Содержание

1	Teop	ретические вопросы	
	1.1	Сформулируйте определение наклонной асимптоты	
	1.2	Сформулируйте определение производной функции в точке	
	1.3	Сформулируйте определение односторонней производной функции	
	1.4	Сформулируйте определение производной n -го порядка	
	1.5	Сформулируйте определение дифференцируемой функции в точке	
	1.6	Сформулируйте определение дифференциала первого порядка	
	1.7	Сформулируйте определение дифференциала n -го порядка	
	1.8	Сформулируйте определение возрастающей функции	
	1.9	Сформулируйте определение невозрастающей функции	
	1.10	Сформулируйте определение убывающей функции	
	1.11	Сформулируйте определение неубывающей функции	
	1.12	Сформулируйте определение монотонной функции	
	1.13	Сформулируйте определение строго монотонной функции	
	1.14	Сформулируйте определение локального минимума	
	1.15	Сформулируйте определение строгого локального минимума	
	1.16	Сформулируйте определение локального максимума	
	1.17	Сформулируйте определение строгого локального максимума	
	1.18	Сформулируйте определение экстремума	
	1.19	Сформулируйте определение строгого экстремума	
	1.20	Сформулируйте определение стационарной точки	
	1.21	Сформулируйте определение критической точки	
	1.22	Сформулируйте определение выпуклости функции на промежутке	
	1.23	Сформулируйте определение точки перегиба графика функции	
า	Тоог	Теоретические вопросы (формулировки теорем)	
2	2.1	ретические вопросы (формулировки теорем) Сформулируйте необходимое и достаточное условие наличия наклонной асимп-	
	$\angle .1$	тоты	
	2.2	Сформулируйте необходимое и достаточное условие дифференцируемости	
	2.2	функции в точке	
	2.3	Сформулируйте теорему о связи дифференцируемости и непрерывности функ-	
	2.0		
	2.4	ции	
	$\frac{2.4}{2.5}$	Сформулируйте теорему о производной частного	
	$\frac{2.5}{2.6}$	Сформулируйте свойство инвариантности формы записи дифференциала	
	∠.∪	первого порядка	
	2.7	Первого порядка	
	2.8		
	2.8 2.9	Сформулируйте теорему Ролля	
		Сформулируйте теорему Лагранжа	
	2.10	Оформулируите теорему Коши	

1 Теоретические вопросы

1.1 Сформулируйте определение наклонной асимптоты

Определение 1. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при $x\to\pm\infty$, если функция $f(x)=kx+b+\alpha(x)$, где $\alpha(x)-$ б.м.ф. при $x\to\pm\infty$.

1.2 Сформулируйте определение производной функции в точке

Определение 2. Производной функции y = f(x) в точке x_0 называется <u>предел</u> отношения приращения функции к приращению аргумента при стремлении последнего к нулю.

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

1.3 Сформулируйте определение односторонней производной функции

Определение 3. Производной функции y = f(x) в точке x_0 справа(слева) или правосторонней (левосторонней) производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю справа(слева).

$$y'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x} \qquad y'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x}$$

1.4 Сформулируйте определение производной *п*-го порядка

Определение 4. Производной n-го порядка или n-ой производной функции y=f(x) называется производная от (n-1)-ой производной функции y=f(x)

$$y^{(n)} = (y^{(n-1)})'$$

1.5 Сформулируйте определение дифференцируемой функции в точке

Определение 5. Функция y = f(x) называется дифференцируемой в точке x_0 , если существует константа A такая, что приращение функции в этой точке представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$

2

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

1.6 Сформулируйте определение дифференциала первого порядка

Пусть функция y = f(x) определена в окрестности точки x_0 и дифференцируема в точке x_0 .

Тогда по определению дифференцируемой функции:

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

Определение 6. Дифференциалом функции y = f(x) в точке x_0 называется главная часть приращения функции Δy или первое слагаемое в равенстве (1).

$$dy = f'(x_0) \cdot \Delta x \tag{2}$$

1.7 Сформулируйте определение дифференциала *n*-го порядка

Определение 7. n-ым дифференциалом или дифференциалом n-го порядка называется дифференциал от дифференциала (n-1)-го порядка.

$$d^n y = d(d^{n-1}y), \quad n = 2, 3, \dots$$

1.8 Сформулируйте определение возрастающей функции

Определение 8. Функция y = f(x), определённая на (a; b), **возрастает** на этом интервале, если:

$$\forall x_1, x_2 \in (a; b) : x_2 > x_1 \implies f(x_2) > f(x_1)$$

1.9 Сформулируйте определение невозрастающей функции

Определение 9. Функция y = f(x), определённая на (a; b), **не возрастает** на этом интервале, если:

$$\forall x_1, x_2 \in (a; b) : x_2 > x_1 \implies f(x_2) \le f(x_1)$$

1.10 Сформулируйте определение убывающей функции

Определение 10. Функция y = f(x), определённая на (a; b), **убывает** на этом интервале, если:

$$\forall x_1, x_2 \in (a; b): x_2 > x_1 \implies f(x_2) < f(x_1)$$

1.11 Сформулируйте определение неубывающей функции

Определение 11. Функция y = f(x), определённая на (a; b), **не убывает** на этом интервале, если:

$$\forall x_1, x_2 \in (a; b) : x_2 > x_1 \implies f(x_2) \ge f(x_1)$$

1.12 Сформулируйте определение монотонной функции

Определение 12. Возрастающая, убывающая, невозрастающая и неубывающая функции называются **монотонными**.

1.13 Сформулируйте определение строго монотонной функции

Определение 13. Возрастающая и убывающая функции называются **строго монотонными**.

1.14 Сформулируйте определение локального минимума

Определение 14. Пусть y=f(x) определена на $(a;b),\ x_0\in(a;b).$ Тогда: Если $\exists\ \mathring{S}(x_0),\ \forall x\in\mathring{S}(x_0)\colon f(x)\geq f(x_0),\ \text{то}$ x_0 — точка локального минимума, $y_0=y(x_0)$ — локальный минимум.

1.15 Сформулируйте определение строгого локального минимума

Определение 15. Пусть y = f(x) определена на $(a;b), x_0 \in (a;b)$. Тогда: Если $\exists \, \mathring{S}(x_0), \, \forall x \in \mathring{S}(x_0) \colon f(x) > f(x_0), \, \text{то} \quad \begin{cases} x_0 - \text{точка строгого локального минимума}, \\ y_0 = y(x_0) - \text{строгий локальный минимум}. \end{cases}$

1.16 Сформулируйте определение локального максимума

Определение 16. Пусть y = f(x) определена на $(a;b), x_0 \in (a;b)$. Тогда: Если $\exists \ \mathring{S}(x_0), \ \forall x \in \mathring{S}(x_0) \colon f(x) \leq f(x_0), \ \text{то} \quad \begin{cases} x_0 - \text{точка локального максимума}, \\ y_0 = y(x_0) - \text{локальный максимум}. \end{cases}$

1.17 Сформулируйте определение строгого локального максимума

Определение 17. Пусть y = f(x) определена на $(a;b), x_0 \in (a;b)$. Тогда: Если $\exists \, \mathring{S}(x_0), \, \forall x \in \mathring{S}(x_0) \colon f(x) < f(x_0), \, \text{то} \, \begin{cases} x_0 - \text{точка строгого локального максимума}, \\ y_0 = y(x_0) - \text{строгий локальный максимум}. \end{cases}$

1.18 Сформулируйте определение экстремума

Определение 18. Минимум, максимум, строгий минимум, строгий максимум функции f(x) называются **экстремумами** этой функции.

1.19 Сформулируйте определение строгого экстремума

Определение 19. Строгий минимум и строгий максимум функции f(x) называются **строгими экстремумами** этой функции.

1.20 Сформулируйте определение стационарной точки

Определение 20. Точки, в которых производная функции обращается в нуль, называются **стационарными**.

$$f'(x_0) = 0$$
 x_0 — стационарная точка

1.21 Сформулируйте определение критической точки

Определение 21. Точки, в которых производная функции обращается в нуль или не существует, называются **критическими точками 1-го порядка**.

1.22 Сформулируйте определение выпуклости функции на промежутке

Определение 22. Пусть функция f(x) определена на интервале (a;b). Функция f(x) называется выпуклой вверх (вниз) на этом интервале, если любая точка касательной, проведённой к графику функции f(x) (кроме точки касания) лежит выше (ниже) точки графика функции f(x) с такой же абсциссой.

1.23 Сформулируйте определение точки перегиба графика функции

Определение 23. Пусть функция f(x) определена на интервале (a;b). Точка $x_0 \in (a;b)$ называется **точкой перегиба** функции f(x), если эта функция непрерывна в точке x_0 и если существует число $\delta > 0$ такое, что направление выпуклости функции f(x) на интервалах $(x_0 - \delta; x_0)$ и $(x_0; x_0 + \delta)$ различны. При этом точка $(x_0, f(x_0))$ называется **точкой перегиба** графика функции f(x).

2 Теоретические вопросы (формулировки теорем)

2.1 Сформулируйте необходимое и достаточное условие наличия наклонной асимптоты

Теорема 1 (Необходимое и достаточное условие существования наклонных асимптот).

График функции y = f(x) имеет при $x \to \pm \infty$ наклонную асимптоту тогда и только тогда, когда существуют два конечных передела:

$$\begin{cases} \lim_{x \to \pm \infty} \frac{f(x)}{x} = k \\ \lim_{x \to \pm \infty} (f(x) - k \cdot x) = b \end{cases}$$

2.2 Сформулируйте необходимое и достаточное условие дифференцируемости функции в точке

Теорема 2 (Необходимое и достаточное условие дифференцируемости функции). Функция y = f(x) дифференцируема в точке x_0 тогда и только тогда, когда она имеет в этой точке конечную производную.

2.3 Сформулируйте теорему о связи дифференцируемости и непрерывности функции

Теорема 3 (Связь дифференцируемости и непрерывности функции). Если функция дифференцируема в точке x_0 , то она в этой точке непрерывна.

2.4 Сформулируйте теорему о производной произведения

Теорема 4 (Производная произведения).

Пусть функции $u = u(x), \ v = v(x)$ дифференцируемы в точке x.

Тогда в этой точке дифференцируемо их произведение и справедливо равенство:

$$(u \cdot v)' = u' \cdot v + v' \cdot u$$

2.5 Сформулируйте теорему о производной частного

Теорема 5 (Производная частного).

Пусть функции $u = u(x), \ v = v(x)$ дифференцируемы в точке x.

Тогда в этой точке дифференцируемо их частное и справедливо равенство:

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - v' \cdot u}{v^2}$$

2.6 Сформулируйте свойство инвариантности формы записи дифференциала первого порядка

Теорема 6 (Инвариантность формы первого дифференциала).

Форма записи первого дифференциала не зависит от того, является ли x независимой переменной или функцией другого аргумента.

2.7 Сформулируйте теорему Ферма

Теорема 7 (Теорема Ферма (о нулях производной)).

Пусть функция y = f(x) определена на промежутке X и во внутренней точке c этого промежутка достигает наибольшего или наименьшего значения. Если в этой точке существует производная f'(c), то f'(c) = 0.

2.8 Сформулируйте теорему Ролля

Теорема 8 (Теорема Ролля).

Пусть y = f(x)

- 1. непрерывна на [a;b]
- 2. дифференцируема на (a;b)
- 3. f(a) = f(b)

Тогда $\exists \ c \in (a;b) \colon f'(c) = 0$

2.9 Сформулируйте теорему Лагранжа

Теорема 9 (Теорема Лагранжа).

Пусть функция y = f(x)

- 1. непрерывна на [a; b]
- 2. дифференцируема на (a;b)

Тогда $\exists \ c \in (a;b)$: $\boxed{f(b) - f(a) = f'(c) \cdot (b-a)}$

2.10 Сформулируйте теорему Коши

Теорема 10 (Теорема Коши).

Пусть функции f(x) и $\varphi(x)$

- 1. непрерывны на [a;b]
- 2. дифференцируемы на (a; b)
- 3. $\forall x \in (a; b) : \varphi'(x) \neq 0$

Тогда $\exists c \in (a;b)$:

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$