3 Package and PCB thermal data

3.1 SOT-223 thermal data

Figure 17. SOT-223 PC board

Figure 18. R_{thi-amb} vs. PCB copper area in open box free air condition

4

12/20 DocID15541 Rev 10

Figure 19. SOT-223 thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Figure 20. Thermal fitting model of Vreg in SOT-223

Table 6. SOT-223 thermal parameter

Area (cm ²)	Footprint	2
R1 (°K/W)	1.53	
R2 (°K/W)	3.21	
R3 (°K/W)	5.2	
R4 (°K/W)	24	
R5 (°K/W)	0.1	
R6 (°K/W)	100	45
C1 (W.s/°K)	0.00004	
C2 (W.s/°K)	0.0003	
C3 (W.s/°K)	0.03	
C4 (W.s/°K)	0.16	
C5 (W.s/°K)	1000	
C6 (W.s/°K)	0.5	2

L5150BN Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.Package and packing information

4.1 SOT-223 package information

Figure 21. SOT-223 package outline

Table 7. SOT-223 package mechanical data

	Dimensions					
Ref.		Millimeters	limeters inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	_	_	1.8	_	_	0.071
В	0.6	0.7	0.85	0.024	0.027	0.033
B1	2.9	3	3.15	0.114	0.118	0.124
С	0.24	0.26	0.35	0.009	0.01	0.014
D	6.3	6.5	6.7	0.248	0.256	0.264
е	_	2.3	_	_	0.09	_
e1	_	4.6	_	_	0.181	_

Package information L5150BN

			Dimer	nsions		
Ref.		Millimeters	imeters		inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
E	3.3	3.5	3.7	0.13	0.138	0.146
Н	6.7	7	7.3	0.264	0.276	0.287
V	10 (max)					

0.1

0.0008

0.004

Table 7. SOT-223 package mechanical data

4.2 SOT-223 packing information

0.02

Α1

L5150BN Revision history

5 Revision history

Table 8. Document revision history

Date	Revision	Changes
18-Jun-2007	1	Initial release.
14-May-2008	2	Corrected <i>Table 2: Pins description</i> : inverted 1 and 3 pins descriptions. Updated <i>Table 5: General</i> : - V _{0_ref} parameter: updated test conditions and values. - V _{line} and V _{short} : updated test condition - Ishort: changed values from 0.65/0.95/1.25 to 0.65/1.10/1.45 (Min/Typ/Max) - I _{lim} : changed values from 0.7/1/1.30 to 0.28/0.45/0.66, added note - V _{dp} : added note - Inserted Io _{th_L} , Io _{th_H} , Io _{th_Hyst} rows - I _{qn_1} : changed values from 38/48 to 48/70 (Typ/Max).
09-Sep-2008	3	Updated <i>Table 5: General</i> : - V _{load} parameter: changed test conditions.

Revision history L5150BN

Table 8. Document revision history (continued)

Date	Revision	Changes
		Updated corporate template (from V2 to V3)
		Changed document title
		Section : Features on cover page
		– I _g on table: changed value from 48 μA to 50 μA
		Added row in bullet list
		Table 2: Pins description
		V _o : changed ceramic capacitor expression for Function
		Table 3: Absolute maximum ratings
		- Updated all symbols
		Table 4: Thermal data
		– R _{thj-amb} : changed value
		 Updated TableFootnote
		Table 5: General
		Vload: changed max value for Vs = 8 V to 18 V, added new row
		 Iqn_1: changed Test condition (added T_j = 25 °C), changed typ/max value for T_j = 25 °C, added new row
		– I _{qn_150} : changed typ value
		Added Figure 2: Output voltage vs. T _j
16-Jun-2009	4	Added Figure 3: Output voltage vs. V _S
10 0411 2000	4	Added Figure 4: Drop voltage vs. output current
		Added Figure 5: Current consumption vs. output current
		Added Figure 6: Current consumption vs. output current (at light load condition)
		Added Figure 7: Current consumption vs. input voltage (Io = 0.1 mA)
		Added Figure 8: Current consumption vs. input voltage (Io = 75 mA)
		Added Figure 9: Current limitation vs. T _j
		Added Figure 10: Current limitation vs. input voltage
		Added Figure 11: Short-circuit current vs. T _j
		Added Figure 12: Short-circuit current vs. input voltage
		Added Figure 13: PSRR
		Section 2.5: Application information
		 Changed section title from "Voltage regulator" to "Application information"
		 Updated text
		- Added Figure 14: Application schematic
		Added Figure 16: Maximum load variation response
		Added Section 3: Package and PCB thermal data
		Changed Section 4.1: ECOPACK®
04-Dec-2009	5	Updated features list. Updated Section 2.5: Application information.
06-Apr-2010	6	Updated Table 5: General:
		- I _{qn 1} and I _{qn 150} : updated test parameter.
30-Jan-2012	7	Modified Figure 15: Stability region on page 11.
07-Feb-2012	8	Modified Figure 15: Stability region on page 11.
07-1-60-2012	°	Middined Figure 13. Stability region on page 11.

L5150BN Revision history

Table 8. Document revision history (continued)

Date	Revision	Changes
23-Sep-2013	9	Updated disclaimer.
03-Jun-2015	10	Changed in <i>Table 5</i> the typical value of SVR from 60 dB to 48 dB.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

5//