

SMPS MOSFET

IRFB23N15D IRFS23N15D

IRFSL23N15D

PD - 93894A

HEXFET® Power MOSFET

Applications

• High frequency DC-DC converters

V _{DSS}	R _{DS(on)} max	I _D
150V	0.090Ω	23A

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	23	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	17	A
I _{DM}	Pulsed Drain Current ①	92	
P _D @T _A = 25°C	Power Dissipation ⑦	3.8	W
P _D @T _C = 25°C	Power Dissipation	136	
	Linear Derating Factor	0.9	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt ③	4.1	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw®	10 lbf•in (1.1N•m)	

Typical SMPS Topologies

• Telecom 48V input DC-DC Active Clamp Reset Forward Converter

International

Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.18	-	V/°	C Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.090	Ω	$V_{GS} = 10V, I_D = 14A$ ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
Inno	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 150V, V_{GS} = 0V$
IDSS				250	μΛ	$V_{DS} = 120V, V_{GS} = 0V, T_{J} = 150$ °C
I _{GSS} -	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
	Gate-to-Source Reverse Leakage			-100	1 IIA	$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9 _{fs}	Forward Transconductance	11			S	$V_{DS} = 25V, I_{D} = 14A$
Q _g	Total Gate Charge		37	56		I _D = 14A
Q _{gs}	Gate-to-Source Charge	T	9.6	14	nC	$V_{DS} = 120V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		19	29	1	V _{GS} = 10V, ④
t _{d(on)}	Turn-On Delay Time		10			$V_{DD} = 75V$
t _r	Rise Time		32		ns	$I_D = 14A$
t _{d(off)}	Turn-Off Delay Time		18		110	$R_G = 5.1\Omega$
t _f	Fall Time		8.4			V _{GS} = 10V ④
C _{iss}	Input Capacitance		1200			$V_{GS} = 0V$
Coss	Output Capacitance		260		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		65		pF	f = 1.0MHz
C _{oss}	Output Capacitance		1520		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		120]	$V_{GS} = 0V$, $V_{DS} = 120V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		210]	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 120V $

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy2		260	mJ
I _{AR}	Avalanche Current①		14	Α
E _{AR}	Repetitive Avalanche Energy®		13.6	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.1	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface ®	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient®		62	
$R_{\theta JA}$	Junction-to-Ambient®		40	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			23	A	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current	92		integral reverse		
	(Body Diode) ①			92		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 14A, V_{GS} = 0V$ 4
t _{rr}	Reverse Recovery Time		150	220	ns	$T_J = 25^{\circ}C, I_F = 14A$
Q _{rr}	Reverse RecoveryCharge		0.8	1.2	μC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

IRFB/IRFS/IRFSL23N15D

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

IRFB/IRFS/IRFSL23N15D

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFET® Power MOSFETs

International

TOR Rectifier

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION: INCH

- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
- TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

WITH ASSEMBLY LOT CODE 9B1M INTERNATIONAL
RECTIFIER
LOGO
IPR 9246
9B 1M

ASSEMBLY
LOT CODE
VYWW)
YY = YEAR
WW = WEEK

IRFB/IRFS/IRFSL23N15D

D²Pak Package Outline

D²Pak Part Marking Information

International

TOR Rectifier

TO-262 Package Outline

1 = GATE 3 = SOURCE

 $2 = DRAIN \qquad 4 = DRAIN$

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS.

TO-262 Part Marking Information

EXAMPLE: THIS IS AN IRL3103L

LOT CODE 1789

ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

IRFB/IRFS/IRFSL23N15D

D²Pak Tape & Reel Information

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 2.7mH $R_G = 25\Omega$, $I_{AS} = 14$ A.
- $\begin{tabular}{l} @ I_{SD} \le 14A, \ di/dt \le 240A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ T_{J} \le 175 ^{\circ} C \end{tabular}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $^{\circ}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- © This is only applied to TO-220AB package
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended footprint and soldering techniques refer to application note #AN-994

Ø 60.00 (2.362) MIN.

30.40 (1.197)

4

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTER: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936

Data and specifications subject to change without notice. 6/00