Übung zur Vorlesung Technische Grundlagen der Informatik

Prof. Dr. Andreas Koch Thorsten Wink

Wintersemester 09/10 Übungsblatt 5 - Lösungsvorschlag

Aufgabe 5.1 Moore- vs. Mealy-Automat

Vergleichen Sie die beiden Automatentypen bezüglich ihres Ausgangsverhaltens.

a) Moore:

- 1. Ausgänge hängen nur vom aktuellen Zustand ab
- 2. Ausgänge ändern sich immer synchron zum Takt
- 3. Ausgänge werden an den Knoten notiert

b) Mealy:

- 1. Ausgänge hängen vom aktuellen Zustand und den Eingängen ab
- 2. Ausgänge können sich innerhalb eines Taktes mehrmals ändern, wenn sich das Eingangssignal ändert
- 3. meist mit weniger Zuständen implementierbar
- 4. Ausgänge werden an den Kanten notiert

Aufgabe 5.2 Automatenentwurf

Entwerfen Sie einen Automaten, der eine Kaffeemaschine steuert. Folgende Spezifikation ist gegeben: Ein externes Steuergerät wird zur Abrechnung verwendet, die Kaffeemaschine wird erst aktiviert wenn von diesem Gerät das Start-Signal auf logisch 1 gesetzt wird. Danach wird der Boiler aktiviert (Ausgang B). Wenn das Wasser kocht (Eingang B_ready), wird die Pumpe aktiviert (Ausgang P) und ein Timer gestartet. Nach dem Ablauf eines Timers, signalisiert durch T_ready wird die Maschine wieder in den Startzustand zurückgesetzt.

a) Geben Sie das Zustandsübergangsdiagramm an.

Der Automat wurde als Moore-Automat implementiert. Es ist ebenfalls eine Mealy-Implementierung möglich.

b) Geben Sie die Zustandsübergangstabelle an. Verwenden Sie eine binäre Zustandskodierung.

Zustand		Eingänge			nächster Zustand	
S_1	S_0	Start	B_ready	T_ready	$S_1^{'}$	$S_0^{'}$
0	0	0	X	X	0	0
0	0	1	X	X	0	1
0	1	X	0	X	0	1
0	1	X	1	X	1	0
1	0	X	X	0	1	0
1	0	X	X	1	0	0

c) Geben Sie die boole'schen Gleichungen für die Zustandsübergänge und die Ausgänge an.

$$S_0' = \overline{S_1} \overline{S_0} \text{Start} + \overline{S_1} S_0 \overline{B_{\text{ready}}}$$

 $S_1' = \overline{S_1} S_0 B_{\text{ready}} + S_1 \overline{S_0} \overline{T_{\text{ready}}}$
 $B = S_0$
 $T = S_1$

d) Realisieren Sie den Automat. Verwenden Sie dazu D-Flip-Flops und Gatter. Zur besseren Übersichtlichkeit sind die Rückkopplungen der Flip-Flop-Ausgänge nicht eingezeichnet. So ist z.B. S_0 mit dem Ausgang Q des Flip-Flops S_0 verbunden.

Aufgabe 5.3 noch ein Automat

Gegeben ist folgendes Zustandsübergangsdiagramm:

- a) Beschreiben Sie die Funktion des Automaten. Der Ausgang wird für einen Takt auf 1 gesetzt, wenn der Automat die Sequenz A=1 und im nächsten Takt B=1 gesehen hat.
- b) Geben Sie die Zustandsübergangstabelle und boole'sche Gleichungen für die Funktionen an.

Zustand		Eingänge		nächster Zustand		
S_1	S_0	A	В	$S_{1}^{'}$	$S_0^{'}$	
0	0	0	X	0	0	
0	0	1	X	0	1	
0	1	X	0	0	0	
0	1	X	1	1	0	
1	0	X	X	0	0	

$$S_1' = S_0 B$$

$$S_0' = \overline{S_0} \overline{S_1} A$$

c) Geben Sie die Ausgangstabelle und die Ausgangsfunktion an.

Zus	tand	Ausgang		
S_1	S_0	F		
0	0	0		
0	1	0		
1	0	1		

$$F = S_1$$

Hausaufgabe 5.1 Zustandskodierung

Wie viele Flip-Flops sind mindestens nötig, um einen Automat mit 5 Zuständen zu realisieren? Es werden 3 Flip-Flops bei Binärkodierung benötigt. Bei Verwendung der One-Hot-Codierung sind es 5.

Hausaufgabe 5.2 Automatenanalyse

Gegeben ist die folgende Schaltung, die eine FSM realisiert.

- a) Handelt es sich um einen Moore- oder einen Mealy-Automaten? Es ist ein Moore-Automat, der Ausgang ist nur vom aktuellen Zustand abhängig.
- b) Geben Sie die Zustandsübergangstabelle an. Das linke Flip-Flop wird mit S_0 bezeichnet, das rechte mit S_1 .

Zustand		Eingang	nächster Zustand	
S_1	S_0	X	$S_1^{'}$	$S_{0}^{'}$
0	0	0	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1	1	0
1	X	X	0	1

$$S_{1}' = \overline{S_{1}}X$$

$$S_{0}' = S_{1} + \overline{S_{0}}$$

c) Geben Sie die Ausgangsfunktion an.

Zus	tand	Ausgang	
S_1	S_0	Q	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

$$Q = S_1 + S_2$$

d) Geben Sie das Zustandsübergangsdiagramm der FSM an.

e) Beschreiben Sie in Worten die Funktion des Automaten. Solange der Eingang X=1 ist, ist auch der Ausgang 1. Wenn X=0, realisiert die Schaltung einen Taktteiler, d.h. bei jedem Takt wechselt sie den Ausgang.

Hausaufgabe 5.3 Mealy-Automat

Eine FSM hat einen Eingang x und einen Ausgang y. Zeichnen Sie ein Mealy-Zustandsübergangsdiagramm für die folgende Spezifikation:

a) y = 1 genau dann, wenn die Gesamtzahl gesehener Einsen im Eingangsstrom durch 3 teilbar ist.

(Die Angaben an den Pfeilen bezeichnen x|y.)

b) y = 1 genau dann, wenn die Gesamtzahl gesehener *Einsen* im Eingangsstrom durch 3 teilbar ist und die Gesamtzahl gesehener *Nullen* im Eingangsstrom gerade und größer Null ist.

Zusätzlich zum Automaten aus Aufgabe a) müssen die Nullen gezählt werden:

(Die Angaben an den Pfeilen bezeichnen x|y. Die Buchstaben der Zustandsbezeichnung beschreiben wie viele *Nullen* entdeckt wurden, sie stehen für **z**ero, **o**dd und **e**ven. Die Indizies stehen für die Anzahl der gelesenen *Einsen* modulo 3.)

Plagiarismus

Der Fachbereich Informatik misst der Einhaltung der Grundregeln der wissenschaftlichen Ethik großen Wert bei. Zu diesen gehört auch die strikte Verfolgung von Plagiarismus. Weitere Infos unter www.informatik.tu-darmstadt.de/plagiarism