Weakly Supervised Person Re-Identification

Jingke Meng, Sheng Wu, Wei-Shi Zhen

Reference: https://arxiv.org/pdf/1904.03832.pdf

引言

Conventional Video Person Re-id

Proposed Video Person Re-id

(a) Conventional fully supervised setting

(b) Proposed weakly supervised setting

是谁? 每一帧 img = ??

存在谁? {?, ??} in video

来源于多实例多标签学习(MIML)

一段视频由很多张图组成,假如10000张,那么我们要判断视频里是否包含某一物体,比如气球。单张标注每一帧是否有气球**太耗时**,通常人们**看一遍说这个视频里是否有气球**,就得到了**多实例学习**的数据。

10000帧的数据不是每一个都有气球出现,只要有一帧有气球,那么我们就认为这个数据包是有气球的。只有当所有的视频帧都没有气球,才是没有气球的。

从这里面学习哪一段视频(10000张)是否有气球出现就是多实例学习的问题。

--zhihu: 别拽我红领巾

那么多实例多标签就是 一段视频里面是否包含几个物体

对应到行人重识别一段视频,也就是一个包(bag)中,就是这个bag 里面有谁 谁 谁

训练测试设置

Train:

probe set

gallery set

Noise: 1. 由于标注者的一些小失误,可能这包里面不只有B/D两个人。

2.或者明明包里面有B这个人,但是标注者没有标注

Test:

probe set + gallery set

由于整体的目标是减少打标量。

- 1. 所以对于测试集的gallery set 的每个包也只是弱的标签。只是说存在谁。并没有抠出bouding box 并说明属于谁
- 2. 所以在测试集的查找命中为: 找到probe 里面的人在哪个包出现即可

- 1. Mask RCNN将包中的行人检测出来(如果数据集是原始Video)
- 2. 既然是MIML(多实例多标签学习)的思想迁移过来的,那就先用MIML的思想

For probe set every bag:

确定类别
$$\mathcal{L}_p = \frac{1}{N_p} \sum_{X_b \in \mathcal{X}_p} \sum_{i \in \{1, \dots, n_b\}} \sum_{c \in \{0, \dots, C\}} (-y_b^c \log \tilde{y}_{b,i}^c),$$

For gallery set every bag:

不确定类别
$$\mathcal{L}_g = \frac{1}{N_g} \sum_{X_b \in \mathcal{X}_g} \sum_{c \in \{0, \dots, C\}} (-y_b^c \log \max\{\tilde{y}_{b,1}^c, \tilde{y}_{b,2}^c, ..., \tilde{y}_{b,n_b}^c\}),$$

最大先验概率

$$\mathcal{L}_C = \mathcal{L}_p + \mathcal{L}_g.$$

3. Intra-bag Alignment 前面没有考虑跨摄像头信息

一个人通常出现在包里面的连续几帧, 应该group起来

- Group:
- 确定中心点:一个batch中,有几张图片属于C类,其中一张属于C类概率最大的图片,作为seed instance,类似中心。
- 某些C类图片的概率向seed instance靠近。

$$\mathcal{L}_{IA} = \frac{1}{N_{IA}} \sum_{X_b \in \mathcal{X}_g} \sum_{c \in \{0, \dots, C\}} \sum_{p \in \mathcal{G}_{b,c}} y_b^c D_{KL}(\tilde{\mathbf{y}}_{b,p} || \tilde{\mathbf{y}}_{b,q_c}),$$

group 有风险:

$$\mathcal{G}_{b,c} = \{p | \mathbf{x}_{b,p} \in \mathcal{N}_{q_c} \text{ and } \tilde{y}_{b,p}^c \ge \gamma \tilde{y}_{b,q_c}^c \}$$

3. Cross-view Bag Alignment

- Group:
- 确定中心点:

$$\mathbf{p}_{c}^{t} = \frac{1}{|\mathcal{V}_{c}|} \sum_{v \in \mathcal{V}_{c}} \left(\frac{1}{|\mathcal{I}_{c,v}|} \sum_{i \in \mathcal{I}_{c,v}} \tilde{\mathbf{y}}_{i} \right),$$
$$\hat{\mathbf{p}}_{c}^{t} = \alpha \hat{\mathbf{p}}_{c}^{t-1} + (1 - \alpha) \mathbf{p}_{c}^{t},$$

• 拉近距离:

$$\mathcal{L}_{CA} = \frac{1}{N_{CA}} \sum_{X_b \in (\mathcal{X}_p \bigcup \mathcal{X}_g)} \sum_{c \in \{0, \dots, C\}} \sum_{i \in \mathcal{I}_c} y_b^c D_{KL}(\tilde{\mathbf{y}}_{b,i} || \hat{\mathbf{p}}_c^t),$$

跨摄像头同一个人的图片特征应该在同一个子空间

3. Deep Cross-view MIML Model

$$\mathcal{L}_{E} = \frac{1}{N_{E}} \sum_{X_{b} \in \mathcal{X}_{g}} \sum_{i \in \{1, \dots, n_{b}\}} \sum_{c \in \{0, \dots, C\}} (-\tilde{y}_{b,i}^{c} \log \tilde{y}_{b,i}^{c}).$$

$$\mathcal{L}_{CV-MIML} = \mathcal{L}_C + \delta(\mathcal{L}_{IA} + \mathcal{L}_{CA} + \mathcal{L}_E)$$

Experiments

Dataset	# Camera views	# Identities (training/testing)	# Training BBoxes (probe/gallery)	# Testing BBoxes (probe/gallery)	
WL-DukeMTMC-REID	8	880/1695	60,267/923,879	116,128/904,066	
WL-PRID2011	2	100/100	11,201/8,191	12,129/8,512	
WL-iLIDS-VID	2	150/150	9,731/11,278	12,129/8,512	
WL-MARS	6	631/630	38,324/460,236	36,988/472,978	

Table 1. Detailed information of the one genuine and three new simulated datasets for the weakly supervised person re-id.

Experiments

WL-DukeMTMC-REID	r=1	r=5	r=10	r=20	mAP
CV-MIML	78.05	90.50	93.75	95.99	59.53
baseline + IA	74.69	88.50	92.15	94.81	56.97
baseline+CA	72.92	87.96	92.04	94.75	55.30
baseline+entropy	70.56	85.90	90.15	92.68	53.05
baseline	67.26	84.90	89.50	92.68	50.96
WL-PRID2011	r=1	r=5	r=10	r=20	mAP
CV-MIML	72.00	89.00	95.00	99.00	70.78
baseline+IA	69.00	89.00	93.00	98.00	65.89
baseline+CA	68.00	87.00	96.00	98.00	63.72
baseline+entropy	70.00	89.00	96.00	99.00	67.32
baseline	67.00	86.00	95.00	97.00	62.87
WL-iLIDS-VID	r=1	r=5	r=10	r=20	mAP
CV-MIML	60.00	80.00	87.33	96.67	56.01
baseline+IA	55.33	80.67	89.33	95.33	53.78
baseline+CA	52.67	78.00	88.00	95.33	50.58
baseline+entropy	44.67	69.33	81.33	92.67	44.99
baseline	41.33	70.00	83.33	94.67	42.26
WL-MARS	r=l	r=5	r=10	r=20	mAP
CV-MIML	66.88	82.02	87.22	91.48	55.16
baseline+IA	62.15	80.44	85.80	89.75	50.27
baseline+CA	63.09	79.97	84.23	88.96	50.61
baseline+entropy	60.88	79.34	85.49	89.43	49.13
baseline	53.47	71.77	79.02	85.49	40.31

Table 2. Ablation study of the proposed CV-MIML method. The matching accuracy values (%) at rank(r) = 1, 5, 10, 20 and mAP are shown on the four datasets. The best results are shown in black boldface font.

Experiments

WL-DukeMTMC-REID	r=1	r=5	r=10	r=20	mAP
MIMLfast 16	13.63	44.66	55.69	64.78	10.05
DeepMIML[10]	65.37	82.30	86.90	90.68	48.02
Deep CV-MIML	78.05	90.50	93.75	95.99	59.53
WL-PRID2011	r=1	r=5	r=10	r=20	mAF
MIMLfast 16	29.00	56.00	72.00	87.00	31.66
DeepMIML[10]	67.00	90.00	94.00	99.00	61.80
Deep CV-MIML	72.00	89.00	95.00	99.00	70.78
WL-iLIDS-VID	r=1	r=5	r=10	r=20	mAF
MIMLfast 16	28.00	58.67	69.33	78.67	27.42
DeepMIML[10]	44.00	70.00	81.33	89.33	43.49
Deep CV-MIML	60.00	80.00	87.33	96.67	56.01
WL-MARS	r=1	r=5	r=10	r=20	mAF
MIMLfast 16	20.50	37.22	43.06	52.05	11.39
DeepMIML[10]	47.16	70.19	76.18	81.07	36.59
Deep CV-MIML	66.88	82.02	87.22	91.48	55.10

Table 3. Comparison with state-of-the-art MIML methods. The best results are in black boldface font.

WL-DukeMTMC-REID	r=1	r=5	r=10	r=20	mAF
CAMEL 40	0.53	0.77	1.18	3.24	0.90
PUL[8]	-	-	-		-
EUG[32]	35.93	50.74	59.41	66.96	21.94
Deep CV-MIML	78.05	90.50	93.75	95.99	59.53
PCB 29	79.82	90.38	93.45	96.17	62.09
WL-PRID2011	r=1	r=5	r=10	r=20	mAF
CAMEL [40]	2.00	11.00	20.00	44.00	4.59
PUL[8]	32.00	58.00	71.00	85.00	35.28
EUG[32]	55.00	83.00	93.00	97.00	53.26
Deep CV-MIML	72.00	89.00	95.00	99.00	70.78
PCB[29]	88.00	97.00	99.00	99.00	87.35
WL-iLIDS-VID	r=1	r=5	r=10	r=20	mAF
CAMEL [40]	4.67	16.00	26.67	43.33	6.26
PUL[8]	20.00	44.00	59.33	76.00	22.56
EUG[32]	26.67	60.67	72.00	86.67	29.80
Deep CV-MIML	60.00	80.00	87.33	96.67	56.0
PCB 29	72.00	89.33	92.67	96.00	69.8
WL-MARS	r=1	r=5	r=10	r=20	mAI
CAMEL [40]	0.32	1.10	2.52	5.52	0.56
PUL[8]	-	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-	2	-
EUG[32]	25.87	39.59	46.21	55.21	15.63
Deep CV-MIML	66.88	82.02	87.22	91.48	55.10
PCB 29	68.14	84.07	86.28	90.54	54.18

Table 4. Comparison with related re-id methods. The $1^{st}/2^{nd}$ best results are indicated in red/blue.

Thanks!!!~

