Klausur zur Vorlesung Digitaltechnik	Antonia ya pano yay ka nasali
Name, Vorname:	Matrikelnummer:
aufgabe 1 Verständnisfragen	(10 Punkte)(5 × 2)
eantworten die folgenden Fragen mit wenigen kurzen Sätzen. a) Was ist der (obere und untere) Störabstand bei der Darste wird dieser benötigt?	ellung von Binärwerten als Spannungsbereiche und wofür
b) Wodurch unterscheiden sich 'X' und 'Z' bei der Vierwertig	zen Logik?
Wie entstehen <i>Glitches</i> in kombinatorischen Schaltungen tungen kein Problem dar?	und wann stellen diese in synchronen sequentiellen Schal-
Wodurch unterscheiden sich Flip-Flops und Latches?	
Wie unterscheiden sich Shifter mit konstanter Shift-Wei Verzögerungszeit?	te von Barrel-Shiftern bezüglich ihrer kombinatorische

Klausur zur Vorlesung Digitaltechnik	: Janummer:	الالالالالال
Name, Vorname:	Matrikeillullill	
varie, vorname.		- Lacy F L F
		(10 Punkte)(5 + 5
ufgabe 2 Zahlendarstellungen und binäre Sul		nträge einer Zeile solle
a) Vervollständigen Sie die folgende Tabelle v dabei den gleichen numerischen Wert repräs	vorzeichenloser Zahlendarstellungen. Alle Eli	ernfolgen (ohne führend
dabei den gleichen numerischen Wert repräs	vorzeichenloser Zahlendarstellungen. Alle En eentieren. Verwenden Sie möglichst kurze Ziffe	
Nullen).		Hexadezimal
Dezimal	Binär	
181 ₁₀	100	
	10 10012	7C0 ₁₆
		1 Limm Cio die Rinä
b) Wandeln Sie $a = 60_{10}$ und $b = -15_{10}$ in 11	Byte breite Zweierkomplement-Zahlen um. St	ıbtrahieren Sie die Binä
b) Wandeln Sie $a = 60_{10}$ und $b = -15_{10}$ in 11 darstellungen voneinander $(a - b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Su a Sie das Ergebnis ins Dezimalformat und ins	ıbtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. St n Sie das Ergebnis ins Dezimalformat und ins	ubtrahieren Sie die Binä 12 bit Hexadezimalform
b) Wandeln Sie $a=60_{10}$ und $b=-15_{10}$ in 11 darstellungen voneinander $(a-b)$. Wandeln um. Der <i>Lösungsweg</i> wird bewertet.	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ıbtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Si n Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalformo
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ıbtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ıbtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ıbtrahieren Sie die Binä 12 bit Hexadezimalform
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	ibtrahieren Sie die Binä 12 bit Hexadezimalformo
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	
darstellungen voneinander $(a-b)$. Wandeln	Byte breite Zweierkomplement-Zahlen um. Sun Sie das Ergebnis ins Dezimalformat und ins	

Klausur zur Vorlesung Digitaltechnik

Name, Vorname: _____ Matrikelnummer: _____

Aufgabe 3 Realisierung von logischen Funktionen

(15 Punkte)(8+7)

Die folgenden Teilaufgaben hängen nicht voneinander ab.

a) Zeichnen Sie eine CMOS Schaltung zur Realisierung von $Y = \overline{A+B}$ C. Verwenden Sie ausschließlich positive Eingangsliterale.

b) Geben Sie die von folgender Schaltung realisierte boole'sche Funktion in konjunktiver Normalform an.

Klausur zur Vorlesung Digitaltechnik

Name, Vorname: _

Aufgabe 4 Endliche Automaten

(35 Punkte)(6+5+3+7+6+8)

a) Zeichnen Sie das Diagramm eines Mealy-Automaten mit zwei Eingängen A und B und einem Ausgang Y, welcher genau dann Y = 1 ausgibt, wenn B der geraden Parität der seit dem Reset gelesenen Bitfolge von A entspricht. Das aktuell gelesene A zählt bereits zu dieser Bitfolge hinzu. Verwenden Sie möglichst wenige Zustände.

b) Vervollständigen Sie die folgende Tabelle so, dass sie das taktweise Ein-/Ausgabeverhalten des nebenstehenden Automaten mit asynchronem Reset wiedergibt.

Reset	1	1	0	0	0	0	0	0		0
A	1	0	0	0	0	1		0	0	0
В	1	1	1	0		1	1	0	1	0
Y						0		1	0	

c) Geben Sie die Zustandsübergangstabelle ohne binäre Zustandskodierung für den Automaten aus Aufgabenteil b) an. Verwenden Sie dabei keine don't cares.

Klausur zur Vorlesung Digitaltechnik

Name, Vorname: _____ Matrikelnummer: _____

d) Geben Sie die Zustandsübergangsfunktionen für den Automaten aus Aufgabenteil b) mit kanonischer Zustandskodierung ($S_0=00, S_1=01, S_2=10$) an. Verwenden Sie dafür die folgenden Karnaugh-Diagramme.

e) Zeichnen Sie das Schaltwerk inklusive Ausgabelogik für den Automaten aus Aufgabenteil b) mit der Zustandskodierung aus Aufgabenteil d). Sie dürfen invertierte Gattereingänge (Inverterblasen) verwenden. Die Reset-Logik muss nicht berücksichtigt werden.

Klausur zur Vorlesung Digitaltechnik	Matrikelnummer:
Name, Vorname:	
	gabe b) als SystemVerilog Modul namens fsm inklusive Mo
f) Implementieren Sie den Automaten aus Teilauf	gabe b) als SystemVerilog Modul Hames
stelle. Kommentieren Sie Ihre Lösung.	
Mari Number of co.	

Aufgabe 5 Timing Analyse

(10 Punkte)(3+3+4)

Für diese Aufgabe werden ausschließlich die wie folgt spezifizierten Logikgatter verwendet:

	XOR	AND	OR	NOT
t _{cd}	8 ns	4 ns	3 ns	2 ns
tpd	10 ns	7 ns	5 ns	2 ns

Darüber hinaus sei $t_{\rm ccq}=0.5\,{\rm ns},\ t_{\rm pcq}=1\,{\rm ns},\ t_{\rm setup}=2\,{\rm ns}$ und $t_{\rm hold}=3\,{\rm ns}$ für alle Register. Folgendes Schaltwerk soll analysiert und optimiert werden, *ohne* die verwendete kombinatorische Logik zu vereinfachen:

a) Geben Sie den kritischen Pfad der Schaltung an. Mit welcher Frequenz kann das Schaltwerk maximal getaktet werden, ohne die Setup-Bedingung von R_2 und R_3 zu verletzen? Begründen Sie Ihre Antwort.

b) Wird die Hold-Bedingung von \mathbb{R}_2 und \mathbb{R}_3 eingehalten? Begründen Sie Ihre Antwort.

.. Voriesung Digitaltechnik

Name, Vorname:		
, smarrie;		
	Matrike	Inummer:

Aufgabe 6 Sequentielle Addierer

Ein sequentieller Addierer berechnet die Summe zweier Zahlen mit einer sequentiellen statt einer kombinatorischen Schaltung wobei in inden Till und Ausgaben tung, wobei in jedem Takt ein Ergebnis-Bit generiert wird. Dazu sind neben den arithmetischen Ein- und Ausgaben

- CLK - das Taktsignal
- START wird für einen Takt auf 1 gesetzt, wenn eine neue Berechnung starten soll
- DONE wird für einen Takt auf 1 gesetzt, wenn eine Berechnung fertig ist.

Ein solcher Addierer benötigt unabhängig von der Bitbreite der Eingänge nur einen einzigen Volladdierer mit folgender

```
module fulladder(input logic a, b, cin, output logic s, cout);
```

Der Volladdierer wird taktweise mit den entsprechenden Eingabebits beschaltet. Dazu können die Eingaben bspw. in Registern gespeichert werden, deren Inhalte in jedem Takt um ein Bit nach rechts geschoben werden. Die Summen-Bits können auch in einem Shift-Register gesammelt werden. Für das Übertragen des carry-Bits in den nächsten Takt ist ebenfalls ein Register notwendig.

Implementieren Sie einen sequentiellen Addierer mit folgender Schnittstelle in SystemVerilog. Kommentieren Sie Ihre Lösung. Beachten Sie, dass die Summe ein Bit breiter als die Summanden sind.

```
module sequid
               WIDTH = 8)
 #(parameter
                            // Bitbreite der Eingaben
  (input logic CLK,
                               // Takt
                      // Eingaben liegen an
               START,
  input logic [WIDTH-1:0] A, B, // zu addierende Eingaben
  output logic [WIDTH:0] S, // Summe der Eingaben
  output logic DONE);
                              // Berechnung fertig
```