UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB
CENTRO DE INFORMÁTICA - CI
DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA - DCC
DISCIPLINA: Métodos Matemáticos I
Aluno(a):

Lista de Exercícios Séries Numéricas - Conceitos Iniciais

- 01. Partindo de uma função que defina o termo geral de uma sequência a(n), para $n=n_0, n_0+1, n_0+2, \cdots$, implemente um programa para ilustrar o comportamento da série numérica $\sum_{n=n_0}^{\infty} a(n)$, com as duas opções exclusivas de execução:
 - (a) o usuáro **sabe** que a série é convergente para a soma **S**;
 - (b) o usuário não sabe se a série é convergente.
 - Caso seja feita a escolha da opção (a), o usuário deve fornecer como entradas o valor da soma \mathbf{S} , o valor de uma tolerância ϵ e dois índices $\mathbf{kmim} \geq n_0$ e $\mathbf{kmax} > \mathbf{kmim}$ tal que $|S(k) \mathbf{S}| \leq \epsilon$, com $S(k) = \sum_{n=n_0}^{k} a(n)$, para todos índices k com $k = \mathbf{kmim}$, $\mathbf{kmim} + 1$, \cdots , \mathbf{kmax} (sugestão: considere $0 < \mathbf{kmax} \mathbf{kmim} \leq 20$);
 - Caso seja feita a escolha da opção (b), o usuário deve fornecer apenas os dois índices kmim e kmax.

O programa deve fornecer como saídas:

- (i) uma tabela mostrando as triplas (k, a(k), S(k)), para $k = \mathbf{kmin}, \dots, \mathbf{kmax}$;
- (ii) uma figura em que o eixo horizontal represente o intervalo [**kmim**, **kmax**] e mostrando os dois conjuntos de pontos (k, a(k)) e (k, S(k)) em cores distintas, de maneira discreta, para $k = \mathbf{kmim}, \ldots, \mathbf{kmax}$;
- (iii) Caso o usuário escolha a opção (a), o programa deve acrescentar na figura do item (ii) os gráficos dos três segmentos de reta horizontais, respectivamente com alturas $\mathbf{S} \epsilon$, \mathbf{S} e $\mathbf{S} + \epsilon$.

- 02. Considere as séries a seguir. Exiba uma saída do programa do Exercício 1 de acordo com o caso de a série ser convergente ou divergente. Informe os valores **kmin** e **kmax** utilizados no programa e se for o caso os valoes de \mathbf{S} e de ϵ também.
 - (a) a série harmônica.
 - (b) uma série geométrica convergente (veja o Exercício 5).
 - (c) uma série geométrica divergente.
 - (d) uma série telescópica convergente (veja o Exercício 5).
 - (e) uma série telescópica divergente.
- 03. (Livro do Marivaldo, Ex. 2.2B, pg. 39)

Seja n_0 um número natural. Responda se a afirmação é falsa ou verdadeira. Justifique a sua resposta usando os resultados visto em aula, ou dando contra-exemplos.

- (a) Se $\lim a_n = 0$, então $\sum_{n=n_0}^{\infty} a_n$ converge.
- (b) Se $\sum_{n=n_0}^{\infty} a_n$ diverge, então $\lim a_n \neq 0$.
- (c) Se $\sum_{n=n_0}^{\infty} a_n$ converge e $a_n \ge 0$, $\forall n \ge n_0$, então $\sum_{n=n_0}^{\infty} \sqrt{a_n}$ converge.
- (d) Se $\sum_{n=n_0}^{\infty} a_n$ diverge, então $\sum_{n=n_0}^{\infty} (a_n)^2$ diverge.
- (e) Se $\sum_{n=n_0}^{\infty} a_n$ e $\sum_{n=n_0}^{\infty} b_n$ divergem, então $\sum_{n=n_0}^{\infty} (a_n + b_n)$ diverge.
- (f) Se $\sum_{n=n_0}^{\infty} a_n$ diverge e $a_n \neq 0$, $\forall n \geq n_0$, então $\sum_{n=n_0}^{\infty} \frac{1}{a_n}$ converge.
- (g) Se $\{a_n\}$ é uma sequência constante, então $\sum_{n=n_0}^{\infty} a_n$ converge.
- (h) Se $\sum_{n=n_0}^{\infty} a_n$ converge, então $\sum_{n=n_0+100}^{\infty} a_n$ converge.

04. (Livro do Marivaldo, Ex. 2.2D, pg. 40)

Por observação do limite do termo geral verifique que a série é divergente. Em seguida use o programa do Exercício 01 e ilustre este fato.

(a)
$$\sum_{n=1}^{\infty} (\sqrt{n} + \sqrt{n+1})$$
 (b) $\sum_{n=1}^{\infty} [(1 + (-1)^n]]$ (c) $\sum_{n=1}^{\infty} \frac{n^3}{n^3 + n^2 + 4}$

(d)
$$\sum_{n=1}^{\infty} \frac{n}{\cos(n)}$$
 (e) $\sum_{n=1}^{\infty} n \operatorname{sen}\left(\frac{1}{n}\right)$ (f) $\sum_{n=1}^{\infty} \frac{n!}{2^n}$

05. (Livro do Marivaldo, Ex. 2.2E, pg. 40)

Verifique se a série pode ser identificada com uma série geométrica ou com uma série telescópica (encaixe). Caso conclua que a série seja convergente, tente calcular o valor da soma **analiticamente** e caso consiga obter o valor da soma execute o programa do Exercício 01 com a tolerância $\epsilon = 10^{-3}$. Caso não seja possível obter o valor da soma **analiticamente** diga o porque.

(a)
$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$$
 (b) $\sum_{n=3}^{\infty} 4 \left(\frac{2}{5}\right)^n$ (c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} \cdot \sqrt{n} \left(\sqrt{n+1} + \sqrt{n}\right)}$

(d)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$
 (e) $\sum_{n=2}^{\infty} \frac{4}{4n^2+4n-3}$ (f) $\sum_{n=1}^{\infty} \left(\frac{1}{2^{n-2}} - \frac{1}{3^{n+2}}\right)$

Referências.

[1] Notas de aula da disciplina.

[2] Marivaldo P. Matos (2020); Séries e Equações Diferenciais. http://www.mpmatos.com.br/Serie_EDO/Series_EDO_2020.pdf

[3] Earl Swokowski (1995); Cálculo com Geometria Analítica, vol 2.

[4] G. B. Thomas et al. (2012) Cálculo, vol 2.