菌群 + 对应代谢产物介导 + 机制研究

2024-01-12

LiChuang Huang

@ 立效研究院

Contents

T	摘安										1
2	前言										1
3											1 1 1
4	分析结果										1
5	结论										1
	附:分析流 6.1 Micro 6.1.1 6.1.2 6.1.3 6.1.4	obiota 16s Fastp Q 元数据 Qiime2	C 分析 otaProces 样本聚 Alpha ≨ Alpha 和 Beta 多	 					 	 	1 1 1 2 2 3 3 3 4 4 5 5 7
Li	st of F	igures									
	1 All sa 2 Filter 3 Alpha 4 Alpha	amples PC red PCoA a diversity a rarefacti diversity s	on	 	3 4 4 5 6						
		obiota met	tadata .	 	2						

1 摘要

生信分析 (8 个 con) + (8 个 A) + (8 个 B) (盲筛, 不提供具体分组信息)。

- 2 前言
- 3 材料和方法
- 3.1 材料
- 3.2 方法

Mainly used method:

- Fastp used for Fastq data preprocessing¹.
 - R package MicrobiotaProcess used for microbiome data visualization².
 - Qiime2 used for gut microbiome 16s rRNA analysis³⁻⁷.
 - Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

- A、B 组 Alpha 和 Beta 多样性无显著差异 (见 6.1.4.2 和 6.1.4.4)。
- A、B 组差异分析,未找到差异菌。
- 5 结论
- 6 附:分析流程
- 6.1 Microbiota 16s RNA
- 6.1.1 Fastp QC

原始数据质控:

'Fastp QC'数据已全部提供。

(对应文件为 ./fastp_report/)

注:文件夹./fastp_report/共包含 17 个文件。

- 1. A1.338F_806R..html
- $2. A2.338F_806R..html$
- 3. A3.338F_806R..html
- $4.~\mathrm{A4.338F}_806\mathrm{R..html}$
- 5. A5.338F_806R..html
- 6. ...

6.1.2 元数据

Table 1 (下方表格) 为表格 microbiota metadata 概览。

(对应文件为 Figure+Table/microbiota-metadata.csv)

注: 表格共有 16 行 7 列,以下预览的表格可能省略部分数据;表格含有 16 个唯一'SampleName'。

1. group: 分组名称

Table 1: Microbiota metadata

SampleName	group	dirs	reports	Run	forward-ab	reverse-ab
A1	A	./material	./material	rawData	/home/echo	/home/echo
A2	A	./material	./material	rawData	/home/echo	/home/echo
A3	A	./material	./material	rawData	/home/echo	/home/echo
A4	A	./material	./material	rawData	/home/echo	/home/echo
A5	A	./material	./material	rawData	/home/echo	/home/echo
A6	A	./material	./material	rawData	/home/echo	/home/echo
A7	A	./material	./material	rawData	/home/echo	/home/echo
A8	A	./material	./material	rawData	/home/echo	/home/echo
B1	В	./material	./material	rawData	/home/echo	/home/echo
B2	В	./material	./material	rawData	/home/echo	/home/echo
В3	В	./material	./material	rawData	/home/echo	/home/echo
B4	В	./material	./material	rawData	/home/echo	/home/echo
B5	В	./material	./material	rawData	/home/echo	/home/echo
B6	В	./material	./material	rawData	/home/echo	/home/echo
B7	В	./material	./material	rawData	/home/echo	/home/echo

6.1.3 Qiime2 分析

Microbiota 数据经 Qiime2 分析后,由 MicrobiotaProcess 下游分析和可视化。

6.1.4 MicrobiotaProcess 分析

6.1.4.1 样本聚类

在预分析中,根据 PCoA 去除离群样本:

Figure 1 (下方图) 为图 All samples PCoA 概览。

(对应文件为 Figure+Table/All-samples-PCoA.pdf)

Figure 1: All samples PCoA

以下为除去样本后的 PCoA:

Figure 2 (下方图) 为图 Filtered PCoA 概览。

(对应文件为 Figure+Table/Filtered-PCoA.pdf)

Figure 2: Filtered PCoA

随后的分析以去除离群样本后进行。

6.1.4.2 Alpha 多样性

A、B 组 alpha 多样性没有显著差异。

Figure 3 (下方图) 为图 Alpha diversity 概览。

(对应文件为 Figure+Table/Alpha-diversity.pdf)

Figure 3: Alpha diversity

'Taxonomy abundance' 数据已全部提供。

(对应文件为 Figure+Table/Taxonomy-abundance)

注:文件夹 Figure+Table/Taxonomy-abundance 共包含 6 个文件。

- 1. 1_Phylum.pdf
- 2. 2_Class.pdf
- $3. 3_{Order.pdf}$
- 4. 4_Family.pdf
- 5. 5_Genus.pdf
- 6. ...

6.1.4.3 Alpha 稀疏曲线

Figure 4 (下方图) 为图 Alpha rarefaction 概览。

(对应文件为 Figure+Table/Alpha-rarefaction.pdf)

Figure 4: Alpha rarefaction

6.1.4.4 Beta 多样性

A、B 组 Beta 多样性无显著差异。

Figure 5 (下方图) 为图 Beta diversity group test 概览。

(对应文件为 Figure+Table/Beta-diversity-group-test.pdf)

Figure 5: Beta diversity group test

'Taxonomy hierarchy' 数据已全部提供。

(对应文件为 Figure+Table/Taxonomy-hierarchy)

注:文件夹 Figure+Table/Taxonomy-hierarchy 共包含 6 个文件。

- $1.\ 1_Phylum.pdf$
- 2. 2 Class.pdf
- $3. 3_{Order.pdf}$
- 4. 4 Family.pdf
- 5. 5_Genus.pdf
- 6. ...

6.1.4.5 差异分析

注: MicrobiotaProcess 的差异分析和 Qiime2 差异分析结果相同,未发现差异肠道菌。

Reference

- 1. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta~2, (2023).
- Xu, S. et al. MicrobiotaProcess: A comprehensive r package for deep mining microbiome. The Innovation 4, 100388 (2023).
- 3. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37, 852–857 (2019).
- 4. McDonald, D. *et al.* The biological observation matrix (BIOM) format or: How i learned to stop worrying and love the ome-ome. *GigaScience* 1, 7 (2012).
- Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nature methods 13, 581 (2016).
- 6. Hamday, M., Walker J., J., Harris, J. K., Gold J., N. & Knight, R. Error-correcting barcoded primers allow hundreds of samples to be pyrosequenced in multiplex. *Nature Methods* 5, 235–237 (2008).
- 7. Hamday, M. & Knight, R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. *Genome Research* **19**, 1141–1152 (2009).