

Signals and Systems (Lab)

Lab 5: System, Convolution and Filter

Dr. Wu Guang

wug@sustc.edu.cn

Electrical & Electronic Engineering Southern University of Science and Technology

Low-Complexity method

VS

> Analysis in time-domain

$$x(t) \implies h(t) \implies y(t)$$

$$x(t) * h(t) = y(t)$$
Convolution

> Analysis in **frequency-domain**

$$X(j\omega) \implies H(j\omega) \implies Y(j\omega)$$

$$X(j\omega) \cdot H(j\omega) = Y(j\omega)$$

Multiplication

Summary

VS

> Analysis in time-domain

$$x(t) \implies h(t) \implies y(t)$$

- DT LTI system: Difference Equation
- CT LTI system: Differential Equation
- FIR: Finite Impulse Response
- IIR: Infinite Impulse Response
- Linear convolution
- Signal Auto-Correlation
- Complex Exponentials
- Eigenvalue, eigenvector and eigenfunction

> Analysis in **frequency-domain**

$$X(j\omega) \implies H(j\omega) \implies Y(j\omega)$$

- FT: Fourier Transform
- FS: Fourier series
- DTFT: Discrete time Fourier Transform
- DFT: Discrete Fourier Transform
- FFT: Fast Fourier Transform
- Periodic convolution
- Frequency Response
- The system transfer function

Overview

1. Design basic filters via Matlab

2. Use filtering to

- -> generate speech shaped noise
- -> and extract signal envelope

3. Adjust the signal intensity

- -> adjusting signal-to-noise ratio (SNR) level
- -> normalizing signal energy

Filter type

Part 1. Butterworth filter design

- [b,a]=butter(n,Wn)
 - Design an order n low-pass digital Butterworth filter with <u>normalized</u> <u>cutoff frequency</u> Wn. Wn must be 0.0 < Wn < 1.0, with 1.0 corresponding to half the sample rate.
 - Return the filter coefficients in length n+1 vectors b and a.
- [b,a]=butter(n,Wn,'ftype')
 - Design a highpass, lowpass, or bandstop filter, where the string 'ftype' is 'high', 'low', or 'stop',
 - e.g.,

```
fs=8000; [b, a]=butter(2,400/(fs/2)); % low-pass [b, a]=butter(2,400/(fs/2),'high'); % high-pass [b, a]=butter(2,[400 1000]/(fs/2)); % band-pass
```

- fs=8000; % sampling rate for discrete signal
- [b, a]=butter(2,400/(fs/2));
- [h,f]=freqz(b,a,512,fs); % Digital filter frequency response
- plot(f,20*log10(abs(h))); % in dB scale
- axis([0 5000 -50 5]);
- xlabel('Frequency (Hz) ');
- ylabel('Magnitude');

How about 'high-pass' and 'band-pass'?
How about high-order n?

Quiz

Part 2. Use filter to ...

- Generate speech-shaped noise
 - White noise:

 $S_X(\omega)$

– Speech-shaped noise:

White noise $H(j\omega)$ Speech-shaped noise e.g. speech spectrum

N=1000; noise = 1-2*rand(1,N);

Step 1

(a) Generate long-term spectrum of speech signal

- concatenate 10 speech waveforms into one signal
 - sig =[x,x,x,x,x,x,x,x,x,x]; % x is a row vector, what if x is a column vector?
 - Or, repmat(x,1,10)
- estimate the power spectral density of the speech signal
 - [Pxx,w] = psd(sig,512,fs);
 - Or [Pxx,w] = pwelch(sig, [], [], 512, fs)
- plot(w,Pxx)

Step 2

(b) Generate filter coefficients

- b = fir2(3000,w/(fs/2),sqrt(Pxx/max(Pxx))); % fir2: from frequency response to coefficients, a=1
- [h,wh] = freqz(b,1,128); %check frequency response here

(c) Perform filtering for white noise signal

- y= filter(b,1,noise);

$$H(j\omega) = \frac{\sum_{k=0}^{N} b_k (j\omega)^k}{\sum_{k=0}^{M} a_k (j\omega)^k}$$

(d) Then you get the speech-shaped noise

Then, we use filter to ...

Extract speech envelope waveform

Part 3. Adjust Signal Intensity

Signal-to-noise ratio (SNR)

- $-SNR = 10log_{10}(E_{signal}/E_{noise})$
- E is energy, and SNR in dB scale
- In Matlab: SNR=20*log10(norm(sig)/norm(noise)) %
 sig and noise must have the same length

n = norm(X) returns the 2norm of input X and is
equivalent to norm(X,2). If X
is a vector, norm(X) is the
Euclidean distance.

Energy normalization

- y'=y*norm(x)/norm(y); % then y has the same energy as x

How to adjust SNR when adding noise to a signal?

Adjust the energy of noise first

$$-E_{signal}/E_{noise} = 10^{\frac{SNR}{10}} \Rightarrow E_{noise} = f(SNR, E_{signal})$$

- norm(sig)/norm(noise) = ?
- After adjusting the noise energy, test if the SNR is the desired value.

More on wav file ...

- Read wave file ("*.wav")
 - [y, fs, nbits]=wavread(filename) % before 2014
 - y: signal, fs: sampling rate in Hertz, nbits: the number of bits per sample used to encode the data (e.g., 8, 16, 32)
 - Or, [y, fs] = audioread(filename)
- Play wave file
 - wavplay(y, fs), or sound(y, fs)
 - Or,
 - player = audioplayer(y, fs)
 - play(player)

Save wave file

- wavwrite(y,fs,nbits,filename)
 - writes data y to a Windows WAVE file specified by the file name filename, with a sample rate of fs Hz and with nbits number of bits. nbits must be 8, 16, 24, or 32.
- Or, audiowrite(filename, y,fs)
- Record sound using PC-based audio input device
 - y = wavrecord(n,Fs)
 - Or, 'audiorecorder'

An example

```
% Record your voice for 5 seconds.
recObj = audiorecorder(11025,8,1);
disp('Start speaking.')
recordblocking(recObj,5);
disp('End of Recording.');
% Play back the recording.
play(recObj);
% Store data in double-precision array
myRecording = getaudiodata(recObj);
plot(myRecording); % Plot the waveform.
```


See Matlab documentation for more details

Assignment

- 1. Generate a speech-shaped noise (SSN), and plot the spectra of the speech signal and SSN (e.g., use Matlab function 'psd' or 'pwelch', or other power spectral density estimation functions).
- 2. Read a speech signal x(t), adjust the SNR (x(t) to the above SSN) to -5 dB, let y = x + SSN, and normalize the energy of y in relative to x(t), i.e., modify the energy of y so that it equals to the energy of x.

Assignment (cont.)

3. Extract speech envelope

- 1) with 2^{nd} -order low-pass filter and cutoff frequency f_{cut} = 100, 200, and 300 Hz. Plot these three envelope waveforms in one plot, and describe the difference among them.
- 2) with 2nd and 6th-order low-pass filter and cutoff frequency 200 Hz. Plot these two envelope waveforms in one plot, and describe the difference between them.

Assignment (cont.)

- Two *.wav files for lab 5 and the coming lab project 1
 - 'C_01_01.wav' & 'C_01_02.wav'
- For lab 5, use the files above or record speech signal by yourself via Matlab

Question ?

