Combining 3D Shape, Color, and Motion for Robust Anytime Tracking

Paper by Held, Levinson, Thrun, and Savarese [1]

Frederik Zwilling

Seminar Current Topics in Computer Vision and Machine Learning

RWTH Aachen University

Agenda

- 1 Motivation
- 2 Baseline Methods
- 3 Probabilistic Model
- 4 Searching the State Space
- 5 Evaluation
- 6 Conclusion

Chances

- Free use of driving time
- Help disabled persons
- Computers do not get tired or drunk
- Faster reaction time
- ⇒ Safe 26k lives per year in EU

Chances

- Free use of driving time
- Help disabled persons
- Computers do not get tired or drunk
- Faster reaction time
- ⇒ Safe 26k lives per year in EU

Challenges

- Precise tracking
- Robustness
- Occlusion
- Real time

Subtasks of Tracking

- Segment sensor data into objects
- Associate objects in successive frames
- Position and velocity estimation
- Object and trajectory classification

Subtasks of Tracking

- Segment sensor data into objects
- Associate objects in successive frames
- Position and velocity estimation
- Object and trajectory classification

Topic of this presentation

Position and velocity estimation

Given Sensor Data

Sensor

- Dense 3D laser sensor
- Generates point cloud
- Additional panorama image
- Similar to stereo cameras but more precise and expensive

Given Sensor Data

Sensor

- Dense 3D laser sensor
- Generates point cloud
- Additional panorama image
- Similar to stereo cameras but more precise and expensive

Given for us

- Point clouds of detected objects
- Association between frames already done

[2]

Teaser Paper Ideas

How to find a precise alignment?

- Utilize whole object shape
- Additional cues from color
- Use motion model

Teaser Paper Ideas

How to find a precise alignment?

- Utilize whole object shape
- Additional cues from color
- Use motion model

How to search the state space fast?

- Histogram with coarse initial resolution
- Refine resolution important areas
- Consider resolution in the probabilistic model

Kalman Filter

Kalman Filter

Aligns centroids

Zwilling RWTHACHEI 26. Juli 2015@ Seminar CVML

Kalman Filter

Aligns centroids

Zwilling RWTHACHEI 26. Juli 2015@ Seminar CVML

Kalman Filter

- Aligns centroids
- Problems with occlusion

Kalman Filter

- Aligns centroids
- Problems with occlusion
- Robustness through motion model

Kalman Filter

- Aligns centroids
- Problems with occlusion
- Robustness through motion model
- Very fast

Iterative Closest Point (ICP)

- Iterative hill climbing approach
- Minimizes quadratic distance of closest points
- Uses whole point cloud

Iterative Closest Point (ICP)

- Iterative hill climbing approach
- Minimizes quadratic distance of closest points
- Uses whole point cloud
- Depends on good initialization
- Problem: local optima

[3]

Iterative Closest Point (ICP)

- Iterative hill climbing approach
- Minimizes quadratic distance of closest points
- Uses whole point cloud
- Depends on good initialization
- Problem: local optima

[3]

Iterative Closest Point (ICP)

- Iterative hill climbing approach
- Minimizes quadratic distance of closest points
- Uses whole point cloud
- Depends on good initialization
- Problem: local optima

3]

Iterative Closest Point (ICP)

- Iterative hill climbing approach
- Minimizes quadratic distance of closest points
- Uses whole point cloud
- Depends on good initialization
- Problem: local optima

No motion model

[1]

Probabilistic Model

Dynamic Bayesian Network

- Relates variables over successive frames.
- State x_t (position relative to last frame and velocity) Surface points $s_t = \{s_{t,1}, ..., s_{t,n}\}$ Measured point cloud $z_t = \{z_{t,1}, ..., z_{t,n}\}$
- Rotation not considered

Surface points

- Sampled from the visible surface
- Indirectly observable
- Visible surface varies due to occlusion and viewpoint changes
- $p(s_{t,i}|s_{t-1}) = \\ p(V) * p(s_{t,i}|s_{t-1}, V) + \\ p(\neg V) * p(s_{t,i}|s_{t-1}, \neg V)$
- $\Rightarrow p(s_t|s_{t-1}) = \eta(\mathcal{N}(s_t; s_{t-1}, \Sigma_t) + k)$

Measurement points

- Depending on surface points
- Gaussian sensor noise Σ_e
- $lacksquare Z_{t,i} \sim \mathcal{N}(s_{t,i}, \Sigma_e) + X_{t,p}$ $Z_{t-1,i} \sim \mathcal{N}(s_{t-1,i}, \Sigma_e)$

Measurement Model

$$p(z_t|x_t, z_1, ..., z_{t-1})$$

$X_{t,2}$ $X_{t,1}$ X_{t} X_{t+1} State X_{t+1} X_{t+1}

Measurement Model

$$p(z_t|x_t, z_1, ..., z_{t-1}) \approx p(z_t|x_t, z_{t-1})$$

Measurement Model

$$\begin{aligned} p(z_t|x_t, z_1, ..., z_{t-1}) &\approx p(z_t|x_t, z_{t-1}) \\ &= \int \int p(z_t, s_t, s_{t-1}|x_t, z_{t-1}) \mathrm{d}s_t \mathrm{d}s_{t-1} \end{aligned}$$

Measurement Model

$$X_{t2}$$
 X_{t3} X_{t4} X_{t4} X_{t4} State X_{t2} X_{t4} X_{t5} X_{t5}

$$p(z_t|x_t, z_1, ..., z_{t-1}) \approx p(z_t|x_t, z_{t-1})$$

$$= \int \int p(z_t, s_t, s_{t-1}|x_t, z_{t-1}) ds_t ds_{t-1}$$

$$= \int p(z_t|s_t, x_t) \underbrace{\int p(s_t|s_{t-1}) \eta p(z_{t-1}|s_{t-1}) ds_t}_{\text{convolution}} ds_{t-1}$$

Measurement Model

$$X_{t-2}$$
 X_{t-1}
 X_{t-1}
 X_{t-1}
 X_{t+1}
 X_{t+1}
 X_{t+1}
 X_{t+2}
 X_{t+3}
 X_{t+2}
 X_{t+3}
 X_{t

$$p(z_t|x_t, z_1, ..., z_{t-1}) \approx p(z_t|x_t, z_{t-1})$$

$$= \int \int p(z_t, s_t, s_{t-1}|x_t, z_{t-1}) ds_t ds_{t-1}$$

$$= \int p(z_t|s_t, x_t) \underbrace{\int p(s_t|s_{t-1}) \eta p(z_{t-1}|s_{t-1}) ds_t}_{\text{convolution}} ds_{t-1}$$

 $= \eta(\mathcal{N}(z_t; z_{t-1} + x_{t,p}, \Sigma_t + 2\Sigma_e) + k)$

Measurement Model Computation

c $ccp(z_{t,i})$: closest correspondence point in $z_{t-1} + x_{t,p}$

Measurement Probability

$$p(z_t|x_t, z_{t-1}) = \eta \prod_{z_{t,i} \in z_t} \exp\left(-\frac{1}{2}(z_{t,i} - \exp(z_{t,i}))^T \Sigma^{-1}(z_{t,i} - \exp(z_{t,i}))\right) + k$$

Measurement Model Computation

- **c** $ccp(z_{t,i})$: closest correspondence point in $z_{t-1} + x_{t,p}$
- Covariance matrix $\Sigma = 2\Sigma_e + \Sigma_r$

Measurement Probability

$$p(z_t|x_t, z_{t-1}) = \eta \prod_{z_{t,i} \in z_t} \exp\left(-\frac{1}{2}(z_{t,i} - \exp(z_{t,i}))^T \Sigma^{-1}(z_{t,i} - \exp(z_{t,i}))\right) + k$$

Measurement Model Computation

- $ccp(z_{t,i})$: closest correspondence point in $z_{t-1} + x_{t,p}$
- Covariance matrix $\Sigma = 2\Sigma_e + \Sigma_r$
- Normalization constant η
- Smoothing factor k

Measurement Probability

$$p(z_t|x_t, z_{t-1}) = \eta \prod_{z_{t,i} \in z_t} \exp\left(-\frac{1}{2}(z_{t,i} - \text{ccp}(z_{t,i}))^T \Sigma^{-1}(z_{t,i} - \text{ccp}(z_{t,i}))\right) + k$$

Align smaller point cloud in larger one

Align smaller point cloud in larger one

Align smaller point cloud in larger one

Aligning larger point cloud in smaller one

Align smaller point cloud in larger one

Aligning larger point cloud in smaller one

Align smaller point cloud in larger one

Aligning larger point cloud in smaller one

 \Rightarrow Exchange z_t and z_{t-1} when $|z_t| > |z_{t-1}|$

Zwilling 26. Juli 2015@ Seminar CVML 13 / 28

Adding Color

- Use available color information of measurement points
- Better alignment despite occlusions
- Embed color matching into measurement model

$$p_c(s_{t,i}|s_{t-1}, V) = p(C)p_c(s_{t,i}|s_{t-1}, V, C) + p(\neg C)p_c(s_{t,i}|s_{t-1}, V, \neg C)$$

- p(C): Color-model applicable
- $p(\neg C)$: Color-model not applicable (lens flare, reflections)
- $p_c(s_{t,i}|s_{t-1}, V, \neg C) = \frac{1}{255}$: Color mismatch
- $p_c(s_{t,i}|s_{t-1},V,C)$: Color match

Zwilling 26. Juli 2015@ Seminar CVML

Motion Model

- Take whole measurement history into account
- Robustness against single imprecise alignments

Zwilling 26. Juli 2015@ Seminar CVML 15 / 28

Motion Model

- Take whole measurement history into account
- Robustness against single imprecise alignments
- Kalman filter with constant velocity model
- Measurement step: update with Gaussian distribution $\mu_t = \sum_i p(x_{t,i}|z_1,...,z_t)x_{t,i}$

$$\sum_{t} \sum_{i} \rho(x_{t,i}|z_{1},...,z_{t}) \wedge t,i$$

$$\sum_{t} \sum_{i} \rho(x_{t,i}|z_{1},...,z_{t}) (x_{t,i} - \mu_{t}) (x_{t,i} - \mu_{t})^{T}$$

Update step: apply velocity to position

Search the State Space

Zwilling 26. Juli 2015@ Seminar CVML 16/28

Search the State Space

- For most likely state
- Globally, without getting stuck in local optima
- Allow multiple hypotheses

Zwilling 26. Juli 2015@ Seminar CVML 16 / 28

Search the State Space

- For most likely state
- Globally, without getting stuck in local optima
- Allow multiple hypotheses
- ⇒ Use histogram

Search the State Space

- For most likely state
- Globally, without getting stuck in local optima
- Allow multiple hypotheses
- ⇒ Use histogram
- Too slow for necessary resolution

In Real Time

- Densely sample only areas with high probability
- Initial coarse resolution
- Stop at anytime during refinement

In Real Time

- Densely sample only areas with high probability
- Initial coarse resolution
- Stop at anytime during refinement
- ⇒ Use dynamic histogram

Derivation Step

Recursively expend cells

Zwilling 26. Juli 2015@ Seminar CVML 18/28

18 / 28

Searching the State Space

Derivation Step

Recursively expend cells

■ Maximize information gain / Minimize KL-divergence

Derivation Step

Recursively expend cells

Maximize information gain / Minimize KL-divergence

KL-divergence: information loss if A approximated by B

$$D_{KL}(A||B) = \sum_{i=1}^{k} p_{i} \ln \left(\frac{p_{i}}{P_{i}/k}\right)$$

Zwilling 26. Juli 2015@ Seminar CVML 18 / 28

Annealing Dynamic Histogram (ADH)

- No good alignment with coarse resolution
- Sampling resolution another error source
- ⇒ Consider sampling resolution in measurement model
- $\Sigma = 2\Sigma_e + \Sigma_r + \Sigma_q$
- \blacksquare Σ_q proportional to sampling resolution

What to evaluate

- Precision of the position and velocity estimation
- Root-Mean-Square error

$$e_{RMS} = \sqrt{\mathbb{E}((\hat{v}_t - v_t)^2)}$$

- Runtime (real time requirements)
- Comparison to baseline methods
- → Need for test data

Relative Reference Frame Approach

- Record sensor data while driving
- Static environment
- Assume car is standing still

Relative Reference Frame Approach

- Record sensor data while driving
- Static environment
- Assume car is standing still
- Compute ground truth position and velocity from distance and car velocity

Kalman Filter

■ Imprecise but very fast

Kalman Filter

■ Imprecise but very fast

ICP

- Slow and very imprecise
- Variants with motion model perform better

Kalman Filter

■ Imprecise but very fast

ICP

- Slow and very imprecise
- Variants with motion model perform better

ADH

- Quick first result
- Outperforms all baseline methods

ADH acceleration

■ Relative reference frame precise but not realistic

Zwilling 26. Juli 2015@ Seminar CVML 24/28

■ Relative reference frame precise but not realistic

Model Crispness Approach

- Build a model of the tracked object
- Union object point clouds over all frames
- Point clouds aligned by position estimation

[1]

Record sensor data in real traffic

Crispness Score

Measure for distinctness of the build model

Zwilling 26. Juli 2015@ Seminar CVML 25/28

Crispness Score

Measure for distinctness of the build model

- Presented tracker
- High crispness score

- Kalman ICP tracker
- Low crispness score

Tracking Method	Object Class		
	People	Bikes	Moving Cars
Kalman Filter	0.38	0.31	0.27
Kalman ICP	0.18	0.18	0.29
ADH (Ours)	0.42	0.38	0.33

- Highest score for all object classes
- Higher score for people than for cars

Improvement through color model

- RMS error decreased by 10.4%
- p(C) very small (lens flare, heavy shadows)
- Works robust through day-times and seasons

Source Code

- Open Source http://stanford.edu/~davheld/anytime_tracking.html
- Easy to setup, integrate into C++
- Test-data available

Performance with stereo camera data?

- Cheaper sensor, more noisy data
- A lot of configuration values in the code

Zwilling 26. Juli 2015@ Seminar CVML 27 / 28

Conclusion

Combine 3D Shape, Color, Motion for Robust Anytime Tracking

Precise and robust tracking is possible in real-time

- Measurement model combines 3D shape, Color, Motion
- Derived from Dynamic Bayesian Network
- Annealed Dynamic Histogram for global and fast search
- Evaluation with local reference frame and model crispness
- Outperforms baseline methods

References I

In: Proceedings of Robotics: Science and Systems, Berkeley, USA (July 2014)

International Conference on, IEEE (2011) 4034–4041 Held, D., Levinson, J., Thrun, S., Savarese, S.:

Anytime Tracking.
http://stanford.edu/~davheld/DavidHeld_files/
RSS2014_Poster.pdf (2015)

Zwilling 26. Juli 2015@ Seminar CVML 29 / 28

Backup slide

Crispness score formula

$$\frac{1}{T^2} \sum_{i=1}^{T} \sum_{i=1}^{T} \frac{1}{n_i} \sum_{k=1}^{n_i} G(x_k - \hat{x}_k, 2\Sigma)$$

Zwilling 26. Juli 2015@ Seminar CVML 30 / 28

Backup slide: RoboCup Logistics League

31/28