Poisson Likelihood

Suppose that a r.v. X obeys a Poisson distribution $\mathcal{P}(\lambda)$, characterized by the following Probability Mass Function (PMF)

$$f_{\lambda}(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$

If we observe a sample $x_1,...,x_n$, then the likelihood is just the product of the individual PMF

$$\pi(x_1, ..., x_n \mid \lambda) = \frac{\lambda^{\sum_{i=1}^n x_i} e^{-n\lambda}}{\prod_{i=1}^n (x_i!)}$$
$$= \frac{\lambda^{n\bar{x}} e^{-n\lambda}}{\prod_{i=1}^n (x_i!)}$$

where the model parameter λ is the count of some event of interest and $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Some examples of Poisson samples

Gamma prior

A convenient choice to model the uncertainty about λ is a Gamma distribution as prior, since the support of such a distribution is the interval $[0,\infty[$. A Gamma prior with shape parameter α and scale parameter β has the following form

$$\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\lambda \beta}$$

where $\Gamma(\alpha)$ is the Gamma function, defined as $\int_0^\infty x^{\alpha-1}e^{-x}dx=(\alpha-1)!.$

Let
$$X \sim Gamma(\alpha, \beta)$$
. Then $E[X] = \alpha/\beta$ and $var(X) = \alpha/\beta^2$.

It is a convenient and flexible choice since the Gamma distribution can take a wide variety of shapes.

Some examples of the Gamma family

Gamma posterior (1/2)

The posterior distribution for λ if our data $x_1, ..., x_n$ is modeled with a Poisson likelihood and a Gamma prior is chosen for λ will also have the functional form of a Gamma r.v. Using the Bayes theorem, we have that

$$\pi(\lambda \mid x_1, ..., x_n) = \frac{\pi(x_1, ..., x_n \mid \lambda)\pi(\lambda)}{\pi(x_1, ..., x_n)}$$

$$= \frac{\lambda^{n\bar{x}}e^{-n\lambda}}{\prod_{i=1}^n (x_i!)} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1}e^{-\lambda\beta}$$

$$= \underbrace{\frac{1}{\prod_{i=1}^n (x_i!)} \frac{\beta^{\alpha}}{\Gamma(\alpha)}}_{\text{do NOT depend on } \lambda} \lambda^{n\bar{x}}e^{-n\lambda}\lambda^{\alpha-1}e^{-\lambda\beta}$$

$$\propto \lambda^{\alpha+n\bar{x}-1}e^{-(n+\beta)\lambda}$$

Gamma posterior (2/2)

So we find that $\pi(\lambda \mid x_1,...,x_n) \propto Gamma(\alpha + n\bar{x},n+\beta)$. The posterior mean and variance are given by

$$E[\lambda] = \frac{\alpha + n\bar{x}}{n+\beta}$$
 $var(\lambda) = \frac{\alpha + n\bar{x}}{(n+\beta)^2}$

where $n\bar{x} = \sum_{i=1}^n x_i$ is the sum of the counts and n is the sample size. Let's take a few examples and plot the likelihood, a possible prior and the posterior, all at once in R.

Working example

Suppose that we record the number of a specific bacteria present in 20 water samples taken in the Mekong Delta (Vietnam) so that we have the following data at hand:

$$x_i = 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 0, 5, 2, 0, 0, 2, 0, 1$$

So assuming a Poisson likelihood with parameter $\lambda=1$, namely a $\mathcal{P}(1)$ likelihood for the data and using a Gamma(8,8) prior, with mean 2/2=1 and variance $2/2^2=0.5$, what is the posterior mean and the 95% credible intreval for the model parameter?

Working example: posterior

Posterior distribution in blue - Ga(19, 22)

Posterior quantities obtained from direct sampling

```
1 # Posterior mean, posterior variance and 95% Credible Interval including the
        sample median
 2 set. seed (2023)
 3 data1 = rpois(n = n, lambda = lambda1)
 4 alpha_posterior = round(alpha1 + n*mean(data1), 2) # 19
 5 beta_posterior = n + beta1 # 22
 7 pmean = alpha posterior / beta posterior
 8 pmean
9 # [1] 0.8636364
10
11 pvariance = alpha posterior / beta posterior^2
12 pvariance
13 # [1] 0.0392562
14
15 # 95% Credible Interval obtained by direct sampling (simulation)
16 set. seed (2023)
17 round(quantile(rgamma(n = 10^8, alpha posterior, beta posterior), probs = c
        (0.025, 0.5, 0.975)),4)
    2.5% 50% 97.5%
18 #
19 # 0.5200 0.8486 1.2931
20
21 # Posterior mean obtained from direct sampling
22 set.seed(2023)
23 mean(rgamma(n = 10^8, alpha posterior, beta posterior))
24 # [1] 0.8928863
```

Working example: in conclusion

So the theoretical posterior mean is given by

$$E[\lambda] = \frac{\alpha + n\bar{x}}{n+\beta} = \frac{2+20*0.85}{20+2} = 19/22 = 0.8636364$$

By direct sampling, using 10^8 number of simulations, the posterior sample mean is $0.8636725\,$

By direct sampling, a 95% Credible Interval is given by

$$[-0.5200, 1.2931]$$

So, combining modeling and simulations, we are now able to generalize and infer to the whole population of bacteria in the Mekong Delta those values from a sample of size 20.

Further reading and code

```
The R Project for Statistical Computing: https://www.r-project.org/
```

Accessing the R code: https://github.com/JRigh/Poisson-Gamma-example-in-R/blob/main/ Poisson-Gamma