Lista 3

1. (espaço de Baire) Seja $\mathbf{B} = \mathbb{R}^{\mathbb{N}}$ o espaço das seqüências reais. Para x, y em \mathbf{B} se $x \neq y$ seja $m(x, y) = \min\{n \in \mathbb{N} : x_n \neq y_n\}$. Então de d(x, x) = 0 e para $x \neq y$,

$$d(x,y) = \frac{1}{m(x,y)}.$$

Verifique que d é uma ultramétrica.

- 2. Demonstre que o espaço de Baire é completo.
- 3. (teorema de Baire) Seja (X,d) completo e F_n fechado com interior vazio. Então $\bigcup_{n=1}^{\infty} F_n$ tem interior vazio. Sug.: Obtenha uma sucessão de bolas $B[x_n, r_n] \setminus F_n \supset B[x_{n+1}, r_{n+1}]$ e tais que $r_n \downarrow 0$.
- 4. Definamos para $x \in \mathbf{B} = \mathbb{R}^{\mathbb{N}}$,

$$|x| = \inf_{k \in \mathbb{N}} \sqrt{x_1^2 + x_2^2 + \ldots + x_k^2 + \frac{1}{k^2}}.$$

Então

$$\begin{aligned} |0| &= 0 \\ |-x| &= |x| \\ |x+y| &\leq |x| + |y| \end{aligned}$$

e d(x,y) = |x-y| é uma métrica e x^k converge para x se e somente se x^k (i) convergir para x (i), $i \ge 1$.

- 5. Seja B de Banach. Seja $C \subset B$ fechado e simétrico e convexo. Se $\bigcup_{n=1}^{\infty} nC = B$ então 0 é ponto interior de C.
- 6. Seja $\mathscr{K}=\{K\subset\mathbb{R}^n: K \text{ fechado limitado não-vazio}\}.$ Para $A,B\in\mathscr{K}$ definimos

$$e(A, B) = \sup \{d(x, B) : x \in A\},\$$

 $h(A, B) = \max \{e(A, B), e(B, A)\}.$

Demonstre que para $C \in \mathcal{K}$, $e(A,C) \leq e(A,B) + e(B,C)$ e que h é uma métrica¹ em \mathcal{K} .

¹Métrica de Hausdorff.

- 7. Sejam (X_i, d_i) métricos, $i \geq 1$. Demonstre que $\prod_{i=1}^{\infty} X_i$ é métrico completo se e somente se cada X_i for completo.
- 8. Seja (X,d)métrico completo e $U\subset X$ aberto não—vazio. Definamos em U,

$$d_1(x,y) = d(x,y) + \left| \frac{1}{d(x,U^c)} - \frac{1}{d(y,U^c)} \right|.$$

Verifique que d_1 é uma métrica que é equivalente à métrica d. E na métrica d_1, U é completo.

9. Seja $\mathscr{C}^1([0,1],\mathbb{R})$ o espaço vetorial das funções $f:[0,1]\to\mathbb{R}$ com derivada contínua em [0,1] e norma

$$||f||_1 = \sup_{0 \le x \le 1} \{|f(x)| + |f'(x)|\}.$$

Verifique que $\mathscr{C}^1([0,1],\mathbb{R})$ é de Banach.

10. Verifique que $f(x) = \cos(\cos x)$, $x \in (-\infty, \infty)$ é uma contração.