Apicultural Conservation and Technology: An Investigation into Decreasing Bee Populations with Data Science

By Christopher Petrucelli

Introduction to the Problem

- CDC publication in 2006 warning of spontaneous colony
 - collapse
- Numerous calls to action
 - Pesticides, gardens, etc.
- What can be done?

Beehive Monitoring Systems

- Monitor beehive activity
- Many platforms available
- Use a variety of sensors
 - Temperature
 - Weight
 - **Activity**
 - Etc.

Agenda

- Important background information / terminology
- Part 1: Increase understanding of Apis Mellifera (Western Honey Bee)
- Part 2: Explore data collected by beehive monitoring solutions
 - Gather, clean, and examine available beehive data
 - Justification for collecting data
 - New ideas

Background

- "Bees" or "Colony" refers to the actual bees being kept
- "Hive" or "Box" refers to the physical housing they inhabit, although there are many designs of hive
- "Frames" panels slotted into a hive for wax comb construction
- "Brood" refers to the young of the colony

Part 1: Apis Mellifera

Bee Basics

- Bees have haplo-diploid sex determination at birth
 - Non-fertilized egg = male "Drone" bee
 - Fertilized egg = female "Worker" bee
 - Female bee + royal jelly = "Queen" bee

Roles

- Drone: mate with queen
- Worker: tend to brood, build comb, defend hive, gather pollen and nectar
- Queen: mate and lay up to 1500 eggs per day for her entire life.

Bee Basics (cont.)

Drone (left) and Worker (right)

Brood Development

- Eggs laid into hexagonal wax cells on the 'brood frame'
- All bees go through the same stages of development
- Development time varies
 - Queen: 16 days
 - Worker: 21 days
 - o Drone: 24 days
- Regulate hive conditions

Threats

- Disease
 - Primarily affect the brood
- Parasites
 - Varroa destructor mites
 - Wax moths
- Pesticide/Herbicide
- Habitat changes, inadequate foraging

Adult lesser wax moth

Part 2: Beehive Monitoring

CRISP-DM Model

Cross Industry Standard Practice for Data Mining

Data Sets

- 1. Hive 2017 data set
 - Collected from Kaggle
 - Data for 3 hives, unknown location U.S.
 - Contains temperature, humidity, bee flow, and weight
- 2. Hudson Valley, NY, 2016 2021 data set
 - Collected from BeeCounted Organization
 - Data for 8 hives, Poughkeepsie Newburgh, NY area
 - Contains temperature, some humidity and weight
 - Many areas of missing readings

Modifications: 2017 Data Set Temperature

- Temperature
 - Taken from 10 sensors, no context
- Solution
 - Take values of same timestamp, create columns for min, max,
 and mean

Modifications: 2017 Data Set Temperature (cont.)

Modifications: 2017 Data Set Flow

- Flow originally kept in a single .CSV
 - In flow is a value >= 0
 - Out flow is a value <= 0
- Two values per timestamp
- Separated into in and out

Modifications: 2017 Data Set Weight Change

Created a new column, weightchange

Data Cleaning: Outliers

- Temperature
 - -10 to 110 degrees Fahrenheit
- Humidity
 - o 0 to 100 percent
- Other
 - Use IQR

$$IQR = Q3 - Q1$$

[Bottom range, Top range] = [Q1 - (1.5*IQR), Q3 + (1.5*IQR)]

Data Cleaning: Interpolation

- Data had large sections of missing values
- Sensor differences or errors
- Locating a suitable variable for regression
 - High R² values
 - No data on seasonal trends

What Data is Collected?

- Temperature
- Humidity
- Weight
- Audio
- Images
- Light / Accelerometer / E-compass
- Barometric Pressure

Temperature

- Internal temperature is closely regulated
 - Kept within 32-35 degrees Celsius (90-95 degrees Fahrenheit)
- May be used to predict:
 - Queen-lessness or non-laying Queen
 - Lack of resources
 - Preparation for swarming
- As for external temperature...

Temperature Analysis

- Colony regulates temperature through two methods
 - Both require workers to remain within the hive
- Hypothesis: If temperature values are within the necessary range for brood development, then will colony productivity increase?
 - In/Out as a measure of productivity

Temperature Analysis (cont.)

Temperature Analysis (cont.)

Temperature Analysis (cont.)

- Hypothesis was supported by available data
- Opportunities for further experimentation
 - Assist in regulating temperature to boost productivity?

Humidity

- Also regulated by workers
 - Optimal between 50-60%, safe between 40-80%
- Large variations in internal humidity following a change to external humidity might indicate a colony is not healthy
- High humidity increases rate of occurrence of some diseases, but also limits reproduction of Varroa mites
- Could the same hypothesis prove true with humidity?

Humidity Analysis

Weight

- Allow for estimation of hive resources
 - Growth during active season, consumption during winter
- Made more useful the more data or context is available
 - Hive type, size, wax comb development
 - Seasonal trends
- Sudden weight gain?

Other Data

- Light / Accelerometer / E-compass
 - Anti-theft
- Barometric Pressure
 - Potentially related to bee agitation
- Audio
 - Predict Queen birth, end to egg-laying, swarming
- Images
 - Monitor activity, potentially resource abundance

New Application: Images

- Varroa mites are very common
 - Infestation allows disease to spread rapidly
- Screen and bottom board
- Daily images or ML predictions

New Application: Images (cont.)

New Application: E-compass

- "Drifting" phenomenon in which bees will return to the incorrect hive when multiple hives are in a line
 - Hives on the ends of rows will receive the drifting bees more frequently
- Weight may also help to diagnose this problem
- E-compass headings can be compared
 - Circular (facing outwards) or random placement and facing of hives will prevent this

Conclusion

- Are beehive monitoring systems effective in ensuring the health and safety of bee populations?
 - Some features are not strictly necessary, but...
 - Extra oversight
 - Machine learning
- Data availability is limited
 - Some organizations, like BeeCounted, are working to remedy this
- New technology, new opportunities
 - Audio analysis is just one example

References and Links

Github repository (and paper):

https://github.com/AFineSortie/Apicultural-Conservation-and-Technology