Investigating the Impact of Endorsements and Campaign Financing on Election Outcomes

Esha Palkar, Deborah Chang, Taylor Moore, Brendon Lin, Josh Lee, Ryan Soohoo

Why we chose this topic:

- Personal Interest
- Real-life use cases
- Stakeholders
- Potentially useful for future elections and investigations

Datasets Used

- The datasets we used were:
- Primary Candidates 2018 containing information on both democratic and republican primary election candidates
- Including information like candidate history, office type, election result and endorsements
- FEC Data on campaign contributions, to who, when, and how much
- What we want to model: predicting whether or not a candidate wins based on financing metrics

Concerns/Limitations

- Assumptions made during data prep
 with null = 0
- On privacy both datasets are public
- Feature Selection via MDIA feature importance, for multicollinearity
- Propensity Scoring to avoid Correlation vs Causation and reduce influence of causal effects.
- Transparency in our code to avoid bias

Step 1: EDA

 Unusually high sum/mean values of contributions for particular states

 Given our data, difficulty linking money to particular candidates

 Another limitation of data were lack of population data

Step 2: Data Cleaning

- We handled missing values in the datasets by filling them with zeros, based on the assumption that NaN indicated no support or contributions.
- We aggregated the contribution details by calculating the sum of the quarterly contribution and semi annual contributions columns to get a total contribution column.
- Combined the candidate datasets with the lobbyist dataset on the shared State column, with the assumption that candidates of respective states would receive state specific contributions.
- Encoded binary categorical variables (Yes, No) to 1 and 0 and applied label encoding to convert the string values to numerical values to input into the models.

Step 3: Model Building

- We started by building a baseline model, which in our case was always predicting that the candidate with the most amount of money donated would win the election
- Next, we built a logistic regression model, in which you can see the results here:

Step 3 : Building Model for Baseline and LR

```
merged_dem = pd.merge(dem_candidates, lobbyist_bundle[['Committee_Election_State', 'Total_Contribution']], left_on='State', right_on='Committee_Election_State', how='left')
merged_rep = pd.merge(rep_candidates, lobbyist_bundle[['Committee_Election_State', 'Total_Contribution']], left_on='State', right_on='Committee_Election_State', how='left')

merged_dem.drop('Committee_Election_State', axis=1, inplace=True)
merged_rep.drop('Committee_Election_State', axis=1, inplace=True)
combined_candidates = pd.concat([merged_dem, merged_rep], axis=0)

selected_features = ['Partisan Lean', 'Party Support?', 'Total_Contribution', 'Won Primary']
final_data = combined_candidates[selected_features]
final_data.fillna(0, inplace=True)

yes_no_mapping = {'Yes': 1, 'No': 0}
final_data = final_data.applymap(lambda x: yes_no_mapping.get(x, x))

X = final_data.drop(['Won Primary'], axis=1)
y = final_data['Won Primary'], axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 3: Baseline Model

```
# Baseline Model
baseline_model = DummyClassifier(strategy="stratified", random_state=42)
baseline_model.fit(X_train, y_train)
y_baseline_pred = baseline_model.predict(X_test)

# Baseline model evaluation
print('Baseline Model:')
print(f'Accuracy: {accuracy_score(y_test, y_baseline_pred)}')
print(f'Confusion Matrix:\n{confusion_matrix(y_test, y_baseline_pred)}')
print(f'Classification Report:\n{classification_report(y_test, y_baseline_pred)}')
```

Accuracy:

0.5712

Step 3: Logistic Regression Model

```
# Logistic Regression Model
log_reg_model = LogisticRegression(random_state=42)
log_reg_model.fit(X_train, y_train)
y_log_reg_pred = log_reg_model.predict(X_test)

# LR model evaluation
print('\nLogistic Regression Model:')
print(f'Accuracy: {accuracy_score(y_test, y_log_reg_pred)}')
print(f'Confusion Matrix:\n{confusion_matrix(y_test, y_log_reg_pred)}')
print(f'Classification Report:\n{classification_report(y_test, y_log_reg_pred)}')
```

Accuracy:

0.6771

```
Logistic Regression Model:
Accuracy: 0.6770546056260341
Confusion Matrix:
[[4878 85]
 [2257 3211
Classification Report:
             precision
                          recall f1-score
                                             support
                            0.98
                                      0.81
                   0.68
                                                 4963
                  0.27
                            0.01
                                      0.03
                                                 2289
                                      0.68
                                                 7252
    accuracy
                                      0.42
                                                7252
  macro avq
                   0.48
                            0.50
weighted avg
                   0.55
                            0.68
                                      0.56
                                                7252
```

Step 3: RF Approach

```
# Define the hyperparameter grid
param grid = {
     'n_estimators': [50, 100, 200],
     'max depth': [None, 10, 20],
     'min_samples_split': [2, 5, 10],
clf = RandomForestClassifier()
# Create the GridSearchCV object
grid search = GridSearchCV(clf, param grid, cv=5, scoring='accuracy')
# Fit the GridSearchCV object to the data
grid_search.fit(X_train, y_train)
# Retrieve the best model and hyperparameters
best model = grid search.best estimator
best params = grid search.best params
# Make predictions on the test set
y pred = best model.predict(X test)
# Evaluate the model
accuracy = accuracy score(y test, y pred)
print(f'Best Hyperparameters: {best params}')
print(f'Accuracy: {accuracy}')
Best Hyperparameters: { 'max_depth': 10, 'min_samples_split': 5, 'n_estimators': 100}
Accuracy: 0.7361963190184049
```

```
[17] # Initialize the Random Forest Classifier
    rf classifier = RandomForestClassifier(n estimators=100, random state=42)
    # Train the model
    rf classifier.fit(X, y)
    # Make predictions on the test set
    y pred = rf classifier.predict(X test)
 # Evaluate the model
    accuracy = accuracy score(y test, y pred)
    conf matrix = confusion matrix(y test, y pred)
    class report = classification report(y test, y pred)
    # Display the results
    print(f'Accuracy: {accuracy}')
    print(f'Confusion Matrix:\n{conf matrix}')
    print(f'Classification Report:\n{class report}')
Accuracy: 0.9079754601226994
```

Random Forest model test predictions

Random Forest model w/ Cross-Validation using GridSearchCV

Democratic model

```
selected features = [
    'Total Contribution',
    'Partisan Lean',
    'Self-Funder?',
    'Obama Alum?',
    'Party Support?',
    'Emily Endorsed?',
    'Guns Sense Candidate?',
    'Biden Endorsed?',
    'Warren Endorsed? '.
    'Sanders Endorsed?',
    'Our Revolution Endorsed?',
    'Justice Dems Endorsed?',
    'PCCC Endorsed?',
    'Indivisible Endorsed?',
    'WFP Endorsed?',
    'VoteVets Endorsed?',
    'No Labels Support?',
    'Won Primary' # Target variable
```

Republican model

```
rep features = [
    'Total Contribution',
    'Rep Party Support?',
    'Trump Endorsed?',
    'Bannon Endorsed?',
    'Great America Endorsed?',
    'NRA Endorsed?',
    'Right to Life Endorsed?',
    'Susan B. Anthony Endorsed?',
    'Club for Growth Endorsed?',
    'Koch Support?',
    'House Freedom Support?',
    'Tea Party Endorsed?',
    'Main Street Endorsed?',
    'Chamber Endorsed?',
    'No Labels Support?',
    'Won Primary' # Target variable
```

RF Results (Democratic candidates)

- RF w/ GridSearchCV:
 - Best Hyperparameters: max_depth=10, min_samples_split=5, n_estimators=100
 - Accuracy: 0.73619319018404
- RF w/o CV: *overfitting concern
 - Accuracy: 0.90797546011226994
 - Precision, recall

р	recision	recall	f1-score
0	0.89	0.99	0.94
1	0.97	0.73	0.84

- Confusion Matrix

RF Results (Republican candidates)

- RF w/ GridSearchCV:
 - Best Hyperparameters: max_depth=None, min_samples_split=2, n_estimators=50
 - Accuracy: 0.709677419
- RF w/o CV:
 - Accuracy: 0.709677419
 - Precision, recall

р	recision	recall	f1-score
0	0.76	0.87	0.81
1	0.48	0.30	0.37

- Confusion Matrix

Propensity Scoring

Objective: Identify the quality of features.

Used: Logistic Regression

propensity

Results: Key Features to include in model

			sion Resul				
	Dep. Variable: Model: Method:	Won Primary WLS Least Squares	R-square Adj. R-s F-statis	d: quared:		 0.014 -0.004 0.7877	
		Sun, 10 Dec 2023		statistic):		0.683	
 Biden Endorsed 	Time:	21:14:19	Log-Like			-644.34	
	No. Observations:	811	AIC:	11110001		1319.	
	Df Residuals:	796	BIC:			1389.	
0.4353 coef	Df Model:	14	520.				
0.1333 6061	Covariance Type:	nonrobust					
0.214 std error		coef	std err	t	P> t	[0.025	0.975]
	const	0.4916	0.022	21.953	0.000	0.448	0.536
D	Self-Funder?	0.0197	0.077	0.254	0.799	-0.132	0.172
R-squared = 0.014	Obama Alum?	0.0073	0.091	0.080	0.937	-0.172	0.187
	Party Support?	0.1392	0.107	1.304	0.193	-0.070	0.349
	Emily Endorsed?	-0.0397	0.076	-0.520	0.603	-0.190	0.110
(easy to overfitting)	Guns Sense Candidate?	-0.0120	0.042	-0.285	0.776	-0.095	0.071
` ',	Biden Endorsed?	0.4353	0.214	2.035	0.042	0.015	0.855
	Sanders Endorsed?	0.0691	0.178	0.388	0.698	-0.281	0.419
 No Labels Support 	Our Revolution Endorse	ed? -0.0150	0.066	-0.228	0.820	-0.144	0.114
TWO Edibers Support	Justice Dems Endorsed	9.0030	0.082	0.036	0.971	-0.158	0.164
	PCCC Endorsed?	0.0624	0.159	0.393	0.694	-0.249	0.374
-0.4390 coef	Indivisible Endorsed?	0.0605	0.078	0.772	0.440	-0.093	0.214
-0.4390 (00)	WFP Endorsed?	0.0364	0.100	0.364	0.716	-0.160	0.233
	VoteVets Endorsed?	-0.1032	0.098	-1.050	0.294	-0.296	0.090
0.334 p-value	No Labels Support?	-0.4390	0.454	-0.967	0.334	-1.330	0.452
0.554 p value	Omnibus:	127.720	Durbin-W	atson:		0.134	
	Prob(Omnibus):	0.000	Jarque-B	era (JB):		146.084	
	Skew:	0.988	Prob(JB)			1.90e-32	
	Kurtosis:	2.355	Cond. No			27.3	

Feature Selection

Objective: Reduce Multicollinearity and Overfitting

Used: MDI (Mean Decrease in Impurity)

Results: Reduces model complexity, features to include in model

Step 3: Model Training

Objective: Create model for election Prediction using new found features

Used: MLP binary classification with sigmoid activation

Hyperparameters Tested: # of layers, Neurons per

layer, activation function, epochs, batch size, k-fold

Results: Accuracy Matrix results based on the model of

found features.

```
top features = [
    'Party Support?',
    'Indivisible Endorsed?',
    'Our Revolution Endorsed?',
    'Sanders Endorsed?',
    'Emily Endorsed?',
    'Guns Sense Candidate?',
    'Justice Dems Endorsed?'
Best Parameters:
{'neurons per layer': 10,
'num layers': 1, 'activation':
'relu'}
```

K-Fold

```
6/6 [======] - 0s 3ms/step
6/6 [======] - 0s 3ms/step
6/6 [====== ] - 0s 2ms/step
6/6 [======= ] - 0s 6ms/step
[[104.4 9.8]
[ 28.2 19.6]]
[{'0': {'precision': 0.7874015748031497, 'recall':
0.7654321074485779
6/6 [======] - 0s 3ms/step
6/6 [=======] - 0s 3ms/step
6/6 [======] - 1s 5ms/step
6/6 [====== - - - - - - - - - - - - 0s 2ms/step
6/6 [=======] - 0s 2ms/step
[[108.4 5.8]
[ 33.4 14.4]]
[{'0': {'precision': 0.7737226277372263, 'recall':
0.7580246806144715
```

No K-Fold

	V					\angle
8/8 [== [[149		.======		==] - 0s 2m	ıs/step	
[43						\Rightarrow
		precision	recall	f1-score	support	
	0	0.78	0.89	0.83	167	
	1	0.65	0.44	0.53	77	\Rightarrow
aco	curacy			0.75	244	
macr	ro avg	0.71	0.67	0.68	244	
weighte	ed avg	0.74	0.75	0.73	244	
0.75						7
8/8 [== [[159 [48	8]		:=======	==] - 0s 2m	ns/step	
		precision	recall	f1-score	support	7
	0	0.77	0.95	0.85	167	
	1	0.78	0.38	0.51	77	
aco	curacy			0.77	244	7
macr	o avg	0.78	0.66	0.68	244	
weighte	ed avg	0.77	0.77	0.74	244	(
0.77049	9177885	05554				

How do all of the models we've built so far compare?

Baseline

Baseline Model:				
Accuracy: 0.571	12906784335	355		
Confusion Matri	ix:			
[[3416 1547]				
[1562 7271]				
Classification	Report:			
١	recision	recall	f1-score	support
0	0.69	0.69	0.69	4963
1	0.32	0.32	0.32	2289
accuracy			0.57	7252
macro avg	0.50	0.50	0.50	7252
weighted avg	0.57	0.57	0.57	7252

Logistic Regression

```
Logistic Regression Model:
Accuracy: 0.6770546056260341
Confusion Matrix:
[[4878
        851
 [2257 32]]
Classification Report:
                           recall f1-score support
              precision
                   0.68
                             0.98
                                       0.81
                                                 4963
                   0.27
                             0.01
                                      0.03
                                                 2289
                                      0.68
    accuracy
                   0.48
                             0.50
                                      0.42
   macro avg
                   0.55
                             0.68
                                      0.56
weighted ava
```

Random Forest with CV

Accuracy: 0.73619319018404 (democratic)

	precision	recall	f1-score
0	0.89	0.99	0.94
1	0.97	0.73	0.84

Confus	ion	Matrix:
[[110	1	
Г 14	38	11

Accuracy: 0.709677419

	precision	recall	f1-score	
0	0.76	0.87	0.81	
1	0.48	0.30	0.37	

Confusion	Matrix:
[[97 14]	
[31 13]]	

Neural Network

```
[[159
        8]
      29]]
  48
              precision
                            recall f1-score
                                                support
                    0.77
                              0.95
                                        0.85
                                                    167
                    0.78
                              0.38
                                        0.51
                                                     77
                                        0.77
                                                    244
    accuracy
                                        0.68
                    0.78
                              0.66
                                                    244
   macro avg
                              0.77
                                        0.74
weighted avg
                    0.77
                                                    244
0.7704917788505554
```

What would we do if we had more time to work on future iterations?

- Based on our current results we would likely try more hyper parameters in cross validation to improve accuracy
- Bigger diversity of models, try gradient boosting, etc.
- Ask different questions

Thank you very much for listening!