

- 7. Ať **A** je reálná matice typu 2×2, ať každá ze soustav $\mathbf{A} \cdot \mathbf{x} = \mathbf{e_1}$ a $\mathbf{A} \cdot \mathbf{x} = \mathbf{e_2}$ má řešní. Pak *nutně* platí:
 - (a) $det(\mathbf{A}) = 0$
 - (b) Soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{e_1} + \mathbf{e_2}$ má právě jedno řešení.
 - (c) Soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{e_1} + \mathbf{e_2}$ má nekonečně mnoho řešení.
 - (d) Existuje vektor $b \in \mathbb{R}^2$ takový, že soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ nemá řešení.
- 8. Mějme čtvercovou matici A typu n×n. potom *nutně* platí:
 - (a) $det(26 \cdot A) = 26^{n} \cdot (det(A))^{n}$
 - (b) $det(26 \cdot A) = 26 \cdot det(A)$
 - (c) $det(26 \cdot A) = 26 \cdot (det(A))^n$
 - (d) $det(26 \cdot A) = 26^{n} \cdot det(A)$
- 9. Mějme dvě čtvercové matice **A**, **B** typu n×n. Matice **A** a **B** jsou si podobné. Potom *nutně* platí:
 - (a) Matice $\mathbf{A} \cdot \mathbf{B}$ a $\mathbf{B} \cdot \mathbf{A}$ si nemohou být podobné.
 - (b) Matice **A** + **B** a **B** + **A** si nemohou být podobné.
 - (c) Matice A · A a B si nemohou být podobné.
 - (d) Neplatí ani jedno z výše uvedených
- 10. Mějme lineární zobrazení **f** : *V*→*W*. Vyberte *nepravdivé* tvrzení:
 - (a) Je možné, že rank(f) = def(f).
 - (b) Pokud je f isomorfismus, pak ker(f) je prázdná množina.
 - (c) Pokud je V konečně dimensionální, pak $\dim(V) > \deg(f) \operatorname{rank}(f)$.
 - (d) Lineární zobrazení $\mathbf{f}: \mathbb{R}^1 \to \mathbb{R}^1$ nemůže být zadáno joko $f(x) = 4 \cdot x + 2$. (Tj. v tomto případě volíme $V = W = \mathbb{R}^1$.)
- 11. Vektor v lineárního prostoru \mathbb{R}^8 nad \mathbb{R} má vzhledem k uspořádané bázi (b₁, b₂,...., b₈) souřadnice (1, 1,....,1)^T. Potom vektor w 2 · v má vzhledem k uspořádané bázi (b₁ + b₂, b₂ + b₃,...., b₈ + b₁) souřadnice:
 - (a) $(1, 1, ..., 1)^T$
 - (b) $(2, 2, ..., 2)^T$
 - (c) $(1/2, 1/2,...,1/2)^T$
 - (d) Souřadnice nelze určit, protože $(b_1 + b_2, b_2 + b_3,..., b_8 + b_1)$ není uspořádaná báze.
- 12. Ať L_1 , L_2 , L_3 jsou konečně dimensionální prostory, $\mathbf{f}: L_1 \to L_2$ je isomorfismus a $\mathbf{g}: L_2 \to L_3$ je monomorfismus. Potom nutně platí:
 - (a) Pro libovolný vektor $\mathbf{w} \in L_3$ existuje vektor $\mathbf{v} \in L_1$ takový, že $(\mathbf{g} \circ \mathbf{f})(\mathbf{v}) = \mathbf{w}$.
 - (b) $\mathbf{g} \circ \mathbf{f} : L_1 \to L_3$ je epimorfismus.
 - (c) $\dim(L_1) \leq \dim(L_3)$.
 - (d) Zobrazení **g** je epimorfismus.

- 13. Symbolem $\mathbb{R}[x]$ označujeme lineární prostor všech reálných polynomů s reálnými koeficienty. Následující podmnožina množiny $\mathbb{R}[x]$ je lineárním podprostorem lineárního prostoru $\mathbb{R}[x]$:
 - (a) Množina všech polynomů sudého stupně společně s nulovým polynomem.
 - (b) Množina všech polynomů nemajících reálný kořen.
 - (c) Množina všech polynomů stupně přesně 2019 spolu s nulovým polynomem.
 - (d) Množina všech polynomů s nulovými koeficienty u sudých mocnin.
- 14. V lineárním prostoru *V* mějme lineárně nezávislou množinu vektorů {**u**, **v**, **w**}. Následující množina vektorů je lineárně závislá:
 - (a) $\{v, w + u, w v + u\}$.
 - (b) $\{v + w, w + u, u + v\}$.
 - (c) $\{v, v w, v + w + u\}$.
 - (d) $\{2 \cdot v, 2 \cdot w, 2 \cdot u\}$.
- 15. Mějme lineární prostor V, lineární zobrazení f: V → V, a dva lineárně nezávislé vektory v ∈ V, w ∈ V, které jsou vlastními vektory lineárního zobrazení f příslušnými vlastnímu číslu λ. Potom platí:
 - (a) $f(v) = \lambda \cdot w$
 - (b) Vektor $2 \cdot v$ je vlastní vektor lineárního zobrazení **f** příslušnými vlastnímu číslu $2 \cdot \lambda$.
 - (c) Vektor f(v) je vlastní vektor lineárního zobrazení f příslušnými vlastnímu číslu $2 \cdot \lambda$.
 - (d) Pro nenulové skaláry α a β je i vektor $\alpha \cdot \mathbf{v} + \beta \cdot \mathbf{w}$ vlastním vektorem lineárního zobrazení **f**.
- 16. Ať **A** je čtvercová matice typu 3×3 a ať $det(\mathbf{A}) = 3$. Potom nutně platí (\mathbf{E}_3 je jednotková matice typu 3×3):
 - (a) det(-A) = -3.
 - (b) $det(A + E_3) = 3 + 1 = 4$.
 - (c) det(A + A) = 3 + 3 = 6.
 - (d) $det(A^3) = 3 \times 3 = 9$.
- 17. Nechť $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ je lineární zobrazení. Vyberte nutně pravdivé tvrzení:
 - (a) Pokud je **f** monomorfismus, pak je **f** i isomorfismus.
 - (b) Pokud má **f** jádro celé \mathbb{R}^3 , pak matice zobrazení **f** není diagonalizovatelná.
 - (c) Zobrazení $x \rightarrow f(x) + e_1$ je také lineární.
 - (d) Pokud je f nilpotentní, pak má f hodnost 3.
- 18. Nechť je S = $(s_1,...,s_m)$, $2 \le m \le n$, lineárně nezávislý seznam vektorů z \mathbb{R}^n . Vyberte nutně pravdivé tvrzení.
 - (a) Seznam S nemůže být bází \mathbb{R}^n .
 - (b) Seznam S nemůže generovat \mathbb{R}^n .

- (c) Ať ze seznamu S odebereme jakýkoli vektor, bude nově vzniklý seznam lineárně nezávislý.
- (d) Ať ze seznamu S odebereme jakýkoli vektor, bude nově vzniklý seznam generovat \mathbb{R}^n .
- 19. Mějme soustavu lineárních rovnic $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ s čtvercovou maticí A. Rozhodněte které z následujících tvrzení platí:
 - (a) Pokud má soustava více řešení, podle Cramerovy věty nalezneme řešení nulové.
 - (b) Pokud má soustava právě jedno řešení, pak má i soustava $(\mathbf{A} \cdot \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$ právě jedno řešení.
 - (c) Pokud soustava nemá řešení, může mít řešení soustava $(\mathbf{A} \cdot \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$.
 - (d) Determinant matice A je nutně nulový.
- 20. Mějme dán lineární prostor \mathbb{R}^3 se standartním skalárním součinem a v něm uspořádanou ortogonální bázi B = ($\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$). Potom platí:
 - (a) Vektory **b**₁, **b**₂, **b**₃ jsou nutně jednotkové.
 - (b) Nikdy nemůže platit rovnost $\sqrt{\langle \mathbf{b}_2 | \mathbf{b}_2 \rangle} = 0$.
 - (c) Existuje vektor z \mathbb{R}^3 , který lze zapsat dvěma různými způsoby jako lineární kombinace vektorů z báze B.
 - (d) Projekce vektoru \mathbf{b}_3 na rovinu zadanou vektory \mathbf{b}_1 a \mathbf{b}_2 je *nutně* nenulová.
- 21. Ať pro čtvercovou matici **Q** platí rovnost $\mathbf{Q}^T \cdot \mathbf{Q} = \mathbf{E}$. Pak nutně platí:
 - (a) $det(Q) = \pm 1$.
 - (b) Pro libovolné **b** má rovnice $\mathbf{Q}^T \cdot \mathbf{Q} \cdot \mathbf{x} = \mathbf{b}$ nekonečně mnoho řešení.
 - (c) Matice **Q**² je singulární.
 - (d) Platí rovnost $\mathbf{Q} = \mathbf{Q}^{\mathsf{T}}$.
- 22. V této otázce je tělesem skalárů množina reálných čísel. Ať $\mathbf{f}: L_1 \to L_2$ je lineární zobrazení, mějme vektor $\vec{b} \in L_2$. Pak pro množinu $\mathsf{M} = \{\vec{z} \mid \mathbf{f}(\vec{x}) = \vec{b}\}$ nutně platí:
 - (a) Množina M tvoří lineární podprostor prostoru L₁.
 - (b) Množina M obsahuje nulový vektor.
 - (c) Množina M obsahuje vektor \vec{b} .
 - (d) Když $\vec{x}_1 \in M$ a $\vec{x}_2 \in M$, pak I $(2 \cdot \vec{x}_1 \vec{x}_2) \in M$.
- 23. Ať A je čtvercová reálná matice. Vyberte pravdivé tvrzení.
 - (a) Pokud má A nulové vlastní číslo, pak A je regulární.
 - (b) Pokud je A regulární, pak je A diagonalisovatelná.
 - (c) Pokud je A diagonalizovatelná, pak je A singulární.
 - (d) Matice A má nulové vlastní číslo právě tehdy, když je A singulární.

- 24. Mějme matici $\mathbf{A}: \mathbb{R}^2 \to \mathbb{R}^3$, kde rank $(\mathbf{A}) = 2$, na prostorech : \mathbb{R}^2 a \mathbb{R}^3 jsou standartní skalární součiny. Potom platí:
 - (a) Pro libovolné $\mathbf{b} \in \mathbb{R}^3$ má soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ řešení.
 - (b) Matice $\mathbf{A}^T \cdot \mathbf{A}$ je regulární.
 - (c) Vektor $\mathbf{A}^{-1} \cdot \mathbf{b}$ je ortogonální projekce vektoru b na podprostor ker(\mathbf{A}).
 - (d) Matice A zachovává nutně skalární součin.
- 25. Víme, že pro $\mathbf{A}: \mathbb{R}^m \to \mathbb{R}^n$ má soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ řešení pro libovolné \mathbf{b} . Pak nutně platí:
 - (a) A má více sloupců než řádků.
 - (b) A má nenulový determinant.
 - (c) A je isomorfismus.
 - (d) $rank(A) \ge n$.
- 26. Máme dáno lineární zobrazení $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$. Víme, že pro libovolný vektor $\mathbf{x} \in \mathbb{R}^3$ platí, že $\mathbf{f}(\mathbf{x})$ = $3 \cdot \mathbf{x}$. Potom také platí:
 - (a) def(f) = 3.
 - (b) Existuje nestandartní báze prostoru \mathbb{R}^3 , vzhledem ke které má zobrazení **f** vlastní číslo 9.
 - (c) Matice zobrazení **f** vzhledem ke standartním bázím má determinant 3.
 - (d) Vlastní vektory zobrazení **f** příslušné číslu 3 spolu s nulovým vektorem tvoří vlastní podprostor, kterým je celé \mathbb{R}^3 .
- 27. Ať **A** a **B** jsou čtvercové matice typu 4×4, dále ať platí rank(**A**) = 2 a rank(**B**) = 2. Pak rank(**A** · **B**) nemůže být:
 - (a) 0.
 - (b) 1.
 - (c) 2.
 - (d) 3.
- 28. Čtvercová reálná matice A typu 2×2 má determinant det(A) = -1. Potom platí:
 - (a) A nemůže měnit normu vektorů v \mathbb{R}^2 (normu odvozenou ze skalárního součinu).
 - (b) A je matice projekce.
 - (c) Soustava $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ má vždy triviální řešení.
 - (d) $det(A^{-1}) = -1$.
- 29. Ať B je uspořádaná báze lineárního prostoru \mathbb{R}^3 a **M** ať je matice obsahující jako sloupce vektory z B (zapsané jako souřadnice vzhledem ke kanonické bázi \mathbb{R}^3). Potom *nutně* platí:
 - (a) Soustava lineárních rovnic $\mathbf{M}^n \cdot \mathbf{x} = \mathbf{c}$ má řešení pro libovolné přirozené n.
 - (b) Matice M je podobná jednotkové matici.
 - (c) Matice **M** je positivně definitní.
 - (d) Determinant matice $\mathbf{M} \cdot \mathbf{M}^{-1}$ je nulový.

- 30. Ať je $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ lineární zobrazení. Pak nutně platí:
 - (a) Pokud $def(\mathbf{f}) > 0$, pak je \mathbf{f} projekce na nějaký podprostor prostoru \mathbb{R}^3 .
 - (b) Pokud je f^3 nulové zobrazení, pak def $(f) \ge 2$.
 - (c) Ať **A** a **B** jsou matice zobrazení **f**, každá vzhledem k jiné bázi. Přesto platí det(**A**) = det(**B**).
 - (d) dim(im(f)∩ker(f)) může být 3.
- 31. Mějme seznam vektorů $V = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ ($n \ge 2$) z lineárního prostoru L nad \mathbb{R} . Pak neplatí:
 - (a) Pokud je V lineárně nezávislý, pak dim $(L) \ge n$.
 - (b) Seznam *V* je lineárně nezávislý, pokud platí že každý jeho o jeden vektor kratší podseznam je lineárně nezávislý.
 - (c) Pokud V generuje L, přesto nemusí nutně být bází L.
 - (d) Existuje lineární kombinace vektorů z V, která je rovna nulovému vektoru.
- 32. Mějme matice $\mathbf{A}, \mathbf{B} : \mathbb{R}^5 \to \mathbb{R}^5$, rank $(\mathbf{A}) = \operatorname{rank}(\mathbf{B}) = 3$. Pak platí:
 - (a) Matice $\mathbf{A} \cdot \mathbf{B}$ může být maticí kolmé projekce na podprostor v \mathbb{R}^5 .
 - (b) $rank(\mathbf{A} \cdot \mathbf{B})$ může být 0.
 - (c) rank(A + B) nemůže být 5.
 - (d) $rank(\mathbf{A} \cdot \mathbf{B}) = min(rank(\mathbf{A}), rank(\mathbf{B})).$

Výsledky: 1. (b); 2. (b); 3. (d); 4. (a); 5. (c); 6. (a); 7. (b); 8. (d); 11.(a); 17. (a); 18. (c); 19. (b); 20. (b); 21. (a); 22. (d); 23. (d); 24. (b); 25. (d); 28. (d); 29. (a); 30. (c); 31. (b); 32. (a);