Problem Set 1

Use Matlab to calculate the answers to the following:

Problem 1

- a) $\frac{\sqrt{41^2-5.2^2}}{e^5-100.53}$
- b) $\sqrt[3]{132} + \frac{ln(500)}{8}$

Problem 2

- a) $cos(\frac{7\pi}{9}) + tan(\frac{7}{15}\pi)sin(15^{\circ})$
- b) $sin^2(80^\circ) \frac{(cos14^\circ sin80^\circ)^2}{\sqrt[3]{0.18}}$

Problem 3

Define the variables a, b, c, and d as: $a=12, b=5.6, c=\frac{3a}{b^2}, \text{and } d=\frac{(a-b)^c}{c}$ then evaluate

- a) $\frac{a}{b} + \frac{d-c}{d+c} (d-b)^2$
- b) $e^{\frac{d-c}{a-2^b}} + \ln(|c-d+\frac{b}{a}|)$

Problem 4

Given $\int x \sin ax \, dx = \frac{\sin ax}{a^2} - \frac{x \cos ax}{a}$

Calculate the following definite integral

$$\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} x \sin(0.6x) dx$$

Problem 5

In the triangle shown in Figure 1, $a=5.3\,in.$, $\gamma=42^{\circ}$, and $b=6\,in.$ Define $a,\gamma,$ and b, as variables, and then:

a) Calculate the length b by using the Law of Cosines (Law of Cosines $c^2=a^2+b^2-2ab\cos\gamma)$

- b) Calculate the angles β and γ (in degrees) using the Law of Cosines
- c) Check that the sum of the angles is 180°

Figure 1: Problem 5 Diagram

Problem 6

In the triangle shown in Figure 2, $a=5.0\,in.$, $\gamma=25^{\circ}$, and $b=7\,in.$ Define $a,\gamma,$ and b, as variables, and then:

- a) Calculate the length c by using the Law of Cosines (Law of Cosines $c^2=a^2+b^2-2ab\cos\gamma)$
- b) Calculate the angles α and β (in degrees) using the Law of Sines
- c) Verify the Law of Tangents by substituting the results from part(b) into the right and left sides of the equation. (Law of Tangents: $\frac{a-b}{a+b} = \frac{tan\left[\frac{1}{2}(\alpha-\beta)\right]}{\left[\frac{1}{2}(\alpha+\beta)\right]}$)

Figure 2: Problem 6 Diagram