$\rm HP35s$ / $\rm HP12c$ Programs

Daniel J Boulet

June 26, 2021

Revision History

Revision	Description
Date	
May 25, 2016	Revised Modular Exponentiation program by using DSE function instead of
	direct variable count.
June 26, 2021	Renamed Modular Exponentiation to modexp.
	Added blank pages for double sided printing.
	Added program to calculate actual VSWR based on measured VSWR and
	cable loss.

Contents

Ι	HP	35s																					1
	0.1	modexp							 														2
		atan2																					
	0.3	avswr							 													!	5

Part I

HP35s

0.1 modexp

Description

This program calculates the modulus of a number raised to a large power. The formula looks like this:

$$modexp = n^p \mod m$$

Usage

GTO P	λ 001 r	n R/S	p R/S	m R/S
-------	-------------------	-------	-------	-------

Program Listing

LBL A	start of program
STO N	store number to the raised to the power P
STOP	wait for user R/S
STO P	store exponent
STOP	wait for user R/S
STO M	store modulus
1	initialize product
STO R	and save in memory
RCL N	recall base
RCL R	recall product
×	and multiply the two
RCL M	recall the modulus
RMDR	and apply it
STO R	save the new product
DSE P	decrement exponent
GTO A009	and loop back if not finished.
RCL R	pull the product from memory
RTN	we are done!
	STO N STOP STO P STOP STO M 1 STO R RCL N RCL R X RCL M RMDR STO R DSE P GTO A009 RCL R

Example

In the following example we calculate $5^{101} \mod 31$ using the following steps:

GTO A001	0.00000	go to start of program
5 R/S	5.00000	the "base"
101 R/S	101.00000	the "exponent"
31 R/S	25.00000	the "modulus" and result

Comments

The HP35s is not known for it's lightning speed. The above example will take about 12 seconds to run.

0.2 atan2

${\bf Description}$

This program calculates at an2($\frac{y}{x}$). Result is in the range -180° to $+180^{\circ}.$

Usage

```
GTO Z001 x R/S y R/S
```

Program Listing

Z001	LBL Z	Start of program.
Z002	STO X	Store x in X .
Z003	STOP	Wait for user R/S.
Z004	STO Y	Store y in Y.
Z005	RCL Y	Recall Y. Note: this is also the entry point for subroutine.
Z006	RCL X	Recall X.
Z007	÷	Take ratio of rise over run $(\frac{y}{x})$.
Z008	ATAN	Calculate $\arctan(\frac{y}{x})$.
Z009	STO R	Save as an interim result in R.
Z010	RCL X	Test sign of X.
Z011	x > 0?	Is x positive?
Z012	GTO Z027	If so then go to end of program.
Z013	RCL Y	Recall Y
Z014	SGN	Calculate its sign
Z015	45	
Z016	X	then multiply it by 45° .
Z017		Get X value.
	RCL X	Get X value. Is it equal to zero?
Z017	RCL X $x = 0$?	
Z017 Z018	$\begin{array}{l} \mathrm{RCL} \ \mathrm{X} \\ x = 0 ? \\ \mathrm{RTN} \end{array}$	Is it equal to zero?
Z017 Z018 Z019	RCL X $x = 0$? RTN 180	Is it equal to zero? If so then return the value of the stack $(\pm 45^{\circ})$
Z017 Z018 Z019 Z020	RCL X $x=0$? RTN 180 STO -R	Is it equal to zero? If so then return the value of the stack $(\pm 45^{\circ})$ Setup offset depending on sign of y .
Z017 Z018 Z019 Z020 Z021	RCL X $x=0$? RTN 180 STO -R	Is it equal to zero? If so then return the value of the stack $(\pm 45^{\circ})$ Setup offset depending on sign of y . Initially subtract 180° — we do this at a minimum.
Z017 Z018 Z019 Z020 Z021 Z022	RCL X $x=0$? RTN 180 STO -R RCL Y $x<0$?	Is it equal to zero? If so then return the value of the stack $(\pm 45^{\circ})$ Setup offset depending on sign of y . Initially subtract 180° — we do this at a minimum. Get Y value.
Z017 Z018 Z019 Z020 Z021 Z022 Z023	RCL X $x=0$? RTN 180 STO -R RCL Y $x<0$? GTO 2027	Is it equal to zero? If so then return the value of the stack $(\pm 45^{\circ})$ Setup offset depending on sign of y . Initially subtract 180° — we do this at a minimum. Get Y value. Is it negative?
Z017 Z018 Z019 Z020 Z021 Z022 Z023 Z024	RCL X $x = 0$? RTN 180 STO -R RCL Y $x < 0$? GTO Z027 360	Is it equal to zero? If so then return the value of the stack $(\pm 45^{\circ})$ Setup offset depending on sign of y . Initially subtract 180° — we do this at a minimum. Get Y value. Is it negative? If yes, then we are done since we already subtracted 180° .
Z017 Z018 Z019 Z020 Z021 Z022 Z023 Z024 Z025	RCL X $x = 0$? RTN 180 STO -R RCL Y $x < 0$? GTO Z027 360 STO +R	Is it equal to zero? If so then return the value of the stack $(\pm 45^{\circ})$ Setup offset depending on sign of y . Initially subtract 180° — we do this at a minimum. Get Y value. Is it negative? If yes, then we are done since we already subtracted 180° . If y is positive then we have to add 360°
Z017 Z018 Z019 Z020 Z021 Z022 Z023 Z024 Z025 Z026	RCL X $x = 0$? RTN 180 STO -R RCL Y $x < 0$? GTO Z027 360 STO +R	Is it equal to zero? If so then return the value of the stack $(\pm 45^{\circ})$ Setup offset depending on sign of y . Initially subtract 180° — we do this at a minimum. Get Y value. Is it negative? If yes, then we are done since we already subtracted 180° . If y is positive then we have to add 360° for a total addition of 180° .

Example

In the following example we calculate $atan2(\frac{+1.5}{-1.0})$ using the following steps:

GTO Z001	0.00000	Go to start of program.
1.5	1.5	Your value for x .
R/S	1.50000	
-1.0	-1.0	Your value for y .
R/S	-33.69007	The resulting angle.

Comments

Users have to be careful about a couple of things:

- 1. Angles are calculated in degrees. Confirm calculator setting before using this function.
- 2. User is responsible for ensuring that x and y are **never** both zero.

0.3 avswr

Description

This program calculates actual VSWR given measured VSWR and cable loss to antenna.

Usage

```
GTO V001 M R/S L R/S
```

Program Listing

V001 V002	LBL V STO M	Start of program. Save measured VSWR in M.
V003	STOP	Pause for entry of cable loss (in dB)
V004	+/-	Negate cable loss
V005	10	and convert to ratio
V006	•	
V007	10^{x}	
800V	STO L	Save as cable loss
V009	RCL M	Get measured VSWR and calculate reflected power ratio
V010	1	
V011	_	
V012	RCL M	
V013	1	
V014	+	
V015	÷	
V016	x^2	
V017	STO R	Save reflected power ratio
V018	RCL L	Calculate actual VSWR at antenna
	\sqrt{x}	
	RCL R	
V021	RCL L	
V022	÷	
V023	\sqrt{x}	
V024	+	
V025	RCL L	
V026	\sqrt{x}	
V027	RCL R	
V028	RCL L	
V029	÷	
V030	\sqrt{x}	
V031	-	
V032	÷	Detume to calling function
V033	RTN	Return to calling function.

Example

Calculate the actual VSWR of an antenna where the measured VSWR is 1:1.13 and cable loss is 4.7dB:

GTO V001	0.00000	Go to start of program.
1.13		Your value for M (measured VSWR).
R/S	1.13000	
4.7		Your value for cable loss L .
R/S	1.4394	Actual VSWR at antenna is 1:1.4394

How this program works

VSWR is the ratio of the sum and difference of forward and reflected voltages:

$$VSWR = \frac{V_f + V_r}{V_f - V_r} \tag{1}$$

Since power is proportional to the square of the voltage, (1) can be expressed in terms of power

$$VSWR = \frac{\sqrt{P_f} + \sqrt{P_r}}{\sqrt{P_f} - \sqrt{P_r}} \tag{2}$$

By setting P_f equal to 1 and rearranging (2) we can solve for P_r

$$P_r = \left(\frac{VSWR - 1}{VSWR + 1}\right)^2 \tag{3}$$

Cable loss is normally expressed in decibels but for our purposes we can simply express it as a factor of less than 1 where P_a is power at the antenna and P_t is power from the transmitter.

$$L = \frac{P_a}{P_t} \tag{4}$$

Taking into account the cable loss and measured forward and reverse power we can calculate VSWR at the antenna

$$VSWR = \frac{\sqrt{P_f \times L} + \sqrt{P_r \div L}}{\sqrt{P_f \times L} - \sqrt{P_r \div L}}$$
 (5)

Again we set P_f to 1 so a simplied version of (5) becomes the actual VSWR at the antenna

$$VSWR = \frac{\sqrt{L} + \sqrt{P_r \div L}}{\sqrt{L} - \sqrt{P_r \div L}}$$
(6)