	Fall	2013	HW#Z	Solution	
200	2.10			-	20 Jan 198
- Calculation					
electron	1= - ME = 1	(700 cm2	Ns) (2500-	$(m) = (1.75 \times 10^{-1})$	os cm
holk	Vh= Un & = 1	(250cm2	V8) (2500 %	m)= 625×10	3 <u>CM</u>
	,				
e tection currently	jn=-g.n.ve	= = (1.602×	10-18C) (1017 (W	-3)(-1,75×106 cm)= 28000 to
	9		19/(1/3 -3)	(6-5 403 CM)	
hole current	jp=q.b.1	n = (1,602x	(0,5) (0,5m2)	(625×10° =)=	1×10-10 A
	9			erigia a sir con accessor	
	2,16	* 1		1	(95)
		,			
	10= 9 Vhp =	(1,602×10		(10 m/s)	- 6
,	=	1.60 × 100	A/cm2	-	
	200			Prof.	7. ** \$2.
	I= ip. A=	(1,60×107	Forz (Jun) (25 µm) (10	gem 2
		(8)	7	Browners	, ,
	Ip =	4 A	1	interestant report	
			1		
				1	1 1
				100 Miles (100 Miles (
					1
	18			4	1
			·	and the second	-
7					
				-	
			0		
				1	

2,3 NA>NO, therefore p-type use equation 2.12 p= (NA-NO)+ \((NA-NO)^2+4n^2 p= (9×1015cm-3)+ √(9×1015cm-3)2+4(5×1013cm-3)2 $p = 9 \times 10^{15} \text{ (m}^{-3})$ $h = \frac{11^2}{10^{15} \text{ cm}^{-3}} = \frac{(5 \times 10^{13} \text{ cm}^{-3})^2}{(9 \times 10^{15} \text{ cm}^{-3})} = \frac{12 \cdot 78 \times 10^{11} \text{ cm}^{-3}}{(10^{15} \text{ cm}^{-3})^2}$ Above always works. Alternative Solution: use equation 2,10 $N_0 + p - N_A - n = 0$ $N_A - N_D - p + \frac{n^2}{p} = 0$ However $\frac{n^2}{p} \ll N_A, N_D, p$, therefore reglect it true if $N_A-N_D >> n_1$ $N_A-N_D-p\approx 0$ $p\approx N_A-N_D=\frac{q\times 10^{15} \text{ cm}^{-3}}{q}$ $n = \frac{n!}{p} = \sqrt{2.78 \times 10^{11} \text{ cm}^{-3}}$

2,34 Because the silicon is doped with acceptors, it is p-type using equation 2,10 NA-No+n-p=0 NA >> n, 210 cm 3 @ 300K, Herefore NA, P7>n
and px NA = 2,5 × 1018 cm 3 $n = \frac{n^2}{p} = \frac{(1.10^{10} \text{ cm}^3)^2}{2.5 \times 10^{18} \text{ cm}^3} = \frac{40 \text{ cm}^3}{10^{18} \text{ cm}^3} = \frac{1}{10^{10}}$ from Fig. 2.8: Mn= 92+ 12+0 = 173 cm2/Vs Mp=48+ 1+(NA+NO 10.76= 73cm2/15 N+= NA+ND=NA= 2,5×1018 cm-3 P= = = qnun = qppp = (1.602x10-12)(2.5x1018(M-3)(734/5) nexp P = 30.5 × 10-3 1. cm

		2.45	
7			
. \		Part A	
i i		- Since sample is only signed w/ acceptors, most likely PXNA>>h. Assume this and check as	
All		most likely px NA>> h. Assume this and check as	sumption later
		is is greek "tho" for resistivity	
	T (Sis greek file	
	U	b= = abre db. nb(N+=N*=b)	
	2	this is toleration 447 cm²/Vc	
	(3)	Mp (N+=p) = 48+ 447 cm²/Vs from fig	we 2.8
		A. A.	
<u>()</u>	-	- Solve equation (1) substating equation (2) for use $P = 1.2$ cm and $N = N_A = P$ this gives $P = 1.67 \times 10^{16}$ cm ³ = N_A for P	p(NT)
			- 1
	-	bususe p=1.67 ×1010 cm ⁻³ , our assumption of pxN _A >> M is valid	
		10% 10A - 3 F1 13 19110	
		Now solve evention (1) again for D=0,25	R.cm
		Now, solve evention () again for p=0.25 this gives p=1.12 × 10 ¹⁷ cm ⁻³ NA for p=0.2	5 s.cm
	_	subtract the two values of NA for the two	resistivities
		NAZ-NAI = 1,12 ×1017 cm3 - 1,67 × 1018 cm3 = 9,1	50×1016-3
	1-	Therefore 9.50×1016 cm-3 boron depart atoms must	- be
		Therefore 9.50×1016 cm ⁻³ boron depart atoms must added to change the resistivity as desired.	
			L

2.45 part B From part A, the p-type doping of the original sample is NA=1.67 × 1016 cm⁻³ To reduce the resistivity using doners, the Sample must be counter-doped w/ ND> NA.

Therefore the sample will change to n-type.]

Also, therefore, ND-NA>>n; and nxND-NA>>p,

so we solve the following: 3) px qn ma(NT=No-NA=n) $\Theta_{\mu}(n) = 92 + \frac{1270}{1 + (\frac{N_{7} = N_{0} - N_{A} = n}{1.3 \times 10^{17} \text{ cm}^{-3}})} \frac{\text{cm}^{2}/\text{Vs}}{2.8}$ Solve equation (3), substituting for equation (4)
with $D = 0.25 \Omega$.cm, this gives $N = N_0 - N_A = 2.16 \times 10^{10} \text{ cm}^{-3}$ Therefore ND= n+NA= 2,16×1016 cm-3+1.67×1016 cm-3

ND= 3.82×1016 cm-3 No= 3.82 10 cm3 must be added to the Silicon to achieve 0.25 s.cm resistivity using donorsatoms

 $\int_{h} = -g D_{n} \left(-\frac{dn}{dx} \right)$ equation 2.15: Dn= KT Un (for non-degenerate semiconductor) $\frac{dn}{dx} = \frac{10^{18} \text{ cm}^{-3}}{\text{NB}} = \frac{10^{18} \text{ cm}^{-3}}{0.5 \text{ µm}} \cdot \left(\frac{10^{6} \text{ µm}}{100 \text{ cm}}\right) = 2 \times 10^{22} \text{ cm}^{-4}$ Mn=350 cm2/Vs (given) KT = 0.0259 eV. 1.602×1019 J at T=300K (ROOM TEMP) Jn= 0.0259 eV. (1.602×10-9) (350 cm²/Vs) (2×1022 cm4) Jn= 29000 A/cm² (units et = 4 . Cm² · cm² + A2)

2,51 NA(X) = 10"+ 1018 exp(-104x) X in cm Because NA>>n; paNA>>n Total current must equal zero in equilibrium In diffusion + Jp, diffusion + In, drift + Jp, drift = 0 (egit) because nexp, Indistrución and Injurist ~ OA 50 Jp, diffusion + Jp, drift = 0 (eq. 2.17) Jp airrusion = Tgypp V+ dx, Jp,drift = qppp & - Because de à diva # 0, there is a diffusion current.

Therefore there must be a built un electric

field & 50 that 5total = 0 - What is & at x=0 mm! - de = 1018.104. exp(-104x) = -102 exp(-104x) cm4 $\frac{dN_A}{dx}|_{x=0} = -10^{22} \text{ cm}^{-1}$ Jordistusion - Jeanist = 0 => -quplate = qpupe 3 1-3 = 3 E = 7 dp So $E = \frac{\sqrt{T}}{p} \frac{dp}{dx} \approx \frac{\sqrt{T}}{N_{A}(x)} \frac{dN_{A}}{dx} = \frac{0.0259 \, \text{V}}{10^{18} \, \text{cm}^{-3}} = -10^{22} \, \text{cm}^{-1} = -259 \, \frac{\text{V}}{\text{cm}}$ At X=0 mm, There is a built in electric field of - 259 cm

2,51 (certinued) What is electric field E at x= 5 mm! de ~ dNA | x=5um = -1022 exp (-104 (5µm x 100cm)) (m-4 = -6.74×10-21 cm-4 A/(X=5µm) = 10"+10" exp(-10" (5µm 100m))
= 6.84 × 10" cm 3

E = 15. dp 2 VT dNA

NA(5µm) dx k=5µm = 0.0259V (-6.74×10-21 cm-4) E = - 25500 cm At x=5µm, there is a built in electric field at of -25500 cm (minus sign indicates electric field is in minus x direction.)