21. Parameterabhängige Integrale

Satz 21.1

Sei $A \subseteq \mathbb{R}^n, B \subseteq \mathbb{R}^m, A \times B = \{(x,y) : x \in A, y \in B\}$. Es sei $f : A \times B \to \mathbb{R}$ eine Funktion mit:

- (1) Für jedes (feste) $x \in A$ sei $y \mapsto f(x,y)$ Lebesgueintegrierbar über B.
- (2) Für jedes (feste) $y \in B$ sei $x \mapsto f(x, y)$ stetig auf A.
- (3) $\exists \phi \in L(B) : |f(x,y)| \le \phi(y) \ \forall (x,y) \in A \times B.$

 $F:A\to\mathbb{R}$ sei definiert durch $F(x):=\int_B f(x,y)\mathrm{d}y$. Dann: $F\in C(A,\mathbb{R})$.

Beweis

Sei $x_0 \in A$. Sei (x_k) eine Folge in A mit $x_k \to x_0$. zu zeigen: $F(x_k) \to F(x_0)$. Definiere $g, f_1, f_2, \ldots : B \to \mathbb{R}$ durch $g(y) := f(x_0, y), \ f_k(y) := f(x_k, y)$. Vor.(1) $\Longrightarrow f_k \in L(B) \ \forall k \in \mathbb{N}$. Vor.(2) $\Longrightarrow f_k(y) \to g(y) \ \forall y \in B$. Vor.(3) $\Longrightarrow |f_k(y)| \le \phi(y) \ \forall y \in B$.

18.6
$$\Longrightarrow \underbrace{\int_{B} g(y) dy}_{=F(x_0)} = \lim_{k \to \infty} \underbrace{\int_{B} f_k(y) dy}_{=F(x_k)}$$

Satz 21.2 (Vertauschbarkeit von Integration und Differentiation)

Sei $A \subseteq \mathbb{R}^n$ offen, $B \subseteq \mathbb{R}^m$ und $f: A \times B \to \mathbb{R}$ mit:

- (1) Für jedes (feste) $x \in A$ sei $y \mapsto f(x,y)$ Lebesgueintegrierbar über B.
- (2) Für jedes (feste) $y \in B$ sei $x \mapsto f(x,y)$ stetig differenzierbar auf A.
- (3) $\exists \phi \in L(B) : |f_{x_i}(x,y)| \le \phi(y) \ \forall (x,y) \in A \times B, \ \forall j \in \{1,\ldots,n\}.$

F sei wie in 21.1. Dann ist $F \in C^1(A, \mathbb{R})$, für jedes (feste) $x \in A$ ist $y \mapsto f_{x_j}(x, y)$ Lebesgueintegrierbar über B und $F_{x_j}(x) = \int_B f_{x_j}(x, y) dy \ \forall x \in A \ \forall j \in \{1, \dots, n\}.$

Beweis

Sei $x_0 \in A, j \in \{1, ..., n\}$. A offen $\implies \exists \delta > 0 : x_0 + te_j \in A$ für $|t| < \delta$. Sei (t_n) eine Folge in \mathbb{R} mit $t_k \to 0$ $(k \to \infty)$ und $0 < |t_k| < \delta \ \forall k$.

$$g(y) := f_{x_j}(x_0, y), \ f_k(y) := \frac{f(x_0 + t_k e_j, y) - f(x_0, y)}{t_k} \ (k \in \mathbb{N}, y \in B)$$

 $\underbrace{ \text{Vor.}(1) \implies f_k \in L(B) \ \forall k \in \mathbb{N}. \ \text{Vor.}(2) \implies f_k(y) \rightarrow g(y) \ \forall y \in B. \ \text{Vor.}(3) \implies |f_k(y)| \ \stackrel{\text{MWS}}{=} }_{\leq \phi(y) \ \forall y \in B}$ $\underbrace{ |f_{x_j}(x_0 + \xi_k e_j, y)|}_{\leq \phi(y) \ \forall y \in B}, \ \xi_k \ \text{zwischen 0 und } t_k. \ 18.6 \implies g \in L(B) \ \text{und}$

$$\underbrace{\int_{B} g(y)dy}_{=\int_{B} f_{x_{j}}(x_{0},y)dy} = \lim_{k \to \infty} \int_{B} f_{k}(y)dy = \lim_{k \to \infty} \frac{F(x_{0} + t_{k}e_{j}) - F(x_{0})}{t_{k}}$$

Satz 21.3

Es sei $D\subseteq\mathbb{R}^2$ offen, $[a,b]\times[c,d]\subseteq D$ und $\varphi:[a,b]\to[c,d]$ sei stetig differenzierbar. Es sei $f\in C^1(D,\mathbb{R})$ und $\alpha:[a,b]\to\mathbb{R}$ sei definiert durch $\alpha(x):=\int_c^{\varphi(x)}f(x,y)\mathrm{d}y$. Dann ist α auf [a,b] differenzierbar und

$$\alpha'(x) = \int_{c}^{\varphi(x)} f_x(x, y) dy + f(x, \varphi(x)) \cdot \varphi'(x) \ \forall x \in [c, b]$$

Beweis

 $\beta(x,z) := \int_c^z f(x,y) dy$. Dann: $\alpha(x) = \beta(x,\varphi(x))$ $(z \in [c,d])$. Analysis $1 \Longrightarrow \beta$ ist partiell differenzierbar nach z und $\beta_z(x,z) = f(x,z)$. $21.2 \Longrightarrow \beta$ ist partiell differenzierbar nach x und $\beta_x(x,z) = \int_c^z f_x(x,y) dy$. β_x,β_z sind stetig. $5.2 \Longrightarrow \beta$ ist differenzierbar $\stackrel{5.4}{\Longrightarrow} \alpha$ ist differenzierbar und

$$\alpha'(x) = \beta_x(x, \varphi(x)) \cdot 1 + \beta_z(x, \varphi(x)) \cdot \varphi'(x)$$
$$= \int_c^{\varphi(x)} f_x(x, y) dy + f(x, \varphi(x)) \cdot \varphi'(x).$$