明細書

裏面入射型光検出素子

技術分野

- [0001] 本発明は、裏面入射型光検出素子に関するものである。 背景技術
- [0002] 図32に示す従来の裏面入射型ホトダイオード100においては、N型シリコン基板1 01の上面側の表層にP⁺型高濃度不純物半導体領域102及びN⁺型高濃度不純物半導体領域103が形成されている。P⁺型高濃度不純物半導体領域102及びN⁺型高濃度不純物半導体領域103には、それぞれアノード電極104及びカソード電極105が接続されている。両電極104、105上には、半田からなるバンプ電極106が形成されている。また、N型シリコン基板101は、P⁺型高濃度不純物半導体領域102に対応する部分が裏面側から薄板化されている。この薄板化された部分が被検出光の入射部となる。
- [0003] 裏面入射型ホトダイオード100は、図32に示すように、フリップチップボンディングによりセラミックパッケージ107に実装される。すなわち、裏面入射型ホトダイオード100のバンプ電極106が、セラミックパッケージ107の底面配線108上に設けられた半田パッド109と接続されている。底面配線108はワイヤボンディングで、出力端子ピン110に電気的に接続されている。また、セラミックパッケージ107の上面には、窓枠111がロウ材112でシーム溶接されている。窓枠111には、裏面入射型ホトダイオード100の薄板化された部分に対応する位置に開口が形成されており、この開口部分に被検出光を透過させるコバールガラス等の窓板113が設けられている。

特許文献1:特開平9-219421号公報

発明の開示

発明が解決しようとする課題

- [0004] 裏面入射型ホトダイオードにおいては、セラミックパッケージを用いる上記構成では、そのパッケージが大きくなってしまうという問題がある。
- [0005] 一方、特許文献1には、半導体電子部品に対するCSP(チップサイズパッケージ)

技術が開示されている。この技術においては、半導体電子部品が作りこまれたウエハの両面を樹脂等の有機材料により封止するとともに、ウエハの一面側に設けられた有機材料にフォトリングラフィーにより開口を形成し、その開口に電極を形成している。

- [0006] しかしながら、上記のCSP技術を裏面入射型ホトダイオードに適用して、そのパッケージを小さくしようとすると、以下の問題を生じる。裏面が樹脂で封止された裏面入射型ホトダイオードにおいては、その樹脂の表面が被検出光の入射面となる。ところが、樹脂表面を被検出光の波長レベルで充分に平坦化することは困難な場合がある。樹脂表面が充分に平坦化されていないと、被検出光の入射面が粗くなり、それゆえ入射面において被検出光が散乱を受けてしまうという問題がある。そして、被検出光が散乱を受けることは、裏面入射型ホトダイオードの感度低下にもつながってしまう。
- [0007] 本発明は、上記課題を解決するためになされたものであり、パッケージを充分に小さくでき、且つ被検出光の散乱を抑制することができる裏面入射型光検出素子を提供することを目的とする。

課題を解決するための手段

- [0008] 上記課題を解決するために、本発明による裏面入射型光検出素子は、第1導電型の半導体基板と、半導体基板の第1面側における表層に設けられ、第2導電型の不純物半導体領域と、半導体基板の第2面における不純物半導体領域に対向する領域に形成され、被検出光が入射する凹部と、第2面上に設けられ、被検出光を凹部へと透過させる樹脂からなるとともに、表面が実質的に平坦な被覆層と、被覆層の表面上に設けられ、被検出光を被覆層へと透過させる窓板と、を備えることを特徴とする。
- [0009] この裏面入射型光検出素子においては、被覆層が設けられていることにより、裏面入射型光検出素子の機械的強度が向上している。機械的強度の向上により、ウエハレベルでのダイシングが可能となるため、チップサイズの裏面入射型光検出素子を得ることができる。これにより、パッケージが充分に小さい裏面入射型光検出素子が実現されている。また、被覆層は、被検出光を透過させる樹脂からなるため、裏面入射型光検出素子の機械的強度を向上させるだけでなく、被検出光に対する透過窓材としても機能することができる。

- WO 2005/011004 3 PCT/JP2004/010411
- [0010] さらに、窓板が被覆層の表面上に設けられている。したがって、窓板の表面が被検 出光の入射面となり、入射面における被検出光の散乱が抑制される。また、窓板を設 ける際に、被覆層の表面が窓板に押し付けられることにより、窓板と被覆層との界面 すなわち被覆層の表面も充分に平坦化される。このため、被覆層の表面における被 検出光の散乱も抑制される。よって、高感度な裏面入射型光検出素子が実現される 。また、窓板は、裏面入射型光検出素子の機械的強度を一層向上させる。
- [0011] 被覆層は、第2面上に設けられた第1樹脂層と、第1樹脂層上に設けられ、第1樹脂層と反対側の面が実質的に平坦な第2樹脂層とから構成されており、第1樹脂層は、第2面の凹部上に設けられた部分が、凹部の外縁部上に設けられた部分に対して窪んでいることが好適である。この場合、製造工程の途中で平コレットを用いても、裏面入射型光検出素子の高感度な光検出が保証される。
- [0012] 本発明による裏面入射型光検出素子は、半導体基板の第1面上に設けられ、半導体基板を支持する支持膜を備えることが好適である。この場合、裏面入射型光検出素子の機械的強度が一層向上する。
- [0013] 本発明による裏面入射型光検出素子は、支持膜を貫通するとともに、一端が不純物半導体領域と電気的に接続された充填電極を備えることが好適である。この場合、検出信号を裏面入射型光検出素子の外部に容易に取り出すことができる。
- [0014] 窓板は、その厚さ方向に垂直な面での断面形状が、少なくとも1つの角が切り欠かれた四角形であることが好適である。この場合、裏面入射型光検出素子のダイシング時におけるチッピングの発生が抑制される。
- [0015] 半導体基板の側面全体に、第1導電型の不純物が高濃度に添加された高濃度不 純物半導体領域が露出していることが好適である。この場合、半導体基板の側面が ダイシング等によりダメージを受けている場合であっても、半導体基板の側面付近で 発生した不要キャリアを高濃度不純物半導体領域によりトラップすることができ、それ ゆえ暗電流や雑音を抑えることができる。
- [0016] 半導体基板の第2面側における表層のうち、凹部の底面部分に、第1導電型の不 純物が高濃度に添加された高濃度不純物半導体層が設けられていることが好適で ある。この高濃度不純物半導体層は、アキュームレーション層として機能する。これに

より、被検出光の入射により発生したキャリアが凹部の底面付近で再結合するのを防ぐことができ、半導体基板の第1面側の表層に設けられた第2導電型の不純物半導体領域の方へキャリアが移動し易くなり、それゆえ感度が向上する。

[0017] 半導体基板の外縁部の第2面側における表層に、第1導電型の不純物が高濃度に添加された高濃度不純物半導体層が設けられていることが好適である。この場合、外縁部の第2面側における表面付近に結晶欠陥が生じている場合であっても、結晶欠陥に起因して発生する暗電流やノイズを高濃度不純物半導体層により抑制することができる。

発明の効果

[0018] 本発明によれば、パッケージを充分に小さくでき、且つ被検出光の散乱を抑制する ことができる裏面入射型光検出素子が実現される。

図面の簡単な説明

[0019] [図1]本発明による裏面入射型光検出素子の第1実施形態を示す断面図である。 [図2]図1の裏面入射型ホトダイオード1を示す斜視図である。 [図3]図1に示す裏面入射型ホトダイオード1の効果を説明するための図である。 [図4]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図5]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図6]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図7]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図8]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図9]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図10]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図11]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図12]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図13]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図14]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。 [図15]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。

[図16]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。

[図17]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。

[図18]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。

[図19]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。

[図20]図1の裏面入射型ホトダイオード1を製造する方法を示す工程図である。

[図21]図1の裏面入射型ホトダイオード1の変形例を示す斜視図である。

[図22]図21の裏面入射型ホトダイオード1について、ダイシング前のウエハを窓板14 側から見たときの様子を示す平面図である。

[図23]図21の裏面入射型ホトダイオード1aについて、ダイシング前のウエハを窓板14側から見たときの様子を示す平面図である。

[図24]本発明による裏面入射型光検出素子の第2実施形態を示す断面図である。

[図25]本発明による裏面入射型光検出素子の第3実施形態を示す断面図である。

[図26]図25におけるN⁺型高濃度不純物半導体領域28を形成する方法の一例を説明するための図である。

[図27]図25におけるN⁺型高濃度不純物半導体領域28を形成する方法の一例を説明するための図である。

[図28]図25におけるN⁺型高濃度不純物半導体領域28を形成する方法の一例を説明するための図である。

[図29]本発明による裏面入射型光検出素子の第4実施形態を示す断面図である。

[図30]本発明による裏面入射型光検出素子の第5実施形態を示す平面図である。

[図31]図30に示す裏面入射型ホトダイオードアレイ5のXIX-XIX線に沿った断面図である。

[図32]従来の裏面入射型ホトダイオードを示す断面図である。

符号の説明

[0020] 1, 1a, 2, 3, 4…裏面入射型ホトダイオード、5…裏面入射型ホトダイオードアレイ、10, 20, 50…N型半導体基板、11, 51…P⁺型不純物半導体領域、12, 52…凹部、13, 16, 53…被覆層、13a, 13b, 53a, 53b…樹脂層、14, 54…窓板、14a…切り欠き部、14b…孔部、15, 55…外縁部、21, 61…N⁺型高濃度不純物半導体層、22, 28, 62…N⁺型高濃度不純物半導体領域、23, 24, 63, 64…絶縁膜、25, 6

5…アノード電極、26,66…カソード電極、31,71…パッシベーション膜、32,72… 支持膜、33a,33b,73a,73b…充填電極、34a,34b,74a,74b…UBM、35a,3 5b,75a,75b…バンプ、S1…上面、S2…裏面、S3…被覆層13の表面、S4…凹 部底面、S5…N型半導体基板20の側面。

発明を実施するための最良の形態

- [0021] 以下、図面とともに本発明による裏面入射型光検出素子の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
- [0022] 図1は、本発明による裏面入射型光検出素子の第1実施形態を示す断面図である。裏面入射型ホトダイオード1は、裏面側から被検出光を入射し、被検出光の入射によりキャリアを生成し、生成したキャリアを検出信号として上面側から出力するものである。裏面入射型ホトダイオード1は、N型半導体基板10、P⁺型不純物半導体領域11、凹部12、被覆層13、及び窓板14を備えている。N型半導体基板10としては、例えば、リン等のN型不純物が添加されたシリコン基板を用いることができる。N型半導体基板10の不純物濃度は、例えば10¹²~10¹⁵/cm³である。また、N型半導体基板10の厚さt1は、例えば200~500μmである。
- [0023] N型半導体基板10の上面(第1面)S1側における表層の一部には、 P^{\dagger} 型不純物半導体領域11が形成されている。 P^{\dagger} 型不純物半導体領域11は、ボロン等のP型不純物半導物が添加されており、N型半導体基板10とpn接合を構成している。 P^{\dagger} 型不純物半導体領域11の不純物濃度は、例えば 10^{15} ~ 10^{20} /cm³である。また、 P^{\dagger} 型不純物半導体領域11の深さは、例えば0.1~20 μ mである。
- [0024] N型半導体基板10の裏面(第2面)S2におけるP⁺型不純物半導体領域11に対向する領域には、凹部12が形成されている。凹部12は、被検出光の入射部となる。凹部12は、裏面S2から上面S1に向かって幅が次第に狭くなる形状をしている。具体的には、凹部12の形状は、例えば裏面S2から上面S1に向かって幅が次第に狭くなる四角錐状又はテーパ状とすることができる。凹部12の深さは、例えば2〜400μmである。また、凹部12が形成されることにより、N型半導体基板10のうち凹部底面S4

及びP⁺型不純物半導体領域11で挟まれた領域は、裏面S2側からの被検出光の入射により発生したキャリアが上面S1側表層に設けられたP⁺型不純物半導体領域11付近まで達し易くなるように、他の領域よりも薄板化されている。また、この薄板化された領域の厚さは、例えば10~200μmである。

- [0025] N型半導体基板10の裏面S2上には、被覆層13が設けられている。被覆層13は、 N型半導体基板10と後述する窓板14との間に充填されるとともに、N型半導体基板 10と窓板14とを光学的に接続している。また、被覆層13は、N型半導体基板10と窓 板14とを物理的にも接続している。被覆層13は、裏面S2上に設けられた樹脂層13 a(第1樹脂層)と、樹脂層13a上に設けられた樹脂層13b(第2樹脂層)とから構成さ れている。樹脂層13a, 13bには、被検出光に対して透明な樹脂、すなわち被検出 光の波長に対して充分な透過率をもつ樹脂が用いられる。このような樹脂として、例 えば、エポキシ系、シリコーン系、アクリル系若しくはポリイミド系のもの、又はこれらの 複合素材からなるものが挙げられる。また、樹脂は接着性を有するものが望ましく、そ の場合には、N型半導体基板10と窓板14とを接着して強固なものとできるため物理 的強度を一層向上させることが可能となる。樹脂層13a, 13bには、同一の樹脂を用 いてもよいし、相異なる樹脂を用いてもよい。相異なる樹脂を用いる場合は、互いに 同程度の屈折率を有する樹脂を用いることが望ましい。この被覆層13は、裏面S2を 保護する保護層として機能するとともに、被検出光を凹部12へと透過させる透過窓 材としても機能する。
- [0026] 樹脂層13aは、凹部12上に設けられている部分が、凹部12の外縁部15上に設けられている部分に対して窪んでいる。すなわち、凹部12が形成されている部分に設けられた樹脂層13aの表面は、凹部12の外縁部15に設けられた樹脂層13aの表面よりもN型半導体基板10側に入り込んでいる。樹脂層13bは、樹脂層13aと隙間なく密着しており、それゆえ樹脂層13aの窪みに一致する突出部を樹脂層13a側に有する形状をしている。一方で、樹脂層13bの表面S3(樹脂層13aと反対側の面)の形状は、実質的に平坦である。ここで、外縁部15とは、N型半導体基板10のうち凹部12を側方から包囲している部分を指す。外縁部15を基準とした被覆層13の厚さt2は、例えば1〜200μm、好ましくは30μm程度である。

- [0027] 被覆層13の表面、すなわち樹脂層13bの表面S3上には、窓板14が設けられている。窓板14は、被覆層13と隙間なく密着している。窓板14は、平板状をしており、被検出光の波長に対して充分な透過率をもつ材料からなる。窓板14の材料としては、例えば、ガラス又は光学結晶を用いることができる。窓板14の材料の具体例としては、コルツ、サファイヤ、コバールガラス等が挙げられる。窓板14の厚さは、例えば0.2mm~1mmである。なお、窓板14には、AR(anti-reflection)コーティングが施されていてもよい。
- [0028] また、裏面入射型ホトダイオード1は、N⁺型高濃度不純物半導体層21、N⁺型高濃度不純物半導体領域22、絶縁膜23,24、アノード電極25、及びカソード電極26を備えている。N⁺型高濃度不純物半導体層21は、N型半導体基板10の裏面S2側の表層全体に形成されている。N⁺型高濃度不純物半導体層21は、N型不純物がN型半導体基板10よりも高濃度に添加されている。N⁺型高濃度不純物半導体層21の不純物濃度は、例えば10¹⁵~10²⁰/cm³である。また、N⁺型高濃度不純物半導体層21の深さは、例えば10¹⁵~10²⁰/cm³である。また、N⁺型高濃度不純物半導体層21の深さは、例えば0.1~20μmである。
- [0029] N⁺型高濃度不純物半導体領域22は、N型半導体基板10の上面S1側における表層に、P⁺型不純物半導体領域11と所定の距離を隔てて形成されている。N⁺型高濃度不純物半導体領域22は、N⁺型高濃度不純物半導体層21と同様にN型不純物が高濃度に添加されており、後述するカソード電極26とのコンタクト層である。N⁺型高濃度不純物半導体領域22の不純物濃度は、例えば10¹⁵~10²⁰/cm³である。また、N⁺型高濃度不純物半導体領域22の深さは、例えば0.1~30μmである。
- [0030] 絶縁膜23及び絶縁膜24は、それぞれN型半導体基板10の上面S1及び裏面S2上に形成されている。絶縁膜23、24は、例えばSiOからなる。絶縁膜23の厚さは、例えば0. 1~2 μ mである。一方、絶縁膜24の厚さは、例えば0. 05~1 μ mである。また、絶縁膜23には、開口(コンタクトホール)23a、23bが形成されており、一方の開口23aはP⁺型不純物半導体領域11の部分に、他方の開口23bはN⁺型高濃度不純物半導体領域22の部分に設けられている。
- [0031] 絶縁膜23上の開口23a, 23bを含む領域には、それぞれアノード電極25及びカソード電極26が形成されている。これらの電極25, 26の厚さは、例えば1 μ mである。

また、これらの電極25,26は、それぞれ開口23a,23bを充填するように設けられている。これにより、開口23aを介してアノード電極25がP[†]型不純物半導体領域11と、開口23bを介してカソード電極26がN[†]型高濃度不純物半導体領域22とそれぞれ直接に接続されている。アノード電極25及びカソード電極26としては、例えばAlが用いられる。

- [0032] さらに、裏面入射型ホトダイオード1は、パッシベーション膜31、支持膜32、充填電極33a,33b、UBM(Under Bump Metal)34a,34b、及びバンプ35a,35bを備えている。パッシベーション膜31は、N型半導体基板10の上面S1上において、絶縁膜23、アノード電極25及びカソード電極26を覆うように設けられている。また、パッシベーション膜31のうちアノード電極25及びカソード電極26上に設けられた部分に、後述する充填電極33a,33bが充填される貫通孔31aが形成されている。パッシベーション膜31は、例えばSiNからなり、N型半導体基板10の上面S1を保護するものである。パッシベーション膜31は、例えばプラズマCVD法により形成することができる。また、パッシベーション膜31の厚さは、例えば1μmである。
- [0033] パッシベーション膜31上には、支持膜32が形成されている。支持膜32は、N型半導体基板10を支持するものである。また、支持膜32のうちパッシベーション膜31の貫通孔31aに対応する部分に、貫通孔31aと共に充填電極33a,33bが充填される貫通孔32aが形成されている。支持膜32の材料としては、例えば樹脂、或いはプラズマCVD等により形成可能なSiO。等を用いることができる。また、支持膜32の厚さは、例えば2~100 μ m、好ましくは50 μ mである。
- [0034] 充填電極33a, 33bは、貫通孔31a, 32aに充填されるとともに、一端がそれぞれアノード電極25及びカソード電極26に接することにより、P[†]型不純物半導体領域11及びN[†]型高濃度不純物半導体領域22と電気的に接続されている。また、充填電極33a, 33bの他端は、ともに支持膜32の表面に露出している。すなわち、充填電極33a, 33bは、パッシベーション膜31及び支持膜32を貫通して、それぞれアノード電極25及びカソード電極26から支持膜32表面まで延びている。また、充填電極33a, 33bは、略円柱状をしている。これらの充填電極33a, 33bは、電極25, 26と後述するバンプ35a, 35bとを電気的に接続するためのものである。充填電極33a, 33bは、例え

ばCuからなる。また、貫通孔31a, 32aの直径は、例えば10〜 200μ m、好ましくは 100μ mである。

- [0035] 充填電極33a, 33bの支持膜32表面に露出する部分には、UBM34a, 34bが形成されている。UBM34a, 34bは、例えばNi及びAuの積層膜からなる。また、UBM 34a, 34bの厚さは、例えば0. 1~5 μ mである。
- [0036] UBM34a, 34bの充填電極33a, 33bと反対側の面上には、バンプ35a, 35bが形成されている。したがって、バンプ35a, 35bは、それぞれアノード電極25及びカソード電極26と電気的に接続されている。バンプ35a, 35bは、UBM34a, 34bとの接触面を除いては略球状をしている。バンプ35a, 35bとしては、例えば半田、金、Ni-Au、Cu、又は金属フィラーを含む樹脂等を用いることができる。
- [0037] 図2に、上記構成の裏面入射型ホトダイオード1の斜視図を示す。この図からわかるように、裏面入射型ホトダイオード1は、UBM34a,34b及びバンプ35a,35bを除く全体形状が略直方体となるように、ダイシングされたものである。なお、図2においては、N型半導体基板10の側面に露出するN⁺型高濃度不純物半導体層21,N⁺型高濃度不純物半導体領域22の図示を省略している。
- [0038] 裏面入射型ホトダイオード1の動作について説明する。ここでは、裏面入射型ホトダイオード1に逆バイアス電圧が印加されており、N型半導体基板10には、薄板化された領域に空乏層が生じているものとする。窓板14及び被覆層13を順に透過して、凹部12からN型半導体基板10に入射した被検出光は、主に薄板化された領域で吸収される。すると、この領域でキャリア(正孔及び電子)が発生する。発生した正孔及び電子は、逆バイアス電界に従って、それぞれP[†]型不純物半導体領域11及びN[†]型高濃度不純物半導体領域22へと移動する。P[†]型不純物半導体領域11及びN[†]型高濃度不純物半導体領域22に達した正孔及び電子は、充填電極33a,33b及びUBM34a,34bを通ってバンプ35a,35bへと移動し、バンプ35a,35bから検出信号として出力される。
- [0039] 裏面入射型ホトダイオード1の効果について説明する。裏面入射型ホトダイオード1 においては、被覆層13が設けられていることにより、裏面入射型ホトダイオード1の機 械的強度が向上している。特に、凹部12上に被覆層13が設けられていることにより、

アセンブリ時に裏面入射型ホトダイオード1に圧力や熱を加えても、N型半導体基板 10の薄板化された領域の反り、撓み、破損等を防ぐことができる。また、機械的強度 の向上により、ウエハレベルでのダイシングが可能となるため、チップサイズの裏面入 射型ホトダイオード1を得ることができる。これにより、パッケージが充分に小さい裏面 入射型ホトダイオード1が実現されている。また、セラミックパッケージ等が不要である ので、裏面入射型ホトダイオード1の製造コストを低減することができる。以上より、安 価で信頼性が高く且つ小型な裏面入射型ホトダイオード1が実現されている。

- [0040] さらに、窓板14が被覆層13の表面S3上に設けられている。したがって、窓板14の表面が被検出光の入射面となり、入射面における被検出光の散乱が抑制される。また、窓板14を設ける際に、被覆層13の表面S3が窓板14に押し付けられることにより、窓板14と被覆層13との界面すなわち被覆層13の表面S3も充分に平坦化される。このため、被覆層13の表面S3における被検出光の散乱も抑制される。よって、高感度な裏面入射型ホトダイオード1が実現されている。また、窓板14は、裏面入射型ホトダイオード1の機械的強度を一層向上させている。なお、表面S3が平坦であるとは、表面S3が被検出光の波長レベルで滑らかであるという意味である。よって、被覆層13の表面S3形状は、平面に限定されず、曲面であってもよい。
- [0041] また、被覆層13の表面S3が実質的に平坦な形状をしていることにより、凹部12へと入射する被検出光の透過損失の増大を抑えることができる。仮に、被覆層13が樹脂層13aのみから構成されている場合、樹脂層13aの窪みに対応して樹脂層13aと窓板14との間に空気層が生じる。これにより樹脂層13aは、凹レンズとして作用し、被検出光を拡散させてしまう可能性がある。このような拡散が起こると、凹部12に入射する被検出光の光量が低下し、裏面入射型ホトダイオード1の感度低下につながるため望ましくない。
- [0042] これに対して、裏面入射型ホトダイオード1においては、樹脂層13a上に樹脂層13 bを設けることにより、被覆層13の表面S3を実質的に平坦化している。これにより、裏面入射型ホトダイオード1においては、被覆層13と窓板14との間に空気層が生じないため、裏面入射型ホトダイオード1の高感度な光検出が保証されている。
- [0043] また、外縁部15上にも被覆層13が設けられていることにより、平コレットは外縁部1

5と直接接触しない。このため、平コレットとの接触により外縁部15に結晶欠陥が生じるのを抑制することができ、したがって、結晶欠陥に起因する暗電流やノイズの発生も抑制することができる。

- [0044] また、被覆層13として樹脂を用いているため、被覆層13を所望の形状に加工する ことが容易となる。
- [0045] 被覆層13が樹脂層13a, 13bの2層から構成されていることは、裏面入射型ホトダイオード1の高感度な光検出を保証しつつ、製造工程の途中において平コレットを好適に用いる機会を提供している。すなわち、窓板14が設けられる前に平コレットを使用したい場合、樹脂層13a, 13bがともに設けられた後では、上述のように平コレットとの接触により樹脂層13bの表面S3が損傷を受けてしまう可能性があるし、一方で樹脂層13a, 13bが何れも設けられていない状態では、上述のように平コレットとの接触により外縁部15に結晶欠陥が生じる可能性がある。その結晶欠陥は、暗電流の増加や雑音の増加につながる。これに対して、被覆層13が樹脂層13a, 13bの2層から構成されていれば、樹脂層13a, 13bのうち樹脂層13aのみが設けられた状態で平コレットを使用することができる。そして、樹脂層13aは、凹部12上に設けられている部分が窪んでいるため、図3に示すように、凹部12上に設けられた樹脂層13aの表面は、平コレットFCと接触しない。これにより、樹脂層13a表面のうち被検出光が透過する部分は損傷を受けることがない。したがって、製造工程の途中で平コレットを用いても裏面入射型ホトダイオード1の高感度な光検出が保証される。
- [0046] さらに、樹脂層13bは、窓板14を被覆層13の表面S3上に設ける際の接着剤として 機能することができる。
- [0047] 支持膜32が設けられていることにより、裏面入射型ホトダイオード1の機械的強度が一層向上している。
- [0048] 充填電極33a, 33bが設けられていることにより、検出信号を電極25, 26から外部 に容易に取り出すことができる。なお、充填電極33a, 33bは、貫通孔31a, 32aの側壁に形成され、アノード電極25及びカソード電極26に電気的に接続されるものであってもよい。
- [0049] N型半導体基板10の裏面S2側の表層全体にN[†]型高濃度不純物半導体層21が

形成されている。裏面S2表層のうち凹部12の底面S4部分に設けられたN[†]型高濃度不純物半導体層21は、アキュームレーション層として機能する。これにより、N型半導体基板10で発生したキャリアをその電界分布により効果的に上面S1側のPN接合部へと導くことができる。このため、より高感度な裏面入射型ホトダイオード1が実現されている。このとき、N[†]型高濃度不純物半導体層21の不純物濃度は、10¹⁵/cm³以上であることが好ましい。この場合、N[†]型高濃度不純物半導体層21は、アキュームレーション層として好適に機能することができる。

- [0050] また、N型半導体基板10の外縁部15の裏面S2側における表層に設けられたN[†]型高濃度不純物半導体層21は、外縁部15に結晶欠陥が生じている場合であっても、結晶欠陥に起因して発生する暗電流やノイズを抑制する。このため、裏面入射型ホトダイオード1によれば、高いSN比で検出信号を得ることができる。このときも、N[†]型高濃度不純物半導体層21の不純物濃度は、10¹⁵/cm³以上であることが好ましい。この場合、N[†]型高濃度不純物半導体層21は、結晶欠陥に起因して発生するノイズを充分に抑制することができる。
- [0051] 図4〜図20を参照しつつ、図1に示す裏面入射型ホトダイオード1の製造方法の一例を説明する。まず、上面S1及び裏面S2が(100)面であるN型シリコンウエハからなるN型半導体基板10を準備する。このN型半導体基板10に熱酸化を施すことにより、N型半導体基板10の上面S1にSiOからなる絶縁膜を形成する。また、絶縁膜の所定部分に開口を形成し、開口からN型半導体基板10にリンをドープすることによりN[†]型高濃度不純物半導体領域22を形成する。その後、N型半導体基板10を酸化させて、上面S1に絶縁膜を形成する。同様に、絶縁膜の所定部分に開口を形成し、開口からN型半導体基板10にボロンをドープすることによりP[†]型不純物半導体領域11を形成する。その後、N型半導体基板10にボロンをドープすることによりP[†]型不純物半導体領域11を形成する。その後、N型半導体基板10を酸化させて、上面S1に絶縁膜23を形成する(図4)。
- [0052] 次に、N型半導体基板10の裏面S2を研磨するするとともに、N型半導体基板10の 裏面S2上に、LP-CVDによりSiN84を堆積させる(図5)。また、凹部12を形成する ために、裏面S2上のSiN84に開口85を形成する(図6)。そして、開口85からKOH 等によるエッチングを行うことにより凹部12を形成する(図7)。

- [0053] 次に、裏面S2上のSiN84を除去した後、凹部12が形成されたN型半導体基板10の裏面S2に対しイオン注入等を用いてN型不純物をドープすることにより、裏面S2側における表層全体にN[†]型高濃度不純物半導体層21を形成する(図8)。その後、熱酸化を施すことにより裏面S2上に絶縁膜24を形成する(図9)。上面S1の絶縁膜23に電極のためのコンタクトホールを形成し、上面S1にアルミニウムを堆積させてから所定のパターニングを施すことにより、アノード電極25及びカソード電極26を形成する(図10)。
- [0054] 次に、アノード電極25及びカソード電極26が形成されたN型半導体基板10の上面S1上に、SiNからなるパッシベーション膜31をプラズマCVD法により堆積させる。また、パッシベーション膜31におけるバンプ35a、35bに対応する部分に開口31aを形成する(図11)。さらに、上面S1上に樹脂や無機絶縁膜からなる厚い支持膜32を形成するともに、パッシベーション膜31の開口31aに対応する部分に開口32aを形成する。このとき、支持膜32としては、樹脂であれば、例えばエポキシ系、アクリル系、又はポリイミド系のものを用いることができ、無機絶縁膜であれば、例えばCVDやSOG(Spin On Glass)等により形成可能なSiO2等を用いることができる。また、支持膜32の開口32aは、例えば樹脂として感光性のものを用いてフォトリソグラフィー法で形成するか、或いはエッチング等によるパターニングで形成することができる(図12)。また、開口31a及び開口32aを充填するように、上面S1上にCuからなる導電性部材33を堆積させる。これは、例えば、開口31a及び開口32aから露出するアノード電極25及びカソード電極26の表面にCuシード層等をスパッタ等により堆積させた後、そのCuシード層上にメッキによりCu等を堆積させることにより行うことができる(図13)。
- [0055] 次に、導電性部材33の表面を研磨することにより、支持膜32上に堆積された導電性部材33を除去する。これにより、充填電極33a,33bが形成される(図14)。また、裏面S2上に樹脂層13aをスピンコート又は印刷等により塗布するとともに、塗布した樹脂層13aを硬化させる。このとき、樹脂層13aのうち凹部12上に設けられている部分が窪むようにする(図15)。さらに、樹脂層13a上に樹脂層13bを塗布する(図16)

[0056] 次に、樹脂層13bの表面S3に窓板14を貼り付ける。このとき、樹脂層13bを硬化さ

せる前に窓板14の貼り付けを行うことにより、樹脂層13bを接着剤として機能させる。 また、貼り付けの際に窓板14を樹脂層13bに対して軽く押し付けることにより、樹脂 層13bの表面S3を充分に平坦化する(図17)。また、上面S1上の充填電極33a,33 b上に、それぞれNiとAu等の積層膜からなるUBM34a,34bを無電解メッキにより 形成する。さらに、UBM34a,34b上に、半田等からなるバンプ35a,35bを印刷又 はボール搭載法等により形成する(図18)。

- [0057] 最後に、個片化された裏面入射型ホトダイオード1を得るために、ダイシングを行う。 ダイシングは、図19に一点鎖線L1で示すように、N型半導体基板10の裏面S2にお ける外縁部15の中央を通るように切断する。以上により、裏面入射型ホトダイオード1 を得る(図20)。
- [0058] 図21は、図1の裏面入射型ホトダイオード1の変形例を示す斜視図である。裏面入射型ホトダイオード1aは、窓板14に切り欠き部14aが形成されている点で、図1の裏面入射型ホトダイオード1と相違する。裏面入射型ホトダイオード1aのその他の構成については、図1の裏面入射型ホトダイオード1と同様である。図21からわかるように、窓板14は厚さ方向に垂直な面での断面が四角形であり、その四角形の4角にそれぞれ切り欠き部14aが形成されている。切り欠き部14aの形状は、上記断面において、四角形の角を中心とする中心角90°の扇形である。また、切り欠き部14aからは、被覆層13(樹脂層13b)の表面S3が露出している。なお、切り欠き部14aは、上記断面における形状が扇形のものに限らず、角状のものであってもよい。
- [0059] このように、裏面入射型ホトダイオード1aにおいては、窓板14の角、すなわちダイシング時に2本のダイシングラインが交わる位置に切り欠き部14aが形成されているため、ダイシング時におけるチッピング(クラック)の発生が抑制されている。
- [0060] 図22を用いて、窓板14とダイシングラインとの位置関係について説明する。図22 は、図1の裏面入射型ホトダイオード1について、ダイシング前のウエハ(例えば、図1 9に示す状態のウエハ)を窓板14側から見たときの様子を示す平面図である。この平面図においては、凹部12が形成されている部分を破線L2で示している。凹部12は、ダイシング前のウエハにおいて格子状に等間隔で配列されていることがわかる。また、ダイシング時のダイシングラインを一点鎖線L3で示している。ダイシングラインは

図中の上下方向及び左右方向にそれぞれ設定されており、互いに隣り合う凹部12間の真中をダイシングラインが通っている。ダイシングラインで囲まれている各々の領域が、ダイシング後の裏面入射型ホトダイオード1に対応する。図22からわかるように、ダイシング後の裏面入射型ホトダイオード1における窓板14の角は、2本のダイシングラインが交わる位置Pに当たる。N型半導体基板10における位置Pに対応する位置、すなわち裏面S2の4角は、ダイシング時に応力を集中的に受けるため、チッピングが生じる可能性がある。

- [0061] これに対して、図21の裏面入射型ホトダイオード1aにおいては、窓板14の角に切り欠き部14aを形成することにより、ダイシングラインが交わる位置Pにおける窓板14のダイシングを避けている。これにより、N型半導体基板10の裏面S2の4角にかかる応力が緩和されるため、裏面入射型ホトダイオード1aにおいては、ダイシング時のチッピングの発生が抑制されている。
- [0062] 図23は、図21の裏面入射型ホトダイオード1aについて、ダイシング前のウエハを窓板14側から見たときの様子を示す平面図である。この平面図に示すように、ダイシングラインが交わる位置Pには、円柱状の孔部14bが形成されている。この孔部14bは、窓板14に形成されているもので、窓板14を貫通している。切り欠き部14aは、この孔部14bに由来している。すなわち、孔部14bは、ダイシングにより4等分されて、裏面入射型ホトダイオード1aにおける切り欠き部14aとなる。なお、裏面入射型ホトダイオード1aにおける切り欠き部14aとなる。なお、裏面入射型ホトダイオード1aの製造工程においては、所定位置に予め孔部14bが形成された窓板14を、ダイシングラインが交わる位置Pと孔部14bとが一致するように被覆層13の表面S3に貼り付ければよい。なお、孔部14bは円柱状のものに限らず、角柱状のもの等であってもよい。
- [0063] 図24は、本発明による裏面入射型光検出素子の第2実施形態を示す断面図である。裏面入射型ホトダイオード2は、N型半導体基板10、P[†]型不純物半導体領域11、凹部12、被覆層16、及び窓板14を備えている。N型半導体基板10の上面S1側における表層の一部には、P[†]型不純物半導体領域11が形成されている。N型半導体基板10の裏面S2におけるP[†]型不純物半導体領域11に対向する領域には、凹部12が形成されている。

- [0064] N型半導体基板10の裏面S2上には、被覆層16が設けられている。被覆層16は、被検出光に対して透明な樹脂からなり、N型半導体基板10の裏面S2上に設けられている。また、被覆層16の表面S3の形状は、実質的に平坦である。被覆層16は、2つの樹脂層13a,13bから構成されている図1の被覆層13とは異なり、1層から構成されている。外縁部15を基準とした被覆層16の厚さt3は、例えば1~100μm、好ましくは20μmである。また、被覆層16の表面S3上には、窓板14が設けられている。
- [0065] また、裏面入射型ホトダイオード2は、N⁺型高濃度不純物半導体層21、N⁺型高濃度不純物半導体領域22、絶縁膜23,24、アノード電極25、及びカソード電極26を備えている。N⁺型高濃度不純物半導体層21は、N型半導体基板10の裏面S2側の表層全体に形成されている。N⁺型高濃度不純物半導体領域22は、N型半導体基板10の上面S1側における表層に、P⁺型不純物半導体領域11と所定の距離を隔てて形成されている。絶縁膜23及び絶縁膜24は、それぞれN型半導体基板10の上面S1及び裏面S2上に形成されている。絶縁膜23には、開口23a,23bが形成されている。絶縁膜23上の開口23a,23bを含む領域には、それぞれアノード電極25及びカソード電極26が形成されている。
- [0066] さらに、裏面入射型ホトダイオード2は、パッシベーション膜31、支持膜32、充填電極33a,33b、UBM34a,34b、及びバンプ35a,35bを備えている。パッシベーション膜31は、N型半導体基板10の上面S1上において、絶縁膜23、アノード電極25及びカソード電極26を覆うように設けられている。パッシベーション膜31上には、支持膜32が形成されている。また、充填電極33a,33bは、パッシベーション膜31及び支持膜32を貫通して、それぞれアノード電極25及びカソード電極26から支持膜32表面まで延びている。充填電極33a,33bの支持膜32表面に露出する部分には、UBM34a,34bが形成されている。UBM34a,34bの充填電極33a,33bと反対側の面上には、バンプ35a,35bが形成されている。
- [0067] 裏面入射型ホトダイオード2の効果について説明する。裏面入射型ホトダイオード2においては、被覆層16が設けられていることにより、裏面入射型ホトダイオード2の機械的強度が向上している。また、機械的強度の向上により、ウエハレベルでのダイシングが可能となるため、チップサイズの裏面入射型ホトダイオード2を得ることができる

。これにより、パッケージが充分に小さい裏面入射型ホトダイオード2が実現されている。

- [0068] さらに、窓板14が被覆層16の表面S3上に設けられている。したがって、窓板14の表面が被検出光の入射面となり、入射面における被検出光の散乱が抑制される。また、窓板14と被覆層16との界面すなわち被覆層16の表面S3も充分に平坦化されるため、被覆層16の表面S3における被検出光の散乱も抑制される。よって、高感度な裏面入射型ホトダイオード2が実現されている。
- [0069] また、裏面入射型ホトダイオード2においては、被覆層16が1層から構成されている。このため、被覆層16は、2層から構成されている図1の被覆層13に比して製造工程が簡略化され、ひいては裏面入射型ホトダイオード2全体の製造工程が簡略化される。
- [0070] 図25は、本発明による裏面入射型光検出素子の第3実施形態を示す断面図である。裏面入射型ホトダイオード3は、N型半導体基板20、P^{*}型不純物半導体領域11、凹部12、被覆層13、及び窓板14を備えている。
- [0071] N型半導体基板20の上面S1側における表層の一部には、P⁺型不純物半導体領域11が形成されている。N型半導体基板20の裏面S2におけるP⁺型不純物半導体領域11に対向する領域には、凹部12が形成されている。N型半導体基板20の裏面S2上には、樹脂層13a,13bから構成される被覆層13が設けられている。被覆層13の表面S3の形状は、実質的に平坦である。被覆層13の表面S3上には、窓板14が設けられている。
- [0072] また、裏面入射型ホトダイオード3は、N⁺型高濃度不純物半導体領域28、絶縁膜23、24、アノード電極25、及びカソード電極26を備えている。N⁺型高濃度不純物半導体領域28は、N型半導体基板20の側面S5全体に露出するようにして形成されている。また、N⁺型高濃度不純物半導体領域28は、N型半導体基板20の裏面S2全体にも達している。したがって、N型半導体基板20のうち、P⁺型不純物半導体領域11及びN⁺型高濃度不純物半導体領域28の何れも形成されていない部分20aが、N型半導体基板20の側面S5及び裏面S2側からN⁺型高濃度不純物半導体領域28によって完全に囲まれている。

- [0073] 図26〜図28を参照しつつ、N^{*}型高濃度不純物半導体領域28を形成する方法の一例を示す。まず、N型半導体基板20を準備する。N型半導体基板20においては、N^{*}型高濃度不純物層41が、上面S1側の一部分を残して裏面S2から拡がっている。残された上面S1側の一部分が、N^{*}型高濃度不純物層41よりも不純物濃度が低いN型不純物層42である(図26)。次に、上面S1側からN型不純物を高濃度にドープさせることにより、N^{*}型高濃度不純物半導体領域43を形成する(図27)。そして、N型不純物を熱処理により更に深く拡散させることにより、このN^{*}型高濃度不純物半導体領域43がN^{*}型高濃度不純物層41まで達するようにする(図28)。以上より、N^{*}型高濃度不純物半導体領域43がN^{*}型高濃度不純物層41まで達するようにする(図28)。以上より、N^{*}型高濃度不純物半導体領域28が形成される。なお、図28には、P^{*}型不純物半導体領域11及び凹部12が形成される領域をそれぞれ破線L4、L5によって示している。この方法によれば、N型半導体基板20の裏面S2側から不純物をドープする工程を省略することができるので、N^{*}型高濃度不純物半導体領域28の製造工程が簡略化され、ひいては裏面入射型ホトダイオード3全体の製造工程が簡略化される。
- [0074] 図25に戻って、N型半導体基板20の上面S1及び裏面S2には、それぞれ絶縁膜23及び絶縁膜24が形成されている。また、絶縁膜23には、開口23a,23bが形成されており、一方の開口23aはP^{*}型不純物半導体領域11の部分に、他方の開口23bはN^{*}型高濃度不純物半導体領域28の部分に設けられている。
- [0075] 絶縁膜23上の開口23a, 23bを含む領域には、それぞれアノード電極25及びカソード電極26が形成されている。これらの電極25, 26は、それぞれ開口23a, 23bを充填するように設けられている。これにより、開口23aを介してアノード電極25がP[†]型不純物半導体領域11と、開口23bを介してカソード電極26がN[†]型高濃度不純物半導体領域28とそれぞれ直接に接続されている。
- [0076] さらに、裏面入射型ホトダイオード3は、パッシベーション膜31、支持膜32、充填電極33a,33b、UBM34a,34b、及びバンプ35a,35bを備えている。パッシベーション膜31は、N型半導体基板20の上面S1上において、絶縁膜23、アノード電極25及びカソード電極26を覆うように設けられている。パッシベーション膜31上には、支持膜32が形成されている。また、充填電極33a,33bは、パッシベーション膜31及び

支持膜32を貫通して、それぞれアノード電極25及びカソード電極26から支持膜32表面まで延びている。充填電極33a,33bの支持膜32表面に露出する部分には、UBM34a,34bが形成されている。UBM34a,34bの充填電極33a,33bと反対側の面上には、バンプ35a,35bが形成されている。

- [0077] 裏面入射型ホトダイオード3の効果について説明する。裏面入射型ホトダイオード3においては、被覆層13が設けられていることにより、裏面入射型ホトダイオード3の機械的強度が向上している。また、機械的強度の向上により、ウエハレベルでのダイシングが可能となるため、チップサイズの裏面入射型ホトダイオード3を得ることができる。これにより、パッケージが充分に小さい裏面入射型ホトダイオード3が実現されている。
- [0078] さらに、窓板14が被覆層13の表面S3上に設けられている。したがって、窓板14の表面が被検出光の入射面となり、入射面における被検出光の散乱が抑制される。また、窓板14と被覆層13との界面すなわち被覆層13の表面S3も充分に平坦化されるため、被覆層13の表面S3における被検出光の散乱も抑制される。よって、高感度な裏面入射型ホトダイオード3が実現されている。
- [0079] また、裏面入射型ホトダイオード3においては、N⁺型高濃度不純物半導体領域28 がN型半導体基板20の側面S5全体に露出するようにして形成されている。これにより、ダイシングの際のダメージ等により、N型半導体基板20の側面S5付近で発生した不要キャリアによる暗電流やノイズをN⁺型高濃度不純物半導体領域28により抑制することができる。側面S5は、ダイシングラインに当たるため、ダイシング時に結晶欠陥が生じている可能性があるが、かかる結晶欠陥に起因して発生する暗電流等のノイズもN⁺型高濃度不純物半導体領域28によって抑制される。このため、裏面入射型ホトダイオード3によれば、より高いSN比で検出信号を得ることができる。
- [0080] また、N型半導体基板20の一部分20aが、N型半導体基板20の側面S5及び裏面 S2側からN⁺型高濃度不純物半導体領域28によって完全に囲まれている。これにより、囲まれた部分20aをI層とするPIN構造が実現されている。このため、裏面入射型 ホトダイオード3は、このようなPIN構造により、空乏層を厚くして光の吸収する長さを 増やすことによる感度増加と、空乏層が厚いことによる電気二重層の間隔が大きくな

ることにより容量が低下して高速応答が可能となる。

- [0081] 図29は、本発明による裏面入射型光検出素子の第4実施形態を示す断面図である。裏面入射型ホトダイオード4は、N型半導体基板20、P[†]型不純物半導体領域11、凹部12、被覆層16、及び窓板14を備えている。N型半導体基板20の上面S1側における表層の一部には、P[†]型不純物半導体領域11が形成されている。N型半導体基板20の裏面S2におけるP[†]型不純物半導体領域11に対向する領域には、凹部12が形成されている。
- [0082] N型半導体基板20の裏面S2上には、被覆層16が設けられている。被覆層16は、 被検出光に対して透明な樹脂からなり、N型半導体基板20の裏面S2上に設けられ ている。また、被覆層16の表面S3の形状は、実質的に平坦である。被覆層16の表 面S3上には、窓板14が設けられている。
- [0083] また、裏面入射型ホトダイオード4は、N⁺型高濃度不純物半導体領域28、絶縁膜23、24、アノード電極25、及びカソード電極26を備えている。N⁺型高濃度不純物半導体領域28は、N型半導体基板20の側面S5全体に露出するようにして形成されている。また、N⁺型高濃度不純物半導体領域28は、N型半導体基板20の裏面S2全体にも達している。したがって、N型半導体基板20のうち、P⁺型不純物半導体領域11及びN⁺型高濃度不純物半導体領域28の何れも形成されていない部分20aが、N型半導体基板20の側面S5及び裏面S2側からN⁺型高濃度不純物半導体領域28によって完全に囲まれている。
- [0084] N型半導体基板20の上面S1及び裏面S2には、それぞれ絶縁膜23及び絶縁膜2 4が形成されている。また、絶縁膜23には、開口23a, 23bが形成されており、一方の 開口23aはP[†]型不純物半導体領域11の部分に、他方の開口23bはN[†]型高濃度不 純物半導体領域28の部分に設けられている。
- [0085] 絶縁膜23上の開口23a,23bを含む領域には、それぞれアノード電極25及びカソード電極26が形成されている。これらの電極25,26は、それぞれ開口23a,23bを充填するように設けられている。これにより、開口23aを介してアノード電極25がP[†]型不純物半導体領域11と、開口23bを介してカソード電極26がN[†]型高濃度不純物半導体領域28とそれぞれ直接に接続されている。

- [0086] さらに、裏面入射型ホトダイオード4は、パッシベーション膜31、支持膜32、充填電極33a, 33b、UBM34a, 34b、及びバンプ35a, 35bを備えている。パッシベーション膜31は、N型半導体基板20の上面S1上において、絶縁膜23、アノード電極25及びカソード電極26を覆うように設けられている。パッシベーション膜31上には、支持膜32が形成されている。また、充填電極33a, 33bは、パッシベーション膜31及び支持膜32を貫通して、それぞれアノード電極25及びカソード電極26から支持膜32表面まで延びている。充填電極33a, 33bの支持膜32表面に露出する部分には、UBM34a, 34bが形成されている。UBM34a, 34bの充填電極33a, 33bと反対側の面上には、バンプ35a, 35bが形成されている。
- [0087] 裏面入射型ホトダイオード4の効果について説明する。裏面入射型ホトダイオード4においては、被覆層16が設けられていることにより、裏面入射型ホトダイオード4の機械的強度が向上している。また、機械的強度の向上により、ウエハレベルでのダイシングが可能となるため、チップサイズの裏面入射型ホトダイオード4を得ることができる。これにより、パッケージが充分に小さい裏面入射型ホトダイオード4が実現されている。
- [0088] さらに、窓板14が被覆層16の表面S3上に設けられている。したがって、窓板14の表面が被検出光の入射面となり、入射面における被検出光の散乱が抑制される。また、窓板14と被覆層16との界面すなわち被覆層16の表面S3も充分に平坦化されるため、被覆層16の表面S3における被検出光の散乱も抑制される。よって、高感度な裏面入射型ホトダイオード4が実現されている。
- [0089] また、裏面入射型ホトダイオード4においては、被覆層16が1層から構成されている。このため、被覆層16は、製造工程が簡略化され、ひいては裏面入射型ホトダイオード4全体の製造工程が簡略化される。
- [0090] また、裏面入射型ホトダイオード4においては、N[†]型高濃度不純物半導体領域28 がN型半導体基板20の側面S5全体に露出するようにして形成されている。これにより、ダイシングの際のダメージ等により、N型半導体基板20の側面S5付近で発生した不要キャリアによる暗電流やノイズをN[†]型高濃度不純物半導体領域28により抑制することができる。このため、裏面入射型ホトダイオード4によれば、より高いSN比で

検出信号を得ることができる。さらに、N型半導体基板20の一部分20aが、N型半導体基板20の側面S5及び裏面S2側からN⁺型高濃度不純物半導体領域28によって完全に囲まれている。このため、裏面入射型ホトダイオード4は、このようなPIN構造により、空乏層を厚くして光の吸収する長さを増やすことによる感度増加と、空乏層が厚いことによる電気二重層の間隔が離れることにより容量が低下して高速応答が可能となる。

- [0091] 図30は、本発明による裏面入射型光検出素子の第5実施形態を示す平面図である。裏面入射型ホトダイオードアレイ5は、縦横にそれぞれ8列、全部で64個の裏面入射型ホトダイオードが格子状に配列されて成っている。これらのホトダイオードの配列ピッチは、例えば1mmとされる。図30は、裏面入射型ホトダイオードアレイ5を裏面側から見たときの様子を示している。各ホトダイオードにおいては、図1の裏面入射型ホトダイオード1と同様に、裏面が被覆層及び窓板で覆われている。なお、図18には、凹部が形成されている部分を破線L6で示している。
- [0092] 図31は、図30に示す裏面入射型ホトダイオードアレイ5のXIX-XIX線に沿った断面図である。この断面図においては、図30に示す64個のホトダイオードのうち2個のホトダイオードP1、P2が示されている。図31に示すように、裏面入射型ホトダイオードアレイ5は、N型半導体基板50、P⁺型不純物半導体領域51、凹部52、被覆層53、及び窓板54を備えている。
- [0093] N型半導体基板50の上面S1側における表層には、P[†]型不純物半導体領域51が複数形成されている。これらのP[†]型不純物半導体領域51は、ホトダイオードP1, P2に対してそれぞれ設けられている。各P[†]型不純物半導体領域51の面積は、例えば0.75×0.75mm²である。N型半導体基板50の裏面S2におけるP[†]型不純物半導体領域51に臨む領域には、凹部52が形成されている。ここでは、P[†]型不純物半導体領域51が複数設けられていることに伴い、凹部52も複数形成されている。P[†]型不純物半導体物半導体領域51及び凹部52は、各ホトダイオードP1, P2に一組ずつ設けられている。また、N型半導体基板50の裏面S2上には、被覆層53が設けられている。
- [0094] 被覆層53は、裏面S2上に設けられた樹脂層53aと、樹脂層53a上に設けられた樹脂層53bとから構成されている。樹脂層53a,53bには、被検出光に対して透明な樹

脂が用いられる。樹脂層53aは、凹部52上に設けられている部分が、凹部52の外縁部55上に設けられている部分に対して窪んでいる。樹脂層53bは、樹脂層53aと隙間なく密着しており、それゆえ樹脂層53aの窪みに一致する突出部を樹脂層53a側に複数有する形状をしている。一方で、樹脂層53bの表面S3の形状は、実質的に平坦である。被覆層53の表面S3上には、窓板54が設けられている。

- [0095] また、裏面入射型ホトダイオードアレイ5は、N⁺型高濃度不純物半導体層61、N⁺型高濃度不純物半導体領域62、絶縁膜63,64、アノード電極65、及びカソード電極66を備えている。N⁺型高濃度不純物半導体層61は、N型半導体基板50の裏面S2側の表層全体に形成されている。N⁺型高濃度不純物半導体領域62は、N型半導体基板50の上面S1側における表層に形成されている。このN⁺型高濃度不純物半導体領域62は、Aホトダイオードを構成するP⁺型不純物半導体領域51を取り囲むように設けることが望ましい。
- [0096] N型半導体基板50の上面S1及び裏面S2上には、それぞれ絶縁膜63及び絶縁膜64が形成されている。絶縁膜63には、開口63a,63bが形成されており、一方の開口63aはP⁺型不純物半導体領域51の部分に、他方の開口63bはN⁺型高濃度不純物半導体領域62の部分に設けられている。
- [0097] 絶縁膜63上の開口63a,63bを含む領域には、それぞれアノード電極65及びカソード電極66が形成されている。アノード電極65及びカソード電極66は、各ホトダイオードP1,P2に1組ずつ設けられている。また、これらの電極65,66は、それぞれ開口63a,63bを充填するように設けられている。これにより、開口63aを介してアノード電極65がP[†]型不純物半導体領域51と、開口63bを介してカソード電極66がN[†]型高濃度不純物半導体領域62とそれぞれ直接に接続されている。
- [0098] さらに、裏面入射型ホトダイオードアレイ5は、パッシベーション膜71、支持膜72、 充填電極73a, 73b、UBM74a, 74b、及びバンプ75a, 75bを備えている。パッシ ベーション膜71は、N型半導体基板50の上面S1上において、絶縁膜63、アノード 電極65及びカソード電極66を覆うように設けられている。パッシベーション膜71上に は、支持膜72が形成されている。また、充填電極73a, 73bは、パッシベーション膜7 1及び支持膜72を貫通して、それぞれアノード電極65及びカソード電極66から支持

膜72表面まで延びている。充填電極73a,73bの支持膜72表面に露出する部分には、UBM74a,74bが形成されている。UBM74a,74bの充填電極73a,73bと反対側の面上には、バンプ75a,75bが形成されている。

- [0099] 裏面入射型ホトダイオードアレイ5の効果について説明する。裏面入射型ホトダイオードアレイ5においては、被覆層16が設けられていることにより、裏面入射型ホトダイオードアレイ5の機械的強度が向上している。また、機械的強度の向上により、ウエハレベルでのダイシングが可能となるため、周辺に余分なエリアのないアレイサイズぴったりの裏面入射型ホトダイオードアレイ5を得ることができる。これにより、パッケージが充分に小さい裏面入射型ホトダイオードアレイ5が実現されている。
- [0100] さらに、窓板54が被覆層53の表面S3上に設けられている。したがって、窓板54の表面が被検出光の入射面となり、入射面における被検出光の散乱が抑制される。また、また、窓板54と被覆層53との界面すなわち被覆層53の表面S3も充分に平坦化されるため、被覆層53の表面S3における被検出光の散乱も抑制される。よって、高感度な裏面入射型ホトダイオードアレイ5が実現されている。
- [0101] さらに、N型半導体基板50の上面S1側の表層における複数の領域にP[†]型不純物 半導体領域51が形成されるとともに、裏面S2におけるそれぞれのP[†]型不純物半導 体領域51に対向する領域に凹部52が形成されることにより、複数のホトダイオードが 構成されている。このため、裏面入射型ホトダイオードアレイ5は、各ホトダイオードが 1画素に対応するイメージセンサ等に好適に用いることができる。
- [0102] 本発明による裏面入射型光検出素子は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、図1の裏面入射型ホトダイオード1において、N型半導体基板10の代わりにP型半導体基板を用いてもよい。この場合には、不純物半導体領域11はN型高濃度不純物半導体層21及び高濃度不純物半導体領域22はP型の導電型をもつようにする。
- [0103] また、図13において、Cuからなる導電性部材33を堆積させる例を示したが、Cuの 代わりにNiを用い、開口31a及び開口32aから露出するアノード電極25及びカソー ド電極26の表面に直接、Niの無電解メッキを施してもよい。この場合、図14におい て説明した導電性部材33表面を研磨する工程を省くことができる。

- [0104] また、図18においては、充填電極33a, 33b上にUBM34a, 34b及びバンプ35a , 35bを形成する例を示したが、充填電極33a, 33b自体をバンプとする方法もある。 すなわち、開口32aに充填電極33a, 33bが充填された状態の支持膜32(図17参照)表面を、O2等を用いてドライエッチングする。これにより、充填電極33a, 33bの一部が支持膜32表面から突出するので、この突出した部分をバンプとして用いればよい。この場合、UBM34a, 34bも形成する必要がない。或いは、充填電極33a, 33bを形成する導電性部材として、導電性樹脂を用いてもよい。これによれば、印刷等により貫通孔への電極充填作業を短時間で完了させることが可能となる。
- [0105] また、図21においては、窓板14の4角にそれぞれ切り欠き部14aが形成されている 構成を示したが、窓板14の4角のうち少なくとも1つの角に切り欠き部14aが形成されていればよい。この場合も、切り欠き部14aが全く設けられていない場合に比してチッピングの発生確率を低減することができる。
- [0106] また、図26においては、N⁺型高濃度不純物層とN⁺型高濃度不純物層よりも不純物 濃度が低いN型不純物層とが貼り合わされた貼り合わせウエハをN型半導体基板20 として用いてもよい。この場合、N型半導体基板20の上面S1側にN型不純物層が、裏面S2側にN⁺型高濃度不純物層が設けられる。

産業上の利用可能性

[0107] 本発明によれば、パッケージを充分に小さくでき、且つ被検出光の散乱を抑制する ことができる裏面入射型光検出素子が実現される。

請求の範囲

[1] 第1導電型の半導体基板と、

前記半導体基板の第1面側における表層に設けられ、第2導電型の不純物半導体 領域と、

前記半導体基板の第2面における前記不純物半導体領域に対向する領域に形成され、被検出光が入射する凹部と、

前記第2面上に設けられ、前記被検出光を前記凹部へと透過させる樹脂からなると ともに、表面が実質的に平坦な被覆層と、

前記被覆層の前記表面上に設けられ、前記被検出光を前記被覆層へと透過させる窓板と、

を備えることを特徴とする裏面入射型光検出素子。

[2] 前記被覆層は、前記第2面上に設けられた第1樹脂層と、前記第1樹脂層上に設けられ、前記第1樹脂層と反対側の面が実質的に平坦な第2樹脂層とから構成されており、

前記第1樹脂層は、前記第2面の前記凹部上に設けられた部分が、前記凹部の外 縁部上に設けられた部分に対して窪んでいることを特徴とする請求項1に記載の裏 面入射型光検出素子。

- [3] 前記半導体基板の前記第1面上に設けられ、前記半導体基板を支持する支持膜を 備えることを特徴とする請求項1又は2に記載の裏面入射型光検出素子。
- [4] 前記支持膜を貫通するとともに、一端が前記不純物半導体領域と電気的に接続された充填電極を備えることを特徴とする請求項3に記載の裏面入射型光検出素子。
- [5] 前記窓板は、その厚さ方向に垂直な面での断面形状が、少なくとも1つの角が切り欠かれた四角形であることを特徴とする請求項1〜4のいずれか一項に記載の裏面入射型光検出素子。
- [6] 前記半導体基板の側面全体に、前記第1導電型の不純物が高濃度に添加された高 濃度不純物半導体領域が露出していることを特徴とする請求項1~5のいずれか一 項に記載の裏面入射型光検出素子。
- [7] 前記半導体基板の前記第2面側における表層のうち、前記凹部の底面部分に、前記

第1導電型の不純物が高濃度に添加された高濃度不純物半導体層が設けられていることを特徴とする請求項1~6のいずれか一項に記載の裏面入射型光検出素子。

[8] 前記半導体基板の前記外縁部の前記第2面側における表層に、前記第1導電型の 不純物が高濃度に添加された高濃度不純物半導体層が設けられていることを特徴と する請求項1~7のいずれか一項に記載の裏面入射型光検出素子。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

[図10]

[図11]

[図12]

[図13]

[図14]

[図15]

[図16]

[図17]

[図18]

[図19]

[図20]

[図21]

[図22]

[図23]

[図24]

[図25]

[図26]

[図27]

[図28]

[図29]

[図30]

[図31]

[図32]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/010411

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01L31/10, H01L27/14					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Int.Cl'	nentation searched (classification system followed by classification H01L27/14				
Jitsuyo Kokai Ji	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2004 Kokai Jitsuyo Shinan Koho 1971-2004 Jitsuyo Shinan Toroku Koho 1996-2004				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCUMEN	TS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap		Relevant to claim No.		
Ā Ā	Full text; all drawings	296023349 U 5852322 A1 Photonics	1-8 1-8 6-8		
× Further do	cuments are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family			
22 October, 2004 (22.10.04)		Date of mailing of the international sear 09 November, 2004	rch report (09.11.04)		
Name and mailing address of the ISA/ Japanese Patent Office Facsimile No.		Authorized officer Telephone No.			
Form PCT/ISA/210 (second sheet) (January 2004)					

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/010411

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	JP 2002-319669 A (Hamamatsu Photonics Kabushiki Kaisha), 31 October, 2002 (31.10.02), Figs. 1, 4 (Family: none)	3-8
Y	JP 2-185070 A (Matsushita Electric Industrial Co., Ltd.), 19 July, 1990 (19.07.90), Full text; all drawings (Family: none)	1-8
Y	WO 97/23897 A2 (DR. JOHANNES HEIDENHAIN GMBH.), 20 December, 1997 (20.12.97), & DE 19549228 A1 & EP 868751 A Fig. 5 & CN 1244949 A & JP 2000-502215 A & US 6175141 B1 & AT 233434 T	1-8
Y	JP 8-111542 A (Seiko Instruments Inc.), 30 April, 1996 (30.04.96), & EP 697743 Al & US 5763903 Al Fig. 9	1-8
Y	JP 5-136261 A (Kawasaki Steel Corp.), 01 June, 1993 (01.06.93), (Family: none)	5-8
Y	JP 8-293476 A (Hitachi, Ltd.), 05 November, 1996 (05.11.96), (Family: none)	5-8

A. 発明の風する分野の分類(国際特許分類(IPC))					
Int. Cl' H01L31/10, H01L27/14					
B. 調査を行った分野					
調査を行った最小限資料(国際特許分類(IPC))					
Int. Cl' H01L31/00 - 31/10, H01L27/14					
最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2004年 日本国登録実用新案公報 1994-2004年 日本国実用新案登録公報 1996-2004年					
国際調査で使用した電子データベース (データベースの名称	、調査に使用した用語)				
C. 関連すると認められる文献	'				
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連する	関連する ときは、その関連する箇所の表示				
Y WO 96/36999 A1 (DR. JOHANNES HE & EP 771475 A & DE 296 & JP 10-508987 A & US 585	023349 U 全文全図				
Y JP 2000-299489 A(浜松ホトニクスを (ファミリーなし) 全文全図 段落0009-0011,0018-0019	朱式会社) 2000. 10. 24 1-8 6-8				
図 C棚の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。				
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献				
国際調査を完了した日 22.10.04	国際調査報告の発送日 09.11.2004				
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 2K 8422 近藤幸浩 電話番号 03-3581-1101 内線 3253				

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2002-319669 A(浜松ホトニクス株式会社) 2002.10.31 (ファミリーなし) 図1,4	3-8
У .	JP 2-185070 A (松下電器産業株式会社) 1990.07.19 (ファミリーなし) 全文全図	1-8
Y	WO 97/23897 A2 (DR. JOHANNES HEIDENHAIN GMBH) 1997.12.20 & DE19549228 A1	1-8
Y	JP 8-111542 A (セイコー電子工業株式会社) 1996.04.30 & EP 697743 A1 & US 5763903 A1 Fig.9	1-8
Y	JP 5-136261 A (川崎製鉄株式会社) 1993.06.01 (ファミリーなし)	5-8
Y	JP 8-293476 A (株式会社日立製作所) 1996.11.05 (ファミリーなし)	5-8