CS 2731 Introduction to Natural Language Processing

Session 3: Machine learning intro, NLP tasks and applications

Michael Miller Yoder September 3, 2025

Overview: Machine learning intro, NLP tasks and applications

- Coding activity: preprocessing Airbnb reviews
- Intro to machine learning
 - Definitions
 - Models and algorithms
 - Data: training, development, test
- NLP applications
- NLP "core tasks"
- (If time allows) Coding activity: clickbait classification

Course logistics

- I re-released <u>Homework 0</u> on getting set up on the CRCD JupyterHub with a custom class conda environment
 - Is due this Fri Sep 5 at 11:59pm
- I released the <u>project idea form</u>. Is due next Thu Sep 11
 - You will be able to submit any project ideas that you're interested in: from the example list or any you have on your own
 - It's fine to incorporate your own research, there just needs to be an NLP component
 - You can submit multiple project ideas
- You will later choose from an anonymized list of project ideas on Project Match Day, Sep 17

Coding activity: Preprocessing Airbnb listings

Starting a Jupyter Notebook on the CRCD JupyterHub

- 1. Go to this <u>nbgitpuller link</u> (also available on course website)
- Partition: TEACH 6 CPUs 45 GB
 We might use the GPU options later on
 in the course
- Under Select Virtual Environment, select Provide custom path
- Custom Environment Path: /ix/cs2731_2025f/class_env
- 5. Click **Start**
- 6. Wait for the server to start up

Open Jupyter notebook

- This should pull a folder (cs2731_jupyterhub) into your JupyterLab
- 2. Double-clicksession2_preprocessing.ipynb on the left panel to openthe notebook

Jupyter Notebook basics

- Each block is called a "cell"
 - Has input and possibly output
 - o Input can be Python code, Markdown or shell commands (after !)
- Modes
 - Command mode
 - Move, select, manipulate cells
 - Get into command mode by clicking anywhere outside of a cell
 - Edit mode
 - Edit content of a particular cell
- Running cells
 - Click "Run" button or do Ctrl+Enter (on Windows or Linux, Cmd+Enter on Mac) to run code or render Markdown
 - Any result will be shown in the output of the cell

Implementation

- Remove undesired text with regular expressions
- Lowercase
- Remove stopwords
- Tokenize with the NLTK package
- Stem the tokens with NLTK

Saving your work

Ending your session

Be sure to save your work before ending the session

Select File > Hub Control
 Panel

2. Click Stop My Server

Intro to (supervised) machine learning

What is machine learning?

- A system that learns a function (maps from an input to an output) from examples/data
- Can predict things and perform tasks without explicit instructions
- Learns patterns from data with statistical algorithms

Machine learning models

- Transform an input to an output with a "model": a simplified mathematical/statistical version of reality
- Models have parameters learned from patterns in data
 - Usually encode how variables relate to each other

Queens Museum of Art, photo Chris Devers. https://www.flickr.com/photos/cdevers/8063002401

Supervised machine learning process

Data (input text, X)

Annotate labels (Y)

Train a model to predict labels (Y) from input text (X)

Training and test sets (and phases)

Training set

Development set Test set

- Train parameters of the model on training set (training phase)
 - O Sees examples of input and (assumed correct) output that it will mimic
- Development set to run tests of the model and choose hyperparameters
- Test time
 - Freeze parameters of the model
 - Predict input from an unseen set
 - Evaluate on correct answers and see how well the model performs
 - Don't look at the test set too much when developing/choosing models

What can you do with machine learning models?

- Prediction: predict an output from an unseen input
 - That fits the pattern learned by looking at input it has seen before
- Interpretation
 - Examine the learned model weights to characterize the relationship between variables

$$y = 4x - 10$$

NLP applications

Core tasks and applications of NLP

machine translation chatbots information retrieval

APPLICATIONS

summarization question answering

NLP applications: email classification

- Spam / Not spam
- Priority Level
- Category (primary / social / promotions / updates)

NLP applications: sentiment analysis

Hotel review sentiment

NLP applications: sentiment analysis

US Airline review sentiment

NLP applications: machine translation

NLP applications: summarization

NLP applications: information extraction

NLP applications: dialogue systems/chatbots

NLP applications: question answering

NLP core tasks

Core tasks and applications of NLP

Text classification

- Input: a span of text
- Output: a label from a set of discrete options
- Example: sentiment analysis
 - Text -> {positive, neutral, negative}

Language modeling

- Input: a span of text, or no text at all
- Output: the next word
- Example: text generation for chatbots (ChatGPT)
 - context text -> next word

Sequence labeling

- Input: a span of text
- Output: a sequence of labels, one for each word (token)
- Example: part-of-speech tagging
 - The book was brilliant -> DET NOUN VERB ADJ