Тема 9. Введение в базы данных, типы баз данных. Работа с MySQL, создание БД.

Цель занятия:

Ознакомиться с основными понятиями и видами баз данных.

Учебные вопросы:

- 1. Основные понятия
- 2. Типы СУБД
- 3. Типы БД
- 4. Реляционные БД
- 5. Structured Query Language (SQL)

- 6. Установка MySQL.
- 7. DDL запросы. Создание ролей и БД через консоль.

1. Основные понятия.

База данных — это организованная совокупность данных, хранимая в соответствии со схемой данных и предназначенная для эффективного поиска, обновления, управления и использования этих данных.

База данных — это набор взаимосвязанных данных и правила хранения этих данных.

Система Управления Базами Данных (СУБД)

Система управления базами данных (СУБД) - это программное обеспечение, которое используется для управления базами данных. Она предоставляет средства для создания, организации, хранения, обновления и извлечения данных из базы данных.

Архив с данными – это информация, которую хотим хранить.

Архивариус – СУБД, через него идут все манипуляции с данными, будь то удаление, добавление или получение.

Посетитель – программа, которой необходимо производить операции с данными.

Зачем нужны базы данных?

- Хранение информации: Базы данных позволяют хранить огромные объемы информации в структурированном виде, что облегчает ее поиск и управление.
- Обеспечение доступа: Множество пользователей могут одновременно получать доступ к данным и вносить изменения.
- Управление данными: Базы данных предоставляют инструменты для добавления, удаления, обновления и поиска данных.
- **Сохранение целостности:** Благодаря механизмам контроля целостности, данные в базе данных остаются согласованными и точными.

2. Типы СУБД.

Типы СУБД

- файл-серверные
- клиент-серверные
- встраиваемые

Файл-серверные СУБД

Файлы с информацией хранятся на сервере, а СУБД на клиенте.

Программа: Microsoft Access.

Клиент и сервер

Клиент:

- 1. программа, которая хочет получить информацию;
- 2. физическое устройство, на котором работает программа-клиент.

Сервер:

- 1. специальная программа, которая дает информацию;
- 2. физическое устройство, на котором запущена программа-сервер.

Обычно эти программы расположены на разных вычислительных машинах и взаимодействуют между собой по различным протоколам, но они могут быть расположены и на одной машине.

Клиент-серверные СУБД

И файлы с информацией и СУБД находятся на сервере, а клиент обращается за информацией через легковесную вспомогательную программу.

Программы: MySQL, PostgreSQL, Microsoft SQL, Oracle, MongoDB, Cassandra.

Встраиваемые СУБД

Файлы и СУБД хранятся на клиенте.

Программа: SQLite.

Какими плюсами и минусами обладает каждый тип СУБД?

Тип СУБД	Плюсы	Минусы	
Файл-серверные	 Сервер может быть обычным файловым хранилищем Легко переносить базу 	 Плохо параллелятся действия от разных клиентов Требуется установка СУБД на каждом клиенте 	
 На клиенте не надо устанавливать СУБД Хорошо параллелятся действия от разных клиентов 		 Сервер должен быть достаточно производительным => дорого 	
Встраиваемые	 Не надо ничего устанавливать 	 Подходит только для локального хранения 	

3. Типы баз данных.

• Реляционные базы данных:

Самый распространенный тип.

Данные организованы в таблицы, состоящие из строк и столбцов.

Используют язык SQL для выполнения запросов.

Примеры СУБД: MySQL, PostgreSQL, Oracle.

• NoSQL базы данных:

Не имеют жесткой структуры.

Подходят для хранения больших объемов неструктурированных данных.

Типы:

- Ключ-значение (Redis)
- Документоориентированные (MongoDB)
- Колоночные (Cassandra)
- Графовые (Neo4j)

• Другие типы:

Объектно-реляционные базы данных Иерархические базы данных Сетевые базы данных

Типы баз данных

Реляционные – это БД, в которых информация строго структурирована и связана с другой информацией жёсткими правилами.

Пример:

- Microsoft Access
- SQLite
- PostgreSQL
- MySQL
- Microsoft SQL

Нереляционные (NoSQL) – это БД, в которых нет жёстких ограничений ни по структуре, ни по связи между информацией.

Пример:

- Redis
- MongoDB
- Cassandra

4. Реляционные БД.

Реляционная база данных — это тип базы данных, которая хранит и организует данные в виде таблиц (отношений), состоящих из строк и столбцов.

Каждая строка представляет собой запись (например, информацию о конкретном объекте), а каждый столбец — атрибут (характеристику этого объекта).

Таблицы могут быть связаны между собой с помощью ключей, что позволяет эффективно управлять и анализировать данные.

Проще говоря:

Реляционная база данных - совокупность взаимосвязанных таблиц.

Основные понятия реляционных баз данных:

Таблица: Основной элемент реляционной базы данных, состоящая из строк и столбцов.

- Запись: Отдельная строка в таблице, представляющая один экземпляр данных.
- Поле: Отдельный столбец в таблице, содержащий определенный тип данных.
- Ключ: Уникальный идентификатор записи.

id	name	gpa
1	Егор	4.82
2	Егор	4.11
3	Егор	3.88

Пример отношения «Успеваемость студентов»

Атрибут (или поле) - столбец.

Запись (или кортеж) – строка.

Пример отношения «Успеваемость студентов»

Преимущества реляционных баз данных

- •Структурированность: Данные хранятся в четко определенной структуре, что облегчает их поиск и управление.
- •**Целостность**: Механизмы обеспечения целостности данных гарантируют, что информация остается точной и согласованной.
- •Гибкость: Реляционные базы данных легко адаптируются к изменениям в структуре данных.
- •Мощность выразительных средств: Язык SQL позволяет выполнять сложные запросы к данным.
- •Широкая поддержка: Существует множество СУБД, поддерживающих реляционную модель данных.

Особенности реляционных баз данных:

Таблицы: Данные в реляционных базах данных хранятся в виде таблиц, которые состоят из строк и столбцов. Каждая таблица представляет собой отдельную сущность, а каждая строка в таблице представляет отдельную запись.

Схема данных: РБД используют предварительно определенную схему данных, которая определяет структуру таблиц и связи между ними. Схема данных определяет типы данных, ограничения целостности, связи и другие атрибуты таблиц.

Отношения: Реляционные базы данных поддерживают связи между таблицами с помощью ключей. Связи могут быть один-к-одному, один-ко-многим или многие-ко-многим. Это позволяет эффективно организовывать данные и выполнять операции объединения, фильтрации и связи данных.

SQL: Реляционные базы данных используют язык структурированных запросов SQL (**Structured Query Language**) для выполнения операций доступа к данным, таких как выборка, вставка, обновление и удаление данных. SQL предоставляет мощные возможности для манипуляции данными и выполнения сложных запросов.

АСІD-свойства: РБД обеспечивают ACID-свойства, которые гарантируют надежность и целостность данных. ACID означает атомарность (atomicity), согласованность (consistency), изолированность (isolation) и долговечность (durability) операций в базе данных.

Пример базы данных

Схема БД. Таблицы и данные

Таблица 1

Атрибут 1	Атрибут 2	Атрибут 3
1	Егор	4.25
2	Дима	3.82
3	Миша	4.15

Таким способом описываются конкретные данные в таблице.

Таблица 1

Атрибут 1

Атрибут 2

Атрибут 3

Таким способом описываются таблицы и их атрибуты: информацию какого вида таблица содержит.

ld	Name	Birthday	
1	Лев Толстой	1828	
2	Александр Солженицын	1918	
3	Иван Тургенев	1818	
4	Антон Чехов	1860	
5	Иван Бунин	1870	
6	Михаил Булгаков	1891	
7	Николай Гоголь	1809	
8	Александр Пушкин	1799	
9	Федор Достоевский	1821	
10	Михаил Лермонтов	1814	

Ссылка

ld	Authorld	Start	End	
1	1 9 185		1854	
2	2	1945	1953	
3	8	1824	1826	
4	10	1837	1837	
5	10	1840	1841	

ld	Authorld	Name	Start	End
1	10	Герой нашего времени	1838	1840
2	1	Война и мир	1863	1873
3	8	Капитанская дочка	1836	1836
4	10	Смерть поэта	1837	1837
5	2	Архипелаг ГУЛАГ	1958	1968
6 10		Бородино	1837	1837
7 3		Отцы и дети	1860	1861
8 4		Три сестры	1900	1901
9 5		Косцы	1921	1921
10 6		Белая гвардия	1922	1924
11 7		Мертвые души	1835	1835
12 9 Идиот		Идиот	1867	1869
13 8 Моцарт и Сальери		Моцарт и Сальери	1830	1830

Произволонио

Сколько произведений написал Лермонтов?

Сколько авторов писали свои произведения с 1830 по 1840 годы?

Пример базы данных интернет-магазина

Интернет-Магазин.

- Есть товары.
- Есть категории товаров.
- Каждый товар принадлежит строго одной категории.
- К товарам могут написать отзывы (к одному товару можно написать множество отзывов).
- Необходимо хранить информацию о категориях, товарах и отзывах.

Пример решения:

	Категории			
id	id Название			
	1	Футболки		
	2	Шорты		
	3	Обувь		
	4	Спортивные костюмы		

Товары					
id Название Цена id категории					
1	Костюм спор. Puma	10000	4		
2	Кроссовки Adidas	20000	3		
3	Футболка Reebok	5000	1		
4	Футболка Noname	3000	1		

Отзывы				
id	Оценка	Текст	Автор	id Товара
1	5	"Супер"	Егор	1
2	4	"Норм"	Степан	3
3	3	"Так себе"	Алина	4
4	5	"Отлично"	Никтиа	1

5. Structured Query Language (SQL)

Structured Query Language (SQL)

– язык для извлечения/изменения/удаления/добавления данных. Данный язык понимает СУБД, которая и производит соответствующие операции с данными.

Structured Query Language (SQL)

Пример запроса

SELECT * FROM student;

Результат выполнения

	123 id VI	name TI	123 gpa V :	⊕birth ₹
1	12	Карина	4.7	2000-09-12 00:00:00
2	13	Игорь	3.8	2000-01-26 00:00:00
3	15	Илья	4.2	1999-05-08 00:00:00
4	17	Вова	[NULL]	1999-04-14 00:00:00

Стандартизация SQL. ANSI SQL-92

Типы запросов в SQL

DDL (Data Definition Language) в SQL представляет набор команд, используемых для **определения и изменения структуры** базы данных. Они позволяют создавать, изменять и удалять таблицы, индексы, представления и другие объекты базы данных.

DML (Data Manipulation Language) в SQL - это набор команд, используемых для **манипулирования данными** в базе данных. Они позволяют вставлять, обновлять, удалять и извлекать данные из таблиц.

TCL (Transaction Control Language) в SQL - это набор команд, используемых **для управления транзакциями** в базе данных. Транзакция представляет собой логическую операцию или набор операций, которые должны быть выполнены как единое целое, либо все операции должны быть отменены.

DCL (Data Control Language) в SQL - это набор команд, используемых **для управления правами доступа** и безопасностью в базе данных. Они позволяют управлять разрешениями пользователей на выполнение определенных операций с данными.

Типы запросов в SQL

- DDL (Data Definition Language) CREATE, ALTER, DROP
- DML (Data Manipulation Language) SELECT, INSERT, UPDATE, DELETE
- TCL (Transaction Control Language) COMMIT, ROLLBACK, SAVEPOINT
- DCL (Data Control Language) GRANT, REVOKE, DENY

6. Установка MySQL.

MySQL - это одна из самых популярных в мире **свободных реляционных** систем управления базами данных (**СУБД**).

Она широко используется для создания и управления веб-приложений, а также в других областях, где требуется надежное хранение и обработка структурированных данных.

Порядок установки MySQL:

Шаг 1: Скачивание MySQL

- 1.Перейдите на официальный сайт MySQL: MySQL Downloads.
- 2.В разделе "Select Operating System" выберите "Microsoft Windows".
- 3.Выберите **MySQL Installer for Windows** (32-bit and 64-bit) и нажмите **Download**.
- 4.Выберите версию MySQL и скачайте инсталляционный файл.

• MySQL Community Downloads

MySQL Community Server

MySQL Community Downloads

Login Now or Sign Up for a free account.

An Oracle Web Account provides you with the following advantages:

- Fast access to MySQL software downloads
- Download technical White Papers and Presentations
- Post messages in the MySQL Discussion Forums
- Report and track bugs in the MySQL bug system

Login »

using my Oracle Web account

Sign Up »

for an Oracle Web account

MySQL.com is using Oracle SSO for authentication. If you already have an Oracle Web account, click the Login link. Otherwise, you can signup for a free account by clicking the Sign Up link and following the instructions.

No thanks, just start my download.

Шаг 2: Установка MySQL

- 1.Запустите скачанный установочный файл.
- 2.В установщике выберите тип установки. Рекомендуется выбрать "Developer Default", чтобы установить все необходимые компоненты для разработки.
- 3.Следуйте инструкциям мастера установки, принимая лицензионное соглашение и выбирая каталог установки.

На этапе настройки MySQL, вам нужно будет:

- Выбрать тип конфигурации сервера (по умолчанию оставьте "Standalone MySQL Server").
- Настроить порт сервера (обычно 3306).
- Создать root-пользователя и задать пароль.
- Выбрать метод аутентификации (рекомендуется оставить Use Strong Password Encryption).

Проверьте корректность установки:

```
C:\Users\user>mysql -u root -p
Enter password: ****
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 8
Server version: 8.4.2 MySQL Community Server - GPL
Copyright (c) 2000, 2024, Oracle and/or its affiliates.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> SELECT VERSION();
 VERSION()
 8.4.2
1 row in set (0.00 sec)
mysql>
```

Если получите ошибку: "mysql" не является внутренней или внешней командой..., то нужно настроить переменные окружения.

- Откройте Панель управления.
- Перейдите в раздел Система и безопасность > Система.
- В левой колонке выберите Дополнительные параметры системы.
- В окне "Свойства системы" на вкладке Дополнительно нажмите кнопку Переменные среды.
- В разделе Системные переменные найдите переменную Path и выберите ее.
- Нажмите Изменить.
- В появившемся окне нажмите Создать и добавьте путь к папке bin MySQL. Haпример: C:\Program Files\MySQL\MySQL Server 8.4\bin
- Нажмите ОК во всех окнах, чтобы сохранить изменения.

Шаг 3: Установка MySQL Workbench

Скачайте установщик:

https://dev.mysql.com/downloads/workbench/

и установите аналогичным образом.

MySQL Workbench 8.0.38

Select Operating System:

Microsoft Windows

Recommended Download:

MySQL Installer for Windows

All MySQL Products. For All Windows Platforms.
In One Package.

Starting with MySQL 5.6 the MySQL Installer package replaces the standalone MSI packages.

Windows (x86, 32 & 64-bit), MySQL Installer MSI

Go to Download Page >

Other Downloads:

Windows (x86, 64-bit), MSI Installer

8.0.38

41.7M

Подключение к базе данных:

Создание новой БД:

Apply SQL Script to Database Review SQL Script Review the SQL Script to be Applied on the Database CREATE SCHEMA 'students'; 2 Cancel

Создание таблицы

0000000000	students - Schema	users - Tab	le ×						
*		Table Name:	users			Schema:	students		\Diamond
	d	narset/Collation:	Default Charset	∨ Defau	t Collation \	Engine:	InnoDB	`	/
	C	Comments:						^	
	Column Name id onum rating		Datatype INT VARCHAR(45) DECIMAL(4,2)	PK		3 UN Z	F AI G Default/	Expression	
000000000	Column Name: Charset/Collation:	rating Default Charse	t ∨ Default Co	llation ∨	Data Typ Defau	lt:			
	Comments:				Storag	Prima	ary Key Not Null		
	Columns Indexes	Foreign Keys	Triggers Part	itioning O	ptions			Apply	Revert

Apply SQL Script to Database

Далее 🗈

MySQL Workbench									
Local instance MySQL84 - W	/ ×								
<u>File Edit View Query Datab</u>	ase <u>S</u> erver <u>T</u> ools <u>S</u> cripting	<u>H</u> elp							
	50 5 0 5 0								
Navigator	students - Schema users - T	able ×							
SCHEMAS Grilter objects	Table Name	users	_						
my_library python_db1	Charset/Collation	utf8mb4_090	900	utf8mb4_090					
▶ ☐ python_db2 ▼ ☐ students	Comments:								
Tables users Stored Procedures Functions	Column Name id aname	Datatype PK NN INT ✓ ✓ VARCHAR(45)							
sys testdb Administration Schemas	◇ rating	DECIMAL(4,2)	L						
Information ::::::::::::::::::::::::::::::::::::									

Вставка данных в таблицу:

Правой кнопкой мыши кликаем на таблицу, выбираем «Select Rows», затем «Insert new Row»:

Заполняем строки и нажимаем «Apply»:

Вставка данных в таблицу с помощью SQL-запросов. В поле SQL-запроса пишем:

use <имя_БД>

И нажимаем «Execute»:

Пишем SQL-запрос и выполняем:

```
4 14:28:16 use students

5 14:28:16 INSERT INTO users (idusers, first_name, second_name, email) VALUES (3, 'lvan', 'lvanov', 'iv... 1 row(s) affected

7 14:28:16 INSERT INTO users (idusers, first_name, second_name, email) VALUES (3, 'lvan', 'lvanov', 'iv... 1 row(s) affected
```

Редактирование таблицы. Кликаем ПКМ на нужной таблице, выбираем «Alter Table», затем меняем нужное свойство:

Можно добавить еще один столбец, email:

Comments:											~	
Column Name id	IN V/ D	Oatatype NT ARCHAR(45) ECIMAL(4,2) ARCHAR(45)	PK	NN \(\)	UQ E		AI	G 	Default/Ex	pression		
Column Name:	Default Charset	∨ Default Coll	ation ∨] D	ata Type Defaul							
Comments:					Storage	Virtual Primary Binary Auto Ind			Stored Not Null Unsigned Generated	Unique Zero Fill		
Columns Indexes	Foreign Keys	Triggers Partit	ioning (Option	S					Apply	Rever	t

Что посмотреть содержимое страницы, кликаем на ней ПКМ и выбираем «Select Rows»:

Экспорт данных в csv-файл. Нажмите иконку экспорта, выберите название файла и сохраните.

7. DDL запросы. Создание ролей и БД через консоль.

DDL-запросы (Data Definition Language) в MySQL – это язык определения данных, используемый для создания и управления структурами базы данных, такими как базы данных, таблицы и индексы.

Основные команды DDL включают создание, изменение и удаление объектов базы данных.

Далее рассмотрим основные команды DDL-запросов в MySQL.

1. CREATE: создание объектов базы данных

• Создание базы данных:

CREATE DATABASE db_name;

Пример. Создание БД «SchoolDB»:

CREATE DATABASE SchoolDB;

Создание пользователя

```
CREATE USER 'username'@'hostname' IDENTIFIED BY 'password';
```

Пример:

```
CREATE USER 'student'@'localhost' IDENTIFIED BY 'password';
```

'username' — имя пользователя.

'hostname' — хост, с которого пользователь может подключаться (например, 'localhost').

'password' — пароль для этого пользователя.

Создание таблицы:

```
CREATE TABLE table_name (
    column1 datatype [constraints],
    column2 datatype [constraints],
    ...
);
```

Пример:

```
CREATE TABLE Students (
StudentID INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),
BirthDate DATE
);
```

• Создание индекса*:

```
CREATE INDEX index_name ON table_name (column_name);
```

Пример:

```
CREATE INDEX idx_lastname ON Students (LastName);
```

2. ALTER: изменение структуры существующих объектов

• Добавление нового столбца в таблицу:

```
ALTER TABLE table_name ADD column_name datatype;
```

Пример:

ALTER TABLE Students ADD Email VARCHAR(100);

• Изменение типа данных столбца:

ALTER TABLE table_name MODIFY column_name new_datatype;

Пример:

ALTER TABLE Students MODIFY Email TEXT;

• Переименование таблицы:

```
ALTER TABLE old_table_name RENAME TO new_table_name;
```

Пример:

ALTER TABLE Students RENAME TO Pupils;

• Удаление столбца из таблицы:

ALTER TABLE table_name DROP COLUMN column_name;

Пример:

ALTER TABLE Students DROP COLUMN Email;

- 3. **DROP**: удаление объектов базы данных
- Удаление базы данных:

DROP DATABASE db_name;

Пример:

DROP DATABASE SchoolDB;

• Удаление таблицы:

DROP TABLE table_name;

Пример:

DROP TABLE Students;

• Удаление индекса*:

```
DROP INDEX index_name ON table_name;
```

Пример:

```
DROP INDEX idx_lastname ON Students;
```

4. TRUNCATE: очистка всех данных из таблицы без удаления её структуры

• Очистка таблицы:

```
TRUNCATE TABLE table_name;
```

Пример:

TRUNCATE TABLE Students;

Основные принципы работы с DDL-запросами:

- Команды DDL обычно выполняются сразу и автоматически сохраняют изменения в базе данных (в отличие от DML-запросов, которые можно отменить с помощью команды ROLLBACK).
- После выполнения DDL-команды изменения **нельзя отменить** с помощью команды ROLLBACK.

Как установить владельца базы данных?

В MySQL нет прямой команды для назначения владельца базы данных, как, например, в PostgreSQL. Обычно права на базу данных контролируются через привилегии пользователей.

То есть, для пользователя можно установить полный доступ к базе данных, но назначить его "владельцем" в явном виде невозможно.

Однако, можно обеспечить полные привилегии пользователю на конкретную базу данных, что по сути эквивалентно понятию "владельца.

• Установка привилегий:

GRANT ALL PRIVILEGES ON database_name.* TO 'username'@'hostname';

Пример:

GRANT ALL PRIVILEGES ON SchoolDB.* TO 'student'@'localhost';

GRANT — ключевое слово, начинающее команду предоставления прав пользователю.

ALL PRIVILEGES — указывает, что пользователю будут предоставлены все возможные привилегии (права) на выполнение операций в указанной базе данных.

SchoolDB — имя базы данных, на которую предоставляются права.

* — означает, что права распространяются на все таблицы и объекты в указанной базе данных.

TO 'student'@'localhost' — указывает, какому пользователю и откуда предоставляются права:

'student' — имя пользователя MySQL, которому предоставляются права.

'localhost' — хост, с которого этот пользователь может подключаться к базе данных. В данном случае 'localhost' указывает, что пользователь может подключаться только с локального компьютера, на котором запущен MySQL.

Как подключиться к созданной базе данных?

• Через командную строку:

```
mysql -u username -p -h hostname database_name
```

- **-и username** имя пользователя.
- **-р** запрос пароля.
- -h hostname адрес сервера (можно пропустить для подключения к localhost).

database_name — имя базы данных, к которой нужно подключиться.

Пример:

```
mysql -u student -p -h localhost SchoolDB
```

Через MySQL Workbench

- Откройте MySQL Workbench.
- Создайте новое подключение:
- В поле "Connection Name" укажите название подключения.
- В поле "Hostname" укажите сервер (например, localhost).
- В поле "Username" укажите имя пользователя (например, student).
- Нажмите "Test Connection" и введите пароль для пользователя.
- После успешного теста подключения нажмите "ОК".
- Двойным кликом по созданному подключению вы подключитесь к базе данных.
- Теперь можно выбирать базу данных и работать с ней через MySQL Workbench.

Домашнее задание:

Задание 1. Работа с MySQL через консоль

Создайте пользователя с именем test_user и паролем password123.

Создайте базу данных с именем test_db.

Проверьте, что пользователь и база данных созданы:

Дайте пользователю test_user все права на базу данных test_db.

Подключитесь к базе данных test_db.

Создайте таблицу users с полями:

- id (INT, первичный ключ, автоинкремент)
- username (VARCHAR(50), не может быть NULL)
- email (VARCHAR(100), не может быть NULL)

Добавьте несколько записей в таблицу users.

Выберите все записи из таблицы users, чтобы убедиться, что данные были добавлены.

Задание 2. Базовые операции в MySQL Workbench.

1. Создание пользователя:

Откройте вкладку "Administration" в MySQL Workbench.

Перейдите в раздел "Users and Privileges".

Создайте нового пользователя с именем workbench_user и паролем workbench123.

Убедитесь, что пользователь создан, проверив его в списке пользователей.

2. Создание базы данных:

В главном окне MySQL Workbench выберите вкладку "Schemas".

Создайте новую базу данных с именем workbench_db.

Убедитесь, что база данных появилась в списке схем.

Предоставление прав пользователю на базу данных:

Вернитесь в раздел "Users and Privileges".

Найдите пользователя workbench_user и предоставьте ему все права на базу данных workbench_db.

Сохраните изменения.

Задание 3. Создание таблицы в базе данных:

Перейдите к базе данных workbench_db в разделе "Schemas".

Создайте новую таблицу с именем products с полями:

id (INT, первичный ключ, автоинкремент)

product_name (VARCHAR(100), не может быть NULL)

price (DECIMAL(10, 2), не может быть NULL)

Используйте графический интерфейс для добавления столбцов и настройки их свойств.

Задание 4. Вставка записей в таблицу:

Откройте таблицу products и перейдите на вкладку "Table Data".

Добавьте несколько записей вручную через интерфейс, например:

product_name: "Laptop", price: 1200.00

product_name: "Smartphone", price: 800.00

product_name: "Tablet", price: 500.00

Задание 5. Просмотр таблицы:

Убедитесь, что данные были добавлены, просмотрев таблицу products через вкладку "Table Data".

Выполнение SQL-запросов:

Откройте вкладку "Query" и выполните SQL-запрос для выборки всех данных из таблицы products:

```
SELECT * FROM workbench_db.products;
```

Убедитесь, что результат отображается корректно.

Список литературы:

- 1. Руководство по MySQL.
- 2. Видеокурс.

Материалы лекций:

https://github.com/ShViktor72/Education

Обратная связь:

colledge20education23@gmail.com