CS150A Database

Wenjie Wang

School of Information Science and Technology
ShanghaiTech University

Nov.4, 2024

Today:

- Query Optimization I:
 - The Plan Space

Readings:

 Database Management Systems (DBMS), Chapter 15

Architecture of a DBMS

Recall from Last Lecture

Query Optimization is Magic

- The bridge between a declarative domain-specific language...
 - "What" you want as an answer
- ... and custom imperative computer programs
 - "How" to compute the answer
- In 2018 terms:
 - This is Al-driven Software Synthesis
 - Similar to cutting edge AI work today
 - Optimization + heuristic pruning
 - Research exploring the use of modern Al techniques to improve that pruning (e.g. Deep Reinforcement Learning)

Invented in 1979 by Pat Selinger et al.

- We'll focus on "System R" ("Selinger") optimizers
- "Cascades" optimizer is the other common one
 - Later, with notable differences, but similar big picture

Access Path Selection in a Relational Database Management System

```
P. Griffiths Selinger
M. M. Astrahan
D. D. Chamberlin
R. A. Lorie
T. G. Price
```

IBM Research Division, San Jose, California 95193

Query Parsing & Optimization

- query parser turns the syntax of the query into some abstract syntax tree
- query rewriter puts the query into canonical form (also a abstract syntax tree)
- query optimizer turns abstract representation of the query into an efficient plan
- Cost estimator is going to look at the catalog manager of the database to get statistics about the different tables in the query, to help compute what the costs are
- plan generator is going to use the catalog manager to get the schemas of the tables to figure out exactly what is a legal query plan

Query Parsing & Optimization Part 2

- Query parser
 - Checks correctness, authorization
 - Generates a parse tree
 - Straightforward

Query Parsing & Optimization Part 3

- Query rewriter
 - Converts queries to canonical form
 - Weak spot in many open-source DBMSs

Query Parsing & Optimization Part 4

- "Cost-based" Query Optimizer
 - Optimizes 1 query block at a time
 - Select, Project, Join
 - GroupBy/Agg
 - Order By (if top-most block)
 - Uses catalog stats to find least-"cost" plan per query block
 - "Soft underbelly" of every DBMS
 - Sometimes not truly "optimal"

Query Optimization Overview

- Query block can be converted to relational algebra
- Rel. Algebra converts to tree
- Each operator has implementation choices
- Operators can also be applied in different orders!

(Reserves \bowtie Sailors)

Query Optimization: The Components

- Three beautifully orthogonal concerns:
 - Plan space:
 - for a given query, what plans are considered?
 - Cost estimation:
 - how is the cost of a plan estimated?
 - Search strategy:
 - how do we "search" in the "plan space"?

Query Optimization: The Goal

- Optimization goal:
 - Ideally: Find the plan with least actual cost.
 - Reality: Find the plan with least estimated cost.
 - And try to avoid really bad actual plans!

Plan Space

- We will get a feel for the plan space
- Explore one simple example query

Relational Algebra Equivalences: Selections

Selections:

- $\sigma_{c1 \wedge ... \wedge cn}(R) \equiv \sigma_{c1}(...(\sigma_{cn}(R))...)$ (cascade)
- $\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$ (commute)

Relational Algebra Equivalences: Projections

- Selections:
 - $\sigma_{c1 \wedge ... \wedge cn}(R) \equiv \sigma_{c1}(...(\sigma_{cn}(R))...)$ (cascade)
 - $\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$ (commute)
- Projections:
 - $\pi_{a1}(R) \equiv \pi_{a1}(...(\pi_{a1, ..., an-1}(R))...)$ (cascade)

Relational Algebra Equivalences: Cartesian Product

Selections:

- $\sigma_{c1 \wedge ... \wedge cn}(R) \equiv \sigma_{c1}(...(\sigma_{cn}(R))...)$ (cascade)
- $\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$ (commute)

Projections:

- $\pi_{a1}(R) \equiv \pi_{a1}(...(\pi_{a1, ..., an-1}(R))...)$ (cascade)
- Cartesian Product
 - $R \times (S \times T) \equiv (R \times S) \times T$ (associative)
 - $R \times S \equiv S \times R$ (commutative)

Are Joins Associative and Commutative?

- After all, just Cartesian Products with Selections
- You can think of them as associative and commutative...
- ...But beware of join turning into cross-product!
 - Consider R(a,z), S(a,b), T(b,y)
 - (S $\bowtie_{b=b}$ T) $\bowtie_{a=a}$ R $\not\equiv$ S $\bowtie_{b=b}$ (T $\bowtie_{a=a}$ R) (not legal!!)
 - (S $\bowtie_{b=b}$ T) $\bowtie_{a=a}$ R $\not\equiv$ S $\bowtie_{b=b}$ (T \times R) (not the same!!)
 - (S $\bowtie_{b=b}$ T) $\bowtie_{a=a}$ R \equiv S $\bowtie_{b=b \land a=a}$ (T \times R) (the same!!)

Join ordering, again

- Similarly, note that some join orders have cross products, some don't
- Equivalent for the query above:

 $R \bowtie a=a (T \bowtie b=b S)$

$$(R \times T) \bowtie a=a \land b=b S$$

Some Common Heuristics: Selections

- Selection cascade and pushdown
 - Apply selections as soon as you have the relevant columns
 - Ex:
 - π_{sname} ($\sigma_{\text{(bid=100 } \land \text{ rating } > 5)}$ (Reserves $\bowtie_{\text{sid=sid}}$ Sailors))
 - π_{sname} ($\sigma_{\text{bid=100}}$ (Reserves) $\bowtie_{\text{sid=sid}} \sigma_{\text{rating} > 5}$ (Sailors))

```
Sailors (<u>sid: integer</u>, sname: text, rating: integer, age: real)
Reserves (<u>sid: integer</u>, bid: integer, day: date, rname: text)
```

Some Common Heuristics: Projections

- Projection cascade and pushdown
 - Keep only the columns you need to evaluate downstream operators
 - Ex:
 - $\pi_{\text{sname}}\sigma_{\text{(bid=100 }\land \text{ rating }>5)}$ (Reserves $\bowtie_{\text{sid=sid}}$ Sailors)
 - $\pi_{\text{sname}} (\pi_{\text{sid}}(\sigma_{\text{bid}=100} (\text{Reserves}))) \bowtie_{\text{sid}=\text{sid}} \pi_{\text{sname},\text{sid}} (\sigma_{\text{rating}} > 5 (\text{Sailors})))$

```
Sailors (<u>sid: integer</u>, <u>sname</u>: text, <u>rating</u>: integer, <u>age</u>: real)
Reserves (<u>sid: integer</u>, <u>bid: integer</u>, <u>day</u>: date, <u>rname</u>: text)
```

Some Common Heuristics

- Avoid Cartesian products
 - Given a choice, do theta-joins rather than cross-products
 - Consider R(a,b), S(b,c), T(c,d)
 - Favor (R ⋈ S) ⋈ T over (R x T) ⋈ S

Physical Equivalences

- What algorithms can be swapped in for what operators
 - about implementation details
- Base table access, with single-table selections and projections
 - Heap scan
 - Index scan (if available on referenced columns)
- Equijoins
 - Block (Chunk) Nested Loop: simple, exploits extra memory
 - Index Nested Loop: often good if 1 rel small and the other indexed properly
 - Sort-Merge Join: good with small memory, equal-size tables
 - Grace Hash Join: even better than sort with 1 small table
 - Or Hybrid if you have it
- Non-Equijoins
 - Block Nested Loop

Schema for Examples

```
Sailors (<u>sid: integer</u>, sname: text, rating: integer, age: real)
Reserves (<u>sid: integer</u>, bid: integer, day: date, rname: text)
```

- Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
 - Assume there are 100 boats
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
 - Assume there are 10 different ratings
- Assume we have 5 pages to use for joins.

Motivating Example: Plan 1

Here's a reasonable query plan:


```
SELECT S.sname
  FROM Reserves R, Sailors S
WHERE R.sid=S.sid
  AND R.bid=100
AND S.rating>5
```

Motivating Example: Plan 1 Cost

- Let's estimate the cost:
- Scan Sailors (500 IOs)
- For each page of Sailors,
 Scan Reserves (1000 IOs)
- Total: 500 + 500*1000
 - 500,500 IOs

Motivating Example: Plan 1 Cost Analysis

- Cost: 500+500*1000 I/Os
- By no means the worst plan!
- Misses several opportunities:
 - selections could be 'pushed' down
 - no use made of indexes
- Goal of optimization:
 - Find faster plans that compute the same answer.

Selection Pushdown

Selection Pushdown, cont

500,500 IOs

Cost?

Query Plan 2 Cost

- Let's estimate the cost:
- Scan Sailors (500 IOs)
- For each pageful of high-rated Sailors, Scan Reserves (1000 IOs)
- Total: 500 + ???*1000
- Total: 500 + 250*1000

Decision?

500,500 IOs

250,500 IOs

More Selection Pushdown

More Selection Pushdown, cont

250,500 IOs

Cost???

Query Plan 3 Cost Analysis

Let's estimate the cost:

- Scan Sailors (500 IOs)
- For each pageful of high-rated Sailors, Do what? (??? IOs)
- Total: 500 + 250*???
- Total: 500 + 250*1000!

More Selection Pushdown Analysis

250,500 IOs

Decision 2

250,500 IOs

Join Ordering

Join Ordering, cont

Query Plan 4 Cost

- Let's estimate the cost:
- Scan Reserves (1000 IOs)
- For each pageful of Reserves for bid 100, Scan Sailors (500 IOs)
- Total: 1000 +???*500
- Total: 1000 +10*500

Decision 3

250,500 IOs

6000 IOs

Materializing Inner Loops

Sailors

SCAN

Materializing Inner Loops, cont

Plan 5 Cost Analysis

- Let's estimate the cost:
- Scan Reserves (1000 IOs)
- Scan Sailors (500 IOs)
- Materialize Temp table T1 (??? IOs)
- For each pageful of Reserves for bid 100, Scan T1 (??? IOs)
- Total: 1000 + 500 + ??? + 10*???
- 1000 + 500+ 250 + (10 * 250)

Materializing Inner Loops, cont.

Join Ordering Again

Join Ordering Again, Cont

Plan 6 Cost Analysis

- Let's estimate the cost:
- Scan Sailors (500 IOs)
- Scan Reserves (1000 IOs)
- Materialize Temp table T1 (??? IOs)
- For each pageful of high-rated Sailors, Scan T1 (??? IOs)
- Total: 500 + 1000 + ??? + 250*???
- 500 + 1000 +10 +(250 *10)

Decision 4

47

Join Algorithm

Join Algorithm, cont.

Query Plan 7 Cost Analysis

- With 5 buffers, cost of plan:
- Scan Reserves (1000)
- Scan Sailors (500)
- Sort high-rated sailors (???)
 Note: pass 0 doesn't do read I/O, just gets input from select.
- Sort reservations for boat 100 (???)
 Note: pass 0 doesn't do read I/O, just gets input from select.
- How many passes for each sort with log₄?
- Merge (10+250) = 260
- Total:

Query Plan 7 Cost Analysis Part 2

- With 5 buffers, cost of plan:
- Scan Reserves (1000)
- Scan Sailors (500)
- Sort
 - 2 passes for reserves pass 0 = 10 to write, pass 1 = 2*10 to read/write
 - 4 passes for sailors pass 0 = 250 to write, pass 1,2,3,4 = 2*250 to read/write
- Merge (10+250) = 260 1000 + 500 + sort reserves(10 + 2*10) + sort sailors(250 + 4*2*250) + merge(10+250) = 4040

Decision 5

52

Join Algorithm Again, Again

53

Query 9 Cost Analysis

- With 5 buffers, cost of plan:
- Scan Sailors (500)
- Scan Reserves (1000)
- Write Temp T1 (10)
- For each blockful of high-rated sailors
- Loop on T1 (??? * 10)
- Total:

```
500 + 1000 + 10 + (ceil(250/3) *10) = 500 + 1000 + 10 + (84 *10) = 2350
```


Decision 7

Projection Cascade & Pushdown

Projection Cascade & Pushdown, cont

2350 IOs

Projection Cascade & Pushdown, cont

With Join Reordering, no Mat

With Join Reordering, no Mat cont

2350 IOs

Plan 11 Cost Analysis

- With 5 buffers, cost of plan:
- Scan Reserves (1000)
- For each blockful of sids that rented boat 100
- (recall Reserve tuple is 40 bytes, assume sid is 4 bytes)
- Loop on Sailors (??? * 500)
- Total: 1500

With Join Reordering, no Mat, cont.

How About Indexes?

- Indexes:
 - Reserves.bid clustered
 - Sailors.sid unclustered
- Assume indexes fit in memory

Index Cost Analysis Part 2

- With clustered index on bid of Reserves, we access how many pages of Reserves?:
 - 100,000/100 = 1000 tuples on 1000/100 = 10 pages.
- for each Reserves tuple 1000
 get matching Sailors tuple (1 IO)
 (recall: 100 Reserves per page, 1000 pages)
- 10 + 1000*1
- Cost: Selection of Reserves tuples (10 I/Os); then, for each, must get matching Sailors tuple (1000); total 1010 I/Os.

Summing up

- There are lots of plans
 - Even for a relatively simple query
- Engineers often think they can pick good ones
 - E.g. MapReduce API was based on that assumption
 - So was the COBOL API of 1970's!
- Not so clear that's true!
 - Manual query planning can be tedious, technical
 - Machines are better at enumerating options than people
 - Hence Al
 - We will see soon how optimizers make simplifying assumptions