Collaboration Network Analysis

R04921049 柯劭珩

B01901121 李律慈

Outline

- Data Source
- Purpose
- Process
- Visualization
- Result & Observation
- Conclusion

Data Source

- From Algorithms Class, Fall 2015
- Need to specify collaboration (with who)
 in all HW problems (25 in total)
- All the collaboration together forms a social network
 - 152 Students as nodes
 - 866 Collaboration Relationship (Directed)
 - Edge weight = The problem's weight in grades
 - Aggregated to weighted simple graph

Purpose

- Analyze the Collaboration Network
- Obtain network parameters
 - in degree & out degree
 - eigen centrality (who is more influential)
 - page rank
 - hubs and authorities in HITS
- Relation between parameters and HW score!
- Can we predict HW score base on role in the network?

Process

- Use Python & networkX to get following:
 - in-degree & out-degree (aggregated / unaggregated)
 - aggregated edge weight
 - eigen centrality
 - page rank
 - hub/authorities by HITS
- Use Cytoscape & above parameters to visualize
- Use Weka to mine the data

Edge thickness = Edge weight

Visualization

Node color = Grade Node size = Degree

Visualization

Node color = Identity Node size = Grade

Visualization

Network Analyzing

- 152 nodes (28 isolated), 242 weighted edges
- Clustering Coefficient = 0.174 (Very high)
- 10 connected components (omitting singletons)
- In-degree like power law, out-degree like straight line

Data mining result

- Discretize grades into {High, Medium, Low} and do classification
 - J48 decision tree classifies 80% using identity, 83% not using
 - Does not do well in cross-validation (around 50%)
 - Separating attribute:
 - Using identity: Identity(!), and then In-Degree
 - Not using: Page-rank
- Discretize all parameters and run Apriori
 - Find a bunch of good rules between network parameters (expected)
 - No good rules about HW grades

Observation

• Identity is more related to grade than role in network!

Observation

- High Grades → High Collaboration (Not necessarily)
- High Collaboration → High Grades, especially as a source

Split the data

- Identity plays an important rule
- How about separating the data by identity?
- 46 Undergraduated, 95 Graduated, 11 Others(omitted)
- Results similar to mixed data
 - Around 80% class-rate, does not do well in cross-validation
 - Separating attribute: In-Degree, Out-Degree, Hub

Observation

- High Grades → High Collaboration (Not necessarily)
- High Collaboration → High Grades, especially as a source

Conclusion

- In this course, identity (graduated or under) plays a big role
- Collaboration helps grade, but not vice versa
- Since the above relation is one-sided,
 data mining algorithms generate poor results
- Drawbacks: Lack of volume, sparse and small network
 - -> not enough instances for training

