Computational Problem 2

Table of Contents

Set	up	1
EX	ERCISE 2	1
		- 2
()		
(-)		
(C)		Č

Setup

```
close all, clear all, clc
format long, format compact
fs = 16;
set(0,'defaulttextfontsize',fs);
set(0,'defaultaxesfontsize',fs);
```

EXERCISE 2

(a)

```
list N = [5, 10, 20, 40, 80];
rhoBJ = zeros(size(length(list N)));
rhoBGS = zeros(size(length(list_N)));
for i = 1:length(list_N)
                h = 1 / list N(i);
                 A = (2/h^2)*diag(ones(list N(i)-1,1)) - (1/h^2)*diag(ones(list N
h^2 *diag(ones(list_N(i)-2,1),1) - (1/h^2) *diag(ones(list_N(i)-2,1),-1);
                 b = transpose(sin(pi*h*(1:list_N(i)-1)));
                D = diag(diag(A));
                 L = tril(A) - D;
                U = triu(A) - D;
                 B J = -(D^{(-1)}) * (L + U);
                 B_GS = -(D + L)^(-1) * U;
                 rhoBJ(i) = max(abs(eig(B_J))); % spectral radius is the maximum modulus
    of eigenvalues
                 rhoBGS(i) = max(abs(eig(B_GS)));
end
rhoBJ, rhoBGS
rhoBJ =
        Columns 1 through 3
             0.809016994374948
                                                                                                 0.951056516295154
                                                                                                                                                                               0.987688340595138
```

```
Columns 4 through 5

0.996917333733128 0.999229036240723

rhoBGS =

Columns 1 through 3

0.654508497187474 0.904508497187474 0.975528258147580

Columns 4 through 5

0.993844170297569 0.998458666866563
```

The two iterative methods will convergent for these values of N, because each of spectral radius less than 1. And the Gauss-Seidel method converge faster, because every value in rhoBGS less than rhoBJ.

As size N increases, both $\rho(B_{\rm J})$ and $\rho(B_{\rm GS})$ are grow up. Thus, I expect that the performance of the Jacobi and Gauss-Seidel methods will decline with the size N continues to increase.

```
figure
```

```
Nvec = [5, 10, 20, 40, 80];
loglog(Nvec, 1 - rhoBJ);
hold;
loglog(Nvec, 1 - rhoBGS);
legend({'rhoBJ', 'rhoBGS'}, 'Location', 'Best');
% get relationship between size N and spectral radius
% for $\rho B J$
syms a b;
f1 = a*list_N(1) + b == 1 - rhoBJ(1);
f2 = a*list_N(5) + b == 1 - rhoBJ(5);
ab_J = solve(f1, f2, a, b);
vpa(ab_J.a), vpa(ab_J.b)
% for $\rho B {GS}$
syms a b;
f1 = a*list N(1) + b == 1 - rhoBGS(1);
f2 = a*list N(5) + b == 1 - rhoBGS(5);
ab GS = solve(f1, f2, a, b);
vpa(ab GS.a), vpa(ab GS.b)
f J = @(x) 0.0025 * x + 0.796;
f GS = @(x) 0.0046 * x + 0.632;
% relationship between size N and spectral radius for both methods
x=linspace(5, 100, 100);
                                        % Define a set of x values for plotting
figure
                                    % Create a new figure
plot(x, f_J(x))
                       % Plot f
hold
plot(x, f_GS(x))
                          % Plot f
legend({'rhoBJ', 'rhoBGS'}, 'Location', 'Best');
grid on
xlabel('x')
```

```
ylabel('f(x)')

Current plot held
ans =
  -0.0025361605582103363687451746955048
ans =
  0.20366380841610411955855397536652
ans =
  -0.0045860022623878649028483778238297
ans =
  0.36842151412446570990510963383713
Current plot held
```


According to the graph above, we can observe that the function between size N and (1 - spectral radius) is a straight line. So, we can deduce that their relationship is linear, and the function is: (1 - sr) = aN + b, where sr is spectral radius, a and b are parameters.

For $\rho(B_J)$, we can calculate that a = -0.0025, b = 0.204, so the final relationship is sr = 0.0025N - 0.204 + 1 => sr = 0.0025N + 0.796.

For ρ (B_{GS}), we can calculate that a = -0.0046, b = 0.368, so the final relationship is sr = 0.0046N - 0.368 + 1 = sr = 0.0046N + 0.632.

According to the functions above, as size N increases, the spectral radius also increases, so that the number of iterations to achieve a fixed solution accuracy will increases as well. Additionally, the spectral radius may greater than 1 when N approaches infinity, so the two methods will not converge, and the iterations number will also approaches infinity.

The cost of a direct method is generally $O(n^3)$, where n is the size of matrix; and for iterative method, the cost of each iteration in general is $O(n^2)$. So, the Jacobi and Gauss-Seidel methods cheaper than direct method if the number of iterations to be much less than N. However, when N is large, iteration number will larger than N if we use Jacobi and Gauss-Seidel methods to solve this problem. Therefore, in terms of practicality, using the Jacobi and Gauss-Seidel methods for this problem is inferior to using direct method.

figure grid on hold on

```
tol = 1e-10;
nmax = 10^5;
list_N = [5, 10, 20, 40, 80];
% Plot resulting solutions of Gauss-Seidel method
for i = 1:length(list N)
           h = 1 / list N(i);
            A = (2/h^2)*diag(ones(list N(i)-1,1)) - (1/h^2)*diag(ones(list N
h^2) *diag(ones(list_N(i)-2,1),1) - (1/h^2) *diag(ones(list_N(i)-2,1),-1);
            b = transpose(sin(pi*h*(1:list N(i)-1)));
            x0 = transpose(zeros(1, list_N(i)-1));
            [x, niter, relresiter, xiter] = itermeth(A, b, x0, nmax, tol, 'G');
           result = zeros(1, list_N(i) + 1);
           result(2:list_N(i)) = x;
            range = linspace(0, 1, list_N(i) + 1);
           plot(range, result, 'LineWidth', 2);
end
% Plot exact solution y(x) on the finest mesh (N = 80)
N = 80;
h = 1 / N;
y = @(x) pi^(-2) * sin(pi * x);
range = linspace(0, 1, N + 1);
result = zeros(1, N + 1);
for i = 2:N
            result(i) = y(i * h);
end
plot(range, result, 'LineWidth', 2);
legend({'N=5', 'N=10', 'N=20', 'N=40', 'N=80', 'y(x)'}, 'Location', 'Best');
itermeth converged in 56 iterations.
itermeth converged in 231 iterations.
itermeth converged in 931 iterations.
itermeth converged in 3731 iterations.
itermeth converged in 14929 iterations.
```


According to the graph, as N increases, the solution appears closer to the line of exact solution, and the error also becomes smaller. Thus, the solutions appear to converge as N increases.

```
list_N = [5, 10, 20, 40, 80];
error_vect = zeros(1, length(list_N));
y = @(x) pi^(-2) * sin(pi * x);
for i = 1:length(list N)
    h = 1 / list_N(i);
    A = (2/h^2)*diag(ones(list_N(i)-1,1)) - (1/
\label{eq:h2} $h^2$)*diag(ones(list_N(i)-2,1),1) - (1/h^2)*diag(ones(list_N(i)-2,1),-1);
    b = transpose(sin(pi*h*(1:list N(i)-1)));
    x0 = transpose(zeros(1, list N(i)-1));
    [x, niter, relresiter, xiter] = itermeth(A, b, x0, nmax, tol, 'G');
    % calculate y(x n)
    y_n = transpose(zeros(1, list_N(i)-1));
    for j = 1:list N(i)-1
        y_n(j) = y(j * h);
    end
    error_vect(i) = max(abs(x - y_n));
```

end

```
error_vect
figure
hvect = 1./list_N;
loglog(hvect, error_vect) % e(N)
hold
syms c
cond1 = c * hvect(1)^2 >= error_vect(1);
cond2 = c * hvect(5)^2 >= error_vect(5);
conds = [cond1 cond2];
C = solve(conds, c);
vpa(C)
loglog(hvect, C*hvect.^2); % E(h)
legend({'e(N)', 'E(h)'}, 'Location', 'Best');
itermeth converged in 56 iterations.
itermeth converged in 231 iterations.
itermeth converged in 931 iterations.
itermeth converged in 3731 iterations.
itermeth converged in 14929 iterations.
error vect =
 Columns 1 through 3
   0.003233759448575
                       0.000837461821339
                                          0.000208590596337
 Columns 4 through 5
   0.000052099391046
                       0.000013021827269
Current plot held
ans =
1.0833396945217224072166573023424
```


According to the assumption of question, $e(N) \le Ch^2$ as $h = 1/N \to 0$, so we can know that error e(N) is proportional to the step size h = 1/N from the graph. To verify the assumption, we set p=2, and find C by the graph. Thus, C=1.0833396945217224072166573023424. Finally, we can see that the line of e(N) lower than the line of E(h), which means $e(N) \le Ch^2$. Therefore, the numerical results support this theoretical estimate.

(c)

```
[x, niter, relresiter, xiter] = itermeth(A, b, x0, nmax, tol, 'G');
    result = zeros(1, list N(i) + 1);
    result(2:list N(i)) = x;
    range = linspace(0, 1, list_N(i) + 1);
    plot(range, result, 'LineWidth', 2);
end
% Plot exact solution y(x) on the finest mesh (N = 80)
N = 80;
h = 1 / N;
y = @(x) (1 / 2) * x * (1 - x);
range = linspace(0, 1, N + 1);
result = zeros(1, N + 1);
for i = 2:N
    result(i) = y(i * h);
end
plot(range, result, 'LineWidth', 2);
legend({'N=5', 'N=10', 'N=20', 'N=40', 'N=80', 'y(x)'}, 'Location', 'Best');
% Corresponding errors
Nvec = [5, 10, 20, 40, 80];
error_vect = zeros(1, length(Nvec));
y = @(x) (1 / 2) * x * (1 - x);
for i = 1:length(Nvec)
   h = 1 / Nvec(i);
    A = (2/h^2)*diag(ones(Nvec(i)-1,1)) - (1/h^2)*diag(ones(Nvec(i)-2,1),1) -
 (1/h<sup>2</sup>) *diag(ones(Nvec(i)-2,1),-1);
    b = transpose(ones(1, Nvec(i)-1)); % modify
    x0 = transpose(zeros(1, Nvec(i)-1));
    [x, niter, relresiter, xiter] = itermeth(A, b, x0, nmax, tol, 'G');
    % calculate y(x n)
    y_n = transpose(zeros(1, Nvec(i)-1));
    for j = 1:Nvec(i)-1
        y_n(j) = y(j * h);
    end
    error_vect(i) = max(abs(x - y_n));
end
figure
hvect = 1./Nvec;
loglog(hvect, error_vect)
```

```
itermeth converged in 56 iterations.
itermeth converged in 230 iterations.
itermeth converged in 928 iterations.
itermeth converged in 3716 iterations.
itermeth converged in 14865 iterations.
itermeth converged in 56 iterations.
itermeth converged in 230 iterations.
itermeth converged in 928 iterations.
itermeth converged in 3716 iterations.
itermeth converged in 14865 iterations.
```


For this case, there is no longer a relationship of $e(N) \leq Ch^2$ as $h = 1/N \to 0$. Since we replaced $sin(\pi x)$ with 1, there is no x exists in d^2/dx^2 , so constant C is not proportional to $\max_{x \in [0,1]} |y''''(x)|$

Published with MATLAB® R2022b