Decomposition of Graphs: Strongly connected components

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Graph Algorithms

Data Structures and Algorithms

Strongly connected components

A strongly connected component of a directed graph is an inclusion-wise maximal subset of vertices such that there is a (directed) path between any two of them in both directions.

Metagraph

Lemma

If C and C' are strongly connected components, and there is an edge from a node in C to a node in C', then the highest post number in C is bigger than the highest post number in C'.

Proof

Case 1. If DFS visits C before C' then all of C and C' will be examined before we end processing a vertex from C,

Lemma

If C and C' are strongly connected components, and there is an edge from a node in C to a node in C', then the highest post number in C is bigger than the highest post number in C'.

Proof

Case 1. If DFS visits C before C' then all of C and C' will be examined before we end processing a vertex from C,

Corollaries

1 The vertex with the highest post number lies in a source SCC.

Corollaries

- 1 The vertex with the highest post number lies in a source SCC.
- 2 SCC's can be linearized by arranging them in decreasing order of their highest post numbers.

Computing SCC's

SCC(G)

run DFS on G^R

run the undirected connected components algorithm on G processing the vertices in decreasing order of their post numbers from step 1

Constructing metagraph in linear time

Turn the list of edges $\{(A, D), (C, B), \ldots\}$ into $\{(2, 2), (1, 2), \ldots\}$, sort it by calling counting sort twice, remove all duplicates