Project 4 FYS4150

Kjetil Karlsen

November 15, 2017

Abstract

	1
10	do.
10	uo.

Enhet akse Error estimation

Problem: Ulike T_C for varmekapasitet og X !!!!!

Contents

1 Introduction			
2	Theory 2.1 The Ising model		
3	Method3.1 Monte Carlo cycles3.2 Metropolis algorithm3.3 Random number generator3.4 Parallelizing	4	
4	1	5 6 8 8	
5	Discussion	11	
6	Conclusion	11	

1 Introduction

2 Theory

Ising model

Markhow chain - convergance Error Random number ??????

2.1 The Ising model

General (kort - viss i forelesningsnotat) simplified version

Bolzman: $P(E_i) = \frac{e^{-E_i\beta}}{Z_\beta}$, $Z_\beta = \sum_{i=0}^N e^{-E_i\beta}$. Kommentere temperatur

Energy, magnetic moment, susceptibility, heat capacity, critical temperature:

$$T_C(L) - T_C(L = \infty) = aL^{-1/\nu} \tag{1}$$

Analytical solution

If one has experimental data from two systems with different matrix sizes, L and L', and doing some simple algebra, the following expression emerges for $T_C(\infty)$:

$$T_C(\infty) = T_C(L) - aL^{-1/\nu} = T_C(L) - \frac{T_C(L') - T_C(L)}{\frac{1}{L'} - \frac{1}{L}} L^{-1/\nu}$$
 (2)

2.2 Simple example of the Ising model

L=2 case:

$$Z = \sum_{i}^{M} e^{-\beta E_{i}} = e^{-\beta 8J} + e^{-\beta 8J} + e^{\beta 8J} e^{\beta 8J} + 12$$
$$= 2e^{-\beta 8J} + 2e^{\beta 8J} + 12 = 4\left(\frac{e^{-\beta 8J} + e^{-\beta 8J}}{2}\right) + 12$$
$$= 4\cosh(\beta 8J) + 12$$

Energy:

$$\langle E \rangle = k_B T^2 \left(\frac{\partial Z}{\partial T} \right)_{V,N}$$

$$= k_B T^2 \frac{\partial}{\partial T} \left[\ln \left(4 \cosh \left(\frac{8J}{k_B T} \right) + 12 \right) \right]$$

$$\frac{\partial \ln Z}{\partial T} = \frac{\partial Z}{\partial \beta} \frac{\partial \beta}{\partial T} = \frac{\partial \ln Z}{\partial \beta} \left(\frac{-1}{k_B T^2} \right)$$

$$\langle E \rangle = -\left(\frac{\partial Z}{\partial \beta} \right)_{V,N} = -\frac{\partial}{\partial \beta} \ln \left[4 \cosh \left(8J\beta \right) + 12 \right]$$

$$= \frac{-1}{4 \cosh \left(8J\beta \right) + 12} 4 \sinh \left(8J\beta \right) 8J\beta$$

 $= \frac{-8J\sinh(8J\beta)}{3\cosh(J\beta)+4}$

Following the same method, we found that:

$$\langle |M| \rangle = \frac{1}{Z} \sum_{i}^{M} M_i e^{\beta E_i} = \frac{(8J)^2 \cosh(8J\beta)}{\cosh(8J\beta) + 3}$$

$$\langle M \rangle = 0$$

$$\langle E^2 \rangle = \frac{8 \left(e^{8J\beta} + 1 \right)}{\cosh(8J\beta) + 3}$$

$$\langle M^2 \rangle = \frac{1}{Z} \left(\sum_{i=1}^{M} M_i^2 e^{\beta E_i} \right) = \frac{2 \left(e^{8J\beta} + 2 \right)}{\cosh(8J\beta) + 3}$$

We can use these to calculate the rest:

$$C_V = k\beta^2 \left(\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2 \right)$$

$$\chi = \beta \left(\left\langle M^2 \right\rangle - \left\langle M \right\rangle^2 \right)$$

Table 2.1: text

No spin up	Deg	Energy	Magnetization
0	1	-8J	-4
1	4	0	-2
2	4	0	0
2	2	8J	0
3	4	0	2
4	1	-8J	4

2.3 Introduction to statistics

$$P(a \le X \le b) = \int_b^a p(x) dx \tag{3}$$

$$\langle x \rangle = \sum_{i} x_i p_i \tag{4}$$

$$\langle x^n \rangle = \sum_i x_i^n p_i \tag{5}$$

$$\langle x \rangle = \int x \, p(x) \, dx \tag{6}$$

3 Method

Metropolis (T,A,...) Stokastisk matrise - konvergens - Markhov chain. Equilibrium- hva skjer med Z?

Hvilken random number engine???

OBS: Bruker forventing av abs(M) i susceptbilitet.

VILDE:

3.1 Monte Carlo cycles

In Monte Carlo methods, the goal is to

3.2 Metropolis algorithm

3.3 Random number generator

3.4 Parallelizing

Speedup

Metropolis (T,A,...) Stochastic matrix - convergences (forhold eigenvalue).

Hvilken random number engine

MPI:

- Develop codes locally, run with some few processes and test your codes. Do benchmarking, timing and so forth on local nodes, for example your laptop or PC. - When you are convinced that your codes run correctly, you can start your production runs on available supercomputers.

MPI functions:

4 Result

4.1 The L=2 case

Figure 4.1

Figure 4.2: $\theta/2\theta$ scan around the (0002) peak and (0004) peak of ZnO and GaN.

Figure 4.3

OBS! Need an number of MC cycles necessary!

All calculations in this subsection are at T = 1.0 K.

4.2 The L=20 system

HMM: Should define an area that is enough for equilibrium!

OBS: Need the number of MC cycles to reach equilibrium!

OBS: Need equilibration time! (5 1e5?)

OBS: Comment accepted configs T dependency

Table 4.1: This table compares the analytical values for L=2 with the numerical ones after 10^6 Monte Carlo cycles. The values are in units per spin.

	Numerical:	Analytical:
$\langle E \rangle$	-1.9958	-1.9960
$\langle E^2 \rangle$	15.9664	15.9679
$\langle M \rangle$	0.0451	0
$\langle M^2 \rangle$	3.9930	3.9933
$\langle M \rangle$	0.9986	0.9987
χ	3.9849	3.9933
C_V	0.0335	0.0321

4.2.1 Initial ordering of the system

Figure 4.4

Figure 4.5

Figure 4.6: OBS: Differnet y-axis!

4.2.2 Equilibrium time for the random L=20 system

Figure 4.7

Figure 4.8

4.2.3 Probability distrubition for the L=20 system

OBS: Compare result with computed variance!

OBS: Discuss behavior (In Discussion - maybe just merge result and discussion?)

Computed variance (from same dataset?):

$$\sigma_E^2 = \langle E^2 \rangle - \langle E \rangle^2$$

T = 1.0 K:

$$\sigma_E^2 = 1595.45 - (-1.997)^2 = 1591.46$$

T = 2.4 K:

$$\sigma_E^2 = 620.734 - (-1.23759)^2 = 619.20$$

Figure 4.9

Figure 4.10

4.3 Phase transition and Critical temperature

OBS: Plot of E, M, Cv, X as functions of T (put L as legend and plot together)

OBS: Indication of phase transition? (Peak - at least for Cv and X)

OBS: Use Equation 1 to extract T_C .

Timing parallellisering

Figure 4.11

Figure 4.12

Figure 4.13

Table 4.2: text

L	T_C
40	2.28
60	2.27
80	2.28
100	2.27

5 Discussion

6 Conclusion

References

Appendix

Table 6.1: Table of all the possible microstates for the L=2 system

State	Spinn	Energi	Magnetization
0	$\downarrow\downarrow\downarrow\downarrow\downarrow$	-8J	-4
1	$\downarrow\downarrow\downarrow\uparrow\uparrow$	0	-2
2	$\downarrow\downarrow\uparrow\uparrow\downarrow$	0	-2
3	$\downarrow\uparrow\downarrow\downarrow$	0	-2
4	$\uparrow\downarrow\downarrow\downarrow$	0	-2
5	$\downarrow\downarrow\uparrow\uparrow\uparrow$	0	0
6	$\downarrow \uparrow \downarrow \uparrow$	0	0
7	$\downarrow\uparrow\uparrow\downarrow$	8J	0
8	$\uparrow\downarrow\downarrow\uparrow$	8J	0
9	$\uparrow\downarrow\uparrow\downarrow$	0	0
10	$\uparrow \uparrow \downarrow \downarrow$	0	0
11	$\downarrow\uparrow\uparrow\uparrow$	0	2
12	$\uparrow\downarrow\uparrow\uparrow$	0	2
13	$\uparrow \uparrow \downarrow \uparrow$	0	2
14	$\uparrow\uparrow\uparrow\downarrow$	0	2
15	$\uparrow\uparrow\uparrow\uparrow$	-8J	4