

Image filtering

Robert Haase

With material from

Mauricio Rocha Martins, Norden lab, MPI CBG

Dominic Waithe, Oxford University

Nuno P Martins, IGC Lisbon

Paulo Aguiar, INEB, Porto

Sebastian Tosi, IRB Barcelona

Benoit Lombardot, Scientific Computing Facility, MPI CBG

Alex Bird, Dan White, MPI CBG

April 2021

Lecture overview

Today

- Filters
- Image math

- Image filtering with Fiji
- Image filtering with Python
- Exercises

<matplotlib.contour.QuadContourSet at 0x206dc159310>

Filters

- An image processing filter is an operation on an image.
- It takes an image and produces a new image out of it.
- Filters change pixel values.
- There is no "best" filter. Which filter fits your needs, depends on the context.
- Filters do not do magic. They can not make things visible which are not in the image.
- Application examples
 - Noise-reduction
 - Artefact-removal
 - Contrast enhancement
 - Correct uneven illumination

Effects harming image quality

- <u>Noise</u> is a general term for unwanted modifications that a signal may suffer during capture, storage, transmission, processing, or conversion.
- In microscopy, image quality suffers from
 - shot noise: Statistical variation of the photons arriving at the camera
 - dark noise: Statistical variation of how many electrons are generated if a photon arrives in a camera pixel (temperature dependent).
 - read out noise: introduced by the electronics, especially the pixel and the analog-digital-converter
 - Physical/optical effects: aberrations, defocus
 - Biological/physiological/structural effects: motion, diffusion

• When dealing with noise in microscopic image processing, we mostly mean the noise visible in the images.

Image correction / noise removal

• We need to remove the noise to help the computer interpreting the image

• Noise removal using *filters*

Original image

Gaussian blur filtered

Median filtered

Linear Filters

- Linear filters replace each pixel value with a linear combination of surrounding pixels
 - Basically, linear filtering is a Convolution
 - It needs a kernel (weight template)
 - Result: new image where each pixel is replaced by the weighted sum of pixel values in the neighbourhood.

Kernels are matrices describing a linear filter

Mean filter, 3x3 kernel

Linear filters

- Terminology:
 - "We convolve an image with a kernel."
 - Convolution operator: *

- Examples
 - Mean
 - Gaussian blur
 - Sobel-operator
 - Laplace-filter

- Non linear filters also replace pixel value inside as rolling window but in a non linear function.
- Examples: order statistics filters
 - Min
 - Median
 - Max
 - Variance
 - Standard deviation

Image math

Robert Haase

With material from
Mauricio Rocha Martins, Norden lab, MPI CBG

• Differentiating objects is easier if their background intensity is equal.

Background removal

 Depending on the effect we want to correct for, it might make sense to divide an image by its background.

Mathematical operations on images

• It might be hard to differentiate objects from single images...

Mathematical operations on images

• Segmentation of nuclei can be improved by subtracting a channel visualizing nuclei envelope from the nuclei channel.

Difference-of-Gaussian (DoG)

Improve image in order to detect bright objects.

Difference-of-Gaussian (DoG)

Example DoG images

dog-13-10

dog-13-13

@haesleinhuepf

April 2021

dog-13-7

Laplace-filter

PoL
Physics of Life
TU Dresden

- Second derivative of a Gaussian blur filter
- Used for edge-detection and edge enhancement
- Also known as the Mexican-hat-filter

April 2021

Laplacian-of-Gaussian (LoG)

Laplace filter

Laplace filtered image

LoG image

Image Filtering in Fiji

Robert Haase

With material from

Mauricio Rocha Martins, Norden lab, MPI CBG

Dominic Waithe, Oxford University

Nuno P Martins, IGC Lisbon

Paulo Aguiar, INEB, Porto

Sebastian Tosi, IRB Barcelona

Benoit Lombardot, Scientific Computing Facility, MPI CBG

Alex Bird, Dan White, MPI CBG

April 2020

Linear filters:

- Convolve...
 - Allows us to specify our kernel

- Gaussian blur
- Mean
 - * Smooth is a 3x3 Mean filter

Nonlinear Filters

- Non linear filters also replace pixel value inside as rolling window but in a non linear function.
- Examples:
 - Min
 - Median
 - Max
 - Variance

April 2021

Image/pixel math

 All basic math operations for pixels are available in ImageJ/Fiji.

 If you want to simulate a binary image: Select some black pixels and add 255 to make them white.

Angle tool

Hint: Image/pixel math

• Use images with single pixels > 0 and apply filters to understand what the filters do

Background removal

- Pol Physics of Life TU Dresden

- Process > Subtract background...
 - The rolling ball radius should be a bit larger than the objects you are analyzing.
 - Try the preview checkbox while changing parameters!

Background removal

- Plugins > Integral image filters > Standard deviation
- Process > Image calculator

Mathematical operations on images

• Use the *Image Calculator* to subtract, add, multiply or divide images.

Image Filtering in Python using scikit-image

Robert Haase

scikit-image

• *scikit-image* is a collection of algorithms for image processing.

conda install scikit-image

Working with images in python

Open images

```
from skimage.io import imread
image = imread("blobs.tif")
```

Visualize images

```
from skimage.io import imshow
imshow(image)
```

<matplotlib.image.AxesImage at 0x245e7e5b220>

Filtering images

Explore available filters (lectures 02, 07) and combine them

```
from skimage import filters

filters.

LPIFilter2D

median

meijering

prewitt

prewitt_h

prewitt_v

rank

rank_order

ridges

roberts
```


April 2021

Filtering images: structuring elements

Some filters ask for structuring elements

Filtering images: structuring elements

Some filters ask for structuring elements

```
M from skimage.morphology import disk

median_filtered = filters.median(image, disk(5))
plt.imshow(median_filtered)
plt.show()
```


https://scikit-

image.org/docs/stable/auto examples/numpy operations/plot structuring elements.html#sphx-glr-auto-examples-numpy-operations-plot-structuring-elements-py

Image visualization: subplots

Use matplotlib to put images side-by-side

```
median_filtered = filters.median(noisy_mri, disk(1))
mean filtered = filters.rank.mean(noisy mri, disk(1))
gaussian filtered = filters.gaussian(noisy mri, sigma=1)
fig, axs = plt.subplots(2, 3, figsize=(15,10))
                           columns
                   rows
# first row
axs[0, 0].imshow(median filtered)
axs[0, 0].set title("Median")
axs[0, 1].imshow(mean filtered)
axs[0, 1].set title("Mean")
axs[0, 2].imshow(gaussian filtered)
axs[0, 2].set_title("Gaussian"
# second row
axs[1, 0].imshow(median filtered[50:100, 50:100])
axs[1, 1].imshow(mean filtered[50:100, 50:100])
axs[1, 2].imshow(gaussian filtered[50:100, 50:100])
       column
row
```

https://matplotlib.org/stable/api/ as gen/matplotlib.pyplot.subplots.html

Image visualization in python using napari

Robert Haase

napari

- Multi-dimensional image viewer in python
- https://napari.org/

napari

Initialisation

₩ %gui qt

• Open a window

import napari
Create an empty viewer
viewer = napari.Viewer()

- Add an image (layer)
- # Add a new layer containing an image viewer.add_image(image);

Removing layers

• Remove all layers from napari

Remove all layers to start from scratch for 1 in viewer.layers: viewer.layers.remove(1)

Add multiple images as layers

 Add layers to napari to visualize intermediate processing results on top of each other or side by side

When to use what? (opinionated slide)

- ImageJ / Fiji
 - Established platform for 20 years
 - Right tool for quick exploration of image data
 - Classical algorithms
 - Hundreds of plugins available
 - Not compatible with python
 - Workflow development limited to ImageJ compatible functionality
 - Pixel-by-pixel comparison complicated

- napari
 - Under development
 - Limited functionality (yet)
 - Small number of plugins available, e.g. for deeplearning
 - Compatible with python
 - Workflows can include any kind of data analysis tools from the python ecosystem
 - Layer-concept makes comparing images easy

Summary

- Image filtering
 - Noise removal
 - Background subtraction
- Tools
 - ImageJ / Fiji
 - Python
 - Scikit-image
 - napari

Coming up next

- Image Segmentation
 - Thresholding
 - Mask refinement
 - Connected component analysis

