SWI Notes

Patrick Frostholm Østergaard $\label{eq:June 8, 2023}$ June 8, 2023

1 Essence Terminology

Term	Definition
Digital	Products, services processes, or business models that emerge within
innovation	or between business units and where digital technology is a key
	factor in triggering or enabling value.
Paradigm	Products, services, processes, or business models that emerge from
innovation	radical changes in the mental models of what a business is; who
	the users are; or what the market is.
Position	Products, services, processes, or business models that emerge by
innovation	fitting earlier solutions into new uses.
Process	New or radically improved ways to produce products or services.
innovation	
Product	New or radically changed products or services.
innovation	
Software-	Systems where software plays a key role in providing functionality
intensive system	and value. A software-intensive system is a system where software
	is essential for the design, construction, or implementation of the
	system as a whole.
Appreciative	The set of values, preferences, and norms, in terms of which they
system	make sense of practice situations, formulate goals and directions
	for action, and determine what constitutes professional conduct.
Apprehension	Understandings - leaps of faith - without factual grounds for as-
	serting its existence. When we apprehend, we understand an idea
	or notion without factual basis for its existence.
Assertion	Beliefs or facts backed by evidence.
Backing	Why the Prospect is an attractive and useful solution to the Prob-
	lem.
Capability	An ability or facility devised to handle Manifestation s as part of
	a Solution that Provides Value. Basically, what we call a feature
	normally.
Contribution	Column in the Configuration Table. What we design as part of
	a solution. Used to understand and devise how the constructive
	parts of a solution could be designed.
Criteria	What to look for to determine if desired qualities are achieved.
Inner	The substance and organization of what we design and implement.
Environment	
Outer	The surroundings in which our problem resides and where the con-
Environment	tributions we design will operate. External services, implements,
	repositories, and people are examples of elements in the Outer En-
	vironment.
Inquiry	Inquiry is a reflective thoughts process of understanding and re-
	solving a problem. This starts the moment we recognize an Inde-
	terminate Situation as problematic.
Keystones	What we used to build the Solution - technologies, Components,
	information, and human resources are examples of keystones.

Leverage	Keystones of the Inner Environment that help create a great Contribution.
Manifestation	An object, event, or action that reflects or gives a tangible or visible form to the Problem. Such objects, events, or actions, in turn, should be matched by Capability provided by the Contribution of the project.
Problem	A Problem reflects an understanding of a situation. In Essence, Problems are used as analytical instruments. They are formulated as part of inquiring into a Problematic Situation . Problems, therefore, have no objective status.
Prospect	Our overall End-in-view . What we believe would be a solution if the products developed in the project are put to proper use. A Prospect thereby reflects an understanding of the problem and an adequate way to solve it.
Qualification	Do we solve the entire Problem or are there limitations in our resolution? Will our resolution be acceptable despite these limitations?
Rationale	Row in the Configuration Table. The logical basis that makes actions meaningful and helps reason about strategy and tactics.
Reservation	Limitations in the solution (why the Inner Environment might not support a complete solution to the Problem).
Rebuttal	Reasons why limitations in the solution may be acceptable.
Resolution	Why the Problem might be resolved by what is to be built, why this is important, and why the result is attractive. Resolution combines Prospect , Warrant and Backing .
Situation	Column in the Configuration Table. The problem and the context of it. An understanding that reflects an underlying mental model of the problem and the system ecology, who the users are, and what they care for.
Solution	Column in the Configuration Table. How our Contribution resolves the Situation . Solution is about the purpose and overall idea of the project.
Strategy	Row in the Configuration Table. The master plan for solving the overall problem: Including the scope of the problem, the key Components for building the solution, and the qualifications regarding limitations and constraints that may affect the utility or acceptability of a solution.
Tactics	Row in the Configuration Table. Actions planned in accordance with a strategy to achieve specific ends.
Valuation	Column in the Configuration Table. Used to determine if we are moving in the right direction to resolve the Problem . Used to offer a range of ways to develop ideas, invent alternative lines of action, and, not least, provide criteria to assess and evaluate qualities of contributions to provide a sound basis for decision making.
Value	Something desired as a (partial) solution to the Problem .
Warrant	Reasons why solving the Problem is important.

Constituent	The distinctions and relations we experience when we see a prob-
	lem.
Element	Core objects or events in the problem domain. Can be services,
	artifacts, repositories, individuals, groups, or events.
Event	Events are objects in time; especially things of importance for the
	unfolding of the problem and where one or more objects are in-
	volved.
Existential	Items can be existential (tangible) meaning that they have being
	in time and space or are experienced to be so.
Ideational	Items may be ideational - not yet in existence - and represent ideas
	for actions, things to build, or hypothetical concepts for example
	regarding user characteristics.
Indeterminate	The condition before inquiry starts is called indeterminate. The
Situation	elements of the situation are not determined - let alone understood
200000000	- and the scope of inquiry is not presumed yet.
Determinate	The determinate situation is the final outcome of inquiry where
Situation	uncertainty and doubtfulness is resolved and replaced by a closed,
	finished, and unified situation.
Object	· · · · · · · · · · · · · · · · · · ·
Oojeci	Transitory objects that can be represented - like any object - by
	nouns or substantives. Events have substance and are characterized
D 11	by a delimiting beginning, an interval, and a termination.
Problematic	A situation becomes problematic when our uncertainty and doubt-
Situation	fulness makes us stop and consider how to settle it. This is when we
	begin to consider which objects, events, and qualities seem relevant
	to the situation.
Idea	Ideas describe something that may happen. The development and
	evaluation of ideas are a central part of the progressive determina-
	tion of a problem and ways to address it. For that reason, ideas
	may be vague when we start working on a not-too-familiar context
	and develop as we gain insights.
Means	Instruments used to attain an End - something that is useful in
	achieving a result. A database, a server, an app, etc., could be
	ends in and by themselves, but as we design and build them, they
	might also be means of building a system to serve a higher end.
Material Means	Means - including observed data, facts and artifacts - that com-
	bined serve to create a resolved situation.
Procedural Means	Procedural means serve to determine how and if a resolved situation
	is attained.
Transaction	Interactions between the inquirer and the materials at hand - the
	elements deemed part of the problematic situation and the means
	available for resolving it.
End	The ultimate end for inquiry is to resolve a problematic situation
	via existential changes. Such an end represents a fulfilling close
	and termination of the project.

End-in-view	An idea of an end to be reached and represents the purpose of taking a step towards an overall resolving end. The end-in-view is the anticipated consequence of taking a step - the existential change to be effected by that step.
Approriate	A Solution is appropriate to the Problem if there is a meaningful match between the two.
Design By Contract	An idea from software design. If stated preconditions are true, and if the software executes correctly, then the result will honor the stated postconditions. In Essence this idea is used to ensure that any activity in a project will leave the project in a stable state.
ETVX Model	A model of development activities consisting of four parts: Entry criteria, Task, Validation, and eXit Criteria.
Pivot	When one Prospect is replaced by another due to a significant change in project Rationale .
RST Review	There are three focus areas for reviews in Essence: Rationale, Strategy, and Tactics, and accordingly we use the term RST Reviews to denote Essence Reviews. The purpose of a RST Review is to determine if a Configuration Table needs to be revised.
Components	Equipment, sensors, or actuators used actively as part of building a solution and accessed via crafted interfaces.
External	Equipment, sensors, or actuators available in the Outer Environ-
Implements	ment and accessed via trivial interfaces.
External People	Specific persons, categories of people, stakeholders, authorities, social or professional networks, organizations, or others that will interface with the system.
External	Repository for collecting, storing, disseminating, and/or aggregat-
Repository	ing information via trivial interfaces.
External Services	Services that are used without modification and reduce what is left for us to deal with. For example, providers of marketing infor- mation, tracking of equipment, maintenance, streaming services, digital infrastructures, and more.
Initial Problem	The first intuitive idea of the problem and the situation in which it resides.
Internal Human Resources	Specific users, categories of users, authorities, social or professional networks, organizations, or others that will have particular roles or functions designed as part of building a solution. Cyberhuman systems are prominent examples of systems where internal people are Leverage points
Internal	Used for collecting, storing, disseminating and/or aggregating in-
Information	formation to be accessed via trivial interfaces
Technology	Scientific knowledge, machinery, and equipment on which a design might be based
Role	Roles in Essence are for learning across problem and solution domains. Learning usually requires insights and experiences to be shared, and one principal way of sharing is through interaction among people. There are four Essence Roles: Anchor Role, Challenger Role, Child Role, and Responder Role.

Anchor Role	The team member in charge of Valuation. A team captain (al-
	though not a team manager) who facilitates credible evaluations
	and provides a reasonable basis for decisions on whether to Pivot
	or persevere.
Challenger Role	The team member who provides the reasoning and politics under-
	lying the Solution . Aiming for a Solution with a good balance
	between Problem and Contribution in the specific Situation .
	Open to new ideas and good arguments.
Child Role	Any team member exploring the Situation . Unorthodox and cre-
	ative. Offers ideas and proposals without responsibility. Questions
	conventional views on uses, needs, users, and the application of
	technology. This Role is fleeting.
Responder Role	Any developer working on the Contribution . Offers technological
	responses to challenges - always with a view to technological options
	and affordances that come up during the design process.
Prospect	Alternative ideas for defining a problem and ways to solve it. They
Scenarios	are used to develop prospective definitions of a problem and corre-
	sponding approaches to solving it.
Contribution	The part of a Prospect Scenario aiming to explore conceivable
Scenario	Contributions.
Situation	The part of a Prospect Scenario aiming to explore a Problem-
Scenario	atic Situation.
Icon	Symbolic representations such as images to illustrate key qualities
	in a Solution.
Metaphor	Metaphors can represent design principles via analogies using fig-
	urative language, symbols, slogans, and similar. The idea usually
	is to provoke ideas by looking at principles employed in solutions
	to problems that somehow are similar to the problem at hand.
	Such principles could then perhaps inspire solutions for the cur-
	rent project.
Proposition	A Proposition aims to express core properties of the resolution of
	the problem.
Prototype	A Prototype suggests a physical design and indicates how to oper-
	ate it.

2 General Innovation Theory

2.1 Basic Terms

- Creativity: a state of mind which leads to inventive or innovative thinking.
- Invention: e.g., a new algorithm, new use of data, or program.
- Innovation: creative atc and invention carried into wider use, leading to substantial kinds of change. Innovation implies the successful use exploration of new ideas.

2.2 A combination of Activities

- Innovation = invention + exploitation + diffusion.
- **Invention**: The creative act or process and its result.
- Exploitation: Commercial development and adaptation to practical situations.
- **Diffusion**: Adoption by a wider audience.

2.3 Dimensions of Innovation

Figure 1: Tidd, J., Bessant, J. R., and Pavitt, K. 2005 Managing innovation: integrating technological, market and organization change. Wiley.

2.4 Innovation Space

Figure 2: Tidd, J., Bessant, J. R., and Pavitt, K. 2005 Managing innovation: integrating technological, market and organization change. Wiley.

2.5 Novelty: Levels of Innovation (Altshuller)

- Level 1: Routine design problems solved by methods well known with the specialty usually no invention needed.
- Level 2: Minor improvements to an existing system using methods known within the industry.
- Level 3: Fundamental improvement to an existing system using methods known outside the industry.
- Level 4: A new generation of a system that entails a new principle for performing the system's primary functions solutions are found more often in science than technology.
- Level 5: A rare scientific discovery or pioneering invention of an essentially new system.

Figure 3: Jeremy Rose

2.6 Hierarchies of Technical Systems (Altshuller)

Figure 4: Jeremy Rose

2.7 Incremental and Radical Innovation

Figure 5: Jeremy Rose