Reglunarfræði T 501

Sýnidæmi – kafli 9

Þorgeir Pálsson

E9.6 A system has a loop transfer function

$$L(s) = G_c(s)G(s) = \frac{K(s+100)}{s(s+10)(s+40)}.$$

When K = 500, the system is unstable. Show that if we reduce the gain to 50, the resonant peak is 3.5 dB. Find the phase margin of the system with K = 50.

E9.6 A system has a loop transfer function

$$L(s) = G_c(s)G(s) = \frac{K(s+100)}{s(s+10)(s+40)}.$$

When K = 500, the system is unstable. Show that if we reduce the gain to 50, the resonant peak is 3.5 dB. Find the phase margin of the system with K = 50.

E9.6 The Bode plot of the closed-loop transfer function is shown in Figure E9.6. The value of $M_{p_{\omega}} = 3$ dB. The phase margin is $P.M. = 40^{\circ}$ when K = 50.

FIGURE E9.6 Closed-loop Bode Diagram for $T(s)=\frac{50(s+100)}{s^3+50s^2+450s+5000}.$

E9.8 Consider a unity feedback system with the loop transfer function

$$L(s) = G_c(s)G(s) = \frac{K}{s(s+1)(s+2)}$$

- (a) For K = 4, show that the gain margin is 3.5 dB.
- (b) If we wish to achieve a gain margin equal to 16 dB, determine the value of the gain K.

Answer: (b) K = 0.98

E9.8 Consider a unity feedback system with the loop transfer function

$$L(s) = G_c(s)G(s) = \frac{K}{s(s+1)(s+2)}$$

- (a) For K = 4, show that the gain margin is 3.5 dB.
- (b) If we wish to achieve a gain margin equal to 16 dB, determine the value of the gain K.

Answer: (b) K = 0.98

E9.8 (a) When K = 4, the G.M. = 3.5 dB. This is illustrated in Figure E9.8.

FIGURE E9.8 Bode Diagram for $G_c(s)G(s) = \frac{K}{s(s+1)(s+2)}$, where K=4.

(b) The new gain should be K=1 for a gain margin G.M.=16 dB.

E9.13 A Nichols chart is given in Figure E9.14 for a system with $G_c(j\omega)G(j\omega)$. Using the following table, find (a) the peak resonance $M_{\rho\omega}$ in dB; (b) the resonant frequency ω_r ; (c) the 3-dB bandwidth; and (d) the phase margin of the system.

	ω_1	ω_2	ω_3	ω_4
rad/s	1	3	6	10

Fig E9.13. Nichols Chart for G_cG

E9.13 A Nichols chart is given in Figure E9.14 for a system with $G_c(j\omega)G(j\omega)$. Using the following table, find (a) the peak resonance $M_{p\omega}$ in dB; (b) the resonant frequency ω_r ; (c) the 3-dB bandwidth; and (d) the phase margin of the system.

	ω_1	ω_2	ω_3	ω_4
rad/s	1	3	6	10

Svörin má lesa út úr Nichols grafinu:

- **E9.13** (a) The peak resonance $M_{p_{\omega}} = 6$ dB.
 - (b) The resonant frequency is $\omega_r = \omega_2 = 3 \text{ rad/sec.}$
 - (c) The bandwidth is $\omega_B = \omega_4 = 10 \text{ rad/sec.}$
 - (d) The phase margin is $P.M. = 30^{\circ}$.

E9.15 Consider a unity feedback system with the loop transfer function

$$L(s) = G_{\epsilon}(s)G(s) = \frac{100}{s(s+20)}.$$

Find the bandwidth of the closed-loop system.

Answers: $\omega_B = 6.4 \text{ rad/sec}$

E9.15 The loop transfer function is

$$G_c(s)G(s) = \frac{100}{s(s+20)}$$
,

and the closed-loop transfer function is

$$T(s) = \frac{100}{s^2 + 20s + 100} \ .$$

The magnitude plot for the closed-loop system is shown in Figure E9.15.

With bandwidth defined as frequency at which the magnitude is reduced

E9.15 Consider a unity feedback system with the lo transfer function

$$L(s) = G_{\epsilon}(s)G(s) = \frac{100}{s(s+20)}$$

Find the bandwidth of the closed-loop system.

Answers: $\omega_B = 6.4 \text{ rad/sec}$

FIGURE E9.15 Magnitude plot for the closed-loop $T(s) = \frac{100}{s^2 + 20s + 100}$.

-3 dB from the dc value, we determine that $\omega_B = 6.4 \text{ rad/sec.}$

E9.16 The pure time delay e^{-sT} may be approximated by a transfer function as

$$e^{-sT} \approx \frac{1 - Ts/2}{1 + Ts/2}$$

for $0 < \omega < 2/T$. Obtain the Bode diagram for the actual transfer function and the approximation for T = 0.2 for $0 < \omega < 10$.

$$G(j\omega) = \frac{1-j\omega/10}{1+j\omega/10} \ ,$$

and the magnitude is

$$|G(j\omega)| = \left| \frac{1 - j\omega/10}{1 + j\omega/10} \right| = 1 ,$$

which is equivalent to the actual time delay magnitude. The phase approximation is

$$\phi = -\tan^{-1}\omega/10 + \tan^{-1}(-\omega/10) = -2\tan^{-1}\omega/10$$

and the actual phase is

$$\phi = -0.2\omega$$
.

The phase plots are shown in Figure E9.16. The approximation is accurate for $\omega < 3$ rad/sec.

FIGURE E9.16
Phase plots for time delay actual vs approximation.

E9.21 A unity feedback control system has a loop transfer function

$$L(s) = G_c(s)G(s) = \frac{K}{s(s+2)(s+50)}$$

Determine the phase margin, the crossover frequency, and the gain margin when K = 1300.

Answers:
$$PM = 16.6^{\circ}$$
, $\omega_c = 4.9$, $GM = 4$ or 12 dB

E9.21 A unity feedback control system has a loop transfer function

$$L(s) = G_c(s)G(s) = \frac{K}{s(s+2)(s+50)}.$$

Determine the phase margin, the crossover frequency, and the gain margin when K = 1300.

Answers: $PM = 16.6^{\circ}$, $\omega_c = 4.9$, GM = 4 or 12 dB

E9.21 The Bode plot is shown in Figure E9.21.

FIGURE E9.21 Bode Diagram for $G_c(s)G(s) = \frac{1300}{s(s+2)(s+50)}$.

E9.23 Consider again the system of E9.21 when K = 438. Determine the closed-loop system bandwidth, resonant frequency, and $M_{p\omega}$ using the Nichols chart.

Answers: $\omega_B = 4.25 \text{ rad/s}$, $\omega_r = 2.7$, $M_{p\omega} = 1.7$

E9.23 Consider again the system of E9.21 when K = 438. Determine the closed-loop system bandwidth, resonant frequency, and $M_{\rho\omega}$ using the Nichols chart.

Answers: $\omega_B = 4.25 \text{ rad/s}, \omega_r = 2.7, M_{p\omega} = 1.7$

E9.23 The Nichols chart is shown in Figure E9.23.

FIGURE E9.23 Nichols chart for $G_c(s)G(s) = \frac{438}{s(s+2)(s+50)}$.

The actual values are

 $M_{p_{\omega}} = 1.6598 \text{ (4.4 dB)} \quad \omega_r = 2.4228 \text{ rad/sec} \quad \omega_B = 4.5834 \text{ rad/sec}.$