Exercice 1: Forme canonique

Déterminer la forme canonique du polynôme P, défini pour tout $x \in \mathbb{R}$ par :

1.
$$P(x) = x^2 + 6x + 9$$

2.
$$P(x) = -2x^2 + 20x - 45$$

1. On reconnaît une identité remarquable de la forme $a^2 + 2ab + b^2$.

$$P(x) = x^{2} + 6x + 9$$

$$= x^{2} + 2 \times x \times 3 + 3^{2}$$

$$= (x + 3)^{2}$$

2. On sait que si le polynôme, sous forme développée, s'écrit $P(x) = ax^2 + bx + c$, alors sa forme canonique est de la forme $P(x) = a(x - \alpha)^2 + \beta$,

avec
$$\alpha = \frac{-b}{2a}$$
 et $\beta = P(\alpha)$.

avec $\alpha=\frac{-b}{2a}$ et $\beta=P(\alpha)$. Avec l'énoncé : a=-2 et b=20, on en déduit que $\alpha=5$.

On calcule alors $\beta=P(5)$, et on obtient au final que $\beta=5$.

d'où,
$$P(x) = -2(x-5)^2 + 5$$

Finalement, $P(x) = -2(x - 5)^2 + 5$