

CLAIMS

What is claimed is:

- 1 1. A broad-angle multilayer (ML) mirror comprising a multiple layer structure to provide uniform reflectivity over a wide range of angles with small phase shifts.
- 1 2. The ML mirror of claim 1 wherein the ML mirror provides an acceptance angle in excess of 20° without a significant loss of reflectivity.
- 1 3. The ML mirror of claim 2 wherein the loss of reflectivity is approximately 17%.
- 1 4. The ML mirror of claim 1 wherein the ML mirror increases the relative phase shift.
- 1 5. The ML mirror of claim 1 wherein the ML mirror comprises a 13.5nm central wavelength.
- 1 6. The ML mirror of claim 1 wherein the structure comprises:
 - 2 a substrate layer; and
 - 3 a plurality of bi-layers to provide a 13.5nm central wavelength.
- 1 7. The ML mirror of claim 6 wherein the plurality of bi-layers have a variable thickness.

1 8. The ML mirror of claim 6 wherein the plurality of bi-layers include thirty-
2 six bi-layers.

1 9. The ML mirror of claim 6 wherein the bi-layers are comprised of Mo/Si
2 bi-layers.

1 10. The ML mirror of claim 6 wherein the bi-layers are comprised of Mo/Be
2 bi-layers.

1 11. An optical system having an extreme ultra-violet (EUV) radiation source,
2 the system comprising:

3 a mask;

4 a wafer; and

5 a plurality of reflecting surfaces for imaging the mask on the wafer,
6 wherein one or more of the plurality of reflecting surfaces includes a broad-angle
7 multilayer (ML) mirror having a multiple layer structure to provide uniform
8 reflectivity over a wide range of angles with small phase shifts.

1 12. The system of claim 11 wherein the plurality of reflecting surfaces
2 comprises six mirrors.

1 13. The system of claim 11 wherein the ML mirror provides an acceptance
2 angle in excess of 20° without a significant loss of reflectivity.

1 14. The system of claim 13 wherein the ML mirror has a loss of reflectivity of
2 approximately 17%.

1 15. The system of claim 11 wherein the ML mirror increases the relative phase
2 shift.

1 16. The system of claim 11 wherein the ML mirror comprises a 13.5nm central
2 wavelength.

1 17. The system of claim 11 wherein the mirror comprises:
2 a substrate layer; and
3 a plurality of bi-layers to provide a 13.5nm central wavelength.

1 18. The system of claim 17 wherein the plurality of bi-layers have a variable
2 thickness.

1 19. The system of claim 18 wherein the plurality of bi-layers include thirty-six
2 bi-layers.

1 20. An optical system having an extreme ultra-violet (EUV) radiation source,
2 the system comprising:
3 a mask;
4 a wafer; and
5 a plurality of reflecting surfaces for imaging the mask on the wafer,

6 including:

7 a first mirror;

8 a second mirror,

9 a third mirror having a multiple layer structure to provide uniform

10 reflectivity over a wide range of angles with small phase shifts;

11 a fourth mirror;

12 a fifth mirror; and

13 a sixth mirror.

1 21. The system mirror of claim 20 wherein the third mirror provides an

2 acceptance angle in excess of 20° without a significant loss of reflectivity.

1 22. The system of claim 21 wherein the third mirror has a loss of reflectivity of

2 approximately 17%.

1 23. The system mirror of claim 22 wherein the third mirror comprises a

2 13.5nm central wavelength.

1 24. The system of claim 20 wherein the third mirror comprises:

2 a substrate layer; and

3 a plurality of bi-layers to provide a 13.5nm central wavelength.

1 25. The system of claim 24 wherein the plurality of bi-layers have a variable

2 thickness.

1 26. The system of claim 24 wherein the plurality of bi-layers include thirty-six
2 bi-layers.