Treci domaci zadatak iz predmeta masinsko ucenje

Dragana Ninkovic 2023/3010

Unos podataka i predprocesiranje

```
In [1]: # Import libararies
          import numpy as np;
          import matplotlib.pyplot as plt;
          import cvxopt
In [18]: # Read data
          data = np.loadtxt("C:/Users/Dragana/Downloads/mu-d3/svmData.csv", delimiter
In [19]: #
          seed_value = 30
          np.random.seed(seed_value)
          np.random.shuffle(data)
          print(data.shape)
          (100, 3)
In [20]: # Split on features and labels
          X = data[:,0:2];
          y = data[:,2];
In [21]: # Train test split
          train_size = int(0.8*X.shape[0]);
          X_train = X[0:train_size,:];
          y_train = y[0:train_size];
          X_test = X[train_size:,:];
          y_test = y[train_size:];
In [22]: # Calculate standardization parameters on training set
          X_mean = np.mean(X_train, axis = 0);
          X_std = np.std(X_train, axis = 0);
          X_train_norm = (X_train - X_mean)/X_std;
          X \text{ test norm} = (X \text{ test - } X \text{ mean})/X \text{ std};
```

```
In [23]: # Plot training data
    plt.figure()
    plt.plot(X_train[y_train == 1,0],X_train[y_train == 1,1], 'rx')
    plt.plot(X_train[y_train == -1,0],X_train[y_train == -1,1], 'bx')
    plt.legend(['positive', 'negative']);
    plt.xlabel('feature0')
    plt.ylabel('feature1');
    plt.title('Training data plot')
```

Out[23]: Text(0.5, 1.0, 'Training data plot')

Mozemo videti da ulazne podatke nije moguce odvojiti linearnom granicom i da ocekujemo da ce linearni klasifikator imati vecu gresku od nelinearnog. Takodje, samim tim je neophodno koristiti dozvole ulaska u losu oblast. S druge strane, podaci su dovoljno separabilni da bi trebalo da mogu da se odvoje nekim nelinearnim klasifikatorom ne prevelikog reda.

Unakrsna validacija

Za pronalazenje hiper parametara koriscena je ista funkcija za unaksnu validaciju kao u prvom domacem zadatku.

```
In [24]: # Cross validation function for linear SVM
                   def cross_validation(X,y,num_folds,fold_size,C_values):
                            validation_loss_mean = []
                            validation loss std = []
                           train_loss_mean = []
                           train_loss_std = []
                           for C in C_values:
                                    current_train_loss = []
                                    current validation loss = []
                                    for fold in range(num folds):
                                             # Split data into training and validation set
                                             start = fold * fold size
                                             end = (fold + 1) * fold_size
                                             X validation = X[start:end]
                                             y_validation = y[start:end].reshape(X_validation.shape[0],1)
                                             X_train = np.concatenate((X[:start], X[end:]), axis=0)
                                             y_train = np.concatenate((y[:start], y[end:])).reshape(X_train.
                                             # Calculate statistic of X train
                                             X_mean = np.mean(X_train, axis = 0).reshape(1,X_train.shape[1])
                                             X_std = np.std(X_train, axis = 0).reshape(1,X_train.shape[1])
                                             # Standardization
                                             X_{train} = (X_{train} - X_{mean})/X_{std}
                                             X_{validation} = (X_{validation} - X_{mean})/X_{std}
                                             solution = SVM_primal(X_train, y_train,C);
                                             b = np.array(solution[0]);
                                             w = np.array(solution[1:3]);
                                             psi = np.array(solution[3:]);
                                             y_validation_pred = linear_predict(X_validation,w,b);
                                             y_train_pred = linear_predict(X_train,w,b);
                                             # Keep loss results
                                             current_validation_loss.append(hinge_loss(y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y_validation_pred,y
                                             current_train_loss.append(hinge_loss(y_train_pred,y_train))
                                    # Keep statistics of loss results for this iteration
                                    validation_loss_mean.append(np.mean(current_validation_loss))
                                    validation loss std.append(np.std(current validation loss))
                                    train_loss_mean.append(np.mean(current_train_loss))
                                    train_loss_std.append(np.std(current_train_loss))
                            # Convert lists to numpy arrays
                           validation_loss_mean = np.array(validation_loss_mean)
                           validation_loss_std = np.array(validation_loss_std)
                           train_loss_mean = np.array(train_loss_mean)
                           train_loss_std = np.array(train_loss_std)
                            return (validation_loss_mean,validation_loss_std,train_loss_mean,train_
```

Primalni problem i linearan kernel

Funkcija cvxopt za kvadratno programiranje prihvata jednacine u sledecoj formi:

$$min(\frac{1}{2}x^{T}Px + q^{T}x)$$

$$Gx \le h$$

$$Ax = b$$

, a nas vektor parametara je

$$\begin{bmatrix} b \\ w_0 \\ w_1 \\ \psi_1 \\ \dots \\ \psi_m \end{bmatrix}$$

1. Racunanje matrica P i q:

Nasa kriterijmska funkcija je

$$\min(\frac{1}{2}||w||^2 + \sum_{i=1}^{m} \psi_i)$$

. Kako u kvadratnom delu ucestvuje samo vektor w, matrica P ce biti kvadratna matrica ciji su svi elementi nula sem elemenata na dijagonali koji odgovaraju w_0 i w_1 . U linearnom clanu ucestvuju samo parametri ψ_i pa ce q biti vektor cija su prva tri elementa nula i ostalo jedinice.

2. Racunanje matrica G i h:

Uslovi pod kojima racunamo kriterijum su da je $1-\hat{\gamma}^{(i)}-\psi_i\leq 0$ tj. da je $-y^{(i)}w^T(x^{(i)})^T-y^{(i)}b-\psi_i\leq -1$ i da su svi ψ_i pozitivni. Iz ovoga zakljucujemo da ce prvih m redova matrice G koji odgovaraju prvih m nejednakosti imati vektor -y kao prvu kolonu vektor -y. T*X kao druge dve kolone i negiranu jedinicnu matricu kao ostale elemente. Poslednjih m redova matrice G ce ciniti matrica koja ima tri reda jednaka nuli a zatim negiranu jedinicnu matricu. Matrica h kao prvih m elemenata ima -1 a poslednjih m 0.

3. Racunanje matrica A i b

S obzirom da nemamo uslove tipa jednakosti ove dve matrice nam nisu potrebne.

```
In [25]: # Implementing SVM for primal problem
         def SVM_primal(X,y,C):
             n_samples, n_features = X.shape
             P = np.zeros((3+n samples, 3+n samples));
             P[1,1] = 1;
             P[2,2] = 1;
             P = cvxopt.matrix(P);
             q = np.ones((n samples+3,1))*C
             q[0:3] = 0;
             q = cvxopt.matrix(q);
             G_{high} = np.concatenate((y,y*X, np.eye(n_samples)), axis = 1);
             G_low = np.concatenate((np.zeros((n_samples,3)), np.eye(n_samples)), ax
             G = np.concatenate((G_high, G_low), axis = 0)
             G = cvxopt.matrix(-G);
             h_high = np.ones((n_samples,1))*-1
             h_low = np.zeros((n_samples,1))
             h = np.concatenate((h_high,h_low),axis = 0);
             h = cvxopt.matrix(h);
             return cvxopt.solvers.qp(P, q, G, h)['x']
```

Za funkciju gubitka koristi se Hinge loss koji je jednak $max(1-\hat{\gamma},0)$ u slucaju linearnog klasifikatora, u slucaju nelinearnog klasifikatora mozemo oduzeti od 1 umnozak prave i prediktovane vrednosti.

```
In [26]: # Hinge loss function
def linear_predict(x,w,b):
    return (x@w+b);
def hinge_loss(y_pred, y):
    gamma_hat_i = y*y_pred
    loss = 1-gamma_hat_i;
    loss[loss<0] = 0;
    return np.sum(loss)/len(y)</pre>
```

Biranje hiperparametra C

```
In [27]:
        n_samples, n_features = X_train.shape
         num folds = 5
         fold_size = n_samples // num_folds
         C = [0.001, 0.002, 0.005, 0.008, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 0.8, 1, 2, 5, 8, 10]
         y train = y train.reshape(n samples,1)
         (validation_rmse_mean,validation_rmse_std,train_rmse_mean,train_rmse_std) =
                                                                               pcost
                                                  dres
                         dcost
                                           pres
                                    gap
          0:
             3.1490e-01 1.2612e+01 4e+02
                                           3e+00 1e+02
          1:
             3.9303e-01 -8.7197e+00 9e+00
                                           6e-02 2e+00
          2: 1.6226e-01 -5.7784e-01 7e-01 4e-03 2e-01
          3:
             1.2833e-01 5.2997e-02 8e-02 7e-16 2e-17
             6.4173e-02 5.6379e-02 8e-03 4e-16 1e-17
          4:
          5:
             5.8028e-02 5.6813e-02 1e-03 3e-16 4e-17
          6: 5.7982e-02 5.6941e-02 1e-03 3e-16 4e-17
          7: 5.7288e-02 5.7103e-02 2e-04 2e-16 3e-17
             5.7188e-02 5.7159e-02 3e-05
                                           3e-16 1e-17
          9: 5.7173e-02 5.7169e-02 4e-06 3e-16 3e-17
         10: 5.7171e-02 5.7171e-02 7e-08 3e-16 1e-16
         Optimal solution found.
             pcost
                                           pres
                         dcost
                                    gap
                                                  dres
          0:
             2.9682e-01 1.3487e+01 4e+02 3e+00 9e+01
          1: 3.7573e-01 -7.5634e+00 8e+00 5e-02 2e+00
          2: 1.5697e-01 -4.6072e-01 6e-01 4e-03
                                                  1e-01
          3: 1.2250e-01 5.4245e-02 7e-02 6e-16 6e-17
          4: 6.4849e-02 5.8380e-02 6e-03 4e-16 1e-17
```

```
In [28]: plt.figure()
   plt.plot(np.log10(C),validation_rmse_mean,c='r')
   plt.fill_between(np.log10(C),validation_rmse_mean-validation_rmse_std,validation_plt.plot(np.log10(C),train_rmse_mean, c= 'b')
   plt.fill_between(np.log10(C),train_rmse_mean-train_rmse_std,train_rmse_mean-plt.xlabel('log10(C)')
   plt.ylabel('Hinge loss')
   plt.legend(['validation mean', '','train',''])
   plt.title("Cross validation plot")
   plt.show()
```


Mozemo primetiti da i validaciona i obucavajuca kriva dostizu minimum na opsegu 1 do 100. Ovaj opseg je dodatno posmatran u cilju odredjivanja tacnog parametra C

```
In [32]: C = list(np.linspace(1,100,num = 20))
         (validation_rmse_mean,validation_rmse_std,train_rmse_mean,train_rmse_std) =
                                                                                  dcost
                                                    dres
              pcost
                                      gap
                                             pres
          0: -3.7223e+01
                          1.2934e+02
                                      6e+02
                                             4e+00
                                                    1e+01
          1: 6.3719e+01 -1.0401e+01
                                     1e+02
                                             4e-01
                                                    1e+00
                                                    1e-01
          2:
             2.4982e+01
                          1.4480e+01
                                      1e+01
                                             4e-02
          3:
             2.0938e+01
                         1.8358e+01
                                     3e+00
                                            7e-03
                                                    2e-02
             2.0124e+01 1.9477e+01 7e-01
                                            1e-03
                                                   4e-03
          4:
          5:
              1.9843e+01 1.9734e+01
                                     1e-01
                                            4e-16
                                                    1e-14
                                             4e-16
          6:
              1.9793e+01
                          1.9786e+01
                                     7e-03
                                                    2e-15
          7:
              1.9789e+01 1.9789e+01
                                     8e-05
                                            4e-16
                                                    8e-15
             1.9789e+01 1.9789e+01 8e-07
                                            4e-16
                                                   4e-15
         Optimal solution found.
              pcost
                          dcost
                                      gap
                                             pres
                                                    dres
          0: -3.5582e+01
                         1.2437e+02
                                             4e+00
                                     5e+02
                                                    1e+01
          1: 6.5373e+01
                          5.3668e+00
                                     7e+01
                                             2e-01
                                                    5e-01
          2:
              2.8018e+01
                          1.8518e+01
                                      1e+01
                                             3e-02
                                                    7e-02
          3:
              2.4120e+01 2.1607e+01
                                      3e+00
                                             6e-03
                                                    2e-02
          4:
             2.3162e+01 2.2561e+01
                                     7e-01
                                             1e-03
                                                    3e-03
          5: 2.2858e+01 2.2814e+01
                                      5e-02
                                             8e-05
                                                    2e-04
              2.2835e+01
                          2.2835e+01
                                      5e-04
                                             8e-07
          6:
                                                    2e-06
```

^^

1 101E - 04

```
In [34]: plt.figure()
    plt.plot(C,validation_rmse_mean,c='r')
    plt.fill_between(C,validation_rmse_mean-validation_rmse_std,validation_rmse
    plt.plot(C,train_rmse_mean, c= 'b')
    plt.fill_between(C,train_rmse_mean-train_rmse_std,train_rmse_mean+train_rmse
    plt.legend(['validation mean', '','train',''])
    plt.xlabel('C')
    plt.ylabel('Hinge loss')
    plt.title("Cross validation plot")
    plt.show()
```

Cross validation plot


```
In [77]: C_opt = 20
solution = SVM_primal(X_train_norm, y_train,C_opt);

b = np.array(solution[0,0]).reshape(1,1);
w = np.array(solution[1:3,0]).reshape(2,1);
psi = np.array(solution[3:]);
```

```
dcost
                                pres
                                       dres
    pcost
                          gap
0: -2.5189e+04 9.8239e+03 3e+04 4e+01 2e+00
1: 2.5371e+03 7.7067e+01 3e+03 2e-01 1e-02
2: 7.0587e+02 3.0724e+02 4e+02 3e-02 2e-03
3: 6.0259e+02 3.8628e+02 2e+02 1e-02 6e-04
4: 5.2354e+02 4.2158e+02 1e+02 4e-03 2e-04
5: 4.9732e+02 4.4618e+02 5e+01 1e-03 8e-05
6: 4.8471e+02 4.5394e+02 3e+01 4e-04 2e-05
7: 4.6888e+02 4.6693e+02 2e+00 9e-06 5e-07
8: 4.6778e+02 4.6773e+02 5e-02 2e-07 1e-08
9: 4.6775e+02 4.6775e+02 5e-04 2e-09 1e-10
10: 4.6775e+02 4.6775e+02 5e-06 2e-11 1e-12
Optimal solution found.
```

```
In [85]:
         plt.figure()
         label_1 = ((y_train == 1).T)[0]
         label_minus_1 = ((y_train == -1).T)[0]
         plt.plot(X train norm[label 1,0],X train norm[label 1,1], 'rx')
         plt.plot(X_train_norm[label_minus_1,0],X_train_norm[label_minus_1,1], 'bx')
         x1, xr = plt.xlim()
         x_{axis} = np.array([xl, xr]).reshape(2,1)
         y_svm = -(b + w[0] * x_axis) / w[1]
         plt.plot(x_axis, y_svm, '--', label='SVM')
         for i, txt in enumerate(psi):
             if(txt > 1e-5):
                plt.annotate('{%.2f}'%(txt), (X_train_norm[i,0], X_train_norm[i,1]))
                plt.plot(X_train_norm[i,0], X_train_norm[i,1], 'go', alpha = 0.5)
         plt.legend(['positive', 'negative','svm separation line','support vectors']
         plt.xlabel('feature0')
         plt.ylabel('feature1');
         plt.title('Classification')
```

Out[85]: Text(0.5, 1.0, 'Classification')

Na slici su zelenom bojom naznaceni potporni vektori i njihove vrednosti su zapisane pored. Mozemo uociti da su za potporne vektore uzeti oni elementi koji su blizu separacione linije i oni koji su pogresno klasifikovani. Takodje, oni koji su sa pogresne strane klasifikacione linije imaju vrednosti ψ vece od 1 dok oni koji su sa prave imaju vrednosti manje od 1.

```
In [80]: y_test = y_test.reshape(X_test.shape[0],1)
y_pred_train = np.sign(linear_predict(X_train_norm,w,b))
acc_train = np.sum(y_pred_train == y_train.reshape(len(y_train),1))/len(y_train)
y_pred_test = np.sign(linear_predict(X_test_norm,w,b));
acc_test = np.sum(y_pred_test == y_test.reshape(len(y_test),1))/len(y_test)
print(acc_train)
print(acc_test)
```

0.9 0.85

Krajnja tacnost ovog modela je 90% na obucavajucem skupu i 85% na testirajucem skupu.

```
In [81]: train_loss = hinge_loss(y_pred_train, y_train)
test_loss = hinge_loss(y_pred_test, y_test)
```

```
In [82]: print(train_loss)
print(test_loss)
```

0.20.3

Vidimo da su i velicine gubitaka slicne, ali je nesto veci za testirajuci skup.

```
In [84]: plt.figure()
   plt.plot(X_train_norm[y_pred_train[:,0] == 1,0],X_train_norm[y_pred_train[:
        plt.plot(X_train_norm[y_pred_train[:,0] == -1,0],X_train_norm[y_pred_train
        plt.plot(X_train_norm[label_1,0],X_train_norm[label_1,1], 'rx')
        plt.plot(X_train_norm[label_minus_1,0],X_train_norm[label_minus_1,1], 'bx')
        xl, xr = plt.xlim()
        x_axis = np.array([xl, xr]).reshape(2,1)
        y_svm = -(b + w[0] * x_axis) / w[ 1]
        plt.plot(x_axis, y_svm, '--', label='SVM')

        plt.legend(['positive', 'negative', 'true', 'false', 'svm separation line']);
        plt.xlabel('feature0')
        plt.ylabel('feature1');
        plt.title('Classification on training data')
```

Out[84]: Text(0.5, 1.0, 'Classification on training data')

Na prethodnoj slici prikazane su predikcije na trenirajucem skupu a na sledecoj na testirajucem.

```
In [74]: label_1_test = ((y_test == 1).T)[0]
label_minus_1_test = ((y_test == -1).T)[0]
```

```
In [75]: plt.figure()
   plt.plot(X_test_norm[y_pred_test[:,0] == 1,0],X_test_norm[y_pred_test[:,0]
        plt.plot(X_test_norm[y_pred_test[:,0] == -1,0],X_test_norm[y_pred_test[:,0]
        plt.plot(X_test_norm[label_1_test,0],X_test_norm[label_1_test,1], 'rx')
        plt.plot(X_test_norm[label_minus_1_test,0],X_test_norm[label_minus_1_test,1]
        xl, xr = plt.xlim()
        x_axis = np.array([xl, xr]).reshape(2,1)
        y_svm = -(b + w[0] * x_axis) / w[ 1]
        plt.plot(x_axis, y_svm, '--', label='SVM')

        plt.legend(['positive', 'negative', 'true', 'false', 'svm separation line']);
        plt.ylabel('feature0')
        plt.ylabel('feature1');
        plt.title('Classification on test data')
```

Out[75]: Text(0.5, 1.0, 'Classification on test data')

Dualni problem i nelinearan kernel

Podsetimo se forme koju prima nasa funkcija:

$$min(\frac{1}{2}x^{T}Px + q^{T}x)$$

$$Gx \le h$$

$$Ax = b$$

, ovog puta nas vektor parametara je

$$\left[egin{array}{c} lpha_1 \ \ldots \ lpha_m \ \end{array}
ight]$$

1. Racunanje matrica P i q:

Nasa kriterijmska funkcija je

$$\max(-\frac{1}{2}\sum_{1}^{m}\sum_{1}^{m}\alpha_{i}\alpha_{j}y_{i}y_{j}K(x_{i},x_{j}) + \sum_{1}^{m}\alpha_{i}) = \min(\frac{1}{2}\sum_{1}^{m}\sum_{1}^{m}\alpha_{i}\alpha_{j}y_{i}y_{j}K(x_{i},x_{j}) - \sum_{1}^{m}\alpha_{i}\alpha_{j}y_{i}y_{j}K(x_{i},x_{j})) = \min(\frac{1}{2}\sum_{1}^{m}\sum_{1}^{m}\alpha_{i}\alpha_{j}y_{i}y_{j}K(x_{i},x_{j})) = \min(\frac{1}{2}\sum_{1}^{m}\sum_{1}^{m}\alpha_{i}\alpha_{j}y_{j}y_{j}K(x_{i},x_{j})) = \min(\frac{1}{2}\sum_{1}^{m}\sum_{1}^{m}\alpha_{i}\alpha_{i}y_{j}y_{j}K(x_{i},x_{j})) = \min(\frac{1}{2}\sum_{1}^{m}\sum_{1}^{m}\alpha_{i}x_{j}y_{j}X(x_{i},x_{j})) = \min(\frac{1}{2}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{1}^{m}\sum_{$$

↑

Pa je matrica P sada YK gde je Y = yy.T a matrica q samo vektor -1.

2. Racunanje matrica G i h:

Jedine nejednakosti koje treba da budu zadovoljene su da je α_i pozitivno i manje od C sto su znacajno jednostavniji uslovi nego malo pre. Iz tog razloga matrica G ce se sastojati od jedinicne i negativne jedinicne matrice dok ce h biti vektor cijih je prvih m elemenata C a poslednjih m 0.

3. Racunanje matrica A i b

U ovom slucaju nam jesu potrebne i matrice A i b jer imamo uslov u obliku jednakosti da je $\sum_{i=1}^{m} y_i \alpha_i = 0$

Iz toga mozemo zakljuciti da je A = y.T a b = 0.

S obzirom na ispunjenost KKT uslova resenje dualnog problema je ekvivalentno resenju primalnog i bice mnogo jednostavnije resiti ga zbog jednostavnijih matrica iako je njegova forma idalje kvadratna.

```
In [86]: # SVM function for dual problem
         def SVM_dual(X,y,C, K):
             n_samples, n_features = X.shape
             y = y.reshape(n_samples,1)
             Y = y*(y.T)
             P = K*Y
             P = cvxopt.matrix(P);
             q = -1.0*np.ones((n_samples,1))
             q = cvxopt.matrix(q);
             G = np.concatenate((np.eye(n_samples), -1.0*np.eye(n_samples)), axis =
             G = cvxopt.matrix(G);
             h_high = np.ones((n_samples,1))*C
             h_low = np.zeros((n_samples,1))
             h = np.concatenate((h_high,h_low),axis = 0);
             h = cvxopt.matrix(h);
             A = y.T
             A = cvxopt.matrix(A);
             b = 0.0
             b = cvxopt.matrix(b);
             return cvxopt.solvers.qp(P, q, G, h,A,b)['x']
```

Kerneli

Dva najcesce koriscena kernela su gausov i polinomijalni kernel. Gausov kernel je slican polinomijalnom koji ima beskonacan stepen. S obzirom na izgled podataka deluje da ce polinomijalni kernel biti dovoljan ali bice isprobana oba.

```
In [87]: # Kernel functions
         def gaussian_kernel(X,x, sigma):
             n_samples, n_features = X.shape
             XX = X.reshape((n_samples, n_features,1));
             K = XX - x.T
             K = K*K;
             K = np.sum(K, axis = 1);
             K = np.exp(-K/2/sigma/sigma)
             return K
         def polynomial_kernel(X,x,c,d):
             K = np.zeros((n_samples, n_samples))
             K = (c+np.dot(X,x.T))**d
             return K
         def predict(K,alpha,y,b):
             y_pred = np.sign(((alpha*y).T)@K+b)
             return y_pred
```

```
In [88]: def cross_validation(X,y,num_folds,fold_size,all_params, var_params, var_params,
             validation loss mean = []
             validation_loss_std = []
             train_loss_mean = []
             train_loss_std = []
             for param in var_params:
                     current_train_loss = []
                     current_validation_loss = []
                     all_params[var_param_name] = param;
                     for fold in range(num_folds):
                         # Split data into training and validation set
                         start = fold * fold_size
                         end = (fold + 1) * fold size
                         X_validation = X[start:end]
                         y_validation = y[start:end].reshape(X_validation.shape[0],1
                         X_train = np.concatenate((X[:start], X[end:]), axis=0)
                         y_train = np.concatenate((y[:start], y[end:])).reshape(X_train)
                         # Calculate statistic of X_train
                         X_mean = np.mean(X_train, axis = 0)
                         X_std = np.std(X_train, axis = 0)
                         # Standardization
                         X_train = (X_train - X_mean)/X_std
                         X_validation = (X_validation - X_mean)/X_std
                         if(kernel type == 'P'):
                                  K_train = polynomial_kernel(X_train,X_train,all_par
                                  K_validation = polynomial_kernel(X_train,X_validation)
                         else:
                                  K_train = gaussian_kernel(X_train,X_train,all_param;
                                  K_validation = gaussian_kernel(X_train, X_validation)
                         C = all_params['C'];
                         alpha = SVM_dual(X_train, y_train,C, K_train)
                         alpha = np.array(alpha).reshape(X_train.shape[0],1)
                         support_id = (np.logical_and((alpha > 1e-5), (alpha<C)).T)[</pre>
                          support_y = y_train[support_id,:][0]
                         b = (1/support_y - np.sum(alpha*y_train*((K_train[:,support]))
                         y_train_pred = predict(K_train,alpha,y_train,b ).T
                         y_validation_pred = predict(K_validation,alpha,y_train,b).T
                         # Keep loss results
                         current validation loss.append(hinge loss(y validation pred
                         current_train_loss.append(hinge_loss(y_train_pred,y_train))
                     # Keep statistics of loss results for this iteration
                     validation_loss_mean.append(np.mean(current_validation_loss))
                     validation_loss_std.append(np.std(current_validation_loss))
                     train_loss_mean.append(np.mean(current_train_loss))
                     train_loss_std.append(np.std(current_train_loss))
             # Convert lists to numpy arrays
             validation_loss_mean = np.array(validation_loss_mean)
```

```
validation_loss_std = np.array(validation_loss_std)
train_loss_mean = np.array(train_loss_mean)
train_loss_std = np.array(train_loss_std)

return (validation_loss_mean,validation_loss_std,train_loss_mean,train_)
```

Funkcija za kros validaciju je ista kao malo pre s tim sto umesto jednog parametra sada bira recnik parametara all_params, vrednosti kroz koje treba da prodje parametar koji biramo - var_params i ime parametra koji biramo. Takodje, s obzirom da imamo dva kernela kernel type je P za polinomijalni kernel a G za gausov.

Biranje hiperparametara za polinomijalni kernel

```
all_params = {'C':20, 'c': 0, 'd': 3, 'sigma': 1}
         var_params = [0,1,2,5,7,10, 20]
         var param name = 'c'
         kernel_type = 'P'
In [90]: (validation_rmse_mean, validation_rmse_std, train_rmse_mean, train_rmse_std)
                         dcost
                                           pres
                                                  dres
             pcost
                                    gap
          0: -3.2485e+02 -2.0429e+04 5e+04
                                           7e-01
                                                 6e-14
          1: -2.2291e+02 -8.7070e+03 1e+04 1e-01 9e-14
          2: -1.6563e+02 -1.9901e+03 2e+03 2e-02 7e-14
          3: -2.2679e+02 -7.7034e+02 6e+02 6e-03 3e-14
          4: -3.2460e+02 -4.7816e+02 2e+02 7e-04 7e-14
          5: -3.6122e+02 -4.1370e+02 5e+01 1e-04 4e-14
          6: -3.7360e+02 -3.9405e+02 2e+01 4e-05 6e-14
          7: -3.7917e+02 -3.8502e+02 6e+00 7e-06 4e-14
          8: -3.8140e+02 -3.8199e+02 6e-01 5e-07 4e-14
          9: -3.8164e+02 -3.8167e+02 3e-02 1e-14 7e-14
         10: -3.8166e+02 -3.8166e+02 3e-04 7e-15 6e-14
         Optimal solution found.
                         dcost
             pcost
                                    gap
                                           pres
                                                  dres
          0: -2.8901e+02 -1.5097e+04 3e+04 5e-01 7e-14
          1: -2.1895e+02 -4.8176e+03 6e+03 7e-02 6e-14
          2: -2.1069e+02 -1.0307e+03 9e+02 9e-03
                                                 5e-14
          3: -3.1954e+02 -5.5188e+02 2e+02 2e-03 4e-14
          4: -3.8562e+02 -4.6584e+02 8e+01 3e-04 4e-14
```

```
In [92]: plt.figure()
  plt.plot(var_params,validation_rmse_mean,c='r')
  plt.fill_between(var_params,validation_rmse_mean-validation_rmse_std,validation_plt.plot(var_params,train_rmse_mean, c= 'b')
  plt.fill_between(var_params,train_rmse_mean-train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_train_
```

0.6 - validation mean train 0.4 - 0.2 - 0.1 -

Cross validation plot

```
In [93]: all_params = {'C':20, 'c': 1, 'd': 3, 'sigma': 1 }
    var_params = [0.001,0.002,0.005,0.008,0.01,0.02,0.05,0.08,0.1,0.2,0.5,0.8,
    var_param_name = 'C'
    kernel_type = 'P'
```

7.5

10.0

C

12.5

15.0

17.5

20.0

0.0

0.0

2.5

5.0

```
(validation_rmse_mean, validation_rmse_std, train_rmse_mean, train_rmse_std) =
In [94]:
                           dcost
                                              pres
                                                      dres
              pcost
                                       gap
          0: -7.9132e+00 -4.2276e-01
                                       3e+02
                                                      7e-15
                                              2e+01
          1: -5.5916e-01 -3.4416e-01
                                       9e+00
                                              5e-01
                                                      8e-15
          2: -1.1427e-01 -1.4464e-01
                                       9e-01
                                              5e-02
                                                      1e-15
          3: -4.3362e-02 -1.1928e-01
                                       8e-02
                                              6e-18
                                                      1e-15
          4: -4.6804e-02 -5.7090e-02
                                       1e-02
                                              2e-18
                                                      6e-16
          5: -4.8680e-02 -5.2721e-02
                                       4e-03
                                              2e-18
                                                     4e-16
          6: -4.9657e-02 -5.0523e-02
                                       9e-04
                                              2e-18
                                                     4e-16
          7: -4.9966e-02 -5.0050e-02
                                       8e-05
                                              3e-18
                                                      5e-16
          8: -5.0001e-02 -5.0004e-02
                                       3e-06
                                              2e-18
                                                      5e-16
          9: -5.0002e-02 -5.0002e-02
                                       1e-07
                                              2e-18
                                                      5e-16
         Optimal solution found.
              pcost
                           dcost
                                                      dres
                                       gap
                                              pres
          0: -7.6397e+00 -4.7445e-01
                                       3e+02
                                              2e+01
                                                      5e-15
          1: -6.7214e-01 -3.5278e-01
                                       1e+01
                                              6e-01
                                                      6e-15
          2: -1.1203e-01 -1.4654e-01
                                       9e-01
                                              5e-02
                                                      1e-15
          3: -4.4688e-02 -1.1904e-01
                                       7e-02
                                              6e-18
                                                      1e-15
          4: -4.8570e-02 -5.5321e-02
                                       7e-03
                                              1e-18
                                                      6e-16
          5: -4.9454e-02 -5.4366e-02
                                       5e-03
                                              1e-18
                                                      4e-16
```

```
In [97]: plt.figure()
    plt.plot(np.log10(var_params),validation_rmse_mean,c='r')
    plt.fill_between(np.log10(var_params),validation_rmse_mean-validation_rmse_!
    plt.plot(np.log10(var_params),train_rmse_mean, c= 'b')
    plt.fill_between(np.log10(var_params),train_rmse_mean-train_rmse_std,train_!
    plt.legend(['validation mean', '','train',''])
    plt.title("Cross validation plot")
    plt.xlabel('log10(C)')
    plt.ylabel('Hinge loss')
    plt.show()
```

Cross validation plot


```
In [98]: all_params = {'C':20, 'c' : 1, 'd' : 3, 'sigma' : 1 }
    var_params = list(np.linspace(10,100,100))
    var_param_name = 'C'
    kernel_type = 'P'
```

```
(validation_rmse_mean, validation_rmse_std, train_rmse_mean, train_rmse_std) =
In [99]:
                          dcost
                                              pres
                                                     dres
              pcost
                                       gap
          0: -5.2775e+01 -3.7813e+03
                                                     9e-14
                                       9e+03
                                              6e-01
              3.9208e+01 -1.1037e+03
                                       2e+03
                                              9e-02
                                                     9e-14
          2: 2.3736e+01 -2.2129e+02
                                       3e+02
                                              1e-02
                                                     4e-14
          3: -6.2432e+00 -5.5159e+01
                                              1e-03
                                       5e+01
                                                     2e-14
          4: -1.6515e+01 -3.0650e+01
                                       2e+01
                                              3e-04
                                                     1e-14
          5: -2.1269e+01 -2.3119e+01
                                      2e+00
                                              1e-06
                                                     1e-14
          6: -2.1947e+01 -2.2558e+01
                                      6e-01
                                             3e-07
                                                     9e-15
          7: -2.2222e+01 -2.2264e+01
                                      4e-02
                                              1e-08
                                                     1e-14
                                       5e-04
          8: -2.2241e+01 -2.2241e+01
                                              1e-10
                                                     9e-15
          9: -2.2241e+01 -2.2241e+01 5e-06
                                             1e-12
                                                     1e-14
         Optimal solution found.
              pcost
                          dcost
                                                     dres
                                       gap
                                              pres
          0: -4.3931e+01 -4.6796e+03
                                       1e+04
                                              8e-01
                                                     6e-14
          1: 5.4511e+01 -1.7909e+03
                                      3e+03
                                              1e-01
                                                     6e-14
          2: 3.9033e+01 -2.4306e+02
                                              1e-02
                                      4e+02
                                                     2e-14
                                       7e+01
          3: -1.4850e+00 -6.3431e+01
                                              2e-03
                                                     1e-14
          4: -1.5166e+01 -3.1320e+01
                                              4e-04
                                       2e+01
                                                     8e-15
          5: -2.0813e+01 -2.3533e+01
                                       3e+00
                                              2e-06
                                                     8e-15
```

2 4072 - 24

```
In [101]: plt.figure()
   plt.plot(var_params,validation_rmse_mean,c='r')
   plt.fill_between(var_params,validation_rmse_mean-validation_rmse_std,validation_plt.plot(var_params,train_rmse_mean, c= 'b')
   plt.fill_between(var_params,train_rmse_mean-train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_mean+train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_rmse_std,train_r
```


Da ne bi doslo do preobucavanja uzeto je C = 10

```
In [102]: all_params = {'C':10, 'c' : 1, 'd' : 3, 'sigma' : 1 }
    var_params = [1,2,3,4,5,6,7,8,9,10,11,12]
    var_param_name = 'd'
    kernel_type = 'P'
```

```
In [103]:
          (validation_rmse_mean, validation_rmse_std, train_rmse_mean, train_rmse_std) =
                           dcost
                                               pres
                                                      dres
               pcost
                                        gap
           0: -1.0415e+02 -3.9987e+03
                                       8e+03
                                               6e-01
                                                      8e-15
           1: -6.6899e+01 -8.5923e+02
                                       8e+02
                                               4e-16
                                                      1e-14
           2: -1.2402e+02 -2.7455e+02
                                       2e+02
                                               2e-14
                                                      1e-14
           3: -1.5268e+02 -2.1904e+02
                                       7e+01
                                               3e-14
                                                      1e-14
           4: -1.6360e+02 -1.9322e+02
                                       3e+01
                                              8e-15
                                                      1e-14
           5: -1.7035e+02 -1.8280e+02
                                       1e+01
                                              3e-15
                                                      1e-14
           6: -1.7455e+02 -1.7775e+02 3e+00
                                              1e-14
                                                      1e-14
           7: -1.7584e+02 -1.7613e+02
                                       3e-01
                                              6e-15
                                                      1e-14
           8: -1.7596e+02 -1.7597e+02
                                       9e-03
                                               6e-15
                                                      1e-14
           9: -1.7596e+02 -1.7596e+02
                                       9e-05
                                              5e-15
                                                      1e-14
          Optimal solution found.
                           dcost
                                                      dres
               pcost
                                        gap
                                               pres
           0: -1.1588e+02 -2.9087e+03
                                       5e+03
                                               3e-01
                                                      1e-14
           1: -1.1561e+02 -5.3577e+02
                                       5e+02
                                              1e-02
                                                      9e-15
           2: -1.5751e+02 -2.8432e+02
                                               3e-03
                                       1e+02
                                                      1e-14
           3: -1.8137e+02 -2.5715e+02
                                       8e+01
                                               2e-03
                                                      1e-14
           4: -1.9077e+02 -2.4353e+02
                                              1e-03
                                       5e+01
                                                      1e-14
           5: -1.9957e+02 -2.2648e+02
                                       3e+01
                                              3e-04
                                                      1e-14
```

0 4004 -00

```
In [110]: plt.figure()
    plt.plot(var_params,validation_rmse_mean,c='r')
    plt.fill_between(var_params,validation_rmse_mean-validation_rmse_std,validation_plt.plot(var_params,train_rmse_mean, c= 'b')
    plt.fill_between(var_params,train_rmse_mean-train_rmse_std,train_rmse_mean+plt.legend(['validation mean', '','train',''])
    plt.title("Cross validation plot")
    plt.xlabel('d')
    plt.ylabel('Hinge loss')
    plt.show()
```

Cross validation plot 0.6 validation mean train 0.5 0.4 Hinge loss 0.3 0.2 0.1 0.0 -0.12 4 6 8 10 12 d

```
In [105]: C_opt = 10
c_opt = 1
d_opt = 4
```

1: 9.5174e+00 -1.7254e+03 3e+03 1e-01 4e-13
2: 2.9745e+01 -3.6486e+02 6e+02 2e-02 8e-14
3: 5.1854e+00 -8.1707e+01 1e+02 3e-03 3e-14
4: -7.6442e+00 -2.6008e+01 2e+01 5e-04 2e-14
5: -1.2769e+01 -1.8905e+01 6e+00 7e-05 1e-14
6: -1.4636e+01 -1.5472e+01 8e-01 1e-06 2e-14
7: -1.4906e+01 -1.5102e+01 2e-01 2e-07 2e-14
8: -1.4990e+01 -1.5006e+01 2e-02 3e-15 2e-14
9: -1.4997e+01 -1.4997e+01 3e-04 3e-15 1e-14
10: -1.4997e+01 -1.4997e+01 3e-06 3e-15 2e-14
Optimal solution found.

```
In [107]: support_id = (np.logical_and((alpha > 1e-5), (alpha<C_opt)).T)[0];
support_y = y_train[support_id][0]
b = (1/support_y - np.sum(alpha*y_train*((K_train[:,support_id])[:,0])))</pre>
```

```
In [121]:
          plt.figure()
          label_1 = ((y_train == 1).T)[0]
          label_minus_1 = ((y_train == -1).T)[0]
          plt.plot(X train norm[label 1,0],X train norm[label 1,1], 'rx')
          plt.plot(X_train_norm[label_minus_1,0],X_train_norm[label_minus_1,1], 'bo')
          def plot_decision_boundary( xmin, xmax, ymin, ymax):
            xx, yy = np.meshgrid(
                np.linspace(xmin, xmax, num=100, endpoint=True),
                np.linspace(ymin, ymax, num=100, endpoint=True))
            K = polynomial kernel(X train norm, np.c [xx.ravel(), yy.ravel()],c opt,d
            Z = predict(K,alpha,y train,b)
            Z = Z.reshape(xx.shape)
            cs = plt.contourf(xx, yy, Z, alpha=0.2, cmap='bwr')
          xmin, xmax, ymin, ymax = plt.axis()
          plot_decision_boundary( xmin, xmax, ymin, ymax)
          for i, txt in enumerate(alpha):
              if(txt > 1e-5):
                 plt.annotate('{%.2f}'%(txt), (X_train_norm[i,0], X_train_norm[i,1]))
                 plt.plot(X_train_norm[i,0], X_train_norm[i,1],'go', alpha = 0.5)
          plt.legend(['positive', 'negative','svm separation line','support vectors']
          plt.xlabel('feature0')
          plt.ylabel('feature1');
          plt.title('Classification')
```

Out[121]: Text(0.5, 1.0, 'Classification')

Vidimo da je granica malo pomerena na ustrb plavih primera iako je mogla 100% da klasifikuje sve primere da ne bi doslo do preobucavanja uslad loseg klasifikovanja crvenih primera na test skupu.

Krajnja tacnost polinomijalnog modela je 95% na obucavajucem skupu i 90% na test skupu.

Mozemo videti da je i gubitak manji nego kod linearnog kernela i da je malo veci na testirajucem skupu.

Odredjivanje hiperparametara gausovog kernela

```
all_params = {'C':10, 'c' : 1, 'd' : 4, 'sigma' : 1 }
In [115]:
          var_params = [0.1, 0.5, 1, 2, 5, 7, 10, 20, 30]
          var_param_name = 'sigma'
          kernel type = 'G'
In [116]: (validation_rmse_mean, validation_rmse_std, train_rmse_mean, train_rmse_std) =
               pcost
                          dcost
                                      gap
                                             pres
                                                   dres
           0: 2.1940e+02 -1.5652e+03 2e+03 2e-15 2e-15
           1: 2.0366e+01 -1.7714e+02 2e+02 2e-15 1e-15
           2: -2.5680e+01 -4.9069e+01 2e+01 8e-15
                                                   5e-16
           3: -2.8161e+01 -2.9322e+01 1e+00 3e-15 2e-16
           4: -2.8178e+01 -2.8241e+01 6e-02 1e-15 1e-16
           5: -2.8178e+01 -2.8179e+01 1e-03 4e-15 1e-16
           6: -2.8178e+01 -2.8178e+01 1e-05 3e-15 1e-16
          Optimal solution found.
              pcost
                          dcost
                                      gap
                                             pres
                                                   dres
              2.2743e+02 -1.6854e+03 2e+03 1e-15
                                                   2e-15
           1: 2.4535e+01 -1.8309e+02 2e+02 7e-15 1e-15
           2: -2.4511e+01 -4.9219e+01 2e+01 4e-15 4e-16
           3: -2.7304e+01 -2.8628e+01 1e+00 3e-16 2e-16
           4: -2.7339e+01 -2.7446e+01 1e-01 2e-16 1e-16
           5: -2.7344e+01 -2.7348e+01 3e-03 7e-16 1e-16
           6: -2.7345e+01 -2.7345e+01 1e-04 4e-16 1e-16
           7: -2.7345e+01 -2.7345e+01 2e-06 1e-15 9e-17
          Optimal solution found.
```

```
In [118]: plt.figure()
    plt.plot(np.log10(var_params),validation_rmse_mean,c='r')
    plt.fill_between(np.log10(var_params),validation_rmse_mean-validation_rmse_sellonglot(np.log10(var_params),train_rmse_mean, c= 'b')
    plt.fill_between(np.log10(var_params),train_rmse_mean-train_rmse_std,train_sellonglot(sigma), train_rmse_mean-train_rmse_std,train_sellonglot(sigma))
    plt.title("Cross validation plot")
    plt.xlabel('sigma')
    plt.ylabel('Hinge loss')
    plt.show()
```

Cross validation plot


```
In [143]: all_params = {'C':20, 'c': 2, 'd': 3, 'sigma': 1 }
var_params = [0.001,0.002,0.005,0.008,0.01,0.02,0.05,0.08,0.1,0.2,0.5,0.8,
var_param_name = 'C'
kernel_type = 'G'
```

```
In [144]:
          (validation_rmse_mean, validation_rmse_std, train_rmse_mean, train_rmse_std) =
                            dcost
                                               pres
                                                       dres
               pcost
                                        gap
           0: -9.7652e+00 -2.2225e+00
                                        4e+02
                                               2e+01
                                                      4e-16
           1: -2.5725e+00 -8.9610e-01
                                        2e+01
                                               1e+00
                                                      7e-16
           2: -1.1729e-01 -1.5026e-01
                                        7e-01
                                               3e-02
                                                      1e-15
           3: -5.0760e-02 -1.2272e-01
                                        7e-02
                                               4e-18
                                                      7e-16
           4: -5.6253e-02 -6.8871e-02
                                        1e-02
                                               1e-18
                                                      7e-16
           5: -5.7777e-02 -5.8162e-02
                                        4e-04
                                               2e-18
                                                      6e-16
           6: -5.7808e-02 -5.7890e-02
                                        8e-05
                                               2e-18
                                                      5e-16
           7: -5.7826e-02 -5.7849e-02
                                        2e-05
                                               2e-18
                                                      5e-16
           8: -5.7832e-02 -5.7835e-02
                                        3e-06
                                               2e-18
                                                       5e-16
           9: -5.7833e-02 -5.7834e-02
                                        8e-07
                                               1e-18
                                                      5e-16
          10: -5.7833e-02 -5.7833e-02
                                        6e-08
                                               2e-18
                                                      6e-16
          Optimal solution found.
                                               pres
               pcost
                            dcost
                                        gap
                                                       dres
           0: -1.0126e+01 -2.3395e+00
                                               2e+01
                                        3e+02
                                                      5e-16
           1: -2.5895e+00 -8.4808e-01
                                        2e+01
                                               1e+00
                                                      5e-16
           2: -1.0109e-01 -1.4627e-01
                                        6e-01
                                               3e-02
                                                       2e-15
           3: -5.1301e-02 -1.1529e-01
                                        6e-02
                                               4e-18
                                                      8e-16
           4: -5.8164e-02 -6.7831e-02
                                        1e-02
                                               1e-18
                                                      6e-16
```

C 0047

```
In [145]: plt.figure()
   plt.plot(np.log10(var_params),validation_rmse_mean,c='r')
   plt.fill_between(np.log10(var_params),validation_rmse_mean-validation_rmse_!
   plt.plot(np.log10(var_params),train_rmse_mean, c= 'b')
   plt.fill_between(np.log10(var_params),train_rmse_mean-train_rmse_std,train_!
   plt.legend(['validation mean', '','train',''])
   plt.title("Cross validation plot")
   plt.xlabel('log10(C)')
   plt.ylabel('Hinge loss')
   plt.show()
```

Cross validation plot validation mean 1.2 train 1.0 0.8 Hinge loss 0.6 0.4 0.2 0.0 -2 -1 0 1 2 3 -3log10(C)

```
In [146]: all_params = {'C':20, 'c' : 1, 'd' : 3, 'sigma' : 1 }
    var_params = list(np.linspace(10,100,100))
    var_param_name = 'C'
    kernel_type = 'P'
```

```
(validation_rmse_mean, validation_rmse_std, train_rmse_mean, train_rmse_std) =
In [147]:
                           dcost
                                               pres
                                                      dres
               pcost
                                        gap
           0: -5.2775e+01 -3.7813e+03
                                                      9e-14
                                       9e+03
                                               6e-01
               3.9208e+01 -1.1037e+03
                                        2e+03
                                               9e-02
                                                      9e-14
           2: 2.3736e+01 -2.2129e+02
                                       3e+02
                                               1e-02
                                                      4e-14
           3: -6.2432e+00 -5.5159e+01
                                               1e-03
                                       5e+01
                                                      2e-14
           4: -1.6515e+01 -3.0650e+01
                                       2e+01
                                               3e-04
                                                      1e-14
           5: -2.1269e+01 -2.3119e+01
                                       2e+00
                                              1e-06
                                                      1e-14
                                              3e-07
           6: -2.1947e+01 -2.2558e+01
                                       6e-01
                                                      9e-15
           7: -2.2222e+01 -2.2264e+01 4e-02
                                              1e-08
                                                      1e-14
           8: -2.2241e+01 -2.2241e+01
                                       5e-04
                                               1e-10
                                                      9e-15
           9: -2.2241e+01 -2.2241e+01 5e-06
                                              1e-12
                                                      1e-14
          Optimal solution found.
               pcost
                           dcost
                                                      dres
                                        gap
                                               pres
           0: -4.3931e+01 -4.6796e+03
                                       1e+04
                                              8e-01
                                                      6e-14
           1: 5.4511e+01 -1.7909e+03
                                       3e+03
                                               1e-01
                                                      6e-14
           2: 3.9033e+01 -2.4306e+02
                                              1e-02
                                       4e+02
                                                      2e-14
                                       7e+01
           3: -1.4850e+00 -6.3431e+01
                                               2e-03
                                                      1e-14
           4: -1.5166e+01 -3.1320e+01
                                              4e-04
                                       2e+01
                                                      8e-15
           5: -2.0813e+01 -2.3533e+01
                                       3e+00
                                               2e-06
                                                      8e-15
```

2 4072 - 24

```
In [148]: plt.figure()
   plt.plot(var_params,validation_rmse_mean,c='r')
   plt.fill_between(var_params,validation_rmse_mean-validation_rmse_std,validation_plt.plot(var_params,train_rmse_mean, c= 'b')
   plt.fill_between(var_params,train_rmse_mean-train_rmse_std,train_rmse_mean+plt.legend(['validation mean', '','train',''])
   plt.title("Cross validation plot")
   plt.xlabel('C')
   plt.ylabel('Hinge loss')
   plt.show()
```



```
In [149]: C_opt = 10
In [150]: sigma_opt = 1;
```

```
In [151]:
          K_train = gaussian_kernel(X_train_norm,X_train_norm,sigma_opt)
          alpha = SVM_dual(X_train_norm, y_train, C_opt, K_train)
          alpha = np.array(alpha).reshape(X_train.shape[0],1)
                                             pres
               pcost
                          dcost
                                                    dres
                                      gap
           0: 1.4765e+02 -2.8932e+03 4e+03 2e-01 4e-15
           1: 4.9726e+01 -3.7718e+02 5e+02 1e-02 3e-15
           2: -2.7016e+01 -1.5880e+02 1e+02
                                            3e-03
                                                    2e-15
           3: -5.3669e+01 -1.0959e+02 6e+01 7e-04 3e-15
           4: -6.5864e+01 -9.3607e+01 3e+01 2e-04 2e-15
           5: -7.1632e+01 -8.2138e+01 1e+01 5e-05
                                                    3e-15
           6: -7.4732e+01 -7.6493e+01 2e+00 3e-06
                                                    3e-15
           7: -7.5339e+01 -7.5520e+01 2e-01 2e-07
                                                    3e-15
           8: -7.5410e+01 -7.5412e+01 2e-03 3e-09 3e-15
           9: -7.5411e+01 -7.5411e+01 2e-05 3e-11 3e-15
          Optimal solution found.
In [152]: support_id = (np.logical_and((alpha > 1e-5), (alpha<C_opt)).T)[0];</pre>
          support_y = y_train[support_id][0]
          b = (1/support_y - np.sum(alpha*y_train*((K_train[:,support_id])[:,0])))
```

```
In [153]:
          plt.figure()
          label_1 = ((y_train == 1).T)[0]
          label_minus_1 = ((y_train == -1).T)[0]
          plt.plot(X train norm[label 1,0],X train norm[label 1,1], 'rx')
          plt.plot(X_train_norm[label_minus_1,0],X_train_norm[label_minus_1,1], 'bo')
          def plot_decision_boundary( xmin, xmax, ymin, ymax):
            xx, yy = np.meshgrid(
                np.linspace(xmin, xmax, num=100, endpoint=True),
                np.linspace(ymin, ymax, num=100, endpoint=True))
            K = gaussian kernel(X train norm, np.c [xx.ravel(), yy.ravel()],sigma opt
            Z = predict(K,alpha,y train,b)
            Z = Z.reshape(xx.shape)
            cs = plt.contourf(xx, yy, Z, alpha=0.2, cmap='bwr')
          xmin, xmax, ymin, ymax = plt.axis()
          plot_decision_boundary( xmin, xmax, ymin, ymax)
          for i, txt in enumerate(alpha):
              if(txt > 1e-5):
                 plt.annotate('{%.2f}'%(txt), (X_train_norm[i,0], X_train_norm[i,1]))
                 plt.plot(X_train_norm[i,0], X_train_norm[i,1],'go', alpha = 0.5)
          plt.legend(['positive', 'negative','svm separation line','support vectors']
          plt.xlabel('feature0')
          plt.ylabel('feature1');
          plt.title('Classification')
```

Out[153]: Text(0.5, 1.0, 'Classification')


```
In [154]: K_test = gaussian_kernel(X_train_norm,X_test_norm,sigma_opt)
    y_pred_train = predict(K_train, alpha, y_train,b).T
    acc_train = np.sum(y_pred_train == y_train)/len(y_train)
    y_test = y_test.reshape(X_test.shape[0],1)
    y_pred_test = predict(K_test, alpha, y_train,b).T
    acc_test = np.sum(y_pred_test == y_test)/len(y_test)
    train_loss = hinge_loss(y_pred_train, y_train)
    test_loss = hinge_loss(y_pred_test, y_test)
    print(acc_train)
    print(acc_test)
    print(train_loss)
    print(test_loss)
```

Krajnja tacnost gausovog kernela je 95% na obucavajucem skupu i 85% na test skupu

Uporedni prikaz svih modela

```
In [158]: import pandas as pd
    df = {"train":[0.9, 0.95, 0.95], "test":[0.85, 0.90, 0.85]}
    df = pd.DataFrame.from_dict(df)
    df.index = ["linear", "polynomial", "gaussian"]
    df
```

Out[158]:

0.85

	train	test
linear	0.90	0.85
polynomial	0.95	0.90
gaussian	0.95	0.85

Vidimo da se kao najbolji pokazao polinomijalni kernel, jer daje najbolje tacnosti i najmanje se preobucio.