

Informace

1. cvičení

Jiří Zacpal

KMI/ZVT – Základy výpočetní techniky

Jak získat zápočet

- Zápočet dostane student, který získá alespoň 30 bodů (ze 40 možných).
 Body se získávají za:
- příklad na cvičení = 2 body (maximálně 20 bodů),
- písemný test = 0-10 bodů,
- praktická práce = 0-10 bodů.

Informace

- Entropii míra neurčitosti náhodné veličiny.
- Informaci lze definovat jako rozdíl entropie před provedením určité akce a po provedení této akce.
- Jednotkou informace je bit = množství informace, kterou získáme odpovědí na otázku ano-ne
- Osminásobek jednoho bitu se nazývá byte (označení 1B) = 256 různých hodnot (0-255)

$$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^8 = 256$$

Základní jednotky informace

- předpony
 - standardní Kilobyte (1 kB = 1 000 B),
 - speciální Kibibyte (1 KiB = 1 024 B),
- převodní tabulka:

Jednotka	Značka	В
Kilobyte	kB	1 000
Kibibyte	KiB	1 024
Megabyte	MB	1 000 000
Mebibyte	MiB	1 048 576
Gigabyte	GB	10 ⁹
Gibibyte	GiB	~1,074·10 ⁹
Terabyte	ТВ	10 ¹²
Tebibyte	TiB	~1,1.1012

Úkol

- 1. Kolik bitů má 7 B?
- 2. Kolik různých hodnot lze reprezentovat 2 B?
- 3. Kolik B je 24 kB?
- 4. Kolik B je 24 KiB?

Číselné soustavy

 Číslo A v číselné soustavě o základu z můžeme napsat jako posloupnost

$$A = a_n a_{n-1} a_{n-2} \dots a_1 a_0,$$

- kde $a_n a_{n-1} a_{n-2} \dots a_1 a_0$ jsou jednotlivé číslice čísla A, přičemž a_n je nejvýznamnější číslice a a_0 je nejméně významná číslice.
- Hodnota čísla A se pak určí jako součet mocnin základu, které jsou vynásobené jednotlivými číslicemi:

$$\begin{aligned} A \\ &= a_n \cdot z^n + a_{n-1} \cdot z^{n-1} + a_{n-2} \cdot z^{n-2} + \dots + a_1 \cdot z^1 \\ &+ a_0 \cdot z^0. \end{aligned}$$

Takovému zápisu říkáme polynomiální.

Číselné soustavy

- Dekadická
 - 10 číslic (0,...,9)
- Binární (dvojková)
 - 2 číslice (0,1)
- Hexadeximální (šestnáctková)
 - 16 číslic (0,...,9,A,B,C,D,E,F)
 - platí tedy např. $(13)_{10} = (D)_{16}$ nebo $(1111)_2 = (15)_{10} = (F)_{16}$.

Kódování čísel

 Jako příklad uveďme, že číslo 1234 v desítkové soustavě je možné napsat jako

$$(1234)_{10} = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$$
.

 Číslo 110101 ve dvojkové soustavě zapíšeme takto:

$$(110101)_2$$
= 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0.

Převody mezi soustavami

• Číslo 216 v desítkové soustavě převedeme do dvojkové soustavy postupným celočíselným dělením:

0
0
1
1
0
1
1

- Zbytky po dělení odpovídají číslicím ve dvojkové soustavě, přičemž poslední zbytek je nejvýznamnější číslicí a první zbytek nejméně významnou číslicí. Platí tedy (216)₁₀ = (11011000)₂.
- Zpětný převod je proveden následovně:

$$1 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 216.$$

Převody mezi soustavami

 Číslo 216 v desítkové soustavě převedeme do šestnáctkové takto:

> 216 : 16 = 13 zbytek 8 13 : 16 = 0 zbytek D

- Zbytky po dělení odpovídají číslicím ve dvojkové soustavě, přičemž poslední zbytek je nejvýznamnější číslicí a první zbytek nejméně významnou číslicí. Platí tedy (216)₁₀ = (D8)₁₆.
- Zpětný převod je proveden následovně:

$$D \cdot 16^1 + 8 \cdot 16^0 = 216.$$

Převody mezi soustavami

- Číslo 5FB7 v šestnáctkové soustavě převedeme do binární tak, že jej rozdělíme na jednotlivé cifry a každou cifru převedeme do binární soustavy.
- Platí proto $(5FB7)_{16} = (01011111110110111)_2$.
- Zpětný převod se provádí analogicky.

Program CIT

- Umožňuje procvičování převodů mezi číselným soustavami.
- http://sdrv.ms/1gmtWvz

Úkol

- 1. Převeďte číslo 24 z desítkové do dvojkové soustavy.
- 2. Převeďte číslo 8FB z šestnáctkové do desítková soustavy.
- 3. Převeďte číslo F2 z šestnáctkové do dvojkové soustavy.
- 4. Převeďte číslo 101101 z dvojkové do šestnáctkové soustavy.

Kódování záporných čísel

- Přímé kódování první bit je vyhrazen pro znaménko
 - číslo 00001001 ve dvojkové soustavě je 9 v
 desítkové, a proto 10001001 představuje číslo
 -9
- Doplňkový kód záporné číslo je zaznamenáno jako binární negace (záměna všech 0 za 1) původního čísla zvětšená o 1.
 - pokud 00001101 je binární vyjádření čísla 13,
 pak -13 se vypočte jako 11110010 + 1 =
 11110011

Kódování záporných čísel

- Aditivní kód výsledná binární reprezentace představuje nezáporné číslo, které vznikne součtem kódovaného čísla a domluvené konstanty (většinou polovina maximálního kladného čísla).
 - číslo $(-10)_{10}$ reprezentujeme pomocí 1 B jako 118 = $(-10)_{10}$ + $(256)_{10}$ /2 = -10 + 128
- Inverzní kód kladná čísla se vyjadřují normálním způsobem, záporná čísla se vyjadřují binární negací čísla
 - například -3 vyjádříme kódem 111111100

Program CIT

 Umožňuje procvičování vyjádření záporných čísel v doplňkovém kódu.

Úkol

- 1. Převeďte číslo 57 z desítkové do dvojkové soustavy (jako 8bitové číslo).
- 2. Vyjádřete číslo -57 v:
 - přímém kódování
 - pomocí inverzního kódu
 - pomocí doplňkového kódu
 - aditivním kódu (přičtěte 128)

Operace s binárními čísly

- Kladná binární čísla sčítáme bit po bitu podle těchto pravidel, přičemž začínáme u nejnižších bitů.
- Rozdíl kladných binárních čísel A B vypočítáme jako součet čísla A a dvojkového doplňku čísla B, tj. A - B = A + ²B.

Program CIT

 Umožňuje procvičování sčítání a odčítání binárních čísel.

Úkol

1. Vypočtěte:

10110011 + 11000101 11010111 - 10000100

Kódování čísel s fixní řádkovou čárkou

Kódování čísla (0,625)₁₀

$$0,625 \cdot 2 = 1,250$$
 celočíselná část = 1 b₋₁ $0,250 \cdot 2 = 0,500$ celočíselná část = 0 b₋₂ $0,500 \cdot 2 = 1,000$ celočíselná část = 1 b₋₃ Odtud je číslo $(0,625)_{10} = (0,101)_2$

Dekódování čísla (101,01)₂

$$(101,01)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} =$$

=4 + 0 + 1 + 0 + 0,25 = $(5,25)_{10}$

Kódování čísel s pohyblivou řádkovou čárkou

- definované normou IEEE 754
- formáty
 - jednoduchá přesnost (single) 32 bitů
 - dvojnásobná přesnost (double) 64 bitů

$$X=(-1)^s \times 2^{exp-bias} \times m$$

- 2 je báze, někdy také nazývaná radix. U IEEE 754 je to vždy dvojka, protože výpočty s bází dvě jsou pro číslicové obvody nejjednodušší. V minulosti se používaly i jiné báze, například 8, 16 nebo i 10.
- exp je vždy kladná hodnota exponentu posunutého o hodnotu bias
- bias je hodnota, díky které je uložený exponent vždy kladný. Tato hodnota se většinou volí dle vztahu: bias=2^{eb-1}-1, kde eb je počet bitů vyhrazených pro exponent.
- m je mantisa, která je u formátů IEEE 754 vždy kladná
- s je znaménkový bit nabývající hodnoty 0 nebo 1. Pokud je tento bit nulový, je reprezentovaná hodnota kladná, v opačném případě se jedná o zápornou hodnotu. Vzhledem k tomu, že je jeden bit vyhrazen na uložení znaménka, je možné rozlišit kladnou a zápornou nulu.

Jednoduchá přesnost

bit	31	30 29 24 23	22 21 3 2 1 0
význam	S	exponent (8 bitů)	mantisa (23 bitů)

$$X = (-1)^{s} \times 2^{E-127} \times (1 + Q)$$

$$Q = m_{1} \times 2^{-1} + m_{2} \times 2^{-2} + ... + m_{22} \times 2^{-22} + m_{23} \times 2^{-2}$$

- $127 = 2^{eb-1}-1 = 2^{8-1}-1 = 2^7-1 = 128-1$
- exponent
 - od –127 do 128 (od –126 do 127)
 - -127 (00000000) a 128 (111111111) jsou použity pro speciální účely
- mantisa ukládají do ní normalizovaná čísla v intervalu <1;2>
 - vzhledem k tomu, že první bit umístěný před binární tečkou vždy
 1, není ho zapotřebí ukládat, což znamená, že ušetříme jeden bit z třicetidvoubitového slova

Jednoduchá přesnost

mezní hodnoty exponentu

podmínka	hodnota	poznámka
E = 1 až 254	$X = (-1)^s \times 2^{E-127} \times (1 + Q)$	základní formát
$E = 0, Q \neq 0$	$X = (-1)^s \times 2^{-126} \times Q$	denormalizovaná čísla
E = 0, $Q = 0$, $s = 0$	X = 0	kladná nula
E = 0, $Q = 0$, $s = 1$	X = 0	záporná nula
E = 255, Q = 0, s = 0	X = +∞	kladné nekonečno (výsledek byl příliš vysoký)
E = 255, Q = 0, s = 1	X = -∞	záporné nekonečno (výsledek byl příliš nízký)
E = 255, Q > 0	X = NaN	není číslo

Jednoduchá přesnost

- příklad: 123,456
 - 1. 123,456=1,929x2⁶
 - 2. s=0
 - 3. $E 127 = 6 -> E = (133)_{10} = (10000101)_2$
 - 4. mantisa $(0,929)_{10}$ = $(1110110111101111001)_2$

	S			E	expo	nen	t				mantisa																					
bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
hodnota	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	0	1	1	1	0	1	0	0	1	0	1	1	1	1	0	0	1

Bodovaný úkol

- Kolik různých hodnot můžeme reprezentovat pomocí 3 B?
- 2. Převeďte číslo 1011011 z dvojkové do desítkové soustavy.
- 3. Převeďte číslo 548 z desítkové do šestnáctkové soustavy.
- 4. Vyjádřete číslo -104 uložené v 1 B v:
 - přímém kódování
 - pomocí doplňkového kódu
 - pomocí inverzního kódu
 - v aditivním kódu (přičtěte 128)
- 5. Převeďte číslo 16,25 v kódování s fixní pohyblivou řádovou čárkou.