BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI HYDERABAD CAMPUS SECOND SEMESTER 2022-2023

Course Handout - Part II

16-01-2023

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course

Course No. : CHE F241Course Title : Heat TransferInstructor-in-Charge : Dr. Iyman Abrar

Instructor : Dr. Afkham Mir / Dr. Iyman Abrar

1. Course Description

This course covers the theoretical aspects of heat transfer involving conduction, convection and radiation. Topics such as steady and unsteady state conduction, Fourier's law, heat transfer coefficient, heat transfer in various coordinate systems, insulation, convective heat transfer, theories of heat transfer and analogy between momentum and heat transfer and radiation will be covered. Types of heat exchangers and their design will also be introduced in this course.

2. Scope and Objective

The scope of this course is to study the fundamentals of heat transfer. At the end of the course, the student should have

- A sound understanding of heat transfer fundamentals
- An ability to apply fundamental heat transfer concepts to chemical engineering problems
- An understanding of the principles used to design heat transfer equipment in the chemical industry

3. Text book (TB):

- 1. Holman, J.P., "Heat Transfer (10th Ed.)", Tata McGraw Hill, 2011.
- 2. McCabe, W.L., J.C. Smith, and P. Harriott, "Unit Operations of Chemical Engineering (7th Ed.)", McGraw Hill, 2005

4. Reference books (R):

- R1 Yunus A. Cengel, "Heat Transfer a practical approach", McGraw Hill 2002.
- **R2** Welty, J.R., C.E. Wicks, R.E. Wilson, and G.L. Rorrer, "Fundamentals of Momentum, Heat and Mass Transfer (4th Ed.)", John Wiley & Sons, 2001.

5. Course Plan

Lecture	Learning	Topics to be covered	Chapter in the
No.	Objectives		Text Book
1-2	Basics of Heat	Introduction to conduction, Thermal conductivity	1.1 – 1.2 (T1)
	Transfer		
3 – 6	1-D steady state	1-D steady state heat conduction for Cartesian,	2.1 – 2.8 (T1); Ch
	heat conduction	Radial and Spherical coordinate system; with and	2 (R1)
		without heat source; Insulation and critical radius	
		of insulation.	
7 – 8	Heat Transfer from	Fins and their function; Thermal contact	2.9 – 2.11 (T1);
	extended surfaces	resistance	Ch 3 (R1)
9 – 11	1 –D unsteady-state	Lumped heat capacity system, Transient heat flow	4.1 – 4.4 (T1); Ch
	conduction	in a semi-infinite solid, Convective boundary	4 (R1)
		conditions	
12 – 19	Principles of	Viscous flow, Inviscid flow, Laminar and	5.1 – 5.6, 5.8,

	convection	turbulent boundary layer, Heat transfer in	5.10 – 5.11 (T1);	
		boundary layer - Energy equation of the boundary	Ch. 11 and 12 T2;	
		layer and thermal boundary layer	Ch 6 (R1)	
20 – 22	Forced convection	Empirical relations for pipe and tube flow, Flow	6.1 – 6.3 (T1); Ch	
	heat transfer	across cylinders and spheres.	12 T2, Ch 7 (R1)	
23 – 26	Natural convection	Theory and empirical relations for free convection	7.1 – 7.12 (T1);	
	Systems	from different geometric configurations such as	Ch 12 T2, Ch 8-9	
		plates, cylinder, sphere; Combined free and forced	(R1)	
		convection.		
27 – 31	Heat exchangers	Overall HT coefficient, Types of heat exchangers,	10.1 – 10.9 (T1);	
		LMTD, effectiveness, Co-current and counter-	Ch 15 (T2); Ch	
		current flows, Design considerations	13 (R1)	
32 - 34	Radiation heat	Mechanism and properties of radiation, Black	8.1 – 8.4 (T1); Ch	
	transfer	body and gray body radiation, shape factor.	14 T2; Ch 12	
			(R1)	
35-39	Condensation and	Condensation phenomena, Film condensation,	Ch. 9.1- 9.6 (TB);	
	boiling heat	Boiling heat transfer, The heat pipe	Ch 13 (T2); Ch	
	transfer		10 (R1)	

6. Evaluation Scheme

Evaluation	Duration	Weightage	Date, Time	Nature of
Component		(%)		Component
Mid Semester Test	90 min	30	17/03 2.00 - 3.30PM	СВ
Surprise Test (Min 2)	-	15	-	ОВ
Assignment (Min 1)	-	15	-	OB
Comprehensive	180 min	40	18/05 FN	СВ
Examination				

- 7. Chamber Consultation Hour: Will be announced in class.
- **8. Notices:** Course-related notices will be uploaded on the CMS website
- **9. Makeup exam Policy:** Make-up exam will be granted only for genuine cases with prior permission from the IC.
- **10.Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Dr. Iyman Abrar **Instructor–in-Charge**