Quiz #1 Fall 2014

Please write your name below, then complete the exam in the space provided. You may refer to one page of notes: standard paper, both sides, any content you wish. There are FOUR questions.

(Name and signature)

- 1. Linear transformations. Consider the random variable x, which is normal with mean μ and standard deviation δ .
 - (a) What are the variance, skewness, and excess kurtosis of x? (10 points)
 - (b) What are x's moment generating function (mgf) and cumulant generating function (cgf)? What is the expectation of e^x ? (10 points)
 - (c) What is the cgf of y = a + bx? (10 points)
 - (d) What is y's distribution? What are its mean, variance, skewness, and excess kurtosis? (10 points)

Solution:

- (a) The variance is the standard deviation squared, δ^2 . Since x is normal, its skewness and excess kurtosis are zero.
- (b) The mgf is $h(s) = E(e^{sx}) = e^{\mu s + \delta^2 s^2/2}$. The cgf is the log of this: $k(s) = \log h(s) = \mu s + \delta^2 s^2/2$. The expectation of e^x is $h(1) = e^{\mu + \delta^2/2}$.
- (c) If we run through the definitions, we see $k_y(s) = as + k_x(bs) = (a + b\mu)s + (b\delta)^2 s^2/2$.
- (d) From the form of the cgf (quadratic in s), we see that y is normal. Its mean is $a + b\mu$ (the linear term) and its variance is $(b\delta)^2$ (the quadratic term). And since it's normal, skewness and excess kurtosis are still sero.
- 2. Option payoffs. An option on the random variable y has a payoff of $f(y) = \max\{0, y-k\}$ for some strike price k.

Consider random variables y constructed from these independent inputs:

- x_1 takes on the values $\{4,6\}$ with probability one-half each.
- x_2 takes on the values $\{-2, +2\}$ with probability one-half each.

We'll explore the expected payoff of options with strike price k = 5 and two versions of y: $y = x_1$ and $y = x_1 + x_2$.

- (a) What is the expected value of $y = x_1$? (5 points)
- (b) What is the expected option payoff that is, E(f(y)) in this case? How does it compare to f[E(y)]? What mathematical result does this illustrate? (10 points)
- (c) What values does $y = x_1 + x_2$ take on? With what probabilities? What is its expected value? (10 points)
- (d) What is the expected option payoff in this case? (5 points)
- (e) How does the option payoff differ when $y = x_1$ and $y = x_1 + x_2$? What mathematical result does this illustrate? (10 points)

Solution:

- (a) E(y) = (1/2)(4) + (1/2)(6) = 5.
- (b) E[f(y)] = (1/2)(0) + (1/2)(1) = 1/2. f[E(y)] = 0. The former is greater because f is a convex function: Jensen's inequality in action.
- (c) y takes on the values $\{2,4,6,8\}$ with probability one-fourth each. The expected value is E(y) = (1/4)(2+4+6+8) = 5. That is: the mean hasn't changed, we've just spread out the distribution a bit. (Draw the two distributions if you like.)
- (d) The expected option payoff is E[f(y)] = (1/2)(0) + (1/4)(1) + (1/4)(3) = 1.
- (e) This is greater than the option payoff with $y = x_1$ because we've spread out the distribution. We don't have a name for this, but an increase in the variance holding constant the mean increases the expected value of a convex function.
- 3. State prices. Suppose three assets have dividends

Asset	State 1	State 2	State 3
Asset A	1	1	1
Asset B	1	2	1
Asset C	1	1	3

If the prices of assets are $q^A = 11/12$ and $q^B = q^C = 13/12$, what are the state prices? (15 points)

Solution: The asset payoffs are connected to state prices Q(z) by

$$q^A = Q(1) + Q(2) + Q(3)$$

 $q^B = Q(1) + 2Q(2) + Q(3)$
 $q^C = Q(1) + Q(2) + 3Q(3)$,

which we can solve for the Q's. The solution is $Q(1)=8/12,\ Q(2)=2/12,$ and Q(3)=1/12.

- 4. Pareto problem with production. Consider a theoretical economy with these ingredients:
 - One agent.
 - Two goods, apples and bananas.
 - Utility function: $\log c_a + \log c_b$.
 - Endowment: 6 apples, 4 bananas.
 - Technology: apples can be converted to bananas one for one.
 - (a) What are the resource constraints for this economy? (5 points)
 - (b) What is the Pareto problem? (5 points)
 - (c) What is the solution to the Pareto problem? What are the optimal quantities? What are the implied prices? (15 points)

Solution:

(a) If we let a be the number of apples we convert to bananas, the resource constraints for apples and bananas are

$$c_a + a \leq y_a = 6$$

$$c_b < y_b + a = 4 + a.$$

We might also say $a \ge 0$ if we're worried about the reverse technology: converting bananas to apples. We'll ignore that from here on.

(b) The Pareto problem is: maximize utility subject to the resource constraints. The Lagrangian is

$$\mathcal{L} = \log c_a + \log c_b + \lambda_a (y_a - c_a - a) + \lambda_b (y_b + a - c_b).$$

The first-order conditions (the derivatives of \mathcal{L}) include

$$c_a$$
: $1/c_a - \lambda_a = 0$
 c_b : $1/c_b - \lambda_b = 0$
 a : $-\lambda_a + \lambda_b = 0$.

That gives us $\lambda_a = \lambda_b$ and (therefore) $c_a = c_b$. From the resource constraints we have $c_a = a_b = 5$ and a = 1. The relative price of bananas comes from the Lagrange multipliers: $q_b/q_a = \lambda_b/\lambda_a = 1$.

© 2015 David Backus | NYU Stern School of Business