8 Mehr über Zahlenfolgen

Wir wollen nun unsere Kenntnisse über reelle und komplexe Zahlen nutzen, um weiteres über Zahlenfolgen zu erarbeiten.

Definition 8.1 Eine Zahlenfolge $(a_n)_{n\in\mathbb{N}}$ aus \mathbb{R} heißt monoton wachsend, wenn

$$a_n \leq a_{n+1}$$

für alle $n \in \mathbb{N}$. Sie heißt streng monoton wachsend, wenn

$$a_n < a_{n+1}$$

für alle $n \in \mathbb{N}$. Eine Zahlenfolge $(a_n)_{n \in \mathbb{N}}$ aus \mathbb{R} heißt monoton fallend, wenn

$$a_n \ge a_{n+1}$$

für alle $n \in \mathbb{N}$. Sie heißt streng monoton fallend, wenn

$$a_n > a_{n+1}$$

für alle $n \in \mathbb{N}$.

Satz 8.2 Jede monoton wachsende (bzw. fallende) und nach oben (bzw. unten) beschränkte Folge aus R ist konvergent.

Beweis. Wir zeigen, daß eine monoton wachsende und nach oben beschränkte Folge (a_n) eine Cauchyfolge ist. Dazu gehen wir indirekt vor und nehmen an, (a_n) sei nicht Cauchyfolge. Dann gibt es ein $\varepsilon > 0$, zu dem kein $N \in \mathbb{N}$ existiert mit $|a_n - a_m| < \varepsilon$ für alle $n, m \ge N$. Hieraus folgt durch Induktion die Existenz einer Teilfolge (a_{n_k}) , so daß

$$|a_{n_k} - a_{n_{k-1}}| \ge \varepsilon \tag{8.1}$$

für alle $k \in \mathbb{N}$. Als Induktionsanfang gibt es $n_1 < n_2$ mit $|a_{n_2} - a_{n_1}| \ge \varepsilon$, denn andrenfalls wäre $|a_n - a_m| < \varepsilon$ für alle $n, m \in \mathbb{N}$. Wir nehmen an, die Folge sei bis zu einem $k \in \mathbb{N}$ konstruiert. Dann gibt es ein $n_{k+1} > n_k$ mit $|a_{n_{k+1}} - a_{n_k}| \ge \varepsilon$, denn andrenfalls wäre $|a_m - a_{n_k}| < \varepsilon$ für alle $m \ge n_k$ und wegen der Monotonie dann auch $|a_m - a_n| \le |a_m - a_{n_k}| < \varepsilon$ für alle $m > n \ge n_k$.

Mit der Monotonie folgt aus (8.1) weiter

$$a_{n_k} \ge a_{n_{k-1}} + \varepsilon$$

für alle $k \in \mathbb{N}$ und hieraus durch Induktion

$$a_{n_k} \ge a_{n_1} + k\varepsilon \ge a_1 + k\varepsilon$$

für alle $k \in \mathbb{N}$. Dies ist im Widerspruch zur Beschränktheit von (a_n) nach oben, d.h. zur Existenz einer Zahl $M \in \mathbb{R}$ mit $a_{n_k} \leq M$ für alle $k \in \mathbb{N}$. \square

Die Funktion Fakultät von \mathbb{N}_0 nach \mathbb{N} ist rekursiv definiert durch 0! = 1 und $(n+1)! = (n+1) \cdot (n!)$ für alle $n \in \mathbb{N}_0$. Offenbar gilt

$$n! = 1 \cdot 2 \cdots (n-1) \cdot n$$

für $n \in \mathbb{N}$.

Satz 8.3 Die Reihe

$$\sum_{k=0}^{\infty} \frac{1}{k!}$$

ist konvergent.

Beweis. Die Folge der Partialsummen

$$S_n := \sum_{k=0}^n \frac{1}{k!}$$

ist streng monoton wachsend. Für $n \ge 2$ gilt

$$n! = 1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n \ge 2^{n-1}$$

und daher können wir unter Verwendung der geometrischen Reihe (5.1) für q=1/2 abschätzen

$$S_n = 2 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=2}^n < 2 + \sum_{k=2}^\infty \frac{1}{2^{k-1}} = 3.$$

Also ist die Folge (S_n) auch nach oben beschränkt und die Behauptung folgt aus Satz 8.2.

Die Summe der Reihe aus Satz (8.3) stellt eine der wichtigsten reellen Zahlen dar und heißt *Eulersche Zahl e*, also

$$e := \sum_{k=0}^{\infty} \frac{1}{k!} .$$

Offenbar gilt 2 < e < 3. Man kann zeigen, daß die Zahl e keine rationale Zahl ist.

Satz 8.4 Seien (a_n) und (b_n) konvergente Folgen aus \mathbb{R} mit Grenzwerten a und b sowie der Eigenschaft

$$a_n \le b_n \tag{8.2}$$

Dann gilt $a \leq b$.

Beweis. Wir nehmen an, es gelte a>b. Dann gibt es zu $\varepsilon=\frac{1}{2}\;(a-b)>0$ ein $n\in\mathbb{N}$ mit

$$|a_n - a| < \varepsilon$$
 and $|b_n - b| < \varepsilon$.

Daraus folgt

$$b_n = b + (b_n - b) < b + \varepsilon = a - \varepsilon < a - (a - a_n) = a_n,$$

d.h. $b_n < a_n$ für ein $n \in \mathbb{N}$ im Widerspruch zur Voraussetzung (8.2)

Satz 8.5 Seien $(a_n), (b_n)$ und (c_n) Folgen aus \mathbb{R} mit der Eigenschaft

$$a_n \le b_n \le c_n \tag{8.3}$$

für alle $n \in \mathbb{N}$ und seien die Folgen (a_n) und (c_n) konvergent gegen den gleichen Grenzwert. Dann ist auch die Folge (b_n) konvergent gegen diesen Grenzwert.

Beweis. Wir bezeichnen den Grenzwert der beiden konvergenten Folgen mit b. Dann gibt es zu jedem $\varepsilon > 0$ natürliche Zahlen N_1 und N_2 so, daß

$$|a_n - b| < \frac{\varepsilon}{3}$$
 für alle $n \ge N_1$

und

$$|c_n - b| < \frac{\varepsilon}{3}$$
 für alle $n \ge N_2$.

Dann setzen wir $N := \max\{N_1, N_2\}$ und haben unter der Verwendung der Voraussetzung

$$|b_n - b| = |b_n - a_n + a_n - b| \le |b_n - a_n| + |a_n - b| \le |c_n - a_n| + |a_n - b|$$

$$\le |c_n - b| + |b - a_n| + |a_n - b| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

für alle $n \geq N$.

Korollar 8.6 Sei (c_n) eine Nullfolge und (b_n) eine Folge mit der Eigenschaft

$$0 \le b_n \le c_n \tag{8.4}$$

für alle $n \in \mathbb{N}$. Dann ist auch b_n eine Nullfolge.

Satz 8.7 Bolzano-Weierstrass Jede beschränkte Folge aus IR besitzt eine konvergente Teilfolge.

Beweis. Sei (b_n) eine beschränkte Folge und α und γ eine untere und obere Schranke. Wir definieren nun rekursiv Folgen (a_k) und (c_k) durch Intervallhalbierung, derart daß stets unendlich viele Glieder der Folge (b_n) in dem Intervall $[a_k, c_k]$ enthalten sind. Dazu starten wir mit $a_1 = \alpha$ und $c_1 = \gamma$ und erklären rekursiv

$$a_{k+1} := a_k$$
 und $c_{k+1} := \frac{a_k + c_k}{2}$,

falls unendlich viele Glieder von (b_n) in dem Intervall

$$\left[a_k, \frac{a_k + c_k}{2}\right]$$

liegen und andrenfalls

$$a_{k+1} := \frac{a_k + c_k}{2}$$
 und $c_{k+1} := c_k$.

Dann liegen stets unendlich viele Glieder von (b_n) in dem Intervall $[a_k, c_k]$ der Länge $c_k - a_k = 2^{-k+1}(\gamma - \alpha)$. Daher können wir eine streng monoton steigende Folge (n_k) aus $\mathbb N$ so auswählen, daß

$$a_k \le b_{n_k} \le c_k \tag{8.5}$$