

PROGRAMACIÓN SOBRE GRANDES VOLUMENES DE DATOS

Machine Learning

UNIVERSIDAD DE ANTIOQUIA
FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN ANALÍTICA Y CIENCIA DE DATOS

AGENDA

- 1. Machine Learning
- 2. Preparación de datos
- 3. Análisis Predictivo
- 4. Análisis Descriptivo

Machine Learning

- El Machine Learning o aprendizaje automático es una disciplina orientada a crear sistemas que puedan aprender por sí solos, con el fin de extraer información no trivial de grandes volúmenes de datos por medio de la identificación de patrones complejos.
- Spark implementa el aprendizaje automático a través del módulo MLLib que cuenta con un gran número de algoritmos que permiten crear modelos para el aprendizaje automático.
- Pueden identificarse dos grandes ramas en el aprendizaje automático, a saber, el aprendizaje supervisado y el aprendizaje NO supervisado.

Tipos de Análisis

Análisis Predictivo

- Predecir riesgos
- Predecir activación de nuevos clientes
- Series de tiempo
- Predecir inventario

Análisis Descriptivo

- Perfil de los clientes
- Selección de factores
- Detección de anomalías
- Canasta de mercado

Imagen: http://www.iiia.csic.es/udt/

Análisis Predictivo

- Predecir riesgos
- Predecir activación de nuevos clientes
- Series de tiempo
- Predecir inventario

- Predicción Discreta o Clasificación
- Predicción Continua o Regresión

Imagen: http://www.iiia.csic.es/udt/

Predicción Discreta o Clasificación

Estudio de categorías pre-definidas para catalogar nuevos elementos.

Ejemplo: Predecir el comportamiento de pago de clientes en una entidad financiera: BUENOS CLIENTES y MALOS CLIENTES.

ID	ATRIBUTO 1	ATRIBUTO 2	 ATRIBUTO N	CLASE
1	10	alto	56	Cliente Oro
2	45	bajo	54	Cliente Plata
3	23	medio	34	Cliente Bronce
4	54	alto	24	Cliente Bronce
5	21	medio	43	Cliente Oro
6	54	medio	23	Cliente Oro
7	74	alto	65	Cliente Bronce
8	46	alto	47	Cliente Plata
9	43	bajo	83	Cliente Plata
10	34	bajo	59	Cliente Bronc

Histórico o Conjunto de Entrenamiento

Predicción de una clase

ID	ATRIBUTO 1	ATRIBUTO 2	 ATRIBUTO N	CLASE
11	21	medio	43	?
12	54	medio	23	?
13	74	alto	65	?
14	46	alto	47	?
15	43	bajo	83	?
16	34	bajo	59	?

Datos futuros

Predicción Continua o Regresión

Estudio de datos con el objetivo de predecir un evento numérico futuro.

Ejemplos: Estimar la expectativa de vida de un cliente.

- Predecir ventas futuras (series de tiempo)

ID	ATRIBUTO 1	ATRIBUTO 2	 ATRIBUTO N	PREDICCIÓN
1	10	alto	56	34
2	45	bajo	54	42
3	23	medio	34	15
4	54	alto	24	64
5	21	medio	43	36
6	54	medio	23	74
7	74	alto	65	34
8	46	alto	47	2
9	43	bajo	83	6
10	34	bajo	59	4

Histórico o Conjunto de Entrenamiento

Predicción de un número

continuo ATRIBUTO 1 ATRIBUTO 2 ... ATRIBUTO N PREDICCIÓN 21 medio 54 medio 23 13 74 alto 65 46 alto 47 43 bajo 83 34 bajo 59

Datos futuros

Análisis Descriptivo

- Perfil de los clientes
- Selección de factores
- Detección de anomalías
- Canasta de mercado

- Agrupamiento / Clustering
- Asociación
- Selección de Factores

Imagen: http://www.iiia.csic.es/udt/

Agrupamiento / Clustering

Organizar una población de datos heterogénea en un número de clúster homogéneos.

Ejemplos: Diseñar estrategias de mercadeo según el tipo de cliente. Detección de anomalías identificando datos que se alejen de los centroides de agrupación.

Id	Atributo 1	Atributo 2	 Atributo n
1	10	alto	35
2	35	bajo	54
3	43	medio	28
4	26	bajo	65
5	87	alto	32
6	45	alto	29
7	76	bajo	55
8	5	medio	46
9	12	medio	43
10	54	bajo	27

Descripción en grupos

Asociación

Identificar los elementos que tienen algún nivel de asociación a otros elementos por medio de reglas.

Ejemplo: Determinar los artículos que se pueden ofrecer juntos en promoción.

Id	Atributo 1	Atributo 2	 Atributo n
1	10	alto	35
2	35	bajo	54
3	43	medio	28
4	26	bajo	65
5	87	alto	32
6	45	alto	29
7	76	bajo	55
8	5	medio	46
9	12	medio	43
10	54	bajo	27

Descripción en reglas

Selección de Factores

Identificar los factores/variables que más influyen sobre algún evento.

Ejemplo: Determinar las variables que más influyen para la calidad del aire.

			33
Id	Atributo 1	Atributo 2	 Atributo n
1	10	alto	35
2	35	bajo	54
3	43	medio	28
4	26	bajo	65
5	87	alto	32
6	45	alto	29
7	76	bajo	55
8	5	medio	46
9	12	medio	43
10	54	bajo	27

Factores seleccionados

Atributo 1 Atributo 4 Atributo 6

Técnicas

Análisis Predictivo

- Clasificación
- Regresión

Técnicas Supervisadas

- Redes Neuronales
- · Reglas de Decisión
- Árboles de Decisión
- · Métodos Probabilísticos
- · Máq. de Soporte Vectorial
- Métodos de Regresión
- · Modelos Ocultos de Markov
- Métodos basados en Ejemplos

Análisis Descriptivo

- Clustering
- Asociación
- Selección de

Factores

Técnicas NO Supervisadas

- Métodos Jerárquicos
- Métodos Particionales
- Redes Neuronales
- Métodos Probabilísticos
- · Métodos Difusos
- Métodos Evolutivos
- Métodos basados en Kernel
- Métodos de reglas
- ' PCA

Metodologías

Fuente: http://www.crisp-dm.org/

Metodologías

- CRISP-DM
- SEMMA
- KDD

AGENDA

- 1. Machine Learning
- 2. Preparación de datos
- 3. Análisis Predictivo
- 4. Análisis Descriptivo

Tipos de Variables

Variables Numéricas (cuantitativas)

Peso

Años en la empresa

Salario

Edad

Ventas

Valor de deuda

Variables Categóricas (cualitativas)

- Sexo = {Hombre, Mujer}

- Estado civil= {Casado, Soltero}

– Religión= {Católica, Otra}

– Enfermedad= {Si, No}

- Estrato= {1,2,3,4,5}

– Mayor de Edad={S, N}

Nivel de formación= {Bachillerato, Profesional, Universitario}

Cadenas de Caracteres (string)

Fechas (date)

Requisitos Mínimos

- Identificación de variables
 - Propiedades del conjunto de datos
 - Tipos de datos (verificar carga correcta de datos)
- Tratamiento de duplicados
 - Eliminar variables duplicadas (columnas)
 - Eliminar registros duplicados (filas)
 - Eliminar variables irrelevantes (ID, cedula, nombre, teléfono)
- Análisis univariable
 - Variables numéricas: estadística descriptiva, histogramas, box plot
 - Variables categóricas: tabla de frecuencias y diagrama de barras
- Análisis bivariable
 - Correlaciones entre las variables predictoras deben ser menores a 0.7
 - Correlaciones con la variable objetivo debe ser mayor a 0.3
- 5. Tratamiento de outliers (eliminar registros, eliminar variables, imputar, predecir)
- Tratamiento de datos nulos (eliminar registros, eliminar variables, imputar o predecir)
- Transformación de variables desde reglas del negocio
 - Discretización o Binning: convertir de número a categoría
 - Crear variables Dummy: convertir de categoría a número
- Creación de variables (fecha y otros)
- Reducción de variables (en caso de ser necesario)
- 10. Balanceo de la variable objetivo (sólo en clasificación)
- 11. Transformación de datos para el método

Balanceo de Datos (Clasificación)

Selección aleatoria de datos

Adicionar registros cercanos a la media de los datos

AGENDA

- 1. Machine Learning
- 2. Preparación de datos
- 3. Análisis Predictivo
- 4. Análisis Descriptivo

Análisis Predictivo

- Predecir riesgos
- Predecir activación de nuevos clientes
- Series de tiempo
- Predecir inventario

- Predicción Discreta o Clasificación
- Predicción Continua o Regresión

Imagen: http://www.iiia.csic.es/udt/

Clasificación

Conjunto de predicción (futuro)

Regresión

Conjunto de predicción (futuro)

Ciclo de vida: Clasificación y Regresión

90K

No

Small

Noi

Modelo

Cómo obtener los conjuntos de Entrenamiento y de Prueba

- Evaluar el conjunto de entrenamiento
- División de Datos 70-30 (Split)
- División de Datos 70-15-15
- Validación Cruzada (K-fold Cross Validation)

Evaluar el conjunto de Entrenamiento

Conjunto de prueba

División de Datos 70-30

Histórico

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes
11	Yes	Large	125K	No
12	No	Medium	100K	No
13	No	Small	70K	No
44	Yes	Medium	120K	No
15	No	Large	95K	Yes
16	No	Medium	60K	No
17	Yes	Large	220K	No
18	No	Small	85K	Yes
19	No	Medium	75K	No
20	No	Small	90K	Yes

Conjunto de entrenamiento

70%

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Conjunto de prueba

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Validación Cruzada (K-fold Cross Validation)

- 1. Aleatoriamente se divide el conjunto de datos en k subgrupos.
- 2. Se usan k-1 subgrupos en entrenamiento y el otro subgrupo en prueba.
- 3. Se repite el experimento k veces.

Medidas de Evaluación - Regresión

Mediciones de Error:

$$error(p) = \frac{1}{n} \sum_{x} (f(x) - p(x))^{2}$$

Medidas de Evaluación - Clasificador

Medidas de Evaluación - Clasificador

Resultado Clasificador

Exactitud
$$e = \frac{a+d}{a+b+c+d}$$

Medidas de Evaluación – Clasificador: Matriz de Confusión

Clase Real

Medidas de Evaluación – Clasificador: Curva ROC (Receiver Operating Characteristic)

Razón de verdaderos positivos

$$VPR = \frac{VP}{VP + FN} = \frac{a}{a + c}$$

Razón de falsos positivos

$$FPR = \frac{FP}{FP + VN} = \frac{b}{b+d}$$

Tipos de curvas ROC

- Redes Neuronales
 [Wiener et al., 1995]
- Árboles de Decisión [Apte, 1997]
- Métodos Probabilísticos [Lewis, 1998] [Wettig et al., 2002]
- Máq. de Soporte Vectorial
 [Joachims, 1998]
- Métodos de Regresión [Yang, 1999]
- Métodos basados en Ejemplos [Yang, 1999]

Redes Neuronales

[Wiener et al., 1995]

Árboles de Decisión [Apte, 1997]

Métodos Probabilísticos

[Lewis, 1998] [Wettig et al., 2002]

Máq. de Soporte Vectorial [Joachims, 1998]

Métodos de Regresión [Yang, 1999]

Métodos basados en Ejemplos [Yang, 1999]

Redes Neuronales [Wiener et al., 1995]

Métodos Probabilísticos [Lewis, 1998] [Wettig et al., 2002]

Máq. de Soporte Vectorial [Joachims, 1998]

Métodos de Regresión [Yang, 1999]

Métodos basados en Ejemplos [Yang, 1999]

Redes Neuronales

[Wiener et al., 1995]

Árboles de Decisión

[Apte, 1997]

Métodos Probabilísticos

[Lewis, 1998] [Wettig et al., 2002]

Máq. de Soporte Vectorial

[Joachims, 1998]

Métodos de Regresión

[Yang, 1999]

Métodos basados en Ejemplos

[Yang, 1999]

$$P(c_j \mid d) = \frac{P(c_j)P(d \mid c_j)}{P(d)}$$

Métodos Supervisados

Redes Neuronales

[Wiener et al., 1995]

Árboles de Decisión

[Apte, 1997]

Métodos Probabilísticos

[Lewis, 1998] [Wettig et al., 2002]

Máq. de Soporte Vectorial

[Joachims, 1998]

Métodos de Regresión [Yang, 1999]

Métodos basados en Ejemplos [Yang, 1999]

Métodos Supervisados

Redes Neuronales [Wiener et al., 1995]

Árboles de Decisión [Apte, 1997]

Métodos Probabilísticos

[Lewis, 1998] [Wettig et al., 2002]

Máq. de Soporte Vectorial [Joachims, 1998]

Métodos de Regresión [Yang, 1999]

Métodos basados en Ejemplos [Yang, 1999]

Métodos Supervisados

Redes Neuronales [Wiener et al., 1995]

Árboles de Decisión [Apte, 1997]

Métodos Probabilísticos [Lewis, 1998] [Wettig et al., 2002]

Máq. de Soporte Vectorial [Joachims, 1998]

Métodos de Regresión [Yang, 1999]

Métodos basados en Ejemplos [Yang, 1999]

AGENDA

- 1. Machine Learning
- 2. Preparación de datos
- 3. Análisis Predictivo
- 4. Análisis Descriptivo

Análisis Descriptivo

Análisis Descriptivo

- Perfil de los clientes
- Selección de factores
- Detección de anomalías
- Canasta de mercado

- Agrupamiento / Clustering
- Asociación
- Selección de Factores

Imagen: http://www.iiia.csic.es/udt/

Clustering

Una medida de distancia determina la similaridad entre los datos.

Los objetos en un grupo deben ser similares o relacionados entre ellos.

Clustering

Ciclo de vida

Id	Atributo 1	Atributo 2	 Atributo n
1	10	alto	35
2	35	bajo	54
3	43	medio	28
4	26	bajo	65
5	87	alto	32
6	45	alto	29
7	76	bajo	55
8	5	medio	46
9	12	medio	43
10	54	bajo	27

Separabilidad:

Evaluación

- Validación Interna: Evalúa la calidad de los clusters basado en medidas de distancia, algunos índices son:
 - ✓ Dunn Index [Dunn, 1974]
 - ✓ Davies-Bouldin Index [Davies and Bouldin, 1979]
 - ✓ Silhouette Index [Kaufman and Rousseuw, 1990]

Compactness:

Separability:

Índices para Validación Interna

Dunn Index [Dunn, 1974]:

$$D(C) = \min_{p} \left\{ \min_{p \neq q} \left\{ \frac{d_{inter}(c_p, c_q)}{\max_{1 \leq r \leq k} \{d_{intra}(c_r)\}} \right\} \right\},$$
 (4.14)

High values of this index indicate a good clustering structure.

Davies and Bouldin Index [Davies and Bouldin, 1979]:

$$DB(C) = \frac{1}{k} \sum_{p=1}^{k} \max_{q \neq p} \left\{ \frac{d_{intra}(c_p) + d_{intra}(c_q)}{d_{inter}(c_p, c_q)} \right\}$$
(4.15)

Small values of this index indicate a good clustering structure.

Silhouette Index [Kaufman and Rousseeuw, 1990]:

$$S(C) = \frac{\sum_{i} sil_{i}}{n} \text{ and } sil_{i} = \frac{(b_{i} - a_{i})}{\max(a_{i}, b_{i})}, \quad (4.16)$$

where a_i is the average distance of object x_i to all other objects in the same cluster, and b_i is the minimum of average distance of object x_i to all objects in other clusters. High values of this index indicate a good clustering structure.

Métodos Jerárquicos

Métodos Particionales

Redes Neuronales

Métodos Jerárquicos

Redes Neuronales

Métodos Jerárquicos

Métodos Particionales

Redes Neuronales

Métodos Jerárquicos

Métodos Particionales

Redes Neuronales

Métodos Particionales

Divide el conjunto de datos en un número predefinido de grupos. K-Means es el método más comúnmente utilizado, la idea del método es definir k centroides, uno por clúster, y los datos son asociados al centroide más cercano.

Medidas de Similitud basadas en Distancia

Distance Measure	Description			
Euclidean	This is the geometric distance in the multidi-			
	mensional space [Jain et al., 1999].			
	$d(x_i, x_j) = \sqrt{\sum_{l=1}^{d} x_{il} - x_{jl} ^2}$ (4.1)			
Cosine	This is the cosine of the angle between the fea- ture vectors [Friedman et al., 2007].			
	$d(x_i, x_j) = \frac{x_i \cdot x_j}{\ x_i\ \times \ x_j\ }$ (4.2)			
Manhattan	This is the sum of the differences of their corre- sponding components [Friedman et al., 2007].			
	$d(x_i, x_j) = \sum_{l=1}^{d} x_{il} - x_{jl} $ (4.3)			
Chebyshev	This finds the absolute magnitude of the differ- ences between the vectors [de Souza and de Car- valho, 2004].			
	$d(x_i, x_j) = max_l(x_{il} - x_{jl})$ (4.4)			
Mahalanobis	This is the same as the euclidean distance with the covariance matrix [Jain et al., 1999].			
	$d(x_i, x_j) = \sqrt{(x_i - x_j)^T S^{-1}(x_i - x_j)} $ (4.5)			
Minkowski	This is a general case, when $p=2$ is the euclidean distance, while $p=1$ is the manhattan distance [Groenen and Jajuga, 2001].			
	$d(x_i, x_j) = \left(\sum_{l=1}^{d} x_{il} - x_{jl} ^p\right)^{\frac{1}{p}} $ (4.6)			
Hamming	This is the number of features in which the vec- tors differ [Leszek et al., 2004].			
	$d(x_i, x_j) = amount_l(x_{il} \neq x_{jl})$ (4.7)			

K-Means

K-Means: Limitaciones

- Sensible a los centroides iniciales, ya que converge a óptimos locales.
- Requiere especificar el número de clusters.
- Se afecta por datos "ruidosos".
- No es aplicable a datos categóricos.