מתמטיקה דיסקרטית - תרגול 3

סמסטר קיץ תשפ"ד

נושאים: תורת הקבוצות, יחסים.

תורת הקבוצות

תזכורת: עבור קבוצות $A \oplus B$, או $A \triangle B$ ום יסומן של Aו-B או או $A \oplus B$, ומוגדר להיות

$$\begin{split} A\triangle B &= \{x \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\} \\ &= \{x \mid (x \in A) \oplus (x \in B)\} \\ &= (A \setminus B) \cup (B \setminus A) \\ &= (A \cup B) \setminus (A \cap B) \,. \end{split}$$

תרגיל 1. הוכיחו או הפריכו את הטענות הבאות:

$$(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C)$$
 .1

$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$$
 .2

$$A\triangle C\subseteq (A\triangle B)\cup (B\triangle C)$$
 .3

פתרון 1. הוכחה:

$$x\in (A\setminus B)\setminus C\iff x\in (A\setminus B)\wedge x\notin C$$
 (אסוציאטיביות של $(x\in A\wedge x\notin B)\wedge x\notin C$ (אסוציאטיביות של $(x\in A\wedge x\notin B)\wedge x\notin C$ (אסוציאטיביות של $(x\in A\wedge x\notin B)\wedge x\notin C$) $(x\in A\wedge x\notin B)\wedge x\notin C$) $(x\in A\wedge x\notin B)\wedge x\notin C$ $(x\in B)\wedge x\notin C$) $(x\in A)\wedge x\notin C$ $(x\in B)\wedge x\notin C$

- 2. הוכחה כדי להראות שוויון בין הקבוצות, נראה הכלה דו כיוונית.
- $x \in (A \cup B) \setminus C$ יהי : $(A \cup B) \setminus C \subseteq (A \setminus C) \cup (B \setminus C)$
- וגם ($x \in B$ או $x \in A$ מהגדרת הפרש מתקיים (כלומר $x \in A \cup B$ מהגדרת הפרש העלים $x \notin C$
 - $x\in B\setminus C$ אזי $x\in B$ ואם $x\in A\setminus C$ אזי , $x\in A$ אם
 - $x \in (A \setminus C) \cup (B \setminus C)$ בכל מקרה, -
 - $x\in (A\setminus C)\cup (B\setminus C)$ יהי : $(A\setminus C)\cup (B\setminus C)\subseteq (A\cup B)\setminus C$
 - $x \in B \setminus C$ או $x \in A \setminus C$ מהגדרת איחוד מתקיים -
- , אונ א אזי א איי א א איי איי איי א איי איי א איי איי איי א איי
- , אונ א אזי א א אזי א אזי א אזי א איי איי א איי איי א איי
 - $x \in (A \cup B) \setminus C$, בכל מקרה
 - $x \in A \triangle C$ יהי : הוכחה: 3
 - $(x \in A \setminus C) \lor (x \in C \setminus A)$ כלומר, $x \in A \setminus C \cup C \setminus A$ לכן.
 - :פרים: למקרים. $x\notin C$ וגם $x\in A$ מתקיים הא $x\in A\setminus C$ אם •
 - $x\in A\triangle B$ אם , $x\in B\triangle C$ אם , $x\in B$, נקבל ש
 - $.x \in (A \triangle B) \cup (B \triangle C)$ בכל מקרה מתקיים -
 - . זהה $x \in C \setminus A$ זהה •

הגדרת A,B של של הקרטזית המכפלה קבוצות. הברת להיות מוגדרת A,B

$$A \times B = \left\{ \underbrace{(a,b)}_{\text{TIX OTH}} \mid a \in A \land b \in B \right\}$$

, $B = \{1,2\}$ ו- ו- $A = \{\emptyset,$ יפתח יפתח .1 דוגמה 1. עבור

$$A imes B = \left\{ \left(\mathsf{"ean}, 1 \right), \left(\mathsf{"ean}, 2 \right), \left(\emptyset, 1 \right), \left(\emptyset, 2 \right)
ight\}.$$

 $.\emptyset imes A = A imes \emptyset = \emptyset$ מתקיים X קבוצה לכל קבוצה

אזי , A_1,\ldots,A_n אזי עבור קבוצות •

$$A_1 \times \dots \times A_n = \sum_{i=1}^n A_i = \left\{ \underbrace{(a_1, \dots, a_n)}_{\text{other}} \mid a_1 \in A_1, \dots, a_n \in A_n \right\}.$$

אזי , $A=A_1=\cdots=A_n$ אזי •

$$\underbrace{A \times A \times \cdots \times A}_{\text{PURID } n} = A^n = \{(a_1, \dots, a_n) \mid a_1 \dots, a_n \in A\}.$$

עבור קבוצות A_1, A_2, \ldots נגדיר •

$$A_1 \cup A_2 \cup \dots = \bigcup_{i=1}^{\infty} A_i = \bigcup_{i \in \mathbb{N}^+} A_i = \left\{ x \mid \exists i \in \mathbb{N}^+ : x \in A_i \right\}$$

$$A_1 \cap A_2 \cap \dots = \bigcap_{i=1}^{\infty} A_i = \bigcap_{i \in \mathbb{N}^+} A_i = \left\{ x \mid \forall i \in \mathbb{N}^+ : x \in A_i \right\}$$

כי הוכח (אוסף קבוצות). משפחות $\mathcal{A}=\{A_i\}_{i\in\mathbb{N}^+}$, $\mathcal{B}=\{B_i\}_{i\in\mathbb{N}^+}$ תרגיל 2. תהיינה

$$\left(\bigcup_{i=1}^{\infty} A_i\right) \setminus \left(\bigcup_{i=1}^{\infty} B_i\right) \subseteq \bigcup_{i \in \mathbb{N}^+} \left(A_i \setminus B_i\right).$$

 $x
otin (igcup_{i=1}^\infty B_i)$ וגם $x\in (igcup_{i=1}^\infty A_i)$ אזי $x\in (igcup_{i=1}^\infty A_i)\setminus (igcup_{i=1}^\infty B_i)$ פתרון 2. יהי

מתקיים $x
ot\in B_i$ מתקיים $i \in \mathbb{N}^+$ וגם לכל , $x \in A_i$ כך ש $j \in \mathbb{N}^+$ קיים $j \in \mathbb{N}^+$

$$x \in A_j \setminus B_J \implies x \in \bigcup_{i \in \mathbb{N}^+} (A_i \setminus B_i).$$

הגדרה מתקיימות הבאות של A אם שלוש הא $\mathcal{F}\subseteq\mathcal{P}\left(A\right)$ הבאות הבאות תהי A אם הגדרה באות מתקיימות:

במחלקה כלשהי: A- נמצא במחלקה כלשהי:

$$\bigcup_{S \in \mathcal{F}} S = A.$$

2. אין חיתוך בין מחלקות שונות:

$$\forall S, T \in \mathcal{F} : S \neq T \to S \cap T = \emptyset.$$

:אף מחלקה ב- \mathcal{F} אינה ריקה.

 $\forall S \in \mathcal{F} : S \neq \emptyset.$

אם \mathcal{F}_2 אם עידון של \mathcal{F}_1 .A היא של \mathcal{F}_1 היא עידון של קבוצה, ויהיו \mathcal{F}_1 אם הגדרה 3. תהי

 $\forall S \in \mathcal{F}_1 \exists T \in \mathcal{F}_2 : S \subseteq T.$

דוגמה $A = \{1, 2, 3, 4\}$ עבור $A = \{1, 2, 3, 4\}$

$$\mathcal{F}_1 = \{\{1\}, \{2,3\}, \{4\}\}, \quad \mathcal{F}_2 = \{\{1,2,3\}, \{4\}\},$$

 $:\mathcal{F}_2$ של עידון איז \mathcal{F}_1 -של נקבל

- . $\{1\}\subseteq\{1,2,3\}$ ומתקיים $\{1,2,3\}\in\mathcal{F}_2$, $\{1\}\in\mathcal{F}_1$ עבור •
- $\{2,3\}\subseteq\{1,2,3\}$ ומתקיים $\{1,2,3\}\in\mathcal{F}_2$, $\{2,3\}\in\mathcal{F}_1$ עבור
 - $.\{4\}\subseteq\{4\}$ ומתקיים $\{4\}\in\mathcal{F}_2$, $\{4\}\in\mathcal{F}_1$ עבור •

על ידי \mathcal{G} על קבוצות משפחת נגדיר של A הלוקות של $\mathcal{F}_1,\mathcal{F}_2$ ויהיו קבוצות קבוצות A

$$\mathcal{G} = \{ S \cap T \mid (S, T) \in \mathcal{F}_1 \times \mathcal{F}_2, S \cap T \neq \emptyset \}.$$

A של חלוקה של G הוכיחו כי

פתרון 3. נוכיח את שלוש התכונות של חלוקה:

באמצעות הכלה דו-כיוונית: $\bigcup_{L \in \mathcal{G}} L = A$ נראה כי .1

$$\bigcup_{L\in\mathcal{G}}L\subseteq A$$
 (৪)

- $x\in L'$ כך ש' כך קיים קיים מהגדרת מהגדרת היהי א ב $x\in \bigcup_{L\in\mathcal{G}} L$ יהי יהי
 - $S'\cap T'=L'$ כך כך כך כך כל כל מימים $S'\in\mathcal{F}_1,T'\in\mathcal{F}_2$ מהגדרת ullet
 - $x \in T'$ וגם $x \in S'$ ע נקבל נקבל החיתוך. נקבל •
 - $S'\subseteq A$ מכיוון של A חלוקה של \mathcal{F}_1 ו- ו $S'\in\mathcal{F}_1$ מכיוון ש
 - $x \in A$ -ש מהגדרת הכלה נקבל •

$$A\subseteq\bigcup_{L\in\mathcal{G}}L$$
 (১)

- $a \in A$ יהי •
- $x\in S'$ מכיוון ש F_1,F_2 כך של הלוקות של הלוקות של א $S'\in \mathcal{F}_1,T'\in \mathcal{F}_2$ קיימות הלוקות של הלוקות הלו

- $S'\cap T'
 eq \emptyset$ ובפרט $X\in S'\cap T'$ ש-ליש נקבל מהגדרת היתוך נקבל •
- $S'\cap T'\subseteq$ ש-בל נקבל איחוד נקבל מהגדרת ה', $S'\cap T'\in\mathcal{G}$ נקבל ש-ב $\bigcup_{L\in\mathcal{G}}L$
 - $x \in \bigcup_{L \in \mathcal{G}} L$ -ש מהגדרת הכלה נקבל מהגדרת -
- $M \neq K$ -כעת נוכיח שאין חיתוך בין מחלקות שונות: נוכיח שלכל $M,K \in \mathcal{G}$ כעת נוכיח מתקיים $M \cap K = \emptyset$
 - $M\cap K
 eq\emptyset$ וגם M
 eq K- כך ש $M,K\in\mathcal{G}$ וגם שקיימים •
- $T_1,T_2\in\mathcal{F}_2$ יו $S_1,S_2\in\mathcal{F}_1$ מכיוון קיימות קהגדרת אהגדרת ההגדרת מהגדרת הער $M,K\in\mathcal{G}$ ים כך ש-

$$M = S_1 \cap T_1, \quad K = S_2 \cap T_2.$$

- מכיוון ש- \emptyset מכיוון ש- $X\in M\cap K$, קיים X כך ש-X, ומהגדרת חיתוך מתקיים סכיוון ש- $X\in K$ וגם אונם $X\in M$
 - -ש מכיוון ש $K=S_2\cap T_2$ ו ו- $M=S_1\cap T_1$, מהגדרת מיוון ש \bullet

$$x \in S_1 \land x \in S_2 \land x \in T_1 \land x \in T_2$$
.

- $S_1\cap S_2
 eq \emptyset$ ש- אילכן נקבל הארת וגם $x\in S_1\cap S_2$ וגם אונע נקבל ש $x\in S_1\cap S_2$ שהגדרת היתוך נקבל הארת וגם $T_1\cap T_2 \neq \emptyset$
- , $T_1=T_2$ וגם ($S_1\cap S_2=\emptyset$ אחרת אחרת (קבל ש- S_2 -ש חלוקות נקבל הלוקות מכיוון ש- S_1 -שומכאן נובע ש-

$$M = S_1 \cap T_1 = S_2 \cap T_2 = K,$$

 $M \neq K$ בסתירה לכך ש

- $L \neq \emptyset$, $L \in \mathcal{G}$ לבסוף, נוכיח כי לכל 3.
- $L=S\cap T$ ו $S\cap T
 eq\emptyset$ כך שי0 כך ש0 וו1 1 וו1 1 רישות 1 וו1 רישות 1 וו1 רישות 1
 - $L \neq \emptyset$ -ש מכאן נקבל •

יחסים

A (כלומר A^2 הגדרה .5 תהי A יחס מעל A יחס קבוצה ויהי A

- $a(a,a)\in R$ מתקיים $a\in A$ לכל אם לכל R .1
- $(a,a) \notin R$ מתקיים $a \in A$ לכל אם לכל R .2
 - מתקיים $a,b\in A$ מתקיים R .3

$$(a,b) \in R \to (b,a) \in R.$$

- מתקיים $a,b\in A$ אנטי-סימטרי חלש אם לכל R .4
- $(a R b \wedge b R a) \rightarrow a = b.$
 - מתקיים $a,b\in A$ לכל אם לכל מתקיים מתקיים R .5

$$a R b \rightarrow \neg (b R a)$$
.

מתקיים $a,b,c\in A$ טרנזיטיבי אם לכל R .6

$$(a R b \wedge b R c) \rightarrow a R c.$$

תרגיל 4. עבור כל אחד מהיחסים הבאים, בדקו אילו תכונות היחס מקיים.

- $\{1,2,3\}$ מעל $R = \{(1,2),(2,1),(1,3),(3,1)\}$.1
 - \mathbb{Z} אמ"מ y=2 אמ"מ $(x,y)\in S$.2
- פתרון 4. ולכן בפרט לא רפלקסיבי: $R \bullet (1,1), (2,2), (3,3) \notin R$ אנטי-רפלקסיבי: $R \bullet (1,1), (2,2), (3,3)$
 - . היחס אחר אחר אוג אחר (1,3), $(3,1) \in R$, $(1,2), (2,1) \in R$ יוע אחר אחר א סימטרי: $R \bullet$
 - $(1,2)\in R \land (2,1)\in R$ אבל אבל אנטי-סימטרי חלש: אנטי-סימטרי אנטי-
 - . ניתן להסיק מאותה הדוגמא הנגדית ש-R אינו אנטי-סימטרי חזק.
 - $(1,1) \notin R$ אבל אבל $(1,2) \in R \wedge (2,1) \in R$ אבל א טרנזיטיבי: $R \bullet$
 - :אנטי-רפלקסיבי $S \bullet 2$
- והגענו $x=\sqrt{2}\notin\mathbb{Z}$ אזי אזי $x\cdot x=2$ כך ש $x\in\mathbb{Z}$ והגענו לסחירה.
 - . מכאן S בפרט אינו רפלקסיבי.
 - $x,y\in\mathbb{Z}$ סימטרי: נובע מקומוטטיביות הכפל. לכל S

$$x S y \iff x \cdot y = 2 \iff y \cdot x = 2 \iff y S x.$$

- $.1 \neq 2$ אבל (2,1) $\in S$ וגם (1,2) $\in S$ ימטרי חלש: S •
- . ניתן להסיק מאותה הדוגמא הנגדית ש-R אינו אנטי-סימטרי חזק
 - $.(2,2)\notin S$ אבל $(1,2)\in S\wedge (2,1)\in S$ אבל S •