Machine Learning Foundation HW2

B04902004 王佑安

1.

- 2. positive intervals 的 $m_{\mathcal{H}}(N)=C_2^{N+1}$, negative 跟 positive 一樣, 扣掉 interval $=[-\infty,r]$ 跟 $[l,\infty]$ 會重複, 這兩種情況分別會重複 N-1 種, 因此 positive-and-negative intervals 的 growth function $m_{\mathcal{H}}(N)=2\times C_2^{N+1}-2\times (N-1)=N^2-N+2$ 。
- 3. 將 x^1 ... x^D 視為一個 D 維的 vector 就可以用 PLA 找出 d + 1 個 input 時的所有 dichotomies 因此 $d_{vc} \ge d+1$, 而在 d = 1 時可以找到 $\times \circ \times$ 的 input 不能被 shatter 因此 $d_{vc} \le d+1$ 。 $\Rightarrow d_{vc} = d+1$
- 4. 假設 $x_i = 2^i, 0 \le i \le N$, $(1 + \frac{k}{2^N}) \le \alpha \le (1 + \frac{k+1}{2^N}), 0 \le k \le 2^N$ 可以表示全部 2^N 種 dichotomies, 因此 $d_{vc} = \infty$
- 5. $\mathcal{H}_1 \subseteq \mathcal{H}_2$ 表示 \mathcal{H}_1 的 dichotomies $\leq \mathcal{H}_2$ 的 dichotomies $\Rightarrow m_{\mathcal{H}_1}(N) \leq m_{\mathcal{H}_2}(N)$, 根據 VC dimension 的定義 $d_{vc}(\mathcal{H}) = \text{largest N for which } m_{\mathcal{H}}(N) = 2^N \Rightarrow d_{vc}(\mathcal{H}_1) \leq d_{vc}(\mathcal{H}_2)$
- 6. positive-ray 的 $m_{\mathcal{H}}(N) = N+1$, 扣掉全為 × 跟全為 o 的情況重複, $m_{\mathcal{H}_1 \cup \mathcal{H}_2}(N) = 2 \times (N+1) 2 = 2N$, N=2, $2N=2^N=4 \Rightarrow d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2) = 2$

7.
$$s = +1 \Rightarrow \mu = 0.5|\theta|$$

 $s = -1 \Rightarrow \mu = 1 - 0.5|\theta|$
 $\mu = \frac{s+1}{2} \times 0.5|\theta| + \frac{1-s}{2} \times (1 - 0.5|\theta|) = 0.5 \times (s|\theta| - s + 1)$
 $E_{out} = \mu\lambda + (1 - \mu)(1 - \lambda) = 0.5 + 0.3s(|\theta| - 1)$

8.

 E_{out} 是錯誤發生的機率,因此可以看出基本上錯誤率越高,在 data 上的 E_{in} 就愈高。