DATA STRUCTURES AND ALGORITHMS

Tree Data Structure

By Zainab Malik

Content

- · Introduction to Tree Data Structure
- · Terminologies of trees.
- · Binary Trees and their properties
- · Complete Binary Tree
- · Extended Binary Tree
- · Binary Search Tree

Tree Data Structure

- · There are two types of data
 - · Elementary Data:
 - · Cannot be further divided into sub-parts
 - · Group Data
 - Can be divided into sub-parts
 - · It is also known as hierarchical data
- · Hierarchical Data:
 - Data that has ancestor-descendant, superior-subordinate, wholepart or similar relationship among its elements.
 - The discussed data structures like Arrays, Stack, Queue, Linked List are not suitable for this type of data
 - A Tree is an ideal data structure for representing such kind of data.

1

Complete Binary Tree

- If we numbered nodes of a complete binary tree from top-to-bottom and left-to-right, level by level then we can find the children and parent of any node numbered K in the complete binary tree.
- Left Child: 2K
- $\textbf{Right Child} \hbox{:}\ 2K+1$
- Parent: $\lfloor K/2 \rfloor$ Height (H_n) =Depth (D_n) = $\lfloor \log_2 n + 1 \rfloor$ = $\lfloor \log_2 (12) + 1 \rfloor$ = $\lfloor 3.58 + 1 \rfloor$ = 4

Extended Binary Tree

- · A binary tree T is said to be an extended binary tree if each node has either 0 or 2 children,
- · In such tree, nodes with two children are known as internal nodes and nodes with 0 children are known as external nodes.

Expression tree for 2*3/(2-1)+5*(4-1)

Binary search Tree (BST)

- A Binary search tree is a tree that satisfies the following
 - Every element has the key (content) and no other node has the same key i.e. keys are unique
 - The keys, if any, in the left sub tree of the root are small than the key in the root node
 - · The keys, if any, in the right sub tree of the root are larger than the key in the root node
 - · The left and right sub tree of root are also binary search trees

Binary search Tree (BST) - Examples 15 7 17 (b)

	17
	''
Thank You	