Departamento de Matemática - UFV MAT 131-Introdução a Álgebra

Terceira Avaliação - PER2020

Pontuação: A prova tem valor de 15 pontos distribuídos da seguinte forma:

- 1. 7 pontos para as questões objetivas;
- 2. 8 pontos para as questões discursivas.

QUESTÕES OBJETIVAS - MÚLTIPLA ESCOLHA

- 1. (1 pontos) Sejam A, B, D, F conjuntos não vazios quaisquer e seja $T \subset (A-B) \times (D-F)$. É correto afirmar:
 - (a) T é uma relação de B em F
 - (b) T é uma relação de A em F
 - (c) T é uma relação de A em D
 - (d) T é uma relação de B em D
- 2. (2 pontos) Sobre o conjunto $A = \{1, 2, 3, 4, 5\}$, são definidas as relações $R \in T$, dadas por $R = \{(1,3), (2,4), (3,5), (1,1), (2,2), (4,2), (3,1)\}\ e\ T = \{(x,y)\in A^2: (y,x)\in R\}.$ Considerando as afirmações abaixo. Marcar a sequencia correta:
 - (I) R não é transitiva e R não é simétrica
 - (II) $R \cap T = \{(1,1), (2,2), (4,2)\}$
 - (III) $Dom(R) Dom(T) \neq \emptyset$
 - (a) VVF (b) FVV (c) VFF (d) FFV
- 3. (2 pontos) Seja $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ dada por $f(x) = 4 (x-1)^2$. É incorreto afirmar:

 - (a) $f(x-1) = 4 (2-x)^2$ (b) $f(1-x) < f(x-1) \iff x < 1$
 - (c) $\exists x \in \mathbb{Z}/f(x+1) < 4$
- (d) f(1-x) = f(x+1)
- 4. (2 pontos) Seja f uma função real dada por $f(x) = \frac{3x 4a}{5}$. É correto afirmar:
 - (a) Se a = 5, então $f^{-1}(3) = 1$
 - (b) Se a = 3, então $f^{-1}(5) = -1$
 - (c) Se $f^{-1}(3) + f(3) = 1$, então a = 87
 - (d) $f^{-1}(-2a) = f(-2a) = -2a$

QUESTÕES DISCURSIVAS

- 1. (2 pontos) Sejam A, B, D, F conjuntos não vazios quaisquer e seja $T \subset (A-B) \times (D \cap F)$. Mostre que T é uma relação de A em F.
- 2. (2 pontos) Seja f uma função real dada por $f(x) = \frac{3x-4a}{5}$, tais que $f^{-1}(3) = 2a-3b$ e $f^{-1}(5) = 3a+5b$. Determinar $f^{-1}(a-3b)$.
- 3. (2 pontos) Seja R uma relação definida no conjunto $A \neq \emptyset$. Mostre que se $R \cap R^{-1} \subset D(A)$, então R é antissimétrica.
- 4. (2 ponto) Sejam R_1, R_2, R_3 três relações definidas em \mathbb{Z} satisfazendo a seguinte propriedade: Se $(a, b) \in R_1$ e $(c, d) \in R_2$ então $(a c, b d) \in R_3$.

Mostre que se R_1 e R_2 são relações de equivalência, então R_3 também é uma relação de equivalência.

Boa Prova!