课程编号: A073003

北京建工大学 2009-2010 学年第一学期

线性代数(B)试题 B卷

班级 _____ 学号 _____ 姓名 _____ 成绩 _____

題号	-	Ξ	Ξ	M	五	六	七	А	九	+	总分
得分											
签名											

一、(10分) 已知
$$A = \begin{bmatrix} 0 & 2 & 5 \\ 0 & 1 & 3 \\ 1 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$. 求行列式 $\begin{vmatrix} 0 & A^T \\ B^{-1} & 0 \end{vmatrix}$ 的值。

二、(10 分) 已知矩阵
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
, 矩阵 X 满足 $AXA^* = 2XA^* + 9I$ · 求 X

三、(10分)对下列线性方程组

$$\begin{cases} ax_1 + x_2 + x_3 = 1 \\ x_1 + ax_2 + x_3 = a \\ x_1 + x_2 + ax_3 = a^2 \end{cases}$$

试讨论: 当a取何值时,它有唯一解? 无解? 有无穷多解? 并在有无穷多解时求其通解。 (用导出组的基础解系表示通解) 四、(10分) 己知

$$\alpha_1 = (-2,1,0,3), \quad \alpha_2 = (1,-3,2,4), \quad \alpha_3 = (3,0,2,-1), \quad \alpha_4 = (2,-2,4,6)$$

- (1) 求向量组α,,α,,α,,α, 的秩和一个极大无关组;
- (2) 用所求的极大无关组线性表出剩余向量。

五、(10 分)已知 $\alpha_1,\alpha_2,\alpha_3$ 是向量空间 R^3 的一个基, $\beta_1=\alpha_1,\beta_2=\alpha_1+\alpha_2$, $\beta_3=\alpha_1+\alpha_2+\alpha_3$ 。

- (1) 证明β,,β,,β,为R'的一个基;
- (2) 求基α₁,α₂,α₃到基β₃,β₂,β,的过渡矩阵;
- (3) 求向量γ=α₁-α₂+α₃关于基β₁,β₃,β₃的坐标。

六、(10 分) 已知矩阵 $A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$

- (1) 求 A 的特征值和特征向量;
- (2) 判断 4 是否可以相似对角化。

七、(10 分)已知向量组: $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (0,1,2)^T$, 求生成子空间 $L(\alpha_1,\alpha_2)$ 的一个标准正交基。

八、(10 分)已知实二次型 $f(x_1,x_2,x_3) = X^TAX$,其中A相似于对角矩阵 $\operatorname{diag}(1,-2,3)$ 。

- 求二次型f(x₁,x₂,x₃)的一个标准形;
- (2) 判断二次型 $f(x_1, x_2, x_3)$ 是否正定。

九、(10 分)已知A是3阶矩阵,非齐次线性方程组 $AX = \beta$ 有通解 $\beta + k_1\alpha_1 + k_2\alpha_2$,其中 k_1,k_2 为任意常数,求A的特征值和特征向量。

十、(10分)已知 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 都是3元向量,且 α_1,α_2 线性无关, β_1,β_2 线性无关。

- (1) 证明:存在非零的 3 元向量y,它既能由 α_1,α_2 线性表示。又能由 β_1,β_2 线性表示;
- (2) 当 $\alpha_1 = (1,1,0)^T$, $\alpha_2 = (1,-1,1)^T$, $\beta_1 = (2,1,1)^T$, $\beta_2 = (-1,2,-1)^T$ 时,来(1)中的 y。