

STIR image reconstruction of a long axial field of view PET scanner for NEMA spatial resolution study

M. Abi Akl^{1,2}, Nikos Efthimiou³, O. Bouhali², S. Vandenberghe¹

¹ University of Ghent,
² Texas A&M University at Qatar
³ University of Pennsylvania, Philadelphia

December 3, 2020

STIR user's and developer's meeting 2020

OUTLINE

Ugent PET system designs

Sensitivity results

Spatial resolution: Image reconstruction in STIR

Different system designs

Axial ring splitting

aFOV=35cm D=70cm 40 detectors per ring aFOV=2x35cm=70cm D=70cm 40 detectors per ring 20 detectors per ring

Pediatric mode

NEMA protocol

$$Sens = \frac{T}{A \times t}$$

35cm and 70cm aFOV

D=70cm 40 detectors per ring 7 rings

aFOV=2x35cm=70cm

D=70cm 40 detectors per ring 14 rings

Biograph vision (26.1cm aFOV): NEMA sensitivity of 16.4 kcps/MBq

Scanner geometry in STIR

Discretization of the blocks of detectors – crystal map

Image reconstruction in STIR using FBP:

- 1. Create sinogram
- 2. Reconstruct the image using FBP 3DRP or SSRB with 2D

Generate line profile to find the FWHM

Three components of resolution are measured by taking profiles of the point sources. Radial and tangential components are in the transaxial plane and the axial component is along the axis of the scanner

35cm aFOV - All segments considered - 3D

Z=0	X = 1cm	X = 10cm	X = 20cm
Radial (mm)	3.4	4.7	5.45
Tangential (mm)	5.05	5.5	6.1
Axial (mm)	3.4	3.4	3.42

Z= 3/8 aFOV	X = 1cm	X = 10cm	X = 20cm
Radial (mm)	4.2	5.1	5.9
Tangential (mm)	5.8	5.8	6.1
Axial (mm)	3.3	3.4	3.5

70cm aFOV - 175 segments considered – 3D (could not reconstruct all segments, sinogram 126G)

Z=0	X = 1cm	X = 10cm	X = 20cm
Radial (mm)	3.4	4.7	5.45
Tangential (mm)	5.05	5.5	6.1
Axial (mm)	3.4	3.4	3.42

Z= 3/8 aFOV	X = 1cm	X = 10cm	X = 20cm
Radial (mm)	4.2	5.1	5.9
Tangential (mm)	5.8	5.8	6.1
Axial (mm)	3.3	3.4	3.5

70cm aFOV –all segments considered – SSRB + 2D

Next steps

- Reconstruct the image in 3D for the 70cm aFOV scanner with all segments considered
- Make the code faster
- Reconstruct in listmode with MLEM
- Reconstruct the 140cm aFOV with gaps