Estatística Básica

Lista 4 - Variáveis Aleatórias

Luan Fiorentin

2019-03-17

1. Escreva com suas palavras o que é função de probabilidade, função de densidade de probabilidade e função de distribuição.

Resposta: A função de probabilidade é uma função que associa probabilidades a cada possível ocorrência de uma variável aleatória discreta. A função de densidade de probabilidade é uma função que associa probabilidade a uma variável aleatória contínua em um dado intervalo. A função de distribuição é uma função que associa probabilidades acumuladas as variáveis aleatórias contínuas e discretas.

- 2. Considere a variável X como o lançamento de um dado e responda os itens a seguir:
 - (a) Faça um gráfico da função de probabilidade.
 - (b) Faça um gráfico da função de distribuição.
 - (c) Qual a probabildiade de X = 2?
 - (d) P(X < 5).
 - (e) P(X < 4) ou P(X > 5).
 - (f) Qual a esperança de X?

Resposta:

(a) Função de probabilidade:

Função de Probabilidade

(b) Função de distribuição:

Função de Distribuição

- (c) P(X=2) = 1/6.
- (d) P(X < 5) = 4/6.
- (e) $P(X < 4 \cup X > 5) = 4/6$.
- (f) E[X] = 3, 5
- 3. Uma variável aleatória X tem a seguinte função de distribuição:

$$F(X) \begin{cases} 0 & se \quad x < 10 \\ 0, 2 & se \quad 10 \le x < 12 \\ 0, 5 & se \quad 12 \le x < 13 \\ 0, 9 & se \quad 13 \le x < 25 \\ 1, 0 & se \quad \ge 25 \end{cases}$$

- (a) Encontre a função de probabilidade de X.
- (b) $P(X \le 12)$.
- (c) P(X < 12).
- (d) $P(12 \le X \le 20)$.
- (e) P(X > 18).

Resposta:

(a) Função de probabilidade:

X	P[X = x]
10	0,2
12	0,3
13	$0,\!4$
25	0,1

- (b) $P(X \le 12) = 0, 5$.
- (c) P(X < 12) = 0, 2.
- (d) $P(12 \le X \le 20) = 0, 7$.
- (e) P(X > 18) = 0, 1.
- 4. Considere que uma Universidade Federal possui 10.000 alunos estudantes, e considere uma V. A. X: número de aprovações que um aluno selecionado ao acaso teve no período passado. A frequência absoluta está apresentada na tabela abaixo. Responda os itens a seguir.

X	2	3	4	5	6
Frequência	800	2000	4000	2800	400

- (a) Encontre a função de probabilidade de X.
- (b) Faça um gráfico da função de probabilidade.
- (c) Faça um gráfico da função de distribuição.
- (d) Qual a probabilidade de um aluno selecionado ao acaso ser aprovado em até 4 disciplinas.
- (e) Qual o valor médio esperado de aprovações por aluno (E[X])?
- (f) Qual a variância do número de aprovações por aluno $(Var[X] = E[X^2] (E[X])^2)$?

- (g) Qual o desvio padrão do número de aprovações por aluno $(s=\sqrt{Var[X]})$?
- (h) Qual o coeficiente de variação do número de aprovações por aluno?

Resposta:

(a) Função de probabilidade:

X	2	3	4	5	6
Frequência	800	2000	4000	2800	400
P[X=x]	0,08	0,20	0,40	0,28	0,04
$P[X \le x]$	0,08	0,28	0,68	0,96	1,00

- (b) Construir o gráfico igual ao exercício anterior.
- (c) Construir o gráfico igual ao exercício anterior.
- (d) $P(X < 5) = P(X \le 4) = 0,68$.
- (e) $E[X] = \sum_{i=1}^{\infty} x_i \cdot P(X = x_i) = 4.$
- (f) Calculamos primeiro a $E[X^2]$.

$$\begin{split} E[X^2] &= \sum_{i=1}^{\infty} x_i^2 \cdot P(X=x_i) = 16,96 \\ Var[X] &= E[X^2] - (E[X])^2 = 16,96 - 4^2 = 0,96. \end{split}$$

- (g) s = 0.98.
- (h) CV = 24,49%.
- 5. Em um estudo sobre incidência de câncer, foi registrado para cada paciente com esse diagnóstico o número de casos de câncer em parentes próximos (X) dados na tabela a seguir.

- D	T 110 1	D	T 110 1	D	T . 10 .	D	T . 10 .
Paciente	Incidência	Paciente	Incidência	Paciente	Incidência	Paciente	Incidência
1	2	8	3	15	5	22	4
2	5	9	3	16	2	23	0
3	0	10	2	17	2	24	0
4	2	11	0	18	3	25	3
5	1	12	1	19	2	29	3
6	5	13	1	20	1		
7	3	14	4	21	5		

- (a) Encontre a função de probabilidade de X.
- (b) Encontre a função de distribuição.
- (c) Qual o número esperado de casos de câncer em parentes próximos?

Resposta:

- (a) Função de probabilidade dada na sequência.
- (b) Função de distribuição dada na sequência.

Indidência	0	1	2	3	4	5
P[X=x]	0,1	0,1	0,3	0,3	0,1	0,1
F[X]	0,1	0,2	0,5	0,8	0,9	1,0

(c) E[X] = 2, 5.

- 6. Verifique se as expressões a seguir são funções de densidade de probabilidade:
 - (a) f(x) = 3x, se $0 \le x \le 1$.
 - (b) $f(x) = x^2/2$, se $x \ge 0$.
 - (c) f(x) = (x-3)/2, se $3 \le x \le 5$.
 - (d) f(x) = 2, se $0 \le x \le 2$.

Resposta:

- (a) Não é fdp, pois não integra 1.
- (b) Não é fdp, pois não integra 1.
- (c) É fdp, pois integra 1 e a função é sempre maior que zero.
- (d) Não é fdp, pois não integra 1.
- 7. Considere uma variável aleatória X com função de densidade de probabilidade dada a seguir. Determine o valor de c.

$$f(x) = c(x^2 + x)$$
, se $(0 \le x \le 1)$.

Resposta: O valor é c = 6/5.

8. Dada a função

$$f(x) = 2exp\{-2x\}, \quad se \quad x \ge 0.$$

- (a) Mostre que é uma função de densidade de probabilidade.
- (b) Calcule a probabilidade de x > 1.
- (c) Calcule a probabilidade de que $0, 2 \le x \le 0.8$.

Resposta:

- (a) Note que:
 - 1) $f(x) \ge 0 \quad \forall x \ge 0$.
 - 2) $\int_0^\infty 2exp\{-2x\}dx = 1$.
- (b) $P(x > 1) = \int_{1}^{\infty} 2exp\{-2x\}dx = e^{-2} = 0,135.$
- (c) $P(x > 1) = \int_{0.2}^{0.8} 2exp\{-2x\}dx = 0,468.$
- 9. A quantia gasta anualmente, em milhões de reais, na manutenção do asfalto em uma cidade do interior é representada pela variável Y com densidade dada por:

$$f(y) = \frac{8y}{9} - \frac{4}{9}$$
 se $(0, 5 \le x \le 2, 0)$.

- (a) P(Y < 0, 8).
- (b) O valor esperado de Y.
- (c) $P(Y > 1, 5|Y \ge 1)$.

Resposta:

- (a) $P(Y < 0.8) = \int_{0.5}^{0.8} \frac{8y}{9} \frac{4}{9} dy = 0.04.$
- (b) $E[Y] = \int_{-\infty}^{+\infty} y f(y) dy = \int_{0.5}^{2.0} y (\frac{8y}{9} \frac{4}{9}) dy = 3/2 = 1, 5.$

(c) $P(Y > 1, 5|Y \ge 1) = 0,626$.