LISTA 2: CONJUNTOS MENSURÁVEIS À LEBESGUE

Exercício 1. Sejam $E \subset \mathbb{R}$ e $x \in \mathbb{R}$.

(i) Prove a invariância por translações da medida de Lebesgue exterior:

$$m^*(x+E) = m^*(E).$$

(ii) Prove uma propriedade similar para a multiplicação:

$$m^*(x E) = |x| m^*(E),$$

onde $xE := \{x \cdot a : a \in E\}.$

Exercício 2. Seja $E \subset \mathbb{R}$ com $m^*(E) < \infty$.

Defina a função $f: \mathbb{R} \to \mathbb{R}$ pondo

$$f(x) := m^*(E \cap (-\infty, x]).$$

Prove que f é uniformemente contínua em \mathbb{R} .

Exercício 3. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável em todos os pontos.

(a) Prove que se para todo $x \in \mathbb{R}$ temos $|f'(x)| \leq 1$, então para todo subconjunto $E \subset \mathbb{R}$ vale o seguinte:

$$m^*(f(E)) \le m^*(E).$$

Dizemos, neste caso, que a função f contrai a medida.

Dica: Use o teorema do valor médio do cálculo.

(b) Obtenha um exemplo de função diferenciável f tal que para algum x tem-se |f'(x)| > 1, mas f não contrai a medida. Dica: Use o exercício 1(ii) acima.

Exercício 4. Obtenha um exemplo de conjunto $E \subset \mathbb{R}$ para o qual

$$m^*(E)>\sup\big\{m^*(U)\colon U\subset E, U\text{ \'e aberto}\big\}.$$

Com isso mostramos que o análogo *literal* da regularidade exterior para a regularidade interior é falso.

Os problemas seguintes estabelecem a aditividade finita de medida de Lebesgue para conjuntos compactos e abertos.

Exercício 5. Prove que se U e V são conjuntos abertos com $U \cap V = \emptyset$, então

$$m^*(U \cup V) = m^*(U) + m^*(V).$$

Exercício 6. Sejam K e L subconjuntos compactos de \mathbb{R} (ou de \mathbb{R}^d) tais que $K \cap L = \emptyset$.

(i) Prove que dist(K, L) > 0, onde

$$dist(K, L) := \inf\{|x - y| : x \in K, y \in L\}.$$

- (ii) Prove que existem dois conjuntos abertos U e V satisfazendo $K \subset U, V \subset V$ e $U \cap V = \emptyset$.
- (iii) Prove que

$$m^*(K \cup L) = m^*(K) + m^*(L)$$
.

Exercício 7. Seja $E \subset \mathbb{R}^d$ um conjunto arbitrário. Mostre que existe um conjunto Lebesgue measurável E' tal que $E \subset E'$ e $m^*(E) = m(E')$.

Dica: Use a regularidade da medida de Lebesgue exterior.

Exercício 8. Seja $E \subset \mathbb{R}^d$.

- (i) Prove que se E está "perto de um aberto" (i.e. para todo $\epsilon > 0$, existe U aberto tal que $m^*(U \triangle E) < \epsilon$), então E é Lebesgue mensurável.
- (ii) Prove que se E está "perto de um fechado" (i.e. para todo $\epsilon > 0$ existe F fechado tal que $m^*(E \triangle F) < \epsilon$) então E é "quase fechado" (i.e. para todo $\epsilon > 0$ existe F fechado tais que $F \subset E$ e $m^*(E \setminus F) < \epsilon$).

Exercício 9. Seja $E \subset \mathbb{R}^d$. Prove que as seguintes afirmações são equivalentes:

- (1) E é Lebesgue mensurável e $m(E) < \infty$.
- (2) E está "perto de um compacto": para todo $\epsilon > 0$ existe um conjunto compacto K tal que $m^*(E \triangle K) < \epsilon$.
- (3) E está "perto de um conjunto mensurável e limitado": para todo $\epsilon > 0$ existe S mensurável e limitado tal que $m^*(E \triangle S) < \epsilon$.
- (4) E está "perto de um conjunto mensurável com medida finita": para todo $\epsilon > 0$ existe S mensurável tais que $m(S) < \infty$ e $m^*(E \triangle S) < \epsilon$.