Introduction to Computing Systems Homework 4

PB18111697 王章瀚

November 5, 2019

1

A: BRnzp -171 B: JSR -171 Both A and B result in the PC being changed to (PC+1)-171. However, B saves the linkage information in R7 and A does not affect R7.

The instruction A stands for BR(Branches), while B is a JSR. After A, PC would be loaded with $(PC^+ + SEXT(101010101))$. And after B, PC would be loaded with $(PC^+ + SEXT(11101010101))$.

The main differences is that the instruction with opcodes 0000 needs bit[11:9] to check n,z,p; while the one with opcodes 0100 needs bit[11] to check whether it is a JSR or JSRR. So the offset in BR can only get 9 bits, while in JSR, it can get to 11 bits, which means a larger range is available.

$\mathbf{2}$

a

0001 011 010 1 00000 (ADD R3, R2, #0) Using only NOT.

1001	011	010	111111	;	NOT $R3$,	R2
1001	011	011	111111	:	NOT R3.	R3

b

1001	001	011	111111	;	NOT	R1,	R3	
0001	001	001	1 00001	;	ADD	R1,	R1,	#1
0001	001	010	000 001	:	ADD	R1.	R2.	R.1

 \mathbf{c}

```
0101 001 001 000 001 ;AND R1, R1, R1
```

 \mathbf{d}

No. The condition codes in LC3 is based on the last value loaded into a general purpose register. And this value cannot be both negative and zero at the same time.

 \mathbf{e}

 $0101 \ 001 \ 001 \ 1 \ 00000$

;AND R1, R1, #0

3

0001 101 000 1 11000

4

Including PC, MEMORY(and MDR, MAR), IR, CONTROL UNIT, REG FILE, MARMUX.

5

 \mathbf{a}

Turn R0 into $R0 \times 2^4$. Or Turn R0 into R0 << 4.

 \mathbf{b}

PC	R0	R1	R2	R3	R4	R5	R6	R7	N	Z	Р
x3006(since there's a breakpoint)	x0050	x0000	0	1	0						

c

ins	${ m truction}$	clock cycles
	AND	1+5+1+1+1=9
	ADD	1+5+1+1+1=9
	LD	1+5+1+1+1+5+1=15
	BRp	1+5+1+1+1=9

And the program uses 1 AND, (1+4*2=9) ADDs, 1 LD, 4 BRps. So the total number would be $1 \times 9 + 9 \times 9 + 1 \times 15 + 4 \times 9 = 141$

6

The numbers of ones in x3100 would be stored into R0.

7

0110 001 000 000000 ;LD R1, R0, #0 0000 100 00000010 ;BRn