DeepSeek and GPT2 Architecture

Changshi Li

Wuhan University

2025.3.6

Contents

- GPT
 - Architecture
 - Loss functions

- DeepSeek
 - Architecture
 - Loss Functions

Let $X \in \{0,1\}^{T \times d}$ for input, where d is the dimension of tokens and T is the length of inputs. Then the embedding layer is defined as:

$$\operatorname{Enc}(X) = XE_1, \tag{1}$$

where $E \in \mathbb{R}^{d \times D}$.

The Enc module plus positional encoding reconstruct a new Enc module:

$$\operatorname{Enc}(X) = XE_1 + PE_2, \tag{2}$$

where $P \in \{0,1\}^{T \times T}$, $P_{i,i} = 1$, $P_{i \neq i} = 0$ and $E_2 \in \mathbb{R}^{T \times D}$

Remark: Enc(X): $\{0,1\}^{T\times d} \to \mathbb{R}^{T\times D}$.

Let $X \in \mathbb{R}^{T \times D}$ for the middle input, where D is the dimension of middle layer.

The **norm layer** is defined as:

$$Norm(X) := \frac{X - \mathbb{E}X}{Var(X)},$$
(3)

where $E(X), Var(X) \in \mathbb{R}^{T \times D}$. **Norm**: $ATT : \mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$.

Let H be the head number of multi-head attention, for the h-th head $W_{K,h} \in \mathbb{R}^{D \times D_K}, W_{Q,h} \in \mathbb{R}^{D \times D_K}, W_{V,h} \in \mathbb{R}^{D \times D_V}$ and $W_O \in \mathbb{R}^{HD_V \times D}$. Then the multi-head attention is defined as:

Single head attention:

$$S_h = \operatorname{Softmax}(\frac{XW_{Q,h}(XW_{K,h})^T}{\sqrt{D_K}})XW_{V,h}, \tag{4}$$

Masked single head attention:

$$S_h = \operatorname{Softmax}\left(\frac{XW_{Q,h}(XW_{K,h})^T + M}{\sqrt{D_K}}\right)XW_{V,h},\tag{5}$$

where $M \in \{-\infty, 0\}^{T \times T}$, $M_{ij} = -\infty$ if i < j else $M_{ij} = 0$. Remark: $S_h : \mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D_V}$.

► Concatenate & Residual

$$ATT(X) := X + [S_1, \dots, S_h, \dots, S_H]W_O,$$
(6)

where Softmax(X) is row-wise.

Remark: ATT : $\mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$.

The MLP layer is defined as:

$$\mathrm{MLP}(X) := X + f_L(X) \circ \sigma \circ \cdots \sigma \circ f_1(X), \tag{7}$$

where $f_i(X) := XW_i + b_i$, $b_i \in \mathbb{R}^{D_i}$, $W_1 \in \mathbb{R}^{D \times D_1}$, $W_i \in \mathbb{R}^{D_{i-1} \times D_i}$ and $W_L \in \mathbb{R}^{D_{L-1} \times D}$.

Remark: ATT : $\mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$.

For each element x, the **active function** σ is defined as:

GeLU(x) :=
$$xP(X \le x)$$

= $x \int_{-\infty}^{x} \frac{\exp(\frac{-(t-\mu)^2}{2\sigma^2})}{\sqrt{2\pi}\sigma} dt$ (8)
 $\approx 0.5x(1 + \tanh(\sqrt{\frac{2}{\pi}}(x + 0.044715x^3))).$

The **block** in GPT is defined as:

$$\operatorname{Block}(X) := \operatorname{MLP} \circ \operatorname{Norm} \circ \operatorname{ATT} \circ \operatorname{Norm}(X) \tag{9}$$

The embedding is defined as:

$$X^e := \text{Norm} \circ \text{Block}_M \cdots \text{Block}_1 \circ \text{Enc}(X).$$
 (10)

The **GPT** architecture is defined as:

$$GPT(X) := \arg\max_{\text{index}} X^{l} = X^{e} W_{\text{head}}, \tag{11}$$

where $W_{\text{head}} \in \mathbb{R}^{D \times d}$.

Remark: $ATT : \{0, 1\}^{T \times d} \rightarrow \mathbb{R}^{T \times d}$.

GPT parameters

Table: Parameter setting.

Parameter	GPT-2(125M)	GPT-3/3.5(175B)	GPT-4(1800B)
	,	*	*
d (vocab_size)	50304		
T (block_size)	1024	2048	8000(p.t.)->32000(f.t.)
D (n_embd)	768	12288	*
D_V (n_embd)	768/12 = 64	12288/96 = 128	*
D_K (n_embd)	768/12 = 64	12288/96 = 128	*
H (n_head)	12	96	*
L (MLP layer)	2	2	*
W_1 (first layer)	$\mathbb{R}^{4D \times D}$	$\mathbb{R}^{4D \times D}$	*
W_2 (second layer)	$\mathbb{R}^{D imes 4D}$	$\mathbb{R}^{D imes 4D}$	*
M (n_layer)	12	96	120
N(data number)	40G	570G	*

Loss functions

Then the loss function is:

$$-\sum_{i=1}^{T}\sum_{j=1}^{d}P_{ij}\log\operatorname{Softmax}(X^{l})_{ij}$$
(12)

, where P_i is the probability of the next token. or

$$-\sum_{i=1}^{T} \log \operatorname{Softmax}(X^{i})_{ij_{\text{true}}}$$
(13)

, where $j_{\rm true}$ is the next token in the directory.

- GPT
 - Architecture
 - Loss functions

- DeepSeek
 - Architecture
 - Loss Functions

Let $X \in \{0,1\}^{T \times d}$ for input, where d is the dimension of tokens and T is the length of inputs.Then the **embedding layer** is defined as:

$$\operatorname{Enc}(X) = XE, \tag{14}$$

where $E \in \mathbb{R}^{d \times D}$.

Remark: Enc(X): $\{0,1\}^{T\times d} \to \mathbb{R}^{T\times D}$.

Let $X \in \mathbb{R}^{T \times D}$ be the hidden input and $X_i^T \in \mathbb{R}^D$, where D is the dimension of middle layer. Then **RMSNorm** layer is defined as:

RMSNorm
$$(X_{i\cdot}) := \frac{X_{i\cdot}}{\sqrt{\frac{1}{D}||X_{i\cdot}||_2^2}}, \forall i \in \{0, 1, ..., T\}$$
 (15)

Remark: RMSNorm(X): $\mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$.

Let $X \in \mathbb{R}^{T \times D}$ be the hidden input, then the Rotary Positional Embedding (**RoPE**) is defined as:

$$RoPE(X; W_p, W_R) = XW_pW_R^T,$$
(16)

where

$$W_R = \begin{pmatrix} \cos m\theta_1 & -\sin m\theta_1 & 0 & 0 & \cdots & 0 & 0\\ \sin m\theta_1 & \cos m\theta_1 & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos m\theta_2 & -\sin m\theta_2 & \cdots & 0 & 0\\ 0 & 0 & \sin m\theta_2 & \cos m\theta_2 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{D^R}/2 & -\sin m\theta_{D^R}/2\\ 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{D^R}/2 & \cos m\theta_{D^R}/2 \end{pmatrix}$$

,
$$\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, \dots, D^R/2]$$
 and $W_p \in \mathbb{R}^{D \times D^R}$.

Remark:RoPE(X): $T \times D \rightarrow T \times D^R$.

RoPE

Let $X \in \mathbb{R}^{T \times D}$ be the hidden input, then the **LoRA** layer is defined as:

$$LoRA(X; W_{down}, W_{up}) := XW_{down}W_{up}, \tag{17}$$

where $W_{down} \in \mathbb{R}^{D \times d_{down}}$, $W_{up} \in \mathbb{R}^{d_{down} \times d_h n_h}$, $d_{down} = d_c$ for keys and values, $d_{down} = d_c'$ for queries, d_h is the hidden dimension before attention layer and h_n is the number of heads in multi-head attention layer.

Remark:LoRA(X; W_{down} , W_{up}): $T \times D \rightarrow T \times d_h h_n$.

Let $L \in T \times d_h h_n$, Define an extract operator as follows:

$$L_{\cdots h} = L_{i,j \times h_n + h}, \forall i \in \{1, \cdots, T\}, j \in \{1, \cdots, d_h\}$$

$$\tag{18}$$

where $h \in \{1, \dots, h_n\}$.

Remark: $L_{\cdot \cdot \cdot h}$: $T \times d_h h_n \rightarrow T \times d_h$

Let $X \in \mathbb{R}^{T \times D}$ be the hidden input, $W_O \in \mathbb{R}^{d_h n_h \times D}$, $\operatorname{Softmax}(X)$ is a row-wise operator, then the multi-head attention (MLA) is defined as follows:

► LoRA layer:

$$\begin{cases}
L_{Q} = LoRA(X; W^{DQ}, W^{UQ}), \\
L_{K} = LoRA(X; W^{DKV}, W^{UK}), \\
V = LoRA(X; W^{DKV}, W^{UV}).
\end{cases}$$
(19)

▶ RoPE layer:

$$R_Q = \text{RoPE}(X; W_{DQ}, W_{QR}), R_K = \text{RoPE}(X; W_{DKV}, W_{KR})$$
 (20)

Cat the output of LoRA and ROPE for one head:

$$Q_h = [L_{Q \cdot \cdot h}, R_{Q \cdot \cdot h}], K_h = [L_{k \cdot \cdot h}, R_{K \cdot \cdot h}], \tag{21}$$

where $Q_h, R_K \in \mathbb{R}^{T \times (d_h + D^R)}$.

► Single head attention:

$$S_h = \operatorname{Softmax}(\frac{Q_h K_h^T + M}{\sqrt{D^R + d_h}}) V_{\cdot \cdot h}, \tag{22}$$

where $M \in \{-\infty, 0\}^{T \times T}$, $M_{ij} = -\infty$ if i < j else $M_{ij} = 0$. Remark: $S_b \in \mathbb{R}^{T \times T}$.

▶ Concatenate & Residual

$$MLA(X) := [S_1, \dots, S_h, \dots, S_{h_n}]W_O,$$
 (23)

Remark: $MLA : \mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$.

The MLP layer is defined as:

$$\mathrm{MLP}(X) := f_3 \circ (\sigma(f_2(X)) \odot f_1(X)), \tag{24}$$

where $f_i(X) := XW_i + b_i$, $b_i \in \mathbb{R}^{D_i}$, $W_1 \in \mathbb{R}^{D \times D_1}$, $W_i \in \mathbb{R}^{D_{i-1} \times D_i}$ and $W_L \in \mathbb{R}^{D_{L-1} \times D}$.

Remark: MLP : $\mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$.

For each element x, the **active function** σ is defined as:

$$SiLU(x) := \frac{x}{1 + e^{-x}}.$$
 (25)

Let $X \in \mathbb{R}^{T \times D}$ be the hidden input, the **Gate** is defined as follows:

▶ Obtain the weights of N_r experts for every tokens:

$$G = \text{Sigmoid}(XW_{experts}),$$
 (26)

where $W_{experts} \in \mathbb{R}^{D \times N_r}$ and Sigmoid is a row-wise operator.

▶ Select top K_r experts for every tokens:

$$g'_{i,t} = \begin{cases} G_{i,t}, & G_{i,t} \in \mathsf{Topk}(\{G_{i,k} \mid 1 \le k \le N_r\}, K_r) \\ 0, & \mathsf{otherwise}, \end{cases}$$
 (27)

Normalization:

Gate(X)_{it} :=
$$\frac{g'_{i,t}}{\sum_{t=1}^{N_r} g'_{j,t}}$$
 (28)

Remark: Gate(X): $\mathbb{R}^{T \times D} \to \mathbb{R}^{T \times N_r}$. In the code only need $T \times K_r$ because the remains are zero.

Let $X \in \mathbb{R}^{T \times D}$ be the hidden input. There are N_r routed experts (MLP') and N_s shared experts (MLPs), then the MOE layer is defined as:

$$MoE(X) = \sum_{i=1}^{N_s} MLP_i^s(X) + \sum_{j=1}^{N_r} Gate(X)_{\cdot j} MLP_j^r(X),$$
 (29)

Remark:MoE(X) : $\mathbb{R}^{T \times D} \to \mathbb{R}^{T \times D}$.

The **Block** in DeepSeek is defined as follows:

▶ The attention layer

$$ResMLA(X) := X + MLA \circ RMSNorm(X)$$
(30)

If the block number less than the number of dense layers (n_dense_layers).

$$ResMLP(X) := X + MLP \circ RMSNorm(X), \tag{31}$$

For the other blocks

$$ResMoE(X) := X + MoE \circ RMSNorm(X), \tag{32}$$

▶ The i-th block is defined as:

$$\operatorname{Block}_{i}(X) = \begin{cases} \operatorname{ResMLP} \circ \operatorname{ResMLA}(X), i < n_\operatorname{dense_layers}, \\ \operatorname{ResMoE} \circ \operatorname{ResMLA}(X), others \end{cases}$$
(33)

The embedding is defined as:

$$X^{e} := \text{RMSNorm} \circ \text{Block}_{M} \cdots \text{Block}_{1} \circ \text{Enc}(X),$$
 (34)

where $X^e \in \mathbb{R}^{T \times D}$. The output of **DeepSeek** is defined as:

DeepSeek :=
$$\underset{\text{index}}{\text{arg max}} X^{l} = X^{e} W_{\text{head}},$$
 (35)

where $W_{\text{head}} \in \mathbb{R}^{D \times d}$.

MLA and MOE

DeepSeek parameters

Parameter	168B	236B	671B
vocab_size (d)	102400	102400	129280
dim (D)	2048	5120	7168
inter_dim (MLP)	10944	12288	18432
moe_inter_dim (MoE)	1408	1536	2048
n_layers (M)	27	60	61
n_dense_layers	1	1	3
n_heads (n_h)	16	128	128
n_routed_experts (N_r)	64	160	256
n_shared_experts (N_s)	2	2	1
$n_{activated} = xperts (K_r)$	6	6	8
q_lora_rank (LoRA)	0	1536	1536
kv_lora_rank (LoRA)	512	512	512
v_head_dim (h _n)	128	128	128

Main Loss Function

The main loss function is:

$$L_{main} = -\sum_{i=1}^{T} \log \operatorname{Softmax}(X^{i})_{ij_{\text{true}}}$$
(36)

, where $j_{\rm true}$ is the next token in the directory.

Auxiliary-Loss-Free Load Balancing

Model Training

An unbalanced expert load will lead to routing collapse and diminish computational efficiency in scenarios with expert parallelism.

Auxiliary-Loss-Free Load Balancing

Algorithm 1: Adjusting the per-expert bias b_i during training

Input: MoE model θ , training batch iterator B, bias update rate u.

1. Initialize $b_i = 0$ for each expert;

for a batch $\{(\mathbf{x}_k, \mathbf{y}_k)\}_k$ in B do

- 2. Train MoE model θ on the batch data $\{(\mathbf{x}_k, \mathbf{y}_k)\}_k$, with gating scores calculated according to Eq. (3);
- 3. Count the number of assigned tokens c_i for each expert, and the average number $\overline{c_i}$;
- 4. Calculate the load violation error $e_i = \overline{c_i} c_i$;
- 4. Update \mathbf{b}_i by $b_i = b_i + u * \operatorname{sign}(e_i)$;

end

Output: trained model θ , corresponding bias \mathbf{b}_i

$$g'_{i,t} = \begin{cases} s_{i,t}, & s_{i,t} + b_i \in \text{Topk}(\{s_{j,t} + b_j | 1 \le j \le N_r\}, K_r), \\ 0, & \text{otherwise.} \end{cases}$$

Complementary Sequence-Wise Auxiliary Loss

$$\mathcal{L}_{Bal} = \alpha \sum_{i=1}^{N_r} f_i P_i,$$

$$f_i = \frac{N_r}{K_r T} \sum_{t=1}^{T} \mathbb{1} \left(s_{i,t} \in \text{Topk}(\{s_{j,t} | 1 \leq j \leq N_r\}, K_r) \right),$$

$$s'_{i,t} = \frac{s_{i,t}}{\sum_{j=1}^{N_r} s_{j,t}},$$

$$P_i = \frac{1}{T} \sum_{t=1}^{T} s'_{i,t},$$

Multi-Token Prediction

$$\mathcal{L}_{\text{MTP}}^{k} = \text{CrossEntropy}(P_{2+k:T+1}^{k}, t_{2+k:T+1}) = -\frac{1}{T} \sum_{i=2+k}^{T+1} \log P_{i}^{k}[t_{i}],$$

THANKS!

