WEST

Generate Collection

JP 10-75060

L7: Entry 9 of 32

File: JPAB

Mar 17, 1998

PUB-NO: JP410075060A

DOCUMENT-IDENTIFIER: JP 10075060 A

TITLE: METHOD FOR MANUFACTURING MULTI-LAYER GLASS/CERAMIC SUBSTRATE

PUBN-DATE: March 17, 1998

INVENTOR-INFORMATION:

NAME

COUNTRY

SUZUKI, YASUYOSHI

ASSIGNEE-INFORMATION:

NAME

TDK CORP

COUNTRY

N/A

APPL-NO: JP09176253 APPL-DATE: July 2, 1997

INT-CL (IPC): H05K 3/46

ABSTRACT:

PROBLEM TO BE SOLVED: To allow a glass/ceramic substrate to contract only in the thickness direction during sintering, while preventing contraction in the plane direction by mounting green sheets on both surfaces of a pre-sintering multi-layer glass/ ceramic substrate for forming a laminate and then sintering it.

SOLUTION: A multi-layer glass/ceramic substrate green laminate comprising on its both surfaces a green sheet 1 comprising a composition containing at least one kind of quartz, cristobalite and tridymite or a composition containing a sintering assisting agent, or a green sheets 1 comprising a composition containing a tridymite which is sintered at a sintering temperature of a multi-layer glass/ceramic substrate material and an oxide which is not sintered in the sintering process, is sintered. By removing the compositions on both surfaces, a multi-layer glass/ceramic substrate is obtained. Thus, the change in sizes between before sintering and after sintering are canceled out, so that a substrate without contraction in the plane direction is obtained.

COPYRIGHT: (C) 1998, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-75060

(43)公開日 平成10年(1998) 3月17日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

H05K 3/46

H05K 3/46

H Q

T

審査請求 未請求 請求項の数9 OL (全 10 頁)

(21)出願番号

特願平9-176253

(22)出顧日

(32)優先日

平成9年(1997)7月2日

(31)優先権主張番号 特願平8-172411

特願平8-172411 平8(1996)7月2日

(33)優先權主張国

日本 (JP)

(71)出顧人 000003067

ティーディーケイ株式会社

東京都中央区日本橋1丁目13番1号

(72)発明者 鈴木 康義

東京都中央区日本橋一丁目13番1号ティー

ディーケイ株式会社内

(54) 【発明の名称】 多層ガラス・セラミック基板の製造方法

(57)【要約】

【課題】 本発明は、多層ガラス・セラミック基板が焼成時に平面方向に収縮せず、厚み方向だけ収縮する多層ガラス・セラミック基板を得ることを目的とする。

【解決手段】 内部に導体または、導体およびコンデンサが形成された多層ガラス・セラミック基板グリーン積層体の最上層および最下層に、石英、クリストバライトおよびトリジマイトの少なくとも1種を含む組成物からなるグリーンシート、または焼結助剤を含有する前記組成物からなるグリーンシート、またはガラス・セラミック材料の焼成温度で焼結するトリジマイトと焼成温度で焼結しない酸化物を含む組成物からなるグリーンシートを搭載して積層体を形成し、これを焼成する。しかる後に両面の組成物を取り除くことにより平面方向に収縮しない多層ガラス・セラミック基板を得るものである。

【特許請求の範囲】

【請求項1】 内部に導体、または導体およびコンデン サが形成された多層ガラス・セラミック基板の製造方法 であって、焼成前の多層ガラス・セラミック基板の両面 に、石英、クリストバライトおよびトリジマイトの少な くとも一種を含む組成物からなるグリーンシートを搭載 して積層体を形成し、これを焼成することを特徴とする 多層ガラス・セラミック基板の製造方法。

【請求項2】 前記多層ガラス・セラミック基板の両面 に搭載するグリーンシートが、焼結助剤を含有すること 10 おいて重要視されている。 を特徴とする請求項1の多層ガラス・セラミック基板の 製造方法。

【請求項3】 前記焼結助剤が、ガラス・セラミック基 板の焼結開始温度以下で軟化するか、液相を生成する酸 化物であることを特徴とする請求項2に記載の多層ガラ ス・セラミック基板の製造方法。

【請求項4】 前記焼結助剤が、珪酸鉛アルミガラス、 珪酸鉛アルカリガラス、珪酸鉛アルカリ土類ガラス、ホ ウ珪酸鉛ガラス、ホウ珪酸アルカリガラス、ホウ酸アル リ土類ガラス、ホウ酸鉛亜鉛ガラスのいずれか―種以上 である請求項3に記載の多層ガラス・セラミック基板の 製造方法。

【請求項5】 前記焼結助剤が、アルカリ金属化合物で あることを特徴とする請求項2に記載の多層ガラス・セ ラミック基板の製造方法。

【請求項6】 内部に導体または、導体およびコンデン サが形成された多層ガラス・セラミック基板の製造方法 であって、焼成前の前記ガラス・セラミック基板の両面 に、多層ガラス・セラミック基板の焼成過程において焼 30 結するトリジマイトと、多層ガラス・セラミック基板の 焼成過程において焼結しない酸化物を含む組成物からな るグリーンシートを搭載して積層体を形成し、これを焼 成することを特徴とする請求項に記載の多層ガラス・セ ラミック基板の製造方法。

【請求項7】 前記多層ガラス・セラミック基板の焼成 過程において焼結しない酸化物が石英、溶融石英、アル ミナ、ムライト、ジルコニアのいずれか一種以上である ことを特徴とする請求項6に記載の多層ガラス・セラミ ック基板の製造方法。

【請求項8】 焼成後に両面の組成物を取り除くことを 特徴とする請求項1~7の多層ガラス・セラミック基板 の製造方法。

【請求項9】 焼成時に前記グリーンシート積層体を加 圧して焼成を行うことを特徴とする請求項1~8に記載 の多層ガラス・セラミック基板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体LSI、チ ップ部品などを搭載し、それらを相互配線するための多 50 温度などの積層条件を十分管理する必要がある。しか

層ガラス・セラミック基板の製造方法に関するものであ

[0002]

【従来の技術】近年、半導体LSI、チップ部品等は小 型、軽量化が進んでおり、これらを実装する配線基板も 小型、軽量化が望まれている。このような要求に対し て、基板内に内部電極等を配した多層セラミック基板 は、要求されている高密度配線が得られ、なおかつ薄型 化が可能なことにより、今日のエレクトロニクス業界に

【0003】多層セラミック基板に使用される電極材料 としての導体組成物は、一般に導電性金属、無機酸化 物、ガラス粉末が有機媒体中に分散されているペースト 状組成物である。導体材料としては、電気抵抗が低く、 かつ使用できる設備も安全で容易に製造できる金、銀、 銅、パラジウムが使用されている。これら金属と同時焼 成できるセラミック材料として、低温焼成ガラス・セラ ミックが開発されてきている。

【0004】多層ガラス・セラミック基板は焼成過程に ミ鉛ガラス、ホウ酸鉛アルカリガラス、ホウ酸鉛アルカ 20 おいて、焼結に伴う収縮を生じる。この収縮は、使用す る基板用無機材料、グリーンシート組成、粉体ロット、 配線パターン、内部電極材料や内蔵する誘電体材料など により縮率や収縮方向が異なってくる。このことは多層 ガラス・セラミック基板の作製においていくつかの問題 を生じている。

> 【0005】まず第一に、内部電極印刷用のスクリーン 版を作製する際、基板の縮率を逆算して作らなくてはな らないが、基板の縮率は上記の条件で変わってしまう。 このためスクリーン版はそれぞれの製造ロットに応じて 何度も作りなおさなくてはならず不経済である。さら に、収縮誤差を予め許容するように必要以上に大きい面 積の電極を形成しなくてはならず、高密度な配線ができ なくなる。

【0006】第二に多層セラミック基板の小型化のため 基板内部に容量の大きなコンデンサを形成する場合、基 板材料と誘電体材料を同時焼成しなくてはならない。こ のとき基板材料と誘電体材料の平面方向の縮率が異なる と、誘電体が形成された部分の基板表面が凹んでしま う。このため基板表面に部品を実装することが難しくな 40 る。

【0007】第三にグリーンシート積層法によって作製 された多層ガラス・セラミック基板は、グリーンシート の造膜方向によって幅方向と長手方向の収縮率が異な る。このことも多層ガラス・セラミック基板作製の障害 となっている。

【0008】これらの収縮の変化をなるべく少なくする ためには、回路設計による基板の縮率の傾向を調べるこ とはもちろん、製造工程においても基板材料およびグリ ーンシート組成の管理、粉体ロットの違い、プレス圧や

WEST

し、一般に収縮率の誤差は±0.5%程度存在すると言われている。

【0009】このことは多層ガラス・セラミック基板にかかわらずセラミック、およびガラス・セラミック等の焼結を伴うものに共通する課題である。そこで特公平7~46540号公報、特開平5~102666号公報において、低温焼成ガラス・セラミックよりなるグリーンシートに電極パターンを形成したものを所望枚数積層し、この積層体の両面または片面に前記低温焼成ガラス・セラミック基板材料の焼成温度では焼結しない無機組 10成物よりなるグリーンシートで挟みこむように積層し、前記積層体を焼成し、しかる後に焼結しない無機組成物を取り除くという発明がなされた。これらにより、厚み方向のみ収縮が起こり、平面方向の収縮が起こらない基板が作製でき上記のような課題を解決できる。

[0010]

【発明が解決しようとする課題】上述のような方法によ って、平面方向の収縮が起こらない基板が作製されてい るが、この方法には低温焼成ガラス・セラミック積層体 の両面または片面に積層した無機組成物の除去の点に問 20 題がある。前記特公平7-46520号公報において未 焼結の無機組成物にはアルミナ、酸化ジルコニウム、窒 化アルミニウム、窒化ホウ素、ムライト、酸化マグネシ ウムのうち少なくとも一種以上が用いられている。これ らは焼成後、基板表面に密着しており、ブラシなどで取 り除かなくてはならない。しかし一つ一つブラシで取り 除くことは手間が非常にかかる。前記特開平5-102 666号公報において、この未焼結の無機組成物として Al₂O₃、MgO、ZrO₂、TiO₂、BeO、BNの うち少なくとも一種以上が用いられている。これらは焼 30 成後の基板表面に密着しており、取り除くためには超音 波洗浄を行わなければならない。しかし未焼結の無機組 成物を全て超音波洗浄で落とすと時間がかかり工程的に も通常の工程より一段階増えることになる。この課題を 解決する方法として、特開平5-327218号公報に おいて、前記無機組成物に代えて、ガラス・セラミック 基板材料の焼結温度では結晶化が起こらず、ガラス・セ ラミック基板材料中のガラスの結晶化終了温度以上で結 晶化するガラスを両面または片面に積層した後これを焼 成する多層セラミック基板の製造方法が開示されてい る。この方法によれば平面方向の収縮を防止するための 積層物の除去は超音波洗浄を行う必要がない。しかしこ の方法では単に粉体を固めただけであり基板表面に積層 物が密着しているため、積層物の除去の点において依然 として問題がある。さらにガラス・セラミックの焼成後 さらに高温で熱処理しなくてはならないので電極と基板 との間に空隙ができる等の問題が生じる。

【0011】本発明は、このような従来の製造方法の課 体を 題を考慮し、工程数が少なく、平面方向の収縮が起こら (8 ない多層セラミック基板の製造方法を提供することを目 50 法。

的とするものである。

[0012]

【課題を解決するための手段】このような目的は下記 (1)~(9)の本発明により達成される。

4

【0013】(1) 内部に導体、または導体およびコンデンサが形成された多層ガラス・セラミック基板の製造方法であって、焼成前の多層ガラス・セラミック基板の両面に、石英、クリストバライトおよびトリジマイトの少なくとも一種を含む組成物からなるグリーンシートを搭載して積層体を形成し、これを焼成することを特徴とする多層ガラス・セラミック基板の製造方法。

【0014】(2) 前記多層ガラス・セラミック基板の両面に搭載するグリーンシートが、焼結助剤を含有することを特徴とする(1)の多層ガラス・セラミック基板の製造方法。

【0015】(3) 前記焼結助剤が、ガラス・セラミック基板の焼結開始温度以下で軟化するか、液相を生成する酸化物であることを特徴とする(2)に記載の多層ガラス・セラミック基板の製造方法。

20 【0016】(4) 前記焼結助剤が、珪酸鉛アルミガラス、珪酸鉛アルカリガラス、珪酸鉛アルカリ土類ガラス、ホウ珪酸鉛ガラス、ホウ酸鉛アルカリガラス、ホウ酸鉛アルミ鉛ガラス、ホウ酸鉛アルカリガラス、ホウ酸鉛 アルカリ土類ガラス、ホウ酸鉛亜鉛ガラスのいずれか一種以上である(3)に記載の多層ガラス・セラミック基板の製造方法。

【0017】(5) 前記焼結助剤が、アルカリ金属化合物であることを特徴とする(2)に記載の多層ガラス・セラミック基板の製造方法。

(0018】(6) 内部に導体または、導体およびコンデンサが形成された多層ガラス・セラミック基板の製造方法であって、焼成前の前記ガラス・セラミック基板の両面に、多層ガラス・セラミック基板の焼成過程において焼結するトリジマイトと、多層ガラス・セラミック基板の焼成過程において焼結しない酸化物を含む組成物からなるグリーンシートを搭載して積層体を形成し、これを焼成することを特徴とする請求項に記載の多層ガラス・セラミック基板の製造方法。

【0019】(7) 前記多層ガラス・セラミック基板 40 の焼成過程において焼結しない酸化物が石英、溶融石 英、アルミナ、ムライト、ジルコニアのいずれか一種以上であることを特徴とする(6)に記載の多層ガラス・セラミック基板の製造方法。

【0020】(8) 焼成後に両面の組成物を取り除くことを特徴とする(1) \sim (7)の多層ガラス・セラミック基板の製造方法。

【0021】(9) 焼成時に前記グリーンシート積層体を加圧して焼成を行うことを特徴とする(1)~

(8) に記載の多層ガラス・セラミック基板の製造方 0 法 [0022]

【発明の実施の形態】本発明は、石英、クリストバライ トおよびトリジマイトの少なくとも一種を含む組成物か らなるグリーンシート、または焼結助剤を含有する前記 組成物からなるグリーンシート、または多層ガラス・セ ラミック基板材料の焼成温度で焼結するトリジマイトと 焼成過程で焼結しない酸化物とを含む組成物からなるグ リーンシートを両面に有する多層ガラス・セラミック基 板グリーン積層体を焼成し、その後両面の組成物を取り ス・セラミック基板を得るものである。

【0023】本発明において、石英、クリストバライト およびトリジマイトの少なくとも一種を含む組成物から なるグリーンシートを用いる場合の製造方法について説 明する。

【0024】ガラス・セラミック材料に有機パインダお よび可塑剤等を加えて作製したグリーンシート上に、導 体ペースト組成物で電極パターンを形成し、所望の配線 パターンとなるようにこれらのシートを所定の枚数積層 して多層化することにより多層ガラス・セラミック積層 体を作製する。しかる後、前記ガラス・セラミック積層 体の両面に石英、クリストバライトおよびトリジマイト の少なくとも一種を含む組成物からなるグリーンシート を積層する。これを熱圧着してグリーン積層体を作製す る。そして、前記積層体の有機物を脱バインダ処理し通 常の焼成を行った後、両面の未焼結の無機組成物を取り 除くことにより、平面方向の収縮のない基板が得られ る。これは以下の理由による。

【0025】前記組成物は、多層ガラス・セラミック基 板材料の焼成温度において焼結しないため収縮が起こら 30 ない。多層ガラス・セラミック積層体は前記組成物から なるシートと密着しているため焼成時に平面方向に収縮 することができず、基板全体として厚み方向のみしか収 縮が起こらない。なお、前記組成物は熱膨張率が大きく 基板の平面を拡大する方向に応力がかかるが、前記組成 物は焼結しないため、シート中の粒子が動くことによっ てその応力が緩和され、結果として多層ガラス・セラミ ック基板の平面方向の拡大は起こらない。

【0026】また、前記組成物は熱収縮挙動が急激に変 化する変態点を有する。このため多層ガラス・セラミッ 40 チウム、酸化カリウム等が好ましい。 ク基板の焼成過程において、冷却中に基板との間に急激 な応力が生じる。よって多層ガラス・セラミック積層体 から、超音波洗浄を行わなくても、掻き落とし等により 両面に積層した前記組成物を容易に取り外すことが可能

【0027】前記組成物は焼結助剤を含有していること が好ましい。この理由は、両面に積層した前記組成物が シート状に焼結し、焼成後に多層ガラス・セラミック基 板表面から前記組成物をシート状態ではがすことがで

を添加しない場合は、前記組成物は多層ガラス・セラミ ック基板の焼成過程において焼結せず、基板の表面に粉 体の状態で存在する。粉体の状態であると冷却中に粒子 が動けるため、相変態点においてガラス・セラミック基 板との間に応力がかかっても、この応力が緩和されるこ とがある。これに対し、焼結助剤を含む組成物を両面に 積層することによりこのような問題を回避でき、より容 易に両面の組成物を除去することが可能となる。なお、 焼結助剤を含有する場合は、焼成過程において次のよう 除くことにより、平面方向の収縮が起こらない多層ガラ 10 な現象が起きていると考えられる。石英、クリストバラ イトおよびトリジマイトは熱膨張係数がそれぞれ約20 ppm/C、約50ppm/Cおよび約40ppm/C と多層ガラス・セラミック基板材料に比べて大きい。焼 成過程において、ガラス・セラミック基板材料は両面に 積層された前記組成物の大きな熱膨張率の影響を受ける ため平面方向の面積は大きくなる。しかしながら、これ が焼成され収縮するため、結果として焼成前と焼成後の 寸法変化は相殺され、平面方向の収縮のない基板が得ら れることとなる。

> 【0028】焼結助剤としては、多層ガラス・セラミッ ク基板の焼結開始温度以下で軟化するか、液相を生成す る酸化物が用いられる。前者を用いた場合は、添加物が 軟化することによって前記組成物の粒子同士が結合する ため焼結し、後者を用いた場合は、添加物が液相を生成 することによって前記組成物の粒子表面が反応し、粒子 同士が結合するため焼結することとなる。このような酸 化物としては特に限定されるものではないが、珪酸鉛ア ルミガラス、珪酸鉛アルカリガラス、珪酸鉛アルカリ土 類ガラス、ホウ珪酸鉛ガラス、ホウ珪酸アルカリガラ

> ス、ホウ酸アルミ鉛ガラス、ホウ酸鉛アルカリガラス、 ホウ酸鉛アルカリ土類ガラス、ホウ酸鉛亜鉛ガラスのい ずれか一種以上が好ましい。

【0029】また、焼結助剤としてアルカリ金属化合物 を用いてもよい。アルカリ金属化合物にはSiO2の焼 結の進行を促す効果がある。よって、石英、クリストバ ライトおよびトリジマイトの少なくとも一種を含む組成 物はアルカリ金属化合物を添加することにより焼結する こととなる。このような化合物は特に限定されないが、 炭酸リチウム、炭酸カリウム、炭酸ナトリウム、酸化リ

【0030】次に本発明において、多層ガラス・セラミ ックの焼成過程において焼結するトリジマイトと、多層 ガラス・セラミックの焼成過程において焼結しない酸化 物を含む組成物からなるグリーンシートを両面に有する 多層ガラス・セラミック基板グリーン積層体を焼成し、 その後両面の組成物を取り除くことにより、平面方向の 収縮が起こらない多層ガラス・セラミック基板を得る方 法について説明する。

【0031】トリジマイトは組成の選択により焼結温度 き、取り外しがさらに容易になるからである。焼結助剤 50 を種々変化させることができる。トリジマイトは焼結す

ることによって基板との境界に応力が生じる。ただしト リジマイトは熱膨張係数が大きく、温度によっては熱膨 張係数が40ppm/℃にも達する。このためガラス・ セラミック材料 (約3~10ppm/℃) との熱膨張差 がありすぎて焼結前にはがれてしまうことがある。これ を防ぐために多層ガラス・セラミック基板材料の焼成温 度で焼結しない酸化物を加えて熱膨張係数を調節し、焼 結後にシート状態で自然にはがれるようにする。これに より、超音波洗浄を行わなくてもガラス・セラミック積 成の様子は、石英、クリストバライトおよびトリジマイ トの少なくとも一種を含む組成物に、焼結助剤を添加し たものを用いた場合と同様の現象が起きていると考えら れる。なお、セラミックの焼成過程において焼結するト リジマイトは、石英にアルカリ金属化合物を添加して熱 処理をすること等によって作製することができる。

【0032】また、ガラス・セラミック基板の焼成過程 において焼結しない酸化物としては特に限定されない が、石英、溶融石英、アルミナ、ムライト、ジルコニア 等が好ましく使用される。

【0033】石英、クリストバライトおよびトリジマイ トの少なくとも一種を含む組成物からなるグリーンシー ト、または焼結助剤を含有する前記組成物からなるグリ ーンシート、または多層ガラス・セラミック基板材料の 焼成温度で焼結するトリジマイトと焼成過程で焼結しな い酸化物とを含む組成物からなるグリーンシートを両面 に有する多層ガラス・セラミック基板グリーン積層体の 焼成時に、加圧しながら焼成を行うと、基板の反りを抑 えることができ、また厚み方向の焼結性がさらに促進さ れ緻密な焼結体を得ることができる。加圧焼成の方法と 30 しては前記積層体と焼成時に反応しない加重用の板を載 せて焼成すればよい。

【0034】なお、上記説明において多層ガラス・セラ ミック基板材料とは、ガラスと骨材との混合物のことで ある。本発明に使用される多層ガラス・セラミック基板 材料は特に限定されないが、アルミナ珪酸アルカリ土類 ガラスとアルミナの混合物などが好適に使用できる。

【0035】また電極材料としては低温で焼結が可能で あること、電気特性が良いこと、安価で工業的に扱いや すいことなどから銀、銀ーパラジウム、銅等が用いられ 40 る。

【0036】さらに前記多層セラミック基板に内部コン デンサを形成する場合には、ペロブスカイト化合物およ びビヒクルからなる誘電体ペーストを印刷法などにより 形成する。内部電極パターンおよび内部コンデンサの形 成方法および多層セラミック基板の積層体の製造方法は 従来の種々の方法に従って行えばよい。基板内部にコン デンサ部を有する場合には、基板材料とコンデンサ部形 成用の誘電体材料の収縮率が違うために焼成後に誘電体 ることにより、表面の凹みを抑えることができる。

【0037】多層ガラス・セラミック積層体の焼成は、 通常は5分~4時間で700℃~1100℃の温度範囲 で行われる。特に、内部電極として銅を使用する場合に は950℃以下、銀を使用する場合には930℃以下で 焼成を行う。

【0038】なお、多層ガラス・セラミック積層体の製 造方法はシート法に限定されるものでなく、種々変更が 可能である。例えば印刷法等の方法を用いてもよい。ま 層体からの取り外しが容易になる。なお、この場合の焼 10 た、ガラス・セラミック積層体をシート法や印刷法等に より作製した後に、両面に平面方向の収縮を防止する組 成物ペーストを印刷してもよく、また前記平面方向の収 縮を防止する組成物グリーンシート上にガラス・セラミ ック材料をシート法や印刷法等により積層していき、最 上層に再び前記組成物グリーンシートを積層することに より、積層体を作製してもかまわない。

[0039]

【実施例】以下、本発明の実施例について図面を参照し て説明する。図1、2は本発明の実施例における多層ガ 20 ラス・セラミック基板の断面を示す図である。

【0040】(実施例1)基板材料のガラス・セラミッ 22 Delt. SiO2-Al2O3-CaO-BaO-Mg ○ガラス粉末とアルミナ粉末が体積比で70対30であ る組成物を用いた。このガラス・セラミック粉を無機成 分とし、有機バインダとしてアクリル樹脂、可塑剤とし てフタル酸エステル、溶剤としてトルエンとエチルアル コールの混合液(30対70重量比)を混合しスラリー とした。このガラス・セラミックの焼結開始温度は80 0℃であった。

【0041】このスラリーをドクターブレード法で有機 フィルム上にシート成形した。こうして得たグリーンシ ートに銀ペーストおよび誘電体ペーストを用いて導体パ ターンの形成およびコンデンサの形成をスクリーン印刷 法によって行った。導体ペーストは、Ag粉末(平均粒 径3.5µm)を無機成分とし、有機バインダであるア クリル樹脂をテレビネオールおよびブチルカルビトール アセテートで溶かしたビヒクルとともに加えて、3本ロ ールにより適度な粘度になるように混合したものを用い た。誘電体ペーストは、ペロブスカイト化合物 Pb (Mg1/3Nb2/3)O3-PbTiO3粉末(平均粒径

O. 6 μm)を無機成分とし、焼結助剤を加え、有機バ インダであるアクリル樹脂をテレピネオールおよびブチ ルカルビトールアセテートで溶かしたビヒクルとともに 加えて、3本ロールにより適度な粘度になるように混合 したものを用いた。

【0042】次に、石英粉末 (平均粒径1.9μm)を 無機成分とし、有機バインダとしてアクリル樹脂、可塑 剤としてフタル酸エステル、溶剤としてトルエンとエチ ルアルコールの混合液 (30対70重量比)を混合しス 部分が凹むことがあったが、本発明の製造方法を適用す 50 ラリーとした。このスラリーを基板用グリーンシートと

同様の方法でシートを成形した。前記基板用グリーンシートと石英グリーンシートの厚みは共に約200μmであった。

【0043】前記基板用グリーンシートに導体パターンおよびコンデンサ用誘電体ペーストの印刷を行ったものを所定の枚数積み重ね、さらにその最上層および最下層の両面に石英粉末よりなるグリーンシートを重ね合わせた。この状態で熱圧着して積層体を形成した。熱圧着条件は、温度が50℃、圧力は100kg/cm²とした。図1にこの基板の構成を示す。前記基板材料によるグリーンリート層1が複数枚積層され、その両面に平面方向の収縮を抑えるためのシートとして石英粉末よりなるグリーンシート層2が形成され、内部電極層3および誘電体層4が基板内部に形成されている。

【0044】次に前記積層体をアルミナセッターに載せ 焼成した。焼成条件はベルト炉によって空気中、350 ℃で脱バインダ後、900℃で10分間焼成を行った。 この時基板の反りを防止し、厚み方向の焼結収縮を助け るためアルミナ焼結板を載せて加圧するようにして焼成 を行った。

【0045】焼成後のセラミック積層体の両面にはセラミック基板の平面方向収縮防止用の組成物未焼結体が存在するが、これは容易に掻き落とすことができた。

【0046】この焼成後の基板の寸法を測定し収縮率を 計算すると、0.5%以下であった。また基板表面の凹 みも生じなかった。

【0047】(実施例2)基板材料のガラスセラミック として、SiO2-Al2O3-CaO-BaO-MgO この時基板のガラス粉末とアルミナ粉末が体積比で70対30である ねためにアル 組成物を用いた。このガラス・セラミック粉を無機成分 30 成を行った。とし、有機バインダとしてアクリル樹脂、可塑剤として フタル酸エステル、溶剤としてトルエンとエチルアルコ ールの混合液(30対70重量比)を混合しスラリーと した。このガラス・セラミックの焼結開始温度は800 【0053】 でであった。

したものを用いた。

【0049】次に、石英粉末(平均粒径1.9μm)に、珪酸鉛アルミガラス粉末(66PbO-30SiO2-4A12O3(mol%)、平均粒径1.0μm、液相生成温度760℃)を10wt%加えたものを無機成分とし、有機バインダとしてアクリル樹脂、可塑剤としてフタル酸エステル、溶剤としてトルエンとエチルアルコールの混合液(30対70重量比)を混合しスラリーとした。このスラリーを基板用グリーンシートと同様の方法でシート成形した。前記基板用グリーンシートと、珪酸鉛アルミガラスを添加した石英グリーンシートの厚みは共に約200μmであった。

10

【0050】前記基板用グリーンシートに導体パターンおよびコンデンサ用誘電体ペーストの印刷を行ったものを所定の枚数積み重ね、さらにその両面に珪酸鉛アルミガラスを添加した石英よりなるグリーンシートを重ね合わせた。この状態で熱圧着して積層体を形成した。熱圧着条件は、温度が50℃、圧力は100kg/cm²とした。図1にその構成を示す。前記基板材料によるグリーンシート層1が複数枚積層され、その両面に平面方向の収縮を抑えるためのシートとして珪酸鉛アルミガラスを添加した石英よりなるグリーンシート層2が形成され、内部電極層3および誘電体層4が基板内部に形成されている。

【0051】次に前記積層体をアルミナセッターに載せ 焼成した。焼成条件はベルト炉によって空気中、350 ℃で脱バインダ終了後、900℃で10分間焼成した。 この時基板の反りを防止し、厚み方向の焼結収縮を助け るためにアルミナ焼結板を載せて加圧するようにして焼 成を行った

【0052】焼成後、セラミック積層体の両面に形成された平面方向の収縮を抑えるためのシートの焼結体ははがれていた。

【0053】この焼成後の基板の寸法を測定し収縮率を計算すると0.5%以下であった。また基板の表面の凹みも生じなかった。

【0054】(実施例3)基板材料のガラス・セラミックとして、SiO2-Al2O3-CaO-SrO-MgO-B2O3ガラス粉末とアルミナ粉末が体積比で70対30である組成物を用いた。このガラス・セラミック粉を無機成分とし、有機バインダとしてアクリル樹脂、可塑剤としてフタル酸エステル、溶剤としてトルエンとエチルアルコールの混合液(30対70重量比)を混合しスラリーとした。このガラス・セラミックの焼結開始温度は750℃であった。

(Mg1/3Nb2/3) O3-PbTi O3粉末(平均粒径 0.6μm)を無機成分とし、焼結助剤を加え、有機バインダであるアクリル樹脂をテレピネオールおよびブチルカルビトールアセテートで溶かしたビヒクルとともに加えて、3本ロールにより適度な粘度になるように混合 50 (平均粒径3.5μm)を無機成分とし、有機バインダ

であるアクリル樹脂をテレピネオールおよびブチルカル ビトールアセテートで溶かしたビヒクルとともに加えて 3本ロールにより適度な粘度になるように混合したもの を用いた。

【0056】次に、石英粉末(平均粒径1.1μm) に、ホウ珪酸アルカリガラス粉末(42SiO2-26 Na₂O-32B₂O₃ (mo1%)、平均粒径1.0μ m、軟化温度557℃)を1、2、3、5wt%加えた ものを無機成分とし、有機バインダとしてアクリル樹 脂、可塑剤としてフタル酸エステル、溶剤としてトルエ 10 エンとエチルアルコールの混合液(30対70重量比) ンとエチルアルコールの混合液(30対70重量比)を 混合しスラリーとした。このスラリーを基板用グリーン シートと同様の方法でシート成形した。前記基板用グリ ーンシートとホウ珪酸アルカリガラスを添加した石英グ リーンシートの厚みは共に約200µmであった。

【0057】前記基板用グリーンシートに導体パターン の印刷を行ったものを所定の枚数積み重ね、さらにその 両面にホウ珪酸アルカリガラスを添加した石英よりなる グリーンシートを重ね合わせた。この状態で熱圧着して 積層体を形成した。熱圧着条件は、温度が50℃、圧力 20 は100kg/cm²とした。図2にその構成を示す。前記基 板材料によるグリーンシート層11が複数枚積層され、 その両面に平面方向の収縮を抑えるためのシートとして ホウケイ酸アルカリガラスを添加した石英よりなるグリ ーンシート層12が形成され、内部電極層13が基板内 部に形成されている。

【0058】次に前記積層体をアルミナセッターに載せ **焼成した。焼成条件はベルト炉によって空気中、350** ℃で脱バインダ終了後、900℃で10分間焼成を行っ た。この時基板の反りを防止し、厚み方向の焼結収縮を 30 助けるためアルミナ焼結板を載せて加圧するようにして 焼成を行った。

【0059】焼成後、いずれのものについてもセラミッ ク積層体の両面に形成された平面方向の収縮を抑えるた めのシートの焼結体ははがれていた。

【0060】この焼成後の基板の寸法を測定し収縮率を 計算すると0.5%以下であった。

(実施例4)基板材料のガラス・セラミックとして、S iO2-A12O3-CaO-SrO-MgO-B2O3ガ ラス粉末とアルミナ粉末が体積比で70対30である組 40 成物を用いた。このガラス・セラミック粉を無機成分と し、有機バインダとしてアクリル樹脂、可塑剤としてフ タル酸エステル、溶剤としてトルエンとエチルアルコー ルの混合液(30対70重量比)を混合しスラリーとし た。このガラス・セラミックの焼結開始温度は750℃ であった。

【0061】このスラリーをドクターブレード法で有機 フィルム上にシート成形した。こうして得たグリーンシ ートに銀ペーストを用いて導体パターンの形成をスクリ ーン印刷法によって行った。導体ペーストは、Ag粉末 50 (平均粒径3.5μm)を無機成分とし、有機バインダ

(平均粒径3.5µm)を無機成分とし、有機バインダ であるアクリル樹脂をテレピネオールおよびブチルカル ビトールアセテートで溶かしたビヒクルとともに加えて 3本ロールにより適度な粘度になるように混合したもの を用いた。

【0062】次に、石英粉末(平均粒径1.1μm) に、炭酸ナトリウムを0.2、0.5、1.3wt%加 えたものを無機成分とし、有機バインダとしてアクリル 樹脂、可塑剤としてフタル酸エステル、溶剤としてトル を混合しスラリーとした。このスラリーを基板用グリー ンシートと同様の方法でシート成形した。前記基板用グ リーンシートと炭酸ナトリウムを添加した石英よりなる グリーンシートの厚みは共に約200μmであった。

【0063】前記基板用グリーンシートに導体パターン の印刷を行ったものを所定の枚数積み重ね、さらにその 両面に炭酸ナトリウムを添加した石英よりなるグリーン シートを重ね合わせた。この状態で熱圧着して積層体を 形成した。熱圧着条件は、温度が50℃、圧力は100 kg/cm²とした。図2にその構成を示す。前記基板材料に よるグリーンシート層11が複数枚積層され、その両面 に平面方向の収縮を抑えるためのシートとして炭酸ナト リウムを添加した石英よりなるグリーンシート層12が 形成され、内部電極層13が基板内部に形成されてい

【0064】次に前記積層体をアルミナセッターに載せ 焼成した。焼成条件はベルト炉によって空気中、350 ℃で脱バインダ終了後、900℃で10分間焼成を行っ た。この時基板の反りを防止し、厚み方向の焼結収縮を 助けるためアルミナ焼結板を載せて加圧するようにして 焼成を行った。

【0065】焼成後、いずれものについてもセラミック 積層体の両面に形成された平面方向の収縮を抑えるため のシートの焼結体ははがれていた。

【0066】この焼成後の基板の寸法を測定し収縮率を 計算すると0.5%以下であった。

【0067】(実施例5)基板材料のガラス・セラミッ 2 Delt SiO2-Al2O3-CaO-SrO-Mg O-B₂O₃ガラス粉末とアルミナ粉末が体積比で70対 30である組成物を用いた。このガラス・セラミック粉 を無機成分とし、有機バインダとしてアクリル樹脂、可 塑剤としてフタル酸エステル、溶剤としてトルエンとエ チルアルコールの混合液(30対7.0重量比)を混合し スラリーとした。このガラス・セラミックの焼結開始温 度は750℃であった。

【0068】このスラリーをドクターブレード法で有機 フィルム上にシート成形した。こうして得たグリーンシ ートに銀ペーストを用いて導体パターンの形成をスクリ ーン印刷法によって行った。導体ペーストは、Ag粉末 であるアクリル樹脂をテレビネオールおよびブチルカル ビトールアセテートで溶かしたビヒクルとともに加えて 3本ロールにより適度な粘度になるように混合したもの を用いた。

【0069】次に、トリジマイト粉末(平均粒径1.5 μm) および石英粉末(平均粒径1.1μm)を重量比 で1:2、1:1、2:1で混合したものを無機成分と し、有機バインダとしてアクリル樹脂、可塑剤としてフ タル酸エステル、溶剤としてトルエンとエチルアルコー た。なお、トリジマイトは石英にK2CO3を3wt%添 加し、1400℃で10時間熱処理することによって作 製した。このスラリーを基板用グリーンシートと同様の 方法でシート成形した。前記基板用グリーンシートおよ びトリジマイトと石英の混合物よりなるグリーンシート の厚みは共に約200μmであった。

【〇〇7〇】前記基板用グリーンシートに導体パターン の印刷を行ったものを所定の枚数積み重ね、さらにその 両面にトリジマイトと石英と混合物よりなるグリーンシ ートを重ね合わせた。この状態で熱圧着して積層体を形 20 成した。熱圧着条件は、温度が50℃、圧力は100kg /cm²とした。図2にその構成を示す。前記基板材料によ るグリーンシート層11が複数枚積層され、その両面に 平面方向の収縮を抑えるためのシートとしてトリジマイ トと石英の混合物よりなるグリーンシート層12が形成 され、内部電極層13が基板内部に形成されている。

【0071】次に前記積層体をアルミナセッターに載せ 焼成した。焼成条件はベルト炉によって空気中、350 ℃で脱バインダ終了後、900℃で10分間焼成を行っ た。この時基板の反りを防止し、厚み方向の焼結収縮を 助けるためアルミナ焼結板を載せて加圧するようにして 焼成を行った。

【0072】焼成後、いずれのものについてもセラミッ ク積層体の両面に形成された平面方向の収縮を抑えるた めのシートの焼結体ははがれていた。

【0073】この焼成後の基板の寸法を測定し収縮率を 計算すると0.5%以下であった。

(実施例6)基板材料のガラスセラミックとして、Si O2-A12O3-CaO-SrO-MgO-B2O3ガラ ス粉末とアルミナ粉末が体積比で70対30である組成 40 物を用いた。このガラス・セラミック粉を無機成分と し、有機バインダとしてアクリル樹脂、可塑剤としてフ タル酸エステル、溶剤としてトルエンとエチルアルコー ルの混合液(30対70重量比)を混合しスラリーとし た。このガラス・セラミックの焼結開始温度は750℃ であった。

【0074】このスラリーをドクターブレード法で有機 フィルム上にシート成形した。こうして得たグリーンシ ートに銀ペーストを用いて導体パターンの形成をスクリ ーン印刷法によって行った。導体ペーストは、Ag粉末 50 クとして、SiO2-Al2O3-CaO-BaO-Mg

14

(平均粒径3.5µm)を無機成分とし、有機バインダ であるアクリル樹脂をテレピネオールおよびブチルカル ピトールアセテートで溶かしたビヒクルとともに加えて 3本ロールにより適度な粘度になるように混合したもの を用いた。

【0075】次に、トリジマイト粉末(平均粒径1.5 μm) およびアルミナ粉末 (平均粒径1.1μm)を重 量比で1:1、2:1で混合したものを無機成分とし、 有機バインダとしてアクリル樹脂、可塑剤としてフタル ルの混合液(30対70重量比)を混合しスラリーとし 10 酸エステル、溶剤としてトルエンとエチルアルコールの 混合液(30対70重量比)を混合しスラリーとした。 なお、トリジマイトは石英にK2CO3を3wt%添加 し、1400℃で10時間熱処理することによって作製 した。このスラリーを基板用グリーンシートと同様の方 法でシート成形した。前記基板用グリーンシートおよび トリジマイトとアルミナの混合物よりなるグリーンシー トの厚みは共に約200μmであった。

> 【0076】前記基板用グリーンシートに導体パターン の印刷を行ったものを所定の枚数積み重ね、さらにその 両面にトリジマイトとアルミナの混合物よりなるグリー ンシートを重ね合わせた。この状態で熱圧着して積層体 を形成した。熱圧着条件は、温度が50℃、圧力は10 Okg/cm²とした。図2にその構成を示す。前記基板材料 によるグリーンシート層11が複数枚積層され、その両 面に平面方向の収縮を抑えるためのシートとしてトリジ マイトとアルミナの混合物よりなるグリーンシート層1 2が形成され、内部電極層13が基板内部に形成されて いる。

【0077】次に前記積層体をアルミナセッターに載せ 30 焼成した。焼成条件はベルト炉によって空気中、350 ℃で脱バインダ終了後、900℃で10分間焼成を行っ た。この時基板の反りを防止し、厚み方向の焼結収縮を 助けるためアルミナ焼結板を載せて加圧するようにして 焼成を行った。

【0078】焼成後、セラミック積層体の両面に形成さ れた平面方向の収縮を抑えるためのシートの焼結体はは がれていた。

【0079】この焼成後の基板の寸法を測定し収縮率を 計算すると 0.5%以下であった。

【0080】なお、トリジマイトと中異相としてクリス トバライトが存在しても、基板の焼結過程においてクリ ストバライトが異相として存在するトリジマイトの焼結 が起これば同様の効果が得られる。

【0081】なお実施例1~6において、多層ガラス・ セラミック基板の焼成の際にアルミナ焼結板を載せて加 圧するようにして焼成を行ったが、両面に平面方向の収 縮を抑えるグリーンシートを層が形成されているため に、積層体に荷重かけなくても同様の効果が得られた。 【0082】(比較例1)基板材料のガラス・セラミッ

Oガラス粉末とアルミナ粉末が体積比で70対30であ る組成物を用いた。このガラス・セラミック粉を無機成 分とし、有機バインダとしてアクリル樹脂、可塑剤とし てフタル酸エステル、溶剤としてトルエンとエチルアル コールの混合液(30対70重量比)を混合しスラリー とした。このガラス・セラミックの焼結開始温度は80 0℃であった。

15

【0083】このスラリーをドクターブレード法で有機 フィルム上にシート成形した。こうして得たグリーンシ ートに銀ペーストおよび誘電体ペーストを用いて導体パ 10 の焼成温度で焼結するトリジマイトと焼成過程において ターンの形成およびコンデンサの形成をスクリーン印刷 法によって行った。導体ペーストは、Ag粉末(平均粒 径3.5μm)を無機成分とし、有機バインダであるア クリル樹脂をテレピネオールおよびブチルカルビトール アセテートで溶かしたビヒクルとともに加えて、3本ロ ールにより適度な粘度になるように混合したものを用い た。誘電体ペーストは、ペロブスカイト化合物 Pb (Mg1/3Nb2/3)O3-PbTiO3粉末(平均粒径 O. 6 μm)を無機成分とし、焼結助剤を加え、有機バ インダであるアクリル樹脂をテレビネオールおよびブチ 20 ルカルビトールアセテートで溶かしたビヒクルとともに 加えて、3本ロールにより適度な粘度になるように混合 したものを用いた。

【0084】次に、アルミナ粉末 (平均粒径1.1 μ m)を無機成分とし、有機バインダとしてアクリル樹 脂、可塑剤としてフタル酸エステル、溶剤としてトルエ ンとエチルアルコールの混合液(30対70重量比)を 混合しスラリーとした。このスラリーを基板用グリーン シートと同様の方法でシートを成形した。前記基板用グ リーンシートとアルミナグリーンシートの厚みは共に約 30 200μmであった。

【0085】前記基板用グリーンシートに導体パターン およびコンデンサ用誘電体ペーストの印刷を行ったもの を所定の枚数積み重ね、さらにその最上層および最下層 の両面にアルミナよりなるグリーンシートを重ね合わせ た。この状態で熱圧着して積層体を形成した。熱圧着条 件は、温度が50℃、圧力は100kg/cm²とした。図1 にこの基板の構成を示す。前記基板材料によるグリーン シート層1が複数枚積層され、その両面に平面方向の収 縮を抑えるためのシートとしてアルミナよりなるグリー 40 ンシート層2が形成され、内部電板層3および誘電体層 4が基板内部に形成されている。

【0086】次に前記積層体をアルミナセッターに載せ 焼成した。焼成条件はベルト炉によって空気中、350 ℃で脱バインダ後、900℃で10分間焼成を行った。 この時基板の反りを防止し、厚み方向の焼結収縮を助け るためアルミナ焼結板を載せて加圧するようにして焼成 を行った。 【0087】焼成後のセラミック積層体の両面にはアル ミナが存在しており、これを除去するために20分間の

超音波洗浄を要した。

【0088】以上のように本発明は、多層セラミック基 板の作製工程において、石英、クリストバライトおよび トリジマイトの少なくとも1種を含む組成物からなるグ リーンシート、または焼結助剤を含有する前記組成物か らなるグリーンシート、またはガラス・セラミック材料 焼結しない酸化物を含む組成物からなるグリーンシート を両面に有する多層セラミック基板グリーン積層体の焼 成を行うことにより、焼結による収縮が平面方向で全く 起こらない多層基板が得られる。また前記基板の両面に 設けた平面方向の収縮を防止するためのグリーンシート 層は焼成終了後に容易に取り除くことができる。

[0089]

【発明の効果】以上述べたことから明らかなように、本 発明はガラス・セラミック基板が焼成時において厚み方 向だけ収縮し、平面方向には収縮しない、良好な状態の 多層ガラス・セラミック基板を得ることができる。

【0090】この多層ガラス・セラミック基板の平面方 向の収縮を抑えるために使用した、両面に積層した組成 物は焼成過程において冷却時に相変態が起こり熱収縮挙 動が変態温度で急激に変わるので多層ガラス・セラミッ クとの間に応力がかかるために容易に取り外しが可能で あり、作業時間を短縮でき、作業が簡素化される。

【0091】これにより多層基板に使用する基板用無機 材料その他前述の条件に依存せずに常に同一寸法の基板 が得られる。また、同様に多層ガラス・セラミック基板 の作製において前述の如く内層配線の焼成を行っても、 配線パターンを逆算する必要がなく、スクリーン版を何 枚も作りなおすことがないので経済的である。

【0092】以上のように本発明は、グリーンシート積 層法の最大の課題となる、収縮誤差の課題を解決し、そ の作業工程を容易なものとする有効な発明である。

【図面の簡単な説明】

【図1】本発明の多層ガラス・セラミック基板のグリー ン積層体の一例を示す概略図である。

【図2】本発明の多層ガラス・セラミック基板のグリー ン積層体の他の例を示す概略図である。

【符号の説明】

- ガラス・セラミックグリーンシート層 1, 11
- 2,12 平面方向の収縮を抑えるためのグリーンシ ート層
- 3、13 内部電極層
- 内部コンデンサ用誘電体層

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-075060

(43) Date of publication of application: 17.03.1998

(51)Int.CI.

H05K 3/46

(21)Application number: 09-176253

(71)Applicant:

TDK CORP

(22)Date of filing:

(72)Inventor:

SUZUKI YASUYOSHI

(30)Priority

Priority number: 08172411

Priority date: 02.07.1996

Priority country: **JP**

(54) METHOD FOR MANUFACTURING MULTI-LAYER GLASS/CERAMIC SUBSTRATE

(57) Abstract:

PROBLEM TO BE SOLVED: To allow a glass/ceramic substrate to contract only in the thickness direction during sintering, while preventing contraction in the plane direction by mounting green sheets on both surfaces of a pre-sintering multi-layer glass/ ceramic substrate for forming a laminate and then sintering it.

SOLUTION: A multi-layer glass/ceramic substrate green laminate comprising on its both surfaces a green sheet 1 comprising a composition containing at least one kind of quartz, cristobalite and tridymite or a composition containing a sintering assisting agent, or a green sheets 1 comprising a composition containing a tridymite which is sintered at a sintering temperature of a multi-layer glass/ceramic substrate material and an oxide which is not sintered in the sintering process, is sintered. By removing the compositions on both surfaces, a multi-layer glass/ceramic substrate is obtained. Thus, the change in sizes between before sintering and after sintering are canceled out, so that a substrate without contraction in the plane direction is obtained.

LEGAL STATUS

[Date of request for examination]

28.01.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japanese Patent Office

* NOTICES *

The Japanese Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The manufacture technique of the multilayer glass ceramics substrate characterized by carrying the green sheet which is the manufacture technique of a multilayer glass ceramics substrate that the conductor or the conductor, and the capacitor were formed in the interior, and becomes both sides of the multilayer glass ceramics substrate before baking from the constituent of a quartz, a cristobalite, and a tridymite which contains a kind at least, forming a layered product, and calcinating this.

[Claim 2] The manufacture technique of the multilayer glass ceramics substrate of a claim 1 that the green sheet carried in both sides of the aforementioned multilayer glass ceramics substrate is characterized by containing a sintering acid.

[Claim 3] The manufacture technique of the multilayer glass ceramics substrate according to claim 2 characterized by being the oxide with which the aforementioned sintering acid softens below at the sintering start temperature of a glass ceramics substrate, or generates the liquid phase.

[Claim 4] The manufacture technique of a multilayer glass ceramics substrate according to claim 3 that the aforementioned sintering acid is any one or more sorts of lead-silicate aluminum glass, lead-silicate alkali glass, lead-silicate alkaline-earth glass, **** lead-silicate glass, **** silicic acid alkali glass, boric-acid aluminum lead glass, boric-acid lead alkali glass, boric-acid lead alkaline-earth glass, and boric-acid lead zinc glass.

[Claim 5] The manufacture technique of a multilayer glass ceramics substrate according to claim 2 that the aforementioned sintering acid is characterized by being an alkali metal compound.

[Claim 6] The manufacture technique of a multilayer glass ceramics substrate given in the claim characterized by to carry the green sheet which consists of a constituent containing the tridymite which is the manufacture technique of a multilayer glass ceramics substrate that the conductor or the conductor, and the capacitor were formed in the interior, and is sintered in the baking process of a multilayer glass ceramics substrate to both sides of the aforementioned glass ceramics substrate before baking, and the oxide which is not sintered in the baking process of a multilayer glass ceramics substrate, to form a layered product, and to calcinate this.

[Claim 7] The manufacture technique of the multilayer glass ceramics substrate according to claim 6 characterized by the oxide which is not sintered in the baking process of the aforementioned multilayer glass ceramics substrate being any one or more sorts of a quartz, a fused quartz, an alumina, a mullite, and the zirconia.

[Claim 8] The manufacture technique of the multilayer glass ceramics substrate of the claims 1-7 characterized by removing a double-sided constituent after baking.

[Claim 9] The manufacture technique of the multilayer glass ceramics substrate according to claim 1 to 8 characterized by calcinating by pressurizing the aforementioned green-sheet layered product at the time of baking.

[Translation done.]

* NOTICES *

The Japanese Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] this invention carries semiconductor LSI, a chip, etc. and relates to the manufacture technique of the multilayer glass ceramics substrate for carrying out the mutual wiring of them.

[0002]

[Description of the Prior Art] In recent years, small and lightweight-ization are desired also for the wiring substrate in which small and lightweight-ization are progressing to and semiconductor LSI, a chip, etc. mount these, the high-density wiring demanded obtains the multilayered ceramic substrate which allotted the internal electrode etc. in the substrate to such a demand -- having -- in addition -- and in the electronics industry of today, it is seriously taken by that thin-shape-izing is possible [0003] the conductor as an electrode material used for a multilayered ceramic substrate -- generally constituents are a conductive metal, an inorganic-acid ghost, and a paste-like constituent with which the end of a glass powder is distributed in the organic medium As conductor material, electric resistance is low and the gold which can also manufacture safely and easily the facility which can be used, silver, copper, and palladium are used. Low-temperature baking glass ceramics has been developed as a ceramic material which can carry out simultaneous baking with these metals.

[0004] A multilayer glass ceramics substrate produces the deflation accompanied by sintering in a baking process. A shrinking percentage and the deflation orientation change with the charge for substrates of non-equipments which uses this deflation, green-sheet composition, a fine-particles lot, a wiring pattern, an internal electrode material, dielectric materials to build in. This is set to production of a multilayer glass ceramics substrate, and has produced the problem of shoes.

[0005] First, although the shrinking percentage of a substrate must be counted backward and made in the first place in case the screen version for internal electrode printing is produced in the first place, the shrinking percentage of a substrate will change to it on condition that the above. For this reason, the screen version must be repeatedly remade according to each manufacture lot, and is uneconomical. Furthermore, the electrode of a large area must be formed beyond the need so that a deflation error may be permitted beforehand, and a high-density wiring becomes impossible.

[0006] When forming [second] the capacitor with a big capacity in the interior of a substrate for a miniaturization of a multilayered ceramic substrate, you have to carry out simultaneous baking of a substrate material and the dielectric materials. If the shrinking percentages of the orientation of a flat surface of a substrate material and dielectric materials differ at this time, the substrate front face of a fraction in which the dielectric was formed will be dented. For this reason, it becomes difficult to mount parts in a substrate front face.

[0007] As for the multilayer glass ceramics substrate produced by the third by the green-sheet laminated layers method, the contraction of the cross direction and a longitudinal direction changes with orientation of film formation of a green sheet. This has also been the failure of multilayer glass ceramics substrate production.

[0008] In order to lessen change of these deflations if possible, of course, investigating the inclination of the shrinking percentage of the substrate by the circuit design needs to manage enough laminating conditions, such as a management of a substrate material and green-sheet composition, a difference in a fine-particles lot, press **, and temperature, also in a manufacturing process. However, generally it is said that about **0.5% of the errors of a contraction exists.

[0009] This is a technical probrem common to the thing accompanied by sintering of a ceramic, glass ceramics, etc. irrespective of a multilayer glass ceramics substrate. Then, the request number-of-sheets laminating of what formed the electrode pattern in the green sheet which consists of low-temperature baking glass ceramics in JP,7-46540,B and JP,5-102666,A is carried out, a laminating is carried out so that it may insert and may be crowded with the burning temperature of the aforementioned low-temperature baking glass ceramics substrate material on both sides or one side of this layered product by the green sheet which consists of an inorganic constituent not to sinter, the aforementioned layered product is calcinated, and invention of removing the inorganic constituent which is not sintered after an appropriate time was made. By these, only the thickness orientation can produce the substrate to which deflation happens and deflation of the orientation of a flat surface does not happen, and can solve the above technical probrems.

[0010]

[Problem(s) to be Solved by the Invention] Although the substrate to which deflation of the orientation of a flat surface does not happen is produced by the above technique, a problem is in the point of the elimination of an inorganic constituent which carried out the laminating to this technique at both sides or one side of a low-temperature baking glass ceramics layered product. In

aforementioned JP,7-46520,B, more than a kind is used for the inorganic non-sintered constituent at least among an alumina, a zirconium oxide, an aluminium nitride, boron nitride, the mullite, and the magnesium oxide. These are stuck to the substrate front face after baking, and must be removed with a brush etc. However, removing with a brush one by one takes time very much. In aforementioned JP,5-102666,A, more than a kind is used at least as an inorganic constituent which is not sintered [this] among aluminum2O3, and MgO, ZrO2, TiO2, BeO and BN. These are stuck to the substrate front face after baking, and in order to remove, they must perform ultrasonic cleaning. however -- if all inorganic non-sintered constituents are dropped to ultrasonic cleaning -- time -- starting -- a process usual also in process -- one step floor -- it will increase As the technique of solving this technical probrem, it replaces with the aforementioned inorganic constituent in JP,5-327218,A, crystallization does not happen at the sintering temperature of a glass ceramics substrate material, but after carrying out the laminating of the glass crystallized above the crystallization end temperature of the glass in a glass ceramics substrate material to both sides or one side, the manufacture technique of the multilayered ceramic substrate which calcinates this is indicated. According to this technique, elimination of the laminated material for preventing deflation of the orientation of a flat surface does not need to perform ultrasonic cleaning. However, by this technique, since fine particles were only hardened and the laminated material has stuck to the substrate front face, in the point of elimination of a laminated material, there is still a problem. Since it must furthermore heat-treat at an elevated temperature further after baking of glass ceramics, problems, like an opening is made between an electrode and a substrate arise.

[0011] this invention aims at offering the manufacture technique of a multilayered ceramic substrate that there are few processes and deflation of the orientation of a flat surface does not happen in consideration of the technical probrem of such conventional manufacture technique.

[0012]

[Means for Solving the Problem] Such a purpose is attained by this invention of following the (1) - (9).

[0013] (1) The manufacture technique of the multilayer glass ceramics substrate characterized by carrying the green sheet which is the manufacture technique of a multilayer glass ceramics substrate that the conductor or the conductor, and the capacitor were formed in the interior, and becomes both sides of the multilayer glass ceramics substrate before baking from the constituent of a quartz, a cristobalite, and a tridymite which contains a kind at least, forming a layered product, and calcinating this.

[0014] (2) The manufacture technique of the multilayer glass ceramics substrate of (1) that the green sheet carried in both sides of the aforementioned multilayer glass ceramics substrate is characterized by containing a sintering acid.

[0015] (3) The manufacture technique of a multilayer glass ceramics substrate given in (2) characterized by being the oxide with which the aforementioned sintering acid softens below at the sintering start temperature of a glass ceramics substrate, or generates the liquid phase.

[0016] (4) The manufacture technique of a multilayer glass ceramics substrate given in (3) whose aforementioned sintering acid is any one or more sorts of lead-silicate aluminum glass, lead-silicate alkali glass, lead-silicate alkaline-earth glass, **** lead-silicate glass, **** silicic acid alkali glass, boric-acid aluminum lead glass, boric-acid lead alkali glass, boric-acid lead alkaline-earth glass, and boric-acid lead zinc glass.

[0017] (5) The manufacture technique of a multilayer glass ceramics substrate given in (2) to which the aforementioned sintering acid is characterized by being an alkali metal compound.

[0018] (6) The manufacture technique of a multilayer glass-ceramics substrate given in the claim characterized by to carry the green sheet which consists of a constituent containing the tridymite which is the manufacture technique of a multilayer glass ceramics substrate that the conductor or the conductor, and the capacitor were formed in the interior, and is sintered in the baking process of a multilayer glass ceramics substrate to both sides of the aforementioned glass ceramics substrate before baking, and the oxide which is not sintered in the baking process of a multilayer glass ceramics substrate, to form a layered product, and to calcinate this

[0019] (7) The manufacture technique of a multilayer glass ceramics substrate given in (6) characterized by the oxide which is not sintered in the baking process of the aforementioned multilayer glass ceramics substrate being any one or more sorts of a quartz, a fused quartz, an alumina, a mullite, and the zirconia.

[0020] (8) The manufacture technique of the multilayer glass ceramics substrate of (1) - (7) characterized by removing a double-sided constituent after baking.

[0021] (9) The manufacture technique of a multilayer glass ceramics substrate given in (1) - (8) characterized by calcinating by pressurizing the aforementioned green-sheet layered product at the time of baking.

[Embodiments of the Invention] this invention calcinates the multilayer glass ceramics substrate green layered product which has the green sheet which consists of a constituent of a quartz, a cristobalite, and a tridymite which contains a kind at least, the green sheet which consists of the aforementioned constituent containing a sintering acid, or the green sheet which consists of a constituent containing the oxide which is not sintered in the tridymite sintered with the burning temperature of a multilayer glass ceramics substrate material, and a baking process to both sides, and obtains the multilayer glass ceramics substrate to which deflation of the orientation of a flat surface do happen by removing

[0023] In this invention, the manufacture technique in the case of using the green sheet which consists of a constituent of a quartz, a cristobalite, and a tridymite which contains a kind at least is explained.

[0024] the green-sheet top which added and produced the organic binder, the plasticizer, etc. into the glass ceramics material -- a conductor -- an electrode pattern is formed with a paste constituent and a multilayer glass ceramics layered product is produced

by predetermined carrying out the number-of-sheets laminating of these sheets, and multilayering so that it may become a desired wiring pattern After an appropriate time, the laminating of the green sheet which becomes both sides of the aforementioned glass ceramics layered product from the constituent of a quartz, a cristobalite, and a tridymite which contains a kind at least is carried out. Thermocompression bonding of this is carried out and a green layered product is produced. And after carrying out ** binder processing of the organic substance of the aforementioned layered product and performing usual baking, the substrate without deflation of the orientation of a flat surface is obtained by removing the inorganic constituent which is not sintered [double-sided]. This is based on the following grounds.

[0025] In order not to sinter the aforementioned constituent in the burning temperature of a multilayer glass ceramics substrate material, deflation does not happen. Since the multilayer glass ceramics layered product has stuck with the sheet which consists of the aforementioned constituent, it cannot contract in the orientation of a flat surface at the time of baking, but only as for the thickness orientation, deflation happens as the whole substrate. In addition, although the aforementioned constituent requires stress in the orientation in which coefficient of thermal expansion expands the flat surface of a substrate greatly, since the aforementioned constituent does not sinter, when the grain in a sheet moves, the stress is eased and an expansion of the orientation of a flat surface of a multilayer glass ceramics substrate does not happen as a result.

[0026] Moreover, the aforementioned constituent has the transformation point from which thermal-contraction behavior changes abruptly. For this reason, in the baking process of a multilayer glass ceramics substrate, rapid stress arises between substrates during cooling. Therefore, it is possible to remove easily the aforementioned constituent which carried out the laminating to both sides by dropping [scratch] etc. from a multilayer glass ceramics layered product, even if it does not perform ultrasonic cleaning.

[0027] As for the aforementioned constituent, it is desirable to contain the sintering acid. This ground is that the aforementioned constituent which carried out the laminating to both sides can sinter in the shape of a sheet, the aforementioned constituent can be stripped from a multilayer glass ceramics substrate front face in the state of a sheet after baking, and removal becomes still easy. When not adding a sintering acid, the aforementioned constituent is not sintered in the baking process of a multilayer glass ceramics substrate, but exists in the state of fine particles on the surface of a substrate. This stress may be eased, even if stress is applied between glass ceramics substrates in the phase transformation point, since grain can be moved during cooling if it is in the status of fine particles. On the other hand, by carrying out the laminating of the constituent containing a sintering acid to both sides, such a problem can be avoided and it is enabled to remove a double-sided constituent more easily. In addition, when it contains a sintering acid, it is thought that the following phenomena have occurred in a baking process. A quartz, a cristobalite, and a tridymite have a large coefficient of thermal expansion respectively compared with about 20 ppm [degree C] /, about 50 ppm [degree C] /and degree C, about 40 ppm /, and a multilayer glass ceramics substrate material. In a baking process, in order to influence [by which the laminating was carried out to both sides] a glass ceramics substrate material of a big coefficient of thermal expansion of the aforementioned constituent, the area of the orientation of a flat surface becomes large. However, in order to calcinate this and to contract, the dimensional change baking before and after baking will be offset as a result, and the substrate without deflation of the orientation of a flat surface will be obtained.

[0028] The oxide which becomes soft below at the sintering start temperature of a multilayer glass ceramics substrate, or generates the liquid phase as a sintering acid is used. When it sinters in order for the grain of the aforementioned constituent to join together when an additive becomes soft when the former is used, and the latter is used, it will sinter, in order for the grain front face of the aforementioned constituent to react and for grain to join together, when an additive generates the liquid phase. Although not limited especially as such an oxide, any one or more sorts of lead-silicate aluminum glass, lead-silicate alkali glass, lead-silicate alkaline-earth glass, **** lead-silicate glass, **** silicic acid alkali glass, boric-acid aluminum lead glass, boric-acid lead alkali glass, boric-acid lead alkaline-earth glass, and boric-acid lead zinc glass are desirable.

[0029] Moreover, you may use an alkali metal compound as a sintering acid. There is an effect urged to advance of sintering of

[0029] Moreover, you may use an alkali metal compound as a sintering acid. There is an effect urged to advance of sintering of SiO2 in an alkali metal compound. Therefore, the constituent of a quartz, a cristobalite, and a tridymite which contains a kind at least will be sintered by adding an alkali metal compound. Although such a compound [especially] is not limited, a lithium carbonate, potassium carbonate, a sodium carbonate, a lithium oxide, a potassium oxide, etc. are desirable.

[0030] Next, the multilayer glass ceramics substrate green layered product which has the tridymite sintered in the baking process of multilayer glass ceramics and the green sheet which consists of a constituent containing the oxide which is not sintered in the baking process of multilayer glass ceramics to both sides in this invention is calcinated, and by removing a double-sided constituent after that explains how to obtain the multilayer glass ceramics substrate to which deflation of the orientation of a flat surface does not happen.

[0031] A tridymite can change various sintering temperature by selection of composition. Stress produces a tridymite on the boundary with a substrate by sintering. However, the coefficient of thermal expansion of a tridymite is large, and a coefficient of thermal expansion reaches [degree C] in 40 ppm /with some temperature. For this reason, there is a differential thermal expansion with a glass ceramics material (about 3-10 ppm/(degree C)) too much, and it may peel before sintering. In order to prevent this, the oxide which is not sintered with the burning temperature of a multilayer glass ceramics substrate material is added, and a coefficient of thermal expansion is adjusted, and it is made to peel in the state of a sheet after sintering automatically. Thereby, even if it does not perform ultrasonic cleaning, removal from a glass ceramics layered product becomes easy. In addition, the mode of baking in this case is considered that the same phenomenon as the case where what added the sintering acid is used for the constituent of a quartz, a cristobalite, and a tridymite which contains a kind at least has occurred. In addition, the tridymite sintered in the baking process of a ceramic is producible by heat-treating by adding an alkali metal compound to a

quartz etc.

[0032] Moreover, although not limited especially as an oxide which is not sintered in the baking process of a glass ceramics substrate, a quartz, a fused quartz, an alumina, a mullite, a zirconia, etc. are used preferably.

[0033] The green sheet which consists of a constituent of a quartz, a cristobalite, and a tridymite which contains a kind at least, Or the green sheet which consists of the aforementioned constituent containing a sintering acid, The green sheet which consists of a constituent containing the oxide which is not sintered in the tridymite sintered with the burning temperature of a multilayer glass ceramics substrate material, and a baking process at or the time of baking of the multilayer glass ceramics substrate green layered product which it has to both sides If it calcinates, pressurizing, the curvature of a substrate can be suppressed, and the degree of sintering of the thickness orientation is promoted further, and a precise sintered compact can be obtained. What is necessary is to carry the plate for a load which does not react at the time of the aforementioned layered product and baking, and just to calcinate as the technique of pressurization baking.

[0034] In addition, in the above-mentioned explanation, a multilayer glass ceramics substrate material is the mixture of glass and the aggregate. Although especially the multilayer glass ceramics substrate material used for this invention is not limited, the mixture of alumina silicic acid alkaline-earth glass and an alumina etc. can use it suitably.

[0035] Moreover, silver and silver-palladium, copper, etc. are used from that it can sinter at low temperature as an electrode material, that an electrical property is good, it being easy to treat cheaply and industrially, etc.

[0036] In forming an internal capacitor in the aforementioned multilayered ceramic substrate furthermore, it forms the dielectric paste which consists of a perovskite compound and a vehicle by the printing method etc. What is necessary is just to perform the formation technique of an internal electrode pattern and an internal capacitor, and the manufacture technique of the layered product of a multilayered ceramic substrate according to the conventional various technique. Although the amount of dielectric soma might dent after calcinating, since the contraction of a substrate material and the dielectric materials for capacitor section formation is different when it had the capacitor section inside a substrate, a surface depression can be suppressed by applying the manufacture technique of this invention.

[0037] Baking of a multilayer glass ceramics layered product is usually performed by the 700 degrees C - 1100 degrees C temperature requirement in 5 minutes - 4 hours. In using copper as an internal electrode especially, when using 950 degrees C or less and silver, it calcinates below 930 degrees C.

[0038] In addition, the manufacture technique of a multilayer glass ceramics layered product is not limited to the sheet method, and can be changed variously. For example, you may use technique, such as the printing method. Moreover, it does not matter after producing a glass ceramics layered product by the sheet method, the printing method, etc., even if it produces a layered product by carrying out the laminating of the glass ceramics material by the sheet method, the printing method, etc. on the constituent green sheet which may print the constituent paste which prevents deflation of the orientation of a flat surface to both sides, and prevents deflation of the aforementioned flat-surface orientation, and carrying out the laminating of the aforementioned constituent green sheet to the best layer again.

[Example] Hereafter, the example of this invention is explained with reference to a drawing. <u>Drawings 1</u> and 2 are drawings showing the cross section of the multilayer glass ceramics substrate in the example of this invention.

[0040] (Example 1) As glass ceramics of a substrate material, the constituent the end of a SiO2-aluminum2O3-CaO-BaO-MgO glass powder and whose alumina powder are 70 to 30 in a volume ratio was used. This glass ceramics powder was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sintering start temperature of this glass ceramics was 800 degrees C.

[0041] The sheet molding of this slurry was carried out on the organic film by the doctor blade method. In this way, the silver paste and the dielectric paste were used for the obtained green sheet, and formation of a conductor pattern and formation of a capacitor were performed with the screen printing. a conductor -- the vehicle which the paste made the mineral constituent Ag powder (3.5 micrometers of mean particle diameters), and melted the acrylic resin which is an organic binder of all [********] and butyl carbitol acetate -- in addition, what was mixed so that it might become moderate viscosity with 3 rolls was used a dielectric paste -- perovskite compound the vehicle which made the mineral constituent Pb(Mg1/3Nb 2/3) O3-PbTiO3 powder (0.6 micrometers of mean particle diameters), added the sintering acid, and melted the acrylic resin which is an organic binder of all [********] and butyl carbitol acetate -- in addition, what was mixed so that it might become moderate viscosity with 3 rolls was used

[0042] Next, quartz powder (1.9 micrometers of mean particle diameters) was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sheet was fabricated for this slurry by the same technique as the green sheet for substrates. Both the thickness of the aforementioned green sheet for substrates and a quartz green sheet was about 200 micrometers.

[0043] The predetermined number-of-sheets pile and the green sheet which becomes both sides of the best layer and the lowest layer from quartz powder further were piled up for what performed printing of the dielectric paste for a conductor pattern and capacitors to the aforementioned green sheet for substrates. Thermocompression bonding was carried out in this status, and the layered product was formed. Thermocompression bonding conditions were set into 50 degrees C, and temperature set 100kg /of pressures to 2 cm. The configuration of this substrate is shown in drawing 1. Two or more sheets laminating of the green-sheet

layer 1 by the aforementioned substrate material is carried out, as a sheet for suppressing deflation of the orientation of a flat surface to the both sides, the green-sheet layer 2 which consists of quartz powder is formed, and the internal electrode layer 3 and the dielectric layer 4 are formed in the interior of a substrate.

[0044] Next, the aforementioned layered product was carried and calcinated to the alumina setter. At belt kiln, baking conditions performed the ** binder back at 350 degrees C among air, and performed baking for 10 minutes at 900 degrees C. It calcinated by [as carrying an alumina sintering plate and pressurizing] in order to prevent the curvature of a substrate at this time and to help sintering deflation of the thickness orientation.

[0045] Although the constituent sheep sintered compact for the orientation shrinkproofings of a flat surface of a ceramic substrate existed in both sides of the ceramic layered product after baking, it was able to be failed easily to scratch this.

[0046] When the dimension of the substrate after this baking was measured and the contraction was calculated, it was 0.5% or less. Moreover, the depression on the front face of a substrate was not produced, either.

[0047] (Example 2) As a glass ceramic of a substrate material, the constituent the end of a SiO2-aluminum2O3-CaO-BaO-MgO glass powder and whose alumina powder are 70 to 30 in a volume ratio was used. This glass ceramics powder was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sintering start temperature of this glass ceramics was 800 degrees C.

[0048] The sheet molding of this slurry was carried out on the organic film by the doctor blade method. In this way, the silver paste and the dielectric paste were used for the obtained green sheet, and formation of a conductor pattern and formation of a capacitor were performed with the screen printing. a conductor -- the paste made the mineral constituent Ag powder (3.5 micrometers of mean particle diameters), and used what was mixed so that it might become moderate viscosity with 3 rolls in addition with the vehicle which melted the acrylic resin which is an organic binder of all [********] and butyl carbitol acetate a dielectric paste -- perovskite compound the vehicle which made the mineral constituent Pb(Mg1/3Nb 2/3) O3-PbTiO3 powder (0.6 micrometers of mean particle diameters), added the sintering acid, and melted the acrylic resin which is an organic binder of all [*********] and butyl carbitol acetate -- in addition, what was mixed so that it might become moderate viscosity with 3 rolls was used

[0049] next, quartz powder (1.9 micrometers of mean particle diameters) -- the end (66PbO-30SiO2-4aluminum2O3 (mol%), the mean particle diameter of 1.0 micrometers, liquid phase generation temperature of 760 degrees C) of a lead-silicate aluminum glass powder -- 10wt% -- what was added was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it The sheet molding of this slurry was carried out by the same technique as the green sheet for substrates. Both the thickness of the aforementioned green sheet for substrates and the quartz green sheet which added lead-silicate aluminum glass was about 200 micrometers.

[0050] The green sheet which consists what performed printing of the dielectric paste for a conductor pattern and capacitors to the aforementioned green sheet for substrates of a predetermined number-of-sheets pile and a quartz which added lead-silicate aluminum glass to the both sides further was piled up. Thermocompression bonding was carried out in this status, and the layered product was formed. Thermocompression bonding conditions were set into 50 degrees C, and temperature set 100kg /of pressures to 2 cm. The configuration is shown in <u>drawing 1</u>. Two or more sheets laminating of the green-sheet layer 1 by the aforementioned substrate material is carried out, as a sheet for suppressing deflation of the orientation of a flat surface to the both sides, the green-sheet layer 2 which consists of a quartz which added lead-silicate aluminum glass is formed, and the internal electrode layer 3 and the dielectric layer 4 are formed in the interior of a substrate.

[0051] Next, the aforementioned layered product was carried and calcinated to the alumina setter. Baking conditions were calcinated for 10 minutes at 900 degrees C after the ** binder end by 350 degrees C among air at belt kiln. It calcinated by [as carrying an alumina sintering plate and pressurizing] in order to prevent the curvature of a substrate at this time and to help sintering deflation of the thickness orientation.

[0052] The sintered compact of the sheet for suppressing deflation of the orientation of a flat surface formed in both sides of a ceramic layered product had peeled after baking.

[0053] When the dimension of the substrate after this baking was measured and the contraction was calculated, it was 0.5% or less. Moreover, the depression of the front face of a substrate was not produced, either.

[0054] (Example 3) As glass ceramics of a substrate material, the constituent the end of

SiO2-aluminum2O3-CaO-SrO-MgO-B-2O3 glass powder and whose alumina powder are 70 to 30 in a volume ratio was used. This glass ceramics powder was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sintering start temperature of this glass ceramics was 750 degrees C.

[0055] The sheet molding of this slurry was carried out on the organic film by the doctor blade method. In this way, the silver paste was used for the obtained green sheet, and the conductor pattern was formed with the screen printing. a conductor -- the paste made the mineral constituent Ag powder (3.5 micrometers of mean particle diameters), and used what was mixed so that it might become moderate viscosity with 3 rolls in addition with the vehicle which melted the acrylic resin which is an organic binder of all [********] and butyl carbitol acetate

[0056] next, quartz powder (1.1 micrometers of mean particle diameters) -- the end (42SiO2-26Na2O-32 B-2 O3 (mol%) --) of a **** silicic acid alkali glass powder 1.0 micrometers of mean particle diameters, and 557 degrees C of softening temperatures

-- 1, 2, 3, and 5wt% -- what was added was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry The sheet molding of this slurry was carried out by the same technique as the green sheet for substrates. Both the thickness of the quartz green sheet which added the aforementioned green sheet for substrates and **** silicic acid alkali glass was about 200 micrometers.

[0057] The green sheet which consists what printed the conductor pattern of a predetermined number-of-sheets pile and a quartz which added **** silicic acid alkali glass to the both sides further was laid on top of the aforementioned green sheet for substrates. Thermocompression bonding was carried out in this status, and the layered product was formed. Thermocompression bonding conditions were set into 50 degrees C, and temperature set 100kg /of pressures to 2 cm. The configuration is shown in drawing 2. Two or more sheets laminating of the green-sheet layer 11 by the aforementioned substrate material is carried out, as a sheet for suppressing deflation of the orientation of a flat surface to the both sides, the green-sheet layer 12 which consists of a quartz which added ******* acid alkali glass is formed, and the internal electrode layer 13 is formed in the interior of a substrate.

[0058] Next, the aforementioned layered product was carried and calcinated to the alumina setter. At belt kiln, baking conditions performed the ** binder end back at 350 degrees C among air, and performed baking for 10 minutes at 900 degrees C. It calcinated by [as carrying an alumina sintering plate and pressurizing] in order to prevent the curvature of a substrate at this time and to help sintering deflation of the thickness orientation.

[0059] The sintered compact of the sheet for suppressing deflation of the orientation of a flat surface formed in both sides of a ceramic layered product also about which thing had peeled after baking.

[0060] When the dimension of the substrate after this baking was measured and the contraction was calculated, it was 0.5% or less.

(Example 4) As glass ceramics of a substrate material, the constituent the end of SiO2-aluminum2O3-CaO-SrO-MgO-B-2O3 glass powder and whose alumina powder are 70 to 30 in a volume ratio was used. This glass ceramics powder was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sintering start temperature of this glass ceramics was 750 degrees C.

[0061] The sheet molding of this slurry was carried out on the organic film by the doctor blade method. In this way, the silver paste was used for the obtained green sheet, and the conductor pattern was formed with the screen printing. a conductor -- the paste made the mineral constituent Ag powder (3.5 micrometers of mean particle diameters), and used what was mixed so that it might become moderate viscosity with 3 rolls in addition with the vehicle which melted the acrylic resin which is an organic binder of all [*********] and butyl carbitol acetate

[0062] next, quartz powder (1.1 micrometers of mean particle diameters) -- a sodium carbonate -- 0.2, 0.5, and 1.3wt% -- what was added was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry The sheet molding of this slurry was carried out by the same technique as the green sheet for substrates. Both the thickness of a green sheet that consists of a quartz which added the aforementioned green sheet for substrates and the sodium carbonate was about 200 micrometers.

[0063] The green sheet which consists what printed the conductor pattern of a predetermined number-of-sheets pile and a quartz which added the sodium carbonate to the both sides further was laid on top of the aforementioned green sheet for substrates. Thermocompression bonding was carried out in this status, and the layered product was formed. Thermocompression bonding conditions were set into 50 degrees C, and temperature set 100kg /of pressures to 2 cm. The configuration is shown in drawing 2. Two or more sheets laminating of the green-sheet layer 11 by the aforementioned substrate material is carried out, as a sheet for suppressing deflation of the orientation of a flat surface to the both sides, the green-sheet layer 12 which consists of a quartz which added the sodium carbonate is formed, and the internal electrode layer 13 is formed in the interior of a substrate. [0064] Next, the aforementioned layered product was carried and calcinated to the alumina setter. At belt kiln, baking conditions performed the ** binder end back at 350 degrees C among air, and performed baking for 10 minutes at 900 degrees C. It calcinated by [as carrying an alumina sintering plate and pressurizing] in order to prevent the curvature of a substrate at this time and to help sintering deflation of the thickness orientation.

[0065] The sintered compact of the sheet for suppressing deflation of the orientation of a flat surface formed in both sides of a ceramic layered product also about any thing had peeled after baking.

[0066] When the dimension of the substrate after this baking was measured and the contraction was calculated, it was 0.5% or less.

[0067] (Example 5) As glass ceramics of a substrate material, the constituent the end of

SiO2-aluminum2O3-CaO-SrO-MgO-B-2O3 glass powder and whose alumina powder are 70 to 30 in a volume ratio was used. This glass ceramics powder was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sintering start temperature of this glass ceramics was 750 degrees C. [0068] The sheet molding of this slurry was carried out on the organic film by the doctor blade method. In this way, the silver paste was used for the obtained green sheet, and the conductor pattern was formed with the screen printing, a conductor -- the paste made the mineral constituent Ag powder (3.5 micrometers of mean particle diameters), and used what was mixed so that it

might become moderate viscosity with 3 rolls in addition with the vehicle which melted the acrylic resin which is an organic binder of all [********] and butyl carbitol acetate

[0069] Next, what mixed tridymite powder (1.5 micrometers of mean particle diameters) and quartz powder (1.1 micrometers of mean particle diameters) by the weight ratio 1:2, 1:1, and 2:1 was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. in addition, a tridymite -- a quartz -- K2CO3 -- 3wt% -- it added and produced by heat-treating at 1400 degrees C for 10 hours The sheet molding of this slurry was carried out by the same technique as the green sheet for substrates. Both the thickness of a green sheet that consists of the mixture of the aforementioned green sheet for substrates and a tridymite, and a quartz was about 200 micrometers.

[0070] The predetermined number-of-sheets pile and the green sheet which becomes the both sides from a tridymite, a quartz, and mixture further were laid on top of the aforementioned green sheet for substrates for what printed the conductor pattern. Thermocompression bonding was carried out in this status, and the layered product was formed. Thermocompression bonding conditions were set into 50 degrees C, and temperature set 100kg /of pressures to 2 cm. The configuration is shown in drawing 2. Two or more sheets laminating of the green-sheet layer 11 by the aforementioned substrate material is carried out, as a sheet for suppressing deflation of the orientation of a flat surface to the both sides, the green-sheet layer 12 which consists of the mixture of a tridymite and a quartz is formed, and the internal electrode layer 13 is formed in the interior of a substrate.

[0071] Next, the aforementioned layered product was carried and calcinated to the alumina setter. At belt kiln, baking conditions performed the ** binder end back at 350 degrees C among air, and performed baking for 10 minutes at 900 degrees C. It calcinated by [as carrying an alumina sintering plate and pressurizing] in order to prevent the curvature of a substrate at this time and to help sintering deflation of the thickness orientation.

[0072] The sintered compact of the sheet for suppressing deflation of the orientation of a flat surface formed in both sides of a ceramic layered product also about which thing had peeled after baking.

[0073] When the dimension of the substrate after this baking was measured and the contraction was calculated, it was 0.5% or less.

(Example 6) As a glass ceramic of a substrate material, the constituent the end of SiO2-aluminum2O3-CaO-SrO-MgO-B-2O3 glass powder and whose alumina powder are 70 to 30 in a volume ratio was used. This glass ceramics powder was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sintering start temperature of this glass ceramics was 750 degrees C.

[0074] The sheet molding of this slurry was carried out on the organic film by the doctor blade method. In this way, the silver paste was used for the obtained green sheet, and the conductor pattern was formed with the screen printing. a conductor -- the paste made the mineral constituent Ag powder (3.5 micrometers of mean particle diameters), and used what was mixed so that it might become moderate viscosity with 3 rolls in addition with the vehicle which melted the acrylic resin which is an organic binder of all [********] and butyl carbitol acetate

[0075] Next, what mixed tridymite powder (1.5 micrometers of mean particle diameters) and alumina powder (1.1 micrometers of mean particle diameters) by the weight ratio 1:1 and 2:1 was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. in addition, a tridymite -- a quartz -- K2CO3 -- 3wt% -- it added and produced by heat-treating at 1400 degrees C for 10 hours The sheet molding of this slurry was carried out by the same technique as the green sheet for substrates. Both the thickness of a green sheet that consists of the mixture of the aforementioned green sheet for substrates and a tridymite, and an alumina was about 200 micrometers.

[0076] The predetermined number-of-sheets pile and the green sheet which becomes the both sides from the mixture of a tridymite and an alumina further were laid on top of the aforementioned green sheet for substrates for what printed the conductor pattern. Thermocompression bonding was carried out in this status, and the layered product was formed. Thermocompression bonding conditions were set into 50 degrees C, and temperature set 100kg /of pressures to 2 cm. The configuration is shown in drawing 2. Two or more sheets laminating of the green-sheet layer 11 by the aforementioned substrate material is carried out, as a sheet for suppressing deflation of the orientation of a flat surface to the both sides, the green-sheet layer 12 which consists of the mixture of a tridymite and an alumina is formed, and the internal electrode layer 13 is formed in the interior of a substrate. [0077] Next, the aforementioned layered product was carried and calcinated to the alumina setter. At belt kiln, baking conditions performed the ** binder end back at 350 degrees C among air, and performed baking for 10 minutes at 900 degrees C. It calcinated by [as carrying an alumina sintering plate and pressurizing] in order to prevent the curvature of a substrate at this time and to help sintering deflation of the thickness orientation.

[0078] The sintered compact of the sheet for suppressing deflation of the orientation of a flat surface formed in both sides of a ceramic layered product had peeled after baking.

[0079] When the dimension of the substrate after this baking was measured and the contraction was calculated, it was 0.5% or less.

[0080] In addition, the same effect will be acquired if sintering of the tridymite in which a cristobalite exists as an unusual appearance in the sintering process of a substrate happens even if a cristobalite exists as a tridymite and an inside unusual appearance.

[0081] In addition, in examples 1-6, although calcinated by [as carrying an alumina sintering plate and pressurizing in the case of

baking of a multilayer glass ceramics substrate], since the layer was formed in both sides in the green sheet which suppresses deflation of the orientation of a flat surface, even if there was not a load or ** in a layered product, the same effect was acquired. [0082] (Example 1 of a comparison) As glass ceramics of a substrate material, the constituent the end of a SiO2-aluminum2O3-CaO-BaO-MgO glass powder and whose alumina powder are 70 to 30 in a volume ratio was used. This glass ceramics powder was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sintering start temperature of this glass ceramics was 800 degrees C. [0083] The sheet molding of this slurry was carried out on the organic film by the doctor blade method. In this way, the silver paste and the dielectric paste were used for the obtained green sheet, and formation of a conductor pattern and formation of a capacitor were performed with the screen printing, a conductor -- the vehicle which the paste made the mineral constituent Ag powder (3.5 micrometers of mean particle diameters), and melted the acrylic resin which is an organic binder of all [*******] and butyl carbitol acetate -- in addition, what was mixed so that it might become moderate viscosity with 3 rolls was used a dielectric paste -- perovskite compound the vehicle which made the mineral constituent Pb(Mg1/3Nb 2/3) O3-PbTiO3 powder (0.6 micrometers of mean particle diameters), added the sintering acid, and melted the acrylic resin which is an organic binder of all [*******] and butyl carbitol acetate -- in addition, what was mixed so that it might become moderate viscosity with 3 rolls was used

[0084] Next, alumina powder (1.1 micrometers of mean particle diameters) was made into the mineral constituent, and as an organic binder, the phthalic ester was mixed as acrylic resin and a plasticizer, the mixed liquor (30 to 70-fold quantitative ratio) of toluene and ethyl alcohol was mixed as a solvent, and it considered as the slurry. The sheet was fabricated for this slurry by the same technique as the green sheet for substrates. Both the thickness of the aforementioned green sheet for substrates and an alumina green sheet was about 200 micrometers.

[0085] The predetermined number-of-sheets pile and the green sheet which becomes both sides of the best layer and the lowest layer from an alumina further were piled up for what performed printing of the dielectric paste for a conductor pattern and capacitors to the aforementioned green sheet for substrates. Thermocompression bonding was carried out in this status, and the layered product was formed. Thermocompression bonding conditions were set into 50 degrees C, and temperature set 100kg /of pressures to 2 cm. The configuration of this substrate is shown in drawing 1. Two or more sheets laminating of the green-sheet layer 1 by the aforementioned substrate material is carried out, as a sheet for suppressing deflation of the orientation of a flat surface to the both sides, the green-sheet layer 2 which consists of an alumina is formed, and the internal electrode layer 3 and the dielectric layer 4 are formed in the interior of a substrate.

[0086] Next, the aforementioned layered product was carried and calcinated to the alumina setter. At belt kiln, baking conditions performed the ** binder back at 350 degrees C among air, and performed baking for 10 minutes at 900 degrees C. It calcinated by [as carrying an alumina sintering plate and pressurizing] in order to prevent the curvature of a substrate at this time and to help sintering deflation of the thickness orientation.

[0087] The alumina existed in both sides of the ceramic layered product after baking, and in order to remove this, ultrasonic cleaning for 20 minutes was required.

[0088] The multilayer substrate to which deflation by sintering does not happen at all in the orientation of a flat surface by calcinating the multilayered-ceramic-substrate green layered product which has the green sheet which consists of a constituent with which this invention contains at least one sort of a quartz, a cristobalite, and a tridymite in the production process of a multilayered ceramic substrate as mentioned above, the green sheet which consists of the aforementioned constituent containing a sintering acid, or the green sheet which consists of a constituent containing the oxide which be sintered in the tridymite and the baking process sintered with the burning temperature of a glass-ceramics material Moreover, the green-sheet layer for preventing deflation of the orientation of a flat surface established in both sides of the aforementioned substrate can be easily removed after a baking end.

[0089]

[Effect of the Invention] A glass ceramics substrate can contract only the thickness orientation at the time of baking, and this invention can obtain the multilayer glass ceramics substrate of the good status that it does not contract, in the orientation of a flat surface so that clearly from having stated above.

[0090] Since a phase transformation happens and the constituent which was used in order to suppress deflation of the orientation of a flat surface of this multilayer glass ceramics substrate and which carried out the laminating to both sides changes thermal-contraction behavior abruptly by the temperature of transformation in a baking process at the time of cooling, for such a reason, stress can remove it easily between multilayer glass ceramics, working hours can be shortened, and work is simplified. [0091] The substrate of the same dimension is always obtained, without being dependent on the conditions of the charge of non-equipments, and the other above-mentioned for substrates which this uses for a multilayer substrate. Moreover, since it is not necessary to count a wiring pattern backward and how many screen versions are not remade even if it calcinates a inner layer wiring like the above-mentioned in production of a multilayer glass ceramics substrate similarly, it is economical. [0092] this invention is effective invention which solves the technical probrem of the deflation error used as the biggest technical probrem of a green-sheet laminated layers method, and makes the routing easy as mentioned above.

[Translation done.]

* NOTICES *

The Japanese Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the schematic diagram showing an example of the green layered product of the multilayer glass ceramics substrate of this invention.

[Drawing 2] It is the schematic diagram showing other examples of the green layered product of the multilayer glass ceramics substrate of this invention.

[Description of Notations]

- 1, 11 Glass ceramic green-sheet layer
- 2, 12 Green-sheet layer for suppressing deflation of the orientation of a flat surface
- 3, 13 Internal electrode layer
- 4 Dielectric Layer for Internal Capacitors

[Translation done.]