27 Water waves of wavelength λ are incident normally on an obstacle with a narrow gap. The width of the gap is equal to λ . The waves from the gap emerge over an angle θ as shown.

The gap is slowly widened.

Which changes, if any, occur to θ and to the wavelength of the emerging waves?

	heta	wavelength
Α	decreases	remains the same
В	increases	remains the same
С	remains the same	decreases
D	remains the same	increases

28 Light of wavelength 720 nm from a laser X is incident normally on a diffraction grating and a diffraction pattern is observed. Light from a laser Y is then also incident normally on the same grating. The third-order maximum due to laser Y is seen at the same place as the second-order maximum due to laser X.

What is the wavelength of the light from laser Y?

- **A** 480 nm
- **B** 540 nm
- **C** 720 nm
- **D** 1080 nm

29 Monochromatic light of frequency f is incident on a diffraction grating of line spacing d. The speed of light is c.

Which expression can be used to determine the highest order of intensity maximum produced by the grating?

- **A** $n = \frac{d}{cf}$ **B** $n = \frac{df}{c}$ **C** $n = \frac{dc}{f}$ **D** $n = \frac{c}{df}$