Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle **20** • INDICATIONS Limites et comparaisons, Continuité

Exercice 20.1

- **1.** Montrer que $cos(\cdot)$ n'admet pas de limite en $+\infty$.
- 2. Quel résultat plus général peut-on établir pour des fonctions périodiques?

indication -

- 1. Utiliser deux suites qui convergent vers $+\infty$ et aboutir à une contradiction avec la caractérisation séquentielle de la limite et l'unicité de la limite.
- 2. De la même manière, établir qu'une fonction périodique non constante n'admet pas de limite en $\pm\infty$.

Exercice 20.2

Soit $n \in \mathbb{N}^*$. Montrer que $x \longmapsto \frac{x^{n-1}(x^n-1)}{x-1}$ est prolongeable par continuité en 1.

indication

On a $x^n - 1 = \dots$ Il s'agit alors de passer à la limite.

Exercice 20.3

Que dire de deux fonctions $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ continues coïncidant sur une partie dense de \mathbb{R} ? Le démontrer.

indication

Les fonctions f et g sont égales sur \mathbb{R} . On utilisera la caractérisation séquentielle de la continuité.

Exercice 20.4

Que dire d'une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue admettant des limites finies en $+\infty$ et $-\infty$? Le démontrer.

- indication -

La fonction f est bornée. À l'aide de la définition de la limite en $+\infty$ et $-\infty$, on étudiera f sur trois intervalles $]\infty$, a], [a,b] et $[b,+\infty[$ et le théorème des bornes atteintes.

1

Exercice 20.5

Soit $n \in \mathbb{N}^*$. Déterminer le nombre de solutions de l'équation

$$\frac{1}{x} + \frac{1}{x+1} + \dots + \frac{1}{x+2n} = 1.$$

indication –

Appliquer le théorème de la bijection monotone à $x \longmapsto \frac{1}{x} + \frac{1}{x+1} + \dots + \frac{1}{x+2n} - 1$ sur des intervalles judicieusement choisis, dresser le tableau de variations et compter.

— résultat ——

L'équation admet 2n + 1 solutions.

Exercice 20.6

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ continue. Soit $\ell \in \mathbb{R}$.

Montrer que

$$f(x) \xrightarrow[x \to +\infty]{} \ell \implies \frac{1}{n} \int_0^n f(x) dx \longrightarrow \ell.$$

— indication —

En notant $v_n := \frac{1}{n} \int_0^n f(x) \, \mathrm{d}x \longrightarrow \ell$, écrire $v_n - \ell$ comme une intégrale et couper en deux morceaux suivant la définition de $f(x) \xrightarrow[x \to +\infty]{} \ell$.

Exercice 20.7

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$. Montrer que les deux assertions suivantes sont équivalentes :

(i)
$$\lim_{x \to +\infty} |f(x)| = \lim_{x \to -\infty} |f(x)| = +\infty$$

(i)
$$\lim_{x \to +\infty} |f(x)| = \lim_{x \to -\infty} |f(x)| = +\infty$$
;
(ii) $\forall [a, b] \subset \mathbb{R}$, $f^{\langle -1 \rangle}[[a, b]]$ est bornée.

— indication –

Utiliser les définitions mises en jeu dans les assertions considérées.

Exercice 20.8

Soit $f: \mathbb{R}_+ \longrightarrow [0,1]$ telle que

$$egin{cases} f ext{ est continue à droite en 0} \ f(0) = 1 \ orall s, t \geqslant 0, \quad f(s+t) = f(s)f(t). \end{cases}$$

Montrer qu'il existe $\alpha \geqslant 0$ tel que

$$\forall t \geqslant 0, \quad f(t) = e^{-\alpha t}.$$

2

indication

lackloain Étudier le cas t=s et en déduire par récurrence f(nt) pour $n\in\mathbb{N}$.

lackloss En déduire $f\left(\frac{1}{n}\right)$ puis $f\left(\frac{n}{m}\right)$ en fonction de f(1).

lacktriangle En déduire f sur \mathbb{Q}_+ puis sur \mathbb{R}_+ par continuité-densité.

Exercice 20.9

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction continue et périodique.

1. Montrer que f est bornée et atteint ses bornes.

2. Montrer que f est uniformément continue sur \mathbb{R} .

indication

1. Théorème des bornes atteintes.

2. Utiliser le théorème de Heine sur un segment un peu plus grand qu'une période (par exemple [-T, 2T]) et translater le problème.

Exercice 20.10

Soit $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ une fonction uniformément continue.

1. Montrer que

$$\exists a, b \in \mathbb{R} : \forall x \in \mathbb{R}_+, f(x) \leqslant ax + b.$$

2. Les fonctions polynomiales de degré 2 sont-elles uniformément continues sur \mathbb{R}_+ ?

indication

1. Utiliser la définition de la continuité uniforme avec $\varepsilon=1$ et, avec l'inégalité triangulaire, majorer |f(x)-f(0)| en utilisant que

3

$$f(x) - f(0) = \sum_{k=0}^{n-1} \left(f\left(\frac{(k+1)x}{n}\right) - f\left(\frac{kx}{n}\right) \right)$$

où *n* est choisi judicieusement.

2. Écrire la contraposée de la question précédente.