Consider the following KB:

- 1. John likes all kinds of food.
- 2. Apples are food.
- 3. Chicken is food.
- 4. Anything anyone eats and isn't killed by is food.
- 5. Bill eats peanuts and is still alive.
- 6. Sue eats everything Bill eats.
 - i. Translate these sentences into formulas in FOPC.
 - ii. Convert the formulas into clause form.
 - iii. Use resolution to prove that John likes peanuts.
 - iv. Use resolution to answer the question, "What food does Sue eat?"

(a) Translate these sentences into WFFs in FOPL.

- 1. $\forall x \text{ Food}(x) \rightarrow \text{Likes}(\text{John}, x)$
- 2. Food(Apples)
- 3. Food(Chicken)
- 4. \forall y \exists x Eats(y, x) ∧ ¬KilledBy(y, x) → Food(x)
- 5. Eats(Bill, Peanuts) ∧ ¬KilledBy(Bill, Peanuts)
- 6. $\forall x \text{ Eats(Bill, } x) \rightarrow \text{Eats(Sue, } x)$

OR

- a) Translate these sentences into formulas in FOPC.
- 1. $\forall x \text{ Food}(x) \rightarrow \text{Likes}(\text{John}, x)$
- 2. Food(Apples)
- 3. Food(Chicken)
- 4. $\forall y \ \forall x \ Eats(y, x) \land \neg KilledBy(y, x) \rightarrow Food(x)$
- 5. Eats(Bill, Peanuts) ∧ ¬KilledBy(Bill, Peanuts)

eats(bill, peanuts) /\ alive(bill) => [alive(bill) {after eating peanuts} $\rightarrow \neg$ KilledBy(Bill, Peanuts)] $\forall x \forall y [killed-by(y, x) \rightarrow \neg alive(y)]$

6. $\forall x \text{ Eats(Bill, } x) \rightarrow \text{Eats(Sue, } x)$

- (c) Convert the formulas of part (a) into clause CNF form.
- 1. ¬Food(x) ∨ Likes(John, x)
- 2. Food(Apples)
- 3. Food(Chicken)
- 4. ¬Eats(y, x) V KilledBy(y, x) V Food(x)
- 5. Eats(Bill, Peanuts) [FACTS]
- 6. ¬KilledBy(Bill, Peanuts) [FACTS]
- 7. ¬Eats(Bill, x) V Eats(Sue, x)

(d) Use resolution to prove that John likes peanuts.

8. ¬Likes(John, Peanuts)	[Assumption of negated conclusion]
9. ¬Food(Peanuts)	[Resolving 1 and 8]
¬Eats(y, Peanuts) V KilledBy(y, Peanuts)	[Resolving 4 and 9]
11. KilledBy(Bill, Peanuts)	[Resolving 5 and 10]
12. NIL	[Resolving 6 and 11]

Home Work

(e) Use resolution to answer the question, "What food does Sue eat?"

- 13. ¬Eats(Sue, x) negated query
- 14. ¬Eats(Bill, x) 7 and 13
- 15. \perp 5 and 14, unifying Peanuts/x

- 2. Consider the following facts:
- i. Steve only likes easy courses.
- ii. Science courses are hard.
- iii. All the courses in the basketweaving department are easy.
- iv. BK301 is a basketweaving course.
- a) Convert these facts to wffs in predicate logic.
- b) Use backward chaining to answer the question "What course would Steve like?"

Converting it into FOPL (First order predicate logic)

 $\forall x : easy(x) \rightarrow likes(steve, x)$

 $\forall x : science(x) \rightarrow hard(x) [\neg easy(x)]$

 $\forall x : basketweaving(x) \rightarrow easy(x)$

basketweaving(BK301)

likes(steve, x).

- (1) ~easy(x) ② likes(steve,x) (2) ~science(x) ② ~easy(x) (3) ~humanities (x) ② easy(x) (4) humanities(HM101) (5) ~likes(steve,x)
- (2) (6) 1&5 yields resolvent ~easy(x). (7) 3&6 yields resolvent ~humanities (x). (8) 4&7 yields empty clause; the substitution x/HM101 is produced by the unification algorithm which says that the only wff of the form likes(steve,x) which follows from the premises is likes(steve, HM101). Thus, resolution gives us a way to find additional assumptions.

Deduction Using Propositional Logic: Example 1

Choice of Boolean Variables a, b, c, d, ... which can take values true or false.

Boolean Formulae developed using well defined connectors ~, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.

<u>Codification</u> of Sentences of the argument into Boolean Formulae.

Developing the Deduction Process as obtaining truth of a <u>Combined Formula</u> expressing the complete argument.

Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various Interpretations.

If I am the President then I am well-known. I am the President. So I am well-known

Coding: Variables

a: I am the President

b: I am well-known

Coding the sentences:

F1: $a \rightarrow b$

F2: a

G: b

The final formula for deduction: (F1 \wedge F2) \rightarrow G, that is:

$$((a \rightarrow b) \land a) \rightarrow b$$

Deduction Using Propositional Logic: Example 1

Boolean variables a, b, c, d, ... which can take values <u>true</u> or <u>false</u>.

Boolean formulae developed using well defined connectors \sim , \wedge , \vee , \rightarrow , etc, whose meaning (semantics) is given by their truth tables.

Codification of sentences of the argument into Boolean Formulae.

Developing the Deduction Process as obtaining truth of a combined formula expressing the complete argument.

Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various interpretations.

If I am the President then I am well-known. I am the President. So I am well-known

Coding: Variables

a: I am the President

b: I am well-known

Coding the sentences:

F1: $a \rightarrow b$

F2: a

G: b

The final formula for deduction: (F1 \wedge F2) \rightarrow G, that is: ((a \rightarrow b) \wedge a) \rightarrow b

а	b	a → b	(a → b) ∧ a	$((a \rightarrow b) \land a) \rightarrow b$
Т	Т	T	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Deduction Using Propositional Logic: Example 2

Boolean variables a, b, c, d, ... which can take values true or false.

Boolean formulae developed using well defined connectors ~, ∧, ∨, →, etc, whose meaning (semantics) is given by their truth tables.

Codification of sentences of the argument into Boolean Formulae.

Developing the Deduction Process as obtaining truth of a combined formula expressing the complete argument.

Determining the Truth or Validity of the formula and thereby proving or disproving the argument and Analyzing its truth under various interpretations.

If I am the President then I am well-known. I am not the President. So I am not well-known

Coding: Variables

a: I am the President

b: I am well-known

Coding the sentences:

F1: $a \rightarrow b$

F2: ~a

G: -b

The final formula for deduction: (F1 \wedge F2) \rightarrow G, that is: ((a \rightarrow b) \wedge -a) \rightarrow -b

а	b	a → b	(a → b) ∧ ~a	$((a \rightarrow b) \land \neg a) \rightarrow \neg b$
Т	T	Т	F	Т
Т	F	F	F	Т
F	T	Т	Т	F
F	F	T	T	T

Wherever Mary goes, so does the Lamb. Mary goes to School. So the Lamb goes to School.

Predicate: goes(x,y) to represent x goes to y

New Connectors: ∃ (there exists), ¥(for all)

F1: $\forall x (goes(Mary, x) \rightarrow goes(Lamb, x))$

F2: goes(Mary, School)

G: goes(Lamb, School)

To prove: (F1 Λ F2) → G) is always true

No contractors are dependable. Some engineers are contractors. Therefore some engineers are not dependable.

Predicates: contractor(x), dependable(x),
engineer(x)

F1: $\forall x$ (contractor(x) \rightarrow ~dependable(x))

[Alternative: ~3x (contractor(x) Λ dependable(x))]

F2: $\exists x (engineer(x) \land contractor(x))$

G: $\exists x (engineer(x) \land \neg dependable(x))$

To prove: $(F1 \land F2) \rightarrow G)$ is always true

Reasoning under Uncertainty

The intelligent way to handle the unknown

Logical Deduction versus Induction

DEDUCTION

- Commonly associated with formal logic
- Involves reasoning from known premises to a conclusion
- The conclusions reached are inevitable, certain, inescapable

INDUCTION

- Commonly known as informal logic or everyday argument
- Involves drawing uncertain inferences based on probabilistic reasoning
- The conclusions reached are probable, reasonable, plausible, believable

"when you have eliminated all which is impossible, then whatever remains, however improbable, must be the truth."

-sherlock holmes

Handling uncertain knowledge

Classical first order logic has no room for uncertainty

```
∀p Symptom(p, Toothache) ⇒ Disease(p, Cavity)
```

- Not correct toothache can be caused in many other cases
- In first order logic we have to include all possible causes

```
∀p Symptom(p, Toothache) ⇒ Disease(p, Cavity) ∨ Disease(p, GumDisease)
∨ Disease(p, ImpactedWisdom) ∨ ...
```

Similarly, Cavity does not always cause Toothache, so the following is also not true

```
\forall p \ Disease(p, Cavity) \Rightarrow Symptom(p, Toothache)
```

Reasons for using probability

- Specification becomes too large
 - It is too much work to list the complete set of antecedents or consequents needed to ensure an
 exception-less rule
- Theoretical ignorance
 - The complete set of antecedents is not known
- Practical ignorance
 - The truth of the antecedents is not known, but we still wish to reason

Predicting versus Diagnosing

- Probabilistic reasoning can be used for predicting outcomes (from cause to effect)
 - Given that I have a cavity, what is the chance that I will have toothache?
- Probabilistic reasoning can also be used for diagnosis (from effect to cause)
 - Given that I am having toothache, what is the chance that it is being caused by a cavity?

We need a methodology for reasoning that can work both ways.

Axioms of Probability

- 1. All probabilities are between 0 and 1: $0 \le P(A) \le 1$
- 2. P(True) = 1 and P(False) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

Bayes' Rule

$$P(A \wedge B) = P(A \mid B) P(B)$$

$$P(A \wedge B) = P(B \mid A) P(A)$$

$$P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A)}$$

Bayesian Belief Network

Belief Networks

A belief network is a graph with the following:

- Nodes: Set of random variables
- Directed links: The intuitive meaning of a link from node X to node Y is that X has a
 direct influence on Y

Each node has a conditional probability table that quantifies the effects that the parent have on the node.

The graph has no directed cycles. It is a directed acyclic graph (DAG).

Classical Example

- Burglar alarm at home
 - Fairly reliable at detecting a burglary
 - Responds at times to minor earthquakes

- Two neighbors, on hearing alarm, calls police
 - John always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and calls then, too.
 - Mary likes loud music and sometimes misses the alarm altogether

Belief Network Example

A generic entry in the joint probability distribution P(x₁, ..., x_n) is given by:

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$

 Probability of the event that the alarm has sounded but neither a burglary nor an earthquake has occurred, and both Mary and John call:

В	E	P(A)						
T	T	0.95					20	
T	F	0.95	Α	P(J)	Α	P(M)		<u>-</u> 26
F	T	0.29	T	0.90	T	0.70	P(E)	P(B)
F	F	0.001	F	0.05	F	0.01	0.002	0.001

 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(B) = 0.001$$

$$P(B') = 1 - P(B) = 0.999$$

$$P(E) = 0.002$$

$$P(E') = 1 - P(E) = 0.998$$

В	E	P(A)		
T	T	0.95		
T	F	0.95	Α	P(.
F	T	0.29	T	0.9
F	F	0.001	F	0.0

Α	P(J)	Α	P(M)	Si de la companya de	_
T	0.90	T	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001

 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

В	E	P(A)	l					
T	T	0.95			100		-11	
T	F	0.95	Α	P(J)	Α	P(M)		
F	T	0.29	T	0.90	T	0.70	P(E)	P(B)
F	F	0.001	F	0.05	F	0.01	0.002	0.001

D E D(A)

The joint probability distribution: *Find* P(J)

	В	E	P(A)
	T	T	0.95
	T	F	0.95
	F	T	0.29
9	F	F	0.001

Α	P(J)
T	0.90
F	0.05

Α	P(M)		
T	0.70	P(E)	P(B)
F	0.01	0.002	0.001

The joint probability distribution: *Find* P(A'B) *and* P(AE)

 $= 0.95 \times 0.001 \times 0.002 + 0.29 \times 0.999 \times 0.002 = 0.00058$

В	E	P(A)
T	T	0.95
T	F	0.95
F	T	0.29
F	F	0.001

Α	P(J)
T	0.90
F	0.05

Α	P(M)		,
T	0.70	P(E)	P(B)
F	0.01	0.002	0.001

$$P(A'E') = P(A'E'B) + P(A'E'B')$$

= $P(A' | BE').P(BE') + P(A' | B'E').P(B'E')$
= $(1 - 0.95) \times 0.001 \times 0.998 + (1 - 0.001) \times 0.999 \times 0.998 = 0.996$

В	E	P(A)
T	T	0.95
T	F	0.95
F	T	0.29
F	F	0.001

P(J)
0.90
0.05

90	Α	P(M)		
	T	0.70	P(E)	P(B)
1	F	0.01	0.002	0.001

The joint probability distribution: *Find* P(JB)

В	E	P(A)
T	T	0.95
T	F	0.95
F	T	0.29
F	F	0.001

Α	P(J)
T	0.90
F	0.05

	Α	P(M)		
3	T	0.70	P(E)	P(B)
	F	0.01	0.002	0.001

 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(J | B) = P(JB) / P(B) = 0.00086 / 0.001 = 0.86$$

В	Ε	P(A)							
T	T	0.95							
T	F	0.95	Α	P(J)		Α	P(M)		
F	T	0.29	T	0.90	l	T	0.70	P(E)	P(B)
F	F	0.001	F	0.05	1	F	0.01	0.002	0.00
			1916		7			55	22

В	E	P(A)
T	T	0.95
T	F	0.95
F	T	0.29
F	F	0.001

Α	P(J)
T	0.90
F	0.05

Α	P(M)		
T	0.70	P(E)	P(B)
F	0.01	0.002	0.001

 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(AJE') = P(J \mid AE').P(AE') = P(J \mid A).P(AE')$$

= 0.9 x 0.001945 = 0.00175
 $P(A'JE') = P(J \mid A'E').P(A'E') = P(J \mid A').P(A'E')$
= 0.05 x 0.996 = 0.0498
 $P(JE') = P(AJE') + P(A'JE') = 0.00175 + 0.0498 = 0.05155$

В	E	P(A)
T	T	0.95
T	F	0.95
F	T	0.29
F	F	0.001

Α	P(J)
T	0.90
F	0.05

Α	P(M)		
T	0.70	P(E)	P(B)
F	0.01	0.002	0.001

P(A | JE') = P(AJE') / P(JE') = 0.00175 / 0.05155 = 0.03


```
P(BJE') = P(BJE'A) + P(BJE'A')

= P(J | ABE').P(ABE') + P(J | A'BE').P(A'BE')

= P(J | A).P(ABE') + P(J | A').P(A'BE')

= 0.9 x 0.95 x 0.001 x 0.998 + 0.05 x (1 - 0.95) x 0.001 x 0.998

= 0.000856

P(B | JE') = P(BJE') / P(JE') = 0.000856 / 0.05155 = 0.017
```

В	E	P(A)
T	T	0.95
T	F	0.95
F	T	0.29
F	F	0.001

Α	P(J)
T	0.90
F	0.05

Α	P(M)		
T	0.70	P(E)	P(B)
F	0.01	0.002	0.001

Inferences using belief networks

- Diagnostic inferences (from effects to causes)
 - Given that JohnCalls, infer that
 P(Burglary | JohnCalls) = 0.016
- Causal inferences (from causes to effects)
 - · Given Burglary, infer that

P(JohnCalls | Burglary) = 0.86 P(MaryCalls | Burglary) = 0.67

Inferences using belief networks

- Inter-causal inferences (between causes of a common effect)
 - Given Alarm, we have P(Burglary | Alarm) = 0.376
 - If we add evidence that Earthquake is true, then P(Burglary | Alarm ∧ Earthquake) = 0.003
- Mixed inferences
 - Setting the effect JohnCalls to true and the cause Earthquake to false gives
 P(Alarm | JohnCalls ∧ ¬ Earthquake) = 0.003

Exercise

Conditional independence

$$P(x_{1},...,x_{n})$$

$$= P(x_{n} | x_{n-1},...,x_{1})P(x_{n-1},...,x_{1})$$

$$= P(x_{n} | x_{n-1},...,x_{1})P(x_{n-1} | x_{n-2},...,x_{1})$$

$$...P(x_{2} | x_{1})P(x_{1})$$

$$= \prod_{i=1}^{n} P(x_{i} | x_{i-1},...,x_{1})$$

■ The belief network represents conditional independence:

$$P(X_i | X_i,...,X_1) = P(X_i | Parents(X_i))$$