AML 713 9:30	-10: 30 ^Ч
1. (10) Use index notation to prove that:	LIM THE STATE OF
$\overline{\Delta} \times (\overline{\Lambda} \times \overline{M}) = \overline{\Lambda} (\overline{\Delta} \cdot \overline{M}) - (\overline{\Lambda} \cdot \overline{\Delta}) \overline{M}$	
Machus Eijk Einn = Sim Skn - Sin Skn Mahous: Eijk Ein = Eijk Ek	
(10) Prove that (i) Viscous heating is independent of rotal (ii) Viscous heating process can never be n	
Assume the fluid to be a liquid. $\underline{\sigma} = -p\underline{I} + 2\mu\underline{S}$. Visco	heating is $\underline{\tau}$: $(\underline{S} + \underline{R})^T$. If you wish, you may use
index notation.	
(6)(i) Consider a small cuboidal control volume, and derive mass contained inside the CV due to conduction through	e the expression for the net rate of heat addition to the Surfaces 5 and 6. Use Fourier's law of heat conduction
to arrive at the final form of your answer.	
	73(63) 3 Ax2
	713((3) 711111 > 24(ê)
(2) (ii) Can this heat-addition rate <i>directly</i> increase kineti	ic energy of the mass contained inside the CV. Briefly
justify your answer? No need to derive any equations.	
 (4) A liquid flow is being observed by two observers – one is an inertial reference frame, but \$\cap i\$ is not. 	
(i) What are the independent and dependent variable	es for the S-fixed observer?
(ii) What are the independent and dependent variable	es for the I-fixed observer?
Clearly describe all the symbols you use in your answer.	
5. (1 point for each correct and -1 point for each incorrect an	
 The pressure-dilatation work increases internal energy of a (contracting/expanding/volume preserving). 	
(ii) A Newtonian fluid has a linear relationship between the the strain-rate tensor.	(viscous/pressure/total) stress tensor and
(iii) The viscous stress tensor in a Newtonian fluid has	("normal components also"/"shear components
only"). (iv) For a liquid at rest, $p_A - p_B = \rho g h$ is statement	of (continuity equation/momentum
equation/total energy equation). Symbols have their usual	
equation/total energy equation/. Symbols have their	