Discrete Random Variable

Ansar Shahzadi

School of Electrical Engineering & Computer Science National University of Science and Technology(NUST)

Random Variable

A random variable is a variable that assumes numerical values associated with the random outcome of an experiment, where one (and only one) numerical value is assigned to each sample point.

Discrete Random Variables

A discrete random variable can assume a countable number of values.

Examples

- Number of heads
- Number of calls
- Numbers of Errors
- Students in class
- Mistakes per page

Probability Distributions for Discrete Random Variables

The probability distribution of a discrete random variable is a graph, table or formula that specifies the probability associated with each possible outcome the random variable can assume.

- $p(x) \ge 0$ for all values of x

Probability mass function $p(x) = p_X(x) = P(X = x)$

Discreate Probability Distribution Example: Three Coins X=No of Heads

X	Outcomes	P(X=x)
0	TTT	<u>1</u>
		8
1	TTH, THT, HTT	3
		8
2	HHT, THH, HTH	3
		8
3	ННН	1
		8
	Total sample Points=8	$\sum p=1$

Graph of Discrete probability distribution

X-Axis \longrightarrow X=

X=No of Heads

Y-Axis —

Probabilities

Probability Mass Function

$$P(X=x)=\frac{\binom{3}{x}}{8}$$
 x=0, 1, 2, and 3

X	Outcomes	P(X=x)
О	TTT	$\frac{\binom{3}{0}}{8} = \frac{1}{8}$
1	TTH, THT, HTT	$\frac{\binom{3}{1}}{8} = \frac{3}{8}$
2	HHT, THH, HTH	$\frac{\binom{3}{2}}{8} = \frac{3}{8}$
3	ННН	$\frac{\binom{3}{3}}{8} = \frac{1}{8}$
	Total sample Points=8	$\sum p=1$

Distribution Function or Cumulative Distribution Function

The Distribution function of a random variable X, denoted by F(x), is defined by $F(x) = P(X \le x)$. The function F(x) gives the probability of the event takes a value lass than or equal to a specified value x. The Distribution function is abbreviated to d.f and is also called the cumulative distribution function(cdf) as it is the cumulative probability function of the X from the smallest up to specific value of x.

Discrete Example: Toss of Three coins

Cumulative probability distribution

X	P(X=X)	$F(X)=P(X\leq x)$
0	1 8	$\frac{1}{8}$
1	$\frac{3}{8}$	$\frac{4}{8}$
2	$\frac{3}{8}$	$\frac{7}{8}$
3	$\frac{1}{8}$	8

Graph of cumulative probability distribution

X-Axis X=No of Heads
Y-Axis Cumulative Probabilities

Summary: Toss of Three Coins

Discrete probability distribution

p(x)
1/8
3/8
3/8
1/8
1

Graph of Discrete probability distribution

Probability mass function

$$P(X=x)=\frac{\binom{3}{x}}{8}$$
 x=0, 1, 2, 3

Cumulative probability distribution

X	F(X)
0	$\frac{1}{8}$
1	$\frac{1}{8}$ $\frac{4}{8}$
2	7 8 8 8
3	<u>8</u>

Question 1

A weighted coin is tossed 4 times. If the variable X denotes the numbers of Heads and the probability of head is equal to 1/3. Find

- Discrete probability distribution
- Probability mass function
- Cumulative probability distribution
- Graph of discrete probability distribution
- Graph of cumulative probability distribution

Question 2

Find the probability distribution and probability mass function of the sum of the dots when two fair dice is thrown.

Question 3

A bag contains 4 red and 6 black balls. A sample of 4 balls is selected from the bag without replacement. Let X be the number of black balls. Find the

- probability distribution of X.
- probability mass function.