Name_____ Date_____ Period____

Worksheet 1.4—Algebraic Limits

Show all work. No Calculator

1.
$$\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2} =$$

$$2. \lim_{x \to 5} \frac{\frac{2}{x+3} - \frac{1}{4}}{x-5} =$$

3.
$$\lim_{t \to 2} \frac{t^3 + 2t^2 - 13t + 10}{t^3 + 4t^2 - 4t - 16} =$$

4.
$$\lim_{x \to 0} \frac{(2+x)^3 - 8}{x} =$$

5.
$$\lim_{h \to 0} \frac{4(x+h)^2 - 3(x+h) + 5 - (4x^2 - 3x + 5)}{h} =$$

6.
$$\lim_{x \to 3} \frac{\sqrt{x+6} - 3}{x-3} =$$

7.
$$\lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{2x^2+x-3} =$$
8. $\lim_{x \to 0} \frac{\cot 4x}{\cot 3x} =$

8.
$$\lim_{x \to 0} \frac{\cot 4x}{\cot 3x} =$$

Calculus Maximus WS 1.4: Algebraic Limits

9.
$$\lim_{x \to 0} \frac{\sin x}{5x^2 - x} =$$

$$10. \quad \lim_{x \to 0} \frac{4x + \sin 2x}{x} =$$

11.
$$\lim_{x \to 4^+} \frac{3x - 12}{|8 - 2x|} =$$

12.
$$\lim_{\Theta \to 0} \frac{\sin^3 \Theta}{\Theta^2 (1 + \cos \Theta)} =$$

13.
$$\lim_{x \to \pi/3} \frac{2\cos^2 x + 3\cos x - 2}{2\cos x - 1} =$$

13.
$$\lim_{x \to \pi/3} \frac{2\cos^2 x + 3\cos x - 2}{2\cos x - 1} = 14. \lim_{u \to \infty} \frac{4u^4 + 4}{\left(u^2 - 2\right)\left(2u^2 - 1\right)} =$$

15.
$$\lim_{x \to -4} \frac{(x+4)\ln(x+6)}{x^2-16} =$$

16.
$$\lim_{x \to -2} \frac{\sin(x+2)}{x+2} =$$

17.
$$\lim_{r \to 9} \frac{\sqrt{r}}{(r-9)^4} =$$

18.
$$\lim_{x \to 2^+} \frac{x^3 |x-2|}{x-2} =$$

$$19. \lim_{x \to \infty} \tan^{-1} x =$$

$$20. \quad \lim_{x \to \frac{\pi}{2}^+} \tan x =$$

21.
$$\lim_{x \to 3^{+}} \left(x - 3 - \frac{1}{x - 3} \right) =$$

21.
$$\lim_{x \to 3^{+}} \left(x - 3 - \frac{1}{x - 3} \right) =$$
 22. $\lim_{m \to 0} \frac{\cos(x + m) - \cos x}{m} =$ Use: $\cos(x + m) = \cos x \cos m - \sin x \sin m$

23. If
$$g(x) = \begin{cases} 5-2x, & x > 1 \\ 4, & x = 1 \\ 4-x, & x < 1 \end{cases}$$

(a)
$$\lim_{x \to 5} g(x)$$

(b)
$$\lim_{x \to 1^-} g(x)$$

(a)
$$\lim_{x \to 5} g(x)$$
 (b) $\lim_{x \to 1^{-}} g(x)$ (c) $\lim_{x \to 1^{+}} g(x)$ (d) $\lim_{x \to 1} g(x)$

(d)
$$\lim_{x \to 1} g(x)$$

- 24. If $1 \le f(x) \le x^2 + 2x + 2$, find $\lim_{x \to -1} f(x)$ Justify.
- 25. If $3x \le f(x) \le x^3 + 2$, evaluate $\lim_{x \to 1} f(x)$ No need to justify.

26. If
$$\lim_{x \to a} f(x) = -3$$
, $\lim_{x \to a} h(x) = 8$, find $\lim_{x \to a} \frac{2f(x)}{h(x) - f(x)}$

Multiple Choice

27. If
$$f(x) = \sqrt{x+2}$$
, then $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} =$

(A) 4 (B) 0 (C) $\frac{1}{2}$ (D) $\frac{1}{4}$ (E) 1

$$\underline{\qquad} 28. \lim_{x \to \infty} \frac{\left(1 - 2x^2\right)^3}{\left(x^2 + 1\right)^3} =$$
(A) 8 (B) $-\infty$ (C) 0 (D) ∞ (E) -8

29. If
$$\lim_{n \to \infty} \frac{6n^2}{200 - 4n + kn^2} = \frac{1}{2}$$
, then $k =$

(A) 3 (B) 6 (C) 12 (D) 8 (E) 2