Image Filtering and Gaussian Pyramids

CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2017

Limitations of Point Processing

Q: What happens if I reshuffle all pixels within the image?

A: It's histogram won't change. No point processing will be affected...

What is an image?

We can think of an **image** as a function, *f*, from R² to R:

- f(x, y) gives the **intensity** at position (x, y)
- Realistically, we expect the image only to be defined over a rectangle, with a finite range:

$$-f:[a,b]$$
x $[c,d] \rightarrow [0,1]$

A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Images as functions

Sampling and Reconstruction

Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
 - write down the function's values at many points

Reconstruction

- Making samples back into a continuous function
 - for output (need realizable method)
 - for analysis or processing (need mathematical method)
 - amounts to "guessing" what the function did in between

1D Example: Audio

Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
 - how can we be sure we are filling in the gaps correctly?

Sampling and Reconstruction

Simple example: a sign wave

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency

Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also, was always indistinguishable from higher frequencies
 - aliasing: signals "traveling in disguise" as other frequencies

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing in images

What's happening?

Plot as image:

x = 0:.05:5; imagesc(sin((2.^x).*x))

Antialiasing

What can we do about aliasing?

Sample more often

- Join the Mega-Pixel craze of the photo industry
- But this can't go on forever

Make the signal less "wiggly"

- Get rid of some high frequencies
- Will loose information
- But it's better than aliasing

Preventing aliasing

- Introduce lowpass filters:
 - remove high frequencies leaving only safe, low frequencies
 - choose lowest frequency in reconstruction (disambiguate)

Linear filtering: a key idea

- Transformations on signals; e.g.:
 - bass/treble controls on stereo
 - blurring/sharpening operations in image editing
 - smoothing/noise reduction in tracking
- Key properties
 - linearity: filter(f + g) = filter(f) + filter(g)
 - shift invariance: behavior invariant to shifting the input
 - delaying an audio signal
 - sliding an image around
- Can be modeled mathematically by convolution

Moving Average

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

In 2D: box filter

	$h[\cdot , \cdot]$								
1	1	1	1						
) -	1	1	1						
9	1	1	1						

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

1	1	1	1
$h[\cdot,\cdot]^{\frac{1}{2}}$	1	1	1
L / J 9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	1	1
$h[\cdot,\cdot]^{\frac{1}{6}}$	1	1	1
L / J 9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	1	1
$h[\cdot,\cdot]^{\frac{1}{2}}$	1	1	1
L / J 9	1	1	1

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		
			?			

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1		1				1
0	10	20	30	30			
					?		
			50				

$$h[\cdot\,,\cdot\,]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Linear filters: examples

Original

Blur (with a mean filter)

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Practice with linear filters

Original

0	0	0
1	0	0
0	0	0

Practice with linear filters

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Back to the box filter

Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5

Weighted Moving Average

bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]

Moving Average In 2D

What are the weights H?

				<u>. 9</u>					
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

This kernel is an approximation of a Gaussian function:

Mean vs. Gaussian filtering

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Standard deviation σ : determines extent of smoothing

Source: K. Grauman

Gaussian filters

Choosing kernel width

 The Gaussian function has infinite support, but discrete filters use finite kernels

Practical matters

How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3 σ

Cross-correlation vs. Convolution

u=-k v=-k

cross-correlation: $G = H \otimes F$

$$G[i,j] = \sum_{k=0}^{k} \sum_{i=1}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Convolution is commutative and associative

Convolution

Convolution is nice!

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a \star (b+c) = a \star b + a \star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

$$a \star e = a$$

- Conceptually no distinction between filter and signal
- Usefulness of associativity
 - often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

Gaussian and convolution

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

– Convolving twice with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?

Image sub-sampling

1/8

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling

Aliasing! What do we do?

Sampling an image

Examples of GOOD sampling

Undersampling

Examples of BAD sampling -> Aliasing

Gaussian (lowpass) pre-filtering

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

Compare with...

Gaussian (lowpass) pre-filtering

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Image Pyramids

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

A bar in the big images is a hair on the zebra's nose; in smaller images, a stripe; in the smallest, the animal's nose

Gaussian pyramid construction

Repeat

- Filter
- Subsample

Until minimum resolution reached

can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!

What are they good for?

Improve Search

- Search over translations
 - Classic coarse-to-fine strategy
- Search over scale
 - Template matching
 - E.g. find a face at different scales