# **Test Compression**

- Introduction
- Software Techniques
- Hardware Techniques
  - Test Stimulus Compression
  - Test Response Compaction(TRC)\*
- Industry Practices
- Conclusion



#### What is Good TRC?

#### 1. High Compaction Ratio (CR)

$$CR = \frac{Original\ Data\ Volume}{Compacted\ Data\ Volume}$$

#### 2. Low Aliasing

 $PAL = \frac{number\ of\ faulty\ outputs\ that\ generate\ gold\ signature}{total\ number\ of\ faulty\ outputs}$ 

- 3. Tolerate/mask unknown (X) outputs
  - Unknown outputs come from memory or non-scan flip-flop
  - NOTE: this is different from unspecified bit (X) during ATPG
- 4. Diagnosis support (not in this lecture)

Compacted test responses of a fault is different from those of another fault

# **Test Response Compactor (TRC)**





- Space compaction
  - reduces output pins



Compaction Ratio = 
$$\frac{5}{3}$$

- Time compaction
  - reduces output length



Compaction Ratio = 
$$\frac{6}{1}$$

# **Test Compression**

- Introduction
- Software Techniques
- Hardware Techniques
  - Test Stimulus Compression
  - Test Response Compaction
    - Space Compaction
      - X-compact
    - \* Time Compaction
      - MISR
    - Other X-handling techniques
      - X-blocking
      - X-masking
- Industry Practices
- Conclusion



# Single XOR-Tree

- 1. High CR
- 2. Bad PAL
  - Detects odd number of errors, not even
- 3. What happens if X?

$$CR = \#CUT$$
 outputs

$$PAL = \frac{1}{2}$$



## Single XOR Tree Can NOT Tolerate X

Idea: can we add more trees?

# X-compact [Mitra 04]

- Multiple XOR trees can detect errors in presence of X
- Example (WWW. Fig. 6.24)
  - Scan chain (SC) 6 produces unknown 'X'
  - The other 7 scan chains are not contaminated



# X-compact Matrix, M

- Each row represents a scan chain
- Each column represents an compactor output
- $M_{i,j}$  = 1 means  $j_{th}$  compactor outputs depends on  $i_{th}$  scan output







$$S^T \times M = O^T$$

# X-compact Matrix, M

(WWW Theorem 6.4) Any 1, 2 or odd number of errors at same cycle are detected if every row in *M* has distinct odd number of 1's.

- 1) Single error is detected because no row is all zeros
- 2) Two errors are detected because adding any two rows produces non-zero results since no two rows are the same
- 3) Odd number of errors are detected because adding odd number of rows produces non-zero results (since all rows has odd 1's)

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$



#### Theorem for X-tolerance

- X-compact guarantees to detect 1 error from any scan chain with 1 unknown (X) from any other scan chain at same cycle
  - If and only if submatrix obtained by removing that row and columns having 1's
  - does not contain a row of all 0s
- Example: SC 6 produces X





#### What is CR?

- Every row in the X-compact matrix is nonzero, distinct
  - contains odd number of 1's

| number of compactor outputs (#out) | max number of scan chains (#sc)   | CR   |
|------------------------------------|-----------------------------------|------|
| 5                                  | C <sup>5</sup> <sub>3</sub> =10   | 2    |
| 6                                  | C <sup>6</sup> <sub>3</sub> =20   | 3.3  |
| 7                                  | C <sup>7</sup> <sub>3</sub> =35   | 5    |
| 8                                  | C <sup>8</sup> <sub>3</sub> =56   | 7    |
| 9                                  | C <sup>9</sup> <sub>5</sub> =126  | 14   |
| 10                                 | C <sup>10</sup> <sub>5</sub> =252 | 25.2 |

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix} - C_3^5 = 10$$

$$CR = \frac{Original\ Data}{Compacted\ Data} = \frac{\#SC}{\#Out}$$

#### **QUIZ**

Q: Which scan chain error we can NOT detect, when there are 2 X's from SC5 and SC6?

#### **ANS:**



$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

## **Cannot Tolerate Many X at Same Time**

# **Test Compression**

- Introduction
- Software Techniques
- Hardware Techniques
  - Test Stimulus Compression
  - Test Response Compaction
    - Space Compaction
      - X-compact
    - Time Compaction
      - MISR
    - Other X-handling techniques
      - X-blocking
      - X-masking
- Industry Practices
- Conclusion



### Review: MISR (video 14.3)

- MISR (multiple input signature register) is similar to LFSR
  - except parallel inputs feed XOR between stages



# CR=? Aliasing=?

- MISR degree = N, input bit sequence length = m
  - Signature is N bits

$$CR = \frac{Original\ Data}{Compacted\ Data} = \frac{N \times m}{N} = m$$

$$PAL \approx 2^{-N}$$
 (see 14.3)



## MISR has High CR and Low PAL

### **QUIZ**

Q: What is signature if one bit is changed to X 'unknown'? ANS:



**MISR** is **NOT** X-tolerant

# **Test Compression**

- Introduction
- Software Techniques
- Hardware Techniques
  - Test Stimulus Compression
  - Test Response Compaction
    - Space Compaction
      - X-compact
    - Time Compaction
      - MISR
    - \* Other X-handling techniques
      - X-blocking
      - X-masking
- Industry Practices
- Conclusion



# X-blocking (or X-bounding)

- Add extra DFT inside CUT to block X before reaching compactor
  - Area overhead and extra delay
- X source can be
  - non-scan FF, memory, multi-cycle paths, false paths\*...



<sup>\*</sup>multi-cycle paths needs more than 1 cycle to finish computation so test responses can be X \*false paths are not activated by normal operation so test responses can be X

# X-masking

- Add extra mask between CUT and compactor
- Example: mask outputs by OR gates
  - 1 = mask
  - 0 = pass through



# **Summary**

- Test Response Compaction
  - Space Compaction
    - \* XOR-tree, X-compact
  - Time Compaction
    - \* MISR
      - High CR, Low PAL
      - Cannot tolerate X
  - X-bounding, X-masking
    - Can mask many X



# X-Masking + MISR/XOR-tree is Most Popular Solution

What is Prob. of Aliasing for X-compactor?

(Theorem 6.4) Any 1, 2 or odd number of errors at same scan-out cycle are detected if every row in *M* has distinct odd number of 1's.



- X source can be multi-cycle paths, false paths
- Q: why multi-cycle paths generate X in test mode?
- Q: why false paths generate X in test mode?



<sup>\*</sup>multi-cycle paths needs more than 1 cycle to finish computation so test responses can be X \*false paths are not activated by normal operation so test responses can be X

- This is a hybrid space-time compactor
- Q: What are advantages and disadvantages?



Q: In X-compact matrix, why cannot we have even number of 1's in each row?

```
0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

1 0 0 1 0

1 0 0 0 1
```

#### **Theorems for Error Detection**

- (WWW Theorem 6.3)
  - If only a single scan chain produces an error at any scan-out cycle (scan slice), the X-compactor is guaranteed to produce errors if and only if no row of the X-compact matrix contains all 0's.
- (WWW Theorem 6.4)
  - Errors from any one, two or an odd number of scan chains at the same scan-out cycle are guaranteed to be detected
    - \* if every row in the X-compact matrix is nonzero, distinct and contains an odd number of 1's.

# **How to Design X-compactor?**

- (WWW Theorem 6.4)
  - Errors from any one, two or an odd number of scan chains at the same scan-out cycle are guaranteed to be detected
  - if every row in the X-compact matrix is nonzero, distinct and contains an odd number of 1's.

| max number of scan chains (#sc)   | number of compactor outputs (#out) |
|-----------------------------------|------------------------------------|
| C <sup>5</sup> <sub>3</sub> =10   | 5                                  |
| C <sub>3</sub> =20                | 6                                  |
| C <sup>7</sup> <sub>3</sub> =35   | 7                                  |
| C <sub>3</sub> =56                | 8                                  |
| C <sub>5</sub> =126               | 9                                  |
| C <sup>10</sup> <sub>5</sub> =252 | 10                                 |

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$CR = \frac{Original\ Data}{Compressed\ Data} = \frac{\#SC}{\#Out}$$

### Time v.s. Space Compaction

- D: original test responses
- C: compacted test responses
- Compactor converts D matrix (m x n) to C matrix (p x q)
  - Column index referred to as time dimension
  - Row index referred to as space dimension
- Space compression: p < m, q=n</li>
- Time compression: q < n</li>

$$C = \Phi(D)$$

