Конспект по теории информации IV семестр, 2021 год Современное программирование, факультет математики и компьютерных наук, СПбГУ (лекции Дмитрия Соколова)

Тамарин Вячеслав

May 20, 2021

Contents

1	Вве	дение	4
	1.1	Информация по Хартли	4
		1.1.1 Применение информации	5
		1.1.2 Жизненные применения	7
	1.2	Новая мера информации	7
	1.3	Биномиальное распределение	9
	1.4	Подсчет углов в графе	10
	1.5	Теория кодирования	10
	1.6	Код Шенона-Фано	12
	1.7	Код Хаффмана	12
	1.8	Арифметическое кодирование	12
	1.9		12
2	Ком	имуникационная сложность	15
	2.1	Модели	15
		2.1.1 Детерминированная модель	15
		2.1.2 Вероятностная модель	15
	2.2	Нижние оценки для детерминированного случая	15
	2.3	Метод ранга	16
	2.4	Fooling Set	16
		2.4.1 Пример, не соответствующий никакому протоколу	17
	2.5	Связь со схемами	17
	2.6	KW_f	17
	2.7	Теория информации в коммуникационной сложности	18
		2.7.1 Подсчет функции индексов	18
3	Кол	имогоровская сложность	21
	3.1	Определения	21
	3.2	Применение	21
	3 3	Vсловная сложность	22

Index

```
информация по Хартли, 4 энтропия, 8
```

INDEX 3

Kонтакты: sokolov.dmt@gmail.com,

Видимо будет письменный экзамен.

Есть прошлогодний конспект, там есть существенные ошибки, плюс курс немного отличается.

Chapter 1

Введение

1.1 Информация по Хартли

Пусть у нас есть конечное множество объектов A. Выдернем какой-то элемент.

Мы хотим придумать описание этого элемента, которое будет отличать его от всех остальных.

Самый простой вариант — число битов требуемое для записи объекта.

Свойства, которые мы хотим получить от меры $\chi(A)$:

- 1. χ дает нам оценку на длину описаний
- 2. $\chi(A \cap B) \leq \chi(A) + \chi(B)$
- 3. Если наше множество $A := B \times C$, то можно описать для B и для C, поэтому можно ограничить:

$$\chi(A) \leq \chi(B) + \chi(C)$$
.

Определение 1 (Информация по Хартли). $\chi(A) \coloneqq \log |A|$

Замечание. Очевидно, второе свойство выполнено для такого определения. В третьем даже равенство.

Описание — например, битовая строка. Если логарифм нецелый, округляем вверх.

Пусть $A \subset X \times Y$. Обозначим проекции A_X и A_Y . Здесь

- 1. $\chi(A) \ge 0$
- 2. $\chi(A_X) \leq \chi(A)$
- 3. $\chi(A) \leq \chi(A_X) + \chi(A_Y)$

Рассмотрим такой пример: здесь, зная первую координату, можно сразу понять вторую.

Попробуем усилить третье свойство:

3'.
$$\chi(A) \leq \chi(A_X) + \chi_{Y|X}(A)$$
, где $\chi_{Y|X}(A)$ — описание Y при условии X.

Как будем определять $\chi_{Y|X}(A)$? Можно взять $\max_{x \in X} \log(A(x))$.

Теперь для диагонального множество $\chi_{Y|X}$ просто обнуляется и неравенство переходит в равенство. Но если взять такие множества. Во-первых, на первой картинке передав x столбца придется передавать

и у тоже. Во-вторых, мы не сможем отличить эти множества.

Упражнение. Пусть $A \subset X \times Y \times Z$. Доказать

$$2\chi(A) \leq \chi(A_{XY}) + \chi(A_{XZ}) + \chi(A_{YZ}).$$

1.1.1 Применение информации

Обозначим $[n] := \{1, ..., n\}$. Первый игрок выбирает одно число, а второй должен угадывать. Если два варианта игры:

- Адаптивная ответ сразу
- Сначала пишем все запросы, а потом получаем все ответы.

Очевидно, что нам потребуется не менее логарифма запросов: нарисуем дерево, где вершины – запросы, по двум ребрам можно перейти в зависимости от ответа. Листья должны содержать [n], поэтому глубина дерева не менее логарифма.

Теперь подумаем с точки зрения теории информации. Пусть $B := Q_1 \times \ldots \times Q_h$, h — число запросов, Q_i — ответ на запрос по некоторому протоколу. Хотим минимизировать h.

Рассмотрим ([n], B) — все возможные пары —. Нас интересует множество $A \subseteq ([n], B)$ — соответствует некоторым корректным запросам, здесь записаны ответы нашего протокола.

$$A = \{(m, b) \mid b = (q_1, \dots, q_h), m$$
 — согласовано с ответом $\}$.

1. $\chi_{[n]|B}(A) = 0$. Ответы на запросы должны однозначно определять число m. Это свойство говорит о корректности протокола, то есть нам ничего не нужно, чтобы, зная ответы, получить m.

2. $\log n \le \chi(A)$, так как хотя бы столько мы запихнули. С другой стороны, $\chi(A) \le \chi_B(A) + \chi_{[n]|B}(A) = 0$, а $\chi_B(A) \le \chi(B) \le \sum_{i=1}^h \chi(Q_i) = h$. Итого

$$\log n \leq h$$
.

Другая формулировка

Пусть теперь за ответ «да» мы платим 1, а за «нет» 2. И мы хотим минимизировать не число запросов, а стоимость в худшем случае.

$$Q_i \stackrel{?}{\in} T_i$$
.

Пусть A_i — множество возможных x (ответов) перед шагом i. В начале это все [n], в конце – одно число.

$$A_i = \{a \in [n] \mid a \text{ согласовано с } Q_1, \dots Q_{i-1} \}.$$

Стратегия минимальной цены бита информации: берем такое T_i , что

$$2(\chi(A_i) - \chi(\underbrace{T_i}_{A_{i+1}})) = \chi(A_i) - \chi(\underbrace{A \setminus T_i}_{A_{i+1}}).$$

Докажем, что эта стратегия оптимальна. То есть для любой другой стратегии найдется число, с которым мы заплатим больше.

Если заплатили 1, то перешли в $A_i \to T_i$. Если заплатили 2, то $A_i \to A_i \setminus T_i$. Заметим, что каждый раз мы заплатили за каждый бит одинаково.

Докажем оптимальность. Пусть второй игрок меняет число, чтобы мы заплатили как можно больше, причем он знает нашу стратегию.

Если в нашем неравенстве знак >, он будет направлять на по «нет», а при ≤ «да», за счет чего каждый бит он будет отдавать по цене большей, чем, если бы мы действовали в точности по стратегии.

Следовательно, любая другая стратегия будет требовать большего вклада.

Можем решить уравнение на T_i , должно получиться:

$$\Phi(|T_i|) = |A_i|$$
, Φ — золотое сечение.

Упражнение (Задача про взвашивания монеток). Есть n монеток и рычажные весы. Хотим найти фальшивую (она одна).

1. Пусть n = 30 и весы показывают, что больше, что меньше. Теперь запрос приносит $\log 3$ информации, так как три ответа.

$$\log 30 \le \sum_{i=1}^h \chi(a_i) \le h \log 3.$$

- 2. *n* = 15, но мы не знаем относительный вес фальшивой монеты. В прошлом неравенстве можно заменить 30 на 29. Если в какой-то момент у нас было неравенство, можем в конце узнать не только номер, но и относительный вес, поэтому у нас 29 исходов.
- 3. Вопрос: можно ли при n = 14? Нет.

1.1.2 Жизненные применения

Мы хотим решать задачу выполнимости.

Вход: $\Phi = \wedge C_i$ — формула в КН Φ .

Подставим $x_i = 0$. Если один из слозов нарушился, вернемся на шаг назад и подставим $x_j = 1$, а иначе подставляем дальше.

Это достаточно эффективный алгоритм, причем мы не ограничиваем выбор последовательности подстановок, порядок 0 и 1.

Рассадка голубей

Вопросы — сажаем ли мы голубя в клетку *i*?

Пусть один игрок загадал расстановку голубей, а второй хочет найти дизъюнкт, для которого нарушается эта расстановка.

1.2 Новая мера информации

На прошлой лекции поняли, что не всегда можем отличить некоторые множества.

Попробуем исправить данную ситуацию. Хотим понять состояния в Y, зная информацию об X. В среднем нам нужно сильно меньше информации, чем в крайнем случае.

Введем новую меру информации $\mu(\alpha)$, где α — распределение (множество и вероятности каждого элемента). Причем хотим, чтобы основные свойства были согласованы: 1

- 1. $\mu(U_n) = \log n$;
- 2. $\mu(\alpha) \ge 0$;
- 3. $\mu(\alpha, \beta) = \mu(\alpha) + \mu(\beta)$, если α и β независимы.

Если действовать как настоящие математики, можно переписать эти свойства в более общие:

 $^{{}^1\}mu(x,y)=\mu((x,y))$

- 1. $\mu(U_M) \ge \mu(U_{M'})$, если $|M| \ge |M'|$;
- 2. $\mu(\alpha, \beta) = \mu(\alpha) + \mu(\beta)$, если α и β независимы;
- 3. $\mu(B_p)$ непрерывно по $p \in [0,1]$, где B_p распределение для монетки, вероятность орла p.
- 4. $\mu(B_p, \alpha) = \mu(B_p) + Pr[B_p = 0] \cdot \mu(\alpha \mid B_p = 0) + Pr[B_p = 1] \cdot \mu(\alpha \mid B_p = 1)$.

Определение 2 (Энтропия). Этим аксиомам удовлетворяет примерно одна функция $\mu(\alpha) := k \cdot H(\alpha)$, где $H(\alpha)$ — **энтропия**.

$$H(\alpha) = \sum_{i=1}^{|\operatorname{supp}(\alpha)|} p_i \log \frac{1}{p_i}.$$

Энтропия обозначает среднее по распределению α необходимое количество информации для записи элемента.

Замечание. Энтропия равномерного распределения равна $\log n$, если $p_i = n$.

Замечание. Далее H(p) обозначает энтропию для распределения монетки.

Теорема 1.2.1. $H(\alpha) \leq \log|\sup(\alpha)|$

□ Применим неравенство Йенсена

$$\sum_{i=1}^{|\operatorname{supp}(\alpha)|} p_i \log \frac{1}{p_i} \le \log \left(\sum_i p_i \frac{1}{p_i} \right) = |\operatorname{supp}(\alpha)|$$

Теорема 1.2.2. $H(\alpha, \beta) \leq H(\alpha) + H(\beta)$

 $H(\alpha, \beta) = \sum_{i,j} p_{i,j} \log \frac{1}{p_{i,j}}$ $H(\alpha) + H(\beta) = \sum_{i} p_{i} \log \frac{1}{p_{i}} + \sum_{j} p_{j} \log \frac{1}{p_{j}}$

Заметим, что $p_i = \sum_j p_{i,j}$ и $p_j = \sum_i p_{i,j}$.

$$H(\alpha, \beta) - H(\alpha) - H(\beta) = \sum_{i,j} p_{i,j} \log \frac{1}{p_{i,j}} - \sum_{i} p_{i} \log \frac{1}{p_{i}} + \sum_{j} p_{j} \log \frac{1}{p_{j}} = \sum_{i,j} p_{i,j} \log \frac{p_{i}p_{j}}{p_{i,j}}.$$

Если α и β независимы, то все логарифмы обнуляются. Иначе по неравенству Йенсена

$$\sum_{i,j} p_{i,j} \log \frac{p_i p_j}{p_{i,j}} \le \log \left(\sum_{i,j} p_i p_j \right) = 0.$$

Определение 3 (Условная энтропия).

$$H(\alpha \mid \beta = b) = \sum_{i} Pr[\alpha = i \mid \beta = b] \cdot \log \frac{1}{Pr[\alpha = i \mid \beta = b]}.$$

asupp α — все возможные события, то есть имеющие ненулевую вероятность

$$H(\alpha \mid \beta) = \mathbb{E}_{b=\beta}H(\alpha \mid p=b) = \sum_b H(\alpha \mid \beta=b)Pr[beta=b].$$

Свойства.

1.
$$\forall f : H(\alpha \mid \beta) \ge H(f(\alpha) \mid \beta)$$

2.
$$H(\alpha, \beta) = H(\alpha) + H(\beta \mid \alpha)$$

3.
$$H(\alpha) \ge H(\alpha \mid \beta)$$

$$H(\alpha \mid \beta) - H(\alpha) = \sum p_{i,j} \frac{1}{\log \Pr[\alpha = i \mid \beta = j]} - \sum p_{i,j} \log \frac{1}{p_i} \leq \sum p_{i,j} \log \frac{p_i}{\Pr[\alpha = i \mid \beta = j]}.$$

По неравенству Йенсена полученное выражение меньше нуля.

4. $H(\alpha \mid \beta) \ge H(\alpha \mid \beta, \gamma)$

Попробуем решить задачу с монетками. Мы взвешиваем 14 монеток и хотим найти фальшивую за три взвешивания, причем неизвестен относительный вес. В нашем графе есть только один исход со всеми равенствами. Докажем, что нет такой стратегии.

Пусть нам дали текущее состояние и стратегия Сделаем так, чтобы каждый лист был равновероятен. Вернем с вероятностью $\frac{1}{27}$, что i фальшивая, и с $\frac{1}{27}$ – больше (l>i фальшивая), и также с $l< i-\frac{1}{27}$.

При равномерном распределении энтропия 3 log 3.

Если стратегия верная, то

$$\log 27 \le H(\alpha, q_1, q_2, q_3) \le \le H(q_1) + H(q_2 \mid q_1) + H(q_3 \mid q_1, q_2) + H(\alpha \mid q_1, q_2, q_3) \le \le H(q_1) + H(q_2) + H(q_3) + 0$$
 (Cain rule)

Так как $H(q_i) \le \log 3$, для все *i* выполнено равенство.

Чтобы было так, мы должны в каждый ход равновероятно получать все три ответа. Пусть мы взвешиваем кучки из k монет 2 . Вероятность равенства должна быть $\frac{2k}{27}\frac{1}{3}$, то есть $k \notin \mathbb{N}$. Противоречие.

1.3 Биномиальное распределение

$$\sum_{i=0}^k \binom{n}{i} \le 2^{nH(\frac{k}{n})}.$$

Обозначим сумму за С.

Будем выбирать множество размера не больше k, а затем проверять, попало ли i наше множество. Пусть X — индикатор того, что i выбрали.

$$\log C = H(X) \leqslant H(X_1, \dots, X_n) \leqslant$$

$$\leqslant \sum H(X_i \mid X_{< i}) \leqslant \qquad \qquad \text{(Chain rule)}$$

$$\leqslant \sum H(X_i) = nH(X_1) \leqslant \qquad \qquad \text{(считаем, что } k \leqslant \frac{n}{2}\text{)}$$

$$\leqslant nH\left(\frac{k}{n}\right)$$

Лекция 3: †

15 April

1.4 Подсчет углов в графе

Рассмотрим ориентированный граф.

Назовем треугольником тройку (x, y, z), если это цикл из трех вершин. Углом назовем тройку (x, y, z), если есть ребра xy и xz, при этом y может совпадать z.

Чего в графе больше: углов или треугольников?

Замечание. Каждое ребро тоже угол, например, (x, y, y).

Теорема 1.4.1. Число углов в графе всегда больше числа треугольников.

 \square Пусть случная величина α равна случайному треугольнику.

Так как распределение количества треугольников равномерно,

$$\log(\#\Delta) = H(x,y,z) =$$
 (Chain rule)
= $H(x) + H(y \mid x) + H(z \mid y,x) \le$
 $\le H(x) + H(y \mid x) + H(z \mid y) =$ (циклический сдвиг в треугольнике)
= $H(x) + 2H(Y \mid X)$

Найдем какое-то распределение на углах, энтропия которого хотя бы $H(x) + 2H(Y \mid X)$, тогда эта сумма будет не более $\log(\# \angle)$).

Пусть мы выбрали случайный треугольник (x, y, z). Оставим x и выберем для него найдем случайный треугольник с x и берем из него следующую за x вершину y'. Повторяем эту операцию еще раз для x и находим z'. Тогда (x, y', z') — угол.

$$H(x,y',z') = H(x) + H(y'\mid x) + H(z'\mid x,y') =$$
 (Так как y' и z' независимы при выбранном x)
$$= H(x) + H(y'\mid x) + H(z'\mid x) =$$
 (Выбор аналогичный)
$$= H(x) + 2H(y'\mid x)$$

H(x) здесь совпадает с H(x) выше, так как мы выбираем треугольник и вершину аналогично.

y' выбирается при фиксированном x также, как и выше (выбрали случайный треугольник и в нем вершиной после x будет y').

Таким образом, мы нашли распределение с такой же энтропией.

1.5 Теория кодирования

Код — отображение алфавита C: Σ → $\{0,1\}^*$.

Что хочется требовать?

- 1. Однозначное декодирование. При этом не обязательно у каждой строки $\{0,1\}^*$ есть слово, но склейки нет.
- 2. Префиксный код то есть код каждого символа не является префиксом кода другого. Очевидно, из этого следует предыдущий пункт.

²Очевидно, что взвешивать кучки разного размера, информацию извлечь не получиться даже по Хартли

Теорема 1.5.1. Любой однозначно декодируемый код можно переделать в префиксный с сохранением длин кодовых слов.

 \square Пусть есть c_1, \ldots, c_n — кодовые слова.

Для префиксного кода $\sum 2^{-|c_i|} \le 1$, причем, если если выполнено это неравенство, то есть префиксный код.

Докажем, что для любого декодируемого кода выполнено такое неравенство.

Построим многочлен для всех слов длины L.

$$p(x,y) = \left(\sum_{i} p_i(x,y)\right)^L = \sum_{i=1}^L M_i(x,y).$$

Здесь $p_i(x,y)$ — моном, соответствующий i-ому символу в алфавите и равный Посчитаем $p(\frac{1}{2},\frac{1}{2})$.

$$p(\frac{1}{2}, \frac{1}{2}) = \sum_{j=L} M_j(\frac{1}{2}, \frac{1}{2}) \leq \sum_{j=L}^{\max_i c_i} 2^j \cdot 2^{-j} = \mathcal{O}(L).$$

Посчитаем еще раз по второму представлению

$$p(\frac{1}{2}, \frac{1}{2}) = \left(\sum_{i} 2^{-|c_i|}\right)^L.$$

Если сумма в скобках больше 1, получаем экспоненциальную оценку снизу. Следовательно, для больших N она обгонит линейную. Противоречие.

Теорема 1.5.2 (Шеннон). Пусть есть множество Σ , и с вероятностью p_i получаем i-й символ. Тогда

$$\sum_{i} p_{i} |c_{i}| \ge H(p)$$
 c_{i} — однозначно декодируемы.

$$H(p) - \sum_{i} p_{i} |c_{i}| = \sum_{i} p_{i} \log \frac{2^{-|c_{i}|}}{p_{i}} \le$$
 (Неравенство Йенсена)
$$\le \log \sum_{i} p_{i} \cdot \frac{2^{-|c_{i}|}}{p_{i}} \le$$
 (Неравенство Крафта)
$$\le 0$$

Теорема 1.5.3 (Шеннон). Существует такой код, что a

$$\sum_{i} p_i \cdot |c_i| \le H(p) + 1.$$

 \square Угадаем длины кодов, чтобы выполнялось неравенство ???. Пусть $|c_i| = \lceil \log \frac{1}{p_i} \rceil$,

$$\sum 2^{-|c_i|} = \sum 2^{-\left\lceil \frac{1}{p_i} \right\rceil} \le \sum p_i \le 1.$$

[«]Единичка обязательно возникает, так как мы приводим непрерывную энтропию к дискретной величине

1.6 Код Шенона-Фано

Отсортируем вероятности по убыванию $p_1 \ge p_2 \ge ... \ge p_n$. Затем уложим их в отрезок [0,1].

Разделим отрезок пополам и скажем, что слева кодовые слова начинается с 0, справа с 1, а центральный p_i будет начинаться с нуля, если это p_1 , с единицы, если p_n , и, наконец, иначе выдираем любое значение.

Далее рекурсивно запускаемся на группе нулей и на группе единиц.

Когда остался один кусок, останавливаемся.

Теорема 1.6.1.

$$\sum_{i=0}^{n} p_i \cdot |c_i| \le H(p) + \mathcal{O}(1), \quad n \to \infty, \ \mathcal{O}(1) \approx 3 \text{ или } 5.$$

Упражнение со зведочкой.

1.7 Код Хаффмана

Опять отсортируем $p_1 \ge p_2 \ge ... \ge p_n$. Возьмем p_{n-1} и p_n . Заменим их на один символ с вероятностью $p_n + p_n - 1$, теперь по индукции строим код для n-1 символа.

Теперь если объединенному символу соответствовал код \overline{c} , то для p_{n-1} задаем код $\overline{c0}$, а для p_n код $\overline{c1}$

Проверим, что $\sum_{i=1}^n p_i |c_i| \le H(p) + 1$, причем $\forall c_i' : \sum_{i=1}^0 p_i |c_i| \le \sum_{i=1}^n p_i |c_i|$

Достаточно доказать второе, а потом сравнить с кодом Шеннона и получить нужное неравенство.

Рассмотрим набор $c_1', \ldots c_n'$. Возьмем два минимальных c_{n-1}' и c_n' . Заметим, что можно поменять их с символами максимальной длины c_i' и c_i' , при этом длина кода не увеличится.

Изучим коды c'_{n-1} и c'_n . Пусть они не имеют вид $\overline{v0}$ и $\overline{v1}$.

• Пусть $|c'_{n-1}| \le |c'_n|$. Посмотрим на c'_{n-1} : не умаляя общности он будет заканчиваться на 0 ($\overline{s0}$). Заменим c'_n на s1. Если вдруг кто-то уже имел такой код, это и есть c'_n , так как имеет максимальную длину.

1.8 Арифметическое кодирование

Уложим вероятности аналогично не отрезок, при этом не обязательно в порядке убывания.

Назовем **стандартным** интервал $[\overline{0v0}, \overline{0v1})$. Найдем максимальный стандартный интервал в отрезке p_i . Тогда v будет кодом p_i .

 \square Если рассмотреть отрезок [a,b], есть стандартный интервал длиной $\frac{b-a}{8}$. Упражнение

Лекция 4: †

22 April

1.9

Пусть есть алфавит Σ размером k, 'кодер' $E:[k]^n \to \{0,1\}^{L_n}$ и 'декодер' $D:\{0,1\}^{L_n} \to [k]^n$.

Пусть есть распределение на буквах $p_1, p_2, \dots p_k$. ³

Обозначим $\varepsilon_n \coloneqq Pr[D(E(x))] \neq x$, где |x| = n. Хотим $\varepsilon_n \to 0.4$

³считаем, что слово состоит из независимых букв

⁴если сделать равенство, то особого сжатия не будет

1.9.

Теорема 1.9.1. Если $L_n > \lceil hn \rceil$ и h > H(p), то кодирование есть. Если $L_n < \lceil hn \rceil$ и h < H(p), то $\varepsilon_n \to 1$.

 \square Будем называть код W δ -типичным, если

$$\forall i \left| n_{\frac{i}{n}} - p_i \right| \leq \delta, \quad n_i = \#$$
входа буквы.

Зафиксируем $\delta = n^{-0.02}$

• Докажем, что можем закодировать такие типичные слова в первой части. Пусть X_{ij} — характеристическая функция того, что в слове на позиции j находится буква i.

Также рассмотрим $X_i = \sum_i X_{ij}$ и применим неравенство Чебышева:

$$Pr[|X_i - \mu| \ge \delta n] \le \frac{\operatorname{Var}[x_i]}{(\delta n)^2} = \frac{np_i(1 - p_i)}{(\delta n)^2} = \mathcal{O}\left(\frac{1}{\delta^2 n}\right)^5.$$

Так как букв константное количество, вероятность нетипичности все равно останется очень маленьким и будет стремиться к нулю.

Теперь докажем, что типичных слов не очень много. Количество слов, где буквы встречаются в количествах n_1, \ldots, n_k равно

$$N=\frac{n!}{n_1!\cdot\ldots\cdot n_k!}.$$

$$\log N = (\text{так как } n! = \text{poly}(n) \left(\frac{n}{e}\right)^n)$$

$$= \log \left(\left(\frac{n}{n_1}\right)^{n_1} \cdot \left(\frac{n}{n_2}\right)^{n_2} \cdot \ldots \cdot \left(\frac{n}{n_k}\right)^{n_k}\right) + \mathcal{O}(\log n) =$$

$$= \sum n_i \log \frac{n}{n_i} + \mathcal{O}(\log n) = (n_i \text{ по определению})$$

$$= n \sum (p_i + \delta_i) \cdot \log \frac{1}{p_i + \delta_i} + \mathcal{O}(\log n)$$

$$(|\delta_i| < \delta, \text{так как типичное}, \delta_i - \text{отклонение } i\text{-ой буквы в языке})$$

Теперь оценим число типичных слов

$$\log\Bigl(\#(\delta\text{-типичных слов})\Bigr)\leqslant$$

$$\leqslant \log\Bigl(n^k\cdot\max_{\delta_i}N\Bigr)\leqslant$$

$$\leqslant \max_{\delta_i}H(p_1+\delta_1,p_2+\delta_2,\ldots)\cdot n+\mathcal{O}(\log n)=\quad (\Pi\text{ереход за кадром}^6)$$

$$=nH(p)+\mathcal{O}(\delta\cdot n)$$

Если теперь кодер может отобразить инъективно все типичные слова в набор битовых слов длины hn, при этом ошибаться он будет на нетипичных, количество которых стремиться к нулю.

• Во второй части докажем, что мы не сможем закодировать все типичные слова. Покажем, что вероятность того, что мы выкинем δ -типичное слово очень мала. Пусть $L_n \leq hn$. Посмотрим на любое кодовое распределение слов. Покажем, что вероятность по нашему определению для δ -типичных слов больше, чем $\frac{1}{2^{L_n}}$.

$$Pr[w] = p_1^{n_1} \cdot p_2^{n_2} \cdot \dots \cdot p_k^{n_k} =$$

$$= 2^{-\sum_{i=1}^k (p_i + \delta) \log \frac{1}{p_i} n} \le$$

$$\le 2^{-H(p)n + \mathcal{O}(\delta n)}$$

1.9.

С какой вероятностью декодер декодер ответит правильно?

$$\Pr[\text{правильного ответа}] \leq 2^{L_n} \cdot \max_{w} \Pr[w] \leq 2^{((L_n - H(p)) \cdot n + \mathcal{O}(\delta n)} \to 2^0.$$

Лекция 5: †

29 April

Chapter 2

Коммуникационная сложность

Пусть у нас есть два игрока: Алиса и Боб. Они могут отправлять друг другу сообщения и хотят посчитать функцию (или отношение) $f: X \times Y \to \mathcal{O}$.

2.1 Модели

2.1.1 Детерминированная модель

Формализуем это в виде бинарного дерева.

В вершинах будем записывать ходящего игрока, в листьях результаты вычислений.

Левое ребро обозначает сообщение 0, а правое — 1.

Обозначение. D(f) — минимальная глубина дерева.

2.1.2 Вероятностная модель

Теперь Алиса и Боб могут подбрасывать монетки. Либо эти монетки (оракулы) публичны (оба видят значения), либо приватными (тогда никто не видит, кроме пользователя).

Так как Алиса или Боб в случае публичного оракула, они могут закрыть глаза на сообщения другого, поэтому публичный протокол не меньше приватного.

Скажем, что протокол отработал корректно, если

$$\forall x, y : Pr_r[\pi(x, y) = f(x, y)] \ge \frac{2}{3}, \quad \pi(x, y)$$
 — результат работы.

Обозначение. $R_{\frac{2}{2}}^{pub}$ — аналогично оптимальная высота.

2.2 Нижние оценки для детерминированного случая

Пусть наша функция $f: X \times Y \to \mathbb{O}$. Запишем для нее коммуникационную матрицу M размера $|X| \times |Y|$, где $M_{x,y} = f(x,y)$.

Рассмотрим $R_v \subseteq X \times Y : (x, y) \in R_v \iff$ протокол приводит в v.

Лемма 1. $R_v = X_v \times Y_v$ — прямоугольник.

Пусть (x,y) и (x',y') принадлежат R_v . Тогда (x,y') и (x',y) тоже принадлежат R_v , так как a(x) = a(x') и b(y) = b(y').

2.3. МЕТОД РАНГА 16

А из этого следует, что это комбинаторный прямоугольник.

□ Посмотрим на картинку. Пусть Алиса перешла по какому-то ребру. Вся таблица разделилась на две части.

$$a_v(x) = 0$$

$$a_v(x) = 0$$

$$a_r(x) = 1$$

И так далее.

В прямоугольнике для листа у всех элементов одинаковый ответ. То есть исходную матрицу можно разбить на комбинаторные прямоугольники, причем они естественно не пересекаются.

Хотим показать оценку на количество таких прямоугольников.

2.3 Метод ранга

Разбирался на практике:

 $\operatorname{rk}_{\mathbf{R}}(M_f) \leqslant \#$ одноцветных прямоугольников в разбиении.

3десь f — функция.

Для функции EQ =: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, будет диагональная матрица. Поэтому одноцветных прямоугольников будет не меньше 2^n , а тогда коммуникационная сложность хотя бы n.

2.4 Fooling Set

Рассмотрим коммуникационную матрицу. Пусть мы хотим выбрать некоторое множество

$$S = \{(x_1, y_1), (x_2, y_2), \ldots\},\$$

такое что каждая пара точек не лежит в одном прямоугольнике.

Если две клетки в одном прямоугольнике, оставшиеся вершины тоже лежат в нем.

Тогда нужно для всех $i, j, i \neq j$ либо (x_i, y_i) , либо (x_i, y_i) покрашена в другой цвет.

Для EQ легко получить ту же оценку. Плюс, как как нужен хотя бы один лист для нуля, n не хватит, следовательно, D(EQ) = n + 1.

Теорема 2.4.1. Если существует Fooling set размера s, то $\mathrm{rk}_R s \ge s$.

2.4.1 Пример, не соответствующий никакому протоколу

Figure 2.1: bad recd

Пусть χ — минимальное число одноцветных прямоугольников в разбиении.

Теорема 2.4.2 (GPW, 16). Существует f для которой

$$D(f) \ge \log^{2-\varepsilon} \chi(M_f).$$

□ Без доказательства

2.5 Связь со схемами

Теорема 2.5.1 (Шеннон). Существует $f: \{0,1\}^n \to \{0,1\}$, такая что $L(f) \ge \Omega\left(\frac{2^n}{n}\right)$, где L — оптимальный размер схемы.

 \square Всего функций такого вида 2^{2^n} , так как можно задать таблицей истинности.

Посчитаем число схем. Это ациклический граф и то, что записано в его узлах.

Пусть каждая вершина (S штук) выбирает себе двух предков. Так же в каждую вершину нужно что-то записать и на ребре можно ставить отрицание: хватит 3 бит. Еще есть входные данные (n штук).

Итого: $2^{S \cdot 2(\log S + \log n) + 3S}$.

Схем должно быть не меньше количества функций

$$2^{S \cdot 2(\log S + \log n) + 2S} \ge 2^{2^n}.$$

Отсюда получаем нужное неравенство.

Открытый вопрос: Можно ли предъявить $f \in NP$, что $L(f) \ge 10n$

2.6 KW_f

Пусть нам дана $f: \{0,1\}^n \to \{0,1\}.$

Алиса получает число $x \in f^{-1}(1)$, а Боб $y \in f^{-1}(0)$. Его цель

Теорема 2.6.1 (Rarchmer-Wigderson, 1990). L(f) — размер минимальной формулы для f, согда L(f) — размер минимального протокола для RW_f

 $1 \Longrightarrow 2$ Нарисуем дерево вверх корнем. Также спустим все отрицания к листьям. Пусть в узле считается функция $f = g \lor h$, где g и h — соседи f.

Тогда f(x) = 1, f(y) = 0 и f(y) = 0. Пусть Алиса посылает информацию, где 1, то есть куда нам нужно спуститься. Далее Боб делает аналогично.

 $2 \Longrightarrow 1$ Пусть у нас есть некоторый протокол для игры. Это некоторое дерево. Обозначим за $R_v := X_v \times Y_v$ — прямоугольник входов для вершины v, из которых мы получаем v.

Мы хотим построить $f: \{0,1\}^n \to \{0,1\}.$

Будем подниматься снизу и строить формулу по протоколу. Обозначим за f_v построенную формулу в вершине v. Хотим получить следующие свойства для формулы: $f_v(X_v) = 1$ и $f_v(Y_v) = 0$.

Если они выполняются, то $\forall x \in X_v$: f(x) = 1 и $\forall y \in Y_v$: f(y) = 0.

B корне $f = f_r$.

- Если мы в листе l. Здесь написан некоторый ответ. То есть $\forall x \in X_l \ \forall y \in Y_l : x_i \neq y_i$. Тогда либо $\forall i : x_i = 0 \land y_i = 1$, либо наоборот. В качестве $f_l(z)$ можем в первом случае взять $\neg z_i$, во втором z_i .
- Теперь мы находимся в вершине v с потомками a и b.

Если ходит Алиса, то прямоугольник R_v разрезается на R_a и R_b горизонтально (если Боб, то наоборот вертикально).

У нас уже есть две функции f_a и f_b , построенные по предположению индукции. $\forall y \in Y_v$: $f_a(y) = f_b(y) = 0$, так как $Y_v = Y_a = Y_b$.

А так как $X_v \subseteq X_a \cup X_b, \, \forall x \in X_v$ либо $f_a(x) = 1$, либо $f_b(x) = 1$.

Поэтому нам подходит $f_v \coloneqq f_a \lor f_b$.

Если же ходит Боб нужно будет сделать конъюнкцию.

2.7 Теория информации в коммуникационной сложности

Лекция 6: †

6 May

2.7.1 Подсчет функции индексов

Определим

Ind:
$$[n] \times \{0,1\}^n \to \{0,1\}, \quad \text{Ind}(x,y) = y_x.$$

Алиса и Боб хотят посчитать эту величину, причем х у Алисы, а у у Боба.

Пусть сообщения идут только от Боба до Алисы. Несложно понять, что Бобу придется послать всю информацию.

Теперь предположим, что они хотят, чтобы Алиса посчитала Ind верно с вероятностью $\frac{1}{2} + \delta$, если x и y выбираются равномерно. Очевидно, для $\delta = 0$, просто ничего не нужно пересылать. А вот для других положительных значений все испортится.

......

Пусть M(y) — случайная величина.

$$I(M:y) =$$
 (Chain rule)
$$= \sum_{i} I(M:y_{i} \mid y_{< i} =$$

$$= \sum_{i} H(y_{i} \mid y_{< i}) - H(y_{i} \mid M, y_{< i}) =$$

$$= \sum_{i} H(y_{i} \mid y_{< i}) - H(y_{i} \mid M, y_{< i}) \leq$$

$$\leq \sum_{i} H(y_{i}) - H(y_{i} \mid M, y_{< i}) \leq$$
(Выкинули часть условий)
$$\leq \sum_{i} H(y_{i}) - H(y_{i} \mid M) =$$

$$= \sum_{i} I(M:y_{i})$$

Покажем, что полученная сумма большая.

Зафиксируем і и распишем по определению взаимной информации:

$$I(M: y_{i}) = H(y_{i}) - H(y_{i} | M) =$$

$$= 1 - \mathbb{E}_{m} (H(y_{i} | M = m_{i}, x = i)) =$$

$$= \sum_{i} 1 - H(r_{m}^{i}) =$$

$$= n - n \sum_{i} \frac{1}{n} H(\mathbb{E}(r_{m}^{i})) =$$

$$= n \cdot (1 - H(\mathbb{E}_{m,i}(r_{m}^{i}))) \leq$$

$$\leq n \cdot (1 - H(\frac{1}{2} - \delta)) =$$

$$= \Omega(\delta^{2}n)$$

Здесь r_m^i — характеристическая функция ошибки M=m, x=i.

Чтобы алгоритм был корректен, $\mathbb{E}_{i,m}(r_m^i) \leq \frac{1}{2} - \delta$.

Теперь $\log |M| \ge H(M) \ge \Omega(\delta^2 n) \le \delta n$.

$$\frac{1}{2}(1-2\delta)+o\leq 2\delta n.$$

Определение 4. Пусть μ — мера на $X \times Y$.

$$\begin{split} & IC_{\mu}^{ext} \coloneqq I(\pi(x,y):(X,Y)). \\ & IC_{\mu}^{int} \coloneqq I(\pi(x,y):X\mid Y) + I(\pi(x,y):Y\mid X). \end{split}$$

Теорема 2.7.1.
$$D(\pi) \ge IC_{\mu}^{ext}(\pi) \ge IC_{\mu}^{\int}$$

□ Первое неравенство очевидно. Второе докажем потом.

Теорема 2.7.2 (Храпченко). $L(XOR) \ge \Omega(n^2)$

Лекция 7: †

Если оставить только одно слагаемое, слева останется $H(\pi) - H(\pi \mid x, y)$, а справа $H(\pi \mid y) - H(\pi \mid x, y)$, которое точно не больше.

Пусть π_i – префикс π , то есть то, что Алиса и Боб отправили за i-ый раунд (i-ый бит).

$$I(\pi:x,y) = \sum_{i} I(\pi_i:x,y \mid \pi_{< i})$$

Аналогично попробуем нарезать слагаемые правой части:

$$I(\pi:x\mid y) = \sum_{i} I(\pi_{i}:x\mid y,\pi_{i})$$

$$I(\pi:y\mid x) = \sum_i I(\pi_i:y\mid x,\pi_i)$$

В ход Боба первое слагаемое «равно нулю» 1 , так как π_i определяется y-ом. Аналогично «второе равно» нулю, когда ходит Алиса. Поэтому каждый раз неравенство сохраняется.

Чтобы исправить скрытую фундаментальную ошибку распишем через матожидания

$$I(\pi : x, y) = \sum_{i} \mathbb{E}_{m} I(\pi_{i} : x, y \mid \pi_{< i} = m)$$

$$\mathbb{E}I(\pi : x \mid y) = \sum_{i} \mathbb{E}_{m} I(\pi_{i} : x \mid y, \pi_{i} = m)$$

$$\mathbb{E}I(\pi : y \mid x) = \sum_{i} \mathbb{E}_{m} I(\pi_{i} : y \mid x, \pi_{i} = m)$$

Это уже корректное утверждение.

¹Это и есть баг, на самом деле это случная величина

Chapter 3

Колмогоровская сложность

3.1 Определения

Пусть F — вычислимая декодирующая функция. Определим $K_F(x) := \min\{|p| \mid F(p) = x\}$. Это «критерий сжимаемости» функции F.

Будем считать, что F..G (F не хуже G), если $\forall x \ K_F(x) \le K_G(x) + c_{FG}$.

Назовем способ описания (функцию) оптимальным, если она не хуже всех остальных.

Теорема 3.1.1. Существует оптимальный способ описания.

Определение 5. Колмогоровская сложность для $x - K(x) := K_U(x)$, где U — оптимальный способ описания.

Свойства. 1. $K(x) \le |x| + c$, так как можно взять $K_{id}(x) = |x|$ I

- 2. $K(XX) \le |x| + c$, можно взять описание F(p) = pp
- 3. Пусть Gx не более p единиц, тогда $K(x) \leq H(p) \cdot |x| + c$.

Можем взять F(p) = p-ое слово с не более pединицами.

$$\sum_{i=0}^{n} \binom{i}{n} \leq 2^{H(p)n}.$$

Теорема 3.1.2. Пусть M — всюду вычислимая функция. Если $M(x) \le K(x)$ и $\forall c \ \exists x : M(x) \ge c$, то M не вычислима.

□ Зафиксируем c. Найдем x_c — первое слово, где $M(x_c) \ge c$. Так как M вычислима всюду, определено F(c). Тогда из $F(c) = x_c$ следует, что $K(x) \le \log c + c_0$ по определению.

Следствие 1. У почти всех слов колмогоровская сложность равна n-const.

3.2 Применение

Мы лишаемся вычислимости, поэтому мы лишаемся практических применений, как с энтропией. Но есть математическое применение, так как это оптимальный алгоритм.

Можно доказать, что одноленточная машина Тьюринга, копирующая вход будет работать $\Omega(|x|^2)$.

3.3 Условная сложность

$$K(x \mid y) = K_U(x \mid y)$$
.

Это способ описания, который может еще использовать $y: K_F(x \mid y) := \min\{|p| \mid F(p,y) = x\}$. Аналогично U — оптимальный способ описания¹.

Замечание. $K(x) - K(x \mid \emptyset) + const$

$$K(x,y) \coloneqq K(\langle x,y\rangle)$$
 $\langle \cdot,\cdot \rangle$ — какая-то кодировка пары.

Свойства. 1. $K(x \mid y) \leq K(x) + O(1)$

2.
$$K(x, y) \le K(x) + K(y \mid x)$$

Теорема 3.3.1 (Колмогоров, Левин). $K(x, y) = K(x) + K(y \mid x)$

 \square В одну сторону по свойству. Пусть n = K(x, y) Пусть $S := \{(a, b) \mid K(a, b) \le n\}$,

Figure 3.1: kolmo thm

$$K(y \mid x) \leq \underbrace{\log|S_x|}_{m} + \mathcal{O}(\log n).$$

Рассмотрим все x, для которых $\log |S_x| \ge m$. Таких не более 2^{n-m+} , так как мы знаем, что K(x,y) = n, то внутри множества размером 2^n , есть элемент с большой сложностью, теперь множество S по размеру не более 2^{n+c} , но так как в одном сечении не более 2^m , получаем 2^{n-m+c} .

Тогда $K(x) \le n - m$. Если мы подставим в неравенство выше, то получим то, что хотели.

¹Упражнении — аналогично доказать существования