Class 8: Breast Cancer mini project

Hailey Heirigs (PID: A16962278)

Table of contents

Background
Data Import
Clustering
Principal Component Analysis (PCA)
The Importance of Data Scaling
PCA of this wisc.data
5. Combining Methods
Clustering on PCA results
7. Prediction

Background

This mini project explores unsupervised learning techniques applied to the Wisconsin Breast Cancer Diagnostic Data Set, which contains measurement of human breast mass cell nuclei. The project guides the user through exploratory data analysis, performing and interpreting Principal Component Analysis (PCA) to reduce the dimensionality of the data while retaining variance, and applying hierarchical clustering to better separate benign and malignant cell samples, evaluating the results using metrics like sensitivity and specificity, and finally demonstrating how to predict the classification of new samples using the developed PCA model.

Data Import

Our data come from the U. of Wisconsin Medical Center

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)</pre>
```

Q1. How many patients/samples are in this dataset?

```
nrow(wisc.df)
```

[1] 569

Q2. How many of the observations have a malignant diagnosis?

```
table(wisc.df$diagnosis)
```

B M 357 212

```
sum(wisc.df$diagnosis == "M")
```

[1] 212

Q3. How many variables/features in the data are suffixed with _mean?

colnames(wisc.df)

```
[1] "diagnosis"
                                "radius_mean"
 [3] "texture_mean"
                                "perimeter_mean"
 [5] "area_mean"
                                "smoothness_mean"
 [7] "compactness_mean"
                                "concavity_mean"
                                "symmetry_mean"
 [9] "concave.points_mean"
[11] "fractal_dimension_mean"
                                "radius_se"
[13] "texture_se"
                                "perimeter_se"
                                "smoothness_se"
[15] "area_se"
[17] "compactness_se"
                                "concavity_se"
[19] "concave.points_se"
                                "symmetry_se"
[21] "fractal_dimension_se"
                                "radius_worst"
[23] "texture_worst"
                                "perimeter_worst"
                                "smoothness_worst"
[25] "area_worst"
                                "concavity_worst"
[27] "compactness_worst"
[29] "concave.points_worst"
                                "symmetry_worst"
[31] "fractal_dimension_worst"
```

```
length( grep("mean", colnames(wisc.df), value = T) )
```

[1] 10

There is a diagnosis column that is the clinician consensus that I want to exclude from any further analysis. We will come back later and compare our results to this diagnosis.

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)</pre>
```

```
[1] M M M M M M M Levels: B M
```

Now we can remove it from the wisc.df

```
wisc.data <- wisc.df[,-1]
```

Clustering

```
kmeans(wisc.data, centers = 2)
```

K-means clustering with 2 clusters of sizes 438, 131

```
Cluster means:
```

```
radius mean texture mean perimeter mean area mean smoothness mean
     12.55630
                  18.57037
                                 81.12347
                                            496.0619
1
                                                           0.0948845
     19.37992
                  21.69458
                                 128.23130 1185.9298
                                                           0.1012946
  compactness_mean concavity_mean concave.points_mean symmetry_mean
1
        0.09109982
                       0.06243776
                                            0.03343254
                                                           0.1780580
2
        0.14861298
                       0.17693947
                                            0.10069878
                                                           0.1915397
 fractal_dimension_mean_radius_se_texture_se_perimeter_se_area_se
1
              0.06345402 0.3041909
                                      1.215153
                                                   2.152881 23.78529
2
              0.06060290 0.7428038
                                      1.222538
                                                   5.250580 95.67817
  smoothness_se compactness_se concavity_se concave.points_se symmetry_se
    0.007173263
                    0.02347469
                                 0.02874551
1
                                                    0.01063632 0.02061358
    0.006598687
                    0.03217669
                                 0.04241977
                                                    0.01567398
                                                                0.02030397
 fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
           0.003747503
1
                           14.04390
                                          24.70954
                                                          91.93751
                                                                      619.6479
2
           0.003953389
                           23.70947
                                          28.91267
                                                         158.49618 1753.0229
  smoothness_worst compactness_worst concavity_worst concave.points_worst
1
         0.1299591
                           0.2233118
                                            0.2192149
                                                                0.09132984
```

2	0	.1404247	0.3	3577577	0.44930	61	0.19243107		
	symmetry	_worst fra	ctal_dimen	sion_worst					
1		- 835537	_	0.08328194					
2	0.3	118817		0.08616550					
Clustering vector:									
	842302	842517	84300903	84348301	84358402	843786	844359	84458202	
	2	2	2	1	2	1	2	1	
	844981	84501001	845636	84610002	846226	846381	84667401	84799002	
	1	1	1	2	2	1	1	1	
	848406	84862001	849014	8510426	8510653	8510824	8511133	851509	
	1	2	2	1	1	1	1	2	
	852552	852631	852763	852781	852973	853201	853401	853612	
	2	2	1	2	2	2	2	1	
8	5382601	854002	854039	854253	854268	854941	855133	855138	
	2	2	2	2	1	1	1	1	
	855167	855563	855625	856106	85638502	857010	85713702	85715	
	1	1	2	1	1	2	1	1	
	857155	857156	857343	857373	857374	857392	857438	85759902	
	1	1	1	1	1	2	1	1	
	857637	857793	857810	858477	858970	858981	858986	859196	
	2	1	1	1	1	1	1	1	
8	5922302	859283	859464	859465	859471	859487	859575	859711	
	1	1	1	1	1	1	2	1	
	859717	859983	8610175	8610404	8610629	8610637	8610862	8610908	
	2	1	1	2	1	2	2	1	
	861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502	
	1	1	2	2	1	2	1	2	
	861597	861598	861648	861799	861853	862009	862028	86208	
	1	1	1	1	1	1	1	2	
	86211	862261	862485	862548	862717	862722	862965	862980	

865423 865432 865468

1 1 8670 86730502

1 1

1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 863030 863031 863270 86355 864018 864033 86408

1 1 1 1 2 1 1 1 864292 864496 864685 864726 864729 864877 865128

868682 868826 868871 868999 869104 869218 869224

869476 869691 86973701 86973702 869931 871001501 871001502

86561 866083 866203

867387 867739

1	1	1	1	1	1	1	1
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
1	1	1	1	2	1	1	1
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
1	2	2	1	2	1	1	2
8712766	8712853	87139402	87163	87164	871641	871642	872113
2	1	1	1	1	1	1	1
872608	87281702	873357	873586	873592	873593	873701	873843
1	1	1	1	2	2	2	1
873885	874158	874217		874662	874839	874858	875093
1	1		1	1	_	_	1
875099	875263	87556202	875878	875938	877159	877486	877500
1	1			_	_		1
877501	877989	878796			879523	879804	879830
1	2						2
8810158	8810436	881046502				8810955	8810987
1	1						1
8811523	8811779	8811842					8812877
1	_	_					
8813129	88143502	88147101	88147102				88199202
1	1		1		1		1
88203002		882488					
1	2			2		1	2
88350402		883852					884626
1	1		1				1
88466802	884689				8860702		886452
1	1	_	_	2		2	1
88649001	886776				888264		889403
2	1	_	1	2	_		1
889719		8910251					8910748
2	2	_		1		_	1
8910988		8911163					
2		2					
		89122					
2		2			1		
		89143602					
		1					
	892189	892214	892399	892438	892604	89263202	892657
1		1					
		89344					
1	1				1		
		894047					
1	1	1	1	1	2	1	1

895299	89524	89511502	89511501	895100	894855	894618	894604
1	1	1	1	2	1	2	1
89742801	897374	897137	897132	896864	896839	895633	8953902
L 2	1	1	1	1	1	1	1
7 898431	89827	898143	89813	89812	897880	897630	897604
L 2	1	1	1	2	1	2	1
899667	899187	899147	898690	89869	898678	898677	89864002
1	1	1	1	1	1	1	1
901034301	9010333	901028	9010259	9010258	901011	9010018	899987
1	1	1	1	1	1	1	2
9011495	9011494	901088	9010877	9010872	9010598	901041	901034302
2 1	2	2	1	1	1	1	1
901303	9013005	901288	9012795	9012568	9012315	9012000	9011971
1	1	2	2	1	1	2	2
90251	90250	901836	901549	9013838	9013594	9013579	901315
1	1	1	1	1	1	1	1
903483	90317302	90312	903011	902976	902975	90291	902727
1	1	2	1	1	1	1	1
904357	904302	90401602	90401601	903811	903554	903516	903507
	1			1	1	2	2
905190	905189	904971	904969	9047	904689	904647	90439701
1	1	1		1	1	1	2
905686	905680	905557	905539	905520	905502	905501	90524101
	1	1		1	1		2
906878	906616	906564	906539	906290	906024	90602302	
1	1			1	1	2	1
907915	907914	90769602	90769601	90745	907409	907367	907145
1	1			1	1	1	1
909410	909231		908916	908489	908469	908445	908194
	1			1	1	2	2
		9110720		909777	90944601		909411
	2	1		1	1	2	1
	911202	911201		9111805	9111596	911157302	911150
1			1		1	_	1
911320501							
1			2			1	
9113816							
1							1
911916						9113846	_
					1		1
913505							_
1 2		1					1
2 914333							
, 91 1 000	914102	914101	914002	91010102	91010101	910000	910012

1	1	1	2	2	1	1	1
914366	914580	914769	91485	914862	91504	91505	915143
1	1	2	2	1	1	1	2
915186	915276	91544001	91544002	915452	915460	91550	915664
1	1	1	1	1	1	1	1
915691	915940	91594602	916221	916799	916838	917062	917080
1	1	1	1	2	2	1	1
917092	91762702	91789	917896	917897	91805	91813701	91813702
1	2	1	1	1	1	1	1
918192	918465	91858	91903901	91903902	91930402	919537	919555
1	1	1	1	1	2	1	2
91979701	919812	921092	921362	921385	921386	921644	922296
1	1	1	1	1	1	1	1
922297	922576	922577	922840	923169	923465	923748	923780
1	1	1	1	1	1	1	1
924084	924342	924632	924934	924964	925236	925277	925291
1	1	1	1	1	1	1	1
925292	925311	925622	926125	926424	926682	926954	927241
1	1	1	2	2	2	1	2
92751							
1							

Within cluster sum of squares by cluster:

[1] 28559677 49383423

(between_SS / total_SS = 69.6 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"

let's try hclust

hc <- hclust(dist(wisc.data))
plot(hc)</pre>

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

We can extract clusters from this rather poor dendrogram/tree with the cutree()

```
grps <- cutree(hc, k=2)</pre>
```

How many individuals in each cluster?

table(grps)

grps

1 2

549 20

table(diagnosis)

diagnosis

B M

357 212

We can generate a cross-table that compares our cluster grps vector with our diagnosis vector values.

table(diagnosis, grps)

```
grps
diagnosis 1 2
B 357 0
M 192 20
```

Principal Component Analysis (PCA)

The Importance of Data Scaling

The main function for PCA in base R is prcomp() it has a default input parameter of scale=FALSE.

```
#prcomp()
head(mtcars)
```

	mpg	cyl	disp	hp	drat	wt	qsec	٧s	\mathtt{am}	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

We could do a PCA of this data as is and it could be mis-leading.

```
pc <- prcomp(mtcars)
biplot(pc)</pre>
```


Let's look at the mean values of each column and their standard deviation.

colMeans(mtcars)

mpg	cyl	disp	hp	drat	wt	qsec
20.090625	6.187500	230.721875	146.687500	3.596563	3.217250	17.848750
vs	am	gear	carb			
0.437500	0.406250	3.687500	2.812500			

apply(mtcars, 2, sd)

wt	drat	hp	disp	cyl	mpg
0.9784574	0.5346787	68.5628685	123.9386938	1.7859216	6.0269481
	carb	gear	am	vs	qsec
	1.6152000	0.7378041	0.4989909	0.5040161	1.7869432

We can "scale" this data before PCA to get a much better represenation and analysis of all the columns.

mtscale <- scale(mtcars)</pre>

round(colMeans(mtscale))

```
mpg
     cyl disp
                 hp drat
                            wt qsec
                                       ٧s
                                             am gear carb
       0
                  0
                              0
                                         0
                                              0
                                                    0
  0
             0
                                   0
                        0
```

```
apply(mtscale, 2, sd)
```

```
pc.scale <- prcomp(mtscale)</pre>
```

We can look at the two main results figures from PCA - the "PC plot" (a.k.a. score plot, orientation plot, or PC1 vs PC2 plot). The "loadings plot" says how the original variables contribute to the new PCs.

A loadings plot of the unscaled PCA results

```
ggplot(pc$rotation) +
  aes(PC1, rownames(pc$rotation)) +
  geom_col()
```


Loadings plot of the scaled data.

```
ggplot(pc.scale$rotation) +
  aes(PC1, rownames(pc$rotation)) +
  geom_col()
```


PC plot of scaled PCA results

```
ggplot(pc.scale$x) +
  aes(PC1, PC2, label=rownames(pc.scale$x)) +
  geom_point() +
  geom_text()
```


Key point: In general, we will set scale=TRUE when we do PCA. This is not the default but probably should be...

We can check the SD and mean of the different columns in wisc.data to see if we need to scale - hint we do!

PCA of this wisc.data

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)</pre>
```

To see how well this PCA data is doing in terms of capturing the variance (or spread) in the data, we can use the summary() function.

```
summary(wisc.pr)
```

Importance of components:

```
PC1
                                  PC2
                                          PC3
                                                  PC4
                                                           PC5
                                                                   PC6
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                            PC8
                                   PC9
                                          PC10
                                                 PC11
                                                          PC12
                                                                  PC13
                                                                          PC14
```

```
0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Standard deviation
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
                       0.92598\ 0.9399\ 0.95157\ 0.9614\ 0.97007\ 0.97812\ 0.98335
Cumulative Proportion
                          PC15
                                   PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                    PC20
                                                                           PC21
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Standard deviation
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
                       0.98649\ 0.98915\ 0.99113\ 0.99288\ 0.99453\ 0.99557\ 0.9966
Cumulative Proportion
                                          PC24
                                                          PC26
                          PC22
                                   PC23
                                                  PC25
                                                                   PC27
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
                       0.99749\ 0.99830\ 0.9989\ 0.99942\ 0.99969\ 0.99992\ 0.99997
Cumulative Proportion
                          PC29
                                   PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Let's make the main PC1 vs PC2

```
ggplot(wisc.pr$x) +
  aes(PC1, PC2, col=diagnosis) +
  geom_point() +
  xlab("PC1 (44.3%)") +
  ylab("PC2 (19%)")
```


- Q10. Please answer up to this Q10...;
- Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

[44.3%]

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

3 principal components are required to describe at least 70% of the original variance in the data.

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

7 principal components are required to describe at least 70% of the original variance in the data.

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

The difference diagnosises are grouped very visibly by color and their distinct groupings stand out to me. It is easy to understand and see, due to being able to see where they fall on the scatter plot.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
ggplot(wisc.pr$x) +
aes(PC1, PC3, col=diagnosis) +
geom_point() +
xlab("PC1 (44.3%)") +
ylab("PC2 (9.4%)")
```


After generating a similar plot, I notice that the diagnosises of benign or malignant are still grouped together, but are at a lower percentage on the y-axis. This is because the PC3 proportion of variance is lower, and so the shift is to be expected. I also notice slightly more overlap between the two diagnosises, in comparison to the PC1 and PC2 plot from before.

Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

```
pve <- pr.var / sum(pr.var)

plot(pve, xlab = "Principal Component",
    ylab = "Proportion of Variance Explained",
    ylim = c(0, 1), type = "o")</pre>
```


The component of the loading vector wisc.pr\$rotation[,1] for the feature of $concave.points_mean$ is -0.26085376.

wisc.pr\$rotation[,1]

texture_mean	perimeter_mean
-0.10372458	-0.22753729
${\tt smoothness_mean}$	compactness_mean
-0.14258969	-0.23928535
concave.points_mean	symmetry_mean
-0.26085376	-0.13816696
radius_se	texture_se
-0.20597878	-0.01742803
area_se	smoothness_se
-0.20286964	-0.01453145
concavity_se	concave.points_se
-0.15358979	-0.18341740
fractal_dimension_se	radius_worst
-0.10256832	-0.22799663
perimeter_worst	area_worst
-0.23663968	-0.22487053
compactness_worst	concavity_worst
-0.21009588	-0.22876753
	-0.10372458 smoothness_mean -0.14258969 concave.points_mean -0.26085376 radius_se -0.20597878 area_se -0.20286964 concavity_se -0.15358979 fractal_dimension_se -0.10256832 perimeter_worst -0.23663968 compactness_worst

concave.points_worst	symmetry_worst fract	al_dimension_worst
-0.25088597	-0.12290456	-0.13178394

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

The minimum number of principal components required to explain 80% of the variance of the data is 5 components combined.

5. Combining Methods

We can take our PCA results and use them as a basis set for other analysis such as clustering.

Clustering on PCA results

```
wisc.pr.hclust <- hclust( dist(wisc.pr$x[,1:2]), method="ward.D2" )
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

dist(wisc.pr\$x[, 1:2]) hclust (*, "ward.D2")

We can "cut" this tree to yield our clusters (groups):

```
pc.grps <- cutree(wisc.pr.hclust, k=2)
table(pc.grps)</pre>
```

```
pc.grps
    1    2
195    374
```

How do my cluster grps compare to the expert diagnosis from

```
table(diagnosis, pc.grps)
```

```
pc.grps
diagnosis 1 2
B 18 339
M 177 35
```

table(diagnosis)

```
diagnosis

B M
357 212
```

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

The newly created model with four clusters separates the two diagnoses in a cleaner way, but has the potential to be hard to read; whereas a model that separates via two clusters could be more distinct and helpful in visualization.

Q16. How well do the k-means and hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

They did really badly. We do much better after PCA - the new PCA variables (what we call a basis set) gives us much better separation of M and B.

7. Prediction

We can use our PCA model for analysis of new "unseen" data. In this case from U. Mich.

```
url <- "https://tinyurl.com/new-samples-CSV"</pre>
new <- read.csv(url)</pre>
npc <- predict(wisc.pr, newdata=new)</pre>
npc
          PC1
                   PC2
                              PC3
                                        PC4
                                                 PC5
                                                            PC6
                                                                      PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945 0.8193031
           PC8
                    PC9
                              PC10
                                       PC11
                                                PC12
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
         PC15
                   PC16
                               PC17
                                          PC18
                                                     PC19
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
PC21
                    PC22
                               PC23
                                         PC24
                                                    PC25
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
            PC27
                       PC28
                                   PC29
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
```

```
plot(wisc.pr$x[,1:2], col=diagnosis)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```


Q18. Which of these new patients should we prioritize for follow up based on your results?

Patient 2 for sure.

answer questions 1-10, 15, 16, 18 for homework.