

Chapter 5

Digital transmission through the AWGN channel

— by Prof. XIAOFENG LI SICE, UESTC

Ch5 Digital transmission through the AWGN channels

Section 5.1-5.4: 5.3, 5.7

Section 5.5: 5.8

Section 5.6: 5.9, 5.10, 5.18, 5.34, 5.43, 5.47, 5.54

- Introduction
- Geometric rep. of the sig waveforms
- Pulse amplitude modulation
- 2-d signal waveforms
- M-d signal waveforms
- Opt. reception for the sig. In AWGN
- Optimal receivers and probs of err

5.5 Opt. reception for the sig. In AWGN

In the nth interval, the process is as follows,

Baseband

- Binary PAM (the antipodal, unipolar)
- Orthogonal signaling with M=2

Passband

- BPSK (the antipodal)
- OOK or BASK (the unipolar)
- BFSK (Orthogonal signaling with M=2)

Antipodal

The signals:

$$s_1(t) = Ag_T(t),$$

$$s_0(t) = -Ag_T(t)$$

The 1-D basis: $\psi(t) = \frac{1}{\sqrt{E_g}} g_T(t)$

A MF-ML receiver is given by,

Prob of err is computed by,

$$P_e = P(e) = 1 - \sum_{m=1}^{M} \int_{R_m} P(\mathbf{s}_m \mid \mathbf{r}) f(\mathbf{r}) d\mathbf{r}$$

Antipodal

The signals:

$$s_1(t) = Ag_T(t),$$

$$s_0(t) = -Ag_T(t)$$

The constellation and likelihood functions:

ML leads to a decision rule of : $r \gtrless 0$

A MF-ML receiver is given by,

Prob of err is computed by,

$$P_e = 1 - \frac{1}{2} \int_{R_0} f(r|s_0) dr - \frac{1}{2} \int_{R_1} f(r|s_1) dr$$

where, $R_0=(-\infty,0]$ and $R_1=[0,+\infty)$.

$$P_{e} = 1 - \int_{R_{0}} f(r|s_{0}) dr = \int_{[0,+\infty)} \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{(r+d/2)^{2}}{N_{0}}} dr$$

$$= \int_{\sqrt{\frac{d^2}{2N_0}}}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \qquad \left(\text{Let } x = \frac{r + d/2}{\sqrt{N_0/2}} \right)$$

$$=Q\left(\sqrt{\frac{d^2}{2N_0}}\right)$$

where,
$$Q(x) = \int_{x}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$

By convention, engineers evaluate performance in terms of $P_e \sim \frac{E_b}{N}$, where E_b is the average bit-energy. And $\frac{E_b}{N_o}$ is often called SNR.

For binary antipodal system, $E_b = E_s = a^2 = d^2 / 4$, thus, $P_e = Q \left(\sqrt{\frac{2E_b}{N_o}} \right)$

$$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

The signals: $s_1(t) = Ag_T(t)$, $s_2(t) = 0$

The 1-D basis:
$$\psi(t) = \frac{1}{\sqrt{E_g}} g_T(t)$$

Leave the details to you, after class

A MF-ML receiver is given by,

Prob of err is computed by,

$$P_{e} = P(e) = 1 - \sum_{m=1}^{M} \int_{R_{m}} P(\mathbf{s}_{m} \mid \mathbf{r}) f(\mathbf{r}) d\mathbf{r}$$

$$P_{e} = Q\left(\frac{2E_{b}}{N}\right)$$

Baseband

- Binary PAM (the antipodal, unipolar)
- Orthogonal signaling with M=2

Passband

- BPSK (the antipodal)
- OOK or BASK (the unipolar)
- BFSK (Orthogonal signaling with M=2)

Orthogonal

The 2-D basis: $\psi_1(t), \psi_2(t)$

The signals: $s_1(t) = a\psi_1(t)$, $s_2(t) = a\psi_2(t)$

$$s_{\mathbf{0}}(t) = a\psi_2(t)$$

A MF-ML receiver is given by,

Prob of err is computed by,

$$P_e = P(e) = 1 - \sum_{m=1}^{M} \int_{R_m} P(\mathbf{s}_m \mid \mathbf{r}) f(\mathbf{r}) d\mathbf{r}$$

MinDist leads to a decision rule of :

A MF-ML receiver is given by,

Baseband

- Binary PAM (the antipodal, unipolar)
- Orthogonal signaling with M=2

Passband

- BPSK (the antipodal)
- OOK or BASK (the unipolar)
- BFSK (Orthogonal signaling with M=2)

5

5.6.1 Binary modulations

The signals:

$$s_{\mathbf{1}}(t) = a\psi(t),$$

$$s_{\mathbf{0}}(t) = -a\psi(t)$$

The 1-D basis: $\psi(t) = \frac{1}{2}$

$$\psi(t) = \sqrt{\frac{2}{E_g}} g_T(t) \cos 2\pi f_c t$$

A MF-ML receiver is given by,

A Corr-ML receiver is given by,

The signals:

$$s_{\mathbf{1}}(t) = a\psi(t),$$

$$s_{\mathbf{n}}(t) = -a\psi(t)$$

The 1-D basis: $\psi(t) = \psi(t)$

$$\psi(t) = \sqrt{\frac{2}{E_g}} g_T(t) \cos 2\pi f_c t$$

A mixer plus a baseband MF, then ML,

A Corr-ML receiver is given by,

The signals:

$$s_1(t) = a\psi(t),$$

$$s_0(t) = -a\psi(t)$$

The constellation and likelihood functions:

ML leads to a decision rule of : $r \ge 0$

Prob of err is computed by,

$$P_e = 1 - \frac{1}{2} \int_{R_0} f(r|s_0) dr - \frac{1}{2} \int_{R_1} f(r|s_1) dr$$

where, $R_0 = (-\infty, 0]$ and $R_1 = [0, +\infty)$.

$$= \int_{\sqrt{\frac{d^2}{2N_0}}}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

$$=Q\left(\sqrt{\frac{d^2}{2N_0}}\right)$$

$$E_b = E_s = a^2 = d^2 / 4$$

$$= \int_{\sqrt{\frac{d^2}{2N_0}}}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \qquad \left(\text{Let } x = \frac{r + d/2}{\sqrt{N_0/2}} \right)$$

$$P_e = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

Baseband

- Binary PAM (the antipodal, unipolar)
- Orthogonal signaling with M=2

Passband

- BPSK (the antipodal)
- OOK or BASK (the unipolar)
- BFSK (Orthogonal signaling with M=2)

For OOK, leave the details to you, after class

For BFSK, discuss later