Theoretische Informatik

3. Übungsblatt

Paul Winkler 11818749

Aufgabe 1. Wir zeigen, dass folgende Funktionen primitiv rekursiv sind:

(a) $(x,y) \mapsto x \cdot y$:

Dass die Addition primitiv rekursiv ist, wissen wir bereits aus der Vorlesung. Es gilt $x \cdot 0 = 0$ und $x \cdot (y+1) = x \cdot y + x$. Wir definieren also

$$f(x) = 0 = c_0^1$$

$$g(x, y, z) = z + x = Cn[+, P_3^3, P_1^3]$$

und es gilt $\cdot = \Pr[f, g] = \Pr[c_0^1, \operatorname{Cn}[+, P_3^3, P_1^3]].$

(b)
$$(x,y) \mapsto p(x) = \begin{cases} 0 & \text{falls } x = 0 \\ x - 1 & \text{falls } x > 0 \end{cases}$$
:

Es gilt p(0) = 0 und p(y+1) = y und somit $p = \Pr[f, g]$ mit

$$f(0) = 0 = c_0^1$$

 $q(y, z) = y = P_1^2$

(c)
$$(x,y) \mapsto x - y = \begin{cases} 0 & \text{falls } x \leq y \\ x - y & \text{falls } x > y \end{cases}$$
:

Durch Fallunterscheidung sieht man leicht, dass x - (y + 1) = p(x - y). Nach (b) ist p primitiv rekursiv. Also ist $- \Pr[f, g]$ mit

$$f(x) = x \div 0 = x = P_1^1$$

 $g(x, y, z) = p(z) = \operatorname{Cn}[p, P_3^3].$

(d)
$$(x,y) \mapsto \chi_{\leqslant}(x,y) = \begin{cases} 1 & \text{falls } x \leqslant y \\ 0 & \text{falls } x > y \end{cases}$$
:

Falls $x \le y$, dann ist x - y = 0; sonst ist $x - y = x - y \ge 1$. Folglich gilt $\chi \le (x, y) = 1 - (x - y)$, was nach (c) p. r. ist.

(e)
$$(x,y) \mapsto \chi_{=}(x,y) = \begin{cases} 1 & \text{falls } x = y \\ 0 & \text{falls } x \neq y \end{cases}$$
:

Das folgt mit $\chi_{=}(x,y) = \chi_{\leq}(x,y) \cdot \chi_{\leq}(y,x)$ unmittelbar aus (d).

$$(f) \ h \colon \mathbb{N}^k \to \mathbb{N}, \overline{x} \mapsto \begin{cases} f_0(\overline{x}) & \text{falls } g(\overline{x}) = 0 \\ f_1(\overline{x}) & \text{falls } g(\overline{x}) = 1 \\ \vdots & \text{wobei } g, f_0, \dots, f_n \colon \mathbb{N}^k \to \mathbb{N} \text{ p. r. sind:} \\ f_{n-1}(\overline{x}) & \text{falls } g(\overline{x}) = n-1 \\ f_n(\overline{x}) & \text{falls } g(\overline{x}) \geqslant n, \end{cases}$$

Das folgt aus dem bisher Gezeigten wegen

$$h(\overline{x}) = f_n(\overline{x}) \cdot \chi_{\leq}(n, g(\overline{x})) + \sum_{i=0}^{n-1} f_i(\overline{x}) \cdot \chi_{=}(g(\overline{x}), i).$$

Aufgabe 2. Sei $f: \mathbb{N}^{k+1} \to \mathbb{N}$ p. r., dann sind auch folgende Funktionen p. r.:

(a)
$$h: (\overline{x}, z) \mapsto \sum_{y=0}^{z} f(\overline{x}, y)$$
:

Wir wissen schon, dass Addition p. r. ist. Nun stellen wir fest, dass

$$h(\overline{x}, 0) = f(\overline{x}, 0)$$

$$h(\overline{x}, y + 1) = h(\overline{x}, y) + f(\overline{x}, y + 1),$$

also $h = \Pr[g, j]$ mit

$$g(\overline{x}) = f(\overline{x}, 0)$$
$$j(\overline{x}, y, z) = z + f(\overline{x}, y + 1).$$

(b) $h: (\overline{x}, z) \mapsto \prod_{y=0}^{z} f(\overline{x}, y)$: Genauso wie (a), nur mit »·« statt »+«.

Sei $f \colon \mathbb{N}^{k+1} \to \{0,1\}$ p. r., dann sind auch folgende Funktionen p. r.:

(c) $h: (\overline{x}, z) \mapsto \forall y \leqslant z \ (f(\overline{x}, y) = 1)$:

$$h(\overline{x},z) = \prod_{y=0}^{z} \chi_{=}(f(\overline{x},y),1).$$

(d) $h: (\overline{x}, z) \mapsto \exists y \leqslant z \ (f(\overline{x}, y) = 1) :$

$$h(\overline{x},0) = \chi_{=}(f(\overline{x},0),1)$$

$$h(\overline{x},z+1) = h(\overline{x},z) + \chi_{=}(h(\overline{x},z),0) \cdot \chi_{=}(f(\overline{x},z+1),1).$$

Aufgabe 3. Folgende Funktionen sind p.r.:

(a)
$$(x,y) \mapsto \begin{cases} 1 & \text{falls } x \mid y \\ 0 & \text{sonst} \end{cases}$$
:

Es gilt $x \mid y \equiv \exists z \leqslant y \ (x \cdot z = y)$, was als beschränkte Formel mit primitiv rekursiver Matrix nach Aufgabe 2 p. r. ist.

(b)
$$(x,y) \mapsto \begin{cases} 1 & \text{falls } ggT(x,y) = 1 \\ 0 & \text{sonst} \end{cases}$$
:

Das gilt wegen ggT $(x,y)=1 \iff \neg \exists z \leqslant y \ (2 \leqslant z \land z \mid x \land z \mid y)$. Diese Formel ist p. r. wegen (a) sowie wegen $\neg \varphi = 1 \doteq \varphi$ und $\varphi \land \psi = \varphi \cdot \psi$.

(c) $\varphi \colon n \mapsto |\{i \in \mathbb{N} \colon 1 \leqslant i \leqslant n, \operatorname{ggT}(i, n) = 1\}|$:

Bezeichne h die Funktion aus (b), dann gilt $\varphi(n) = \sum_{i=1}^{n} h(i, n)$.

Aufgabe 4. Die Turingmaschine $M=\langle Q,\delta,s\rangle$ führt eine Duplikation eines Wortes $w\in\{0,1\}^*$ durch, wobei

$$Q = \{s, q_0, k_0, k'_0, k_1, k'_1, r_0, r'_0, r_1, r'_1\}$$

und die Übergangsfunktion δ gegeben ist durch

<i>a</i>	x	q'	x'	r
q				<i>'</i>
s	\triangleright	q_0	\triangleright	\rightarrow
q_0	0	k_0	J	\rightarrow
k_0	0	k_0	0	\rightarrow
k_0	1	k_0	1	\rightarrow \rightarrow
k_0	J	k'_0	J	\rightarrow
k'_0	0	k'_0	0	\rightarrow
k'_0	1	k_0^{\prime}	1	\rightarrow
$k_0 \ k_0' \ k_0' \ k_0'$	J	r_0	0	→ → ← ←
r_0	0	r_0	0	←
r_0	1		1	←
	J	r_0'	J	←
r_0'	0	$r_0^{\check{\prime}}$	0	
$r_0^{\check{\prime}}$	1	$egin{array}{c} r_0 \ r_0' \ r_0' \ \end{array}$	1	←
$egin{array}{c} r_0 \ r_0' \ r_0' \end{array}$	J	q_0	0	← ← →
q_0	1	k_1	U	
$\overset{1\circ}{k_1}$	0		0	\rightarrow
$egin{array}{c} k_1 \ k_1 \end{array}$	1	k_1	1	\rightarrow
k_1	J	k_1^{\prime}	J	\rightarrow
k_1^{\prime}	0	k_1^{\prime}	0	\rightarrow
$egin{array}{c} k_1 \ k_1' \ k_1' \ k_1' \end{array}$	1	$k_1 \\ k_1 \\ k'_1 \\ k'_1 \\ k'_1 \\ k'_1$	1	
k_1^{\prime}		r_1	1	←
r_1	0	r_1	0	←
r_1	1		1	←
		$egin{array}{c} r_1 \ r_1' \ r_1' \ r_1' \end{array}$		←
r_1'	0	r_1^{\prime}	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	←
$egin{array}{c} r_1 \ r_1' \ r_1' \ r_1' \end{array}$	1	r'_1	1	←
r_1'	-	q_0	1	\rightarrow
	3	fertig		
q_0	J	Terrig	J	_

Erklärung: M liest das erste Zeichen. Dieses ist entweder »0« (gelber Block) oder »1« (türkiser Block). Das Zeichen wird durch » « überschrieben. Zum Beispiel im ersten Fall wechselt die Maschine in den Zustand k_0 (»kopiere Null«). Dann wandert der Cursor nach rechts, bis zum ersten Mal » « auftritt (also die Grenze zwischen dem ursprünglichen Wort und dem bereits kopierten Teil), worauf sie in den Zustand k'_0 wechselt. Tritt dann erneut » « auf, ist das Ende erreicht und »0« wird geschrieben. Der neue Zustand ist dann r_0 (»rückwärts Null«) bzw. nach einem Erreichen von » « r'_0 . Tritt dann nochmals » « auf, wird die ausgeschnittene »0« an dieser Stelle wieder in das ursprüngliche Wort eingefügt. Der Cursor wandert einen Schritt nach rechts und der Zustand q_0 wird wiederhergestellt. Ist im Zustand q_0 das nächste Zeichen » «, ist das Wort vollständig kopiert und der Rechenvorgang terminiert.

Aufgabe 5. Wir sagen dass eine deterministische Turingmaschine $M = \langle Q, \delta, q_0 \rangle$ primitiv rekursive Laufzeit hat, falls eine primitiv rekursive Funktion $t \colon \mathbb{N}^k \to \mathbb{N}$ existiert, so dass für alle $x \in \mathbb{N}^k$ eine Konfiguration (fertig, u, v) existiert sowie ein $k \leq t(x)$, sodass $(q_0, \triangleright, x) \stackrel{M^k}{\to}$ (fertig, u, v). Wir zeigen, dass $f \colon \mathbb{N}^k \to \mathbb{N}$ primitiv rekursiv ist genau dann wenn eine Turingmaschine existiert, die f in primitiv rekursiver Laufzeit berechnet.

Für die eine Richtung sei f primitiv rekursiv. Aus der Vorlesung wissen wir, dass f Turingberechenbar ist. Wir zeigen induktiv nach der Operatordarstellung von f, dass eine Funktion t wie oben existiert:

- Die konstante Nullfunktion kann durch eine Turingmaschine in zwei Schritten berechnet werden, wir wählen daher $t \equiv 2$.
- Die Nachfolgerfunktion kann durch die Turingmaschine aus der Vorlesung berechnet werden; sie durchläuft das Band zweimal in der Länge der Eingabe. Da die Anzahl der Ziffern einer Zahl in Binärdarstellung durch die Zahl selbst beschränkt ist, sollte t(x) = 3x eine passende Schranke sein.
- ullet Die Projektion P_i^n kann durch die Turingmaschine aus der Vorlesung berechnet werden. Diese Berechnung umfasst vier Schritte, für die wir jeweils eine primitiv rekursive Laufzeitfunktion angeben können:
 - 1. Ȇberschreibe $x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_k$ mit _«:
 Wir wählen $t_1(\overline{x})=n+2+\sum\limits_{i=1}^n x_i$, weil die Anzahl der Ziffern einer Zahl in Binärdarstellung kleiner gleich der Zahl selbst ist, wir n Leerzeichen haben und die Maschine nach zwei aufeinanderfolgenden Leerzeichen mit diesem Schritt fertig ist.
 - 2. »Bewege den Cursor zurück an den Anfang von x_i «,
 - 3. »Verschiebe x_i Zeichen für Zeichen an den Anfang des Bands«,
 - 4. »Bewege den Cursor zurück an den Anfang«: Diese Schritte haben jeweils höchstens den selben Aufwand wie der erste, daher wählen wir $t_2(\overline{x}) = t_3(\overline{x}) = t_4(\overline{x})$ und insgesamt $t(\overline{x}) = 4t_1(\overline{x})$.
- Für den Induktionsschritt seien $f: \mathbb{N}^n \hookrightarrow \mathbb{N}, g_1, \ldots, g_n: \mathbb{N}^k \hookrightarrow \mathbb{N}$ und $h = \operatorname{Cn}[f, g_1, \ldots, g_n]$. Nach IV gibt es für alle $i = 1, \ldots, n$ und für f eine primitiv rekursive Laufzeitfunktion t_{g_i} bzw. t_f . Wir verwenden wieder die Turingmaschine aus der Vorlesung.

1. »Kopiere die Eingabe \overline{x} auf jedes der n Bänder«: Wir können die Anzahl der Schritte mit $t_1(\overline{x}) = 2n \sum_{i=1}^k x_i$ abschätzen. Dabei verwenden wir wieder das Argument mit der Zifferndarstellung, müssen aber berücksichtigen,

dass wir den Cursor wieder in die Startposition bringen müssen.

- 2. »Für i = 1, ..., n berechne $g_i(\overline{x})$ durch die Turingmaschine M_{g_i} auf dem i-ten Band «: Damit können wir den Aufwand abschätzen durch $t_2(\overline{x}) = \sum_{i=1}^n t_{g_i}(\overline{x})$.
- 3. »Kopiere $g_2(\overline{x}), \ldots, g_n(\overline{x})$ auf das erste Band zu $g_1(\overline{x})$ «:
 Für jedes $i=1,\ldots,n$ hat $g_i(\overline{x})$ höchstens $g_i(\overline{x})$ Ziffern in Binärdarstellung. Wir müssen stets ein Leerzeichen einfügen und den Cursor zurückbewegen und verwenden sicherheitshalber die nicht scharfe Abschätzung $t_3(\overline{x})=5\sum_{i=1}^n g_i(\overline{x})$.
- 4. »Berechne $f(g_1(\overline{x}), \ldots, g_n(\overline{x}))$ durch M_f auf dem ersten Band«: Offenbar funktioniert $t_4(\overline{x}) = t_f(g_1(\overline{x}), \ldots, g_n(\overline{x}))$ und insgesamt $t(\overline{x}) = t_1(\overline{x}) + t_2(\overline{x}) + t_3(\overline{x}) + t_4(\overline{x})$.
- \bullet Sei $f = \Pr[h, g]$. Nach IV gibt es p. r. Laufzeitfunktionen t_h und t_g für h bzw. g. Wir definieren

$$\begin{split} &\tilde{t}_f(\overline{x},0) = t_h(\overline{x}), \\ &\tilde{t}_f(\overline{x},y+1) = t_g(\overline{x},y,f(\overline{x},y)). \end{split}$$

Die in der Vorlesung angegebene Turingmaschine hat noch ein Band mit einem Zähler, der in jedem Berechnungsschritt inkrementiert wird; wir wissen bereits, dass $t_s(y) = 3y$ den Aufwand der Nachfolgerfunktion abschätzt. Ingesamt können wir den Aufwand also mit

$$\tilde{t}_f(\overline{x}, y) + \sum_{i=0}^{y-1} 3i \leqslant \tilde{t}_f(\overline{x}, y) + 2y^2 =: t_f(\overline{x}, y)$$

abschätzen.

Für die andere Richtung sei M eine Turingmaschine, die f in primitiv rekursiver Laufzeit berechnet. Sei t_f die dazu gehörige Laufzeit-Funktion. Wir wissen aus der Vorlesung, dass f als Turing-berechenbare Funktion zumindest partiell rekursiv ist. Nach Voraussetzung terminiert M auf allen Eingaben, daher ist f sogar total rekursiv. f hat eine Operatordarstellung, und in dieser treten endlich viele Minimierungen auf. Wir gehen induktiv nach diesen Minimierungen vor (von innen): Wenn bei der Berechnung von $f(\overline{x})$ die Minimierung $\mu y g(x_1(\overline{x}), y)$ mit primitiv rekursiven x_1 und g auftritt, dann gilt

$$(\mu y) \ g(x_1(\overline{x}), y) = (\mu y \leqslant t_f(\overline{x})) \ g(x_1(\overline{x}), y).$$

Die Funktion $\overline{x} \mapsto (\mu y \leqslant t_f(\overline{x})) \ g(x_1(\overline{x}), y)$ ist nach dem Hinweis und weil t_f p.r. ist p.r. und daher insgesamt auch f.