Week 8_Qureshi, Nahid

QUESTION 1

Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (keep the gap thickens to be 13 mm)?

ANSWER

U value with respect to a benchmark case of double layer glazing (ε =0.84) with air and no coating (gap thickness to be 13 mm) is $2.8 \frac{W}{m^2 K}$

arepsilon value	0.84		0.10		
No. of panels	2	2	2	2	2
Gas	Argon	Krypton	Air	Argon	Krypton
U value	2.65	2.6	1.8	1.5	1.4
% of change	5.4	7.2	35.7	46.4	50

arepsilon value	0.84			0.10		
No. of panels	3	3	3	3	3	3
Gas	Air	Argon	Krypton	Air	Argon	krypton
U value	1.8	1.7	1.6	1	0.8	0.7
% of change	35.7	39.2	42.8	64.3	71.4	75

QUESTION 2

Consider the house that we analyzed in the last two examples, calculate the heating and cooling load of the other windows which are fixed 14.4 m2 on the west, fixed 3.6 m2 on the south and an operable 3.6 m2 on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminum?

ANSWER

Lat	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999	
Annual H	eating and H	lumidificat	tion Design C	onditions												
Coldest	Heatin	- 00		Hum	dification D	P/MCDB and	HR			Coldest mon	th WS/MCD	6	MCWS	PCWD		
Month	Heatr	g ve .		99.6%			99%		0.	4%	1	%	to 99.0	9% DB		
MUTUI	99.5%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS.	MCDB	MCWS	PCWD		
(0)	(6)	(0)	(4)	(+).	(1)	(9)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(1)
Annual Co	ooling, Dehu	midification	on, and Enth	alpy Design	Condition											
Hotlest	Hottest			Cooling (висмв					Evaporation	WB/MCDB	1		MCW5/	PCWD	
Month	Month	. 0	1.4%	. 1	%	29	is.	0	.4%	1	%	2	1%	10 0.4		
	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCOB	MCWS	PCWD	
(0)	(0)	(c)	(4)	(+)	(1)	(9)	(h)	(1)	(/)	(*)	(1)	(m)	(n)	(0)	(p)	
	110	33.4	22.7	31.0	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.0	28.3	2.4	90	290

WHEN THE FRAME IS WOODEN

CALCULATING THE COOLING LOAD OF THE FIXED WINDOW ON WEST SIDE

Area = 14.4 m^2
$q_{west\ window} = A\ x\ CF_{west\ window}$
$CF_{west\ window(heat\ transfer)} = U_{west\ window} \left(\Delta T_{cooling} - 0.46\ \mathrm{DR}\right)$
$U_{west\ window} = 2.84 \frac{W}{m^2\ K}$
$CF_{west\ window(heat\ transfer)} = 2.84 \frac{W}{m^2\ K} $ (7.9 K - 0.46 X 11.9K)
$\approx 6.89 \frac{W}{m^2}$

 $PXI_{west window} = E_D + E_d = 559 + 188 = 747$ (from table)

Since no internal shading, so IAC = 1

SHGC = 0.54

 $FF_{S} = 0.56$

 $CF_{west\ window(irradiation)} = PXI \ x \ SHGC \ x \ IAC \ x \ FF_s$ = 747 x 0.54 x 1 x 0.56 = 225.89

					L	stitud	le			
Exposure		28"	25°	38*	35°	49*	45°	50°	55"	60"
North	E_0	125	106	92	84	81	85	96	112	136
	E_d	128	115	103	93	84	76	69	62	55
	E_{r}	253	221	195	177	166	162	164	174	191
Northeast Northwest	E_{O}	460	449	437	425	412	399	386	374	360
	E_d	177	169	162	156	151	147	143	140	133
	E_{τ}		618	599	581	563	546	529	513	499
East/West	$E_{\mathcal{O}}$	530	543	552	558	560	559	555	547	533
	E_{ℓ}	200	196	193	190	189	188	187	187	183
	E_{τ}	730	739	745	748	749	747	742	734	724
Southeast Southwest	E_{O}	282	328	369	405	436	463	485	503	513
	E_d	204	203	203	204	205	207	210	212	215
	E_{r}	485	531	572	609	641	670	695	715	730
South	Ε'n	0	60	139	214	283	348	408	464	513
	E_d	166	193	196	200	204	209	214	219	225
	E_{τ}	166	253	335	414	487	557	622	683	74
Horizontal	E_0	845	840	827	806	776	738	691	637	534
	E_{d}	170	170	170	170	170	170	170	170	170
	E.	1015	1010	997	976	946	90%	861	907	744

Table	13 Fenestration Solar Load	Fenestration Solar Load Factors FF,								
Exposure	Single Family Detached	Multifamily								
North	0.44	0.27								
Northeast	0.21	0.43								
East	0.31	0.56								
Southeast	0.37	0.54								
South	0.47	0.53								
Southwest	0.58	0.61								
West	0.56	0.65								
Northwest	0.46	0.57								
Horizontal	0.58	0.73								

$$q_{west\ window} = A\ x\ CF_{west\ window} = A\ x\ (CF_{west\ window(heat\ transfer)} + (CF_{west\ window(irradiation)})$$
$$= 14.4\ \text{m}^2\ x\ (6.89\ +225.89)\ \frac{W}{m^2} = 3352.07\ \text{W}$$

CALCULATING THE HEATING LOAD OF THE FIXED WINDOW ON WEST SIDE

$$q_{west\ window} = A\ x\ HF_{west\ window} = A\ x\ U_{west\ window}\ x\ \Delta T_{heating}$$
$$= 14.4\ \text{m}^2\ \text{x}\ 2.84\ \frac{W}{m^2\ K}\ \text{x}\ 24.8\ \text{k} = 1014.22\ \text{W}$$

WHEN THE FRAME IS ALUMINIUM $U'_{west\ window} = 3.61\ \frac{W}{m^2\ K}$, SHGC' = 0.56

COOLING LOAD

 $CF'_{west\ window(heat\ transfer)} = U'_{west\ window} (\Delta T_{cooling} - 0.46\ DR)$

=
$$3.61 \frac{W}{m^2 K} (7.9K - 0.46 \times 11.9 \text{ k})$$
 = $8.76 \frac{W}{m^2}$

 $CF'_{west\ window(irradiation)} = PXI\ x\ SHGC'\ x\ IAC\ x\ FF_s$

= 747 x 0.56 x 1 x 0.56 = 234.26
$$\frac{W}{m^2}$$

 $q'_{west window} = A \times (CF'_{west window(heat transfer)} + (CF'_{west window(irradiation)})$ $= 14.4 \text{ m}^2 \times (8.76 + 234.26) \frac{w}{m^2} = 3499.48 \text{W}$

HEATING LOAD

$$q'_{west\ window} = A\ x\ HF'_{west\ window} = A\ x\ U'_{west\ window}\ x\ \Delta T_{heating}$$

= 14.4 m² x 3.61 $\frac{W}{m^2\ K}$ x 24.8 K = 1289.20 W

WHEN THE FRAME IS WOODEN

CALCULATING THE COOLING LOAD OF THE FIXED WINDOW ON SOUTH SIDE

Area = 3.6 m^2

 $q_{south\,window} = A \, x \, CF_{south\,window}$

 $CF_{south\,window(heat\,transfer)} = U_{south\,window} \, (\Delta T_{cooling} - 0.46 \, \mathrm{DR})$

 $U_{south\,window} = 2.84 \frac{W}{m^2\,K}$

 $CF_{south\,window(heat\,transfer)} = 2.84 \frac{W}{m^2\,K} (7.9\,\text{K} - 0.46\,\text{X}\,11.9\,\text{K}) = 6.89\,\frac{W}{m^2}$

 $PXI_{west window} = E_D + E_d = 348 + 209 = 557$

Since no internal shading, so IAC = 1

SHGC = 0.54

 $FF_{\rm s} = 0.47$

$$CF_{south\ window(irradiation)} = PXI\ x\ SHGC\ x\ IAC\ x\ FF_s = 557\ x\ 0.54\ x\ 1\ x\ 0.47\ =\ 141.36\ \frac{W}{m^2}$$

$$q_{south\ window} = AxCF_{south\ window(heat\ transfer)} + (CF_{south\ window(irradiation)})$$

$$= 3.6\ m^2\ x\ (6.89\ +141.36)\ \frac{W}{m^2}\ = 533.72\ W$$

CALCULATING THE HEATING LOAD OF THE FIXED WINDOW ON SOUTH SIDE

$$q_{south\ window} = A\ x\ HF_{south\ window} = A\ x\ U_{south\ window}\ x\ \Delta T_{heating}$$

= 3.6 m² x 2.84 $\frac{W}{m^2\ K}$ x 24.8 k = 253.56 W

WHEN THE FRAME IS ALUMINIUM $U'_{south\ window} = 3.61 \frac{W}{m^2\ K}$, SHGC' = 0.56

COOLING LOAD

$$CF'_{south\ window(heat\ transfer)} = U'_{south\ window}\ (\Delta T_{cooling} - 0.46\ \mathrm{DR})$$

$$= 3.61 \frac{w}{m^2\ K} (7.9K - 0.46\ x\ 11.9\ k\) = 8.76 \frac{w}{m^2}$$

$$CF'_{south\ window(irradiation)} = PXI\ x\ SHGC'\ x\ IAC\ x\ FF_S\ =\ 557\ x\ 0.56\ x\ 1\ x\ 0.47\ =\ 146.6\ \frac{w}{m^2}$$

$$q'_{south\ window}\ = A\ x\ (CF'_{south\ window(heat\ transfer)} + (CF'_{south\ window(irradiation)})$$

$$= 3.6\ \mathrm{m^2}\ x\ (8.76\ +146.60)\ \frac{w}{m^2}\ =\ 559.30\mathrm{W}$$

HEATING LOAD

$$q'_{south\ window} = A\ x\ HF'_{south\ window} = A\ x\ U'_{south\ window}\ x\ \Delta T_{heating}$$
$$= 3.6\ m^2\ x\ 3.61 \frac{W}{m^2\ K}\ x\ 24.8\ k = 322.30\ W$$

WHEN THE FRAME IS WOODEN

CALCULATING THE COOLING LOAD OF THE OPERABLE WINDOW ON SOUTH SIDE

Area = 3.6 m^2

 $q_{south\,window} = A \, x \, CF_{south\,window}$

 $CF_{south\,window(heat\,transfer)} = U_{south\,window} \, (\Delta T_{cooling} - 0.46 \, \mathrm{DR})$

 $U_{south\,window} = 2.87 \frac{W}{m^2 \, K}$

$$CF_{south\,window(heat\,transfer)} = 2.87 \frac{W}{m^2\,K} (7.9 \text{ k} - 0.46 \text{ (11.9 k)}) = 6.96 \frac{W}{m^2}$$

$$PXI_{south window} = E_D + E_d = 348 + 209 = 557$$

Since no internal shading, so IAC = 1

SHGC = 0.46

$$FF_{\rm s} = 0.47$$

$$CF_{south\,window(irradiation)} = PXI \times SHGC \times IAC \times FF_s = 557 \times 0.46 \times 1 \times 0.47 = 120.42 \frac{W}{m^2}$$

 $q_{south\ window} = AxCF_{south\ window} = A(CF_{south\ window(heat\ transfer)} + (CF_{south\ window(irradiation)})$

= 3.6 m² x (6.96 +120.42)
$$\frac{W}{m^2}$$
 = 458.58 W

CALCULATING THE HEATING LOAD OF THE OPERABLE WINDOW ON SOUTH SIDE

$$q_{south\ window} = A\ x\ HF_{south\ window} = A\ x\ U_{south\ window}\ x\ \Delta T_{heating}$$

= 3.6 m² x 2.87 $\frac{W}{m^2\ K}$ x 24.8 K = 256.23 W

WHEN THE FRAME IS ALUMINIUM $U_{south\ window}=4.62\frac{W}{m^2\ K}$, SHGC = 0.55 COOLING LOAD

 $CF'_{south\ window(heat\ transfer)} = U'_{south\ window} (\Delta T_{cooling} - 0.46\ DR)$

=
$$4.62 \frac{W}{m^2 K} (7.9K - 0.46 \times 11.9 K) = 11.21 \frac{W}{m^2}$$

 $CF'_{south\ window(irradiation)} = PXI\ x\ SHGC'\ x\ IAC\ x\ FF_S = 557\ x\ 0.55\ x\ 1\ x\ 0.47 = 143.98\ \frac{W}{m^2}$

 $q'_{south\ window} = A\ x\ (CF'_{south\ window(heat\ transfer)} + (CF'_{south\ window(irradiation)})$

= 3.6 m² x (11.21 +143.98)
$$\frac{W}{m^2}$$
 = 558.70 W

HEATING LOAD

$$q'_{south\ window} = A\ x\ HF'_{south\ window} = A\ x\ U'_{south\ window}\ x\ \Delta T_{heating}$$
$$= 3.6\ \text{m}^2\ \text{x}\ 4.62\ \frac{W}{m^2\ K}\ \ \text{x}\ 24.8\ \text{K} = 412.47\ \text{W}$$