DATA605_Project2

Harpreet Shoker

Contents

Environment setup

```
library(stringr)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.4.2
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(tidyr)
## Warning: package 'tidyr' was built under R version 3.4.3
library(knitr)
library(tibble)
## Warning: package 'tibble' was built under R version 3.4.3
library(ggplot2)
```

For 1st data set i have picked World population data from discussion by steven which has data set showing the population of the world's countries from 1980 to 2010

1 Data - World Population

Loading Data set for World population

```
countryData <- read.csv(file="https://raw.githubusercontent.com/Harpreet1984/DATA607/master/populationb
countryDataTidy <- countryData %>% gather ("Year", "population", 2:32) #using gather()

## Warning: attributes are not identical across measure variables;
## they will be dropped
head(countryDataTidy)
```

```
##
                             X Year population
                 North America X1980 320.27638
## 1
## 2
                       Bermuda X1980
                                        0.05473
## 3
                        Canada X1980
                                        24.5933
                     Greenland X1980
## 4
                                        0.05021
## 5
                        Mexico X1980
                                       68.34748
## 6 Saint Pierre and Miquelon X1980
                                        0.00599
```

Tidying Data

Removing all the rows that have NA and – as populations group data based on country. Calculate percentage change for the entire duration for each country.

countryDataFilteredGrouped <- countryDataTidy %>% filter (!population %in% c("--", NA)) %>% group_by(X countryDataFilteredGrouped

```
## # A tibble: 229 x 2
##
     X
                          populationChange
##
      <fct>
                                     <dbl>
## 1 Afghanistan
                                     0.936
## 2 Africa
                                     1.12
## 3 Albania
                                     0.118
## 4 Algeria
                                     0.839
## 5 American Samoa
                                     1.05
## 6 Angola
                                     0.938
## 7 Antigua and Barbuda
                                     0.265
## 8 Argentina
                                     0.457
## 9 Armenia
                                    -0.122
## 10 Aruba
                                     0.749
## # ... with 219 more rows
```

Data Analaysis

Find the country that has the maximum population growth during this duration

countryWithMaxPopulationGrowth <- countryDataFilteredGrouped %>% filter(populationChange == max(populationGrowth

```
## # A tibble: 1 x 2
## X populationChange
## <fct> <dbl>
## 1 United Arab Emirates 3.97
```

So here we found that the country that has maximum population growth during the entire duration is United Arab emirates

Find the country that has the minimum population growth during this duration

countryWithMinPopulationGrowth <- countryDataFilteredGrouped %>% filter(populationChange == min(popul countryWithMinPopulationGrowth

```
## # A tibble: 1 x 2
## X populationChange
## <fct> <dbl>
## 1 Montserrat -0.565
```

From the above result we can conclude that population percentage has decreased for montserrat by 5.64~%

2 Data - Time Spent (Male vs Female)

For 2nd data set Time spent as discussed by Nicholas this dataset on time use by gender and by country has variables include eating, sleeping, employment, travel, school, study, walking the dog, etc

Laoding Data

```
myurl <- "https://raw.githubusercontent.com/Harpreet1984/DATA607/master/TimeUse%20(1).csv"
time_info <- read.csv(myurl, header= TRUE,sep=",",stringsAsFactors=FALSE)
kable(time_info)</pre>
```

SEX	GEO.ACL00	Total	Personal.care	Sleep	Eating	Other.and.or.unspecified
Males	Belgium	24:00	10:45	8:15	1:49	0:42
Males	Bulgaria	24:00	11:54	9:08	2:07	0:39
Males	Germany (including former GDR from 1991)	24:00	10:40	8:08	1:43	0:49
Males	Estonia	24:00	10:35	8:24	1:19	0.52
Males	Spain	24:00	11:11	8:36	1:47	0:48
Males	France	24:00	11:44	8:45	2:18	0:41
Males	Italy	24:00	11:16	8:17	1:57	1:02
Males	Latvia	24:00	10:46	8:35	1:33	0:37
Males	Lithuania	24:00	10:53	8:28	1:32	0:53
Males	Poland	24:00	10:44	8:21	1:33	0:50
Males	Slovenia	24:00	10:31	8:18	1:33	0:40
Males	Finland	24:00	10:23	8:22	1:23	0:38
Males	United Kingdom	24:00	10:22	8:18	1:24	0:41
Males	Norway	24:00	10:06	7:56	1:25	0:45
Females	Belgium	24:00	11:11	8:34	1:50	0:47
Females	Bulgaria	24:00	11:38	9:07	1:55	0:36
Females	Germany (including former GDR from 1991)	24:00	10:58	8:15	1:46	0:56
Females	Estonia	24:00	10:30	8:26	1:12	0:53
Females	Spain	24:00	11:05	8:32	1:44	0:49
Females	France	24:00	11:53	8:55	2:11	0:46
Females	Italy	24:00	11:12	8:19	1:52	1:01
Females	Latvia	24:00	10:53	8:44	1:26	0:43
Females	Lithuania	24:00	10:56	8:35	1:26	0:56
Females	Poland	24:00	11:03	8:35	1:34	0:54
Females	Slovenia	24:00	10:32	8:25	1:26	0:41
Females	Finland	24:00	10:38	8:32	1:19	0:47
Females	United Kingdom	24:00	10:43	8:27	1:26	0:50
Females	Norway	24:00	10:27	8:10	1:20	0:56

Tidying and analysis

```
timedata <- time_info
library(tibble)
timedata <- as_data_frame(timedata)
timedata <- timedata %>% rename(Country = GEO.ACL00)
```

Converting the time spent on personal care into minutes by removing the colon and then calculating mean of total time(personal care)

SEX	mean
Females	658.5000
Males	650.7143

Analysis:- Here from the above results we see that Females spent more time in Personal care compared to Males

Converting the time on eating in minutes by removing the colon and calculating mean of total time(eating)

```
timedata_Eat <- timedata %>%
             separate ("Eating" , c("E_Min", "E_sec"), sep=":")
timedata_Eat <- timedata_Eat %>%
              mutate(E_TotalSec= (as.numeric(E_Min) * 60) + as.numeric(E_sec))
timedata_Eat <- timedata_Eat %>%
             group_by(Country,SEX) %>% summarise(mean= mean(E_TotalSec))
timedata\_Eat
## # A tibble: 28 x 3
## # Groups:
              Country [?]
##
     Country
              SEX
                       mean
##
      <chr>
              <chr>
                      <dbl>
  1 Belgium Females 110
## 2 Belgium Males
                      109
## 3 Bulgaria Females 115
## 4 Bulgaria Males
                      127
## 5 Estonia Females 72.0
## 6 Estonia Males
                       79.0
## 7 Finland Females 79.0
## 8 Finland Males
                       83.0
## 9 France Females 131
## 10 France
              Males
                      138
## # ... with 18 more rows
```

Analysis:- From the above subset we can infer that Males spend more time in eating compared to females for most of the countries.

```
timedata_Sleep <- timedata %>%
             separate ("Sleep" , c("S_Min", "S_sec"), sep=":")
timedata_Sleep <- timedata_Sleep %>%
              mutate(S_TotalSec= (as.numeric(S_Min) * 60) + as.numeric(S_sec))
timedata Sleep <- timedata Sleep %>%
              group_by(Country,SEX) %>% summarise(mean= mean(S_TotalSec))
timedata_Sleep
## # A tibble: 28 x 3
              Country [?]
## # Groups:
##
      Country
              SEX
                        mean
##
      <chr>
               <chr>
                       <dbl>
   1 Belgium Females
##
   2 Belgium Males
                         495
## 3 Bulgaria Females
                         547
## 4 Bulgaria Males
                         548
## 5 Estonia Females
                         506
## 6 Estonia Males
                         504
```

```
## 7 Finland Females 512
## 8 Finland Males 502
## 9 France Females 535
## 10 France Males 525
## # ... with 18 more rows
```

Analysis:- From the above subset we can infer that Males spend less time in sleeping compared to females for most of the countries.

3. Data -sales-tax credits from the government of Canada

Loading data

craCreditBenefit <- read.csv(file="https://raw.githubusercontent.com/Harpreet1984/DATA607/master/CRA_Cr kable(craCreditBenefit)

Province	GT_freq	GT_amount	X5K_freq	X5K_amount	X5K_10K_freq	X5K_10K_am
Newfoundland_and_Labrador	160300	\$65,756	26410	\$7,044	16150	\$5,278
Prince_Edward_Island	45850	\$18,648	8000	\$2,115	4220	\$1,363
Nova_Scotia	302210	\$122,873	59800	\$17,694	38340	\$13,202
New_Brunswick	249780	\$102,431	43160	\$11,986	29500	\$9,489
Quebec	2698620	\$1,082,380	495090	\$132,486	288830	\$101,067
Ontario	3982840	\$1,647,108	852320	\$249,084	426320	\$151,182
Manitoba	385370	\$162,874	101660	\$35,032	35830	\$12,788
Saskatchewan	291210	\$125,501	72980	\$26,349	23750	\$8,961
Alberta	921590	\$384,471	208080	\$65,556	80350	\$28,722
British_Columbia	1390640	\$561,578	304940	\$89,447	124170	\$42,769
Northwest_Territories	10740	\$4,478	2890	\$998	1420	\$541
Yukon	9110	\$3,788	1600	\$442	730	\$259
Nunavut	8530	\$4,383	1680	\$567	1740	\$727
Outside_Canada	920	\$436	350	\$159	120	\$44

tidying data set

```
craCreditBenefitAmountAnalysis <- craCreditBenefit %>% select(Province, X5K_amount, X5K_10K_amount, X10)
craCreditBenefitAmountAnalysisTidy <- craCreditBenefitAmountAnalysis %>% gather("Category", "Amount",
## Warning: attributes are not identical across measure variables;
## they will be dropped
craCreditBenefitAmountAnalysisTidy$Amount = gsub(",", "", craCreditBenefitAmountAnalysisTidy$Amount)
craCreditBenefitAmountAnalysisTidy$Amount = gsub("\\$", "", craCreditBenefitAmountAnalysisTidy$Amount)
```

craCreditBenefitAmountAnalysisTidy\$Amount = as.numeric (gsub("^\$", "0",craCreditBenefitAmountAnalysisTidy\$Amount = as.numeric (gsub("^\$", "0",craCreditBenefitAmountAnalysisTidy\$Amount = as.numeric (gsub("^\$", "0",craCreditBenefitAmountAnalysisTidy\$Amount = as.numeric (gsub(")")

Analyzing data set

Here we are calculating Maximum Credit Benefit Per province

maxCreditBenefitByProvince <- craCreditBenefitAmountAnalysisTidy %>% group_by(Province) %>% summarise(Anable(maxCreditBenefitByProvince)

Province	Amount
Alberta	65556
British_Columbia	93329
Manitoba	35032
New_Brunswick	18130
Newfoundland_and_Labrador	13023
Northwest_Territories	998
Nova_Scotia	20540
Nunavut	727
Ontario	270404
Outside_Canada	159
Prince_Edward_Island	3332
Quebec	194299
Saskatchewan	26349
Yukon	710

maxCreditBenefitByCategory <- craCreditBenefitAmountAnalysisTidy %>% group_by(Category) %>% summarise(AnalysisTidy %>% summarise(AnalysisTid

Category	Amount
X10K_15K_amount	243898
$X15K_20K_amount$	270404
$X20K_25K_amount$	217190
$X25K_30K_amount$	179196
$X30K_35K_amount$	162303
$X35K_40K_amount$	129493
$X40K_45K_amount$	35557
$X45K_50K_amount$	7656
$X50K_55K_amount$	1028
$X55K_60K_amount$	97
$X5K_10K_amount$	151182
X5K_amount	249084
X60K_amount	18

craCreditBenefitFreqAnalysis <- craCreditBenefit %>% select(Province, X5K_freq, X5K_10K_freq, X10K_15K_)
craCreditBenefitFreqAnalysisTidy <- craCreditBenefitFreqAnalysis %>% gather("Category", "Amount", 2:14
craCreditBenefitFreqAnalysisTidy\$Amount = gsub(",", "",craCreditBenefitFreqAnalysisTidy\$Amount)

 $\verb|craCreditBenefitFreqAnalysisTidy$Amount = \verb|as.numeric| (gsub("^$", "0", craCreditBenefitFreqAnalysisTidy$Amount = |as.numeric| (gsub("^$", "0", craCreditBenefitFreqAnalysisTidy$Amount = |as.numeric| (gsub("^$", "0", craCreditBenefitFreqAnalysisTidy$Amount = |as.numeric| (gsub("0", craCreditBenefitFreqAnalysisTidy$Amount = |as.numeric|$

maxCreditFreqByProvince <- craCreditBenefitFreqAnalysisTidy %>% group_by(Province) %>% summarise(max(Am
kable(maxCreditFreqByProvince)

Province	$\max(\text{Amount})$
Alberta	208080
British_Columbia	304940
Manitoba	101660
New_Brunswick	NA
Newfoundland_and_Labrador	NA
Northwest_Territories	NA
Nova_Scotia	NA
Nunavut	NA
Ontario	852320
Outside_Canada	NA
Prince_Edward_Island	NA
Quebec	495090
Saskatchewan	72980
Yukon	NA

maxCreditFreqByCategory <- craCreditBenefitFreqAnalysisTidy %>% group_by(Category) %>% summarise(max(Am kable(maxCreditFreqByCategory)

Category	$\max(\mathrm{Amount})$
X10K_15K_freq	573760
$X15K_20K_freq$	563100
$X20K_25K_freq$	440530
$X25K_30K_freq$	362380
X30K_35K_freq	328470
X35K_40K_freq	308840
X40K 45K freq	NA
X45K 50K freq	NA
X50K 55K freq	NA
X55K 60K freq	NA
X5K 10K freq	426320
X5K freq	852320
X60K_freq	NA
_	

Based on the above graphs, Ontario and montreal province got the maxmimum benefit credits and have highest frequencies. This makes sense as these two provinces are have highest number of working professionals.

Based on the general normal as the income bracket goes up the tax credit benefits decrease. This is confirmed with the graphs, there are substantial drops in the tax credit as the category goes above 40k.