Assignment #1

Name:	ID:
r	This assignment has 5 questions, for a total of 25 marks.
	cronyms: SOS (structural operational semantics), COS (contextual operational p), BG (big step), CBV (call by value), CBN (call by name).
Write what these term	as reduce to, using the reduction strategy indicated before each of them. You can rule applied on top of the arrow in order to identify what reduction steps have $x)$ 3 \xrightarrow{beta} 3).
1. SM-CBV $(\lambda x. \lambda y)$	$\lambda z. ((x y)(x z))) (\lambda u. u + u) 4 5$
2. BG-CBV $(\lambda x. \lambda y)$	$(\lambda z. ((x \ y)(x \ z))) \ (\lambda u. \ u + u) \ 4 \ 5$
3. SM-CBN $(\lambda x. \lambda y)$	$(x,y,x,(x+x))$ 7 $(\lambda z.\lambda u.u)$
	l by name

Question 3: CBV and stuckness	$\dots 5 \text{ marks}$
Write a term t such that t in SM-CBV will get stuck (i.e., reduce to fail) but the same term	t in SM-CBN
will not. Show the reductions for each case.	

- $t \stackrel{\mathsf{def}}{=}$
- 1. SM-CBV
- 2. SM-CBN
- - 1. If $t \to t'$ then $t \leadsto t'$

2. If $t \leadsto t'$ then $t \to t'$

Write out a term t that will reduce to two different values once applied to terms t_1 and t_2 below, i.e., such that t t_1 and t t_2 respectively reduce to v_1 and v_2 such that $v_1 \neq v_2$. The reduction strategy is SOS-SM-CBV, recall that if n > m then m - n = 0. Write out the reductions too.

- $t_1 \stackrel{\text{def}}{=} \lambda x. \, \lambda y. \, (2 * x) (3 * x) + ((\lambda z. \, y \, z \, x) \, 0)$
- $t_2 \stackrel{\mathsf{def}}{=} \lambda x. \, \lambda y. \, (1+x) (3+x) + ((\lambda z. \, y \, z \, x) \, 1)$
- $1. \ t \stackrel{\mathsf{def}}{=}$
- 2. $t t_1$ reductions.

3. t t_2 reductions.