Tentti 04.03.2002

- **1.** Henkilöauton massa on $m = 1361 \, \text{kg}$ ja sen omasta painovoimasta johtuva jousituksen staattinen puristuma $\mathbf{D} = 0,05 \, \text{m}$. Määritä auton pystysuuntaisen värähtelyn ominaistaajuus f ja jousituksen ekvivalentti jousivakio k_{ekv} . Mikä on iskunvaimennuksen ekvivalentti vaimennusvakio c_{ekv} , kun vaimennus on kriittinen. Mikä on vaimennussuhteen \mathbf{z} arvo, kun autossa on neljä matkustajaa, joiden yhteenlaskettu massa on 290 kg? **10 p**.
- 2. Sähkömoottori on kiinnitetty molemmista päistään jäykästi tuetun teräslevyn keskelle kuvan mukaisesti. Levyn pituus L = 5 m, leveys b = 0.5 m ja korkeus h = 0.1 m. Teräksen kimmomoduuli E = 210 GPa ja tiheys $\mathbf{r} = 7850 \text{ kg/m}^3$. Molemmista päistään jäykästi kiinnitetyn, keskeltä pistevoimalla kuormitetun palkin k_{eky} = 192EI/L³ ja lisämassakerroin 13/35. Vaioteta Moottorin m = 75 kgja pyörimisnopeus mennusta ei huomioon. massa n = 1200 r/min. Moottoriin vaikuttavan pystysuuntaisen pakkovoiman amplitudi on F₀ = 5000 N. Laske moottorin pystysuuntaisen värähtelyn amplitudi ja tukiin siirtyvän dynaamisen voiman maksimiarvo, kun a) palkin massaa ei oteta huomioon ja b) se otetaan huomioon. 11 p.

3. Kone K (massa m = 1000 kg) on kiinnitetty kymmenellä tärinäneristimellä (yhden eristimen jousivakio k = 0.2 MN/m) uivaan alustaan A (massa M = 5000 kg). Alustan A ja perustuksen välillä on kumimatto (jousivakio $K_A = 8 \text{ MN/m}$). Systeemin pystysuuntaisia värähtelyitä voi-

daan tutkia kuvan mukaisella kahden vapausasteen laskentamallilla. a) Kirjoita systeemin liikeyhtälöt olettaen, että koordinaatit x_1 ja x_2 on mitattu staattisesta tasapainoasemasta lähtien. b) Ratkaise systeemin ominaiskulmataajuudet ja ominaismuodot. c) Koneessa K on roottori, jonka pyörimisnopeus on 1500 r/min . Aiheutuuko mahdollisesta roottorin epätasapainosta värähtelyongelmia? **11 p**.