# EG1163 芯片用户手册

高压大电流降压型开关电源芯片



### 版本变更记录

| 版本号  | 日期          | 描述            |
|------|-------------|---------------|
| V1.0 | 2018年05月15日 | EG1163 数据手册初稿 |
| V1.1 | 2019年03月11日 | 更新应用图         |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |
|      |             |               |

## 見 录

| 1. | 特性   |                  | 1 |
|----|------|------------------|---|
| 2. | 描述   |                  | 1 |
| 3. | 应用   | 领域               | 1 |
| 4. | 引脚   |                  | 2 |
|    | 4.1  | 引脚定义             | 2 |
|    | 4.2  | 引脚描述             | 2 |
| 5. | 结构   | 框图               | 3 |
| 6. | 典型   | 应用电路             | 4 |
| 7. | 电气   | 特性               | 5 |
|    | 7.1  | 极限参数             | 5 |
|    | 7.2  | 典型参数             | 5 |
| 8. | 应用   | 设计               | 7 |
|    | 8.1  | REF5V 输入电容       | 7 |
|    | 8.2  | VCC 储能电容         | 7 |
|    | 8.3  | 启动过程             | 7 |
|    | 8.4  | 振荡器 Cr 电容的开关频率计算 | 7 |
|    | 8.5  | 输出峰值限流           | 7 |
|    | 8.6  | 输出短路保护           | 8 |
|    | 8.7  | 输出电感             | 8 |
|    | 8.8  | 同步整流 MOS 管       | 8 |
|    | 8.9  | 输出电容             | 8 |
|    | 8.10 | 输出电压调节设置         | 8 |
| 9. | 封装   | 尺寸               | 9 |
|    | 9.1  | SOP16 封装尺寸       | 9 |

# EG1163 芯片数据手册 V1.0

#### 1. 特性

- 降压同步整流方案,支持高压大电流方案。
- 外接一个电容可设置工作频率(0-300KHz)
- UVLO 欠压锁定功能:
  - Vcc 引脚端的开启电压 16.5V-EG1163
  - Vcc 引脚端的关闭电压 8V-EG1163
  - Vcc 引脚端的开启电压 8.5V-EG1163S
  - Vcc 引脚端的关闭电压 7.5V-EG1163S
- MOS 管内阻逐周限流控制
- 支持对蓄电池充电
- 输出短路保护
- 封装形式: SOP16

#### 2. 描述

EG1163 是一款高压大电流降压型 DC-DC 电源管理芯片,内部集成基准电源、振荡器、误差放大器、限流保护、短路保护、半桥驱动等功能,非常适合高压大电流场合应用,配合外部高压 MOS 管最高能支持 600V 电源电压输入。

#### 3. 应用领域

- 电动摩托车转换器
- 电动自行车转换器
- 高压模拟/数字系统
- 工业控制系统
- 电信电源系统
- 以太网 PoE
- 便携式移动设备
- 逆变器系统

#### 4. 引脚

#### 4.1 引脚定义



图 4-1. EG1163 管脚定义

#### 4.2 引脚描述

| 引脚序号 | 引脚名称  | I/O   | 描述                                       |  |
|------|-------|-------|------------------------------------------|--|
| 1    | REF5V | 0     | 5V 基准输出,输出最大电流 50mA。                     |  |
| 2    | EN    | I     | 芯片使能脚,比较门限 1.2V;低于 1.2V,芯片进入待机,关闭 5V 输出。 |  |
| 3    | SD    | ı     | 高电平关闭 PWM 输出,低电平允许 PWM 输出。               |  |
| 4    | SS    | ı     | 软启动脚,外接电容,电容电压上升速度影响软启动时间。               |  |
| 5    | VSS   | AGND  | 芯片信号地。                                   |  |
| 6    | СР    | ı     | 外接电容,频率 f=(14.4 x106 )/Cp(单位为 pF)。       |  |
| 7    | ERRO  | 0     | 电压环路运放输出端口。                              |  |
| 8    | FB    | ļ     | 电压环路运放负极输入端口。                            |  |
| 9    | SDLIN | I     | 低端 MOS 管电流比较器输入端口。                       |  |
| 10   | LO    | 0     | 输出控制低端 MOS 功率管的导通与截止。                    |  |
| 11   | COM   | PGND  | 芯片功率地。                                   |  |
| 12   | VCC   | Power | 芯片电源, 电压范围 10V-20V。                      |  |
| 13   | SDHIN | I     | 高端 MOS 管电流比较器输入端口。                       |  |
| 14   | VS    | 0     | 高端悬浮地端。                                  |  |
| 15   | VB    | Power | 高端悬浮电源。                                  |  |
| 16   | НО    | 0     | 输出控制高端 MOS 功率管的导通与截止。                    |  |

### 5. 结构框图



图 5-1. EG1163 结构框图

#### 6. 典型应用电路



图 6-1. EG1163 12V10A 电动自行车转换器典型应用电路图



图 6-2. EG1163 12V20A 电恒压恒流同步整流方案典型应用电路图

#### 7. 电气特性

#### 7.1 极限参数

无另外说明,在TA=25℃条件下

| 符号                      | 参数名称       | 测试条件  | 最小     | 最大      | 单位            |
|-------------------------|------------|-------|--------|---------|---------------|
| НО                      | 高端输出       | -     | VS-0.3 | VB+0.3  | V             |
| VB                      | 自举高端 VB 电源 | _     | -0.3   | 600     | V             |
| VS                      | 高端悬浮地端     | -     | VB-20  | VB+0.3  | V             |
| SDHIN                   | 高端比较器输入    | -     | VS-0.3 | VS+5    | V             |
| VCC                     | 低端电源       | -     | -0.3   | 20      | V             |
| LO                      | 低端输出       | -     | -0.3   | VCC+0.3 | V             |
| SDLIN                   | 低端比较器输入    | -     | -0.3   | +5      | V             |
| FB、ERRO、CP、SS、<br>REF5V | 低压端口       | -     | -0.3   | +5.5    | V             |
| SD、EN                   | 控制端口       | -     | -0.3   | 20      | V             |
| TA                      | 环境温度       | -     | -45    | 125     | °C            |
| Tstr                    | 储存温度       | -     | -65    | 150     | °C            |
| TL                      | 焊接温度       | T=10S | -      | 300     | ${\mathbb C}$ |

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

#### 7.2 典型参数

无另外说明,在TA=25℃

| 符号        | 参数名称     | 测试条件     | 最小  | 典型  | 最大  | 单位 |
|-----------|----------|----------|-----|-----|-----|----|
| VB        | 高压电源     | VB 输入电压  | 10  | -   | 600 | V  |
| VCC       | 低压电源     | VCC 输入电压 | 10  | -   | 20  | V  |
| Istart    | VCC 启动电流 |          | -   | 200 | 300 | uA |
| VCC (ON)  | VCC 开启电压 | EG1163   | 14  | 15  | 17  | V  |
| VCC (OFF) | VCC 关闭电压 | EG1163   | 8   | 9   | 10  | V  |
| VCC (ON)  | VCC 开启电压 | EG1163S  | 7.5 | 8.5 | 9.3 | V  |
| VCC (OFF) | VCC 关闭电压 | EG1163S  | 6.7 | 7.5 | 8.3 | V  |



| 基准电压                     | , , , , , , , , , , , , , , , , , , , |                           | <del>                                     </del> |     | ı          | <u> </u> |
|--------------------------|---------------------------------------|---------------------------|--------------------------------------------------|-----|------------|----------|
| REF5V                    | 5V 基准输出                               | VCC 开启,VCC=12V            | 4.8                                              | 4.9 | 5.0        | V        |
| $\Delta$ Vref            | 线性调整率                                 | Vcc=10V to 20V            | -                                                | 3   | 50         | mV       |
| $\Delta$ Vref            | 负载调整率                                 | IL=0 to 10mA              | -                                                | 5   | 50         | mV       |
| lo                       | 最大输出电流                                | -                         |                                                  | 50  |            | mA       |
| 振荡器                      |                                       |                           |                                                  |     |            |          |
| Fosc                     | 振荡频率范围                                | CT=200pF                  | 65                                               | 72  | 80         | KHz      |
| $\Delta$ f/ $\Delta$ Vcc | 电压抑制比                                 | CT=200pF                  |                                                  | ±3  | ±5         | %        |
| Δ f/ Δ T                 | 温度漂移                                  | -                         |                                                  | ±5  | <u>±</u> 8 | %        |
| 误差放大器                    |                                       |                           |                                                  |     | •          |          |
| FB                       | 误差放大器反馈端                              | -                         | 1.188                                            | 1.2 | 1.212      | V        |
| lerro                    | 误差放大器输出电<br>流能力                       |                           | 15                                               | 20  | 25         | uA       |
| Ib                       | 输入偏置电流                                | -                         | -                                                | -   | 0.1        | uA       |
| Avol                     | 开环增益                                  | -                         | 60                                               | 75  | -          | dB       |
| PWM 控制                   |                                       |                           |                                                  |     |            |          |
| D(max)                   | 最大输出占空比                               | -                         |                                                  | 95  |            | %        |
| EN                       | EN 使能端比较电压                            |                           | 1.15                                             | 1.2 | 1.25       | V        |
| SD                       | 逐周关闭 PWM 电压                           |                           | 3                                                | -   | -          | ٧        |
| 电流比较器                    |                                       |                           |                                                  |     |            |          |
| SDHIN                    | 高端电流比较器                               | 相对 VS 电压                  |                                                  | 180 |            | mV       |
| SDLIN                    | 低端电流比较器                               | 相对 COM 电压                 |                                                  | 180 |            | mV       |
| 死区时间特性                   |                                       |                           |                                                  |     |            |          |
| DT                       | 死区时间                                  |                           | 150                                              | 200 | 250        | nS       |
| 输出 MOS 导                 |                                       |                           |                                                  |     |            |          |
| LO、HO 输出<br>拉电流          | 10+                                   | Vo=0V,VIN=VIH<br>PW≤10uS  | 1.2                                              | 1.8 | -          | А        |
| LO、HO 输出<br>灌电流          | 10-                                   | Vo=12V,VIN=VIL<br>PW≤10uS | 1.5                                              | 2   | -          | А        |

#### 8. 应用设计

#### 8.1 REF5V 输入电容

在 REF5V 引脚端对地放置一个高频小容值旁路电容将减少 REF5V 端的高频噪声,高频旁路电容可选用 1uF 陶瓷电容,布板时尽可能靠近芯片引脚 REF5V 输入端。

#### 8.2 VCC 储能电容

EG1163 需求 VCC 引脚端对地放置一个 22uF 电容,主要用于启动时对 VCC 引脚进行储能充电和正常工作时稳定 VCC 引脚的工作电压,同时该电容对输出短路保护有一定的作用,当输出短路时,VCC 引脚将掉电,芯片进入 UVLO 模式,该电容的大小将影响当输出短路时芯片间隙去开启功率管的时间,电容越大间隙的时间越长,功率管发热越小,反之功率管发热将增大。

#### 8.3 启动过程

输入电源通过外部 R2 电阻对 VCC 引脚的外接电容开始充电,此时 EG1163 芯片将在低静态电流工作模式大概消耗<0.3mA 的工作电流,内部仅 UVLO 电路在工作,其他振荡器及 PWM 模块都处于关闭状态,输出电压为零,当 VDD 引脚上的电容电压充电到 17V 以上时,芯片开始正常工作,开启振荡器、PWM 模块及反馈处理电路,输出电压稳压输出,同时输出电压通过外部二极管到 VCC 引脚提供 VCC 工作电源,启动过程结束。

#### 8.4 振荡器 Cr 电容的开关频率计算

EG1163 仅需一个外接电容可设置 PWM 工作频率,内部采用恒流源对 Cp 电容进行充放电如图 8.4a,



灌电流的恒流源内部提供大概 36uA 左右的电流对 Cp 电容进行充电,拉电流的恒流源内部提供大概 720uA 左右的电流对 CT 电容进行放电,近似的工作频率和电容之间关系由公式 f=(14.4 x10<sup>6</sup>)/Cp 确定(该公式的电容单位为 pF),如 Cp=200pF 的电容,对应的 PWM 工作频率大概为 72KHz。

图 8.4a 振荡器 CT 充放电原理框图

#### 8.5 输出峰值限流

EG1163 芯片的高端输出峰值电流限流大小由高端 MOS 管外置限流电阻决定,峰值电流的关系式是 IPK=180mV/(外置限流电阻 R8); 芯片低端输出峰值电流限流大小由低端 MOS 管内阻决定,峰值电流的关系式是 IPK=180mV/(低端 MOS 管内阻)。

#### 8.6 输出短路保护

当输出短路时,EG1163 将工作在最大峰值电流限流输出,同时 VCC 的电压将会失电由于输出电压不能再通过二极管为 VCC 引脚提供电源,EG1163 芯片的静态工作电流很快泄放掉 VCC 引脚上电容的电压,当 VCC 引脚的电压低于 8 V 时,EG1163 芯片将彻底关闭 PWM 输出,同时输入电源通过外部启动电阻重新对 VCC 引脚的电容开始充电,当 VCC 引脚的电压高于 17V,芯片重新开启 PWM,如果输出一直处于短路状态,芯片将间隙去开启功率管,此时 EG1163 芯片将处于限流和短路保护模式。

#### 8.7 输出电感

EG1163 有两种工作模式分连续工作模式和不连续工作模式,电感的取值将影响降压器的工作模式,在 轻载时 EG1163 工作在不连续工作模式,同时电感值会影响到电感电流的纹波,电感的选取可根据下式公式:

*Vout*(*Vin*–*Vout*)

L= *Vin.Fs.Iripple* 式中 Vin 是输入电压,Vout 是输出电压,Fs 是 PWM 工作频率,Iripple 是电感中电流纹波的峰峰值,通常选择 Iripple 不超过最大输出电流的 30%。

#### 8.8 同步整流 MOS 管

采用同步整流 MOSFET 代替传统异步变换器的续流二极管,从而极大提高电源转换效率;同步整流 MOSFET 选择低内阻、低结电容,能给 EG1163 降压器提供好的性能。

#### 8.9 输出电容

输出电容 Co 用来对输出电压进行滤波,使 DC-DC 降压器输出比较平稳的直流电提供给负载,选取该电容时尽可能选取低 ESR 的电容,选取电容值的大小主要由输出电压的纹波要求决定,可由下式公式确定:

 $\Delta$  Vo=  $\Delta$  IL(ESR+  $\frac{1}{8.Fs.Co}$  )式中  $\Delta$  Vo 是输出电压纹波,  $\Delta$  IL 是电感电流纹波,Fs 是 PWM 工作频率,ESR 是输出电容等效串联电阻。

#### 8.10 输出电压调节设置

EG1163的输出电压由 FB 引脚上的两个分压电阻进行设定,内部误差放大器基准电压为 1. 2V,如图 8. 10a 所示,输出电压 Vout=(1+R1/R2)\*1.2V,如需设置输出电压到 12. 12V,可设定 R1 为 9. 1K,R2 为 1K,输出电压 Vout=(1+9.1/1)\*1.2V=12.12V。



图 8.10a EG1163 输出电压调整电路

### 9. 封装尺寸

#### 9.1 SOP16 封装尺寸



| 符号    | 尺寸 (mm)     |        |  |  |
|-------|-------------|--------|--|--|
| 117 4 | Min         | Max    |  |  |
| А     | 1.350       | 1.750  |  |  |
| A1    | 0.100       | 0.250  |  |  |
| A2    | 1.350       | 1.550  |  |  |
| В     | 0.330       | 0.510  |  |  |
| С     | 0.190       | 0.250  |  |  |
| D     | 9.800       | 10.000 |  |  |
| E     | 3.800       | 4.000  |  |  |
| E1    | 5.800       | 6.300  |  |  |
| е     | 1.270 (TYP) |        |  |  |
| L     | 0.400       | 1.270  |  |  |
| Θ     | O°          | 8°     |  |  |