CAPSTONE JDS (GROUP 2)

Amirul Faris bin Jaafre
Shahrul Nizam bin Abu Bakar
Nurul Nadhirah binti Mohd Ikmal Hisham
Rafizatul Nabila binti Abdul Razak
Nur Farah Nabilah binti Ahmed Zhaini

OBJECTIVE:

Design a predictive model to determine the potential customers. The target variable is 'Potential_Customer'

A) Data Preprocessing:	Integrity Check, Exploratory Data Analysis, Cleaning			
B) Feature Engineering:	Make new features or change the current features			
C) Feature Selection:	Choose the best features			
D) Predictive Models:	Create several predictive models and tune the hyperparameters			
E) Model Evaluation:	Compare the performance of the models			
F) Choose the Best Model:	Choose the model that has the best performance			

A) DATA PREPROCESSING (no. 1-5)

DATA CLEANING

Import packages \rightarrow load data \rightarrow no. of rows \rightarrow remove \$ and , sign

```
1. Import necessary Packages
[ ] import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.linear_model import LogisticRegression
2. Load the Data into Pandas Dataframe
    data = pd.read_csv('data.csv')
    data.head().T
        Potential Customer
              C ID
                                               88003
                                                         188721
                                                                      88056
        Cust Last Purchase
                                                         $20.00
                                       $30.00
                                                 NaN
                                                                      $5.00
           Pur 3 years
                                                   5
           Pur 5 years
                                                                         15
                                                             11
       Pur_3_years_Indirect
        Pur_5_years_Indirect
                                                              3
            Pur latest
                                  $0.00 $25.00 $15.00
                                                          $20.00
                                                                      $3.00
         Pur_3_years_Avg
                                  $7.50 $25.00 $15.00
                                                          $20.00
                                                                      $4.33
    Cust Ann Income
                           $65.957.00
                                        $0.00
                                                $0.00 $76,293.00 $113,663.00
```

```
3.1. How big is the data? (number of rows, features and their types)
 [ ] #number of rows and columns
     print("Data on rows: {}".format(len(data)))
     print("Data on columns: {}".format(len(data.columns)))
     Data on rows: 4469
     Data on columns: 25
3.1.1.1 Remove the dollar sign and comma from data
     #Removed '$' and ',' signs
     data = data.replace({'\$':''}, regex = True)
     data = data.replace({'\,':''}, regex = True)
     data.head().T
         Potential Customer
                CID
                                                 88003
                                                           188721
                                                                       88056
        Cust Last Purchase
                                     5.00
                                           30.00
                                                   NaN
                                                            20.00
                                                                         5.00
            Pur 3 years
            Pur 5 years
                                      17
                                                               11
                                                                          15
        Pur 3 years Indirect
                                                                           2
        Pur 5 years Indirect
             Pur latest
                                           25.00
                                                  15.00
                                                            20.00
                                                                         3.00
          Pur 3 years Avg
                                     7.50
                                           25.00
                                                  15.00
                                                             20.00
                                                                         4.33
         Cust Ann Income
                                                 0.00 76293.00 113663.00
                               65957.00
                                          0.00
```

```
3.2. Check data for duplicate rows

def check_duplicate(d,c):
    if len(d[c])>len(set(d[c])):
        print('Data has duplicate')
    else:
        print('Data does not have duplicate')
    check_duplicate(data, 'C_ID')

Data has duplicate

3.2.1 Remove duplicate rows

Hint: Use df=df.drop_duplicates()

[] #drop all duplicates
```

3.3. Do we need c_ID in our analysis?

data = data.drop_duplicates()

```
[ ] #No, because C ID does not contribute to predict potential
    data.drop('C ID', axis=1, inplace=True)
    data.info()
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 3618 entries, 0 to 3617
    Data columns (total 24 columns):
     # Column
                                   Non-Null Count Dtype
         Potential_Customer
                                   3618 non-null int64
         Cust Last Purchase
                                   1736 non-null
                                                  object
     2 Pur 3 years
                                   3618 non-null
                                                  int64
     3 Pur 5 years
                                   3618 non-null
                                                  int64
```

DATA CLEANING

Drop duplicates → **drop 'C_ID'** → **change data types**

3.4. Check if the column types are accurate? if not fix them

```
[ ] #check data types
     data.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 3618 entries, 0 to 3617
     Data columns (total 24 columns):
         Column
                                   Non-Null Count Dtype
          Potential Customer
                                   3618 non-null
          Cust Last Purchase
                                   1736 non-null
                                                   object
         Pur 3 years
                                   3618 non-null
                                                  int64
          Pur_5_years
                                   3618 non-null
          Pur_3_years_Indirect
                                   3618 non-null
                                                   int64
          Pur 5 years Indirect
                                                   int64
                                   3618 non-null
         Pur_latest
                                   3618 non-null
                                                   object
          Pur 3 years Avg
                                   3618 non-null
                                                   object
          Pur 5 years Avg
                                   3618 non-null
                                                   object
          Pur 3 years Avg Indirect 2956 non-null
                                                   object
         InAct Last
                                   3618 non-null
                                                   int64
      11 InAct First
                                   3618 non-null
      12 Ad Res 1 year
                                   3618 non-null
                                                   int64
      13 Ad Res 3 Year
                                   3618 non-null
                                                   int64
                                                   int64
      14 Ad Res 5 Year
                                   3618 non-null
                                                   int64
         Ad Res Ind 1 Year
                                   3618 non-null
      16 Ad Res Ind 3 Year
                                   3618 non-null
                                                   int64
      17 Ad_Res_Ind_5_Year
                                   3618 non-null
                                                   int64
      18 Status_Cust
                                   3618 non-null
                                                   object
      19 Status Latest Ad
                                   3618 non-null
                                                   int64
      20
                                                   float64
                                   2825 non-null
      21 Gender
                                   3618 non-null
                                                   object
      22 Cust Prop
                                   3618 non-null
                                                   object
      23 Cust Ann Income
                                   3618 non-null object
     dtypes: float64(1), int64(14), object(9)
     memory usage: 706.6+ KB
[ ] #To distinguish data type
     CatCols = ['Potential Customer', 'Status Cust', 'Status Latest Ad',
```

'Gender', 'Cust_Prop']
NumCols = list(set(data.columns)-set(CatCols))

```
#Change data type
    data[CatCols] = data[CatCols].apply(lambda x: x.astype('category'))
    data[NumCols] = data[NumCols].apply(lambda x: x.astype('float64'))
    data.info()
    # Only 'Potential_Customer', 'Status_Cust', 'Status_Latest_Ad', 'Gender', 'Cust_Prop
    # changed into category variables, all other columns changed to float 64
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 3618 entries, 0 to 3617
    Data columns (total 24 columns):
     # Column
                                   Non-Null Count Dtype
         Potential Customer
                                   3618 non-null
                                                  category
         Cust Last Purchase
                                   1736 non-null
                                                  float64
         Pur 3 years
                                                  float64
                                   3618 non-null
         Pur 5 years
                                   3618 non-null
                                                  float64
         Pur 3 years Indirect
                                                  float64
                                   3618 non-null
         Pur 5 years Indirect
                                                  float64
                                   3618 non-null
         Pur latest
                                   3618 non-null
                                                  float64
         Pur 3 years Avg
                                   3618 non-null
                                                  float64
         Pur_5_years_Avg
                                   3618 non-null
                                                  float64
         Pur 3 years Avg Indirect 2956 non-null
                                                  float64
     10 InAct Last
                                   3618 non-null
                                                  float64
     11 InAct First
                                   3618 non-null
                                                  float64
     12 Ad Res 1 year
                                   3618 non-null
                                                  float64
     13 Ad Res 3 Year
                                   3618 non-null
                                                  float64
     14 Ad Res 5 Year
                                   3618 non-null
                                                  float64
     15 Ad Res Ind 1 Year
                                   3618 non-null
                                                  float64
     16 Ad Res Ind 3 Year
                                   3618 non-null
                                                  float64
     17 Ad_Res_Ind_5_Year
                                   3618 non-null
                                                  float64
     18 Status Cust
                                   3618 non-null
                                                  category
     19 Status Latest Ad
                                   3618 non-null
                                                  category
     20 Age
                                   2825 non-null
                                                   float64
     21 Gender
                                   3618 non-null
                                                  category
     22 Cust Prop
                                   3618 non-null
                                                  category
     23 Cust Ann Income
                                   3618 non-null
                                                  float64
```

EXPLORATORY DATA ANALYSIS

1) Explore Categorical Variables

```
# describe all 5 categorical data columns

data.describe(include = ('category'))
```

	Potential_Customer	Status_Cust	Status_Latest_Ad	Gender	Cust_Prop
count	3618	3618	3618	3618	3618
unique	2	6	2	3	2
top	0	Α	1	F	Н
freq	1882	2146	2057	1922	1981

fig, ax=plt.subplots(nrows=len(CatCols), figsize=(6,20))
for a in np.arange(len(CatCols)):
 sns.countplot(x=data[CatCols[a]],ax=ax[a]);

countplot for all 5 categorical data

2) Explore Relationship Between Categorical & Target Variable

Insight:

- The distribution for Status_Cust and Status_Latest_Ad are significant to Potential Customer as we can observe the obvious difference
- While as for gender and Cust_Prop, they show slight difference which may have only little contribution towards Potential_Customer

Solution:

• Categorical variable can be converted into numerical for easier interpretation (This is done in part 8.1)

3) Explore Numerical Variables

```
fig, ax=plt.subplots(nrows=len(NumCols), ncols=2, figsize=(12,80))
for a in range(len(NumCols)):
    sns.distplot(data[NumCols[a]],ax=ax[a,0])
    sns.boxplot(data[NumCols[a]],ax=ax[a,1]);
```



```
from scipy.stats import skew
#skewness for all data
data.skew()
Cust Last Purchase
                            4.966810
Pur_3_years
                            1.291322
Pur_5_years
                            2.079296
Pur_3_years_Indirect
                            1.124769
Pur_5_years_Indirect
                            1.287071
Pur latest
                            6.660116
Pur_3_years_Avg
                            7.913836
Pur 5 years Avg
                            6.756579
Pur_3_years_Avg_Indirect
                            8.043963
InAct Last
                           -0.808274
InAct First
                            0.136455
Ad Res 1 year
                            2.788479
Ad Res 3 Year
                            0.321259
Ad Res 5 Year
                            0.401333
                            0.943712
Ad Res Ind 1 Year
Ad Res Ind 3 Year
                           -0.448007
Ad Res Ind 5 Year
                            0.068045
Age
                           -0.406354
Cust Ann Income
                            0.039826
dtype: float64
# the skewness are mostly right-skewed (positive skewness)
```

Insight:

- Most of the variables show positive skew as they are skewed to the right except for InAct_Last, Age
- Some of the variables have outliers, hence we need to remove them

Handling Missing Values

```
#Identify missing values
data.isna().sum()
Potential Customer
                               0
Cust Last Purchase
                            1882
Pur 3 years
                               0
Pur 5 years
Pur 3 years Indirect
Pur 5 years Indirect
Pur latest
Pur 3 years Avg
Pur_5_years_Avg
Pur 3 years Avg Indirect
                             662
InAct Last
                               0
InAct First
Ad Res 1 year
Ad Res 3 Year
Ad Res 5 Year
Ad_Res_Ind_1_Year
Ad Res Ind 3 Year
Ad Res Ind 5 Year
Status_Cust
Status Latest Ad
Age
                             793
Gender
Cust Prop
Cust_Ann_Income
dtype: int64
#Display columns with missing values
data.columns[data.isnull().any()]
Index(['Cust Last Purchase', 'Pur 3 years Avg Indirect', 'Age'], dtype='object')
```

Handling Missing Values:

1) Cust_Last_Purchase

```
#fill missing values of 'Cust_Last_Purchase' with 0

X_train.Cust_Last_Purchase = X_train.Cust_Last_Purchase.fillna(0)

X_test.Cust_Last_Purchase = X_test.Cust_Last_Purchase.fillna(0)
```

2) Pur_3_years_Avg_Indirect

```
#fill missing values of 'Pur_3_years_Avg_Indirect' with 0

X_train.Pur_3_years_Avg_Indirect = X_train.Pur_3_years_Avg_Indirect.fillna(0)

X_test.Pur_3_years_Avg_Indirect = X_test.Pur_3_years_Avg_Indirect.fillna(0)
```

3) Age

```
#fill missing values of 'Age' with median age (because cannot be 0)

X_train.Age = X_train.Age.fillna(int(X_train.Age.median())).astype(int)

X_test.Age = X_test.Age.fillna(int(X_train.Age.median())).astype(int)
```

Handling Missing Values

B) FEATURE ENGINEERING (no. 6)

ADDING HIGH LEVEL FEATURES

```
data['Pur 5 years Total']=data['Pur 5 years']*data['Pur 5 years Avg']
data['Pur_3 years_Total']=data['Pur_3 years']*data['Pur_3 years_Avg']
data['Ad Res Rate 3 years']=data['Pur 3 years']/(data['Ad Res 3 Year']+data['Ad Res Ind 3 Year']+1)
data['sqrt Pur 3 years Indirect']=np.sqrt(data['Pur 3 years Indirect'])
data['sqrt Pur latest']=np.sqrt(data['Pur latest'])
data['sqrt Pur 3 years']=np.sqrt(data['Pur 3 years'])
data['sqrt Pur 3 years Avg Indirect']=np.sqrt(data['Pur 3 years Avg Indirect'])
data['sqrt Pur 5 years Indirect']=np.sqrt(data['Pur 5 years Indirect'])
data['sqrt Pur 3 years Avg']=np.sqrt(data['Pur 3 years Avg'])
data['sqrt_Pur_5_years']=np.sqrt(data['Pur_5_years'])
data['sqrt Ad Res Rate 3 years']=np.sqrt(data['Ad Res Rate 3 years'])
data['sqrt_Pur_5_years_Total']=np.sqrt(data['Pur_5_years_Total'])
data['sqrt Pur 3 years Total']=np.sqrt(data['Pur 3 years Total'])
newCols = ['Pur 5 years Total','Ad Res Rate 3 years','sqrt Pur 3 years Indirect','sqrt Pur latest', 'sqrt Pur 3 years','sqrt Pur 3 years Avg Indirect',
           'sqrt Pur 3 years Avg', 'sqrt Pur 5 years', 'sqrt Ad Res Rate 3 years', 'sqrt Pur 5 years Total', 'sqrt Pur 3 years Total']
SumCols = newCols + NumCols
```

np.sqrt is applied to transform right skewed features

COMPARING SKEWNESS

Cust_Last_Purchase	4.966810
Pur_3_years	1.291322
Pur_5_years	2.079296
Pur_3_years_Indirect	1.124769
Pur_5_years_Indirect	1.287071
Pur_latest	6.660116
Pur_3_years_Avg	7.913836
Pur_5_years_Avg	6.756579
Pur 3 years Avg Indirect	8.043963
InAct_Last	-0.808274
InAct First	0.136455
Ad_Res_1_year	2.788479
Ad_Res_3_Year	0.321259
Ad Res 5 Year	0.401333
Ad_Res_Ind_1_Year	0.943712
Ad_Res_Ind_3_Year	-0.448007
Ad_Res_Ind_5_Year	0.068045
Age	-0.406354
Cust_Ann_Income	0.039826
dtype: float64	

sqrt_Pur_3_years_Indirect	-0.307275
sqrt_Pur_latest	1.307960
sqrt_Pur_3_years	0.316438
sqrt_Pur_3_years_Avg_Indirect	1.636768
sqrt_Pur_5_years_Indirect	0.157325
sqrt_Pur_3_years_Avg	1.210127
sqrt_Pur_5_years	0.601166
sqrt_Ad_Res_Rate_3_years	0.241969
sqrt_Pur_5_years_Total	1.663245
sqrt_Pur_3_years_Total	1.114593

Before np.sqrt applied

After np.sqrt applied

EXPLORE RELATIONSHIP BETWEEN NUMERICAL VARIABLES & TARGET VARIABLE

```
fig, ax=plt.subplots(nrows=len(NumCols), figsize=(12,80))
for a in np.arange(len(NumCols)):
    sns.boxplot(x=data.Potential_Customer, y=data[NumCols[a]], hue=data.Potential_Customer,ax=ax[a]);
```


Relationship on Potential_Customer and Pur_3_years_Indirect

Relationship on Potential_Customer and Pur_3_years

Relationship on Potential Customer and InAct Last

CORRELATION BETWEEN NUMERICAL VARIABLE

```
# HeatMap of Numerical Variables - NumCols

plt.figure(figsize=(12,15))
sns.heatmap(data[NumCols].corr(), annot=True, square=False)
plt.title('Correlation HeatMap for NumCols');
```


20

C) FEATURE SELECTION (no. 7-8)

FEATURE SELECTION

7. Feature Selection

- # Based on heatmap, some of the numerical data have high correlation thus, it is better to exclude numerical columns with high correlations
- # Therefore, use automatic feature selection techniques which is Principle Component Analysis (PCA) for data reduction
- # The feature selection is performed as a pre-processing step before doing the actual learning like in part 8.2 Data Scaling

4. Split data to train/test

Split the data into 75/25 train/test set. Use random_state=42 and stratify=y

- [] # define X and Y
 X = data.drop('Potential_Customer', axis=1)
 y = data['Potential_Customer']
- [] # split data into 75/25 train/test
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42, stratify=y)
- [] #check if X already exclude 'Potential Customer'
 X_train.head()

	Cust_Last_Purchase	Pur_3_years	Pur_5_years	Pur_3_years_Indirect	Pur_5_years_Indirect	Pur_latest	
3151	5.0	4.0	29.0	2.0	9.0	6.0	
1698	16.0	5.0	22.0	4.0	13.0	8.0	
2327	15.0	5.0	8.0	2.0	3.0	10.0	
721	2.0	6.0	7.0	3.0	3.0	5.0	
811	16.0	3.0	15.0	2.0	9.0	10.0	
5 rows × 23 columns							

8.1 Dummy Variables

- [] # Change categorical variables to numerical variables (0 or 1) using dummy variables
 - X_train_dum = pd.get_dummies(X_train, drop_first=True).reset_index(drop=True)
 X_test_dum = pd.get_dummies(X_test, drop_first=True).reset_index(drop=True)
- [] X_train_dum X test dum

i.	Cust_Ann_Income	Status_Cust_E	Status_Cust_F	Status_Cust_L	Status_Cust_N	Status_Cust_S
	44789.0	0	0	0	0	0
	46901.0	0	0	0	0	1
	49219.0	0	0	0	0	1
	60483.0	0	0	0	0	0
	0.0	0	0	0	0	1
-						
-	38328.0	0	0	0	0	0
-	28646.0	0	0	0	1	0
	0.0	0	0	0	0	0
	80946.0	0	0	0	0	0
	81514.0	0	0	0	0	0

FEATURE SELECTION

8.2 Data Scaling [] from sklearn.preprocessing import MinMaxScaler,PowerTransformer pw scale = PowerTransformer().fit(X train dum[NumCols]) X_train_pw=pd.DataFrame(pw_scale.transform(X_train_dum[NumCols]), columns=NumCols) X test pw=pd.DataFrame(pw scale.transform(X test dum[NumCols]), columns=NumCols) X train pw.index=X train dum.index X test pw.index=X test dum.index train pw=pd.concat([X train pw, X train dum[['Cust Prop U', 'Status Cust S', 'Status Cust N', 'Gender M', 'Gender U', 'Status Latest Ad 1']]],axis=1) test_pw=pd.concat([X_test_pw, X_test_dum[['Cust_Prop_U', 'Status_Cust_S', 'Status_Cust_N', 'Gender_M', 'Gender_U', 'Status_Latest_Ad_1']]],axis=1) # Standardize data – scaler scaler=MinMaxScaler().fit(X train dum) X train Scaled=pd.DataFrame(scaler.transform(X train dum), columns=X train dum.columns) X test Scaled=pd.DataFrame(scaler.transform(X test dum), columns=X test dum.columns) [] from sklearn.decomposition import PCA train_PCA=X_train_Scaled[NumCols] test PCA=X test Scaled[NumCols]

```
[ ] # PCA is used to reduce the dimension # Reduce to 2-dimension
    pca = PCA(2)
    projected = pca.fit_transform(train_PCA)
    pca = PCA().fit(train PCA)
    plt.plot(np.cumsum(pca.explained variance ratio ))
    plt.xlabel('Number of Components')
    plt.ylabel('Cumulative Explained Variance');
       1.0
       0.7
       0.6
       0.5
                2.5
                          7.5 10.0 12.5
                                           15.0 17.5
                        Number of Components
    pca=PCA(n_components=7).fit(train_PCA)
    PCA train=pd.DataFrame(pca.transform(train PCA))
    PCA train.index=X train.index
    PCA test=pd.DataFrame(pca.transform(test PCA))
    PCA test.index=X test.index
    X train pca=pd.concat([PCA train, X train dum[['Cust Prop U', 'Status Cust S',
            'Status_Cust_N', 'Gender_M', 'Gender_U', 'Status_Latest_Ad_1']]],axis=1)
    X test pca=pd.concat([PCA test, X test dum[['Cust Prop U', 'Status Cust S',
            'Status Cust N', 'Gender M', 'Gender U', 'Status Latest Ad 1']]],axis=1)
```

D) PREDICTIVE MODELS: (no. 9)

MODEL CREATION

```
[ ] # KNN
    knn param grid = {'n neighbors': np.arange(1, 20),
                  'p': [1,2],
                 'weights': ['uniform','distance']}
    grid = GridSearchCV(KNeighborsClassifier(),
                       knn param grid, scoring='roc auc',
    grid.fit(X train dum, y train)
    print("KNN best parameters : ", grid.best params )
    knn model = grid.best estimator
    knn model.fit(X train dum,y train)
    print("KNN best score : ", grid.best score )
    knn pred = knn model.predict(X test dum)
    print("KNN best confustion matrix on the test data \n ", confusion_matrix(y_test, knn_pred))
    print("KNN best model precision score on the test data = {:.2f}".format(precision score(y test, knn pred)))
    print("KNN best model recall score on the test data = {:.2f}".format(recall score(y test, knn pred)))
    print("KNN best model F1 score on the test data = {:.2f}".format(f1_score(y_test, knn_pred)))
    print("KNN best model accuracy score on the test data = {:.2f}".format(accuracy score(y test, knn pred)))
    KNN best parameters : {'n neighbors': 6, 'p': 1, 'weights': 'distance'}
    KNN best score: 0.6656763682963797
    KNN best confustion matrix on the test data
     [[321 150]
    [173 261]]
    KNN best model precision score on the test data = 0.64
    KNN best model recall score on the test data = 0.60
    KNN best model F1 score on the test data = 0.62
    KNN best model accuracy score on the test data = 0.64
```

```
# DecisionTree
dt_param_grid = {"max_depth" : np.arange(1,10)}

dt_grid = GridSearchCV(DecisionTreeClassifier(random_state=1),dt_param_grid, scoring='roc_auc',cv=3)

dt_grid.fit(X_train_dum, y_train)
print("Decision Tree best parameters: ",dt_grid.best_params_)
dt_model = dt_grid.best_estimator_
print("Decision Tree best scores: ",dt_grid.best_score_)

Decision Tree best parameters: {'max_depth': 1}
Decision Tree best scores: 0.9996159754224271
```

E) MODEL EVALUATION (no. 10)

Creating a function to run models on dataset

GridSearchCV allows to search for the best parameters for each model in order to achieve the best scores

```
# define new function 'best model'
def best_model(X_train, X_test, y_train, y_test, model, params, CV = 3, **kwargs):
    param grid = params
    grid = GridSearchCV(model,param grid,cv = CV,
                        scoring = 'roc auc', return train score = True)
    grid.fit(X train, y train)
    best_par = grid.best_params_
    best model = grid.best estimator .fit(X train, y train)
    y pred = best model.predict(X test)
    f1 = f1 score(y test, y pred)
    best sc = grid.best score
    conf_matrix = confusion_matrix(y_test, y_pred)
    class report = classification report(y test, y pred)
    return best par, best sc, f1, conf matrix, class report
```

Creating the parameters for each model to run in the function

Three training & test sets are selected for each model to determine which values yield the best scores

```
train list = [X train dum, X train pw, PCA train]
test list = [X test dum, X test pw, PCA test ]
data names = ['Original', 'Power transform', 'PCA transform']
model names = ['KNN', 'DecisionTree', 'Logistic Regression', 'SVM']
models=[KNeighborsClassifier(), DecisionTreeClassifier(), LogisticRegression(solver='saga', max_iter=800), SVC()]
knn param grid = {'n neighbors' :np.arange(10, 40), 'weights':['uniform','distance'],'p': [1,2]}
dt param grid = {'max depth': np.arange(1,10)}
lr param grid = {'C':[0.0001, 0.001, 0.004, 0.01, 0.04, 1, 10, 100], 'penalty':['l1', 'l2']}
svc param grid = {'C':[0.001, 0.004, 0.01, 0.04, 0.1, 1, 10], 'kernel':['liner', 'rbf'], 'gamma':[0.01, 0.1, 1]}
params=[knn param grid, dt param grid, lr param grid, svc param grid]
```

Creating another function to illustrate the result obtained from executing each model based on the type of train & test set

```
# define new function 'Report'
def Report(data_name, model_name, model):
    print("""
Data : {}
Model : {}
Best_parameters :
Best Score :
F1 Score :
Confusion Matrix:
Classification report :
""".format(data_name, model_name, model[0], model[1], model[2], model[3], model[4]))
```

Results obtained from executing both functions created (Type of train & test set refers to Power Transform and model used was KNN)

```
knn_model_1 = best_model(train_list[1], test_list[1], y_train, y_test, models[0], params = params[0])
    Report(data names[1], model names[0], knn model 1)
С→
    Data: Power transform
    Model : KNN
    Best parameters :
    {'n neighbors': 38, 'p': 2, 'weights': 'distance'}
                                                           Best parameters for KNN to obtain 0.99 score
    Best_Score :
    0.9995068865597262
    F1 Score :
    0.9862700228832951
    Confusion Matrix:
    [[462 9]
     [ 3 431]]
    Classification report :
                               recall f1-score support
                  precision
                       0.99
                                 0.98
                                           0.99
                                                      471
                       0.98
                                 0.99
                                           0.99
                                                      434
                                           0.99
                                                      905
        accuracy
       macro avg
                       0.99
                                 0.99
                                           0.99
                                                      905
    weighted avg
                       0.99
                                 0.99
                                           0.99
                                                      905
```

Results obtained from executing both functions created (Type of train & test set refers to Original and model used was Decision Tree)

```
dt_model_0 = best_model(train_list[0], test_list[0], y_train, y_test, models[1], params = params[1])
Report(data names[0], model names[1], dt model 0)
Data: Original
Model : DecisionTree
Best parameters :
{'max_depth': 1}
                        Best parameter for DT to obtain 1.0 score
Best_Score :
0.9996159754224271
F1 Score :
1.0
Confusion Matrix:
[[471 0]
 [ 0 434]]
Classification report :
              precision
                           recall f1-score
                                              support
           0
                   1.00
                             1.00
                                       1.00
                                                  471
           1
                   1.00
                             1.00
                                       1.00
                                                  434
                                       1.00
                                                  905
    accuracy
   macro avg
                   1.00
                             1.00
                                       1.00
                                                  905
weighted avg
                   1.00
                             1.00
                                       1.00
                                                  905
```

Results obtained from executing both functions created (Type of train & test set refers to PCA transform and model used was Logistic Regression)

```
lr_model_2 = best_model(train_list[2], test_list[2], y_train, y_test, models[2], params = params[2])
    Report(data names[2], model names[2], lr model 2)
C→
    Data: PCA transform
    Model: Logistic Regression
    Best parameters :
    {'C': 0.04, 'penalty': 'l2'}
                                        Best parameter for LR to obtain 0.57 score
    Best Score :
    0.5795298645420395
    F1 Score :
    0.45682451253481887
    Confusion Matrix:
    [[351 120]
     [270 164]]
    Classification report :
                  precision
                               recall f1-score
                                                  support
                       0.57
                                 0.75
                                                       471
               0
                                            0.64
                       0.58
                                 0.38
                                            0.46
               1
                                                       434
                                            0.57
                                                       905
        accuracy
                                            0.55
                       0.57
                                 0.56
                                                       905
       macro avg
    weighted avg
                                            0.55
                       0.57
                                 0.57
                                                       905
```

Results obtained from executing both functions created (Type of train & test set refers to Power Transform and model used was SVM)

```
\frac{\checkmark}{30s} [75] svm_model_1 = best_model(train_list[1], test_list[1], y_train, y_test, models[3], params = params[3])
        Report(data_names[1], model_names[3], svm_model_1)
        Data: Power transform
        Model : SVM
        Best parameters :
        {'C': 0.04, 'gamma': 0.01, 'kernel': 'rbf'}
                                                               Best parameter for SVM to obtain 1.0 score
        Best Score :
        1.0
        F1 Score :
        1.0
        Confusion Matrix:
        [[471 0]
         [ 0 434]]
        Classification report :
                      precision
                                   recall f1-score
                                                      support
                   0
                           1.00
                                     1.00
                                                1.00
                                                           471
                           1.00
                                     1.00
                                                1.00
                                                           434
                   1
            accuracy
                                                1.00
                                                           905
                                                1.00
           macro avg
                           1.00
                                     1.00
                                                           905
        weighted avg
                           1.00
                                     1.00
                                                           905
                                                1.00
```

F) CHOOSE THE BEST MODEL

ML MODELS:

Best Model chosen was using KNN, whereby the type of data would be transformed using PowerTransformer()

```
knn_model_1 = best_model(train_list[1], test_list[1], y_train, y_test, models[0], params = params[0])
Report(data names[1], model names[0], knn model 1)
Data: Power transform
Model : KNN
Best parameters :
 'n_neighbors': 38, 'p': 2, 'weights': 'distance
Best Score :
0.9995068865597262
F1 Score :
0.9862700228832951
Confusion Matrix:
[[462
       9]
   3 431]]
Classification report :
                           recall f1-score
              precision
                                              support
                   0.99
                             0.98
                                       0.99
                                                  471
                   0.98
                             0.99
                                       0.99
                                                  434
    accuracy
                                       0.99
                                                  905
                                                  905
                   0.99
                             0.99
                                       0.99
weighted avg
                   0.99
                             0.99
                                       0.99
                                                  905
```


- Despite other models trained with the Power transformed data resulting in scores of
 1.0, the probable cause would due to overfitting of data No training error
- Hence, selecting the KNN model which yielded 0.99 accuracy score would be the best even if overfitting still occurs but not nearly severe as other models
- Occurrence of overfitting maybe due to noise & inaccurate values in dataset

When a model fits the training data perfectly, it probably means it is "overfit" and will not perform well with new data set

THANK YOU:)

