간편한 식단 관리 FoodLog

#Object Detection #식단관리 #어플리케이션 #MLOps

CV-09 하나둘셋Net()

boostcampaitech

팀 소개

이름	역할	
공은찬	데이터셋(Testset), Custom metric, 모델링	
곽민구	데이터 버전 관리(DVC), 모델링	
김준섭	Custom metric, 모델링	
김진용	데이터 가공, EDA, 모델링	
심용철	EDA, Hyperparameter tuning, Test dataset 수집	
최현진	PM, 백엔드 개발, 안드로이드 개발, DB 설계 및 영양정보 데이터 수집	

목차

1. 기획 의도

- 1. 문제 인식
- 2. 문제 정의
- 3. 목표 시스템

2. 데이터

- 1. 데이터셋 수집
- 2. 학습 데이터 제작
- 3. 테스트 데이터 수집

3. 모델링

- 1. 모델 선정
- 2. 모델 성능 향상 기법(EDA)
- 3. Custom Metric
- 4. 최종 모델

4. 프로덕트 서빙

- 1. 프로덕트 서빙 구조
- 2. 안드로이드 어플리케이션
- 3. 사용자 피드백 모니터링
- 4. GCP 배포

1. 기획 의도

- 1.1. 문제 인식
- 1.2. 문제 정의
- 1.3. 목표 시스템

1.1. 문제 인식

기획 의도

- 코로나19 이후 체중 증가
- 식단 관리 관심도 상승

강동완 기자 | 조회수: 1,788 | 2021.08.03 16:03

<출처> 머니S, 알바천국

1.1. 문제 인식

기획 의도

기존 시스템 한계점

- 사용자가 직접 기록
- 관리자가 사용자 영양 정보를 직접 분석

이미지 촬영 후 - 매니저 확인중

매니저 확인 결과(약 1시간 경과)

식단 관리 관심도 증가, 기존의 불편한 시스템

→ 인공지능 기술을 적용한 새로운 서비스 개발

인공지능을 적용한 새로운 서비스 개발 지속적인 서비스 품질 개선

2. 데이터

- 2.1 데이터셋 수집
- 2.2 학습 데이터 제작
- 2.3 테스트 데이터 수집

2.1. 데이터셋 수집

데이터

- Al Hub (건강관리를 위한 음식 이미지)
- 총 데이터셋 300만 장
 - 학습 데이터 240만 장
 - 검증 데이터 30만 장
 - 평가 데이터 30만 장

- 552개 클래스
- 850GB

출처: https://aihub.or.kr/aidata/27674

2.2. 학습 데이터 제작

데이터

과도하게 많은 데이터셋 제한적인 컴퓨팅 자원과 시간

→ 데이터 가공 및 선별 작업 필요!

- 원재료 데이터 제거
 - 고춧가루, 호박씨, 커피콩 등
- 식탁에서 자주 볼 수 있는 클래스 선별
- 552개 클래스 → 100개 클래스

- 이미지 사이즈 1/16 Resize

2.2. 학습 데이터 제작

데이터

클래스 선별 이미지 Resize

850GB → 16GB

- 객관적 평가를 위한 테스트 데이터 수집
- 약 100장

3. 모델링

- 3.1 모델 선정
- 3.2 모델 성능 향상 기법(EDA)
- 3.3 Custom Metric
- 3.4 최종 모델

Architecture	Faster R-CNN	Cascade R-CNN	YOLOv5
Inference time (ms/img)	48	62	11.7
성능 (mAP)	0.676	0.697	0.847
학습 시간 (1 epoch)	2.5 hours	3 hours	0.2 hours

- 1) 이미지 내 다른 음식이 라벨링 되어 있지 않은 경우
 - → 일부 라벨링 작업 수행
 - → 학습데이터 제거

밥에 대한 라벨링이 없는 경우

2) 클래스 불균형 문제

- → Focal Loss 적용
- → Undersampling 적용

3) 종류는 같지만 클래스가 달라 학습에 방해되는 음식

→ 클래스 병합 혹은 삭제

3.2. 모델 성능 향상 기법(EDA)

데이터

오라벨링 데이터 삭제
Undersampling
클래스 병합 및 삭제
16GB → 7GB

- 4) 촬영 각도에 따라 한가지 음식이 다양한 모습을 가질 수 있음
- → Geometric Augmentation 적용

 Rotate, Affine, Shearing

 각도에 따라 달라질 수 있는 현실 이미지 반영

- 5) 대부분 이미지는 음식 하나만 포함 Bounding Box가 큼
- → Mosaic Augmentation 적용 한 장에 여러 음식이 있는 데이터 생성

category_name	Ratio(label/image)
galbijjim	1.063131313
gamjabokk-eum	1
gejang	1.041186891
godeung-eogu-i	1.151914894
gobchangjeongol	1.006944444
3 3,9	

- 데이터 특징을 파악하는데 모든 경우를 눈으로 확인할 수 없음
- 어떤 클래스와 얼마나 비슷하게 예측하는지 수치적으로 확인하기 위해 confidence score기반 custom metric을 참고해 모델링 진행
- 제안된 metric은 모델이 헷갈려 하는 여러 클래스와 점수를 구체화 할 수 있음
- → 각 이미지 내에서 confidence score의 Variance를 계산
- → Variance 값이 작을수록 클래스를 헷갈려함

	Count
Predict class	Confidence score
볶음밥 (Ground truth)	0.52
돼지고기구이 (Predict 1)	0.37
짜장면 (Predict 2)	0.14

$$variance = \sum_{i}^{count} \frac{((gt_i - predict_1)^2 + (gt_i - predict_2)^2)/2}{count}$$

 $gt_i: i-th$, Ground truth confidence score $predict_{i_1}: i-th$, $1st\ prediction\ confidence\ score\ ordinary\ predict_{i_2}: i-th$, $2nd\ prediction\ confidence\ score\ ordinary$

Ground Truth가 볶음밥일 때, Confidence Score

0.015

0.025

0.032

- 볶음밥이 김치볶음밥보다 밥과 더 confidence score 차이가 적고 다르게 예측하는 경우가 많음

김치 볶음밥

볶음면

→ 밥과 볶음밥의 데이터를 더 추가해 학습 시킴

Top 1

Top 2

Top 3

가 가장 높은 클래스의 개수

Target Class : 볶음밥

Class Count Mean variance 모든 variance의 평균

21

7

2

- 최종 모델 : YOLOv5L

Epoch - 30

Learning Rate - 0.001

Optimizer - SGD

Scheduler - Lambda LR

Augmentation - Mosaic

Mixup

Loss - Focal Loss

mAP - 0.89

4. 프로덕트 서빙

- 4.1. 프로덕트 서빙 구조
- 4.2. 안드로이드 어플리케이션
- 4.3. 사용자 피드백
- 4.4. GCP 배포

프로덕트 서빙

프로덕트 서빙

- 식단 이미지 base64 인코딩 서버 전송

- 식단 이미지 base64 인코딩 서버 전송
- 데이터 decode 및 사이즈 변경

프로덕트 서빙

- 식단 이미지 base64 인코딩 서버 전송
- 데이터 decode 및 사이즈 변경
- 이미지 입력 및 예측 결과 반환

프로덕트 서빙

- 식단 이미지 base64 인코딩 서버 전송
- 데이터 decode 및 사이즈 변경
- 이미지 입력 및 예측 결과 반환
- 식품 영양정보 조회

프로덕트 서빙

- 식단 이미지 base64 인코딩 서버 전송
- 데이터 decode 및 사이즈 변경
- 이미지 입력 및 예측 결과 반환
- 식품 영양정보 조회
- 식품 영양정보 반환 및 저장

4.2. 안드로이드 어플리케이션

프로덕트 서빙

식단 촬영

예측 수행

예측 결과 확인

사용자 피드백 참여

보 저장 상세 정보 확인

- 사용자 피드백 저장
- 사용자 피드백 모니터링 (Streamlit)

FoodLog Monitoring Page

4.4. GCP 배포

프로덕트 서빙

backend

docker image build

mysql

frontend

Thank you