Frequent itemset generation

Brute Force Algorithms

Association rule generation framework

Phase 1: generate all frequent itemsets for the given frequency threshold f

- Bruteforce algorithm
- Apriori algorithm

Phase 2: from the frequent itemsets, generate the association rules at the given confidence threshold c

- For each frequent item set *I*:
 - partition I into all possible pairs of subsets (X, Y) such that Y = I X and $X \cup Y = I$;
 - compute the confidence of the rule $X \Rightarrow Y$. If it is at least c, store the rule $X \Rightarrow Y$.

Brute Force Algorithm

- Let U be the universe of items and $d=\left|U\right|$
- There are $2^d 1$ distinct non-empty subsets of U (i.e. itemsets)
- Each of these itemsets is a candidate of being frequent (i.e. candidate itemset)

Brute Force Algorithm (universe of items U, dataset \mathcal{D} , frequency threshold f)

- For every non-empty subset I of U
 - Compute support of I
 - If $\sup(I) \ge f$, then add I to the family of frequent itemsets

Brute Force Algorithm

Brute Force Algorithm (universe of items U, dataset \mathcal{D} , frequency threshold f)

- ullet For every non-empty subset I of U
 - Compute support of I
 - If $\sup(I) \ge f$, then add I to the family of frequent itemsets

Major issue: exponential time complexity. If |U| = 1000, then there are a total of $2^{1000} > 10^{300}$ candidate itemsets.

Pruning the Search Space

Downward Closure Property

Every subset of a frequent itemset is also frequent.

Definition: A k-itemset is an itemset that contains exactly k elements.

If no k-itemset is frequent, then no (k + 1)-itemset is frequent.

Downward Closure Property

Improved Brute Force Algorithm

If no k-itemset is frequent, then no (k + 1)-itemset is frequent.

Improved Brute Force Algorithm (universe of items U, dataset \mathcal{D} , frequency threshold f)

- For every k from 1 to |U|
 - For every k-itemset I
 - Compute support of I
 - If $\sup(I) \ge f$, then add I to the family of frequent itemsets
 - If no *k*-itemset is frequent, then STOP

Improved Brute Force Algorithm

- Works much better than the plain Brute Force on sparse datasets, i.e. on datasets in which transactions have small number of items.
- Let *l* be the largest number of items in a transaction in the dataset.
- . Then there are at most $\sum_{i=1}^l \binom{|U|}{i}$ candidate itemsets, which is much smaller than $2^{|U|}$, when l is much smaller than |U|.
- ullet However, when |U| is relatively large there are still too much candidate itemsets to consider.
 - For example, for |U| = 1000 and l = 10, the value $\sum_{i=1}^{10} \binom{|U|}{i}$ is of the order of 10^{23} .