Sigmoid units, multilayer networks, Backpropagation

Relevant Readings: Section 4.5 in Mitchell

CS495 - Machine Learning, Fall 2009

▶ So far we have seen two kinds of units for ANNs:

- ▶ So far we have seen two kinds of units for ANNs:
 - Perceptrons

- ▶ So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units

- So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- ▶ Both of these have deficits when it comes to building multilayer networks

- So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work

- So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work
 - ► Multilayer networks of linear units only express linear functions, thus are no better than a single layer

- So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work
 - Multilayer networks of linear units only express linear functions, thus are no better than a single layer
 - Sigmoid units overcome both of these difficulties

- ▶ So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work
 - Multilayer networks of linear units only express linear functions, thus are no better than a single layer
 - Sigmoid units overcome both of these difficulties
- ▶ Sigmoid units take on values in the range (0,1)

- ▶ So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- ▶ Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work
 - Multilayer networks of linear units only express linear functions, thus are no better than a single layer
 - Sigmoid units overcome both of these difficulties
- \triangleright Sigmoid units take on values in the range (0,1)
 - \blacktriangleright Let x_i be the inputs

- ▶ So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- ▶ Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work
 - Multilayer networks of linear units only express linear functions, thus are no better than a single layer
 - Sigmoid units overcome both of these difficulties
- \triangleright Sigmoid units take on values in the range (0,1)
 - \triangleright Let x_i be the inputs
 - Let w_i be the weights of the inputs

- ▶ So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work
 - Multilayer networks of linear units only express linear functions, thus are no better than a single layer
 - Sigmoid units overcome both of these difficulties
- \triangleright Sigmoid units take on values in the range (0,1)
 - \triangleright Let x_i be the inputs
 - Let w_i be the weights of the inputs
 - If we let $y = \sum_i w_i x_i$ then the output o of a sigmoid unit is given by $\sigma(y) = 1/(1 + e^{-y})$

- ▶ So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work
 - Multilayer networks of linear units only express linear functions, thus are no better than a single layer
 - Sigmoid units overcome both of these difficulties
- ▶ Sigmoid units take on values in the range (0,1)
 - \blacktriangleright Let x_i be the inputs
 - Let w_i be the weights of the inputs
 - If we let $y = \sum_i w_i x_i$ then the output o of a sigmoid unit is given by $\sigma(y) = 1/(1 + e^{-y})$
 - The neat part is that the derivative can be expressed as: $\sigma(y)' = \sigma(y) \cdot (1 \sigma(y))$

- ▶ So far we have seen two kinds of units for ANNs:
 - Perceptrons
 - Linear units
- Both of these have deficits when it comes to building multilayer networks
 - Perceptrons are not differentiable, thus gradient descent doesn't work
 - Multilayer networks of linear units only express linear functions, thus are no better than a single layer
 - Sigmoid units overcome both of these difficulties
- ▶ Sigmoid units take on values in the range (0,1)
 - \blacktriangleright Let x_i be the inputs
 - Let w_i be the weights of the inputs
 - If we let $y = \sum_i w_i x_i$ then the output o of a sigmoid unit is given by $\sigma(y) = 1/(1 + e^{-y})$
 - The neat part is that the derivative can be expressed as: $\sigma(y)' = \sigma(y) \cdot (1 \sigma(y))$

► We will study feedforward multilayer units

- ▶ We will study feedforward multilayer units
 - ► The *input units* are simply the input values fed into the network

- ▶ We will study feedforward multilayer units
 - ► The *input units* are simply the input values fed into the network
 - ► Each layer of *hidden units* are sigmoid units, taking inputs from the previous layer

- We will study feedforward multilayer units
 - ► The *input units* are simply the input values fed into the network
 - ► Each layer of *hidden units* are sigmoid units, taking inputs from the previous layer
 - ► The *output units* (perhaps sigmoid, perhaps not) take input from the previous layer and give the output of the network

- We will study feedforward multilayer units
 - ► The *input units* are simply the input values fed into the network
 - ► Each layer of *hidden units* are sigmoid units, taking inputs from the previous layer
 - ► The *output units* (perhaps sigmoid, perhaps not) take input from the previous layer and give the output of the network

▶ Start with small random weights on the edges

- ▶ Start with small random weights on the edges
- ► The basic idea:

- Start with small random weights on the edges
- ▶ The basic idea:
 - Evaluate the network on the training instance to get the network output values

- ► Start with small random weights on the edges
- The basic idea:
 - Evaluate the network on the training instance to get the network output values
 - ▶ The error of each output unit is defined to be o(1-o)(t-o) where o is the unit output and t is the training output

- Start with small random weights on the edges
- The basic idea:
 - Evaluate the network on the training instance to get the network output values
 - The error of each output unit is defined to be o(1-o)(t-o) where o is the unit output and t is the training output
 - ▶ The error of each hidden unit is recursively defined to be the weighted sum error of its "downstream units" times o(1-o) where o is the unit's output

- Start with small random weights on the edges
- The basic idea:
 - Evaluate the network on the training instance to get the network output values
 - The error of each output unit is defined to be o(1-o)(t-o) where o is the unit output and t is the training output
 - ▶ The error of each hidden unit is recursively defined to be the weighted sum error of its "downstream units" times o(1-o) where o is the unit's output
 - Every unit updates the weights w_i of its inputs by adding $\eta \delta x_i$ where η is a small constant, δ is the error of this unit, and x_i are the inputs to this unit

- Start with small random weights on the edges
- The basic idea:
 - Evaluate the network on the training instance to get the network output values
 - ▶ The error of each output unit is defined to be o(1-o)(t-o) where o is the unit output and t is the training output
 - ▶ The error of each hidden unit is recursively defined to be the weighted sum error of its "downstream units" times o(1-o) where o is the unit's output
 - Every unit updates the weights w_i of its inputs by adding $\eta \delta x_i$ where η is a small constant, δ is the error of this unit, and x_i are the inputs to this unit
 - Repeat over all the training instances, many times

- Start with small random weights on the edges
- ▶ The basic idea:
 - Evaluate the network on the training instance to get the network output values
 - ▶ The error of each output unit is defined to be o(1-o)(t-o) where o is the unit output and t is the training output
 - ▶ The error of each hidden unit is recursively defined to be the weighted sum error of its "downstream units" times o(1-o) where o is the unit's output
 - ▶ Every unit updates the weights w_i of its inputs by adding $\eta \delta x_i$ where η is a small constant, δ is the error of this unit, and x_i are the inputs to this unit
 - Repeat over all the training instances, many times
- ► Full pseudocode in Table 4.2 in Mitchell

- Start with small random weights on the edges
- ▶ The basic idea:
 - Evaluate the network on the training instance to get the network output values
 - ▶ The error of each output unit is defined to be o(1-o)(t-o) where o is the unit output and t is the training output
 - ▶ The error of each hidden unit is recursively defined to be the weighted sum error of its "downstream units" times o(1-o) where o is the unit's output
 - ▶ Every unit updates the weights w_i of its inputs by adding $\eta \delta x_i$ where η is a small constant, δ is the error of this unit, and x_i are the inputs to this unit
 - Repeat over all the training instances, many times
- ► Full pseudocode in Table 4.2 in Mitchell

► The Backpropagation algorithm seeks to minimize the squared error of the network outputs, summed over all training examples

- ► The Backpropagation algorithm seeks to minimize the squared error of the network outputs, summed over all training examples
- Since the error surface is more complicated, the algorithm could get stuck in a local minimum

- The Backpropagation algorithm seeks to minimize the squared error of the network outputs, summed over all training examples
- Since the error surface is more complicated, the algorithm could get stuck in a local minimum
 - ► To avoid this, one can train several ANNs and the best one is kept

- The Backpropagation algorithm seeks to minimize the squared error of the network outputs, summed over all training examples
- Since the error surface is more complicated, the algorithm could get stuck in a local minimum
 - ► To avoid this, one can train several ANNs and the best one is kept
- Choose a stopping criterion wisely (don't overtrain, as this leads to poor generalization)

- The Backpropagation algorithm seeks to minimize the squared error of the network outputs, summed over all training examples
- Since the error surface is more complicated, the algorithm could get stuck in a local minimum
 - ► To avoid this, one can train several ANNs and the best one is kept
- Choose a stopping criterion wisely (don't overtrain, as this leads to poor generalization)