ITA 1975 - MATEMÁTICA

Notações

 $\mathbb{N} = \{1, 2, 3, \dots\}$: o conjunto dos números naturais.

 \mathbb{R} : o conjunto dos números reais.

 \mathbb{C} : o conjunto dos números complexos.

: unidade imaginária, $i^2 = -1$.

Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

Questão 1. Qual é o valor de $\sum_{r=0}^{n} {n \choose r}^2$

$$\mathbf{A}$$
 () $\binom{n}{n}$ \mathbf{B} () $\binom{2n}{n}$ \mathbf{C} () $\binom{n^2}{n}$ \mathbf{D} () 2^n \mathbf{E} () n.d.a.

$$\mathbf{B}$$
 () $\binom{2n}{n}$

$$\mathbf{C}$$
 () $\binom{n^2}{n}$

D ()
$$2^{n}$$

Questão 2. Seja $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ definida em \mathbb{R} . Se g for a função inversa de f, o valor de $e^{g(7/25)}$ será: A () $\frac{1}{3}$ B () $\frac{7e}{25}$ C () $\log_e\left(\frac{25}{7}\right)$ D () $e^{g(7/25)^2}$ E () n.d.a.

A ()
$$\frac{1}{3}$$

B ()
$$\frac{7e}{25}$$

$$\mathbf{C}$$
 () $\log_e\left(\frac{25}{7}\right)$

D ()
$$e^{g(7/25)^2}$$

Questão 3. Uma equação do lugar geométrico das intersecções das diagonais dos retângulos inscritos no triângulo ABC e com um lado em \overline{AB} (figura abaixo) é:

A ()
$$x + \frac{2(a+b)}{c}y = a+b$$

B ()
$$x - \frac{a+b}{c}y = \frac{a+b}{2}$$

C ()
$$ax + 3(b+c)y = \frac{a+c}{2}$$

D ()
$$x + cy + ab = 0$$

Questão 4. A expressão $1 + \frac{2}{2} + \frac{3}{4} + \frac{4}{8} + \frac{5}{16} + \dots$ vale

B ()
$$\frac{9}{2}$$
 C () $\frac{7}{2}$

C ()
$$\frac{7}{2}$$

Questão 5. Se dividirmos um polinômio P(x) por x-2 o resto é 13 e se dividirmos P(x) por x+2 o resto é 5. Supondo que R(x) é o resto da divisão de P(x) por x^2-4 , podemos afirmar que o valor de R(X), para x=1 é:

Questão 6. Seja A uma matriz quadrada de ordem n, tal que $A^{-1} = A^t$. Se det A = 1, dizemos que A é uma matriz de rotação, e se det A = -1, A é uma matriz de reflexão. Apoiados em tais definições, podemos afirmar que:

- **A** () se n é impar, o produto de duas matrizes de reflexão é de reflexão.
- B () a soma de duas matrizes de rotação é de rotação.
-) o produto de duas matrizes de rotação é de rotação.
-) a matriz inversa de toda matriz de rotação é de reflexão.
- **E** () n.d.a.

Questão 7. Sabendo-se que $\sin x = \frac{m-n}{m+n}$, n > 0 e m > 0, podemos afirmar que $\tan \left(\frac{\pi}{4} - \frac{x}{2}\right)$ é igual a

A ()
$$\frac{n}{m}$$

$$\mathbf{B} \ (\) \ \frac{\sqrt{m}}{n} \qquad \qquad \mathbf{C} \ (\) \ 1 - \frac{n}{m} \qquad \qquad \mathbf{D} \ (\) \ \sqrt{\frac{n}{m}}$$

C ()
$$1 - \frac{n}{m}$$

$$\mathbf{D} \ (\quad) \ \sqrt{\frac{n}{m}}$$

Questão 8. A respeito da equação $(x^2 + 3x + 2)^2 - 8(x^2 + 2x) - 8x - 1$ podemos afirmar que

- A () todas as raízes são inteiras.
- B () uma raiz é nula e as outras são positivas.
- C () a soma dos módulos das raízes é 6.
- **D** () o módulo da maior raiz é 5.
-) n.d.a.

Questão 9. Se Z_1 , Z_2 , Z_3 , Z_4 e Z_5 são as raízes da equação $(Z+1)^5 - Z^5 = 0$, e se R(Z) indica a parte real de Z então podemos afirmar que:

A ()
$$R(Z_K) = 0$$
 para $K = 1, 2, 3$ e $R(Z_i) = 1$ para $i = 4, 5$.

B ()
$$R(Z_K) = -\frac{1}{2}$$
 para $K = 1, 2, 3, 4, 5$.

$${\bf C}$$
 () $Z_1,\,Z_2,\,Z_3,\,Z_4,\,Z_5$ são números reais (não complexos).

D ()
$$R(Z_K) = 2$$
 para $K = 1, 2, 3$ e $R(Z_i) = 0$ para $i = 4, 5$.

Questão 10. Os lados de dois octógonos regulares têm, respectivamente 5 cm e 12 cm. O comprimento do lado de um terceiro octógono regular de área igual à soma das áreas dos outros dois, é:

- **A** () 17 cm
- **B** () 15 cm **C** () 14 cm **D** () 13 cm
- **E** () n.d.a.

Questão 11. Admitindo-se que o polinômio $P(y) = y^5 - (\tan u)^2 y^3 + (\tan u)y + \sin^2 u - \tan^2 u$ é divisível pelo polinômio $Q(y) = y + \cot^2 u - \csc^2 u$, onde $\frac{\pi}{2} < u < \pi$, podemos assegurar que:

- \mathbf{A} () tan u é um número irracional negativo.
- $\mathbf{B} \ (\quad) \ \csc u = -\sec u.$
- **C** () $u = \frac{2\pi}{3}$.
- **D** () $\tan u$ é um núemro tal que $1 < \tan u < 0$.
- **E** () n.d.a.

Questão 12. Se Z_1 e Z_2 são números complexos, $Z_1 + Z_2$ e $Z_1 \cdot Z_2$ são ambos reais, então podemos afirmar que

- **A** () Z_1 e Z_2 são ambos reais ou $Z_1 = \overline{Z_2}$.
- **B** () Z_1 e Z_2 são números complexos não reais.
- ${\bf C}$ () Z_1 e Z_2 são números reais irracionais.
- **D** () Z_1 é um números complexo puro e Z_2 é número real.
- **E** () n.d.a.

Questão 13. Consideremos uma esfera de raio r=1 cm e um ponto P fora desta esfera. Sabendo que a distância deste ponto P à superfície da esfera mede 2 cm. Qual é a razão K entre a área da superfície da esfera e a da calota visível do ponto P?

- **A** () K = 1. **B** () K = 2. **C** () K = 3. **D** () $K = \frac{5}{2}$. **E** () n.d.a.

Questão 14. Seja S o conjunto das soluções do sistema de desigualdades:

$$\begin{cases} 2x + y - 3 > 0 \\ x - 2y + 1 < 0 \\ y - 3 < 0 \\ x + my - 5 < 0 \end{cases}$$

onde m é real. A representação geométrica de S, em coordenadas cartesianas ortogonais (x,y), é:

- **A** () um quadrilátero para qualquer m > 0.
- **B** () um triângulo isósceles para qualquer m < 0.
- C () um triângulo retângulo pata m < 0 ou $\frac{5}{3} < m < 4$.
- **D** () S é o conjunto vazio para $m > \frac{5}{3}$.
- **E** () n.d.a.

Questão 15. Sendo a, b, c, d as raízes da equação $2x^4 - 7x^3 + 9x^2 - 7x + 2 = 0$ podemos afirmar que:

- **A** () a, b, c, d são reais positivas.
- **B** () $a^2 + b^2 + c^2 + d^2$ é igual a $\frac{13}{5}$.
- ${f C}$ () a,b,c,d não são reais.
- **D** () $\frac{1}{bcd} + \frac{1}{acd} + \frac{1}{abd} + \frac{1}{abc}$ é a soma das raízes.
- **E** () n.d.a.

Questão 16. As medidas dos catetos de um triângulo retângulo são $(\sin x)$ cm e $(\cos x)$ cm. Um estudante calculou o volume do sólido gerado pela rotação deste triângulo em torno da hipotenusa e obteve como resultado π cm³. Considere este resultado como certo, podemos afirmar que:

A () $x = \frac{\pi}{6}$ **B** () $x = \frac{\pi}{3}$ **C** () $x = \frac{\pi}{4}$ **D** () $x = \frac{\pi}{5}$ **E** () n.d.a.

Questão 17. Sejam as matrizes reais $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$ e m um número real. Seja: AX = mX, Então podemos afirmar que:

- **A** () Se $det(A mI) \neq 0$, então x + y = 0 e $x \cdot y \neq 0$.
- **B** () Se $\det(A mI) = 0$, então existem dois números reais x, y tais que $x + y \neq 0$ ou $x.y \neq 0$.
- C () Se det(A mI) = 0, então det A = 0 e m = 0.
- ${f D}$ () Se det A=0, então não existem dois números reais x,y tais que AX=mX.
- **E** () n.d.a.

Questão 18. As dimissões de um paralelepípedo retângulo são proporcionais aos números $\log_e t$, $\log_e t^2$, $\log_e t^3$ e a área total é 792 cm². Sabendo-se que a soma das dimenssões vale 12 vezes a razão de proporcionalidade. Quais são os valores destas dimenssões?

A () 6, 12 e 18. **B** () 5, 10 e 15. **C** () 2, 3 e 4. **D** () 2, 4 e 8. **E** () n.d.a.

Questão 19. O número de soluções inteiras e não negativas da equação x+y+z+1=7 é:

$$\mathbf{A} \left(\begin{array}{ccc} 7\\4 \end{array} \right) \qquad \mathbf{B} \left(\begin{array}{ccc} 11\\4 \end{array} \right) \qquad \mathbf{C} \left(\begin{array}{ccc} 10\\3 \end{array} \right) \qquad \mathbf{D} \left(\begin{array}{ccc} 11\\3 \end{array} \right) \qquad \mathbf{E} \left(\begin{array}{ccc} \end{array} \right) \text{ n.d.a.}$$

Questão 20. Seja ABCD um quadrilátero convexo inscrito em uma circunferência. Sabe-se que $\hat{A}=2\hat{C},$ $\hat{B}>\hat{D}$ e $\tan\hat{B}.\tan\hat{D}+\sin\hat{A}.\sin\hat{C}=-\frac{9}{4}.$ Neste caso, os valores de $\hat{A},\hat{B},\hat{C},\hat{D}$ são respectivamente:

A ()
$$150^{\circ}$$
, 45° , 75° , 30° **C** () 120° , 150° , 60° , 30° **E** () n.d.a.

B ()
$$90^{\circ}$$
, 120° , 45° , 60° **D** () 120° , 120° , 60° , 60°

Questão 21. Num triângulo escaleno ABC, os lados opostos aos ângulos A, B, C medem, respectivamente, a, b, c. Então a expressão: $a \sin(\hat{B} - \hat{C}) + b \sin(\hat{C} - \hat{A}) + c \sin(\hat{A} - \hat{B})$

A ()
$$a \sin \hat{A} + b \sin \hat{B} + c \sin \hat{C}$$
. **C** () 0.

$$b\sin \hat{B} + c\sin \hat{C}$$
. **C** () 0. **E** () n.d.a.

B ()
$$\sin^2 \hat{A} + \sin^2 \hat{B} + \sin^2 \hat{C}$$
. **D** () 1.

Questão 22. Considere a circunferência C que pelos pontos (0,0), (2,0) e (0,2) em um sistema de coordenadas cartesianas ortogonais. Uma das retas tangentes a esta circunferência, que passa pelo ponto (3,5), tem por equação

A ()
$$x + y - 3 = 0$$
.

C ()
$$x - y + 2 = 0$$
.

B ()
$$7x - y + 8 = 0$$
.

D ()
$$6x - y - 16 = 0$$

Questão 23. Se, na figura abaixo, c é uma circunferência de raio R, r e s são retas tangentes à circunferência e $\overline{OT} = 2R$ então o ângulo α das retas r e s deve verificar uma das alternativas seguintes:

A ()
$$\sin \alpha = \frac{4}{5} e \cos \alpha = \frac{3}{5}$$
 C () $\sin \alpha = \frac{\sqrt{3}}{2} e \cos \alpha = \frac{1}{2}$ **D** () $\cos \alpha = \frac{\sqrt{3}}{2} e \sin \alpha = \frac{1}{2}$

C ()
$$\sin \alpha = \frac{\sqrt{3}}{2} e \cos \alpha = \frac{1}{2}$$

$$\mathbf{D} \ (\quad) \cos \alpha = \frac{\sqrt{3}}{2} e \sin \alpha = \frac{1}{2}$$

$$\mathbf{B} \ (\quad) \ \cos\alpha = \frac{4}{5} \ \mathrm{e} \, \sin\alpha = \frac{3}{5}$$

Questão 24. A respeito da equação exponencial $4^x + 6^x = 9^x$ podemos afirmar que:

A ()
$$x = 9 \log_{10} \left(\frac{1+\sqrt{3}}{2} \right)$$
 é uma raiz.

B ()
$$x = \left[\log_{10}\left(\frac{3}{2}\right)\right]^{-1} \cdot \log_{10}\left(\frac{1+\sqrt{5}}{2}\right)$$
 é uma raiz.

C ()
$$x = \left[\log_{10}\left(\frac{3}{2}\right)\right]^{-1} \cdot \log_{10}\left(\frac{1+\sqrt{3}}{2}\right)$$
 é uma raiz.

$$\mathbf{D} \ (\quad) \ x = \left\lceil \log_{10} \left(\frac{3}{2} \right) \right\rceil^{-1} . \log_{10} \left(\frac{1 + \sqrt{6}}{2} \right) \text{ \'e uma raiz}.$$

Questão 25. Seja $S = \log_3(\tan x_1) + \log_3(\tan x_2) + \log_3(\tan x_3) + \dots$ onde $x_1 = \frac{\pi}{3}$ e $x_{n+1} = \arctan(\sqrt{\tan x_n})$, $n = 2, 3, \dots$

- **A** () $S = \log_3(\tan x_1 + \tan x_2 + \tan x_1 + \dots).$
- **B** () S = -1
- **C** () S = 2
- **D** () S = 1
- **E** () n.d.a.