

SISTEM KOMPUTER

Disusun dengan huruf Palatino 14 pt.

KATA PENGANTAR

Dengan mengucapkan puji syukur Alhamdulillah kepada Tuhan YME, karena berkat limpahan rahmat dan kasih-Nya, akhirnya penulis dapat menyelesaikan penulisan modul untuk mata pelajaran SISTEM KOMPUTER yang merupakan bagian dari paket keahlian REKAYASA PERANGKAT LUNAK, TEKNIK KOMPUTER JARINGAN dan MULTIMEDIA untuk kelas X. Dalam penyusunan buku ini tidak terlepas dari kendala dan hambatan, namun berkat bimbingan dan motivasi dari semua pihak yang telah membantu maka kami dapat menyelesaikannya

Perkembangan ilmu komputer yang sangat cepat dewasa ini perlu diimbangi dengan pengetahuan dasar teorinya. Buku ini membahas tentang sistem bilangan, operasi aritmatika, gerbang logika, arsitekur komputer, media penyimpanan dan memori, serta memori semikonduktor.

Penulisan modul mata pelajaran SISTEM KOMPUTER ini bertujuan untuk membantu siswa kelas X RPL TKJ maupun MULTIMEDIA dalam memahami dan mempelajari konsep dasar teknologi sistem komputer dari sisi perangkat keras serta komponen-komponen pendukungnya. Buku ini dirancang untuk Kurikulum 2013 SMK untuk memperkuat kompetensi peserta didik dari sisi pengetahuan, ketrampilan, dan sikap secara utuh.

Dalam kesempatan ini penulis mengucapkan dan menyampaikan terima kasih yang sebesarnya kepada semua pihak yang tidak dapat disebutkan satu persatu. Semoga amal baiknya mendapatkan balasan yang sesuai dari Allah SWT.

Penulis menyadari bahwa dalam menyusun modul ini masih jauh dari sempurna. Hal itu tidak lepas dari keterbatasan kemampuan kami. Oleh karena itu saran dan kritik yang membangun sangatlah penulis harapkan demi kebaikan dan kesempurnaan dalam penulisan modul selanjutnya. Akhir kata, semoga buku ini dapat bermanfaat dan dapat memenuhi harapan sebagaimana mestinya,

Surakarta, Nopember 2014

Penulis

DAFTAR ISI

KATA PENGANTAR	iii
DAFTAR ISI	iv
DAFTAR TABEL	xiv
DAFTAR GAMBAR	xvi
PENDAHULUAN	xviii
1. Deskripsi	xviii
2. Prasyarat	xviii
3. Petunjuk Penggunaan	xviii
4. Tujuan Akhir	xix
5. Kompetensi Inti dan Kompetensi Dasar	xix
6. Peta konsep	xxi
PEMBELAJARAN	1
BAB I	1
SISTEM BILANGAN	1
1.1 Kegiatan Belajar 1	1
Materi : Pengertian dan Gambaran umum sistem bilangan	1
Alokasi waktu : 1 X 2 Jam Pertemuan	1
1.1.1. Tujuan Pembelajaran	1
1.1.2. Aktivitas belajar siswa	1
1.1.2.1. Mengamati/ observasi	1
1.1.2.2. Menanya	1
1.1.2.3. Mencoba/ Mengumpulkan informasi	1
A. Pengertian Sistem Komputer	1
B. Gambaran Umum Sistem Bilangan	4
1.1.2.4. Mengasosiasi/ menalar	5
1.1.2.5. Mengkomunikasikan	5
1.1.3. Rangkuman	6
1.1.4. Tugas	6
1.1.5. Penilaian diri	7
1.1.6. Uji Kompetensi/ Ulangan	7
1.2 Kegiatan Belajar 2	9
Materi : Sistem Bilangan (Desimal, Biner, Oktal dan Heksadesimal)	9
1.2.1. Tujuan Pembelajaran	9
1.2.2. Aktivitas belajar siswa	9

vi Sistem Komputer SMK/MAK Kelas X Semester I

1.3.4. Tugas	23
1.3.5. Penilaian diri	24
1.3.6. Uji Kompetensi/ Ulangan	25
1.4 Kegiatan Belajar 4	26
Materi : Sistem Bilangan Coded Decimal dan Binary Coded Hexadecimal	26
1.4.1. Tujuan Pembelajaran	26
1.4.2. Aktivitas belajar siswa	26
1.4.2.1. Mengamati/ observasi	26
1.4.2.2. Menanya	26
1.4.2.3. Mencoba/ Mengumpulkan informasi	26
A. Bentuk BCD (Binary Coded Decimal)	27
B. Bentuk BCH (Binary Coded Hexadecimal)	28
C. ASCII Code-American Standard Code-for Information Interchange	28
1.4.2.4. Mengasosiasi/ menalar	29
1.4.2.5. Mengkomunikasikan	29
1.4.3. Rangkuman	30
1.4.4. Tugas	30
1.4.5. Penilaian diri	31
1.4.6. Uji Kompetensi/ Ulangan	31
BAB II	33
Relasi Logik dan Fungsi Gerbang Dasar	33
2.1 Kegiatan Belajar 1	33
Materi : Relasi Logik	33
2.1.1. Tujuan Pembelajaran	33
2.1.2. Aktivitas belajar siswa	33
2.1.2.1. Mengamati/ observasi	33
2.1.2.2. Menanya	33
2.1.2.3. Mencoba/ Mengumpulkan informasi	33
2.1.2.4. Mengasosiasi/ menalar	32
2.1.2.5. Mengkomunikasikan	35
2.1.3. Rangkuman	35
2.1.4. Tugas	35
2.1.5. Penilaian diri	36
2.1.6. Uji Kompetensi/ Ulangan	36
2.2 Kegiatan Belajar 2	38

Materi : Operasi Logik	38
2.2.1. Tujuan Pembelajaran	38
2.2.2. Aktivitas belajar siswa	38
2.2.2.1. Mengamati/ observasi	38
2.2.2.2. Menanya	38
2.2.2.3. Mencoba/ Mengumpulkan informasi	38
2.2.2.4. Mengasosiasi/ menalar	39
2.2.2.5. Mengkomunikasikan	39
2.2.3. Rangkuman	40
2.2.4. Tugas	40
2.2.5. Penilaian diri	41
2.2.6. Uji Kompetensi/ Ulangan	41
2.3 Kegiatan Belajar 3	43
Materi : Fungsi Gerbang Dasar	43
2.3.1. Tujuan Pembelajaran	43
2.3.2. Aktivitas belajar siswa	43
2.3.2.1. Mengamati/ observasi	43
2.3.2.2. Menanya	43
2.3.2.3. Mencoba/ Mengumpulkan informasi	43
A. Fungsi Gerbang Gate (Gerbang AND)	44
B. Fungsi OR Gate (Gerbang OR)	46
C. Fungsi NOT Gate (Gerbang NOT) atau inverter	48
2.3.2.4. Mengasosiasi/ menalar	48
2.3.2.5. Mengkomunikasikan	48
2.3.3. Rangkuman	49
2.3.4. Tugas	49
2.3.5. Penilaian diri	50
2.3.6. Uji Kompetensi/ Ulangan	50
2.4 Kegiatan Belajar 4	52
Materi : Fungsi Gerbang Kombinasi	52
2.4.1. Tujuan Pembelajaran	52
2.4.2. Aktivitas belajar siswa	52
2.4.2.1. Mengamati/ observasi	52
2.4.2.2. Menanya	53
2.4.2.3. Mencoba/ Mengumpulkan informasi	53

A. Fungsi Gerbang Kombinasi (NAND, EX-OR)	53
B. Fungsi Gerbang NOR (NOT OR)	54
C. Fungsi EX – OR Gate (Gerbang EX-OR)	55
D. Fungsi EX-NOR	56
2.4.2.4. Mengasosiasi/ menalar	57
2.4.2.5. Mengkomunikasikan	57
2.4.3. Rangkuman	57
2.4.4. Tugas	57
2.4.5. Penilaian diri	58
2.4.6. Uji Kompetensi/ Ulangan	59
2.5 Kegiatan Belajar 5	60
Materi : Penggunaan Operasi Logik	60
2.5.1. Tujuan Pembelajaran	60
2.5.2. Aktivitas belajar siswa	60
2.5.2.1. Mengamati/ observasi	60
2.5.2.2. Menanya	60
2.5.2.3. Mencoba/ Mengumpulkan informasi	60
A. Penggunaan Operasi Logik	61
2.5.2.4. Mengasosiasi/ menalar	62
2.5.2.5. Mengkomunikasikan	62
2.5.3. Rangkuman	62
2.5.4. Tugas	62
2.5.5. Penilaian diri	63
2.5.6. Uji Kompetensi/ Ulangan	64
BAB III	65
Operasi Aritmatika	65
3.1 Kegiatan Belajar 1	65
Materi : Operasi Aritmatika Bilangan Biner	65
3.1.1. Tujuan Pembelajaran	65
3.1.2. Aktivitas belajar siswa	65
3.1.2.1. Mengamati/ observasi	65
3.1.2.2. Menanya	65
3.1.2.3. Mencoba/ Mengumpulkan informasi	65
A. Operasi Aritmatika Bilangan Biner	66
B. Operasi Aritmatika Bilangan Oktal	68

C. Operasi Aritmatika Bilangan Heksadesimal	70
3.1.2.4. Mengasosiasi/ menalar	72
3.1.2.5. Mengkomunikasikan	72
3.1.3. Rangkuman	72
3.1.4. Tugas	72
3.1.5. Penilaian diri	73
3.1.6. Uji Kompetensi/ Ulangan	74
3.2 Kegiatan Belajar 2	75
Materi : Increment dan Decrement	75
3.2.1. Tujuan Pembelajaran	75
3.2.2. Aktivitas belajar siswa	75
3.2.2.1. Mengamati/ observasi	75
3.2.2.2. Menanya	75
3.2.2.3. Mencoba/ Mengumpulkan informasi	75
A. Increment	76
B. Decrement	76
3.2.2.4. Mengasosiasi/ menalar	76
3.2.2.5. Mengkomunikasikan	76
3.2.3. Rangkuman	76
3.2.4. Tugas	77
3.2.5. Penilaian diri	77
3.2.6. Uji Kompetensi/ Ulangan	78
3.3 Kegiatan Belajar 3	79
Materi : Operasi Aritmatika	79
3.3.1. Tujuan Pembelajaran	79
3.3.2. Aktivitas belajar siswa	79
3.3.2.1. Mengamati/ observasi	79
3.3.2.2. Menanya	79
3.3.2.3. Mencoba/ Mengumpulkan informasi	79
A. Penjumlahan Bilangan dalam BCD	79
B. Pengurangan Bilangan dalam BCD	82
3.3.2.4. Mengasosiasi/ menalar	83
3.3.2.5. Mengkomunikasikan	83
3.3.3. Rangkuman	83
3.3.4. Tugas	83

x Sistem Komputer SMK/MAK Kelas X Semester I

	3.3.5. Penilaian diri	84
	3.3.6. Uji Kompetensi/ Ulangan	84
ЗА	B IV	86
4ri	thmetic Logik Unit (ALU)	86
	Materi : Arithmetic Logic Unit (ALU)	86
	4.1.1. Tujuan Pembelajaran	86
	4.1.2. Aktivitas belajar siswa	86
	4.1.2.1. Mengamati/ observasi	86
	4.1.2.2. Menanya	86
	4.1.2.3. Mencoba/ Mengumpulkan informasi	86
	4.1.2.4. Mengasosiasi/ menalar	87
	4.1.2.5. Mengkomunikasikan	87
	4.1.3. Rangkuman	87
	4.1.4. Tugas	88
	4.1.5. Penilaian diri	88
	4.1.6. Uji Kompetensi/ Ulangan	89
	4.2 Kegiatan Belajar 2	90
	Materi : Rangkaian Half Adder dan Full Adder	90
	4.2.1. Tujuan Pembelajaran	90
	4.2.2. Aktivitas belajar siswa	90
	4.2.2.1. Mengamati/ observasi	90
	4.2.2.2. Menanya	90
	4.2.2.3. Mencoba/ Mengumpulkan informasi	90
	A. Rangkaian <i>Half Adder</i>	91
	B. Rangkaian Full Adder	92
	4.2.2.4. Mengasosiasi/ menalar	93
	4.2.2.5. Mengkomunikasikan	93
	4.2.3. Rangkuman	93
	4.2.4. Tugas	93
	4.2.5. Penilaian diri	94
	4.2.6. Uji Kompetensi/ Ulangan	95
	4.3 Kegiatan Belajar 3	97
	Materi : Rangkaian Penjumlahan dan Pengurangan (Ripple Carry Adder)	97
	4.3.1. Tujuan Pembelajaran	97
	4.3.2. Aktivitas belaiar siswa	97

4.3.2.1. Mengamati/ observasi	97
4.3.2.2. Menanya	97
4.3.2.3. Mencoba/ Mengumpulkan informasi	97
A. Penjumlahan	98
B. Pengurangan	99
4.3.2.4. Mengasosiasi/ menalar	99
4.3.2.5. Mengkomunikasikan	99
4.3.3. Rangkuman	100
4.3.4. Tugas	100
4.3.5. Penilaian diri	101
4.3.6. Uji Kompetensi/ Ulangan	101
4.4 Kegiatan Belajar 4	103
Materi : Transistor-Transistor Logic	103
4.4.1. Tujuan Pembelajaran	103
4.4.2. Aktivitas belajar siswa	103
4.4.2.1. Mengamati/ observasi	103
4.4.2.2. Menanya	103
4.4.2.3. Mencoba/ Mengumpulkan informasi	104
A. Tansistor-Transistor Logic (TTL)	104
4.4.2.4. Mengasosiasi/ menalar	105
4.4.2.5. Mengkomunikasikan	105
4.4.3. Rangkuman	105
4.4.4. Tugas	105
4.4.5. Penilaian diri	106
4.4.6. Uji Kompetensi/ Ulangan	107
BAB V	108
Rangkaian Multiplexer, Decoder, Flip-Flop, dan Counter	108
5.1 Kegiatan Belajar 1	108
Materi : Multiplexer dan Decoder	108
5.1.1. Tujuan Pembelajaran	108
5.1.2. Aktivitas belajar siswa	108
5.1.2.1. Mengamati/ observasi	108
5.1.2.2. Menanya	108
5.1.2.3. Mencoba/ Mengumpulkan informasi	108
A. Multiplexer	109

B. Demultiplexer	109
C. Decoder	110
D. Encoder	111
5.1.2.4. Mengasosiasi/ menalar	113
5.1.2.5. Mengkomunikasikan	113
5.1.3. Rangkuman	113
5.1.4. Tugas	113
5.1.5. Penilaian diri	114
5.1.6. Uji Kompetensi/ Ulangan	115
5.2 Kegiatan Belajar 2	116
Materi: Rangkaian Flip-Flop (RS, JK, D)	116
5.2.1. Tujuan Pembelajaran	116
5.2.2. Aktivitas belajar siswa	116
5.2.2.1. Mengamati/ observasi	116
5.2.2. Menanya	116
5.2.2.3. Mencoba/ Mengumpulkan informasi	116
A. RS Flip-Flop	117
B. J-K Flip-Flop	118
C. D Flip-Flop	118
D. CRS Flip- Flop	119
E. T Flip-Flop	119
5.2.2.4. Mengasosiasi/ menalar	120
5.2.2.5. Mengkomunikasikan	120
5.2.3. Rangkuman	120
5.2.4. Tugas	121
5.2.5. Penilaian diri	121
5.2.6. Uji Kompetensi/ Ulangan	122
5.3 Kegiatan Belajar 3	123
Materi : Shift Register	123
5.3.1. Tujuan Pembelajaran	123
5.3.2. Aktivitas belajar siswa	123
5.3.2.1. Mengamati/ observasi	123
5.3.2.2. Menanya	123
5.3.2.3. Mencoba/ Mengumpulkan informasi	123
A. Register Geser SISO	124

B. Register Geser SIPO	125
C. Register Geser PIPO	125
D. Register Geser PISO	126
5.3.2.4. Mengasosiasi/ menalar	127
5.3.2.5. Mengkomunikasikan	127
5.3.3. Rangkuman	127
5.3.4. Tugas	127
5.3.5. Penilaian diri	128
5.3.6. Uji Kompetensi/ Ulangan	129
5.4 Kegiatan Belajar 4	130
Materi : Rangkaian Counter	130
5.4.1. Tujuan Pembelajaran	130
5.4.2. Aktivitas belajar siswa	130
5.4.2.1. Mengamati/ observasi	130
5.4.2.2. Menanya	130
5.4.2.3. Mencoba/ Mengumpulkan informasi	130
A. Synchronous Counter	131
B. Asyncronous counter	132
C. Counter Asinkron Mod-N	133
D. Perancangan Counter	134
5.4.2.4. Mengasosiasi/ menalar	136
5.4.2.5. Mengkomunikasikan	136
5.4.3. Rangkuman	136
5.4.4. Tugas	136
5.4.5. Penilaian diri	137
5.4.6. Uji Kompetensi/ Ulangan	137
PENUTUP	139
RANGKUMAN	139
DAETAD DIISTAKA	146

DAFTAR TABEL

Toc	1061	63250
1002	FOOT	・しろとろし

Tabel 1.1. Satuan Kapasitas Memori Komputer	2
Tabel 1.2. Bilangan Desimal	10
Tabel 1.3 Bilangan Biner	11
Tabel 1.4 Bilangan Oktal	12
Tabel 1.5 Bilangan Heksadesimal	13
Tabel 1.6 Sistem Bilangan	17
Tabel 1.7 Konversi Bilangan Oktal	19
Tabel 1.8 Konversi bit bilangan Heksadesimal	20
Tabel 1.9 Hubungan nilai heksadesimal di posisi tertentu dengan nilai desimal	21
Tabel 1.10 BCD 4-bit	27
Tabel 1.11 BCH	28
Tabel 1.12ACII Code 7 bit	28
Tabel 1.13 Sandi ASCII	29
Tabel 2.1 Simbol Relasi logik	34
Tabel 2.2 Penggunaan Relasi Logik	34
Tabel 2.3 Operator Logika	39
Tabel 2.4 Penggunaan Operator Logika	39
Tabel 2.5. Kebenaran Gerbang AND	44
Tabel 2.6. Kebenaran Gerbang AND Tiga Input	46
Tabel 2.7 Kebenaran gerbang OR dengan dua input	47
Tabel 2.8 Kebenaran Gerbang NOT	48
Tabel 2.9. Tabel Kebenaran 2 Input Gerbang NAND Input Output	53
Tabel 2.10 TabeL kebenaran Gerbang EX-OR	55
Tabel 2.13Tabel kebenaran gerbang EX-NOR	56
Tabel 2.14 Penggunaan Operasi Logik	61
Tabel 2.15. Tabel kebenaran penggunaan operasi logik	62
Tabel 3.1. Pengurangan Bilangan Biner	67
Tabel 3.2. Tabel Perkalian Biner	67
Tabel 3.3 Pembagian Bilangan Biner	68
Tabel 3.4. Penjumlahan Bilangan Oktal	68
Tabel 3.5. Hasil Penjumlahan Digit Oktal	69
Tabel 3.6. Pengurangan Bilangan Oktal	69
Tabel 3.7. Pengalian Bilangan Oktal	69
Tabel 3.8. Pembagian bilangan Oktal	70
Tabel 3.9. Penjumlahan Bilangan Heksadesimal	70

DAFTAR GAMBAR

Gambar 1.1 Siklus Pengolahan Data	3
Gambar 2.1 Gerbang-Gerbang Logika	34
Gambar 2.2 Rangkaian AND yang menggunakan Saklar	44
Gambar 2.3 simbol Gerbang AND 7408	45
Gambar 2.4 Gerbang AND dengan 3 input	46
Gambar 2.5 Rangkaian OR Dengan Menggunakan Saklar	47
Gambar 2.6 simbol gerbang OR	47
Gambar 2.7 Gerbang NOT (inverter)	48
Gambar 2.8 Simbol Gerbang NAND	53
Gambar 2.9 Rangkaian Listrik NAND sebagai Sakelar	54
Gambar 2.10. IC Gerbang NAND 7400	54
Gambar 2.11. Simbol gerbang NOR	55
Gambar 2.12. SimboL G.erbang EX-OR	55
Gambar 2.13 Simbol EX-OR	56
Gambar 2.14. IC Gerbang EX-OR 74266	56
Gambar 4.1. Rangkaian Half Adder	91
Gambar 4.2. Rangkaian Full Adder	92
Gambar 4.4 Rangkaian penjumlah 4 Bit (Purwanto, 2011, hal. 133)	93
Gambar 5.1. Multplexer	109
Gambar 5.2. Demultiplexer	110
Gambar 5.3. Rangkaian Decoder	110
Gambar 5.4. Decoder BCD ke decimal	111
Gambar 5.5. Rangkaian Encoder	112
Gambar 5.6. Rangkaian Encoder gerbang NAND	112
Gambar 5.7. Jam Sistem	117
Gambar 5.8. RS Flip-Flop	117
Gambar 5.9. JK Flip-Flop	118
Gambar 5.10. D Flip=Flop	119
Gambar 5.11. D Flip-Flop	119
Gambar 5.12T Flip-Flop	120
Gambar 5.13. Register	124
Gambar 5.14. Register geser SISO	124
Gambar 5.15. Register Geser SISO	125
Gambar 5.16. Register Geser SIPO	125

Gambar 5.17. Register Geser PIPO	126
Gambar 5.18. Register Geser PISO	126
Gambar 5.19. Rangkaian Down Counter Sinkron 3 bit	132
Gambar 5.20. Rangkaian Up/Down Counter Sinkron	132
Gambar 5.21. Rangkaian Up/Down Counter Sinkron 3 bit :	132
Gambar 5.22. Rangkaian Up Counter Asinkron 3 bit	133
Gambar 5.23. Timing Diagram untuk Up Counter Asinkron 3 bit	133
Gambar 5.24. Rangkaian Up Counter Asinkron Mod-6	134
Gambar 5.25. Rangkaian Up/Down Counter Asinkron 3 bit	134

PENDAHULUAN

1. Deskripsi

Modul ini berisi materi yang berupa konsep dasar dalam mengenal dan mempelajari SISTEM KOMPUTER bagi siswa-siswi kelas X Sekolah Menengah Kejuruan Bidang Teknologi Informasi dan Komunikasi untuk paket keahlian Rekayasa Perangkat Lunak (RPL), Teknik Komputer dan Jaringan (TKJ) dan Multi Media (MM).

Melalui modul ini siswa-siswi kelas X akan dibekali materi yang lebih mendalam mengenai konsep dasar dari sistem komputer dari sisi perangkat kerasnya. Tujuan dari pendalaman materi ini antara lain agar siswa-siswi kelas X lebih mampu mengoptimalkan aplikasi komputer serta lebih memahami tentang perangkat keras serta sangat mendukung dalam mengatasi permasalahan yang timbul dalam pengunaan sehari-hari.

Bagi siswa yang memiliki kemampuan lebih diharapkan dapat lebih mampu mendasari pengembangan lebih lanjut dalam penggunaan komputer untuk berbagai kebutuhan berdasarkan kompetensi bidang masing-masing.

2. Prasyarat

Untuk dapat mengoperasikan, menggunakan komputer, mengetahui lebih lanjut tentang perangkat lunak (software), set instruksi (instruction set), dan perangkat keras (hardware), maka diperlukan satu set sistem komputer yang berfungsi dengan baik dan dapat memahami sistem komputer dasar. Tahapan untuk menyiapkan bagaimana seperangkat sistem komputer dapat berjalan dengan baik, dan sistem komputer materi dasar telah diuraikan dalam mata pelajaran perakitan komputer

Kemampuan awal yang dipersyaratkan untuk mempelajari modul ini adalah:

- a. Peserta didik telah lulus dalam modul/materi Perakitan PC dan peripheral PC
- b. Peserta didik telah lulus modul/materi didik Mengoperasikan PC stand alone dengan sistem operasi berbasis GUI
- c. Peserta didik telah lulus modul/materi didik Mengoperasikan PC stand alone dengan sistem operasi berbasis Text
- d. Peserta didik telah lulus modul/materi didik Menginstalasi software

3. Petunjuk Penggunaan

Modul ini secara khusus ditujukan kepada siswa-siswi kelas X SMK Bidang TIK untuk paket keahlian RPL, TKJ dan MM, namun tidak menutup kemungkinan juga dapat digunakan oleh pengajar TIK maupun pembaca ,praktisi bidang komputer untuk membantu memberikan gambaran umum mengenai konsep dari sistem perangkat keras komputer, arsitektur komputer, struktur komputer serta komponen-komponen pendukungnya. Juga dilengkapi dengan organisasi komputer dan hubungan antara komponen-komponen pendukungnya.

Modul ini disusun sedemikian rupa sehingga siswa-siswi akan termotivasi untuk belajar mandiri, bereksperimen, berdiskusi dengan sesama siswa maupun pengampu serta mencari tambahan referensi dari berbagai sumber. Mengingat level pembelajaran modul ini adalah untuk kelas X SMK Bidang TIK maka kedalaman materinya juga disesuaikan pada level tersebut.

4. Tujuan Akhir

Setelah mempelajari materi dalam bab pembelajaran dan kegiatan belajar diharapkan peserta didik dapat memiliki kompetensi sikap, pengetahuan dan ketrampilan yang berkaitan dengan materi:

- 1. Memahami Sistem Bilangan Komputer
- 2. Mampu memecahkan masalah untuk mengkonversi sistem bilangan
- 3. Memahami Relasi Logik dan Fungsi Gerbang Dasar
- 4. Merencanakan rangkaian gerbang logika
- 5. Memahami Konversi bilangan dan Aritmatika Logic
- 6. Memahami organisasi prosesor, register, dan siklus instruksi (fetching, decoding, executing)
- 7. Memahami Arithmatic Logic Unit (Half-Full Adder, Ripple Carry Adder)
- 8. Menerapkan operasi aritmatik dan logik pada Arithmatic Logic Unit
- 9. Merencanakan dan membuat rangkaian couter up dan counter down

5. Kompetensi Inti dan Kompetensi Dasar

KOMPETENSI INTI	KOMPETENSI DASAR
Menghayati dan mengamalkan ajaran agama yang dianutnya	 1.1. Memahami nilai-nilai keimanan dengan menyadari hubungan keteraturan dan kompleksitas alam dan jagad raya terhadap kebesaran Tuhan yang menciptakannya 1.2. Mendeskripsikan kebesaran Tuhan yang menciptakan berbagai sumber energi di alam 1.3. Mengamalkan nilai-nilai keimanan sesuai dengan ajaran agama dalam kehidupan sehari-hari
2. Menghayati dan Mengamalkan perilaku jujur, disiplin, tanggung jawab, peduli (gotong royong, kerjasama, toleran, damai), santun, responsif dan proaktif dan menunjukan sikap sebagai bagian dari solusi atas berbagai permasalahan dalam berinteraksi secara efektif dengan lingkungan sosial dan alam serta dalam menempatkan diri sebagai cerminan bangsa dalam pergaulan dunia.	 2.1. Menunjukkan perilaku ilmiah (memiliki rasa ingin tahu; objektif; jujur; teliti; cermat; tekun; hati-hati; bertanggung jawab; terbuka; kritis; kreatif; inovatif dan peduli lingkungan) dalam aktivitas sehari-hari sebagai wujud implementasi sikap dalam melakukan percobaan dan berdiskusi 2.2. Menghargai kerja individu dan kelompok dalam aktivitas sehari-hari sebagai wujud implementasi melaksanakan percobaan dan melaporkan hasil percobaan
3. Memahami,menerapkan, menganali-sis pengetahuan faktual, konseptual, prosedural berdasarkan rasa ingin-tahunya tentang ilmu pengetahuan, teknologi, seni, budaya, dan huma-niora dalam wawasan kemanusiaan, kebangsaan, kenegaraan, dan peradaban terkait fenomena dan kejadian, serta menerapkan penge-	 3.1. Memahami sistem bilangan(Desimal, Biner, Oktal, Heksadesimal) 3.2. Memahami relasi logik dan fungsi gerbang dasar (AND, OR, NOT, NAND, EXOR) 3.3. Memahami konversi / operasi Aritmatik 3.4. Memahami Arithmatic Logic Unit (Half-Full Adder, Ripple Carry Adder) 3.5. Menerapkan operasi aritmatik dan logik pada Arithmatic Logic Unit

KOMPETENSI INTI		KOMPETENSI DASAR
tahuan prosedural pada bidang	3.6.	Memahami Organisasi dan Arsitektur
kerja yang spesifik sesuai dengan		Komputer
bakat dan minatnya untuk	3.7.	1 , 1
memecahkan masalah.		(magnetik disk, RAID optical disk dan pita magnetik)
	3.8.	Menganalisis memori berdasarkan
	0.0.	karakterisrik sistem memori (lokasi,
		kapasitas, satuan, cara akses, kinerja, tipe
		fisik, dan karakterisrik fisik)
	3.9.	Memahami memori semikonduktor (RAM,
		ROM, PROM, EPROM, EEPROM,
		EAPROM)
4. Mengolah, menalar, dan menyaji	4.1.	5
dalam ranah konkret dan ranah		sistem bilangan(Desimal, Biner, Oktal,
abstrak terkait dengan pengem-	4.0	Heksadesimal)
bangan dari yang dipelajarinya di sekolah secara mandiri, dan	4.2.	Merencanakan rangkaian penjumlah dan
mampu melaksanakan tugas		pengurang dengan gerbang logika (AND,
spesifik dibawah pengawasan	4.3.	OR, NOT, NAND, EXOR) Melaksanakan percobaan Aritmatik Logik
langsung.	4.3.	Unit (Half-Full Adder, Ripple Carry Adder)
	4.4.	,
	7.7.	pada Arithmatic Logic Unit
	4.5.	Merencanakan dan membuat rangkaian
		couter up dan counter down
	4.6.	Menyajikan gambar struktur sistem
		komputer Von Neumann
	4.7.	Membedakan beberapa alternatif
		pemakaian beberapa media penyimpan
		data (semikonduktor, magnetik disk, RAID,
	4.0	optical disk dan pita magnetik)
	4.8.	3.3
	4.0	beberapa memori dalam sistem komputer
	4.9.	Menerapkan sistem bilangan pada memori
		semikonduktor (address dan data)

6. Peta konsep

xxii Sistem Komputer SMK/MAK Kelas X Semester I

PEMBELAJARAN BABI SISTEM BILANGAN

1.1 Kegiatan Belajar 1

Materi: Pengertian dan Gambaran umum sistem bilangan

Alokasi waktu: 1 X 2 Jam Pertemuan

1.1.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Pengertian Sistem Komputer
- Menjelaskan macam-macam sistem bilangan

1.1.2. Aktivitas belajar siswa

1.1.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang,

Amatilah dengan cermat bagan dari sistem bilangan dan macam-macam sistem bilangan dibawah ini

1.1.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian sistem komputer
- sistem bilangan dan jenis-jenis nya

1.1.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian sistem komputer dan sistem bilangan, kamu dapat mencari sumber referensi lain dari internet.

A. Pengertian Sistem Komputer

Sistem bilangan adalah suatu cara untuk mewakili besaran dari suatu item fisik. Sistem bilangan menggunakan basis (base/ radix) tertentu yang tergantung dari jumlah bilangan yang di gunakan. Konsep dasar sistem bilangan, senantiasa mempunyai Base (*radix*), absolute digit dan positional (place) value

Untuk memudahkan mempelajari komputer sebagai pengolah data, kita harus memandangnya sebagai sebuah sistem komputer (*computer system*). Secara umum, Sistem komputer adalah jaringan elemen-elemen yang saling berhubungan, berbentuk satu kesatuan untuk melaksanakan suatu tujuan pokok dan sistem tersebut.

Tujuan pokok dan sistem komputer adalah mengolah data untuk menghasilkan informasi. Supaya tujuan pokok tersebut tercapai, maka harus ada elemen-elemen yang mendukungnya. Elemen-elemen dan sistem komputer adalah *hardware*, *software*, dan *brainware*.

- 1. *Hardware* (perangkat keras) adalah peralatan di sistem komputer yang secara fisik terlihat dan dapat dijamah, seperti monitor, *keyboard*, dan *mouse*.
- 2. Software (perangkat lunak) adalah program yang berisi perintah-perintah untuk melakukan pengolahan data. Ada tiga bagian utama dan software :
 - a. Sistem operasi: DOS, Linux, Windows, dan Mac.
 - b. Bahasa pemrograman : Visual Basic, C++, Pascal, Java, dan Visual C.
 - c. Aplikasi: MS Office, Antivirus, Winamp, dan Mozilla.
- 3. Brainware adalah manusia yang terlibat dalam mengoperasikan serta mengatur sistem komputer.

Ketiga elemen sistem komputer tersebut harus saling berhubungan dan membentuk satu-kesatuan. Hardware tanpa adanya software maka tidak akan berfungsi seperti yang diharapkan, hanya berupa benda mati saja. Software yang akan mengoperasikan hardwarenya. Hardware yang sudah didukung oleh software juga tidak akan berfungsi jika tidak ada manusia yang mengoperasikamya.

1. Kemampuan Komputer

Kemampuan komputer yang paling menakjubkan adalah kecepatannya. Komputer dapat melakukan operasi dasar seperti penjumlahan atau pengurangan dalam waktu yang sangat cepat, yaitu dalam satuan millisecond, nanosecond, atau picosecond. Komputer yang paling cepat dapat melakukan operasi dalam waktu picosecond.

Kemampuan komputer lainnya adalah kapasitas memori, yakni kemampuan penyimpanan data dan komputer. Satuan memori komputer dinyatakan dengan byte. Untuk memahami pengertian byte, kita bisa melihatnya di Tabel 1.2 berikut ini.

Tabel 1.1. Satuan	Kapasitas	Memori	Komputer	

Satuan Memori	Kapasitas
1 Byte	8 Bit atau 1 karakter
1 KB (kilobyte)	1024 Byte
1 MB (megabyte)	1024 KB atau 1.048.576 byte
1 Gb (gigabyte)	1024 MB atau 1.048.576 KB atau 1.073.741.824 byte
1 Terabit	1.099.511.627.776 Bit atau 137.438.953.472 Byte

Sering kali orang membandingkan komputer dengan manusia. Tentunya ada beberapa kelebihan dan kekurangan dari keduanya. Jadi, sebenarnya penggunaan komputer tidak seluruhnya menggantikan fungsi kerja dan manusia, tetapi hanya sebagai alat bantu saja. Komputer merupakan perkembangan teknologi yang penting karena meningkatkan kemampuan daya manusia.

2. Siklus Pengolahan Data

Suatu proses pengolahan data terdiri dan 3 tahapan dasar yang disebut dengan siklus pengolahan data (data processing cycle), yaitu input, processing. dan output. Diagram dan siklus pengolahan data ini dapat dilihat di Gambar 1.1 berikut ini.

Gambar 1.1 Siklus Pengolahan Data

Input adalah masukan, yang dalam hal ini berupa data-data yang dimasukkan (diinput) ke dalam komputer. Input bisa berupa pengetikan huruf, pemindaian (scanning) gambar, scanning barcode, scanning kartu magnetik atau RFID, hasil foto, suara / rekaman, dan lain-lain. Processing adalah pengolahan data itu sendiri, yang dilakukan oleh sistem komputer. Output adalah keluaran yang disajikan oleh komputer. Output ini dapat berupa tampilan di layar monitor, hasil cetak, file data di media penyimpan (harddisk/Flashdisk atau cakram).

(Heriyanto, dkk, 2014, hal 2)

Dalam gambar Siklus Pengolahan data secara global terdiri dari tiga blok yaitu blok masukan (input), blok proses, dan blok keluaran (output). Fungsi dari masing-masing blok dapat dijelaskan sebagai berikut.

Blok Input. a.

Bagian blok ini merupakan pintu masuk dari sistem komputer yang berfungsi untuk menerima seluruh aktifitas masukan dari pengguna secara langsung maupun tidak langsung (dapat berupa peralatan atau mesin yang lain diluar sistem).

Blok Proses.

Bagian blok ini merupakan pusat aktifitas proses pengolahan dari berbagai data masukan yang diberikan oleh pengguna sesuai dengan ketentuan yang telah ditetapkan sebelumnya sehingga mampu memberikan hasil yang sesuai dengan keinginan pengguna. Selanjutnya hasil proses akan disalurkan ke pengguna secara langsung atau tidak langsung melalui blok output. Proses yang dilakukan oleh bagian ini sebagian besar merupakan hasil perhitungan maupun logika secara digital dalam bentuk besaranbesaran listrik dalam rangkaian elektronik yang sangat kompleks. Besaran-besaran listrik digital ini selanjutnya digambarkan sebagai kode bilangan biner maupun heksa desimal. Kode-kode inilah yang selanjutnya menjadi kode perintah bagi mesin pemroses ini untuk menjalankan seluruh perintah yang diberikan kepadanya. Kode perintah ini juga dikenal sebagai bahasa mesin (machine language). Jadi pada bagian blok proses hanya dapat menjalankan pengolahan data sesuai dengan perintah-perintah yang diberikan kepadanya.

c. Blok Output.

Pada bagian ini merupakan perantara yang menjembatani antara blok proses dengan pengguna untuk melihat atau mengambil hasil proses.

B. Gambaran Umum Sistem Bilangan

Sistem bilangan digunakan dalam pengoperasian suatu mesin digital. Sistem bilangan tersebut adalah sistem Biner, Oktal, Desimal, dan Heksadesimal. Masingmasing bilangan mempunyai sejumlah lambang bilangan tertentu yang disebut Radix.

Radix adalah banyaknya suku angka atau digit yang dipergunakan dalam suatu sistem bilangan.

Sistem bilangan BINER mempunyai radix 2 Sistem bilangan OKTAL mempunyai radix 8 Sistem bilangan DESIMAL mempunyai radix 10 Sistem bilangan HEKSADESIMAL mempunyai radix 16 (Purwanto, 2011, hal. 1)

Pada dasamya, komputer baru bisa bekerja jika ada aliran listrik yang mengalir di dalamnya. Aliran listrik yang mengalir memiliki dua kondisi, yaitu kondisi ON yang berarti ada anis listrik dan kondisi OFF yang berarti tidak ada arus listrik. Berdasar hal tersebut kemudian dibuat perjanjian bahwa kondisi ON diberi lambang 1 (angka satu) dan kondisi OFF diberi lambang 0 (angka nol).

Seluruh data yang berupa angka, abjad ataupun karakter spesial kemudian ditulis dalam rangkaian kombinasi 0 dan 1, misalnya angka 5 ditulis dalam bentuk 101. Pabrik komputer membuat seluruh terjemahan ini dalam bentuk rangkaian elektronik yang tersimpan di dalamnya.

Dengan demikian, seandainya kita kemudian memasukkan tulisan yang berbunyi "HELLO" melalui keyboard, tulisan ini secara otomotis akan diterjemahkan ke dalamn. bentuk 1 dan 0 oleh komputer.

Agar bisa dibaca oleh manusia, hasil terjemahan ini kemudian diterjemahkan kembali ke dalam bentuk dan huruf ataupun angka seperti asalnya kemudian ditampilkan melalui layar monitor sehingga dapat dimengerti oleh pengguna computer.

Karena hanya memiliki 2 angka dasar, yairu 0 dan 1, maka sistem bilangan semacam ini kemudian dikenal sebagal sistem bilangan biner (binary number). Untuk perbandingan, sistem bilangan yang telah kita kenal disebut sebagai sistem bilangan desimal. Disebut bilangan desimal karena memiliki angka dasar yang berjumlah 10, yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9.

Sistem bilangan (number system) adalah suatu cara untuk mewakili besaran dan suatu sistem fisik. Sistem bilangan yang banyak digunakan oleh manusia adalah bilangan desimal. Dalam hubungannya dengan komputer, ada 4 jenis sistem bilangan yang dikenal yaitu sistem bilangan desimal (decimal number system), bilangan biner (binary number system), sistem bilangan oktal (octal number system), dan sistem

bilangan heksadesimal (hexadesimal number system). Sistem bilangan menggunakan bilangan dasar atau basis (base atau disebut juga radiks) tertentu. Basis yang dipergunakan masing-masing sistem bilangan bergantung pada jumlah nilai bilangan yang digunakan.

Sistem bilangan desimal dengan basis 10 (deca berarti 10), menggunakan 10 macam simbol bilangan.

Sistem bilangan biner dengan basis 2 (binary berarti 2), menggunakan 2 macam simbol bilangan.

Sistem bilangan oktal dengan basis 8 (octal berarti 8), menggunakan 8 macam simbol bilangan.

Sistem bilangan heksadesimal dengan basis 16 (hexa berarti 6 dan desimal berarti 10), menggunakan 16 macam simbol bilangan.

(Heriyanto, dkk, 2014, hal 4)

1.1.2.4. Mengasosiasi/ menalar

No	Istilah	Pengertian
1	Sistem Komputer	
2	Sistem Bilangan	
3	Bilangan Biner	
4	Bilangan Desimal	
5	Bilangan Oktal	
6	Bilangan Hexadesimal	
7	Pengolahan data	

Buatlah kesimpulan tentang sistem komputer!

1.1.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri, mengenai:

- Sistem Komputer
- Sistem Bilangan dan jenis-jenis nya

1.1.3. Rangkuman

- Sistem komputer adalah jaringan elemen-elemen yang saling berhubungan, berbentuk satu kesatuan untuk melaksanakan suatu tujuan pokok dan sistem tersebut.
- Radix adalah banyaknya suku angka atau digit yang dipergunakan dalam suatu sistem bilangan.
- Sistem bilangan (number system) adalah suatu cara untuk mewakili besaran dan suatu sistem fisik
- Elemen-elemen dari sistem komputer adalah hardware, software, dan brain ware.
- Hardware (perangkat keras) adalah peralatan di sistem komputer yang secara fisik terlihat dan dapat dijamah, seperti monitor, keyboard, dan mouse.
- Software (perangkat lunak) adalah program yang berisi perintah-perintah untuk melakukan pengolahan data. Ada tiga bagian utama dan software :
- Brainware adalah manusia yang terlibat dalam mengoperasikan serta mengatur sistem komputer.

1.1.4. Tug	as
1.	Jelaskan apakah yang dimaksud dengan sistem komputer?
0	labakan ana yang dipakaya dangan padikal
2.	Jelaskan apa yang dimaksud dengan radiks!
3.	Sebutkan macam-macam sistem bilangan!
-	
4.	Jelaskan maksud dari siklus pengolahan data?
-	Cohuttan alaman alamat dagar nada sistem kammutari
5.	Sebutkan elemen-elemet dasar pada sistem komputer!

1.1.5. Penilaian diri

Nar	na	:		
Nar	na-nama anggota l	kelompok :		
Keg	jiatan kelompok	:		
	ih pernyataan ber aban dibawah perta		ır. Untuk No. 1 s.d. 4, is	silah dengan cara melingkari
1.		-	n ide kepada kelompok	
	4 : Selalu	3 : Sering	2 : Kadang-kadang	1 : Tidak pernah
2.	Ketika kami berdis	skusi, tiap orang	ı diberi kesempatan mei	ngusulkan sesuatu.
			2 : Kadang-kadang	_
3.		•	nelakukan sesuatu selai	•
		· ·	2 : Kadang-kadang	_
4.		~	akukannya dalam kelon	
			2 : Kadang-kadang	-
5.	Selama kerja kelo	mpok, saya		•
	 Mendengarka 			
	 Mengajukan p 	•		
	• • • •	asi ide-ide saya		
	 Mengorganisa 	•		
	 Mengacaukar 	· ·		
	Melamun	ritogiatari		
6.	Apa yang kamu la	ıkukan selama k	regiatan?	
	. , .			

1.1.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

.....

- 1. Jaringan elemen-elemen yang saling berhubungan berbentuk satu kesatuan untuk melaksanakan suatu tujuan pokok di sebut
 - a. Komputer
 - b. CPU
 - c. Software
 - d. System
 - e. Jaringan
- 2. Komputer dapat melakukan operasi paling cepat dengan menggunakan satuan....
 - a. Millisecond
 - b. Microsecond
 - c. Picosecond
 - d. Nanosecond
 - e. Gigasecond

- 8 Sistem Komputer SMK/MAK Kelas X Semester I
 - 3. Satuan pada memori komputer dinyatakan dalam...
 - a. Bit
 - b. Byte
 - c. Second
 - d. Km/h
 - e. Meter
 - 4. Yang termasuk elemen-elemen pendukung dari sistem komputer adalah....
 - a. Hardware, Software, Brainware
 - b. Harddisk, Flashdisk, Floppy disk
 - c. Hardware, Softdrink, Brainware
 - d. Harddisk, Softdrink, Braindisk
 - e. Harddisk, Flashdisk, Brainware
 - 5. Dibawah ini yang termasuk sebagai perangkat masukan adalah
 - a. Keyboard, Monitor, Mouse
 - b. Display, Barcode, VGA
 - c. Speaker, Keyboard, Barcode
 - d. Joystick, Keyboard, Speaker
 - e. Keyboard, Mouse, Barcode

1.2 Kegiatan Belajar 2

Materi: Sistem Bilangan (Desimal, Biner, Oktal dan Heksadesimal)

Alokasi Waktu: 1 x 2 Jam Pertemuan

1.2.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Memahami sistem bilangan (decimal,biner, octal, heksadesimal)
- Menjelaskan sistem bilangan (decimal,biner, octal, heksadesimal)

1.2.2. Aktivitas belajar siswa

1.2.2.1. Mengamati/ observasi

Buatlah kelompok yang terdiri dari 4-5 anggota kelompok, amati dan cermati tentang tabel sistem bilangan dan macam-macam sistem bilangan dibawah ini!

Siste	em		Rac	liks		Himpunan/elemen Digit					Contoh					
Des	Desimal		r=	10	{0,1,2,3,4,5,6,7,8,9}			{0,1,2,3,4,5,6,7,8,9}					1	255	10	
Bir	ner		r=	2	{0,1	{0,1}				1111111						
Ol	ktal		r=	8	{0,1	,2,3	,4,5	,6,7	1						377	8
Heksa	desi	mal	r=	16	{0,1	,2,3	,4,5	,6,7,	8,9,	А, В,	с, г), E,	F}		FF	16
Desimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Heksa Biner	0000	1 0001	2	3	4 0100	5 0101	6	7 0111	8	9 1001	A 1010	B 1011	C 1100	D 1101	E	F

1.2.2.2. Menanya

Bertanyalah kepada gurumu apabila ada materi yang belum kamu pahami tentang

- sistem bilangan (bilangan Biner, desimal, oktal, heksadesimal)
- macam-macam sistem bilangan (bilangan Biner, desimal, oktal, heksadesimal)

1.2.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian sistem bilangan dan jenis-jenis sistem bilangan, kamu dapat mencari sumber referensi lain dari internet. Kemudian analisislah bersama kelompokmu tentang jenis-jenis sistem bilangan!

A. Sistem Bilangan Desimal

Sistem bilangan desimal menggunakan 10 macam simbol bilangan berbentuk 10 digit angka, yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8 dan 9. Sistem bilangan desimal menggunakan basis atau radiks ₁₀. Bentuk nilai suatu bilangan desimal dapat berupa integer desimal (decimal integer) atau pecahan desimal (fraction decimal). Integer desimal adalah nilai desimal yang bulat, misalnya nilai 8598. Yang dapat diartikan.

$$8 \times 10^{3} = 8000$$

$$5 \times 10^{2} = 500$$

$$9 \times 10^{1} = 90$$

$$8 \times 10^{0} = 8$$

$$8598$$

Absolut value merupakan nilai muilak dari masing-masing digit di bilangan. position *value* (nilai tempat) merupakan penimbang atau bobot dan masing-masing digit bergantung pada posisinya, yaitu bemilai basis dipangkatkan dengan urutan posisinya.

Tabel 1.2. Bilangan Desimal

Posisi digit (dari kanan)	Nilai Tempat
1	$10^0 = 1$
2	$10^1 = 10$
3	$10^2 = 100$
4	$10^3 = 1000$
5	$10^{0} = 1$ $10^{1} = 10$ $10^{2} = 100$ $10^{3} = 1000$ $10^{4} = 10000$

Oleh karena itu, nilai 8598 dapat juga diartikan dengan (8 X 1000) + (5 X 100) + (9 x 10) + (8x 1). Pecahan desimal adalah nilai desimal yang mengandung nilai pecahan di belakang koma, misalnya nilal 183,75 adalah pecahan desimal yang dapat diartikan:

Baik integer desimal maupun pecahan desimal dapat ditulis dengan bentuk eksponensial. Misalnya nilai 82,15 dapat dituliskan 0,8215 X 10². Setiap nilai desimal yang bukan nol dapat dituliskan dalam bentuk eksponensial standar (*standard exponential form*), yaitu ditulis dengan mantissa dan eksponen. Mantissa merupakan nilai pecahan yang digit pertama di belakang koma bukan beniilai nol.

B. Sistem Bilangan Biner

Bilangan biner adalah bilangan yang berbasis 2 yang hanya mempunyai 2 digit yaitu 0 dan 1. 0 dan 1 disebut sebagai bilangan binary digit atau bit. Bilangan biner ini digunakan sebagai dasar kompetensi digital. Bobot faktor untuk bilangan biner adalah pangkat / kelipatan 2.

Sistem bilangan biner menggunakan 2 macam simbol bilangan berbentuk 2 digit angka, yaitu 0 dan 1. Sistem bilangan biner menggunakan basis 2 .

Nilai tempat sistem bilangan biner merupakan perpangkatan dan nilai 2 sebagai berikut.

Tabel 1.3 Bilangan Biner

Posisi digit (dari kanan)	Nilai Tempat
1	$2^0 = 1$
2	$2^1 = 2$
3	$2^2 = 4$
4	$2^3 = 8$
5	$2^4 = 16$

Atau dapat juga dituliskan dalam bentuk persamaan:

$$a^{n-1} 2^{n-1} + a^{n-2} 2^{n-2} + \dots + a^0$$

Atau dapat juga ditulis dalam bentuk:

Contoh Soal

1. berapakah nilai bilangan desimal dan bilangan bilangan biner berikut ini.

a. 1001₂ =10 b. 101101₂ =10 c. $11100110_2 = \dots 1000110_0$

Penyelesaian:

a. 1001=

8	4	2	1
1	0	0	1

Maka:
$$8 + 1 = 9_{10}$$

atau
 $10012 = 2^0 + 2^1$
 $= 1 + 8$
 $= 9_{10}$
b. $101101_2 = a^5 \times 2^5 + a^4 \times 2^4 + a^3 \times 2^3 + a^2 \times 2^2 + a^1 + a^0$
 $= 1 \times 32 + 0 \times 16 + 1 \times 8 + 1 \times 4 + 0 \times 2 + 1$
 $= 32 + 0 + 8 + 4 + 0 + 1$
 $= 45_{10}$

c. 11100110_2 =

128	64	32	16	8	4	2	1
1	1	1	0	0	1	1	0

$$11100110_2 = 128 + 64 + 32 + 4 + 2$$
$$= 234_{10}$$

C. Sistem Bilangan Oktal

Sistem bilangan oktal (*octal number system*) menggunakan 8 macam simbol bilangan, yaitu 0, 1, 2, 3, 4, 5, 6, 7. Sistem bilangan oktal menggunakan basis ₈. Nilai tempat sistem bilangan oktal merupakan perpangkatan dari nilai 8 sebagai berikut.

Tabel 1.4 Bilangan Oktal

Posisi Digit (Dari Kanan)	Nilai tempat
1	$8^0 = 1$
2	$8^1 = 8$
3	$8^2 = 64$
4	$8^3 = 512$
5	$8^4 = 4096$

Misalnya bilangan oktal 1213 di dalam sistem bilangan desimal bernilai 1 x 8^3 + 2 x 8^2 + 1 x 8^1 + 3 x 8^0 = 1 x 512 + 2 x 64 + 1 x 8 + 3 x 1 = 512 + 128 + 8 + 3 = 651 atau ditulis dengan notasi: 1213₈ = 651₁₀

D. Sistem Bilangan Heksadesimal

Sistem bilangan heksadesimal (*hexadecimal number system*) menggunakan 16 macam simbol, yaltu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C. D, E, dan F. Sistem bilangan heksadesimal menggunakan basis ₁₆. Sistem bilangan heksadesimal digunakan untuk alasan-alasan tertentu di beberapa komputer, misalnya IBM System/360, Data General Nova, PDP — 1 1 DEC,

Honeywell, beberapa komputer mini dan beberapa komputer mikro. Sistem bilangan heksadesimal mengorganisasikan memori utama ke dalam suatu byte yang terdiri dari 8 bit (*binary digit*). Masing-masing *byte* digunakan untuk menyimpan satu karakter alfanumerik yang dibagi dalam dua grup masing-masing bagian 4 bit. Bila satu byte dibentuk dari dua grup 4 bit, masing-masing bagian 4 bit disebut dengan *nibble*. 4 bit pertama disebut dengan *high-ordernibble* dan 4 bit kedua disebut dengan *low-order nibble*.

Bila komputer menangani bilangan dalam bentuk biner yang diorganisasikan dalam bentuk grup 4 bit, akan lebih memudahkan untuk menggunakan suatu simbol yang mewakili sekaligus 4 digit biner tersebut. Kombinasi dari 4 bit akan didapatkan sebanyak 16 kemungkinan kombinasi yang dapat diwakili sehingga dibutuhkan suatu sistem bilangan yang terdiri dari 16 macam simbol atau yang berbasis 1, yaitu sistem bilangan heksadesimal. Digit 0 sampai dengan 9 tidak mencukupi, maka huruf A, B, C, D, E dan F dipergunakan. Misalnya bilangan biner 11000111 dapat diwakili dengan bilangan heksadesimal menjadi C7.

Nilai hexadesimal C7 tersebut dalam sistem bilangan desimal bemilai:

$$C7_{16}$$
 = $C \times 16^{1} + 7 \times 16^{0}$
= $12 \times 16 + 7 \times 1$
= $192 + 7$
= 199_{10}

Nilai tempat sistem bilangan heksadesimal merupakan perpangkatan dari nilai 16, seperti ditunjukkan pada table berikut.

Tabel	1.5	Bilangan	Heksadesimal
-------	-----	----------	--------------

Posisi Digit (Dari Kanan)	Nilai tempat
1	16 ⁰ =1
2	$16^1 = 16$
3	$16^2 = 256$
4	$16^3 = 4096$
5	$16^4 = 65536$

1.2.2.4. Mengasosiasi/ menalar

No	Istilah	Pengertian
1	Sistem Bilangan	
2	Bilangan Biner	
3	Bilangan Desimal	
4	Bilangan Oktal	
5	Bilangan Hexadesimal	

Buatlah kesimpulan tentang sistem bilangan dan jenis-jenis sistem bilangan!

1.2.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang jenis-jenis sistem bilangan!

1.2.3. Rangkuman

- Sistem bilangan desimal menggunakan 10 macam simbol bilangan berbentuk 10 digit angka, yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8 dan 9. Sistem bilangan desimal menggunakan basis atau radiks 10
- Bilangan biner adalah bilangan yang berbasis 2 yang hanya mempunyai 2 digit yaitu 0 dan 1. 0 dan 1 disebut sebagai bilangan binary digit atau bit. Bilangan biner ini digunakan sebagai dasar kompetensi digital. Bobot faktor untuk bilangan biner adalah pangkat / kelipatan 2.
- Sistem bilangan oktal (octal number system) menggunakan 8 macam simbol bilangan, yaitu 0, 1, 2, 3, 4, 5, 6, 7. Sistem bilangan oktal menggunakan basis 8. Nilai tempat sistem bilangan oktal merupakan perpangkatan dari nilai 8
- Sistem bilangan heksadesimal (hexadecimal number system) menggunakan 16 macam simbol, yaltu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C. D, E, dan F. Sistem bilangan heksadesimal menggunakan basis 16.

1.2.4.	Tugas
--------	-------

1.	Jelaskan apakah yang dimaksud dengan Sistem Bilangan !

tem	Komputer SMK/MAK Kelas X Semester I
2.	Jelaskan apa yang dimaksud dengan bilangan desimal!
3.	Jelaskan apa yang dimaksud dengan bilangan Biner!
4.	Jelaskan apa yang dimaksud dengan bilangan Oktal!
5.	Jelaskan apa yang dimaksud dengan bilangan hexadesimal!
Don	nilaian diri
. 0.	
Na	ma :
Na	ma-nama anggota kelompok :
Ke	giatan kelompok :
	ah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara meling
•	vaban dibawah pertanyaan.
1.	Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan.
2	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
۷.	Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
3	Semua anggota kelompok kami melakukan sesuatu selama kegiatan.
0.	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
4.	Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.
	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
5.	Selama kerja kelompok, saya
	 Mendengarkan orang lain
	Mengajukan pertanyaan
	 Mengorganisasi ide-ide saya
	Mengorganisasi kelompok
	Mengacaukan kegiatan

Melamun

6.	Apa yang kamu lakukan selama kegiatan?				

1.2.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d

- 1. Suatu cara untuk mewakili besaran dari satuan sistem fisik disebut
 - a. Sistem
 - b. Sistem Bilangan
 - c. Sistem Komputer
 - d. Sistem Base
 - e. Sistem Restore
- 2. Dibawah ini yang bukan termasuk sistem bilangan adalah
 - a. Biner
 - b. Desimal
 - c. Heksadesimal
 - d. Oktal
 - e. Binary Code
- 3. Sistem bilangan yang menggunakan radiks atau basis 2 disebut ...
 - a. Biner
 - b. Desimal
 - c. Heksadesimal
 - d. Oktal
 - e. Binary Code
- 4. Sistem bilangan yang menggunakan radiks atau basis 16 disebut
 - a. Biner
 - b. Desimal
 - c. Heksadesimal
 - d. Oktal
 - e. Binary Code
- 5. Sistem bilangan yang menggunakan radiks atau basis 8 disebut....
 - a. Biner
 - b. Desimal
 - c. Heksadesimal
 - d. Oktal
 - e. Binary Code

1.3 Kegiatan Belajar 3

Materi : Konversi Bilangan Alokasi Waktu : 1 x 2 Jam Pertemuan

1.3.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Konversi bilangan (desimal, biner, oktal, heksadesimal)
- Menghitung konversi bilangan (desimal, biner, oktal, heksadesimal)
- Memahami Konversi bialngan (desimal, biner, oktal, dan heksadesimal)

1.3.2. Aktivitas belajar siswa

1.3.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 3-4 orang, Amatilah dengan cermat konversi sistem bilangan dibawah ini!

1.3.2.2. **Menanya**

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut:

- konversi sistem bilangan
- cara menghitung Konversi bilangan

1.3.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang Konversi antar sistem bilangan, kamu dapat mencari sumber referensi dibawah ini atau yang lain dari internet.

Kita telah mengenal beberapa macam sistem bilangan yang menggunakan basis tertentu. Bila suatu nilai telah dinyatakan dalam suatu bilangan yang tertentu dan bila kita ingin mengetahui nilai tersebut dalam sistem bilangan yang lain, maka nilai dalam sistem bilangan sebelumnya harus dikonversikan terlebih dahulu ke sistem bilangan yang diinginkan. Kasus seperti ini akan banyak ditemui bila mana kita berhubungan dengan bahasa mesin yang menggunakan sistem bilangan biner. Demikian juga bila kamu

berhubungan dengan babasa assembler, maka akan banyak ditemui nilai yang dinyatakan dalam sistem bilangan heksadesimal ataupun sistem bilangan oktal.

Angka - angka pada setiap sistem bilangan dapat dikonversikan ke dalam sistem bilangan lain. Dalam melakukan pengkonversian diperlukan ketelitian, ketekunan, dan kecermatan. Perhatikan tabel konversi decimal, biner, octal dan hexadecimal berikut ini dengan seksama.

Desimal	Biner	Oktal	Hexadesimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

A. Konversi Bilangan Desimal ke Sistem Bilangan Biner

Ada beberapa metode untuk mengkonversikan dari sistem bilangan desimal ke sistem bilangan biner. Metode pertama dan paling banyak digunakan adalah dengan cara membagi dengan nilai dua dan sisa setiap pembagian merupakan digit biner dan bilangan biner dari hasil konversi. Metode ini disebut metode sisa (remainder method).

```
5_{10} = \dots 2
Penyelesaian:
Cara ke-1
            2 = 22 + sisa 1
45
                                         Akan diperoleh hasil
22
            : 2 = 11 + sisa 0
                                         101101
11
            : 2 = 5 + sisa 1
             : 2 = 2 + sisa 1
5
2
             : 2 = 1 + sisa 0
                   \longrightarrow 1
```

Bila bilangan desimal yang akan dikonversikan berupa pecahan desimal, maka bilangan tersebut harus dipecah menjadi dua bagian, yaitu bilangan yang utuh dan yang pecahan. Misalnya bilangan desimal 125,4375 dipecah menjadi 125 dan 0,4375. Bilangan yang utuh, yaitu 125 dikonversikan terlebih dahulu ke bilangan biner, sebagal berikut.

125: 2 = 62 + sisa 162: 2 = 31 + sisa 031: 2 = 15 + sisa 115: 2 = 7 + sisa 17: 2 = 3 + sisa 13: 2 = 1 + sisa 1

Oleh karena itu, bilangan desimal 125 dalam bentuk bilangan biner adalah 111101. Kemudian bilangan yang pecahan dikonversikan kebilangan biner dengan cara yang berbeda seperti bilangan yang utuh, yaitu sebagai berikut.

$$0,4375 \times 2 = 0.875$$

 $0,875 \times 2 = 1.75$
 $0,75 \times 2 = 1.5$
 $0,5 \times 2 = 1.5$
Hasil biner pecahan

Jadi, bilangan desimal pecahan 0,4375 di dalam biner adalah 0,0111. Hasil dari bilangan :

125,4375 dalam bilangan biner adalah:

$$\begin{array}{rcl}
125 & = 1111101 \\
0,4375 & = 0,0111 \\
\hline
& & + \\
125,4375_{10} & = 1111101,0111_{2}
\end{array}$$

B. Konversi Bilangan Desimal ke Sistem Bilangan Oktal

Untuk mengkonversikan bilangan desimal kebilangan oktal dapat dipergunakan remainder method dengan pembaginya adalah basis dari bilangan oktal tersebut, yaitu 8. Misalnya bilangan desimal 385, dalam bilangan oktal bernilai:

Contoh Soal
$$385_{10} = \dots 8$$
 $385: 8 = 48 + \text{sisa } 1$ $48: 8 = 6 + \text{sisa } 0$ $\rightarrow 601$ Jadi hasil nya adalah $385_{10} = 601_8$

C. Konversi Bilangan Desimal ke Sistem Bilangan Heksadesimal

Dengan menggunakan remainder method, dengan pembaginya adalah basis dari bilangan heksadesimal, yaitu 16, maka bilangan desimal dapat dikonversikan ke bilangan heksadesimal.

1583 : 16 = 98 + sisa 15 = F
98 : 16 = 6 + sisa 2 = 2
$$\rightarrow$$
 6 2 F

Jadi
$$1583_{10} = 62F_{16}$$

D. Konversi Bilangan Biner ke Sistem Bilangan Desimal

Dari bilangan biner dapat dikonversikan ke bilangan desimal dengan cara mengalikan masing - masing bit dalam bilangan dengan nilai tempatnya.

Contoh Soal.

a.
$$101101_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $1 \times 32 + 0 \times 16 + 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1$
= $32 + 0 + 8 + 4 + 0 + 1$
= 45_{10}

Berarti bilangan biner 101101 dapat dikonversikan ke bilangan desimal senilai:

$$\begin{array}{rcl}
1_2 & = 1_{10} \\
10_2 & = 4_{10} \\
1000_2 & = 8_{10} \\
\hline
100000_2 & = 32_{10} \\
\hline
101101_2 & = 45_{10}
\end{array}$$

E. Konversi Bilangan Biner ke Sistem Bilangan Oktal

Konversi dari bilangan biner ke bilangan oktal dapat dilakukan dengan mengkonversikan tiap- tiap tiga buah digit biner. Misalnya, bilangan biner 11010100 dapat dikonversikan ke oktal dengan cara:

$$\frac{11}{3}$$
 $\frac{010}{2}$ $\frac{100}{4}$

Hubungan ini dapat dilihat pada tabel dibawah ini.

Tabel 1.7 Konversi Bilangan Oktal

Digit Oktal	3 bit
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

F. Konversi Bilangan Biner ke Sistem Bilangan Heksadesimal

Konversi dari bilangan biner ke bilangan heksadesimal dapat dilakukan dengan mengkonversikan tiap-tiap empat buah digit biner. Misalnya bilangan biner 11010100 dapat dikonversikan ke bilangan heksadesimal dengan cara

$$\frac{1101}{D}$$
 $\frac{0100}{4}$

Hubungan ini dapat dilihat pada tabel berikut.

Tabel 1.8 Konversi bit bilangan Heksadesimal

Digit heksadesimal	4 bit	Digit heksadesimal	4 bit
0	0000	A	1010
1	0001	В	1011
2	0010	С	1100
3	0011	D	1101
4	0100	E	1110
5	0101	F	1111
6	0110		
7	0111		
8	1000		
9	1001		

G. Konversi Bilangan Oktal ke Sistem Bilangan Desimal

Bilangan oktal dapat dikonversikan ke bilangan desimal dengan cara mengalikan masing-masing bit dalam bilangan dengan nilai tempatnya.

Contoh Soal:

$$324_8 = 3x8^2 + 2x8^1 + 4x8^2$$

= $3x64 + 2x8 + 4x1$
= $192 + 16 + 4$
= 212_{10}

H. Konversi Bilangan Oktal ke Sistem Bilangan Biner

Konversi dan bilangan oktal ke bilangan biner dapat dilakukan dengan mengkonversikanmasing-masing digit oktal ke 3 digit biner, sebagai berikut.

$$\frac{6}{110}$$
 $\frac{5}{101}$ $\frac{0}{000}$ $\frac{2}{010}$

Berarti bilangan biner 110101000010 adalah 6502 di dalam oktal.

I. Konversi Bilangan Oktal ke Sistem Bilangan Heksadesimal

Konversi dan bilangan oktal ke bilangan heksadesimal dapat dilakukan dengan cara mengubah dari bilangan oktal menjadi bilangan biner terlebih dahulu, kemudian dikonversikan kebilanganheksadesimal. Misalnya, bilangan oktal 2537, akan dikonversikan ke heksadesimal, dengan langkah-langkahberikut ini.

a. Dikonversikan terlebih dahulu ke bilangan biner, sebagai berikut.

b. Berikut bilangan biner baru dikonversikan ke bilangan heksadesimal, sebagai berikut.

Jadi, bilangan oktal 2537 adalah 55F dalam bilangan heksadesimal.

J. Konversi Bilangan Heksadesimal ke Sistem Bilangan Desimal

Dari bilangan heksadesimal dapat dikonversikan ke bilangan desimal dengan cara mengalikanmasing-masing digit bilangan dengan nilai tempatnya.

$$B6A_{16} = 11 \times 16^{2} + 6 \times 16^{1} + 10 \times 16^{0}$$
$$= 11 \times 256 + 96 + 10$$
$$= 2922_{10}$$

Untuk mengkonversikan bilangan heksadesimal ke bilangan desimal, dapat dengan bantuan table berikut.

Tabel 1.9 Hubungan r	nilai heksadesimal di	posisi tertentu dengai	n nilai desimal

Pos	sisi 4	Pos	sisi 3	Pos	sisi 2	Pos	sisi 1
Heksa	Desimal	Heksa	Desimal	Heksa	Desimal	Heksa	Desimal
0	0	0	0	0	0	0	0
1	4096	1	256	1	16	1	1
2	8192	2	512	2	32	2	2
3	12288	3	768	3	48	3	3
4	16384	4	1024	4	64	4	4
5	20480	5	1280	5	80	5	5
6	24576	6	1536	6	96	6	6
7	28672	7	1792	7	112	7	7
8	32768	8	2048	8	128	8	8
9	36864	9	2304	9	144	9	9
Α	40960	Α	2560	Α	160	Α	10
В	45056	В	2816	В	176	В	11
С	49152	С	3072	С	192	С	12
D	53248	D	3328	D	208	D	13
Е	57344	Е	3584	Е	224	Е	14
F	61440	F	3840	F	240	F	15

K. Konversi Bilangan Heksadesimal ke Sistem Bilangan Biner

Konversi dan hilangan heksadesimal ke sistem bilangan biner dapat dilakukan denganmengkonversikan masing-masing digit heksadesimal ke 4 digit biner sebagai berikut.

Berarti bilangan heksadesimal D4 adalah 11010100 dalam bilangan biner.

L. Konversi Bilangan Heksadesimal ke Sistem Bilangan Oktal

Konversi dan bilangan heksadesimal ke bilangan oktal dapat dilakukan dengan cara mengubah dari bilangan heksadesimal menjadi bilangan biner terlebih dahulu, baru dikonversikan ke bilangan oktal. Misalnya bilangan heksadesimal 55F, akan dikonversikan ke oktal dengan langkah-langkah:

a. Dikonversikan terlebih dahulu ke bilangan biner, sebagai berikut.

b. Dari bilangan biner baru dikonversikan ke bilangan oktal, sebagai berikut.

Jadi, bilangan heksadesimal 55F adalah 2537 dalam bilangan oktal.

1.3.2.4. Mengasosiasi/ menalar

Masalah konversi:

4.
$$10110110_2 = \dots 16$$

5.
$$3B5F_{16} = \dots 10$$

Analisis masalah konversi diatas kemudian, buatlah kesimpulan tentang Konversi Sistem bilangan!

1.3.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang :

- Konversi antar bilangan
- Cara menghitung konversi bilangan

1.3.3. Rangkuman

- Ada beberapa metode untuk mengkonversikan dari sistem bilangan desimal ke sistem bilangan biner. Metode pertama dan paling banyak digunakan adalah dengan cara membagi dengan nilai dua dan sisa setiap pembagian merupakan digit biner dan bilangan biner dari hasil konversi. Metode ini disebut metode sisa (remainder method).
- Untuk mengkonversikan bilangan desimal kebilangan oktal dapat dipergunakan remainder method dengan pembaginya adalah basis dari bilangan oktal tersebut, yaitu
- Dengan menggunakan remainder method, dengan pembaginya adalah basis dari bilangan heksadesimal, yaitu 16
- biner ke bilangan oktal dapat dilakukan dengan Konversi dari bilangan mengkonversikan tiap- tiap tiga buah digit biner

Digit Oktal	3 bit
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Konversi dari bilangan biner ke bilangan heksadesimal dapat dilakukan dengan mengkonversikan tiap-tiap empat buah digit biner
- Konversi dan bilangan oktal ke bilangan heksadesimal dapat dilakukan dengan cara mengubah dari bilangan oktal menjadi bilangan biner terlebih dahulu, kemudian dikonversikan kebilanganheksadesimal.
- Konversi dan bilangan heksadesimal ke bilangan oktal dapat dilakukan dengan cara mengubah dari bilangan heksadesimal menjadi bilangan biner terlebih dahulu, baru dikonversikan ke bilangan oktal.

1.3.4. Tugas

1.	Jelaskan apakah yang dimaksud dengan sistem bilangan?

3.	Bagaimana cara mengkonversi dari Biner ke bilangan Desimal!
4.	Bagaimana cara mengkonversi dari bilangan Desimal ke bilangan Oktal?
5.	Buatlah tabel konversi hubungan antara biner dengan heksadesimal!
er	nilaian diri
	nilaian diri nma :
Na Na	ıma :
Na Na	ıma :
Na Na Ke	ima :
Na Na Ke Isil	ıma :
Na Na Ke Isil jav	ama :
Na Na Ke Isil jav 1.	ama :
Na Na Ke Isil jav 1.	ama :
Na Na Ke Isil jaw 1.	ama :
Na Na Ke Isil jaw 1.	ima :
Na Na Ke Isil jaw 1. 2.	ima-nama anggota kelompok :
Na Na Ke Isil jaw 1. 2.	ima :
Na Na Ke Isil jaw 1. 2. 3.	ima :
Na Na Ke Isil jav 1. 2.	ama :
Na Na Ke Isil jaw 1. 2. 3.	ima :
Na Na Ke Isil jaw 1. 2.	ima :
Na Na Ke Isil jaw 1. 2.	ima :
Na Na Ke Isil jaw 1. 2.	ima :

24 Sistem Komputer SMK/MAK Kelas X Semester I

1.3.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Angka yang dapat dikenal pada sistem bilangan biner adalah
 - a. 0,1,2,3,4,5,6,7,8,9
 - b. 0,1,2,3,4,5,6,7,8
 - c. A,B,C,D,E,F
 - d. 0,2,4,8,10
 - e. 0 dan 1
- 2. Sistem bilangan heksadesimal memiliki basis....
 - a. 2
 - b. 8
 - c. 6
 - d. 10
 - e. 16
- 3. 16₁₀ bilangan disamping merupakan bilangan
 - a. Biner
 - b. Desimal
 - c. Oktal
 - d. Heksadesimal
 - e. Binary
- 4. Angka yang dikenal pada sistem bilangan oktal adalah....
 - a. 0,1,2,3,4,5,6,7,8,9
 - b. 0,1,2,3,4,5,6,7,8
 - c. 0,1,2,3,4,5,6,7
 - d. 0,1,2,3,4,5,6
 - e. 0,1,2,3,4,5
- 5. Perhatikan pernyataan dibawah ini dengan cermat!
 - 1. mempunyai basis 2
 - 2. mempunyai basis 8
 - 3. mempunyai basis 10
 - 4. mempunyai basis 16 yang terdiri dari angka dan huruf
 - 5. terdiri dari 4 digit angka

Dari pernyataan diatas yang merupakan ciri dari bilangan Hexadesimal adalah ditunjukkan pada nomor...

- a. 1
- b. 2
- c. 3
- d. 4
- e. 5

1.4 Kegiatan Belajar 4

Materi : Sistem Bilangan Coded Decimal dan Binary Coded Hexadecimal Alokasi Waktu : 1 X 2 Jam Pertemuan

1.4.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Sistem bilangan Coded Desimal dan Binari Coded Hexadesimal
- Menghitung bilangan Coded Desimal dan Binary Coded Hexadesimal

1.4.2. Aktivitas belajar siswa

1.4.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang,

Amatilah dengan cermat tabel Binary Coded Desimal (BCD) dan Binary Coded Hexadesimal (BCH) dibawah ini!

Digit Desimal	Kode BCD	
0		0000
1		0001
2		0010
3		0011
4		0100
5		0101
6		0110
7		0111
8		1000
9		1001
13	0001	0011
45	0100	0101
260	0010 0110	0000

1.4.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian sistem bilangan BCD
- sistem bilangan BCH dan ASCII!

1.4.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian sistem bilangan BCD, sistem bilangan BCH dan ASCII , kamu dapat mencari sumber referensi lain dari internet atau di perpustakaan.

Mengkonversi bilangan yang bernilai besar memerlukan hitungan yang cukup melelahkan. Melalui bilangan dalam Code Form maka pekerjaan konversi bilangan dapat dipermudah dan dipercepat. Di bawah ini adalah Code Form dalam bilangan desimal, bilangan oktal dan bilangan heksadesimal yang sering dipergunakan.

A. Bentuk BCD (Binary Coded Decimal)

BCD merupakan sistem sandi dengan 6 bit, sehingga kombinasi yang dapat digunakan sebagai sandi banyaknya adalah 2 pangkat 6 sama dengan 64 kombinasi. Pada transmisi sinkron sebuah karakter dibutuhkan 9 bit, yang terdiri dari 1 bit awal, 6 bit data, 1 bit paritas dan 1 bit akhir. (Kristanto, 2003, hal. 97)

BCD (Binary Coded Decimal) merupakan kode biner yang digunakan hanya untuk mewakili nilai digit desimal saja, yaitu nilai angka 0 sampai dengan 9. BCD menggunakan kombinasi dari 4 bit, sehingga sebanyak 16 (24 = 16) kemungkinan kombinasi yang bisa diperoleh dan hanya 10 kombinasi yang digunakan.

Tabel 1.10	BCD 4-bit
------------	-----------

BCD 4-bit	Digit decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9

Bilangan desimal pada setiap tempat dapat terdiri dari 10 bilangan yang berbedabeda. Untuk bilangan biner, bentuk dari 10 elemen yang berbeda-beda memerlukan 4 bit. Sebuah BCD mempunyai 4 bit biner untuk setiap tempat bilangan desimal.

Dalam contoh ini BCD terdiri dan 3 kelompok bilangan masing-masing terdiri dari 4 bit, dan jika bilangan desimal tersebut dikonversi ke dalam bilangan biner secara langsung adalah 317₁₀ = 100111101₂ dan hanya memerlukan 9 bit. Untuk contoh proses sebaliknya dapat dilihat di bawah ini.

Contoh Soal:

Decimal 0101 0001 0111 0000 Binary Coded Decimal 5 7 0

Jadi bentuk BCD di atas adalah bilangan $Z_{10} = 5170$. (Heryanto. Dkk, 2014, hal. 16)

B. Bentuk BCH (Binary Coded Hexadecimal)

Bilangan heksadesimal dalam setiap tempat dapat terdiri dari 16 bilangan yang berbeda-beda angka dan huruf. Bentuk biner untuk 16 elemen memerlukan 4 bit.

Tabel 1.11 BCH

Digit hexadesimal	4 bit	Digit hexadesimal	4 bit
0	0000	A	1010
1	0001	В	1011
2	0010	С	1100
3	0011	D	1101
4	0100	E	1110
5	0101	F	1111
6	0110		
7	0111		
8	1000		
9	1001		

Sebuah BCH mempunyai 4 bit biner untuk setiap tempat bilangan heksadesimal.

Contoh Soal

 $Z_{16} = 31AF$

Bilangan Heksadesimal 3 1 A F
Binary CodedHexadecimal 0011 0001 1010 1111

Untuk proses sebaliknya, setiap 4 bit dikonversi ke dalam bilangan heksadesimal.

Contoh Soal

Binary Coded Hexadecimal $\frac{1010}{A} \quad \frac{0110}{6} \quad \frac{0001}{8}$

Jadi, bentuk BCH diatas adalah bilangan $Z_{16} = A618$.

C. ASCII Code-American Standard Code-for Information Interchange

Dalam bidang komputer mikro, ASCII Code mempunyai arti yang sangat khusus, yaitu untuk mengkodekan karakter (huruf, angka, dan tanda baca yang lainnya). Kodekode ini merupakan kode standar yang dipakai oleh sebagian besar sistem komputer mikro. Selain huruf, angka dan tanda baca yang terdiri dari 32 karakter (contoh: ACK, NAK), ASCII Code merupakan kontrol untuk keperluan transportasi data. Di bawah ini adalah tabel 7 bit ASCII Code beserta beberapa penjelasan yang diperlukan.

Tabel 1.12ACII Code 7 bit

Singkatan	Arti	Bahasa Inggris
STX	Awal dari text	Start of Text
ETX	Akhir dari text	End of text
ACK	Laporan balik positif	Acknowledge
NAK	Laporan balik negatif	Negative Acknowledge

CAN	Tidak berlaku	Cancel
CR	Carriage Return	Carriage return
FF	Form Feed	Form Feed
LF	Line Feed	Line Feed
SP	Jarak	Space
DEL	Hapus	Delete

ASCII merupakan sandi 7 bit, sehingga terdapat 2 pangkat 7 yang berarti ada 128 macam simbol yang dapat disandikan dengan sistem sandi ini, sedangkan bit ke 8 merupakan bit paritas. Sandi ini dapat dikatakan yang paling banyak dipakai sebagai standard pensinyalan pada peralatan komunikasi data. Untuk transmisi asinkron tiap karakter disandikan dalam 10 atau 11 bit yang terdiri dari 1 bit awal, 7 bit data, 1 bit paritas, 1 atau 2 bit akhir.

000 001 010 011 100 101 110 111 1234 Octal 1 2 3 5 7 0 4 6 0000 00 NUL SOH STX **EXT EOT ENG** ACK BEL 0001 01 BS HT LF VT FF CR SO SI 0010 02 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM FS GS 0011 03 SUB **ESC** RS VS 0100 04 SP % ! # \$ & 0101 05) + 0110 06 0 1 2 3 4 5 6 7 0111 07 8 9 ? = < > F 1000 10 @ С Ε G Α В D 1001 11 Η ı J K L M Ν O 1010 12 Р Q R S Т U V W Λ 1011 13 Υ Ζ Χ [1100 14 Α b d f С е g 1101 15 ı k I h j m n 0 1110 16 р Q r s t u ٧ W 17 Υ DEL 1111 Х z ~

Tabel 1.13 Sandi ASCII

1.4.2.4. Mengasosiasi/ menalar

Masalah penulisan Binary Coded Desimal (BCD) dan Binary Coded Hexadesimal (BCH):

1. 1985 4. 4D5F 2. 2348 5. 2B

3.567

Buatlah kesimpulan tentang permasalahan di atas dan kemudian ubahlah bilangan ke dalam sistem bilangan biner!

1.4.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang bilangan Binary Coded Desimal (BCD) dan Binary Coded Hexadesimal (BCH)!

1.4.3. Rangkuman

- BCD merupakan sistem sandi dengan 6 bit, sehingga kombinasi yang dapat digunakan sebagai sandi banyaknya adalah 2 pangkat 6 sama dengan 64 kombinasi. Pada transmisi sinkron sebuah karakter dibutuhkan 9 bit, yang terdiri dari 1 bit awal, 6 bit data, 1 bit paritas dan 1 bit akhir
- Bilangan heksadesimal dalam setiap tempat dapat terdiri dari 16 bilangan yang berbeda-beda (angka dan huruf. Bentuk biner untuk 16 elemen memerlukan 4 bit
- ASCII Code merupakan kontrol untuk keperluan transportasi data.
- Dalam bidang komputer mikro, ASCII Code mempunyai arti yang sangat khusus, yaitu untuk mengkodekan karakter (huruf, angka, dan tanda baca yang lainnya). Kode-kode ini merupakan kode standar yang dipakai oleh sebagian besar sistem komputer mikro

1.4.4. Tugas

1.	Jelaskan apakah yang dimaksud dengan BCD dan BCH?
2.	Apakah perbedaan antara bilangan BCD dengan Bilangan biner biasa?
3.	Apa perbedaan BCD dan BCH!
4.	Apakah yang dimaksud dengan ASCII?
5.	Sebutkan kode-kode yang ada dalam ASCII !

1.4.5. Penilaian diri

Na			
jaw 1.	lah pernyataan berikut dengan juwaban dibawah pertanyaan. Selama diskusi saya mengusulk 4: Selalu 3: Sering Ketika kami berdiskusi, tiap orar	xan ide kepada kelompok 2 : Kadang-kadang ng diberi kesempatan mer	untuk didiskusikan. 1 : Tidak pernah ngusulkan sesuatu.
3.	4 : Selalu 3 : Sering Semua anggota kelompok kami	2 : Kadang-kadang melakukan sesuatu selar	•
٥.	4 : Selalu 3 : Sering		•
4.	Tiap orang sibuk dengan yang d	lilakukannya dalam kelom	npok saya.
5.			1 : Tidak pernah
6.	Apa yang kamu lakukan selama		
Uji I	Kompetensi/ Ulangan		

1.4.6. l

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

 Bentuk bilangan desimal dari bilangan biner 1011₂ adalah 	lah
---	-----

- a. 8₁₀
- b. 9₁₀
- c. 10₁₀
- d. 11₁₀
- e. 12₁₀
- 2. Bentuk bilangan oktal dari bilangan desimal 75₁₀ adalah
 - a. 52₈
 - b. 53₈
 - c. 54₈
 - d. 55₈
 - e. 56₈
- 3. Pada sistem bilangan heksa desimal angka 10 ditunjukan dengan simbol
 - a. A
 - b. B
 - c. C

- d. D
- e. E
- 4. Bentuk bilangan heksa desimal dari bilangan biner 10100112....
 - a. 52₁₆
 - b. 53₁₆
 - c. 54₁₆
 - d. 55₁₆
 - e. 56₁₆
- 5. Bilangan 56DE₁₆ apabila dikonversikan ke bilangan biner maka hasilnya
 - a. 0101 1101 1011 1110
 - b. 1010 0101 0111 1001
 - c. 0101 1001 1110 1011
 - d. 1110 0101 1101 1011
 - e. 0101 0110 1101 1110

BABII Relasi Logik dan Fungsi Gerbang Dasar

2.1 Kegiatan Belajar 1 Materi: Relasi Logik

Alokasi Waktu: 1 x 2 Jam Pertemuan

2.1.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan definisi relasi logic dan fungsi gerbang dasar
- Menjelaskan gerbang-gerbang logika dasar

2.1.2. Aktivitas belajar siswa

2.1.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 2 orang / teman sebangku, Amatilah dengan cermat tabel relasi logik dan operator logika dibawah ini!

Operator	Penggunaan	Keterangan
>	op1 > op2	op1 lebih besar dari op2
>=	op1 >= op2	op1 lebih besar dari atau sama dengan op2
<	op1 < op2	op1 kurang dari op2
<=	op1 <= op2	op1 kurang dari atau sama dengan op2
==	op1 == op2	op1 sama dengan op2
!=	op1 != op2	op1 tidak sama dengan op2

2.1.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian relasi logik
- operator relasi logik

2.1.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian relasi logik, kamu dapat mencari sumber referensi lain dari internet.

Relasi logik adalah informasi dalam bentuk sinyal 0 dan 1 yang digunakan untuk membandingkan dua buah nilai dan saling memberikan kemungkinan hubungan secara logik, 0 berarti salah dan 1 berarti benar. Fungsi dasar relasi logik adalah fungsi AND, OR, dan Fungsi NOT. Logika yang digunakan:

Tabel 2.1 Simbol Relasi logik

Simbol	Keterangan
=	Sama dengan
<>	Tidak sama dengan
>	Lebih dari
<	Kurang dari
>=	Lebih dari sama dengan
<=	Kurang dari sama dengan

Gambar 2.1 Gerbang-Gerbang Logika

Contoh penggunaan Relasi Logik:

Tabel 2.2 Penggunaan Relasi Logik

Perbandi	ngan	Hasil
1>2	Dibaca	Salah
1<2	Dibaca	Benar
A==1	Dibaca	Benar, Jika A bemilai 1
		Salah, Jika A tidak bemilai 1
'A' < 'B'	Dibaca	Benar karena kode ASCH untuk karakter 'A'
		Kurang dari kode ASCH untuk karakter 'B'
Kar == 'Y'	Dibaca	Benar jika kar berisi 'Y'
		Salah, jika kar tidak berisi 'Y'

2.1.2.4. Mengasosiasi/ menalar

No	Perbandingan	Hasil
1	Kar == 'X'	
2	'A' < 'B'	
3	A == 10	
4	10 < 20	
5	10 > 11	

6	2 >= 2	
7	2 <= 1	

Buatlah kesimpulan tentang relasi logik dan operator nya!

2.1.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang relasi logik dan operator nya!

2.1.3. Rangkuman

Relasi logik adalah informasi dalam bentuk sinyal 0 dan 1 yang digunakan untuk membandingkan dua buah nilai dan saling memberikan kemungkinan hubungan secara logik, 0 berarti salah dan 1 berarti benar. Fungsi dasar relasi logik adalah fungsi AND, OR, dan Fungsi NOT

2.1.4. Tugas

1.	Jelaskan apakah yang dimaksud dengan relasi logik?
2.	Sebutkan jenis-jenis fungsi dasar logika!
3.	
4.	Jelaskan hasil dari contoh penggunaan relasi logik dari A==2?
5.	Jelaskan hasil dari contoh penggunaan relasi logik Kar=='huruf vokal'!

2.1.5. Penilaian diri

Nama	
Nama-nama anggota kelompok	
Kegiatan kelompok	•

Isilah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkari jawaban dibawah pertanyaan.

- 1. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan.
 - 4 : Selalu
- 3 : Sering
- 2 : Kadang-kadang
- 1: Tidak pernah
- 2. Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu.
 - 4 : Selalu
- 3 : Sering
- 2 : Kadang-kadang
- 1: Tidak pernah
- 3. Semua anggota kelompok kami melakukan sesuatu selama kegiatan.
 - 4 : Selalu
- 3 : Sering
- 2 : Kadang-kadang
- 1 : Tidak pernah
- 4. Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.
 - 4 : Selalu
- 3 : Sering
- 2 : Kadang-kadang
- 1 : Tidak pernah

- 5. Selama kerja kelompok, saya....
 - Mendengarkan orang lain
 - Mengajukan pertanyaan
 - Mengorganisasi ide-ide saya
 - Mengorganisasi kelompok
 - Mengacaukan kegiatan
 - Melamun

6.	Apa yang kamu lakukan selama kegiatan?		

2.1.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Informasi dalam bentuk sinyal 0 dan 1 yang digunakan untuk membandingkan dua buah nilai dan saling memberikan kemungkinan hubungan secara logik disebut....
 - a. Relasi
 - b. Relasi Gambar
 - c. Relasi Logik
 - d. Gambar Logik
 - e. Dasar Logik
- 2. Dibawah ini yang bukan termasuk simbol relasi logik adalah
 - a. <>, = dan >
 - b. <, = dan <>
 - c. >, = dan =<
 - d. <=, = dan >
 - e. >=, = dan <

- 3. Hasil dari penjumlahan relasi logik 2 <> 1 adalah....
 - a. Benar
 - b. Salah
 - c. Kurang dari
 - d. Lebih dari
 - e. lebih dari sama dengan
- 4. Hasil dari penjumlahan relasi logik 1 > 2 adalah....

 - b. Salah
 - c. Kurang dari
 - d. Lebih dari
 - e. lebih dari sama dengan
- 5. Simbol <> merupakan simbol penggunaan relasi logik
 - a. sama dengan
 - b. tidak sama dengan
 - c. lebih dari
 - d. kurang dari
 - e. lebih dari sama dengan

2.2 Kegiatan Belajar 2

Materi: Operasi Logik

Alokasi Waktu: 1 x 2 Jam Pertemuan

2.2.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan operator logika
- Menjelaskan penggunaan operator logika

2.2.2. Aktivitas belajar siswa

2.2.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 3-4 orang, Amatilah dengan cermat tabel operator logika dibawah ini!

Operator	Keterangan	Contoh (x1=4, x2=4, y1=2, y2=2)
&&	AND (Apakah kedua kondisi bernilai true semua)	(x1 == x2) && (x1 > y1) (true, karena kondisi pertama (x1 == x2) bernilai true dan kondisi kedua $(x1 > y1)$ juga bernilai true).
	OR (Apakah salah satu kondisi ada yang bernilai true)	$(x1 > y2) \parallel (x2 == y2)$ (True, karena ada salah satu kondisi yang bernilai true, yaitu kondisipertama $(x1 >$ y2). Walaupun kondisi kedua bernilai false).
!	Not (Menghasilkan nilai kebalikan dari hasil sebenarnya	!(x1 > x2) (False, karena hasil awal kondisi tersebut $(x1 > x2)$ bernilai true).

2.2.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian operasi logik
- macam operasi logik
- simbol operasi logik

2.2.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang operasi logik, kamu dapat mencari sumber referensi lain dari internet.

Operator logika adalah operator yang digunakan untuk membandingkan dua buah nilai logika. Nilai logika adalah nilai benar atau salah. Jika sebelumnya pada relasi Logik yang dibandingkan adalah nilai dari data apakah benar (1) ataukah salah (0), maka pada operator logika bisa dikatakan yang dibandingkan adalah logika hasil dari relasi logik. Memberikan batasan yang pasti dari suatu keadaan sehingga suatu keadaan tidak dapat berada dalam dua ketentuan sekaligus. Dalam logikadikenal aturan sebagai berikut.

- 1. Suatu keadaan tidak dapat dalam keduanya benar dan salah sekaligus.
- 2. Masing-masing adalah benar/salah.
- 3. Suatu keadaan disebut benar bila tidak salah.

Dalam aljabar Boolean keadaan ini ditunjukkan dengan dua konstanta: Logika '1' dan '0'. Operasi logika biasa digunakan untuk menghubungkan dua buah ungkapan kondisi menjadi sebuah ungkapan kondisi. Operator-operator ini berupa:

Tabel 2.3 Operator Logika

Operator	Keterangan	
A • B	AND (dan)	
A + B	OR (atau)	
A'	NOT (bukan)	

Contoh penggunaan:

Tabel 2.4 Penggunaan Operator Logika

Contoh	Operasi	Hasil		
A • B	and	Benar jika a dan b adalah benar		
A + B	or	Benar jika salah satu A atau B adalah benar		
A' atau A	Kebalikan dari A	Benar jika A bernilai salah		

2.2.2.4. Mengasosiasi/ menalar

No	Operasi	Hasil
1	A• B	
2	a +b	
3	A'	
4	1• 2	
5	1'	

Buatlah kesimpulan tentang sistem komputer!

2.2.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri, tentang operasi logik, dan simbol-simbol nya!

2.2.3. Rangkuman

- Operator logika adalah operator yang digunakan untuk membandingkan dua buah nilai logika
- Aturan –aturan dalam logika sebagai berikut.
 - 1. Suatu keadaan tidak dapat dalam keduanya benar dan salah sekaligus.
 - 2. Masing-masing adalah benar/salah.
 - 3.Suatu keadaan disebut benar bila tidak salah
- Nilai logika adalah nilai benar atau salah. Jika sebelumnya pada relasi Logik yang dibandingkan adalah nilai dari data apakah benar (1) ataukah salah (0), maka pada operator logika bisa dikatakan yang dibandingkan adalah logika hasil dari relasi logik

2.2.4. Tugas

1.	
2.	Jelaskan Aturan-aturan logika!
3.	Jelaskan contoh penggunaan operator logika!
4.	Gambarlah tabel operator-operator logika?
5.	Jelaskan tentang nilai logika!

2.2.5. Penilaian diri

Nama Nama-nama anggota kelompok Kegiatan kelompok						
	ah pernyataan b	•	n jujur. Untuk No	. 1 s.d. 4, is	silah dengan ca	ra melingkari
-	aban dibawah pe Selama diskusi s	•	ılkan ida kanada	kolomnok	untuk didiekucil	(an
١.	4 : Selalu		2 : Kadan	•		
2		3	•	•	•	
۷.	Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah					
_	4 : Selalu	-	-	-	<u>=</u>	an
3.	Semua anggota kelompok kami melakukan sesuatu selama kegiatan.					
	4 : Selalu	3 : Sering	2 : Kadanç	յ-kadang	1 : Tidak pern	ah
4.	Tiap orang sibuk	: dengan yanç	g dilakukannya d	alam kelom	pok saya.	
	4 : Selalu	3 : Sering	2 : Kadanç	յ-kadang	1 : Tidak pern	ah
5.	Selama kerja kel	ompok, saya				
	Mendengarkan orang lain					
	 Mengajukar 	n pertanyaan				
		isasi ide-ide s	sava			
		isasi kelompo				
		an kegiatan	,,,			
	MelgacaukMelamun	.ari kegiatari				
	 ivielamun 					
6.	Apa yang kamu l	lakukan selan	na kegiatan?			

2.2.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

.....

- 1. Operator yang digunakan untuk membandingkan dua buah nilai logika disebut
 - a. Relasi Logik
 - b. Operator Logika
 - c. Gerbang Logika
 - d. Relasi Link
 - e. Operator relasi
- 2. Perhatikan pernyataan dibawah ini dengan cermat
 - 1. AND 4. EX-OR 2. NOR 5. OR
 - 3. NOT 6. NAND

Dari pernyataan data diatas yang merupakan operator dasar logika ditunjukkan nomor....

a. 1,2,3 d. 4,5,6 b. 2,4,6 e. 2,3,5

c. 1,3,6

- 3. Gerbang AND disimbolkan dengan
 - d. |
 - b. +

e. = =

- c. "

4. Hasil dari operator logika a && b adalah

- a. benar jika a dan b adalah benar
- b. benar jika a dan b adalah salah
- c. salah jika a dan b adalah benar
- d. benar jika a dan b adalah huruf vokal
- e. benar jika nilai a berarti salah
- 5. Hasil dari operator logika! a adalah....
 - a. benar jika a bernilai b
 - b. benar jika a bernilai salah
 - c. salah jika a bernilai B
 - d. salah jika a bernilai salah
 - e. tidak ada jawaban yang benar

2.3 Kegiatan Belajar 3

Materi: Fungsi Gerbang Dasar

Alokasi Waktu: 1 x 2 Jam Pertemuan

2.3.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Fungsi gerbang dasar logika
- Menjelaskan Gerbang AND, OR dan NOT

2.3.2. Aktivitas belajar siswa

2.3.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 2-3 orang, Amatilah dengan cermat tabel fungsi gerbang logika dibawah ini!

No.	FUNGSI	SIMBOL	TABEL		
1	AND	A B	0 0 1 1	B 0 1 0	F 0 0 1
2	OR	A B	0 0 1 1	B 0 1 0 1	F 0 1 1
3	NOT	A F	0 1		F 1 0

2.3.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian Gerbang logika
- macam-macam gerbang dasar logika

2.3.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang Gerbang logika dan macam-macam gerbang dasar logika, kamu dapat mencari sumber referensi lain dari internet.

Gerbang logika adalah rangkaian dasar yang membentuk komputer jutaan transistor di dalam mikroprosesor membentuk ribuan gerbang logika. gerbang logika beroperasi pada bilangan biner sehingga, disebut juga gerbang logika biner. Gerbang logika beroperasi pada bilangan biner 1 (high) dan 0 (low). Gerbang logika digunakan dalam berbagai rangkaian elektronik dengan sistem digital.

Gerbang dasar logika terdiri dan :

- 1. Gerbang AND,
- 2. Gerbang OR, dan
- 3. Gerbang NOT.

A. Fungsi Gerbang Gate (Gerbang AND)

(referensi Teori dan Aplikasi Sistem Digital, Graha Ilmu, hal 17)

Gerbang AND disebut juga sebagai gerbang "semua atau tidak satupun". Bagan pada gambar memberikan gambaran tentang prinsip kerja gerbang AND. Lampu Y akan menyala hanya apabila kedua saklar masukan (A dan B) tertutup. Dalam sistem logika keadaan saklar tertutup diberikan dengan logika 1, saklar terbuka diberikan dengan logika 0. Semua kombinasi saklar A dan B dalam sistem digital diberikan pada tabel kebenaran (truth table).

Gambar 2.2 Rangkaian AND yang menggunakan Saklar

Tabel 2.5. Kebenaran Gerbang AND

Int	Output	
A B		Y= A • B
0	0	0
1	0	0
0	1	0
1	1	1

Dalam sistem digital gerbang AND diberikan dengan simbol sebagai berikut:

Sumber: http://e-dutk.blogspot.com

Gambar 2.3 simbol Gerbang AND 7408

0 didefinisikan sebagai suatu tegangan rendah atau tegangan tanah 1 didefinisikan sebagai tegangan tinggi (max + 5 V).

Simbol logika standar untuk gerbang AND diatas menunjukkan gerbang dengan dua input dan satu output Y. Input ditunjukkan dengan binery digit (bit) yaitu satuan terkecil dalam sistem digital. Permasalahan penting yang perlu diperhatikan bahwa output Y akan mempunyai kondisi 1 jika semua input dalam kondisi 1.

Aljabar boolean merupakan bentuk logika simbolik yang menunjukkan bagaimana gerbang-gerbang logika beroperasi. Pernyataan Bollean merupakan suatu metode penulisan untuk menunjukkan apa yang terjadi di dalam rangkaian logika. Pernyataan dalam aljabar Boolean untuk gerbang AND adalah:

Pernyataan Boolean tersebut dibaca sebagai A AND B sama dengan output Y. Tanda titik dalam aljabar Boolean mempunyai arti AND dan bukan sebagai tanda kali seperti pada aljabar biasa. Aturan-aturan aljabar Boolean mengatur bagaimana gerbang AND akan beroperasi. Aturan formal untuk fungsi AND adalah:

A . 0 = 0

A . 1 = A

 $A \cdot A = A$

A . \bar{A} ' = 0, di mana \bar{A} ' = bukan A = NOT A

Gerbang AND tiga input disimbolkan dengan gambar dibawah ini

Gambar 2.4 Gerbang AND dengan 3 input

Aljabar Boolean tersebut dapat dibaca A AND B AND C sama dengan output Y. Ini memberikan arti bahwa jika salah satu dari input pada kondisi 0 maka outpu akan sama dengan 0. Sehingga ketentuan di atas bahwa gerbang gerbang akan mempunyai output 1 jika semua input dalam kondisi 1 dapat dipenuhi. Tabel kebenaran gerbang AND dengan tiga input adalah sebagai berikut:

	Input	Output			
A B		С	Y= A • B• C		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

Tabel 2.6. Kebenaran Gerbang AND Tiga Input

Aturan-aturan tersebut merupakan aturan umum aljabar Boolean untuk gerbang AND dengan 3 input atau lebih. Jadi untuk gerbang AND berapapun jumlah input yang diberikan, output akan berada dalam kondisi 1, jika semua input dalam kondisi 1. Dalam praktikum dengan menggunakan perangkat lunak electronics work bench input maksimum yang dapat diberikan sebanyak 8 input.

B. Fungsi OR Gate (Gerbang OR)

Dengan menggunakan sistem saklar, gerbang OR adalah sebagai berikut:

Gambar 2.5 Rangkaian OR Dengan Menggunakan Saklar

Dari sistem saklar di atas terlihat bahwa lampu akan menyala jika salah satu dari saklar menutup. Dalam hal ini bisa dijelaskan secara electronic bahwa aruslistrik dapat mengalir melalui saklar yang tertutup tersebut.

Aljabar Boolean untuk gerbang OR dapat dituliskan sebagai berikut:

A + 0 = 1

A + 1 = 1

A + A = A

 $A + \bar{A}' = 1$

Simbol gerbang OR dan tabel kebenarannya adalah sebagai berikut:

Gambar 2.6 simbol gerbang OR

Secara aljabar Boolean dapat dituliskan persamaan:

$$A + B = Y$$

Tabel 2.7 Kebenaran gerbang OR dengan dua input

	nput	Output
Α	В	Y= A + B
0	0	0
0	1	1
1	0	1
1	1	1

Dari uraian di atas dapat diambil kesimpulan bahwa output gerbang OR akan berharga 1, jika salah satu atau lebih inputnya bernilai 1. Kesimpulan ini berlaku juga untuk gerbang OR dengan input lebih dari 3.

C. Fungsi NOT Gate (Gerbang NOT) atau inverter

Gerbang NOT atau inverter merupakan gerbang yang berfungsi untuk membalikkan kondisi input. Jika input dalam kondisi 1 maka output akan mempunyai kondisi 0. Sebaliknya jika input dalam keadaan 0 maka output akan berada dalam kondisi 1. Simbol gerbang NOT adalah:

Gambar 2.7 Gerbang NOT (inverter)

Tabel 2.8 Kebenaran Gerbang NOT

Input A	Output Y
0	0
0	1

Dengan sifat yang demikian, maka dapat disimpulkan bahwa output dari gerbang NOT selalu berlawanan dengan inputnya. Jadi dapat disimpulkan bahwa NOT di NOT-kan lagi akan kembali ke kondisi semula (kondisi sama dengan input). Secara aljabar Boolean dapat ditulis:

$$Y = A' = \overline{A}$$

2.3.2.4. Mengasosiasi/ menalar

Coba kerjakan:

Jika terdapat data A = 0,1,0,0,0,1,0,1 dan data B 1,0,1,0,1,0,1,1

Dari data di atas buatlah tabel kebenaran dari fungsi gerbang AND, OR dan NOT! Kemudian buatlah kesimpulan tentang fungsi dasar gerbang logika!

2.3.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang fungsi gerbang logika!

2.3.3. Rangkuman

- Gerbang logika adalah rangkaian dasar yang membentuk komputer jutaan transistor di dalam mikroprosesor membentuk ribuan gerbang logika
- Gerbang dasar logika terdiri dan :
 - 1. Gerbang AND,
 - 2. Gerbang OR,
 - 3. Gerbang NOT
- Aljabar boolean merupakan bentuk logika simbolik yang menunjukkan bagaimana gerbang-gerbang logika beroperasi
- Gerbang NOT atau inverter merupakan gerbang yang berfungsi untuk membalikkan kondisi input

2.3.4. Tugas

1.	Jelaskan apakah yang dimaksud dengan gerbang logika?
2.	Sebutkan macam-macam gerbang dasar logika!
3.	Apakah yang disebut dengan Gerbang AND !
4.	Apakah yang disebut dengan Gerbang OR Gate?
5.	Apakah kegunaan dari Fungsi NOT Gate atau Inverter!

2.3.5. Penilaian diri

Nama	•
Nama-nama anggota kelompok	:
Kegiatan kelompok	:

Isilah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkari jawaban dibawah pertanyaan.

- 1. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan.
 - 4 : Selalu
- 3 : Sering
- 2 : Kadang-kadang
- 1 : Tidak pernah
- 2. Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu.
 - 4 : Selalu
- 3 : Sering
- 2 : Kadang-kadang
- 1 : Tidak pernah
- 3. Semua anggota kelompok kami melakukan sesuatu selama kegiatan.
 - 4 : Selalu
- 3 : Sering
- 2 : Kadang-kadang
- 1 : Tidak pernah
- 4. Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.
 - 4 : Selalu
- 3 : Sering
- 2 : Kadang-kadang
- 1: Tidak pernah

- 5. Selama kerja kelompok, saya....
 - Mendengarkan orang lain
 - Mengajukan pertanyaan
 - Mengorganisasi ide-ide saya
 - Mengorganisasi kelompok
 - Mengacaukan kegiatan
 - Melamun

6.	Apa yang kamu lakukan selama kegiatan?			

2.3.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Dibawah ini yang termasuk 3 fungsi logika dasar adalah....
 - a. AND, OR dan NOT
 - b. AND, NOT dan NOR
 - c. NAND, NOR dan NOT
 - d. AND, NOR dan OR
 - e. AND, NOR dan NOT
- 2. Gerbang yang memberikan keluaran 1 bila semua masukan diberikan 1 adalah definisi dari....
 - a. Gerbang OR
 - b. Gerbang AND
 - c. Gerbang NOT
 - d. Gerbang NOR
 - e. Gerbang NAND

3. Simbol dibawah ini merupakan fungsi gerbang...

- a. NOR
- b. AND
- c. NOT
- d. OR
- e. NAND
- 4. Simbol dibawah ini adalah simbol dari fungsi gerbang....

- a. NOR
- b. AND
- c. NOT
- d. OR
- e. NAND
- 5. Gerbang yang akan membentuk keluaran berlogika 1 bila gerbang inputnya ada yang diberikan logika 1 adalah definisi dari
 - a. Gerbang NOT
 - b. Gerbang AND
 - c. Gerbang NAND
 - d. Gerbang NOR
 - e. Gerbang OR

2.4 Kegiatan Belajar 4

Materi : Fungsi Gerbang Kombinasi Alokasi Waktu : 1 x 2 Jam Pertemuan

2.4.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Fungsi Gerbang Kombinasi
- Mengerti Fungsi gerbang Kombinasi

2.4.2. Aktivitas belajar siswa

2.4.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 3-4 orang, Amatilah dengan cermat tabel Fungsi Gerbang Kombinasi dibawah ini ! Bangdingkanlah dengan fungsi gerbang logika !

No.	FUNGSI	SIMBOL	TABEL
1	AND	A B	A B F 0 0 0 0 1 0 1 0 0 1 1 1
2	OR	A B F	A B F 0 0 0 0 1 1 1 0 1 1 1 1
3	NOT	A — F	A F 0 1 1 0
4	NAND	A F	A B F 0 0 1 0 1 1 1 0 1 1 1 0
5	NOR	A	A B F 0 0 1 0 1 0 1 0 0 1 1 0
6	X-OR	A B	A B F 0 0 0 0 1 1 1 0 1 1 1 0 A B F
7	X-NOR	A Do- F	A B F 0 0 1 0 1 0 1 0 0 1 1 1

2.4.2.2. **Menanya**

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian Fungsi gerbang kombinasi
- macam-macam fungsi gerbang kombinasi!

2.4.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian macam-macam fungsi gerbang kombinasi, kamu dapat mencari sumber referensi lain dari internet.

A. Fungsi Gerbang Kombinasi (NAND, EX-OR)

Gerbang NAND merupakan kombinasi dan gerbang AND dengan gerbang NOT di mana keluaran gerbang AND dihubungkan ke saluran masukan dan gerbang NOT. Prinsip kerja dari gerbang NAND merupakan kebalikan dari gerbang AND. Outputnya merupakan kebalikan dari gerbang AND, yakni memberikan keadaan level logik 0 pada outputnya jika dan hanya jika keadaan semua inputnya berlogika 1. Gerbang NAND merupakan gabungan dari NOR dan AND digambarkan sebagai berikut. .

Gambar 2.8 Simbol Gerbang NAND

Tabel 2.9. Tabel Kebenaran 2 Input Gerbang NAND Input Output

Inpu	Output	
А	В	Y= A•B
0	0	1
0	1	1
1	0	1
1	1	0

Karakteristiknya: Jika A dan B input sedangkan Y adalah output, maka output gerbang NAND akan berlogika 1 jika salah satu inputnya berlogika 0. Output akan berlogika 0 jika kedua inputnya berlogika 1. Output gerbang NAND adalah kebalikan output gerbang AND.

Gambar 2.9 Rangkaian Listrik NAND sebagai Sakelar

Gerbang NAND bisa mempunyai lebih dari dua input. Tabel kebenaran untuk 3 input gerbang NAND memperlihatkan output akan selalu 1 jika kedua input A, B, dan C tidak 1. Gambar dibawah ini memperlihatkan contoh IC gerbang NAND 7400 dengan input.

Gambar 2.10IC Gerbang NAND 7400

B. Fungsi Gerbang NOR (NOT OR)

Operasi gerbang NOR sama seperti dengan gerbang OR, tetapi bedanya keluarannya diinverterkan (dibalikkan). Disini Anda dapat membedakan gerbang NOR dan gerbang OR dengan membedakan outputnya. Simbol untuk gerbang NOR ini seperti dengan OR-Inverter, simbol diperlihatkan pada Gambar dibawah ini :

Gambar 2.11Simbol gerbang NOR

Simbol gerbang NOR ini serupa dengan OR-Inverter dengan A = O, B = O akan menghasilkan output 1. Persamaan boolean untuk fungsi NOR adalah $Y = \overline{A + B}$ dengan kata lain Y akan bernilai 0 bila A atau B = 1.

C. Fungsi EX - OR Gate (Gerbang EX-OR)

EX-OR singkatan dan Exclusive OR di mana jika input berlogika sama maka output akan berlogika 0 dan sebaliknya jika input berlogika beda maka output akan berlogika Rangkaian EX-OR disusun dengan menggunakan gerbang AND, OR, dan NOT.

Gambar 2.12 SimboL G.erbang EX-OR

Tabel 2.10 TabeL kebenaran Gerbang EX-OR

In	put	Output
А	В	$Y = A \oplus B$
0	0	0
0	1	1
1	0	1
1 1		0

D. Fungsi EX-NOR

Gerbang EX-NOR akan memberikan output berlogika 0 jika inputnya berlogika beda, dan akan berlogika 1 jika kedua Inputnya berlogika sama. Rangkaian EX-NOR disusun dengan menggunakan gerbang AND, OR, NOT.

Gambar 2.13 Simbol EX-OR

Tabel 2.13Tabel kebenaran gerbang EX-NOR

Input		Output
Α	В	$Y = \overline{A \oplus B}$
0	0	1
0	1	0
1	0	0
1	1	1

Tabel kebenaran EX-NOR memberikan keluaran 1 apabila kedua inputnya sama dan akan memberikan keluaran 0 apabila kedua inputnya berbeda.

Sumber: www.elektronikabersama.web.id

Gambar 2.14IC Gerbang EX-OR 74266

2.4.2.4. Mengasosiasi/ menalar

Buatlah tabel kebenaran pada Fungsi NAND Gate

Inpu	Output	
Α	В	Y= A • B
0	0	
0	1	
1	0	
1	1	

Buatlah kesimpulan tentang fungsi gerbang kombinasi!

2.4.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang fungsi gerbang kombinasi!

2.4.3. Rangkuman

- Gerbang NAND merupakan kombinasi dan gerbang AND dengan gerbang NOT di mana keluaran gerbang AND dihubungkan ke saluran masukan dan gerbang NOT. Prinsip kerja dari gerbang NAND merupakan kebalikan dari gerbang AND. Outputnya merupakan kebalikan dari gerbang AND, yakni memberikan keadaan level logik 0 pada outputnya jika dan hanya jika keadaan semua inputnya berlogika 1
- Operasi gerbang NOR sama seperti dengan gerbang OR, tetapi bedanya keluarannya diinvcrterkan (dibalikkan)
- EX-OR singkatan dan Exclusive OR di mana jika input berlogika sama maka output akan berlogika 0 dan sebaliknya jika input berlogika beda maka output akan berlogika Rangkaian EX-OR disusun dengan menggunakan gerbang AND, OR, dan NOT.
- Gerbang EX-NOR akan memberikan output berlogika 0 jika inputnya berlogika beda, dan akan berlogika 1 jika kedua Inputnya berlogika sama

2.4.4. Tugas

1.	Jelaskan apakah yang dimaksud dengan Gerbang NAND?
_	
2.	Sebutkan macam-macam Gerbang kombinasi!
3.	Gambarlah tabel kebenaran dari gerbang logika EX-NOR!

	4.	Pada gerbang EX-OR, jika input A = 1, B = 1 maka berapakah nilai output Y?
	5.	Gambarlah macam-macam simbol gerbang kombinasi!
2.4.5. I	Pen	ilaian diri
	Nar	ma :
		ma-nama anggota kelompok :giatan kelompok :
		ah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkari
	-	aban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	2.	Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu.
	3	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan.
	0.	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	4.	Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.
	_	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	5.	Selama kerja kelompok, saya
		Mendengarkan orang lainMengajukan pertanyaan
		Mengorganisasi ide-ide saya
		Mengorganisasi kelompok
		Mengacaukan kegiatan
		 Melamun
	6.	Apa yang kamu lakukan selama kegiatan?

2.4.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

1. Gambar dibawah ini merupakan simbol dari gerbang....

a. AND

d. NAND

b. OR

e. EX-OR

c. NOT

2. Gerbang NAND merupakan kombinasi dari gerbang....

a. AND dan OR

d. AND dan NOT

b. AND dan NAND

e. AND dan NOR

c. AND dan AND

3. Dibawah ini yang merupakan IC gerbang logika NAND adalah....

a. 7400

d. 7410

b. 7411

e. 7402

c. 7432

4. Gambar dibawah ini merupakan simbol dari gerbang....

a. NAND

d. NOT

b. AND

e. OR

c. NOR

5. Gambar dibawah ini merupakan simbol dari gerbang

a. NAND

d. NOT

b. EX-NOR

e. OR

c. NOR

2.5 Kegiatan Belajar 5

Materi : Penggunaan Operasi Logik

Alokasi Waktu : 1 x 2 Jam Pertemuan

2.5.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

Menjelaskan Penggunaan Operasi Logik

2.5.2. Aktivitas belajar siswa

2.5.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 2-3 orang, Amatilah dengan cermat tentang materi penggunaan operasi logik dibawah ini!

Electronics workbench (EWB) adalah sebuah software yang digunakan mengujian dan eksperimen rangkaian elektronika EWB terdiri dari Menu Reference, Sources, Basic, Diodes, Transistors, Analog ICs, Mixed ICs, DigitalICs, Indicators dan masih banyak lagi menu yang terdapat pada EWB semua dapat dilihat pada gambar dibawah ini.

Pada menu sources ini mendiskripsikan sources seperti including battery, AC voltage source, Vcc source and FM source, menu basic mendiskripsikan tentang komponen EWB contoh: resistor, capacitor, relay, switch and transformer. Menu digit mendiskripsikan tentang gerbang logika seperti and,or,nand dan lain-lain. Pada software ini cocok sekali untuk pemula agar dapat mengetahui fungsi dari penggunaan operasi logik.

2.5.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- penggunaan operasi logik
- software penggunaan operasi logik

2.5.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian sistem komputer dan sistem bilangan, kamu dapat mencari sumber referensi lain dari internet. Carilah software *Electronic Workbench* melalui situs *www.electronicworkbench.com*

A. Penggunaan Operasi Logik

Penggunaan operasi logic pada gerbang logika dapat diperoleh dalam bentuk IC. Perhatikan tabel dibawh ini dengan seksama

Tabel	2.1	4	Penggunaan	0	perasi	Loaik

Gerbang	Input	Jumlah Gerbang	TTL	CMOS	HighSpeedCMOS
NOT	1	6	7404	4069	74HC04
AND	2	4	7408	4081	74HC08
	3	3	7411	4073	74HC10
	4	2	7421	4082	74HC20
OR	2	4	7432	4071	
	3	3	-	7075	74HC32
	4	2	-	7072	74HC075
NAND	2	4	7400	4011	74HC00
	3	3	7410	4013	74HC10
	4	2	7420	4012	74HC20
	8	1	7430	4068	-
	12	1	74134	-	-
	13	1	74133	-	-
NOR	2	4	7402	4001	74HC02
	3	3	7427	40025	74HC27
	4	2	7425	4002	74HC25
	5	1	74860	-	
	8	1	1		

Untuk memudahkan proses pembelajaran tentang penggunaan operasi logic, kita dapat melakukan simulasi dengan menggunakan sebuah software yaitu Electronic Workbench. Selain software tersebut kita juga dapat menggunakan software Circuit Maker. Dengan menggunakan simulasi kita tidak perlu mengeluarkan banyak dana dan waktu untuk membeli komponen IC atau komponen lainnya. Kita cukup duduk didepan komputer dengan mengoperasikan software Electronics Workbench atau Circuit Maker.

Di dalam teknik kontrol sering menggunakan operasi logik untuk menyelesaikan hubunganantara sinyal-sinyal masukan dengan sinyal-sinyal keluaran.

Contoh Soal

Sebuah rangkaian mempunyai 3 masukan, yaitu A, B, dan C serta 1 lampu S tanda pada keluaran.Lampu S pada keluaran akan menyala (logika 1) hanya jika minimal 2 di antara 3 masukanmengalami gangguan (logika 1). Realisasikanlah rangkaian yang dimaksud:

Ketentuan:

Masukan A, B, C	0 Sinyal	Operasi Normal
	1 Sinyal	Tergantung
Sinyal Lampu	0 Sinyal	Lampu Mati, Operasi Normal
	1 Sinyal	Lampu menyala, tergantung

В Α 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1

Tabel 2.15. Tabel kebenaran penggunaan operasi logik

2.5.2.4. Mengasosiasi/ menalar

Buatlah rangkuman tentang software Electronic Workbench dari berbagai sumber yang kamu dapat, kemudian catatlah langkah-langkah mendownload Electronic Workbench pada rangkumanmu! Buatlah kesimpulan mengenai software Electronic Workbench tersebut!

2.5.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang software dan penggunaan operasi logik!

2.5.3. Rangkuman

- Untuk memudahkan proses pembelajaran tentang penggunaan operasi logic, kita dapat melakukan simulasi dengan menggunakan sebuah software yaitu Electronic Workbench
- Dengan menggunakan simulasi kita tidak perlu mengeluarkan banyak dana dan waktu untuk membeli komponen IC atau komponen lainnya
- Fungsi dari penggunaan operasi logik yaitu untuk menyelesaikan hubungan antara sinyal-sinyal masukan dengan sinyal-sinyal keluaran.

2.5.4. Tugas

1.	Jelaskan penggunaan operasi logik?
2.	Sebutkan contoh dari penggunaan operasi logik dalam kehidupan sehari-hari!

	Sebutkan macam-macam gerbang dalam penggunaan operasi logik!				
	4.	Jelaskan fungsi dari penggunaan operasi logik?			
	5.	Sebutkan macam software aplikasi dalam penggunaan op	-		
2.5.5.	Pen	ilaian diri			
	Na	ma :			
		ma-nama anggota kelompok :			
	Ke	giatan kelompok :			
		ah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, is vaban dibawah pertanyaan.	silah dengan cara melingkari		
	-	Selama diskusi saya mengusulkan ide kepada kelompok	untuk didiskusikan		
	٠.	4 : Selalu 3 : Sering 2 : Kadang-kadang			
	2.	Ketika kami berdiskusi, tiap orang diberi kesempatan mer	•		
		4 : Selalu 3 : Sering 2 : Kadang-kadang	_		
	3.	Semua anggota kelompok kami melakukan sesuatu selar	na kegiatan.		
		4 : Selalu 3 : Sering 2 : Kadang-kadang	1 : Tidak pernah		
	4.	Tiap orang sibuk dengan yang dilakukannya dalam kelom	npok saya.		
		4 : Selalu 3 : Sering 2 : Kadang-kadang	1 : Tidak pernah		
	5.	Selama kerja kelompok, saya			
		Mendengarkan orang lain			
		Mengajukan pertanyaan Managaranianai ida ida agua			
		Mengorganisasi ide-ide saya Mengorganisasi kalampak			
		Mengorganisasi kelompok Mengorganisasi kelompok			
		Mengacaukan kegiatanMelamun			
	6.	Apa yang kamu lakukan selama kegiatan?			

2.5.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Software yang digunakan dalam penggunaan operasi logik adalah....
 - a. Electronics Workbench
 - b. Ubuntu
 - c. Debian
 - d. Electical and Electroni Enginer
 - e. Elektronika
- 2. Dibawah ini yang merupakan penggunaan Circuit Maker adalah....
 - a. Untuk mendeteksi IC
 - b. Untuk menggunakan simulasi komponen IC
 - c. Untuk memperbaiki IC
 - d. Untuk membuat IC
 - e. Untuk mengoperasikan IC
- 3. Dibawah ini merupakan software yang digunakan untuk simulasi komponen IC adalah....
 - a. Electronics Workbench dan Elektronika
 - b. Electronics Hokben dan Elektronical System
 - c. Electronic Workbench dan Circuit Maker
 - d. Electronic Workbench dan Electronik
 - e. Electronic Hokben dan Circuit Maker
- 4. Fungsi dari penggunaan operasi logik adalah....
 - a. menyelesaikan hubungan antara sinyal masukan dengan sinyal keluaran
 - b. menghentikan sinyal masukan dengan sinyal keluaran
 - c. mengendalikan sinyal masukan dengan sinyal keluaran
 - d. mengover dari sinyal masukan dan sinyal keluaran
 - e. mengupdate sinyal masukan dan sinyal keluaran
- 5. Berikut ini yang termasuk ke dalam 3 tahapan dasar pengolah data adalah
 - a. input, proses, output
 - b. input. ALU, memori
 - c. ALU, output, memori
 - d. ALU, output, input
 - e. input, proses, memori

BAB III Operasi Aritmatika

3.1 Kegiatan Belajar 1

Materi: Operasi Aritmatika Bilangan Biner

Alokasi Waktu: 1 x 2 Jam Pertemuan

3.1.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Operasi Artimatika Bilangan Biner
- Mengerti operasi penjumlahan, pengurangan, perkalian, pembagian bilangan biner
- Menghitung Operasi Aritmatika Bilangan Biner

3.1.2. Aktivitas belajar siswa

3.1.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang,

Amatilah dengan cermat pembahasan penjumlahan Operasi Dasar Aritmatika bilangan biner dibawah ini!

3.1.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- operasi aritmatika bilangan biner
- perhitungan dasar operasi aritmatika bilangan biner

3.1.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang operasi aritmatika dan macammacam dasar operasi aritmatika bilangan biner, kamu dapat mencari sumber referensi lain dari internet.

Operasi logika dan operasi aritmetika merupakan awal dari seluruh kegiatan yang ada pada teknik mikroprosesor. Dasar operasi aritmetika adalah penjumlahan dan pengurangan. Operasi selanjutnya yang dikembangkan dari kedua operasi dasar tersebut adalah perkalian dan pembagian.

A. Operasi Aritmatika Bilangan Biner

1. Penjumlahan Bilangan Biner

Penjumlahan bilangan biner dapat dilakukan dengan cara yang sama seperti halnya penjumlahan bilangan desimal. Penjumlahan bilangan desimal dapat dilakukan dengan cara sebagai berikut:

- 1) Digit-digit dan bilangan-bilangan desimal dijumlahkan satu per satu mulai posisi kolom paling kanan.
- 2) Bila hasil penjumlahan antar kolom melebihi nilai 9, maka dikurangi dengan nilai 10 untuk disimpan ke penjumlahan kolom berikutnya.

Misalnya, 18 + 44 = 62, dengan menggunakan langkah-langkah di atas bisa diterapkan sebagaiberikut.

```
8 + 4 = 12, nilainya melebihi nilai 9, jadi simpan 1 dan tulis hasilnya 2. 1+4+1=6
Jadi, hasilnya: 62.
```

Bilangan biner dijumlahkan dengan cara yang sama dengan penjumlahan bilangan desimal. Dasar penjumlahan untuk masing-masing digit bilangan biner adalah:

```
0+0=0

0+1=1

1+0=1

1+1=0 \rightarrow 1+1=2, karena digit terbesar biner 1, maka harus dikurangi dengan 2

(basis), jadi 2-2=0 dengan simpanan 1.
```

2. Pengurangan Bilangan Biner

Bilangan biner dikurangkan dengan cara yang sama pada operasi pengurangan bilangan desimal. Dasar pengurangan untuk masing-masing digit bilangan biner adalah:

0 - 0 = 0

1 - 0 = 1.

1 - 1 = 0

 $0 - 1 = 1 \rightarrow \text{dengan pinjaman } 1$, (pinjam 1 dan posisi sebelah kirinya).

Contoh

Tabel 3.1. Pengurangan Bilangan Biner

Desimal	Biner
27 9	11011 1001
18	10010

Langkah-langkah penyelesaiannya:

1 – 1 = 0

1 - 0Jadi hasilnya: 10010 = 1

0 - 0= 0

= 01 - 1

1 - 0= 1

3. Perkalian Bilangan Biner.

Dilakukan sama dengan cara perkalian pada bilangan desimal. Dasar perkalian bilangan biner adalah:

 0×0 = 0

1 x 0 = 0

0 x 1 = 0

1 x 1 = 1

Tabel 3.2. Tabel Perkalian Biner

Desimal	Biner
16	1110
12	1100
X	x
32	0000
16	0000
+	1110
192	1110
	+
	10101000

4. Pembagian Bilangan Biner

Pembagian bilangan biner juga dilakukan dengan cara yang sama pada bilangan desimal. Pembagian biner 0 tidak mempunyai arti sehingga dasar pembagian biner adalah

0:1 = 01:1 = 1

Tabel 3.3 Pembagian Bilangan Biner

Desimal	Biner
5 / 120 \ 24	101/ 1111101 \ 11001
100	101
20	101
20	101
0	001
	000
	010
	000
	101
	101
	0

Materi Pengayaan

B. Operasi Aritmatika Bilangan Oktal

1. Penjumlahan Aritmetiha Bilangan Oktal

Penjumlahan bilangan oktal dapat dilakukan secara sama dengan penjumlahan bilangan desimal.

Langkah-langkah penjumlahan adalah sebagai berikut.

- 1) Tambahkan masing-masing kolom secara desimal.
- 2) Ubah dan hasil desimal ke oktal.
- 3) Tuliskan hasil dari digit paling kanan dari hasil oktal.
- 4) Jika hasil penjumlahan tiap-tiap kolom terdiri daridua digit, maka digit paling kiri merupakansimpan untuk penjumlahan kolom selanjutnya.

Contoh:

Tabel 3.4. Penjumlahan Bilangan Oktal

Desimal	Oktal
21	25
87	127
+	+
108	$ \begin{array}{rcl} $

Tabel 3.5. Hasil Penjumlahan Digit Oktal

2. Pengurangan Arítmetika Bilangan Oktal

Pengurangan bilangan oktal dapat dilakukan secara sama dengan pengurangan bilangan desimal.

rabor o.o. r ongarangan bhangan oktar	
Desimal	Oktal
108	154
87	127
21	$1 - 25 \leftarrow 4_8 - 7_8 + 8_8 \text{ (pinjaman)} = 5_8$ $1 - 1 = 0_8$

Tabel 3.6. Pengurangan Bilangan Oktal

3. Perkalian Aritmetika Bilangan Oktal

Perkalian bilangan oktal dilakukan dengan cara yang sama pada perkalian bilangan desimal.

Langkah-langkahnya adalah sebagai berikut.

- 1) Kalikan masing-masing kolom secara desimal.
- 2) Ubah dari hasil desimal ke oktal.
- 3) Tuliskan hasil daridigit paling kanan dan hasil oktal.
- 4) Jika hasil perkalian tiap kolom terdiri dari 2 digit, maka digit paling kiri merupakan simpanan untuk dijumlahkan pada hasil perkalian kolom selanjutnya.

Tabel 3.7. Pengalian Bilangan Oktal

Desimal	Oktal
16	16
12	14
X	x
32	$70 \leftarrow 4_{10} \times 6_{10} = 24_{10} = 30_8$ (tulis 0 simpan 3)
16	$70 \leftarrow 4_{10} \times 6_{10} = 24_{10} = 30_8 \text{ (tulis 0 simpan 3)}$ $1_{10} \times 1_{10} = 7_{10} = 7_8$
+	
192	16
	14
	x
	70
	$16 \leftarrow 1_{10} \times 6_{10} = 6_{10} = 6_{8}$ $1_{10} \times 1_{10} = 1_{10} = 1_{8}$
	$1_{10} \times 1_{10} = 1_{10} = 1_{8}$

4. Pembagian Aritmetika bilangan Oktal

Tabel 3.8.Pembagian bilangan Oktal

Desimal	Oktal
12 / 168 \ 14	14 / 250 \ 16
12	14 \leftarrow 14 ₈ x 1 ₈ = 14 ₈
48	110
48	110 $14_8 \times \frac{6_8}{1} = 30_8 \text{ (tulis 0 simpan 3)}$
	$1_8 \times 6_8 + 3_8 = 6_8 + 3_8 = 11_8$
0	0 jadi, $14_8 \times 6_8 = 110_8$

C. Operasi Aritmatika Bilangan Heksadesimal

1. Penjumlahan Operasi Aritmetika Bilangan Heksadesimal

Penjumlahan bilangan heksadesimal dapat dilakukan secara sama dengan penjumlahan bilangan oktal.Langkah-langkah penjumlahan bilangan heksadesimal adalah sebagai berikut.

- 1) Tambahkan masing-masing kolom secara desimal.
- 2) Ubah dari hasil desimal ke heksadesimal.
- 3) Tuliskan hasil dari digit paling kanan dari hasil heksadesimal.
- 4) Jika hasil penjumlahan tiap-tiap kolom terdiri daridua digit, maka digit paling kiri merupakansimpanan untuk penjumlahan kolom selanjutnya.

Tabel 3.9. Penjumlahan Bilangan Heksadesimal

Desimal	Heksadesimal
2989	BAD
1073	431
+	+
4062	FDE \leftarrow D ₁₆ + 1 ₁₆ = 13 ₁₀ + 1 ₁₀ = 14 ₁₀ = E ₁₆ \rightarrow A ₁₆ + 3 ₁₆ = 10 ₁₀ + 3 ₁₀ = 13 ₁₀ = D ₁₆ \rightarrow B ₁₆ + 4 ₁₆ = 11 ₁₀ + 4 ₁₀ = 15 ₁₀ = F ₁₆

2. Pengurangan Operasi Aritmetika Bilangan Heksadesimal

Pengurangan bilangan heksadesimal dapat dilakukan secara sama dengan pengurangan bilangan desimal.

Desimal	Heksadesimal
4833 1575	12E1 627
3258	CBA \leftarrow 16 ₁₀ (pinjam) + 1 ₁₀ - 7 ₁₀ = 10 ₁₀ = A ₁₆ 14 ₁₀ - 7 ₁₀ - 1 ₁₀ (dipinjam) = 11 ₁₀ = B ₁₆ 16 ₁₀ (pinjam) + 2 ₁₀ - 6 ₁₀ = 12 ₁₀ = C ₁₆ 1 ₁₀ - 1 ₁₀ (dipinjam) 0 ₁₀ = 0

3. Perkalian Operasi Aritmetika Bilangan Heksadesimal

Perkalian bilangan heksadesimal dapat dilakukan secara sama dengan perkalian bilangan desimal, dengan langkah-Langkah sebagai berikut.

- 1) Kalikan masing-masing kolom secara desimal.
- 2) Ubah dari hasil desimal ke oktal.
- 3) Tuliskan hasil dari digit paling kanan dari hasil oktal.
- 4) Jika hasil perkalian tiap kolom terdiri dari 2 digit, maka digit paling kiri merupakan simpanan untuk dijumlahkan pada hasil perkalian kolom selanjutnya.

Tabel 3.11.Perkalian Bilangan Heksadesimal

Desimal	Heksadesimal
172	AC
27	1B
X	X
1204	84 $C_{16} \times B_{16} = 12_{10} \times 11_{10} = 132 = 84_{16}$
344	6E $A_{16} \times B_{16} = 10_{10} \times 11_{10} = 110 = 6E_{16}$
+	$C C_{16} \times 1_{16} = C_{16}$
4644	$A A_{16} \times A_{16} = A_{16}$
	+
	1224 $\begin{array}{cccccccccccccccccccccccccccccccccccc$

4. Pembagian Operasi Aritmetika Bilangan Heksadesimal

Pembagian bilangan heksadesimal dapat dilakukan secara sama dengan pembagian bilangandesimal.

Heksadesimal Desimal 27 / 4644 \ 172 1B / 1214 \ AC $10E \leftarrow 1B_{16} \times A_{16} = 27_{10} \times 10_{10} = 270_{10} = 10E_{16}$ 27 ------144 194 189 144 \leftarrow 1B₁₆ x C₁₆ = 27₁₀ x 12₁₀ = 324₁₀ = 144₁₆ 0 54 54 ------0

Tabel 3.12.Pembagian Bilangan Heksadesimal

3.1.2.4. Mengasosiasi/ menalar

Buatlah kesimpulan tentang perbandingan penyesaian cara penjumlahan bilangan desimal! Kemudian coba hitunglah penjumlahan biner berikut :

Buktikan pengurangan tersebut ke dalam bilangan desimal!

3.1.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri aritmatika bilangan biner!

3.1.3. Rangkuman

- Operasi logika dan operasi aritmetika merupakan awal dari seluruh kegiatan yang ada pada teknik mikroprosesor.
- Dasar operasi aritmetika adalah penjumlahan dan pengurangan. Operasi selanjutnya yang dikembangkan dari kedua operasi dasar tersebut adalah perkalian dan pembagian

3.1.4. Tugas

1.	Jelaskan apakah yang dimaksud dengan Operasi dasar Aritmatika?
2.	Jelaskan langkah-langkah penjumlahan aritmatika bilangan oktal!

Mengacaukan kegiatan

6. Apa yang kamu lakukan selama kegiatan?

Melamun

3.1.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Dasar dari operasi aritmatika adalah....
 - a. Pengkuadratan dan perpangkatan
 - b. Penjumlahan dan pembagian
 - c. Penjumlahan dan pengurangan
 - d. Pengurangan dan pembagian
 - e. Perpangkatan dan pengurangan
- 2. Hasil pengurangan dari 11011₂ + 1001₂ adalah....
 - a. 100₂
 - b. 11₂
 - c. 101₂
 - d. 111₂
 - e. 011₂
- 3. Hasil pengurangan dari 11011₂ + 1011₂ adalah....
 - a. 11010
 - b. 10010
 - c. 10110
 - d. 11010
 - e. 11100
- 4. Hasil pengurangan dari 110₂ 100₂ adalah....
 - a. 001₂
 - b. 111₂
 - c. 010_2
 - d. 0_2
 - e. 1₂
- 5. Hasil perkalian dari 112 dan 102 adalah....
 - a. 111₂
 - b. 100₂
 - c. 101₂
 - $d. 011_2$
 - e. 110₂

3.2 Kegiatan Belajar 2

Materi: Increment dan Decrement Alokasi Waktu: 1 x 2 Jam Pertemuan

3.2.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Increment dan degrement
- Menghitung increment dan degrement

3.2.2. Aktivitas belajar siswa

3.2.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang,

Amatilah dengan cermat pembahasan operasi aritmatika increment sistem bilangan dibawah ini!

3.2.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian operasi aritmatika increment dan decrement sistem bilangan
- perhitungan aritmatika increment dan decrement sistem bilangan

3.2.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang operasi aritmatika increment dan decrement sistem bilangan, kamu dapat mencari sumber referensi lain dari internet.

A. Increment

Increment (bertambah) dan decrement (berkurang) adalah dua pengertian yang sering sekali digunakan dalam teknik mikroprosesor. Sedangkan dalam matematika pengertian increment artinya bertambah satu dan decrement artinya berkurang satu.

Increment artinya bilangan yang nilai variabelnya ditambah 1.

Contoh

Bilangan Biner $A = 1 \ 0 \ 0 \ 11 \ 0 \ 11_2$

+1

Increment $A = 10011100_2$

Bilangan Heksadesimal $B = 7F_{16}$

+1

Increment $B = 80_{16}$

B. Decrement

Decrement artinya bilangan yang nilai variabelnya dikurang 1.

Contoh:

BilanganBiner A= 10011011₂

- 1

Decrement $A = 10011010_2$

Bilangan Heksadesmal $B = 7F_{16}$

- 1

Decrement $B = 7E_{16}$

Increment dan decrement biasanya digunakan dalam pembuatan program Penghitung Naik (*Up-Counter*) dan Penghitung Turun (*Down-Counter*).

3.2.2.4. Mengasosiasi/ menalar

Buatlah kesimpulan tentang perbedaan antara increment dan decrement sistem bilangan!

3.2.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang pengertian dan perbedaan increment dan decrement!

3.2.3. Rangkuman

- Increment (bertambah) dan decrement (berkurang) adalah dua pengertian yang sering sekali digunakan dalam teknik mikroprosesor. Sedangkan dalam matematika pengertian increment artinya bertambah satu dan decrement artinya berkurang satu
- Decrement artinya bilangan yang nilai variabelnya dikurang 1

3.2.4. Tugas

	1.	Jelaskan apakah yang dimaksud dengan Decrement?
	2.	Jelaskan apa yang dimaksud dengan Increment!
	3.	Apakah perbedaan dari Increment dan Decrement!
	4.	Berapakah increment dari bilangan biner 10010 ₂ ?
	_	Describes Described desirbles are him as 140440. I
	5.	Berapakan Decrement dari bilangan biner 110110 ₂ !
325	Pen	ilaian diri
J.Z.J.	CII	
	Nai	ma :
	Naı	ma-nama anggota kelompok :
	Ke	giatan kelompok :
	1-:1-	ala manusatana haribust dan man isisur Hatsul. Na 4 a d 4 isilala dan man ana malibuskari
		ah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkari aban dibawah pertanyaan.
	-	Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan.
	••	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	2.	Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	3.	Semua anggota kelompok kami melakukan sesuatu selama kegiatan.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	4.	Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.
	5	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	J.	Selama kerja kelompok, saya • Mendengarkan orang lain
		Mengajukan pertanyaan
		∪

Mengorganisasi ide-ide saya

- Mengorganisasi kelompok
- Mengacaukan kegiatan
- Melamun

6.	6. Apa yang kamu lakukan selama kegiatan?				

3.2.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Dalam teknik mikroprosesor pengertian increment adalah....
 - a. bertambah satu
 - b. berkurang satu
 - c. dibagi satu
 - d. dipangkat satu
 - e. di kali satu
- 2. Dalam teknik microprosesor pengertian decrement adalah....
 - a. bertambah satu
 - b. berkurang satu
 - c. dibagi satu
 - d. dipangkat satu
 - e. di kali satu
- 3. Diketahui bilangan biner $A = 10011011_2$ maka increment tersebut adalah....
 - a. 11100011₂
 - b. 11011100₂
 - c. 10011100₂
 - d. 10011000₂
 - e. 11011101₂
- 4. Diketahui bilangan B = $7F_{10}$ maka increment bilangan tersebut adalah....
 - a. 77₁₆
 - b. 78₁₆
 - c. 79₁₆
 - $d. 80_{16}$
 - e. 81₁₆
- 5. Diketahui bilangan biner A = 10011011₂ maka Decrement bilangan tersebut adalah....
 - a. 10001011₂
 - b. 10101011₂
 - c. 10011011₂
 - d. 10011110₂
 - e 10011010₂

3.3 Kegiatan Belajar 3

Materi: Operasi Aritmatika (Penjumlahan dan Pengurangan) dalam BCD

Alokasi Waktu: 1 x 2 Jam Pertemuan

3.3.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Operasi Aritmatika dalam BCD
- Mengitung Operasi Aritmatikan dalam BCD

3.3.2. Aktivitas belajar siswa

3.3.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang, Amatilah dengan cermat pengurangan pembahasan Operasi Aritmatika dalam BCD dibawah ini!

Pengurangan desimal cara biasa	Pengurangan binari cara biasa	Komplemen 1
25 22 3	11001 10110 00011	11001 01001 1 00010 1 00011 + Dari 11111 - 10110

3.3.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

perhitungan Operasi Aritmatika dalam BCD

3.3.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang perhitungan Operasi Aritmatika dalam BCD, kamu dapat mencari sumber referensi lain dari internet.

A. Penjumlahan Bilangan dalam BCD

BCD merupakan penetapan langsung dari setara binernya. Kode tersebut juga dikenal sebagaikode BCD 8421 yang menunjukkan bobot untuk masing-masing kedudukan bitnya.

Sebagai contoh, bilangan desimal 1996 dapat dikodekan menurut BCD sebagai:

$$1996 = \frac{0001}{1} \quad \frac{1001}{9} \quad \frac{1001}{9} \quad \frac{0110}{6}$$

Perlu diperhatikan bahwa pengubahan suatu bilangan desimal ke bilangan biner berbeda dengan pengkodean suatu bilangan desimal meskipun hasilnya sama-sama berupa suatu deretan bit. Untuk kode BCD ini, kode bilangan desimal 0 sampai dengan 9 sama dengan bilangan biner setaranya.

Namun untuk bilangan di atas 9, kode BCD berbeda dengan bilangan biner setaranya. Misalnya biner untuk angka 11 adalah 1011, Letapi kode BCD untuk 11 adalah 0001 0001. Oleh karena itu, perlu diingat bahwa suatu deretan bit (angka) 0 dan 1 dalam suatu sistem digital kadang-kadang mewakili suatu bilangan biner dan pada saat yang lain merupakan informasi diskrit yang ditentukan oleh suatu kode biner tertentu. Keunggulan utama kode BCD adalah mudahnya mengubah ke bilangan desimal. Kerugiannya adalah sandi tidak akan berlaku untuk operasi matematika yang hasilnya melebihi 9.

Kode BCD hanya menggunakan 10 dari 16 kombinasi yang tersedia. Enam kelompok bit yangtidak terpakai adalah 1010, 1011, 1100, 1101, 1110, dan 1111. Kode BCD merupakan kode radiks campuran, dalam setiap kelompok 4 bitnya merupakan sistem biner, tetapi merupakan decimal untuk kelompok demi kelompoknya.

Bentuk biner jika dinyatakan dalam bilangan desimal memerlukan 4 bit data. Kombinasi 4 bitdata jika dimanfaatkan seluruhnya akan didapatkan kemungkinan 16 informasi yang berbeda. Dan 16 informasi ini untuk kode BCD hanya digunakan 10 informasi, sedangkan 6 informasi yang lain tidak diperlukan. Tabel 3.13 memperlihatkan bilangan biner, desimal dan heksadesimal dibandingkan terhadap bentuk kode BCD.

Desimal	BCD	Biner	Heksa
0	0000	0000 ¬	0
1	0001	0001	1
2	0010	0010	2
3	0011	0011	3
4	0100	0100 _ 1)	4
5	0101	0101	5
6	0110	0110	6
7	0111	0111	7
8	1000	1000	8
9	1001	1001	9
10	Tidak diizinkan ¬	1010 ¬	Α
11	Tidak diizinkan	1011	В
12	Tidak diizinkan	1100	С
13	Tidak diizinkan *) 1101 [2)	D
14	Tidak diizinkan	1110	Е
15	Tidak diizinkan J	1111	F

Tabel 3.13 Kode BCD

Keterangan:

- 1) Echte Tetraden (8421 Kode)
- 2) Pseudotetrades
- *) Dinyatakan pada tempat kedua (dikoreksi sebagai puluhan dan satuan)

Jika kita bandingkan bentuk bilangan di atas dengan bentuk BCD, tampak bahwa setiap tempat dari bilangan desimal memerlukan 4 grup (tetrade) dan bilangan biner dan tetrade ini tidak lagi dinyatakan dalam bilangan heksadesimal tetapi dalam bilangan desimal. Kombinasi yang termasukdalam BCD Kode dinyatakan sebagai Echte Tetraden sedangkan informasi yang tidak termasuk dalam BCD Kode dinyatakan sebagai Pseudotetrades. Keheradaan Pseudotetrades dalam operasi aritmetika mempunyai arti yang sangat penting, yaitu bahwa hasil operasi aritmetika tidak diizinkan berada di daerah

Pseudotetrades. Jika hasil operasi aritmetika dalam BCD Kode berada pada daerah Pseudotetrades maka hasil operasi tersebut harus dikoreksi.

Penjumlahan bilangan dalam kode BCD dikerjakan seperti halnya penjumlahan bilangan biner, jika hasil penjumlahan berada pada daerah Pseudotetrade, maka harus dilakukan koreksi dengan cara menambahkan hasil dengan $6_{10} = 0110_2$.

Contoh:

Bilangan A = 0011 dan B = 0110 dalam bentuk BCD akan ditambahkan,

Bilangan A $= 0011_2$ BilanganB $= 0110_2$ -----+

Hasil Sementara $= 1001_2$

= tidak diperlukan karena hasilnya berada di Pseudotetrades Koresksi

Hasil $= 1001_2$ (bentuk BCD)

Contoh:

Bilangan A = 0111 dan B = 1000 dalam bentuk BCD akan ditambahkan,

Bilangan A $= 0111_2$ Bilangan B = 1000₂-----+

Hasil Sementara $= 1111_2$

= 0110₂ diperlukan karena berada di Pseudotetrades Koreksi

Hasil =10101₂

Jadi: penjumlahan di atas menghasilkan 0001 (puluhan) 0101 (satuan) (bentuk BCD)

Koreksi pada contoh 2 menghasilkan simpanan untuk tempat yang lebih tinggi (puluhan), sehingga hasil penjumlahan setelah dikoreksi menghasilkan bilangan desimal 2 tempat yaitu 1(satu) puluhan dan 5 (lima) satuan yang dalam bilangan desimal disebut 15 (lima belas) sebagaihasil penjumlahan antara 7₁₀ (tujuh) dengan 8₁₀ (delapan). Untuk penjumlahan bilangan yang lebih besar dapat dilakukan seperti pada contoh di atas. Hanya saja harus diperhatikan cara-cara mengoreksi setiap hasil sementaranya.

Contoh

Bilangan A dan B dalam bentuk BCD akan ditambahkan,

Bilangan A	=	01112	00112	10002
Bilangan B	=	01012	01002	10012
Simpanan	=	111	1111 ←	L
Hasil Sementara	=	1100 ₂	10002	1)00012
Koreksi	=	0110_{2}	0000_{2}	01102
Simpanan	=	1		
Hasil	= 1 ₂	00102	10002	01112
	1 ₁₀	2 ₁₀	8 ₁₀	7 ₁₀

Dari contoh di atas, koreksi tidak hanya terjadi pada hasil yang berada di daerah Pseudotetrades saja. Akan tetapi juga terjadi pada tetrade yang menghasilkan simpanan walaupun tetrade tersebut tidak berada pada daerah Pseudotetrades.

B. Pengurangan Bilangan dalam BCD

Pengurangan bilangan dalam kode BCD dikerjakan seperti pengurangan pada bilangan biner,yaitu dilakukan melalui langkah terbalik penjumlahan komplemen. Komplemen satu dan komplemendua pada pengurangan bilangan dalam kode BCD ini dinyatakan dalam komplemen sembilan dankompleman sepuluh. Komplemen sembilan dibentuk melalui perbedaan nilai terhadap nilai tertinggidan bilangan desimal yaitu 9₁₀. Sedangkan komplemen sepuluh dibentuk melalui increment dankomplemen sembilan sehingga dapat dituliskan,

Contoh

Komplemen sembilan dan bilangan A = 0110 dalam bentuk BCD adalah,

Bilangan BCD tertinggi $= 1001_2$ Bilangan A $= 0110_2$ ------K(9)dariA $= 0011_2$

Contoh

Komplemen sepuluh dan Bilangan B = 0111 dalam bentuk BCD adalah,

Bilangan BCD tertinggi = 1001₂Bilangan B = 0110₂K(9) dari B $= 0010_2$ K(10)dariB $= 0011_2$

Bentuk komplemen untuk bilangan yang besar (mempunyai beberapa tempat) dalam kode BCDdapat dilihat pada contoh di bawah ini.

Dari bilangan A = 0111 0100 100 = 748_{10} dalam bentuk BCD akan dibentuk komplemen Sembilan dan komplemen sepuluh,

Bilangan BCD tertinggi	$= 1001_2$	10012	10012
Bilangan A	$= 0110_2$	01002	1000 ₂
K(9) dari A	$= 0010_2$	01012	00012
K(10)dariA	$= 0011_2$	01012	0010 ₂

Contoh di atas menunjukkan bahwa pembentukan K(10) dilakukan dengan cara pembentukanK(9) pada setiap tempat terlebih dahulu dan terakhir baru di-increment untuk mendapatkan K(10).

Proses pengurangan dapat dilakukan melalui penambahan dengan komplemen sepuluh yangkemudian hasilnya masih perlu dikoreksi. Jika setelah dikoreksi masih terdapat simpanan, makasimpanan tersebut tidak menunjukkan nilai bilangan tetapi hanya menunjukkan tanda bilangan. Simpanan 1 menunjukkan tanda + (plus) sedangkan simpanan 0 (tanpa simpanan) menunjukkan tanda - (minus). Jika terdapat tanda - (minus), maka hasilnya masih harus dilakukan komplemen sepuluh sekali lagi.

3.3.2.4. Mengasosiasi/ menalar

Hitunglah penjumlahan dibawah ini ke dalam BCD:

+	+	+	+
52	21	75	78
a. 37	b. 48	c. 29	d. 63

Buatlah kesimpulan tentang penjumlahan BCD tercebut!

3.3.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang penjumlahan dan pengurangan bilangan BCD!

3.3.3. Rangkuman

BCD merupakan penetapan langsung dari setara binernya. Kode tersebut juga dikenal sebagai kode BCD 8421 yang menunjukkan bobot untuk masing-masing kedudukan bitnya. Sebagai contoh, bilangan desimal 1996 dapat dikodekan menurut BCD sebagai

Pengurangan bilangan dalam kode BCD dikerjakan seperti pengurangan pada bilangan biner,yaitu dilakukan melalui langkah terbalik penjumlahan komplemen

3.3.4. Tugas

1.	Apa perbedaan operasi penjumlahan bilangan biner dengan bilangan BCD?
2.	Apa perbedaan operasi pengurangan bilangan biner dengan bilangan BCD!
3.	Gambarlah tabel kode BCD!
4.	Berapakah hasil penjumlahkan kedalam bentuk BCD bilangan 10010 ₂ + 10110 ₂ !

	5.	Berapakah hasil pengurangan ke dalam bentuk BCD bilangan 10010 ₂ + 10110 ₂ !
3.3.5.	Per	nilaian diri
	Na	ıma :
	Na	ma-nama anggota kelompok :
	Ke	giatan kelompok :
	Isil	ah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkari
	jav	vaban dibawah pertanyaan.
	1.	Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	2.	Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	3.	Semua anggota kelompok kami melakukan sesuatu selama kegiatan.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	4.	Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	5.	Selama kerja kelompok, saya
		 Mendengarkan orang lain
		 Mengajukan pertanyaan
		 Mengorganisasi ide-ide saya
		 Mengorganisasi kelompok
		Mengacaukan kegiatan
		Melamun
	6.	Apa yang kamu lakukan selama kegiatan?

3.3.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau el

- 1. Kepanjangan dari BCD adalah
 - a. Binary Coded Desimal
 - b. Binary Coded Destination
 - c. Bibary Coded Destination
 - d. Binary Carry Desimal
 - e. Binary Carry Destination
- 2. Bentuk kode BCD yang benar dari bilangan 7 adalah....
 - a. 0101
 - b. 1010
 - c. 0111
 - d. 1110

- e. 1111
- 3. Bentuk kode BCD yang benar dari bilangan desimal 5 adalah....
 - a. 0101
 - b. 1010
 - c. 0111
 - d. 1110
 - e. 1111
- 4. Hasil penjumlahan dalam bentuk BCD dari bilangan 0011 + 0110 adalah....
 - a. 1000
 - b. 1001
 - c. 1011
 - d. 1110
 - e. 1111
- 5. Notasi dari bilangan heksadesimal adalah....
 - a. (2)
 - b. (4)
 - c. (8)
 - d. (16)
 - e. (32)

BAB IV Arithmetic Logik Unit (ALU)

4.1 Kegiatan Belajar 1

Materi: Arithmetic Logic Unit (ALU) Alokasi Waktu: 1 x 2 Jam Pertemuan

4.1.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan pengertian ALU (Arithmetic Logic Unit)
- Mengerti rangkaian pada ALU (Arithmetic Logic Unit)

4.1.2. Aktivitas belajar siswa

4.1.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 2-3 orang,

Amatilah dengan cermat bagan dan gambar Arithmetic Logic Unit (ALU) dibawah ini

4.1.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- Pengertian Arithmetic Logic Unit (ALU)
- Tugas utama Arithmetic Logic Unit (ALU)
- Fungsi Bagan bagan

4.1.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian Arithmetic Logic Unit (ALU) serta macam-macam nya, kamu dapat mencari sumber referensi lain dari internet.

ALU (Arithmetic Logic Unit) adalah salah satu bagian dari sebuah mikroprosesor vang berfungsi untuk melakukan operasi hitungan aritmetika dan logika. Contoh operasi aritmetika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR.

Tugas utama dari ALU adalah melakukan semua perhitungan anitmetika yang terjadi sesuai dengan instruksi program. ALU melakukan operasi aritmetika dengan dasar pertambahan, sedang operasi aritmetika yang lainnya seperti pengurangan, perkalian, dan pembagian, dilakukan dengan dasar penjumlahan. Karena itu, sirkuit elektronik di ALU yang digunakan untuk melaksanakan operasi aritmetika ini disebut adder. Tugas lain dari ALU adalah melakukan keputusan dan operasi logika sesuai dengan instruksi program. Operasi logika (logical operation) meliputi perbandingan dua buah elemen logika dengan menggunakan operator logika, yaitu:

- 1. sama dengan (=)
- 2. tidak sama deugan (<>)
- 3. kurang dari (<)
- 4. kurang atau sama dengan dari ,(<=)
- 5. lebih besar dari (>)

Rangkaian pada ALU yang digunakan untuk menjumlahkan bilangan dinamakan dengan Adder.Adder digunakan untuk memproses operasi aritmetika. Adder juga disebut rangkaian kombinasional aritmetika. Ada 3 jenis adder:

- 1. Rangkaian Adder dengan menjumlahkan dua bit disebut Half Adder.
- 2. Rangkaian Adder dengan menjumlahkan tiga bit disebut Full Adder.
- 3. Rangkaian Adder dengan menjumlahkan banyak bit disebut Parallel Adder.

4.1.2.4. Mengasosiasi/ menalar

Buatlah rangkuman tentang Arithmetic Logic Unit (ALU) kemudian Buatlah kesimpulan tentang fungsi dan tugas utama dari Arithmetic Logic Unit (ALU)!

4.1.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang pengertian, tugas dan fungsi dari Arithmetic Logic Unit (ALU)

4.1.3. Rangkuman

- ALU (Arithmetic Logic Unit) adalah salah satu bagian dari sebuah mikroprosesor yang berfungsi untuk melakukan operasi hitungan aritmetika dan logika
- Contoh operasi aritmetika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR
- Tugas utama dari ALU adalah melakukan semua perhitungan anitmetika yang terjadi sesuai dengan instruksi program. ALU melakukan operasi aritmetika dengan dasar pertambahan, sedang operasi aritmetika yang lainnya seperti pengurangan, perkalian, dan pembagian, dilakukan dengan dasar penjumlahan

Mengorganisasi kelompok

4.1.4. Tugas

	1.	Jelaskan apakah yang dimaksud dengan Arithmetic Logic Unit (ALU)?
	2.	Sebutkan contoh operasi aritmatika !
	3	Apakah tugas utama dari ALU!
	0.	, panan tagas diama dan / 120.
	4.	Sebutkan adder dalam rangkaian kombinasional aritmatika?
	5.	Apakah tugas lain dari ALU!
1.1.5.	Pen	nilaian diri
		ma :
		ma-nama anggota kelompok :
	Ke	giatan kelompok :
	Isil	ah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkari
	•	vaban dibawah pertanyaan.
	1.	Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	2.	Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	3.	Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	4.	Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	5.	Selama kerja kelompok, saya
		 Mendengarkan orang lain Mengajukan pertanyaan
		Mengajukan pertanyaanMengorganisasi ide-ide saya

- Mengacaukan kegiatan
- Melamun

6.	Apa yang kamu lakukan selama kegiatan?

4.1.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Salah satu bagian dari sebuah mikroprosesor yang berfungsi untuk melakukan operasi bilangan aritmatika dan logika disebut
 - a. Adder
 - b. Logika
 - c. ALU
 - d. Operasi
 - e. TTL
- 2. Rangkaian adder dengan menjumlahkan dua bit disebut....
 - a. Half Adder
 - b. Full Adder
 - c. Paralel Adder
 - d. Adder
 - e. ALU
- 3. Rangkaian adder dengan menjumlahkan tiga bit disebut....
 - a. Half Adder
 - b. Full Adder
 - c. Paralel Adder
 - d. Adder
 - e. ALU
- 4. Rangkaian Adder denga menjumlahkan banyak bit disebut....
 - a. Half Adder
 - b. Full Adder
 - c.Paralel Adder
 - d. Adder
 - e. ALU
- 5. Kepanjangan dari ALU adalah....
 - a. Adder Logic Unit
 - b. Adder Logic Upper
 - c. Adder Luquid Upper
 - d. Arithmetic Logic Unit
 - e Arithmetic Liquid Unit

4.2 Kegiatan Belajar 2

Materi: Rangkaian Half Adder dan Full Adder

Alokasi Waktu: 1 x 2 Jam Pertemuan

4.2.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan perngertian Rangkaian Hafl Adder dan Full Adder
- Memahami rangkaian Hafl Adder dan Full Adder

4.2.2. Aktivitas belajar siswa

4.2.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang,

Setelah mengetahui macam-macam fungsi gerbang logika dan gerbang kombinasi di Bab sebelum nya maka, amatilah dengan cermat gambar dibawah ini, kemudian Carilah apakah maksud dari gambar dibawah ini!

4.2.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- Pengertian Rangkaian full adder dan half Adder
- Fungsi dari rangkaian full adder dan half adder

4.2.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian dan fungsi dari Rangkaian full adder dan Half Adder , kamu dapat mencari sumber referensi lain dari internet.

A. Rangkaian Half Adder

Half adder adalah suatu rangkaian penjumlahan sistem bilangan biner yang paling sederhana. Rangkaian ini hanya dapat digunakan untuk operasi penjumlahan data bilangan biner sampai 1 bit saja. Rangkaian Half Adder memiliki 2 terminal input untuk 2 variabel bilangan biner dan 2 terminal output, yaitu summary out (SUM) dan carry out (CARRY).

Half Adder (HA) adalah rangkaian penjumlahan sistem bilangan biner yang paling sederhana. Rangkaian ini hanya dapat digunakan untuk melakukan operasi penjumlahan dua bilangan biner 1 bit. Rangkaian half adder memiliki dua terminal input untuk 2 variabel bilangan biner dan 2 terminal output, yaitu summary out (sum) dan carry out (carry). Aturan-aturan untuk melakukan penambahan biner dua bit diilustrasikan sebagai berikut:

0 + 0 = 0Aturan 1 0 + 1 = 1Aturan 2 Aturan 3 1 + 0 = 1Aturan 4 1 + 1 = 0 dan carry 1 = 10

Tiga aturan pertama mudah dimngerti, sedangkan aturan 4 menyatakan bahwa penjumlahan biner 1 + 1 = 10 (desimal 2). Angka 1 hasil penjumlahan dibawa ke kolom yang mempunyai tingkatan lebih tinggi, dan dikatakan terdapat carry.

Rancangan diagram logika menggunakan XOR dan AND, masukan diberikan simbol A dan B sedangkan keluaran diberi simbol ∑ yang berarti jumlah (SUM) dan Simbol Co berarti bawaan keluar (Carry Out). Diagram logika dan penambahan setengah (half adder) dengan input A dan B, simbol half adder dan tabel kebenaran diberikan pada gambar berikut.

Gambar 4.1. Rangkaian Half Adder

Tabel 4.1.Nebellalali Hall Addel								
Ması	ukan	Keluaran						
Α	В	SUM	Carry					
0	0	0	0					
0	1	1	0					
1	0	1	0					
1	1	0	1					

Tahal 4 1 Kehenaran Half Adder

B. Rangkaian Full Adder

Full Adder adalah rangkaian elekronik yang bekerja melakukan perhitungan penjumlahan penuhdari dua buah bilangan biner yang masing-masing terdiri dari satu bit. Rangkaian ini memiliki 3input dan 2 output, salah satu input merupakan nilai dari pindahan penjumlahan, kemudian sama seperti pada hafl adder salah satu outputnya dipakai sebagai tempat nilai pindahan dan yang lain sebagai hasil dari penjumlahan.

Rangkaian *full adder* (FA) dapat digunakan untuk menjumlahkan bilangan biner yang lebih dari 1 bit. Rangkaian *Full Adder* dapat dibentuk oleh gabungan 2 buah rangkaian half adder dan sebuah gerbang OR untuk menjumlahkan *carry output*. Pada penambahan penuh muncul aturan kelima yang menyatakan suatu penjumlahan setengah tidak akan bekerja bila muncul *carry-in*. Oleh karena itu penambahan penuh mempunyai tiga masukan yaitu A, B dan C-in, sedangkan keluaran adalah SUM dan Co (*carry out*). Diagram logika dari *full adder* dan tabel kebenaran disajikan pada gambar berikut, untuk simulasi bisa digunakan *software electronic workbench*.

Gambar 4.2. Rangkaian Full Adder

Tabel 4.2. Kebenaran *Full Adder*Masukan Kelu

	Masukan		Keluaran			
Α	В	C _{IN}	SUM	Соит		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		

Contoh rangkaian penjumlah 4 bit yang menggunakan 4 blok full adder

Gambar 4.4 Rangkaian Penjumlah 4 Bit (Purwanto, 2011, hal. 133)

4.2.2.4. Mengasosiasi/ menalar

Buatlah perbandingan / perbedaan dari Rangkaian Full Adder dan rangkaian Half Adder Buatlah kesimpulan tentang perbedaan tersebut!

4.2.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang pengertian dan perbedaan rangkaian full adder dan half adder

4.2.3. Rangkuman

- Half adder adalah suatu rangkaian penjumlahan sistem bilangan biner yang paling sederhana
- Aturan-aturan untuk melakukan penambahan biner dua bit diilustrasikan sebagai berikut:

Aturan 1 0 + 0 = 0

Aturan 2 0 + 1 = 1

Aturan 3 1 + 0 = 1

Aturan 4 1 + 1 = 0 dan carry 1 = 10

Full Adder adalah rangkaian elekronik yang bekerja melakukan perhitungan penjumlahan penuhdari dua buah bilangan biner yang masing-masing terdiri dari satu bit.

4.2.4. Tugas

١.	Jelaskan apakan yang dimaksud dengan rangkalan Half Adder?									

94 Sistem Komputer SMK/MAK Kelas X Semester I Jelaskan apakah yang dimaksud dengan rangkaian Full Adder? 3. Bandingkan tentang Rangkaian full adder dan rangkaian Half Adder! 4. Jelaskan apa yang dimaksud dengan summary out dan Caary out pada rangkaian full adder? 5. Gambarkan tabel kebenaran dari rangkaian Full adder! 4.2.5. Penilaian diri Nama . Nama-nama anggota kelompok . Kegiatan kelompok . Isilah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkari jawaban dibawah pertanyaan. 1. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4 : Selalu 3: Sering 2 : Kadang-kadang 1: Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4 : Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah 3. Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4 : Selalu 3: Sering 2 : Kadang-kadang 1: Tidak pernah 4. Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.

- 4 : Selalu
- 3: Sering
- 2 : Kadang-kadang
- 1 : Tidak pernah

- 5. Selama kerja kelompok, saya....
 - Mendengarkan orang lain
 - Mengajukan pertanyaan
 - Mengorganisasi ide-ide saya
 - Mengorganisasi kelompok
 - Mengacaukan kegiatan
 - Melamun

6.	Apa yang kamu lakukan selama kegiatan?

4.2.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Suatu rangkaian penjumlahan sistem bilangan biner yang paling sederhana disebut....
 - a. Full Adder
 - b. Paralel Adder
 - c. Half Adder
 - d. Arithmetic
 - e. Adder
- 2. Rangkaian elektronik yang bekerja melakukan perhitungan penjumlahan penuh dari dua buah bilangan biner yang masing-masing terdiri dari satu bit adalah....
 - a. Full Adder
 - b. Paralel Adder
 - c. Half Adder
 - d. Arithmetic
 - e. Adder
- 3. Gambar dibawah ini adalah simbol dari....

- a. rangkaian Full Adder
- b. rangkaian Half Adder
- c. rangkaian Paralel Adder
- d. Arithmetic
- e. rangkaian ALU
- 4. Rangkaian pada ALU yang digunakan untuk menjumlahkan bilangan dinamakan....
 - a. Full Adder
 - b. Paralel Adder
 - c. Half Adder
 - d. Arithmetic
 - e. Adder
- 5. Gambar dibawah ini adalah simbol dari rangkaian....

a. Full Adder

- b. Paralel Adder
- c.Half Adder
- d.Arithmetic
- e. Adder

4.3 Kegiatan Belajar 3

Materi : Rangkaian Penjumlahan dan Pengurangan (Ripple Carry Adder)

Alokasi Waktu: 1 x 2 Jam Pertemuan

4.3.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan penjumlahan dan pengurangan (Ripple Carry Adder)
- Menghitung penjumlahan dan pengurangan (Ripple Carry Adder)

4.3.2. Aktivitas belajar siswa

4.3.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 5-6 orang,

Amatilah dengan gambar Rangkaian Penjumlahan dan Pengurangan (Ripple Carry Adder) dibawah ini!

4.3.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian Rangkaian Penjumlahan (Ripple Carry Adder)
- pengertian Rangkaian Pengurangan (Ripple Carry Adder)

4.3.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian Rangkaian Penjumlahan dan Pengurangan (Ripple Carry Adder), kamu dapat mencari sumber referensi lain dari internet.

Ripple Carry Adder adalah rangkaian penjumlah N bit yang mempunyai increment (INC) maka hasil penjumlahan bilangan A dan B akan kelebihan 1 (satu). Increment merupakan input carry yang diberikan sinyal '1'

Gambar 4.5 Ripple adder (4bit Adder)

A. Penjumlahan

ALU tidak memproses bilangan desimal melainkan bilangan biner. Sebelum dapat memahamirangkaian-rangkaian di dalam sebuah ALU kita harus mempelajari bagaimana penjumlah bilangan biner itu dilaksanakan.

Ada lima aturan penjumlahan yang harus diingat, yaitu:

```
0 + 0
               = 0
0 + 1
              = 1
1 + 0
              = 1
1 + 1
              = 0 / + 1 sebagai simpanan (carry)
1 + 1 + 1
              = 1 / + 1 sebagai simpanan
```

Untuk bilangan biner yang lebih besar, sebagaimana halnya dalam bilangan desimal, penjumlahan biner juga dilakukan kolom demi kolom.

Contoh: 11011 11010 -----+ ?

Kita mulai dari kolom yang bernilai kecil (*least sigfinicant bit*) sehingga:

```
11011
11010
-----+
    1
```

Berikutnya jumlahkan bit-bit kolom kedua, ketiga dan keempat sebagai berikut.

Contoh

Jumlahkan bilangan biner 01010111 dan 00110101! Jawaban:

```
01010111
00110101
-----+
10001100
```

B. Pengurangan

Untuk mengurangkan bilangan biner diberlakukan aturan sebagai berikut.

```
0 - 0
       = 0
1 - 0
       = 1
1 - 1 = 0
0 - 1
       = 1
```

Untuk pengurangan bilangan biner yang lebih besar dapat dilakukan dengan cara berikut.

```
Contoh:
111
101
010
Dari kolom paling kanan, 1 - 1 = 0, kemudian 1 - 0 - 1 dan akhirnya 1 - 1 = 0
1010
------
0011
```

Dalam kolom bernilal kecil (Least Sigfinicant Bit), 1 - 0 = 1, pada kolom kedua kita harusmeminjam dan kolom berikutnya sehingga 10 -1 = 1. Pada kolom ketiga menjadi 0 -0 = 0 dan kolom keempat 1 — 1 = 0. Pengurangan langsung seperti contoh di atas telah diterapkan dalam operasi komputer. Namun pengurangan dapat pula dilakukan dengan cara berbeda yang akan dibahas juga di bab ini.

4.3.2.4. Mengasosiasi/ menalar

Bandingkan antara penjumlahan dan pengurangan (ripple carry adder) Kemudian, Buatlah kesimpulan tentang penjumlahan dan pengurangan!

4.3.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang penjumlahan dan pengurangan (ripple carry adder)

4.3.3. Rangkuman

• ALU tidak memproses bilangan desimal melainkan bilangan biner.

Ada lima aturan penjumlahan bilangan biner yang harus diingat, yaitu:

```
0 + 0 = 0

0 + 1 = 1

1 + 0 = 1
```

1 + 1 = 0 / + 1 sebagai simpanan (carry)

1+1+1 = 1/+1 sebagai simpanan

Untuk mengurangkan bilangan biner diberlakukan aturan sebagai berikut.

```
0 - 0 = 0

1 - 0 = 1

1 - 1 = 0

10 - 1 = 1
```

4.3.4. Tugas

1.	Jelaskan pemrosesan rangkalan di dalam sebuah ALU?
2.	Jelaskan aturan dalam penjumlahan bilangan biner!
3.	Jelaskan aturan dalam pengurangan bilangan biner!
4.	Berapakah hasil penjumlahan 11010111 + 01101101 ke dalam rangkaian ripple adder 3
5.	Berapakah hasil pengurangan 1001101 - 1101101 ke dalam rangkaian ripple adder?

4.3.5. Penilaian diri

Nama Nama-nama anggota kelompok Kegiatan kelompok	: : :					
Isilah pernyataan berikut dengal	n jujur. Untuk No. 1 s.d. 4,	isilah dengan cara melingkari				
jawaban dibawah pertanyaan.						
1. Selama diskusi saya mengus	ulkan ide kepada kelompok	untuk didiskusikan.				
4 : Selalu 3 : Sering	2 : Kadang-kadang	1 : Tidak pernah				
2. Ketika kami berdiskusi, tiap o	rang diberi kesempatan me	ngusulkan sesuatu.				
4 : Selalu 3 : Sering	2 : Kadang-kadang	1 : Tidak pernah				
3. Semua anggota kelompok ka	mi melakukan sesuatu sela	ma kegiatan.				
4 : Selalu 3 : Sering	2 : Kadang-kadang	1 : Tidak pernah				
4. Tiap orang sibuk dengan yang	g dilakukannya dalam kelor	npok saya.				
4 : Selalu 3 : Sering	2 : Kadang-kadang	1 : Tidak pernah				
5. Selama kerja kelompok, saya						
 Mendengarkan orang lai 	n					
 Mengajukan pertanyaan 						
 Mengorganisasi ide-ide s 						
 Mengorganisasi kelompo 						

4.3.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

.....

- 1. Rangkaian penjumlahan yang mempunyai increment adalah....
 - a. Half Adder
 - b. Full Adder
 - c. Ripple Carry Adder

Mengacaukan kegiatan

6. Apa yang kamu lakukan selama kegiatan?

Melamun

- d. Paralel Adder
- e. Serial Adder
- 2. Berikut ini yang termasuk ke dalam tiga jenis rangkaian adder adalah....
 - a. Half Adder, Full Adder, Paralel Adder
 - b. Full Adder, Halt Adder, Serial Adder
 - c. Paralel Adder, Serial Adder, Halt Adder
 - d. Serial Adder, Half Adder, Full Adder
 - e. Paralel Adder, Serial Adder, Full Adder
- 3. Fungsi ALU adalah untuk melakukan....
 - a. Pengontrolan memori
 - b. Penyimpanan memori
 - c. Perhitungan Arithmetic
 - d. Alat Input
 - e. Alat Output

- 4. Rangkaian Ripple Carry Adder dapat dikembangkan menjadi rangkaian penjumlahan dan pengurangan dengan menambahkan gerbang....
 - a. AND dan EX OR
 - b. NAND dan EX OR
 - c. AND dan NAND
 - d. NOT dan NOR
 - e. AND dan OR
- 5. Berikut ini yang termasuk ke dalam 3 tahapan dasar pengolah data adalah
 - a. input, proses, output
 - b. input. ALU, memori
 - c. ALU, output, memori
 - d. ALU, output, input
 - e. input, proses, memori

4.4 Kegiatan Belajar 4

Materi: Transistor-Transistor Logic Alokasi Waktu: 1 x 2 Jam Pertemuan

4.4.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

Menjelaskan TTL (Transistor-Transistor Logic)

4.4.2. Aktivitas belajar siswa

4.4.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang, Amatilah dengan cermat gambar transistor dan TTL (Transistor-Transistor Logic) dibawah ini

Transistor

4.4.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian TTL (Transistor-Transistor Logic)

4.4.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian TTL (Transistor-Transistor Logic), kamu dapat mencari sumber referensi lain dari internet.

Sumber: http://en.wikipedia.org

Gambar 4.6 Real Time Clock TTL

A. Tansistor-Transistor Logic (TTL)

Transistor-Transistor Logic (TTL) adalah salah satu teknologi IC yang paling hanyak digunakansecara luas saat ini. TTL adalah IC digital yang digunakan untuk peralatan komputer, kalkulatordan sistem kontrol elektronik. IC digital bekerja dengan dasar pengoperasian bilangan Biner logic (bilangan dasar 2), yaitu hanya mengenal dua kondisi saja 1(on) dan 0 (off). Jenis IC digital terdapat 2 (dua) jenis, yaitu TTL dan CMOS. Jenis IC-TTL. dibangun dengan menggunakan transistor sebagai komponen utamanya dan fungsinya digunakan untuk berbagai variasi Logic, sehingga dinamakan Transistor-Transistor Logic. Dalam satu kemasan IC terdapat beberapa macam gate (gerbang) yang dapat melakukan berbagai macam fungsi logic seperti AND, NAND, OR, NOR, XOR serta beberapa fungsi logika lainnya seperti Decoder, Encoder, Multiplexer, dan Memory sehingga pin (kaki) IC jumlahnya banyak dan bervariasi ; ada yang berkaki 8, 14, 16, 24, dan 40.

Gambar 4.7Two Input TTL

Semua mikroprosesor tidak hanya mampu melaksanakan operasi-operasi aritmetika saja, tetapijuga mampu melaksanakan operasi-operasi logika. Kedua operasi ini dilaksanakan di dalam Aritmatic Logic Unit (ALU) yang terdapat pada seluruh mikroprosesor. Ada tiga dasar operasi logika yaltu,

A ^ B (Operasi AND)

A v B (Operasi OR)

A vB (Operasi EX-OR)

Keluaran dan ALU diatur oleh kombinasi input pengontrol tambahan S₅ dan S₆ seperti tabelberikut ini.

Input Pengontrol Output Fungsi Yn S_6 S_5 X0n Operasi Aritmatika 0 0 Operasi AND 1 X1n 0 1 0 X2n Operasi OR 1 Operasi EX - OR 1 X3n

Tabel 4.3 Fungsi PengontroLan Input Output ALU

4.4.2.4. Mengasosiasi/ menalar

Buatlah kesimpulan tentang TTL (Transistor-Transistor Logic)!

4.4.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang hasi kesimpulan Transistor-transistor logic (TTL)

4.4.3. Rangkuman

- TTL adalah IC digital yang digunakan untuk peralatan komputer, kalkulatordan sistem kontrol elektronik. IC digital bekerja dengan dasar pengoperasian bilangan Biner logic (bilangan dasar 2), yaitu hanya mengenal dua kondisi saja 1(on) dan 0 (off)
- Jenis IC-TTL dibangun dengan menggunakan transistor sebagai komponen utamanya dan fungsinya digunakan untuk berbagai variasi Logic
- Semua mikroprosesor tidak hanya mampu melaksanakan operasi-operasi aritmetika saja, tetapijuga mampu melaksanakan operasi-operasi logika. Kedua operasi ini dilaksanakan di dalam Aritmatic Logic Unit (ALU) yang terdapat pada seluruh mikroprosesor

4.4.4.	Tug	as
	1.	Jelaskan apakah yang dimaksud dengan TTL (Transistor-Transistor Logic)?
	0	Interview and the support dori TTL / Transister Transister Legic)!
	2.	Jelaskan apa kegunaan dari TTL (Transistor-Transistor Logic)!

4.4.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Salah satu teknologi IC digital yang digunakan untuk peralatan komputer dan yang paling banyak digunakan secara luar saat ini adalah....
 - a. ALU
 - b. Half Adder
 - c. Ripple Carry Adder
 - d. TTL
 - e. Full Adder
- 2. Salah satu contoh dari IC TTL adalah....
 - a. kalkulator
 - b. memori
 - c. mouse
 - d. monitor
 - e. keyboard
- 3. Dalam penggunaan TTL menggunakan tiga dasar operasi logika yaitu....
 - a. AND, NOT dan OR
 - b. AND, OR dan EX-OR
 - c. AND, NOR dan EX-OR
 - d. AND, NAND dan OR
 - e. AND, OR dan NOT
- 4. Ada berapakah jumlah pada IC TTL....
 - a. 8,14,16,24 dan 48
 - b. 2,4,6,8 dan 10
 - c. 4,6,8,12 dan 24
 - d. 2,6,8,12 dan 24
 - e. 8,14,16,24 dan 40
- 5. Kepanjangan dari TTL adalah....
 - a. Transmition Transistor Logic
 - b. Transmition Transmition Liquid
 - c. Transistor Transistor Logic
 - d. Transisi Transisi Logic
 - e. Transmition Transisi Logic

BAB V Rangkaian Multiplexer, Decoder, Flip-Flop, dan Counter

5.1 Kegiatan Belajar 1

: Multiplexer dan Decoder Materi Alokasi Waktu : 1 x 2 Jam Pertemuan

5.1.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Definisi Rangkaian Multiplexer, Decoder,
- Memahami Rangkaian Multiplexer, Decoder,

5.1.2. Aktivitas belajar siswa

5.1.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang, Amatilah dengan cermat gambar ilustrasi dari Rangkaian Multiplexer, Demultiplexer dan kemudian carilah maksud dari gambar rangkaian di bawah ini!

5.1.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- Pengertian Rangkaian Multiplexer
- Pengertian Demultiplexer
- Pengertian Decoder
- Pengertian Encoder

5.1.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian Rangkaian Multiplexer, Demultiplexer, Decoder, Encoder, kamu dapat mencari sumber referensi lain dari internet.

A. Multiplexer

Fungsi multiplexer adalah memilih 1 dan N (sumber) data masukan dan meneruskan data yang dipilih itu kepada suatu saluran informasi tunggal. Di dalam multiplexer hanya terdapat satu jalan masuk dan mengeluarkan data-data yang masuk kepada salah satu dan N saluran keluar, maka suatu multiplexer sebenamya melaksanakan proses kebalikan dari demultiplexer. Gambar berikut merupakan suatu multiplexer 4 ke 1 saluran. Perhatikan bahwa konfigurasi pendekodean yang sama digunakan, baik dalam multiplexer maupun dalam demultiplexer.

Sumber: http://mentaripermadi.blogspot.com

Gambar 5.1. Multiplexer

B. Demultiplexer

Demultiplexer adalah suatu sistem yang menyalurkan sinyal biner (data serial) pada salah satu dari n (saluran) yang tersedia, Suatu pendekode dapat diubah menjadi demultiplexer seperti dijelaskan pada Gambar 5.2.

Sumber: http://mentaripermadi.blogspot.com

Gambar 5.2. Demultiplexer

Tabel 5.1 Kebenaran Demultiplexer

AB	0	1	Y0 = A • B
0	Y0	Y1	Y1 = A • B
1	Y2	Y3	Y2 = A • B

C. Decoder

Decoder berfungsi untuk mengidentifikasi atau mengenali suatu kode tertentu. Dalam suatu sistem digital perintah-perintah ataupun bilangan-bilangan dikirim dengan deretan denyut (pulsa) atau tingkatan-tingkatan biner. Misalnya, jika kita menyediakan karakter 4 bit untukpengiriman instruksi, maka jumlah instruksi berbeda yang dapat dibuat adalah 2⁴=16. Informasi ini diberi kode atau sandi biner. Di pihak lain, seringkali timbul kebutuhan akan suatu sakelarmultiposisi yang dapat dioperasikan sesuai dengan kode tersebut. Dengan kata lain, untuk masing-masing dan 16 saluran hanya 1 saluran yang penambahan pada setiap saat.

Proses untuk identifikasi suatu kode tertentu ini disebut pendekodean atau decoding. Sistem BCD (Binary Coded Decimal) menerjemahkan bilangan—bilangan desimal dengan menggantikan setiap digit desimal menjadi 4 bit biner. 4 digit biner dapat dibuat 16 kombinasi, maka 10 di antaranya dapat digunakan untuk menyatakan digit desimal 0 sampai 9. Dengan ini kita memiliki pilihan kode BCD yang luas. Salah satu pilihan yang disebut kode 8421. Contohnya, bilangan desimal 264 memerlukan 3 gugus yang masingmasing terdiri dari 4 bit biner yang berturut-turut dari khi (MSB) ke kanan (ISB) sebagai berikut: 0010 0110 0100 (BCD).

Perhatikan gambar, keluaran gerbang AND 1 jika masukan BCD adaLah 0101 dan sama dengan untuk instruksi masukan yang lain. Karena kode ini merupakan representasi bilangan desimal 5 maka keluaran ini dinamakan saluran atau jalur 5. Keluaran decoder ini harus dihubungkan dengan peralatan yang dapat dibaca dan dimengerti manusia.

Jenis-Jenis Rangkaian Decoder 1) BCD ke 7segment Decoder

Sumber: http://tav53.blogspot.com

Gambar 5.3. Rangkaian Decoder

Kombinasi masukan biner dan jalan masukan akan diterjemahkan oleh decoder sehinggamembentuk kombinasi nyala LED peraga (7 segment LED) sesuai dengan kombinasi masukan biner tersebut. Sebagai contoh, jika masukan biner DCBA = 0001, maka decoder akan memilih jalur keluaran mana yang akan diaktifkan. Dalam hal ini saluran b dan c diaktifkan sehingga lampu LED b dan C menyala dan menandakan angka 1.

2) Decoder BCD ke Desimal

Keluarannya dihubungkan dengan tabung indicator angka sehingga kombinasi angka biner akan menghidupkan lampu indikator angka yang sesuai. Contohnya, D = C = B =0, A= 1, akan menghidupkan lampu indikator angka 1. Lampu indikator yang menyala akan sesuai dengan angka biner dalam jalan masuk.

Sumber: http://www.electronics-tutorials.ws Gambar 5.4. Decoder BCD ke decimal

Tabel 5.2.Kebenaran Decoder BCD ke Desimal

	INF	PUT						OUT	PUT				
D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0	1	0	0	0	0
0	1	1	1	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0	0	0	1	0

D. Encoder

Encoder adalah kebalikan dari proses decoder di mana suatu pengkode atau encoder memiliki sejumlah masukan. Pada saat tertentu hanya salah satu dan masukanmasukan itu yang berada pada keluaran 1 dan sebagai akibatnya suatu kode N bit akan dihasilkan sesuaidengan masukan khusus yang ditambahkan. Misalnya, kita ingin menyalurkan suatu kode biner untuk setiappenekanan tombol pada keyboard alpha numeric (suatu mesin tik atau tele type). Pada keyboard tersebut terdapat26 huruf kecil, 10 angka dan sekitar 22 huruf khusussehingga kode yang diperlukan lebih kurang berjumlah 84. Syarat ini bisa dipenuhi dengan jumlah bit minimum

sebanyak 7 (2=128), Kini misalkan bahwa keyboard D C Btersebut diubah sehingga setiap saat suatu tombol ditekan, sakelar yang bersangkutan akan menutup. Dandengan demikian menghubungkan suatu catu daya 5 volt (bersesuaian dengan keadaan1) dengan saluran masuk tertentu. Diagram skema rangkaian encoder ditunjukkan pada

Gambar 5.5. Rangkaian Encoder

Encoder merupakan rangkaian penyandi dari bilangan dasar (desimal) menjadi kode biner(BCD). Bila tombol 1 ditekan, maka D1 akan on menghubungkan jalur A ke logika 0 (GND),akibatnya pada NOT gate 1 timbul keluaran 1 sehingga timbul kombinasi logika biner 0001, dan seterusnya.

Rangkaian encoder juga dapat disusun dengan menggunakan gerbang NAND sebagai berikut.

Gambar 5.6. Rangkaian Encoder gerbang NAND

Tabel kebenaran dari rangkaian encoder decimal ke BCD dengan diode logika dan gerbang NAND sebagai berikut.

Saklar yang	Output					
ditekan	D	O	В	Α		
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		

Tabel 5.3. Kebenaran Encoder Desimal ke BCD

5.1.2.4. Mengasosiasi/ menalar

Buatlah kesimpulan tentang Rangkaian Multiplexer, Demultiplexer, Decoder, Encoder!

5.1.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri.

5.1.3. Rangkuman

- Multiplexer adalah memilih 1 dan N (sumber) data masukan dan meneruskan data yang dipilih itu kepada suatu saluran informasi tunggal.
- Demultiplexer adalah suatu sistem yang menyalurkan sinyal biner (data serial) pada salah satu dari n (saluran) yang tersedia.
- Decoder berfungsi untuk mengidentifikasi atau mengenali suatu kode tertentu
- Encoder adalah kebalikan dari proses decoder di mana suatu pengkode atau encoder memiliki sejumlah masukan.

5.1.4. Tugas

1.	Jelaskan apakah yang dimaksud dengan multiplexer?
2.	Jelaskan apakah yang dimaksud dengan Demultiplexer!

	Jelaskan fungsi dari Decoder!			
4	Jelaskan apa yang dimaksud dengan Encoder!			
•	ociacinari apa yang aimakoda dengan Encodor.			
5.	Mengapa multiplexer disebut juga data selector!			
Per	nilaian diri			
Na	ama :			
Na	ama-nama anggota kelompok :			
Ke	giatan kelompok :			
Ke				
	giatan kelompok :			
Isi	giatan kelompok :			
lsi jav	egiatan kelompok :			
lsi jav	egiatan kelompok :			
Isi jav 1.	egiatan kelompok :			
Isi jav 1.	egiatan kelompok :			
Isi jav 1.	egiatan kelompok :			
Isi jav 1.	egiatan kelompok :			
Isi jav 1.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkan dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.			
Isi jav 1. 2. 3.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah			
Isi jav 1. 2. 3.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Selama kerja kelompok, saya			
Isi jav 1. 2. 3.	Islah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Selama kerja kelompok, saya • Mendengarkan orang lain			
Isi jav 1. 2. 3.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Selama kerja kelompok, saya • Mendengarkan orang lain • Mengajukan pertanyaan			
Isi jav 1. 2. 3.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4: Selalu 3: Sering 2: Kadang-kadang 1: Tidak pernah Selama kerja kelompok, saya Mendengarkan orang lain Mengajukan pertanyaan Mengorganisasi ide-ide saya			
Isi jav 1. 2. 3.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Selama kerja kelompok, saya Mendengarkan orang lain Mengorganisasi ide-ide saya Mengorganisasi kelompok			
Isi jav 1. 2. 3.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Selama kerja kelompok, saya • Mendengarkan orang lain • Mengajukan pertanyaan • Mengorganisasi ide-ide saya • Mengorganisasi kelompok • Mengacaukan kegiatan			
Isi jav 1. 2. 3.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Selama kerja kelompok, saya • Mendengarkan orang lain • Mengajukan pertanyaan • Mengorganisasi ide-ide saya • Mengorganisasi kelompok			
Isi jav 1. 2. 3. 4. 5.	lah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingk waban dibawah pertanyaan. Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Semua anggota kelompok kami melakukan sesuatu selama kegiatan. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah Selama kerja kelompok, saya • Mendengarkan orang lain • Mengajukan pertanyaan • Mengorganisasi ide-ide saya • Mengorganisasi kelompok • Mengacaukan kegiatan			

.....

5.1.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Rangkaian rangkaian apa saja yang dipelajari dalam sistem komputer
 - a. Multiplexer, Decoder, Flip-Flop, Counter
 - b. Multitester, Decoder, Flip-Flop, Counter
 - c. Multitasking, Decoder, Flip-Flop, Counter
 - d. Multiguna, Decoder, Flip-Flop, Counter
 - e. Multilevel, Decoder, Flip-Flop, Counter
- 2. Fungsi dari decoder adalah....
 - a. mengamankan suatu kode tertentu
 - b. mengidentifikasi atau mengenali suatu kode tertentu
 - c. menyampaikan suatu kode tertentu
 - d. menutup suatu kode tertentu
 - e. menyalurkan suatu kode tertentu
- 3. Kebalikan dari proses decoder dimana suatu pengkode memiliki sejumlah masukan dinamakan....
 - a. Decoder
 - b. Multiplexer
 - c. Encoder
 - d. Flip-Flop
 - e. Counter
- 4. Suatu sistem yang menyalurkan sinyal biner pada salah satu dari n yang tersedia disebut....
 - a. Multiplexer
 - b. Demultiplexer
 - c. Decoder
 - d. Encoder
 - e. Counter
- 5. Gambar dibawah ini merupakan gambar dari skema rangkaian....

- a. Multiplexer
- b. Demulplexer
- c. Decoder
- d. Encoder
- e. Counter

5.2 Kegiatan Belajar 2

Materi : Rangkaian Flip-Flop (RS, JK, D) Alokasi Waktu : 1 x 2 Jam Pertemuan

5.2.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Rangkaian Flip-Flop (RS, JK, D, CRS, T)
- Mengerti Rangkaian Flip-Flop (RS, JK, D, CRS, T)

5.2.2. Aktivitas belajar siswa

5.2.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 3-5 orang, Amatilah dengan cermat gambar Rangkaian Flip-Flop (RS, JK, D, CRS, T) dibawah ini

Sumber: http://talkingelectronics.com

5.2.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- Pengertian Rangkaian Flip-Flop (RS, JK, D, CRS, T)
- Kegunaan rangkaian Flip-flop

5.2.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian Rangkaian Flip-Flop (RS, JK, D, CRS, T), kamu dapat mencari sumber referensi lain dari internet.

Flip-flop adalah keluarga Multivibrator yang mempunyai dua keadaaan stabil atau disebutBis table Multivibrator. Rangkaian flip-flop mempunyai sifat sekuensial karena sistem kerjanya diatur dengan jam atau pulsa. Dengan kata lain, sistem-sistem tersebut bekerja secara sinkron dengan deretan denyut (pulsa) berperiode T yang disebut jam sistem (system clock atau disingkat menjadi CLK) seperti yang ditunjukkan dalam Gambar 5.8.

Sumber: http://eldigezone.blogspot.com

Gambar 5.7Jam Sistem

Berbeda dengan uraian materi sebelumnya yang bekerja atas dasar gerbang logika dan logikakombinasi, keluarannya pada saat tertentu hanya bergantung pada nilai-nilai masukan pada saat yang sama. Sistem seperti ini dinamakan tidak memiliki memori. Selain itu, sistem tersebut menghafal hubungan fungsional antara variabel keluaran dan variabel masukan.

Fungsi rangkaian flip-flop yang utama adalah sebagai memori (menyimpan informasi) 1 bit atausuatu sel penyimpan 1 bit. Flip-flop juga dapat digunakan pada Rangkaian Shift Register, rangkaian Counter, dan lain sebagainya.

Macam-macam flip-flop:

- 1) RS Flip-Flop
- 2) J-K Flip-Flop
- 3) D Flip-Flop
- 4) CR5 Flip-Flop
- 5) T Flip-Flop

A. RS Flip-Flop

RS Flip-Flop adalah rangkaian flip-flop yang mempunyai 2 jalan keluaran (Q). Simbol-simbolyang ada Pada jalan keluar selalu berlawanan satu dengan yang lain. RS-FF adalah flip-flop dasar yang memiliki dua masukan, yaitu R (Reset) dan S (Set). Bila S diberi logika 1 dan R diberi logika 0, maka output Q akan berada pada logika 0 dan Q pada logika 1. Bila R diberi logika 1 dan S diberi logika 0, maka keadaan output akan berubah menjadi Q berada pada logika 1 dan Q_{not} pada logika 0.

Sifat paling penting dari flip-flop adalah sistem ini dapat menempati salah satu dari dua keadaanstabil, yaitu stabil I diperoleh saat Q = 1 dan Q01 = O, stabil ke II diperoleh saat Q = O dan Q, = 1 yang diperlihatkan pada Gambar

Sumber: http://eldigezone.blogspot.com

Gambar 5.8RS Flip-Flop

S	R	Q	Q _{not} (Q)	Keterangan
0	0	1	1	Terlarang
0	1	1	0	Set (memasang)
1	0	0	1	Reset (melepas)
1	1	0	Q _{not}	Kondisi memori (mengingat)

Tabel 5.4. Kebenaran RS Flip-Flop

Yang dimaksud dengan kondisi terlarang adalah keadaaan yang tidak diperbolehkan, yaitukondisi output Q sama dengan Q pada saat S = 0 dan R = 0. Yang dimaksud dengan kondisimemori adalah saat S = 1 dan R = 1, output Q dan Q akan menghasilkan perbedaan, yaitu jikaQ = 0 maka Q = 1 atau sebaliknya jika Q = 1 maka Q = 0.

B. J-K Flip-Flop

JK flip-flop sering disebut dengan JK FF atauMaster Slave JK FF karena terdiri dari dua buah flip- flop, yaitu Master FF dan Slave FE Master Slave JK FF ini memiliki 3 buah terminal input, yaitu J, K, JK i+ Q dan Clock. IC yang dipakai untuk menyusun JK FF adalah upe 7473 yang mempunyal 2 buah JR flip-flop di mana lay outnya dapat dilihat pada Vodemaccum IC (Data book 1C). Kelebihan JK FF terhadap FF sebelumnya yaitu JK FF tidak mempunyai kondisi terlarang artinya berapa pun input yang diberikan asal ada jam sistem maka akan terjadi perubahan pada output.

Gambar 6. JK FF

Tabel Kebenaran:

J 0	K	Q ₁ +1	Keterangan Mengingat
0	1	0	Reset
1	0	1	Set
1	1	Q _n (strep)	Togle

Sumber: http://eldigezone.blogspot.com

Gambar 5.9. JK Flip-Flop

C. D Flip-Flop

D flip-flop adalah RS flip-flop yang ditambah dengan suatu inventer pada reset inputnya. Sifat dan D flip-flop adalah bila input D (Data) dan denyut jam sistem (pulse clock) bemilal 1, maka output Q akan bernilai 1 dan bila input D bernilai 0, maka D flipflop akan berada pada keadaanreset atau output Q hemilai 0.

Sumber: http://eldigezone.blogspot.com

Gambar 5.10. D Flip=Flop

D. CRS Flip-Flop

CR5 flip-flop adalah clocked RS-FF yang dilengkapi dengan sebuah terminal denyut jam sistem. Denyut Jam sistem ini berfungsi mengatur keadaan Set dan Reset. Bila denyut jam sistem bernilai 0,maka perubahan nilai pada input R dan S tidak akan mengakibatkan perubahan pada output Q dan Qnot. Akan tetapi, apabila denyut jam istem bernilai 1, maka perubahan pada input R dan S dapat mengakibatkan perubahan pada output Q dan Q_{not.}

Tabel kebenarannya:

S	R	Q _n +1
0	0	Q _n
0	1	Ō
1	0	1
1	1	terlarang

Sumber: http://eldigezone.blogspot.com

Gambar 5.11. D Flip-Flop

E. T Flip-Flop

Rangkaian T flip-flop atau Toggle flip-flop (TFF) dapat dibentuk dari modifikasi clocked RSFF,DFF maupun JKFE TFF mempunyai sebuah terminal input T dan dua buah terminal output Qdan Qnot. TFF banyak digunakan pada rangkaian Counter, pembagi frekuensi dan sebagainya.

Sumber: http://eldigezone.blogspot.com Gambar 5.12T Flip-Flop

5.2.2.4. Mengasosiasi/ menalar

Buatlah tabel perbandingan Rangkaian Flip-Flop (RS, JK, D, CRS, T)

No	Rangkaian Flip-Flop	Perbandingan
1	RS Flip-Flop	
2	JK Flip-Flop	
3	D Flip-Flop	
4	CRS Flip-Flop	
5	T Flip-Flop	

Buatlah kesimpulan tentang Rangkaian Flip-Flop (RS, JK, D, CRS, T)!

5.2.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri rangkaian flip-flop (RS, JK, D, CRS, T)!

5.2.3. Rangkuman

- Flip-flop adalah keluarga Multivibrator yang mempunyai dua keadaaan stabil atau disebutBis table Multivibrator
- Fungsi rangkaian flip-flop yang utama adalah sebagai memori (menyimpan informasi) 1 bit atausuatu sel penyimpan 1 bit.
- RS Flip-Flop adalah rangkaian flip-flop yang mempunyai 2 jalan keluaran (Q).
- JK flip-flop sering disebut dengan JK FF atauMaster Slave JK FF karena terdiri dari dua buah flip-flop
- D flip-flop adalah RS flip-flop yang ditambah dengan suatu inventer pada reset
- CR5 flip-flop adalah clocked RS-FF yang dilengkapi dengan sebuah terminal denyut jam sistem.
- Toggle flip-flop (TFF) dapat dibentuk dari modifikasi clocked RSFF, DFF maupun JKFE TFF mempunyai sebuah terminal input T dan dua buah terminal output Qdan Qnot

5.2.4. Tugas

	1.	Jelaskan apakah yang dimaksud dengan Flip - Flop?
	0	
	2.	Jelaskan apa Fungsi utama dari rangkaian Flip-Flop!
	2	Cobultion manage manage rengining Flip Flori
	3.	Sebutkan macam-macam rangkaian Flip-Flop!
	4.	Bangdingkanlah rangkaian RS Flip-Flop dengan J-K Flip-Flop?
	5.	Bandingkanlah rangkaian D Flip-Flop dengan T Flip-Flop!
5.2.5.	Pen	nilaian diri
		ma :
		ma-nama anggota kelompok :
	Ke	giatan kelompok :
	Isil	ah pernyataan berikut dengan jujur. Untuk No. 1 s.d. 4, isilah dengan cara melingkari
		vaban dibawah pertanyaan.
	1.	Selama diskusi saya mengusulkan ide kepada kelompok untuk didiskusikan.
	•	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	2.	Ketika kami berdiskusi, tiap orang diberi kesempatan mengusulkan sesuatu. 4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	3.	Semua anggota kelompok kami melakukan sesuatu selama kegiatan.
		4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	4.	Tiap orang sibuk dengan yang dilakukannya dalam kelompok saya.
	_	4 : Selalu 3 : Sering 2 : Kadang-kadang 1 : Tidak pernah
	5.	Selama kerja kelompok, saya Mendengarkan orang lain
		Mengajukan pertanyaan
		Mengorganisasi ide-ide saya
		Mengorganisasi kelompok

Mengacaukan kegiatan

Melamun

6.	Apa yang kamu lakukan selama kegiatan?						

5.2.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

1. Keluarga multivibrator yang mempunyai dua keadaan stabil disebut....

a. MultiPlexerb. Demultiplexer

d. Countere. Encoder

c. Rangkaian Flip-Flop

2. Sifat pada rangkaian Flip-Flop mempunyai sistem kerja yang dapat diatur dengan jam atau pulsa, sifat tersebut dinamakan....

a. Stabilb. Sekuensiald. Konstane. Sinkron

c. Ajeg

3. Perhatikan data dibawah ini dengan cermat!

1 RS Flip-Flop 5 CRS Flip-Flop 2 FF Flip-Flop 6 J-K Flip-Flop 7 JJ Flip-Flop 4 T Flip-Flop 8 SCR Flip-Flop

Dari data diatas yang termasuk macam-macam Flip-Flop adalah yang ditunjukkan pada nomor

a. 1,3,4,5,6 d. 1,3,5,6,8 b. 2,3,4,5,6 e. 1,2,3,4,5

c. 1,4,5,7,8

4. Rangkaian Flip-Flop yang mempunyai dua jalan keluaran disebut....

a. FF Flip-Flopb. T Flip-Flope. J-K Flip-Flop

c. D Flip-Flop

5. Gambar dibawah ini merupakan jenis rangkaian Flip-Flop....

a. RS

b. J-K

c. D

d. CRS

e. T

5.3 Kegiatan Belajar 3 Materi: Shift Register

Alokasi Waktu: 1 x 2 Jam Pertemuan

5.3.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

- Menjelaskan Storage Register dan Shift Register
- Menyebutkan Cara kerja Shift Register

5.3.2. Aktivitas belajar siswa

5.3.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang,

Amatilah dengan cermat gambar dari Shift Register dan cara kerja Shift Register dibawah

Sumber: http://ba.protostack.com

5.3.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian Storage Register dan Shift Register
- cara kerja Shift Register

5.3.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian Storage Register dan Shift Register dan cara kerja Shift Register, kamu dapat mencari sumber referensi lain dari internet.

Register adalah sekelompok flip-flop yang dapat dipakai untuk menyimpan dan untuk mengolahinformasi dalam bentuk linier.

Ada 2 jenis utama Register yaitu:

- 1. Storage Register (register penyimpan)
- 2. Shift Register (register geser)

Register penyimpan digunakan apabila kita hendak menyimpan informasi untuk sementara, sebelum informasi itu dibawa ke tempat lain. Banyaknya kata/bit yang dapat disimpan, bergantungpada banyaknya flip-flop dalam register.Satu flip-flop dapat menyimpan satu bit. Bila kita hendak menyimpan informasi 4 bit makakita butuhkan 4 flipflop.

Contoh: Register yang mengingat bilangan biner 1101 terbaca pada keluaran Q.

Gambar 5.13. Register

Shift Register adalah suatu register yang informasinya dapat bergeser (digeserkan). Dalam register geser flip-flop salingg terhubung, sehingga isinya dapat digeserkan dan satu flipflop ke flip-flop yang lain, ke kiri atau ke kanan atas perintah denyut jam sistem.

Dalam aat ukur digital, register dipakai untuk mengingat data yang sedang ditampilkan. Ada 4 Shift Register yaitu sebagai berikut.

A. Register Geser SISO

Sumber: http://tkj-eldilog.blogspot.com

Gambar 5.14. Register geser SISO

Informasi/data dimasukkan melalui word ini dan akan dikeluarkan jika ada denyut jam sistemberlalu dari 1 ke 0. Karena jalan keluarnya flip-flop satu dihubungkan kepada jalan masukflip-flop berikutnya, maka informasi di dalam register akan digeser ke kanan atas perintah daridenyut jam sistem.

Register geser SiSO ada 3 macam yaitu:

- a. Shift Right Register (SRR) Register geser kanan
- b. Shift Left Register (SLR) Register geser kiri
- c. Shift Control Register dapat berfungsi sebagai SSR maupun SIR

Rangkaian Shift control adalah seperti gambar di bawah.

Rangkaian ini untuk mengaktifkan geserKanan/kiri yang ditentukan oleh SC.

Jika SC=1, maka akan mengaktifkan SLR.

JikaSC=0, maka akan mengaktifkan SRR.

Sumber: http://tkj-eldilog.blogspot.com

Gambar 5.15Register Geser SISO

B. Register Geser SIPO

Ini adalah register geser dengan masukan data secara serial dan keluaran data secara paralel.

Gambar rangkaiannya adalah sebagai berikut (SIPO menggunakan D-FF).

Sumber: http://tkj-eldilog.blogspot.com

Gambar 5.16. Register Geser SIPO

Cara kerja:

Masukan-masukan data secara deret akan dikeluarkan oleh D-FF setelah masukan denyut jamsistem dan 0 ke 1. Keluaran data/informasi serial akan dapat dibaca secara paralel setelahdiberikan satu komando (Read Out). Bila di jalan masuk Read Out diberi nilai 0, maka semuakeluaran AND adalah 0 dan bila Read Out diberi nilai 1, maka pintu-pintu AND menghubunglangsungkan sinyal-sinyal yang ada di Q masing-masing flip-flop.

C. Register Geser PIPO

Ini adalah register geser dengan masukan data secara jajar/paralel dan keluaran jajar/paralel.

Gambar rangkaiannya adalah sebagai herikut (PIPO menggunakan D-FF).

Sumber: http://tkj-eldilog.blogspot.com

Gambar 5.17. Register Geser PIPO

Cara kerja:

Sebelum dimasuki data rangkaìan direset dulu agar keluaran Q semuanya 0. Setelah itu datadimasukkan secara paralel pada input D-N dan data akan diloloskan keluar secara parallel setelah flip-flop mendapat denyut jam sistem dari 0 ke 1.

D. Register Geser PISO

Ini adalah register geser dengan masukan data secara paralel dan dikeluarkan secara deret/serial.Gambar rangkaian register PISO menggunakau D-FF adalah sebagai berikut.

Sumber: http://tkj-eldilog.blogspot.com

Gambar 5.18. Register Geser PISO

Rangkaian di atas merupakan register geser dengan panjang kata 4 bit. Semua jalan masukjam sistem dthubungkan jajar. Data-data yang ada di A, B, C, D dimasukkan ke flip-flop secaraserempak, apabila di jalan masuk Data I.oad diberi nilai 1. Cara Kerja:

- Mula-mula jalan masuk Data load = O, maka semua pintu NAND mengeluarkan 1, sehingga jalanmasuk set dan reset semuanya 1 berarti bahwa jalan masuk set dan reset tidak berpengaruh.
- Jika Data Load = 1, maka semua input paralel akan dilewatkan oleh NAND. Misal jalan masukA = 1, maka pmtu NAND 1 mengeluarkan O adapun pintu NAND 2 mengeluarkan 1. Dengandemikian flip-flop diset sehingga menjadi Q = 1. Karena flip-flop yang lain pun dihubungkandengan cara yang sama, maka mereka juga

mengoper informasi pada saat Data Load diberi nilai 1. Setelah informasi berada di dalam register, Data Load diberi nilai 0. Informasi akan dapatdikeluarkan dan register dengan cara memasukkan denyut jam sistem dengan denyut demidenyut keluar deret/seri. Untuk keperluan ini jalan masuk D dihubungkan kepada keluaranQ.

5.3.2.4. Mengasosiasi/ menalar

Buatlah tabel perbandingan cara kerja tentang Register Geser

No	Register	Cara Kerja
1	Register Geser SISO	
2	Register Geser SIPO	
3	Register Geser PISO	
4	Register Geser PIPO	

Buatlah kesimpulan tentang Storage Register dan Shift Register dan cara kerja Shift Register!

5.3.2.5. Mengkomunikasikan

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri.

5.3.3. Rangkuman

- Register adalah sekelompok flip-flop yang dapat dipakai untuk menyimpan dan untuk mengolahinformasi dalam bentuk linier
- Ada 2 jenis utama Register yaitu:
 - 1. Storage Register (register penyimpan)
 - 2. Shift Register (register geser)
- Register penyimpan digunakan apabila kita hendak menyimpan informasi untuk sementara, sebelum informasi itu dibawa ke tempat lain
- Shift Register adalah suatu register yang informasinya dapat bergeser (digeserkan).
- Ada 4 Shift Register yaitu sebagai berikut :
 - a. Register Geser SISO
 - b. Register Geser SIPO
 - c. Register Geser PIPO
 - d. Register Geser PISO

5.3.4. Tugas

1.	Jelaskan apakah yang dimaksud dengan Register?
2.	Jelaskan apa yang dimaksud dengan Storage Register!

128 Sistem Komputer SMK/MAK Kelas X Semester I

5.3.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Sekelompok Flip-Flop yang dapat dipakai untuk menyimpan dan untuk mengolah informasi dalam bentuk biner disebut....
 - a. Shift
 - b. Register
 - c. Counter
 - d. Flip Flop
 - e. Encoder
- 2. Dua Jenis Utama dari register adalah....
 - a. Storage Disk dan Shift Register
 - b. Storage Disk dan Shift Disk
 - c. Storage Register dan Shift Register
 - d. Storage Register dan Shift Disk
 - e. Storage Disk dan Shift Register
- 3. Perhatikan data dibawah ini dengan cermat
 - 1. Register Geser SISO
 - 2. Register Geser ISO
 - 3. Register Geser SIPO
 - 4. Register Geser PISO
 - 5. Register Geser PIPO

Dari data diatas yang termasuk empat jenis Shift Register adalah...

- a. 1,3,4,5
- b. 2,3,4,5
- c. 1,2,3,5
- d. 1,2,4,5
- e. 2,3,4,5
- 4. Suatu Register yang informasinya dapat bergeser (digeserkan) adalah....
 - a. Shift
 - b. Register
 - c. Shift Register
 - d. Register SISO
 - e. Register PISO
- 5. Register geser dengan masukan data secara parallel dan dikeluarkan secara deret/serial disebut register geser....
 - a. PISO
 - b. SISO
 - c. PIPO
 - d. SIPO
 - e. ISO

5.4 Kegiatan Belajar 4

Materi: Rangkaian Counter

Alokasi Waktu: 1 x 2 Jam Pertemuan

5.4.1. Tujuan Pembelajaran

Setelah mengikuti pembelajaran, siswa mampu:

Menjelaskan Rangkaian Counter

5.4.2. Aktivitas belajar siswa

5.4.2.1. Mengamati/ observasi

Buatlah kelompok dengan anggota 4-5 orang, Amatilah dengan cermat materi pembahasan Rangkaian Counter up/down dibawah ini

Sumber: www.talkingelectronics.com

5.4.2.2. Menanya

Bertanyalah kepada gurumu mengenai hal-hal sebagai berikut :

- pengertian Rangkaian Counter
- Rangkaian up/down counter

5.4.2.3. Mencoba/ Mengumpulkan informasi

Untuk menambah pengetahuan dan wawasan tentang pengertian Rangkaian Counter, kamu dapat mencari sumber referensi lain dari internet.

(Referensi organisasi komputer edisi 5 penerbit Andi hal 562- 569)

Pada bagian sebelumnya, kita membahas penerapan flip-flop dalam konstruksi shift register. Terutama dalam implementasi sirkuit counter. Counter (pencacah) adalah alat/rangkaian digital yang berfungsi menghitung/mencacah banyaknyadenyut jam sistem atau juga berfungsi sebagai pembagi frekuensi, pembangkit kode biner, Gray.

Ada 2 jenis pencacah yaitu sebagai berikut.

- 1. Pencacah sinkron (synchronous counters) atau pencacah jajar.
- 2. Pencacah tak sinkron (asynchronous counters) yang kadang-kadang disebut juga pencacah deret (series counters) atau pencacah kerut (ripple counters).

Counter juga disebut pencacah atau penghitung yaitu rangkaian logika sekuensial yang digunakan untuk menghitung jumlah pulsa yang diberikan pada bagian masukan. Counter digunakan untuk berbagai operasi aritmatika, pembagi frekuensi, (odometer), kecepatan penghitung jarak penghitung (spedometer), yang pengembangannya digunakan luas dalam aplikasi perhitungan pada instrumen ilmiah, kontrol industri, komputer, perlengkapan komunikasi, dan sebagainya.

Counter tersusun atas sederetan flip-flop yang dimanipulasi sedemikian rupa dengan menggunakan peta Karnough sehingga pulsa yang masuk dapat dihitung sesuai rancangan. Dalam perancangannya counter dapat tersusun atas semua jenis flip-flop, tergantung karakteristik masing-masing flip-flop tersebut.

Dilihat dari arah cacahan, rangkaian pencacah dibedakan atas pencacah naik (Up Counter) dan pencacah turun (Down Counter). Pencacah naik melakukan cacahan dari kecil ke arah besar, kemudian kembali ke cacahan awal secara otomatis. Pada pencacah menurun, pencacahan dari besar ke arah kecil hingga cacahan terakhir kemudian kembali ke cacahan awal.

Tiga faktor yang harus diperhatikan untuk membangun pencacah naik atau turun yaitu (1) pada transisi mana Flip-flop tersebut aktif. Transisi pulsa dari positif ke negatif atau sebaliknya, (2) output Flip-flop yang diumpankan ke Flip-flop berikutnya diambilkan dari mana. Dari output Q atau Q, (3) indikator hasil cacahan dinyatakan sebagai output yang mana. Output Q atau Q. ketiga faktor tersebut di atas dapat dinyatakan dalam persamaan EX-OR.

Secara global counter terbagi atas 2 jenis, yaitu: Syncronus Counter dan Asyncronous Perbedaan kedua jenis *counter* ini adalah pada pemicuannya. Syncronous counter pemicuan flip-flop dilakukan serentak (dipicu oleh satu sumber clock) susunan flip-flopnya paralel. Sedangkan pada Asyncronous counter, minimal ada salah satu flip-flop yang clock-nya dipicu oleh keluaran flip-flop lain atau dari sumber clock lain, dan susunan flip-flopnya seri. Dengan memanipulasi koneksi flip-flop berdasarkan peta karnough atau timing diagram dapat dihasilkan counter acak, shift counter (counter sebagai fungsi register) atau juga up-down counter.

A. Synchronous Counter

Syncronous counter memiliki pemicuan dari sumber clock yang sama dan susunan flip-flopnya adalah paralel. Dalam Syncronous counter ini sendiri terdapat perbedaan penempatan atau manipulasi gerbang dasarnya yang menyebabkan perbadaan waktu tunda yang di sebut carry propagation delay. Penerapan counter dalam aplikasinya adalah berupa chip IC baik IC TTL, maupun CMOS, antara lain adalah: (TTL) 7490, 7493, 74190, 74191, 74192, 74193, (CMOS) 4017,4029,4042,dan lain-lain.

Pada Counter Sinkron, sumber clock diberikan pada masing-masing input Clock dari Flip-flop penyusunnya, sehingga apabila ada perubahan pulsa dari sumber, maka perubahan tersebut akan men-trigger seluruh Flip-flop secara bersama-sama.

3. Rependian untuk op Counter dan Down Counter Sinkford								
	Up Counting			DOWN Counting				
CLK	Α	В	С	Desimal	A	В	C	Desimal
	0	0	0	0	1	1	1	7
	0	0	1	1	1	1	0	6
	0	1	0	2	1	0	1	5
	0	1	1	3	1	0	0	4
	1	0	0	4	0	1	1	3
	1	0	1	5	0	1	0	2
	1	1	0	6	0	0	1	1
	1	1	1	7	0	0	0	0

Tabel 5.5. Kebenaran untuk Up Counter dan Down Counter Sinkron 3 bit :

Gambar 5.19. Rangkaian Down Counter Sinkron 3 bit

Gambar 5.20.Rangkaian Up/Down Counter Sinkron

Rangkaian Up/Down Counter merupakan gabungan dari Up Counter dan Down Counter. Rangkaian ini dapat menghitung bergantian antara Up dan Down karena adanya input eksternal sebagai control yang menentukan saat menghitung Up atau Down. Pada gambar 4.4 ditunjukkan rangkaian Up/Down Counter Sinkron 3 bit. Jika input CNTRL bernilai '1' maka Counter akan menghitung naik (UP), sedangkan jika input CNTRL bernilai '0', Counter akan menghitung turun (DOWN).

Gambar 5.21. Rangkaian Up/Down Counter Sinkron 3 bit :

B. Asyncronous counter

Seperti tersebut pada bagian sebelumnya Asyncronous counter tersusun atas flip-flop yang dihubungkan seri dan pemicuannya tergantung dari flip-flop sebelumnya, kemudian menjalar sampai flip-flop MSB-nya. Karena itulah Asyncronous counter sering disebut juga sebagai ripple-through counter.

Sebuah Counter Asinkron (Ripple) terdiri atas sederetan Flip-flop dikonfigurasikan dengan menyambung outputnya dari yan satu ke yang lain. Yang berikutnya sebuah sinyal yang terpasang pada input Clock FF pertama akan mengubah kedudukan outpunyanya apabila tebing (Edge) yang benar yang diperlukan terdeteksi.

Output ini kemudian mentrigger inputclock berikutnya ketika terjadi tebing yang seharusnya sampai. Dengan cara ini sebuah sinyal pada inputnya akan meriplle (mentrigger input berikutnya) dari satu FF ke yang berikutnya sehingga sinyal itu

mencapau ujung akhir deretan itu. Ingatlah bahwa FF T dapat membagi sinyal input dengan faktor 2 (dua). Jadi Counter dapat menghitung dari 0 sampai 2" = 1 (dengan n sama dengan banyaknya Flip-flop dalam deretan itu).

aber 5.5. Rebendran dan op counter Asinkron o b				
CLK	Α	В	С	Desimal
1	0	0	0	0
2	0	0	1	1
3	0	1	0	2
4	0	1	1	3
5	1	0	0	4
6	1	0	1	5
7	1	1	0	6
8	1	1	1	7

Tabel 5.6. Kebenaran dari Up Counter Asinkron 3-bit

Gambar 5.22. Rangkaian Up Counter Asinkron 3 bit

Gambar 5.23. Timing Diagram untuk Up Counter Asinkron 3 bit

Berdasarkan bentuk timing diagram di atas, output dari flip-flop C menjadi clock dari flip-flop B, sedangkan output dari flip-flop B menjadi clock dari flip-flop A. Perubahan pada negatif edge di masing-masing clock flip-flop sebelumnya menyebabkan flip-flop sesudahnya berganti kondisi (toggle), sehingga input-input J dan K di masing-masing flipflop diberi nilai "1" (sifat toggle dari JK flip-flop).

C. Counter Asinkron Mod-N

Counter Mod-N adalah Counter yang tidak 2ⁿ. Misalkan Counter Mod-6, menghitung: 0, 1, 2, 3, 4, 5. Sehingga Up Counter Mod-N akan menghitung 0 s/d N-1, sedangkan Down Counter MOD-N akan menghitung dari bilangan tertinggi sebanyak N kali ke bawah. Misalkan Down Counter MOD-9, akan menghitung: 15, 14, 13, 12, 11, 10, 9, 8, 7, 15, 14, 13,...

Sebuah Up Counter Asinkron Mod-6, akan menghitung : 0,1,2,3,4,5,0,1,2,... Maka nilai yang tidak pernah dikeluarkan adalah 6. Jika hitungan menginjak ke-6, maka counter akan reset kembali ke 0. Untuk itu masing-masing Flip-flop perlu di-reset ke nilai "0" dengan memanfaatkan input-input Asinkron-nya ($\overline{P_S} = 1$ dan $\overline{P_C} = 0$). Nilai "0" yang akan dimasukkan di PC didapatkan dengan me-NAND kan input A dan B (ABC =110 untuk desimal 6). Jika input A dan B keduanya bernilai 1, maka seluruh flip-flop akan di-reset.

Gambar 5.25. Rangkaian Up/Down Counter Asinkron 3 bit

Rangkaian Up/Down Counter merupakan gabungan dari Up Counter dan Down Counter. Rangkaian ini dapat menghitung bergantian antara Up dan Down karena adanya input eksternal sebagai control yang menentukan saat menghitung Up atau Down. Pada rangkaian Up/Down Counter ASinkron, output dari flip-flop sebelumnya menjadi input clock dari flip-flop berikutnya.

D. Perancangan Counter

Perancangan counter dapat dibagi menjadi 2, yaitu dengan menggunakan peta Karnough, dan dengan diagram waktu. Berikut ini akan dijelaskan langkah-langkah dalam merancang suatu counter.

a). Perancangan Counter Menggunakan Peta Karnaugh

Umumnya perancangan dengan peta karnaugh ini digunakan dalam merancang syncronous counter. Langkah-langkah perancangannya:

a. Dengan mengetahui urutan keluaran counter yang akan dirancang, kita tentukan masukan masing-masing flip-flop untuk setiap kondisi keluaran, dengan menggunakan tabel kebalikan.

- b. Cari fungsi boolean masing-masing masukan flip-flop dengan menggunakan peta Karnough. Usahakan untuk mendapatkan fungsi yang sesederhana mungkin, agar rangkaian counter menjadi sederhana.
- c. Buat rangkaian counter, dengan fungsi masukan flip-flop yang telah ditentukan. Pada umumnya digunakan gerbang-gerbang logika untuk membentuk fungsi tersebut.

b). Perancangan Counter Menggunakan Diagram Waktu

Umumnya perancangan dengan diagram waktu digunakan dalam merancang asyncronous counter, karena kita dapat mengamati dan menentukan sumber pemicuan suatu flip-flop dari flip-flop lainnya. Adapun langkah-langkah perancangannya:

- a. Menggambarkan diagram waktu clock, tentukan jenis pemicuan yang digunakan, dan keluaran masing-masing flip-flop yang kita inginkan. Untuk n kondisi keluaran, terdapat njumlah pulsa clock.
- b. Dengan melihat keluaran masing-masing flip-flop sebelum dan sesudah clock aktif (Qn dan Qn+1), tentukan fungsi masukan flip-flop dengan menggunakan tabel kebalikan.
- c. Menggambarkan fungsi masukan tersebut pada diagram waktu yang sama.
- d. Sederhanakan fungsi masukan yang telah diperoleh sebelumnya, dengan melihat kondisi logika dan kondisi keluaran flip-flop. Untuk flip-flop R-S dan J-K kondisi don't care (x) dapat dianggap sama dengan 0 atau 1.
- e. Tentukan (minimal satu) flip-flop yang dipicu oleh keluaran flip-flop lain. Hal ini dapat dilakukan dengan mengamati perubahan keluaran suatu flip-flop setiap perubahan keluaran flip-flop lain, sesuai dengan jenis pemicuannya.
- f. Buat rangkaian counter, dengan fungsi masukan flip-flop yang telah ditentukan. Pada umumnya digunakan gerbang-gerbang logika untuk membentuk fungsi tersebut. (Hamacher, Vranesic, & Zaky, Organisasi Komputer, 2004, hal. 571)

www.talkingelectronics.com

Gambar 5.26 Perancangan Rangkaian Counter

5.4.2.4. Mengasosiasi/ menalar

Buatlah kesimpulan tentang Rangkaian Counter!

5.4.2.5. Mengkomunikasikan

.

Presentasikanlah hasil kerja kelompokmu didepan kelas dengan penuh rasa percaya diri tentang rangkaian Counter!

5.4.3. Rangkuman

- Counter (pencacah) adalah alatlrangkaian digital yang berfungsi menghitung/mencacah banyaknyadenyut jam sistem atau juga berfungsi sebagai pembagi frekuensi, pembangkit kode biner, Gray
- Counter juga digunakan untuk menghasilkan sinyal kontrol dan timing. Counter yang dikendalikan oleh clock frekuensi tinggi dapat digunakan untuk menghasilkan sinyal yang frekuensinya adalah kelipatan frekuensi clock awal

Ada 2 jenis pencacah yaitu sebagai berikut.

- o Pencacah sinkron (synchronous counters) atau pencacah jajar.
- Pencacah tak sinkron (asynchronous counters) yang kadang-kadang disebut juga pencacah deret (series counters) atau pencacah kerut (ripple counters).

5.4.4. Tug	as
1.	Jelaskan apakah yang dimaksud dengan Counter?
2.	Jelaskan apa kegunaan dari Counter!
3.	Sebutkan 2 jenis pencacah pada Counter!
4.	Jelaskan maksud dari synchronous counters?
5.	Jelaskan maksud dari asynchronous counters!

5.4.5. Penilaian diri

Na	ma	:	
Na	ma-nama anggota kelompok	:	
Ke	giatan kelompok	·	
Isil	ah pernyataan berikut dengar	n jujur. Untuk No. 1 s.d. 4, i	isilah dengan cara melingkari
	/aban dibawah pertanyaan.	•	5
-	Selama diskusi saya mengusi	ulkan ide kepada kelompok	untuk didiskusikan.
	-	2 : Kadang-kadang	
2.	Ketika kami berdiskusi, tiap o	•	•
		2 : Kadang-kadang	<u> </u>
3.	Semua anggota kelompok kai	mi melakukan sesuatu sela	ma kegiatan.
	4 : Selalu 3 : Sering	2 : Kadang-kadang	1 : Tidak pernah
4.	Tiap orang sibuk dengan yang	g dilakukannya dalam kelon	npok saya.
	4 : Selalu 3 : Sering	2 : Kadang-kadang	1 : Tidak pernah
5.	Selama kerja kelompok, saya		
	 Mendengarkan orang lai 	n	
	Mengajukan pertanyaan		
	 Mengorganisasi ide-ide s 	saya	
	 Mengorganisasi kelompo 	ok	
	Mengacaukan kegiatan		
	Melamun		
6.	Apa yang kamu lakukan selar	na kegiatan?	

5.4.6. Uji Kompetensi/ Ulangan

Pilihlah jawaban yang benar dengan cara memberikan tanda silang (X) pada huruf a,b,c,d atau e!

- 1. Alat / rangkaian digital yang berfungsi menghitung atau mancacah banyaknya denyut jam sistem atau juga berfungsi sebagai pembagi Frekuensi disebut....
 - a. Flip-Flop
 - b. Counter
 - c. Register
 - d. Multiplexer
 - e. Decoder
- 2. Ada dua jenis perancangan counter yaitu....
 - a. peta karnaugh dan diagram waktu
 - b. peta karnaugh dan jam waktu
 - c. peta counter dan jam counter
 - d. peta counter dan diagram waktu
 - e. peta karnaugh dan jam counter

- 3. Rangkaian yang dapat menghitung bergantian antara Up dan Down karena adanya input eksternal sebagai control yang menentukan saat menghitung Up atau Down adalah....
 - a. rangkaian sinkron dan asinkron
 - b. rangkaian Flip-flop
 - c. rangkaian up dan Down
 - d. rangkaian left dan right
 - e. rangkaian LED
- 4. Rangkaian atau alat yang berfungsi untuk menghitung banyaknya jam sistem disebut....
 - a. Register
 - b. Counter
 - c. Decoder
 - d. Multiplexer
 - e. Encoder
- 5. Penerapan counter dalam aplikasinya adalah....
 - a. Chip
 - b. Gray
 - c. Counter
 - d. Encoder
 - e. Multiplexer

PENUTUP RANGKUMAN

Bab 1 - Sistem Bilangan

Kegiatan belajar 1

Pengertian dan Gambaran umum sistem bilangan

1.1 Rangkuman

- Sistem komputer adalah jaringan elemen-elemen yang saling berhubungan, berbentuk satu kesatuan untuk melaksanakan suatu tujuan pokok dan sistem tersebut.
- Radix adalah banyaknya suku angka atau digit yang dipergunakan dalam suatu sistem bilangan.
- Sistem bilangan (number system) adalah suatu cara untuk mewakili besaran dan suatu sistem fisik
- Elemen-elemen dari sistem komputer adalah hardware, software, dan brain ware.
- Hardware (perangkat keras) adalah peralatan di sistem komputer yang secara fisik terlihat dan dapat dijamah, seperti monitor, keyboard, dan mouse.
- Software (perangkat lunak) adalah program yang berisi perintah-perintah untuk melakukan pengolahan data. Ada tiga bagian utama dan software :
- Brainware adalah manusia yang terlibat dalam mengoperasikan serta mengatur sistem komputer.

Kegiatan belajar 2

Sistem Bilangan (Desimal, Biner, Oktal dan Heksadesimal)

1.2 Rangkuman

- Sistem bilangan desimal menggunakan 10 macam simbol bilangan berbentuk 10 digit angka, yaitu 0, 1, 2, 3, 4, 5, 6, 7, 8 dan 9. Sistem bilangan desimal menggunakan basis atau radiks 10
- Bilangan biner adalah bilangan yang berbasis 2 yang hanya mempunyai 2 digit yaitu 0 dan 1. 0 dan 1 disebut sebagai bilangan binary digit atau bit. Bilangan biner ini digunakan sebagai dasar kompetensi digital. Bobot faktor untuk bilangan biner adalah pangkat / kelipatan 2.
- Sistem bilangan oktal (octal number system) menggunakan 8 macam simbol bilangan, yaitu 0, 1, 2, 3, 4, 5, 6, 7. Sistem bilangan oktal menggunakan basis 8. Nilai tempat sistem bilangan oktal merupakan perpangkatan dari nilai 8
- Sistem bilangan heksadesimal (hexadecimal number system) menggunakan 16 macam simbol, yaltu 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C. D, E, dan F. Sistem bilangan heksadesimal menggunakan basis 16.

Kegiatan belajar 3 Konversi Bilangan

1.3 Rangkuman

- Ada beberapa metode untuk mengkonversikan dari sistem bilangan desimal ke sistem bilangan biner. Metode pertama dan paling banyak digunakan adalah dengan cara membagi dengan nilai dua dan sisa setiap pembagian merupakan digit biner dan bilangan biner dari hasil konversi. Metode ini disebut metode sisa (remainder method).
- Untuk mengkonversikan bilangan desimal kebilangan oktal dapat dipergunakan remainder method dengan pembaginya adalah basis dari bilangan oktal tersebut, yaitu 8

- Dengan menggunakan remainder method, dengan pembaginya adalah basis dari bilangan heksadesimal, yaitu 16
- Konversi dari bilangan biner ke bilangan oktal dapat dilakukan dengan mengkonversikan tiap- tiap tiga buah digit biner

Digit Oktal	3 bit
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

- Konversi dari bilangan biner ke bilangan heksadesimal dapat dilakukan dengan mengkonversikan tiap-tiap empat buah digit biner
- Konversi dan bilangan oktal ke bilangan heksadesimal dapat dilakukan dengan cara mengubah dari bilangan oktal menjadi bilangan biner terlebih dahulu, kemudian dikonversikan kebilanganheksadesimal.
- Konversi dan bilangan heksadesimal ke bilangan oktal dapat dilakukan dengan cara mengubah dari bilangan heksadesimal menjadi bilangan biner terlebih dahulu, baru dikonversikan ke bilangan oktal.

Kegiatan belajar 4 Sistem Bilangan Coded Decimal dan Binary Coded Hexadecimal 1.4Rangkuman

- BCD merupakan sistem sandi dengan 6 bit, sehingga kombinasi yang dapat digunakan sebagai sandi banyaknya adalah 2 pangkat 6 sama dengan 64 kombinasi. Pada transmisi sinkron sebuah karakter dibutuhkan 9 bit, yang terdiri dari 1 bit awal, 6 bit data, 1 bit paritas dan 1 bit akhir
- Bilangan heksadesimal dalam setiap tempat dapat terdiri dari 16 bilangan yang berbeda-beda (angka dan huruf. Bentuk biner untuk 16 elemen memerlukan 4 bit
- ASCII Code merupakan kontrol untuk keperluan transportasi data.
- Dalam bidang komputer mikro, ASCII Code mempunyai arti yang sangat khusus, yaitu untuk mengkodekan karakter (huruf, angka, dan tanda baca yang lainnya). Kode-kode ini merupakan kode standar yang dipakai oleh sebagian besar sistem komputer mikro

BAB 2 – Relasi Logik dan Fungsi Gerbang Dasar Kegiatan belajar 1 Relasi Logik 2.1Rangkuman

 Relasi logik adalah informasi dalam bentuk sinyal 0 dan 1 yang digunakan untuk membandingkan dua buah nilai dan saling memberikan kemungkinan hubungan secara logik, 0 berarti salah dan 1 berarti benar. Fungsi dasar relasi logik adalah fungsi AND, OR, dan Fungsi NOT

Kegiatan belajar 2 **Operasi Logik** 2.2Rangkuman

- Operator logika adalah operator yang digunakan untuk membandingkan dua buah nilai
- Aturan –aturan dalam logika sebagai berikut.
 - 1. Suatu keadaan tidak dapat dalam keduanya benar dan salah sekaligus.
 - 2. Masing-masing adalah benar/salah.
 - 3. Suatu keadaan disebut benar bila tidak salah
- Nilai logika adalah nilai benar atau salah. Jika sebelumnya pada relasi Logik yang dibandingkan adalah nilai dari data apakah benar (1) ataukah salah (0), maka pada operator logika bisa dikatakan yang dibandingkan adalah logika hasil dari relasi logik

Kegiatan belajar 3 **Fungsi Gerbang Dasar** 2.3Rangkuman

- Gerbang logika adalah rangkaian dasar yang membentuk komputer jutaan transistor di dalam mikroprosesor membentuk ribuan gerbang logika
- Gerbang dasar logika terdiri dan:
 - 1. Gerbang AND,
 - 2. Gerbang OR,
 - 3. Gerbang NOT
- Aljabar boolean merupakan bentuk logika simbolik yang menunjukkan bagaimana gerbang-gerbang logika beroperasi
- Gerbang NOT atau inverter merupakan gerbang yang berfungsi untuk membalikkan kondisi input

Kegiatan belajar 4 Fungsi Gerbang Kombinasi 2.4 Rangkuman

- Gerbang NAND merupakan kombinasi dan gerbang AND dengan gerbang NOT di mana keluaran gerbang AND dihubungkan ke saluran masukan dan gerbang NOT. Prinsip kerja dari gerbang NAND merupakan kebalikan dari gerbang AND. Outputnya merupakan kebalikan dari gerbang AND, yakni memberikan keadaan level logik 0 pada outputnya jika dan hanya jika keadaan semua inputnya berlogika 1
- Operasi gerbang NOR sama seperti dengan gerbang OR, tetapi bedanya keluarannya diinvcrterkan (dibalikkan)
- EX-OR singkatan dan Exclusive OR di mana jika input berlogika sama maka output akan berlogika 0 dan sebaliknya jika input berlogika beda maka output akan berlogika Rangkaian EX-OR disusun dengan menggunakan gerbang AND, OR, dan NOT.
- Gerbang EX-NOR akan memberikan output berlogika 0 jika inputnya berlogika beda, dan akan berlogika 1 jika kedua Inputnya berlogika sama

Kegiatan belajar 5 Penggunaan Operasi Logik 2.5 Rangkuman

- Untuk memudahkan proses pembelajaran tentang penggunaan operasi logic, kita dapat melakukan simulasi dengan menggunakan sebuah software yaitu *Electronic* Workbench
- Dengan menggunakan simulasi kita tidak perlu mengeluarkan banyak dana dan waktu untuk membeli komponen IC atau komponen lainnya
- Fungsi dari penggunaan operasi logik yaitu untuk menyelesaikan hubungan antara sinyal-sinyal masukan dengan sinyal-sinyal keluaran.

BAB 3 – Operasi Aritmatika Kegiatan belajar 1 Operasi Aritmatika 3.1Rangkuman

- Operasi logika dan operasi aritmetika merupakan awal dari seluruh kegiatan yang ada pada teknik mikroprosesor.
- Dasar operasi aritmetika adalah penjumlahan dan pengurangan. Operasi selanjutnya yang dikembangkan dari kedua operasi dasar tersebut adalah perkalian dan pembagian

Kegiatan belajar 2 Increment dan Decrement 3.2 Rangkuman

- Increment (bertambah) dan decrement (berkurang) adalah dua pengertian yang sering sekali digunakan dalam teknik mikroprosesor. Sedangkan dalam matematika pengertian increment artinya bertambah satu dan decrement artinya berkurang satu
- Decrement artinya bilangan yang nilai variabelnya dikurang 1

Kegiatan belajar 3

Operasi Aritmatika (Penjumlahan dan Pengurangan) dalam BCD 3.3Rangkuman

BCD merupakan penetapan langsung dari setara binernya. Kode tersebut juga dikenal sebagai kode BCD 8421 yang menunjukkan bobot untuk masing-masing kedudukan bitnya. Sebagai contoh, bilangan desimal 1996 dapat dikodekan menurut BCD sebagai

$$1996 = \frac{0001}{1} \quad \frac{1001}{9} \quad \frac{1001}{9} \quad \frac{0110}{6}$$

Pengurangan bilangan dalam kode BCD dikerjakan seperti pengurangan pada bilangan biner,yaitu dilakukan melalui langkah terbalik penjumlahan komplemen

BAB 4 – Arithmetic Logik Unit (ALU) Kegiatan belajar 1 **Arithmetic Logic Unit (ALU)**

4.1Rangkuman

- ALU (Arithmetic Logic Unit) adalah salah satu bagian dari sebua mikroproscsor yang berfungsiuntuk melakukan operasi hitungan aritmetika dan logika
- Contoh operasi aritmetika adalah operasi penjumlahan dan pengurangan, sedangkan contoh operasi logika adalah logika AND dan OR
- Tugas utama dari ALU adalah melakukan semua perhitungan anitmetika yang terjadi sesuai dengan instruksi program. ALU melakukan operasi aritmetika dengan dasar pertambahan, sedang operasi aritmetika yang lainnya seperti pengurangan, perkalian, dan pembagian, dilakukan dengan dasar penjumlahan

Kegiatan belajar 2 Rangkaian Half Adder dan Full Adder 4.2 Rangkuman

- Half adder adalah suatu rangkaian penjumlahan sistem bilangan biner yang paling sederhana
- Aturan-aturan untuk melakukan penambahan biner dua bit diilustrasikan sebagai berikut:

```
Aturan 1 0 + 0 = 0
Aturan 2 0 + 1 = 1
Aturan 3 1 + 0 = 1
Aturan 4 1 + 1 = 0 dan carry 1 = 10
```

 Full Adder adalah rangkaian elekronik yang bekerja melakukan perhitungan penjumlahan penuhdari dua buah bilangan biner yang masing-masing terdiri dari satu bit.

Kegiatan belajar 3

Rangkaian Penjumlahan dan Pengurangan (Ripple Carry Adder)

4.3Rangkuman

- ALU tidak memproses bilangan desimal melainkan bilangan biner.
- Ada lima aturan penjumlahan bilangan biner yang harus diingat, yaitu:

```
0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 0/+1 sebagai simpanan (carry)

1+1+1 = 1/+1 sebagai simpanan
```

• Untuk mengurangkan bilangan biner diberlakukan aturan sebagai berikut.

```
0 - 0 = 0

1 - 0 = 1

1 - 1 = 0

10 - 1 = 1
```

Kegiatan belajar 4 Transistor-Transistor Logic 4.4Rangkuman

- TTL adalah IC digital yang digunakan untuk peralatan komputer, kalkulatordan sistem kontrol elektronik. IC digital bekerja dengan dasar pengoperasian bilangan Biner logic (bilangan dasar 2), yaitu hanya mengenal dua kondisi saja 1(on) dan 0 (off)
- Jenis IC-TTL dibangun dengan menggunakan transistor sebagai komponen utamanya dan fungsinya digunakan untuk berbagai variasi Logic
- Semua mikroprosesor tidak hanya mampu melaksanakan operasi-operasi aritmetika saja, tetapijuga mampu melaksanakan operasi-operasi logika. Kedua operasi ini dilaksanakan di dalam Aritmatic Logic Unit (ALU) yang terdapat pada seluruh mikroprosesor

BAB 5 - Rangkaian Multiplexer, Decoder, Flip-Flop, dan Counter Kegiatan belajar 1 Multiplexer dan Decoder 5.1. Rangkuman

- Multiplexer adalah memilih 1 dan N (sumber) data masukan dan meneruskan data yang dipilih itu kepada suatu saluran informasi tunggal.
- Demultiplexer adalah suatu sistem yang menyalurkan sinyal biner (data serial) pada salah satu dari n (saluran) yang tersedia.
- Decoder berfungsi untuk mengidentifikasi atau mengenali suatu kode tertentu
- Encoder adalah kebalikan dari proses decoder di mana suatu pengkode atau encoder memiliki sejumlah masukan.

Kegiatan belajar 2 Rangkaian Flip-Flop (RS, JK, D) 5.2. Rangkuman

- Flip-flop adalah keluarga Multivibrator yang mempunyai dua keadaaan stabil atau disebutBis table Multivibrator
- Fungsi rangkaian flip-flop yang utama adalah sebagai memori (menyimpan informasi) 1 bit atausuatu sel penyimpan 1 bit.
- RS Flip-Flop adalah rangkaian flip-flop yang mempunyai 2 jalan keluaran (Q).
- JK flip-flop sering disebut dengan JK FF atauMaster Slave JK FF karena terdiri dari dua buah flip- flop
- D flip-flop adalah RS flip-flop yang ditambah dengan suatu inventer pada reset inputnya.
- CR5 flip-flop adalah clocked RS-FF yang dilengkapi dengan sebuah terminal denyut jam sistem.
- Toggle flip-flop (TFF) dapat dibentuk dari modifikasi clocked RSFF.DFF maupun JKFE TFF mempunyai sebuah terminal input T dan dua buah terminal output Qdan Qnot

Kegiatan belajar 3 **Shift Register** 5.3. Rangkuman

- Register adalah sekelompok flip-flop yang dapat dipakai untuk menyimpan dan untuk mengolahinformasi dalam bentuk linier
- Ada 2 jenis utama Register yaitu:
 - 1. Storage Register (register penyimpan)
 - 2. Shift Register (register geser)
- Register penyimpan digunakan apabila kita hendak menyimpan informasi untuk sementara, sebelum informasi itu dibawa ke tempat lain
- Shift Register adalah suatu register yang informasinya dapat bergeser (digeserkan).
- Ada 4 Shift Register yaitu sebagai berikut :
 - a. Register Geser SISO
 - b. Register Geser SIPO
 - c. Register Geser PIPO
 - d. Register Geser PISO

Kegiatan belajar 4 Rangkaian Counter 5.4. Rangkuman

- Counter (pencacah) adalah alatrangkaian digital yang berfungsi menghitung/mencacah banyaknyadenyut jam sistem atau juga berfungsi sebagai pembagi frekuensi, pembangkit kode biner, Gray
- Counter juga digunakan untuk menghasilkan sinyal kontrol dan timing. Counter yang dikendalikan oleh clock frekuensi tinggi dapat digunakan untuk menghasilkan sinyal yang frekuensinya adalah kelipatan frekuensi clock awal

Ada 2 jenis pencacah yaitu sebagai berikut.

- Pencacah sinkron (synchronous counters) atau pencacah jajar.
- o Pencacah tak sinkron (asynchronous counters) yang kadang-kadang disebut juga pencacah deret (series counters) atau pencacah kerut (ripple counters).

DAFTAR PUSTAKA

Kadir, A., & Triwahyuni, T. C. (2003). Pengenalan Teknologi Informasi. Yogyakarta.

Kristanto, A. (2003). *Jaringan Komputer*. Yogyakarta: Graha Ilmu.

Purwanto, E. B. (2011). Teori dan Aplikasi Sistem Digital. Yogyakarta: Graha Ilmu.

Stalling, W. (2003). Computer Organization And Architecture. Canada: Alan R. Apt.

Heriyanto, dkk. (2014), Sistem Komputer. Jakarta: Yudhistira

Abdurohman Maman. (2014), Organisasi & Arsitektur Komputer. Bandung: Informatika

Wahidin. (2007), Jaringan Komputer Untuk Orang Awam. Jakarta: Maxikom

Online:

Andri. 2014. "Gerbang Logika". 22November 2014. http://e-dutk.blogspot.com/2012/09/gerbang-logika. 12November 2014. http://e-dutk.blogspot.com/2012/09/gerbang-logika.html

Hardiyanto, Zaldi. 2013 "Gerbang Logika". 22November 2014. www.elektronikabersama.web.id

Mandiri, Puspa. 2011. "Multiplexer dan Demultiplexer" . 24 November 2014 http://mentaripermadi.blogspot.com/2011/12/multiplexer-dan-demultiplexer.html

Aji .2013. "Pengertian Decoder". 5 Desember 2014. http://tav53.blogspot.com/2013/05/tes.html

Storr Wayne. 2010. "BCD to 7 Segment Display Decoder" 5 Desember 2014 http://www.electronics-tutorials.ws/combination/comb_6.html

Swavidiana. 2011. "Decoder" 6 Desember 2014 http://swavidiana.blogspot.com/2011/11/decoder_18.html

Life, Dark'o. 2010 , "Flip-Flop" 6 Desember 2014 http://eldigezone.blogspot.com/2010/05/flip-flop.html

Eldi. 2010. "Register" 6 Desember 2014 http://tkj-eldilog.blogspot.com/2010/05/register.html

SISTEM KOMPUTER

