LABORATOR#1

I. ECUAŢII NELINIARE: METODA BISECŢIEI

- Fie $f:[a,b] \longrightarrow \mathbb{R}$ o funcție continuă a.î. f(a)f(b) < 0. Atunci $\exists x^* \in (a,b)$ a.î. $f(x^*) = 0$.
- Metoda bisecției generează un șir de aproximări $\{x_n\}_{n\geq 0} \subset \mathbb{R}$ convergent către soluția exactă a ecuației f(x) = 0, i.e. $\lim_{n\to\infty} x_n = x^*$, unde x^* este soluția exactă a ecuației f(x) = 0.
- Metoda bisecției constă în înjumătățirea, la fiecare pas, a intervalului și selectarea acelui interval în care se află soluția.

ALGORITM (Metoda bisecției)

```
\begin{aligned} \textbf{Date:} & f, a, b; \\ n = 0: \ a_n = a; & b_n = b; \\ x_n = a_n + (b_n - a_n)/2; \\ n \ge 1: & \text{if } f(a_{n-1})f(x_{n-1}) \le 0 \text{ then} \\ & a_n = a_{n-1}; & b_n = x_{n-1}; \\ & \text{else} \\ & a_n = x_{n-1}; & b_n = b_{n-1}; \\ & \text{endif} \\ & x_n = a_n + (b_n - a_n)/2; \\ & n = n + 1; & \text{repeat step for } n \ge 1 \end{aligned}
```

 $\mathbf{EX\#1}$ Fie ecuația $x^6 - x - 1 = 0$.

- (a) Să se construiască în MATLAB® graficul funcției $f(x) = x^6 x 1$ pe intervalul [-2, 2] și dreapta de ecuație y = 0, în același sistem de coordonate xOy.
- (b) Să se creeze un fișier script în MATLAB® care construiește soluția aproximativă a ecuației prin metoda bisecției cu eroarea $TOL = 10^{-5}$ pentru fiecare interval în parte [-1,0], respectiv [1,2]. Se va considera criteriul de oprire $|f(x_n)| < TOL$.
- (c) Să se determine toate soluțiile, atât cele reale, cât și cele complexe, ale funcției f cu ajutorul calculului simbolic.
- **EX#2** (a) Să se construiască în MATLAB® graficul funcției $g(x) = e^{-x}(x^2 5x + 2) 1$ pe intervalul [-3,3] și dreapta de ecuație y = 0, în același sistem de coordonate xOy.

- (b) Să se creeze un fișier script în MATLAB® pentru a calcula x_{10} , care aproximează soluția ecuației g(x) = 0 pe intervalul [-1, 1] prin metoda bisecției.
- (c) Să se determine soluția exactă x^* a acestei ecuații folosind calculul simbolic, să se calculeze eroarea absolută $\operatorname{err}_{\mathbf{a}}(x_n) = |x^* x_n|$ și eroarea relativă $\operatorname{err}_{\mathbf{r}}(x_n) = |x^* x_n| / |x^*|$, $n = \overline{1, 10}$, și să se reprezinte grafic.
- (d) Să se afle soluția aproximativă folosind funcția predefinită de MATLAB® fzero.
- **EX#3** (a) Să se creeze un fișier funcție în MATLAB®, Bisection.m, care determină soluția numerică a ecuației $f(x) = 0, x \in [a, b]$, folosind metoda bisecției și are ca argumente de intrare:
 - (i) funcția f care definește ecuația f(x) = 0;
 - (ii) capetele intervalului de izolare a soluției [a, b];
 - (iii) toleranța TOL cu care este aproximată numeric soluția exactă a ecuației f(x) = 0 pe intervalul [a, b];
 - (iv) argumentul opțional OPT prin care se selectează criteriul de oprire dorit, e.g. $\mathsf{OPT}=1$ pentru criteriul $|b_n-a_n|\leq \mathsf{TOL},\;\mathsf{OPT}=2$ pentru criteriul $|x_n-x_{n-1}|/|x_{n-1}|\leq \mathsf{TOL},\;\mathsf{respectiv}\;\mathsf{OPT}=3$ pentru criteriul $|f(x_n)|\leq \mathsf{TOL};$

și ca argumente de ieșire:

- (i) soluția numerică obținută prin metoda bisecției x_n ;
- (ii) numărul de iterații n necesare obținerii soluției numerice x_n .
- (b) Într-un fişier script MainBisection.m, rulați funcția MATLAB® Bisection.m creată la (a) pentru $f(x) = x^2 3$, [a, b] = [1, 2], $TOL = 10^{-10}$ și toate cele trei criterii de oprire menționate la (a).