Feuille 1 : Évaluation de niveau sortie terminale

Rédaction, types de raisonnements et vocabulaire ensembliste :

Exercice 1. (*)

Étudier les inclusions $A \subset B$ et $B \subset A$ pour :

$$A = \left\{ \frac{\epsilon}{k(k+1)} \mid k \in \mathbb{N}^*, \ \epsilon \in \{\pm 1\} \right\}$$

$$B = \left\{ \frac{1}{p} - \frac{1}{q} \mid p, q \in \mathbb{N}^* \right\}$$

Exercice 2. (**)

Soit E un ensemble, A, B et C des parties de E telles que $A \cup B = A \cup C$ et $A \cap B = A \cap C$.

Montrer que B = C.

Exercice 3. (*)

1. Montrer que pour tout n dans \mathbb{N}^* , la somme des n premiers entiers au carré est donnée par la formule :

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

2. Montrer:

$$\forall n \in \mathbb{N}^*, \ 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$$

Exercice 4. (**)

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_1=3$ et pour tout $n\geq 1,\ u_{n+1}=\frac{2}{n}\sum_{k=1}^n u_k$.

Donner l'expression fonctionnelle de la suite $(u_n)_{n\in\mathbb{N}^*}$.

Exercice 5. (*)

Montrer que $\frac{\ln(7)}{\ln(2)}$ est un irrationnel.

Exercice 6. (**)

Montrer qu'il existe une infinité de nombres premiers.

Exercice 7. (*)

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une application vérifiant :

$$\forall (x,y,z) \in \mathbb{R}^3, \ \frac{f(x) - f(y)}{x - y} = \frac{f(x) - f(z)}{x - z}.$$

Montrer qu'il existe un unique couple $(a,b) \in \mathbb{R}^2$ tel que pour tout $x \in \mathbb{R}$, f(x) = ax + b.

Exercice 8. (**)

Soit f une fonction de \mathbb{R} dans \mathbb{R} . Montrer qu'existe un unique couple (p,i) de fonctions de \mathbb{R} dans \mathbb{R} vérifiant les conditions suivantes :

- p est paire, i est impaire.
- --f = p + i.

Exercice 9. (***)

- 1. Démontrer que si $r \in \mathbb{Q}$ et $x \notin \mathbb{Q}$ alors $r + x \notin \mathbb{Q}$ et si $r \neq 0$ alors $r \times x \notin \mathbb{Q}$.
- 2. Montrer que $\sqrt{2} \notin \mathbb{Q}$,
- 3. En déduire : entre deux nombres rationnels distincts il y a toujours un nombre irrationnel.
- 4. En déduire que l'ensemble des nombres irrationnels est dense dans l'ensemble des nombres réels.

Sommes, produits et trigonométrie

Exercice 10. (**)

Soit z un nombre complexe de module ρ , d'argument θ . Calculer $(z + \bar{z})(z^2 + \bar{z}^2)\cdots(z^n + \bar{z}^n)$ en fonction de ρ et de θ .

Exercice 11. (**)

Calculer les sommes suivantes pour $n \in \mathbb{N}$ à l'aide d'un télescopage.

1. $\sum_{k=0}^{n} k(3k+1)$

3. $\sum_{k=0}^{n} (-1)^k k$

 $2. \qquad \sum_{k=0}^{n} \frac{2^{k-1}}{3^{k+1}}$

4. $\sum_{k=0}^{n} k(k+1)(k-1)$

Exercice 12. (**)

Soit $x \in \mathbb{R}, n \in \mathbb{N}^*$, calculer $\sum_{k=0}^{n} \sin(kx)$.

Exercice 13. (**)

Calculer les sommes suivantes

1.
$$\sum_{k=0}^{n} \frac{k}{(k+1)!}$$

$$2. \sum_{k=1}^{n} \frac{1}{\sqrt{k+1} + \sqrt{k}}$$

Exercice 14. (**)

Déterminer trois réels a, b, c tels que :

$$\forall x \in \mathbb{R} \setminus \{0, -1, -2\}, \ \frac{1}{x(x+1)(x+2)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2}$$

Donner pour n dans \mathbb{N}^* , une expression simple de

$$U_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}.$$

Donner la limite de $(U_n)_{n\geq 1}$ lorsque n tend vers $+\infty$?

Exercice 15. (**)

Soit x un nombre réel non multiple entier de π . En remarquant que :

$$\forall y \in \mathbb{R}, \sin(2y) = 2\sin(y)\cos(y)$$

simplifier pour n dans \mathbb{N}^* le produit :

$$P_n(x) = \prod_{k=1}^n \cos\left(\frac{x}{2^k}\right).$$

En utilisant la relation suivante après l'avoir justifiée

$$\frac{\sin u}{u} \xrightarrow[u \to 0]{} 1$$

donner la limite de $P_n(x)$ lorsque n tend vers $+\infty$.

Exercice 16. (***)

Soit $n \in \mathbb{N}^*$, on pose $H_n = \sum_{i=1}^n \frac{1}{i}$.

Montrer pour tout entier $n \ge 2$ que :

$$\sum_{k=1}^{n-1} H_k = nH_n - n$$

I Primitives et équations différentielles et étude de fonctions

Exercice 17. (**)

Calculer les primitives des fonctions suivantes

1.
$$x \mapsto e^x \cos x$$

3.
$$x \mapsto x\sqrt[3]{1+x}$$

2.
$$x \mapsto \sqrt{e^x - 1}$$

4.
$$x \mapsto e^{ax} \sin bx$$

Exercice 18. (*)

La fonction $x \mapsto \arccos x$ est-elle solution de

$$y' + \frac{1}{\sqrt{1 - x^2}}y = 0$$

Exercice 19. (**)

Résoudre $y'(x) - y(x) = x^2 - 1$ avec la condition initiale y(0) = 1 en cherchant une solution polynomiale $ax^2 + bx + c$.

Exercice 20. (**)

Soit $n \ge 2$ un entier fixé et $f: \mathbb{R}^+ = [0, +\infty[\longrightarrow \mathbb{R} \text{ la fonction définie par la formule suivante} :$

$$f(x) = \frac{1+x^n}{(1+x)^n}, \quad x \ge 0.$$

- 1. (a) Montrer que f est dérivable sur \mathbb{R}^+ et calculer f'(x) pour $x \ge 0$.
 - (b) En étudiant le signe de f'(x) sur \mathbb{R}^+ , montrer que f atteint un minimum sur \mathbb{R}^+ que l'on déterminera.
- $2. \ \ \, (a) \,$ En déduire l'inégalité suivante :

$$(1+x)^n \le 2^{n-1}(1+x^n), \quad \forall x \in \mathbb{R}^+.$$

(b) Montrer que si $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$ alors

on a:
$$(x+y)^n \le 2^{n-1}(x^n+y^n)$$
.

Exercice 21. (**)

Démontrer que les courbes d'équation $y=x^2$ et y=1/x admettent une unique tangente commune.