

MID TERM EXAMINATIONS - April 2024

Programme	: B.Tech.	Semester	: Winter 2023-24
Course Title/ Course Code	: Differential and Difference Equations/ MAT2001	Slot	: C12+C13
Time	: 1:30 hours	Max. Marks	: 50

Answer all the Questions

Question Description

Marks

Find the eigen value and eigen vector of the given matrix

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{bmatrix}.$$

10

Find the solution of the given system of first order differential equations $\frac{dX}{dt} = \begin{bmatrix} -1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix} X$

$$\frac{dX}{dt} = \begin{bmatrix} -1 & -1 & 0\\ 0 & -1 & 0\\ 0 & 0 & -2 \end{bmatrix} X$$

10

Where $X = [x_1 \ x_2 \ x_3]^T$.

$$f(x) = \begin{cases} \frac{2k}{L}x, & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L - x), & \text{if } \frac{L}{2} < x < L. \end{cases}$$

10

Fig. 1

Showing the details of your work, find the Fourier coefficients of the given function

$$f(x) = x^2, \quad -\pi < x < \pi$$

10

Also prove that $1 + \frac{1}{2^4} + \frac{1}{3^4} + \dots, = \frac{\pi^4}{90}$ by using Parseval's identity.

Find the Fourier cosine integral of
$$f(x) = \begin{cases} x^2, & \text{if } 0 < x < a \\ 0, & \text{if } x > a. \end{cases}$$

10