Homework Set #3

Due: Monday, December 7, 2020.

1. LU Decomposition Exercise...

Find the L, U decomposition for

$$\begin{bmatrix}
6 & 30 & 36 \\
2 & 10 & 4 \\
5 & 4 & 2
\end{bmatrix}$$

2. Orthogonality of Left-Right Eigenvectors

Let $\mathbf{A} \in \mathbf{R}^{n \times n}$ and if λ, μ are to distinct eigenvalues of \mathbf{A} , i.e. $\mu \neq \lambda$, then show that any left eigenvector of \mathbf{A} corresponding to μ is orthogonal to any right eigenvector of \mathbf{A} corresponding to λ .

3. DFT as an Orthogonal Basis Change

Consider C^N the vector space of N dimensional complex vectors. We can define a basis $\mathcal{F} = \{\mathbf{f}_1, \dots, \mathbf{f}_N\}$ where

$$\mathbf{f}_{k} = \begin{bmatrix} f_{k,1} \\ f_{k,2} \\ \vdots \\ f_{k,N} \end{bmatrix}, \quad f_{k,l} = \frac{1}{N} e^{\frac{j2\pi(k-1)(l-1)}{N}}.$$
 (1)

- (a) Is \mathcal{F} an orthogonal basis? Is it an orthonormal basis?
- (b) Define the matrix

$$\mathbf{F} = \left[\begin{array}{cccc} \mathbf{f}_1 & \mathbf{f}_2 & \dots & \mathbf{f}_N \end{array} \right]. \tag{2}$$

Is \mathbf{F} unitary? What is the inverse of \mathbf{F} ?

- (c) Write down **F** for N = 4. What are the coordinates of $\mathbf{x} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T$ corresponding to the basis \mathcal{F} ? What is the FFT of \mathbf{x} ?
- (d) Suppose $\{x_n : n = 0, ... 3\}$, $\{h_n : n = 0, ... 3\}$ and $\{y_n : n = 0, ... 3\}$ are discrete time sequences of length 4. We are also given that y_n is equal to the circular convolution of x_n and h_n , i.e.,

$$y_n = h_n \circledast x_n$$

Defining

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix},$$

we would like to write the relation

$$y = Hx (3)$$

Find **H** in terms of h_n , n = 0, ... 3.

(e) Check out the following multiplication:

$$\mathbf{Hf}_k$$
 (4)

What is your comment about the result?

(f) Pick arbitrary values for $\{h_0, h_1, h_2, h_3\}$. Find the eigenvalues and eigenvectors of **H** using MATLAB/Python/Julia, find eigenvectors and eigenvalues (e.g., in Matlab)by typing

$$[V D] = eig(H)$$

where V is the matrix containing eigenvectors, and D is the matrix containing eigenvalues.) Compare V with F, what is your comment.

- (g) If we change the basis from the standard basis to \mathcal{F} , what would be the relation between $\check{\mathbf{y}}$ and $\check{\mathbf{x}}$, where $\check{\mathbf{y}}$ and $\check{\mathbf{x}}$ are the new coordinate vectors for \mathbf{y} and \mathbf{x} in Eq. (3) respectively, corresponding to basis \mathcal{F} . In other words find $\check{\mathbf{H}}$ where $\check{\mathbf{y}} = \check{\mathbf{H}}\check{\mathbf{x}}$. What is the effect of basis change as far as the mapping in (3) is concerned? Note that this comment is independent of the values of $\{h_0, h_1, \ldots, h_{N-1}\}$
- 4. Reflection through a hyperplane.

Find the matrix $\mathbf{Q} \in \mathbf{R}^{n \times n}$ such that the reflection of \mathbf{x} through the hyperplane $\{\mathbf{z} \mid \mathbf{a}^T\mathbf{z} = 0\}$ is given by $\mathbf{Q}\mathbf{x}$. Verify that matrix \mathbf{Q} is orthogonal. (To reflect \mathbf{x} through the hyperplane means the following: find the point \mathbf{z} on the hyperplane closest to \mathbf{x} . Starting from \mathbf{x} go in the direction $\mathbf{z} - \mathbf{x}$ through the hyperplane to a point on the opposite side, which has the same distance to \mathbf{z} as \mathbf{x} does.)

5. Orthogonal matrices

- (a) Show that if U and V are orthogonal then so is UV.
- (b) Suppose that $\mathbf{U} \in \mathbf{R}^{2\times 2}$ is orthogonal. Show that \mathbf{U} is either a rotation or a reflection. Make clear how you decide whether a given orthogonal \mathbf{U} is a rotation or reflection.