Answers - Integration by parts (page ??)

- 1. $\int x \cos x \, dx$ u = x du = dx $dv = \cos x$ $v = \sin x$ $\int x \cos x \, dx = x \sin x \int \sin x \, dx$ $= x \sin x + \cos x + c$
- 2. $\int 3xe^{3x} dx$ u = 3x du = 3 dx $dv = e^{3x}$ $v = \frac{e^{3x}}{3}$ $\int 3xe^{3x} dx = 3x\frac{e^{3x}}{3} \int \frac{e^{3x}}{3} \times 3 dx$ $= xe^{3x} \int e^{3x} dx$ $= xe^{3x} \frac{e^{3x}}{3} + c$
- 3. $\int \ln x \, dx$ Rewrite as $\int 1 \times \ln x \, dx$ $u = \ln x$ $du = \frac{1}{x} \, dx$ dv = 1 v = x $\int \ln x \, dx = x \ln x \int x \times \frac{1}{x} \, dx$ $= x \ln x \int 1 \, dx$ $= x \ln x x + c$
- 4. $\int x^2 \sin 2x \, dx$ $u = x^2$ $du = 2x \, dx$ $dv = \sin 2x$ $v = -\frac{\cos 2x}{2}$ $\int x^2 \sin 2x \, dx = \frac{-x^2 \cos 2x}{2} \int -x \cos 2x \, dx$ $= \frac{-x^2 \cos 2x}{2} + \int x \cos 2x \, dx$

Need to use integration by parts a second time:

$$\begin{split} &\int x\cos 2x\,dx\\ &u=x\\ &du=dx\\ &dv=\cos 2x\\ &v=\frac{\sin 2x}{2}\\ &\int x\cos 2x\,dx=\frac{x\sin 2x}{2}-\int \frac{\sin 2x}{2}\,dx=\frac{x\sin 2x}{2}+\frac{\cos 2x}{4}\\ &\text{So the full integral is:}\\ &\int x^2\sin 2x\,dx=\frac{-x^2\cos 2x}{2}+\frac{x\sin 2x}{2}+\frac{\cos 2x}{4}+c \end{split}$$

5.
$$\int e^x \sin x \, dx$$

$$u = \sin x$$

$$du = \cos x \, dx$$

$$dv = e^x$$

$$v = e^x$$

$$\int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx$$

We need to use integration by parts for the second term:

$$u = \cos x$$

$$du = -\sin x \, dx$$

$$dv = e^x$$

$$v = e^x$$

$$\int e^x \cos x \, dx = e^x \cos x - \int -e^x \sin x \, dx = e^x \cos x + \int e^x \sin x \, dx$$

Substituting into the original integral:

$$\int e^x \sin x \, dx = e^x \sin x - (e^x \cos x + \int e^x \sin x \, dx)$$
$$= e^x \sin x - e^x \cos x - \int e^x \sin x \, dx$$

Rearranging and solving:

$$2 \int e^x \sin x \, dx = e^x \sin x - e^x \cos x$$
$$\int e^x \sin x \, dx = \frac{e^x \sin x - e^x \cos x}{2} + c$$

6.
$$\int x^5 \sqrt{x^3 + 1} \, dx$$

This is a particularly difficult integral, and requires us to look at the square root carefully. Since there is an x^3 term inside the root, having an x^2 term multiplying it would make it easier to integrate.

Therefore, we will choose the following:

$$u = x^3$$

$$du = 3x^2 dx$$

$$dv = x^2 \sqrt{x^3 + 1}$$

Integrating by substitution:

$$\int x^2 \sqrt{x^3 + 1} \, dx$$

$$u = x^3 + 1$$

$$du = 3x^2 \, dx$$

$$\int \frac{1}{3} u^{\frac{1}{2}} \, du = \frac{2}{9} u^{\frac{3}{2}} = \frac{2}{9} (x^3 + 1)^{\frac{3}{2}}$$

So, the integration by parts of the original function looks like this:

$$\int x^5 \sqrt{x^3 + 1} \, dx = x^3 \times \frac{2}{9} (x^3 + 1)^{\frac{3}{2}} - \int \frac{2}{3} x^2 (x^3 + 1)^{\frac{3}{2}} \, dx$$
$$= \frac{2x^3}{9} (x^3 + 1)^{\frac{3}{2}} - \frac{4}{45} (x^3 + 1)^{\frac{5}{2}} + c$$