Analysis of Metal Alloys by Inductively Coupled Argon Plasma Optical Emission Spectrometry

Arthur F. Ward* and Louis F. Marciello

Jarrell-Ash Division, Fisher Scientific Company, 590 Lincoln Street, Waltham, Massachusetts 02154

A technique for analyzing metal alloys using a direct-reading inductively coupled argon plasma (ICAP) spectrometer is described in which samples are acid-dissolved before analysis. Because a concentration ratio method is used for analysis, dilution errors of up to $\pm 40\,\%$ can be tolerated without significant loss of accuracy. The ICAP technique is used to determine 17 elements in irons and steels, 14 elements in copper-based alloys, and 12 elements in aluminum alloys. The analytical accuracy of these determinations is verified by the analysis of standard reference materials for each sample matrix.

Routine analyses of metal alloys in quality control laboratories are performed most commonly by spark emission spectrometry or X-ray fluorescence because of rapid sample turnaround and ease of operation. The problem with both of these techniques is that the analytical signal is highly dependent on matrix composition. Precise matching of sample and standard matrices is required if accurate results are to be obtained. However, certified standards for calibration that match the samples to be analyzed often are difficult to find. Other alternatives, e.g., wet chemistry procedures, are unaffected by the certified standards problem because synthetic standards can be prepared readily, but such methods are time-consuming. Also, analytical determinations must be made sequentially, compounding the time factor. Atomic absorption spectrometry is a faster analytical technique than wet chemistry but, again, determinations are made sequentially. The inductively coupled argon plasma (ICAP) spectrometry technique has positive characteristics for application to metal alloy analysis, i.e., its simultaneous, multielement determination capability and its use of synthetic standards.

Fassel and Dickinson (1) described a method of analyzing arsenic and tin in solders that involved melting the sample, forming an aerosol by ultrasonic nebulization, and analyzing the aerosol by ICAP. Hoare and Mostyn (2) described a high frequency plasma method for determining boron and zirconium in nickel-based alloys following sample dissolution. Souilliart and Robin (3) described a method for determining hafnium in zirconium by ICAP. Kirkbright and Ward (4) compared the ICAP with flame emission using a separated nitrous oxide—acetylene flame for the determination of copper, zinc, iron, titanium, manganese, and magnesium in aluminum alloys and concluded that the ICAP gave better precision and offered simultaneous multichannel analytical capability.

Butler et al. (5) described a procedure for the determination of aluminum, chromium, copper, manganese, and nickel in steel samples using an ICAP spectrometer that had been calibrated with synthetic standards prepared in the presence of iron only. With this minimal matrix matching, these workers were able to analyze low alloy, high alloy, and stainless steels with the same calibration curve.

Other applications of the ICAP to metal alloy analyses in which several elements have been determined in various sample matrices also have been reported in the literature (6-10). However, none of these reports has covered the simultaneous multielement analysis of the metal alloy sample in a truly comprehensive fashion.

In this paper, we describe the analysis of iron-based, copper-based, and aluminum-based alloys in which the majority of the alloying components is determined and the concentration ratio method of analysis employed. The concentration ratio method offers a potential analytical advantage; only relative solution concentrations rather than absolute solution concentrations are required for analysis. Consequently, there is no need to weigh the initial sample or measure the final volume accurately, provided that the solution concentrations of both analyte and matrix are within the instrument's calibration range. The elimination of the need for accurate sample weighing not only speeds up sample preparation but also prevents any potential errors that may be caused by misreading or mistakes in arithmetic or transcription.

EXPERIMENTAL

Theory. Because the concentration ratio method of analysis is described fully elsewhere (11), only a brief discussion will be presented here.

If the concentration of the *i*th analyzed element in the original sample is C_i , the concentration of the *j*th unanalyzed element is C_i and the matrix element concentration is C_{M_i} then

$$\sum_{i} C_i + \sum_{i} C_j + C_M = 100$$
 (1)

where all concentrations are in percentages. This equation then may be arranged to the form:

$$1 + \frac{\sum C_i}{C_M} = 1 + \sum_i B_i = \frac{100 - \sum_j C_j}{C_M}$$
 (2)

where B_i is the concentration ratio of the ith element to the matrix element

When the analytical technique exhibits a linear relationship between signal and concentration, then the ratio of the net line intensity of the *i*th element to the matrix element, R_i , may be described by Equation 3, where p_i and q_i are calibration constants:

$$R_i = p_i + q_i B_i \tag{3}$$

Given this, the concentration ratio technique should give equivalent data regardless of the absolute solution concentrations and hence be independent of the weight of solid used or the final dilution volume.

Once the concentration ratios and any residual concentration (C_j) have been determined, then Equation 2 may be solved to determine the matrix element concentration (C_M) . From this value and the determined concentration ratio (B_i) , the absolute concentration of the *i*th element in the original sample is calculated from Equation 4:

$$C_i = B_i C_M \tag{4}$$

If the relationship is not linear, however, this freedom from solution concentration and the concentration ratio technique are not valid. For example, if the analytical equation is second order, Equation 3 is modified to Equation 5, where p_i , q_i , and r_i are the

Table I. Elements and Analytical Wavelengths (nm) Employed

	copp	oer	irc	on	aluminum		
element	line	bkgd ^a	line	bkgd ^a	line	bkgd^a	
Ag	328.068	328.102	b		b		
Αĺ	308.215	308.249	308.215	308.249	308.215^{c}		
$\mathbf{A}\mathbf{s}$	193.696	193,730	193.696	193.730	b		
В	b		249.773	249.807	b		
Cd	226.502	226.536	b		b		
Co	b		228.616	228.650	b		
Cr	b		267.716	267.750	267.716	267.750	
Cu	$213.598^{c,d}$		324.754	324.788	324,754	324.788	
Fe	259.940	259.974	238.863^{c}	• • •	259.940	259.974	
Mg	b		b		383.231^d		
Mn	257.610	257.644	257.610	257.644	257.610	257.644	
Mo	b		202.030	202.064	b		
Nb	b		313.079	313.113	b		
Ni	231,604	231.621	231.604	231.621	231.604	231.621	
P	253.565	253,599	214.914	214.931	b		
Pb	220.353	220.387	b		220.353	220.387	
$\mathbf{S}\mathbf{b}$	217.581	217.615	b		217.581	217.615	
Si	288.158	288.192	288.158	288.192	b		
Sn	189.989	190.023	b		189.989	190.023	
Ta	b		240.063^d		b		
Ti	b		334.941	334.978	334,941	334.978	
v	b		292,402	292.436	b		
w	b		207.911	207.945	b		
Zn	206.200	206.217	201.011 2b		213.856	213.890	
Zr	b		339.198	339.222	b		

^a Background measurement wavelength. ^b Signifies element not determined. ^c Signifies used as internal standard, no background correction employed. ^dLine selected on external monochromator.

Table II. Operating Condi	tions		
ICAP		Direct reader	
Plasma torch	Quartz type, 1-mm nozzle	Dispersion	0.53 nm/mm first order
Argon gas flows Peristaltic pump Solution uptake rate (pumped)	diameter Coolant—18 L/min Auxiliary—0.5 L/min Sample—0.7 L/min Gilson Minipuls II 0.95 mL/min	Monochromator Entrance slit Exit slit Grating Blaze Dispersion	$10~\mu m$ $20~\mu m$ $1180~gr/mm$ ruled plain $270~nm$ $1.6~nm/mm$ first order
Forward RF power	1.2 kW	Electronics	
Reverse RF power	< 5 W	PMT	Hamamatsu type R427—
Induction coil	Three-turn water-cooled copper tubing		185-200 nm direct reader, R300—250-500 nm direct reader, R456—185-800
Optics	O 200 200 200 200 200 200 200 200 2		nm monochromator
Focusing element	Separate off-axis front-	Voltage	600-950 V
	surfaced concave mirrors for direct reader and monochromator	Read out	Central processing unit (PDP-8A, DEC, Maynard,
Magnification	imes 3.6 nominal		Mass.), controlled indi-
Height of observation plasma	18 mm above coil		vidual op-amp analog integrators with multi-
Entrance slit aperture	3 mm	Integration period	plexed A/D converters
Direct reader		integration period	7 s—background
Entrance slit	25 μm	CPU terminal	LA-36 DECwriter (DEC,
Exit slits	50 μm		Maynard, Mass.)
Grating	2360 gr/mm ruled concave	CPU mass storage	RX01 Dual Floppy Disks
Blaze	270 nm		(DEC, Maynard, Mass.)

calibration constants and C_i^\prime is the solution concentration of the ith element:

$$R_i = p_i + q_i B_i + r_i B_i C'_i \tag{5}$$

Since Equation 5 has two unknowns, B_i and C'_i , it is impossible to use the concentration ratio method from a single measurement. Reasonable approximations can be made if either, or preferably both, the terms r_i and C'_i are small, and the matrix element constitutes over 90% of the sample and remains fairly constant. If the matrix element is subject to large variations in concentration and constitutes only 50–70% of the sample, e.g., iron in stainless or high alloy steels, or copper in brass, then the likelihood for

substantial error exists, especially for the major alloying elements.

Spectral Line Interference Corrections. In any emission

spectral Line Interference Corrections. In any emission spectroscopic technique, the possibility always exists of spectral line interferences from a concomitant species upon the analyte line. The ICAP technique is no exception to this condition. The high precision of the ICAP coupled with the ease with which synthetic standards can be prepared makes the correction of spectral interferences a much simpler task when compared with other emission techniques.

In the spectrometer data processing unit, corrections for spectral line overlap are made on the *i*th element from the *k*th element using Equation 6, where B_i is the corrected concentration ratio,

Table III. Linear Ca	alibration Verification S	andards				
	Copper				${ m mg/L}$	$\% w_{\rm a}/w_{\rm m}$
% $w_{\rm a}/w_{\rm m}{}^a$ in sample	e mg/L in solution	elements	standard #	element	solution	in solid
0, 0.05, 0.1, 0.2	0, 2.5, 5, 10	Ag, As, Cd, Mn, Ni, P, Sb, Si	5	Cu As Cd	5000 5 5	100 0.1 0.1
0, 0.2, 0.5, 1.0, 2.0 0, 0.5, 1.0, 2.0, 5.0 0, 1, 5, 10, 20, 50	0, 10, 25, 50, 100 0, 25, 50, 100, 250 0, 50, 250, 500, 1000,	Fe, Sn Al, Pb		P Sb Si	5 5 5	0.1 0.1 0.1
100	2500 5000	Cu (added		Iron l	oased alloys	
100	0000	to all	1	Fe	5000	100
		standards)	2	Fe	5000	100
	Iron			Cr Cu	1000 100	$\frac{20}{2.0}$
0, 0.05, 0.1, 0.2 0, 0.05, 0.1, 0.2, 0.5	0, 2.5, 5 0, 2.5, 5, 10, 25	As, B, P, Zr Co, Cu, Nb,		Mn Ni	100 1000	2.0 20
0, 0.2, 0.5, 1.0, 2.0 0, 0.5, 1.0, 2.0, 5.0 0, 1, 5, 10, 20	0, 5, 25, 50, 100 0, 25, 50, 100, 250 0, 50, 250, 500, 1000 5000	Ta, V, W Al, Mn, Si Mo, Ti Cr, Ni Fe (added	3	Fe Al Co Mo	5000 100 100 100	100 2.0 2.0 2.0
100	5000	to all		Ti E-	100	2.0
	Aluminum	standards)	4	Fe Nb Ta V	5000 10 10	$100 \\ 0.2 \\ 0.2 \\ 0.2$
0, 0.05, 0.1 0, 0.05, 0.1, 0.2, 0.5		Cr, P, Sb, Sn Fe, Pb		W Zr	10 10 10	0.2 0.2 0.2
0, 0.2, 0.5, 1.0, 2.0 0, 1, 2, 5, 10	0, 2, 5, 10, 20 0, 10, 20, 50, 100	Mn, Ni Cu, Zn	5	Fe As	5000 10	$\begin{array}{c} 100 \\ 0.2 \end{array}$
0, 2, 5, 10, 25 100	0, 20, 50, 100, 250 1000	Mg Al (added to all		B P	10 10	$0.2 \\ 0.2$
		standards)		Si	10	0.2
Mı	ıltielement Standards			Aluminu	m based alloy	S
C	opper based alloys		1	Al	1000	100
standard # elem	mg/L %i	$w_{ m a}/w_{ m m}$ n solid	2	Al Cu	1000 100	100 10 10
standard π cicin		100	3	Si Al	100 1000	100
2 Cu		100	o o	Zn	100	10
Z		50	4	Al	1000	100
3 Cı		100		Mg Ni	100 100	10 10
Aş Pk		0.1 5.0	5	Al	1000	100
Sr.		1.0	U	Cr	10	1
4 Cı		100		Fe Mn	10 10	1 1
Al To		5.0		Pb	10	1
Fε M		0.2 0.1		Sb	10	1
Ni		0.1		Sn Ti	10 10	1 1
				Zr	10	1

a Weight of analyte elements/weight of matrix elements.

 B_i' is the uncorrected concentration ratio, B_k is the concentration ratio of the interfering element and K_{ik} is the empirically determined interference factor:

$$B_i = B'_i - \sum_k K_{ik} B_k \tag{6}$$

These empirical interference factors are determined subsequent to the calibration routine and are applied automatically by the central processor prior to the output of the determined concentration ratios.

Interference corrections from the matrix element do not have to be determined empirically since the instrument is standardized by Equation 3, which automatically relates the concentration of the matrix element to the intensity ratio.

Instrumentation. A Model 96-986 (Jarrell-Ash Division, Fisher Scientific Company, Waltham, Mass. 02154) ICAP Atom-Comp Direct Reading Spectrometer programmed for the elements

listed in Table I was used for this study. Automatic background correction provided by a Model 90-555 Spectrum Shifter attachment (Jarrell-Ash) was used for the lines designated in Table I. Lines not programmed into the unit were measured with a Model 96-978 N+1 Channel, a 0.5-m Ebert scanning monochromator (Jarrell-Ash). The operating conditions for the ICAP and spectrometers are shown in Table II.

Reagents. Stock calibration standards containing 1% w/v of the analyte were prepared from spectroscopically pure chemicals (Specpure grade, Johnson Matthey Co. Ltd., England) dissolved in high purity acids (Hipure grade, Fisher Scientific Co., Fair Lawn, N.J.). The same high purity acids were used to dissolve the samples.

Method. Copper-Based Alloys. About 250 mg of sample (usually chips or turnings) was transferred to a 2-oz plastic bottle. One milliliter of concentrated nitric acid was added. After the reaction subsided, 15 mL of concentrated hydrochloric acid was

	ele-	inter-	e,					le-	inter-	e ,
	men		factor				m	ent	ferent	factor
copper alloy	rs As	Al	0.00467				1	Иb	Ni	-0.00010
	P	Fe	0.00044	•					Cr	-0.00015
	Pb	Fe	0.87841						Ti	0.06745
	Sb	Al Mn	-0.00100 0.00074				N	J i	V Co	$0.00801 \\ -0.00146$
	55	Al	0.00199				P		Mo	0.00140
		Pb	0.00417				•		Ni	0.00025
		Fe	0.00112						Cr	-0.00258
		$\mathbf{Z}\mathbf{n}$	0.00016						Cu	0.07717
	Sn	Zn	0.00200				S	Si	Cr	-0.00856
							Γ	`a	Ti	0.00158
iron alloys	Al	Mn Mo	0.00086						W	0.01358
		Co	0.00731 -0.00640				_		Co	0.01357
		v	0.00579				Ţ		Cr	0.00020
	As	Мо	0.00091				1	/	Mo	-0.01069
	113	Ni	0.00085						Cr	0.00010
		Cr	0.00088				17	17	Ti M-	0.00049
		Āl	0.00467				V	v	Mo Cr	0.00053
		W	-0.04979						Cu Cu	$0.00007 \\ -0.01002$
		V	0.00142						V	-0.01002
	Co	Mo	-0.00258	}			7	r	Mo	0.00050
		Ni	0.00004				_		Ni	-0.00007
		Cr	0.00021		_			_		
	=-	Ti	0.00164		alun	ninum all	oys S	b	Mg	0.00013
	Cr	Ti	0.00018						Ni	0.00635
		W	0.00102				_		Cu	0.00226
	C	V M-	-0.00019					in n	Ni	0.00307
	Cu Mn	Mo Ni	0.00038 0.00001						Zr	0.00200
le V. Detec	tion Limits (% w/w) for	Alloying El	lements						
		matrix						m	natrix	
element	copper	matrix iron	aluminu	m	elen		copper		iron	aluminun
element Ag	copper 0.0005	matrix iron _a	aluminu _a	m	Ni	i (0.0002	0.	iron .0004	aluminun 0.0009
element Ag Al	copper 0.0005 0.0005	iron _a 0.0003	aluminu	m	Ni P	i (0.0002 0.003	0.	iron	0.0009
element Ag Al As	copper 0.0005 0.0005 0.0004	iron _a 0.0003 0.0006	aluminu _a	m	Ni P Pb	i (0.0002 0.003 0.0009	0.	iron .0004	0.0009 - 0.004
element Ag Al As B	copper 0.0005 0.0005 0.0004	iron _a 0.0003	aluminu _a _b -	m	Ni P Pb Sb	i (0.0002 0.003 0.0009 0.0008	0.	iron .0004 .002	0.0009
element Ag Al As B Cd	copper 0.0005 0.0005 0.0004	iron _a 0.0003 0.0006 0.001	aluminu _a	m	Ni P Pb Sb Si	i ((0.0002 0.003 0.0009 0.0008 0.0003	0.	iron .0004 .002	0.0009 0.004 0.004
element Ag Al As B Cd Co	copper 0.0005 0.0005 0.0004	iron _a 0.0003 0.0006 0.001 - 0.0002	aluminu _a _b - - -	m	Ni P Pb Sb Si Sn	i (0.0002 0.003 0.0009 0.0008	0.	iron .0004 .002 - .0003	0.0009 - 0.004
element Ag Al As B Cd Co Cr	copper 0.0005 0.0005 0.0004	iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002	aluminu _a _b 0.0004	m	Ni P Pb Sb Si Sn Ta	i (0.0002 0.003 0.0009 0.0008 0.0003	0. 0. 0.	iron 0004 002 - 0003	0.0009 0.004 0.004 - 0.009
element Ag Al As B Cd Co	copper 0.0005 0.0005 0.0004 _a 0.0001	iron _a 0.0003 0.0006 0.001 - 0.0002	aluminu _a _b 0.0004 0.0003	m	Ni P Pb Sb Si Sn	i (0.0002 0.003 0.0009 0.0008 0.0003	0. 0. 0.	iron .0004 .002 - .0003 - .005 .0001	0.0009 0.004 0.004
element Ag Al As B Cd Co Cr Cu Fe Mg	copper 0.0005 0.0005 0.0004 _a 0.0001 b 0.0006	iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b	aluminu _a _b 0.0004 0.0003 0.0005 0.016	m	Ni P Pb Sb Si Sn Ta Ti	i (0.0002 0.003 0.0009 0.0008 0.0003	0. 0. 0. 0.	iron 0004 002 - 0003	0.0009 0.004 0.004 - 0.009
element Ag Al As B Cd Co Cr Cu Fe Mg Mn	copper 0.0005 0.0005 0.0004 _a 0.0001	iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b - 0.0001	aluminu _a _b 0.0004 0.0003 0.0005	m	Ni P Pb Sb Si Sn Ta Ti V	i (0.0002 0.003 0.0009 0.0008 0.0003	0. 0. 0. 0. 0.	iron 0004 002 - .0003 - .005 0001 0004 0005	0.0009 0.004 0.004 - 0.009 - 0.0002 - 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo	copper 0.0005 0.0005 0.0004 _a 0.0001 b 0.0006	iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _ b _ 0.0001 0.0006	aluminu _a _b 0.0004 0.0003 0.0005 0.016	m	Ni P Pb Sb Si Sn Ta Ti V W	i ((0.0002 0.003 0.0009 0.0008 0.0003 0.0008	0. 0. 0. 0. 0.	iron .0004 .002 .0003 .005 .0001 .0004	0.0009 0.004 0.004 - 0.009 - 0.0002
element Ag Al As B Cd Co Cr Cu Fe Mg Mn	copper 0.0005 0.0005 0.0004 _a 0.0001 b 0.0006	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b - 0.0001 0.0006 0.0004	aluminu _a _b 0.0004 0.0003 0.0005 0.016 0.0001	m	Ni P Pb Sb Si Sn Ta Ti V W Zr	i ((0.0002 0.003 0.0009 0.0008 0.0003 0.0008	0. 0. 0. 0. 0.	iron 0004 002 - .0003 - .005 0001 0004 0005	0.0009 0.004 0.004 - 0.009 - 0.0002 - 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb	copper 0.0005 0.0005 0.0004 _a 0.0001 b 0.0006	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b - 0.0001 0.0006 0.0004	aluminu _a _b 0.0004 0.0003 0.0005 0.016 0.0001	m	Ni P Pb Sb Si Sn Ta Ti V W Zr	i ((0.0002 0.003 0.0009 0.0008 0.0003 0.0008	0. 0. 0. 0. 0.	iron 0004 002 - .0003 - .005 0001 0004 0005	0.0009 0.004 0.004 - 0.009 - 0.0002 - 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not	copper 0.0005 0.0005 0.0004 _a 0.0001 b 0.0006 00001	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b - 0.0001 0.0006 0.0004 b Matrix	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element.	m	Ni P Pb Sb Si Sn Ta Ti V W Zr Zr		0.0002 0.003 0.0009 0.0008 0.0003 0.0008 - - - 0.003	0. 0. 0. 0. 0. 0.	iron 0004 002 - .0003 - .005 0001 0004 0005	0.0009 0.004 0.004 - 0.009 - 0.0002 - 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not	copper 0.0005 0.0005 0.0004 _a 0.0001 _b 0.0006 0.0001 _determined.	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b 0.0006 0.0004 b Matrix f Sample t	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 element.	ed Concen	Ni P Pb Sb Si Sn Ta Ti V W Zr Zr	os for NI	0.0002 0.0003 0.0009 0.0008 0.0008 	0. 0. 0. 0. 0. 0.	iron 0004 002 - 0003 005 0001 0004 0005 - 0003	0.0009 0.004 0.004 - 0.009 - 0.0002 - 0.0003 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not ele VI. Effect element ratio	copper 0.0005 0.0005 0.0004 -a 0.0001 -b 0.0006 - 0.0001 - determined.	matrix iron _a 0.0003 0.0006 0.001 - 0.0002 0.0002 0.0001 _b - 0.0001 0.0006 0.0004 b Matrix f Sample t	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element.	ed Concen	Ni P Pb Sb Si Sn Ta Ti V W Zr Zr	os for NI	0.0002 0.003 0.0009 0.0008 0.0008 	0. 0. 0. 0. 0. 0.	iron 0004 002 0003 005 0001 0004 0005 0003	0.0009 0.004 0.004 0.009 0.0002 - 0.0003 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not ele VI. Effect	copper 0.0005 0.0005 0.0004 _a 0.0001 _b 0.0006 0.0001 _determined.	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b 0.0006 0.0004 b Matrix f Sample t	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element. upon Measur	ed Concen	Ni P Pb Sb Si Sn Ta Ti V W Zr Zr	os for NI	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - - 0.003 - 350 1.00	0. 0. 0. 0. 0. 0. 0.	iron 0004 002 - 0003 005 0001 0004 0005 - 0003	0.0009 0.004 0.004 0.009 0.0002 - 0.0003 0.0003 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not ele VI. Effect element ratio	copper 0.0005 0.0005 0.0004 _a 0.0001 _b 0.0006 0.0001 _ determined. tof Weight of 0.992 0.010 0.777	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b 0.0004 b Matrix f Sample t 100 0.989 0.023 0.963	aluminu _a _b 0.0004 0.0003 0.0005 0.016 0.0001 element. upon Measur 150 0.993 0.008 0.989	ed Concen 200 0.997 0.009 0.981	Ni P P Pb Sb Si Si Sn Ta Ti V W Zr Zr Zr Tation Ratio 250 ^b 1.000 0.010 1.000	os for NI 300 0.999	0.0002 0.003 0.0009 0.0008 0.0003 0.0008 - - - 0.003 - 350 1.00 0.00 0.99	0. 0. 0. 0. 0. 0. 0. 100 ^a	iron 0004 002 0003 005 0001 0004 0005 0003	0.0009 0.004 0.004 0.009 0.0002 - 0.0003 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu	copper 0.0005 0.0005 0.0004 _a 0.0001b 0.0006 0.0001 _ determined. tof Weight of 0.992 0.010 0.777 0.085	matrix iron _a 0.0003 0.0006 0.001 _0.0002 0.0002 0.0001 _b _0.0004 b Matrix 100 0.989 0.023 0.963 0.047	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element. upon Measur 150 0.993 0.008 0.989 0.024	ed Concen 200 0.997 0.009 0.981 0.025	Ni P Pb Sb Si Sr Tz Ti V W Zr Zr Zr tration Ratio 0.010 1.000 0.013	os for NI 300 0.999 0.005 1.008 0.032	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - - 0.003 - 35 SRM 1	0. 0. 0. 0. 0. 0. 0. 100°	iron 0004 002 - 0003 005 0001 0004 0005 - 0003 400 1.008 0.008 1.019 0.027	0.0009 0.004 0.004 0.009 - 0.0002 - 0.0003 0.0003 0.0003 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not ele VI. Effect element ratio Ag/Cu	copper 0.0005 0.0005 0.0004 _a 0.0001b 0.0006 0.0001 _ determined. to of Weight of 0.992 0.010 0.777 0.085 1.016	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0001 _b 0.0006 0.0004 b Matrix 100 0.989 0.023 0.963 0.963 0.047 1.005	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element. 150 0.993 0.008 0.989 0.024 1.002	ed Concen 200 0.997 0.009 0.981 0.025 1.002	Ni P P Pb Sb Si Sr Tz Ti V W Zr Zr Zr Tation Ratio 0.010 1.000 0.013 1.000	os for NF 300 0.999 0.005 1.008 0.997	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - - 0.003 - 350 1.00 0.00 0.99	0. 0. 0. 0. 0. 0. 0. 100 ^a	iron 0004 002 - 0003 005 0001 0004 0005 - 0003 400 1.008 0.008 1.019 0.027 0.992	0.0009 0.004 0.004 0.009 0.0002 - 0.0003 0.0003 0.0003 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu Cd/Cu	copper 0.0005 0.0005 0.0004 -a 0.0001 b 0.0006 - 0.0001 determined. tof Weight of 0.992 0.010 0.777 0.085 1.016 0.015	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0001 _b _ 0.0004 b Matrix f Sample t 100 0.989 0.023 0.963 0.047 1.005 0.028	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element. 150 0.993 0.008 0.989 0.024 1.002 0.011	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013	Ni P Pb Sb Si Si Sr Ta Ti V W Zr Zr tration Ratio 250 ^b 1.000 0.010 1.000 0.013 1.000 0.013	os for NE 300 0.999 0.005 1.008 0.032 0.997 0.012	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - 0.003 - 0.003 - 1.00 0.00 0.90 0.00 0.90 0.00	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	iron 0004 002 - 0003 005 0001 0004 0005 - 0003 400 1.008 0.008 1.019 0.027 0.992 0.014	0.0009 0.004 0.004 0.009 0.0002 0.0003 0.0003 0.0003 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu	copper 0.0005 0.0005 0.0004 _a 0.0001b 0.0006 - 0.0001 determined. tof Weight of 0.992 0.010 0.777 0.085 1.016 0.015 1.022	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b _ 0.0004 b Matrix f Sample t 100 0.989 0.023 0.963 0.047 1.005 0.028 0.996	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element. apon Measur 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013 0.998	Ni P Pb Sb Si Si Sr Ta Ti V W Zr Zr tration Ratio 250 ^b 1.000 0.010 1.000 0.013 1.000 0.013 1.000	os for NI 300 0.999 0.005 1.008 0.032 0.997 0.012 0.996	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - 0.003 - 0.003 - 1.00 0.99 0.01 0.99 0.09	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	100 iron 0004 002 0003 0005 0001 0004 0005 0003 0008 1.019 0.027 0.992 0.014 1.001	0.0009 0.004 0.004 0.009 0.0002 0.0003 0.0003 0.0003 1.004 0.006 1.023 0.021 0.997 0.009 1.005
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu Cd/Cu Fe/Cu	copper 0.0005 0.0005 0.0004 -a 0.0001 -b 0.0006 -0.0001 -determined. tof Weight of 0.992 0.010 0.777 0.085 1.016 0.015 1.022 0.015	matrix iron _a 0.0003 0.0006 0.001 0.0002 0.0002 0.0001 -b 0.0006 0.0004 b Matrix f Sample t 100 0.989 0.023 0.963 0.047 1.005 0.028 0.996 0.018	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007	200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013	Ni P Pb Sb Si Si Sr Tz Ti V W Zr Zr tration Ratio 250 ^b 1.000 0.010 1.000 0.013 1.000 0.013 1.000 0.012	os for NI 300 0.999 0.005 1.008 0.032 0.997 0.012 0.996 0.013	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - 0.003 - 0.003 - 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	iron 0004 002 0003 0005 0001 0004 0005 0003 400 1.008 0.008 1.019 0.027 0.992 0.014 1.001 0.018	0.0009 0.004 0.004 0.009 0.0002 - 0.0003 0.0003 0.0003 500 1.004 0.006 1.023 0.021 0.997 0.009 1.005 0.013
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu Cd/Cu	copper 0.0005 0.0005 0.0004 -a 0.0001 -b 0.0006 -0.0001 -determined. tof Weight of 0.992 0.010 0.777 0.085 1.016 0.015 1.022 0.015 1.046	matrix iron _a 0.0003 0.0006 0.001 - 0.0002 0.0002 0.0001 _b 0.0006 0.0004 b Matrix 100 0.989 0.023 0.963 0.047 1.005 0.028 0.996 0.018 0.996	aluminu _a_b 0.0004 0.0003 0.0005 0.016 0.0001 element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007 0.997	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013 0.994	Ni P Pb Sb Si Si Si Ta Ti V W Zr Zr tration Ratio 250b 1.000 0.010 1.000 0.013 1.000 0.013 1.000 0.013 1.000 0.012 1.000	os for NI 300 0.999 0.005 1.008 0.032 0.997 0.012 0.998	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	iron 0004 002 - 0003 - 005 0001 0004 0005 - 0003 400 1.008 0.008 1.019 0.027 0.992 0.014 1.001 0.018 0.995	0.0009 0.004 0.004 0.009 0.0002 - 0.0003 0.0003 0.0003 500 1.004 0.006 1.023 0.021 0.997 0.009 1.005 0.013 1.003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu Cd/Cu Fe/Cu Mn/Cu	copper 0.0005 0.0005 0.0004 _a 0.0001 _b 0.0006 0.0001 _ determined. tof Weight of 0.777 0.085 1.016 0.015 1.022 0.015 1.046 0.013	matrix iron _a 0.0003 0.0006 0.001 _0.0002 0.0001 _b 0.0001 0.0006 0.0004 b Matrix 100 0.989 0.023 0.963 0.963 0.947 1.005 0.028 0.996 0.018 0.996 0.017	aluminu _a_b 0.0004 0.0003 0.0005 0.016 0.0001 element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007 0.997 0.007	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013 0.994 0.012	Ni P Pb Sb Si Si Si Ta Ti V W Zr Zr tration Ratio 250 ^b 1.000 0.010 1.000 0.013 1.000 0.013 1.000 0.013 1.000 0.013	os for NI 300 0.999 0.005 1.008 0.032 0.997 0.012 0.996 0.013 0.998 0.013	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - 0.003 - 0.003 - 0.003 - 0.003 - 0.0000 0.00000 0.00000 0.00000 0.0000	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	iron 0004 002 - 0003 - 005 0001 0004 0005 - 0003 400 1.008 0.008 1.019 0.027 0.992 0.014 1.001 0.018 0.995 0.018	0.0009 0.004 0.004 0.009 - 0.0002 - 0.0003 0.0003 0.0003 0.0003 0.0003 0.001 1.004 0.006 1.023 0.021 0.997 0.009 1.005 0.013 1.003 0.010
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu Cd/Cu Fe/Cu	copper 0.0005 0.0005 0.0004 _a 0.0001b 0.0006 0.0001 _ determined. to f Weight of 0.777 0.085 1.016 0.015 1.022 0.015 1.046 0.013 0.989	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0002 0.0001 _b _ 0.0006 0.0004 b Matrix f Sample t 100 0.989 0.023 0.963 0.047 1.005 0.028 0.996 0.018 0.996 0.018 0.996 0.017 0.982	aluminu _a _b 0.0004 0.0003 0.0005 0.016 0.0001 element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007 0.997 0.007 0.999	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013 0.994 0.012 0.995	Ni P Pb Sb Si Sr Tz Ti V W Zr Zr Zr Tration Ratio 0.010 1.000 0.013 1.000 0.013 1.000 0.013 1.000 0.013 1.000 1.00	300 0.999 0.005 1.008 0.032 0.997 0.012 0.996 0.013 0.998	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - 0.003 - 0.003 - 0.003 - 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	iron 0004 002 0003 005 0001 0004 0005 0003 400 1.008 0.008 1.019 0.027 0.992 0.014 1.001 0.018 0.994	0.0009 0.004 0.004 0.009 - 0.0002 - 0.0003 0.0003 0.0003 500 1.004 0.006 1.023 0.021 0.997 0.009 1.005 0.013 1.003 0.010 0.994
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu Cd/Cu Fe/Cu Mn/Cu Ni/Cu	copper 0.0005 0.0005 0.0004 _a 0.0001b 0.0006 0.0001 _ determined. 50 0.992 0.010 0.777 0.085 1.016 0.015 1.022 0.015 1.046 0.013 0.989 0.010	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0001 _b 0.0006 0.0004 b Matrix 100 0.989 0.023 0.963 0.963 0.947 1.005 0.028 0.996 0.018 0.996 0.017 0.982 0.020	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007 0.997 0.007 0.999 0.007	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013 0.994 0.012 0.995 0.013	Ni P Pb Sb Si Si Sr Tz Ti V W Zr Zr tration Ratio 250 ^b 1.000 0.010 1.000 0.013 1.000 0.013 1.000 0.012 1.000 0.013 1.000 0.015	300 0.999 0.005 1.008 0.099 0.012 0.996 0.013 0.998 0.013	0.0002 0.0003 0.0009 0.0008 0.0003 0.0008 - - 0.003 - 0.003 - 0.003 - 0.0000 0.00000 0.0000 0.0000 0.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	iron 0004 002 0003 0005 0001 0004 0005 0003 400 1.008 0.008 1.019 0.027 0.992 0.014 1.001 0.018 0.995 0.018 0.994 0.013	0.0009 0.004 0.004 0.009 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu Cd/Cu Fe/Cu Mn/Cu	copper 0.0005 0.0005 0.0004 -a 0.0001 b 0.0006 - 0.0001 determined. to of Weight of 0.092 0.010 0.777 0.085 1.016 0.015 1.022 0.015 1.046 0.015 1.046 0.013 0.989 0.010 1.01	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0001 _b _ 0.0004 b Matrix f Sample t 100 0.989 0.023 0.963 0.963 0.047 1.005 0.028 0.996 0.018 0.996 0.018 0.996 0.017 0.982 0.020 1.06	aluminu _a _b - 0.0004 0.0003 0.0005 0.016 0.0001 - element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007 0.997 0.007 0.997 0.007 0.999 0.007 1.03	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013 0.994 0.012 0.995 0.013 1.04	Ni P Pb Sb Si Si Sr Ta Ti V W Zr Zr tration Ratio 1.000 0.010 1.000 0.013 1.000 0.013 1.000 0.012 1.000 0.013 1.000 0.015 1.000	os for NE 300 0.999 0.005 1.008 0.032 0.997 0.012 0.996 0.013 0.998 0.012 0.995	0.0002 0.0003 0.0009 0.0008 0.0008 - - 0.003 - 0.003 - 0.003 - 0.003 - 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	1000 4 0002 - 0003 - 005 0001 0004 0005 - 0003 - 00003 - 00003 - 00003 - 00003 - 00003 - 00000 - 000	0.0009 0.004 0.004 0.009 - 0.0002 - 0.0003 0.0003 0.0003 0.0003 1.004 0.006 1.023 0.021 0.997 0.009 1.005 0.013 1.003 0.010 0.994 0.009 0.997
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not element ratio Ag/Cu As/Cu Cd/Cu Fe/Cu Mn/Cu Ni/Cu	copper 0.0005 0.0005 0.0004 _a 0.0001b 0.0006 0.0001 _ determined. 50 0.992 0.010 0.777 0.085 1.016 0.015 1.022 0.015 1.046 0.013 0.989 0.010	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0001 _b 0.0006 0.0004 b Matrix 100 0.989 0.023 0.963 0.963 0.947 1.005 0.028 0.996 0.018 0.996 0.017 0.982 0.020	aluminu _a_b 0.0004 0.0003 0.0005 0.016 0.0001 element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007 0.997 0.007 0.999 0.007 1.03 0.06	200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013 0.994 0.012 0.995 0.013 1.04 0.04	Ni P Pb Sb Si Si Sr Tz Ti V W Zr Zr tration Ratio 250 ^b 1.000 0.010 1.000 0.013 1.000 0.013 1.000 0.013 1.000 0.015 1.000 0.06	os for NI 300 0.999 0.005 1.008 0.032 0.997 0.013 0.998 0.013 0.998 0.012 0.95 0.08	0.0002 0.0003 0.0009 0.0008 0.0008 - - 0.003 - 0.003 - 0.003 - 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	400 1.008 0.009 400 1.008 0.008 1.019 0.027 0.014 1.001 0.018 0.995 0.018 0.994 0.013 1.02 0.04	0.0009 0.004 0.004 0.009 0.0002 0.0003 0.0003 0.0003 0.0003 1.004 0.006 1.023 0.021 0.997 0.009 1.005 0.013 1.003 0.010 0.994 0.009 0.97 0.05
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not elevi. Effect element ratio Ag/Cu As/Cu Cd/Cu Fe/Cu Mn/Cu Ni/Cu Pb/Cu Sn/Cu	copper 0.0005 0.0005 0.0004 _a 0.0001 _b 0.0006 0.0001 _ determined. tof Weight of 0.015 1.022 0.015 1.046 0.013 0.989 0.010 1.01 0.06 0.85 0.07	matrix iron _a 0.0003 0.0006 0.001 _ 0.0002 0.0001 _b 0.0006 0.0004 b Matrix 100 0.989 0.023 0.963 0.047 1.005 0.028 0.996 0.017 0.982 0.090 1.06 0.099 0.023	aluminu _a_b 0.0004 0.0003 0.0005 0.016 0.0001 element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007 0.997 0.007 0.997 0.007 0.999 0.007 1.03 0.06 0.98 0.09	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013 0.994 0.012 0.995 0.013 1.04 0.04 1.01 0.06	Ni P Pb Sb Si Si Sr Ta Ti V W Zr Zr tration Ratio 1.000 0.010 1.000 0.013 1.000 0.013 1.000 0.012 1.000 0.013 1.000 0.015 1.000	os for NE 300 0.999 0.005 1.008 0.032 0.997 0.012 0.996 0.013 0.998 0.012 0.995	0.0002 0.0003 0.0009 0.0008 0.0008 - - 0.003 - 0.003 - 0.003 - 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	iron 0004 002 - 0003 - 005 0001 0004 0005 - 0003 400 1.008 0.008 1.019 0.027 0.992 0.014 1.001 0.018 0.995 0.018 0.994 0.013 1.02 0.04 1.02 0.03	0.0009
element Ag Al As B Cd Co Cr Cu Fe Mg Mn Mo Nb Element not le VI. Effect element ratio Ag/Cu As/Cu Cd/Cu Fe/Cu Mn/Cu Ni/Cu Pb/Cu	copper 0.0005 0.0005 0.0004 -a 0.0001 -b 0.0006 -0.0001 -determined. to of Weight of 0.0777 0.085 1.016 0.015 1.022 0.015 1.046 0.013 0.989 0.010 1.01 0.06 0.85	matrix iron _a 0.0003 0.0006 0.001 - 0.0002 0.0002 0.0001 -b 0.0006 0.0004 b Matrix 100 0.989 0.023 0.963 0.047 1.005 0.028 0.996 0.018 0.996 0.017 0.982 0.020 1.06 0.09 0.97	aluminu _a_b 0.0004 0.0003 0.0005 0.016 0.0001 element. 150 0.993 0.008 0.989 0.024 1.002 0.011 0.995 0.007 0.997 0.007 0.997 0.007 0.999 0.007 1.03 0.06 0.98	ed Concen 200 0.997 0.009 0.981 0.025 1.002 0.013 0.998 0.013 0.994 0.012 0.995 0.013 1.04 0.04 1.01	Ni P Pb Sb Si Si Si Ta Ti V W Zr Zr tration Ratio 250b 1.000 0.010 1.000 0.013 1.000 0.013 1.000 0.013 1.000 0.015 1.000 0.015 1.000 0.06 1.00	os for NI 300 0.999 0.005 1.008 0.032 0.997 0.013 0.998 0.013 0.998 0.012 0.95 0.08	0.0002 0.0003 0.0009 0.0008 0.0008 - - 0.003 - 0.003 - 0.003 - 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	iron 0004 002 - 0003 - 005 0001 0004 0005 - 0003 400 1.008 0.008 1.019 0.027 0.992 0.014 1.001 0.018 0.995 0.018 0.994 0.013 1.02 0.04 1.02	0.0009 0.004 0.004 0.009 0.0002 - 0.0003 0.0003 0.0003 500 1.004 0.006 1.023 0.021 0.997 0.009 1.005 0.013 1.003 0.010 0.994 0.009 0.97 0.05 1.01

Table VII.	Copper Based	Alloys (V	Values in % w	//w)			<u> </u>	• /· -	
SRM no.	type	•	Ag	Al	As	Cd	Cu	Fe	Mn
1100	cartridge	NBS	0.019	0.008	0.019	0.013	67.43	0.072	0.003
	brass	ICAP limits	$0.018 \\ 0.001$	$0.010 \\ 0.002$	0.019	$0.0136 \\ 0.0004$	67.3	0.068	0.0031
1101	cartridge	NBS	0.001	0.002	$0.001 \\ 0.009$	0.0004 0.0055	$0.4 \\ 69.50$	$0.004 \\ 0.037$	0.0003 0.0055
	brass	ICAP	0.0026	0.004	0.008	0.0060	69.2	0.036	0.0057
1104	free cutting	limits NBS	0.0008	0.002	0.001	0.0003	0.3 63.33	0.002	0.0002
1104	brass	ICAP	< 0.0005	0.003	0.0006	< 0.0001	63.33 61.5	0.088 0.088	< 0.0001
2		limits	-	0.002	0.0004	-	0.2	0.002	-
1105	free cutting brass	NBS ICAP	< 0.0005	0.006	0.0010	0.0006	63.7 63.7	$0.044 \\ 0.042$	0,0001
	Drass	limits	< 0.0005 -	0.000	0.0010	0.0006	0.1	0.042 0.002	0.0001
1106	naval brass	NBS	_	-	-	_	59.08	0.004	0.005
		ICAP limits	< 0.0005	$0.012 \\ 0.002$	< 0.0004	$0.0011 \\ 0.0001$	59.3 0.3	$0.006 \\ 0.002$	$0.0046 \\ 0.0004$
1108	naval brass	NBS	_	0.002	-	0.0001	64.95	0.050	0.0004 0.025
		ICAP	< 0.0005	0.046	< 0.0004	< 0.0001	65.0	0.049	0.025
1110	red brass	limits NBS	-	0.003	-	-	$0.1 \\ 84.59$	$0.002 \\ 0.033$	0.001
1110	red brass	ICAP	0.0011	0.0007	< 0.0004	0.0003	84.6	0.033 0.032	0.0001
		limits	0.0006	0.0005	-	0.0001	0.1	0.002	0.0001
1114	gilding metal	NBS ICAP	0.0009	- <0.0005	< 0.0004	< 0.0001	96.45 96.46	$0.017 \\ 0.017$	0.0001
		limits	0.0005	-	-	\0.0001 -	0.05	0.017 0.002	0.0001
1115	commercial	NBS	_	_	_	-	87.96	0.13	-
	brass	ICAP limits	$0.0018 \\ 0.0006$	0.0008 0.0005	<0.0004	< 0.0001	88.0 0.1	$0.130 \\ 0.001$	<0.0001
1118	aluminum	NBS	-	2.80	0.007	_	75.1	0.065	-
	bronze	ICAP	< 0.0005	2.78	0.0065	0.0001	75.3	0.064	0.0001
an		limits	-	0.02	0.0007	0.0001	0.2	0.004	0.0001
SRM no.	type		Ni	P	Pb	S b	Si	Sn	Zn
1100	cartridge brass	NBS ICAP	$0.052 \\ 0.0524$	$0.010 \\ 0.012$	0.106 0.103	$0.018 \\ 0.017$	$(0.010) \\ 0.0087$	0.055 0.053	$32.20 \\ 32.4$
	Diass	limits	0.0024	0.003	0.103	0.001	0.0007	0.002	0.4
1101	cartridge	NBS	0.013	0.002	0.050	0.012	(0.005)	0.016	30.30
	brass	ICAP limits	0.0131 0.0005	< 0.003	$0.050 \\ 0.002$	$0.012 \\ 0.001$	$0.0047 \\ 0.0002$	$0.017 \\ 0.001$	30.6 0.3
1104	free cutting	NBS	0.0003	0.005	$\frac{0.002}{2.77}$	0.001	0.0002	0.43	35.3
	brass	ICAP	0.070	0.008	2.72	< 0.0008	0.0008	0.430	35.3
1105	free cutting	limits NBS	$0.003 \\ 0.043$	0.004 0.003	$0.05 \\ 2.0$	-	0.0003	$0.006 \\ 0.21$	$\begin{array}{c} 0.2 \\ 34.0 \end{array}$
1100	brass	ICAP	0.044	0.003	1.96	< 0.0008	0.0012	0.211	34.1
1100	1.1	limits	0.001	0.003	0.03	-	0.0004	0.006	0.1
1106	naval brass	NBS ICAP	$0.025 \\ 0.0250$	< 0.003	$\begin{array}{c} 0.032 \\ 0.032 \end{array}$	< 0.0008	0.0010	$\begin{array}{c} 0.74 \\ 0.743 \end{array}$	40.08 39.9
		limits	0.0007	-	0.002	-	0.0004	0.009	0.2
1108	naval brass	NBS	0.033	-	0.063	_	-	0.39	34.42
		ICAP limits	$0.031 \\ 0.001$	<0.003	$0.066 \\ 0.002$	<0.0008	$0.0004 \\ 0.003$	$0.394 \\ 0.008$	34.40 0.08
1110	red brass	NBS	0.053	-	0.033	-		0.051	15.20
		ICAP	0.052	< 0.003	0.033	< 0.0008	< 0.0003	0.050	15.2
1114	gilding metal	limits NBS	$0.002 \\ 0.021$	0.009	$0.001 \\ 0.012$	_	-	$0.002 \\ 0.027$	$0.2 \\ 3.47$
		ICAP	0.0208	0.009	0.008	< 0.0008	< 0.0003	0.028	3.47
1112		limits	0.0007	0.003	0.002	-	- -	0.001	0.05
1115	commercial brass	NBS ICAP	$0.074 \\ 0.074$	0.005 0.005	$0.013 \\ 0.014$	< 0.0008	< 0.0003	$0.10 \\ 0.103$	$11.73 \\ 11.6$
		limits	0.002	0.003	0.001	-	_	0.002	0.2
1118	aluminum bronze	NBS ICAP	0.0005	$0.13 \\ 0.129$	$0.025 \\ 0.019$	$0.010 \\ 0.008$	$0.0021 \\ 0.0020$	< 0.0008	$21.9 \\ 21.8$
	DIOMZe	limits	0.0003	0.129	0.019	0.008	0.0020	- 0.0008	0.1
				Statistical A	Analysis of	Data			
	Cu		Fe	Ni		P	Pb	2	Zn
n	10	_	10	9	_	6	10	10	
$egin{array}{c} m \ b \end{array}$	0.999 0.111		1.001 - 0.0004	0.99 -0.00		0.996 0.0008	9.994 0.0003		.0003 .0119
r	1.000		0.9997	0.99		0.0008	0.0003		0000
χ²	0.78		0.85	1.28		0.17	2.47	1.	.12
p t	$ \begin{array}{c} < 0.02 \\ 0.41 \end{array} $		$< 0.02 \\ -1.55$	<0.02 0.75		<0.02 1,40	$< 0.02 \\ -1.13$	<0.	.02 .36
p	< 0.02		< 0.02	< 0.02		< 0.02	< 0.02	< 0.	
			····		~				·

Table VIII.	Iron and Ste	eel (Value	s in % w/w)					
SRM no.	type	`	Al	As	В	Co	Cr	Cu
8i	plain carbon	NBS ICAP	<0.0003	- <0.0006	<0.001	<0.0002	0.009 0.0072	0.016 0.0136
		limits	-	_	-	-	0.0006	0.0006
19g	plain carbon	NBS ICAP	0.031 0.030	<0.0006	< 0.001	$0.012 \\ 0.0109$	$0.374 \\ 0.377$	0.093 0.093
	carbon	limits	0.004		<0.001 -	0.0105	0.009	0.002
51b	plain	NBS	-	-	-	-	0.455	0.071
	carbon	ICAP	0.010	< 0.0006	< 0.001	< 0.0002	0.455	0.072
C E A	nlain	limits NBS	0.001 0.059	-	-	-	0.008 0.049	$0.002 \\ 0.051$
65d	plain carbon	ICAP	0.059	< 0.0006	< 0.001	0.0054	0.049	0.051
	carbon	limits	0.003	-	-	0.0003	0.001	0.001
160a	stainless	NBS	-	_		0.071	18.74	0.174
	steel	ICAP	< 0.0003	< 0.0006	< 0.001	$0.067 \\ 0.002$	$18.6 \\ 0.2$	$0.175 \\ 0.002$
344	high	limits NBS	1.16	-	-	0.002	14.95	0.106
011	alloy	ICAP	1.16	< 0.0006	< 0.001	0.0591	15.04	0.105
		limits	0.01	-	-	0.0004	0.04	0.002
348	high	NBS	0.23	-	0.0031	- 0.105	14.54	0.22
	alloy	ICAP limits	$0.226 \\ 0.004$	<0.0006	$0.003 \\ 0.001$	$0.127 \\ 0.001$	$14.54 \\ 0.05$	$0.219 \\ 0.002$
1261	low	NBS	0.021	0.017	0.0005	0.030	0.69	0.042
	alloy	ICAP	0.022	0.017	< 0.001	0.0302	0.690	0.042
	_	limits	0.002	0.002	_	0.0007	0.006	0.002
1262	low alloy	NBS ICAP	0.095 0.093	$0.092 \\ 0.091$	$0.0025 \\ 0.003$	0.30 0.311	0.30 0.305	$0.50 \\ 0.499$
	anoy	limits	0.005	0.005	0.003	0.005	0.005	0.006
1263	low	NBS	0.24	0.010	0.00091	0.048	1.31	0.098
	alloy	ICAP	0.242	0.010	< 0.001	0.046	1.31	0.098
1064	low	limits NBS	0.008 (0.008)	$0.002 \\ 0.052$	0.011	0.001 0.15	$0.01 \\ 0.065$	$0.002 \\ 0.249$
1264	allov	ICAP	0.008	0.052	0.011	0.154	0.065	0.249
	u	limits	0.002	0.003	0.002	0.004	0.003	0.004
1265	electrolytic	NBS	(0.0007)	(0.0002)	0.002 0.00013 <0.001	0.0070	0.0072	0.0058
	iron	ICAP limits	$0.0005 \\ 0.0004$	<0.0006	<0.001 -	$0.0068 \\ 0.0004$	$0.0072 \\ 0.0008$	$0.0058 \\ 0.0007$
SRM no.	type		Fe	Mn	Mo	Nb	Ni	P
8i	plain	NBS	_	0.511	0.003	_	0.009	0.080
01	carbon	ICAP	99.18	0.515	0.004	< 0.0004	0.010	0.081
		limits	0.01	0.006	0.001	-	0.001	0.009
19g	plain	NBS	-	0.554	0.013	0.026	0.066	0.046
	carbon	ICAP limits	$98.29 \\ 0.02$	$0.555 \\ 0.004$	$0.012 \\ 0.001$	$0.0280 \\ 0.0008$	0.067 0.003	$0.048 \\ 0.008$
51b	plain	NBS	0.02	0.573	0.014	-	0.053	0.013
		ICAP	97.32	0.574	0.014	< 0.0004	0.054	0.014
25.1	, .	limits	0.02	0.006	0.001	-	0.002	0.004
65d	plain carbon	NBS ICAP	98.35	$0.073 \\ 0.071$	$0.025 \\ 0.025$	< 0.0004	0.060 0.060	$0.015 \\ 0.017$
	carbon	limits	0.02	0.006	0.002		0.001	0.004
160a	stainless	NBS	-	1.62	2.83	- -	14.13	0.027
	steel	ICAP	61.7	1.62	2.84	0.010	14.18	0.031
344	high	limits NBS	0.2	0.01 0.57	$0.04 \\ 2.40$	0.001	0.09 7.28	$0.004 \\ 0.018$
044	alloy	ICAP	72.76	0.567	$\frac{2.40}{2.41}$	0.004	7.31	0.014
	-	limits	0.03	0.005	0.03	0.001	0.02	0.004
348	high	NBS	53.3	1.48	1.3	-	25.8	0.015
	alloy	ICAP limits	53.28 0.09	$1.481 \\ 0.007$	$\frac{1.30}{0.01}$	$0.020 \\ 0.002$	25.73 0.08	$0.014 \\ 0.004$
1261	low	NBS	(95.6)	0.66	0.19	0.022	1.99	0.015
	alloy	ICAP	95.54	0.662	0.189	0.021	1.99	0.015
	_	limits	0.02	0.005	0.004	0.001	0.02	0.003
1262	low	NBS	(95.3)	1.04	0.068	$0.29 \\ 0.078$	0.59 0.59	$0.042 \\ 0.044$
	alloy	ICAP limits	$95.74 \\ 0.02$	1.05 0.01	0.069 0.005	0.078	0.01	0.044
1263	low	NBS	(94.4)	1.50	0.030	0.049	0.32	0.029
	alloy	ICAP	94.48	1.51	0.030	0.048	0.324	0.028
1264	low	limits NBS	0.02 (96.7)	0.01 0.255	$0.002 \\ 0.49$	$0.002 \\ 0.157$	$0.005 \\ 0.142$	$0.005 \\ 0.018$
1204	allov	ICAP	96.75	0.255 0.255	0.49	0.157 0.157	$0.142 \\ 0.142$	0.018
	·	limits	0.02	0.005	0.01	0.008	0.002	0.003
1265	electrolytic	NBS	(99.9)	0.0057	0.0050	< 0.00001	0.041	0.0025
	iron	ICAP limits	99.90 0.01	$0.0058 \\ 0.0004$	$0.0051 \\ 0.0008$	<0.0004	$0.043 \\ 0.002$	$0.0039 \\ 0.0038$
		11111103	0.01	0.0004	0.0000	_	0.002	0.0000

(Continued)							
		Si	Ta	Ti^a	v	W	${f Z}$ r
plain carbon	NBS ICAP	0.020 0.021	< 0.005	<0.0011	0.012 0.013	< 0.0005	< 0.0003
plain carbon	NBS ICAP	0.186 0.186	< 0.005	0.027 0.0266	$0.012 \\ 0.013$	< 0.0005	<0.0003
plain carbon	NBS ICAP	$0.246 \\ 0.245$	< 0.005	0.0002	$0.002 \\ 0.0019$	< 0.0005	<0.0003
plain carbon	NBS ICAP	$0.370 \\ 0.366$	- <0.005	0.0012	$0.002 \\ 0.0021$	0.0008	- <0.0003
stainless steel	NBS ICAP	$0.605 \\ 0.605$	- <0.005	-	$0.051 \\ 0.043$	-	- <0.0003
high alloy	limits NBS	0.008 0.395	0.002	0.0003 0.076	$0.002 \\ 0.040$	0.002	- - <0.0003
high	limits NBS	$0.005 \\ 0.54$	- -	$0.003 \\ 2.24$	$0.0009 \\ 0.25$	0.0005	-
low	limits NBS	$0.007 \\ 0.223$	<0.005 - 0.020	$0.01 \\ 0.020$	$0.005 \\ 0.011$	$0.002 \\ 0.015$	<0.0003 - 0.009
alloy	limits	0.005	0.022 0.006	$0.0199 \\ 0.0006$	0.001	0.001	0.0087 0.0005 0.19
alloy	ICAP limits	$0.38 \\ 0.01$	$0.023 \\ 0.004$	0.038	$0.041 \\ 0.002$	$0.217 \\ 0.008$	0.194 0.008
low alloy	ICAP	0.726	0.047	0.049	0.312	0.047	$0.049 \\ 0.048 \\ 0.001$
low alloy	NBS ICAP	0.067 0.068	$0.11 \\ 0.091$	$0.24 \\ 0.244$	0.105 0.107	0.10 0.101	0.068 0.068 0.002
electrolytic iron	NBS ICAP	0.002 0.0080 0.0079 0.0008			0.002 0.0006 0.0007 0.0005	(-0.0004) <0.0005	-(<0.0001) <0.0003
			Statistical A	nalysis of Data			
n	m	b	r	χ²	p	t	p
7 7 12 12 12 12 12 12 12	0.999 1.005 1.0035 1.006 1.0019 1.001 1.0006 1.026 0.994 1.001	-0.00 -0.00 -0.00 0.00 0.00 -0.00 -0.00 -0.00	$\begin{array}{cccc} 07 & & 0.99 \\ 11 & & 1.00 \\ 11 & & 0.99 \\ 01 & & 1.00 \\ 00 & & 1.00 \\ 06 & & 1.00 \\ 02 & & 0.98 \\ 06 & & 0.99 \\ 05 & & 1.00 \\ \end{array}$	92 2.90 00 2.35 99 1.65 00 0.45 00 0.55 00 1.28 94 0.61 99 1.42 00 0.27	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	$\begin{array}{c} -1.076 \\ 0.219 \\ 0.007 \\ -0.666 \\ 1.978 \\ 1.502 \\ -0.110 \\ 0.891 \\ -0.673 \\ -1.334 \\ 0.111 \end{array}$	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
	plain carbon plain carbon plain carbon plain carbon plain carbon stainless steel high alloy low alloy	plain NBS carbon ICAP limits stainless NBS steel ICAP limits high NBS alloy ICAP limits high NBS alloy ICAP limits low NBS alloy ICAP limits limits	type	Description Description	Plain NBS 0.020	Type	Type

^a Sample 1262 not used in statistical analysis for this element.

added. The solution was allowed to stand in a water bath at 40 °C for about 5 min until dissolution was complete. Deionized water then was added to bring the final solution volume to about 50 mL, and the solution analyzed using the ICAP.

Iron-Based Alloys. About 250 mg of sample (usually chips or turnings) was transferred to a 50-mL Teflon beaker. Twenty milliliters of aqua regia was added and, after the reaction subsided, the solution was boiled for 20 min. The cooled solution then was diluted to about 50 mL with water and analyzed by the ICAP after undissolved carbon particles were allowed to settle from solution.

Aluminum-Based Alloys. About 100 mg of sample (usually chips or turnings) was transferred to a 250-mL glass beaker. Ten milliliters of 6 M hydrochloric acid was added and the solution heated until no further dissolution occurred (about 15-20 min). At this point, black specks of silicon metal are visible in the solution. The solution then was cooled and diluted to about 100 mL with water, and allowed to stand so that undissolved silicon particles settled from solution before analysis by the ICAP.

Calibration Standards. The instrument was calibrated by using synthetically prepared standards. These were made up to represent original alloys that contained up to 50% of the analyte

(relative to the weight of matrix element) in the presence of a constant concentration of the matrix element. The calibration range for each element in each matrix is shown in Table III. After the linearity of every analytical line investigated was established to be over the range shown in Table III, the instrument was standardized using the low standard and the high standard. In order to reduce the number of standard solutions required to calibrate the unit for routine operation, the multielemental standards listed in Table III were used.

Following instrument standardization, the empirical interference correction factors (K_{ik}) were determined. This was achieved by introducing the high, single element calibration standard into the ICAP and observing the apparent concentration of the affected analytes. The factors found to be significant at the analyte and interferent levels in the original samples are shown in Table IV. These factors were stored in the data processing unit and used to modify the apparent concentration ratios determined from the calibration curve into the "real" concentration ratios using Equation 6.

Concentration Calculations. Because the elements left undetermined in the copper alloys constituted less than 0.01% of the

Toble IV A	luminum Alloys	(Voluce in "	*** /***)					
	·	(values in %	(w/w)					
BCS no.	type		Cr	Cu	\mathbf{Fe}	Mg	Mn	Ni
181/2	copper	BCS	(0.008)	3.96	0.42	1.56	0.20	1.90
	aluminum	ICAP	0.0079	3.96	0.42	1.57	0.201	1.89
	alloy	limits	0.0008	0.03	0.01	0.02	0.006	0.03
182/2	silicon	BCS	-	0.045	0.47	0.075	0.21	0.055
	aluminum	ICAP	< 0.0005	0.042	0.45	0.075	0.207	0.055
	alloy	limits	-	0.001	0.01	0.02	0.006	0.002
216/2	duralumin	BCS		4.56	0.28	0.75	0.71	0.17
	alloy	ICAP	0.0008	4.44	0.28	0.73	0.71	0.166
0.00.10		limits	0.0005	0.06	0.01	0.02	0.02	0.004
262/2	magnesium aluminum	BCS ICAP	$(0.002) \\ 0.0019$	$0.039 \\ 0.040$	$0.20 \\ 0.20$	$10.74 \\ 10.68$	$0.084 \\ 0.083$	0.071 0.073
	alloy	limits	0.0019	0.040	0.20	0.09	0.002	0.002
263/2	magnesium	BCS	0.000	0.019	0.26	4.67	0.36	-
200/2	aluminum	ICAP	0.075	0.019	0.263	4.69	0.354	0.0015
	alloy	limits	0.002	0.002	0.008	0.06	0.007	0.0019
268	silicon	BCS	-	1.34	0.39	0.56	0.22	0.12
200	aluminum	BCS ICAP	< 0.0005	1.35	0.397	0.57	0.217	0.122
	alloy	limits	-	0.02	0.009	0.02	0.006	0.004
300/1	zinc	BCS	0.13	1.27	0.24	2.74	0.33	_
·	aluminum	ICAP	0.133	1.26	0.241	2.72	0.329	0.0012
	alloy	limits	0.003	0.03	0.006	0.07	0.008	0.0008
380	aluminum	BCS	-	0.90	1.15	0.18	0.018	0.91
	alloy	ICAP	< 0.0005	0.91	1.16	0.19	0.020	0.911
		limits	-	0.01	0.03	0.02	0.002	0.008
BCS no.	$ ext{type}$		Pb	Sb	Sn	Ti	Zn	Zr
181/2	copper	BCS	0.040	-	0.028	0.019	0.074	-
·	aluminum	ICAP	0.040	< 0.004	0.027	0.0186	0.0739	< 0.0003
	alloy	limits	0.004	-	0.009	0.0004	0.0009	-
182/2	silicon	BCS	0.050	-	0.025	0.11	0.100	-
	aluminum	ICAP	0.052	< 0.004	0.028	0.109	0,095	< 0.0003
21.010	alloy	limits	0.004	-	0.009	0.001	0.003	
216/2	duralumin	BCS	0.038	0.029	0.048	0.037	0.20	-0.000B
	alloy	ICAP	0.036	0.030	0.048	0.037	0.203	< 0.0003
262/2	magnesium	limits BCS	$0.006 \\ (0.054)$	0.005	0.009 (0.042)	0.003 0.005	$0.003 \\ 0.084$	<u>-</u>
202/2	magnesium aluminum	ICAP	0.049	< 0.004	0.035	0.003	0.084	< 0.0003
	alloy	limits	0.049		0.009	0.0004		-
263/2	magnesium	BCS	-	_	0.003	0.022	0.056	
200,2	aluminum	ICAP	< 0.004	< 0.004	< 0.005	0.0225	0.056	< 0.0003
	alloy	limits	-	-	-	0.0009	0.001	-
268	silicon	BCS	0.035	_	0.03	< 0.02	0.05	_
	aluminum	ICAP	0.035	< 0.004	0.033	0.0157	0.052	< 0.0003
	alloy	limits	0.005	_	0.006	0.0005	0.003	-
300/1	zinc	BCS	-	_	~	0.09	5.87	0.18
	aluminum	ICAP	0.012	< 0.004	< 0.005	0.09	5.88	0.181
	alloy	limits	0.005	_	-	0.001	0.09	0.004
380	aluminum	BCS	-	- -	- -	0.22	0.011	-
	alloy	ICAP	< 0.004	< 0.004	< 0.005	0.222	0.0108	< 0.0003
		limits			-	0.02	0.0008	-
		•		cal Analysis		***	m.	77
	Cu	Fe	Mg	Mr	1	Ni	Ti	Zn
n	8	8	8	8	20	6	7	8
m b	$0.998 \\ -0.0008$	$0.992 \\ 0.0019$	0.997 0.0026	0.98 0.09		0.997	1.006 -0.0005	$0.998 \\ -0.0000$
<i>b</i>	0.9998	0.0019	0.0026	0.0		0.0010 1.0000	0.9999	0.9999
$r \times r^2$	3.42	1.30	0.58	0.6		0.16	0.75	0.69
X	< 0.02	< 0.02	< 0.02	<0.0		(0.02	< 0.02	< 0.02
p t	-0.855	0.000	-0.699	-0.6		0.690	-0.926	0.553
$\stackrel{\iota}{p}$	< 0.02	< 0.02	< 0.02	< 0.0		(0.02	< 0.02	< 0.02
			 					

alloy, the final concentration calculations were performed on-line by the central processing unit, and direct concentration values were printed out. For the iron- and aluminum-based alloys, the concentration ratios only were printed. Final concentration calculations were performed off-line after concentrations of elements not determined above 0.02% (C_j values) had been merged with the ICAP data. In this study, values for carbon, sulfur, and nitrogen in iron-based alloys, and silicon in aluminum alloys were taken from the certificates of analysis supplied by NBS and BAS, respectively.

Effect of Sample Weight. In order to determine the effect of different sample weights, samples of NBS SRM 1100 Cartridge

Brass were weighed on a milligram balance over the range 50–500 mg into Teflon beakers. Each sample then was treated with 1 mL of concentrated nitric acid and, after the reaction subsided, 15 mL of concentrated hydrochloric acid was added. After dissolution, the solutions were transferred to 50-mL Teflon volumetric flasks, diluted to volume with water, and analyzed by the ICAP.

RESULTS AND DISCUSSION

Detection Limits. The experimentally-determined detection limits for the copper, iron, and aluminum matrices ana-

lyzed are listed in Table V. The detection limits are defined as the concentration of analyte required to produce a signal equivalent to the 95% confidence limit (2.131 standard deviation) of the background variation as determined on a set of 16 measurements performed on the matrix blank interspersed randomly among the samples analyzed. Although the variation of detection limits with sample weight was not studied here, the confidence limits measured for the analysis of sample 1265, a high purity iron, are close to the detection limits measured on the blank iron standard.

Effect of Sample Weight Analyzed. The effect of sample weight on the determined concentration ratios of several elements in NBS SRM 1100 Cartridge Brass is shown in Table VI. The results normalized against the 250-mg sample in 50-mL value, are expressed as the mean and the 95% confidence level on a set of eight replicates at each solute concentration. Clearly, there is no significant difference in the determined concentration ratio for weights in the 150-500 mg range which represents the equivalent of a 40% weighing error. In practice, we decided to limit the weighing error to about ±20% by using a milligram balance to ensure a minimum sample size of 200 mg and a maximum sample size of 300 mg.

The volume error was kept to about $\pm 10\%$ by use of graduated glass beakers. When plastic containers were used, a simple batch calibration was performed by dispensing 50 mL of water from a graduate and marking a line on the outside of the container.

Copper-Based Alloys. Analytical data obtained from the analysis of NBS reference copper-based alloys including brasses, bronzes, and gilding metals are listed in Table VII. The ICAP values are expressed as the mean of a set of 16 replicate analyses for each element plus or minus the 95% confidence limit. In addition, for each element certified to be present in at least six alloys, the correlation coefficient, slope and intercept of the linear regression line of the form of Equation 7 between the NBS certified values and the experimentally determined ICAP values, weighted with respect to the 95% confidence limit for the determination, are shown:

$$(ICAP) = m(NBS) + b \tag{7}$$

Both the chi-square value for the regression line and the Students' "t" value for the paired data points are consistent with the 98% confidence limit, indicating a lack of bias between the ICAP and the certified values.

Iron-Based Alloys. Analytical data obtained from 12 NBS reference iron and steel samples determined by the ICAP are listed in Table VIII. These data are expressed as the mean of the number of at least 16 replicate analyses for each sample together with the 95% confidence limit for each elemental determination. Analyses for carbon, nitrogen, and sulfur in these samples were taken from the NBS certificate prior to calculation of the final concentration for each element.

The statistical data tabulated for the iron-based alloy samples are determined in the same manner as were those for the copper-based alloys. The ICAP data were found to show no significant deviation (p < 0.02) from the referee data with the exception of sample 1262. It is believed that the low ICAP values from these samples are caused by the presence of niobium and titanium in the sample as carbides which are insoluble by this technique. The residue from the dissolution of sample 1262 analyzed by a dc arc in conjunction with a Mark IV 3.4-m Ebert Spectrograph (Jarrell-Ash) showed that high levels of niobium and titanium were present. Furthermore, calibration curves obtained for samples 1261-1265 using an electronically-controlled waveform spark source coupled to a Model 90-750 AtomComp Direct Reading Spectrometer

(Jarrell-Ash) indicated that these elements were present in the sample at the certified values.

Aluminum-Based Alloys. Analytical data obtained from the determination of eight BCS aluminum alloys using the ICAP technique are shown in Table IX. Prior to calculation of the elemental concentration C_i from the determined concentration ratios, the silicon concentrations (C_i) listed on the certification of analysis sheet were used to solve Equation 2 for the aluminum concentration $(C_{\mathbf{M}})$.

The statistical analyses presented in Table IX show that there is no significant difference (p < 0.02) between the ICAP data and the certified values.

CONCLUSIONS

The direct reading ICAP spectrometer coupled with the concentration ratio method of analysis has been demonstrated to produce analytically accurate data for the determination of alloying elements in metals. This is true over a concentration range exceeding four decades with a typical precision of better than 10% for trace and 1% for minor and major alloying components. The relative freedom from chemical interferences eliminates the matching of standards to samples that is required in other analytical techniques. Indeed, the only matrix matching required is the addition of the matrix element and acids to the calibration standards. With such minimal matching, it is possible to analyze samples in which the major matrix element extends over a wide range. The use of the concentration ratio procedure also permits significant dilution errors from the target dilution factor without any resultant loss of analytical accuracy. This permits very rapid sample preparation that requires a minimum of operator skill. Indeed, the tolerance of the procedure to dilution errors suggests that the automating of the entire sample preparation procedure might be practically and economically feasible.

The limitations of the concentration ratio method are that all elements present in significant concentrations (total nonanalyzed elements should not exceed 0.1%) must be determined and that insoluble materials could produce a significant error. Furthermore, any error caused by insoluble material is compounded over all elements. However, only one among the 30 samples analyzed in this study exhibited this problem. In this case, the only significant errors observed were on those elements that had been incompletely dissolved.

ACKNOWLEDGMENT

The authors thank James G. Gardner for his assistance in performing the spark analysis of the low alloy steel samples.

LITERATURE CITED

- Fassel, V. A.; Dickinson, G. W. Anal. Chem. 1968, 40, 247.
- Hoare, H. C.; Mostyn, R. A. *Anal. Chem.* **1967**, *39*, 1153. Souilliart, J. C.; Robin, J. P. *Analusis* **1972**, *1*, 427. Kirkbright, G. F.; Ward, A. F. *Talanta* **1974**, *21*, 1145.
- Butler, C. C.; Kniseley, R. N.; Fassel, V. A. Anal. Chem. 1975, 47, 825. Greenfield, S.; Jones, I. Ll.; McGeachin, H.; Smith, P. B. Anal. Chim. Acta 1975, 74, 225.
- (7) Borcionati, C.; Biancifiori, M. A.; Donato, A.; Morello, B. Comit. Nazl. Energia Nucl. 1969, 69, 18.
- Newland, B. T. N.; Mostyn, R. A. Matl. Qual. Assur. Dir., Engl. Rep.
- 1977, R258. Scott, T. H.; Strasshein, A.; Oakes, A. R. Collog. Spectrosc. Int. (18th
- *Proc.*) **1975**, 1, 176.
- Ohls, K. Pure Appl. Chem. 1977, 49, 1485.
 "Methods for Emission Spectrochemical Analysis", 6th ed.; ASTM: Philadelphia, 1971; Recommended Practice E-158, Section 9.

RECEIVED for review November 22, 1978. Accepted July 20, 1979. This article is the extension of a paper presented at the 176th National ACS Meeting, Miami Beach, Fla., September, 1978.