中山大学本科生期末考试

考试科目:《信号与系统》(A卷)

学年	- 学期: 2019 学年第 2 学期	姓	名:			
学	院/系:物理学院	学	号:			
考证	【方式:开卷	年级专	- 业:_	2018 级光	电信息科学	学与工程(理)
考证	、时长: 120 分钟	班	别:			
警	等示 《中山大学授予学士学位工作组	月则》第7	\条:	"考试作为	弊者,不授 ³	予学士学位。"
	——以下为试题区域, 共三道大题十五道。	小题,总:	分 100)分,考生请	在答题纸上	作答
→,	选择题(共8小题,每小题3分,共2	24分)				
1.	$\left(e^{-4t} + \sin \pi t\right) \delta(t-2) = \left(\right) $					
	A. e^{-8} B. $e^{-8}\delta(t)$ C. $e^{-8}\delta(t)$	-2)	D.	$\delta(t-2)$		
2.	$\int_0^\infty (t^4 + 2t^3 + 3t^2 + 8)\delta'(t - 1)dt = ($) 。			
	A. 14 B. 16 C1	4 D	1	6		
3.	序列 $x(n) = 2\cos(5\pi n)$ 是 () 信	言号。				
	A. 非周期信号 B. 周期为5的周期信信号	号 C. A	周期ナ	为2的周期信	言号 D. 周期	月为0.4的周期
4.	理想低通滤波器是 ()。					
	A. 因果系统 B. 非因果系统 C. 物理	可实现	系统	D. 响应7	下超前于激	励发生的系统
5.	连续信号 $Sa(100\pi t) + Sa^2(90\pi t)$ 的奈	奎斯特	频率	是()。	
	A. 100π Hz B. 180π Hz C.	100 Hz	D.	. 180 Hz		

- 6. 信号 $e^{-2t}\cos \pi t \ u(t-3)$ 的拉普拉斯变换为(
- A. $\frac{-se^{-3(s-2)}}{s^2 + \pi^2}$ B. $\frac{-se^{-3(s+2)}}{s^2 + \pi^2}$ C. $\frac{-(s+2)e^{-3(s+2)}}{(s+2)^2 + \pi^2}$ D. $\frac{-(s+2)e^{-3s}}{(s+2)^2 + \pi^2}$
- 7. 已知离散信号x(n)的z变换为 $X(z) = \frac{z^2}{z^2 + \frac{1}{4}}, |z| > \frac{1}{2}$,则x(n)等于(
- A. $\left(\frac{1}{4}\right)^n \cos(\frac{n\pi}{2})u(n)$ B. $\left(\frac{1}{2}\right)^n \cos(\frac{n\pi}{2})u(n)$ C. $\left(\frac{1}{2}\right)^n u(n)$ D. $\cos(\frac{n\pi}{2})u(n)$
- 8. 某线性时不变离散时间系统的单位样值响应为 $h(n)=3^nu(-n-1)+3^{-n}u(n)$,则该系统 是()系统。
 - A. 因果,稳定 B. 因果,不稳定 C. 非因果,稳定 D. 非因果,不稳定
- 二、计算题(共5小题,前三小题每题10分,后两小题每题12分,共54分)
- 1. 已知系统 y(t) = x(2-t), 判断该系统是否是线性、时不变、因果系统, 并给出证明。
- 已知连续时间信号 $x_1(t) = tu(t)$ 和 $x_2(t) = u(t-1) u(t-2)$, 求卷积 $x_1(t) * x_2(t)$ 。
- 3. 已知周期信号 $x(t) = 1 \frac{1}{2}\cos\left(\frac{\pi}{4}t \frac{2\pi}{3}\right) + \frac{1}{4}\sin\left(\frac{\pi}{3}t \frac{\pi}{6}\right)$, 求其基波周期和基波角 频率,并画出单边频谱图。
- **4.** 已知象函数 $X(s) = \frac{\left[1 e^{-(s+3)}\right]^2}{(s+3)\left[1 e^{-2(s+3)}\right]}$,求原函数x(t)。
- 5. 己知 $y''(t) + 3y'(t) + 2y(t) = 2x'(t) + 6x(t), t \ge 0, y(0^-) = 2, y'(0^-) = 1, x(t) = u(t)$,求系统零 输入响应和零状态响应。

三、系统分析(共2小题,第一小题12分,第二小题10分,共22分)

1. (12分) 一个线性时不变系统由下列差分方程描述:

$$y(n-2) + \frac{3}{2}y(n-1) - y(n) = -x(n-1)$$

- (1) 求该系统的系统函数H(z)以及单位样值响应h(n); (6分)。
- (2) 如果系统是因果系统,讨论该系统收敛域以及稳定性;(3分),
- (3) 画出该系统直接实现形式的信号流图。(3分)
- **2.** (10分)如下图所示的反馈因果系统,(1). 写出系统函数H(s) (5分); (2). k满足什么条件,系统是稳定的? (5分)

