Algebra Boola i podstawy systemów liczbowych.

Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro

1. System dwójkowy – reprezentacja binarna

Układy logiczne operują tylko na dwóch stanach oznaczanymi jako zero (stan napięcia bliski zeru) i jedynka (stan napięcia bliski napięciu zasilania zwykle 5V lub w nowszych układach 3.3B lub nawet 1.5V). System operujący na dwóch stanach nazywamy dwójkowym lub też binarnym.

W systemie dziesiętnym kolejne cyfry od prawej strony mają wartość kolejnych potęg 10, podobnie w dwójkowym – są to kolejne potęgi dwójki: $1(2^0)$, 2, 4, 8, 16, 32, 64, 128, $256(2^8)$ itp. Czyli np. liczba 10011010_{bin} =2+8+16+128=154_{dec}.

W celu zamiany z systemu dziesiętnego na dwójkowy, wykonujemy na liczbie dzielenie całkowite przez 2, zapisując przy tym resztę z dzielenia i powtarzamy to aż dojdziemy do 1. Kolejne reszty to cyfry reprezentacji binarnej ułożone od najmłodszej (najmniej znaczącej) do najstarszej (łącznie z końcową jedynką). Tak więc na przykład:

Liczba	Reszta	Liczba	Reszt
500	0	260	0
250	0	130	0
125	1	65	1
62	0	32	0
31	1	16	0
15	1	8	0
7	1	4	0
3	1	2	0
1	1	1	1

 $500_{\text{dec}} = 111110100_{\text{bin}} (=4+16+32+64+128+256=500)$

 $260_{dec} = 100000100_{bin}$.

Uwaga: wynik binarny wpisujemy odczytując reszty z dzielenia patrząc od dołu do góry.

Zapiszemy tabelę dla liczb dziesiętnych, dwójkowych i szesnastkowych:

dec	bin	hex
0	0000	0
1	0001	1
2	0010	2
2 3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	C
13	1101	D
14	1110	Е
15	1111	F
16	10000	10

Widzimy, że jedna cyfra szesnastkowa odpowiada dokładnie czterem cyfrom dwójkowym. Szesnastkowy zapis liczb binarnych jest powszechnie stosowany, gdyż zamiana jest o wiele łatwiejsza niż dla liczb dziesiętnych, a zapis jest krótszy. Na przykład jeden bajt, który składa się z ośmiu bitów, można przedstawić przy pomocy dwóch znaków od 00 do FF.

W celu zamiany bin—hex grupujemy cyfry po 4 (od najmłodszego bitu), a następnie każdej grupie przypisujemy 1 cyfrę szesnastkową (np. korzystając z tabeli).

Tak więc: 101 1000 1011 1011 0010_{bin}=58BB2_{hex}.

Zamiana w drugą stronę wygląda analogicznie:

 $AF8C2E_{hex}=1010\ 1111\ 1000\ 1100\ 0010\ 1110_{bin}$

2. Bramki logiczne

Podstawą układów logicznych są bramki, realizujące pewne funkcje logiczne. Odpowiednim stanom napięć na wejściu odpowiada napięcie na wyjściu, przy czym napięcie interpretujemy jako 1, a jego brak – jako 0. (jest to tzw. logika dodatnia).

Podstawowe bramki wraz z ich symbolami:

		AND	NAND	OR	NOR	XOR		NOT
A	B	$A \cdot B$	$\overline{\mathbf{A} \cdot \mathbf{B}}$	A + B	$\overline{A + B}$	$A \oplus B$	A	Ā
0	0	0	1	0	1	0	0	1
0	1	0	1	1	0	1	1	0
1	0	0	1	1	0	1		
1	1	1	0	1	0	0		
		- D-	₽	D-	\mathbb{D}	\mathfrak{D}		≫

Przykład:

Jaką funkcję realizuje poniższy układ (wejście A,B, wyjście Y)?

Aby rozwiązać poniższe zadanie należy dodać zmienne pomocnicze C,D,E oraz sprawdzić ich stan w zależności od wszystkich możliwych kombinacji wejść.

Więc po porównaniu X z A i B otrzymujemy, że $\mathbf{X} = \mathbf{XOR}(\mathbf{A}, \mathbf{B})$, $\mathbf{X} = \mathbf{A} \oplus \mathbf{B}$.

Jednym z zastosowań bramki XOR jest kontrola bitu parzystości, np. jeżeli mamy 4 bity $(a_3a_2a_1a_0)_{\rm bin}$, to $a_3\oplus a_2\oplus a_1\oplus a_0=1$ wtedy, kiedy na bitach jest nieparzysta liczba jedynek, natomiast funkcja ta jest równa 0, jeżeli liczba jedynek (czyli bitów zapełnionych) jest parzysta. Można to łatwo sprawdzić rozpisując tabelę dla np. 4 zmiennych wejściowych.

$a_3a_2a_1a_0$	Bit parzystości	$a_3a_2a_1a_0$	Bit parzystości
	$XOR(a_3,a_2,a_1,a_0)$		$XOR(a_3,a_2,a_1,a_0)$
0000	0	1000	1
0001	1	1001	0
0010	1	1010	0
0011	0	1011	1
0100	1	1100	0
0101	0	1101	1
0110	0	1110	1
0111	1	1111	0

Przy pomocy bramek XOR można opisać kod Gray'a:

	$b_3b_2b_1b_0$	$g_3g_2g_1g_0$	- m	
0	0000	0000	• <u>bo</u>	
1	0001	0001	90	
2	0010	0011		
3	0011	0010	• • • • • • • • • • • • • • • • • • • •	
4	0100	0110	b ₁ g ₁	
5	0101	0111		
6	0110	0101		
7	0111	0100	b ₂ g ₂	
8	1000	1100	92	
9	1001	1101		
10		1111		
11	1011	1110	b ₃ g ₃	
12		1010	Układ ten zamienia kod binarny na kod Gray'	
13		1011	Na przykład dla liczby 1001 mamy:	
14		1001	$b_3=1,b_2=0,b_1=0,b_0=1.$	
15	1111	1000		- 0 - 0 - 0
			$g_3 = b_3 = 1,$ $g_2 = b_3 \oplus b_2 = 1 \oplus 0 = 1,$ $g_1 = b_2 \oplus b_1$	$=0 \oplus 0 = 0$,

 $g_0 = b_1 \oplus b_0 = 0 \oplus 1 = 1$, więc w kodzie Gray'a jest ona przedstawiana jako **1101**.

Jak łatwo zauważyć, następujące po sobie liczby przedstawione w kodzie Gray'a różnią się tylko jednym bitem (na przykład dla liczb 11 i 12 jest to 1110 i 1010). Znajdzie to później zastosowanie między innymi przy minimalizacji. Zazwyczaj kolejne stany bitów przedstawiamy w sposób pokazany w pierwszej kolumnie (b), bo odpowiada to numeracji w systemie dwójkowym, jednak przedstawianie ich w sposób pokazany w drugiej kolumnie (g) czyli w kodzie Gray'a - powoduje, że zmiana stanu bitów na kolejny pociąga za sobą zmianę tylko jednego bitu, co – jak się później okaże – pozwala tworzyć układy logiczne w bardziej ekonomiczny sposób.

A to jest układ konwertujący kod Gray'a na kod binarny:

3. Algebra Boole'a

Podstawowe twierdzenia algebry Boole'a:

$$a + 0 = a$$

$$a + 1 = 1$$

$$a + a = a$$

$$a + \overline{a} = 1$$

$$a + a \cdot b = a \cdot (1 + b) = a \cdot 1 = a$$

$$a + \overline{a} \cdot b = (a + \overline{a})(a + b) = a + b$$

$$\overline{(a + b)} = \overline{a} \cdot \overline{b}$$

$$\overline{(a + b + c)} = \overline{a} \cdot \overline{b} \cdot \overline{c}$$

$$a \cdot 0 = 0$$

$$a \cdot 1 = a$$

$$a \cdot a = a$$

$$a \cdot (a + b) = a + ab = a$$

$$a \cdot (\overline{a} + b) = a \cdot b$$

$$\overline{(a \cdot b)} = \overline{a} + \overline{b}$$

$$\overline{(a \cdot b \cdot c)} = \overline{a} + \overline{b} + \overline{c}$$

Można je łatwo udowodnić korzystając z tablic prawdy dla poszczególnych funkcji. Jak widać, operacje dodawania (OR) i mnożenia (AND) logicznego podlegają takim samym prawom rozdzielności jak zwykłe dodawanie i mnożenie, ale mają też kilka nietypowych własności. Można np. udowodnić wzór na $a + a \cdot b = a + b$:

a	b	a	$\bar{a} \cdot b$	$a + a \cdot b$
0	0	1	0	0
0	1	1	1	1
1	0	0	0	1
1	1	0	0	1

Przykład wykorzystania twierdzeń: zminimalizować funkcję a(a + ab + bc).

$$a(\overline{a} + ab + bc) = a \cdot \overline{a} + a \cdot a \cdot b + a \cdot b \cdot c = 0 + a \cdot b + a \cdot b \cdot c = a \cdot b \cdot (c+1) = a \cdot b$$

Albo też następującą funkcję:

$$a \cdot b \cdot \overline{c} + \overline{b} \cdot \overline{c} + \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} = a \cdot b \cdot \overline{c} + \overline{b} \cdot \overline{c} + \overline{a} + \overline{b} + \overline{a} \cdot \overline{c} = ab\overline{c} + \overline{a}(c+1) + \overline{b}(c+1) = \overline{b} + \overline{a} + ab\overline{c} = \overline{b} + \overline{a} + b\overline{c} = \overline{a} + \overline{b} + \overline{c} = \overline{a} \cdot \overline{b} \cdot \overline{c}$$

Ten przykład może na pierwszy rzut oka wydać się nieco zamieszany – skorzystaliśmy w nim dwukrotnie z twierdzenia, że $A + \overline{AB} = A + B$, $\overline{a} + ab\overline{c} = \overline{a} + (\overline{a})(b\overline{c}) = \overline{a} + b\overline{c}$

Można też zająć się pierwszym przykładem, gdzie: C=NAND(A,B), D=NAND(A,C), E=NAND(B,C), X=NAND(D,E).

$$X = \overline{DE} = \overline{(\overline{AC})(\overline{BC})} = AC + BC = A(\overline{AB}) + B(\overline{AB}) = (A + B)(\overline{AB}) = (A + B)(\overline{A} + \overline{B}) = A\overline{A} + A\overline{B} + B\overline{A} + B\overline{B} = 0 + A\overline{B} + B\overline{A} + 0 = A\overline{B} + \overline{AB}$$

Jak widzieliśmy wcześniej funkcja ta odpowiada funkcji XOR, można więc zauważyć, że:

$$A \oplus B = A \cdot \overline{B} + B \cdot \overline{A}$$

Uproszczenia dla funkcji XOR:

$$a \oplus 0 = a$$

$$a \oplus 1 = \bar{a}$$

$$a \oplus a = 0$$

$$a \oplus a = 1$$

$$\bar{a} \oplus b = a \cdot b + \bar{a} \cdot \bar{b}$$

$$\overline{a} \oplus b = \overline{a \oplus b} = a \oplus \overline{b}$$

Przykład: zminimalizować $(a \oplus b) + a \cdot b$

$$(a \oplus b) + a \cdot b = a\overline{b} + a\overline{b} + ab = a(b + b) + a\overline{b} = a + a\overline{b} = a + b$$

Można też zminimalizować układ zadany w formie schematu:

$$Y = D \oplus E = (\overline{ab}) \oplus (b + \overline{c}) = (\overline{ab})(\overline{b + \overline{c}}) + (ab)(b + \overline{c}) = (\overline{a} + \overline{b})\overline{bc} + ab + ab\overline{c} =$$

$$= \overline{abc} + \overline{bc} + ab(1 + \overline{c}) = (\overline{a} + 1)\overline{bc} + ab = a \cdot b + \overline{b} \cdot c$$

Można też rozpisać tablicę prawdy dla funkcji Y(a,b,c) zadanych na oba sposoby:

					•		1 1			_			
a	b	c	c	D	Е	Y		a	b	c	ab	bc	$Y = ab + \overline{b}c$
0	0	0	1	1	1	0		0	0	0	0	0	0
0	0	1	0	1	0	1		0	0	1	0	1	1
0	1	0	1	1	1	0		0	1	0	0	0	0
0	1	1	0	1	1	0		0	1	1	0	0	0
1	0	0	1	1	1	0		1	0	0	0	0	0
1	0	1	0	1	0	1		1	0	1	0	1	1
1	1	0	1	0	1	1		1	1	0	1	0	1
1	1	1	0	0	1	1		1	1	1	1	0	1

Sprawdziliśmy więc równoważność tych wyrażeń.

Ćwiczenia nr 1 z Teorii Układów Logicznych

Prowadzący: dr inż. Ernest Jamro Opracował: Daniel Starnowski