

The Impact of Network Topology on Banking Default Dynamics

Anas Bachiri & Kārlis Mārtiņš Briedis

Financial crisis of 2008

- **Drastic financial losses**
- Decrease in the GDP growth rate
- Bankruptcy of the 4th largest investment bank in USA Lehman brothers

Networks matter

- Networks matter. The network structure is crucial to estimate systemic risk
- Data scarce. This is one of the main challenges for empirical studies of financial networks
- Systemic risk can be estimated. One measure of systemic risk is the DebtRank

Network matters

Debt rank

Bank at the beginning (a) and at the peak of the financial crisis (b).

Project scope

- Nier E., Yang J., Yorulmazer T., Alentorn A. «Network Models and Financial Stability» (2008)
 - Simulation of default contagion
- Kashirin V. «Evolutionary Simulation of Complex Networks Structures with Specific Topological Properties» (2014)
 - Generation of complex networks
- Our project:
 - Implementation of simulation model
 - Implementation of network generation
 - Observing the impact of network topology on default dynamics

Generation of networks G(n,p)

- Network models
 - G(n, p) model
 - Stochastic Block Model (SBM)
 - Complex network structure simulation

- G(n,p) Model.
 - n: The number of nodes |V|
 - p: probability of connecting two nodes

Degree distribution of a node is given by:

$$P(k) = \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$

The mean degree is given by:

$$\langle k \rangle = np$$

Generation of networks SBM

 Generate Community like structure

- Parameters
 - Number of communities C
 - Block assignment vector \vec{z} with values in $\{0, ..., C-1\}$
 - Stochastic block matrix
 - An example for 3 community stochastic block matrix

$$M_1 = \begin{pmatrix} 0.8 & 0.1 & 0.05 \\ 0.1 & 0.9 & 0.1 \\ 0.05 & 0.1 & 0.65 \end{pmatrix}$$

Complex network structure simulation

- Real-world complex networks are usually characterized by a set of specific topological characteristics:
 - High clustering coefficient
 - Short average path lengths
 - Communities
 - etc.

Simulated annealing

$$G^* = \operatorname*{argmin} 1 - \psi(G)$$

```
Let G be the initial graph
Let \psi(G) be the weighted sum of objective functions for graph G
T \leftarrow T_0
t \leftarrow 0
while T > T_{min} do
  E_{cur} \leftarrow 1 - \psi(G)
  Mutate G to obtain G'
  E_{new} \leftarrow 1 - \psi(G')
  G \leftarrow G' with probability Pr = \left[ -\frac{1}{T} * max\{0; E_{new} - E_{cur}\} \right]
  T \leftarrow T(t)
  t \leftarrow t + 1
end while
```


Graph mutation

- Connection of random pair of nodes
- Rewiring a pair of randomly selected edges Global modifications
- Removal of random edge
- Connecting local nodes
- Local rewiring a pair of random edges

Local modifications

Compute-intensive task

- Graph generation could run up to 6 hours on ETH Euler's 48 cores
- 5 days of CPU time (for 10`000 graphs)
- Must be parallelized!

ETH zürich

3 communities, 0.6 modularity

Shock and assets simulation model

Model parameters (p, n, γ, β, E)

- I, E Total internal/external aggregate assets A = E + I
- γ net worth percentage to total assets
- β, θ percentage of external/internal assets $\beta = \frac{E}{A}$
- a_i, e_i, i_i are total, external and internal assets for each bank
- Z is number of links

Algorithm 1: Algorithm distributing assets according to the aggregated values

 $W \leftarrow \frac{I}{7}$

for
$$i \in [1, n]$$
 do
 $i_i \leftarrow w \sum_{j=1}^n A_{ij}$
 $b_i \leftarrow w \sum_{j=1}^n A_{ji}$
 $\tilde{e}_i \leftarrow max(b_i - i_i, 0)$
end for
for $i \in [1, n]$ do
 $e_i \leftarrow \tilde{e}_i + [(E - \sum_{l=1}^n \tilde{e}_i)/n]$
 $a_i \leftarrow e_i + i_i$
 $c_i \leftarrow \gamma a_i$
 $d_i \leftarrow a_i - c_i - b_i$
end for

Shocks simulations

Model parameters (p, n, γ, β, E)

- c_i bank net worth $c_i = \gamma a_i$ (damping shocks)
- b_i inter-bank borrowing
- $a_i = e_i + i_i$

Algorithm 2: Algorithm of shocks and shock transmission

```
Let s_i be the size of initial shock

if s_i > c_i then

the bank i defaults

end if

if s_i - c_i - b_i \le 0 then

creditor banks lose (s_i - c_i)

distributed equally

else

Depositor banks lose s_i - c_i - b_i

end if
```


ETH zürich

G(n, p) model results

• We scan parameters p and θ .

G(n, p) model results

• We scan the parameter γ (damping factor).

Recall : $\langle k \rangle = np = 25 \times 0.2 = 5$.

Impact of the clustering coefficient

Results obtained from SBM

(a) SBM with M_1

(b)
$$G(n = 75, p = 0.2)$$

(c)
$$SBM$$
 with M_2

$$M_1 = \begin{pmatrix} 0.4 & 0.1 & 0.1 \\ 0.1 & 0.4 & 0.1 \\ 0.1 & 0.1 & 0.4 \end{pmatrix}$$

$$M_2 = \begin{pmatrix} 0.65 & 0.1 & 0.1 \\ 0.1 & 0.65 & 0.1 \\ 0.1 & 0.1 & 0.65 \end{pmatrix}$$

Summary

- Implemented crisis simulation and network generation models
- Models applied to observe the impact of different topological parameters on banking default dynamics
- Propose regulations for the minimum percentage net worth
- Full graph topology matters in real world banking networks
- International banking networks require higher percentage net worth

Improvements

- Use our framework to generate networks and observe the impact of variating other properties
- Use different distributions of assets:
 - Observe the impact of distribution
 - Evaluate existing network to get the distribution
- Introduce the temporal characteristic of networks

Thank you for your attention!