СХЕМА С ЗЕРКАЛОМ ЛЛОЙДА

В схеме с зеркалом $\mathit{Ллойдa}$ нитевидный монохроматический источник света с длиной волны λ размещается над плоским зеркалом на расстоянии d/2 от него и на расстоянии $L\gg d$ от экрана.

d/2 L 0

Выясним, как зависит интенсивность на экране от координаты $x \ll L$. Интерференция возникает между прямым лучом 1 длиной r_1 и отраженным от зеркала лучом 2 общей длиной r_2 . Разность фаз,

с которыми волны 1 и 2 приходят в точку наблюдения x, определяются разностью их оптических длин хода.

Задача сводится к классической схеме Юнга, если заметить, что длина луча 2 такая же, как от изображения источника, расположенного симметрично оригиналу относительно плоскости зеркала. Кроме того, следует учесть скачок по фазе на π , возникающий при отражении. Тогда разность фаз двух волн в точке на экране составляет

$$\Delta \Phi = k(r_2 - r_1) + \pi = k \frac{d \cdot x}{L} + \pi,$$

а интенсивность

$$I(x) = 2I_0 \left[1 + \cos \left(k \frac{d \cdot x}{L} + \pi \right) \right] = 2I_0 \left[1 - \cos \left(k \frac{d \cdot x}{L} \right) \right], \quad k = \frac{2\pi}{\lambda}.$$