Cointegração Modelo Vetor de Correção de Erros - VECM

Profa. R. Ballini

Bibliografia:

- Enders, W. Applied Econometrics, 3a. Edição, Wiley, 2010.
- Bueno, R. L. S.. Econometria de Séries Temporais, 2a. Edição, Cengage Learning, 2011.

Cointegração

- Conceito introduzido por Engle e Granger em 1987;
- Séries temporais não estacionárias com uma dinâmica em comum.

Definição (Engle e Granger, 1987):

Os elementos do vetor $\mathbf{X}_t \in \mathbb{R}^n$ são ditos cointegrados de ordem (d, b), denotados por $X_t \sim CI(d, b)$, se:

- i. Todos os elementos de X_t são integrados de ordem d, ou seja, são I(d);
- ii. Existe um vetor não nulo, β , tal que $u_t = \beta' \mathbf{X}_t \sim I(d-b), b > 0$.
- β é chamado de vetor de cointegração

Cointegração

Pontos importantes:

- Cointegração refere-se à:
 - 1. Combinação linear de variáveis não estacionárias;
 - 2. Variáveis que são integradas de mesma ordem;
- lacktriangle As variáveis em lacktriangletem uma relação de equilíbrio de longo prazo:

$$\beta' \mathbf{x}_t = \mathbf{0};$$

No curto prazo, há desvios da tendência comum, de modo que o termo u_t é o erro de equilíbrio.

Cointegração

Considere o vetor de cointegração dado por $\beta = \left[\tilde{\beta}_1, \tilde{\beta}_2\right]'$ que define a relação de longo prazo entre y_t e z_t , ou seja,

$$\begin{bmatrix} \tilde{\beta}_1 & \tilde{\beta}_2 \end{bmatrix} \begin{bmatrix} y_t \\ z_t \end{bmatrix} = \tilde{\beta}_1 y_t + \tilde{\beta}_2 z_t = 0$$

Vetor de cointegração não é único. Para resolver essa questão, multiplica-se ambos os lados da equação por $\frac{1}{\tilde{\beta_1}}$, de forma a "normalizar" o vetor de cointegração:

$$\begin{bmatrix} 1 & \beta_2 \end{bmatrix} \begin{bmatrix} y_t \\ z_t \end{bmatrix} = y_t + \frac{\tilde{\beta}_2}{\tilde{\beta}_1} z_t = y_t + \beta_2 z_t = 0$$

Cointegração - estimação e teste

Três métodos:

1. Metodologia de Engle-Granger: equação única;

2. Metodologia de Phillips e Ouliares: equação única;

3. Metodologia de Johansen: sistema de equações;

Metodologia de Engle-Granger

Considere um modelo de duas variáveis y_t e z_t .

Passos para o teste:

- 1. Testar a não estacionariedade da série: analisar a ordem de integração
 - Faça teste de raiz unitária para inferir o número de raízes unitárias em cada uma das variáveis;
 - Se ambas são estacionárias: usar métodos padrão de séries temporais;
 - Se as variáveis são integradas de diferentes ordens: elas não são cointegradas.

Metodologia de Engle-Granger

2. Estime a relação de longo prazo. Se y_t e z_t são I(1), o próximo passo é estimar a relação usando MQO:

$$y_t = \beta_0 + \beta_1 z_t + \epsilon_t$$

- Analisar os resíduos estimados ê_t: se os desvios são estacionários, y_t
 e z_t são cointegradas de ordem (1,1);
- Usar o teste ADF nos resíduos para determinar a ordem de integração.
 Ou seja,

$$\Delta \hat{e}_t = a_1 \hat{e}_{t-1} + \sum_{i=1}^{p-1} \lambda_{i+1} \Delta \hat{e}_{t-i} + u_t$$

Não rejeição de H_0 : $a_1=0$: os resíduos têm raiz unitária, de modo que as variáveis não cointegram.

 Devemos usar tabela apropriada para analisar a H₀ (Tabela C, livro Enders (2010)).

490 STATISTICAL TABLES

Table C Critical Values for the Engle-Granger

Cointegration lest						MANAGER STATES
T	1%	5%	10%	1%	5%	10%
	Two Variables			Three Variables		
50	-4.123	-3.461	-3.130	-4.592	-3.915	-3.578
100	-4 .123	-3.398	-3.087	-4.441	-3.828	-3.514
200	-3.954	-3.368	-3.067	-4.368	-3.785	-3.483
500	-3.921	-3.350	-3.054	-4.326	-3.760	-3.464
	Four Variables			Five Variables		
50	-5.017	-4.324	-3.979	-5.416	-4.700	-4.348
100	-4.827	-4.210	-3.895	-5.184	-4.557	-4.240
200	-4.737	-4.154	-3.853	-5.070	-4.487	-4.186
500	-4.684	-4.122	-3.828	-5.003	-4.446	-4.154

The critical values are for cointegrating relations (with a constant in the cointegrating vector) estimated using the Engle-Granger methodology.

Source: Critical values are interpolated using the response surface in MacKinnon (1991).

Problemas da Metodologia de Engle-Granger

 A estimação da relação de longo prazo requer que se escolha uma variável dependente (normalização);

■ Para 3 ou mais variáveis, pode haver mais de um vetor de cointegração;

Utiliza valores estimados em dois passos.

Metodologia de Phillips e Ouliares

Abordagem baseada em dois testes nos resíduos: Variância e Traço Multivariado.

Diferença entre os testes: teste usando a estatística do Traço Multivariado tem a propriedade de ser invariante à normalização, isto é, qual é a variável explicada e qual é a explicativa.

Hipóteses do teste:

 H_0 : não há cointegração entre as séries temporais;

 H_1 : As séries são cointegradas.

Procedimento

- 1. Teste de Raiz Unitária para as séries x_t e y_t ;
- 2. Verificada RU, estima-se um modelo para o par (y_t, x_t) e obtém-se os resíduos.
- 3. Cálculo das estatísticas:
- 3.1 Razão de Variância: depende da matriz de covariância dos resíduos e da covariância condicional entre y_t e x_t , sendo obtida de forma robusta.
- 3.2 Traço Multivariado: também depende da matriz de covariância, mas a estatística é calculada a partir do traço.

Vamos considerar o modelo VAR(1) na forma reduzida:

$$\begin{cases} y_t = a_{11}y_{t-1} + a_{12}z_{t-1} + e_{yt} \\ z_t = a_{21}y_{t-1} + a_{22}z_{t-1} + e_{zt} \end{cases}$$
 (1)

sendo e_{vt} e e_{zt} são ruído branco que podem ser correlacionados.

Usando operador defasagem:

$$\begin{bmatrix} (1-a_{11}L) & -a_{12}L \\ -a_{21}L & (1-a_{22}L) \end{bmatrix} \begin{bmatrix} y_t \\ z_t \end{bmatrix} = \begin{bmatrix} e_{yt} \\ e_{zt} \end{bmatrix}$$

As soluções y_t e z_t tem a mesma equação característica inversa:

$$(1 - a_{11}L)(1 - a_{22}L) - a_{12}a_{21}L^2 = 0$$

cujas raízes devem estar fora do círculo unitário. Ou da equação característica (raízes dentro do círculo unitário):

$$\lambda^2 - (a_{22} + a_{11})\lambda + (a_{11}a_{22} - a_{12}a_{21}) = 0$$

Condição Necessária: Para que haja cointegração é necessário que uma das raízes da eq característica seja unitária e a outra menor que 1 em módulo.

Aplicando Báskara à equação característica, podemos expressar as restrições sobre as raízes como restrições sobre os parâmetros.

$$a_{11} = \frac{[(1 - a_{22}) - a_{12}a_{21}]}{(1 - a_{22})} = 1 - \frac{a_{12}a_{21}}{(1 - a_{22})}$$
 (2)

■ $|\lambda_2|$ < 1:

$$a_{22} > -1$$
 e $a_{12}a_{21} + a_{22}^2 < 1$ (3)

Voltando ao sistema (1):

$$\begin{bmatrix} \Delta y_t \\ \Delta z_t \end{bmatrix} = \begin{bmatrix} (a_{11} - 1) & a_{12} \\ a_{21} & (a_{22} - 1) \end{bmatrix} \begin{bmatrix} y_{t-1} \\ z_{t-1} \end{bmatrix} + \begin{bmatrix} e_{yt} \\ e_{zt} \end{bmatrix}$$
(4)

De (2):
$$(a_{11}-1)=-\frac{a_{12}a_{21}}{(1-a_{22})}$$
:

$$\Delta y_t = -\frac{a_{12}a_{21}}{(1 - a_{22})}y_{t-1} + a_{12}z_{t-1} + e_{yt}$$
 (5)

$$\Delta z_t = a_{21} y_{t-1} - (1 - a_{22}) z_{t-1} + e_{zt}$$
 (6)

- As equações (5) e (6) formam o modelo de correção de erro;
- Se a₁₂ e a₂₁ são diferentes de zero, podemos normalizar o vetor de cointegração em relação a qualquer série.

Normalizando em relação a y_t:

$$\Delta y_t = \alpha_y (y_{t-1} - \beta z_{t-1}) + e_{yt} \tag{7}$$

$$\Delta z_t = \alpha_z (y_{t-1} - \beta z_{t-1}) + e_{zt}$$
 (8)

com:
$$\alpha_y = -\frac{a_{12}a_{21}}{(1-a_{22})}; \ \beta = \frac{(1-a_{22})}{a_{12}}; \ \alpha_z = a_{21}$$

- As demais restrições são suficientes para que β seja não nulo;
- Teorema da Representação de Granger: para qualquer conjunto de séries I(1), correção de erro e cointegração são representações equivalentes.

VECM com Método de Engle-Granger

Após os passos 1 e 2 da metodologia de Engle-Granger devemos:

3. Estimar o modelo de correção de erro. Se y_t e z_t são I(1), os resíduos a partir da regressão de equilíbrio podem ser usados para estimar o VECM:

$$\Delta y_t = \alpha_1 + \alpha_y \hat{\mathbf{e}}_{t-1} + \sum_{i=1}^{p-1} \alpha_{11}(i) \Delta y_{t-1} + \sum_{i=1}^{p-1} \alpha_{12}(i) \Delta z_{t-1} + \mathbf{e}_{yt}$$
 (9)

$$\Delta z_{t} = \alpha_{2} + \alpha_{z} \hat{\boldsymbol{e}}_{t-1} + \sum_{i=1}^{p-1} \alpha_{21}(i) \Delta y_{t-1} + \sum_{i=1}^{p-1} \alpha_{22}(i) \Delta z_{t-1} + \boldsymbol{e}_{zt}$$
 (10)

- Além do termo \hat{e}_{t-1} , (9) e (10) representam um VAR em 1a diferença;
- Os termos de (9) e (10) são estacionários, os testes estatísticos usados em um VAR são apropriados.

Exogeneidade Fraca

$$\Delta y_t = \alpha_y (y_{t-1} - \beta z_{t-1}) + e_{yt}$$

$$\Delta z_t = \alpha_z (y_{t-1} - \beta z_{t-1}) + e_{zt}$$

1. $\alpha_y = 0$: o comportamento dinâmico de y não é afetado pelo desvio do equilíbrio no período anterior, e y é fracamente exógeno;

2. $\alpha_z = 0$: o comportamento dinâmico de z não é afetado pelo desvio do equilíbrio no período anterior, e z é fracamente exógeno;

Causalidade de Granger

Em VECM é necessário reinterpretar Causalidade de Granger (precedência temporal):

 y_t : não Granger-causa z_t

1. se os valores defasados de Δy_t não explicam Δz_t ;

2. **E** z_t : não responde aos desvios do equilíbrio anterior, ou seja, é fracamente exógena.