5.137. Найти массу m азота, прошедшего вследствие диффузии через площадку $S = 0.01 \,\mathrm{m}^2$ за время $t = 10 \,\mathrm{c}$, если градиент плоскости в направлении, перпендикулярном к площадке, $\Delta \rho / \Delta x = 1.26 \,\mathrm{kr/m}^4$. Температура азота $t = 27^\circ \,\mathrm{C}$. Средняя длина свободного пробега молекул азота $\overline{\lambda} = 10 \,\mathrm{mkm}$.

Решение:

По закону Фика $m = -D \frac{\Delta \rho}{\Delta x} \Delta S \Delta t$. Знак минус означает направление вектора градиента плотности, и т. к. масса не может быть отрицательной, то ее следует взять по модулю.

Коэффициент диффузии (см. задачу 5.134) $D = \frac{1}{3} \sqrt{\frac{8RT}{\pi \mu}} \lambda$.

Macca азота $m = \frac{1}{3} \sqrt{\frac{8RT}{\pi\mu}} \lambda \frac{\Delta \rho}{\Delta x} \Delta S \Delta t$; m = 19.9 г.

5.138. При каком давлении p отношение вязкости некоторого газа к коэффициенту его диффузии $\eta/D = 0.3$ кг/м³, а средняя квадратичная скорость его молекул $\sqrt{\overline{v}^2} = 632$ м/с?

Решение:

Коэффициент диффузии газа и его динамическая вязкость определяются следующим соотношением: $D=\frac{1}{3}\,\overline{\nu}\,\overline{\lambda}\,$ ($\overline{\nu}$ — средняя арифметическая скорость, $\overline{\lambda}$ — средняя длина свободного пробега молекул); $\eta=\frac{1}{3}\,\overline{\nu}\,\overline{\lambda}\rho$. Таким образом, $\frac{\eta}{D}=\rho$ — плотность газа. Согласно уравнению Менде-

леева — Клапейрона $pV = \frac{m}{\mu}RT$ или $p = \frac{\rho RT}{\mu}$. Отсюда

$$rac{RT}{\mu} = rac{p}{
ho}$$
. Но $\sqrt{\overline{v^2}} = \sqrt{rac{3RT}{\mu}}$, следовательно, $rac{p}{
ho} = rac{\overline{v^2}}{3}$, откуда $p = rac{
ho \cdot \overline{v^2}}{3}$ или $p = rac{\eta}{D} \cdot rac{\overline{v^2}}{3}$; $p = 39.9 \
m k\Pi a$.

5.139. Найти среднюю длину свободного пробега $\overline{\lambda}$ молекул гелия при давлении p=101,3 кПа и температуре t=0° C, если вязкость гелия $\eta=13$ мкПа·с.

Решение:

Коэффициент вязкости $\eta=\frac{1}{3}\,\rho\overline{v}\lambda$, где $\overline{v}=\sqrt{\frac{8RT}{\pi\mu}}$ — средняя арифметическая скорость молекул. Из уравнения Менделеева — Клапейрона $pV=\frac{m}{\mu}RT$ выразим плогность $\rho V=\frac{m}{\mu}RT$. Тогда коэффициент вязкости $\eta=\frac{1}{3}\frac{p\mu}{RT}\sqrt{\frac{8RT}{\pi\mu}}\lambda$. Отсюда средняя длина свободного пробега молекул $\lambda=\frac{3RT}{p\mu}\eta\sqrt{\frac{\pi\mu}{8RT}}=\frac{3}{p}\eta\sqrt{\frac{\pi RT}{8\mu}}$; $\lambda=182$ нм.

5.140. Найти зязкость η азота при нормальных условиях, если коэффициент диффузии для него $D=1,42\cdot 10^{-5}\,\mathrm{m}^2/\mathrm{c}$. Найти диаметр молекулы кислорода, если при температуре вязкость кислорода.

Решение:

Коэффициент диффузии газа и его динамическая вязкость определяются следующим соотношением: $D = \frac{1}{3} \overline{\nu} \overline{\lambda}$ ($\overline{\nu}$ —

средняя арифметическая скорость, $\overline{\lambda}$ — средняя длина свободного пробега молекул); $\eta = \frac{1}{3} \overline{v} \overline{\lambda} \rho$. Таким образом,

$$\frac{\eta}{D}=
ho$$
 — плотность газа. Согласно уравнению Менделеева — Клапейрона $pV=\frac{m}{\mu}RT$ или $p=\frac{
ho RT}{\mu}$. Отсюда

 $\frac{RT}{\mu} = \frac{p}{\rho}$ или $\frac{RT}{\mu} = \frac{pD}{\eta}$, откуда $\eta = \frac{pD\mu}{RT}$; $\eta = 17.8$ мкПа·с.

5.141. Найти диаметр σ молекулы кислорода, если при **тем**пературе t = 0° C вязкость кислорода $\eta = 18,8$ мкПа/с.

Решение:

Динамическая вязкость кислорода определяется соотношением $\eta = \frac{1}{3}\overline{\nu}\overline{\lambda}\rho$ — (1), где $\overline{\nu} = \sqrt{\frac{8RT}{\pi\mu}}$ — средняя ариф-

метическая скорость молекул, $\overline{\lambda} = \frac{kT}{\sqrt{2}\pi\sigma^2 p}$ — средняя

длина свободного пробега, $\rho = \frac{p\mu}{RT}$ — плотность газа.

Подставляя эти выражения в (1), получим $\eta = \frac{2k}{3\pi\sigma^2}\sqrt{\frac{\mu T}{R\pi}}$,

откуда $\sigma = \sqrt{\frac{2k}{3\pi\eta}\sqrt{\frac{\mu T}{R\pi}}}$; $\sigma = 0.3$ нм.

5.142. Построить график зависимости вязкости η азота от **тем**пературы T в интервале $100 \le T \le 600$ К через каждые 100 К.

Решение:

Динамическая вязкость азота определяется соотношением $\eta = \frac{1}{3} \overline{\nu} \overline{\lambda} \rho$ — (1), где $\overline{\nu} = \sqrt{\frac{8RT}{\pi \mu}}$ — средняя арифметическая скорость молекул, $\overline{\lambda} = \frac{kT}{\sqrt{2\pi\sigma^2 p}}$ — средняя длина свободного пробега, $\rho = \frac{p\mu}{RT}$ — плотность газа. Подставляя эти выражения в (1), получим $\eta = \frac{2k}{3\pi\sigma^2} \sqrt{\frac{\mu T}{R\pi}}$. Величина $\frac{2k}{3\pi\sigma^2} \sqrt{\frac{\mu}{R\pi}} = const \approx 10^{-6}$, тогда $\eta = 10^{-6} \sqrt{T}$. Характер зависимости вязкости η от температуры T дан на графике.

5.143. Найти коэффициент диффузии D и вязкость η воздуха при давлении p=101,3 кПа и температуре $t=10^{\circ}$ С. Диаметр молекул воздуха $\sigma=0,3$ нм.

Решение:

Коэффициент диффузии (см. задачи 5.134 и 5.135) $D = \frac{1}{3} \sqrt{\frac{8RT}{\pi\mu}} \frac{T}{\sqrt{2\pi\sigma^2 p}}; \quad D = 1,45 \cdot 10^{-5} \, \text{м}^2/\text{с}.$ Кроме того, коэффициент диффузии $D = \frac{1}{3} \overline{\nu} \lambda$, а коэффициент вязкости $\eta = \frac{1}{3\rho} \overline{\nu} \lambda$. Таким образом, $\eta = pD$, где плотность ρ можно выразить из уравнения Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, отсюда $\rho = \frac{m}{V} = \frac{p\mu}{RT}$. Тогда $\eta = \frac{p\mu}{RT}D$; $\eta = 18,2 \, \text{мкПа·с}.$

5.144. Во сколько раз вязкость кислорода больше вязкости азота? Температуры газов одинаковы.

Решение:

Коэффициент вязкости (см. задачу 5.139) $\eta = \frac{1}{3} \frac{p\mu}{RT} \times \sqrt{\frac{8RT}{\pi\mu}} \lambda$. Средняя длина свободного пробега молекул $\overline{\lambda} = \frac{1}{\sqrt{2\pi\sigma^2 n}}$. Тогда $\eta = \frac{1}{3} \frac{p\mu}{RT} \sqrt{\frac{8RT}{\pi\mu}} \frac{1}{\sqrt{2\pi\sigma^2 n}}$. Т. к. темпе-

ратура газов одинакова , то $\frac{\eta_1}{\eta_2} = \sqrt{\frac{\mu_1}{\mu_2}} \left(\frac{\sigma_2}{\sigma_1}\right)^2$; $\frac{\eta_1}{\eta_2} = 1,07$.

5.145. Коэффициент диффузии и вязкость водорода при некоторых условиях равны $D=1,42\cdot 10^{-4}~\text{m}^2/\text{c}$ и $\eta=8,5~\text{мк}$ Па·с. Найти число n молекул водорода в единице объема.

Решение:

Коэффициенты вязкости и диффузии связаны соотношением $\eta = \rho D$ (см. задачу 5.143). Отсюда плотность $\rho = \frac{\eta}{D}$. Число частиц в единице объема $n = \frac{\rho}{\mu} N_{\rm A} = \frac{\eta N_{\rm A}}{\mu D}$; $n = 1.8 \cdot 10^{25} \, {\rm m}^{-3}$.

5.146. Коэффициент диффузии и вязкость кислорода при некоторых условиях равны $D=1,22\cdot 10^{-5}\,\mathrm{m}^2/\mathrm{c}$ и $\eta=19,5\,\mathrm{mk\Pia\cdot c}$. Найти плотность ρ кислорода, среднюю длину свободного пробега $\overline{\lambda}$ и среднюю арифметическую скорость $\overline{\nu}$ его молекул.

Решение:

Коэффициент диффузии газа и его динамическая вязкость определяются следующим соотношением: $D = \frac{1}{2} \overline{\nu} \overline{\lambda}$ ($\overline{\nu}$ средняя арифметическая скорость, $\overline{\lambda}$ — средняя длина свободного пробега молекул); $\eta = \frac{1}{3} \overline{v} \overline{\lambda} \rho$. Таким образом $\frac{\eta}{D} = \rho$ — плотность газа $\rho = 1.6 \,\mathrm{kr/m}^3$. Средняя арифметическая скорость $\overline{v} = \sqrt{\frac{8RT}{\pi u}}$ — (2); согласно уравнению Менделеева — Клапейрона $pV = \frac{m}{l}RT$ или, после несложных преобразований, $\frac{RT}{\prime\prime} = \frac{p}{\rho}$, но из (2) $\frac{RT}{\prime\prime} = \frac{\overline{v}^2 \pi}{8}$, следовательно, $\frac{p}{\rho} = \frac{\overline{v}^2 \pi}{8}$, откуда $p = \frac{\rho \overline{v}^2 \pi}{8}$. Средняя длина свободного пробега молекул $\overline{\lambda} = \frac{1}{\sqrt{2}\sigma^2 m^2}$, где

$$n = \frac{p}{kT} = \frac{\rho \overline{v}^2 \pi}{8kT} = \frac{\rho R}{k\mu}$$
, отсюда $\lambda = \frac{k\mu}{\sqrt{2}\sigma^2 \pi \rho R}$; $\lambda = 83.5$ нм. Из уравнения (1) $\overline{v} = \frac{3D}{\lambda}$; $\overline{v} = 440$ м/с.

5.147 Какой наибольшей скорости у может достичь дождевая диаметром $D = 0.3 \,\mathrm{MM}$? Диаметр молекул $\sigma = 0.3$ нм. Температура воздуха $t = 0^{\circ}$ С. Считать, что для пождевой капли справедлив закон Стокса.

Решение:

На каплю действует сила тяжести и сила сопротивления воздуха. По второму закону $m\vec{g} + \vec{F}_{comp} = m\vec{a}$. Когда капля до-**Нью**тона стигнет максимальной скорости ускорение а **ста**нет равным нулю, тогда $mg = F_{\text{conn}}$. По **зак**ону Стокса $F_{\text{conp}} = 6\pi \eta r v_{max}$. Каплю считаем

маром, поэтому ее объем $V = \frac{4}{3}\pi r^3$, а масса

$$m = \rho V = \frac{4}{3}\pi r^3 \rho$$
. Тогда имеем $\frac{4}{3}\pi r^3 \rho g = 6\pi \eta r v$. Отсюда

$$\psi = \frac{4r^2 \rho g}{18\eta} = \frac{2(D/2)^2 \rho g}{9\eta} = \frac{D^2 \rho g}{18\eta}$$
. Коэффициент вязкости

(см. задачу 5.139)
$$\eta = \frac{1}{3} \frac{p\mu}{RT} \sqrt{\frac{8RT}{\pi\mu}} \lambda$$
, где $\lambda = \frac{kT}{\sqrt{2\pi\sigma^2 p}}$.

Тогда, искомая, максимальная скорость дождевой кап-
ли
$$v = \frac{D^2 \rho g}{18} \frac{3RT \sqrt{2}\pi\sigma^2 p}{p\mu kT} \sqrt{\frac{\pi\mu}{8RT}} = \frac{\sqrt{2}D^2 \rho g N_A \pi\sigma^2}{6\mu} \sqrt{\frac{\pi\mu}{8RT}}$$
;

 $v = 2.73 \, \text{M/c}$.

5.148. Самолет летит со скоростью v = 360 км/ч. Считая, что пой воздуха у крыла самолета, увлекаемый вследствие вязкости,

d=4 см, найти касательную силу F_S , действующую на единицу поверхности крыла. Диаметр молекул воздуха $\sigma=0.3$ нм. Температура воздуха t=0° С.

Решение:

По закону Ньютона $F_{\rm Tp} = -\eta \frac{\Delta v}{\Delta x} \Delta S$. Знак минуса означает направление градиента скорости, поэтому нас интересует модуль силы. Сила на единицу площади $F_S = \frac{F_{\rm Tp}}{\Delta S} = \eta \frac{\Delta v}{\Delta x}$. В нашем случае $\Delta v = v$ и $\Delta x = d$. Коэффициент вязкости (см. задачи 5.139 и 5.147). $\eta = \frac{1}{3} \frac{p\mu}{RT} \sqrt{\frac{8RT}{\mu\pi}} \frac{kT}{\sqrt{2\pi\sigma^2 p}} = \frac{\mu}{3\sqrt{2}N_{\rm A}\pi\sigma^2} \sqrt{\frac{8RT}{\pi\mu}}$. Отсюда $F_S = \frac{\mu}{3\sqrt{2}N_{\rm A}\pi\sigma^2} \sqrt{\frac{8RT}{\pi\mu}} \frac{v}{d}$; $F_S = 44.77 \, {\rm MH/m}^2$.

5.149. Пространство между двумя коаксиальными цилиндрами заполнено газом. Радиусы цилиндров равны $r=5\,\mathrm{cm}$ и $R=5,2\,\mathrm{cm}$. Высота внутреннего цилиндра $h=25\,\mathrm{cm}$. Внешний цилиндр вращается с частотой $n=360\,\mathrm{of/muh}$. Для того чтобы внутренней цилиндр оставался неподвижным, к нему надо приложить касательную силу $F=1,38\,\mathrm{mH}$. Рассматривая в первом приближении случай как плоский, найти из данных этого опыта вязкость η газа, находящегося между цилиндрами.

Решение:

По закону Ньютона для вязкости $F_{\rm тp} = -\eta \frac{\Delta v}{\Delta x} \Delta S$. Пространство между цилиндрами $\Delta x = R - r$. Линейная скорость вращения внешнего цилиндра $\Delta v = Ln$, где $L = 2\pi R$ — длина окружности внешнего цилиндра. Тогда $\Delta v = 2\pi Rn$. Площадь боковой поверхности внутреннего цилиндра $\Delta S = 2\pi rh$. По третьему закону Ньютона, касательная сила 276

$$F = -F_{\rm rp} = \eta \frac{\Delta v}{\Delta x} \Delta S$$
. Следовательно, $F = \eta \frac{2\pi Rn}{R-r} 2\pi rh = \pi \eta \frac{4\pi^2 Rrnh}{R-r}$. Отсюда $\eta = \frac{F(R-r)}{4\pi^2 Rrnh}$; $\eta = 17,92$ мкПа·с.

5.150. Найти теплопроводность K водорода, вязкость кото**эого** $\eta = 8,6$ мкПа·с.

Вешение:

Коэффициент теплопроводности $K = \frac{1}{3}c_{\Gamma}\rho \overline{v}_{\rm cp}\lambda$, а коэф-

фициент вязкости $\eta = \frac{1}{3} \rho \overline{v}_{\rm cp} \lambda$. Отсюда следует, что коэффициенты теплопроводности и вязкости связаны соотномением $K = c_V \eta$. Теплоемкость при постоянном объеме

 $e_{\psi} = \frac{i}{2} \frac{R}{\mu}$, где i = 5, т. к. водород — двухатомный газ.

Тогда
$$c_V = \frac{5}{2} \frac{R}{\mu}$$
, поэтому $K = \frac{5}{2} \frac{R}{\mu} \eta$; $K = 89.33$ мВт/(м·К).

5.151. Найти теплопроводность K воздуха при давлении p = 100 кПа и температуре $t = 10^{\circ}$ С. Диаметр молекул воздуха p = 0.3 нм.

Решение:

Коэффициент теплопроводности $K = \frac{1}{3} c_V \rho \overline{v}_{\rm cp} \lambda$. Средняя

длина свободного пробега молекул $\lambda = \frac{kT}{\sqrt{2\pi\sigma^2 p}}$. Средняя

арифметическая скорость $\overline{v}_{\rm cp} = \sqrt{\frac{8RT}{\pi\mu}}$. Из уравнения Мен-

мелеева — Клапейрона $pV = \frac{m}{\mu}RT$, плотность $\rho = m/V =$

 $= {p \mu \over RT}$. Теплоемкость при постоянном объеме $c_V = {i \over 2} {R \over \mu}$, где для воздуха i=5. Тогда коэффициент тепло-проводности $K = {1 \over 3} {i \over 2} {R \over \mu} {p \mu \over RT} \sqrt{{8RT} \over \pi \mu} {kT \over \sqrt{2\pi\sigma^2} p}$; $K = {ik \over 6\sqrt{2\pi\sigma^2}} \times \sqrt{8RT/\pi \mu}$; $K=13,1\,{\rm mBT/(m\cdot K)}$.

5.152. Построить график зависимости теплопроводности K от температуры T в интервале $100 \le T \le 600 \, \mathrm{K}$ через каждые $100 \, \mathrm{K}$.

Решение:

Имеем
$$K = \frac{1}{3} \overline{\nu} \overline{\lambda} c_{\nu} \rho$$
 — (1), где $\overline{\nu} = \sqrt{\frac{8RT}{\pi \mu}}$ — (2); $\overline{\lambda} = \frac{RT}{\sqrt{2}\pi\sigma^{2}p}$ — (3); $\rho = \frac{p\mu}{RT}$ — (4). Удельная теплоемкость водорода $c_{\nu} = 10400\,\mathrm{Дж/kr\cdot K}$. Подставляя уравнения (2) — (4) в (1), получим $K = \frac{2kc_{\nu}}{3\sigma^{2}}\sqrt{\frac{\mu}{R\pi^{3}}}\cdot\sqrt{T}$ 278

эли $K = 5,4 \cdot 10^{-3} \sqrt{T}$. Характер зависимости теплопроводности K от температуры T дан на графике.

5.153. В сосуде объемом V=2 л находится $N=4\cdot 10^{22}$ молежул двухатомного газа. Теплопроводность газа K=14 мВт/(м·К). Найти коэффициент диффузии D газа.

Решение:

Коэффициент теплопроводности $K = c_V \rho \overline{\nu} \lambda/3$, а коэффициент диффузии $D = \overline{\nu} \lambda/3$, следовательно, коэффициенты теплопроводности и диффузии связаны соотношением $K = c_V \rho D$. Теплоемкость при постоянном объеме $c_V = \frac{i}{2} \frac{R}{\mu}$, где i = 5, т. к. газ двухатомный. Число частиц в единице объема $n = \frac{\rho}{\mu} N_A$, а в объеме $V = nV = \frac{\rho V N_A}{\mu}$,

ho отсюда $ho = \frac{\mu N}{V N_{\rm A}}$. Тогда $K = \frac{5}{2} \frac{R}{\mu} \frac{\mu N}{V N_{\rm A}}$; $D = \frac{5kND}{2V}$, откуда

 $D = \frac{2VK}{5kN}$; $D = 2.02 \cdot 10^{-5} \,\text{m}^2/\text{c}$.

5.154. Углекислый газ и азот находится при одинаковых температурах и давлениях. Найти для этих газов отношение: а) коэффициентов диффузии; б) вязкостей; в) теплопроводностей. Диаметры молекул газов считать одинаковыми.

Решение:

а) Коэффициент диффузии (см. задачу 5.135) $D = \frac{1}{3} \times$

$$\times \sqrt{\frac{8RT}{\pi\mu}} \, \frac{rT}{\sqrt{2}\pi\sigma^2 \, p} \; . \; \; \text{T. K.} \; \; \sigma_1 = \sigma_2 \; , \; \; \text{to} \; \; \frac{D_1}{D_2} = \sqrt{\frac{\mu_2}{\mu_1}} \; ; \; \; \frac{D_1}{D_2} = 0.8 \; .$$

б) Коэффициент вязкости (см. задачу 5.148)
$$\eta = \frac{\mu}{3\sqrt{2}N_{\text{A}}\pi\sigma^2}\sqrt{\frac{8RT}{\pi\mu}} . \quad \text{Тогда} \quad \frac{\eta_1}{\eta_2} = \sqrt{\frac{\mu_1}{\mu_2}} \; ; \quad \frac{\eta_1}{\eta_2} = 1,25 \; .$$

в) Коэффициент теплопроводности (см. задачу 5.151)

$$K = \frac{ik}{6\sqrt{2}\pi\sigma^2}\sqrt{\frac{8RT}{\pi\mu}}$$
, тогда $\frac{K_1}{K_2} = \frac{i_1}{i_2}\sqrt{\frac{\mu_2}{\mu_1}}$; $\frac{K_1}{K_2} = 0.96$.

5.155. Расстояние между стенками дьюаровского сосуда d=8 мм. При каком давлении p теплопроводность воздуха, находящегося между стенками сосуда, начнет уменьшатся при откачке? Температура воздуха $t=17^{\circ}$ С. Диаметр молекул воздуха $\sigma=0.3$ нм.

Решение:

Теплопроводность воздуха между стенками сосуда начинает уменьшаться, когда средняя длина свободного пробега молекул станет равной расстоянию между стен-

ками сосуда, т. е.
$$\lambda = d$$
 . Т. к. $\lambda = \frac{kT}{\sqrt{2}\pi\sigma^2p}$ (см. задачу

5.120), отсюда
$$p = \frac{kT}{\sqrt{2\pi\sigma^2 d}}$$
; $p = 1,25$ Па.

5.156. Цилиндрический термос с внутренним радиусом $r_1=9$ см и внешним радиусом $r_2=10$ см наполнен льдом. Высота термоса h=20 см. Температура льда $t_1=0^\circ$ С, температура наружного воздуха $t_2=20^\circ$ С. При каком предельном давлении p воздуха между стенками термоса теплопроводность K еще будет зависеть от давления? Диаметр молекул воздуха $\sigma=0.3$ нм, а температуру воздуха между стенками термоса считать равной среднему арифметическому температур льда и наружного воздуха. Найти теплопроводность K воздуха, заключенного между стенками термоса, при давлениях $p_1=101.3$ кПа и $p_2=13.3$ мПа, если молярная масса воздуха $\mu=0.029$ кг/моль.

Какое количество теплоты Q проходит за время $\Delta t = 1$ мин через боковую поверхность термоса средним радиусом r = 9,5 см при давлениях $p_1 = 101,3$ кПа и $p_2 = 13,3$ мПа?

Решение:

Теплопроводность начнет зависеть от давления при средней длине свободного пробега молекул $\overline{\lambda} = d$, где d — расстояние между стенками термоса. Т. к. $\overline{\lambda} = \frac{kT}{\sqrt{2}\pi\sigma^2 n}$, то

при
$$\overline{\lambda} = d$$
 получим $p = \frac{kT}{\sqrt{2\pi s^2 d}} = 980 \text{ мПа}$. При $p_1 = 101,3 \text{ кПа}$ коэффициент теплопроводности (см. $ik = \sqrt{8RT}$

радачу 5.151)
$$K_1 = \frac{ik}{6\sqrt{2}\pi\sigma^2} \sqrt{\frac{8RT}{\pi\mu}} = 13,1 \text{ мВт/(м·К)}.$$
 При

 $p_2 = 13,3$ мПа средняя длина свободного пробега $\bar{\lambda}$ больше расстояния d между стенками термоса. Тогда

$$K = \frac{1}{3} d\overline{v} \rho c_{v} = \frac{1}{3} (r_{2} - r_{1}) \sqrt{\frac{8RT}{\pi \mu}} \frac{p\mu}{RT} \frac{iR}{2\mu} = \frac{1}{6} (r_{2} - r_{1}) pi \sqrt{\frac{8R}{\pi \mu T}}.$$

Подставляя числовые данные, получим $K_2 = 178 \text{ мBt/(м·K)}$.

Количество теплоты $Q = K \frac{\Delta T}{\Delta x} \Delta S \cdot \Delta t$. Ho $\Delta S = 2\pi r h =$

$$=2\pi h\frac{r_1+r_2}{2}=\pi h(r_1+r_2). \quad \text{Тогда} \quad Q=K\frac{\Delta T}{\Delta x}\pi h(r_1+r_2)\cdot \Delta t.$$

Подставляя числовые данные, получим $Q_1 = 188$ Дж; $Q_2 = 2,55$ Дж.

5.157. Какое количество теплоты Q теряет помещение за врежня t=1 час через окно за счет теплопроводности воздуха, заклюнного между рамами? Площадь каждой рамы S=4 м², прасстояние между ними d=30 см. Температура помещения $S=18^\circ$ С, температура наружного воздуха $t_2=-20^\circ$ С. Диаметр

молекул воздуха $\sigma = 0.3$ нм. Температуру воздуха между рамами считать равной среднему арифметическому температур помещения и наружного воздуха. Давление p = 101.3 кПа.

Решение:

Количество теплоты, перенесенное за время t вследствие теплопроводности, определяется формулой $Q=K\frac{\Delta T}{\Delta x}S\cdot t$. Воспользуемся уравнением из задачи 5.152, выражающим зависимость теплопроводности K от температуры T: $K=\frac{2Kc_v}{3\sigma^2}\sqrt{\frac{\mu T}{\pi^2 R}}$. Здесь T — температура воздуха между рамами, $T=\frac{T_1+T_2}{2}=272~\mathrm{K}$; удельная теплоемкость воздуха $c_V=717~\mathrm{Дж/kr\cdot K}$; молярная масса воздуха $\mu=0,029$. Подставив числовые данные, найдем $K=12,9\cdot 10^{-3}~\mathrm{Bt/m\cdot K}$. Учитывая, что $\Delta x=d$, имеем $Q=K\frac{T_2-T_1}{d}S\cdot t$; $Q=24~\mathrm{k/Jx}$.

5.158. Между двумя пластинами, находящимися на расстоянии $d=1\,\mathrm{mm}$ друг от друга, находится воздух. Между пластинами поддерживается разность температур $\Delta T=1\,\mathrm{K}$. Площадь каждой пластины $S=0.01\,\mathrm{m}^2$. Какое количество теплоты Q передается за счет теплопроводности от одной пластины к другой за время $t=10\,\mathrm{muh}$? Считать, что воздух находится при нормальных условиях. Диаметр молекул воздуха $\sigma=0.3\,\mathrm{mm}$.

Решение:

Количество теплоты, перенесенное за время t вследствие теплопроводности, определяется формулой $Q = K \frac{\Delta T}{\Delta x} S \cdot t$. Воспользуемся уравнением из задачи 5.152, выражающим 282

рависимость теплопроводности K от температуры T:

$$K = \frac{2Kc_{1}}{3\sigma^{2}}\sqrt{\frac{\mu T}{\pi^{2}R}}$$
. Здесь $T = 273$ К. Удельная теплоемкость воздуха $c_{1'} = 717$ Дж/кг-К; молярная масса воздуха $\mu = 0,029$. Подставив числовые данные, найдем $K = 13 \cdot 10^{-3}$ Вт/м-К. Учитывая, что $\Delta x = d$, имеем $Q = K \frac{\Delta T}{d} S \cdot t$; $Q = 24$ кДж.

5.159. Масса m = 10 г кислорода находится при давлении p = 300 кПа и температуре $t = 10^{\circ}$ С. После нагревания при p = const газ занял объем V = 10 л. Найти количество теплоты Q, полученное газом, изменение ΔW внутренний энергии газа пработу A, совершенную газом при расширении.

Решение:

Количество теплоты, полученное газом определяется слежующим соотношением: $Q = \frac{m}{\mu} C_p \Delta T$ — (1). Молярная теплоемкость кислорода при p = const $C_p = 29,1$ Дж/моль·К. Запишем уравнения состояния газа до и после нагревания. $pV_1 = \frac{m}{\mu} RT_1$ — (2); $pV_2 = \frac{m}{\mu} RT_2$ — (3). Вычитая из уравнения состояния газа до и после нагревания.

Нения (3) уравнение (2), получим
$$p(V_2 - V_1) = \frac{m}{u} R \Delta T$$
 —

(4). Из (2)
$$V_1 = \frac{mRT_1}{\mu p}$$
 — (5). Выразим из (4) ΔT с учетом

(5):
$$\Delta T = \frac{\mu p \left(V_2 - \frac{mRT_1}{\mu p} \right)}{mR} = \frac{\mu p V_2 - mRT_1}{mR}$$
 — (6). Тогда урав-

нение (1) можно записать в виде $Q = C_p \frac{(\mu p V_2 - mRT_1)}{\mu R}$; $Q = 7.92 \, \mathrm{кДж}$. Изменение внутренней энергии кислорода $\Delta W = \frac{5}{2} \frac{m}{\mu} R \Delta T$ или, подставляя (6), $\Delta W = \frac{5}{2} \frac{1}{\mu} \times (\mu p V_2 - mRT_1)$; $\Delta W = 5.66 \, \mathrm{кДж}$. Работа, совершаемая при изменении объема газа $A = p \int_{V_1}^{V_2} dV = p(V_2 - V_1)$ или, с учетом (5), $A = p \left(V_2 - \frac{mRT_1}{\mu p} \right)$; $A = 2.26 \, \mathrm{кДж}$.

5.160. Масса m = 6.5 г водорода, находящегося при температуре $t = 27^{\circ}$ С, расширяется вдвое при p = const за счет притока тепла извне. Найти работу A расширения газа, изменение ΔW внутренний энергии газа и количество теплоты Q, сообщенное газу.

Решение:

Работа расширения газа $A=p\int\limits_{1}^{2V}dV=p(2V-V)=pV$. Согласно уравнению Менделеева — Клапейрона $pV=\frac{m}{\mu}RT$ работа $A=\frac{m}{\mu}RT$; A=8,1 Дж. Изменение внутренней энергии $\Delta W=\frac{i}{2}\frac{m}{\mu}RT$, где i=5 . Т. к. p=const , то $\frac{V_1}{T_1}=\frac{V_2}{T_2}$, следовательно, $\frac{V_2}{V_1}=\frac{T_2}{T_1}=2$. Отсюда $T_2=2T_1$ и $\Delta T=T_2-T_1=2T_1-T_1=T_1=t+273^o$. Тогда $\Delta W=\frac{5}{2}\frac{m}{\mu}RT_1$;

 $\Delta W = 20,25$ кДж. Согласно первому началу термодинамики $Q = \Delta W + A$; Q = 28,35 кДж.

5.161. В закрытом сосуде находится масса $m_1 = 20$ г азота и масса $m_2 = 32$ г кислорода. Найти изменение ΔW внутренней энергии смеси газов при охлаждении ее на $\Delta T = 28$ К.

Решение:

Изменение внутренней энергии газа $\Delta W = \frac{m}{\mu} \frac{i}{2} R \Delta T$. Для двухатомных газов количество степеней свободы i=5, следовательно, для смеси кислорода и азота имеем; $\Delta W = \frac{5}{2} R \Delta T \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2} \right)$; $\Delta W = 1$ кДж.

5.162. Количество v=2 кмоль углекислого газа нагревается при постоянном давлении на $\Delta T=50\,\mathrm{K}$. Найти изменение ΔW внутренней энергии газа, работу A расширения газа и количество теплоты Q, сообщенное газу.

Решенне:

Изменение внутренней энергии газа $\Delta W = \frac{m}{\mu} \frac{i}{2} R \Delta T$. В условиях данной задачи $\Delta W = v3R\Delta T$; $\Delta W = 2.5$ МДж. Работа, совершаемая при расширении газа, $A = p\Delta V$. Согласно уравнению Менделеева — Клапейрона $p\Delta V = \frac{m}{\mu} R\Delta T$, следовательно, $\Delta V = \frac{mR\Delta T}{\mu p}$, тогда $A = \frac{mR\Delta T}{\mu} = vR\Delta T$; A = 0.83 МДж. Количество теплоты, сообщенное газу, $Q = v \cdot C_p \Delta T$. Молярная теплоемкость углекислого газа $C_p = 33.2$ Дж/моль·К. Q = 3.32 МДж.

5.163. Двухатомному газу сообщено количество теплоты Q = 2,093 кДж. Газ расширяется при p = const. Найти работу A расширения газа.

Решение:

Т. к. по условию давление постоянно, то количество тепла, сообщенное газу $Q=c_p m\Delta T$, где $c_p=\frac{i+2}{2}\frac{R}{\mu}$ и i=5 , т. к. газ двухатомный. Тогда $c_p=\frac{7}{2}\frac{R}{\mu}$ и $Q=\frac{7}{2}\frac{m}{\mu}R\Delta T$. Изменение внутренней энергии $\Delta W=\frac{5}{2}\frac{m}{\mu}R\Delta T$. Из первого закона термодинамики следует, что $A=Q-\Delta W=\frac{7}{2}\frac{m}{\mu}R\Delta T-\frac{5}{2}\frac{m}{\mu}R\Delta T=\frac{m}{\mu}R\Delta T$. Т. к. $Q=\frac{7}{2}\frac{m}{\mu}R\Delta T$, то $\frac{m}{\mu}R\Delta T=\frac{2Q}{7}$, следовательно, работа расширения газа $A=\frac{2Q}{7}$; A=598 Дж.

5.164. При изобарическом расширении двухатомного газа была совершена работа A = 156,8 Дж. Какое количество теплоты Q было сообщено газу?

Решение:

Количество теплоты, сообщенное газу, $dQ = C_p dT$, откуда

$$Q = C_{\rho} \int_{T_1}^{T_2} dT$$
; $Q = C_{\rho} (T_1 - T_2)$ — (1). Работа, совершаемая

при расширении газа, dA=pdV; $A=p\int\limits_{V_1}^{V_1}dV$; A=p imes $\times (V_2-V_1)$. Из уравнения Менделеева — Клапейрона $p\Delta v=vR\Delta T$, тогда $A=vR\big(T_2-T_1\big)$ — (2). Решая совместно 286

(1) и (2), получим
$$Q=C_p \frac{A}{\nu R}$$
, где $C_p=\nu \frac{7}{2}R$. Отеюда
$$Q=\frac{7}{2}A\;;\;Q=550\;{\rm Дж}.$$

5.165. В сосуде объемом V = 5 л находится газ при давлении p = 200 кПа и температуре $t = 17^{\circ}$ С. При изобарическом расширении газа была совершена работа A = 196 Дж. На сколько нагрели газ?

Решение:

Воспользуемся уравнением (2) из предыдущей задачи. $A = vR\Delta T$, откуда $\Delta T = \frac{A}{vR}$. Согласно уравнению Менделеева — Клапейрона pV = vRT, откуда v = pV/RT. Тогда $\Delta T = \frac{AT}{pV}$; $\Delta T = 57$ K.

5.166. Масса m = 7 г углекислого газа была нагрета на $\Delta T = 10 \, \mathrm{K}$ в условиях свободного расширения. Найти работу A расширения газа и изменение ΔW его внутренней энергии.

Решение:

Работа по расширению газа $A = \nu R \Delta T = \frac{m}{\mu} R \Delta T$ (см. уравнение (2) из задачи 2.164), $A = 13.2 \, \text{Дж}$. Изменение внутренней энергии газа $\Delta W = \frac{m}{\mu} \frac{i}{2} R \Delta T$, для $\text{CO}_2 - i = 6$, гогда $\Delta W = 3 \cdot \left(\frac{m}{\mu} R \Delta T\right)$, т. е. $\Delta W = 3A$; $\Delta W = 39.6 \, \text{Дж}$.

5.167. Количество v = 1 кмоль многоатомного газа нагревается на $\Delta T = 100 \, \mathrm{K}$ в условиях свободного расширения. Найти

количество теплоты Q, сообщенное газу, изменение ΔW его внутренней энергии и работу A расширения газа.

Решение:

Работа расширения газа (см. задачу 5.160) $A = \frac{m}{\mu} R \Delta T =$ $= \nu R \Delta T$; $A = 831 \, \text{кДж}$. Изменение внутренней энергии $\Delta W = \frac{i}{2} \frac{m}{\mu} R \Delta T$, где i = 6, т. к. газ многоатомный, тогда $\Delta W = 3\nu R \Delta T$; $\Delta W = 2.49$ МДж. Согласно первому закону термодинамики $Q = \Delta W + A$; $Q = 3.32 \,\mathrm{M}\,\mathrm{J}\mathrm{x}$.

5.168. В сосуде под поршнем находится масса m = 1 г азота. Какое количество теплоты Q надо затратить, чтобы нагреть азот на $\Delta T = 10 \text{ K}$? На сколько при этом поднимется поршень? Масса поршня $M = 1 \,\mathrm{kr}$, площадь его поперечного сечения $S = 10 \,\mathrm{cm}^2$. Давление над поршнем p = 100 кПа.

Решение:

Согласно первому закону термодинамики $Q = \Delta W + A$. Изменение внутренней энергии газа $\Delta W = \frac{i}{2} \frac{m}{\mu} R \Delta T$, где количество степеней свободы i = 5, поскольку азот двухатомный газ. Работа газа по подъему поршня (см. задачу

5.160) $A = \frac{m}{\iota \iota} R \Delta T$. Тогда количество теплоты необходимое для нагрева азота $Q = \frac{5}{2} \frac{m}{\mu} R \Delta T + \frac{m}{\mu} R \Delta T =$

 $=\frac{7}{2}\frac{m}{\mu}R\Delta T$; Q=10,39 Дж. При расширении газ совершает работу против сил тяжести и против сил атмосферного давления. Тогда $A=(Mg+pS)\Delta h$, по т. к. $A=\frac{m}{\prime\prime}R\Delta T$, то

$$(Mg + pS)\Delta h = \frac{m}{\mu}R\Delta T$$
. Отсюда найдем $\Delta h = \frac{mR\Delta T}{\mu(Mg + pS)}$; $\Delta h = 2.7$ см.

5.169. В сосуде под поршнем находится гремучий газ. Какое жоличество теплоты Q выделяется при взрыве гремучего газа, если известно, что внутренняя энергия газа изменилась при этом на $\Delta W = 336$ Дж и поршень поднялся на высоту $\Delta h = 20$ см? Масса поршня M = 2 кг, площадь его поперечного сечения S = 10 см². Над поршнем находится воздух при нормальных условиях.

Решение:

Работа гремучего газа по подъему поршня (см. задачу 5.168) $A = (Mg + pS)\Delta h$. Согласно первому закону термодинамики $Q = A + \Delta W = (Mg + pS)\Delta h + \Delta W$; Q = 360,12 Дж.

5.170. Масса m = 10.5 г азота изотермически расширяется при температуре $t = -23^{\circ}$ С, причем его давление изменится от $p_1 = 250$ кПа до $p_2 = 100$ кПа. Найти работу A, совершенную газом при расширении.

Решение:

Работа, совершаемая при изотермическом изменении объема газа, $A = RT \frac{m}{\mu} ln \frac{V_2}{V_1}$, где $T = 250 \, \text{K}$. Из закона Бойля —

Мариотта $p_1V_1=p_2V_2$ следует, что $\frac{V_2}{V_1}=\frac{p_1}{p_2}$, поэтому

работа
$$A = RT \frac{m}{\mu} ln \frac{p_1}{p_2}$$
; $A = 713.85$ Дж.

289

5.171. При изотермическом расширении массы $m = 10 \,\mathrm{r}$ азота, находящегося при температуре $t = 17^{\circ} \,\mathrm{C}$, была совершена работа $A = 860 \,\mathrm{Дж}$. Во сколько раз изменилось давление азота при расширении?

Решение:

Работа, совершаемая при изотермическом расширении (см. задачу 5.170), $A = RT \frac{m}{\mu} ln \frac{p_1}{p_2}$. Отсюда $ln \frac{p_1}{p_2} = \frac{A\mu}{RTm}$, тогда $\frac{p_1}{p_2} = exp \left(\frac{A\mu}{RTm}\right); \frac{p_1}{p_2} = 2,72.$

5.172. Работа изотермического расширения массы $m=10\,\mathrm{r}$ некоторого газа от объема V_1 до $V_2=2V_1$ оказалась равной $A=575\,\mathrm{Дж}$. Найти среднюю квадратичную скорость $\sqrt{\overline{v}^2}$ молекул газа при этой температуре.

Решение:

Работа по расширению газа dA = pdV, откуда $A = \int_{V_1}^{V_2} pdV$. Согласно уравнению Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, следовательно, $p = \frac{mRT}{\mu V}$. Тогда работа $A = \int_{V_1}^{V_2} \frac{m}{\mu}RT\frac{dV}{V} = \frac{m}{\mu}RT\ln\frac{V_2}{V_1}$. Откуда выразим температуру $T = \frac{A\mu}{mR \cdot \ln\frac{V_2}{V_1}} = \frac{A\mu}{mR \ln 2}$ — (1). Средняя квадратичная ско-

рость молекул
$$\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}}$$
. Из (1) $\frac{RT}{\mu} = \frac{A}{m \ln 2}$, тогда $\sqrt{\overline{v^2}} = \sqrt{\frac{3A}{m \ln 2}}$; $\sqrt{\overline{v^2}} = 500$ м/с.