1. Design a half-subtractor circuit with input x and y and outputs D (Difference) and B_{out} (Borrow) which performs x - y.

2. Design a full-subtractor circuit with three inputs, x, y, and B_{prev} , which performs $x-y-B_{prev}$.

B_{prev}	\boldsymbol{x}	$\mid y \mid$	D	B_{out}	
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	0	2
0	1	1	0	0	3
1	0	0	1	1	4
1	0	1	0	1	5
1	1	0	0	0	6
1	1	$\mid 1 \mid$	1	1	7

		(D) xy					
		00	01	11	10		
R	0	0	1	0	1		
B_{prev}	1	1	0	1	0		

		$(B_{out}) xy$				
		00	01	11	10	
B_{prev}	0	0	1	0	0	
	1	1	1	1	0	

¹The package used for drawing kmaps does not support diagonal groups. I have used regular a regular 4x2 group in this case, however it should be observed to be representative of XOR, not a larger implicant.

1

$$\therefore D = x \oplus y \oplus B_{prev}$$

$$\therefore B_{out} = x'y + B_{prev}x' + B_{prev}y$$
$$= B_{prev}(x'+y) + x'y$$

¹The application used to draw these circuits has issues rendering text. I apologize for any inconvenience..