Electromagnetismo e Óptica

MEBiom + LMAC
Prof. Gonçalo Figueira

AULA 6 – Electrostática VI

Campo eléctrico no vácuo e conceitos fundamentais da electrostática

- Lei de Gauss generalizada
- Condições de fronteira do campo eléctrico na superfície de dieléctricos

Popovic & Popovic Cap. 7.6 – 7.8

Vector deslocamento do campo eléctrico

Para ter em conta o campo gerado por um dieléctrico, a lei de Gauss deve ter em conta as cargas livres e as cargas de polarização:

$$\oint_{S} \vec{E} \cdot \vec{n} \, dS = \frac{Q_{livre} + Q_{pol}}{\epsilon_{0}}$$

$$Q_{livre} = \text{carga livre total}$$

$$Q_{pol} = \text{carga de polarização total}$$

Como $Q_{\text{pol}} = -\oint_{S} \vec{P} \cdot \vec{n} \, dS$, podemos substituir na equação acima e passar para o lado esquerdo:

$$\oint_{S} (\epsilon_{0}\vec{E} + \vec{P}) \cdot \vec{n} \, dS = Q_{livre}$$

$$\equiv \vec{D} = \text{Deslocamento do}$$
campo eléctrico

No caso de um meio em que $\vec{P} = \varepsilon_0 \chi_e \vec{E}$:

(ϵ mede a *polarizabilidade* do dieléctrico)

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon_0 (1 + \chi_e) \vec{E}$$

$$\equiv \epsilon = \text{Permitividade}$$
eléctrica

Lei de Gauss generalizada

Podemos assim escrever a Lei de Gauss numa forma que é válida para o vácuo, condutores e dieléctricos:

O fluxo do campo de **deslocamento eléctrico** \vec{D} através de uma superfície fechada é igual à **carga livre** total no interior da superfície

$$\oint_{S} \vec{D} \cdot \vec{n} \, dS = Q_{livre}$$

Lei de Gauss generalizada

ou na forma local

$$\nabla \cdot \vec{D} = \rho_{livre}$$

Condições fronteira em dieléctricos

Um dieléctrico pode ser composto por diversas secções homogéneas, mas com propriedades diferentes entre si.

Considere-se a fronteira entre duas regiões de um dieléctrico. Caso exista um campo eléctrico externo, também existirá um vector deslocamento \overrightarrow{D} .

Como se relacionam os campos

- \vec{E}_1 e \vec{D}_1 na região 1
- \vec{E}_2 e \vec{D}_2 na região 2 ?

Têm que obedecer às condições fronteira.

O que são condições fronteira?

Dentro de cada meio homogéneo, o campo eléctrico é contínuo.

Contudo, na **fronteira** entre os meios tal não é obrigatório. A forma do campo eléctrico é ditada pelas equações fundamentais:

$$\oint_{C} \vec{E} \cdot d\vec{l} = 0 \qquad \qquad \oint_{S} \vec{D} \cdot \vec{n} \, dS = Q_{livre}$$

Estas equações dão origem às relações entre as componentes **normais** (n) e **tangenciais** (t) dos campos em cada lado da fronteira.

Aplicação transcutânea de corrente eléctrica à medula espinal

Condições fronteira em dieléctricos

Aplicando a Lei de Gauss generalizada:

$$\oint_{S} \vec{D} \cdot \vec{n} \, dS = Q_{livre} = \sigma \Delta S$$

$$\vec{D}_{1} \cdot \vec{n} - \vec{D}_{2} \cdot \vec{n} = \sigma$$

$$\rightarrow D_{1n} - D_{2n} = \sigma$$

Dieléctrico 1

Dieléctrico 2

ento \overrightarrow{D} de de

A componente **normal** do vector deslocamento D tem uma descontinuidade igual à densidade de carga em superfície na fronteira.

No caso particular de não existir carga em superfície: $D_{1n} = D_{2n}$ No caso da fronteira entre um dieléctrico (1) e um condutor (2): $D_{1n} = \sigma$

Condições fronteira em dieléctricos

$$\oint_{c} \vec{E} \cdot d\vec{l} = \vec{E}_{1} \cdot d\vec{l}_{1} + \vec{E}_{2} \cdot d\vec{l}_{2} = 0$$

$$\rightarrow E_{1t} = E_{2t}$$

A componente **tangencial** do campo eléctrico \vec{E} é contínua.

Equações de Poisson e Laplace

Da relação $\vec{E} = -\nabla V$ podemos escrever

$$\vec{D} = \epsilon \vec{E} = -\epsilon \nabla V$$

Usando a Lei de Gauss generalizada $\nabla \cdot \vec{D} = \rho_{livre}$: $\nabla \cdot \vec{D} = -\nabla \cdot \epsilon (\nabla V) = \rho$

$$\nabla \cdot \overrightarrow{D} = -\nabla \cdot \epsilon(\nabla V) = \rho$$

$$\nabla \cdot (\nabla V) = -\rho/\epsilon$$
 ou

$$\nabla^2 V = -\rho/\epsilon$$

Eq. Poisson

Se
$$\rho = 0$$
:

Se
$$\rho = 0$$
: $\nabla \cdot (\nabla V) = 0$ ou

$$\nabla^2 V = 0$$

Eq. Laplace

Laplaciano:
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Sumário

- A Lei de Gauss generalizada é válida para o vácuo, condutores e dieléctricos
- 2. A Lei faz uso do campo vectorial auxiliar \vec{D} : o seu fluxo através de uma superfície fechada é igual à carga no interior
- 3. Condições fronteira na superfície de dieléctricos
 - **Descontinuidade** da componente **normal**: $D_{1n} D_{2n} = \sigma$
 - Continuidade da componente tangencial: $E_{1t} E_{2t} = 0$