CSC 348 – Homework #7

Astrid Augusta Yu

May 30, 2020

1

6

7

Contents

1	Questions
2	Additional Lemmas with Proofs
3	Scratch Work
1	Questions
	1.
	Theorem 1. $\mathbb{Z}_{\geq 10}$ is countably infinite.
	<i>Proof.</i> Let $f: \mathbb{Z}_{\geq 10} \to \mathbb{N}$ be defined as
	f(x) = x - 10
	•
	Claim 1.1. f is 1-1.
	Suppose $a, b \in \mathbb{Z}_{\geq 10}$ and $f(a) = f(b)$. Thus,
	a - 10 = b - 10
	a = b
	Thus, f is 1-1 by definition.
	Claim 1.2. f is onto.
	Consider $y \in \mathbb{N}$. Note that $y = (y + 10) - 10 = f(y + 10)$.
	Additionally, note that the lowest possible value for $y+10$ is $0+10=10\in\mathbb{Z}_{\geq 10}$. All values greater than that are elements of $\mathbb{Z}_{\geq 10}$ by definition of that set. Thus, $y+10\in\mathbb{Z}_{\geq 10}$
	Therefore, f is onto by definition.

Since f is both 1-1 and onto, it is bijective. Therefore, $|\mathbb{Z}_{\geq 10}| = |\mathbb{N}|$, so $\mathbb{Z}_{\geq 10}$ is countably infinite.

2.

Theorem 2. \mathbb{Z}_{odd}^- is countably infinite.

Proof. Let $f: \mathbb{Z}_{odd}^- \to \mathbb{Z}_{odd}^+$ be defined as

$$f(x) = -x$$

Claim 2.1. *f* is 1-1.

Suppose $a, b \in \mathbb{Z}_{odd}^-$ and f(a) = f(b). Thus,

$$-a = -b$$

$$a = b$$

Thus, f is 1-1 by definition.

Claim 2.2. f is onto.

Consider $i \in \mathbb{N}$ such that $2i+1 \in \mathbb{Z}_{odd}^+$. Note that 2i+1 = -(-(2i+1)) = f(-(2i+1)).

Additionally, note that

$$-(2i+1) = -2i - 1 = 2(-i) + 2 - 2 - 1 = 2(-i-1) + 1$$

Suppose j = -i - 1. Thus,

$$-(2i+1) = 2j+1$$

Therefore, -(2i+1) is odd by definition.

Additionally, since 2i+1 is always negative, -(2i+1) is always positive. Thus, since it is positive and odd, $-(2i+1) \in \mathbb{Z}_{odd}^+$.

Therefore, f is onto by definition.

Since f is both 1-1 and onto, it is bijective. Therefore, $|\mathbb{Z}_{odd}^-| = |\mathbb{Z}_{odd}^+|$, so $\mathbb{Z}_{\geq 10}$ is countably infinite.

3.

Theorem 3. \mathbb{Z}_{odd}^- is countably infinite.

Proof. Let $f: \mathbb{Z} \to 10\mathbb{Z}$ be defined as

$$f(x) = 10x$$

Claim 3.1. *f* is 1-1.

Suppose $a, b \in \mathbb{Z}$ and f(a) = f(b). Thus,

$$10a = 10b$$

$$a = b$$

Thus, f is 1-1 by definition.

Claim 3.2. f is onto.

Consider some number $n \in 10\mathbb{Z}$. By definition of $10\mathbb{Z}$, there exists a $m \in \mathbb{Z}$ such that n = 10m.

Note that n = 10m = f(m). Since, by definition, $m \in \mathbb{Z}$, f is onto.

Since f is both onto and 1-1, it is bijective. Therefore, $|\mathbb{Z}| = |10\mathbb{Z}|$ and $10\mathbb{Z}$ is countably infinite.

4.

Theorem 4. $S = \{x \in \mathbb{Z} \mid |x| < 1,000,000\}$ is finite.

Proof. Suppose $T = \mathbb{N}_{<1,999,999}$. Note that T is finite. Define $f: S \to T$ as

$$f(x) = x + 999,999$$

Claim 4.1. f is 1-1.

Suppose $a, b \in \mathbb{Z}$ and f(a) = f(b). Thus,

$$a + 999,999 = b + 999,999$$

$$a = b$$

Thus, f is 1-1 by definition.

Claim 4.2. f is onto.

Let $n \in \mathbb{N}_{\leq 1,999,999}$. Consider the value x = n - 999,999.

- When n = 0, x = -999,999. Note that |x| < 1,000,000.
- When n = 1,999,999, x = 999,999. Note that |x| < 1,000,000.

Thus, for all values of $n, x \in \mathbb{N}_{<1,999,999}$.

Note that n = (n - 999, 999) + 999, 999 = x + 999, 999 = f(x). Thus, by definition, f is onto.

Since f is 1-1 and onto, it is bijective, so |S| = |T|. Since T is finite, then S is finite as well.

5.

Theorem 5. $1, 2 \times \mathbb{N}$ is countably infinite.

Proof. By definition of cartesian product,

$$1, 2 \times \mathbb{N} = \{(1, x) \mid x \in \mathbb{N}\} \cup \{(2, x) \mid x \in \mathbb{N}\}\$$

By Lemma 2, $|\{(1,x) \mid x \in \mathbb{N}\}| = |\mathbb{N}|$ and $|\{(2,x) \mid x \in \mathbb{N}\}| = |\mathbb{N}|$, so both are countably infinite sets. Thus, by definition of union, their union $1, 2 \times \mathbb{N}$ is also countably infinite as well.

6. (a)

Theorem 6. $7\mathbb{N} \cap 11\mathbb{N}$ is countably infinite.

Proof. Let $S = 7\mathbb{N} \cap 11\mathbb{N}$. By definition of set S,

$$S = 7\mathbb{N} \cap 11\mathbb{N} = \{7x \mid x \in \mathbb{N}\} \cap \{11y \mid y \in \mathbb{N}\}\$$

Thus, $n \in S$ if and only if there exists some $x, y \in \mathbb{N}$ such that n = 7x = 11y.

Consider n = 77j for some $j \in \mathbb{N}$. Note that n = 7(11j) = 11(7j). Setting x = 11j and y = 7j, n = 7x = 11y. Therefore, $n \in S$.

Note that there are $|\mathbb{N}|$ choices for j by its definition, so there are $|\mathbb{N}|$ elements of S. Therefore, $|S| = |\mathbb{N}|$ and S is countably infinite.

(b)

Theorem 7. $\mathbb{N}_{even} \cap \mathbb{N}_{odd}$ is finite.

Proof. Suppose by way of contradiction that there exists some $x \in \mathbb{N}$ such that $x \in \mathbb{N}_{even}$ and $x \in \mathbb{N}_{odd}$. By definition of even and odd, x = 2i = 2j + 1 for some $i, j \in \mathbb{N}$. Rearranging the equation,

$$2i - 2j = 1$$

$$2(i-j) = 1$$

Let k = i - j. Thus, 2k = 1 and 1 is an even number. $\rightarrow \leftarrow$

This is a contradiction because 1 is not an even number. Therefore, x does not exist, so $\mathbb{N}_{even} \cap \mathbb{N}_{odd} = \emptyset$. Thus, $\mathbb{N}_{odd} \cap \mathbb{N}_{even}$ is a finite set.

7. (a)

Theorem 8. $\mathbb{N} \setminus \mathbb{Z}^+$ is finite.

Proof. Note that $0 \in \mathbb{N}$ but $0 \notin \mathbb{Z}^+$. Thus, $0 \in \mathbb{N} \setminus \mathbb{Z}^+$.

By way of contradiction, suppose there exists some $x \in \mathbb{N}$ such that $x \neq 0$ and $x \notin \mathbb{Z}^+$. Since 0 is the smallest item in \mathbb{N} , $x \neq 0$ is equivalent to x > 0, so x must be positive. $\rightarrow \leftarrow$

There is a contradiction because we assumed that $x \notin \mathbb{Z}^+$, or in other words, that x is not positive. Therefore, $\mathbb{N} \setminus \mathbb{Z}^+ = \{0\}$ and $\mathbb{N} \setminus \mathbb{Z}^+$ is finite.

(b)

Theorem 9. Let \mathbb{P} be the set of primes. $\mathbb{P} \setminus \mathbb{N}_{odd}$ is finite. (Note that both \mathbb{N}_{odd} and \mathbb{P} are countably infinite.)

Proof. By definition of set subtraction,

$$\mathbb{P} \setminus \mathbb{N}_{odd} = \mathbb{P} \cap \mathbb{N}_{even}$$

Note that 2 is even, and prime by definition. Thus, $2 \in (\mathbb{P} \cap \mathbb{N}_{even})$

We will prove that there are no primes greater than 2. By way of contradiction, suppose there is some $x \in P$ such that x > 2, x is even, and x is prime. By definition of even, x = 2j for some $j \in \mathbb{N}$. $\rightarrow \leftarrow$

This violates the assumption that x is prime. Thus, x cannot exist. Therefore, $\mathbb{N}_{even} \cap \mathbb{P} = \mathbb{P} \setminus \mathbb{N}_{odd} = \{2\}$ and it is a finite set. $d(\hat{}_-\hat{})>$

8.

Theorem 10. If |A| = |B| and |B| = |C| then |A| = |C|.

Proof. Since |A| = |B|, there exists a bijection $f: A \to B$. Since |B| = |C|, there exists a bijection $g: B \to C$. Thus, there exists a bijection $(g \circ f): A \to C$. Therefore, |A| = |C|.

9.

Theorem 11. If A and B are sets, then $|A \cup B| = |A| + |B \setminus A|$

Proof. Consider $S = (A \cup B) \setminus A$. By Lemma 1, $T = B \setminus A$. Note that every element in A is contained in $A \cup B$ and there are no elements of A that are not contained in $A \cup B$ by definition of union. Therefore, $(A \cup B) \setminus A = B \setminus A$ has |A| less elements in it than $A \cup B$.

Written as an equation:

$$|A \cup B| - |A| = |B \setminus A|$$

Rearranging the equation produces our result.

$$|A \cup B| = |A| + |B \setminus A|$$

d(^_^)>

10.

Theorem 12. If A and B are sets, then $|A \times B| = |A| \cdot |B|$

Proof. By definition of cartesian product, $A \times B$ is expanded out to the following:

$$\{(a,b) \mid a \in A, b \in B\}$$

We can rewrite this as the following union:

$$S = \bigcup_{a \in A} \{ (a, b) \mid b \in B \}$$

By Lemma 2, every such $\{(a,b) \mid b \in B\}$ has cardinality |B|. Additionally, there are |A| possible $a \in A$ being iterated through. Therefore, $|S| = |A \times B| = |A| \cdot |B|$.

2 Additional Lemmas with Proofs

Lemma 1. Let A and B be sets. $(A \cup B) \setminus A = B \setminus A$.

Proof. By definition of set subtraction,

$$(A \cup B) \setminus A = (A \cup B) \cap \overline{A} \tag{1}$$

Using the distributive property, this expression is equivalent to

$$(A \cap \overline{A}) \cup (B \cap \overline{A}) \tag{2}$$

By definition of intersection, this is reduced to

$$\emptyset \cup (B \cap \overline{A}) \tag{3}$$

By definition of union, this is reduced to

$$B \cap \overline{A}$$
 (4)

Therefore, $(A \cup B) \setminus A = B \setminus A$.

d(^_^)>

Lemma 2. Let A and B be sets, and $a \in A$. Suppose the set $S_a = \{(a,b) \mid b \in B\}$. Then, $|S_a| = |B|$ is countably infinite.

Proof. Let $f_a: B \to S_a$ be defined as follows:

$$f_a(b) = (a, b)$$

Claim 2.1. f_n is 1-1.

Suppose $x, y \in B$ such that $f_a(x) = f_a(y)$. Thus, by definition of f,

$$(a, x) = (a, y)$$

Therefore, x = y, and f_n is 1-1.

Claim 2.2. f_a is onto.

Let $(a,b) \in S$. Note that $(a,b) = f_a(b)$. Thus, there exists some $b \in B$ such that $f_a(b) = (a,b)$, so f_a is onto.

Because f_b is both 1-1 and onto, f_b is bijective. Therefore, for all $b \in B$, $|S_a| = |B|$. $d(^-)>$

3 Scratch Work