

ASSIGNMENT 1: CLO 2

TOPICS:

- Propositional Logic
- Laws of Logic
- Rules of inference

INSTRUCTIONS:

- Max Number of Students in a Group: 2
- Deadline: 6th April, 2022
- Marks will be deducted for late submission.

LAWS OF LOGIC

1. Law of double negation:

$$\neg \neg p \iff p$$
.

2. Absorption Laws:

$$p \land (p \lor q) \Longleftrightarrow p,$$

 $p \lor (p \land q) \Longleftrightarrow p.$

3. Idempotent Laws:

$$p \wedge p \iff p$$
, $p \vee p \iff p$.

4. Inverse Laws:

$$p \land \neg p \iff F$$
,
 $p \lor \neg p \iff T$.

5. Identity Laws:

$$p \wedge T \iff p$$
, $p \vee F \iff p$.

6. Domination Laws:

$$p \wedge F \iff F$$
, $p \vee T \iff T$.

7. Commutative Laws:

$$(p \land q) \Longleftrightarrow (q \land p),$$

 $(p \lor q) \Longleftrightarrow (q \lor p).$

8. Associative Laws:

$$(p \land (q \land r)) \Longleftrightarrow ((p \land q) \land r),$$

$$(p \lor (q \lor r)) \Longleftrightarrow ((p \lor q) \land r).$$

Distributive Laws:

$$(p \land (q \lor r)) \Longleftrightarrow ((p \land q) \lor (p \land r)), (p \lor (q \land r)) \Longleftrightarrow ((p \lor q) \land (p \lor r)).$$

10. Contrapositive Law:

$$(p \to q) \iff (\neg q \to \neg p)$$

11. De Morgan's Laws:

$$\neg (p \lor q) \Longleftrightarrow (\neg p \land \neg q), \\ \neg (p \land q) \Longleftrightarrow (\neg p \lor \neg q).$$

 No specific name is given, but this law is one of the most frequently used laws in logical proof.

$$(p \to q) \iff (\neg p \lor q).$$

Figure 1: Laws of Logic

RULES OF INFERENCE

Rule of Inference	Tautology	Name
p		
$p \rightarrow q$	$(p \land (p \to q)) \to q$	Modus Ponens
∴ q	$(p \land (p \to q)) \to q$	Modus I offens
∴ ¬p	$(\neg q \land (p \to q)) \to \neg p$	Modus Tollens
$\begin{array}{c} \mathbf{p} \rightarrow q \\ \mathbf{q} \rightarrow r \end{array}$		
$rac{}{\therefore p \rightarrow r}$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$	Hypothetical syllogism
$\neg p$		
$\frac{\mathbf{p} \vee q}{\mathbf{r}}$	$(\neg p \land (p \lor q)) \to q$	Disjunctive Syllogism
∴ q	$(p \land (p \lor q)) \to q$	Disjunctive bynogism
p		
$\frac{\mathrm{p}}{\therefore (p \vee q)}$	$p \rightarrow (p \lor q)$	Addition
$(p \land q) \to r$		
$\therefore p \to (q \to r)$	$((p \land q) \to r) \to (p \to (q \to r))$	Exportation
$\neg p \lor q \\ \neg p \lor r$		
$\therefore q \vee r$	$((p \lor q) \land (\neg p \lor r)) \to q \lor r$	Resolution

Figure 2: Rules of Inference

IMPORTANT!

Primitive Statements for the given below questions are same as mentioned in Problem 4.

PROBLEM 1:

If $p \to q$ is false, what is the truth value of

$$((\neg p) \land q) \longleftrightarrow (p \lor q)$$
?

PROBLEM 2:

Construct the truth tables for the following:

- 1. $(a \longrightarrow T) \land (F \longrightarrow b)$
- 2. $(F \lor a) \longrightarrow (b \land F)$
- 3. $(a \lor b) \land (a \lor \neg b)$

T refers to tautology

F refers to contradiction

PROBLEM 3:

Which of the following is a tautology?

1.
$$(a \longleftrightarrow b) \to (a \land b)$$
,

2.
$$(a \longleftrightarrow b) \longleftrightarrow (a \land b) \lor (\neg a \land \neg b)$$

PROBLEM 4:

Let p, q, r denote the following statements about a triangle ABC.

p: Triangle ABC is isosceles;

q: Triangle ABC is equilateral;

r: Triangle ABC is equiangular.

Translate each of the following into an English sentence.

1.
$$q \longrightarrow p$$
 2. $\neg p$

5.
$$r \longrightarrow p$$

PROBLEM 5:

Let p,q,r denote primitive statements. Use truth tables to prove the following logical equivalences.

1.
$$p \to (q \land r) \iff (p \to q) \land (p \to r)$$

2.
$$[(p \lor q) \to r] \iff [(p \to r) \land (q \to r)]$$

PROBLEM 6:

Let p, q, r denote primitive statements. Use the laws of logic to show that

$$[p \longrightarrow (q \lor r)] \iff [(p \land \neg q) \longrightarrow r].$$

PROBLEM 7:

Let p, q, and r be primitive statements. Write the dual for the following statements.

1.
$$q \longrightarrow p$$

2.
$$p \longrightarrow (q \wedge r)$$

3.
$$p \longleftrightarrow q$$

PROBLEM 8:

Show that

$$((a \land b) \longrightarrow c) \Longleftrightarrow ((a \longrightarrow c) \lor (b \longrightarrow c)).$$

PROBLEM 9:

Simplify

$$(p \land (\neg r \lor q \lor \neg q)) \lor ((r \lor t \lor \neg r) \land \neg q).$$

PROBLEM 10:

Simplify

$$(p \lor (p \land q) \lor (p \land q \land \neg r)) \land ((p \land r \land t) \lor t).$$

PROBLEM 11:

The following is a logical proof for

$$(p \land (p \rightarrow q) \land (s \lor r) \land (r \rightarrow \neg q)) \rightarrow (s \lor t).$$

Refer to the laws of logic and inference rule, and give reasons to justify each step of the proof.

$_{ m st}$	eps	reasons
1.	p	
2.	$p \rightarrow q$	
3.	q	
4.	$r \to \neg q$	
5.	$q \to \neg r$	
6.	$\neg r$	
7.	$s \lor r$	
8.	s	
9.	$s \lor t$	

PROBLEM 12:

State which rule of inference is used in the argument:

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will not have a barbecue tomorrow. Therefore, if it rains today, then we will not have a barbecue tomorrow.

PROBLEM 13:

It is known that:

- 1. It is not sunny this afternoon, and it is colder than yesterday.
- 2. We will go swimming only if it is sunny.
- 3. If we do not go swimming, we will play basketball.
- 4. If we play basketball, we will go home early.
- Can you conclude "we will go home early"?

PROBLEM 14:

It is known that:

- 1. If you send me an email, then I will finish my program.
- 2. If you do not send me an email, then I will go to sleep early.
- 3. If I go to sleep early, I will wake up refreshed.
- Can you conclude "If I do not finish my program, then I will wake up refreshed"?