Algorithmen und Datenstrukturen B6. Symboltabellen

Marcel Lüthi and Gabriele Röger

Universität Basel

Einführung

Übersicht

Übersicht über nächsten Vorlesungen

Thema: Symboltabellen

- Einführung und einfache Implementationen (Diese Woche)
- Binäre Suchbäume (Diese Woche)
- 2-3-Bäume und Rot-Schwarz Bäume (Nächste Woche)
- Hashtabellen (Nächste Woche)

Symboltabellen

Abstraktion für Schlüssel/Werte Paar

Grundlegende Operationen

- Speichere Schlüssel mit dazugehörendem Wert.
- Suche zu Schlüssel gehörenden Wert.
- Schlüssel und Wert löschen.

Beispiel: DNS

- Einfügen von Domainname (Schlüssel) mit gegebener IP Adresse (Wert)
- Gegeben Domainname, finde IP Adresse

Domainname	IP Adresse
informatik.cs.unibas.ch	131.152.227.35
www.unibas.ch	131.152.228.33
www.cs.princeton.edu	128.112.136.11
www.fsf.org	208.118.235.174

Anwendung	Zweck der Suche	Schlüssel	Wert
Wörterbuch	Definition finden	Wort	Definition
Websuche	Finde Webseite	Suchbegriff	Liste von Webseiten
Compiler	Eigenschaften von Variablen	Variablenname	Typ / Wert
Dateisystem	Finde Datei auf Disk	Dateiname	Ort auf Disk
Log	Finde Events	Timestamp	Logeintrag

- Jeder Schlüssel ist eindeutig.
 - Werte mit gleichem Schlüssel werden ersetzt.
- Schlüssel sind vergleichbar.
- Schlüsselgleichheit (Equality) ist definiert.
- Schlüssel sollen nicht mutierbar sein.
- Entspricht verallgemeinerung von Array (mit Schlüssel \neq Index).
- Wird als Assoziatives Array bezeichnet.

Umsetzung in Programmiersprachen

Symboltabelle werden auch als Map, Assoziatives Array oder Dictionary bezeichnet.

In Java: Teil der Standardbibliothek

AbstractMap mit Subklassen HashMap und TreeMap

```
Map<String, Integer> st = new TreeMap<>();
st.put("aKey", 42);;
st.put("anotherKey", 17)
Integer value = st.get("aKey");
```

In Python: Teil der Sprache:

```
st = {"aKey" : 42, "anotherKey" : 17}
value = st["aKey"]
```

Symboltabellen: API

```
class ST[Key, Value]:

   def put(key : Key, value : Value) -> None
   def get(key : Key) -> Value
   def contains(key : Key) -> Boolean
   def delete(key : Key) -> None
   def isEmpty() -> Boolean
   def size() -> Int
   def keys() : Iterator[Key]
```

```
Schlüssel
                                              Werte
                     min() \rightarrow 09:00:00
                                            Chicago
                               09:00:03
                                            Phoenix
                               09:00:13 Houston
            get(09:00:13) ---
                               09:00:59
                                            Chicago
                               09:01:10
                                            Houston
          floor(09:05:00) \longrightarrow 09:03:13
                                            Chicago
                               09:10:11
                                            Seattle.
                 select(7) \rightarrow 09:10:25
                                            Seattle
                               09:14:25
                                            Phoenix
                               09:19:32
                                            Chicago
                               09:19:46
                                            Chicago
kevs(09:15:00. 09:25:00) \longrightarrow 09:21:05
                                            Chicago
                                            Seattle
                               09:22:43
                               09:22:54
                                            Seattle
                               09:25:52
                                            Chicago
        ceiling(09:30:00) \longrightarrow 09:35:21
                                            Chicago
                               09:36:14
                                            Seattle
                     \max() \longrightarrow 09:37:44
                                            Phoenix
size(09:15:00, 09:25:00) ist 5
     rank(09:10:25) ist 7
```

Geordnete Symboltabellen: API

Wenn die Schlüssel geordnet werden können, lässen sich viele weitere Operationen definieren:

```
class ST[Key, Value]:
    def min() -> Key
    def max() -> Key
    def floor(key : Key) -> Key
    def ceiling(key : Key) -> Key
    def rank(key : Key) : Int
    def select(k : Int) -> None
    def deleteMin() -> None
    def deleteMax() -> None
    def size(lo : Key, hi : Key) -> Int
    def keys() : Iterator[Key]
    def keys(lo : Key, hi : Key) -> Iterator[Key]
```

Warnung: Gleichheit von Objekten

Zwei Arten von Gleichheit in OO Sprachen: Referenzgleichheit (==) Referenzen sind gleich (gleiches Objekt) Objektgleichheit (equals) Inhalt ist gleich

Achtung!

Implementation von benutzerdefinierten Klassen in Java und Python vergleicht per Default nur Objekt-Id und nicht Inhalt.

■ Methoden equals (Java) und __eq__ (Python) müssen implementiert werden.

Einfache Implementationen

Standard Testbeispiel

Bilde eine Symboltabelle bei der der i—te Input mit dem Wert i assoziiert ist

Input:

Symboltabelle:

```
        Schlüssel
        A
        C
        E
        H
        L
        M
        P
        R
        S
        X

        Werte
        8
        4
        12
        5
        11
        9
        10
        3
        0
        7
```

Einfache Implementation 1

Datenstruktur Verkettete Liste von Schlüssel/Werte-Paaren Suchen Elemente durchlaufen bis gefunden oder Listenende Einfügen Element in Liste? Wert ändern. Ansonsten: Am Anfang einfügen.

Intermezzo: Binary search

- Klassischer Algorithmus zum Suchen in geordnetem Array
 - Vergleiche Element mit mittlerem Element des Arrays
 - Wiederhole in Teilarray, bis Element gefunden oder Teilarray leer.

```
| New | New
```

Quelle: Abbildung 1.9, Algorithmen, Wayne & Sedgewick

```
def binarysearch(a, value):
    lo, hi = 0, len(a) - 1
    while lo <= hi:
        mid = (lo + hi) // 2
        if a[mid] < value:
            lo = mid + 1
        elif value < a[mid]:
            hi = mid - 1
        else:
        return mid
    return None</pre>
```

Die Rank Funktion

- Gibt Anzahl Elemente zurück die kleiner als Schlüssel sind
 - Entspricht genau Index in Array

Quelle: Abbildung 3.6, Algorithmen Wayne & Sedgewick

```
def _rank(a, value):
    lo = 0
    hi = len(a) - 1
    while lo <= hi:
        mid = (lo + hi) // 2
        if a[mid] < value:
            lo = mid + 1
        elif value < a[mid]:
            hi = mid - 1
        else:
        return mid
return lo</pre>
```

Datenstruktur Geordnetes Array von Schlüssel/Werte-Paaren Hilfsfunktion rank Anzahl Elemente < k (index in Array) Operationen:

get: Nutze rank um direkt auf richtiges Element zuzugreifen.

 Teste ob wirklich richtiges Element an dieser Stelle ist

put: Nutze rank um Stelle zu finden wo eingefügt/ersetzt werden muss.

Details: Jupyter Notebook: Symboltable.ipynb

Komplexität

	Worst-case		Average-case	
Implementation	suchen	einfügen	suchen	einfügen
Verkettete Liste	N	N	N/2	N
Binäre suche	$\log_2(N)$	N	$\log_2(N)$	N/2

Geordnete Symboltabellen: Komplexität

	Verkettete Liste	Binärsuche
suche	O(N)	$O(\log N)$
einfügen / löschen	O(N)	O(N)
min / max	O(N)	O(1)
floor /ceiling	O(N)	$\log(N)$
rank	O(N)	$O(\log(N))$
select	O(N)	O(1)
iteration (geordnet)	$N \log(N)$	N

Implementation

Ausführliche Diskussion und Implementation
 Jupyter-Notebook: Symboltable-ordered.ipynb

Binäre Suchbäume

Binäre Suchbäume

Ein Binärer Suchbaum ist ein Binärbaum mit symmetrischer Ordnung

Fin Binärbaum ist

- der leere Baum, oder
- eine Wurzel mit einem linken und einem rechten Unterhaum

Symetrische Ordnung

Der Schlüssel jedes Knotens ist

- grösser als alle Schlüssel im linken Teilbaum
- kleiner als alle Schlüssel im rechten Teilbaum

Quelle: Abb. 3.8 / 3.9, Algorithmen, Wayne & Sedgewick

Implementation

```
# Auf Key muss Ordnungsrelation
# definiert sein

Node(key : Key, value : Value)

key : Key
value : Value
left : Node[Key, Value]
right : Node[Key, Value]
```

class Node[Key, Value]:

■ Implementation Symboltabelle: Referenz zu Wurzel Knoten

- Attribute Count zählt die Anzahl Knoten im Unterbaum
- Erlaubt effiziente Implementation von Operation size
 - Kein Traversieren vom Baum nötig.

```
class Node[Key, Value]:
    # Auf Key muss Ordnungsrelation
    # definiert sein
    Node(key : Key, value : Value)
    key : Key
    value : Value
    left : Node[Key, Value]
    right : Node[Key, Value]
    count : Int
```

Um get zu implementieren, müssen wir effizient suchen können.

Suche nach Schlüssel k: Prinzip:

Fall 1: k < Schlüssel in Knoten

Gehe nach links

Fall 2: k > Schlüssel in Knoten

■ Gehe nach rechts

Fall 3: k = Schlüssel in Knoten

Gefunden

Quelle: Abb. 3.11, Algorithmen, Wayne & Sedgewick

Suche in Binärbaum

■ Um get zu implementieren, müssen wir effizient suchen können.

Suche nach Schlüssel k: Prinzip:

Fall 1: k < Schlüssel in Knoten

Gehe nach links

Fall 2: k > Schlüssel in Knoten

Gehe nach rechts

Fall 3: k = Schlüssel in Knoten

Gefunden

ist T nicht im Baum (erfolglose Suche)

Quelle: Abb. 3.11, Algorithmen, Wayne & Sedgewick

Suche in Binärbaum

- Die Suche, ausgehend von Knoten root kann einfach rekursiv implementiert werden.
 - Suche wird einfach in "richtigem" Teilbaum fortgesetzt.

```
def get(key, root):
    if root == None:
        return None
    elif key < root.key:
        return get(key, root.left)
    elif key > root.key:
        return get(key, root.right)
    elif key == root.key:
        return root.value
```

Einfügen in Binärbaum

put lässt sich fast so einfach wie get implementieren.

Suche nach Schlüssel. Zwei Fälle:

- Schlüssel gefunden → Wert neu setzen
- Schlüssel nicht in Baum → Neuen Knoten hinzufügen.

Quelle: Abb. 3.12, Algorithmen, Wayne & Sedgewick

Einfügen in Binärbaum

- Die Operation put ausgehen von Knoten root kann einfach rekursiv implementiert werden.
 - Auf dem "Rückweg" wird der Zähler für die Anzahl Knoten im Unterbaum aktualisiert.
- Beachte: Teilbaum wird in jeder Rekursion neu gesetzt.

```
def put(key, value, root):
    if (root == None):
        return Node(key, value, count = 1)
    elif key < root.key:
        root.left = put(key, value, root.left)
    elif key > root.key:
        root.right = put(key, value, root.right)
    elif key == root.key:
        root.value = value
    root.count = 1 + size(root.left) + size(root.right)
    return root
```

Ausprägung des Binärbaums

- Selbe Menge von Schlüsseln führt zu verschiedene Bäumen
 - hängt von Einfügereihenfolge ab.

Quelle: Abb. 3.14, Algorithmen, Wayne & Sedgewick

Geordnete Symboltabellen: API

```
Schlüssel
                                             Werte
                     min() \rightarrow 09:00:00
                                           Chicago
                               09:00:03
                                           Phoenix
                               09:00:13 Houston
            get(09:00:13)—
                              09:00:59
                                           Chicago
                               09:01:10
                                           Houston
          floor(09:05:00) \longrightarrow 09:03:13
                                           Chicago
                               09:10:11
                                           Seattle
                 select(7) \rightarrow 09:10:25
                                           Seattle
                               09:14:25
                                           Phoenix
                               09:19:32
                                           Chicago
                               09:19:46
                                           Chicago
kevs(09:15:00. 09:25:00) \longrightarrow 09:21:05
                                           Chicago
                                           Seattle
                               09:22:43
                               09:22:54
                                           Seattle
                               09:25:52
                                           Chicago
        ceiling(09:30:00) \longrightarrow 09:35:21
                                           Chicago
                               09:36:14
                                           Seattle
                     \max() \longrightarrow 09:37:44
                                           Phoenix
size(09:15:00, 09:25:00) ist 5
     rank(09:10:25) ist 7
```

Quiz: Minimum und Maximum

Minimum Kleinster Schlüssel in Symboltabelle Maximum Grösster Schlüssel in Symboltabelle

■ Wie finden wir Minimum und Maximum?

Floor Grösster Schlüssel \leq gegebener Schlüssel Ceiling Kleinster Schlüssel \geq gegebener Schlüssel

■ Wie finden wir Floor und Ceiling?

Ordnungsbasierte Operationen

- Ordnungsbasierten Operationen sind einfach zu implementieren.
- Ausführliche Diskussion und Implementation Jupyter-Notebook: BinarySearchTrees.ipynb

Löschen von Knoten: Einfache Methode

Einfachste Methode zum Löschen: Tombstone

- Finde Knoten
- Markiere diesen als gelöscht (z.B. indem Wert auf null gesetzt wird).
 - Schlüssel bleibt im Baum

Problem: Speicherverschwendung bei vielen gelöschten Elementen.

- Nach Links bis linker Knoten null ist.
- Diesen Knoten durch rechten Knoten ersetzten.
- Knotenzähler count aktualisieren.

```
def deleteMin(root):
  if root.left == None:
    return root.right
  else:
    root.left = deleteMin(x.left):
    root.count = 1 + size(root.left)
                                        + size(root.right);
    return root
```


Referenzen und Knotenzählung nach den rekursiven Aufrufen aktualisieren

Löschen nach Hibbard

■ Knoten t mit zu löschendem Schlüssel suchen.

Fall 1: Keine Kinder

- Parent von *t* auf leeren Baum (null) setzen.
- Knotenzähler count aktualisieren.

Löschen nach Hibbard

Knoten t mit zu löschendem Schlüssel suchen.

Fall 2: 1 Kind

- Parent von t neu setzen
- Knotenzähler count aktualisieren.

Löschen nach Hibbard

■ Knoten t mit zu löschendem Schlüssel suchen.

Fall 3: 2 Kinder

- Kleinster Knoten x im rechten Unterbaum von t suchen
- Kleinster Knoten im Unterbaum löschen (deleteMin)
- x anstelle von t setzten
- Knotenzähler count aktualisieren.

Löschen nach Hibbard: Probleme

- Warum wird durch Nachfolger und nicht Vorgänger ersetzt?
- Entscheidung willkürlich und unsymmetrisch.
- lacksquare Konsequenz: Bäume nicht zufällig \Rightarrow Performanceeinbussen
 - Praxis: Manchmal Vorgänger und manchmal Nachfolger verwenden.

Offenes Problem!

Elegante und effiziente Lösung für Löschen in Binärbaum.

Komplexität

	Worst-case			Average-case		
Implementation	suchen	einfügen	löschen	suchen (hit)	einfügen	löschen
Verkettete Liste	N	N	N	N/2	N	N/2
Binäre suche	$\log_2(N)$	N	N	$\log_2(N)$	N/2	N
Binärer Suchbaum	Ν	Ν	Ν	$\log_2(N)$	$\log_2(N)$	\sqrt{N}

Implementation

Jupyter-Notebook: BinarySearchTrees.ipynb