

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 24: Cross Entropy Loss

CONCEPTS COVERED

Concepts Covered:

- ☐ Back Propagation Learning in MLP
 - ☐ Squared Error
- ☐ Cross Entropy Loss

Problem with Quadratic Loss Function

$$E = \frac{1}{2} \sum_{j=1}^{M_K} \left(O_j^K - t_j \right)^2$$

$$W_{ij}^{K} \leftarrow W_{ij}^{K} - \eta \delta_{j}^{K} O_{i}^{K-1}$$

$$\delta_{j}^{K} = O_{j}^{K} (1 - O_{j}^{K}) (O_{j}^{K} - t_{j})$$

Cross Entropy Loss

Cross Entropy Loss-Two Class Problem

 $o \Rightarrow$ likelihood that y is 1

 $(1-o) \Rightarrow$ likelihood that y is 0

Likelihood that is to be maximized $\Rightarrow o^{y}(1-o)^{(1-y)}$

Loglikelihood $\Rightarrow y \log o + (1 - y) \log(1 - o)$

Cross Entropy Loss

Minimize
$$\Rightarrow C = -\frac{1}{N} \sum_{\forall X} [y \log o + (1 - y) \log(1 - o)]$$

$$\frac{\partial C}{\partial W_i} = -\frac{1}{N} \sum_{\forall X} \left[\frac{y}{\sigma(\theta)} - \frac{(1-y)}{1-\sigma(\theta)} \right] \frac{\partial \sigma(\theta)}{\partial W_i}$$

$$= -\frac{1}{N} \sum_{\forall X} \left[\frac{y}{\sigma(\theta)} - \frac{(1-y)}{1-\sigma(\theta)} \right] \frac{\partial \sigma(\theta)}{\partial \theta} \cdot \frac{\partial \theta}{\partial W_i}$$

Cross Entropy Loss

$$\frac{\partial C}{\partial W_i} = -\frac{1}{N} \sum_{\forall X} \left[\frac{y}{\sigma(\theta)} - \frac{(1-y)}{1-\sigma(\theta)} \right] \frac{\partial \sigma(\theta)}{\partial \theta} \cdot \frac{\partial \theta}{\partial W_i}$$

$$= -\frac{1}{N} \sum_{\forall X} \left[\frac{y}{\sigma(\theta)} - \frac{(1-y)}{1-\sigma(\theta)} \right] \frac{\partial \sigma(\theta)}{\partial \theta} \cdot \frac{\partial \theta}{\partial W_i}$$

$$= -\frac{1}{N} \sum_{\forall X} \left[\frac{y-\sigma(\theta)}{\sigma(\theta)(1-\sigma(\theta))} \right] \sigma(\theta)(1-\sigma(\theta).x_i)$$

$$= \frac{1}{N} \sum_{\forall X} x_i (\sigma(\theta) - y) \qquad = \frac{1}{N} \sum_{\forall X} x_i (o - y)$$

Cross Entropy Loss- Multiclass Problem

$$C = -\frac{1}{N} \sum_{\forall X} \sum_{j} \left[y_{j} \log o_{j}^{K} + (1 - y_{i}) \log(1 - o_{j}^{K}) \right]$$
$$\frac{\partial C}{\partial W_{ij}^{K}} = \frac{1}{N} \sum_{\forall X} o_{i}^{K-1} (o_{j}^{K} - y_{j})$$

$$W_{ij}^{K} \leftarrow W_{ij}^{K} - \eta \frac{1}{N} \sum_{\forall X} o_i^{K-1} (o_j^{K} - y_j)$$

NPTEL ONLINE CERTIFICATION COURSES

Thank you