1) Periodieke beweging

- *Periodieke beweging = beweging die zich in de tijd herhaalt
- ==> Periode T = duur van 1 cyclus.
- ==> frequentie f = aantal cycli per tijdseenheid
- \rightarrow Verband: $T = \frac{1}{f}$

2) Mechanische trilling

- *Mechanische trilling = beweging van een punt(massa) ten opzichte van zijn evenwichtsstand.
- --> Gemeten met een seismogram.
- *Uitwijking y(t) = uitwijking van een slinger/massa-veersysteem op een tijdstip t t.o.v. de evenwichtsstand.
- ==> Eenheid: m.

3) Harmonische trilling

- *De harmonische trilling is een mechanische trilling die een sinusfunctie volgt.
- *De voorwerp die de HT uitvoert = de harmonische oscillator.

3.1) Eenheden van de sinusfunctie

- *A = amplitude = maximale uitwijking t.o.v. de y-as.
- $*\omega = rac{2\pi}{T}$ (b in sinusfunctie) ==> noemen we de pulsatie.
- * $\varphi = \frac{2\pi}{T}t + \varphi_0$ (φ is fase --> φ_0 = beginfase) = $\omega t + \varphi_0$

3.2) Plaatsfunctie en faseverschil

- *Plaatsfunctie: $y(t) = A \cdot \sin\left(\frac{2\pi}{T}t + \varphi_0\right) = A \cdot \sin(\omega t + \varphi_0)$
- *Faseverschil = verschil in startplaats tussen twéé bewegingen.

$$-->\frac{\Delta\varphi}{\Lambda t}=\frac{2\pi}{T}$$

- ==> voorwerp is in fase als: $\Delta \varphi = 0, 2\pi, 4\pi$...
- --> Want: beweging gebeurt gewoon ietsje later.
- ==> voorwerp is in tegenfase als: $\Delta \varphi = \pi, 3\pi$...
- --> Want: beweging gebeurt later + totaal omgekeerd!

3.3) Snelheidsfunctie

- *Snelheidsfunctie: $v_v(t) = A \cdot \omega \cdot \cos(\omega t + \varphi_0)$
- --> Snelheid = afgeleide van de plaats: $D(\sin(f(x)) = \cos(f(x)) \cdot D(f(x))$
- $\rightarrow y(t) = max \rightarrow v = 0$ (als de snelheid 0 m/s is, is de uitwijking maximaal)
- $\rightarrow y(t) = min \rightarrow v = 0$
 - --> Herinner jezelf: nulwaarden éérste afgeleide = extremawaarde.

- \Rightarrow $y(t) = 0 \rightarrow v = max$ (y = 0m noemen we de evenwichtsstand)
 - --> Als de uitwijking 0 is, is de snelheid (= afgeleide) maximaal.
- \rightarrow Beweging in de positieve zin van de y-as: $v_y = (+)\frac{m}{s}$
- \rightarrow Beweging in de negatieve zin van de y-as: $v_y = (-)\frac{m}{s}$

3.4) Versnellingsfunctie

- $*a_y(t) = -A \cdot \omega^2 \cdot \sin(\omega t + \varphi_0)$
- --> Versnelling is de 1^{ste} afgeleide v/d snelheid: $D(\cos(f(x))) = -\sin(f(x)) \cdot D(f(x))$
- $--> a = max \Leftrightarrow y(t) = max.$
- $--> a = 0 \Leftrightarrow y(t) = 0$
- → Omdat: a en y allebei sinusfuncties zijn!

3.5) Kracht bij een HT

- *Formule: $F_y(t) = -k \cdot y(t)$
- $--> k = m \cdot \omega^2$
- \rightarrow F heeft een tegengestelde teken aan y(t), we noemen F daarom ook wel de terugroepkracht.
 - --> Waarom? F trekt als het ware de harmonische trilling terug naar haar evenwichtsstand, ze roept de harmonische trilling als het ware terug naar het midden.

3.6) Periode

- *Massa-veersysteem: $T=2\pi\sqrt{\frac{m}{k}}$
- = massa die ophangt aan een welbepaalde veer.
- *Slinger: $T = 2\pi \sqrt{\frac{l}{g}}$
- → slinger voert bij kleine uitwijkingen een HT uit, deze formule is een benadering. Bij grote uitwijkingen geldt deze formule niet meer.
- → De periode hangt niet af van de massa van de slinger.

→ Je ziet dat de periode af hangt van g, de zwaarteveldversnelling. Als je je op een andere planeet bevindt, gaat de tijd dus sneller of trager.

3.7) Energie

3.7.1) Kinetische-, potentiële en totale energie

*Kinetische energie: $E_{kin} = \frac{1}{2} k . A^2 . \cos^2(\omega t + \varphi_0)$ (afleiding mogelijk via E(kin) = $mv^2/2$)

*Potentiële energie: $\frac{E_{pot}}{2} = \frac{1}{2} k \cdot A^2 \sin^2(\omega t + \varphi_0)$

(Afleiding mogelijk via formule voor potentiële veerenergie: E(pot) = k. $delta(I)^2/2$)

*Totale energie: $E_{pot} = \frac{1}{2} k \cdot A^2 = cte$.

3.7.2) Belangrijke opmerkingen

- (1) Als de kinetische- of potentiële energie maximaal is, geldt dat cos of sin = 1.
- (2) $E_{pot} = maximaal$ als y(t) = maximaal
 - --> Logisch: *hoe verder ge iets uitrekt, hoe meer potentiële energie het heeft.
 - *Ook: ze zijn allebei sinusfuncties!
- (3) $E_{kin} = maximaal$ als $v_v(t) = maximaal$
 - --> Logisch: *Ze zijn allemaal cosinusfuncties!

4) Gedempte trilling

*In reële situaties blijven trillingen nooit voortgaan maar worden ze gestopt door de wrijvingskracht, we spreken dan van een gedempte trilling.

^{*}De amplitude A neemt exponentieel af met de tijd, de periode T blijft echter wel constant.

5) Resonantie

- *Eigenfrequentie: dit is de frequentie van trillingen die een mechanisch systeem bezit wanneer ze een uitwijking verkrijgt.
- *Resonantie: We spreken van resonantie als een systeem optimaal meetrilt met een opgelegde kracht die harmonisch verandert in de tijd.
- --> deze "optimale meetril"-frequentie normen we de resonantiefrequentie.
- → Bijvoorbeeld: kind op schommel --> kind levert kracht door benen in te trekken en uit te strekken
 - --> frequentie(beenkracht kind) = frequentie(schommel) --> kind heeft maximale A bereikt!

Fysica – samenvatting harmonische trilling – theorie