TESTOWANIE HIPOTEZ - MODELE

Model 1. Test istotności dla wartości średniej μ

Cecha $X \sim N(\mu, \sigma)$, σ - znane; Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu = \mu_0, \qquad H_1: \quad \mu \neq \mu_0 \\ \mu < \mu_0; \\ \mu > \mu_0$$

Statystyka testowa:

$$Z_{obs} = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{p}}} \sim N(0, 1);$$

Obszar krytyczny:

$$K = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$K = (-\infty, -z_{1-\alpha})$$

$$K = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in K$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin K$, to nie ma podstaw do odrzucenia H_0 .

Model 2. Test istotności dla wartości średniej μ

Cecha $X \sim N(\mu, \sigma), \quad \sigma$ - nieznane; Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu = \mu_0, \qquad H_1: \quad \mu \neq \mu_0 \\ \mu < \mu_0; \\ \mu > \mu_0$$

Statystyka testowa:

$$T_{obs} = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} \sim t_{[n-1]};$$

Obszar krytyczny:

$$K = (-\infty, -t_{1-\frac{\alpha}{2}, n-1}) \cup \langle t_{1-\frac{\alpha}{2}, n-1}, \infty)$$

$$K = (-\infty, -t_{1-\alpha, n-1})$$

$$K = \langle t_{1-\alpha, n-1}, \infty);$$

Decyzja:

Jeżeli $T_{obs} \in K$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $T_{obs} \notin K$, to nie ma podstaw do odrzucenia H_0 .

Model 3. Test istotności dla wariancji σ^2

Cecha $X \sim N(\mu, \sigma)$;

Sformułowanie hipotezy zerowej i alternatywnej:

$$\begin{split} H_0: \sigma^2 = \sigma_0^2, \qquad H_1: & \ \sigma^2 \neq \sigma_0^2 \\ & \ \sigma^2 < \sigma_0^2 \ ; \\ & \ \sigma^2 > \sigma_0^2 \end{split}$$

Statystyka testowa:

$$\chi_{obs}^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{[n-1]}^2;$$

Obszar krytyczny:

$$K = (0, \chi_{\frac{\alpha}{2}, n-1}^2) \cup \langle \chi_{1-\frac{\alpha}{2}, n-1}^2, \infty)$$

$$K = (0, \chi_{\alpha, n-1}^2)$$

$$K = \langle \chi_{1-\alpha, n-1}^2, \infty);$$

Decyzja:

Jeżeli $\chi^2_{obs} \in K$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $\chi^2_{obs} \notin K$, to nie ma podstaw do odrzucenia H_0 .

Model 4. Test istotności dla równości średnich jednej cechy w dwóch populacjach

Cecha X ma w dwóch populacjach rozkłady $N(\mu_1, \sigma_1)$ i $N(\mu_2, \sigma_2)$, σ_1, σ_2 - znane; Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu_1 = \mu_2,$$
 $H_1: \mu_1 \neq \mu_2$
 $\mu_1 < \mu_2;$
 $\mu_1 > \mu_2$

Statystyka testowa:

$$Z_{obs} = \frac{\bar{x_1} - \bar{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1);$$

Obszar krytyczny:

$$K = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$K = (-\infty, -z_{1-\alpha})$$

$$K = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in K$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin K$, to nie ma podstaw do odrzucenia H_0 . **Model 5.** Test istotności dla równości średnich jednej cechy mierzonej przed i po wykonaniu operacji - metoda zmiennych połączonych;

X - cecha mierzona przed operacją, Y - cecha mierzona po operacji,

 $D = X - Y \sim N(\mu_D, \sigma_D), \quad \sigma_D$ - znane;

Sformułowanie hipotezy zerowej i alternatywnej:

$$H_0: \mu_D = 0, \qquad H_1: \quad \mu_D \neq 0$$

 $\mu_D < 0;$
 $\mu_D > 0$

Statystyka testowa:

$$Z_{obs} = \frac{\bar{D}}{\frac{\sigma_D}{\sqrt{n}}} \sim N(0, 1);$$

Obszar krytyczny:

$$K = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$K = (-\infty, -z_{1-\alpha})$$

$$K = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in K$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin K$, to nie ma podstaw do odrzucenia H_0 .

Model 6. Test istotności dla równości średnich jednej cechy mierzonej przed i po wykonaniu operacji - metoda zmiennych połączonych;

X - cecha mierzona przed operacją, Y - cecha mierzona po operacji,

 $D = X - Y \sim N(\mu_D, \sigma_D), \quad \sigma_D$ - nieznane;

Sformułowanie hipotezy zerowej i alternatywnej:

$${\cal H}_0: \mu_D = 0, \qquad {\cal H}_1: \quad \mu_D \neq 0 \\ \mu_D < 0 \ ; \\ \mu_D > 0$$

Statystyka testowa:

$$T_{obs} = \frac{D}{\frac{s_D}{\sqrt{n}}} \sim t_{[n-1]};$$

Obszar krytyczny:

$$K = (-\infty, -t_{1-\frac{\alpha}{2}, n-1}) \cup \langle t_{1-\frac{\alpha}{2}, n-1}, \infty)$$

$$K = (-\infty, -t_{1-\alpha, n-1})$$

$$K = \langle t_{1-\alpha, n-1}, \infty);$$

Decyzja:

Jeżeli $T_{obs} \in K$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $T_{obs} \notin K$, to nie ma podstaw do odrzucenia H_0 . **Model 7.** Test istotności dla proporcji p (założenie: $n\hat{p} \geq 5$, $n(1-\hat{p}) \geq 5$);

$$H_0: p = p_0,$$
 $H_1: p \neq p_0$
 $p < p_0;$
 $p > p_0$

Statystyka testowa:

$$Z_{obs} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \sim N(0,1);$$

Obszar krytyczny:

$$K = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$K = (-\infty, -z_{1-\alpha})$$

$$K = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in K$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin K$, to nie ma podstaw do odrzucenia H_0 .

Model 8. Test istotności różnicy proporcji dwóch populacji (założenie: $n\widehat{p_i} \geq 5$, $n_i(1-\widehat{p_i}) \geq 5$ dla i=1,2);

$$\mathbf{H}_0: p_1 = p_2, \qquad \mathbf{H}_1: \quad p_1 \neq p_2 \\ p_1 < p_2 ; \\ p_1 > p_2$$

Statystyka testowa:

$$Z_{obs} = \frac{\widehat{p_1} - \widehat{p_2}}{\sqrt{(\frac{1}{n_1} + \frac{1}{n_2})\widehat{p}(1 - \widehat{p})}} \sim N(0, 1);$$

gdzie $\hat{p} = \frac{K_1 + K_2}{n_1 + n_2},$ zaś K_i oznacza liczbę elementów w i-tej próbie o zadanej cesze;

Obszar krytyczny:

$$K = (-\infty, -z_{1-\frac{\alpha}{2}}) \cup \langle z_{1-\frac{\alpha}{2}}, \infty)$$

$$K = (-\infty, -z_{1-\alpha})$$

$$K = \langle z_{1-\alpha}, \infty);$$

Decyzja:

Jeżeli $Z_{obs} \in K$, to odrzucamy H_0 na rzecz H_1 . Jeżeli $Z_{obs} \notin K$, to nie ma podstaw do odrzucenia H_0 .