МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчёт о выполнении лабораторной работы 1.4.1

Изучение экспериментальных погрешностей на примере физического маятника

Автор: Чикин Андрей Павлович Б05-304

Цель работы:

- 1. На примере измерения периода свободных колебаний физического маятника познакомиться с систематическими и случайными погрешностями, прямыми и косвенными измерениями;
- 2. Проверить справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения;
- 3. Убедиться в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника;
- 4. Оценить погрешность прямых и косвенных измерений и конечного результата.

Приборы:

- 1. Металлический стержень с опорной призмой
- 2. Дополнительный груз
- 3. Закреплённая на стене консоль
- 4. Подставка с острой гранью для определения цента масс маятника
- 5. Прибор для измерения периода колебаний (секундомер) $\sigma_T \sim 0.03$
- 6. Счётчик колебаний (механический или электронный)
- 7. Линейки металлические различной длины
- 8. Штангенциркуль
- 9. Электронные весы
- 10. Математический маятник (небольшой груз, подвешенный на нитях)

1 Краткая Теория.

Физическим маятником называют твёрдое тело, способное совершать колебания в вертикальной плоскости, будучи подвешено за одну из своих точек в поле тяжести. Основное отличие физического маятника от математического в том, что маятник не является точечным объектом, а представляет собой совокупность жёстко связанных точечных масс. В данной работе в качестве такого маятника используется тонкий однородный металлический стержень, подвешиваемый в некоторой точке с помощью небольшой опорной призмы (см. рис. 1). Острое ребро призмы, опирающееся на подставку, задаёт ось качания (или вращения) маятника.

Рассмотрим тело Р и ось S. Моментом инерции Р отн. S называется $J = \sum_i m_i \cdot r_i^2$ (или $\int_P r^2 \cdot dm$ если масса Р распределена равномерно), где r_i - расстояние от m_i до S. Момент импульса тела: $L = J * \omega$, где ω - угловая скорость вращения тела отн. оси S. Момент импульса:

$$M = \frac{dL}{dt}(1) = J \cdot \frac{d\omega}{dt}(2)$$

Рис. 1. Стержень как физический

Справедлива следующая формула для тонкого стержня массы m и длины l, вращающегося вокруг оси, проходящей через центр масс: $J_c = \frac{m \cdot l^2}{12}$. А для такого же стержня, подвешенного на расстоянии a от центра масс, момент инерции может быть вычислен по формуле Гюйгенса-Штейнера:

$$J = \frac{m \cdot l^2}{12} + m \cdot a^2 \ (3)$$

В частности, если подвесить стержень за один из концов: $a=\frac{l}{2} \implies J=\frac{m \cdot l^2}{3}$

Вернёмся к рассмотрению колебаний физического маятника — стержня, подвешенного в поле тяжести (Рис. 1). Маятник подвешен в точке О на расстоянии а до центра масс С. При отклонении стержня от вертикального положения равновесия на угол φ возникает момент силы тяжести, стремящийся вернуть стержень в исходное положение. Плечо этой силы, приложенной к точке С, относительно оси подвеса О равно $a \cdot \sin \varphi$, поэтому при небольших углах отклонения $\varphi \ll 1$ возвращающий момент равен:

$$M = -m \cdot g \cdot a \cdot \sin \varphi \approx -m \cdot g \cdot a \cdot \varphi$$
 (4)

Отсюда можно сделать вывод о том, что такие колебания будут гармоническими при малых амплитудах. Для гармонических колебаний: $T=2\pi\cdot\sqrt{\frac{m}{k}},\, {\rm T}$ - период колебаний. Аналогично для физического маятника: $m=J,\, {\rm k}$ - отношение момента силы к амплитуде, k=mga. Отсюда

$$T = 2\pi \cdot \sqrt{\frac{J}{mga}} (5)$$

Для стержня:

$$T = 2\pi \cdot \sqrt{\frac{\frac{l^2}{12} + a^2}{g \cdot a}}$$
 (6)

Для математического маятника:

$$T = 2\pi \cdot \sqrt{\frac{l}{g}} \ (7)$$

По опр. приведенная длина: $l_{\rm np}=a+\frac{l^2}{12a}$. Смысл данной величины в том, что физический маятник длины l и подвешенный на расстоянии а имеет тот же период малых колебаний, что и математический маятник длины $l_{\rm np}$.

Гармонические колебания

$$(1),(4) \implies J\ddot{\varphi} + mga\varphi = 0 \ (9)$$
$$\varphi(t) = A\sin(\Omega t + \alpha) \ (10)$$

, где $\Omega = \frac{2\pi}{T} = \sqrt{\frac{mga}{J}}$ - угловая частота колебаний, A - амплитуда, α - начальная фаза колебаний.

Затухание колебаний Если присутствует сила трения, затухания считаются затухающими. Для затухающих колебаний формула (10) справедлива, но амплитуда является убывающей ф-ией от времени: A = A(t). Декремент затухания: $\gamma = \frac{|\Delta A|}{A}$

$$\gamma = const \implies \gamma = -\frac{dA}{A} \implies A(t) = A_0 \cdot e^{-\gamma t}$$

, где $A_0=A(0)$. $au=rac{1}{\gamma}$ - время, за которое амплитуда падает в е раз. Колебания можно считать малым, если au>>T. Добротность колебательной системы: $Q=\pi rac{ au}{T}$

Эксперементальная установка Тонкий стальной стержень длиной $l\sim 1$ м и массой $m\sim 1$ кг (точные параметры определяются непосредственными измерениями) подвешивается на прикреплённой стене консоли с помощью небольшой призмы. Диаметр стержня много меньше его длины $d \sim 12$ мм « l . Небольшая призма крепится на стержне винтом и острым основанием опирается на поверхность закреплённой на стене консоли. Острие ребра призмы образует ось качания маятника. Возможны две схемы реализации установок:

Установка А. Призму можно перемещать вдоль стержня, изменяя длину а — расстояние от центра масс до точки подвеса. Период колебаний измеряется непосредственно с помощью секундомера.

Установка В. Подвесная призма остаётся неподвижной (a = const), а на стержень маятника насаживается дополнительное тело небольшого размера («чечевица» или цилиндр), положение которого можно изменять, изменяя таким образом момент инерции маятника. Период колебаний маятника в этой схеме измеряется электронным счетчиком импульсов, расположенном у нижнего конца стержня. Дополнительные сведения об установке типа Б приведены ниже (см. стр. 8). Измеряя зависимости периода малых колебаний от положения стержня или дополнительного тела на нём, можно экспериментально проверить формулу (5) (или её частный случай (6)) и вычислить значение ускорения свободного падения д. Формулу (6) можно проверить, откладывая по осям величины $u=T^2$ а и $m=a\ 2$. В этих координатах график $\mathrm{u}(\mathrm{m})$ должен иметь вид прямой линии, угловой коэффициент которой пропорционален g, а вертикальное смещение — моменту инерции стержня относительно центра масс.

Измерение периода колебаний Дабы избежать слишком большой ошибки измерения времени $(\sigma_t = 0.1 - 0.3c)$, нужно измерить время несколько раз $(t_1, t_2, ..., t_N)$ и найти случайную погрешность по формуле:

$$\sigma_t^{\text{случ}} = \sqrt{\frac{\sum (t_i - \langle t \rangle)^2}{N - 1}}$$

$$\sigma_t^{\text{полн}} = \sqrt{\sigma_t^{\text{сист}^2} + \sigma_t^{\text{случ}^2}}$$

Особенности маятника с перемещаемым грузом (установка В) Масса грузика: $m_g = 300-400$ гр, диаметр: $d_g \sim 6$ см

Рис. 3. Маятник с дополнительным грузом

$$J = J_0 + m_{\scriptscriptstyle \Gamma} \cdot y^2$$

где J_0 — момент инерции маятника без груза, определяемый по формуле (3).

$$x_2 = \frac{m_0 \cdot x_1 + m_g \cdot y}{M}$$

$$y = \frac{M \cdot x_2 - m_0 \cdot x_1}{m_a} \ (12)$$

$$T = 2\pi \cdot \sqrt{\frac{J_0 + m_g \cdot y^2}{g \ M \ x_2}} \ (13)$$

Учёт влияния подвесной призмы

Формула (6) получена в предположении, что подвес маятника является материальной точкой. На самом же деле маятник подвешивается с помощью треугольной призмы конечного размера, поэтому использование (6) может привести к систематической погрешности результата. Для более точных расчётов следовало бы воспользоваться общей формулой периода колебаний физического маятника (5), принимая во внимание наличие двух тел — стержня и призмы:

$$T = 2\pi \sqrt{\frac{J_{\rm np} + J_{\rm ct}}{m_{\rm np} \ g \ a_{\rm np} - m_{\rm ct} \ g \ a_{\rm ct}}}$$

, где $J_{\rm np},\,m_{\rm np}$ и $a_{\rm np}$ — соответственно момент инерции, масса и расстояние до центра масс призмы (знак «минус» в знаменателе учитывает, что призма находится выше оси подвеса). $m_{\rm np} \sim 70 gr,\,a_{\rm np} \sim 1.5 cm \implies J_{\rm np} = m_{\rm np} \cdot a_{\rm np}^2 \sim 10^{-5} kg \; m^2 \; a_{\rm cr} = 10 cm \implies J_{\rm cr} \sim 10^{-2} \; kg \; m^2 \implies \xi_{J_{\rm cr}} < 0.1\%$

$$\frac{M_{\rm np}}{M_{\rm ct}} = \frac{m_{\rm np} \ g \ a_{\rm np}}{m_{\rm ct} \ g \ a_{\rm ct}} \sim 1\%$$

2 Выполнение работы.

- 1. Ознакомимся с используемыми в работе измерительными приборами: линейкой, штангенциркулем, секундомером. Определим максимальную систематическую погрешность каждого из них (абсолютное и относительное значение) (смотрите таблицу 1). Оценим, с какой относительной погрешностью имеет смысл измерять период колебаний маятника. Погрешность итогового результата (косвенно вычисленной величины) не может оказаться больше погрешности самого неточного измерения. В нашем случе относительная погрешность самого неточного измерения равна примерно 1%. Если период маятника примерно равен 1 секунде в нашем случае относительная погрешность измерения одного периода равняется $\varepsilon_T = \frac{\sigma_T}{T} \sim \frac{0.03}{1} = 0.03 = 3\%$. Тогда будет достаточно измерения 3 колебаний. Для большей точности будем измерять период 20 колебаний.
- 2. Измерим длину стержня $L_{\rm cr}$. Взвесим стержень, призму и дополнительный груз ($M_{\rm cr}=868$ г, $M_{\rm np}=80$ г, $M_{\rm rp}=291$ г) (для установки Б) на электронных весах. Оценим погрешности измерений (абсолютные и относительные значения) (см. т. 1).

Таблица 1	value	σ	ξ
М_ст, гр	868,3	0,1	0,01%
М_гр, гр	290,9	0,1	0,03%
М_пр, гр	79,6	0,1	0,13%
М_общ, гр	1238,8	0,3	0,02%
L_ст, см	100	0,01	0,01%
ACO, cM	50	0,2	0,4%
а, см	30	0,3	1%
х_ц0, см	27,4	0,2	0,7%
Н_гр, см	1,64	0,01	0,6%

- 3. Снимем со стержня призму и с помощью подставки определим положение центра масс пустого стержня. $AC0=(50\pm0,2)$ см
- 4. Установим призму на некотором расстоянии от центра стержня, измерим точное положение от острия призмы до центра масс стержня $a=P_rC_0$. Измерим положение центра масс конструкции $x_{\text{ц0}}=P_rC_1$, сбалансировав маятник с призмой на острие вспомогательной подставки. Оценим погрешности измерения расстояний а и $x_{\text{ц0}}$. $\sigma_a=0.3$ мм; $\sigma_{x_{\text{ц0}}}=0.2$ мм $a=(30.0\pm0.3)$ см; $x_{\text{ц0}}=(27.4\pm0.2)$ см. $\varepsilon_a=1\%$; $\varepsilon_{x_{\text{ц0}}}=0.7\%$
- 5. Проведем первый предварительный опыт по измерению периода колебаний (на установке Б опыт проведите без дополнительного груза).
 - а) Установим маятник на консоли и отклоним маятник на малый угол (не более 5°). Убедимся, что он качается без помех, призма не проскальзывает, и колебания затухают слабо.
 - б) Измерим время n = 20 полных колебаний маятника.
 - в) Вычислим период колебаний $T=\frac{d}{n}$ и по формуле (6) (или (14)) рассчитайте предварительное значение g. Убедитесь, что оно отличается от табличного не более, чем на 10%.

$$T_{\rm cp}\sim 1.5$$
с По формуле (6): $g=\frac{4\pi^2}{T^2}\cdot\frac{l^2}{12}+a^2\over a}\sim 9.52\frac{\rm M}{\rm c^2}\implies \varepsilon_g\sim 2.8\%$ По формуле (14): $g=\frac{4\pi^2}{T^2}\cdot\frac{l^2+a^2}{x_{\rm r}(1+\frac{m_{\rm np}}{m_{\rm cr}})}\sim 9.55\frac{\rm M}{\rm c^2}\implies \varepsilon_g\sim 2.5\%$

6. Проведем серию измерений для экспериментального определения случайной погрешности измерения периода.

5

(а) Несколько раз повторим измерение периода фиксированного числа колебаний (например, при n = 20). Результаты занесем в таблицу. Если результаты 3–4 измерений полностью совпадают, опыт можно остановить. Если результаты различаются, следует провести 8–10 измерений. В нашем случае результаты немного разнились, поэтому мы провели 10 измерений периода (см. таблицу 2).

Таблица 2	1	2	3	4	5	6	7	8	9	10
20T	30,57	30,57	30,56	30,53	30,56	30,54	30,56	30,55	30,55	30,56
T	1,5285	1,5285	1,528	1,5265	1,528	1,527	1,528	1,5275	1,5275	1,528
_	4.50775									
<t>, c</t>	1,52775									
σ <t></t>	0,001629									
ε <t>3</t>	0,001066									

- (b) Вычислим среднее значение полученных результатов $\bar{t}\sim 1.53$ с, а также определим случайную погрешность измерения времени как среднеквадратичное отклонение полученных результатов: $\sigma_t^{\text{случ}} = \sqrt{\frac{1}{N-1}\cdot\sum_{i=1}^N{(t-\bar{t})^2}} \sim 6*10^{-4}$ с, где N число измерений, в нашем случае N = 10.
- (c) Определим приборную (систематическую) погрешность используемого прибора $\sigma_t^{\text{сист}}$ и вычислим полную погрешность $\sigma_t^{\text{полн}}$ измерения времени. $\sigma_t^{\text{сист}} = 0.03 \text{c} \implies \sigma_t^{\text{полн}} = \sqrt{\sigma_t^{\text{случ}^2} + \sigma_t^{\text{сист}^2}} \sim \sigma_t^{\text{сист}} = 0.03 \text{c}$
- 7. Используя погрешность σ_t измерения времени из предыдущего пункта, оцените число колебаний п, по которому следует измерять период, чтобы относительная погрешность измерений периода соответствовала точности измерений ε_{max} , оценённой в п. 1. Так как мы измеряли период электронным счетчиком, полная погрешность примерно равна приборной, следовательно, размышления в п. 1 справедливы.
- 8. Закрепим груз на стержне в произвольном месте. Рассчитаем положение центра масс стержня, призмы и груза:

$$x_{\text{II}} = P_r C_2 = \frac{(M_{\text{cr}} + M_{\text{IIp}}) x_{\text{II}0} + M_{\text{rp}} \cdot y}{M_{\text{cr}} + M_{\text{IIp}} + M_{\text{rp}}}$$

- , где у расстояние от т. подвеса до груза.
- 9. Разместим груз на маятнике и измерим положение у груза относительно точки подвеса и положение центра масс всей системы $x_{\rm u}$.
- 10. Проведем измерение периода колебаний маятника по n полным колебаниям, где значение n выбрано в п. 7. Повторим измерения периода для 8 15 положений груза у (при этом распределим положения груза равномерно по всему стержню). Для каждого измерения найдем x_{π} и g (см. т. 3).

Таблица 3	1	2	3	4	5	6	7	8	9	10	11	12
у, см	73,18	67,18	61,18	55,18	49,18	43,18	37,18	31,18	25,18	19,18	13,18	7,18
T, c	1,62	1,58	1,54	1,51	1,49	1,46	1,45	1,43	1,43	1,44	1,45	1,48
х_ц, см	38,15	36,74	35,33	33,92	32,51	31,11	29,70	28,29	26,88	25,47	24,06	22,65
g	9,81	9,80	9,81	9,82	9,81	9,81	9,80	9,79	9,80	9,78	9,80	9,79
	-											

- 11. Не выполняли.
- 12. Оценим затухание маятника, для этого измерим время, за которое амплитуда колебаний уменьшится вдвое ($\tau \sim 8$ мин 30 сек, и $\tau_{\text{зат}} = \frac{\tau}{\ln 2} \sim 735$ сек, тогда декремент затухания $\gamma = \frac{1}{\tau_{\text{зат}}} \sim 1.4 \cdot 10^{-4}$ сек $^{-1}$, а добротность $Q = \pi \frac{\tau_{\text{зат}}}{T} \sim 1500$). Погрешность добротности посчитать невозможно.

3 Обработка результатов измерений.

- 13. Усредним значения g из таблицы 3 и оценим погрешность. $g \sim 9.8 \frac{M}{c^2} \, (9.55), \, \sigma_g = 1.12 \frac{M}{c^2} \, (1.15), \, \varepsilon_g = 1.2\% \, (1.6).$
- 14. Построим график зависимости Т от у.

Этот график имеет вид $T=a\sqrt{\frac{b+c\cdot y^2}{d+e\cdot y}}=\sqrt{\frac{J_0+m_{\Gamma}\cdot y^2}{g(x_{\Pi 0}m_{\Gamma T}+y\cdot m_{\Gamma})}},\ b=J_0,\ c=m_{\Gamma},\ d=x_{\Pi 0}m_{\Gamma T},\ e=m_{\Gamma}$ Минимум ф-ии T(y) можно определить, решая ур-ие $\frac{d}{dy}T=0 \implies y_{min}=\sqrt{\frac{d^2}{e^2}+\frac{b}{c}}-\frac{d}{e}=\frac{x_{\Pi 0}m_{c\Gamma}}{m_{\Gamma}}\cdot \left(\sqrt{\frac{J_0m_{\Gamma}}{x_{\Pi 0}^2m_{c\Gamma}^2}+1}-1\right)\sim 27$ см. По графику видно, что минимум достигается в точке $y_{min}=25$ см, в этом случае ошибка равна шагу, с которым мы перемещали груз, т.е. 6 см. $y_{min}=(25\pm6)$ см.

15. Построим график зависимости u(v), где $u=T^2\cdot x_{\rm II}$ и $v=y^2$ (см. рисунок 4). График u(v) должен получиться линейным, так как, по формуле (13), $u=4\pi^2\frac{J_0}{gM}+4\pi^2\frac{m_{\rm F}}{gM}=a+b\cdot v$, где J_0 - момент инерции маятника отн. подвеса.

- 16. Найдем коэффициент наклона (b) и пересечение с осью ординат (a) прямой u(v) (мы воспользовались мнк). В результате $a=0.4849\pm0.0008,\ b=1.000\pm0.005$; $a\sim0.5$, $b\sim1$. Из коэффициентов а и b можно найти g $(g=4\pi^2\frac{J_0}{a\cdot M}=4\pi^2\frac{m_{\scriptscriptstyle \Gamma}}{b\cdot M})$. В результате $g=9.83\frac{{\scriptscriptstyle M}}{{\scriptscriptstyle {\rm c}}^2}$ (9.27)
- 17. Найдем погрешность измерения g в п. 16. $\sigma_g = \sqrt{\varepsilon_{m_{\rm r}}^2 + \varepsilon_M^2 + \varepsilon_b^2} \sim 0.05 \frac{\rm M}{\rm c^2}, \varepsilon_g = \frac{\sigma_g}{g} \sim 0.5\%$
- 18. Метод нахождения д лучше в 16 пункте, чем в 13, т.к. ошибка меньше.

19. В резуьтате мы получили ускорение свободного падения g двумя способами. На нашей планете g варьируется от 9,78 на экваторе, до 9,82 на полюсах. Мы получили, что $g=(9,80\pm0,12)\frac{\rm M}{\rm c^2}$ $g=(9,83\pm0,05)\frac{\rm M}{\rm c^2}$. Наше значение отличается от истинного на 0,15%.

Вывод:

В результате выполнения работы, мы убедились в справедливости формул для периода колебаний физического маятника, в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника, определили ускорение свободного падения двумя способами.