Write-Up for the Hiring Problem Simulation

1. Description of the Code

The provided Java and Python program simulates a variant of the hiring problem. In this version of the hiring problem, each candidate is assigned a suitability rating that is an integer chosen uniformly at random from 0 to (x), where (x) is defined differently under three cases:

```
    Case A: (x = [log2n])
    Case B: (x = n)
    Case C: (x = n^3)
```

Here, (n) represents the number of candidates, and we simulate the process for every (n) from 1 to 1000. For each (n) and each case, the program runs 10 independent simulation trials. During a trial, the program "hires" a candidate if the candidate's rating is strictly greater than the current best rating.

The simulation for each (n) involves the following steps:

1. Determine the Range of Ratings ((x)):

For each candidate count (n), the value of (x) is computed for each case (A, B, and C). For example, in Case A, (x = \lceil \log_2 n \rceil).

2. Simulation of the Hiring Process:

- The simulation starts with no candidate hired (using a currentBest initialized to -1).
- For each candidate, a random rating is generated using Java's Random class.
- If the candidate's rating is strictly greater than the currentBest, the candidate is hired, and currentBest is updated to that rating.
- The number of hires is recorded for that trial.

3. Computation of Statistics:

- After running the required number of trials (10 in this case), the program computes:
 - The mean (average) number of hires.
 - The standard deviation of the hires across the trials.

4. Output to CSV:

- The code writes the output to a CSV file named results.csv.
- Each row in the CSV file corresponds to a particular value of (n) and contains the following columns:
 - (n) (number of candidates)
 - For each case (A, B, and C): the value of (x), the computed mean number of hires, and the standard deviation.
- This output is later imported into Python's matplotlib for plotting and further analysis.

2. Analysis

The simulation is designed to study the behavior of the hiring problem under different conditions of the candidate rating range:

1. Case A ((x = [log2n])):

- Since (x) grows very slowly with (n) (logarithmically), the range of possible ratings is small.
- This means that after a candidate with a high rating is hired, it becomes very unlikely
 to find a candidate with a strictly higher rating.
- **Expected Behavior:** The number of hires will be relatively low and will tend to plateau as (n) increases.

2. Case B ((x = n)):

- Here, the range of possible ratings increases linearly with the number of candidates.
- This makes ties less frequent, and the process starts to resemble the classical hiring problem.
- **Expected Behavior:** The expected number of hires should be similar to the harmonic series, approximately lnn. This means that as (n) increases, the number of hires grows logarithmically.

3. Case C (($x = n^3$)):

- With ($x = n^3$), the range is very large compared to the number of candidates.
- Ties are highly unlikely, and the behavior should closely match the continuous case.
- **Expected Behavior:** The number of hires is expected to be nearly identical to the classical hiring problem, again following roughly (lnn+O(1)).

3. Plots

1. Mean and Standard Deviation graph for $x = \lceil \log 2n \rceil$:

2. Mean and Standard Deviation graph for x = n:

3. Mean and Standard Deviation graph for $x = n^3$:

4. Plot of log(n) for comparison:

4. Conclusions

From the simulation and subsequent analysis, we can conclude the following:

Impact of the Rating Range (x) on Hiring:

- When the rating range is small (Case A), the number of hires is limited. This is because once the maximum possible rating is achieved, no further candidates can be hired. The simulation shows that the hiring process saturates quickly.
- When (x) increases (Cases B and C), ties become rare, and the process more closely resembles the classical hiring problem. The number of hires grows in a logarithmic fashion with the number of candidates.

In summary, the simulation demonstrates that the discrete nature of candidate ratings and the choice of (x) significantly influence the number of hires. For large ranges of ratings, the hiring process follows the logarithmic behavior predicted by theory, while small ranges quickly lead to saturation in the number of hires. This insight is valuable for understanding both randomized algorithms and practical scenarios where candidate selection is based on discrete ratings.

HW1

n!	umber of permutations of n' number. As the input of the program is
	l'it outputs a permutations of t
	(random permutation).
a Permut	ation of 'r' numbers =
	nl
	•
hobabilit	y ay each permutation of 'n'
num la	r; where each outcome is
nombe	
equally	likely

This problem is similar to Coupon collectors problem. The problem reduces to determining the expected number trials (permutations generated) to collect of distinct permutations. Let event x => X = probability of generating a permutation that "is distinct

$$\frac{\chi_{i}}{\sqrt{1-\frac{1}{i}}} = \frac{n!}{i} = \sum_{i=1}^{n!} P(x)$$
random

Indiculor variable

$$E[X] = E\left[\sum_{i=1}^{N!} P(X)\right]$$

$$= \sum_{i=1}^{\infty} E[P(x)]$$

$$= \sum_{i=1}^{n} \frac{1}{i}$$

$$= \sum_{i=1}^{l} \frac{1}{i}$$

$$=\frac{1}{1}+\frac{1}{2}$$

$$a$$
 $ln(n!) + c$

	Let	T	be	expect	ed nu	mber	af	
trial	o te	s ger	neralec	d all	ed no	inct		
	nutadi							
	•••		n! x	£[x				
		=	nĮ	x Qn	(n!).	+c F	rom	2
T	_	ni :	X ln ((n!)+	٠.			

Process for a candidates and each candidate has a skill level randomly generated between 0 to x

Here x = [log2(n)]

i.e. all the skill levels are discrete and bounded by log_(n)

Expected number of hires for standard hiring problem is given by

E[x] = In(n) + O(1)

In this case, each hire corresponds to a new maximum skill level The probability of a new maximum 5xill level occurring at each step is I, where is is the number of

candidates seen so far.

: skill levels are bounded by log_(n)

$$E(x) = ln(log_2(n))$$

: notle i rel Let Ei,j be an event where dice in and 9 03 dice j show different outcomes. redurn c S = Sample Space of one dice = {1,2,3,4,5,6} let A be an event where dice du shows x. : nes P(at.) = 1 $P(x=1) = \frac{1}{6}$ $P(x=2) = \frac{1}{6}$ $P(x=6) = \frac{1}{6}$ Let compose P(Ei,j) | X. | 1st dice 2nd dice Let & x, be outcome on dice 1. $P(x_i) = 6$ where $x_i \in S$.

3 to 1000 auch

ich us consider bents Eigenschieben . All possible outcomes for dice 2 are S-x1 P(E) O END = P(ED) · P(END) ||S-x.|| = 6-1 = 5 & Hence let X2 be a outcome of dice 2. Since X_1 cannot be equal to X_2 (for $E_{i,j}$) $P(X_2|3^{X_2}) = \frac{5}{6}$ As X_1 is removed from S_2 . CANO (3) POC 17 = 10 + D @ P(x1 n x2) = P(x1) (P(x2) (1) - 1) where x, & x2 are mutallfly and ependent events But since & an the outcome of dice 2 (x2) depends on the outcome of dice of (x) They are not mutally independent. $P(X_1 \cap X_2) \Rightarrow P(X) \cdot P(X_2) \Rightarrow P(X_1)$ for mutually dependent events. To show that the contection EF; 13 is not and interestent we need to ender a subset of Now lets prove Ein lack mutaval independence and but are pairwise independent.

J	- Andr	Let us consider events Eije Exa.
4~	18-	" A All possible outcomes for dice a are s
		P(Eij) = P(Eij) · P(Ex1)
		: s - x = 6-1 = 5
-5		
	case 0	Hence let X2 be en circlet x # i # i # i & i
 	- Cir	E 3/) ex of lough and tongo X sonie
		$f(E_{ij} \cap E_{kl}) = \left(\frac{S}{6}\right) \times \left(\frac{S}{6}\right) = \left(\frac{S}{6}\right)$
	.2 /	$P(E_{ij} \cap E_{kl}) = \left(\frac{5}{6}\right) \times \left(\frac{5}{6}\right) = \left(\frac{5}{6}\right)^{2}$
-		9
4	case (2)	for itj=ktl
-		
-	1).	p(E; n(E)) = (x(S) = (Ex) = x (S) =
-	Ed vienes	where X, of mutablily independent
4_		
-	(P X	Events satisfy the condition for pairwise independence.
-		Events satisfy the condition for pairwise independence.
-		they are last mutally independent.
		Now lets prove that Eij is not mutually
		independent (Récall · Ox) 9 = (x 0, x) 9 :
<u>-</u> -		for mutually dependent events
-		To show that the collection {E; } is not mutually
		"independent, we need to find a subset of events whose goint probability does not equal the product of
7	9.	goint probability does not equal the product ay
		individual opportunities en en rod total
+		

$$P(E_{12} \cap E_{23} \cap E_{13}) = P(E_{12}) \cdot P(E_{23}) \cdot P(E_{13})$$

$$= \left(\frac{5}{6}\right)^{3}$$

However events that require:

$$P(E_{12} \cap E_{23} \cap E_{13}) = \underbrace{6}_{6} \cdot \underbrace{5}_{4} \cdot \underbrace{4}_{3} = \underbrace{5}_{9}$$

Since $P(E_{12} \cap E_{23} \cap E_{13}) \neq P(E_{12}) \cdot P(E_{23}) \cdot P(E_{13})$ the event E_{12} is pairwise independent, but not mutabally independent.