Feuille d'exercice n° 17 : **Équations différentielles**

I. Premier ordre

Exercice 1 Trouver $f: \mathbb{R} \to \mathbb{R}$ dérivable telle que

$$\begin{cases} \forall x \in \mathbb{R}, \ f'(x) = f(x) + \int_0^1 f(t)dt \\ f(0) = 1 \end{cases}$$

Exercice 2 (\bigcirc) Résoudre 2x(1-x)y'+(1-x)y=1. On fera attention à bien préciser les intervalles de résolution. Existe-t-il des solutions définies sur \mathbb{R} ? Lesquelles?

Exercice 3 (**N**e) Résoudre l'équation $(E): ty' - y = t^2 \text{ sur } \mathbb{R}$.

Exercice 4 (%) Résoudre les équations différentielles suivantes :

- 1) $xy' + y = \frac{1}{x^2y^2}$ (on pourra poser u(x) = xy(x));
- 2) $yy' + y^2 = \frac{e^{-2x}}{2}$ (on pourra poser $u(x) = y^2(x)$).

II. Second ordre

Exercice 5 (\circlearrowleft) Trouver les applications de $f : \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^2 telles que $\forall x \in \mathbb{R}$, $f''(x) + f(-x) = xe^x$.

Exercice 6 (\bigcirc) Résoudre sur $]0, +\infty[$ l'équation $x^2y'' + xy' + y = 0$ en effectuant le changement de variable $t = \ln x$.

Exercice 7

- 1) Calculer la dérivée de la fonction $t \mapsto \frac{1}{2} \arctan t + \frac{1}{2} \frac{t}{1+t^2}$.
- 2) Résoudre sur \mathbb{R} l'équation différentielle $(t^2 + 1)y'' 2y = 0$ en commençant par rechercher une solution polynomiale de degré 2.
- 3) Résoudre sur \mathbb{R} l'équation différentielle $(t^2+1)y''-2y=t$.

Exercice 8 (\bigcirc) Résoudre l'équation $t^2x'' + 2tx' - 2x = t\cos t - \sin t$ (*indication*: pour la résolution de l'équation homogène, chercher x sous la forme $x = t^{\alpha}$).

Exercice 9 On considère sur \mathbb{R}_+^* l'équation différentielle :

$$x^2y'' + 3xy' + y = 1 + x^2. (\mathscr{E})$$

On va résoudre cette équation différentielle par plusieurs méthodes différentes. Les questions sont indépendantes.

- 1) On fait le changement de fonction inconnue u(x) = xy(x). Former l'équation différentielle (E_1) que satisfait la fonction u(x). Résoudre (E_1) et en déduire l'ensemble des solutions de (\mathscr{E}) .
- 2) On pose $v(x) = x^2y'(x) + xy(x)$. Déterminer v. En déduire par une autre méthode l'ensemble des solutions de (\mathscr{E}) .

Exercice 10 (Le but de cet exercice est de résoudre l'équation différentielle :

$$(1+x)y'' - 2y' + (1-x)y = xe^x$$
 (1)

Posons $y = ze^x$.

- 1) Déterminer l'équation différentielle vérifiée par z.
- 2) La résoudre.
- 3) En déduire les solutions de l'équation (1).

Exercice 11 (A) Soit l'équation différentielle (E) : $(x^2+1)y''-2y=0$.

- 1) Question préliminaire : On considère la fonction $\varphi: \mathbb{R} \to \mathbb{R}$, $x \mapsto \frac{1}{2} \left(\operatorname{Arctan} x + \frac{x}{1+x^2} \right)$. Calculer φ' .
- 2) Déterminer une solution polynomiale de degré 2 de (\mathbf{E}) , que l'on notera y_0 .
- 3) Montrer que toute fonction y de classe \mathscr{C}^2 sur \mathbb{R} peut s'écrire sous la forme $y = y_0 z$, où z est une fonction de classe \mathscr{C}^2 sur \mathbb{R} .
- 4) En posant $y = y_0 z$, montrer que y est solution de (E) si et seulement si la fonction Z = z' est solution d'une équation différentielle (E') que l'on écrira.
- 5) En déduire toutes les solutions de l'équation (E) sur \mathbb{R} .

Exercice 12 Soit $p: \mathbb{R} \to \mathbb{R}^+$ une fonction continue non nulle. Montrer que toute solution sur \mathbb{R} de l'équation différentielle y'' + p(x)y = 0 s'annule.

Exercice 13 (**A**) Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 telle que $f + f'' \ge 0$. Montrer que pour tout $x \in \mathbb{R}$, $f(x + \pi) + f(x) \ge 0$.

Exercice 14 (On étudie l'équation différentielle

$$(E): xy'' + y' + y = 0$$

- 1) Déterminer les solutions de (E) développables en série entière. Soit f une solution de l'équation (E).
- 2) Montrer que $xf'^2(x) + f^2(x)$ possède une limite quand x tend vers $+\infty$.
- 3) En déduire que la fonction f est bornée au voisinage de $+\infty$ et que sa dérivée y est de limite nulle.
- 4) Justifier la convergence des intégrales suivantes :

$$\int_{1}^{+\infty} -f'^{2}(x) dx, \quad \int_{1}^{+\infty} \frac{f'(x)f(x)}{x} dx \quad \text{et} \quad \int_{1}^{+\infty} \frac{f^{2}(x)}{x} dx$$

5) En déduire la limite de f en $+\infty$.

III. Systèmes

Exercice 15 Résoudre le système différentiel suivant : $\begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$

Exercice 16 Résoudre le système différentiel linéaire $\begin{cases} x' = x - z \\ y' = x + y + z \\ z' = -x - y + z \end{cases}$

IV. Développements en série entière

Exercice 17 () Résoudre l'équation différentielle $(E) : 4tx'' - 4x' + t^3x = 0.$

Exercice 18 (\circlearrowleft) Résoudre l'équation différentielle $xy'' + 2y' + \omega^2 xy = 0$ avec $\omega \neq 0$.

Exercice 19 (A) Résoudre l'équation différentielle (E) : 4xy'' + 2y' - y = 0.

