Animarea modelelor 3D folosind retele neuronale

Vavilov Andrei

March 10, 2021

1 Introducere

Inteligenta artificiala este un domeniu foarte versatil, a carui aplicabilitate poate fi extinsa in foarte multe domenii,printre care si modelarea grafica, mai exact in modelarea si animarea 3D.

Urmatorul studiu isi propune sa prezinte o parte din modelele si tehnologiile care pot fi folosite pentru a anima un model 3D in timp real, pe baza unui fisier audio selectat de catre utilizator.

2 Tehnologii propuse

Deoarece inteligenta artificiala este unul dintre cele mai intens cercetate domenii din prezent, exista o varietate de tehnologii si instrumente pentru realizarea de proiecte.

In continuare voi prezenta si argumenta pe scurt alegerile facute.

2.1 Limbajul de programare

O intrebare care a aparut odata cu cresterea in populariate a domeniului inteligentei artificiale este "Ce limbaj de programare ar trebui sa folosesc?".Desi nu exista "cel mai bun limbaj pentru inteligenta artificiala"[ref la articolulde pe tds], Python este de cele mai multe ori alegerea preferata atat a programatorilor cat si a oamenilor de stiinta si a statisticienilor datorita:

- 1. Varietatea de framework-uri si instrumente pentru Machine Learning, Data science si modelare/interpretare a datelor (TensorFlow, Scipy, Pytorch, Numpy, Pandas).
- 2. Numarul mare de resurse disponibile online

- 3. Sintaxa simpla
- 4. Fiind un limbaj *dinamically typed*, realizarea de aplicatii/modele este facila si rapida.
- 5. Fiind un limbaj *cross platform*, aplicatiile sunt automat suportate pe o varietate mare de platforme si sisteme de operare.

2.2 Tipul de Neural Network folosit

Inainte de a argumenta alegerea retelei neuronale, trebuie introdus pe scurt conceptul de *Deep Learning*.

Deep Learning, cunoscut si sub numele de Deep Structured Learning, face parte din familia invatarii automate si reprezinta o combinare a algoritmilor de Machine Learning cu Representation Learning (tehnica de automatizare a interpretarii datelor). Principalul avantaj pe care Deep Learning Neural Networks il prezinta fata de algoritmii de Machine Learning este minimizarea interventiei factorului uman, prin automatizarea procesului de feauture extraction, adica extragerea caracteristicilor distinctive ale datelor de intrare.

Din categoria Deep Learning Neural Networks trebuie amintite ANN, CNN, si RNN, principalele categorii de Deep Learning Neural Networks.

• ANN

Retelele neuronale de tip ANN au ca si caracteristica principala prelucrearea unidirectioanla a datelor (forward feeding) si este un tip de retea preferata in general in cazul problemelor din spectrul buisness-ului(predictii in legatura cu vanzarile/ viitoarele interese ale cumparatorilor, validare de date, risk management, etc.).

• CNN

Retelele neuronale de tip CNN sunt folosite in cadrul problemelor de clasificare a imaginilor, acestea prelucrand caracteristicile spatiale(pozitia pixelilor si relatiile dintre acestia).

• RNN Retelele neuronale de tip RNN, desi au o structura relativ asemanatoare cu ANN, se deosebesc prin capacitatea de a prelucra datele in ambele directii (recurrent feeding), fiind astfel o optiune valida preferata in cazul problemelor de procesare text si audio. RNN transmite secvential informatia catre straturile de neuroni, determinand dependentele dintre componentele datelor de intrare. Aceasta proprietate distinctiva se numeste Parameter sharing si duce la scaderea numarului de neuroni necesari din retea si, implicit, la scaderea costurilor computationale.

- 3 Prezentarea tehnologiilor propuse
- 4 Concluzie
- 5 Bibliografie