

UNIVERSIDADE FEDERAL DE PERNAMBUCO – UFPE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO Prof. Dr. Francisco de Assis Tenório de Carvalho

PROJETO DA DISCIPLINA APRENDIZAGEM DE MÁQUINA

EQUIPE:

Carlos Antônio Alves Júnior (caaj@cin.ufpe.br)
Marcos de Souza Oliveira (mso2@cin.ufpe.br)
Matheus Johann Araújo (mja@cin.ufpe.br)

Sumário:

- Análises Iniciais do Conjunto de Dados
- Parte 1: Algoritmo FCM-DFCV e Resultados
- Parte 2: Análise de Classificadores e Resultados

Distribuição das Classes:

Distribuição dos Atributos:

Com o objetivo de avaliar a **robustez** dos métodos ao lidar com os **problemas** apresentados, neste trabalho **não** foi empregado um **pré-processamento** no conjunto de dados.

Parte 1: Algoritmo FCM-DFCV e Resultados

- Execute o algoritmo "FCM-DFCV" 100 vezes para obter uma partição fuzzy em 10 grupos e selecione o melhor resultado segundo a função objetivo.
- > Para cada partição fuzzy, calcule o Modified partition coefficient e o Partition entropy.
- > Para cada partição fuzzy, produza uma partição crisp em 10 grupos e calcule o índice de Rand corrigido e a F-measure.
- > Para o melhor resultado imprimir:
 - os protótipos;
 - o a matriz de confusão da partição crisp versus a partição a priori;
 - o Modified partition coefficient e o Partition entropy;
 - o índice de Rand corrigido, a F-measure e erro de classificação.

Considere os hiperparâmetros:

```
    c = 10;
    m = {1.1, 1.6, 2.0};
    T = 150;
    e = 10^-10;
```

- > Sequência de passos utilizada:
 - o passo 1: geração de protótipos aleatoriamente
 - o passo 2: geração matriz U inicial
 - passo 3: geração dos protótipos a partir da matriz U
 - passo 4: geração da matriz M a partir da matriz U e protótipos
 - passo 5: atualize a matriz U a partir da matriz M e protótipos
 - passo 6: calcule a função de custo

- Para os protótipos iniciais:
 - o foram escolhidos, aleatoriamente, um único exemplo
 - o para ser o representante de cada grupo.
- Matriz U inicial:

$$u_{ik} = \left[\sum_{h=1}^{c} \left\{ \frac{\sum_{j=1}^{p} (x_k^j - g_i^j)^2}{\sum_{j=1}^{p} (x_k^j - g_h^j)^2} \right\}^{1/(m-1)} \right]^{-1} \quad \text{for } i = 1, \dots, c.$$

Geração dos protótipos a partir da matriz U:

$$\mathbf{g}_{i} = \frac{\sum_{k=1}^{n} (u_{ik})^{m} \mathbf{x}_{k}}{\sum_{k=1}^{n} (u_{ik})^{m}}.$$

Geração da matriz M a partir da matriz U e protótipos:

$$\mathbf{M}_{i} = \begin{pmatrix} \lambda_{i}^{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{i}^{p} \end{pmatrix} \qquad \lambda^{j} = \frac{\{\prod_{h=1}^{p} \left[\sum_{i=1}^{c} \sum_{k=1}^{n} (u_{ik})^{m} (x_{k}^{h} - g_{i}^{h})^{2}\right]\}^{1/p}}{\sum_{i=1}^{c} \sum_{k=1}^{n} (u_{ik})^{m} (x_{k}^{j} - g_{i}^{j})^{2}} \qquad (j = 1, \dots, p).$$

Atualização da matriz U:

$$u_{ik} = \left[\sum_{h=1}^{c} \left(\frac{d_{\mathbf{M}_{i}}^{2}(\mathbf{x}_{k}, \mathbf{g}_{i})}{d_{\mathbf{M}_{h}}^{2}(\mathbf{x}_{k}, \mathbf{g}_{h})}\right)^{1/(m-1)}\right]^{-1} = \left[\sum_{h=1}^{c} \left(\frac{\sum_{j=1}^{p} \lambda_{i}^{j}(x_{k}^{j} - g_{i}^{j})^{2}}{\sum_{j=1}^{p} \lambda_{h}^{j}(x_{k}^{j} - g_{h}^{j})^{2}}\right)^{1/(m-1)}\right]^{-1}.$$

Cálculo a função de custo:

$$J5 = \sum_{k=1}^{n} \sum_{i=1}^{c} (u_{ik})^{m} d_{\mathbf{M}_{i}}^{2}(\mathbf{x}_{k}, \mathbf{g}_{i}) = \sum_{k=1}^{n} \sum_{i=1}^{c} (u_{ik})^{m} (\mathbf{x}_{k} - \mathbf{g}_{i})^{T} \mathbf{M}_{i} (\mathbf{x}_{k} - \mathbf{g}_{i})$$

> Algoritmo:

```
Input O conjunto de dados X
Inicialização T=150, e = 10<sup>-10</sup>, m=[1.1, 1.6, 2.0], J<sub>old</sub>=99999, J=99999.

1: Construa a matriz G aleatoriamente;
2: Construa a matriz U a partir de G utilizando a Equação 4;
3: while t < T and J<sub>old</sub> - J > e do
4: J<sub>old</sub> = J
5: Gere novos protótipos G a partir da matriz U utilizando a Equação 3.
6: Construa a matriz M a partir de G e da matriz U utilizando a Equação 19.
7: Construa a matriz U a partir de G e da matriz M utilizando a Equação 20.
8: Atualize J utilizando a Equação 17.
9: t = t + 1
10:
11: return J, U, G.
```


➤ Modified Partition Coefficient (MPC):

	MPC (m=1.1)	MPC (m=1.6)	MPC (m=2.0)
count	100	100	100
mean	0.993981	0.957169	0.951405
std	0.017853	0.115885	0.117852
min	0.900054	0.339813	0.511110
25%	0.999472	0.997256	0.990008
50%	1.000000	0.999804	0.998209
75%	1.000000	1.000000	0.999956
max	1.000000	1.000000	1.000000

Obs.: quanto mais próximo de 1 (um) melhor.

➤ Partition Entropy (PE):

	PE (m=1.1)	PE (m=1.6)	PE (m=2.0)
count	100	100	100
mean	9.388324e-03	6.428793e-02	7.631151e-02
std	2.774241e-02	1.696796e-01	1.719051e-01
min	1.236375e-08	1.407474e-14	2.651796e-11
25%	1.611522e-05	1.069152e-06	1.041061e-04
50%	4.150377e-05	4.053279e-04	2.805545e-03
75%	8.261557e-04	5.679193e-03	2.295916e-02
max	1.479648e-01	1.035130e+00	6.945560e-01

Obs.: quanto mais próximo de 0 (zero) melhor.

> Índice de Rand Corrigido (IRC) - Partição Crisp vs Partição a Priori:

	IRC (m=1.1)	IRC (m=1.6)	IRC (m=2.0)
count	100	100	100
mean	0.008086	0.011955	0.010284
std	0.010038	0.014384	0.007058
min	-0.005273	-0.002199	-0.004375
25%	0.002980	0.003713	0.008557
50%	0.008545	0.011632	0.011615
75%	0.011632	0.011632	0.011632
max	0.075881	0.113643	0.057885

Obs.: quanto mais próximo de 1 (um) melhor.

> F-Measure (FM) - Partição Crisp vs Partição a Priori:

	FM (m=1.1)	FM (m=1.6)	FM (m=2.0)
count	100	100	100
mean	0.110195	0.098726	0.091678
std	0.108505	0.108695	0.103957
min	0.000000	0.000000	0.000000
25%	0.024090	0.020889	0.021395
50%	0.040094	0.032345	0.034030
75%	0.166611	0.164420	0.129043
max	0.312668	0.311321	0.318059

Obs.: quanto mais próximo de 1 (um) melhor.

Parte 1: Resultados (melhor partição)

- ➤ **Menor** *J5*: 8.90926821735237e-30
- > Protótipos:

0	0.498955	0.498834	0.499937	0.259248	0.5	2.089737e-145	0.499494	0.276900
1	0.776150	0.733249	0.411142	0.273819	0.5	2.833927e-107	0.522439	0.220020
2	0.440003	0.529996	0.520002	0.229994	0.5	8.300000e-01	0.509999	0.220000
3	0.502000	0.496667	0.511333	0.253333	0.5	7.420000e-01	0.508667	0.237333
4	0.573723	0.593120	0.376120	0.224092	0.5	1.457722e-56	0.518729	0.227973
5	0.591429	0.577143	0.492857	0.252857	1.0	2.386426e-118	0.525714	0.279286
6	0.523599	0.547891	0.507444	0.561874	0.5	1.579188e-108	0.509171	0.230861
7	0.611038	0.584205	0.493854	0.218669	0.5	4.014276e-102	0.510490	0.228726
8	0.475059	0.490149	0.488930	0.226901	0.5	1.646073e-119	0.522499	0.695924
9	0.649557	0.612392	0.493696	0.214594	0.5	9.386093e-12	0.513643	0.223253

Parte 1: Resultados (melhor partição)

➤ Matriz de Confusão:

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	459	0	4	0	0	0	0
1	0	0	0	0	0	5	0	0	0	0
2	0	0	0	35	0	0	0	0	0	0
3	0	0	0	44	0	0	0	0	0	0
4	0	0	0	50	0	1	0	0	0	0
5	0	0	0	162	0	1	0	0	0	0
6	0	0	0	244	0	0	0	0	0	0
7	0	0	0	426	0	3	0	0	0	0
8	0	0	0	20	0	0	0	0	0	0
9	0	0	0	30	0	0	0	0	0	0

Parte 1: Resultados (melhor partição)

➤ Índices:

Métrica	Valor
Acurácia*	0.3032
F-Measure	0.0069
IRC	0.0029
MPC	1
PE	0

^{*}Foi utilizada a métrica: accuracy_score

Disponível em:

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html#sklearn.metrics.accuracy_score

Parte 2: Análise de Classificadores e Resultados

Parte 2: Classificadores (Bayes Gaussiano)

Cálculo da máxima verossimilhança:

$$p(\mathbf{x}_{k}|\omega_{i},\theta_{i}) = (2\pi)^{-\frac{d}{2}}(|\mathbf{\Sigma}_{i}^{-1}|)^{\frac{1}{2}}\exp\left\{-\frac{1}{2}(\mathbf{x}_{k}-\mu_{i})^{tr}\mathbf{\Sigma}_{i}^{-1}(\mathbf{x}_{k}-\mu_{i})\right\}$$

• Resultados:

Bayes Gaussiano						
z = 1.96, K-Folds = 5	Média	Desvio Padrão				
Erro	43.82%	2.314%				
Cobertura (Recall)	43.7%	2.1819%				
Precisão	43.82%	6.8210%				
F-Score (F-Measure)	43.70%	3.8437%				

Parte 2: Classificadores (KNN)

> Melhor K definido: 4

• Resultados:

K-NN					
z = 1.96, K-folds = 5, k = 4	Média	Desvio Padrão			
Erro	40.61%	0.1862%			
Cobertura (Recall)	26.29%	2.1819%			
Precisão	15.23%	0.0%			
F-Score (F-Measure)	18.65%	0.02165%			

Parte 2: Classificadores (Janela de Parzen)

> Melhor bandwidth definido: 0.5

Resultados:

Janela de Parzen						
z = 1.96, K-Folds = 5, Bandwidth = 0.5	Média	Desvio Padrão				
Erro	43.60%	2.387%				
Cobertura (Recall)	41.60%	1.654%				
Precisão	43.48%	4.378%				
F-Score (F-Measure)	42.01%	1.334%				

Parte 2: Classificadores (Regressão Logística)

> Função de ativação sigmóide.

• Resultados:

Regressão Logística					
z = 1.96, K-Folds = 5	Média	Desvio Padrão			
Erro	43.69%	4.296%			
Cobertura (Recall)	43.69%	4.023%			
Precisão	43.62%	4.33%			
F-Score (F-Measure)	43.76%	3.646%			

Parte 2: Classificadores (Ensemble)

> Predição feita por voto majoritário.

Resultados:

Ensemble					
z = 1.96, K-Folds = 5	Média	Desvio Padrão			
Erro	15.03%	0.638%			
Cobertura (Recall)	28.2%	2.694%			
Precisão	8.19%	0.205%			
F-Score (F-Measure)	11.11%	0.3801%			

Parte 2: Resultados (Teste de Friedman)

Cálculo do F estatístico:

$$F_F = \frac{(N-1)\chi_F^2}{N(k-1) - \chi_F^2}$$

- N = número de amostras (5 folds) e k = número de classificadores (5)
- χ_F^2 : $\chi_F^2 = \frac{12N}{k(k+1)} \left[\sum_j R_j^2 \frac{k(k+1)^2}{4} \right]$

R²: ranking médio do classificador j nos 5-folds

Parte 2: Resultados (Teste de Friedman)

- F Crítico: obtido em qualquer tabela F
- ightharpoonup Com 5-1 = 4 e (5-1)×(5-1) = 16 graus de liberdade.

O valor crítico de F(4,16) para $\alpha = 0.05$ é **3.238872**

result	F_critical	F_f	metric	
reject H0	3.238872	21.316456	error_rate	0
reject H0	3.238872	80.000000	f_measure	1
reject H0	3.238872	79.333333	precision	2
reject H0	3.238872	37.666667	recall	3

Parte 2: Resultados (Pós-teste)

> Aplicando o Nemenyi teste, sendo a **diferença crítica (CD)** definida como:

$$CD = q_{\alpha} \sqrt{\frac{k(k+1)}{6N}}$$

temos:

$$CD(5\%) = 2.728$$

$$CD(10\%) = 2.459$$

 $q\alpha$: é obtido através da Tabela de nemenyi.

Parte 2: Resultados (Pós-teste)

Taxa de erro

F-Measure

Precisão

Cobertura

Repositório

Código do projeto disponível em:

https://github.com/marcosd3souza/ML-Experiments FuzzyClustering ProbClassifiers

