Cyanobacterial genomes

Dr. David P. Fewer Department of Microbiology, University of Helsinki

Microbial genomic diversity

Uncultured diversity

15% of all bacterial diversity = candidate phyla radiation (CPR)

Genome projects

393904 draft/complete genome projects in total 28292 complete genomes

Bacteria		Projects
Escherichia coli	29260	
Staphylococcus a	ureus	14097
Mycobacterium tu	7068	
Neisseria mening	2271	
Neisseria gonorrh	934	
Yersinia pestis		653
Borrelia burgdorfe	eri	162
Treponema pallid	90	
Prochlorococcus:	snn	1097
Oscillatoria spp.	spp.	9

Major lineages with isolated representatives: italics Major lineages lacking isolated representatives: •

Cyanobacteria

Cyanobacteria are morphological diverse.
Unicellular, filamentous, colonial, branching forms

Cyanobacterial blooms BALTIC SEA

First toxic cyanobacterial blooms reported in 1878.

Produce a range of toxins.

Place	Year	Animals affected	Toxin	Producer
Australia (L. Alexandrina)	1878	Sheep, horses, dogs, pigs	Hepatotoxin	 Nodularia
Finland (L. Vesijärvi)	1928	40 cows	Neurotoxin	Anabaena
Baltic Sea	1975 1982-84	Dogs, 16 young cattle	Hepatotoxin	Nodularia
Norway (Roagland)	1978	4 heifers	Hepatotoxins	Microcystis
Finland (L. Sääskj. & L. Säyhteenj.)	1985-86	5 cows	Anatoxin-a	Anabaena
Finland (Åland Island)	1985	Fish, birds, muskrats	Hepatotoxins	Planktothrix
Denmark (L. Knud sø)	1993 1994	Over 20 birds, 1 dog	Anatoxin-a(S)	Anabaena
Australia (Darling river)	1991	2000 cattle and sheep	saxitoxins	Anabaena

Animal poisonings

Genomic size

Phascolarctos cinereus 3420 Mb genome

Saccharomyces cerevisiae 12 Mb Genome

*Prochlorococcus marinus*1.4 Mb genome

One of these organisms is the most abundant photosynthetic organism on the planet and responsible for 5 % of global photosynthesis.

Genomic size

Cyanobacteria: 1.44 Mb to

Smallest: Candidatus *Atelocyanobacterium thalassa* isolate ALOHA 1.44 Mb, 1156 proteins)

Largest: Calothrix sp. PCC 7716 (12.37 Mb, 10667 proteins)

Bacteria: ~0.11 Mb to 16.0 Mb

Smallest: Candidatus *Hodgkinia cicadicola* (0.11 Mb, 135),

Largest: Minicystis rosea DSM 24000 (16 Mb, 14018),

insect endosymbiont saprophytic soil bacterium

Archaea: ~0.5 Mb to 5.75 Mb

Smallest: Nanoarchaeum equitans Kin4-M (0.49 Mb, 536 proteins)

Largest: *Haladaptatus* sp. PSR5 (7.28 Mb, 5032 proteins)

nanoarchaeum from hydrothermal vent

halophilic archaeal species

Eukaryotes: ~7.7 Mb to 40000 Mb

Smallest: *Pneumocystis wakefieldiae* (7.3 Mb, 3182 proteins)

Largest: Protopterus annectens (40054 Mb, 37069 proteins)*

Parasitic fungus isolated from rats

West African lungfish

Human X chromosome is 155 Mb (5% of genetic material)

Browse prokaryotic genomes

https://www.ncbi.nlm.nih.gov/genome/microbes/

^{*}N.B not based on completely sequenced genomes

Genomic partitions in prokaryotes

Genomic partitions in prokaryotes

Agrobacterium tumefaciens (5.75 Mb genome)

- One linear chromosome (2.1 Mb)
- One circular chromosome (3.0 Mb)
- Two circular plasmids (0.2 & 0.45 Mb)

Borreliella burgdorferi B31 (1.5 Mb genome)

- Linear chromosome (0.91 Mb)
- More than 20 circular & linear plasmids (5-54 kb)

Minicystis rosea DSM 24000 (16 Mb genome)

Single circular chromosome (16 Mb)

Distinction between plasmid, mega-plasmid & chromosome (100 kb cutoff)

Browse prokaryotic genomes

https://www.ncbi.nlm.nih.gov/genome/microbes/

Genome size and nucleotide content

- There is correlation between genome size and GC content of prokaryotic genomes (12563 complete genomes; R²=0.3697)
- Bacterial species with the lowest effective population sizes, such as endosymbiotic bacteria, typically have the smallest and most compact genomes, whereas those with the largest populations exhibit more expansive genomes

Gene content and genome streamlining

Pelagibacter ubique
Length 0.37–0.89 μm, diameter 0.12–0.20 μm

- Bacterial genomes consisted mostly of functional protein-coding regions and little non-coding or intervening sequences
- As a rule of thumb 1 kb per gene in bacteria (not true for eukaryotes)
- Prokaryotic genomes encoude 170-14,000 protein coding genes
- Linear relationship between genome size and number of genes
- Prokaryotic genes do not encode introns
- Coding density is 87 % with a typical range of 85–90 % (versus 1-3% for humans)
- Pelagibacter ubique 1.3 Mb genome encodes 1354 genes, one of the smallest for any free-living organism (Giovannoni 2005 Science 309:1242)

Repetitive DNA and transposable elements

- An insertion sequence (IS) is a common type of bacterial transposable element and encodes only the gene required for its own transposition, flanked by insertion sequence repeats (9-40 bp)
- Miniature Inverted-repeat Transposable Elements (MITEs) are non-autonomous transposable elements
- MITEs have 4-30 bp inverted repeats, no transposase and range from 100-400 bp
- Some prokaryotic genomes can encode hundreds of such IS and MITE transposable elements
- -> promote genome rearrangement, gene deletions & regulate gene expression
- -> promote genome streamlining

Repetitive DNA and transposable elements

Microcystis aeruginosa

- Microcystis aeruginosa NIES-843 has 704 IS/MITE elements beloning to 18 families
- 11.8% of genome is IS and MITES

Discuss with partner:

What implications do repetitive elements have for genome sequencing?

288 draft genomes, 12 complete

Table 1. Summary of ISs and MITEs in the M. aeruginosa genome

Name	Length (bp)	Family	Copy number
ISMae1	955	IS1	10
ISMae4	1223	IS5	33
ISMae5	1694	IS4	19
ISMae6	1686	IS5	8
ISMae7	519	IS5	3
ISMae8	1093	IS30	8
ISMae9	1370	IS110	7
ISMae10	1330	IS605	49
ISMae11	1473	IS605	9
ISMae12	1835	IS605	6
ISMae13	1295	IS605	5
ISMae14	1366	IS605	4
ISMae15	1431	IS605	3
ISMae16	1379	IS605	2
ISMae17	1510	IS607	9
ISMae18	1240	IS607	2
ISMae19	1410	IS607	2
ISMae20	1897	IS607	4
ISMae21	956	IS630	22
ISMae22	1144	IS630	21
ISMae23	1237	IS630	15
ISMae24	1089	IS630	14
ISMae25	1262	IS630	13
ISMae26	1041	IS630	12
ISMae27	1148	IS630	9
ISMae28	1599	IS630	8
ISMae29	1224	IS630	5
TCD I DO	1001	IC1000	1.0

Kaneko et al. 2007, DNA Research 14: 247-256

Repetitive DNA and ribosomal operons

- The ribosomal operon gene has a conserved secondary structure (4-7 kb)
- Primary sequence of 16S rRNA gene is highly conserved and widely used in phylogenetics
- The ribosomal operon can be present in multiple copies in bacteria
- In cyanobacteria 1-4 copies is normal.

Question

What implications does this have for genome sequencing?

Geosmin

Monoisotopic mass: 182.167 Elemenetal composition: C₁₂H₂₂O

- Geosmin is a volatile organic compound
- Causes petrichor (earthy, muddy smell after rain)
- It gets its name from the Greek for "earth odour"
- Geosmin was first identified in 1891, the structure of geosmin determined in 1965, and total synthesis in 1968
- Human nose can detect less than 10-100 parts per trillion
- Produced by cyanobacteria and actinobacteria
- Camels and mosquitoes

- The conversion of FPP to geosmin was previously thought to involve multiple enzymes in a biosynthetic pathway
- Biosynthesis reported from *Streptomyces coelicor* in 2003-2006 (e.g. *JACs*, 2006 28: 8128-8129)
- Geosmin synthase (GeoA, 726 aa) is a bifunctional enzyme that transforms farnesyl diphosphate into geosmin
- The N-terminal half of the protein catalyzes the conversion of farnesyl diphosphate to germacradienol and germacrene D, the C-terminal-mediated conversion of germacradienol to geosmin
- Geosmin synthases, found in cyanobacteria, actinobacteria, myxobacteria
- 45-78% identity, hypothesized that all geosmin synthases function in the same manner

- · Cyanobacterial taste and odor compounds, such as geosmin, adversely impact water quality.
- Human nose can detect less than 10-100 parts per trillion
- Accumulates in drinking water and fish
- Earthy and musty off-odors are a common cause of consumer complaints
- · Problem in production of drinking water and aquaculture
- · Causes economic losses

Suurnäkki et al. 2015 Water Research 1: 68: 56-66

Sequence complete genome of three geosmin producers

- Oscillatoria sp. 193
- Planktothrix sp. 328
- Oscillatoria sp. 327/2

Use a combination of Ilumina and Nanopore data

