Hidden Markov model and Viterbi's decoding algorithm

Minghua Deng and Dongbo Bu 2012

HMM一韦小宝的骰子

- 两种骰子,开始以2/5的概率出千。
 - 正常A: 以1/6的概率出现每个点
 - 不正常B: 5,6出现概率为3/10,其它为1/10
- 出千的随机规律

HMM例1一韦小宝的骰子

• 观测到其一次投掷结果

$$O = (1, 3, 4, 5, 5, 6, 6, 3, 2, 6)$$

• 问题: 请判断韦小宝什么时候出千了?

Hidden Markov Models - HMM

隐马氏模型的数学模型

- 隐过程为X={X₁,···,X_T}
- 观察过程为Y={Y₁,···,Y_T}
- 模型参数 $\lambda = \{\pi, A, B\}$
 - 初始分布 π =(π _i), π _i=P{X₁=i}
 - 转移矩阵A= (a_{ij}), a_{ij} = P(X_{n+1}=j | X_n= i)
 - 给定某个时间的隐状态的条件下, 观测的分布矩阵 $\mathbf{B}=(\mathbf{b}_{il})$, $\mathbf{b}_{il}=\mathbf{P}(\mathbf{Y}_{n}=\mathbf{I}\mid \mathbf{X}_{n}=\mathbf{i})$ 。

解码问题(I)

• 问题: 给定观测序列 $Y = (y_1, y_2, \dots, y_T)$,如何给出 隐状态序列 $X^0 = (x_1^0, x_2^0, \dots, x_T^0)$.

• 路径最优指: 对任意的 $X^0 = (x_1, x_2, \dots, x_T)$ 有

$$Pr(x'_1, x'_2, \dots, x'_T | y_1, \dots, y_T)$$

 $\geq Pr(x_1, x_2, \dots, x_T | y_1, \dots, y_T)$

解码问题(II)

• 由Bayesian公式有

$$Pr(x'_{1}, x'_{2}, \cdots, x'_{T} | y_{1}, \cdots, y_{T})$$

$$= \frac{Pr(x_{1}, x_{2}, \cdots, x_{T}, y_{1}, \cdots, y_{T})}{Pr(y_{1}, \cdots, y_{T})}$$

• 又由于序列 Y 给定, 问题等价于找最优的 X^0 使 联合概率 $Pr(x_1, \dots, x_T; y_1, \dots, y_T)$ 最大。

一个相关问题

$$\delta_t(i) = \max_{x_1, \dots, x_{t-1}} Pr(x_1, \dots, x_{t-1}, x_t = i, y_1, \dots, y_t | \lambda)$$

- 求解过程: 一系列的决策
- 在每个决策步,确定一个xi是A还是B
- 确定决策项之后,剩下的是求解一个更小的子问题

Viterbi算法(I)

- 算法的思想动态规划的递推算法。
- 递推变量为

$$\delta_t(i) = \max_{x_1, \dots, x_{t-1}} Pr(x_1, \dots, x_{t-1}, x_t = i, y_1, \dots, y_t | \lambda)$$

• 我们有递推公式

$$\delta_{t+1}(i) = \max_{x_1, \dots, x_t} Pr(x_1, \dots, x_t, x_{t+1} = i, y_1, \dots, y_{t+1} | \lambda)$$
$$= \left(\max_j \delta_t(j) a_{ji}\right) b_i(y_{t+1})$$

• 以 ψ_t (i)记录t时刻时使 δ_t (j) a_{ji} 最大的状态j。

Viterbi算法(II)

• 初始化

$$\delta_1(i) = \pi_i b_i(y_1),$$

 $\psi_1(i) = 0, \quad i = 1, 2, \dots, N.$

• 迭代

$$\delta_t(j) = \left(\max_{1 \le i \le N} \delta_{t-1}(i) a_{ij}\right) b_j(y_t)$$

$$\psi_t(j) = \operatorname*{Argmax}_{1 \le i \le N} \left(\delta_{t-1}(i) a_{ij}\right)$$

$$t = 2, \dots, T; \ j = 1, \dots, N.$$

Viterbi算法(III)

• 终止

$$p^* = \max_{1 \le i \le N} \delta_T(i)$$
$$x_T^* = \underset{1 \le i \le N}{\operatorname{Argmax}} \delta_T(i)$$

Backtracking

$$x_t^* = \psi_{t+1}(x_{t+1}^*)$$

 $t = T - 1, T - 2, \dots, 1.$

Viterbi算法实例(I)

• 转移概率以及初概率

	A	В
А	0.8	0.2
В	0.1	0.9
初概率	0.6	0.4

• 条件概率(Emission Probability)

	V ₁	V_2	V_3	V_4	V_5	V_6
Α	1/6	1/6	1/6	1/6	1/6	1/6
В	0.1	0.1	0.1	0.1	0.3	0.3

Viterbi算法实例(II)

	Уt	$\delta_{t}(A)$	$\psi_t(A)$	$\delta_{t}(B)$	$\psi_t(B)$
t=1	1	1.000x10 ⁻¹	_	4.000x10 ⁻²	-
t=2	3	1.333x10 ⁻²	Α	3.600x10 ⁻³	В
t=3	4	1.778x10 ⁻³	Α	3.240x10 ⁻⁴	В
t=4	5	3.370x10 ⁻⁴	Α	1.067x10 ⁻⁴	Α
t=5	5	3.161x10 ⁻⁴	Α	2.880x10 ⁻⁵	В
t=6	6	4.214x10 ⁻⁶	Α	7.776x10 ⁻⁶	В
t=7	6	5.619x10 ⁻⁷	Α	2.100x10 ⁻⁶	В
t=8	3	7.492x10 ⁻⁸	Α	1.890x10 ⁻⁷	В
t=9	2	9.989x10 ⁻⁹	Α	1.701x10 ⁻⁸	В
t=10	6	1.322x10 ⁻⁹	Α	4.592x10 ⁻⁹	В

Viterbi算法实例(III)

观测序列为:

В

B

B

参考文献

- 钱敏平,龚光鲁。《应用随机过程》,北京大学出版社,1998。
- David W. Mount. Bioinformatics, Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, 2002.
- Amy N. Langville and Carl D. Meyer. Deeper Inside PageRank, Internet Mathematics Vol. 1, No. 3: 335-380, 2004.
- L. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition", Proceedings of the IEEE, Vol. 77, No. 2, Feb. 1989
- On-line tutorial: http://www.comp.leeds.ac.uk/roger/ HiddenMarkovModels/html_dev/main.html