INSURANCE PREMIUM PREDICTION USING GENERALIZED LINEAR MODEL (GLM)

Team Members:

- Akshit Gupta
- Ushali Gangwani

Executive Summary

This project focuses on predicting health insurance premiums using a statistical severity model. A Generalized Linear Model (GLM) with a Gamma distribution and log link function was applied to estimate medical charges based on demographic and lifestyle factors such as age, gender, BMI, smoking habits, region, and exercise frequency.

The model demonstrates strong predictive performance, with predicted mean charges closely aligned with actual charges (16,744 vs 16,735). Key insights show that smokers, individuals with higher BMI, and those selecting premium coverage levels have significantly higher expected charges. Based on predicted severities, suggested premiums were derived by applying a 20% loading to account for expenses and profit margins.

The results support the use of GLMs for actuarial pricing and highlight the importance of lifestyle and demographic factors in insurance premium determination.

```
In [ ]: from google.colab import files
uploaded = files.upload()
```

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable. Saving insurance dataset.csv to insurance dataset.csv

Data & Methodology

The dataset includes demographic and lifestyle variables such as:

- Age, Gender, BMI, Children, Region
- Smoking status, Exercise frequency
- Medical history and Family medical history
- Coverage level

Target variable: charges (medical claims)

Additional variable created: has claim (binary indicator for claim

We applied a **Generalized Linear Model (GLM)** with:

- Distribution: Gamma (suitable for skewed cost data)
- Link function: Log
- Independent variables: age, BMI, smoker status, gender, region, exercise frequency, coverage level

Premiums were then derived as:

Predicted Severity × Loading (20%)

out[]:		age	gender	ıma	chilaren	smoker	region	medical_nistory	ramily_m
	0	46	male	21.45	5	yes	southeast	Diabetes	
	1	25	female	25.38	2	yes	northwest	Diabetes	High
	2	38	male	44.88	2	yes	southwest	NaN	High
	3	25	male	19.89	0	no	northwest	NaN	
	4	49	male	38.21	3	yes	northwest	Diabetes	High

```
In [ ]: df['has_claim'] = (df['charges'] > 0).astype(int)
In [ ]: df.head()
```

Out[]: age gender bmi children smoker region medical_history family_me yes southeast 0 46 male 21.45 5 Diabetes 2 yes northwest 25 female 25.38 Diabetes High 2 38 male 44.88 2 yes southwest NaN High 3 25 male 19.89 0 no northwest NaN 4 49 male 38.21 3 Diabetes High yes northwest

```
In []: formula_sev = "charges ~ age + bmi + C(smoker) + C(gender) + C(region) + C(e
In []: import statsmodels.api as sm
import statsmodels.formula.api as smf

sev_model = smf.glm(
    formula=formula_sev,
    data=df,
    family=sm.families.Gamma(link=sm.families.links.log())
).fit()
```

Generalized Linear Model Regression Results

=======================================				
== Dep. Variable: 00	charges	No. Observ	vations:	10000
Model: 87	GLM	Df Residua	als:	9999
Model Family:	Gamma	Df Model:		
12 Link Function:	log	Scale:		0.0323
69 Method:	IRLS	Log-Likel:	ihood:	-9.3938e+
06 Date:	Wed, 17 Sep 2025	Deviance:		3235
4.	·			
Time: 04	14:09:33	Pearson ch	ni2:	3.24e+
No. Iterations: 36	11	Pseudo R-s	squ. (CS):	0.73
Covariance Type:	nonrobust			
		========	========	=========
P> z [0.025	0.975]	coef	std err	Z
Intercept		9.3138	0.001	8944.215
0.000 9.312 C(smoker)[T.yes]	9.316	0.3072	0.000	853.677
0.000 0.306 C(gender)[T.male]	0.308	0.0627	0.000	174.156
0.000 0.062 C(region)[T.north	0.063 west]	-0.0436	0.001	-85.718
0.000 -0.045 C(region)[T.south	-0.043 east]	-0.0308	0.001	-60.540
0.000 -0.032 C(region)[T.south	-0.030	-0.0497	0.001	-97.727
0.000 -0.051	-0.049			
C(exercise_frequer 0.000 -0.125	ncy)[I.Never] -0.123	-0.1237	0.001	-242.856
C(exercise_frequer 0.000 -0.061	ncy)[T.Occasionally] -0.059	-0.0596	0.001	-117.217
C(exercise_frequer 0.000 -0.092		-0.0911	0.001	-179.116
C(coverage_level)	[T.Premium]	0.3069	0.000	696.226
0.000 0.306 C(coverage_level)	0.308 [T.Standard]	0.1346	0.000	305.482
0.000 0.134 age	0.135	0.0013	1.3e-05	96.538
0.000 0.001	0.001			
bmi 0.000 0.003	0.003	0.0031	1.95e-05	159.359
=======================================		========	=======	==========

```
In []: import numpy as np
import pandas as pd

coefs = sev_model.params
conf = sev_model.conf_int()

effects = pd.DataFrame({
    'coef (log scale)': coefs,
    'exp(coef)': np.exp(coefs),
    'CI_lower': np.exp(conf[0]),
    'CI_upper': np.exp(conf[1])
})

effects.round(4)
```

Out[]:

	coef (log scale)	exp(coef)	CI_lower	CI_upper
Intercept	9.3138	11090.3228	11067.7110	11112.9808
C(smoker)[T.yes]	0.3072	1.3596	1.3586	1.3605
C(gender)[T.male]	0.0627	1.0647	1.0639	1.0654
C(region)[T.northwest]	-0.0436	0.9573	0.9564	0.9583
C(region)[T.southeast]	-0.0308	0.9697	0.9687	0.9706
C(region)[T.southwest]	-0.0497	0.9515	0.9506	0.9525
C(exercise_frequency) [T.Never]	-0.1237	0.8836	0.8828	0.8845
C(exercise_frequency) [T.Occasionally]	-0.0596	0.9421	0.9412	0.9430
C(exercise_frequency) [T.Rarely]	-0.0911	0.9129	0.9120	0.9138
C(coverage_level) [T.Premium]	0.3069	1.3592	1.3580	1.3603
C(coverage_level) [T.Standard]	0.1346	1.1441	1.1431	1.1451
age	0.0013	1.0013	1.0012	1.0013
bmi	0.0031	1.0031	1.0031	1.0031

```
In [ ]: df['pred_sev'] = sev_model.predict(df)
In [ ]: df[['age','smoker','bmi','charges','pred_sev']].head(10)
```

Out[]:		age	smoker	bmi	charges	pred_sev
	0	46	yes	21.45	20460.307669	21169.651085
	1	25	yes	25.38	20390.899218	20635.953478
	2	38	yes	44.88	20204.476302	23581.419497
	3	25	no	19.89	11789.029843	12957.993688
	4	49	yes	38.21	19268.309838	19218.581589
	5	55	yes	36.41	11896.836613	15983.973038
	6	64	no	20.12	9563.655011	11303.301374
	7	53	no	30.51	15845.293730	14049.630925
	8	40	yes	44.93	14036.544129	17172.279234
	9	22	yes	32.13	13669.577830	15133.722978

Key Findings & Business Insights

- **Smoker Effect**: Smokers incur ~36% higher charges than non-smokers.
- Coverage Level: Premium plans → ~35% higher charges; Standard plans → ~14% higher.
- **Gender Effect**: Males show ~6% higher charges than females.
- **BMI Effect**: Each unit increase in BMI increases expected costs by $\sim 0.3\%$.
- **Age Effect**: Older policyholders steadily show higher expected premiums, with charges peaking in the 55-65 age band.

These results align with real-world health risk factors and demonstrate how lifestyle and demographic factors drive premium setting.

```
In [ ]: loading = 1.20  # example: 20% loading to cover expenses/profit/risk mar
df['suggested_premium'] = df['pred_sev'] * loading

# Compare columns
df[['charges','pred_sev','suggested_premium']].head(10)
```

Out[]:		charges	pred_sev	suggested_premium
	0	20460.307669	21169.651085	25403.581302
	1	20390.899218	20635.953478	24763.144174
	2	20204.476302	23581.419497	28297.703396
	3	11789.029843	12957.993688	15549.592426
	4	19268.309838	19218.581589	23062.297907
	5	11896.836613	15983.973038	19180.767645
	6	9563.655011	11303.301374	13563.961649
	7	15845.293730	14049.630925	16859.557110
	8	14036.544129	17172.279234	20606.735080
	9	13669.577830	15133.722978	18160.467574

```
In []: summary_overall = pd.DataFrame({
    'actual_mean_charges': [df['charges'].mean()],
    'predicted_mean_charges': [df['pred_sev'].mean()],
    'mean_suggested_premium': [df['suggested_premium'].mean()]
})
summary_overall.T.rename(columns={0:'value'})
```

Out[]:		value
	actual_mean_charges	16735.117481
	predicted_mean_charges	16744.168838
	mean suggested premium	20093.002606

Premium Setting & Sensitivity

Insurance premiums must account for claims cost, expenses, and profit margin. We applied different loading factors to the predicted severity to suggest fair premium levels.

Loading %	Mean Suggested Premium
10%	₹18,418
20%	₹20,093
30%	₹21,768

This sensitivity analysis highlights how loadings directly impact average premiums, helping insurers balance competitiveness with profitability.

```
In [ ]: group smoker = df.groupby('smoker')[['charges','pred sev','suggested premium
        print("By smoker:\n", group smoker)
        # By coverage level
        group cov = df.groupby('coverage level')[['charges','pred sev','suggested pr
        print("\nBy coverage level:\n", group cov)
        # Bv age band
        df['age\ band'] = pd.cut(df['age'],\ bins=[0,25,35,45,55,65,100])
        group age = df.groupby('age band')[['charges','pred sev','suggested premium'
        group age
       By smoker:
          smoker
                                   pred sev suggested premium
                      charges
           no 14234.185427 14192.300296
                                                 17030.760355
            yes 19234.759386 19294.720957
       1
                                                 23153.665148
      By coverage level:
          coverage level
                                           pred sev suggested premium
                              charges
                  Basic 14393.924079 14337.148110
                                                         17204.577732
                Premium 19402.666240 19487.921027
                                                         23385.505232
       1
               Standard 16413.058442 16411.856408
                                                         19694.227689
       /tmp/ipython-input-121752488.py:10: FutureWarning: The default of observed=F
       alse is deprecated and will be changed to True in a future version of panda
       s. Pass observed=False to retain current behavior or observed=True to adopt
      the future default and silence this warning.
         group age = df.groupby('age band')[['charges','pred sev','suggested premiu
      m']].mean().reset index()
```

```
Out[]:
           age band
                          charges
                                       pred_sev suggested_premium
              (0, 25] 16327.104814 16327.301462
                                                        19592.761755
        0
        1
             (25, 35] 16518.922930 16510.388239
                                                        19812.465887
        2
             (35, 451 16710,065388 16717,014730
                                                        20060.417675
        3
                                                        20312.754089
             (45, 55] 16914.537165 16927.295074
        4
             (55, 65] 17123.752182 17155.901792
                                                        20587.082150
        5
            (65, 100]
                              NaN
                                            NaN
                                                                 NaN
```

```
In []: import matplotlib.pyplot as plt

plt.figure(figsize=(6,6))
plt.scatter(df['charges'], df['pred_sev'], alpha=0.15)
plt.xscale('log'); plt.yscale('log')
plt.xlabel('Actual charges (log)')
plt.ylabel('Predicted charges (log)')
plt.title('Actual vs Predicted (log-log)')
# 45-degree reference line:
lims = [max(1, df['charges'].min()), df['charges'].max()]
plt.plot(lims, lims, color='k', linewidth=1)
plt.show()
```

Actual vs Predicted (log-log)

Model Validation

The GLM shows strong calibration across all deciles of predicted severity.

- Predicted mean charges: ₹16,744
- Actual mean charges: ₹16,735
- Relative error across deciles: within ±4%

A scatter plot of actual vs. predicted charges (on a log-log scale) confirms close alignment between observed and predicted values, indicating good model stability.

```
In []: df['pred_decile'] = pd.qcut(df['pred_sev'], 10, labels=False)
    calib = df.groupby('pred_decile').agg(
        avg_actual = ('charges', 'mean'),
        avg_pred = ('pred_sev', 'mean'),
        count = ('charges', 'count')
    ).reset_index()
```

calib['rel_error_pct'] = (calib['avg_pred'] - calib['avg_actual'])/calib['av calib

Out[]:		pred_decile	avg_actual	avg_pred	count	rel_error_pct
	0	0	11163.658849	11598.850055	100000	3.898285
	1	1	12689.322007	12793.934209	100000	0.824411
	2	2	13982.845926	13910.973979	100000	-0.514001
	3	3	15414.111102	15113.188012	100000	-1.952257
	4	4	16422.590632	16031.980526	100000	-2.378493
	5	5	17224.624469	16850.782271	100000	-2.170394
	6	6	18041.108482	17760.292817	100000	-1.556532
	7	7	19082.112284	19003.230124	100000	-0.413383
	8	8	20727.337096	20939.049658	100000	1.021417
	9	9	22603.463961	23439.406733	100000	3.698295

Conclusion

This project demonstrates the effectiveness of GLMs in predicting health insurance charges and setting premiums. The model closely matches actual claims experience, provides interpretable insights, and shows how key factors such as smoking, BMI, and coverage level impact costs.

By applying appropriate loadings, insurers can translate predicted charges into sustainable premiums. With further extensions (frequency-severity modeling, medical inflation, and ML model comparison), this approach can be enhanced to build a robust insurance pricing framework.

This notebook was converted with convert.ploomber.io