Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

1 Input Parameters

Module			Bea	m Coverplate Connection	
MainMo	odule			Moment Connection	
Moment(kNm)*			1.0		
Shear (l	kN)*			46.0	
Axial (k	(N) *			45.0	
		Section	•		
	Beam S	ection *		LB(P) 300	
т— У	Prefe	rences		Outside + Inside	
	Mate	erial *		E 250 (Fe 410 W)A	
	Ultimate strer	ngth, fu (MPa)		410	
$\frac{(B-t)}{4}$ t $-$	Yield	250	R1(mm)	15.0	
ZZ D	Strength , fy (MPa)				
R ₁	Mass	41.5	R2(mm)	7.5	
R ₂	Area(mm2) -	5290.0	Iz(mm4)	81300000.0	
Y	D(mm)	300.0	Iy(mm4)	4140000.0	
•	B(mm)	140.0	rz(mm)	124.0	
	t(mm)	7.0	ry(mm)	28.0	
	T(mm)	11.6	Zz(mm3)	542000.0	
	FlangeSlope	98	Zy(mm3)	59200.0	
		Bolt Details			
Diameter	(mm)*		[12.0, 16.0, 20.0, 24.0, 30.0, 36.0]		
Grad	e *		[3.6, 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]		
Type *		Friction Grip Bolt			
Bolt hole type			Standard		
Slip factor (µ_f)			0.3		
Type of edges		a - Sheared or hand flame cut			
Gap between beam and	 br>support (mm)		10.0	
Are the members exposed to	 corrosive	influences		False	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$A_c = \frac{A * f_y}{\gamma_{m0} * 10^3}$ $= \frac{5290.0 * 250}{1.1 * 10^3}$ $= 1202.27$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 10^3}$ $= \frac{276.8 * 7.0 * 250}{\sqrt{3} * 1.1 * 10^3}$ $= 254.24$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 10^6}$ $= \frac{1 * 134081.92 * 250}{1.1 * 10^6}$ $= 30.47$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 10^6}$ $= \frac{1.5 * 542000.0 * 250}{1.1 * 10^6}$ $= 184.77$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(30.47, 184.77)$ = 30.47	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Load Au (kN)	$Ac_{min} = 0.3 * A_c$ = 0.3 * 1202.27 = 360.68 $Ac_{max} = Ac$ = 1202.27	$A_u = 360.68$	Pass
Applied Shear Load Vu (kN)	$Vc_{min} = 0.6 * S_c$ = $0.6 * 254.24$ = 152.55 $Vc_{max} = Sc$ = 254.24	$V_u = 152.55$	Pass
Applied Moment Load Mu (kNm)	$Mc_{min} = 0.5 * M_c$ = 0.5 * 30.47 = 15.24 $Mc_{max} = Mc$ = 30.47	$M_u = 15.24$	Pass
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(300.0 - 2 * 11.6) * 7.0 * 360.68}{5290.0}$ $= 132.11 \ kN$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{134081.92 * 15.24}{593200.0}$ $= 3.44 \ kNm$	
Forces Carried by Flange		$A_{f} = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{360.68 * 140.0 * 11.6}{5290.0}$ $= 110.73 \ kN$ $M_{f} = Moment \ in \ flange$ $= Mu - M_{w}$ $= 15.24 - 3.44$ $= 11.79 \ kNm$ $F_{f} = flange \ force$ $= \frac{M_{f} * 10^{3}}{D - T} + A_{f}$ $= \frac{11.79 * 10^{3}}{300.0 - 11.6} + 110.73$ $= 151.62 \ kN$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.3 Initial Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)	$F_f = 151.62$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 140.0 * 11.6 * 250}{1.1}$ $= 369.09$	Pass
Web Tension Yielding Capacity (kN)	$A_w = 132.11$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 276.8 * 7.0 * 250}{1.1}$ $= 440$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.4 Initial flange plate height check

Check	Required	Provided	Remarks
flange_plate.Height	Outer.b $>= 50$	Outer.b = 140.0	Pass
flange_plate.InnerHeight	Inner.b >= 50	$inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{140.0 - 7.0 - (2 * 15.0)}{2}$ $= 51.5$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.5 Flange plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	T = 5.8	$t_f = 8.0$	Pass
Plate Area check (mm2)	$pt.area>=$ $connected\ member\ area*1.05$ $=1705.2$	$outer.b = B$ $= 140.0$ $inner.b = \frac{B - t - (2 * r_1)}{2}$ $= \frac{140.0 - 7.0 - (2 * 15.0)}{2}$ $= 51.5$ $pt.area = (140.0 + (2 * 51.5)) * 8.0$ $= 1944.0$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.6 Web plate thickness

Check	Required	Provided	Remarks
Thickness	t = 3.5	$t_w = 20.0$	Pass
(mm)*			
		$web \ b = D - (2 * T) - (2 * r_1)$	
	pt.area >=	=300.0 - (2*11.6) - (2*15.0)	
Plate Area	$ connected \ member \ area*1.05 $	= 226.8	Pass
check (mm2)	=1666.98	pt.area = 20.0 * 2 * 226.8	
		=9072.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.7 Web Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	$g = 30 \ (Row \ Limit \ (r_l) = 2)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 25 + (2.0 - 1) * 30$ $= 80.0$	226.8	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.8 Flange Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 12.0	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ =2.5 * 12.0 = 30.0	$g = 0.0 (Row Limit (r_l) = 1)$	
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 25 + (1.0 - 1) * 30$ $= 50.0$	51.5	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.9 Flange Bolt Checks

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 12.0	
Grade	Bolt Grade Optimisation	9.8	
Bolt.fu		900.0	
Bolt.fy		720.0	
Hole Diameter (mm)		$d_0 = 13.0$	
Slip Resistance		$V_{dsf} = \frac{\mu_f \ n_e \ K_h \ F_o}{\gamma_{mf}}$ $Where, F_o = 0.7 * f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 * 1 * 1.0 * 0.7 * 900.0 * 0.0}{1.25}$ $= 25.49$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 151.62^{2}}}{25.49}$ $= 12$	12	
No of Columns		$n_c = 6$	
No of Rows		$n_r = 2$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 8.0, \ 300 \ mm)$ = 256.0	30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	0.0	N/A
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 8.0, \ 300 \ mm)$ $= 256.0$	0.0	N/A
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	25	Pass
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25.75	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *8.0 * \sqrt{\frac{250}{250}}$ $= 96.0$	25.75	Pass
Bolt Capacity post Long Joint (kN)	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{6}{2} - 1) * 30 + 25) + 10.0$ $= 180.0$ $lr = 2 * ((\frac{2}{2} - 1) * 0.0 + 25.75$ $+ 15.0) + 7.0 = 88.5$ $l = 180.0$ $15 * d = 15 * 12.0 = 180.0$ $since, \ l \ge 15 * d$ $then \ V_{rd} = \beta_{ij} * V_{db}$ $\beta_{ij} = 1.075 - 180.0/(200 * 12.0)$ $= 1.0$ $V_{rd} = 1 * 25.49 = 25.49$	
Capacity (kN)	25.27	25.49	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.10 Web Bolt Checks

Check	Required	Provided	Remarks
Slip Resistance		$V_{dsf} = \frac{\mu_f \ n_e \ K_h \ F_o}{\gamma_{mf}}$ $Where, F_o = 0.7 * f_{ub} A_{nb}$ $V_{dsf} = \frac{0.3 * 1 * 1.0 * 0.7 * 900.0 * 84.3}{1.25}$ $= 25.49$	3
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{152.55^{2} + 132.11^{2}}}{25.49}$ $= 16$	60	
No of Columns		$n_c = 10$	
No of Rows		$n_r = 6$	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 12.0 = 30.0$	30	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 7.0, \ 300 \ mm)$ $= 224.0$	30	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	30	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 7.0, \ 300 \ mm)$ = 224.0	30	Pass
Min. End Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 20.0 * \sqrt{\frac{250}{250}}$ $= 240.0$	25	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 t \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 * 20.0 * \sqrt{\frac{250}{250}}$ $= 240.0$	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
	-	$l_n = length \ available$	
		$l_n = (n_r - 1) * g$	
		= (6-1) * 30	
		= 150	
		$y_{max} = l_n/2$	
Parameters required for bolt force (mm)		=150/2	
		=75.0	
		$x_{max} = p * (\frac{n_c}{2} - 1)/2$	
		$= 30 * (\frac{10}{2} + -1)/2$	
		= 60.0	
		$M_d = (V_u * ecc + M_w)$	
Moment Demand (kNm		$= \frac{(152.55 * 10^3 * 135.0 + 3.44 * 1)}{10^6}$	$0^{6})$
		$= 24.04$ $vbv = V_u/(n_r * n_c)$	
		$=\frac{152.55}{(6*10)}$	
		= 5.08	
		$tmh = \frac{M_d * y_{max}}{\sum r_i^2}$	
		· ·	
		$=\frac{24.04*75.0}{132.75}$	
		= 13.58	
		$tmv = \frac{M_d * x_{max}}{\Sigma r_i^2}$	
Bolt.Force		$=\frac{24.04*60.0}{132.75}$	
		= 10.86	
		$abh = \frac{A_u}{(n_r * n_c)}$	
		132.11	
		$=\frac{132.11}{(6*10)}$	
		= 4.4	
		$vres = \sqrt{(vbv + tmv)^2 + (tmh + abh)^2}$	$a)^{2}$
		$=\sqrt{(5.08+10.86)^2+(13.58+10.86)^2+(13.58+10.86)^2+(13.58+10.86)^2+(13.58+10.86)^2+(13.58+10.86)^2}$	$4.4)^{2}$
		= 24.04	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Bolt Capacity post Long Joint (kN)	$if \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $if \ l < 15 * d \ then \ V_{rd} = V_{db}$ $where,$ $l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $\beta_{ij} = 1.075 - l/(200 * d)$ $but \ 0.75 \le \beta_{ij} \le 1.0$	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $lc = 2 * ((\frac{10}{2} - 1) * 30 + 25) + 10.0$ $= 300.0$ $lr = (6 - 1) * 30 = 150$ $l = 300.0$ $15 * d = 15 * 12.0 = 180.0$ $since, \ l \ge 15 * d$ $then \ V_{rd} = \beta_{ij} * V_{db}$ $\beta_{ij} = 1.075 - 300.0/(200 * 12.0)$ $= 0.95$ $V_{rd} = 0.95 * 25.49 = 24.22$	
Capacity (kN)	24.04	24.22	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.11 Inner and Outer flange plate Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)		140.0	Pass
Min. Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{6}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 218.4$	230.0	Pass
Min. Inner Plate Height (mm)	$= \frac{B - t - (2 * R1)}{2}$ $= \frac{140.0 - 7.0 - 2 * 15.0}{2}$ $= 51.5$	51.5	Pass
Max. Inner Plate Height (mm)	$= 51.5$ $= \frac{B - t - (2 * R1)}{2}$ $= \frac{140.0 - 7.0 - 2 * 15.0}{2}$ $= 51.5$	51.5	Pass
Min. Inner Plate Length (mm)	$2[2 * e_{min} + (\frac{bolt \ lines}{2} - 1) * p_{min})] + \frac{gap}{2}]$ $= 2 * [(2 * 22.1 + (\frac{6}{2} - 1) * 30.0]$ $= +\frac{10.0}{2}]$ $= 218.4$	230.0	Pass
Min.Plate Thickness (mm)	$t_w = 5.8$	8.0	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.12 Member Checks

Check	Required	Provided	Remarks
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
		γ_{mo}	
Flange Tension Yielding		$= \frac{1 * 140.0 * 11.6 * 250}{1.1}$	
Capacity (kN)			
		$= 369.09$ $0.9 * A_{-} * f_{-}$	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Flange Tension Rupture			410
Capacity (kN)		$= \frac{0.9 * (140.0 - 2 * 13.0) * 11.6 *}{1.25}$	
		= 390.37	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
		$\gamma_{m1} = \sqrt{3}\gamma_{m0}$	
Flange Block Shear Ca-		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
pacity (kN)		$\sqrt{3}\gamma_{m1}$ γ_{m0}	
		$T_{db} = min(T_{db1}, T_{db2}) = 343.36$ $T_d = min(T_{dg}, T_{dn}, T_{db})$	
		_	
Flange Tension Capacity	$f_f = 151.62$	= min(369.09, 390.37, 343.36)	Pass
(kN)		= 343.36	
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
W 1 TD . W: 11: C		γ_{mo}	
Web Tension Yielding Ca-		$= \frac{1 * 276.8 * 7.0 * 250}{1.1}$	
pacity (kN)		1.1	
		$= 440.36$ $T_{dn} = \frac{0.9 * A_n * f_u}{2}$	
		$T_{dn} = \frac{\gamma_{dn}}{\gamma_{m1}}$	
Web Tension Rupture Ca-		0.9*(276.8-6*13.0)*7.0*4	110
pacity (kN)		$= \frac{0.9 * (276.8 - 6 * 13.0) * 7.0 * 4}{1.25}$	
		=410.8	
		$= 410.8$ $T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
		$\sqrt{3\gamma_{m0}}$ γ_{m1}	
Web Block Shear Capac-		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
ity (kN)		. ,	
		$T_{db} = min(T_{db1}, T_{db2}) = 493.67$ $T_d = min(T_{dg}, T_{dn}, T_{db})$	
Web Tension Capacity	$A_w = 132.11$	= min(440.36, 410.8, 493.67)	Pass
(kN)		=410.8	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.13 Flange Plate Capacity Checks in axial-Outside/Inside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 243.0 * 8.0 * 250}{1.1}$ $= 441.82$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (243.0 - 2 * 13.0) * 8.0 * 4}{1.25}$ $= 512.47$	110
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 540.87$	
Plate Tension Capacity (kN)	$f_f = 151.62$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(441.82, 512.47, 540.87)$ $= 441.82$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.14 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 200 * 20.0 * 250}{1.1}$ $= 1049.73$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (200 - 6 * 13.0) * 20.0 * 9}{1.25}$ $= 1440.58$	00.0
Block Shear Capacity (kN)		$T_{db1} = \frac{A_{vg} f_y}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{tn} f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 2820.99$	
Plate Tension Capacity (kN)	$A_w = 132.11$	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(1818.18, 1440.58, 2820.99)$ $= 1440.58$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.15 Web Plate Capacity Checks in Shear

Check	Required	Provided	Remarks
Characteristics Consider		$V_{dy} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ 1 * 200 * 20 0 * 250	
Shear yielding Capacity (V_dy) (kN)		$= \frac{1 * 200 * 20.0 * 250}{\sqrt{3} * 1.1}$ $= 1049.73$	
		$V_{dn} = \frac{0.9 * A_{vn} * f_u}{\sqrt{3} * \gamma_{m1}}$	
Shear Rupture Capacity (V_dn) (kN)		$= \frac{0.9 * (200 - (5.0 * 13.0)) * 20.0}{\sqrt{3} * 1.25}$	* 410
		=831.72	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Block Shear Capacity in Shear (V_db) (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 2023.78$	
Plate Shear Capacity (kN)	$V_u = 152.55$	$V_d = min(V_{dy}, V_{dn}, V_{db})$ = $min(1049.73, 831.72, 2820.99)$	Pass
		= 831.72	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View