Sovereign Debt Standstills

Juan Carlos Hatchondo¹ Leonardo Martinez² César Sosa-Padilla³

¹University of Western Ontario

²IMF

³University of Notre Dame & NBER

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Motivation

Response to COVID-19

- G20 agreed on a 'sovereign debt standstill' to poorest countries:
 - Debt service suspension
 - Without haircuts (face-value reductions)
- Proposals to include private creditors and middle-income countries (Bolton et al., 2020)

Before COVID-19

- "Reprofiling" before IMF programs
- Liquidity shock triggered standstills (bond covenants)
- Guiding principle in recent sovereign debt restructurings

Overview of the paper

What we do

- Quantify effects of one-time debt relief (standstills and/or write-offs) after a large negative shock
- Simplest quantitative sovereign default model with long-term debt

What we find

Standstills

- Create sovereign welfare gains but creditors' capital losses (except when the standstill
 avoids an immediate default)
- Consistent with creditors' reluctance to participate (even w/o free-riding problem).
- Help generate "debt overhang" and thus opportunities for "voluntary debt exchange" (Hatchondo, Martinez and Sosa-Padilla, JME 2014)

Write-offs ⇒ sovereign and creditors' gains

Simple intuition for our result (1)

- In this class of models the optimal maturity is very short
- Aguiar et al. (2019): optimal to shorten debt maturity in debt restructurings.
- ullet Debt relief pprox debt restructuring
- ullet Standstill pprox maturity extension

 \implies Standstills are not a good idea

Simple intuition for our result (2)

- For low income or for high debt levels: bond price becomes very sensitive to changes in the debt level
- Standstills and Write-offs move the debt in opposite directions:

Standstill: future debt \uparrow (postponed debt payments earn interest) $\implies q \downarrow \downarrow \implies MV \approx bq \downarrow$ **Write-offs:** debt $\downarrow \implies q \uparrow \uparrow \implies MV \approx bq \uparrow$

 Standstills increase future debt ⇒ increased sensitivity of bond prices to debt levels ⇒ increased debt overhang and gains from write-offs

Model: simplest framework with default and long-term debt

- Equilibrium default model à la Eaton-Gersovitz (Aguiar-Gopinath; Arellano) with long-term debt (Chatterjee-Eyigungor; Hatchondo-Martinez).
- Stochastic exchange economy

$$\log(y_t) = (1 - \rho) \mu + \rho \log(y_{t-1}) + \varepsilon_t$$

ullet Objective of the government: $\mathbb{E}_t \sum_{j=t}^\infty eta^{j-t} u\left(c_j
ight)$

$$u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$$
, with $\gamma \neq 1$.

Model: borrowing opportunities

- Competitive risk-neutral lenders
- Non-contingent long-term bonds. Perpetuities with geometrically decreasing coupon obligations.

Model: defaults

- **Total defaults:** if the government defaults, it will not pay any current or future coupon obligations contracted in the past (<u>robust</u> to adding positive recovery rates)
- ullet Stochastic default duration: a default event starts with the gov's default decision and may end each period after the default period with probability ψ
- Exclusion cost: a government in default cannot borrow
- **Income cost:** each period the gov is in default current income is reduced by

$$\phi(y) = \max\{y \left[\lambda_0 + \lambda_1 [y - \mathbb{E}(y)]\right], 0\}$$

Model: recursive formulation

$$V(b,y) = \max_{d \in \{0,1\}} \{ dV_1(y) + (1-d)V_0(b,y) \}, \tag{1}$$

$$V_{1}(y) = u(y - \phi(y)) + \beta \mathbb{E}_{y'|y} \left\{ \psi V(0, y') + (1 - \psi) V_{1}(y') \right\}$$
 (2)

$$V_0(b,y) = \max_{b' \ge 0} \left\{ u(\underbrace{y-b+q(b',y)[b'-(1-\delta)b]}_{\text{consumption}}) + \beta \mathbb{E}_{y'\mid y} V(b',y') \right\}$$
(3)

The bond price is given by the following functional equation:

$$q(b',y) = \mathbb{E}_{y'|y} \left\{ e^{-r} \left(1 - \hat{d} \left(b', y' \right) \right) \left[1 + \left(1 - \delta \right) q \left(\hat{b} \left(b', y' \right), y' \right) \right] \right\}$$
(4)

Calibration

Nothing new. Mexican data, quarterly frequency

We follow Hatchondo, Martinez and Sosa-Padilla (2014) and Hatchondo and Martinez (2017).

Risk aversion	γ	2
Risk-free rate	r	1%
Discount factor	β	0.9745
Probability default ends	ψ	0.083
Debt duration	δ	0.03
Income autocorrelation coefficient	ρ	0.94
Standard deviation of innovations	σ_{ϵ}	1.5%
Mean log income	μ	$(-1/2)\sigma_\epsilon^2$
Income cost of defaulting	λ_0	0.183
Income cost of defaulting	λ_1	1.10

No problem fitting data

Targeted moments			
	Model	Data	
Mean Debt-to-GDP	44	44	
Mean r_s	3.4	3.4	
Non-Targeted moments			
$\sigma(c)/\sigma(y)$	1.4	1.2	
$\sigma(tb)$	0.8	1.4	
$\sigma\left(r_{s}\right)$	1.5	1.5	
$\rho(tb,y)$	-0.8	-0.7	
$\rho(c, y)$	0.99	0.93	
$\rho\left(r_{s},y\right)$	-0.7	-0.5	
$\rho(r_s, tb)$	0.9	0.6	

Main exercise: the shock and the standstill

Three shock sizes

- Endowment shock (only shock), mean debt (44%)
- Worsens access to debt markets (and thus the need for standstill)
 - 1. Small shock: spread increases by 250 bps (preserved market access; Mexico)
 - 2. Large shock: 1000 bps (sub-investment grade; 1000 bps in Sub- Saharan Africa)
 - 3. Default-triggering shock: country defaults w/o debt relief but repays with standstill

Standstills

- No debt payments for T^{DS} periods
- The government can borrow (or buy back debt)
- ullet Creditors' holdings grow at the rate $r^{DS}=1.85\%$ (risk-free rate + avg quarterly spread)
- Gov can declare a default. If so, standstill ends.

Write-off

• Reduction in debt's face value.

Creditor's capital losses

Creditor's capital loss: percent decline in the market value of debt (at the beginning of a period)

$$MV(b, y) = b \left[1 - \hat{d}(b, y)\right] \left[1 + (1 - \delta)q(\hat{b}(b, y), y)\right]$$

$$MV^{DS_j}(b, y) = b \left[1 - \hat{d}^{DS_j}(b, y) \right] (1 + r^{DS}) q^{DS_j} \left(\hat{b}^{DS_j}(b, y), y \right)$$

We have nothing to say about **how or if** capital losses could be imposed (e.g., "doctrine of necessity")

Q: What is the best debt relief 'strategy' for a given capital loss?

Standstills: welfare gains and creditors' losses

Focus on the "Large" shock (\uparrow spread: 1000 bps, $\downarrow y \approx 5\%$)

IRFs: Standstills increase indebtedness

Black: No debt relief

Red: 1yr Standstill

Write-offs: larger welfare gains and smaller creditors' losses

Write-offs: larger welfare gains and smaller creditors' losses

Standstills lower the <u>market value</u> of debt and increase debt overhang

IRFs: No debt relief vs. Standstill vs. Standstill + 21% Write-off

Black: No debt relief Red: 1yr Standstill Blue: 1yr Standstill + 21% Write-off 17/27

'Only write-offs' is the best option

'Only write-offs' is the best option

But losses from standstill are negligible for large enough write-offs

'Only write-offs' is the best option - holds for other shock sizes

Note: for "Triggers default' case standstills can generate capital gains (but write-offs are still superior)

▶ MV plots

Zooming into the "Trigger default" shock

Standstills can generate capital gains (but write-offs are still superior)

Robustness

Our results are robust to

- 1. Different *nature* of the shock: temporary drop in y, slow recovery (\approx Covid-19)
- 2. Adding a sudden stop
- 3. Allowing for a positive recovery rate
- 4. Modeling the crisis as a 'debt shock' (not in these slides)
- 5. Low initial debt level (not in the slides, nor the paper... but in my laptop 😂)

Robustness 1: different nature of the shock

- Income drops for 4 quarters: $y^{\text{effective}} = (1 \chi) y$
- After that, it recovers in another 4 quarters
- ullet 'U-shaped' recovery pprox Covid-19 shock

Robustness 1: different nature of the shock

- Large shock + HC ($\approx 20\%$): welfare **and** capital gains
- 'Triggers default' shock: standstills mutually beneficial, write-offs superior

Robustness 2: adding a sudden stop

- ullet Motivation: liquidity concerns during the crisis ullet standstill may be particularly helpful in this case
- Country cannot issue new debt for 1 year (but can buyback if it wants)
- Equivalent to imposing the following restriction for 4 quarters:

Debt issuance
$$=$$
 $\begin{cases} b' - (1 - \delta)b \leq 0 & \text{for the No-DS case} \\ b' - (1 - \delta)(1 + r^{DS})b \leq 0 & \text{for the DS case} \end{cases}$

Same definition of the different shock sizes

Robustness 2: adding a sudden stop

Robust punchline: Debt reliefs are inefficient without write-offs.

Robustness 3: adding a positive recovery rate

- After a default, recovered debt isn't zero but a % of mean debt in simulations:
 - ⇒ recovery rate decreases with debt (as docum. by Sunder-Plassmann, 2018)
- Follow a similar calibration (now using data on recovery rates from Cruces and Trebesch 2013).
- As before:
 - 1. Standstills produce welfare gains but capital losses (exc. when avoiding imminent default)
 - 2. Capital losses triggered by standstills can be mitigated using write-offs
 - 3. Write-offs only still the best policy

Punchline: main result (debt reliefs are inefficient without write-offs) is robust to including debt recovery

Conclusions

 Standstills may produce welfare gains for the sovereign and capital losses for creditors

- In contrast, write-offs may produce welfare and capital gains
- Standstills help generate debt overhang and thus a role for write-offs that produce Pareto gains.
- If standstills without write-offs are favored because of the regulatory cost of write-offs (Dvorkin et al., 2020) or the "Doctrine of necessity" (Bolton et al., 2020), inefficiencies triggered by these frameworks appear to be significant.

Some data about the Standstill Initiative

- **DSSI**: Debt Service Suspension Initiative
- Official debt. Offered to 73 of the poorest countries.
- 48/73 took it (as of Feb 28, 2022).
- ullet Mean potential relief =1.5% of GDP. 'Usage' rate =27%
- From May 2020 to December 2021, the initiative suspended \$12.9 billion in debt-service payments owed by participating countries to their creditors.
- The G20 has also called on private creditors to participate in the initiative on comparable terms. Regrettably, only one private creditor participated.

Data from Voluntary Debt Exchanges

	Capital gains	Haircut
Ukraine (2000)	.48	.18
Dom. Rep. (04-05)	.24	.05
Uruguay (2003)	.22	.10
Pakistan (1999)	.07	.15
Belize (06-07)	11	.24
Greece (11-12)	59	.65

Data from Hatchondo, Martinez and Sosa-Padilla, JME 2014

Related literature

- Quantitative equilibrium default model à la Eaton-Gersovitz (RESTUD 1981)
 (Aguiar and Gopinath JIE 2006; Arellano, AER 2008) with long-term debt
 (Chatterjee and Eyigungor AER 2012; Hatchondo and Martinez JIE 2009).
- Aguiar et al. (Econometrica 2019), Dvorkin et al. (AEJ Macro 2020), Mihalache (JIE 2020):
 - In debt restructuring (similar to debt relief), extensions of maturity (similar to standstills) are dominated by write-offs (except for the reasons in Dvorkin et al.)
 - Time inconsistency (debt dilution): the government issues too much debt and this problem is worse with longer maturities.
- Not with standstills: The government buys back debt. But standstills generate debt overhang.
- Inefficiencies of combining write-offs with standstills are not significant for large write-offs.

Debt price (large shock)

Debt market value curves

Debt market value curves

Debt market value curves

$$V(b,y) = \max_{d \in \{0,1\}} \{dV_1(b,y) + (1-d)V_0(b,y)\},\$$

$$V_1(b,y) = u\left(y - \phi\left(y\right)\right) + \beta \mathbb{E}_{y'|y}\left[\psi V(b_D,y') + (1-\psi) V_1(b_D,y')\right]$$
 and $b_D = \min\{\alpha,b\}$ is the 'recovered' debt level.

$$V_0(b,y) = \max_{b' \geq 0} \left\{ u \left(y - b + q(b',y) \left[b' - (1-\delta)b \right] \right) + \beta \mathbb{E}_{y'|y} V(b',y') \right\}.$$

subject to:
$$b' > (1 - \delta)b$$
 only if $q(b', y) > \underline{q}$,

$$q(b',y) = \frac{1}{1+r} \mathbb{E}_{y'|y} \left\{ \left[1 - \hat{d}(b',y') \right] \left[1 + (1-\delta) q(\hat{b}(b',y'),y') \right] \right\} + \frac{1}{1+r} \mathbb{E}_{y'|y} \left\{ \hat{d}(b',y') q^{D}(b',y') \right\}$$

$$q^{D}(b,y) = \frac{1-\psi}{1+r} \mathbb{E}_{y'|y} \left\{ \frac{b_{D}}{b} q^{D}(b_{D}, y') \right\}$$

$$+ \frac{\psi}{1+r} \mathbb{E}_{y'|y} \left\{ \left[1 - \hat{d} \left(b_{D}, y' \right) \right] \frac{b_{D}}{b} \left[1 + (1-\delta) \ q \left(\hat{b}(b_{D}, y'), y' \right) \right] \right\}$$

$$+ \frac{\psi}{1+r} \mathbb{E}_{y'|y} \left\{ \hat{d} \left(b_{D}, y' \right) \frac{b_{D}}{b} \ q^{D}(b_{D}, y') \right\}$$

Robustness 3: adding a positive recovery rate

Punchline: main result (debt reliefs are inefficient without write-offs) is robust to including debt recovery