Package 'fnets'

December 6, 2021
Type Package
Title Factor-adjusted Network Analysis and Forecasting for High-dimensional Time Series
Version 0.1.0
Maintainer Haeran Cho <haeran.cho@bristol.ac.uk></haeran.cho@bristol.ac.uk>
Description Used for fitting the factoradjusted VAR model proposed in Barigozzi, Cho and Owens (2021), where strong cross-sectional dependence is accounted for by factors and the remaining idiosyncratic dependence is modelled by a sparse vector autoregression. Methods for estimating the Granger, Contemporaneous, and Long-Run Partial Correlation networks are provided, as well as forecasting methods for both components.
Depends R (>= 2.10)
Imports igraph, lpSolve, foreach, mvtnorm, doParallel, RColorBrewer, fields
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
R topics documented:
common.predict 2 dyn.pca 3 fnets 4 hl.factor.number 6 idio.cv 3 idio.predict 8 make.gg 9

2 common.predict

	nonpar.lrpc	9
	param.lrpc	1
	plot.fnets	2
	plot.fnets.lrpc	3
	predict.fnets	4
	sample.data	5
	sim.factor.M1	5
	sim.factor.M2	6
	sim.idio	7
	var.dantzig	8
	var.lasso	9
Index	2	1

common.predict

Prediction for the factor-driven common component

Description

Predicts common component from a fnets object for new data

Usage

```
common.predict(object, x, h = 1, common.method = c("static", "var"), r = NULL)
```

Arguments

object	fnets object
x	input time series matrix, with each row representing a time series
h	forecast horizon
$\verb common.method $	which of "static" or "var" to forecast the common component with
r	factor number, if r=NULL this is selected using the maximal eigenratio

Value

- 'is' x in-sample estimation
- 'fc' x forecast
- 'r' factor number
- 'h' forecast horizon

dyn.pca 3

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.

Forni, M., Hallin, M., Lippi, M., & Zaffaroni, P. (2017). Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis. Journal of Econometrics, 199(1), 74–92.

Examples

```
require(fnets)
model <- fnets(sample.data, q=2, idio.method = "lasso")
pr <- predict(model,sample.data, common.method = "static")
cpre <- common.predict(model,sample.data, common.method = "static")
ip <- idio.predict(model,sample.data, cpre)</pre>
```

dyn.pca

Dynamic PCA

Description

Performs principal components analysis of the autocovariance matrices.

Usage

```
dyn.pca(xx, q = NULL, ic.op = 4, kern.bandwidth.const = 4)
```

Arguments

centred input time series matrix, with each row representing a time series

q the number of factors, if q=NULL this is selected by the information criterion-based estimator of Hallin and Liska (2007)

ic.op an index number for the information criterion (1 to 6)

kern.bandwidth.const

constant to determine bandwidth size

Value

- 'q' number of factors
- 'spec' Spectral density matrices
- 'acv' Autocovariance matrices
- 'kern.bandwidth.const' Constant to determine bandwidth size

4 fnets

Examples

```
dyn.pca(sample.data, q=2)
```

fnets

Factor-adjusted network analysis

Description

This function estimates the spectral density and autocovariance matrices of the common and the idiosyncratic components, impulse response function and common shocks, and (sparse) VAR transition matrix and innovation covariance matrix.

Usage

```
fnets(
    x,
    q = NULL,
    ic.op = 4,
    kern.bandwidth.const = 4,
    common.var.args = list(var.order = 1, max.var.order = NULL, trunc.lags = 20, n.perm = 10),
    idio.var.order = 1,
    idio.method = c("ds", "lasso"),
    idio.cv.args = list(n.folds = 1, path.length = 10, symmetric = "min", cv.plot = TRUE),
    center = TRUE
)
```

Arguments

x input time series matrix, with each row representing a time series

q the number of factors, if q=NULL this is selected by the information criterion-based estimator of Hallin and Liska (2007)

ic.op an index number for the information criterion

kern.bandwidth.const

constant to determine bandwidth size

common.var.args

A list specifying the estimator for the common component. This contains:

- 'var.order' the order of the VAR model, if NULL then selected blockwise by BIC
- 'max.var.order' the maximum order of the VAR model for the BIC to consider
- 'trunc.lags' the order of the MA representation
- 'n.perm' number of cross-sectional permutations

idio.var.order order of idiosyncratic VAR model

fnets 5

idio.method

A string specifying the type of 11-regularised estimator for the idiosyncratic VAR matrix, possible values are:

- 'lasso' Lasso estimator
- 'ds' Dantzig Selector

idio.cv.args

A list specifying arguments to the cross-validation (CV) procedure for the idiosyncratic VAR. This contains:

- 'n.folds' number of folds
- 'path.length' number of lambda values to consider
- 'symmetric' symmetrisation method for Gamma matrix
- 'cv.plot' Boolean selecting whether to plot the CV curve

center

demean the input x

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

An S3 object of class fnets, which contains the following fields:

- 'q' Number of factors
- 'spec' Spectral density matrices
- 'acv' Autocovariance matrices
- 'common.var' Estimated common component
- 'idio.var' Estimated idiosyncratic component
- 'mean.x' Removed means of x
- 'kern.bandwidth.const' Constant to determine bandwidth size

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

```
fnets(sample.data, q=2, idio.method = "lasso")
```

6 hl.factor.number

	_ , ,	0 T T T T (0 0 1 1)
hl.factor.number	Factor number estimator	of Hallin and Liska (2011)
TIT : Tactor : Tramber	i deter ittimeer estimater	of Hattit and Bisher (2011)

Description

Selects the factor number q based on 6 information criteria

Usage

```
hl.factor.number(xx, q.max, mm, w = NULL, do.plot = TRUE)
```

Arguments

xx	centred input time series matrix, with each row representing a time series
q.max	the maximum number of factors to consider
mm	bandwidth scalar
w	weight vector, defaults to Bartlett weights determined by mm
do.plot	return a plot of the information criteria

Value

A list containing

- 'q. hat' Estimated factor numbers corresponding to each criterion
- 'Gamma_x' Autocovariance of x
- 'Sigma_x' Spectral density of x
- 'sv' singular value decomposition of Sigma_x

hl.factor.number(sample.data,6, 10)

References

Hallin, M., & Liška, R. (2007). Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

idio.cv 7

idio.cv

Cross-validation for 11-regularised VAR estimation

Description

Selects the prediction-optimal regularisation parameter for the estimation of the idiosyncratic VAR

Usage

```
idio.cv(
    xx,
    lambda.max = NULL,
    var.order = 1,
    idio.method = c("lasso", "ds"),
    path.length = 10,
    n.folds = 1,
    q = 0,
    kern.bandwidth.const = 4,
    cv.plot = TRUE
)
```

Arguments

xx	centred input time series matrix, with each row representing a time series	
lambda.max	maximum regularisation parameter, if NULL this is set to the smallest which sets all entries to $\boldsymbol{0}$	
var.order	vector of VAR orders to consider	
idio.method	estimation method, one of "lasso" or "ds"	
path.length	number of regularisation parameters to consider	
n.folds	number of CV folds	
q	factor number	
kern.bandwidth.const constant to determine bandwidth size		
	constant to determine bandwidth size	
cv.plot	return a plot of the CV error against regularisation parameters, stratified by VAR order	

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

8 idio.predict

Value

A list which contains the following fields:

- 'lambda' minimising argument
- 'var.order' minimising order
- 'cv.error' matrix of errors
- 'lambda.path' candidate lambda values

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
idio.cv(sample.data, idio.method = "lasso", q=2)
```

idio.predict

Prediction for the idiosyncratic VAR process

Description

Predicts idiosyncratic components from a fnets object for new data

Usage

```
idio.predict(object, x, cpre, h = 1)
```

Arguments

object fnets object

x input time series matrix, with each row representing a time series

cpre estimated common component

h forecast horizon

Value

A list containing

- 'is' in-sample estimation
- 'fc' forecast
- 'h' forecast horizon

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

make.gg

Examples

```
require(fnets)
model <- fnets(sample.data, q=2, idio.method = "lasso")
pr <- predict(model,sample.data, common.method = "static")
cpre <- common.predict(model,sample.data, common.method = "static")
ip <- idio.predict(model,sample.data, cpre)</pre>
```

make.gg

Construct gg and GG matrices for Yule-Walker estimation

Description

Construct gg and GG matrices for Yule-Walker estimation

Usage

```
make.gg(acv, d)
```

Arguments

acv autocovariance array d order of VAR

Examples

```
require(fnets)
require(doParallel)
require(lpSolve)
dpca <- dyn.pca(sample.data, q=2)
mg <- make.gg(dpca$acv$Gamma_i,1)
v1 <- var.lasso(mg$GG,mg$gg, .1)
vd <- var.dantzig(mg$GG,mg$gg, .1, n.cores = 1)</pre>
```

 $\verb"nonpar.lrpc"$

Nonparametric partial coherence matrix estimation

Description

Returns a non-parametric estimate of the partial coherence matrix, possibly using cross-validation

10 nonpar.lrpc

Usage

```
nonpar.lrpc(
  object,
    x,
  eta = NULL,
  symmetric = c("min", "max", "avg", "none"),
  lrpc.cv.args = list(n.folds = 1, path.length = 10),
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

object	fnets object
x	input time series matrix, with each row representing a time series
eta	regularisation parameter, if NULL this is selected by cross-validation
symmetric	type of symmetry to enforce on output, one of 'min', 'max', 'avg', 'none'
lrpc.cv.args	A list specifying arguments to the cross-validation (CV) procedure containing:
	• 'n.folds' number of folds
	 'path.length' number of lambda values to consider
n.cores	number of cores to use for parallel computing

Value

A list containing

- 'Omega' estimated partial coherence matrix
- 'eta' regularisation parameter

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

```
#nonpar.lrpc
require(doParallel)
require(lpSolve)
model <- fnets(sample.data, q=2, idio.method = "lasso")
nonpar.lrpc(model, sample.data, 1, n.cores = 1)</pre>
```

param.lrpc 11

param.lrpc

Parametric partial coherence matrix estimation

Description

Returns a parametric estimate of the partial coherence matrix, possibly using cross-validation

Usage

```
param.lrpc(
  object,
  x,
  eta = NULL,
  symmetric = c("min", "max", "avg", "none"),
  lrpc.cv.args = list(n.folds = 1, path.length = 10),
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

object	fnets object
X	input time series matrix, with each row representing a time series
eta	regularisation parameter, if NULL this is selected by cross-validation
symmetric	type of symmetry to enforce on output, one of 'min', 'max', 'avg', 'none'
lrpc.cv.args	A list specifying arguments to the cross-validation (CV) procedure containing:
	• 'n.folds'number of folds
	 'path.length'number of lambda values to consider
n.cores	number of cores to use for parallel computing

Value

A list containing

- 'Omega' estimated partial coherence matrix
- 'eta' regularisation parameter

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

```
#param.lrpc
require(doParallel)
require(lpSolve)
model <- fnets(sample.data, q=2, idio.method = "lasso")
param.lrpc(model, sample.data, 1, n.cores = 1)</pre>
```

plot.fnets

plot.fnets

Plot fnets object

Description

plots the idiosyncratic component of the fnets object as a Granger causal network, either as a network graph or a heatmap

Usage

```
## S3 method for class 'fnets'
plot(
  object,
  type = "network",
  names = NULL,
  groups = NULL,
  threshold = 0,
  size = NULL,
  ...
)
```

Arguments

object	fnets object
type	whether to plot a "network" or "heatmap"
names	character vector of node names
groups	integer vector denoting groups for "network" plots
threshold	sets all elements less than this in absolute value to 0
size	which type of degree to use for node size in "network" plots, one of "all", "out", "in", "total" $$
	additional arguments

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

plot.fnets.lrpc 13

plot.fnets.lrpc

Plot fnets.lrpc object

Description

plots the fnets.lrpc object as a Long-Run Partial Correlation network, and if available as a Contemporaneous network, either as a network graph or a heatmap

Usage

```
## S3 method for class 'fnets.lrpc'
plot(
  object,
  type = "network",
  names = NULL,
  groups = NULL,
  threshold = 0,
  size = NULL,
  ...
)
```

Arguments

object	fnets.lrpc object
type	whether to plot a "network" or "heatmap"
names	character vector of node names
groups	integer vector denoting groups for "network" plots
threshold	sets all elements less than this in absolute value to 0
size	which type of degree to use for node size in "network" plots, one of "all", "out", "in", "total" $$
	additional arguments

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

14 predict.fnets

Description

Predicts common and idiosyncratic components from a fnets object for new data

Usage

```
## S3 method for class 'fnets'
predict(object, x, h = 1, common.method = c("static", "var"), r = NULL)
```

Arguments

object	fnets object
x	input time series matrix, with each row representing a time series
h	forecast horizon
$\verb common.method $	which of "static" or "var" to forecast the common component with
r	factor number, if r=NULL this is selected using the maximal eigenratio

Value

A list containing

- 'fitted' x in-sample estimation
- 'forecast' x forecast
- 'common.pred' Prediction for the factor-driven common component
- 'idio.pred' Prediction for the idiosyncratic component
- 'x.mean' removed mean of x

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

```
require(fnets)
model <- fnets(sample.data, q=2, idio.method = "lasso")
pr <- predict(model,sample.data, common.method = "static")
cpre <- common.predict(model,sample.data, common.method = "static")
ip <- idio.predict(model,sample.data, cpre)</pre>
```

sample.data 15

sample.data

Simulated example common+idiosyncratic time series

Description

Example 'p=100', 'n=200' time series, where the common component is generated using Model 1 and the idiosyncratic component is generated with a sparse VAR.

Usage

```
sample.data
```

Format

An object of class matrix (inherits from array) with 100 rows and 200 columns.

sim.factor.M1

Simulate data from a dynamic factor model (Model 1)

Description

Simulate data from a dynamic factor model (Model 1)

Usage

```
sim.factor.M1(n, p, q = 2, r = 4, do.scale = T, loadings = NULL, K = NULL)
```

Arguments

n	sample size
р	number of series
q	dynamic dimension (default 2)
r	factor number (default 4)
do.scale	scale the output (default TRUE)
loadings	loading matrix, dimension p by r (default null)
K	transition matrix, dimension r by q (default null)

Value

- 'data' generated series
- 'shocks' q-dimensional shock series
- 'factors' r-dimensional factor series
- 'K' transition matrix
- 'loadings' factor loadings

16 sim.factor.M2

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
sim.factor.M1(100,10)
```

sim.factor.M2

Simulate data from a static factor model (Model 2)

Description

Simulate data from a static factor model (Model 2)

Usage

```
sim.factor.M2(
    n,
    p,
    trunc.lags = 20,
    do.scale = T,
    a1 = NULL,
    a2 = NULL,
    alpha1 = NULL,
    alpha2 = NULL
)
```

Arguments

```
n sample size
p number of series
trunc.lags lag for moving average representation
do.scale scale the output (default TRUE )
a1, a2, alpha1, alpha2
generative parameters (default null, see reference)
```

Value

- 'data' generated series
- 'shocks' 2-dimensional shock series
- 'a1', 'a2', 'alpha1', 'alpha2' generative parameters

sim.idio 17

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
sim.factor.M2(100,10)
```

sim.idio

Simulate data from a (sparse) VAR(1) model

Description

Simulate data from a (sparse) VAR(1) model

Usage

```
sim.idio(
   n,
   p,
   A = NULL,
   cov = diag(1, p),
   prob = 1/p,
   two.norm = NULL,
   do.scale = T
)
```

Arguments

n	sample size
p	number of series
A	transition matrix, dimension p by p (default null)
cov	generative covariance matrix (default identity)
prob	probability of an edge existing in the transition matrix, if \boldsymbol{A} is $NULL$
two.norm	target 2-norm to scale A by (default NULL)
do.scale	scale the output (default TRUE)

Value

- 'data' generated series
- 'A' transition matrix

18 var.dantzig

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
sim.idio(100,10, A=diag(0.3, 10))
```

var.dantzig

Dantzig selector-type Yule-Walker estimation for VAR processes

Description

Returns parameter estimates for the idiosyncratic VAR and the corresponding Gamma matrix

Usage

```
var.dantzig(
  GG,
  gg,
  lambda,
  symmetric = "min",
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

GG, gg output from make.gg
lambda regularisation parameter
symmetric type of symmetry to enforce on Gam

symmetric type of symmetry to enforce on Gamma, one of 'min', 'max', 'avg', 'none'

n.cores number of cores to use for parallel computing

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

A list which contains the following fields:

• beta: VAR parameters

• lambda: regularisation parameter

• Gamma: Estimated noise covariance

var.lasso 19

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
require(fnets)
require(doParallel)
require(lpSolve)
dpca <- dyn.pca(sample.data, q=2)
mg <- make.gg(dpca$acv$Gamma_i,1)
v1 <- var.lasso(mg$GG,mg$gg, .1)
vd <- var.dantzig(mg$GG,mg$gg, .1, n.cores = 1)</pre>
```

var.lasso

Lasso-type Yule-Walker estimation for VAR processes

Description

Returns parameter estimates for the idiosyncratic VAR and the corresponding Gamma matrix

Usage

```
var.lasso(
   GG,
   gg,
   lambda,
   symmetric = "min",
   niter = 100,
   tol = 0,
   do.plot = FALSE
)
```

Arguments

```
GG, gg output from make.gg

lambda regularisation parameter

symmetric type of symmetry to enforce on Gamma, one of 'min', 'max', 'avg', 'none'

niter maximum number of descent steps

tol numerical tolerance for increases in the loss function

do.plot return a plot of the loss function against descent steps
```

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

20 var.lasso

Value

A list which contains the following fields:

- betaVAR parameters
- lambda regularisation parameter
- Gamma Estimated noise covariance
- loss Objective function value

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

```
require(fnets)
require(doParallel)
require(lpSolve)
dpca <- dyn.pca(sample.data, q=2)
mg <- make.gg(dpca$acv$Gamma_i,1)
v1 <- var.lasso(mg$GG,mg$gg, .1)
vd <- var.dantzig(mg$GG,mg$gg, .1, n.cores = 1)</pre>
```

Index

```
\ast datasets
     sample.data, 15
\verb|common.predict|, 2
dyn.pca, 3
fnets, 4
hl.factor.number, 6
idio.cv, 7
{\tt idio.predict, 8}
\mathsf{make.gg}, \textcolor{red}{9}
nonpar.lrpc, 9
param.lrpc, 11
plot.fnets, 12
\verb|plot.fnets.lrpc|, 13|
predict.fnets, 14
sample.data, 15
sim.factor.M1, 15
sim.factor.M2, 16
sim.idio, 17
\textit{var.dantzig}, \textcolor{red}{18}
var.lasso, 19
```