UNIVERSIDADE FEDERAL DO PARANÁ

Disciplina: Álgebra Linear - prof. Oliver 3^a Lista de Exercícios - 09 / 05 /2019 -

- 1. Considere em $V=\mathbb{R}$ a operação multiplicação por escalar $p:\mathbb{R}\times\mathbb{R}$ dada por $p(\alpha,x)=t\alpha x$, onde $t\in\mathbb{R}$ é uma constante não nula fixada e a operação soma $s:\mathbb{R}\times\mathbb{R}$ dada por s(x,y)=xy. Este conjunto V com estas operações é um espaço vetorial? Se sim, prove. Senão indique qual das propriedades não é satisfeita para qual operação. Não é um espaço vetorial. Não são satisfeitas: a propriedade do elemento oposto da adição e as propriedades distributivas.
- **2.** Verifique se o subconjunto $\{(-1,0,1,1),(2,6,-2,4),(-2,3,-4,-1)\}$ de \mathbb{R}^4 é l.i. Sim.
- **3.** Complete o conjunto $\{(1,1,2,0), (-1,1,0,3)\}$ de modo a encontrar uma base de \mathbb{R}^4 . Existem várias possibilidades. Basta esocler dois vetores tal que o determinante da matriz formada por eles tenha determinante não nulo.
- **4.** O conjunto dos polinômios reais (de qualquer grau) é um espaço vetorial com a soma e multiplicação por escalar usuais? Se sim qual a dimensão deste espaço vetorial? Sim. Mas a dimensão é infinita, pois o conjunto dos monômios $\{1, x, x^2, x^3, \dots\}$ é l.i. e tem infinitos vetores.
- **5.** Considere o espaço vetorial $(\mathbb{R}^2, +, \cdot)$.
- (a) Encontre a matriz de mudança de base de $\{(1,2),(-2,1)\}$ para a base canônica. $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}.$
- (b) Encontre a matriz de mudança da base canônica para a base $\{(1,2),(-2,1)\}$. $\begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{-2}{5} & \frac{1}{5} \end{bmatrix}$.
- (c) Encontre a matriz de mudança de base de $\{(1,2),(,-2,1)\}$ para $\{(1,3),(2,4)\}$. $\begin{bmatrix} -5 & -2 \\ \frac{-5}{2} & \frac{-3}{2} \end{bmatrix}$.
- **6.** Dados $U = span(\{(0,1,0)\})$ e $V = span(\{(1,0,2),(-2,0,1)\})$, mostre que $\mathbb{R}^3 = U \oplus V$.

1

UNIVERSIDADE FEDERAL DO PARANÁ

Disciplina: Álgebra Linear - prof. Oliver 4^a Lista de Exercícios - 16 / 05 / 2019 -

- 1. Para cada uma das seguintes transformações $T_i : \mathbb{R}^2 \to \mathbb{R}^2$, encontre uma matriz $A_{2\times 2}$ tal que $T_i(x,y)$ pode ser escrita como $T_i(x,y) = A \begin{bmatrix} x \\ y \end{bmatrix}$.
 - a) A transformação identidade $T_1(x,y) = (x,y) \quad \forall x,y \in \mathbb{R}. \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
 - b) A transformação homotetia, isto é, $T_2(x,y)=(\alpha x,\alpha y) \quad \forall x,y\in\mathbb{R}, \text{ com }\alpha\in\mathbb{R}$ fixado. $\begin{bmatrix}\alpha & 0\\ 0 & \alpha\end{bmatrix}.$
 - c) A projeção sobre o eixo x, isto é, $T_3(x,y)=(x,0) \quad \forall x,y \in \mathbb{R}.$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
 - d) A transformação nula $T_4(x,y)=(0,0) \quad \forall x,y \in \mathbb{R}. \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
 - e) A rotação de $\theta = \frac{\pi}{2}$ sobre o eixo x, ou seja, a transformação que leva o sistema de eixos coordenados xy no eixo x'y', ortogonais, com a mesma origem e rotacionados de $\theta = \frac{\pi}{2}$ rad. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- **2.** Considere o espaço vetorial $(\mathbb{R}^2, +, \cdot)$.
- (a) Encontre a matriz de mudança de base de $\{(1,2),(-2,1)\}$ para a base canônica. $\begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}.$
- (b) Encontre a matriz de mudança da base canônica para a base $\{(1,2),(-2,1)\}$. $\begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{-2}{5} & \frac{1}{5} \end{bmatrix}$.
- (c) Encontre a matriz de mudança de base de $\{(1,2), (,-2,1)\}$ para $\{(1,3), (2,4)\}$. $\begin{bmatrix} -5 & -2 \\ \frac{-5}{2} & \frac{-3}{2} \end{bmatrix}$.

1

3. Considere as bases $\alpha = \{(1,1), (-1,1)\}$ e $e = \{(1,0), (0,1)\}$ de \mathbb{R}^2 .

- a) Encontre a matriz da transformação $T_a: \mathbb{R}^2 \to \mathbb{R}^2$ de α para e dada por $T_a(x,y) = (-2x+y,x+y).$ $\begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$.
- b) Encontre uma transformação de \mathbb{R}^2 para \mathbb{R}^2 cuja matriz de transformação de α para e seja $T_b=\begin{bmatrix} -1 & 0 \\ 2 & 2 \end{bmatrix}$. $T_b(x,y)=(\frac{x-y}{2},2y)$.
- c) Encontre a matriz da transformação obtida no item (b) da base α para a base $\gamma = \{(-2,1),(0,3)\}. \begin{bmatrix} 0 & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$
- **4.** Considere as bases α e e do exercício anterior de \mathbb{R}^2 e a base $\beta = \{(1,0,0), (0,0,1), (0,0,1,1)\}$ de \mathbb{R}^3 .
 - a) Encontre a matriz da transformação $S_a: \mathbb{R}^2 \mapsto \mathbb{R}^3$ de e para β dada por $S_a(x,y) = (x+2y,2x-y,x-y). \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 2 & -1 \end{bmatrix}.$
 - b) Encontre uma transformação de \mathbb{R}^3 para \mathbb{R}^2 cuja matriz de transformação de β para e seja $S_b = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 2 \end{bmatrix}$. $S_b(x,y,z) = (x+y-z,-x+z+y)$.
 - c) Considere a transformação de \mathbb{R}^2 para \mathbb{R}^3 dada pela composição $T_e = (S_a(T_a(x,y)))$ (dos itens (a) dos exercícios 4 e 3 respectivamente). Encontre a matriz de transformação de T_e de α para β . Basta multiplicar a matriz obtida em 4a pela matriz obtida em 3a, nesta ordem.
- **5.** Invente um produto interno de \mathbb{R}^n que não seja um dos vistos em sala e verifique que é de fato um produto interno.
- **6.** Dados os vetores u=(1,1,0), v=(1,-1,2) e w=(0,-1,3) obtenha uma base ortonormal de vetores de \mathbb{R}^3 usando o processo de Gram-Schmidt.

$$\{(\tfrac{1}{\sqrt{2}},\tfrac{1}{\sqrt{2}},0),(\tfrac{1}{\sqrt{6}},\tfrac{-1}{\sqrt{6}},\tfrac{2}{\sqrt{6}}),(\tfrac{-1}{\sqrt{3}},\tfrac{1}{\sqrt{3}},\tfrac{1}{\sqrt{3}})\}.$$