University of Toronto Department of Mathematics MAT224H1S, Linear Algebra, 2025

Coordinator: Nara Jung

Office Hours: Wed 2:00-4:00pm at PGB Room205B

Course Staff: Safura Hossain Email: admin224@math.toronto.edu

Lec 0101: Arnab Kundu

E-mail: arnab.kundu@utoronto.ca

Office Hours: Tue 11-12pm

Office: PGB111

Lec 0201and 0401: Nara Jung

E-mail: nara.jung@utoronto.ca

Office Hours: Wed 2-4pm and 30 mins after Thur class

Office: PGB Room205B

Lec 5101: Yitong Wang

E-mail: yitongw.wang@utoronto.ca Office Hours: Wed 4-5pm at SS623

Office: HSB376

Lec 0102: Tonatiuh Matos Widerhold

E-mail:t.wiederhold@mail.utoronto.ca

Office Hours: Tue 11-12, Thur 10-11am at BA lounge, 6th floor

Office: BA6135,

Lec 0301: Fatemehzahra Janbazi

E-mail: zahra.janbazi@mail.utoronto.ca Office Hours: Thur 6-7pm at HU lounge

Office: HU1012

Lec 5201: Amalrose Vayalinkal

E-mail: amalrose.vayalinkal@mail.utoronto.ca

Office Hours: Thursday 8-9pm

Office: KP108

Note: Updated office hours will be posted on Quercus (http://q.utoronto.ca) See Instructor Information).

TA/Email:

- Aaron Tronsgard, aaron.tronsgard@mail.utoronto.ca
- Matthew Koban, matthew.koban@mail.utoronto.ca
- Mohammadmahdi Rafiei, mmrafiei@math.toronto.edu
- Kai Shaikh, kshaikh@math.toronto.edu
- Vojin Jovanovic, vojin.jovanovic@mail.utoronto.ca
- Waleed Qaisar, waleed.qaisar@mail.utoronto.ca
- Petros Ploumidis, petros.ploumidis@mail.utoronto.ca
- Alisa Chistopolskaia, alisa.chistopolskaia@mail.utoronto.ca
- Wenyi Zheng, reila@math.utoronto.ca
- Ramana Murugesan, ramana.murugesan@mail.utoronto.ca
- Adithya Chakravarthy, adithya.chakravarthy@mail.utoronto.ca
- Shuyang Shen, shuyang.shen@mail.utoronto.ca
- Liyuan Huang, isabelle.huang@mail.utoronto.ca
- Arion Okubo, ari.okubo@mail.utoronto.ca
- Emily Patterson, emily.patterson@mail.utoronto.ca
- Giacomo Bertizzolo, giacomo.bertizzolo@mail.utoronto.ca
- Yun-chi Tang, yunchi.tang@mail.utoronto.ca

Course Overview

Course Description:

Fields, complex numbers, vector spaces over a field, linear transformations, matrix of a linear transformation, kernel, range, dimension theorem, isomorphisms, change of basis, eigenvalues, eigenvectors, diagonalizability, real and complex inner products, spectral theorem, adjoint/self-adjoint/normal linear operators, triangular form, nilpotent mappings, Jordan canonical form.

Prerequisites:

MAT221H1(80%)/ MAT223H1/ MAT223H5/ MATA22H3/ MATA23H3/ MAT240H1/ MAT240H5

Course Objectives:

Not every matrix is diagonalizable but it can be upper-triangularizable. The ultimate goal of the course is to learn Jordan canonical form, which is a certain upper-triangular form. Learning the contents of the course description is necessary to achieve the goal. By the end of course you have

- learned the goal.
- learned to communicate concepts of linear algebra in a proof-oriented setting.
- developed ability to read abstract theories.

Course Text:

A Course in Linear Algebra, David B. Damiano and John B. Little

Teaching Mode: 3hrs lectures per week.

1hr tutorial per week (starting on Jan 13)

Technical Requirement:

In order to participate in this course, students will be required to have:

- Reliable internet access. It is recommended that students have a high speed broadband connection (LAN, Cable, or DSL) with a minimum download speed of 5 Mbps.
- A computer satisfying the minimum technical requirements (https://www.viceprovoststudents.utoronto.ca/covid-19/tech-requirements-online-learning/

If you are facing financial hardship, you are encouraged to contact your college or divisional registrar (https://future.utoronto.ca/current-students/registrars/) to apply for an emergency bursary.

Evaluation

All term tests and the final exam will be in-person and closed-book unless there is a notice of change on Quercus. You must bring your UofT Photo ID to the term tests and the final exam.

Mark Breakdown:

- 2 tests (cumulative) (35%): drop the lowest score
- 6 quizzes (30%): drop the lowest score
- Final Exam (cumulative) (35%)

Quizzes:

- The possible quiz questions and schedule will be available in advance on Quercus.
- Quizzes will be held during tutorials.
- There will be no make-up quizzes in any case.

Tentative Test Date and Time

Test	date	Tentative time	
Test 1	February 26 Regular Sitting 4:10pm, 100m		
	Wednesday	Alternative Sitting: TBA	
Test 2	March 14	Regular Sitting 4:10pm, 100mins	
	Friday	Alternative Sitting: TBA	
Final Exam	TBA	TBA	
	during the final exam period		

Tutorial Procedure

- 1. Tutorial questions are made to strengthen the main concepts of lectures, so we expect all students go to the tutorials.
- 2. Tutorial questions will be posted on Quercus in advance, so that students can have a chance to solve the problems before tutorial.
- 3. TAs will explain the main points and concepts of tutorial questions on top of the required techniques to solve the problems. Also they will answer any questions related to tutorial problems.

Course Policies

Missed Test or Quizzes:

1. Alternative sittings will be provided on the test date for the students who have a test or class conflict with the regular sitting time.

- 2. Students who cannot be present for a test because of **serious illness** must contact their instructors **as soon as possible**, **and no later than one week after returning to class.** They must also report their absence through **online absence declaration on Acorn** under the Profile and Setting menu.
- 3. Besides illness only very serious reasons can be considered as valid excuses for missing an evaluation. A student who misses one of the tests with a valid reason can apply for lowering the test weight to 25% and raising the final exam weight to 45%.
- 4. There is no make-up quizz or test.

Remarking policy:

If a test is submitted for remarking, the entire test may be remarked, allowing the possibility that a student may receive a lower mark on any or all questions. Requests for remarking tests must be submitted by email to (TBA, available later) within 1 week of the date when test results are released via crowdmark (for full-answer questions). For example, if test results are released on Oct 23, the deadline for requesting remarking is Oct 30, 11:59pm. More detailed information about remarking will be available on the announcement and by email near the release date.

Email Policy:

- 1. Should you have a question that is not answered on the course site (please check there first!) please note that all communications with the Course Instructor or TA's must be sent from your official utoronto email address, with the course number included in the subject line. If these instructions are not followed, your email may not be responded to.
- 2. No math questions will be answered by e-mail.
- 3. All questions related to administration should be sent to admin224@math.toronto.edu

Institutional Policies and Support

Academic Integrity:

All suspected cases of academic dishonesty will be investigated following procedures outlined in the Code of Behaviour on Academic Matters

(https://governingcouncil.utoronto.ca/secretariat/policies/code-behaviour-academic-matters-july-1-2019).

If you have questions or concerns about what constitutes appropriate academic behaviour or appropriate research and citation methods, please reach out to your Course Instructor. Note that you are expected to seek out additional information on academic integrity from me or from other institutional resources (for example, the University of Toronto website on Academic Integrity http://academicintegrity.utoronto.ca/).

Accessibility:

The University provides academic accommodations for students with disabilities in accordance with the terms of the Ontario Human Rights Code. This occurs through a collaborative process that acknowledges a collective obligation to develop an accessible learning environment that both meets the needs of students and preserves the essential academic requirements of the University's courses and programs.

Students with diverse learning styles and needs are welcome in this course. If you have a disability that may require accommodations, please feel free to approach your Course Instructor and/or the Accessibility Services office as soon as possible. The sooner you let us know your needs the quicker we can assist you in achieving your learning goals in this course.

Link to Accessibility Services website:

https://studentlife.utoronto.ca/department/accessibility-services/

Equity, Diversity and Inclusion:

The University of Toronto is committed to equity, human rights and respect for diversity. All members of the learning environment in this course should strive to create an atmosphere of mutual respect where all members of our community can express themselves, engage with each other, and respect one another's differences. U of T does not condone discrimination or harassment against any persons or communities.

Important Academic Dates & Deadline:

The academic dates include enrolment dates, drop deadlines, exam periods, petition deadlines and more. https://www.artsci.utoronto.ca/current/dates-deadlines/academic-dates

Other Academic and Personal Supports:

- Writing Centre https://writing.utoronto.ca/writing-centres/arts-and-science/
- U of T Libraries https://onesearch.library.utoronto.ca/
- Feeling Distressed? https://studentlife.utoronto.ca/task/support-when-you-feel-distressed/

MAT224H1 Schedule of Lectures

Not every matrix is diagonalizable but it can be upper-triangularizable on complex vector space. The ultimate goal of the course is to learn Jordan canonical form, which is a certain upper-triangular form. Learning the contents of the course description is necessary to achieve the goal.

Chapter	Sections	Main Topics
Chapter 1	1.1 - 1.6	1.1 :vector space
	(Jan 7-16)	1.2 :subspace
		1.3 :span set, direct sum
		1.4 and 1.5 :linear independence and dependence, homogeneous system
		1.6: bases and dimension
Chapter 2	2.1 - 2.7	2.1 :linear transformation
	(Jan 21-Feb 6)	2.2 :matrix associated with linear transformation
		2.3 :kernel, image, dimension theorem
		2.4 :injective and surjective linear mapping, applications of the dimension theorem
		2.5 :composition of linear transformations
		2.6 :inverse of linear transformation
		2.7 :change of basis
Chapter 3	3.1 - 3.3	3.3.8-3.3.11
	(Feb 11)	
Chapter 4	4.1 - 4.6,	4.1 :eigenvalues and eigenvectors
		4.2 :diagonalization
		4.3 :orthogonal, orhonormal
		4.4 :orthogonal projection and basis, Gram-Schmidt orthogonalization process
		4.5 :symmetric matrix and its properties
	(Feb 11-Mar 6)	4.6 :diagonalization and spectral decomposition of symmetric mapping,
		application: conic sections
Chapter 5	5.1 - 5.3	5.1 :complex numbers, n-th roots
	(Mar 11-13)	5.2 :determinant, eigenvalue, eigenvectors, diagonalization on complex vector space
		5.3 :Hermitian inner product, adjoint linear transformation,
		diagonalization of self-adjoint linear transformation
Chapter 6	6.1 - 6.4	6.1 :invariant subspace, triangularization, Cayley-Hamilton Theorem
	(Mar 18-Apr 3)	6.2 :canonical basis of finite dimensional vector space with respect to nilpotent mapping,
		canonical form(a upper-triangular form) for nilpotent mapping
		6.3 :generalized eigenspace and eigenvectors, Jordan block, Jordan canonical form
		6.4 :computing Jordan form