Seminar W1 - 916

CC = $\max_{K} (M, S + \frac{M}{2})$ S = salved exercises in class (2p/sp) $<math>\rightarrow h(M)$ $F = \max_{K} (\frac{4}{10} + \frac{6}{10} + \frac{6}{10})$ $F = \max_{K} (\frac{4}{10} + \frac{6}{10} + \frac{6}{10})$ $F = \max_{K} (\frac{4}{10} + \frac{6}{10} + \frac{6}{10})$ Analytic Geometry

Lo points = toples of numbers

"coordinates"

We will work in the Euclidean

plane (and space).

In pratice, these are identified

with 12° and 12°.

A Cortisian reference system:

R=(0;5)

point Laxis of the Euclidean

plane (space)

point Laxis of the Euclidean

plane (space)

(a)

op = rp = xi+yj

the position vector EP x = (xy) = [op) b

of p with regards
to the reference system

1.1. Consider a tetrahedron ARCO
Find the following some of vectors
(a) AB+BC+CB (C) AB+BC+DA+CP
(L) AB+CB+DC

 $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = (\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD} =$ $= \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$ $(\cancel{C}) \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{K} = (\overrightarrow{AD} + \overrightarrow{K}) + \overrightarrow{CB} =$ $= \overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{AB}$ $(\cancel{C}) \overrightarrow{AB} + \overrightarrow{K} + \overrightarrow{K} + \overrightarrow{CD} = (\overrightarrow{AB} + \overrightarrow{K}) + (\overrightarrow{DA} + \overrightarrow{CD}) =$ $= \overrightarrow{AC} + \overrightarrow{C4} = 0$

> A7 - 02 - 7

We use a similar organist to show that OABT is a parallelegran

=>
$$\overrightarrow{TB} = \overrightarrow{OA} = \overrightarrow{A}$$

=> $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AT} + \overrightarrow{TB} = \overrightarrow{A} + \overrightarrow{S} + \overrightarrow{A} = 22\overrightarrow{A} + \overrightarrow{S}$

We show like before that \overrightarrow{OECB} parallelegran => $\overrightarrow{OE} = \overrightarrow{BC} = \overrightarrow{S}$
 $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{TBC} = 2\overrightarrow{A} + \overrightarrow{S} + \overrightarrow{S} = 2\overrightarrow{A} + 2\overrightarrow{S}$
 $\overrightarrow{OB} = \overrightarrow{OC} + \overrightarrow{CB} = 2\overrightarrow{A} + 2\overrightarrow{S} + (-\overrightarrow{a}) = 2\overrightarrow{A} + 2\overrightarrow{S}$
 $\overrightarrow{OA} + \overrightarrow{OS} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} = \overrightarrow{A} + 2\overrightarrow{A} + \overrightarrow{S} + (-\overrightarrow{a}) = 2\overrightarrow{A} + 2\overrightarrow{S} + (-\overrightarrow{A}) = 2\overrightarrow{A} + 2\overrightarrow{$

54+51+5C+5D=450+6A+0R+0C+0B=

8/2021	OneNote
CD L AB = J OM 11CD	
CD/ AJ => OBZ (1AB	
=> OMMM parallelagrum	
>> O/4+01/2 = OM	
$\partial \vec{h}_{1} = \frac{\partial \vec{h} + \partial \vec{k}}{2}$	
01/2 - 02+13	
=> the r	
-	