ИДЗ №5

Даша Оникова, бпми 2112

Январь 2022

№ 1 Представить матрицу A в виде суммы r матриц ранга 1, где $r=\mathrm{rk}A$

$$A = \begin{pmatrix} 0 & -7 & -1 & 3 & 5 \\ -3 & -32 & -7 & 12 & 17 \\ -22 & -12 & 5 & -6 & -2 \\ 26 & -1 & 16 & 15 & 45 \\ -21 & 0 & -17 & -12 & -41 \end{pmatrix}$$

Для начала найдем rkA.

Элементарные преобразования строк не меняют (строковый) ранг матрицы. При помощи элементарных преобразований строк приведем A к УСВ, чтобы понять, сколько строк в матрице линейно независимы и найти ее ранг.

:

В A' три ненулевые строки, (то есть в матрице A - 3 линейно независимые строки), значит $r=\mathrm{rk}A=3$

Строковый ранг равен столбцовому рангу матрицы (просто рангу матрицы), значит в матрице A - 3 линейно независимых столбца. Обозначим все столбцы A как $v_1, ... v_5$ (векторы из \mathbb{R}^5). Заметим, что линейно независимые столбцы образуют базис $\langle v_1, ..., v_5 \rangle$.

Выделим этот базис и выразим через него остальные столбцы по алгоритму, чтобы выразить какие-то столбцы матрицы через остальные, и, получив выражения, найти три матрицы ранга 1 (представить данную матрицу в виде суммы матриц, в которых все столбцы будут линейно зависимы):

- Составим матрицу со столбцами $v_1..v_5$ (сделано, это не что иное, как матрица A)
- При помощи элементарных преобразований строк приведем матрицу A к УСВ (сделано, получилась матрица A')
- Выберем столбцы, в которых есть ведущие элементы (это столбцы v_1, v_2, v_3). Это и есть базис $\langle v_1, ..., v_5 \rangle$ (так как эти векторы линейно независимы и остальные векторы выражаются через них)

- В четвертом столбце в первой строке стоит число $\frac{54}{103}$, во второй $-\frac{45}{103}$, в третьей $\frac{6}{103}$. $\Rightarrow v_4 = \frac{54}{103}v_1 \frac{45}{103}v_2 + \frac{6}{103}v_3$ (поскольку элементарные преобразования строк матрицы сохраняют линейные зависимости между столбцами)
- В пятом столбце в первой строке стоит число $\frac{91}{103}$, во второй $-\frac{93}{103}$, в третьей $\frac{136}{103}$. $\Rightarrow v_5 = \frac{91}{103}v_1 \frac{93}{103}v_2 + \frac{136}{103}v_3$ (поскольку элементарные преобразования строк матрицы сохраняют линейные зависимости между столбцами)

Значит, A представима в виде суммы A_1, A_2, A_3 , где:

$$\bullet \ A_1 = \begin{pmatrix} v_1 & 0 & 0 & \frac{54}{103}v_1 & \frac{91}{103}v_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & -\frac{162}{103} & -\frac{273}{103} \\ -22 & 0 & 0 & -\frac{1188}{103} & -\frac{2002}{103} \\ 26 & 0 & 0 & \frac{1404}{103} & \frac{2366}{103} \\ -21 & 0 & 0 & -\frac{1134}{103} & -\frac{1911}{103} \end{pmatrix}.$$

Так как все столбцы в матрице линейно зависимы, ее ранг равен 1.

$$\bullet \ A_2 = \begin{pmatrix} 0 & v_2 & 0 & -\frac{45}{103}v_2 & -\frac{93}{103}v_2 \end{pmatrix} = \begin{pmatrix} 0 & -7 & 0 & \frac{315}{103} & \frac{651}{103} \\ 0 & -32 & 0 & \frac{1440}{103} & \frac{2976}{103} \\ 0 & -12 & 0 & \frac{540}{103} & \frac{1116}{103} \\ 0 & -1 & 0 & \frac{45}{103} & \frac{93}{103} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Так как все столбцы в матрице линейно зависимы, ее ранг равен 1.

$$\bullet \ A_3 = \begin{pmatrix} 0 & 0 & v_3 & \frac{6}{103}v_3 & \frac{136}{103}v_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 & -\frac{6}{103} & -\frac{136}{103} \\ 0 & 0 & -7 & -\frac{42}{103} & -\frac{952}{103} \\ 0 & 0 & 5 & \frac{30}{103} & \frac{680}{103} \\ 0 & 0 & 16 & \frac{96}{103} & \frac{2176}{103} \\ 0 & 0 & -17 & -\frac{102}{103} & -\frac{2312}{103} \end{pmatrix}.$$

Так как все столбцы в матрице линейно зависимы, ее ранг равен 1.

$$\Rightarrow A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ -3 & 0 & 0 & -\frac{162}{103} & -\frac{273}{103} \\ -22 & 0 & 0 & -\frac{1188}{103} & -\frac{2002}{103} \\ 26 & 0 & 0 & \frac{1404}{103} & \frac{2366}{103} \\ -21 & 0 & 0 & -\frac{1134}{103} & -\frac{1911}{103} \end{pmatrix} + \begin{pmatrix} 0 & -7 & 0 & \frac{315}{103} & \frac{651}{103} \\ 0 & -32 & 0 & \frac{1440}{103} & \frac{2976}{103} \\ 0 & -12 & 0 & \frac{540}{103} & \frac{1116}{103} \\ 0 & -12 & 0 & \frac{45}{103} & \frac{93}{103} \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & -1 & -\frac{6}{103} & -\frac{136}{103} \\ 0 & 0 & -7 & -\frac{42}{103} & -\frac{952}{103} \\ 0 & 0 & 5 & \frac{30}{103} & \frac{680}{103} \\ 0 & 0 & 16 & \frac{96}{103} & \frac{2176}{103} \\ 0 & 0 & -17 & -\frac{102}{103} & -\frac{2312}{103} \end{pmatrix}$$

Проверим, что это действительно так:

№ 2 В пространстве \mathbb{R}^3 заданы два базиса: $\mathbb{e} = (e_1, e_2, e_3)$ и $\mathbb{e}' = (e'_1, e'_2, e'_3)$ и вектор v.

- (a) Доказать, что наборы векторов e и e' действительно базисы в \mathbb{R}^3
- (б) Найти матрицу перехода от базиса е к базису е'.
- (c) Найти координаты вектора v в базисе \mathfrak{C}' .

$$e_1 = (-3, 2, 3), e_2 = (3, 1, 1), e_3 = (-2, 1, -3), e'_1 = (7, -2, -5), e'_2 = (-7, 6, 0), e'_3 = (2, 5, -4)$$

Координаты v в базисе e - (3, -1, 4)

Пусть $u = (u_1, u_2, u_3)$ - стандартный базис в \mathbb{R}^3 , $u_1 = (1, 0, 0)$, $u_2 = (0, 1, 0)$, $u_3 = (0, 0, 1)$. В этом базисе три вектора, значит во всяком базисе \mathbb{R}^3 - три вектора. (Так как число векторов в базисе пространства не зависит от выбора базиса). При этом, любой набор из трех линейно независимых векторов будет базисом \mathbb{R}^3 (следствие из теоремы о том, что всякую линейно независимую систему векторов какого-то конечномерного пространства можно дополнить до базиса всего пространства)

- (а) В обоих данных наборах по три вектора. Чтобы доказать, что они (наборы) являются базисами в \mathbb{R}^3 осталось доказать, что в обоих наборах векторы линейно независимы. Это удобно делать через элементарные преобразования строк матриц, в строках которых написаны данные векторы: если в наборе есть вектор, который как-либо линейно выражается через остальные, при попытке привести к УСВ матрицу, он превратится в строку нулей.
 - Докажем, что векторы из е линейно независимы: для этого приведем матрицу $\begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$ к

УСВ элементарными преобразованиями строк: если в УСВ не окажется нулевых строк, в наборе с не будет линейно зависимых векторов.

$$\begin{pmatrix} -3 & 2 & 3 \\ 3 & 1 & 1 \\ -2 & 1 & 3 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ K}}} {}^{\text{YCB}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

В матрице нет нулевых строк, значит векторы e_1, e_2, e_3 - линейно независимы и являются базисом \mathbb{R}^3

— Докажем, что векторы из \mathfrak{C}' линейно независимы: для этого приведем матрицу $\begin{pmatrix} e_1' \\ e_2' \\ e_3' \end{pmatrix}$ н

УСВ элементарными преобразованиями строк: если в УСВ не окажется нулевых строк, в наборе є' не будет линейно зависимых векторов.

$$\begin{pmatrix} 7 & -2 & -5 \\ -7 & 6 & 0 \\ 2 & 5 & -4 \end{pmatrix} \xrightarrow{\text{Привели к УСВ}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

В матрице нет нулевых строк, значит векторы e_1', e_2', e_3' - линейно независимы и являются базисом \mathbb{R}^3

3

(б) Пусть C - матрица перехода от $\mathfrak e$ к $\mathfrak e'$ (искомая). То есть, $(e_1',e_2',e_3')=(e_1,e_2,e_3)\cdot C$ C_1 - матрица перехода от $\mathfrak u$ к $\mathfrak e$, C_2 - матрица перехода от $\mathfrak u$ к $\mathfrak e'$.

Чтобы найти C, выразим наборы вектороы \mathfrak{e} и \mathfrak{e}' через векторы стандартного базиса и соответственные матрицы перехода, а затем - выразим \mathfrak{e}' через \mathfrak{e} и некоторую "комбинацию" матриц C_1 и C_2 . И C_1 , и C_2 обратимы (как матрицы перехода от одного базиса к другому, более, в пункте (а) были рассмотрены транспонированные варианты этих матриц, УСВ которых имеет определитель 1, а значит, сами матрицы не могут иметь определитель 0, операция транспонирования определитель не изменяет)

По определению, $C_1 = \begin{pmatrix} -3 & 3 & -2 \\ 2 & 1 & 1 \\ 3 & 1 & -3 \end{pmatrix}$ (матрица, столбцы которой - векторы e_1, e_2, e_3) При этом, $(e_1, e_2, e_3) = (u_1, u_2, u_3) \cdot C_1$ (1)

По определению, $C_2=\begin{pmatrix} 7&-7&2\\-2&6&5\\-5&0&-4 \end{pmatrix}$ (матрица, столбцы которой - векторы e_1',e_2',e_3') При этом, $(e_1',e_2',e_3')=(u_1,u_2,u_3)\cdot C_2$ (2)

$$(1) \ (e_1, e_2, e_3) = (u_1, u_2, u_3) \cdot C_1 \overset{\text{домножим обе части уравнения}}{\longleftrightarrow} (e_1, e_2, e_3) \cdot C_1^{-1} = (u_1, u_2, u_3).$$

Подставим $(e_1, e_2, e_3) \cdot C_1^{-1}$ в (2):

$$(e_1',e_2',e_3')=(u_1,u_2,u_3)\cdot C_2 \iff (e_1',e_2',e_3')=(e_1,e_2,e_3)\cdot C_1^{-1}\cdot C_2$$
. Получается, искомая $C=C_1^{-1}\cdot C_2$.

Найдем C_1^{-1} (она существует по доказанному выше). Для этого приведем левую часть расширенной матрицы вида $(C_1|E)$ к УСВ элементарными преобразованиями строк. Слева получится E, а справа - C_1^{-1} .

$$\begin{pmatrix} -3 & 3 & -2 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 3 & 1 & -3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ К}}} \text{VCB} \begin{pmatrix} 1 & 0 & 0 & -\frac{4}{41} & \frac{7}{41} & \frac{5}{41} \\ 0 & 1 & 0 & \frac{9}{41} & \frac{15}{41} & -\frac{1}{41} \\ 0 & 0 & 1 & -\frac{1}{41} & \frac{12}{41} & -\frac{9}{41} \end{pmatrix}$$

$$C_1^{-1} = \begin{pmatrix} \frac{-4}{41} & \frac{7}{41} & \frac{5}{41} \\ \frac{9}{41} & \frac{15}{41} & \frac{7}{41} \\ \frac{9}{41} & \frac{15}{41} & \frac{7}{41} \end{pmatrix} , \quad C = C_1^{-1} \cdot C_2 = \begin{pmatrix} \frac{-67}{41} & \frac{70}{41} & \frac{7}{41} \\ \frac{38}{41} & \frac{27}{41} & \frac{97}{41} \\ \frac{14}{41} & \frac{79}{41} & \frac{94}{41} \end{pmatrix}$$

- (c) Нам даны координаты v в базисе e и известна C матрица перехода от e к e'. Пусть искомые координаты (координаты v в e') (v_1, v_2, v_3) . Найдем их по алгоритму:
 - $-\ (e_1',e_2',e_3')=(e_1,e_2,e_3)\cdot C$ выражение одного базиса через другой

$$-v=3e_1-e_2+e_3=(e_1,e_2,e_3)\cdot \begin{pmatrix} 3\\-1\\4 \end{pmatrix}$$
 - выражение вектора через координаты в е.

$$-v = v_1 \cdot e_1' + v_2 \cdot e_2' + v_3 \cdot e_3' = (e_1', e_2', e_3') \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
 - выражение вектора через координаты в \mathfrak{E}' .

— Получается, что
$$(e_1,e_2,e_3)\cdot \begin{pmatrix} 3\\-1\\4 \end{pmatrix}=(e_1',e_2',e_3')\cdot \begin{pmatrix} v_1\\v_2\\v_3 \end{pmatrix} \Longleftrightarrow$$
 $(e_1,e_2,e_3)\cdot \begin{pmatrix} 3\\-1\\4 \end{pmatrix}=(e_1,e_2,e_3)\cdot C\cdot \begin{pmatrix} v_1\\v_2\\v_3 \end{pmatrix}$ так как (e_1,e_2,e_3) линейно независимы как вазис \mathbb{R}^3 $\begin{pmatrix} 3\\-1\\4 \end{pmatrix}=C\cdot \begin{pmatrix} v_1\\v_2\\v_3 \end{pmatrix}$ перехода от одного базиса к другому $C^{-1}\cdot \begin{pmatrix} 3\\-1\\4 \end{pmatrix}=\begin{pmatrix} v_1\\v_2\\v_3 \end{pmatrix}$

— Остается посчитать: чтобы найти C^{-1} риведем левую часть расширенной матрицы вида (C|E) к УСВ элементарными преобразованиями строк. Слева получится E, а справа - C^{-1} :

$$\begin{pmatrix} \frac{-67}{41} & \frac{70}{41} & \frac{7}{41} & 1 & 0 & 0 \\ \frac{38}{41} & \frac{27}{41} & \frac{97}{41} & 1 & 0 & 0 \\ \frac{14}{41} & \frac{79}{41} & \frac{94}{41} & 0 & 0 & 1 \end{pmatrix} \stackrel{\Pi_{\text{РИВЕЛИ K}}}{\longrightarrow} \text{VCB} \begin{pmatrix} 1 & 0 & 0 & \frac{-125}{123} & \frac{-49}{41} & \frac{161}{123} \\ 0 & 1 & 0 & \frac{-18}{41} & \frac{-52}{41} & \frac{55}{41} \\ 0 & 0 & 1 & \frac{64}{123} & \frac{51}{41} & \frac{-109}{123} \end{pmatrix}$$

$$-C^{-1} \cdot \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{-125}{123} & \frac{-49}{41} & \frac{161}{123} \\ \frac{-18}{41} & \frac{-52}{41} & \frac{55}{41} \\ \frac{64}{123} & \frac{51}{41} & \frac{-109}{123} \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{416}{123} \\ \frac{218}{41} \\ \frac{-397}{123} \end{pmatrix}$$

Otbet: (б):
$$\begin{pmatrix} \frac{-67}{41} & \frac{70}{41} & \frac{7}{41} \\ \frac{38}{41} & \frac{27}{41} & \frac{97}{41} \\ \frac{14}{41} & \frac{79}{41} & \frac{94}{41} \end{pmatrix}$$
, (c): $(\frac{416}{123}, \frac{218}{41}, \frac{-397}{123})$

№ 3 Найте базис и размерность каждого из подпространств $L_1,\ L_2,\ U=L_1+L_2,\ W=L_1\cap L_2$ пространства \mathbb{R}^5

$$L_1 = \langle a_1, a_2, a_3, a_4, \rangle$$

$$a_1 = (-4, 2, 0, -1, 0), \ a_2 = (-3, 4, -4, -5, 2), a_3 = (1, 19, -3, 10, -6), a_4 = (-3, -5, 1, -4, 2)$$

$$L_2 = \langle b_1, b_2, b_3, b_4, \rangle$$

$$b_1 = (13, -19, 3, -3, 5), \ b_2 = (-5, 9, -1, 2, -2), b_3 = (3, -1, 1, 1, 1), \ b_4 = (-2, 6, -8, -9, 4)$$

Размерность подпространства - число векторов в базисе попространства. Чтобы найти $\dim(L_1)$ и $\dim(L_2)$ нужно просто найти их базисы. Это можно сделать по алгоритму (для этого для каждого подпространства запишем данные векторы в строки матрицы, приведем эту матрицу к СВ при помощи элементарных преобразований строк, выберем все ненулевые строки в СВ. это и будет базис соответствующего подпространства):

\bullet L_1 :

— Запишем a_1, a_2, a_3, a_4 в строки матрицы A и при помощи элементарных преобразований строк приведем полученную матрицу к CB.

$$A = \begin{pmatrix} -4 & 2 & 0 & -1 & 0 \\ -3 & 4 & -4 & -5 & 2 \\ 1 & 19 & -3 & 10 & -6 \\ -3 & -5 & 1 & -4 & 2 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ}} \text{ K CB}} \begin{pmatrix} -4 & 2 & 0 & -1 & 0 \\ 0 & 10 & -16 & -17 & 8 \\ 0 & 0 & 282 & 429 & -216 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = A'$$

При элементарных преобразованиях строк $\langle A_{(1)},...A_{(4)} \rangle$ сохраняется $(\langle A_{(1)},...A_{(4)} \rangle = \langle A'_{(1)},...A'_{(4)} \rangle)$. Эта линейная оболочка также будет совпадать с $\langle A'_{(1)},A'_{(2)},A'_{(3)} \rangle$ - линейной оболочкой максимальной линейно независимой системы строк A'. Получается, векторы, записанные в 1, 2, 3 строки матрицы A' с одной стороны линейно независимы, а с другой - "порождают" L_1 (их линейная оболочка совпадает с L_1). Таким образом, эти векторы (p_1, p_2, p_3) - базис L_1 .

$$p_1 = (-4, 2, 0, -1, 0), p_2 = (0, 10, -16, -17, 8), p_3 = (0, 0, 282, 429, -216)$$

\bullet L_2 :

— Запишем b_1, b_2, b_3, b_4 в строки матрицы B и при помощи элементарных преобразований строк приведем полученную матрицу к CB.

$$B = \begin{pmatrix} 13 & -19 & 3 & -3 & 5 \\ -5 & 9 & -1 & 2 & -2 \\ 3 & -1 & 1 & 1 & 1 \\ -2 & 6 & -8 & -9 & 4 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ K}}} \text{CB} \begin{pmatrix} 13 & -19 & 3 & -3 & 5 \\ 0 & 22 & 2 & 11 & -1 \\ 0 & 0 & -86 & -121 & 54 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = B'$$

При элементарных преобразованиях строк $\langle B_{(1)},...B_{(4)} \rangle$ сохраняется $(\langle B_{(1)},...B_{(4)} \rangle = \langle B'_{(1)},...B'_{(4)} \rangle)$. Эта линейная оболочка также будет совпадать с $\langle B'_{(1)},B'_{(2)},B'_{(3)} \rangle$ - линейной оболочкой максимальной линейно независимой системы строк B'. Получается,

векторы, записанные в 1, 2, 3 строки матрицы B' с одной стороны линейно независимы, а с другой - "порождают" L_2 (их линейная оболочка совпадает с L_2). Таким образом, эти векторы (q_1,q_2,q_3) - базис L_2 .

$$q_1 = (13, -19, 3, -3, 5), q_2 = (0, 22, 2, 11, -1), q_3 = (0, 0, -86, -121, 54)$$

Размерность подпространства L_1 - 3, подпространства L_2 - 3, базис L_1 - (p_1, p_2, p_3) (см выше), базис L_2 - (q_1, q_2, q_3)

Базис подпространства U можно найти по алгоритму поиска базиса суммы подпространств, заданных линейной оболочкой, так как $L_1 = \langle p_1, p_2, p_3 \rangle$, $L_2 = \langle q_1, q_2, q_3 \rangle$ (привести элементарными преобразованиями строк к СВ матрицу C, столбцами которой будут векторы $p_1, p_2, p_3, q_1, q_2, q_3$, базисом будут векторы, которым будут соответствовать столбцы с ведущими элементами строк в СВ этой матрицы).

$$C = \begin{pmatrix} -4 & 0 & 0 & | & 13 & 0 & 0 \\ 2 & 10 & 0 & | & -19 & 22 & 0 \\ 0 & -16 & 282 & | & 3 & 2 & -86 \\ -1 & -17 & 429 & | & -3 & 11 & -121 \\ 0 & 8 & -216 & | & 5 & -1 & 54 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ}} \text{K CB}} \begin{pmatrix} -4 & 0 & 0 & | & 13 & 0 & 0 \\ 0 & 10 & 0 & | & \frac{-25}{2} & 22 & 0 \\ 0 & 0 & 282 & | & -17 & \frac{186}{5} & -86 \\ 0 & 0 & 0 & | & \frac{-77}{47} & \frac{-385}{47} & \frac{462}{47} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = C'$$

Ведущие элементы строк содержатся в 1, 2, 3, 4 столбцах. Значит, векторы p_1, p_2, p_3, q_1 - базис U (получилось, что эти векторы - базис $\langle p_1, p_2, p_3, q_1, q_2, q_3 \rangle$, а эта линейная оболочка совпадает с $\{p+q|p\in L_1, q\in L_2\}=U$). Размерность подпространства U - 4, базис - (p_1, p_2, p_3, q_1) (см выше)

Базис подпространства W можно найти по алгоритму поиска базиса пересеяения двух подпространств, заданных ОСЛУ (найти ФСР ОСЛУ из уравнений ОСЛУ, соответствующей L_1 и ОСЛУ, соответствующей L_2). Правда, для этого сначала необходимо предстваить L_1 и L_2 через ОСЛУ:

- представить L_1 как множество решений некоторой ОСЛУ можно по алгоритму (найти ФСР ОСЛУ Dx = 0, где D матрица, строки которой векторы p_1, p_2, p_3 (тк $\langle p_1, p_2, p_3 \rangle = L_1$), искомой ОСЛУ будет D'x = 0, где D' матрица, строки которой векторы из найденной ФСР).
 - Найдем ФСР ОСЛУ Dx=0 по алгоритму поиска ФСР (привести матрицу к УСВ, найти свободные переменные, поочередно фиксируя их значения равными $\lambda \neq 0$, а значения остальных свободных переменных нулями найти базис пространства решений ОСЛУ):

$$D = \begin{pmatrix} -4 & 2 & 0 & -1 & 0 \\ 0 & 10 & -16 & -17 & 8 \\ 0 & 0 & 282 & 429 & -216 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ K}}} \overset{\text{УСВ}}{\longrightarrow} \begin{pmatrix} 1 & 0 & 0 & \frac{29}{47} & -\frac{10}{47} \\ 0 & 1 & 0 & \frac{69}{94} & -\frac{20}{47} \\ 0 & 0 & 1 & \frac{143}{94} & -\frac{36}{47} \end{pmatrix}$$

Свободные переменные стоят в 3 и 4 столбцах (переменные x_4 и x_5).

x_1	x_2	x_3	x_4	x_5
-58	-69	-143	94	0
10	20	36	0	47

То есть, в ФСР ОСЛУ Dx=0 два вектора - $d_1=(-258,-69,-143,94,0)$ и $d_2=(10,10,36,0,47)$

$$D' = \begin{pmatrix} -58 & -69 & -143 & 94 & 0\\ 10 & 20 & 36 & 0 & 47 \end{pmatrix}$$

- представить L_2 как множество решений некоторой ОСЛУ можно по алгоритму (найти ФСР ОСЛУ Fx=0, где F матрица, строки которой векторы q_1,q_2,q_3 (тк $\langle q_1,q_2,q_3\rangle=L_2$), искомой ОСЛУ будет F'x=0, где F' матрица, строки которой векторы из найденной ФСР).
 - Найдем ФСР ОСЛУ Fx=0 по алгоритму поиска ФСР (привести матрицу к УСВ, найти свободные переменные, поочередно фиксируя их значения равными $\lambda \neq 0$, а значения остальных свободных переменных нулями найти базис пространства решений ОСЛУ):

$$F = \begin{pmatrix} 13 & -19 & 3 & -3 & 5 \\ 0 & 22 & 2 & 11 & -1 \\ 0 & 0 & -86 & -121 & 54 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ K}}} \overset{\text{YCB}}{\longrightarrow} \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{86} & \frac{47}{86} \\ 0 & 1 & 0 & \frac{16}{43} & \frac{1}{86} \\ 0 & 0 & 1 & \frac{121}{86} & -\frac{27}{43} \end{pmatrix}$$

Свободные переменные стоят в 3 и 4 столбцах (переменные x_4 и x_5).

	x_1	x_2	x_3	x_4	x_5
ĺ	1	-32	-121	86	0
Ì	-47	-1	54	0	86

То есть, в ФСР ОСЛУ Fx=0 два вектора - $f_1=(1,-32,-121,86,0)$ и $f_2=(-47,-1,54,0,86)$

$$F' = \begin{pmatrix} 1 & -32 & -121 & 86 & 0 \\ -47 & -1 & 54 & 0 & 86 \end{pmatrix}$$

Теперь, чтобы найти базис W, остается найти ФСР ОСЛУ $\binom{D'}{F'}x=0$ (так как все векторы из $W=L_1\cap L_2$ - решения как ОСЛУ D'x=0 (тк лежат в L_1), так и F'x=0 (тк лежат в L_2)). Сделаем это по алгоритму посика ФСР (привести матрицу к УСВ, найти свободные переменные, поочередно фиксируя их значения равными $\lambda\neq 0$, а значения остальных свободных переменных - нулями найти базис пространства решений ОСЛУ)

$$\begin{pmatrix} D' \\ F' \end{pmatrix} = \begin{pmatrix} -58 & -69 & -143 & 94 & 0 \\ 10 & 20 & 36 & 0 & 47 \\ 1 & -32 & -121 & 86 & 0 \\ -47 & -1 & 54 & 0 & 86 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ K}}} \text{YCB} \begin{pmatrix} 1 & 0 & 0 & -\frac{12}{5} & -\frac{49}{10} \\ 0 & 1 & 0 & \frac{24}{5} & \frac{93}{10} \\ 0 & 0 & 1 & -2 & -\frac{5}{2} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Свободных переменных две, это c_4 , x_5 .

x_1	x_2	x_3	x_4	x_5
12	-24	10	5	0
49	-93	25	0	10

Итак, в ФСР ОСЛУ 2 вектора. Это $w_1=(12,-24,10,5,0),\ w_2=(49,-93,25,0,10).$ Это базис пространства решений ОСЛУ $\binom{D'}{F'}x=0$ или базис подпространства $W=L_1\cap L_2.$ Размерность этого

подпространства равна 2.

Задача решена. Осталось проверить, что $\dim(L_1) + \dim(L_2) = \dim(L_1 + L_2) + \dim(L_1 \cap L_2) = \dim(U) + \dim(W)$. Это верно (3+3=4+2=6).

Ответ:

$$-\dim(L_1)=3$$
, базис $L_1-(-4,2,0,-1,0)$, $(0,10,-16,-17,8)$, $(0,0,282,429,-216)$
 $-\dim(L_2)=3$, базис $L_2-(13,-19,3,-3,5)$, $(0,22,2,11,-1)$, $(0,0,-86,-121,54)$
 $-\dim(U)=4$, базис $U-(-4,2,0,-1,0)$, $(0,10,-16,-17,8)$, $(0,0,282,429,-216)$, $(13,-19,3,-3,5)$
 $-\dim(W)=2$, базис $W-(12,-24,10,5,0)$, $(49,-93,25,0,10)$

№ 4 Пусть U - подпространство в \mathbb{R}^5 , порождённое векторами v_1, v_2, v_3, v_4 . Указать базис какого-нибудь подпространства $W \subset \mathbb{R}^5$, такого что $\mathbb{R}^5 = U \oplus W$ и W не представимо в виде линейной оболочки одних лишь векторов стандартного базиса пространства \mathbb{R}^5 .

$$v_1 = (8, -10, 14, 6, -5), \ v_2 = (-13, -2, -14, 5, 4), \ v_3 = (-11, 12, 3, -3, -6),$$

$$v_4 = (-40, 30, -39, -10, 8)$$

Необходимо найти такое подпространство W, что в его пересечении с U не будет никаких векторов, кроме нулегого.

Сначала необходимо найти базис подпространства U, дополнить его до базиса \mathbb{R}^5 , чтобы понять, какие векторы будут находиться в W. Сначала найдем базис. Это можно сделать по алгоритму поиска какого-нибудь базиса линейной оболочки. (привести матрицу A, в строках которой записаны векторы v_1, v_2, v_3, v_4 к CB элементарными пребразованиями строк и выписать ненулевые строки. Они и будут искомым базисом).

$$A = \begin{pmatrix} 8 & -10 & 14 & 6 & -5 \\ -13 & -2 & -14 & 5 & 4 \\ -11 & 12 & 3 & -3 & -6 \\ -40 & 30 & -39 & -10 & 8 \end{pmatrix} \xrightarrow{\Pi_{\text{РИВЕЛИ} K} \text{ CB}} \begin{pmatrix} 8 & -10 & 14 & 6 & -5 \\ 0 & -146 & 70 & 118 & -33 \\ 0 & 0 & 1563 & 280 & -911 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = A'$$

При элементарных преобразованиях строк $\langle A_{(1)},...A_{(4)} \rangle$ сохраняется $(\langle A_{(1)},...A_{(4)} \rangle = \langle A'_{(1)},...A'_{(4)} \rangle)$. Эта линейная оболочка также будет совпадать с $\langle A'_{(1)},A'_{(2)},A'_{(3)} \rangle$ - линейной оболочкой максимальной линейно независимой системы строк A'. Получается, векторы, записанные в 1,2,3 строки матрицы A' с одной стороны линейно независимы, а с другой - "порождают" U (их линейная оболочка совпадает с U). Таким образом, эти векторы (a_1,a_2,a_3) - базис U.

$$a_1 = (8, -10, 14, 6, -5), \ a_2 = (0, -146, 70, 118, -33), \ a_3 = (0, 0, 1563, 280, -911)$$

Теперь дополним базис U до базиса всего пространства. Для этого к нему надо добавиь 2 вектора (пусть эти векторы - b_1 и b_2), система a_1, a_2, a_3, b_1, b_2 - линейно независима. (получится набор из пяти линейно независимых вектором, он и будет базисом пространства \mathbb{R}^n , имеющего размерность 5). Эти векторы будут базисом W: во-первых, тогда, из-за линейной независимости, пересечение двух подпространств ($U \cup W$) будет содержать только нудевой вектор, во-вторых, линейная оболочка этих векторов будет равна всему пространству \mathbb{R}^5 . Однако стандартным алгоритмом воспользоваться не вуйдет из-за условия "W не представимо в виде линейной оболочки одних лишь векторов стандартного базиса пространства \mathbb{R}^5 ".

Рассмотрим матрицу B, в строках которой записаны векторы a_1, a_2, a_3, b_1, b_2 и ее ступенчатый вид - матрицу B'.

$$B = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \end{pmatrix}$$

Заметим, что первые три строки в этой матрицы уже имеют ступенчатый вид (см выше) \Rightarrow применять элементарные преобразования строк надо только к строкам 4 и 5. При этом, после элементарных преобразований b_1 должен иметь вид $(0,0,0,x_1,x_2)$, а $b_2 - (0,0,0,0,x_3)$, $x_1,x_3 \neq 0$.

Но сами векторы b_1,b_2 одновременно такой вид иметь не могут: тогда их линейная оболочка (иными словами - подпространство W) была бы представима в виде линейной оболочки векторов стандартного базиса e_4,e_5 . Допустим, вектор b_1 до элементарных преобразований имел вид $(0,0,y_1,x_1+y_2,x_2+y_3)$, а вектор b_2 - имел вид $(0,0,0,0,x_3),\ y_1\neq 0$, причем какое-то элементарное преобразование превращало бы B в B'. Несложно подобрать и возможные $y_1,y_2,y_3,$ и возможное элементарное преобразование: $y_1=1563,y_2=280,y_3=-911,$ к B применялось бы $\Theta_1,(4,3,-1)$. Теперь подберем значения для x_1,x_2,x_3 . Например: $x_1=x_3=1,x_2=0$. Получается, $b_1=(0,0,1563,281,-911),\ b_2=(0,0,0,0,1)$.

$$B = \begin{pmatrix} 8 & -10 & 14 & 6 & -5 \\ 0 & -146 & 70 & 118 & -33 \\ 0 & 0 & 1563 & 280 & -911 \\ 0 & 0 & 1563 & 281 & -911 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{9_{1(4,3,-1)}} \begin{pmatrix} 8 & -10 & 14 & 6 & -5 \\ 0 & -146 & 70 & 118 & -33 \\ 0 & 0 & 1563 & 280 & -911 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = B'$$

Поскольку в B' нет нулевых строк (то есть, в ней все строки линейно независимы и ранг B'=5), а элементарные преобразования строк не меняют ранг матрицы, то есть ранг B=5 и все строки в ней линейно независимы, $U=\langle a_1,a_2,a_3\rangle, W=\langle b_1,b_2\rangle,\ U\cap W=0$. Более того, набор векторов a_1,a_2,a_3,b_1,b_2 - это набор из пяти линейно независимых векторов в пространстве размерности 5, то есть это - базис пространства $\mathbb{R}^5 \Rightarrow \mathbb{R}^5 = \langle a_1,a_2,a_3,b_1,b_2\rangle \Rightarrow Y\oplus W=\mathbb{R}^5$. При этом, подпространство W невозмжно представить в виде линейной оболочки (двух) векторов из стандартного базиса \mathbb{R}^5 , так как в подпространстве W присутствуют векторы, у которых три ненулевые координаты в стандартном базисе \mathbb{R}^5 . (например - вектор (0,0,1563,281,-910)=(0,0,1563,281,-911)+(0,0,0,0,1))

Ответ: базис W - векторы (0,0,1563,281,-910), (0,0,0,0,1)

№ 5 В пространстве $\mathrm{Mat}_{2\times 2}(\mathbb{R})$ рассмотрим подпространства $U=\langle v_1,v_2\rangle$ и $W=\langle v_3,v_4\rangle$

- (a) Доказать, что $\mathrm{Mat}_{2\times 2}(\mathbb{R})=U\oplus W$
- (б) Найти проекцию вектора ξ на подпространство W вдоль подпространства U.

$$v_{1} = \begin{pmatrix} 7 & -11 \\ 14 & 13 \end{pmatrix}, \ v_{2} = \begin{pmatrix} 5 & -6 \\ -14 & -3 \end{pmatrix}, \ v_{3} = \begin{pmatrix} -15 & 4 \\ 3 & -12 \end{pmatrix}, v_{4} = \begin{pmatrix} 11 & 2 \\ -4 & -7 \end{pmatrix}$$
$$\xi = \begin{pmatrix} 7 & 7 \\ -2 & 21 \end{pmatrix}$$

- (а) Пространство прямая сумма своих подпространств, если:
 - Пересечение этих подпространств содержит единственный элемент нулевой элемент (в случае этой задачи - квадратную нулевую матрицу размерности 2)
 - Пространство сумма этих подпространств (то есть всякий элемент пространства представим в виде суммы элементов заданных подпространств)

То есть, чтобы доказать, что $\operatorname{Mat}_{2\times 2}(\mathbb{R})=U\oplus W$ сначала придется доказать, что $U\cap W=0$ (здесь 0 - это $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$). Чтобы доказать это, найдем базисы этих подпространств (нельзя пользоваться матрицами из условия, так как они могут быть линейно зависимы). Если окажется, что базисы линейно независимы, $U\cap W=0$. Иначе - пересечение подпространств будет содержать больше матриц (каждая матрица из U выражается через базис U, ровно как и каждая матрица из W выражается через базис W. Если какую-то матрицу из базиса U можно выразить через базис U, эта матрица (и все матрицы, полученные умножением ее на скаляр) будет лежать в $U\cap W$).

- Найдем базис U: базис подпространства набор линейно независимых обхектов из этого пространства, линейная оболочка которых равна самому подпространству. $\langle v_1, v_2 \rangle = U \Rightarrow$ если v_1, v_2 линейно независимы, они являются базисом U. Эти матрицы и правда линейно независимы, так как не существует такой нетривиальной линейной комбинации этих матриц, равной нулю (это, в целом, заметно: чтобы в матрице, полученной линейной комбинацией $\lambda_1 v_1 + \lambda_2 v_2$ на месте (2, 1) стоял ноль, необходимо, чтобы $\lambda_1 = \lambda_2$. Однако тогда на других позициях в полученной матрице нулей не будет). Итого, v_1, v_2 базис U
- Найдем базис W: базис подпространства набор линейно независимых обхектов из этого пространства, линейная оболочка которых равна самому подпространству. $\langle v_3, v_4 \rangle = W \Rightarrow$ если v_3, v_4 линейно независимы, они являются базисом W. Эти матрицы и правда линейно независимы, так как не существует такой нетривиальной линейной комбинации этих матриц, равной нулю (это, в целом, заметно: чтобы в матрице, полученной линейной комбинацией $\lambda_1 v_3 + \lambda_2 v_4$ на месте (2, 1) стоял ноль, необходимо, чтобы $0.75\lambda_1 = \lambda_2$. Однако тогда на других позициях в полученной матрице нулей не будет). Итого, v_3, v_4 базис W
- Проверим линейную независимость базисов: рассмотрим линейную комбинацию $x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4$ и приравняем ее к нулю. Найдем все возможные значения $x_1, ... x_4$: если

существует набор, в котором не все переменные равны нулю, $v_1, ..., v_4$ - линейно зависимы:

$$x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 = x_1 \begin{pmatrix} 7 & -11 \\ 14 & 13 \end{pmatrix} + x_2 \begin{pmatrix} 5 & -6 \\ -14 & -3 \end{pmatrix} + x_3 \begin{pmatrix} -15 & 4 \\ 3 & -12 \end{pmatrix} + x_4 \begin{pmatrix} 11 & 2 \\ -4 & -7 \end{pmatrix} = 0 \Leftrightarrow$$

$$\begin{cases} 7x_1 + 5x_2 - 15x_3 + 11x_4 = 0 \\ -11x_1 - 6x_2 + 4x_3 + 2x_4 = 0 \\ 14x_1 - 14x_2 + 3x_3 - 4x_4 = 0 \\ 13x_1 - 3x_2 - 12x_3 - 7x_4 = 0 \end{cases}$$

Решим ОСЛУ: приведем расширенную матрицу коэффициентов к УСВ элементарными преобразованиями строк:

$$\begin{pmatrix}
7 & 5 & -15 & 11 & 0 \\
-11 & -6 & 4 & 2 & 0 \\
14 & -14 & 3 & -4 & 0 \\
13 & -3 & -12 & -7 & 0
\end{pmatrix}
\xrightarrow{\Pi_{\text{РИВЕЛИ K}}} \text{YCB} \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}$$

Выходит, что

$$x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 = 0 \Leftrightarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \\ x_4 = 0 \end{cases}$$

То есть, базисы U и W линейно независимы, значит $U \cap W = 0$

Теперь докажем, что $U+W=\mathrm{Mat}_{2\times 2}(\mathbb{R})$

 $U+W=\{v|v=u+w,u\in U,w\in W\}=\langle v_1,v_2,v_3,v_4\rangle=\mathrm{Mat}_{2\times 2}(\mathbb{R})$ (так как всякий вектор из U и из W выражается через базис соответствующего подпространства). Последнее равенство верно:

- $-v_1, v_2, v_3, v_4$ линейно независимы (доказано выше)
- Существует базис $\mathrm{Mat}_{2\times 2}(\mathbb{R})$, состоящий из четырех матриц (это единичные матрицы $E_{11}, E_{12}, E_{21}, E_{22}$). Значит размерность выбранного пространства матриц 4
- Количество элементов в базисе не зависит от выбора базиса (вне зависимости от того, рассматриваем мы пространство матриц или векторов)
- Всякую линейно независимую систему векторов (из некоторого конечномерного вектороного пространства) можно дополнить до базиса этого конечномерного вектороного пространства. Так же работает и с матрицами: всякий линейно незасимый набор матриц из конечномерного пространства матриц можно дополнить до базиса этого пространства

Однако в данном случае ничего дополнять не придется: в базисе $\mathrm{Mat}_{2\times 2}(\mathbb{R})$ должно быть 4 матрицы, эти матрицы - v_1, v_2, v_3, v_4

Итого,
$$U \cap W = 0, U + W = \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \Rightarrow U \oplus W = \operatorname{Mat}_{2 \times 2}(\mathbb{R})$$

(б) По доказанному $U \oplus W = \operatorname{Mat}_{2\times 2}(\mathbb{R}) \Rightarrow \forall v \in \operatorname{Mat}_{2\times 2}(\mathbb{R}) \exists ! \ u \in U, \ w, \in W : \ u+w=v.$ Проекция на подпространство W вдоль U - вектор w.

Чтобы найти проекцию ξ на W вдоль U, надо найти такую матрицу $w \in W$, что $\exists \ u \in U: \ \xi = u + w.$ (и u и w - единственные)

Так как $u\in U, v_1, v_2$ - базис $U, \exists !\lambda_1, \lambda_2\in \mathbb{R}: \lambda_1v_1+\lambda_2v_2=u$

Так как $w \in W, v_3, v_4$ - базис $W, \exists ! \lambda_3, \lambda_4 \in \mathbb{R} : \lambda_3 v_3 + \lambda_4 v_4 = w$

 $\Rightarrow \exists ! \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R} : \xi = \underbrace{\lambda_1 v_1 + \lambda_2 v_2}_u + \underbrace{\lambda_3 v_3 + \lambda_3 4 v_4}_w.$ Найдем $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, решив СЛУ, а

потом найдем w:

$$\xi = \underbrace{\lambda_1 v_1 + \lambda_2 v_2}_{u} + \underbrace{\lambda_3 v_3 + \lambda_3 4 v_4}_{w} \Leftrightarrow$$

$$\Leftrightarrow \begin{pmatrix} 7 & 7 \\ -2 & 21 \end{pmatrix} = \lambda_1 \begin{pmatrix} 7 & -11 \\ 14 & 13 \end{pmatrix} + \lambda_2 \begin{pmatrix} 5 & -6 \\ -14 & -3 \end{pmatrix} + \lambda_3 \begin{pmatrix} -15 & 4 \\ 3 & -12 \end{pmatrix} + \lambda_4 \begin{pmatrix} 11 & 2 \\ -4 & -7 \end{pmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} 7\lambda_1 + 5\lambda_2 - 15\lambda_3 + 11\lambda_4 = 7 \\ -11\lambda_1 - 6\lambda_2 + 4\lambda_3 + 2\lambda_4 = 7 \\ 14\lambda_1 - 14\lambda_2 + 3\lambda_3 - 4\lambda_4 = -2 \\ 13\lambda_1 - 3\lambda_2 - 12\lambda_3 - 7\lambda_4 = 21 \end{cases}$$

Приведем к УСВ элементарными преобразованиями строк расширенную матрицу СЛУ:

$$\begin{pmatrix}
7 & 5 & -15 & 11 & 7 \\
-11 & -6 & 4 & 2 & 7 \\
14 & -14 & 3 & -4 & -2 \\
13 & -3 & -12 & -7 & 21
\end{pmatrix}
\xrightarrow{\Pi_{PUBEJIU K} \text{ VCB}}
\begin{pmatrix}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix}$$

Выходит,

$$\xi = \underbrace{\lambda_1 v_1 + \lambda_2 v_2}_{u} + \underbrace{\lambda_3 v_3 + \lambda_3 4 v_4}_{w} \Leftrightarrow \begin{cases} \lambda_1 = -1 \\ \lambda_2 = -1 \\ \lambda_3 = -2 \\ \lambda_4 = -1 \end{cases}$$

Значит, искомая матрица $w = \lambda_3 v_3 + \lambda_3 4 v_4 = -2v_3 - v_4 = -2\begin{pmatrix} -15 & 4 \\ 3 & -12 \end{pmatrix} - \begin{pmatrix} 11 & 2 \\ -4 & -7 \end{pmatrix} = \begin{pmatrix} 30 - 11 & -8 - 2 \\ -6 + 4 & 24 + 7 \end{pmatrix} = \begin{pmatrix} 19 & -10 \\ -2 & 31 \end{pmatrix}$

Ответ: (б)
$$\begin{pmatrix} 19 & -10 \\ -2 & 31 \end{pmatrix}$$