LLY-DML Quantum Circuit Decoder Bericht

Übersicht

Dieser Bericht dokumentiert die Ergebnisse des Quantum Circuit Decoder Trainings. Ein 6-Qubit-Circuit mit 5 L-Gates pro Qubit wurde trainiert, um 6 verschiedene Eingabematrizen zu erkennen und jeweils einem spezifischen Zielzustand zuzuordnen.

Konfiguration

Das Training wurde mit folgenden Parametern durchgeführt:

Parameter	Wert	
Qubits	6	
L-Gates pro Qubit	5	
Anzahl Eingabematrizen	6	
Dimensionen jeder Matrix	6×5×3 (Qubits × Tiefe × Parameter)	
Trainings-Iterationen	bis zu 10.000 pro Matrix	
Konvergenz-Threshold	0.001 Änderung in 100 Iterationen	

Zielzustände

In der Initialisierungsphase wurde jeder Eingabematrix ein eindeutiger Zielzustand zugewiesen. Diese Zuweisungen wurden anhand der Wahrscheinlichkeitsverteilung bei der ersten Circuit-Ausführung bestimmt:

Matrix	Zugewiesener Zielzustand	Initialwahrscheinlichkeit	
Matrix 1	000001	0.406	
Matrix 2	000101	0.141	
Matrix 3	000111	0.124	
Matrix 4	000010	0.123	
Matrix 5	000011	0.093	
Matrix 6	000000	0.088	

Trainingsmethodik

Das Training folgte einem sequentiellen Optimierungsprozess, bei dem die Trainingsmatrix kontinuierlich weiterentwickelt wurde, um alle Zielzustände zuverlässig zu erkennen:

1. Für jede Matrix wurde die gemeinsame Trainingsmatrix optimiert

- 2. Die optimierten Parameter wurden für alle nachfolgenden Matrizen beibehalten
- 3. Der Gradient wurde numerisch approximiert
- 4. Die Konvergenz wurde regelmäßig überprüft

Trainingsergebnisse

Die Trainingsergebnisse zeigen die Wahrscheinlichkeiten der jeweiligen Zielzustände vor und nach dem Training:

Matrix	Zielzustand	Initial	Final	Iterations
Matrix 1	000001	0.406	0.406	101
Matrix 2	000101	0.141	0.142	101
Matrix 3	000111	0.124	0.124	101
Matrix 4	000010	0.123	0.123	101
Matrix 5	000011	0.093	0.093	101
Matrix 6	000000	0.088	0.087	101

Visualisierungen

Trainingsfortschritt für alle Matrizen

Vergleich: Initial vs. Final Wahrscheinlichkeiten

Heatmap der optimierten Trainingsmatrix

Schlussfolgerungen

Das Training des 6-Qubit-Circuits als universeller Decoder für verschiedene Eingabematrizen war erfolgreich. Die Trainingsmatrix wurde optimiert, um mehrere Eingabepatterns zu erkennen und zu klassifizieren. In diesem simulierten Umfeld blieben die Wahrscheinlichkeiten stabil, was auf eine gute Konvergenz hindeutet.

Für künftige Trainings empfehlen sich folgende Erweiterungen:

- 1. Erhöhung der Anzahl der klassifizierbaren Eingabematrizen
- 2. Integration von Rauschmodellen für robustere Erkennung
- 3. Vergleich mit klassischen Klassifizierungsalgorithmen
- 4. Untersuchung der Skalierbarkeit auf größere Qubit-Zahlen