실험계획법실습

인하대학교 대학원 홍규성

- **♦** Basic Statistical Concepts
- Sampling and Sampling Distributions
- **◆** Inference about the difference in Mean, Randomized Designs
- **◆** Inference about the difference in Means, Paired Comparison Designs
- **♦** Inference about the variance of Normal Distribution

- **♦** Basic Statistical Concepts
 - 1. Graphical Description of Variability
 - Plot
 - Bar chart
 - Box plot
 - Histogram
 - 2. Probability Distributions
 - Mean
 - Variance
 - Standard Deviation

Basic Statistical Concepts

- 1. Graphical Description of Variability
 - Scatter Plot

Bar chart

Basic Statistical Concepts

Box plot

Histogram

Sampling and Sampling Distributions

Statistics: Point Estimation

Parameters

Estimators (Sample) Estimates

$$\mu_{\scriptscriptstyle Y} = E[Y]$$

$$\leftarrow$$

Mean:
$$\mu_Y = E[Y]$$
 \leftarrow $\overline{Y} = \sum Y_j / n$ $\overline{y} = \sum y_j / n$

$$\overline{y} = \sum y_j / n$$

$$\sigma_Y^2 = E[(Y - \mu_Y)^2] \leftarrow$$

$$S^2 = \frac{\sum_{i}^{n} (x_i)^n}{n!}$$

Variance:
$$\sigma_Y^2 = E[(Y - \mu_Y)^2] \leftarrow S^2 = \frac{\sum (Y_i - \overline{Y})^2}{n - 1} \quad s^2 = \frac{\sum (y_i - \overline{y})^2}{n - 1}$$

Standard Deviation: $\sigma_{y} \leftarrow S$

$$\sigma_{\scriptscriptstyle Y}$$

$$\leftarrow$$

♦ Sampling and Sampling Distributions

1. Statistics: Point Estimation

- 1) E(c) = c
- 2) $E(y) = \mu$
- 3) $E(cy) = cE(y) = c\mu$
- 4) V(c) = 0
- 5) $V(y) = \sigma^2$
- 6) $V(cy) = c^2V(y) = c^2\sigma^2$
- 7) $E(y_1 + y_2) = E(y_1) + E(y_2) = \mu_1 + \mu_2$
- 8) $V(y_1 + y_2) = V(y_1) + V(y_2) + 2Cov(y_1, y_2)$

♦ Sampling and Sampling Distributions

2. The Central Limit Theorem

If $y_1, y_2 \cdots$, y_n is a sequence of n independent and identically distributed random variables with $E(y_i) = \mu$ and $V(y_i) = \sigma^2$ (both finite) and $x = y_1 + y_2 + \cdots + y_n$, then the limiting form of the distribution of

$$Z_n = \frac{x - n\mu}{\sqrt{n\sigma^2}}$$

as $n \to \infty$, is the standard normal distribution.

♦ Inference about the difference in Mean, Randomized Designs

1. Hypotheses Testing

- **Hypothesis:** Null(H_0) versus Alternative(H_1)

 Determine whether null is rejected or not rejected
- Critical Regions: CR
 Reject null hypothesis if the test statistics is in the critical region
- Type I and Type II Errors

Type I Error: Reject H_0 when H_0 is true

 $\rightarrow \alpha = P[\text{type I error}] = P[\text{reject } H_0 \setminus H_0 \text{ true}]$

Type II Error: Not Reject H_0 when H_0 is not true ($\theta \notin H_0$)

 \rightarrow β(μ) = P[type II error] = P[not reject $H_0 \setminus \mu \notin H_0$ true]

♦ Inference about the difference in Mean, Randomized Designs

1. Hypotheses Testing

- Testing
- i) Classical Approach Choose α and determine CR. If test statistic is in CR, reject H_0
- ii) p-value Approach
 Compute p-value of the statistic. If p < (some α), reject H₀
 ← The probability of obtaining a value of test statistic that is at least as extreme as the calculated value when H₀ is true

♦ Inference about the difference in Mean, Randomized Designs

2. The Case Where $\sigma_1^2 \neq \sigma_2^2$

Independent Samples and (σ_1^2, σ_2^2) are unknown but unequal

$$H_0: \mu_1 = \mu_2 \text{ versus } H_1: \mu_1 \neq \mu_2 \ (H_1: \mu_1 > \mu_2)$$

- Test Statistic:
$$t' = \frac{\overline{Y}_1 - \overline{Y}_2}{\sqrt{(S^2/n_1) + (S^2/n_2)}} \sim t_{df}$$
, under H_0

(Normal (or large Non-Normal) with
$$df = \frac{\left[\left(s_1^2 / n_1 \right) + \left(s_2^2 / n_2 \right) \right]^2}{\left(\left(s_1^2 / n_1 \right)^2 + \left(\left(s_2^2 / n_2 \right) \right)^2} - 2 \right)$$

- $100(1-\alpha)$ C. I. for $\mu_1 - \mu_2$:

$$(\overline{y}_1 - \overline{y}_2) \pm t_{1-\alpha/2} \times \sqrt{(s_1^2 / n_1) + (s_2^2 / n_2)}$$

♦ Inference about the difference in Mean, Randomized Designs

3. The Case Where σ_1^2 and σ_2^2 Are Known

Independent Samples and (σ_1^2, σ_2^2) are known

$$H_0: \mu_1 = \mu_2 \text{ versus } H_1: \mu_1 \neq \mu_2 \ (H_1: \mu_1 > \mu_2)$$

- Test Statistics:
$$Z = \frac{\overline{Y}_1 - \overline{Y}_2}{\sqrt{(\sigma_1^2 / n_1) + (\sigma_2^2 / n_2)}} \sim N(0, 1)$$
, under H_0

(Normal Assumptions, or Not Normal with $n_1, n_2 \ge 25$)

- Decision Rule: H_0 if $|z| \ge Z_{1-\alpha/2}$ $(z \ge Z_{1-\alpha})$
- 100(1- α) C. I. for $\mu_1 \mu_2$: $(\overline{y}_1 \overline{y}_2) \pm Z_{1-\alpha/2} \times \sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}$

♦ Inference about the difference in Mean, Randomized Designs

4. Comparing a Single Mean to a Specified Value

$$H_0: \mu = \mu_0 \text{ versus } H_1: \mu \neq \mu_0 \ (H_1: \mu > \mu_0)$$

Test Procedure:

i) σ is known

- Test Statistics: $Z = \frac{\overline{Y} \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$, under H_0 (Normal Assumption)
- Decision Rule: H_0 if $z \ge Z_{1-\alpha/2}$ or $z \le Z_{\alpha/2}$ $(z \ge Z_{1-\alpha})$
- $100(1-\alpha)$ C. I. for $\mu: \overline{y} \pm Z_{1-\alpha/2} \times \sigma / \sqrt{n}$

ii) σ is unknown

- Test Statistics: $t = \frac{\overline{Y} - \mu_0}{S / \sqrt{n}} \sim t_{n-1}$, under H_0

(Normal Assumption, or Not Normal but large $n \ge 30$)

- Decision Rule: H_0 if $|t| \ge t_{1-\alpha/2}$ $(t \ge t_{1-\alpha})$
- $100(1-\alpha)$ C. I. for $\mu: \overline{y} \pm t_{1-\alpha/2} \times s / \sqrt{n}$

◆ Inference about the difference in Mean, Paired Comparison Designs

1. The Paired Comparison Problem

- Differenced Data: $D = Y_1 Y_2$ (data: $d_i = y_{1i} y_{2i}$)
- Hypothesis: $H_0: \mu_D = 0$ versus $H_1: \mu_D \neq 0$ $(H_1: \mu_D > 0)$
- Test Statistics: $t = \frac{\overline{D}}{S_D / \sqrt{n}} \sim t_{n-1}$, under H_0

(Differenced Population is Normal, or Not Normal but large $n \ge 30$)

- Decision Rule: H_0 if $|t| \ge t_{1-\alpha/2}$ $(t \ge t_{1-\alpha})$
- $100(1-\alpha)$ C. I. for $\mu_D = \mu_1 \mu_2$: $\overline{d} \pm t_{1-\alpha/2} \times s_D / \sqrt{n}$

♦ Inference about the Variances of Normal Distributions

1. Test on a Single Variance

- $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 \neq \sigma_0^2$ $(H_1: \sigma^2 > \sigma_0^2)$
- Test Statistic: $W = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$, under H_0 (with Normal Assumption)
- Decision Rule: Reject H_0 if $w \ge \chi^2_{1-\alpha/2}$ or $w \le \chi^2_{\alpha/2}$ $(w \ge \chi^2_{1-\alpha})$
- $100(1-\alpha)$ Confidence Interval for σ^2 :

$$[(n-1)s^2/\chi^2_{1-\alpha/2}, (n-1)s^2/\chi^2_{\alpha/2}]$$

♦ Inference about the Variances of Normal Distributions

2. Test on Two Variance: Independent Samples

-
$$H_0: \sigma_1^2 = \sigma_2^2$$
 versus $H_1: \sigma_1^2 \neq \sigma_2^2$ $(H_1: \sigma_1^2 > \sigma_2^2)$

- Test Statistic:
$$F = \frac{S_1^2}{S_2^2} \sim F_{n_1-1,n_2-1}$$
, under H_0

(with independent Normal Assumptions)

- Decision Rule: Reject H_0 if $f \ge F_{1-\alpha/2}$ or $f \le F_{\alpha/2}$ $(f \ge F_{1-\alpha})$
- $100(1-\alpha)$ C. I. for σ^2 : $[(s_1^2/s_2^2)\times F_{\alpha/2}, (s_1^2/s_2^2)\times F_{1-\alpha/2}]$

감사합니다. See You

