Смеси распределений

Виктор Китов

victorkitov.github.io

Курс поддержан фондом 'Интеллект'

Победитель конкурса VK среди курсов по IT

Содержание

- 1 Смеси распределений
- 2 К-средних
- ③ Упрощение смеси Гауссиан

Выборочная плотность

Рассмотрим выборочную плотность:

Параметрическая аппроксимация плотности

Возможна достаточно точная аппроксимация параметрическим семейством (Гауссовым)

Более общий вид параметрической плотности

Но как быть в таком случае?

Смеси распределений

$$p(x) = \sum_{k=1}^{K} \phi_k p(x; \theta_k)$$

- К # компонент смеси
- $\phi_k,\ k=1,2,...K$ вероятности компонент смеси, $\phi_k\geq 0,\ \sum_{k=1}^K\phi_k=1$
- $p(x;\theta_k)$ индивидуальные плотности каждой компоненты
- Все параметры смеси распределений: $\Theta = \{\phi_k, \theta_k, k = 1, 2, ... K\}$

 $p(x, \theta_k)$ м. быть из одинакового или разных параметрических семейств.

Смесь Гауссиан

Гауссово распределение - непрерывные сл. вел. на $(-\infty, +\infty)$.

$$p(x, \theta_k) = N(x, \mu_k, \Sigma_k), \ \theta_k = \{\mu_k, \Sigma_k\}$$
$$p(x) = \sum_{k=1}^K \phi_k N(x, \mu_k, \Sigma_k)$$

Смеси других распределений

Примеры распределений для моделирования:

- ullet непрерывная на $(-\infty, +\infty)$
- ullet непрерывная на $[a,\infty)$
- ullet непрерывная на [a,b]
- ullet дискретное на $[a,\infty)$
- ullet дискретное на [a,b]

Смеси других распределений

Примеры распределений для моделирования:

- ullet непрерывная на $(-\infty, +\infty)$
 - Гаусса, Лапласа, Стьюдента.
- ullet непрерывная на $[a,\infty)$
 - Гамма
- непрерывная на [a, b]
 - Бета
- ullet дискретное на $[a,\infty)$
 - Пуассона
- дискретное на [a, b]
 - Биномиальная

Сэмплирование из смеси

① Сэмплируем компоненты z с вероятностями $\phi_1, \phi_2, ... \phi_K$

Сэмплирование из смеси

- ① Сэмплируем компоненты z с вероятностями $\phi_1,\phi_2,...\phi_K$
 - сэмплируем $u \sim Uniform[0,1]$ и выбираем компоненту k, если $\sum_{i=1}^{k-1} \phi_i < u \leq \sum_{i=1}^k \phi_i$
- $oldsymbol{2}$ Сэмплируем наблюдение $x \sim p(x| heta_k)$

Классификация с использованием смесей

Байесовское правило минимальной ошибки:

$$\widehat{y} = \arg \max_{y} p(y|x) = \arg \max_{y} \frac{p(y)p(x|y)}{p(x)} = \arg \max_{y} p(y)p(x|y)$$

p(y) - априорная вероятность класса y p(x|y) - внутриклассовое распределение x

Классификация с использованием смесей

Байесовское правило минимальной ошибки:

$$\widehat{y} = \arg\max_{y} p(y|x) = \arg\max_{y} \frac{p(y)p(x|y)}{p(x)} = \arg\max_{y} p(y)p(x|y)$$

p(y) - априорная вероятность класса y p(x|y) - внутриклассовое распределение x

Моделируем внутриклассовое распределение смесью:

$$p(x|y) = \sum_{k=1}^{K_y} \phi_{y,k} p(x; \theta_{y,k})$$

где K_{v} , $\pi_{v,k}$ и $p(x;\theta_{v,k})$ свои для каждого класса y.

ЕМ-алгоритм для оценки смеси Гауссиан

Инициализировать ϕ_k, μ_k, Σ_k для k = 1, 2, ... K.

ПОВТОРЯТЬ до сходимости:

Е-ШАГ, расчитать соответствия x_n каждой компоненте k:

ДЛЯ
$$n = 1, 2, ...N$$
:

ДЛЯ
$$k = 1, 2, ...K$$
:

$$\mathbf{w}_{nk} = \frac{\hat{\phi}_k N(\mathbf{x}_n; \widehat{\mu}_k, \widehat{\boldsymbol{\Sigma}}_k)}{\sum_i \hat{\phi}_i N(\mathbf{x}_n; \widehat{\mu}_i, \widehat{\boldsymbol{\Sigma}}_i)} \quad # = p(\mathbf{k} \mid \mathbf{x}(\mathbf{n}))$$

М-ШАГ. Обновить параметры смеси:

FOR
$$k = 1, 2, ...K$$
:

$$\phi_k = \frac{1}{N} \sum_{n=1}^{N} w_{nk}$$

$$\widehat{\mu}_k = \frac{\sum_{n=1}^{N} w_{nk} \times_n}{\sum_{n=1}^{N} w_{nk}}$$

$$\widehat{\varphi}_{k} = \frac{1}{N} \sum_{n=1}^{N} w_{nk}$$

$$\widehat{\mu}_{k} = \frac{\sum_{n=1}^{N} w_{nk} x_{n}}{\sum_{n=1}^{N} w_{nk}}$$

$$\widehat{\Sigma}_{k} = \frac{1}{\sum_{n=1}^{N} w_{nk}} \sum_{n=1}^{N} w_{nk} (x_{n} - \widehat{\mu}_{k}) (x_{n} - \widehat{\mu}_{k})^{T}$$

Интерпретация

$$w_{nk} = P(z_n = k|x_n) = \frac{P(k, x_n)}{P(x_n)} = \frac{P(k, x_n)}{\sum_i P(i, x_n)} =$$

$$= \frac{P(k)P(x_n|k)}{\sum_i P(i)P(x_n|i)} = \frac{\widehat{\phi}_k N(x_n; \widehat{\mu}_k, \widehat{\Sigma}_k)}{\sum_i \widehat{\phi}_i N(x_n; \widehat{\mu}_i, \widehat{\Sigma}_i)}$$

 $\widehat{\phi}_k, \widehat{\mu}_k, \widehat{\Sigma}_k$ - взвешенные средние с учетом степени соответствия $w_{nk} = P(z_n = k|x_n)$:

$$\widehat{\phi}_k = \frac{1}{N} \sum_{n=1}^N w_{nk} \qquad \widehat{\mu}_k = \frac{\sum_{n=1}^N w_{nk} x_n}{\sum_{n=1}^N w_{nk}}$$

$$\widehat{\Sigma}_k = \frac{1}{\sum_{n=1}^N w_{nk}} \sum_{n=1}^N w_{nk} (x_n - \widehat{\mu}_k) (x_n - \widehat{\mu}_k)^T \qquad (1)$$

Содержание

- 1 Смеси распределений
- 2 К-средних
- ③ Упрощение смеси Гауссиан

Алгоритм К-средних

- ullet Стоит задача разбиения N объектов на K кластеров.
- Центр кластера k: $\mu_k, k = \overline{1, K}$.
- x_n ассоциируется кластеру z_n , $n = \overline{1, N}$.
- В кластеризации решается задача:

$$\sum_{n=1}^{N} \rho(x_n, \mu_{z_n})^2 \to \min_{z_1, \dots z_N, \mu_1, \dots \mu_K}$$
 (2)

- Полная оптимизация вычислительно трудоёмка.
- К-средних оптимизирует (2) методом покоординатного спуска.
 - уточняем $z, \mu, z, \mu, ...$

Алгоритм К-средних

```
Инициализировать \mu_k, k=1,2,...K \# обычно, выбором случайных объектов \mathbf{x}(\mathbf{n}) ПОВТОРЯТЬ до сходимости:  \text{ДЛЯ } i=1,2,...N: \quad \# \text{ назначение } \text{ кластеров }  \mathbf{z}_i=\arg\min_{k\in\{1,2,...K\}}||\mathbf{x}_i-\mu_k||   \text{ДЛЯ } k=1,2,...K: \quad \# \text{ пересчет } \text{ средних }  \mu_k=\frac{1}{N_k}\sum_{n:\mathbf{z}_n=k}\mathbf{x}_n
```

Возможные условия остановки:

- достигнуто макс. # итераций
- назначения кластеров $z_1,...z_N$ перестали меняться (точный критерий)
- центры кластеров $\{\mu_k\}_{k=\overline{1,K}}$ перестали изменяться существенно (приближенный критерий)

Кластеризация с помощью оценки смеси

ullet Для каждого x_n оценка смеси K компонентами

$$x_n \longrightarrow w_{nk} = \rho(k|x_n) \in [0,1]$$

- Это
 - мягкая кластеризация (soft clustering) $w_{nk} \in [0,1]$ на K кластеров
 - ullet с априорными вероятностями $\phi_1,...\phi_K$
 - распределениями кластеров $p(x; \theta_1), ...p(x; \theta_K)$.

Кластеризация с помощью смеси и К-средних

• ЕМ кластеризация становится К-средних, когда

Кластеризация с помощью смеси и К-средних

- ЕМ кластеризация становится К-средних, когда
- компоненты смеси Гауссианы
 - ullet с равными априорными вероятностями $\phi_1=...=\phi_K=rac{1}{K}$
 - ullet с ковариационными матрицами σI , $\sigma o 0$

$$w_{nk} = \frac{\phi \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}}{\sum_i \phi \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu_i)^2}{2\sigma^2}}} = \frac{e^{-\frac{(x-\mu_k)^2}{2\sigma^2}}}{\sum_i e^{-\frac{(x-\mu_i)^2}{2\sigma^2}}} \xrightarrow{\sigma \to 0} [0...0, 1, 0, ...0]$$

Инициализация смеси Гауссиан

- lacktriangle Применим K-средних к $x_1, x_2, ... x_N$, получим $\left\{\mu_k
 ight\}_k$ и $\left\{z_n
 ight\}_n$.
- 2 Инициализируем априорные вероятности компонент смеси

$$\widehat{\phi}_k = \frac{N_k}{N}$$

- lacktriangle Инициализируем средние через $\mu_k,\ k=\overline{1,K}$.
- Инициализируем матрицы ковариации

$$\widehat{\Sigma}_k = \frac{1}{N_k} \sum_{n: z_n = k} (x_n - \mu_k) (x_n - \mu_k)^T$$

Свойства оценки смеси через ЕМ

- Существует много локальных максимумов
 - в частности правдоподобие $o \infty$ при $\mu_k = x_n$ и $\sigma_k o 0 \ \forall n$.
- ЕМ алгоритм находит отдельный локальный оптимум
 - в зависимости от инициализации
- Можно перезапустить несколько раз и выбрать решение с наибольшим правдоподобием.
- Число компонент смеси может быть выбрано:

Свойства оценки смеси через ЕМ

- Существует много локальных максимумов
 - в частности правдоподобие $o \infty$ при $\mu_k = x_n$ и $\sigma_k o 0 \ \forall n$.
- ЕМ алгоритм находит отдельный локальный оптимум
 - в зависимости от инициализации
- Можно перезапустить несколько раз и выбрать решение с наибольшим правдоподобием.
- Число компонент смеси может быть выбрано:
 - кросс-валидацией на итоговой задаче
 - вневыборочным значением правдоподобия
 - информационными критериями $(I=\log(\text{правдоподобие}),\ k=\#\text{параметров})$

$$AIC = 2k - 2I$$
$$BIC = k \ln N - 2I$$

 BIC состоятельно оценивает порядок авторегрессионной модели, AIC переоценивает.

Содержание

- 1 Смеси распределений
- 2 К-средних
- 3 Упрощение смеси Гауссиан

Упрощение смеси Гауссиан

- $oldsymbol{\bullet}$ $\Sigma_k \in \mathbb{R}^{ extit{D} imes D}$ требует $rac{ extit{D}(extit{D}+1)}{2}$ параметров.
- ullet Для всех компонент: $K^{\frac{D(D+1)}{2}}$ параметров.
- Компоненты плохо определяются, когда
 - $K^{\frac{D(D+1)}{2}}$ велико по сравнению с N
 - компоненты лежат рядом друг с другом
- ullet Можем улучшить оценивание упрощениями $\Sigma_k.$

Ковариационные матрицы без ограничений

Σ_k без ограничений

Общие ковариационные матрицы

$$\Sigma_1 = ... = \Sigma_K$$

common

Diagonal covariance matrices

$$\Sigma_k = \operatorname{diag}\{\sigma_{k,1}^2, \sigma_{k,2}^2 ... \sigma_{k,D}^2\}$$

$$\operatorname{diag}$$

Сферические ковариационные матрицы

$$\Sigma_k = \sigma_k^2 \emph{I}$$
 , $\emph{I} \in \mathbb{R}^{ extit{D} imes extit{D}}$ - единичная матрица

spherical

Заключение

- Смеси распределений обобщение оценкой одним распределением.
 - \bullet с $\uparrow K$ гибкость смеси растет
 - $p_i(x)$ любые, не обязательно Гауссовы
- Параметры смеси находятся ЕМ алгоритмом.
- Число компонент можно найти по вневыборочному правдоподобию.
- Смесь Гауссиан обобщение метода К-средних.