Caleidoscoop Hoofdstuk 3

3 Equivalentierelaties

3.1

- a) Stel de volgende equivalentierelatie \mathcal{R} op, waarbij $a \sim b \iff a = b$.
 - 1 Reflexief: Bekijk $a\mathcal{R}a \implies a = a$
 - 2 Symmetrie: Bekijk $(a\mathcal{R}b \implies b\mathcal{R}a) \implies a = b \implies b = a$
 - 3 Transitiviteit: Bekijk $((a\mathcal{R}b \wedge b\mathcal{R}c) \implies a\mathcal{R}c) \implies (a = b \wedge b = c) \implies a = c$
- b) Neem de volgende equivalentierelatie \mathcal{R} op, waarbij $a \sim b \iff a \mod 42 = b \mod 42$.
 - 1 Reflexief: $a \mod 42 = a \mod 42$
 - 2 Symmetrie: $(a \mod 42 = b \mod 42) \implies b \mod 42 = a \mod 42$
 - 3 Transitiviteit: $(a \mod 42 = b \mod 42 \land b \mod 42 = c \mod 42) \iff a \mod 42 = c \mod 42$
- c) Bewijs. Aanname: Ik stel dat A een verzameling is waarbij $A \neq \emptyset$, en $A/_{\sim} = \emptyset$. Aangezien $A \neq \emptyset$ bestaat er een $a \in A$, maar als we een equivalentierelatie hebben betekent dit $a \sim a$. Als $a \sim a$ dan moet er een equivalentieklasse $\overline{a} = \{b \in A : b \sim a\}$ bestaan waarbij $a \in \overline{a}$, maar $\overline{a} \in A/_{\sim}$. Dit is een tegenspraak want we stelde dat $A/_{\sim} = \emptyset$, en dus kan $A/_{\sim}$ niet leeg zijn.