

ÁLGEBRA LINEAL AÑO 2020

Ejercitación Complementaria N°10 VALORES Y VECTORES PROPIOS DE UNA MATRIZ

- **1.** Sea $A \in M_{3\times 3}$ cuyos valores propios son $\lambda_1 = 1$, $\lambda_2 = 5$. Sabiendo que $\rho(A-I_3)=1$, indicar justificando cuál de los valores propios tiene multiplicidad algebraica 2.
- **2.** Demuestre que si λ es un valor propio de una matriz A entonces $m\lambda$ es un valor propio de la matriz $mA \quad \forall m \in R-\{0\}.$
- **3.** Pruebe que la matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tiene
- dos valores propios reales distintos si $(a-d)^2 + 4bc$ >0
- dos valores propios reales iguales si $(a-d)^2 + 4bc = 0$
- ningún valor propio real si $(a-d)^2+4bc \ \langle \ 0$
- 4. Demuestre que 0 es un autovalor de la matriz A si y sólo si A no es invertible.
- 5. Demuestre que si A es una matriz de nxn
 - a) Y λ es un valor propio de A con vector propio correspondiente x entonces todo múltiplo escalar de x (diferente del vector nulo) también es un vector propio de A. (Ayuda: considere el vector c x con (c \in R- $\{0\}$) y demuestre que satisface la ecuación de vector propio).
 - b) Y λ es un valor propio de A con vectores propios correspondientes x_1 y x_2 entonces x_1+x_2 también es un vector propio de A.

Observación: Las propiedades del ejercicio 5 son la demostración de la cerradura de la suma y de la multiplicación por un escalar en el espacio E_{λ} (Teorema 8.1.2 de Grossman, 7ma edición)

6- Determine si cada afirmación es verdadera o falsa. En todos los ítems justifique:

a)
$$v = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$$
 es vector propio de la matriz $A = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$.

- b) Si los VAP de una matriz M de 3x3 son $\lambda_1=-2$, $\lambda_2=1$, $\lambda_3=0$ entonces los VAP M⁻¹ son $\lambda_1=\frac{-1}{2}$, $\lambda_2=1$, $\lambda_3=0$.
- c) Sabiendo que el polinomio característico de una matriz se puede factorizar como

$$(-1)^{n} p(\lambda) = (\lambda - \lambda_{1})^{r_{1}} (\lambda - \lambda_{2})^{r_{2}} \cdots (\lambda - \lambda_{m})^{r_{m}} = 0$$
(8.1.10)

Los números r_1, r_2, \ldots, r_m se denominan multiplicidades algebraicas de los valores característicos $\lambda_1, \lambda_2, \ldots, \lambda_m$, respectivamente.

Grossman, 2012, p 549

Si A es una matriz de 3x3 que tiene valores propios $\lambda_1=-2$, $\lambda_2=$

- $3,\lambda_3=1$ entonces el polinomio característico es $p(\lambda)=\lambda~(\lambda^2+1).$
- d) Si A es una matriz de 3x3 que tiene valores propios $\lambda_1=-2$, $\lambda_2=$
- $3, \lambda_3 = 1$ entonces el polinomio característico de A es

$$p(\lambda) = -(\lambda - 2)(\lambda - 3)(\lambda - 1)$$

ALGUNOS EJERCICIOS RESUELTOS

1. Como $\rho(A-13)=\rho(A-1.I_3)=1$ y la matriz A-1.I₃ es una matriz de 3x3 resulta que $v(A-1.I_3)=2=mg(\lambda 1=1)$.

Ya que para cada valor propio la multiplicidad geométrica es menor o igual que la algebraica, la multiplicidad algebraica de $\lambda 1$ =1 puede ser 2,3,4.... Sin embargo como la suma de las multiplicidades algebraicas es igual al tamaño de la

matriz debe ser ma($\lambda 1=1$)= 2 porque de otro modo ma($\lambda 2=5$)=0, absurdo.

2. Este ejercicio afirma que si λ es un valor propio de una matriz A entonces todo múltiplo m no nulo de λ es un valor propio de la matriz mA.

Si λ es un vap de A entonces $\exists v \neq 0$ tal que $Av = \lambda v$.

Multiplicando m.a.m por $m \in R$ - {0} resulta que $m(Av)=m(\lambda v) \Rightarrow (mA) v = (m\lambda) v \Rightarrow m\lambda$ es un vap de mA.

3. Sea
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Entonces $p(\lambda) = det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix} = (a - \lambda) \cdot (d - \lambda) - bc = ad - a\lambda - d\lambda + \lambda^2 - bc = \lambda^2 - (a + d)\lambda + (ad - bc)$

Las soluciones de la ecuación $\lambda^2 - (a+d)\lambda + (ad-bc) = 0$ son

$$\lambda = \frac{(a+d)\pm\sqrt{[(-1)(a+d)]^2 - 4(ad-bc)}}{2} = \frac{(a+d)\pm\sqrt{a^2 + 2ad + d^2 - 4ad + 4bc}}{2} = \frac{(a+d)\pm\sqrt{a^2 - 2ad + d^2 + 4bc}}{2} = \frac{(a+d)\pm\sqrt{(a-d)^2 + 4bc}}{2}$$

$$(*)$$

Entonces los valores propios de A:

- o son dos números reales distintos si el radicando de la raíz de (*) es positivo, es decir si $(a-d)^2 + 4bc > 0$.
- o son dos números reales iguales si el radicando de la raíz de (*) es cero
- o no son números reales si el radicando de la raíz de (*) es negativo.
- 4. Supongamos que λ =0 es un valor propio de A. Entonces mg(λ =0) \geq 1. Como v(A)= v(A-0I)= mg(λ =0)

(reveer la definición de multiplicidad geométrica en la pág. 5456 de

Grossman(7ma edición)) resulta que la $v(A) \neq 0$ y, por el Teorema de Resumen, A no es invertible.

6.

a) Si v es vector propio de la matriz A entonces existe un número (real o complejo) λ para el cual se verifique que $Av=\lambda v$ (*)

Vamos a buscarlo.

Reemplazando A y v en (*) resulta
$$\begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix} = \lambda \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$$

Resolviendo en cada miembro se obtiene que
$$\begin{pmatrix} 4 \\ -2 \\ -6 \end{pmatrix} = \begin{pmatrix} 2\lambda \\ -\lambda \\ -3\lambda \end{pmatrix}$$

Igualando componente a componente resultan tres ecuaciones:

$$4 = 2\lambda$$
 $-2 = -\lambda$ $-6 = -3\lambda$

En todas ellas la solución es λ =2. Por lo tanto la afirmación es verdadera: v es VEP de A correspondiente al VAP λ =2.

- b) Falso. Como uno de los VAP de M es cero no existe su inversa.
- c) Factorizando el polinomio característico dado se obtiene $p(\lambda) = \lambda \ (\lambda + i). \ (\lambda i)$, de modo que sus raíces son $\lambda = 0, \lambda = i, \lambda = -i$. Así que la afirmación es falsa.
- **d)** Verdadero. Se obtiene de la ecuación 8.1.10 de Grossman reemplazando por los VAP dados.