Mismos datos, distinto árbol

¡No podemos garantizar altura $O(\log n)!$

Balance

Debemos asegurarnos que el árbol esté balanceado

¿Cómo podríamos definir esta noción?

Nos interesa que se pueda cumplir recursivamente

¿Está balanceado?

¿Está balanceado?

¿Está balanceado?

Balance

Diremos que un ABB está balanceado si:

- · La altura de sus hijos no difiere en más que 1
- Cada hijo a su vez está balanceado

Un ABB que cumple esta propiedad se le llama AVL

Operaciones en AVL

Al insertar o eliminar un nodo, es posible desbalancear el árbol

¿Cómo garantizamos el balance del árbol luego de cada operación?

Nos interesa conservar todas las propiedades de los ABB

Luego de inserción en T_1

¿Cómo balancear X?

Luego de inserción en T_1

Luego de insertar B

¡Rotación!

Luego de inserción en T_2

Luego de inserción en T_2

Entremos a T_2

Convirtámoslo en el primer caso

Solucionémoslo

Luego de insertar G

¡Doble Rotación!

Rotaciones

¿Qué tan costoso es rebalancear el árbol?

¿Cuántas rotaciones es necesario hacer en el peor caso?

Altura de un AVL

La complejidad sigue dependiendo de la altura del árbol

¿Pero cuál es la altura de un AVL en el peor caso?

Altura de un AVL

Sea N_h el mínimo de nodos para un AVL de altura h

$$N_1 = 1$$
 $N_2 = 2$
 $N_h = 1 + N_{h-1} + N_{h-2}$

 N_h es igual a Fibonacci, excepto por el 1.

Es más, $N_h > F_h$, donde F_h es el h-ésimo número de Fibonacci

$$F_h \approx \frac{\varphi^h}{\sqrt{5}}$$

Altura de un AVL

Si un AVL tiene $n=N_h$ nodos, h es la altura máxima que puede tener

$$n = N_h > F_h \approx \frac{\varphi^h}{\sqrt{5}}$$

$$\frac{\varphi^h}{\sqrt{5}} < n$$

$$\varphi^h < \sqrt{5} \cdot n$$

$$h < \log_{\varphi} \sqrt{5} \cdot n$$

$$h < \log_{\varphi} n + \log_{\varphi} \sqrt{5}$$

$$h \in O(\log n)$$