Global Pollution Analysis and Energy Recovery

Objective

The goal is to analyze pollution data across various countries and predict how pollution levels can impact energy recovery. This dataset will be used to explore **clustering and neural networks** for environmental analysis.

Phase 1 - Data Preprocessing and Feature Engineering

Data Import and Cleaning

- Load the dataset (Global_Pollution_Analysis.csv).
- o Handle missing data using imputation or removal techniques.
- o Normalize/scale pollution indices (air, water, and soil) for consistency.
- o Encode categorical features (e.g., country, year) using Label Encoding.

Feature Engineering

- o Create new features like energy consumption per capita.
- Analyze yearly pollution trends and their impact on energy recovery.

Phase 2 - Clustering using K-Means and Hierarchical Clustering

1. K-Means Clustering

- Objective Cluster countries based on pollution levels (e.g., air, water, and soil pollution) and energy recovery metrics.
- Implementation
 - Apply K-Means to group countries based on pollution indices and energy consumption.
 - Use **Elbow Method** to determine the optimal number of clusters.
- Evaluation
 - Visualize pollution trends and energy recovery by clusters.
 - Identify countries with similar environmental and energy characteristics.

2. Hierarchical Clustering

- Objective Perform hierarchical clustering to analyze pollution levels and energy recovery.
- Implementation
 - Use Agglomerative Clustering to build a hierarchical structure based on pollution and energy data.
 - Visualize the dendrogram and determine the number of clusters.
- Evaluation
 - Compare the results of hierarchical clustering with K-Means.
 - Visualize clusters in a hierarchical tree structure.

Phase 3 - Neural Networks for Energy Recovery Prediction

1. Introduction to Neural Networks

- Objective Build a neural network to predict energy recovery from pollution data.
- Implementation
 - Train a simple feedforward neural network using Keras/TensorFlow.
 - Input features: Air Pollution Index, CO2 Emissions, Industrial Waste, etc.
 - Output: Energy recovered in GWh.
- Evaluation Metrics R², Mean Squared Error (MSE), Mean Absolute Error (MAE).

2. Model Improvement

- Tune hyperparameters such as the number of layers, neurons, activation functions, and learning rates to improve model accuracy.
- Evaluate the neural network's performance compared to linear regression models for energy recovery.

Phase 4 - Reporting and Insights

Model Comparison

- Compare the performance of K-Means and Hierarchical Clustering with the neural network model in predicting energy recovery from pollution data.
- Analyze the strengths and weaknesses of each model and which one offers better predictions and clustering results.

Actionable Insights

- Provide insights into how clustering can reveal trends in pollution and energy recovery.
- o Recommend strategies for countries to reduce pollution based on clustering results and neural network predictions.

Final Deliverables

- 1. Jupyter Notebook (.ipynb)
 - Full code for data preprocessing, clustering, and neural network modeling.
- 2. Data Visualizations
 - Visualizations such as Elbow Method graphs, dendrograms, and neural network performance metrics.
- 3. Final Report
 - A comprehensive report summarizing the methodology, model evaluations, key findings, and actionable recommendations.