Honors Single Variable Calculus 110.113

October 3, 2023

1 Equivalence Relation

Week 3 Reading: [5, Ch.3.5, Ch.4], On the construction of \mathbb{Q} , see [2, 2.4].

Learning Objectives

Last few lectures:

- Defined the natural numbers and sets axiomatically.
- Discussed how *cardinality* came up from "counting" sets.

This and next lecture:

- discuss equivalence relation.
- construct \mathbb{Z}, \mathbb{Q} . Extend addition and multiplication in this context.

1.1 Ordered pairs

We now describe a new mathematical object, we leave it as an exercise to see how this object can be can be constructed form axioms of set theory.

Axiom 1.1. If x, y are objects, there exists a mathematical object

denote the ordered pair. Two ordered pairs (x, y) = (x', y') are equal iff x = x' and y = y'.

Example

In sets:

•
$$\{1,2\} = \{2,1\}$$

In ordered pairs

• $(1,2) \neq (2,1)$

Definition 1.2. Let X, Y be two sets. The *cartesian product* of X and Y is the set

$$X \times Y = \{(x,y) \,:\, x \in X, y \in Y\}$$

Currently, we can either put the existence of such a set as an axiom, or use the axioms of set theory, this is in hw.

Discussion

Let $n \in \mathbb{N}$. How can we generalize the above for an ordered n-tuple and n-cartesian product?

Pedagogy

As with construction quotient set, and function, we do not show how this can be derived from the axioms of set theory. We refer to the interested reader, [3, 7,8].

What is a relation? What kind of relations are there? We can make a mathematical interpretation using ordered pairs.

Definition 1.3. Given a set A, a relation on A is a subset R of $A \times A$. For $a, a' \in A$, We write

$$a \sim_R a'$$

if $(a, a') \in R$. We will drop the subscript for convenience. We say R is:

• Reflexive For all $a \in A$

$$a \sim a$$

• Transitive. For all $a, b, c \in A$,

$$a \sim b, b \sim c \Rightarrow a \sim c$$

• Symmetric. For all $a, b \in A$,

$$a \sim b \Leftrightarrow b \sim a$$

Discussion

What are example of each relations?

Often times, people do not describe the subset R, but describe it a relation equivalently as a rule: saying $a,b \in A$ are related if some property P(a,b) is true. In short hand, one writes

$$a \sim b$$
 iff ...

Definition 1.4. Let R be an equivalence relation on A. Let $x \in A$, The equivalence class of x in A is the set of $y \in A$, such that $x \sim y$. We denote this as ¹

$$[x] := \{ y \in A : x \sim y \}$$

An element in such an equivalence is called a *representative* of that class.

Definition 1.5. Quotient set. Given an equivalence relation R on a set A, the quotient set A/\sim is the set of equivalence classes on A.

Example

Consider $\mathbb N$ and the equivalence relation that $a\sim b$ iff a and b have the same parity. a

- There are two equivalence classes: the odds and evens.
- For the odd class, a *representative*, or an element in the equivalence class, is 3.

There is a relation between equivalence and partition of sets.

Definition 1.6. A partition of a set X is a collection ???

1.2 Integers

What are the integers? It consists of the natural numbers and the negative numbers. What is *subtraction*? We do not know yet. Can we define *negative* numbers without referencing minus sign? Yes, we can. Say

$$-1$$
is " $0-1$ " is $(0,1)$

Discussion

Let us say we define the integers as pairs (a, b) where $a, b \in \mathbb{N}$. Would this be our desired

$$\mathbb{Z} := \{\ldots, -1, 0, 1, \ldots\}$$

• How many -1s are there?

But we have a problem, there are multiple ways to express -1. Our system cannot have multiple -1s. What are other ways We can also have 1-2, or the pair (1,2).

^ai.e. both or odd or even.

 $^{^1\}mathrm{It}$ does not matter if we write $\{y\in A\,:\,y\sim x\}$ by symmetry condition.

Discussion

Now that we have our $\mathbb Z,$ how do we define addition? ${}^a\mathrm{Can}$ we leverage our understanding?

^aWhat is addition abstractly? It is an operation $+: X \times X \to X$.

Intuitively, the *integers* is an expression 2 of non-negative integers, (a, b), thought of as a - b. Two expressions (a, b) and (c, d) are the same if a + d = b + c. Formally

Definition 1.7. Let

$$R \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$$

consists of all pairs (a, b) and (c, d) such that a + d = b + c. Equivalently,

$$R := \{(a, b), (c, d) \in (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N}) : a + d = b + c\}$$

The *integers* is the set

$$\mathbb{Z} := \mathbb{N}^2 / \sim$$

Definition 1.8. Addition, multiplication. [5, 4.1.2] .

We can now finally define negation.

Definition 1.9. [5, 4.1.4].

Proposition 1.10. Algebraic properties. Let $x, y, z \in \mathbb{Z}$.

- Addition
 - Symmetric x + y = y + x.
 - Admits identity element.

1.3 Rational numbers

Reading: [2, 2.4]. Be careful of the notation used! See 1.11.

Definition 1.11. The rationals is the set

$$\mathbb{Q} := \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) / \sim$$

$$\mathbb{Z}\backslash\left\{0\right\} := \left\{n \in \mathbb{Z} : n \neq 0\right\}$$

where $(a, b) \sim (c, d)$ if and only if ad = bc. We will denote the equivalence class of pair (a, b) by [a/b]

²Rather than a pair, as an expression has multiple ways of presentation

Again, we need the notion of addition, multiplication, and negation.

Definition 1.12. Let $[a/b], [c/d] \in \mathbb{Q}$. Then

1. Addition:

$$[a/b] + [c/d] := [(ad+bc)/bd]$$

2. Multiplication

$$[a/b] \cdot [c/d] := [(ac)/(bd)]$$

3. Negation.

$$-[a/b] := [(-a)/b]$$

1.3.1 Is addition well-defined?

This subsection gives an extensive discussion of well-definess. The notation we use here is from 1.11. In 1. we want to define a function:

$$+: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$$

which takes as input two equivalence class and outputs a new one. Let us consider two equivalence class

$$x := \left\{ a'/b' : a'/b' \sim a/b \right\} \in \mathbb{Q}$$

$$y:=\left\{c'/d'\,:\,c'/d'\sim c/d\right\}\in\mathbb{Q}$$

To add these two classes, we proceeded as follows:

- 1. We pick two representatives from each class, let us say a/b of x and c/d of y.
- 2. We define

$$x + y := [(ad + bc)/bd]$$

Why can't we say this is the definition of addition, yet? In the above description, x + y can take more than one possible value - which is not a function! For example, one could have chosen other pair of representatives, a'/b', and c'/d', and obtained x + y as

$$[(a'd' + b'c')/b'd']$$

Thus, we have to check that

$$[(a'd' + b'c')/b'd'] = [(ad + bc)/bd]$$

To check this: by definition, this means we have to show:

$$bd(a'd' + b'c') = (ad + bc)b'd'$$

which is

$$bda'd' + bdb'c' = adb'd' + bcb'd'$$
(1)

Now $a'/b' \sim a/b$ and $c/d \sim c'/d'$ means a'b = ab' and cd' = c'd, Now using commutativity in \mathbb{Z} , and the required two equalities for Eq. 1

$$bda'd' = a'bdd' = (a'b=ab') ab'dd' = adb'd'$$
$$bdb'c' = c'dbb' = (cd'=c'd) cd'bb' = bcb'd'$$

1.4 Order relation

Similarly, we can define also define order relation.

Definition 1.13. Let $x \in \mathbb{Q}$,

- x is positive iff x = [a/b] where a, b are positive integers, we often denote positive integers as $\mathbb{Z}_{>0}$.
- x is negative iff x = -y where y is some positive rational.

With the notion of positive rationals³ from def. 1.13, we can define order relation $<, \le$ on \mathbb{Q} .

Definition 1.14. Let $x, y \in \mathbb{Q}$, then we denote

- x > y iff x y is positive.
- $x \ge y$ iff x y is zero or positive.

Rational is sufficient to do much of algebra. However, we could not do *trigonome-try*. One passes from a *discrete* system to a *continuous* system.

Discussion _

What is something not in \mathbb{Q} ?

Proposition 1.15. $\sqrt{2}$ is not rational.

³The same trick is used to define order in $\mathbb{N}, \mathbb{Z}, \mathbb{R}$

2 The real numbers

Week 3, Reading: [5, 5], notes by Todd, Cauchy's construction. Goldrei's textbook gives another construction of \mathbb{R} using Dedekind cuts, [2, 2.2].

Learning Objectives

We have defined \mathbb{Q} . To define \mathbb{R} .

• We use Cauchy sequence.

Pedagogy

We can define real numbers geometrically, adopted by Euclid, and mostly between 1500-1850, or as presented in [4]

• This ultimately leads to Dedekind's picture of how an irrational number sits among the rational.

2.1 Characterizing properties of \mathbb{R} : the completeness properrty

As with construction of \mathbb{N} , ultimately for \mathbb{R} , we are interested in the structural properties they have. The essential properties of \mathbb{R} can be described by Thm. 2.1. If you have learned any algebra, this is also known as a complete ordered field.

Theorem 2.1. Properties of \mathbb{R} , this is a rehash of the list in [2, 2.3]. \mathbb{R} is a set with

- \bullet operations + and \cdot
- \bullet relations = and <
- special elements 0, 1 with $0 \neq 1$.

such that

- 1. \leq is a reflexive and transitive relation.
- 2. \leq behaves well under addition and multiplication : If $x \leq y$ and $z \geq 0$.
 - then $x + z \le y + z$
 - $x \cdot z < y \cdot z$.
- 3. The operation +, def. is commutative and associative, admits inverses and admits identity 0. In other words:
 - Associativity: for all $x, y, z \in \mathbb{R}$, x + (y + z) = (x + y) + z.

- Commutativity: for all $x, y \in \mathbb{R}$, x + y = y + x.
- Admits inverse: for all $x \in \mathbb{R}$, there exists y such that

$$x + y = y + x = 0$$

• Admits identity 0: for all $x \in \mathbb{R}$,

$$x + 0 = 0 + x = x$$

- 4. The operation \cdot is commutative and associative, admits inverses and identity 1:
- 5. Completeness: for any $A \subseteq \mathbb{R}$, $A \neq \emptyset$ which is bounded above has a least in upper bound $in \mathbb{R}$.

Proof. Properties of + is left as homework.

Worthy of distinction is the last axiom.

Definition 2.2. A partial order on a set X, is a relation \leq on X which is

- reflexive
- transitive: for all $a, b, c \in X$, if $a \le b, b \le c$, then $a \le c$.
- antisymmetric: for all $a, b \in X$, $a \le b$ and $b \le a$ implies a = b.

Example

 $(\mathbb{N}, \leq), (\mathbb{Q}, \leq), (\mathbb{Z}, \leq)$ are all partial orders. However < is *not*.

Definition 2.3. Let $E \subseteq X$, where (X, \leq) is a set with a relation. $M \in X$ is a *upper bound* iff for all $x \in E$, $x \leq M$.

Definition 2.4. Let $E \subseteq X$, where (X, \leq) is a set with a relation. $M \in X$ is a least upper bound for E if

- 1. M is an upper bound for E.
- 2. any other upper bound M' on E must satisfy $M \leq M'$.

Example

Let us consider (\mathbb{Q}, \leq) . What is the order relation here? see 1.14. Discuss the upper bound and least upper bound for the following sets.

 $\bullet \ E := \{ x \in \mathbb{Q} : x > 0 \}.$

 $\bullet \ E := \left\{ x \in \mathbb{Q} \ : \ x^2 < 2 \right\}$

 \bullet $E := \emptyset$

2.2 Cauchy sequences

Let us start by constructing $\sqrt{2}$ using \mathbb{Q} . The idea is to represent such a number using sequence. All inequalities and numbers discussed in this section will be rationals.

Discussion

ullet If a "real" number x grows continually, but is bounded, does it approach a limiting value?

Definition 2.5. Let $m \in \mathbb{Z}$. A sequence of rational numbers denoted $(a_n)_{n=m}^{\infty}$ is a function

$$\{n \in \mathbb{Z} : n \ge m\} \to \mathbb{Q}$$

Discussion

Why don't we start the sequence at 0? We will see this when we discuss \limsup .

Definition 2.6. A sequence is $(x_n)_0^{\infty}$,

• eventually ε -steady, if exists some N such that for all $n, m \geq N$,

$$|x_n - x_m| < \varepsilon$$

• a Cauchy sequence iff for all $\varepsilon > 0$, $(x_n)_{n=0}^{\infty}$ is eventually ε -steady.

Example

Proofs using quantifiers. Prove for all positive rationals, ε , there exists a positive rational δ such that $\delta < \varepsilon$.

Mathematicians often translate this to notation

$$\forall \varepsilon \in \mathbb{Q}_{>0}, (\exists \delta \in \mathbb{Q}_{>0}, \delta < \varepsilon)$$

but this is up to taste.

Proof. ???

Proposition 2.7. Prove that $(a_n)_{n=1}^{\infty} := (1/n)_{n=1}^{\infty}$ is a Cauchy sequence.

Proof. What do we show ??? $\forall \varepsilon > 0$

•

Example

• $(n)_{n=0}^{\infty}, (\sqrt{n})_{n=0}^{\infty}$ are not Cauchy.

Discussion

We want to use a Cauchy sequence to represent the real numbers. However, two sequences can represent the same number. Consider

$$1.4, 1.41, 1.414, 1.4142, \dots$$

 $1.5, 1.42, 1.4143, 1.41422, \dots$

Definition 2.8. Two sequences $(x_n)_{n=0}^{\infty}$, $(y_n)_{n=0}^{\infty}$ are eventually ε -close. if there exists some N, such that for all $n \geq N$,

$$|a_n - b_n| < \varepsilon$$

Discussion

Are the following two sequences Cauchy equivalent?

• $(10^{10}, 10^1000, 1, 1, ...)$ and (1, 1, ...,)

Definition 2.9. Let \mathcal{C} denote the set of cauchy sequences.⁴ Then we set

$$\mathbb{R}:=\mathcal{C}/\sim$$

where \sim is the equivalence relation that

 $(x_n)_{n=0}^{\infty} \sim (y_n)_{n=0}^{\infty}$ if and only if $(x_n)_{n=0}^{\infty}$ and $(y_n)_{n=0}^{\infty}$ are eventually ε -close

We denote the equivalence of $(x_n)_{n=0}^{\infty}$ as $[(x_n)]$. Note that in [5], Tao denotes the class as $\text{LIM}_{n\to\infty}x_n$.

Definition 2.10. Let $x, y \in \mathbb{R}$. Choose two representatives⁵, say $(x_n)_{n=0}^{\infty} \in x$ and $(y_n)_{n=0}^{\infty} \in y$, then

• the sum of x and y is defined as

$$x + y := [(x_n + y_n)_{n=0}^{\infty}]$$

Addition is well-defined. [5, 5.3.6, 5.3.7].

• the product of x and y is defined as

$$x \cdot y := [(x_n \cdot y_n)_{n=0}^{\infty}]$$

Now we can define the order relation on \mathbb{R} , compare to def. 1.13

Definition 2.11. $x \in \mathbb{R}$ is

- positive iff there exists a positive rational $c \in \mathbb{Q}_{>0}$, and $(x_n)_{n=0}^{\infty} \in x$ such that $x_n \geq c$ for all $n \geq 1$.
- negative iff $-(x_n)_{n=0}^{\infty} := (-x_n)_{n=0}^{\infty}$ is positive.

Definition 2.12. Let $x, y \in \mathbb{R}$, we say

- x > y iff x y is positive.
- $x \ge y$ iff x y is positive or x = y.

⁴This is a subset of $\mathbb{Q}^{\mathbb{N}}$.

⁵an element of the equivalence class

3 More on Sequences

Reading: [5, 6].

Previously, we have worked with Cauchy sequences of rational numbers, see def 2.6, these were used to define \mathbb{R} . Now let us work with Cauchy sequences of real numbers:

Definition 3.1. A sequence $(x_n)_0^{\infty}$ of real numbers, i.e. a map $\mathbb{N} \to \mathbb{R}$, is

• eventually ε -steady, if exists some N such that for all $n, m \geq N$,

$$|x_n - x_m| < \varepsilon$$

• a Cauchy sequence iff for all $\varepsilon > 0$, $(x_n)_{n=0}^{\infty}$ is eventually ε -steady.

Learning Objectives

- Understand the notion of supremum and infima.
- Note that all convergent sequence is bounded, but is the bounded sequences convergent? This is the monotone convergence theorem. [5, 6.3.8].

We have the following hierarchy.

$$\{Convergent\} \Rightarrow \{Cauchy\} \Rightarrow \{Bounded\}$$

But is the converse true?

Theorem 3.2. Let $(a_n)_{n=0}^{\infty}$

Now that we have defined \mathbb{R} , we will review again the notion of convergence. We can slowly increase our level of "closeness" of a sequence to a point via these three definitions.

Definition 3.3. Let $x \in \mathbb{R}$.

- 1. Let $\varepsilon \in \mathbb{R}_{>0}$. $(a_n)_{n=0}^{\infty} = \{a_0, a_1, \ldots\}$ is ε -adherent to x if exists $N \in \mathbb{N}$ st. $|a_N x| < \varepsilon$.
- 2. Let $\varepsilon \in \mathbb{R}_{>0}$ we say $(a_n)_{n=0}^{\infty}$, is ε -close to x if $|a_n x| < \varepsilon$ for all $n \ge 0$.
- 3. Let $\varepsilon \in \mathbb{R}_{>0}$ we say $(a_n)_{n=0}^{\infty}$ is eventually ε -close to x if there exists $N \in \mathbb{N}$ such that for all $n \geq N$,

$$|a_n - x| < \varepsilon$$

Discussion

Consider our favourite sequence of 1.

• What are choices of x that satisfy 1?

Definition 3.4. A sequence $(a_n)_{n=0}^{\infty}$ of rationals *converges to x* iff it is eventually ε convergence to x for all $\varepsilon \in \mathbb{Q}_{>0}$.

Discussion .

• In 1. what if n = 0? For instance

$$1, 0, 0, 0, 0, 0, \dots$$

is ε close to 1. This wouldn't be a nice definition of the sequence "converging to x".

• In 2. This may be too much of demand? What about the sequence

$$1, 1/2, 1/3, \ldots, 1/n, \ldots$$

Proposition 3.5. Uniqueness of limits of sequences. [5, 6.1.7].

3.1 Extending the number system

We will begin by defining the *suprema* and *infima* of sets. To make our life easier, we define the extended real number system.

Definition 3.6. The extended number system consists of

$$\bar{\mathbb{R}} := \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$$

Let $x, y, z \in \mathbb{R}$. Define the order relation, 1.3 $x \leq y$ if and only if one of the following holds.

- 1. If $x, y \in \mathbb{R}, x \leq y$.
- 2. $x = -\infty$
- 3. $y = \infty$.

Thus, we artificially add in new terms.

• We do not include any operations. This can be dangerous. Of course, this can be done: say we can demand :

$$c + (+\infty) = (+\infty) + c := +\infty \quad \forall c \in \mathbb{R}$$

$$c + (-\infty) = (-\infty) + c =: -\infty \quad \forall c \in \mathbb{R}$$

but requires a lot of care.

• We can define order and negation.

This is a common practice for mathematics, in order for one to make better statements.

Definition 3.7. Negaion of reals.

Example

What is the supremum of the set

$$\{0, 1, 2, 3, 4, 5, \ldots\}$$

•

$$\{1-2,3,-4,5,-6,\ldots\}$$

Definition 3.8. [Least upper bound] Let $E \subseteq \mathbb{R}$. Then $\sup E$, the least upper bound [5, 6.2.6] is defined by the following rule:

- Let $E \subseteq \mathbb{R}$. So $\infty, -\infty \notin E$.
- If $\infty \in E$.

We can define the infimum without the use of another definition.

Definition 3.9. We let

$$\inf E := -\sup(-E)$$

$$E := \{-x : , x \in E\}$$

In many cases we have two limits.

Example

Let E be negative integers.

$$\inf(E) = -\sup(-E) = -\infty$$

Discussion

Consider the sequence

$$1.1, -1.01, 1.001, -1.0001, 1.0001, \dots$$
 (*)

What two limits do you see? It is a combination of two sequences:

- 1.1, 1.001, 1.0001, 1.00001,
- \bullet -1.01, -1.0001, -1.000001, . . .

Definition 3.10. Let $(a_n)_{n=m}^{\infty}$ be a sequence. Then set

$$a_N^+ := \sup \left[(a_n)_{n=N}^{\infty} \right]$$

$$\lim \sup_{n} a_n := \inf \left[(a_N^+)_{N=m}^{\infty} \right]$$

Example

In (*)

• $(a_n^+) = (a_0^+, a_1^+, \dots)$ is the sequence

1.1, 1.01, 1.001

Proposition 3.11. Properties of limsup and liminf.

Homework for week 4

Due: Week 5, Wednesday. You will select 3 problems to be graded. References: [2, 2], [5, 5].

You are free to assume anything you know about \mathbb{Q} . The problem on Dedekind construction is one problem it self. It has extended number of points not because of its difficulty, but because of its length.

Problems

- 1. (**) Prove that the relation defined in def. 2.9, is an equivalence relation.
- 2. Review the definition of addition on \mathbb{R} , ??. Prove that addition, +, on \mathbb{R} satisfies properties from 2.1. That is, prove :
 - Associativity: for all $x, y, z \in \mathbb{R}$, x + (y + z) = (x + y) + z.
 - Commutativity: for all $x, y \in \mathbb{R}$, x + y = y + x.
 - Admits identity 0: for all $x \in \mathbb{R}$.

$$x + 0 = 0 + x = x$$

3. (*) Review the definition of multiplication on \mathbb{R} , def. ?? Prove that any $x \in \mathbb{R}$ where $x \neq 0$ 6 admits a multiplicative inverse y, i.e. exists $y \in \mathbb{R}$ such that

$$x \cdot y = y \cdot x = 1$$

- 4. Let $E \subseteq \mathbb{Q}$. Prove that under the order relation \leq , least upper bound is unique if exists
- 5. (**) Here we discuss some conditions to see whether a sequence of rationals $(a_n)_{n=0}^{\infty}$ is Cauchy:
 - (a) Suppose that for all $n \in \mathbb{N}$,

$$|a_{n+1} - a_n| < 2^{-n}$$

prove that (a_n) is Cauchy.

(b) if we replace the condition in a. as

$$|a_{n+1} - a_n| < 1/(n+1)$$

for all $n \in \mathbb{N}$, give an example where (a_n) is not Cauchy.

⁶here $0 := (0)_{n=0}^{\infty}$ is the Cauchy sequence consisting of 0s

6. (***) How can we construct $\sqrt{2}$ using Cauchy sequence? Consider the following three sequence $(a_n), (b_n), (x_n)$ defined as follows

$$a_0 = 1, b_0 = 2$$

for each $n \geq 0$,

$$x_n = \frac{1}{2} \left(a_n + b_n \right)$$

$$a_{n+1} = \begin{cases} x_n & x_n^2 < 2\\ a_n & \text{otherwise} \end{cases}$$

$$b_{n+1} = \begin{cases} b_n & x_n^2 < 2\\ x_n & \text{otherwise} \end{cases}$$

- (a) Prove that all sequences are Cauchy.
- (b) Prove that all sequences are Cauchy equivalent.
- (c) Prove $[(a_n)_{n=0}^{\infty}] \cdot [(a_n)_{n=0}^{\infty}] = 2.$
- 7. Show that a Cauchy sequence is bounded.

4 Continuity

Week5, Reading [5, 9.3].

Previously we have been dealing with sequences, 3.

Learning Objectives

In the next two lectures:

- Understand the underlying algebra
- State the Intermediate Value Theorem.

Define the exponential function exp, or $e^{(-)}$. To do this we need.

- Continuity.
- Formal power series.

4.1 Subsets in analysis

Reading: [5, 9.1].

In analysis, we often work with certain subsets of \mathbb{R} . To define these, we need to know the partial order \leq on \mathbb{R} , see def. 2.12.

Definition 4.1. Let $a, b \in \mathbb{R}$.

• We define the closed interval.

$$[a,b]:=\{x\in\mathbb{R}\,:\,a\leq x\leq b\}$$

• The half open intervals

$$[a,b) := \{x \in \mathbb{R} \, : \, a \leq x < b\} \quad (a,b] := \{x \in \mathbb{R} \, : \, a < x \leq b\}$$

• The open intervals

$$(a,b) := \{ x \in \mathbb{R} \ : \ a < x < b \}$$

Example

What is

- (2,2)
- \bullet [2, 2]
- (4,3).
- [3, 3].

Definition 4.2. Sequences of real numbers. Same as 2.5 but with \mathbb{R} instead of \mathbb{Q} .

Definition 4.3. Same as 3.4 but with real sequences and converging to real number.

Proposition 4.4. Uniqueness of limits. [5, 6.1.7].

4.2 Working with real valued functions

In this section we study real valued functions

$$f: \mathbb{R} \to \mathbb{R}$$

Example

- 1. Characteristic functions. Important for measure theory.
- 2. Polynomial functions.

We will denote the collection of functions from \mathbb{R} to \mathbb{R} ,

$$Cts(\mathbb{R},\mathbb{R}) \subset Fct(\mathbb{R},\mathbb{R})$$

Whenever you have a collection of objects you can always ask what structure does this have?

Definition 4.5. [5, 9.2.1] Structure on $Fct(\mathbb{R}, \mathbb{R})$. This is what algebraist refer as *composition rings*.

- 1. Composition.
- 2. Multiplication.
- 3. Addition.
- 4. Negation.

Except the compositional structure, all such structures exists on function algebras, that is sets of the form $\text{Fct}(X,\mathbb{R})$ for X any set. For example, when $X = \mathbb{N}$,

$$Fct(\mathbb{N}, \mathbb{R}) = \{(x_n)_{n=0}^{\infty} : x_n \in \mathbb{R}\}\$$

This space of functions is the set of real sequences starting at 0. The goal now is to study $Fct(\mathbb{R}, \mathbb{R})$ generalizing

$$\operatorname{Fct}(\mathbb{N},\mathbb{R})$$

Discussion

Which of the following are true?

1.
$$(f+g) \circ h = (f \circ h) + (g \circ h)$$
.

$$2. (f+g) \cdot h = (f \cdot h) + (g \cdot h).$$

In the realm of geometry, there is a duality between spaces and their algebra of functions, [1].

In the context of sequences, we were able to make sense of "limit" to a point, "\infty"

$$\lim_{n \to \infty} x_n = L$$

⁷ Similarly, in the context $Fct(\mathbb{R}, \mathbb{R})$ we would like to consider points $a \in \mathbb{R}$, where we can write

$$\lim_{x \to a} f(x) = L$$

Then to study $f: \mathbb{R} \to \mathbb{R}$, it would be helpful to steady $f|_X: X \to \mathbb{R}$ for $X \subseteq \mathbb{R}$ of subsets that are intervals.

Definition 4.6. The restriction operation: let $E \subseteq X \subseteq \mathbb{R}$ be subsets of \mathbb{R} . The restriction map is defined as

$$Fct(X, \mathbb{R}) \to Fct(E, \mathbb{R})$$

$$f \mapsto f|_E$$

where $f|_E(x) := f(x)$.

4.3 Limiting value of functions

Reading, [5, 9.3]. We know what it means for a sequence to converge. Now we understand what it means for a function defined on an *interval* to converge.

Definition 4.7. Converging function. Let $X \subset \mathbb{R}$ be an interval. We discuss $Fct(X,\mathbb{R})$.

1. ε -closeness. $f \in \text{Fct}(X, \mathbb{R})$ is ε close if for all $x \in X$,

$$|f(x) - L| < \varepsilon$$

- 2. [5, 9.3.3]. $f \in \text{Fct}(X, \mathbb{R})$ is local ε -close to L at a iff there exists $\delta > 0$ such that
 - (a) some interval $(x \delta, x + \delta) \subset X$
 - (b) $f|_{(x-\delta,x+\delta)}$ is ε -close to L.
- 3. Let $L \in \mathbb{R}$, and $a \in X$, then we say f converges to L as x approaches a, if for all $\varepsilon \in \mathbb{R}_{>0}$, f is local ε -close to L at a. In which case we denote

$$\lim_{x \to a} f(x) = L$$

⁷in fact, this is the limit of \mathbb{N} , when phrased correctly.

Example _____

In 1. Let $f(x) = x^2$. • 4-close to 2?

• 1-close to 1?
$$g(x) = x^3. \ g_1 := g|_{[0,1]} \text{ and } g_2 := g|_{[1,2]}.$$

- 4-close to 2?
- 1-close to 1?

	Sequences (x_n)	f converging to L at a .
	N	$X \subset \mathbb{R} \text{ contains } a$
$\varepsilon\text{-close}$	$\forall n \in \mathbb{N} x_n - L < \varepsilon.$	$\forall x \in X, f(x) - L < \varepsilon.$
ev'/local ε -close	$\exists N, \text{ for all } n \geq N \ x_n - L < \varepsilon$	$\exists \delta > 0, f(x) - L < \varepsilon, \forall x \in (a - \delta, a + \delta).$
Converges	$\forall \varepsilon > 0, (x_n) \text{ is ev' } \varepsilon\text{-close}$	$\forall \varepsilon > 0, (x_n) \text{ is local } \varepsilon\text{-close}$

4.4 Continuous functions

Definition 4.8. Let $X \subset \mathbb{R}$ be an open interval. $f: X \to \mathbb{R}$ is continuous at $x_0 \in X$ if for all $\varepsilon > 0$ there exists $\delta > 0$...?

We will consider three fundamental results in continuity of functions, [4, 7].

Homework for week 5

Due: Week 6, Friday. We will select 4 problems to be graded.

- 1. Which of the following are true on $\operatorname{Fct}(\mathbb{R},\mathbb{R})$: let $f,g,h\in\operatorname{Fct}(\mathbb{R},\mathbb{R})$:
 - (a) Composition \circ is associativity:

$$f \circ (g \circ h) = (f \circ g) \circ h$$

(b) Composition distributes over multiplications:

$$(f \cdot g) \circ h = (f \circ h) \cdot (g \circ h)$$

(c) Composition distributes over addition:

$$(f+g)\circ h=f\circ h+g\circ h$$

2. Let (x_n) be a sequence of real numbers. Let $x_1 = 2$,

$$x_{n+1} = \frac{1}{2}x_n + \frac{1}{x_n}$$

show that x_n limits to a number L where $L^2 = 2$.

- 3. Prove 3.5.
- 4. Let a < b, and $f : [a, b] \to \mathbb{R}$ be a continuous and strictly monotone function. Then f restricts to a bijection $f : [a, b] \to [f(a), f(b)]$. Show that f^{-1} is also continuous and strictly monotone.
- 5. Prove that $f(x) = |x|^3$ is twice differentiable in \mathbb{R} but not three times. (First prove that $f^{(2)}(x) = 6|x|$.

References

- [1] John Baez, Isbell duality (2022).
- $[2] \ \ Derek \ Goldrei, \ Propositional \ and \ predicate \ calculus: \ A \ model \ of \ argument, \ 2005.$
- [3] Paul R. Halmos, Naive set theory, 1961.
- $[4] \ \ {\it Michael Spivak}, \ {\it Calculus}, \ 4th \ {\it edition}.$
- [5] Terence Tao, Analysis I, 4th edition, 2022.