Search Robot

Use Case Roboter

Camille Zanni (zannc2) Simon Gfeller (gfels4)

Inhaltsverzeichnis

Inhaltsverzeichnis	2
Akteure	3
Primäre Akteure	
Benutzer Goals	3
Use Cases	4
Roboter starten	4
Roboter Konfigurieren	4
Ziel finden	4
Use Case UC1: Roboter starten	5
Use Case UC2: Roboter konfigurieren	5
Use Case UC1: Ziel suchen	5

Akteure

Primäre Akteure

Roboter

Der Roboter sucht eine gegebene Fläche nach dem Ziel ab.

Benutzer Goals

□ Roboter

Mit einem geeigneten Algorithmus möchte der Roboter das Ziel so schnell wie möglich finden.

Use Cases

Roboter starten

Der Roboter wird mit den Initialdaten (Grösse des Spielfelds und Positionskoordinaten) gestartet.

Roboter Konfigurieren

Der Roboter kann in Farbe, Grösse und Geschwindigkeit verändert werden.

Ziel finden

Der Roboter sucht nach einem bestimmten Algorithmus das Spielfeld ab, d.h. Er kann sich fortbewegen, jeweils -90° und +90° scannen und die Hindernisse und die Spielrandfläche so erforschen.

Use Case UC1: Roboter starten

Primärer Akteur: Robter Haupterfolgs Szenario:

- 1. Der Roboter wird gestartet
- 2. Er erhält die Spielfeldgrösse
- 3. Er erhält seine aktuelle Position
- 4. Der Roboter speichert die angegebenen Angaben.

Erweiterungen:

Use Case UC2: Roboter konfigurieren

Primärer Akteur: Robter Haupterfolgs Szenario:

- 1. Der Roboter erhält die Konfigurationsinformationen.
- 2. Der Roboter speichert die Konfigurationsinformationen

Erweiterungen:

1.a. Werden keine Konfirgurationsinformationen übergeben, konfiguriert der Roboter seine Standard Werte.

Use Case UC1: Ziel suchen

Primärer Akteur: Robter Haupterfolgs Szenario:

- 1. Die Suche des Roboters wird gestartet.
- 2. Der Roboter scannt seine Umgebung (-90° und +90° des aktuellen Standpunktes)
- 3. Der Roboter berechnet die Umliegenden Spielfeldränder und erkannte Hindernisse.
- 4. Der Roboter berechnet die noch unentdeckte Spielfeldfläche.
- 5. Der Roboter bewegt sich zum nächsten berechneten Standpunkt fort.

Erweiterungen:

- 2. 5. Werden wiederholt, bis das Ziel gefunden wurde.
- 5. Der nächste Standpunkt wird anhand eines Algorithmus berechnet.