$T(n) = aT\left(\frac{n}{h}\right) + O(n^d);$

 $O(n^d)$ if $d > \log_b a$

 $O(n^{\log_b a})$ if $d < \log_b a$

 $a > \overline{0, b > 1, d \ge 0}$

 $log_a(n) < n^a < a^n < n! < n!$ Balanced Tree: Insert/Delete/Search → O(log n) $k < \log\log(n) < \log(n) < \sqrt{n} < \log^2(n) < n < n\log(n) < n^2 < n^3 < n^3\log(n) < n^4 < 2^n < 2^{2n} < n!$

Normal BST: Might degrade into linear tree, Worst O(n).

. Traversal for both is still O(n). As you need to visit every node

Balanced Binary Search Tree (BBSTs)

Function	Average	Worst	
inced if h = log n	OR O(h)		
eu billary search free (bbs15)			

$T(n) = \begin{cases} O(n^d \log n) & \text{if } d = \log_b a \end{cases}$ Important:

O(2²ⁿ) = O((2ⁿ)²) ≠ O(2ⁿ) **Exp power is significant

•
$$\log(n!) = \Theta(n \log n)$$
 (Sterling's Approximation)

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right) \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

• GP:
$$n + \frac{n}{r} + \frac{n}{r} + \dots + \frac{n}{r} = 2n = O(n)$$

$$\bullet \quad \mathsf{GP} : n + \frac{n}{2} + \frac{n}{2^2} + \dots + \frac{n}{2^n} = 2n = O(n)$$

$$\sum_{k=0}^n x^k = 1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1} \quad | \quad \sum_{k=0}^\infty x^k = \frac{1}{1 - x} \ when \ |x| < 1$$

$$\bullet \quad \mathsf{AP} : T(n-1) + T(n-2) + \dots + T(1) = 2T(n-1)$$

$$\sum_{k=1}^n k = 1 + 2 + \dots + n = \frac{1}{2} n(n+1) = \Theta(n^2)$$

$$\bullet \quad \mathsf{Harmonic Series}$$

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^n \frac{1}{k} = \ln(n) + O(1)$$

$$AP: T(n-1) + T(n-2) + \dots + T(1) = 2T(n-1)$$

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{1}{2}n(n+1) = \Theta(n^2)$$

In general:

Recursion

• $\sqrt{n}\log n = O(n)$

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k} = ln(n) + O(1)$$

- $f(n) = \frac{1}{n} \rightarrow f(n) = 0(1)$
- ** Note for strings: Concatenation takes O(n) time, append O(n2);

Space Complexity:

• Max space used during computation $\mid \Theta(f(n)) \text{ time } \rightarrow \Theta(f(n)) \text{ space}$ Logarithmic Rules: (Example: $2^{4logn} = (2^{logn})^4 = n^4$)

$a^{mn} = (a^m)^n$	$a^{\log_a b} = b$	$\log_b(a) = \frac{\log_x(a)}{\log_x(b)}$
$log_b\left(\frac{1}{a}\right) = -log_b(a)$	$log_b(a)^n = nlog_b(a)$	$log_b(a) = \frac{1}{log_a b}$

PeakFinding: (Key idea: Binary Search) ** if there are multiple peaks, algo fails

log n	FindPeak(A, n) if A[n/2+1] > A[n/2] // right FindPeak (A[n/2+1n], n/2) else if A[n/2-1] > A[n/2] // left FindPeak (A[1n/2-1], n/2) else A[n/2] is a peak; return n/2	✓ Only 1 peak. X multiple/ no peaks
	FindPeak(A, n) //STEEP PEAKS if $A[n/2-1] == A[n/2] == A[n/2+1]$	// L&R
n	FindPeak $(A[n/2+1n], n/2)$ FindPeak $(A[1n/2-1], n/2)$ else if $A[n/2+1] > A[n/2] / R$ FindPeak $(A[n/2+1n], n/2)$ else if $A[n/2-1] > A[n/2] / L$ FindPeak $(A[1n/2-1], n/2)$ else $A[n/2]$ is a peak: return $n/2$	✓ Homogeneous arrays.X multiple/ no peaks

Sorting

Bubble	After ith iteration, last i elements are sorted O(n2)	
Insertion	After ith iteration, 1st i elements are relatively sorted O(n), O(n2)	
X Selection	After ith iteration, 1st i elements are sorted O(n2)	
Merge	Merge For every call to merge, both arguments are alw sorted. O(nlogn)	
X Quick	After partitioning, all elements > pivot occur before the pivot, and all elements > pivot occur after the pivot O(nlog n), O(n²)	

Binary Search (Loop Invariant: $A[begin] \le key \le A[end]$)

- Time: O(log n); Space: O(1) ** Works with duplicated values
- tion: A[begin] = key

<u>Pre-Condition</u> : Array A is sorted; <u>Post-Condit</u>	i
int search(A, key, n)	Ī
begin = 0	
end = n-1	
while begin < end do:	
mid = begin + (end-begin)/2;	
if key <= A[mid] then	
end = mid	
else begin = mid+1	

ways to order insertions: n! # shapte of a binary tree > 4n (Catalan No.)

return (A[begin]==key) ? begin : -1 Trees (Height of Tree = max(left.height, right.height) + 1)

Binary Search Trees (BST):

A BST is a binary tree what satisfies the BST invariant: left subtree has smaller elements & right subtree has larger elements

Function	Average	Worst
Insert, Delete, Search	$O(h) = O(\log n)$	O(n)
Successor/Pred	O(h) = O(log n)	O(n)
findMax/ findMin	$O(h) = O(\log n)$ $O(n)$	
In-order Traversal	O(n)	

- A node v is height balanced if |v.left.height v.right.height| ≤ 1
- If all nodes in a BST is height balanced → height balanced BST • The weight of a node u is equal to the no. of nodes in the subtree rooted at $u \to u$. weight $n \left(\frac{3}{4}\right)^h = 1 \to h = \log_4 n + 1$
- The tree T is % weight balanced if ever node in T is % weight balanced

- - ∴ Insert/Delete/Search → O(L log n)

- . The In-Order of a BST can give us the whole tree structure.

Ba

alanc	ed if h = log n	Ol	R O(h)
	Function	Average	Worst
	Insertion, Delete, Search	Θ(log n)	O(log n)
_			

- · Allows for O(log n) insert, delete & search

LeftLeft → Rotate Right	LeftRight → Rotate Left then Right
RightRight → Rotate Left	RightLeft → Rotate Right then Left

· Space Complexity: O(LN), After Insertion

After Deletion

Tree Rotation: (Tree rotations can create every possible tree shape) Max 2 rotations to balance

<u>Tries:</u>		
 1 path down the Trie can represent multiple words (depending on flag) 		
Search (String length L) O(L)		
Insert (String length L)	O(L)	

O(log n) rotations to balance

Thes trade ons.		
Tries tend to be faster: O(L) vs Tree: O(hL)		
Time	Time • Does not depend on size of text	
	Does not depend on no. of string	
Tries tend to use more space		
Space • ACSII chat set: 256 (OverHead)		
A lot of children; but wasted space		

Probability Theory:

- If an event occurs with probability p, the expected number of iterations needed for this event to occur is 1/p.
- For random variables: expectation is always equal to the probability

Uniform Random Permutation:

- if we have n elements, there are n! possible orderings, and each ordering has a probability of 1/n! of being chosen as the random permutation.
- . E.g Fisher-Yates shuffle Algo: Start with an ordered sequence of elements, and iteratively swap each elem with another randomly chosen element from the remaining sequence. → O(n)
- Start with an ordered sequence of n elements.
- 2. For i from n-1 down to 1, do the following:
 - Pick a random int i from 0 to i inclusive.
 - Swap the i-th elem with the j-th elem.

#Outcome $\in \mathbb{N}$ P(item remaining in initial pos) = 1/n

Dynamic Order Statistics on Balanced Tree:

Define weight:

- w(leaf) = 1

"rank in subtree" = left.weight + 1

Let n in select(n) be the rank of node

- Let L be left.weight +1 (i.e weight of left child node)
- If n < L →Go left, then select(n) on child node
- Rank(v) → Computes the rank of a node, v.

Key Invariant:

- . After every iteration, the rank is equal to the its rank in the subtree rooted at node.
- At the end of the program, the rank would be equal to the rank of the
- In every node, the rank is either the same (if no nodes have come before it), or the rank is increased by the number of nodes that came before it)

Query cost: buildTree cost: O(n logd-1 n)

Note: Update Weights & Rotate to maintain D.S when insert/delete

Interval Queries/Searching Interval Trees:

- · Each node is an interval.
- . Tree is sorted by the left endpoint.
- · Augment: Maximum endpoints in subtree
- . Stores the max endpoint (right) in the subtree at the node too . Rotate tree & update intervals to maintain D.S
- Searching: (If there are k leaves → total nodes in tree < 2k)
- interval-search(x): find interval containing x. → O(log n) time • If search goes right: then no interval in left subtree. → Either search finds key
- in right subtree or it is not in the tree. • If search goes left: if there is no interval in left subtree, then there is no interval in right subtree either. > Either search finds key in left subtree or it is
- not in the tree. • Conclusion: search finds an overlapping interval, if it exists.
- If search goes left & no overlap → key < every interval in right subtree. Listing all intervals that overlap a point: (All-Overlaps Algorithm)
- Repeat until no more intervals:

- Repeat for all intervals on list:
 - Add interval back to tree
- Running Time: O(k log n) (lecture eg); irl, best time: O(k + log n)

Orthogonal Range Searching

1D Range Queries

- 1. Use a binary search tree. (Need to maintain BST invariant)
- 2. Store all points in the leaves of the tree. (Internal nodes store only copies; i.e internal nodes are guide posts.)
- 3. Each internal node v stores the MAX of any leaf in the left sub-tree. - Leaf nodes → Data nodes; Internal Nodes → Guide Posts
- Find "split" node → v = FindSplit(low, high); O(log n)
- Do left traversal → LeftTraversal(v, low, high); O(2k) = O(k) At every step, we either:
- 1. Output all right sub-tree and recurse left. OR

Recurse left.

- Do right traversal → RightTraversal(v, low, high); O(2k) = O(k) At every step, we either:
- 1. Output all left sub-tree and recurse right. OR

Invariant: The search interval for a left-traversal at node v includes the maximum item in the subtree rooted at v

- . Binary Search is good for finding 1 item in the tree.
- . However, now that we want to find a range of items in a tree, we have to augment the tree, such that we can find range with an efficient algorithm
- 2D Range Tree: (Use Augmented Trees)
- . Build an x-tree using only x-coordinates.
- Create a 1d-range-tree on the x-coords.
- For every node in the x-tree, build a y-tree out of nodes in subtree using only. y-coordinates. (I.e Range-trees inside range trees)

d-dimensional Range Queries:

- Store d-1 dimensional range-tree in each node of a 1D range-tree.
- Construct the d-1-dimensionsal range-tree recursively. Query time Q_d (not including point reporting) given by the recurrence: $Q_d(n) = O(\log n) + O(\log n) \cdot Q_{d-1}(n)$

Priority Queue:

insert: O(log n)

Insert object in tree

Maintain a set of prioritized objects: (Can be either min/max)

- insert; add a new object with a specified priority

extractiviax. Terriove and return the object with max valued priority	
Sorted Array Unsorted Array	
insert: O(n)	insert: O(1)
 Find insertion location in array. 	 Add object to end of list
 Move everything over. 	extractMax: O(n)
extractMax: O(1) • Search for largest elem in ar	
Return largest element in array Remove&move everything	
AVL Tree (indexed by priority) (Sorted Array)	

d-Dimensional Ran Max Height of heap = floor(log n) = O(log n)

Children # Keys (Slots) Type Min Min Root Internal Leaf

Heap (Binary Heap/ Max Heap)

· Store items in a tree.

- Implements a Max Priority Queue When #Child > #Keys, choose median key & split keylist
- into 2 halves. Maintain a set of prioritized objs.
 - Left half goes into a new node
 - Move median to parent (i.e shift median to a key in parent Smallest items at leaves.

- Biggest items at root.

z properties of a Heap:		
Heap Ordering	Complete Binary Tree	
Priority[parent] ≥	Every level is full, (except possibly last lvl)	
priority[child]	 All nod 	es are as far left as possible.
Insert		delete
Steps: (e.g insert(25))	1. Swap(n, last());	
1. Add a new leaf w priorit	ity 25 2. Remove(last());	
2. BubbleUp	3. BubbleDown	
decreaseKey	extractMax	
 Update the priority 		1. Node v = root
BubbleDown		2. Delete(root)
** bubble down the LEFT s	side	
increaseKey	Just bubble up	

- · Same asymptotic cost for operations
- Simpler: no rotations
- · Slightly better concurrency

How to store a Tree (Heap) in an Array?

- . Map each node in the complete binary tree into a slot in an array Level-Order (BES)
- · Insert at the next available index (fill the leaf nodes from left)

ubble up priority, s.t the heap invariant is preserved		
Check for Child node	left(x) = 2x + 1, $right(x) = 2x + 2$	

* NOTE, we cannot store AVL-trees as an array:

- Need to rotate to maintain invariant, but it is not O(1) → costly

Advantage of heap:

- · Heaps can be stored in an array instead of nodes

faster	
	HeapSort
Invariant	Step 1 Heapify → Maintain Heap Invariant
IIIVarialit	Step 2 ExtractMax → Maintain Heap Invariant
Time	Always complete in O(n log n)
Extra Space	O(1); in-place, only uses O(n) space

How to perform HeapSort?

- Build a heap (from unsorted list)

Cost of Building a Heap → O(n)

- Initial: Start with a Complete Tree (recursion)
- Recurse: Left + Right are Heans · cost(bubbleDown) = height

Heapify \rightarrow O(n); HeapSort \rightarrow O(n log n)

More Interval Trees: Process intervals into a tree, sorted by their lower bound (this.low)

Each node also stores this.max = max(left.max, right.max, this.high)

```
FindAllIntervals: Find & remove all intervals, then add all intervals back
 FindInterval(x) // or interval-search in lecture
    while (c != null and x is not in c.interval) do
     if (c.left == null) then c = c.right;
      else if (x > c.left.max) then c = c.right;
     else c = c.left;
```

return c.interval

<u>Stacks</u>		<u>Queue</u>
	Push, Pop, Peek → O(1)	Enqueue, Dequeue, Peek → O(1)
	 Diff permutations 	 Process items in a sequence

- Every % weight balanced tree is balanced ** balanced if h = O(log n)

O(size of text) * OverHead

AVL Tree

- Balanced Factor (BF): H(node.R) H(node.L)
- Height Balanced: |left.height right.height| ≤ 1
 - Right rotate → root of the subtree moves R - Left rotate → root of the subtree moves L
- **Left rotation requires Right child (vice versa)

- A height-bal tree w height h has at least n > 2^{h/2} nodes; (at most h < 2log(n))

- IF BF ∉ { -1, 0, +1 } → rebalance tree

	Space	
es Trade Offs:		

- linearity of expectation: E[A + B] = E[A] + E[B]

#Permutations

- Store size of sub-tree in every node
- w(v) = w(v.left) + w(v.right) + 1
- If n > L → Go right, then select(n-L) on child node
- Select(k) → Finds the node with rank k
 - subtree rooted at the root (correctness)

Delete it from tree

extractMax: O(log n)

Find maximum item

Insert, Union, decreaseKey → O(1)

extractMin → amortized O(log n)

Heap vs. AVL Tree

- · Faster real cost (no constant factors!)
- What about inserting?

Bubble up priority, s.t the heap invariant is preserved		
Check for Child node	left(x) = 2x + 1, $right(x) = 2x + 2$	
Check for Parent node $parent(x) = floor((x-1)/2)$		

- Many "holes" in array → waste space
- · Storing trees in an array is not efficient (except complete balanced tree)

faster	be stored in the same memory area -7 tache locality will be
HeapSort	
Step 1 Heapify → Maintain Heap Invariant	
Invariant Step 2 ExtractMax → Maintain Heap Invariant	
Time Always complete in O(n log n)	

HeapSort (By finding the max node over and over again)

- . Base Case: Each leaf is a Heap
- More than n/2 nodes are leaves (h = 0) · Most nodes have small height
- Recursively bubbled up from bottom to top FindInterval: Always go to the left subtree if possible

Stacks & Queue:

ı	<u>Stacks</u>	<u>Queue</u>
	Push, Pop, Peek → O(1)	Enqueue, Dequeue, Peek → O(1)
	 Diff permutations 	 Process items in a sequence

<u>UFDS</u> (Connected Components)			
Quick Find	O(1) Find: check if objects have the same componentid		
	O(n) Union: enumerate all items in arr to update id		
Quick	O(n) Find: check for same root		
Union	O(n) Union: add as a subtree of the root		
Weighted	O(log n) Find: check for same root		
Union	O(log n) Union: Add as a smaller tree as subtree of root		
Path Comp	Path Comp. F: O(log n) U: O(log n) Size (Bk) = $\Theta(2^k)$		
Weighted+P	C F: O(α(m, n))	U: O(α(m, n))	Height(Bk) = k - 1
 Quick Find/U 	nion: Slow, expensive,		eighted + PC: Worst:O(log n)

- · Weighted Union: Fast, Balanced
- → Cannot compress, as we keep unifying the roots + find
- Weighted + PC: UFDS on n objects: O(n + mα(m, n)) lowest child Path Compression: link node to root/ grandparent, both works equally
- Important property: (Weight is easier to balance vs rank/size/height)
- · weight/rank/size/height of subtree does not change except at root (so only update root on union).
- weight/rank/size/height only increases when tree size doubles.

- No successor/predecessor operations
- Let m → table size; n → no. of items, cost(h) → cost of hashing

 $\leq \frac{1}{1-\alpha'}$

- 1) Every key has equal probability of being mapped to every bucket 2) Keys are mapped independently

- . Every key is equally likely to be mapped to every permutation, independent of every other key
- · NOT fulfilled by linear probing

Properties of a good hash function:

- 1) Able to enum all possible buckets $h: U \rightarrow \{1 ... m\}$
- For every bucket j, $\exists i$ such that h(key, i) = j (linear probing: true)

Open Addressing: **replace deleted value with T.S value, not NULL

Division	$h(k) = k \ mod \ m, (m \ is \ prime)$ • DON'T choose $m = 2^x \ or \ 10^x$ • If $k \ \& \ m$ have common divisor d, only $\frac{1}{d}$ table used
Multiply	$h(k) = (Ak)mod 2^w \gg (w - r)$ for odd constant A • $m = 2^r$, $w = size$ of key in $bits$
Iccupe with O	non Haching:

. Chaos with cycles (Cyclic Probing): Due to: High load factor, bad hash fn

Re-size table (n = m \rightarrow mx2; n < n/4 \rightarrow m/2), use good hash fn.

Linear Probing	$h(k,i) = h(k,1) + i \mod m$ • table ¼ full \Rightarrow clusters of size $\theta(\log n)$ • Expected cost of operation , $E[\#probes] \le \frac{1}{1-\alpha}$
Double	$h(k,i) = f(k) + i \cdot g(k) \bmod m$
Hashing	 If g(k) is relatively prime to m→h(k, i) hits all buckets
Cl 1	i Ch-i-i

closed Addressing – Chaining			
	O(1 + cost(h)) = O(1)		
Insert(k,v)	Expected Max Cost: $O(\log n) = \theta \left(\frac{1}{n}\right)$	$\frac{\log n}{\log (\log n)}$	
	Worst: $O(n + cost(h)) = O(n)$		
Searching	Expected: $O\left(\frac{n}{m} + cost(h)\right) = O(1)$		
Space	O(m + n), m = size of HT, n = sum	(linked lists.length())	
	LinkedList	BBST	
Search	O(n)	O(log n)	
	1		
Incort	Insert @ head = O(1)	O(log n)	
Insert	Insert @ nead = O(1) Insert @ tail = O(n)	O(log n)	
	Insert @ tail = O(n) Delete @ head = O(1)	,	
Insert Delete	Insert @ tail = O(n)	O(log n) O(log n)	

 $\begin{aligned} \text{Expected cost of Searching(Open):} & \leq \frac{1}{1-\alpha} \\ & \frac{n-i}{m-i} \leq \frac{n}{m} \leq \alpha < 1 \end{aligned} \qquad \mathcal{O}\left(\frac{1}{1-\alpha}\right) = \mathcal{O}\left(\frac{1}{1-\left(\frac{n}{m}\right)}\right)$

Bellman-Ford & Dijkstras Common Invariant: ** PQ → overestimate

- Each node v stores an estimate est[v]. During the execution (after initialization), if est[v] is equal to an integer, then it is equal to the distance from s to v along some path.
- est[v] >= shortest path distance from s to v.

Table Size	Resize	Insert n items
Increment by 1	O(n)	O(n²)
Double	O(n)	O(n), avg O(1)
square	O(n²)	O(n)

Fingerprint/ Cuckoo • A FHT does not store the key in the table • Only store 0/1 vector P(false negative) = 0		'
Hashing	P(NO false positive)	P(false positive)
Size m, n elements	$\left(1 - \frac{1}{m}\right)^n \approx \left(\frac{1}{e}\right)^{n/m}$	$1-\left(\frac{1}{e}\right)^{n_{/m}}$
Bloom filter	A Bloom Filter DON'T HAVE False Negatives Use more than one hash function. Redundancy reduces collisions. Trade offs of using 2 hash functions: Each item takes more "space" in the table Requires 2 collisions for a false positive	
	P(NO false positive)	P(false positive)
	$\left(1 - \frac{1}{m}\right)^{2n} \approx \left(\frac{1}{e}\right)^{2n/m}$	$\left(1-\left(\frac{1}{e}\right)^{2n/m}\right)^2$

Implementation of Set ADT:

Insert, delete query	O(k)
Intersection	Bitwise AND of two Bloom filters: O(m)
Union	Bitwise OR of two Bloom filters: O(m)
 •	

Sparse → A.list; Dense → A.matrix

Adjacency List		Adjacency Matrix	
	Graph consists of:	Nodes	
	Nodes: Stored in an array	Edges: Pairs of nodes	
How	Edges: Linked List per node	Graph Represented as:	
		$A[v][w] = 1 \text{ iff } (v, w) \in E$	
	Memory usage	Memory usage	
	- array of size V	- array of size V * V	
For a	- linkedlists of size E	Total: O(V²)	
Cycle	 Total: O(V + E) 	For a cycle: O(V²)	
	For a cycle: O(V)	'''' '	
Clique	$O(V + E) = O(V^2)$	O(V²)	

Comparison:

	Adjacency List	Adjacency Matrix
Are v & w n.brs?	Slower Query: O(n)	Fast Query: O(1)
Find any n.brs of v	Fast Query: O(1)	Slow Query: O(n)
Enum all n.brs	Fast Query: O(# n.brs)	Slow Query: O(n)

Directed Graphs:

Adjacency List	Adjacency Matrix
 Nodes: Stored in an array OUTGOING Edges → Linked List per node 	 Nodes Edges: Pairs of nodes Graph Represented as: A[v][w] = 1 iff (v, w) ∈ E
 Array of nodes Each node maintains a list of nbrs Space: O(V + E) 	 Matrix A[v,w] → edge (v, w) Space: O(V²)

Searching

	Explore level by level		
	 When does BFS fail to visit every node? → In graphs with 2 		
Breadth	or more components (disconnected)		
-First	 Running time (For Adjacency list): O(V + E), has to look at 		
Search	every edge & node		
(BFS)	 Vertex v = "start" once. ← O(V) 		
	 Vertex v added to nextFrontier once. ← O(V) 		
Uses	- After visited, never re-added.		
Queue	 Each v.nbrlist is enumerated once. ← O(E) 		
	- When v is removed from frontier.		
	Running time (For Adjacency Matrix): O(V²)		
	 Running time (For Adjacency list): O(V + E) 		
Depth-	 DFS-visit called only once per node. ← O(V) 		
First	- After visited, never call DFS-visit again.		
Search	 In DFS-visit, each neighbor is enumerated. ← O(E) 		
(DFS)	Running time (For Adjacency Matrix): O(V²)		
Uses Stack	 DFS-visit called only once per node. ← O(V) 		
	- After visited, never call DFS-visit again.		
	 In DFS-visit, each n.brs is enumed. ← O(V) per node 		

O(2ⁿ) Note: Priority Queue is an overestimate

Bellman-Ford Invariant:

After iteration k of the outer loop, every node whose shortest path from the source is ≤ k hops has a correct estimate

· Repeat:

- Consider vertex with minimum estimate. ** Keeps track of visited nodes Maintain distance estimate for every node. - (We will show that this node has a good estimate 😌)
- · Begin with empty shortest-path-tree.

For each edge:

decreaseKev: O(E)

Bounded Integer Weights

Kruskal

Prim's

Slot A[j] holds a linked list of edges of weight j

- Checking whether to add an edge: $O(\alpha)$

Slot A[j] holds a linked list of nodes of weight j

- Union two components: $O(\alpha)$

. Use an array of size n as Priority Queue

Total Time Complexity: O(αE)

• Putting edges in array of linked lists: O(E)

Add vertex to shortest-path-tree.

Relax all outgoing edges. ** Each edge is relaxed at most once

How to find patient zero? · Use an array of size n to sort Indegree = 0

SP of mod x length: Iterating over all edges in ascending order: O(E) Matri Multi + BES $O(V^3) + O(V^2) = O(V^3)$

Make x copies of graph For every edge (a, b) in the original G, draw an edge from node a in G to node b in G(1+1)%x, then BFS O(V + E)

 Insert/remove nodes from PQ: O(V) Total Time Complexity: O(E) Graph Hacks: **Checking for cycles is SLOW → BF → O(VE)

Add dummy node if you need to find min/max across all paths

Find longest paths & MST in DAG: O(V + E)

If there is a monotonically ↑/↓ property, can use binary search

To find min path across diff start pt, but same end pt → reverse edges

Graph duplication → Forces edges to follow a certain path

Each layer in the graph → 1 graph state; Each Edge → transition state

IF edge weights are bounded integer → Use buckets (e.g Kruskal/prims var.)

Dynamic Progr	amming		, ,	
Optim	Optimal sub-structure		Overlapping sub-problems	
	Optimal solution derived from		Memoization	
smaller s	ubproblems		de & Conquer	
Longest Increasing Subseq	 Greedy subproblems: S[i] = LIS(A[1i]) n subproblems SubProb i takes O(i) t Total time: O(n²) 		Patience Sort (via B.Search) Best Case: O(n) Worst Case: O(n log n)	
Longest Common Subseq	$IF A[n] = B[n] \rightarrow LCS(A(n), B(n) = LCS(A(n-1), B(n-1)) + 1$ $Else \rightarrow \max\{LCS(A(n), B(n-1)), LCS(A(n-1), B(n))\}$ If Length A = m, Length B = n \rightarrow O(mn)			
(Lazy) Prize Collecting	 No. of rows: k Cost to solve each rown Total: O(kE) 	1	No. of subproblems: kV Cost to solve each subproblem: v.nbrList otal: O(kV²)	
			of edge(v,w) w is n. br of v}	
Lazy Prize kV subProb	 Topo-sort/ Longest P: → O(kV + kE) = O(kE) Once per source: reprimes → O(kVE) 		Topo-sort/ Longest Path → O(kV + kE) = O(kE) Create dummy node → only ONE SP → O(kE)	
Vertex Cover on a Tree (Min) augment for Max	2V sub-problems O(V) time per sub-problem → O(V²) time Each edge explored once. Each sub-problem involves exploring children edges. **Similar to DFS			
APSP	Running time of running Single Source Shortest F APSP algorithm for every vertex in V:			
Non DP	Bellman Fore Dijkstra's	i	O(V ² E) O(VE log V)	
Diameter of Graph	SSSP all \rightarrow O(V ² log V)	woon any t		
APSP DP	Longest shortest path between any two vertices in the graph In a weighted sparse graph where E = O(V): O(V ² log V) In an unweighted graph, use BFS: O(V(E+V)) dense graph: O(V ²): sparse graph: O(V ²) Floyd-Warshil: O(V ³) **V ² total subproblems Subproblem: find shortest path btwn every pair of nodes in the graph that goes through a specific intermediate node S[k+1][v][w] = min [S[k][v][w], S[k][v][k+1], S[k][k+1][w]) S[v,w,P _k] = shortest path from v to w only with nodes in set P. Return a matrix M where: M[v, w] = 1 if there exists a path from v to w; M[k+1][v][w] = OR(M[k][v][w], AND(M[k][v][w], M[k][k][w]))			
Transitive Closure				

Connected is usually associated with undirected graphs (two-way edges):

Strongly connected is usually associated with directed graphs (one-way edges): there is a path between every two nodes. (cycles)

Complete graphs are undirected graphs where there is an edge between

every pair of nodes.

every pair of modes.		
Prims	Initially: S = {A} ** Keeps track of the set of edges Repeat: I) Identify cut: {S, V-S} II) Find MIN weight edge on cut. Add new node to S.	
Kruskal	Sort edges by weight from smallest to biggest. Consider edges in ascending order: If both endpoints are in same blue tree, color the edge red. Else, color the edge blue.	
Boruvka	Add all blue edges, for each CC, search for MIN weight outgoing edge Merge the newly connected components into a single CC Repeat (At most Ofling VI Borruka stens)	

Relaxation: ** we may want to relax based on previous iterations if(dist[v] > dist[u] + weight(u,v)) *Relax can be altered to suit our needs

dist[v] = dist[u] + weight(u,v); (create invariants of known algo)

If $p = (v_0, v_1, ..., v_k)$ is the shortest path from $s = v_0$ to v_k and we relax the edges of p in the order. Then $d[v_k]=\delta[v_k].$ $(v_0,v_1),(v_1,v_2),\ldots,(v_{k-1},v_k)$ This property holds regardless of any other relaxation steps that occur (ever

intermixed) E.g $(v_0, v_1), (v_i, v_i), (v_1, v_2), ..., (v_{k-1}, v_k)$ will result in $d[v_k] = \delta[v_k]$ Shortest Path (SSSP) • On the ith iteration, nodes that are ith hops away on the shortest paths have their estimates determined . |V| iterations of relaxing every age, terminate when an entire sequence of |E| operations have NO effect <u>1 Pass-Bellman Ford (Only for **DAGs**)</u> $\rightarrow O(E + V)$ Topological Sorting: O(E + V) Iterating through all nodes and all edges: O(E + V) $O((V + E) \log V) = O(E \log V)$ • Extending a path DOES NOT make it shorter Diikstra . Uses a PQ to track min-estimate node, relaxes outgoing edges & add incoming nodes to PQ no-'ve |V| times to insert/deleteMin(logV each) → O(V log V) weights |E| times of relax/decreaseKey (logV each) $\rightarrow O(E \log V)$ (depds insert delMin ↓key PQ D.S on Array context) dway Hean Fih Hean $O(E) \rightarrow toposort \& relax in this order$ Longest Path: Negate weights/modify relax (then run SSSP)

O(V), relax each edge in BFS/DFS order ** No cycles(undir) Topological Ordering (Start from in-degree = 0) **partial ordering CS1231S

The linear ordering of the vertices of a DAG s.t for every directed edge (u, v), vertex u comes before vertex v in the ordering.

*A graph that cannot be topo ordered → contains a cycle, not a DAG

71 graph that cannot be topo or acrea 7 contains a cycle, not a bito		
Post-Order DFS O(V + E)	 Prepend each node from the post-order traversal Output is in reverse order 	
Kahns O(E log V)	Add nodes wo incoming edges to the topo order Remove min-degree node from PQ → O(V log V) decreaseKey (in-degree) of its children → O(E log V)	
Kahns	Uses Queue/Stack Add nodes with in-degree = 0 to queue/stack	

 ↓ in-degree of its adjacent nodes, dequeue + repeat Spanning Tree (any connected graphs with n vertices will have n-1 diff STs)

Every edge is either red/blue. CANNOT BE BOTH

MST Algorithms

Min edge in a CYCLE may/may not in MST

 Min edge in CUT MUST be in MST 2. Any 2 subtrees of the MST are also MST (cut MST, both are MST)

3. For every cycle, MAX weight is NOT in MST (MIN may/may not be in MST)

4. For every partition of nodes, the MIN weight edge across the cut is IN MST

· Add the MIN edge across the cut to MST Prims Use PQ to store nodes (Prio lowest incoming edge w) O(E log V) Insert,extractMin, decreaseKey → O(log V) Each vertex: one added/removed→ O(V log V) Each Edge: one decreaseKey → O(E log V)

 Sort edges by weight, add if unconnected Sorting → O(E log E) = O(E log V) Kruskals • For each edge: [O(E)]

O(E log V) a) Get the two nodes connected by the edge b) Check if they are in the same tree/set [O(α(V))]

i) If no, union the two $[O(\alpha(V))]$ Each node: Store a componentID → O(V) Boruvka's 1 Boruvka Step: for each cc, add min weight outgoing O(E log V) edge to merge cc's \rightarrow O(V + E) dfs/bfs.

How to find MaxST

Negative 1. Convert all weights to negative weights (i.e multiply by -1, O(E)) Weights 2. Perform normal MST algorithms (e.g Prims/ Kruskal). O(ElogE) O(ElogV) MST of –'ve weighted edges → MaxST +'ve weighted edges Modify Kruskal's algo to sort edges in descending order O(ElogV) Reverse Kruska Then, add the edges to the tree in order of decreasing weight O(ElogV) until all vertices are included. O(ElogV) Modify Prim's algorithm to select the MAX weight edge to add to Max the tree at each step O(ElogV) Prim Use a PQ that sorts the edges in descending order of weight, and O(ElogV) selecting the edge with the MAX weight at each step. O(ElogV)

Note: Finding the LONGEST path (i.e opposite of SSSP) is NP hard (e.g travelling salesman O(n²log n However, if graph is a DAG \rightarrow LSSP can be found via modified topo sort/negate edges \rightarrow O(V + E)