Estructuras Algebraicas Primer examen parcial	1 ^{er} Apellido:	11 de abril de 2014 Tiempo 2 h.
Departamento Matem. aplic. TIC	Z Apenido:	-
ETS de Ingenieros Informáticos	Nombre:	\neg Calificación:
Universidad Politécnica de Madrid	Número de matrícula:	Camileación.

Ejercicio 1 (1 punto)

Demostrar que A_8 tiene un elemento de orden 15

Ejercicio 2 (5 puntos)

En el grupo diédrico $D_9 = \langle g, s : |g| = 9, |s| = 2$ y $sg = g^{-1}s \rangle$ se considera el subgrupo $N = \langle g^3 \rangle$

- a) Calcular el orden de cada elemento de D_9
- b) Demostrar que N es un subgrupo normal de D_9
- c) Listar todos los elementos del grupo cociente D_9/N
- d) Calcular el orden de cada elemento del grupo cociente D_9/N .
- e) Estudiar si D_9/N es isomorfo a \mathbb{Z}_6 , a $\mathbb{Z}_2 \times \mathbb{Z}_3$, a S_3 o a ninguno de ellos.

Ejercicio 3 (2 puntos)

Si $\varphi : \mathbb{Z}_{24} \to \mathbb{Z}_{18}$ es un homomorfismo entre los grupos $(\mathbb{Z}_{24}, +_{24})$ y $(\mathbb{Z}_{18}, +_{18})$, determinar justificadamente los valores que puede tomar $\varphi([1]_{24})$ según sea el valor de $|\varphi(\mathbb{Z}_{24})|$ y obtener en cada caso $|\ker(\varphi)|$

Ejercicio 4 (2 puntos)

Encontrar, salvo isomorfismos, todos los grupos abelianos de orden 180. Dar los factores invariantes de cada uno y estudiar cuáles de ellos tienen un elemento de orden 4.

Soluciones

Ejercicio 1

 $\sigma = (1,2,3)(4,5,6,7,8) = (1,2)(2,3)(4,5)(5,6)(6,7)(7,8) \in S_8$ es una permutación par $\Rightarrow \sigma \in A_8$ y se verifica que $|\sigma| = \text{mcm}(3,5) = 15$

Ejercicio 2

- a) |g| = 9, |s| = 2 y para todo $r \in \{2, 3, 4, 5, 6, 7, 8\}$ es $|g^r| = \frac{|g|}{\text{mcd}(|g|,r)} \Rightarrow |g^2| = |g^4| = |g^5| = |g^7| = |g^8| = |g| = 9$ y $|g^3| = |g^6| = 3$, por otra parte para todo $r \in \{2, 3, 4, 5, 6, 7, 8\}$ es $(g^r s)(g^r s) = g^r(sg^r)s = g^r(g^{-r}s)s = e$ por tanto $|gs| = |g^2s| = |g^3s| = |g^4s| = |g^5s| = |g^6s| = |g^7s| = |g^8s| = |s| = 2$.
- b) $N = \langle g^3 \rangle = \{e, g^3, g^6\}, |N| = 3$. Todo subgrupo $H \leq D_9$ con |H| = 3 verifica, por el teorema de Lagrange, que $\forall a \in H$ con $a \neq e$ es |a| = 3. Los únicos elementos de orden 3 en D_9 son $g^3, g^6 \Rightarrow e, g^3, g^6 \in H \Rightarrow H = N$, se deduce que el único subgrupo de D_9 con orden 3 es N, por tanto $N \leq D_9$
- c) $D_9/N = \{eN, gN, g^2N, sN, gsN, g^2sN\}$, siendo: $eN = \{e, g^3, g^6\}$, $gN = \{g, g^4, g^7\}$, $g^2N = \{g^2, g^5, g^8\}$, $sN = \{s, g^6s, g^3s\}$, $gsN = \{gs, g^7s, g^4s\}$, $g^2sN = \{g^2s, g^8s, g^5s\}$
- d) |eN| = 1; $(gN)^3 = g^3N = eN \Rightarrow |gN| = 3;$ $(g^2N)^3 = g^6N = eN \Rightarrow |g^2N| = 3;$ $(sN)^2 = s^2N = eN \Rightarrow |sN| = 2;$ $(gsN)^2 = eN \Rightarrow |gsN| = 2;$ $(g^2sN)^2 = eN \Rightarrow |g^2sN| = 2.$
- e) $(sN)(gN) = g^2sN \neq gsN = (gN)(sN)$ por tanto el grupo D_9/N no es abeliano, así que $D_9/N \not\approx \mathbb{Z}_6 \approx \mathbb{Z}_2 \times \mathbb{Z}_3$. $D_9/N = \langle gN, sN : |gN| = 3, |sN| = 2 \text{ y } (sN)(gN) = (gN)^{-1}(sN) \rangle \Rightarrow D_9/N \approx D_3 \approx S_3$.

Ejercicio 3

Por el corolario del primer teorema de isomorfía $|\varphi(\mathbb{Z}_{24})| \mid \operatorname{mcd}(24, 18) \Rightarrow |\varphi(\mathbb{Z}_{24})| \in \{1, 2, 3, 6\}.$

```
Si |\varphi(\mathbb{Z}_{24})| = 1 \Rightarrow \varphi([1]_{24}) = [0]_{18}, |\ker(\varphi)| = 24
```

Si
$$|\varphi(\mathbb{Z}_{24})| = 2 \Rightarrow \varphi([1]_{24}) = [9]_{18},$$
 $|\ker(\varphi)| = 12$

Si
$$|\varphi(\mathbb{Z}_{24})| = 3 \Rightarrow \varphi([1]_{24}) = [6]_{18}$$
 o $\varphi([1]_{24}) = [12]_{18}$, $|\ker(\varphi)| = 8$

Si
$$|\varphi(\mathbb{Z}_{24})| = 6 \Rightarrow \varphi([1]_{24}) = [3]_{18} \text{ o } \varphi([1]_{24}) = [15]_{18}, \qquad |\ker(\varphi)| = 4$$

Ejercicio 4

Si $2^2 = 4 = mcm(a, b) \Rightarrow 2^2 | a \text{ o } 2^2 | b$, por tanto:

 $\mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \approx \mathbb{Z}_{180}$, factores invariantes: (180), sí tiene elementos de orden 4: [45]₁₈₀ $\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \approx \mathbb{Z}_{60} \times \mathbb{Z}_3$, factores invariantes: (60, 3), sí tiene elementos de orden 4: ([15]₆₀, [0]₃) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \approx \mathbb{Z}_{90} \times \mathbb{Z}_2$, factores invariantes: (90, 2), no tiene elementos de orden 4: 4 //90 y 4 //2 $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \approx \mathbb{Z}_{30} \times \mathbb{Z}_6$, factores invariantes: (30, 6), no tiene elementos de orden 4: 4 //30 y 4 //6