Alignement de termes de longueur variable en corpus comparables spécialisés

Jingshu Liu (LS2N, Dictanova) Emmanuel Morin (LS2N) Sebastián Peña S. (Dictanova)

PLAN

Introduction

Alignement de TS

Alignement de TC

Expériences et résultats

Conclusion et perspectives

Introduction

- ► Contexte du travail : industrie, logiciel d'analyse sémantique.
- ► Pour quoi alignement?
 - ► Faciliter le passage d'une langage à une autre.
 - ▶ Permettre une projection des termes de différentes langues dans un espace commun.
- ► La définition des termes dans notre cas réel est plus "large". (nombreux choix)

Introduction

- ▶ terms simples, $apple \rightarrow pomme$
- \blacktriangleright termes complexe compositionel, repair status \rightarrow état réparation
- ► terms complexe non-compositionel, axillary dissection → dissection axillaire, → curage axillaire
- ▶ alignment de longueur variable, $ankle\ boot \rightarrow bottine$, $rotor\ shaft \rightarrow arbre$, ce phénomène est beaucoup plus fréquent entre certaines paires de langue par exemple en/zh.

Introduction

Objectif : un système capable d'aligner un terme en langue source avec ses traduction autorisées indépendamment de longueur.

Concrètement nous proposons une liste de candidats ordonnés par une mesure similarité. Nous avons utilisé le Cosinus parce qu'il permet la parallélisation à l'aide de librairies d'algèbre linéaire.

invoice:	
facture	0.6
facture d'achat	0.5
récipissé d'achat	0.45
achat	0.4

APPROCHE STANDARD (AS)

- ► Approche distributionnelle, approche par alignement de contexte, approche standard
 - Construction de matrice de co-occurrence. Les co-occurrences sont ensuite normalisées par une mesure d'association (IM).
 - 2. Alignement de contexte.
 - 3. Calcul de similarité (Cosinus).

APPROCHE STANDARD (AS)

calcul de similarité avec chaque ligne dans la matrice en langue facture cible où les score sont normalisés par l'IM sac rapide conseiller alignement de contexte purchase 2.5 0.05 1.1 0.1 0.2 (IM 50 10 5 invoice wallet rapid advisor

Remarques:

- ➤ Représentation vectorielle à partir d'une matrice de cooccurrence
- ► Lissage par une mesure d'association (IM)
- ► Traits spécifiques pour les vecteurs de contextes
- ► Projection des vecteurs par alignement de contextes

APPROCHE STANDARD SÉLECTIVE (ASS)

$$\forall w \in S \cap G, \forall c \in S \cap G, \ cooc(w, c) = cooc_S(w, c) + cooc_G(w, c)$$
 (Hazem et Morin, 2016)

Pourquoi? Les occurrences des mots ne sont pas statistiquement fiables à cause de la petite taille des corpus spécialisés.

Notre proposition: pondération en fonction de la distance (PFD)

$$PFD(w,c) = g(c|w) \times cooc(w,c)$$
 où $g(c|w) = \Delta(w,c)^{-\lambda}, \ \lambda \in [0,1]$

- ▶ Pourquoi ? Plus un mot central est éloigné d'un mot du contexte, moins ils sont sémantiquement liés. Par exemple:
 - vous trouverez les photos demandées ainsi que la facture d'achat suite à un craquement du cuir
 si λ = 0.25, g(achat|facture) = 1, g(achat|trouver) = 3^{-0.25} = 0.76
- ▶ Quelle étape ? Au moment de la construction de matrice de co-occurrence.

Notre proposition: information mutuelle pondérée (IMP)

$$IMP(w, c) = f(cooc(w, c)) \times IM(w, c)$$

$$f(x) = \begin{cases} (x/x_{max})^{\alpha}, & \alpha \in [0, 1], \text{ si } x < x_{max} \\ 1 \text{ sinon} \end{cases}$$
(Pennington et al, 2014)

- ► Pourquoi ? L'IM surestime les faibles occurrences et sous-estime les hautes occurrences.
- ► Quelle étape ? Au moment de la normalisation par l'IM.
- ▶ Pénalisation pour les coocurrences inférieures à x_{max} .

APPROCHE COMPOSTIONNELLE (AC)

► Traduction de chaque élément d'un terme complexe via un dictionnaire.

repair status → statut réparation, réparation statut, position réparation, réparation position, statut réparer, réparer statut, position réparer, réparer position

- ► Remarques:
 - ► Incapacité pour aligner les termes dont un mot composant n'est pas dans le dictionnaire.
 - ► Limite sur la gestion de l'alignement de termes de longueurs variables.
 - ► Complexité factorielle pour calculer toutes les combinaisons possibles.

Approche compositionnelle étendue

- ► Morin et Daille, 2012. Idée : traduire chaque mot composant par son vecteur de contexte.
 - ▶ Si le mot existe dans le dictionnaire => vecteur de contexte de la traduction obtenu directement par la matrice de cooccurrence en langue cible.
 - ► Sinon => vecteur de contexte obtenu par l'AS.
 - ▶ Un schema d'exemple

Notre représentation pour les TC

Introduction

$$vecteur(terme) = \frac{1}{n} \sum_{i}^{n} \frac{vecteur(w_i)}{||vecteur(w_i)||}$$

Données et ressources

- ► Corpus spécialisés: Breast Cancer(BC), Wind Energy(WE), Luxe, Cosmétique; Corpus général: News Commentary(NC).
- ▶ Dictionnaire en/fr de 243 539 entrées
- Système par patrons syntaxiques pour l'extraction terminologique
- ▶ Listes de références construites manuellement
- ► Candidats pour chaque terme en langue source : tous les mots simples dans le vocabulaire du corpus spécifique plus tous les termes complexes extraits par le système d'extraction.

Corpus	Nombre de mots		Taille de vocabulaire		Référence	
Corpus	FR	EN	FR	EN	rtelefence	
BC	521 262	525 934	6 630	8 821	TS: 248	
WE	314 549	313 943	6 038	7 134	TC: 73	
Luxe	101 542	139 867	3 064	3 981	TC: 276,	
					TS: 13	
Cosmétique	430 106	837 579	3 913	5 592	TC: 185,	
					TS: 14	
NC	5,7 M	4,7 M	$23\ 597$	29 489		

Les termes complexes choisis sont hors le dictionnaire.

RÉSULTATS SUR LES TS

Sur le corpus BC:

Modèle	P@5	MAP
AS	35,5	25,9
AS + IMP	37,1	28,9
AS + PFD	36,3	27,4
AS + IMP + PFD	37,1	29,5
ASS	62,5	56,5
ASS + IMP	64,1	55,0
ASS + PFD	62,9	57,3
ASS + IMP + PFD	64,1	55,8

Table 1: Précision@k et MAP (%) pour l'alignement des termes simples sur le corpus BC.

- ► Amélioration homogène de PFD
- ► PFD et IMP ne sont pas mutuel exclusives.
- ► La surestimation des petites occurrences est lissée par l'ajout de données exogènes.
- ► Certains termes à traduire sont assez peu fréquents dans le corpus général, il est possible que pénaliser toutes les petites occurrences réduise des traits discriminants du corpus général.

RÉSULTATS SUR LES TC

Exemples des traductions trouvées dans le top@5 :

Corpus	Alignements (anglais \rightarrow français)		
Luxe	$sneaker shoe \rightarrow sneaker$		
Luxe	invoice \rightarrow facture d'achat		
Cosmétique	wide variety of choice \rightarrow nombreux choix		
Cosmetique	very small tight store \rightarrow petit magasin		
WE	greenhouse gas \rightarrow gaz à effet de serre		
VVI	power system \rightarrow système éolien de puissance		

RÉSULTATS

Corpus	Modèle	P@5	MAP
	AC	25,6	24,7
Luxe	ACE + IMP + PFD	44,6	40,1
	ACE + ASS + IMP + PFD	37,0	31,2

- ► Meilleur résultat: ACE+IMP+PFD
- ► Luxe: corpus très bruité avec beaucoup de mots hors le corpus général => ASS ne fonctionne pas bien
- ▶ IMP améliore toujours les résultats: le vecteur pour un terme complexe est une moyenne => le risque que chaque élément soit peu fréquent est beaucoup moins important.

RÉSULTATS

Corpus	Modèle	P@5	MAP
	AC	19,1	15,4
Cosmétique	ACE + IMP + PFD	19,1	16,8
	ACE + ASS + IMP + PFD	16,6	12,9

- ► Meilleur résultat : ACE+IMP+PFD
- ► Cosmétique: corpus très bruité avec beaucoup de mots hors le corpus général => ASS ne fonctionne pas bien
- ▶ IMP améliore toujours les résultats: le vecteur pour un terme complexe est une moyenne => le risque que chaque élément soit peu fréquent est beaucoup moins important.

RÉSULTATS

Corpus	Modèle	P@5	MAP
	AC	68,5	61,5
WE	ACE + IMP + PFD	80,8	60,0
	ACE + ASS + IMP + PFD	87,7	66,3

- ► Meilleur résultat: ACE+ASS+IMP+PFD
- ► WindEnergie: corpus scientifique avec peu de mots hors le corpus général => ASS fonctionne
- ▶ IMP améliore toujours les résultats: le vecteur pour un terme complexe est une moyenne => le risque que chaque élément soit peu fréquent est beaucoup moins important.

CONCLUSION ET PERSPECTIVES

- ▶ Nous avons proposé un système capable d'aligner les termes de longueurs variables, en utilisant les vecteurs de contextes. De plus nos améliorations pour les approches état de l'art sont validés sur les données des travaux précédents et des corpus extraits de l'internet.
- ▶ Perspectives : les vecteurs embedding pour remplacer les vecteurs de contexte.
 - ▶ Les traits discriminants sont d'une certaine façon "extraits".
 - ▶ Les vecteurs denses ont une meilleure efficacité à stocker/calculer.
- ▶ Potentiellement une représentation pondérée pour les termes complexes parce qu'il y a des termes complexes dont le sens s 'appuie plus sur un élément que les autres. (sneaker shoe)
- ► D'autres langues linguistiquement plus éloignées.

Merci pour votre attention!