Tutorato Architettura degli Elaboratori Modulo 1 Lezione 5

Francesco Pelosin

13 December 2018

1 Calcolo delle Prestazioni

- F: frequenza del ciclo di clock. Equivale al numero di volte che il ciclo di clock si ripete in un secondo $F = \frac{1}{T}$.
- T: periodo del ciclo di clock. Equivale al tempo di durata di un ciclo di clock, è il reciproco della frequenza di clock: $T = \frac{1}{F}$.
- CPI_m : (Cycles Per Instruction) numero di cicli di clock impiegati per eseguire una particolare istruzione su una data macchina m.
- $CPI_{m,c}$: numero di cicli medi data una certa macchina m ed un certo compilatore c. Equivale alla media pesata del CPI_m di ciascuna istruzione per la distribuzione delle istruzioni del compilatore.
- IC: (Instruction Count) numero di istruzioni di un programma.
- $ExeTime_m$: (Execution Time) tempo di esecuzione di un particolare programma su una particolare macchina m. Equivale al numero di cicli medi per istruzione $CPI_{m,c}$ per il numero di istruzioni del programma IC, per il periodo del ciclo.

$$ExeTime_m = IC \cdot CPI_{m,c} \cdot T = IC \cdot CPI_{m,c} \cdot \frac{1}{F}$$

• $Perf_m$: performance di una particolare macchina m. Una prestazione migliore corrisponde ad un tempo di esecuzione più breve, viene adottato quindi, come misura della performance di una macchina, l'inverso del tempo di esecuzione.

$$Perf_m = \frac{1}{ExeTime_m}$$

• $Speedup(m_1, m_2)$: Misura quanto un sistema m_1 è più veloce di un sistema m_2 .

$$Speedup(m_1, m_2) = \frac{Perf_{m_1}}{Perf_{m_2}} = \frac{ExeTime_{m_2}}{ExeTime_{m_1}}$$

• MIPS: milioni di istruzioni per secondo, $MIPS = \frac{IC}{ExeTime \cdot 10^6} = \ldots = \frac{F}{CPI \cdot 10^6}.$

1.1 Esercizo Acquisto Macchina

Si considerino due diverse macchine: M_1 ed M_2 , aventi lo stesso set di istruzioni, partizionato in tre classi A, B, C.

	CPI_{M_1}	CPI_{M_2}	Utilizzo C_1	Utilizzo C_2	Utilizzo C_3
A	4	2	30%	30%	50%
B	6	4	50%	20%	30%
C	8	3	20%	50%	20%

- M_1 ha una frequenza di clock pari a 400 MHz
- \bullet M_2 ha una frequenza di clock pari a 200 MHz
- \bullet C_1 è un compilatore sviluppato dai produttori di M_1
- C_2 è un compilatore sviluppato dai produttori di M_2
- C_3 è un compilatore sviluppato da un terzo costruttore.

Si supponga che il codice prodotto dai tre compilatori per uno stesso programma preveda un numero uguale di istruzioni eseguite (IC), ma una diversa distribuzione nelle varie classi come riportato nella tabella.

Domanda 1.1 Usando C_1 su M_1 e M_2 , di quanto M_1 è più veloce di M_2 ?

Soluzione L'esercizio ci chiede di calcolare lo $Speedup(M_1, M_2)$. Iniziamo, dunque, calcolando il tempo di esecuzione di M_1 e M_2 usando il compilatore C_1 . Per fare questo ci serve il CPI_{M_1,C_1} e CPI_{M_2,C_1} nei due casi.

$$CPI_{M_1,C_1} = 4 \cdot 0.3 + 6 \cdot 0.5 + 8 \cdot 0.2 = 1.2 + 3 + 1.6 = 5.8$$

 $CPI_{M_2,C_1} = 2 \cdot 0.3 + 4 \cdot 0.5 + 3 \cdot 0.2 = 0.6 + 2 + 0.6 = 3.2$

Il tempo di esecuzione di M_1 è:

$$ExeTime_{M_1} = IC \cdot CPI_{M_1, C_1} \cdot \frac{1}{F_{M_1}} = \frac{IC \cdot 5.8}{400 \cdot 10^6}$$

ossia:

$$Perf_{M_1} = \frac{400 \cdot 10^6}{IC \cdot 5.8}$$

Il tempo di esecuzione di M_2 è:

$$ExeTime_{M_2} = IC \cdot CPI_{M_2,C_1} \cdot \frac{1}{F_{M_2}} = \frac{IC \cdot 3.2}{200 \cdot 10^6}$$

ossia:

$$Perf_{M_2} = \frac{200 \cdot 10^6}{IC \cdot 3.2}$$

Ora abbiamo tutti i dati necessari per rispondere alla domanda:

$$Speedup(M_1, M_2) = \frac{Perf_{M_1}}{Perf_{M_2}} = \frac{400 \cdot 10^6}{IC \cdot 5.8} \cdot \frac{IC \cdot 3.2}{200 \cdot 10^6}$$

semplificando avremo:

$$Speedup(M_1, M_2) = \frac{6.4}{5.8} = 1.10$$

Utilizzando il compilatore C_1 il sistema M_1 è 1.10 volte più performante di M_2 .

Domanda 1.2 Usando C_2 su M1 e M_2 , quanto più veloce è M_2 rispetto a M_1 ?

Soluzione Usiamo la distribuzione delle istruzioni del compilatore C_2 e procediamo in maniera analoga all'esercizio precedente:

$$CPI_{M_1,C_2} = 4 \cdot 0.3 + 6 \cdot 0.2 + 8 \cdot 0.5 = 1.2 + 1.2 + 4 = 6.4$$

$$CPI_{M_2,C_2} = 2 \cdot 0.3 + 4 \cdot 0.2 + 3 \cdot 0.5 = 0.6 + 0.8 + 1.5 = 2.9$$

Il tempo di esecuzione di M_1 è:

$$ExeTime_{M_1} = IC \cdot CPI_{M_1, C_2} \cdot \frac{1}{F_{M_1}} = \frac{IC \cdot 6.4}{400 \cdot 10^6}$$

ossia:

$$Perf_{M_1} = \frac{400 \cdot 10^6}{IC \cdot 6.4}$$

Il tempo di esecuzione di M_2 è:

$$ExeTime_{M_2} = IC \cdot CPI_{M_2,C_2} \cdot \frac{1}{F_{M_2}} = \frac{IC \cdot 2.9}{200 \cdot 10^6}$$

ossia:

$$Perf_{M_2} = \frac{200 \cdot 10^6}{IC \cdot 2.9}$$

Ora abbiamo tutti i dati necessari per rispondere alla domanda:

$$Speedup(M_2, M_1) = \frac{Perf_{M_2}}{Perf_{M_1}} = \frac{200 \cdot 10^6}{IC \cdot 2.9} \cdot \frac{IC \cdot 6.4}{400 \cdot 10^6}$$

semplificando avremo:

$$Speedup(M_2, M_1) = \frac{6.4}{5.8} = 1.10$$

Utilizzando il compilatore C_2 il sistema M_2 risulta 1.10 volte più performante dim M_1 .

Domanda 1.3 Se si acquista M_1 , quale dei tre compilatori conviene usare? Se si acquista M_2 , quale dei tre compilatori conviene usare?

Calcoliamo le prestazionei del compilatore C_3 :

$$CPI_{M_1,C_3} = 4 \cdot 0.5 + 6 \cdot 0.3 + 8 \cdot 0.2 = 2 + 1.8 + 1.6 = 5.4$$

 $CPI_{M_2,C_3} = 2 \cdot 0.5 + 4 \cdot 0.3 + 3 \cdot 0.2 = 1 + 1.2 + 0.6 = 2.8$

Tabella delle CPI:

	C_1	C_2	C_3
M_1	5.8	6.4	5.4
M_2	3.2	2.9	2.8

Dalla tabella si può vedere che in tutti i casi il compilatore C_3 ha una CPI media più bassa degli altri, quindi è da preferire sia per M_1 che per M_2 .

Domanda 1.4 Considerando che C_3 si è rivelato il miglior compilatore. Quale macchina costituirà il miglior acquisto, supponendo che tutti gli altri criteri siano identici, compreso il prezzo?

Risposta Bisogna confrontare le prestazioni delle due macchine utilizzando, ovviamente, il compilatore C_3 . Risulta:

$$ExeTime_{M_1} = IC \cdot CPI_{M_1,C_3} \cdot \frac{1}{F_{M_1}} = \frac{IC \cdot 5.4}{400 \cdot 10^6}$$

ossia:

$$Perf_{M_1} = \frac{400 \cdot 10^6}{IC \cdot 5.4}$$

Il tempo di esecuzione di M_2 è:

$$ExeTime_{M_2} = IC \cdot CPI_{M_2,C_3} \cdot \frac{1}{F_{M_2}} = \frac{IC \cdot 2.8}{200 \cdot 10^6}$$

ossia:

$$Perf_{M_2} = \frac{200 \cdot 10^6}{IC \cdot 2.8}$$

Compariamo le macchine:

$$Speedup(M_1, M_2) = \frac{Perf_{M_1}}{Perf_{M_2}} = \frac{400 \cdot 10^6}{IC \cdot 5.4} \cdot \frac{IC \cdot 2.8}{200 \cdot 10^6}$$

semplificando avremo:

$$Speedup(M_1, M_2) = \frac{5.6}{5.4} = 1.04$$

Utilizzando il compilatore C_3 il sistema M_1 risulta più performante 1.04 volte rispetto la macchina M_2 e quindi costituisce iil miglior acquisto.

1.2 Esercizio: Confronto tra Macchine

Considerare due macchine M_1 (a 300 MHz) ed M_2 (a 450 MHz) con le seguenti caratteristiche (rispetto a dei compilatori prefissati).

Macchina	Classe	CPI	Distribuzione
	A	1	40%
M_1	B	2	30%
1111	C	3	20%
	D	4	10%
M_2	A	1	40%
1/12	B	2	60%

Considerare che per uno stesso programma, in media il codice prodotto per M_2 prevede il doppio di istruzioni rispetto a quello prodotto per M_1 .

Domanda 1.5 Stabilire la macchina migliore.

Soluzione Il numero di istruzioni della macchina M_2 per un programma qualsiasi è mediamente il doppio delle istruzioni della macchina M_1 , possiamo affermare:

$$IC_{M_2} = 2 \cdot IC_{M_1}$$

Calcoliamo il tempo di esecuzione delle due macchine e poi confrontiamo le performances:

$$CPI_{M_1} = 1 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.2 + 4 \cdot 0.1 = 2$$

$$CPI_{M_2} = 1 \cdot 0.4 + 2 \cdot 0.6 = 1.6$$

$$Perf_{M_1} = \frac{300 \cdot 10^6}{IC_{M_1} \cdot 2}$$

$$Perf_{M_2} = \frac{450 \cdot 10^6}{2 \cdot IC_{M_1} \cdot 1.6}$$

$$Speedup(M_1, M_2) = \frac{Perf_{M_1}}{Perf_{M_2}} = \frac{300 \cdot 10^6}{IC_{M_1} \cdot 2} \cdot \frac{2 \cdot IC_{M_1} \cdot 1.6}{450 \cdot 10^6}$$

semplificando segue:

$$Speedup(M_1, M_2) = \frac{1.6}{1.5} = 1.067$$

Ne segue che la macchina M_1 è 1.067 volte più performante della macchina $M_2.$

1.3 Esercizio: Lunghezza del codice

Considerare due macchine M_1 (a 3 GHz) ed M_2 (a 1.5 GHz). La seguente tabella illustra le classi di istruzioni macchina, i relativi CPI medi e la distribuzione di probabilità delle istruzioni generate dallo stesso compilatore (C).

Macchina	Classe	ICP	Distribuzione
	A	1	40%
M_1	B	2	30%
111	C	3	20%
	D	4	10%
M_2	A	1	60%
11/12	B	2	40%

Domanda 1.6 Supponendo di sapere che il codice prodotto, compilando lo stesso programma per le due piattaforme, ha identiche prestazioni sia per M_1 che per M_2 , calcolare in che rapporto devono stare i numeri di istruzioni prodotte per i due programmi (ovvero, IC_{M_1} e IC_{M_2}) perché ciò si verifichi.

Soluzione Dobbiamo calcolare il *CPI* medio per le due macchine.

$$CPI_{M_1,C} = 1 \cdot 0.4 + 2 \cdot 0.3 + 3 \cdot 0.2 + 4 \cdot 0.1 = 2$$

$$CPI_{M_2,C} = 1 \cdot 0.6 + 2 \cdot 0.4 = 1.4$$

I tempi di esecuzione si esprimono come segue:

$$ExeTime_{M_1} = \frac{CPI_{M_1,C} \cdot IC_{M_1}}{F_{M_1}} = \frac{2 \cdot IC_{M_1}}{3 \cdot 10^9} = 0.66 \cdot 10^{-9} \cdot IC_{M_1}$$

$$ExeTime_{M_2} = \frac{CPI_{M_2,C} \cdot IC_{M_2}}{F_{M_2}} = \frac{1.4 \cdot IC_{M_2}}{1.5 \cdot 10^9} = 0.93 \cdot 10^{-9} \cdot IC_{M_2}$$

Affinchè le prestazioni siano le stesse i tempi di esecuzione dovranno essere uguali per cui:

$$ExeTime_{M_1} = ExeTime_{M_2}$$

$$0.66 \cdot 10^{-9} \cdot IC_{M_1} = 0.93 \cdot 10^{-9} \cdot IC_{M_2}$$

$$IC_{M_1} = \frac{0.93}{0.66} \cdot IC_{M_2}$$

$$IC_{M_1} = 1.409 \cdot IC_{M_2}$$