A NEW PERSPECTIVE ON THE STEIN-TOMAS THEOREM

Ana Emilia de Orellana. aedo1@st-andrews.ac.uk

University of St Andrews Joint work with Marc Carnovale and Jonathan Fraser

One World Fractals

Let S be a compact Lebesgue null set supporting a measure μ . Let $f \in L^{q'}(\mathbb{R}^d)$. When does $\widehat{f}|_S$ make sense?

Let S be a compact Lebesgue null set supporting a measure μ . Let $f \in L^{q'}(\mathbb{R}^d)$. When does $\widehat{f}|_S$ make sense?

Find the optimal range of $p,q\in[1,\infty]$ such that

$$\|\widehat{f}\|_{L^{p'}(\mu)} \lesssim \|f\|_{L^{q'}(\mathbb{R}^d)} \quad \text{(restriction)}.$$

Let S be a compact Lebesgue null set supporting a measure μ . Let $f \in L^{q'}(\mathbb{R}^d)$. When does $\widehat{f}|_S$ make sense?

Find the optimal range of $p,q\in[1,\infty]$ such that $\|\widehat{f}\|_{L^{p'}(\mu)}\lesssim \|f\|_{L^{q'}(\mathbb{R}^d)}\quad \text{(restriction)}.$

• If $f \in L^1(\mathbb{R}^d)$, \widehat{f} is continuous and bounded, so $\widehat{f} \in L^{p'}(\mu)$ for all $p' \geqslant 1$.

Let S be a compact Lebesgue null set supporting a measure μ . Let $f \in L^{q'}(\mathbb{R}^d)$. When does $\widehat{f}|_S$ make sense?

Find the optimal range of $p,q\in[1,\infty]$ such that

$$\|\widehat{f}\|_{L^{p'}(\mu)} \lesssim \|f\|_{L^{q'}(\mathbb{R}^d)} \quad \text{(restriction)}.$$

- If $f \in L^1(\mathbb{R}^d)$, \widehat{f} is continuous and bounded, so $\widehat{f} \in L^{p'}(\mu)$ for all $p' \geqslant 1$.
- If $f \in L^2(\mathbb{R}^d)$, $\widehat{f} \in L^2(\mathbb{R}^d)$, so \widehat{f} is only defined almost everywhere.

The relevant range is 1 < q' < 2.

Let S be a compact Lebesgue null set supporting a measure μ . Let $f \in L^{q'}(\mathbb{R}^d)$. When does $\widehat{f}|_S$ make sense?

Find the optimal range of $p, q \in [1, \infty]$ such that

$$\|\widehat{f}\|_{L^{p'}(\mu)} \lesssim \|f\|_{L^{q'}(\mathbb{R}^d)} \quad \text{(restriction)}.$$

- If $f \in L^1(\mathbb{R}^d)$, \widehat{f} is continuous and bounded, so $\widehat{f} \in L^{p'}(\mu)$ for all $p' \geqslant 1$.
- If $f \in L^2(\mathbb{R}^d)$, $\widehat{f} \in L^2(\mathbb{R}^d)$, so \widehat{f} is only defined almost everywhere.

The relevant range is 1 < q' < 2.

Equivalently, for all $f \in L^p(\mu)$ and q > 2,

$$\|\widehat{f\mu}\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^p(\mu)}$$
 (extension).

Let σ^{d-1} be the surface measure on S^{d-1} .

• Stein (1970's): Curvature causes Fourier transforms to decay.

$$\|\widehat{f\sigma^{d-1}}\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\sigma^{d-1})},\tag{1}$$

holds for $q > \frac{4d}{d-1}$.

Let σ^{d-1} be the surface measure on S^{d-1} .

• Stein (1970's): Curvature causes Fourier transforms to decay.

$$\|\widehat{f\sigma^{d-1}}\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\sigma^{d-1})},\tag{1}$$

holds for $q > \frac{4d}{d-1}$.

• Tomas (1975): For arbitrary $d \ge 2$, (1) holds for $q \ge \frac{2(d+1)}{d-1}$.

Let σ^{d-1} be the surface measure on S^{d-1} .

· Stein (1970's): Curvature causes Fourier transforms to decay.

$$\|\widehat{f\sigma^{d-1}}\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\sigma^{d-1})},\tag{1}$$

holds for $q > \frac{4d}{d-1}$.

• Tomas (1975): For arbitrary $d \geqslant 2$, (1) holds for $q \geqslant \frac{2(d+1)}{d-1}$.

Why σ^{d-1} ?

Let σ^{d-1} be the surface measure on S^{d-1} .

· Stein (1970's): Curvature causes Fourier transforms to decay.

$$\|\widehat{f\sigma^{d-1}}\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\sigma^{d-1})},\tag{1}$$

holds for $q > \frac{4d}{d-1}$.

• Tomas (1975): For arbitrary $d \geqslant 2$, (1) holds for $q \geqslant \frac{2(d+1)}{d-1}$.

Why σ^{d-1} ? Two reasons:

- $\sigma^{d-1}(B(e,r)) \lesssim r^{d-1}$, for all $e \in S^{d-1}$, r > 0.
- $\sup_{\xi \in \mathbb{R}^d} |\widehat{\sigma^{d-1}}(\xi)|^2 |\xi|^{d-1} < \infty.$

General measures

Tomas' proof was generalised by Mockenhaupt (2000), Mitsis (2002) and Bak–Seeger (2011).

General measures

Tomas' proof was generalised by Mockenhaupt (2000), Mitsis (2002) and Bak–Seeger (2011).

Theorem (Stein-Tomas Theorem)

Let μ be a non-zero, finite, compactly supported, Borel measure on \mathbb{R}^d with

$$\mu(B(x,r)) \lesssim r^{\alpha}, \quad \forall x \in \mathbb{R}^d, \ r > 0;$$

 $\sup_{\xi \in \mathbb{R}^d} |\widehat{\mu}(\xi)|^2 |\xi|^{\beta} < \infty.$

Then, if
$$q\geqslant 2+rac{4(d-lpha)}{eta}$$
, for all $f\in L^2(\mu)$,
$$\|\widehat{f\mu}\|_{L^q(\mathbb{R}^d)}\lesssim \|f\|_{L^2(\mu)}.$$

Given μ on \mathbb{R}^d , define the Frostman and Fourier dimensions of μ respectively as

$$\dim_{\mathrm{Fr}} \mu = \sup \{ \alpha \in \mathbb{R} : \mu(B(x, r)) \lesssim r^{\alpha}, \, \forall x \in \mathbb{R}^d, \, \forall r > 0 \};$$

and

$$\dim_{\mathrm{F}} \mu = \sup \{ \beta \in \mathbb{R} : \sup_{\xi \in \mathbb{R}^d} |\widehat{\mu}(\xi)|^2 |\xi|^{\beta} < \infty \}.$$

Given μ on \mathbb{R}^d , define the Frostman and Fourier dimensions of μ respectively as

$$\dim_{\mathrm{Fr}} \mu = \sup \{ \alpha \in \mathbb{R} : \mu(B(x,r)) \lesssim r^{\alpha}, \, \forall x \in \mathbb{R}^d, \forall r > 0 \};$$

and

$$\dim_{\mathrm{F}} \mu = \sup \{ \beta \in \mathbb{R} : \sup_{\xi \in \mathbb{R}^d} |\widehat{\mu}(\xi)|^2 |\xi|^{\beta} < \infty \}.$$

They satisfy that $\min\{\frac{\dim_{\mathrm{F}}\mu}{2},d\}\leqslant \dim_{\mathrm{Fr}}\mu.$

Given μ on \mathbb{R}^d , define the Frostman and Fourier dimensions of μ respectively as

$$\dim_{\mathrm{Fr}} \mu = \sup \{ \alpha \in \mathbb{R} : \mu(B(x,r)) \lesssim r^{\alpha}, \, \forall x \in \mathbb{R}^d, \, \forall r > 0 \};$$

and

$$\dim_{\mathcal{F}} \mu = \sup \{ \beta \in \mathbb{R} : \sup_{\xi \in \mathbb{R}^d} |\widehat{\mu}(\xi)|^2 |\xi|^{\beta} < \infty \}.$$

They satisfy that $\min\{\frac{\dim_{\mathrm{F}}\mu}{2},d\}\leqslant \dim_{\mathrm{Fr}}\mu.$

In particular, the Stein–Tomas theorem can be stated (without the endpoint) as

Theorem (Stein-Tomas Theorem)

Let μ be a non-zero, finite, compactly supported, Borel measure on \mathbb{R}^d . Then if $q>2+\frac{4(d-\dim_{\operatorname{Fr}}\mu)}{\dim_{\operatorname{F}}\mu}$, for all $f\in L^2(\mu)$,

$$\|\widehat{f}\mu\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\mu)}.$$

Given μ on \mathbb{R}^d , define the Frostman and Fourier dimensions of μ respectively as

$$\dim_{\mathrm{Fr}} \mu = \sup \{ \alpha \in \mathbb{R} : \mu(B(x, r)) \lesssim r^{\alpha}, \, \forall x \in \mathbb{R}^d, \, \forall r > 0 \};$$

and

$$\dim_{\mathcal{F}} \mu = \sup \{ \beta \in \mathbb{R} : \sup_{\xi \in \mathbb{R}^d} |\widehat{\mu}(\xi)|^2 |\xi|^{\beta} < \infty \}.$$

They satisfy that $\min\{\frac{\dim_{\mathrm{F}}\mu}{2},d\}\leqslant \dim_{\mathrm{Fr}}\mu.$

In particular, the Stein–Tomas theorem can be stated (without the endpoint) as

Theorem (Stein-Tomas Theorem)

Let μ be a non-zero, finite, compactly supported, Borel measure on \mathbb{R}^d with $\dim_{\mathrm{Fr}} \mu = \alpha$. Then if $q > 2 + \frac{4(d-\alpha)}{\dim_{\mathrm{F}} \mu}$, for all $f \in L^2(\mu)$,

$$\|\widehat{f}\mu\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\mu)}.$$

In particular, the Stein–Tomas theorem can be stated (without the endpoint) as

Theorem (Stein-Tomas Theorem)

Let μ be a non-zero, finite, compactly supported, Borel measure on \mathbb{R}^d with $\dim_{\mathrm{Fr}} \mu = \alpha$. Then if $q > 2 + \frac{4(d-\alpha)}{\dim_{\mathrm{F}} \mu}$, for all $f \in L^2(\mu)$,

$$\|\widehat{f\mu}\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\mu)}.$$

Question

Can more information about the dimensionality of μ give us a better range for the restriction estimate to hold?

Given μ a finite, compactly supported, Borel measure on \mathbb{R}^d and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} \mu = \sup \left\{ s \in \mathbb{R} : \int_{\mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^{\frac{2}{\theta}} |\xi|^{\frac{s}{\theta} - d} d\xi < \infty \right\}.$$

$$\theta = 0 \longrightarrow \sup_{\xi \in \mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^2 |\xi|^s < \infty$$

Given μ a finite, compactly supported, Borel measure on \mathbb{R}^d and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} \mu = \sup \left\{ s \in \mathbb{R} : \int_{\mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^{\frac{2}{\theta}} |\xi|^{\frac{s}{\theta} - d} d\xi < \infty \right\}.$$

$$\theta = 0 \longrightarrow \sup_{\xi \in \mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^2 |\xi|^s < \infty$$

Given μ a finite, compactly supported, Borel measure on \mathbb{R}^d and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} \mu = \sup \left\{ s \in \mathbb{R} : \int_{\mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^{\frac{2}{\theta}} |\xi|^{\frac{s}{\theta} - d} d\xi < \infty \right\}.$$

$$\theta = 0 \longrightarrow \sup_{\xi \in \mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^2 |\xi|^s < \infty$$

Some facts about the Fourier spectrum:

• $\dim_F^0 \mu = \dim_F \mu$ and $\dim_F^1 \mu = \dim_S \mu$.

Given μ a finite, compactly supported, Borel measure on \mathbb{R}^d and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} \mu = \sup \left\{ s \in \mathbb{R} : \int_{\mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^{\frac{2}{\theta}} |\xi|^{\frac{s}{\theta} - d} d\xi < \infty \right\}.$$

$$\theta = 0 \longrightarrow \sup_{\xi \in \mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^2 |\xi|^s < \infty$$

- $\dim_F^0 \mu = \dim_F \mu$ and $\dim_F^1 \mu = \dim_S \mu$.
- For each $\theta \in [0,1]$, $\dim_F \mu \leqslant \dim_F^\theta \mu \leqslant \dim_S \mu$.

Given μ a finite, compactly supported, Borel measure on \mathbb{R}^d and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} \mu = \sup \left\{ s \in \mathbb{R} : \int_{\mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^{\frac{2}{\theta}} |\xi|^{\frac{s}{\theta} - d} d\xi < \infty \right\}.$$

$$\theta = 0 \longrightarrow \sup_{\xi \in \mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^2 |\xi|^s < \infty$$

- $\dim_F^0 \mu = \dim_F \mu$ and $\dim_F^1 \mu = \dim_S \mu$.
- For each $\theta \in [0, 1]$, $\dim_F \mu \leqslant \dim_F^{\theta} \mu \leqslant \dim_S \mu$.
- $\theta \mapsto \dim_{\mathrm{F}}^{\theta} \mu$ is continuous, concave, and non-decreasing.

Given μ a finite, compactly supported, Borel measure on \mathbb{R}^d and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} \mu = \sup \left\{ s \in \mathbb{R} : \int_{\mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^{\frac{2}{\theta}} |\xi|^{\frac{s}{\theta} - d} d\xi < \infty \right\}.$$

$$\theta = 0 \longrightarrow \sup_{\xi \in \mathbb{R}^d} \left| \widehat{\mu}(\xi) \right|^2 |\xi|^s < \infty$$

- $\dim_F^0 \mu = \dim_F \mu$ and $\dim_F^1 \mu = \dim_S \mu$.
- For each $\theta \in [0,1]$, $\dim_F \mu \leqslant \dim_F^\theta \mu \leqslant \dim_S \mu$.
- $\theta \mapsto \dim_{\mathrm{F}}^{\theta} \mu$ is continuous, concave, and non-decreasing.
- $\dim_{\mathrm{F}}^{\theta} \mu \geqslant \dim_{\mathrm{F}} \mu + \theta(\dim_{\mathrm{S}} \mu \dim_{\mathrm{F}} \mu).$
- $\dim_{\mathbf{F}}^{\theta} \mu \leqslant \dim_{\mathbf{F}} \mu + d\theta$.

A Stein–Tomas type result for the Fourier spectrum

Theorem (Carnovale-Fraser-dO, 24++)

Let μ be a non-zero, finite, compactly supported, Borel measure on \mathbb{R}^d , with $\dim_{\mathrm{Fr}} \mu = \alpha$ for some $0 < \alpha \leqslant d$. If

$$q > 2 + 2 \inf_{\substack{\theta \in [0,1] \\ \dim_{\mathcal{F}}^{\theta} \mu > d\theta}} \frac{(d-\alpha)(2-\theta)}{\dim_{\mathcal{F}}^{\theta} \mu - \alpha \theta},$$

then for every $f \in L^2(\mu)$,

$$\|\widehat{f\mu}\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\mu)}.$$

A Stein–Tomas type result using the Fourier spectrum

Theorem (Carnovale-Fraser-dO, 24++)

Let μ be a non-zero, finite, compactly supported, Borel measure on \mathbb{R}^d , with $\dim_{\mathrm{Fr}} \mu = \alpha$ for some $0 < \alpha \leqslant d$. If

$$q > 2 + 2 \inf_{\substack{\theta \in [0,1] \\ \dim_{\mathcal{F}}^{\theta} \mu > d\theta}} \frac{(d-\alpha)(2-\theta)}{\dim_{\mathcal{F}}^{\theta} \mu - \alpha \theta},$$

then for every $f \in L^2(\mu)$,

$$\|\widehat{f}\mu\|_{L^q(\mathbb{R}^d)} \lesssim \|f\|_{L^2(\mu)}.$$

What is more, restriction will not hold for

$$q < \sup \left\{ \frac{2}{\theta} : \dim_{\mathbf{F}}^{\theta} \mu < d\theta \right\}.$$

Restriction for the cone

Let

$$C^{d-1} = \{(t, |t|) : t \in \mathbb{R}^{d-1}, |t| \le 1\} \subseteq \mathbb{R}^d,$$

be the cone on \mathbb{R}^d and ν^{d-1} the surface measure on C^{d-1} .

Conjecture (cone restriction conjecure)

The estimate $\|\widehat{f\nu^{d-1}}\|_{L^q(\mathbb{R}^d)}\lesssim_{p,q}\|f\|_{L^p(\nu^{d-1})}$ holds for all $f\in L^p(\nu^{d-1})$ if and only if

$$\frac{d-2}{p'}\geqslant \frac{d}{q} \text{ and } q>\frac{2(d-1)}{d-2},$$

and for p = 2 (solved) if and only if

$$q \geqslant \frac{2d}{d-2}$$
.

- Cone restriction theorem: $q \geqslant \frac{2d}{d-2}$.
- Stein-Tomas: restriction holds for $q \geqslant \max \left\{4, \frac{2d}{d-2}\right\}$.
- Hambrook–Łaba: restriction fails for $q < \frac{2d}{d-1}$.

- Cone restriction theorem: $q \geqslant \frac{2d}{d-2}$.
- Stein-Tomas: restriction holds for $q\geqslant \max\left\{4,\frac{2d}{d-2}\right\}$.
- Hambrook–Łaba: restriction fails for $q < \frac{2d}{d-1}$.

$$\dim_{\mathcal{F}}^{\theta} \nu^{d-1} = \min \{ 2 + (d-1)\theta, (d-2) + \theta \}.$$

Ana E. de Orellana

- Cone restriction theorem: $q \geqslant \frac{2d}{d-2}$.
- Stein-Tomas: restriction holds for $q\geqslant \max\big\{4,\frac{2d}{d-2}\big\}.$
- Hambrook–Łaba: restriction fails for $q < \frac{2d}{d-1}$.

$$\dim_{\mathcal{F}}^{\theta}\nu^{d-1}=\min\Big\{2+(d-1)\theta,\;(d-2)+\theta\Big\}.$$

- Fourier spectrum: restriction holds for $q > \max \left\{ \frac{3d-4}{d-2}, \frac{2d}{d-2} \right\}$.
- Fourier spectrum: restriction fails for $q < \frac{2(d-1)}{d-2}$.

- Cone restriction theorem: $q \geqslant \frac{2d}{d-2}$.
- Stein-Tomas: restriction holds for $q\geqslant \max\big\{4,\frac{2d}{d-2}\big\}.$
- Hambrook–Łaba: restriction fails for $q < \frac{2d}{d-1}$.

$$\dim_{\mathcal{F}}^{\theta}\nu^{d-1}=\min\Big\{2+(d-1)\theta,\;(d-2)+\theta\Big\}.$$

- Fourier spectrum: restriction holds for $q > \max\left\{\frac{3d-4}{d-2}, \frac{2d}{d-2}\right\}$.
- Fourier spectrum: restriction fails for $q < \frac{2(d-1)}{d-2}$.

Thank you!