微积分 B(1)第一次习题课参考答案

教学目的:本次习题课希望巩固确界、极限、子列等概念,这些是微积分的基本概念,通过对习题的演练,使同学们加深对相关概念的理解.同时,希望通过书写解答过程,体会数学语言的运用.

另外,本次习题课也准备了一些与常用的初等数学知识相关的习题,帮助大家衔接中学与大学的内容.这些习题主要由同学课下自己完成.

说明:本次讨论课,课内主要讨论以下两部分的题目:

一、集合的界与确界, 二、数列极限的定义

一、集合的界与确界

- 1. 证明: (1) 函数 $f(x) = \frac{1}{x^2}$ 在定义域内有下界,无上界;
 - (2) 对 $\delta > 0$,函数 $f(x) = \frac{1}{x^2} \pm (-\infty, -\delta] \cup [\delta, +\infty)$ 上有界.

(思考:一个函数在某个区间上无界如何叙述?)

证: (1) 因为 $\frac{1}{x^2} > 0$,所以 $f(x) = \frac{1}{x^2}$ 在其定义域 $(-\infty,0) \cup (0,+\infty)$ 内有下界.

对 $\forall G > 0$, 取 $x_G = \frac{1}{2\sqrt{G}}$, 则 $x_G \in (0, +\infty)$ 且 $f(x_G) = \frac{1}{x_G^2} = 4G > G$, 因此 $f(x) = \frac{1}{x^2}$ 在其定义域 $(-\infty, 0) \cup (0, +\infty)$ 内无上界.

(2) 当 $x \in (-\infty, -\delta] \cup [\delta, +\infty)$ 时,有 $x^2 \geqslant \delta^2$,所以

$$0<\frac{1}{x^2}\leqslant\frac{1}{\delta^2},$$

即函数 $f(x) = \frac{1}{x^2}$ 在 $(-\infty, -\delta] \cup [\delta, +\infty)$ 上有界.

2. 证明: $\sup\{\arctan x\} = \frac{\pi}{2}$.

证: 因为 $-\frac{\pi}{2}$ < arctan $x < \frac{\pi}{2}$, 所以 $\frac{\pi}{2}$ 是 arctan x 的上界.

任给 $\varepsilon > 0$,不妨设 $\varepsilon < \pi$. 取 $y_0 = \frac{\pi}{2} - \frac{\varepsilon}{2}$,则 $0 < y_0 < \frac{\pi}{2}$.

<math><math> $x_0 = \tan y_0$,则

$$\arctan x_0 = \arctan(\tan y_0) = y_0 = \frac{\pi}{2} - \frac{\varepsilon}{2} > \frac{\pi}{2} - \varepsilon$$
.

综上可知 $\sup \{\arctan x\} = \frac{\pi}{2}$.

3. 设 A, B 均是非空有界实数集,定义: $A + B = \{x + y | x \in A, y \in B\}$. 证明:

(1) $\inf(A+B) = \inf A + \inf B$;

(2) $\sup(A+B) = \sup A + \sup B$.

证: 仅证(1);(2)的证法类似于(1).

记 $a = \inf A$, $b = \inf B$. 由确界的定义, $\forall x \in A$, $y \in B$ 均有

$$x \ge a$$
, $y \ge b$,

因此 $x+y \ge a+b$, 即a+b是集合A+B的一个下界.

另一方面, $\forall \varepsilon > 0$, 因为 $a = \inf A$, $b = \inf B$, 所以 $\exists x_{\varepsilon} \in A$, $y_{\varepsilon} \in B$, 使得

$$x_{\varepsilon} < a + \frac{\varepsilon}{2}$$
, $y_{\varepsilon} < b + \frac{\varepsilon}{2}$,

因此 $x_{\varepsilon} + y_{\varepsilon} < a + b + \varepsilon$,所以a + b是集合A + B的最大下界.

综上可知 $\inf(A+B) = a+b = \inf A + \inf B$.

- 4. 设 A, B 均是由非负实数构成的有界数集,定义 $AB = \{xy \mid x \in A, y \in B\}$. 证明:
- (1) $\inf AB = \inf A \cdot \inf B$;

(2) $\sup AB = \sup A \cdot \sup B$.

证: (1) 略,仅证(2).

记 $a = \sup A$, $b = \sup B$. 若a = 0或b = 0, 则结论显然成立.

下面设a > 0, b > 0.

由确界的定义, $\forall x \in A$, $y \in B$, 均有 $0 \le x \le a$, $0 \le y \le b$, 因此

$$0 \le xv \le ab$$
,

即 ab 是集合 AB 的一个上界.

另一方面, $\forall \varepsilon > 0$,对于 $\frac{\varepsilon}{a+b}$,因为 $a = \sup A$, $b = \sup B$,所以 $\exists x_{\varepsilon} \in A$, $\exists y_{\varepsilon} \in B$,

使得

$$x_{\varepsilon} > a - \frac{\varepsilon}{a+b}$$
, $y_{\varepsilon} > b - \frac{\varepsilon}{a+b}$,

因此

$$x_{\varepsilon}y_{\varepsilon} > (a - \frac{\varepsilon}{a+b})(b - \frac{\varepsilon}{a+b}) = ab - \frac{\varepsilon}{a+b}(a+b) + (\frac{\varepsilon}{a+b})^2 > ab - \varepsilon$$

所以ab是集合AB的最小上界.

综上可知 $\sup AB = ab = \sup A \cdot \sup B$.

 $\dot{\mathbf{z}} : (1)$ 的证明中,也要用到类似" $\forall \varepsilon > 0$,对于 $\frac{\varepsilon}{a+b}$ $\exists x_{\varepsilon} \in A, y_{\varepsilon} \in B$ 使得 $x_{\varepsilon} > a - \frac{\varepsilon}{a+b}, y_{\varepsilon} > b - \frac{\varepsilon}{a+b}$ "的技巧.

二、数列极限的定义

1. 用极限定义证明

(1)
$$\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) = 0$$
.

证:
$$|\sqrt{n+1} - \sqrt{n}| = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{\sqrt{n}}$$
.
$$\forall \varepsilon > 0 \text{ , 欲使 } |\sqrt{n+1} - \sqrt{n}| < \varepsilon \text{ , 只需 } \frac{1}{\sqrt{n}} < \varepsilon \text{ , 即 } n > \left[\frac{1}{\varepsilon^2}\right] \text{ 便可.}$$

$$\mathbb{R} N = \left[\frac{1}{\varepsilon^2}\right] + 1 \text{ , 则当 } n > N \text{ 时 , }$$

$$|\sqrt{n+1}-\sqrt{n}|<\varepsilon$$
.

故
$$\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=0$$
.

 $(2) \lim_{n\to\infty} \sqrt[n]{n} = 1.$

证: 因为 $\sqrt[n]{n} > 1$, 令 $\sqrt[n]{n} = 1 + a_n$, 则 $a_n > 0$, 且 $\lim_{n \to \infty} \sqrt[n]{n} = 1$ 等价于 $\lim_{n \to \infty} a_n = 0$.

由于

$$n = (1 + a_n)^n = 1 + na_n + \frac{1}{2}n(n-1)a_n^2 + \dots + a_n^n > \frac{1}{2}n(n-1)a_n^2,$$

$$0 < a_n < \sqrt{\frac{2}{n-1}}.$$

所以

因此 $\forall \varepsilon > 0$,取 $N = \left[\frac{2}{\varepsilon^2}\right] + 1$,则当 n > N时,有

$$0 < a_n < \varepsilon$$
,

故 $\lim_{n\to\infty} a_n = 0$. 从而 $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

注: 利用均值不等式进行变形化简.

$$1 \leqslant \sqrt[n]{n} = \sqrt[n]{\underbrace{1 \times 1 \times \cdots \times 1}_{n-2} \times \sqrt{n} \times \sqrt{n}} < \underbrace{\frac{1 + 1 + \cdots + 1 + \sqrt{n} + \sqrt{n}}{n}} = 1 - \frac{2}{n} + \frac{2}{\sqrt{n}}.$$

Remark: 以下放缩对此题无效.

$$1 \leqslant \sqrt[n]{n} = \sqrt[n]{\underbrace{1 \times 1 \times \dots \times 1}_{n-1} \times n} < \underbrace{\frac{1}{1+1+\dots+1} + n}_{n} = 2 - \frac{1}{n}.$$

(3) * 呂知 a > 1, k > 0. 证明 $\lim_{n \to \infty} \frac{n^k}{a^n} = 0$.

$$a^{n} = (1+b)^{n} > C_{\cdot \cdot}^{[k]+1} b^{[k]+1}$$

所以

$$0 < \frac{n^k}{a^n} < \frac{n^k}{C_n^{[k]+1}} \frac{1}{b^{[k]+1}} < \frac{n^k}{(n-[k])^{[k]+1}} \frac{([k]+1)!}{b^{[k]+1}} = \frac{n^{k-[k]-1}}{(1-\frac{[k]}{n})^{[k]+1}} \frac{([k]+1)!}{b^{[k]+1}}.$$

因为 $\lim_{n\to\infty} (1-\frac{[k]}{n})^{[k]+1} = 1$,所以存在 $N_1 > 0$,当 $n > N_1$ 时, $(1-\frac{[k]}{n})^{[k]+1} > \frac{1}{2}$.

所以当 $n > \max\{N_1, [k] + 1\}$ 时,

对于 $\forall \ \varepsilon > 0$, 取 $N = \max\{N_1, [k] + 1, \begin{bmatrix} \lfloor k \rfloor + 1 - k \end{bmatrix} \frac{C}{\varepsilon} \end{bmatrix} + 1\}$, 则当 n > N 时, 有

$$0 < \frac{n^k}{a^n} < \varepsilon$$
.

故
$$\lim_{n\to\infty}\frac{n^k}{a^n}=0$$
.

- 2. 下列说法中,哪些与 $\lim_{n\to\infty} a_n = A$ 等价. 如果等价,请证明,如果不等价,请举出反例.
 - (1) 对于无限多个正数 $\varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 $n \ge N$, 就有 $|a_n A| < \varepsilon$;
 - (2) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 $n \ge N$, 就有 $|a_n A| < \varepsilon$;
 - (3) $\forall \varepsilon \in (0,1), \exists N \in \mathbb{N}^*, 只要 n > N, 就有 | a_n A | < \varepsilon;$
- (4) k>0, $\forall \varepsilon>0$, $\exists N\in\mathbb{N}^*$, 只要n>N, 就有 $|a_n-A|< k\varepsilon$;
- (5) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要n > N, 就有 $|a_n A| < \varepsilon^{\frac{2}{3}}$;
- (6) $\forall k \in \mathbb{N}^*, \exists N_k \in \mathbb{N}^*, 只要 n > N_k, 就有 | a_n A | < \frac{1}{2^k};$
- (7) $\exists N \in \mathbb{N}^*$, 只要n > N, 就有 $|a_n A| < \frac{1}{n}$;
- (8) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要n > N, 就有 $|a_n A| < \frac{\varepsilon}{n}$;
- (9) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 n > N, 就有 $|a_n A| < \sqrt{n}\varepsilon$.
- 解: (2)(3)(4)(5)(6)与 $\lim_{n\to\infty} a_n = A$ 等价.
- (1) 必要不充分. 一个反例是 $|(-1)^n 1| < 2 + \frac{1}{k}$, 其中 k 为正整数.
- (7) (8) 充分不必要. 一个共同反例是 $\{\frac{2}{n}\}$.
- (9) 必要不充分. 一个反例是 $\{(-1)^n\}$, 对 $\forall \varepsilon > 0$, 可取 $N = \left[\frac{2}{\varepsilon}\right] + 1$.

- 3. 用 εN 语言叙述: " $\{a_n\}$ 不收敛于 A". 并讨论下列哪些说法与" $\{a_n\}$ 不收敛于 A"等价:
 - (1) $\exists \varepsilon_0 > 0$, $\exists N \in \mathbb{N}^*$, 只要 n > N, 就有 $|a_n A| \ge \varepsilon_0$;
 - (2) $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}^*$, 只要 $n \ge N$, 就有 $|a_n A| \ge \varepsilon$;
 - (3) $\exists \varepsilon_0 > 0$,使得 $\{a_n\}$ 中除有限项外,都满足 $|a_n A| \ge \varepsilon_0$;
- (4) $\exists \varepsilon_0 > 0$,使得 $\{a_n\}$ 中有无穷多项满足 $|a_n A| \ge \varepsilon_0$.
- 解: (4) 与" $\{a_n\}$ 不收敛于 A"等价.
- (1)(2)(3) 充分不必要,一个反例是 $\{(-1)^n\}$.
- 4. 证明: 若单调数列具有收敛的子列,则此单调数列收敛.
- 证:不妨设 $\{a_n\}$ 为一单调增加数列, $\{a_{n_k}\}$ 为 $\{a_n\}$ 的一个子列,且 $\lim_{k\to\infty}a_{n_k}=A=\sup\{a_{n_k}\}$.

$$\forall \varepsilon > 0$$
,因为 $\lim_{n_{\nu}} a_{n_{\nu}} = A$,所以 $\exists N_0 > 0$, $\exists k \ge N_0$ 时,有 $\left| a_{n_{\nu}} - A \right| < \varepsilon$.

由于 $\{a_n\}$ 单增,所以当 $n > n_{N_0}$ 时,有 $A - \varepsilon < a_{n_{N_0}} \le a_n$.

对于 $n > n_{N_0}$, 总存在 k_n , 使得 $n_{k_n} > n$, 由单调性知 $a_n \leq a_{n_k}$.

综上可知,当 $n>n_{\scriptscriptstyle N_0}$ 时,总有 $A-\varepsilon< a_{\scriptscriptstyle n_{\scriptscriptstyle N_0}}\leqslant a_{\scriptscriptstyle n}\leqslant a_{\scriptscriptstyle n_k}\leqslant A$ 成立. 故 $\lim_{n\to\infty}a_{\scriptscriptstyle n}=A$.

三、函数及其性质

- 1. (1) 设 $f(x) = e^x$, 且 f(g(x)) = 1 x, 求函数 g(x) 的定义域.
- (2) 设函数 f(x) 的定义域为[0,1],求函数 $g(x) = \sqrt{1-x} \cdot f(\sin \pi x) + \sqrt{1+x} \cdot f(1+\cos \pi x)$ 的定义域.

解: (1) 由 $f(x) = e^x$, 得到

$$f(g(x)) = e^{g(x)} = 1 - x$$
,

因此 $g(x) = \ln(1-x)$. 所以 g(x) 的定义域为 $(-\infty, 1)$.

(2) 因为函数 f(x) 的定义域为[0,1],所以

$$\begin{cases} 1-x \geqslant 0, \\ 1+x \geqslant 0, \\ 0 \leqslant \sin \pi x \leqslant 1, \\ 0 \leqslant 1+\cos \pi x \leqslant 1, \end{cases} \quad \exists \square \begin{cases} -1 \leqslant x \leqslant 1, \\ 0 \leqslant \sin \pi x \leqslant 1, \\ -1 \leqslant \cos \pi x \leqslant 0. \end{cases}$$

解得 x = -1 或 $\frac{1}{2} \le x \le 1$. 所以 g(x) 的定义域为 $[\frac{1}{2},1] \cup \{-1\}$.

(2)
$$\[\] \psi f(x) = x + |x| \]$$
, $g(x) = \begin{cases} x, & x < 0, \\ x^2, & x \ge 0, \end{cases} \] \psi f(g(x))$, $g(f(x))$.

解: (1)
$$f(f(x)) = \frac{1}{2 - f(x)} = \frac{1}{2 - \frac{1}{2 - x}} = \frac{2 - x}{3 - 2x} \quad (x \neq 2, 3, \frac{3}{2}, \frac{5}{3}),$$

$$f(f(f(x))) = \frac{1}{2 - f(f(x))} = \frac{3 - 2x}{4 - 3x} \quad (x \neq 2, 3, \frac{3}{2}, \frac{5}{3}, \frac{4}{3}, \frac{7}{5}).$$

(2)
$$f(g(x)) = g(x) + |g(x)| = \begin{cases} 2g(x), & g(x) \ge 0, \\ 0, & g(x) < 0 \end{cases} = \begin{cases} 2x^2, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

$$g(f(x)) = \begin{cases} f(x), & f(x) < 0, \\ [f(x)]^2, & f(x) \ge 0 \end{cases} = [f(x)]^2 = \begin{cases} 4x^2, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

- 3. (1) 已知函数 f(x) 定义域为 **R**. 如果对于任意 x 都有 f(a+x) = f(b-x),那么 f(x) 的图象有什么性质?
 - (2)已知函数 f(x),请说明函数 f(a+x)的图象与函数 f(b-x)的图象关于哪条直线对称.
- **解**: (1) f(x) 的图象关于直线 $x = \frac{a+b}{2}$ 对称.

事 实 上 , f(x) 图 象 上 任 意 一 点 $(x_0, f(x_0))$ 关 于 直 线 $x = \frac{a+b}{2}$ 的 对 称 点 为 $(a+b-x_0, f(x_0))$, 所以只需要说明点 $(a+b-x_0, f(x_0))$ 仍然在 f(x) 的图象上即可.

由 f(a+x)=f(b-x) 可知,对于任意的 x,都有 f(a+b-x)=f(x),即点 $(a+b-x_0,f(x_0))$ 在 f(x) 的图象上. 由 x_0 的任意性可知 f(x) 的图象关于直线 $x=\frac{a+b}{2}$ 对称.

(2) f(a+x) 与函数 f(b-x) 关于直线 $x = \frac{b-a}{2}$ 对称.

f(a+x) 的图象是由 f(x) 向左平移 a 个单位得到,并且 f(x) 图象上任意一点 $(x_0,f(x_0))$ 经过平移后的坐标为 $(x_0-a,f(x_0))$,因此 $(x_0-a,f(x_0))$ 在 f(a+x) 的图象上.

f(x) 的图象向左平移b个单位得到f(b+x) 的图象,同样的道理得到 $(x_0-b,f(x_0))$ 在f(b+x) 的图象上.

再将 f(b+x) 的图象关于 y 轴对称,得到 f(b-x) 的图象,这样 $(b-x_0, f(x_0))$ 在 f(b-x)

图象上. 由 $(x_0 - a, f(x_0))$ 与 $(b - x_0, f(x_0))$ 关于直线 $x = \frac{b - a}{2}$ 对称,及 x_0 的任意性,得到 f(a + x) 与 f(b - x) 的图象关于直线 $x = \frac{b - a}{2}$ 对称.

4. 已知函数 f(x) 的定义域为 $(-\infty, +\infty)$,且 f(x) 的图象关于直线 x = a 与 x = b (a < b) 对称,证明: f(x) 是以 2(b - a) 为周期的周期函数.

证:由于f(x)的图象关于直线x=a对称,所以对于任意的x,有

$$f(a+x)=f(a-x),$$

同理有 f(b+x) = f(b-x).

因此 f(x) = f(2a-x) = f(2b-(2a-x)) = f(2(b-a)+x),即 f(x) 是以 2(b-a) 为周期的周期函数.

(思考:一个函数不是周期函数如何叙述?)

- 5. 已知函数 f(x) 满足: 对任意的实数 x, y,有 f(x + y) = f(x) + f(y). 当 x > 0 时,有 f(x) < 0,并且 f(-1) = 2.
- (1) 求证 f(x) 为奇函数;
- (2) f(x) 在区间[-3,3]上是否存在最值?如果存在,求出最值,如果不存在,请说明理由;
- (3) 设b>0,解关于x的不等式: $\frac{1}{2}f(bx^2)-f(x)>\frac{1}{2}f(b^2x)-f(b)$.

解: (1) 当x = y = 0 时,有f(0) = 2f(0),所以f(0) = 0.

当 y = -x 时,有 f(0) = f(x) + f(-x) ,所以 f(-x) = -f(x) . 故 f(x) 为奇函数.

(2) 先考察 f(x) 的单调性.

 $\forall x_1, x_2 \in \mathbf{R} \ (x_1 < x_2)$,由己知条件得到 $f(x_2 - x_1) < 0$,所以

$$f(x_2) + f(-x_1) < 0,$$

故 $f(x_1) < -f(-x_1) = f(x_1)$, f(x) 为 **R** 上的减函数.

因此 f(x) 在 [-3,3] 上有最值,最大值 f(-3)=3f(-1)=6,最小值 f(3)=-6.

(3) 当 y = x 时,有 f(2x) = 2f(x),所以对于任意的 x,有 $f(x) = \frac{1}{2}f(2x)$,所以 $\frac{1}{2}f(bx^2) - f(x) = f(\frac{1}{2}bx^2 - x), \quad \frac{1}{2}f(b^2x) - f(b) = f(\frac{1}{2}b^2x - b).$

由于 f(x) 为 **R** 上的减函数,所以 $\frac{1}{2}f(bx^2) - f(x) > \frac{1}{2}f(b^2x) - f(b)$ 等价于

$$\frac{1}{2}bx^2 - x < \frac{1}{2}b^2x - b,$$

整理得 (bx-2)(x-b)<0.

若 $0 < b < \sqrt{2}$,所求的解集为 $(b, \frac{2}{b})$; 若 $b = \sqrt{2}$,所求的解集为空集; 若 $b > \sqrt{2}$,所求的解集为 $(\frac{2}{b}, b)$.

6. 设f(x)在[a,b]上是下凸函数,证明: $\max_{a \le x \le b} f(x) = \max\{f(a), f(b)\}$.

证明:因为对任意的 $x \in [a,b]$,都有

$$f(x) = f(\frac{b-x}{b-a}a + \frac{x-a}{b-a}b) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b) \le \max\{f(a), f(b)\},\$$

且 $\max\{f(a), f(b)\}$ 可以取到,所以 $\max_{a \le x \le b} f(x) = \max\{f(a), f(b)\}$.

- 7. (1) 函数 $f(x) = \sqrt{x-1} + 2$ ($x \ge 1$)的反函数是_____.
- (2)若点(4,3) 既在函数 $y=1+\sqrt{ax+b}$ 的图象上,又在它的反函数的图象上,求函数的解析式.
- (3) 若 $f(x-1) = x^2 2x + 3$ ($x \le 1$),则 $f^{-1}(4) =$ _____.
- (4) 已知函数 y = f(x) 存在反函数,那么与函数 y = f(x) 的反函数图象关于原点对称的图象所对应的函数表达式为______.
- (5) 函数 $f(x) = \frac{x-3}{2x-3}$ $(x \neq \frac{3}{2})$, 若 y = f(x+1) 的图象是 C_1 , 它关于直线 y = x 对称图象是
- C_1 , C_2 , 关于原点对称的图象为 C_3 , 则 C_3 对应的函数解析式是______.

解: (1) $f(x) = \sqrt{x-1} + 2$. 由 $x \ge 1$, 得到 $f(x) \ge 2$. 反解 $f(x) = \sqrt{x-1} + 2$ 得到

$$x = (f(x) - 2)^2 + 1$$
.

所以反函数为 $y = (x-2)^2 + 1$ $(x \ge 2)$.

(2) 由互为反函数图象的关系知, (3,4) 也在函数 $v=1+\sqrt{ax+b}$ 图象上, 所以有

$$\begin{cases} 1 + \sqrt{3a+b} = 4, \\ 1 + \sqrt{4a+b} = 3, \end{cases}$$

解得 $\begin{cases} a = -5, \\ b = 24. \end{cases}$ 函数解析式为 $y = 1 + \sqrt{24 - 5x}$.

(3) 可以先求出反函数,再求 $f^{-1}(4)$. 也可以先令 $x^2 - 2x + 3 = 4$ ($x \le 1$),解得 $x = 1 - \sqrt{2}$,即 $f(1 - \sqrt{2} - 1) = 4$,所以 $f^{-1}(4) = -\sqrt{2}$.

(4) y = f(x) 的反函数 $y = f^{-1}(x)$, 其图象关于原点对称的图象的函数解析式为 $y = -f^{-1}(-x)$.

(5) 由于
$$f(x) = \frac{x-3}{2x-3} (x \neq \frac{3}{2})$$
,所以
$$y = f(x+1) = \frac{x-2}{2x-1} (x \neq \frac{1}{2})$$
,

其反函数解析式仍为 $y = \frac{x-2}{2x-1}$ $(x \neq \frac{1}{2})$. 因此 C_3 对应的函数解析式为 $y = -\frac{x+2}{2x+1}$ $(x \neq -\frac{1}{2})$.

8. 试写出一个从[0,1]到(0,1)的一一对应映射.

解:令

$$f(x) = \begin{cases} \frac{1}{2}, & x=0, \\ \frac{1}{3}, & x=1, \\ \frac{1}{n+2}, & x=\frac{1}{n}, n=2,3,4\cdots, \\ x, & x=0, \end{cases}$$

则 y = f(x) 就是一个从[0,1]到(0,1)的一一对应映射.

四、不等式

1. 试证明 Cauchy 不等式: a_i ($i = 1, 2, \dots n$) , b_i ($i = 1, 2, \dots n$) 为两组实数,求证:

$$(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2),$$

并考虑取得等号的条件.

证:如果 a_i ($i=1,2,\cdots n$)全部为零,那么左右两端恒等,不等式显然成立.

假设 a_i ($i=1,2,\cdots n$) 中至少有一个不为零,构造函数

$$f(x) = (a_1x + b_1)^2 + (a_2x + b_2)^2 + \dots + (a_nx + b_n)^2$$
.

整理得

$$f(x) = (a_1^2 + a_2^2 + \dots + a_n^2)x^2 + 2(a_1b_1 + a_2b_2 + \dots + a_nb_n)x + (b_1^2 + b_2^2 + \dots + b_n^2).$$

这是一个关于x的二次函数. 由f的定义,对于任意的x,均有 $f(x) \ge 0$,因此 $\Delta \le 0$,

下面考虑取等条件:如果取等,即 $\Delta=0$,那么抛物线与x轴相切.

设切点坐标为 $(x_0,0)$, 所以有 $f(x_0)=0$, 因此有

$$a_1x_0 + b_1 = a_2x_0 + b_2 = \cdots = a_nx_0 + b_n = 0$$
,

所以我们得到 a_i,b_i 两组实数对应成比例.反之,如果这两组实数对应成比例,易证

$$(a_1b_1 + a_2b_2 + \dots + a_nb_n)^2 = (a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2).$$

因此,取得等号的充分必要条件是 a, b, 两组实数对应成比例.

2. 证明: 设
$$a_1, a_2, \dots, a_n > 0$$
, 则 $\sqrt{\frac{{a_1}^2 + {a_2}^2 + \dots a_n^2}{n}} \geqslant \frac{a_1 + a_2 + \dots + a_n}{n}$.

证: $\{a_i\}_{i=1}^n$, $\{\frac{1}{n}\}_{i=1}^n$ 为两组数,由 Cauchy 不等式有

$$(a_1 \frac{1}{n} + a_2 \frac{1}{n} + \dots + a_n \frac{1}{n})^2 \le (a_1^2 + a_2^2 + \dots + a_n^2)(\frac{1}{n^2} + \frac{1}{n^2} + \dots + \frac{1}{n^2}),$$

$$\mathbb{E} \frac{a_1^2 + a_2^2 + \dots + a_n^2}{n} \geqslant \left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^2.$$

由于
$$a_1, a_2, \dots, a_n > 0$$
, 因此有 $\sqrt{\frac{{a_1}^2 + {a_2}^2 + \dots a_n^2}{n}} \ge \frac{a_1 + a_2 + \dots + a_n}{n}$.

五、数学归纳法(第一数学归纳法、第二数学归纳法、归纳,猜想,证明)

1. (Bernoulli 不等式)证明对于任意的正整数 n, $(1+x)^n \ge 1 + nx$, $\forall x \ge -1$.

证: 当 n = 1 时,命题显然成立.

假设 $n = k (k \ge 1)$ 命题成立,即 $(1+x)^k \ge 1 + kx$;

当n=k+1时,由于1+x≥0,因此有

$$(1+x)^{k+1} = (1+x)^k (1+x) \ge (1+kx)(1+x) = 1+(k+1)x+kx^2 > 1+(k+1)x$$
.

综上可知,对于任意的正整数n, $(1+x)^n \ge 1+nx$, $\forall x \ge -1$.

2. 斐波那契数列 $\{F_n\}$ 满足 $F_1 = F_2 = 1$, $F_{n+2} = F_{n+1} + F_n$,求证:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

证:利用第二数学归纳法证明.

当n=1时, $F_1=1$,命题成立,当n=2时, $F_2=1$,命题仍然成立.

假设当 $n \le k$ $(k \ge 2)$ 时命题成立;

当n = k+1时,

$$\begin{split} F_{k+1} &= F_k + F_{k-1} = \frac{1}{\sqrt{5}} \left[(\frac{1+\sqrt{5}}{2})^k - (\frac{1-\sqrt{5}}{2})^k \right] + \frac{1}{\sqrt{5}} \left[(\frac{1+\sqrt{5}}{2})^{k-1} - (\frac{1-\sqrt{5}}{2})^{k-1} \right] \\ &= \frac{1}{\sqrt{5}} \left[\frac{2}{1+\sqrt{5}} (\frac{1+\sqrt{5}}{2})^{k+1} + (\frac{2}{1+\sqrt{5}})^2 (\frac{1+\sqrt{5}}{2})^{k+1} - \frac{2}{1-\sqrt{5}} (\frac{1-\sqrt{5}}{2})^{k+1} - (\frac{2}{1-\sqrt{5}})^2 (\frac{1-\sqrt{5}}{2})^{k+1} \right] \\ &= \frac{1}{\sqrt{5}} \left[(\frac{1+\sqrt{5}}{2})^{k+1} - (\frac{1-\sqrt{5}}{2})^{k+1} \right] \,, \end{split}$$

即当 n=k+1 时命题成立. 因此 $F_n=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n]$.