

Learning for Self-Driving Cars and Intelligent Systems

Qadeer Khan, Mariia Gladkova

https://vision.in.tum.de/teaching/ws2021/intellisys_ws2021

Reminder for Task 2

• Submission deadline for Task 2 is 08 November, 2021 (end of day i.e. 23:59)

Contents of today's lecture

- Two-View Geometry
 - Homography from week 1 addresses a specialized two-view case of points on a plane
- N-View Methods
 - Bundle Adjustment

Epipolar Geometry

^[1] Zisserman, Richard Hartley Andrew. "Multiple view geometry in computer vision." (2004).

Epipolar Geometry

Epipolar constraint (Fundamental matrix **F**)

$$\boldsymbol{x}^T \boldsymbol{F} \boldsymbol{x'} = 0$$
 epipolar line I

- Correspondences ${\boldsymbol x},{\boldsymbol x'}\in\mathbb{R}^3$ Properties of ${\boldsymbol F}\in\mathbb{R}^{3 imes 3}$
- - 7 DoF
 - rank 2

^[1] Zisserman, Richard Hartley Andrew. "Multiple view geometry in computer vision." (2004).

From Correspondences to Relative Pose

$$\boldsymbol{F} = \boldsymbol{K}^{-T} \hat{\boldsymbol{T}} \boldsymbol{R} \boldsymbol{K}'^{-1}$$

Essential matrix $\ensuremath{m{E}} \in \mathbb{R}^{3 imes 3}$

$$oldsymbol{\hat{T}} = egin{bmatrix} 0 & -t_z & t_y \ t_z & 0 & -t_x \ -t_y & t_x & 0 \end{bmatrix}$$

R, t (up-to a scale)

From Relative Pose to 3D Structure Estimation

- Having calibration matrix K and relative motion transformation [R | t] one can compute 3D coordinates of a point X corresponding to a pair x <-> x' (aka triangulation)
 - Slide 13: Additional material: Linear Triangulation Method

X x/

Zisserman, Richard Hartley Andrew. "Multiple view geometry in computer vision." (2004).

From Correspondences to Relative Pose

- So far: 2D 2D correspondences are used to recover camera motion
- Alternatively, one can utilize
 - 3D 2D correspondences (e.g. Perspective-n-Point (PnP) algorithm)
 - 3D 3D correspondences (e.g. Iterative Closest Point (ICP) algorithm)

GN-Net Benchmark

- Available on remote machines.
 - /storage/group/intellisys/datasets/carla/GNNET_BENCHMARK_PUBLIC/
- Navigator view

CameraSe

mSea5

mSea3

mSeq4

CoarseDep

driving

data.csv

times.txt

o /storage/group/intellisys/datasets/carla/GNNET_BENCHMARK_PUBLIC/carla_training_validation/all_weathers/episode_000/

GN-Net Benchmark

- Relocalization tracking benchmark accompanied the GN-Net paper
- CARLA-generated dataset
- Data is divided into training, validation (carla_training_validation subfolder) and testing (carla_testset subfolder) splits
- Multi-weather and one-weather conditions
- Each episode contains information from 6 cameras (labeled 0 to 5) and it is 500-frames long
- Training and validation splits:
 - Each camera has RGB, depth and semantic segmentation maps
 - Camera intrinsics is in camera_intrinsic.json
 - o Camera extrinsics is in **transforms.json**

Data visualization

https://github.com/carla-simulator/driving-benchmarks/blob/master/version084/carla/image_converter.py

3D Cordinates 2D image point cloud

 Rotation matrices are elements of a Lie group SO(3), transformation matrices are elements of a Lie group SE(3) -> cannot simply use addition and subtraction as operations

$$\Delta R = R_{\rm gt}^T R_{\rm e}$$
 $\Delta t = R_{\rm gt}^T (t_{\rm e} - t_{\rm gt})$

Or simply with transformation matrices:

$$\Delta T = T_{\text{gt}}^{-1} T_{\text{e}} = \begin{bmatrix} R_{\text{gt}}^T & -R_{\text{gt}}^T t_{\text{gt}} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} R_{\text{e}} & t_{\text{e}} \\ \mathbf{0} & 1 \end{bmatrix}$$

 Rotation matrices are elements of a Lie group SO(3), transformation matrices are elements of a Lie group SE(3) -> cannot simply use addition and subtraction as operations

$$\Delta R = R_{\rm gt}^T R_{\rm e}$$
 $\Delta t = R_{\rm gt}^T (t_{\rm e} - t_{\rm gt})$

 Rotation error: transform the rotation error to angle-axis representation and use absolute angle value

$$|\theta| = \arccos\left(\frac{\Delta R.\text{trace} - 1}{2}\right)$$

ullet Translational error: consider the Euclidean norm, i.e. $||\Delta t||_2$

- Trajectory error
 - Aggregated metric for **n** frames
 - Commonly only translational part of an error is considered, since rotational error is correlated [1]
 - Trajectories need to be aligned before comparison since their origin can differ

^[2] Choice of the metrics: ATE and number of frames used for initialization are based on the evaluation done by Xingwei Qu in his master thesis *Initialization Methods for Visual and Visual-inertial SLAM*

- Absolute Trajectory Error (ATE)
- Relative Pose Error (RPE)

$$ATE_{1...n} = \left(rac{1}{n}\sum_{i=1}^n||transl(F_i)||_2^2
ight)^{rac{1}{2}}$$
 where $F_i = Q_i^{-1}SP_i$ Alignm

^[1] Sturm, Jürgen, et al. "A benchmark for the evaluation of RGB-D SLAM systems." https://vision.in.tum.de/ media/spezial/bib/sturm12iros.pdf

^[2] Choice of the metrics: ATE and number of frames used for initialization are based on the evaluation done by Xingwei Qu in his master thesis Initialization Methods for Visual and Visual-inertial SLAM

Quantitative Evaluation of 3D Reconstruction Accuracy

Root Mean Squared Error (RMSE)

$$\sqrt{\frac{1}{|\boldsymbol{X}|} \sum_{\boldsymbol{X}} (z - z_{\text{gt}})^2}$$

RMSE with re-scaling (when reconstruction is up-to a projective scale)

$$\sqrt{\frac{1}{|\boldsymbol{X}|} \sum_{\boldsymbol{X}} (z * \text{scale} - z_{\text{gt}})^2} \quad \text{scale} \approx \frac{median(\boldsymbol{z}_{gt})}{median(\boldsymbol{z})}$$

Exercise 3.1 Essential Matrix and Triangulation

- 1. Utilize algorithms from exercise 1 to extract features and find matches between two consecutive frames of a sequence of your choice
 - a. handcrafted or SuperPoint features
 - b. CARLA (e.g. GN-Net benchmark)
- 2. Estimate essential matrix and decompose it into a rotation matrix and translation vector
 - a. Make use of functions in the OpenCV library
- 3. Estimate 3D coordinates of a point per feature match
- 4. Visualize estimated pointcloud. You can also utilize ground truth depth maps and visualize ground truth 3D reconstruction. What do you observe? Is such difference expected? Why or why not?
- 5. **Bonus:** compute fundamental matrix **F** using calibration matrix **K** and the equation on slide 6, verify that epipolar constraint (equation on slide 5) is fulfilled using the computed feature correspondences x and x'

Exercise 3.1 Submission guidelines

- 1. Your program **ex3_1.py** should accept two images as input and output relative rotational and translational errors
 - a. We will test it with images from GN-Net benchmark and supplied ground truth extrinsics
- 2. Make sure to provide qualitative results (images, pointcloud visualizations) to support your solution!

Bundle Adjustment

- Generalization from 2 to N views and accountancy to measurement noise
- Nonlinear least-squares problem conventionally solved using Gauss-Newton or Levenberg-Marquardt algorithms
- Final step in reconstruction pipeline (e.g. SLAM or VO) x₂

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} (u_{ij} - \pi(C_j, X_i))^2$$

Bundle Adjustment

- Requires good initialization
- Large-scale BA is challenging and memory demanding
 - Sliding-window BA for SLAM real-time applications
 - Distributed BA
 - Various formulations (QR decomposition, preconditioned conjugate-gradients and etc.)
- Related works
 - Demmel, Nikolaus, et al. "Square Root Bundle Adjustment for Large-Scale Reconstruction."
 - https://vision.in.tum.de/_media/spezial/bib/demmel2021rootba.pdf
 - Weber, Simon, et al. "Multidirectional Conjugate Gradients for Scalable Bundle Adjustment."
 - https://vision.in.tum.de/_media/spezial/bib/weber2021mcg.pdf
 - Demmel, Nikolaus, et al. "Distributed Photometric Bundle Adjustment."
 - https://vision.in.tum.de/_media/spezial/bib/demmel2020distributed_pdf

Deep Bundle Adjustment and SLAM

- Steps towards a differentiable pipeline
- Few related works:
 - Tang, Chengzhou et al. "BA-Net: Dense Bundle Adjustment Network." https://arxiv.org/pdf/1806.04807.pdf
 - Jatavallabhula, Krishna Murthy, et al. "gradSLAM: Automagically differentiable SLAM."
 https://arxiv.org/pdf/1910.10672.pdf
 - Wei, Xingkui, et al. "DeepSFM: Structure From Motion via Deep Bundle Adjustment."
 https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123460222.pdf

Resources and Libraries for DL + 3D

- PyTorch3D https://github.com/facebookresearch/pytorch3d
- LieTorch https://github.com/princeton-vl/lietorch
- Kornia https://github.com/kornia/kornia
- Open-source code of related research projects
 - https://github.com/gradslam/gradslam
 - https://github.com/weixk2015/DeepSFM

Exercise 3.2 Differential Small-Scale BA

- 1. Perform Bundle Adjustment using PyTorch3D or LieTorch, i.e. iteratively estimate optimal camera poses and 3D points given a set of feature correspondences.
- 2. Use data from GN-Net benchmark dataset
 - a. Suggestion: select 5 7 consecutive frames
- 3. Run exercise 3.1. on the chosen input image sequence for BA initialization.
 - a. Suggestion: choose the first frame as a reference (i.e. fix its pose as identity) and estimate relative poses and pointcloud wrt to the first frame (i.e. compute **E** for camera pairs (1,2), (1,3), (1,4) and etc.).
- 4. Visualize results in your report.

Hints:

- 1. If your choose PyTorch3D, provided tutorials might be useful as a starting point a. E.g. https://pytorch3d.org/tutorials/bundle_adjustment
- 2. You can utilize losses, which are robust to outliers, e.g. Huber loss.
- Keep in mind the coordinate systems and choose a reference frame for cameras and points.

Exercise 3.2 Submission guidelines

- 1. Submission deadline for Task 3 (both parts 3.1 and 3.2) is 15 November, 2021 (end of the day, i.e. 23:59)
- 2. Your program **ex3_2.py** would be tested as in the example

> python ex3_2.py --seq PATH_TO_GNNET_BENCHMARK/episode_0000/ --start 254 --end 261 --cam 0

The program should output to stdout **relative pose error** and **RMSE** for 3D reconstruction of sparse points.

3. Make sure to provide qualitative results (images, pointcloud visualizations) in your report to support your solution!

Thank you for your attentions? Any questions?

Additional material: 8-Point Algorithm for Essential Matrix

```
1 function E = E_from_point_pairs(xs, xss)
  % xs, xss: Nx3 homologous point coordinates, N > 7
             3x3 essential matrix
  % coefficient matrix
  for n = 1 : size(xs, 1)
                                                  build matrix A
      A(n, :) = kron(xss(n, :), xs(n, :));
  end
  % singular value decomposition
                                                      solve Ae=0
   [U, D, V] = svd(A);
12
  % approximate E, possibly regular
                                                 build matrix Ea
  Ea = reshape(V(:, 9), 3, 3);
15
   % svd decomposition of E
                                            compute SVD of Ea
   [Ua, Da, Va] = svd(Ea);
                                      build matrix E from Ea
  % algebraically best E, singular, sa
                                      by imposing constraints
  E = Ua * diag([1, 1, 0]) * Va';
```

- Rank 2
- Two identical eigenvalues
- Defined up to a scale

Additional material: Linear Triangulation Method

- ullet Minimization of the algebraic error $m{x}_i imes m{P} m{X}_i = m{0}$ $m{x'}_i imes m{P'} m{X}_i = m{0}$
- Reformulating the objective to a familiar problem $AX_i=0$ for unknown 3D point coordinates Xi, where (u_i,v_i) are 2D coordinates in the first image, (u_i,v_i) 2D coordinates in the second view, **P** and **P'** are projection matrices of first and second image respectively

$$egin{align} oldsymbol{P} & oldsymbol{p}^{1T} \ oldsymbol{p}^{2T} \ oldsymbol{p}^{3T} \ oldsymbol{p}^{2T} \ oldsymbol{p}^{3T} - oldsymbol{p}^{2T} \ u_i oldsymbol{p}^{3T} - oldsymbol{p}^{1T} \ v_i' oldsymbol{p}^{\prime 3T} - oldsymbol{p}^{\prime 2T} \ u_i' oldsymbol{p}^{\prime 3T} - oldsymbol{p}^{\prime 2T} \ u_i' oldsymbol{p}^{\prime 3T} - oldsymbol{p}^{\prime 1T} \ u_i' o$$