Flocking simulation (pThreads)

Avtorja: Luka Prijatelj in Gašper Kolar.

Kratek opis:

Dodatne knjižnice: Za parallelizacijo sva uporabila knjižnico pThreads. Ta knjižnica poskrbi za ustvarjanje, upravljanje in združevanje niti.

Delitev dela med niti: Algoritem potrebuje tabelo ptic kot vhodni podatek. Nato to vhodno tabelo razdeli na enakovredno število delov. Teh število delov je enako številu niti, ki jih ustvari. Nato vsaka nit poračuna svoj del tabele in vrne rezultate.

Komunikacija med nitmi: Vsaka nit potrebuje podatke od vseh ptic. Ker te podatke samo bere in ne spreminja, je računanje med nitmi neodvisno. Nobene komunikacije ni potrebno med nitmi, da delujejo pravilno. Za ustvarjanje in združevanje niti pa poskrbi glavna nit.

Meritve:

Spodaj so prikazane tabele meritev za različno število niti in različno število ptic. Oznaka FPS predstavlja število sličic na sekundo. S oznaka pomeni pohitritev in E oznaka pomeni učinkovitost.

Tabela 1.1: Meritev za 1 nit in 2 niti pri različnih številih ptic.

	1 Thread	2 Threads				
Flock		Frames Per Second				
Size	Frames per Second [FPS]	[FPS]	S2	E2		
100,00	653,222	775,937	1,188	0,594		
200,00	526,485	694,836	1,320	0,660		
300,00	390,755	459,756	1,177	0,588		
400,00	276,068	428,981	1,554	0,777		
500,00	194,607	318,016	1,634	0,817		
600,00	149,196	254,967	1,709	0,854		
700,00	120,471	212,488	1,764	0,882		
800,00	100,174	162,506	1,622	0,811		
900,00	84,070	136,445	1,623	0,811		
1000,00	71,061	117,403	1,652	0,826		
AVG:	256,611	356,134	1,524	0,762		

Tabela 1.2: Meritev za 4 niti ter 8 niti pri različnih številih ptic.

	4 Threads			8 Threads		
Flock				Frames Per Second		
Size	Frames Per Second [FPS]	S4	E4	[FPS]	S8	E8
100,00	726,746	1,113	0,278	645,956	0,989	0,124
200,00	648,253	1,231	0,308	597,698	1,135	0,142
300,00	568,989	1,456	0,364	518,960	1,328	0,166
400,00	453,556	1,643	0,411	414,704	1,502	0,188
500,00	363,519	1,868	0,467	348,317	1,790	0,224
600,00	296,301	1,986	0,496	284,638	1,908	0,238
700,00	238,957	1,984	0,496	236,196	1,961	0,245
800,00	197,875	1,975	0,494	192,085	1,918	0,240
900,00	170,361	2,026	0,507	163,640	1,946	0,243
1000,00	142,148	2,000	0,500	142,936	2,011	0,251
AVG:	380,671	1,728	0,432	354,513	1,649	0,206

Graf 1: Meritve za 1, 2, 4 in 8 niti pri različnem številu ptic.

Analiza meritev:

Iz tabel meritev lahko razberemo, da je bila naša paralelizacija programa pravilna odločitev. Vsaka meritev z več nitimi ima večje število FPS-jev kot serijski program. Iz tabele 1.2 hitro ugotovimo, da je bila največja povprečna pohitritev pri štirih nitih. Iz tabele 1.1 lahko tudi ugotovimo, da je največja učinkovitost bila pri dveh nitih. Glavni razlog za to je strojna oprema na kateri smo izvajali meritve. Procesor na katerem smo izvajali meritve je imel dve jedri in 4 logične niti.

Graf 1 grafično prikazuje meritve, ki so predstavljene v tabeli 1.1 in tabeli 1.2. Iz grafa lahko bolje vidimo kako vpliva število niti na število ptic. Kot smo ugotovili že iz podatkov v tabelah, tudi na grafu vidimo, da je največ sličic na sekundo pri štrih nitih. To je odvisno seveda od specifikacije strojne opreme. Ta ima v našem primeru 4 niti na processor.

Strojna oprema, na kateri sva izvajali meritve:

Procesor: Intel i7 - 5500U 2.40GHz

Pomnilnik: 16 GB

Grafična kartica: Intel Integrated Graphics Chipset