APOSTILA DE CÁLCULO NUMÉRICO

Professor: William Wagner Matos Lira Monitor: Ricardo Albuquerque Fernandes

1 ERROS

1.1 Introdução

1.1.1 Modelagem e Resolução

A utilização de simuladores numéricos para determinação da solução de um problema requer a execução da seguinte sequência de etapas:

Etapa 1: Definir o problema real a ser resolvido

<u>Etapa 2:</u> Observar fenômenos, levantar efeitos dominantes e fazer referência a conhecimentos prévios físicos e matemáticos

Etapa 3: Criar modelo matemático

Etapa 4: Resolver o problema matemático

Modelagem: Fase de obtenção de um modelo matemático que descreve um problema físico em questão.

Resolução: Fase de obtenção da solução do modelo matemático através da obtenção da solução analítica ou numérica.

1.1.2 Cálculo Numérico

O cálculo numérico compreende:

- A análise dos processos que resolvem problemas matemáticos por meio de <u>operações</u> aritméticas;
- ➤ O desenvolvimento de uma sequência de operações aritméticas que levem às respostas numéricas desejadas (Desenvolvimento de algoritmos);
- ➤ O uso de computadores para obtenção das respostas numéricas, o que implica em escrever o método numérico como um *programa de computador*

Espera-se, com isso, obter respostas confiáveis para problemas matemáticos. No entanto, não é raro acontecer que os resultados obtidos estejam distantes do que se esperaria obter.

1.1.3 Fontes de erros

Suponha que você está diante do seguinte problema: você está em cima de um edificio que não sabe a altura, mas precisa determiná-la. Tudo que tem em mãos é uma bola de metal e um cronômetro. O que fazer?

Conhecemos também a equação

$$s = s_0 + v_o t + \frac{gt^2}{2}$$

onde:

- s é a posição final;
- s₀ é a posição inicial;
- v_0 é a velocidade inicial;
- t é o tempo percorrido;
- g é a aceleração gravitacional.

A bolinha foi solta do topo do edifício e marcou-se no cronômetro que ela levou 2 segundos para atingir o solo. Com isso podemos conclui a partir da equação acima que a altura do edifício é de 19,6 metros.

Essa resposta é confiável? Onde estão os erros?

Erros de modelagem:

- Resistência do ar,
- Velocidade do vento,
- Forma do objeto, etc.

Estes erros estão associados, em geral, à simplificação do modelo matemático.

Erros de resolução:

Precisão dos dados de entrada

(Ex. Precisão na leitura do cronômetro. p/ t = 2,3 segundos, h = 25,92 metros, gravidade);

- Forma como os dados são armazenados;
- Operações numéricas efetuadas;
- Erro de truncamento (troca de uma série infinita por uma série finita).

1.2 Representação numérica

Motivação:

Exemplo 1:

Calcular a área de uma circunferência de raio 100 metros.

- a) 31140 m²
- b) 31416 m²
- c) 31415,92654 m²

Exemplo 2:

Calcular
$$S = \sum_{i=1}^{3000} x_i$$
 para $x_i = 0.5$ e para $x_i = 0.11$

	S para $x_i = 0.5$	S para $x_i = 0.11$
Calculadora	15000	3300
Computador	15000	3299,99691

Por que das diferenças?

No caso do Exemplo 1 foram admitidos três valores diferentes para o número π :

- a) $\pi = 3.14$
- b) $\pi = 3,1416$
- c) $\pi = 3.141592654$

Dependência da aproximação escolhida para π . Aumentando-se o número de dígitos aumentamos a precisão. Nunca conseguiremos um valor exato.

No caso do Exemplo 2 as diferenças podem ter ocorrido em função da base utilizada, da forma como os números são armazenados, ou em virtude dos erros cometidos nas operações aritméticas.

O conjunto dos números representáveis em qualquer máquina é finito, e portanto, discreto, ou seja não é possível representar em uma máquina todos os números de um dado intervalo [a,b]. A representação de um número depende da BASE escolhida e do número máximo de dígitos usados na sua representação.

Qual a base utilizada no nosso dia-a-dia? Base decimal (Utiliza-se os algarismos: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9).

Existem outras bases: 8 (base octal), 12, 60, porém, a base utilizada pela maioria dos computadores é a base binária, onde se utiliza os algarismos 0 e 1.

Os computadores recebem a informação numérica na base decimal, fazem a <u>conversão</u> para sua base (a base binária) e fazem nova <u>conversão</u> para exibir os resultados na base decimal para o usuário.

Exemplos: $(100110)_2 = (38)_{10}$ $(11001)_2 = (25)_{10}$

1.2.1 Representação de um número inteiro

Em princípio, representação de um número inteiro no computador não apresenta qualquer dificuldade. Qualquer computador trabalha internamente com uma base fixa β , onde β é um inteiro ≥ 2 ; e é escolhido como uma potência de 2.

Assim dado um número inteiro $x \neq 0$, ele possui uma única representação,

$$x = \pm (d_n d_{n-1} ... d_2 d_1 d_0) = \pm (d_n \beta^n + d_{n-1} \beta^{n-1} + ... + d_1 \beta^1 + d_0 \beta^0)$$

onde d_i é um dígito da base em questão, no caso de uma base binária $d_n = 1$ e $d_{n-1},...,d_0$ são iguais a 1 ou 0 que são os dígitos da base binária.

Exemplos:

a) Como seria a representação do número 1100 numa base $\beta = 2$

$$(1100)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$$

Portanto $(1100)_2 = (1100)_2$.

b) Como seria a representação do número 1997 em uma base $\beta = 10$?

$$1997 = 1 \times 10^3 + 9 \times 10^2 + 9 \times 10^1 + 7 \times 10^0$$
 Logo, 1997 = $(1997)_{10}$.

1.2.2 Representação de um número real

Se o número real x tem parte inteira x_i , sua parte fracionária $x_f = x - x_i$ pode ser escrita como uma soma de frações binárias:

$$x_f = \pm (b_n b_{n-1} \dots b_2 b_1 b_0) = \pm (b_1 \beta^{-1} + b_2 \beta^{-2} + \dots + d_{n-1} \beta^{-(n-1)} + d_n \beta^n)$$

Assim o número real será representado juntando as partes inteiras e fracionárias, ou seja,

$$x = \pm (a_n a_{n-1} \dots a_2 a_1 a_0, b_m b_{m-1} \dots b_2 b_1 b_0)$$

onde, x possui n+1 algarismos na parte inteira e m+1 algarismos na parte fracionária.

Exemplo:

a) Como seria a representação do número 39,28 em uma base decimal?

$$(39,28)_{10} = (3 \times 10^{1} + 9 \times 10^{0}) + (2 \times 10^{-1} + 8 \times 10^{-2})$$

 $(39,28)_{10} = (39,28)_{10}$

b) Como seria a representação do número $(14,375)_{10} = (?)_2$ em uma base binária?

$$(14,375)_{10} = (1110,011)_2$$

Precisamos saber fazer a conversão de bases que é o tópico seguinte.

1.3 Conversão entre as bases

Conforme dito anteriormente, a maioria dos computadores trabalha na base β , onde β é um inteiro ≥ 2 ; normalmente escolhido como uma potência de 2.

1.3.1 Binária para Decimal

Exemplos:

a)
$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = (13)_{10}$$

b)
$$(11001)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 16 + 8 + 0 + 0 + 1 = (25)_{10}$$

1.3.2 Decimal para Binária

Na conversão de um número escrito em base decimal para uma base binária são utilizados: *o método das divisões sucessivas* para a parte inteira e o *método das multiplicações sucessivas* para conversão da parte fracionária do número em questão.

- Método das divisões sucessivas (parte inteira do número)
- a) Divide-se o número (inteiro) por 2;
- b) Divide-se por 2, o quociente da divisão anterior;
- c) Repete-se o processo até o último quociente ser igual a 1.

O número binário é então formado pela concatenação do último quociente com os restos das divisões, lidos em sentido inverso.

- Método das multiplicações sucessivas (parte fracionária do número)
- a) Multiplica-se o número (fracionário) por 2;
- b) Do resultado, a parte inteira será o primeiro dígito do número na base binária e a parte fracionária é novamente multiplicada por 2;
- c) O processo é repetido até que a parte fracionária do último produto seja igual a zero

Exemplos:

a)
$$(13)_{10} = (?)_2$$

	Quociente	Resto
13/2	6	1 ♠
6/2	3	0
3/2	1	1

Resultado: $(13)_{10} = (1101)_2$

b)
$$(25)_{10} = (?)_2$$

	Quociente	Resto
25/2	12	1 🔺
12/2	6	0
6/2	3	0
3/2	1	1

Resultado: $(25)_{10} = (11001)_2$

c)
$$(0.375)_{10} = (?)_2$$

c)
$$(13,25)_{10} = (?)_2$$

Converte-se inicialmente a parte inteira do número:

	Quociente	Resto
13/2	6	1 🔺
7/2	3	0
3/2	1	1

... em seguida converte-se a parte fracionária:

$$(0,25)_{10} = (0,01)_2$$

$$\begin{array}{ccc}
0,25 & 0,50 \\
x & 2 & x & 2 \\
\hline
0,50 & 1,0
\end{array}$$

Resultado: $(13,25)_{10} = (1101,01)_2$

<u>Atenção</u>: Nem todo número real na base decimal possui uma representação finita na base binária. Tente fazer a conversão de $(0,1)_{10}$. Esta situação ilustra bem o caso de erro de arredondamento nos dados.

1.3.3 Exercícios Propostos

Faça as conversões indicadas abaixo:

- a) $(100110)_2 = (?)_{10}$
- b) $(1100101)_2 = (?)_{10}$
- c) $(40,28)_{10} = (?)_2$
- d) $(110,01)_2 = (?)_{10}$
- e) $(3.8)_{10} = (?)_2$

1.4 Arrredondamento e aritmética de ponto flutuante

Um número é representado, internamente, num computador ou máquina de calcular através de uma seqüência de impulsos elétricos que indicam dois estados: 0 ou 1, ou seja, os números são representados na base binária.

De uma maneira geral, um número x é representado na base β por:

$$x = \pm \left[\frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \frac{d_3}{\beta^3} + \dots + \frac{d_t}{\beta^t} \right] \beta^e$$

onde:

 d_i - são números inteiros contidos no intervalo $0 \le d_i \le \beta - 1$; i = 1,2,...,t;

e - representa o expoente de β e assume valores entre $I \le e \le S$ onde

I, *S* - são, respectivamente, limite inferior e superior para a variação do expoente;

$$\left[\frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \frac{d_3}{\beta^3} + \dots + \frac{d_t}{\beta^t}\right]$$
 é a chamada *mantissa* e é a parte do número que representa

seus dígitos significativos e *t* é o número de dígitos significativos do sistema de representação, comumente chamado de precisão da máquina.

Um número real x no sistema de aritmética de ponto flutuante pode ser escrito também na forma:

$$x = \pm (0, d_1 d_2 d_3 ... d_t).\beta^e$$

com $d_1 \neq 0$, pois é o primeiro algarismo significativo de x.

Exemplos:

a) Escrever os números reais $x_1 = 0.35$, $x_2 = -5.172$, $x_2 = 0.0123$, $x_4 = 0.0003$, e $x_5 = 5391.3$ onde estão todos na base $\beta = 10$ em notação de um sistema de aritmética de ponto flutuante.

Solução:

$$0.35 = (3 \times 10^{-1} + 5 \times 10^{-2})x10^{0} = 0.35 \times 10^{0}$$

$$-5.172 = -(5 \times 10^{-1} + 1 \times 10^{-2} + 7 \times 10^{-3} + 2 \times 10^{-4}) \times 10^{1} = -0.5172 \times 10^{1}$$

$$0.0123 = (1 \times 10^{-1} + 2 \times 10^{-2} + 3 \times 10^{-3}) \times 10^{-1} = 0.123 \times 10^{-1}$$

$$5391.3 = (5 \times 10^{-1} + 3 \times 10^{-2} + 9 \times 10^{-3} + 1 \times 10^{-4} + 3 \times 10^{-5}) \times 10^{4} = 0.53913 \times 10^{4}$$

$$0.0003 = (3 \times 10^{-1}) \times 10^{-3} = 0.3 \times 10^{-3}$$

b) Considerando agora que estamos diante de uma máquina que utilize apenas três dígitos significativos e que tenha como limite inferior e superior para o expoente, respectivamente, -2 e 2, como seriam representados nesta máquina os números do exemplo a)?

Solução: Temos então para esta máquina t=3, I=-2 e S=-2. Desta forma $-2 \le e \le 2$. Sendo assim temos:

$$0.35 = 0.350 \times 10^{0}$$

$$-5.172 = -0.517 \times 10^{1}$$

$$0.0123 = 0.123 \times 10^{-1}$$

 $5391.3 = 0.53913 \times 10^4$ Não pode ser representado por esta máquina. Erro de *overflow*. $0.0003 == 0.3 \times 10^{-3}$ Não pode ser representado por esta máquina. Erro de *underflow*.

Um erro de *overflow* ocorre quando o número é muito grande para ser representado, já um erro de *underflow* ocorre na condição contrária, ou seja, quando um número é pequeno demais para ser representado.

c) Numa máquina de calcular cujo sistema de representação utilizado de base binária, considerando que a máquina tenha capacidade para armazenar um número com dez dígitos significativos, com limites inferior e superior para o expoente de -15 e 15, respectivamente. Como que é representado o número (25)₁₀ neste sistema ?

1.5 Erros

1.5.1 Erros absoluto, relativo e percentual

Erro absoluto: Diferença entre o valor exato de um número x e seu valor aproximado \overline{x} obtido a partir de um procedimento numérico.

$$E_{a_x} = x - \overline{x}$$

Em geral apenas x é conhecido, e o que se faz é assumir um limitante superior ou uma estimativa para o módulo do erro absoluto.

Exemplos:

- a) Sabendo-se que $\pi=(3,14;3,15)$ tomaremos para π um valor dentro deste intervalo e teremos, então, $\left|E_{a_x}\right|=\left|\pi-\overline{\pi}\right|<0.01$.
- b) Seja x representado por $\bar{x} = 2112.9$ de forma que $\left| E_{a_x} \right| < 0.1$ podemos dizer que $x \in (2112.8; 2113.0)$.

c) Seja y representado por $\overline{y}=5,3$ de forma que $\left|E_{a_y}\right|<0,1$, podemos dizer que $y\in(5,2;5,4)$

Temos que os valores para os respectivos erros absolutos nas letras b e c foram idênticos. Podemos afirmar que os valores de x e y foram representados com a mesma precisão?

O erro absoluto não é suficiente para descrever a precisão de um cálculo. Daí a maior utilização do conceito de *erro relativo*.

Erro relativo: Erro absoluto dividido pelo valor aproximado.

$$E_{r_x} = \frac{E_{a_x}}{\overline{x}} = \frac{x - \overline{x}}{\overline{x}}$$

Erro percentual: é o erro relativo em termos percentuais, ou seja:

$$E_{p_x} = E_{r_x} \times 100\%$$

Exemplos:

a) Seja x representado por $\bar{x}=2112.9$ de forma que $\left|E_{a_x}\right|<0.1$ podemos dizer que $x\in(2112.8;2113.0)$.

$$\left| E_{r_x} \right| = \frac{\left| E_{a_x} \right|}{\overline{x}} < \frac{0.1}{2112.9} \cong 4.7 \times 10^{-5}$$

$$E_{p_x} = 4.7 \times 10^{-5}.100\% = 0.0047\%$$

b) Seja y representado por $\overline{y}=5,3$ de forma que $\left|E_{a_y}\right|<0,1$, podemos dizer que $y\in(5,2;5,4)$

$$\left| E_{r_y} \right| = \frac{\left| E_{a_y} \right|}{\bar{y}} < \frac{0.1}{5.3} \cong 0.02$$

$$E_{p_y} = 0.02.100\% = 2\%$$

Para valores próximos de 1, os erros absoluto e relativo, têm valores muito próximos. Entretanto, para valores afastados de 1, podem ocorrer grandes diferenças, e se deve

escolher um critério adequado para podermos avaliar se o erro que está sendo cometido é grande ou pequeno.

1.5.2 Exercícios Propostos

- 1. Suponha que tenhamos um valor aproximado de 0.00004 para um valor exato de 0.00005. Calcular os erros absoluto, relativo e percentual para este caso.
- 2. Suponha que tenhamos um valor aproximado de 100000 para um valor exato de 101000. Calcular os erros absoluto, relativo e percentual para este caso.
- 3. Considerando os dois casos acima, onde se obteve uma aproximação com maior precisão? Justifique sua resposta.

1.5.3 Erro de arredondamento e truncamento

Dar a representação dos números a seguir num sistema de aritmética de ponto flutuante de três dígitos para $\beta = 10$, I=-4 e S=4

Х	Representação por arredondamento	Representação por truncamento
1,25	0,125x10	0,125x10
10,053	0,101x10 ²	0,100x10 ²
-238,15	-0,238x10 ³	-0,238x10 ³
2,71828	0,272x10	0,271.10
0,00007	Exp< -4 (underflow)	Exp < -4 (underflow)
718235,82	Exp > 4 (overflow)	Exp > 4 (overflow)

Quando se utiliza o arredondamento os erros cometidos são menores que no truncamento, no entanto o arredondamento requer um maior tempo de execução e por esta razão o truncamento é mais utilizado. A demonstração de que no arredondamento incorremos em erros menores que no truncamento pode ser encontrada no livro de Cálculo Numérico da Márcia Ruggiero e Vera Lopes.

1.5.4 Propagação de erros

Será mostrado um exemplo que ilustra como os erros descritos anteriormente podem influenciar no desenvolvimento de um cálculo.

Suponhamos que as operações indicadas nos itens a) e b) sejam processadas numa máquina com 4 dígitos significativos.

a)
$$(x_2 + x_1) - x_1$$

b)
$$x_2 + (x_1 - x_1)$$

Fazendo $x_1 = 0.3491 \times 10^4 \text{ e } x_2 = 0.2345 \times 10^0 \text{ temos:}$

a)
$$(x_2 + x_1) - x_1 = (0.2345.10^0 + 0.3491.10^4) - 0.3491.10^4$$

= $0.3491.10^4 - 0.3491.10^4$
= 0.0000

b)
$$x_2 + (x_1 - x_1) = 0.2345.10^0 + (0.3491.10^4 - 0.3491.10^4)$$

= $0.2345.10^0 + 0.0000$
= 0.2345

A causa da diferença nas operações anteriores foi um arredondamento que foi feito na adição $(x_2 + x_1)$ do item a), cujo resultado tem oito dígitos. Como a máquina só armazena 4 dígitos, os menos significativos foram desprezados.

Ao se utilizar uma máquina de calcular deve-se está atento a essas particularidades causadas pelo erro de arredondamento, não só na adição, mas também nas demais operações.

2 ZEROS DE FUNÇÕES

2.1 Caracterização Matemática

- Conhecida uma função f(x).
- Determinar o valor x* tal que f(x*)=0.
- Denomina-se x* de zero da função f(x) ou raiz da equação f(x)=0.
- Solução analítica:
 - Equações algébricas (polinomiais) do 1° e 2° graus;
 - Certos formatos de equações algébricas do 3º e 4º graus;
 - o Algumas equações transcendentais (não polinomiais).

2.2 Ilustração Através de Alguns Problemas de Engenharia

2.2.1 Equilíbrio de Mecanismos

Exemplo:

Mecânica Vetorial para Engenheiros – Estática

F. P. Beer & E. R. Johnston, Jr.

5^a Edição Revisada – 1994

MAKRON Books do Brasil Editora Ltda

Problema 4.60 (Página 254) – Uma haste delgada de comprimento 2R e peso P está presa a um cursor em B e apoiada em um cilindro de raio R. Sabendo que o cursor pode se deslocar livremente ao longo de sua guia vertical, determine o valor de θ correspondente ao equilíbrio. Despreze o atrito.

Incógnita: Ângulo θ correspondente ao equilíbrio. Equação resultante durante o desenvolvimento da solução:

 $\cos^3\theta = \sin\theta$

Reformatação do problema:

 $\cos^3\theta$ - $\sin\theta$ =0

Considerando $f(\theta) = \cos^3 \theta$ -sen θ , a solução da equação corresponde ao zero da função $f(\theta)$.

2.2.2 Equilíbrio de Corpos Rígidos com Apoio Deformável

Incógnita: Ângulo θ correspondente ao equilíbrio.

Equação resultante durante o desenvolvimento da solução:

 $(K/PL).\theta=0,5.\cos\theta+\sin\theta$

Reformatação do problema:

 $(K/PL).\theta-0,5.\cos\theta-\sin\theta=0$

Considerando $f(\theta)=(K/PL)\theta-0,5.\cos\theta-\sin\theta$, a solução da equação corresponde ao zero da função $f(\theta)$.

2.2.3 Equação de Manning

EQUAÇÃO DE MANNING

Exemplo: Aplicação da Equação de Manning^(*) para verificação da capacidade de vazão de dutos.

(*) Manual de Hidráulica – J. M. de Azevedo Netto – 8ª ed. atualizada – 1998 – Editora Edgard Blücher

- A: área molhada
- R: raio hidráulico (A/p)
- p: perímetro molhado
- s: inclinação longitudinal do duto
- n: parâmetro de rugosidade da superfície do duto
- h: profundidade do duto
- Q: vazão no duto

Incógnita: Profundidade h do duto.

Equação envolvida durante o desenvolvimento da solução:

$$Q = (A.R^{2/3}.s^{1/2})/n$$

Reformatação do problema:

$$\overline{Q} - (A(h).R(h)^{2\beta}.\overline{s}^{1/2})/\overline{n} = 0$$

Considerando $f(h) = \overline{Q} - (A(h).R(h)^{2\beta}.\overline{s}^{1\beta})/\overline{n}$, a solução da equação corresponde ao zero da função f(h).

2.2.4 Equilíbrio de Corpos Flutuantes

Incógnita: Profundidade *h* correspondente ao equilíbrio. Equação resultante durante o desenvolvimento da solução:

 $\gamma_{\text{S\'olido}}$. $V_{\text{S\'olido}}$ = $\gamma_{\text{L\'iquido}}$. $V_{\text{L\'iquido deslocado}}(h)$ Reformatação do problema:

 $\gamma_{S\'olido}.V_{S\'olido}-\gamma_{L\'iquido}.V_{L\'iquido deslocado}(h)=0$

Considerando $f(h)=\gamma_{S{\text{olido}}}.V_{S{\text{olido}}}-\gamma_{L{\text{iquido}}}.V_{L{\text{iquido deslocado}}}(h)$, a solução da equação corresponde ao zero da função f(h).

2.3 Algoritmos de Solução

2.3.1 Método Gráfico

- Utilizar alguma sistemática para o traçado do gráfico da função estudada.
- O intervalo inicial de observação pode ser criteriosamente definido em função do entendimento físico do problema envolvido.
- O zero da função corresponde ao ponto de contato do gráfico da função com o eixo das abscissas.
- O intervalo de observação pode ser refinado até se atingir a precisão desejada.

2.3.2 Métodos a Partir de um Intervalo (Bisseção e Cordas)

• Pré-requisitos:

- o Considere uma função f(x) contínua dentro de um intervalo [a, b];
- O Considere ainda que nos extremos do intervalo [a, b] a função estudada apresente sinais contrários, ou seja, f(a)*f(b)<0.

• Resultado:

o Garante-se a existência de pelo menos um zero dessa função dentro do intervalo [a, b].

• Idéia:

- o Encontrar um intervalo menor que o intervalo original e que atenda aos prérequisitos acima mencionados;
- Repetir o procedimento anterior até que se atinja o critério de tolerância de determinação do zero da função.

• Estratégia de diminuição do intervalo:

- Nenhum cuidado especial é necessário para garantir o primeiro pré-requisito uma vez que toda função contínua em um intervalo, também será contínua em qualquer subintervalo menor;
- Para garantir que nesse novo intervalo a função continue a apresentar sinais contrários, deve-se:
- o Escolher um ponto c dentro do intervalo original [a, b];
- o Redefinir o novo intervalo substituindo o extremo cujo sinal da função é o mesmo que no ponto escolhido.

2.3.3 Método da Bisseção

- A estimativa do zero da função Y=f(X) é feita a partir do ponto médio do intervalo analisado.
- Se o valor estimado não atender à tolerância estabelecida para o problema, ou seja, **|f(ze)|>tol**, redefine-se o intervalo de estudo, repetindo-se a estratégia até que a tolerância seja verificada.

Equação de recorrência:

$$ze = \frac{a+b}{2}$$

2.3.4 Método das Cordas

- O método das cordas fundamenta-se no fato de que, geralmente, o zero da função vai estar localizado o mais próximo do extremo do intervalo onde a função apresenta o menor valor em módulo.
- A estimativa do zero da função Y=f(X) é feita a partir da **reta secante** que une os pares extremos $(\mathbf{a},f(\mathbf{a}))$ e $(\mathbf{b},f(\mathbf{b}))$ do intervalo analisado.
- O ponto em que essa reta secante intercepta o eixo das abscissas corresponde à estimativa do zero da função.
- Se o valor estimado não atender à tolerância estabelecida para o problema, ou seja, **|f(ze)|>tol**, redefine-se o intervalo de estudo, repetindo-se a estratégia até que a tolerância seja verificada.

Equação de recorrência:

• Pela semelhança dos **triângulos retângulos** destacados na figura:

$$\frac{-f(a)}{ze-a} = \frac{f(b)}{b-ze}$$

$$\therefore ze = \frac{a \cdot f(b) - b \cdot f(a)}{f(b) - f(a)}$$

2.3.5 Método de Newton

- A estimativa do zero da função Y=f(X) é feita a partir da reta tangente à função em um ponto de partida.
- O ponto em que essa reta tangente intercepta o eixo das abscissas corresponde à estimativa do zero da função.
- Se o valor estimado não atender à tolerância estabelecida para o problema, ou seja, **|f(ze)|>tol**, repete-se o esquema até que a mesma seja verificada.

Equação de recorrência:

Para o triângulo retângulo destacado na figura:

$$tan(\theta) = f'(a) = \frac{f(a)}{a - ze}$$

$$\therefore ze = a - \frac{f(a)}{f'(a)}$$

3 SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES

3.1 Caracterização Matemática

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

- a_{ij} são os coeficientes;
- x_i são as variáveis;
- b_i são as constantes, tal que $1 \le i \le m$ e $1 \le j \le n$.

3.2 Notação Matricial

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}_{m \times 1}$$

$$A x = b$$
 onde

- A é a matriz dos coeficientes;
- x é o vetor de incógnitas;
- b é o vetor de constantes.

3.3 Classificação quanto à solução

3.3.1 Sistema Possível ou Compatível

• Admite solução.

3.3.1.1 Sistema Possível e Determinado

- Possui uma única solução;
- O determinante de A deve ser diferente de zero;
- Se b for um vetor nulo (constantes nulas), a solução do sistema será a solução trivial, ou seja, o vetor x também será nulo.

3.3.1.2 Sistema Possível e Indeterminado

- Possui infinitas soluções;
- O determinante de A deve ser nulo;
- O vetor de constantes B deve ser nulo ou múltiplo de uma coluna de A.

3.3.2 Sistema Impossível ou Incompatível

- Não possui solução;
- O determinante de A deve ser nulo;
- O vetor B não pode ser nulo ou múltiplo de alguma coluna de A.

3.4 Ilustração com Problemas de Engenharia

3.4.1 Método da Rigidez

Objetivo: Aplicar a análise matricial de estruturas para calcular os deslocamentos, as reações de apoio e os esforços internos solicitantes em uma dada estrutura.

Incógnitas: Valores dos deslocamentos (translações e rotações) correspondentes aos graus de liberdade dos nós da estrutura. Sistema de equações lineares resultante do método da rigidez:

$$[\overline{K}]{d} = {\bar{f}}$$

Matriz dos coeficientes (Matriz de rigidez da estrutura):

- Função de parâmetros geométricos e do material Vetor das constantes (Vetor de forças nodais):
 - Função de parâmetros geométricos, do material e das solicitações

3.4.2 Circuitos Elétricos

Exemplo: Aplicação das Leis de Kirchhoff das Tensões e das Correntes para a determinação das correntes nos circuitos elétricos CC.

Incógnitas: Correntes i₁, i₂ e i₃ passando pelos vários trechos do circuito.

Equações resultantes da aplicação da Lei de Kirchhoff das Tensões:

 $Ciclo\,1: \overline{V}_1 - \overline{R}_1 i_1 - \overline{R}_3 i_2 = 0 \ \ e \ \ Ciclo\,2: \overline{V}_2 - \overline{R}_4 i_3 + \overline{R}_3 i_2 - \overline{R}_2 i_3 = 0$

Equação resultante da aplicação da Lei de Kirchhoff das Correntes:

3.4.3 Interpolação

Objetivo: A partir de um conjunto de pares de dados discretos (ex: tempo vs. intensidade de chuva, carga vs. deslocamento, etc), encontrar o polinômio interpolador que permita fazer estimativas para outros dados.

Incógnitas: Coeficientes c₀, c₁, c₂ e c₃ do polinômio interpolador. Sistema de equações lineares (notação matricial) resultante da imposição que os pares de dados pertençam ao polinômio em questão:

$$\mathbf{y}(\overline{\mathbf{x}}_{i}) = \overline{\mathbf{y}}_{i}, \mathbf{para} \, \mathbf{i} = 1..4 \Rightarrow \begin{bmatrix} 1 & \overline{\mathbf{x}}_{1} & \overline{\mathbf{x}}_{1}^{2} & \overline{\mathbf{x}}_{1}^{3} \\ 1 & \overline{\mathbf{x}}_{2} & \overline{\mathbf{x}}_{2}^{2} & \overline{\mathbf{x}}_{2}^{3} \\ 1 & \overline{\mathbf{x}}_{3} & \overline{\mathbf{x}}_{3}^{2} & \overline{\mathbf{x}}_{3}^{3} \\ 1 & \overline{\mathbf{x}}_{4} & \overline{\mathbf{x}}_{4}^{2} & \overline{\mathbf{x}}_{4}^{3} \end{bmatrix} \begin{bmatrix} \mathbf{c}_{0} \\ \mathbf{c}_{1} \\ \mathbf{c}_{2} \\ \mathbf{c}_{2} \\ \mathbf{c}_{3} \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{y}}_{1} \\ \overline{\mathbf{y}}_{2} \\ \overline{\mathbf{y}}_{3} \\ \overline{\mathbf{y}}_{4} \end{bmatrix}$$

3.5 Classificação dos Métodos de Solução de Sistemas de Equações Lineares

3.5.1 Métodos Diretos

• São aqueles que conduzem à solução, exata a menos de erros de arredondamento introduzidos pela máquina, após um número finito de passos;

$$A x = b \rightarrow x = A^{-1} b$$

- Pertencem a esta classe todos os métodos estudados no 1º e 2º graus. No entanto, esses métodos não são usados em problemas práticos quando o número de equações é elevado, pois apresentam problemas de desempenho;
- Surge então, a necessidade de utilizar técnicas mais avançadas e eficientes como: *Método de Eliminação de Gauss e Método de Gauss-Jordan*.

3.5.2 Métodos Indiretos (Iterativos)

 São aqueles que se baseiam na construção de sequências de aproximações. A cada passo, os valores calculados anteriormente são utilizados para reforçar a aproximação.

$$A x = b \to x_{k+1} = x_k + d$$

- O resultado obtido é aproximado;
- Geralmente são utilizados os seguintes critérios de parada para as iterações: Limitação no número de iterações e Determinação de uma tolerância para a exatidão da solução;
- Podem não convergir para a solução exata;
- Podem ser inviáveis quando o sistema é muito grande ou mal-condicionado;
- Exemplos de Métodos Iterativos: Métodos de Gauss-Jacobi e de Gauss-Seidel.

3.6 Métodos Diretos

$$Ax = b$$

• Para sistemas lineares possíveis e determinados de dimensão n x n, o vetor solução, x, é dado por:

$$x = A^{-1} b$$

• No entanto, calcular explicitamente a inversa de uma matriz não é aconselhável devido à quantidade de operações envolvidas.

3.6.1 Método da Eliminação de Gauss

- Evita o cálculo da inversa de A;
- A solução usando o Método da Eliminação de Gauss consiste em duas etapas:
 - a) Transformação do sistema original num sistema equivalente usando uma matriz triangular superior (Escalonamento);
 - b) Resolução deste sistema equivalente.

Por questões didáticas, a resolução do sistema equivalente será mostrada antes do escalonamento do sistema.

3.6.1.1 Resolução do Sistema Equivalente

Exemplo:

$$\begin{cases} 3x_1 + 2x_2 + 4x_3 = 1 \\ +\frac{1}{3}x_2 + \frac{2}{3}x_3 = \frac{5}{3} \\ -8x_3 = 0 \end{cases} \qquad \mathbf{x} = \begin{cases} -3 \\ +5 \\ 0 \end{cases}$$

- Tendo o sistema escalonado n x n, torna-se simples a obtenção da solução;
- Calcula-se inicialmente o x₃ pela última equação;
- Depois, utiliza-se o valor de x_3 na 2^a equação para obter o valor de x_2 ;
- Em seguida, faz-se uso dos valores já conhecidos de x₂ e x₃ na 1^a equação para computar x₁.

De forma geral, temos:

$$\begin{cases} a_{11}x_1 & + a_{12}x_2 & + a_{13}x_3 + & \dots & + a_{1n}x_n & = b_1 \\ 0 & a_{22}x_2 & + a_{23}x_3 + & \dots & + a_{2n}x_n & = b_2 \\ 0 & 0 & a_{33}x_3 + & \dots & + a_{3n}x_n & = b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn}x_n & = b_n \end{cases}$$

$$x_n = \frac{b_n}{a_{nn}} \qquad \qquad x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}$$

Algoritmo para resolução do sistema equivalente

$$x_n = b_n/a_{nn}$$
Para $i = (n-1),...,1$

$$s = 0$$
Para $j = (i+1),...,n$

$$s = s + a_{ij}x_j$$

$$x_i = (b_i - s)/a_{ii}$$
Fim

Fim

3.6.1.1Escalonamento

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{x} \\$$

Percorre-se os elementos abaixo da diagonal principal, transformando-os, através de operações elementares, em termos nulos, e garantindo que os elementos que já foram transformados anteriormente não mais sejam modificados.

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}_{n \times n} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}_{n \times 1}$$

$$\Rightarrow \begin{vmatrix} a_{11}^* & a_{12}^* & \dots & a_{1n}^* \\ 0 & a_{22}^* & \dots & a_{2n}^* \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn}^* \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} b_1^* \\ b_2^* \\ \vdots \\ b_n^* \end{bmatrix}_{n \times 1}$$

Operações Elementares

- a) Permutar duas equações do sistema;
- b) Multiplicar uma das equações do sistema por um número real não nulo;

c) Somar a uma das equações do sistema uma outra equação desse sistema multiplicada por um número real;

A aplicação de operações elementares ao sistema em questão garante que o novo sistema será equivalente ao original.

3.6.1.2 Escalonamento sem pivoteamento

Exemplo:

$$\begin{cases} 2x + y + 3z + 4w = 17 \\ x + 4y + 2z + w = 9 \\ 3x + 2y + z + 4w = 20 \\ 2x + 2y + 3z + w = 9 \end{cases}$$

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 1 & 4 & 2 & 1 \\ 3 & 2 & 1 & 4 \\ 2 & 2 & 3 & 1 \end{bmatrix} \qquad b = \begin{cases} 17 \\ 9 \\ 20 \\ 9 \end{cases}$$

Etapa 1:

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 1 & 4 & 2 & 1 \\ 3 & 2 & 1 & 4 \\ 2 & 2 & 3 & 1 \end{bmatrix} \quad b = \begin{cases} 17 \\ 9 \\ 20 \\ 9 \end{cases} \qquad \begin{array}{l} \text{Piv\^{o}} : a_{11} \\ m_{21} = \frac{a_{21}}{a_{11}} \\ m_{31} = \frac{a_{31}}{a_{11}} \\ m_{41} = \frac{a_{41}}{a_{11}} \end{array}$$

$$L_{2} = L_{2} - L_{1} m_{21}$$

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3.5 & 0.5 & -1 \\ 3 & 2 & 1 & 4 \\ 2 & 2 & 3 & 1 \end{bmatrix} \qquad b = \begin{cases} 17 \\ 0.5 \\ 20 \\ 9 \end{cases}$$

$$L_{_3} = L_{_3} - L_{_1} m_{_{31}}$$

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3.5 & 0.5 & -1 \\ 0 & 0.5 & -3.5 & -2 \\ 2 & 2 & 3 & 1 \end{bmatrix} \quad b = \begin{cases} 17 \\ 0.5 \\ -5.5 \\ 9 \end{cases}$$

$$L_4 = L_4 - L_1 m_{41}$$

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3.5 & 0.5 & -1 \\ 0 & 0.5 & -3.5 & -2 \\ 0 & 1 & 0 & -3 \end{bmatrix} \qquad b = \begin{bmatrix} 17 \\ 0.5 \\ -5.5 \\ -8 \end{bmatrix}$$

Etapa 2:

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3.5 & 0.5 & -1 \\ 0 & 0.5 & -3.5 & -2 \\ 0 & 1 & 0 & -3 \end{bmatrix} \quad b = \begin{cases} 17 \\ 0.5 \\ -5.5 \\ -8 \end{cases} \quad \underbrace{\begin{aligned} \text{Piv\^{o}} : a_{22} \\ m_{32} &= \frac{a_{32}}{a_{22}} \end{aligned}}_{m_{42}} \quad \underbrace{\begin{aligned} m_{42} &= \frac{a_{42}}{a_{22}} \\ m_{42} &= \frac{a_{42}}{a_{22}} \end{aligned}}_{m_{42}}$$

$$L_{3}=L_{3}-L_{2}m_{3}$$

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3.5 & 0.5 & -1 \\ 0 & 0 & -3.571 & -1.857 \\ 0 & 1 & 0 & -3 \end{bmatrix} \quad b = \begin{cases} 17 \\ 0.5 \\ -5.571 \\ -8 \end{cases}$$

$$L_{_{4}} = L_{_{4}} - L_{_{2}} m_{_{42}}$$

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3.5 & 0.5 & -1 \\ 0 & 0 & -3.571 & -1.857 \\ 0 & 0 & -0.143 & -2.714 \end{bmatrix} \quad b = \begin{cases} 17 \\ 0.5 \\ -5.571 \\ -8.143 \end{cases}$$

Etapa 3:

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3.5 & 0.5 & -1 \\ 0 & 0 & -3.571 & -1.857 \\ 0 & 0 & \boxed{-0.143} & -2.714 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 0.5 \\ -5.571 \\ -8.143 \end{bmatrix} \quad \underbrace{\mathbf{Piv\^{0}} : a_{33}}_{\mathbf{a_{33}}}$$

$$L_{_{4}}=L_{_{4}}-L_{_{3}}m_{_{43}}$$

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3.5 & 0.5 & -1 \\ 0 & 0 & -3.571 & -1.857 \\ 0 & 0 & 0 & -2.64 \end{bmatrix} \quad b = \begin{cases} 17 \\ 0.5 \\ -5.571 \\ -7.92 \end{cases}$$

Algoritmo para escalonamento do sistema

Para
$$j = 1,...,(n-1)$$

Para $i = (j+1),...,n$
 $m = a_{ij}/a_{jj}$
Para $k = 1,...,n$
 $a_{ik} = a_{ik} - m * a_{jk}$
Fim
 $b_i = b_i - m * b_j$

Fim

Fim

3.6.1.3 Escalonamento com pivoteamento

• Evitar que os pivôs usados no escalonamento sejam nulos.

Exemplo:

$$\begin{cases} 4x + 8y + 2z - w = 3 \\ 10x + 5y + 3z + w = 9 \\ 2x + y + z + 2w = 12 \end{cases}$$

$$A = \begin{bmatrix} 5 & 10 & 1 & -2 \\ 4 & 8 & 2 & -1 \\ 10 & 5 & 3 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix} \quad b = \begin{cases} -5 \\ 3 \\ 9 \\ 12 \end{cases}$$

Etapa 1:

$$A = \begin{bmatrix} 5 & 10 & 1 & -2 \\ 4 & 8 & 2 & -1 \\ 10 & 5 & 3 & 1 \\ 1 & 1 & 2 \end{bmatrix} \quad b = \begin{cases} -5 \\ 3 \\ 9 \\ 12 \end{cases} \quad m_{21} = \frac{a_{21}}{a_{11}} \quad m_{31} = \frac{a_{31}}{a_{11}} \quad m_{41} = \frac{a_{41}}{a_{11}}$$

$$L_{2} = L_{2} - L_{1} m_{21}$$

$$A = \begin{bmatrix} 5 & 10 & 1 & -2 \\ 0 & 0 & 1.2 & 0.6 \\ 10 & 5 & 3 & 1 \\ 2 & -1 & 1 & 2 \end{bmatrix} \quad b = \begin{cases} -5 \\ 7 \\ 9 \\ 12 \end{cases}$$

 $L_3 = L_3 - L_1 m_{31}$

$$A = \begin{bmatrix} 5 & 10 & 1 & -2 \\ 0 & 0 & 1.2 & 0.6 \\ 0 & -15 & 1 & 5 \\ 2 & -1 & 1 & 2 \end{bmatrix} \qquad b = \begin{cases} -5 \\ 7 \\ 19 \\ 12 \end{cases}$$

$$L_{4} = L_{4} - L_{1} m_{41}$$

$$A = \begin{bmatrix} 5 & 10 & 1 & -2 \\ 0 & 0 & 1.2 & 0.6 \\ 0 & -15 & 1 & 5 \\ 0 & 5 & 0.6 & 2.8 \end{bmatrix} \qquad b = \begin{cases} -5 \\ 7 \\ 19 \\ 14 \end{bmatrix}$$

Critério: buscar linha com maior coeficiente em módulo.

Trocar a segunda pela terceira linha:

$$A = \begin{bmatrix} 5 & 10 & 1 & -2 \\ 0 & 0 & 1.2 & 0.6 \\ 0 & -15 & 1 & 5 \\ 0 & -5 & 0.6 & 2.8 \end{bmatrix} \qquad b = \begin{cases} -5 \\ 7 \\ 19 \\ 14 \end{cases}$$

$$\downarrow$$

$$A = \begin{bmatrix} 5 & 10 & 1 & -2 \\ 0 & -15 & 1 & 5 \\ 0 & 0 & 1.2 & 0.6 \\ 0 & -5 & 0.6 & 2.8 \end{bmatrix} \qquad b = \begin{cases} -5 \\ 19 \\ 7 \\ 14 \end{cases}$$

Continuar escalonando ...

Observação:

O pivoteamento pode ser empregado com o objetivo de minimizar os erros de arredondamento e truncamento quando a matriz dos coeficientes A não for diagonalmente predominante. Antes do escalonamento de uma dada coluna, procura-se colocar como pivô o maior elemento em módulo de todos aqueles da diagonal principal para baixo.

Resumindo:

Escalonamento sem pivoteamento

- Repetir da primeira até a penúltima coluna;
- Repetir para as linhas abaixo da diagonal principal;
- Aplicar operação elementar com o objetivo de zerar o elemento da linha corrente abaixo da diagonal principal;
- Alterar linha da matriz dos coeficientes;
- Alterar linha do vetor das constantes.

Escalonamento com pivoteamento

- Repetir da primeira até a penúltima coluna;
- Verificar a necessidade de se fazer o pivoteamento;
- Procurar uma linha adequada;
- No caso de encontrar, fazer a permuta das linhas;
- Verificar a necessidade de se fazer o escalonamento da coluna corrente;
- Repetir para as linhas abaixo da diagonal principal;
- Aplicar operação elementar com o objetivo de zerar o elemento da linha corrente abaixo da diagonal principal;
- Alterar linha da matriz dos coeficientes;
- Alterar linha do vetor das constantes.

3.7 Métodos Iterativos

Geram uma sequência de vetores $\{x\}^k$, a partir de uma aproximação inicial $\{x\}^0$. Sob certas condições essa sequência converge para a solução, caso ela exista.

Seja o sistema linear Ax=b, onde:

- A: matriz dos coeficientes, nxn;
- *b*: vetor de termos constantes, *nx1*;
- x: vetor de incógnitas, nx1.

Esse sistema é convertido, de alguma forma, em um sistema do tipo x = Cx + g, onde:

- *C* é uma matriz *nxn*;
- g é um vetor nx1.

Partindo de uma aproximação inicial x^0 , construímos consecutivamente os vetores:

$$x^1 = Cx^0 + g$$
 $x^2 = Cx^1 + g$ $x^3 = Cx^2 + g$ $x^{k+1} = Cx^k + g$

Costuma-se adotar como critério de parada para os métodos iterativos os seguintes testes:

- x^k seja suficiente próximo de x^{k-1}
 (ou seja, distância entre x^k e x^{k-1} seja menor que uma dada tolerância);
- Número máximo de iterações.

3.7.1 Método de Gauss-Jacobi

Idéia principal:

Cada coordenada do vetor correspondente à nova aproximação é calculada a partir da respectiva equação do sistema, utilizando-se as demais coordenadas do vetor aproximação da iteração anterior.

De forma genérica tem-se o sistema n x n abaixo:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 & \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 & \cdots + a_{2n}x_n = b_2 \\ a_{31}x_1 & a_{32}x_2 + a_{33}x_3 & \cdots + a_{3n}x_n = b_3 \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}x_1 & a_{n2}x_2 & a_{n3}x_3 & \cdots + a_{nn}x_n = b_n \end{cases}$$

onde $\alpha \neq 0$, t = 1, ..., n.

Pode-se então, isolar os termos do vetor de incógnitas x, da seguinte forma:

$$\begin{split} x_1 &= \frac{b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n}{a_{11}} \\ x_2 &= \frac{b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n}{a_{22}} \\ \vdots \\ x_n &= \frac{b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{n(n-1)}x_n}{a_{nn}} \end{split}$$

Desta forma, podemos montar a matriz C e o vetor g:

$$C = \begin{bmatrix} 0 & \frac{-a_{12}}{a_{11}} & \cdots & \frac{-a_{1n}}{a_{11}} \\ \frac{-a_{21}}{a_{22}} & 0 & \cdots & \frac{-a_{2n}}{a_{22}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{-a_{n1}}{a_{nn}} & \frac{-a_{n2}}{a_{nn}} & \cdots & 0 \end{bmatrix}$$

$$g = \begin{cases} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_2} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{cases}$$

Então, pode-se calcular o vetor solução para cada iteração k, como sendo:

$$x^{(k)} = C x^{(k-1)} + g$$

Ou generalizando para os termos x_i do vetor solução de uma iteração k:

$$b_{i} - \sum_{\substack{j=1 \ j \neq i}}^{n} a_{ij} x_{j}^{(k-1)}$$

$$x_{i}^{(k)} = \frac{1}{a_{ii}}, para \ i = 1, ..., n$$

Exemplo:

$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 4 & 2 \\ 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ 5 \end{bmatrix}$$
Chute inicial $\longrightarrow \{x\}^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Calculando a matriz C e o vetor g, obtém-se:

$$C = \begin{bmatrix} 0 & \frac{-1}{3} & \frac{-1}{3} \\ \frac{-1}{4} & 0 & \frac{-2}{4} \\ 0 & \frac{-2}{5} & 0 \end{bmatrix}$$

$$g = \begin{cases} \frac{7}{3} \\ 1 \\ 1 \end{cases}$$

Pode-se então calcular o vetor x para as iterações:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^{(1)} = \begin{bmatrix} 0 & \frac{-1}{3} & \frac{-1}{3} \\ \frac{-1}{4} & 0 & \frac{-2}{4} \\ 0 & \frac{-2}{5} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 7 \\ 3 \\ 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}^{(1)} = \begin{bmatrix} \frac{7}{3} \\ 1 \\ 1 \end{bmatrix}$$

Os resultados obtidos para as iterações estão dispostos na tabela a seguir:

Iteração	{x}
1	2.3333 1.0000 1.0000
2	1.6667 -0.0833 0.6000
3	2.1611 0.2833 1.0333
4	1.8944 -0.0569 0.8867
5	2.0568 0.0831 1.0228
6	1.9647 -0.0256 0.9668
7	2.0196 0.0254 1.0102
8	1.9881 -0.0100 0.9898
•••	
Solução exata	2.0000 0.0000 1.0000

Observa-se que quanto mais iterações forem realizadas, mais próximo estará o vetor x da solução exata do sistema linear.

Algoritmo

Enquanto

- dist > tolerância
- nite < número máximo de iterações.

então:

Fim

```
\begin{aligned} &\text{nite} = \text{nite} + 1 \\ &\text{Para} \quad i = 1, ..., n \\ &\quad s = b_i \\ &\quad \text{Para} \quad j = 1, ..., n \\ &\quad \text{Se} \quad i \text{ for diferente de } j \\ &\quad s = s - a_{ij} * x 0_j \\ &\quad \text{Fim} \\ &\quad \text{Fim} \\ &\quad x_i = s/a_{ii} \\ &\text{Fim} \\ &\quad \text{dist} = \text{norma}(x - x 0) \\ &\quad x 0 = x \end{aligned}
```

3.7.2 Método de Gauss-Seidel

Idéia principal:

Cada coordenada do vetor correspondente à nova aproximação é calculada a partir da respectiva equação do sistema, utilizando-se as coordenadas do vetor aproximação da iteração anterior, quando essas ainda não foram calculadas na iteração corrente, e as coordenadas do vetor aproximação da iteração corrente, no caso contrário.

De forma genérica tem-se o sistema n x n abaixo:

$$\begin{cases} a_{11}x_1 & +a_{12}x_2 & +a_{13}x_3 & \cdots & +a_{1n}x_n & =b_1 \\ a_{21}x_1 & +a_{22}x_2 & +a_{23}x_3 & \cdots & +a_{2n}x_n & =b_2 \\ a_{31}x_1 & a_{32}x_2 & +a_{33}x_3 & \cdots & +a_{3n}x_n & =b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1}x_1 & a_{n2}x_2 & a_{n3}x_3 & \cdots & +a_{nn}x_n & =b_n \end{cases}$$

onde $a \neq 0$, i = 1, ..., n

Isolando x, através da separação pela diagonal, conforme foi feito no método anterior:

$$\begin{cases} x_1 = \frac{1}{a_{11}} (b_1 - a_{12}x_2 - a_{13}x_3 - \dots - a_{1n}x_n) \\ x_2 = \frac{1}{a_{22}} (b_2 - a_{21}x_1 - a_{23}x_3 - \dots - a_{2n}x_n) \\ \vdots \\ x_n = \frac{1}{a_{nn}} (b_n - a_{n1}x_1 - a_{n2}x_2 - \dots - a_{nn}x_n) \end{cases}$$
 Iteração corrente

Numa dada iteração (k), ao calcular-se x_1 , ainda não se tem posse dos demais valores do vetor solução do sistema (x_2 , x_3 , ..., x_n). Por esse motivo, utiliza-se valores do vetor solução da iteração (k-1). Já para os outros elementos de $x^{(k)}$, pode-se fazer uso de valores já calculados na iteração corrente, por exemplo, ao calcular-se x_2 já se conhece previamente o valor de x_1 , e ao calcular-se x_3 , já se conhece os valores de x_1 e x_2 .

Este fato constitui a principal diferença entre os métodos de Gauss-Jacobi e Gauss-Seidel.

Generalizando, para uma iteração (k) qualquer, um elemento i do vetor do vetor solução pode ser representado da seguinte forma:

$$x_{i}^{(k)} = \frac{b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)}}{a_{ii}}, para i = 1, ..., n$$

Exemplo:

$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 4 & 2 \\ 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ 5 \end{bmatrix}$$
Chute inicial $\longrightarrow \{x\}^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Estimativas para a primeira iteração:

$$\begin{cases} x_1^{(1)} = \frac{1}{3} \left(7 - 1x_2^0 - 1x_3^0 \right) = \frac{7}{3} \\ x_2^{(1)} = \frac{1}{4} \left(4 - 1x_1^1 - 2x_3^0 \right) = \frac{5}{12} \\ x_3^{(1)} = \frac{1}{5} \left(5 - 0x_1^1 - 2x_2^1 \right) = \frac{5}{6} \end{cases}$$

Os resultados obtidos para as iterações estão dispostos na tabela a seguir.

Note que para o mesmo sistema linear e para um mesmo chute inicial, o método de Gauss-Seidel tende a convergir para a resposta exata do sistema numa quantidade menor de iterações que o método de Gauss-Jacobi. Isto ocorre porque como vimos, o método de Gauss-Seidel faz uso de elementos do próprio vetor solução da iteração corrente para atualizar sua estimativa.

Iteração	{x}
1	2.3333 0.4167 0.8333
2	1.9167 0.1042 0.9583
3	1.9792 0.0260 0.9896
4	1.9948 0.0065 0.9974
5	1.9987 0.0016 0.9993
6	1.9997 0.0004 0.9998
7	1.9999 0.0001 1.0000
•••	
Solução exata	2.0000 0.0000 1.0000

Observa-se também que quanto mais iterações forem realizadas, mais próximo estará o vetor x da solução exata do sistema linear em questão.

Algoritmo

Enquanto

- dist > tolerância
- nite < número máximo de iterações.

então:

Fim

```
\begin{aligned} &\text{nite} = \text{nite} + 1 \\ &\text{Para} \quad i = 1, ..., n \\ &s_0 = b_i \\ &s_1 = 0; \\ &\text{Para} \quad j = 1, ..., (i\text{-}1) \\ &s_0 = s_0 - a_{ij} * x_j \\ &\text{Fim} \\ &\text{Para} \quad j = (i\text{+}1), ..., n \\ &s_1 = s_1 - a_{ij} * x 0_j \\ &\text{Fim} \\ &x_i = (s_0 + s_1)/a_{ii} \end{aligned}
```

3.7.3 Condição de suficiência para a convergência dos métodos iterativos

Ao se utilizar um método iterativo para solucionar um sistema de equações lineares deve tomar cuidado pois, dependendo do sistema em questão, e da estimativa inicial escolhida, o método pode não convergir para a solução do sistema.

Existem, porém, alguns critérios para verificar a convergência de um método iterativo. Basta atender a pelo menos um deles para que a convergência ocorra independentemente da aproximação inicial escolhida.

Nesses critérios são calculados valores α_s , onde $1 \le s \le n$. A condição de convergência é que o valor máximo de todos os α_s deve ser inferior a 1.

3.7.3.1 Critério das linhas

Os valores de as são calculados conforme a equação abaixo:

3.7.3.2 Critério das colunas

Os valores de α_s são calculados conforme a equação abaixo:

$$\alpha_s = \frac{\left(\sum_{\substack{j=1\\j\neq s}}^{n} |\overline{a}_{js}|\right)}{|\overline{a}_{ss}|}$$

3.7.3.3 Critério de Sassenfeld

Onde o valor de α_1 é calculado da mesma forma que o α_1 do critério das linhas:

$$\alpha_1 = \frac{\left|\overline{a}_{12}\right| + \ldots + \left|\overline{a}_{1n}\right|}{\left|\overline{a}_{11}\right|}$$

E os demais α_s são calculados utilizando os valores já calculados de α_s :

$$\alpha_{s} = \frac{\left|\overline{a}_{s1}\right|\alpha_{1} + \dots + \left|\overline{a}_{ss-1}\right|\alpha_{s-1} + \left|\overline{a}_{ss+1}\right| + \dots + \left|\overline{a}_{1n}\right|}{\left|\overline{a}_{ss}\right|}$$

Exemplo:

Utilizando o critério das linhas, verificar se o sistema com matriz dos coeficientes A abaixo garante condição de convergência para os métodos iterativos.

$$A = \begin{bmatrix} 10 & 2 & 1 \\ 1 & 5 & 1 \\ 2 & 3 & 10 \end{bmatrix}$$

$$a_1 = \frac{2+1}{10} = \frac{3}{10} = 0.3 < 1$$

$$a_2 = \frac{1+1}{5} = \frac{2}{5} = 0.4 < 1$$

$$\alpha_3 = \frac{2+3}{10} = \frac{5}{10} = 0.5 < 1$$

$$\frac{\max_{1 \le s \le 3} \alpha_s = 0.5 < 1}{\text{Garantia de convergência}}$$

Verifica-se então que independentemente do chute inicial para o vetor solução x^0 , ao utilizar um método iterativo para resolver um sistema linear com matriz dos coeficientes igual a apresentada acima, irá se convergir para a solução exata do sistema.

4 INTERPOLAÇÃO

Interpolar uma função f(x) consiste em aproximar essa função por uma outra função p(x) que satisfaça algumas propriedades. Em geral, a interpolação de funções é usada nas seguintes situações:

- São conhecidos valores numéricos da função f(x) em alguns pontos discretos de x e deseja-se obter valores de f(x) em pontos desconhecidos, mas dentro do limite avaliado;
- Quando uma determinada função f(x) possui os operadores de diferenciação e integração muito complexos;
- Na solução numérica de equações diferenciais usando o método das diferenças finitas e o método dos elementos finitos.

Considere *n* pontos distintos (x1,f(x1)), (x2,f(x2)), ..., (xn,f(xn)).

O objetivo é encontrar uma função interpolante p(x), tal que:

$$p(xk) = f(xk), \quad k = 1, ..., n$$

$$p(x1) = f(x1)$$

$$p(x2) = f(x2)$$

$$\vdots$$

$$p(xn) = f(xn)$$

As principais técnicas de interpolação utilizadas atualmente são baseadas em **polinômios** (ou seja, p(x) é uma função polinomial).

O gráfico abaixo representa uma função interpoladora para os pontos (1,1), (2,3), (3,5) e (4,3). Note que a curva intercepta todos os pontos fornecidos.

4.1 Métodos Numéricos para Interpolação

Dados n pontos distintos (x1, f(x1)), (x2, f(x2)), ..., (xn, f(xn)), deseja-se aproximar f(x) por um polinômio p(x) de grau menor ou igual a (n-1).

Suponha que você tenha dois pontos distintos (n=2), então, o melhor polinômio que interpola esses dois pontos será uma reta, ou seja, um polinômio de grau 1. Da mesma forma, dados 3 pontos distintos, o melhor polinômio será uma parábola. Caso você forneça, por exemplo, 3 pontos (n=3) que pertençam a uma reta, o polinômio interpolador ainda sim será terá grau 1, ou seja, grau menor que (n-1).

4.1.1 Método de Vandermonde

Considerando a condição básica para a interpolação:

$$f(xk) = p(xk), \qquad k = 1, ..., n$$

e o fato de que o polinômio interpolador terá, no máximo, grau (n-1), temos que o polinômio interpolador assumirá a seguinte forma:

$$p(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n x^{n-1}$$

Então, obter o polinômio p(x), significa encontrar os coeficientes $a_1, ..., a_n$ de forma que p(xk) = f(xk), para k=1,...,n.

Desse modo:

$$\begin{cases} a_1 + a_2 x_1 + a_3 x_1^2 + \dots + a_n x_1^{n-1} = f(x_1) \\ a_1 + a_2 x_2 + a_3 x_2^2 + \dots + a_n x_2^{n-1} = f(x_2) \\ a_1 + a_2 x_3 + a_3 x_3^2 + \dots + a_n x_3^{n-1} = f(x_3) \\ \vdots \\ a_1 + a_2 x_n + a_3 x_n^2 + \dots + a_n x_n^{n-1} = f(x_n) \end{cases}$$

Obtém um sistema de equações lineares, com n equações e n incógnitas.

Escrevendo o sistema acima na notação matricial, tem-se:

$$A x = b$$

$$\begin{bmatrix} x_1^0 & x_1^1 & x_1^2 & x_1^3 & \dots & x_1^{n-1} \\ x_2^0 & x_2^1 & x_2^2 & x_2^3 & \dots & x_2^{n-1} \\ x_3^0 & x_1^3 & x_3^3 & x_3^3 & \dots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ x_n^0 & x_n^1 & x_n^2 & x_n^3 & \dots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \\ \vdots \\ f(x_n) \end{bmatrix}$$

A matriz A é a chamada matriz de Vandermonde e desde que os valores de x1, x2, ..., xn sejam distintos, o determinante de A é diferente de zero, e então, o sistema apresenta solução única. Então, para encontrar o polinômio interpolador de uma série de n pontos distintos conhecidos, basta encontrar a solução do sistema linear acima, assunto tratado no capítulo anterior.

Exemplo:

Encontrar o polinômio de grau 2 que interpola os pontos da tabela abaixo:

\boldsymbol{x}	f(x)
-1	4
0	1
2	-1

Solução:

$$p(x) = a_1 + a_2 x + a_3 x^2$$

$$\begin{array}{l} p(x_1) = f(x_1) \to a_1 - a_2 + a_3 = 4 \\ p(x_2) = f(x_2) \to a_1 = 1 \\ p(x_3) = f(x_3) \to a_1 + 2a_2 + 4a_3 = -1 \end{array}$$

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & 4 \end{bmatrix}, \qquad b = \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix}$$

Resolvendo o sistema:

$$x = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} \\ -\frac{7}{3} \\ \frac{2}{3} \end{bmatrix} \quad \Rightarrow \quad p(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

** Obs: A matriz dos coeficientes A (Matriz de Vandermonde) pode estar mal condicionada, neste caso, tal método não é recomendado.

Algoritmo:

Para
$$i = 1,...,n$$

Para $j = 1,...,n$
 $Aij = xi^{(j-1)}$
Fim
Fim
 $a = A^{-1} \cdot \{y\}$

4.1.2 Método de Lagrange

Seja p(x) um polinômio com grau (n-1) que interpola f em x1, x2, ..., xn. Então, podemos representar p(x) na forma:

$$p(x) = f(x1)L_1(x) + f(x2)L_2(x) + \dots + f(xn)L_n(x)$$
 ou
$$p(x) = \sum_{i=1}^{n} f(xi)L_i(x)$$

A equação mostrada acima é o chamado Polinômio de Lagrange, onde

$$L_i(x) = \prod_{k=1, k \neq i}^n \frac{x - xk}{xi - xk}$$

Vamos tomar como exemplo um polinômio quadrático (n=3), então:

$$L_1(x) = \prod_{k=1, k \neq 1}^{3} \frac{x - xk}{xi - xk} = \frac{(x - x2)(x - x3)}{(x1 - x2)(x1 - x3)}$$

$$L_2(x) = \prod_{k=1}^{3} \frac{x - xk}{xi - xk} = \frac{(x - x1)(x - x3)}{(x2 - x1)(x2 - x3)}$$

$$L_3(x) = \prod_{k=1, k \neq 3}^{3} \frac{x - xk}{xi - xk} = \frac{(x - x1)(x - x2)}{(x3 - x1)(x3 - x2)}$$

E desse modo:

$$p(x) = f(x1)L_1(x) + f(x2)L_2(x) + f(x3)L_3(x)$$

Exemplo:

Encontre o polinômio de grau 2 que interpole o seguinte conjunto de pontos

	f(x)
-1	4
0	1
2	-1

Solução:

Polinômio adotado de grau 2, então n=3, logo:

$$p(x) = f(x1)L_1(x) + f(x2)L_2(x) + f(x3)L_3(x)$$

$$L_1(x) = \frac{(x-0)(x-2)}{(-1-0)(-1-2)} = \frac{x^2-2x}{3}$$

$$L_2(x) = \frac{(x - (-1))(x - 2)}{(0 - (-1))(0 - 2)} = \frac{x^2 - x - 2}{-2}$$

$$L_3(x) = \frac{(x - (-1))(x - 0)}{(2 - (-1))(2 - 0)} = \frac{x^2 + x}{6}$$

Então, o polinômio interpolador de Lagrange é:

$$p(x) = 4\frac{x^2 - 2x}{3} + 1\frac{-x^2 + x + 2}{2} - 1\frac{x^2 + x}{6}$$

$$p(x) = \frac{8x^2 - 16x - 3x^2 + 3x + 6 - x^2 - x}{6}$$

$$p(x) = \frac{2}{3}x^2 - \frac{7}{3}x + 1$$

Algoritmo:

$$\begin{array}{c} p = 0 \\ Para \quad i = 1,...,n \\ s = 1 \\ Para \quad k = 1,...,n \\ Se \ k \ for \ differente \ de \ i \\ s = s * (x-xk)/(xi-xk) \\ Fim \\ Fim \\ p = p + f(xi)*s \\ \end{array}$$

4.1.3 Método de Newton

A fórmula de Newton é dada por:

$$p(x) = d_1 + d_2(x - x1) + d_3(x - x1)(x - x2) + \cdots + d_n(x - x1)(x - x2) \dots (x - x_{n-1})$$

onde d_k são os operadores diferenças divididas entre os pontos (x1, f(x1)), ..., (xn, f(xn)).

Esses operadores são dados por:

$$d_1 = f[x1] = f(x1)$$

$$d_2 = f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$d_3 = f[x1, x2, x3] = \frac{f[x2, x3] - f[x1, x2]}{x3 - x1} = \frac{\frac{f[x3] - f[x2]}{x3 - x2} - \frac{f[x2] - f[x1]}{x2 - x1}}{x3 - x1}$$

į

$$d_n = f[x1, x2, \dots, x_{n-1}, x_n] = \frac{f[x2, x3, \dots, x_n] - f[x1, x2, \dots, x_{n-1}]}{x_n - x1}$$

Desse modo:

$$p(x) = f(x1) + f(x1,x2)(x-x1) + f[x1,x2,x3](x-x1)(x-x2) + ... + f[x1,x2,...,xn](x-x1)(x-x2)(x-x_{n-1})$$

Exemplo:

Encontrar o polinômio de grau 2 que interpole o seguinte conjunto de pontos:

\boldsymbol{x}	f(x)
-1	4
0	1
2	-1

Solução:

Grau do polinômio = 2, logo n=3 Polinômio adotado:

$$p(x) = f[x1] + f[x1,x2](x-x1) + f[x1,x2,x3](x-x1)(x-x2)$$

Calculando os operadores diferenças dividas:

$$f[x1] = f(x1) = 4$$

$$f[x1, x2] = \frac{f[x2] - f[x1]}{x2 - x1} = \frac{f(x2) - f(x1)}{x2 - x1} = \frac{1 - 4}{0 - (-1)} = -3$$

$$f[x1,x2,x3] = \frac{f[x2,x3] - f[x1,x2]}{x3 - x1} = \frac{\frac{f(x3) - f(x2)}{x3 - x2} - f[x1,x2]}{x3 - x1}$$

$$f[x1,x2,x3] = \frac{\frac{-1-1}{2-0} - (-3)}{2-(-1)} = \frac{2}{3}$$

Então, tem-se o Polinômio de Newton:

$$p(x) = 4 - 3(x - (-1)) + \frac{2}{3}(x - (-1))x = 4 - 3(x + 1) + \frac{2}{3}x(x + 1)$$

$$\rightarrow p(x) = \frac{2}{3}x^2 - \frac{7}{3}x + 1$$

Algoritmo:

$$\begin{array}{ll} D = \text{matriz nula nxn} \\ 1^a \text{ coluna de } D = \{y\} \\ Para & j = 2,...,n \\ & Para & i = j,...,n \\ & di,j = (di,j-1 - di-1,j-1)/(xi - xi-j+1) \\ & Fim \\ Fim \\ p = 0 \\ Para & i = 1,...,n \\ & s = 1 \\ & Para & j = 1,...,(i-1) \\ & s = s * (x-xj) \\ & Fim \\ & p = p + s*di,i \end{array}$$

Fim

** Obs: Note que para cada método numérico de interpolação apresentado utilizou-se o mesmo exemplo e como resposta para todos os casos foi obtido o mesmo polinômio interpolador.

5 AJUSTE

Dado um conjunto de pontos, no ajuste ou aproximação tenta-se encontrar uma função p(x) que melhor aproxime esses pontos. Aqui, não existe a necessidade da função passar pelos pontos conhecidos.

Em geral, usa-se aproximação de funções nas seguintes situações:

- Quando se desejar extrapolar ou fazer previsões em regiões fora do intervalo considerado;
- Quando os dados tabelados são resultados de experimentos, onde erros na obtenção destes resultados podem influenciar a sua qualidade.

Considere uma tabela de m pontos (x1, f(x1)), (x2, f(x2)), ..., (xm, f(xn)) com x1, x2, ..., xm pertencentes a um intervalo [a,b]. Deseja-se encontrar uma função q(x) = a1g1(x) + a2g2(x) + ... + angn(x) que melhor ajuste esses pontos. Ou seja, determinar a função q(x) que mais se aproxime de f(x).

Diz-se que este é um modelo matemático linear porque os coeficientes a determinar aparecem linearmente, embora as funções gI(x), g2(x), ..., gn(x) possam ser funções não lineares de x como, por exemplo, gI(x) = ex, g2(x) = I + x2, etc.

Problema: Como escolher as funções g1(x), g2(x), ..., gn(x)?

A escolha das funções pode ser feita observando o gráfico dos pontos tabelados ou baseando-se em fundamentos teóricos dos experimentos que forneceu a tabela.

Exemplo:

Experiência onde foram medidos valores de corrente elétrica que passa por uma resistência submetida a várias tensões.

5.1 Método dos Mínimos Quadrados

O Método dos Mínimos Quadrados é um método bastante utilizado para ajustar uma determinada quantidade de pontos. Sua dedução será mostrada a seguir.

Considere dados m pontos (x1, f(x1)), (x2, f(x2)), ..., (xm, f(xm)) e as n funções g1(x), g2(x), ..., gn(x) escolhidas de alguma forma. Considere que o número de pontos tabelados m é sempre maior ou igual ao número de funções escolhidas n (ou ao número de coeficientes a determinar ai).

O objetivo é encontrar os coeficientes a1, a2, ..., an tais que a função q(x) = a1g1(x) + a2g2(x) + ... + angn(x) se aproxime ao máximo de f(x). Seja dk = f(xk) - q(xk) o desvio em xk. Um conceito de proximidade é que dk seja mínimo para todo k = 1, 2, ..., m.

O Método dos Mínimos Quadrados consiste em escolher os *ai's* de tal forma que a soma dos quadrados dos desvios seja mínima.

$$S = \sum_{k=1}^{m} d_k^2 = \sum_{k=1}^{m} (f(xk) - q(xk))^2$$

Usando cálculo diferencial, sabe-se que para encontrar um ponto de mínimo de F(a1, a2, ..., an), é necessário achar inicialmente os pontos críticos (ou seja, todos os ai's).

$$\frac{\delta S}{\delta a_i} = 0$$

5.1.1 Ajuste Linear

Considere a função de ajuste dada por:

$$q(x) = a_1 + a_2 x$$

onde a₁ e a₂ são os coeficientes a serem determinados pelo método dos mínimos quadrados.

$$S = \sum_{k=1}^{m} d_k^2 = \sum_{k=1}^{m} (f(xk) - q(xk))^2$$

$$S = (f(x1) - q(x1))^{2} + (f(x2) - q(x2))^{2} + ... + (f(xm) - q(xm))^{2}$$

$$S = (f(x1) - (a_1 + a_2x1))^2 + \dots + (f(xm) - (a_1 + a_2xm))^2$$

A condição de minimização é satisfeita se:

$$\frac{\delta S}{\delta a_1} = \frac{\delta S}{\delta a_2} = 0$$

$$Para \frac{\delta S}{\delta a_1} = 0:$$

$$2(f(x1) - a_1 - a_2x1)(-1) + 2(f(x2) - a_1 - a_2x2)(-1) + \dots + 2(f(xm) - a_1 - a_2xm)(-1) = 0$$

$$\rightarrow ma_1 + a_2 \sum_{k=1}^{m} xk = \sum_{k=1}^{m} f(xk)$$

$$Para \frac{\delta S}{\delta a_2} = 0:$$

$$2(f(x1) - a_1 - a_2x1)(-x1) + 2(f(x2) - a_1 - a_2x2)(-x2) + \dots + 2(f(xm) - a_1 - a_2xm)(-xm) = 0$$

$$\to a_1 \sum_{k=1}^{m} xk + a_2 \sum_{k=1}^{m} xk^2 = \sum_{k=1}^{m} xk f(xk)$$

Com isso, obtém um sistema de equações lineares:

$$\begin{cases} ma_1 + a_2 \sum_{k=1}^{m} xk = \sum_{k=1}^{m} f(xk) \\ a_1 \sum_{k=1}^{m} xk + a_2 \sum_{k=1}^{m} xk^2 = \sum_{k=1}^{m} xk f(xk) \end{cases}$$

Também podendo ser representado na forma matricial:

$$\begin{bmatrix} m & \sum_{k=1}^{m} xk \\ \sum_{k=1}^{m} xk & \sum_{k=1}^{m} xk^2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{m} f(xk) \\ \sum_{k=1}^{m} xk & f(xk) \end{bmatrix}$$

Exemplo:

Encontrar a melhor reta que ajusta os valores da tabela abaixo:

X	0,00	0,25	0,5	0,75	1,00
f(x)	1,0000	1,2840	1,6487	2,1170	2,7183

$$\sum_{\substack{k=1\\m}}^{5} xk = 0 + 0.25 + 0.5 + 0.75 + 1 = 2.5$$

$$\sum_{\substack{k=1\\m}}^{5} xk^2 = 0^2 + 0.25^2 + 0.5^2 + 0.75^2 + 1^2 = 1.875$$

$$\sum_{\substack{k=1\\m}}^{5} f(xk) = 1 + 1.284 + 1.6487 + 2.117 + 2.7183 = 8.768$$

$$\sum_{\substack{k=1\\m}}^{5} xk f(xk) = 0 * 1 + 0.25 * 1.284 + 0.5 * 1.6487 + 0.75 * 2.117 + 1 * 2.7183$$

$$= 5.4514$$

$$\begin{bmatrix} 5 & 2.5 \\ 2.5 & 1.875 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 8.768 \\ 5.4514 \end{bmatrix} \rightarrow \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.8997 \\ 1.7078 \end{bmatrix}$$

Logo, a função de ajuste é dada por:

$$q(x) = 0.8997 + 1.7078x$$

e seu gráfico é mostrado abaixo.

5.1.2 Ajuste Polinomial

O processo usado acima para cálculo da função para ajuste linear pode ser estendido para ajuste polinomial. Assim, uma função polinomial de grau (*n-1*) é dada por:

$$q(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_n^{n-1}$$

onde os coeficientes a_i podem ser obtidos através da expansão do sistema utilizado no ajuste linear através do cálculo de

$$\frac{\delta S}{\delta a_i} = 0$$

agora para i = 1,...,n.

Essa expansão irá resultar no seguinte sistema de equações (n equações, n incógnitas):

$$\begin{cases} ma_1 + a_2 \sum_{k=1}^{m} xk + a_3 \sum_{k=1}^{m} xk^2 + \dots + a_n \sum_{k=1}^{m} xk^{n-1} = \sum_{k=1}^{m} f(xk) \\ a_1 \sum_{k=1}^{m} xk + a_2 \sum_{k=1}^{m} xk^2 + a_3 \sum_{k=1}^{m} xk^3 + \dots + a_n \sum_{k=1}^{m} xk^n = \sum_{k=1}^{m} xk f(xk) \\ a_1 \sum_{k=1}^{m} xk^2 + a_2 \sum_{k=1}^{m} xk^3 + a_3 \sum_{k=1}^{m} xk^4 + \dots + a_n \sum_{k=1}^{m} xk^{n+1} = \sum_{k=1}^{m} xk^2 f(xk) \\ \vdots \\ a_1 \sum_{k=1}^{m} xk^{n-1} + a_2 \sum_{k=1}^{m} xk^n + a_3 \sum_{k=1}^{m} xk^{n+1} + \dots + a_n \sum_{k=1}^{m} xk^{2(n-1)} = \sum_{k=1}^{m} xk^{n-1} f(xk) \end{cases}$$

ou em notação matricial:

$$A a = b$$

$$\begin{bmatrix} m & \sum_{k=1}^{m} xk & \sum_{k=1}^{m} xk^{2} & \dots & \sum_{k=1}^{m} xk^{n-1} \\ \sum_{k=1}^{m} xk & \sum_{k=1}^{m} xk^{2} & \sum_{k=1}^{m} xk^{3} & \dots & \sum_{k=1}^{m} xk^{n} \\ \sum_{k=1}^{m} xk^{2} & \sum_{k=1}^{m} xk^{3} & \sum_{k=1}^{m} xk^{4} & \dots & \sum_{k=1}^{m} xk^{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{m} xk^{n-1} & \sum_{k=1}^{m} xk^{n} & \sum_{k=1}^{m} xk^{n+1} & \dots & \sum_{k=1}^{m} xk^{2(n-1)} \end{bmatrix}^{a_{1}} = \begin{bmatrix} \sum_{k=1}^{m} f(xk) \\ \sum_{k=1}^{m} xk f(xk) \\ \sum_{k=1}^{m} xk f(xk) \\ \sum_{k=1}^{m} xk^{2} f(xk) \\ \vdots \\ \sum_{k=1}^{m} xk^{n-1} f(xk) \end{bmatrix}$$

Note que a matriz A é simétrica, ou seja, $A = A^{T}$.

Exemplo:

Encontrar a melhor parábola que ajusta os valores da tabela abaixo:

X	0,00	0,25	0,5	0,75	1,00
f(x)	1,0000	1,2840	1,6487	2,1170	2,7183

Polinômio adotado: (n=3)

$$q(x) = a_1 + a_2 x + a_3 x^2$$

Calculando os termos da matriz A e do vetor b:

$$\sum_{k=1}^{5} xk = 0 + 0.25 + 0.5 + 0.75 + 1 = 2.5$$

$$\sum_{k=1}^{m} xk^2 = 0^2 + 0.25^2 + 0.5^2 + 0.75^2 + 1^2 = 1.875$$

$$\sum_{k=1}^{m} xk^3 = 0^3 + 0.25^3 + 0.5^3 + 0.75^3 + 1^3 = 1.5625$$

$$\sum_{k=1}^{m} xk^4 = 0^4 + 0.25^4 + 0.5^4 + 0.75^4 + 1^4 = 1.3828$$

$$\sum_{k=1}^{m} f(xk) = 1 + 1.284 + 1.6487 + 2.117 + 2.7183 = 8.768$$

$$\sum_{k=1}^{m} xk f(xk) = 0 * 1 + 0.25 * 1.284 + 0.5 * 1.6487 + 0.75 * 2.117 + 1 * 2.7183 = 5.4514$$

$$\sum_{k=1}^{m} xk^2 f(xk) = 0^2 * 1 + 0.25^2 * 1.284 + 0.5^2 * 1.6487 + 0.75^2 * 2.117 + 1^2 * 2.7183 = 4.4015$$

Montando o sistema linear, encontra-se o seguinte sistema matricial:

$$\begin{bmatrix} 5 & 2,5 & 1,875 \\ 2,5 & 1,875 & 1,5625 \\ 1,875 & 1,5625 & 1,3828 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 8,768 \\ 5,4514 \\ 4,4015 \end{bmatrix}$$

Resolvendo o sistema acima, encontra-se a seguinte solução para o problema:

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1,0051 \\ 0,8647 \\ 0.8432 \end{bmatrix}$$

Ou seja, a parábola que melhor ajusta os pontos fornecidos tem equação:

$$q(x) = 1,0051 + 0,8647x + 0,8432x^2$$

5.1.3 Linearização

Algumas funções de duas constantes podem ser linearizadas antes da aplicação do método dos mínimos quadrados, com o objetivo de obter o sistema de equações visto anteriormente. O procedimento varia de acordo com o tipo de função:

5.1.3.1 Função Exponencial

$$y = \alpha e^{bx}$$

Aplicando logaritmo em ambos os lados, tem-se:

$$\ln y = \ln(a e^{bx}) = \ln(a) + bx$$

Então, se fizermos:

$$y' = \ln y$$
 ; $\alpha_1 = \ln(\alpha)$; $\alpha_2 = b$

Encontra-se a seguinte expressão:

$$y' = \alpha_1 + \alpha_2 x$$

que nada mais é senão uma reta. Daí o nome linearização.

5.1.3.2 Função Logarítmica

$$y = a \ln(bx)$$

A função pode ser expandida para:

$$y = a \ln(b) + a \ln(x)$$

Logo, se fizermos:

$$y' = y$$
; $x' = \ln(x)$; $a_1 = a \ln(b)$; $a_2 = a$

encontramos a linearização:

$$y' = a_1 + a_2 x'$$

5.1.3.3 Função Potencial

$$y = \alpha x^b$$

Aplicando logaritmo em ambos os lados:

$$\ln y = \ln(a x^b) = \ln(a) + \ln(x^b) = \ln(a) + b \ln(x)$$

Com as seguintes hipóteses:

$$y' = \ln(y)$$
 ; $x' = \ln(x)$; $a_1 = \ln(a)$; $a_2 = b$

encontra-se a expressão:

$$y' = a_1 + a_2 x'$$

5.1.3.4 Função Hiperbólica

$$y = \alpha + \frac{b}{x}$$

Fazendo:

$$y' = y$$
 ; $x' = \frac{1}{x}$; $a_1 = a$; $a_2 = b$

Tem-se também:

$$y' = a_1 + a_2 x'$$

Exemplo:

Encontrar a melhor função que ajusta os valores da tabela abaixo:

_ X _	-1	-0,7	-0,4	-0,1	0,2	0,5	0,8	1,0
y	36,547	17,264	8,155	3,852	1,82	0,86	0,406	0,246

Sugestão: Utilizar uma função exponencial.

Solução:

Como vamos ajustar os pontos por uma função exponencial precisamos fazer a seguinte adaptação:

$$y' = \ln y$$

Ou seja, a coordenada y de cada ponto deverá ser substituída por seu logaritmo, logo:

y'	3,5986	2,8486	2,0986	1,3486	0,5988	-0,1508	-0,9014	-1,4024
-----------	--------	--------	--------	--------	--------	---------	---------	---------

Então faz-se um ajuste linear dos pontos de abscissa x e ordenada y', obtendo-se os seguintes valores para os coeficientes da reta:

$$\begin{cases} a_1 = 1,0986 \\ a_2 = -2,5002 \end{cases}$$

Para adaptar esses valores, coeficientes da reta, para a função exponencial, ainda basta fazer as seguintes adaptações:

$$a_1 = \ln(a) \quad ; \quad a_2 = b$$

Logo,
$$a = e^{a_1}$$
; $b = a_2$

E então, calcula-se os valores de a e b:

$$a = e^{1,0986} = 3,00$$

$$b = -2,5002$$

Então, a função exponencial que melhor ajusta os pontos fornecidos no exemplo é:

$$q(x) = 3.00 e^{-2.5002 x}$$

5.1.4 Qualidade do Ajuste

Uma forma de avaliar a qualidade do ajuste é através do coeficiente de correlação de Pearson r. Este coeficiente pode ser calculado pela seguinte expressão:

$$r = \frac{\sum_{i=1}^{m} [(y_i - \bar{y}) \cdot (q_i - \bar{q})]}{\sqrt{\sum_{i=1}^{m} (y_i - \bar{y})} \cdot \sqrt{\sum_{i=1}^{m} (q_i - \bar{q})}}$$

onde,

$$\bar{y} = \frac{1}{m} \sum_{i=1}^{m} y_i \quad ; \quad \bar{q} = \frac{1}{m} \sum_{i=1}^{m} q_i$$

Este coeficiente, assume apenas valores entre -1 e 1.

- r= 1, significa uma correlação perfeita positiva entre as duas variáveis;
- r=-1, significa uma correlação negativa perfeita entre as duas variáveis, isto é, se uma aumenta, a outra sempre diminui;

• r= 0, significa que as duas variáveis não dependem linearmente uma da outra. No entanto, pode existir uma outra dependência que seja "não linear". Assim, o resultado r=0 deve ser investigado por outros meios.

Algoritmo

```
Verifica tipo_de_ajuste;
        Caso tipo de ajuste seja Exponencial
               Para i = 1,...,m
                       yi = ln Yi
               Fim
               Fazer Ajuste Linear com x,y retornando coeficientes s1 e s2
               a = e^{s1}
               b = s2
       Caso tipo de ajuste seja Logarítmico
               Para i = 1,...,m
                       xi = ln xi
               Fim
               Fazer Ajuste Linear com x,y retornando coeficientes s1 e s2
               b = e^{s1} / a
       Caso tipo_de_ajuste seja Potencial
               Para i = 1,...,m
                       yi = ln yi
                       xi = \ln xi
               Fim
               Fazer Ajuste Linear com x,y retornando coeficientes s1 e s2
               a = e^{s1}
               b=s2
        Caso tipo de ajuste seja Hiperbólico
               Para i = 1,...,m
                       xi = 1/xi
               Fim
               Fazer Ajuste Linear com x,y retornando coeficientes s1 e s2
               a = s1
               b = s2
        Caso tipo de ajuste seja Polinomial (polinômio de grau n-1)
               Para i = 1,...,n
                        Para j = i,...,n
                                Aij = 0
                               Para k = 1,...,m
                                       Aij = Aij + xk^{(i+j-2)}
                               Fim
                                Aji = Aij
```

$$Fim \\ bi = 0 \\ Para \ k = 1,...,m \\ bi = bi + yk*xk^{(i-1)} \\ Fim \\ Fim \\ s = (A^{-1}) \cdot b$$

6 SISTEMA DE EQUAÇÕES NÃO LINEARES

Dada uma função não linear

$$F: D \subset \mathbb{R}^n \to \mathbb{R}^n, \quad F = (f_1, f_2, ..., f_n)^T$$

o objetivo é encontrar as soluções para

$$F(X) = 0$$

ou seja,

$$\begin{cases} f_1(x1, x2, ..., xn) = 0 \\ f_2(x1, x2, ..., xn) = 0 \\ \vdots \\ f_n(x1, x2, ..., xn) = 0 \end{cases}$$

Por exemplo:

$$\begin{cases} f_1(x1,x2) = x1^2 + x2^2 - 2 = 0\\ f_2(x1,x2) = x1^2 + \frac{x2^2}{9} - 1 = 0 \end{cases}$$

Este sistema não linear admite quatro soluções, representadas pelos pontos onde as curvas se interceptam.

6.1 Notação Utilizada

$$X = \begin{bmatrix} x1 \\ x2 \\ \vdots \\ xn \end{bmatrix} \qquad e \qquad F(X) = \begin{bmatrix} f_1(X) \\ f_2(X) \\ \vdots \\ f_n(X) \end{bmatrix}$$

Cada função $f_i(X)$ é uma função não linear em em X e portanto F(X) também é uma função não linear em X.

Para sistemas lineares, tínhamos:

$$F(X) = AX - b, A \in \mathbb{R}^{n \times n}$$

6.2 Considerações

- F(X) tem derivadas contínuas no domínio;
- Existe pelo menos um ponto $X^* \in D$, tal que $F(X^*) = 0$.

O vetor das derivadas parciais da função $f_i(X)$ é denominado vetor gradiente de $f_i(X)$ e é denotado por:

$$\nabla f_i(X) = \begin{pmatrix} \frac{\partial f_i(X)}{\partial x 1} & \frac{\partial f_i(X)}{\partial x 2} & \dots & \frac{\partial f_i(X)}{\partial x n} \end{pmatrix}^T$$

A matriz das derivadas parciais de F(X) é chamada *matriz Jacobiana* J(X):

$$J(X) = \begin{bmatrix} \nabla f_1(X)^T \\ \nabla f_2(X)^T \\ \vdots \\ \nabla f_n(X)^T \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1(X)}{\partial x 1} & \frac{\partial f_1(X)}{\partial x 2} & \dots & \frac{\partial f_1(X)}{\partial x n} \\ \frac{\partial f_2(X)}{\partial x 1} & \frac{\partial f_2(X)}{\partial x 2} & \dots & \frac{\partial f_2(X)}{\partial x n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n(X)}{\partial x 1} & \frac{\partial f_n(X)}{\partial x 2} & \dots & \frac{\partial f_n(X)}{\partial x n} \end{bmatrix}$$

Exemplo:

Determinar a matriz Jacobiana do sistema não linear abaixo:

$$F(X) = \begin{cases} x1^3 - 3x1x2^2 + 1 = 0\\ 3x1^2x2 - x2^3 = 0 \end{cases}$$

$$J(X) = \begin{bmatrix} 3x1^2 - 3x2^2 & -6x1x2 \\ 6x1x2 & 3x1^2 - 3x2^2 \end{bmatrix}$$

6.3 Características dos Métodos para Resolução dos Sistemas de Equações não Lineares

• Iteratividade

A partir de um ponto inicial X^0 , geram sequências X^K . Na situação de convergência, X^* é uma das soluções do sistema quando:

$$\lim_{k\to\infty} X^K = X^*$$

- Existência de critérios de convergência
 - Verificar se $F(X^{\mathbb{K}})$ tem módulo pequeno. Ou seja:

$$||F(X^K)|| < \varepsilon$$

• Verificar se $\|X^{K+1} - X^K\|$ está próximo de zero. Ou seja:

$$\|X^{K+1} - X^K\| < \varepsilon$$

• Limitar o número de iterações K por um número máximo de iterações.

6.4 Métodos Numéricos

Veremos aqui basicamente três tipos de métodos numéricos para a resolução de sistemas de equações não lineares. Os métodos serão descritos e caracterizados a seguir.

6.4.1 Método de Newton-Raphson

Este é o método mais amplamente utilizado para resolver sistemas de equações lineares. O método combina duas idéias básicas comuns nas aproximações numéricas:

• Linearização

Procura-se substituir, numa certa vizinhança, um problema complicado por sua aproximação linear. Essa aproximação pode ser obtida, por exemplo, tomando-se os primeiros termos de uma expansão usando Série de Taylor.

• Iteração

Devido à repetição do procedimento, até que se garanta a convergência para a solução do sistema ou o fim desejado.

6.4.1.1 Caso Escalar

Para ilustrar mais facilmente o uso do método de Newton para a solução de sistemas de equações não lineares, considere um sistema com uma incógnita e uma única equação:

$$f(x) = 0$$

Expandindo essa equação usando série de Taylor próximo a um ponto inicial (x1,f(x1)) e tomando-se apenas os primeiros termos desta expansão (linearização), tem-se:

$$f(x) = f(x1) + f'(x1) \cdot (x - x1)$$

onde f'(x1) é a primeira derivada de f em x1.

Igualando a equação anterior a zero e desenvolvendo-a, tem-se:

$$f(x) = 0 \rightarrow f(x1) + f'(x1).(x - x1) = 0$$

$$x - x1 = -\frac{f(x1)}{f'(x1)} \rightarrow x = x1 - \frac{f(x1)}{f'(x1)}$$

Pensando no processo iterativo:

$$x^{K+1} = x^K - \frac{f(x^K)}{f'(x^K)}$$

Graficamente, temos:

Tomando a tangente à curva em x1, tem-se que:

$$\tan \alpha = \frac{f(x1)}{x1-x} \rightarrow \tan \alpha = f'(x1) \rightarrow f'(x1) = \frac{f(x1)}{x1-x} \rightarrow x = x1 - \frac{f(x1)}{f'(x1)}$$

E para uma iteração k qualquer:

$$x^{K+1} = x^K - \frac{f(x^K)}{f'(x^K)}$$

6.4.1.2 Caso Vetorial

Considere agora o sistema mostrado inicialmente.

$$\begin{cases} f_1(x1, x2, ..., xn) = 0 \\ f_2(x1, x2, ..., xn) = 0 \\ \vdots \\ f_n(x1, x2, ..., xn) = 0 \end{cases} \quad ou \quad \begin{cases} f_1(X) = 0 \\ f_2(X) = 0 \\ \vdots \\ f_n(X) = 0 \end{cases}$$

Usando o mesmo raciocínio do caso escalar, tem-se que:

$$\begin{cases} f_1(X) = f_1(X^1) + (x1 - x1^1).\frac{\partial f_1(X^1)}{\partial x1} + \dots + (xn - xn^1).\frac{\partial f_1(X^1)}{\partial xn} = 0 \\ f_2(X) = f_2(X^1) + (x1 - x1^1).\frac{\partial f_2(X^1)}{\partial x1} + \dots + (xn - xn^1).\frac{\partial f_2(X^1)}{\partial xn} = 0 \\ \vdots \\ f_n(X) = f_n(X^1) + (x1 - x1^1).\frac{\partial f_n(X^1)}{\partial x1} + \dots + (xn - xn^1).\frac{\partial f_n(X^1)}{\partial xn} = 0 \end{cases}$$

onde o índice superior 1 no vetor X indica a iteração:

$$X^1 = [x_1^1 \quad x_2^1 \quad \dots \quad x_n^1]^T$$

Rearranjando o sistema, colocando-o na forma matricial, tem-se:

$$\begin{bmatrix} f_1(X) \\ f_2(X) \\ \vdots \\ f_n(X) \end{bmatrix} = \begin{bmatrix} f_1(X^1) \\ f_2(X^1) \\ \vdots \\ f_n(X^1) \end{bmatrix} + \begin{bmatrix} \frac{\partial f_1(X^1)}{\partial x 1} & \dots & \frac{\partial f_1(X^1)}{\partial x n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n(X^1)}{\partial x 1} & \dots & \frac{\partial f_n(X^1)}{\partial x n} \end{bmatrix} \begin{bmatrix} x 1 - x 1^1 \\ x 2 - x 2^1 \\ \vdots \\ x n - x n^1 \end{bmatrix} = 0$$

→ Matriz Jacobiana

Reescrevendo,

$$[J].\{X-X^1\}+\{f(X^1)\}=0 \rightarrow [J].\{X-X^1\}=-\{f(X^1)\}$$

Multiplicando a equação acima pelo inverso da matriz Jacobiana, tem-se:

$$[J]^{-1} [J] \{X - X^1\} = -[J]^{-1} \{f(X^1)\} \rightarrow \{X - X^1\} = -[J]^{-1} \{f(X^1)\}$$

Generalizando para uma iteração k qualquer, temos:

$${X^{k+1}} = {X^k} - [J]^{-1} \cdot {f(X^k)}$$

Porém, como o processo de inversão é muito caro computacionalmente, opta-se por resolver o sistema de equações lineares abaixo para obter a sua solução.

$$[J]\{X^{k+1} - X^k\} = -\{f(X^k)\}$$

Exemplo:

Aplicar o método de Newton à resolução do sistema não linear F(X) = 0, onde:

$$F(X) = \begin{bmatrix} x1 + x2 - 3 \\ x1^2 + x2^2 - 9 \end{bmatrix}$$

considerando tolerância $\varepsilon = 10^{-4}$, número máximo de iterações k(max) = 2 e chute inicial $X^1 = \begin{bmatrix} 1 & 5 \end{bmatrix}^T$.

Solução:

Para k = 1 (Primeira iteração)

$$F(X^1) = \begin{bmatrix} 3 & 17 \end{bmatrix}^T \rightarrow \|F(X^1)\| = 17.2627 > \varepsilon \; ; \qquad J(X^1) = \begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix} \Delta X^1 = -\begin{bmatrix} 3 \\ 17 \end{bmatrix} \quad \rightarrow \quad \Delta X^1 = \begin{bmatrix} -1,625 \\ -1,375 \end{bmatrix} \quad \therefore \quad X^2 = X^1 + \Delta X^1$$

$$X^2 = \begin{bmatrix} -0.625 \\ 3.625 \end{bmatrix}$$

Para k = 2 (Segunda iteração)

$$F(X^{2}) = \begin{bmatrix} 0 & 4.5313 \end{bmatrix}^{T} \rightarrow \|F(X^{2})\| = 4.5313 > \varepsilon \quad ; \quad J(X^{2}) = \begin{bmatrix} 1 & 1 \\ -1.25 & 7.25 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ -1.25 & 7.25 \end{bmatrix} \Delta X^{2} = -\begin{bmatrix} 0 \\ 4.5313 \end{bmatrix} \rightarrow \Delta X^{2} = \begin{bmatrix} 0.5331 \\ -0.5331 \end{bmatrix} \quad \therefore \quad X^{3} = X^{2} + \Delta X^{2}$$

$$X^{2} = \begin{bmatrix} -0.0919 \\ 3.0919 \end{bmatrix}$$

Solução exata: $X^* = \begin{bmatrix} 3 & 0 \end{bmatrix}^T$ ou $X^* = \begin{bmatrix} 0 & 3 \end{bmatrix}^T$ Algoritmo:

Enquanto $(||F(X^k)|| \le \varepsilon)$ e $(k \le k(\max))$

$$k = k + 1$$

Calcular $F(X^K)$ e $J(X^K)$
 $Dx = -[J]^{-1} \cdot \{f(X^K)\}$
 $X^{K+1} = X^K + Dx$

Fim

6.4.2 Métodos Quasi-Newton

O método de Newton apresenta três características importantes que influenciam na velocidade de convergência:

- Escolha do ponto inicial (chute inicial);
- Cálculo do Jacobiano (derivadas);
- Solução do Sistema Linear.

Vários métodos encontrados na literatura apresentam alternativas para o cálculo do Jacobiano, tornando-os úteis para a solução dos sistemas de equações não lineares. Esses métodos são conhecidos como Métodos *Quasi-Newton*.

Entre esses métodos estão o Método de *Newton-Raphson modificado* e o *Método da Secante*, que serão descritos a seguir.

6.4.2.1 Método de Newton-Raphson Modificado

Este método consiste em tomar, em cada iteração k, a mesma matriz Jacobiana computada no passo inicial. Desse modo,

$$\{X^{K+1} - X^K\} = -[J(X^1)]^{-1} \cdot \{f(X^K)\}$$

Apesar da redução do custo computacional, este método pode ser mais sensível à convergência, ou seja, o número de iterações necessárias geralmente é maior que quando se usa o método de Newton-Raphson.

Exemplo:

Aplicar o método de Newton Modificado à resolução do sistema não linear F(X) = 0, onde:

$$F(X) = \begin{bmatrix} x1 + x2 - 3 \\ x1^2 + x2^2 - 9 \end{bmatrix}$$

considerando tolerância $\varepsilon = 10^{-4}$, número máximo de iterações k(max) = 2 e chute inicial $X^1 = \begin{bmatrix} 1 & 5 \end{bmatrix}^T$.

$$J(X^1) = \begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix}$$

Para k = 1 (Primeira iteração)

$$F(X^1) = [3 \ 17]^T \rightarrow ||F(X^1)|| = 17.2627 > \varepsilon$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix} \Delta X^1 = -\begin{bmatrix} 3 \\ 17 \end{bmatrix} \quad \rightarrow \quad \Delta X^1 = \begin{bmatrix} -1,625 \\ -1,375 \end{bmatrix} \quad \therefore \quad X^2 = X^1 + \Delta X^1$$

$$X^2 = \begin{bmatrix} -0.625 \\ 3.625 \end{bmatrix}$$

Para k = 2 (Segunda iteração)

$$F(X^2) = \begin{bmatrix} 0 & 4,5313 \end{bmatrix}^T \rightarrow \|F(X^2)\| = 4,5313 > \varepsilon$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix} \Delta X^2 = -\begin{bmatrix} 0 \\ 4,5313 \end{bmatrix} \quad \rightarrow \qquad \Delta X^1 = \begin{bmatrix} 0,5664 \\ -0,5664 \end{bmatrix} \qquad \therefore \qquad X^2 = X^1 + \Delta X^1$$

$$X^2 = \begin{bmatrix} -0.0586 \\ 3.0586 \end{bmatrix}$$

6.4.2.2 Método Secante

Este método consiste em calcular as derivadas da matriz Jacobiana de forma aproximada:

$$\frac{\partial f_i}{\partial x_j} \sim \frac{f_i(x_1, x_2, \dots, x_j + h, \dots, x_n) - f_i(x_1, x_2, \dots, x_j, \dots, x_n)}{h}$$

Para o caso escalar, tem-se graficamente:

Por semelhança de triângulos:

$$\frac{x2 - x}{f(x2)} = \frac{x1 - x}{f(x1)} \to x = \frac{f(x2).x1 - f(x1).x2}{f(x2) - f(x1)}$$

Estendendo para uma iteração qualquer k:

$$x^{K+1} = \frac{f(x^K).x^{K-1} - f(x^{K-1}).x^K}{f(x^K) - f(x^{K-1})}$$

ou ainda, utilizando expansão por série de Taylor:

$$x^{K+1} = x^K - \frac{f(x^K)}{\frac{f(x^K) - f(x^{K-1})}{x^K - x^{K-1}}}$$

Note que a equação acima é bastante semelhante a de Newton Raphson:

$$X^{K+1} = X^K - [J]^{-1} \cdot F(X^K)$$

se fizermos a aproximação da secante para a matriz Jacobiana.

6.4.3 Outros Métodos

Outros métodos bastante conhecidos para solução numérica de sistemas de equações não lineares são: *BFGS, DFT, Gradiente Conjudado, Máximo Declive* e *Flecher-Rivers*.