Изучение электронного осциллографа

Панферов Андрей 2019-09-30 1 Устройство осциллографа:

2 Наблюдение периодического сигнала от генератора и измерение его частоты.

Таблица 1: Измерения частот сигнала

1	$f_{\mathrm{3}\Gamma},\Gamma$ ц	Т, дел	с/дел	Т, сек	f, Гц	δf , Гц	$f - f_{3\Gamma}$, Гц
	199	5.2	$1 \cdot 10^{-3}$	$5.2 \cdot 10^{-3}$	192	8	7
	1000	5.0	$0.2 \cdot 10^{-3}$	$1 \cdot 10^{-3}$	1000	40	0
	1997	5.0	$0.1 \cdot 10^{-3}$	$0.5 \cdot 10^{-3}$	2000	80	3
	3000	6.8	$50 \cdot 10^{-6}$	$0.34 \cdot 10^{-3}$	2941	90	60
	5000	4.2	$50 \cdot 10^{-6}$	$0.21 \cdot 10^{-3}$	4762	230	240

3 Измерение амплитуды сигнала.

$$U_{MAX} = 11 \mathrm{B}$$
 $U_{MIN} = 12 \mathrm{mB}$ $2.2 \mathrm{дел}; \ 5 \frac{\mathrm{B}}{\mathrm{дел}}$ $2.4 \mathrm{дел}; \ 5 \frac{\mathrm{mB}}{\mathrm{дел}}$ $\frac{\delta U_{MAX}}{U_{MAX}} \approx 0.09$ $\frac{\delta U_{MIN}}{U_{MIN}} \approx 0.09$

$$\beta_{21}[\mathrm{дB}] = 10 \lg \frac{P_2}{P_1} = 20 \lg \frac{U_2}{U_1} = 59.24 \mathrm{дB} \quad \delta \beta_{21} \approx 0.13$$

где $\frac{P_2}{P_1}$ — отношение средних мощностей, $\frac{U_2}{U_1}$ — отношение
амплитуд некоторых двух сигналов (здесь учтено, что мощность
попорциональна квадрату амплитуды $P \sim U^2$).

4 Измерение амплитудно-частотной характеристики осциллографа.

Измерим амплитудно-частотную характеристику K(f) при открытом (DC, \approx) и при закрытом (AC, \sim) входе. Результаты занесем в таблицу 2.

Таблица 2: Амплитудно-частотная характеристика K(f)

	·	V 1 1				(0)		
f,Гц	1.3	5.0	10.0	100	1000	10000	$1 \cdot 10^{6}$	$5 \cdot 10^{6}$
$\lg f$	0.11	0.7	1.0	2.0	3.0	4.0	6.0	6.7
$2U_{ac}$, дел	2.0	5.0	5.6	6.0	6.0	6.0	6.0	5.6
$K_{AC} = \frac{U_{AC}}{U_0}$	0.33	0.83	0.93	1.0	1.0	1.0	1.0	0.93
$2U_{DC}$,дел	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.3
$K_{DC} = \frac{U_{DC}}{U_0}$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.93

Вероятной причиной различия АЧХ осциллографа в разных режимах является емкость, включающаяся в схему осциллографа в режиме DC. При больших частотах ее импеданс становится мал, и почти не влияет на показания прибора, но на маленьких частотах он становится значительным и способен изменить показания

5

6 Измерение разности фазово-частотных характеристик каналов осциллографа.

При подаче на взаимно перпендикулярные отклоняющие пла-стины двух синусоидальных сигналов траектория луча на экранеосциллографа представляет собой эллипс и может быть в общемвиде описана уравнениями:

$$x(t) = A_x \sin \omega t + \Phi_x, \ y(t) = A_y \sin \omega t + \Phi_y$$

Разность фаз $\delta\Phi=\Phi_y-\Phi_x$ можно выразить, например, положив $\omega t=-\Phi_x$, после чего нетрудно получить: $sin|\delta\Phi|=|\frac{y_0}{A_y}|$

Тогда:

$$\delta\Phi=arcsin|rac{y_0}{A_y}|$$
 или $\delta\Phi=\pi-arcsin|rac{y_0}{A_y}|$ или $\delta\Phi=\pi+arcsin|rac{y_0}{A_y}|$

Таблица 3: Фаза-частотная характеристика $\delta\Phi(f)$

f , М Γ ц	0.001	0.125	0.330	0.530	1.00	1.50	1.60	1.80	2.41	2.78	3.50	5.00
$\lg f$	3.00	5.10	5.52	5.72	6.00	6.17	6.20	6.25	6.41	6.44	6.54	6.70
$ 2y_0 $, дел	0	0.4	1.2	2.0	4.0	6.0	6.2	7.6	6.0	4.0	0	6.70
$ 2A_y $, дел	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.6	7.4	7.2
$arcsin(\frac{y_0}{A_y})$, рад	0	0.053	0.16	0.27	0.55	0.91	1.11	1.57	0.91	0.55	0	0.62
$ \delta\Phi $, рад	0	0.05	0.16	0.27	0.55	0.91	1.11	1.57	2.23	2.59	3.14	3.76

7 Наблюдение фигур Лиссажу и измерение частоты.

8 Измерение AЧX интегрирующей и дифференцирующей RC-цепочек.

а) Интегрирующая» цепочка б) «Дифференцирующая» цепочка

$$K_a(f) = \frac{1}{\sqrt{(\Omega \tau)^2 + 1}};$$
 $K_6(f) = \frac{1}{\sqrt{(\Omega \tau)^{-2} + 1}}$ $R = 3.0 \cdot 10^3 \, \text{Om};$ $C = 0.01 \cdot 10^{-6} \, \Phi$

где $\tau = RC = 3.0 \cdot 10^{-5} c$ — постоянная времени RC-цепочки

Таблица 4: AЧX интегрирующей и дифференцирующей RC-цепочек

ing 1. If the interpretation is an experimental tree de-										
f, Гц	A_{in} , дел	$A_{out}^{int},$ дел	$A_{out}^{def},$ дел	K^{int}	K^{def}					
3.0	3.8	3.8	0	1	0					
10	5.8	5.8	0	1	0					
60	6.0	6.0	0	1	0					
100	6.0	6.0	0	1	0					
500	6.0	6.0	0.6	1	0.1					
$2 \cdot 10^3$	6.0	5.6	2.0	0.93	0.33					
$5 \cdot 10^3$	6.0	4.4	3.8	0.73	0.63					
$10 \cdot 10^3$	6.0	3.0	5.1	0.50	0.85					
$20 \cdot 10^{3}$	6.0	1.4	5.5	0.23	0.92					
$30 \cdot 10^{3}$	6.0	1.1	5.6	0.18	0.93					
$40 \cdot 10^{3}$	6.0	0.8	5.7	0.13	0.95					
$50 \cdot 10^3$	6.0	0.7	5.8	0.12	0.97					
$60 \cdot 10^{3}$	6.0	0.6	5.8	0.10	0.97					
$70 \cdot 10^3$	6.0	0.5	5.8	0.08	0.97					

Вывод: в этой работе мы научились работать с электронным осцилллографом в различных диапазонах измерений и режимах развертки, изучили методы его применения и нашли, в каких диапазонах входных данных его показаниям можно верить. Мы пронаблюдали фигуры Лиссажу.