

Figure 1: E(W) for deterministic, uniformly, exponential and hyperexponential distributed service times. Four servers with E(B)=1. Utilization ρ varies between 0.05 and 0.95. Six simulation runs of length 10^6 were performed for each ρ .

Figure 2: Deterministic distributed service times according to simulation and approximation. $E(W) = \frac{\Pi_W^{M|M|c}}{1-\rho} \frac{E(R)}{c}$. Six simulation runs of length 10^6 were performed for each ρ .

Figure 3: Uniformly distributed service times according to simulation and approximation. $E(W) = \frac{\prod_{W}^{M|M|c}}{1-\rho} \frac{E(R)}{c}$. Six simulation runs of length 10^6 were performed for each ρ .

Figure 4: Exponential distributed service times according to simulation and approximation. $E(W) = \frac{\Pi_W^{M|M|c}}{1-\rho} \frac{E(R)}{c}$. Six simulation runs of length 10^6 were performed for each ρ .

Figure 5: Hyperexponentially distributed service times according to simulation and approximation. $E(W) = \frac{\Pi_W^{M|M|c}}{1-\rho} \frac{E(R)}{c}$. Six simulation runs of length 10^6 were performed for each ρ .

Figure 6: Π_W for deterministic, uniformly, exponential and hyperexponential distributed service times. Four servers with E(B)=1. Utilization ρ varies between 0.05 and 0.95. Six simulation runs of length 10^6 were performed for each ρ .