Welcome to the introduction to computational cognitive modelling workshop!

Part 2: Introduction to artificial neural networks

Part 2: Introduction to artificial neural networks

Olivia Guest Chris Brand

Nick Sexton Nicole Cruz De Echeverria Loebell

What is a neural network?

A mathematical model

Inspired by the nervous system

Figure: Glosser.ca / CC-BY-SA-3.0

What is a neural network?

A mathematical model

- ► Inspired by the nervous system
- ► A set of *units*, connected by *weights*

Figure: Glosser.ca / CC-BY-SA-3.0

What is a neural network?

A mathematical model

- Inspired by the nervous system
- A set of units, connected by weights
- ➤ The network *runs* by passing *activations* from the *input* (to the *hidden*) to the *output* units

Figure: Glosser.ca / CC-BY-SA-3.0

Some aspects of their behaviour are like their namesake!

► Learn pretty much any input-output data

Some aspects of their behaviour are like their namesake!

- Learn pretty much any input-output data
- Uncover rules on their own about data

Some aspects of their behaviour are like their namesake!

- Learn pretty much any input-output data
- Uncover rules on their own about data
- Generalise from what they have learnt

Some aspects of their behaviour are like their namesake!

- Learn pretty much any input-output data
- Uncover rules on their own about data
- Generalise from what they have learnt
- Cope with noise and damage

By using maths, predictably!

1. Input units are set to a pattern

By using maths, predictably!

1. Input units are set to a pattern

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states:

$$1 \times 0.5 = 0.5$$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states:

$$1 \times 0.5 = 0.5$$

 $1 \times 0.0 = 0.0$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states:

$$1 \times 0.5 = 0.5$$

 $1 \times 0.0 = 0.0$
 $0 \times 0.8 = 0.0$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states:

$$\begin{array}{ccc} 1 \times 0.5 = & 0.5 \\ 1 \times 0.0 = & 0.0 \\ 0 \times 0.8 = & 0.0 \end{array} +$$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states:

$$\begin{array}{cccc}
1 \times 0.5 = & 0.5 \\
1 \times 0.0 = & 0.0 \\
0 \times 0.8 = & 0.0 & + \\
\hline
& 0.5 & & & \\
\end{array}$$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units:

$$0.5 \times 0.25 = 0.125$$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units:

$$0.5 \times 0.25 = 0.125$$

 $0.3 \times 1.5 = 0.45$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units:

$$0.5 \times 0.25 = 0.125$$

 $0.3 \times 1.5 = 0.45$
 $1.6 \times -0.3 = -0.48$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units:

$$0.5 \times 0.25 = 0.125$$

 $0.3 \times 1.5 = 0.45$
 $1.6 \times -0.3 = -0.48$
 $-0.4 \times 1.1 = -0.44$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units:

$$\begin{array}{cccc}
0.5 \times 0.25 & = & 0.125 \\
0.3 \times 1.5 & = & 0.45 \\
1.6 \times -0.3 & = & -0.48 \\
-0.4 \times 1.1 & = & -0.44 \\
\hline
& & & & & & & \\
-0.345 & & & & & & \\
\end{array}$$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units:

$$\begin{array}{rcl}
0.5 \times 0.25 & = & 0.125 \\
0.3 \times 1.5 & = & 0.45 \\
1.6 \times -0.3 & = & -0.48 \\
-0.4 \times 1.1 & = & -0.44 \\
\hline
& & & & & & & \\
-0.345 & & & & & & \\
\end{array}$$

- 1. Input units are set to a pattern
- 2. Calculate hidden units' states
- 3. Same for output units

By using maths, predictably!

► But programmers are *lazy*!

By using maths, predictably!

► General names save time

By using maths, predictably!

► General names save time

ightharpoonup input units: x_i

- ► General names save time
- ightharpoonup input units: x_i
- ▶ hidden units: a_j

- ► General names save time
- ightharpoonup input units: x_i
- ▶ hidden units: a_i
- ▶ output units: *y_k*

- General names save time
- ightharpoonup input units: x_i
- ▶ hidden units: a_i
- ▶ output units: y_k
- ightharpoonup connection weights: w_{ij}

- ► General names save time
- ightharpoonup input units: x_i
- \blacktriangleright hidden units: a_j
- ightharpoonup output units: y_k
- ightharpoonup connection weights: w_{ij}
- ► subscripts general: *ijklm*... specific: 12345...

By using maths, predictably!

We use general names to write a general equation:

By using maths, predictably!

We use general names to write a general equation:

 $a_i =$

By using maths, predictably!

We use general names to write a general equation:

$$a_i = x_j \times w_{ji}$$

By using maths, predictably!

We use general names to write a general equation:

$$a_i = \sum_{j=1}^{N} x_j \times w_{ji}$$

By using maths, predictably!

We use general names to write a general equation:

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

By using maths, predictably!

We use general names to write a general equation:

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

where a_i is the unit whose state we want to calculate, N is the number of units on the previous layer, w_{ji} is the weight on the connection between i and j, and f is a function that the unit applies.

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_1 = f\left(\sum_{j=1}^{N} x_j \times w_{j1}\right)$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_1 = f\left(\sum_{j=1}^3 x_j \times w_{j1}\right)$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_1 = f\left(\sum_{j=1}^3 x_j \times w_{j1}\right)$$

$$x_1 \times w_{11}$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_1 = f\left(\sum_{j=1}^3 x_j \times w_{j1}\right)$$

$$x_1 \times w_{11} + x_2 \times w_{21}$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_1 = f\left(\sum_{j=1}^3 x_j \times w_{j1}\right)$$

$$x_1 \times w_{11} + x_2 \times w_{21} + x_3 \times w_{31}$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_2 = f\left(\sum_{j=1}^3 x_j \times w_{j2}\right)$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_2 = f\left(\sum_{j=1}^3 x_j \times w_{j2}\right)$$

$$x_1 \times w_{12}$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_2 = f\left(\sum_{j=1}^3 x_j \times w_{j2}\right)$$

$$x_1 \times w_{12} + x_2 \times w_{22}$$

By using maths, predictably!

$$a_i = f\left(\sum_{j=1}^N x_j \times w_{ji}\right)$$

$$a_2 = f\left(\sum_{j=1}^3 x_j \times w_{j2}\right)$$

$$x_1 \times w_{12} + x_2 \times w_{22} + x_3 \times w_{32}$$

How do networks learn?

Cunning!

Many options: Hebbian learning, back-propagation of error, Boltzmann machine learning, self-organising map algorithm, etc.

How do networks learn?

Cunning!

- Many options: Hebbian learning, back-propagation of error, Boltzmann machine learning, self-organising map algorithm, etc.
- All learning algorithms work by changing the connection weights

How do networks learn?

Cunning!

Many options: Hebbian learning, back-propagation of error, Boltzmann machine learning, self-organising map algorithm, etc.

- All learning algorithms work by changing the connection weights
- ► Learning can be divided into *supervised*, *unsupervised*, and *reinforcement*

A very simple learning rule

"Cells that fire together, wire together"

— Carla Shatz

A very simple learning rule

"Cells that fire together, wire together"

— Carla Shatz

 $w_i =$

A very simple learning rule

"Cells that fire together, wire together"

— Carla Shatz

$$w_i = x_i \times y_i$$

A very simple learning rule

"Cells that fire together, wire together" — Carla Shatz

$$w_i = \eta \times x_i \times y_i$$

A very simple learning rule

"Cells that fire together, wire together"

— Carla Shatz

$$\Delta w_i = \eta \times x_i \times y_i$$

A very simple learning rule

"Cells that fire together, wire together"

— Carla Shatz

$$\Delta w_i = \eta \times \underline{x_i} \times y_j$$

which means each weight is changed by a small in/decrement for every pattern

"Cells that fire together, wire together" — Carla Shatz

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \eta \times x_i \times y_j$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = \boldsymbol{\eta} \times x_i \times y_j$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.5 \times x_i \times y_j$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \boldsymbol{\eta} \times x_i \times y_j$$

$$\Delta w_1 = 0.5 \times x_1 \times y_j$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.5 \times x_1 \times y_1$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \boldsymbol{\eta} \times x_i \times y_j$$

$$\Delta w_1 = 0.5 \times 1.0 \times y_1$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \boldsymbol{\eta} \times x_i \times y_j$$

$$\Delta w_1 = 0.5 \times 1.0 \times 0.3$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \boldsymbol{\eta} \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

$$\mathbf{new} \ w_1 = \mathbf{old} \ w_1 + \Delta w_1$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

new
$$w_1 = 0.0 + \Delta w_1$$

"Cells that fire together, wire together" — Carla Shatz

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

new
$$w_1 = 0.0 + 0.15$$

"Cells that fire together, wire together" — Carla Shatz

Hebb's rule is simple, but *very unstable*!

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

new
$$w_1 = 0.15$$

"Cells that fire together, wire together" — Carla Shatz

Hebb's rule is simple, but *very unstable*!

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

$$w_1 = 0.15$$

"Cells that fire together, wire together" — Carla Shatz

Hebb's rule is simple, but *very unstable*!

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

 $w_1 = 0.15 + \text{something}$ positive

"Cells that fire together, wire together" — Carla Shatz

Hebb's rule is simple, but *very unstable*!

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

 $w_1 = 0.15 + \text{something}$ positive + something else positive +

"Cells that fire together, wire together" — Carla Shatz

Hebb's rule is simple, but *very unstable*!

$$\Delta w_i = \eta \times x_i \times y_j$$

$$\Delta w_1 = 0.15$$

 $w_1 = 0.15 + \text{something}$ positive + something else positive + another positive value + ...

A simple classifier

A simple classifier

 Created in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt

A simple classifier

- Created in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt
- Linear classifier

A simple classifier

- Created in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt
- ▶ Linear classifier
- Simplest form of feedforward network

How does the perceptron learn?

Maths again!

1. Initialise weights

Maths again!

- 1. Initialise weights
- 2. Run network using:

$$y_j = f\left(\sum_{1}^{N} w_i \times x_i\right)$$

same as always!

Maths again!

- 1. Initialise weights
- 2. Run network
- 3. Update weights using:

$$\Delta w_i = \eta \quad y_j \times x_i$$

- 1. Initialise weights
- 2. Run network
- 3. Update weights using:

$$\Delta w_i = \eta \ (d_j - y_j) \ \times x_i$$

- 1. Initialise weights
- 2. Run network
- 3. Update weights using:

$$\Delta w_i = \eta \ (d_j - y_j) \ \times x_i$$

where d is what we want y to be given x, and η is the learning rate.

How does the perceptron learn?

Maths again!

- 1. Initialise weights
- 2. Run network
- 3. Update weights
- 4. Repeat 2 and 3

How does the perceptron learn?

Maths again!

- 1. Initialise weights
- 2. Run network
- 3. Update weights
- 4. Repeat 2 and 3
- 5. When do we stop?

Perceptron coding time

Time to program a perceptron!

Oh, and join our mailing list so we can send you stuff: https://groups.google.com/d/forum/introcompcog

```
def Train(self):
```

```
def Train(self):
                x[i] = self.patterns[p][i]
```

```
def Train(self):
                        (N):
           for i in
               x[i] = self.patterns[p][i]
```

```
def Train(self):
           for i in (N):
               x[i] = self.patterns[p][i]
               y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
               w[i] += h * error * x[i]
```

```
def Train(self):
           for i in (N):
               x[i] = self.patterns[p][i]
           for i in (N+1):
               y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
               w[i] += h * error * x[i]
```

```
def Train(self):
           for i in (N):
               x[i] = self.patterns[p][i]
           y = 0
           for i in (N+1):
               y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
               w[i] += h * error * x[i]
```

```
def Train(self):
           for i in (N):
               x[i] = self.patterns[p][i]
           y = 0
           for i in (N+1):
               y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
               w[i] += h * error * x[i]
```

```
def Train(self):
           for i in (N):
               x[i] = self.patterns[p][i]
           y = 0
           for i in (N+1):
               y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
               w[i] += h * error * x[i]
```

```
def Train(self):
           for i in (N):
               x[i] = self.patterns[p][i]
           y = 0
           for i in (N+1):
               y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
               w[i] += h * error * x[i]
```

```
def Train(self):
           for i in (N):
               x[i] = self.patterns[p][i]
           y = 0
           for i in (N+1):
               y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
               w[i] += h * error * x[i]
```

```
def Train(self):
      for p in (P):
           for i in (N):
               x[i] = self.patterns[p][i]
           y = 0
           for i in (N+1):
               y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
               w[i] += h * error * x[i]
```

```
def Train(self):
  for t in (100):
      for p in (P):
           for i in (N):
              x[i] = self.patterns[p][i]
           y = 0
           for i in (N+1):
              y += x[i] * w[i]
           y = f(y)
           error = d[p][0] - y
          for i in (N+1):
              w[i] += h * error * x[i]
```

Defining some patterns!

```
Patterns =
    [#colour, shape, taste
        #red-yellow, big-small, sweet-sour
        [0.1, 0.0, 0.2], #loquat
        [0.0, 0.2, 0.0], #lemon
        [1.0, 0.5, 0.8], #red apple
        [1.0, 0.0, 0.9], #strawberry
]
```

Defining some patterns!

```
Patterns =
        [#colour, shape, taste
         #red-yellow, big-small, sweet-sour
         [0.1, 0.0, 0.2], #loquat
         [0.0, 0.2, 0.0], #lemon
         [1.0, 0.5, 0.8], #red apple
         [1.0, 0.0, 0.9], #strawberry
Targets = [
           [1.0], #first target
           [1.0], #targets indicate
           [0.0], #which class
           [0.0], #a pattern
          ] #belongs to
```