Scribed by: Kyle Dituro

Recall the definition of the subspace topology:

Definition 1. If (X, τ_X) is a topological space, and $Y \subseteq X$, then the **subspace topology** on Y is the topology

$$\tau_{\text{sub}} = \{U \cap Y | U \in \tau_X\}$$

.

We now give a proposition which somehow justifies that this is not just any topology, but is somehow a good choice.

Proposition 1. With notation as above:

- 1. $i:(Y,\tau_{\mathrm{sub}})\to (X,\tau_X)$ taking $y\mapsto y$ (the inclusion function) is continuous.
- 2. τ_{sub} is the coarsest topology on Y such that i is continuous.
- 3. If $f:(X,\tau_X)\to (Z,\tau_Z)$ $x\mapsto f(x)$ is continuous, then $f|_y:(Y,\tau_{\text{sub}})\to (Z,\tau_Z)$ $y\mapsto f(y)$ is also continuous.
- 4. If (W, τ_W) is a topological space and $g: W \to Y$ is a function, then

$$g:(W,\tau_W)\to (Y,\tau_{\mathrm{sub}})$$
 is continuous $\Leftrightarrow i\circ g:(W,\tau_W)\to (X,\tau_X)$ is continuous $w\mapsto g(w)$ $w\mapsto g(w)$

- *Proof.* 1. This part is mosly trivial (try writing out what i^{-1} of an open set must be! The proof follows directly).
 - 2. Let τ_2 be a topology on Y such that $i:(Y,\tau_2)\to (X,\tau_X)$ is continuous. Since i is continuous, for all $U\subseteq X$ an open subset of X, we have that $i^{-1}(U):U\cap Y$ is open in Y with topology τ_2 . This shows that for any $U\subseteq X$ an open subset of $X,U\cap Y\in \tau_2$ i.e. an arbitrary element of τ_{sub} also belongs to τ_2 . So $\tau_2\supseteq \tau_{\text{sub}}$, and, by definition τ_{sub} is coarser than τ_2 .

3.

$$(Y, \tau_{\text{sub}}) \xrightarrow[\text{cont}]{i} (X, \tau_X) \xrightarrow[\text{cont}]{f} (Z, \tau_Z)$$

is a composition of continuous functions which is continuous, so $f|_y = f \circ i$ is continuous.

4. (\Rightarrow) if $g:(W,\tau_W) \to (Y,\tau_{\text{sub}})$ is continuous, then again $i \circ g$ is a ocmposite of continuous functions, so $i \circ g$ is continuous.

(⇐) Assume $i \circ g$ is continuous. Let some $U \subseteq Y$ is open. By definition $U = V \cap Y$ for some $V \subseteq X$ an open subset of X. So we know $(i \circ g)^{-1}(V)$ is open in W.

$$(i \circ g)^{-1}(V) = g^{-1}(i^{-1}(V))$$

= $g^{-1}(V \cap Y)$
= $g^{-1}(U)$.

So $g^{-1}(U)$ is open, and thus g is continuous.

Notice that if U is open in Y, we may not have that U is open in X. $\{0,1\} \subseteq \mathbb{R}$, then $\{0,1\}$ is an open subset of Y, but not an open subset of X.

Proposition 2. If Y is an open subset of a topological space X and $U \subseteq Y$, then $U \subseteq Y$ is and open subset of Y in the subspace topology iff U is open in X.

- *Proof.* (\Rightarrow) Let U be an open subset of Y in the subspace topology. Then there exists some open set $V \subseteq X$ such that $V \cap Y = U$. But we know that both V and Y are open in X, their intersection must also be open in X.
- (\Leftarrow) Let $U \subseteq Y$, and we know that U is open in X. But since $U \subseteq Y$, $U = U \cap Y$, but then since U is open in X by assumption, U is open in Y.

Remember that in the early problem, we (should have) realized that

$$\{(a,b) \mid a < b\} \cup \{\emptyset, \mathbb{R}\}$$

is not a topology.

Exercise 1. Why?

Notice that if we allow also for unions of these open intervals, we realize that we get the usual topology on \mathbb{R} , which better be a topology (otherwise our definition would be quite bad).

Definition 2. let X be a set. We say that a collection \mathcal{B} of subsets of X is a **basis** for a topology on X if:

- 1. For each point $x \in X$, there is a **basis element** (or **basic open subset**) $B \in \mathcal{B}$ such that $x \in B$
- 2. For each pair of basis elements $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$ there exists a basis element $B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

The topology τ generated by the basis \mathcal{B} is the topology on X where:

1. a subset $U \subseteq X$ is said to be open if for each $x \in U$ there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$.

Example 1. In the usual topology on \mathbb{R}^n , the open balls $B(\mathbf{x}, \varepsilon)$ form a basis for the usual topology.