Feature Selection

Prithwijit Guha Dept. of EEE, IIT Guwahati

Overview

- Machine Learning Workflow
- Feature Extraction
- Separability & Classification
- The Curse of Dimensionality
- Feature Selection
- Hashing Techniques

Machine Learning Task Workflow

Data Collection

– Manual
Labelling,
Crowd Sourcing

Feature
Engineering –
Feature Design
& Selection

Data
Preprocessing –
Bias, Outlier
Rejection

Model
Selection –
Data, Insight &
Expertise

Model Training, Evaluation & Deployment

A Classification Task Classifier **Feature Extraction** Learning

From Real World to Symbol Space

Many Features may be **Extracted without Exact** Problem Domain Knowledge

Feature Extraction

Primary Features: Measurement

Secondary Features Onwards: Transformation

$$\begin{pmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix} \longrightarrow \begin{bmatrix} a_{11} & \dots & a_{nm} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_j \\ \vdots \\ y_m \end{pmatrix}$$

$$X \in \mathbb{R}^n \qquad A \in \mathbb{R}^{m \times n} \qquad Y \in \mathbb{R}^m$$

Linear Transformation: Y = AX

Secondary Features Onwards: Transformation

$$\begin{pmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix} \longrightarrow \begin{bmatrix} a_{11} & \dots & a_{nm} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \longrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_j \\ \vdots \\ y_m \end{pmatrix} \longrightarrow \begin{pmatrix} z_1 = g_1(y_1) \\ \vdots \\ z_j = g_j(y_j) \\ \vdots \\ z_m = g_m(y_m) \end{pmatrix}$$

$$X \in \mathbb{R}^n \qquad A \in \mathbb{R}^{m \times n} \qquad Y \in \mathbb{R}^m \qquad Z \in \mathbb{R}^m$$

Nonlinear Functions: $g_1, \dots g_j, \dots g_m$

Non-Linear Transformation

The Feature Space: Linearly Separable

Hyperplane(s) can Separate Features Extracted from Two (Or More) Classes

The Feature Space: Not Linearly Separable

Nonlinear Hypersurfaces Separate Features Extracted from Two (Or More) Classes

The Feature Space: Nonseparable Case

Require Further Transformations for Enhancing Separability

Cover's Theorem of Separability

Non-separable Data can be Transformed to a Higher Dimensional Space through Non-linear Transformation. The Probability of Separability Increases with the Dimension of the Destination Space.

1000 one dimensional points on a line

10 Equal Sized Bins on the Line

100 / Bin: Points are Uniformly Distributed over Bins

1000 two dimensional points in a rectangle

•••	+	•••							
	•••								
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
	•••								

10 Equal Sized Bins along both Horizontal and Vertical Axes

10 / Bin: Points are Uniformly Distributed over Bins

1000 Three Dimensional points in a Cube

10 Equal Sized Bins along each Axes

1 / Bin: Points are Uniformly Distributed over Bins

- Consider 1000 n-dimensional (n >3) points
- We have 10 Equal Size Bins on each Axis
- •There are 10ⁿ (> 1000) bins
- Vacant bins even with 1 point/bin
- This can be generalized...

Curse of Dimensionality

- High Dimension due to Large Number of Features
- High Dimension Leads to More Storage & Computation
 - More Parameters in (Non)Linear Transformations
 - Complex Classification & Regression Models
 - More Operations (e.g. Matrix Inverse in Mahalanobis Distance)
 - Unnecessary Features often lead to Poor Performance
- Working on Feature Subspaces
 - Late Fusion in Ensemble Framework
 - Dimensionality Reduction

Late Fusion in Ensemble Framework

Dimensionality Reduction

- Feature Subset Selection
- Hashing Techniques
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Exploratory Factor Analysis (EFA)

Feature Subset Selection

- Feature Selection vs. Extraction/Transformation(s)
- Supervised vs. Unsupervised Approaches
- Feature Subset Selection 2^n possibilities for $x \in \mathbb{R}^n$
- Forward & Backward Feature Subset Selection
- Useful Tool for Feature Combination Analysis
- Generally used for Handcrafted Features

Feature Subset Selection: Notations

 X_j : The jth Feature Subset; j = 1, ... m

 S_i : Feature Set formed in ith Iteration

$$S_i = \{X^{(1)} \cup X^{(2)} \dots \cup X^{(i)}\}$$

 C_i : Classifier Trained with Feature Set S_i

 $E(S_i; C_i)$: Evaluation Error of Classifier C_i using Feature Set S_i

€: A Threshold on Evaluation Error

Forward Feature Subset Selection

- 1. $S_0 = \varphi$; $SizeOf(\bigcup_{i=1}^m X_i) = N$; $E(S_0; C_0) = LARGE_NUMBER$
- 2. WHILE $SizeOf(S_{i-1}) < N$ DO
- 3. $J_i = \{k: X_k \notin S_{i-1}\}$
- 4. $\forall k$ Train $oldsymbol{C_{i-1}^{(k)}}$ with $oldsymbol{S_{i-1}} \cup X_{oldsymbol{k}}$
- 5. $j = argmin_k \mathbf{E}\left(\mathbf{S}_{i-1} \cup X_k; \mathbf{C}_{i-1}^{(k)}\right); k \in \mathbf{J}_i$
- 6. IF $E(S_{i-1} \cup X_j; C_{i-1}^{(j)}) < E(S_{i-1}; C_{i-1}) \epsilon$
- 7. THEN $S_i = S_{i-1} \cup X_j$; $C_i = C_{i-1}^{(j)}$
- 8. **ELSE** break
- 9. END WHILE

Backward Feature Subset Selection

- 1. $S_0 = \bigcup_{i=1}^m X_i$ WHILE $SizeOf(S_{i-1}) > 0$ DO
- $I_i = \{k: X_k \in S_{i-1}\}$
- $\forall k \; Train \; \boldsymbol{C_{i-1}^{(k)}} \; with \; \boldsymbol{S_{i-1}} X_k$
- $j = argmin_k \mathbf{E}\left(\mathbf{S}_{i-1} X_k; \mathbf{C}_{i-1}^{(k)}\right); k \in \mathbf{J}_i$ 5.
- IF $E(S_{i-1} X_j; C_{i-1}^{(j)}) < E(S_{i-1}; C_{i-1}) \epsilon$ 6.
- THEN $S_i = S_{i-1} X_i$; $C_i = C_{i-1}^{(j)}$ 7.
- 8. **ELSE** break
- 9. FND WHILF

Hashing Techniques

- Dividing Feature Space into Partitions
- Assign Integer IDs (Hashes) to each Partition
- Mechanisms for Partitioning Feature Space
 - Locality Sensitive Hashing
 - Hashing with Hierarchical Structures
- Features in a Partition has the Same Hash
- Features of Similar Entities are Close in Feature Space
- Proximal Points have High Probability of Similar Hash

Feature Space Partitioning: Oblique

 x_2

Feature Space Partitioning: Axis Aligned

Feature Space Partitioning

Locality Sensitive Hashing – Random Projections

Generate Random Unit Vectors in Feature Space: \hat{v}_1 , ... \hat{v}_i ... \hat{v}_m

Locality Sensitive Hashing – Random Projections

Hashing with Hierarchical Structures

Applications of Hashing Techniques

- Near Duplicate Detection (in Archives)
- Hierarchical Grouping
- Search in Image Databases
- Audio Similarity Identification
- Digital Audio-Video Fingerprinting

Summary

- Significance of Feature Engineering
- Feature Extraction & Transformations
- Separability in Feature Space
- Issues with Dimensionality
- Dimensionality Reduction Techniques
- Forward & Backward Feature Selection
- Binary Hashing Techniques

Thank You