Trabalho 1 - TP 546

Aluno: Eduardo Costa Resende

Matrícula: 964

Aluno: Paulo Otávio Luczensky de Souza

Matrícula: 959

Introdução

Esta pesquisa tem como objetivo trazer uma aplicação de redes de sensores sem fio, bem como os sensores utilizados e os resultados obtidos por eles. O tópico abordado será sobretudo voltado para a área de agropecuária.

Apesar da evolução da coleta de dados com sensores nas áreas urbanas e zonas industriais, a coleta de dados no campo de forma automática, seja para agricultura ou pecuária, pouco evoluiu. Apesar de haver o protocolo SDI-12 [1] que é utilizado para coleta de dados ambientais, ele ainda possui limitações como: taxa de comunicação limitada, assim como o seu comprimento de barramento.

Com isso, recentemente, para facilitar essa coleta de dados ambientais e o controle da atividade no campo pode-se utilizar as chamadas redes de sensores sem fio (RSSF). Bem como o conceito de computação ubíqua. Trazendo, assim, grandes avanços para o campo, sobretudo, ao agronegócio.

RSSF

As redes de sensores sem fio são redes sem fio de dispositivos autônomos que possuem sensores espalhados por uma determinada área que irão coletar dados de fenômenos ambientais ou físicos.

Imagem de uma RSSF. [2]

Assim, esta rede formada por estes nós, a qual mantém seus nós conectados via *gateway*, é conectada a uma estação base, bem como um computador conectado a essa estação.

Com isso, por serem distintas das redes tradicionais, pois possuem um grande número de sensores distribuídos, os seus mecanismos de auto-configuração se alteram.

Computação Ubíqua

O termo "Computação Ubíqua" [3] foi originado pelo estudioso Mark Weiser que se refere a dispositivos conectados em todos os lugares de forma "transparente" ao ser humano que, ao final, não seria percebido por eles.

Atualmente, ela está diretamente conectada à Internet das Coisas, pois os seres humanos, hoje, estão cercados por dispositivos inteligentes que estão conectados a uma grande rede que facilita a comunicação e a troca de dados.

Aplicação das RSSF na Agricultura

A seguir, encontra-se um tópico sobre como implementar uma RSSF no setor agrícola.

Pulverização de Precisão [5]

A utilização das RSSFs na pulverização de precisão permite a aplicação de agrotóxicos somente nas áreas infestadas. Havendo, assim, uma redução do gasto excessivo com os herbicidas, além de reduzir o processo de contaminação do solo em larga escala, uma vez que os agrotóxicos são despejados em toda área plantada.

Com isso, o equipamento de larga escala que realiza o despejo seria composto por LEDs que detectariam em milissegundos as ervas daninhas e acabaria, assim, despejando o agrotóxico naquela determinada planta.

Arquitetura da Rede

A implementação da RSSF para a pulverização de precisão teria a seguinte arquitetura:

- 1°) Nós fixos no campo: Sensores que monitoram o microclima e condições do dossel.
- 1.1) Sensores de Temperatura, UR e ponto de orvalho: medir a evaporação.
- 1.2) Pluviômetro: evitar, assim, a pulverização após chuva.
- 1.3) Anemômetro: medir a velocidade do vento.
- 1.4) Sensor de Radiação Solar: medir a dispersão e a estabilidade da gota.
- 1.5) Sensores de LED: detectar em milissegundos as ervas daninhas.
- 2°) Nós móveis, ou seja, os equipamentos: sensores acoplados ao pulverizador.
- 2.1) Sensor de vazão(fluxômetro): implementado em cada bico ou seção.
- 2.2) Sensor para verificar o estado do bico: entupimento, corrente elétrica.
- 2.3) Giroscópio e Acelerômetro: verificar a inclinação e a velocidade.
- 2.4) Câmeras RGB/multiespectral: verificar a presença de manchas, indicando a existência de ervas daninhas.
- 3º) Comunicação e Processamento: concentração de dados coletados e envio para nuvem.
- 3.1) Protocolos sem fio:
- 3.1.1) LoRaWAN: usado para comunicação de longa distância entre as estações fixas no campo e o *gateway* (até 10 km). Exemplo: sensores climáticos espalhados pelo campo.
- 3.1.2) ZigBee: usado em rede local em malhas. Exemplo: sensores no pulverizador, haveria, assim, uma comunicação de baixa energia entre os múltiplos nós do equipamento.
- 3.1.3) NB-loT: conexão direta do campo para a operadora. Exemplo: transmitir dados de pulverização em tempo real sem depender de *gateway* local.
- 3.1.4) Wi-Fi Rural: transmissão de dados em curtas distâncias. Exemplo: câmeras RGB/multiespectrais enviando imagens para análise rápida no trator.

3.2) Mensageria:

- 3.2.1) MQTT: permite uma comunicação leve e assíncrona entre sensores, *gateway* e a nuvem. Exemplo: pressão por bico enviada a cada 2 s para o servidor.
- 3.2.2) COAP: usado quando há a necessidade de comunicação direta, simples e rápida entre os dispositivos. Seria um HTTP simplificado para IoT. Exemplo: O sensor de vento manda alerta "VENTO > 15 km/h → PAUSAR" diretamente ao controlador do pulverizador.
- 3.3) Edge Computing: o *gateway* filtra dados críticos, reduzindo, assim, a latência. Poderia processar dados críticos localmente, sem depender da internet.
- 3.4) Nuvem: armazenamento de dados históricos, desenvolvimento de dashboards, permitindo análises avançadas.

A seguir, encontram-se duas arquiteturas que mostram a comunicação entre os sensores do campo e os sensores do pulverizador/equipamento móvel.

Arquitetura 1 – Sensores de Campo (Estação Fixa)

Descrição:

- Sensores espalhados pelo campo monitoram o clima e o solo.
- Envio de dados pela LoRaWAN para o gateway.
- Edge Computing processa alertas críticos localmente.
- Dados vão para a nuvem para análise e rastreabilidade.

Arquitetura 2 – Pulverizador / Equipamento Móvel

Descrição:

- Sensores embarcados monitoram a aplicação em tempo real.
- Comunicação local via ZigBee para o controlador do pulverizador.
- Gateway processa decisões imediatas (ex.: suspender aplicação).
- Nuvem recebe histórico, dashboards e relatórios de rastreabilidade.

Vantagens da Pulverização de Precisão

Vantagem	Descrição prática
Menor desperdício de herbicidas	Monitoramento de vazão e desligamento automático de bicos reduzem sobreposição e excesso de aplicação, gerando economia de insumos.
Maior segurança ambiental	Sensores de vento, UR e direção evitam a deriva e contaminação de áreas vizinhas, preservando fauna, flora e recursos hídricos.
Uniformidade da aplicação	Controle eletrônico de pressão e taxa por seção/bico garante deposição homogênea das gotas no alvo.
Tomada de decisão em tempo real	Rede de sensores integrada ao controlador pode pausar a pulverização automaticamente em condições climáticas inadequadas.

Rastreabilidade digital	Dados são armazenados na nuvem,
	gerando relatórios auditáveis para
	certificações ambientais e de boas práticas
	agrícolas (ex.: RTRS, GlobalG.A.P.).

Referências

- [1] DELTA-T DEVICES. An introduction to SDI-12. Delta T. Acesso em: 26 ago. 2025.
- [2] GTA/UFRJ. Redes de Sensores Sem Fio (RSSF). Disponível em: gta.ufrj.br. Acesso em: 26 ago. 2025.
- [3] RODOVALHO, Rodrigo Magalhães; MORAES, Rômulo Eduardo Garcia. Computação Ubíqua e IHC. Universidade Federal Fluminense UFF, 2017. Disponível em: https://www.professores.uff.br/screspo/wp-content/uploads/sites/127/2017/09/artigoIHC1.pdf
 . Acesso em: 26 ago. 2025.
- [4] SOUSSI, Abdellatif; ZERO, Enrico; SACILE, Roberto; TRINCHERO, Daniele; FOSSA, Marco. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors, v. 24, n. 8, p. 2647, 2024. Disponível em: https://doi.org/10.3390/s24082647. Acesso em: 26 ago. 2025.
- [5] START AGRO. Pulverização de precisão: O que é e como funciona o sistema WEEDit. StartAgro, 22 fev. 2018. Disponível em: https://www.startagro.agr.br/o-que-e-pulverizacao-de-precisao-weedit/. Acesso em: 27 ago. 2025.