Системный анализ процессов переработки нефти и газа

Лабораторная работа №1

Основы программирования на языке Python

Задание 1

Абсолютная плотность газов и паров $\left[\kappa \Gamma / \mathrm{M}^3 \right]$ вычисляется по формуле:

$$ho = rac{M}{22.4} \cdot rac{T_0 \cdot P}{T \cdot P_0}$$

где М - молярная масса газа или пара, [кг/кмоль];

 $T_0 = 273.15$ - нормальная температура, [K];

T - температура, при которой определяется плотность, [K];

 $P_0 = 101325$ - нормальное давление, [Па];

P - давление, при котором определяется плотность, $[\Pi a]$.

Необходимо определить плотность метана (CH_4) при P=200 кПа и температуре $T\in[200;500]$ с шагом $h=50\,[K]$.

Задание 2

Выполните расчет молекулярной массы, температуры кипения и плотности нормальных алканов C_1-C_5 . Общая формула для алканов C_nH_{2n+2} . Результаты расчетов сохраните в виде списков.

1. Температуру кипения можно определить по следующей формуле:

$$T_b = 1090 - \exp\left(6.9955 - 0.11193 \cdot N_C^{2/3}
ight)$$

где N_{C} - число атомов углерода в молекуле алкана.

2. Формула для вычисления плотности:

$$ho = 1.07 - \exp \left(3.56073 - 2.93886 \cdot MW^{0.1}
ight)$$

где MW - молекулярная масса алкана.

Задание 3

По имеющимся исходным данным определите состав потока в объемных долях, используя следующую формулу:

$$arphi_i = rac{\dfrac{\omega_i}{
ho_i}}{\sum\limits_{i=1}^n \dfrac{\omega_i}{
ho_i}}$$

где φ_i - объемная доля i-го компонента; ω_i - массовая доля i-го компонента; ρ_i - плотность i-го компонента; n - число компонентов в системе; i - индекс компонента в системе.

Исходные данные

Параметр	C_1	C_2	C_3	iC_4	nC_4	iC_5	nC_5	nC_6
ω_i	0.1	0.1	0.1	0.4	0.2	0.05	0.03	0.02
$ ho_i$, г/см 3	0.416	0.546	0.585	0.5510	0.6	0.616	0.6262	0.6594

Задание 4

Коэффициент сжимаемости учитывает отклонение реального газа от уравнения состояния идеального газа. При точных расчетах коэффициент сжимаемости определяют по формуле:

$$z = 1 + \frac{P_r}{T_r} \cdot \left(0.144 + 0.073 \cdot \omega - \frac{0.33 - 0.46 \cdot \omega}{T_r} - \frac{0.138 + 0.5 \cdot \omega}{T_r^2} - \frac{0.012 + 0.097 \cdot \omega}{T_r^3} - \frac{0.0073 \cdot \omega}{T_r^8}\right)$$

где ω - ацентрический фактор, вычисляемый по уравнению:

$$\omega = rac{3}{7} \cdot \left(rac{\lg P_r - 5}{rac{T}{T_r \cdot T_b} - 1}
ight) - 1$$

 T_r - приведенная температура: $T_r = rac{T}{T_c}$

 $P_r = 0.2634$ - приведенное давление; $T_b = 272.65$ - температура кипения, [K]; $T_c = 425.15$, [K].

Необходимо реализовать расчет фактора сжимаемости z при $T \in [200;400]$ с шагом $h=25~\mathrm{[K]}.$

Задание 5

Определение концентрации ионов $[H^+]$ в растворе с учетом константы диссоциации кислоты K_a и концентрации кислоты c происходит посредством последовательного применения формулы:

$$\left[H^+
ight]_{n+1} = \sqrt{\left(K_a\cdot (c-[H^+]_n)
ight)}$$

при начальном значении $[H^+]_n=0.0.$ Итерации продолжаются до тех пор, пока изменение значения $[H^+]$ не станет меньше, чем некоторая предварительно заданная малая пороговая величина допустимого отклонения.

Используя данный метод, определите концентрацию ионов водорода и, соответственно, pH раствора ($pH=-\log_{10}{[H^+]}$) для раствора уксусной кислоты с концентрацией $c=0.01\mathrm{M}$, $K_a=1.78\times 10^{-5}$. Величину допустимого отклонения принять как $\varepsilon=1.0E$ -10.