0.0.1 Phương pháp đơn hình

Thuật toán 1 (Đơn hình). *Ta có dạng chính tắc của bài toán được viết lại dưới dạng*

$$\begin{cases} (-z) + 0x_B + c^T x_N = -z_0 \\ Ix_B + Ax_N = b. \end{cases}$$
 (1)

 $v\acute{o}i \ x_B \ge 0, \ x_N = 0, \ z = z_0.$ Thuật toán đơn hình theo các bước sau:

Bước 1. Thiết lập. Xác định biến c_j nhỏ nhất, ký hiệu

$$c_s = \min_j c_j \tag{2}$$

Bước 2. Kiểm tra tối ưu. Nếu $\forall c_s \geq 0$, bài toán được giải và thuật toán dừng lại. Nếu $\exists c_s \leq 0$, chuyển sang bước 3.

Bước 3. Chọn biến vào. Nếu $\exists c_s < 0$, đánh dấu c_s là biến vào và chuyển sang bước 4.

Bước 4. Kiểm tra giới hạn. Nếu $A_s \leq 0$, ta thực hiện loạt biến đổi sau:

$$z = z_0 + c_s x_s, \ x_B = b - A_s x_s, \ x_j = 0 \quad (j \neq s)$$
 (3)

trong đó x_j là biến phi cơ sở. Nếu $z \to -\infty$ tương ứng $x_s \to \infty$, bài toán được giải và thuật toán kết thúc, nếu không chuyển sang bước 5.

Bước 5. Chọn biến ra. Ta đánh dấu biến x_j đã thực hiện trước đó, ký hiệu x_r thành biến ra x_s với điều kiện:

$$x_s = \frac{b_r}{a_{rs}} = \min_{a_{is} > 0} \quad \frac{b_i}{a_{is}} \ge 0, \quad (a_{rs} > 0).$$
 (4)

Sau đó chuyển sang bước 6.

Bước 6. Xoay trục. Chọn a_{rs} làm phần tử trụ, xác định a_{ij} mới ký hiệu a'_{ij} bằng cách thực hiện thao tác:

$$a'_{ij} = a_{ij} - \frac{a_{is}a_{rj}}{a_{rs}} \tag{5}$$

sau đó quay trở lại bước 1.