9.4 객체지향 테스팅

- 객체지향 방식의 프로그램에 적용
- 사용사례 기반 테스팅
- 상태 기반 테스팅

사용 사례 기반 테스팅

- 사용 사례 명세로부터 테스트 케이스 추출
- 1. 액터의 입력과 액션을 파악

<예> 사용자 등록 사용 사례로부터 입력요소 추출

UC1: 새 고객 등록

	액터: 새 고객	시스템: 웹 애플리케이션
		0. 시스템이 사용자 등록 링크를 가진 홈페이 지를 디스플레이 한다.
사용자 입력	1. 사용자가 고객 등록 링크를 클릭한 다.	2. 시스템이 새 고객의 등록 양식을 디스플레 이한다.
	3. 사용자가 <i>사용자 ID, 페스워드, 제입</i> <i>력 페스워드</i> 를 넣고 제출 버튼을 누 른다.	4. 시스템이 로그인 ID와 패스워드를 검증하고 4.1 등록이 성공되었음을 디스플레이하거나 4.2 오류 메시지를 디스플레이하고 사용자에 게 다시 시도할 것을 요구한다.
	5. 사용자가 등록 성공 페이지를 본다.	

사용 사례 기반 테스팅

2. 입력 값을 결정

• 정상/비정상/예외 값 분류

<예> 파악된 입력 요소의 값 결정

입력 요소	타입	값의 명세	정상	비정상	예외
로그인 ID	스트링	문자 길이가 8에서 20 사이	로그인 ID가 명세를 만족하여 야 하며 다른 사용자와 중복되 지 않아야		스트링의 길이가 0, 1 또는 매우 큰 값 하나 이상의 빈칸이나 특수문자가 존재
패스워드	패스워드	길이가 8에서 12개 의 문자, 적어도 하 나의 문자, 숫자, 특 수문자를 포함	패스워드 규칙에 맞는 패스워 드	패스워드 규칙에 맞지 않는 패스워드	길이가 0, 1, 매우 큰 길 이를 가진 패스워드 하나 또는 그 이상의 빈 칸, 제어문자를 가진 패 스워드
재입력한 패 스워드	패스워드	패스워드와 같음	패스워드와 매치됨	재입력된 패스워드가 패스워드와 매치되지 않거나 복사-붙여넣기 로 입력됨	

사용 사례 기반 테스팅

3. 테스트 케이스 생성

- 입력 값 조합 규칙
 - 테스트 '입력 값 조합'이 프로그램 기능과 동작의 정확성을 가진다면 선택
 - 테스트 '입력 값 조합'이 오류를 발견할 가능성이 있다면 선택
 - 테스트 '입력 값 조합'이 선택된 다른 테스트 조합에 의해 포함될 수 있다면 삭제(중복제거), 유지할지 삭제할지 불분명한 것은 선택

테스트 케이스	로그인 ID	패스워드	재입력된 패스워드	예상 결과
1	정상	정상	정상	등록이 성공되었다는 페이지가 보임
2	정상	정상	비정상	오류 메시지가 보임
3	정상	비정상	정상	오류 메시지가 보임
4	정상	비정상	비정상	<테스트 케이스 3에 포함>
5	정상	예외	정상	오류 메시지가 보임
6	경상	예외	비경상	<테스트 케이스 2, 3에 포함>
7	비정상	정상	정상	오류 메시지가 보임
8	비정상	경상	비정상	<테스트 케이스 2, 7에 포함>
9	비정상	비경상	경상	<테스트 케이스 3, 7에 포함>
10	비정상	비경상	비정상	<테스트 케이스 2, 3, 7에 포함>
11	비정상	예외	경상	<테스트 케이스 5, 7에 포함>
12	비정상	예외	비정상	<테스트 케이스 2, 5, 7에 포함>
13	예외	정상	정상	오류 메시지가 보임
14	예외	경상	비정상	<테스트 케이스 7, 13에 포함>
15	예외	비정상	경상	<테스트 케이스 3, 13에 포함>
16	예외	비경상	비정상	<테스트 케이스 3, 7, 13에 포함>
17	예외	예외	경상	<테스트 케이스 5, 13에 포함>
18	예외	예외	비정상	<테스트 케이스 2, 5, 13에 포함>

상태 기반 테스팅

- 같은 입력에 대해 같은 동작을 보이며 동일한 결과를 생성하는 시스템(state-less system)을 대상
 - 배치 처리 시스템
 - 계산 중심 시스템
 - 하드웨어로 구성된 회로
- 시스템의 동작은 시스템의 상태에 의해 좌우됨
- 상태 모델 구성요소
 - 상태 시스템의 과거 입력에 대한 영향을 표시
 - 트랜지션 이벤트에 대한 반응으로 시스템이 하나의 상태에서 다른 상태로 어떻게 변해가는지를 나타냄
 - 이벤트 시스템에 대한 입력
 - 액션 이벤트에 대한 출력

<예> 예금 계좌의 상태 모델 예시

상태 기반 테스팅

- 검증 기준(coverage)
 - 모든 트랜지션
 - 테스트 케이스 집합이 상태 그래프의 모든 트랜지션을 점검
 - 모든 트랜지션 쌍
 - 테스트 케이스 집합이 모든 이웃 트랜지션의 쌍을 점검
 - 유입(incoming)과 방출(outgoing) 트랜지션 쌍을 의미
 - 트랜지션 트리
 - 테스트 케이스 집합이 모든 단순 경로를 만족시키는 기준 (단순경로: 시작 상태에서 다른 상태로 중복되지 않고 방문될 수 있는 경로)

No.	트랜지션	테스트 케이스	
1	start →1	입금	
2	1→1	출금	
3	1→1	입금	
4	1→2	입금(잔고>0)	
5	2→2	입금	
6	2→1	출금(잔고(0)	
7	1→3	동결	
8	3→1	동결해지	
9	1→4	(현재-마지막 사용일>>5년	
10	1→5	폐쇄(잔고=0)	
11	4→5	폐쇄	

9.5 통합 테스팅

- 모듈의 인터페이스 결합을 테스트
 - 여러 개발 팀에서 개발한 각각의 단위 모듈을 대상
 - 모듈-모듈 간의 결합을 테스트
- 모듈의 결합 순서에 따라 방법이 다름
 - 빅뱅(big-bang)
 - 하향식(top-down)
 - 상향식(bottom-up)
 - 연쇄식(threads)
- 용어
 - 드라이버
 - 시험 대상 모듈을 호출하는 간이 소프트웨어
 - 스텁
 - 시험 대상 모듈이 호출하는 또 다른 모듈

테스트 하니스(a test harness): a collection of software and test data configured to test a program unit.

빅뱅 통합

 한 번에 모든 모듈을 모아 통합. 모든 모듈에 대한 단위 테스팅이 끝 난 후.

• 장점

- 고도의 신뢰도가 요구되는 시스템의 경우 중요 부분을 먼저 구현하기 때문에 의뢰자에게 신뢰감을 줄 수 있음.
- 중요 부분을 먼저 구현함으로써 여러 번 테스트가 반복되어 완고한 개발이 가능함.
 일부 모듈들은 stub이나 driver 형태로 구현해 통합 테스팅후, 점차적으로 모듈을 추가해 가면서 통합 테스팅 진행

• 단점

- 오류의 위치와 원인을 찾기 어려움
- 단위 테스트에 많은 시간과 노력이 듬준비해야 할 드라이버/스텁 수가 많음
- 개발 진도를 예측하기 어려움

하향식 통합

시스템 구조상 최상위에 있는 모듈부터 통합

• 장점

- 중요한 모듈의 인터페이스를
 조기에 테스트
- 스텁을 이용하여 시스템 모습을 일찍 구현가능
- 개발자 입장에서 용이함

• 단점

- 입출력 모듈이 상대적으로 하위에 있음
 - 테스트 케이스 작성 및 실행이 어려움
- 중요 기능이 마지막에 구현됨

각 기능은, 시스템 구조도 (tree 형태)의 한 subtree 로 구현되는데 일반적으로 이런 subtree는 여러 level들에 걸친 모듈들로 구성됨.

상향식 통합

• 시스템 구조상 최하위에 있는 모듈부터 통합

• 장점

- 점증적 통합 방식(<mark>하향식에도 해당</mark>)
 - 오류 발견이 쉬움
 - 하드웨어 사용 분산
- 하위층 모듈을 상위층보다 더 많이 테스트

• 단점

- 초기에 시스템의 뼈대가 갖추어 지지 않음
- 상위층의 중요한 인터페이스가 마지막에 가서야 확인 가능
- 의뢰자에게 시스템을 시험해 볼 기회를 충분히 제공하지 못함

연쇄식 통합

- 특정 기능을 수행하는 모듈의 최소 단위(thread)로 부터 시작 → 여 러 계층에 걸쳐 있을 수 있고, 하나의 서브 트리가 되기도 함.
 - 입력, 출력
 - 어느 정도의 기본 기능을 수행하는 모듈
- 한 개 thread로 또는 여러 개의 독립된 thread로 출발해, 첨차 다른 모듈을 추가해 테스팅해 나감
- 상대적으로 중요한 모듈부터 개발
- 장점
 - 초기에 시스템의 골격이 형성
 - 사용자 의견을 빨리 확인 가능
 - 시스템을 나누어 개발 하기 쉽다

- 빨간 사각형으로
 된 모듈들이
 thread가 될 수
 있음.
- 이를 테스팅하기 위해서 필요한주변 모듈들은,
 stub이나 driver로 구현

9.6 시스템 및 인수 테스팅

- 컴포넌트 통합 후 수행하는 테스트 기법
- 테스트 종류
 - 기능 테스트
 - 성능 테스트
 - 보안 테스트
 - 사용성 테스트
 - 인수 테스트 테스터: 사용자(또는 개발의뢰인이나 대리인)

알파테스트: 개발환경에서 테스트, 베타테스트(필드테스트, 시험사용): 운영환경에서 테스팅

• 설치 테스트

(강의 종료)

^{새로 쓴} 소프트웨어 공학

New Software Engineering