Homework 13

1. In this problem you will implement a neural network to solve a classification problem. To keep things simple, the data will consist of covariates $x^{(i)} \in \mathbb{R}^2$ and a response $y_i \in \{0,1\}$ for $i=1,2,\ldots,N$ (notice y takes on only two possible values). The classification problem involves fitting the model $y \sim f(x)$ over functions f(x) that can be parameterized by our neural net, which is described below. The attached file nn.txt contains the samples. Each sample, corresponding to a row in the file, gives the three values $(x_1^{(i)}, x_2^{(i)}, y_i)$.

Your neural network should consist of three layers, as discussed in class. The input layer should contain X_1 and X_2 nodes, which will be the two coordinates for each of the samples $x^{(i)}$ (i.e. $X_1 = x_1^{(i)}$ and $X_2 = x_2^{(i)}$). The middle (hidden) layer should contain m nodes, Z_j for j = 1, 2, ..., m. And an output layer consisting of nodes T_1, T_2 . Then, the probability that the class of $x^{(i)}$ is 1 given by,

$$P(y = 1 \mid x^{(i)}, \alpha) = \frac{\exp[T_1]}{\exp[T_1] + \exp[T_2]},\tag{1}$$

where α is the vector of parameters of the neural net and T_1, T_2 are computed using the neural net with input $x^{(i)}$. To repeat what we mentioned in class, each Z_i is parameterized as follows:

$$Z_j = \sigma(\beta_0^{(j)} + \beta^{(j)} \cdot x), \tag{2}$$

where $x = (X_1, X_2)$, $\beta_0^{(j)} \in \mathbb{R}$, $\beta^{(j)} \in \mathbb{R}^2$, and $\sigma(w) = 1/(1 + \exp(-w))$. The node T_j is parameterized as follows:

$$T_j = \sigma(\gamma_0^{(j)} + \gamma^{(j)} \cdot z), \tag{3}$$

where $z=(Z_1,Z_2,\ldots,Z_m),\ \gamma_0^{(j)}\in\mathbb{R},\ \gamma^{(j)}\in\mathbb{R}^m.$ Then α is the concatenation of all the parameters: $\beta_0^{(j)},\ \beta^{(j)}$ for $j=1,2,\ldots,m$ and $\gamma_0^{(j)},\ \gamma^{(j)}$ for j=1,2.

(a) Visualize the dataset by plotting it with different colors for the two classes of y.

- (b) What is the dimension of α in terms of m?
- (c) Write a function $NN(x,\alpha,m)$ which takes a sample $x\in\mathbb{R}^2$ and a choice for α and returns the neural net estimate of $P(y=1\mid x,\alpha)$. (Hint: It may be helpful to write functions such as get_beta(alpha i), which given α and i returns $\beta^{(i)}$, and get_beta_0(eta, i), which given α and i returns $\beta^{(i)}_0$. Using such functions will greatly simplify your code.)
- (d) Explain why the log likelihood function $\log L(\eta)$ for the neural net is given by

$$\log L(\eta) = \sum_{i=1}^{N} (1 - y_i) \log \left(\frac{\exp[T_1]}{\exp[T_1] + \exp[T_2]} \right) + y_i \log \left(1 - \frac{\exp[T_1]}{\exp[T_1] + \exp[T_2]} \right). \tag{4}$$

Write a function that computes $\log L(\alpha)$ (you will need to pass the data to the function).

- (e) Write a function that uses finite difference to compute the stochastic gradient of $\log L(\alpha)$ based on a single or small number of samples (you can pick whether to use one sample or a few).
- (f) Set m=4 and train your neural net by maximizing the $\log L(\alpha)$ using **stochastic** steepest ascent.
- (g) Remember that a classifier in this case is a function F(x): $\mathbb{R}^2 \to \{0,1\}$, where $x \in \mathbb{R}^2$. Once you choose α by computing the maximum likelihood in (e), choose a cut-off $p \in [0,1]$. Set F by

$$F(x) = \begin{cases} 0 & \text{if } P(y=1 \mid x, \alpha) > p \\ 1 & \text{if } P(y=1 \mid x, \alpha) \le p \end{cases}$$
 (5)

Try different value of p and for each p, visualize your classifier. You can visualize your classifier in any way you like, but here is one way. You can generate random coordinates within [-2, 2], which is roughly where all the data points lie, using

Then plot each pair x1[i], x2[i] and vary the color of the point depending on whether the classifier predicts 1 or 0.