EXPERIMENT no. 5 and 6 [R PROGRAMMING LANGUAGE]

- Asst. Prof. Ashwini Mathur

Question 1. What happens when the following code is run? gender <- c("M", "M", "F", "F", "F") whereF<- (gender == "F") gender[whereF] <- "Female"

Question 2. In R, evaluate the expressions

$$2^52 + k - 2^52$$

 $2^53 + k - 2^53$
 $2^54 + k - 2^54$

for the cases where k = 1, 2, 3, 4. Explain what you observe. What could be done to obtain results in R which are mathematically correct?

Question 3. Construct the data frame char-num in the following way: char <- c("2", "1", "0") num<- 0:2 charnum<- data.frame(char, num);

Question 4. The following are a sample of observations on incoming solar radiation at a greenhouse: 11.1 10.6 6.3 8.8 10.7 11.2 8.9 12.2

- a. Assign the data to an object called solar.radiation.
- b. Find the mean, median, range, and variance of the radiation o bservations.
- c. Add 10 to each observation of solar radiation, and assign the result to sr10. Find the mean, median, range, and variance of sr10. Which statistics change, and by how much?
 - d. Plot a histogram of the solar radiation, sr10, and srm2.

Question 4. Modify the code to generate the Fibonacci sequence in the following ways.

- 1. Change the first two elements to 2 and 2.
- 2. Change the first two elements to 3 and 2.

Question 5. Use the inbuilt data car and uses the possible graphical plots using **ggplot2** graphical packages.

Question 1. What happens when the following code is run? gender <- c("M", "M", "F", "F", "F") whereF<- (gender == "F") gender[whereF] <- "Female"

'M' · 'M' · 'Female' · 'Female' · 'Female'

Question 2. In R, evaluate the expressions

$$2^52 + k - 2^52$$

 $2^53 + k - 2^53$
 $2^54 + k - 2^54$

for the cases where k = 1, 2, 3, 4. Explain what you observe. What could be done to obtain results in R which are mathematically correct?

```
In [46]: k <- 1:4

#1
2^52 + k - 2^52
#2
2^53 + k - 2^53
#3
2^54 + k - 2^54
```

- $1 \cdot 2 \cdot 3 \cdot 4$
- $0 \cdot 2 \cdot 4 \cdot 4$
- $0 \cdot 0 \cdot 4 \cdot 4$

We are right at the borderline of accuracy for double precision foating point. **The first expression** is done accurately, the other two suffer rounding error. The result would be correct if done in a different order, e.g.

```
In [47]:

2^52 - 2^52 + k

2^53 + k - 2^53

2^54 - 2^54 + k
```

- $1 \cdot 2 \cdot 3 \cdot 4$
- $0 \cdot 2 \cdot 4 \cdot 4$
- 1 · 2 · 3 · 4

Question 2. Construct the data frame char-num in the following way: char <- c("2", "1", "0") num<- 0:2 charnum<- data.frame(char, num);

```
In [48]: char <- c("2", "1", "0")
    num <- 0:2
    charnum <- data.frame(char, num)

#as.numeric(char)

charnum$char
    charnum$num</pre>
```

- 2 · 1 · 0
- ► Levels:
- 0 · 1 · 2

Question 3. Modify the code to generate the Fibonacci sequence in the following ways.

- 1. Change the first two elements to 2 and 2.
- 2. Change the first two elements to 3 and 2.

```
In [49]: # Implement the code to generate the Fibonacci sequence.

Fibonacci <- numeric(12)
Fibonacci
Fibonacci[1] <- 2
Fibonacci[2] <- 2
Fibonacci
for (i in 3:12) Fibonacci[i] <- Fibonacci[i-2] + Fibonacci[i-1]
Fibonacci</pre>
```

 $2 \cdot 2 \cdot 4 \cdot 6 \cdot 10 \cdot 16 \cdot 26 \cdot 42 \cdot 68 \cdot 110 \cdot 178 \cdot 288$

```
In [50]: Fibonacci <- numeric(12)
   Fibonacci[1] <- Fibonacci[2] <- 1
   for (i in 3:12) Fibonacci[i] <- Fibonacci[i-1] - Fibonacci[i-2]
   Fibonacci</pre>
```

Question 4. The following are a sample of observations on incoming solar radiation at a greenhouse:

```
11.1 10.6 6.3 8.8 10.7 11.2 8.9 12.2
```

- a. Assign the data to an object called solar.radiation.
- b. Find the mean, median, range, and variance of the radiation o bservations.
- c. Add 10 to each observation of solar radiation, and assign the result to sr10. Find the mean, median, range, and variance of sr10. W hich statistics change, and by how much?
 - d. Plot a histogram of the solar.radiation, sr10, and srm2.

```
In [51]: # Assign the data to an object called solar.radiation.
solar.radiation <- c(11.1,10.6,6.3,8.8,10.7,11.2,8.9,12.2)
solar.radiation</pre>
```

```
11.1 \cdot 10.6 \cdot 6.3 \cdot 8.8 \cdot 10.7 \cdot 11.2 \cdot 8.9 \cdot 12.2
```

In [52]: #b. Find the mean, median, range, and variance of the radiation observations.
mean(solar.radiation)
median(solar.radiation)

9.975

10.65

In [53]: range(solar.radiation)
var(solar.radiation)

 $6.3 \cdot 12.2$

3.525

```
In [54]: #Add 10 to each observation of solar.radiation, and assign the result to sr10. F
          sr10 <- solar.radiation + 10</pre>
          mean(sr10)
          median(sr10)
          range(sr10)
          var(sr10)
          19.975
```

20.65

16.3 · 22.2

3.525

In [55]: #d. Plot a histogram of the solar.radiation, sr10.
hist(solar.radiation)

Histogram of solar.radiation

Question 5. Use the inbuilt data car and uses the possible graphical plots using **ggplot2** graphical packages.

In [56]:	data(mtcars)
In [57]:	?mtcars

In [58]: mtcars

A data.frame: 32 × 11

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	<dbl></dbl>										
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5	2
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.50	0	1	5	4
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.50	0	1	5	6
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.60	0	1	5	8

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
	<dbl></dbl>										
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

In [59]: tail(mtcars)

A data.frame: 6 × 11

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
	<dbl></dbl>											
Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.7	0	1	5	2	
Lotus Europa	30.4	4	95.1	113	3.77	1.513	16.9	1	1	5	2	
Ford Pantera L	15.8	8	351.0	264	4.22	3.170	14.5	0	1	5	4	
Ferrari Dino	19.7	6	145.0	175	3.62	2.770	15.5	0	1	5	6	
Maserati Bora	15.0	8	301.0	335	3.54	3.570	14.6	0	1	5	8	
Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.6	1	1	4	2	

In [60]: ncol(mtcars)
nrow(mtcars)

11

32

In [61]: dim(mtcars)

32 · 11

In [62]: library(ggplot2)

aes = aesthetic here meaning a mapping between a variable and a characteristic of the plot x relates to the x-axis (ie wt links to x)

labs adds labels to a plot

In [65]: my_plot + xlab('Miles per Gallon')+ylab('Number of Cars')


```
In [66]: #For changing the theme
my_plot + xlab('Miles per Gallon')+ylab('Number of Cars') + theme_dark()
```



```
In [67]: my_scatplot <- ggplot(mtcars,aes(x=wt,y=mpg)) + geom_point()
my_scatplot + xlab('Weight (x 1000lbs)') + ylab('Miles per Gallon')</pre>
```


In [68]: my_scatplot <- ggplot(mtcars,aes(x=wt,y=mpg,col=gear)) + geom_point()
my_scatplot + labs(x='Weight (x1000lbs)',y='Miles per Gallon',colour='Number of\)</pre>


```
In [69]: my_scatplot <- ggplot(mtcars,aes(x=wt,y=mpg,col=gear)) + geom_point()
my_scatplot + facet_grid(~gear)</pre>
```



```
In [70]: my_scatplot <- ggplot(mtcars,aes(x=wt,y=mpg)) + geom_point()
my_scatplot + xlab('Weight (x 1000lbs)') + ylab('Miles per Gallon') + geom_smoot</pre>
```

 $\ensuremath{\text{`geom_smooth()`}}\$ using method = 'loess' and formula 'y \sim x'

