MTH 26001 - Elementary Number Theory

Student ID: 20202026.

Student Name: Nguyen Minh Duc.

ASSIGNMENT 2.

Sec 3.1.

Problem 4.

- ® Since p>5 is an odd prime, when dividing by 6, p takes the form of 6 K+1, 6 K+3 or 6 K+5 for (K∈Z).
- @ However, 6K+3 = 3(3K+1) is divisible by 3, hence, not prime.
 Thus, for P75 is a prime number, ptakes one of the forms 6K+1 or 6K+5.
- © Case 2: P = 6K+5, K∈Z. P²+2=(6K+5)²+2=36K²+60K+25+2=36K²+60K+27=3(12K²+20K+9). =>3|P²+2=> P²+2is composite. —2.
- & From 3 and €, if P?5 is prime then p2+2 is composite.

```
Problem 8. P7, 97, 5.
@ let ) P = 6K1+ 5P, K1EZ, 05 5P(6
     19=6Kz+rq, KgEZ,05rq66
 From the previous problem, we know that rp, rq & f 1,5 }
& Pi-qi = (p+q)(p-q) = (6k1+6k2+rp+rq)(6k1-6k2+rp-rq).
& Case 1. rp = rq =  { Prp+rq = 12,10 } => rp+rq = 2k_3 (kg&z) is even.
 Now, we obtain: p2-q2= (6K1+6K2+2K3)(6K1-6K2).
                     = 2 x 6 x (3 K1+3 K2+ K3) (K1- K2).
Note that kg = 1,5 y is odd.

-If both K1 and k2 is every or odd, then k1= k2 is even, i.e. K1- k2= 2 k1,
  = 24 K (3K1+3K2+K3).
=> 24/p2-q2. - 10.
=If one of knorks is even and the other is odd, then K1+K2 is odd.
  This implies 3k1+3k2 is also odd, hence 3k1+3k2+kz is even (:: kzisodd).
  => 3k1+3k2+163=2K', K' EZ.
  Now, P'-q' = 2x6x2xk' (K1-K2).)
27 24 | p2-q27. - (1)

(Brp+rq=6.

(Rese 2. rp + rq => ) rp-rq = 1-4,4 => > rp-rq = 14.
   Now, we obtain: p2-q2 = (6k1+6k2+6)(6k1-6k2 ±4).
                          = 2x6x(8K1+K2+1)(3K1-3K2 ±2).
 - If both knowd kz is even or odd, K1-Kz is even => 3K1-3K2 t 2 is also even
  Now p2-q2 = 2x6x2x(K1+K2+1) K'
             = 24 (K1+K2+1) K
 - If one of Krandkz is even and the other is odd then Kr+ Kz+ Lis even.
   27 241 pt-92. -B
   SO KA+K2+1 = 2K', K' & 2.
   Now, P2-92 = 2x6x2xk' (3x1-3k2 ±2)
               = 24 K'(3K1-3K1+2)
® From Ø, D, B and Q, in any case, 241p2-q2 for p3, q7, 5 are primes.
```

Problem 13. n71

n=6k+r, KEZ, ref0,1,2,4,5}

a face t marie tolevit el tole

© Case 1. r is even, i.e. r ∈ 10,2,4 }. let r= 2k', k' & 2'. Now, n= 61c+2k'=2(3/c+k') => 2 | n==> 2 | n=> 2 | n+2" (-: 212", n>1). -1.

&. Case 2. risodd, i.e re 11,5 5. => nis also add.

For r=5, N=6K+5=6K+6-1=6(K+1)-1, KEZ.

Hence, n is of the form 6k-1 where k & Z.

Now, re 1-1,13= r=±1.

Substitute in n2+2", we have:

N2+2"= (6K±1)2+2"= 36K2±12K+1+26K+1

Note that x"+y"= (x+y)(x"-x"-2y+...+(-1)"-1y"-1) for visodal.

Substitute (x,y)=(1,z), we obtain.

1-26k-1=16k-1=(1+2)(1-16k-1.2+...+(-1)6k.26k).

where u= 161 - 161 - 12+... + (-1)61 261 7) u∈ Z.

Now, we have: N2+2"= 36 k2 + 12 k + 3 U. e: N-12 = 3(12k2 + 4k+ W).

=> 3/n2+24. - (2).

⊗. Nore that N71 => N2+2"> 12+21 => N2+2">3 - 3. From (1), (2), (3, => N2+2" is composite for N71.

Nuselland the other is add then by the nest bus nessel

wind word with the ford the love formers

Problem 2. 1200 = 14.14

& Since 14 < \1200 < 15, it is suffice to test prime less than 14, i-l. PEL 2,3,5,7,11,133.

6 10 TOF 100 109	
100 101 102 103 104 105 107 108 109 100 101 102 113 11/4 1/5 1/6 1/7 1/8 1/9	
1/2 1/3 12/4 1/5 126 (127) 1/8	
130 [131] 182 183 184 185 136 [137] 138 [139]	
1×0 1/91 1×2 1×3 1×4 1×5 1×6 1×7 1×8 [149]	
180 [5] 181 183 184 15/5 186 [57] 188, 189	
160 161 182 1163 164 165 166 1167 168 169	
170 171 172 173 124 175 176 177 178 179	
180 181 182 183 184 185 186 187 198 18	7
190 191 181 193 194 195 196 191	_
200 . L S of June 9 . Los most and a south to	

Problem 4.

(a) Assume that \sqrt{p} is rational, i.e. $\sqrt{p} = \frac{2r}{4s}$, $\sqrt{\frac{s}{r}} \in \mathbb{Z}$ and $\gcd(\frac{r}{r}) = 1$. Now, square both sides: p = r => ps2=r2

let por r= pk, KEZ, NOW, PS2 = p2 K2 => S2=pk2

Since Pisprime, P>1. Thus, IPIS => gcd(r,s) + 1, contradicts assumption god (1,5)=1.

Therefor, IP is irrational for pisprime.

(b) let \$ \sqrt{a} = \frac{p}{q}, p, q \in \text{Z} and god (p,q) = 1.

Thus, Va= q= PEZI.

(c) Assume In is rational. From (b), In is actually integer. (et x= Vn => x = n, but n < 2) => x < 2 x

Since N72, Vn7, V2 71. }=> 1(2(2. But x EZ. => This is a constrabliction.

Thus, In is irrational.

Problem 5.

Since n is prime (=> ptn +psJn,

n is composite (=> 3 ps vn: pln.

Now, \999 > \936 = 31 => \999 > 31.

Hence, for any 3-digit composite, i.e. less than 999 will have a prime divisor less than 3 or equal to 31.

Problem 12.

(a) Base case: For n=5, Pn=1172(5)-1=9.9.

2) The state went is true for n=5.

Induction: Assume that the statement is true for n=k, Thatis Pk 72k-1.

=> PK+272K-1+2 = 2(K+1)-1

Since Pic+1 is even, the next prime must be at least Pic+2, Thus, Px+1 > Px+2 > 2(16+1)-1.

=> The statement also holds for n=1c+1.

Thus, by induction hypothesis, Pn 72n-1 4n7,5.

(b) Note that P1=2, Pn=2(P2P3...Pn)+1=> Pn is odd.

Using Division algorith, Pn = 4Ktr, KEZ, OKr44.

Since Pn is odd, real, 33.

If r=1, Then Pap P1P2...Pn+1=4K+1=> 2(P2P3...Pn)=4K=>P2P2...Pn=2K. But it is impossible since P; is odd for it 1.

Thus, r= 3, i.e. Pn=4k+3, +n.

Let Pn = 52, 9 ∈ Z. => 52 is odd => 5 is also odd. let 9 = 2a+1, a ∈ Z. Now, 92=(10+1)2=402+40+1=4(02+0)+1.

Note that the left hand side is of form 4k-1 while the right is of the form 4k+1 There =) This is contradiction, hence Pu cannot be perfect square In.

(c) let $S_n = \frac{1}{P_1} + \frac{1}{P_2} + \dots + \frac{1}{P_n}$. Assume that S_n is an integer.

Now, we have:

However, P1=2, which implies P1 P2-PnSn=2(P2P3-PnSn) is even. This is contradiction, hence, Sn com is never an integer. In.

Sec 3.3)

Problem 12.

From the hint, we know that Pn+3 < 4 Pn+2 < 8 Pn+1 Pn+2. Since Ps = 11 7 8, we obtain:

PN+2 <8 PN+1 PN+2 < MP5 PN+1 PN+2

Thus, for N 7,5, we have 4 Pn 7, Ps, hence, the inequality holds:

P2 N+2 (P5 PN+1 Pn+2 = PN PN+1 PN+2.

For n=4, P4+3= P7=17=289 (4 (1001 = 7 x11 x 13 = Pups P6.

For n = 3, P2 = = P6 = 13 = 169 (385 = 5x7 x 11 = P3 Pups.

Therefore, Pints < PnPn11 Pn13 + 4713.

Problem 13.

& Firstly, let's calculate products of numbers of form 6/c+ 1 and 6/c+3. = 6 (616,162+161+162)+1 (6 kg+1)(6 kz+1) = 36 k1 k2+6 k1+6 k2+1

= 6(6161162+3161+K2)+3 (6K1+1)(6K2+3) = 36K1K2+818K1+6K2+3

= 6(6K1K2+3K1+3K2+1)+3. (6K4+3)(6K2+3) = 36K1K2 + 18K1 + 18K2+9

Thus, Product of numbers in the form 6k+1 and 6k+3 will also be in the form of 6k+1 and 6k+3.

- & Assume their there are only find the number of primes of form 6 n + 5. let those primes be P1, P2, --, PK.
- & Consider Q = 6 PAP2 -- PK-1 = 6 (PAP2 -- PK-1)+5. Let Q = r, r, ... r, be prime factorization.

Since Qis odd, r; \$ 2 ti => r; can be of the form 6 n+1, 6 n+3 or 6 n+5.

@ We know that product of numbers of form 6n+1 and 6n+3 will also be of form 6 n+ 1 and 6 n+3. Italy

Thus, Q must contain at least 1 prival factor Vi of form 6 n+5.

& From the construction of Q,

Note that rilbpiping and rila.

=> r; | 6P1P2...Px-Q => r; | 1 => Q; Q But r; is a prime. This is a contradiction, thus, there are infinitely mainy prime number of the form 6 n+5.

Problem 20.

& For p75, we know that p=6k+1 or p=6k+5.

=>
$$p^2 + 8 = 36k^2 + 12k + 9$$
 or $p^2 + 8 = 36k^2 + 60k + 33$.
= $3(12k^2 + 4k + 3)$ = $3(12k^2 + 20k + 11)$.

In both cases, 3/ p2+8 and since p2+873, p2+8 is composite. Thus, if P > 5 is a prime number, p2+8 cannot be prime.

8. For P=3, P2+8= 32+8= 17 is a prime number.

Consider p3+4= 33+4= 31 is also a prime number

& For p=2, p2+8 = 22+8=12 not a prime number => Needn't proceed

ကြန္ ကား ပါကန္လို႔မ်ား သူမန်းစည္ကိုမွာ ရပ္ခြဲသည်။ စီ စစ္စည္းသို႔သည့္ မိန္းမည္မွာလုိ႔ ပါတည္ရပ္ေသြက္သည္။ လူသက္သည္

de Codesades agrides de la desadarenta escolatifica de Egies agri

esternia e sua d'assertante, la resultante esta proper d'altres de

@ Thus, if passes pand p2+4 are both prime numbers then p3+4 is also prime.