Practice Final, MA 351 Section: Spring 2017

Name: PUID: Exam

No calculators may be used on this exam. $\,$

Problem	Possible	Points
Number	Points	Earned
I	50pts	
II	20pts	
III	30pts	
Total Points	100pts	

I (50pts)

Answer the following questions by clearly circling your answers. No partial credit is awarded for the questions in Part I

(1) Find the eigenvalues and eigenvectors of

$$\mathbf{A} = \left(\begin{array}{cc} 1 & -4 \\ 1 & 1 \end{array}\right)$$

- (a) $\lambda_1, \lambda_2 \in \{-1, 3\}$ and $\mathbf{v}_1, \mathbf{v}_2 \in \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$. (b) $\lambda_1, \lambda_2 \in \{-1, 3\}$ and $\mathbf{v}_1, \mathbf{v}_2 \in \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right\}$.
- (c) $\lambda_1, \lambda_2 \in \{1 2i, 1 + 2i\}$ and $\mathbf{v}_1, \mathbf{v}_2 \in \left\{ \begin{pmatrix} 2i \\ 1 \end{pmatrix}, \begin{pmatrix} -2i \\ 1 \end{pmatrix} \right\}$.
- (d) $\lambda_1, \lambda_2 \in \{1 2i, 1 + 2i\}$ and $\mathbf{v}_1, \mathbf{v}_2 \in \left\{ \begin{pmatrix} i \\ 2 \end{pmatrix}, \begin{pmatrix} -i \\ 2 \end{pmatrix} \right\}$.
- (e) $\lambda_1, \lambda_2 \in \{1 4i, 1 + 4i\}$ and $\mathbf{v}_1, \mathbf{v}_2 \in \left\{ \begin{pmatrix} i \\ 1 \end{pmatrix}, \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}$
- (2) Let W denote the vector space spanned by

$$\mathbf{u}_1 = \begin{pmatrix} 1\\0\\1\\2 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 0\\1\\1\\2 \end{pmatrix}$$

and let $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$. Find the distance from \mathbf{v} to W.

- (a) 0
- (b) 1
- (c) 2
- (d) $\sqrt{2}$
- (e) 4

(3) Let W be the vector space spanned by the vectors:

Apply the Gram-Schmidt process to the vectors \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 , \mathbf{u}_4 (in the order specified) to derive an orthonormal basis \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 of W. What is \mathbf{v}_3 .

(a)
$$\mathbf{v}_3 = \begin{pmatrix} 1/2 & 1/2 & -1/2 & 1/2 \end{pmatrix}$$

(b)
$$\mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{12} & 3/\sqrt{12} & -1/\sqrt{12} & -1/\sqrt{12} \end{pmatrix}$$

(c)
$$\mathbf{v}_3 = (1/4 \ 3/4 \ -1/4 \ 1/4)$$

(a)
$$\mathbf{v}_3 = \begin{pmatrix} 1/2 & 1/2 & -1/2 & 1/2 \end{pmatrix}$$

(b) $\mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{12} & 3/\sqrt{12} & -1/\sqrt{12} & -1/\sqrt{12} \end{pmatrix}$
(c) $\mathbf{v}_3 = \begin{pmatrix} 1/4 & 3/4 & -1/4 & 1/4 \end{pmatrix}$
(d) $\mathbf{v}_3 = \begin{pmatrix} (3-2\sqrt{2})/4 & 1/4 & (1-\sqrt{2})/4 & 1/4 \end{pmatrix}$
(e) $\mathbf{v}_3 = \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix}$

(e)
$$\mathbf{v}_3 = (0 \ 0 \ 0 \ 1)$$

(4) Let **A** be an $n \times n$ matrix of rank (n-1) and

$$\mathbf{A} = \sum_{1 \leq k \leq n-1} \mathbf{u}_k \cdot \mathbf{v}_k^ op$$

where $\{\mathbf{u}_k\}_{1\leq k\leq n}\subset\mathbb{C}^{n\times 1}$ and $\{\mathbf{v}_k\}_{1\leq k\leq n}\subset\mathbb{C}^{n\times 1}$. Then which of the following statements is necessarily true? (circle all that apply)

- (a) $\{\mathbf{u}_k\}_{1 \leq k \leq n-1}$ is a basis for the vector space $\mathbb{C}^{n \times 1}$.
- (b) The vectors $\{\mathbf{u}_k\}_{1 \le k \le n-1}$ can be linearly dependent as long as $\{\mathbf{v}_k\}_{1 \le k \le n-1}$ are linearly independent or vice versa.
- (c) The vectors $\{\mathbf{u}_k\}_{1 \le k \le n-1}$ must be linearly independent and the same holds for the vectors $\{\mathbf{v}_k\}_{1 \leq k \leq n-1}^{-}$.
- (d) The union $\{\mathbf{u}_k\}_{1\leq k\leq n}\cup \{\mathbf{v}_k\}_{1\leq k\leq n}$ can include the zero vector.
- (e) None of the above.

(5) Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 be an orthogonal basis of $\mathbb{C}^{4\times 1}$, using the standard inner product. Let

$$W = \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2 \right\},\,$$

and let **u** be a vector in W^{\perp} . Then which of the following is NOT necessarily true? (circle all that apply)

- (a) $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 + \mathbf{u}, \mathbf{v}_4 + \mathbf{u}$ is a basis for $\mathbb{C}^{4 \times 1}$.
- (b) $\mathbf{v}_1 + \mathbf{u}, \mathbf{v}_2 + \mathbf{u}, \mathbf{v}_3, \mathbf{v}_4$ is a basis for $\mathbb{C}^{4 \times 1}$.
- (c) $(\mathbf{v}_1 + \mathbf{v}_3)$ is orthogonal to $(\mathbf{v}_2 + \mathbf{v}_4)$. (d) $(\mathbf{v}_1 + \mathbf{v}_2)$ is orthogonal to $(\mathbf{v}_3 + \mathbf{v}_4 + \mathbf{u})$
- (e) None of the above.

II (20pts)

Let

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

- a) Find if possible the spectral and singular value decomposition of A. Show all your work in detail and clarity.
- b) Use the Sylvesterian elimination to determine the existence or non-existence of a 2×2 matrix ${\bf Q}$ subject to .

$$\mathbf{Q} = \mathbf{Q}^{\top}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \mathbf{Q} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ and } \operatorname{Tr}(\mathbf{Q}) = \det \mathbf{Q}$$
Show all your work in detail and clarity

Answer:

III (30 pts)

a) Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be Hermitian with eigenvalues $0 \le \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ Give detail proof of the following statements

For all
$$\mathbf{x} \in \mathbb{C}^{n \times 1}$$
, $\lambda_1 \leq \frac{\mathbf{x}^* \cdot \mathbf{A} \cdot \mathbf{x}}{\mathbf{x}^* \cdot \mathbf{x}} \leq \lambda_n$

b) For which assignment of x does $\frac{x^* \cdot A \cdot x}{x^* \cdot x}$ attains it maximum and minimum respectively ?