

2

AD A 053726

RICE UNIVERSITY

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

AERO-ASTRONAUTICS MEMORANDUM NO. WP-2

Some Qualitative Considerations on
the Numerical Determination of Minimum Mass Structures
with Specified Natural Frequencies

by

A. Mangiavacchi and A. Miele

AERO-ASTRONAUTICS MEMORANDUM NO. WP-2

Some Qualitative Considerations on
the Numerical Determination of Minimum Mass Structures
with Specified Natural Frequencies

by

A. Mangiavacchi and A. Miele

RICE UNIVERSITY

1977

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

Some Qualitative Considerations on the Numerical Determination of Minimum Mass Structures with Specified Natural Frequencies 1,2

by

A. Mangiavacchi³ and A. Miele⁴

Abstract. The problem of the axial vibration of a cantilever beam is investigated analytically. The range of values of the frequency parameter having technical interest is determined.

<u>Key Words.</u> Structural optimization, cantilever beams, axial vibrations, fundamental frequency constraint.

This research was supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-76-3075.

²The authors are indebted to Dr. V.B. Venkayya, Wright-Patterson AFB, Ohio, for suggesting the topic.

NATO Post-Doctoral Fellow, Department of Mechanical Engineering and Materials Science, Rice University, Houston, Section Texas.

Professor of Astronautics and Mathematical Sciences, Rice
University, Houston, Texas.

| BISTRIBUTE | COLUMN |

Notation

- E Modulus of elasticity, 1b ft⁻²
- L Length of the beam, ft
- m Normalized mass per unit length, m = ML/M
- M Mass per unit length, lb ft⁻² sec²
- M_O Reference mass, lb ft⁻¹ sec² (Sections 2-3)
- Mo Tip mass, lb ft⁻¹ sec² (Sections 4-5)
- M_{\star} Total mass of the beam, 1b ft⁻¹ sec²
- x Normalized axial coordinate, x = X/L
- X Axial coordinate, ft
- u Normalized axial displacement, u = Y(X)/Y(L)
- Y Axial displacement, ft
- β Frequency parameter, β = ωL/(ρ/E)
- ρ Density, lb ft⁻⁴ sec²
- ω Natural frequency, sec-1

Superscript

Derivative with respect to the normalized axial coordinate x (for example, u' = du/dx)

1. Introduction

In this memorandum, we consider the problem of the axial vibration of a cantilever beam. With reference to a constant-section beam, we determine the range of values of the frequency parameter β having technical interest. This range of values of the frequency parameter is important in the solution of a subsequent problem: the determination of the mass distribution that minimizes the total mass of a beam for a given fundamental frequency constraint.

2. Nonoptimal Beam without a Concentrated Mass

Let m denote the normalized mass per unit length, u the normalized axial displacement, and ß the frequency parameter. Let x denote the axial coordinate, normalized so that x=0 at the base of the beam and x=1 at the tip of the beam. Let the prime denote total derivative with respect to the axial coordinate x. With this understanding, the fundamental equation to be solved is the following:

$$(mu')' + \beta^2 mu = 0$$
 (1)

In this equation, the frequency parameter β is related to the natural frequency ω , the length L, the density ρ , and the modulus of elasticity E by the relation

$$\beta = \omega L \sqrt{(\rho/E)}. \tag{2}$$

In the absence of a concentrated mass attached at the tip of the beam, the boundary conditions for Eq. (1) are as follows: ⁵

$$u(0) = 0, \quad m(1)u'(1) = 0.$$
 (3)

If the mass distribution

$$m = m(x) \tag{4}$$

is prescribed a priori, then (1) is a second-order differential

⁵Equations (3) must be completed by the normalization condition u(1) = 1.

equation, to be solved in conjuction with the boundary conditions (3).

Constant Section. Next, we consider the particular case of a constant-section structure, that is, a structure with a constant mass per unit length:

$$m = const.$$
 (5)

For this particular case, the differential equation (1) and the boundary conditions (3) simplify as follows:

$$\mathbf{u}^{\mathbf{u}} + \beta^{2}\mathbf{u} = 0 , \qquad (6)$$

$$u(0) = 0, \quad u'(1) = 0.$$
 (7)

The solution of (6) consistent with the initial condition (7-1) is the following: 6

$$u = A \sin(\beta x), \qquad (8)$$

with the implication that

$$u' = A\beta \cos(\beta x)$$
. (9)

From (9) and the final condition (7-2), we conclude that

$$\cos \beta = 0 , \qquad (10)$$

so that

$$\beta = (2n+1) \pi/2, \quad n = 0,1,2,...$$
 (11)

⁶The constant A has the value $A = 1/\sin\beta$.

Therefore, for this problem, the smallest nontrivial value of the frequency parameter is

$$\beta = \pi/2 . \tag{12}$$

3. Optimal Beam without a Concentrated Mass

Now, suppose that a constant-section structure has been studied in accordance with Section 2. Suppose that the frequency parameter β which allows satisfaction of the boundary conditions (7) has been determined, namely, $\beta=\pi/2$. The total mass of the structure studied in Section 2 is given by ⁷

$$M_{\star}/M_{o} = \int_{0}^{1} mdx, \qquad m = const. \qquad (13)$$

Therefore, it is natural to pose the following question: for the same value of the frequency parameter $\beta=\pi/2$, is there a better beam, that is, one having a smaller total mass? In particular, is there a beam which yields the smallest total mass for the given value of β ? This question leads to the following variational problem: Minimize the total mass

$$M_{\star}/M_{\odot} = \int_{0}^{1} mdx, \qquad m = m(x), \qquad (14)$$

with the understanding that the following constraints must be satisfied:

$$(mu')' + \beta^2 mu = 0$$
, (15)

$$u(0) = 0$$
 , $m(1)u'(1) = 0$, (16)

and with the further understanding that $\beta=\pi/2$. Owing to

the fact that the problem (15)-(16) is homogenous, the obvious solution under the physical constraint

$$m(x) > 0 \tag{17}$$

is

$$m(x) = 0, (18)$$

with the implication that

$$M_{\star}/M_{\odot} = 0 . \tag{19}$$

In order to avoid the occurrence of the above trivial solution, Ineq. (17) could be changed as follows:

$$m(x) \ge m_{O} . (20)$$

Then, the solution would become

$$m = m_{o} . (21)$$

To arrive at solutions other than constant mass solutions, it is necessary to postulate some different physical situation (e.g., a concentrated mass attached at the end of the beam). In turn, this results in a change in the boundary condition (16-2), and this change makes it unnecessary to employ inequality constraints of the form (17) or (20).

The symbol Mo denotes a reference mass.

⁸Equations (16) must be completed by the normalization condition u(1) = 1.

4. Nonoptimal Beam with a Concentrated Mass

In this section, we assume that a concentrated mass M_O is attached at the tip of the beam. Using the same terminology as in Section 2, we see that the governing differential equation (1) still holds:

$$(mu')' + \beta^2 mu = 0$$
. (22)

On the other hand, the boundary conditions (3) are modified as follows:

$$u(0) = 0, \quad m(1)u'(1) = \beta^{2}.$$
 (23)

Constant Section. Again, we consider the particular case of a constant-section structure. Under condition (5) and after observing that

$$M_{\star}/M_{\odot} = m , \qquad (24)$$

then problem (22)-(23) becomes

$$u'' + \beta^2 u = 0 , (25)$$

$$u(0) = 0, \quad u'(1) = (M_0/M_*) \beta^2.$$
 (26)

The solution of (25) consistent with the initial condition (26-1) is the following:

⁹Equations (23) must be completed by the normalization condition u(1) = 1.

$$u = A \sin(\beta x), \tag{27}$$

with the implication that

$$u' = A\beta \cos(\beta x) . \tag{28}$$

From (28) and the final condition (26-2), we conclude that

A cos
$$\beta = (M_O/M_{\star})\beta$$
. (29)

Owing to the fact that

$$u(1) = A \sin \beta, \tag{30}$$

elimination of A from (29)-(30) leads to the following transcendental equation:

$$\beta \tan \beta = (M_{\star}/M_{\odot}) u(1), \qquad (31)$$

which, for u(1)=1, reduces to

$$\beta \tan \beta = M_{\star}/M_{\odot} . \tag{32}$$

This equation supplies the frequency parameter β in terms of the mass ratio (ratio of beam mass M** to tip mass M**).

In order to understand the significance of (32), let us consider two limiting cases: (i) negligible mass ratio and (ii) infinite mass ratio. If $M_{\star}/M_{\odot} = 0$, then the solution of (32) is

$$\beta = n\pi, \quad n = 0,1,2,...$$
 (33)

On the other hand, if $M_{\star}/M_{\odot} = \infty$, then the solution of (32) is

$$\beta = (2n+1)\pi/2$$
, $n = 0,1,2,...$, (34)

which is identical with (11). Since the first natural frequency corresponds to n=0, we conclude that, for mass ratios in the range

$$0 \le M_{\star}/M_{\odot} \le \infty , \qquad (35)$$

the smallest frequency parameter β consistent with the trascendental equation (32) lies in the range

$$0 \le \beta \le \pi/2 . \tag{36}$$

5. Optimal Beam with a Concentrated Mass

As in Section 3, we can formulate the problem of finding the optimal mass distribution. The problem is as follows:

Minimize the total mass

$$M_{\star}/M_{\odot} = \int_{0}^{1} mdx, \qquad m = m(x),$$
 (37)

with the understanding that the following constraints must be satisfied: 10

$$(mu')' + \beta^2 mu = 0,$$
 (38)

$$u(0) = 0$$
, $m(1)u'(1) = \beta^2$, (39)

and with the further understanding that the frequency parameter β has some fixed value in the range

$$0 < \beta < \pi/2 . \tag{40}$$

¹⁰Equations (39) must be completed by the normalization condition u(1) = 1.

References

- TURNER, M.J., <u>Design of Minimum Mass Structures with</u>
 <u>Specified Natural Frequencies</u>, AIAA Journal, Vol. 5,
 No. 3, 1967.
- LEITMANN, G., An Introduction to Optimal Control,
 McGraw-Hill Book Company, New York, New York, 1966.
- 3. MIELE, A., Editor, Theory of Optimum Aerodynamic Shapes, Academic Press, New York, New York, 1965.
- 4. MIELE, A., PRITCHARD, R.E., and DAMOULAKIS, J.N.,

 Sequential Gradient-Restoration Algorithm for Optimal

 Control Problems, Journal of Optimization Theory and

 Applications, Vol. 5, No. 4, 1970.
- 5. MIELE, A., IYER, R.R., and WELL, K.H., Modified Quasilinearization Algorithm and Optimal Initial Choice of the Multipliers, Part 2, Optimal Control Problems, Journal of Optimization Theory and Applications, Vol. 6, No. 5, 1970.

UNCLASSIFIED		
	SECORY CLASSING ION OF THIS PAGE (When Date Entered)	READ INSTRUCTIONS
	L REPORT DOCUMENTATION PAGE 1. REPORT NAME 2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM
	AFOSRITE 78 - 0724	4 AM-14 P-1
0	4. TITLE (and Subtitio)	TITLE OF REPORT & PERIOD COVERED
[]	SOME QUALITATIVE CONSIDERATIONS ON THE	
W	NUMERICAL DETERMINATION OF MINIMUM MASS	Interim Pepto
	STRUCTURES WITH SPECIFIED NATURAL	6. PERFORMING CRG. REPORT NUMBER
	FREQUENCIES	Aero-Astro Memo WP-2
	A./Mangiavacchi A./Miele	15 VAFOSR-76-3/75
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM DE ENT. PROJECT. TASK
	Rice University	10. PROGRAM BEDENT, PROJECT, TASK
	Department of Mechanical Engineering	2304VA3
	Houston, Texas 77001	
	11. CONTROLLING OFFICE NAME AND ADDRESS	1977 (12)
	Air Force Office of Scientific Research M Bolling AFB, DC 20332	13: NUMBER OF PAGES
		14 11 I
	14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this rep
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	16. DISTRIBUTION STATEMENT (of this Report)	L
	Approved for public release, distribution	n unlimited.
	17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different from	m Report)
	18. SUPPLEMENTARY NOTES	
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Structural optimization, cantilever beams, axial vibrations,	
1	fundamental frequency constraint.	
/		
	ABSTRACT (Continue on reverse elde II necessary and identify by block number) The problem of the axial vibration of a cantilever beam is inves-	
	tigated analytically. The range of values of the frequency para-	
	meter having technical interest is determined.	
	402 769	7 set