An implementable definition of α -equivalence in λ -calculus

Functional Programming Project

Fabio Brau

25 gennaio 2021

Indice

1	Introduction	1
2	Lambda Terms2.1 Bound and Free Variables	
3	α -equivalenza	4
4	Equivalenza Semantica	5

1 Introduction

This project's aim is to provide a formal definition of α -equivalence on the λ -terms without seeing it as a transitive closure of a relation and without assuming conventions on the name of the variables.

2 Lambda Terms

From an intuitive point of view, a λ -term is a representation of a mathematical function written as a combination of variables. It is quite surprising to notice that "a systematic notation for functions is lacking in ordinary mathematics" [Curry]. In fact, the meaning of f(x), that is the usual accepted notation to indicate a function ($Euler\ Notation$), is not uniquely determined and has to be deduced from the context. Sometimes, with this notation, we refer to a function depending on the variable x; sometimes we refers to the evaluation of the function in a value (or in a point, a vector, a matrix, a set and so on) equal to x.

An unambiguous way to indicate that the function f depends on the variable x could be the notation: $x \mapsto f(x)$. And, we can use the notation f(x) when we want to evaluate f in the object x. The introduction of the symbol λ could be helpful, in a typographic sense, by shortening the notation $x \mapsto f(x)$ in $\lambda x. f(x)$.

Definition 1. Let be $V = \{v_1, v_2, \dots\}$ an infinite set of *variables*. The set of the λ -terms, indicated with Λ , is recursively defined as follow

- $V \subseteq \Lambda$, i.e., each variable is a λ -term;
- If M is a λ -term, then $\lambda x.M \in \Lambda$, for any variable x, is a λ -term called abstraction;
- If M, N are λ -terms then (MN) is a new λ -term called application.

It's compulsory to observe that the symbols $M, N, \ldots, v_0, v_1, \ldots$ have to be intended as names of λ -terms. The *assignment* of a name to a λ -term, indicated with =, only holds and has sense in the metalanguage. For example, in the formula $M = \lambda x.x$, the symbol M is just the label of the λ -term $\lambda x.x$.

By assuming that the abstraction and the application are associative on the left (as operators of λ -terms in the metalanguage) we can introduce the following notation.

Notation 1. Let x, y be two variables and M a λ -term, then the formula $\lambda xy.M$ is a shorter notation for $\lambda x.\lambda y.M$ that, by the left associative convention, represents uniquely $\lambda x.(\lambda y.M)$. Similarly, if X, Y, Z are λ -terms, then the formula XYZ uniquely represents ((XY)Z) by the left associative rule.

Definition 2. We will say that two λ -terms M, N are syntactically equivalents, and we will write $M \equiv N$, if each one can be mutually translated into the other trough the notation Notation 1.

2.1 Bound and Free Variables

Let us consider the λ -expression $M = y(\lambda x.x)$. It is evident that the two variable x, y has a different meaning in the λ -term. The variable x, that appears in M under the scope λ , is bound and is not a constant of the λ -term. In a certain sense, that it will be more clear later, the variable x can be substituted with another variable without that M loses her meaning. Differently the variable y is free and stores a different information that characterizes the term M. Observe, for example, that the term M could represent the formula $\int_0^y x \, dx$, in which the variable x is usually called "silent".

Definition 3. Given a λ -term M, the set $\mathcal{F}(M)$ of the *free variables* of M is recursively defined as follow:

- If M = x, where $x \in V$, then $\mathcal{F}(M) = \{x\}$;
- If $M = \lambda x. M_1$, then $\mathcal{F}(M) = \mathcal{F}(M_1) \setminus \{x\}$;
- If $M = M_1 M_2$, then $\mathcal{F}(M) = \mathcal{F}(M_1) \cup \mathcal{F}(M_2)$.

Analogously, the set $\mathcal{B}(M)$ of the bound variables of M is recursively defined as follow:

- If M = x, where $x \in V$, then $\mathcal{B}(M) = \emptyset$;
- If $M = \lambda x. M_1$, then $\mathcal{B}(M) = \mathcal{B}(M_1) \cup \{x\}$;
- If $M = M_1 M_2$, then $\mathcal{B}(M) = \mathcal{B}(M_1) \cup \mathcal{B}(M_2)$;

By induction on the construction of Λ , it is easy to prove that the definition above is well-placed.

Observation 1. Observe that, by the definition above, a variable x can be either a free and a bound variable of a λ -term M. For example, the λ -term $M = x(\lambda x.xx)$ is such that $\mathcal{F}(M) = \mathcal{B}(M) = \{x\}$.

2.2 Substitution without Capture

Let us consider a λ -term M and x a free variable of M. In this section we want to define the *substitution operation* in order to substitute the variable x with another λ -term N in M.

The following definition was first proposed by [Curry] in order to avoid the issue of the binding of a free variable.

Definition 4 (Substitution). Let $M, N \in \Lambda$, let us define the operation of substitution that acts by substituting a variable x in M with N, returning a new λ -term M[x := N]. The definition is recursive on the construction of Λ .

Case 1 If M is a variable:

- If
$$M = x$$
, then $M[x := N] \equiv N$;

- If
$$M = y$$
 and $y \neq x$, then $M[x := N] \equiv y$;

Case 2 If $M = M_1 M_2$ is an application:

$$-M[x := N] \equiv (M_1[x := N])(M_2[x := N]);$$

Case 3 If M is an abstraction:

- If
$$M = \lambda x. M_1$$
, then $M[x := N] \equiv M$;

- If $M = \lambda y.M_1$ and $x \neq y$, then

$$M[x := N] \equiv \lambda z. M_1[y := z][x := N]$$

where: z = y if $x \notin \mathcal{F}(M_1)$ or $y \notin \mathcal{F}(N)$; z is choose to be not in M and not in N otherwise;

The first and the second case are intuitive. Regarding the third case few more words are required. If M is an abstraction of the form $\lambda x.M_1$, substituting x with N has no meaning because x is bound. Differently, if we want to substitute x in a λ -term of the form $\lambda y.M_1$ (and $x \neq y$), then consider the following example. Let $M = \lambda y.x$ and N = y. Observe that y is free in N and is bound M, and if we change x with N without introducing a new variable z we will obtain $\lambda y.y$ that is not equivalent, in a sense that it will be more clear later, to the desired result. This phenomena is called binding of a free variable.

Lemma 1. For any $M, N \in \Lambda$, the following statements hold.

- 1. If $x \notin \mathcal{F}(M)$ and $x \notin \mathcal{B}(M)$, then $M[x := N] \equiv M$;
- 2. If $y \notin \mathcal{F}(M)$ and $y \notin \mathcal{B}(M)$, then $M \equiv M[x := y][y := x]$;
- 3. If $x \in \mathcal{F}(M)$ and $y \notin \mathcal{F}(M)$, then $x \notin \mathcal{F}(M[x := y])$ $e \ y \in \mathcal{F}(M[x := y])$;

Dimostrazione. Each statement can be proved by (strong) induction on the construction of the λ -terms. The key idea is to observe that $\Lambda = \bigcup_{n=0}^{\infty} \Lambda_n$ where: $\Lambda_0 = V$ and Λ_n contains all the λ -terms that can be generated by application or abstraction of λ -terms in Λ_k with k < n. After that, by supposing that independently 1, 2, 3 hold for Λ_k with k < n, it is easy by applying the Definition 4 to prove that the statement hold also for Λ_n . \square

3 α -equivalenza

Intuitivamente una λ -espressione è ottenuta tramite astrazione e/o applicazione di λ -espressioni. Due λ -espressioni si dicono α equivalenti se possono essere riscritte una nell'altra a meno di sostituzione di variabili legate. Questa conversione , per quanto sia facilmente comprensibile a livello intuitivo, nasconde una serie di complicazioni. La seguente definizione è una riformulazione della definizione formale fornita da [Curry et al.].

Definition 5 (α -equivalenza). Definiamo la relazione \equiv_{α} induttivamente simultanemente alla costruzione della lambda espressioni. Preso Λ_0 come

l'insieme delle λ -espressioni di rango 0 (costituite da una sola variabile, senza astrazioni o applicazioni), definiamo

$$\forall x, y \in \Lambda_0, \quad x \equiv_{\alpha} y \iff x = y.$$

Osserviamo che \equiv_{α} è di equivalenza su Λ_0 . Consideriamo ora l'insieme delle λ -espressioni di rango k>0 definito ricorsivamente come $\Lambda_k=\hat{\Lambda}_k\cup\bar{\Lambda}_k$, dove

$$\hat{\Lambda}_k = \{ \lambda x.M : M \in \Lambda_{k-1} \}
\bar{\Lambda}_k = \{ (MN), (NM) : M \in \Lambda_{k-1}, N \in \Lambda_i, i < k \}$$

Su questo insieme definiamo la relazione \equiv_{α} come

- Se $M, N \in \hat{\Lambda}_k$, con $M = \lambda x. M_1$ e $N = \lambda y. N_1$ allora
 - Se x = y, allora

$$M \equiv_{\alpha} N \iff M_1 \equiv_{\alpha} N_1$$

- Se $x \neq y$, allora

$$M \equiv_{\alpha} N \iff N_1 \equiv_{\alpha} M_1[x := y] \land (y \notin \mathcal{F}(M_1) \land x \notin \mathcal{F}(N_1))$$

• Se $M, N \in \bar{\Lambda}_k$, con $M = M_1 M_2$ e $N = N_1 N_2$, allora

$$M \equiv_{\alpha} N \iff M_1 \equiv_{\alpha} N_1 \wedge M_2 \equiv_{\alpha} N_2$$

Per induzione forte e Lemma 1 si dimostra che \equiv_{α} è di equivalenza su Λ_k per ogni k. In conclusione, essendo $\Lambda = \cup_k \Lambda_k$, le relazioni di equivalenza si estendono ad una relazione di equivalenza sulle lambda espressioni.

Lemma 2. La sostituzione è invariante per α -equivalenza. Formalmente, se $M \equiv_{\alpha} M'$ e se $N \equiv_{\alpha} N'$ allora

$$M[x := N] \equiv_{\alpha} M'[x := N']$$

4 Equivalenza Semantica

Possiamo ora definire una prima versione della equivalenza semantica come segue

Definition 6 (Teoria λ). Teoria del primo ordine sul linguaggio Λ con relazione di equivalenza semantica \doteq per cui valgono i seguenti assiomi

- (α) $M \equiv_{\alpha} N \Rightarrow M \doteq N;$
- $(\beta) (\lambda x.M) N \doteq M[x := N];$
- $(\xi) M \doteq N \Rightarrow \lambda x.M \doteq \lambda x.N;$
- $(I) \doteq \subseteq \Lambda \times \Lambda$ è di equivalenza;
- $(II) \ M \doteq N \Rightarrow ZM \doteq ZN \land MZ \doteq NZ$: