КРАТКОЕ ПРАКТИЧЕСКОЕ РУКОВОДСТВО К МістоСар

Создание схем

Сборка схем

Сборка осуществляется выбором соответствующих элементарных элементов из меню Component и их последующим соединением.

Для того чтобы повернуть элемент на 90 ⁰ необходимо при нажатой правой кнопки мыши нажать левую или выделить с помощью область, в которой находится этот элемент, и использовать Edit\Box\Rotate, Edit\Box\Flip_X или Edit\Box\Flip_Y. Значения параметров компонентов задаются при их создании в Окне Атрибутов (рис.1). Для этого необходимо

Component=Resistor: Model Keyword=RES: Definition=Resistor	×
Name VALUE □ Display □ Display Pin Names	
Value 100K	
PART=R10 VALUE=100K	
MODEL=	
OK Cancel Font Add Delete Help Models	
<pre><value>[TC=<tc1>[,<tc2>]]</tc2></tc1></value></pre>	

a

Рис. 1. Окно Атрибутов: выбор модели резистора (а), – транзистора (б)

выбрать параметр VALUE и в поле Value указать его значение (для пассивных элементов) (рис. 1, а). Выбор транзисторов (активных элементов) осуществляется из заданного перечня (рис. 1, б). При необходимости их параметры можно редактировать в окне *Text*, где располагается текстовая математическая модель компонента (в данном случае транзистора). Для удобства редактирования можно окно разделить на две части (вертикальные или горизонтальные) – меню Windows/Split Horizontal (Vertical).

Для соединения элементов между собой используются кнопки . Первая соединяет элементы связями только под прямым углом, вторая — под произвольным. МісгоСар сам нумерует точки, в которых могут быть разные потенциалы. Чтобы увидеть эту нумерацию надо кликнуть на . Для того, чтобы позже можно было проще анализировать схемы, необходимо отметить точки, которые будем анализировать. Для этого надо инструментом . поставить текстовую метку так, чтобы ее левый нижний угол оказался на отмечаемой точке.

Параметры источника сигналов.

Для источника импульсных сигналов: VZERO — начальное значение, VONE — максимальное значение, p1 — начало переднего фронта, p2 — начало плоской вершины импульса, p3 — конец плоской вершины импульса, p4 — достижение начального уровня, p5 — период повторения. Последние пять параметров задаются в секундах.

Представление чисел

Представление в МісгоСар возможно в одной из трех нотаций.

- 1) Действительные числа с фиксированным десятичным знаком.
 - 2,5 кОм записывается как 2500
 - 1 мкФ записывается как 0.000001

Обратим внимание, что в качестве десятичного знака используется точка.

- 2) Действительные числа с плавающим десятичным знаком
 - 2,5 кОм записывается как 2..5е3
 - 1мкФ записывается как 1е-6
- 3) Действительные числа с плавающим десятичным знаком. Согласно этой нотации различные степени 10 обозначаются следующими суффиксами.

F	фемто	10^{-15}
P	пико	10^{-12}
N	нано	10^{-9}
U	микро	10^{-6}
M	милли	10^{-3}
K	кило	10^{3}
MEG	мега	10^{6}
G	гига	10^{9}
T	тера	10^{12}

Для экономии места на графиках малая буква "m" обозначает 10^{-3} , большая буква "M" - 10^{6} .

При этом большие и малые буквы не различаются. Сопротивление 1,5 МОм может быть записано как 1.5MEG, 1.5meg, 1500K.

выполнение моделирования

Характер моделирования (анализа) указывается в *Меню* **Analysis:**

Transient — анализ переходных процессов (реакция устройств и систем на типовые входные воздействия, реализуемые соответствующими источниками сигналов);

АС – анализ частотных характеристик;

DC – анализ передаточных функций по постоянному току, в частности, построение выходных и входных статических характеристик транзисторов;

Dynamic DC – расчет режима по постоянному току и отображение на схеме узловых потенциалов, токов ветвей и рассеиваемой мощности;

Transfer Function – расчет малосигнальных (т.е. линеаризованных) передаточных функций по постоянному току;

Sensitivity – расчет чувствительностей по постоянному току выходных переменных к изменению (вариации) параметров схемы и ее компонентов.

Анализ передаточных характеристик (статических выходных характеристик транзисторов)

По команде **DC** в Меню **Analysis** открываем окно задания параметров для анализа передаточных характеристик (рис. 2). На этом рисунке заданы параметры для измерения семейства статических выходных характеристик биполярных транзисторов $I_c = F(U_{ce})$ при постоянных токах базы I_b . Т. е. независимыми переменными (аргументами) являются U_{ce} и I_b , в соответствии с чем, к коллектору подключен источник постоянного напряжения V2 к базе транзистора – источник постоянного тока I2 (рис. 3). На строках $Variable\ 1$, $Variable\ 2$

указаны имена варьируемых источников, диапазон их изменений — на строках Range. По оси X откладывается напряжение коллектор — эмиттер транзистора $V_{ce}(Q1)$, по оси Y — ток коллектора $I_c(Q1)$. Расчет осуществляется по команде Run.

Рис. 2. Окно задания параметров для анализа передаточных характеристик

Рис. 3. Измерение статических выходных характеристик биполярного транзистора

Анализ частотных характеристик

В качестве примера рассмотрим схему инвертирующего усилителя на ОУ (рис. 4).

Схема 1 "Инвертирующий усилитель"

Рис. 4.

Для анализа частотных характеристик надо выбрать пункт меню **Analysis/AC Analysis...** Появится окно (рис. 5):

Рис. 5.

Значение некоторых полей этого окна:

Кнопка **Run** – начало моделирования.

Frequency Range – конечная и начальная частота по формату Fmax, Fmin.

 Γ рафа P — номер графического окна, в котором выводится функция. Если ничего не задано, то график не строится.

X Expression – имя переменной, откладываемой по оси X. В нашем случае, это частота (F).

Y Expression — имя переменной, откладываемой по оси Y. v(Out) — напряжение в точке Out, ph(v(Out)) — сдвиг фазы напряжения относительно начальной в точке Out, db(v(Out)) — коэффициент усиления в Дб в точке (Out).

X Range – максимальное и минимальное значения переменной X по формату High, Low. Если минимальное значение равно нулю, его можно не указывать. Для автоматического выбора диапазона переменных в этой графе указывается Auto. Необходимо помнить, что ось X – логарифмическая.

Y Range — максимальное и минимальное значения переменной Y на графике. Если минимальное значение равно нулю, его можно не указывать. Для автоматического выбора диапазона переменных в этой графе указывается Auto.

После построения графиков с помощью клавиш можно вывести на экран разность значений по X, разность значений по Y между двумя точками, и значение в конкретной точке.

Анализ переходных процессов

Для анализа переходных характеристик надо выбрать пункт меню **Analysis/Transient...**. Появится окно (рис.6):

Рис. 6

Значение некоторых полей этого окна:

Кнопка **Run** – начало моделирования.

Time Range – временной промежуток в котором будет строиться переходный процесс по формату Fmax, Fmin.

Maximum Time Step – максимальный шаг построения в секундах.

 Γ рафа P — номер графического окна, в котором выводится функция. Если ничего не задано, то график не строится.

X Expression – имя переменной, откладываемой по оси X. В нашем случае, это время (T).

Y Expression – имя переменной, откладываемой по оси Y. V(Out) – напряжение в точке Out.

В данном окне (рис.6) можно также рассчитать *спектр сигнала* с помощью преобразования Фурье. Для этого надо в графическом окне ввести строку:

X Expression: имя переменной - частота (F), Y Expression: имя переменной - FFT(Out).

X Range – максимальное и минимальное значения переменной X по формату High, Low. Если минимальное значение равно нулю, его можно не указывать. Для автоматического выбора диапазона переменных в этой графе указывается Auto.

Y Range — максимальное и минимальное значения переменной Y на графике. Если минимальное значение равно нулю, его можно не указывать. Для автоматического выбора диапазона переменных в этой графе указывается Auto.

После построения графиков с помощью клавиш можно вывести на экран разность значений по X, разность значений по Y между двумя точками, и значение в конкретной точке.

Результаты построения частотных характеристик и переходных процессов

Результаты анализы схемы представлены на рис. 7 – рис. 10.

Амплитудно-частотная характеристика построена в промежутке от 1к Γ ц до 10М Γ ц в логарифмической шкале. На рабочей частоте усилителя (2.5 к Γ ц) просмотрены значения входного и выходного значений напряжения усилителя. МісгоСар строит АЧХ для выходного сигнала $U_{\text{вх}}$ = 1B. Тогда выходной сигнал при этой частоте $U_{\text{вых}}$ =2.5B. Коэффициент усиления данного усилителя K_y =2.5 (K_y ≈8Дб). Рабочая область усилителя 1-15 К Γ ц. При более высоких частотах выходное напряжение уменьшается до ноля.

Фазо-частотная характеристика построена в промежутке от 10Γ ц до $1\Gamma\Gamma$ ц по логарифмической шкале. По фазо-частотной характеристике можно судить о сдвиге фазы на разных частотах сигнала. На частотах $1 \text{ к}\Gamma$ ц и $15\text{к}\Gamma$ ц просмотрены значения сдвига фазы. На частоте $1 \text{ к}\Gamma$ ц сдвиг фазы ≈ 180° (т.е. усилитель является инвертирующим). На частоте 15.35 к Γ ц сдвиг фазы составляет уже 177° .

Рис. 7. Амплитудно-частотная характеристика

Рис. 8. Фазо-частотная характеристика

Переходный процесс при небольшом импульсном сигнале (рис. 9)

Для моделирования переходного процесса был использован источник трапециевидных импульсов с амплитудой 1В и частотой 10кГц. Переходный процесс построен в промежутке от 0 до 2мкс. Усилитель достаточно точно передает трапециевидную форму исходного сигнала. Амплитуда выходного сигнала 2.5В.

Рис. 9

Переходный процесс при большом синусоидальном сигнале (рис. 10)

Для моделирования переходного процесса был использован источник синусоидального сигнала с амплитудой 11В и частотой $2\kappa\Gamma$ ц. Переходный процесс построен в промежутке от 0 до 1мс. По графику $U_{max}\approx13.6$ В. При достижении выходным сигналом этого значения наступает "срез" выходной характеристики.

Рис. 10