Introduction to Imitation Learning

Anup Deshmukh

Advisor: Prof. Dinesh Babu

IIIT-Bangalore

Sections

- Reinforcement Learning 101
- Why are we not THERE yet?
- What is Imitation Learning?
- Challenges in Imitation Learning!
- Posed questions and Ideas.

1 Reinforcement Learning 101

get reward R, new state s'

1 Reinforcement Learning 101: Approach 1

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \mid S_t = s
ight]$$
 Expected Reward Giscounted Giscounted

Value based: The value function tells us the maximum expected future reward the agent will get at each state.

$$V(S_t) \leftarrow V(S_t) + \alpha[G_t - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_t) - V(S_t)]$$

1 Reinforcement Learning 101: Approach 2

$$\pi_{ heta}(a|s) = P[a|s]$$

Policy based: In policy-based RL, we want to directly optimize the policy function $\pi(s)$ without using a value function.

1 Reinforcement Learning 101: Learning Method 1

Qlearning: We learn the action value function by maintaining the Q table

	+	\rightarrow	\uparrow	\downarrow
Start	0	0	0	0
Small cheese	0	0	0	0
Nothing	0	0	0	0
2 small cheese	0	0	0	0
Death	0	0	0	0
Big cheese	0	0	0	0

The initialized Q-table

- 1. Initialize Q-values (Q(s,a)) arbitrarily for all state-action pairs.
- 2. For life or until learning is stopped...
- 3. Choose an action (a) in the current world state (s) based on current Q-value estimates $(Q(s,\cdot))$.
- 4. Take the action (a) and observe the the outcome state (s') and reward (r).
- 5. Update $Q(s,a) := Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') Q(s,a)\right]$

1 Reinforcement Learning 101: Learning Method 2

$$\pi_{ heta}(a|s) = P[a|s]$$

$$J_{avgv}(\theta) = E_{\pi}(V(s)) = \sum_{s'} d(s)V(s)$$
 where $d(s) = \frac{N(s)}{\sum_{s'} N(s')}$ Total nb occurrences of all states

$$J_{avR}(\theta) = E_{\pi}(r) = \sum_{\substack{s \\ \text{Probability that I'm in state s}}} d(s) \sum_{\substack{a \\ \text{Probability that I take this action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm in action a from that state under this policy}} d(s) = \sum_{\substack{s \\ \text{Probability that I'm$$

Policy gradient: In policy-based RL, we want to directly optimize the policy function $\pi(s)$ without using a value function.

 $Policy: \pi_{\theta}$

Objective function : $J(\theta)$

 $Gradient: \nabla_{\theta} J(\theta)$

 $Update: \theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

2 Problems in RL

- Sparsity in Rewards
 - o How do you know when you have made a catastrophic move?
 - Take an example of game of Chess or Recommender Systems
- Sample inefficiency
 - How do you speed up learning in real life?
 - Again take an example of Recommender Systems

3 What is Imitation Learning?

- Idea is to implicitly give an agent prior information about the world by mimicking human behavior.
- Pretraining it on a human demonstrator's data might also make the training process faster

Source

Imitation Learning

Algorithm 43 SupervisedImitationTrain($A, \tau_1, \tau_2, ..., \tau_N$)

- $D \leftarrow \langle (x,a) : \forall n, \forall (x,a,\ell) \in \tau_n \rangle$ // collect all observation/action pairs
- $_{ extstyle 2:}$ return $\mathcal{A}(D)$ // train multiclass classifier on D

Algorithm 44 SupervisedImitationTest(f)

- $for t = 1 \dots T do$
- $x_t \leftarrow \text{current observation}$
- $a_t \leftarrow f(x_t)$

// ask policy to choose an action

 $_{4:}$ take action a_t

7: return $\sum_{t=1}^{T} \ell_t$

- 5: $\ell_t \leftarrow$ observe instantaneous loss
- 6: end for

// return total loss

Imitation vs. Reinforcement Learning

imitation learning

- Requires demonstrations
- Must address distributional shift
- Simple, stable supervised learning
- Only as good as the demo

reinforcement learning

- Requires reward function
- Must address exploration
- Potentially non-convergent RL
- Can become arbitrarily good

Can we get the best of both?

e.g., what if we have demonstrations and rewards?

Simplest combination: pretrain & finetune

- Demonstrations can overcome exploration: show us how to do the task
- Reinforcement learning can improve beyond performance of the demonstrator
- Idea: initialize with imitation learning, then finetune with reinforcement learning!
 - 1. collected demonstration data $(\mathbf{s}_i, \mathbf{a}_i)$
 - 2. initialize π_{θ} as $\max_{\theta} \sum_{i} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i})$

4. improve π_{θ} with any RL algorithm

Simplest combination: pretrain & finetune

Pretrain & finetune

- 1. collected demonstration data $(\mathbf{s}_i, \mathbf{a}_i)$
- 2. initialize π_{θ} as $\max_{\theta} \sum_{i} \log \pi_{\theta}(\mathbf{a}_{i}|\mathbf{s}_{i})$

- 3. run π_{θ} to collect experience
- 4. improve π_{θ} with any RL algorithm

vs. DAgger

What will you do when you drift off-course?

- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

5 Connection to RS: Why do we need policy gradient?

$$\pi_{ heta}(a|s)\!=\!P[a|s]$$

$$J_{avR}(\theta) = E_{\pi}(r) = \sum_{\substack{s \\ \text{Probability that I'm in } \\ \text{state s}}} d(s) \sum_{\substack{a \\ \text{Probability that I take this action a from that state } \\ \text{under this policy}}} R_s^a$$

Policy: π_{θ}

Objective function : $J(\theta)$

 $Gradient: \nabla_{\theta} J(\theta)$

 $Update: \theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Can we arrive at the optimal policy for the generator in GAN's using the Imitation Learning?

AND

Do away with this optimization?

5 Connection to RS

Usual Reinforcement Learning setup

$$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t) \right]$$

$$p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T}) = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(a_{t} | s_{t}) p(s_{t+1} | s_{t}, a_{t})$$

$$p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T}) = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \pi_{\theta}(a_{t} | s_{t}) p(s_{t+1} | s_{t}, a_{t})$$

$$\text{demonstration } p(\tau) \qquad \text{train}$$

