Microcontroladores – Período 24.1 (junho/2024 a outubro/2024)

Controle de atividades

													1	∖tiv	rida	de	S													
Alunos		1			2			3			4			5			6			7			8			9			10	
	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	В	С	а	b	С	а	b	С	а	b	С	а	b	С
Allis Marques de Lima	1	3	1	1	3	4	1	3	6	1	3	6	1	1	0	1	3	5	1	3	6									
Andre Hugo Ramalho Lopes	1	3	1	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6									
Daniel de Sa Pires	0	3	2	0	3	1	1	3	0	1	2	0	-	-	-	1	3	1	1	3	0]
Felipe Melo Feliciano de Sa	0	3	1	1	3	0	1	3	6	0	2	1	1	2	4	-	-	-	-	ı	-									
Gabriel Soares Santos do Nascimento	1	1	2	1	3	0	0	0	0	-	-	-	0	1	0	-	-	-	-	•	-									
Gean Rocha da Silva Junior	1	3	1	0	3	3	0	3	6	0	2	1	-3	2	1	1	3	6	1	3	5]
Heriberto Marcio da Silva Junior	1	3	1	1	3	6	1	3	6	0	2	5	0	2	6	1	3	5	1	ვ	5									
Icaro Dutra Gibson da Silva	1	3	1	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6	1	ფ	6									
Isaac Sebastian Lima de Araujo	1	2	1	1	3	6	1	3	6	0	3	6	1	3	6	1	3	6	1	3	6]
Jackson Leandro do Nascimento	0	3	2	1	3	3	0	3	6	0	2	4	0	3	6	1	3	4	1	3	6									
Joao Matheus Falcao de Oliveira	0	2	1	1	3	6	1	3	6	1	3	6	1	2	4	1	3	6	1	0	6									
Jose Maurilio Gomes Junior	1	0	1	1	0	6	1	2	5	0	2	1	1	3	2	-	-	-	1	3	1]
Luann Filgueira Elias	1	1	1	1	3	3	1	3	6	1	3	6	1	3	5	1	3	6	1	ფ	6									
Lucas Guedes da Silva	1	3	1	1	3	3	1	3	6	1	2	1	0	0	2	1	3	6	1	ფ	6									
Luciana Serrao e Silva	1	3	1	1	3	6	1	3	6	-	-	-	1	1	0	-	-	-	1	ფ	0									
Ludmila Vinolia Guimaraes Gomes	1	3	1	1	3	4	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6]
Luis Phellipe Palitot Moreno	1	3	1	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6									
Mario Ferreira Leitao	1	3	1	1	3	6	1	1	6	1	3	6	1	1	0	1	1	5	1	1	0									
Mateus Lucas dos Santos	1	3	1	1	3	6	1	3	6	1	3	6	1	3	6	1	3	5	1	ვ	5									
Pedro Marcio Soares Vieira de Castro	1	3	1	1	3	6	1	3	6	1	2	1	1	3	4	1	2	0	1	1	0									
Rayque Alencar de Melo	1	0	1	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6	1	ვ	6									
Rhamon Espinola Pires	1	3	1	1	3	3	1	3	6	1	3	6	1	3	4	1	3	6	1	3	6]
Rodrigo Lanes Meneses	1	3	1	1	3	4	0	3	2	-	,	-	0	2	2	-	-	-	-	-	-									
Thais Duarte Brito	1	3	1	1	3	6	-	-	-	-	-	-	1	0	3	1	3	2	1	3	3									
Vito Elias de Queiroga	1	3	1	1	0	6	0	3	6	-	-	-	1	3	6	1	3	6	1	3	6									
Yuri Fernandes Souza Silva	1	3	1	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6	1	3	6									

Legenda:

- a) Entrega na data, até às 09h (1,0). Penalização de 3,0 pontos se entregue no dia seguinte.
- **b**) Com comentários suficientes e esclarecedores. Até 3,0 pontos.
- c) Atende as especificações. Até 6,0 pontos.

Para a atividade 1, item "c"

Critérios de correção (pontos somados):

Até 2 – Portugol sem erro de sintaxe

Até 3 – Hipóteses testadas

1 – Apenas um teste por estrutura

Vejam as páginas seguintes com as atividades.

Descrição

Atividade 9 - Data de entrega: 17/10/24

Tema: Medindo de 0 a 3,5V em uma escala de 0 a 9 e indicação em display de 7 segmentos

Objetivo: Exercício de familiarização com o PIC16F628A.

Contexto: Um valor de tensão entre 0 e 3,5V deve ser representado em uma escala discreta, indicando a escala de 0 a 9, para representação em um display de 7 segmentos.

Especificações:

- O PIC16F628A deve ser utilizado nesta implementação;
- A tensão de entrada é de 0 a 3,5V;
- A conversão de tensão para a escala de 0 a 9 deve ser efetuada através do comparador;
- O valor da tensão deve ser convertido para codificação necessária para ser conectado a um display de 7 segmentos;
- A indicação deve ser efetuada em modo cíclico, atualizando o valor a cada 50ms;
- A PORTA B do PIC deve ser utilizada para se conectar ao display de 7 segmentos;
- Os níveis de tensão e a escala correspondente estão na descritos na tabela a seguir:

Valor da tensão (V)	Valor mostrado no display
V<0,35	0
0,35≤V<0,7	1
0,7≤V<1,05	2
1,05≤V<1,4	3
1,4≤V<1,75	4
1,75≤V<2,1	5
2,1≤V<2,45	6
2,45≤V<2,85	7
2,85≤V<3,2	8
3,2≤V	9

Não deixe para tirar dúvidas na véspera da entrega!

Atividade 8 - Data de entrega: 05/10/24

Tema: Comunicação I2C

Objetivo: Exercício de aplicação, com Implementação do protocolo I2C no modo SLAVE.

Contexto: Implementar um dispositivo para estabelecer a ignição do motor de um foguete, utilizando a comunicação I2C para receber o comando de ativação.

Especificações:

- O protocolo I²C deve ser implementado no PIC (12F675) no modo SLAVE;
- O PIC deve receber um byte de endereço e sinalizar sua identificação através de um LED;
- Quando o endereço for identificado como correto, um *ACK* deve ser enviado e o sinal *CLK* deve forçado a *LOW* por **500 ms**;
- Um LED deve indicar que o endereço correto foi recebido, mantendo-o aceso pelo mesmo tempo do *CLK* em *LOW*. Este LED corresponde à ativação da ignição do motor do foguete;
- Para padronizar a utilização das portas, deve ser adotado:

GP0 - SCL GP1 - SDA GP5 - LED

• Os endereços individuais são:

Nome	Endereço			
Allis Marques de Lima	07 _d	07 _h		
Andre Hugo Ramalho Lopes	13 _d	0D _h		
Daniel de Sa Pires	23 _d	17 _h		
Felipe Melo Feliciano de Sa	31 _d	1F _h		
Gabriel Soares Santos do Nascimento	37 _d	25 _h		
Gean Rocha da Silva Junior	41 _d	29 _h		
Heriberto Marcio da Silva Junior	43 _d	2B _h		
Icaro Dutra Gibson da Silva	51 _d	33 _h		
Isaac Sebastian Lima de Araujo	09 _d	09 _h		
Jackson Leandro do Nascimento	15 _d	0F _h		
Joao Matheus Falcao de Oliveira	25 _d	19 _h		
Jose Maurilio Gomes Junior	33 _d	21 _h		
Luann Filgueira Elias	39 _d	27 _h		
Lucas Guedes da Silva	42 _d	2A _h		
Luciana Serrao e Silva	45 _d	2D _h		
Ludmila Vinolia Guimaraes Gomes	53 _d	35 _h		
Luis Phellipe Palitot Moreno	62 _d	3E _h		
Mario Ferreira Leitao	75 _d	4B _h		
Mateus Lucas dos Santos	83 _d	53 _h		
Pedro Marcio Soares Vieira de Castro	91 _d	5B _h		
Rayque Alencar de Melo	94 _d	5E _h		
Rhamon Espinola Pires	97 _d	61 _h		
Rodrigo Lanes Meneses	103 _d	67 _h		
Thais Duarte Brito	109 _d	6D _h		
Vito Elias de Queiroga	111 _d	6F _h		
Yuri Fernandes Souza Silva	51 _d	33 _h		

Atividade 7 - Data de entrega: 05/09/24

Tema: Determinando o valor máximo de um sinal e gravá-lo na EEPROM

Objetivo: Medir o valor máximo de um sinal, gravar este valor na EEPROM e sinalizar sua ocorrência.

Contexto: O sinal mostrado na Figura 1 corresponde ao registro da altitude de um foguete durante seu lançamento. A duração deste evento é estimada em 60 segundos, a partir do início do acionamento do motor do foguete. Cinco segundos **após** o foguete atingir a altitude máxima (apogeu) o sistema de paraquedas deve ser acionado para permitir que o foguete reduza sua velocidade de queda e seja recuperado sem danos. Para certificar seu desempenho, o valor apogeu deve ser registrado para conferência após a recuperação do foguete.

Especificações:

- Considere que o altímetro fornece um sinal analógico cuja proporção é linear em relação à altitude, fornecendo 1 V para cada 100 m e sendo 0 V a altitude correspondente ao nível do solo;
- Considere que o foguete está projetado para que o apogeu não ultrapasse 420 m;
- Considere que, instantes antes do lançamento do foguete, um botão (configurado em *pull up*) deve ser pressionado para acionar o início da aquisição de dados;
- Um sistema para aquisição e registro da altitude deve ser implementado utilizando o microcontrolador PIC12F675, programado em Assembly;
- O botão enviará nível lógico LOW à porta GPO quando pressionado, indicando que a aquisição deve ser iniciada;
- O valor do apogeu deve ser armazenado na posição 17_h da EEPROM;
- A porta GP5 deve ser utilizada para acionar o paraquedas;
- Os procedimentos a seguir só devem iniciar após o microcontrolador identificar nível LOW na porta GPO;

- O procedimento de aquisição deve ficar em loop, efetuando a conversão A/D enquanto o altímetro indicar um valor for inferior a 10 m de altitude;
- A conversão A/D deve ser feita em 8 bits, pela porta GP1 e tão rápido quanto possível (limitado pela velocidade do microcontrolador);
- Quando o valor da conversão A/D for maior que o equivalente a 10 m de altitude (nível de trigger), um outro loop de conversão A/D (tão rápido quanto possível) deve ser iniciado e permanecer até que o sistema identifique o apogeu do foquete;
- A cada conversão A/D efetuada, o valor convertido deve ser comparado para buscar a MAIOR altitude no evento:
- Quando o apogeu for identificado, seu valor deve ser armazenado na EEPROM na posição 17_b;
- Após a identificação do apogeu, um TIMER deve ser inicializado para acionar o paraquedas 5 s após o foguete atingir seu apogeu;
- A abertura do paraquedas será efetuada com um pulso de 2 s de duração em nível lógico HIGH na porta GP5;
- Após o pulso de abertura do paraquedas, o sistema deve permanecer em loop sem atividade (FIM GOTO FIM).

Figura 1. Registro da altitude a partir do altímetro.

Atividade 6 - Data de entrega: 22/08/24

Tema: Medição de tensão e indicação em BCD

Objetivo: Exercício de familiarização com o conversor A/D do PIC. Especificações:

- Uma conversão A/D deve ser efetuada a cada 100ms, em modo cíclico;
- A interrupção gerada pelo conversor A/D deve ser utilizada;
- Utilize o TIMER 1 para a contagem do período de amostragem (100ms);
- A interrupção gerada pelo TIMER 1 deve ser utilizada;
- O valor da conversão A/D, de 0V a 5V, deve ser transformado para uma escala de 0 a 9, em valores inteiros. Veja a escala na tabela abaixo;
- O valor da escala a ser mostrado, de 0 a 9, deve ser representado na codificação BCD para ser conectado a um display de 7 segmentos. Para que todos tenham a mesma conectividade, siga a seguinte configuração:
 - **GP0** → **b**₀ (MENOS significativo) do BCD
 - **GP1** \rightarrow **b**₁ do BCD
 - **GP4** \rightarrow **b**₂ do BCD
 - GP5 → b₃ (MAIS significativo) do BCD
- A conversão A/D deve ser feita pela porta GP2;

Valor da tensão (V)	Valor mostrado no display
A/D ≤ 0,5	0
0,5 < A/D ≤ 1,0	1
1,0 < A/D ≤ 1,5	2
1,5 < A/D ≤ 2,0	3

2,0 < A/D ≤ 2,5	4
2,5 < A/D ≤ 3,0	5
3,0 < A/D ≤ 3,5	6
3,5 < A/D ≤ 4,0	7
4,0 < A/D ≤ 4,5	8
A/D > 4,5	9

Atividade 5 - Data de entrega: 15/08/24

Tema: Comparador: medindo de 0 a 3,5V em uma escala de 0 a 7 e indicação em BCD Objetivo: Exercício de familiarização com o comparador do PIC.

Contexto: Um valor de tensão entre 0 e 3,5V deve ser representado em uma escala discreta, indicando a escala de 0 a 7 em BCD, para representação em um display de 7 segmentos.

Especificações:

- Utilização obrigatória do comparador do PIC;
- A tensão de entrada é de 0 a 3,5V;
- A conversão de tensão para a escala de 0 a 7 deve ser efetuada através do comparador;
- O valor da tensão deve ser convertido para codificação BCD para ser conectado ao display de 7 segmentos;
- A indicação deve ser efetuada, em modo cíclico e tão rápido quanto possível (limitado pela velocidade do microcontrolador);
- Os bits do display **b2**, **b1**, **b0** devem ser conectados às portas **GP4**, **GP2**, **GP0**, respectivamente;
- Os níveis de tensão e a escala correspondente estão descritos na tabela a seguir:

Valor da tensão (V)	Valor mostrado no display
V<0,5	0
0,5 <v<1,0< td=""><td>1</td></v<1,0<>	1
1,0 <v<1,5< td=""><td>2</td></v<1,5<>	2
1,5 <v<2,0< td=""><td>3</td></v<2,0<>	3
2,0 <v<2,5< td=""><td>4</td></v<2,5<>	4
2,5 <v<3,0< td=""><td>5</td></v<3,0<>	5
3,0 <v<3,5< td=""><td>6</td></v<3,5<>	6
3,5 <v< td=""><td>7</td></v<>	7

Atividade 4 - Data de entrega: 06/08/24 Tema: Identificando o tipo de pulso Objetivo: Exercício com interrupção.

Contexto:

Um periférico se comunica com um microcontrolador através de uma porta (GP4). Para identificar a recepção do pulso o microcontrolador utiliza a medida da sua duração. A partir desse valor, o microcontrolador deve fornecer três possibilidades através dos LEDs ligados em suas portas, segundo a tabela abaixo:

Duração (μs)	Tipo	GP2	GP1	GP0
170 < T < 230	LOW	OFF	OFF	ON
350 < T < 450	HIGH	OFF	ON	OFF

Fora destes intervalos	Erro	ON	OFF	OFF

Especificações:

A partir do contexto descrito acima, proponha um aplicativo em Assembly (PIC12F675) para identificar a qual tipo corresponde o pulso recebido.

- O programa deve utilizar interrupção;
- A porta utilizada na comunicação deve ser a GP4;
- Quando n\u00e3o tem pulso, GP4 permanece em n\u00edvel l\u00e1gico HIGH. O pulso deve ser medido pelo tempo que GP4 permanece em n\u00edvel l\u00e1gico LOW;
- A resposta para cada pulso deve ser dada através dos LEDs ligados às portas GP0, GP1 e GP2, de acordo com a tabela acima;

Alguns Valores Propostos para Testes (faca outros):

Duração (μs)	Tipo de pulso	GP2	GP1	GP0
150	Erro	ON	OFF	OFF
250	Erro	ON	OFF	OFF
190	LOW	OFF	OFF	ON
420	HIGH	OFF	ON	OFF
340	Erro	ON	OFF	OFF
380	HIGH	OFF	ON	OFF
220	LOW	OFF	OFF	ON
480	Erro	ON	OFF	OFF

Atividade 3 - Data de entrega: 25/07/24

Tema: Controle de portas X frequência de saída

Objetivo: Exercícios para gerenciamento de portas e de timers.

Contexto: Gerador de tom em diferentes frequências.

Especificações:

- A aplicação deve gerar uma onda quadrada (duty cycle de 50%) em 4 diferentes frequências: 262Hz, 349Hz, 440Hz, 523Hz;
- A frequência deve ser selecionada a partir da combinação de botões ligados às portas do PIC, de acordo com a tabela a seguir:

GP0	GP1	GP2	Gp4 (saída) Frequência
0	X	X	LOW
1	0	0	262Hz
1	0	1	349Hz
1	1	0	440Hz
1	1	1	523Hz

- Botão 0 GP0;
- Botão 1 GP1;
- Botão 2 GP2;
- Sinal gerado: sáida em GP4.
- Para não danificar o amplificador de áudio, quando GP0 estiver em LOW, a saída (GP4) deve se manter em LOW.
- Seu código fonte deve estar estruturado com a mesma estrutura do modelo "vazio.asm".

Atividade 2 - Data de entrega: 16/07/24 Tema: Rotina de atraso de 31,25 ms

Objetivo: Exercício de aplicação da linguagem Assembly.

Contexto: Para executar determinadas tarefas temporizadas, é necessário a medição de tempo decorrido ou a repetição de unidade tempo de atraso.

Especificações:

- Implementar uma subrotina de unidade de tempo de atraso de 31,25 ms (1/32 s);
- A subrotina deve ser implementada para o PIC12F675 operando com seu clock interno (4MHz);
- O tempo de atraso inclui a chamada à subrotina (CALL) e seu respectivo retorno;
- Apenas os tempos de execução das instruções devem ser utilizados para produzir atrasos;
- Para permitir a medida e aferição dos tempos da subrotina, uma transição na porta GP5 deve ser gerada repetidamente a cada 31,25 ms.

Atividade 1 - Data de entrega: 02/07/24

Tema: Dia da semana

Objetivo: Exercício com algoritmo.

Especificações:

A partir de uma determinada data, indicada nas variáveis dd, mm e aa, proponha um ALGORITMO para identificar a qual dia da semana esta data corresponde.

- O algoritmo deve fornecer respostas para datas compreendidas entre 01/01/1910 e 31/12/2100;
- A resposta deve ser dada através da variável **W**, de acordo com a seguinte notação:
 - W=0 → data fora da especificação;

 - W=1 → domingo;
 W=2 → segunda-feira;
 - 4. ...
 - 5. W=7 \rightarrow sábado:
- O ALGORITMO deve ser escrito em **Portugo!** (pseudocódigo escrito em português);
- Pela própria definicão, o ALGORITMO deve ter uma sequência de passos descritivos, ordenados e sem ambiguidade:
- Os passos descritivos não podem conter ações abstratas ou que impliquem na utilização de outras operações diferentes das aritméticas (+, -, *, /). Estruturas condicionais e de repetição são permitidas.

Alguns Valores Propostos para Testes (faça outros):

Datas verificadas	Descrição	Valor esperado
16/01/1905	Verificação de erro	0
16/01/2105	Verificação de erro	0
10/08/2021	Início das aulas	3
21/06/1970	Tri da copa de futebol	1
24/02/1955	Nasceu Steve Jobs	5
02/04/2005	Morte do papa João Paulo II	7
22/08/2024	Nossa 2 ^a . AV	5