习题七

7.1 设
$$(\xi, \eta) \sim N(\mu_1, \delta_1^2; \mu_2, \delta_2^2; \rho)$$
, 令 $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$, $\Sigma = \begin{bmatrix} \delta_1^2 & \rho \delta_1 \delta_2 \\ \rho \delta_1 \delta_2 & \delta_2^2 \end{bmatrix}$, 于是二维正态分布 $N(\mu_1, \delta_1^2; \mu_2, \delta_2^2; \rho)$ 可表示为 $N_2(\mu, \Sigma)$.

(1) 试证明 $\left(\xi,\eta\right)$ 的联合密度函数 $p\left(x_{1},x_{2}\right)$ 可表示为

$$p(x_1, x_2) = \frac{1}{(2\pi)^{\frac{2}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}, \sharp + x = (x_1, x_2)^T$$

(2) 设 $\left(X_{(1)},X_{(2)},\ldots,X_{(n)}\right)^T$ 为正态总体 $\left(\xi,\eta\right)$ 的样本,证明样本均值 $\overline{X}\sim N_2\left(\mu,\frac{1}{n}\Sigma\right)$.

(1) 证 因 (ξ, η) $\sim N(\mu_1, \delta_1^2; \mu_2, \delta_2^2; \rho)$, 故

$$\begin{split} P\left(x_{1},\,x_{2}\right) &= \frac{1}{2\pi\delta_{1}\delta_{2}\sqrt{1-\rho^{2}}}\,e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}-x_{2}}{\delta_{1}}\right)^{2}-2\rho\frac{\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\delta_{1}\delta_{2}}+\left(\frac{x_{2}-\mu_{2}}{\delta_{2}}\right)^{2}\right]} \\ &= \frac{1}{\left(2\pi\right)^{\frac{3}{2}}\sqrt{\delta_{1}^{2}\delta_{2}^{2}\left(1-\rho^{2}\right)}}\,e^{-\frac{1}{2}\left(\frac{x_{1}-\mu_{1}}{2}\right)^{T}\left[\delta_{1}^{2} & \rho\delta_{1}\delta_{2} & \delta_{2}^{2}\right]^{-1}\left(\frac{x_{1}-\mu_{1}}{x_{2}-\mu_{2}}\right)} \\ &= \frac{1}{\left(2\pi\right)^{\frac{3}{2}}\left|\Sigma\right|^{\frac{1}{2}}}\,e^{-\frac{1}{2}\left(x-\mu\right)^{T}\Sigma^{-1}\left(x-\mu\right)} \end{split}$$

(2) 二维正态总体, 样本均值仍服从正态分布, 而

$$\begin{split} E\overline{X} &= \begin{pmatrix} E\overline{X_1} \\ E\overline{X_2} \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \mu \\ D\overline{X} &= E\left(\overline{X} - E\overline{X}\right) \left(\overline{X} - E\overline{X}\right)^T = E\left(\overline{X} - \mu\right) \left(\overline{X} - \mu\right)^T \\ &= E\left(\frac{\overline{X_1} - \mu_1}{\overline{X_2} - \mu_2}\right) \left(\overline{X_1} - \mu_1 \ \overline{X_2} - \mu_2\right) = E\left(\frac{\left(\overline{X_1} - \mu_1\right)^2 \ \left(\overline{X_1} - \mu_1\right) \left(\overline{X_2} - \mu_2\right)}{\left(\overline{X_1} - \mu_1\right) \left(\overline{X_2} - \mu_2\right)}\right) \end{split}$$

7.2 随机抽取某班级四名同学的数学、物理和化学三门课程的期中考试成绩,结果如下:

	数学	物理	化学
甲	70	75	65
己	60	70	50
丙	80	75	70
丁	90	80	80

- (1) 写出样本数据阵X;
- (2) 求出样本均值 \bar{X} , 样本协方差阵S, 样本相关阵R:
- (3) 分别把数学成绩 x 极差标准化为 \tilde{x} , 把物理成绩 v 标准差标准化 \tilde{v} ;
- (4)写出甲乙两同学的考试成绩的马氏距离表达式,并求出甲乙两同学考试成绩的欧氏距离.

解 (1) 样本数据阵为:
$$X = \begin{bmatrix} 70 & 75 & 65 \\ 60 & 70 & 50 \\ 80 & 75 & 70 \\ 90 & 80 & 80 \end{bmatrix}$$
;

[90 80 80]
(2) 样本协方差阵(对称矩阵)为:
$$S = \begin{bmatrix} 125 \\ 37.5 & 12.5 \\ 118.7537.5 & 117.1875 \end{bmatrix}$$

样本相关阵(对称矩阵)为:
$$R = \begin{bmatrix} 1 \\ 0.948683298 & 1 \\ 0.981155781 & 0.979795897 & 1 \end{bmatrix}$$
;

(3) 数学成绩的极差标准化
$$\tilde{x} = \begin{bmatrix} (70-75)/30\\ (60-75)/30\\ (80-75)/30\\ (90-75)/30 \end{bmatrix} = \begin{bmatrix} -1/6\\ -1/2\\ 1/6\\ 1/2 \end{bmatrix} = \begin{bmatrix} -1.6667\\ -0.5\\ 1.6667\\ 0.5 \end{bmatrix},$$

物理成绩
$$y$$
 标准差标准化 $\tilde{y} = \begin{bmatrix} (75-75)/4.0825\\ (70-75)/4.0825\\ (75-75)/4.0825\\ (80-75)/4.0825 \end{bmatrix} = \begin{bmatrix} 0\\ -1.2247\\ 0\\ 1.2247 \end{bmatrix};$

(4) 甲乙两同学的考试成绩的马氏距离表达式:

$$d(X_{(1)}^{T}, X_{(2)}^{T}) = \sqrt{(X_{(1)} - X_{(2)})^{T} S^{-1}(X_{(1)} - X_{(2)})}$$

$$= \sqrt{[10,5,15] \begin{bmatrix} 125 \\ 37.5 & 12.5 \\ 118.75 & 37.5 & 117.1875 \end{bmatrix}^{-1} \begin{bmatrix} 10 \\ 5 \\ 15 \end{bmatrix}}$$

甲乙两同学考试成绩的欧氏距离为:

$$d(X_{(1)}^{T}, X_{(2)}^{T}) = \sqrt{(X_{(1)} - X_{(2)})^{T} (X_{(1)} - X_{(2)})}$$

$$= \sqrt{[10,5,15] \begin{bmatrix} 10\\5\\15 \end{bmatrix}} = \sqrt{100 + 25 + 225} \approx 18.7083$$

7.3 设对 m 维随机变量进行 n 次观测得到的样本数据阵为 X , $X=\left(x_{ij}\right)_{n\times m}$, 令 \tilde{X} 为标准差标准化之后的样本数据阵即

$$\tilde{X} = \left(\tilde{x}_{ij}\right)_{n \times m}$$
,其中 $\tilde{x}_{ij} = \frac{X_{ij} - \overline{X}_{j}}{S_{j}} \left(i = 1, 2, \dots, n; j = 1, 2, \dots, m\right)$

试证明样本相关阵 $R = \frac{1}{n-1} \tilde{X}^T \tilde{X}$.

证 $\frac{1}{n-1}\tilde{X}^T\tilde{X}$ 的第 i 行第 j 列元素为 \tilde{X}^T 的第 i 行与 \tilde{X} 的第 j 列对应元素相乘再相加的

 $\frac{1}{n-1}$ 倍。即 \tilde{X} 的第 i 列与第 j 列对应元素乘积之和的 $\frac{1}{n-1}$ 倍。用公式表示即为

$$\frac{1}{n-1} \sum_{k=1}^{n} \tilde{X}_{ki} \tilde{X}_{kj} = \frac{1}{n-1} \sum_{k=1}^{n} \frac{X_{ki} - \overline{X_{i}}}{S_{i}} \frac{X_{kj} - \overline{X_{j}}}{S_{j}}$$

$$= \frac{1}{n-1} \sum_{k=1}^{n} \frac{X_{ki} - \overline{X_{i}}}{\sqrt{\frac{1}{n-1} \sum_{k=1}^{n} \left(X_{ki} - \overline{X_{i}}\right)^{2}}} \frac{X_{kj} - \overline{X_{j}}}{\sqrt{\frac{1}{n-1} \sum_{k=1}^{n} \left(X_{kj} - \overline{X_{j}}\right)^{2}}}$$

$$= \frac{\sum_{k=1}^{n} \left(X_{ki} - \overline{X_{i}}\right) \left(X_{kj} - \overline{X_{j}}\right)}{\sqrt{\sum_{k=1}^{n} \left(X_{ki} - \overline{X_{i}}\right)^{2}} \sqrt{\sum_{k=1}^{n} \left(X_{kj} - \overline{X_{j}}\right)^{2}}$$

上式正是样本数据阵 X 的第 i 列与第 j 列的样本相关系数,故

$$R = \frac{1}{n-1} \tilde{X}^T \tilde{X}.$$

7.4 试借助统计分析工具(SPSS, SAS, R),对 7.2 节的例 3 进行主成分分析.

解 利用统计分析软件 SPSS 的操作结果截图如下

Communalities

	Initial	Extraction
VAR00001	1.000	.472
VAR00002	1.000	.917
VAR00003	1.000	.769
VAR00004	1.000	.795
VAR00005	1.000	.874
VAR00006	1.000	.867
VAR00007	1.000	.624
VAR00008	1.000	.745
VAR00009	1.000	.706

Extraction Method: Principal Component Analysis.

Total Variance Explained

		Initial Eigenvalu	es	Extraction	on Sums of Squar	ed Loadings
Component	Total % of Variance Cumulative			Total	% of Variance	Cumulative %
1	4.006	44.516	44.516	4.006	44.516	44.516
2	1.635	18.167	62.683	1.635	18.167	62.683
3	1.128	12.532	75.215	1.128	12.532	75.215
4	.955	10.607	85.822			

Component Matrix(a)

	Component				
	1	2	3		
VAR00001	.606	072	316		
VAR00002	.622	303	.663		
VAR00003	.854	045	.193		
VAR00004	.756	236	410		
VAR00005	.272	.827	341		
VAR00006	876	299	.102		
VAR00007	.595	.451	.258		
VAR00008	841	.183	058		
VAR00009	221	.686	.433		

Extraction Method: Principal Component Analysis.

- a 3 components extracted.
- 7.5 试借助统计分析工具对 7.3 节中关于蠓的分类一例中的数据进行判别分析.
- 解 利用统计分析软件 SPSS 的操作结果截图如下 先建立 SPSS 数据文件

Discriminant Analysis: Class	ification	x
Prior Probabilities All groups equal Compute from group sizes Display	Use Covariance Matrix Within-groups Separate-groups	Cancel Help
Casewise results Limit cases to first: Summary table Leave-one-out classification Replace missing values with mean	Combined-groups Separate-groups Territorial map	

III Untitled - SPSS Data Editor							
File Ed	it View Da	ta Transfor	m Analyze (Graphs Util	ities Window	Help	
16:							
	x1	x2	lei	Dis_1	Dis1_1	Dis2_1	
1	1.14	1.78	af	af	.99891	.00109	
2	1.18	1.96	af	af	.99999	.00001	
3	1.20	1.86	af	af	.99829	.00171	
4	1.26	2.00	af	af	.99973	.00027	
5	1.28	2.00	af	af	.99913	.00087	
6	1.30	1.96	af	af	.98730	.01270	
7	1.24	1.72	apf	apf	.21650	.78350	
8	1.36	1.74	apf	apf	.00055	.99945	
9	1.38	1.64	apf	apf	.00000	1.00000	
10	1.38	1.82	apf	apf	.00356	.99644	
11	1.38	1.90	apf	apf	.06987	.93013	
12	1.40	1.70	apf	apf	.00001	.99999	
13	1.48	1.82	apf	apf	.00001	.99999	
14	1.54	1.82	apf	apf	.00000	1.00000	
15	1.56	2.08	apf	apf	.00198	.99802	
16	1.24	1.80	-	af	.85302	.14698	
17	1.28	1.84	-	af	.72139	.27861	
18	1.40	2.04	-	af	.82846	.17154	

根据上述分析结果知,若采用总的样本协方差阵的方法的判别结果为:第 16,17,18 号样品是第一类(为 af),他们为第一类的后验概率分别为 0.85302,0.72139,0.82846

7.6 试借助统计分析工具验算 7.4 节中 2002 年足球世界杯 16 强的系统聚类的结果.

解 首先建立 SPSS 数据文件

Hierarchical C	Retween-groups linkage Continue
Measure Interval:	Squared Euclidean distance
C Counts:	Squared Euclidean distance Cosine Pearson correlation Chebychev Block Minkowski Customized Present: 1 Absent: 0
Transform Values	
	one Absolute values
_	By case Change sign Rescale to 0-1 range

系统聚类的结果用谱系图表示如下

*****HIERARCHICAL CLUSTER ANALYSIS*****

Dendrogram using Average Linkage (Between Groups)

Rescaled Distance Cluster Combine

```
CASE
                5
                      10
                             15
                                    20
                                           25
Label
      10
       10
    15
       15
    1
          +
    13
       13
          - |
    11
          \neg \mid
    14
       14
    6
        6
    7
        7
```

```
12
     12
4
      4
16
     16
 8
      8
 2
      2
 5
      5
 9
      9
 3
      3
```

7.7 据调查市场上销售的 9 种饮料的热量,咖啡因含量,钠含量及价格的数据如下:

饮料编号	热量	咖啡因含量	钠含量	价格
1	207. 2	3.3	15. 5	2.8
2	36. 8	5. 9	12.9	3.3
3	72. 2	7.3	8. 2	2.4
4	36. 7	0.4	10. 5	4
5	121. 7	4. 1	9. 2	3. 5
6	89. 1	4	10. 2	3.3
7	146. 7	4.3	9. 7	1.8
8	57. 6	2.2	13. 6	2.1
9	95. 9	0	8. 5	1. 3

- (1) 试借助统计分析软件对 9 种饮料进行系统聚类.
- (2) 借助统计分析工具对数进行主成分分析.
- (3) 根据 (1) 中分为三个类的聚类结果,判别一个未知类别的样品 $(38.5, 3.7, 7.7, 7.2)^{T}$ 属于其中哪一个类.

解(1)系统聚类

聚类结果的谱系图:

Dendrogram using Average Linkage (Between Groups)

Rescaled Distance Cluster Combine

当指定聚成三个类时:

(2) 作主成分分析时要求变元间具有较强的相关性, 所以, 第一步对原始数据是否适合作主成分分析要进行检验:

KMO and Bartlett's Test

Kaiser-Meyer-Olkin N			
Adequacy.	.360		
Bartlett's Test of	Bartlett's Test of Approx. Chi-Square		
Sphericity	6		
	Sig.	.972	

检验的P值SIG=0.972, 说明原变量具有弱相关性,不适合提取主成分

(3) 判别分析结果如下:

bianhao	rieliang	kafeiyin	na	jiage	CLU3_1	Dis_1	Dis1 1	Dis2_1	Dis3_1
1.00	207.20	3.30	15.50	2.80	1	1	1.00000	.00000	.00000
2.00	36.80	5.90	12.90	3.30	2	2	.00000	1.00000	.00000
3.00	72.20	7.30	8.20	2.40	2	2	.00000	1.00000	.00000
4.00	36.70	.40	10.50	4.00	2	2	.00000	1.00000	.00000
5.00	121.70	4.10	9.20	3.50	3	3	.00000	.00027	.99973
6.00	89.10	4.00	10.20	3.30	2	2	.00000	.80500	.19500
7.00	146.70	4.30	9.70	1.80	3	3	.00000	.00009	.99991
8.00	57.60	2.20	13.60	2.10	2	2	.00000	.99999	.00001
9.00	95.90	.00	8.50	1.30	2	2	.00000	.99999	.00001
10	38.50	3.70	7.70	2.00	-	2	.00000	1.00000	.00000

即这个(编号为10的)样品属第二类(后验概率约为1)