Assignment 1

Question 1:

	1	Result			
Step	Operation	Remainder			
1	2347/2	1173	1		
2	1173/2	586	1		
3	586/2	293	0		
4	293/2	146	1		
5	146/2	73	0		
6	73/2	36	1		
7	36/2	18	0		
8	18/2	9	0		
9	9/2	4	1		
10	4/2	2	0		
11	2/2	1	0		
12	1/2	0	1		

 $2347_{10} = (100100101011)_2$

b)

Step	Operation	Result	Remainder
1	98721/8	12340	1
2	12340/8	1542	4
3	1542/8	192	6
4	192/8	24	0
5	24/8	3	0
6	3/8	0	3

 $98721_{10} = 300641_8$

Step	Operation	Result	Remainder
1	582/16	36	6
2	36/16	2	4
3	2/16	0	2

$$582_{10} = 246_{16}$$

c)

Ctan	Operation	Dagult	Domaindan
Step	Operation	Result	Remainder
1	13/2	6	1
2	6/2	3	0
3	3/2	1	1
4	1/2	0	1

Step	Operation	Result	Integer Part
1	0.625 2	1.25	1
2	0.25 2	0.5	0
3	0.5 2	1	1

$$13.625_{10} = 1101.101_2$$

Question 2:

$$35_{10} = 0100011_2 \\ 4010 = 0101000_2$$

34 + 40 in 2's complement

There is an overflow as the sign is changed, so the result is wrong. b)

35-40:

$$35_{10} = 0100011_2$$
 (7 bits)
 -40 in 2's complement.
 $40_{10} = 0101000_2$
0 1 0 1 0 0 0 Inverse 0to 1 and visversa

There is no overflow.

35-40 = (1111011) 2's complement.

c)

from previous question we have -40 in 2' complement.

-35-40 = (0110001) 2's complement. The sigh is changed and The correct binary result for -35-40 cannot be correct in 7 bits it will in in 8 bits. Thus, and overflow is happened.

-40 in 2's complement

Question 3:

$$(A+B)'(A'+B')'$$
 $A'B'(A'+B')'$
 $A'B'A''B''$
 $A'B'AB''$
 $A'AB'B$
 $A'AB'B$
 $A'B'AB''$
 $A'B'AB''$
 $A'AB'B$
 $A'AB'B$
 $A'AB'B$
 $A'AB'B$
 $A'AB'B$
 $A'AB'B$
 $A'B'B$
 $A'B'B$

$$(a + b + c')(a'b' + c)$$

$$a(a'b' + c) + b(a'b' + c) + c'(a'b' + c)$$

$$aa'b' + ac + ba'b' + bc + c'a'b' + c'c$$

$$0b' + ac + ba'b' + bc + c'a'b' + c'c$$

$$ac + ba'b' + bc + c'a'b' + c'c$$

$$ac + ba'b' + bc + c'a'b'$$

$$ac + a'bb' + bc + c'a'b'$$

$$ac + a0 + bc + c'a'b'$$

$$ac + bc + c'a'b'$$

Distribution law
Distribution law aa' = 0 Inverse law 0b' = 0 Null c'c = 0 Inverse Law ba'b' = ba'b' Commutative law b'b = 0 Inverse Law a0 = 0 Null

(a + b + c')(a'b' + c) = ac + bc + c'a'b'

Question 4

F = xy + xy' + y'z

Truth table

X	y	y'	Z	xy	xy'	y'z	F
0	0	1	0	0	0	0	0
0	0	1	1	0	0	1	1
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0
1	0	1	0	0	1	0	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	0	1
1	1	0	1	1	0	0	1

$$F = bc + a'c$$

Truth table

Trum tac	,10						
a	a'	b	c	c'	bc	a'c'	F
0	1	0	0	1	0	1	1
0	1	0	1	0	0	0	0
0	1	1	0	1	0	1	1
0	1	1	1	0	1	0	1
1	0	0	0	1	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	0	1	0	1

Question 5

$$F = xy + x'y' + y'z$$
a)

b)

c)

Question 6

a)

	Binary	code f	or			Segments						
	D3	D2	D1	D0	f g b e g	a	b	С	d	e	f	g
0	0	0	0	0		1	1	1	1	1	1	0
1	0	0	0	1		0	1	1	0	0	0	0
2	0	0	1	0	2	1	1	0	1	1	0	1
3	0	0	1	1	П	1	1	1	1	0	0	1
4	0	1	0	0	7	0	1	1	0	0	1	1
5	0	1	0	1	5	1	0	1	1	0	1	1
6	0	1	1	0	6	1	0	1	1	1	1	1
7	0	1	1	1	ני	1	1	1	0	0	0	0
8	1	0	0	0	8	1	1	1	1	1	1	1
9	1	0	0	1	9	1	1	1	1	0	1	1

b)							
	Binary	code f	or				Segments
	D3	D2	D1	D0	f g b	g	g
0	0	0	0	0		0	D3+D2+D1+D0
1	0	0	0	1	}	0	D3+D2+D1+D0'
2	0	0	1	0	2	1	1
3	0	0	1	1	Ш	1	1
4	0	1	0	0	4	1	1
5	0	1	0	1	5	1	1
6	0	1	1	0	5	1	1
7	0	1	1	1	Ĺ.	0	D3+D2'+D1'+D0'
8	1	0	0	0	8	1	1
9	1	0	0	1	9	1	1

Since we have less 0's than 1's were going to use product of sum to get the equivalent logic circuit.

So, the logic circuit is as follow:

