

SEQUENCE LISTING

<110> NAKAJIMA, Hiroki
NAGASAWA, Akitsu

<120> Method for giving resistance to weed control compounds to plants

<130> 0020-4764P

<140> 09/697,719

<141> 2000-10-27

<150> JP 10/120553

<151> 1998-04-30

<150> JP 10/281127

<151> 1998-10-02

<150> JP 10/330981

<151> 1998-11-20

<150> JP 11/054730

<151> 1999-03-02

<160> 78

<210> 1

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify bchH gene

<400> 1

gacatctaga ggagacgacc atatgcacgg tgaagtctc 39

<210> 2

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify bchH gene

<400> 2

acggaagctt agatcttcac tcggcggcaa t 31

<210> 3

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify soybean PPO gene

<400> 3

tcgagctcca tggttccgt cttcaacgag atcctattc 39
 <210> 4
 <211> 36
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Designed oligonucleotide primer to amplify soybean PPO gene
 <400> 4
 ttgtcgacaa ctgctactat ttgtacactc tatttg 36
 <210> 5
 <211> 1632
 <212> DNA
 <213> Glycine max var. Williams82
 <220>
 <221> CDS
 <222> (1)...(1632)
 <400> 5
 atg gtt tcc gtc ttc aac gag atc cta ttc ccg ccg aac caa acc ctt 48
 Met Val Ser Val Phe Asn Glu Ile Leu Phe Pro Pro Asn Gln Thr Leu
 1 5 10 15
 ctt cgc ccc tcc ctc cat tcc cca acc tct ttc acc tct ccc act 96
 Leu Arg Pro Ser Leu His Ser Pro Thr Ser Phe Phe Thr Ser Pro Thr
 20 25 30
 cga aaa ttc cct cgc tct cgc cct aac cct att cta cgc tgc tcc att 144
 Arg Lys Phe Pro Arg Ser Arg Pro Asn Pro Ile Leu Arg Cys Ser Ile
 35 40 45
 gcg gag gaa tcc acc gcg tct ccg ccc aaa acc aga gac tcc gcc ccc 192
 Ala Glu Glu Ser Thr Ala Ser Pro Pro Lys Thr Arg Asp Ser Ala Pro
 50 55 60
 gtg gac tgc gtc gtc ggc gga ggc gtc agc ggc ctc tgc atc gcc 240
 Val Asp Cys Val Val Gly Gly Val Ser Gly Leu Cys Ile Ala
 65 70 75 80
 cag gcc ctc gcc acc aaa cac gcc aat gcc aac gtc gtc acg gag 288
 Gln Ala Leu Ala Thr Lys His Ala Asn Ala Asn Val Val Val Thr Glu
 85 90 95
 gcc cga gac cgc gtc ggc aac atc acc acg atg gag agg gac gga 336
 Ala Arg Asp Arg Val Gly Gly Asn Ile Thr Thr Met Glu Arg Asp Gly
 100 105 110
 tac ctc tgg gaa gaa ggc ccc aac agc ttc cag cct tct gat cca atg 384
 Tyr Leu Trp Glu Glu Gly Pro Asn Ser Phe Gln Pro Ser Asp Pro Met
 115 120 125
 ctc acc atg gtg gtg gac agt ggt tta aag gat gag ctt gtt ttg ggg 432
 Leu Thr Met Val Val Asp Ser Gly Leu Lys Asp Glu Leu Val Leu Gly
 130 135 140
 gat cct gat gca cct cgg ttt gtg ttg tgg aac agg aag ttg agg ccg 480
 Asp Pro Asp Ala Pro Arg Phe Val Leu Trp Asn Arg Lys Leu Arg Pro
 145 150 155 160
 gtg ccc ggg aag ctg act gat ttg cct ttc ttt gac ttg atg agc att 528
 Val Pro Gly Lys Leu Thr Asp Leu Pro Phe Phe Asp Leu Met Ser Ile
 165 170 175
 ggt ggc aaa atc agg gct ggc ttt ggt gcg ctt gga att cggt cct cct 576

Gly	Gly	Lys	Ile	Arg	Ala	Gly	Phe	Gly	Ala	Leu	Gly	Ile	Arg	Pro	Pro	
			180			185					190					
cct	cca	ggc	cat	gag	gaa	tcg	gtt	gaa	gag	ttt	gtt	cgt	cg	aac	ctt	
Pro	Pro	Gly	His	Glu	Glu	Ser	Val	Glu	Glu	Phe	Val	Arg	Arg	Asn	Leu	
			195			200				205						
ggt	gat	gag	gtt	ttt	gaa	cg	ttg	ata	gag	cct	ttt	tgt	tca	ggg	gtc	
Gly	Asp	Glu	Val	Phe	Glu	Arg	Leu	Glu	Ile	Glu	Pro	Phe	Cys	Ser	Gly	Val
			210			215				220						
tat	gca	ggc	gat	cct	tca	aaa	tta	agt	atg	aaa	gca	gca	ttc	ggg	aaa	
Tyr	Ala	Gly	Asp	Pro	Ser	Lys	Leu	Ser	Met	Lys	Ala	Ala	Phe	Gly	Lys	
	225		230			235				240						
gtt	tgg	aag	ctg	gaa	aaa	aat	ggt	ggt	agc	att	att	ggt	gga	act	ttc	
Val	Trp	Lys	Leu	Glu	Lys	Asn	Gly	Gly	Ser	Ile	Ile	Gly	Gly	Thr	Phe	
			245			250				255						
aaa	gca	ata	caa	gag	aga	aat	gga	gct	tca	aaa	cca	cct	cga	gat	ccg	
Lys	Ala	Ile	Gln	Glu	Arg	Asn	Gly	Ala	Ser	Lys	Pro	Pro	Arg	Asp	Pro	
			260			265				270						
cgt	ctg	cca	aaa	cca	aaa	gg	gt	act	gtt	gga	tct	ttc	cg	aag	gga	
Arg	Leu	Pro	Lys	Pro	Lys	Gly	Gln	Thr	Val	Gly	Ser	Phe	Arg	Lys	Gly	
	275		280			285										
ctt	acc	atg	ttg	cct	gat	gca	att	tct	gcc	aga	cta	ggc	aac	aaa	gta	
Leu	Thr	Met	Leu	Pro	Asp	Ala	Ile	Ser	Ala	Arg	Leu	Gly	Asn	Lys	Val	
			290			295				300						
aag	tta	tct	tgg	aag	ctt	tca	agt	att	agt	aaa	ctg	gat	agt	gga	gag	
Lys	Leu	Ser	Trp	Lys	Leu	Ser	Ser	Ile	Ser	Lys	Leu	Asp	Ser	Gly	Glu	
	305		310			315				320						
tac	agt	ttg	aca	tat	gaa	aca	cca	gaa	gga	gt	ttt	tct	ttg	cag	tgc	
Tyr	Ser	Leu	Thr	Tyr	Glu	Thr	Pro	Glu	Gly	Val	Val	Ser	Leu	Gln	Cys	
			325			330				335						
aaa	act	gtt	gtc	ctg	acc	att	cct	tcc	tat	gtt	gct	agt	aca	ttg	ctg	
Lys	Thr	Val	Val	Leu	Thr	Ile	Pro	Ser	Tyr	Val	Ala	Ser	Thr	Leu	Leu	
			340			345				350						
cgt	cct	ctg	tct	gct	gct	gca	gat	gca	ctt	tca	aag	ttt	tat	tac		
Arg	Pro	Leu	Ser	Ala	Ala	Ala	Asp	Ala	Leu	Ser	Lys	Phe	Tyr	Tyr		
	355		360			365										
cct	cca	gtt	gct	gca	gtt	tcc	ata	tcc	tat	cca	aaa	gaa	gct	att	aga	
Pro	Pro	Val	Ala	Ala	Val	Ser	Ile	Ser	Tyr	Pro	Lys	Glu	Ala	Ile	Arg	
			370			375				380						
tca	gaa	tgc	ttg	ata	gat	ggt	gag	ttg	aag	gg	ttt	gg	caa	ttg	cat	
Ser	Glu	Cys	Leu	Ile	Asp	Gly	Glu	Leu	Lys	Gly	Phe	Gly	Gln	Leu	His	
	385		390			395				400						
cca	cgt	agc	caa	gga	gt	gaa	aca	tta	gga	act	ata	tac	agc	tca	tca	
Pro	Arg	Ser	Gln	Gly	Val	Glu	Thr	Leu	Gly	Thr	Ile	Tyr	Ser	Ser		
			405			410				415						
cta	tcc	ccc	aac	cga	gca	cca	cct	gga	agg	gtt	cta	ctc	ttg	aat	tac	
Leu	Phe	Pro	Asn	Arg	Ala	Pro	Pro	Gly	Arg	Val	Leu	Leu	Asn	Tyr		
			420			425				430						
att	gga	gga	gca	act	aat	act	gga	att	tta	tcg	aag	acg	gac	agt	gaa	
Ile	Gly	Gly	Ala	Thr	Asn	Thr	Gly	Ile	Leu	Ser	Lys	Thr	Asp	Ser	Glu	
	435		440			445										
ctt	gt	gaa	aca	gtt	gat	cga	gat	ttg	agg	aaa	atc	ttt	ata	aac	cca	
Leu	Val	Glu	Thr	Val	Asp	Arg	Asp	Leu	Arg	Lys	Ile	Leu	Ile	Asn	Pro	
			450			455				460						
aat	gcc	cag	gat	cca	ttt	gta	gt	gg	gt	aga	ct	tgg	cct	caa	gct	
Asn	Ala	Gln	Asp	Pro	Phe	Val	Val	Gly	Val	Arg	Leu	Trp	Pro	Gln	Ala	
	465		470			475				480						
att	cca	cag	ttc	tta	gtt	ggc	cat	ctt	gat	ctt	cta	gat	gtt	gct	aaa	

Ile Pro Gln Phe Leu Val Gly His Leu Asp	Leu Leu Asp Val Ala Lys	
485	490	495
gct tct atc aga aat act ggg ttt gaa ggg ctc ttc ctt ggg ggt aat		1536
Ala Ser Ile Arg Asn Thr Gly Phe Glu Gly Leu Phe Leu Gly Gly Asn		
500	505	510
tat gtg tct ggt gtt gcc ttg gga cga tgc gtt gag gga gcc tat gag		1584
Tyr Val Ser Gly Val Ala Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu		
515	520	525
gta gca gct gaa gta aac gat ttt ctc aca aat aga gtg tac aaa tag		1632
Val Ala Ala Glu Val Asn Asp Phe Leu Thr Asn Arg Val Tyr Lys		
530	535	540
		543

<210> 6
<211> 543
<212> PRT
<213> Glycine max var. Williams82

<400> 6			
Met Val Ser Val Phe Asn Glu Ile Leu Phe Pro Pro Asn Gln Thr Leu			
1	5	10	15
Leu Arg Pro Ser Leu His Ser Pro Thr Ser Phe Phe Thr Ser Pro Thr			
20	25		30
Arg Lys Phe Pro Arg Ser Arg Pro Asn Pro Ile Leu Arg Cys Ser Ile			
35	40	45	
Ala Glu Glu Ser Thr Ala Ser Pro Pro Lys Thr Arg Asp Ser Ala Pro			
50	55	60	
Val Asp Cys Val Val Gly Gly Val Ser Gly Leu Cys Ile Ala			
65	70	75	80
Gln Ala Leu Ala Thr Lys His Ala Asn Ala Asn Val Val Val Thr Glu			
85	90	95	
Ala Arg Asp Arg Val Gly Gly Asn Ile Thr Thr Met Glu Arg Asp Gly			
100	105	110	
Tyr Leu Trp Glu Glu Gly Pro Asn Ser Phe Gln Pro Ser Asp Pro Met			
115	120	125	
Leu Thr Met Val Val Asp Ser Gly Leu Lys Asp Glu Leu Val Leu Gly			
130	135	140	
Asp Pro Asp Ala Pro Arg Phe Val Leu Trp Asn Arg Lys Leu Arg Pro			
145	150	155	160
Val Pro Gly Lys Leu Thr Asp Leu Pro Phe Phe Asp Leu Met Ser Ile			
165	170	175	
Gly Gly Lys Ile Arg Ala Gly Phe Gly Ala Leu Gly Ile Arg Pro Pro			
180	185	190	
Pro Pro Gly His Glu Glu Ser Val Glu Glu Phe Val Arg Arg Asn Leu			
195	200	205	
Gly Asp Glu Val Phe Glu Arg Leu Ile Glu Pro Phe Cys Ser Gly Val			
210	215	220	
Tyr Ala Gly Asp Pro Ser Lys Leu Ser Met Lys Ala Ala Phe Gly Lys			
225	230	235	240
Val Trp Lys Leu Glu Lys Asn Gly Gly Ser Ile Ile Gly Gly Thr Phe			
245	250	255	
Lys Ala Ile Gln Glu Arg Asn Gly Ala Ser Lys Pro Pro Arg Asp Pro			
260	265	270	
Arg Leu Pro Lys Pro Lys Gly Gln Thr Val Gly Ser Phe Arg Lys Gly			
275	280	285	
Leu Thr Met Leu Pro Asp Ala Ile Ser Ala Arg Leu Gly Asn Lys Val			
290	295	300	
Lys Leu Ser Trp Lys Leu Ser Ser Ile Ser Lys Leu Asp Ser Gly Glu			

305	310	315	320
Tyr Ser Leu Thr Tyr Glu Thr Pro Glu Gly Val Val Ser Leu Gln Cys			
325	330	335	
Lys Thr Val Val Leu Thr Ile Pro Ser Tyr Val Ala Ser Thr Leu Leu			
340	345	350	
Arg Pro Leu Ser Ala Ala Ala Asp Ala Leu Ser Lys Phe Tyr Tyr			
355	360	365	
Pro Pro Val Ala Ala Val Ser Ile Ser Tyr Pro Lys Glu Ala Ile Arg			
370	375	380	
Ser Glu Cys Leu Ile Asp Gly Glu Leu Lys Gly Phe Gly Gln Leu His			
385	390	395	400
Pro Arg Ser Gln Gly Val Glu Thr Leu Gly Thr Ile Tyr Ser Ser Ser			
405	410	415	
Leu Phe Pro Asn Arg Ala Pro Pro Gly Arg Val Leu Leu Leu Asn Tyr			
420	425	430	
Ile Gly Gly Ala Thr Asn Thr Gly Ile Leu Ser Lys Thr Asp Ser Glu			
435	440	445	
Leu Val Glu Thr Val Asp Arg Asp Leu Arg Lys Ile Leu Ile Asn Pro			
450	455	460	
Asn Ala Gln Asp Pro Phe Val Val Gly Val Arg Leu Trp Pro Gln Ala			
465	470	475	480
Ile Pro Gln Phe Leu Val Gly His Leu Asp Leu Leu Asp Val Ala Lys			
485	490	495	
Ala Ser Ile Arg Asn Thr Gly Phe Glu Gly Leu Phe Leu Gly Gly Asn			
500	505	510	
Tyr Val Ser Gly Val Ala Leu Gly Arg Cys Val Glu Gly Ala Tyr Glu			
515	520	525	
Val Ala Ala Glu Val Asn Asp Phe Leu Thr Asn Arg Val Tyr Lys			
530	535	540	543

<210> 7
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify bchH gene

<400> 7
gacatctagt ctagacgacc atatgcacgg tgaagtctc 39

<210> 8
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify bchH gene

<400> 8
acgaaagctt ggtacacctac tcggcggcaa t 31

<210> 9
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of tobacco chlH gene

<400> 9
ccaatgtaat gctatggtagt ctagttatt cactc 35

<210> 10
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of tobacco chlH gene

<400> 10
gagatcatttc ttttgctgt cgacttatcg atcg 34

<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

<400> 11
ggcggaggcg tcaccatggt ctgcattcgcc caggcc 36

<210> 12
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

<400> 12
gcctgcagggt cgacaactgc tactatttgt acactc 36

<210> 13
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

<400> 13
cacaggaaag gtaccatggt ctgcattcgcc cag 33

<210> 14
<211> 33

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

 <400> 14
 cctgcagctc gagagctcct actatggta cac 33

 <210> 15
 <211> 28
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Designed oligonucleotide primer to amplify Chlamydomonas PPO gene

 <400> 15
 aatgatgtt acccagactc ctgggacc 28

 <210> 16
 <211> 27
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Designed oligonucleotide primer to amplify Chlamydomonas PPO gene

 <400> 16
 tactacacat cccagcaagc gccaatg 27

 <210> 17
 <211> 1838
 <212> DNA
 <213> Chlamydomonas reinhardtii CC407

 <220>
 <221> CDS
 <222> (1)...(1693)

 <400> 17
 a atg atg ttg acc cag act cct ggg acc gcc acg gct tct agc cgg 46
 Met Met Leu Thr Gln Thr Pro Gly Thr Ala Thr Ala Ser Ser Arg
 1 5 10 15
 cggtcg cag atc cgc tcg gct gcg cac gtc tcc gcc aag gtc gcg cct 94
 Arg Ser Gln Ile Arg Ser Ala Ala His Val Ser Ala Lys Val Ala Pro
 20 25 30
 cgg ccc acg cca ttc tcg gtc gcg agc ccc gcg acc gct gcg agc ccc 142
 Arg Pro Thr Pro Phe Ser Val Ala Ser Pro Ala Thr Ala Ala Ser Pro
 35 40 45
 gcg acc gcg gcg gcc cgc aca ctc cac cgc act gct gcg gcg gcc 190
 Ala Thr Ala Ala Arg Arg Thr Leu His Arg Thr Ala Ala Ala Ala
 50 55 60
 act ggt gct ccc acg gcg tcc gga gcc ggc gtc gcc aag acg ctc gac 238
 Thr Gly Ala Pro Thr Ala Ser Gly Ala Gly Val Ala Lys Thr Leu Asp
 65 70 75

aat gtg tat gac gtg atc gtg gtc ggt gga ggt ctc tcg ggc ctg gtg	286
Asn Val Tyr Asp Val Ile Val Val Gly Gly Gly Leu Ser Gly Leu Val	
80 85 90 95	
acc ggc cag gcc ctg gcg gct cag cac aaa att cag aac ttc ctt gtt	334
Thr Gly Gln Ala Leu Ala Ala Gln His Lys Ile Gln Asn Phe Leu Val	
100 105 110	
acg gag gct cgc gag cgc gtc ggc ggc aac att acg tcc atg tcg ggc	382
Thr Glu Ala Arg Glu Arg Val Gly Gly Asn Ile Thr Ser Met Ser Gly	
115 120 125	
gat ggc tac gtg tgg gag gag ggc ccg aac agc ttc cag ccc aac gat	430
Asp Gly Tyr Val Trp Glu Glu Gly Pro Asn Ser Phe Gln Pro Asn Asp	
130 135 140	
agc atg ctg cag att gcg gtg gac tct ggc tgc gag aag gac ctt gtg	478
Ser Met Leu Gln Ile Ala Val Asp Ser Gly Cys Glu Lys Asp Leu Val	
145 150 155	
ttc ggt gac ccc acg gct ccc cgc ttc gtg tgg tgg gag ggc aag ctg	526
Phe Gly Asp Pro Thr Ala Pro Arg Phe Val Trp Trp Glu Gly Lys Leu	
160 165 170 175	
cgc ccc gtg ccc tcg ggc ctg gac gcc ttc acc ttc gac ctc atg tcc	574
Arg Pro Val Pro Ser Gly Leu Asp Ala Phe Thr Phe Asp Leu Met Ser	
180 185 190	
atc ccc ggc aag atc cgc gcc ggg ctg ggc gcc atc ggc ctc atc aac	622
Ile Pro Gly Lys Ile Arg Ala Gly Leu Gly Ala Ile Gly Leu Ile Asn	
195 200 205	
gga gcc atg ccc tcc ttc gag gag agt gtg gag cag ttc atc cgc cgc	670
Gly Ala Met Pro Ser Phe Glu Glu Ser Val Glu Gln Phe Ile Arg Arg	
210 215 220	
aac ctg ggc gat gag gtg ttc cgc ctg atc gag ccc ttc tgc tcc	718
Asn Leu Gly Asp Glu Val Phe Phe Arg Leu Ile Glu Pro Phe Cys Ser	
225 230 235	
ggc gtg tac gcg ggc gac ccc tcc aag ctg tcc atg aag gcg gcc ttc	766
Gly Val Tyr Ala Gly Asp Pro Ser Lys Leu Ser Met Lys Ala Ala Phe	
240 245 250 255	
aac agg atc tgg att ctg gag aag aac ggc ggc agc ctg gtg gga ggt	814
Asn Arg Ile Trp Ile Leu Glu Lys Asn Gly Gly Ser Leu Val Gly Gly	
260 265 270	
gcc atc aag ctg ttc cag gaa cgc cag tcc aac ccg gcc ccg ccg	862
Ala Ile Lys Leu Phe Gln Glu Arg Gln Ser Asn Pro Ala Pro Pro Arg	
275 280 285	
gac ccg cgc ctg ccg ccc aag ccc aag ggc cag acg gtg ggc tcg ttc	910
Asp Pro Arg Leu Pro Pro Lys Pro Lys Gly Gln Thr Val Gly Ser Phe	
290 295 300	
cgc aag ggc ctg aag atg ctg ccg gac gcc att gag cgc aac atc ccc	958
Arg Lys Gly Leu Lys Met Leu Pro Asp Ala Ile Glu Arg Asn Ile Pro	
305 310 315	
gac aag atc cgc gtg aac tgg aag ctg gtg tct ctg ggc cgc gag gcg	1006
Asp Lys Ile Arg Val Asn Trp Lys Leu Val Ser Leu Gly Arg Glu Ala	
320 325 330 335	
gac ggg cgg tac ggg ctg gtg tac gac acg ccc gag ggc cgt gtc aag	1054
Asp Gly Arg Tyr Gly Leu Val Tyr Asp Thr Pro Glu Gly Arg Val Lys	
340 345 350	
gtg ttt gcc cgc gcc gtg gct ctg acc gcg ccc agc tac gtg gtg gcg	1102
Val Phe Ala Arg Ala Val Ala Leu Thr Ala Pro Ser Tyr Val Val Ala	
355 360 365	
gac ctg gtc aag gag cag gcg ccc gcc gcc gag gcc ctg ggc tcc	1150
Asp Leu Val Lys Glu Gln Ala Pro Ala Ala Glu Ala Leu Gly Ser	
370 375 380	

ttc gac tac ccg ccg gtg ggc gcc gtg acg ctg tcg tac ccg ctg agc		1198	
Phe Asp Tyr Pro Pro Val Gly Ala Val Thr Leu Ser Tyr Pro Leu Ser			
385	390	395	
gcc gtg cgg gag gag cgc aag gcc tcg gac ggg tcc gtg ccg ggc ttc		1246	
Ala Val Arg Glu Glu Arg Lys Ala Ser Asp Gly Ser Val Pro Gly Phe			
400	405	410	415
ggt cag ctg cac ccg cgc acg cag ggc atc acc act ctg ggc acc atc		1294	
Gly Gln Leu His Pro Arg Thr Gln Gly Ile Thr Thr Leu Gly Thr Ile			
420	425	430	
tac agc tcc agc ctg ttc ccc ggc cgc gcg ccc gag ggc cac atg ctg		1342	
Tyr Ser Ser Leu Phe Pro Gly Arg Ala Pro Glu Gly His Met Leu			
435	440	445	
ctg ctc aac tac atc ggc ggc acc acc aac cgc ggc atc gtc aac cag		1390	
Leu Leu Asn Tyr Ile Gly Gly Thr Thr Asn Arg Gly Ile Val Asn Gln			
450	455	460	
acc acc gag cag ctg gtg gag cag gtg gac aag gac ctg cgc aac atg		1438	
Thr Thr Glu Gln Leu Val Glu Gln Val Asp Lys Asp Leu Arg Asn Met			
465	470	475	
gtc atc aag ccc gac gcg ccc aag ccc cgt gtg gtg ggc gtg cgc gtg		1486	
Val Ile Lys Pro Asp Ala Pro Lys Pro Arg Val Val Gly Val Arg Val			
480	485	490	495
tgg ccg cgc gcc atc ccg cag ttc aac ctg ggc cac ctg gag cag ctg		1534	
Trp Pro Arg Ala Ile Pro Gln Phe Asn Leu Gly His Leu Glu Gln Leu			
500	505	510	
gac aag gcg cgc aag gcg ctg gac gcg gcg ggg ctg cag ggc gtg cac		1582	
Asp Lys Ala Arg Lys Ala Leu Asp Ala Ala Gly Leu Gln Gly Val His			
515	520	525	
ctg ggg ggc aac tac gtc agc ggt gtg gcc ctg ggc aag gtg gtg gag		1630	
Leu Gly Gly Asn Tyr Val Ser Gly Val Ala Leu Gly Lys Val Val Glu			
530	535	540	
cac ggc tac gag tcc gca gcc aac ctg gcc aag agc gtg tcc aag gcc		1678	
His Gly Tyr Glu Ser Ala Ala Asn Leu Ala Lys Ser Val Ser Lys Ala			
545	550	555	
gca gtc aag gcc taa gcggctgcag cagtagcagc agcagcatcg ggctgttagct		1733	
Ala Val Lys Ala			
560			
ggtaaatgcc gcagtggcac cggcagcagc aattggcaag cacttggggc aagcggagtg		1793	
gaggcgaggg gggggctacc attggcgctt gctggatgt gtatg		1838	

<210> 18

Met Met Leu Thr Gln Thr Pro Gly Thr Ala Thr Ala Ser Ser Arg			
1	5	10	15
Arg Ser Gln Ile Arg Ser Ala Ala His Val Ser Ala Lys Val Ala Pro			
20	25	30	
Arg Pro Thr Pro Phe Ser Val Ala Ser Pro Ala Thr Ala Ala Ser Pro			
35	40	45	
Ala Thr Ala Ala Ala Arg Arg Thr Leu His Arg Thr Ala Ala Ala Ala			
50	55	60	
Thr Gly Ala Pro Thr Ala Ser Gly Ala Gly Val Ala Lys Thr Leu Asp			
65	70	75	
Asn Val Tyr Asp Val Ile Val Val Gly Gly Leu Ser Gly Leu Val			

80	85	90	95												
Thr	Gly	Gln	Ala	Leu	Ala	Ala	Gln	His	Lys	Ile	Gln	Asn	Phe	Leu	Val
			100					105						110	
Thr	Glu	Ala	Arg	Glu	Arg	Val	Gly	Gly	Asn	Ile	Thr	Ser	Met	Ser	Gly
			115					120						125	
Asp	Gly	Tyr	Val	Trp	Glu	Glu	Gly	Pro	Asn	Ser	Phe	Gln	Pro	Asn	Asp
			130				135						140		
Ser	Met	Leu	Gln	Ile	Ala	Val	Asp	Ser	Gly	Cys	Glu	Lys	Asp	Leu	Val
			145			150					155				
Phe	Gly	Asp	Pro	Thr	Ala	Pro	Arg	Phe	Val	Trp	Trp	Glu	Gly	Lys	Leu
			160			165				170				175	
Arg	Pro	Val	Pro	Ser	Gly	Leu	Asp	Ala	Phe	Thr	Phe	Asp	Leu	Met	Ser
			180			185							190		
Ile	Pro	Gly	Lys	Ile	Arg	Ala	Gly	Leu	Gly	Ala	Ile	Gly	Leu	Ile	Asn
			195			200							205		
Gly	Ala	Met	Pro	Ser	Phe	Glu	Glu	Ser	Val	Glu	Gln	Phe	Ile	Arg	Arg
			210			215						220			
Asn	Leu	Gly	Asp	Glu	Val	Phe	Phe	Arg	Leu	Ile	Glu	Pro	Phe	Cys	Ser
			225			230					235				
Gly	Val	Tyr	Ala	Gly	Asp	Pro	Ser	Lys	Leu	Ser	Met	Lys	Ala	Ala	Phe
			240			245				250				255	
Asn	Arg	Ile	Trp	Ile	Leu	Glu	Lys	Asn	Gly	Gly	Ser	Leu	Val	Gly	Gly
			260			265							270		
Ala	Ile	Lys	Leu	Phe	Gln	Glu	Arg	Gln	Ser	Asn	Pro	Ala	Pro	Pro	Arg
			275			280						285			
Asp	Pro	Arg	Leu	Pro	Pro	Lys	Pro	Lys	Gly	Gln	Thr	Val	Gly	Ser	Phe
			290			295					300				
Arg	Lys	Gly	Leu	Lys	Met	Leu	Pro	Asp	Ala	Ile	Glu	Arg	Asn	Ile	Pro
			305			310					315				
Asp	Lys	Ile	Arg	Val	Asn	Trp	Lys	Leu	Val	Ser	Leu	Gly	Arg	Glu	Ala
			320			325				330			335		
Asp	Gly	Arg	Tyr	Gly	Leu	Val	Tyr	Asp	Thr	Pro	Glu	Gly	Arg	Val	Lys
			340			345						350			
Val	Phe	Ala	Arg	Ala	Val	Ala	Leu	Thr	Ala	Pro	Ser	Tyr	Val	Val	Ala
			355			360						365			
Asp	Leu	Val	Lys	Glu	Gln	Ala	Pro	Ala	Ala	Glu	Ala	Leu	Gly	Ser	
			370			375					380				
Phe	Asp	Tyr	Pro	Pro	Val	Gly	Ala	Val	Thr	Leu	Ser	Tyr	Pro	Leu	Ser
			385			390					395				
Ala	Val	Arg	Glu	Glu	Arg	Lys	Ala	Ser	Asp	Gly	Ser	Val	Pro	Gly	Phe
			400			405				410			415		
Gly	Gln	Leu	His	Pro	Arg	Thr	Gln	Gly	Ile	Thr	Thr	Leu	Gly	Thr	Ile
			420			425						430			
Tyr	Ser	Ser	Ser	Leu	Phe	Pro	Gly	Arg	Ala	Pro	Glu	Gly	His	Met	Leu
			435			440						445			
Leu	Leu	Asn	Tyr	Ile	Gly	Gly	Thr	Thr	Asn	Arg	Gly	Ile	Val	Asn	Gln
			450			455					460				
Thr	Thr	Glu	Gln	Leu	Val	Glu	Gln	Val	Asp	Lys	Asp	Leu	Arg	Asn	Met
			465			470					475				
Val	Ile	Lys	Pro	Asp	Ala	Pro	Lys	Val	Val	Gly	Väl	Arg	Val		
													495		
			480			485				490					
Trp	Pro	Arg	Ala	Ile	Pro	Gln	Phe	Asn	Leu	Gly	His	Leu	Glu	Gln	Leu
			500			505						510			
Asp	Lys	Ala	Arg	Lys	Ala	Leu	Asp	Ala	Ala	Gly	Leu	Gln	Gly	Val	His
													525		
			515			520						525			
Leu	Gly	Gly	Asn	Tyr	Val	Ser	Gly	Val	Ala	Leu	Gly	Lys	Val	Val	Glu
													540		
			530			535									

His Gly Tyr Glu Ser Ala Ala Asn Leu Ala Lys Ser Val Ser Lys Ala
545 550 555
Ala Val Lys Ala
560 563

<210> 19
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of Chlamydomonas PPO gene

<400> 19
ggtcgggtgga ggggatccga tgctggtgac cg 32

<210> 20
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of Chlamydomonas PPO gene

<400> 20
gctactgctg cgagctctta gcccttgact gc 32

<210> 21
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of cucumber ferrochelatase gene

<400> 21
gctttagaat cggatcctat ggcagtggat gac 33

<210> 22
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of cucumber ferrochelatase gene

<400> 22
ggtaacctc tattttagct ctcaggtaaa tataag 36

<210> 23
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify Esherichia coli hemF gene

<400> 23
gctgaaggcg tgatcagtta ttcc 25

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify Esherichia coli hemF gene

<400> 24
catcagcctg cagtgcgaaa agtg 24

<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify Esherichia coli hemF gene

<400> 25
cgaaaaaggg atccgttatg aaaccc 26

<210> 26
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify Esherichia coli hemF gene

<400> 26
gctgtttcc gagctccgt cac 23

<210> 27
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotides to synthesize genes encoding random peptides comprising 5 amino acids

<220>
<221> unsure
<222> (1)...(22)
<223> any n = a, g, c, t, any, unknown, or other

<400> 27
tggccnnknn knnknnknn gc 22

<210> 28
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotides to synthesize genes encoding random peptides comprising 5 amino acids

<220>
<221> unknown
<222> (1)...(29)
<223> any n = a, g, c, t, any, unknown, or other

<400> 28
ggccgcnnnm nnmnnnnnnn nggccagct 29

<210> 29
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide HASYS

<400> 29
tggcccatgc tagtttagtcg gc 22

<210> 30
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide HASYS

<400> 30
tggcgccgac taacttagcat gggccagct 29

<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide RASSL

<400> 31
tggcccgggc gtcgtcgttg gc 22

<210> 32
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide RASSL

<400> 32
ggccgccaac gacgacgccc gggccagct 29

<210> 33
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide MGHASYS

<400> 33
catgggtcac gcttcttact cctaag 26

<210> 34
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide MGHASYS

<400> 34
aattcttagg agtaagaagc gtgacc 26

<210> 35
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide MGRASSL

<400> 35
catgggtcggt gcttcttccc tgtaag 26

<210> 36
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide MGRASSL

<400> 36
aattcttaca ggaaagaagc acgacc 26

<210> 37
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MGYAGY

<400> 37
catgggttac gctggctact aag 23

<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MGYAGY

<400> 38
aattcttagt agccagcgta acc 23

<210> 39
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MGYAGF

<400> 39
catgggttac gctggcttct aag 23

<210> 40
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MGYAGF

<400> 40
aattcttaga agccagcgta acc 23

<210> 41
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG(HASYS)4

<400> 41
catgggtcac gtttcttact cccatgcata ttac 34

<210> 42
<211> 36

<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (HASYS) 4

<400> 42
gtgggagtaa gatgcattttt agtaagaagg gtgacc 36

<210> 43
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (HASYS) 4

<400> 43
tcccacgctt cttactcccc tgcattttac tcctaag 37

<210> 44
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (HASYS) 4

<400> 44
aattcttagg agtaagatgc atgggagtaa gaaggc 35

<210> 45
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (HASYS) 8

<400> 45
tcccacgctt cttactcccc tgcattttac 30

<210> 46
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (HASYS) 8

<400> 46
gtgggagtaa gatgcattttt agtaagaaggc 30

<210> 47
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (RASSL) 4

<400> 47
catgggtcgt gcttcttccc tgcgcgcatc ttcc 34

<210> 48
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (RASSL) 4

<400> 48
acgcaggaa gatgcgcgca gggagaaggc acgacc 36

<210> 49
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (RASSL) 4

<400> 49
ctgcgtgctt cttccctgcg cgcattttcc ctgttaag 37

<210> 50
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (RASSL) 4

<400> 50
aattcttaca gggaaatgc ggcaggaa gaagc 35

<210> 51
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide
MG (RASSL) 8

<400> 51
ctgcgtgctt cttccctgcg cgcatcttcc 30

<210> 52
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide to synthesize the gene encoding the peptide MG(RASSL)8

<400> 52
acgcaggaa gatgcgcgca gggagaaggc 30

<210> 53
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Protoporphyrin IX binding protein HASYS

<400> 53
His Ala Ser Tyr Ser
1 5

<210> 54
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Protoporphyrin IX binding protein MGHASYS

<400> 54
Met Gly His Ala Ser Tyr Ser
1 5

<210> 55
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Protoporphyrin IX binding protein RASSL

<400> 55
Arg Ala Ser Ser Leu
1 5

<210> 56
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Protoporphyrin IX binding protein MGRASSL

<400> 56
Met Gly Arg Ala Ser Ser Leu
1 5

<210> 57
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> H2TMPyP binding protein YAGY.

<400> 57
Tyr Ala Gly Tyr

<210> 58
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> H2TMPyP binding protein MGYAGY

<400> 58
Met Gly Tyr Ala Gly Tyr
1 5

<210> 59
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> H2TMPyP binding protein YAGF

<400> 59
Tyr Ala Gly Phe
1

<210> 60
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> H2TMPyP binding protein MGYAGF

<400> 60
Met Gly Tyr Ala Gly Phe
1 5

<210> 61
<211> 22
<212> PRT

<213> Artificial Sequence

<220>

<223> Protoporphyrin IX binding protein MG(HASYS)4

<400> 61

Met Gly His Ala Ser Tyr Ser His Ala Ser Tyr Ser His Ala Ser Tyr
1 5 10 15
Ser His Ala Ser Tyr Ser
20

<210> 62

<211> 42

<212> PRT

<213> Artificial Sequence

<220>

<223> Protoporphyrin IX binding protein MG(HASYS)8

<400> 62

Met Gly His Ala Ser Tyr Ser His Ala Ser Tyr Ser His Ala Ser Tyr
1 5 10 15
Ser His Ala Ser Tyr Ser His Ala Ser Tyr Ser His Ala Ser Tyr Ser
20 25 30
His Ala Ser Tyr Ser His Ala Ser Tyr Ser
35 40

<210> 63

<211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> Protoporphyrin IX binding protein MG(RASSL)4

<400> 63

Met Gly Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu Arg Ala Ser Ser
1 5 10 15
Leu Arg Ala Ser Ser Leu
20

<210> 64

<211> 42

<212> PRT

<213> Artificial Sequence

<220>

<223> Protoporphyrin IX binding protein MG(RASSL)8.

<400> 64

Met Gly Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu Arg Ala Ser Ser
1 5 10 15
Leu Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu
20 25 30
Arg Ala Ser Ser Leu Arg Ala Ser Ser Leu
35 40

<210> 65
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to introduce mutation into arabidopsis PPO gene

<400> 65
tgttcaggtg tttatgttgg tgatccttca aaactg 36

<210> 66
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify herbicide resistant arabidopsis PPO(A220V) gene

<400> 66
ccatgcggaa gcttatggag ttatctttc tc 32

<210> 67
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify herbicide resistant arabidopsis PPO(A220V) gene

<400> 67
gggagattta atgtcgacca ttacttgta agcg 34

<210> 68
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify Arabidopsis chloroplast ferrochelatase gene

<400> 68
gatcggttct gaaatttgga tccatgcagg c 31

<210> 69
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify Arabidopsis chloroplast ferrochelatase gene

<400> 69
cacaaaacca acgagtcct atagggtcccg g 31

<210> 70
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify soybean coproporphyrinogen III oxidase gene

<400> 70
gaatcggatc cgaagcatga tgcattgtgc 30

<210> 71
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify soybean coproporphyrinogen III oxidase gene

<400> 71
gggggtcgac tcatgaatttta gatccattcc 30

<210> 72
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having nucleotide sequence encoding the Petunia hybrida EPSPS chloroplast transit peptide and the Agrobacterium sp. strain CP4 EPSPS gene

<400> 72
ggaagcttca agaatggcac aaattaacaa catggc 36

<210> 73
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having nucleotide sequence encoding the Petunia hybrida EPSPS chloroplast transit peptide and the Agrobacterium sp. strain CP4 EPSPS gene

<400> 73
gagtcgacgg tcatcaggca gccttcgtat cg 32

<210> 74
<211> 1587
<212> DNA

<213> Petunia hybrida EPSPS chloroplast transit peptide and Agrobacterium sp.
strain CP4 EPSPS

<220>

<221> CDS

<222> (1)...(1581)

<400> 74

atg gca caa att aac aac atg gct caa ggg ata caa acc ctt aat ccc Met Ala Gln Ile Asn Asn Met Ala Gln Gly Ile Gln Thr Leu Asn Pro	48
1 5 10 15	
aat tcc aat ttc cat aaa ccc caa gtt cct aaa tct tca agt ttt ctt Asn Ser Asn Phe His Lys Pro Gln Val Pro Lys Ser Ser Phe Leu	96
20 25 30	
gtt ttt gga tct aaa aaa ctg aaa aat tca gca aat tct atg ttg gtt Val Phe Gly Ser Lys Lys Leu Lys Asn Ser Ala Asn Ser Met Leu Val	144
35 40 45	
ttg aaa aaa gat tca att ttt atg caa aag ttt tgt tcc ttt agg att Leu Lys Asp Ser Ile Phe Met Gln Lys Phe Cys Ser Phe Arg Ile	192
50 55 60	
tca gca tca gtg gct aca gcc tgc atg ctt cac ggt gca agc agc cgg Ser Ala Ser Val Ala Thr Ala Cys Met Leu His Gly Ala Ser Ser Arg	240
65 70 75 80	
ccc gca acc gcc cgc aaa tcc tct ggc ctt tcc gga acc gtc cgc att Pro Ala Thr Ala Arg Lys Ser Ser Gly Leu Ser Gly Thr Val Arg Ile	288
85 90 95	
ccc ggc gac aag tcg atc tcc cac cgg tcc ttc atg ttc ggc ggt ctc Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met Phe Gly Gly Leu	336
100 105 110	
gcg agc ggt gaa acg cgc atc acc ggc ctt ctg gaa ggc gag gac gtc Ala Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu Gly Glu Asp Val	384
115 120 125	
atc aat acg ggc aag gcc atg cag gcc atg ggc gcc agg atc cgt aag Ile Asn Thr Gly Lys Ala Met Gln Ala Met Gly Ala Arg Ile Arg Lys	432
130 135 140	
gaa ggc gac acc tgg atc atc gat ggc gtc ggc aat ggc ggc ctc ctg Glu Gly Asp Thr Trp Ile Ile Asp Gly Val Gly Asn Gly Gly Leu Leu	480
145 150 155 160	
gcg cct gag gcg ccg ctc gat ttc ggc aat gcc gcc acg ggc tgc cgc Ala Pro Glu Ala Pro Leu Asp Phe Gly Asn Ala Ala Thr Gly Cys Arg	528
165 170 175	
ctg acc atg ggc ctc gtc ggg gtc tac gat ttc gac agc acc ttc atc Leu Thr Met Gly Leu Val Gly Val Tyr Asp Phe Asp Ser Thr Phe Ile	576
180 185 190	
ggc gac gcc tcg ctc aca aag cgc ccg atg ggc cgc gtg ttg aac ccg Gly Asp Ala Ser Leu Thr Lys Arg Pro Met Gly Arg Val Leu Asn Pro	624
195 200 205	
ctg cgc gaa atg ggc gtg cag gtg aaa tcg gaa gac ggt gac cgt ctt Leu Arg Glu Met Gly Val Gln Val Lys Ser Glu Asp Gly Asp Arg Leu	672
210 215 220	
ccc gtt acc ttg cgc ggg ccg aag acg ccg acg ccg atc acc tac cgc Pro Val Thr Leu Arg Gly Pro Lys Thr Pro Thr Pro Ile Thr Tyr Arg	720
225 230 235 240	
gtg ccg atg gcc tcc gca cag gtg aag tcc gcc gtg ctg ctc gcc ggc Val Pro Met Ala Ser Ala Gln Val Lys Ser Ala Val Leu Leu Ala Gly	768
245 250 255	
ctc aac acg ccc ggc atc acg acg gtc atc gag ccg atc atg acg cgc	816

Leu Asn Thr Pro Gly Ile Thr Thr Val Ile Glu Pro Ile Met Thr Arg			
260	265	270	
gat cat acg gaa aag atg ctg cag ggc ttt ggc gcc aac ctt acc gtc			864
Asp His Thr Glu Lys Met Leu Gln Gly Phe Gly Ala Asn Leu Thr Val			
275	280	285	
gag acg gat gcg gac ggc gtg cgc acc atc cgc ctg gaa ggc cgc ggc			912
Glu Thr Asp Ala Asp Gly Val Arg Thr Ile Arg Leu Glu Gly Arg Gly			
290	295	300	
aag ctc acc ggc caa gtc atc gac gtg ccg ggc gac ccg tcc tcg acg			960
Lys Leu Thr Gly Gln Val Ile Asp Val Pro Gly Asp Pro Ser Ser Thr			
305	310	315	320
gcc ttc ccg ctg gtt gcg gcc ctg ctt gtt ccg ggc tcc gac gtc acc			1008
Ala Phe Pro Leu Val Ala Ala Leu Leu Val Pro Gly Ser Asp Val Thr			
325	330	335	
atc ctc aac gtg ctg atg aac ccc acc cgc acc ggc ctc atc ctg acg			1056
Ile Leu Asn Val Leu Met Asn Pro Thr Arg Thr Gly Leu Ile Leu Thr			
340	345	350	
ctg cag gaa atg ggc gcc gac atc gaa gtc atc aac ccg cgc ctt gcc			1104
Leu Gln Glu Met Gly Ala Asp Ile Glu Val Ile Asn Pro Arg Leu Ala			
355	360	365	
ggc ggc gaa gac gtg gcg gac ctg cgc gtt cgc tcc tcc acg ctg aag			1152
Gly Gly Glu Asp Val Ala Asp Leu Arg Val Arg Ser Ser Thr Leu Lys			
370	375	380	
ggc gtc acg gtg ccg gaa gac cgc gcg cct tcg atg atc gac gaa tat			1200
Gly Val Thr Val Pro Glu Asp Arg Ala Pro Ser Met Ile Asp Glu Tyr			
385	390	395	400
ccg att ctc gct gtc gcc gcc ttc gcg gaa ggg gcg acc gtg atg			1248
Pro Ile Leu Ala Val Ala Ala Phe Ala Glu Gly Ala Thr Val Met			
405	410	415	
aac ggt ctg gaa gaa ctc cgc gtc aag gaa agc gac cgc ctc tcg gcc			1296
Asn Gly Leu Glu Leu Arg Val Lys Glu Ser Asp Arg Leu Ser Ala			
420	425	430	
gtc gcc aat ggc ctc aag ctc aat ggc gtg gat tgc gat gag ggc gag			1344
Val Ala Asn Gly Leu Lys Leu Asn Gly Val Asp Cys Asp Glu Gly Glu			
435	440	445	
acg tcg ctc gtc gtg cgc ggc cgc cct gac ggc aag ggg ctc ggc aac			1392
Thr Ser Leu Val Val Arg Gly Arg Pro Asp Gly Lys Gly Leu Gly Asn			
450	455	460	
gcc tcg ggc gcc gcc gtc acc cat ctc gat cac cgc atc gcc atg			1440
Ala Ser Gly Ala Ala Val Ala Thr His Leu Asp His Arg Ile Ala Met			
465	470	475	480
agc ttc ctc gtc atg ggc ctc gtg tcg gaa aac cct gtc acg gtg gac			1488
Ser Phe Leu Val Met Gly Leu Val Ser Glu Asn Pro Val Thr Val Asp			
485	490	495	
gat gcc acg atg atc gcc acg agc ttc ccg gag ttc atg gac ctg atg			1536
Asp Ala Thr Met Ile Ala Thr Ser Phe Pro Glu Phe Met Asp Leu Met			
500	505	510	
gcc ggg ctg ggc gcg aag atc gaa ctc tcc gat acg aag gct gcc tga			1584
Ala Gly Leu Gly Ala Lys Ile Glu Leu Ser Asp Thr Lys Ala Ala			
515	520	525	
tga			1587

<210> 75

<211> 33

<212> DNA

<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

<400> 75
cacaggaaag gtaccatggt ctgcatcgcc cag 33

<210> 76
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Designed oligonucleotide primer to amplify DNA fragment having partial sequence of soybean PPO gene

<400> 76
cctgcagctc gagagctcct actatttgta cac 33

<210> 77
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> PPO variant in which a region presumed to be FAD binding site of PPO

<220>
<221> unknown
<222> (1)...(6)
<223> any Xaa = any amino acid, unknown, or other

<400> 77
Gly Xaa Gly Xaa Xaa Gly
1 5

<210> 78
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> PPO variant in which a region presumed to be FAD binding site of PPO

<400> 78
Gly Gly Gly Ile Ser Gly
1 5