Metric Spaces and Complex Analysis

Giannis Tyrovolas

September 18, 2020

1 Metric Spaces

Definition 1.1 (Metric Space). A metric space M = (X, d) is a set equipped with a function $d: X \times X \longrightarrow \mathbb{R}$ such that:

- 1. $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Definition 1.2 (Continuity). A function $f: X \longrightarrow Y$ is continuous at $x_0 \in X$ when $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $\forall x \in B(x_0, \delta), \ f(x) \in B(f(x_0), \varepsilon)$

Definition 1.3 (Uniform Continuity). A function $f: X \longrightarrow Y$ is uniformly continuous if $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $\forall z \in B(x, \delta) \ f(z) \in B(f(x), \varepsilon)$

Definition 1.4 (Convergence). A series (x_n) converges in a metric space X if there is an $x_0 \in X$ such that for all $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that for all n > N $d(x_n, x_0) < \varepsilon$

Lemma 1.5 (Sequential Continuity). A function $f: X \longrightarrow Y$ is continuous at $a \in X$ if and only if for every sequence $(x_n) \to a$, $(f(x_n)) \to f(a)$

Definition 1.6 (Norm). Let V a vector space. Then $\|.\|: V \longrightarrow \mathbb{R}$ is a norm if:

- 1. $||v|| \ge 0$ and $||v|| = 0 \iff v = 0_V$
- $2. \|\lambda v\| = |\lambda| \|v\|$
- 3. $||x + y|| \le ||x|| + ||y||$

Definition 1.7 (Open Set). A set $U \subseteq X$ is open if $\forall x \in U$, there is an $\varepsilon > 0$ such that $B(x, \varepsilon) \subseteq U$.

Theorem 1.8 (Topological Continuity). A function $f: X \longrightarrow Y$ is continuous if and only if the pre-image of every open set is open.

Definition 1.9 (Interior). The interior of S is the largest open subset of S, defined as:

$$int(S) = \bigcup_{U \subseteq S, \ U \text{ open}} U$$

Definition 1.10 (Closure). The closure of a set S is the smallest closed subset containing S:

$$\overline{S} = \bigcap_{S \subseteq C, C \text{ closed}} C$$

Lemma 1.11. A function is continuous if and only if $f(\overline{S}) \subseteq \overline{f(S)}$

2 Complex Exponential

The following power series define the complex exponential and trigonometric functions:

Note:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i},$$
 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$
 $\sinh z = \frac{e^z - e^{-z}}{2},$ $\cosh z = \frac{e^z + e^{-z}}{2}$

And

$$\exp i\theta = \cos \theta + i \sin \theta$$

3 Holomorphic Functions

Definition 3.1 (Domain). A domain usually denoted U is an open, connected subset of the complex numbers.

Theorem 3.2 (Cauchy's Theorem). Let $f: U \longrightarrow \mathbb{C}$ holomorphic on a domain U. Then for all closed paths γ :

$$\int_{\gamma} f(z)dz = 0$$

Theorem 3.3 (Deformation Theorem). Let $f: U \longrightarrow \mathbb{C}$ be holomorphic on domain U. Let two closed paths γ_1, γ_2 be homotopic. Then:

$$\int_{\gamma_1} f = \int_{\gamma_2} f$$

Theorem 3.4 (Cauchy's Integral Formula). Let $f: U \longrightarrow \mathbb{C}$ holomorphic on and inside a simple, closed, positively oriented curve γ . Then for all points a on the interior of γ :

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - a} dw$$

Theorem 3.5 (Taylor's Theorem). All holomorphic functions on a domain can be expressed as a power series. For $f: U \longrightarrow \mathbb{C}$ holomorphic on domain U and for $a \in U$, $D(a, r) \subseteq U$

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$

where:

$$c_n = \frac{1}{2\pi i} \int_{\gamma(a,r)} \frac{f(w)}{(w-a)^{n+1}} = \frac{f^{(n)}(a)}{n!}$$

Theorem 3.6 (Liouville's Theorem). Let f holomorphic on \mathbb{C} and f bounded. Then f is constant.

Corollary 3.7. For f entire, $f(\mathbb{C})$ is dense in \mathbb{C} (i.e. $\overline{f(\mathbb{C})} = \mathbb{C}$)

Theorem 3.8 (Picard's Little Theorem). For f non-constant entire, $f(\mathbb{C}) = \mathbb{C}$ or $\mathbb{C} \setminus \{z\}$

Theorem 3.9 (Fundamental Theorem of Algebra). Let p be a non-constant polynomial with complex coefficients. Then there exists $a \in \mathbb{C}$ such that p(a) = 0.

Theorem 3.10 (Morera's Theorem). Let f continuous on a domain U and for all closed paths γ in U

$$\int_{\gamma} f(z)dz = 0$$

Then f is holomorphic.

Theorem 3.11 (Identity Theorem). Let f holomorphic on domain U let $S = f^{-1}(0)$. If S contains one of it's limit points then f is identically zero.

Theorem 3.12 (Counting Zeroes). Let f holomorphic inside and on a positively oriented closed path γ . Then the sum of zeroes counting their multiplicity is:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(w)}{f(w)} dw$$

Theorem 3.13 (Laurent's Theorem). Let f be a function holomorphic on $z \in \mathbb{C}|R < |z - a| < S$. Then,

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n$$

For:

$$c_n = \frac{1}{2\pi i} \int_{\gamma(a,r)} \frac{f(w)}{(w-a)^{n+1}} dw$$