Feuille d'exercices nº 1

Faits basiques les actions

Exercice 1. Les actions suivantes, sont-elles libres? Transitives?

- 1/ L'action de \mathscr{S}_n sur $\{1,\ldots,n\}$.
- 2/ L'action de $GL_2(\mathbf{R})$ sur les droites vectorielles de \mathbf{R}^2 .
- 3/ L'action de \mathcal{D}_{2n} sur $\boldsymbol{\mu}_n$. (Ici, $n \ge 2$.)
- 4/ L'action de \mathcal{S}_3 par conjugaison sur ses sous-groupes d'ordre 2.
- 5/ L'action de $O_3(\mathbf{R})$ sur la sphère $S^2 \subset \mathbf{R}^3$.

Exercice 2. L'action de \mathscr{D}_{2n} sur les racines de l'unité μ_n , est-elle une action par morphismes de groupe?

Exercice 3. Soit H un sous-groupe de G. Soit G_s l'ensemble G avec l'action de H par translations à gauche et G_d l'ensemble G avec translations à droite. Vérifier que l'inversion $\iota: G_s \to G_d$, $\iota(g) = g^{-1}$, est une bijection H-équivariante.

Le quotient par une action

Exercice 4. Utilisant l'action de $GL_2(\mathbf{F}_2)$ sur l'ensemble P des droites vectorielles de \mathbf{F}_2^2 , montrer que $GL_2(\mathbf{F}_2) \simeq \mathscr{S}_3$. Utiliser l'action de \mathscr{D}_6 sur $\boldsymbol{\mu}_3$ pour montrer que $\mathscr{D}_6 \simeq \mathscr{S}_3$.

Exercice 5 (Les quotients vus géométriquement). (1) Déterminer une bijection entre $\mathbb{Z}\backslash\mathbb{R}$ et le cercle $S^1 = \{z \in \mathbb{C} : |z| = 1\}$.

- (2) Soit $X = \mathbb{R}^2 \setminus \{(0,0)\}$ muni de l'action de \mathbb{R}^* par multiplication scalaire. Déterminer une bijection entre $\mathbb{R}^* \setminus X$ et le cercle.
- (3) On désigne par $\|\cdot\|$ la norme euclidienne usuelle. Soit O_n le sous-groupe de $GL_n(\mathbf{R})$ formé par les matrices $A \in GL_n(\mathbf{R})$ telles que $\|A\vec{v}\| = \|\vec{v}\|$ pour tout \vec{v} .
 - a) Montrer que l'ensemble des matrices de la forme

$$\begin{pmatrix}
1 & 0 & \cdots & 0 \\
\hline
0 & & & \\
\vdots & & A & \\
0 & & & \\
\end{pmatrix}$$

avec $A \in \mathcal{O}_{n-1}$ est un sous-groupe. Construire ensuite une bijection $\mathcal{O}_n/\mathcal{O}_{n-1} \to S^{n-1}$, où $S^{n-1} = \{\vec{v} \in \mathbf{R}^n : ||\vec{v}|| = 1\}$.

Exercice 6. Soit p un nombre premier, r un entier strictement positif et G un groupe d'ordre p^r . (De tels groupes sont appelés des p-groupes.)

(1) On se donne un G-ensemble fini X. Soit $x \in X$ tel que |O(x)| > 1. Montrer que $|O(x)| \equiv 0 \mod p$. En déduire que

$$|X| \equiv |X^G| \mod p.$$

- (2) Soit F l'ensemble des fonctions $f: \mathbf{Z}/p\mathbf{Z} \to G$. Pour chaque $a \in \mathbf{Z}/p\mathbf{Z}$ et $f \in F$, soit a * f la fonction $x \mapsto f(a + x)$. Montrer que cette règle définit une action.
- (3) Soit $X = \{ f \in F : f(\overline{0}) \cdots f(\overline{p-1}) = e \}$. Montrer que F est stable par l'action et en employant la question (1), montrer que g possède un élément d'ordre p.

Exercice 7. Soit G un groupe et H un sous-groupe de G. Le normalisateur de H est $N_G(H) =: \{g \in G : gHg^{-1} = H\}$. Il s'agit d'un sous-groupe de G contenant H.

- (1) Soit $G = \mathcal{D}_8$ et H le sous-groupe engendré par la reflexion S. Déterminer $N_G(H)$. Même question avec $G = \mathcal{D}_{12}$ et H le sous-groupe engendré par la reflexion.
- (2) En utilisant l'action de G par conjugaison sur ses sous-groupes, montrer que $[G:N_G(H)]$ est le nombre de conjugués de H.

Exercice 8. Soit G un groupe et H un sous-groupe de G. On laisse G agir sur G/H par translations à gauche. Pour un $x \in G$, déterminez St_{xH} en fonction de H et x. Soit K un autre sous-groupe de G. Montrer que les G-ensembles G/H et G/K sont isomorphes si et seulement si H et K sont conjugués.

Exercice 9 (Le théorème de Burnside). Soit G un groupe fini et X un ensemble fini sur lequel G agit. Pour chaque $g \in G$ on écrit $Fix(g) = \{x \in X : gx = x\}$; c'est l'ensemble de points fixes de g. Si on note par g le nombre d'orbites de G en X, montrer que

$$q = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$$

Indication: Soit $S = \{(g, x) \in G \times X : gx = x\}$; on désigne par $p_X : S \to X$ et $p_G : S \to G$ les projections évidentes. Compter |S| en utilisant les images réciproques.

Exercice 10. Soit G un groupe d'ordre n opérant transitivement sur un ensemble X de cardinal ℓ .

(1) Montrer que $\ell \mid n$.

- (2) Montrer que l'union $\bigcup_{x \in X} \operatorname{St}_x$ est de cardinal inférieur ou égal à $n \ell + 1$.
- (3) Si $\ell \ge 2$, montrer qu'il existe au moins $\ell-1$ éléments de G qui n'ont pas de point fixe.
- (4) Application : montrer qu'un groupe fini n'est jamais la réunion des conjugués d'un sous-groupe propre.
- (5) En étudiant l'action de $GL_2(\mathbf{C})$ sur les droites vectorielles de \mathbf{C}^2 , montrer que l'affirmation de la question précédente est fausse si G n'est pas fini.