计量经济学题库单项选择题和多项选择题

一、		
1. 计量经济学是下列哪门学科的分支学科(C)。		
A. 统计学 B. 数学 (C. 经济学 I	D. 数理统计学
2. 计量经济学成为一门独立学科的标志是(B)。	2. 22.01.1	21 //(-1/11/11/11/11/11/11/11/11/11/11/11/11/1
A. 1930 年世界计量经济学会成立 B. 1933 年《计量	是经汶兰》入刊山屿	
		ケル ロロ は
C. 1969 年诺贝尔经济学奖设立 D. 1926 年计量	[经价字(Economics)一词构	4) 垣出米
3. 外生变量和滞后变量统称为(D)。		
A. 控制变量 B. 解释变量	C. 被解释变量	D. 前定变量
4. 横截面数据是指(A)。		
A. 同一时点上不同统计单位相同统计指标组成的数	据 B. 同一时点上相同统计	单位相同统计指标组成
的数据		
C. 同一时点上相同统计单位不同统计指标组成的数	据 D 同一时占上不同统计	单位不同统计指标组成
的数据	10 D. 10 HJ W.T. J.	
	比如料提到 [(C)	
5. 同一统计指标,同一统计单位按时间顺序记录形		+1\ \kl. +=
A. 时期数据 B. 混合数据		
6. 在计量经济模型中,由模型系统内部因素决定,	表现为具有一定的概率分布的	的随机变量,其数值受
模型中其他变量影响的变量是()。		
A. 内生变量 B. 外生变量 C. 滞损	后变量 D.	前定变量
7. 描述微观主体经济活动中的变量关系的计量经济	模型是()。	
A. 微观计量经济模型 B. 宏观计量经济模型 C		D. 应用计量经济模
型	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2. /五/11/11
8. 经济计量模型的被解释变量一定是()。		
	C 由出來具 D 加力	北 亦具
A. 控制变量 B. 政策变量	C. 内生发里 D. 外生	土文里
9. 下面属于横截面数据的是()。	H -> th	
A. 1991-2003 年各年某地区 20 个乡镇企业的平均	,	
B. 1991-2003 年各年某地区 20 个乡镇企业各镇的I		
C. 某年某地区 20 个乡镇工业产值的合计数 D	 某年某地区 20 个乡镇各镇 	真的工业产值
10. 经济计量分析工作的基本步骤是()。		
A. 设定理论模型→收集样本资料→估计模型参数→	检验模型 B. 设定模型→估	计参数→检验模型→应
用模型		
C. 个体设计→总体估计→估计模型→应用模型 D.	确定模型导向→确定变量及	方程式→估计模型→応
用模型	则之侯至 寸 科 则之久至久	
	24 (
11. 将内生变量的前期值作解释变量,这样的变量和		5 州广金目
	C. 政策变量	D. 滞后变量
12. () 是具有一定概率分布的随机变量, '		
	C. 前定变量	D. 滞后变量
13. 同一统计指标按时间顺序记录的数据列称为(
A. 横截面数据 B. 时间序列数据	: C. 修匀数据	D. 原始数据
14. 计量经济模型的基本应用领域有()。		
A. 结构分析、经济预测、政策评价 B. 弹性分	析、乘数分析、政策模拟	
C. 消费需求分析、生产技术分析、 D. 季度分		
15. 变量之间的关系可以分为两大类,它们是(
A. 函数关系与相关关系 B. 线性相关 B. 线性相关	:大余和事线性相大大余	
C. 正相关关系和负相关关系 D. 简单相关	:天系和复杂相天天系	
16. 相关关系是指()。		.
A. 变量间的非独立关系 B. 变量间的因果关系	C . 变量间的函数关系 D . ${\mathbb Z}$	变量间不确定性的依存
关系		
19. 参数 β 的估计量 $\hat{\beta}$ 具备有效性是指 ()。		

A. $var(\hat{\beta})=0$ B. $var(\hat{\beta})$ 为最小 C. $(\hat{\beta}-\beta)=0$ D. $(\hat{\beta}-\beta)$ 为	最小
20. 对于 $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + e_i$,以 $\hat{\sigma}$ 表示估计标准误差, \hat{Y} 表示回归值,则()。	
A. $\hat{\sigma}$ =0时, $\sum (Y_i - \hat{Y}_i) = 0$ B. $\hat{\sigma}$ =0时, $\sum (Y_i - \hat{Y}_i)^2 = 0$	
C. $\hat{\sigma}=0$ 时, $\sum (Y_i-\hat{Y}_i)$ 为最小 D. $\hat{\sigma}=0$ 时, $\sum (Y_i-\hat{Y}_i)^2$ 为最小	
23. 产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为 \hat{Y} =356-1.5 X ,这证	兑明
()。 A. 产量每增加一台,单位产品成本增加 356 元 B. 产量每增加一台,单位产品成元 C. 产量每增加一台,单位产品成本平均增加 356 元 D 产量每增加一台,单位产品成1.5 元	
24. 在总体回归直线 $\mathbf{E}(\hat{\mathbf{Y}}) = \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{X}$ 中, $\boldsymbol{\beta}_1$ 表示()。	
A. 当 X 增加一个单位时, Y 增加 β_l 个单位 B . 当 X 增加一个单位时, Y 平均增加 β_l 个	单位
C. 当 Y 增加一个单位时,X 增加 β_1 个单位 D. 当 Y 增加一个单位时,X 平均增加 β_1 个	单位
25. 对回归模型 $Y_i = \beta_0 + \beta_1 X_i + u_i$ 进行检验时,通常假定 u_i 服从 ()。	
A. N (0, σ_i^2) B. t(n-2) C. N (0, σ^2) D. t(n-2)	n)
26. 以 Y 表示实际观测值, \hat{Y} 表示回归估计值,则普通最小二乘法估计参数的准则是使	()。
A. $\sum (Y_i - \hat{Y}_i) = 0$ B. $\sum (Y_i - \hat{Y}_i)^2 = 0$ C. $\sum (Y_i - \hat{Y}_i) = 最小D$. $\sum (Y_i - \hat{Y}_i)^2 = 0$	$(\hat{Y}_i)^2 = \mathbb{B} $
27. 设 Y 表示实际观测值, \hat{Y} 表示 OLS 估计回归值,则下列哪项成立 ()。	
A. $\hat{Y}=Y$ B. $\hat{Y}=\overline{Y}$ C. $\overline{\hat{Y}}=YD$. $\overline{\hat{Y}}=\overline{Y}$	
30. 用一组有 30 个观测值的样本估计模型 $Y_i = \beta_0 + \beta_1 X_i + u_i$, 在 0.05 的显著性水平下对	β _ι 的显著性作
t 检验,则 β_1 显著地不等于零的条件是其统计量 t 大于()。	
A. t _{0.05} (30) B. t _{0.025} (30) C. t _{0.05} (28) D. t _{0.025} (28) 31. 已知某一直线回归方程的判定系数为 0.64,则解释变量与被解释变量间的线性相关。	
A. 0.64 B. 0.8 C. 0.4 D. 0.32 32. 相关系数 r 的取值范围是 ()。	
A. $r \leq -1$ B. $r \geq 1$ C. $0 \leq r \leq 1$	D. −1≤r≤1
33. 判定系数 R² 的取值范围是 ()。 A. R2≤-1 B. R2≥1 C. 0≤R2≤1 D. −3 34. 某一特定的 X 水平上,总体 Y 分布的离散度越大,即 σ² 越大,则 ()。 A. 预测区间越宽,精度越低 B. 预测区间越宽,预测误差越小 C. 预测区间越窄,精度越高 D. 预测区间越窄,预测误差越大 35. 如果 X 和 Y 在统计上独立,则相关系数等于 ()。	1≤R2≤1
A. 1 B. -1 C. 0 D. \circ 36. 根据决定系数 R^2 与 F 统计量的关系可知,当 R^2 =1 时,有 ()。	9

A. $F=1$	B. $F = -1$	C. $F=0$		D. $F = \infty$	
37. 在 C—D 生产函数 Y	$=AL^{\alpha}K^{\beta} +, ($)。			
$A.\alpha$ 和 β 是弹性	B.A 和α是	弹性 (C.A 和 β 是弹性	. I	D.A 是弹性
38. 回归模型 $Y_i = \beta_0 + \beta_1$	$X_i + u_i$ 中,关于检验	$\lambda H_0: \beta_1 = 0$	所用的统计量 - 1	$\frac{\hat{eta}_1 - eta_1}{\sqrt{Var(\hat{eta}_1)}}$, \uparrow	列说法正确的是
()。					
A. 服从 $\chi^2(n-2)$	B. 服从 <i>t</i> (<i>n</i> -1)	C	.服从 $\chi^2(n-1)$	D. 服从 <i>t</i> ((n-2)
39. 在二元线性回归模型	$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 Z$	$X_{2i} + u_i + q$	β_1 表示()。	
A. 当 X2 不变时, X1 每 平均变动。	变动一个单位 Y 的 ^国	平均变动。	B. 当 X1 不	变时,X2 每变	を动一个単位 Y 的
C. 当 X1 和 X2 都保持不平均变动。	变时,Y的平均变动	力。	D. 当 X1 和	I X2 都变动一	·个单位时,Y的
40. 在双对数模型 $\ln Y_i =$	$\ln \beta_0 + \beta_1 \ln X_i + u_i +$	β_1 的含义	是()。		
A. Y 关于 X 的增长量 X 的弹性	B. Y 关于 X f	的增长速度	C. Y 关于	X 的边际倾向	D. Y 关于
41. 根据样本资料已估计	得出人均消费支出了	Y对人均收入	X 的回归模型	以为 $\ln Y_i = 2.00$	$+0.75\ln X_i$,这
表明人均收入每增加 1%; A. 2% B. 0 42. 按经典假设,线性回 A. 与随机误差项不相关 关	.2% C. 0.75% 归模型中的解释变量	量应是非随机	变量,且(). 与回归值不相
43. 根据判定系数 R ² 与 FA.F=1 B.F=1 C.F=∞ D.F 45. 在具体的模型中,被A.内生变量 B.外生变量 C.解释变量和被解释变量 C.解释变量和被解释变量 47. 计量经济模型中的被A. 控制变量	F=0 认为是具有一定概率 C.虚拟变量 D.前定变)。 都是随机变量 B.解释 都为非随机变量 D.约 解释变量一定是(区分布的随机 注量 译变量为非随 解释变量为陷)。	变量是(i机变量,被解	释变量为非随	
48. 在由 n = 30 的一组样才	x估计的、包含 3 个	解释变量的约	 线性 回归模型中	,计算得多重	上决定系数为
0.8500,则调整后的多重 A.0.8603 B.0 49.下列样本模型中,哪一	. 8389		D.	0.8327	
A. C_i (消费) =500+0.8 I_i	(收入)	B. Q_i^d (商品	品需求)=10+0.	8^{I_i} (收入)-	+0.9 Pi (价格)
C. Q_i^s (商品供给) =20+0.	.75 ^{P_i} (价格)	D. Y_i	产出量)=0.65 ¹	L ^{0.6} (劳动) K	·0.4 ·i (资本)
50. 用一组有 30 个观测值	的样本估计模型 y_t =	$=b_0+b_1x_{1t}+b_2$	$x_{2t} + u_t$ 后,在	0.05 的显著性	:水平上对 ^{b_i} 的显
著性作 ^t 检验,则 ^b l显著b	也不等于零的条件是	其统计量 <i>t</i> 大	于等于()	

```
A. t_{0.05}(30) B. t_{0.025}(28) C. t_{0.025}(27) D. F_{0.025}(1,28)
51. 模型 \ln y_t = \ln b_0 + b_1 \ln x_t + u_t 中, b_1 的实际含义是(
A. x 关于y 的弹性 B. y 关于x 的弹性 C. x 关于y 的边际倾向 D. y 关于x 的边
际倾向
52. 在多元线性回归模型中, 若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存
在(
A. 异方差性 B. 序列相关 C. 多重共线性 D. 高拟合优度
53. 线性回归模型 y_t = b_0 + b_1 x_{1t} + b_2 x_{2t} + \dots + b_k x_{kt} + u_t 中,检验 H_0: b_t = 0 (i = 0, 1, 2, \dots k) 时,所用的统计量
A. t(n-k+1)
                 B. t(n-k-2) C. t(n-k-1) D. t(n-k+2)
54. 调整的判定系数\mathbb{R}^2与多重判定系数\mathbb{R}^2之间有如下关系( )
 A. \overline{R}^2 = \frac{n-1}{n-k-1}R^2 B. \overline{R}^2 = 1 - \frac{n-1}{n-k-1}R^2
C. \overline{R}^2 = 1 - \frac{n-1}{n-k-1} (1+R^2) D. \overline{R}^2 = 1 - \frac{n-1}{n-k-1} (1-R^2)
55. 关于经济计量模型进行预测出现误差的原因,正确的说法是()。)。
                   B. 只有系统因素 C. 既有随机因素,又有系统因素 D. A、B、C 都不对
A. 只有随机因素
56. 在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数): ( )
                         B n < k+1 C n \ge 30 或 n \ge 3 (k+1) D n \ge 30
A n \ge k+1
57. 下列说法中正确的是: (
A 如果模型的R^2 很高,我们可以认为此模型的质量较好
B 如果模型的R^2 较低,我们可以认为此模型的质量较差
C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量
D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量
58. 半对数模型Y = \beta_0 + \beta_1 \ln X + \mu 中,参数\beta_1的含义是(
A. X 的绝对量变化, 引起 Y 的绝对量变化
                                      B. Y 关于 X 的边际变化
C. X 的相对变化, 引起 Y 的期望值绝对量变化
                                  D. Y 关于 X 的弹性
59. 半对数模型 \ln Y = \beta_0 + \beta_1 X + \mu_1 中,参数 \beta_1 的含义是(
A. X 的绝对量发生一定变动时, 引起因变量 Y 的相对变化率
                                                  B. Y 关于 X 的弹性
C. X 的相对变化, 引起 Y 的期望值绝对量变化
                                                   D. Y 关于 X 的边际变化
60. 双对数模型 \ln Y = \beta_0 + \beta_1 \ln X + \mu 中,参数 \beta_1 的含义是(
A. X 的相对变化, 引起 Y 的期望值绝对量变化
                                                B. Y 关于 X 的边际变化
C. X 的绝对量发生一定变动时,引起因变量 Y 的相对变化率
                                              D. Y 关于 X 的弹性
61. Goldfeld-Quandt方法用于检验()
A. 异方差性
                    B. 自相关性C. 随机解释变量
                                          D. 多重共线性
62. 在异方差性情况下,常用的估计方法是()
                    B. 广义差分法C. 工具变量法
                                                 D. 加权最小二乘法
A. 一阶差分法
```

63. White检验方法主要用于检验()	
A. 异方差性 B. 自相关性C. 随机解释变量	D. 多重共线性
64. Glejser检验方法主要用于检验()	
A. 异方差性 B. 自相关性C. 随机解释变量	D. 多重共线性
65. 下列哪种方法不是检验异方差的方法()	
A. 戈德菲尔特——匡特检验 B. 怀特检验 C. 戈里瑟格	验D. 方差膨胀因子检验
66. 当存在异方差现象时,估计模型参数的适当方法是()	
A. 加权最小二乘法 B. 工具变量法 C. 广义差分法	D. 使用非样本先验信息
67. 加权最小二乘法克服异方差的主要原理是通过赋予不同观测	点以不同的权数,从而提高估计精度,
即 ()	
A. 重视大误差的作用, 轻视小误差的作用 B. 重视小误差的	作用,轻视大误差的作用
C. 重视小误差和大误差的作用D. 轻视小误差和大误差的作用	
e_{i} 68. 如果戈里瑟检验表明,普通最小二乘估计结果的残差 e_{i} 与	x_{i} 有显著的形式 $ e_{i} = 0.28715 x_{i} + v_{i}$ 的
相关关系(v_i 满足线性模型的全部经典假设),则用加权最小工	二乘法估计模型参数时,权数应为()
1 1 1	
A. x_i B. $\frac{1}{x_i^2}$ C. $\frac{1}{x_i}$ D. $\frac{1}{\sqrt{x_i}}$	
	T.W. (1)
69. 如果戈德菲尔特——匡特检验显著,则认为什么问题是严	
A. 异方差问题 B. 序列相关问题 C. 多重共线性问题	
70. 设回归模型为 $y_i = bx_i + u_i$, 其中 $Var(u_i) = \sigma^2 x_i$, 则 b 的:	最有效估计量为 ()
$ \hat{\Sigma} = \sum_{i} xy \qquad \qquad \sum_{i} xy = \sum_{i} x \sum_{i} y \qquad $	
$\hat{b} = \frac{\sum_{x} \vec{y}}{\sum_{x} \vec{y}} \qquad \hat{b} = \frac{\vec{y}}{\sum_{x} \vec{y}} \qquad \hat{b} = \frac{\vec{y}}{\sum_{x} \vec{y}}$	$\hat{h} = \frac{1}{2} \sum \frac{y}{2}$
$b = \frac{\sum x^2}{\sum x^2} \qquad \hat{b} = \frac{n \sum x^2 \sum x \sum y}{n \sum x^2 - (\sum x)^2} \hat{b} = \frac{\overline{y}}{\overline{x}}$ B. $\hat{b} = \frac{n \sum x^2 \sum x \sum y}{C} \hat{b} = \frac{\overline{y}}{\overline{x}}$	$\hat{b} = \frac{1}{n} \sum \frac{y}{x}$
	$\hat{b} = \frac{1}{n} \sum \frac{y}{x}$
71. 如果模型 $y_t=b_0+b_1x_t+u_t$ 存在序列相关,则()。	
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则(
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($\operatorname{D}(\mathbf{x}_{t}, \mathbf{u}_{t}) \neq 0$ D. $\operatorname{cov}(\mathbf{u}_{t}, \mathbf{u}_{s})$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($\operatorname{D}(\mathbf{x}_{t}, \mathbf{u}_{t}) \neq 0$ D. $\operatorname{cov}(\mathbf{u}_{t}, \mathbf{u}_{s})$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则()。 A. $cov(x_t, u_t) = 0$ B. $cov(u_t, u_s) = 0 (t \neq s)$ C. $cov(t \neq s)$ 72. DW 检验的零假设是(ρ 为随机误差项的一阶相关系数)(A. DW=0 B. $\rho = 0$ C. DW=1	$\operatorname{D}(\mathbf{x}_{t}, \mathbf{u}_{t}) \neq 0$ D. $\operatorname{Cov}(\mathbf{u}_{t}, \mathbf{u}_{s})$ D. $\rho = 1$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则()。 A. $cov(x_t, u_t) = 0$ B. $cov(u_t, u_s) = 0 (t \neq s)$ C. $cov(t \neq s)$ 72. DW 检验的零假设是(ρ 为随机误差项的一阶相关系数)($\operatorname{D}(\mathbf{x}_{t}, \mathbf{u}_{t}) \neq 0$ D. $\operatorname{Cov}(\mathbf{u}_{t}, \mathbf{u}_{s})$ D. $\rho = 1$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p(x_t, u_t) \neq 0$ D. $p(x_t,$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p(x_t, u_t) \neq 0$ D. $p(x_t,$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p(x_t, u_t) \neq 0$ D. $p(x_t,$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p(x_t, u_t) \neq 0$ D. $p(x_t,$
71. 如果模型 $y_t=b_0+b_1x_t+u_t$ 存在序列相关,则()。 A. $cov(x_t, u_t)=0$ B. $cov(u_t, u_s)=0(t \neq s)$ C. $cov(t \neq s)$ 72. DW 检验的零假设是(ρ 为随机误差项的一阶相关系数)(A. DW=0 B. $\rho=0$ C. DW=1 73. 下列哪个序列相关可用 DW 检验(v_t 为具有零均值,常数方()。 A. $u_t=\rho u_{t-1}+v_t$ B. $u_t=\rho u_{t-1}+\rho^2 u_{t-2}+\cdots+v_t$ Coveral +… 74. DW 的取值范围是()。 A. $-1 \leq DW \leq 0$ B. $-1 \leq DW \leq 1$ C. $-2 \leq DW \leq 2$ 75. 当 $DW=4$ 时,说明()。	$\operatorname{D}_{t}(x_{t}, u_{t}) \neq 0$ D. $\operatorname{Cov}(u_{t}, u_{s})$)。 D. $\rho = 1$ 了差且不存在序列相关的随机变量) D. $u_{t} = \rho v_{t} + \rho^{2}$ D. $0 \leq \operatorname{DW} \leq 4$
71. 如果模型 $y_t=b_0+b_1x_t+u_t$ 存在序列相关,则()。 A. $cov(x_t, u_t)=0$ B. $cov(u_t, u_s)=0(t \neq s)$ C. $cov(t \neq s)$ 72. DW 检验的零假设是(ρ 为随机误差项的一阶相关系数)(A. DW=0 B. $\rho=0$ C. DW=1 73. 下列哪个序列相关可用 DW 检验(v_t 为具有零均值,常数方()。 A. $u_t=\rho u_{t-1}+v_t$ B. $u_t=\rho u_{t-1}+\rho^2 u_{t-2}+\cdots+v_t$ Coveral +… 74. DW 的取值范围是()。 A. $-1 \leq DW \leq 0$ B. $-1 \leq DW \leq 1$ C. $-2 \leq DW \leq 2$ 75. 当 $DW=4$ 时,说明()。	$\operatorname{D}_{t}(x_{t}, u_{t}) \neq 0$ D. $\operatorname{Cov}(u_{t}, u_{s})$)。 D. $\rho = 1$ 了差且不存在序列相关的随机变量) D. $u_{t} = \rho v_{t} + \rho^{2}$ D. $0 \leq \operatorname{DW} \leq 4$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($\operatorname{Dv}(x_t, u_t) \neq 0$ D. $\operatorname{cov}(u_t, u_s)$)。 D. $\rho = 1$ 7 差且不存在序列相关的随机变量) D. $u_t = \rho v_t + \rho^2$ D. $0 \leq DW \leq 4$ E一阶自相关
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p_{v}(x_{t}, u_{t}) \neq 0$ D. $p_{v}(x_{t}, $
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p(x_t, u_t) \neq 0$ D. $p(x_t,$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p_{v}(x_{t}, u_{t}) \neq 0$ D. $p_{cov}(u_{t}, u_{s})$ D. $p_{cov}(u_{t}, u$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p(x_t, u_t) \neq 0$ D. $p(x_t,$
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p_{v}(x_{t}, u_{t}) \neq 0$ D. $p_{v}(x_{t}, $
71. 如果模型 $y_t = b_0 + b_1 x_t + u_t$ 存在序列相关,则($p_{v}(x_{t}, u_{t}) \neq 0$ D. $p_{v}(x_{t}, $

94. 由于引进虚拟变量,回归模型的截距或斜率随样本观测值的改变而系统地改变,这种模型称为 ()
A. 系统变参数模型 B. 系统模型 C. 变参数模型 D. 分段线性回归模型
95. 假设回归模型为 $y_i = \alpha + \beta x_i + \mu_i$,其中 Xi 为随机变量,Xi 与 Ui 相关则 β 的普通最小二乘估计量
() A. 无偏且一致 B. 无偏但不一致 C. 有偏但一致 D. 有偏且不一致
96. 假定正确回归模型为 $y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \mu_i$,若遗漏了解释变量 X2,且 X1、X2 线性相关则 β_1 的
普通最小二乘法估计量() A. 无偏且一致 B. 无偏但不一致 C. 有偏但一致 D. 有偏且不一致 97. 模型中引入一个无关的解释变量() A. 对模型参数估计量的性质不产生任何影响 B. 导致普通最小二乘估计量有偏 C. 导致普通最小二乘估计量精度下降 D. 导致普通最小二乘估计量有偏,同时精度下降
98. 设消费函数 $y_t = a_0 + a_1 D + b_1 x_t + u_t$, 其中虚拟变量 $D = \begin{cases} 1 & \text{东中部} \\ 0 & \text{西部} \end{cases}$, 如果统计检验表明 $a_1 = 0$ 成立,
则东中部的消费函数与西部的消费函数是()。 A. 相互平行的 B. 相互垂直的 C. 相互交叉的 D. 相互重叠的 99. 虚拟变量()
A. 主要来代表质的因素,但在有些情况下可以用来代表数量因素 B. 只能代表质的因素 C. 只能代表数量因素 D. 只能代表季节影响因素 100. 分段线性回归模型的几何图形是()。 A. 平行线 B. 垂直线 C. 光滑曲线 D. 折线 101. 如果一个回归模型中不包含截距项,对一个具有 m 个特征的质的因素要引入虚拟变量数目为 ()。
A. m B. m-1C. m-2 D. m+1 102. 设某商品需求模型为 $y_t = b_0 + b_1 x_t + u_t$,其中 Y 是商品的需求量,X 是商品的价格,为了考虑全年 12 个月份季节变动的影响,假设模型中引入了 12 个虚拟变量,则会产生的问题为()。 A. 异方差性 B. 序列相关 C. 不完全的多重共线性 D. 完全的多重共线性
103. 对于模型 $y_t = b_0 + b_1 x_t + u_t$,为了考虑"地区"因素(北方、南方),引入 2 个虚拟变量形成截距变
动模型,则会产生 ()。A. 序列的完全相关 B. 序列不完全相关 C. 完全多重共线性 D. 不完全多重共线性
$D = \begin{cases} 1 \text{ 城镇家庭} \\ 0 \text{ 农村家庭} \end{cases}$ 104. 设消费函数为 $y_i = \alpha_o + \alpha_1 D + b_o x_i + b_1 D x_i + u_i$,其中虚拟变量 $D = \begin{cases} 1 \text{ 城镇家庭} \\ 0 \text{ 农村家庭} \end{cases}$,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为()。
A. $a_1 = o$, $b_1 = o$ B. $a_1 \neq o$, $b_1 \neq o$ C. $a_1 \neq o$, $b_1 = o$ D. $a_1 = o$, $b_1 \neq o$
105. 设无限分布滞后模型为 $Y_t = \alpha + \beta_0 X_t + \beta_1 X_{t-1} + \beta_2 X_{t-2} + \cdots + U_t$,且该模型满足 Koyck 变换的假
定,则长期影响系数为()。 A. $\frac{\beta_0}{\lambda}$ B. $\frac{\beta_0}{1+\lambda}$ C. $\frac{\beta_0}{1-\lambda}$ D. 不确定 106. 对于分布滞后模型,时间序列资料的序列相关问题,就转化为()。 A. 异方差问题 B. 多重共线性问题 C. 多余解释变量 D. 随机解释变量
107. 在分布滞后模型 $Y_t = \alpha + \beta_0 X_t + \beta_1 X_{t-1} + \beta_2 X_{t-2} + \dots + u_t$ 中,短期影响乘数为()。

C.	家庭消费支出与收入物价水平与商品需求量	D. 小		児量 E. ≒		一与各门课程分数	
16.	一元线性回归模型 $Y_i = \beta_0 + \beta_1 X_i + u_i$	的经典個	设设包括 ()。			
A.	$E(u_t) = 0 B. var(u_t) = \sigma^2 O$	cov($u_t,u_s)=0$	D. <i>Co</i>	$ov(x_t, u_t) = 0$	Е.	
u_t ~	$\sim N(0,\sigma^2)$						
17.	以 Y 表示实际观测值, \hat{Y} 表示 OLS	估计回归	日值,e 表示领	残差,则]回归直线满	足()。	
A.	通过样本均值点($ar{\mathbf{X}}$, $ar{\mathbf{Y}}$)	в. ∑	$\hat{Y}_i = \sum \hat{Y}_i$				
C.	$\sum (Y_i - \hat{Y}_i)^2 = 0$	D. Σ	$(\hat{\mathbf{Y}}_{i} - \overline{\mathbf{Y}}_{i})^{2} = 0 \mathbf{I}$	E. cov(Σ	$(X_i, e_i) = 0$		
	$\hat{\mathbf{Y}}$ 表示 OLS 估计回归值, \mathbf{u} 表示随机 些是正确的()。	l误差项	,e 表示残差	E。如果 [*]	Y与X为线	性相关关系,则 ^一	下列
Α.	$E(Y_i) = \beta_0 + \beta_1 X_i$	B. Y _i =	$=\hat{\beta}_0 + \hat{\beta}_1 X_i$				
C.	$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + e_i$	D. \hat{Y}_i =	$=\hat{\beta}_0 + \hat{\beta}_1 X_i + e_i$	i	Ε.	$E(Y_i) = \hat{\beta}_0 + \hat{\beta}_1 X_i$	
($\hat{\mathbf{Y}}$ 表示 OLS 估计回归值, \mathbf{u} 表示随机)。 $\mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{l} \mathbf{X}_{i} \mathbf{B}. \mathbf{Y}_{i} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{l} \mathbf{X}_{i} + \mathbf{u}_{i}$	l误差项	。如果Y与	X 为线性	生相关关系,	则下列哪些是正	确的
C.	$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + u_i$	D. \hat{Y}_i	$= \hat{\beta}_0 + \hat{\beta}_1 X_i + \iota$	u _i E. Ŷ _i =	$= \hat{\beta}_0 + \hat{\beta}_1 X_i$		
	回归分析中估计回归参数的方法主要相关系数法 B. 方差分析法)。 最小二乘估计	法	D. 极大似领	然法 E. 矩估计	法
21.	用 OLS 法估计模型 $Y_i = \beta_0 + \beta_1 X_i + u$	的参数	,要使参数位	古计量为:	最佳线性无例	扁估计量,则要求	.
						T-1. 1) -1-	
Α.	$E(u_i)=0 B. Var(u_i)=\sigma^2$	С. С	$Cov(u_i, u_j) = 0$		D. u _i 服从。	止态分布	
Ε.	X 为非随机变量,与随机误差项 \mathbf{u}_{i} 不	相关。					
A.	假设线性回归模型满足全部基本假设可靠性 B. 合理性 普通最小二乘估计的直线具有以下特	C. 约				E. 有效性	
A.	通过样本均值点 (\bar{X},\bar{Y}) B. $\sum Y_i$	$=\sum \hat{Y_i}$	C. $\sum (Y_i -$	$\hat{Y}_i)^2 = 0 D$	$\sum e_i = 0$	Ε.	
Co	$v(X_i, e_i) = 0$						
24.	由回归直线 $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ 估计出来的	Ŷ _i 值()。				
E. 25.	是一组估计值. B. 是一组平均值与实际值 Y 的离差之和等于零 反映回归直线拟合优度的指标有(相关系数 B. 回归系数 C. 样本决定)。					

和)				
26.	对于样本回归直线 $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i$,	回归	变差可以表示为()。
A.	$\sum (Y_i - \overline{Y}_i)^2 - \sum (Y_i - \hat{Y}_i)^2$	В.	$\hat{\beta}_{\rm l}^2 \sum (X_{\rm i} - \overline{X}_{\rm i})^2$	
C.	$R^2 \sum (Y_i - \overline{Y}_i)^2$	D.	$\sum (\hat{Y}_i - \overline{Y}_i)^2$	Ε.

27. 对于样本回归直线 $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_i X_i$, $\hat{\sigma}$ 为估计标准差,下列决定系数的算式中,正确的有

A.
$$\frac{\sum (\hat{Y}_{i} - \overline{Y}_{i})^{2}}{\sum (Y_{i} - \overline{Y}_{i})^{2}}$$

B.
$$1 - \frac{\sum (Y_i - \hat{Y}_i)^2}{\sum (Y_i - \overline{Y}_i)^2}$$

C.
$$\frac{\hat{\beta}_{l}^{2}\sum(X_{i}-\overline{X}_{i})^{2}}{\sum(Y_{i}-\overline{Y}_{i})^{2}}$$

$$\text{D. } \frac{\hat{\beta}_{l} \sum_{} (X_{l} - \overline{X}_{l})(Y_{l} - \overline{Y}_{l})}{\sum_{} (Y_{l} - \overline{Y}_{l})^{2}}$$

E.
$$1 - \frac{\hat{\sigma}^2(\text{n-2})}{\sum (Y_i - \overline{Y}_i)^2}$$

 $\hat{\beta}_{i} \sum (X_{i} - \overline{X}_{i})(Y_{i} - \overline{Y}_{i})$

28. 下列相关系数的算式中,正确的有(

A.
$$\frac{\overline{XY} - \overline{X}\overline{Y}}{\sigma_X \sigma_Y}$$

B.
$$\frac{\sum (X_i - \overline{X}_i)(Y_i - \overline{Y}_i)}{n\sigma_x\sigma_y}$$

C.
$$\frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

D.
$$\frac{\sum (X_i - \overline{X}_i)(Y_i - \overline{Y}_i)}{\sqrt{\sum (X_i - \overline{X}_i)^2 \sum (Y_i - \overline{Y}_i)^2}}$$
 E

$$\frac{\sum X_{\mathbf{i}}Y_{\mathbf{i}}\text{-}\mathbf{n}\overline{X}\bullet\overline{Y}}{\sqrt{\sum (X_{\mathbf{i}}-\overline{X}_{\mathbf{i}})^{2}\sum (Y_{\mathbf{i}}-\overline{Y}_{\mathbf{i}})^{2}}}$$

29. 判定系数 R² 可表示为(

A.
$$R^2 = \frac{RSS}{TSS}B$$
. $R^2 = \frac{ESS}{TSS}$

$$C. R^2 = 1 - \frac{RSS}{TSS}$$

30. 线性回归模型的变通最小二乘估计的残差 e; 满足(

A.
$$\sum e_i = 0$$

A.
$$\sum e_i = 0$$
 B. $\sum e_i Y_i = 0$ C. $\sum e_i \hat{Y}_i = 0$ D. $\sum e_i X_i = 0$

D.
$$\sum e_i X_i = 0$$

E.
$$cov(X_i, e_i) = 0$$

31. 调整后的判定系数 \bar{R}^2 的正确表达式有(

A. 1-
$$\frac{\sum (Y_i - \bar{Y}_i)^2 / (n-1)}{\sum (Y_i - \hat{Y}_i)^2 / (n-k)}$$
B. $1 - \frac{\sum (Y_i - \hat{Y}_i)^2 / (n-k-1)}{\sum (Y_i - \bar{Y}_i)^2 / (n-1)}$

C.
$$1-(1-R^2)\frac{(n-1)}{(n-k-1)}$$

D.
$$R^2 - \frac{k(1-R^2)}{n-k-1}$$

D.
$$R^2 - \frac{k(1-R^2)}{n-k-1}$$
 E. $1-(1+R^2)\frac{(n-k)}{(n-1)}$

32. 对总体线性回归模型进行显著性检验时所用的 F 统计量可表示为(

A. $\frac{\text{ESS/(n-k)}}{\text{RSS/(k-1)}}$ B. $\frac{\text{ESS/(k-1)}}{\text{RSS/(n-k)}}$ C. $\frac{R^2/(k-1)}{(1-R^2)/(n-k)}$ D. $\frac{(1-R^2)/(n-k)}{R^2/(k-1)}$ E. $\frac{R^2/(n-k)}{(1-R^2)/(k-1)}$

33. 将非线性回归模型转换为线性回归模型,常用的数学处理方法有(

A. 直接置换法

B. 对数变换法

C. 级数展开法

D. 广义最小二乘法 E. 加权最小二乘法

34. 在模型 $\ln Y_i = \ln \beta_0 + \beta_1 \ln X_i + \mu_i$ (

C. E.	高阶线性自回归形式的序列相关 B. 一阶非线性自回归的序列相关 移动平均形式的序列相关 D. 正的一阶线性自回归形式的序列相关 负的一阶线性自回归形式的序列相关 以 d1 表示统计量 DW 的下限分布,du 表示统计量 DW 的上限分布,则 DW 检验的不确定区域是)。
Α.	du≤DW≤4-du B. 4-du≤DW≤4-dl C. d1≤DW≤du D. 4-d1≤DW≤4 0≤DW≤dl
Α.	DW 检验不适用于下列情况下的一阶线性自相关检验 ()。 模型包含有随机解释变量 B. 样本容量太小 C. 非一阶自回归模型
49.	含有滞后的被解释变量 E. 包含有虚拟变量的模型 . 针对存在序列相关现象的模型估计,下述哪些方法可能是适用的 ()。 加权最小二乘法 B. 一阶差分法 C. 残差回归法 D. 广义差分法 E. Durbin 两步沒
50. A. 51.	如果模型 y_t = b_0 + b_1x_t + u_t 存在一阶自相关,普通最小二乘估计仍具备()。 线性 B. 无偏性 C. 有效性 D. 真实性 E. 精确性 D. 真实性 E. 精确性 D. DW 检验不能用于下列哪些现象的检验()。
Α.	递增型异方差的检验 B. $u_t = \rho u_{t-1} + \rho^2 u_{t-2} + v_t$ 形式的序列相关检验
С.	$x_i=b_0+b_1x_j+u_t$ 形式的多重共线性检验 D. $y_t=\hat{\beta}_0+\hat{\beta}_1x_t+\hat{\beta}_2y_{t-1}+e_t$ 的一阶线性自相关检验
	遗漏重要解释变量导致的设定误差检验
	下列哪些回归分析中很可能出现多重共线性问题()。
	资本投入与劳动投入两个变量同时作为生产函数的解释变量
	消费作被解释变量,收入作解释变量的消费函数 本期收入和前期收入同时作为消费的解释变量的消费函数
	商品价格.地区.消费风俗同时作为解释变量的需求函数
	每亩施肥量,每亩施肥量的平方同时作为小麦亩产的解释变量的模型
	· 当模型中解释变量间存在高度的多重共线性时()。
	各个解释变量对被解释变量的影响将难以精确鉴别 B. 部分解释变量与随机误差项之间将高度相关
	估计量的精度将大幅度下降 D. 估计对于样本容量的变动将十分敏感
	模型的随机误差项也将序列相关
	下述统计量可以用来检验多重共线性的严重性 ()。
	相关系数 B. DW 值 C. 方差膨胀因子 D. 特征值 E. 自相关系数
	多重共线性产生的原因主要有()。
Α.	经济变量之间往往存在同方向的变化趋势 B. 经济变量之间往往存在着密切的关联
С.	在模型中采用滞后变量也容易产生多重共线性
D.	在建模过程中由于解释变量选择不当,引起了变量之间的多重共线性 E. 以上都正确
56.	. 多重共线性的解决方法主要有 ()。
Α.	保留重要的解释变量,去掉次要的或替代的解释变量 B. 利用先验信息改变参数的约束形式
С.	变换模型的形式 D. 综合使用时序数据与截面数据 E. 逐步回归法以及增加样本容量
	. 关于多重共线性,判断错误的有 ()。
	解释变量两两不相关,则不存在多重共线性
	所有的 t 检验都不显著,则说明模型总体是不显著的
	有多重共线性的计量经济模型没有应用的意义
	存在严重的多重共线性的模型不能用于结构分析
	. 模型存在完全多重共线性时,下列判断正确的是()。
	多数无法估计 B. 只能估计参数的线性组合 B. 只能估计参数的线性组合
	模型的判定系数为 0 D. 模型的判定系数为 1 Table 1 Table 2 Tabl
	,下列判断正确的有()。 - 在亚系名系共体性工,OLC 体况是伊思县体体性工馆体况是
	在严重多重共线性下,OLS 估计量仍是最佳线性无偏估计量。
	多重共线性问题的实质是样本现象,因此可以通过增加样本信息得到改善。
\cup .	虽然多重共线性下,很难精确区分各个解释变量的单独影响,但可据此模型进行预测。

D. 如果回归模型存在严重的多重共线性,可不加分析地去掉某个解释变量从而消除多重共线性。 60. 在包含有随机解释变量的回归模型中,可用作随机解释变量的工具变量必须具备的条件有,此工 具变量()。
A. 与该解释变量高度相关 B. 与其它解释变量高度相关 C. 与随机误差项高度相关 D. 与该解释变量不相关 E. 与随机误差项不相关 61. 关于虚拟变量,下列表述正确的有 ()
A. 是质的因素的数量化 B. 取值为 1 和 0 C. 代表质的因素 D. 在有些情况下可代表数量因素 E. 代表数量因素
62. 虚拟变量的取值为 0 和 1, 分别代表某种属性的存在与否, 其中 () A. 0 表示存在某种属性 B. 0 表示不存在某种属性 C. 1 表示存在某种属性 D. 1 表示不存在某种属性 E. 0 和 1 代表的内容可以随意设定
63. 在截距变动模型 $y_i = \alpha_0 + \alpha_1 D + \beta x_i + \mu_i$ 中,模型系数()
A. α_0 是基础类型截距项 B. α_1 是基础类型截距项
C. α_0 称为公共截距系数 D. α_1 称为公共截距系数 E. $\alpha_1-\alpha_0$ 为差别截距系
数 64. 虚拟变量的特殊应用有 () A. 调整季节波动 B. 检验模型结构的稳定性 C. 分段回归 D. 修正模型的设定误差 E. 工具变量法
65. 对于分段线性回归模型 $y_t = \beta_0 + \beta_1 x_t + \beta_2 (x_t - x^*) D + \mu_t$, 其中 ()
A. 虚拟变量 D 代表品质因素 B. 虚拟变量 D 代表数量因素
C. 以 $x_t = x^*$ 为界,前后两段回归直线的斜率不同
D. 以 $x_t = x^*$ 为界,前后两段回归直线的截距不同 E. 该模型是系统变参数模型的一种特殊形
式 66. 下列模型中属于几何分布滞后模型的有() A. koyck 变换模型 B. 自适应预期模型 C. 部分调整模型 D. 有限多项式滞后模型 E. 广义差分模型
67. 对于有限分布滞后模型,将参数 β_i 表示为关于滞后 i 的多项式并代入模型,作这种变换可以
()。 A. 使估计量从非一致变为一致 B. 使估计量从有偏变为无偏 C. 减弱多重共线性 D. 避免因参数过多而自由度不足 E. 减轻异方差问题
68. 在模型 $Y_{t} = \alpha + \beta_{0}X_{t} + \beta_{1}X_{t-1} + \beta_{2}X_{t-2} + \beta_{3}X_{t-3} + u_{t}$ 中,延期过渡性乘数是指(
A. β_0 B. β_1 C. β_2 D. β_3 E. $\beta_1 + \beta_2 + \beta_3$
69. 对几何分布滞后模型的三种变换模型,即 koyck 变换模型.自适应预期模型.局部调整模型,其共同特点是()A. 具有相同的解释变量 B. 仅有三个参数需要估计
C. 用 Y_{t-1} 代替了原模型中解释变量的所有滞后变量
D. 避免了原模型中的多重共线性问题 E. 都以一定经济理论为基础 70. 当结构方程为恰好识别时,可选择的估计方法是 () A. 最小二乘法 B. 广义差分法 C. 间接最小二乘法 D. 二阶段最小二乘法 E. 有限信息极大似然估计法

71. 对联立方程模型参数的单方程估计法包括() A. 工具变量法 B. 间接最小二乘法 C. 完全信息极大似然估计法
D. 二阶段最小二乘法 E. 三阶段最小二乘法
72. 小型宏观计量经济模型 $ \left\{ \begin{array}{l} C_t = a_0 + a_1 Y_t + u_{1t} \\ I_t = b_0 + b_1 Y_t + b_2 Y_{t-1} + u_{2t} \ \text{中,第 1 个方程是 (} \\ Y_t = C_t + I_t + G_t \end{array} \right. $
A. 结构式方程 B. 随机方程 C. 行为方程 D. 线性方程 E. 定义方程 73. 结构式模型中的解释变量可以是()
A. 外生变量 B. 滞后内生变量 C. 虚拟变量 D. 滞后外生变量 E. 模型中其他结构方程的被解释变量 74. 与单方程计量经济模型相比,联立方程计量经济模型的特点是 ()。 A. 适用于某一经济系统的研究 B. 适用于单一经济现象的研究 C. 揭示经济变量之间的单项因果关系 D. 揭示经济变量之间相互依存、相互因果的关系 E. 用单一方程来描述被解释变量和解释变量的数量关系
F. 用一组方程来描述经济系统内内生变量和外生变量(先决变量)之间的数量关系 75. 随机方程包含哪四种方程()。A. 行为方程 B. 技术方程 C. 经验方程 D. 制度方程 E. 统计方程 76. 下列关于联立方程模型的识别条件,表述正确的有()。A. 方程只要符合阶条件,就一定符合秩条件 B. 方程只要符合秩条件,就一定可以识别 C. 方程识别的阶条件和秩条件相互独立 D. 秩条件成立时,根据阶条件判断方程是恰好识别还是过度识别
77. 对于 C-D 生产函数模型 $Y = AL^{\alpha}K^{\beta}e^{\mu}$,下列说法中正确的有()。
A. 参数 A 反映广义的技术进步水平 B. 资本要素的产出弹性 $E_{\kappa} = \beta$
C. 劳动要素的产出弹性 $E_L = \alpha$ D. $\alpha + \beta$ 必定等于 1
78. 对于线性生产函数模型 $Y=\alpha_0+\alpha_1K+\alpha_2L+\mu$,下列说法中正确的有()。
A. 假设资本 K 与劳动 L 之间是完全可替代的 B. 资本要素的边际产量 $MP_K = \alpha_1$
C. 劳动要素的边际产量 $MP_L = \alpha_2$ D. 劳动和资本要素的替代弹性 $\sigma = \infty$
79. 关于绝对收入假设消费函数模型 $C_t = \alpha + \beta_0 Y_t + \beta_1 Y_t^2 + \mu_t$ ($t = 1, 2, \dots, T$),下列说法正确的有 (
A. 参数 α 表示自发性消费 B. 参数 $\alpha>0$ C. 参数 β_0 表示边际消费倾向 D. 参数 $\beta_1<0$
80. 建立生产函数模型时,样本数据的质量问题包括 ()。 A. 线性 B. 完整性 C. 准确性 D. 可比性 E. 一致性
一、单项选择题(每小题 1 分) 1. C 2. B 3. D 4. A 5. C 6. A 7. A 8. C 9. D 10. A 11. D 12. B 13. B 14. A 15. A 16. D 17. A 18. C 19. B 20. B 21. D 22. D 23. D 24. B 25. C 26. D 27. D 28. D 29. A 30. D 31. B 32. D 33. C 34. A 35. C 36. D 37. A 38. D 39. A 40. D 41. C 42. A 43. C 44. D 45. A 46. B 47. C 48. D 49. B 50. C 51. B 52. C 53. C

54. D 55. C 56. C 57. D 58. C 59. A 60. D 61. A 62. D 63. A 64. A 65. D 66. A

80.B 81.D

67. B 68. C 69. A 70. C71. D 72. B 73.A 74.D 75.D 76.A 77.C 78.D 79.B

- 82.B 83.B 84. D 85. C 86. A 87. B 88. C 89. C 90. A 91. D 92. C 93. D 94. A 95. D 96. D 97. C 98. D 99. A 100. D
- 101. B 102. D 103. C 104. A 105. C 106. B 107. D 108. D 109. D 110. D 111. C 112. D 113. D 114. D 115. C 116. C 117. B 118. C 119. A 120. B 121. C 122. D 123. D 124. D 125. C 126. C 127. D
- 二、多项选择题(每小题2分)
- 6. ABCDE 7. ABCD 2. AC 3. BD 4. AB 5. CD 8. BCD 13. A BCDE 14. ABE 15. ACD ABCDE 10. ABCD 11. CD 12. ABCD 16. ABCDE 18. AC 19. BE 20. CDE 21. ABCDE 22. CDE 23. ABDE 24. ADE 25. ACE 26. ABCDE 27. ABCDE 28. ABCDE 29. BCE 30. ACDE 31. BCD 32. BC 33. AB 34. ABCD 35. BCD 36. ACDE
- 37. BCD 38. BC 39. AD 40.ABCDE 41.AB 42.BCDE 43.DE 44.ABCDE 45.BE 46.ABC 47.BC 48.BCD 49.BDE 51.ABCDE 52. AC 53. ACD 54. ACD 55. ABCD 50.AB 59. ABC 60. AE 61. ABCD 62. BC 63. AC 64. ABC 65. BE 56. ABCDE 57. ABC 58. AB 66. ABC 67. CD 68. BCD 69. ABCD 70. CD 71. ABD 72. ABCD 73. ABCDE 74. ADF 75. ABD 76. BD 77. ABC 78. ABCD 79. ABCD 80. BCDE

《财务管理》期末考试复习提纲

一、考试要求和考试内容

- (一) 总论
 - 1. 财务管理的概念及财务管理的内容;
 - 2. 企业财务管理的目标,以及各种财务管理目标的优缺点;
 - 3、财务管理环境构成要素及其对财务管理的影响。

(二) 财务管理的价值观念

1. 货币时间价值的含义:

3. 名义利率与实际利率的计算; 4. 风险的含义与分类; 5. 必要风险报酬与必要投资报酬的概念与计算; 6. 必要投资报酬的计算; 7. 股票债券的理论估值与投资决策; 8. 投资组合的收益与风险的概念及计算。 (三) 财务分析 1.财务分析的概念、目的与内容 2.财务能力的分析(偿债能力、盈利能力、营运能力、发展能力) 3.财务综合分析(沃尔评分法与杜邦分析法) (四)长期筹资方式 1. 企业长期筹资的动机、长期筹资渠道及长期筹资管理的原则; 2. 股权筹资的优缺点(直接吸收、发行普通股、发行优先股); 3. 长期债务筹资的优缺点(长期借款、发行债券、融资租赁); 4. 可转债等混和筹资的优缺点。

2. 等效值之间的换算;

(五)资本结构决策 1.资本成本、个别资本成本、加权平均资本成本和边际资本成本的概念及计算;

- 2. 经营杠杆、财务杠杆、总杠杆的概念、原理及计算,杠杆系数与经营风险、财务风险、复合风险之间的关系;
 - 3. 最佳资本结构的概念及其选择(每股收益分析法、比较资本成本法)。

(六)资本投资决策

- 1. 项目现金流量的概念及构成;
- 2. 投资决策为什么要使用现金流量来进行决策的原因;
- 3. 营业活动税前净现金流量和税后净现金流量的估计方法;
- 4. 净现值、内含报酬率、报酬指数、投资回收期和会计收益率的概念和计算方法以及可行与否的判断准则;
- 5.固定资产投资项目可行与否判断的简单应用。

(七) 营运资金管理

- 1. 营运资金的含义、营运资金管理政策的类型及其特点;
- 2. 现金持有的动机及相关成本;
- 3. 现金最佳持有量确定的存货模式(成本分析模式、存货模式、随机模式);
- 4. 应收账款的功能及相关成本;
- 5. 应收账款信用政策的选择方法;

- 6. 信用标准、信用条件的含义及对客户信用状况的评价;
- 6. 存货的功能和存货的成本;
- 7. 存货基本经济批量的决策(经济批量、最佳订货次数、平均库存量、相关总成本)。
- (八) 股利理论与股利政策
 - 1. 利润分配步骤与股利发放程序;
 - 2. 股利理论(一鸟在手理论、税收差别理论、信号传递理论、代理理论);
- 3.股利分配政策以及各种股利政策的特点(优缺点);

二、考试基本题型比例

考试共包括五个题型, 题型及所占比例分别如下:

1. 单选题 10%, 2. 多选题 10%, 3. 判断题 10%, 4. 计算题 50%, 5. 简答题 20%

三、计算题

1、某人 10 年后想购买一套首付需要 80 万元的住房, 存款利率是 8%, 请问现在他应该每年初存入多少钱才能在 10 年后买得起这套房子?

解:每年年初应存入 A=[80 (A/F,8%,10)]/(1+8%)=5.1217 (万元)

2、某人每年向某基金投入3000元,连续10年,假设该基金的回报率5%,问这个人在第10年年末可以得到多少回报?

解:该人第 10 年末可得回报 F=3000 (F/A,5%,10) =37734 (元)

3、某债券面值为1000元,票面利率为6%,期限为5年,每年付息一次,到期还本,当前市场利率为8%,该债券的市场价格为多少时企业可以投资?

解:该债券的理论价格 $P=1000\times6\%$ (P/A,8%,5) +1000(P/F,8%,5)=920 (元) 当市场价格不高于 920 元时值得购买。

4、企业准备发行期限为10年、票面利率为5%、面值为1000元、到期一次还本付息的债券,若市场利率为6%,试确定企业债券的合理发行价格应为多少?

解:发行的合理价格 P=1000 (1+5%×10) (P/F,6%,10) =837.6 (元)

5、某投资人准备购买某公司的股票,该股票的 β 系数为 1.2,公司采用固定股利增长率的股利分配政策,预计今年末的股利为 0.5 元/股,以后的固定增长率为 5%,若股票市场平均收益率为 15%,无风险投资收益率为 4%,问当购买价

格为多少时投资人才值得购买。

解:根据资本资产定价模型,

投资该公司股票的必要投资收益率 R=4%+1.2×(15%-4%)=17.2%

所以该公司股票的理论价格 P=0.5/(17.2%-5%)=4.10(元/股)

当市场价格不高于 4.10 元/股时值得购买。

6、某企业固定成本为 20 万元,单位变动成本为 15 元/件,单位售价为 23 元/件,求盈亏平衡产量和实现目标利润 50 万元的产量各应为多少件。

解: 盈亏平衡的产量 O=20/(23-15)=2.5(万件)

实现目标利润的产量 Q=(20+50)/(23-15)=8.75(万件)

7、某公司 2006 年、2007 年初对甲设备投资分别为 20000 元和 30000 元, 该设备于 2008 年年初投产; 2008 年、2009 年、2010 年年末现金流入量均为 35000 元; 贴现率为 10%。

要求: (1) 计算 2008 年年初投资额的终值: (2) 计算各年现金流入量 2008 年年初的现值。

- 解: (1) 2008 年初的投资的终值 F=20000 (F/P, 10%, 2) +30000 (F/P, 10%, 1)=57200 (元)
 - (2) 2008 年初各年流入的现值 P=35000 (P/A, 10%, 3) =87041.5 (元)
- 8、某公司资本总额为 5000 万元, 其中负债比例为 45%, 负债的平均资金成本率为 6%, 所得税率为 25%, 该公司全年的销售额为 6000 万元, 变动成本率为 65%, 固定成本为 600 万元, 试计算企业的经营杠杆系数、财务杠杆系数和总杠杆系数。

解: DOL=6000(1-65%)/[6000(1-65%)-600]=1.4

DFL= $[6000(1-65\%)-600]/\{[6000(1-65\%)-600]-5000\times45\%\times6\%/(1-25\%)\}$

=1500/ (1500-180) =1.14

DTL=DOL \times DFL=1.4 \times 1.14=1.60

 $K_s = 0.5/5 + 3\% = 0.13$

9、某公司计划筹资 3850 万元,其中发行长期债券 500 万元,筹资费率为 3%,债券利率为 10%;向银行借款 2000 万元,借款年利率为 6%,银行要求的补偿性余额比率为 10%;发行优先股 200 万股,每股面值为 1 元,以面值发行,发行费为 10 万元,年股利率为 10%;发行普通股 210 万股,每股面值为 1 元,发行价 5 元,发行费为 50 万元,本年度股利为每股 0.5 元,预计以后每年增长 3%;留存收益 100 万元,普通股发行价 5 元,假设公司所得税率为 25%。计算各种筹资方式下的资本成本以及总筹资额的综合资本成本。

 $W_s = 100/3850 = 0.03$

解: $K_b=10\%$ (1-25%) / (1-3%) =0.0773 $W_b=500/3850=0.13$

 $K_L = 6\%/ (1-10\%) (1-25\%) = 0.05$ $W_L = 2000/3850 = 0.52$

 $K_P = (200 \times 10\%)/(200-10) = 0.1053$ $W_P = 200/3850 = 0.05$

 $K_c = 210 \times 0.5/(210 \times 5-50) + 3\% = 0.135$ $W_c = 1050/3850 = 0.27$

所以, $K = K_b \times W_b + K_L \times W_L + K_n \times W_n + K_c \times W_c + K_s \times W_s$

 $=0.0773\times0.13+0.05\times0.52+0.1053\times0.05+0.135\times0.27+0.13\times0.03=8.17\%$

10、某公司在初创时拟筹资 200 万元,现有甲、乙两个备选筹资方案,有关资料如下所示:

筹资方式	甲筹资方案		乙筹资方案	
	筹资额 (万元)	资金成本(%)	筹资额 (万元)	资金成本(%)
长期借款	100	7	60	7.5
债券	50	8. 5	40	8
普通股	50	14	100	14
合计:	200	_	200	_

试测算比较甲、乙两个方案的综合资金成本并据以选择筹资方案。 解:对于甲方案:

 $K_{\text{H}} = K_{\text{b}} \times W_{\text{b}} + K_{\text{L}} \times W_{\text{L}} + K_{\text{c}} \times W_{\text{c}} = 0.085 \times 50/200 + 0.07 \times 100/200 + 0.14 \times 50/200 = 9.13\%$

 $K_{z} = K_b \times W_b + K_L \times W_L + K_c \times W_c = 0.08 \times 40/200 + 0.075 \times 60/200 + 0.14 \times 100/200 = 10.85\%$

所以,应选择甲方案。

11、某公司原有长期资本 1000 万元,全部为普通股,20 万股,每股票面 50 元,出于扩充用途需要,决定增加 500 万元长期资本,其筹资方法有两种:其一,全部发行普通股,增发 10 万股,每股票面 50 元;其二,全部筹措长期债务,利率为 12%,按年税前支付。

假设, 所得税率为50%。要求:

- (1) 计算普通股和长期债务筹资的无差异点以及在此点上的每股利润。
- (2) 假设企业息税前利润分别为 150 万元和 200 万元, 应分别采用哪种筹资方案?
- 解: (1) 设无差异的息税前利润为 EBIT, 令: EBIT/(20+10)=(EBIT-500×12%)/20 计算得到 EBIT=180(万元),此时的每股利润=180/30=6(元/股)
- (2)根据无差异点决策方法,当企业息税前利润为 150 万元时,应采用股票增资,当企业息税前利润为 200 万元时,应采用债券增资。
- 12、某公司拟新建一条生产流水线,需投资 500 万元,一年建成,该流水线可以使用 5 年,期末有 50 万元的净残值,采用直线法计提折旧。投产以后,预计每年的营业收入为 280 万元,营业成本为 120 万元。投产期初要垫支流动资金 20 万元,可在项目终结时一次收回。所得税率为 25%。分别计算该公司投资计算期各年的净现金流量,并且判断是否应当新建这条生产流水线。假设投资要求的必要收益率为 15%。

解: 该固定资产的年折旧=(500-50)/5=90(万元)

项目营业活动的各年的税后年净现金流量=[280-(120-90)]-(280-120)×25%=290(万元)

项目净现值=-500-20(P/F,15%,1)+290(P/A,15%,5)(P/F,15%,1)+70(P/F,15%,6)

=362.7485 (万元)

由于净现值大于零,所以项目可行。

- 13、某公司投资 126000 元购入一台设备。该设备预计残值为 6000 元,可使用 3 年,折旧按直线法计算。设备投产后每年销售收入增加额分别为 90000 元、96000 元、104000 元,经营成本增加额分别为 24000 元、26000 元、20000元。企业适用的所得税率为 25%,要求的最低投资报酬率为 10%,目前年税后利润为 50000元。要求:
 - (1) 假设企业经营无其他变化,预测未来3年每年的税后利润;
 - (2) 计算该投资方案的净现值,并进行可行与否判断。
- 解: (1)设备年折旧额=(126000-6000)/3=40000(元)

未来第1年增加税后利润=(90000-24000-40000)(1-25%)=19500(元)

未来第2年增加税后利润=(96000-26000-40000)(1-40%)=22500(元)

未来第3年增加税后利润=(104000-20000-40000)(1-40%)=33000(元)

由于当前企业的税后利润为 50000,所以未来 3 年企业的税后利润分别为企业当前净利润加项目各年的净利润,即: 69500 元、72500 元、83000 元。

(2) 投资方案未来3年的年营业税后净现金流量为项目各年净利润加折旧,

即 59500 元、62500 元、73000 元

方案的净现值=59500(P/F,10%,1)+62500(P/F,10%,2)+73000(P/F,10%,3)-126000=34586(元)

由于项目净现值大于零, 所以项目可行。

14、某企业有设备一台需要大修,预计修理费 40000 元,修理后可使用 3 年,每年日常维护费 800 元,若现在将该设备在市场上卖掉可获得 5000 元。而市场上有可替代的新型设备,每台价格为 90000 元,可使用 8 年,每年日常维修费 600 元。若企业的平均资金成本率 10%,企业是大修原设备,还是购买新型设备?

解:修理旧设备方案下的年度费用=(40000+5000)(A/P,10%,3)+800=18895(元) 购买新设备方案下年度费用=90000(A/P,10%,8)+600=17466(万元) 比较得出应选择购买新设备方案。

15、某公司目前赊销收入为800万元,变动成本率为60%,公司最低要求的投资报酬率为15%,信用条件为1/10, N/40, 坏账损失率为2%, 收账费用5万元。顾客中有30%的能够享受现金折扣。该公司拟改变信用政策以增加销售 收入 10%, 新的信用政策为:信用条件为" 2/10、1/20、N/50",估计坏账损失率 1.5%,收账费用 4 万元,客户的分 布情况为: 10 天内付款的占 50%, 20 天内付款的占 30%, 50 天内付款的占 20%。问公司是否应该改变信用政策?

解:目前信用条件下的平均收账期=30%×10+70%×40=31(天) 新信用条件下的平均收账期=50%×10+30%×20+20%×50=21(天)

1/10, N/40

2/10, 1/20, N/50

好处:

边际贡献 800 (1-60%) =320 880 (1-60%) =352

代价:

机会成本 800×31/360×15%=10.3333

 $880 \times 21/360 \times 15\% = 7.7$

坏账损失

 $800 \times 2\% = 16$

 $880 \times 1.5\% = 13.2$

319.66

4

管理成本

5

折扣损失 800×30%×1%=2.4 880×50%×2%+880×30%×1%=11.44

净好处: 286, 267

比较得到,新的信用条件带来的好处更多,应选用新的信用条件。

16、某公司目前赊销收入为800万元,销售利润率为20%,公司最低的投资报酬率为12%,信用条件为N/30,坏账 损失率为2%,收账费用7万元。该公司拟改变信用政策以增加销售收入10%,有以下方案可供选择:新方案:信用 条件为 "2/10、1/20、N/50", 坏账损失率 1%, 收账费用 5.5 万元, 客户的分布情况为: 10 天内付款的占 50%, 20 天内付款的占30%,50天内付款的占20%。问公司是否应该改变信用政策?

解:根据题意,原方案下,客户的平均收账期为30天。新方案下,客户的平均收账期为10×50%+20×30%+50×20%=21 天,由于题目告诉了销售利润率,所以本题采用销售利润作为衡量赊销政策的收益指标。

	原方案	新方案
信用条件	N/30	2/10、1/20、N/50
销售利润	$800 \times 20\% = 160$	800 (1+10%) ×20%=176
坏账损失	$800 \times 2\% = 16$	$880 \times 1\% = 8.8$
机会成本	$(800 \times 30/360) \times 12\% = 8$	$(880 \times 21/360) \times 12\% = 6.16$
管理成本	7	5.5
折扣代价		$50\% \times 880 \times 2\% + 30\% \times 880 \times 1\% = 1$

净利得 129 (万元) 149.6 (万元)

所以,公司应改变原有信用政策,选择新方案表示的信用条件。

17、某公司预计下年度经营所需现金 250000 元,且耗用均衡,已知现金与有价证券每次转换成本为 500 元,有价证 券的年收益率为10%。

要求: (1) 计算最佳现金持有量; (2) 计算最佳现金持有量下现金的相关总成本; (3) 计算最佳现金交易次 数: (4) 计算最佳交易周期。

解:

- □1□ 根据存货模式,最佳现金持有量={2bT/i}¹/2={2×500×250000/10%} ½=50000(元)
- □2□ 在最佳持有量下,总成本 ={2bTi} ½={2×500×250000×10%} ½=5000 (元)
- □3□ 转换次数=250000/50000=5 次
- □4□ 最佳交易周期=360/5=72 天

- 18、某公司每年需用某种材料 800 吨,每次订货成本 400 元,每吨材料的年储存成本为 100 元,该种材料买价为 1500 元/吨。要求:
- (1)每次购入多少吨,可使全年与进货批量相关的总成本达到最低?此时的相关总成本为多少? (2)若每次订货量在 100 吨以内没有折扣,在 100~200 吨范围内时可获 2%的折扣,在 200 吨以上时可获 3%的折扣,要求计算此时的最佳经济订货量。
- 解: (1) 基本经济批量={2KD/kc} ½={2×400×800/100} ½=80 吨 相关总成本={2KDkc} ½=8000 (元)
 - (2) 购买 100 吨以内,没有数量折扣,此时, 经济批量={2×400×800/100} ½=80 吨 存货总成本=800×1500+{2KDkc} ½=1208000 (元)

购买 100~200 吨之间,数量折扣为 2%,此时,订货量为 100 吨时总成本最低 存货总成本=800 ×1500 (1-2%)+800/100 ×400+100/2 ×1500(1-2%) ×5%=1182875 (元) 购买 200 吨以上,数量折扣为 3%,此时,订货量为 200 吨时总成本最低 存货总成本=800 ×1500 (1-3%)+800/200 ×400+200/2 ×1500(1-3%) ×5%=1172875 (元) 比较得到每次购买 200 吨是最佳订货量。

- 19、某企业上年利润额为 250 万云,销售收入为 750 万元,资产平均占用额为 937.5 万元,所有者权益为 562.5 万元,企业所得税为 25%,要求:根据以上资料计算当年: (1)销售净利率 (2)总资产周转率
- 解: 销售净利率=[250×(1-25%)]/750=25% 总资产周转率=750/937.5=0.8 (次)