

Exame Final Nacional de Matemática A Prova 635 | 2.ª Fase | Ensino Secundário | 2017

12.º Ano de Escolaridade

Decreto-Lei n.º 139/2012, de 5 de julho

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. 10 Páginas

VERSÃO 1

Indique de forma legível a versão da prova.

Utilize apenas caneta ou esferográfica de tinta azul ou preta.

É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.

Para cada resposta, identifique o grupo e o item.

Apresente as suas respostas de forma legível.

Apresente apenas uma resposta para cada item.

A prova inclui um formulário.

As cotações dos itens encontram-se no final do enunciado da prova.

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Nos termos da lei em vigor, as provas de avaliação externa são obras protegidas pelo Código do Direito de Autor e dos Direitos Conexos. A sua divulgação não suprime os direitos previstos na lei. Assim, é proibida a utilização destas provas, além do determinado na lei ou do permitido pelo IAVE, I.P., sendo expressamente vedada a sua exploração comercial.

Formulário

Geometria

Comprimento de um arco de circunferência:

 $\alpha r (\alpha - \text{amplitude}, \text{em radianos}, \text{do ângulo ao centro}; r - \text{raio})$

Área de um polígono regular: Semiperimetro × Apótema

Área de um sector circular:

 $\frac{\alpha r^2}{2}(\alpha-\text{amplitude},\text{em radianos},\text{do ângulo ao centro};\ r-\text{raio})$

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3}\pi r^3 \ (r - \text{raio})$

Progressões

Soma dos *n* primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

 $tg(a+b) = \frac{tga + tgb}{1 - tga \ tgb}$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n} \right) \quad (k \in \{0, ..., n-1\} \quad \mathbf{e} \quad n \in \mathbb{N})$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma \le X \le \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \, v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' \ a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

GRUPO I

1. Considere todos os números naturais de cinco algarismos diferentes que se podem formar com os algarismos 1, 2, 3, 4 e 5

Destes números, quantos têm os algarismos pares um a seguir ao outro?

- **(A)** 24
- **(B)** 48
- **(C)** 72
- (D) 96
- **2.** A tabela de distribuição de probabilidades de uma variável aleatória X é a seguinte.

x_i	1	2	3	4
$P(X=x_i)$	$\frac{1}{3}$	<u>1</u> 4	<u>1</u> 6	1/4

Qual é o valor da probabilidade condicionada $P(X > 1 \mid X \le 3)$?

- (A) $\frac{3}{4}$

- (B) $\frac{1}{4}$ (C) $\frac{8}{9}$
- **3.** De uma função f, de domínio \mathbb{R} , com derivada finita em todos os pontos do seu domínio, sabe-se que $\lim_{x \to 2} \frac{x^2 - 2x}{f(x) - f(2)} = 4$

Qual é o valor de f'(2)?

- (A) $-\frac{1}{2}$ (B) $-\frac{1}{4}$ (C) $\frac{1}{2}$
- (D) $\frac{1}{4}$

4. Na Figura 1, está representado o gráfico de uma função f, de domínio [-1,6], e, na Figura 2, está representada parte do gráfico de uma função $\,g\,,\,$ de domínio $\,\mathbb{R}\,$

Tal como as figuras sugerem, em ambas as funções, todos os objetos inteiros têm imagens inteiras.

Figura 1

Figura 2

Quais são os zeros da função $g \circ f$?

(o símbolo o designa a composição de funções)

- **(A)** 0 = 4

- **(B)** 1 e 5 **(C)** -1 e 3 **(D)** 2 e 6
- **5.** Seja f uma função de domínio $\mathbb R$

A tabela de variação de sinal da função f'', segunda derivada de f, é a seguinte.

λ	¢ .	$-\infty$	-10		0		10	+∞
f	"	_	0	+	0	_	0	+

Seja g a função definida por g(x) = -f(x-5)

Em qual dos intervalos seguintes o gráfico de g tem concavidade voltada para baixo?

- (A)]-15,-5[(B)]0,10[(C)]-5,5[(D)]5,15[

6. Seja z um número complexo de argumento $\frac{\pi}{5}$

Qual dos seguintes valores é um argumento do número complexo -5iz ?

- (A) $-\frac{3\pi}{10}$

- (B) $-\frac{4\pi}{5}$ (C) $-\frac{7\pi}{5}$ (D) $-\frac{13\pi}{10}$
- 7. Considere, num referencial o.n. xOy, a região definida pela condição

$$(x+1)^2 + (y+1)^2 \le 1 \land x+y+2 \ge 0$$

Qual é o perímetro dessa região?

- **(A)** $\pi + 1$
- **(B)** $\frac{\pi}{2} + 1$ **(C)** $\pi + 2$
- **(D)** $\frac{\pi}{2} + 2$

8. Seja (u_n) a sucessão definida por $u_n = \left(\frac{1}{2}\right)^{1-n}$

Qual das afirmações seguintes é verdadeira?

- (A) A sucessão (u_n) é uma progressão geométrica de razão $\frac{1}{2}$
- (B) A sucessão (u_n) é uma progressão geométrica de razão 2
- (C) A sucessão (u_n) é uma progressão aritmética de razão $\frac{1}{2}$
- (D) A sucessão (u_n) é uma progressão aritmética de razão 2

GRUPO II

1. Em \mathbb{C} , conjunto dos números complexos, sejam z_1 e z_2 tais que $z_1=2+i$ e $z_1\times\overline{z}_2=4-3i$

Considere a condição $|z-z_1| = |z-z_2|$

Mostre que o número complexo $\sqrt{2}$ cis $\frac{\pi}{4}$ verifica esta condição e interprete geometricamente este facto.

Resolva este item sem recorrer à calculadora.

2. Na Figura 3, está representado, num referencial o.n. Oxyz, o cubo [ABCDEFGH]

Sabe-se que:

- a face [ABCD] está contida no plano xOy
- a aresta [CD] está contida no eixo Oy
- o ponto D tem coordenadas (0, 4, 0)
- o plano ACG é definido pela equação x + y z 6 = 0

Figura 3

- **2.1.** Verifique que o vértice A tem abcissa igual a 2
- **2.2.** Seja r a reta definida pela condição x-1=1-y=z

Determine as coordenadas do ponto de intersecção da reta $\,r\,$ com o plano $\,ACG\,$

2.3. Seja P o vértice de uma pirâmide regular de base $\begin{bmatrix} EFGH \end{bmatrix}$

Sabe-se que:

- ullet a cota do ponto P é superior a 2
- o volume da pirâmide é 4

Determine a amplitude do ângulo OGP

Apresente o resultado em graus, arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

- 3. Uma escola secundária tem alunos de ambos os sexos.
 - 3.1. Escolhe-se, ao acaso, um aluno dessa escola.

Seja A o acontecimento «o aluno escolhido é rapariga», e seja B o acontecimento «o aluno escolhido frequenta o 10.º ano».

Sabe-se que:

- a probabilidade de o aluno escolhido ser rapaz ou não frequentar o 10.º ano é 0,82
- a probabilidade de o aluno escolhido frequentar o 10.º ano, sabendo que é rapariga, é $\frac{1}{3}$

Determine P(A)

3.2. Uma das turmas dessa escola tem trinta alunos, numerados de 1 a 30

Com o objetivo de escolher quatro alunos dessa turma para formar uma comissão, introduzem-se, num saco, trinta cartões, indistinguíveis ao tato, numerados de 1 a 30. Em seguida, retiram-se quatro cartões do saco, simultaneamente e ao acaso.

Qual é a probabilidade de os dois menores números saídos serem o 7 e o 22 ?

Apresente o resultado arredondado às milésimas.

4. Considere a função f, de domínio \mathbb{R}^+ , definida por $f(x) = \frac{\ln x}{x}$

Resolva os itens 4.1., 4.2. e 4.3. recorrendo a métodos analíticos, sem utilizar a calculadora.

- **4.1.** Estude a função f quanto à existência de assíntotas do seu gráfico paralelas aos eixos coordenados.
- **4.2.** Resolva a inequação $f(x) > 2 \ln x$

Apresente o conjunto solução usando a notação de intervalos de números reais.

4.3. Para um certo número real k, a função g, de domínio \mathbb{R}^+ , definida por $g(x) = \frac{k}{x} + f(x)$, tem um extremo relativo para x = 1

Determine esse número k

5. Considere o desenvolvimento de $\left(2x \operatorname{sen} \alpha + \frac{\cos \alpha}{x}\right)^2$, em que $\alpha \in \mathbb{R}$ e $x \neq 0$

Determine os valores de α , pertencentes ao intervalo $]\pi, 2\pi[$, para os quais o termo independente de x, neste desenvolvimento, é igual a 1

Resolva este item recorrendo a métodos analíticos, sem utilizar a calculadora.

6. Num jardim, uma criança está a andar num baloiço cuja cadeira está suspensa por duas hastes rígidas. Atrás do baloiço, há um muro que limita esse jardim.

A Figura 4 esquematiza a situação. O ponto P representa a posição da cadeira.

Figura 4

Num determinado instante, em que a criança está a dar balanço, é iniciada a contagem do tempo. Doze segundos após esse instante, a criança deixa de dar balanço e procura parar o baloiço arrastando os pés no chão.

Admita que a distância, em decímetros, do ponto $\,P\,$ ao muro, $\,t\,$ segundos após o instante inicial, é dada por

$$d(t) = \begin{cases} 30 + t \operatorname{sen}(\pi t) & \text{se } 0 \le t < 12 \\ 30 + 12e^{12-t} \operatorname{sen}(\pi t) & \text{se } t \ge 12 \end{cases}$$

(o argumento da função seno está expresso em radianos)

6.1. Determine, recorrendo à calculadora gráfica, o número de soluções da equação d(t) = 27 no intervalo [0, 6], e interprete o resultado no contexto da situação descrita.

Na sua resposta, reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver o problema.

6.2. Admita que, no instante em que é iniciada a contagem do tempo, as hastes do baloiço estão na vertical e que a distância do ponto P ao chão, nesse instante, é 4 dm

Treze segundos e meio após o instante inicial, a distância do ponto P ao chão é $4.2~\mathrm{dm}$

Qual é o comprimento da haste?

Apresente o resultado em decímetros, arredondado às unidades.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, duas casas decimais.

FIM

COTAÇÕES

Commo	Item												
Grupo	Cotação (em pontos)												
I	1. a 8.												
	8 × 5 pontos										40		
II	1.	2.1.	2.2.	2.3.	3.1.	3.2.	4.1.	4.2.	4.3.	5.	6.1.	6.2.	
	15	5	10	15	15	15	15	15	15	15	15	10	160
TOTAL													200

Prova 635 2.a Fase VERSÃO 1