Neutral detergents without phosphates - for all fibre types

Patent Number: FR2147443

International patents classification: C11D-007/00

· Abstract :

FR2147443 A Neutral washing compsns. for washing fabrics of all fibre types, contain a synergistic association between two anionic surfactants, pref. of the fatty acid saccharoester, oleyl polypeptide or fatty alcohol alkylsulphate types, used as 10-15% of the total compsn., neutral mineral salts which are strong electrolytes, pref. NaSO4 used as 60-80% of the total compsn. and a chelating agent, pref. Na or K salts of aminocarboxylic acids, esp. Na amino tetracetate, Na ethylene diamino-tetracetate or a mixt. of Na aminotriacetate and Na ethylene-diamino-triacetate, used as 7.5-10% of the total

The compsn. does not cause yellowing of the fibres or their degradation, and in the absence of persalts, has a good storage life.

• Publication data:

Patent Family: FR2147443 A 0 DW1973-20 *
Priority no : 1971FR-0027573 19710728

Covered countries: 1 Publications count: 1

· Accession codes:

Accession N°: 1973-27576U [20]

• Derwent codes :

Manual code: CPI: D11-A05 D11-B06

Derwent Classes: D25

• Patentee & Inventor(s):

Patent assignee: (CHIZ) DYNACHIM SARL

• Update codes :

Basic update code :1973-20

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

Nº de publication :
(A n'utiliser que pour le classement et les commandes de reproduction.)

71.27573

2.147.443

(A) Nº d'enregistrement national :

(A) utiliser pour les paiements d'annuités, les demandes de copies officielles et toutes autres correspondances avec (1.N.P.I.)

® BREVET D'INVENTION

PREMIÈRE ET UNIQUE PUBLICATION

- (51) Classification internationale (Int. Cl.) C 11 d 7/00.
- 71) Déposant : DYNACHIM. S.A.R.L., 16, avenue de Friedland, Paris (8).
- (73) Titulaire : Idem (71)
- (74) Mandataire:
- 64 Compositions détergentes neutres sans phosphates.
- (72) Invention de : René Viguier.
- 33 32 31 Priorité conventionnelle :

La présente invention concerne les lessives de type neutre permettant le lavage du linge dans les neilleures conditions tout en évitant la détérioration de certaines fibres. Toutes les compositions commes de lessives ou produits de lavage ménagers sont de type basique c'est-à-dire que leur solution dans l'eau est trés alcaline et marquée par un pH supérieur à 9 dans

l'eau est tres alcaline et marquee par un pri sustitue à par tous les cas quelle que soit la concentration. Autrefois dans les compositions de lessives au savon l'alcalinité était nécessaire pour bloquer l'hydrolyse de ceux-ci.L'alcalinité a toujours été reconnue comme néfaste aux fibres animales, les tissus de laine et de soie ne peuvent être lavés avec des produits de lavage alcalins sans altération. Il a été reconnu également que l'alca-

linité n'était pas sans danger pour certaines fibres en particulier le coton et le lin en favorisant la turgescence et la solubilisation de fragments de chaines cellulosiques oxydées ou non normalement insoluble dans l'ean d'où une usure prématurée du linge. De plus certaines "couleurs" de tissus se trouvent altérées

par une trop grande alcalinité. Pour que les bains lessiviels quelle que soit leur concentration soient toujours basiques une réserve alcaline était emmagasinée dans les compositions sous forme des sels minéraux et plus particulièrement de sels sodés d'acides faibles tels que les carbonates, silicates et phosphates. L'emploi de ces sels n'est pas sans inconvénients tant pour le

linge que le matériel. En effet ils font précipiter les sels de dureté des œux naturelles (essentiellement: bicarbonates de calcium et de magnéshum) qui se fixent sur les fibres sous forme de carbonate insoluble ainsi que sur les parois des machines à laver. Pour les fibres ceci se traduit par un linge "rêche" et grisaillant et une usure prématurée que l'on combat par l'emploi

d'adoucissant notamment dans les eaux de rincage. Pour les parois des machines, les dépots augmentent la capacité calorifique de celles-ci diminuant ainsi le rendement thermique et allongeant le temps des opérations de lavage. De plus les sels minéraux alcalins encore présents dans le linge provoquent lors du repas-

35 sage un jaunissement des fibres qui demande pour être éliminé un nouveau lavage. Les phosphates présentent des inconvénients

particuliers en détériorant les cylindres ou les cuvettes des machines industrielles à repasser, ce qui altère l'état de surface du métal, le rend rugueux et entraîne des déchirures des vièces de linge. Un autre inconvénient des phosphates et polyphosphates 5 plus récemment découvert concerne leur influence défavorable sur la flore aquatique d'où une responsabilité dans l'origine de la pollution des eaux des rivières par les détergents.

La présente invention permet d'éviter ces inconvénients notamment par l'emploi exclusif de sels neutres tout en gardant aux composi-10 tions selon l'invention des propriétés détergentes comparables à celles des compositions à bases de sels alcalins. Les compositions selon l'invention sont des association de surfactifs anioniques dans les rapports optimums de synergie du pouvoir détergent manifesté en présence d'un électrolyte fort.

- 15 Les composants essentiels sont à savoir :
 - un mélange binaire de surfactifs anioniques
 - un ou plusieurs sels minéraux neutres (électrolytes forts)
 - un ou plusieurs agents chélatants ou sequestrants de nature organique.

A titre complémentaire des composants peuvent être ajoutés pour des formulations de produits ménagers ou industriels, parmi ces composants on peut citer:

- un ou plusieurs agents de blanchiment oxygénés
- un agent d'antiredéposition 25
 - un agent régulateur de libération de l'oxygène des agents de blanchiment oxygénés
 - un ou plusieurs agents d'azurage optique
 - un colorant non substantif pour les fibres textiles
- un parfum 30

20

Les surfactifs anioniques capables de former en association binaire des compositions à optimum de détergence sont ceux présentant une zone de concentration critique micellaire avec un optimum colloïdal. Il est apparu particulièrement avantageux de choi-

- 35 sir dans cette catégorie de surfactifs:
 - les oleylpolypeptides (produits de condensation de polypeptides avec des acides gras de poids moléculaire élevé) de type

dans laquelle

5

20

R est un radical alcoyle de longueur de chaine entre 12 et 20 atomes de carbone

R₁ et R₂ des restas alcoyles de chaines polypertidiques n valeur d'exposant 3,4,5 ou 6 suivant la proteine d'ori-

gine et le degré d'hydrolyse de celle-ci.

- les saccharoesters d'acides gras (produits résultants de la trans 10 éstérification d'un triglycéride par le saccharose) de type Cemulsol SG (Melle Bezons) et de formule générale:

$$(RCO_2)_n$$
 G $(CH_2-CH_2O)_pH$

15 dans laquelle

R est un reste d'acides gras (acides gras de suif) & du glycérol

8 du saccharose

m,n,p des exposants choisis pour obtenir un "Hydrophile Lipophile Balance" HLB favorable au pouvoir détergent.

- les sulfates d'alcools gras (alkylaulfates) de type Gardinal CH (Produits Chimiques de la Mer Rouge) et de formule générale: R-0-S0₃Na

dans laquelle

Rest un reste d'alcools gras (cétylique, oleique)
Les sels minéraux utilisés pour ces compositions neutres sont
les sulfates alcalins et plus particulièrement le sulfate de sodium de formule Na₂SO₄ employé quel que soit son mode de cristallisation: Na₂SO₄ (anhydre); Na₂SO₄, 10H₂O; sel de Gauber Na₂SO₄,

7H₂0. Les avantages de ces sels sont nombreux notamment en ce qui concerne les possibilités d'obtenir des solutions mères de fortes concentrations à basse température, le sulfate étant plus soluble à froid qu'à chaud, et aussi en ce qui concerne les teintures dont les couleurs peuvent être avivées, ce corps étant utilisé comme adjuvant de teinture.

Les séquestrants (ou agents chélatants) sont choisis uniquement dans le groupe: des sels alcalins des acides aminopolycarboxyliques

on citera dans ce groupe les sels de sodium et de potassium des acides aminotriacétique, éthylènediaminetétraacétique (EDTA), diéthylènetriaminepentaacétique et leurs homologues supérieurs. Ils ont la caractéristique commune de former des chélates stables même si le pH du milieu est voisin de la neutralité. En adoucissant l'eau ils contribuent à augmenter le pouvoir détergent, mais en présence de quantités notables de sulfate de sodium ils jouent le rôle de "détergent additionnel" de façon analogue aux sels alcalins. Par la formation de complexes avec les ions cuivres ils collaborent avec le sulfate de magnésie à la régulation du dégagement de l'oxygène issu des persels. Enfin il a été constaté qu'assenciés au sulfate de sodium ils permettent la suppression des phénomènes de jaunissement et de grisaillement du linge.

Les tableaux (I,II,III) ci-dessous illustrent à titre d'exemple 15 non limitatif des formulations conformes à la présente invention. TABLEAU I

Exemples Composants - % en poids 3 4 1 2 (1)7,0 4,5 4,5 Oleylpolypeptides 8,0 20 Saccharoesters d'acides gras (2) 5,5 5,5 Sulfates d'alcools gras (3) 2,0 3,0 Sulfate de sodium anhydre Sulfate de sodium 10 H,0 74,7 74.7 74.7 74,7 Aminotriacétate de sodium 9,0 12,0 9,0 9,0 25 Ethylènediaminotétraacétate de sodium _ Perborate de sodium tétrahydraté 6,0 6,0 6,0 3.0 Carboxyméthylcellulose 0.3 0,3 Sulfate de magnésie 0,3 0,3 (4) Agents d'azurage optique

^{30 (1)} Lamepon A

⁽²⁾ Cemulsol SG

⁽³⁾ Gardinol CH

⁽⁴⁾ combinaisons d'agents d'azurage actif simultanément pour les fibres végétales, animales et chimiques.

TABLEAU II

	TVIIIITEO						
			Exemp	oles			
1	Composants - % en poids		5	6	7	8	
	Oleylpolypeptides	(1)	-	7,0	7,0	4,5	
5	Saccharoesters d'acides gras	(2)	6,5	-	_	5 , 5	
	Sulfates d'alcools gras	(j)	3,5	3,0	3,0	_	
	Sulfate de sodium anhydre	(3)	_	74,7 .			
	Sulfate de sodium 10 H ₂ 0		74,7 •	74,7 •	67,5 •	01,50	
	Aminotriacétate de sodium		9,0	4,0	7,5	7,5	
LO	Ethylènediaminotétraacétate	le sodium	-	5,0			
	Perborate de sodium tétrahydi	raté	6,0	6,0	13,0	13,0	
	Carboxyméthylcellulose		_	-	1,0	1,0	
	Sulfate de magnésie		0,3	0,3	0,5	0,5	
	Agents d'azurage optique	(4)	-	_	0,5	0,5	
	Agentos a compa						
	TABLEAU III						
15			Exe	mples:			
	Composents - % en poids		9	10	11.		
	Oleylpolypeptides	(1)		10,5	7,0		
	Saccharoesters d'acides gras	3 (2)	6,5	-	_		
20	a sates dislocate gras	(支)	3,5	4,5	3,0		
	Sulfate de sodium anhydre	.•	· _	61,0	79,0		
	Sulfate de sodium 10 H20		67.5	-	-		
	Aminotriacétate de sodium		₹•5	-	_		
	Ethylènediaminotétracétae d	e sodium	· · -	9,0	9,0		
25	Perborate de sodium tétrahy	draté	13,0				
	Carboxyméthylcellulose		1,0				
	Sulfate de Magnésie		0,5	0,5			
	Agents d'azurage optique	(4)	0,5	0.,5	1,0		

⁽¹⁾ Lamepon A

^{30 (2)} Cemulsol SG

⁽³⁾ Gardinol CH

⁽⁴⁾ combinaisons d'agents d'azurage actif simultanément pour les les fibres végétales, animales, chimiques et nour amélierer

20

35

Les compositions des exemples l à 11 (tableaux I, II et III) ont été évaluées pour leurs performances de détergence au cours d'un essai général et comparativement avec la composition de référence suivante:

Savon (sels sodiques d'acides gras de suif) Alcoylsulfonate(chaine alcoyle à 12 atomes C)	5
12 atomes C)	
A LCOVISULIONA de Charma de	5
Alkylphénol condensé avec 10 mol. d'oxyde d'éthylène	5
Tripolyphosphate de sodium	31
Pyrophosphate acide de sodium	4
Métasilicate de sodium anhydre	10
Sulfate de sodium 10 H ₂ 0	25
Perborate de sodium tétrahydraté	13
Carboxyméthylcellulose	1
Sulfate de magnésie	0,5
Agents d'azurage optique	0,5

Le pouvoir détergent a été déterminé à l'aide de la méthode utilisant les tissus salis artificiellement du Wasserij-Institut T.N.O et le microtester de détergence décrit dans la revue Laveries Blanchisseries n°204, nov.1963, 447-9.

Le tableau IV résume les résultats obtenus en pourcentages d'élimination des salissures. Le pourcentage d'élimination des salissures est communément considéré comme le pouvoir détergent. La valeur 100 % exprime le maximum du pouvoir détergent.

Les conditions particulières des tests : température du bain de lavage 80° C, eau de duraté française 4° et concentration en composition à tester 10 grammes par litre.

TABLEAU IV

9 10 R 7 8 6 2 3 1 Composition 92 93 90 95 88 91 92 88 93 Pouvoir détergent 90 30 % éclaircissement La composition ll ne contenant pas de perborate n'a pas été incorporée à cette série de tests. Pour les compositions de l à

10 il a été constaté que les résultats de détergence sont voisin du témoin par contre comme l'indique les différences entre

les compositions 1,2 et 7 le rapport "synergétique" entre les deux surfactifs est plus important que le rapport de masse entre les surfactifs et le sulfate de sodium. L'agent chelatant entre dans l'équilibre de la composition mais n'influence pas notablement le

5 pouvoir détergent.

L'efficacité des compositions suivant l'invention a été mise en évidence par la comparaison des résultats obtenus avec la composition de référence R et la composition "7" choisie pour ses analogies de compositions et ses performances de détergence, aprés une

- 10 série de 25 lavages. Les lavages sont éffectués dans des conditions de stricte reproduction (température 80°C, rapport entre la charge de linge et le liquide 1:10, concentration 10 grammes par litre, dureté de l'eau 4° TH Français, durée du lavage : 30 minutes.

 Entre chaque lavage il est procédé à un rinçage abondant.) La
- 15 charge de linge est constituée de bandes de tissu non souillé de caractéristiques initiales connues. Pour la mesure du grisaillement (manifestation visible du pouvoir d'antiredéposition) il est comparé par reflectométrie le pourcentage de perte d'éclat du blanc du tissu témoin par rapport au carbonate de magnésie
- pris comme étalon; pour la composition de référence "R" le grisailreprésente une perte de 8,5 % du blanc initial et pour la composition "7" une perte de 9 %. Pour la mesure du taux de cendres
 il s'agit de la mesure du résidu de calcination du tissu effectué
 au four à moufle électrique, en creuset en platine, aprés deux
- 25 heures de chauffage à la température de 800° C. Le taux est exprimé en pourcentage par rapport au poids initial du tissu pesé sec; pour la composition de référence "R" le taux est de 1,02 % et pour la composition "7" de 0,97 %. Pour la mesure de l'agressivité, la méthode utilisée consiste à pratiquer des éclatements
- sur tissu monillé (éclatométre de Lhomme et Argy) et en déterminer le pourcentage de perte de résistance mécanique par rapport à la résistance initiale du tissu; pour la composition de référence R la perte est de 13 % et pour la composition "7" il n'a été constaté qu'une perte de 11,8 %.
- J5 Les pH des bains de lavage étaient respectivement de 11,2 vour la composition de référence et de 7,6 pour la composition "7".

Des résultats précédents il découle que les compositions suivant l'invention se comportent vis à vis des linges en fibres végétales (les bandes témoins sont en coton) de façon analogue aux lessives à réaction alcaline. Du fait ques les fibres animales et certaines

5 fibres chimiques ne peuvent être lavées qu'en milieu meutre eu trés faiblement alcalin, les compositions suivant l'invention sont valables pour l'entretien de tous les textiles.

Pour fabriquer les lessives en voudre à usage ménager, on precède de façon connue, par exemple on pulvérise des concentrés liquides

10 à température élevée. Les substances sensibles aux hautes températures de séchage, en particulier les persels, sont ajoutées ensuite aux noudres sechées par pulvérisation.

Pour fabriquer les lessives en poudre à usage industriel (produits de lavage utilisés en blanchisserie) on procéde en deux temps, dans un premier temps on fait absorber les produits liquides ou pateur

par du sulfate de sodium anhydre, dans un deuxième temps on mélange les constituants de façon à obtenir une poudre sèche susceptible éventuellement d'un broyage et d'un tamisage.

Pour fabriquer les lessives liquides permettant la distribution 20 par pompe dans les machines à laver automatiques, on dissout les divers constituants de la lessive dans de l'eau de préference déionisée à la température ambiante et ceci jusqu'au voisinage de la saturation. En absence de persels, le stockage des liquides

concentrés est trés bon, les sels ne décantent pas et la tensur 25 élevée en électrolyte bloque les phénomènes de dégradation des surfactifs.

Les compositions selon l'invention peuvent afre utilisées pour la formulation de lessives industrielles et ménagères qu'elles soient distribuées sous formes de poudres solides ou de solutions

30 concentrées.

REVENDICATIONS

- l Compositions de lessives neutres, permettant le lavage du linge en toutes fibres, caractérisées par le fait qu'elles comportent une association synergétique favorable au pouvoir détergent entre deux surfactifs anioniques, des sels minéraux neutres et des chélatants auxquels sont ajoutés facultativement les substances habituelles rencontrées dans les produits de lavage ménager ou industriel n'intervenant pas directement sur la détergence.
- 2 Compositions de lessives neutres selon la revendication 10.1 caractérisées par le fait que l'association est au maximum de synérgie.
 - 3 Compositions de lessives neutres selon la revendication l caractérisées par le fait qu'un des surfactifs est du type oleylpolypeptide.
- 4 Compositions de lessives neutres selon la revendication l caractérisées par le fait qu'un des surfactifs est du type saccharoesters d'acides gras.
- 5 Compositions de lessives neutres selon la revendication l caractérisées par le fait qu'un des surfactifs est du type 20 alkylsulfate d'alcools gras.
 - 6 Compositions de lessives neutres selon l'une quelconque des revendications l à 5 caractérisées par le fait que la proportion des surfactifs est comprise entre 10 et 15 % en poids de la composition totale.
- 7 Compositions de lessives neutres selon la revendication l caractérisées par le fait que le cu les sels minéraux sont des electrolytes forts.
- 8 Compositions de lessives neutres selon la revendication 7 caractérisées par le fait que l'electrolyte fort est le sulfate 30 de sodium.
 - 9 Compositions de lessives neutres selon l'une quelconque des revendications l à 7 caractérisées par le fait que la proportion d'electrolyte forts est comprise entre 60 et 80 % en poids de la composition totale.
- 35 10 Compositions de lessives neutres selon la revendication l caractérisées par le fait que l'agent chélatant est un sel

5

15

Sodique ou Potassique d'acides aminocarboxyliques.

- 11 Compositions de lessives neutres selon la revendication 10 caractérisées par le fait que l'agent chélatant est l'aminotriacétate de sodium.
- 12.- Compositions de lessives neutres selon la revendication 10 caractérisées par le fait que l'agent chélatant est l'éthylènediaminotétra-acétate de sodium.
- 13 Composition de lessives neutres selon la revendication 10 caractérisées par le fait que la fraction "chélatants" est 10 un mélange d'aminotriacétate et d'éthylène diaminotriacétate de sodium.
 - 14 Compositions de lessives neutres selon l'une quelconque des revendications l à 13 caractérisées par le fait que la proportion d'agents chélatants est comprise entre 7,5 et 10 % en poids de la composition totale.

.

.

.