Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS

Matemática Discreta – Aula 4-Relações

Professor: Iuri Jauris

2º Semestre de 2021

□N-uplas ordenadas

- Vimos que na Teoria de Conjuntos a ordem na representação dos elementos não é relevante.
- Por exemplo: A= {a, e, i, o, u} ou A={o, i, u, e, a} representam o conjunto das vogais.
- Vamos agora estudar outras estruturas onde a ordenação dos elementos é relevante.
- N-uplas
- Sequências ordenadas de elementos (tuplas ou n-uplas ordenadas) são arranjos de elementos de forma sequencial.
 Há diversas formas de se representar tais sequências, tais como vetores ou matrizes linha.

- Por exemplo: (a, e, i, o, u) Primeira vogal: a; Segunda vogal: e; etc.
 Neste exemplo a ordenação é alfabética.
- Notação: $(a_1, a_2) \rightarrow 2$ -upla (dupla)
- $(a_1, a_2, a_3) \rightarrow 3$ -upla (tripla)
- $(a_1, a_2, a_3, a_4) \rightarrow 4$ -upla (quádrupla)

.

• $(a_1, a_2, a_3, ..., a_n) \rightarrow \text{n-upla}$

Observações

- 1. (a₁, a₂, a₃, ..., a_n) e (a₂, a₁, a₃, ..., a_n) não são iguais.
- 2. A natureza dos elementos ai (1 ≤ i ≤ n) não precisa ser a mesma. Dessa forma, a₁ pode ser um número, enquanto que a₂ pode ser um nome. O importante é perceber que cada posição define a natureza do elemento que ali pode ser colocado.

Exemplos:

- (Porto Alegre, RS, Região Sul, Brasil)
- (aluno, P1, P2, PS, T1, T2, T3, G1, G2, Final)
- (sobrenome, nome)
- Obs. Pode ocorrer repetição de elementos

Nome	Cidade Nascimento		Cidade de residência	Primeiro Sobrenome	Segundo sobrenome
João	POA	20	POA	Machado	Machado

 O conceito de sequência ordenada é fundamental em Informática, pois é usado <u>como fundamento para a definição de listas</u> <u>ordenadas, de vetores e de registros de bancos de dados.</u> Por exemplo, os registros de banco de dados

- Matematicamente, os tipos mais usados de sequências ordenadas são:
- i. Pares Ordenados: Um par ordenado é uma <u>sequência ordenada</u> <u>de dois elementos.</u>
- Exemplos: (1, 2),
- (a, 1),
- (POLITECNICA, 32),
- ((nome, endereço), código)
- ii. Ternas Ordenadas: Uma terna ordenada é uma <u>sequência</u> ordenada de três elementos.
- Exemplos: (1, 2, 3),
- (a, 1, v),
- (POLITECNICA, 32, PUCRS),
- ((nome, endereço), código, saldo)

□ Relação

- Uma relação, em termos práticos, <u>é uma forma de associação de</u> entidades através de um certo critério.
- Exemplos comuns de sinônimos do termo "relação" entre pessoas são "falar", "ser amigo" ou "namorar". Poderíamos sistematizar estes exemplos da seguinte forma:
- i. a pessoa "x" relaciona-se com a pessoa "y" se e somente se "x
 fala com y"
- ii. a pessoa "x" relaciona-se com a pessoa "y" se e somente se "x é amiga com y"
- iii. a pessoa "x" relaciona-se com a pessoa "y" se e somente se "x namora com y"

- Observe no slide anterior que cada relação é diferente. Isto porque "falar" e "namorar" não são obviamente, a mesma coisa. Isto é: o critério que define a relação mudou!
- No entanto, uma relação pode ser muito mais genérica do que usada comumente.
- O conceito de relação compreende qualquer tipo de associação entre entidades, tais como: pessoas; objetos; processos/etapas; entes matemáticos, como números, conjuntos e funções; etc...

Cuidado!

- Por exemplo na relação, "x é dono de y" observe que não é o mesmo que dizer "y é dono de x".
- Por exemplo, se x é um objeto e y é uma pessoa "x é dono de y" não tem sentido pois um objeto não pode ser dono de uma pessoa.
- No entanto, "y é dono de x" tem sentido e poderá ser uma proposição verdadeira ou falsa, dependendo de quem seja "y" e de qual objeto seja "x".
- Ou seja, numa relação a ordem dos elementos é importante!

- Outro exemplo: Suponha que se queira construir um condomínio residencial. Cada fase da obra, como por exemplo, projeto inicial, laudos técnicos e viabilidade, limpeza do terreno, fundações, concretagem, estrutura e paredes, teto, elétrica/hidráulica, acabamento, dentre outras..., estão relacionadas entre si por uma relação de "pré-requisito". Então um atraso em uma da partes pode acarretar num atraso nas demais, ou em alguns casos, as relações podem incluir etapas onde algumas fases podem ocorrer concomitantemente. Além disso a ordem é importante pois não se pode construir a estrutura antes das fundações estarem prontas.
- Poderá haver um eixo de tarefas críticas, que ao atrasarem acarretarão em maiores perdas, enquanto outras tarefas paralelas poderão ser menos críticas. Portanto novamente temos uma relação onde a ordem dos elementos é importante.

□ Relações

- Dados A e B conjuntos, chama-se de <u>relação de A em B,</u> <u>qualquer subconjunto do produto cartesiano A x B.</u>
- Em notação lógica:
- ρ é relação de A em B $\Leftrightarrow \rho \subseteq A \times B$

Observações:

- i. O primeiro conjunto do produto cartesiano, A, é denominado conjunto de origem ou domínio da relação;
- ii. O segundo conjunto do produto cartesiano, B, é denominado conjunto de destino (ou contradomínio) da relação.

> Notação

- Para representar a proposição "x relaciona-se com y pela relação ρ" escreve-se x ρ y ou (x, y) ∈ ρ.
- Assim: x relaciona-se com y é indicado por $x \rho y \Leftrightarrow (x, y) \in \rho$

Comentários

- Uma relação, em termos algébricos, pode ser compreendida de duas formas:
- i. Uma relação é <u>uma forma de associação entre elementos</u> <u>de um conjunto com elementos de outro conjunto:</u>

Esta é a interpretação mais usual na prática, e que nos permite sistematizar e organizar a forma como os <u>elementos</u> <u>de um conjunto relacionam-se com elementos de outro</u> conjunto;

ii. Uma relação de A em B <u>é um subconjunto de um produto</u> cartesiano A x B:

- Esta compreensão dá fundamento matemático ao conceito de relação. Podemos representar a associação de elementos de um conjunto A com elementos de um conjunto B através de um par ordenado, onde a primeira componente do par será destinada a um elemento do conjunto A e a segunda componente do par, a um elemento do conjunto B. <u>Assim, uma relação de A em B é formada por associações do tipo (elemento de A, elemento de B).</u>
- Ora, <u>pares ordenados deste tipo são obtidos através do produto</u> <u>cartesiano de A com B</u>. Como sabemos, A x B é o conjunto formado por TODOS os pares da forma (elemento de A, elemento de B).
- Uma relação é a seleção de ALGUNS (eventualmente TODOS) destes pares segundo algum critério.

$$A \times \emptyset = \{(1,0); (1,1); (2,0); (2,1); (3,0); (3,1)\}$$

Exemplos

Sejam: $A = \{1, 2, 3\} \in B = \{0, 1\}$ Então podem-se definir, por exemplo, as seguintes relações: $R \subseteq A \times B$, $x R y \Leftrightarrow x = y + 1$ $R = \{(1,0); (2,1)\}$ $S \subseteq A \times B$, $x S y \Leftrightarrow (x \neq y) \land (y < 1) S = \{(1,0); (2,0); (3,0)\}$ $T \subseteq A \times B$, $x T y \Leftrightarrow x + y > 0$ $W \subseteq A \times B$, $x W y \Leftrightarrow x + y < 0$ $W = \emptyset \Rightarrow \text{relação sem ninguém}$ $V \subseteq A \times B$, $xVy \Leftrightarrow (x \geq y) \land (x < 2)$ $V = \{(1,0); (4,4)\}$

 Com efeito, estas relações podem ser representadas na forma de conjuntos de pares ordenados:

$$R = \{(x, y) / x = y + 1\}$$

$$S = \{(x, y) / (x \neq y) \land (y < 1)\} = \{(1, 0), (2, 1)\}$$

$$T = \{(x, y) / (x \neq y) \land (y < 1)\} = \{(1, 0), (2, 0), (3, 0)\}$$

$$= \{(x, y) / (x \neq y) \land (y < 1)\} = \{(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)\}$$

$$V = \{(x, y) / (x \geq y) \land (x < 2)\} = \{(1, 0), (1, 1)\}$$

> Tipos de relação:

- Uma relação $\rho \subseteq A \times B$ é dita **um para um** se cada primeira componente e cada segunda componente aparecem apenas uma vez na relação. Ex: A relação R anterior;
- A relação $\rho \subseteq A \times B$ é dita de **um para muitos** se alguma primeira componente aparece mais de uma vez, ou seja, se $x \in A$ pode aparecer em mais de um par. Ex: A relação V anterior;
- A relação $\rho \subseteq A \times B$ é dita de **muitos para um** se alguma segunda componente $y \in B$ aparece em mais de um par. Ex: A relação S anterior;
- Finalmente, $\rho \subseteq A \times B$ é dita uma relação de **muitos para muitos** se pelo menos um $x \in A$ aparece em mais de um par e pelo menos um $y \in B$ aparece em mais de um par.

Ex: A relação T anterior.

Um para um

A dominio B (imagem)

Muitos para um

Um para muitos

Muitos para muitos

- Domínio e Imagem de uma Relação
- Partindo da concepção de relação como uma representação da associação de elementos de um conjunto com elementos de outro conjunto, é desejável distinguir quais elementos, em cada conjunto, foram efetivamente associados. Esta distinção pode ser obtida através dos conceitos de Domínio, Imagem e Contradomínio de uma relação.

<u>Definições</u>

```
Seja R \subseteq A x B (isto é, R é uma relação de A em B). Então definem-se: Dom(R) = \{x \in A / (\exists y \in B)((x, y) \in R)\}\
Im(R) = \{y \in B / (\exists x \in A)((x, y) \in R)\}\
```

- Exemplos: Sejam: A = { 1, 2, 3 } e B = { 0, 1 } e as relações dos exemplos apresentados anteriormente, temos:
- Dom(R) = $\{1, 2\}$ Im(R) = $\{0, 1\}$
- Dom(S) = $\{1, 2, 3\}$ Im(S) = $\{0\}$
- Dom(T) = $\{1, 2, 3\}$ Im(T) = $\{0, 1\}$
- Dom(W) = \varnothing Im(W) = \varnothing

$R \subseteq A \times B$, $S \subseteq A \times B$,	$x R y \Leftrightarrow x = y + 1$ $x S y \Leftrightarrow (x \neq y) \land (y < 1)$
$T \subseteq A \times B$,	$x T y \Leftrightarrow x + y > 0$
$W \subseteq A \times B$,	$x W y \Leftrightarrow x + y < 0$

> Representação de relações por tabela:

• Se (x, y) E R, associamos o dígito "1". Caso contrário, associamos o dígito "0".

Exemplo:

R	0	1
1	1	0
2	0	1
3	0	0

	ر	ista ?
S	0	1)
1	(1)	(0)
2	1	0
3	1	0

Representação Gráfica de Relações:

- Uma relação pode ser representada através de um gráfico cartesiano, onde são adotadas as seguintes convenções:
- ✓ O conjunto de origem da relação é representado no eixo horizontal X.
- ✓ O conjunto de destino da relação é representado no eixo vertical Y.

Exemplos com Conjuntos Discretos

```
Dados A = \{-1, 0, 1\} \in B = \{2, 4, 6\}, sejam as relações de A em B: R = A \times B

S \subseteq A \times B, X S y \Leftrightarrow 4x + y > 0

T \subseteq A \times B, X T y \Leftrightarrow y = 4 + 2x

W \subseteq A \times B, X W y \Leftrightarrow y \leq 4 + 2x
```

As representações gráficas das relações acima são:

Representação por Tabelas:

R	2	4	6
-1	1	1	1
0	1	1	1
1	1	1	1

S	2	4	6
-1			
0			
1			

T	2	4	6
-1			
0			
1			

W	2	4	6
-1			
0			
1			

Exemplos com Conjuntos Contínuos

Sejam A = [-1, 1] e B = [2, 6].

Para comparação usaremos as mesmas relações do exemplo anterior:

 $R = A \times B$

$$S \subseteq A \times B$$
, $\times S y \Leftrightarrow 4x + y > 0$

$$T \subseteq A \times B$$
, $x T y \Leftrightarrow y = 4+2x$

$$W \subseteq A \times B$$
, $\times W y \Leftrightarrow y \leq 4+2x$

Obs. Neste caso não há representação por tabelas. Representação gráfica:

> Operações Com Relações

- Da concepção de que <u>uma relação é um subconjunto de um produto cartesiano (e, portanto, um conjunto!</u>), devemos observar que todos <u>os resultados válidos em teoria de conjuntos são também válidos para as relações</u>. Em particular, podemos criar novas relações a partir das operações de:
- união de conjuntos (\cup)
- interseção de conjuntos (∩)
- diferença de conjuntos ()
- complementação de conjuntos (')

- Alguns cuidados devem ser tomados:
- 1. O conjunto universo, no caso de operações com relações de A em B, é o produto cartesiano A x B;
- 2. Como no caso de conjuntos quaisquer, <u>somente podem ser</u> <u>operadas relações dentro de um mesmo conjunto universo</u>; ou seja, duas relações somente podem ser operadas se ambas forem de A em B, por exemplo.
- Isto significa que, dadas duas relações de A em B, denominadas R e S temos que:

```
União: (R \subseteq A \times B) \land (S \subseteq A \times B) \Leftrightarrow (R \cup S \subseteq A \times B)
Interseção: (R \subseteq A \times B) \land (S \subseteq A \times B) \Leftrightarrow (R \cap S \subseteq A \times B)
Diferença: (R \subseteq A \times B) \land (S \subseteq A \times B) \Leftrightarrow (R - S \subseteq A \times B)
Complementação: (R \subseteq A \times B) \Leftrightarrow (R' \subseteq A \times B)
```

 Observe-se que R∪ S, R∩ S, R – S e R' também são relações de A em B!

Exemplo

De modo a elucidar melhor os conceitos vistos acima, observemos o seguinte exemplo: Sejam as relações

$$R \subseteq \mathbf{R} \times \mathbf{R}$$
, $\times R y \Leftrightarrow x^2 + y^2 \le 1$

$$S \subseteq \mathbf{R} \times \mathbf{R}, \quad x S y \Leftrightarrow x \leq y$$

Cujas representações gráficas são:

Então definem-se as relações, de R em R:

$$R \cup S \subseteq \mathbf{R} \times \mathbf{R}$$
, $x R \cup S y \Leftrightarrow (x^2 + y^2 \le 1) \lor (x \le y)$
 $R \cap S \subseteq \mathbf{R} \times \mathbf{R}$, $x R \cap S y \Leftrightarrow (x^2 + y^2 \le 1) \land (x \le y)$
 $S - R \subseteq \mathbf{R} \times \mathbf{R}$, $x S - R y \Leftrightarrow (x^2 + y^2 > 1) \land (x \le y)$
 $R' \subseteq \mathbf{R} \times \mathbf{R}$, $x R' y \Leftrightarrow x^2 + y^2 > 1$

Os gráficos das relações definidas pelas operações entre R e S são:

• Exercícios:

- 1. Sejam as relações R = { $(x, y) \in \mathbb{R}^2 | y = |x| 1 } e S = { <math>(x, y) \in \mathbb{R}^2 | y = 1 x^2 }$.
 - . Represente graficamente as relações R∪S, R∩S e R S.
- 2. Determine o domínio e a imagem das relações abaixo:
 - (a) R relação em A = $\{1, 2, 3, 4, 5\}$ definida por: $x R y \leftrightarrow x < y$.
 - (b) R relação em A= $\{1, 2, 3, 4, 5\}$ definida por: x R y \leftrightarrow x = y 1.
 - (c) R relação em A^2 , onde $A = \{1, 2, 3, 4\}$ definida por: $(x, y) R (z, w) \leftrightarrow x = 2z \land y = 3$.
 - (d) R relação em [0; 1] definida por: x R y ↔ x < y.</p>
 - (e) R relação de **2Z** em **4Z** definida por: x R y \leftrightarrow x = 2y, onde **2Z** = { ..., -4, -2, 0, 2, 4, ... } e **4Z** = { ..., -8, -4, 0, 4, 8, ... }.

- Represente graficamente as relações abaixo, indicando também o domínio e a imagem de cada uma delas:
 - (a) R_1 relação de R_+ em R definida por: $x R_1 y \leftrightarrow x^2 + y^2 \ge 9$
 - (b) R₂ relação de R₁ em R definida por: x R₂ y ↔ y = 5 x
 - (c) R₃ relação de R₊ em R definida por: R₃ = R₁ ∩ R₂
 - (d) R₄ relação de R em Z definida por: x R₄ y ↔ y = 2x
 - (e) R₅ relação de R₊ em R definida por: x R₅ y ↔ x + y < 1</p>