Teorías topológicas de campos cuánticos: Pantalones, álgebras de Frobenius y el Lema del Zorro Microcharla — ENEM 2024

Microcharla — ENEM 2024

Santiago Pareja Pérez 24 de julio de 2024

Cobordismos y TQFTs

Cobordismos

- Sean M y N dos (n 1)-variedades cerradas y orientadas.
 (Para n = 2, son uniones finitas de circunferencias o el vacío).
- Un cobordismo B: M → N es una n-variedad con borde equipada con un difeomorfismo ∂B ≅ M u N.

M es borde de entrada y N es borde de salida.

Cobordismos

- Sean M y N dos (n 1)-variedades cerradas y orientadas.
 (Para n = 2, son uniones finitas de circunferencias o el vacío).
- Un *cobordismo B*: $M \rightarrow N$ es una n-variedad con borde equipada con un difeomorfismo $\partial B \cong \overline{M} \sqcup N$.

M es borde de entrada y N es borde de salida.

Cobordismos

- Sean M y N dos (n 1)-variedades cerradas y orientadas.
 (Para n = 2, son uniones finitas de circunferencias o el vacío).
- Un *cobordismo B*: $M \rightarrow N$ es una n-variedad con borde equipada con un difeomorfismo $\partial B \cong \overline{M} \sqcup N$.

M es borde de entrada y N es borde de salida.

Podemos componer cobordismos pegando el borde común:

Los cilindros $M \times [0, 1]$ se comportan como identidades (salvo difeo).

También podemos unir cobordismos

La variedad vacía Ø se comporta como unidad: M ⊔ Ø ≡ M.

Existen giros intercambiando el orden de dos variedades:

Podemos componer cobordismos pegando el borde común:

Los cilindros $M \times [0, 1]$ se comportan como identidades (salvo difeo).

También podemos unir cobordismos

La variedad vacía Ø se comporta como unidad: M ⊔ Ø ≡ M.

Existen giros intercambiando el orden de dos variedades:

$$M \sqcup N \to N \sqcup M$$

Podemos componer cobordismos pegando el borde común:

Los cilindros $M \times [0,1]$ se comportan como identidades (salvo difeo). También podemos unir cobordismos:

La variedad vacía \emptyset se comporta como unidad: $M \sqcup \emptyset \equiv M$.

Existen giros intercambiando el orden de dos variedades:

Podemos componer cobordismos pegando el borde común:

Los cilindros $M \times [0,1]$ se comportan como identidades (salvo difeo). También podemos unir cobordismos:

La variedad vacía \emptyset se comporta como unidad: $M \sqcup \emptyset \equiv M$.

Existen giros intercambiando el orden de dos variedades:

Podemos componer cobordismos pegando el borde común:

Los cilindros $M \times [0,1]$ se comportan como identidades (salvo difeo). También podemos unir cobordismos:

La variedad vacía \emptyset se comporta como unidad: $M \sqcup \emptyset \equiv M$.

Existen giros intercambiando el orden de dos variedades:

Podemos componer cobordismos pegando el borde común:

Los cilindros $M \times [0,1]$ se comportan como identidades (salvo difeo). También podemos unir cobordismos:

La variedad vacía \emptyset se comporta como unidad: $M \sqcup \emptyset = M$.

Existen giros intercambiando el orden de dos variedades:

Teorías topológicas de campos cuánticos, muy rápido

Una TQFT asigna:

- «Espacio» M → espacio vectorial de estados V.
- «Espacio-tiempo» \triangleright \rightsquigarrow operador de evolución $V \otimes V \rightarrow V$.

Debe satisfacer ciertos axiomas.

No importa la métrica, solo la topología del espacio: a dos cobordismos difeomorfos se les asigna lo mismo.

Teorías topológicas de campos cuánticos, muy rápido

Una TQFT asigna:

- «Espacio» M → espacio vectorial de estados V.
- «Espacio-tiempo» $\ \ \ \ \ \ \ \ \ \ \$ operador de evolución $V \otimes V \to V$.

Debe satisfacer ciertos axiomas.

No importa la métrica, solo la topología del espacio: a dos cobordismos difeomorfos se les asigna lo mismo.

Una TQFT es una regla $Z: \mathbf{Cob}_n \to \mathbf{Vect}_k$ que asigna

- (n-1)-variedad cerrada $M \rightsquigarrow \mathbb{k}$ -espacio vectorial Z(M).
- *n*-cobordismo $B: M \to N$ \leadsto función \Bbbk -lineal $Z(B): Z(M) \to Z(N)$. De acuerdo a las siguientes reglas.
- Cobordismos difeomorfos comparten imagen: B ≅ B' → Z(B) = Z(B').
- ∘ Los cilindros $M \times [0, 1]$ van a las identidades: $Z(\square) = id_{Z(S^1)}$
- Pegar cobordismos es componer funciones: $Z(\diamondsuit) = Z(\diamondsuit) \circ Z(\diamondsuit)$
- □ Unión disjunta es producto tensorial: $Z\left(\frac{>}{>}\right) = Z(<) \otimes Z(>)$.
 □ La variedad vacía va al cuerpo base: $Z(\emptyset) = k$.
- ♦ Los \aleph intercambian el orden de los factores: $Z(\aleph)$: $m \otimes n \mapsto n \otimes m$.

Una TQFT es una regla $Z: \mathbf{Cob}_n \to \mathbf{Vect}_k$ que asigna

- (n-1)-variedad cerrada $M \rightsquigarrow \mathbb{k}$ -espacio vectorial Z(M).
- *n*-cobordismo $B: M \to N$ \leadsto función \Bbbk -lineal $Z(B): Z(M) \to Z(N)$. De acuerdo a las siguientes reglas.
- Cobordismos difeomorfos comparten imagen: $B \cong B' \rightsquigarrow Z(B) = Z(B')$.
- Los cilindros $M \times [0,1]$ van a las identidades: $Z(\square) = \mathrm{id}_{Z(S^1)}$.
- Pegar cobordismos es componer funciones: $Z(\bigcirc) = Z(\bigcirc) \circ Z(\bigcirc)$.
- □ Unión disjunta es producto tensorial: $Z() = Z() \otimes Z()$.
 □ La variedad vacía va al cuerpo base: $Z(\emptyset) = \mathbb{k}$.
- ♦ Los \aleph intercambian el orden de los factores: $Z(\aleph)$: $m \otimes n \mapsto n \otimes m$

Una TQFT es una regla $Z: \mathbf{Cob}_n \to \mathbf{Vect}_k$ que asigna

- (n-1)-variedad cerrada $M \rightsquigarrow \mathbb{k}$ -espacio vectorial Z(M).
- *n*-cobordismo $B: M \to N$ \leadsto función \Bbbk -lineal $Z(B): Z(M) \to Z(N)$. De acuerdo a las siguientes reglas.
- ∘ Cobordismos difeomorfos comparten imagen: $B \cong B' \rightsquigarrow Z(B) = Z(B')$.
- Los cilindros $M \times [0, 1]$ van a las identidades: $Z(\square) = \mathrm{id}_{Z(S^1)}$.
- Pegar cobordismos es componer funciones: $Z(\diamondsuit) = Z(\diamondsuit) \circ Z(\diamondsuit)$.
- Unión disjunta es producto tensorial: $Z\left(\begin{array}{c} \nearrow \\ \nearrow \end{array} \right) = Z(\begin{array}{c} \nearrow \end{array}) \otimes Z(\begin{array}{c} \nearrow \end{array})$.

 La variedad vacía va al cuerpo base: $Z(\emptyset) = \mathbb{R}$.
- ♦ Los \aleph intercambian el orden de los factores: $Z(\aleph)$: $m \otimes n \mapsto n \otimes m$.

Una **TQFT** es una regla $Z: \mathbf{Cob}_n \to \mathbf{Vect}_k$ que asigna

- (n-1)-variedad cerrada $M \rightsquigarrow \mathbb{k}$ -espacio vectorial Z(M).
- n-cobordismo $B: M \to N$ \rightsquigarrow función k-lineal $Z(B): Z(M) \to Z(N)$. De acuerdo a las siguientes reglas.
- Cobordismos difeomorfos comparten imagen: $B \cong B' \rightsquigarrow Z(B) = Z(B')$.
- Los cilindros M × [0, 1] van a las identidades: $Z(\square) = \mathrm{id}_{Z(\S^1)}$.
- Pegar cobordismos es componer funciones: $Z(\langle \rangle) = Z(\langle \rangle) \circ Z(\langle \rangle)$.
- $Z\left(\bigotimes\right) = Z(\varnothing) \otimes Z(\bigotimes).$ $Z(\varnothing) = \mathbb{k}.$ Unión disjunta es producto tensorial:
- La variedad vacía va al cuerpo base:

Una TQFT es una regla $Z: \mathbf{Cob}_n \to \mathbf{Vect}_k$ que asigna

- (n-1)-variedad cerrada $M \rightsquigarrow \mathbb{k}$ -espacio vectorial Z(M).
- *n*-cobordismo $B: M \to N$ \leadsto función \Bbbk -lineal $Z(B): Z(M) \to Z(N)$. De acuerdo a las siguientes reglas.
- Cobordismos difeomorfos comparten imagen: $B \cong B' \rightsquigarrow Z(B) = Z(B')$.
- Los cilindros $M \times [0, 1]$ van a las identidades: $Z(\square) = \mathrm{id}_{Z(S^1)}$.
- Pegar cobordismos es componer funciones: $Z(\diamondsuit) = Z(\diamondsuit) \circ Z(\diamondsuit)$.
- □ Unión disjunta es producto tensorial: $Z(\mathcal{S}) = Z(\mathcal{S}) \otimes Z(\mathcal{S})$.
 □ La variedad vacía va al cuerpo base: $Z(\emptyset) = \mathbb{k}$.
- ♦ Los \aleph intercambian el orden de los factores: $Z(\aleph)$: $m \otimes n \mapsto n \otimes m$.

Una TQFT es una regla $Z: \mathbf{Cob}_n \to \mathbf{Vect}_k$ que asigna

- (n-1)-variedad cerrada $M \rightsquigarrow \mathbb{k}$ -espacio vectorial Z(M).
- *n*-cobordismo $B: M \to N$ \leadsto función \Bbbk -lineal $Z(B): Z(M) \to Z(N)$. De acuerdo a las siguientes reglas.
- ∘ Cobordismos difeomorfos comparten imagen: $B \cong B' \rightsquigarrow Z(B) = Z(B')$.
- Los cilindros $M \times [0,1]$ van a las identidades: $Z(\square) = \mathrm{id}_{Z(\mathbb{S}^1)}$.
- Pegar cobordismos es componer funciones: $Z(\mathfrak{P}) = Z(\mathfrak{P}) \circ Z(\mathfrak{P})$.
- □ Unión disjunta es producto tensorial: $Z(\diamondsuit) = Z(\diamondsuit) \otimes Z(\diamondsuit)$.
 □ La variedad vacía va al cuerpo base: $Z(\varnothing) = \&$.
- ♦ Los \aleph intercambian el orden de los factores: $Z(\aleph)$: $m \otimes n \mapsto n \otimes m$.

Una TQFT es una regla $Z: \mathbf{Cob}_n \to \mathbf{Vect}_k$ que asigna

- (n-1)-variedad cerrada $M \rightsquigarrow \mathbb{k}$ -espacio vectorial Z(M).
- *n*-cobordismo $B: M \to N$ \leadsto función \Bbbk -lineal $Z(B): Z(M) \to Z(N)$. De acuerdo a las siguientes reglas.
- ∘ Cobordismos difeomorfos comparten imagen: $B \cong B' \rightsquigarrow Z(B) = Z(B')$.
- Los cilindros $M \times [0,1]$ van a las identidades: $Z(\square) = \mathrm{id}_{Z(\mathbb{S}^1)}$.
- Pegar cobordismos es componer funciones: $Z(\mathfrak{P}) = Z(\mathfrak{P}) \circ Z(\mathfrak{P})$.
- □ Unión disjunta es producto tensorial: $Z(\diamondsuit) = Z(\diamondsuit) \otimes Z(\diamondsuit)$.
 □ La variedad vacía va al cuerpo base: $Z(\varnothing) = \&$.
- ♦ Los \aleph intercambian el orden de los factores: $Z(\aleph)$: $m \otimes n \mapsto n \otimes m$.

El Lema del Zorro: descomponiendo cilindros

Ahora, evaluamos una TQFT Z en este diagrama. Sean V ≔ Z(M) y W ≔ Z(M), y también ev ≔ Z(β) y coev ≔ Z

Es decir, $V \xrightarrow{\text{Id} \otimes \text{coev}} V \otimes W \otimes V \xrightarrow{\text{ev} \otimes \text{Id}} V \text{ es id}_V \colon V \to V$

El Lema del Zorro: descomponiendo cilindros

Ahora, evaluamos una TQFT Z en este diagrama. Sean $V \coloneqq Z(M)$ y $W \coloneqq Z(\overline{M})$, y también ev $\coloneqq Z(\beta)$ y coev $\coloneqq Z(\gamma)$

Es decir, $V \xrightarrow{\text{id} \otimes \text{coev}} V \otimes W \otimes V \xrightarrow{\text{ev} \otimes \text{id}} V$ es $\text{id}_V \colon V \to V$

El Lema del Zorro: descomponiendo cilindros

Ahora, evaluamos una TQFT Z en este diagrama. Sean V := Z(M) y $W := Z(\overline{M})$, y también $ev := Z(\beta)$ y coev := Z(y):

Es decir, $V \xrightarrow{\text{id} \otimes \text{coev}} V \otimes W \otimes V \xrightarrow{\text{ev} \otimes \text{id}} V \text{ es id}_V : V \to V.$

El Lema del Zorro: finito-dimensionalidad

La composición $V \xrightarrow{\text{id} \otimes \text{coev}} V \otimes W \otimes V \xrightarrow{\text{ev} \otimes \text{id}} V$ es id_V . Esto va a forzar que V tenga dimensión finita. Veámoslo.

■ coev: k → W ⊗ V está determinada por la imagen en 1, digamos

$$coev(1) =: \sum_{i=1}^{n} w_i \otimes v_i.$$

■ Evaluamos la composición $V \rightarrow V \otimes W \otimes V \rightarrow V$ en un $v \in V$ genérico:

$$v \longmapsto \sum_{i=1}^{n} v \otimes (w_i \otimes v_i) \longmapsto \sum_{i=1}^{n} \operatorname{ev}(v \otimes w_i) \cdot v_i = v.$$

Notar que $ev(v \otimes w_i) \in \mathbb{k}$, así que $\{v_1, ..., v_n\}$ es base de V.

El Lema del Zorro: finito-dimensionalidad

La composición $V \xrightarrow{id \otimes coev} V \otimes W \otimes V \xrightarrow{ev \otimes id} V$ es id_V . Esto va a forzar que V tenga dimensión finita. Veámoslo.

coev: k → W ⊗ V está determinada por la imagen en 1, digamos

$$coev(1) =: \sum_{i=1}^{n} w_i \otimes v_i.$$

■ Evaluamos la composición $V \rightarrow V \otimes W \otimes V \rightarrow V$ en un $v \in V$ genérico:

$$v \longmapsto \sum_{i=1}^{n} v \otimes (w_i \otimes v_i) \longmapsto \sum_{i=1}^{n} ev(v \otimes w_i) \cdot v_i = v.$$

Notar que $ev(v \otimes w_i) \in \mathbb{k}$, así que $\{v_1, ..., v_n\}$ es base de V

El Lema del Zorro: finito-dimensionalidad

La composición $V \xrightarrow{id \otimes coev} V \otimes W \otimes V \xrightarrow{ev \otimes id} V$ es id_V . Esto va a forzar que V tenga dimensión finita. Veámoslo.

■ coev: k → W ⊗ V está determinada por la imagen en 1, digamos

$$coev(1) =: \sum_{i=1}^{n} w_i \otimes v_i.$$

■ Evaluamos la composición $V \rightarrow V \otimes W \otimes V \rightarrow V$ en un $v \in V$ genérico:

$$v \longmapsto \sum_{i=1}^{n} v \otimes (w_i \otimes v_i) \longmapsto \sum_{i=1}^{n} \operatorname{ev}(v \otimes w_i) \cdot v_i = v.$$

Notar que $ev(v \otimes w_i) \in \mathbb{k}$, así que $\{v_1, ..., v_n\}$ es base de V.

El Signo del Zorro

Mediante argumentos similares, se identifica $W \equiv V^*$. Aquí hace falta el diagrama dual (la "Z"):

Lema del Zorro

Los espacios vectoriales imagen de una TQFT tienen dim. finita, y $Z(\overline{M}) \equiv Z(M)^*$.

El Signo del Zorro

Mediante argumentos similares, se identifica $W \equiv V^*$. Aquí hace falta el diagrama dual (la "Z"):

Lema del Zorro

Los espacios vectoriales imagen de una TQFT tienen dim. finita, y $Z(\overline{M}) \equiv Z(M)^*$.

El Signo del Zorro

Mediante argumentos similares, se identifica $W \equiv V^*$.

Aquí hace falta el diagrama dual (la "Z"):

Lema del Zorro

Los espacios vectoriales imagen de una TQFT tienen dim. finita, y $Z(\overline{M}) = Z(M)^*$.

TQFTs 2D y álgebras de Frobenius

Generadores

Teorema

Cob₂ está generada monoidalmente por los morfismos

Es decir: todo cobordismo 2D se puede obtener pegando y tomando unión de las seis piezas básicas.

Demostración: Teoría de Morse.

Función de Morse: $f: B \to [0, 1]$ suave sin puntos críticos degenerados y sin valores críticos repetidos. (Siempre existen).

Generadores

Teorema

Cob₂ está generada monoidalmente por los morfismos

Es decir: todo cobordismo 2D se puede obtener pegando y tomando unión de las seis piezas básicas.

Demostración: Teoría de Morse.

Función de Morse: $f: B \to [0,1]$ suave sin puntos críticos degenerados y sin valores críticos repetidos. (Siempre existen).

Las siguientes relaciones bastan (ignorando las de □ y 💥).

Teorema

 Cob_2 es equivalente a la categoría monoidal simétrica generada por los morfismos \mathbb{O} , \mathbb{D} , \mathbb{C} , \mathbb{O} y sujeta a estas relaciones.

Las siguientes relaciones bastan (ignorando las de ⊏ y 💥).

Teorema

 Cob_2 es equivalente a la categoría monoidal simétrica generada por los morfismos \mathbb{Q} , \mathbb{Q} , \mathbb{Q} , \mathbb{Q} y sujeta a estas relaciones.

Las siguientes relaciones bastan (ignorando las de ⊏ y 💥).

Teorema

 Cob_2 es equivalente a la categoría monoidal simétrica generada por los morfismos \mathbb{O} , \mathbb{D} , \mathbb{C} , \mathbb{O} y sujeta a estas relaciones.

Las siguientes relaciones bastan (ignorando las de ⊏ y 💥).

Teorema

 \mathbf{Cob}_2 es equivalente a la categoría monoidal simétrica generada por los morfismos \mathbb{O} , \mathbb{D} , \mathbb{C} , \mathbb{O} y sujeta a estas relaciones.

Relaciones

Las siguientes relaciones bastan (ignorando las de 📼 y 💥).

Teorema

 \mathbf{Cob}_2 es equivalente a la categoría monoidal simétrica generada por los morfismos \mathbb{O} , \mathbb{D} , \mathbb{C} , \mathbb{O} y sujeta a estas relaciones.

Relaciones

Las siguientes relaciones bastan (ignorando las de ⊏ y 💥).

Teorema

 \mathbf{Cob}_2 es equivalente a la categoría monoidal simétrica generada por los morfismos \mathbb{O} , \mathbb{D} , \mathbb{C} , \mathbb{O} y sujeta a estas relaciones.

Álgebras, gráficamente

Todas las álgebras serán asociativas y con unidad, pero no necesariamente conmutativas.

Definición

Un *álgebra* sobre un cuerpo \Bbbk es un \Bbbk -espacio vectorial A equipado con aplicaciones lineales

- multiplicación μ : $A \otimes A \rightarrow A$ (dibujada \mathbb{P}),
- unidad $\eta: \mathbb{k} \to A$ (dibujada \mathbb{O}),

cumpliendo

$$(a \cdot b) \cdot c = a \cdot (b \cdot c), \qquad 1 \cdot a = a = a \cdot 1.$$

Álgebras, gráficamente

Todas las álgebras serán asociativas y con unidad, pero no necesariamente conmutativas.

Definición

Un *álgebra* sobre un cuerpo \Bbbk es un \Bbbk -espacio vectorial A equipado con aplicaciones lineales

- multiplicación μ : $A \otimes A \rightarrow A$ (dibujada \mathbb{P}),
- unidad $\eta: \mathbb{k} \to A$ (dibujada \mathbb{O}), cumpliendo

$$(a \cdot b) \cdot c = a \cdot (b \cdot c),$$

$$= \bigcirc = \bigcirc$$

$$1 \cdot a = a = a \cdot 1.$$

Álgebras de Frobenius

Definición

Un álgebra de Frobenius (A, ε) es una k-álgebra A equipada con una «traza» lineal $\varepsilon: A \to k$ cuyo núcleo no contiene ideales no triviales.

Ejemplos: ■ Matrices $n \times n$ con la traza tr: $M_k(n) \rightarrow k$.

■ Complejos con la parte real $\mathfrak{Re}: \mathbb{C} \to \mathbb{R}$.

Sea (A, ε) un álgebra de Frobenius. Dibujamos ε como \mathbb{O} . Definimos el *pairing* $\beta: A \otimes A \to \mathbb{k}$ (dibujado \mathbb{O}) como

$$\beta(x \otimes y) \coloneqq \varepsilon(x \cdot y).$$

El pairing es asociativo

$$B((x \cdot a) \otimes y) = \beta(x \otimes (a \cdot y))$$

Álgebras de Frobenius

Definición

Un álgebra de Frobenius (A, ε) es una k-álgebra A equipada con una «traza» lineal $\varepsilon: A \to k$ cuyo núcleo no contiene ideales no triviales.

Ejemplos: ■ Matrices $n \times n$ con la traza tr: $M_{\mathbb{K}}(n) \to \mathbb{K}$.

■ Complejos con la parte real $\mathfrak{Re}: \mathbb{C} \to \mathbb{R}$.

Sea (A, ε) un álgebra de Frobenius. Dibujamos ε como $\mathbb O$.

Definimos el *pairing* $\beta: A \otimes A \rightarrow \mathbb{k}$ (dibujado \mathbb{S}) como

$$\beta(x \otimes y) \coloneqq \varepsilon(x \cdot y).$$

El pairing es *asociativo*

$$B((x \cdot a) \otimes y) = \beta(x \otimes (a \cdot y))$$

Álgebras de Frobenius

Definición

Un álgebra de Frobenius (A, ε) es una k-álgebra A equipada con una «traza» lineal $\varepsilon: A \to k$ cuyo núcleo no contiene ideales no triviales.

Ejemplos: \blacksquare Matrices $n \times n$ con la traza $\text{tr}: M_k(n) \to k$.

■ Complejos con la parte real $\mathfrak{Re}: \mathbb{C} \to \mathbb{R}$.

Sea (A, ε) un álgebra de Frobenius. Dibujamos ε como $\mathbb O$.

Definimos el *pairing* $\beta: A \otimes A \rightarrow \mathbb{k}$ (dibujado \mathbb{S}) como

$$\beta(x \otimes y) \coloneqq \varepsilon(x \cdot y).$$

El pairing es *asociativo*:

$$\beta((x \cdot a) \otimes y) = \beta(x \otimes (a \cdot y)).$$

Álgebras de Frobenius en términos de pairings

La aplicación $\beta = \mathbb{D}$ es un pairing **no degenerado**: existe un **copairing** $\gamma \colon \mathbb{K} \to A \otimes A$ (dibujado \mathfrak{S}) tal que

(Consecuencia de que Ker ε no contenga ideales no triviales).

Caracterización

Un álgebra de Frobenius (A, β) es una k-álgebra A equipada con un pairing β : A \otimes A \rightarrow k asociativo y no degenerado.

(Dado β , se define $\varepsilon = \beta(-\otimes 1_A)$ para recuperar la otra definición)

Álgebras de Frobenius en términos de pairings

La aplicación $\beta = \mathbb{D}$ es un pairing **no degenerado**: existe un **copairing** $\gamma \colon \mathbb{K} \to A \otimes A$ (dibujado \mathfrak{S}) tal que

(Consecuencia de que Ker ε no contenga ideales no triviales).

Caracterización

Un álgebra de Frobenius (A, β) es una k-álgebra A equipada con un pairing β : A \otimes A \rightarrow k asociativo y no degenerado.

(Dado β , se define $\varepsilon = \beta(- \otimes 1_A)$ para recuperar la otra definición).

Coálgebras

Es el concepto dual a «álgebra».

Definición

Un $\it co\'algebra$ sobre un cuerpo k es un k-espacio vectorial $\it A$ equipado con aplicaciones lineales

- comultiplicación $\delta: A \to A \otimes A$ (dibujada $\triangleleft S$),
- counidad $ε: A \rightarrow \mathbb{k}$ (dibujada Φ), cumpliendo

Coálgebras

Es el concepto dual a «álgebra».

Definición

Un $\it co\'algebra$ sobre un cuerpo k es un k-espacio vectorial $\it A$ equipado con aplicaciones lineales

- comultiplicación $\delta: A \to A \otimes A$ (dibujada $\triangleleft S$),
- counidad $ε: A \rightarrow \mathbb{k}$ (dibujada Φ), cumpliendo

Álgebras de Frobenius en términos de coálgebras

Dada (A, ε) álgebra de Frobenius, definimos la comultiplicación $\delta = \emptyset$

con counidad $\varepsilon = \mathbb{O}$.

Caracterización

Un álgebra de Frobenius $(A, \mu, \eta, \delta, \varepsilon)$ es un \mathbb{K} -álgebra (A, μ, η) que también es \mathbb{K} -coálgebra (A, δ, ε) , y tal que las dos estructuras satisfacen la **relación de Frobenius**:

Álgebras de Frobenius en términos de coálgebras

Dada (A, ε) álgebra de Frobenius, definimos la comultiplicación δ = \triangleleft

con counidad $\varepsilon = \mathbb{O}$.

Caracterización

Un álgebra de Frobenius $(A, \mu, \eta, \delta, \varepsilon)$ es un **k**-álgebra (A, μ, η) que también es **k**-coálgebra (A, δ, ε) , y tal que las dos estructuras satisfacen la **relación de Frobenius**:

Álgebras de Frobenius conmutativas y simétricas

Definición

Un álgebra de Frobenius se dice *conmutativa* si es conmutativa:

Equivalente a que sea coálgebra *coconmutativa*:

Definición

Un álgebra de Frobenius se dice **simétrica** si el pairing β es simétrico:

Equivalente a que el copairing y sea **simétrico**:

Álgebras de Frobenius conmutativas y simétricas

Definición

Un álgebra de Frobenius se dice *conmutativa* si es conmutativa:

Equivalente a que sea coálgebra *coconmutativa*:

Definición

Un álgebra de Frobenius se dice **simétrica** si el pairing β es simétrico:

Equivalente a que el copairing y sea *simétrico*:

La correspondencia

Una TQFT 2D Z determina un álgebra de Frobenius conmutativa:

Y viceversa: un álgebra de Frobenius conmutativa determina una TQFT.

Teorema (folklore)

Existe una equivalencia natural entre **TQFTs 2D orientadas** y **álgebras de Frobenius conmutativas**, dada por la evaluación

$$Z \longmapsto (Z(\mathbb{S}^1), Z(\mathcal{D}), Z(\mathbb{O}), Z(\mathcal{C}), Z(\mathbb{O}))$$

La correspondencia

Una TQFT 2D Z determina un álgebra de Frobenius conmutativa:

Y viceversa: un álgebra de Frobenius conmutativa determina una TQFT.

Teorema (folklore)

Existe una equivalencia natural entre TQFTs 2D orientadas y álgebras de Frobenius conmutativas, dada por la evaluación

$$Z \longmapsto (Z(\mathbb{S}^1), Z(\mathcal{D}), Z(\mathbb{O}), Z(\mathcal{C}), Z(\mathbb{O})).$$

Está todo en el (buenísimo) libro de Kock:

Kock, Joachim (2003). Frobenius Algebras and 2D Topological Quantum Field Theories. London Mathematical Society Student Texts 59. Cambridge: Cambridge University Press, 2003. DOI: 10.1017/CB09780511615443.

...y en mi TFM:

«2D Topological Quantum Field Theories, Frobenius Structures, and Higher Algebra» (2024). TFM. Madrid: Universidad Complutense de Madrid, 2024. DOI: 20.500.14352/105943.

¡Gracias por vuestra atención!