The Poisson Distribution

A Distribution of Counts

- How many people walk into your store at any given hour interval?
- Can approximate with binomial experiments:
 - 60 1-minute intervals
 - Each 1-minute interval:
 - Success: a person walks in
 - Not Success: nobody walks in
- BUT: we want finer grained time intervals than 1-minute
 - Becomes more realistic as the time interval approaches 0
 - As time interval → 0: Poisson Process

Poisson Process

- Counts the number of (successes) events in continuous time
- Events are independent
- Each point in time (or space) is equally likely for an event to occur
 - The probability to come in at any time is uniform

Poisson Distribution

- Random variable Y: the number of events that occur in some time interval
- Examples:
 - # of births per hour in a hospital
 - # of cars passing by 79 Madison in some time interval
 - # calls to a switchboard in an hour
 - # disease cases within a given town (one disease, not contagious)
 - # goals in a hockey game
 - # soldiers in the Prussian cavalry killed by horse kicks, by corp membership and year

Poisson Distribution

- Discrete
- Probability Mass Function:

$$P(Y|\lambda) = \frac{\lambda^{y}e^{-\lambda}}{y!} ; y = 0, 1, 2, \dots$$

$$E(Y) = \lambda$$
$$Var(Y) = \lambda$$

Poisson Distribution Example

- On average, 5 people walk into my store at any given hour.
- During this specific hour, what is the probability that 0 people walk into my store?

Poisson Distribution Example

- On average, 5 people walk into my store at any given hour.
- During this specific hour, what is the probability that 0 people walk into my store?

$$P(Y|\lambda) = \frac{\lambda^{y}e^{-\lambda}}{y!}$$

$$P(Y=0|\lambda=5) = \frac{5^{0}e^{-5}}{0!}$$

$$= e^{-5}$$

Note: the distribution of inter-arrival times between events follows an *exponential distribution*.

GLM for Count Data

- Response variable: counts, Y (= 0 1, 2, ...)
- Traditional to assume Poisson distribution
 - $Y \sim Poisson(\lambda)$ $log(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$ $log(E(Y_X)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$

log link function

systematic component

GLM for Count Data

- Response variable: counts, Y (= 0 1, 2, ...)
- Traditional to assume Poisson distribution

GLM for Count Data

- Response variable: counts, Y (= 0 1, 2, ...)
- Traditional to assume Poisson distribution

1 unit change in x \rightarrow multiplicative change in conditional mean $E(Y_X)$

OLS versus GLM

OLS:

- $log(Y) \sim N(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p, \sigma^2)$
- If $Y = 0 \rightarrow$ ad hoc solutions, i.e.: log(0+1)

GLM:

- $E(Y_X) = \lambda_X = \sigma_X^2$
- If $Y = 0 \rightarrow$ works
- Overdispersion: Var(Y) >> E(Y)

Measuring Goodness of Fit for GLMs

Goodness of fit for each parameter β_i

Wald test:

- Analogous to t-tests in Linear Regression
- Looks at each parameter β_i separately
- H_0 (null): $\beta_i = 0$
- H_a (alternative): $\beta_i \neq 0$

Goodness of fit for entire model

Pearson's Chi-Squared statistic

- Analogous to whole model F-test in Linear Regression
- Looks at each parameter β_i separately
- H_0 (null): $g(Y) = \beta_0$
- H_a (alternative): *otherwise*

Deviance

Unlike in OLS, there is no R²

- Instead: *Deviance*, *D*
- D = 2 [log lik(saturated model) log lik(your proposed model)]
- $D = -2[log P(y|\beta) log P(y|\beta_{saturated})]$
- Looks at how closely the fitted values from your model match actual Y values from the raw data.
- In a saturated model: perfectly overfit model.
- In a good model, want small deviance
- $D \sim X_{n-p}^2$

Deviance is useful

...because you can compare models.

Fuller model:
$$g(Y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p,$$

Reduced model:
$$g(Y) = \beta_0 + \beta_1 x_1$$

Question: do all the other covariates $(\beta_2 x_2 + ... + \beta_p x_p)$ contribute to your model?

- H_0 (null): $\beta_2 = \beta_3 = ... = \beta_p = 0$
- H_a (alternative): Not all $\beta_i \neq 0$; i = 2, 3, ..., p

$$D_{red}$$
 - D_{full} ~ X_{full} - red^2

If $p < 0.05 \rightarrow$ fuller model is better