a)
$$f(n) = 3.14159n^3 + 4000n, g(n) = 0.0001n^3 - 2^{2^{10}}n^2$$

 $f(n) \in \Theta(g(n))$

Since $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{3.14159}{0.0001} = 31415.9$ which between 0 and infinity

b)
$$f(n) = \log(n!), g(n) = n(\log n)^2$$

$$f(n) = \sum_{i=1}^{n} \log n < \sum_{i=1}^{n} (\log n)^2 = n(\log n)^2 = g(n) \quad \forall n > 3$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\frac{\sum_{i=1}^n\log n}{\sum_{i=1}^n(\log n)^2}=0$$

Therefore, $f(n) \in o(g(n))$

c)
$$f(n) = (\log n)^{\log \log n}, g(n) = 2^{\sqrt{\log n}}$$

Since $\log n \ll \sqrt{n}$, $\log \log n \ll \sqrt{\log n}$

Let
$$x = \log n$$
, then $f(n) = x^{\log x}$, $g(n) = 2^{\sqrt{x}}$

$$f(n)^{\log x} = x^{(\log x)^2}$$
, $g(n)^{\log x} = 2^{\sqrt{x} \cdot \log x} = x^{\sqrt{x}}$

Since $(\log x)^2 \ll \sqrt{x}$, we can say that $f(n) \in o(g(n))$

d)
$$f(n) = (n \mod 3) \cdot n$$
, $g(n) = 0.1n$

Since $0 \le (n \mod 3) \le 2$, we have $0 \le f(n) \le 2n$

Since f(n) can be 0 periodically, then the theta-notation does not apply.

Also, little-o does not work since both of f and g is linear, and $f(n) \in \Theta(g)$ if

$$f(n) \neq 0$$
 since $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ where c is between 0 and infinity when $f(n) \neq 0$.

Therefore, $f(n) \in O(g(n))$