Supplementary Table 1: SARS-CoV-2 Spike Variants with a Global Prevalence Above 0.1% (February 2021)

S1 NTD			S1 RBD				S1 CTD			S2					
Pos	Ref	Mut	Pcnt	Pos	Ref	Mut	Pcnt	Pos	Ref	Mut	Pcnt	Pos	Ref	Mut	Pcnt
222	Α	V	23	501	N	Υ	11	614	D	G	95	716	T	ı	11
69	Н	-	13	477	S	N	5.30	570	Α	D	11	982	S	Α	11
144	Υ	-	11	439	N	K	2.40	681	Р	Н	11	1118	D	Н	11
18	L	F	10	452	L	R	0.50	677	Q	Н	0.78	1163	D	Υ	0.53
5	L	F	1.60	484	Ε	K	0.37	583	Ε	D	0.65	1167	G	V	0.45
98	S	F	1.50	453	Υ	F	0.31	675	Q	Н	0.54	701	Α	V	0.34
262	Α	S	1.10	417	K	N	0.21	655	Н	Υ	0.32	1176	V	F	0.34
272	Р	L	0.81	520	Α	S	0.18	626	Α	S	0.24	688	Α	V	0.33
153	М	T	0.76	494	S	Р	0.16	622	V	F	0.19	936	D	Υ	0.32
80	D	Υ	0.50	501	N	T	0.11	613	Q	Н	0.18	1073	K	N	0.26
13	S	1	0.40					673	S	T	0.15	939	S	F	0.25
21	R	1	0.39					572	T	ı	0.13	769	G	V	0.23
152	W	С	0.37					640	S	F	0.13	1078	Α	S	0.23
54	L	F	0.36					677	Q	Р	0.12	1263	Р	L	0.23
176	L	F	0.32					679	Ν	K	0.12	1219	G	С	0.22
143	V	F	0.27					574	D	Υ	0.10	723	T	I	0.21
215	D	Н	0.27					675	Q	R	0.10	1020	Α	S	0.21
49	Н	Υ	0.26					681	Р	R	0.10	732	T	Α	0.20
253	D	G	0.26									1228	V	L	0.17
256	S	L	0.25									859	T	ı	0.16
95	Τ	I	0.24									1252	S	F	0.15
26	Р	S	0.23									772	V	ı	0.14
138	D	Υ	0.23									812	Р	S	0.14
80	D	Α	0.21									812	Р	L	0.14
241	L	-	0.21									845	Α	S	0.14
181	G	V	0.20									879	Α	S	0.13
215	D	G	0.20									1073	K	T	0.12
255	S	F	0.20									1084	D	Υ	0.12
164	N	T	0.19									780	Ε	Q	0.11
23	Q	Н	0.18									929	S	T	0.11
12	S	F	0.15									957	Q	L	0.11
29	T	1	0.15									1122	V	L	0.11
153	M	1	0.15									1191	K	N	0.11
20	T	1	0.14									1219	G	V	0.11

189	L	F	0.14
146	Н	Υ	0.13
210	1	-	0.13
254	S	F	0.13
75	G	R	0.12
138	D	Н	0.12
26	Р	L	0.11
245	Н	Υ	0.11
22	Т	1	0.10
27	Α	S	0.10
67	Α	V	0.10
233	1	V	0.10
261	G	V	0.10

Footnote: NTD – N-terminal domain; RBD – receptor binding domain; CTD – C terminal domain; Mutation prevalences obtained February 2021 from COVID CG

Supplementary Table 2. Neutralizing Monoclonal Antibodies (mAbs) with Published High-Resolution Structures¹

Name (Synonyms)	PDB Code	Epitope – Class ³	IC ₅₀ (ng/ml) (wildtype) ⁴	Reference
mAbs in phase 3 trials²				
Casirivimab (CAS; REGN-10933)	6XDG	RBM-1	8	1,2
Regdanvimab (CT-P59)	7CM4	RBM-1	8	3
Tixagevimab (TIX; COV2-2196/AZD8895)	7L7D	RBM-1	15	4,5
Etesevimab (ETE; CB6; JS016; LY-CoV16)	7C01	RBM-1	835	6
Bamlanivimab (BAM; LY-CoV555)	7KMG	RBM-2	10	7
Cilgavimab (CIL; COV2-2130; AZD1061)	7L7E	RBM-2	105	4,5
mdevimab (IMD; REGN10987)	6XDG	RBD-core-1	6	1,2
Sotrovimab (S309; VIR-7831; GSK4182136)	6WPS	RBD-core-1	80	8
mAbs tested against ≥1 mutant pseudovirus BD-629	7CH5	RBM-1	4	9,10
CC12.1		RBM-1	4 46	11,12
B38	6XC2 7BZ5	RBM-1	180	13
				14
P2C-1F11	7CDI	RBM-1	280	15,16
CV30	6XE1	RBM-1	118	17,18
COVA2-39	7JMP	RBM-1	54	9,10
BD-368-2	7CHH	RBM-2	15	14
P2B-2F6	7BWJ	RBM-2	410	
C121	7K8X	RBM-2	2_{PV}	19,20
C119	7K8W	RBM-2	-	19,20
C144	7K90	RBM-3	3 PV	19,20
2-4	6XEY	RBM-3	-	21
S2M11	7K43	RBM-3	1	22
C110	7K85	RBD-core-1	-	19,20
C135	7K8Z	RBD-core-1	3 _{PV}	19,20
COVA1-16	7JMW	RBD-core-2	745	17,18
H014	7CAH	RBD-core-2	570	23
4A8	7C2L	NTD	610	24
4-8	-	NTD	-	21
COVA2-04	7JMO	RBM-1	2500	17,18
DH1047	7LD1	RBD-core-2	-	25
S2E12	7K4N	RBM-1	4.2	22

S2H14	7JX3	RBM-1	900_{PV}	26
S2X35	7JXE	RBD-core-2	NA	26

Footnote: ¹mAbs in phase 3 clinical trials and mAbs that have undergone high-resolution structural studies (XR crystallography or cryo-EM) and been studied for their neutralizing activity against variants with one or more spike mutations. ²Some of the mAbs in clinical trials have undergone Fc modifications such as changes to result in prolonged half-lives. The following mAbs are being studied only in combination – casirivimab/imdevimab and cilgavimab/tixagevimab. Bamlanivimab has been studied alone and in combination with etesevimab. The FDA has granted emergency use authorization (EUA) for the use bamlanivimab, bamlanivimab/etesevimab, and casirivimab/imdevimab. ³The classification is derived from Finkelstein ²⁷ which is slightly more granular than Barnes ²⁸; RBD – receptor binding domain, RBM – receptor binding motif, NTD – N-terminal domain. ⁴IC₅₀s were obtained using infectious wildtype viruses (WT) defined as the Wuhan-Hu-1 reference sequence (GenBank accession: NC_945512.2). Results obtained using just pseudotyped viruses (PV) are indicated with a subscript. A dash indicates that susceptibility data was not available.

Supplementary Table 3. Experimentally confirmed cytotoxic T cell epitopes identified in more than one study

Peptide	Positions	Region	HLA	Notes	Mutations (≥0.1%)	Reference
YLQPRTFLL	269-277	NTD	A*02:01	Multiple patients	P272L (0.8%)	30
YLQPRTFLL	269-277	NTD	A*02:01	Multiple patients		31
YLQPRTFLL	269-277	NTD	A*02:01	NA		32
YLQPRTFLL	269-277	NTD	A*02:01	Multiple patients		33
YLQPRTFLL	269-277	NTD	A*02:01	Vaccinated persons		34
NYNYLYRLF	448-456	RBD	A*24:02	Multiple patients	L452R (0.5%); Y453F (0.3%)	33
NYNYLYRLF	448-456	RBD	A*24:02	Vaccinated persons		34
RLQSLQTYV	1000-1008	S2	A*02:01	Vaccinated persons	None	34
RLQSLQTYV	1000-1008	S2	A*02:01	NA		32
VVFLHVTYV	1060-1068	S2	A*02:01	NA	None	35
VVFLHVTYV	1060-1068	S2	A*02:01	NA		32
QYIKWPWYI	1208-1216	S2	A*24:02	Multiple patients	None	30
QYIKWPWYI	1208-1216	S2	A*24:02	Vaccinated persons		34
QYIKWPWYI	1208-1216	S2	A*24:02	Multiple patients		33
FIAGLIAIV	1220-1229	S2	A*02:01	NA	V1228L (0.2%)	35
FIAGLIAIV	1220-1228	S2	A*02:01	NA		32

Footnote: FVFLVLLPL (Positions 2-10) was found in one study ³⁵ to be an HLA*02 CTL epitope: L5F is a recurrent mutation that has been hypothesized to possibly represent a CTL escape mutation ³⁶.

References

- 1. Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science (2020) doi:10.1126/science.abd0827.
- 2. Baum, A. et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macagues and hamsters. Science 370, 1110–1115 (2020).
- 3. Kim, C. et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nature Communications 12, 288 (2021).
- 4. Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 1–7 (2020) doi:10.1038/s41586-020-2548-6.
- 5. Dong, J. et al. Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail. bioRxiv https://doi.org/10.1101/2021.01.27.428529 (2021).
- 6. Shi, R. et al. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2. Nature (2020) doi:10.1038/s41586-020-2381-y.
- 7. Jones, B. E. *et al.* LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection. *bioRxiv* https://doi.org/10.1101/2020.09.30.318972 (2020).
- 8. Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature (2020) doi:10.1038/s41586-020-2349-y.
- 9. Cao, Y. et al. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. Cell (2020) doi:10.1016/j.cell.2020.05.025.
- 10. Du, S. *et al.* Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. *Cell* **183**, 1013-1023.e13 (2020).
- 11. Rogers, T. F. et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369, 956–963 (2020).
- 12. Yuan, M. et al. Structural basis of a shared antibody response to SARS-CoV-2. Science (2020) doi:10.1126/science.abd2321.
- 13. Wu, Y. et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368, 1274–1278 (2020).

- 14. Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 1–8 (2020) doi:10.1038/s41586-020-2380-z.
- 15. Seydoux, E. *et al.* Analysis of a SARS-CoV-2-Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited Somatic Mutation. *Immunity* **53**, 98-105.e5 (2020).
- 16. Hurlburt, N. K. et al. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Nat Commun 11, 5413 (2020).
- 17. Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science (2020) doi:10.1126/science.abc5902.
- 18. Liu, H. et al. Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity (2020) doi:10.1016/j.immuni.2020.10.023.
- 19. Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature **584**, 437–442 (2020).
- 20. Barnes, C. O. et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. *Cell* (2020) doi:10.1016/j.cell.2020.06.025.
- 21. Liu, X. et al. Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection. bioRxiv https://doi.org/10.1101/2020.05.03.074914 (2020).
- 22. Tortorici, M. A. et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 370, (2020).
- 23. Lv, Z. et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science (2020) doi:10.1126/science.abc5881.
- 24. Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science **369**, 650–655 (2020).
- 25. Li, D. et al. The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates. bioRxiv https://doi.org/10.1101/2020.12.31.424729 (2021).
- 26. Piccoli, L. *et al.* Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. *Cell* **183**, 1024-1042.e21 (2020).

- 27. Finkelstein, M. T. et al. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. *Viruses* 13, https://doi.org/10.3390/v13010134 (2021).
- 28. Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 1–6 (2020) doi:10.1038/s41586-020-2852-1.
- 29. Starr, T. N. et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. *Cell* (2020) doi:10.1016/j.cell.2020.08.012.
- 30. Ferretti, A. P. *et al.* Unbiased Screens Show CD8+ T Cells of COVID-19 Patients Recognize Shared Epitopes in SARS-CoV-2 that Largely Reside outside the Spike Protein. *Immunity* **53**, 1095-1107.e3 (2020).
- 31. Shomuradova, A. S. et al. SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors. Immunity 53, 1245-1257.e5 (2020).
- 32. Sekine, T. et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell 183, 158-168.e14 (2020).
- 33. Kared, H. et al. SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals. J Clin Invest (2021) doi:10.1172/JCI145476.
- 34. Sahin, U. et al. BNT162b2 induces SARS-CoV-2-neutralising antibodies and T cells in humans. medRxiv https://doi.org/10.1101/2020.12.09.20245175 (2020).
- 35. Qiu, C. et al. CD8+ T cell epitope variations suggest a potential antigen presentation deficiency for spike protein of SARS-CoV-2. bioRxiv https://doi.org/10.1101/2021.01.22.427863 (2021).
- 36. Martin, D. The emergence and ongoing convergent evolution of the N501Y lineages coincided with a major global shift in the SARS-Cov-2 selective landscape SARS-CoV-2 coronavirus / SARS-CoV-2 Molecular Evolution. *Virological* https://virological.org/t/the-emergence-and-ongoing-convergent-evolution-of-the-n501y-lineages-coincided-with-a-major-global-shift-in-the-sars-cov-2-selective-landscape/618 (2021).