Inferring urban polycentricity from the variability in human mobility patterns

Carmen Cabrera-Arnau, Chen Zhong, Michael Batty, Ricardo Silva, Soong Moon Kang

Introduction – background and motivation

- The simplest form of urban structure is the monocentric city, which prevailed until the industrial revolutions but since then, cities have gradually decentralised
- Polycentricity has become the focus of much spatial policy
- Despite the raise in the popularity of polycentricity it remains a fuzzy concept
- So, how to measure polycentricity?
- There is a long tradition of theoretical research and empirical evidence surrounding the debate on monocentricity versus polycentricity

Monocentric

Polycentric

Introduction – aim

OVERALL AIM

To infer urban structure by examining the extent to which a city departs from the monocentric behaviour, by considering the variability inherent in human mobility patterns

CASE STUDIES

London United Kingdom

Seoul South Korea

 Process the data to obtain the length of the journeys terminating at each station on a typical weekday

London

Seoul

- N stations, each station symbolised by S_i
- The length of the journeys terminating at S_i is denoted by $L_{i,j}$ which is a random variable
- Conceptualise the transport system as a network
- Assume the length of a journey between stations S_i and S_j is equal to the network distance d_{ij}

London

Seoul

- N stations, each station symbolised by S_i
- The length of the journeys terminating at S_i is denoted by L_i which is a random variable
- Conceptualise the transport system as a network
- Assume the length of a journey between stations S_i and S_j is equal to the network distance d_{ij}

Number of journeys

102514 145

- N stations, each station symbolised by S_i
- The length of the journeys terminating at S_i is denoted by L_i which is a random variable
- Conceptualise the transport system as a network
- Assume the length of a journey between stations S_i and S_j is equal to the network distance d_{ij}

- N stations, each station symbolised by S_i
- The length of the journeys terminating at S_i is denoted by L_i which is a random variable
- Conceptualise the transport system as a network
- Assume the length of a journey between stations S_i and S_j is equal to the network distance d_{ij}

(Empirical) Probability density function for the length of the journeys terminating at station *S_i*

- Define the "most central" node in the network, call it **nucleus** and denote it by S_1
- We choose Piccadilly Circus in London & City Hall in Seoul (somewhat arbitrary choice)
- But then, we perform a sensitivity analysis

Average length of journeys terminating at each station

Number of journeys

. .

Methods – the *monocentric hypothesis*

MONOCENTRIC HYPOTHESIS

If a city was perfectly monocentric, the expected length of the journeys terminating at a station (except for the nucleus itself) would be equal to the network distance between the nucleus and the destination station

IN REALITY

 $E[L_i]$ (estimated as $\hat{\mu}_i$, i.e. the arithmetic mean of the observations for L_i) do not fall on the $E[L_i] = d_{1i}$ line Can we further explore these deviations?

Methods – probabilistic approach, mixture models

In order to describe the deviations from the hypothesised monocentric behaviour in more detail, we introduce Poisson mixture models

$$f_i(L_i = h | \vec{w}_i, \vec{\mu}_i) = \sum_{j=1}^K w_i^j p_i^j (L_i = h | \mu_i^j)$$

We set p_i^j to be a Poisson distribution with parameter μ_i^j ,

so that
$$p_i^j(L_i = h | \mu_i^j) = \frac{1}{h} (\mu_i^j)^h \exp(-\mu_i^j)$$

for
$$i = 1, ..., N$$
 and $j = 1, ..., K$

Results – two-component Poisson mixture model

- Let *K*=2, then, the mixture model turns into

$$f_i(L_i = h|\vec{w}_i, \vec{\mu}_i) = w_i^1 p_i^1(L_i = h|\mu_i^1) + w_i^2 p_i^2(L_i = h|\mu_i^2)$$

- We refer to the component with the lowest estimated mean as the proximal component
- The other component is the distal component

Results – two-component Poisson mixture model

- Let *K*=2, then, the mixture model turns into
- $f_i(L_i = h|\vec{w}_i, \vec{\mu}_i) = w_i^1 p_i^1(L_i = h|\mu_i^1) + w_i^2 p_i^2(L_i = h|\mu_i^2)$
- We refer to the component with the lowest estimated mean as the proximal component
- The other component is the distal component

- As d_{1i} becomes larger, there is no significant increase in the proximal mean $\hat{\mu}_i^p$
- Likely to be the consequence of the existence of other socioeconomic centres, closer to the destination station S_i , where passengers prefer to travel to carry out some socioeconomic activities at a more local level
- In contrast, the distal component significantly increases with d_{1i}
- The distal component captures longdistance, city-wide journeys from stations that are possibly close to the nucleus, to stations that are in the peripheral regions of the city

Results – three-component Poisson mixture model

- Let *K*=3, then, the mixture model turns into
- $f_i(L_i = h|\vec{w}_i, \vec{\mu}_i) = w_i^1 p_i^1(L_i = h|\mu_i^1) + w_i^2 p_i^2(L_i h|\mu_i^2) + w_i^3 p_i^3(L_i h|\mu_i^3)$
- We call the component proximal, medial and distal

- The behaviour of the proximal and distal components is analogous to the K = 2 case
- We recommend keeping K to 2 or 3

Discussion and conclusions	
0	The construction of London's transport network started at the end of the 19th century while the construction of Seoul's started in 1971
0	Assuming that the layout of the transport network and the passengers' travelling behaviour are a manifestation of urban structure, then the fact that our findings suggest that London is more monocentric than Seoul, should not come as a surprise
0	But, does this assumption hold in general? Has London's early construction of a public transport network conditioned its urban structure and slowed its transition towards a more polycentric arrangement?

Link to full paper

Cabrera-Arnau, C., Zhong, C., Batty, M. *et al.* Inferring urban polycentricity from the variability in human mobility patterns. *Sci Rep* **13**, 5751 (2023).

