(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-281980

(43)公開日 平成11年(1999)10月15日

(51) Int.Cl. ⁶		識別記号	FΙ					
G02F	1/1335	5 3 0	G 0 2 F	1/1335	5 3 0			
F 2 1 V	8/00	6 0 1		8/00	601	A		
					601B			
G 0 2 B	6/00	3 3 1	G 0 2 B	6/00	3 3 1			
			審査請求	未請求	請求項の数 6	FD	(全 11 頁)	
(21)出願番号 特願3		特願平 10-100159	(71)出願人	0000039	003964			
				日東電工	C株式会社			
(22)出顧日	平成10年(1998) 3 月26日			大阪府家	大市下穂積1丁	1日1番	2号	
			(72)発明者				-	
				大阪府家	大市下穂積1丁	1日1番	2号 日東	
				電工株式	会社内			
			(72)発明者	梅本 消	司			
				大阪府茨	木市下穂積1丁	1日1番	2号 日東	
				電工株式	会社内			
			(72)発明者	原 和孝	:			
				大阪府炎	木市下穂積1丁	11番	2号 日東	
				電工株式	会社内			
			(74)代理人	弁理士	藤本 勉			

(54) 【発明の名称】 導光板、面光源装置及び反射型液晶表示装置

(57) 【要約】

【課題】 非点灯時及び点灯時の視認におけるコントラストに優れ、表示の明るさにも優れると共に、導光板を介した表示像が乱れにくくて明瞭性に優れ、モアレ現象による表示像の視認低下も生じにくい反射型液晶表示装置、並びにそれを形成しうる導光板や面光源装置の開発。

【解決手段】 入射側面(13)からの入射光を上面(11)に形成した光出射手段を介して下面(12)より出射し、その下面の基準平面に対する法線に対して30度以内に下面からの出射光の最大強度の方向があり、かつ前記30度以内の方向における上面からの漏れ光の最大強度が下面における前記最大強度の1/5以下であると共に、前記下面に微細凹凸を有して、下面からの入射光が上面より透過する導光板、及びその導光板の入射側面に光源を有する面光源装置、並びにその面光源装置における下面側に反射層を具備する液晶セルを有する反射型液晶表示装置。

【特許請求の範囲】

【請求項1】 入射側面からの入射光を上面に形成した 光出射手段を介して下面より出射し、その下面の基準平 面に対する法線に対して30度以内に下面からの出射光 の最大強度の方向があり、かつ前記30度以内の方向に おける上面からの漏れ光の最大強度が下面における前記 最大強度の1/5以下であると共に、前記下面に微細凹 凸を有して、下面からの入射光が上面より透過すること を特徴とする導光板。

と長辺面からなる連続又は不連続のプリズム状凸凹の5 Ομm~1.5mmピッチの繰返し構造よりなり、かつ前 記短辺面が下面の基準平面に対し傾斜角30~45度、 投影幅 4 O μm以下で入射側面側よりその対向端側に下 り傾斜する斜面からなると共に、前記の長辺面が当該基 準平面に対し0超~10度の傾斜角範囲にあってその全 体の角度差が5度以内であり、最寄り長辺面間の傾斜角 差が1度以内で、しかも当該基準平面に対する投影面積 が短辺面のそれの5倍以上である斜面からなる導光板。

請求項2において、プリズム状凹凸の稜 20 【請求項3】 線方向が入射側面の基準平面に対し±30度以内にある 導光板。

【請求項4】 請求項1~3において、上下面方向の入 射光の全光線透過率が90%以上で、かつヘイズが45 %以下である導光板。

【請求項5】 請求項1~4に記載の導光板の入射側面 に光源を有することを特徴とする面光源装置。

【請求項6】 請求項5に記載の面光源装置の下面側 に、反射層を具備する液晶セルを有することを特徴とす る反射型液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、明るくて見易い反射型液 晶表示装置を形成しうる導光板、及びそれを用いた光の 有効利用効率に優れる面光源装置に関する。

[0002]

【発明の背景】反射型液晶表示装置の暗部等での視認を 可能とする照明装置が求められている中、本発明者らは 透過型液晶表示装置に用いられているバックライトを液 用を試みた。かかるバックライトは、側面からの入射光 を光出射手段を介し上下面の一方より出射する導光板を 使用したものであり、フロントライトシステムではその 導光板を介して表示内容を視認することとなる。

【0003】しかしながら、従来の導光板を用いたバッ クライトでは、点灯時におけるコントラスト不足や非点 灯時における明るさ不足、表示の乱れなどを生じて実用 が困難な問題点があった。ちなみに拡散ドットや微細凹 凸を光出射手段とする導光板使用のものでは、点灯時の 視認でコントラストに乏しく、また室内照明等の外光に 50

よる非点灯時の視認にてもコントラストに乏しくて表示 の明るさにも乏しいと共に、導光板を介した表示像が著 しく乱れて明瞭さに乏しい問題を発生する。

【0004】一方、傾斜角が45度の斜面と0度のフラ ット面からなる階段状のプリズム構造を光出射手段とす る導光板(特開昭62-73206号公報)を使用した ものでも、点灯時の視認でコントラストに乏しく、表示 の明るさにも乏しい問題を発生する。

【0005】また上面から視認した場合に、光出射手段 【請求項2】 請求項1において、光出射手段が短辺面 10 のパターンとその光出射手段が下面に映込んだパターン とが干渉し、その干渉が視認方向によっては干渉縞とし てモアレ現象を示し、表示像の視認を著しく低下させる 問題点もあった。

[0006]

【発明の技術的課題】従って本発明は、非点灯時及び点 灯時の視認におけるコントラストに優れ、表示の明るさ にも優れると共に、導光板を介した表示像が乱れにくく て明瞭性に優れ、モアレ現象による表示像の視認低下も 生じにくい反射型液晶表示装置、並びにそれを形成しう る導光板や面光源装置の開発を課題とする。

[0007]

【課題の解決手段】本発明は、入射側面からの入射光を 上面に形成した光出射手段を介して下面より出射し、そ の下面の基準平面に対する法線に対して30度以内に下 面からの出射光の最大強度の方向があり、かつ前記30 度以内の方向における上面からの漏れ光の最大強度が下 面における前記最大強度の1/5以下であると共に、前 記下面に微細凹凸を有して、下面からの入射光が上面よ り透過することを特徴とする導光板を提供するものであ 30 る。

【0008】また本発明は、前記導光板の入射側面に光 源を有することを特徴とする面光源装置、及びその面光 源装置における下面側に、反射層を具備する液晶セルを 有することを特徴とする反射型液晶表示装置を提供する ものである。

[0009]

【発明の効果】本発明によれば、下面出射光が垂直方向 への指向性に優れ、かつ上面よりの漏れ光が表示像と重 複しにくい導光板を得ることができ、それを用いて光の 晶セルの視認側に配置するフロントライトシステムの適 40 有効利用効率に優れる面光源装置を得ることができて、 非点灯時及び点灯時の視認におけるコントラストに優 れ、表示の明るさにも優れると共に、導光板を介した表 示像が乱れにくくて明瞭性に優れ、光出射手段によるモ アレ現象も生じにくくて表示品位に優れる反射型液晶表 示装置を得ることができる。

> 【0010】前記の作用効果は、導光板に付与した特性 に基づく。すなわち本発明者らは、上記の課題を克服す るために鋭意研究を重ねる中で、上記した従来の拡散ド ットや微細凹凸を光出射手段とする導光板では、図9、 図10に示した如く、導光板18の光出射手段による散

20

4

乱で側面より入射した伝送光はほぼ全方位に発散し、その散乱特性により下面よりの出射光 α_1 も上面からの漏れ光 β_3 も下面に対する法線(正面方向)Hに対し約60度の方向 θ_4 に最大強度B,bを示し、その強度もほぼ同じであるため、視認に有効な方向、特に前記法線を基準に縦方向の上方約15度~下方約30度及び横方向の左右約30度の視角範囲における光量が少なくて表示の明るさに乏しくなり、また表示像を形成する下面よりの出射光 α_2 が上面からの漏れ光 β_4 と重複してコントラストに乏しくなると共に、非点灯時では前記の散乱光 γ 10 α_2 による表示像の白呆けでコントラストに乏しくなり、導光板による散乱で表示光 α_3 1 α_4 1 α_4 1 α_5

【0011】また特開昭62-73206号公報による プリズム式光出射手段を有する導光板にても、前記と同 様に上面からの漏れ光が多くてそれが表示像を形成する 下面からの出射光と重複してコントラストを低下させ、 また出射角度の大きい出射光が多くて視認に有効な方向 の光量が少なく、表示の明るさを低下させて表示品位の 低下問題を発生させることを究明した。

【0012】従って明るくて明瞭な表示像の形成には、側面からの入射光が下面より指向性よく、就中、図4に例示の如く下面に対する法線Hの方向に可及的に近い角度 θ 。で、特に前記の視角範囲において集光性よく出射Aする導光板であることが求められる。反射型液晶表示装置では通例、平均拡散角度が $5\sim15$ 度程度の粗面系反射層を介して表示の均一化と明確化を図っている。従って反射層に大きい角度で入射する光が多いと(図9:B,図10: α 1)、視認に有効な方向の光量が減少して明るい表示が困難となり、また大きい角度の視認には30表示の反転が生じ易く、電界複屈折型の表示では色変化が大きくなるなどの問題も発生しやすくなる。

【0013】またコントラストの向上には、図4に例示の如く上面からの漏れ光aが表示像を形成する下面からの出射光Aと可及的に重複しないこと、特に前記の視角範囲での重複が可及的に少ないことが求められる。反射型液晶表示装置では、通例1:5~1:20のコントラスト比であるから、漏れ光と表示像の重複がコントラスト比に与える影響は大きい。

【0014】さらに表示像を乱すことの防止には、上面 40 から下面及び下面から上面に透過する光が可及的に散乱 されないことが求められる。反射型液晶表示装置に設けるフロントライトは、暗所での視認を可能とする補助光源であり、本来は消費電力の低減を目的とした室内光や自然光等の外光の利用による視認であるから、その本来の非点灯状態で導光板により外光の入射が阻害されると表示が暗くなるし、導光板で散乱を生じると表面白化によるコントラストの低下や、表示像の混交等による乱れが生じることとなる。

【0015】加えて表示品位をより向上させる点より

は、上面から視認した場合に、光出射手段のパターンとその光出射手段が下面に映込んだパターンとの干渉で干渉縞からなるモアレを生じない明瞭な表示の達成が求められる。また液晶表示装置の画素ピッチは、100~300 μmが一般的であるから、導光板の透過光に対する影響を可及的に抑制して、ピッチが100 μm程度の情報を明瞭に視認できることが望まれ、画素との干渉によるモアレも抑制した良好な表示品位も望まれる。

[0016]

【発明の実施形態】本発明による導光板は、入射側面からの入射光を上面に形成した光出射手段を介して下面より出射し、その下面の基準平面に対する法線に対して30度以内に下面からの出射光の最大強度の方向があり、かつ前記30度以内の方向における上面からの漏れ光の最大強度が下面における前記最大強度の1/5以下であると共に、前記下面に微細凹凸を有して、下面からの入射光が上面より透過するものからなる。

【0017】本発明による導光板の例を図1、図2 (a) ~ (a) に示した 1 が道光板であり 1.1

(a) \sim (c) に示した。1 が導光板であり、11, 16, 17 が光出射手段を形成した上面、12 が光出射側となる下面、13 が入射側面であり、14 は横側面、15 は入射側面に対する対向端である。なお図2a では、下面における微細凹凸の例を明らかとするため、導光板の上下面を逆転させて下面12 を上側とした斜視状態を示している。

【0018】本発明による導光板は、入射側面からの入射光を上面に形成した光出射手段を介して下面より出射するものであり、一般に上面、それに対向する下面、及び上下面間の側面からなる入射側面を有する板状物よりなる。板状物は、同厚板等でもよいが、好ましくは図例の如く、入射側面13に対向する対向端15の厚さが入射側面のそれよりも薄いもの、就中50%以下の厚さとしたものである。

【0019】前記対向端の薄厚化により、図3、図4に示した太矢印の如く、入射側面より入射した光が対向端に至るまでに、上面に形成した光出射手段に効率よく入射し、反射等を介し下面より出射して入射光を目的面に効率よく供給でき、また導光板を軽量化することができる利点などがある。ちなみに、上面が図2aの如き直線面の場合、均一厚の導光板の約75%の重量とすることができる。

【0020】導光板は、上記の出射特性を示すものであればよい。従って前記した板状物の上面に設ける光出射手段は、かかる特性を示す適宜なものにて形成しうるが、当該特性の達成性などの点よりはプリズム状凸凹からなる光出射手段が好ましい。

【0021】前記のプリズム状凸凹は、等辺面からなる 凸部又は凹部にても形成しうるが、光の利用効率などの 点よりは短辺面と長辺面からなる凸部又は凹部にて形成 50 することが好ましい。そのプリズム状凸凹の例を図3

(a), (b) に示した。2 a が凸部、2 b が凹部であ り、21,23が短辺面,22,24が長辺面である。 なお凸部又は凹部は、短辺面及び長辺面等とその形成面 との交点を結ぶ直線に基づき、短辺面及び長辺面等の交 点(頂点)が当該直線よりも突出しているか(凸)、窪 んでいるか(凹)による。

【0022】すなわち図3に例示のものに基づく場合、 凸部2a又は凹部2bを形成する短辺面と長辺面(21 と22又は23と24)の形成面との交点を結ぶ仮想線 で示した直線20に基づき、短辺面と長辺面の交点(頂 10 点)が当該直線20よりも突出しているか(凸)、窪ん でいるか(凹)による。

【0023】本発明による導光板は、図4に例示した如 く入射側面13よりの入射光(太矢印)の下面12より の出射光における最大強度Aの方向 θ 3が、下面の基準 平面に対する法線Hに対して30度以内にあり、かつ前 記30度以内の方向における上面からの漏れ光の最大強 度が下面における前記最大強度Aの1/5以下であるも のである。

【0024】前記した上面からの漏れ光は、反射層を介 した最大強度Aを示す光の反射光と重複しやすく、前記 の上面漏れ光/下面出射光の最大強度比が大きいと表示 像の強さを相対的に減殺しやすく、コントラストを低下 させやすい。

【0025】反射型液晶表示装置とした場合の明るさや コントラスト等の表示品位の向上などの点より好ましい 導光板は、図4の如く入射側面13と下面12の両基準 平面に対する垂直面 (図上の断面) において前記 θ 3 が 28度以内、就中25度以内、特に20度以内にあるも のである。

【0026】加えて、前記の法線Hを基準に入射側面1 3の側を負方向としたとき、最大強度Aの方向と同じ角 度θ₃の上面11からの漏れ光aの強度が当該最大強度 Aの1/10以下の可及的に小さい値であること、就中 1/15以下、特に1/20以下であるものである。当 該漏れ光aは、最大強度Aを示す光の正反射方向と重複 するため、前記a/Aの値が大きいと表示像の強さを相 対的に減殺し、コントラストを低下させる。

【0027】上記した最大強度方向や最大強度/漏れ光 強度比等の特性を達成する点などより好ましい光出射手 40 段は、図3に例示した如く下面12の基準平面に対する 傾斜角が30~45度の短辺面(θ1)と0超~10度 の長辺面 (θ₂) からなるプリズム状凸凹 (2 a 又は 2 b) の繰返し構造よりなるものである。

【0028】前記において、入射側面(13)の側より 対向端(15)の側に下り傾斜する斜面として形成した 短辺面21, 23は、側面よりの入射光の内、その面に 入射する光を反射して下面(光出射面)に供給する役割 をする。その場合、短辺面の傾斜角 θ 1を30~45度 とすることにより図3に折線矢印で例示した如く、伝送 50

光を下面に対し垂直性よく反射して図4の如く下面の法 線Hに対し30度以内に最大強度Aの方向 θ 3を示す下 面出射光が効率よく得られる。

【0029】漏れ光の抑制やそれによる視認妨害の抑制 等の前記性能などの点より短辺面の好ましい傾斜角 θ 1 は、32~43度、就中35~42度である。なお短辺 面の傾斜角 θ 1が30度未満では下面出射光の最大強度 方向が法線に対して大きい角度となり、視認に有効利用 できる光量が減少して明るさが低下しやすく、45度を 超えると上面よりの漏れ光が増大しやすくなる。

【0030】一方、長辺面は、それに入射する伝送光を 反射して短辺面に供給すると共に、反射型液晶表示装置 とした場合に液晶セルからの表示像を透過させることを 目的とする。かかる点より、下面の基準平面(12)に 対する長辺面の傾斜角 θ 2は、0超~10度であること が好ましい。

【0031】前記により、図3に折線矢印で例示した如 く、当該傾斜角 θ 2より大きい角度の伝送光が長辺面 2 2, 24に入射して反射され、その場合に当該長辺面の 傾斜角に基づいて下面12により平行な角度で反射され て短辺面21,23に入射し、反射されて下面12より 前記平行化により良好に集束されて出射する。

【0032】前記の結果、短辺面に直接入射する伝送光 に加えて、長辺面に入射してその反射を介し短辺面に入 射する伝送光もその短辺面を介した反射にて下面に供給 することができ、その分の光利用効率の向上をはかりう ると共に、長辺面で反射されて短辺面に入射する光の入 射角を一定化でき、反射角のバラツキを抑制できて出射 光の平行集光化をはかることができる。従って短辺面と 長辺面の当該傾斜角を調節することにより、出射光に指 向性をもたせることができ、それにより下面に対して垂 直方向ないしそれに近い角度で光を出射させることが可 能になる。

【0033】長辺面の当該傾斜角 θ 2 が 0 度では伝送光 を平行化する効果に乏しくなり、10度を超えると長辺 面への入射率が低下して対向端側への光供給が不足し発 光が不均一化しやすくなる。また、導光板の断面形状に おいても対向端側の薄型化が困難となり、プリズム状凹 凸への入射光量も減少して発光効率も低下しやすくな る。伝送光の平行光化による出射光の集光化や漏れ光の 抑制等の前記性能などの点より長辺面の好ましい傾斜角 θ2は、8度以下、就中5度以下である。

【0034】上記した導光板の長辺面を介した表示像の 視認性などの点より好ましい長辺面は、その傾斜角 θ 2 の角度差を導光板の全体で5度以内、就中4度以内、特 に3度以内としたものであり、最寄りの長辺面間におけ る傾斜角θ2の差を1度以内、就中0.3度以内、特に 0.1度以内としたものである。

【0035】前記により、透過する長辺面の傾斜角 θ 2 の相違等により表示像が受ける影響を抑制することがで

30

30

きる。長辺面による透過角度の偏向が場所によって大き く相違すると不自然な表示像となり、特に近接画素の近 傍における透過像の偏向差が大きいと著しく不自然な表 示像となりやすい。

【0036】前記した傾斜角 θ₂の角度差は、長辺面の 傾斜角 θ 2が上記した 0 超~ 1 0 度の範囲にあることを 前提とする。すなわち、かかる小さい傾斜角θ₂として 長辺面透過時の屈折による表示像の偏向を抑制して許容 値内とすることを前提とするものであり、これは観察点 適視認方向を変化させないことを目的とする。

【0037】表示像が偏向されると最適視認方向が垂直 方向近傍からズレると共に、表示像の偏向が大きいと導 光板上面からの漏れ光の出射方向に近付いてコントラス トの低下などその影響を受けやすくなる場合もある。な お長辺面の傾斜角 02を0超~10度とする条件には、 透過光の分散等の影響も無視できる程度のものとするこ となども含まれている。

【0038】また明るい表示像を得る点よりは、外光の 入射効率に優れ、液晶セルによる表示像の透過光率ない 20 し出射効率に優れるものが好ましい。かかる点より、下 面の基準平面に対する長辺面の投影面積が短辺面のそれ の5倍以上、就中10倍以上、特に15倍以上のプリズ ム状凹凸とすることが好ましい。これにより、液晶セル による表示像の大部分を長辺面を介して透過させること ができる。

【0039】なお液晶セルによる表示像の透過に際し て、短辺面に入射した表示像は入射側面側に反射されて 上面より出射しないか、下面に対する法線を基準に長辺 面透過の表示像とは反端側の大きく異なる方向に偏向さ れて出射し、長辺面を介した表示像に殆ど影響を及ぼさ ない。従ってかかる点より短辺面は、液晶セルの画素に 対して極在しないことが好ましい。ちなみに極論的にい えば、画素の全面に対して短辺面がオーバーラップする と長辺面を介した垂直方向近傍での表示像の視認が殆ど できなくなる。

【0040】よって表示光の透過不足で不自然な表示と なることを防止する点などより、画素と短辺面がオーバ ーラップする面積を小さくして長辺面を介した充分な光 透過率を確保することが好ましい。液晶セルの画素ピッ 40 チは100~300μmが一般的であることを鑑みた場 合、前記の点より短辺面は、下面の基準平面に対する投 影幅に基づいて40μm以下、就中1~20μm、特に5 ~15 µmとなるように形成されていることが好まし い。

【0041】また前記の点より短辺面の間隔は大きいこ とが好ましいが、一方で短辺面は上記したように側面入 射光の実質的な出射機能部分であるから、その間隔が広 すぎると点灯時の照明が疎となってやはり不自然な表示 となる場合があり、それらを鑑みた場合、図3に例示し 50 た如くプリズム状凸凹2a, 2bの繰返しピッチPは、 $50\mu m \sim 1$. 5mmとすることが好ましい。なおピッチ は、一定であってもよいし、例えばランダムピッチや所 定数のピッチ単位をランダム又は規則的に組合せたもの などの如く不規則であってもよい。

8

【0042】プリズム状凹凸からなる光出射手段の場 合、液晶セルの画素と干渉してモアレを生じる場合があ る。モアレの防止は、プリズム状凹凸のピッチ調節で行 いうるが、上記したようにプリズム状凹凸のピッチには を垂直方向近傍に設定して最適化した液晶表示装置の最 10 好ましい範囲がある。従ってそのピッチ範囲でモアレが 生じる場合の解決策が問題となる。

> 【0043】本発明においては、画素に対してプリズム 状凹凸を交差状態で配列しうるように、プリズム状凹凸 を入射側面の基準平面に対し傾斜状態に形成してモアレ を防止する方式が好ましい。その場合、傾斜角が大きす ぎると短辺面を介した反射に偏向を生じて出射光の方向 に大きな偏りが発生し、導光板の光伝送方向における発 光強度の異方性が大きくなって光利用効率も低下し、表 示品位の低下原因となりやすい。

> 【0044】前記の点より、入射側面の基準平面に対す るプリズム状凸凹の配列方向、すなわちプリズム状凹凸 の稜線方向の傾斜角は、±30度以内、就中±25度以 内、特に±20度以内とすることが好ましい。なお、± の符号は入射側面を基準とした傾斜の方向を意味する。 モアレを無視しうる場合、プリズム状凸凹の配列方向は 入射側面に平行なほど好ましい。

> 【0045】導光板は、上記したように適宜な形態とす ることができる。楔形等とする場合にもその形状は適宜 に決定でき、図2(a)に例示の如き直線面11や、図 2 (b), (c)に例示の如き曲面16,17などのよ うに適宜な面形状とすることができる。

> 【0046】また光出射手段を形成するプリズム状凹凸 も、図3に例示の直線面21,22,23,24で形成 されている必要はなく、屈折面や湾曲面等を含む適宜な 面形態に形成されていてもよい。またプリズム状凹凸 は、ピッチに加えて形状等も異なる凹凸の組合せからな っていてもよい。さらにプリズム状凹凸は、稜線が連続 した一連の凸部又は凹部として形成されていてもよい し、所定の間隔を有して稜線方向に不連続に配列した断 続的な凸部又は凹部として形成されていてもよい。

> 【0047】導光板の下面は、微細凹凸を有する構造、 就中、フラット面等に微細凹凸を付与した構造などとと される。これは、上面から視認した場合に視認方向によ り、光出射手段とそれが下面に映込んだパターン同士が 干渉して干渉縞を形成するモアレ現象を防止し、モアレ による表示品位の低下の防止を目的とする。

> 【0048】下面における前記微細凹凸の形成は、例え ばサンドブラスト等のマット処理による導光板表面(下 面)の粗面化方式や、導光板を形成する際に金型等を介 して微細凹凸を付与する方式、透明粒子含有の樹脂層を

導光板の下面に付設する方式、拡散ドットないしそれを設けたシートを導光板下面に設ける方式などの従来の拡散層に準じた適宜な方式にて行うことができる。従って下面における微細凹凸の形状について特に限定はないが、拡散の等方性等の点よりは円形ないしそれに近い形状であることが好ましい。また微細凹凸の大きさについても特に限定はないが、それを介した表示像の視認性などの点よりは 10μ 以下の直径であることが好ましい。

【0049】前記において、散乱による表示像の乱れで 10 視認特性が低下することを防止し、明瞭な表示像を達成 する点などより好ましい導光板は、上下面方向の入射 光、特に下面から上面への垂直入射光の全光線透過率が 90%以上、就中92%以上で、ヘイズが45%以下、 就中5~40%、特に10~35%のものである。

【0050】導光板における入射側面の形状については、特に限定はなく、適宜に決定してよい。一般には、下面に対して垂直な面とされるが、例えば湾曲凹形などの光源の外周等に応じた形状として、入射光率の向上をはることもできる。さらに光源との間に介在する導入部 20を有する入射側面構造などとすることもできる。その導入部は、光源などに応じて適宜な形状とすることができる

【0051】導光板は、光源の波長域に応じそれに透明性を示す適宜な材料にて形成しうる。ちなみに可視光域では、例えばアクリル系樹脂やポリカーボネート系樹脂、エポキシ系樹脂等で代表される透明樹脂やガラスなどがあげられる。複屈折を示さないか、複屈折の小さい材料で形成した導光板が好ましく用いられる。

【0052】導光板は、切削法にても形成でき、適宜な 30 方法で形成することができる。量産性等の点より好ましい製造方法としては、熱可塑性樹脂を所定の形状を形成しうる金型に加熱下に押付て形状を転写する方法、加熱溶融させた熱可塑性樹脂あるいは熱や溶媒を介して流動化させた樹脂を所定の形状に成形しうる金型に充填する方法、熱や紫外線ないし放射線等で重合処理しうる液状樹脂を所定の形状を形成しうる型に充填ないし流延して重合処理する方法などがあげられる。

【0053】なお本発明において導光板は、例えば光の 伝送を担う導光部にプリズム状凹凸等の光出射手段(上 40 面)又は/及び微細凹凸(下面)を形成したシートを接 着したものの如く、同種又は異種の材料からなる部品の 積層体などとして形成されていてもよく、1種の材料に よる一体的単層物として形成されている必要はない。

【0054】導光板の厚さは、使用目的による導光板のサイズや光源の大きさなどにより適宜に決定することができる。反射型液晶表示装置等の形成に用いる場合の一般的な厚さは、その入射側面に基づき $20\,\mathrm{mm}$ 以下、就中 $0.1\sim10\,\mathrm{mm}$ 、特に $0.5\sim8\,\mathrm{mm}$ である。

【0055】本発明による導光板によれば、上面及び下 50 ルミナ、チタニア、ジルコニア、酸化錫、酸化インジウ

面からの入射光が下面又は上面より良好に透過し、それを用いて精度よく平行化された光を視認に有利な垂直性に優れる方向に出射し、光源からの光を効率よく利用して明るさに優れる面光源装置、さらには明るくて見やすく低消費電力性に優れる反射型液晶表示装置などの種々の装置を形成することができる。

10

【0056】図5に本発明による導光板1を有する面光 源装置3を例示した。面光源装置は、例えば図例の如く 導光板1の入射側面に光源31を配置することにより形 成でき、サイドライト型のフロントライト等として好ま しく用いうる。

【0057】 導光板の入射側面に配置する光源としては、適宜なものを用いうる。一般には例えば(冷,熱) 陰極管等の線状光源、発光ダイオード等の点光源やそれを線状や面状等に配列したアレイ体、あるいは点光源を一定又は不定間隔の線状発光状態に変換する装置を用いた光源などが好ましく用いうる。低消費電力性や耐久性等の点よりは、冷陰極管が特に好ましい。

【0058】面光源装置の形成に際しては、必要に応じて図5の如く光源31からの発散光を導光板1の入射側面に導くために光源を包囲する光源ホルダ32や、図6等の如く均等な面発光を得るために導光板の下面に配置した拡散層4などの適宜な補助手段を配置した組合せ体とすることもできる。

【0059】光源ホルダとしては、高反射率金属薄膜を付設した樹脂シートや金属箔などが一般に用いられる。 光源ホルダを導光板の端部に接着剤等を介して接着する 場合には、その接着部分については光出射手段の形成を 省略することもできる。

【0060】拡散層は、明暗ムラの防止による明るさの 均等化や隣接光線の混交によるモアレの低減などを目的 に、必要に応じて予め面光源装置の光出射面、従って導 光板1の下面12に配置するものである。本発明におい ては、導光板出射光の指向性の維持や光の有効利用効率 などの点より、拡散範囲の狭い拡散層が好ましく用いう

【0061】拡散層は、上記した下面の微細凹凸に準じて、例えば低屈折率の透明樹脂中に高屈折率の透明粒子を分散させて塗布硬化させる方式や気泡を分散させた透明樹脂を塗布硬化させる方式、基材表面を溶媒を介し膨潤させてクレイズを発生させる方式や不規則な凹凸面を有する透明樹脂層を形成する方式、あるいは前記に準じて形成した拡散シートを用いる方式などの適宜な方式で形成でき、その形成方式について特に限定はない。前記の不規則な凹凸面は、基材やその上に設けた透明樹脂の塗布層の表面に粗面化処理したロールや金型等の粗面形状を転写する機械的方式又は/及び化学的処理方式などの適宜な方式で形成してよい。なお前記の透明粒子には、例えば平均粒径が0.5~100μmのシリカ、アルミナーチターアージルコーアー酸化線、酸化インジウ

11

ム、酸化カドミウム、酸化アンチモン等の導電性のこと もある無機系粒子や、架橋又は未架橋ポリマー等の有機 系粒子などの適宜なものを用いうる。

【0062】上記のように本発明による面光源装置は、 光の利用効率に優れて明るくて垂直性に優れる光を提供 し、大面積化等も容易であることより反射型液晶表示装 置等におけるフロントライトシステムなどとして種々の 装置に好ましく適用でき、明るくて見やすく低消費電力 の反射型液晶表示装置等を得ることができる。

【0063】図6、図7に本発明による面光源装置3を 10 フロントライトシステムに用いた反射型液晶表示装置を例示した。5,51は偏光板、6は液晶セルで、61,63はセル基板、62は液晶層であり、7,64は反射層である。反射型液晶表示装置は、図例の如く面光源装置の光出射側、すなわち面光源装置における導光板1の下面側に、反射層7,64を具備する液晶セル6を配置することにより形成することができる。

【0064】反射型液晶表示装置は一般に、液晶シャッタとして機能する透明電極具備の液晶セルとそれに付随の駆動装置、偏光板、フロントライト、反射層及び必要 20 に応じての補償用位相差板等の構成部品を適宜に組立てることなどにより形成される。本発明においては、上記した面光源装置を用いる点を除いて特に限定はなく、図例の如く従来に準じて形成することができる。なお図6の例では、透明電極の記入を省略している。

【0065】従って用いる液晶セルについては特に限定はなく、例えば液晶の配向形態に基づく場合、TN液晶セルやSTN液晶セル、垂直配向セルやHANセル、OCBセルの如きツイスト系や非ツイスト系、ゲストホスト系や強誘電性液晶系の液晶セルなどの適宜なものを用30いうる。また液晶の駆動方式についても特に限定はなく、例えばアクティブマトリクス方式やパッシブマトリクス方式などの適宜な駆動方式であってよい。

【0066】反射型液晶表示装置では、反射層7,64の配置が必須であるが、その配置位置については図6に例示の如く液晶セル6の外側に設けることもできるし、図7に例示の如く液晶セル6の内側に設けることもできる。その反射層についは、例えばアルミニウムや銀、金や銅やクロム等の高反射率金属の粉末をバインダ樹脂中に含有する塗工層や蒸着方式等による金属薄膜の付設層、その塗工層や付設層を基材で支持した反射シート、金属箔などの従来に準じた適宜な反射層として形成することができる。

【0067】なお図7の如く液晶セル6の内部に反射層64を設ける場合、その反射層としては、前記の高反射率金属等の高導電性材料にて電極パターンを形成する方式や、透明電極パターン上に例えばその透明電極形成材による透明導電膜を形成する方式などによる反射層が好ましい。

【0068】また偏光板としては、適宜なものを用いう 50

るが、高度な直線偏光の入射による良好なコントラスト 比の表示を得る点などよりは、例えばヨウ素系や染料系 の吸収型直線偏光子などの如く偏光度の高いものが好ま しく用いうる。

【0069】なお反射型液晶表示装置の形成に際しては、例えば視認側の偏光板の上に設ける拡散板やアンチグレア層、反射防止膜や保護層、あるいは液晶セルと偏光板の間に設ける補償用の位相差板などの適宜な光学素子を適宜に配置することができる。

【0070】前記の補償用位相差板は、複屈折の波長依存性などを補償して視認性の向上等をはかることを目的とするものである。本発明においては、視認側又は/及び背面側の偏光板と液晶セルの間等に必要に応じて配置される。補償用の位相差板としては、波長域などに応じて適宜なものを用いることができ、1層又は2層以上の位相差層の重畳層として形成されていてもよい。

【0071】本発明による反射型液晶表示装置の視認は、面光源装置、特にその導光板の長辺面の透過光を介して行われる。図8に反射層64を液晶セル内に設けたものの場合における視認状態を例示した。これによれば面光源装置の点灯時、導光板1の下面より出射した光αが偏光板5と液晶層62等を経由して反射層64を介し反射され、液晶層と偏光板等を逆経由して導光板1に至り、長辺面22を透過した表示像(α)が視認される。

【0072】前記の場合、本発明においては、強い漏れ $\Re \beta_1$ は液晶セルに対して垂直な正面方向とは角度が大きくズレた方向に出射し、正面方向に出射する漏れ光 β_2 は弱いことから長辺面を介して正面方向の近傍で表示 品位に優れる表示像を視認することができる。

【0073】一方、面光源装置が非点灯の外光を利用した場合においても、導光板1の上面の長辺面22より入射した光yが偏光板や液晶層や反射層等を前記に準じ透過・逆経由して導光板1に至り、長辺面を透過した表示像(y)が正面方向の近傍で導光板による乱れ等が少ない表示品位に優れる状態で視認することができる。

【0074】本発明において、上記した面光源装置や液晶表示装置を形成する導光板や拡散層、液晶セルや偏光板等の光学素子ないし部品は、全体的又は部分的に積層一体化されて固着されていてもよいし、分離容易な状態に配置されていてもよい。界面反射の抑制によるコントラストの低下防止などの点よりは、固着状態にあることが好ましく、少なくとも面光源装置における導光板の下面と液晶セルの上面が固着密着状態にあることが好ましい。

【0075】前記の固着密着処理には、粘着剤等の適宜 な透明接着剤を用いることができ、その透明接着層に上 記した透明粒子等を含有させて拡散機能を示す接着層な どとすることもできる。

[0076]

【実施例】実施例1

ポリメチルメタクリレート(PMMA)からなる透明板 の上面をダイヤモンドバイトにて切削して、幅80mm、 奥行130mm、入射側面の厚さ2mm、対向端の厚さ0. 8 mmであり、下面(出射面)は平坦、上面は入射側面か ら対向端に向かって平面に近い上側に突出した湾曲面 (図2b) に入射側面に平行なプリズム状凹凸を390 μ mのピッチで有し、短辺面の傾斜角が36.5~39 度の範囲で、長辺面の傾斜角が1.1~1.5度の範囲 で変化し、最寄り長辺面の傾斜角変化が 0. 1度以内に あり、短辺面の下面に対する投影幅が10~21 μm、 長辺面/短辺面の下面に対する投影面積比が17/1以 上の板状物を得、その下面に微細凹凸シートを接着して 導光板を得た。その微細凹凸シートは、厚さ $80\mu m$ の トリアセチルセルロースフィルム上に平均粒径1.6μ mのプラスチック粒子を含有する透明樹脂層を設けてな り、ヘイズが25%のものである。なお前記のプリズム 状凹凸は、入射側面より2mm離れた位置より形成した。

【0077】前記導光板の入射側面に直径2.4mmの冷 陰極管を配置して銀蒸着を施したポリエステルフィルム からなる光源ホルダにてその縁を導光板の上下端面に密 20 反射型液晶表示装置の駆動状態において、白状態及び黒 着させて包囲し、冷陰極管にインバータと直流電源を接 続して面光源装置を得、その光出射側(導光板下面)に 背面に前記の光源ホルダに準じた反射シートを有する白 黒反射型のTN液晶セルを配置して反射型液晶表示装置 を得た。

【0078】比較例

下面に微細凹凸シートを有しない導光板を用いたほか は、実施例1に準じて面光源装置及び反射型液晶表示装 置を得た。

【0079】評価試験

実施例、比較例で得た導光板、面光源装置及び反射型液 晶表示装置について下記の特性を調べた。

【0080】出射強度

面光源装置を点灯状態とし、導光板中心部の上下面にお ける出射強度の角度特性を輝度計(トンプソン社製、B M7)にて調べた。測定は、下面と入射側面に対し垂直 な面内において下面に対する法線方向を基準に角度を変 えながら行った。得られた測定値は、測定面積を一定と するためにそれに測定角度 θ の余弦を掛けて θ における 出射強度を求め、最大強度の出射方向も併せて求めた。 その下面における最大強度とその方向、及び上面におけ 10 る下面の最大強度方向と、法線及び下面を基準とした鏡 対称方向の出射強度(対応出射強度)を次表に示した。

14

【0081】立体30度光量

直径10mmの孔を有し、内面を艶消し黒色塗装した円筒 状の治具を照度計と対向する側に、前記の孔と照度計の 受光面がなす立体角が30度となるよう設置し、それを 用いて点灯状態の面光源装置の上下面における立体角3 0度以内に出射する光量を調べ、それを導光板の全光線 透過率及びヘイズと共に次表に示した。

【0082】正面輝度

状態における正面輝度を面光源装置の点灯状態下に調べ た。その結果も次表に示した。なお参考のために面光源 装置を配置しない場合の正面輝度を調べたところ、白状 態では28 c d/m²、黒状態では1.6 c d/m²であ った。

【0083】表示品位、モアレ

反射型液晶表示装置における表示像を観察して、正面方 向の表示品位を評価すると共に、視角を変えて干渉縞 (モアレ)が現れるか否かを調べた。その結果を次表に 30 示した。

[0084]

実施例1	比較例	
1 6	1 6	
675	680	
3 4	3 4	
0.050	0.050	
15. 0	14. 5	
1. 3	1. 3	
92.0	92. 4	
30.5	7. 4	
170	170	
2 2	2 2	
良 好	良 好	
発生せず	発 生	
	16 675 34 0.050 15.0 1.3 92.0 30.5 170 22 良好	

【0085】実施例1では、どの方向からもモアレによ る干渉縞は発生しなかったが、比較例では光源から反対 側に約10度の斜視状態から干渉縞が発生し、表示品位 30 11、16,17:上面 が低下した。

【図面の簡単な説明】

【図1】導光板の斜視説明図

【図2】他の導光板の説明図

【図3】 プリズム状凹凸の側面説明図

【図4】実施例による出射特性の説明図

【図5】面光源装置の側面断面図

【図6】反射型液晶表示装置の側面断面図

【図7】他の反射型液晶表示装置の側面断面図

【図8】実施例による表示像の説明図

【図9】従来例による出射特性の説明図

【図10】従来例による表示像の説明図

【符号の説明】

1: 導光板

2 a:凸部

2 b: 凹部

21、23:短辺面

22、24:長辺面

12:下面

13:入射側面

3:面光源装置

31:光源

4:拡散層

40 5, 51: 偏光板

6:液晶セル

7, 64:反射層

【図1】 【図5】 【図6】

【図10】

