Solutions to Tutorial Sheet 2

2. Let $f: \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to \alpha} f(x)$ exists for $\alpha \in \mathbb{R}$. Show that

$$\lim_{h \to 0} [f(\alpha + h) - f(\alpha - h)] = 0.$$

Analyse the converse.

Solution. Suppose $\lim_{x\to\alpha} f(x) = L$. Then $\lim_{h\to 0} f(\alpha+h) = L$, and since

$$|f(\alpha+h) - f(\alpha-h)| \le |f(\alpha+h) - L| + |f(\alpha-h) - L|$$

it follows that

$$\lim_{h \to 0} |f(\alpha + h) - f(\alpha - h)| = 0.$$

The converse is *false*. For a counter-example, consider $\alpha = 0$ and

$$f(x) = \begin{cases} 1 & x = 0\\ \frac{1}{|x|} & x \neq 0 \end{cases}$$

For this example, $\lim_{h\to 0}[f(\alpha+h)-f(\alpha-h)]=0$ holds, but individually, the left-hand limit and right-hand limit are not finite. Hence limit does not exist, and neither is the function continuous at x=0.

3. Discuss the continuity of the following functions:

(i)
$$f(x) = \sin \frac{1}{x}$$
, if $x \neq 0$ and $f(0) = 0$

Solution. Continuous everywhere except at x = 0. To see that f is not continuous at x = 0, consider the sequences $\{x_n\}_{n\geq 1}$, $\{y_n\}_{n\geq 1}$ where

$$x_n := \frac{1}{n\pi} \text{ and } y_n := \frac{1}{2n\pi + \frac{\pi}{2}}.$$

Note that both $x_n, y_n \to 0$, but $f(x_n) \to 0$ and $|f(y_n)| \to 1$.

Since there exists a finite difference (equal to 1 in absolute value) between two infinitesimally close values of x, the function f is discontinuous at x = 0. The value that the function converges to should be exactly the same for *any* choice of sequence converging to the point of concern (here x = 0).

(ii)
$$f(x) = x \sin \frac{1}{x}$$
, if $x \neq 0$ and $f(0) = 0$

Solution. Continuous everywhere. For proving the continuity of f at x = 0, note that $|f(x)| \le |x|$, and f(0) = 0.

4. Let $f: \mathbb{R} \to \mathbb{R}$ satisfy f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If f is continuous at 0, show that f is continuous at every $c \in \mathbb{R}$.

Optional. Show that the function f satisfies f(kx) = kf(x), for all $k \in \mathbb{R}$.

Solution. Taking x = y = 0, we get f(0+0) = 2f(0) so that f(0) = 0.

By the assumption of the continuity of f at 0, $\lim_{x\to 0} f(x) = 0$.

Thus,

$$\lim_{h \to 0} f(c+h) = \lim_{h \to 0} [f(c) + f(h)] = f(c)$$

showing that f is continuous at x = c.

Hint. For the optional part, first verify the equality for all $k \in \mathbb{Q}$ and then use the continuity of f to establish it for all $k \in \mathbb{R}$.

Solution. To show for rational numbers, assume k = p/q, where $p, q \in \mathbb{Z}$ and $q \neq 0$.

Since f is distributive over summation, f(px) = pf(x). Also, f(px) = f(q(px/q)) = qf(px/q).

Hence, $pf(x) = qf(px/q) \implies f(kx) = kf(x)$. This works for rational numbers because p and q are natural numbers and hence can be counted (for distribution of summation). Now since f is continuous for every $c \in \mathbb{R}$, this relation should hold even for $k \notin \mathbb{Q}$ (for now ignore the rigorous proof for why rational + continuity implies real).

5. Let $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Show that f is differentiable on \mathbb{R} . Is f' a continuous function?

Solution. Clearly, f is differentiable for all $x \neq 0$ and the derivative is

$$f'(x) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right), x \neq 0.$$

Also,

$$f'(0) = \lim_{h \to 0} \frac{h^2 \sin\left(\frac{1}{h}\right) - 0}{h} = 0.$$

Clearly, f' is continuous at any $x \neq 0$. However $\lim_{x \to 0} f'(x)$ does not exist. Indeed, for any $\delta > 0$, we can choose $n \in \mathbb{N}$ such that $x := 1/n\pi$, $y := 1/(n+1)\pi$ are in $(-\delta, \delta)$, but |f'(x) - f'(y)| = 2.

7. If $f:(a,b)\to\mathbb{R}$ is differentiable at $c\in(a,b)$, then show that

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c-h)}{2h}$$

exists and equals f'(c). Is the converse true? [Hint: Consider f(x) = |x|.]

Solution. For the first part, observe that

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c-h)}{2h} = \lim_{h \to 0^+} \frac{1}{2} \left[\frac{f(c+h) - f(c)}{h} + \frac{f(c-h) - f(c)}{-h} \right]$$
$$= \frac{1}{2} [f'(c) + f'(c)] = f'(c)$$

The converse is *false*. Consider, for example, f(x) = |x| and c = 0.

9. Using the theorem on derivatives of inverse function, compute the derivative of

(i)
$$\cos^{-1}x$$
, $-1 < x < 1$

Solution. Let f(x) = cos(x). Then $f'(x) = -sin(x) \neq 0$ for $x \in (0, \pi)$.

Thus $g(y) = f^{-1}(y) = \cos^{-1}(y)$, -1 < y < 1 is differentiable and

$$g'(y) = \frac{1}{f'(x)}$$
 where x is such that $f(x) = y$.

Therefore,

$$g'(y) = \frac{-1}{\sin(x)} = \frac{-1}{\sqrt{1 - \cos^2(x)}} = \frac{-1}{\sqrt{1 - y^2}}.$$

(ii) $cosec^{-1}x$, |x| > 1

Solution. Note that

$$cosec^{-1}(x) = \sin^{-1}\frac{1}{x} \text{ for } |x| > 1$$

Since

$$\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \text{ for } |x| < 1,$$

one has, by the chain rule

$$\frac{d}{dx}cosec^{-1}(x) = \frac{1}{\sqrt{1 - \frac{1}{x^2}}} \left(\frac{-1}{x^2}\right), |x| > 1.$$

10. Compute $\frac{dy}{dx}$, given

$$y = f\left(\frac{2x-1}{x+1}\right)$$
 and $f'(x) = \sin(x^2)$

Solution. By the chain rule,

$$\frac{dy}{dx} = f'\left(\frac{2x-1}{x+1}\right) \frac{d}{dx} \left(\frac{2x-1}{x+1}\right)$$
$$= \sin\left(\frac{2x-1}{x+1}\right)^2 \left[\frac{3}{(x+1)^2}\right]$$
$$= \frac{3}{(x+1)^2} \sin\left(\frac{2x-1}{x+1}\right)^2$$

11. Construct an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous every where and is differentiable everywhere except at 2 points.

Solution. Consider f(x) := |x| + |1 - x| for $x \in \mathbb{R}$.

12. Let
$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Show that f is discontinuous at every $c \in \mathbb{R}$.

Solution. For $c \in \mathbb{R}$, select a sequence $\{a_n\}_{n\geq 1}$ of rational numbers and a sequence $\{b_n\}_{n\geq 1}$ of irrational numbers, both converging to c. Then $\{f(a_n)\}_{n\geq 1}$ converges to 1 while $\{f(b_n)\}_{n\geq 1}$ converges to 0, showing that limit of f at c does not exist.

- 15. Let $f:(a,b)\to\mathbb{R}$ and $c\in(a,b)$. Show that the following are equivalent:
 - (i) f is differentiable at c
 - (ii) There exists $\delta > 0$ and a function $\epsilon_1 : (-\delta, \delta) \to \mathbb{R}$ such that $\lim_{h \to 0} \epsilon_1(h) = 0$ and

$$f(c+h) = f(c) + \alpha h + h\epsilon_1(h)$$
 for all $h \in (-\delta, \delta)$

(iii) There exists $\alpha \in \mathbb{R}$ such that

$$\lim_{h \to 0} \left(\frac{|f(c+h) - f(c) - \alpha h|}{|h|} \right) = 0$$

Solution. To prove equivalence, we need to prove (i) \iff (ii) \iff (iii). We can prove it in a cyclic manner, as (i) \implies (ii), (ii) \implies (iii) and (iii) \implies (i).

(i) \implies (ii): Choose $\delta > 0$ such that $(c - \delta, c + \delta) \subset (a, b)$. Take $\alpha = f'(c)$ and

$$\epsilon_1(h) = \begin{cases} \frac{f(c+h) - f(c) - \alpha h}{h} & h \neq 0\\ 0 & h = 0 \end{cases}$$

(ii)
$$\implies$$
 (iii): $\lim_{h \to 0} \frac{|f(c+h) - f(c) - \alpha h|}{|h|} = \lim_{h \to 0} |\epsilon_1(h)| = 0$

(iii)
$$\implies$$
 (i): $\lim_{h\to 0} \left| \frac{f(c+h)-f(c)}{h} - \alpha \right| = 0 \implies \lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ exists and is equal to α .