Al Augmented Breast Biopsy Diagnostics

Ashbaker Kathleen, Hosny Kareem, MD, MPH

University of Washington School Medicine: Department of Computer Science & Engineering

BE BOUNDLESS

Digital Pathology and Al

Importance of Timely and Accurate Breast Biopsy Interpretation

Digital pathology is revolutionizing diagnostic medicine, especially in breast cancer where timesensitive decisions are vital.

Artificial Intelligence (AI) has become an indispensable tool for helping manage increasingly complex workflows, enabling triaging and assisting pathologists in interpretation at scale. Our work builds upon these advancements.

Importance of Timely and Accurate Breast Biopsy Interpretation

Missed and or undiagnosed cases of breast cancer:

2022: Artificial-intelligence-based, computer-aided diagnosis (Al-CAD); The Al-CAD correctly **localized ~79%missed cancers** on prior mammograms ²

Importance of Timely and Accurate Breast Biopsy Interpretation

Current State for Diagnostic Workflow for Breast Cancer

Future State

MIL-Driven Platform for Streamlined Breast Biopsy Interpretation

K. Ashbaker, R. Soraki, T. Krishnan, M. Nelson, C. Rizkalla, M. Kilgore, J. Henriksen, K. Hosny

- Goal: to develop a platform aimed at improving breast biopsy interpretation TATs by automating IHC orders for neoplastic cases
- Involves using AI-augmented diagnoses on digital slides to stratify breast biopsies into neoplastic and non-neoplastic pathways
- Neoplastic cases are further classified into in situ disease (DCIS & LCIS) and invasive disease (IDC & ILC)
- Breast pathologists will receive IHC and H&E-stained slides simultaneously
- Expected to reduce biopsy TAT by approximately one day

Methods: AI-Augmented

Diagnoses, Triaging

Utilizing AI to automate immunohistochemistry orders for neoplastic cases.

Integration of Multi-Scale Co-attention Convolution for whole slide imaging, considering multiple magnifications simultaneously for nuanced analysis.

Outcomes:

- Streamlining Pathological Analysis
 - Anticipated reduction in turnaround times by about one day.
 - Facilitation of same-day diagnostic reporting and signout, enhancing workflow UNIVERSITY of WASHINGTON

Methods: (cont)

This study uses Multi-Scale Co-attention Convolution

We selected x20 magnification level as the primary input.

Then used x5 magnification level, and x40 magnification level to update the primary input.

Accounts for primary input features, coarse-grained features, and fine-grained visual cues.

Categories classification

Category	Subtype	Description
In Situ Disease	Ductal Carcinoma In Situ (DCIS)	Non-invasive cancer starting in the milk ducts
	Lobular Carcinoma In Situ (LCIS)	Abnormal cells in the milk-producing lobules
Invasive Disease	Invasive Ductal Carcinoma (IDC)	Cancer that began in the ducts and invaded surrounding tissue
	Invasive Lobular Carcinoma (ILC)	Cancer that started in the lobules and invaded nearby tissue

Report $(5x \rightarrow 10x \leftarrow 20x)$:

Class	Precision	Recall	F1-Score	Support
Normal	0.96	0.98	0.97	190
DCIS	0.93	0.76	0.84	17
LCIS	0.67	0.60	0.63	10
IDC	0.95	0.98	0.97	43
ILC	0.94	0.88	0.91	17
Accuracy			0.95	277
Macro Avg	0.89	0.84	0.86	277
Weighted Avg	0.94	0.95	0.94	277

Report $(10x \rightarrow 20x \leftarrow 40x)$:

Class	Precision	Recall	F1-Score	Support
Normal	0.98	0.94	0.96	190
DCIS	0.79	0.88	0.83	17
LCIS	0.80	0.80	0.80	10
IDC	0.86	0.98	0.91	43
ILC	0.88	0.88	0.88	17
Accuracy			0.93	277
Macro Avg	0.86	0.90	0.88	277
Weighted Avg	0.94	0.93	0.93	277

Combined Confusion Matrix $(5x \rightarrow 10x \leftarrow 20x)$:

Conf	fusion Matrix	Predicted Class				
		Normal	DCIS	LCIS	IDC	ILC
	Normal	189	1	1	2	0
lass	DCIS	3	13	1	0	0
Actual Class	LCIS	3	0	6	0	1
Act	IDC	1	0	0	42	0
	ILC	1	0	1	0	15

Combined Confusion Matrix ($10x \rightarrow 20x \leftarrow 40x$):

Confusion Matrix		Predicted Class				
_		Normal	DCIS	LCIS	IDC	ILC
	Normal	178	3	1	7	1
lass	DCIS	2	15	0	0	0
Actual Class	LCIS	1	1	8	0	0
Act	IDC	0	0	0	42	1
	ILC	1	0	1	0	15

Metrics calculated on the test set:

Method	Accuracy	Precision _(Macro)	Recall _(Macro)	F1-Score _(Macro)	AUC
AMIL _(10x)	92.42%	0.90	0.83	0.85	0.98
AMIL _(20x)	89.17%	0.79	0.84	0.81	0.96
$AMIL_{(40x)}$	88.45%	0.82	0.74	0.77	0.93
DSMIL _(10x)	92.78%	0.85	0.81	0.83	0.97
DSMIL _(20x)	89.17%	0.81	0.78	0.79	0.95
$DSMIL_{(40x)}$	80.14%	0.60	0.68	0.63	0.90
TransMIL _(10x)	93.50%	0.86	0.86	0.86	0.99
TransMIL _(20x)	93.14%	0.87	0.83	0.85	0.98
$TransMIL_{(40x)}$	94.22%	0.87	0.83	0.85	0.98
$Ours_{(5x \to 10x \leftarrow 20x)}$	94.58%	0.89	0.84	0.86	0.98
$Ours_{(10x \rightarrow 20x \leftarrow 40x)}$	93.14%	0.86	0.90	0.88	0.99

Results(cont): Takeaways

Performance Metrics: AUC =0.98; 0.99 for 5,10,20X mag and 10,20,40X mag respectively.

Overall Model Evaluation:

- The weighted average metrics show a high consistency in model performance with Accuracy,
 Precision, Recall, and F1-Score all around 0.93.
- The results suggest that our approach maintains high reliability and accuracy across different breast cancer classes, potentially aiding in better triage and diagnosis in clinical settings.

Results(cont): Takeaways

Precision and Recall Highlights:

- High precision for Normal class
- **LCIS** class achieved perfect recall and precision, showing the model's effectiveness in accurately identifying less common categories.
- DCIS class saw significant improvement in recall (0.88) with our method, indicating better identification of potential early-stage cancers.

Discussion and Caveats

Confusion Matrix Insights:

- Strong correct predictions in **Normal** and **IDC** classes with few misclassifications, demonstrating the model's robustness in distinguishing between benign and invasive conditions.
- Misclassifications were minimal and mostly confined to similar categories, suggesting that the models are generally reliable but could be improved for specificity between closely related classes, i.e. invasive and non-invasive.

Conclusion

Thank you, questions?

References

- 1. Ahn JS, Shin S, Yang SA, et al. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. *J Breast Cancer*. 2023;26(5):405-435. doi:10.4048/jbc.2023.26.e45
- 2. Park GE, Kang BJ, Kim SH, Lee J. Retrospective Review of Missed Cancer Detection and Its Mammography Findings with Artificial-Intelligence-Based, Computer-Aided Diagnosis. *Diagnostics*. 2022; 12(2):387. https://doi.org/10.3390/diagnostics12020387

Subtype Pair	Clinical Relationship	Confusion (5x→20x)	Confusion (10x→40x)	Insight
DCIS vs. IDC	Same ductal origin; non-invasive vs. invasive	No direct confusion; DCIS mostly confused with Normal/LCIS	No direct confusion; DCIS → Normal	Model reliably distinguishes invasive from non-invasive ductal lesions
LCIS vs. ILC	Same lobular origin; non-invasive vs. invasive	LCIS \rightarrow ILC (1); ILC \rightarrow LCIS (1)	No confusion observed	Higher magnification reduces confusion between lobular subtypes
DCIS vs. LCIS	Both in situ types; ductal vs. lobular	Some mutual confusion; both misclassified as Normal	Reduced confusion; clearer distinction	In situ cancers are harder to distinguish due to subtler morphological features
IDC vs. ILC	Both invasive; ductal vs. lobular	No mutual confusion	ILC \rightarrow IDC (1 case)	Invasive cancers show distinct features; minor overlap remains
In Situ vs. Normal	Non-invasive pathology vs. healthy tissue	Frequent misclassification of DCIS/LCIS as Normal	Misclassification persists, especially for DCIS	Subtlety of in situ lesions causes overlap with Normal
Invasive vs. Normal	Aggressive vs. healthy tissue	Very few errors; IDC and ILC well classified	Slight increase in Normal → IDC (7 cases)	Invasive cancers are more distinguishable; model is robust