تمرین سری هشتم

chapter 6 of the book. start page:

book: 344 solution: 71

رمساله ۱

در یک ترانزیستور اثر میدان $N_a=10^{18}cm^{-3}$ از جنس Si آلایش ناحیه p^+ به میزان n-JFET از جنس n-JFET ار میدان $N_a=10^{18}cm^{-3}$ است. اگر عرض کانال $N_a=2\mu$ باشد مقدار $N_b=10^{16}cm^{-3}$ باشد تا پینچ آف با در نظر گرفتن $N_b=10^{16}cm^{-3}$ اتفاق بیفتد؟ با $N_a=10^{16}cm^{-3}$ در چه ولتاژی از $N_a=10^{18}cm^{-3}$ باشد تا پینچ آف با در نظر گرفتن $N_b=10^{18}cm^{-3}$ اتفاق بیفتد؟ با $N_b=10^{18}cm^{-3}$ در چه ولتاژی از $N_b=10^{18}cm^{-3}$ در جه ولتاژی از $N_b=10^{18}cm^{-3}$ در جه ولتاژی از $N_b=10^{18}cm^{-3}$ باشد تا پینچ آف با در نظر گرفتن $N_b=10^{18}cm^{-3}$ باشد تا پینچ آف با در نظر گرفتن $N_b=10^{18}cm^{-3}$ باشد تا پینچ آف با در نظر گرفتن $N_b=10^{18}cm^{-3}$ باشد تا پینچ آف با در نظر گرفتن $N_b=10^{18}cm^{-3}$ باشد تا پینچ آف با در نظر گرفتن $N_b=10^{18}cm^{-3}$

مساله ۲

 $V_G=0,-2,-4,-6$ در مساله قبل اگر Z/L=10 و Z/L=10 و $U_n=1000$ باشد مقدار $U_n=1000$ را در ولتاژهای $U_n=1000$ در مساله قبل اگر $U_n=1000$ رسم کنید.

√ مساله ۳

برای مساله قبل مقدار I_D را بر حسب I_D برای ولتاژهای $I_C = 0, -2, -4, -6$ تا قبل از نقطه اشباع محاسبه و رسم کنید.

مساله ۲

در یک ترانزیستور اثر میدان n–JFET از جنس Si در دمای Si در دمای n–JFET و n–JFET در یک ترانزیستور اثر میدان $I_D(V_D,V_G)$ از جنس $V_G=0,-1,-2,-3,-4,-5$ و $V_D=[0,5]$ را $V_D=10$ مقدار $V_C=0$ مقدار محاسبه و رسم کنید.

مساله ۵

با استفاده از رابطه موبیلیتی وابسته به میدان مقدار $I_D(V_D,V_G)$ را برای مساله قبل و طول گیت 0.25,0.50,1.0,2.0 و $V_G=0$ میکرومتر در ولتاژ $V_G=0$ محاسبه و رسم کنید. رابطه موبیلیتی وابسته به میدان به صورت زیر است.

$$\mu(\varepsilon) = \frac{v_d}{\varepsilon} = \frac{\mu_0}{1 + (\mu \varepsilon / v_s)}$$

در رابطه فوق μ_0 موبیلیتی در میدان کوچک و $v_s=10^7 cm/s$ سرعت اشباع استو فرض کنید $\varepsilon=V_D/L$ و جریان در بیشینه خود به اشباع می رسد. در مورد مزایای افزاره با کانال کوتاه بحث کنید.

در یک ترانزیستور اثر میدان JFET جریان درین I_D تقریباً به صورت خطی با ولتاژ درین V_D در ولتاژهای کم V_D تغییر میکند.

آ) با استفاده از بسط دوجملهای و $1 > V_D/(-VG) < 1$ رابطه I_D رابطه کنید.

ب) نشان دهید رابطهای که رسانایی کانال I_D/V_D در بازه خطی به صورت زیر است.

$$g_m = 2aZN_d\mu_n q/L \left[1 - \left(-\frac{V_G}{V_P}\right)^{1/2}\right]$$

 V_G در چه ولتاژی از گیت V_G ترانزیستور خاموش می شود و رسانایی کانال صفر می شود؟