UNIVERSITY OF OSLO

Master's thesis

Gravitational waves from topological defects

Any short subtitle

Nanna Bryne

CS: Astrophysics 60 ECTS study points

Institute of Theoretical Astrophysics, Department of Physics Faculty of Mathematics and Natural Sciences

Nanna Bryne

Gravitational waves from topological defects

Any short subtitle

Supervisor: David Fonseca Mota

Contents

I	Introduction	1
1	Introduction	3
2	Theoretical Background	5
	Introduction	5
II	Analytical work	7
3	Dummy chapter	9
	3.1 Dummy section	9
Ш	Numerical work	11
IV	Finishing	13

Contents

Notation

Constants and units. We use 'natural units' where $\hbar = c = 1$, where \hbar is the reduced Planck constant and c is the speed of light in vacuum. The Newtonian constant of gravitation G_N is referenced explicitly, and we use Planck units such as the Planck mass $M_{\rm Pl} = (\hbar c/G)^{1/2} = G^{-1/2} \sim 10^{-8} \, {\rm kg}$.

Tensors. The metric signature (-, +, +, +) is considered. A four-vector $p^{\mu} =$

$$\lambda \quad \bar{\lambda}\hbar \quad X - \\ X \qquad \qquad X$$

$$\lambda \equiv \lambda/(2\pi); (\lambda = 1/f) \iff k = 2\pi/\lambda = 1/\lambda$$

Frequently used abbreviations

CDM <u>cold dark matter</u>

CMB cosmic microwave background (radiation)

DW domain wall

GR general relativity

GW gravitational wave

ΛCDM 'Lambda' (cosmological constant) CDM (i.e. standard model of cosmology)

Nomenclature

In the table below is listed the most frequently used symbols in this paper, for reference.

Table 1: helo

Symbol	Referent	SI-value or definition
Natural consta	nts	
$G_{ m N}$	Newtonian constant of gravitation	1.2 kg
$k_{ m B}$	Boltzmann's constant	1.2 K
Fiducial quant	ities	
h_0	Reduced Hubble constant	0.67
Subscripts		
$Q_{ m gw}$	Quantity Q related to gravitational wave	
Functions and	operators	
$\Theta(\xi)$	Heaviside step function	$\begin{cases} 1 & \xi > 0 \\ 0 & \xi < 0 \end{cases}$
$\delta(\xi)$	Dirac-Delta function of $\xi \in \mathbb{R}^n$, $n \in \mathbb{N}$.	
$\delta^{\mu u}$	Kronecker delta.	

Part I Introduction

Chapter 1

Introduction

We use the convention that (-, +, +, +) is the metric signature.

SO(3) is a group

SO(3) is a group

SO(3) is a group

The order O(1) is large

The order O(1) is large

The Planck unit $M_{\rm Pl}$

We have a GW with $ho_{\rm GW}$ or $ho_{\rm gw} \dots
ho_{\rm gw}$

$$f(x) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \tilde{f}(k)$$

$$\tilde{f}(k) = \int d^4x e^{ik \cdot x} f(x)$$
(1.1)

Chapter 2

Theoretical Background

In the context of ... blah ... blah

$$d^3, d^3x, dx, d^2x \tag{2.1}$$

2.1 High-Performance Computing

Chapter 2. Theoretical Background

Part II Analytical work

Chapter 3

Dummy chapter

3.1 Dummy section

Hello this is a nice thesis

$$h_{ij} = \mathbf{a}^{\mathrm{s}} \square \widehat{=} \tag{3.1}$$

Nanna is cool

Alma is lame

UNIVERSITY UNIVERSITY OF OSLO OF OSLO

. (b)

Figure 3.1: .

helo [1, 2] See Eq. (3.1). fdf [3] Boltzmann equation

$$\hat{L}[f] = \hat{C}[f]; \quad \hat{L}[f] \equiv \frac{\mathrm{d}f}{\mathrm{d}\lambda} \tag{3.2}$$

$$e^{i\pi}$$
 (3.3)

Hei jeg heter Nanna

Chapter 3. Dummy chapter

Part III Numerical work

Part IV Finishing

Bibliography

- [1] Majdi Amr. Particle production by gravitational perturbations in domain walls. *Nuclear Physics B*, 945:114648, August 2019.
- [2] Aleksandr Azatov, Miguel Vanvlasselaer, and Wen Yin. Dark Matter production from relativistic bubble walls. *Journal of High Energy Physics*, 2021(3):288, March 2021.
- [3] Tanmay Vachaspati. *Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons*. Cambridge University Press, Cambridge, 2006.