

Mentor

A J Sanchez

Mustafa KADIOGLU Cervical Cancer Risk Factors Logistic Regression Capstone Project Springboard Data Science Career Track April-2018 Cohort github.com/mustafakadioglu

Problem Definition

Affecting over 500,000 women and resulting in approximately 275,000 deaths every year

Data Information

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

https://archive.ics.uci.edu/ml/datasets/Cervic al+cancer+%28Risk+Factors%29#]

858 data points and 36 features

Data Information

Data Information

	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies	Smokes	Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives	Hormonal Contraceptives (years)	IUD	 STDs: Time since first diagnosis	STDs: Time since last diagnosis	Dx:Cancer	Dx:CIN
0	18	4.0	15.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0
1	15	1.0	14.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0
2	34	1.0	NaN	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0
3	52	5.0	16.0	4.0	1.0	37.0	37.0	1.0	3.0	0.0	 NaN	NaN	1	0
4	46	3.0	21.0	4.0	0.0	0.0	0.0	1.0	15.0	0.0	 NaN	NaN	0	0
5 rc	ws ×	36 columi	ns											

Dx:HPV	Dx	Hinselmann	Schiller	Citology	Biopsy
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0

Reading the data set

df =pd.read_csv('risk_factors_cervical_cancer.csv', na_values = ['?'])

Replacing '?' with 'NaN'

1 df.head(5)

	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies	Smokes	Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives	Hormonal Contraceptives (years)	IUD	 STDs: Time since first diagnosis	STDs: Time since last diagnosis	Dx:Cancer	Dx:CIN
0	18	4.0	15.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0
1	15	1.0	14.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0
2	34	1.0	NaN	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 NaN	NaN	0	0
3	52	5.0	16.0	4.0	1.0	37.0	37.0	1.0	3.0	0.0	 NaN	NaN	1	0
4	46	3.0	21.0	4.0	0.0	0.0	0.0	1.0	15.0	0.0	 NaN	NaN	0	0

5 rows x 36 columns

4

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 858 entries, 0 to 857
Data columns (total 36 columns):

Propping

26 out of (6 columns have rusting values but since 'STDs: Time since first diagnosis' and 'STDs: Time since last diagnosis' columns have % 91.7 missing values, we are going to drop off these columns.

```
df.drop(['STDs: Time since first diagnosis', 'STDs: Time since last diagnosis'], axis =1, inplace = True)
```

The rest columns have less than %15 missing values. For the numerical missing values, we will use imputing techniques to replace them. Since most of our columns have boolean type of variables we will implement pd.get_dummies() function to create dummy variables for all 0, 1 and NaN values. Thus we will not loose any data points.

Imputing the numeric columns

```
df['STDs (number)'].fillna(np.ceil(df['STDs (number)'].mean()), inplace=True)

df['IUD (years)'].fillna(np.ceil(df['IUD (years)'].mean()), inplace=True)

df['Hormonal Contraceptives (years)'].fillna(np.ceil(df['Hormonal Contraceptives (years)'].mean()), inplace=True)

df['Smokes (packs/year)'].fillna(np.ceil(df['Smokes (packs/year)'].mean()), inplace=True)

df['Smokes (years)'].fillna(np.ceil(df['Smokes (years)'].mean()), inplace=True)

df['Number of sexual partners'].fillna(np.ceil(df['Number of sexual partners'].mean()), inplace=True)

df['Number of sexual partners'].fillna(np.ceil(df['Num of pregnancies'].mean()), inplace=True)

df['Year of regnancies'].fillna(np.ceil(df['Num of pregnancies'].mean()), inplace=True)

df['Year of regnancies'].fillna(np.ceil(df['Num of pregnancies'].mean()), inplace=True)
```

pd.get_dummies() function for categorical missing values

```
df2 = pd.get_dummies(df[['Smokes', 'Hormonal Contraceptives', 'IUD', 'STDs','STDs:cervical condylomatosis','STDs:condylomatos

'STDs:vulvo-perineal condylomatosis','STDs:syphilis','STDs:Hepatitis B','STDs:pelvic inflammatory di

'STDs:molluscum contagiosum','STDs:AIDS', 'STDs:HIV','STDs:HPV']], dummy_na = True)

df2.head()
```


1 df.head()

	Age	Number of sexual partners	First sexual intercourse	Num of pregnancies	Smokes (years)	Smokes (packs/year)	Hormonal Contraceptives (years)	IUD (years)	STDs (number)	STDs: Number of diagnosis	 STDs:molluscum contagiosum_1.0	STDs:molluscum contagiosum_nan	STDs:
0	18	4.0	15.0	1.0	0.0	0.0	0.0	0.0	0.0	0	 0	0	
1	15	1.0	14.0	1.0	0.0	0.0	0.0	0.0	0.0	0	 0	0	
2	34	1.0	17.0	1.0	0.0	0.0	0.0	0.0	0.0	0	 0	0	
3	52	5.0	16.0	4.0	37.0	37.0	3.0	0.0	0.0	0	 0	0	
4	46	3.0	21.0	4.0	0.0	0.0	15.0	0.0	0.0	0	 0	0	

5 rows x 64 columns

4

Data set consists of numeric data points solely.

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 858 entries, 0 to 857
Data columns (total 64 columns):

To save it as a csv file.**

1 df.to_csv('Cervical_Cancer_Risk_Cleaned.csv')

- ✓ Cancer diagnosed patient's age are cumulated between 27 to 42. Cancer patient's median age is higher than non-cancers.
- ✓ Cancer diagnosed patient's number of sexual partners are cumulated between 1 to 5. Most of the patients have had either 5 or less partners.
- ✓ Cancer diagnosed patient's first sexual intercourses are cumulated between 17 to 20.There is outlier even at 10. Cancer patient's median first sexual intercourse age is higher than non-cancer ones.
- ✓ Cancer patient's median number of pregnancies is higher than non-cancer.
- ✓ Most of the patients are not cancer smoke more than 3 years as well.
- ✓ Most of the non-cancer patients use hormonal contraceptives.

All three features look like normally distributed but skewed to right and there are some outliers in all of them

There is negative regression between First sexual intercourse and Number of sexual partners for both Cancer and Non-cancer diagnosed patients.

Normally Distributed

Based on the 95% confidence interval, ages between 26.6 and 27.9 are considered normal.

There is not enough
evidence that there is a
significant difference
between Cancer and NonCancer in average number of
sexual partners.

Train/Test = 0.75/0.25

									Classification Rep	port	
Proportion (Train/Test)	SMOTE	DATA SET	Model/Application	Accura	acy Score		Category	precision	recall	f1-score	Support
					Train	0.995	0	1.00	1.00	1.00	630
			Default	Accuracy Score	II all I	0.555	1	1.00	0.77	0.87	13
			Logistic Regression		Test	0.986	0	0.99	1.00	0.99	210
					Test	0.500	1	1.00	0.40	0.57	5
			Logistic Regression with 5 fold Cross Validation	Accuracy Score	Train	_	-	-	-	-	-
					1101		-	-	-	-	-
					Test	0.986	0	0.99	1.00	0.99	210
							1	1.00	0.40	0.57	5
		848 Data			Train		0	1.00	1.00	1.00	630
	NO	Points 64 Features	Logistic Regression with Grid Search CV L1 Penalty	Accuracy Score		0.986	1	0.92	0.85	0.88	13
					Test		0	0.99	1.00	0.99	210
							1	0.75	0.60	0.67	5
			Logistic Regression with Grid Search CV L2 Penalty	Accuracy Score	Train Test		0	1.00	1.00	1.00	630
0.75/0.25						0.99	1	1.00	1.00	1.00	13
•							0	0.99	1.00	1.00	210
			Random Forest Classifier N-Estimator = 400	Accuracy Score	Train	-	1	1.00	0.60	0.75	5
							0	-	-	-	
							0	0.99	1.00	0.99	210
					Test		1	1.00	0.40	0.57	5
		 					0	1.00	0.40	0.31	J
			SMOTE with		Train	0.999	1				
			Logistic Regression	Accuracy Score			0	1.00	1.00	1.00	210
		1260 Data	g		Test	0.991	1	0.80	0.80	0.80	5
	YES	Points			_		0	-	-	-	-
		64 Features	Random Forest Classifier	Accuracy Score	Train	-	1	-	-	-	-
					_		0	1.00	1.00	1.00	210
			N-Estimator = 400		Test		1	1.00	0.80	0.89	5

BEFORE SMOTE

Machine Learning

Train/Test = 0.60/0.40

		Classification Report									
Proportion (Train/Test)	SMOTE	DATA SET	Model/Application	Accura	acy Score		Category	precision	recall	f1-score	Support
					Train	0.994	0	-	-	-	-
			Default	Accuracy Score	ITalli	0.994	1	-	-	-	-
			Logistic Regression		Test	0.985	0	0.99	1.00	0.99	337
					rest	0.985	1	1.00	0.29	0.44	7
				Accuracy Score	Train		-	-	-	-	•
			Logistic Regression with 5 fold		110111	-	-	-	-	-	-
			Cross Validation		Test	0.984	0	0.99	1.00	0.99	337
					Test	0.564	1	0.67	0.29	0.40	7
			Logistic Regression with Grid Search CV L1 Penalty		Train		0	1.00	1.00	1.00	503
	NO	848 Data Points 64 Features		Accuracy Score		0.988	1	0.90	0.82	0.86	11
					Test	0.500	0	0.99	1.00	0.99	337
					Test		1	0.80	0.57	0.67	7
			Logistic Regression with Grid Search CV L2 Penalty	Accuracy Score	Train		0	1.00	1.00	1.00	630
0.60/0.40						0.994	1	1.00	1.00	1.00	13
0.00/0.40					Test	0.554	0	0.99	1.00	1.00	337
							1	1.00	0.71	0.83	7
			Random Forest Classifier	Accuracy Score	Train	_	0		-	-	-
							1	- `	-	-	-
			N-Estimator = 400		Test		0	0.99	1.00	1.00	337
							1	1.00	0.57	0.73	7
					Train	0.999	0		·		
			SMOTE with	Accuracy Score			1	1 00	4.00	1.00	0.05
			Logistic Regression		Test	0.994	0	1.00	1.00	1.00	337
	YES	1006 Data Points					1	0.86	0.86	0.86	7
		64 Features	SMOTE with		Train	-	0	-	-	-	-
			Random Forest Classifier N-Estimator = 400	Accuracy Score			1	1.00	1.00	1.00	- 227
				,	Test		0	1.00	1.00	1.00	337
							1	1.00	0.86	0.92	7

18

Conclusion

In our study we have used all necessary features (all the one left after the dropped ones) in our model. In our model, Random Forest Classifier showed the best performance after SMOTE in both proportions. Despite studying with the imbalanced data is very hard, we could manage to catch up %86 accuracy with 18 positive samples total. Hyper parameter tuning also showed us that using proper parameters also increases the accuracy of the algorithm.