

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе №_2_

Название: Три схемы включения транзистора									
Дисциплина: Эле	ектроника								
	•								
Студент	ИУ6-42б	May 03.04.2021	И.С. Марчук						
	(Группа)	(Лодпись, дата)	(И.О. Фамилия)						
Преподавател	Ъ		В.А. Карпухин						
		(Подпись, дата)	(И.О. Фамилия)						

Три схемы включения транзистора

Исходные данные для варианта 4 приведены в таблице 1:

Ek	В	Is	R1	R2	Rk,Rэ	Rг	Сбэ	Сбк	fα	C1,C2	Сблок	Rн
V		A	кОм	кОм	кОм	кОм	пФ	пФ	MHz	мкФ	мкФ	кОм
9	100	Si	25	12	2,2	2	5	15	20	5	200	12

Таблица 1 – Условие задачи и вариант

Цель: изучить, как влияют различные способы включения биполярного транзистора и величина сопротивления нагрузки на свойства усилительного каскада.

1) Схема с общим эмиттером

Составим схему для транзистора с общим эмиттером с подключенными мультиметрами для снятия показаний тока и напряжения на входе и выходе. Значения параметров для схемы проставим в соответствии с вариантом. Смотри рисунок 1.

Рисунок 1 – Схема с общим эмиттером

Определим параметры Spice — модели транзистора по исходным данным из таблицы 1. Вид модели представлен на рисунке 2.

Edit Model X

Рисунок 2 – Spice модель транзистора

Произведем расчет входного и выходного напряжения, а также входного и выходного тока для различных случаев нагрузочного сопротивления. Пример приведен на рисунке 3.

Рисунок 3 — Измерение тока и напряжения на входе и выходе схемы

По полученным данным произведем расчет коэффициентов передачи по току, напряжению и мощности, а также входное и выходное сопротивление. Для получения данных воспользуемся следующими формулами:

Коэффициент передачи усилителя по току: $K_i = \frac{I_{\text{вых}}}{I_{\text{вх}}}$

Коэффициент передачи усилителя по напряжению: $K_U = \frac{U_{\text{вых}}}{U_{\text{вх}}}$

Коэффициент передачи усилителя по мощности: $K_P = K_i * K_U$ Полученные результаты приведены в таблице 2.

Rн	Івх, мкА	Івых, мкА	Ивх, мВ	U вых, мВ	K_i	K_U	K_P
150 Ом	8.597	589.105	17.942	111.821	68.53	6.23	426,9419
1.5 кОм	8.597	382.01	17.943	573.226	44.44	31.947	1419,725
12 кОм	8.597	99.623	17.944	1195	11.588	66.596	771,7144
250 кОм	8.598	5.619	17.945	1401	0.654	78.072	51,05909

Таблица 2 – Параметры схемы с общим эмиттером

Входное сопротивление:
$$R_{\rm BX} = \frac{U_{\rm BX}}{I_{\rm BX}} = \frac{^{17.944*10^{-3}}}{^{8.597*10^{-6}}} = 2.087$$
кОм

Для расчета выходного сопротивления запустим схему в режиме холостого хода и короткого замыкания. Смотри рисунки 4 и 5.

Рисунок 4 – Режим холостого хода схемы

Рисунок 5 – Режим короткого замыкания схемы

Выходное сопротивление:
$$R_{\text{вых}} = \frac{U_{\text{хх}}}{I_{\text{к3}}} = \frac{1.414}{642.65 * 10^{-6}} = 2.2 \text{кОм}$$

Произведем аналитический расчет параметров, полученных с помощью эксперимента, и сравним полученные результаты. Коэффициенты передачи определим с помощью следующих формул:

Входное сопротивление: $R_{\rm BX} = \frac{R_{\rm BX\,TP\,09}*R_{\rm 6}}{R_{\rm BX\,TP\,09}+R_{\rm 6}}$

Сопротивление базы: $R_6 = \frac{R_1 * R_2}{R_1 + R_2}$

Входное сопротивление транзистора:

$$R_{
m BX\ TP\ O3}=r_6+(1+B)*r_3,$$
 где: $r_6{\sim}0$ Ом, $r_3=rac{\phi}{I_{
m BM}}$, $\phi=0.026~{
m B}$

Коэффициент передачи усилителя по току:

$$K_{\rm I} = \frac{R_{\rm 6}}{R_{\rm 6} + R_{\rm \tiny BX\,TP\,O9}} * B * \frac{R_{\rm K}}{R_{\rm K} + R_{\rm H}}$$

Коэффициент передачи усилителя по напряжению:

$$K_U = B * \frac{R_{\text{KH}}}{R_{\text{BX TP 09}}}; \ R_{\text{KH}} = \frac{R_{\text{K}} * R_{\text{H}}}{R_{\text{K}} + R_{\text{H}}}$$

Коэффициент передачи усилителя по мощности:

$$K_{\rm P} = K_{\rm I} * K_{\rm U}$$

Выполним расчет и результаты занесем в таблицу 3. Ток эмиттера рассчитаем с помощью схемы, приведенной на рисунке 6. Получаем, что

$$I_{\scriptscriptstyle \mathrm{3M}}=1,\!073\,*10^{-3},$$
 Отсюда $R_{\scriptscriptstyle \mathrm{BX\,TP\,O9}}=(1+100)*24,\!23=2447,\!340$ м $R_{6}=8108,\!108\,\mathrm{Om}$

Рисунок 6 – Схема с мультиметром для расчета тока эмиттера

Rн	Rвх	Rвых	Р кн,Ом	K_{I}	K_U	$K_{ m P}$
150 Ом			140,426	71,91139	5,737903	412,6205842
1.5 кОм	1,880кОм	2.2кОм	891,89	45,67345	36,44324	1664,488493
12 кОм	1,00000	2.2KOW	1859,155	11,90083	75,96636	904,0625538
250 кОм			2180,81	0,67007	89,1094	59,70957422

Таблица 3 – Аналитический метод, для схемы с общим эмиттером

В результате произведенных вычислений аналитическим способом (таблица 2) и данных, полученных экспериментальным путем (таблица 3) получили схожие данные.

Определим граничную частоту работы транзистора с общим эмиттером. Для этого построим график анализа тока. Смотри рисунок 7.

Рисунок 7 – АС анализ схемы с общим эмиттером

Граничная частота находится на отметке при напряжении в $\sqrt{2}$ раз меньше максимального. Исходя из рисунка 7 получаем, что f в = 165,38 кГц.

Для определения постоянной времени цепи, найдем коэффициент G по формуле:

$$G=rac{R_\Gamma'+r_6+r_9}{R_\Gamma'+R_{
m BX\ TP\ O9}}=rac{1604+24,23}{1604+2447,34}=0,4019;$$
 где $R_\Gamma'=rac{R_\Gamma*R_6}{R_\Gamma+R_6}=1,6043\
m KOM;$ $r_6=0$

Постоянную времени цепи рассчитаем по формуле:

$$au_{\mathrm{B}} = G * (au_{b} + \mathrm{C}_{\mathrm{K9}} * R_{\mathrm{KH}}) + \mathrm{C}_{\mathrm{H}} * R_{\mathrm{KH}},$$
где $\mathrm{C}_{\mathrm{H}} = 0$ Ф
 $au_{b} = \frac{B+1}{2\pi f_{\alpha}} = 8,0563\mathrm{e} - 3$
 $au_{\mathrm{K9}} = C_{\mathrm{6K}}(B+1) = 1,515e - 9$
 $au_{\mathrm{B}} = 3,238959 \; \mathrm{Mc}$

2) Схема с общей базой

Составим схему для транзистора с общей базой, представленной на рисунке 8.

Рисунок 8 – Схема с общей базой

Произведем расчет входного и выходного напряжения, а также входного и выходного тока для различных случаев нагрузочного сопротивления аналогично рисунку 8.

По формулам из пункта 1 рассчитаем коэффициенты передачи по току, напряжению и мощности. Результаты приведены в таблице 4.

Rн	IBX, A	Івых,А	Ивх, В	Ивых,В	Ki	Ku	Kp
150 Ом	17,29E-6	15,854E-6	496,44E-6	2,378E-3	0,917	4,79	4,39
1.5 кОм	17,29E-6	10,069E-6	496,44E-6	15,105E-3	0,582	30,4	17,7
12 кОм	17,29E-6	2,626E-6	496,44E-6	31,486E-3	0,152	63,4	9,63
250 кОм	17,29E-6	148,07E-9	496,44E-6	36,929 E-3	8,56E-3	74,4	0,637

Таблица 4 – Параметры схемы с общей базой

Входное сопротивление:

$$R_{
m BX} = rac{U_{
m BX}}{I_{
m BX}} = rac{496,44E-6}{17,29E-6} = 28,7 \, {
m Om}$$

Для расчета выходного сопротивления запустим схему в режиме холостого хода и короткого замыкания как в пункте 1.

Выходное сопротивление: $R_{\rm BЫX} = \frac{U_{\rm xx}}{I_{\rm K3}} = \frac{37,248e-3}{16,935e-6} = 2,1995 кОм$

Произведем аналитический расчет параметров, полученных с помощью эксперимента, и сравним полученные результаты. Коэффициенты передачи определим с помощью следующих формул:

Входное сопротивление:
$$R_{\rm BX} = \frac{\frac{R_{\rm BX\,TP\,06}}{B+1}*R_{\rm 9}}{\frac{R_{\rm BX\,TP\,06}}{B+1}+R_{\rm 9}}$$

Сопротивление базы:
$$R_6 = \frac{R_1 * R_2}{R_1 + R_2}$$

Входное сопротивление транзистора: $R_{\rm BX\,TP\,o6}=r_6+(1+B)*r_3$, где: $r_6{\sim}0$ Ом, $r_9=\frac{\varphi}{l_{\rm DM}}$, $\varphi=0.026$ В

Коэффициент передачи усилителя по току:

$$K_{\rm I} = \frac{R_{\rm 3} \alpha R_{\rm K}}{\left(R_{\rm 3} + \frac{R_{\rm BX \, TP \, o6}}{1 + B}\right) * (R_{\rm K} + R_{\rm H})}, \qquad \alpha = \frac{B}{1 + B}$$

Коэффициент передачи усилителя по напряжению:

$$K_U = B * \frac{R_{\text{KH}}}{R_{\text{BX TP of}}}; R_{\text{KH}} = \frac{R_{\text{K}} * R_{\text{H}}}{R_{\text{K}} + R_{\text{H}}}$$

Коэффициент передачи усилителя по мощности: $K_{\rm P} = K_{\rm I} * K_{\rm U}$

Выполним расчет и результаты занесем в таблицу 5. Ток эмиттера рассчитаем с помощью схемы, приведенной на рисунке 9. Получаем, что $I_{\rm 3M}=1{,}07{\rm e}{-}3~{\rm A}$

Отсюда
$$R_{\text{вх тр об}} = (1+100)*2,43E+01=2,45$$
 кОм $R_6 = 8108,108$ Ом

Рисунок 9 – Схема с общей базой для расчета тока эмиттера

Rн	Rвх	Rвых	Rкн	KI	KU	KP
150 Ом			140,4255	0,917	5,721832	5,245635
1.5 кОм	24,0336 Ом	2,1995 кОм	891,8919	0,582	36,34137	21,16072
12 кОм			1859,155	0,152	75,75384	11,49336
250 кОм			2180,809	0,00854	88,86007	0,759089

Таблица 5 – Аналитический метод для схемы с общей базой

В результате произведенных вычислений аналитическим способом (таблица 5) и данных полученных экспериментальным путем (таблица 4) получили схожие данные. Расчеты выполнены верно.

Определим граничную частоту работы транзистора с общим эмиттером. Для этого построим график анализа тока. Смотри рисунок 10.

Рисунок 10 – АС анализ схемы с общей базой

Граничная частота находится на отметке при напряжении в $\sqrt{2}$ раз меньше максимального. Исходя из рисунка 10, получаем, что f в = 7,6135 МГц Для определения постоянной времени цепи, найдем коэффициент G по формуле:

$$G = \frac{R_\Gamma' + r_6 + r_9}{R_\Gamma' * (B+1) + R_{\text{BX TP 06}}} = \frac{1604,3 + 0 + 24,299}{1604,3 * 101 + 2450} = 0,00990124;$$
 где $R_\Gamma' = \frac{R_\Gamma * R_6}{R_\Gamma + R_6} = \frac{2000 * 8108,108}{2000 + 8108,108} = 1,6043 \text{ кОм; } r_6 = 0$

Постоянную времени цепи рассчитаем по формуле:

$$au_{\mathrm{B}} = G*(au_b + \mathrm{C}_{\mathrm{K9}} * R_{\mathrm{KH}}) + \mathrm{C}_{\mathrm{H}} * R_{\mathrm{KH}}, \qquad \mathrm{где} \ \mathrm{C}_{\mathrm{H}} = 0 \Phi$$
 $au_b = \frac{B+1}{2\pi f_\alpha} = 2,111335e-6$
 $au_{\mathrm{K9}} = C_{\mathrm{6K}}(B+1) = 1,515e-9$
 $au_{\mathrm{P}} = 0,0487929 \ \mathrm{MC}$

3) Схема с общим коллектором

Составим схему для транзистора с общей базой, представленной на рисунке 11.

Рисунок 11 – Схема с общим коллектором

Произведем расчет входного и выходного напряжения, а также входного и выходного тока для различных случаев нагрузочного сопротивления аналогично рисунку 3.

По формулам из пункта 1 рассчитаем коэффициенты передачи по току, напряжению и мощности. Результаты приведены в таблице 6.

Rвх, кОм	Rн	IBX, A	Івых, А	Uвх, B	Uвых , В	KI	KU	KP
7156,66	150 Ом	4,69E-6	1,15E-4	2,56E-2	2,17E-2	2,45E+01	8,48E-1	20,7928
7454,889	1.5 кОм	3,70E-6	1,79E-5	2,76E-2	2,69E-2	4,84E+00	9,74E-1	4,70996
7774,92	12кОм	3,58E-6	2,29E-6	2,78E-2	2,75E-2	6,40E-01	9,87E-1	0,6318
7819,355	250кОм	3,57E-6	1,10E-7	2,79E-2	2,76E-2	3,10E-02	9,89E-1	0,0306

Таблица 6 – Параметры схемы с общим коллектором

Для расчета выходного сопротивления запустим схему в режиме холостого хода и короткого замыкания как в пункте 1.

Выходное сопротивление:
$$R_{
m BMX}=rac{U_{
m XX}}{I_{
m K3}}=rac{27,574{
m E}-3}{611,788{\it E}-6}=45,07117$$

Произведем аналитический расчет параметров, полученных с помощью эксперимента, и сравним полученные результаты.

Коэффициенты передачи определим с помощью следующих формул:

Входное сопротивление:
$$R_{\text{BX}} = \frac{\left(R_{\text{вх тр ок}} + (B+1)*R_{\text{эн}}\right)*R_6}{\left(R_{\text{вх тр ок}} + (B+1)*R_{\text{эн}}\right)+R_6}$$

Сопротивление базы:
$$R_6 = \frac{R_1 * R_2}{R_1 + R_2}$$

Входное сопротивление транзистора: $R_{\text{вх тр ок}} = r_6 + (1 + B) * r_9$, где: $r_6 \sim 0$ Ом, $r_9 = \frac{\varphi}{I_{\text{3M}}}$, $\varphi = 0.026$ В

Коэффициент передачи усилителя по току:

$$K_{\rm I} = \frac{R_6 * (1+B) * R_9}{(R_6 + R_{\rm BX \, TP \, OK} + (1+B) * R_9) * (R_9 + R_{\rm H})}$$

Коэффициент передачи усилителя по напряжению:

$$K_U = (1+B) * \frac{R_{\text{9H}}}{R_{\text{BX TP OK}} + (1+B) * R_{\text{9}}}; R_{\text{9H}} = \frac{R_{\text{9}} * R_{\text{H}}}{R_{\text{9}} + R_{\text{H}}}$$

Коэффициент передачи усилителя по мощности:

$$K_{\rm P} = K_{\rm I} * K_{\rm II}$$

Выходное сопротивление:
$$R_{
m BbIX} = rac{R_{
m 9}*(R_{
m 9}+rac{R_{
m \Gamma}^{'}+r_6}{B+1})}{R_{
m 9}+(R_{
m 9}+rac{R_{
m \Gamma}^{'}+r_6}{B+1})}$$

Выполним расчет и результаты занесем в таблицу 7. Ток эмиттера рассчитаем с помощью схемы, приведенной на рисунке 12. Получаем, что $I_{\rm эм}=1{,}071{\rm E}\text{-}3~{\rm A}$

$$r_{
m 9}=24,\!2764$$

Отсюда $R_{
m BX\ TP\ OK}=(1+100)*24,\!2764=2451,\!91410$ м $R_{
m 6}=8108,\!108$ Ом

Рисунок 12 — Схема с общим коллектором для расчета тока эмиттера

Rн	Rэн , Ом	R вх , Ом	KI	KU	KP
150 Ом	140,4255	5451,1378	3,2937	0,0631	20,79
1.5 кОм	891,8919	7454,8817	2,09196	0,40098	83,88
12кОм	776,4706	7369,3039	2,27655	0,34909	0,79472
250кОм	2180,8089	7823,2933	0,03069	0,98046	0,0301

Таблица 7 – Параметры схемы с общим коллектором

В результате произведенных вычислений аналитическим способом (таблица 7) и данных полученных экспериментальным

путем (таблица 6) получили схожие данные. Расчеты выполнены верно.

Определим граничную частоту работы транзистора с общим эмиттером. Для этого построим график анализа тока. Смотри рисунок 14.

Рисунок 13 – АС анализ схемы с общим коллектором

Граничная частота находится на отметке при напряжении в $\sqrt{2}$ раз меньше максимального. Исходя из рисунка 8, получаем, что f в = 8,0625 МГц

Для определения постоянной времени цепи, найдем коэффициент G по формуле:

$$G = \frac{R_{\Gamma}' + r_6 + r_9}{R_{\Gamma}' + R_{9H}*(B+1) + R_{BX TP OK}} = \frac{1604,3 + 0 + 24,2764}{1604,3 + 776,471*101 + 2451,9141} = 0,019745;$$
 где $R_{\Gamma}' = \frac{R_{\Gamma}*R_6}{R_{\Gamma} + R_6} = \frac{2000*8108,108}{2000 + 8108,108} = 1,6043 кОм;$ $r_6 = 0$

Постоянную времени цепи рассчитаем по формуле:

$$au_{\mathrm{B}} = G*(au_b + \mathrm{C}_{\mathrm{K9}} * R_{\mathrm{KH}}) + \mathrm{C}_{\mathrm{H}} * R_{\mathrm{KH}}, \qquad \text{где } \mathrm{C}_{\mathrm{H}} = 0\Phi$$
 $au_b = \frac{B+1}{2\pi f_{\alpha}} = 1,993755e - 6$
 $au_{\mathrm{K9}} = C_{\mathrm{6K}}(B+1) = 1,515e - 9$
 $au_{\mathrm{B}} = 0,398330792475 \ \mathrm{MKC}$

Вывод:

В ходе решения домашнего задания были рассмотрены три способа включения биполярного транзистора, при различных выходных нагрузках. Был проведен анализ всех случаев, влияющих на схему усилительного каскада, и сопоставление их в таблицах.