tPartie I Construction d'un carré magique

Il existe plusieurs méthode pour construire un carré magique d'ordre impaire (Damier crénelé, siamoise, losange, serpent ...).

Dans cette épreuve, on s'intéresse seulement à la méthode du damier crénelé.

Question 1)

a) Le tableau est composé de n² cases avec n lignes et n colonnes dont chaque case est affectée par un nombre compris entre 1 et n² (sans répétition).

Donc la somme de tous les nombres dans les n² cases est :

$$1 + 2 + 3 \dots + n^2 = n^2 \times \frac{n^2 + 1}{2}$$

Et puisqu'il y a n cases et que chaque ligne (resp. colonnes) possède la même somme, soit m et la somme pour une ligne (resp. colonne).

On a
$$1 + 2 + 3 ... + n^2 = m + m + .. + m$$
 (*n fois*) donc

$$m = \frac{1}{n} \frac{n^2(n^2+1)}{2} = \frac{n}{2} \times (n^2+1)$$

b) On a

La plus longue ligne / colonne est celle qui est autour du centre(vert), il existe (n-1) cases à gauche (bleu) et (n-1) à droite (bleu encore).(même chose pour bas et haut).

Donc la somme donne 2n-1 cases

c) Pour un damier qui est assimilable à un losange de longueur n, existe n lignes, entre chaque 2 lignes existe une ligne de longueur n-1, donc n-1 ligne de longueur n-1 et n lignes de longueur n : le nombre totale de cas :

$$n \times n + (n-1) \times (n-1) = n^2 + (n-1)^2$$

Question 2)

Initialisation d'une matrice carrée d'ordre (2n-1)

```
//Entrer la taille du tableau
scanf("%d",&n);
//Allocation dynamique d'une matrice d'ordre (2*n-1)*(2*n-1)
P=(int **)malloc(sizeof(int**)*(2*n-1));
for(i=0;i<2*n-1;i++)
    P[i]=(int *)malloc(sizeof(int *)*(2*n-1));

//Initialisation des elements du tableau par 0
//Normalement le tableau s'initialise automatiquement par 0
/*for(i=0;i<2*n-1;i++)
    for(j=0;j<2*n-1;j++)
        P[i][j]=0;*/</pre>
```

Question 3)

Méthode 1:

```
//Remplissage du tableau
for(j=0;j<n;j++)
    for(i=n-1;i<2*n-1;i++)
    {
        P[j+(i+1-n)][i-j]=c++;
    }</pre>
```

Méthode 2:

Explication:

Méthode 1:

L'indice j+(i+1-n) prend les valeurs j,j+1,...j+n-1 (Décalage au bas).

L'indice i-j prend les valeur n-1-j,n-j,....2n-2-j (Décalage à droite).

Le point de départ et (j,n-1-j) qui prend les valeurs (0,n-1);(1,n-2)...(n-1;0). Pour notre exemple : les points de départ sont (0,6),(1,5)...(6,0).

Méthode 2:

L'indice i+j prend les valeurs (0,1,2,... n-1); (1,2,3,...,n); .. ;(n-2,n,...,2n-1). L'indice n-1-i+j prend les valeurs (n-1,n,..,2n-1); (n-2,n-1,..,2n-2); (0,1,...,n-1).

ij	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	1	0
1	0	0	0	0	0	8	0	2
2	0	0	0	0	15	0	9	0
3	0	0	0	22	0	16	0	10
4	0	0	29	0	23	0	17	0
5	0	36	0	30	0	24	0	18
6	43	0	37	0	31	0	25	0

Tableau illustrant les points de départ (en orange) pour n=7.

Question 4)

Méthode 1:

```
for(i=n/2;i<n/2+n;i++)
    for(j=n/2;j<n/2+n;j++)
    {
        if(P[i][j]==0)
        {
            if((i+n)<2*n-1&&P[i+n][j]!=0)
                P[i][j]=P[i+n][j];
            else if((j+n)<2*n-1&&P[i][j+n]!=0)
                P[i][j]=P[i][j+n];
            else if(i-n>=0&&P[i-n][j]!=0)
                P[i][j]=P[i-n][j];
            else if(j-n>=0&&P[i][j-n]!=0)
                P[i][j]=P[i][j-n];
        }
}
```

Explication:

C'est la méthode la plus facile, elle consiste à parcourir la partie (rose) en testant toutes le cases qui sont situées à distance de n à une case dont la valeur est nulle, il existe 4 possibilités dont une seule est correcte (celle qu'est est diff de 0).

ij	0	1	2	3	4	5	6	7	8	9	10	11	12
0							1						
1						8		2					
2					15		9		3				
3				22		16		10		4			
4			29		23		17		11		5		
5		36		30		24		18		12		6	
6	43		37		31		25		19		13		7
7		44		38		32		26		20		14	
8			45		39		33		27		21		
9				46		40		34		28			
10					47		41		35				
11						48		42					
12							49						

- La seule case adéquate pour la case jaune d'indice (3,4) de valeur 47, c'est la case (10,4).
 - L'autre case (3,11) est de distance 0 mais sa valeur est nulle.
- La seule case adéquate pour la case grise d'indice (5,4), c'est la case (5,11) de valeur 6.
 L'autre case (12,4) est de distance 5 mais sa valeur est nulle.

Méthode 2:

Explication:

C'est presque la même chose, en jouant juste sur la condition.

Vous devez remarquer que les cases vides sont situés d'une manière pour que les indices i et j aient une somme impaire, donc on remplace la condition if(P[i][j]==0) par if((i+j)%2==1) ou if(i%2 !=j%2) ou if(i%2+j%2==1) ou if((i+j)%2)...

Method 3:

C'est une méthode triviale qui consiste à parcourir chaque quadrant. Le code sera :

```
for(i=0;i< n/2;i++)
    for(j=n/2+1; j<2*n-1-(n/2+1); j++)
        if(P[i][j]!=0)
            P[i+n][j]=P[i][j];
for(i=n/2+1;i<2*n-1-(n/2+1);i++)
    for(j=0;j<n/2;j++)
        if(P[i][j]!=0)
            P[i][j+n]=P[i][j];
for(i=n/2+1;i<2*n-1-(n/2+1);i++)
    for(j=2*n-1-n/2; j<2*n-1; j++)
        if(P[i][j]!=0)
            P[i][j-n]=P[i][j];
for(i=2*n-1-n/2;i<2*n-1;i++)
    for(j=n/2+1;j<2*n-1-(n/2+1);j++)
        if(P[i][j]!=0)
            P[i-n][j]=P[i][j];
```

Méthode 4:

Explication:

Pour cet exemple, i prend les valeurs 0, 1,2 ; j prend les valeurs 4,5,6,7,8 ; Il balaye la partie verte de la matrice.

Si on prend (i,j)=(2,4) (P[i][j]=15)

On aura:

- 1- P[i+n][j]=P[9][4] affectée par P[2][4] (a pour valeur 15) (1ère quadrant)
- 2- P[j][n+i]=P[4][9] affectée par P[4][2] (a pour valeur 29) (2ème quadrant)
- 3- P[n-2-i][j]=P[3][4] affectée par P[10][4] (a pour valeur 47) (3ème quadrant)
- 4- P[j][n-2-i]=P[4][3] affectée par P[4][10] (a pour valeur 5) (4ème quadrant)

Method 5:

Le problème avec l'autre méthode, c'est qu'on doit comparer P[i][j] avec 0 donc on doit initialiser toutes les cases par 0 dès le début.

Normalement pour certain compilateurs, ils initialisent automatiquement les cases par 0, pour enlever l'ambiguïté, on peut tester si P[i][j] se trouve dans les diagonales ((1,8,15,...);(2,9,16,...);(3,10,17,...)..).

<u>;</u> -	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	ø	0	9	0	7	0	?	0	~	0	0
1	0	0	0	Ó	0	8	0	2	0	Ø	0	0	0
2	0	0	0	0	15	0	9	0	3	0	0	0	0
3	0	0	0	22	0	16	0	10	0	4	0	0	0

Si vous remarque bien les positions des éléments (1,8,15,9,2,3)

Vous allez constater qu'ils se trouvent aux points dont les indices respectent l'inégalité suivante

$$\begin{cases} j+i \geq n-1 \\ j-i \leq n-1 \\ j+i \ paire \\ j-i \ paire \end{cases} \rightarrow \begin{cases} j+i \geq n-1 \\ j-i \leq n-1 \\ (j\%2) == (i\%2) \end{cases}$$

Pour cela il faut seulement comparer i+j et j-i avec n-1 et tester leur parité.

Pour notre exemple on les seuls points respectant l'inégalité sont

On remplace seulement la condition if(P[i][j] !=0) par if((j+i)>=n-1&&(j-i)<=n-1&&(j%2==i%2))

i	0	1	2	3	4	5	6	7	8	9	10	11	12
0							1						
1						8		2					
2					15		9		3				
3				22		16		10		4			
4			29		23		17		11		5		
5		36		30		24		18		12		6	
6	43		37		31		25		19		13		7
7		44		38		32		26		20		14	
8			45		39		33		27		21		
9				46		40		34		28			
10					47		41		35				
11						48		42					
12							49						

Tableau pour n=7 illustrant les quadrants, diagonale ...

Le vert désigne le quadrant principal

Le jaune désigne les 3 quadrants restants qu'on déduit partir du quadrant principale

Question 5)

```
//Vider la memoire
for(i=0;i<2*n-1;i++)
    free(P[i]);
free (P);</pre>
```

Exemples:

Pour n=3 on a:

Carré magique.

0	0	1	0	0
0	4	0	2	0
7	0	5	0	3
0	8	0	6	0
0	0	9	0	0

Matrice.

Pour n=5 on a;

11	24	7	20	3
4	12	25	8	16
17	5	13	21	9
10	18	1	14	22
23	6	19	2	15

Carré magique.

0	0	0	0	1	0	0	0	0
0	0	0	6	0	2	0	0	0
0	0	11	0	7	0	3	0	0
0	16	0	12	0	8	0	4	0
21	0	17	0	13	0	9	0	5
0	22	0	18	0	14	0	10	0
0	0	23	0	19	0	15	0	0
0	0	0	24	0	20	0	0	0
0	0	0	0	25	0	0	0	0

Matrice.

Pour n=7 (déjà cité en exemple)

22	47	16	41	10	35	4
5	23	48	17	42	11	29
30	6	24	49	18	36	12
13	31	7	25	43	19	37
38	14	32	1	26	44	20
21	39	8	33	2	27	45
46	15	40	9	34	3	28

Carré magique

ij	0	1	2	3	4	5	6	7	8	9	10	11	12
0							1						
1						8		2					
2					15		9		3				
3				22	47	16	41	10	35	4			
4			29	5	23	48	17	42	11	29	5		
5		36		30	6	24	49	18	36	12		6	
6	43		37	13	31	7	25	43	19	37	13		7
7		44		38	14	32	1	26	44	20		14	
8			45	21	39	8	33	2	27	45	21		
9				46	15	40	9	34	3	28			
10					47		41		35				
11						48		42					
12							49						

1^{èr} Damier et 2^{ème} Damier.

Pour n=9 : (Avec couleur indicative)

37	78	29	70	21	62	13	54	5
6	38	79	30	71	22	63	14	46
47	7	39	80	31	72	23	55	15
16	48	8	40	81	32	64	24	56
57	17	49	9	41	73	33	65	25
26	58	18	50	1	42	74	34	66
67	27	59	10	51	2	43	75	35
36	68	19	60	11	52	3	44	76
77	28	69	20	61	12	53	4	45

Carré magique.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	10	0	2	0	0	0	0	0	0	0
2	0	0	0	0	0	0	19	0	11	0	3	0	0	0	0	0	0
3	0	0	0	0	0	28	0	20	0	12	0	4	0	0	0	0	0
4	0	0	0	0	37	78	29	70	21	62	13	54	5	0	0	0	0
5	0	0	0	46	6	38	79	30	71	22	63	14	46	6	0	0	0
6	0	0	55	0	47	7	39	80	31	72	23	55	15	0	7	0	0
7	0	64	0	56	16	48	8	40	81	32	64	24	56	16	0	8	0
8	73	0	65	0	57	17	49	9	41	73	33	65	25	0	17	0	9
9	0	74	0	66	26	58	18	50	1	42	74	34	66	26	0	18	0
10	0	0	75	0	67	27	59	10	51	2	43	75	35	0	27	0	0
11	0	0	0	76	36	68	19	60	11	52	3	44	76	36	0	0	0
12	0	0	0	0	77	28	69	20	61	12	53	4	45	0	0	0	0
13	0	0	0	0	0	78	0	70	0	62	0	54	0	0	0	0	0
14	0	0	0	0	0	0	79	0	71	0	63	0	0	0	0	0	0
15	0	0	0	0	0	0	0	80	0	72	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	81	0	0	0	0	0	0	0	0

1^{èr} Damier et 2^{ème} Damier.

NB : vous pouvez consulter le code complet, ainsi le fichier PDF sur le lien https://github.com/AyoubDergaoui/CorrectionExamen