Nama : Elviyani Mawarni

NIM : G.231.22.0077

Mata Kuliah : Struktur Data

PRAK 8. UAS PRAKTIKUM ALGORITMA C. DIJKSTRA SHORTEST PATH 2

1. <u>Soal</u>:

2. Hasil Visualisasi coding

3. Algoritma Dijkstra shortest 0-6

• Membuat table untuk menentukan lintasan / jalur terpendek.

V	'0'	'1'	'2'	' 3'	'4'	' 5'	' 6'

• Melihat node (v) 0 terhubung ke 2 node : 1 dan 2 kemudian mengisikan di kolom '0' = 0, '1' = 2, '2'=6.

V	'0'	'1'	' 2'	' 3'	'4'	' 5'	' 6'
' 0'	0	2	6	∞	∞	∞	8
		(0-1)	(0-2)				

• Antara node '1' dan '2' lebih pendek '1' maka akan ditulis '1' dibawahnya. Dan diisi dengan jarak 0-1=2, 0-2=6, dan 0-1-3=7.

V	'0'	'1'	'2'	' 3'	'4'	' 5'	' 6'
'0'	0	2	6	8	∞	∞	∞
		(0-1)	(0-2)				
'1'	0	2	6	7	∞	∞	∞
		(0-1)	(0-2)	(0-1-3)			

• Kemudian dituliskan node 3 dan menuliskan jarak lintasannya seperti table dibawah ini :

V	'0'	'1'	'2'	' 3'	'4'	'5'	' 6'
'0'	0	2	6	8	∞	∞	8
		(0-1)	(0-2)				
'1'	0	2	6	7	∞	∞	∞
		(0-1)	(0-2)	(0-1-3)			
' 3'	0	2	6	7	17	22	∞
		(0-1)	(0-2)	(0-1-3)	(0-1-3-4)	(0-1-3-5)	

• Kemudian lihat table diatas, node 4 dan node 5 lebih kecil nilai di node 4 maka node 4 akan dituliskan dibawahnya. Lalu tuliskan jarak node seperti table dibawah ini:

V	'0'	'1'	'2'	' 3'	' 4'	' 5'	' 6'
'0'	0	2	6	∞	∞	∞	∞
		(0-1)	(0-2)				
'1'	0	2	6	7	∞	∞	8
		(0-1)	(0-2)	(0-1-3)			
'3'	0	2	6	7	17	22	8
		(0-1)	(0-2)	(0-1-3)	(0-1-3-4)	(0-1-3-5)	
'4'	0	2	6	7	17	23	19
		(0-1)	(0-2)	(0-1-3)	(0-1-3-4)	(0-1-3-4-5)	(0-1-3-4-6)

• Dari table diatas dapat diambil kesimpulan Jarak terpendek lintasan dari 0-6 yaitu melewati lintasan : 0-1-3-4-6 dengan panjang lintasan 19.

4. Coding dan Hasil Coding

```
#membuat fungsi untuk mendapatkan panjang lintasan
def get path weight(path):
  #inisialisasi awal 0
  path weight = 0
  # path akan di looping digunakan untuk mencari berapa beban
dari lintasan yang nantinya akan ditambahkan pada path weight
  for index, value in enumerate(path):
    try:
      for j in graph[value]:
        if j['v'] == path[index + 1]:
            path weight += j['w']
    except:
     break
  return path weight
#membuat fungsi untuk mencari jarak terpendek.
def findShortpath(graph, start, end, path =[]):
  path = path + [start]
  shortest = None
  weights = None
  if start == end: return path
#mencari relasi dari node.
  for node in graph[start]:
      if node['v'] not in path:
        #menampung semua kemungkinan lintasan
          newpath = findShortpath(graph, node['v'], end, path)
          #jika ada lintasan baru akan disimpan di new weight
          if newpath:
            new weight = get path weight(newpath)
            #jika tdk ada weight / new weight lebiH kecil dari
weights maka lintasan terpendek (shortest) akan diganti ke
newpath dan beban (weights) akan diganti ke new weight.
            if not weights or new weight < weights:
              shortest = newpath
              weights = new_weight
  return shortest
#memanggil fungsi findShortpath dari titik 0 ke 6 dan mencari
panjang lintasan.
lintasan terpendek = findShortpath(graph, '0', '6')
```

```
panjang_lintasan = get_path_weight(lintasan_terpendek)

print('Lintasan Terpendek :', lintasan_terpendek )
print('Panjang lintasan :', panjang_lintasan)
```

Hasil:

```
Lintasan Terpendek : ['0', '1', '3', '4', '6']
Panjang lintasan : 19
```