Physik

Be schleunigung-Weg

$$F = m \cdot a$$
$$[N = kg \cdot \frac{m}{c^2}]$$

Physik

Beschleunigung – Kraft

$$x = \frac{1}{2} \cdot a \cdot t^2$$
$$[m = \frac{m}{s^2} \cdot s^2]$$

Physik	# 3	Mechanik
	Haftreibung	or S

$$F_H = \mu_H \cdot F_N$$

$$F_H$$
: Haftreibung μ_H : Haftreibungskonstante F_N : Normalkraft

Physik	# 4	Mechanik
	Gleitreibung	g

$$F_{Gl} = \mu_{Gl} \cdot F_N$$

$$F_{Gl}$$
: Gleitreibung
 μ_{Gl} : Gleitreibungskonstante
 F_{N} : Normalkraft

Mechanik

Haftreibung – Schiefe Ebene

Physik

5 Antwort
$$\mu_H = \tan \alpha$$

Physik # 6 Mechanik

Leistung

6 Antwort
$$P = F \cdot v$$

$$\left[W = N \cdot \frac{m}{s} \right]$$

 $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$

1 Hysik	# 1	Medianik

Mochanik

Physik

Wirkungsgrad

$$\eta = \frac{P_{out}}{P_{in}}$$

Physik

 ${\bf Radial be schleunigung}$

8 Antwort
$$a = \frac{v^2}{r}$$

Physik	# 9	Mechanik
	Arbeit	

9 Antwort
$$W = F \cdot s$$

Mechanik

Physik

potentielle Energie

$$E_{pot} = m \cdot g \cdot h$$
$$J = kg \cdot \frac{m}{s^2} \cdot m$$

 $= kg \frac{m^2}{s^2} \bigg]$

kinteische Energie

11 Antwort
$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$

 $\left[J = kg \cdot \frac{m^2}{s^2}\right]$

Mechanik

Physik

Kreisfrequenz

$$\omega = \frac{2\pi}{T}$$
$$\left[s^{-1} = \frac{\text{rad}}{s}\right]$$

Physik	# 13	Mechanik
		_

Kreisfrequenz Hook'sche Feder

13 Antwort

$$\omega = \sqrt{\frac{D}{m}}$$
$$\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$$

Mechanik

Physik

harmonische Schwingung: Beschleunigung

$$a(t) = -\omega^{2} \cdot y_{0} \cdot \sin \omega t = -\omega^{2} \cdot y(t)$$
$$\left[\frac{\mathbf{m}}{\mathbf{s}^{2}} = \mathbf{s}^{-2} \cdot \mathbf{m}\right]$$

Mechanik

Physik

harmonische Schwingung: Geschwindigkeit

$$v(t) = \omega \cdot y_0 \cdot \cos \omega t$$
$$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m} \right]$$

harmonische Schwingung: Auslenkung

Physik

Mechanik

 $y(t) = y_0 \cdot \sin \omega t$

potentielle Energie Hook'sche Feder

Mechanik

Physik

17 Antwort
$$W = \frac{1}{2} \cdot D \cdot x^2 = E_{pot}$$

$$\int J = \frac{N}{m} m^2$$

 $= \frac{kg\frac{m}{s^2}}{\cdot m^2}$

 $= kg \frac{m^2}{s^2} \bigg]$

Physik	# 18	Mechanik

Kraft Hook'sche Feder

 $\left[N = \frac{N}{m} \cdot m\right]$

Mechanik

Physik

Inelastischer Stoß

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$v' = \frac{m_1 + m_2}{m_1 + m_2}$$

1 Hy SHX	T 20	WICCHGIIIK
-	-	

Mechanik

Physik

Elastischer Stoß

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$

$$(m_2 - m_1)v_2 + 1m_1v_1$$

$$v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$$

Physik # 21 Mechanik

Drehimpuls

$$L=\vartheta\cdot\omega$$

Physik	# 22	Mechanik

Kinetische Energie Drehbewegung

$$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^2$$

Physik	# 23	Mechanik
	Impuls	

 $p = m \cdot v$

Physik	# 24	Mechanik
		_

Kreisfrequenz Fadenpendel

$$\omega = \sqrt{\frac{g}{l}}$$

Nur bei
$$\alpha < 5^{\circ}$$

Mechanik

Physik

Trägheitsmoment Stab um Schwerpunkt

$$\vartheta = \frac{1}{12} \cdot m \cdot L^2$$

Mechanik

Physik

Trägheitsmoment Vollzylinder

θ	=	1	m	
0		9	,,,	

Physik	# 27	Mechanik

Trägheitsmoment Hohlzylinder

$$\vartheta = m \cdot r^2$$

Mechanik

Physik

Transformation Geschwindigkeit – Winkelgeschwindigkeit

28 Antwort

 $v = r \cdot \omega$

Mechanik

Physik

Trägheitsmoment Kugel

$$\vartheta = \frac{2}{5} \cdot m \cdot r^2$$

Mechanik

Physik

Trägheitsmoment Stab um Stabende

30 Antwort
$$\vartheta = \frac{1}{2} \cdot m \cdot L^2$$

$\vartheta =$	$\frac{1}{3}$		m		1
---------------	---------------	--	---	--	---

Mechanik

Physik

Leistung Translation

Physik # 32

Drehmoment

Mechanik

32 Antwort

 $M = F \cdot r$

Physik # 33 Mechanik

33 Antwort

Physik # 34 Mechanik

34 Antwort =

Physik # 35 Mechanik

35 Antwort

Physik # 36 Mechanik

36 Antwort

Physik # 37 Mechanik

37 Antwort =

Physik # 38 Mechanik

38 Antwort =

Physik # 39 Mechanik

39 Antwort

Physik # 40 Mechanik

40 Antwort =

Physik # 41 Mechanik

41 Antwort =

Physik # 42 Mechanik

42 Antwort =

Physik # 43 Mechanik

43 Antwort =

Physik # 44 Mechanik

44 Antwort =

Physik # 45 Mechanik

45 Antwort =

Physik # 46 Mechanik

46 Antwort