Limits

Andrew Taylor

February 27 2022

1 Limits

Definition 1. Let a_n be a sequence. The limit of a_n is A if and only if for all $\epsilon > 0$ there exists a natural number N such that

$$|a_n - A| < \epsilon$$

for all n > N.

We write this as

$$\lim_{n \to \infty} a_n = A$$

and say the sequence a_n converges to A.

Definition 2. Let f be a real-valued function and let a be a real number. The limit of f as x approaches a is L if and only if for all $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$

for all

$$0 < |x - a| < \delta$$

We write this as

$$\lim_{x \to a} f(x) = L$$