Biostat 602 Winter 2017

Lecture Set 7

Point Estimation

Maximum Likelihood Estimation

Reading: CB 7.2

Maximum Likelihood Estimation

Recap

 X_1, \dots, X_n i.i.d. $f_X(x|\theta)$. The joint distribution of $\mathbf{X} = (X_1, \dots, X_n)$ is

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$$

Given that $\mathbf{X} = \mathbf{x}$ is observed, the function of θ defined by $L(\theta|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\theta)$ is called the **likelihood function**.

For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$, let $\hat{\theta}(\mathbf{x})$ be the value such that $L(\theta|\mathbf{x})$ attains its maximum. More formally,

$$L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \ge L(\theta|\mathbf{x})$$
, $\forall \theta \in \Omega$, where $\hat{\theta}(\mathbf{x}) \in \Omega$.

 $\hat{\theta}(\mathbf{x})$ is called the maximum likelihood estimate of θ based on data \mathbf{x} , and $\hat{\theta}(\mathbf{X})$ is the maximum likelihood estimator (MLE) of θ .

Strategies for finding MLE of θ

There are two situations.

If the function is differentiable with respect to θ

- 1. Find candidates that makes first order derivative to be zero
- 2. Check second-order derivative to check local maximum.
 - For one-dimensional parameter, $\frac{\partial^2 L(\theta)}{\partial \theta^2} < 0$ implies local maximum.
 - For two-dimensional parameter, we need to show

(a)
$$\partial^2 L(\theta_1, \theta_2)/\partial \theta_1^2 < 0$$
 or $\partial^2 L(\theta_1, \theta_2)/\partial \theta_2^2 < 0$.

- (b) Determinant of second-order derivative is positive
- 3. Check whether boundary gives global maximum.
 - Or clearly justify that boundaries cannot be global maximum.

If the function is NOT differentiable with respect to θ

- Use numerical methods, or
- Directly maximize using inequalities or properties of the function.

In general, one is content with MLEs that are local maximum.

Example 1 – Normal MLEs, both parameters unknown

Let X_1, \dots, X_n be *i.i.d* observations from $\mathcal{N}(\mu, \sigma^2)$. Find MLE of (μ, σ^2) .

Two possible approaches

- Use second-order partial derivatives and their Hessian to show global maximum
- Find a workaround to avoid complex calculations.

Common step: Calculate first-order derivatives

Likelihood Function

$$L(\mu, \sigma^{2}|\mathbf{x}) = \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left[-\frac{1}{2} \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}}\right]$$
$$l(\mu, \sigma^{2}|\mathbf{x}) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^{2} - \frac{1}{2} \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}}$$

Partial derivative with respect to μ

$$L(\mu, \sigma^2 | \mathbf{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[-\frac{1}{2} \sum_{i=1}^n \frac{(x_i - \mu)^2}{\sigma^2}\right]$$

$$l(\mu, \sigma^2 | \mathbf{x}) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2} \sum_{i=1}^n \frac{(x_i - \mu)^2}{\sigma^2}$$

$$\frac{\partial l}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x}$$

partial derivative with respect to σ^2

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

Checking second-order partial derivatives

With respect to μ

$$\frac{\partial^2 l}{\partial \mu^2} = -\frac{n}{\sigma^2} < 0$$

With respect to σ^2

$$\frac{\partial^2 l}{\partial (\sigma^2)^2} = \frac{n}{2\sigma^4} - \frac{1}{\sigma^6} \sum_{i=1}^n (x_i - \mu)^2$$

With respect to both parameters

$$\frac{\partial^2 l}{\partial \mu \partial \sigma^2} = -\frac{1}{\sigma^4} \sum_{i=1}^n (x_i - \mu)$$

Calculate Hessian

$$\begin{vmatrix} \frac{\partial^{2}l}{\partial\mu^{2}} & \frac{\partial^{2}l}{\partial\mu\partial\sigma^{2}} & \frac{\partial^{2}l}{\partial(\sigma^{2})^{2}} \\ \frac{\partial^{2}l}{\partial\mu\partial\sigma^{2}} & \frac{\partial^{2}l}{\partial(\sigma^{2})^{2}} \end{vmatrix}_{\mu=\hat{\mu},\sigma^{2}=\hat{\sigma^{2}}}$$

$$= \begin{vmatrix} -\frac{n}{\sigma^{2}} & -\frac{1}{\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu) & \frac{n}{2\sigma^{4}} - \frac{1}{\sigma^{6}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \\ -\frac{1}{\sigma^{6}} \left[-\frac{n^{2}}{2} + \frac{n}{\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} - \frac{1}{\sigma^{2}} \left(\sum_{i=1}^{n} (x_{i} - \mu)^{2} \right)^{2} \right]_{\mu=\overline{x},\sigma^{2}=\hat{\sigma^{2}}}$$

$$= \frac{1}{\sigma^{6}} \left[-\frac{n^{2}}{2} + \frac{n}{\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2} - \frac{1}{\sigma^{2}} \left(\sum_{i=1}^{n} (x_{i} - \mu)^{2} \right)^{2} \right] = \frac{1}{\sigma^{6}} \frac{n^{2}}{2} > 0$$

Thus, the conditions for local (interior) maximum is indeed found. Because this is a unique interior maximum, it is also a global maximum. Therefore, $(\hat{\mu}, \hat{\sigma^2}) = (\overline{x}, \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2)$ is an MLE.

A simpler workaround

First, fix one parameter, say σ^2 .

$$l(\mu, \sigma^{2} | \mathbf{x}) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^{2} - \frac{1}{2} \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}}$$

If

$$\mu \neq \overline{x}$$
, then $\sum_{i=1}^{n} (x_i - \mu)^2 > \sum_{i=1}^{n} (x_i - \overline{x})^2$

so $\hat{\mu} = \overline{x}$ must hold to maximize the log-likelihood.

Second, reduce the problem into one-parameter maximization Given $\hat{\mu} = \overline{x}$, the log-likelihood is maximized at $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$, because

$$\frac{\partial l}{\partial \sigma^2} = -\frac{n}{2\sigma^4} (\sigma^2 - \hat{\sigma}^2)$$

is always positive when $\sigma^2 < \hat{\sigma}^2$ and always negative when $\sigma^2 > \hat{\sigma}^2$. Hence l as a function of σ^2 increases upto $\hat{\sigma}^2$ and then decreases.

Therefore, $(\hat{\mu}, \hat{\sigma^2}) = (\overline{x}, \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2)$ is an MLE.

Example 2 – Ranged Normal with Known Variance

Let X_1, \dots, X_n i.i.d. $\mathcal{N}(\mu, 1)$ where $\mu \geq 0$. Find MLE of μ .

Solution:

$$L(\mu|\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{(x_i - \mu)^2}{2}\right] = (2\pi)^{-n/2} \exp\left[-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}\right]$$

$$l(\mu|\mathbf{x}) = \log L(\mu, \mathbf{x}) = C - \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$$

$$\frac{\partial l}{\partial \mu} = \frac{2\sum_{i=1}^{n} (x_i - \mu)}{2} = 0, \qquad \frac{\partial^2 l}{\partial \mu^2} < 0$$

$$\hat{\mu} = \sum_{i=1}^{n} x_i / n = \overline{x}$$

Question: ARE WE DONE?

The MLE parameter must be within the parameter space.

We need to check whether $\hat{\mu}$ is within the parameter space $[0, \infty)$.

- If $\overline{x} \geq 0$, $\hat{\mu} = \overline{x}$ falls into the parameter space.
- If $\overline{x} < 0$, $\hat{\mu} = \overline{x}$ does NOT fall into the parameter space.

When $\overline{x} < 0$

$$\frac{\partial l}{\partial \mu} = \sum_{i=1}^{n} (x_i - \mu) = n(\overline{x} - \mu) < 0$$

for $\mu \geq 0$. Therefore, $l(\mu|\mathbf{x})$ is a decreasing function of μ . So $\hat{\mu} = 0$ when $\overline{x} < 0$.

Therefore, MLE is

$$\hat{\mu}(\mathbf{X}) = \max(\overline{X}, 0)$$

Example 3 – Binomial MLE, unknown number of trials

Let X_1, \dots, X_n be random sample from Binomial(k, p) population, where p is known and k is unknown. Find the MLE of k.

Likelihood Function

$$L(k|\mathbf{x}, p) = \begin{cases} \prod_{i=1}^{n} {k \choose x_i} p^{x_i} (1-p)^{k-x_i} & (k \ge \max_i x_i) \\ 0 & (k < \max_i x_i) \end{cases}$$

The likelihood function is not differentiable with respect to k because k is an integer.

So how can we find MLE?

Idea: Instead of differentiating, take a ratio

We want to find k such that

$$\frac{L(k|\mathbf{x},p)}{L(k-1|\mathbf{x},p)} \ge 1 \quad \text{and} \quad \frac{L(k+1|\mathbf{x},p)}{L(k|\mathbf{x},p)} < 1$$

$$\frac{L(k, \mathbf{x}, p)}{L(k-1, \mathbf{x}, p)} = \frac{\prod_{i=1}^{n} {k \choose x_i} p^{x_i} (1-p)^{k-x_i}}{\prod_{i=1}^{n} {k-1 \choose x_i} p^{x_i} (1-p)^{k-1-x_i}}
= \frac{\prod_{i=1}^{n} \frac{k!}{x_i!(k-x_i)!} p^{x_i} (1-p)^{k-x_i}}{\prod_{i=1}^{n} \frac{(k-1)!}{x_i!(k-1-x_i)!} p^{x_i} (1-p)^{k-1-x_i}}
= \prod_{i=1}^{n} \frac{k(1-p)}{k-x_i} = \frac{k^n (1-p)^n}{\prod_{i=1}^{n} (k-x_i)}$$

Finding MLE

Find maximum k such that $\frac{L(k|\mathbf{x},p)}{L(k-1|\mathbf{x},p)} \ge 1$ and $\frac{L(k+1|\mathbf{x},p)}{L(k|\mathbf{x},p)} < 1$. Thus the condition for a maximum is

$$k^{n}(1-p)^{n} \ge \prod_{i=1}^{n} (k-x_{i})$$
 and $(k+1)^{n}(1-p)^{n} < \prod_{i=1}^{n} (k+1-x_{i}).$

Dividing by k^n , we then want to solve the equation

$$(1-p)^n = \prod_{i=1}^n \left(1 - \frac{x_i}{k}\right)$$
 (1)

for $(\max_i x_i \le k < \infty)$. Note the following facts:

- The right-hand side is an increasing function of k
- When $k = \max_i x_i$, the right-hand side equals 0 which is less than $(1-p)^n$.
- On the other hand, when $k \to \infty$, the right-hand side will converge to 1 which is larger than $(1-p)^n$.

Combining the above three facts, it is evident that the equality in (1) will be attained by a unique \hat{k} within $[\max_i x_i, \infty)$. It can be found by numerically solving (1).

The solution \hat{k} may not be an integer. If there is a positive integer k^* such that $k^* < \hat{k} < (k^* + 1)$, then the maximum likelihood estimator (MLE) of k is given to be

$$k_{MLE} = k^* I (L(k^* | \mathbf{x}, p) \ge L(k^* + 1 | \mathbf{x}, p)) + (k^* + 1) I (L(k^* | \mathbf{x}, p) < L(k^* + 1 | \mathbf{x}, p)),$$

I being the indicator function.

Example 4 Let X_1, \dots, X_n be a random sample from a pdf

$$f_X(x|\theta) = \theta x^{\theta-1}, \quad 0 < x < 1, \quad 0 < \theta < \infty.$$

- (a) Find method of moments estimator for θ .
- (b) Find the MLE of θ .

${\bf Example~5-Two-parameter~Exponential}$

Let X_1, \dots, X_n be *i.i.d.* observations from a location-scale family of an exponential distribution with pdf

$$f_X(x|\theta) = \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma}\right), \quad x \ge \mu, \sigma > 0$$

- (a) Find MLEs of μ and σ .
- (b) Find MLE of S(t) = Pr(X > t) for a fixed t.

Invariance

MLE is invariant under monotonic transformation.

Question: If $\hat{\theta}$ is the MLE of θ , what is the MLE of $\tau(\theta)$?

Example 6: Let X_1, \dots, X_n be a random sample from Bernoulli(p) where 0 .

- 1. What is the MLE of p?
- 2. What is the MLE of odds, defined by $\eta = p/(1-p)$?

MLE of p

$$L(p|\mathbf{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

$$l(p|\mathbf{x}) = \log p \sum_{i=1}^{n} x_i + \log(1-p)(n - \sum_{i=1}^{n} x_i)$$

$$\frac{\partial l}{\partial p} = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1-p} = 0$$

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i}{p} = \overline{x}$$

MLE of $\eta = \frac{p}{1-p}$

- $\eta = p/(1-p) = \tau(p)$
- $p = \eta/(1+\eta) = \tau^{-1}(\eta)$

$$L^{*}(\eta|\mathbf{x}) = p^{\sum x_{i}}(1-p)^{n-\sum x_{i}}$$

$$= \frac{p}{1-p}^{\sum x_{i}}(1-p)^{n} = \frac{\eta^{\sum x_{i}}}{(1+\eta)^{n}}$$

$$l^{*}(\eta|\mathbf{x}) = \sum_{i=1}^{n} x_{i} \log \eta - n \log(1+\eta)$$

$$\frac{\partial l^{*}}{\partial \eta} = \frac{\sum_{i=1}^{n} x_{i}}{\eta} - \frac{n}{1+\eta} = 0$$

$$\hat{\eta} = \frac{\sum_{i=1}^{n} x_{i}/n}{1-\sum_{i=1}^{n} x_{i}/n} = \frac{\overline{x}}{1-\overline{x}} = \tau(\hat{p})$$

Another way to get MLE of $\eta = \frac{p}{1-p}$

$$L^*(\eta|\mathbf{x}) = \frac{\eta^{\sum x_i}}{(1+\eta)^n}$$

- From MLE of \hat{p} , we know $L^*(\eta|\mathbf{x})$ is maximized when $p = \eta/(1+\eta) = \hat{p}$.
- Equivalently, $L^*(\eta|\mathbf{x})$ is maximized when $\eta = \hat{p}/(1-\hat{p}) = \tau(\hat{p})$, because τ is a one-to-one function.
- Therefore $\hat{\eta} = \tau(\hat{p})$.

Result: Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is a one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof: The likelihood function in terms of $\tau(\theta) = \eta$ is

$$L^*(\tau(\theta)|\mathbf{x}) = \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta))$$
$$= L(\tau^{-1}(\eta)|\mathbf{x})$$

We know this function is maximized when $\tau^{-1}(\eta) = \hat{\theta}$, or equivalently, when $\eta = \tau(\hat{\theta})$. Therefore, MLE of $\eta = \tau(\theta)$ is $\hat{\eta} = \tau(\hat{\theta})$.

Induced Likelihood Function

- Let $L(\theta|\mathbf{x})$ be the likelihood function for a given data x_1, \dots, x_n ,
- and let $\eta = \tau(\theta)$ be a (possibly not a one-to-one) function of θ .

We define the induced likelihood function L^* by

$$L^*(\eta|\mathbf{x}) = \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x})$$

where $\tau^{-1}(\eta) = \{\theta : \tau(\theta) = \eta, \ \theta \in \Omega\}.$

• The value of η that maximize $L^*(\eta|\mathbf{x})$ is called the MLE of $\eta = \tau(\theta)$.

Theorem 7.2.10: If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta = \tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$L^*(\hat{\eta}|\mathbf{x}) = \sup_{\eta} L^*(\eta|\mathbf{x}) = \sup_{\eta} \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x})$$
$$= \sup_{\theta} L(\theta|\mathbf{x}) = L(\hat{\theta}|\mathbf{x})$$
$$L(\hat{\theta}|\mathbf{x}) = \sup_{\theta \in \tau^{-1}(\tau(\hat{\theta}))} L(\theta|\mathbf{x}) = L^*[\tau(\hat{\theta})|\mathbf{x}]$$

Hence, $L^*(\hat{\eta}|\mathbf{x}) = L^*[\tau(\hat{\theta})|\mathbf{x}]$ and $\tau(\hat{\theta})$ is the MLE of $\tau(\theta)$.

Properties of MLE

- 1. Optimal in some sense: We will study this later
- 2. By definition, MLE will always fall into the range of the parameter space.
- 3. Not always easy to obtain; may be hard to find the global maximum.
- 4. Heavily depends on the underlying distributional assumptions (i.e. not robust).