Nama: Nanda Zayyan Nurirfan

NIM : 21120122130079

Teknik Komputer 2022

UTS Metode Numerik

1. Tahap-tahap dalam memecahkan persoalan secara numerik

a. Pendefisian Masalah

Pendefisian Masalah dengan mendefinisikan masalah kita akan mengetahui varibel apa yang diketahui nilainya dan mengetahui masalahnya.

b. Pemodelan

Pemodelan dengan mengunakan pemodelan permasalahan yang ada akan di modelkan dalam persamaan matematikan.

c. Penyederhanaan Model

Penyederhanaan Model dengan melakukan penyederhanaan model kita akan melakukan penyederhaanaan persamaan matematika yang dihasilkan pada tahapan sebelumnya, dengan tujuan untuk mempermudah solusi penyelesaian persamaan matematikanya.

d. Formulasi Numerik

Formulasi Numerik dengan langkah ini kita akan memformulasikan nilainilai variabel secara numerik.

e. Pemrograman

Pemrograman dengan melakukan pemrograman kita akan menterjemahkan algoritma kedalam program komputer yang kita kuasai.

f. Operasional

Operasional tahap opersional ini merupakan tahapan untuk mengujicoba program yang telah dibuat.

g. Evaluasi

Evaluasi tahapan ini merupakan evaluasi dari program yang telah dibuat evaluasi ini mencakup analisis hasil dengan membandingkan dengan prinsip dasar dan hasil-hasil empirik untuk menilai hasil dari solusi metode

numerik, dan untuk menentukan program kembali untuk mendapatkan hasil yang lebih baik.

2. Tiga macam kesalahan yang muncul dalam penyelesaiaan secara numerik

a) Kesalahan bawaan

Kesalahan bawaan adalah kesalahan dari nilai data. Kesalahan tersebut bisa terjadi karena kekeliruan dalam menyalin data, salah membaca skala, atau kesalahan karena kurangnya pengertian mengenai hukum-hukum fisik dari data yang diukur.

b) Kesalahan pembulatan

Kesalahan pembulatan terjadi karena tidak diperhitungkannya beberapa angka terakhir dari suatu bilangan. Kesalahan ini terjadi apabila bilangan perkiraan digunakan untuk menggantikan bilangan eksak. Suatu bilangandibulatkan pada posisi ke n dengan membuat semua angka disebelah kanandari posisi tersebut sama dengan nol. Sedangkan angka pada posisi ke n tersebut tidak berubah atau tidak dinaikkan satu digit. Contoh: 86743242 dapat dibulatkan menjadi 86743000 3,1415926 dapat dibulatkan menjadi 3,14

c) Kesalahan Pemotongan

Kesalahan pemotongan terjadi karena tidak dilakukan hitungan sesuai dengan prosedur matematik yang benar. Sebagai contoh, suatu proses yang tak berhingga diganti dengan proses hingga.

3. Kesalahan absolut

Jembatan:
$$e = |x' - x| = |10.000 - 9999| = 1 cm$$

Pensil:
$$e = |x' - x| = |10 - 9| = 1 cm$$

Kesalahan relatif

Jembatan:
$$∈$$
= 1 10.000 * 100% = 0,01%

Pensil:
$$\in$$
 = 1 10 * 100% = 10%

Kedua kesalahan sama yaitu 1 cm tetapi kesalahan relatif pensil adalah jauh lebih besar.

4. Metode Regulafalsi

- a. Tentukan Interval Awal: Pilih dua titik awal x0 dan x1 sedemikian sehingga f(x0) dan f(x1) memiliki tanda yang berlawanan.
- b. Hitung Titik Potong Garis: Hitung titik potong garis antara (x0, f(x0)) dan (x1, f(x1)) dengan sumbu x, yaitu:

$$xr = x1 - \frac{f(x1) \times (x1 - x0)}{f(x1) - f(x0)}$$

- c. Periksa Konvergensi: Periksa apakah nilai |f(xr)| kurang dari toleransi yang ditentukan (E=0.0001). Jika iya, maka akar telah ditemukan, dan proses selesai. Jika tidak, lanjutkan ke langkah berikutnya.
- d. Perbarui Interval: Tentukan interval baru sesuai dengan tanda f(xr):

Jika f(xr) memiliki tanda yang sama dengan f(x0), maka x0 diganti dengan xr.

Jika f(xr) memiliki tanda yang sama dengan f(x1),, maka x1 diganti dengan xr.

- e. Ulangi Proses: Kembali ke langkah 2 dan terus ulangi proses sampai akar ditemukan dengan toleransi yang diinginkan.
- f. Tabel

Iterasi	X0	x1	x_r	f(x0)	f(x1)	f(x_r)	error
1	1	2		-4	5		
2	1	2	1,4	-4	5	0,536	1,4
3	1,4	2	1,405	0,536	5	0,476	0,005
4	1,405	2	1,405	0,476	5	0,476	0,000
∞					1,73205	0,000000	

Metode Newton

a. Ambil sembarang nilai awal x1 = 1

b.
$$f(x1) = 13 + 12 - 3(1) - 3 = -4$$

c.
$$f'(x1) = 3x^2 + 2x - 3 = 3(1)^2 + 2(1) - 3 = 2$$

d. Hitung x2

$$x2 = x1 - f(x1)/f'(x1)$$

$$x2 = 1 - (-4)/2 = 3$$

e. Hitung
$$f(x^2) = 3^3 + 3^2 - 3(3) - 3 = 24$$

f.
$$f(x2) = 24 > E$$
, maka proses berulang dengan nilai $x1$ yang baru yaitu $x1 = x2 = 3$

g. Langkah selanjutnya kembali ke langkah 2 dan seterusnya sampai diperoleh kondisi diperoleh $|f(xt)| \le \varepsilon$

Tabel

Iterasi	<i>x</i> 1	<i>f</i> (<i>x</i> 1)	<i>x</i> 2	f(x2)
1	1	-4	3	24
2	3	2,4	2,2	5,888
3	2,2	5,888	1,83	0,98738
4	1,83	0,98738	1,73778	0,05442
5	1,73778	0,054442	1,73207	0,0001816
∞			1,73205	0,000000

5. Langkah penyelesaiian

Persamaan diatas diubah ke dalam bentuk matrik:

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 0 \\ 2 & 10 & 4 \end{bmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 10 \end{pmatrix} \quad (*)$$

Langkah 1: Buat nilai 3 pada baris dua menjadi nilai 0 Dengan operasi baris 2 – 3 baris 1 atau b2-3b1, hanya berlaku untuk semua elemen baris 2 sehingga persamaan (*) menjadi:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & -3 \\ 2 & 10 & 4 \end{bmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 4 \end{pmatrix}$$
 (**)

Langkah 2: Buat nilai 2 pada baris tiga menjadi nilai 0 Dengan operasi b3 - 2b1 , berlaku untuk semua baris 3, sehingga persamaan (**) menjadi :

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & -3 \\ 0 & 6 & 2 \end{bmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 4 \end{pmatrix}$$
 (***)

Langkah 3: Buat nilai 6 pada baris tiga menjadi nilai 0 Dengan operasi b3 + 3b2, berlaku untuk semua baris 3, sehingga persamaan (**) menjadi:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & -2 & -3 \\ 0 & 0 & 7 \end{bmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} = \begin{pmatrix} 3 \\ -16 \\ -14 \end{pmatrix}$$
 (****)

Persamaan (****) sudah terbentuk matrik segitiga bawah, sehingga dapat dilakukan back solving:

$$-7x3 = -14; x3 = -14/-7 = 2; x3 = 2$$

$$-2x2 - 3x3 = -6; -2x2 = -6 + 3x3 = -6 + 6$$

$$= 0; x2 = 0$$

$$x1 + 2x2 + x3 = 3; x1 = 3 - 2x2 - x3$$

$$= 3 - 2(0) - (2) = 1; x1 = 1$$

Jadi penyelesaian persamaan diatas adalah

$$x1 = 1$$

$$x2 = 0$$

$$x3 = 2$$