

REMARKS

Amendments

Claims 1-7, 12-16, 23-31 and 33-48 have been canceled, claims 8, 10, 11, 17, 20-22 and 32 have been amended, and claims 49-65 have been added. Upon entry of the amendment, claims 8-11, 17-22, 32 and 49-65 will be pending. Support for the added claims can be found in the specification, for example, on page 7, lines 30-33; page 25, lines 18-32, Example 4, the Figures, and in the claims as originally filed. The specification has been amended to update priority application information.

Rejections

Rejections under 35 U.S.C. § 101

The Examiner has rejected claims 42, 45 and 47 on the ground that the claimed invention is allegedly not supported by either a specific or substantial asserted utility or a well-established utility.

With regard to the rejection, Applicant respectfully traverses. Claims 42, 45 and 47 have been canceled. Amended independent claim 8 is drawn to a transgenic mouse whose genome comprises a null endogenous cGMP phosphodiesterase alpha subunit allele. As a preliminary matter, Applicant notes that the Examiner had not rejected for lack of utility, claims to a transgenic mouse having a disrupted cGMP phosphodiesterase alpha subunit gene where the mouse exhibited visual abnormalities (previous claim 8). Applicant submits that these phenotypes are inherent to the claimed mouse. An invention need only a utility to satisfy section 101.

I. The Utility Requirement

According to 35 U.S.C. § 101, “[w]hoever invents . . . any new and useful . . . composition of matter may obtain a patent therefore. . . .”

Under the Patent Office’s Utility Requirement Guidelines:

If at any time during the examination, it becomes readily apparent that the claimed invention has a well-established utility, do not impose a rejection based on lack of utility. An invention has a well-established utility if (i) a person of ordinary skill in the art would immediately appreciate why the invention is useful based on the characteristics of the invention (e.g., properties or applications of a product or process), and (ii) the utility is specific, substantial, and credible.

...
If the applicant has asserted that the claimed invention is useful for any particular practical purpose (i.e., it has a “specific and substantial utility”) and the assertion would be considered credible by a person of ordinary skill in the art, do not impose a rejection based on lack of utility.

(emphasis added)(MPEP § 2107, II (A)(3); II (B)(1)).

The standard for “credible” is defined as:

... whether the assertion of utility is believable to a person of ordinary skill in the art based on the totality of evidence and reasoning provided. An assertion is credible unless (A) the logic underlying the assertion is seriously flawed, or (B) the facts upon which the assertion is based are inconsistent with the logic underlying the assertion.

(MPEP 2107.02, III(B)(emphasis added).

According to the Patent Office’s own guidance to Examiners:

Langer and subsequent cases direct the Office to presume that a statement of utility made by an applicant is true. [citations omitted] ... Clearly, Office personnel should not begin an evaluation of utility by assuming that an asserted utility is likely to be false.

Compliance with 35 U.S.C. 101 is a question of fact [citations omitted]. Thus, to overcome the presumption of truth that an assertion of utility by the applicant enjoys, Office personnel must establish that it is more likely than not that one of ordinary skill in the art would doubt (i.e., “question”) the truth of the statement of utility. ... To do this, Office personnel must provide evidence sufficient to show that the statement of asserted utility would be considered “false” by a person of ordinary skill in the art.

(MPEP 2107.02, III(A)(emphasis added).

Rejections under 35 U.S.C. 101 have been rarely sustained by federal courts.

Generally speaking, in these rare cases, the 35 U.S.C. 101 rejection was sustained either because the applicant failed to disclose any utility for the invention or asserted a utility that could only be true if it violated a scientific principle, such as the second law of thermodynamics, or a law of nature, or was wholly inconsistent with contemporary knowledge in the art. *In re Gazave*, 379 F.2d 973, 978, 154 USPQ 92, 96 (CCPA 1967). Special care therefore should be taken when assessing the credibility of an asserted therapeutic utility for a claimed invention. In such cases, a previous lack of success in treating a disease or condition, of the absence of a proven animal model for testing the effectiveness of drugs for treating a disorder in humans, should not, standing alone, serve as a basis for challenging the asserted utility under 35 U.S.C. 101.

(MPEP 2107.02, III(B)(emphasis in original and added). The Guidelines additionally provide that:

There is no predetermined amount or character of evidence that must be provided by an applicant to support an asserted utility, therapeutic or otherwise. Rather, the character and amount of evidence needed to support an asserted utility will vary depending on what is claimed (citations omitted), and whether the asserted utility appears to contravene established scientific principles and beliefs. (citations omitted). Furthermore, the applicant does not have to provide evidence sufficient to establish that an asserted utility is true “beyond a reasonable doubt.” (citations omitted). Nor must an applicant provide evidence such that it establishes an asserted utility as a matter of statistical certainty. Nelson v. Bowler, 626 F.2d 853, 856-57, 206 USPQ 881, 883-84 (CCPA 1980)(reversing the Board and rejecting Bowler’s arguments that the evidence of utility was statistically insignificant. The court pointed out that a rigorous correlation is not necessary when the test is reasonably predictive of the response).

(MPEP 2107.02, VII)(emphasis added).

Thus, according to Patent Office guidelines, a rejection for lack of utility may not be imposed where an invention has a well-established utility or is useful for any particular practical purpose. An assertion of utility is presumed to be true. The burden is on the Examiner to show that one of ordinary skill would find the asserted utility to be false. The present invention satisfies either standard.

2. The Claimed Transgenic Mice Have a Well-established Utility

The present invention has a well-established utility since a person of ordinary skill in the art “would immediately appreciate why” knockout mice are useful. As a general principle, knockout mice have the inherent and well-established utility of defining the function and role of the disrupted target gene, regardless of whether the inventor has described any specific phenotypes, characterizations or properties of the knockout mouse. The sequencing of the human genome has produced countless genes whose function has yet to be determined.

According to the National Institute of Health, knockout mice represent a critical tool in studying gene function:

Over the past century, the mouse has developed into the premier mammalian model system for genetic research. Scientists from a wide range of biomedical fields have gravitated to the mouse because of its close genetic and physiological similarities to humans, as well as the ease with which its genome can be manipulated and analyzed.

...

In recent decades, researchers have utilized an array of innovative genetic technologies to produce custom-made mouse models for a wide array of specific diseases, as well as to study the function of targeted genes. One of the most important advances has been the ability to create transgenic mice, in which a new gene is inserted into the animal's germline. Even more powerful approaches, dependent on homologous recombination, have permitted the development of tools to "knock out" genes, which involves replacing existing genes with altered versions; or to "knock in" genes, which involves altering a mouse gene in its natural location. To preserve these extremely valuable strains of mice and to assist in the propagation of strains with poor reproduction, researchers have taken advantage of state-of-the-art reproductive technologies, including cryopreservation of embryos, in vitro fertilization and ovary transplantation.

(<http://www.genome.gov/pfv.cfm?pageid=10005834>)(emphasis added)(copy attached).

Thus, the knockout mouse has been accepted by the NIH as the premier model for determining gene function, a utility that is specific, substantial and credible.

Knockout mice are so well accepted as tools for determining gene function that the director of the NIH Chemical Genomics Center of the National Human Genome Research Institute (among others, including Capecchi, Bradley, Joyner, Nagy and Skarnes) has proposed creating knockout mice for all mouse genes:

Now that the human and mouse genome sequences are known, attention has turned to elucidating gene function and identifying gene products that might have therapeutic value. The laboratory mouse (*Mus musculus*) has had a prominent role in the study of human disease mechanisms throughout the rich, 100-year history of classical mouse genetics, exemplified by the lessons learned from naturally occurring mutants such as agouti, reeler and obese. The large-scale production and analysis of induced genetic mutations in worms, flies, zebrafish and mice have greatly accelerated the understanding of gene function in these organisms. Among the model organisms, the mouse offers particular advantages for the study of human biology and disease: (i) the mouse is a mammal, and its development, body plan, physiology, behavior and diseases have much in common with those of humans; (ii) almost all (99%) mouse genes have homologs in humans; and (iii) the mouse genome supports targeted mutagenesis in specific genes by homologous recombination in embryonic stem (ES) cells, allowing genes to be altered efficiently and precisely.

...
A coordinated project to systematically knock out all mouse genes is likely to be of enormous benefit to the research community, given the demonstrated power of knockout mice to elucidate gene function, the frequency of unpredicted phenotypes in knockout mice, the potential economies of scale in an organized and carefully planned project, and the high cost and lack of availability of knockout mice being made in current efforts.

(Austin et al., Nature Genetics (2004) 36(9):921-24, 921)(emphasis added)(copy attached).

With respect to claims drawn to transgenic mice having a null allele, the following comments from Austin are relevant:

Null-reporter alleles should be created

The project should generate alleles that are as uniform as possible, to allow efficient production and comparison of mouse phenotypes. The alleles should achieve a balance of utility, flexibility, throughput and cost. A null allele is an indispensable starting point for studying the function of every gene. Inserting a reporter gene (e.g., P-galactosidase or green fluorescent protein) allows a rapid assessment of which cell types normally support the expression of that gene.

(p. 922)(emphasis in original, emphasis added).

Research tools such as knockout mice are clearly patentable, as noted by the Patent Office:

Some confusion can result when one attempts to label certain types of inventions as not being capable of having a specific and substantial utility based on the setting in which the invention is to be used. One example is inventions to be used in a research or laboratory setting. Many research tools such as gas chromatographs, screening assays, and nucleotide sequencing techniques have a clear, specific and unquestionable utility (e.g., they are useful in analyzing compounds). An assessment that focuses on whether an invention is useful only in a research setting thus does not address whether the invention is in fact “useful” in a patent sense. Instead, Office personnel must distinguish between inventions that have a specifically identified substantial utility and inventions whose asserted utility requires further research to identify or reasonably confirm. Labels such as “research tool,” “intermediate” or “for research purposes” are not helpful in determining if an applicant has identified a specific and substantial utility for the invention.

(MPEP § 2107.01, I). As with gas chromatographs, screening assays and nucleotide sequencing techniques, knockout mice have a clear, specific and unquestionable utility (e.g., they are useful in analyzing gene function), one that is clearly recognized by those skilled in the art.

For example, according to the Molecular Biology of the Cell (Albert, 4th ed., Garland Science (2002)) (copy of relevant pages attached), one of the leading textbooks in the field of molecular biology:

Extensive collaborative efforts are underway to generate comprehensive libraries of mutation in several model organisms including . . . the mouse. The ultimate goal in each case is to produce a collection of mutant strains in which every gene in the organism has

either been systematically deleted, or altered such that it can be conditionally disrupted. Collections of this type will provide an invaluable tool for investigating gene function on a genomic scale.

(p. 543)(emphasis added).

According to Genes VII (Lewin, Oxford University Press (2000)) (copy of relevant pages attached), another well respected textbook in the field of genetics:

The converse of the introduction of new genes is the ability to disrupt specific endogenous genes. Additional DNA can be introduced within a gene to prevent its expression and to generate a null allele. Breeding from an animal with a null allele can generate a homozygous “knockout”, which has no active copy of the gene. This is a powerful method to investigate directly the importance and function of the gene.

(p. 508)(emphasis added).

According to Joyner (*Gene Targeting: A Practical Approach*, Oxford University Press 2000) (copy of relevant pages attached),:

Gene targeting in ES cells offers a powerful approach to study gene function in a mammalian organism.

(preface)(emphasis added).

According to Matise et al. (*Production of Targeted Embryonic Stem Cell Clones* in Joyner, *Gene Targeting: A Practical Approach*, Oxford University Press 2000)(copy of relevant pages attached):

The discovery that cloned DNA introduced into tissue culture cells can undergo homologous recombination at specific chromosomal loci has revolutionized our ability to study gene function in cell culture and *in vivo*. . . . Thus, applying gene targeting technology to ES cells in culture affords researchers the opportunity to modify endogenous genes and study their function *in vivo*.

(p. 101)(emphasis added).

According to Crawley (*What's Wrong With My Mouse Behavioral Phenotyping of Transgenic and Knockout Mice*, Wiley-Liss 2000) (copy of relevant pages attached):

Targeted gene mutation in mice represents a new technology that is revolutionizing biomedical research.

Transgenic and knockout mutations provide an important means for understanding gene function, as well as for developing therapies for genetic diseases.

(p. 1, rear cover)(emphasis added).

3. *The Declaration of Robert Driscoll Establishes the Commercial Sale of the Claimed Subject Matter.*

In addition, commercial use and acceptance is an important indication that the utility of an invention has been recognized by one of skill in the art ("A patent system must be related to the world of commerce rather than to the realm of philosophy." *Brenner v Manson*, 383 U.S. 519, 148 U.S.P.Q. 689, 696 (1966)). Commercial use of the knockout mice produced by Assignee Deltagen has been clearly established. The claimed mouse has been extensively analyzed using the tests set forth in the Examples. This data has been incorporated into Deltagen's commercial database product, DeltaBase. This database has been subscribed to by at least three of the world's largest pharmaceutical companies, Merck, Pfizer and GSK. In addition, at least one (1) pharmaceutical company has ordered the presently claimed mouse. This acceptance more than satisfies the practical utility requirement of section 101 as it cannot be reasonably argued that a claimed invention which is actually being used by those skilled in the art has no "real world" use. (see, for example, *Phillips Petroleum Co. v. U.S. Steel Corp.*, 673 F. Supp. 1278, 6 U.S.P.Q.2d 1065, 1104 (D. Del. 1987), *aff'd*, 865 F.2d 1247, 9 U.S.P.Q.2d 1461 (Fed. Cir. 1980) ("lack of practical utility cannot co-exist with infringement and commercial success); (*Lipscomb's Walker on Patents*, §5:17, p. 562 (1984)) ("Utility may be evidenced by sales and commercial demand.")

As evidence of such sales and purpose of such use, attached hereto is a Rule 132 Declaration from Robert Driscoll, Vice President of Intellectual Property & Legal Affairs of Assignee, Deltagen.

Applicant submits that since one of ordinary skill in the art would immediately recognize the utility of a knockout mouse in studying gene function, a utility that is specific, substantial and credible, the invention has a well-established utility, thus satisfying the utility requirement of section 101. On this basis alone, withdrawal of the rejection with respect to the present invention is warranted, and respectfully requested.

4. *The Claimed Transgenic Mice Are Useful for a Particular Purpose*

In addition, the claimed invention is useful for a particular purpose. The Applicant has demonstrated and disclosed specific phenotypes of the presently claimed mice. Utility of the

claimed knockout mouse would be apparent to, and considered credible by, one of skill in the art, as the role of knockout mice in studying any of these conditions is both specific and substantial.

The Examiner argues that the phenotypes do not correlate with a specific human disease (page 4). The Examiner's arguments are similar to arguments made by the Patent Office with respect to pharmaceutical compounds the utility of which were based on murine model data, arguments which were dismissed by the Federal Circuit in *In re Brana* (34 U.S.P.Q.2d 1436)(Fed. Cir. 1995). The case involved compounds that were disclosed to be effective as anti-tumor agents and had demonstrated activity against murine lymphocytic leukemias implanted in mice. The court ruled that the PTO had improperly rejected, for lack of utility, claims for pharmaceutical compounds used in cancer treatment in humans, since neither the nature of invention nor evidence proffered by the PTO would cause one of ordinary skill in art to reasonably doubt the asserted utility.

The first basis for the Board's holding of lack of utility (the Board adopted the examiner's reasoning without any additional independent analysis) was that the specification failed to describe any specific disease against which the claimed compounds were useful, and therefore, absent undue experimentation, one of ordinary skill in the art was precluded from using the invention. (*In re Brana* at 1439-40). The Federal Circuit reasoned that the leukemia cell lines were originally derived from lymphocytic leukemias in mice and therefore represented actual specific lymphocytic tumors. The court concluded that the mouse tumor models represented a specific disease against which the claimed compounds were alleged to be effective. (*In re Brana* at 1440).

The Board's second basis was that even if the specification did allege a specific use, the applicants failed to prove that the claimed compounds were useful.

The Federal Circuit responded: "[A] specification disclosure which contains a teaching of the manner and process of making and using the invention in terms which correspond in scope to those used in describing and defining the subject matter sought to be patented must be taken as in compliance with the enabling requirement of the first paragraph of Section 112 unless there is reason to doubt the objective truth of the statements contained therein which must be relied on for enabling support." (*Brana* at 1441, citing *In re Marzocchi*, 439 F.2d 220, 223, 169 USPQ 367, 369 (CCPA 1971)). From this it followed that the PTO has the initial burden of challenging a presumptively correct assertion of utility in the disclosure. Only after the PTO

provides evidence showing that one of ordinary skill in the art would reasonably doubt the asserted utility does the burden shift to the applicant to provide rebuttal evidence sufficient to convince such a person of the invention's asserted utility. (*Id.*)

The court held that the Patent Office had not met its burden. The references cited by the Board did not question the usefulness of any compound as an antitumor agent or provide any other evidence to cause one of skill in the art to question the asserted utility of applicants' compounds. Rather, the references merely discussed the therapeutic predictive value of *in vivo* murine tests -- relevant only if the applicants were required to prove the ultimate value in humans of their asserted utility. The court did not find that the nature of the invention alone would cause one of skill in the art to reasonably doubt the asserted usefulness. The purpose of treating cancer with chemical compounds did not suggest an inherently unbelievable undertaking or involve implausible scientific principles. (*Id.*)

The Court concluded that one skilled in the art would be without basis to reasonably doubt the asserted utility on its face. The PTO had not satisfied its initial burden. Accordingly, the applicants should not have been required to substantiate their presumptively correct disclosure to avoid a rejection under the first paragraph of Section 112. (*Id.*)

As in *Brana*, Applicant has asserted that the claimed invention is useful for a particular practical purpose, an assertion that would be considered credible by a person of ordinary skill in the art. As discussed above, the claimed mice have demonstrated specific phenotypes. The acceptance among those of skill in the art of knockout mice demonstrating such properties is clearly demonstrated.

Definitive proof that the phenotypes observed in the null mouse would be the same as those observed in humans is not a prerequisite to satisfying the utility requirement. It is enough that the claimed mouse demonstrates phenotypes, relative to a wild type control mouse, and that knockout mice are recognized in the art as models for determining gene function, both in mice and in humans. According to Austin et al.:

Among the model organisms, the mouse offers particular advantages for the study of human biology and disease: (i) the mouse is a mammal, and its development, body plan, physiology, behavior and diseases have much in common with those of humans; (ii) almost all (99%) mouse genes have homologs in humans; and (iii) the mouse genome supports targeted mutagenesis in specific genes by homologous recombination in embryonic stem (ES) cells, allowing genes to be altered efficiently and precisely.

(p. 921)(emphasis added).

In addition, as pointed out by Doetschman, one clearly skilled in the art, (*Laboratory Animal Science* 49:137-143, 137 (1999)(copy attached), the phenotypes observed in mice do correlate to gene function:

The conclusions will be that the knockout phenotypes do, in fact, provide accurate information concerning gene function, that we should let the unexpected phenotypes lead us to the specific cell, tissue, organ culture, and whole animal experiments that are relevant to the function of the genes in question, and that the absence of phenotype indicates that we have not discovered where or how to look for a phenotype.

(emphasis added).

In *Brana*, the claimed compound had demonstrated activity against a murine tumor implanted in a mouse. Yet, the Federal Circuit found that utility had been demonstrated. Here, the invention relates to a disruption in a murine gene in a mouse. Like the tumor mouse model, the knockout mouse with a specific gene disrupted is a widely accepted model, the utility of which would be readily accepted in the art. It is submitted that one skilled in the art would be without basis to be reasonably doubt Applicant's asserted utility, and therefore the Examiner has not satisfied the initial burden.

The observations and conclusions were made by those skilled in the art. Applicant points out that all of the employees and consultants involved in Deltagen's pathology group are either MD's or DVM's, and many in addition hold PhD degrees. At least sixteen (16) of the employees or consultants are board certified ACVP or ABP. Unless the Examiner has reason to doubt the credibility of the reported results, the burden remains on the Examiner to set forth a *prima facie* case.

The Examiner argues that the asserted use is not substantial because "there is nothing of record that would lead one to believe that a mouse that '[travels] a greater total distance and [explores] the open field more in an open field test' is a model of pathological hyperactivity."

Applicant does not agree. (Applicant submits that the arguments made by the Examiner appear to relate to credibility rather than substantiality.) The open field test is a standard, well established test used to evaluate hyperactivity in mice. According to the specification:

The spatial learning test involves exposure to a complex novel environment, measuring the rapidity and extent of spatial learning, and statistically analyzing the behaviors measured. (See, e.g., N. Pitsikas, et al., *Pharm. Bioch. Behav.* 38:931-934 (1991); B. poucet, et al., *Brain Res.* 37:269-280 (1990); D. Christie, et al., *Brain Res.*

37:263-268 (1990); and F. Van Haaren, et al., Behav. Neurosci. 102:481-488 (1988)). Alternatively, an open-field (of) test may be used, in which the greater distance traveled for a given amount of time is a measure of the activity level and anxiety of the animal. When the open field is a novel environment, it is believed that an approach-avoidance situation is created, in which the animal is "torn" between the drive to explore and the drive to protect itself. Because the chamber is lighted and has no places to hide other than the corners, it is expected that a "normal" mouse will spend more time in the corners and around the periphery than it will in the center where there is no place to hide. "Normal" mice will, however, venture into the central regions as they explore more and more of the chamber. It can then be extrapolated that especially anxious mice will spend most of their time in the corners, with relatively little or no exploration of the central region, whereas bold (i.e., less anxious) mice will travel a greater distance, showing little preference for the periphery versus the central region.

(page 30).

According to Crawley, a recognized expert in the field of murine behaviour:

The most standardized general measure of motor function is spontaneous activity in the open field.

...

A 5-minute test session in a novel open field is sufficient to detect highly significant hyperactivity or behavioral sedation.

(What's Wrong With My Mouse *Behavioral Phenotyping of Transgenic and Knockout Mice*, Wiley-Liss 2000)(pp.48-51). Thus, the asserted use is credible and substantial.

The section entitled "Substantial Utility" provides:

A "substantial utility" defines a "real world" use. Utilities that require or constitute carrying out further research to identify or reasonably confirm a "real world" context of use are not substantial utilities. . . . the following are examples of situations that require or constitute carrying out further research to identify or reasonably confirm a "real world" context of use and, therefore, do not define "substantial utilities":

(A) Basic research such as studying the properties of the claimed product itself or the mechanisms in which the material is involved;

Office personnel must be careful not to interpret the phrase "immediate benefit to the public" or similar formulations in other cases to mean that products or services based on the claimed invention must be "currently available" to the public in order to satisfy the utility requirement. See, e.g., Brenner v. Manson, 383 U.S. 519, 534-35, 148 USPQ 689, 695 (1966). Rather, any reasonable use that an applicant has identified for the invention that can be viewed as providing a public

benefit should be accepted as sufficient, at least with regard to defining a "substantial" utility.

(MPEP § 2107.01 I)(emphasis added).

The MPEP additionally provides:

Office personnel must distinguish between inventions that have a specifically identified substantial utility and inventions whose asserted utility requires further research to identify or reasonably confirm. Labels such as "research tool," "intermediate" or "for research purposes" are not helpful in determining if an applicant has identified a specific and substantial utility for the invention.

(MPEP 2107.01, I)

A use is not substantial where further research is required to identify any use. This is not the case in the present application. Knockout mice have a well-known use in the study of gene function. In the present case, the instant invention does not require further research to establish a utility. Applicant has determined that the cGMP phosphodiesterase alpha subunit gene is associated with, for example, hyperactivity. No further research is required to establish any use. Whether additional research is required to identify therapeutic agents targeting the cGMP phosphodiesterase alpha subunit gene or to further characterize the function of the cGMP phosphodiesterase alpha subunit gene is irrelevant to whether the claimed invention has satisfied the utility requirement.

With regard to specific utility, according to the MPEP, "specific utility" means "specific" to the subject matter claimed as compared to a "general utility" that would be applicable to the broad class of the invention (MPEP 2107.01). Use of the cGMP phosphodiesterase alpha subunit -/- mouse to study the function of the cGMP phosphodiesterase alpha subunit gene and the association of the cGMP phosphodiesterase alpha subunit gene with, for example, hyperactivity and vision abnormalities, is specific to this mouse. Even if there were many other genes associated with these phenotypes, only a cGMP phosphodiesterase alpha subunit knockout mouse (as opposed to all other knockout mice) would be used to study the specific role of GRIK5 in these phenotypes. The Examiner is respectfully requested to explain (1) how the asserted utility of determining the function of the cGMP phosphodiesterase alpha subunit gene would be applicable to all other knockout mice; and (2) how the asserted use of studying the

association of the cGMP phosphodiesterase alpha subunit with vision and hyperactivity would be applicable to all other knockout mice.

In addition to their use in studying gene function, the claimed transgenic mice are useful for studying gene expression. The mice within the scope of the amended claims contain a visible marker such as lacZ. Their use in studying gene expression is clearly recognized by those skilled in the art:

Null-reporter alleles should be created

The project should generate alleles that are as uniform as possible, to allow efficient production and comparison of mouse phenotypes. The alleles should achieve a balance of utility, flexibility, throughput and cost. A null allele is an indispensable starting point for studying the function of every gene. Inserting a reporter gene (e.g., P-galactosidase or green fluorescent protein) allows a rapid assessment of which cell types normally support the expression of that gene.

(Austin et al., Nature Genetics (2004) 36(9):921-24, 922)(emphasis in original; emphasis added)(copy attached). As cited in Austin, and as is well known by one of ordinary skill, the purpose of expression analysis is to determine where the gene is expressed.

Applicant respectfully reminds Examiner that a claimed invention need only satisfy one of its stated objectives to satisfy the utility and enablement requirements.

In summary, Applicant submits that the claimed transgenic mouse, regardless of any disclosed phenotypes, has inherent and well-established utility in the study of the function of the gene, and thus satisfies the utility requirement of section 101. Moreover, Applicant believes that the transgenic mice are useful for studying cGMP phosphodiesterase alpha subunit gene function with respect to the cited phenotypes, expression analysis, and are therefore useful for a specific practical purpose that would be readily understood by and considered credible by one of ordinary skill in the art.

In light of the arguments set forth above, Applicant does not believe that the Examiner has properly made a *prima facie* showing that establishes that it is more likely than not that a person of ordinary skill in the art would not consider that any utility asserted by the Applicant to be specific and substantial. (*In re Brana*; MPEP § 2107).

In view of the foregoing, Applicants request reconsideration and withdrawal of the rejections under 35 U.S.C. §101.

Rejection under 35 U.S.C. § 112, first paragraph

The Examiner has rejected claims 42 and 45 and 47 because one skilled in the art would allegedly not know how to use the claimed invention as a result of the alleged lack of either a specific or substantial asserted utility or a well-established utility for the reasons set forth in the utility rejection. Applicants respectfully traverse the rejection. For the reasons set forth above, the claimed invention satisfies the utility requirement. Therefore, one skilled in the art would know how to use the invention.

The Examiner has also rejected claims 1-5, 8-11, 17-23, 27-32, 33 and 35 as the specification allegedly does not enable the claimed mouse.

The Examiner argues the term “cGMP phosphodiesterase alpha subunit gene” encompasses any gene comprising a DNA sequence that hybridizes to the gene.

Applicant does not agree. According to the specification, “A “cGMP phosphodiesterase gene” refers to a sequence comprising SEQ ID NO:19 or comprising the cGMP phosphodiesterase gene identified in Genebank as Accession No.: X60664; GI NO: 53587 and encoding a cGMP phosphodiesterase, specifically, rod phosphodiesterase alpha subunit or a functional equivalent thereof.” (page 7, lines 11-14). The specification clearly enables the claimed invention.

The Examiner argues that phenotype is unpredictable.

Applicant respectfully submits that the Examiner needs to distinguish between predicting *a priori* the phenotype of a knockout mouse and the reproducibility of a knockout mouse taught in the specification. The Examiner has not cited any support for the position that one skilled in the art would not be capable of reproducing the claimed mouse having the phenotypes described in the specification. It should also be pointed out that Doetschman also states that the phenotypes observed in mice do correlate to gene function:

The conclusions will be that the knockout phenotypes do, in fact, provide accurate information concerning gene function, that we should let the unexpected phenotypes lead us to the specific cell, tissue, organ culture, and whole animal experiments that are relevant to the function of the genes in question, and that the absence of phenotype indicates that we have not discovered where or how to look for a phenotype.

(Laboratory Animal Science 49:137-143, 137 (1999)(copy attached).

With regard to effect of background, according to the specification, the mice were generated from ES cells derived from the 129/OlaHsd mouse substrain to generate chimeric mice. The F1 mice were generated by breeding with C57BL/6 females. The observed

phenotypes were observed by comparing cGMP phosphodiesterase -/- 129/OlaHsd x C57BL/6 mice with age and gender matched wild-type cGMP phosphodiesterase +/+ 129/OlaHsd x C57BL/6 mice - mice of identical background. This and additional information substantiating the findings set forth in the Examples is available in Deltagen's DeltaBase database which is licensed to Merck, Pfizer and GSK, among others. This information was available prior to the filing date of the present application. Although the Applicant does not believe it necessary as a disclosure is presumed to be truthful, if the Examiner requires a declaration to support the above, the Applicant shall so provide one.

The Examiner is respectfully requested to explain how background could have caused the above reported phenotypes when the transgenic mice and the control mouse were of identical background. The reported results clearly support the Applicant's conclusion that the observed phenotypes were caused by the gene disruption.

The Dryja paper cited by the Examiner only supports the Applicant's position that the asserted utility is credible, substantial and specific.

Applicant submits that the claimed invention, a transgenic mouse having a null cGMP phosphodiesterase allele, is fully enabled. Withdrawal is respectfully requested.

Rejection under 35 U.S.C. § 103(a)

Claims 1-4 stand rejected as being obvious over Qin in view of Tsang.

The claims have been canceled rendering the rejection moot. Withdrawal is respectfully requested.

In view of the foregoing, the Applicants believe that the claims are in condition for allowance and such action is respectfully requested. If the Examiner believes a telephone conference would advance the prosecution of this application, the Examiner is invited to telephone the undersigned at the below-listed telephone number.

The Commissioner is hereby authorized to charge any deficiency or credit any overpayment to Deposit Account No. **502775**.

Respectfully submitted,

Steven N. Hird, Reg. No. 51,112
Greenberg Traurig LLP
1200 17th Street, Suite 2400
Denver CO 80202
(303) 685-7414
(303) 572-6540 (fax)

MAY 31, 2005
Date

