Probability and Counting for Political Science

POSC 3410 - Quantitative Methods in Political Science

Steven V. Miller

Department of Political Science

Goal for Today

Discuss probability and basic math, since these are things you should know anyway.

Probability

Probability refers to the chance of some event occurring.

- It's a ubiquitous feature of the world and you should know it anyway.
- Interestingly, it was developed rather late in human history.
- Origins: gambling in the 17th-18th centuries.

We think in probabilistic terms, consciously or subconsciously.

 e.g. if I go 85 in a 65mph zone, I might get to my location faster or I might get a ticket, slowing down my progress.

Probability theory is a precursor to statistics and applied mathematics.

It's mathematical modeling of uncertain reality.

Rules of Probability

Here are some (but not all) important rules for probability.

- 1. Collection of all possible events $(E_1 \ldots E_n)$ is a **sample space**.
 - S as a **set** for a coin flip $S = \{ \text{ Heads, Tails } \}$.
- 2. Probabilities must satisfy inequality $0 \le p \le 1$.
- 3. Sum of probability in sample space must equal 1.
 - Formally: $\Sigma_{E_i \in S} \ p(E_i) = 1$
- 4. If event A and event B are independent of each other, the **joint** probability of both occurring is p(A,B) = p(A) * p(B).
- 5. If probability of event *A* depends on event *B* having already occurred, the **conditional probability** of *A* "given" *B* is a bit different.

$$p(A \mid B) = \frac{p(A, B)}{p(B)}$$

Rules of Probability

Conditional probability implies events are not wholly independent.

• i.e. some "overlap" or "intersect".

Thus, there are two other probability rules to know.

Probability of Unions:
$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Probability of Intersections:
$$p(A \cap B) = p(A) + p(B) - p(A \cup B)$$

Some Simple Applications

Let's start with a basic Venn diagram from the book. Assume:

- Probability of being male (i.e. p(A)) = .5
- Probability of being obese (i.e. p(B)) = .3

We want to know:

- What's the probability of someone being male or obese?
- What's the probability of someone being obese, given we know he's a male?

Venn Diagram

Fig. 5.1. Sample Venn diagram

Some Simple Applications

What's the probability of someone being male or obese?

- This is a union probability question.
- $p(A \cup B) = p(A) + p(B) p(A \cap B) = .5 + .3 .1 = .7$
- We subtract the overlap (intersection) because some men are obese.
- Probability of being a non-obese female: 1 .7 = .3

What's the probability of someone being obese, given we know he's a male?

- This is a conditional probability question.
- $p(A \mid B) = \frac{p(A,B)}{p(B)} = \frac{.1}{.5} = .2$

We can derive more complex and important rules from these basic probability rules.

Total Probability and Bayes' Theorem

Recall:
$$p(A | B) = \frac{p(A,B)}{p(B)}$$
. Thus: $p(A, B) = p(A | B) * p(B)$.

- Further: $p(B, A) = p(B \mid A) * p(A)$.
- Then, obviously: p(A, B) = p(B, A).
- Therefore: $p(B \mid A) * p(A) = p(A \mid B) * p(B)$.

If you want to isolate $p(B \mid A)$, simply divide by p(A).

$$p(B \mid A) = \frac{p(A \mid B) * p(B)}{p(A)}$$

Total Probability and Bayes' Theorem

This is an interesting theorem in its own right. It's the **Total Probability Theorem**.

 We also commonly call this Bayes' Theorem after the man who discovered it.

With only two possible outcomes (B and $\sim B$).

$$p(B|A) = \frac{p(A|B)p(B)}{p(A|B)p(B) + p(A|\sim B)p(\sim B)}$$

An Application: The Prosecutor's Fallacy

Assume this scenario: a zealous prosecutor is collecting evidence against a defendant.

- He has a fingerprint match, for which the random chance of it occurring is one-in-a-million.
- Put another way: $p(\text{fingerprint} \mid \text{innocent} = \frac{1}{1000000})$.

What do you think the prosecutor does? Argue the prospect of innocence is one-in-a-million.

• In short: prosecutors routinely forget that $p(B \mid A) != p(A \mid B)!$

A Real Life Application of the Prosecutor's Fallacy

Sally Clark is a real-life horror story of the misuse of conditional probability.

Sally Clark

Some background on this case:

- Sally Clark was a British solicitor.
- 13 Dec 1996: her seemingly healthy first-born child died a crib death at 11 weeks.
- 26 Jan 1998: her second-born died at 8 weeks.
- 23 Feb 1998: Clark was arrested on a count of double murder.
 - She had been suffering from postpartum depression.
 - Both children showed evidence of trauma (ostensibly from attempts at resuscitation).

Sally Clark

In her trial, British prosecutors brought forward a pediatrics specialist who estimated the probability of crib death for two healthy babies from a wealthy family was in 1-in-73 million.

- Put another way: $p(\text{two crib deaths} | \text{innocent} = \frac{1}{73000000})$. Prosecutors then argued: $p(\text{innocent} | \text{two crib deaths} = \frac{1}{73000000})$.
- 9 Nov 1999: Sally Clark is convicted and sentenced to life in prison.

The Error in this Case

Let's fill in some blanks to illustrate the error. Here's a reworked theorem:

$$p(H | D) = \frac{p(D | H)p(H)}{p(D | H)p(H) + p(D | A)p(A)}$$

Assume:

- H = both children died of crib death.
 - $p(H) = \frac{1}{100000}$. Yes, the pediatrics expert actually confused a joint probability for a conditional probability in this case!
- D = both children died.
 - Trivially, $p(D \mid H) = 1$.
- A = both children died of alternate causes (i.e. murder).
 - p(A) = 1 p(H).
- $p(D | A) = \frac{30}{650000}$ in the British case.

There are a *lot* of moving pieces in this particular case (e.g. absence of a social worker in the Clark family), but this will illustrate the problem.

The Error in this Case

$$p(H | D) = \frac{p(D | H)p(H)}{p(D | H)p(H) + p(D | A)p(A)}$$

$$= \frac{.00001}{.00001 + .0000046 * (1 - .00001)}$$

$$= \frac{.00001}{.0000145}$$

$$= .689$$

Put another way, the probability of Sally Clark's innocence was *much* higher than the misleading testimony offered by prosecutors.

Sally Clark

The UK Royal Statistical Society eventually caught wind of this error and condemned it.

- Without proper context (i.e. the probability of a mother actually killing two children consecutively), Sally Clark's conviction was erroneous.
- Experts later found traces of staphylococcus aureus in the second-born.
 - The first-born likely died a true crib death.

Clark was later exonerated on appeal in 2003, but never recovered emotionally from the ordeal.

She died in 2007.

Counting

A basic premise to computing probability is counting.

It seems basic, but there are multiple ways of doing this.

There's a thing called the **Fundamental Theorem of Counting**:

- 1. If there are *k* distinct decision stages to a process. . .
- 2. ... and each has its own n_k number of alternatives...
- 3. ... then there are $\prod_{i=1}^{k} n_k$ possible outcomes.

Counting

What does this say in plain English?

- If we have a specific number of individual steps. . .
- ...each of which has some set of alternatives...
- ... then the total number of alternatives is the product of those at each step.

So, for 1, 2, ... k different characteristics, we multiply the corresponding $n_1, n_2, ..., n_k$ number of features.

Four Methods of Counting

A form of counting follows choice rules of **ordering** and **replacement**.

- 1. Ordered, with replacement
- 2. Ordered, without replacement
- 3. Unordered, without replacement

There's a fourth method (unordered, with replacement), but it is intuitive, not much used, and I won't belabor it here.

Ordered, with Replacement

This is the first and easiest method.

- Let's say we have *n* objects (e.g. a 52-card deck).
- We want to pick k < n objects (say: 5 cards).
- With replacement: we can put the card back and possibly pick it again.

By the **Fundamental Theorem of Counting**, there are always n choices for each of the five decision stages.

- Put another way: it's possible we could grab the King of Hearts five times.
- Total number of combinations = $n^k = 52^5 = 380,204,032$.

Ordered, without Replacement

This is the second most basic approach.

- In our case, once we grab the King of Hearts, he's gone from the deck.
- Thus, in each stage, there's a decrement of choices.

Formally:

$$n*(n-1)*(n-2)*(n-3)*...*(k+1)*k = \frac{n!}{(n-k)!}$$

Note: ! = a factorial. 5! = 5 * 4 * 3 * 2 * 1.

• In our case, $\frac{52!}{(52-5)!} = 311,875,200$.

Unordered, without Replacement

There is a slightly more complicated, but still common form.

• Informally: like ordered without replacement, but we can't see the order of picking.

Suppose we were picking colored balls from an urn $S = \{ \text{ White, Red } \}.$

• Here, picking RWR, RRW, and WRR are equivalent to each other.

This leads to a slight modification of the previous formula.

$$\frac{n!}{(n-k)!k!} = \binom{n}{k}$$

Note: you'll see a lot of this choose notation soon. Get used to it.

An Application: Randomly Sampling a Population

Suppose you have a population of 150. You want to survey 15. How many different combinations do you have?

Ordered, with Replacement:
$$n^k = 150^{15} = 4.378939 * 10^{32}$$

Ordered, without Replacement:
$$\frac{n!}{(n-k)!} = 2.123561 * 10^{32}$$

Unordered, without Replacement:
$$\binom{n}{k} = \binom{150}{15} = 1.623922 * 10^{20}$$

An Application: Forming a Coalition Government

Here is an application of relevant to party politics in Europe.

- Suppose we have three parties (Liberal, Christian Democrats, Greens).
- Liberals have six senior members. CDs have five senior members.
 Greens have four senior members.

How many different ways could you choose a cabinet of three Liberals, two Christian Democrats, and three Greens?

An Application: Forming a Coalition Government

This can be solved with the **Unordered, without Replacement** counting rule.

- In short, it doesn't matter the order in which the members are drawn.
- All we have to do is select three Liberals, two CDs, and three Greens.

$$\binom{6}{3}\binom{5}{2}\binom{4}{3} = \frac{720}{6(6)} * \frac{120}{2(6)} * \frac{24}{6(1)} = 20 * 10 * 4 = 800$$

Conclusion

This lecture was in some measure math for math's sake.

• These are important concepts people should know for its own value.

However, they are important foundations for the applied stuff we will start doing soon.

Table of Contents

Introduction

Probability
Basic Probability
Total Probability, Bayes' Theorem

Counting

Conclusion