Analiza systemu:

przychodnia medyczna

Artur Grzesica

Michał Materniak

Marcin Śpiewak

1. Opis systemu

Tematem projektu jest analiza systemu przychodni medycznej przy użyciu sieci Petriego.

W celu stworzenia odpowiedniego modelu zdefiniowana została charakterystyka systemu, polegająca na wyodrębnieniu scenariuszy jakie mogą w nim wystąpić.

Zdefiniowane zostały 3 główne scenariusze:

- 1. Rejestracja pacjenta oraz dokonanie badania lekarskiego. Badanie lekarskie może mieć następujące rezultaty:
 - a. zdiagnozowanie braku problemów zdrowotnych pacjent jest zdrowy i nie potrzebuje opieki medycznej, zostaje on skierowany do wyjścia z przychodni
 - zdiagnozowanie problemów zdrowotnych pacjentowi zostaje wypisana recepta na lekarstwa lub dostaje on skierowanie do specjalisty (obydwie opcje kończą się wyjściem pacjenta z przychodni). Może on również zostać skierowany na zabieg pielęgniarski (np. pobranie krwi)
 - c. diagnoza ciężkiego stanu zdrowia pacjentowi zostaje udzielona pomoc medyczna przez lekarza przy współpracy z pielęgniarkami. Następnie zostaje on odwieziony do szpitala na obserwację.
- 2. Przyjęcie pacjenta w ciężkim stanie. Osoba taka jest przyjmowana bez rejestracji i od razu zostaje przydzielony jej lekarz w celu udzielenia pomocy. Scenariusz ten w dużej części pokrywa się ze scenariuszem 1c jednak różni się on tym, że w jednym przypadku od razu po wejściu pacjenta do przychodni można stwierdzić, że potrzebuje natychmiastowej pomocy lekarskiej w drugim przypadku ciężki stan pacjenta nie jest widoczny i musi zostać zdiagnozowany.
- 3. Przyjęcie pacjenta, który przybył do przychodni w celu odbycia zabiegu pielęgniarskiego, niewymagającego ingerencji lekarza przykładem takiego zabiegu może być profilaktyczne szczepienie bądź pomiar parametrów życiowych pacjenta.

2. Model systemu przy użyciu sieci Petriego

Na podstawie zdefiniowanych scenariuszy występujących w systemie zbudowany został jego model sieci Petriego. Poniższy rysunek przedstawia stworzony model:

Podany model sieci Petriego opisuje przychodnię lekarską. W miejscach sieci znajdują się pacjenci przychodni oraz personel medyczny (lekarze oraz pielęgniarki) – wyjątek stanowi miejsce "wyjście". Tranzycje przedstawiają akcje wykonywane w procesie obsługi pacjenta.

W przedstawionym modelu sieci Petriego wprowadzone zostały priorytety, w celu rozwiązywania konfliktów o zasoby, jakimi są wolni lekarze oraz pielęgniarki. Podczas przyjęcia pacjenta do badania po wcześniejszej rejestracji zostaje przeprowadzone badanie lekarskie (może ono mieć 3 rezultaty). Jednak w przypadku, gdy do przychodni trafia osoba w ciężkim stanie, ma ona priorytet w dostępie do opieki lekarskiej. Dlatego też pacjenci będący w kolejce do badania muszą ustąpić takiej osobie pierwszeństwa.

Priorytety zostały wprowadzone również w dostępie do pielęgniarek. Osoby, które przybyły do przychodni w celu odbycia zabiegu pielęgniarskiego muszą poczekać, jeśli w kolejce

pojawi się osoba będąca skierowana do zabiegu przez lekarza. Główny priorytet mają jednak pacjenci w ciężkim stanie zdrowia, którzy potrzebują natychmiastowej opieki medycznej.

Poniżej znajduje się spis tranzycji, które mają różne priorytety w zależności od dostępu do zasobu. Najwyższym priorytetem jest 1 (domyślny dla sytuacji bezkonfliktowych).

Dostęp do pielęgniarek:

- Udzielenie pomocy [priorytet 1]
- Przeprowadzenie zabiegu [priorytet 2]
- Przeprowadzenie zabiegu pielęgniarskiego [priorytet 3]

Dostęp do lekarzy:

- Przyjęcie pacjenta w ciężkim stanie [priorytet 1]
- Diagnoza ciężkiego stanu [priorytet 2]
- Zdiagnozowanie choroby [priorytet 2]
- Zdiagnozowanie braku problemów zdrowotnych [priorytet 2]

3. Właściwości stworzonej sieci

- K-ograniczoność: sieć 20-ograniczona, jest to spowodowane tym, że w stanie początkowym znajduje się 20 znaczników
- Bezpieczeństwo sieci: sieć jest bezpieczna, nie ma możliwości nieograniczonego wzrostu znaczników (sieć 20-ograniczona)
- Zachowawczość: sieć nie jest zachowawcza. Przejścia:
 - Przyjęcie pacjenta w ciężkim stanie
 - Zdiagnozowanie choroby
 - o Diagnoza ciężkiego stanu
 - o Zdiagnozowanie problemów zdrowotnych

"zabierają" znaczniki zarówno z kolejek pacjentów, jak i lekarzy. Od tego momentu lekarz jest związany z pacjentem i para ta jest reprezentowana przez jeden znacznik. Zasób lekarza jest zwalniany w przejściach:

- Skierowanie do wyjścia
- Wypisanie skierowania do specjalisty
- Wypisanie recepty
- Skierowanie na zabieg
- o Udzielenie pomocy

- Zachowawczość względem wektora wag: przyjmując kolejność miejsc zgodnie z numerami miejsc w modelu na stronie 2, analizowany model sieci Petriego jest zachowawczy względem wektora [1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1]
- Odwracalność sieci: sieć nie jest odwracalna
- Żywotność przejść: wszystkie przejścia spełniają zasadę żywotności L₁
- **Żywotność sieci:** wszystkie przejścia spełniają zasadę żywotności L₁, zatem sieć również ją spełnia
- Reprezentacja macierzowa (macierz incydencji):

0	0	0	0	0	0	0	1	0	-1	-1	-1	0	0	0
0	0	0	1	0	0	-1	0	0	0	0	1	0	0	0
0	0	0	0	-1	0	0	0	1	0	0	0	0	0	0
1	1	0	-1	0	0	1	0	0	-1	-1	-1	1	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1	-1	0	0	0	0	0	0	0	0	1	0	0	0	-1
0	1	0	0	0	-1	0	0	0	0	0	0	0	0	0
0	0	-1	0	0	0	1	0	0	0	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	1	0	0	-1	0	0
0	0	0	-1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	-1	-1	0	0	0	0	-1	0

4. Graf pokrycia i graf osiągalności

Dla sieci 20-ograniczonej graf osiągalności i graf pokrycia są takie same. W systemie stworzonym do tworzenia i analizy sieci Petriego zostało wprowadzone ograniczenie wyświetlanych węzłów tychże grafów (na stronie 5 został przedstawiony jeszcze bardziej skrócony graf osiągalności) w celu ograniczenia narzutu obliczeniowego oraz uzyskania przejrzystości – dla większej liczby węzłów grafy stają się nieczytelne.

5. Analiza systemu i możliwych problemów pod kątem właściwości sieci oraz wprowadzenie poprawek

Pierwszym podstawowym problemem modelu jest to, że po przejściu wszystkich 20 znaczników początkowych z miejsca "1. Kolejka pacjentów" do miejsca "10. Wyjście", następuje koniec symulacji. Powoduje to brak odwracalności sieci, skutkuje również 20-ograniczonością sieci ze względu na ustaloną liczbę pacjentów.

Problem ten może zostać rozwiązany na 2 sposoby:

 Wstawienie tranzycji "Powrót do przychodni" pomiędzy miejsca "10. Wyjście", a "1. Kolejka pacjentów"

Sieć dalej pozostałaby 20-ograniczona, zyskałaby również właściwość odwracalności.

• Dodanie abstrakcyjnego producenta przed dla miejsca "1. Kolejka pacjentów" oraz konsumenta za "10. Wyjście", oraz dostosowanie sieci do tych zmian. Sieć traci wtedy właściwość k-ograniczoności oraz bezpieczeństwa z powodu producentów.

Wybranym przez nas rozwiązaniem jest dodanie abstrakcyjnego konsumenta i producenta. Jest to bardziej logiczne pod względem merytorycznym, gdyż Ci sami pacjenci nie wracają do przychodni. Na poniższym rysunku przedstawiono sieć z zaznaczonymi zmianami.

Kolejnym problemem jest możliwe zagłodzenie procesów z niższymi priorytetami. Podczas przeprowadzania symulacji nie zauważono takiej sytuacji, gdyż dystrybucja wskaźników była dość równomierna i zaobserwowano wykonanie każdego przejścia.

W celu zniwelowania tego problemu możliwe jest wykorzystanie:

- Przydzielenie osobnej grupy zasobów dla każdego z procesów rozwiązanie to jest sprzeczne z ideą stosowania priorytetów, dlatego jego wykorzystanie nie zostanie dalej rozpatrzone
- Synchronizacji procesów można zastosować synchronizację procesów, gdzie zasoby będą przydzielane raz jednemu procesowi, raz drugiemu. Dla przydzielania lekarzy do pacjentów wyglądałoby to w następujący sposób:

Przedstawione rozwiązanie synchronizacji ma jednak kilka wad. Podobnie jak w poprzednim przypadku, wykorzystanie priorytetów byłoby zbędne. Wprowadzone miejsca synchronizacji "p1" oraz "p2" mają jedną przypadłość – któryś z nich musi mieć wskaźnik wartości początkowej. W zaproponowanym przykładzie wskaźnik posiada miejsce "p1", co spowodowałoby problem gdyby w "Kolejce pacjentów w ciężkim stanie" nie znajdował się żaden wskaźnik, a w "Kolejce do badania lekarskiego" znajdowałaby się pewna liczba wskaźników, czekająca na wykorzystanie. Pojawia się również redundancja części składowych systemu. Dwa razy występuje miejsce "Pacjenci w ciężkim stanie" oraz "Udzielenie pomocy" – tylko dlatego, że przejścia muszą zwrócić wskaźnik synchronizacji do odpowiedniego miejsca. Dlatego też rozwiązanie to nie zostanie wykorzystane i pozostawiony zostanie układ sieci Petriego ze strony 6.

Po analizie przypadku, ciężko znaleźć idealne rozwiązanie dla podanego systemu przychodni medycznej w sieci Petriego z wykorzystaniem priorytetów. Rozwiązania takiego należałoby szukać w sieci wykorzystującej również sieci miejsc i przejść oraz sieci czasowe.

6. Podsumowanie

Sieci Petriego stanowią ciekawe narzędzie do modelowania systemów oraz ich zachowań. Szczególną przydatność okazują w przypadku identyfikacji nieścisłości modelu, bezpieczeństwa systemu oraz tworzenia zadań współbieżnych.

Stworzony model przychodni medycznej w sieci Petriego okazał się mieć pewne wady i część z nich udało się zniwelować. Pokazał również, iż z pozoru dobrze zaprojektowany system może posiadać ukryte błędy.