OF EVOLUTIONARY POPULATION GAMES

Charles Zhu

New York University

December 2024

TABLE OF CONTENTS

- Population games
 - Perturbed best response
 - Randomly distributed payoffs
 - Stability
- 2 Mean dynamics
 - Lyapunov functions
- 3 Evolutionarily stable strategy
 - Ecological dynamics
 - G-function
 - Ecologically stable equilibrium
 - Maximum principle
- 4 Stability analysis
- 5 References

POPULATION GAMES

Define a **population game** with continuous player sets:^{1,2}

- $\mathcal{P} = \{1,...,\bar{p}\}$, set of \bar{p} populations, where $\bar{p} \geq 1$
- $m^p \in \mathbb{Z}$, mass of population p
 - $m = \sum_{p \in P} m^p$, total mass of all populations
- $S^p = \{1, ..., n^p\}$, strategy set for member of population p
 - $-n = \sum_{p \in P} n^p$, total number of pure strategies in all populations
- $\Delta^p = \{x^p \in \mathbb{R}^{n^p}_+ : \sum_{i \in S^p} x_i^p = 1\}$, set of probability distributions over strategies in S^p
 - $-X^p = m^p \Delta^p = \{x^p \in \mathbb{R}^{p^p}_+ : \sum_{i \in S^p} x_i^p = m^p\}, \text{ set of strategy distributions for population } p$
 - $X = \{x = (x^1, ..., x^{\bar{p}}) \in \mathbb{R}_+^n : x^p \in X^p\}, \text{ set of overall strategy distributions}$

POPULATION GAMES

- $\bar{X} = \{x \in \mathbb{R}^n_+ : m^p \varepsilon \le \sum_i x_i^p \le m^p + \varepsilon \forall p \in \mathcal{P}\}, \varepsilon \text{ positive constant.}$
 - payoffs are defined on \bar{X} where population masses vary slightly
- $F_i^p: \bar{X} \to \mathbb{R}$, payoff function for strategy $i \in \mathbb{S}^p$
 - $-F_i^p$ continuously differentiable
 - $-F^p: \bar{X} \to \mathbb{R}^{n^p}$, payoff functions of strategies for population p
- $F: \bar{X} \to \mathbb{R}^n$, payoff vector field defining a **population game**

POPULATION GAMES, PERTURBED BEST RESPONSE

Define the **choice probability function**, ${}^{1}\mathbb{C}^{p}:\mathbb{R}^{n^{p}}\to\Delta^{p}$:

- $C_i^p(\pi^p) = v^p(\varepsilon^p : i \in \arg_{k \in S^p} \max \pi_j^p + \varepsilon_j^p)$
- π^p , base payoff vector
- probability payoff perturbation leads to choosing strategy p

Define an **admissible distribution**, v^p , as one that:

- admits a strictly positive density on \mathbb{R}^{n^p}
- is smooth enough that \mathbb{C}^p is continuously differentiable

Then, define the perturbed best response function:

- $\tilde{B}^p: X \to \Delta^p$, for the pair (F, v) by composition $\tilde{B}^p = \mathbb{C}^p \circ F^p$
- $v = (v^1, ..., v^{\bar{p}})$ admissible where each component is admissible

Finally, define the **perturbed best response dynamic** for (F, v):

- $\dot{x}^p = m^p \tilde{B}^p(x) x^p \quad \forall p \in \mathcal{P}$
- $x \in X$ is **perturbed equilibrium** if fixed point

POPULATION GAMES, RANDOMLY DISTRIBUTED PAYOFFS

Describe a model of evolution with randomly distributed payoffs:1

- players: members of \bar{p} finite populations of sizes $(Nm^1, ..., Nm^{\bar{p}})$
- players recurrently play population game F

Consider continuous time Markov chain describing aggregate behavior in the model, as:

• $\{X_t^N\}_{t\geq 0}$, with state space $\mathcal{X}^N = \{x \in X : Nx \in \mathbb{Z}^n\}$

Then, we may describe its transitions by:

•
$$\mathbb{P}[X_{\tau_{r+1}}^N=x+\frac{1}{N}(e_j^p-e_i^p)|X_{\tau_r}^N=x]=\frac{1}{m}x_i^p\tilde{B}_j^p(x)$$
, transition rule

•
$$\mathbb{E}[X_{\tau_{r+1}}^{N,p} - X_{\tau_r}^{N,p} | X_{\tau_r}^N = x] = \frac{1}{Nm}(m^p \tilde{B}^p(x) - x^p)$$
, expected increment

POPULATION GAMES, STABILITY

Consider the following:¹

• $TX = \{z \in \mathbb{R}^n : \sum_{i \in \mathbb{S}^p} z_i^p = 0, \forall p \in \mathcal{P}\}$, the set of directions tangent to the set of population states X

Describe F, for smooth F, as a **stable game** if and only if it satisfies: 1,2

- $z \cdot DF(x)z \le 0$ for all $x \in X$ and all $z \in TX$, the **negative** semidefiniteness condition, where DF(x) is the derivative of F at x
- this condition is known as self-defeating externalities
- i.e., payoffs of strategies of revising agents are exceeded by payoffs of strategies abandoned by revising agents

POPULATION GAMES, STABILITY

Define the admissible deterministic perturbation function

 $V^p: \operatorname{int}(\Delta^p) \to \mathbb{R}$, differentiably strictly convex and infinitely steep near boundary of Δ^p . If \mathbb{C}^p defined for admissible distribution V^p , $\exists V^p$ s.t.

•
$$\mathcal{C}^p(\pi^p) = \operatorname{arg} \max_{y^p \in \operatorname{int}(\Delta^p)} (y^p \cdot \pi^p - V^p(y^p))$$

Consider function $\Lambda: X \to \mathbb{R}_+, ^1$

$$\Lambda(x) = \sum_{p \in \mathcal{P}} m^p \left[\max_{y^p \in \mathsf{int}(\Delta^p)} (y^p \cdot F^p(x) - V^p(y^p)) - \left(\frac{1}{m^p} x^p \cdot F^p(x) - V^p\left(\frac{1}{m^p} x^p\right) \right) \right]$$

Theorem: Suppose F is a stable game and v is admissible, then,

- function Λ is a **strict Lyapunov function** for the perturbed best response dynamic, i.e. its value decreases strictly along each non-constant solution trajectory
- (F, v) admits unique and globally asymptotically stable perturbed equilibrium, the lone state at which $\Lambda(x) = 0$.

MEAN DYNAMICS

Define the **revision protocol**^{3,4} as a Lipschitz continuous map $\rho: \mathbb{R}^n \times X \to \mathbb{R}^{n \times n}_+$ with payoff vector π and population states x as arguments, returning nonnegative matrices as outputs:

• $\rho_{ij}(\pi,x)$, scalar **conditional switch rate** from strategy *i* to *j*

Consider revision protocol ρ , population game F, population size N, and Markov process $\{X_t^N\}$ on space \mathfrak{X}^N .

Define the **mean dynamic** generated by ρ and F, as an ODE on state space X:³

•
$$\dot{x}_i = \sum_{j \in S} x_j \rho_{ji}(F(x), x) - x_i \sum_{j \in S} \rho_{ij}(F(x), x)$$

MEAN DYNAMICS

Compare deterministic **mean dynamics** which are well-known which characterize the expected motion of the Markov process:²

, Table 1 Five basic deterministic dynamics

Revision protocol	Mean dynamic	Name and source
$\rho_{ij} = x_j [\pi_j - \pi_i]_+$	$\dot{x}_i = x_i \hat{F}_i(x)$	Replicator (Taylor and Jonker 1978)
$ ho_{ij} = rac{\exp\left(\eta^{-1}\pi_{j} ight)}{\sum_{k \in \mathcal{S}} \exp\left(\eta^{-1}\pi_{k} ight)}$	$\dot{x}_i = \frac{\exp(\eta^{-1}F_i(x))}{\sum_{k \in S} \exp(\eta^{-1}F_k(x))} - x_i$	Logit (Fudenberg and Levine 1998)
$\rho_{ij} = 1_{\{j = \operatorname{argmax}_{k \in S} \pi_k\}}$	$\dot{x} \in B^F(x) - x$	Best response (Gilboa and Matsui 1991)
$\rho_{ij} = [\pi_j - \sum_{k \in S} x_k \pi_k]_+$	$\dot{x}_i = \left[\hat{F}_i(x)\right]_+ - x_i \sum_{j \in S} \left[\hat{F}_j(x)\right]_+$	BNN (Brown and von Neumann 1950)
$ ho_{ij} = [\pi_j - \pi_i]_+$	$\dot{x}_i = \sum_{j \in S} x_j \big[F_i(x) - F_j(x) \big]_+$	Smith (1984)
	$-\dot{x}_i = \sum_{j \in S} x_j \big[F_j(x) - F_i(x) \big]_+$	

MEAN DYNAMICS, LYAPUNOV FUNCTIONS

Consider **Lyapunov functions** which may be constructed on these mean dynamics to show that they converge to Nash equilibria from all initial conditions in all stable games.²

Evolutionary Game Theory, Table 3 Lyapunov functions for five basic deterministic dynamics in stable games

Dynamic	Lyapunov function for stable games
Replicator	$H_{x^*}(x) = \sum_{i \in S(x^*)} x_i^* \log \frac{x_i^*}{x_i}$
Logit	$\tilde{G}(x) = \max_{y \in \text{int}(X)} \left(y' \hat{F}(x) - \eta \sum_{i \in S} y_i \log y_i \right) + \eta \sum_{i \in S} x_i \log x_i$
Best response	$G(x) = \max_{i \in S} \hat{F}_i(x)$
BNN	$\Gamma(x) = \frac{1}{2} \sum_{i \in S} \left[\hat{F}_i(x) \right]_+^2$
Smith	$\Psi(x) = \frac{1}{2} \sum_{i \in S} \sum_{j \in S} x_i [F_j(x) - F_i(s)]_+^2$

EVOLUTIONARILY STABLE STRATEGY, ECOLOGICAL DYNAMICS

Consider the classical dynamical game:⁵

- $\dot{x}_i = f_i(\mathbf{u}, \mathbf{x})$
- f_i , instantaneous payoff function for player i, i = 1, ..., n
- **u** and **x**, state and control vectors
- $\mathbf{u} = [u_1, ..., u_n]$, where u_i is player i's strategy

Modify to yield the ecological dynamics:

- $\dot{x}_i = x_i H_i(\mathbf{u}, \mathbf{x})$
- H_i, player i's payoff
- x_i, density of group of individuals (species)
- $\mathbf{x} = [x_1, ..., x_n]$, for *n* species
- \dot{x}_i , instantaneous per capita growth rate

EVOLUTIONARILY STABLE STRATEGY, G-FUNCTION

Define the **G-function**:⁵

- G(v, u, x), fitness-generating function (G-function) of population dynamics, with virtual variable v
- $G(v, \mathbf{u}, \mathbf{x})|_{v=u_i} = H_i(\mathbf{u}, \mathbf{x})$, fitness of individual in population of individuals defined by same *G*-function
- $\dot{x}_i = x_i G(v, \mathbf{u}, \mathbf{x})|_{v=u_i}$, population dynamics

EVOLUTIONARILY STABLE STRATEGY

Recall the system describing ecological dynamics,⁵

•
$$\dot{x}_i = x_i H_i(\mathbf{u}, \mathbf{x})$$

Define a strategy vector $\mathbf{u}_C \in \mathcal{U}$ as an **evolutionarily stable strategy** (ESS)^{5,6} if and only if for every initial condition $\mathbf{x}_0 > \mathbf{0}$, the solution of the system tends to equilibrium $\mathbf{x}^* = [\mathbf{x}_C^*, \mathbf{0}], \mathbf{x}_C^* > \mathbf{0}$.

- i.e., the system is resistant to invasion
- \mathbf{u}_c is a **local ESS** if \mathbf{x}_0 in neighborhood of \mathbf{x}_c^*
- original definition of an ESS by Smith⁷ is a **local ESS** with scalar \mathbf{u}_c , \mathbf{u}_m

EVOLUTIONARILY STABLE STRATEGY, ECOLOGICALLY STABLE EQUILIBRIUM

Define an **ecological equilibrium** point for the ecological dynamics as $\mathbf{x}^* \in \mathcal{O}$, \mathcal{O} as the non-negative orthant, as a point where $\exists n_{S^*}, 1 \le n_{S^*} \le n_S$ such that:⁶

•
$$H_i(\mathbf{u}, \mathbf{x}^*) = 0$$
, $x_i^* = 0$ $\forall i \in \{1, ..., n_{S^*}\}$
• $x_i^* = 0$ $\forall i \in \{n_{S^*} + 1, ..., n_S\}$

Define the **ecologically stable equilibrium** (ESE) as an ecological equilibrium point $\mathbf{x}^* \in \mathcal{O}$ where if $\exists \mathcal{B}$ (ball) s.t. $\forall \mathbf{x}(0) \in \mathcal{O} \cap \mathcal{B}$ the solution generated by ecological dynamics satisfies $\mathbf{x}(t) \in \mathcal{O} \quad \forall t > 0$, asymptomatically approaches x^* as $t \to \infty$.

EVOLUTIONARILY STABLE STRATEGY, MAXIMUM PRINCIPLE

Define coalition vector \mathbf{u}_c made up of the first $n_{s^*} < n_s$ components of \mathbf{u}^6 . Define the **ESS maximum principle**^{5,6} as:

•
$$\max_{v \in \mathcal{U}} G(v, \mathbf{u}, \mathbf{x}^*) = G(v, \mathbf{u}, \mathbf{x}^*)|_{v=u_i} = 0$$

Theorem: For given $u \in \mathcal{U}$ assume $\exists \mathbf{x}^*$ which is an ESE. If coalition vector \mathbf{u}_c is an ESS for \mathbf{x}^* then the ESS maximum principle is satisfied.⁶

STABILITY ANALYSIS

- An ESS is convergent stable, but not all convergent stable equilibrium points necessarily correspond to evolutionarily stable strategies.⁶
- Non-equilibrium Darwinian dynamics may still generate bounded solutions following periodic orbits, limit cycles, or n-cycles.^{2,6}

CONCLUSION

- Stability of evolutionary games is not guaranteed
- Evolutionary games may display non-equilibrium behavior, cycles, etc.
- Equilibrium points may not necessarily be ESS
- For a stable population game F with admissible perturbed best response, Λ is a strict Lyanpunov function
- Deterministic mean dynamics such as replicator, logit, best response,
 BNN, and Smith may be shown to converge to Nash equilibria based
 on Lyapunov functions on stable games

FUTURE DIRECTIONS

- Consider continuous strategy sets⁸
- Consider robust games and incomplete information^{9,10}
- Further consideration of spatial dynamics²

REFERENCES

- [1] J. Hofbauer and W. H. Sandholm, "Evolution in games with randomly disturbed payoffs," Journal of Economic Theory, vol. 132, no. 1, pp. 47–69, Jan. 2007, ISSN: 00220531. DOI: 10.1016/j.jet.2005.05.011.
- [2] W. H. Sandholm, "Evolutionary Game Theory," in Complex Social and Behavioral Systems, M. Sotomayor, D. Pérez-Castrillo, and F. Castiglione, Eds., New York, NY: Springer US, 2020, pp. 573–608, ISBN: 978-1-0716-0367-3 978-1-0716-0368-0. DOI: 10.1007/978-1-0716-0368-0_188.
- [3] W. H. Sandholm, "Local stability under evolutionary game dynamics," *Theoretical Economics*, vol. 5, no. 1, pp. 27–50, 2010, ISSN: 1933-6837. DOI: 10.3982/TE505.
- [4] W. H. Sandholm, Population Games and Evolutionary Dynamics (Ebrary Online), Online-Ausg. Cambridge: MIT Press, 2011, ISBN: 978-0-262-19587-4 978-0-262-28974-0.
- [5] T. L. Vincent, T. L. Vincent, and Y. Cohen, "Darwinian dynamics and evolutionary game theory," Journal of Biological Dynamics, vol. 5, no. 3, pp. 215–226, May 2011, ISSN: 1751-3758, 1751-3766. DOI: 10.1080/17513758.2010.526306.

REFERENCES (CONTD.)

- [6] T. L. Vincent and J. S. Brown, *Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics*. Cambridge: Cambridge university press, 2005, ISBN: 978-0-521-84170-2.
- [7] J. M. Smith and G. R. Price, "The Logic of Animal Conflict," *Nature*, vol. 246, no. 5427, pp. 15–18, Nov. 1973, ISSN: 0028-0836, 1476-4687. DOI: 10.1038/246015a0.
- [8] P. Mertikopoulos and Z. Zhou, "Learning in games with continuous action sets and unknown payoff functions," *Mathematical Programming*, vol. 173, no. 1-2, pp. 465–507, Jan. 2019, ISSN: 0025-5610, 1436-4646. DOI: 10.1007/s10107-018-1254-8.
- [9] J. C. Harsanyi, "Games with Incomplete Information Played by "Bayesian" Players, I–III: Part I. The Basic Model," *Management Science*, vol. 50, no. 12_supplement, pp. 1804–1817, Dec. 2004, ISSN: 0025-1909, 1526-5501. DOI: 10.1287/mnsc.1040.0270.
- [10] M. Aghassi and D. Bertsimas, "Robust game theory," Mathematical Programming, vol. 107, no. 1-2, pp. 231–273, Jun. 2006, ISSN: 0025-5610, 1436-4646. DOI: 10.1007/s10107-005-0686-0.