SMART INDIA HACKATHON 2025

TITLE PAGE

- Problem Statement ID 25132
- Problem Statement Title-Student Innovation
- Theme-MedTech / BioTech / HealthTech
- PS Category- Software
- Team ID 77014
- Team Name-Quantum Care

Quantum Care

AI-Powered Early Disease Detection -

OPPORTUNITY (Why?)

Early detection is paramount to **cancer survival**, yet the current healthcare model often struggles with **delayed diagnosis**, resulting in **poor treatment outcomes** and **low survival rates**. The reliance on slow, error-prone, and inefficient **manual diagnosis** (human review of X-rays, CTs, and MRIs) is not equipped for high-volume screening and frequently lacks the sensitivity to catch **pre-symptomatic malignancy**.

The immense opportunity lies in leveraging Artificial Intelligence, specifically Deep Learning, to fundamentally shift the timeline from reactive treatment to proactive prevention. A unified Al-driven system can enable Early Stage Detection for major cancers (such as Lung, Brain, Skin, and Blood), ensuring patients receive Better Treatment sooner. This transformation promises to drastically improve survival rates for millions worldwide while simultaneously reducing healthcare costs.

Idea (What?)

Our platform is an intelligent, deep-learning based system that analyzes multi-modal medical data (imaging, pathology slides, genomic reports) to rapidly and accurately identify malignant tissue, predict cancer risk, and assist clinicians in diagnosis and prognosis

Proposed Solutions(How?)

- ✓ Multi-Modal Image Processing: Collects diverse images (X-ray, CT, MRI, Dermoscopy) and applies Noise Removal and a Segmentation Model to isolate the areas of interest for efficient analysis.
- ✓ **Deep Learning Classification (CNN):** The image segment is analyzed by a Convolutional Neural Network (CNN), which performs high-sensitivity Feature Extraction to determine the probability of malignancy and generates the Final Prediction.
- ✓ Real-Time, Explainable Output (XAI):, Explainable Output (XAI): Accelerated by GPU, the system delivers Real-Time Analysis and a Visual Diagnostic Report featuring heatmaps and a confidence score to aid the clinician.
- ✓ High-Risk Data Flagging: Upon a Malignant/High-Risk classification, the diagnostic data is instantly and securely logged, triggering an alert for the subsequent AI Chatbot Patient Navigator.
- ✓ Suggest Specialists: Recommend the most appropriate onco-specialist .
- ✓ Facilitate Booking: Guide the patient through the next steps for early treatment, potentially even initiating the appointment scheduling process based on the risk level.
- ✓ **Patient Education and Support:** The Chatbot provides immediate, accurate information about the next steps, answering common patient FAQs and reducing the anxiety associated with waiting for a critical appointment.

Tech-Stack

Frontend:ReactJS / Angular (for Clinical Dashboard)Material-UI (for modern design)

Backend / API Layer: Python (Flask / FastAPI - for high-performance API) PostgreSQL (for secure data storage)

Al and ML (Core Engine): PyTorch and TensorFlow (Deep Learning Frameworks) NVIDIA CUDA (GPU acceleration) CNN Architectures (for classification) OpenCV, Scikit-image (for image processing, segmentation) Grad-CAM (for XAI heatmap generation)

Dataset50,000+ Multi-Modal Medical Images (for training and validation) Explainability (XAI)Grad-CAM, Heatmaps & Confidence Scores

Chatbot: GrowthCustom NLP, Continuous Learning

TECHNICAL APPROACH

Process Flow

FEASIBILITY AND VIABILITY

Feasibility

- ✓ Availability of large medical imaging datasets for model training.
- ✓ Proven success of AI in medical image classification and diagnostics.
- ✓ Integration with existing hospital IT systems and diagnostic tools.
- ✓ Affordable cloud-based infrastructure for scalable deployment.

Viability

- ✓ Reduces diagnostic time and cost for hospitals and patients.
- ✓ Enhances early detection rates, improving survival chances.
- ✓ Supported by government & healthcare initiatives promoting AI in healthcare.
- ✓ Potential for partnerships with hospitals, labs, and diagnostic centers.

Challenges

- ✓ Data privacy and compliance with HIPAA/GDPR regulations.
- ✓ Limited access to balanced, high-quality medical datasets.
- ✓ Risk of false positives/negatives impacting patient trust.
- ✓ Resistance from medical professionals toward AI-driven diagnostics.

Solutions

- ✓ Implement strong data encryption and secure data handling protocols.
- ✓ Use federated learning to train AI models without sharing raw patient data.
- ✓ Continuous model validation and feedback from medical experts.
- ✓ Conduct awareness programs for doctors on Al's role as a supportive tool.

Use Cases

- ✓ Automated detection of breast, lung, and skin cancers in imaging scans.
- ✓ Al-powered triage to prioritize high-risk patients in hospitals.
- ✓ Remote cancer screening for rural/underserved communities.
- ✓ Real-time decision support system for oncologists.

Business Potential

- ✓ Growing \$200B+ global AI healthcare market opportunity.
- ✓ Licensing AI software to hospitals and diagnostic centers.
- ✓ SaaS model for clinics, labs, and telemedicine platforms.
- ✓ Expansion into multi-disease early detection beyond cancer.

Supporting Facts for Feasibility and Viability

- → Applying Deep Learning to Medical Imaging: A Review
- → MedicalPatchNet: A Patch-Based Self-Explainable AI Architecture for Chest X-ray Classification
- → Explainable AI in medical imaging: an interpretable and collaborative federated learning model for brain tumor classification

IMPACT AND BENEFITS

Impact on Target Audience

Impact on Patients & the General Public

- ✓ Dramatically improves survival rates and quality of life by enabling early, less invasive treatments.
- ✓ Empowers individuals with personalized risk assessments, allowing for proactive health management.

Impact on Healthcare Professionals

- ✓ Augments clinical expertise by detecting subtle disease markers, significantly increasing diagnostic accuracy.
- ✓ Increases workflow efficiency by automating analysis and prioritizing urgent cases for review.

Impact on Healthcare Systems

- ✓ Drastically reduces long-term operational costs by shifting treatment to earlier, less expensive stages.
- ✓ Facilitates targeted public health strategies and better resource allocation by identifying at-risk populations.

Benefits of Solution

Predictive

- ✓ Identifies high-risk individuals and forecasts disease onset by analyzing complex health data.
- ✓ Provides early warnings by uncovering predictive patterns that are otherwise undetectable.

Clinical

- ✓ Enhances diagnostic accuracy and speed by serving as a powerful decision-support tool for clinicians.
- ✓ Leads to more effective treatments and significantly improved patient health outcomes.

Economical

- ✓ Lowers overall healthcare costs for both patients and the system by enabling cheaper, early-stage treatment.
- ✓ Minimizes the wider economic impact by reducing productivity loss from advanced diseases.

Technological

- ✓ Represents a major advancement in medical technology by enabling the rapid analysis of complex datasets.
- ✓ Creates a foundation for future Al-driven healthcare research and diagnostic innovations.

Proactive

- ✓ Shifts the focus of healthcare from reactive treatment to proactive prevention through timely intervention.
- ✓ Empowers patients and doctors with early warnings, allowing them to take preventive health measures.

RESEARCH AND REFERENCES

Refrences

- Existing Platforms
 - Quibim-https://www.quibim.com/
 - ☐ Clarity_Breast https://www.bcrf.org/blog/clairity-breast-ai-artificial-intelligence-mammogram-approved/?utm_source=chatgpt.com
 - Optellumhttps://optellum.com/?utm_source=chatgpt.com
- ☐ Research And Best Practices-
 - □ https://www.frontiersin.org/journals/oncology/articles/10 .3389/fonc.2025.1535478/full
 - ☐ https://arxiv.org/abs/2509.07477
 - □ https://www.mdpi.com/2076-3417/13/18/10521
- ☐ Feasibility Facts
 - ☐ https://pubmed.ncbi.nlm.nih.gov/39754864/
 - □ https://pmc.ncbi.nlm.nih.gov/articles/PM C12250385/?utm source=chatgpt.com
 - ☐ https://arxiv.org/html/2410.14769v1#bib.bib78

<u>Feature / Parameter</u>	Existing Apps (General)	Early Stage Cancer Detection App (Proposed)
Detection Focus	Detects only advanced or visible cancer signs	Detects early-stage & tiny nodules with high sensitivity
Imaging Modalities	Limited (mostly X-ray or CT only)	Supports multi-modality (X-ray, MRI, CT, Dermoscopy)
Accuracy & Sensitivity	Moderate accuracy, higher false negatives	High sensitivity & accuracy, reduces missed cases
Explainability	Minimal or no visual explanations	Provides heatmaps & highlighted suspicious regions
Doctor Support	Standalone, limited assistance	Acts as a decision-support tool for radiologists
Deployment	Complex integration, device- specific	Web & PACS-integrated, user- friendly hospital adoption
Data Privacy & Compliance	Basic data handling	Strict HIPAA/GDPR compliance with encryption
Adaptability & Learning	Static models, little improvement over time	Continuous learning from new hospital data & feedback
Business Reach	Limited to specific hospitals or regions	Scalable, cloud-ready , adaptable for global use