Radiology Report Generation from Chest X-ray Image

Team Members:

Abilash Maharjan [THA077BCT004]

Anmol Kumar Gupta [THA077BCT011]

Shailendra Rawal [THA077BCT041]

Supervised By:

Er. Suramya Sharma Dahal

Department of Electronics and Computer Engineering Institute of Engineering, Thapathali Campus

July 22, 2024

Presentation Outline

- Methodology
- Results
- Discussion
- Remaining Tasks

Methodology

System Architecture [1]

System Architecture [2]

Dataset Preparation

- Dataset Collection
- Prepare Dataset for Chest X-ray Classification Model
- Prepare Dataset for Findings Generation Model
- Prepare Dataset for Impressions Generation Model
- Train, Test, and Validation Split

- Machine Learning Models [1]
 - Chest X-ray Classification Model
 - Data Augmentation (Rotation, Horizontal Flip, Zoom)
 - Image Preprocessing (Resizing, Normalization)
 - Load Pre-trained Model (ResNet101, DenseNet121)
 - Model is compiled with appropriate loss functions, optimizers and evaluation metrics
 - Extract relevant features
 - Predicted class is given as output
 - Training and Fine-tuning

- Machine Learning Models [2]
 - Findings Generation Model
 - CNN or ViT for visual features extraction
 - Feed into transformer encoder
 - Convert findings text into embeddings
 - Process the features and findings
 - Output detailed text finding
 - Training and Fine-tuning
 - Model evaluation and testing

- Machine Learning Models [3]
 - Impressions Generation Model
 - Tokenize findings
 - Convert into embeddings
 - Process embeddings
 - Generate high-level impressions
 - Output summarized impressions
 - Training and Fine-tuning
 - Model evaluation and testing

Architecture of ResNet101

Architecture of DenseNet121

Datasets

For generating report from Chest X-ray image, the following set of data will be used:

- 1. PhysioNet MIMIC-CXR
- 2. Indiana University (IU) Chest X-ray
- 3. NIH Chest X-rays

Chest X-ray Images from Dataset

Results [1]

Exploratory Data Analysis

Patient Gender	count
М	63340
F	48780

Results [2]

Exploratory Data Analysis (cont.)

Results [3]

Exploratory Data Analysis (cont.)

Finding Labels	count
No Finding	60353
Infiltration	9546
Atelectasis	4214
Effusion	3955
Nodule	2705
Pneumothorax	2193
Mass	2139
Consolidation	1310
Pleural_Thickening	1126
Cardiomegaly	1093
Emphysema	892
Fibrosis	727
Edema	627
Pneumonia	322
Hernia	110

Results [4]

Augmented data

Results [5]

Discussion

- Imbalance Dataset
- Lack of annotations in the dataset
- Very less variation in the dataset
- Challenge for creating a model that can detect very subtle changes in the X-ray images
- Detection of multiple disease from a single image

Remaining Tasks

- Training Chest X-ray Classification Model
- Development of User Interface
- Preparation of Dataset for Findings and Impression Generation Model
- Training Findings and Impression Generation Model
- Fine tuning the models

THANK YOU!!!