Chapter-2 Complex Number

AI24BTECH11032 Shreyansh Sonkar

- 7. If $1, a_1, a_2, a_3....a_{n-1}$ are the n roots of unity, then show that $(1 a_1)(1 a_2)(1 a_3)....(1 a_{n-1}) = n$ (1984- 2 Marks).
- 8. Show that the area of the triangle on the Argand diagram formed by the complex numbers z, iz & z + iz is $\frac{1}{2}|z|^2$.

(1986-2 Marks).

- 9. Let $Z_1 = 10 + 6\iota$ and $Z_2 = 4 + 6\iota$. if Z is any complex number such that the argument of $\frac{(Z-Z_1)}{(Z-Z_2)}$ is $\frac{\pi}{4}$ then prove that $Z 7 9\iota = 3\sqrt{2}$ (1990-4 Marks).
- 10. if $iz^3 z^2 z + \iota = 0$ then show that |z| = 1 (1995-5 Marks).
- 11. If $|Z| \le 1$, $|W| \le 1$, show that $(Z W)^2 \le (|Z| |W|)^2 + (\arg Z \arg W)^2$ (1995-5 Marks).
- 12. Find all non-zero complex numbers Z satisfying $\bar{Z} = \iota Z^2$

(1996-2 Marks).

(1997-5 Marks)

- 13. Let z_1 and z_2 be roots of the equation $z^2 + pz + q = 0$, where the coefficients p and q may be complex numbers. Let A and B represent z_1 and z_2 in the complex plane . if $\angle AOB = \alpha \neq 0$ and OA = OB, where O is the origin, prove that $p^2 = 4q \cos^2\left(\frac{\alpha}{2}\right)$.
- 14. For complex number z and w,prove that $|z|^2w |w|^2z = z w$ if and only if $z = wor\overline{w} = 1$. (1999-10 Marks).

15. Let a complex number α , $\alpha \neq 1$, be a root of the equation $z^{p+q} - z^p - z^q + 1 = 0$, where p,q are the distinct primes. Show that either $1 + \alpha + \alpha^2 + ... + \alpha^{p-1} = 0$ or $1 + \alpha + \alpha^2 + ... + \alpha^{q-1} = 0$,

but not both together.

(2002-5 Marks)

- 16. If z_1 and z_2 are two complex number such that $|z_1 < 1 < ||z_2|$ then prove that $|\frac{1-z_1\bar{z}_2}{z_1-z_2}| < 1$. (2003-2 Marks)
- 17. Prove that there exists no complex number z such that $|z| < \frac{1}{3}$ and $\sum_{r=1}^{n} a_r z^r = 1$ where $|a_r| < 2$.

(2003-2 Marks)

- 18. Find the centre and radius of circle given by $|\frac{z-\alpha}{z-\beta}| = k, k \neq 1$ where, $z = x + \iota$, $\alpha = \alpha_1 + \iota \alpha_2$, $\beta = \beta_1 + \iota \beta_2$. (2004-2 Marks)
- 19. If one the vertices of the square circumscribing the circle $|z-1| = \sqrt{2}$ is $2 + \sqrt{3}\iota$. find the other vertices of the square . (2005-4 Marks)