Shangqin Hao

s2hao@ucsd.edu | shangqinhao.github.io

La Jolla, CA 92093, United States

EDUCATION

University of California San Diego

Ph.D. candidate in Geophysics, Advisor: Dr. Peter M. Shearer University of Science and Technology of China La Jolla, United States

Sept., 2017 - Jul., 2020 Hefei, China

Sept., 2020 - Now

Sept., 2013 - Jul., 2017

Nanjing, China

M.S. in Geophysics, Advisor: Dr. Zhongqing Wu

B.S. in Geology, Advisor: Dr. Zhongqing Wu, Dr. Tao Wang

RESEARCH INTERESTS

Nanjing University

- Imaging fine-scale structure using dense arrays and DAS
- Multiscale imaging of global deep-Earth structure
- Observation and interpretation of seismic discontinuities, anisotropy, and other seismic observables
- Multidisciplinary investigation of the deep Earth integrating seismic observations, mineral physics, geochemistry, and geodynamic modeling

SELECTED PROJECTS

- Substantial global radial variations of basalt content near the 660-km discontinuity May, 2023 - Oct., 2024
- · Constrained seismic velocity, density, and basalt content at and below the 660-km discontinuity (d660) by S660S waveform inversions
- Found that slabs exhibit a smaller impedance jump across the d660 but a steeper gradient below the d660 compared to other regions
- Suggested that basalt accumulates at the d660, especially in subduction zones, but decreases significantly below it, forming a harzburgite-enriched layer
- Upper-mantle structure beneath Alaska imaged by teleseismic S-wave reverbera- May, 2021 May, 2023 tions
 - Imaged the Moho and mantle transition zone (MTZ) discontinuities beneath Alaska by stacking long-period teleseismic SH reverberated waves
- o Observed crustal thickness is consistent with surface topography and gravity measurements
- Suggested that the Pacific slab may have penetrated into the upper MTZ under central Alaska but not under the Alaska Peninsula
- Thermoelasticity of phase D and implications for low-velocity anomalies and local Sept., 2019 Sept., 2021 discontinuities at the uppermost lower mantle
- Obtained elasticity and density of phase D under the lower-mantle conditions
- Proved that the accumulation of phase D may account for seismic anisotropy rather than low-velocity anomalies in the uppermost lower mantle (ULM)
- Suggested that the decomposition of phase D in the ULM causes a density jump, possibly explaining some discontinuities in subduction zones
- Compositional and thermal state of the lower mantle from joint 3D inversion with Oct., 2018 June, 2023 seismic tomography and mineral elasticity
 - Inverted for the 3D chemical composition and thermal state of the lower mantle based on seismic tomography models and mineral elasticity data
 - Found that velocity heterogeneities in the upper lower mantle mainly result from thermal anomalies, whereas those in the lowermost mantle mainly result from compositional or phase variations
 - \circ Found that LLSVPs have \sim 500 K higher temperature, higher bridgmanite and iron content than the ambient mantle, supporting the origin from an ancient basal magma ocean

- Elasticity of akimotoite under the mantle conditions: Implications for multiple dis- Oct., 2017 Sept., 2019 continuities and seismic anisotropies at the depth of \sim 600-750 km in subduction zones
 - Calculated the elasticity of akimotoite under the mantle conditions using first-principles calculations
- \circ Estimated the V_P , V_S , and density contrasts caused by akimotoite-related transitions
- \circ Proved that the discontinuity at the depth of \sim 700-750 km in cold slabs could result from the decomposition of pyrope rather than the akimotoite-bridgmanite transition

PUBLICATIONS

- [1] **Hao, S.**, Wei, S. S., & Shearer, P. M. (2024). Substantial global radial variations of basalt content near the 660-km discontinuity. *AGU Advances*, 5(6), e2024AV001409. [Featured as an Editor's Highlight on EOS]
- [2] Hao, S., Yang, D., Wang, W., Zou, F., & Wu, Z. (2024). Thermoelasticity of phase D and implications for low-velocity anomalies and local discontinuities at the uppermost lower mantle. *American Mineralogist*.
- [3] Deng, X., Xu, Y., **Hao, S.**, Ruan, Y., Zhao, Y., Wang, W., ... & Wu, Z. (2023). Compositional and thermal state of the lower mantle from joint 3D inversion with seismic tomography and mineral elasticity. *Proceedings of the National Academy of Sciences*, 120(26), e2220178120.
- [4] **Hao, S.**, Shearer, P., & Liu, T. (2023). The upper-mantle structure beneath Alaska imaged by teleseismic S-Wave reverberations. *Journal of Geophysical Research: Solid Earth*, 128(6), e2023JB026667.
- [5] Song, J., Qian, W., **Hao, S.**, Wang, W., Sun, D., & Wu, Z. (2023). Elasticity of high-pressure clinoenstatite under mantle conditions: Implications for the origin of the X-discontinuity. *Science China Earth Sciences*, 66(4), 718-729.
- [6] Song, Z., Wu, Z., Wang, W., **Hao, S.**, & Sun, D. (2022). Elasticity of phase H under the mantle temperatures and pressures: Implications for discontinuities and water transport in the mid-mantle. *Journal of Geophysical Research: Solid Earth*, 127(11), e2022JB024893.
- [7] Zhao, Y., Wu, Z., **Hao, S.**, Wang, W., Deng, X., & Song, J. (2022). Elastic properties of Fe-bearing Akimotoite at mantle conditions: Implications for composition and temperature in lower mantle transition zone. *Fundamental Research*, 2(4), 570-577.
- [8] **Hao, S.**, Wang, W., Qian, W., & Wu, Z. (2019). Elasticity of akimotoite under the mantle conditions: Implications for multiple discontinuities and seismic anisotropies at the depth of \sim 600–750 km in subduction zones. *Earth and Planetary Science Letters*, 528, 115830.

SKILLS

- **Seismic Approaches:** *SH* reverberations, *SS* precursors, Receiver functions
- Programming Languages: Python, Matlab, C, Fortran
- Tools & Technologies: GMT, First-principles calculations (Quantum Espresso & VASP), Origin, 3D printing
- Languages: Mandarin, English

PROFESSIONAL SERVICE

Reviewed manuscripts submitted to academic journals: Nature Communications, Communications Earth & Environment

HONORS AND AWARDS

Outstanding Graduate	2020
University of Science and Technology of China	
National Scholarship	2019
University of Science and Technology of China	
Outstanding Student	2015
Nanjing University	
Cyrus Tang Scholarship	2014 - 2017
Cyrus Tang Foundation	
National Scholarship for Encouragement	2014 - 2016
Nanjing University	