Agents that Plan Ahead: A* Search

Russell and Norvig: Chapter 3.1-3.4, 3.5-3.6

CSE 240: Winter 2023

Lecture 4

Guest Lecture: Prof. Marinescu

Announcements

- Assignment 1 is up
- Prof. Marinescu lecturing today.
- Quizzes will be all remote on Canvas.
- Prof. Gilpin will update the class on Tuesday.

Agenda

Today

- Informed search strategies
 - A* search algorithm
 - Heuristics

Recap: Uniform Cost Issues

• Remember: explores increasing cost contours

• The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

A* Search

Combining UCS and Greedy

$$f(n) = g(n) + h(n)$$

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

Node	Fringe	f(n)
S	s->a	6
s->a	s->a->b	8
s->a	s->a->d	6
s->a	s->a->e	7

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Another Way to Implement A*

Run UCS with modified edge costs in order to account for closeness to the goal state

$$Cost'(s,a) = Cost(s,a) + h(succ(s,a)) - h(s)$$

Intuition: add a penalty for how much action 'a' takes us away from the end state

$$Cost'(C, B) = Cost(C, B) + h(B) - h(C) = 1 + (3 - 2) = 2$$

When should A* terminate?

• Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

An Example Heuristic

- Would any heuristic work?
- Doesn't work because of the negative modified edge costs (or being pessimistic about the correct path)

Admissible Heuristics

• A heuristic *h* is admissible (optimistic) if:

$$h(n) \leq h^*(n)$$

- where $h^*(n)$ is the true cost to a nearest goal
- Example:

Coming up with admissible heuristics is most of what's involved in using A* in practice.

Consistent Heuristic

A heuristic h is "consistent" if

- Cost' $(s,a) = Cost(s,a) + h(succ(s,a)) h(s) \ge 0$ $h(s_{end}) = 0$

Correctness of A*

- If h is consistent, A* returns the minimum cost path.
- Consider any path
- Key identity:

$$\sum_{i=1}^{L} \mathsf{Cost}'(s_{i-1}, a_i) = \sum_{i=1}^{L} \mathsf{Cost}(s_{i-1}, a_i) + \underbrace{h(s_L) - h(s_0)}_{\mathsf{constant}}$$
modified path cost original path cost

 Therefore, A* solves the original problem using UCS, and therefore the algorithm is complete.

Efficiency of A*

A* explores all states satisfying $f(s) \le f(s_{end}) - h(s)$

- Interpretation: the larger h(s), the better
- Proof: A* explores all nodes 's' such that:

$$f(s) + h(s) \le f(s_{end}) + h(s_{end})$$

$$f(s) + h(s) \le f(s_{end})$$

$$f(s) \le f(s_{end}) - h(s)$$

Amount Explored

- If h(s)=0, then A*is the same as UCS.
- If h(s) = FutureCost(s), then A* only explores nodes on a minimum cost path.
- Usually h(s) is somewhere in between.

UCS versus A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

How Do we Get Good Heuristics?

Just Relax!

Relaxation

Ideally, we use h(s) = FutureCost(s), but that's as hard as solving the original problem.

Key idea: relaxation

Constraints make life hard. Get rid of them. But this is just for the heuristic!

Relaxation Overview

combine heuristics using max

Closed Form Solution

Example: knock down walls-

Goal: move from triangle to circle

Hard

Easy

Heuristic:

$$h(s) = \mathsf{ManhattanDistance}(s, (2, 5))$$

e.g.,
$$h((1,1)) = 5$$

CE 4: What is a Relaxation of this Problem?

Example: knock down walls—

Goal: move from triangle to circle

 Hard

Easy

Heuristic:

$$h(s) = \mathsf{ManhattanDistance}(s, (2, 5))$$

e.g.,
$$h((1,1)) = 5$$

Easier Search

Example: original problem-

Start state: 1

Walk action: from s to s+1 (cost: 1)

Tram action: from s to 2s (cost: 2)

End state: n

Constraint: can't have more tram actions than walk actions.

State: (location, #walk - #tram)

Number of states goes from O(n) to O(n²)!

Easier Search

Example: relaxed problem-

Start state: 1

Walk action: from s to s+1 (cost: 1)

Tram action: from s to 2s (cost: 2)

End state: n

Constraint: can't have more tram actions than walk actions.

Original state: (location, #walk - #tram)

Relaxed state: location

Easier Search

- Compute relaxed FutureCost_{rel}(location) for each location (1, . . . , n) using dynamic programming or UCS
- Modify UCS to compute all past costs in reversed relaxed problem (equivalent to future costs in relaxed problem!)

```
Start state: n
Walk action: from s to s-1 (cost: 1)
Tram action: from s to s/2 (cost: 2)
End state: 1
```

• Define heuristic for original problem:h(location, #walk-#tram) = FutureCost_{rel}(location)

Independent Subproblems

- Original problem: tiles cannot overlap (constraint)
- Relaxed problem: tiles can overlap (no constraint)
- Relaxed solution: 8 indep. problems, each in closed form

General Framework

- Removing constraints (knock down walls, walk/tram freely, overlap pieces)
- Reducing edge costs (from ∞ to some finite cost)
- Example:

- Original: Cost((1, 1), East) = ∞
- Relaxed: Cost_rel((1,1), East) = 1

General Framework

Definition: relaxed search problem-

A relaxation P_{rel} of a search problem P has costs that satisfy:

$$\mathsf{Cost}_{\mathsf{rel}}(s, a) \leq \mathsf{Cost}(s, a).$$

Definition: relaxed heuristic-

Given a relaxed search problem P_{rel} , define the **relaxed heuristic** $h(s) = \text{FutureCost}_{\text{rel}}(s)$, the minimum cost from s to an end state using $\text{Cost}_{\text{rel}}(s, a)$.

Consistency

Theorem: consistency of relaxed heuristics-

Suppose $h(s) = \operatorname{FutureCost}_{\operatorname{rel}}(s)$ for some relaxed problem P_{rel} .

Then h(s) is a consistent heuristic.

• Proof:

$$h(s) \leq \mathsf{Cost}_{\mathsf{rel}}(s, a) + h(\mathsf{Succ}(s, a))$$
 [triangle inequality]
 $\leq \mathsf{Cost}(s, a) + h(\mathsf{Succ}(s, a))$ [relaxation]

Trade-off

- Efficiency
 - h(s) = FutureCost_rel (s) must be easy to compute
 - Closed form, easier search, independent subproblems
- Tightness
 - heuristic h(s) should be close to FutureCost(s)
 - Don't remove too many constraints

Recap

Week 2 Summary

- Solving problems by searching
 - Informed search strategies
 - Heuristics functions

Next Week

- Search in complex environments
 - Hill climbing, simulated annealing, local beam search, evolutionary algorithm.