To Read Before #ToBeReady

https://github.com/aish21/Algorithms-and-Data-Structures

✓ Graph Data Structure

✓ Graph and its representations

✓ Graph Theory Introduction

ADVANCED ALGORITHM

W10-S1 – Graph

- **Understand** the concept of Graph
- **Explore** Graph Terminology
- **Identify** the type of Graph
- Know how to represent the Graph

Abstract Data Structures

Linear

Data elements are arranged sequentially

Non-Linear

Data elements are **not** arranged sequentially

Every node can have 1 parent only

There is not rules for the connection of nodes

Graph **Definition**

A **graph** is a non-linear data structure consisting of two main components—**vertices** and **edges**—used to represent relationships or connections between objects.

Why Graph?

A graph can store information that naturally forms a relationship or connection between entities.

Why Graph?

A graph can store information that naturally forms a relationship or connection between entities.

Type of Graph

An **Undirected graph** is a graph in which edges have no orientation.

(arrowless connections)

An **Directed graph (Digraph)** is a graph in which edges have orientation.

edges with arrows connect one vertex to another

Graph Terminology

 Graph can have an edge that contains a certain weight to represent a value such as cost, distance, quantity, etc.
This is called a weighted graph.

```
<u>Example</u>:
Edge(A, B) = 2
```

Edge(
$$C$$
, B) = 3

- The degree of a vertex is the number of edge that are connected to it.
 - Example:

$$deg(C)=4$$

$$deg(D)=3$$

REMARK:

- ❖ A weighted graph (or known as a network) is a graph in which a number (the weight) is assigned to each edge.
- ❖ The weights might represent the costs, lengths or capacities, depending on the problem we are dealing with.
- ❖ Such graphs arise in many contexts, for example in **shortest path problems** such as the traveling salesman problem.

Graph Terminology

A **path** is a sequence of vertices connected by edges with no repeated edges.

Cycle is a **path** where the start and end vertex are the same.

Graph

Look at this tree and answer the questions

Special Graph

A **Tree** is an **Undirected graph** with no cycles. It's a connected graph with **N** vertices and **N-1** edges

Graph Representation

A graph ADT can be represented by:

- An adjacency matrix (using 2D array)
- An adjacency list (using linkedlist)
- Edge list (triplet)

Graph with an adjacency matrix

An Undirected graph & Directed graph can be represented by an adjacency matrix (AM):

- If there is an edge between vertex i and vertex j, AM[i][j] = 1
- If there is no edge between vertex i and vertex j, AM[i][j] = 0

Graph with an adjacency matrix

Similarly, the weighted graph can be represented by an adjacency matrix (AM):

- If there is an edge between vertex i and vertex j, AM[i][j]= w
- If there is no edge between vertex i and vertex j, AM[i][j]= 0

Graph with an adjacency matrix

Pros	Cons
Space efficiency for represent dense graph	Requires $O(V^2)$ space
Edge weight lookup is O(1)	Iterating over all edges takes $O(V^2)$ time
Simplest graph representaion	

Graph with an adjacency list

An adjacency list is a way to represent a graph as a map from vertices to lists of edges.

Represent a directed graph with adjacency list

Graph with an adjacency list

Pros	Cons
Space efficiency sparse graph	Less space efficient for dense graph
Iterating over all edge is efficient	Edge weight lookup is O(E)
	Slightly more complex graph representation

Graph with edge list

An **edge list** is a way to represent a graph simply as an unordered list of edges. A triplet (u, v, w) is used to present each connection,

Represent an undirected graph with edge list

Graph with edge list

Pros	Cons
Space efficiency sparse graph	Less space efficient for denser graph
Iterating over all edge is efficient	Edge weight lookup is O(E)
Very simple structure	

3-2-1 Challenge

- ✓ List three things you **learned** today.
- ✓ List two **questions** you still have.
- ✓ List one aspect of the lesson or topic you **enjoyed**.

