Histograms Mark Scheme

1

Height (cm)	Frequency	Frequency Density
$150 < cm \le 155$	10	$10 \div 5 = 2$
$155 < cm \le 165$	25	$25 \div 10 = 2.5$
$165 < cm \le 170$	12	$12 \div 5 = 2.4$
$170 < cm \le 180$	33	$33 \div 10 = 3.3$
$180 < cm \le 190$	22	$22 \div 10 = 2.2$
$190 < cm \le 200$	5	$5 \div 10 = 0.5$

- [1] Correctly calculated frequency density
- [1] Histogram with correct bar widths
- [1] Correct bar heights

2

Frequency
$5 \times 1 = 5$
$5 \times 1.8 = 9$
$5 \times 2 = 10$
$5 \times 3 = 15$
$10 \times 0.8 = 8$
$15 \times 0.6 = 9$

- [1] for correct time groups
- [1] for correct frequencies (allow 1 error)
- [1] All correct

	Score (%)	Frequency	Frequency Density	Cumulative Frequency	
	$40 < m \le 50$	3	$3 \div 10 = 0.3$	3	
	$50 < m \le 60$	5	$5 \div 10 = 0.5$	8	
3	$60 < m \le 75$	12	$12 \div 15 = 0.8$	20	
	$75 < m \le 80$	10	$10 \div 5 = 2$	30	
	$80 < m \le 85$	4	$4 \div 5 = 0.8$	34	
	$85 < m \le 100$	3	$3 \div 15 = 0.2$	37	
3(a)	Frequency Density	65 70 75 80 85 90 95 100 Score (%)		lculated frequency density with correct bar widths heights	
3(b)	Median is the $\frac{37+1}{2} = 19^{th}$ number 19^{th} number is in the $60 < m \le 75$ interval		[1] Correct logi	[1] Correct logic used	
	19^{th} number is the $19 - 3 - 5$ = 11 places out of 12 into this interval				
	Splitting the interval into even pieces by dividing the width by the frequency $\frac{15}{12}=1.25$ Find how far the number is into the interval by multiplying it by our previous answer. $11\times1.25=13.75$			wer	

	Total anant (C)	Eroguenev	Fraguency Density
	Total spent (£)	Frequency	Frequency Density
	$0 < £ \le 100$	20	$20 \div 100 = 0.2$
	$100 < £ \le 200$	60	$60 \div 100 = 0.6$
4	$200 < £ \le 250$	25	$25 \div 50 = 0.5$
	$250 < £ \le 400$	$150 \times 0.3 = 45$	0.3
	$400 < £ \le 450$	35	$35 \div 50 = 0.7$
	$450 < £ \le 500$	5	$5 \div 50 = 0.1$

1 [1] Correct table Frequency Density [1] Correctly calculated frequency density 0.5 [1] Histogram with correct bar widths and heights 0 100 400 Total Spent, £ [2] (from calculation of frequency of each 5(a) 20 + 12 + 8 = 40class) 5(b) $25 < x \le 45$ [1] [1] Need to split the $70 < x \le 80$ interval in 5(c) 6 students in $70 < x \le 80$ half 6+8=14 students got 75% or more, so got either an A [1] Final answer or a B. This is an estimate because it is not clear how many 5(d) students got between 75% and 80%, they could have [1] Comment about grouped data all got less than 75.

Turn over ▶

			4		
	Time	Frequency	Frequency Density		
	$30 < t \le 35$	x	Z		
6	We get frequency density (z) by dividing the frequency (x) by the width of the class interval $(35-30=5).$ $z=\frac{x}{5}$		[1] Setting up the table		
	Time Frequency Density				
	$30 < t \le 35$	x + y	1.15 <i>z</i>	[1] Adding y students gives a new frequency of $x + y$, and increases the	
	$1.15z = \frac{x+y}{5}$			frequency density by 15% (multiplies by 1.15)	
	$1.15 \times \frac{x}{5} = \frac{x+y}{5}$				
	$\frac{1.15x}{5} = \frac{x+y}{5}$			[1] Two simultaneous equations established	
	$1.15x = x + y$ $\frac{3}{20} x = y$				
	We get two possible solutions for x and y. $x = 20 \ y = 3$ $x = 40 \ y = 6$		 [1] Making the following assumptions: The number of students must be a whole number. x has be divisible by 20, because of the fraction, so is a multiple of 20 x has to be less than 50, because of 		
6(b)	32 -		4004	what Tom said. [1] Assumption that students are spread	
	$\frac{32 - 30}{35 - 30} = \frac{2}{5} = 0.4 = 40\%$			evenly across the group.	
	Hence either $(20 + 3) \times 0.4 \approx 9$ students Or $(40 + 6) \times 0.4 \approx 18$ students			[1]	

Turn over ►

5

END