HÖGSKOLAN I HALMSTAD

Akademin för informationsteknologi

Mikael Hindgren

Envariabelanalys Uppgiftspaket 1 3 november 2024

För varje uppgift krävs en kortfattad men fullständig motivering samt ett tydligt och exakt angivet svar på enklaste form. Korrekt löst uppgift ger 0.25 bonuspoäng.

1. Beräkna gränsvärdena

(a)
$$\lim_{x \to \pm \infty} (\sqrt{x^2 - 2x} - \sqrt{x^2 + 2x})$$

(b)
$$\lim_{x \to \pm \infty} \frac{2x}{2x - \sqrt{4x^2 - 2x}}$$

(c)
$$\lim_{x \to \pm \infty} \frac{e^{2/x} - 1}{\ln\left(\frac{2x+1}{2x}\right)}$$

(d)
$$\lim_{x\to 0} \frac{x\sin 3x}{\arctan x^2}$$

(a) Beräkna gränsvärdena

(i)
$$\lim_{x \to \infty} \left(\frac{x+2}{x+1} \right)^{\frac{x}{2}}$$

(ii)
$$\lim_{x \to 0} \frac{1 - \cos 2x}{\sin 3x \ln(1 + \sin 4x)}$$

(b) Är följande funktioner kontinuerliga?

(i)
$$f(x) = \begin{cases} \frac{x^3 - 6x^2 + 11x - 6}{x - 3}, & x \neq 3\\ 2, & x = 3 \end{cases}$$

(i)
$$f(x) = \begin{cases} \frac{x^3 - 6x^2 + 11x - 6}{x - 3}, & x \neq 3\\ 2, & x = 3 \end{cases}$$
 (ii) $f(x) = \begin{cases} \frac{x^3 - 5x^2 + 7x - 3}{x - 2}, & x \neq 2\\ 3, & x = 2 \end{cases}$

- (c) Visa att ekvationen $4x^3 20x^2 + 27x 9 = 0$ har minst en rot i vardera av intervallen [0, 1]och]1, 2[.
- (d) Funktionerna nedan är inte definierade i punkten x=2. Undersök om det möjligt att definiera funktionsvärdet f(2) så att f(x) blir kontinuerlig även i x=2 för:

i.
$$f(x) = \frac{2x^2 - 4x}{x^2 - 4}, x \neq 2,$$

ii.
$$f(x) = \frac{2x^2 - 2x}{x^2 - 4}, x \neq 2,$$

iii.
$$f(x) = \frac{(x-2)\ln(x-1)}{1-\cos(2-x)}, x \neq 2.$$

3. Bestäm eventuella asymptoter till kurvan y = f(x) och skissera kurvan nära asymptoterna då

(a)
$$f(x) = \frac{3x^3 - 4}{x^2 - 2}$$

(b)
$$f(x) = \frac{x^3(e^{-x^2} - 1)}{x^2 - 1}$$

(c)
$$f(x) = \frac{x^2 \arctan x}{x-4}$$

(d)
$$f(x) = e^{-1/x} x \arctan x$$

m-värdet i (d) får bestämmas med hjälp av Mathematica.

- 4. (a) Bestäm alla tangenter till kurvan $y = \tan 2x$, $-\pi/4 < x < \pi/4$, som är parallella med linjen y = 2x + 1.
 - (b) Bestäm alla räta linjer som är tangenter till kurvan $y = f(x) = \frac{x^2}{x-1}$ och som går genom
 - (c) Skär kurvorna $y = x^2$ och $y = \frac{1}{\sqrt{x}}$ varandra under rät vinkel?
 - (d) Bestäm ekvationen för tangenten till kurvan $y = f(x) = xe^{\frac{x^2}{2}}$ i de punkter på kurvan där x = 0 respektive x = 1.

Vänd!

5. (a) Finns det några reella tal a och b så att funktionen

$$f(x) = \begin{cases} x^2 + ax + b, & x \le 0\\ (x+1)e^x, & x > 0 \end{cases}$$

blir deriverbar i x = 0?

(b) Kurvan som definieras av $x^3 + y^3 = 6xy$ brukar kallas *Descartes blad* (Se figur 1).

Figur 1: Descartes blad.

- i. Bestäm tangenten till kurvan i punkten (3, 3).
- ii. Bestäm de punkter på kurvan där tangenten är horisontell respektive vertikal.
- (c) När en perfekt sfärisk snöboll smälter är smältningshastigheten i varje tidpunkt proportionell mot begränsningsarean och snöbollen behåller under hela smältprocessen sin sfäriska form. Visa att snöbollens radie avtar med konstant hastighet.
- (d) Raketingenjören Pelle avfyrar en raket rakt uppåt från en startramp på marknivå. Raketen spåras av en radarstation på marknivå som befinner sig på avståndet 3 km från raketens startramp. Vid en viss tidpunkt efter start registrerar radarstationen att avståndet till raketen är 5 km och att detta ökar med 5000 km/h. Hur stor är raketens hastighet vid denna tidpunkt?