Assignment CS374

Harsh Patel(201701021) Viraj Patel(201701439)

Assigned by:

Prof. Arnab Kumar

October 3, 2019

Contents

1	Question 1: Binary Search and Information Entropy
	1.1 Part A
	1.2 Part B
	1.3 Part C
2	Question 2 : An Astronomical Inflow
	2.1 Graph
3	Question 3: A Nuclear Outflow
	3.1 Singular and Turning Points
	3.2 Graph
4	Question 4: The Hydraulic Jump
	4.1 $\frac{dH}{dX}$ for $X >= 0$
	4.1.1 Implications
	4.2 Solve for $H = H(X)$
	4.2.1 Descartes Method
	4.2.2 $H = X = 0$
	4.2.3 $H = 1$ and $X = 2 \dots \dots \dots \dots \dots$
	4.2.4 Graph
5	Question 5: The Lienard System
	5.1 Graph

1 Question 1: Binary Search and Information Entropy

1.1 Part A

$$< I > = -k \sum_{i} P_{i} \log_{2} P_{i}$$

= $-kp \log_{2} p - k(1-p) \log_{2} (1-p)$

For finding maximum; equating derivative to zero;

$$\frac{d < I >}{dp} = 0$$

$$-k + k - k \log_2 p + k \log_2 (1 - p) = 0$$

$$\log_2 p = \log_2 (1 - p)$$

$$p = 1 - p$$

$$p = \frac{1}{2}$$

1.2 Part B

$$p = \frac{1}{2} + \epsilon \qquad \epsilon \ll \frac{1}{2}$$

$$\langle I \rangle = -k(\frac{1}{2} + \epsilon) \frac{\ln(1 + 2\epsilon) - \ln 2}{\ln 2} - k(\frac{1}{2} - \epsilon) \frac{\ln(1 - 2\epsilon) - \ln 2}{\ln 2}$$

Considering $\ln(1+x) \approx x$ for $x \ll 1$

$$\langle I \rangle \approx \frac{-k}{\ln 2} \times (4\epsilon^2 - \ln 2)$$

$$\langle I \rangle \approx k - \frac{4k\epsilon^2}{\ln 2}$$

$$\langle I \rangle \approx a - b\epsilon^2$$

$$a = k$$

$$b = \frac{4k}{\ln 2}$$

1.3 Part C

Plot of $\langle I \rangle$ vs. P

Plot of Error between Actual $\langle I \rangle$ and approximate $\langle I \rangle$ vs. ϵ

2 Question 2 : An Astronomical Inflow

2.1 Graph

3 Question 3: A Nuclear Outflow

$$xyR^2 = 1\tag{1}$$

$$y^2 + 3x^2 - 4x = B (2)$$

3.1 Singular and Turning Points

$$y^4 - 2y^2R^4 - 4yR^2 + 3 = 0 (3)$$

$$\frac{dy}{dR} = \frac{2(2y + By^2R^2 - 4y^4R^2)}{2y^3R^3 - ByR^3 - 2R} \tag{4}$$

- 1. Denominator of Equation 3 is a cubic equation, So using Cardan's method we can analyze the equation.
- $2. D = \frac{Q^2}{4} + \frac{P^3}{27}$
- 3. If D > 0 then there will be only one singular point.
- 4. If D = 0 then there will be two singular points as the equation would have three roots, two of which are equal
- 5. If D < 0 then there will be one singular point.

3.2 Graph

4 Question 4: The Hydraulic Jump

$$4H - H^4 = 3(X - D) (5)$$

4.1
$$\frac{dH}{dX}$$
 for $X >= 0$

$$\frac{dH}{dX} = \frac{3}{4(1-H^3)} \tag{6}$$

4.1.1 Implications

- 1. For H=1 there will be vertical tangent as $\frac{dH}{dX}=\infty$.
- 2. For H > 1, the slope will be negative as $\frac{dH}{dX} < 0$.
- 3. For H < 1, the slope will be positive as $\frac{dH}{dX} > 0$.

4.2 Solve for H = H(X)

4.2.1 Descartes Method

$$x^{4} + Qx^{2} + Rx + S = (x^{2} + kx + l)(x^{2} - kx + m)$$

$$m = \frac{Q + k^{2} + \frac{R}{k}}{2}$$

$$l = \frac{Q + k^{2} - \frac{R}{k}}{2}$$

$$lm = S$$

$$k^6 + 2Qk^4 + (Q^2 - 4S)k^2 - R^2 = 0$$

4.2.2 H = X = 0

$$4H - H^{4} = 3X \tag{7}$$

$$R = -4$$

$$S = 3X$$

$$Q = 0$$

4.2.3 H = 1 and X = 2

$$4H - H^4 = 3(X - 1)$$

$$R = -4$$

$$S = 3X - 3$$

$$Q = 0$$
(8)

4.2.4 Graph

Plot of H(X) vs X for both conditions

5 Question 5: The Lienard System

$$\phi' = \nu$$

$$\nu' = -\epsilon (A\phi + B\nu)\nu - (C\phi + \epsilon\phi^2 D)$$

5.1 Graph

Plot for $\epsilon = 0$

Plot for $\epsilon = 1$