数理逻辑作业 Week9

PB20111686 黄瑞轩

P84 T2

对项 t 在项集 T 中层次 n 做归纳。

- (1) 当 n = 0 时, $t \in X \cup C$,故 $\varphi(x) = \psi(x) \Rightarrow \varphi(t) = \psi(t)$;
- (2) 设当 n < k 时命题成立;
- (3) 当 n=k 时,设 $t=f_i^k\left(t_1,\ldots,t_k
 ight)$,这里 $t\in T_k,t_1,\ldots,t_k\in igcup_{i=0}^{k-1}T_i$,故

$$\varphi(t) = \varphi\left(f_i^k\left(t_1, \dots, t_k\right)\right) = \overline{f_i^n}\left(\varphi\left(t_1\right), \dots, \varphi\left(t_k\right)\right) = \overline{f_i^n}\left(\psi\left(t_1\right), \dots, \psi\left(t_k\right)\right) = \psi(t) \tag{1}$$

故结论成立。

P84 T3

用归纳法。

- (1) 对 $\forall \tau(x) \in T_0$,若 $\tau(x) = x$,则 $\varphi'(\tau(x)) = \varphi'(x) = \varphi(t) = \varphi(\tau(t))$;若 $\tau(x) \neq x$,则 $\tau(x) = \tau(t), \varphi'(\tau(x)) = \varphi(\tau(t))$ 。
- (2) 假定对 $\forall \tau(x) \in T_n(n < k)$, 结论都成立。
- (3) 对 $au(x)\in T_k$,设 $au(x)=f_i^n\ (au_1(x),\cdots, au_n(x))$,这里 $au_m(x)\in igcup_{j=0}^kT_j, 1\leq m\leq n$,且 $au(t)=f_i^n(au_1(t),\ldots, au_n(t))$,则

$$egin{aligned} arphi'(au(x)) &= \overline{f_i^n} \left(arphi'\left(au_1(x)
ight), \cdots, arphi'\left(au_n(x)
ight)
ight) = \overline{f_i^n} \left(arphi\left(au_1(t)
ight), \cdots, arphi\left(au_n(t)
ight)
ight) \\ &= arphi\left(f_i^n\left(au_1(t), \cdots, au_n(t)
ight)
ight) = arphi(au(t)) \end{aligned}$$

取 $\tau(x) = u(x)$,原命题即得证。

P87 T1

3°
$$\neg R_1^2\left(f_2^2\left(x_1,x_2\right),f_2^2\left(x_2,x_3\right)\right)$$

令 $q=R_1^2\left(f_2^2\left(x_1,x_2\right),f_2^2\left(x_2,x_3\right)\right)$,q 的语义解释为 $x_1\times x_2=x_2\times x_3$,要找 $|p|(\varphi)=1,|p|(\psi)=0$ 只需找 $|q|(\varphi)=0,|q|(\psi)=1$,因此可取

$$arphi : arphi \left(x_1
ight) = 1, arphi \left(x_2
ight) = 2, arphi \left(x_3
ight) = 3 \ \psi : \psi \left(x_1
ight) = 1, \psi \left(x_2
ight) = 1, \psi \left(x_3
ight) = 1$$

 $oldsymbol{4}^{oldsymbol{\circ}}\,orall x_1R_1^2\left(f_2^2\left(x_1,x_2
ight),x_3
ight)$

令 $q=R_1^2\left(f_2^2\left(x_1,x_2\right),x_3\right)$,q 的语义解释为 $x_1\times x_2=x_3$,若要对 φ 任意的 x 变通都有 $|q|(\varphi')=1$,可以取

$$\varphi:\varphi\left(x_{2}\right)=\varphi\left(x_{3}\right)=0\tag{2}$$

反之,可以取

$$\psi: \psi(x_2) = 1, \psi(x_3) = 4$$
 (3)

涉及 x_1 的指派是无关紧要的。

$$\mathbf{5}^{\boldsymbol{\circ}} \ \forall x_1 R_1^2 \left(f_2^2 \left(x_1, c_1\right), x_1\right) \rightarrow R_1^2 \left(x_1, x_2\right)$$

令 $q = \forall x_1 R_1^2 \left(f_2^2 \left(x_1, c_1 \right), x_1 \right), q_0 = R_1^2 \left(f_2^2 \left(x_1, c_1 \right), x_1 \right), r = R_1^2 \left(x_1, x_2 \right)$,欲使 $|p|(\varphi) = 1$ 只需 $|q|(\varphi) \rightarrow |r|(\varphi) = 1$ 。

 q_0 的语义解释为 $0=x_1$,显然不能对任何的 φ 的 x_1 变通都有 $|q_0|(\varphi')=1$ 成立,所以对于任何 φ , $|q|(\varphi)=0$,因此可以取

$$\varphi:\varphi(x_2)=1\tag{4}$$

涉及 x_1 的指派是无关紧要的,并且没有符合条件的 ψ 。

P87 T2

3°

设原公式为 $p=\neg q$,则 q 的语义解释为 $x_1<(x_1-(x_1-x_2))\equiv x_1< x_2$,要找 $|p|(\varphi)=1,|p|(\psi)=0$ 只需找 $|q|(\varphi)=0,|q|(\psi)=1$,因此可取

$$arphi : arphi \left(x_{1}
ight) = 2, arphi \left(x_{2}
ight) = 1 \ \psi : \psi \left(x_{1}
ight) = 1, \psi \left(x_{2}
ight) = 2$$

4°

设原公式为 $p=\forall x_1q$,则 q 的语义解释为 $x_1-x_2< x_3$,显然不能对任何的 φ 的 x_1 变通都有 $|q|(\varphi')=1$ 成立,所以对于任何 φ , $|p|(\varphi)=0$,因此可以取

$$\psi: \psi(x_2) = 1, \psi(x_3) = 2 \tag{5}$$

涉及 x_1 的指派是无关紧要的,并且没有符合条件的 φ 。

设原公式为 $p=q o r= orall x_1 q_0 o r$,欲使 |p|(arphi)=1 只需 |q|(arphi) o |r|(arphi)=1。

 q_0 的语义解释为 $x_1 < x_1$,显然不能对任何的 φ 的 x_1 变通都有 $|q_0|(\varphi')=1$ 成立,所以对于任何 φ , $|q|(\varphi)=0$,因此可以取

$$\varphi:\varphi(x_2)=1\tag{6}$$

涉及 x_1 的指派是无关紧要的,并且没有符合条件的 ψ 。

P91 T2

3°

设原公式为 $p = \forall x_1 \forall x_2 \forall x_3 q$, q 的语义解释为 $(x_1 < x_2) \rightarrow (x_1 - x_3 < x_2 - x_3)$ 。

对于任意的 ϕ 的 x_3 变通,都有 $|q|(\phi)=1$,令 $r=\forall x_3q$;

对于任意的 ϕ 的 x_2 变通,都有 $|r|(\phi) = 1$,令 $s = \forall x_2 r$;

对于任意的 ϕ 的 x_1 变通,都有 $|s|(\phi)=1$,所以 $|p|_{\mathbb{Z}}=1$ 。

4°

设原公式为 $p = \forall x_1 \exists x_2 q$, q 的语义解释为 $0 < 2x_2$ 。

存在 ϕ 的 x_3 变通 ϕ' ,使得 $|q|(\phi')=1$,令 $r=\exists x_2q$,则 $|r|(\phi)=1$;

对于任意的 ϕ 的 x_1 变通,都有 $|r|(\phi)=1$,所以 $|p|_{\mathbb{Z}}=1$ 。