ESCOLA E FACULDADE DE TECNOLOGIA SENAI ANCHIETA CURSO TÉCNICO DE MECATRÔNICA

Douglas Souza Oliveira

Guilherme de Oliveira Antônio

Guilherme Mota Garcia

Jhoan Fernando Gomez Huanca

Monitoramento da corrente elétrica

SÃO PAULO 2017

Douglas Souza Oliveira Guilherme de Oliveira Antônio Guilherme Mota Garcia Jhoan Fernando Gomez Huanca

Monitoramento da corrente elétrica

Trabalho da Disciplina de Projetos apresentado a Escola SENAI "Anchieta" referente ao curso Técnico de Mecatrônica.

Orientador: Professor Diônny Batista

São Paulo 2017

ESTA PAGINA DEVERÁ CONTER A FICHA CATALOGRÁFICA ELABORADA PELA(S) BIBLIOTECÁRIA(S) DA INSTITUIÇÃO. ESTE ITEM DEVERÁ SER IMPRESSO NO VERSO DA PÁGINA ANTERIOR (FOLHA DE ROSTO)

Douglas Souza Oliveira Guilherme de Oliveira Antônio Guilherme Mota Garcia Jhoan Fernando Gomez Huanca

Monitoramento da corrente elétrica

Trabalho de Conclusão de Curso apresentado a Banca Examinadora como requisito parcial para obtenção do título de Técnico em mecatrônica

Douglas Oliveira
Guilherme Mota
Guilherme Oliveira
Jhoan Fernando
Dionny Cleversson Mazio
Banca examinadora

	Nome do Professor	
	Nome do Professor	
São Paulo, _	de	2017.

AGRADECIMENTOS

Primeiramente a Deus que permitiu que tudo isso acontecesse, ao longo de nossa vida, e não somente nestes anos como estudantes, mas que em todos os momentos é o maior mestre que alguém pode conhecer.

Ao professor Dionny Cleversson Mazio pela orientação, apoio e confiança e a todos que direta ou indiretamente fizeram parte da nossa formação principalmente a toda equipe da Faculdade SENAI de Tecnologia Mecatrônica.

"O sucesso é ir de fracasso em fracasso
sem perder entusiasmo."
-Winston Churchill

RESUMO

O tema principal deste projeto consiste em informar um usuário sem os devidos conhecimentos, sobre os gastos de energia elétrica residencial através de um dispositivo com internet. O consumo mensal de energia aumentou devido ao amplo uso de eletrodomésticos, televisões, computadores e celulares. O presente estudo pressupôs em verificar o fluxo de corrente elétrica usando sensores de corrente e a tensão da rede com a elaboração de circuito para medir a tensão. Para elaboração deste projeto, foi otimizada uma pequena caixa, que consta nela duas tomadas para fornecer energia, tendo a comunicação via wifi, que venha trazer o comando à pessoa dependendo da ocasião que ela almeje que aconteça, como por exemplo, desligar um aparelho ou verificar o quanto que ele consumiu. O controle será verificado em uma régua de tomada, sendo que no instante em que o aparelho for plugado inicia-se o processo da amostragem do valor. O valor dado será em KW/h e R\$ e constará tanto em um display LCD quanto em um servidor (Thing.io). Para tal programação, foi usada as linguagens C/C++, JavaScript e HTML para o menu. Da parte mecânica do projeto foi otimizada uma caixa retangular que consta todo o Hardware mencionado anteriormente. Este projeto resulta em um protótipo suficiente para a tarefa a ele designada desde o inicio: Informar o quanto o aparelho esta consumindo nas tomadas, fazer a relação de gastos aparelho X residência, desligar ou ligar diretamente da força a partir de um dispositivo.

Palavras-chave: Energia; corrente elétrica; wifi; caixa; régua de tomada.

ABSTRACT

The main theme of this project is to inform a user without the necessary knowledge about the expenses of residential electricity through a device with internet. The consumption of electricity, televisions, computers and cell phones. The present study presupposes in electric flow verification by means of current sensors and the network voltage with a circuit elaboration for voltage measurement. For the preparation of this project, a small box has been optimized, which consists of two power supply sockets, having a communication by Wi-Fi, that will bring the command to the person depending on the times it is bet, such as turning off a device Check the How much it consumed. The control is checked on a power strip, there being no instants in which the plug apparatus started in the process of sampling the value. The given value is in KW / h and R \$ and will consist of both an LCD display and a server (Thing.io). For such programming, it was used as C / C ++, JavaScript and HTML languages for the menu. From the mechanical part of the project was optimized a rectangular box that consists of all the Hardware Dial. This project results in a sufficient prototype for a task to be assigned from the start: Inform how much you are plugged into this jack, make a device X residence, disconnect, or direct power link from a device.

Keywords: Energy; electric current; Wi fi; Cashier; Power strip.

LISTA DE ILUSTRAÇÕES

Figura 1 – Extensão elética fechada, Vista frontal	16
Figura 2 – Extensão elétrica aberta	17
Figura 3 – Extensão elétrica fechada posterior	17
Figura 4 – Circuito de comando	18
Figura 5 – Sensor de corrente ACS712	20
Figura 6 – Sensor de corrente DRV5053	21
Figura 7 – Sensor de tensão AC 127V/220V	22
Figura 8 – Circuito de tensão	22
Figura 9 – nodeMCU V3 ESP8266-12	23
Figura 10 – nodeMCU V3 ESP8266-12 Características	23
Figura 11 – Triac BTA-12 600.	24
Figura 12 - Triac BTA-12 600 Proteus	24
Figura 13 – Fusivel	25
Figura 14 – Circuito de chaveamento (MOC)	25
Figura 15 – Arduino uno	26
Figura 16 – Circuito de ligação LCD	26
Figura 17 – Botão 1	27
Figura 18 – Botão 2	27
Figura 19 – Programação web server	28
Figura 20 – Credencial HTML P.1	29
Figura 21 – Credencial HTML P.2	29
Figura 22 – Credencial pelo ip	30
Figura 23 – Menu para ligar/desligar	30
Figura 24 – Login thinger.io	31
Figura 25 – Dash board thinger .io	32
Figura 26 – Projeto inicial	33
Figura 27 – Imagem no maia	33
Figura 28 – Material madeira	34
Figura 29 – Material Acrilico	34
Figura 30 – Placa Ps Leitoso Translúcido	35
Figura 31 – Caixa madeira	36

Figura 32 – Caixa madeira com dobradiça	36
Figura 33 – Caixa parcialmente montada	37
Figura 34 – Caixa parcialmente montada- Vista lateral esquerda	37
Figura 35 – Caixa parcialmente montada- Vista lateral direita	37
Figura 36 – Caixa parcialmente montada- Vista posterior	38
Figura 37 – Caixa parcialmente montada-Vista superior	38
Figura 38 – Caixa montada- 1ª vista superior	39
Figura 39 – Caixa montada- 2ª vista traseira	39
Figura 40 – Caixa montada-3ª e 4ª vistas laterais	40
Fluxograma 1 –	27
Fluxograma 2 –	27
Fluxograma 3 –	28
LISTA DE TABELAS	
Tabela 1 – Custos do projeto	19
Tabela 2 – Sensor de corrente ACS712	20
Tabela 3 – Sensor de corrente DRV5053	21

LISTA DE ABREVIATURAS E SIGLA

ABNT Associação Brasileira de Normas Técnicas

CLP Controle Lógico Programável

CNC Comando Numérico computadorizado

IBGE Instituto Brasileiro de Geografia e Estatística

LED Diodo Emissor de Luz

LCD Tela de cristal líquido

MEC Ministério da Educação

TRIAC Triodo para corrrente alternada

LISTA DE SÍMBOLOS

kw Quilowatt(s)

kwh Quilowatt(s)-hora

w Watt(s)

SUMÁRIO

1 INTRODUÇÃO	14
Objetivo geral	14.1
1.2 Objetivos específicos	15
1.3 Justificativa	15.1
2 PESQUISAS	
2.1 Fundamentação teórica16	
2.2 Pesquisa de campo16	
2.3 Segurança do projeto18	
2.4 Sensor de corrente20	
2.5 Sensor de tensão22	
2.6 Módulo wifi ESP8266-1223	
2.7 Dispositivos de segurança24	
2.8 Circuito de chaveamento	
2.9 Arduino uno	
3 DESENVOLVIMENTO	
3.1 Programação web server28	
3.2 Credencial HTML29	
3.3 Servidor thinger.io31	
3.4 Estrutura mecânica33	
3.5 Montagem37	
3.6 Equações e fórmulas40	
4 CONCLUSÃO41	
5 REFERÊNCIAS42	
ΔPÊNDICE A – Estrutura Mecânica	44

1 INTRODUÇÃO

Ultimamente, aproximadamente 5,74% do uso de energia elétrica nas residências no Brasil, algo próximo de 6,756W são para o uso standby. Esta abundância de gasto de energia está aumentando. Isso afeta também alguns países desenvolvidos que estão na mesma situação. Por exemplo, no Japão, aproximadamente 10% do consumo residencial de energia vai para aparelhos que operam no modo standby.

Um problema que percebemos foi a insegurança de um usuário usar uma extensão de tomadas comum, onde possui nenhuma proteção contra sobretensão e Sobrecarga, podendo danificar equipamentos conectados na tomada ou até mesmo caso a residência sofra de um déficit de dispositivos de segurança, disjuntores e interruptor diferencial, pode causar incêndios.

Outro grave problema que reparamos, seria o esquecimento de um aparelho ligado em uma tomada, que muitas vezes pela rotina exaustiva ou a pressa, acabando agravando um consumo de energia desnecessário. Algo que parece simples, como desligar um aparelho diretamente da tomada puxando pelo cabo, pode diminuir a vida útil do aparelho.

1.1 Objetivo Geral

Foi pensando nisso, que escolhemos adequar uma extensão que, por meios de circuitos eletrônicos e sensores, pudesse interagir e informar o usuário sobre os gastos de energia na tomada através de um LCD e um servidor online (thing.io). Usando um celular conectado na mesma rede de internet da extensão, é possível de usufruir de toda as características deste equipamento.

1.2 Objetivos Específicos

O foco principal do projeto, é garantir que um usuário possa utilizar uma extensão de tomada de um modo seguro e ter a diminuição de riscos que poderiam agravar fatalidades. Além de constar facilidades para o usuário, como : informações de corrente total; potencia total; tensão da rede; gastos em reais.

1.3 Justificativa

A partir dos conhecimentos adquiridos no decorrer do curso, e as pesquisas sobre a escassez de segurança de uma extensão de tomadas, resolvemos fazer um estudo de melhoria que fornecesse segurança e informações sobre os gastos na utilização de energia no nosso produto.

2.1-Fundamentação Teórica

Com a escolha de nosso projeto derivado de um elemento constante em nossas vidas, a extensão elétrica, que infelizmente muitos não fornecem segurança, fizemos uma pequena análise sobre os produtos atuais do mercado.

2.2 Pesquisa de campo

Usamos como análise uma extensão elétrica 6 tomadas de origem chinesa.

Fonte: (Guilherme)

Figura 2: Extensão elétrica aberta.

Fonte: (Guilherme Oliveira).

Figura 3: Extensão elétrica fechada, Vista Posterior

Fonte: (Guilherme Oliveira).

2.3 - Segurança do Projeto

Figura 4: Circuito de comando

Fonte: (Guilherme Mota)

Foi feito o ensaio para realizar a segurança do projeto. Foi utilizado alguns fusivies, uma chave geral normalmente aberta com trava, também o componente optoacoplador moc3020 já contém uma especifica e boa segurança, etc.

Na tampa está descrito um valor máximo de 10A, mas olhando internamente não consta fusível para este limite, entretando, existe um varistor com as caracteristicas raspada. Caso o usuário não respeite este limite proposto de 10A, provavelmente romperá este varistor e poderá tornar esta extensão inutilizável dependendo do estrago. Será que realmente vale a pena custo x benefício?

Tabela 1 – custos do projeto

Componente	Valor
2 MOC3020	4,76
5 resistores	1,25
1 Triac BTA-12 600	1,2
4 bornes	2,28
2 borne p/ arduíno	6
1 ponte retificadora	1,1
2 capacitores	0,5
Arduíno	66
1 Módulo WI-FI	40
1 transformador	15
2 fusiveis	0,6
3 tomadas 15	
1 cabo para alimentação 8,9	
1 varistor	1
Total	163,59

Fonte: (Guilherme Mota).

2.4 – Sensor de corrente

De primeiro caso, já que nosso projeto envolve a medição de gastos residenciais, é claro que seria necessário um sensor eletrônico que medisse a corrente elétrica. Neste caso pensamos em usar o ACS 712:

Figura 5: Sensor de corrente ACS712

Fonte: (Guilherme Oliveira).

Visto que o nosso modelo é o de 30A, ACS712ELCTR-30A-T, havendo uma resolução de 66mV/A.

Tabela 2 - sensor de corrente ACS712.

Part Number	Packing*	T _A (°C)	Optimized Range, I _P (A)	Sensitivity, Sens (Typ) (mV/A)
ACS712ELCTR-05B-T	Tape and reel, 3000 pieces/reel	-40 to 85	±5	185
ACS712ELCTR-20A-T	Tape and reel, 3000 pieces/reel	-40 to 85	±20	100
ACS712ELCTR-30A-T	Tape and reel, 3000 pieces/reel	-40 to 85	±30	66

Fonte: (alldatasheet, P2).

Mas infelizmente uma resolução de 66mV/A para uma tomada que seria ligada residencialmente é muito alta, onde a média de corrente seria por volta de 400mA.

Sabendo disso, recorremos a um outro sensor por efeito hall DRV5053.

Figura 6: Sensor de corrente DRV5053.

Fonte:(Digi-Key).

Havendo as seguintes características:

Tabela 3 - sensor de corrente DRV5053.

DRV5053CA: 23 mV/mT					
Sensitivity	V _{CC} = 3.3 V T _A = -40°C to 125°C	10	23	35	mV/mT
Output-referred noise	V_{CC} = 3.3 V; R_{OUT} = 10 k Ω ; C_{OUT} = 50 pF T_A = -40°C to 125°C		11		mV_{pp}
Input saturation field	V _{CC} = 3.3 V T _A = -40°C to 125°C		35		mT
	Sensitivity Output-referred noise	Sensitivity $ \begin{array}{c} V_{CC} = 3.3 \text{ V} \\ T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \\ V_{CC} = 3.3 \text{ V}; R_{OUT} = 10 \text{ k}\Omega; \\ C_{OUT} = 50 \text{ pF} \\ T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C} \\ \\ V_{CC} = 3.3 \text{ V} \end{array} $	Sensitivity $ \begin{array}{c} V_{CC} = 3.3 \text{ V} \\ T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C} \end{array} $ $ \begin{array}{c} V_{CC} = 3.3 \text{ V}; \\ V_{CC} = 3.3 \text{ V}; \\ R_{OUT} = 10 \text{ kΩ}; \\ R_{OUT} = 50 \text{ pF}; \\ R_A = -40^{\circ}\text{C to } 125^{\circ}\text{C} \end{array} $ $ \begin{array}{c} V_{CC} = 3.3 \text{ V}; \\ V_{CC} = 3.3 \text{ V}; \\$	Sensitivity $V_{CC} = 3.3 \text{ V}$ $T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ 10 23 Output-referred noise $V_{CC} = 3.3 \text{ V}; R_{OUT} = 10 \text{ kΩ};$ $C_{OUT} = 50 \text{ pF}$ $T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ V _{CC} = 3.3 V V _{CC} = 3.3 V	Sensitivity $V_{CC} = 3.3 \text{ V}$ $T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$ 10 23 35 $V_{CC} = 3.3 \text{ V}; R_{OUT} = 10 \text{ kΩ};$ $C_{OUT} = 50 \text{ pF}$ $T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ 11 $V_{CC} = 3.3 \text{ V}$ $V_{CC} = 3.3 \text{ V}$ $V_{CC} = 3.3 \text{ V}$ 25

Fonte:(Texas instruments, P6).

Os únicos modelos deste DRV, eram importados e devido ao valor, resolvemos utilizar o ACS712, mesmo sabendo da resolução dele. Nosso foco, apartir disso, foi verificar consumo de corrente acimas de 1A.

2.5 - Sensor de tensão

Para continuar o calculo da potência de um modo preciso, pesquisamos sobre o sensor de tensão:

Figura 7: Sensor de tensão AC 127V/220V

Fonte:(Guilherme Oliveira).

Compramos este sensor mas ele só era para 127V, então pelo tempo restante resolvemos criar um circuito para 220V.

Figura 8: Circuito de tensão.

Fonte:(Guilherme Oliveira).

2.6 - Módulo wifi esp8266-12

Pensando em monitorar o consumo de energia e desligar/ligar as tomadas, foi decidido usar o nodeMCU.

Figura 9: nodeMCU V3 ESP8266-12.

Fonte:(Guilherme Oliveira).

Figura 10: nodeMCU V3 ESP8266-12 Características.

Fonte:(electrofun).

Este modulo consiste em um microprocessador ARM de 32 bits com memória flash e conexão a rede Wifi. Com essas características é possivel com que ele

trabalhe de maneira independente sem outras placas microcontroladoras como o pic ou arduino.

2.7 - Dispositivos de segurança

-Triac BTA-12 600

O TRIAC é um adequado dispositivo de controle para circuitos de corrente alternada.

Figura 11: Triac BTA-12 600.

Fonte: (baudaeletronica).

Este dispositivo que equivale a dois retificadores controlados de silício. é formado por dois SCR ligados em antiparalelo, c ou seja, um ao contrario do outro, mas em paralelo e com os Gates (gatilhos) ligados juntos. O Poder de bidirecionalidade faz de o TRIAC ser uma chave muito conveniente para circuitos de corrente alternada.

U8 TRIAC

Figura 12: Triac BTA-12 600 Proteus.

Fonte: (Jhoan).

Fusível-

Condutor elétrico ligado a um circuito, calibrado para fundir-se quando houver excesso de corrente.

Figura 13: Fusível

Figura - Fonte: (Eletrodex).

Consiste de um filamento ou lâmina de um metal ou liga_metálica de baixo ponto de_fusão que se intercala em um ponto de uma instalação elétrica, para que se funda, por efeito Joule, quando a intensidade de corrente_elétrica superar um determinado valor, devido a um curto-circuito.

2.8 - Circuito de chaveamento

Escolhemos o MOC 3020 para fazer o chaveamento do circuito.

Figura 14: Circuito de chaveamento (MOC)

Fonte: (Jhoan).

Fizemos esta escolha pelo fato de ser um optoacoplador, além de contar uma ótima segurança ao usuário, e o contato dele é luminoso.

2.9 - Arduino uno

Figura 15: Arduino uno.

Fonte: (Guilherme Oliveira).

Utilizamos o arduino pela melhor documentação encontrada sobre ele e a facilidade de integração com outros circuitos eletrônicos.

Figura 16: Circuito de ligação LCD.

Fonte: (create.arduino.cc)

Este é o circuito básico da ligação do LCD, mas ao invés do potenciometro, utilizamos o pino diretamente no GND.

Figura 17: Botão 1

Fonte: (Douglas).

Este é o fluxograma do primeiro botão, onde quando ele for pressionado irá mostrar o valor da tensão da rede e o valor em reais, se não, apenas mantém o estado inicial, que é mostrado o valor da corrente e potência.

Figura 18: Botão 2

Começo

Botão2 = 1? Mostra o valor da corrente e potência lostra a temperatura interior da extensão

Fonte: (Douglas).

Este fluxograma é em relação ao botão 2, que quando pressionado, mostra no lcd a temperatura interna.

3 DESENVOLVIMENTO

3.1 - Programação web server

Para a programação seguimos este fluxograma:

Dados conexão wifi

Pino 12 acionado

Sim

Ligar tomada 1

Pino 14 acionado

Sim

Ligar tomada 2

Não

Desligar tomada 2

Não

Desligar tomada 2

Não

Credencial thinger.io

Desligar tomada 2

Não

A

Desligar tomada 2

A

A

Desligar tomada 2

Figura 19: Programação web server

Fonte:(Guilherme Oliveira)

Este fluxograma da figura 19 é usado como base para a programação do modulo wifi, que é responsável por chavear a carga e mostrar o no servidor o valor

de corrente. São valores de entrada a senha e login wifi; os pinos; e a criação da conta no thinger.io. Após a conexão wifi se conectar, ele se conecta com o servidor e ja está pronto para o uso. A partir do acionamento da tomada 1 ou 2, é possível verificar tanto no LCD quando no servidor o valor de corrente.

3.2- Credencial HTML

Figura 20: Credencial HTML

```
String content = "<html><body><form action='/login' method='POST'>Para logar, use: admin/admin<br>";
content += "Usuário:<input type='text' name='USERNAME' placeholder='Usuário'><br>";
content += "Senha:<input type='password' name='PASSWORD' placeholder='Senha'><br>";
content += "<input type='submit' name='SUBMIT' value='Entrar'></form>" + msg + "<br>";
content += "Caso não entre, tente aqui. <a href='/inline'>here</a></body></html>";
server.send(200, "text/html", content);
```

Fonte:(Guilherme Oliveira)

Figura 21: Credencial HTML

```
if (server.hasArg("USERNAME") && server.hasArg("PASSWORD")){
   if (server.arg("USERNAME") == "admin" && server.arg("PASSWORD") == "admin" ){
      server.sendHeader("Location","/");
      server.sendHeader("Cache-Control","no-cache");
      server.sendHeader("Set-Cookie","ESPSESSIONID=1");
      server.send(301);
      Serial.println("Log in Successful");
      return;
   }
msg = "Senha errada.Tente denovo.";
Serial.println("Log in Failed");
      Fonte:(Guilherme Oliveira)
```

As figuras 20 e 21, compõem uma parte da programação do módulo Wi-fi para entrar em uma página html que é possível ligar/desligar as tomadas tomadas e um link para entrar no servidor thinger.io.

Figura 22: Credencial pelo ip.

Caso nao entre, tente aqui. here

Fonte:(Guilherme Oliveira).

Após colocar o usuario e senha e pressionar o botão entrar, irá abrir outra página.

Figura 23: Menu para ligar/desligar.

Fonte:(Guilherme Oliveira).

Fizemos este menu, para não ficar apenas dependendo do servidor thinger.io, e é possível ligar/desligar a e energia do aparelho conectado na extensão, fazer o logout e um botão que abre diretamente o painel de controle do servidor.

3.3- Servidor thinger.io

Figura 24: Login thinger.io

Fonte:(Guilherme Oliveira).

Após a pessoa fazer o login, como mostrado na figura 24, com a possibilidade de salvar o usuário no computador, estará liberado a conexão com o módulo, desde que as configurações estejam totalmente corretas na programação.

Figura 25: Dash board thinger .io.

Fonte:(Guilherme Oliveira).

Este é o painel de controle, onde é possível ligar/desliga a energia que alimenta o aparelho conectado a extensão, além de mostrar o valor em Reais e o valor da corrente total. O processo da contagem inicia-se a partir que pelo menos uma tomada esteja conectada a um aparelho.

3.4 – Estrutura mecânica

Nosso esboço inicial do projeto foi a partir da imagem:

Fonte:(Jhoan)

Onde nela constaria:1 LCD; 3 botões; 1 regua de extensão. Para a escolha do material da parede externa, pensaríamos em um que era isolante elétrico, leve e fácil para furar.

Figura 27: Imagem no maia.

Fonte:(Jhoan)

A figura 26 mostra apenas a idéia, enquanto a figura 27 já foi pensada avaliando os possíveis circuitos e sensores internos. A inclinação da tampa é para facilitar a visualização do display, e ter a possibildade de abrí-la para possível manuntenção.

Figura 28: Material madeira

Fonte:(Guilherme Oliveira)

Figura 29: Material Acrilico

Fonte:(Guilherme Oliveira)

Figura 30: Placa Ps Leitoso Translúcido

Fonte:(Guilherme Oliveira)

A partir da análise dos materiais isolantes, utilizamos madeira e acrilico para a confecção da caixa e uma placa ps leitosa para revestimento interno . Além de ter um bom custo benefício, é mais fácil trabalhar com eles.

Figura 31: Caixa madeira

Fonte:(Guilherme Oliveira)

Decidimos com que a caixa tivesse este formato, pois facilita a visão do lcd de uma distância maior; seu tamanho facilita a possibilidade da retirada dos cabos de força, e a cor amadeirada faz com que tenha um visual melhor em diferentes locais de utilização.

Figura 32: Caixa madeira com dobradiça

Fonte:(Guilherme Oliveira)

Colocamos dobradiça para que a parte superior tenha a possibilidade de se levantar para uma futura manuntenção. Colocamos acrílico na parte frontal para ter uma estética de visualização interna da caixa.

3.5 - Montagem

Figura 33: Caixa parcialmente montada

Fonte:(Guilherme Oliveira)

Figura 34: Caixa parcialmente montada- Vista lateral direita

Fonte:(Guilherme Oliveira).

TVNOIS

Figura 35: Caixa parcialmente montada- Vista lateral esquerda

Fonte:(Guilherme Oliveira).

As partes laterais tem a função da entrada/sáida de ar. Aproveitamos um gabinete velho de sucata e cortamos as partes com furos

Figura 36: Caixa parcialmente montada- Vista posterior

Fonte:(Guilherme Oliveira)

Figura 47: Caixa parcialmente montada-Vista superior

Fonte:(Guilherme Oliveira)

A partir dessas imagens é demonstrada a parte final da montagem desta estrutura, com os:Lcd;botões;tomadas;chave geral;encaixe de fusível; encaixe para alimentação.

3.6 Equações e fórmulas

```
Formula (Leitura) da Corrente
// Le o sensor no pino analogico A0 e ajusta o valor lido ja que a saída do sensor é
(1023)
  sensorValue_aux = (analogRead(pinoSensor) -511);
// Somam os quadrados das leituras.
  valorSensor += pow(sensorValue_aux,2);
// Finaliza o calculo da média quadratica e ajusta o valor lido para volts
 valorSensor = (sqrt(valorSensor/ 500)) * voltsporUnidade;
// Calcula a corrente considerando a sensibilidade do sensor (66 mV por amper)
 valorCorrente = (valorSensor/66)*1000;
Formula da Potencia
// Corrente x Tensão
(valorCorrente * rede);
Formula do Valor em reais por minuto
  kwh = (((valorCorrente * rede) / 1000) / 60);
 valueReais = kwh * 0.35;
```

Formula / Leitura da Tensão da rede

```
// xac = analog Read(A4)
float voltage = (xac* (5.0 / 1023.0));
```

4 CONCLUSÃO

Ao longo do curso, e a partir do aprendizado adquirido no curso técnico em mecatrônica, conclui-se que utilizamos os conhecimentos necessários para execução do projeto. Foi possível montar a estrutura da caixa sem problemas, mas tivemos dificuldades em relação ao espaço trabalhado dentro dela, dificultando o fechar da tampa. Considerando a programação do arduino e do modulo Wi-fi tivemos bons resultados, entretanto, não foi possível mostrar com exatidão o valor da corrente no servidor. A segurança da caixa foi pensada em proteger o usuário, tanto em isolamentos quando os circuitos internamente (cooler para resfriar, varistor para proteger os circuitos e fusíveis).

Pretendemos fazer pequenas melhorias, mas com grandes relevâncias, por exemplo: colocar uma trava na tampa para evitar o abrir dela; adicionar mais um campo do painel de controle do tinguer.io que mostra os gastos consumidos da extensão em relação a toda a casa, para isso será necessário um sensor de corrente de 50A ou 100A.

REFERÊNCIAS

Referência de livro com um autor:

MATEUS, César Augusto. **C++ Builder 5:** guia prático. 2 ed. São Paulo: Érica, 2000. 101 p.

Referência de livro com dois autores:

CAPUANO, Francisco Gabriel; IDOETA, Ivan Veleije. **Elementos de eletrônica digital.** 28 ed. São Paulo: Érica, 1998. 528 p.

Referência de livro com três autores:

SANTINI, Rodrigo; SANTOS, Camilo Gomes.; PASSOS, Rita. **Dimensões do lazer e da recreação:** questões espaciais, sociais e psicológicas. 2. ed. São Paulo: Angelotti, 1993. 101 p. (Série Recreação; n.21).

Referência de livro com mais de três autores:

URANI, Aldo. et al. **Constituição de uma matriz de contabilidade social para o Brasil**. Brasília: IPEA, 1994. 101 p.

Referência com colaboradores, organizadores e editores:

SILVA, Antonio da (Colab.). **Métodos e técnicas de escrita**. Campinas: Papirus,1987. 102 p.

SOUZA, Hugo. (Org.). **Ciência hoje e amanhã**: como seguir o futuro. Campinas: Alínea, 1990. 68 p. (Interessante; v.5).

SANTANA, Alceu. (Ed.). **A Biblioteca Nacional no Brasil**: valores de uma cultura. 2. ed. Rio de Janeiro: Biblioteca Nacional, 2000. 77 p.

Referência de documento eletrônico:

ÁCAROS no Estado de São Paulo. In: FUNDAÇÃO TROPICAL DE PESQUISAS E TECNOLOGIA "ANDRÉ TOSELLO". **Base de Dados Tropical.** 1985. Disponível em: http://www.bdt.fag.org.br.acaro/sp/. Acesso em 30 abr. 2002.

Referência de parte de monografia:

ROMANO, Giovanni. Imagens da juventude na era moderna. In: LEVI, Gustavo (Org.). **História dos Jovens 2:** a época contemporânea. São Paulo: Companhia das Letras, 1996. p. 7-16.

Referência de publicação periódica como um todo:

REVISTA BRASILEIRA DE GEOGRAFIA. Rio de Janeiro: IBGE, 1939-

Referência de artigo de periódico:

CÉSAR JUNIOR, Kleos Lenz; VERÍSSIMO, Gustavo de Souza. Primeiros passos para programar em Autolisp. **CADesign**, São Paulo, v. 3, n. 25, p. 58, abr. 1997.

Referência de artigo de periódico em meio eletrônico:

WINDOWS 98: o melhor caminho para atualização. **PC WORLD.** São Paulo, n.75, set. 1998. Disponível em:http://www.jdg.com.br?abre.htm. Acesso em: 10 set. 1998.

Referência de artigo de jornal:

NAVES, Paulo. Lagos andinos dão banho de beleza. **Folha de São Paulo,** São Paulo, 26 jun. 1999. Folha Turismo, Caderno 8, p. 13.

Referência de Eventos: Congressos, Simpósios, et:

REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE QUÍMICA, 20., 1997, Poços de Caldas. **Química**: academia, indústria, sociedade: livro de resumos. São Paulo: Sociedade Brasileira de Química, 1997.

Referência de evento em meio eletrônico

CONGRESSO DE INICIAÇÃO CIENTIFICA DA UFPe, 4., 1996. Recife. **Anais eletrônicos...** Recife: UFPe, 1996. Disponível em: htttp://www.propesg.ufpe.br/anais/anais.htm. Acesso em 21 jan. 1997.

Trabalho apresentado em evento

BRAYNER, Antonio. R.; MEDEIROS, Carlos. Incorporação do tempo em SGBD orientado a objetos. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS, 9., 1994, São Paulo, **Anais...** São Paulo: USP, 1994. p. 16-29.

Referência de Trabalho de Conclusão de Curso:

MORGADO, Mario. Reimplante dentário. 1990. 51 f. Trabalho de Conclusão de Curso (Especialização) – Faculdade de Odontologia, Universidade Camilo Castelo Branco, São Paulo, 1990.

Referência de Tese, Dissertação:

ALVES, Simão. A estratégia do ensino-aprendizagem em crianças de fase inicial no ensino fundamental. 1996. 102 f. Dissertação (Mestrado em Educação) - Faculdade de Educação, Universidade Estadual de Campinas, Campinas.

Patente:

EMBRAPA. Unidade de apoio, Pesquisa e Desenvolvimento de Instrumentação Agropecuária (São Carlos, SP). Paulo Estevão Cruvinel. **Medidor digital multissensor de temperatura para solos**. BR n. PI 8903105-9, 26 jun. 1989, 30 maio 1995.

E-mail

ALMEIDA, Mario. **Fichas para MARC** [mensagem pessoal]. Mensagem recebida por mtmendes@uol.com.br em 12 jan. 2002.

APÊNDICE A - Estrutura Mecânica

Fizemos a montagem seguindo estes desenhos no auto cad.

Unidade: milímetro

Figura 38: Caixa montada- 1ª vista superior.

Fonte:(Guilherme Mota)

Figura 39: Caixa montada-2ª vista traseira.

Fonte:(Guilherme Mota)

Figura 40: Caixa montada-3ª e 4ª vistas laterais.

Após estes desenhos feitos, ajustamos os locais para os componentes.