Salutions to Exercises on Sequences and Serves

Let an = In. Need to show that freevery M>0 there exists NCM) such that an >M for all n> N(M).

Let M>0 and N(M) = M2. Then for all $n \ge N(M) = M^2$ it follows that $\sqrt{n} \ge M$.

1.2. (1)
$$U_{n} = \frac{n^{2} + 3n - 4}{4n^{2} + 5} = \frac{1 + \frac{3}{n} - \frac{4}{n^{2}}}{4 + \frac{5}{n^{2}}}$$
. Define $f(x) = \frac{1 + 3x - 4x^{2}}{4 + 5x^{2}}$. Note $f(\cdot)$ is continuous out 0 and $f(0) = \frac{1}{4}$. \Rightarrow $\lim_{n \to \infty} f(\frac{1}{n}) = \lim_{n \to \infty} f(\frac{1}{n}) = \frac{1}{4}$.

(2) $u_n = \frac{\sin(n^2)}{n}$. Now, $-\frac{1}{n} \leq u_n \leq \frac{1}{n}$. Let E>O.

Net Since 1 ->0 as n>00 et follows that INE)

buch that $\frac{1}{n} < \varepsilon + n > N(\varepsilon)$ [infact $N(\varepsilon) > 2 \cdot \lceil \frac{1}{\varepsilon} \rceil$].

Hence,

Tun < 1 < E, + n > N(E).

(3)
$$u_n = \frac{n^4 + 7n}{5n^4 + \frac{\cos(n^2)}{n} + \frac{1}{n}} = \frac{1 + \frac{7}{n^3}}{5 + \frac{\cos(n^2)}{n^4} - \frac{1}{n^5}}$$

First, show that $\frac{7}{n^3} \rightarrow 0$, $\frac{\cos(h^2)}{n^4} \rightarrow 0$, $\frac{1}{n^5} \rightarrow 0$ as $n \rightarrow \infty$. Hence $u_n \rightarrow \frac{1}{5}$ using properties $\lim_{n \rightarrow \infty} (a_n + b_n) = \lim_{n \rightarrow \infty} a_n + \lim_{n \rightarrow \infty} b_n$ and $\lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \lim_{n \rightarrow \infty} a_n + \lim_{n \rightarrow \infty} b_n \neq 0$ and $\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} a_n + \lim_{n \rightarrow \infty} b_n \neq 0$.

(A)
$$u_n = \frac{a^n - b^n}{a^n + b^n} = \frac{1 - \left(\frac{b}{a}\right)^n}{1 + \left(\frac{b}{a}\right)^n} = \frac{\left(\frac{a}{b}\right)^n + 1}{\left(\frac{a}{b}\right)^n + 1}$$

If $a = b$ then $u_n = 0 \Rightarrow u_n \to 0$ as $n \to \infty$.

If $a < b$ then $\left(\frac{a}{b}\right)^n \to 0 \Rightarrow u_n \to -1$ as $n \to \infty$.

If $b > 0$ then $\left(\frac{a}{b}\right)^n \to 0 \Rightarrow u_n \to 1$ as $n \to \infty$.

1.3. (1)
$$a_{n} = \frac{2n+1}{n^{2}(n+1)^{2}} = \frac{(n+1)^{2}-n^{2}}{n^{2}(n+1)^{2}} = \frac{1}{n^{2}} - \frac{1}{(n+1)^{2}}$$

$$\Rightarrow \sum_{n=1}^{\infty} a_{n} = b_{1} - \lim_{n \to \infty} b_{n} = b_{1} = 1.$$
(2) $a_{n} = \frac{2^{n}+3^{n}}{6^{n}} = \frac{1}{3^{n}} + \frac{1}{2^{n}} = \frac{1}{2} \cdot \frac{3-1}{3^{n}} + \frac{2-1}{2^{n}}$

$$= \frac{1}{2} \left[\frac{1}{3^{n-1}} - \frac{1}{3^{n}} \right] + \left[\frac{1}{2^{n-1}} - \frac{1}{2^{n}} \right]$$

$$= \left(\frac{1}{2} \cdot \frac{1}{3^{n-1}} + \frac{1}{2^{n-1}} \right) - \left(\frac{1}{2} \cdot \frac{1}{3^{n}} + \frac{1}{2^{n}} \right)$$

$$\Rightarrow b_{n+1}$$

$$\Rightarrow b_{n} \qquad b_{n+1}$$

$$\Rightarrow b_{n+1} \qquad b_{n+1}$$

$$\Rightarrow b_{n+1} \qquad b_{n+1} \qquad b_{n+1}$$

$$\Rightarrow a_{n} = \frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left[\frac{1}{2^{n-1}} - \frac{1}{2^{n+1}} \right]$$
Let $b_{n} = \frac{1}{2} \cdot \frac{1}{(2n-1)^{2}} \Rightarrow \sum_{n=1}^{\infty} a_{n} = b_{1} - \lim_{n \to \infty} b_{n}$

Let
$$b_n = \frac{1}{2} \cdot \frac{1}{(2n-1)!} \Rightarrow \sum a_n = b_1 - k_0 \cdot b_0$$

$$\Rightarrow \sum a_n = \frac{1}{2} \cdot 1 = \frac{1}{2} \cdot 1$$

$$= \frac{\log ((1+\frac{1}{n})^n (1+n))}{\log n^n \log (n+1)^{n+1}} \Rightarrow \frac{\log (\frac{(n+1)^n}{n^n})}{\log n^n \log (n+1)^{n+1}}$$

$$= \frac{1}{\log n^n} - \frac{1}{\log (n+1)^{n+1}} \Rightarrow \frac{\cos a_n}{\log 2^2} = \log_2 \sqrt{e}.$$

- (1) $a_n = \frac{n^2}{2^n} \Rightarrow a_{n+1} = \frac{(n+1)^2}{2^{n+1}} \Rightarrow \frac{a_{n+1}}{2^n} = \left(\frac{n+1}{n}\right)^2 \cdot \frac{2^n}{2^{n+1}}$) lim ant = 1 > Zan is ofw n >00 an = 2 > convergent from ratio test.
- $a_n = \frac{|\sin nx|}{n^2}$. $0 \le a_n \le \frac{1}{n^2}$. Companison test emplies that Zan is convergent since $\leq \frac{1}{m}$ is.
- (3) $a_n = \frac{n!}{(n+2)!} = \frac{1}{(n+1)(n+2)} \leq \frac{1}{n^2} \Rightarrow \leq a_n \text{ is convergent.}$
- (4) $\frac{0}{2} \frac{1}{1000} = \frac{1}{1000} \frac{00}{N=1} \frac{1}{1000}$ Let $a_n = \frac{1}{n+\frac{1}{1000}}$ and $b_n = \frac{1}{n} \Rightarrow \frac{a_n}{b_n} = \frac{n}{n+\frac{1}{1000}}$

Since liman = 1 and \leq by diverges it follows from the limit comparison test that

2 1 diverges.

- (5) $a_n = \frac{(n!)^2}{(2n)!} \Rightarrow \frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(2n+2)!} \cdot \frac{(2n)!}{(n!)^2}$
 - $\frac{a_{n+1}}{a_n} = \frac{(n+1)^2}{2(n+1)(2n+1)} = \frac{n+1}{4(n+\frac{1}{2})} \Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{4} < 1.$
 - ⇒ \(\left(\frac{n!}{2n!}\) is convergent from the ratio test.
- Use ratio test.

2.1. No. Let $a_n = n$ and $b_n = -1$, both lower bounded. bounded but $c_n = a_n b_n = -n$ is that lower-bounded.

2.2. Trivial.

2.3. i) If $\exists n_0$ such that $u_n = u_{n_0}$, $n \ge n_0$ then for every $\epsilon > 0$, $t_{n_0} - u_{n_0} = 0 < \epsilon + n \ge n_0$.

Jun Juno cos n > 00.

7i) If the integer requence u_n converges than there exists $l \in \mathbb{R}$ (since u_n are altereds) such that $f_{u_n} - l < E$, $n \ge N(E)$.

If l is not an integer than for every integer $|l-u_n|>0 \Rightarrow contradiction$. Hence, l is an integer. If $u_n\neq l$ then $|u_n-l|>1 \Rightarrow l=u_n + n > N(\varepsilon)$. The result follows by setting $l=u_n = N(\varepsilon)$.

2.4. Note $2u_n < u_{n+1} + u_{n+1} \Leftrightarrow u_n - u_{n+1} \leq u_{n+1} - u_n$.

Hence, $v_{n+1} \leq v_n \Rightarrow v_n$ is a monotic sequence.

Since, $v_n + v_n \leq v_n \Rightarrow v_n = v_n \leq v_n \leq$

Now, suppose $\lim_{n\to\infty} v_n = l \neq 0$. Let $\varepsilon < |\ell|$. $\exists N(\varepsilon)$ such that $|f_n-\ell| < \varepsilon \quad \forall n > N(\varepsilon)$

→ l-ε < Vn < l+ε, + n>NE)

 $\Rightarrow u_{n+1} < u_{n+1} < u_{n+1} + \epsilon, \forall n \geq N(\epsilon)$

 $\Theta \Rightarrow U_n + m(1-\epsilon) < U_{n+m} < U_n + m(1+\epsilon), \forall n > N(\epsilon).$

If $l>0 \Rightarrow l-\epsilon>0 \Rightarrow U_{n+m} > U_{n+m}(l-\epsilon)$ $\Rightarrow \lim_{n\to\infty} U_{n+3} = \infty$. Similarly, $U_{n+m} \rightarrow -\infty$ if l<0.

> Contradicting boundedness of U.

Hence, l=0.

2.5. Sinc Let u- l as n->00. Let E>0. There exists N(E) Such that

| Un-l | < E + n > N(e).

Since V is a subsequence $V_n = \mathcal{U}_{k(n)}$ for some $k: \mathbb{N}^* \to \mathbb{N}^*$ such $k(n) \geq n$.

 $|V_n-L|=|u_{le(n)}-L|<\varepsilon, \forall n\geq N(\varepsilon)$ since ken) $\geq n$

 \Rightarrow $V_h \rightarrow l$ $cos n \rightarrow cos$.

Let V be a subsequence defined by 2.6.

Vn = 160+3

Note Vn is a subsequence of both (Uzn+1) and (Usn) => Un converges to a limit l' (which is unique). From Poroblem 2:5. et pollous that (Uznt) and (Uzn) conveye to l. Similarly (Uzn) and (Uzn) conveye to l [By considering $V_n = U_{6n}$]. Hence, (Uzn+1) and (Uzn) [as well as (Uzn)] converge to limit L. Now, the result can be easily proved by constructing N(E) (An agiven E>O) such that [Un-l) < E, 4n > N(E).

3.2. 2) Suppose U+V is conveyent. Then

V = (U+v)-U > V is convergent (since linear combination of convergent sequences is convergent). > contradiction. > u+v is divergent.

ii) Nothing can be said.

Ex1: $u_n = \frac{1}{h}$, $v_n = n \Rightarrow (u_n \cdot v_n) = 1$ (convergent). $E\times 2$: $U_n = \frac{1}{n}$, $V_n = n^2 \implies (u_n \cdot V_n) = n$ (divergett). 3.1. Es for some B>0. Next, note $V_n + U_n > V_n - B$ If Vn diverges to +00 then Un+ Vn diverges to +00. Suppose I< l'and let E>0 be such that E<1-1. $|u_n-l|<\xi_2$ and $|v_n-l'|<\xi_2+n\geqslant N(\epsilon)$ For all ng N(E):

For all ng N(E):

Then the result is truial. Suppose (<1, >) l-2/< $u_n < l+$ 4/2 and l'-8/2 < Vn < l'+8/2 Un < l+ 4/2 < l-4/2 < Vn. > Win = Un . > | Win-l | < E/2 < E + n > N(E). $\Rightarrow \lim_{n\to\infty} w_{in} = 1$ Won = Vn => |Won-ell < E + n > N(E). Also =>) lim Wsn = l']. The second Hence, for this case, lim win = min(l,l') and $\lim_{n\to\infty} \omega_{n} = \max(l, l')$. The cases l=l' and l>l' can be shown similarly.

3.4. Let V be the convergent subsequence of \mathcal{U} . Since all convergent sequences are bounded V is also bounded. Specifically, V is appenbounded, that is, $V_n \leq B$ for some $B \geq 0$. where $V_n = \mathcal{U}_{k(n)}$ for some $b \geq 0$. where $V_n = \mathcal{U}_{k(n)}$ for some $b \geq 0$.

Hence, Un < Ukin) = Vn < B.

=> Up is bounded.

>> u is converging (since it is monotonic).