Unidad 1: Límites y sus Propiedades Parte I

R.M

Escuela de Matemáticas Facultad de Ciencias UASD

6 de septiembre de 2025

Tabla de Contenidos

- 1 Introducción Conceptual al Límite
- 2 Análisis Gráfico y Definición Formal
- 3 Cálculo de Límites
- 4 Teorema del Encaje y Límites Trigonométricos

- 2 Análisis Gráfico y Definición Forma
- 3 Cálculo de Límites
- 4 Teorema del Encaje y Límites Trigonométricos

¿Qué es el Cálculo?

Definición Conceptual

El **Cálculo** es rama de la matemática que estudia el cambio y movimiento. Se fundamenta en dos problemas centrales:

¿Qué es el Cálculo?

Definición Conceptual

El **Cálculo** es rama de la matemática que estudia el cambio y movimiento. Se fundamenta en dos problemas centrales:

Oálculo Diferencial: Concierne al problema de encontrar la razón instantánea de cambio. Geométricamente, esto equivale a hallar la pendiente de la recta tangente a una curva en un punto específico.

¿Qué es el Cálculo?

Definición Conceptual

El **Cálculo** es rama de la matemática que estudia el cambio y movimiento. Se fundamenta en dos problemas centrales:

- Oálculo Diferencial: Concierne al problema de encontrar la razón instantánea de cambio. Geométricamente, esto equivale a hallar la pendiente de la recta tangente a una curva en un punto específico.
- ② Cálculo Integral: Concierne al problema de encontrar el área bajo una curva. Esto se relaciona con la acumulación de cantidades.

La Noción Central

Ambos problemas se resuelven mediante el concepto fundamental del límite.

Idea Intuitiva de Límite

Descripción

Sea una función f(x). El concepto de límite se ocupa del comportamiento de los valores de f(x) cuando la variable independiente x se aproxima a un número c, sin importar el valor de la función en el propio punto c.

Idea Intuitiva de Límite

Descripción

Sea una función f(x). El concepto de límite se ocupa del comportamiento de los valores de f(x) cuando la variable independiente x se aproxima a un número c, sin importar el valor de la función en el propio punto c.

Escribimos

$$\lim_{x\to c} f(x) = L$$

y lo leemos como .el límite de f(x) cuando x tiende a c es L".

Idea Intuitiva de Límite

Descripción

Sea una función f(x). El concepto de límite se ocupa del comportamiento de los valores de f(x) cuando la variable independiente x se aproxima a un número c, sin importar el valor de la función en el propio punto c.

Escribimos

$$\lim_{x\to c} f(x) = L$$

y lo leemos como .^{el} límite de f(x) cuando x tiende a c es L".

Idea ituitiva

Significa que podemos hacer que los valores de f(x) estén arbitrariamente cerca de L tomando valores de x suficientemente cerca de c, pero no iguales a c.

Definición

Una forma indeterminada es una expresión algebraica que surge en el cálculo de un límite cuyo resultado no puede ser conocido a priori. La evaluación directa de la función en el punto conduce a una operación matemáticamente no definida.

Las formas indeterminadas más comunes son:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 \cdot \infty$, $\infty - \infty$, 1^{∞} , 0^{0} , ∞^{0}

La presencia de una forma indeterminada es una señal para investigar el límite con mayor profundidad, utilizando técnicas algebraicas o de otro tipo. No significa que el límite no exista.

Consideremos el límite
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
.

- La sustitución directa de x=1 produce la forma indeterminada $\frac{1^2-1}{1-1}=\frac{0}{0}$.
- Esto nos indica que la función no está definida en x = 1. Sin embargo, el límite puede existir.

Introducción Conceptual al Límite

00000

Análisis de una Función: $f(x) = \frac{x^2-1}{x-1}$

Consideremos el límite $\lim_{x\to 1} \frac{x^2-1}{x-1}$.

- La sustitución directa de x=1 produce la forma indeterminada $\frac{1^2-1}{1}=\frac{0}{2}$.
- Esto nos indica que la función no está definida en x = 1. Sin embargo, el límite puede existir.

Construyamos una tabla de valores para \times aproximándose a 1:

00000

Análisis de una Función: $f(x) = \frac{x^2-1}{x-1}$

Consideremos el límite $\lim_{x\to 1} \frac{x^2-1}{x-1}$.

- La sustitución directa de x=1 produce la forma indeterminada $\frac{1^2-1}{1-1}=\frac{0}{0}$.
- Esto nos indica que la función no está definida en x = 1. Sin embargo, el límite puede existir.

Construyamos una tabla de valores para x aproximándose a 1:

$x \rightarrow 1^-$		$x \rightarrow 1^+$	
X	f(x)	X	f(x)
0.9	1.9	1.1	2.1
0.99	1.99	1.01	2.01
0.999	1.999	1.001	2.001

Conclusión Intuitiva: A medida que x se acerca a 1, f(x) se acerca a 2. Por tanto, $\lim_{x\to 1} f(x) = 2$.

- 1 Introducción Conceptual al Límite
- 2 Análisis Gráfico y Definición Formal
- Cálculo de Límites
- 4 Teorema del Encaje y Límites Trigonométricos

Análisis Gráfico de Límites

Análisis Gráfico de Límites II

• Función definida: En x = 1 (punto A), f(1) = 2. En x = 2 (punto B), f(2) = 1.

Análisis Gráfico de Límites II

- Función definida: En x = 1 (punto A), f(1) = 2. En x = 2 (punto B), f(2) = 1.
- Límite existe, función no definida en el límite: En x=2, $\lim_{x\to 2} f(x)=3$, pero f(2)=1.

Definición

Sea f una función definida en un intervalo abierto que contiene a c (excepto posiblemente en c) y sea L un número real. La afirmación

$$\lim_{x\to c} f(x) = L$$

significa que para todo $\varepsilon > 0$, existe un $\delta > 0$ tal que si $0 < |x - c| < \delta$, entonces $|f(x) - L| < \varepsilon$.

Definición Formal de Límite $(\varepsilon - \delta)$ II

Cálculo Unidad 1: Límites

Ejemplo 1: Demostrar que
$$\lim_{x\to 2} (3x-1) = 5$$

Ejemplo 1: Demostrar que
$$\lim_{x\to 2} (3x-1) = 5$$

Análisis preliminar: Buscamos $\delta > 0$ para un $\varepsilon > 0$ dado.

Ejemplo 1: Demostrar que
$$\lim_{x\to 2} (3x-1) = 5$$

Análisis preliminar: Buscamos $\delta>0$ para un $\varepsilon>0$ dado. Queremos $|f(x)-L|<\varepsilon \implies |(3x-1)-5|<\varepsilon$.

Ejemplo 1: Demostrar que $\lim_{x\to 2} (3x-1) = 5$

Análisis preliminar: Buscamos $\delta>0$ para un $\varepsilon>0$ dado. Queremos

$$|f(x)-L|<\varepsilon \implies |(3x-1)-5|<\varepsilon.$$

$$|3x-6|$$

Ejemplo 1: Demostrar que $\lim_{x\to 2} (3x-1) = 5$

Análisis preliminar: Buscamos $\delta > 0$ para un $\varepsilon > 0$ dado. Queremos $|f(x) - L| < \varepsilon \implies |(3x - 1) - 5| < \varepsilon$.

$$|3x-6|$$

Demostración formal: Sea $\varepsilon>0$. Elegimos $\delta=\frac{\varepsilon}{3}$. Si $0<|x-2|<\delta$, entonces $|x-2|<\frac{\varepsilon}{3}$. Multiplicando por 3, obtenemos $3|x-2|<\varepsilon$, lo que implica $|3x-6|<\varepsilon$. Finalmente, $|(3x-1)-5|<\varepsilon$. Q.E.D.

Cálculo Unidad 1: Límites

Ejemplo 1: Demostrar que $\lim_{x\to 2} (3x-1) = 5$

Análisis preliminar: Buscamos $\delta > 0$ para un $\varepsilon > 0$ dado. Queremos $|f(x) - L| < \varepsilon \implies |(3x - 1) - 5| < \varepsilon$.

$$|3x-6|<\varepsilon \implies |3(x-2)|<\varepsilon \implies 3|x-2|<\varepsilon \implies |x-2|<\frac{\varepsilon}{2}$$

Demostración formal: Sea $\varepsilon>0$. Elegimos $\delta=\frac{\varepsilon}{3}$. Si $0<|x-2|<\delta$, entonces $|x-2|<\frac{\varepsilon}{3}$. Multiplicando por 3, obtenemos $3|x-2|<\varepsilon$, lo que implica $|3x-6|<\varepsilon$. Finalmente, $|(3x-1)-5|<\varepsilon$. Q.E.D.

Ver más ejemplos en el libro...

- 3 Cálculo de Límites
- 4 Teorema del Encaje y Límites Trigonométricos

Teorema

 $\textit{Sean } b,c \in \mathbb{R}, \ n \in \mathbb{Z}^+, \ \textit{y sean } f,g \ \textit{funciones tales que } \lim_{x \to c} f(x) = L \ \textit{y } \lim_{x \to c} g(x) = \textit{K}.$

Cálculo de Límites 00000000

1 Múltiplo escalar: $\lim_{x \to c} [b \cdot f(x)] = b \cdot L$

Teorema

Sean $b, c \in \mathbb{R}$, $n \in \mathbb{Z}^+$, y sean f, g funciones tales que $\lim_{x \to c} f(x) = L$ y $\lim_{x \to c} g(x) = K$.

- **1** Múltiplo escalar: $\lim_{x \to c} [b \cdot f(x)] = b \cdot L$
- **2** Suma o diferencia: $\lim_{x\to c} [f(x)\pm g(x)] = L\pm K$

Teorema

 $\textit{Sean } b,c \in \mathbb{R}, \ n \in \mathbb{Z}^+, \ \textit{y sean } f,g \ \textit{funciones tales que } \lim_{x \to c} f(x) = L \ \textit{y } \lim_{x \to c} g(x) = \textit{K}.$

- **1** Múltiplo escalar: $\lim_{x \to c} [b \cdot f(x)] = b \cdot L$
- **2 Suma o diferencia:** $\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$
- **3 Producto:** $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot K$

Teorema

Sean $b,c\in\mathbb{R}$, $n\in\mathbb{Z}^+$, y sean f,g funciones tales que $\lim_{x\to c}f(x)=L$ y $\lim_{x\to c}g(x)=K$.

- **1** Múltiplo escalar: $\lim_{x \to c} [b \cdot f(x)] = b \cdot L$
- **2** Suma o diferencia: $\lim_{x \to x} [f(x) \pm g(x)] = L \pm K$
- **3 Producto:** $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot K$
- **4 Cociente:** $\lim_{x \to c} \frac{f(x)}{\sigma(x)} = \frac{L}{K}$, siempre que $K \neq 0$.

Teorema

Sean $b, c \in \mathbb{R}$, $n \in \mathbb{Z}^+$, y sean f, g funciones tales que $\lim_{x \to c} f(x) = L$ y $\lim_{x \to c} g(x) = K$.

- **1** Múltiplo escalar: $\lim_{x \to c} [b \cdot f(x)] = b \cdot L$
- 2 Suma o diferencia: $\lim_{x \to \infty} [f(x) \pm g(x)] = L \pm K$
- **3 Producto:** $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot K$
- **4 Cociente:** $\lim_{x\to c} \frac{f(x)}{\sigma(x)} = \frac{L}{K}$, siempre que $K \neq 0$.
- **5 Potencia:** $\lim_{x \to \infty} [f(x)]^n = L^n$

Teorema

Sean $b, c \in \mathbb{R}$, $n \in \mathbb{Z}^+$, y sean f, g funciones tales que $\lim_{x \to c} f(x) = L$ y $\lim_{x \to c} g(x) = K$.

- **1** Múltiplo escalar: $\lim_{x \to c} [b \cdot f(x)] = b \cdot L$
- 2 Suma o diferencia: $\lim_{x \to \infty} [f(x) \pm g(x)] = L \pm K$
- **3 Producto:** $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot K$
- **4 Cociente:** $\lim_{x\to c} \frac{f(x)}{\sigma(x)} = \frac{L}{K}$, siempre que $K \neq 0$.
- **5 Potencia:** $\lim_{x \to \infty} [f(x)]^n = L^n$

Teorema

Sean $b,c\in\mathbb{R}$, $n\in\mathbb{Z}^+$, y sean f,g funciones tales que $\lim_{x\to c}f(x)=L$ y $\lim_{x\to c}g(x)=K$.

Cálculo de Límites 00000000

- **1** Múltiplo escalar: $\lim_{x \to c} [b \cdot f(x)] = b \cdot L$
- **2 Suma o diferencia:** $\lim_{x \to a} [f(x) \pm g(x)] = L \pm K$
- **3 Producto:** $\lim_{x \to c} [f(x) \cdot g(x)] = L \cdot K$
- **4 Cociente:** $\lim_{x \to c} \frac{f(x)}{\sigma(x)} = \frac{L}{K}$, siempre que $K \neq 0$.
- **5 Potencia:** $\lim_{x \to \infty} [f(x)]^n = L^n$

Estas propiedades son la base para el cálculo de límites de funciones polinómicas y racionales por sustitución directa.

Límites por Sustitución Directa

Si f es una función polinómica o racional y c está en el dominio de f, entonces $\lim_{x\to c} f(x) = f(c)$.

Ejemplo 1

$$\lim_{x \to 2} (3x^2 - 5x + 1) =$$

Límites por Sustitución Directa

Si f es una función polinómica o racional y c está en el dominio de f, entonces $\lim_{x\to c} f(x) = f(c)$.

Ejemplo 1

$$\lim_{x \to 2} (3x^2 - 5x + 1) = 3(2)^2 - 5(2) + 1 = 12 - 10 + 1 = 3$$

Cálculo de Límites

Límites por Sustitución Directa

Si f es una función polinómica o racional y c está en el dominio de f, entonces $\lim_{x\to c} f(x) = f(c)$.

Ejemplo 1

$$\lim_{x\to 2} (3x^2 - 5x + 1) = 3(2)^2 - 5(2) + 1 = 12 - 10 + 1 = 3$$

Ejemplo 2

$$\lim_{x \to -1} \frac{x^2 + 2x}{x + 3} =$$

Límites por Sustitución Directa

Si f es una función polinómica o racional y c está en el dominio de f, entonces $\lim_{x\to c} f(x) = f(c)$.

Ejemplo 1

$$\lim_{x \to 2} (3x^2 - 5x + 1) = 3(2)^2 - 5(2) + 1 = 12 - 10 + 1 = 3$$

$$\lim_{x \to -1} \frac{x^2 + 2x}{x + 3} = \frac{(-1)^2 + 2(-1)}{-1 + 3} = \frac{1 - 2}{2} = -\frac{1}{2}$$

Límites por Sustitución Directa

Si f es una función polinómica o racional y c está en el dominio de f, entonces $\lim_{x\to c} f(x) = f(c)$.

Ejemplo 1

$$\lim_{x \to 2} (3x^2 - 5x + 1) = 3(2)^2 - 5(2) + 1 = 12 - 10 + 1 = 3$$

Cálculo de Límites 00000000

Ejemplo 2

$$\lim_{x \to -1} \frac{x^2 + 2x}{x + 3} = \frac{(-1)^2 + 2(-1)}{-1 + 3} = \frac{1 - 2}{2} = -\frac{1}{2}$$

Eiemplo 3

$$\lim_{x\to\pi}\cos(x)=$$

Límites por Sustitución Directa

Si f es una función polinómica o racional y c está en el dominio de f, entonces $\lim_{x\to c} f(x) = f(c)$.

Ejemplo 1

$$\lim_{x \to 2} (3x^2 - 5x + 1) = 3(2)^2 - 5(2) + 1 = 12 - 10 + 1 = 3$$

Cálculo de Límites 00000000

Ejemplo 2

$$\lim_{x \to -1} \frac{x^2 + 2x}{x + 3} = \frac{(-1)^2 + 2(-1)}{-1 + 3} = \frac{1 - 2}{2} = -\frac{1}{2}$$

Eiemplo 3

$$\lim_{x\to\pi}\cos(x)=\cos(\pi)=-1$$

Funciones que Coinciden Salvo en un Punto

Teorema

Sea $c \in \mathbb{R}$ y sea f(x) = g(x) para todo $x \neq c$ en un intervalo abierto que contiene a c. Si el límite de g(x) cuando $x \to c$ existe, entonces el límite de f(x) también existe y

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$$

Este teorema justifica formalmente la técnica de "cancelar" factores en el numerador y denominador después de factorizar o racionalizar.

Límites por Factorización

Ejemplo 1

Retomando nuestro primer ejemplo:

$$\lim_{x\to 1}\frac{x^2-1}{x-1}=\frac{0}{0}$$

Cálculo de Límites 000000000

Límites por Factorización

Ejemplo 1

Retomando nuestro primer ejemplo:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0}$$

Cálculo de Límites 000000000

$$\lim_{x\to 1}\frac{x^2-1}{x-1}=$$

Cálculo Unidad 1: Límites

Límites por Factorización

Ejemplo 1

Retomando nuestro primer ejemplo:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{0}{0}$$

Cálculo de Límites 00000000

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2$$

Límites por Factorización II

$$\lim_{h \to 0} \frac{(h+2)^2 - 4}{h} = \frac{1}{h}$$

Límites por Factorización II

Ejemplo 2

$$\lim_{h \to 0} \frac{(h+2)^2 - 4}{h} = \frac{0}{0}$$

$$\lim_{h \to 0} \frac{(h+2)^2 - 4}{h} = \lim_{h \to 0} \frac{h^2 + 4h + 4 - 4}{h} = \lim_{h \to 0} \frac{h(h+4)}{h} = \lim_{h \to 0} (h+4) = 4$$

Cálculo Unidad 1: Límites

Límites por Factorización III

$$\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3} = \frac{0}{0}$$

$$\lim_{x \to -3} \frac{x^2 + x - 6}{x + 3} = \lim_{x \to -3} \frac{(x + 3)(x - 2)}{x + 3} = \lim_{x \to -3} (x - 2) = -3 - 2 = -5$$

Ejemplo 1

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = 1$$

Cálculo de Límites 000000000

Límites por Racionalización

$$\lim_{x\to 0}\frac{\sqrt{x+1}-1}{x}=\frac{0}{0}$$

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 0} \frac{\left(\sqrt{x+1} - 1\right)\left(\sqrt{x+1} + 1\right)}{x\left(\sqrt{x+1} + 1\right)}$$

Límites por Racionalización

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 0} \frac{(\sqrt{x+1} - 1)(\sqrt{x+1} + 1)}{x(\sqrt{x+1} + 1)}$$

$$= \lim_{x \to 0} \frac{(x+1) - 1}{x(\sqrt{x+1} + 1)} =$$

Límites por Racionalización

$$\begin{split} &\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x} = \frac{0}{0} \\ &\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x} = \lim_{x\to 0} \frac{(\sqrt{x+1}-1)(\sqrt{x+1}+1)}{x(\sqrt{x+1}+1)} \\ &= \lim_{x\to 0} \frac{(x+1)-1}{x(\sqrt{x+1}+1)} = \lim_{x\to 0} \frac{x}{x(\sqrt{x+1}+1)} = \lim_{x\to 0} \frac{1}{\sqrt{x+1}+1} = \frac{1}{\sqrt{1}+1} = \frac{1}{2} \end{split}$$

Ejemplo 2

$$\lim_{x\to 4}\frac{x-4}{2-\sqrt{x}}=\frac{0}{0}$$

Cálculo de Límites 00000000

Límites por Racionalización II

$$\begin{split} \lim_{x \to 4} \frac{x - 4}{2 - \sqrt{x}} &= \frac{0}{0} \\ \lim_{x \to 4} \frac{x - 4}{2 - \sqrt{x}} &= \lim_{x \to 4} \frac{(x - 4)(2 + \sqrt{x})}{(2 - \sqrt{x})(2 + \sqrt{x})} \\ &= \lim_{x \to 4} \frac{(x - 4)(2 + \sqrt{x})}{4 - x} = \lim_{x \to 4} \frac{-(4 - x)(2 + \sqrt{x})}{4 - x} = \lim_{x \to 4} -(2 + \sqrt{x}) = -(2 + 2) = -4 \end{split}$$

- 1 Introducción Conceptual al Límite
- 2 Análisis Gráfico y Definición Forma
- 3 Cálculo de Límites
- 4 Teorema del Encaje y Límites Trigonométricos

Teorema del Encaje (o del Sándwich) I

Teorema

Si $h(x) \le f(x) \le g(x)$ para todo x en un intervalo abierto que contiene a c, excepto posiblemente en c. v si

$$\lim_{x\to c}h(x)=L=\lim_{x\to c}g(x)$$

entonces

$$\lim_{x\to c} f(x) = L$$

Teorema del Encaje (o del Sándwich) II

Límites Trigonométricos Especiales

Teoremas Fundamentales

Los siguientes dos límites son fundamentales para el cálculo de derivadas de funciones trigonométricas.

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

Límites Trigonométricos Especiales

Teoremas Fundamentales

Los siguientes dos límites son fundamentales para el cálculo de derivadas de funciones trigonométricas.

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

Cálculo Unidad 1: Límites

$$\lim_{x\to 0}\frac{1-\cos(x)}{x}=0$$

Nota: Para estos límites. la variable x debe estar medida en radianes.

Ejemplo 1

$$\lim_{x\to 0}\frac{\tan(x)}{x}=\frac{0}{0}$$

$$\lim_{x\to 0}\frac{\tan(x)}{x}=$$

Cálculo Unidad 1: Límites

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{x \to 0} \frac{\sin(x)}{x \cos(x)} = \left(\lim_{x \to 0} \frac{\sin(x)}{x}\right) \left(\lim_{x \to 0} \frac{1}{\cos(x)}\right) = (1)(1) = 1$$

Ejemplo 1

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{x \to 0} \frac{\sin(x)}{x \cos(x)} = \left(\lim_{x \to 0} \frac{\sin(x)}{x}\right) \left(\lim_{x \to 0} \frac{1}{\cos(x)}\right) = (1)(1) = 1$$

Ejemplo 2

Sea u = 4x. Si $x \to 0$, entonces $u \to 0$.

$$\lim_{x\to 0}\frac{\sin(4x)}{x}=$$

Ejemplo 1

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = \lim_{x \to 0} \frac{\sin(x)}{x \cos(x)} = \left(\lim_{x \to 0} \frac{\sin(x)}{x}\right) \left(\lim_{x \to 0} \frac{1}{\cos(x)}\right) = (1)(1) = 1$$

Ejemplo 2

Sea u = 4x. Si $x \to 0$, entonces $u \to 0$.

$$\lim_{x \to 0} \frac{\sin(4x)}{x} = \lim_{x \to 0} 4 \cdot \frac{\sin(4x)}{4x} = 4 \left(\lim_{u \to 0} \frac{\sin(u)}{u} \right) = 4(1) = 4$$

$$\lim_{x\to 0}\frac{\sin^2(x)}{x}=$$

$$\lim_{x\to 0} \frac{\sin^2(x)}{x} = \left(\lim_{x\to 0} \frac{\sin(x)}{x}\right) \left(\lim_{x\to 0} \sin(x)\right) = (1)(0) = 0$$

Ejemplo 3

$$\lim_{x\to 0} \frac{\sin^2(x)}{x} = \left(\lim_{x\to 0} \frac{\sin(x)}{x}\right) \left(\lim_{x\to 0} \sin(x)\right) = (1)(0) = 0$$

$$\lim_{ heta o 0} rac{\mathsf{cos}(heta)\,\mathsf{tan}(heta)}{ heta} =$$

Ejemplo 3

$$\lim_{x \to 0} \frac{\sin^2(x)}{x} = \left(\lim_{x \to 0} \frac{\sin(x)}{x}\right) \left(\lim_{x \to 0} \sin(x)\right) = (1)(0) = 0$$

$$\lim_{\theta \to 0} \frac{\cos(\theta)\tan(\theta)}{\theta} = \lim_{\theta \to 0} \frac{\cos(\theta)}{\theta} \frac{\sin(\theta)}{\cos(\theta)} = \lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$$