(19) 日本国特許庁 (JP)

① 特許出願公開

¹⁰ 公開特許公報 (A)

昭59—218728

⑤Int. Cl.³
H 01 L 21/265

識別記号

庁内整理番号 6851-5F 码公開 昭和59年(1984)12月10日

発明の数 1 審査請求 未請求

(全 5 頁)

毎半導体基体への不純物導入方法

②特 願 昭58-93219

②出 願 昭58(1983) 5 月26日

⑩発 明 者 佐藤則忠

横須賀市長坂2丁目2番1号株 式会社富士電機総合研究所内

@発 明 者 関康和

横須賀市長坂2丁目2番1号株

式会社富士電機総合研究所内

⑫発 明 者 石渡統

横須賀市長坂2丁目2番1号株式会社富士電機総合研究所内

⑪出 願 人 株式会社富士電機総合研究所

横須賀市長坂2丁目2番1号

⑪出 願 人 富士電機製造株式会社

川崎市川崎区田辺新田1番1号

仍代 理 人 弁理士 山口巌

明 細 書

- 1. 発明の名称 半導体基体への不純物導入方法
- 2. 特許 謝求の範囲

1) 真空容器内に収容した半導体基体を所定の温度に加熱し、前配容器内に不純物を含むふん囲気中でグロー放低を発生させ、次いで不活性ふん囲気中でグロー放低を発生させることを特徴とする 半導体基体への不純物導入方法。

3. 発明の詳細な説明

[発明のぬする技術分野]

本発明は半導体基体にトナーまたはアクセプタ としての不制物を導入して基体と不純物濃度が異 なる所定の導電形の領域を形成する方法に関する。 〔従来技術とその問題点〕

この間の半導体領域を形成するためには、熱拡散、エピタキシャル成長、イオン注入などが知られている。これらの方法は、いずれも半導体基体に800~1250℃の熱処理を加える必要がある。このような高温熱処理は半導体基体中に結晶欠陥が生じ、また重金属元器が熱処理炉から半導体基

体中に拡散するため、キャリアーのライフタイムを低下させてしまりほかに、10km-cm以上の高比抵抗を有するシリコンの場合は、その結晶中に含まれる酸素がドナー化するため、比抵抗が低下するなどの欠点があり、母材結晶本来の特性を維持することは困難である。

このような欠点は、熱処理温度を低くすれば解決するが、従来技術を用いて、単に温度を低くするだけでは、形成される半導体領域の不純物濃度及び拡散深さのばらつきが大きくなり、将現性も悪くなる。例えば、熱拡散法ではドーパント不純物の半導体基体中での拡散係数が低下し、800c以下の熱拡散は不可能に近い。

そのほかに、深さ 0.2 pm以下 の極 郡半 導体 領域 を 母材 の半 導体 表面 に 形成 する ことは 極 め て 因 難 で ある。 例 えば、 イ オ ン 注 入 法 で こ の 極 彰 半 導 体 領域 を 形成 する た め に は、 加 速 電 圧 3 0 ke V 以 下 に するか、 半 導体 基体 表面 に 酸 化 段 を 初 め に 形 成 し、 そ の 酸 化 膜 を 通 し て ドー パ ン ト 不 純 物 の イ オ ン を 注 入 す る 必 要 が ある。 し か し 加 速 亀 圧 を 低 く

特開昭59-218728(2)

するにつれてイオン電流が得られにくく、表面不 純物微度を高くすることが困難であり、酸化膜を 通して注入する場合は酸化膜厚のばらつきが極薄 半導体領域の表面混度と拡散深さに影響を及ぼし、 いずれも実用的ではない。とくに、極海半導体領域に表面濃度10²⁰ 原子/cd以上の不純物注入層 を得ることは不可能である。

このような欠点は、例えば、比抵抗10kΩ--- m 以上の高純度高比抵抗シリコンを用いて半導体放射線検出器子を製作する場合、高温熱処理が原因 て、半導体基体のキャリアライフタイムが低下し、 その結果SN比が懸くなり、あるいは形成される 表面ドーピング領域が少くとも5μm以上の深さを 有するため、放射線に対して不感領域となるこの 領域が厚くなるなどの問題がある。

一方、最近工業的に注目されている非晶質半導体に不純物を導入した領域を形成することについては、すでに種々の方法が開示されている。例名はほう案をトーピングするために最も一般的に行われる方法はモノシラン(SiH4)とジボラン(B2H6)

侵入した不納物を領気的に活性な不納物に変換するととにより上記の目的を遊成する。

[発明の実施例]

第1図は、本発明を実施するための反応槽の概略図で、真空容器1、電極2a,2b、半導体基体3、真空排気系4、ドーパント不純物を含むガスポンペ5aと不活性ガスボンペ5b、及びとれらのガスの圧力と流量を調整するための調整回路6、グロー放電用DC 電源7a、半導体基体加熱用電源7b、グロー放電時のガス圧力を調整するための真空パルブ8、及び真空計9から構成されている。

まず、真怨排気系 4 により、真空容器 1 内を排気 1 × 10⁻⁷ Torr の真空にしたのち、真空 パルブ 8 を絞り、真空排気 系 4 の排気速度を下げると同時に、真空容器 1 に不納物ガスを調整 回路 6 を 通して 導入し、公知の 中り方で 電極 2 a 、2 b 間に 2 a 上に 配質した 半導体 3 に その 不納物 を さい 不活性 ガス 4 ん 田 気中で さらに グロー 放電を どの 不活性 ガス 4 ん 田 気中で さらに グロー 放電を

を同時に反応権内に流入させ、グロー放電を発生させて任う素がドーピングされた非晶質シリコンを得るものである。しかしこの方法では、 夢い 脳は形成できるものの、 任う業を 10²¹原子/cd以上 非晶質シリコン中に導入することは不可能に近く、その比抵抗も低くならない。また二つのガスを同時に流入させる際、 ガス流量比の制御が困難で再現性が悪いという欠点があつた。

(発明の目的)

本発明は、これに対して半導体基体を高温に加熱することなく、基体中に改くて表面不純物設度の高い所定の導電形の半導体領域を再現性よく形成できる不純物導入方法を提供することを目的とする。

(発明の要点)

本発明は真空容器内に収容した半導体基体を所定の温度に加熱し、その容器内に不純物を含むかん囲気中でグロー放電を発生させることにより半導体基体表面に不純物侵入層を形成し、次いで不活性ガスふん囲気中でグロー放電を発生させ先に

発生させると、 先に 侵入した不納物は、 グロー放 電時間との経過と共に格子間位置から関換型位置 におきかわり、 電気的に活性 な不純物が増加する。

第2図はシリコン単結晶基板上に任う素を導入 した場合の一例で、との諸条件は下記の通りであ る。

(1) 不純物導入条件

半導体基体:シリコン、n型、比抵抗10~

30 k Ω - cm 、 鏡面仕上げ

基 体 温 度 : 3 0 0 c

ドーパント不納物ガス: 水衆で1000 ppm 10~し

たジボラン希-駅

グロー放電時の圧力: 2.0 Torr

放電パワー: DC 400~600V, 0.6 mA/cm²

- 電極間距離: 50 mm

放電時間:60分

(2) 電気的活性化条件

不活性ガス:アルゴン

グロー放電時の圧力: 0.1 Torr

放電パワー: DC 600V, 0.6 mA/cm²

基 体 温 度: 100~300c

放 電 時 間: 120~36J分

第2図の曲線10はIMAで求めた不純物濃度分布であり、このうち電気的に活性な不純物の凝度分布を拡がり抵抗で求めたものが曲線11であ

1000 ppm に希釈したプォスフ イン

グロー放電時の圧力: 2.0 Torr

放電パワー:DC 600, 0.6 mA/cm²

電極川距離:50 mm

放 覧 時 間: 60分

(2) 電気的活性化条件:第2 図について示した条件と同じ

第3図の曲級20はIMAで求めた導入りん濃度分布であり、曲級21は拡がり抵抗で求めた電気的に活性なりんの濃度分布である。また曲線22,23はさらにアルゴン中でのグロー放電により電気的活性化を120分,240分行つたあとの拡がり抵抗法で求めた濃度分布である。すなわち、第2図と同様な結果が得られ、放電時間と共に電気的に活性なりん濃度が増加する。

このようなアルゴンふん囲気中でのグロー放電はスペッタリングと呼ばれ、イオン化したアルゴンイオンを、例えばシリコン表面に衝突させるとシリコン原子がはじき飛ばされ新しい原子層が露

る。ジボランの分解により生じ、シリコン単結晶中に侵入したほう素の大部分はシリコン単結晶の格子間位置に入り、格子の位置に入る能換型のほう素原子が少く、その結果電気伝導度に寄与するは、とのシリコンウェハを、さらにアルゴンガスは、このシリコンウェハを、さらにアルゴンガスよん囲気中で、それぞれ120分,240分,360分グロー放電を行つたのち、拡がり抵抗法

第3回は、別の実施例を示すもので、第2回と 相違する点は、ほう素の代りにりんを拡散させた 点で、n型の半導体領域が形成できる。その条件 を次に示す。

(1) 不純物導入条件。

半導体基体:シリコンp型、比抵抗10~30 k Ω-cm 競面仕上げ

反応温度:300℃

ドーパント不納物ガス: マオファインを水光で

特開昭 59-218728 (4)

抵抗の不純物圏を有する pn 構造の極薄非晶質膜 も容易に得られる。

[発明の効果]

この発明は、例えば300で以下の低温度で、単結晶や非晶質半導体基体中にドーパント不純物を導入させる方法である。先ず不純物がガスふん囲気中でグロー放散を発生させて不純物を導入し、ついてアルゴンなどの不活性ガスふん囲気中でグロー放電を行うと、上記のように電気的に活性な表面不純物線度は10¹⁶~10²² 原::子/dlの任意の範囲で、しかも1500 A^o以下の深さの不純物導入層が得られる。

すなわち、熱拡散法やイオン注入法では不可能 な極薄で表面不純物遊度の高い半導体領域が得られ、放射線検出素子に適用した場合は、 pn 接合 層のような放射級に対して不感層の領域を薄くで きるばかりでなく、低温処理工程のため結晶本来 の特性を保持するので、 SN比を高め、エネルギ 一分解能力を向上させることができる。

非晶質シリコンを用いた光検出素子では、不純

物ドーピング層を形成する際、従来のようにシランガスとドーパントガスとを最適混合比で反応槽内に送るための操作が不要になり、ドーパントガスのみを流してグロー放電及び不活性ガス中のグロー放電を発生させれば良いため、従来法では不可能に近いような低比抵抗不純物ドーピング層で、しかも獲薄層が得られる。

プレーナ型素子やMOSIC素子では、酸化膜の 汚染、接合深さの変動など、高温熱処理工程によ り生じる特性の変化が少くなるなどの効果が上記 した簡単な装置でも容易に得られる。とくに熱拡 散法やイオン注入法では不可能な複薄拡散層で高 い表面濃度の半導体領域が形成できる。

4. 図面の簡単な説明

第1図は本発明を実施するための反応装置の一例の概略構成図、第2図はドーパント不純物としてほう素を拡散した場合の設度分布を示すブロファイル 級図、第3図はドーパント不純物としてりんを拡散した場合の設度分布を示すブロファイル 線図である。

1 …… 真空容器、2a,2b …… 電極、3 …… 半 導体基体、4 …… 真空排気系、5a……トーパント ガスポンペ、5b……不活性ガスポンペ、7a……グ ロー放電用電源、7b……基体加熱用電源。

COLARD+ .1. []

第1四

