CE30 – Discussion 6

Distributed Loads & Moment of Interia

Textbook: 4.4, 5.1, 5.2, 5.3, 7.1, 7.2

Çağlar Tamur

caglar.tamur@berkeley.edu

Spring 2024

Instructor: Shaofan Li

Announcements

HW6 Problems from the textbook:
4.95, 5.13, 5.53, 5.81, 7.12, 7.25, 7.47

GSI Qijun Chen will cover the discussions next week 4/3-6/3

Friction Forces

Acts in the opposite way of motion

Maximum friction force:

$$F_m = \mu_s N$$

 μ_s : Coefficient of (static)friction

N: Normal force

Centroids of Areas

$$\overline{x}A = \int x \, dA$$
 $\overline{y}A = \int y \, dA$

- The integral here is known as the first moment of the area.
- Coordinates of the centroid (\bar{x}, \bar{y}) can be found using the first moments, i.e.:

Compute the first moment

Use it to find the centroid

$$Q_x = \int y \, dA$$

$$\overline{x} = \frac{Q_x}{A}$$

Composite Areas

Decompose complex areas into simpler shapes and use the principle of superposition

Also useful if there are holes

\overline{x}	A	$\overline{x}A$
_	+	_
+	+	+
+	_	_
	- + +	\overline{x} A $ +$ $+$ $+$ $+$

Practice – Similar to HW P5.13

The horizontal x axis is drawn through the centroid C of the area shown and divides it into two component areas A_1 and A_2 . Determine the first moment of each component area with respect to the x axis and explain the results obtained.

Distributed Loads

- Structures often carry distributed loads (snow on roof, self weight...)
- Described in terms of force per length (N/m, lb/ft ...)
- We can replace the distributed load with a concentrated load,
 that would result in the same support reactions

From the Moment around O

$$P \overline{x} = \int x dW$$

Practice – Similar to HW P5.53 – P.5.81

Determine the reactions at the beam supports for the given loading when $w_0 = 450$ lb/ft.

Moment of Inertia

- An important geometric property in beam bending problems,
- Efficiency of a cross-section to "resist" bending
- Second moment of the area

$$I_x = \int y^2 dA$$

$$I_x = \int y^2 dA \qquad I_y = \int x^2 dA$$

w.r.t. x-axis

w.r.t y-axis

Radius of Gyration

Distance to an axis where the concentrated area would have the same moment of inertia

$$r_x = \sqrt{\frac{I_x}{A}}$$

Moment of Inertia: Rectangular Sections

Simple formula exists for rectangular sections

$$I_x = \int_0^h by^2 \, dy = \frac{1}{3}bh^3$$

Practice – Similar to HW P7.12

Determine by direct integration the moment of inertia of the shaded area with respect to the y axis.

Parallel Axis Theorem

Find the moment of inertia with respect to any axis

$$I_{AA'} = \overline{I}_{BB'} + Ad^2$$

Parallel Axis Theorem

Using $I_x = \frac{1}{3}bh^3$ and the parallel axis theorem, we can show

$$I_{x}' = \frac{1}{12}bh^{3}$$

Practice – Similar to HW P7.25

Determine the moment of inertia and radius of gyration with respect to the x-axis

