Estructuras de Datos

Dr. Martin Gonzalez-Rodriguez

ISBN 978-1-365-00699-9

© 2012 – 2016 Martín González Rodríguez

Árboles

Dr. Martin Gonzalez-Rodriguez

Estructuras de Datos Jerárquicas

Objetivo

- Modelar relaciones de orden y/o de clasificación entre elementos.
 - Jerarquías sociales (ejército, iglesia, organigrama empresarial, etc.).
 - Modelado de gramáticas (árboles sintácticos, árboles léxicos.)
 - Modelos informáticos (jerarquía de clases, sistemas de ficheros, etc.).
 - Sistemas de clasificación (rangos taxonómicos, árboles filogenéticos, genealógicos, deportivos, etc.).

Conceptos Básicos

¿Qué es un Árbol?

- En informática¹ llamamos árbol a un grafo conexo sin ciclos con raíz.
 - Dado un nodo llamado raíz y cualquier otro vértice v, sólo existe un camino dirigido desde el nodo raíz al nodo v.

Elementos Básicos de un Árbol

- 1. Raíz.
- 2. Hijo (descendiente directo).
- 3. Padre (ascendiente directo).
- 4. Hoja (nodo terminal).
- 5. Nodo interior.
- 6. Grado de un nodo.
- 7. Grado de un árbol.
- 8. Nivel de un nodo.
- 9. Altura (profundidad).

¹En matemáticas, una arborescencia es un árbol libre (grafo conexo sin ciclos) con raíz.

Conceptos Básicos

Árbol Completo

- Aquel que tiene el máximo número de nodos posible para su altura h y grado g.
 - Es aquel que tiene todos los niveles llenos.
 - Máximo nivel de eficiencia en las búsquedas desde la raíz.

$$n = 2^h - 1$$

$$\log_2(n + 1) = h$$

Métricas de Eficiencia

Caminos de Búsqueda

- CI: Camino Interno (nodo encontrado)
 - Buscar A = 1.
 - Buscar B y C = 2 c/u = 4.
 - Buscar D y E = 3 c/u = 6.
 - Buscar F, G y H = 4 c/u = 12.
 - Total = 23.
 - » Para 8 nodos = $23 / 8 = L_mCI = 2,87$

Métricas de Eficiencia

 $L_{m}CE = 4,17.$

Caminos de Búsqueda

Arbol Binario

Árbol de grado 2

- Modela relaciones de jerarquía entre pares de elementos con respecto a un nodo superior
 - Árboles genealógicos.
 - Competiciones de copa.
 - Operadores binarios.

Árbol ordenado para facilitar operaciones de búsqueda

- Se cumple que para cada nodo...
 - Subárbol izquierdo: contiene elementos con clave menor que la del nodo padre.
 - Subárbol derecho: contiene elementos con clave mayor que la del nodo padre.

Estructura y operaciones básicas

Class BSTNode public class BSTNode <T extends Comparable <T>> { private T element; private BSTNode<T> left; private BSTNode<T> right; }

- Operaciones básicas
 - Add.
 - Search.
 - Remove.
 - toString.

Insertar

- Procedimiento recursivo
 - Caso General 1:
 - Si clave del nodo a insertar es menor que la clave del nodo actual, insertar nodo por la izquierda.
 - Caso General 2:
 - Si clave del nodo a insertar es mayor que la clave del nodo actual, insertar nodo por la derecha.
 - Caso de Parada 1:
 - Si clave del nodo a insertar es igual que la clave del nodo actual, el nodo ya existe, lanzar excepción pues no se permiten claves repetidas.
 - Caso de Parada 2:
 - Si el nodo actual es igual a null. Se ha alcanzado una hoja, crear nodo a insertar y devolver.

add

```
private BSTNode<T> add (BSTNode<T> theRoot, T element) {
  if (theRoot == null)
    return new BSTNode<T> (element);

  if (element.compareTo(theRoot.getElement()) == 0)
    throw new RuntimeException("element already exists!");

  if (element.compareTo(theRoot.getElement()) < 0)
    theRoot.setLeft (add(theRoot.getLeft(), element));

  if (element.compareTo(theRoot.getElement()) > 0)
    theRoot.setRight (add(theRoot.getRight(), element));
}
```

CLASSWORK

PLAYGROUND

- Ejercicio ABB 1. partiendo de un árbol binario de búsqueda vacío...
 - a) Inserte la secuencia de nodos: 5, 7, 9, 3, 1, 2, 6.
 - Analice la complejidad temporal de cada inserción.
- Ejercicio ABB 2. partiendo de un árbol binario de búsqueda vacío...
 - a) Inserte la secuencia de nodos: 7, 6, 5, 4, 3, 2, 1.
 - Analice la complejidad temporal de cada inserción.
 - b) Inserte el nodo 8.
 - Analice la complejidad temporal de la inserción.

Complejidad caso mejor: O(1)

Complejidad caso peor: O(n)

Search

```
private boolean search (BSTNode<T> theRoot, T element)
 if (theRoot == null)
  return false;
 else
  if (element.compareTo(theRoot.getElement()) == 0)
   return true;
  else
   if (element.compareTo(theRoot.getElement()) < 0)</pre>
    return search(theRoot.getLeft(), element);
   else
    if (element.compareTo(theRoot.getElement()) > 0)
     return search (theRoot.getRight(), element);
```

Complejidad caso mejor: O(1)

Complejidad caso peor: O(n)

Remove

```
private BSTNode<T> remove (BSTNode<T> theRoot, T element)
  if (theRoot == null)
   throw new RuntimeException ("element does not exist!");
  else
   if (element.compareTo(theRoot.getElement()) < 0)</pre>
    theRoot.setLeft(remove (theRoot.getLeft(), element));
   else
    if (element.compareTo(theRoot.getElement()) > 0)
     theRoot.setRight(remove (theRoot.getRight(), element));
    else ·
     // nodo encontrado
     // ¿Cómo se borra?
   return theRoot;
```

Casos particulares del borrado

- Caso I: Borrar elemento sin hijos (hojas).
 - La referencia se anula (iguala a *null*).

```
else {
  if (theRoot.getLeft() == null &&
    theRoot.getRight() == null)
    return(null);
```


Casos particulares del borrado

- Caso II: Borrar elemento con un solo hijo.
 - La referencia se reasigna al único hijo que tenga el nodo.

```
else {
  if (theRoot.getLeft() == null)
    return theRoot.getRight();
  else
    if (theRoot.getRight() ==
    null) return theRoot.getLeft();
}
```


Casos particulares del borrado

- Caso III: Borrar elemento con dos hijos.
 - Substituir el contenido del nodo por el del nodo mayor de su subárbol izquierdo (pivote).
 - Borrar el pivote (se presentará el caso I o caso II pero nunca el caso III).

```
else {
  if (theRoot.getLeft() == null)
   return theRoot.getRight();
  else
  if (theRoot.getRight() == null)
   return theRoot.getLeft();
  else {
  theRoot.setElement(getMax(theRoot.getLeft()));
  }
}
```


getMax

```
private T getMax(BSTNode<T> theRoot)
{
   if (theRoot == null)
        return null;
   else
        if (theRoot.getRight () == null)
            return theRoot.getElement();
        else
            return getMaxRec(theRoot.getRight());
}
```

getMax

```
private T getMax(BSTNode<T> theRoot)
{
  while (theRoot.getRight() != null)
   theRoot = theRoot.getRight();

return theRoot.getElement();
}
```

Casos particulares del borrado

- Caso III: Borrar elemento con dos hijos.
 - Substituir el contenido del nodo por el del nodo mayor de su subárbol izquierdo (pivote).
 - Borrar el pivote (se presentará el caso I o caso II pero nunca el caso III).

```
else {
  if (theRoot.getLeft() == null)
    return theRoot.getRight();
  else
    if (theRoot.getRight() == null)
      return theRoot.getLeft();
    else {
  theRoot.setElement(getMax(theRoot.getLeft()));
    theRoot.setLeft(remove (theRoot.getLeft(), theRoot.getElement()));
  }
}
```


Casos particulares del borrado

Caso III: Borrar elemento con dos hijos.

```
else {
  if (theRoot.getLeft() == null) return
theRoot.getRight();
  else
  if (theRoot.getRight() == null)
    return theRoot.getLeft();
  else {
  theRoot.setElement(getMax(theRoot.getLeft()));
   theRoot.setLeft(remove());
}
```


Casos particulares del borrado

Caso III: Borrar elemento con dos hijos.

```
else {
  if (theRoot.getLeft() == null) return
theRoot.getRight();
  else
  if (theRoot.getRight() == null)
    return theRoot.getLeft();
  else {
  theRoot.setElement(getMax(theRoot.getLeft()));
   theRoot.setLeft(remove());
}
```


Remove (Pseudocode)

```
private BSTNode<T> remove (BSTNode<T> theRoot, T element) {
  if (theRoot == null)
   throw new RuntimeException ("element does not exist!");
  else
   if (element.compareTo(theRoot.getElement()) < 0)</pre>
    theRoot.setLeft(remove (theRoot.getLeft(), element));
   else
    if (element.compareTo(theRoot.getElement()) > 0)
     theRoot.setRight(remove (theRoot.getRight(), element));
    else {
     if (theRoot.getLeft() == null) return theRoot.getRight();
      else
      if (theRoot.getRight() == null) return theRoot.getLeft();
      else {
       theRoot.setElement(getMax(theRoot.getLeft()));
theRoot.setLeft(remove (theRoot.getLeft(),
theRoot.getElement());
                                } }
   return theRoot; }
```

Complejidad caso mejor: O(1)

Complejidad caso peor: O(n)

Recorrido de un Árbol Binario

preorden

- Primero se analiza el nodo, luego subárboles.
 - N-IZQ-DER ó N-DER-IZQ.

inorden

- El nodo se analiza entre los dos subárboles.
 - IZQ-N-DER ó DER-N-IZQ.

postorden

- El nodo se analiza después de los subárboles.
 - IZQ-DER-N ó DER-IZQ-N.

Ejercicio

Recorrer el árbol

- preorden: * + 3 / 4 2 * 2 5 (prefija).
- inorden: 3 + 4 / 2 * 2 * 5 (infija).
- **postorden**: 3 4 2 / + 2 5 * * (polaca inversa)

PLAYGROUND

Recorrer el árbol

- **preorden**: 6, 4, 3, 5, 12, 9, 8, 11, 15 (prefija).
- inorden: 3, 4, 5, 6, 8, 9, 11, 12, 15 (infija).
- **postorden**: 3, 5, 4, 8, 11, 9, 15, 12, 6 (polaca inversa).

toString (recorrido preorden)

Complejidad caso mejor: O(n)

Complejidad caso peor: O(n)

Eficiencia de un árbol binario de búsqueda

- La eficiencia de este tipo de árboles depende ampliamente de su altura
 - Rango de h: [log₂n, n]

Método	Complejidad caso mejor	Complejidad caso peor
Insertar	O(1)	O(n)
Buscar	O(1)	O(n)
Borrar	O(1)	O(n)
print	O(n)	O(n)

- Objetivo
 - Minimizar la altura del árbol, evitando árboles degenerados.

HOMEWORK

PLAYGROUND

- Consulte la entrada para los Árboles Binarios de Búsqueda en la Wikipedia
 - Estudie **cuidadosamente** todo el contenido de la entrada poniendo especial atención a la **Búsqueda del Árbol Óptimo**.

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

APE

Árboles Perfectamente Equilibrados (APE)

- Garantiza altura mínima en un árbol binario
 - Condición: Para todo nodo n, $|\#_{lzq}$ $\#_{der}|$ <= 1.
 - #_{izq} = número de nodos del subárbol izquierdo.
 - #_{der} = número de nodos del subárbol derecho.

- ❖ Todo árbol APE es de altura mínima, pero...
 - ¿Todo árbol de altura mínima es APE?

ABB vs APE

Inserción y Borrado de elevada Complejidad Temporal

Es necesario borrar y reconstruir el árbol después de cada operación.

Método	ABB (caso peor)	APE (cualquier caso)
Insertar	O(n)	O(n)
Buscar	O(n)	O(log ₂ n)
Borrar	O(n)	O(n)

Le luso de un APE tiene sentido sólo cuando el número de búsquedas es infinitamente superior al resto de operaciones.

Árboles AVL

Problema a Resolver

- Diseñar un árbol capaz de tener complejidad temporal log₂(n) • en el peor de los casos para las tres operaciones básicas
 - Insertar, Buscar y Borrar.

Desarrollado por los soviéticos Georgii Adelson-Velskii y ** Yevgeni Landis en 1962.

[34] Mar-16

Árboles AVL

Árboles de Adelson-Velskii y Landis

- AKA Árboles Simplemente Equilibrados
 - Condición: Para todo nodo n, |h_{lzq} h_{der}| <= 1.
 - h_{lzq} = altura del subárbol izquierdo.
 - h_{der}= altura del subárbol derecho.

Árboles AVL

Ejemplos

?AVL		Sí
¿APE?		Sí
Altura	Mínima?	Sí

```
¿AVL? ..... No
¿APE? ..... No
¿Altura Mínima? ..... No
```

Ejemplos

?AVL		 Sí
¿APE?		 No
Altura	Mínima?	 Sí

```
¿AVL? ...... No
¿APE? ..... No
¿Altura Mínima? ..... Sí
```

Ejemplos


```
¿AVL? ..... Sí
¿APE? ..... No
¿Altura Mínima? ..... No
```

Propiedades

- Todo APE es AVL
 - No todo AVL es APE.
 - No todo AVL es Árbol de Altura Mínima.
- No todo Árbol de Altura Mínima es AVL
 - Visto en los ejemplos.

Si los AVL no son árboles de altura mínima...

- ¿Cuál es su altura máxima?
 - ¿Es esta lo suficientemente pequeña como para resultar eficiente en las operaciones básicas?
 - ¿Cuánto difiere esta altura máxima de la altura mínima?
- Adelson-Velskii y Landis construyeron una serie de AVL de altura máxima y estimaron estadísticamente su altura
 - Para ello, utilizaron árboles de Fibonacci.
 - Son AVL construidos de la peor manera posible para alcanzar una altura máxima respetando la condición de AVL.

Árboles de Fibonacci

- Se decide la altura (a) de antemano.
 - Para $\mathbf{h} = \mathbf{0}$, usar árbol vacío (T_0).
 - Para h = 1, usar (T₁), o árbol de un solo nodo.
 - Para h > 1, usar $T_h = (T_{h-1}, x, T_{h-2})$.

Adelson-Velskii y Landis demostraron...

Cota para la altura máxima de un árbol de Fibonacci

$$h_{\text{MaxFib}}(n) \le 1,44 \text{Log}_2 n$$

Rango de altura para un AVL

$$h_{APE}(n) \le h_{AVL}(n) \le h_{MaxFib}(n)$$

$$Log_2n \le h_{AVL}(n) \le 1,44Log_2n$$

En el caso peor, la altura de un AVL supera a la de un APE en un máximo de un 44% (caso peor)

Complejidad en el caso peor para las tres operaciones básicas

```
O(Log_2n) \le O(h_{AVL}(n)) \le O(1,44Log_2n)
O(1,44Log_2n)
```

 $O(Log_2n)$

Balance Factor (BF)

- \Rightarrow BF_n = h_{der} h_{izq}
- Situaciones de Partida:
 - $h_{izq} > h_{der} (BF_n = -1).$
 - $h_{izq} = h_{der} (BF_n = 0).$
 - $h_{izq} < h_{der} (BF_n = 1).$
- Desequilibrio si
 - $|BF_n| > 1$.

Inserción

- Insertar nodo normalmente y si ha cambiado la altura del árbol...
 - Recalcular BF al regresar de la recursividad (actualizando los BF de los nodos que forman parte del camino de búsqueda).
 - Si $|BF_n| > 1$ para algún n entonces reequilibrar (detectando caso).

Class AVLTreeNode

```
public class AVLNode <T extends Comparable <T>>{
    private T element;
    public AVLNode<T> left;
    private AVLNode<T> right;
    int BF; // int height;
}
```

<u>Árboles</u> AVL

Add (Pseudocode)

```
private AVLNode<T> add (AVLNode<T> theRoot, T element)
 if (theRoot == null)
  return new AVLNode<T>(element);
 if (element.compareTo(theRoot.getElement()) == 0)
  throw new RuntimeException ("the element already exist!");
 if (element.compareTo(theRoot.getElement()) < 0)</pre>
  theRoot.setLeft(add(theRoot.getLeft(), element));
 else
  theRoot.setRight(add(theRoot.getRight(), element));
 return (updateBF (theRoot));
```

<u>Árboles</u> AVL

UpdateBF (pseudocódigo)

```
private AVLNode<T> updateBF (AVLNode<T> theRoot) {
 theRoot.updateHeight();
 if (theRoot.getBF() == -2)
  if (theRoot.getLeft().getBF() == -1)
   theRoot = singleLeftRotation (theRoot);
  else
   theRoot = doubleLeftRotation (theRoot);
 else if (theRoot.getBF() == 2)
  if (theRoot.getRight().getBF() == 1)
   theRoot = (singleRightRotation (theRoot));
  else
   theRoot = (doubleRightRotation (theRoot));
  return (theRoot);
```

Caso la

* Rotación Simple (izquierdo)

Caso Ib

Rotación Simple (derecho)

CLASSWORK

PLAYGROUND

- Ejercicio AVL 1. Partiendo de un árbol AVL vacío...
 - a) Inserte la secuencia de elementos 7, 6, 5, 4, 3, 2, 1.
 - Analice la complejidad temporal de cada inserción.
 - b) Inserte la secuencia de elementos 8, 9, 10.

Caso IIa

Rotación Doble (izquierdo)

Caso IIb

Rotación Doble (derecho)

CLASSWORK

PLAYGROUND

- Ejercicio AVL 2. Partiendo de un árbol AVL vacío...
 - Inserte la secuencia de elementos 1, 2, 3, 4, 5, 6, 10, 11, 8, 7.
 - Analice la complejidad temporal de cada inserción.
- Ejercicio AVL 3. Partiendo de un árbol AVL vacío...
 - Inserte la secuencia de elementos 5, 2, 10, 15, 12, 9, 7, 8, 6.

<u>Árboles</u> AVL

Borrado

- Borrar nodo normalmente y si ha cambiado la altura del árbol
 - Recalcular BF al regresar de la recursividad (actualizando los BF de los nodos que forman parte del camino de búsqueda).
 - En términos de variación de altura, borrar un nodo del subárbol izquierdo equivale a haber insertado por la derecha.
 - Si $|BF_n| > 1$ para algún n entonces reequilibrar (detectando caso).
- ¡En el borrado el reequilibrado no es puntual!
 - El reequilibrado de un subárbol no garantiza el equilibrio del árbol.
 - A diferencia de la inserción, en el borrado es preciso continuar reequilibrando siempre hasta la raíz del árbol.

Remove (Pseudocode)

```
private AVLNode<T> remove (AVLNode<T> theRoot, T element)
  if (theRoot == null) throw new RuntimeException("element does
not exist!");
  else
  if (element.compareTo(theRoot.getElement()) < 0)</pre>
  theRoot.setLeft(remove (theRoot.getLeft(), element));
  else
   if (element.compareTo(theRoot.getElement()) > 0)
    theRoot.setRight(remove (theRoot.getRight(), element));
  else {
    if (theRoot.getLeft() == null) return theRoot.getRight();
    else {
     if (theRoot.getRight() == null) return theRoot.getLeft();
     else // copies the max value from the left subtree...
      theRoot.setElement(getMax(theRoot.getLeft()));
theRoot.setLeft(remove (theRoot.getLeft(), theRoot.getElement()));
    } }
  return (updateBF (theRoot));
```

CLASSWORK

PLAYGROUND

- Ejercicio AVL 4. Partiendo del árbol AVL resultante del ejercicio AVL 2...
 - Borre la siguiente secuencia de elementos: 1, 3, 4, 7, 11, 10.
 - Analice la complejidad temporal de cada borrado.

CLASSWORK

PLAYGROUND

- **Ejercicio AVL 5**. Partiendo del siguiente árbol AVL...
 - Borre la secuencia de elementos 20, 4, 10, 9, 6, 3.

Eficiencia de un AVL

- Caso Peor
 - El reequilibrado en un AVL solo afecta al camino de búsqueda
 - Su longitud es del orden de log₂n

Log₂n <= Longitud del Camino de Búsqueda <= 1,44Log₂n

Método	APE	AVL
Insertar	O(n)	O(log ₂ n)
Buscar	O(log ₂ n)	O(log ₂ n)
Borrar	O(n)	O(log ₂ n)

HOMEWORK

PLAYGROUND

- Consulte la entrada para los Árboles AVL en la Wikipedia
 - Estudie **con detalle** todo el contenido de la entrada poniendo especial atención a los pseudocódigos y al códijo en Java.
 - ¿Qué quiere decir la expresión if ((altura(insertar(R1,I)) altura(D)) < 2) en el pseudocódigo referente a la inserción?
 - ¿Cómo se controla el BF en el método de inserción del árbol AVL en el código Java?

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

Problema a Resolver

- Modelar árboles sobre memoria secundaria (disco) capaces de almacenar cantidades masivas con acceso logarítmico
 - Reducen la altura del árbol a costa de almacenar múltiples elementos por nivel.

Desarrollado por el alemán Rudolf Bayer y el suizo Edward M. McCreight en 1972.

Procesamiento de árboles en disco

Es más barato procesar múltiples elementos en RAM que acceder a ellos en disco de forma individual.

No encontrar un elemento en un árbol AVL de 1.000.000 elementos requiere...

... entre 20 y 28 accesos a disco

Definición

- Se define un **árbol B de orden n** (B-n) como un árbol donde
 - Todas las hojas se encuentran en el mismo nivel.
 - Todo nodo (llamado página) contiene m elementos (claves)
 almacenados de forma ordenada.
 - La página raíz contiene 1 <= m <= 2n claves.
 - Toda página no raíz contiene n <= m <= 2n claves.
 - Toda página no hoja tiene m + 1 páginas hijas.

Ejemplos

Árboles B-2

Bnode (Pseudocode)

```
class BPage <T extends Comparable <T>> {
private final static int n=...;
private final static int 2n = 2*n;
T elements[1..2n];
Bpage<T> links [0..2n];
 int m;
Or...
class BPage <T extends Comparable <T>> {
private final static int n=...;
private final static int 2n = 2*n;
LinkedList<T> elements;
LinkedList < Bpage > links;
 int m; // can be substituted by elements.size();
```

Capacidad de un Árbol de orden n

- Dado un árbol B-n de altura h, el número mínimo de claves (N_{Min}) que éste puede almacenar se corresponde con
 - Capacidad de un árbol B-n degenerado (estirado al máximo).

Nivel	Pag. x Nivel	Valor mínimo de m	Total
1	1	1	1
2	2	n	2 n
3	2(n + 1)	n	2 n * (n + 1)
4	2(n + 1) ²	n	2 n * (n + 1) ²

--

h
$$2(n+1)^{h-2}$$
 n $2 n * (n+1)^{h-2}$

$$N_{Min} = 1 + 2 n * \sum_{i=2}^{h} (n + 1)^{i-2}$$

Altura **Máxima** de un árbol B-n

- ♦ h_{max} se obtiene de
 - N = 1 + 2 n * $\sum_{i=2}^{h} (n + 1)^{i-2}$
 - N es el número de claves del árbol.
- ♦ $h_{\text{max}} \approx 1 + \text{Log}_{n+1}(N+1)/2$
 - Si la constante **n** es lo suficientemente grande, h_{max} se aproxima a:
 - h_{max} ≈ Log_nN .

Rango de altura árbol B-n

$$h \ll 1 + Log_{n+1}(N+1)/2$$

$$O(h) < \approx O(Log_nN)$$

Cuanto mayor sea el orden del árbol (n) menor será la altura del árbol.

Capacidad de un árbol de orden n

- Dado un árbol B-n de altura h, el número máximo de claves (N_{Max}) que éste puede almacenar se corresponde con
 - Capacidad de un árbol B-n compacto (completo).

Nivel	Pag. x Nivel	Valor máximo de m	Total
1	1	2n	2n
2	(2n + 1)	2n	2 n * (2n + 1)
3	(2n + 1) ²	2n	2 n * (2n + 1) ²
4	(2n + 1) ³	2n	2 n * (2n + 1) ³

h
$$(2n + 1)^{h-1}$$
 2n $2n * (2n + 1)^{h-1}$

$$N_{\text{Max}} = 2n * \sum_{i=1}^{h} (2n + 1)^{i-1}$$

Altura **Mínima** de un árbol B-n

- ♦ h_{Min} se obtiene de...
 - N = $2n * \sum_{i=1}^{h} (2n + 1)^{i-1}$.
 - N es el número de claves del árbol.
- ♦ $h_{min} \approx Log_{2n+1}(N+1)$.
 - Si la constante **n** es lo suficientemente grande, h_{min} se aproxima a:
 - h_{min} ≈ $Log_{2n}N$.

Rango de altura árbol B-n

```
\log_{2n+1}(N+1) < \approx h < \approx 1 + \log_{n+1}(N+1)/2
O(\log_{2n}N) <= O(h) <= O(\log_{n}N)
```

Cuanto mayor sea el orden del árbol (n) menor será la altura del árbol.

Búsqueda

- Buscar elemento X dentro de los elements de la página
 - Búsqueda secuencial.
 - Búsqueda binaria.
- Si la búsqueda falla, ésta se detendrá en una posición j (elements[j]) de la página tal que 0 <= j <=m</p>
 - Cargar la página links[j] y repetir búsqueda.
 - El proceso recursivo se repite hasta encontrar X o hasta llegar a un enlace null, en cuyo caso el elemento no existe.

Complejidad Temporal

Caso Mejor

- El elemento buscado se encuentra en la raíz
 - O(m) = O(1).
 - Dado que 1 <= m <= 2n, m se puede considerar constante.

Caso Peor

- Se busca en un árbol degenerado y el elemento no se encuentra
 - O(h) * O(m).
 - $O(\log_n N) * O(1) = O(\log_n N).$

No encontrar un elemento en un árbol B-10 de 1.000.000 elementos requiere...

... entre 5 y 6 accesos a disco

... un AVL requiere entre 20 y 28 accesos

Inserción

- ❖ Caso I: Pagina hoja tiene m < 2*n claves.</p>
 - Se abre hueco para el elemento a insertar desplazando los elementos de clave mayor una posición hacia la derecha.

La inserción siempre se produce en las hojas y tras una búsqueda infructuosa.

Inserción

- ❖ Caso I: Pagina hoja tiene m < 2*n claves.</p>
 - Se abre hueco para el elemento a insertar desplazando los elementos de clave mayor una posición hacia la derecha.

La inserción siempre se produce en las hojas y tras una búsqueda infructuosa.

Inserción

- Caso 2: Pagina hoja tiene m = 2*n claves (Overflow).
 - División de la hoja en dos, repartiendo claves en ellas
 - Últimas (m+1)/2 claves en hoja nueva.
 - Primeras (m+1)/2 claves permanecen en hoja original.
 - Promociona el elemento central (mediana) a la página padre actuando de separador.
 - El objeto promocionado se inserta en la página padre repitiendo el proceso de forma recursiva, pudiendo afectar a la raíz.
 - Desdoblar la raíz es la única forma de aumentar la altura de un árbol B.

Inserción

- Caso 2: Pagina hoja tiene m = 2*n claves (Overflow).
 - División de la hoja en dos, repartiendo claves en ellas
 - Últimas (m+1)/2 claves en hoja nueva.
 - Primeras (m+1)/2 claves permanecen en hoja original.
 - Promociona el elemento central (mediana) a la página padre actuando de separador.
 - El objeto promocionado se inserta en la página padre repitiendo el proceso de forma recursiva, pudiendo afectar a la raíz.
 - Desdoblar la raíz es la única forma de aumentar la altura de un árbol B.

Inserción

- Caso 2: Pagina hoja tiene m = 2*n claves (Overflow).
 - División de la hoja en dos, repartiendo claves en ellas
 - Últimas (m+1)/2 claves en hoja nueva.
 - Primeras (m+1)/2 claves permanecen en hoja original.
 - Promociona el elemento central (mediana) a la página padre actuando de separador.
 - El objeto promocionado se inserta en la página padre repitiendo el proceso de forma recursiva, pudiendo afectar a la raíz.
 - Desdoblar la raíz es la única forma de aumentar la altura de un árbol B.

Complejidad Temporal Inserción

Caso Mejor

- El elemento se inserta directamente en una hoja en la que hay espacio dentro de un árbol de altura mínima.
 - $O(\log_{2n}(N)) + O(m) = O(\log_{2n}(N)).$

Caso Peor

- Se inserta en un árbol degenerado y se desdoblan todas las páginas desde las hojas hasta la raíz.
 - $O(\log_n(N)) * O(n) = O(\log_n(N)).$

CLASSWORK

PLAYGROUND

- Ejercicio Árbol B (Inserción). Partiendo de un árbol B-2 vacío...
 - a) Insertar la secuencia de claves 6, 11, 5, 4, 8, 9, 12.
 - b) Insertar la secuencia de claves 21.
 - c) Insertar la secuencia de claves 14, 10, 19, 28.
 - d) Insertar la secuencia de claves 3, 17, 32, 15, 16.
 - e) Insertar la secuencia de claves 26, 27.

- Borrado de elemento interior
 - Sustituir elemento por su sucesor
 - El sucesor se encuentra en página elemento extremo izquierdo de subárbol derecho (se trata de una hoja).
 - Borrar elemento de página donante.

- Borrado de elemento interior
 - Sustituir elemento por su sucesor
 - El sucesor se encuentra en página elemento extremo izquierdo de subárbol derecho (se trata de una hoja).
 - Borrar elemento de página donante.

Borrado

Borrado de elemento interior

- Sustituir elemento por su sucesor
 - El sucesor se encuentra en página elemento extremo izquierdo de subárbol derecho (se trata de una hoja).
- Si la página donante se encuentra en situación crítica,
 - Intentar sustituir por antecesor (elemento extremo derecho subárbol izquierdo).
 - La página se encuentra en situación crítica si m=n antes de la sustitución.
- Borrar elemento de página donante.

Borrado

Borrado de elemento interior

- Sustituir elemento por su sucesor
 - El sucesor se encuentra en página elemento extremo izquierdo de subárbol derecho (se trata de una hoja).
- Si la página donante se encuentra en situación crítica,
 - Intentar sustituir por antecesor (elemento extremo derecho subárbol izquierdo).
 - La página se encuentra en situación crítica si m=n antes de la sustitución.
- Borrar elemento de página donante.

Borrado

Borrado de elemento interior

- Sustituir elemento por su sucesor
 - El sucesor se encuentra en página elemento extremo izquierdo de subárbol derecho (se trata de una hoja).
- Si la página donante se encuentra en situación crítica,
 - Intentar sustituir por antecesor (elemento extremo derecho subárbol izquierdo).
 - La página se encuentra en situación crítica si m=n antes de la sustitución.
- Si la página donante se encuentra en situación crítica sustituir por el sucesor.

Borrar elemento de página donante.

Borrado

Borrado de elemento interior

- Sustituir elemento por su sucesor
 - El sucesor se encuentra en página elemento extremo izquierdo de subárbol derecho (se trata de una hoja).
- Si la página donante se encuentra en situación crítica,
 - Intentar sustituir por antecesor (elemento extremo derecho subárbol izquierdo).
 - La página se encuentra en situación crítica si m=n antes de la sustitución.
- Si la página donante se encuentra en situación crítica sustituir por el sucesor.
- Borrar elemento de página donante.

- Borrado de elemento en página hoja
 - Caso 1: Página tiene n < m claves.
 - Se desplazan los elementos de clave mayor una posición hacia la izquierda.

- Borrado de elemento en página hoja
 - Caso 1: Página tiene n < m claves.
 - Se desplazan los elementos de clave mayor una posición hacia la izquierda.

- Borrado de elemento en página hoja
 - Caso 2: Página tiene n = m claves (underflow).
 - Se busca entre las hojas adyacentes alguna que tenga n < m claves y se le pide la cesión de una de ellas.
 - » Se consulta primero con la vecina derecha (si existe) y si ésta no puede ceder claves se intenta el proceso con la vecina izquierda.
 - » Una hoja no puede ceder claves cuando se encuentra en situación crítica (n = m).

- Borrado de elemento en página hoja
 - Caso 2: Página tiene n = m claves (underflow).
 - El préstamo se realiza siempre a través de la página padre de las dos implicadas.
 - El elemento cedido por la página donante se envía a la página padre para sustituir al separador, quien baja a la página que recibe la cesión
 - El separador sustituye al elemento borrado.

- Borrado de elemento en página hoja
 - Caso 2: Página tiene n = m claves (underflow).
 - El préstamo se realiza siempre a través de la página padre de las dos implicadas.
 - El elemento cedido por la página donante se envía a la página padre para sustituir al separador, quien baja a la página que recibe la cesión.
 - El separador sustituye al elemento borrado.

Borrado

Borrado de elemento en página hoja

- Caso 2b: Página tiene n = m claves (*underflow*) y ninguna página vecina puede ceder claves.
 - Las dos páginas adyacentes (izquierda y derecha) se encuentran en situación crítica.
 - La página se fusiona con la que vecina derecha (de no tenerla, se fusiona con la vecina izquierda).
 - » En la página resultante se incluyen todos elementos de las dos páginas más el separador que se elimina de la página padre.
 - » El borrado del separador fuerza un borrado recursivo ascendente que puede alcanzar a la raíz, en cuyo caso disminuye la altura del árbol.

Borrado

Borrado de elemento en página hoja

- Caso 2b: Página tiene n = m claves (*underflow*) y ninguna página vecina puede ceder claves.
 - Las dos páginas adyacentes (izquierda y derecha) se encuentran en situación crítica.
 - La página se fusiona con la que vecina derecha (de no tenerla, se fusiona con la vecina izquierda).
 - » En la página resultante se incluyen todos elementos de las dos páginas más el separador que se elimina de la página padre.
 - » El borrado del separador fuerza un borrado recursivo ascendente que puede alcanzar a la raíz, en cuyo caso disminuye la altura del árbol.

Borrado

Borrado de elemento en página hoja

- Caso 2b: Página tiene n = m claves (*underflow*) y ninguna página vecina puede ceder claves.
 - Las dos páginas adyacentes (izquierda y derecha) se encuentran en situación crítica.
 - La página se fusiona con la que vecina derecha (de no tenerla, se fusiona con la vecina izquierda).
 - » En la página resultante se incluyen todos elementos de las dos páginas más el separador que se elimina de la página padre.
 - » El borrado del separador fuerza un borrado recursivo ascendente que puede alcanzar a la raíz, en cuyo caso disminuye la altura del árbol.

Complejidad Temporal Borrado

Caso Mejor

Borrado caso 1 sobre un árbol B de altura mínima: O(log_{2n}(N)) + O(m) = O(log_{2n}(N)).

Caso Peor

- El elemento se borra en un árbol de altura máxima sobre caso 2b, produciendo compactación desde las hojas hasta la raíz
 - $O(\log_n(N)) * O(n) = O(\log_n(N)).$

PLAYGROUND

PLAYGROUND

- Ejercicio Árbol B (borrado). Partiendo del B-2 creado en el ejercicio anterior...
 - a) Borrar la clave 11.
 - b) Borrar la clave 15.
 - c) Borrar la clave 6.
 - d) Borrar la clave 16.
 - e) Borrar la clave 10.
 - f) Borrar la clave 12.
 - g) Borrar la clave 28.
 - h) Borrar la clave 27.

HOMEWORK

PLAYGROUND

- Consulte la entrada para el Árbol-B en la Wikipedia
 - Estudie **con detalle** todo el contenido de la entrada poniendo especial atención a:
 - Multi-modo: Combinar y Dividir.
 - Posibilidad de acceder concurrentemente a los árboles B en sistemas de bases de datos.

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

Colas de Prioridad

Objetivo

- Modelar estructuras lineales en las que los elementos se atienden en el orden indicado por una prioridad asociada.
 - Colas de impresión de documentos.
 - Gestión de tráfico aéreo.
 - Planificación de procesos en CPU.
 - Supervisión planes estratégicos y de emergencia.
 - Colas de Espera para Servicios Médicos.

Colas de Prioridad

Problema a Resolver

- Optimizar dos operaciones...
 - Insertar elemento (con su prioridad asociada).
 - 2. Sacar elemento de máxima prioridad.
- Las colas de prioridad se suelen implementar mediante Montículos Binarios
 - Proporcionan **complejidad log₂(n)** para las dos operaciones.
 - Se pueden construir con vectores (no son necesarias referencias).

¿Qué es un Montículo Binario?

- Es un árbol binario completo con la excepción del nivel inferior.
 - Este nivel se rellena de izquierda a derecha.

Rango de altura en un Montículo Binario

$$h = E[log_2n] + 1$$

$$O(h) \le O(Log_2n)$$

Propiedades

Todo Montículo Binario es un Árbol de Altura Mínima

Propiedades

- Dada la estructura fija del árbol binario, éste puede representarse en un vector sin necesidad de referencias
 - La raíz del árbol se almacena en la primera celda del vector.
 - Dado un nodo situado en la posición i del vector:
 - Su hijo izquierdo se almacenará en la posición 2i +1.
 - Su hijo derecho se almacenará en la posición 2i + 2.

Relación de orden (suponiendo claves no repetidas)

Montículo de Mínimos

- Todo nodo tiene una clave menor que la de sus hijos.
- El menor elemento se encuentra en la raíz (posición 0 del vector).
 - Optimiza las operaciones Add y getMin.

Montículo de Máximos

- Todo nodo tiene una clave mayor que la de sus hijos.
- El mayor elemento se encuentra en la raíz (posición 0 del vector).
 - Optimiza Add y getMax.

Inserción (mediante Filtrado Ascendente)

- 1. Colocar el elemento a insertar en la última posición del vector.
- 2. Repetir hasta que el elemento llegue a la raíz (posición 0 del vector) o sea mayor que su padre.
 - Si elemento es menor que el ubicado en la posición E[(i-1)/2] (su padre actual), intercambiarlos.

Complejidad caso mejor: O(1)

Complejidad caso peor: O(log₂n)

Sacar (mediante Filtrado Descendente)

- 1. Devolver el elemento situado en la raíz (mínimo).
- 2. Colocar el último elemento del vector en la raíz y aplicar filtrado descendente usándolo como pivote.
- 3. Repetir hasta que el pivote llegue a ser hoja o sea menor que sus dos hijos.
 - Intercambiar la posición del pivote con la de aquel de sus dos hijos que sea menor.

Ejercicio 1

Montículos Binarios

Montículos Binarios

Ejercicio 2

Montículos Binarios

Ejercicio 2

Operaciones Especiales con Montículos

Devolver máximo elemento

O(n)

Búsqueda secuencial en la zona del vector comprendida en el rango:

[size/2, size].

- Los elementos de mayor peso se encuentran en las hojas
 - Solo es necesario explorar la mitad del vector.

Operaciones Especiales con Montículos

Cambiar la prioridad de un elemento

 $O(log_2n)$

- 1. Modificar el valor de la prioridad.
- 2. Si el nuevo valor es menor que el original
 - Aplicar filtrado ascendente else
 - Aplicar filtrado descendente.

Operaciones Especiales con Montículos

Eliminar elemento

 $O(log_2n)$

- 1. Cambiar su prioridad a -∞ para subirlo a la raíz.
- 2. Invocar al método sacar().

HOMEWORK

PLAYGROUND

- Consulte la entrada para el **Montículo Binario** en la Wikipedia
 - Estudie cuidadosamente todo el contenido de la entrada.
 - Preste especial atención a porqué la reorganización del montículo requiere un tiempo O(logn) en la inserción de elementos.

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

ISBN 978-1-300-67089-6

© 2012 – 2015 Martín González Rodríguez

Estructuras Diccionario

Dr. Martin Gonzalez-Rodriguez

Estructuras de Datos Diccionario

Objetivo

- Almacenar objetos sin relaciones entre sí para su recuperación de la manera más rápida posible.
 - Máxima velocidad de acceso.
 - Usan grandes cantidades de memoria.
 - Ampliamente utilizadas en sistemas de caché en la web y acceso a bases de datos.

Estructuras de Datos Diccionario

Objetivo

- Eficiencia temporal O(1) en operaciones de acceso
 - Se resiente la eficiencia en el resto de las operaciones.

Método	Complejidad
Insertar	O(1)
Buscar	O(1)
Borrar	O(1)
print	O(n)
Obtener Máximo	O(n)
Obtener Mínimo	O(n)

Tablas Hash

Componentes Básicos

HashTable class

Convierte claves en índices

- Recibe la clave de un objeto en el dominio del problema.
 - Usualmente *String* o *int*.
- Devuelve la posición en la que debería alojarse el elemento en el associativeArray.
 - Rango de f: [0, B-1].

$$f("ship") \rightarrow 0$$

$$f("apple") \rightarrow 2$$

$$f("plane") \rightarrow 3$$

Función f para claves enteras

```
private int f (T element)
{
  return (element.hashCode() % B);
}
```

- Es una operación fácil y rápida de ejecutar.
 - Si las claves son aleatorias, distribuye los elementos uniformemente.

Colisiones

- Dos elementos x e y son sinónimos si...
 - f(x) == f(y)
 - Los elementos sinónimos producen colisiones sobre la misma posición del vector.
- Tratamiento de las colisiones:
 - Protección Activa
 - Evitar la colisión (diseño de la función hash perfecta).
 - Protección Pasiva
 - Dos o más elementos comparten la misma posición del vector.
 - Redispersión
 - Aumentar o disminuir el tamaño del vector (B) de forma dinámica en base al número de elementos que contiene.

Función f perfecta

```
P(f(X_1)=0) == P(f(X_2)=1) = ... == P(f(X_m)=B-1) == 1/B
```

- Garantiza el menor número de colisiones posibles.
 - Por cada n elementos a insertar, tan sólo se producirían n/B colisiones.

- ¡B debería ser un número primo!
 - Ayuda a reducir colisiones cuando las claves no son aleatorias.

HashCode para claves String (Versión 1)

```
public int convert (String t) { // <-> t.hashCode()
  int result = 0;

for (int i=0; i<t.length(); i++)
  result += (int) t.charAt(i);

return (result);
}

private int f (String element)
{
  return (convert(element) % B);
}</pre>
```

- Convierte la cadena a un entero para luego aplicar la función de dispersión.
 - La función convert suma los códigos de representación de cada letra de la cadena.
 - (Códigos ASCII, EBDIC, etc).

Ejercicio

Convertir la cadena "PLANE" suponiendo que el código para la letra A es 65.

Ejercicio

- Calcular el rango de f suponiendo...
 - Cadenas de una longitud máxima igual a 8 caracteres.
 - Rango de códigos [0, 127].
 - B igual a 10.007 posiciones.

Rango convert (String t)

```
[8*0, 8*127] = [0, 1.016]
```

Rango f (String t)

```
[0, 1.016] % 10.007 = [0, 1.016]
```

Desventajas

- Si B es grande y la longitud de la clave es pequeña, la dispersión se concentrará en la zona superior del vector.
 - Si la longitud es pequeña, la suma de los códigos también lo será.
 - Al aplicar el operador módulo (%) entre la pequeña suma y un valor de B grande, el resultado obtenido será muy pequeño.

HashCode para claves String (Versión 2)

```
public int convert (String t) {// <-> t.hashCode()
  int result = 0;
  int k = (t.length()>3)?3:t.length();

for (int i=0; i<k; i++)
  result += (int) Math.pow(27, 2-i) * (int) t.charAt(i);

return (result);
}</pre>
```

- Asigna un peso a cada carácter en función de su posición.
 - El valor del peso (27) se corresponde con la longitud del alfabeto.
 - La ponderación es 27²⁻ⁱ siendo i la posición del carácter en la cadena.
 - Se puede restringir el número de caracteres analizados a un límite máximo k por razones de eficiencia.
 - En el ejemplo, $k \le 3$.
 - La operación de multiplicación consume mucho tiempo de CPU.

Convert ("PLANE") = $P * 27^2 + L * 27^1 + A * 27^0$

Ejemplo

Convertir la cadena "PLANE" suponiendo que el código para la letra A es 65.

La versión 1 de Convert("PLANE") obtenía 358 (358 % 10.007) = 358

Desventajas

- Palabras que empiezan con la misma combinación de letras conducen a colisiones.
 - "PLANE", "PLANING", "PLASTIC", etc.
- ❖ Suponiendo un vector de tamaño B = 10.007...
 - En Teoría...
 - Para k=3 existen 27*26*25 (17.550) combinaciones distintas de inicio de palabra en el dominio de la función convert.
 - Dado que 17.550 > 10.007, los elementos se distribuyen por todo el vector.
 - En la Práctica...
 - De las 17.550 combinaciones posibles solo tienen sentido 2.851 en lengua castellana.
 - » Por ejemplo, no existen palabras que empiecen por ZYV, ZVW, XYV, etc.
 - Con 2.851 palabras válidas tan solo se emplea un 28,4% de las 10.007 posiciones disponibles en el vector.

Se hace necesario explorar todos los caracteres de la cadena

HashCode para claves String (Versión 3)

```
public long convert (String t) { // <-> t.hashCode()
  long result = 0;

for (int i=0; i<t.length(); i++)
  result += (int) Math.pow(32, t.length()-i-1) * (int) t.charAt(i);

return (result);
}</pre>
```

- ¿Cómo optimizar la función para analizar toda la cadena?
 - Se **utiliza 32 como peso**, en lugar de 27.
 - A nivel binario, multiplicar por 32 equivale a un desplazamiento de 5 bits (operación mucho más rápida que una multiplicación).

$$32 = 2^5$$
.

Convert ("PLANE") = $P * 32^4 + L * 32^3 + A * 32^2 + N * 32^1 + E * 32^0$

HashCode para claves String (Versión 4)

```
public long convert (String t) {// <-> t.hashCode()
  long result = (int) t.charAt(0);

for (int i=1; i<t.length(); i++)
  result = (32 * result) + (int) t.charAt(i);

return (result);
}</pre>
```

- Utilización de la Regla de Horner
 - Minimiza el uso de las multiplicaciones utilizando una representación alternativa del polinomio.

Convert ("PLANE") =
$$P * 32^4 + L * 32^3 + A * 32^2 + N * 32^1 + E * 32^0$$

Convert_{Horner} ("PLANE") =
$$((((P * 32) + L) * 32) + A) * 32) + N) * 32 + E$$

HashCode para claves String (Versión 5)

```
public long convert (String t) {// <-> t.hashCode()
  long result = (int) t.charAt(0);

for (int i=0; i<t.length(); i++)
  result = ((32 * result) + (int) t.charAt(i)) % B;

return (result);
}</pre>
```

Eliminación del Overflow

- Durante el cálculo se generan cifras tan grandes que no puedan ser almacenadas.
- Se debe aplicar el operador resto (%) en cada iteración para reducir el tamaño de las cifras parciales
 - Se elimina el overflow a costa de una penalización temporal.

Ejemplo

Convertir la cadena "PLANE" suponiendo que el código para la letra A es 65.

Letra	Código Ponderado	Total
P	80*324	83.886.080
L	76*32 ³	2.490.368
A	65*32 ²	66.560
N	78*32 ¹	2.496
E	69*320	69
Total		86.445.573
	96 445	E72 0/ 40 007 - E 407

86.445.573 % 10.007 = 5.107

La versión 2 de *Convert("PLANE")* obtenía 60.437 % 10.007 = 395

Protección Pasiva

Las Colisiones son inevitables a largo plazo...

- Cuanto menor sea B mayor será la probabilidad de colisión.
 - La certeza se alcanza con...
 - B = 1.
 - Dominios de problema en los que existen elementos de clave repetida.
- Dos o más elementos comparten la misma posición del vector.
 - Existen varias formas de gestionar elementos en colisión.

Tablas Hash Abiertas

- Cada celda contiene una estructura de datos dinámica encargada de almacenar los sinónimos.
 - LinkedList.
 - AVLTree.

HashTable class

O(B) = O(1)

```
public class HashTable<T>
{
  private final static int B = 10007;
  private AVL<T> associativeArray[];

public HashTable(int B) {
  this.B = B;
  associativeArray = new AVL<T>[B];

  for (int i=0; i<associativeArray.length; i++)
    associativeArray[i] = new AVL<T>();
  }
}
```

```
add O(n/B) \rightarrow O(1) public void add (T a) { if (!find(a)) associativeArray[f(a.hashCode())].add(a); }
```

find() y remove() son análogas

Factor de Carga (load factor)

- Número de elementos de la tabla dividido entre el tamaño de la tabla.
 - LF = n/B.
 - Coincide con la longitud media de cada lista.

LF Eficiente

Búsqueda	Promedio de enlaces visitados
Infructuosa	LF
Exitosa	1 + LF/2

- Para garantizar un alto rendimiento en tablas hash abiertas, el LF ha de ser menor o igual que uno (LF <= 1)</p>
 - B = n (aproximadamente).
 - Longitud media de las listas = 1.

Tablas Hash Cerradas

- Cada celda tiene capacidad para un único objeto.
 - Cuando se detecta una colisión (celda previamente ocupada), se busca el elemento en las celdas próximas.
 - Existen diversos enfoques para realizar la exploración:
 - Exploración Lineal.
 - Exploración Cuadrática.
 - Dispersión Doble.

HashTable class

```
public class HashTable<T>
{
   private final static int B = 10007;
   private ArrayList<HashNode<T>> associativeArray;
}
```

Exploración Lineal

- Búsqueda consecutiva en celdas próximas modificando la función f.
 - f(x) = [x + i] % B.
 - Donde i representa el número de intentos y asume valores de 0, 1, 2, 3...

add(4)
$$\rightarrow$$
 [4 + 0] % 5 = 4
add(13) \rightarrow [13 + 0] % 5 = 3
add(24) \rightarrow [24 + 0] % 5 = 4
add(24) \rightarrow [24 + 1] % 5 = 0
add(3) \rightarrow [3 + 0] % 5 = 3
add(3) \rightarrow [3 + 1] % 5 = 4
add(3) \rightarrow [3 + 2] % 5 = 0
add(3) \rightarrow [3 + 3] % 5 = 1

Agrupamientos

- Bloques de celdas ocupadas interrelacionadas.
 - Incluso en tablas relativamente vacías se pueden presentar agrupamientos.
 - Cualquier clave que se disperse sobre un agrupamiento **requerirá varios intentos para su encontrar su ubicación**.
 - Y lo que es peor... si se inserta se unirá al agrupamiento.
- Si la tabla es suficientemente grande, se podrá encontrar una ubicación para el elemento...
 - ...Pero la búsqueda puede llevar mucho tiempo.

Búsqueda	Número aproximado de intentos
Infructuosa	$(1 + 1/(1 - LF)^2)/2$
Exitosa	(1 + 1/(1 – LF))/2

Estudios teóricos de velocidad de acceso

LF	Intentos por Inserción (promedio)	
0,90	50	
0,75	8,5	
0,50	2,5	

- ❖ Se recomienda usar LF <= 0,5
 - B debería ser al menos el doble de n.
 - El incremento en el consumo de memoria es notable.

En las tablas hash abiertas la recomendación es LF <= 1

Borrado Perezoso (Lazy deletion)

- La existencia de agrupamientos impide el borrado directo de un elemento.
 - El elemento se marca para borrar pero no se elimina definitivamente hasta que su espacio no sea requerido por una operación de inserción.
 - Los elementos marcados se consideran vacíos durante las inserciones y ocupados durante las búsquedas.

El acceso a la clave 3 se ha perdido

Borrado Perezoso (Lazy deletion)

HashTable class

```
public class HashNode <T>
{
    public final static byte EMPTY = 0;
    public final static byte VALID = 1;
    public final static byte DELETED = 2;

    private T element;
    private byte status = EMPTY;
}
```

Borrado Perezoso (Lazy deletion)

HashTable class

```
public class HashTable<T>
{
   private final static int B = 10007;
   private ArrayList<HashNode<T>> associativeArray;
}
```

Antes

O **24** D

DELETED

1 3

3 VALID

2

EMPTY

VALID

3

13

4 VALID

delete(24) \rightarrow [24 + 0] % 5 = 4

 $delete(24) \rightarrow [24 + 1] \% 5 = 0$

find(3) \rightarrow [3 + 0] % 5 = 3

 $find(3) \rightarrow [3 + 1] \% 5 = 4$

 $find(3) \rightarrow [3 + 2] \% 5 = 0$

 $find(3) \rightarrow [3 + 3] \% 5 = 1$

 $add(15) \rightarrow [15 + 0] \% 5 = 0$

Después

15

VALID

1

3

VALID

2

EMPTY

3

13

VALID

4 4

VALID

Exploración Cuadrática

- Si se produce una colisión se exploran las celdas a una distancia cuadrática de la anteriormente consultada.
 - $f(x) = [x + i^2] \% B.$
 - Donde i representa el número de intentos y asume valores de 0, 1, 2, 3...

add(4)
$$\rightarrow$$
 [4 + 0²] % 5 = 4
add(13) \rightarrow [13 + 0²] % 5 = 3
add(24) \rightarrow [24 + 0²] % 5 = 4
add(24) \rightarrow [24 + 1²] % 5 = 0
add(3) \rightarrow [3 + 0²] % 5 = 3
add(3) \rightarrow [3 + 1²] % 5 = 4
add(3) \rightarrow [3 + 2²] % 5 = 2

Exploración Cuadrática

- Puesto que la longitud de los saltos es mayor (longitud cuadrática) es posible no encontrar una posición libre.
 - ¡Aún cuando puedan existir posiciones libres, la exploración cuadrática puede saltar por encima de ellas... ignorándolas!

Teorema de la Exploración Cuadrática

Si utilizando exploración cuadrática **se cumple que** B es primo y el LF <= 0,5 **siempre es posible** encontrar una posición para insertar un elemento.

- La exploración cuadrática elimina el agrupamiento primario...
 - ... aún cuando puede crear agrupamientos secundarios.
- El agrupamiento secundario podría llegar a ser asumible...
 - Estudios de simulación demuestran que ante agrupamientos secundarios tan solo es necesario un salto para encontrar posiciones libres.

Dispersión Doble

- Utilizada una doble función de dispersión.
 - $f(x) = [x + i^*H_2(x)] \% B.$
 - Donde i representa el número de intentos y asume valores de 0, 1, 2, 3...
 - Donde H₂ es la función de cálculo de salto. Puede ser cualquiera. Se recomienda:
 - $H_2(x) = R X \% R.$
 - » Donde R es el número primo antecesor de B.

add(4)
$$\rightarrow$$
 [4 + 0*(3 - 4%3)] % 5 = 4
add(13) \rightarrow [13 + 0*(3 - 13%3)] % 5 = 3
add(24) \rightarrow [24 + 0*(3 - 24%3)] % 5 = 4
add(24) \rightarrow [24 + 1*(3 - 24%3)] % 5 = 2
add(3) \rightarrow [3 + 0*(3 - 3%3)] % 5 = 3
add(3) \rightarrow [3 + 1*(3 - 3%3)] % 5 = 1

Solución: posiciones 4, 1, 3 y 0

Evaluación de la Dispersión Doble

- Ventajas
 - Elimina el agrupamiento.
 - El número esperado de intentos es bajo.
- Desventajas
 - El uso de una segunda función aumenta el cálculo del coste de ejecución.

Redispersión

Duplicar el tamaño de la tabla dinámicamente

- Si el LF aumenta demasiado...
 - El rendimiento de la tabla decrece considerablemente.
 - LF > 1 en tablas hash abiertas.
 - Se paraliza el funcionamiento de tablas cerradas al no encontrar posiciones libres.
 - LF > 0,5 en tablas hash cerradas.
- La redispersión recupera un LF aceptable **trasladando** los elementos a una tabla de mayor tamaño.
 - Se establece un número B para la nueva tabla buscando el número primo inmediatamente superior al doble del original.
 - Recorre secuencialmente los elementos de la tabla original añadiéndolos a la nueva tabla.

Redispersión

Ejercicio

Redispersar utilizando Exploración Cuadrática

El número primo inmediatamente superior al doble de 5 es el 11

O(n)

Redispersión

Activación de la Redispersión

- La redispersión se puede lanzar automáticamente cuando...
 - a) Se alcance un LF > 0,5.
 - b) Falle una inserción (no hay posiciones libres).
 - c) Cuando se supere un cierto umbral de LF definido en el constructor de la tabla hash.

Redispersión Inversa

 Reduce el tamaño de la tabla para ahorrar memoria cuando se han realizado muchas operaciones de borrado.

Tipo de tabla	Umbral de LF para redispersión inversa
Abierta	0,33
Cerrada	0,16

HOMEWORK

PLAYGROUND

- Consulte la entrada para la Tabla Hash en la Wikipedia
 - Estudie cuidadosamente todo el contenido de la entrada.
 - Ponga especial atención a las situaciones en las que resulta interesante utilizar árboles en lugar de listas en las tablas hash abiertas.
 - Analice en detalle las funciones de dispersión Hash de División y Hash de Multiplicación.

Los conocimientos adquiridos en esta tarea serán evaluados en el examen

Apéndices

Referencias

Referencias

- HERNÁNDEZ, Roberto; LÁZARO, Juan Carlos; DORMIDO; Raquel, ROS, Salvador; (2001) *Estructuras de Datos y Algoritmos*. Prentice Hall. ISBN 84-205-2980-X [Cap. 5 y 6].
- JOYANES AGUILAR, Luis; ZAHONERO MARTÍNEZ, Ignacio; (1998) Estructura de Datos: Algoritmos, Abstracción y Objetos. Mc Graw Hill. ISBN: 84-481-2042-6 [Cap. 10, 11 y 12].
- ORTEGA F., Maruja; (1988) Grafos y Algoritmos. Universidad Metropolitana, Oficina Metrópolis.
- WEISS, Mark Allen; (2000) *Estructuras de Datos En Java 2*. Addison-Wesley Iberoamericana. ISBN84-7829-035-4.
- WEISS, Mark Allen; (1995) *Estructuras de Datos y Algoritmos* Addison-Wesley Iberoamericana. ISBN 0-201-62571-7.