In The Name of Almighty

Statistical Pattern Recognition-HW#4

Problem 1

A set of samples drawn from an unknown density function is given as: $\{x = -7, -5, -4, -3, -2, 0, 2, 3, 4, 5, 7\}$.

Find the Parzen estimation of the density right at each of the above points using $h_n = h_1/\sqrt{11}$ with $h_1 = \sqrt{11}$ and the following window function:

$$\phi(\mathbf{u}) = \begin{cases} 1/2 & |\mathbf{u}| \le 1\\ 0 & \text{otherwise} \end{cases}$$

Problem 2

Repeat problem 1 using $h_1 = 2 * \sqrt{11}$

Problem 3

Repeat problem 1 using a triangular window function as:

$$\phi(\mathbf{u}) = \begin{cases} 1 - |\mathbf{u}| & |\mathbf{u}| \le 1\\ 0 & \text{otherwise} \end{cases}$$

Problem 4

Do problem 1 using the k_n -nearest-neighbor density estimation method (unbiased version) using $k_n = k_1 * \sqrt{N}$ with $k_1 = 2/\sqrt{N}$

Problem 5

In a two-class problem, the two-dimensional training samples of each class are given as shown in the following figure. Estimate $p(x|\omega_i)$, i=1,2 at $\mathbf{x}=(0,0)$ using the k_n -nearest-neighbor method with $k_n=3$. Use the unbiased estimate and city block distance.

$$L_{1} = d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \left[\sum_{m=1}^{l} \left|x_{im} - x_{jm}\right|\right]$$

City-block distance: