```
In [1]:
import numpy as np
import pandas as pd
In [2]:
names = ['user id', 'item id', 'rating', 'timestamp']
df =pd.read csv('ml-100k/u.data', sep='\t', names=names)
df.head()
Out[2]:
   user_id item_id rating timestamp
0
     196
            242
                    3 881250949
1
      186
            302
                    3 891717742
2
      22
            377
                   1 878887116
3
      244
             51
                    2 880606923
      166
            346
                    1 886397596
In [4]:
n_users = df.user_id.unique().shape[0]
n items = df.item id.unique().shape[0]
print (str(n users) + ' users')
print (str(n_items) + ' items')
943 users
1682 items
In [5]:
ratings = np.zeros((n_users, n_items))
for row in df.itertuples():
    ratings[row[1]-1, row[2]-1] = row[3]
ratings
Out[5]:
array([[5., 3., 4., ..., 0., 0., 0.],
       [4., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [5., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 5., 0., ..., 0., 0., 0.]])
In [6]:
sparsity = float(len(ratings.nonzero()[0]))
sparsity /= (ratings.shape[0] * ratings.shape[1])
sparsity *= 100
print('Sparsity: {:4.2f}%'.format(sparsity))
Sparsity: 6.30%
In [8]:
def train_test_split(ratings):
    test = np.zeros(ratings.shape)
    train = ratings.copy()
    for user in range(ratings.shape[0]):
        test ratings = np.random.choice(ratings[0, :].nonzero()[0],
```

```
replace=False)

train[user, test_ratings] = 0.
   test[user, test_ratings] = ratings[user, test_ratings]

# Test and training are truly disjoint
assert(np.all((train * test) == 0))
return train, test

train, test = train_test_split(ratings)
```

In [9]:

```
def slow similarity(ratings, kind='user'):
    if kind == 'user':
       axmax = 0
        axmin = 1
    elif kind == 'item':
       axmax = 1
       axmin = 0
    sim = np.zeros((ratings.shape[axmax], ratings.shape[axmax]))
    for u in range(ratings.shape[axmax]):
        for uprime in range(ratings.shape[axmax]):
            rui_sqrd = 0.
            ruprimei sqrd = 0.
            for i in range(ratings.shape[axmin]):
                sim[u, uprime] = ratings[u, i] * ratings[uprime, i]
                rui sqrd += ratings[u, i] ** 2
                ruprimei_sqrd += ratings[uprime, i] ** 2
            sim[u, uprime] /= rui sqrd * ruprimei sqrd
    return sim
```

In [10]:

```
def fast_similarity(ratings, kind='user'):
    if kind == 'user':
        sim = ratings.dot(ratings.T)
    elif kind == 'item':
        sim = ratings.T.dot(ratings)
    norms = np.array([np.sqrt(np.diagonal(sim))])
    return sim / norms / norms.T
```

In [11]:

In [12]:

```
In [13]:
def predict fast simple(ratings, similarity, kind='user'):
    if kind == 'user':
        return similarity.dot(ratings) / np.array([np.abs(similarity).sum(axis=1)]).T
    elif kind == 'item':
        return ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
In [14]:
from sklearn.metrics import mean squared error
In [15]:
def get mse(pred, actual):
    # Ignore nonzero terms.
    pred = pred[actual.nonzero()].flatten()
    actual = actual[actual.nonzero()].flatten()
    return mean squared error (pred, actual)
In [17]:
item_prediction = predict_fast_simple(train, item_similarity, kind='item')
user prediction = predict fast simple(train, user similarity, kind='user')
print('User-based CF MSE: ' + str(get_mse(user_prediction, test)))
print('Item-based CF MSE: ' + str(get_mse(item_prediction, test)))
User-based CF MSE: 7.293962040310653
Item-based CF MSE: 9.958893513581314
In [18]:
def predict_topk(ratings, similarity, kind='user', k=40):
    pred = np.zeros(ratings.shape)
    if kind == 'user':
        for i in range(ratings.shape[0]):
            top k users = [np.argsort(similarity[:,i])[:-k-1:-1]]
            for j in range(ratings.shape[1]):
                pred[i, j] = similarity[i, :][top_k_users].dot(ratings[:, j][top_k_users])
                pred[i, j] /= np.sum(np.abs(similarity[i, :][top k users]))
    if kind == 'item':
        for j in range(ratings.shape[1]):
            top_k_items = [np.argsort(similarity[:,j])[:-k-1:-1]]
            for i in range(ratings.shape[0]):
                pred[i, j] = similarity[j, :][top_k_items].dot(ratings[i, :][top k items].T)
                pred[i, j] /= np.sum(np.abs(similarity[j, :][top_k_items]))
    return pred
pred = predict topk(train, user similarity, kind='user', k=40)
print('Top-k User-based CF MSE: ' + str(get mse(pred, test)))
pred = predict topk(train, item similarity, kind='item', k=40)
print('Top-k Item-based CF MSE: ' + str(get_mse(pred, test)))
F:\CONDA\lib\site-packages\ipykernel launcher.py:7: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
 import sys
F:\CONDA\lib\site-packages\ipykernel launcher.py:8: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
```

ror or a different regult

```
error or a urrrerent resurt.
```

Top-k User-based CF MSE: 4.042916821517707

F:\CONDA\lib\site-packages\ipykernel_launcher.py:13: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

del sys.path[0]

F:\CONDA\lib\site-packages\ipykernel_launcher.py:14: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

Top-k Item-based CF MSE: 4.427883840161299

In [20]:

```
k \text{ array} = [5, 15, 30, 50, 100, 200]
user train mse = []
user test mse = []
item test mse = []
item train mse = []
def get mse(pred, actual):
   pred = pred[actual.nonzero()].flatten()
    actual = actual[actual.nonzero()].flatten()
    return mean_squared_error(pred, actual)
for k in k array:
    user pred = predict topk(train, user similarity, kind='user', k=k)
    item pred = predict topk(train, item similarity, kind='item', k=k)
    user_train_mse += [get_mse(user_pred, train)]
    user test mse += [get mse(user pred, test)]
    item train mse += [get mse(item pred, train)]
    item test mse += [get mse(item pred, test)]
```

F:\CONDA\lib\site-packages\ipykernel_launcher.py:7: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

import sys

F:\CONDA\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:13: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

del sys.path[0]

F:\CONDA\lib\site-packages\ipykernel_launcher.py:14: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:7: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

import sys

F:\CONDA\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:13: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future for the following is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`.

e this will be interpreted as an array index, $\arr[np.array(seq)]$, which will result either in an error or a different result.

del sys.path[0]

F:\CONDA\lib\site-packages\ipykernel_launcher.py:14: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:7: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

import sys

F:\CONDA\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:13: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

del sys.path[0]

F:\CONDA\lib\site-packages\ipykernel_launcher.py:14: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:7: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

import sys

F:\CONDA\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:13: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

del sys.path[0]

F:\CONDA\lib\site-packages\ipykernel_launcher.py:14: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:7: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

import sys

F:\CONDA\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:13: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

del sys.path[0]

F:\CONDA\lib\site-packages\ipykernel_launcher.py:14: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:7: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

import sys

F:\CONDA\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

```
F:\CONDA\lib\site-packages\ipykernel_launcher.py:13: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

del sys.path[0]
F:\CONDA\lib\site-packages\ipykernel_launcher.py:14: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
```

In [21]:

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

pal = sns.color_palette("Set2", 2)

plt.figure(figsize=(8, 8))
plt.plot(k_array, user_train_mse, c=pal[0], label='User-based train', alpha=0.5, linewidth=5)
plt.plot(k_array, user_test_mse, c=pal[0], label='User-based test', linewidth=5)
plt.plot(k_array, item_train_mse, c=pal[1], label='Item-based train', alpha=0.5, linewidth=5)
plt.plot(k_array, item_train_mse, c=pal[1], label='Item-based train', alpha=0.5, linewidth=5)
plt.plot(k_array, item_test_mse, c=pal[1], label='Item-based test', linewidth=5)
plt.legend(loc='best', fontsize=20)
plt.xticks(fontsize=16);
plt.yticks(fontsize=16);
plt.yticks(fontsize=30);
plt.ylabel('MSE', fontsize=30);
```


In [22]:

```
def predict_nobias(ratings, similarity, kind='user'):
    if kind == 'user':
        user_bias = ratings.mean(axis=1)
        ratings = (ratings - user_bias[:, np.newaxis]).copy()
        pred = similarity.dot(ratings) / np.array([np.abs(similarity).sum(axis=1)]).T
        pred += user_bias[:, np.newaxis]
    elif kind == 'item':
        item_bias = ratings.mean(axis=0)
        ratings = (ratings - item_bias[np.newaxis, :]).copy()
        pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
```

```
return pred

user_pred = predict_nobias(train, user_similarity, kind='user')
print('Bias-subtracted User-based CF MSE: ' + str(get_mse(user_pred, test)))

item_pred = predict_nobias(train, item_similarity, kind='item')
print('Bias-subtracted Item-based CF MSE: ' + str(get_mse(item_pred, test)))

Bias-subtracted User-based CF MSE: 6.821500672783424
Bias-subtracted Item-based CF MSE: 7.334858113878549
```

In [23]:

```
def predict topk nobias(ratings, similarity, kind='user', k=40):
   pred = np.zeros(ratings.shape)
    if kind == 'user':
        user bias = ratings.mean(axis=1)
        ratings = (ratings - user bias[:, np.newaxis]).copy()
        for i in range(ratings.shape[0]):
            top k users = [np.argsort(similarity[:,i])[:-k-1:-1]]
            for j in range(ratings.shape[1]):
                pred[i, j] = similarity[i, :][top_k_users].dot(ratings[:, j][top_k_users])
                pred[i, j] /= np.sum(np.abs(similarity[i, :][top k users]))
        pred += user_bias[:, np.newaxis]
    if kind == 'item':
       item_bias = ratings.mean(axis=0)
        ratings = (ratings - item bias[np.newaxis, :]).copy()
        for j in range(ratings.shape[1]):
            top k items = [np.argsort(similarity[:,j])[:-k-1:-1]]
            for i in range(ratings.shape[0]):
                pred[i, j] = similarity[j, :][top_k_items].dot(ratings[i, :][top_k_items].T)
                pred[i, j] /= np.sum(np.abs(similarity[j, :][top_k_items]))
        pred += item bias[np.newaxis, :]
    return pred
```

In [24]:

```
k array = [5, 15, 30, 50, 100, 200]
user train mse = []
user_test_mse = []
item test mse = []
item train mse = []
for k in k array:
    user pred = predict topk nobias(train, user similarity, kind='user', k=k)
    item_pred = predict_topk_nobias(train, item_similarity, kind='item', k=k)
    user train mse += [get mse(user pred, train)]
    user test mse += [get mse(user pred, test)]
    item_train_mse += [get_mse(item_pred, train)]
    item_test_mse += [get_mse(item_pred, test)]
F:\CONDA\lib\site-packages\ipykernel launcher.py:9: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
       name == ' main ':
  if
F:\CONDA\lib\site-packages\ipykernel launcher.py:10: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
  # Remove the CWD from sys.path while we load stuff.
F:\CONDA\lib\site-packages\ipykernel_launcher.py:18: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel launcher.py:19: FutureWarning: Using a non-tuple sequence for
\verb|multidimensional| indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
```

```
F:\CONDA\lib\site-packages\ipykernel launcher.py:9: FutureWarning: Using a non-tuple sequence for
\verb| multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur| \\
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
    if __name__ == '__main__':
F:\CONDA\lib\site-packages\ipykernel launcher.py:10: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
   # Remove the CWD from sys.path while we load stuff.
F:\CONDA\lib\site-packages\ipykernel launcher.py:18: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel launcher.py:19: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel launcher.py:9: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
   if __name__ == '__main__':
F:\CONDA\lib\site-packages\ipykernel_launcher.py:10: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
    # Remove the CWD from sys.path while we load stuff.
F:\CONDA\lib\site-packages\ipykernel_launcher.py:18: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel launcher.py:19: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel launcher.py:9: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
   if name == ' main ':
F: \verb|\CONDA| lib| site-packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future \verb|\Warring: Using a non-tuple sequence for the packages | ipykernel_launcher.py: 10: Future Warring: 10: Future Warring:
\verb| multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur| \\
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
   # Remove the CWD from sys.path while we load stuff.
F:\CONDA\lib\site-packages\ipykernel launcher.py:18: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel_launcher.py:19: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel launcher.py:9: FutureWarning: Using a non-tuple sequence for
\verb|multidimensional| indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
   if __name__ == '__main__':
F:\CONDA\lib\site-packages\ipykernel launcher.py:10: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
    # Remove the CWD from sys.path while we load stuff.
\label{thm:conda} F: \texttt{\condalib\site-packages\ipykernel\_launcher.py:18:} Future \texttt{\worming: Using a non-tuple sequence for the condalib\site-packages\ipykernel\_launcher.py:18:} Future \texttt{\worming: Using a non-tuple sequence for the condalib\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packages\site-packag
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel_launcher.py:19: FutureWarning: Using a non-tuple sequence for
\verb|multidimensional| indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur|
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
F:\CONDA\lib\site-packages\ipykernel_launcher.py:9: FutureWarning: Using a non-tuple sequence for
multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur
e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an
error or a different result.
```

if __name__ == '__main__':

F:\CONDA\lib\site-packages\ipykernel_launcher.py:10: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

Remove the CWD from sys.path while we load stuff.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:18: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

F:\CONDA\lib\site-packages\ipykernel_launcher.py:19: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the futur e this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

In [25]:

```
pal = sns.color_palette("Set2", 2)

plt.figure(figsize=(8, 8))
plt.plot(k_array, user_train_mse, c=pal[0], label='User-based train', alpha=0.5, linewidth=5)
plt.plot(k_array, user_test_mse, c=pal[0], label='User-based test', linewidth=5)
plt.plot(k_array, item_train_mse, c=pal[1], label='Item-based train', alpha=0.5, linewidth=5)
plt.plot(k_array, item_test_mse, c=pal[1], label='Item-based test', linewidth=5)
plt.legend(loc='best', fontsize=20)
plt.xticks(fontsize=16);
plt.yticks(fontsize=16);
plt.yticks(fontsize=30);
plt.ylabel('MSE', fontsize=30);
```


In []:

```
import requests
import json

response = requests.get('http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)')
print(response.url.split('/')[-2])

# Get base url filepath structure. w185 corresponds to size of movie poster.
headers = {'Accept': 'application/json'}
payload = {'api_key': 'Plz insert your key here '}
response = requests.get("http://api.themoviedb.org/3/configuration", params=payload, headers=header
s)
response = json.loads(response.text)
base url = response['images']['base url'] + 'w185'
```

```
In [28]:
```

```
def get poster(imdb url, base url):
    # Get IMDB movie ID
   response = requests.get(imdb url)
   movie id = response.url.split('/')[-2]
    # Query themoviedb.org API for movie poster path.
    movie url = 'http://api.themoviedb.org/3/movie/{:}/images'.format(movie id)
    headers = {'Accept': 'application/json'}
    payload = {'api_key': 'INSERT API_KEY HERE'}
    response = requests.get(movie url, params=payload, headers=headers)
        file path = json.loads(response.text)['posters'][0]['file path']
    except:
       # IMDB movie ID is sometimes no good. Need to get correct one.
        movie_title = imdb_url.split('?')[-1].split('(')[0]
        payload['query'] = movie title
        response = requests.get('http://api.themoviedb.org/3/search/movie', params=payload, headers
=headers)
       movie id = json.loads(response.text)['results'][0]['id']
       payload.pop('query', None)
        movie url = 'http://api.themoviedb.org/3/movie/{:}/images'.format(movie id)
        response = requests.get(movie url, params=payload, headers=headers)
        file path = json.loads(response.text)['posters'][0]['file path']
    return base_url + file_path
```

In [30]:

```
toy_story = 'http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)'

# Load in movie data
idx_to_movie = {}
with open('ml-100k/u.item', 'r') as f:
    for line in f.readlines():
        info = line.split('|')
        idx_to_movie[int(info[0])-1] = info[4]

def top_k_movies(similarity, mapper, movie_idx, k=6):
    return [mapper[x] for x in np.argsort(similarity[movie_idx,:])[:-k-1:-1]]

idx = 0 # Toy Story
movies = top_k_movies(item_similarity, idx_to_movie, idx)
```

In [31]:

```
print(movies)
```

['http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)', 'http://us.imdb.com/M/title-exact? Star%20Wars%20(1977)', 'http://us.imdb.com/M/title-exact?Independence%20Day%20(1996)', 'http://us.imdb.com/M/title-exact?Return%20of%20the%20Jedi%20(1983)', 'http://us.imdb.com/M/title-exact?Mission:%20Impossible%20(1996)', 'http://us.imdb.com/M/title-exact?Rock,%20The%20(1996)']

Conclusion

Recommended movies on basis of Toy Story(1995):

- Star Wars(1997)
- Independence Day(1996)
- Return of Jedi(1983)
- Mission Impossible (1996)
- Rock (1996)

In []:

Similarity Calculation

```
In [33]:
```

```
import pandas as pd
import scipy
import sklearn

r_cols=['user_id','movie_id','rating']
ratings=pd.read_csv('ml-latest/ratings.csv',names=r_cols,usecols=range(3))
ratings.head()
```

Out[33]:

	user_id	movie_id	rating
0	userld	movield	rating
1	1	1	4.0
2	1	3	4.0
3	1	6	4.0
4	1	47	5.0

In [34]:

```
m_cols=['movie_id','title']
movies=pd.read_csv('ml-latest/movies.csv',names=m_cols,usecols=range(2))
movies.head()
```

Out[34]:

title	movie_id		
title	movield	0	
Toy Story (1995)	1	1	
Jumanji (1995)	2	2	
Grumpier Old Men (1995)	3	3	
Waiting to Exhale (1995)	4	4	

In [35]:

```
ratings=pd.merge(movies, ratings)
ratings.head()
```

Out[35]:

	movie_id	title	user_id	rating
0	movield	title	userld	rating
1	1	Toy Story (1995)	1	4.0
2	1	Toy Story (1995)	5	4.0
3	1	Toy Story (1995)	7	4.5
4	1	Toy Story (1995)	15	2.5

In [36]:

```
movieRatings=ratings.pivot_table(index=['user_id'],columns=['title'],values='rating',aggfunc =
lambda x: x)
movieRatings.head()
```

Out[36]:

title	'71 (2014)	'Hellboy': The Seeds of Creation (2004)	'Round Midnight (1986)	'Salem's Lot (2004)	'Til There Was You (1997)	'Tis the Season for Love (2015)	'burbs, The (1989)	'night Mother (1986)	(500) Days of Summer (2009)	*batteries not included (1987)	 [REC] (2007)	[REC] ² (2009)	[REC] ³ 3 Génesis (2012)	FI We That M
user_id														
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
10	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
100	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
101	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
102	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	
rows ×	9720 cc	olumns								I				