Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра Прикладной математики

Лабораторная работа №3 по дисциплине «Комьютерная графика»

Трассировка лучей

Факультет: ПМИ

Группа: ПМ-63

Студент: Шепрут И.И.

Вариант: -

Преподаватель: Задорожный А.Г.

Новосибирск 2019

1 Цель работы

Ознакомиться с основными аспектами метода трассировки лучей.

2 Постановка задачи

- 1. Считывать из файла (в зависимости от варианта):
- 1.1. Тип объекта.
- 1.2. Координаты и размер объектов.
- 1.3. Параметры материала объектов.
- 2. Выполнить трассировку первичных лучей.
- 3. Добавить зеркальную плоскость и учесть отраженные лучи.
- 4. Предусмотреть возможность включения/исключения объектов.
- 5. Предусмотреть возможонсть изменения положения источника света.

3 Реализованные функции

•Два типа рендеринга.

- •Ray Tracing обычная трассировка лучей, которая может отобразить картинку с малым количеством семплов. Трейсинг лучей останавливается при достижении материала с цветом, и рендерит вторичные лучи, только если попадает на преломляющую или зеркальную поверхность.
- •Path Tracing методика рендеринга в компьютерной графике, которая стремится симулировать физическое поведения света настолько близко к реальному, насколько это возможно. Трейсинг лучей останавливается только при достижении предела отражений, или при достижении источника света.

•Полиморфизм.

- •Полиморфизм объектов имеется два типа объектов: object и shape.
 - Object объект, котороый неразрывно связан со своим собственным материалом, например: небо, cubemap, текстурированный полигон.
 - Shape объект, которому можно задать любой имеющийся материал, например, это объекты: сфера, цилиндр, полигон, треугольник, портал, контур (состоит из сфер и цилиндров).
- ∘Полиморфизм камер можно рендерить картинку совершенно различными камерами, которые наследуются от абстрактного класса базовой камеры и реализуют виртуальные методы. Таким образом уже реализованы камеры: перспективная, ортогональная, 360. Так же можно реализовать другие камеры, например: проекцию Панини, камера для создания сиbemap.
- •Полиморфизм материалов любому объекту можно задать любой материал на его поверхности, например реализованы такие материалы, как: рассеивающий, отражающий, стекло, освещение. Аналогично для реализации материала надо наследоваться от базового класса материала и реализовать метод обработки луча материалом.
- •Точечные источники света поддерживаются на уровне рендерера.
- Рендеринг порталов. Портал является shape, потому что можно задать какой материал будет на двух его задних частях. Он сам задается как полигон и две системы координат.
 - •Поддерживается телепортирование освещения от точечных источников света через порталы. При этой телепортации учитывается, что некоторая часть света может не пройти через портал.

- •Считывание произвольной сцены из многоугольников, с анимацией, из **json** файла.
- •Поддержка текстур. Реализуется эта поддержка в классе текстурированного полигона.
- Рендеринг произвольных полигонов.
- •Для path tracing камерой поддерживается симуляция прохождения луча через диафргаму, поэтому можно получить эффект depth of field: когда камера на чем-то сфокусирована, а остальная часть мира размыта.
- Рендеринг происходит в многопоточном режиме.
- •Имеется возможность одновременно с обычным изображением рендерить изображение глубины.
- •Имеется возможность сохранять отрендеренные изображения в png.
- •При рендеринге пиксели выбираются случайным образом, чтобы максимально точно предсказывать итоговое время рендеринга, которое выводится на экран.

4 Пример реализованных функций

4.1 Различие Ray tracing от Path tracing

4.2 Различные виды камер

4.2.1 Ортогональная

4.2.2 Камера на 360 градусов

Эта камера создает такое изображение, которое запечатляет всю обстановку вокруг. Далее, по этому изображению можно получить сколько угодно изображений перспективной проекции, которые смотрят с разных углов при помощи различных программ для просмотра такого рода изображений.

Изображения в 360 градусов были просмотрены с помощью www.chiefarchitect.com.

4.3 Телепортация освещения от точечного источника света через портал

4.4 Изображение глубины каждого пикселя

4.5 Рендеринг произвольных полигонов

4.6 Рендеринг сцен из предыдущей работы, заданных в json

4.7 Пример предсказания времени рендеринга

- 5 Код программы
- 5.1 Файлы заголовков
- 5.2 Исходные файлы
- 5.3 Шейдеры