

湿敏电阻器

HR202L 产品手册

更多详情请登陆:www.aosong.com

一、产品概述

HR202L 湿敏电阻器是采用有机高分子材料的一种新型湿度敏感元件,具有感湿范围宽,响应迅速,抗污染能力强,无需加热清洗及长期使用性能稳定可靠等诸多特点。

二. 外形尺寸 (单位: mm 公差: ±0.2mm)

三、应用范围

用于温湿度显示计、温湿度礼品表、大气环境监测、工业过程控制、农业、测量仪表等应用领域。

四、产品亮点

外型小巧美观、长期稳定性好、温湿度测量范围宽、高低温湿度测量精确。

五、电路图

六、产品参数

定额电压: 1.5V AC (Max,正弦波)

定额功率: 0.2mW (Max,正弦波)

工作频率:500Hz~2kHz

使用温度:0~60℃

使用湿度:95%RH以下(非结露)

湿滞回差: ≤2%RH

响应时间:吸湿, <20S;脱湿<40S

稳定性:≤1%RH/年

湿度检测精度:≤±5%RH

相对湿度

条件: at25℃ 1kHz 1V AC (正弦波)

湿度: 60%RH

中心值:31 KΩ

阻抗值范围:19.8~50.2 KΩ

湿度检测精度: ±5%RH

七、标准检定条件

大气中、温度 25℃、测定频率数 1kHz、测定电压 1V AC (正弦波)作为基准。特性测定,测定前先把湿度传感器放入 25℃ / 0%RH 的干燥空气中放置 30 分钟,湿度发生装置发生湿度 60%RH,放入湿度传感器 15 分钟后测定阻抗值。

测定装置:

分流式湿度发生装置 : AHR - 1型

LCR 电桥 : TH2810A

测定用线 : 1 芯屏蔽线

稳定性测试:

序号	项目	试验方法	规格值		
1	引脚强度	0.5kg 引线拉力 10 秒	无破损、引脚脱落,		
		0.3kg 可经加力 10 fy	电气特性正常		
2	耐冲击性	硬质地板上 1m 高度重复 3 次自然落下。	无破损、引脚脱落,		
		读/以40/以上 IIII 向/文里发 J /八日杰/台 [。	电气特性正常		
3	耐震动性	频率数 10~55Hz、振幅 1.5mm	无破损、引脚脱落,		
		(10~55Hz~10Hz)向 X-Y-Z 方向			
		各 2 小时振动试验	电气特性正常		
4	五十 4 4 4	温度 80℃、湿度 30%RH	1 E 0/ B 1 1 1 1 1 1 1 1		
	耐热性	以下空气中放置 1000 小时	±5%RH 以内		

ASAIR®

110	1 1111				
5	耐寒性	温度 10℃、湿度 70%RH	±5%RH 以内		
		以下空气中放置 1000 小时	13/0亿日 以内		
6	耐湿性	温度 40℃、湿度 90%RH	±5%RH 以内		
		以下空气中放置 1000 小时	±3%KH 以内		
7	温度循环	0℃下放置 30 分钟,再转入 50℃下放置 30 分钟,	LEO/DILINIT		
		再放入 0℃下 30 分钟 , 循环 5 次	±5%RH 以内		
8	湿度循环	25℃、30%RH 下放置 30 分钟,			
		再转入 90%RH 下放置 30 分钟 ,	±5%RH 以内		
		再放入 30%RH 下 30 分钟,循环 5 次。			
9	耐有机溶剂	常温有机溶剂			
		乙醇气体 30 分钟	±5%RH 以内		
		丙酮气体 30 分钟			
10	通电放置	一般室内(常温常湿)1kHz ,	. F0/ PULINE		
		5Vp-p 方波连线 1000 小时放置。	±5%RH 以内		
-	•				

规格值以 60%RH 湿度变化量为基准。

各试验完毕后,湿度传感器在常温常湿的正常空气中放置 24 小时后、测定出其湿度变化量。

八、相对湿度 - 阻抗特性

	000	F9C	1000	1500	2000	25%	2000	25%	4000	4500	F00C	FF96	60%
	0℃	5℃	10℃	15℃	20°C	25℃	30℃	35℃	40°C	45°C	50°C	55℃	60°C
20%RH				10M	6.7 M	5.0 M	3.9 M	3.0 M	2.4 M	1.75	1.45	1.15	970K
										М	М	М	
25%RH		10 M	7.0 M	5.0 M	3.4 M	2.6 M	1.9 M	1.5 M	1.1 M	880K	700K	560K	450K
30%RH	6.4 M	4.6 M	3.2 M	2.3 M	1.75	1.3 M	970K	740K	570K	420K	340K	270K	215K
					М								
35%RH	2.9 M	2.1 M	1.5 M	1.1 M	850K	630K	460K	380K	280K	210K	170K	150K	130K
40%RH	1.4 M	1.0 M	750K	540K	420K	310K	235K	190K	140K	110K	88K	70K	57K
45%RH	700K	500 K	380 K	280 K	210 K	160 K	125 K	100 K	78 K	64 K	50 K	41 K	34 K
50%RH	370 K	260 K	200 K	150 K	115 K	87 K	69 K	56 K	45 K	38 K	31 K	25 K	21 K
55%RH	190 K	140 K	110 K	84 K	64 K	49 K	39 K	33 K	27 K	24 K	19.5 K	17 K	14 K
60%RH	105 K	80 K	62 K	50 K	39 K	31 K	25 K	20 K	17.5 K	15 K	13 K	11 K	9.4 K
65%RH	62 K	48 K	37 K	30 K	24 K	19.5 K	16 K	13 K	11.5 K	10 K	8.6 K	7.6 K	6.8 K
70%RH	38 K	30 K	24 K	19 K	15.5 K	13 K	10.5 K	9.0 K	8.0 K	7.0 K	6.0 K	5.4 K	4.8 K
75%RH	23 K	18 K	15 K	12 K	10 K	8.4 K	7.2 K	6.2 K	5.6 K	4.9 K	4.2 K	3.8 K	3.4 K
80%RH	15.5 K	12.0 K	10.0 K	8.0 K	7.0 K	5.7 K	5.0 K	4.3 K	3.9 K	3.4 K	3.0 K	2.7 K	2.5 K
85%RH	10.5 K	8.2 K	6.8 K	5.5 K	4.8 K	4.0 K	3.5 K	3.1 K	2.8 K	2.4 K	2.1 K	1.9 K	1.8 K
90%RH	7.1 K	5.3 K	4.7 K	4.0 K	3.3 K	2.8 K	2.5 K	2.2 K	2.0 K	1.8 K	1.55 K	1.4 K	1.3 K

九、电气阻抗 R (KΩ)

十、示例代码

```
/*******
单片机: SN8P2501B
    振:内置16M4分频
子程序说明:
 _interrupt IntIn() 为定时器中断函数
StartOneTImeSample(void)
                        执行一次检测操作
*********
typedef struct
   unsigned char u8WihtchIOCharge;
                                 //固定电阻充电时间
   unsigned long u16ChargeTimeIo;
   unsigned long u16ChargeTimeHumi; //湿度电阻充电时间
   }ChargeTyPe;
#define
        CHARGE_HUMIDITY_IO_HIGH()
                                           FP21 = 1
#define
        CHARGE_HUNIDITY_IO_LOW()
                                           FP21 = 0
#define
        CHARGE IO HIGH()
                                                        FP20 = 1
#define
        CHARGE_IO_LOW()
                                                        FP20 = 0
                                                       P2M = 0X00
#define
        CHARGE_IO_HI()
#define
        F_data
                                                               20
_interrupt IntIn()
     WDTR = 0X5A;
                    //看门狗
        TOC = F_data;
        m_st_ChargeType.u8WihtchIOCharge++;
        if(m_st_ChargeType.u8WihtchIOCharge&0x80) //湿 充电
                 if(m_st_ChargeType.u8WihtchIOCharge >= 0x84)
                                                            //高低脉冲比例 3:1
                        CHARGE_HUNIDITY_IO_LOW();
                        m_st_ChargeType.u8WihtchIOCharge = 0x80;
                 else if(m_st_ChargeType.u8WihtchIOCharge >= 0x81)
                  {
                        CHARGE_HUMIDITY_IO_HIGH();
                 }
         }
```

```
else
   {
                 if(m_st_ChargeType.u8WihtchIOCharge == 0x01)//标准 充电
                        CHARGE_IO_HIGH();
                 else if(m st ChargeType.u8WihtchIOCharge == 0x04)//高低脉冲比例 3:1
                   {
                        CHARGE IO LOW():
                        m_st_ChargeType.u8WihtchIOCharge = 0x00;
      }
m_st_ChargeType.u16ChargeTimeIo++;
   FTOIRQ = 0; //clear t0 irq flag
void StartOneTImeSample(void)
       CHARGE IO HI(); //P1 口转为输入 当作高阻
                                           //变量初始化
       m st ChargeType.u16ChargeTimeIo = 0;
         if(m_st_ChargeType.u8WihtchIOCharge&0x80)
                 FP21M = 1;
                 CHARGE HUNIDITY IO LOW();
         else
          {
                 FP20M = 1; //输出
                 CHARGE IO LOW();
       delay1N(2);
                               //延时等待端口稳定
       TOC = F_{data}
                                   //记数值从新装载
       FT0ENB = 1;//
                               //开定时器 自动进行测量
       while(1)
               if(FP22)
                                  //检测充电门限
                     FT0ENB = 0;// 门限到,关定时器
                     if(m_st_ChargeType.u8WihtchIOCharge&0x80)//记录湿度敏电阻充电时间
                                  m_st_ChargeType.u16ChargeTimeHumi =
m_st_ChargeType.u16ChargeTimeIo;
                       break;
                }
       P2M = 0X23;
       P2 = 0X00;//放电
       FP22M = 1;
       FP22 = 0;
       delay1N(100);
       FP22M = 0;
  }
```


十一、许可证协议

未经版权持有人的事先书面许可,不得以任何形式或者任何手段,无论是电子的还是机械的(其中包括影印),对本手册任何部分进行复制,也不得将其内容传达给第三方。本说明手册内容如有变更,恕不另行通知。

奥松电子有限公司和第三方拥有软件的所有权,用户只有在签订了合同或软件使用许可证后方可使用。

十二、警告及人身伤害

勿将本产品应用于安全保护装置或急停设备上,以及由于该产品故障可能导致人身伤害的任何其它应用中。不得应用本产品除非有特别的目的或有使用授权。在安装、处理、使用或维护该产品前要参考产品数据表及应用指南。如不遵从此建议,可能导致死亡和严重的人身伤害。 本公司将不承担由此产生的人身伤害及死亡的所有赔偿,并且免除由此对公司管理者和雇员以及附属代理商、分销商等可能产生的任何索赔要求,包括:各种成本费用、赔偿费用、律师费用等等。