	Λ×M	~	1xn	nxn		_ n×n		
$A^TA =$	_ w ₄ _].[]	=	W ₁ ² ₂	=	λ ₁		
	: Wn	- W ₁	Wn			· · .		
				[11	Wn 2		2 dn	
sea A = UA	L AVAZ	escompo	sición	SVD de	Α.			
os valores	singular	es de A	son lo	s autovo	clores	de ATA.		
		2	, 2			. 2		
$let(A^TA-x)$						X = Xi	Vi = 1.	n
se podia de	ecir direc	to porqu	e AA e	ogolb 25	nal.			
$x^2 - y^2$	(=) (T	= v: 4	(=> OT	- ~.	A: = 1	^		
$\sigma_i^2 = \chi_i^2$		7 ~ ~ ~	7000	ur hipate	2515			
			Po	711 00 10	,-1,			
Σ = «·	1 - 11 -	хи						
	<u> </u>							
os vector	es canón	nicos ej	E IRNXN	∀i=1n	Son	os autov	rectores	de AT
ATei = o	iei Vi=	1n	=>	I = V	e IR ^{n×n}			

Para encontrar U sabemos que:	
	$\sigma_i = \alpha_i > \sigma \forall i = 1n$
<=> Aei/ai = ui	
<=> \(\lambda_{\ilde{\lambda}} \sqrt{\ \w_{\ilde{\lambda}} \ \equiv \sqrt{\index} = 1\(\lambda \)	
Luego las primeras n columnas de UEIR^	
Como los wiel? son ortogonales entre e	· • • • • • • •
Para completar las m-n columnas restan	
{W1/11W1112 ··· Wn/11Wn1123 a una base ortono	rmal de IK''.
41 34 (11.4.1) \(\frac{1}{2}\)	
$u_i = w_i / w_i _2 \forall i = 1n$ $\{u_1 \cdots u_n\}$ base ortonormal:	
Sea <uni, mm=""> = <u, mn=""> = sube</u,></uni,>	espacio ortogonal
$\langle u_1 \cdots u_n \rangle \oplus \langle u_{n+1} \cdots u_n \rangle = \mathbb{R}^m$	especies of togother.
: {u, um} base ortonormal de IRM	
$U = \begin{pmatrix} 1 & 1 \\ M_1 & \cdots & M_n \\ 1 & 1 \end{pmatrix}$	
A=UZV pero falta permutar la diago	onal de E para que
queden ordenados o, > oz > ··· > on.	
Sean Pr y Pr matrices de permutación	1 de filas y columnas
respectivamente tal que:	
$(P_{\xi} \Sigma P_{\xi})_{ii} > (P_{\xi} \Sigma P_{\xi})_{jj} \forall i \leq j$	
17 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	
$A = (P_1^{-1}P_2 \sum P_2 P_2^{-1} V^T) = (P_1 \sum P_2 V_1^T)$	
$A = UP_F^{-1}P_F \sum P_c P_c^{-1} V^T = U_A \sum_A V_A^T$ $V_A \sum_A V_A^T$	
VA ZA VA	