Discrete Mathematics Lecture Note

TaeYoung Rhee

October 2022

1 Introduction

Notation. Define
$$e^x = \sum_{n \geq 0} \frac{x^n}{n!}$$
 e.g.f for $(1,1,1,\cdots)$ Define $e^{-x} = \sum_{n \geq 0} (-1)^n \frac{x^n}{n!}$ e.g.f for $(1,1,1,\cdots)$ Show that $e^x e^{-x} = \left(\sum_{n \geq 0} \frac{x^n}{n!}\right) \left(\sum_{n \geq 0} (-1)^n \frac{x^n}{n!}\right) = \sum_{n \geq 0} \left(\sum_{i=0}^n (-1)^i \binom{n}{i}\right) \frac{x^n}{n!} = 1$. Define $\log 1 + x = \sum_{n \geq 1} (-1)^{n-1} \frac{x^n}{n}$

Example 1. Generating function for $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ with $H_0 = 0$

$$\sum_{n\geq 0} H_n x^n = \left(\sum_{n\geq 1} \frac{1}{n} x^n\right) \left(\sum_{n\geq 0} x^n\right)$$
$$= -\log(1-x) \cdot (1-x)^{-1}$$
$$= \frac{1}{1-x} \log \frac{1}{1-x}$$

1.1 Infinite Sums and Products in $\mathbb{C}[[x]]$

Example 2. p(n) = # of partitions of n

$$\sum_{n\geq 0} p(n)x^n = \prod_{i\geq 1} \frac{1}{1-x^i}$$

$$= \frac{1}{1-x} \cdot \frac{1}{1-x^2} \cdots$$

$$= (1+x+x^2+\cdots)(1+x^2+x^4+\cdots)\cdots$$

Note that the coefficient of x^n in $\eth U m \cong P$ requires finite number of factors.

coefficient of
$$x^n$$

= #of solutions (a_1, a_2, \dots, a_n) to $n_1 + 2n_2 + \dots + n_n$
= $p(n)$

Definition 1. Let $A_0, A_1, \dots \in \mathbb{C}[[x]]$

 $A \in \mathbb{C}[[x]], \deg(A) = \text{first power with nonzero coefficient.}$

The sum $\sum_{i>0} A_i$ exists iff $\deg A_i \to \infty$.

$$A_1 = (a_{10}, a_{11}, a_{12}, a_{13}, \cdots)$$

$$A_2 = (0, a_{21}, a_{22}, a_{23}, \cdots)$$

$$A_3 = (9, 0, a_{32}, a_{33}, \cdots)$$

We can make each row sum is finite.

Example 3. e^{1+x} is not well-defined.

$$e^{1+x} = 1 + (1+x) + \frac{(1+x)^2}{2!} + \frac{(1+x)^3}{3!} + \cdots$$

$$e^{e^x - 1} = \sum_{n \ge 0} B(n) \frac{x^n}{n!}$$

$$= 1 + \left(\sum_{n \ge 1} \frac{x^n}{n!}\right) + \frac{\left(\sum_{n \ge 1} \frac{x^n}{n!}\right)^2}{2!} + \cdots$$

Assume the constant term of each $A_i=1$. $\prod_{i\geq 1}A_i$ exists iff $\deg(A_i-1)\to\infty$

Example 4.
$$(1+x)(1+x^2)(1+x^3)\cdots$$
 is well defined. $=\sum_{n\geq 0} p_d(n)x^n$

Propositions

(1)
$$\prod_{i\geq 0} A_i$$
 and $\prod_{i\geq 0} B_i$ are well-defined $\Rightarrow \prod_{i\geq 0} A_i B_i = \left(\prod_{i\geq 0} A_i\right) \left(\prod_{i\geq 0} B_i\right)$

Proof. $\deg(AB-1) \ge \min\{\deg(A-1), \deg(B-1)\}$ The factors that contribute to x^n are the same on both sides

(2)
$$\left(\prod_{i\geq 0} A_i\right)^{-1} = \prod_{i\geq 0} A_i^{-1}$$

Proof. dhotldqkfs

$$\deg(A_i - 1) = \deg(A_i^{-1} - 1)$$

example

$$A = \prod_{i \ge 0} (i - x^i) \Rightarrow A^{-1} = \prod_{i \ge 0} \frac{1}{1 - x^i}$$

(3) $\frac{\prod_{i\geq 0} A_i}{\prod_{i\geq 0} B_i} = \prod_{i\geq 0} \frac{A_i}{B_i}$

Example 5. $\frac{\prod_{i\geq 1}(1-x^{2i})}{\prod_{i\geq 1}(1-z^i)} = \prod_{i\geq 1} = \prod_{i\geq 1}(1+z^i) = \sum_{n\geq 0} p_d(n)x^n = \prod_{i\geq 1} \frac{1}{1-z^{2i-1}} = \sum_{n\geq 0} p_0(n)x^n$

 $p_0(n)$ is number of partitions of n where parts are odd.

Compositions in $\mathbb{C}[[x]]$ 1.2

 $A(x), B(x) \in \mathbb{C}[[x]]$

A(B(x)) is well-defined if either (1) A(x) is a polynomial or (2) the constant term in B(x) = 0

Example 6.

$$A(x) = e^x$$
$$B(x) = e^x - 1$$

 $A(B(x)) = e^{e^x - 1}.$

When C(x) = x + 1, $A(C(x)) = e^{x+1}$ is not well defined.

1.3 **General Powers**

Propositions. Given any $\lambda \in \mathbb{C}$, define $\binom{\lambda}{n} = \frac{\lambda(\lambda-1)\cdots(\lambda-n+1)}{n!}$ with $\binom{\lambda}{0} = 1$ Define $(1+x)^{\lambda} = \sum_{n>0} {\lambda \choose x^n} \in \mathbb{C}[[x]]$

If λ is a positive integer, this is just the binomial theorem.

If
$$A(x) \in \mathbb{C}[[x]]$$
 with $A(0) = 0$, then $(1 + A(x))^{\lambda} = \sum_{n \geq 0} {\lambda \choose n} A(x)$.

Example 7.

$$(1-x)^{-k} \stackrel{?}{=} \frac{1}{(1-x)^k}$$

Note that

$${\binom{-k}{n}} = \frac{-k(-k-1)(-k-2)\cdots(-k-n+1)}{n!}$$

$$= \frac{(-1)^n(n+k-1)_n}{n!}$$

$$= (-1)^n {\binom{n+k-1}{n}} = (-1)^n {\binom{n+k-1}{k-1}}$$

$$(1-x)^{-k} = \sum_{n\geq 0} {\binom{-k}{n}} (-1)^n x^n$$
$$= \sum_{n>0} {\binom{n+k-1}{k-1}} x^n = \frac{1}{(1-x)^k}$$

Proposition. $(1+x)^{\lambda}(1+x)^{\mu} = (1+x)^{\lambda+\mu}$

Example 8.

$$(1+x)^{\frac{1}{2}}(1+x)^{\frac{1}{2}} = 1+x$$

Proof. Need to show

$$\sum_{i=0}^{n} {\lambda \choose i} {\mu \choose n-i} = {\lambda + \mu \choose \mu} \text{ for all } n \ge 0$$

We can prove it in algebra. Otherwise, we can show it by proving coefficient of x^n for LHS = coefficient of x^n for RHS.

Check that

$$\binom{x+y}{n} = \sum_{i=0}^{n} \binom{x}{i} \binom{y}{n-i}$$
 for all positive integers x, y

Let LHS = f(x, y) and RHS = g(x, y). f(x, y) = g(x, y) for infinitely many x, yf = g as polynomials.

1.4 Catalan Numbers

$$c_0 = 0, c_1 = 1, c_2 = 1, c_3 = 2, c_4 = 5$$

 $c_5 = c_1c_4 + c_2c_3 + c_3c_3 + c_4c_1$

$$c_n = \sum_{i=1}^{n-1} c_i c_{n-i}$$

Let $C(x) = \sum_{n>0} c_n x^n$.

$$\begin{split} C(x) &= C(x)^2 + x \\ \Rightarrow C(x)^2 - C(x) &= -x \\ \Rightarrow C(x)^2 - C(x) + \frac{1}{4} = \frac{1}{4} - x \\ \Rightarrow \left(C(x) - \frac{1}{2}\right)^2 = \frac{1}{4} - x \\ \Rightarrow C(x) - \frac{1}{2} = \pm \frac{1}{2}(1 - 4x)^{\frac{1}{2}} \end{split}$$

Since $C(x) = c_0 = 0$, we get

$$C(x) - \frac{1}{2} = -\frac{1}{2}(1 - 4x)^{\frac{1}{2}}$$
$$\therefore C(x) = \frac{1}{2} - \frac{1}{2}(1 - 4x)^{\frac{1}{2}}$$

$$(1 - 4x)^{\frac{1}{2}} = 1 + \sum_{n \ge 1} {1 \choose n} (-1)^n 4^n x^n$$
$$= 1 - 2 \sum_{n \ge 1} \frac{1}{n} {2n - 2 \choose n - 1} x^n$$

Check that

$$\binom{1\frac{1}{2}}{n} = \frac{(-1)^{n-1}}{2^{2n-1}} \frac{1}{n} \binom{2n-2}{n-1}$$

Thus

$$c_n = \frac{1}{n} \binom{2n-2}{n-1}$$

1.5 Other interpretations of Catalan Number

 c_n = number of ways to parenthesize a product $x_1x_2\cdots x_n$

Example 9. For $x_1x_2x_3x_4$, there are 5 ways.

Key observation is the outermost parenthesis multiples two terms. The first is a product involving $x_1, x_2, \dots, x_r \to a_r$ ways to do this. The second is a product involving $x_r + 1, x_r + 2, \dots, x_n \to a_{n-r}$ ways.

number of binary trees with n leaves and 1 root. A tree is binary if every vertex has degree 1 or 3.

A bijections among these sets (triangulations of n+1-gon, parenthesized prod-

Figure 1: binary tree

ucts of n variables, binary trees with n leaves)

Example 10. Figure 2 is the bijection between the sets.

Product of exponential generating functions 1.6

$$A(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}$$

$$A(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}$$
$$B(x) = \sum_{n \ge 0} b_n \frac{x^n}{n!}$$

Figure 2: bijections

$$A(x)B(x) = \sum_{n>0} c_n \frac{x^n}{n!}$$
 where $c_n = \sum_{i=0}^n \binom{n}{i} a_i b_{n-i}$

It means number of ways to partition on n-set into two ordered blocks and create structure "A" in the first block and structure "B" in the second block.

Remark If "A" = "B", then $\frac{A(x)^2}{2!}$ = e.g.f for the number of ways to create two unordered blocks in an n-set and create structure "A" in each block.

Remark If both blocks of an *n*-set has to be non-empty then let $a_0 = b_0 = 0$

Example 11. c_n = number of ways to color n labeled balls with red and blue so that an even number of balls are colored red and an odd number of balls are colored blue.

$$c_n = 0$$
 if n is even. $c_n = 2^{n-1}$ if n is odd.

$$R(x) = \text{e.g.f for } (1, 0, 1, 0, \cdots) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} = \frac{e^x + e^{-x}}{2}$$

$$B(x) = \text{e.g.f for } (0, 1, 0, 1, \cdots) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots = \frac{e^x - e^{-x}}{2}$$

$$B(x) = \text{e.g.f for } (0, 1, 0, 1, \dots) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \frac{e^x - e^{-x}}{2}$$

$$\sum_{n\geq 0} c_n \frac{x^n}{n!} = C(x) = R(x) \cdot B(x)$$

$$= \frac{e^{2x} - e^{-2x}}{4}$$

$$= \frac{1}{4} \left[\left(1 + 2x + \frac{(2x)^2}{2!} + \cdots \right) - \left(1 - 2x + \frac{(2x)^2}{2!} - \cdots \right) \right]$$

$$= \sum_{n\geq 0} 2^{n-1} \frac{x^n}{n!}$$

Example 12. Dearangement (revisited)

$$P(x) = \sum_{n>0} n! \frac{x^n}{n!} = \sum_{n>0} x^n = \frac{1}{1-x} = \text{ e.g.f for } \{|S_n| = n!\}$$

$$I(X) = \sum_{n>0} 1 \frac{x^n}{n!} = e^x$$

= e.g.f for the number of identity permutations on an n-set

= e.g.f for the sequence $(1, 1, 1, \cdots)$

$$D(x) = \sum_{n>0} d_n \frac{x^n}{n!}$$
 where $d_n =$ number of dearangements on an *n*-set

P(x) = I(x)D(x) because a permutations on an *n*-set is obtained by

- 1. partitioning the n-set into two ordered blocks.
- 2. create the identity permutations on the first block and create a dearangement on the second block.

$$\therefore D(x) = P(x)I(x)^{-1} = \frac{e^{-x}}{1-x}$$