

LM4562 Dual High-Performance, High-Fidelity Audio Operational Amplifier

Check for Samples: LM4562

FEATURES

- Easily Drives 600Ω Loads
- Optimized for Superior Audio Signal Fidelity
- Output Short Circuit Protection
- PSRR and CMRR Exceed 120dB (Typ)
- SOIC, PDIP, and TO-99 Packages

APPLICATIONS

- Ultra High-Quality Audio Amplification
- High-Fidelity Preamplifiers
- High-Performance Professional Audio
- High-Fidelity Active Equalization and Crossover Networks
- High-Performance Line Drivers and Receivers

KEY SPECIFICATIONS

- Power Supply Voltage Range: ±2.5V to ± 17V
- THD+N ($A_V = 1$, $V_{OUT} = 3V_{RMS}$, $f_{IN} = 1kHz$)
 - R_L = 2kΩ: 0.00003% (typ)
 - R_L = 600Ω: 0.00003% (typ)
- Input Noise Density: 2.7nV/√Hz (typ)
- Slew Rate: ±20V/µs (typ)
- Gain Bandwidth Product: 55MHz (typ)
- Open Loop Gain ($R_1 = 600\Omega$): 140dB (typ)
- Input Bias Current: 10nA (typ)
- Input Offset Voltage: 0.1mV (typ)
- DC Gain Linearity Error: 0.000009%

DESCRIPTION

The LM4562 is part of the ultra-low distortion, lownoise, high-slew-rate operational amplifier series optimized and fully specified for high-performance, high-fidelity applications. The LM4562 operational amplifiers deliver superior audio signal amplification for outstanding audio performance. The LM4562 combines extremely low voltage noise density (2.7nV/√Hz) with vanishingly low THD+N (0.00003%) to easily satisfy the most demanding audio applications. To ensure that the most challenging loads are driven without compromise, the LM4562 has a high slew rate of ±20V/µs and an output current capability of ±26mA. Further, dynamic range is maximized by an output stage that drives 2kΩ loads to within 1V of either power supply voltage and to within 1.4V when driving 600Ω loads.

The LM4562's outstanding CMRR (120dB), PSRR (120dB), and V_{OS} (0.1mV) give the amplifier excellent operational amplifier DC performance.

The LM4562 has a wide supply range of ±2.5V to ±17V. Over this supply range the LM4562's input circuitry maintains excellent common-mode and power supply rejection, as well as maintaining its low input bias current. The LM4562 is unity gain stable. This Audio Operational Amplifier achieves outstanding AC performance while driving complex loads with values as high as 100pF.

The LM4562 is available in an 8-lead narrow body SOIC, an 8-lead PDIP, and an 8-lead TO-99.

TYPICAL APPLICATION

A. 1% metal film resistors, 5% polypropylene capacitors

Passively Equalized RIAA Phono Preamplifier

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

CONNECTION DIAGRAMS

Figure 1. 8-Lead SOIC (D Package) 8-Lead PDIP (P Package)

Figure 2. 8-Lead TO-99 (LMC Package)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ABSOLUTE MAXIMUM RATINGS(1)(2)(3)

Power Supply Voltage (V _S = V ⁺ - V ⁻)		36V	
Storage Temperature		−65°C to 150°C	
Input Voltage		(V-) - 0.7V to (V+) + 0.7V	
Output Short Circuit (4)		Continuous	
Power Dissipation		Internally Limited	
ESD Susceptibility (5)		2000V	
ESD Susceptibility (6)	Pins 1, 4, 7 and 8	200V	
	Pins 2, 3, 5 and 6	100V	
Junction Temperature	·	150°C	
Thermal Resistance	θ _{JA} (D)	145°C/W	
	θ _{JA} (P)	102°C/W	
	θ _{JA} (LMC)	150°C/W	
	θ _{JC} (LMC)	35°C	
Temperature Range $(T_{MIN} \le T_A \le T_{MAX})$		-40°C ≤ T _A ≤ 85°C	
Supply Voltage Range		±2.5V ≤ V _S ≤ ± 17V	

- (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
- (2) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- (3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
- (4) Amplifier output connected to GND, any number of amplifiers within a package.
- (5) Human body model, 100pF discharged through a 1.5k Ω resistor.
- (6) Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50Ω).

ELECTRICAL CHARACTERISTICS FOR THE LM4562⁽¹⁾⁽²⁾

The specifications apply for $V_S = \pm 15V$, $R_L = 2k\Omega$, $f_{LN} = 1$ kHz, $T_A = 25$ °C, unless otherwise specified.

Symbol	Parameter	Conditions	LM ²	1562	Units	
Symbol	Parameter	Conditions	Typical ⁽³⁾	Limit ⁽⁴⁾	(Limits)	
THD+N	Total Harmonic Distortion + Noise	$\begin{aligned} A_V &= 1, \ V_{OUT} = 3V_{rms} \\ R_L &= 2k\Omega \\ R_L &= 600\Omega \end{aligned}$	0.00003 0.00003	0.00009	% (max)	
IMD	Intermodulation Distortion	$A_V = 1$, $V_{OUT} = 3V_{RMS}$ Two-tone, 60Hz & 7kHz 4:1	0.00005		%	
GBWP	Gain Bandwidth Product		55	45	MHz (min	
SR	Slew Rate		±20	±15	V/µs (min	
FPBW	Full Power Bandwidth	V _{OUT} = 1V _{P-P} , –3dB referenced to output magnitude at f = 1kHz	10		MHz	
t _s	Settling time	$A_V = -1$, 10V step, $C_L = 100$ pF 0.1% error range	1.2		μs	
	Equivalent Input Noise Voltage	f _{BW} = 20Hz to 20kHz	0.34	0.65	μV _{RMS} (max)	
e _n	Equivalent Input Noise Density	f = 1kHz f = 10Hz	2.7 6.4	4.7	nV / √Hz (max)	
i _n	Current Noise Density	f = 1kHz f = 10Hz	1.6 3.1		pA / √Hz	
Vos	Offset Voltage		±0.1	±0.7	mV (max)	
ΔV _{OS} /ΔTemp	Average Input Offset Voltage Drift vs Temperature	-40°C ≤ T _A ≤ 85°C	0.2		μV/°C	
PSRR	Average Input Offset Voltage Shift vs Power Supply Voltage	$\Delta V_{S} = 20V^{(5)}$	120	110	dB (min)	
ISO _{CH-CH}	Channel-to-Channel Isolation	$f_{IN} = 1kHz$ $f_{IN} = 20kHz$	118 112		dB	
I _B	Input Bias Current	$V_{CM} = 0V$	10	72	nA (max)	
ΔI _{OS} /ΔTemp	Input Bias Current Drift vs Temperature	-40°C ≤ T _A ≤ 85°C	0.1		nA/°C	
los	Input Offset Current	V _{CM} = 0V	11	65	nA (max)	
V _{IN-CM}	Common-Mode Input Voltage Range		+14.1 -13.9	(V+) - 2.0 (V-) + 2.0	V (min)	
CMRR	Common-Mode Rejection	-10V <vcm<10v< td=""><td>120</td><td>110</td><td>dB (min)</td></vcm<10v<>	120	110	dB (min)	
7	Differential Input Impedance		30		kΩ	
Z_{IN}	Common Mode Input Impedance	-10V <vcm<10v< td=""><td>1000</td><td></td><td>МΩ</td></vcm<10v<>	1000		МΩ	
		$-10V < Vout < 10V, R_L = 600\Omega$	140	125		
A _{VOL}	Open Loop Voltage Gain	$-10V$ <vout<10v, r<sub="">L = 2kΩ</vout<10v,>	140		dB (min)	
		$-10V$ <vout<10v, r<sub="">L = $10k\Omega$</vout<10v,>	140			
		$R_L = 600\Omega$	±13.6 ±12.5			
V_{OUTMAX}	Maximum Output Voltage Swing	$R_L = 2k\Omega$	±14.0		V (min)	
		$R_L = 10k\Omega$	±14.1			
l _{out}	Output Current	$R_L = 600\Omega, V_S = \pm 17V$	±26	±23	mA (min)	
I _{OUT-CC}	Instantaneous Short Circuit Current		+53 -42		mA	
R _{OUT}	Output Impedance	f _{IN} = 10kHz Closed-Loop Open-Loop	0.01 13		Ω	

⁽¹⁾ Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.

Copyright © 2006–2013, Texas Instruments Incorporated

⁽²⁾ Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

⁽³⁾ Typical specifications are specified at +25°C and represent the most likely parametric norm.

⁽⁴⁾ Tested limits are specified to AOQL (Average Outgoing Quality Level).

⁽⁵⁾ PSRR is measured as follows: V_{OS} is measured at two supply voltages, ±5V and ±15V. PSRR = $|20\log(\Delta V_{OS}/\Delta V_S)|$.

ELECTRICAL CHARACTERISTICS FOR THE LM4562⁽¹⁾⁽²⁾ (continued)

The specifications apply for $V_S = \pm 15 V$, $R_L = 2k\Omega$, $f_{IN} = 1 kHz$, $T_A = 25 ^{\circ}C$, unless otherwise specified.

Symbol	Davamatar	Conditions	LM ²	Units		
Symbol	Parameter	Conditions	Typical ⁽³⁾	Limit ⁽⁴⁾	(Limits)	
C_{LOAD}	Capacitive Load Drive Overshoot	100pF	16		%	
Is	Total Quiescent Current	I _{OUT} = 0mA	10	12	mA (max)	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5.

Figure 7.

Figure 6.

Figure 8.

Figure 9.

Figure 13.

Figure 10.

Figure 14.

200 500 1k Hz **Figure 17.**

5k 10k 20k

0.00001

20

50 100 200

Hz Figure 16.

THD+N vs Frequency $\begin{aligned} V_{CC} &= 17V, \, V_{EE} = -17V, \, V_{OUT} = 3V_{RMS} \\ R_L &= 600\Omega \end{aligned}$

Figure 20.

TEXAS

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Figure 23.

Figure 22.

7. Figu

Figure 39.

Figure 41.

Figure 43.

Figure 40.

Figure 42.

Figure 44.

Figure 45.

 $\begin{array}{c} \text{Crosstalk vs Frequency} \\ \text{V}_{\text{CC}} = 17\text{V}, \, \text{V}_{\text{EE}} = -17\text{V}, \, \text{V}_{\text{OUT}} = 3\text{V}_{\text{RMS}} \\ \text{A}_{\text{V}} = 0\text{dB}, \, \text{R}_{\text{L}} = 600\Omega \end{array}$ +0 -10 -20 -30 -40 CROSSTALK (dB) -50 -60 -70 -80 -90 -100 -110 -120 -130 50 100 200 500 1k 2k 5k 10k 20k 20

FREQUENCY (Hz)

Figure 49.

 \hat{C} rosstalk vs Frequency V_{CC} = 15V, V_{EE} = -15V, V_{OUT} = 10V $_{RMS}$ A_V = 0dB, R_L = 600 Ω +0 -10 -20 -30 -40 -50 CROSSTALK -60 -70 -80 -90 -100 -110 -120 -130 20 50 100 200 500 1k 2k 5k 10k 20k FREQUENCY (Hz)

Figure 46.

Figure 48.

Figure 50.

Figure 51.

Figure 53.

Figure 55.

FREQUENCY (Hz) Figure 52.

Figure 54.

Figure 56.

Copyright © 2006–2013, Texas Instruments Incorporated

Figure 57.

Figure 58.

Figure 59.

Figure 60.

Figure 61.

Figure 62.

Figure 63.

Figure 65.

Figure 67.

Figure 64.

Figure 66.

Figure 68.

Figure 69.

Figure 71.

Figure 73.

Figure 70.

Figure 72.

Figure 74.

Figure 75.

Figure 77.

Figure 79.

Figure 76.

Figure 78.

Figure 80.

Figure 81.

Figure 83.

FREQUENCY (Hz)

Figure 82.

Figure 84.

Figure 86.

Figure 87.

Figure 89.

Figure 91.

Figure 88.

Figure 90.

Figure 92.

Figure 93.

Output Voltage vs Load Resistance $V_{DD} = 17V, V_{EE} = -17V$ THD+N = 1%

CMRR vs Frequency $V_{CC} = 2.5V$, $V_{EE} = -2.5V$ $R_L = 10k\Omega$

Figure 94.

Output Voltage vs Load Resistance V_{DD} = 12V, V_{EE} = -12V THD+N = 1%

Figure 96.

Output Voltage vs Load Resistance V_{DD} = 2.5V, V_{EE} = -2.5V THD+N = 1%

Figure 98.

Figure 105.

Figure 107.

Figure 108.

APPLICATION INFORMATION

DISTORTION MEASUREMENTS

The vanishingly low residual distortion produced by LM4562 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution, however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.

The LM4562's low residual distortion is an input referred internal error. As shown in Figure 109, adding the 10Ω resistor connected between the amplifier's inverting and non-inverting inputs changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure 109.

This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so produces distortion components that are within the measurement equipment's capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

Figure 109. THD+N and IMD Distortion Test Circuit

The LM4562 is a high-speed op amp with excellent phase margin and stability. Capacitive loads up to 100pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this is to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

A. Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.

Figure 110. Noise Measurement Circuit
Total Gain: 115 dB @f = 1 kHz
Input Referred Noise Voltage: e_n = V0/560,000 (V)

Figure 111. RIAA Preamp Voltage Gain, RIAA Deviation vs Frequency

Figure 112. Flat Amp Voltage Gain vs Frequency

Evaluation Module Schematic

Figure 113. Inverting Amplifiers

Typical Applications

 $A_V = 34.5$ F = 1 kHz $E_n = 0.38 \text{ }\mu\text{V}$ A Weighted

Figure 114. NAB Preamp

Figure 115. NAB Preamp Voltage Gain vs Frequency

 $V_O = V1-V2$

Figure 116. Balanced to Single-Ended Converter

 $V_0 = V1 + V2 - V3 - V4$

Figure 117. Adder/Subtracter

 $f_0 = \frac{1}{2\pi BC}$

Figure 118. Sine Wave Oscillator

if
$$C1 = C2 = C$$

$$R1 = \frac{\sqrt{2}}{2\omega_0 C}$$

Illustration is $f_0 = 1 \text{ kHz}$

Figure 119. Second-Order High-Pass Filter (Butterworth)

if
$$R1 = R2 = R$$

$$C1 = \frac{\sqrt{2}}{\omega_0 R}$$

$$C2 = \frac{C1}{2}$$

Illustration is $f_0 = 1 \text{ kHz}$

Figure 120. Second-Order Low-Pass Filter (Butterworth)

Figure 121. State Variable Filter

Figure 122. AC/DC Converter

Figure 123. 2-Channel Panning Circuit (Pan Pot)

Figure 124. Line Driver

$$\begin{split} f_L &\approx \frac{1}{2\pi \, R \, 2C1}, f_{LB} \approx \frac{1}{2\pi R \, 1C1} \\ f_H &\approx \frac{1}{2\pi \, R \, 5C2}, f_{HB} \approx \frac{1}{2\pi (R1 + R5 + 2R3)C2} \end{split}$$

The equations started above are simplifications, providing guidance of general –3dB point values, when the potentiometers are at their null position.

Illustration is:

$$f_L \approx 32 \text{ Hz}, f_{LB} \approx 320 \text{ Hz}$$

 $f_H \approx 11 \text{ kHz}, f_{HB} \approx 1.1 \text{ kHz}$

Figure 125. Tone Control

 $\begin{aligned} &A_v = 35 \text{ dB} \\ &E_n = 0.33 \text{ μV S/N} = 90 \text{ dB} \\ &f = 1 \text{ kHz} \\ &A \text{ Weighted} \\ &A \text{ Weighted, V}_{IN} = 10 \text{ mV} \\ &@f = 1 \text{ kHz} \end{aligned}$

Figure 126. RIAA Preamp

If R2 = R5, R3 = R6, R4 = R7
$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$
 Illustration is:

V0 = 101(V2 - V1)

Figure 127. Balanced Input Mic Amp

A. See Table 1.

Figure 128. 10-Band Graphic Equalizer

Table 1. C₁, C₂, R₁, and R₂ Values for Figure 128⁽¹⁾

fo (Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12μF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51kΩ	510Ω

(1) At volume of change = ± 12 dB Q = 1.7

REVISION HISTORY

Changes from Revision J (April 2013) to Revision K					
•	Added EVM schematic	:	25		

REVISION HISTORY

Rev	Date	Description
1.0	08/16/06	Initial release.
1.1	08/22/06	Updated the Instantaneous Short Circuit Current specification.
1.2	09/12/06	Updated the three ±15V CMRR Typical Performance Curves.
1.3	09/26/06	Updated interstage filter capacitor values on page 1 Typical Application schematic.
1.4	05/03/07	Added the "general note" under the EC table.
1.5	10/17/07	Replaced all the PSRR curves.
1.6	01/26/10	Edited the equations on page 28 (under Tone Control).
J	04/04/13	Changed layout of National Data Sheet to TI format

Copyright © 2006–2013, Texas Instruments Incorporated

PACKAGE OPTION ADDENDUM

7-Nov-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM4562MA/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	L4562 MA	Samples
LM4562MAX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	L4562 MA	Samples
LM4562NA/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	CU SN	Level-1-NA-UNLIM	-40 to 85	LM 4562NA	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

7-Nov-2017

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Nov-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4562MAX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

www.ti.com 11-Nov-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
LM4562MAX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0	

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.