

UFO Sightings Analysis

ANTONIO PAUL MAMMONE

Data Frame & Cleaning

- I Decided on the UFO sitings DF from: https://www.kaggle.com/datasets/NUFORC/ufo-sightings
- Has over 80k rows
- .dt.year Extract year as integer
- .dt.month Extract month (1-12)
- .dt.day Extract day of month
- .dt.hour Extract hour (0-23)
- .dt.day_name() Get day name as string ('Monday', 'Tuesday', etc.)
- .dt.dayofweek Get day as number (0=Monday, 6=Sunday)
- pd.to_datetime() Convert string dates to datetime objects
- errors='coerce' Gracefully handle invalid dates (converts to NaT)
- pd.to numeric() Convert duration strings to numbers
- errors='coerce' Handle non-numeric values gracefully
- .dropna(subset=['datetime', 'city', 'state']) Remove rows with missing critical data
- Boolean filtering: (df_clean['year'] >= 1950) & (df_clean['year'] <= 2023)

datetime	city	state	country	shape	duration (duration (comment	date poste	latitude	longitude
***************************************	san marco	tx	us	cylinder	2700	45 minute	This event	4/27/2004	29.88306	-97.9411
******	lackland a	tx		light	7200	1-2 hrs	1949 Lackl	12/16/200	29.38421	-98.5811
*******	chester (u	k/england	gb	circle	20	20 second	Green/Ora	1/21/2008	53.2	-2.91667
******	edna	tx	us	circle	20	1/2 hour	My older l	1/17/2004	28.97833	-96.6458
******	kaneohe	hi	us	light	900	15 minute	AS a Marir	1/22/2004	21.41806	-157.804
******	bristol	tn	us	sphere	300	5 minutes	My father	4/27/2007	36.595	-82.1889
*********	penarth (u	ık/wales)	gb	circle	180	about 3 m	penarth u	2/14/2006	51.43472	-3.18
******	norwalk	ct	us	disk	1200	20 minute	A bright o	########	41.1175	-73.4083
******	pell city	al	us	disk	180	3 minutes	Strobe Lig	3/19/2009	33.58611	-86.2861
*******	live oak	fl	us	disk	120	several m	Saucer zap	**********	30.29472	-82.9842
******	hawthorn	ca	us	circle	300	5 min.	ROUND &	10/31/200	33.91639	-118.352
******	brevard	nc	us	fireball	180	3 minutes	silent red	*******	35.23333	-82.7344
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	bellmore	ny	us	disk	1800	30 min.	silver disc	***************************************	40.66861	-73.5275
*********	manchest	ky	us	unknown	180	3 minutes	Slow mov	2/14/2008	37.15361	-83.7619
**********	lexington	nc	us	oval	30	30 second	green ova	2/14/2010	35.82389	-80.2536
**********	harlan cou	ky	us	circle	1200	20minute:	On octobe	9/15/2005	36.84306	-83.3219
**********	west bloo	mi	us	disk	120	2 minutes	The UFO v	8/14/2007	42.53778	-83.2331
	niantic	ct	us	disk	1800	20-30 min	Oh, w	9/24/2003	41.32528	-72.1936
	bermuda i	nas		light	20	20 sec.	saw fast n	***************************************	32.36417	-64.6786

Represent dates hidden until clicked on [©]

```
: # Data Cleaning and Preparation
 # Convert datetime columns
 df['datetime'] = pd.to datetime(df['datetime'], errors='coerce')
 df['date posted'] = pd.to_datetime(df['date posted'], errors='coerce')
 # Extract time features for analysis
 df['year'] = df['datetime'].dt.year
 df['month'] = df['datetime'].dt.month
 df['day'] = df['datetime'].dt.day
 df['hour'] = df['datetime'].dt.hour
 df['dayofweek'] = df['datetime'].dt.day_name()
 df['dayofweek num'] = df['datetime'].dt.dayofweek
 df['is weekend'] = df['dayofweek'].isin(['Friday', 'Saturday', 'Sunday'])
 # Clean duration column - convert to numeric
 df['duration seconds'] = pd.to numeric(df['duration (seconds)'], errors='coerce')
 # Remove rows with missing critical data
 df_clean = df.dropna(subset=['datetime', 'city', 'state'])
 # Filter for reasonable years (1950-2023)
 df_clean = df_clean[(df_clean['year'] >= 1950) & (df_clean['year'] <= 2023)]</pre>
 print(f"Original dataset: {len(df)} rows")
 print(f"Cleaned dataset: {len(df clean)} rows")
 print(f"Removed: {len(df) - len(df_clean)} rows ({((len(df) - len(df_clean))/len(df)*100):.2f}%)")
Original dataset: 88875 rows
```

Cleaned dataset: 80152 rows

Removed: 8723 rows (9.81%)

UFO Sightings by Day of Week

- First, I created a day_name column using df['datetime'].dt.day_name()
- Then I used value_counts() with reindex to ensure days appear in order
- I applied different colors using a list comprehension to distinguish weekend

Mean drinks of alcohol consumed by day of the week: https://www.researchgate.net/figure/Mean-drinks-of-alcohol-consumed-by-day-of-the-week_fig1_304069436

Weekend Analysis:

Total weekend sightings: 37,284 Total weekday sightings: 42,868 Average per weekend day: 12,428 Average per weekday: 10,717 Weekend boost: 16.0%

UFO Sightings by Day of Week: The Weekend Effect


```
# Plot 1 - The Weekend Effect (Bar Plot)
plt.figure(figsize=(12, 6))
day_order = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday']
day_counts = df_clean['dayofweek'].value_counts().reindex(day_order)
# Create bar plot with different colors for weekends
colors = ['skyblue', 'skyblue', 'skyblue', 'skyblue', 'lightcoral', 'lightcoral', 'lightcoral']
bars = plt.bar(day_order, day_counts.values, color=colors)
# Add value labels on bars
for bar in bars:
    height = bar.get height()
    plt.text(bar.get_x() + bar.get_width()/2., height,
            f'{int(height):,}',
            ha='center', va='bottom')
plt.title('UFO Sightings by Day of Week: The Weekend Effect', fontsize=16, fontweight='bold')
plt.xlabel('Day of Week', fontsize=12)
plt.ylabel('Number of Sightings', fontsize=12)
plt.xticks(rotation=45)
# Add Legend
from matplotlib.patches import Patch
legend_elements = [Patch(facecolor='skyblue', label='Weekday'),
                 Patch(facecolor='lightcoral', label='Weekend')]
plt.legend(handles=legend_elements, loc='upper right')
plt.tight_layout()
plt.show()
# Calculate weekend vs weekday statistics
weekend_sightings = df_clean[df_clean['is_weekend']].shape[0]
weekday_sightings = df_clean[~df_clean['is_weekend']].shape[0]
weekend_avg = weekend_sightings / 3 # 3 weekend days
weekday_avg = weekday_sightings / 4 # 4 weekdays
print(f"\nWeekend Analysis:")
print(f"Total weekend sightings: {weekend_sightings:,}")
print(f"Total weekday sightings: {weekday_sightings:,}")
print(f"Average per weekend day: {weekend avg:,.0f}")
print(f"Average per weekday: {weekday_avg:,.0f}")
print(f"Weekend boost: {((weekend_avg - weekday_avg) / weekday_avg * 100):.1f}%")
```

UFO Sightings Heatmap

- I used pivot_table to reshape the data: 7 df.pivot_table(values='city', index='hour', columns='day_name', aggfunc='count') 8
- This counts sightings for each hour-day combination
- I used seaborn's heatmap with the YlOrRd colormap for clear intensity visualization
- The annot=True parameter adds count values to each cell

UFO Sightings Over Time

- Grouped the data by year using df.groupby('year').size() 7
- Used matplotlib's plot function with fill_between for visual impact
- Added vertical lines to mark significant historical events

```
Peak UFO Sighting Years:
2012.0: 7,470 sightings
2013.0: 7,228 sightings
2011.0: 5,199 sightings
2008.0: 4,735 sightings
2009.0: 4,378 sightings
```



```
# Plot 3 - Sightings Over Time (Line Plot with Date Splitting)
# Group by year and count sightings
yearly sightings = df clean.groupby('year').size()
plt.figure(figsize=(14, 7))
plt.plot(yearly_sightings.index, yearly_sightings.values, linewidth=2, color='purple')
plt.fill_between(yearly_sightings.index, yearly_sightings.values, alpha=0.3, color='purple')
# Mark significant years
plt.axvline(x=1969, color='red', linestyle='--', alpha=0.5, label='Moon Landing')
plt.axvline(x=1989, color='orange', linestyle='--', alpha=0.5, label='Digital Camera Commercial Release')
plt.axvline(x=2000, color='green', linestyle='--', alpha=0.5, label='The First Mass-Market Camera Phone')
plt.title('UFO Sightings Over Time (1950-2023)', fontsize=16, fontweight='bold')
plt.xlabel('Year', fontsize=12)
plt.ylabel('Number of Sightings', fontsize=12)
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# Find peak years
peak_years = yearly_sightings.nlargest(5)
print("Peak UFO Sighting Years:")
for year, count in peak years.items():
    print(f"{year}: {count:,} sightings")
```

Final Comments & Other Findings

=== UFO SIGHTINGS ANALYSIS SUMMARY ===

1. THE WEEKEND EFFECT:

- 46.5% of all UFO sightings occur on weekends (Fri-Sun)
- Weekend sightings are higher than weekdays
- Late night weekend sightings are 0.93x more common

2. GEOGRAPHIC HOTSPOTS:

- Top state: CA with 9,461 sightings

- US accounts for 86.6% of all sightings

3. TEMPORAL PATTERNS:

- Peak year: 2012.0 with 7,470 sightings

- Peak month: Jul with 9,492 sightings

- Peak hour: 21:00

4. UFO CHARACTERISTICS:

- Most common shape: light

5. INTERESTING FINDINGS:

- Summer months show significantly more sightings
- Sightings dramatically increased after 1990s
- Coastal states dominate the top sighting locations
- The 'weekend effect' is real supporting our hypothe:

Top 10 Most Reported UFO Shapes

