Lecture Notes on Non-deterministic Finite automata with ϵ -transitions

Venkatesh Choppella

August 16, 2019

Contents

1	Introduction	1
2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2 2 2
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
4	Understanding the different relations	3
5	Acceptance	3
6	ϵ -elimination	3
7	Relating NFA/e reachability with NFA reachability 7.1 E-acceptance implies N-acceptance	

1 Introduction

We study NFAs with ϵ transitions (NFA/e) and their equivalence with NFAs.

2 Definition

2.1 NFA/e

Definition 2.1 (NFA/e). Let Σ be a finite alphabet not containing the symbol ϵ . An NFA/e over Σ is an NFA whose alphabet is $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$.

2.2 ϵ transition

An ϵ transition is a relation between two states q and q' such that $q \xrightarrow{\epsilon} q'$.

3 Reachability in NFA/e

We define several reachability relations:

3.1 ϵ reachability

Definition 3.1 (ϵ -reachability). $\frac{\epsilon^*}{E}$ is the reflexive transitive closure of the ϵ transition relation $\frac{\epsilon}{E}$. In other words, $q = \frac{\epsilon^*}{E} q'$ iff q can reach q' in zero or more ϵ transitions.

3.2 ϵ closure

Definition 3.2. Given a state q, the ϵ closure of q

$$\epsilon\text{-}clo = \{q' \in Q_E \mid q \xrightarrow{\epsilon*} q'\}$$

The ϵ closure of q is the set of all states that are ϵ reachable from q.

3.3 Macro transition via ϵ 's

The next definition relates two states that are separated by a single alphabet symbol interspersed with any number of ϵ transitions.

Definition 3.3.

$$\frac{q_1 \xrightarrow{\epsilon*} q_2}{E} q_2 \xrightarrow{q_2 \xrightarrow{a} q_3} q_3 \xrightarrow{g_3 \xrightarrow{E}} q_4$$

$$q_1 \xrightarrow{a} q_4$$

$$\sum q_1 \xrightarrow{a} q_4$$

 $\xrightarrow{\mathbb{R}^*}$ denotes the transitive closure of $\xrightarrow{E^*}$ as is defined by the rules below:

$$\frac{q \xrightarrow{a} q'}{q \xrightarrow{a} q'} \qquad \Sigma$$

$$\frac{q \xrightarrow{a} q'' \quad q'' \xrightarrow{w} q'}{q \xrightarrow{aw} q'} TRANS$$

4 Understanding the different relations

- $q \xrightarrow{a} q'$: q transits to q' on a in E, where $a \in \Sigma$. (non- ϵ transitions)
- $q \xrightarrow{\epsilon} q'$: q transits to q' on ϵ in E (ϵ transitions)
- $q \xrightarrow{\epsilon*} q'$: q reaches q' in E consuming zero or more ϵ 's along the way. $(\epsilon \text{ reachability})$
- $q \xrightarrow{a} q'$: q reaches q' consuming zero or more ϵ 's and the symbol a along the way.
- $q \xrightarrow{a} q'$: The transitive closure of \xrightarrow{a} .

5 Acceptance

An NFA/e E accepts w iff

- 1. $w = \epsilon$ and $i_E \xrightarrow{\epsilon *} q$ for some $q \in F_E$.
- 2. $w \neq \epsilon$ and $i_E \xrightarrow{w} q$ for some $q \in F_E$.

6 ϵ -elimination

Given an NFA/e E over Σ , the NFA N obtained from E by ϵ elimination is defined as follows:

$$N = (Q_N, i_N, \Sigma, \xrightarrow{N}, F_N)$$

where

•
$$Q_N = Q_E$$

•
$$i_N = i_E$$

•
$$q \xrightarrow{a} q' \stackrel{\text{def}}{=} q \xrightarrow{a} q'$$
, and

•
$$F_N = \begin{cases} F_E \cup \{i_E\} & \text{if } \epsilon\text{-}clo(i_E) \cap F_E \neq \emptyset \\ F_E & \text{otherwise} \end{cases}$$

The set of final states of N includes all of F_E plus the initial state i_E , provided a final state of E is ϵ reachable from i_E . Note also that N does not have any ϵ transitions.

7 Relating NFA/e reachability with NFA reachability

Let N denote the NFA obtained by ϵ elimination from an NFA/e E.

Lemma 7.1 (E*-reachability vs. N-reachability). If $w \neq \epsilon$, and $q \xrightarrow{w} q'$, then $q \xrightarrow{w} q'$

Proof:

By induction on the derivation of $\frac{}{E*}$.

Base case:

1.
$$q \xrightarrow{w} q'$$
 using the Σ rule on $\xrightarrow{E*}$ Given.

2.
$$w = a$$
 for some $a \in \Sigma$ from 1 and Σ inversion on $\xrightarrow{E*}$

3.
$$q \xrightarrow{a} q'$$
 from 1, 2 and Σ inversion on $\xrightarrow{E*}$

4.
$$q \xrightarrow{a} q'$$
 from 3 and construction of N .

Inductive case:

1.
$$q - \frac{w}{E_*} q'$$
 using the *TRANS* rule on $\xrightarrow{E_*}$ Given.

2.
$$w = aw'$$
 for some $a \in \Sigma$, $w' \neq \epsilon$ from 1 using TRANS inversion

3.
$$q \xrightarrow{a} q''$$
 and $q'' \xrightarrow{w'} q'$ for some $q'' \in Q_E$ from 1, 2 using TRANS inversion on $\xrightarrow{E^*}$.

4.
$$q = \frac{a}{E_*} q''$$
 from 3 and AND-elim₁

5.
$$q - \frac{a}{N} q''$$
 from 4 and construction of N

6.
$$q \xrightarrow{w'} q''$$
 from 3 and AND-elim₂

7.
$$q \xrightarrow{w'} q''$$
 from 6 and the Induction Hypothesis

8.
$$q \xrightarrow{aw'} q'$$
 from 5, 7 and TRANS on \xrightarrow{N} .

9.
$$q \xrightarrow{w} q'$$
 from 8 and 2

QED.

7.1 E-acceptance implies N-acceptance

Lemma 7.1 directly implies that acceptance by E implies acceptance by N.

Lemma 7.2 (E-acceptance implies N-acceptance). Let E accept w. Then N accepts w.

Proof:

• Case $w = \epsilon$:

1.
$$i_E \frac{\epsilon *}{E} q$$
 for some $q \in F_E$ by defin of E-acceptance
2. $i_E \frac{\epsilon *}{E} q$ From 1 using AND-elim₁
3. $q \in \epsilon$ - $clo(i_E)$ From 2 and defin of ϵ closure
4. $q \in F_E$ From 1 using AND-elim₂

From 3, 4 using set theory

6. i_E is a final state in N

From 5 and the construction of F_N

• Case $w \neq \epsilon$

1.
$$w \neq \epsilon$$
 Given

2.
$$i_E \xrightarrow{w} q$$
 for some $q \in F_E$ by defining the definition of E-acceptance

3.
$$i_E \frac{w}{N} q$$
 From 2 and Lemma 7.1

4.
$$i_N = i_E$$
 construction of N

5.
$$q \in F_E$$
 From 2 using AND-elim₂

6.
$$F_E \subseteq F_N$$
 by construction of N
7. $q \in F_N$ From 5, 6, using set theory

8.
$$i_E \xrightarrow{w} q$$
 From 2 using AND-elim₁

9.
$$i_N - \frac{w}{N} q$$
 Rewriting 8 using 4

10. N accepts w From 7, 9 using defn of N-acceptance

QED \square

7.2 N reachability implies E*-reachability

Lemma 7.3 (N-reachability vs. E*-reachability). If $w \neq \epsilon$, and q = w - w - w - q', then q = w - w - q'

Proof. Left as an exercise. \Box

7.3 N-acceptance implies E-acceptance

Lemma 7.4 (N-acceptance implies E-acceptance). Let N be the NFA constructed by ϵ -elimination of and NFA/e E. Let N accept w. Then E accepts w.

Proof. Left as an exercise. \Box