MAT1110 - Mandatory assignment 2

William Dugan

April 12, 2022

1

 \mathbf{a}

We have

$$\boldsymbol{F}(x,y) = -\frac{y}{2}\boldsymbol{i} + \frac{x}{2}\boldsymbol{j} \tag{1}$$

and the parameterization r of C oriented counter-clockwise. If follows that r is piecewise smooth as C is piecewise smooth. Since C encloses an area including R, and the partial derivatives of F are continuous, we can use Greens' theorem two write the area enclosed by C as

$$\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C} \mathbf{F} \cdot d\mathbf{r}$$

b

Since C_k is the line piece connecting the points (a_k, b_k) and (a_{k+1}, b_{k+1}) can we write $\Delta x = a_{k+1} - a_k$ and $\Delta y = b_{k+1} - b_k$ from the point (a_k, b_k) . The change will be linear as C_k are straight lines. If we put all this together, we get the parameterization

$$\mathbf{r}_k(t) = (a_k + t(a_{k+1} - a_k)), b_k + t(b_{k+1} - b_k), \qquad t \in [0, 1]$$

 \mathbf{c}

$$A_k = \int_{C_k} \boldsymbol{F} \cdot d\boldsymbol{r} = \int_{C_k} x dy$$

If we use $x = a_k + t(a_{k+1} - a_k)$ and $dx = (b_{k+1} - b_k)dt$ we get

$$A_k = (b_{k+1} - b_k) \int_0^1 (a_k + t(a_{k+1} - a_k)) dt$$
$$= (b_{k+1} - b_k) \left[ta_k + \frac{1}{2} t^2 (a_{k+1} - a_k) \right]_0^1$$
$$= \frac{1}{2} (a_{k+1} + a_k) (b_{k+1} - b_k)$$

If we sum over all line-pieces we get

$$A = \frac{1}{2} \sum_{k=1}^{n-1} (a_{k+1} + a_k)(b_{k+1} - b_k)$$
(3)

 \mathbf{d}

We will now calculate the area of a triangle with corners (0,0),(a,h) and (g,0) using equation 3.

$$A_{\text{triangle}} = \frac{1}{2}[(g-0)(0-0) + (a+g)(h-0) + (0+a)(0-h)]$$

$$= \frac{1}{2}[ah + gh - ah]$$

$$= \frac{gh}{2}$$

For a rectangle with corners (0,0),(g,0),(g,h) and (0,h) we get

$$A_{\text{rectangle}} = \frac{1}{2} [(g+0)(0-0) + (g+g)(h-0) + (0+g)(h-h) + (0+0)(0-h)]$$

$$= \frac{1}{2} [2gh]$$

$$= gh.$$

2

3

We define $f: \mathbb{R}^2 \to \mathbb{R}^2$ where $f(\boldsymbol{v}) = A\boldsymbol{v} + \boldsymbol{b}$.

a

We let f be an isometry in the xy-plane. It is easy to show that f preserves norms:

$$||v - w|| = ||f(v) - f(w))||$$

= $||Av + b - (Aw + b)||$
= $||Av - Aw||$
= $||A|| \cdot ||v - w||$
= $||v - w||$

where we have used that $det(A) = \pm 1$.

b

We let $f(\mathbf{v}) = A\mathbf{v} + \mathbf{b}$ be an isometry with $\det(A) = -1$. The vector $A\mathbf{b} + \mathbf{b}$ is an eigenvector if $(A - I)(A\mathbf{b} + \mathbf{b}) = 0$ for all choises of \mathbf{b} . Remembering that $A^2 = I$, we get

$$(A-I)(A\mathbf{b}+\mathbf{b}) = A^2\mathbf{b} + A\mathbf{b} - AI\mathbf{b} - I\mathbf{b} = 0$$

which shows that $A\mathbf{b} + \mathbf{b}$ is an eigenvector.

 \mathbf{c}

The transformation by f on the line perpendicular to \boldsymbol{w} is

$$f(s\boldsymbol{w}) = sA\boldsymbol{w} + \boldsymbol{b}, \qquad s \in \mathbb{R}$$

Since w is an eigenvector $Aw = \lambda w$. Remembering that $\lambda = 1$, we can then scale the transformation down by a half, and get

$$t\boldsymbol{w} + \frac{1}{2}\boldsymbol{b}, \qquad t \in \mathbb{R}$$
 (4)

where we let t = s/2. This shows that f transforms the line in eq 4 on itself.