Álgebra Lineal Grupo 3044, 2020-II

Examen parcial 5 (tarea examen)

Fecha de entrega: lunes 1 de junio, 16:00 hrs.

"Todos sabemos algo, todos ignoramos algo, por eso siempre aprendemos."

> —Paulo Freire, pedagogo brasileño

Número de cuenta:

En los ejercicios siguientes, asume que V es un espacio vectorial de dimensión finita n con producto escalar.

1. Sea $\{|a_1\rangle, |a_2\rangle, \dots, |a_n\rangle\}$ una base ortonormal cualquiera de V. Supongamos que definimos un operador $\iota: V \to V$ como

$$\iota = \sum_{i=1}^{n} |a_i\rangle \langle a_i|.$$

¿Quién es el operador ι^1 ? (1.25 ptos.)

2. Sea $P:V\to V$ un operador lineal tal que $P^2=P$. Demuestra que

$$V = \operatorname{Im}(P) \oplus \operatorname{Ker}(P).$$

En este caso, decimos que P es un operador de proyección. (1.25 ptos.)

- **3.** Demuestra que los únicos eigenvalores que puede tener un operador de proyección son 1 y 0. ¿Cómo puedes interpretar esto geométricamente? ¿Qué significa esto para los eigenvectores con eigenvalor 0 y 1, respectivamente? (1.25 ptos.)
- **4.** Siguiendo de la primera pregunta, sea W_{jk} un subespacio vectorial de V con $\{|a_j\rangle, |a_{j+1}\rangle, \dots, |a_k\rangle\}$ como base, con $1 \leq j, k \leq n$. Demuestra que el operador $P_{jk}: V \to V$ dado por

$$P_{jk} = \sum_{i=j}^{k} |a_i\rangle \langle a_i|$$

es una **proyección ortogonal** sobre el subespacio W_{jk} . ¿Quiénes son la $Im(P_{jk})$ y el $Ker(P_{jk})$? (1.25 ptos.)

- 5. Demuestra que todos los eigenvalores de operadores lineales hermitianos son reales. (1.25 ptos.)
- 6. Demuestra que los eigenvectores de un operador autoadjunto correspondientes a eigenvalores distintos son ortogonales entre sí. (1.25 ptos.)
 - 7. Supongamos que $T:V\to V$ es un operador lineal tal que

$$\left\langle v_{1}\right|\left(T\left|v_{2}\right\rangle \right)=\left(\left.\left\langle v_{1}\right|T\right)\left|v_{2}\right\rangle =\left\langle v_{1}\right|T\left|v_{2}\right\rangle$$

¹Piensa en cómo actúa ι sobre un vector arbitrario $|v\rangle \in V$.

para todo $|v_1\rangle$, $|v_2\rangle \in V$. Sea $\beta = \{|b_1\rangle, |b_2\rangle, \dots, |b_n\rangle\}$ una base ortonormal de V y $A = [T]_{\beta}$ la representación matricial del operador T en la base ortonormal β . Demuestra que las entradas de la matriz A están dadas por la ecuación

$$A_{ij} = \langle b_i | T | b_i \rangle$$
.

(1.25 ptos.)

8. Supongamos, para fines de este ejercicio sólamente, que n=9. Sea $\delta=\{|x_1\rangle,|x_2\rangle,\dots,|x_9\rangle\}$ una base ortonormal de V y $X:V\to V$ un operador hermitiano tal que

$$X|x_i\rangle = d_i|x_i\rangle$$
, $1 \le i \le 9$,

donde d_i corresponde a el i-ésimo dígito de tu número de cuenta. Calcula la representación matricial del operador X en la base δ y realiza una descomposición espectral de la matriz resultante. (1.25 ptos.)

Extra: Siguiendo de la pregunta antepasada, supongamos que $\gamma = \{|c_1\rangle, |c_2\rangle, \dots, |c_n\rangle\}$ es otra base ortonormal de V. Sea $B = [T]^{\gamma}_{\beta}$, es decir, la representación matricial del operador T que toma vectores representados en la base β y los devuelve en su representación en la base γ . Demuestra que las entradas de B están dadas por

$$B_{ij} = \langle c_i | T | b_j \rangle$$
.

(1 pto. extra*)