

RESTRICTED 内部文件

香港考試局
HONG KONG EXAMINATIONS AUTHORITY

一九八八年香港中學會考
HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1988

數學
Mathematics

評卷參考
Marking Scheme

這份內部文件，只限閱卷員參閱，不得以任何形式翻印。
This is a restricted document. It is meant for use
by markers of this paper for marking purposes only.
Reproduction in any form is strictly prohibited.

請在學校任教之閱卷員特別留意

本評卷參考並非標準答案，故極不宜
落於學生手中，以免引起誤會。

遇有學生求取此文件時，閱卷員應嚴
予拒絕。閱卷員在任何情況下披露本
評卷參考內容，均有違閱卷員守則及
「一九七七年香港考試局法例」。

Special Notes for Teacher Markers

It is highly undesirable that this
marking scheme should fall into the
hands of students. They are likely
to regard it as a set of model
answers, which it certainly is not.

Markers should therefore resist
pleas from their students to have
access to this document. Making it
available would constitute mis-
conduct on the part of the marker
and is, moreover in breach of the
1977 Hong Kong Examinations
Authority Ordinance.

© 香港考試局 保留版權
Hong Kong Examinations Authority
All Rights Reserved 1988

Solutions	Marks	Remarks
1. $a^2 - a - 6 = (a + 2)(a - 3)$ $a^3 + 8 = (a + 2)(a^2 - 2a + 4)$ Their L.C.M. = $(a + 2)(a - 3)(a^2 - 2a + 4)$ (= $a^4 - 3a^2 + 8a - 24$)	2A+1A 1M+1A 5	any 1 part correct Both exp. must first be factorized. at most 3 per paper at most 1 per question at most 1 for the same type of p.
2. (a) $\frac{\sin(180^\circ - \theta)}{\sin(90^\circ + \theta)} = \frac{\sin\theta}{\cos\theta}$ must be shown..... = $\tan\theta$	1A 1A	EXC
(b) $\sin^2(\pi - \theta) + \sin^2(\frac{3\pi}{2} + \theta)$ = $\sin^2\theta + \cos^2\theta$... OA = 1	1A 1A 5	For $\sin(\frac{3\pi}{2} + \theta) = -\cos\theta$
3. $2x^2 \geq 5x$ $2x^2 - 5x \geq 0$ $x(2x - 5) \geq 0$	1A 1A	Withhold 1 mark if '=' omitted. If solved by equation, no marks awarded unless answer correct.
Case (i) $x \geq 0$ and $2x - 5 \geq 0$ i.e. $x \geq \frac{5}{2}$ Case (ii) $x \leq 0$ and $2x - 5 \leq 0$ i.e. $x \leq 0$ Combining the two parts, we have $x \leq 0$ or $x \geq \frac{5}{2}$.	3A 5	Optional any 1 part without = , withhold 1 mark. For $x \leq 0$, $x \geq \frac{5}{2}$, 2 $x \leq 0$ and $x \geq \frac{5}{2}$ 1
4. (a) If $9x^2 - (k + 1)x + 1 = 0$ has equal roots, $(k + 1)^2 - 36 = 0$	1A	Alt. Solution: $(k+1)^2 - 36 = 0$ 1A
$k^2 + 2k - 35 = 0$	1A	$k + 1 = \pm 6$ 1A+1A
$(k - 5)(k + 7) = 0$ k = 5 or -7 both correct	1A	k = 5 or -7 1A k+1 = 6 1A only
(b) Putting k = -7 in (*) $9x^2 + 6x + 1 = 0$ $(3x + 1)^2 = 0$ $x = -\frac{1}{3}$	1M 1A 6	Sub. For negative value of k L.S. = $(3x + 1)^2$ $x = -\frac{1}{3}$ Sub. both for k=-7 and k=5 no marks

Solutions	Marks	Remarks
5. (a) Area of OABC = $\pi 10^2 \times \frac{100^\circ}{360^\circ}$ = 87.27 (corr. to 2 d.p.) (or 87.28)	1M 1A	
(b) Area of $\triangle OAC$ = $\frac{1}{2} \times 10 \times 10 \times \sin 100^\circ$ = 49.24 (corr. to 2 d.p.)	1M 1A	$\triangle = \frac{1}{2} AC \times OM$ $= \frac{1}{2} \times 15.3209 \times 6.4279$... 1M = 49.24 ... 1A
(c) Area of minor segment ABC = 87.27 - 49.24 = 38.03 (corr. to 2 d.p.) (or 38.04)	1M 1A 6	
6. $\log 2 = r$, $\log 3 = s$.		
(a) $\log 18 = \log 2 + \log 9$ = $\log 2 + \log 3^2$) = $\log 2 + 2\log 3$) = $r + 2s$	1A 1M 1A	For $18 = 2 \times 3^2$) $\log ab = \log a + \log b$ or) $\log a^2 = 2\log a$
(b) $\log 15 = \log 3 + \log 5$ = $\log 3 + \log \frac{10}{2}$ IA = $\log 3 + \log \frac{10}{2}$ = $\log 3 + \log 10 - \log 2$ = $1 - r + s$	1A 1A 1A 6	For $5 = \frac{10}{2}$ or $15 = \frac{30}{2}$
7. (a) The coordinates of the centre are given by only answer → correct 2A $x = -(-\frac{4}{2})$, $y = -\frac{10}{2}$ i.e. $x = 2$, $y = -5$	1M 1A	$(x-2)^2 + (y+5)^2 = \frac{25}{1} : k+4$
(b) As C touches the y-axis, without bracket its radius = 2 $4 + 25 - k = 2^2$ $k = 25$	1M+1A 1M 1A	OR Subs. $(0, -5)$ 1M $25 - 50 + k = 0$ 1M $k = 25$ 1A $r = \sqrt{4 + 25 - 25}$ 1M $= 2$ 1A
	6	OR Put $x = 0$, $y^2 + 10y + k = 0$ has equal roots. 1M $100 - 4k = 0$ $k = 25$ 1A $r = \text{etc.}$

Solutions

Marks

Remarks

8. (a) (i)

(ii) Since $\triangle PBC$ is equilateral, $\angle PBC = 60^\circ$
*angle written down
on the diagram*
 \rightarrow no method marks $\angle ABP = 90^\circ - 60^\circ = 30^\circ \dots\dots\dots$

$$\text{As } BA = BP, \angle PAB = \frac{1}{2}(180^\circ - 30^\circ) \\ = 75^\circ$$

$$\text{Since } AB \parallel DC, \angle PQC = 180^\circ - 75^\circ \\ = 105^\circ$$

1 $\angle PBC$ in order
 1 For P
 1 For Q (between D, C)

Follow through even if
diagram not accurate

$$\begin{aligned} & \angle PAD = 15^\circ \\ & \angle PQC = 90^\circ + 15^\circ \\ & = 105^\circ \end{aligned}$$

1M }
1A }

OR

1M }
1A }

7

(b) (i) $\triangle TCB$ is similar to $\triangle ACT$ because

both correct $\angle C$ is common.

1 mark $\angle BTC = \angle BAT$ (angle in alternate segment)
no need
 $\angle T$ no mark

$\triangle TCB \sim \triangle ACT$ (*AA.A.S.*) *no mark*

1 mark

$$(ii) \frac{AC}{CT} = \frac{CT}{BC} \dots\dots\dots$$

$$AC = \frac{6^2}{5} = 7.2 \quad \text{correct substitution}$$

$$\therefore AB = 7.2 - 5$$

$$= 2.2 \quad (= \frac{11}{5}) \dots\dots\dots$$

1 \approx
 1 \cong
 Indication of 2 pairs
of equal angles. With-
held if proving con-
gruence.

Follow through even
if (b)(i) wrong.

1A

5

Solutions	Marks	Remarks
9. (a) Between 100 and 999, the smallest multiple of 7 is 105, the largest is 994.	1A <u>1A</u> <u>2</u>	
(b) The number of multiples is $\frac{994 - 105}{7} + 1$ must be correct. = 128	2M 1A	OR $994 = 105 + (n-1) \times 7$
The sum of these multiples = $105 + 112 + \dots + 994$ = $\frac{128}{2} [105 + 994]$ = 70336	2M <u>1A</u> <u>6</u>	
(c) The sum of all positive 3-digit integers = $100 + 101 + \dots + 999$ } or all correct = $\frac{900}{2} [100 + 999]$ = 494,550 The required sum = $494,550 - 70,336$ = 424,214	1 1A 1A 1M <u>1A</u> <u>4</u>	

RESTRICTED 内部文件

Solutions	Marks	Remarks
10. (a) Let $y = k_1x + k_2x^2$, where k_1 and k_2 are constants. Putting $x = 1$, $y = -5$; $x = 2$, $y = -8$, we have $k_1 + k_2 = -5$ $2k_1 + 4k_2 = -8$ Solving, $k_1 = -6$, $k_2 = 1$ $\therefore y = -6x + x^2$ Putting $x = 6$, we have $y = 0$.	2 1M 1A 1A 1A+1A 1A 8	For $y=kx+kx^2$ or $y = kx+x^2$ or $y = x+kx^2$ 1 $y=x+kx^2$ no marks marks ($y=k_1x+k_2x^2$)
(b) $y = -6x + x^2 = (x^2 - 6x + 9) - 9$ = $(x - 3)^2 - 9$ When $x = 3$, the value of y is least and the least value is -9.	1M 1A 1M+1A 4	Equality must hold. $y=(x+3)^2 - 9$ OA least value of y is -9 IM OA
11. (a) From the curve, (i) the median is 70 marks. (ii) the 1st quartile is 50 marks.) the 3rd quartile is 86 marks.) \therefore the interquartile range = $86 - 50$ = 36 marks	1A 1A 1M 1A 4	for either
(b) (i) From the curve, the number of prize-winners = 60. (ii) The probability that the student is a prize-winner = $\frac{60}{600}$ (= $\frac{1}{10}$). (iii) (1) The probability that both are prize-winners is $\frac{60}{600} \times \frac{59}{599}$ (= $\frac{59}{5990}$) (= 0.01) (2) The probability that both are not prize-winners = $\frac{540}{600} \times \frac{539}{599}$ (= $\frac{4851}{5990}$) (= 0.81) \therefore the probability that at least one is a prize-winner = $1 - \frac{4851}{5990}$ = $\frac{1139}{5990}$ (= 0.19)	1A 1M+1A 1M+1A 1A 1A 8	Accept $\frac{1}{10} \times \frac{1}{10} = \frac{1}{100}$ IM for product rule Accept $\frac{9}{10} \times \frac{9}{10}$ OR $\frac{9}{10} \times \frac{60}{599} + \frac{1}{10} \times \frac{540}{599}$ + $\frac{1}{10} \times \frac{59}{599}$ 1M+1A = $\frac{1139}{5990}$ 1A

Solutions

	Marks	Remarks
12. (a) L_3 is given by $\frac{x}{3} + \frac{y}{4} = 1$ i.e. $4x + 3y = 12$ (b) The three constraints are $y \leq 4$ $x \leq 3$ $4x + 3y \geq 12$	1M 1A 2	or 2-pt form, etc. Must be in this form.
(c) The line $x + 4y = c$ drawn in the diagram. From the diagram, P is greatest when $x = 3$, $y = 4$ and least when $x = 0$, $y = 0$. The greatest value of $P = 19$, the least value = 3.	1A 1A 1A 3 1M+1A	Withhold 1 mark if '=' omitted. or $4x + 3y - 12 \geq 0$. For 1A Drop of 2-3 verticle units for 10 horizontal units. OR Testing any vertices At $(3, 0)$, $P = 3$. At $(0, 4)$, $P = 16$. At $(3, 4)$, $P = 19$. 1A test 2 points only 1M
	1A 1A 1A 4	
(d) The line $2x - 3y + 3 = 0$ drawn in the diagram. The shaded region. P is least when $x = \frac{3}{2}$, $y = 2$. The least value = $\frac{19}{2}$ (= 9.5)	1A 1A 1A 3	±1 unit at $(1.5, 2)$, $(3, 3)$. Should be reasonably shaded. At $(3, 3)$, $P = 15$. At $(1.5, 2)$, $P = 9.5$.

RESTRICTED 内部文件

Solutions

Marks

Remarks

13. (a) $\frac{AB}{HB} = \tan\theta$	1M	any part in this question Wrong/no unit, pp-1. in the answer in each part 2 + 1
$HB = \frac{3}{\tan\theta} \text{ m}$	1A	
$\frac{DC}{KC} = \tan\theta$, $KC = \frac{2}{\tan\theta} \text{ m}$	1A	
	3	

(b) (i) $S_1 = \frac{6}{2} (3 + 2)$
 $= 15 \text{ m}^2$

(ii) $S_2 = \frac{6}{2} \left(\frac{3}{\tan\theta} + \frac{2}{\tan\theta} \right)$
 $= \frac{15}{\tan\theta} \text{ m}^2$

1A

1A

1A

Must show working..

$$\frac{15}{\frac{15}{\tan\theta}} = \tan\theta$$

$$\tan\theta = \tan\theta$$

0 mark

$$\frac{15}{\frac{15}{\tan\theta}} = \frac{15}{\tan\theta}$$

$$= \tan\theta / A$$

(PP-1)

(c) Let $KE \perp BH$.

$$EK = BC = 6 \text{ (m)}$$

$$K? = 6 \quad \text{--- 2 marks}$$

1M

Construction of perpendicular line

$$\begin{aligned} HE &= \frac{3}{\tan\theta} - \frac{2}{\tan\theta} = \left(\frac{3}{\tan 30^\circ} - \frac{2}{\tan 30^\circ} \right) \text{ m } (= \sqrt{3}) \\ \therefore HK &= \sqrt{HE^2 + EK^2} \quad \begin{matrix} \text{IM} \\ \theta = 30^\circ \end{matrix} \\ &= \sqrt{(\sqrt{3})^2 + 6^2} \\ &= \sqrt{39} \text{ m} \end{aligned}$$

1M+1M
1M

$$\begin{aligned} HB &= 5.1961 \dots \text{ or } 5.2 \\ KC &= 3.464 \dots \text{ or } 3.5 \\ HE &= 1.732 \\ HK &= 6.24 \end{aligned}$$

1A

6

RESTRICTED 内部文件

Solutions	Marks	Remarks																																				
14. (a) (i) $x^3 - \frac{4}{3}x - 6 = 0$ can be written as $x^3 = \frac{4}{3}x + 6$. Consider the line $y = \frac{4}{3}x + 6$ It cuts the curve $y = x^3$ at $x = r$, where r lies between 2.0 and 2.1.	1M 1A+1A 1A	1A for equation 1A for line drawn, ±1 vertical division about (0, 6), (3, 10)																																				
(ii) Let $f(x) = x^3 - \frac{4}{3}x - 6$ $\left. \begin{array}{l} f(2) = -(-= -0.67) \\ f(2.1) = +(=0.46) \end{array} \right\}$ both correct but give 5 marks	1M	Correct change of sign.																																				
<table border="1"> <thead> <tr> <th>Interval</th> <th>Mid-value x</th> <th>f(x)</th> </tr> </thead> <tbody> <tr> <td>$2.000 < r < 2.100$</td> <td>2.050</td> <td>-(-=-0.12)</td> </tr> <tr> <td>$2.050 < r < 2.100$</td> <td>2.075</td> <td>+(=0.17)</td> </tr> <tr> <td>$2.050 < r < 2.075$</td> <td>2.063</td> <td>+(=0.02)</td> </tr> <tr> <td>$2.050 < r < 2.063$</td> <td>2.057</td> <td>-(-=-0.04)</td> </tr> <tr> <td>$2.057 < r < 2.063$</td> <td></td> <td></td> </tr> </tbody> </table> <p>$\therefore r = 2.06$ (correct to 2 d.p.)</p> <p><u>Alt. Solution:</u></p> $\left. \begin{array}{l} f(2) = - \\ f(2.5) = + \end{array} \right\} \dots \quad \text{Q.25 QM+OA}$ <table border="1"> <thead> <tr> <th>Interval</th> <th>Mid-value x</th> <th>f(x)</th> </tr> </thead> <tbody> <tr> <td>$2.000 < r < 2.500$</td> <td>2.250</td> <td>+</td> </tr> <tr> <td>$2.000 < r < 2.225$</td> <td>2.113</td> <td>+</td> </tr> <tr> <td>.</td> <td>.</td> <td>.</td> </tr> <tr> <td>.</td> <td>.</td> <td>.</td> </tr> <tr> <td>.</td> <td>.</td> <td>.</td> </tr> </tbody> </table> <p>$\therefore r = 2.06$ (correct to 2 d.p.)</p>	Interval	Mid-value x	f(x)	$2.000 < r < 2.100$	2.050	-(-=-0.12)	$2.050 < r < 2.100$	2.075	+(=0.17)	$2.050 < r < 2.075$	2.063	+(=0.02)	$2.050 < r < 2.063$	2.057	-(-=-0.04)	$2.057 < r < 2.063$			Interval	Mid-value x	f(x)	$2.000 < r < 2.500$	2.250	+	$2.000 < r < 2.225$	2.113	+	<p>1A 9</p> <p>1M+1A 1M</p> <p>1A</p> <p>1A</p>	<p>1M for choosing mid-value, 1A for correct sign.</p> <p>Next correct interval step.</p>
Interval	Mid-value x	f(x)																																				
$2.000 < r < 2.100$	2.050	-(-=-0.12)																																				
$2.050 < r < 2.100$	2.075	+(=0.17)																																				
$2.050 < r < 2.075$	2.063	+(=0.02)																																				
$2.050 < r < 2.063$	2.057	-(-=-0.04)																																				
$2.057 < r < 2.063$																																						
Interval	Mid-value x	f(x)																																				
$2.000 < r < 2.500$	2.250	+																																				
$2.000 < r < 2.225$	2.113	+																																				
.	.	.																																				
.	.	.																																				
.	.	.																																				
(b) Put $x = t + 1$	1A																																					
The given equation can be written as $3x^3 - 4x - 18 = 0$ or $x^3 - \frac{4}{3}x - 6 = 0$ By (a), the solution is $t = 2.06 - 1 \dots$ $= 1.06$ (correct to 2 d.p.)	1M 1A 3																																					

RESTRICTED 内部文件

14.

