Introduction to Kähler geometry

Exercise sheet 4

Exercise 4.1. Check the following properties of the Hodge *-operator on an n-dimensional Riemannian manifold M:

- 1. $*^2 = (-1)^{k(n-k)} \text{Id on } \Lambda^k M;$
- 2. *1 = Vol;
- 3. $g(*\alpha, *\beta) = g(\alpha, \beta);$
- 4. $\alpha \wedge *\beta = \beta \wedge *\alpha$.

Exercise 4.2. Prove that on a complex manifold M of complex dimension n with Hermitian metric g the \mathbb{C} -linear extension of the *-operator maps $\Lambda^{p,q}M$ to $\Lambda^{n-q,n-p}M$.

Exercise 4.3. Show that for a compact Kähler manifold M with Kähler metric g, Kähler form ω and $\dim_{\mathbb{C}} M = n$ we have

$$\int_{M} \omega^{n} = n! \operatorname{Vol}(M),$$

where Vol(M) is the integral of the Riemannian volume form corresponding to the metric g.

Exercise 4.4. Prove that on any Kähler manifold we have $0 = dd^c + d^c d = dd^{c*} + d^{c*} d = d^* d^{c*} + d^c d^* = d^* d^c + d^c d^*$. Also, check that $dd^c = 2\sqrt{-1}\partial\overline{\partial}$.

Exercise 4.5. Let M be a Kähler manifold with complex structure I and Kähler form ω . Prove that the Laplace operator Δ commutes with I, L_{ω} and Λ_{ω} .

Exercise 4.6. Let M be a compact Kähler manifold and $\alpha \in \Gamma(M, \Lambda^k M)$ a holomorphic k-form. Prove that $d\alpha = 0$.

Exercise 4.7. Prove that on any Kähler manifold the Kähler form is harmonic.