continua (en V, donde es un difeomorfismo), $\exp_{p_0}^{-1}(\operatorname{cl} V_0)$ es un cerrado verificando $U_0 \subset \exp_{p_0}^{-1}(\operatorname{cl} V_0) \subset \exp_{p_0}^{-1}(\operatorname{cl} V_0) \subset U$.

Si $\mathbf{w} \not\in U_0$, dado que cl $U_0 \subset U$, ambos U_0, U son conexos y U es estrellado respecto a $\mathbf{0}$, podríamos asegurar la existencia de $t_0 \leq 1$ tal que $t_0 \mathbf{w} \not\in U_0$ pero $t_0 \mathbf{w} \in U$. En tal caso, $\exp_{p_0}(t_0 \mathbf{w}) = \gamma_w(t_0) = \alpha(t_0)$. Ahora bien, tal y como hemos definido la curva $\widetilde{\alpha}$, sabemos que $\alpha(t_0) = \exp_{p_0}(\widetilde{\alpha}(t_0))$, donde $\widetilde{\alpha}(t_0) \in U_0$ por la construcción de U_0 . Habríamos llegado así a que $\exp_{p_0}(\widetilde{\alpha}(t_0)) = \exp_{p_0}(t_0 \mathbf{w})$ con $t_0 \mathbf{w} \neq \widetilde{\alpha}(t_0)$, lo que contradiría la inyectividad de \exp_{p_0} (dentro de U).

Por lo tanto, $\mathbf{w} \in U_0 \subset U$. Tenemos entonces que $\exp_{p_0}(\mathbf{v}) = p = \exp_{p_0}(\mathbf{w})$, con $\mathbf{v}, \mathbf{w} \in U$, lo que nos permite concluir que $\mathbf{v} = \mathbf{w}$ por la inyectividad de \exp_{p_0} . En consecuencia, $\alpha = \gamma_w|_{[0,1]} = \gamma_v|_{[0,1]} = \gamma_p$, tal y como se quería demostrar.

5.3.1. El lema de Gauss

Sean S una superficie regular y $p \in S$. Elegimos un vector cualquiera $\mathbf{v} \in D_p$, para el que vamos a estudiar la diferencial $d(\exp_p)_{\mathbf{v}}: T_{\mathbf{v}}D_p \equiv T_pS \longrightarrow T_{\exp_p(\mathbf{v})}S$. Sea $\mathbf{w} \in T_pS$. Nos preguntamos entonces qué se puede decir de $d(\exp_p)_{\mathbf{v}}(\mathbf{w})$. El lema de Gauss nos da la respuesta. Desde luego, si $\mathbf{v} = \mathbf{0}$, ya sabemos que $d(\exp_p)_{\mathbf{0}} = 1_{T_pS}$, por lo que vamos a suponer que $\mathbf{v} \neq \mathbf{0}$.

Lema 5.3.6 (de Gauss –primera versión). Sean S una superficie regular, $p \in S$ y $\mathbf{v} \in D_p$, con $\mathbf{v} \neq \mathbf{0}$. Sea además $\mathbf{w} \in T_pS$.

- i) Si $\mathbf{w} y \mathbf{v}$ son colineales, entonces $|d(\exp_p)_{\mathbf{v}}(\mathbf{w})| = |\mathbf{w}|$.
- ii) Si \mathbf{w} y \mathbf{v} son ortogonales, entonces $d(\exp_p)_{\mathbf{v}}(\mathbf{v})$, $d(\exp_p)_{\mathbf{v}}(\mathbf{w})$ son ortogonales.

Demostración. Supongamos primero que \mathbf{w} y \mathbf{v} son colineales, esto es, $\mathbf{w} = \lambda \mathbf{v}$ para un cierto $\lambda > 0$. Entonces, tomando la curva $\alpha(t) = \mathbf{v} + t\mathbf{w} = (1 + \lambda t)\mathbf{v}$, que está contenida en D_p y verifica $\alpha(0) = \mathbf{v}$, $\alpha'(0) = \mathbf{w}$, se tiene que

$$d(\exp_{\mathbf{p}})_{\mathbf{v}}(\mathbf{w}) = \frac{d}{dt} \Big|_{t=0} \exp_{\mathbf{p}} ((1+\lambda t)\mathbf{v}) = \frac{d}{dt} \Big|_{t=0} \gamma_{\nu} (1+\lambda t) = \lambda \gamma_{\nu}'(1),$$

donde, como es usual, $\gamma_{\nu}: I_{\nu} \longrightarrow S$ es la geodésica maximal con $\gamma_{\nu}(0) = p$, $\gamma'_{\nu}(0) = \mathbf{v}$. Tomando módulos, $|d(\exp_{\mathbf{p}})_{\mathbf{v}}(\mathbf{w})| = |\lambda| |\gamma'_{\nu}(1)| = |\lambda| |\gamma'_{\nu}(0)| = |\lambda| |\mathbf{v}| = |\mathbf{w}|$.

Estudiemos ahora el segundo caso, y supongamos por tanto que **w** y **v** son ortogonales. Definimos $\varphi(s,t) = \exp_{\mathbf{p}}(s(\mathbf{v} + t\mathbf{w}))$. ¿Cuál es su dominio de definición?

Sea $\alpha(t) = \mathbf{v} + t\mathbf{w}$. Claramente, existe $\varepsilon > 0$ tal que, si $t \in (-\varepsilon, \varepsilon)$, entonces $\alpha(t) = \mathbf{v} + t\mathbf{w} \in D_p$ (véase la figura 5.6). En consecuencia, al ser D_p estrellado respecto al origen $\mathbf{0} \in T_p S$, si $s \in [0, 1]$, se tiene que $s\alpha(t) = s(\mathbf{v} + t\mathbf{w}) \in D_p$.

Ahora bien, como D_p es un abierto, podemos asegurar la existencia de un $\varepsilon' > 0$ (independiente de t), verificando que para todo $s \in (-\varepsilon', 1+\varepsilon')$, $s\alpha(t) \in D_p$. En efecto, si $D_p = T_p S$ el resultado es trivial. Si $D_p \subset T_p S$ estrictamente y representamos

Figura 5.6: Dominio de φ .

por τ el triángulo con vértices $\mathbf{0}$, $\mathbf{v} + \varepsilon \mathbf{w}$ y $\mathbf{v} - \varepsilon \mathbf{w}$, que es un compacto (véase la figura 5.6), es evidente que la distancia (euclídea, en T_pS) $\rho = \operatorname{dist}(\tau, T_pS \setminus D_p) > 0$; basta tomar entonces $\varepsilon' > 0$ verificando $\varepsilon' < \rho/2$. Así pues, la aplicación

$$\varphi: (-\varepsilon', 1+\varepsilon') \times (-\varepsilon, \varepsilon) \longrightarrow S$$
, dada por $\varphi(s,t) = \exp_{\mathfrak{p}}(s\alpha(t))$

está bien definida. Además, es claro que,

$$\frac{\partial \boldsymbol{\varphi}}{\partial t}(1,0) = d(\exp_{\mathbf{p}})_{\mathbf{v}}(\mathbf{w}) \quad \mathbf{y} \quad \frac{\partial \boldsymbol{\varphi}}{\partial s}(1,0) = d(\exp_{\mathbf{p}})_{\mathbf{v}}(\mathbf{v}),$$

y por lo tanto, es suficiente demostrar que $\langle \partial \varphi / \partial t, \partial \varphi / \partial s \rangle \big|_{(t,s)=(1,0)} = 0$. Para ello, definimos la función

$$f(s) := \left\langle \frac{\partial \varphi}{\partial t}(s,0), \frac{\partial \varphi}{\partial s}(s,0) \right\rangle, \quad \text{con } s \in (-\varepsilon', 1+\varepsilon').$$

Claramente se tiene que f(0)=0, ya que $(\partial \varphi/\partial t)(0,0)=d(\exp_p)_0(\mathbf{0})=\mathbf{0}$, siendo además su derivada

$$f'(s) = \left\langle \frac{\partial^2 \varphi}{\partial t \partial s}(s, 0), \frac{\partial \varphi}{\partial s}(s, 0) \right\rangle + \left\langle \frac{\partial \varphi}{\partial t}(s, 0), \frac{\partial^2 \varphi}{\partial s^2}(s, 0) \right\rangle. \tag{5.14}$$

Estudiemos los dos sumandos de (5.14) separadamente, comenzando por el segundo. Por un lado,

$$\frac{\partial^2 \varphi}{\partial s^2}(s,0) = \frac{d^2}{ds^2} (\exp_{\mathbf{p}}(s\mathbf{v})) = \gamma_{\mathbf{v}}''(s).$$

Como γ_v es una geodésica, el campo velocidad γ_v' es paralelo, y por tanto, $\gamma_v''(s)$ está en la dirección del normal a la superficie en el punto $\varphi(s,0)$. Por otro lado, si $\beta_s: (-\varepsilon, \varepsilon) \longrightarrow S$ representa la curva $\beta_s(t) = \varphi(s,t)$, entonces

$$\left. \frac{\partial \varphi}{\partial t}(s,0) = \left. \frac{d}{dt} \right|_{t=0} \varphi(s,t) = \beta_s'(0) \in T_{\beta_s(0)}S = T_{\varphi(s,0)}S$$

es un vector tangente a S. En consecuencia, $\left<(\partial \phi/\partial t)(s,0),(\partial^2 \phi/\partial s^2)(s,0)\right>=0$.

Finalmente, estudiamos el primer sumando de (5.14).

$$\begin{split} \left\langle \frac{\partial^2 \varphi}{\partial t \partial s}(s,0), \frac{\partial \varphi}{\partial s}(s,0) \right\rangle &= \left\langle \left. \frac{\partial}{\partial t} \right|_{t=0} \left(\left. \frac{\partial \varphi}{\partial s}(s,t) \right), \frac{\partial \varphi}{\partial s}(s,t) \right|_{t=0} \right\rangle \\ &= \frac{1}{2} \left. \frac{\partial}{\partial t} \right|_{t=0} \left\langle \left. \frac{\partial \varphi}{\partial s}(s,t), \frac{\partial \varphi}{\partial s}(s,t) \right\rangle = \frac{1}{2} \left. \frac{\partial}{\partial t} \right|_{t=0} \left| \frac{\partial \varphi}{\partial s}(s,t) \right|^2. \end{split}$$

Ahora bien,

$$\frac{\partial \varphi}{\partial s}(s,t) = \frac{\partial}{\partial s} \left(\exp_{\mathbf{p}} \left(s \alpha(t) \right) \right) = \frac{\partial}{\partial s} \left(\gamma_{\alpha(t)}(s) \right) = \gamma'_{\alpha(t)}(s),$$

por lo que

$$\left|\frac{\partial \boldsymbol{\varphi}}{\partial s}(s,t)\right|^2 = \left|\gamma_{\alpha(t)}'(s)\right|^2 = \left|\gamma_{\alpha(t)}'(0)\right|^2 = \left|\alpha(t)\right|^2 = |\mathbf{v} + t\mathbf{w}|^2 = |\mathbf{v}|^2 + 2t \langle \mathbf{v}, \mathbf{w} \rangle + t^2 |\mathbf{w}|^2.$$