3ª Prova de Algoritmos e Estruturas de Dados I 23/06/2017

Perguntas comuns e suas respostas:

• P: O que será avaliado?

R: A lógica, a criatividade, a sintaxe, o uso correto dos comandos, a correta declaração dos tipos, os nomes das variáveis, a indentação, o uso equilibrado de comentários no código e, evidentemente, a clareza. A modularidade, o correto uso de funções e procedimentos, incluindo passagem de parâmetros, e o bom uso de variáveis locais e globais e também a eficiência do seu algoritmo serão especialmente observados.

QUESTÃO: (100 pontos)

Considere as seguintes constantes e tipos assim definidos:

```
CONST MAX = 200;
TYPE tpMatriz = array [1..MAX,1..MAX] of integer;
```

Considere os seguintes protótipos de funções e procedimentos juntamente com uma descrição do seu funcionamento:

• function achar_borda_quadrada (var M: tpMatriz; N: integer; linIni, colIni, tam: integer): boolean;

Esta função recebe uma matriz $M_{N\times N}$, uma coordenada [linIni, colIni] e um número inteiro $tam~(2 \le tam \le N)$ que representa o tamanho do lado de um quadrado. A função deve retornar TRUE se os elementos contidos na borda quadrada de tamanho tam cujo canto superior esquerdo está nas coordenadas definidas pela linha linIni e coluna colIni possuem todos o mesmo valor e retorna FALSE em caso contrário. O teste da existência dessa borda não deve ultrapassar os limites da matriz.

Exemplo: A matriz $M_{6\times 6}$ abaixo possui uma borda quadrada de tamanho 4 constituída de elementos "1" iniciando na linha linIni=2 e na coluna colIni=2. Portanto, se a função receber esta matriz com N=6, linIni=2, colIni=2 e tam=4, deve retornar TRUE. Por outro lado, se receber a mesma matriz com N=6, linIni=1, colIni=1 e tam=6, deve retornar FALSE.

```
2 3 1 5 2 3
4 1 1 1 1 1
2 1 2 3 1 2
3 1 3 4 1 3
1 1 1 1 1 4
5 1 2 3 4 3
```

• procedure remover_cor (var M: tpMatriz; N, num: integer);

Este procedimento recebe uma matriz $M_{N\times N}$ e um número inteiro num. O objetivo é eliminar o número num da matriz, substituindo cada ocorrência por um zero.

Exemplo: Se o procedimento receber a matriz $M_{6\times 6}$ da esquerda abaixo com N=6 e num=1, o resultado será a matriz da direita.

```
      2 3 1 5 2 3
      2 3 0 5 2 3

      4 1 1 1 1 1
      4 0 0 0 0 0

      2 1 2 3 1 2
      2 0 2 3 0 2

      3 1 3 4 1 3
      3 0 3 4 0 3

      1 1 1 1 1 4
      0 0 0 0 0 4

      5 1 2 3 4 3
      5 0 2 3 4 3
```

- procedure ler_matriz (var M: tpMatriz; N: integer); Este procedimento lê do teclado uma matriz $M_{N\times N}$ de números inteiros.
- procedure imprimir_matriz (var M: tpMatriz; N: integer); Este procedimento imprime na tela uma matriz $M_{N\times N}$ de números inteiros.

O QUE DEVE SER FEITO:

- 1. Implemente as funções e procedimentos acima;
- 2. Faça um programa principal que leia uma matriz $N \times N$ de números inteiros e imprima a matriz resultante do seguinte processo:
 - (a) Se a matriz possuir alguma borda quadrada com tamanho pelo menos 2 e cujo canto superior esquerdo esteja na coordenada [1,1], de maneira que esta borda tenha todos os elementos com um mesmo valor k, todas as ocorrências de k na matriz devem ser substituídas por zero. O processo pode terminar assim que a primeira borda for encontrada.

Exemplo: A figura abaixo mostra todas as bordas que iniciam em [1,1] que devem ser procuradas em uma matriz 6×6 .

11	2 2 2	3 3 3 3	4 4 4 4 4 .	5 5 5 5 5 5
1 1	2 . 2	3 3	4 4 .	5 5
	2 2 2	3 3	4 4 .	5 5
		3 3 3 3	4 4 .	5 5
			4 4 4 4 4 .	5 5
				5 5 5 5 5 5

Assim, no caso da matriz $M_{6\times 6}$ da esquerda abaixo, existe uma borda de tamanho 4 que inicia na coordenada [1, 1] formada apenas por elementos de valor 2 e portanto o resultado da operação deve ser a matriz da direita, na qual todas as ocorrências do 2 foram substituídas por zeros.

2	2	2	2	2	2		0	0	0	0	0	0	
2	1	5	2	5	1		0	1	5	0	5	1	
2	1	1	2	2	2		0	1	1	0	0	0	
2	2	2	2	5	4		0	0	0	0	5	4	
2	5	1	2	1	3		0	5	1	0	1	3	
2	1	2	2	2	5		0	1	0	0	0	5	

(b) Se existir uma borda quadrada de tamanho exatamente 3 em qualquer lugar da matriz, verifique o número k que está no interior desta borda e elimine todas as ocorrências de k de toda a matriz, substituindo-as por zero. Este processo deve ser feito após o anterior ter sido concluído. Pode haver mais de uma borda deste tipo e cada uma pode ter um k diferente. O processo pode parar assim que a primeira borda for encontrada, se houver uma.

Exemplo: Na matriz $M_{6\times 6}$ da esquerda abaixo, existe uma borda de tamanho 3 cujo canto superior esquerdo está na coordenada [3, 1]. Para esta borda, o número no interior é 5. O resultado deve ser a matriz da direita, na qual todas as ocorrências do 5 foram substituídas por zeros.

2	3	1	5	2	3		2	3	1	0	2	3
4	1	5	1	5	1		4	1	0	1	0	1
1	1	1	3	1	2		1	1	1	3	1	2
1	5	1	4	1	3		1	0	1	4	1	3
1	1	1	5	5	4		1	1	1	0	0	4
5	1	2	5	5	5		0	1	2	0	0	0