Algèbre booléenne

Exercice 1

1) Quelle est l'équation de ce circuit ?

On va parcourir tout le circuit et, à chaque porte, on effectue les opérations correspondantes.

$$S = \overline{\bar{A} + \bar{B}}$$

2) Quelle est la table de vérité?

A	В	Ā	$\overline{\mathrm{B}}$	$\overline{A} + \overline{B}$	$\overline{\overline{A} + \overline{B}}$
0	0	1	1	1	0
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	0	1

3) Remplacer ce circuit par un circuit plus simple.

À partir de la table de vérité, on remarque que notre circuit vaut : $\overline{\overline{A}+\overline{B}}=A$. B On a donc une simple porte ET !

4) Refaire les questions 1 à 3 pour le circuit ci-dessous.

A	В	A · B	$\overline{A \cdot B}$	$A \cdot \overline{A \cdot B}$	$\overline{A \cdot \overline{A \cdot B}}$	$B \cdot \overline{A \cdot B}$	$\overline{B \cdot \overline{A \cdot B}}$	$\overline{A \cdot \overline{A \cdot B}} \cdot \overline{B \cdot \overline{A \cdot B}}$	$\overline{A\cdot \overline{A\cdot B}\cdot \overline{B\cdot \overline{A\cdot B}}}$
0	0	0	1	0	1	0	1	1	0
0	1	0	1	0	1	1	0	0	1
1	0	0	1	1	0	0	1	0	1
1	1	1	0	0	1	0	1	1	0

A	В	$A \cdot B$	$\overline{\overline{A \cdot \overline{A} \cdot B} \cdot \overline{B \cdot \overline{A} \cdot B}}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Exercice 2

En général, quand on construit des circuits afin de les intégrer dans le microprocesseur, on part de circuits déjà partiellement assemblés. Parmi ces circuits, il existe deux exemples importants : les additionneurs et les décodeurs. Ce exercice porte sur les décodeurs.

Un décodeur n bits possède n entrées et 2^n sorties. Les n bits en entrée sont utilisés pour mettre à 1 la sortie dont le numéro est égal au nombre codé en binaire. Il met les autres sorties à 0.

1) Combien d'entrées $(e_0,e_1,e_2\dots)$ et de sorties $(s_0,s_1,s_2\dots)$ aura un décodeur 2 bits ?

2 entrées et $2^2 = 4$ sorties

2) On donne la table de vérité ci-dessous :

Entrées		Sorties						
A ₁	A ₀	S ₀	S ₁	S ₂	S ₃			
0	0	1	0	0	0			
0	1	0	1	0	0			
1	0	0	0	1	0			
1	1	0	0	0	1			

On procédera sortie par sortie. Que remarquez-vous ? On a besoin de portes ET et OU seulement. Toutes ces formules semblent être codées en binaire.

$$s_0 = \overline{A_1} \cdot \overline{A_0}$$

$$s_1 = \overline{A_1} \cdot A_0$$

$$s_2 = A_1 \cdot \overline{A_0}$$

$$s_3 = A_1 \cdot A_0$$

Porte NON simplifiée (pour éviter de mettre des triangles partout)

- 3) Donnez une représentation du schéma électronique d'un décodeur 2 bits. $A_0 = A_1 = A_1 = A_1 = A_2 = A_1 = A_2 = A_$
- 4) 3 entrées et et $2^3 = 8$ sorties
- 5) Faire la table de vérité et en déduire les formules permettant de calculer les sorties.

Entrées			Sorties							
A_2	A ₁	A ₀	S ₀	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

$$\begin{split} s_0 &= \overline{A_2} \cdot \overline{A_1} \cdot \overline{A_0} \\ s_1 &= \overline{A_2} \cdot \overline{A_1} \cdot A_0 \\ s_2 &= \overline{A_2} \cdot A_1 \cdot \overline{A_0} \\ s_3 &= \overline{A_2} \cdot A_1 \cdot A_0 \\ \end{split} \qquad \begin{aligned} s_4 &= A_2 \cdot \overline{A_1} \cdot \overline{A_0} \\ s_5 &= A_2 \cdot \overline{A_1} \cdot A_0 \\ s_6 &= A_2 \cdot A_1 \cdot \overline{A_0} \\ s_7 &= A_2 \cdot A_1 \cdot A_0 \end{aligned}$$

6) Donnez une représentation du schéma électronique d'un décodeur 3 bits.

C'est assez illisible. C'est pour cela que l'on écrit des portes avec plus que 2 entrées (même si en théorie, et en pratique), elles n'en ont que deux !

