Shortest Path in a Small Town

In a small town, there are n intersections connected by m one-way roads. Each road has a certain travel time associated with it. You are currently at intersection 1 and want to reach intersection n as quickly as possible. Your task is to find the minimum time required to reach intersection n from intersection 1.

Input

The first line contains two integers n and m ($2 \le n \le 100$, $1 \le m \le 1000$), representing the number of intersections and roads respectively.

The next m lines each contain three integers u, v, and w ($1 \leq u,v \leq n$, $1 \leq w \leq 100$), describing a one-way road from intersection u to intersection v with a travel time of w minutes.

Output

Output a single integer representing the minimum time required to reach intersection n from intersection 1. If it's impossible to reach intersection n, output -1.

Sample

Input			Output
4	5		4
1	2	5	
1	3	3	
2	3	2	
2	4	3	
3	4	1	

Notes

The optimal path is 1 \rightarrow 3 \rightarrow 4, with a total travel time of 3 + 1 = 4 minutes.