225 Building Environment Report

NEU Seattle Devs (Hot Sauce)

Table of contents

1	Sensor Charts						
	1.1 Temperature						
	1.2 Humidity						
	1.3 CO2						
	1.4 PM2.5						
	Comfort Level & Indoor Climate Score						
3 Indoor Comfort Score (ICS) Calculation							
	3.1 Comfort Levels						
	3.2 Scoring Logic						
	3.2.1 How the Score is Calculated						

Sensor Data Summary Start Time: 6:00 End Time: 11:59

	Temperature		${\tt Humidity}$		C02		PM2.5	
	min	${\tt max}$	min	max	min	max	min	max
Sensor Name								
Sensor 3 - Event Space	23	23	43	45	411	436	0	0
Sensor 4 - Room 220	25	26	40	43	470	1054	0	0
Sensor 6 - Room 216	24	24	41	43	454	518	10	10

1 Sensor Charts

1.1 Temperature

Figure 1: Temperature

1.2 Humidity

Figure 2: Humidity

1.3 CO2

Figure 3: CO2

1.4 PM2.5

Figure 4: PM2.5

2 Comfort Level & Indoor Climate Score

Indoor Comfort Score: 0.2

3 Indoor Comfort Score (ICS) Calculation

3.1 Comfort Levels

- Excellent (90-100) Ideal indoor conditions, highly comfortable.
- Good (75-89) Slight deviations, but still comfortable.
- Moderate (50-74) Noticeable discomfort, but tolerable.
- Poor (25-49) Significant discomfort, action needed.
- Unacceptable (0-24) Severe discomfort, unhealthy conditions.

3.2 Scoring Logic

The Indoor Comfort Score (ICS) is based on four key indoor environmental factors:

Factor	Optimal Range
Temperature (°F)	69.8 - 77
Humidity (%)	40 - 60
CO2 (ppm)	400 - 800
$\mathrm{PM}2.5~(\mathrm{\mu g/m^3})$	0 - 12

3.2.1 How the Score is Calculated

- 1 Ideal Conditions:
- If a value falls within the optimal range, no penalty is applied.
- 2 Penalty for Deviations:
- If a value is **outside the optimal range**, a **sigmoid-based penalty** is applied:
- Small deviations \rightarrow minimal penalty
- Larger deviations \rightarrow exponentially stronger penalty
- 3 Final Score Calculation:
- The Indoor Comfort Score (ICS) is computed using a weighted geometric mean:
- Ensures no single factor dominates
- Balances all environmental parameters proportionally
- Generates a realistic comfort score

Sensor Models: ESP8266, PMS5003(PM2.5), SHT31-D(Temp/Hum), S8(CO2)

Calibration Date: January 15, 2025

Sampling Interval: 5 minutes