Calculus II

Series absolute convergence, the ratio and root tests

Todor Milev

2019

Outline

- Alternating Series
 - Estimating Sums
 - Absolute Convergence

2019

Outline

- Alternating Series
 - Estimating Sums
 - Absolute Convergence
- Absolute Convergence and the Ratio and Root Tests
 - The Ratio Test
 - The Root Test

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} -\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} -\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} -\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} -\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{3}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{3}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{3}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{3}{6} + \frac{6}{7} - \dots = \frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{3} - \frac{3}{4}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{\substack{n=1 \\ \infty}}^{\infty}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} -\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} -\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \frac{1}{2}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{\substack{n=1 \\ \infty}}^{\infty}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{\substack{n=1 \\ \infty}}^{\infty}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty}$$

$$\frac{1}{n}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} \frac{n+1}{n}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} \frac{n+1}{n}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} \frac{n}{n+1}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} \frac{n}{n+1}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$

Alternating Series

Definition (Alternating Series)

An alternating series is a series whose terms are alternately positive and negative.

Examples

Here are two examples:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$
$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$

The *n*th term of an alternating series has the form

$$a_n = (-1)^{n-1}b_n$$
 or $a_n = (-1)^n b_n$

where b_n is positive.

Theorem (The Alternating Series Test)

If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - \cdots, \qquad b_n > 0$$

satisfies

- lacktriangledown $b_{n+1} \leq b_n$ for all n and

then the series is convergent.

Example

The alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

satisfies

- **1** $b_{n+1} < b_n$ because $\frac{1}{n+1} < \frac{1}{n}$.

Example

The alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

satisfies

- **1** $b_{n+1} < b_n$ because $\frac{1}{n+1} < \frac{1}{n}$.

Example

The alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

satisfies

- **1** $b_{n+1} < b_n$ because $\frac{1}{n+1} < \frac{1}{n}$.
- $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{n} = 0.$

Example

The alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$

satisfies

1 $b_{n+1} < b_n$ because $\frac{1}{n+1} < \frac{1}{n}$.

Therefore the series is convergent by the Alternating Series Test.

Example

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{3n}{4n-1}$$

Example

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{3n}{4n-1}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}$$

Example

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{3n}{4n-1}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{3}{4-\frac{1}{n}}$$

Example

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n}{4n - 1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{3}{4 - \frac{1}{n}} = \frac{3}{4}$$

Example

The series $\sum_{n=1}^{\infty} (-1)^n \frac{3n}{4n-1}$ is alternating, but

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n}{4n - 1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{3}{4 - \frac{1}{n}} = \frac{3}{4}$$

Therefore the series is divergent by the basic Divergence Test.

Alternating Series Estimating Sums 8/23

Estimating Sums

This theorem allows us to estimate the size of the remainder $R_n = s - s_n$ in an alternating series.

Theorem (Alternating Series Estimation Theorem)

Let $\sum (-1)^{n-1} b_n$ be the sum of an alternating series that satisfies

- **1** $0 \le b_{n+1} \le b_n$ and
- $\lim_{n\to\infty}b_n=0.$

Then the size of the error is less than the first omitted term; that is,

$$|R_n|=|s-s_n|\leq b_{n+1}.$$

$$b_{n+1} = \frac{1}{(n+1)!}$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)}$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

$$0 < \frac{1}{n!}$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

$$0 < \frac{1}{n!} < \frac{1}{n}$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

$$0 < \frac{1}{n!} < \frac{1}{n} \to 0, \text{ so } b_n \to 0 \text{ as } n \to \infty.$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

- $0 < \frac{1}{n!} < \frac{1}{n} \to 0, \text{ so } b_n \to 0 \text{ as } n \to \infty.$
 - Therefore the series converges by the Alternating Series Test.

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

- $0 < \frac{1}{n!} < \frac{1}{n} \to 0, \text{ so } b_n \to 0 \text{ as } n \to \infty.$
 - Therefore the series converges by the Alternating Series Test.

$$s = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \cdots$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

- $0 < \frac{1}{n!} < \frac{1}{n} \to 0, \text{ so } b_n \to 0 \text{ as } n \to \infty.$
 - Therefore the series converges by the Alternating Series Test.

$$s = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \cdots$$
$$= 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} + \cdots$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

- $0 < \frac{1}{n!} < \frac{1}{n} \to 0, \text{ so } b_n \to 0 \text{ as } n \to \infty.$
 - Therefore the series converges by the Alternating Series Test.

$$s = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \cdots$$
$$= 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} + \cdots$$

•
$$|s - s_6| \le b_7 = \frac{1}{5040} < 0.0002$$
.

Find the sum of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ correct to three decimal places. (0! = 1.)

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

Therefore the series converges by the Alternating Series Test.

$$s = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \cdots$$
$$= 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} + \cdots$$

•
$$|s - s_6| \le b_7 = \frac{1}{5040} < 0.0002$$
.

•
$$s_6 = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} \approx 0.368056.$$

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

- - Therefore the series converges by the Alternating Series Test.

$$s = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \cdots$$
$$= 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} + \cdots$$

- $|s s_6| \le b_7 = \frac{1}{5040} < 0.0002$.
- $s_6 = 1 1 + \frac{1}{2} \frac{1}{6} + \frac{1}{24} \frac{1}{120} + \frac{1}{720} \approx 0.368056.$
- The error of less than 0.0002 doesn't affect the third decimal place

Find the sum of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ correct to three decimal places. (0! = 1.)

$$b_{n+1} = \frac{1}{(n+1)!} = \frac{1}{n!(n+1)} < \frac{1}{n!} = b_n.$$

Therefore the series converges by the Alternating Series Test.

$$s = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \frac{1}{7!} + \cdots$$
$$= 1 - 1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} + \cdots$$

- $|s-s_6| \le b_7 = \frac{1}{5040} < 0.0002$.
- $s_6 = 1 1 + \frac{1}{2} \frac{1}{6} + \frac{1}{24} \frac{1}{120} + \frac{1}{720} \approx 0.368056.$
- The error of less than 0.0002 doesn't affect the third decimal place, so $s \approx s_6 \approx 0.368$.

Alternating Series Estimating Sums 10/23

Absolute Convergence and the Ratio and Root Tests

In this section, we start with any series $\sum a_n$ and consider the corresponding series

$$\sum |a_n| = |a_1| + |a_2| + |a_3| + \cdots$$

consisting of the absolute values of the terms of the original series.

2019

Absolute Convergence

Definition (Absolutely Convergent)

A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

Absolute Convergence

Definition (Absolutely Convergent)

A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

If $\sum a_n$ is a series with all positive terms, then $|a_n| = a_n$ and absolute convergence is the same thing as convergence in this case.

The series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$

is absolutely convergent because

$$\left| \sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n^2} \right| = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \right|$$

is a convergent p-series with p = 2.

The alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is convergent (by the alternating series test, as already demonstrated).

The alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is convergent (by the alternating series test, as already demonstrated).

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

The alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is convergent (by the alternating series test, as already demonstrated).

• Is it absolutely convergent?

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

This is a p-series with p =

The alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is convergent (by the alternating series test, as already demonstrated).

• Is it absolutely convergent?

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

• This is a p-series with p = 1.

The alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is convergent (by the alternating series test, as already demonstrated).

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

- This is a p-series with p = 1.
- Therefore $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right|$ is
- Therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is

The alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is convergent (by the alternating series test, as already demonstrated).

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

- This is a p-series with p = 1.
- Therefore $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right|$ is divergent.
- Therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is

The alternating harmonic series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

is convergent (by the alternating series test, as already demonstrated).

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

- This is a p-series with p = 1.
- Therefore $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}}{n} \right|$ is divergent.
- Therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is not absolutely convergent.

A series $\sum a_n$ is called conditionally convergent if it is convergent but not absolutely convergent.

A series $\sum a_n$ is called conditionally convergent if it is convergent but not absolutely convergent.

The alternating harmonic series is conditionally convergent.

A series $\sum a_n$ is called conditionally convergent if it is convergent but not absolutely convergent.

- The alternating harmonic series is conditionally convergent.
- Therefore it is possible for a series to be convergent but not absolutely convergent.

A series $\sum a_n$ is called conditionally convergent if it is convergent but not absolutely convergent.

- The alternating harmonic series is conditionally convergent.
- Therefore it is possible for a series to be convergent but not absolutely convergent.
- Question: Is it possible for a series to be absolutely convergent but not convergent?

A series $\sum a_n$ is called conditionally convergent if it is convergent but not absolutely convergent.

- The alternating harmonic series is conditionally convergent.
- Therefore it is possible for a series to be convergent but not absolutely convergent.
- Question: Is it possible for a series to be absolutely convergent but not convergent?
- Answer: No. This is the content of the next theorem.

Theorem (Absolute Convergence Implies Convergence)

If a series is absolutely convergent, then it is convergent.

15/23

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

is convergent or divergent.

• The series has positive and negative terms, but is not alternating.

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

- The series has positive and negative terms, but is not alternating.
- Use the Comparison Test:

$$0 \leq |\cos n| \leq 1$$

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

- The series has positive and negative terms, but is not alternating.
- Use the Comparison Test:

$$\begin{array}{cccc}
0 & \leq & |\cos n| & \leq & 1 \\
0 & \leq & \frac{|\cos n|}{n^2} & \leq & \frac{1}{n^2}
\end{array}$$

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

is convergent or divergent.

- The series has positive and negative terms, but is not alternating.
- Use the Comparison Test:

$$\begin{array}{cccc}
0 & \leq & |\cos n| & \leq & 1 \\
0 & \leq & \frac{|\cos n|}{n^2} & \leq & \frac{1}{n^2}
\end{array}$$

• $\sum \frac{1}{n^2}$ is a *p*-series with p =

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

is convergent or divergent.

- The series has positive and negative terms, but is not alternating.
- Use the Comparison Test:

$$\begin{array}{cccc}
0 & \leq & |\cos n| & \leq & 1 \\
0 & \leq & \frac{|\cos n|}{n^2} & \leq & \frac{1}{n^2}
\end{array}$$

• $\sum \frac{1}{n^2}$ is a *p*-series with p = 2.

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

is convergent or divergent.

- The series has positive and negative terms, but is not alternating.
- Use the Comparison Test:

$$\begin{array}{cccc}
0 & \leq & |\cos n| & \leq & 1 \\
0 & \leq & \frac{|\cos n|}{n^2} & \leq & \frac{1}{n^2}
\end{array}$$

- $\sum \frac{1}{n^2}$ is a *p*-series with p=2.
- Therefore $\sum \frac{1}{n^2}$ is $\sum \frac{|\cos n|}{n^2}$ is also

and so by the Comparison Test,

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

- The series has positive and negative terms, but is not alternating.
- Use the Comparison Test:

$$\begin{array}{cccc}
0 & \leq & |\cos n| & \leq & 1 \\
0 & \leq & \frac{|\cos n|}{n^2} & \leq & \frac{1}{n^2}
\end{array}$$

- $\sum \frac{1}{p^2}$ is a *p*-series with p=2.
- Therefore $\sum \frac{1}{n^2}$ is convergent, and so by the Comparison Test, $\sum \frac{|\cos n|}{n^2}$ is also convergent.

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

- The series has positive and negative terms, but is not alternating.
- Use the Comparison Test:

$$\begin{array}{cccc}
0 & \leq & |\cos n| & \leq & 1 \\
0 & \leq & \frac{|\cos n|}{n^2} & \leq & \frac{1}{n^2}
\end{array}$$

- $\sum \frac{1}{n^2}$ is a *p*-series with p=2.
- Therefore $\sum \frac{1}{n^2}$ is convergent, and so by the Comparison Test, $\sum \frac{|\cos n|}{n^2}$ is also convergent.
- Therefore $\sum \frac{\cos n}{n^2}$ is absolutely convergent.

Determine whether

$$\sum_{n=1}^{\infty} \frac{\cos n}{n^2} = \frac{\cos 1}{1^2} + \frac{\cos 2}{2^2} + \frac{\cos 3}{3^2} + \frac{\cos 4}{4^2} + \cdots$$

- The series has positive and negative terms, but is not alternating.
- Use the Comparison Test:

$$\begin{array}{cccc} 0 & \leq & |\cos n| & \leq & 1 \\ 0 & \leq & \frac{|\cos n|}{n^2} & \leq & \frac{1}{n^2} \\ \bullet & \sum \frac{1}{n^2} \text{ is a p-series with } p = 2. \end{array}$$

- Therefore $\sum \frac{1}{n^2}$ is convergent, and so by the Comparison Test, $\sum \frac{|\cos n|}{n^2}$ is also convergent.
- Therefore $\sum \frac{\cos n}{n^2}$ is absolutely convergent.
- Therefore by the previous theorem, $\sum \frac{\cos n}{n^2}$ is convergent.

The Ratio Test

Theorem (The Ratio Test)

- If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum a_n$ is absolutely convergent (and therefore convergent).
- 2 If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the series $\sum a_n$ is divergent.
- 3 If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L = 1$, then the Ratio Test is inconclusive.

The Ratio Test is inconclusive if
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
.

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a p-series with p =
- Therefore it is

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a p-series with p = 2.
- Therefore it is

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a p-series with p = 2.
- Therefore it is convergent.

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a p-series with p = 2.

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = \frac{1}{n^2}$
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}}$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}}$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p=2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \rightarrow$$

as $n \to \infty$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- This is a p-series with p =
- Therefore it is

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- This is a p-series with p = 1.
- Therefore it is

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- This is a p-series with p = 1.
- Therefore it is divergent.

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- $\sum_{n=1}^{\infty} \frac{1}{n}$ This is a *p*-series with p=1.
 Therefore it is divergent.

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{n+1}}{\frac{1}{n}}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- $\sum_{n=1}^{\infty} \frac{1}{n}$ This is a *p*-series with p=1.
 Therefore it is divergent.

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p=2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- $\sum_{n=1}^{\infty} \frac{1}{n}$ This is a *p*-series with p=1.
 Therefore it is divergent.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p=2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- $\sum_{n=1}^{\infty} \frac{1}{n}$ This is a *p*-series with p=1.
 Therefore it is divergent.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \frac{1}{1 + \frac{1}{n}}$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p=2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- $\sum_{n=1}^{\infty} \frac{1}{n}$ This is a *p*-series with p = 1.
 Therefore it is divergent
 - Therefore it is divergent.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \frac{1}{1+\frac{1}{n}} \to$$

as $n \to \infty$

Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p=2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- $\sum_{n=1}^{\infty} \frac{1}{n}$ This is a *p*-series with p = 1.
 Therefore it is divergent
 - Therefore it is divergent.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \frac{1}{1+\frac{1}{n}} \to 1$$
 as $n \to \infty$

The Ratio Test is inconclusive if
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
.

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

- This is a p-series with p=2.

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
• This is a *p*-series with $p = 2$.
• Therefore it is convergent.
$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \frac{n^2}{(n+1)^2} \cdot \frac{\frac{1}{n^2}}{\frac{1}{n^2}} = \frac{1}{\left(1 + \frac{1}{n}\right)^2} \to 1 \quad \text{as } n \to \infty$$

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- This is a *p*-series with p = 1.
- Therefore it is divergent.

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \frac{1}{1+\frac{1}{n}} \to 1$$
 as $n \to \infty$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} \frac{(n+1)^3}{3^{n+1}}}{(-1)^n \frac{n^3}{3^n}} \right|$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} \frac{(n+1)^3}{3^{n+1}}}{(-1)^n \frac{n^3}{3^n}} \right|$$
$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} \frac{(n+1)^3}{3^{n+1}}}{(-1)^n \frac{n^3}{3^n}} \right|$$
$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$
$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} \frac{(n+1)^3}{3^{n+1}}}{(-1)^n \frac{n^3}{3^n}} \right|$$

$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3$$

$$= \frac{1}{3} \left(1 + \frac{1}{n} \right)^3$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} \frac{(n+1)^3}{3^{n+1}}}{(-1)^n \frac{n^3}{3^n}} \right|$$

$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3$$

$$= \frac{1}{3} \left(1 + \frac{1}{n} \right)^3$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} \frac{(n+1)^3}{3^{n+1}}}{(-1)^n \frac{n^3}{3^n}} \right|$$

$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3$$

$$= \frac{1}{3} \left(1 + \frac{1}{n} \right)^3$$

$$\to \frac{1}{3}$$

Test the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ for absolute convergence.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} \frac{(n+1)^3}{3^{n+1}}}{(-1)^n \frac{n^3}{3^n}} \right|$$

$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3$$

$$= \frac{1}{3} \left(1 + \frac{1}{n} \right)^3$$

$$\to \frac{1}{3}$$

Therefore the series is

by the Ratio Test.

Test the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ for absolute convergence.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(-1)^{n+1} \frac{(n+1)^3}{3^{n+1}}}{(-1)^n \frac{n^3}{3^n}} \right|$$

$$= \frac{(n+1)^3}{3^{n+1}} \cdot \frac{3^n}{n^3}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^3$$

$$= \frac{1}{3} \left(1 + \frac{1}{n} \right)^3$$

$$\to \frac{1}{3} < 1$$

Therefore the series is absolutely convergent by the Ratio Test.

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}.$ $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}.$ $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)n!}$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)n!}$$

convergence of the series
$$\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$$
.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)^n!}$$

onvergence of the series
$$\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$$
.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)^n}$$

$$\begin{vmatrix} \frac{a_{n+1}}{a_n} \end{vmatrix} = \begin{vmatrix} \frac{(n+1)^{n+1}}{3^{n+1}(n+1)!} \\ \frac{n^n}{3^n n!} \end{vmatrix}$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$\begin{vmatrix} \frac{a_{n+1}}{a_n} \end{vmatrix} = \begin{vmatrix} \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{3^n}{3^n}n!} \end{vmatrix}$$

$$= \frac{\frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}}{\frac{3^{n+1}(n+1)!}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)n!}}$$

$$= \frac{\frac{1}{3} \left(\frac{n+1}{n}\right)^n}{n^n}$$

$$\begin{vmatrix} a_{n+1} \\ a_n \end{vmatrix} = \begin{vmatrix} \frac{(n+1)^{n+1}}{3^{n+1}(n+1)!} \\ \frac{n^n}{3^n n!} \end{vmatrix}$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)n!}$$

$$= \frac{1}{3} \left(\frac{n+1}{n}\right)^n$$

$$\begin{aligned} \left| \frac{a_{n+1}}{a_n} \right| &= \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right| \\ &= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!} \\ &= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!} \\ &= \frac{1}{3} \left(\frac{n+1}{n} \right)^n = \frac{1}{3} \left(1 + \frac{1}{n} \right)^n \end{aligned}$$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)^n!}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^n = \frac{1}{3} \left(1 + \frac{1}{n} \right)^n$$

$$\begin{vmatrix} \frac{a_{n+1}}{a_n} \end{vmatrix} = \begin{vmatrix} \frac{(n+1)^{n+1}}{3^{n+1}(n+1)!} \\ \frac{n^n}{3^n n!} \end{vmatrix}$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)n!}$$

$$= \frac{1}{3} \left(\frac{n+1}{n}\right)^n = \frac{1}{3} \left(1 + \frac{1}{n}\right)^n$$

$$\to \frac{e}{3}$$

$$\begin{vmatrix} \frac{a_{n+1}}{a_n} \end{vmatrix} = \begin{vmatrix} \frac{(n+1)^{n+1}}{3^{n+1}(n+1)!} \\ \frac{n^n}{3^n n!} \end{vmatrix}$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)n!}$$

$$= \frac{1}{3} \left(\frac{n+1}{n}\right)^n = \frac{1}{3} \left(1 + \frac{1}{n}\right)^n$$

$$\to \frac{e}{3}$$

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{3^{n+1}(n+1)!}}{\frac{n^n}{3^n n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{1}{3} \left(\frac{n+1}{n} \right)^n = \frac{1}{3} \left(1 + \frac{1}{n} \right)^n$$

$$\to \frac{e}{3}$$

Therefore the series is ?

by the Ratio Test.

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{3^n n!}$.

$$\begin{vmatrix} \frac{a_{n+1}}{a_n} \end{vmatrix} = \begin{vmatrix} \frac{(n+1)^{n+1}}{3^{n+1}(n+1)!} \\ \frac{n^n}{3^n n!} \end{vmatrix}$$

$$= \frac{(n+1)^{n+1}}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)!}$$

$$= \frac{(n+1)(n+1)^n}{n^n} \cdot \frac{3^n n!}{3^{n+1}(n+1)n!}$$

$$= \frac{1}{3} \left(\frac{n+1}{n}\right)^n = \frac{1}{3} \left(1 + \frac{1}{n}\right)^n$$

$$\to \frac{e}{3} < 1$$

Therefore the series is convergent by the Ratio Test.

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\overline{n^n}}{n!}$. $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}}\right|$$

Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$
.
$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}.$$

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}}\right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

$$= \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

$$= \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}.$$

$$\left|\frac{a_{n+1}}{a_n}\right| = \left|\frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}}\right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

$$= \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

$$= \left(\frac{n+1}{n}\right)^n$$

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

$$= \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

$$= \left(\frac{n+1}{n} \right)^n = \left(1 + \frac{1}{n} \right)^n$$

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

$$= \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

$$= \left(\frac{n+1}{n} \right)^n = \left(1 + \frac{1}{n} \right)^n$$

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

$$= \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

$$= \left(\frac{n+1}{n} \right)^n = \left(1 + \frac{1}{n} \right)^n$$

$$\to e$$

Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$
.
$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

$$= \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

$$= \left(\frac{n+1}{n} \right)^n = \left(1 + \frac{1}{n} \right)^n$$

$$\to e$$

Therefore the series is

by the Ratio Test.

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. $\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} \right|$$

$$= \frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n}$$

$$= \frac{(n+1)(n+1)^n}{(n+1)n!} \cdot \frac{n!}{n^n}$$

$$= \left(\frac{n+1}{n} \right)^n = \left(1 + \frac{1}{n} \right)^n$$

$$\Rightarrow e > 1$$

Therefore the series is divergent by the Ratio Test.

The Root Test

Theorem (The Root Test)

- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum a_n$ is absolutely convergent (and therefore convergent).
- ② If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum a_n$ is divergent.
- **1** If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L = 1$, then the Root Test is inconclusive.

The Root Test

Theorem (The Root Test)

- If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum a_n$ is absolutely convergent (and therefore convergent).
- 2 If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum a_n$ is divergent.
- **1** If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L = 1$, then the Root Test is inconclusive.

If L = 1 in the Ratio Test, don't try the Root Test, because it will be inconclusive too.

If L=1 in the Root Test, don't try the Ratio Test, because it will be inconclusive too.

Test convergence of the series $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$.

Test convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$
.
$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

Test convergence of the series $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$. $a_n = \left(\frac{2n+3}{3n+2}\right)^n$ $\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2}$

Test convergence of the series $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$. $a_n = \left(\frac{2n+3}{3n+2}\right)^n$ $\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} \cdot \frac{\frac{1}{n}}{\frac{1}{2}}$

Test convergence of the series $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$. $a_n = \left(\frac{2n+3}{3n+2}\right)^n$ $\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}$ $= \frac{2+\frac{3}{n}}{3+\frac{2}{n}}$

Test convergence of the series $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n.$ $a_n = \left(\frac{2n+3}{3n+2}\right)^n$ $\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}$ $= \frac{2+\frac{3}{n}}{3+\frac{2}{n}}$

Test convergence of the series $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$. $a_n = \left(\frac{2n+3}{3n+2}\right)^n$ $\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}$

Test convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$
.
$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

$$\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}$$

$$= \frac{2+\frac{3}{n}}{3+\frac{2}{n}}$$

$$\to \frac{2}{n}$$

Therefore the series is

by the Root Test.

Test convergence of the series
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$$
.

$$a_n = \left(\frac{2n+3}{3n+2}\right)^n$$

$$\sqrt[n]{|a_n|} = \frac{2n+3}{3n+2} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}$$

$$= \frac{2+\frac{3}{n}}{3+\frac{2}{n}}$$

$$\to \frac{2}{3} < 1$$

Therefore the series is absolutely convergent by the Root Test.