Distribuições amostrais

Distribuição amostral da média e da diferença de médias

Distribuição amostral

Distribuições amostrais (1 população)

Estatística	σ² conhecido?	Tipo de população	Distribuição amostral
\overline{X}	Sim	Normal (ou qualquer se n grande*)	$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \cap N(0;1)$
*	Não	Normal (ou qualquer se n grande*)	$T = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \cap t_{(n-1)}$

^{*}Nesse caso a distribuição amostral é aproximada em vez de exata.

Distribuições amostrais (2 populações)

Estatística	$\sigma_1^2 e \sigma_2^2$ conhecidos?	Tipo de populações	Distribuição amostral
	Sim	Normais (ou quaisquer se n_1 e n_2 grandes*)	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \cap N(0;1)$
$\overline{X}_1 - \overline{X}_2$	Não $(\sigma_1^2 = \sigma_2^2)$	Normais (ou quaisquer se n_1 e n_2 grandes*)	$T = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_1 - 1)S_2^2}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \cap t_{\left(n_1 + n_2 - 2\right)}$
	Não $(\sigma_1^2 \neq \sigma_2^2)$	Normais (ou quaisquer se n ₁ e n ₂ grandes*)	$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \cap t_{(v)}$

v é obtido pela aproximação de Welch

Estimação

Processos de estimação
Estimador e Estimativa
Propriedades dos estimadores
Método da máxima verosimilhança
Intervalos de confiança

Processos de estimação

Estimação pontual:

Produção de um <u>valor</u>, que se pretende que seja o melhor, para um determinado parâmetro da população, com base na informação amostral.

Estimação intervalar (Intervalos de confiança):

 Construção de um <u>intervalo</u> que, com certo grau de certeza previamente estipulado, contenha o verdadeiro valor do parâmetro da população.

Estimador e estimativa

▶ Estimador dum parâmetro da população:

- É uma <u>variável aleatória</u> (v. a.) que depende da informação amostral e cujas realizações fornecem aproximações para o parâmetro desconhecido;
- É uma função dos dados.

Estimativa:

- É um <u>valor</u> específico assumido pelo estimador para uma amostra em concreto;
- É um número.
- Amostras diferentes podem produzir estimativas diferentes, devido à aleatoriedade amostral, logo temos incerteza associada à estimativa obtida

Estimador e estimativa

► Tanto o estimador como a estimativa representam-se habitualmente com um acento circunflexo sobre a letra do parâmetro $(\hat{\mu}, \hat{p}, \hat{\sigma},...)$.

Exemplos:

- Estimador da média populacional: $\hat{\mu} = \overline{X}$
- Estimativa da média populacional: $\hat{\mu} = \overline{x} = 3$

Propriedades desejáveis nos estimadores

▶ Não enviesamento ou centragem:

em termos médios, o estimador atinge o valor real do parâmetro.

Eficiência:

o estimador é mais eficiente quanto menor for a sua variância.

Suficiência:

propriedade de retirar da amostra toda a informação relevante sobre o parâmetro.

Consistência:

para n grande, o estimador deve ser aproximadamente igual ao parâmetro.

Propriedades dos estimadores

Exercício 1

Às 20:00 de 13 de Junho de 2004 era possível ler a seguinte notícia na SIConline:

"O PS é o vencedor das eleições europeias em Portugal, segundo a previsão SIC/Eurosondagem. Com 44,1 por cento a 47,9 por cento dos votos, os socialistas conseguem eleger 12 a 13 eurodeputados. A abstenção atingiu os 64 por cento. A coligação "Força Portugal" obteve 29,7 por cento a 33,5 por cento dos votos, valores que correspondem a 8 a 9 lugares no Parlamento Europeu. A CDU terá conseguido entre 10,1 por cento e 11,9 por cento e 2 a 3 deputados. Por sua vez, o Bloco de Esquerda teve 5,1 por cento a 6,9 por cento dos votos, que valem 1 eurodeputado. Os votos noutros partidos estão entre 2,8 por cento a 4,2 por cento. Os votos brancos/nulos são 1,5 por cento a 2,3 por cento, de acordo com a projecção...."

Dê um exemplo de uma estimativa:

- pontual
- intervalar

apresentadas nesta notícia.

▶ 128 EACHS 2017/2018

Exercício 2

- Qual das seguintes expressões está correta? Justifique.
 - i. $E(\mu) = \hat{\mu}$
 - ii. $E(\hat{\mu}) = \mu$
- Qual das seguintes expressões está correta? Justifique.
 - i. $P(\mu \le x) = P(\hat{\mu} \le x)$
 - ii. $P(\bar{X} \leq X) = P(\hat{\mu} \leq X)$
- Distinga estimador de estimativa.

Métodos de estimação

- Método dos momentos:
 - Método simples e muitas vezes intuitivo;
 - Igualam-se os momentos amostrais aos populacionais
- Método dos mínimos quadrados:
 - Usado nos modelos de regressão
- Método da máxima verosimilhança:
 - Método de estimação paramétrico (assumimos uma distribuição de probabilidade) para obter estimadores.

Método da Máxima Verosimilhança (M. V.)

- $X_1, X_2, ..., X_n$ é uma a.a. de uma população com f. p. $f(x; \theta)$
- Função de verosimilhança:

L(.) = L(
$$\theta$$
) = L(parâmetros|dados)
= f(x_1 ; θ) f(x_2 ; θ) ... f(x_n ; θ)

- Objectivo:
 - Determinar o valor dos parâmetros (θ) que maximizam L(.)

Maximizar L(.)

Método da Máxima Verosimilhança (M. V.)

▶ 132 EACHS 2017/2018

▶ Um intervalo de confiança (IC), com $100(1-\alpha)\%$ de confiança, para um parâmetro θ desconhecido, é dado por

$$P(Inf < \theta < Sup) = 1 - \alpha$$

- Onde os limites deste intervalo]Inf; Sup[são aleatórios.
 - Dependem da amostra observada.

ICs a 95% para μ

Parâmetro	σ² conhecido?	Tipo de população	Intervalo de confiança
	Sim	Normal (ou qualquer se n grande)	$\left] \overline{X} - z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}; \overline{X} + z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right[$
μ	Não	Normal (ou qualquer se n grande)	$\left] \overline{X} - t_{n-1;1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}; \overline{X} + t_{n-1;1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right[$

Exercício 3

Suponha que no aviário ApenasOvos o peso dos ovos produzidos se pode considerar Normal com média 60 gr e desvio-padrão 5 gr.

Há 15 dias, foi efetuada uma mudança na alimentação das galinhas deste aviário que se julga aumentar o peso dos ovos. Ontem recolheu-se uma amostra aleatória de ovos neste aviário, tendo-se obtido os seguintes resultados:

Statistics

Peso dos ovos (gr)

N Valid 25

Mean 63,65

a) Forneça uma estimativa pontual para o peso médio dos ovos depois da mudança na alimentação das galinhas.

Exercício 3 (cont.)

- b) Com 95% de confiança, depois da mudança de alimentação, o peso médio dos ovos situa-se entre ____ gr e ____ gr.
- c) Como procederia caso pretendesse reduzir a amplitude do intervalo de confiança anterior?
- d) Qual deveria ser a dimensão da amostra para <u>reduzir o erro de</u> <u>estimativa</u> do I. C. da alínea b) para 1 gr.
- e) Se reduzir o erro de estimativa na alínea anterior, o que espera que aconteça à dimensão da amostra? E se aumentar o nível de significância?
- f) Qual deveria ser a dimensão da amostra para <u>reduzir a amplitude</u> do I. C. da alínea b) para 1,5 gr.
- g) Suponha agora que se desconhece a variância populacional e que se observou s = 5 gr. Resolva novamente a alínea b) e comente as diferenças obtidas.

Parâmetro	$\sigma_1^2 e \sigma_2^2$ conhecidos?	Tipo de populações	Distribuição amostral
	Sim	Normais (ou quaisquer se n ₁ e n ₂ grandes)	$\left] \overline{X}_1 - \overline{X}_2 - z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}; \overline{X}_1 - \overline{X}_2 + z_{1 - \frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right[$
$\mu_1 - \mu_2$	Não $(\sigma_1^2 = \sigma_2^2)$	Normais (ou quaisquer se n ₁ e n ₂ grandes)	$\begin{split} \left] \overline{X}_1 - \overline{X}_2 - t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^*; \overline{X}_1 - \overline{X}_2 + t_{n_1 + n_2 - 2; 1 - \frac{\alpha}{2}} S^* \right[\\ S^* = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \end{split}$
	Não $(\sigma_1^2 \neq \sigma_2^2)$	Normais (ou quaisquer se n ₁ e n ₂ grandes)	$\begin{split} \boxed{\overline{X}_1 - \overline{X}_2 - t_{v;1-\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}; \overline{X}_1 - \overline{X}_2 + t_{v;1-\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}} \\ v \text{ \'e obtido pela aproximação de Welch} \end{split}$

Exercício 4

▶ Um pomar de laranjeiras Baía, plenamente desenvolvido, foi dividido em 2 talhões. Em cada um dos talhões utilizou-se um adubo diferente (A e B). Aquando da colheita das laranjas, selecionaram-se aleatoriamente algumas árvores em cada um dos talhões e registou-se o número de kg de fruto por árvore.

Statistics

Kg de fruta por árvore

		Talhão A	Talhão B
N	Valid	15	13
Mean		182,16	195,43
Std. De	eviation	26,938	34,626

Normal Q-Q Plot of Kg de fruta por árvore

for Talhão= A

To a served Value

for Talhão= A

To a served Value

Normal Q-Q Plot of Kg de fruta por árvore

Exercício 4 (cont.)

- a) Forneça uma estimativa pontual para o número médio de kg de fruto por laranjeira no talhão B. Qual o erro padrão associado à média da amostra?
- b) Pela análise do QQ-plot Normal pode considerar-se que os dados são provenientes de uma população com distribuição Normal?
- c) Construa um intervalo de confiança (IC) a 90% para a produção média (em kg) por laranjeira no talhão B.
- d) Admita que o <u>desvio-padrão populacional</u> no talhão B é conhecido e é igual a 34,626 kg. Resolva novamente a alínea c) e compare os resultados obtidos.
- e) Com 95% de confiança a variância da produção por árvore do talhão A varia entre e?

Exercício 4 (cont.)

One-Sample Test

		Test Value = 0							
		95% Confidence Interval							
		Sig. Mean Std. of the Difference							
	t	df	(2-tailed)	Difference	Error	Lower	Upper		
Kg de fruta por	?	14	?	182,16	6,9554	?	197,079		
árvore Talhão A									

- f) Com 95% de confiança, a produção média (em kg) por laranjeira no talhão A varia entre que valores?
- g) Com base num intervalo de confiança a 95% pode-se considerar que a variabilidade nas produções por árvore nos dois talhões é idêntica?
- Se alterasse o nível de significância da alínea anterior para 1%, manteria a sua decisão? Justifique <u>sem efetuar cálculos</u>.

Exercício 4 (cont.)

Independent Samples Test

	madpoindone dampido rede							
		Levene's Test						
		for Equality of						
		Varia	Variances t-test for Equality of Means					
							90% Co	nfidence
							Interva	I of the
						Std. Error	Differ	ence
		F Sig.		t	df	Difference	Lower	Upper
Kg de fruta por árvore	Equal variances assumed	1,590	,219	?	?	11,643	-33,133	?
	Equal variances not assumed			-1,119	22,568	11,858	-33,631	7,091

- j) Com base num intervalo de confiança a 95%, podemos considerar que a produção média por árvore não é idêntica nos dois talhões?
- k) Se alterasse o nível de significância da alínea anterior para 10%, manteria a sua opinião? E se α = 1%?

Adaptado da 2º frequência: 21 de Junho de 2011

Testes de hipóteses

Hipóteses

Decisão

Tipos de erro, valor p e potência do teste

Etapas

Teste de hipótese para a média e diferença de médias populacionais

Referência ao teste de Kolmogorov-Smirnov e Shapiro-Wilks

Introdução

- ▶ **Objetivo:** testar afirmações sobre a população
- Classificação dos testes de hipóteses:
 - Paramétricos:
 - ▶ Têm como pressuposto uma distribuição para a população.
 - Utilizam-se para afirmações sobre os parâmetros populacionais.
 - Não paramétricos:
 - Dizem-se "distribution free".
 - São mais simples.
 - Utilizam-se tanto para afirmações sobre os parâmetros populacionais como sobre a distribuição populacional.

Introdução

Hipóteses:

- \vdash H_0 : hipótese nula:
 - Contém sempre uma igualdade,
 - O que se aceita por defeito até prova em contário.
- H₁: hipótese alternativa:
 - O que se pretende testar.

▶ Tipos de testes:

- Bilaterais,
- Unilaterais: esquerdo ou direito.

Decisão:

- Rejeitar H₀;
- Não rejeitar H_0 .

Erros nos testes de hipóteses

	Situaçã	o real
Decisão	H ₀ é verdadeira	H ₀ é falsa
Rejeitar H ₀	Decisão incorrecta P(rej H ₀ H ₀ verd.) ≤ α	Decisão correcta $P(Rej. H_0 \mid H_1 \text{ verd.}) = 1 - \beta$
Não rejeitar H _o	Decisão correcta $ {\rm P(Não\ rej.\ H_0 H_0\ verd.)} > {\rm 1-\alpha} $	Decisão incorrecta $P(Não rej. H_0 H_1 verd.) = \beta$

Erros nos testes de hipóteses

	Situaçã	o real
Decisão	H ₀ é verdadeira	H _o é falsa
Rejeitar H ₀	Decisão incorrecta P(rej H ₀ H ₀ verd.) ≤ α Erro tipo I	Decisão correcta P(Rej. $H_0 \mid H_1 \text{ verd.}) = 1 - \beta$
Não rejeitar H _o	Decisão correcta $ P(\text{Não rej. H}_0 \text{H}_0 \text{ verd.}) > 1-\alpha $	Decisão incorrecta $P(Não rej. H_0 H_1 verd.) = \beta$ Erro de Tipo II

▶ 147 EACHS 2017/2018

Erros de tipo I e II

Valor p e Potência do teste

Valor p:

- Menor nível de significância a partir do qual se rejeita H₀.
- ▶ Se α ≥ valor p \Rightarrow rejeitar H₀.

Potência do teste (π) :

- \blacktriangleright Mede a capacidade do teste decidir corretamente quando H_0 é falsa.
- $\pi(\theta_1) = P(Rej. H_0 | H_0 falsa) = 1 \beta(\theta_1)$, onde θ_1 é o valor de θ em H_1 .
- Quanto mais afastado estiver θ_1 de θ_0 maior é a potência do teste.

Etapas

Quadro resumo

Parâmetro	σ² conhecido?	Tipo de população	Estatística de teste (ET)
	Sim	Normal (ou qualquer se n grande*)	$Z = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \cap N(0;1)$
μ	Não	Normal (ou qualquer se n grande*)	$T = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}} \cap t_{(n-1)}$

^{*}Nesse caso a distribuição amostral é aproximada em vez de exata.

Quadro resumo

Parâmetros	$\sigma_1^2 e \sigma_2^2$ conhecidos?	Tipo de populações	Estatística de teste (ET)
	Sim	Normais (ou quaisquer se n ₁ e n ₂ grandes*)	$Z = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \cap N(0;1)$
$\mu_1 - \mu_2$	Não $(\sigma_1^2 = \sigma_2^2)$	Normais (ou quaisquer se n ₁ e n ₂ grandes*)	$T = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)_{0}}{\sqrt{\frac{\left(n_{1} - 1\right)S_{1}^{2} + \left(n_{1} - 1\right)S_{2}^{2}}{n_{1} + n_{2} - 2}}} \cap t_{(n_{1} + n_{2} - 2)}$
	Não $(\sigma_1^2 \neq \sigma_2^2)$	Normais (ou quaisquer se n ₁ e n ₂ grandes*)	$T = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)_{0}}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}} \stackrel{\circ}{\cap} t_{(v)}$

v é obtido pela aproximação de Welch

SPSS: TH para a média populacional (o desconhecido)

One-Sample Statistics

SPSS: TH para a diferença de médias populacionais

 $(\sigma_1 e \sigma_2 desconhecidos)$

Group Statistics

	GRUPO	N	Mean	Std. Deviation	Std. Error Mean	$-\frac{s_i'}{I_D}$
Х	1,00 2,00	10 7	3,3000 3,6857	,64291 ,60945	,20331 ,23035	√n
	2,00	↑ n _i		,00343 ↑ s'i	,20000	ı

Independent Samples Test

SPSS: TH para a diferença de médias populacionais

(amostras emparelhadas e σ desconhecido)

Paired Samples Statistics

Paired Samples Correlations

Paired Samples Test

Testes à Normalidade: K-S e S-W

▶ Teste de Kolmogorov-Smirnov:

- Parâmetros da dist. Normal não definidos, usar correcção de Lilliefors;
- Usar com amostras grandes.

▶ Teste de Shapiro-Wilk

Usar com amostras pequenas.

Hipóteses a testar: H₀: X tem distribuição Normal vs

H₁: X não tem distribuição Normal

Regra de decisão: Rejeitar H_0 quando $\alpha \ge valor p$

▶ 156 EACHS 2017/2018

SPSS: Testes à Normalidade de K-S e S-W

Tests of Normality

▶ 157 EACHS 2017/2018