Classificadores

Natanael Nunes de Moura Junior UFRJ

Sumário

• Definição de Classificador

Redes Neurais como Classificadores

Análises

Classificadores

 "A classificação pode ser definida como a reunião de objetos ou seres com características semelhantes e a separação das não afins."

Classificadores

- Basicamente, temos que "marcar" as entradas como sendo de uma classe ou de outra classe.
- Um dos tipos de classificador que temos hoje, é o classificador neural.
- O classificador neural nada mais é que uma rede neural treinada para a classificação

 Uma estrutura básica de rede neural pode ser vista abaixo:

$$u_1 = 1$$
 $f_1 = \tanh$ $w_1 = 1$
 $u_2 = 1$ $f_2 = \tanh$ $w_2 = 1$ $g = \tanh$

$$u_1 = -1$$
 $f_1 = \tanh$ $w_1 = 1$
 $u_2 = -1$ $f_2 = \tanh$ $w_2 = 1$ $g = \tanh$

$$u_1 = 1$$
 $f_1 = \tanh$ $w_1 = 1$
 $u_2 = -1$ $f_2 = \tanh$ $w_2 = 1$ $g = \tanh$

$$u_1 = -1$$
 $f_1 = \tanh$ $w_1 = 1$
 $u_2 = 1$ $f_2 = \tanh$ $w_2 = 1$ $g = \tanh$

• Então temos os resultados como sendo:

Valores				
u_1	u ₂	01		
0	0	0		
0	1	0.9093		
1	1	0.9568		
0	-1	-0.9093		
-1	-1	-0.9568		
1	-1	0		

Cor	Classificação	01
	Soma das Entradas igual a zero	o ₁ = 0
	Soma das Entradas maior que zero	o ₁ > 0
	Soma das Entradas menor a zero	o ₁ < 0

 O treinamento é feito com alvos de classificação.

 Os alvos de classificação dependem diretamente da quantidade de classes a serem classificadas

 O treinamento é feito com alvos de classificação.

 Os alvos de classificação dependem diretamente da quantidade de classes a serem classificadas

 Para o caso de duas classes, podemos definir os alvos como sendo "-1" e "1", para cada classes e assim obteremos (no melhor caso) este resultado

 Mas para mais de duas classes temos um problema

 A técnica dos alvos máximamente esparsos pode ser utilizada e com isso minimizar as regiões de confusão

Quantidade de classes	Classes	01	02	03	04
3	C ₁	1	0	0	-
	C ₂	0	1	0	-
	c_{3}	0	0	1	-
4	c_{1}	1	0	0	0
	C ₂	0	1	0	0
	c_{3}	0	0	1	0
	C ₄	0	0	0	1

Análises

 Para um classificador, temos quatro diferentes análises:

- Histograma das Saídas
- Curva ROC
- Cálculo do SP
- Matriz de Confusão

Histograma de Saída

 Representa a distribuição das saídas propagadas pela rede neural.

 Geralmente, tem uma cor para classe para facilitar a visualização.

 Mostra as regiões de confusão e idealmente deve mostrar o eixo de separação.

Histograma de Saída

Características de um Classificador

Características de um Classificador

• Erro de Classificação:

$$e_{class} = \frac{FP + FN}{VN + FN + VP + FP}$$

 Representa o erro a ser minimizado quando treinamos uma rede neural para classificação

Características de um Classificador

Características Usuais:

Taxa de Acerto	$TA = \frac{VP + VN}{VN + FN + VP + FP} = 1 - e_{class}$
Sensibilidade	$S = \frac{VP}{VP + FN}$
Especificidade	$E = \frac{VN}{VN + FP}$
Valor Preditivo Positivo	$VPP = \frac{VP}{VP + FP}$
Valor Preditivo Negativo	$VPN = \frac{VN}{VN + FN}$
Falso Alarme	$TA = \frac{FP}{VN + FP} = 1 - E$

Curva ROC

• Representa a qualidade de um classificador.

Curva ROC

• Representa a qualidade de um classificador.

Curva ROC

• Representa a qualidade de um classificador.

Cálculo do SP

 O produto SP é um ponto onde temos o equilibrio entre probabilidade de Acerto (S) e taxa de Falso Alarme (FA).

$$SP = \sqrt{\left(\frac{S+E}{2}\right)\sqrt{S\cdot E}} = \sqrt{\left(\frac{S+(1-FA)}{2}\right)\sqrt{S\cdot (1-FA)}}$$

Matriz de Confusão

 Mostra quantitativamente a resultado da classificação.

	C1 (Alvo)	C2 (Alvo)
C1 (Estimado)	Valor %	Valor %
C2 (Estimado)	Valor %	Valor %

Conclusões

- Classificadores compõem uma área importante em Inteligência computacional.
- Nesta apresentação, temos o inicio da teoria de classificação, focada em redes neurais supervisionadas.
- O treinamento visa minimizar o erro de classificação.
- E as principais análises foram apresentadas, embora para casos específicos, outros tipos de análises devam ser realizados.