Complex Multiplication

Yunhan (Alex) Sheng

yhsheng@uchicago.edu

UChicago REU, August 2022

nplex Multiplication 2/18 August 2022

Outline of the talk

- Number-theoretic background
- 2 CM of elliptic curves
- 3 Generalization to abelian varieties
- 4 Acknowledgements

Number-theoretic background

• L/K is abelian if Gal(L/K) is an abelian group.

Number-theoretic background

- L/K is **abelian** if Gal(L/K) is an abelian group.
- Prime ideals \mathfrak{p} in K split in L. For example, in $\mathbb{Q}(i)/\mathbb{Q}$,

$$(2) = (1-i)^2$$
, $(3) = (3)$, $(5) = (2+i)(2-i)$.

We say that (2) is **ramified**, while (3) and (5) are **unramified**.

Number-theoretic background

- L/K is **abelian** if Gal(L/K) is an abelian group.
- Prime ideals $\mathfrak p$ in K split in L. For example, in $\mathbb Q(i)/\mathbb Q$,

$$(2) = (1-i)^2$$
, $(3) = (3)$, $(5) = (2+i)(2-i)$.

We say that (2) is **ramified**, while (3) and (5) are **unramified**.

• L/K is unramified if every prime in K is unramified in L

The case over $\mathbb Q$

 Can we explicitly describe the set of numbers that generates (unramified) abelian extensions of Q?

The case over $\mathbb Q$

 Can we explicitly describe the set of numbers that generates (unramified) abelian extensions of Q?

Theorem 1 (Kronecker-Weber)

Every finite abelian extension of $\mathbb Q$ is contained in a cyclotomic extension $\mathbb Q(\zeta_N)$ for some N>0.

ullet The maximal abelian extension of $\mathbb Q$ is generated by roots of unities.

The case over $\mathbb Q$

 Can we explicitly describe the set of numbers that generates (unramified) abelian extensions of Q?

Theorem 1 (Kronecker-Weber)

Every finite abelian extension of \mathbb{Q} is contained in a cyclotomic extension $\mathbb{Q}(\zeta_N)$ for some N > 0.

ullet The maximal abelian extension of $\mathbb Q$ is generated by roots of unities.

Theorem 2 (Hermite-Minkowski)

There are no unramified extensions of \mathbb{Q} .

ullet That is, the maximal unramified extension of $\mathbb Q$ is $\mathbb Q$.

Complex Multiplication 4/18

The case over $\mathbb Q$

 Can we explicitly describe the set of numbers that generates (unramified) abelian extensions of Q?

Theorem 1 (Kronecker-Weber)

Every finite abelian extension of \mathbb{Q} is contained in a cyclotomic extension $\mathbb{Q}(\zeta_N)$ for some N > 0.

 \bullet The maximal abelian extension of $\mathbb Q$ is generated by roots of unities.

Theorem 2 (Hermite-Minkowski)

There are no unramified extensions of \mathbb{Q} .

- ullet That is, the maximal unramified extension of $\mathbb Q$ is $\mathbb Q$.
- What if we change the base field to a finite extension of $\mathbb Q$ instead?

• This is known as the Hilbert's twelfth problem, or explicit CFT.

- This is known as the Hilbert's twelfth problem, or explicit CFT.
- Complex Multiplication resolves the case when the base field is an imaginary quadratic field, i.e., $\mathbb{Q}(\sqrt{-D})$ for some D > 0.

- This is known as the Hilbert's twelfth problem, or explicit CFT.
- Complex Multiplication resolves the case when the base field is an imaginary quadratic field, i.e., $\mathbb{Q}(\sqrt{-D})$ for some D > 0.
- These two are essentially the only known cases. The problem is wide open.

- This is known as the Hilbert's twelfth problem, or explicit CFT.
- Complex Multiplication resolves the case when the base field is an imaginary quadratic field, i.e., $\mathbb{Q}(\sqrt{-D})$ for some D > 0.
- These two are essentially the only known cases. The problem is wide open.
- Slogan: this piece of **arithmetic** information will be extracted from studying **geometric** objects, namely, elliptic curves.

Outline of the talk

- Number-theoretic background
- 2 CM of elliptic curves
- 3 Generalization to abelian varieties
- 4 Acknowledgements

What is an elliptic curve?

- By an **elliptic curve** E/K, we understand
 - a one-dimensional nonsingular projective variety over K of genus one, together with a special point O ∈ E;
 - naïvely, it is a smooth curve given by a cubic equation

$$y^2 = x^3 + Ax + B$$
, $A, B \in K$

What is an elliptic curve?

- By an elliptic curve E/K, we understand
 - a one-dimensional nonsingular projective variety over K of genus one, together with a special point $O \in E$;
 - naïvely, it is a smooth curve given by a cubic equation

$$y^2 = x^3 + Ax + B, \quad A, B \in K$$

 Elliptic curves are classified up to isomorphism by an numerical invariant called the *j*-invariant, denoted by j(E).

What is an elliptic curve?

- By an elliptic curve E/K, we understand
 - ullet a one-dimensional nonsingular projective variety over K of genus one, together with a special point $O \in E$;
 - naïvely, it is a smooth curve given by a cubic equation

$$y^2 = x^3 + Ax + B, \quad A, B \in K$$

- Elliptic curves are classified up to isomorphism by an numerical invariant called the *j*-invariant, denoted by j(E).
- An elliptic curve can be endowed with a group structure.

Endomorphism of elliptic curves

ullet An endomorphism of an elliptic curve E is a morphism of varieties

$$\phi: E \to E$$
 such that $\phi(O) = O$.

ullet An endomorphism of an elliptic curve E is a morphism of varieties

$$\phi: E \to E$$
 such that $\phi(O) = O$.

ullet Example: the multiplication-by-m map [m]:E o E defined by

$$P \mapsto mP = \underbrace{P + P + \ldots + P}_{m \text{ times}}.$$

Endomorphism of elliptic curves

• An endomorphism of an elliptic curve E is a morphism of varieties

$$\phi: E \to E$$
 such that $\phi(O) = O$.

ullet Example: the multiplication-by-m map [m]:E o E defined by

$$P \mapsto mP = \underbrace{P + P + \ldots + P}_{m \text{ times}}.$$

• Question: are there endomorphisms other than maps of form [m]?

CM of elliptic curves

• Write $\operatorname{End}(E)$ for the endomorphism ring of E.

Theorem 3

Let E/\mathbb{C} be an elliptic curve. Then either $\operatorname{End}(E) = \mathbb{Z}$ or $\operatorname{End}(E)$ is isomorphic to a subring R of $\mathbb{Q}(\sqrt{-D})$ for some D > 0.

CM of elliptic curves

• Write $\operatorname{End}(E)$ for the endomorphism ring of E.

Theorem 3

Let E/\mathbb{C} be an elliptic curve. Then either $\operatorname{End}(E) = \mathbb{Z}$ or $\operatorname{End}(E)$ is isomorphic to a subring R of $\mathbb{Q}(\sqrt{-D})$ for some D > 0.

• An elliptic curve E/\mathbb{C} has **complex multiplication by** R if $R = \operatorname{End}(E)$ is the subring of an imaginary quadratic field.

Construction of class fields

Now we state the main result of CM of elliptic curves.

Theorem 4

Let K be an imaginary quadratic field. Let E/\mathbb{C} be an elliptic curve with CM by ring of integers \mathcal{O}_K . Then

- K(j(E)) is the maximal unramified extension of K
- $K(j(E), x(E_{tors}))$ is the maximal abelian extension of K.

Construction of class fields

Now we state the main result of CM of elliptic curves.

Theorem 4

Let K be an imaginary quadratic field. Let E/\mathbb{C} be an elliptic curve with CM by ring of integers \mathcal{O}_K . Then

- K(j(E)) is the maximal unramified extension of K
- $K(j(E), x(E_{tors}))$ is the maximal abelian extension of K.
- Slogan: *j*-invariant and the x-coordinate of torsion points generate abelian extensions of $\mathbb{Q}(\sqrt{-D})$ for some D > 0.

Prospect: Iwasawa theory of elliptic curves

 In the classical lwasawa theory we consider the infinite cyclotomic tower and study the p-adic analogue of Riemann zeta function.

Prospect: Iwasawa theory of elliptic curves

• In the classical Iwasawa theory we consider the infinite cyclotomic tower and study the p-adic analogue of Riemann zeta function.

• Substituting \mathbb{Q} by K an imaginary quadratic field, the role of ζ_{p^n} is played by the \mathfrak{p}^n -torsion points on E.

Prospect: Iwasawa theory of elliptic curves

• In the classical Iwasawa theory we consider the infinite cyclotomic tower and study the *p*-adic analogue of Riemann zeta function.

- Substituting \mathbb{Q} by K an imaginary quadratic field, the role of ζ_{p^n} is played by the \mathfrak{p}^n -torsion points on E.
- We then study the *p*-adic *L*-series attached to an elliptic curve, which helps us understand the BSD conjecture.

Outline of the talk

- Number-theoretic background
- Generalization to abelian varieties

Facts about abelian varieties

• An **abelian variety** A/K is a connected projective group scheme over a field K (the \overline{K} -rational points $A(\overline{K})$ forms a group).

Facts about abelian varieties

- An **abelian variety** A/K is a connected projective group scheme over a field K (the \overline{K} -rational points $A(\overline{K})$ forms a group).
- Elliptic curves are one-dimensional abelian varieties.

Facts about abelian varieties

- An **abelian variety** A/K is a connected projective group scheme over a field K (the \overline{K} -rational points $A(\overline{K})$ forms a group).
- Elliptic curves are one-dimensional abelian varieties.
- Hence abelian varieties are higher-dimensional analogues of elliptic curves. They have a structure of an abelian group.

• In the case of abelian varieties, even defining complex multiplication requires quite some work.

- In the case of abelian varieties, even defining complex multiplication requires quite some work.
- A CM-field is an imaginary quadratic extension of a totally real field.

- In the case of abelian varieties, even defining complex multiplication requires quite some work.
- A CM-field is an imaginary quadratic extension of a totally real field.
- Examples: $\mathbb{Q}(\sqrt{-D})/\mathbb{Q}$ and $\mathbb{Q}(\zeta_N)/\mathbb{Q}(\zeta_N + \overline{\zeta_N})$ for N > 2.

- In the case of abelian varieties, even defining complex multiplication requires quite some work.
- A CM-field is an imaginary quadratic extension of a totally real field.
- Examples: $\mathbb{Q}(\sqrt{-D})/\mathbb{Q}$ and $\mathbb{Q}(\zeta_N)/\mathbb{Q}(\zeta_N + \overline{\zeta_N})$ for N > 2.
- A CM-algebra is a finite product of CM-fields.

- In the case of abelian varieties, even defining complex multiplication requires quite some work.
- A CM-field is an imaginary quadratic extension of a totally real field.
- Examples: $\mathbb{Q}(\sqrt{-D})/\mathbb{Q}$ and $\mathbb{Q}(\zeta_N)/\mathbb{Q}(\zeta_N + \overline{\zeta_N})$ for N > 2.
- A CM-algebra is a finite product of CM-fields.
- Roughly speaking, an abelian variety A/\mathbb{C} has CM iff $\operatorname{End}(A) \otimes \mathbb{Q}$ contains a CM-algebra of dimension 2 dim A.

- In the case of abelian varieties, even defining complex multiplication requires quite some work.
- A CM-field is an imaginary quadratic extension of a totally real field.
- Examples: $\mathbb{Q}(\sqrt{-D})/\mathbb{Q}$ and $\mathbb{Q}(\zeta_N)/\mathbb{Q}(\zeta_N + \overline{\zeta_N})$ for N > 2.
- A CM-algebra is a finite product of CM-fields.
- Roughly speaking, an abelian variety A/\mathbb{C} has CM iff $\operatorname{End}(A) \otimes \mathbb{Q}$ contains a CM-algebra of dimension 2 dim A.
- Sadly, we obtain some (not all!) finite abelian extensions of a CM-field.

 The classical theory of CM was developed by Weber, Fueter, Hasse and Duering before 1950s.

- The classical theory of CM was developed by Weber, Fueter, Hasse and Duering before 1950s.
- The main theorem of CM of abelian varieties over a reflex field was due to Shimura, Taniyama, and Weil in the 1950s. It is sufficient for constructing the class fields.

- The classical theory of CM was developed by Weber, Fueter, Hasse and Duering before 1950s.
- The main theorem of CM of abelian varieties over a reflex field was due to Shimura, Taniyama, and Weil in the 1950s. It is sufficient for constructing the class fields.
- The most general case, the main theorem over Q, was proved by Langlands, Tate, and Deligne in the 1980s, called motivic CM theory.

- The classical theory of CM was developed by Weber, Fueter, Hasse and Duering before 1950s.
- The main theorem of CM of abelian varieties over a reflex field was due to Shimura, Taniyama, and Weil in the 1950s. It is sufficient for constructing the class fields.
- The most general case, the main theorem over \mathbb{Q} , was proved by Langlands, Tate, and Deligne in the 1980s, called motivic CM theory.
- CM has deep relations with the BSD conjecture and other arithmetic theories.

- The classical theory of CM was developed by Weber, Fueter, Hasse and Duering before 1950s.
- The main theorem of CM of abelian varieties over a reflex field was due to Shimura, Taniyama, and Weil in the 1950s. It is sufficient for constructing the class fields.
- The most general case, the main theorem over \mathbb{Q} , was proved by Langlands, Tate, and Deligne in the 1980s, called motivic CM theory.
- CM has deep relations with the BSD conjecture and other arithmetic theories.
- It also has fruitful applications to cryptography.

Outline of the talk

- Number-theoretic background
- 2 CM of elliptic curves
- 3 Generalization to abelian varieties
- 4 Acknowledgements

Acknowledgements

I'd like to thank my mentor Wei for introducing to me this fascinating topic to learn about. I thank both of my mentors, Wei and Pallav, for hosting weekly meetings with me and answering my endless questions. Finally, I thank Peter for giving me this opportunity.

Thanks for listening.

August 2022

References I

- [Mil20] J. S. Milne. Complex Multiplication. 2020.
- [Shi71] Goro Shimura. Introduction to Arithmetic Theory of Automorphic Functions. Princeton University Press, 1971.
- [Sil94] Joseph H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. GTM. Springer, 1994.