Devoir à la maison n° 11

À rendre le 19 janvier

Une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes de $\mathbb{R}[X]$ est définie par la donnée de $P_0=X$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R} \qquad P_{n+1}(x) = (n+1) \int_0^x P_n(t) \ dt + x \left[1 - (n+1) \int_0^1 P_n(t) \ dt \right].$$

- 1) Calculer P_1 , P_2 , P_3 et P_4 et montrer que la suite (P_n) est bien définie et est une suite de polynômes.
- 2) On veut montrer que pour tout $n \in \mathbb{N}$, P_n est l'unique polynôme de $\mathbb{R}[X]$ vérifiant les deux conditions

$$P_n(0) = 0$$
 et $P_n(X) - P_n(X - 1) = X^n$. (\star)

- a) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $P_n(0) = 0$ et $P_n(X) P_n(X 1) = X^n$.
 - Indication : dans l'hérédité, on pourra montrer que $P_{n+1}(X) P_{n+1}(X-1)$ et X^{n+1} ont le même polynôme dérivé et coïncident en 1.
- b) Soient P et Q deux polynômes vérifiant les deux conditions (\star) , pour un certain n donné et fixé. Montrer par récurrence que $\forall k \in \mathbb{N}, P(k) = Q(k)$ et conclure.
- 3) Montrer que, pour tout $n \in \mathbb{N}^*$, le polynôme P_n est divisible par $X^2 + X$. Factoriser les polynômes P_1 , P_2 et P_3 . Ecrire P_4 sous la forme $X(X+1)Q_4$.
- 4) Montrer que le polynôme P_n est de degré n+1, calculer son coefficient dominant, ainsi que le coefficient de X^n (on pourra montrer tout cela par récurrence).
- **5)** Montrer que, pour tous $n \in \mathbb{N}$ et $p \in \mathbb{N}^*$, on a $P_n(p) = \sum_{k=1}^p k^n$.
- 6) Retrouver ainsi les valeurs de $\sum_{k=1}^{p} k^n$ pour n = 1, 2, 3, 4.