東北ずんちゃんと学ぶ

IT入門講座

【中級】

今回のテーマ 演算装置の内部構造

講座のゴール

- ロトランジスタによるスイッチングについて学ぶ
- □論理回路について学ぶ
- □加算器について学ぶ

コンピュータを構成する半導体とは?

電気を流した時にちょっとだけ電気が流れる物体のこと

コンピュータを構成する半導体とは?

半導体には2種類ある

- + の電荷をもつ P型半導体
- 一の電荷をもつ N型半導体

N型半導体 (電子が余っている)

P型半導体 (電子が足りなくて + の穴が開いている)

スイッチの役割をするトランジスタ

N型半導体2つでP型半導体をサンド(NPNトランジスタ)

スイッチの役割をするトランジスタ エミッタ - コレクタ間に電圧をかける

電気が流れない

スイッチの役割をするトランジスタ エミッタ - コレクタ間 + エミッタ - ベース間に電圧をかける

電気が流れる

論理回路

トランジスタのスイッチングの性質を使って 各種論理演算の結果を出力する回路を論理回路と呼ぶ

論理回路の NAND と NOR

ANDの結果を反転させた NAND

ORの結果を反転させた NOR

この二つは完全性を持ち、単体で全ての論理回路を実現可能

論理回路の NAND と NOR

例)NANDで他の論理回路を再現

半加算器

1bit同士の足し算を実施する論理回路 = 加算器 半加算器は、入力に桁上がりを取らない 半加算器

A	В	S	C
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

全加算器

1bit同士の足し算を実施する論理回路 = 加算器 全加算器は、入力に桁上がりを取る

全加算器

A	В	X	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

加算器を使って複数BIT同士で計算

複数Bit同士の計算も、加算器をつなげることで実現可能

例)4bit 同士の計

今回のまとめ

- ✓トランジスタによるスイッチングを学習
- ✓論理回路を学習
- ✓半加算器、全加算器を学習

SPECIAL THANKS

利用させていただいた素材

- BGM素材(DOVA様より)
 - ・ いつもの昼下がり(松浦洋介様)
 - ブギービール(マニーラ様)
 - Three_Keys_(Freestyle_Rap_Beat_No.02)(Khami 様)
 - neon_city(syappon様)
- 画像素材
 - ・ いらすとや様

動画制作ツール

- VOICE ROIDO+ 東北ずん子 EX
- Reccote Studio
- Microsoft Power Point

ご視聴ありがとうございました!

Thank you for Watching!