Addis Ababa Science and Technology University College of Electrical and Mechanical Eng. Dep't of Software Engineering

Course Syllabus						
1. Course Information						
Course Title	Data Structures and Algorithms					
Course Code	SWEG 3103					
Credit Hrs.	4					
Pre-requisite(s)	Fundamentals of Programming I & II					
Target Group:	3 rd year SE					
Academic Year:	2021/2022					
Semester:	I					

2. Objective of the course

To enable students,

- use the concepts related to data structures and algorithms to solve real world problems
- practice Recursion, Sorting, and Searching on the different data structures
- implement the data structures with a chosen programming language
- understand advanced sorting algorithms
- work with trees and graphs

3. Course Description

Basically, the course covers fundamental data structures and algorithms that are common in computer science/ software engineering. A computer program is nothing but data structures plus algorithms. Writing efficient software requires selecting efficient data structures and algorithms that are appropriate for the specific problem domain.

The course covers basic algorithmic techniques and ideas for computational problems arising frequently in practical applications: sorting and searching, divide and conquer, greedy algorithms, dynamic programming. We will learn a lot of theory: how to sort data and how it helps for searching; how to break a large problem into pieces and solve them recursively; when it makes sense to proceed greedily. You will practice solving computational problems, designing new algorithms, and implementing solutions efficiently.

A good algorithm usually comes together with a set of good data structures that allow the algorithm to manipulate the data efficiently. In this course, we consider the common data structures that are used in various computational problems. You will learn how these data structures are implemented in C++ programming language and will practice implementing them in our programming assignments. This will help you to understand what is going on inside a particular built-in implementation of a data structure and what to expect from it. You will also learn typical use cases for these data structures.

Note: For implementation purposes in lab practices, we will formally use C++ programming language. Therefore, it's good to revise your C++ programming language skills ahead of lab sessions. But you are not limited only to C++, you can practice implementing with other programming languages, like Java or Python, in your own.

4. Learning Outcomes

- State how data is organized in a computer, how it can be retrieved, and how it can be used
- Explain the basic techniques for the design and analysis of efficient algorithms
- Determine complexity, efficiency of searching and sorting algorithms using Empirical and Theoretical analysis
- Determine when and how to use various data structures including linked lists, stacks, queues, binary trees, search
- trees and graphs

4.1. Knowledge

- Understand how data is organized in a computer, how it can be retrieved, and how it can be used
- Explain the basic techniques for the design and analysis of efficient algorithms

4.2. Intellectual and Practical skills

Addis Ababa Science and Technology University College of Electrical and Mechanical Eng. Dep't of Software Engineering

- Determine complexity of algorithms using Empirical analysis and Theoretical analysis
- Compare and contrast the efficiency of sorting algorithms in sorting a given list
- Compare and contrast the efficiency of searching algorithms in searching an item from a list of items
- Determine when and how to use various data structures including linked lists, stacks, queues, binary trees, search trees and graphs
- Compare alternative implementations of data structures with respect to performance
- Apply data structures and algorithms that are frequently used in information processing

4.3. Attitude and behavior

To enable students think first problem understanding in any problem solving process and, then take efficiency as key priority to any programming solution.

		5. Course outline		
Wee k		Topics and Subtopics		
	Lecture 1	Introduction: Overview of data structures and algorithms		
1	Lab 1	Revision 1 on C++ programming		
2	Lecture 2	Analysis of Algorithms		
	Lab 2	Revision 2 on C++ programming		
3	Lecture 3	Simple sorting algorithms		
	Lab 3	Implementing simple sorting algorithms in C++		
4	Lecture 4 Lab 4	Simple searching algorithms Implementing simple searching algorithms in C++	_	
5	Lecture 5	Linked Lists • Singly linked lists • Doubly linked lists Implementing linked lists in C++		
(Lab 5	Stacks		
6	Lecture 6 Lab 6	Implementing stacks in C++	-	
7	Lecture 7 Lab 7	Queues Implementing queues in C++		
8	Lecture 8	Trees (Part I) Implementing trees in C++ (Part I)	_	
9	Lecture 9 Lab 9	Trees (Part II) Implementing trees in C++ (Part II)		
10	Lecture 10 Lab 10	Graphs (Part I) Implementing graphs in C++ (Part I)		
11	Lecture 11 Lab 11	Graphs (Part II) Implementing graphs in C++ (Part II)	_	
12	Lecture 12 Lab 12	Advanced sorting algorithms Implementing advanced sorting in C++		
13	Lecture 13 Lab 13	Advanced searching algorithms Implementing advanced searching in C++	-	

Addis Ababa Science and Technology University College of Electrical and Mechanical Eng. Dep't of Software Engineering

14	Lecture 14	Hashing	8 11 8					
	Lab 14	Implementing hashes in C++						
15 &16	Final Exam	ı weeks	S					
		(6. Textbook					
CLIFFORD, SHAFFER AA. "Introduction to Data Structures and Algorithm Analysis." (2013).								
		7	7. Reference					
• Weiss, Mark. Data Structures and Algorithms Analysis in C++. (2006)								
• E. Ho	orowitz, S.Sah	ni and Dinesh Mehta. Fundament	eals of data structures in C++ (2	2004)				
8. Method of Instruction								
			ing (involves the full participat cively and to be followed by de	involves the full participation of students) y and to be followed by deductive assertions				
Study of text l			the responsibility of the learne	· ·				
			ps in not more than 4 students per group evaluate individual contribution					
Individual Ass	signment			iven to separate question by instructor. are report or submit present it and evaluated by the instructor.				
		9). Grading					
Type			Weight					
Individual assignment (theoretical problem)			10					
Test 1			15					
Group assignm	nent (Real wor	ld problem,						
Programming)			10					
Group Project work (Real world problem, Programming)			15					
Final Exam			50					
			Total: 100					
		1	10. Course policies					

- You <u>must</u> read the textbook (ahead of and/after) the class.
- Academic dishonesty: *Plagiarism* is serious offense and might result in course failure.
- Collaboration: On working assignments, you can collaborate with others to understand concepts but the actual problem should be solved by you organized in your own way.
- Attendance: Students who fail to attend more than 15% of the classes will get F.
- Dressing code: You should respect social norms and values.

Addis Ababa Science and Technology University College of Electrical and Mechanical Eng. Dep't of Software Engineering

- Cheating: zero tolerance on cheating exams, serious measures will follow.
- Mobile: Make silent, no chatting.
- Time: Don't be late; try to arrive 3 min before class. If you arrive after class has started, don't knock just go back.
- Classroom: Don't talk, raise your hand if you have questions
- Participation: Ask questions and respond when asked, even if you don't know. Say, I don't know!
- Lab: Practice by your own, don't copy, one person/PC, but you can share experiences.
- **Grading System:** As determined by the universities legislation.

11. Due date:

All assignments must be submitted in the class on the due date for full credit. No assignment will be accepted after class on the due date.

12. Class room Behavior:

Anything that disturbs your instructor or your colleagues during the class period is considered a troublesome behavior. Examples include: Using mobiles, PDA, making offensive remarks, sleeping, working on assignments related to other courses, etc. troublesome behaviors are completely prohibited.