Si $v \in V$, on définit $v^+ = \{v\}^+$ et $v^- = \{v\}^-$. Si $f: \overrightarrow{E} \longrightarrow \mathbb{R}^+$ et $\overrightarrow{B} \subseteq \overrightarrow{E}$, on définit : $f(\overrightarrow{B}) = \sum_{\overrightarrow{e} \in B} f(\overrightarrow{e})$

Dans cet exercice, on considère un graphe orienté $\vec{G} = (V, \vec{E})$, des sommets

• $A^+ = \{(u, v) \in \overrightarrow{E} \mid u \in A, v \notin A\}$ (« arcs sortants de A») • $A^- = \{(u, v) \in \overrightarrow{E} \mid u \notin A, v \in A\}$ (« arcs rentrants dans A»)

t une fonction
$$f: \vec{E} \longrightarrow \mathbb{R}^+$$
 telle que $\vec{E}: 0 \le f(\vec{e}) \le c(\vec{e})$

de trouver un flot de valeur maximum dans \vec{G} .

ment un chemin de s à t:

Algorithme: Ford-Fulkerson

 $s, t \in V$ et une **capacité** $c : \vec{E} \longrightarrow \mathbb{R}^+$.

Si $A \subseteq V$, on définit :

Un **flot** est une fonction $f: \vec{E} \longrightarrow \mathbb{R}^+$ telle que : • $\forall \vec{e} \in \vec{E} : 0 \le f(\vec{e}) \le c(\vec{e})$ • $\forall v \in V - \{s,t\}$: $f(v^-) = f(v^+)$ (la somme des flots rentrants dans un sommet est égal à la somme des flots sortants). La valeur d'un flot f est définie par $|f| = f(s^+)$. L'objectif de cet exercice est

à définir un flot très simple). 3. Soit \overrightarrow{P} un chemin de s à t et c la capacité minimum des arcs de \overrightarrow{P} . On définit $f: \vec{E} \longmapsto \mathbb{R}^*$ qui vaut c sur chaque arc de \vec{P} et 0 partout ailleurs. Justifier que f est un flot. 4. L'algorithme suivant permet de construire un flot en ajoutant itérative-

2. Montrer que tout graphe muni d'une capacité possède un flot (on cherchera

Tant que
$$\exists$$
 un chemin \overrightarrow{P} de s à t , dont les arcs sont tous de capacité > 0 :
$$c \longleftarrow \text{minimum des capacités de } \overrightarrow{P}$$
Diminuer de c la capacité des arcs de \overrightarrow{P}
Augmenter le flot f de c , le long des arcs de \overrightarrow{P}

Appliquer l'algorithme de Ford-Fulkerson sur le graphe de la 1ère question. 5. On suppose que toutes les capacités sont entières. Montrer que l'algo-

rithme de Ford-Fulkerson termine et donner la complexité dans le pire cas.

Une **coupe** de \vec{G} est un ensemble $S \subseteq V$ contenant s mais pas t. La capacité

d'une coupe S est la somme $c(S^+)$ des capacités des arcs sortants de S.

6. Soit S une coupe. Montrer que $f(S^+) \le c(S^+)$ et $f(S^+) = |f|$. 7. Soit f un flot et S une coupe vérifiant $f(S^+) = c(S^+)$. Montrer que :

• f est un flot de valeur maximum • S une coupe de capacité minimum

8. Montrer que si l'algorithme de Ford-Fulkerson termine, le flot obtenu est

un flot maximum

9. Quelle méthode connaissez-vous pour trouver un chemin dans l'algorithme de Ford-Fulkerson? Implémenter l'algorithme de Ford-Fulkerson en OCaml, avec l'une de ces méthodes.