1 point

- 1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.7. This means (check all that apply):
 - Our estimate for $P(y=1|x;\theta)$ is 0.3.
 - Our estimate for $P(y=0|x;\theta)$ is 0.7.
 - Our estimate for $P(y=1|x;\theta)$ is 0.7.
 - Our estimate for $P(y=0|x;\theta)$ is 0.3.

1 point 2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2).$

x_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_\theta(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2) \text{) could increase how well we can fit the training data.}$
- At the optimal value of heta (e.g., found by fminunc), we will have $J(heta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_\theta(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2) \text{) would increase } J(\theta) \text{ because we are now summing over more terms.}$
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{ heta}(x^{(i)})>1.$

1 point

- 3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.
 - $\theta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) y^{(i)}
 ight) x^{(i)}$ (simultaneously update for all j).
 - $lackbracket{\theta_j := \theta_j lpha rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) y^{(i)}) x_j^{(i)}}$ (simultaneously update for all j).

 - $egin{aligned} egin{aligned} heta := heta lpha rac{1}{m} \sum_{i=1}^m \left(heta^T x y^{(i)}
 ight) x^{(i)}. \end{aligned}$

point

- 4. Which of the following statements are true? Check all that apply.
 - Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).
 - The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.
 - For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
 - always greater than or equal to zero.

The cost function $J(\theta)$ for logistic regression trained with $m \geq 1$ examples is

point

- Suppose you train a logistic classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$. Suppose $\theta_0 = -6, \theta_1 = 1, \theta_2 = 0$. Which of the following figures represents the decision boundary found by your classifier?
 - Figure:

x₂ 1

Figure:

Figure:

v

Figure:

I, **Anderson Hitoshi Uyekita**, understand that submitting work that isn't my own may result in permanent

failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz