Redox Notes

- Redox involves transfer of electrons
- Oxidised ⇒ loses electrons
- Reductions ⇒ gains electrons
- Reduced species ⇒ oxidising agent/oxidant
- Oxidised species ⇒ reducing agent/reductant
- Redox reaction only occurs if there is a transfer of electrons
- Oxidation numbers shows which atoms are reduced or oxidised

G	ENERAL RULE WHE	EN DETERMINING OXIDATION NO
Group		Oxidation No
1		+1
2		+2
13		+3
14-17		Varies
	Usually	Exceptions
Oxygen	-2	Peroxides (-1); Ex. H ₂ O ₂ ; Na ₂ O ₂ F ₂ O: O(+2)
Hydrogen	+1	Metal hydrides (-1); Ex: NaH; KH

- Sum of oxidation numbers = net charge
- Oxidised species increase in oxidation number
- Reduced species decrease in oxidation number (reduced ⇒ become smaller)
- Species which do not change in oxidisation numbers are spectators

Types of Redox Reactions

- Metal-metal ion displacement ⇒ electrons transfer from more reactive metal to less reactive metal ions (more reactive metal is oxidised, less reactive reduced)
- Halogen-halide ion displacement ⇒ halogen (group 17) becomes reduced, halide ions of less reactive halogen oxidised
 - 0 It is more convenient to use halogen reagents in aqueous solution form
- Combustion ⇒ oxidisation of fuel and reduction of oxygen gas
- Corrosion ⇒ Metal is oxidised, and oxygen gas is reduced
 - O More reactive metals have greater tendency to corrode
 - O Some metals naturally form a thin protective oxide coating which forms when exposed to air, hence protecting underlying metal from corrosion

Half Equations

- Half equations show individual reactions of oxidised and reduced species
- Oxidisation half equations have electrons as product
- Reduced half equations have electrons as reactant
- When both half equations are combined, electrons cancel out and redox reaction is remaining

HOW TO BALANCE HALF EQUATION

Step	What to do?
1	Balance Metal or Non-metal other than H and O
2	Balance O (using H ₂ O)
3	Balance H (using H ⁺)
4	Count charge each side
5	Add e ⁻ to the BIGGER SIDE
6	Simplify (if needed)
7	DOUBLE CHECK TO ENSURE CHARGE IS MATCHING BOTH SIDES

• In simply stage, if H₂O or H⁺ are on both sides, subtract coefficient on both sides by smallest number

Predicting Spontaneity

- Total E^o can be used to predict spontaneity
- If E⁰>0, reaction is spontaneous => reaction will only occur in forward direction
- If E⁰<0, reaction is not spontaneous => reaction will only occur in reverse direction

Galvanic Cells

- Galvanic cells/electrochemical cells ⇒ batteries
- Galvanic cells use redox reaction to produce a voltage (potential difference) and current
- They work by allowing redox reaction to occur without direct contact between agents
- Anode ⇒ loses electrons/oxidised/reducing agent
- Cathode ⇒ gains electrons/reduced/oxidising agent
- Galvanic cell uses metal cathode and anode in aqueous solution (reducing and oxidising agents) of respective ions of metals
- Anodes and cathodes are connected, and salt bridge made of non-reactive electrolyte solution connects solutions

- Anode ⇒ oxidisation occurs. Electrode contacts reductant and labelled -ve terminal
- Cathode ⇒ reduction occurs. Electrode contacts oxidant and labelled +ve terminal
- Electrolyte ⇒ electrodes (metal nodes) are immersed in electrolyte solution
 - O lons in electrolyte conduct charge in the solution to prevent build-up of charge
 - 0 May become oxidised or reduced
- Salt Bridge ⇒ contains a non-reactive electrolyte solution
 - O Prevents direct contact between redox agents, while allowing ions to flow between them
 - Anions flow towards anode
 - O Cations flow towards cathode
 - O Salt bridge is essential to prevent build-up of electrical charge
 - O If no salt bridge, there will be no potential difference in charge between nodes, therefore. no current
- Oxidation half-cell ⇒ where oxidation occurs
 - O Consists of anode and surrounding electrolyte
- Reduction half-cell ⇒ where reduction occurs
 - O Consists of cathode and surrounding electrolyte

Strength of Oxidants

- Voltage is a measure of strength of oxidant
- Back of data sheet (table of standard reduction potentials) ranks strength of oxidising agents
- SRP is ability of a substance to be reduced by H₂ gas
- Test is same as galvanic cell, but hydrogen gas node in H⁺ electrolyte is used against tested substance
- Therefore, voltage produced against hydrogen as tested substance is OV, as no potential difference exists
- SRPT shows potential for reaction to occur
- Equations at bottom of the table are least likely to occur

Predicting Equations

- Do determine if a reaction will occur and spontaneity, look at SRPT
- SRPT half equations are ranking in order of ability to be reduced
- Substances at the top of the table have a higher electronegativity and are good oxidants
- Substances at the bottom have a low electronegativity and are good reductants
- Each half equation is reversable
- Left ⇒ right is reduction
- Right ⇒ left is oxidation
- All reduction potentials are relative to hydrogen ions
- Do not use values in explanations, unless comparing two half equations
- Predicting:
 - 1. List all species on reactant side of the potential reaction \Rightarrow don't list products

- 2. Species which appears first from the top is oxidising agent
- 3. Species which appears second from the top is reducing agent
- 4. Ignore all other species
- If oxidant is above reductant, reaction is spontaneous, otherwise, there's no reaction
- Negative slope ⇒ reaction occurs
- Positive slope ⇒ no reaction occurs
- If half equation is not on the chart, spontaneity cannot be predicted unless further information is not provided
- Non-chart equations ⇒ ranks equations from information given
- Phases:
 - 0 Ensure phases in questions are phases being used ⇒ not phases in chart
 - o RTQ to ensure correct phases
- All reactions in SRPT is at standard conditions \Rightarrow 25°, 1.00M and 1atm
 - o Predictions become unreliable if not at these conditions

Fuel Cells

- Primary Cells
 - 0 Non rechargeable galvanic cells
 - Fixed amount of oxidants and reductants (fixed amount of reactant) and cannot be replaced
 - O Alkaline cells => devices that require higher current (cd players, torches, radios etc)
 - O Silver oxide button cells =>steady constant voltage and small size (watches, pacemakers, hearing aids)
 - O Lithium cell =>very flammable, non-toxic and high energy density
 - O Dry Cell
 - Advantages:
 - Cheap
 - Portable
 - Disadvantages:
 - Low energy to mass ratio
 - Voltage decreases slowly over time (due to disintegration of reactants)
 - Max V = 1.5V, however this decreases with time ([reactants] decrease)
 - Large quantities of toxic Zn waste may enter groundwater and soil in disposal in landfill
 - Can be attached in series to add voltage

Figure 5 The dry cell uses zinc as the reducing agent and manganese(IV) oxide, MnO₂ as the oxidising agent. A graphite rod, C and powdered graphite, C conduct electrons to the surface of individual MnO₂ particles within the cathode paste. Ammonium chloride is also incorporated into the cathode paste and serves as a salt bridge as well as providing protons (NH₄ is a weak acid) needed in the reduction of MnO₂.

However, the use of ammonium ions is problematic, as over time their acidic nature causes the zinc anode to dissolve forming Zn²⁺ ions. For this reason dry cells have a low shelf life of around a year.

The overall cell reactions for a dry cell are:

Anode half-reaction: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$

Cathode half-reaction: $2MnO_2(s) + 2NH_4^+(aq) + 2e^- \rightarrow Mn_2O_3(s) + 2NH_3(aq) + H_2O(l)$ **Overall** redox reaction: $2MnO_2(s) + 2NH_4^+(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Mn_2O_3(s) + 2NH_3(aq) + H_2O(l)$

- Secondary Cells
 - o Rechargeable galvanic cells
 - o Lead-acid cell

- Each cell produces 2V and are connected in series
- Used in vehicles, solar power systems and emergency power systems
- Recharging lead acid battery is essentially electrolysis, DC current applied in opposite direction to force oxidant and reductant to reform
- Two lead grid electrodes immersed in sulfuric acid
 - Anode grid has spongy lead (Pb)
 - Cathode has powdered lead oxide (PbO₂)

- Discharge:
 - Pb oxidised to PbSO4 in presence of H2SO4
 - PbO2 solid reduced in presence of H2SO4
- Recharge:
 - Other direction (anode becomes positive, cathode becomes negative)
 - Current is applied such that Voltage>2V to ensure completion of reaction
 - Net Voltage>0V
 - Reverse discharge reaction
- Advantages
 - High surge current =>cells maintain high power to weight ratio
 - Powdered lead components =>greater surface area and reaction rate
 - Low cost
 - Can undergo many discharge/recharge cycles over many years
 - Flat =>force DC current in opposite direction for spontaneous reaction and recharge
- o Lithium Ion Cell
 - Advantages
 - High energy density
 - Long shelf life
 - Many discharge/recharge cycles
 - Disadvantages
 - High cost
 - Used in technology
- Fuel Cell
 - O Galvanic cell where oxidant and reductant are continuously fed into cell and waste is expelled
 - Reductant is a type of fuel (H₂, CH₄ etc)
 - Oxidant usually O₂
 - Very long lifespan as long and operates without limit as long as reactants are continuously fed into the cell
 - Alkaline hydrogen-oxygen fuel cell
 - Used by space shuttles for energy and drinking water
 - o Advantages
 - High efficiency ~ 70%
 - No greenhouse emissions
 - O Disadvantages
 - Expensive and difficult to source H₂
 - H₂ very flammable

Figure 14 A simplified view of an alkaline H₂/O₂ fuel cell. The reducing agent, H₂, diffuses into the porous Ni electrode and is oxidised forming H* ions and free electrons. These electrons are conducted by the Ni electrode out of the cell to the cathode. Oxygen absorbed into the cathode then gains electrons forming OH* ions. The resulting H* ions and OH* ions migrate through the electrolyte to combine and form water, the only chemical product. This cell operates at ≈150-200 °C with an efficiency of around 70%.

Mistakes

- Always flip E⁰ value when reverse reaction
- Electrochemical cell => Anode is -ve, cathode positive, electrolytic => anode +ve, cathode -ve
- ALWAYS LOOK FOR H₂O IN ELECTROLYTIC CELLS
- REFER TO SPONTANEITY
- ENSURE RHS PROPERTIES = LHS PROPERTIES IN CHEMICAL EQUATION
- ANOX => ANODE OXIDISED
- Include equations in explaining answers where possible
- Concentration effect => Redox potentials are only reliable for 1M concentrations
- DON'T ignore anion
- Use word => DISPORPORTIONATE
- SOLID ISN'T NECESSARILY FORMED IN GALVANIC CELL (at cathode) => ion formed can be aqueous => therefore, solid doesn't necessarily gain mass
- Ions already within salt bridge move => use KNO₃ for salt bridge salt

_