

Breitensuche und Tiefensuche

7.2 Breitensuche und Tiefensuche

Breitensuche (BFS = breadth-first-search)

- Berechneter Baum heißt BFS-Baum
- Für $v \in R$ ist v-w-Weg in $(R, F, \Psi|_F)$ kürzester v-w-Weg in G
- Mit Entfernungslabels für Knoten während der Breitensuche kann die Länge des kürzesten v-w-Weges für alle Knoten $v \in R$ bestimmt werden.

Tiefensuche (DFS = depth-first-search)

- Berechneter Baum heißt DFS-Baum
- Es gibt genau dann einen von r aus erreichbaren Kreis in G, wenn der Algorithmus eine Kante von $v \in Q$ zu einem Knoten $w \in Q$ findet. Entfernt man alle Knoten aus G, so gibt es einen von r aus erreichbaren Kreis mehr.

8 Sortieren

8.1 Partielle und totale Ordnungen

Definition 8.1. Eine Relation $R \subseteq S \times S$ heißt partielle Ordnung auf der Menge S, falls

(i)
$$(a, a) \in R$$
 (Reflexivität)

(ii)
$$(a,b) \in R \land (b,a) \in R \implies a = b$$
 (Antisymmetrie)

(iii)
$$(a,b) \in R \land (b,c) \in R \implies (a,c) \in R$$
 (Transitivität)

für alle $a, b, c \in S$ gilt: R heißt totale (oder lineare) Ordnung, falls zusätzlich für alle $a, b \in S$ gilt:

(iv)
$$(a,b) \in R \lor (b,a) \in R$$

Notation: Statt $(a,b) \in R$ schreiben wir auch aRb

Beispiel. (1) $R_{\leq} := \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a \leq b\}$ ist totale Ordnung auf \mathbb{N} .

- (2) $R_{>} := \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid a \geq b\}$ ist totale Ordnung auf \mathbb{R} .
- (3) $R_{\mid} := \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a \mid b\}$ ist partielle Ordnung auf \mathbb{N} .
- (4) $R := \left\{ \left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right) \in \mathbb{R}^2 \times \mathbb{R}^2 \mid a_1 \leq b_1 \wedge a_2 \leq b_2 \right\}$ ist partielle Ordnung auf \mathbb{R}^2 .
- (5) $R := \left\{ \left(\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right) \in \mathbb{R}^2 \times \mathbb{R}^2 \mid a_1 < b_1 \lor (a_1 = b_1 \land a_2 \le b_2) \right\}$ ist totale Ordnung auf \mathbb{R}^2 .
- (6) Sei $G = (V, E, \Psi)$ azyklischer gerichteter Graph. $R := \{(v, w) \in V \times V \mid \exists v\text{-}w\text{-}\text{Weg}\} \text{ ist eine partielle Ordnung auf } V.$

Breitensuche und Tiefensuche

Definition 8.2. Es sei \leq eine partielle Ordnung auf einer endlichen Menge S mit |S| = n. Eine Bijektion $\pi := \{1, 2, ..., n\} \to S$ heißt topologische Sortierung, falls $\pi(j) \nleq \pi(i)$ für i < j. Ist \leq eine totale Ordnung, so ist die topologische Sortierung π eindeutig. Es gilt

$$\pi(1) \leq \pi(2) \leq \ldots \leq \pi(n)$$
.

In diesem Fall heißt π Sortierung von S.

Beispiel. Es sei $S = \{12, 7, 2, 3, 9, 6, 5\}$ und \leq die Teilbarkeitsrelation. Die topologische Sortierung ist hier:

Es sei \leq partielle Ordnung auf einer endlichen Menge S mit |S| = n.

Algorithm 1: Das Sortierproblem

```
Input: Liste/Array A der Länge n mit Einträgen in S, also S = \{A[0], A[1], \dots, A[n-1]\} \leq gegeben als Orakel Output: Topologische Sortierung \pi kodiert als Liste/Array
```

8.2 Selection Sort

```
for i in range(len(arr)):
for j in range(i, len(arr)):
    if(ar[j] <= arr[i]):
    swap(arr[i], arr[j])
return arr</pre>
```

Satz 8.3. Sortieren durch sukzessive Auswahl ist korrekt und hat Laufzeitfunktion in $\Theta(n^2)$.