Assignment

August 27, 2024

- 1. The position vectors of points P and Q are \vec{p} and \vec{q} respectively. The point R divides the line segment PQ in the ratio 3:1 and \vec{S} is the midpoint of the line segment PR. The position vector of \vec{S} is:
 - (a) $\frac{\vec{p}+3\vec{q}}{4}$
 - (b) $\frac{\vec{p}+3\vec{q}}{8}$
 - (c) $\frac{5\vec{p}+3\vec{q}}{4}$
 - (d) $\frac{5\vec{p}+3\vec{q}}{8}$
- 2. For the matrix $A=\begin{bmatrix}2&-1&1\\\lambda&2&0\\1&-2&3\end{bmatrix}$ to be invertible, the value of λ is:
 - (a) 0
 - (b) 10
 - (c) $\mathbb{R} \{10\}$
 - (d) $\mathbb{R} \{-10\}$
- 3. The angle which the line $\frac{x}{1} = \frac{y}{-1} = \frac{z}{2}$ makes with the positive direction of the y-axis is:
 - (a) $\frac{5\pi}{6}$
 - (b) $\frac{3\pi}{4}$
 - (c) $\frac{5\pi}{4}$
 - (d) $\frac{7\pi}{4}$
- 4. The Cartesian equation of the line passing through the point (1, -3, 2) and parallel to the line:

$$\vec{r} = (2+\lambda)\hat{i} + \lambda\hat{j} + (-1+\lambda)\hat{k} \tag{1}$$

is

- (a) $\frac{x-1}{2} = \frac{y+3}{0} = \frac{z-2}{-1}$
- (b) $\frac{x+1}{1} = \frac{y-3}{1} = \frac{z+2}{2}$
- (c) $\frac{x+1}{2} = \frac{y-3}{0} = \frac{z+2}{-1}$
- (d) $\frac{x-1}{1} = \frac{y+3}{1} = \frac{z-2}{2}$
- 5. If $A = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 0 \\ -1 & 1 \end{bmatrix}$ then the value of x for which $A^2 = B$ is:

1

- (a) -2
- (b) 2
- (c)
- (d) 2 or -2
- (e) 1
- 6. Given a curve $y = 7x x^3$ and x increases at the rate of 2 units per second, the rate at which the slope of the curve is changing when x = 5 is:
 - (a) -60 units/sec
 - (b) 60 units/sec
 - (c) -70 units/sec
 - (d) -140 units/sec
- 7. Let $f(x) = \begin{bmatrix} x^2 & \sin x \\ p & -1 \end{bmatrix}$ where p is a constant. The value of p for which f'(0) = 1 is:
 - (a) R
 - (b) 1
 - (c) 0
 - (d) -1
- 8. If A and B are events such that $P(A \mid B) = P(B \mid A) \neq 0$, then:
 - (a) $A \subset B$, but $A \neq B$
 - (b) A = B
 - (c) $A \cap B = \emptyset$
 - (d) P(A) = P(B)
- 9. A function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = x^2 4x + 5$ is:
 - (a) injective but not surjective
 - (b) surjective but not injective
 - (c) both injective and surjective
 - (d) neither injective nor surjective
- 10. If A is a square matrix of order 3 such that the value of |adjA| = 8, then the value of $\mod A^T$ is:
 - (a) $\sqrt{2}$
 - (b) $-\sqrt{2}$
 - (c) 8

- (d) $2\sqrt{2}$
- 11. If $\int_{-2}^3 x^2 dx = k \int_0^3 x^2 dx + \int_2^3 x^2 dx$, then the value of k is:
 - (a) 2
 - (b) 1
 - (c) 0
 - (d) $\frac{1}{2}$
- 12. The value of $\int_1^0 \log x \, dx$ is:
 - (a) 0
 - (b) 1
 - (c) e
 - (d) $e \log e$
- 13. The area bounded by the curve $y = \sqrt{x}$, the y-axis, and between the lines y = 0 and y = 3 is:
 - (a) $2\sqrt{3}$
 - (b) 27
 - (c) 9
 - (d) 3
- 14. The order of the differential equation:

$$\frac{d^3y}{dx^3} + x\left(\frac{dy}{dx}\right)^5 = 4\log\left(\frac{d^4y}{dx^4}\right)$$

is:

- (a) not defined
- (b) 3
- (c) 4
- (d) 5
- 15. If the inverse of the matrix $\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ is the matrix $\begin{bmatrix} 1 & 3 & 3 \\ 1 & \lambda & 3 \\ 1 & 3 & 4 \end{bmatrix}$, then the value of λ is:
 - (a) -4
 - (b) 1
 - (c) 3
 - (d) 4

- 16. Find the matrix A^2 , where $A = [a_{ij}]$ is a 2×2 matrix whose elements are given by $a_{ij} = \max(i, j) \min(i, j)$:
 - (a) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 - (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 - (d) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- 17. Derivative of $e^{\sin^2 x}$ with respect to $\cos x$ is:
 - (a) $\sin x e^{a \sin^2 x}$
 - (b) $\cos x e^{\sin^2 x}$
 - (c) $2\cos x e^{\sin^2 x}$
 - (d) $-2\sin^2 x \cos x e^{\sin^2 x}$
- 18. The function $f(x) = \frac{x}{2} + \frac{2}{x}$ has a local minimum at x equal to:
 - (a) 2
 - (b) 1
 - (c) 0
 - (d) -2

Assertion - Reason Based Questions

Direction: In questions numbers 19 and 20, two statements are given: one labeled Assertion (A) and the other labeled Reason (R). Select the correct answer from the following options:

- (A) Both Assertion (A) and Reason (R) are true and the Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- 19. **Assertion (A):** Domain of $y = \cos^{-1}(x)$ is [-1, 1]. **Reason (R):** The range of the principal value branch of $y = \cos^{-1}(x)$ is $[0, \pi] \{\frac{\pi}{2}\}$.