EXHAUST PURIFICATION METHOD AND DEVICE THEREOF

Publication number: JP2000257419 **Publication date:** 2000-09-19

Inventor:

YANAGIHARA HIROMICHI: TSUKASAKI YUKIHIRO:

ISHIYAMA SHINOBU; KOBAYASHI MASAAKI;

TAWARA ATSUSHI

Applicant:

TOYOTA MOTOR CORP

Classification:

- international:

B01D53/94; F01N3/20; B01D53/94; F01N3/20; (IPC1-

7): F01N3/24; B01D53/86; B01D53/94; B01J29/22;

F01N3/08; F01N3/10; F01N3/20; F01N3/36

- european:

B01D53/94F2; F01N3/20D Application number: JP19990055554 19990303

Priority number(s): JP19990055554 19990303

Also published as:

EP1033479 (A2)

EP1033479 (A3) EP1033479 (B1) DE60012250T (T2)

Report a data error here

Abstract of JP2000257419

PROBLEM TO BE SOLVED: To attain high NOX purification efficiency without adjusting exhaust to a rich air-fuel ratio by generating a low temperature oxidation reaction after supplying reductant, while retaining exhaust purification catalyst in a prescribed temperature range, and continuously producing reaction activated substance such that combustion exhaust at a specified air excess ratio is supplied. SOLUTION: A reductant supply device 20 for supplying liquid reductant is provided upstream of exhaust purification catalyst (RAP catalyst) 10 disposed in an exhaust passage 3. The RAP catalyst is obtained by carrying oxidized catalyst components, such as Pt and Pd on the multiporous zeolite. A combustion state in an engine 1 is adjusted, such that an excess air ratio of the combustion exhaust flowing through the exhaust passage 3 becomes 1.0 or more. The flow rate of the reductant injected from a nozzle 23 is controlled by adjusting an opening degree of a control valve 25 in a control device 30. Furthermore, by allowing the exhaust temperature and excess air ratio to be within the range where a low-temperature oxidation reaction takes place on the catalyst, the reductant is converted into a radical and reacts preferentially with NOX in the exhaust, realizing high purification efficiency.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-257419

(P2000-257419A)

最終頁に続く

(43)公開日 平成12年9月19日(2000.9.19)

(51) Int.Cl.7		戲別配号		FΙ					Ť	73ト*(参考)
F01N	3/24			F 0	1 N	3/24			L	3G091
B01D 5	3/86	ZAB		B 0	1 J	29/22			Λ	4D048
Į	<i>3</i> 3/94			F 0	1 N	3/08			В	4G069
B01J 2	29/22					3/10			Λ	
F01N	3/08					3/20			D	
			審査請求	未請求	水簡	で項の数11	OL	· (全	13 頁)	最終頁に続く
(21)出顧番号		特顧平11-55554	平11-55554			V 000003				
				!		トヨタ				
(22) 出顧日		平成11年3月3日(1999.3.					トヨタ	/町1番	地	
				(72)	発明和	皆 柳原	弘道			
				į		愛知県	豊田市	トヨタ	7町1番	地 トヨタ自動
						車株式	会社内			
				(72)	発明和	皆 塚崎	之弘			
				ľ		愛知県	豊田市	トヨタ	7町1番	地 トヨタ自動
						車株式	会社内			
				(74)	代理	\ 100077	517			
						弁理士	石田	敬	(外3	名)

(54) 【発明の名称】 排気浄化方法及び装置

(57)【要約】

【課題】 排気空燃比をリッチ空燃比に調整することな く高いNOx浄化効率を達成する。

【解決手段】 酸化触媒成分を含み、触媒成分活性化温 度より低い所定の温度領域において還元剤を酸素の存在 下において燃焼を伴わずに酸化して継続的に還元剤のラ ジカルを生成する排気浄化触媒を排気通路に配置し、こ の排気浄化触媒を上記所定温度領域に維持しつつ触媒に 還元剤を供給して還元剤ラジカルを生成し、同時にこの 排気浄化触媒に空気過剰率が1.0以上の燃焼排気を供 給する。触媒上で生成された還元剤ラジカルは酸素過剰 雰囲気においても優先的に排気中のNOxと反応するた め、排気空燃比をリッチ空燃比に調整することなく排気 中のNOxが高い浄化効率で還元浄化される。

- 3…排気通路 10…排気浄化触媒(RAP触媒) 20…還元剤供給装置
- 30…制御装置

【特許請求の範囲】

【請求項1】 酸化触媒成分を含み、所定の温度領域より高い温度領域では供給された還元剤を酸素の存在下において燃焼させ、前記所定の温度領域では供給された還元剤を酸素の存在下において燃焼を伴わずに酸化して継続的に反応活性物質を生成する低温酸化反応を行う排気浄化触媒を排気通路に配置し、

前記排気浄化触媒を前記所定の温度領域に維持しつつ排 気浄化触媒に還元剤を供給することにより還元剤の前記 低温酸化反応を生じさせ継続的に前記反応活性物質を生 成し

前記排気浄化触媒に空気過剰率が1.0以上の燃焼排気を供給し、前記排気浄化触媒上で生成した前記反応活性物質と排気中のNOxとを反応させて排気中のNOxを還元浄化する排気浄化方法。

【請求項2】 前記排気浄化触媒に供給する燃焼排気の 空気過剰率を1.0以上かつ1.7以下とする請求項1 に記載の排気浄化方法。

【請求項3】 前記排気浄化触媒は、酸化触媒成分と還元触媒成分とをそれぞれ酸化触媒成分による酸化能力と還元触媒成分による還元能力とがほぼ同等になる量だけ含む請求項1または請求項2に記載の排気浄化方法。

【請求項4】 前記排気浄化触媒は供給された還元剤を 触媒内に保持し、酸素存在下の前記所定温度領域におい て、前記保持した還元剤の低温酸化反応を生じさせるこ とにより触媒上に継続的に前記反応活性物質を生成する 請求項1から請求項3のいずれか1項に記載の排気浄化 方法。

【請求項5】 内燃機関の排気通路に、供給された還元 剤を保持し所定の活性化温度以上の触媒温度において酸 素過剰雰囲気下で還元成分と排気中のNOxとを選択的 に反応させることが可能な、酸化触媒成分を含む排気浄 化触媒を配置し、

該排気浄化触媒に還元剤を供給し酸素過剰雰囲気下で前記排気浄化触媒温度を前記還元成分の沸点より高く、かつ前記活性化温度より低い所定の温度領域にすることにより、前記還元成分に燃焼を伴わずに酸化して反応活性物質を生成する低温酸化反応を生じさせ、生成した反応活性物質と機関排気中のNOxとを反応させ排気中のNOxを還元浄化する内燃機関の排気浄化方法。

【請求項6】 前記内燃機関の始動前に前記排気浄化触 媒に前記還元剤を供給する請求項5に記載の内燃機関の 排気浄化方法。

【請求項7】 前記排気浄化触媒は白金またはパラジウムを触媒成分として担持し、生成した前記反応活性物質を触媒成分表面に吸着可能である請求項5または請求項6に記載の内燃機関の排気浄化方法。

【請求項8】 還元剤の供給を継続して行うことにより 前記低温酸化反応により前記反応活性物質を触媒上に継 続的に生成し、消費された反応活性物質を触媒に補充す る請求項5から請求項7のいずれか1項に記載の内燃機 関の排気浄化方法。

【請求項9】 前記還元剤として液状炭化水素を使用し、炭化水素の性状に応じて触媒への還元剤の供給量または触媒温度の少なくとも一方を変化させることにより触媒上で所望量の前記反応活性物質を生成させる請求項5に記載の内燃機関の排気浄化方法。

【請求項10】 前記排気浄化触媒を通過後の排気中の特定成分濃度を検出し、該特定成分の濃度に応じて前記排気浄化触媒への還元剤供給条件を変化させる請求項5に記載の内燃機関の排気浄化方法。

【請求項11】 更に、前記排気浄化触媒の上流側に、酸化触媒成分を含み前記所定の温度領域において供給された還元剤に低温酸化反応を生じさせることの可能な上流側排気浄化触媒を配置し、該上流側排気浄化触媒の酸化能力を下流側の排気浄化触媒の酸化能力より小さくなるようにした請求項5に記載の内燃機関の排気浄化方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は排気浄化方法に関し、詳細には空気過剰率が1より高いリーン空燃比排気中のNOx を浄化する排気浄化方法に関する。 【0002】

【従来の技術】空気過剰率が1より高い、すなわち酸素 過剰雰囲気(リーン空燃比)の排気中のNOxの浄化に 用いられる排気浄化触媒としては、NOx吸蔵還元触媒 や選択還元触媒が知られている。NOx吸蔵還元触媒 は、アルミナ等の担体上にバリウム(Ba)等の成分 と、白金(Pt)のような貴金属とを担持したもので、 流入する排気ガスの空燃比がリーンのときに、排気中の NOx (NO2、NO)を硝酸イオンNO3 - の形で吸 収し、流入排気ガスの酸素濃度が低下すると吸収したN O_x を放出する NO_x の吸放出作用を行う。例えば、リ ーン空燃比の排気をNO_x吸蔵還元触媒に供給すると排 気中のNOx はNOx 吸蔵還元触媒に吸収されNOx が 排気から除去される。また、 NO_X を吸収した NO_X 吸 蔵還元触媒に炭化水素等の還元剤を供給すると供給され た還元剤がNO、吸蔵還元触媒上で酸化してNO、吸蔵 還元触媒の雰囲気酸素濃度が低下する。これにより、N Ox 吸蔵還元触媒からはNOx が放出され、排気中の還 元剤によりNO、吸蔵還元触媒上で還元浄化される。 【0003】また、選択還元触媒は、例えばゼオライト に触媒成分として、銅(Cu)をイオン交換等により、 或いは白金(Pt)を含浸などにより担持させた物が用 いられる。選択還元触媒は排気空燃比がリーンのとき

に、適量のHC、CO等の存在下でNOx をHC、CO

と選択的に反応させることにより、排気中のNO〟を還

元してN₂ に転換する機能を有している。すなわち、選

択還元触媒では、流入する排気中に炭化水素(HC)等

の成分が存在すると、これらHC成分等がゼオライトの 細孔に吸着される。また、選択還元触媒の白金、銅等の 金属成分にはリーン空燃比下で排気中の NO_x 成分が吸 着される。そして、ゼオライトに吸着されたHC等の成 分は一定の温度範囲で表面に侵出し白金、銅等の表面に 吸着された NO_x と優先的に反応し NO_x が還元浄化される。

【0004】このような排気浄化触媒を用いた排気浄化装置の例としては、例えば特開平4-330314号公報に記載されたものがある。同公報の装置は、ディーゼル機関の排気通路に銅ーゼオライトを使用した選択還元触媒を配置し、触媒上流側の排気通路に還元剤としての燃料を噴射する手段を設けている。同公報の装置では、選択還元触媒が活性化する温度(活性化温度)以上の温度領域で機関排気中の炭化水素濃度に応じて排気通路に噴射する燃料量を制御して、選択還元触媒に常に適量の酸素が供給されるようにしている。これにより、ディーゼル機関からのリーン空燃比排気中のNOxが選択還元触媒に吸着された炭化水素成分により還元浄化される。【0005】

【発明が解決しようとする課題】ところが、上記公報の装置のように選択還元触媒を用いてリーン空燃比の排気中で選択還元触媒に還元剤を供給して排気中の NO_x を浄化する場合には NO_x の高い浄化率が得られない問題がある。これは、選択還元触媒に担持される白金、銅等は酸化触媒として機能するため、酸素過剰雰囲気では炭化水素成分は NO_x よりも酸素と反応を生じてしまうからである。つまり、リーン空燃比排気中で選択還元触媒に還元剤を供給すると、供給された(或いは選択還元触媒に還元剤を供給すると、供給された(或いは選択還元触媒から侵出した)炭化水素はその大部分が触媒上で燃焼して N_x ②と N_x ②と N_x ②を N_x ②をの反応が生じにくくなり、高い NO_x 浄化率を得ることはできない。

【0006】一方、 NO_x 吸蔵還元触媒を用いた場合には、 NO_x の放出と還元浄化とは還元雰囲気(リッチ空燃比)中で行われるため選択還元触媒に比較して高い NO_x の浄化率を得ることができる。しかし、 NO_x 吸蔵還元触媒から NO_x を放出させ、還元浄化するためには NO_x 吸蔵還元触媒に流入する排気の空気過剰率を 1.0 より低く(リッチ空燃比に)する必要がある。このため、 NO_x 吸蔵還元触媒から NO_x を放出させるべきときには、例えば通常時にリーン空燃比運転を行うガソリン機関等では一時的に機関をリッチ空燃比運転に切り換えたり、リッチ空燃比運転が困難なディーゼル機関等では多量の還元剤を排気通路に供給すること等により、 NO_x 吸蔵還元触媒に流入する排気の空燃比を一時的にリッチ空燃比に調整する煩雑な操作が必要となる問題があった

【0007】本発明は、上述した従来の排気浄化触媒の問題に鑑み、排気の空燃比をリッチ空燃比に調整するこ

となく、しかも高いNOx 浄化効率を達成可能な排気浄 化方法を提供することを目的としている。

[0008]

【課題を解決するための手段】請求項1に記載の発明によれば、酸化触媒成分を含み、所定の温度領域より高い温度領域では供給された還元剤を酸素の存在下において燃焼させ、前記所定の温度領域では供給された還元剤を酸素の存在下において燃焼を伴わずに酸化して継続的に反応活性物質を生成する低温酸化反応を行う排気浄化触媒を排気通路に配置し、前記排気浄化触媒を前記所定の温度領域に維持しつつ排気浄化触媒に還元剤を供給することにより還元剤の前記低温酸化反応を生じさせ継続的に前記反応活性物質を生成し前記排気浄化触媒に空気過剰率が1.0以上の燃焼排気を供給し、前記排気浄化触媒上で生成した前記反応活性物質と排気中のNOxとを反応させて排気中のNOxを還元浄化する排気浄化方法が提供される。

【0009】すなわち、請求項1の発明では還元剤の低温酸化反応により反応活性物質を継続的に生成し、この反応活性物質と排気中の NO_X とを反応させて NO_X を還元浄化する。ここでいう反応活性物質とは、例えば炭化水素等のラジカル(遊離基)のことである。通常、酸化力の強い(活性化した)酸化触媒等で酸素過剰雰囲気下で炭化水素(HC)が酸化する場合にも酸化過程で中間生成物としてHCラジカルが発生するが、発生したラジカルは直ちに酸素と反応して CO_2 等に変化する。すなわち、酸化力の強い酸化触媒上でHCが酸化すると炭化水素の燃焼が生じる。

【0010】酸化触媒の活性が低い低温領域で還元剤を酸化させると、還元剤の酸化により生成したラジカルは直ちには酸素とは反応せずラジカルの状態が維持される。また、この場合、触媒の活性が高い場合に較べて還元剤の酸化速度は遅く、供給された還元剤は一挙には酸化せず、比較的少量ずつ酸化していくため、触媒上では継続的にラジカルが発生するようになる。本明細書では、触媒の低温領域での上述の燃焼を伴わない酸化反応(継続的にラジカル成分が生成される酸化反応)を低温酸化反応と呼んでいる。また、低温酸化反応は、還元剤の酸化反応と呼んでいる。また、低温酸化反応は、還元剤の酸化反応とり発生する反応熱が還元剤の有する固有の発熱量より低くなる酸化反応とも言うことができる。炭化水素等のラジカルは、反応活性が非常に強く酸素の存在下においてもNOx等の化学的に不安定な物質と優先的に反応する。

【0011】請求項1の発明では、酸化触媒を例えば活性化温度より低い比較的低温の領域で使用し、酸素過剰雰囲気下で(リーン空燃比の排気を触媒に供給しながら)炭化水素等の還元剤を触媒に供給する。これにより、触媒上では継続的に炭化水素等のラジカルが生成されるようになり、生成したラジカルは排気中のNOxと反応しNOxが還元浄化される。すなわち、低温酸化反

応により生じた還元剤のラジカルを用いて NO_x を還元することにより、酸素過剰雰囲気を維持したままで高い効率で排気中の NO_x を還元浄化することが可能となる。

【0012】なお、気体状の還元剤を触媒に供給すると、低温酸化反応によるラジカルの生成速度が過大になり、過剰に生成したラジカルが酸素と反応して消費されるとともに、反応により触媒温度が上昇してしまい低温酸化反応が生じにくくなるおそれがある。このため、触媒に供給する還元剤は液体状のものを使用して、触媒上での蒸発の過程を経て低温酸化反応が生じるようにすることにより、比較的低い速度で継続的にラジカルが生成されるようにすることが好ましい。

【0013】請求項2に記載の発明によれば、前記排気 浄化触媒に供給する燃焼排気の空気過剰率を1.0以上 かつ1.7以下とする請求項1に記載の排気浄化方法が 提供される。 すなわち、 請求項2に記載の発明では排気 浄化触媒の雰囲気酸素濃度が低温酸化反応でラジカルが 最も継続的に生成し易い条件に制御される。還元剤の低 温酸化反応によりラジカルを生成するためには酸素が必 要となる。このため、排気浄化触媒に供給する排気の空 気過剰率は1.0以上である必要がある。一方、排気中 の酸素濃度が高くなるにつれてラジカルの生成速度は速 くなるが、この場合には供給した還元剤が短時間でラジ カルに変化してしまい、触媒上に継続的にラジカルが存 在する状態を実現することが困難になる場合がある。実 験の結果、触媒上に継続して還元剤のラジカルが存在す る状態を実現するためには空気過剰率が1.0以上かつ 1. 7以下の範囲が好ましいことが判明している。本発 明では、排気浄化触媒に供給する排気の空気過剰率を 1.0以上1.7以下とすることにより供給した還元剤 により触媒上に継続的にラジカルを生成させ、排気中の

【0014】請求項3に記載の発明によれば、前記排気 浄化触媒は、酸化触媒成分と還元触媒成分とをそれぞれ 酸化触媒成分による酸化能力と還元触媒成分による還元 能力とがほぼ同等になる量だけ含む請求項1または請求 項2に記載の排気浄化方法が提供される。すなわち、請 求項3に記載の発明では、排気浄化触媒は酸化触媒成分 に加えて還元触媒成分を含んでおり、還元触媒成分の還 元能力が酸化触媒成分の酸化能力にほぼ拮抗するように されている。前述したように、触媒の酸化能力が高いと 供給された還元剤は一挙に燃焼してしまい低温酸化反応 が生じなくなる。また、酸化触媒成分は一般的に温度が 高くなるにつれて酸化能力が増大する。このため、酸化 触媒成分のみを使用する場合には触媒が活性化する温度 よりかなり低い温度で触媒に還元剤を供給する必要が生 じ、触媒の使用温度範囲が狭くなる傾向がある。本発明 では、排気浄化触媒に酸化触媒成分に加えて還元触媒成 分を担持させることにより、相対的に酸化触媒成分の酸

NOx を連続的に還元浄化可能としている。

化能力を低減するようにしている。これにより、触媒の 温度が高くなっても排気浄化触媒全体としての酸化能力 は増大せず、比較的高温でも還元剤の低温酸化反応を生 じさせることが可能となる。すなわち、本発明では、酸 化触媒成分に加えて還元触媒成分を排気浄化に担持させ たことにより、広い温度範囲で還元剤ラジカルを触媒上 に継続的に生成することが可能となっている。

【0015】請求項4に記載の発明によれば、前記排気 浄化触媒は供給された還元剤を触媒内に保持し、酸素存 在下の前記所定温度領域において、前記保持した還元剤 の低温酸化反応を生じさせることにより触媒上に継続的 に前記反応活性物質を生成する請求項1から請求項3の いずれか1項に記載の排気浄化方法が提供される。すな わち、請求項4に記載の発明では排気浄化触媒は供給さ れた還元剤を触媒内に保持する機能を付与されている。 この機能は、例えば触媒担体として水素吸蔵合金やペロ ブスカイト構造を有する物質等のように、構造内に炭化 水素や水素等を吸着または吸収可能なものを使用するこ とにより付与できる。触媒内に還元剤を保持可能とする ことにより、保持された還元剤が所定温度領域において 徐々に放出され触媒上で低温酸化反応を起こすようにな る。このため、触媒上では還元剤のラジカルが継続的に 発生するようになる。

【0016】請求項5に記載の発明によれば、内燃機関の排気通路に、供給された還元剤を保持し所定の活性化温度以上の触媒温度において酸素過剰雰囲気下で還元成分と排気中のNOxとを選択的に反応させることが可能な、酸化触媒成分を含む排気浄化触媒を配置し、該排気浄化触媒に還元剤を供給し酸素過剰雰囲気下で前記排気浄化触媒温度を前記還元成分の沸点より高く、かつ前記活性化温度より低い所定の温度領域にすることにより、前記還元成分に燃焼を伴わずに酸化して反応活性物質を生成する低温酸化反応を生じさせ、生成した反応活性物質と機関排気中のNOxとを反応させ排気中のNOxを還元浄化する内燃機関の排気浄化方法が提供される。

【〇〇17】すなわち、請求項5に記載の発明では、酸化触媒成分を含む排気浄化触媒を還元剤の低温酸化反応が生じる領域で使用することにより還元剤のラジカルを生成し排気中のNOxを還元浄化する。前述したように、選択還元触媒等の排気浄化触媒は触媒温度が活性化温度以上である場合には、酸素過剰雰囲気下においても炭化水素等の還元剤と排気中のNOxとを選択的に反応させてNOxを還元することができるが、酸素過剰雰囲気下では還元剤と排気中の酸素との反応が支配的になるためNOxの浄化率は低くなる。本発明では、酸化触媒成分を含む排気浄化触媒を所定の温度に維持することにより還元剤に低温酸化反応を生じさせるようにして酸素過剰雰囲気下においてもNOxの高い浄化率を達成する。還元剤の低温酸化反応により継続的に触媒上に還元剤の反応活性物質(ラジカル)を発生させることによ

り、過剰酸素雰囲気下においてもラジカルとNOx との 反応が優先的に起こるようになり排気中のNOx が浄化 される。なお、排気浄化触媒が活性化する温度では酸化 触媒成分の能力が高くなっており還元剤の燃焼が生じる ため、上記所定温度は活性化温度より低い温度とされ る。また、排気浄化触媒に供給された還元剤が液状のま までは低温酸化反応は生じにくくなるため、上記所定温 度は還元剤の沸点より高い温度であることが必要とな る。

【0018】請求項6に記載の発明によれば、前記内燃機関の始動前に前記排気浄化触媒に前記還元剤を供給する請求項5に記載の内燃機関の排気浄化方法が提供される。すなわち、請求項6に記載の発明では内燃機関の始動前、すなわち排気浄化触媒に排気が到達する前に排気浄化触媒に還元剤を供給しておく。供給された還元剤は排気浄化触媒に吸着され、或いは排気浄化触媒表面上を覆った状態になる。

【0019】この状態で機関が始動して排気が排気浄化 触媒に到達すると排気浄化触媒温度が上昇する。排気浄 化触媒の温度が低温酸化反応が生じる領域に入ると供給 された還元剤は排気浄化触媒上で気化し低温酸化反応を 生じる。還元剤は機関始動前に触媒全体に供給されてい るため、この場合低温酸化反応は触媒全体で生じ触媒表 面全体が生成したラジカルに覆われた状態になる。

【0020】機関を始動後NO〟を含む排気が排気浄化 触媒に供給されてから還元剤を供給すると生成したラジ カルは直ちにNOx と反応し消費される。このため、ラ ジカル生成速度とNOx流入量とのバランスがとれてい る間は、NOxがラジカルにより良好に浄化されるが、 低温酸化反応によるラジカル生成速度は比較的遅いた め、一旦ラジカル生成とNOxの流入とのバランスが崩 れると例えば触媒が生成するラジカルの量が不足し排気 中のNOxが未反応のまま触媒を通過してしまう場合が ある。また、触媒表面にNOxや酸素が吸着された状態 では還元剤のラジカルは生成しにくくなり、充分なラジ カルが生成されない場合が生じる。本発明では、排気が 到達する前に排気浄化触媒に還元剤を供給するため、排 気浄化触媒の温度上昇時には機関停止中に触媒表面に吸 着された酸素は還元剤と反応して消費される。このた め、本発明では触媒全体で還元剤の低温酸化反応が生じ るようになり、触媒表面全体が生成されたラジカルで覆 われるようになる。このため、排気中のNOx が触媒表 面に吸着されることが防止されるとともに、流入するN Ox量の変動が生じてもラジカルが不足する事態が生じ ない。

【0021】請求項7に記載の発明によれば、前記排気 浄化触媒は白金またはパラジウムを触媒成分として担持 し、生成した前記反応活性物質を触媒成分表面に吸着可 能である請求項5または請求項6に記載の内燃機関の排 気浄化方法が提供される。すなわち、請求項7に記載の 発明では排気浄化触媒は白金またはパラジウムを触媒成分として担持している。白金やパラジウムは酸化触媒として機能し生成されたラジカルを表面上に良好に吸着する。これにより、低温酸化反応により生成されたラジカルは触媒表面を覆うようになる。

【0022】請求項8に記載の発明によれば、還元剤の供給を継続して行うことにより前記低温酸化反応により前記反応活性物質を触媒上に継続的に生成し、消費された反応活性物質を触媒に補充する請求項5から請求項7のいずれか1項に記載の内燃機関の排気浄化方法が提供される。すなわち、請求項8に記載の発明では還元剤の供給が継続的に行われる。このため、NOx との反応により消費されたラジカルが補充され触媒上には常に充分な量のラジカルが存在するようになり、ラジカルの不足によるNOx 浄化率の低下が生じない。なお、還元剤の継続的な供給とは、例えば常時少量の還元剤を触媒に連続的に供給する連続供給と、必要量の還元剤をある時間毎に供給する間欠供給との両方を含んでいる。

【0023】請求項9に記載の発明によれば、前記還元 剤として液状炭化水素を使用し、炭化水素の性状に応じて触媒への還元剤の供給量または触媒温度の少なくとも一方を変化させることにより触媒上で所望量の前記反応活性物質を生成させる請求項5に記載の内燃機関の排気浄化方法が提供される。すなわち、請求項9に記載の発明では還元剤として液状炭化水素、例えば燃料油等が使用される。また、液状炭化水素はその性状により同一条件であっても炭化水素ラジカルの生成量が異なることが判明している。例えばセタン価の高い燃料油では同一条件でもセタン価の低い燃料油よりラジカルの生成量が大きい。

【0024】本発明では、供給する還元剤の性状により 還元剤供給量と触媒温度の少なくとも一方を変化させる ことにより触媒上でのラジカルの生成量を制御する。例 えばセタン価の低い燃料油を還元剤として使用する場合 には、セタン価の高い燃料油を使用する場合に較べて燃 料油供給量を増大するようにすれば生成するラジカルの 量が低下することが防止される。また、ラジカル生成量 は同一の燃料油であっても触媒温度の上昇とともに増大 するため、セタン価の低い燃料油を使用する場合にはセ タン価の高い燃料油を使用する場合にはセ タン価の高い燃料油を使用する場合にはセ タン価の高い燃料油を使用する場合にはセ タン価の高い燃料油を使用する場合にも 上昇させるようにしても良い。

【0025】請求項10に記載の発明によれば、前記排気浄化触媒を通過後の排気中の特定成分濃度を検出し、該特定成分の濃度に応じて前記排気浄化触媒への還元剤供給条件を変化させる請求項5に記載の内燃機関の排気浄化方法が提供される。すなわち、請求項10に記載の発明では、排気浄化触媒通過後の排気中の特定成分濃度に応じて排気浄化触媒への還元剤供給条件を変化させる。ここで、排気中の特定成分としては、排気浄化触媒で生成される還元剤ラジカル(例えばアルデヒド基)や

 NO_x 成分等のように排気浄化触媒での NO_x の浄化状態を表すものが使用される。例えば排気浄化触媒通過後の排気の NO_x 濃度が高い場合(或いはラジカル成分濃度が低い場合)には、排気浄化触媒出でのラジカル生成量が少ないために未浄化の NO_x が下流側に流出したと考えられる。この場合には、排気浄化触媒への還元剤供給量を増大すること等により、排気浄化触媒上でのラジカル生成量を増大すれば未浄化の NO_x が下流側に流出することを防止できる。これにより、機関の NO_x 生成量が変動するような場合にも常に NO_x の浄化効率を高く維持することが可能となる。

【0026】請求項11に記載の発明によれば、更に、前記排気浄化触媒の上流側に、酸化触媒成分を含み前記所定の温度領域において供給された還元剤に低温酸化反応を生じさせることの可能な上流側排気浄化触媒を配置し、該上流側排気浄化触媒の酸化能力を下流側の排気浄化触媒の酸化能力より小さくなるようにした請求項5に記載の内燃機関の排気浄化方法が提供される。

【0027】すなわち、請求項11に記載の発明では、 上流側に配置した酸化能力の比較的小さい排気浄化触媒 と、下流側に配置した比較的酸化能力の大きい排気浄化 触媒とを用いて低温酸化反応によりラジカルを生成す る。前述したように、触媒上では還元剤の低温酸化反応 が比較的低い速度で生じ還元剤のラジカルへの転換が一 挙に生じることなくラジカルが継続的に生成されること がNOxの浄化率を向上させるうえでは望ましく、この ためには触媒の酸化能力は小さい方が好ましい。しか し、還元剤の低温酸化反応の速度が低いと、供給された 還元剤のうちラジカルに転換されずそのまま触媒下流側 に流出する量が増大することになる。本発明では、上流 側に比較的酸化能力の低い排気浄化触媒を配置し、この 排気浄化触媒により還元剤に低温酸化反応を生じさせる ことにより継続的にラジカルを生成し排気中のNOxを 高い浄化率で浄化する。一方、この場合には還元剤の一 部が排気浄化触媒上でラジカルに転換されることなく下 流側に流出することになる。しかし本発明では、排気浄 化触媒の下流側には酸化能力が比較的高い排気浄化触媒 が配置されているため、上流側の触媒を通過した未反応 の還元剤は下流側の排気浄化触媒に一部が吸着され、残 りは排気浄化触媒上で低温酸化反応によりラジカルに転 換し、上流側の排気浄化触媒で浄化されなかった排気中 のNOxと反応する。このため、上流側の排気浄化触媒 から流出する還元剤の大気への放出が防止されるととも に、全体としてのNOx の浄化効率が更に向上する。 [0028]

【発明の実施の形態】以下、本発明の実施形態について説明する。以下の実施形態では、供給された還元剤(燃料油)を炭化水素ラジカルに転換することにより排気中のNOxを浄化する排気浄化触媒が使用される。この触媒は、担持成分、構成等については公知の排気浄化触媒

と類似するが、従来の触媒とは全く異なる条件下で機能 し排気中のNOxを高効率で浄化する。このため、以下 の説明では、従来の排気浄化触媒と区別するために本発 明で使用される排気浄化触媒を便宜的にRAP (Radica l Active Process) 触媒と呼ぶことにする。

【0029】まず、最初にRAP触媒のNOx 浄化作用 について説明する。RAP触媒は、白金(Pt)、パラ ジウム (Pd)等の酸化触媒成分を含む触媒であり、例 えばPt、Pdを担持した選択還元触媒、或いはNOx 吸蔵還元触媒等もRAP触媒として使用することが可能 である。これらの触媒は通常の使用法では、担持した酸 化触媒成分の酸化能力が高くなる活性化温度(例えば3 00℃)以上の領域で使用される。活性化温度以上の触 媒温度でこれらの酸化触媒成分に還元剤(燃料油)が供 給されると、還元剤は触媒上で燃焼し、H2O、CO2 に転換される。これに対して、RAP触媒では酸化触媒 成分の活性化温度より低い温度範囲で還元剤(燃料油) を供給し、低温酸化反応を生じさせることによって炭化 水素の中間酸化物を生成しこの中間酸化物から炭化水素 のラジカル(遊離基)(例えばアルデヒド系ラジカル、 カルボン酸系ラジカル、アルコール系ラジカル等)を生 成する。 これらのラジカルは反応活性が高くNOx等の 化学的に不安定な物質と特に反応し易いため、酸素過剰 雰囲気下においても酸素との反応よりNOxとの反応が 優先されるようになる。

【0030】すなわち、RAP触媒に酸素過剰雰囲気下で炭化水素R・H(Rはアルデヒド基、メチル基等)が供給されると炭化水素が酸化されて、

 $R \cdot H + O_2 \rightarrow RO + OH$

の反応により中間酸化物ROが生成される。この中間酸化物は更に触媒(Pt等)上で、 $RO \rightarrow R$. の反応によりR. (ラジカル)に転換される。

【0031】上記により生成したラジカルR. は NO_X (NO、 NO_2 等)と優先的に反応して、 NO_X から酸素を奪い酸化物 RO_2 を生成する。すなわち、

 $R. + NO_x \rightarrow RO_2 + N_2$

これにより、 NO_x が N_z に還元される。触媒の活性化温度以上の領域における炭化水素の酸化反応においても中間酸化物ROは生成されているが、この領域では触媒の酸化能力が高いため生成された中間酸化物は酸素の存在下で直ちに酸化され最終酸化物RO $_z$ になってしまうため、触媒の高温領域における酸化反応(燃焼)ではラジカルR. は生成されない。

【0032】上記の炭化水素ラジカルR.を生成する反応を本明細書では低温酸化反応と称しているが、低温酸化反応は、炭化水素の燃焼を伴わない酸化反応、或いは反応により生成される熱量が供給された炭化水素の発熱量より小さくなる領域での酸化反応として定義することができる。低温酸化反応には上述したように中間酸化物の生成のために酸素が必要となる。また、生成したラジ

カルは酸素存在下においても活発にNOxと反応してN Ox を還元するため、高いNOx 浄化率を達成すること ができる。このため、RAP触媒を空気過剰率が1.0 より大きい燃焼排気が流通する排気通路に配置し、還元 剤をRAP触媒に供給して低温酸化反応を生じさせるこ とにより、RAP触媒上で生成した炭化水素ラジカルを 用いて排気中のNOxを還元浄化することが可能とな る。この場合、従来の選択還元触媒では酸素存在下でN Ox の還元反応を行うため低いNOx 浄化率しか達成で きなかったのに対し、炭化水素ラジカルは酸素存在下に おいてもNOx と優先的に反応するため高いNOx 浄化 率を達成することが可能となる。また、従来のNOx吸 蔵還元触媒では吸収したNOxを還元浄化するために触 媒に多量の還元剤を供給して触媒に流入する排気の空気 過剰率を1.0以下に低下させる必要があり、排気の空 気過剰率の複雑な制御が必要になっていたのに対して、 RAP触媒触媒では流入する排気の空気過剰率を1.0 以上(すなわちリーン空燃比)に固定したままで排気中 ONO_{χ} の還元浄化が可能となる利点がある。

【0033】RAP触媒を使用して、排気中の NO_x を高い効率で浄化するためには、(1)触媒上で低温酸化反応が生じること、及び、(2)低温酸化反応により継続的にラジカルが生成されること、の2つの条件を満足することが必要となる。これらの条件を満足するためには、触媒の温度、排気の空気過剰率、還元剤供給条件等を特定の範囲に調整することが好ましい。以下、これらの条件について説明する。

【0034】(1)触媒温度条件

前述したように、触媒の酸化能力が高い状態では供給さ れた還元剤 (燃料油) は触媒上で燃焼してラジカルを生 成することなくСО2等の最終酸化物になってしまう。 このため、触媒温度は少なくとも触媒の活性化温度より 低く触媒の酸化能力が比較的低くなる温度領域になけれ ばならない。また、触媒温度が低過ぎると酸化反応その ものが生じなくなる。また、RAP触媒に供給された還 元剤が液体の状態になっていると化学反応が生じにくい ため、少なくとも低温酸化反応が生じる状態では還元剤 は気化している必要があり、触媒温度は供給された還元 剤の沸点より高くなっている必要がある。更に、低温酸 化反応が生じる温度領域でもラジカル生成速度は触媒温 度が高いほど大きくなるが、ラジカル生成速度が過大に なると供給した還元剤が一挙にラジカルに転換されてし まう。供給した還元剤が一挙にラジカルに転換されてし まうと、触媒上では一時的に還元剤が不足してラジカル の生成が停止してしまう。一方、供給した還元剤が一挙 にラジカルに転換されると一度に多量のラジカルが触媒 上に生成されるが、このラジカルはそのまま触媒上に残 留するわけではなくNOx の還元に使用されなかった過 剰なラジカルは排気中の酸素と反応して消費されてしま う。このため、ラジカル生成速度、すなわち低温酸化反 応の速度が大き過ぎると触媒上に一時的にラジカルが存在しない状態が生じ、NOxを浄化することができない。従って、触媒温度は低温酸化反応の速度が比較的低くなる領域とする必要がある。

【0035】すなわち、上記からNOx 浄化のためのR AP触媒触媒温度は、少なくとも酸化触媒成分の活性化温度より低く、しかも供給する還元剤の沸点より高いことが必要とされ、更に比較的低い反応速度で低温酸化反応が生じることが必要とされる。この温度領域は、使用する触媒成分や還元剤の種類によっても異なってくるが、例えば、軽油を還元剤として使用する場合には約170℃が下限温度となる。

【0036】また、上記温度領域の上限については、触媒の酸化能力が高いほど低くなる傾向があり、酸化能力が高い触媒を使用する場合には低くなり、酸化能力が低い触媒を使用する場合には高くなる。また、酸化能力の高い酸化触媒を担持させる場合にも、同時に還元触媒成分(例えばロジウム(Rh))を酸化触媒とともに担持させることにより上記温度領域の上限を高くすることが可能である。

【0037】すなわち、還元触媒成分を酸化触媒に加えて担持させることにより酸化触媒成分の酸化能力が還元触媒成分の選元能力により抑制されるため、触媒全体としての酸化能力は高温の領域でも比較的小さくなる。特に、酸化触媒成分による酸化能力と還元触媒成分による還元能力とがほぼ同等になるような量の酸化触媒成分と還元触媒成分とを触媒に担持させると低温酸化反応が生じる上限温度を大きく拡大することが可能となる。例えば、Pt、Pd等の酸化触媒成分のみを担持させた場合には活性温度(300℃)以上では低温酸化反応は生じないが、Pt、Pd等の酸化触媒とともに、ロジウム(Rh)等の還元触媒成分を担持させることにより低温酸化反応の上限温度は430℃程度まで上昇することが

【0038】従って、NOx 浄化のためのRAP触媒の使用温度領域は約170℃~約430℃程度となる。

(2)排気の空気過剰率

判明している。

上述したように、低温酸化反応によるラジカル生成のためには酸素が必要となる。このため、RAP触媒は酸素過剰雰囲気に調整する必要があり、触媒に供給する排気の空気過剰率は1.0以上となっている必要がある。

【0039】一方、低温酸化反応の反応速度は排気中の酸素濃度が高いほど高くなる。このため、排気中の酸素濃度が過度に高くなると反応速度の増大のために供給された還元剤が一挙にラジカルに転換されてしまい、触媒温度が高い場合と同様に継続的にラジカルを生成することができなくなる問題が生じる。このため、排気の空気過剰率は1.0以上の特定の範囲にあることが必要とされる。この空気過剰率の範囲は使用する触媒、温度条件等によっても変化するが、Pt、Pdを担持させたRA

P触媒では実験の結果空気過剰率が $1.0\sim1.7$ の範囲にあるときに最も高い NO_{χ} 浄化効率が得られることが判明している。

【0040】通常、ディーゼル機関の場合には運転時の空気過剰率は1.6程度までは低下させることが可能であるため、上記空気過剰率はディーゼル機関でも充分に達成可能な範囲となっている。

(3) 還元剤供給条件

上述したように、NOx を高効率で浄化するためには供給された還元剤が一挙にラジカル化しないで比較的低い反応速度で継続的に触媒上にラジカルを生成し続けることが望ましい。このためには、還元剤を液体の状態でRAP触媒に到達させることが好ましい。還元剤が気体状態で触媒に到達すると触媒上では反応が急激に進んでしまい、供給された還元剤が一挙にラジカルに転換される場合が生じるからである。還元剤が液状のままで触媒に到達すると、還元剤が触媒上で気化する過程を経てから低温反応を生じるため、気化の過程で気体状の還元剤が比較的緩やかな速度で還元剤に供給されるようになる。このため、液体状の還元剤を供給することにより、ラジカル生成速度が低くなり触媒状で継続的にラジカルが生成するようになる。

【0041】上記のように、RAP触媒で排気中のNO 、を高効率で浄化するための条件は以下のようになる。

(1) 触媒温度を、供給する還元剤の沸点以上であり、 担持した酸化触媒成分の活性化温度より低い特定の低温 反応が生じる温度(例えば170℃~430℃)に維持 する。

【0042】(2)排気の空気過剰率を1.0以上の、 ラジカル生成速度が過大にならない範囲(例えば1.0 ~1.7程度)に維持する。

(3)液体の還元剤を使用し、還元剤が液体状態のままで触媒に到達するようにする。

以下に説明する実施形態では、RAP触媒を使用して上記(1)から(3)の条件を満たすことにより NO_x の高い浄化効率を達成している。

【0043】の第1の実施形態

図1は、本発明の排気浄化方法の第1の実施形態を実施する排気浄化装置の概略構成を説明する図である。図1において、3は内燃機関、火炉等の燃焼排気が流れる排気通路、10は排気通路3に配置された後述するRAP触媒を示す。本実施形態では、触媒10の上流側の排気通路に液体還元剤を供給する還元剤供給装置20が設けられている。

【0044】還元剤供給装置は、ポンプ、加圧タンク等の加圧還元剤供給源21と、供給源21から供給される還元剤を触媒10上流側の排気通路3内に噴射する還元剤ノズル23とを備えている。図1に25で示すのは、加圧供給源21からノズル23に供給される還元剤の流量を調節する制御弁である。本実施形態で使用される還

元剤としては、触媒10上で気化して炭化水素を生成する液体炭化水素が使用され、例えば比較的気化しにくい灯油、軽油等の燃料油が使用される。還元剤ノズル23は、噴射された燃料油が排気中で気化することなく液状のままで触媒10に到達するように触媒10に近接した位置に配置されている。

【0045】本実施形態で使用するRAP触媒は、例えば、白金(Pt)、パラジウム(Pd)等の酸化触媒成分を多孔質ゼオライト(例えばZSM5等)に担持したものとされ、一般的なPt/Pd系の選択還元触媒と同様な構成とされている。また、排気通路3に流通する燃焼排気は空気過剰率が1.0~1.7の範囲になるように内燃機関や火炉の燃焼状態が調整されている。また、触媒10入口での排気温度は供給される還元剤の沸点(例えば170℃)より高く、触媒10の酸化触媒成分の活性化温度(例えば300℃程度)より低い、触媒10上で還元剤の低温酸化反応が生じる温度範囲になるように触媒10と内燃機関または火炉等の排気発生源との距離が設定されている。

【0046】本実施形態では、マイクロコンピュータ等の制御装置30により制御弁25の開度を調節することにより、ノズル23から噴射する還元剤の流量を制御している。ノズル23からの還元剤噴射量は、排気通路3を流れる排気流量及び NO_X 濃度に応じて制御される。ノズル23から噴射された還元剤は液状のまま触媒10に到達し、触媒10上で比較的緩やかに蒸発する。上述したように、本実施形態では排気温度、空気過剰率が触媒上で低温酸化反応が生じる範囲に調節されているため、触媒上では気化した還元剤が中間酸化物ROを経てラジカルに転換され、生成したラジカルが排気中の NO_X が高効率で浄化される。

【0047】なお、ノズル23からの還元剤の噴射は、連続的に行っても良いし、パルス状に間欠的な噴射を行っても良い。本実施形態では、炭化水素を吸着可能な触媒担体が使用されているため、間欠的に還元剤を噴射した場合も供給された還元剤の一部は触媒10の担体に吸着され、その後担体から侵出して低温酸化反応を生じるため、触媒10上ではラジカルが継続して生成され続けるようになる。

【0048】また、本実施形態ではPt、Pd等の酸化触媒のみを触媒10上に担持しているが、これらの酸化触媒に加えてロジウムRh等の還元触媒成分を触媒10上に担持させ、全体としてPt、Pd等の成分の酸化能力とRh等の成分の還元能力とが略同等となるようにすれば、更に高温の領域でも高いNO、浄化効率を維持することが可能となる。

【0049】の第2の実施形態

図2は本発明の排気浄化方法の第2の実施形態を実施する排気浄化装置の概略構成を説明する図である。本実施

形態では、第1の実施形態と同様なRAP触媒10を内 燃機関(本実施形態ではディーゼル機関)1の排気通路 3に配置している。

【0050】図2に20で示すのは第1の実施形態と同様な還元剤ノズル23、制御弁25及び還元剤供給源21を備えた還元剤供給装置である。本実施形態では、還元剤としては機関1の燃料と同じディーゼル燃料油が使用される。更に、本実施形態では、還元剤ノズル23の上流側に空気を噴射する搬送空気供給装置40が設けられている。搬送空気供給装置40は還元剤ノズル23の上流側の排気通路3に配置されたエアノズル41と、ノズル41に機関始動前に加圧空気を供給可能な電動エアポンプ、エアタンク等の加圧空気供給源43を備えている。

【0051】本実施形態では、機関1始動前(例えばメ インスイッチがオンにされてから機関始動操作が行われ るまでの間)に触媒10に還元剤を供給する。すなわ ち、制御装置30は機関1のエンジンキーが挿入された ことを検知すると、電動エアポンプ43を起動してエア ノズル41から排気通路3中にエアを供給する。このエ アにより排気通路3には、触媒10を通って流れる空気 流が生じる。また、同時に制御回路30は制御弁25を 開弁して還元剤ノズル23から燃料油を噴射する。これ により、還元剤ノズル23から噴射された燃料油はエア ノズル41から噴射されたエアにより生じる搬送空気流 に乗って触媒10に到達し、触媒10の表面に付着す る。制御回路30は、予め定めた時間だけエアノズル4 1からのエア噴射と還元剤ノズル23からの燃料油噴射 とを行った後で機関1を始動する。ここで、燃料油噴射 を行う時間は、ノズル23から噴射された燃料油により 触媒10表面全体が覆われるのに必要な時間とされ、実 験等により定められる。

【0052】これにより、触媒10表面全体が還元剤で 覆われた状態で機関1が始動される。本実施形態では、 ディーゼル機関1は通常よりも低い空気過剰率(例えば 空気過剰率で1.6程度)で運転されるように機関1の 燃料噴射量が設定されている。また、触媒10は、通常 運転時に触媒10に到達する排気温度が前述した低温酸 化反応が生じる温度範囲の上限を越えない位置に配置さ れている。

【0053】機関1が始動して機関の排気が触媒10に 到達するようになると、触媒10の温度は上昇し、前述 した還元剤の低温酸化反応が生じる温度領域になる。こ の時、触媒10の全表面を覆った還元剤(燃料油)が気 化を開始する。また、機関1の排気の空気過剰率は1. 6程度になっているため、触媒10の温度が低温酸化反 応が生じる温度領域になると、触媒10の全体で燃料油 が低温酸化反応を生じ徐々にラジカルを生成するように なり、触媒10全体でPt、Pd等の触媒成分表面に生 成したラジカルが吸着され触媒成分表面がラジカルで覆 われるようになる。このラジカルは排気中の NO_x と反応し NO_x を浄化しながら消費されていく。このため、機関始動後に触媒 10への還元剤の供給を停止したままでいると、始動前に供給された還元剤はやがて消費されてしまい、触媒 10表面上にラジカルが吸着されていない状態が生じる。触媒 10表面にラジカルが存在しない状態では、排気中の酸素や NO_x がPt、Pd等の触媒成分表面に吸着されてしまい、この部分では還元剤を供給してもラジカルが生成されにくくなる。

【0054】このため、本実施形態では機関が始動した後は還元剤ノズル23からの還元剤の供給を継続的に行い、触媒10表面全体に常にラジカルが吸着された状態になるようにしている。機関始動後のノズル23からの還元剤の噴射量は触媒10で NO_x との反応により消費されるラジカルの量を補充可能な量とされる。これにより、触媒10上では NO_x との反応に消費されるラジカルの量と略同等の量のラジカルを生成する還元剤が供給されるようになり、常に触媒表面全体がラジカルで覆われた状態が継続するようになる。

【0055】このように、触媒10表面全体にラジカルが吸着された状態を継続することにより、例えば機関運転条件の変化により排気中の NO_x 濃度が多少増大した場合でも、ラジカルの量を充分に確保することができるため、運転条件の変動等によりラジカルの不足が生じ未浄化の NO_x が流出することが防止される。なお、本実施形態においても還元剤ノズル23からの還元剤の噴射は連続的であっても良いし、パルス状に間欠的に行っても良い

【0056】 第3の実施形態

本実施形態では、図2と同じ構成の装置を用いて機関1の運転中に還元剤の性状に応じて機関運転状態や還元剤供給量を変化させて触媒10上で常に所定量のラジカルが生成されるようにする。RAP触媒でのラジカルの生成量(生成速度)は、温度条件や酸素濃度、還元剤の供給量等の条件が同一であっても還元剤の性状によって変化する。例えば還元剤としてディーゼル燃料油を供給する場合には燃料油のセタン価が高いほど同一条件でもラジカルの生成量が大きいことが判明している。

【0057】このため、同一の条件で還元剤を供給していると機関1の燃料としてセタン価の低いものを使用した場合には触媒10上で生成するラジカルの量が不足して未浄化のNOxが触媒下流側に流出する場合がある。そこで、本実施形態では、機関1の燃焼室内圧力をモニターすることにより、使用燃料のセタン価を検出し、セタン価に応じて触媒温度や還元剤供給量等の反応条件を変更するようにしている。

【0058】まず、燃焼室内圧力による使用燃料のセタン価検出方法について説明する。図3はディーゼル機関の燃焼室の圧縮行程と爆発行程とにおける圧力変化を模式的に示す図である。図3において圧縮行程ではピスト

ンの上昇により燃焼室内圧力は上昇し、圧縮行程上死点付近(図3、A点)で燃料が噴射されると、燃料の燃焼により上死点付近で燃焼室内圧力は急上昇する。図3に示すように燃料が噴射されるまでは圧縮行程における燃焼室内圧力は滑らかに上昇する。

【0059】ディーゼル機関では圧縮行程の早い時期は 圧縮による温度上昇が少なく燃焼室内空気の温度が低く 燃料の着火温度に到達していないため圧縮行程早期に燃 料噴射を行っても燃焼室は生じず、本来は図3に実線で 示すように滑らかに圧力が上昇するはずである。しか し、実際には圧縮行程早期(例えば、図3、B点)に少 量の燃料を噴射すると図3に点線で示すように噴射後圧 力が一時的に上昇する。しかし、この場合も燃焼は生じ ないため一時的に上昇した圧力は、その後通常の圧縮行 程時の圧力変化(実線)に一致するようになる。

【0060】図3のように、圧縮行程早期に燃料噴射を行った場合に噴射後一時的に圧力が上昇する理由は、燃料油中に含まれるセタン価の低い直鎖状の炭化水素成分が酸化して中間酸化物ROが形成され、その際の反応熱により一時的な圧力上昇が生じるものと考えられる。また、燃料中にセタン価の低い炭化水素成分が多く含まれるほど、すなわち燃料油のセタン価が高いほど上記反応が活発となるため、通常の圧縮行程中の圧力と圧縮行程早期の燃料噴射後の圧力上昇のピークとの差(図3、ΔP)は燃料油のセタン価が高い程大きくなる。このため、この圧力差ΔPを燃料油のセタン価を表す指標として用いることができる。

【0061】本実施形態では、機関1の特定の気筒に燃焼室内圧力を検出可能な燃焼室圧センサを配置しており、機関の運転中定期的にセタン価測定のために気筒圧縮行程の早い時期に少量の燃料を噴射し、その後の圧力上昇のピーク値を検出する。そして、このピーク値と通常の圧縮行程における同時期の燃焼室内圧力との差ΔPを算出し、使用燃料のセタン価を推定する。

【0062】また、本実施形態では制御回路30は、上記により推定されたセタン価に基づいて常に必要量のラジカルが触媒10上で生成されるように触媒10における反応条件を調節する。例えば、使用燃料のセタン価が低い場合には触媒上でのラジカルの生成量が低下する。このため、制御回路30は、還元剤ノズル23からの還元剤噴射量を増大することにより、触媒上でのラジカルの生成量の低下を防止する。これにより、使用する還元剤の性状の変化によるNOx 浄化率の低下が防止される。

【0063】なお、触媒10でのラジカルの生成速度は 触媒温度が高いほど大きくなる。このため、使用燃料の セタン価が低い場合には機関の負荷条件を変化させて触 媒に到達する排気温度を上昇させるようにしても良い。 また、触媒10でのラジカル生成速度は、排気の酸素濃 度が高いほど大きくなる。このため、使用燃料のセタン 価が低い場合には、機関への燃料噴射量を低減して排気 の空気過剰率を上昇させるようにしても良い。

【0064】の第4の実施形態

前述したように、RAP触媒上でのラジカルの生成量は 触媒温度と雰囲気酸素濃度に応じて変化する。ところ が、内燃機関の排気通路にRAP触媒を配置した場合に は、触媒温度と雰囲気酸素濃度は排気温度と排気の空気 過剰率により定まることになるため、機関運転状態の変 化等により排気温度や空気過剰率が変化するとそれに応 じて触媒上でのラジカル生成量が変化してしまう。ま た、触媒上でのラジカルの生成量は排気中のNO_x量に 応じて調節する必要がある。

【0065】そこで、本実施形態ではラジカル生成量を支配する条件(例えば排気温度、空気過剰率)等の変化に応じて触媒への還元剤供給条件を変えることにより機関運転条件の変化によるラジカル生成量の変動を防止するとともに、排気中のNOx量に応じて触媒上でのラジカル生成量を制御するようにしている。図4は、本実施形態の排気浄化方法の第4の実施形態を実施する排気浄化装置の概略構成を示す図である。図4において、図3と同一の参照符号は図3のものと同様の要素を示している。

【0066】本実施形態では、排気通路3の還元剤ノズル23上流側には排気中の酸素濃度を計測可能な酸素濃度センサ31が配置されている。また、RAP触媒10下流側の排気通路には排気温度を検出する温度センサ33及び排気中のNOx 濃度を検出するNOx センサ35が配置されている。制御回路30は酸素濃度センサ31から入力する酸素濃度C、温度センサ33から入力する排気温度T及びNOx センサ35から入力するNOx 濃度CNOxを一定時間毎に監視し、前回からの酸素濃度C、排気温度T、NOx 濃度CNOx の変化量 Δ C、 Δ T、 Δ CNOx を算出するとともに、これらの変化量に基づいて還元剤ノズル23からの還元剤の噴射量を制御する。

【0067】例えば、排気酸素濃度変化量ΔCが正の場合には触媒10上でのラジカル生成量は増大傾向にあるため制御回路30は、ΔCが正の値である限り還元剤ノズル23からの還元剤噴射量を一定量ずつ減少させる。また、反対にΔCが負の値である場合には触媒10上でのラジカル生成量は減少傾向にあるため、制御回路30はΔCが負の値である限り還元剤ノズル23からの還元剤噴射量を一定量ずつ増大させる。

【0068】また、同様に排気温度変化量ΔTが正の値の場合には、ラジカル生成量は増大傾向にあり、ΔTが負の値の場合にはラジカル生成量は減少傾向にある。このため、制御回路30はΔTの値が正である限り還元剤噴射量を一定量ずつ減少させ、負の値である限り還元剤噴射量を一定量ずつ増大させる。また、NOx 濃度変化量ΔCNOx が正の値である場合には、機関排気中のN

 O_x 量が増加した等のために触媒10上でラジカルが不足したことを意味するため、できるだけ速く触媒10上でのラジカル生成量を増大させる必要がある。そこで、この場合には制御回路30は還元剤噴射量を Δ CN O_x に比例する量だけ増大するようにする。

【0069】このように、排気温度と排気酸素濃度、触 媒10下流側の排気NOx 濃度に応じて還元剤噴射量を 制御することにより、常に触媒10上に適量のラジカル を生成することが可能となり、ラジカルの不足により未 浄化のNOx が触媒下流側に流出することが防止され る。なお、本実施形態では、触媒10下流側の排気NO x 濃度に応じて還元剤噴射量を調節する制御を行ってい るが、排気NOx 濃度に加えて、または排気NOx濃度 ともに触媒10下流側の排気中のラディカル成分濃度 (例えばアルデヒド濃度)を検出し、ラディカル成分濃 度に応じて還元剤噴射量を調節する制御を行っても良 い。すなわち、触媒上でのラジカル量がNOx 量に対し て不足する傾向にあると触媒下流側に流出するラジカル 成分の量は減少する。このため、触媒10下流側排気の ラジカル成分濃度が減少した場合には還元剤噴射量を増 大する制御を行うことによっても触媒10上に常に適量 のラジカルを生成することが可能となる。

【0070】 9第5の実施形態

図5は本発明の排気浄化方法の第5の実施形態を実施する排気浄化装置の概略構成を説明する図である。図5において、図2と同一の参照符号は同様な要素を示している。本実施形態においても、機関1の排気通路3上には図2と同様なRAP触媒からなる排気浄化触媒10が配置されている。しかし、本実施形態では排気浄化触媒10の上流側で還元剤ノズル23の下流側の排気通路3に別のRAP触媒(上流側排気浄化触媒)15が配置されている点が相違している。

【0071】本実施形態の上流側排気浄化触媒15は、排気浄化触媒10(下流側排気浄化触媒)と同様にPt、Pd等の酸化成分を担持しており下流側排気浄化触媒10と同様に還元剤の低温酸化反応を生じることが可能である。但し、本実施形態の上流側排気浄化触媒15はアルミナ等の担体を使用しており、供給された還元剤を吸着、保持する機能は有していない点が下流側排気浄化触媒10と相違している。また、上流側排気浄化触媒15のPt、Pd等の酸化成分の担持量は下流側排気浄化触媒15より少くされており、上流側排気浄化触媒15の酸化能力は下流側排気浄化触媒10の酸化能力より小さくなっている。

【0072】本実施形態においても、ディーゼル機関1は比較的低い空気過剰率(例えば1.6程度)で運転され、触媒10、15は機関運転中に触媒に到達する排気温度が触媒10、15において還元剤の低温酸化反応が生じる上限温度を越えない位置に配置されている。本実施形態においても機関運転中には還元剤供給装置20の

還元剤ノズル23から液体状の還元剤(ディーゼル燃料油)が噴射される。噴射された還元剤は、上流側排気浄化触媒15上で低温酸化反応を生じ、触媒上で生成したラジカルにより排気中のNOxが還元浄化される。本実施形態では、上流側排気浄化触媒15の酸化能力は下流側排気浄化触媒10に較べて小さくなるように触媒成分量が設定されている。前述したように、触媒上で低温酸化反応により継続的にラジカルを生成するためには、触媒の酸化能力は小さい方が好ましい。このため、酸化能力の低い上流側排気浄化触媒15上では継続的にラジカルが生成され、NOxの浄化率が高くなる。

【0073】ところが、本実施形態では上流側排気浄化触媒15の酸化能力を小さく設定したことによりNOxの浄化率を向上させることができるものの、酸化能力が小さいため上流側排気浄化触媒15では供給された還元剤のうち酸化されずに触媒15を通過する還元剤の量が増大してしまう。上流側排気浄化触媒15として、下流側排気浄化触媒10と同様な炭化水素吸着能力を有するものを使用すればある程度この問題は防止されるものの、その場合にも多少の炭化水素が下流側に流出するため、排気性状の悪化が生じるおそれがある。

【0074】そこで、本実施形態では上流側排気浄化触 媒15には炭化水素の吸着能力を付与せずに、未反応の 炭化水素はその全量が下流側に流出するようにして、下 流側に設けた排気浄化触媒10により排気の浄化を行 う。すなわち、本実施形態では、比較的多量の炭化水素 が上流側排気浄化触媒15で反応することなく下流側排 気浄化触媒10に流入する。本実施形態では、下流側排 気浄化触媒10においても低温酸化反応が生じる温度酸 素条件が成立しているため、下流側排気浄化触媒10に 到達した炭化水素は一部がラジカルに転換され、上流側 排気浄化触媒15で浄化されなかった排気中のNOxを 還元する。また、炭化水素の残りの部分のうち一部は、 酸化能力の大きい下流側排気浄化触媒10上で酸化さ れ、酸化されない炭化水素は下流側排気浄化触媒10に 吸着保持される。このため、本実施形態ではNOxの浄 化率を更に向上させるとともに未反応の炭化水素の大気 放出をほぼ完全に防止することが可能となっている。

[0075]

【発明の効果】各請求項に記載の発明によれば、触媒に流入する排気空燃比をリッチ空燃比に調整する操作を行うことなく、高いNOx 浄化効率を達成することが可能となるという共通の効果を奏する。

【図面の簡単な説明】

【図1】本発明の排気浄化方法の第1の実施形態を実施 する排気浄化装置の概略構成を示す図である。

【図2】本発明の排気浄化方法の第2の実施形態を実施する排気浄化装置の概略構成を示す図である。

【図3】本発明の排気浄化方法の第3の実施形態を説明 する図である。

【図4】本発明の排気浄化方法の第4の実施形態を実施 する排気浄化装置の概略構成を示す図である。

【図5】本発明の排気浄化方法の第5の実施形態を実施 する排気浄化装置の概略構成を示す図である。

【符号の説明】

【図1】

- 3…排気過路 10…排気浄化触媒(RAP触媒) 20…溫元剤供給装置 30…制御装置

【図3】

超 3

1…内燃機関

3…排気通路

10、15···RAP触媒

20…還元剤供給装置

30…制御装置

【図2】

1 …ディーゼル機関 10…接気浄化触媒(RAP触媒) 20…還元刺供給装置 30…制御装置 40…翻送空気供給装置

【図4】

1 …ティーゼル機関 10…排気浄化触媒(RAP触媒) 20…遠元剤供給装置 30…制御装置 31…酸素速度センサ 33…温度センサ 35…NO,センサ

【図5】

1 … ディーゼル機関 3 … 排気通路 10、15… 排気浄化触媒(RAP触媒) 20… 温元剤供給装置 30… 制御装置

フロントページの続き		
(51) Int. Cl. 7 FO1N 3/10 3/20 3/36	F I F O 1 N 3/36 B O 1 D 53/36	(参考) B ZAB 101B
(72)発明者 石山 忍 愛知県豊田市トヨタ町1番地 ト 車株式会社内	ヨタ自動	AA18 AA28 AB02 AB05 BA01 BA03 BA04 BA14 BA39 CA18 CA22 CB02 CB03 CB08 DA01
(72)発明者 小林 正明 愛知県豊田市トヨタ町1番地 ト 車株式会社内	ヨタ自動	DA02 DB10 EA12 EA17 EA26 EA33 EA34 FA02 FA04 FA12 FA13 FB02 FB10 FC04 FC07
(72)発明者 田原 淳 愛知県豊田市トヨタ町1番地 ト 車株式会社内	ヨタ自動	GAO6 GA18 GA19 GB05W GB06W GB07W GB09X HA08 HA37 HB07
		AA06 AA19 AB01 AB02 AB06 AC02 BA03X BA11X BA30X BA31X BA33X BA41X CA01 CC32 CC38 CC47 DA01 DA02 DA08 DA09 DA10 DA13 EA04
		AAO3 BAO1B BAO7B BBO2A BBO2B BC71B BC72A BC72B BC75A BC75B CAO3 CAO7 CAO8 CA13 CA15 DAO6 EE08 ZA11B