27 Поля Галуа и их применение в компьютерных сетях

Множество G называют группой если для него определена бинарная операция * и:

- 1. Операция * является ассоциативной: (a * b) * c = a * (b * c) -- соответствует умножению.
 - 2. Существует нейтральный элемент -- соответствует единице.
- 3. Имеется унарная операция, позволяющая получить обратный элементу *а* элемент -- соответствует *а*-1.

Группу называют абелевой если операция * коммутативна: a * b = b * a. Если для группы определена операция умножения (a * b = ab), то группу называют мультипликативной.

Мультипликативную группу называют *циклической* если в ней существует такой элемент, что все остальные элементы являются степенями этого элемента: $b = a^k$. А сам элемент а называют образующим группу.

Множество R называют кольцом если для множества определены две бинарные операции # и * такие что:

- 1. Множество R является абелевой группой относительно операции # -- соответствует сложению.
 - 2. Операция * является ассоциативной.
 - 3. Выполняется закон дистрибутивности: a * (b # c) = a * b # a * c.

Если для группы определена операция сложения (a # b = a + b), то группу называют аддитивной. Единичный элемент аддитивной группы соответствует нулю. Обратный элементу а элемент аддитивной группы соответствует -a.

На операцию * можно накладывать дополнительные ограничения. Если в кольце присутствует единица, то кольцо называют кольцом с единицей.

При выполнении закона коммутативности кольцо называют коммутативным.

Коммутативное кольцо называют *целостным* если его единица не равна нулю и a * b = 0 только при a = 0 или b = 0.

Кольцо называют *телом* если кроме нуля в кольце существуют другие элементы и эти элементы образуют группу относительно операции *.

Наконец, коммутативное тело *F* называют полем.

Подгруппой, подкольцом, подполем называют подмножества сохраняющие соответствующие свойства.

Поле, не содержащее подполей, называют простым. Простым будет поле, порядок которого равен простому числу.

Подкольцо I кольца R называют его uдеалом (двухсторонним uдеалом) если для любой пары элементов a из I и r из R их произведение принадлежит I.

Подкольцо R/I классов вычетов по модулю идеала I из кольца R называют факторкольцом кольца R по идеалу I.

Наименьшее из натуральных чисел n, такое что для любого элемента r из кольца R выполняется равенство n * r = 0, называют характеристикой кольца R.

Согласно теореме, каждое конечное целостное кольцо образует поле.

Согласно другой теореме, характеристикой конечного поля является простое число.

Поле GF(p) из целых чисел 0, 1 ... p - 1, порожденное в результате отображения f: \mathbf{Z}/p -> GF(p), где \mathbf{Z}/p -- факторкольцо множества целых чисел, в котором роль идеала играет простое число p, и f([a]) = a, называют полем Галуа (Galois field) порядка p.

При вычислениях с элементами поля Галуа используют целочисленную арифметику с приведением по соответствующему модулю.

В помехоустойчивом кодировании очень важное место занимают поля Галуа.

В помехоустойчивом кодировании все операции выполняются по, так называемой, арифметике Галуа. Т.е. результатом любой арифметической операции будет являться элемент из данного поля. Поля задаются целым числом. Пример: GF (Galua field) от 5 будет равно: GF(5) = 0, 1, 2, 3, 4. Пример сложения: 0 + 1 = 1, 4 + 1 = 0, 4 + 3 = 2. Умножение: 4 * 2 = 3. И т.д. (операции делаем по модулю).

Для бинарных же векторов арифметика намного сложнее. Сложение тут будет представляться операцией хог GF(4): (1 + 1 = 0, 2 + 2 = 0, 3+1=2). Умножение – умножением полиномы GF(8): (например, $5 = 101 = x^2 * 1 + x$ * $\frac{0}{1}$ + 1 * $\frac{1}{1}$, 7 = 111 = $\frac{x^2}{1}$ + $\frac{1}{1}$ + $\frac{1}{1}$ + 1 * $\frac{1}{1}$. 5 * 7 = $\frac{x^2}{1}$ + $\frac{1}{1}$ + $\frac{1}{1}$ $x^4 + x^3 + x^2 + x^2 + x + 1 = x^4 + x^3 + x + 1 = 11011 = 27$). $x^2 + x^2$ складываются по хог (получается 0). Далее, так как результат не входит в используемое поле, необходимо использовать порождающий полином (выбирается самостоятельно). В качестве полинома используется неприводимое (простое) число. Используем $x^3 + x + 1 = 1011 = 11$. Вернёмся к умножению. Теперь складываем порождающий полином и результат умножения (всё ещё по модулю): $(x^4 + x^3 + x + 1) + (x^3 + x + 1) = x^4$.

Деление можно представить, как умножение полинома-делимого на полином, обратный делителю.

Источник лекция 4

 $https://github.com/IvanGrigorik/BSUIR_labs/blob/main/5_term/TOKS/Exam/Answers.pdf$