

VLSI Design EE 523 Spring 2025

Shahid Masud

Lecture 2

Topics in today's lecture

Fabrication Steps

 Wafer preparation, Lithography, Diffusion, Chemical Vapor Deposition, ebeam ion implantation, masking, etching, slicing, packaging, testing, etc.

PN junction

- Diffusion, drift, depletion region, barrier voltage, junction capacitance, VI characteristics
- MOS transistor construction
 - Enhancement and Depletion type MOS transistors

Basic CMOS building blocks

VLSI Design Spring 2025 Lecture 2

Periodic table — semiconductor, p and n type

DONOR IMPURITIES

VERSUS

ACCEPTOR IMPURITIES

Visit www.PEDIAA.com

DONOR IMPURITIES	ACCEPTOR IMPURITIES
Donor impurities inject extra electrons into the semiconductor crystal lattice due to having an excess of valence electrons compared to the host material	Acceptor impurities generate "holes" or gaps within the valence band of the semiconductor lattice by possessing fewer valence electrons than the host material
Introduce excess electrons that can move through the material	Create holes that can also carry a charge
Introduce energy levels within the band gap near the conduction band	Introduce energy levels near the valence band
Elements found in group V of the periodic table commonly function as donor impurities	Elements in group III usually serve as acceptor impurities

- P type semiconductor (holes) is doped with B, Al, or In; 3 el in Outermost valence shell
- N type seminconductor (electrons) is doped with P, As, Sb (antimony) 5 el in outermost valence shell

Periodic table of the elements

lanthanoid series actinoid series

- 0	58	59	60	61	62	63	64	65	66	67	68	69	70	71
s 6	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
- 7	90	91	92	93	94	95	96	97	98	99	100	101	102	103
es 7	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

*Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC).

© Encyclopædia Britannica, Inc.

Silicon Crystal, Wafers and Defects

FIGURE 1.50
Effect of die size on yield. Both wafers have the same number and distribution of defects. For wafer (a) the yield is 81%, whereas for wafer (b) the yield is 92%.

The yield is a function of the wafer defect density and the die size. Assuming that a single defect results in a nonworking circuit, larger die* will result in a lower yield, even for the same defect density and distribution, as shown in Figure 1.50. The identically sized wafers have the same number and distribution of defects. The wafer on the left has 7 bad die out of a total of 37; the yield is 30/37, or 81%. The wafer on the right with a smaller die size also has 7 bad die, but the yield is 81/88, or 92%. A yield of 92% is economically viable, but 81% is probably not.

Die yield

23

die yield =
$$\left(1 + \frac{\text{defects per unit area} \times \text{die area}}{\alpha}\right)^{-\alpha}$$
 (1.4)

 α is a parameter that depends upon the complexity of the manufacturing process, and is roughly proportional to the number of masks. $\alpha=3$ is a good estimate for today's complex CMOS processes. The defects per unit area is a measure of the material and process induced faults. A value between 0.5 and 1 defects/cm² is typical these days, but depends strongly upon the maturity of the process.

Example 1.3 Die Yield

Assume a wafer size of 12 inch, a die size of 2.5 cm^2 , 1 defects/cm^2 , and $\alpha = 3$. Determine the die yield of this CMOS process run.

The number of dies per wafer can be estimated with the following expression, which takes into account the lost dies around the perimeter of the wafer.

dies per wafer =
$$\frac{\pi \times (\text{wafer diameter}/2)^2}{\text{die area}} - \frac{\pi \times \text{wafer diameter}}{\sqrt{2 \times \text{die area}}}$$

This means 252 (= 296 - 44) potentially operational dies for this particular example. The die yield can be computed with the aid of Eq. (1.4), and equals 16%! This means that on the average only 40 of the dies will be fully functional.

Transistors as switches

FIGURE 1.10 Transistor symbols and switch-level models

Different views of chip design

FIGURE 1.34 Inverter cross-section with well and substrate contacts. Color version on inside front cover.

Domains of VLSI chip design

1.6.3 Behavioral, Structural, and Physical Domains

An alternative way of viewing design partitioning is shown with the Y-chart shown in Figure 1.48 [Gajski83, Kang03]. The radial lines on the Y-chart represent three distinct design domains: behavioral, structural, and physical. These domains can be used to describe the design of almost any artifact and thus form a general taxonomy for describing

FIGURE 1.48 Y Diagram (Reproduced from [Kang03] with permission of The McGraw-Hill Companies.)

⁵Some designers refer to both units and functional blocks as *modules*.

Chip Manufacturing Process

FIGURE 1.12 The chip manufacturing process. After being sliced from the silicon ingot, blank wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.13). These patterned wafers are then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies (see Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages and tested one more time before shipping the packaged parts to customers. One bad packaged part was found in this final test.

Diode Equations 1

Ref: Electronics book by Sedra / Smith

208 CHAPTER 3 DIODES

EXERCISE

3.34 A diode has $N_A = 10^{17}/\text{cm}^3$, $N_D = 10^{16}/\text{cm}^3$, $n_i = 1.5 \times 10^{10}/\text{cm}^3$, $L_p = 5 \, \mu\text{m}$, $L_n = 10 \, \mu\text{m}$, $A = 2500 \, \mu\text{m}^2$, D_p (in the n region) = $10 \, \text{cm}^2/\text{V} \cdot \text{s}$, and D_n (in the p region) = $18 \, \text{cm}^2/\text{V} \cdot \text{s}$. The diode is forward biased and conducting a current $I = 0.1 \, \text{mA}$. Calculate: (a) I_S ; (b) the forward-bias voltage V_s ; (c) the component of the current I due to hole injection and that due to electron injection across the junction; (d) τ_p and τ_n (e) the excess hole charge in the n region Q_m , and the excess electron charge in the p region Q_m and hence the total minority stored charge Q_s , as well as the transit time τ_T ; and (f) the diffusion capacitance. Ans. (a) $2 \times 10^{-15} \, \text{A}$; (b) $0.616 \, \text{V}$; (c) $91.7 \, \mu\text{A}$, $8.3 \, \mu\text{A}$; (d) $25 \, \text{ns}$, $55.6 \, \text{ns}$; (e) $2.29 \, \text{pC}$, $0.46 \, \text{pC}$, $2.75 \, \text{pC}$, $27.5 \, \text{ns}$; (f) $110 \, \text{pF}$

Junction Capacitance The depletion-layer or junction capacitance under forward-bias conditions can be found by replacing V_R with -V in Eq. (3.57). It turns out, however, that the accuracy of this relationship in the forward-bias region is rather poor. As an alternative, circuit designers use the following rule of thumb:

$$C_j \simeq 2C_{j0} \tag{3.7}$$

3.7.6 Summary

For easy reference, Table 3.2 provides a listing of the important relationships that describe the physical operation of pn junctions.

TABLE 3.2 Su	mmary of Important Equa	ations for nn-lunctio	n Operation
--------------	-------------------------	-----------------------	-------------

Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at T = 300 K)
Carrier concentration in intrinsic silicon (/cm ³)	$n_i^2 = BT^3 e^{-E_G/kT}$	$B = 5.4 \times 10^{31} / (\text{K}^3 \text{cm}^6)$ $E_G = 1.12 \text{ eV}$
Dr.	table is an hamiltonia at Atlanticum anno sin Agob et esta et anno atlantica at socionia anno accidin	$k_G = 1.12 \text{ eV}$ $k = 8.62 \times 10^{-5} \text{eV/K}$ $n_i = 1.5 \times 10^{10} \text{/cm}^3$
Diffusion current density (A/cm ²)	$J_p = -qD_p \frac{dp}{dx}$	$q = 1.60 \times 10^{-19} \text{ coulomb}$
-5	$J_n = q D_n \frac{dn}{dx}$	$D_p = 12 \text{ cm}^2/\text{s}$ $D_p = 34 \text{ cm}^2/\text{s}$
Drift current density (A/cm ²)	$J_{drift} = q(p\mu_p + n\mu_n)E$	$\mu_p = 480 \text{ cm}^2/\text{V} \cdot \text{s}$
Resistivity (Ω·cm)	0 = 1/1=($\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$
Relationship between mobility and diffusivity	$\rho = 1/[q(p\mu_p + n\mu_n)]$	μ_p and μ_n decrease with the increase in doping concentration
Carrier concentration	$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T$	$V_T = kT/q$ $\approx 25.8 \text{ mV}$
n-type silicon (/cm ³)	$n_{n0} \simeq N_D$ $p_{n0} = n_i^2 / N_D$	- 23.8 mV

Diode	Equations	2
-------	-----------	---

Quantity	Relationship	Values of Constants and Parameters (for Intrinsic Si at T = 300 K)
Carrier concentration in p-type silicon (/cm³)	$p_{p0} \simeq N_A$	(101 munisic 37 at 7 = 300 K)
Junction built-in voltage (V)	$n_{p0} = n_i^2 / N_A$ $V_0 = V_T \ln \left(\frac{N_A N_D}{n^2} \right)$	Mix d'en resorbiero
Width of depletion region (cm)	$\frac{x_n}{x_p} = \frac{N_A}{N_D}$ $W_{dep} = x_n + x_p$ $= \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 + V_R)}$	$\varepsilon_s = 11.7\varepsilon_0$ $\varepsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$
Charge stored in depletion layer (coulomb)	$q_J = q \frac{N_A N_D}{N_A + N_D} A W_{dep}$	finance coff d beloggings
Depletion capacitance (F)	$C_{j} = \frac{\varepsilon_{s}A}{W_{dep}}, C_{j0} = \frac{\varepsilon_{s}A}{W_{dep} _{V_{R=0}}}$ $C_{j} = C_{j0}/\left(1 + \frac{V_{R}}{V_{0}}\right)^{m}$ $C_{j} = 2C_{j0} \text{ (for forward bias)}$	$m = \frac{1}{3} \text{ to } \frac{1}{2}$
orward current (A)	$I = I_p + I_n$	Timbe Tabler Prints
	$I_{p} = Aq n_{i}^{2} \frac{D_{p}}{L_{p} N_{D}} (e^{V/V_{T}} - 1)$ $I_{n} = Aq n_{i}^{2} \frac{D_{n}}{L_{n} N_{A}} (e^{V/V_{T}} - 1)$	
uration current (A)	$I_S = Aq n_i^2 \left(\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A} \right)$	3.8.2 Varacto
ority-carrier fetime (s)	$\tau_p = L_p^2/D_p \qquad \tau_n = L_n^2/D_n$	$L_p, L_n = 1 \mu \text{m to } 100 \mu \text{m}$ $\tau_p, \tau_n = 1 \text{ ns to } 10^4 \text{ ns}$
ority-carrier arge storage oulomb)	$Q_p = \tau_p I_p$ $Q_n = \tau_n I_n$ $Q = Q_p + Q_n = \tau_T I$	Conspiration olinic or nexembly or no microstions
sion pacitance (F)	$C_d = \left(\frac{\tau_T}{V_T}\right)I$	383 980 000

3.8 SPECIAL DIODE TYPES8

this section, we discuss briefly some important special types of diodes.

Diode Calculations

Example 3.1

Determine the built-in potential, depletion width, and zero-bias depletion capacitance for an n⁺–p Si diode at 300 K, with $N_d = 10^{18}$ cm⁻³, $N_a = 10^{16}$ cm⁻³, and a junction area of 10^{-5} cm².

Solution. The built-in potential is

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_a N_d}{n_i^2} \right) = (0.0259 \text{ V}) \ln \left(\frac{\left(10^{16} \text{ cm}^{-3} \right) \left(10^{18} \text{ cm}^{-3} \right)}{\left(1.45 \times 10^{10} \text{ cm}^{-3} \right)^2} \right) = 0.816 \text{ V}.$$

Diodes 67

The depletion width is almost entirely on the p-type side and is

$$W = \sqrt{\frac{2\varepsilon_s V_{bi}}{qN_a}} = \sqrt{\frac{2(11.9)(8.85 \times 10^{-14} \text{ F/cm})(0.816 \text{ V})}{(1.602 \times 10^{-19} \text{ C})(10^{16} \text{ cm}^{-3})}}$$
$$= 0.33 \times 10^{-4} \text{ cm} = 0.33 \text{ } \mu\text{m}.$$

The zero-bias depletion capacitance is

$$C_T = \frac{\varepsilon_s A}{W} = \frac{(11.9)(8.85 \times 10^{-14} \text{ F/cm})(10^{-5} \text{ cm}^2)}{0.33 \times 10^{-4} \text{ cm}} = 0.32 \times 10^{-12} \text{ F} = 0.32 \text{ pF}.$$