» Algorithms For Training ML Models

All of the main ML libraries provide <u>several choices of optimization</u> <u>algorithm for training models</u>. Why? What's the difference between them, and how to choose?

TensorFlow/Keras:

» Algorithms For Training ML Models PyTorch:

Algorithms	
Adadelta	Implements Adadelta algorithm.
Adagxad	Implements Adagrad algorithm.
Adam	Implements Adam algorithm.
AdawM	Implements AdamW algorithm.
SpaxseAdam	Implements lazy version of Adam algorithm suitable for sparse tensors.
Adamax	Implements Adamax algorithm (a variant of Adam based on infinity norm).
ASGD	Implements Averaged Stochastic Gradient Descent.
LOFGS	Implements L-BFGS algorithm, heavily inspired by minFunc.
RMSprop	Implements RMSprop algorithm.
Rprop	Implements the resilient backpropagation algorithm.
560	Implements stochastic gradient descent (optionally with momentum).

» Algorithms For Training ML Models

sklearn:

sklearn.neural_network.MLPClassifier

class sklam.neural_nebonr.kRClassfiler/iniden_layer_sizes=100_activation=relu/__solver=adam_alpha=0.0001, batch_size=auto/_neural_nebonr.kRClassfiler/iniden_layer_sizes=100_activation=relu/__solver=200_shuffle=True, random_sistes=hone, toi=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterow_momentum=True, early_stoping=false, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=te=06_n_ter_no_change=10, max_fnm=150001

solver : ('lbfqs', 'sqd', 'adam'), default='adam'

The solver for weight optimization.

- · 'lbfgs' is an optimizer in the family of quasi-Newton methods.
- · 'sgd' refers to stochastic gradient descent.
- · 'adam' refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba

» Algorithms For Training ML Models

The main algorithms popular are:

- * SGD Stochastic Gradient Descent
- * Adam Adaptive Moment Estimation
- * RMSProp
- * Adagrad Adaptive gradient
- L-BFGS BFGS = Broyden-Fletcher-Goldfarb-Shannon algo,
 L=limited memory. Only suitable for smaller learning tasks

Let's look more closely at these, plus some other algos for context.

» Basic Optimisation Algorithm

- * Basic structure of an optimisation algorithm to minimise function f(x) is:
 - (i) initialise x
 - (ii) calculate step i.e. change to x
 - (iii) x = x step
 - (iv) repeat (ii)-(iii) until result is good enough or run out of time In python:

```
x=x0
for k in range(num_iters):
    step = calcStep(fn,x)
    x = x - step
```

* How to calculate step?

* When x is <u>scalar</u> the *derivative* of a function $f(\cdot)$ at point x is the *slope* of the line that just touches the function at x e.g.

* When $x = [x_1, x_2]$ then the derivative is the *slope* of the plane that just touches the function at x = 0.

* And similarly when x has > 2 elements, but can't draw it.

* Equation of a line is y = mx + c. m is slope, c is intercept (when x = 0 then y = c).

* Derivative of a function $f(\cdot)$ at point x' is the slope of the line that just touches the function at x'

- * Equation of a line is mx + c, slope m and intercept c.
- * Line touches $f(\cdot)$ at point x', so mx'+c=f(x') i.e. c=f(x')-mx'
- * Slope m of line is derivative, i.e. $m = \frac{df}{dx}(x)$ (this is just notation¹, the important point is that we can calculate $\frac{df}{dx}(x)$ and so m using standard tools).
- * Putting this together, equation of line is

$$\frac{df}{dx}(x)(x-x')+f(x')$$

and so

$$f(x) \approx f(x') + \frac{df}{dx}(x')(x-x')$$

¹sometimes f'(x) is used instead of $\frac{df}{dx}(x)$

Example:

- * $f(x) = x^2$. Then $\frac{df}{dx}(x) = 2x$
- * At point x' = 1,

$$f(x) \approx f(1) + \frac{df}{dx}(1)(x-1) = 1 + 2(x-1)$$

Example:

- * $f(x) = x^2$. Then $\frac{df}{dx}(x) = 2x$
- * At point $x' = \overline{-0.5}$,

$$f(x) \approx f(-0.5) + \frac{df}{dx}(-0.5)(x - (-0.5)) = 0.5^2 + 2(-0.5)(x - (-0.5))$$
$$= 0.2 - (x + 0.5)$$

* $f(x) \approx f(x') + \frac{df}{dx}(x')(x-x')$

* Suppose we choose $x = x' - \alpha \frac{df}{dx}(x')$, then

$$f(x) \approx f(x') + \frac{df}{dx}(x')(x' - \alpha \frac{df}{dx}(x') - x')$$
$$= f(x') - \alpha \left(\frac{df}{dx}(x_0)\right)^2$$

* The square of a number is always ≥ 0 , so $\left(rac{df}{dx}(\pmb{x}')
ight)^2\geq 0$. And so

$$f(x) \lesssim f(x')$$

i.e. moving from point x' to $x = x' - \alpha \frac{df}{dx}(x')$ tends to decrease function $f(\cdot)$.

* Only approximate though, because line is only an approximation to function $f(\cdot)$ near point x'

- * Equation of a plane is $y = m_1 x_1 + m_2 x_2 + c$
- * Note: we now have two slopes m_1 , m_2 and intercept c
- * Notation: For plane just touching $f(\cdot)$ at point x'
 - * $m_1 = \frac{\partial f}{\partial x_1}(x')$, $m_2 = \frac{\partial f}{\partial x_2}(x')$
 - * $\frac{\partial f}{\partial x_1}(x')$ is the *partial derivative* of $f(\cdot)$ wrt x_1 at point x'
 - * $\frac{\partial f}{\partial x_2}(x')$ is the *partial derivative* of $f(\cdot)$ wrt x_2 at point x'
 - * $\nabla f(\mathbf{x}') = [\frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}'), \frac{\partial f}{\partial \mathbf{x}_2}(\mathbf{x}'), \dots, \frac{\partial f}{\partial \mathbf{x}_n}(\mathbf{x}')]$, the vector of partial derivatives. And sometimes $\nabla_{\mathbf{x}_1} f(\mathbf{x}')$ is used for $\frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}')$ etc.
- * This plane is an approximation to function $f(\cdot)$ near point x' i.e.

$$f(\mathbf{x}) \approx f(\mathbf{x}') + \frac{\partial f}{\partial \mathbf{x}_1}(\mathbf{x}')(\mathbf{x}_1 - \mathbf{x}'_1) + \frac{\partial f}{\partial \mathbf{x}_2}(\mathbf{x}')(\mathbf{x}_2 - \mathbf{x}'_2)$$

* If we choose $x_1 = x' - \alpha \frac{\partial f}{\partial x_1}$ and $x_2 = x' - \alpha \frac{\partial f}{\partial x_2}$ then moving from point x' to x tends to decrease function $f(\cdot)$ i.e. $f(x) \lesssim f(x')$

* In general, when vector x as n elements then

$$f(x) \approx f(x') + \frac{\partial f}{\partial x_1}(x')(x_1 - x_1') + \frac{\partial f}{\partial x_2}(x')(x_2 - x_2') + \dots + \frac{\partial f}{\partial x_n}(x')(x_n - x_n')$$

* Choosing x with $x_1 = x' - \alpha \frac{\partial f}{\partial x_1}$, $x_2 = x' - \alpha \frac{\partial f}{\partial x_2}$, ..., $x_n = x' - \alpha \frac{\partial f}{\partial x_n}$ then moving from point x' to x tends to decrease function $f(\cdot)$

» Calculating Derivatives

```
* Derivative of f(x) = x^2:
```

```
import sympy
x = sympy.symbols('x', real=True)
f=x**2
dfdx = sympy.diff(f,x)
```

Output is:

x**2 2*x

* Derivative of $f(x) = 0.5(x_0^2 + 10x_1^2)$, vector $x = [x_0, x_1]$:

print(f,dfdt)

```
import sympy

x0, x1 = \text{sympy.symbols('x0, x1', real=True)}

x = \text{sympy.Array([x0,x1])}

f = 0.5*(x[0]**2+10*x[1]**2)

dfdc = \text{sympy.diff(f,x)}
```

Output is:

print(f,dfdx)

0.5*x0**2 + 5.0*x1**2 [1.0*x0, 10.0*x1]

* Also tensorflow https://www.tensorflow.org/guide/autodiff, pytorch https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html

» Verifying Derivative Calculations

Can use <u>finite difference</u> approximation to a derivative as a sanity check.:

* Recall

$$f(x) \approx f(x') + \frac{\partial f}{\partial x_1}(x')(x_1 - x_1') + \frac{\partial f}{\partial x_2}(x')(x_2 - x_2') + \dots + \frac{\partial f}{\partial x_n}(x')(x_n - x_n')$$

* Select $\mathbf{x} = \mathbf{x}'$ and then add a small amount δ to element 1 of \mathbf{x} i.e.

$$\mathbf{x} = [\mathbf{x}_1' + \delta, \mathbf{x}_n', \dots, \mathbf{x}_n']$$

Then

$$f(x) \approx f(x') + \frac{\partial f}{\partial x_1}(x')\delta$$

i.e.

$$\frac{\partial f}{\partial x_1}(x') pprox \frac{f(x) - f(x')}{\delta}$$

st Perturbation δ needs to be small e.g. 0.01 or less.

» Verifying Derivative Calculations

Example:

- * $f(x) = x^2$, $\frac{df}{dx}(x) = 2x$
- * At point x' = 1 then $\frac{df}{dx}(1) = 2.0$
- * Finite difference:

$$\frac{f(\mathbf{x}'+\delta)-f(\mathbf{x}')}{\delta} = \frac{f(1+\delta)-f(1)}{\delta} = \frac{(1+\delta)^2-1}{\delta}$$

For
$$\delta=0.1
ightarrow 2.1$$

For $\delta=0.01
ightarrow 2.01$
For $\delta=0.001
ightarrow 2.0010$

» Verifying Derivative Calculations

```
Derivative of f(x) = x^2:
import sympy
x = sympy.symbols('x', real=True)
dfdx = sympy.diff(f,x)
f = sympy.lambdify(x, f)
dfdx = sympy.lambdify(x, dfdx)
x=np.array([1.0])
print(dfdx(*x))
delta=0.01
print(((x+delta)**2 - x**2)/delta)
2.0
2.01
```

» Gradient Descent

```
x=x0
for k in range(num_iters):
    step = calcStep(fn,x)
    x = x - step
```

Now we know one way to choose the step, namely:

$$step = \alpha \left[\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x) \right]$$

where $\underline{\alpha}$ is the *step size* or *learning rate*