Course: AI For Software Engineering.

Author: Luke Mbogo

Group No: 71

Wednesday, July 9th, 2025.

Week 6 Assignment:

Al Future Direction.

Al-Driven IoT System for Smart Agriculture

1. Introduction

Modern agriculture faces numerous challenges such as unpredictable weather patterns, soil degradation, and inefficient resource usage. To address these, this proposal outlines a smart agriculture system that integrates **Internet of Things (IoT)** sensors with **Artificial Intelligence** (AI) to monitor environmental parameters and predict crop yields. The goal is to enable data-driven decisions for optimized farming and sustainable production.

2. Sensor Requirements

To accurately monitor the farm environment, the system will integrate the following sensors:

Sensor	Purpose
Soil Moisture Sensor	Measures the water content in soil to determine irrigation needs.
Temperature Sensor	Captures ambient air temperature, critical for crop health.
Humidity Sensor	Monitors air humidity which affects plant transpiration and disease likelihood.
Light Sensor (LDR or PAR)	Measures sunlight exposure, important for photosynthesis and plant growth.
Rain Gauge	Tracks rainfall levels to reduce water wastage and plan irrigation.
CO₂ or Air Quality Sensor	Monitors carbon dioxide and pollutants that affect plant growth.
pH Sensor	Measures soil acidity/alkalinity to determine fertilizer or lime requirements.
GPS Module	Captures geolocation for field mapping and localized decision-making.

These sensors will be connected via low-power wireless technologies such as LoRaWAN or Zigbee, with data collected at regular intervals.

3. AI Model for Crop Yield Prediction

Model Type:

• A **Random Forest Regressor** is proposed for its ability to handle non-linear relationships and noisy agricultural data.

• Alternatively, an **LSTM (Long Short-Term Memory) neural network** can be used if timeseries historical data is available.

Input Features:

- Average daily soil moisture
- Temperature trends over the growing season
- Relative humidity levels
- Rainfall accumulation
- Light intensity
- Soil pH and nutrient level (if available)
- Crop type (categorical variable)
- Field-specific variables (e.g., irrigation method, planting density)

Output:

Predicted crop yield in metric tons per hectare (or kg/acre)

Historical crop yield datasets combined with real-time sensor data will be used for model training and validation.

4. System Architecture & Data Flow

Below is a conceptual outline of how the system processes data:

1. Data Collection

IoT sensors placed in the field continuously collect environmental and soil data.

2. Edge Processing

A local edge device (e.g., Raspberry Pi or ESP32) handles initial preprocessing, including data cleaning and formatting.

3. Data Transmission

Preprocessed data is transmitted via Wi-Fi or cellular network to a centralized cloud platform (e.g., AWS IoT, Azure IoT Hub).

4. Al Processing

In the cloud (or on the edge if lightweight), the AI model processes the incoming data and predicts crop yield.

5. Result Delivery

Predicted yield and analytics are presented to the farmer via a web or mobile dashboard, along with recommendations for irrigation, fertilization, or pest control.

5. Benefits

- Real-time Decision Making: Farmers receive up-to-date insights on crop health and expected yield.
- **Resource Optimization**: Water, fertilizer, and energy use are minimized through predictive recommendations.
- Yield Forecasting: Enables better supply chain planning and crop insurance estimation.
- **Scalability**: The system can be extended to different crops, fields, or regions with minimal modifications.

6. Challenges and Considerations

- Sensor Calibration and Maintenance: Ensuring long-term accuracy of field sensors.
- **Data Connectivity**: Rural areas may have limited internet coverage, requiring offline edge computing.
- Model Generalization: Al models must be retrained for different crops or climates to maintain accuracy.
- Data Privacy: Farmers' data must be handled according to ethical and legal standards.

7. Conclusion

This AI-IoT integrated system can significantly transform traditional farming by providing actionable insights and yield forecasts using real-time sensor data. By empowering farmers with intelligent tools, it contributes to more resilient and sustainable agriculture practices.