FIGURE 9

FIGURE 10

EXAMPLE 4 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the *xy*-plane, and inside the cylinder $x^2 + y^2 = 2x$.

SOLUTION The solid lies above the disk D whose boundary circle has equation $x^2 + y^2 = 2x$ or, after completing the square,

$$(x-1)^2 + y^2 = 1$$

(See Figures 9 and 10.) In polar coordinates we have $x^2 + y^2 = r^2$ and $x = r \cos \theta$, so the boundary circle becomes $r^2 = 2r \cos \theta$, or $r = 2 \cos \theta$. Thus the disk *D* is given by

$$D = \{ (r, \theta) \mid -\pi/2 \le \theta \le \pi/2, \ 0 \le r \le 2 \cos \theta \}$$

and, by Formula 3, we have

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{2} r dr d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{r^{4}}{4} \right]_{0}^{2\cos\theta} d\theta$$

$$= 4 \int_{-\pi/2}^{\pi/2} \cos^{4}\theta d\theta = 8 \int_{0}^{\pi/2} \cos^{4}\theta d\theta = 8 \int_{0}^{\pi/2} \left(\frac{1 + \cos 2\theta}{2} \right)^{2} d\theta$$

$$= 2 \int_{0}^{\pi/2} \left[1 + 2\cos 2\theta + \frac{1}{2}(1 + \cos 4\theta) \right] d\theta$$

$$= 2 \left[\frac{3}{2}\theta + \sin 2\theta + \frac{1}{8}\sin 4\theta \right]_{0}^{\pi/2} = 2 \left(\frac{3}{2} \right) \left(\frac{\pi}{2} \right) = \frac{3\pi}{2}$$

15.4 EXERCISES

I–4 A region R is shown. Decide whether to use polar coordinates or rectangular coordinates and write $\iint_R f(x, y) dA$ as an iterated integral, where f is an arbitrary continuous function on R.

5–6 Sketch the region whose area is given by the integral and evaluate the integral.

5.
$$\int_{\pi}^{2\pi} \int_{4}^{7} r \, dr \, d\theta$$

6.
$$\int_0^{\pi/2} \int_0^{4\cos\theta} r \, dr \, d\theta$$

7–14 Evaluate the given integral by changing to polar coordinates.

- 7. $\iint_D xy \, dA$, where *D* is the disk with center the origin and radius 3
- **8.** $\iint_R (x + y) dA$, where *R* is the region that lies to the left of the *y*-axis between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$
- **9.** $\iint_R \cos(x^2 + y^2) dA$, where *R* is the region that lies above the *x*-axis within the circle $x^2 + y^2 = 9$
- **10.** $\iint_R \sqrt{4 x^2 y^2} dA$, where $R = \{(x, y) \mid x^2 + y^2 \le 4, x \ge 0\}$
- II. $\iint_D e^{-x^2-y^2} \, dA$, where D is the region bounded by the semicircle $x=\sqrt{4-y^2}$ and the y-axis
- **12.** $\iint_R y e^x dA$, where *R* is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 25$

- **13.** $\iint_{\mathbb{R}} \arctan(y/x) dA$, where $R = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, \ 0 \le y \le x\}$
- **14.** $\iint_D x \, dA$, where *D* is the region in the first quadrant that lies between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 2x$
- **15–18** Use a double integral to find the area of the region.
- **15.** One loop of the rose $r = \cos 3\theta$
- **16.** The region enclosed by the curve $r = 4 + 3 \cos \theta$
- 17. The region within both of the circles $r = \cos \theta$ and $r = \sin \theta$
- **18.** The region inside the cardioid $r = 1 + \cos \theta$ and outside the circle $r = 3 \cos \theta$
- 19-27 Use polar coordinates to find the volume of the given solid.
- 19. Under the cone $z = \sqrt{x^2 + y^2}$ and above the disk $x^2 + y^2 \le 4$
- **20.** Below the paraboloid $z = 18 2x^2 2y^2$ and above the
- **21.** Enclosed by the hyperboloid $-x^2 y^2 + z^2 = 1$ and the plane z = 2
- **22.** Inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$
- **23.** A sphere of radius *a*
- **24.** Bounded by the paraboloid $z = 1 + 2x^2 + 2y^2$ and the plane z = 7 in the first octant
- **25.** Above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$
- **26.** Bounded by the paraboloids $z = 3x^2 + 3y^2$ and $z = 4 x^2 y^2$
- **27.** Inside both the cylinder $x^2 + y^2 = 4$ and the ellipsoid $4x^2 + 4y^2 + z^2 = 64$
- **28.** (a) A cylindrical drill with radius r_1 is used to bore a hole through the center of a sphere of radius r_2 . Find the volume of the ring-shaped solid that remains.
 - (b) Express the volume in part (a) in terms of the height *h* of the ring. Notice that the volume depends only on h, not on r_1 or r_2 .
- **29–32** Evaluate the iterated integral by converting to polar coordinates.
- **29.** $\int_{-2}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(x^2 + y^2) \, dy \, dx$ **30.** $\int_{0}^{a} \int_{-\sqrt{a^2-y^2}}^{0} x^2 y \, dx \, dy$
- **31.** $\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) \, dx \, dy$ **32.** $\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} \, dy \, dx$

- **33.** A swimming pool is circular with a 40-ft diameter. The depth is constant along east-west lines and increases linearly from 2 ft at the south end to 7 ft at the north end. Find the volume of water in the pool.
- **34.** An agricultural sprinkler distributes water in a circular pattern of radius 100 ft. It supplies water to a depth of e^{-r} feet per hour at a distance of r feet from the sprinkler.
 - (a) If $0 < R \le 100$, what is the total amount of water supplied per hour to the region inside the circle of radius R centered at the sprinkler?
 - (b) Determine an expression for the average amount of water per hour per square foot supplied to the region inside the circle of radius R.
- **35.** Use polar coordinates to combine the sum

$$\int_{1/\sqrt{2}}^{1} \int_{\sqrt{1-x^2}}^{x} xy \, dy \, dx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xy \, dy \, dx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xy \, dy \, dx$$

into one double integral. Then evaluate the double integral.

36. (a) We define the improper integral (over the entire plane \mathbb{R}^2)

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} dy dx$$
$$= \lim_{a \to \infty} \iint_{D_a} e^{-(x^2 + y^2)} dA$$

where D_a is the disk with radius a and center the origin. Show that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dA = \pi$$

(b) An equivalent definition of the improper integral in part (a)

$$\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dA = \lim_{a \to \infty} \iint_{S_a} e^{-(x^2+y^2)} dA$$

where S_a is the square with vertices $(\pm a, \pm a)$. Use this to show that

$$\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \pi$$

(c) Deduce that

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

(d) By making the change of variable $t = \sqrt{2} x$, show that

$$\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$

(This is a fundamental result for probability and statistics.)

37. Use the result of Exercise 36 part (c) to evaluate the following integrals.

(a)
$$\int_{0}^{\infty} x^2 e^{-x^2} dx$$

(a)
$$\int_0^\infty x^2 e^{-x^2} dx$$
 (b) $\int_0^\infty \sqrt{x} e^{-x} dx$