Neural Networks Design And Application

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

e.g., sampled from Gaussian $\sim (0,1)$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

e.g., sampled from Gaussian $\sim (0,1)$

(Latent variable)

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$
 MLE for discriminator

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

MLE for 1-discriminator

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

w.r.t.G: min log(1 - D(G(z)))

Figure 17.1.1 at https://d2l.ai/chapter-generative-adversarial-networks/gan.html

Figure 17.1.1 at https://d2l.ai/chapter-generative-adversarial-networks/gan.html

Figure 17.1.1 at https://d2l.ai/chapter-generative-adversarial-networks/gan.html

Figure 17.1.1 at https://d2l.ai/chapter-generative-adversarial-networks/gan.html

Figure 17.1.1 at https://d2l.ai/chapter-generative-adversarial-networks/gan.html

Explicitly model the data distribution

Explicitly model the data distribution

Explicitly model the data distribution

Transposed convolution

Q: how to build discriminator?

Transposed convolution

Transposed convolution

Q: how to optimize the two elements (D and G)?

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

end for

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

end for

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples {z⁽¹⁾,...,z^(m)} from noise prior p_g(z).
 Sample minibatch of m examples {x⁽¹⁾,...,x^(m)} from data generating distribution
- Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

end for

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples {z⁽¹⁾,...,z^(m)} from noise prior p_g(z).
 Sample minibatch of m examples {x⁽¹⁾,...,x^(m)} from data generating distribution
- Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

end for

Algorithm 1 M

steps to apply to 1 experiments.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples {z⁽¹⁾,...,z^(m)} from noise prior p_g(z).
 Sample minibatch of m examples {x⁽¹⁾,...,x^(m)} from data generating distribution
- Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

end for

Algorithm 1 M

steps to apply to t experiments.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples {z⁽¹⁾,...,z^(m)} from noise prior p_g(z).
 Sample minibatch of m examples {x⁽¹⁾,...,x^(m)} from data generating distribution
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right]$$
 Stochastic gradients w.r.t. discriminator parameters

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight).$$

end for

Algorithm 1 M

steps to apply to t experiments.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- ullet Sample minibatch of m examples $\{m{x}^{(1)},\ldots,m{x}^{(m)}\}$ from data generating distribution $p_{\text{data}}(\boldsymbol{x})$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right]$$
 Stochastic gradients w.r.t. discriminator parameters

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight) \right)$$
. Gradients w.r.t. generator parameters

end for

Algorithm 1 M

steps to apply to t experiments.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples {z⁽¹⁾,...,z^(m)} from noise prior p_g(z).
 Sample minibatch of m examples {x⁽¹⁾,...,x^(m)} from data generating distribution
- Update the discriminator by ascending its stochastic gradient:

BUT: training GAN is difficult

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right]$$
Stochastic gradients w.r.t. discriminator parameters

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_a(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight) \right) \right)$$
. Gradients w.r.t. generator parameters

end for

A convex objective function

A convex objective function

A convex objective function

A convex objective function

Nonconvex function

A convex objective function

A convex objective function

A convex objective function

A convex objective function

A convex objective function

Difficulty of training GANs Difficult to converge Saddle point Minimum w, Maximum 0 1 2 3 4 18 min variable Andrew Ng

A convex objective function

Discussion on the difficulty of training GAN https://jonathan-hui.medium.com/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

- When to terminate GD (determining T)?
 - How to measure the approximation error?

$$f(w_T) - f(w_*) \le \epsilon$$

- When to terminate GD (determining T)?
 - How to measure the approximation error?

$$f(w_T) - f(w_*) \le \epsilon^{\prime\prime}$$

Level of accuracy: ϵ -accurate solution

- When to terminate GD (determining T)?
 - How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

• When to terminate GD (determining T)?

• How to measure the approximation error? $f(w_T) - f(w_*) \le \epsilon$ W*: optimal solution $f(w_*) = min_w f(w)$ No need to know this solution Only for convergence analysis

- When to terminate GD (determining T)?
 - How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

- When to terminate GD (determining T)?
 - How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

When to terminate GD (determining T)?

How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

When to terminate GD (determining T)?

How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

When to terminate GD (determining T)?

How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

Recall: convergence rate of optimizers

• When to terminate GD (determining T)?

How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

Recall: convergence rate of optimizers

When to terminate GD (determining T)?

• How to measure the approximation error?

Level of accuracy: ϵ -accurate solution

Difficulty of training GANs

Difficult to converge

 $\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$

nonconvex-nonconcave function (Hard to define what convergence could be)

Convex-concave function
-generative-advisory-networks-819a86b3750b

Difficulty of training GANs

Difficult to converge

We even do not have a good accuracy measure for convergence

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

nonconvex-nonconcave function

(Hard to define what convergence could be)

Maximum 0 1 2 3 4 Convex-concave function

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Q: what do we expect for the convergence of this objective?

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Image credit https://stackoverflow.com/questions/51786719/generator-and-discriminator-loss-curves-are-exact-mirror-images

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Sample of 100 Generated Images of a Handwritten Number 8 at Epoch 450 From a GAN That Has a Convergence Failure via Combined Updates to the Discriminator.

Difficulty of training GANs

- Difficult to converge
- Mode collapse: the generator collapses which produces limited varieties of samples

Mode collapse

Mode collapse

Mode collapse

Difficulty of training GANs

- Difficult to converge
- Mode collapse: the generator collapses which produces limited varieties of samples
- Unbalance between the generator and discriminator causing overfitting

•

Q: which images are generated?

Q: what about these?

Q: what about these?

All are generated by GAN

Q: what about these?

All are generated by GAN

Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4401-4410. 2019.

https://arxiv.org/pdf/1812.04948.pdf

 \rightarrow Monet

Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. "Unpaired image-to-image translation using cycleconsistent adversarial networks." In *Proceedings of the IEEE international conference on computer vision*, pp. 2223-2232. 2017.

https://arxiv.org/pdf/1703.10593.pdf

