CYCLE 1 (OPERATING SYSTEMS LAB) Experiment 1.1

Date:

CPU Scheduling Algorithms

Aim: Implement the following four CPU scheduling algorithms and compute the Completion Time, Turnaround Time and Waiting Time of each process, Average Waiting Time and Average Turnaround Time.

- 1. First-Come-First-Serve (FCFS / FIFO)
- 2. Shortest Job First (SJF) non-preemptive
- 3. Round Robin preemptive (with a user-defined time quantum)
- 4. Priority Scheduling preemptive or non-preemptive

Algorithm:

Algorithm FCFS:

- 1. Sort processes by arrival time (if needed; in the code, input order is assumed to be arrival order).
- 2. Initialize time = 0.
- 3. For each process in order:
 - o If time < arrival_time, update time = arrival_time.
 - Execute the process for its burst time.
 - o Set completion_time = time + burst_time.
 - Calculate turnaround_time = completion_time arrival_time.
 - Calculate waiting_time = turnaround_time burst_time.
- 4. Print results and calculate averages.

Algorithm_SJF:

- 1. Initialize time = 0, and mark all processes as not completed.
- 2. Repeat until all processes are done:
 - Among the arrived and not completed processes, choose the one with the shortest burst time.
 - o If no process has arrived yet, increment time++.
 - Else:
 - Execute the selected process to completion.
 - Update completion_time, turnaround_time, waiting_time.
 - Mark the process as done.
- 3. Print results and calculate averages.

RIGHT PAGE

Algorithm RR:

- 1. Input the time quantum.
- 2. Initialize a queue and track whether each process is already in the queue.
- 3. Start from time = 0. Enqueue all processes that have arrived by current time.
- 4. While all processes are not completed:
 - If the queue is empty, increment time++.
 - Else:
 - Dequeue a process.
 - If its remaining time ≤ quantum:
 - Run it till completion.
 - Set completion_time = current_time.
 - Else:
 - Run it for quantum time.
 - Decrease remaining_time.
 - Re-enqueue it if it still has time left.
 - Enqueue any new processes that have arrived by now and are not yet in queue.
- 5. Once done, calculate turnaround_time, waiting_time.
- 6. Print results.

Algorithm_Priority:

- 1. Start from time = 0.
- 2. While not all processes are complete:
 - From all processes that have arrived and not completed, select the one with the highest priority (i.e., lowest number).
 - If no process is available, increment time++.
 - Else:
 - Run the selected process for 1 time unit.
 - Decrease its remaining_time.
 - If it becomes 0, set completion_time, mark as done.
- 3. Once all are complete, compute turnaround_time, waiting_time.
- 4. Print results and averages.

Result: Implemented FCFS, SJF, Priority, and Round Robin scheduling. Computed CT, TAT, WT for each and compared average WT and average TAT across algorithms.

LEFT PAGE

Sample input:

processes	Arrival time	Burst time	priority
p1	0	5	2
p2	1	3	1
р3	2	8	4
p4	3	6	3

Output and Observations:

FCFS:

processes	Arrival time	Burst time	priority	СТ	TAT	WT
p1	0	5	2			
p2	1	3	1			
р3	2	8	4			
p4	3	6	3			

Gantt Chart:

Average TAT: Average WT:

SJF:

processes	Arrival time	Burst time	priority	СТ	TAT	WT
p1	0	5	2			
p2	1	3	1			
р3	2	8	4			
p4	3	6	3			

Average TAT: Average WT:

Round Robin:

processes	Arrival time	Burst time	priority	СТ	TAT	WT
p1	0	5	2			
p2	1	3	1			
p3	2	8	4			
p4	3	6	3			

Gantt Chart:

Average TAT: Average WT:

Priority:

processes	Arrival time	Burst time	priority	СТ	TAT	WT
p1	0	5	2			
p2	1	3	1			
р3	2	8	4			
p4	3	6	3			

Gantt Chart:

Average TAT: Average WT: