

Interrupciones

Semana 7 – Arquitectura de computadoras

Esta presentación esta basada en el libro de:

William Stallings, Computer Organization and Architecture, 9th Edition, 2017.

Archivos presentación y ejemplos se alojan en:

https://github.com/ruiz-jose/tudw-arq.git

Interrupciones

- Instrucción CALL/RET
- Arranque del sistema
- Vector de interrupciones
- Tipos de interrupciones:
 - Interrupción Software: Instrucción INT/IRET
 - Interrupción Hardware
 - Excepción

CALL dirección → llamada a una rutina

RE: Registro de Estado 10000 = 16 ICOZS

- a) PUSH IP: {[SP] \leftarrow IP; SP \leftarrow SP 1}
- b) PUSH RE: $\{[SP] \leftarrow RE ; SP \leftarrow SP 1\}$
- IP ← dirección

RET → retorno al programa llamador.

UNER **virtual** Arranque del sistema

- Presionamos el botón de encendido, llega energía y arranca el sistema
- El CPU comienza a ejecutar el **BIOS** (Basic Input Output System), que se encuentra en la memoria ROM de la placa madre
- La BIOS se encargar de correr una serie de diagnósticos llamados POST (Power On Self Test)
- Busca la Unidad «booteable», y copia el «bootloader» a la memoria y comienza ejecutarlo
- El «bootloader» carga el sistema operativo en memoria y sede el control al mismo.

Vector de interrupciones

Cuando la computadora se enciende, el BIOS y el SO establecen una tabla de rutinas de tratamiento de interrupciones en las primeras localidades de memoria.

■ Tabla de vectores de Interrupción

Refleja las direcciones de las distintas rutinas de tratamiento de interrupciones.

¿Quién invoca la rutina de tratamiento de interrupción?

- Interrupción Software: Instrucción INT/IRET
- Interrupción Hardware
- Excepción

¿Cómo se invoca a estas rutinas?

INT Nro_INT → llamada a una rutina de interrupción.

INT 1 → Llama a la rutina 1 del vector de interrupciones devuelve en DL el código ASCII del dato ingresado

IRET → retorno al programa llamador.

UNER virtual Oclo de instrucción - Bapas de captación, ejecución e interrupción

Interrupciones por hardware

El procesador 8086

Incluye dos nuevas señales:

- Entrada: INTR (Solicitud interrupción)
- Salida: INTA (Interrupción reconocida)

¿Qué pasa cuando un dispositivo interrumpe al CPU?

Cuando se produce una interrupción si el dispositivo de E/S activa la señal de interrupción (INTR) y el flag I vale 1, termina de ejecutar la instrucción en curso y realiza atómicamente los siguientes pasos:

- a) PUSH IP: {[SP] \leftarrow IP; SP \leftarrow SP 1}
- b) PUSH RE: {[SP] \leftarrow RE; SP \leftarrow SP 1}
- c) $I \leftarrow 0$: para evitar que el procesador vuelva a interrumpirse
- d) INTA: Activa la señal INTA para indicarle al dispositivo que atenderá su pedido.
- e) IP ← [dirección rutina servicio de interrupción]

Nota: el servicio de interrupción es responsable de preservar el valor actual de los registros y restaurar el registro de estado y PC, mediante la instrucción de retorno de interrupción IRET

Interrupciones por hardware

- Presionamos la tecla
- 1 El PIC (Programmable Interrupt Controller) solicita al CPU ser atendido
- 2 CPU recibe la solicitud
- 3 CPU avisa que va atenderla
- PIC envía por el bus de datos el Nro de rutina que tiene que buscar el CPU en el vector de interrupciones

¿Cómo identificar el dispositivo que genero la Interrupción?

Excepciones (división por cero)

DIV (división por cero)

MOV AX, 203 ; AX = 00CBh MOV BL, 0

DIV BL RET Al producirse una división por cero el CPU invoca a la rutina 0 del vector de interrupciones

Preguntas?