Aggregate Loss Models

A short course authored by the Actuarial Community

19 Jan 2021

Basic Terminology

- Claim indemnification upon the occurrence of an insured event
- Loss some authors use claim and loss interchangeably, others think of loss as the amount suffered by the insured whereas claim is the amount paid by the insurer
- Frequency how often an insured event occurs (claim count) in one period (typically six months or one year)
- Severity Amount, or size, of each payment for an insured event
- Aggregate Loss Total amount paid for a defined set of insureds in one period (typically six months or one year)

Motivation

- Goal: Build a model for the total payments by an insurance system
 - Aggregate loss for a single policy, a group insurance contract, a business line, an entire company, etc
 - Frequency and severity models are building blocks
- Applications
 - Ratemaking
 - Capital management
 - Risk financing

Models

- Two ways to build a model for aggregate losses
 - in a fixed time period, and
 - on a defined set of insurance contracts
- ► Collective Risk Model (a.k.a. compound model): record losses as claims are made and then add them up
- Individual Risk Model: record losses for each contract and then add them up

Individual Risk Model

Individual Risk Model

► The individual risk model represents the aggregate loss as a sum of a fixed number of insurance contracts

$$S = X_1 + \ldots + X_n$$

where

- \triangleright S denotes the aggregate loss for n (a fixed number) contracts
- \triangleright X_i denotes the loss cost for the *i*th contract for $i=1,\ldots,n$
- \succ X_i are assumed to independent but are not necessarily identically distributed, due to different coverage or exposure
- \triangleright X_i usually has a probability mass at zero

Moments and Generating Functions

► The **individual risk model** represents the aggregate loss as a sum of a fixed number of insurance contracts

$$S = X_1 + \ldots + X_n$$

▶ It is straightforward to show

$$E(S) = \sum_{i=1}^{n} E(X_i), \quad Var(S) = \sum_{i=1}^{n} Var(X_i)$$

$$P_S(z) = \prod_{i=1}^{n} P_{X_i}(z), \quad M_S(z) = \prod_{i=1}^{n} M_{X_i}(z)$$

Applications

- Originally developed for life insurance
 - Probability of death within a year is q_i;
 - Fixed benefit paid for the death of the ith person is b_i.
- ▶ The distribution of the loss to the insurer for the *i*th policy is

$$f_{X_i}(x) = \begin{cases} 1 - q_i, & x = 0 \\ q_i, & x = b_i \end{cases}$$

- ► Calculate E(S), Var(S), $P_S(z)$, and $M_S(z)$
- ▶ In P&C, we often use the Tweedie distribution, which has a probability mass at zero, to model the loss cost X_i .

A General Approach

► Two-part framework

$$X_i = I_i \times B_i = \begin{cases} 0, & I_i = 0 \\ B_i, & I_i = 1 \end{cases}$$

- $I_1, \ldots, I_n, B_1, \ldots, B_n$ are independent.
- ▶ I_i is an indicator (Bernoulli) that is 1 with probability q_i and 0 with probability 1- q_i . It indicates whether the *i*th policy has a claim.
- ▶ B_i, a r.v. with nonnegative support, represents the amount of losses of policy i, given that a claim is made. It can follow a degenerate distribution such as the life insurance example.

A General Approach

Denote $\mu_i = E(B_i)$ and $\sigma_i^2 = Var(B_i)$, we show

$$\begin{split} \mathrm{E}(X_{i}) &= \mathrm{E}[\mathrm{E}(X_{i}|I_{i})] = \mathrm{E}[\mathrm{E}(I_{i}\times B_{i}|I_{i})] = \mathrm{E}[I_{i}\times \mathrm{E}(B_{i}|I_{i})] \\ &= \mathrm{E}[I_{i}\times \mathrm{E}(B_{i})] = \mathrm{E}(I_{i})\times \mathrm{E}(B_{i}) = q_{i}\mu_{i} \\ \mathrm{Var}(X_{i}) &= \mathrm{E}(X_{i}^{2}) - \mathrm{E}(X_{i})^{2} = q_{i}(1 - q_{i})\mu_{i}^{2} + q_{i}\sigma_{i}^{2} \\ P_{X_{i}}(z) &= \mathrm{E}(z^{X_{i}}) = \mathrm{E}[z^{I_{i}\times B_{i}}) = \mathrm{E}[\mathrm{E}(z^{I_{i}\times B_{i}}|I_{i})] \\ &= \mathrm{E}(z^{I_{i}\times B_{i}}|I_{i} = 0) \times \mathrm{Pr}(I_{i} = 0) \\ &+ \mathrm{E}(z^{I_{i}\times B_{i}}|I_{i} = 1) \times \mathrm{Pr}(I_{i} = 1) \\ &= 1 - q_{i} + q_{i}P_{B_{i}}(z) \\ M_{X_{i}}(z) &= 1 - q_{i} + q_{i}M_{B_{i}}(z) \end{split}$$

- Parametric approximations: use moment matching to estimate parameters
- ► Analytic results: some special cases
- Exact calculation: involves numerous convolutions (not covered)

- ► Parametric Approximations
- ▶ When *n* is large, use normal distribution

$$F_{S}(s) = \Pr(S \leq s) = \Phi\left(\frac{s - \mu_{S}}{\sigma_{S}}\right)$$

where $\mu_S = \mathrm{E}(S)$ and $\sigma_S = \sqrt{\mathrm{Var}(S)}$. - When n is small, use skewed distribution, e.g. lognormal

$$\Pr(S \le s) = \Pr(\ln S \le \ln s) = \Phi\left(\frac{\ln s - \mu_S}{\sigma_S}\right)$$

where μ_S and σ_S are found from

$$\begin{cases} \exp\{\mu_{S} + \sigma_{S}^{2}/2\} = E(S) \\ \exp\{2\mu_{S} + 2\sigma_{S}^{2}\} = E(S^{2}) = E(S)^{2} + Var(S) \end{cases}$$

Analytic Results Summary

- Severity Distributions
 - ▶ If $X_i \sim N(\mu_i, \sigma_i^2)$, then $S \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
 - ▶ If $X_i \sim Exponential(\theta)$, then $S \sim Gamma(n, \theta)$
 - ▶ If $X_i \sim \text{Gamma}(\alpha_i, \theta)$, then $S \sim \text{Gamma}(\sum_{i=1}^n \alpha_i, \theta)$
- Frequency Distributions
 - ▶ If $X_i \sim Poisson(\lambda_i)$, then $S \sim Poisson(\sum_{i=1}^n \lambda_i)$
 - ▶ If $X_i \sim Bin(m_i, q)$, then $S \sim Bin(\sum_{i=1}^n m_i, q)$
 - ▶ If $X_i \sim Geometric(\beta)$, then $S \sim NegBin(n, \beta)$
 - ▶ If $X_i \sim NegBin(r_i, \beta)$, then $S \sim NegBin(\sum_{i=1}^n r_i, \beta)$

Collective Risk Model

The collective risk model has representation

$$S = X_1 + \ldots + X_N$$

with S the aggregate loss of N (a random number) individual claims (X_1,\ldots,X_N)

Two building blocks: frequency N and severity X

- Key assumptions
 - ▶ Conditional on N = n, $X_1, ..., X_n$ are i.i.d. random variables
 - ightharpoonup Frequency N and severity X are independent

Model

The assumptions suggest that we can build an aggregate loss model, the compound model, in three steps:

- 1. Develop a model for the frequency distribution of N, the primary distribution, based on data
- 2. Develop a model for the severity distribution of X, the secondary distribution, based on data
- 3. Using these two models, carry out the necessary calculations to obtain the distribution of *S*

Moments

$$S = X_1 + \ldots + X_N$$

Using the law of iterated expectations to calculate the mean

$$\mathrm{E}(S) = \mathrm{E}[\mathrm{E}(S|N)] = \mathrm{E}[N\mathrm{E}(X)] = \mathrm{E}(N)\mathrm{E}(X)$$

Using the law of total variation to calculate the variance

$$Var(S) = E[Var(S|N)] + Var[E(S|N)]$$

$$= E[NVar(X)] + Var[NE(X)]$$

$$= E(N)Var(X) + Var(N)E(X)^{2}$$

Generating Functions

The moment generating function (mgf) of S is

$$\begin{split} M_S(z) &= E\left[e^{zS}\right] = \mathrm{E}\left[\mathrm{E}\left(e^{zS}|N\right)\right] \\ &= \mathrm{E}\left[e^{0}\right] \Pr(N=0) \\ &+ \sum_{n=1}^{\infty} \mathrm{E}\left[e^{z(X_1 + \ldots + zX_n)}|N=n\right] \Pr(N=n) \\ &= \Pr(N=0) + \sum_{n=1}^{\infty} \prod_{i=1}^{n} \mathrm{E}\left[e^{zX_i}\right] \Pr(N=n) \\ &= \sum_{n=0}^{\infty} \Pr(N=n)[M_X(z)]^n \\ &= \mathrm{E}\left[M_X(z)^N\right] = P_N[M_X(z)] \end{split}$$

Similarly, the probability generating function (pgf) of S is

$$P_S(z) = P_N[P_X(z)]$$

Compound Distribution

The cumulative distribution function (cdf) is $F_S(s)$. The probability density function (pdf) of S or probability mass function (pmf) is $f_S(s)$. Specifically,

$$F_{S}(s) = \Pr(S \leq s)$$

$$= \sum_{n=0}^{\infty} \Pr(N = n) \cdot \Pr(S \leq s | N = n)$$

$$= \sum_{n=0}^{\infty} \Pr(N = n) \cdot F_{X}^{*n}(s)$$

$$f_{S}(s) = \sum_{n=0}^{\infty} \Pr(N = n) \cdot f_{X}^{*n}(s)$$

Examples

The frequency and severity distributions are summarized by:

N	0	1	2	3	4	5	6	7	8	
$f_N(n)$	0.05	0.10	0.15	0.20	0.25	0.15	0.06	0.03	0.01	
X	1	2	3	4	5	6	7	8	9	10
$f_X(x)$	0.150	0.200	0.250	0.125	0.075	0.050	0.050	0.050	0.025	0.025

R demo

Stop-Loss Insurance

Definition Insurance on the aggregate losses, subject to a deductible, is called *stop-loss insurance*.

- ► The expected cost of this insurance is called the *net stop-loss* premium.
- ▶ It can be computed as $E[(S d)_+]$, where S is the aggregate loss and d is the deductible.
- For any aggregate distribution:

$$E[(S-d)_{+}] = E(S) - E(S \wedge d)$$

= $\int_{0}^{\infty} [1 - F_{S}(s)] ds - \int_{0}^{d} [1 - F_{S}(s)] ds$
= $\int_{d}^{\infty} [1 - F_{S}(s)] ds$

Stop-loss Insurance

For a continuous distribution, the net stop-loss premium is

$$E[(S-d)_{+}] = \int_{d}^{\infty} (s-d)f_{S}(s)ds$$

For a discrete distribution, the net stop-loss premium is

$$E[(S-d)_+] = \sum_{s>d} (s-d) f_S(s) ds$$

The computation of the compound distribution function of the aggregate loss S is not an easy task

$$F_S(s) = \sum_{n=0}^{\infty} \Pr(N = n) \cdot F_X^{*n}(s)$$

Several strategies:

- direct calculation: difficult part is the evaluation of *n*-fold convolutions
- approximating the distribution: to avoid direct calculation
- recursive method: considerable savings in computer time
- analytic results: available only for select combinations of frequency and severity
- ► Monte Carlo simulation

Use parametric distributions to approximate the compound distribution

- When E(N) is large, the normal distribution provides a good approximation.
 - This is supported by central limit theorem as parameter λ (Poisson), or m (Bin), or r (NegBin) goes to infinity
- ▶ When E(N) is small, the distribution of S is likely to be skewed.
 - This suggests using the lognormal or other skewed distributions, though no theoretical support

Use the recursive method, assuming

- ▶ severity distribution, $f_X(x)$, is defined on 0, 1, 2, ..., m, representing a multiple of some convenient monetary unit
- frequency distribution, $f_N(n)$, is a member of the (a, b, 1) class

$$f_{S}(s) = \frac{[p_{1} - (a+b)p_{0}]f_{X}(s) + \sum_{y=1}^{\min(s,m)} (a+by/s)f_{X}(y)f_{S}(s-y)}{1 - af_{X}(0)}$$

Analytic Results

For most choices of distributions of N and X, the compound distributional values can only be obtained numerically

For certain combinations of choices, simple analytic results are available

- compound geometric-exponential
- sum of independent compound Poisson

Analytic Results: Geometric-Exponential

Example 1. Determine the distribution of S when the frequency distribution is geometric with parameter β and the severity distribution is exponential with parameter θ . The mgf of S is

$$M_S(z) = P_N[M_X(z)] = P_N[(1 - \theta z)^{-1}]$$

= $(1 - \beta[(1 - \theta z)^{-1} - 1])^{-1}$
= $1 + \frac{\beta}{1 + \beta}([1 - \theta(1 + \beta)z]^{-1} - 1)$

Analytic Results: Geometric-Exponential

Note that

$$M_{X^*}(z) = [1 - \theta(1+\beta)z]^{-1}$$
 $P_{N^*}(z) = 1 + \frac{\beta}{1+\beta}(z-1)$

Therefore, the mgf of S can also be represented as

$$M_S(z) = P_N[M_X(z)] = P_{N^*}[M_{X^*}(z)]$$

- i.e., $S=X_1^*+\cdots+X_{N^*}^*$ where
 - $ightharpoonup N^* \sim extit{Bin}(1,eta/(1+eta))$ and
 - $X^* \sim Exponential(\theta(1+\beta))$

Analytic Results: Geometric-Exponential

It is a two-component mixture distribution:

$$S = \begin{cases} 0 & \text{with probability } \Pr(N^* = 0) \\ X^* & \text{with probability } \Pr(N^* = 1) \end{cases}$$

$$F_S(s) = \frac{1}{1+\beta}F_0(s) + \frac{\beta}{1+\beta}F_{X^*}(s)$$

$$= \frac{1}{1+\beta}(1) + \frac{\beta}{1+\beta}[1 - \exp[-s/(\theta(1+\beta))]]$$

$$= 1 - \frac{\beta}{1+\beta}\exp[-s/(\theta(1+\beta))]$$

Analytic Results: Compound Poisson

Example 2. Suppose that S_i has compound Poisson distribution with

- frequency parameter λ_i and
- severity distribution F_{X_i} for $i = 1, \dots, m$.

Given S_1, \dots, S_m are independent, then $S = \sum_{i=1}^m S_i$ has a compound Poisson distribution with

- frequency parameter $\lambda = \sum_{i=1}^{m} \lambda_i$ and
- severity distribution

$$F_X(x) = \sum_{i=1}^m \frac{\lambda_i}{\lambda} F_{X_i}(x).$$

The model can be useful for analyzing aggregate claims from

- group insurance contracts
- multiple lines of business

Analytic Results: Compound Poisson

Proof. The mgf of S_i is

$$M_{S_i}(z)=P_{N_i}(M_{X_i}(z))=\exp\left\{\lambda_i[M_{X_i}(z)-1]\right\},$$
 and, by independence, the mgf of S is

$$\begin{array}{ll} M_{S}(z) &= \prod_{i=1}^{m} M_{S_{i}}(z) = \prod_{i=1}^{m} \exp \left\{ \lambda_{i} [M_{X_{i}}(z) - 1] \right\} \\ &= \exp \left\{ \sum_{i=1}^{m} \lambda_{i} M_{X_{i}}(z) - \lambda \right\} \\ &= \exp \left\{ \lambda \left[\sum_{i=1}^{m} \frac{\lambda_{i}}{\lambda} M_{X_{i}}(z) - 1 \right] \right\} \end{array}$$

Analytic Results: Compound Poisson

Proof. Let $M_X(z) = \sum_{i=1}^m \frac{\lambda_i}{\lambda} M_{X_i}(z)$, then

$$M_S(z) = \exp\left\{\lambda[M_X(z) - 1]\right\} = P_N(M_X(z))$$

where

- ightharpoonup N is Poisson with parameter λ
- ► X has cdf $F_X(x) = \sum_{i=1}^m \frac{\lambda_i}{\lambda} F_{X_i}(x)$.

Compound Frequency Distributions

Compound Frequency Distributions

We consider a special case of the compound distribution

$$S = M_1 + \cdots + M_N$$

where

- Both N and M are count random variables (r.v.)
- General relations apply:

$$P_S(z) = P_N[P_M(z)]$$
 $M_S(z) = P_N[M_M(z)],$
 $E(S) = E(N)E(M)$ $Var(S) = E(N)Var(M) + E(M)^2Var(N)$

Compound Poisson (Frequency) Distribution

ightharpoonup Consider the primary distribution with Poisson parameter λ and the secondary distribution as the following mixture

$$M = \left\{ egin{array}{ll} 0 & ext{with probability } 1-q \ M^* & ext{with probability } q \end{array}
ight.$$

The resulting compound distribution is equivalent to a compound Poisson model with Poisson parameter λq and the secondary distribution M^*

Compound Poisson (Frequency) Distribution

▶ Thinning of Poisson: Let N have a Poisson distribution with mean λ .

Assume that each outcome can be categorized in to a specific type.

The probability of an event being of type i is p_i .

Then the number of type i events, denoted by N_i , follows a Poisson distribution with mean $p_i\lambda$.

Compound Poisson (Frequency) Distribution

Suppose that S_i has compound Poisson distribution with primary parameter λ_i and secondary distribution probability mass function (pmf) f_{M_i} for $i = 1, \dots, m$.

Given S_1, \dots, S_m are independent, then $S = \sum_{i=1}^m S_i$ has a compound Poisson distribution with primary distribution parameter $\lambda = \sum_{i=1}^m \lambda_i$ and secondary distribution

$$f_{M}(x) = \sum_{i=1}^{m} \frac{\lambda_{i}}{\lambda} f_{M_{i}}(x)$$

The Tweedie distribution is defined as a Poisson sum of gamma random variables

$$S = (X_1 + \cdots + X_N)/\omega$$

where - ω is exposure - $N \sim Poisson(\omega \lambda)$ and $X \sim Gamma(\alpha, \theta)$

The cdf of S is

$$\begin{array}{ll} F_S(s) &= \sum_{n=0}^{\infty} \Pr(N=n) \cdot \Pr(S \leq s | N=n) \\ &= \Pr(N=0) + \sum_{n=1}^{\infty} \Pr(N=n) \cdot \Pr(S \leq s | N=n) \\ &= e^{-\omega \lambda} + \sum_{n=1}^{\infty} e^{-\omega \lambda} \frac{(\omega \lambda)^n}{n!} \Gamma\left(n\alpha; \frac{s}{\theta/\omega}\right) \end{array}$$

Note that

$$S|(N=n)=X_1+\cdots+X_n\sim Gamma(n\alpha,\theta/\omega)$$

► The Tweedie variable has a mass probability at zero

$$f_S(0) = \Pr(S = 0) = \Pr(N = 0) = e^{-\omega \lambda}$$

▶ The density of Tweedie at s > 0 is

$$f_{S}(s) = \sum_{n=1}^{\infty} e^{-\omega\lambda} \frac{(\omega\lambda)^{n}}{n!} \frac{1}{\Gamma(n\alpha)} \frac{s^{n\alpha-1}}{(\theta/\omega)^{n\alpha}} e^{-\frac{s}{\theta/\omega}}$$

Definition The distribution of *linear exponential family* is

$$f_Y(y; \theta, \phi/\omega) = \exp\left\{\frac{y\theta - b(\theta)}{\phi/\omega} + c(y; \phi/\omega)\right\}$$

- ightharpoonup heta is the parameter of interest
- lacktriangledown ϕ is scale parameter and ω (known) is exposure
- \blacktriangleright $b(\theta)$ depends only on θ not y
- $ightharpoonup c(y; \phi/\omega)$ does not depend on θ
- ightharpoonup $\mathrm{E}(y) = b'(\theta)$ and $\mathrm{Var}(y) = \frac{\phi}{\omega}b''(\theta)$

Members include binomial, normal, Poisson, gamma, and inverse-Gaussian distributions

Consider reparameterizations

$$\lambda = \frac{\mu^{2-p}}{\phi(2-p)}, \quad \alpha = \frac{2-p}{p-1}, \quad \theta = \phi(p-1)\mu^{p-1}$$

For $p \in (1,2)$, the Tweedie distribution can be presented as:

$$f_S(s) = \exp\left\{\frac{\omega}{\phi}\left(\frac{-s}{(p-1)\mu^{p-1}} - \frac{\mu^{2-p}}{2-p}\right) + c(s; p, \phi/\omega)\right\}$$

and

$$E(S) = \mu, Var(S) = \frac{\phi}{\omega} \mu^{p}$$

- ► Two limiting distributions
- $ightharpoonup p o 1 \Longrightarrow \mathsf{Over}\mathsf{-dispersed}$ Poisson
- $ightharpoonup p
 ightarrow 2 \Longrightarrow \mathsf{Gamma}$
- ► Examples in R

Effects of Coverage Modifications

Effects of Coverage Modifications

- Effect of exposure on frequency
- Impact of deductibles on claim frequency
- Impact of individual policy modifications on aggregate claims

Exposure and Frequency

Consider the number of claims from a portfolio of n policies

$$N = Y_1 + \cdots + Y_n$$

where we assume Y_i are i.i.d.

- Use a policy as the exposure base, the exposure is n
- ▶ The pgf of N is $P_N(z) = [P_Y(z)]^n$
- Exposure changes from n to n^* , the pgf of N^* is $P_N(z) = [P_Y(z)]^{n^*} = [P_N(z)]^{n^*/n}$

Exposure and Frequency

- ► To account for exposure *n* in frequency models
 - ▶ if $Y \sim Poisson(\lambda)$, $N \sim Poisson(n\lambda)$
 - if $Y \sim NegBin(r, \beta)$, $N \sim NegBin(nr, \beta)$
 - in this case, exposure is a large positive number
- ► Further, the units of exposure may be fractions Using policy year as the exposure base, exposure represents the fraction of the year that a policyholder had insurance coverage
- ► Effect of exposure on MLE
- Exposure change

- Consider an insurance contract with deductible d
- ▶ Denote N^L the number of losses or accidents, and given $N^L = n^L$, Y_i is the ground-up loss for $i = 1, \dots, n^L$
- \triangleright We are interested in N^P , the number of payments or claims
- Assume
 - Given $N^L = n^L$, Y_i are i.i.d. with common distribution Y
 - Changing the deductible does not change policyholder behavior

 \triangleright Represent N^P as a compound frequency distribution

$$N^P = I_1 + \cdots + I_{N^L}$$

where

$$I_i = \left\{ egin{array}{ll} 1 & ext{with probability } \Pr(Y_i > d) \\ 0 & ext{with probability } \Pr(Y_i \leq d) \end{array}
ight.$$

Let $v = \Pr(Y > d)$, the pgf of N^P is

$$P_{NP}(z) = P_{NL}[P_I(z)]$$

= $P_{NL}[1 + v(z-1)]$

- **Example:** $N^L \sim Poisson(\lambda)$
- ▶ The pgf of N^P is

$$P_{N^{P}}(z) = \exp \{\lambda[1 + v(z - 1) - 1]\}$$

= $\exp \{v\lambda(z - 1)\}$

- $lackbrack N^L$ and N^P are from the same family and $N^P \sim Poisson(\lambda^* = v\lambda)$
- Similar results for binomial and negative binomial distributions in the (a, b, 0) class

- Now we consider changing the deductible from d_1 to d_2 . Let θ be the parameter in the distribution of group-up loss. Recall that $\theta^* = v\theta$ where $v = \Pr(Y > d)$
- ▶ Define $v_1 = \Pr(Y > d_1)$ and $v_2 = \Pr(Y > d_2)$, then

$$\theta_1^* = v_1 \cdot \theta$$
 and $\theta_2^* = v_2 \cdot \theta = \left(\frac{v_2}{v_1}\right) \theta_1^*$

► Two special cases:

$$d_1 = 0, \ d_2 = d \to \frac{v_2}{v_1} = v$$

$$d_1 = d, \ d_2 = 0 \rightarrow \frac{v_2}{v_1} = v^{-1}$$

Recall the following notation:

- Frequency
 - $ightharpoonup N^L \equiv \text{number of losses}$
 - $ightharpoonup N^P \equiv \text{number of payments}$
- Severity
 - $Y \equiv \text{ground-up loss}$
 - $Y^L \equiv$ amount of payment on per-loss basis
 - $Y^P \equiv$ amount of payment on per-payment basis
- Coverage Modifications
 - $ightharpoonup d \equiv$ amount of deductible (ordinary or franchise)
 - $ightharpoonup r \equiv uniform rate of inflation$
 - $u \equiv \text{policy limit}$
 - ho α \equiv coinsurance percentage

Recall:

$$Y^{L} = \begin{cases} 0 & Y < \frac{d}{1+r} \\ \alpha[(1+r)Y - d] & \frac{d}{1+r} \le Y < \frac{u}{1+r} \\ \alpha(u-d) & Y \ge \frac{u}{1+r} \end{cases}$$
$$= \alpha(1+r)\left(\left[Y \wedge \left(\frac{u}{1+r}\right)\right] - \left[Y \wedge \left(\frac{d}{1+r}\right)\right]\right)$$

Recall:

Frequency

$$N^{P} = I_{1} + \dots + I_{N^{L}}$$

$$P_{N^{P}} = P_{N^{L}}[1 - v + vz]$$

Severity

$$Y^{P} = Y^{L}|(Y^{L} > 0)$$

 $F_{Y^{L}}(y) = 1 - v + vF_{Y^{P}}(y)$
 $M_{Y^{L}}(z) = 1 - v + vM_{Y^{P}}(z)$

- ▶ The aggregate claim can be represented on either a per-loss or per-payment basis

 - per-loss basis: $S = Y_1^L + \cdots + Y_{N^L}^L$ per-payment basis: $S = Y_1^P + \cdots + Y_{N^P}^P$
- ► The two representations are equivalent:

$$M_S(z) = P_{N^L}[M_{Y^L}(z)] = P_{N^P}[M_{Y^P}(z)]$$