Explain the concept of score matching and describe how it is used in score-based (diffusion) generative models.

総定 dotta $x \in \mathbb{R}^n$,我們想知道 x 是從 哪個 p of p(x) 的 distribution 抽出的 定義 score function 為 $S(x) := \nabla_x \log P(x)$, $\{S : \mathbb{R}^n \longrightarrow \mathbb{R}^n\}$

向量 S(x) 表示在 x 點, 任哪個方向前進, pdf p(x) 會上升得最快, i.e., 描述往分佈中更合理、常見的樣本前進

而 score matching 是描述學習 score function 的方法,至少有以下3種:

- D Explicit score matching (ESM), \sharp loss function & $L_{ESM}(\theta) := \mathbb{E}_{x \sim p(x)} \left\| S(x; \theta) \nabla_{x} \log p(x) \right\|^{2}$
- Description in the second sec
- 3 Denoising score matching (DSM), \sharp loss function & $L_{DSM}(0) := E_{X_0 \sim P(X_0)} E_{(X_1 X_0) \sim P(X_1 X_0)} \| S_{\sigma}(x;0) \overline{V}_{x} \log P(x_1 X_0) \|^2$

where xo 是 original data $P_0(x_0)$ 是 original polf x 是 perturbed data , and $x = x_0 + \varepsilon_0$, $\varepsilon_0 \sim N(0, \sigma^2 I)$ $P_0(x)$ 是 polf of perturbed polf

在 score-based (diffusion) generative model 中、是利用 Denoising score matching 来學習 Pr(x)的 score function,

$$\begin{array}{l}
\therefore \quad \chi = \chi_o + \xi_{\overline{U}}, \quad \xi_{\overline{U}} \sim N(0, \overline{U}) \\
\therefore \quad P(\chi | \chi_o) = \frac{1}{(2\pi)^{\frac{N}{2}} \overline{U}^d} e^{-\frac{\|\chi - \chi_o\|^2}{2\overline{U}^2}} \\
\Rightarrow \quad \log P(\chi | \chi_o) = \log \frac{1}{(2\pi)^{\frac{N}{2}} \overline{U}^d} - \frac{\|\chi - \chi_o\|^2}{2\overline{U}^2} \\
\Rightarrow \quad \nabla_{\chi} \log P(\chi | \chi_o) = -\frac{1}{\overline{U}^2} (\chi - \chi_o)
\end{array}$$

So, LDSM(0):=
$$\mathbb{E}_{\pi \sim p(\pi)} \mathbb{E}_{(x|\pi_0) \sim p(x|\pi_0)} \| S_{\sigma}(x;0) - \nabla_x \log P(x|\pi_0) \|^2$$

= $\mathbb{E}_{\pi \sim p(\pi_0)} \mathbb{E}_{(x|\pi_0) \sim p(x|\pi_0)} \| S_{\sigma}(x;0) + \frac{1}{\sigma^2} (x-\pi_0) \|^2$
= $\mathbb{E}_{\pi \sim p(\pi_0)} \mathbb{E}_{(x|\pi_0) \sim p(x|\pi_0)} \frac{1}{\sigma^4} \| \sigma^2 S_{\sigma}(x;0) + \chi - \chi_0 \|^2$

 $\chi=\chi_0+\Sigma_T$, $\Sigma_0\sim N(0,T_1)$ 0n the other hand, 若給定 data χ_0 , to 噪得到 $\chi=\chi_0+T\Sigma$, $\Sigma\sim N(0,I)$ 想學習一個 function ho嘗試復原乾淨的影像,則可利用 Denoising auto encoder, 其 loss function 為

在 Vincent 2011年的 paper (A connection between score matching and denoising autoencoders)中 證明了差在 Denoising auto encoder的去噪器是最佳的(在给定噪音(下),即 ho(x)預測 E[xolx], 則此玄噪器 ho(x) 與 score function S(x) 的關係為

$$h_{\theta}(x) = x + \sigma^2 S_{\sigma}(x; \theta)$$

: LOSM = CLDAE, where C & a constant

也就是稅 DSM 是用来 學髒的圖的 score function, DAE 是在學將髒的圖復原成乾净的圖 中的玄噪 (mapping), 而這二件事是等懂的!

2. Unanswered Questions

There are unanswered questions from the lecture, and there are likely more questions we haven't covered.

- · Take a moment to think about these questions.
- Write down the ones you find important, confusing, or interesting.
- · You do not need to answer them—just state them clearly.

Q:這些推導要如何嚴格·清楚的寫下?

其中會有什麼假設或是用到什麼分析上的理論?