Refresher Maths Course

Paul Dubois

${\bf September}\ 2022$

Abstract

This course teaches basic mathematical methodologies for proofs. It is intended for students with a lack of mathematical background, or with a lack of confidence in mathematics. We will try to cover most of the prerequisites of the courses in the Master's, i.e. basic algebra/analysis and basic application.

Contents

0	Introduction	3
1	Elementary Maths 1.1 Mathematical Objects & Notations	4 5 6 7 9 10
2	Complex numbers	11
3	Sizes of infinity	11
4	Asymptotic analysis (limits)	11
5	Infinite & partial sums	11
6	Functions & Inverses	11
7	Usual functions	11
8	Differentiation	11
9	Integration	11
10	Taylor series	11
11	Fourier series? (if not late!)	11
f 12	Differential calculus? (if not late!)	11
13	Vector spaces	11
14	Matrices	12

15 Non-linear multi-dimensional functions	12
16 Regressions	12
17 PCA? (if time)	12
18 Basis of ML (perceptron)? (if time)	12

0 Introduction

Hello! welcome to this maths refresher course for DSBA 2022! This is the best course ever!

Presentation

- Paul Dubois, PhD Student @ Centrale, end of 1st year
- Email: b00795695@essec.edu (for any question), answer within 1 working day

Course Format

Lectures

- 8*3h arranged as 1h20min lecture 1/3h break 1h20min lecture
- No pb class planned, but lectures will have integrated live exercises
- Interrupt if needed (but may also ask at the end of the lecture)

Examination

- Course is pass/fail
- Most (in fact hopefully all) of you will pass
- There will be sets of exercises (about one per lecture), it is advised to attempt it all (only the starred questions will be compulsory)
- As the goal is to learn, you will be able to resubmit exercise sets, but you will lose 10% every-time you re-submit (so that you have some incentive to try your best the 1st time)
- Best (n-1)/n count, need average $\geq 70\%$ to pass
- In the unlikely event of not passing, you will be able to do some extra work to pass

Questions?

1 Elementary Maths

Should be fairly easy, this section is just so that everyone is one the same page and use the same notation for the rest of the course. I will go fast as I assume you have already seen this before.

1.1 Mathematical Objects & Notations

Sets

Definition (Sets). Unordered list of elements.

Notation (Sets). $a \in A$, $\{a, b, c \dots\}$, $\{e \mid condition\}$, \emptyset

Remark (Russell Paradox). (digression)

Need to be careful when defining set: some definitions are pathological.

e.g.: Take
$$Y = \{x \mid x \notin x\}$$
: $Y \in Y \iff Y \notin Y$

Types of numbers

Definition (Booleans). The set of boolean numbers \mathbb{B} is $\{0,1\}$ or sometimes denoted $\{False, True\}$.

Definition (Naturals). The set of natural numbers \mathbb{N} is $\{0, 1, 2, 3, \dots\}$.

N.B.: some countries do not count 0 as a natural number; but we are in France, so in this course, we will.

N.B.(bis): If we need the naturals without zero, we will use \mathbb{N}^* .

Definition (Integers). The set of integral numbers \mathbb{Z} is $\{0, 1, -1, 2, -2, 3, -3, \dots\}$.

N.B.: If we need only the negative part of the integers, we will use \mathbb{Z}^- .

Definition (Rationals or Quotients or Fractions). The set of natural numbers \mathbb{Q} is $\{a/b \mid a \in \mathbb{Z}, b \in \mathbb{N}^*\}$.

Definition (Reals). The set of real numbers \mathbb{R} is the set of "all numbers you can think of": rational + irrationals (e.g.: roots).

Typical diagram:

Later, we will see complex numbers. In computer science, types matter a lot.

Functions

Definition (Functions). Assignment from a set to another.

Notation (Function). $f: X \to Y$, f(x) = blah, $f: x \mapsto blah$.

Question. Which ones of these function are well-defined?

- $f: k \in \{0, 1, 2, 3, 4\} \mapsto 24/k \in \mathbb{N}$
- $f: k \in \{1, 2, 3, 4\} \mapsto 24/k \in \mathbb{N}$
- $f: k \in \{1, 2, 3, 4, 5\} \mapsto 24/k \in \mathbb{N}$
- $f: k \in \{1, 2, 3, 4\} \mapsto k \in \{1, 2\}$
- $\bullet \ \ f: k \in \{1,2,3,4\} \mapsto k \in \{1,2,3,4,5\}$

Quantifiers

Notation (\forall). For all elements in set, e.g.: $\forall x \in \mathbb{R}, x^2 \geq 0$.

Notation (\exists). There exists an element in set, e.g.: $\exists x \in \mathbb{R}$ s.t. $x^2 > 1$.

Notation (\exists !). There exists a unique element in set, e.g.: \exists ! $x \in \mathbb{R}$ s.t. $x^2 \leq 0$.

Question. • Express "all natural numbers are positive" with quantifiers

• Express $\forall x \geq 0, \ \sqrt{x} \geq 0 \ in \ a \ sentence$

Definition (Subset / Inclusion). $X \subseteq Y$ if $\forall x \in X, x \in Y$

Definition (Disjoint Sets). X and Y are disjoint if $\forall x \in X, x \notin Y$ (or if $\forall y \in Y, y \notin X$).

Definition (Power Set).
$$\mathcal{P}(X) = \{Y \mid Y \subseteq X\}$$

e.g.: $\mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Scalars vs vectors 1D vs 2D:

To "select" a point in 2D, we need 2 numbers, giving a coordinate. In 3D, we would need 3 numbers, in 4D, 4 numbers, etc...

Definition (Cartesian Product).
$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$

 $e.g.: \{a, b\} \times \{1, 2, 3\} = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
 $e.g.: \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}$
 $Extension: X_1 \times \cdots \times X_n = \prod_{k=1}^n X_k$

Moving from one point to another gives a "translation". Again, we need ad many numbers as there are dimensions. Typically, we denote points horizontally, and vectors vertically.

1.2 Axioms

Here \star and \dagger will operations.

Definition (Associativity). \star is associative if $\forall x, y, z, (x \star y) \star z = x \star (y \star z)$

Definition (Commutativity). \star is associative if $\forall x, y, (x \star y) = y \star x$

Definition (Identity). 1_{\star} is identity for \star if $\forall x, 1_{\star} \star x = x \star 1_{\star} = x$

Definition (Annihilator). 0_{\star} is annihilator for \star if $\forall x$, $0_{\star} \star x = x \star 0_{\star} = 0_{\star}$

Definition (Distributivity). \star is distributive over \dagger if $\forall x, y, z \ x \star (y \dagger z) = (x \star y) \dagger (x \star z)$

of \wedge over \vee : $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$

Question. (make a table)

- Which of these are commutative: addition, subtraction, multiplication, division, power?
- Which of these are associative: addition, subtraction, multiplication, division, power?
- What is identity for: addition, subtraction, multiplication, division, power?
- What is annihilator for: addition, subtraction, multiplication, division, power?

Question. • Think of an operation that is commutative, but not associative

• Think of an operation that is associative, but not commutative

1.3 Boolean algebra

The reason we'll do some is because of it's application to programming, in particular to conditions ('if' blocks and 'while' loops).

Basic operators

Definition (Conjunction). $x \wedge y = xy$

Definition (Intersection). $X \cap Y = \{z \mid (z \in X) \land (z \in Y)\}$

Remark (Disjoint Sets and Intersection). Disjoint sets have empty intersection.

Definition (Disjunction). $x \lor y = \min(x + y, 1)$

Definition (Union). $X \cup Y = \{z \mid (z \in X) \lor (z \in Y)\}$

Definition (Negation). $\neg: 0, 1 \mapsto 1, 0$

Definition (Set minus / Complement). $X \setminus Y = \{x \in X \mid \neg(x \in Y)\}$

[Draw diagrams]

Question. Selecting points outside a given region.

Basic properties

Property (Boolean algebra matching ordinary algebra). Same laws as ordinary algebra when one matches $up \lor with \ addition \ and \land with \ multiplication$.

- Associativity of \vee : $x \vee (y \vee z) = (x \vee y) \vee z$
- Associativity of \wedge : $x \wedge (y \wedge z) = (x \wedge y) \wedge z$
- Commutativity of \vee : $x \vee y = y \vee x$
- Commutativity of \wedge : $x \wedge y = y \wedge x$
- Distributivity of \wedge over \vee : $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
- 0 is identity for \vee : $x \vee 0 = x$
- 1 is identity for \wedge : $x \wedge 1 = x$
- 0 is annihilator for \wedge : $x \wedge 0 = 0$

Property (Boolean algebra specific properties). The following laws hold in Boolean algebra, but not in ordinary algebra:

- $Idempotence\ of \lor: x \lor x = x$
- $Idempotence \ of \land : x \land x = x$
- Absorption of \vee over \wedge : $x \vee (x \wedge y) = x \wedge y$
- Absorption of \land over \lor : $x \land (x \lor y) = x \lor y$
- Distributivity of \vee over \wedge : $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$
- 1 is annihilator for \vee : $x \vee 1 = 1$

Property (De Morgan Laws). $\neg(x \land y) = \neg x \lor \neg y$ and $\neg(x \lor y) = \neg x \land \neg y$

Proof. Truth-tables; prove De Morgan, others as exercise (or just believe me)

Other operators

Definition (Exclusive Or). $x \oplus y$

Definition (Implication). $x \implies y$

Property (Implication and Inclusion). If $\forall x \in X, P_1(x) \implies P_2(x)$, then $\{x \in X \mid P_1(x)\} \subset \{x \in X \mid P_2(x)\}$.

Proof. Trivial.
$$\Box$$

Definition (If and only if). $x \iff y$

Question. Express in terms of and, or, not:

- ⊕
- ==>
- =
- $\bullet \iff$

Write 1st and 2nd digit of addition of 3 binary numbers a, b, c.

Negation of quantified propositions

Property (Negation of \forall). $\neg \forall x \in X, P(x) = \exists x \in X, \neg P(x)$

Property (Negation of \exists). $\neg \exists x \in X, P(x) = \forall x \in X, \neg P(x)$

Notation (Quantifiers and the empty set). $\forall x \in \emptyset, \ldots \text{ is } true ; \exists x \in \emptyset, \ldots \text{ is } false$

Question. Negate the following

- $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \ s.t. \ n > x$
- $(x_n \to x)$: $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n > N, |x_n x| < \epsilon$

1.4 Proofs

Proofs play a major role in mathematics. Except axioms, every statement needs a proof to be valid. There are a 4 common approaches to prove a statement:

Direct proof This techniques consists of just going straight in and aiming at the statement you want.

Property (Archimedian Property). For any real number, there exists an integer even greater. That is $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \ s.t. \ x < n$.

Proof. Let
$$n = \lfloor x \rfloor + 1$$
: then $x - 1 < \lfloor x \rfloor$ so $x < \lfloor x \rfloor = n$.

Splitting cases This techniques consists splitting the statement to prove in several easier ones.

Property. For any $n \in \mathbb{Z}$, n and n^2 share the same parity.

Proof. We split into 2 cases: n even and n odd:

- Suppose n is even: n = 2k so $n^2 = 4k^2 = 2(2k^2)$, i.e. n^2 is even.
- Suppose n is odd: n = 2k + 1 so $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$, i.e. n^2 is odd.

Contradiction This techniques consists in assuming the opposite of what you want, deriving a contradiction (both P and $\neg P$), then conclude the opposite of what was assumed.

Property. $\sqrt{2} \notin \mathbb{Q}$

Proof. Suppose $\sqrt{2} \in \mathbb{Q}$: then there are $a, b \in \mathbb{N}$ such that $\sqrt{2} = a/b$. Moreover, we can take a and b so that they have no common divisors. Now, we have $2b^2 = a^2$. So a^2 is even, so a is even, let a = 2a'. Then, $2b^2 = 4a'^2$ so $b^2 = 2a'^2$. Thus, b^2 is even, so b is even. Both a and b are divisible by 2, which contradicts them having no common divisors. Finally, we conclude our initial assumption was wrong, so $\sqrt{2} \notin \mathbb{Q}$.

Induction This techniques is only applicable if we wish to prove a statement for all natural numbers. The idea is similar to domino: each statement will imply the next one. Mathematically, if P(n) are statements $(n \in \mathbb{N})$, we give 2 proofs: First, that P(0) is true. Then, that $P(n) \Longrightarrow P(n+1)$.

Property. $\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$

Proof. **Initialization:** for n = 0:

$$\sum_{k=0}^{0} k = 0 \text{ and } \frac{0(0+1)}{2} = 0$$

so clearly

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2} \text{ for } n = 0$$

Induction: suppose $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$, we need $\sum_{k=0}^{n+1} k = \frac{(n+1)(n+2)}{2}$

$$\sum_{k=0}^{n+1} k = (n+1) + \sum_{k=0}^{n} k$$
$$= (n+1) + \frac{n(n+1)}{2}$$
$$= \frac{(n+2)(n+1)}{2}$$

Be careful, BOTH initialization & induction are important. A misleading "proof":

Property (FALSE PROPERTY). Horses are all the same colour.

FALSE PROOF. We will prove by induction that any set of n horses must be a set of horses all being the same colour.

Initialization: for set of 1 horse, clearly, it's true.

Induction: suppose all sets of n horses are uni-colour; we need sets of n+1 horses to be uni-colour.

Take $H = \{h_1, h_2, \dots, h_n, h_{n+1}\}$ a set of n+1 horses. Then let $H_1 = \{h_1, \dots, h_n, \}$ and $H_2 = \{h_2, \dots, h_{n+1}\}$. By induction, H_1 and H_2 must be uni-colour. h_n belongs to both sets, so the colour of horses in both sets mus be the same, and H is uni-colour.

Question. • Show that 12n-6 is divisible by 6 for every positive integer n (you do not need induction for this one).

- Show that n divisible by 6 if and only if n divisible by 2 and 3.
- Show that n^2 divisible by 3 if and only if n divisible 3.1
- Show $\sqrt{3} \notin \mathbb{Q}$.
- Show that $2^n \ge 2n$ for all $n \in \mathbb{N}$

1.5 Basic geometry

This is high-school material, so we will just warm it up with a few exercises:

Question. Find an equation of the following lines in the xy-plane:

- vertical, crossing the x-axis at 5
- horizontal, crossing the y-axis at 7
- crossing the points (2,3) and (-3,-7)
- crossing the point (5,1) with slope -2
- crossing the point (5,1) perpendicular to the last one

Question. Find an equation of the following planes in the xyz-space:

- horizontal, crossing the z-axis at -8
- crossing the point (5, 1-3) with normal vector (-2, 6, -9)
- crossing the points (2,3,1), (-10,4,-5), and (-3,-7,-1)

Question. Describe (give the associated set of points) the following lines in the xyz-space:

- vertical, crossing the xy-plane at (1,1)
- crossing the points (2,3,-1) with normal vector (8,5,9)
- intersection of the planes with equation 2z + 3y 6x = 8 and -3z + 4y 8x = 7

¹You may go faster using https://en.wikipedia.org/wiki/Modular_arithmetic

1.6 Sets

- \min/\max & $\sup/\inf =>$ start using for all / there exists

1.7 Integers

- prime numbers (infinite nb by Euclide) - unique factorization - finding primes between 1 and 100 = > time complexity of algo?

2 Complex numbers

argand diagram

3 Sizes of infinity

[recycling house 6 pres']

4 Asymptotic analysis (limits)

- def of sequence: recursive and general form - usual sequences (arithmetic/geometric) - convergence of sequences

5 Infinite & partial sums

- sum of sequences - sum of usual (arithmetic/geometric) sequences - def of series - convergence of series

6 Functions & Inverses

finding roots & inverses

7 Usual functions

- plot & limit behaviour of: polynomials, exp, log, sin, cos, tan, sinh, cosh, tanh, arccos, arcsin, arctan

8 Differentiation

- from scratch - derivatives of usual functions - chain-law & co

9 Integration

- from scratch (area under curve, taking limit of rectangles) - antiderivative (do proof?) - integral of usual functions - integration by part? (if time!) - integration by substitution? (if time!)

10 Taylor series

- theory & practice - usual Taylor expansions - example of convergence

11 Fourier series? (if not late!)

12 Differential calculus? (if not late!)

13 Vector spaces

- def of vect sp - norm - basic propr

14 Matrices

- def - linear mapping of vect sp - inverse: def, existance (det), finding inverse - rank & kernel - eigenvalues

15 Non-linear multi-dimensional functions

- eg: cost func - partial derivatives - gradient - convexity? - optim: gradient descent

16 Regressions

 ${\operatorname{\text{--}}}$ by hand ${\operatorname{\text{--}}}$ theory ${\operatorname{\text{--}}}$ non linear

17 PCA? (if time)

18 Basis of ML (perceptron)? (if time)