YAMP: a framework enabling reproducibility in metagenomics research

Alessia Visconti

Reproducibility

>50%

>70%

Repeatability

Reproducibility

Baker, Nature (2016)

IS THERE A REPRODUCIBILITY CRISIS?

~31%

not-reproducible → non-trustable

The Economics of Reproducibility in Preclinical Research

Leonard P. Freedman ☑, Iain M. Cockburn, Timothy S. Simcoe

Published: June 9, 2015 • https://doi.org/10.1371/journal.pbio.1002165

What cause irreproducible research?

1. Unavailability of primary data

Solution: data repository

Data Sharing - Wikipedia

2. Unavailability of sufficient details on computational experimentation

RESEARCH ARTICLE

Quantifying Reproducibility in Computational Biology: The Case of the Tuberculosis Drugome

Daniel Garijo, Sarah Kinnings, Li Xie, Lei Xie, Yinliang Zhang, Philip E. Bourne ☑, Yolanda Gil ☑

Published: November 27, 2013 • https://doi.org/10.1371/journal.pone.0080278

Provenance

Solution: well-structured workflows

A review of bioinformatic pipeline frameworks

Jeremy Leipzig

Briefings in Bioinformatics, Volume 18, Issue 3, 1 May 2017, Pages 530-536,

https://doi.org/10.1093/bib/bbw020

Published: 24 March 2016 Article history ▼

= Galaxy

nextlow

Data Sharing + well-structured workflow

3. Variations across workstations and operating systems

Same data & pipeline, different OS and results

Kallisto and Sleuth pipelines, applied to find differentially expressed genes (q-value < 0.01) in an RNA-seq experiment, using data from human lung fibroblasts.

Solution: containers

What is a container - Docker

Data sharing + well-structured containerised workflow

Same data, pipeline, container, and results

Kallisto and Sleuth pipelines, applied to find differentially expressed genes (q-value < 0.01) in an RNA-seq experiment, using data from human lung fibroblasts.

Metagenomics

Belly Button Microbiome © Joana Ricou

" Metagenomics is the study of genetic material recovered directly from environmental samples.

Metagenomics - Wikipedia

99

Fermentation Disease Bioremediation Disease Public Health diversity Industry Microbes Breadcompounds Breadcompounds Chiotics Kefir biosynthesis

microbes
Breadcompounds
Alcohol Obesity
Biofuel pollutant Alcohol Obesity
Bacteria viruses Beer
Sauerkraut Symbiotic Yogurt
Suerkraut Symbiotic Yogurt
Autism
Wine Fertiliser Agriculture
Compost Cheese
Type II Diabetes

Decomposition

How to conduct metagenomics studies (simplified)

YAMP: Yet Another Metagenomics Pipeline

Why?

1. Easy to use

2. Portable

3. Flexible

4. Reproducible

How?

nextlow

What?

Additional output: detailed log file & statistics of memory usage and time of execution

A case study

Body site	Locus	SRA Accession Number	Number of Raw Paired-end Reads	Number of QC'ed Reads Paired-ed ; Singletons	Running time
Airways	Anterior nares	SRR1944674	1,181,169	590,714 ; 42,241	39m 02s
		SRR1944683	2,820,900	56,151 ; 9,513	31m 31s
		SRR1952439	14,635,701	201,260 ; 17,345	42m 00s
Gut	Stool	SRR1951826	7,956,274	7,121,697 ; 494,289	2h 15m 39s
		SRR1944873	11,033,130	9,796,817 ; 942,566	2h 26m 01s
		SRR1952058	5,834,232	5,484,362 ; 248,819	1h 39m 10s
Oral cavity	Buccal mucosa	SRR1944703	6,231,553	285,906 ; 24,212	39m 09s
		SRR1952437	15,361,468	3,451,844 ; 149,714	1h 19m 26s
		SRR1952380	11,872,420	631,595 ; 41,957	49m 07s
	Supragingival plaque	SRR1952435	16,169,911	13,620,835 ; 672,610	2h 44m 56s
		SRR1952436	21,971,588	17,237,506 ; 987,950	4h 07m 11s
		SRR1952492	19,202,739	8,040,737 ; 1805,898	1h 51m 05s
		SRR1944869	8,074,428	6,140,295 ; 499,284	1h 36m 58s
	Tongue dorsum	SRR1952378	15,024,409	12,622,724 ; 891,920	3h 17m 30s
		SRR1952379	42,173,063	29,697,754 ; 2,084,990	7h 10m 23s
Vagina	Posterior fornix	SRR1951760	10,611,721	373,021 ; 24,484	42m 19s
		SRR1944797	8,242,829	120,519 ; 10,009	35m 14s
		SRR1944845	8,537,797	140,658 ; 10,779	34m 19s

2.60GHz Intel[®] Xeon[®] processor with 32 GB of RAM

PCoA evaluated on the Bray-Curtis dissimilarity among species relative abundances

Conclusion

1. Easy to use

Install YAMP (with preset default parameters):

```
git clone https://github.com/alesssia/YAMP.git
```

Download the supporting data:

```
wget https://zenodo.org/record/1068229/files/YAMP_resources_20171128.tar.gz
tar -xzf YAMP_resources_20171128.tar.gz
```

Run your analysis:

```
nextflow run YAMP.nf --reads1 R1.fq.gz --reads2 R2.fq.gz --prefix mysample --outdir outdir --mode complete --with-singularity docker://alessia/yampdocker
```

2. Portable

• SGE cluster

```
executor = 'sge'
```

• PBS/Torque cluster

```
executor = 'pbs'
```

Your laptop

```
// executor = 'sge'
```

3. Flexible

4. Reproducible

5. Not only for metagenomics

6. Not only for reproducibility

Where?

https://github.com/alesssia/YAMP

https://github.com/alesssia/YAMP/wiki

https://hub.docker.com/r/alesssia/yampdocker

https://www.biorxiv.org/content/early/2017/11/21/223016

Who?

Acknowledgements

Mario Falchi Tiphaine Martin

Paolo Di Tommaso Brian Bushnell

Richard Davies

