Basel III 下高速運算的需求 HPC Application under Basel III

昀騰金融科技

技術長

董夢雲 博士

dongmy@ms5.hinet.net

昀騰金融科技股份有限公司

技術長

金融博士、證券分析師

董夢雲 Andy Dong

Line/WeChat:andydong3137 E:andydong1209@gmail.com

https://github.com/andydong1209 M: (T)0988-065-751(C)1508-919-2872

10647 台北市大安區辛亥路一段 50 號 4 樓

現職:國立台灣大學財務金融研究所兼任教授級專家

台灣金融研訓院 2023 年菁英講座

經歷:中國信託商業銀行交易室研發科主管

凱基證券風險管理部主管兼亞洲區風險管理主管

中華開發金控、工業銀行風險管理處處長

永豐金控、商業銀行風險管理處處長

永豐商業銀行結構商品開發部副總經理

學歷:國立台灣大學電機工程學系學士

國立中央大學財務管理學研究所博士

專業:證券暨投資分析人員合格(1996)

專長:Basel | | | | 交易簿市場風險資本計算、銀行簿利率風險計算

風險管理理論與實務,資本配置與額度規劃、資產負債管理實務

外匯與利率結構商品評價實務,股權與債權及衍生商品評價實務

GPU 平行運算與結構商品系統開發, CUDA、OpenCL

CPU 平行運算與 ALM 系統開發, C#/C++/C、.Net Framework、SQL

人工智慧(Deep Learning)交易策略開發, Python、Keras、TensorFlow

Part III 市場風險資本的敏感性基礎法 SBM of Market Risk Capital

一、Basel III的市場風險資本	5
二、VaR與敏感性基礎法(SBM)	11
三、債券一般利率風險Delta風險資本	25
四、債券一般利率風險Curvature風險資本	33
五、權利性質工具一般利率風險Vega風險資本	38
	42

一、Basel III 的市場風險資本

(**—**)Basel III(2010)

- ◆ 自 2008 次貸危機產生的金融風暴, BCBS 提出強化銀行體系規範。
 - ▶ 流動性管理
 - ✓ 槓桿比率(LR)、流動覆蓋比(LCR)、淨穩定資金比率(NSFR)
 - > 交易簿暴險衡量
 - ✓ 引入 Stressed VaR
 - ▶ 衍生商品信用風險
 - ✓ 信用惡化 CVA 調整,保證金與擔保品的徵提
 - ✓ 成立集中清算所
 - ▶ 證券化暴險衡量
 - > 資本管理
 - ✓ 普通股資本權益最低比率
 - ✓ 引入應急可轉換債券(Co Co Bond),逆景氣資本緩衝
 - ✓ D-SIBs \ G-SIBs

(二)Basel III(2015-)

- ◆ 2015 陸續施行各類新規範,主要變動有,
 - ▶ 利率風險
 - ✓ 銀行簿利率風險管理(IRRBB, Interest Rate Risk in the Banking Book)
 - ▶ 市場風險
 - ✓ 新標準法提出
 - ✓ 更新內部模型法
 - ▶ 信用風險
 - ✓ 標準法修訂
 - ✓ CVA 修訂

(三)FRTB 與 SBM

- ◆ 2008 年金融風暴造成許多銀行交易簿的重大損失,為了回應這一挑戰,國際清算銀行巴 塞爾銀行監督管理委員會提出新的全球風險管理架構。
 - ▶ 自 2012 年開始,巴塞爾銀行監督管理委員會啟動交易簿的基本檢視(FRTB, Fundamental Review of the Trading Book)行動。
 - ✓ 此全面性的檢視,目的是檢討市場風險架構中內部模型法與標準法之設計與市場校正(Calibration)的不足。
 - ▶ 巴塞爾銀行監督管理委員會於 2016 年首度提出此修正架構,並預擬於 2019 年付諸施行。
 - ✓ 此架構設定了將部位列入交易簿的較為嚴格條件;
 - ✓ 大幅修正內部模型法方法論,從而提出較具風險敏感的標準法方法論,敏感性基礎法(SBM, Sensitivity Based Method) •
 - ▶ 2019年1月完成修正,並擬於2023年1月起正式實施。

◆ Basel III 重要的變動

> 改變交易簿市場風險計算的邏輯,新增銀行簿利率風險的管理,皆以價值變動為基礎的風險管理。

◆ 市場風險資本計算改進

Basel II Basel III 1.使用條件預期損失(ES, Expected Shortfall),取代原先特定 內 損失(VaR, Value at Risk) 部 2.可以 Desk 為適用範圍選擇 模 3.需核可,方可採用 型 內 法 部 模 1.採用 VaR 邏輯的價值變動分解 標 2.需計算 Delta、Vega、Gamma 的數值 型 準 3.價值的估計需與評價邏輯一致 法 法 4.包含信用違約損失 5.考慮組合部位(ABS, CDO)的風險 6.可以 Desk 為適用範圍選擇 標 簡 1.類似原先標準法 準 易 2.需核可,方可採用 標 法 準 法

◆ 市場風險資本計提的演進

A history of minimum capital requirements for market risk

二、VaR 與敏感性基礎法(SBM)

(一)VaR基礎概念

- ◆市場風險的可能分配
 - ▶ 日收入之分配如下,平均數為\$5MM,5%的機率會低於\$-10MM。
 - ✓ 95%之信賴區間,一天內 Relative VaR 為\$15MM。
 - ✓ 95%之信賴區間,一天內 Absolute VaR 為\$10MM。

◆傳統的風險衡量方法

- > Stock: Beta, Standard Deviation.
- **▶** Bond: NPA, Duration, DV01.
- > FX: NPA, Delta.

- ◆在常態分配之假設下,參數的估計可大幅簡化
 - \triangleright 95%之信賴區間, μ -1.65 σ
 - ightharpoonup 99%之信賴區間, μ -2.33 σ
 - ▶ 日風險之估算假設 μ=0。
- ◆實際的資產分配為何,尚有爭議,基本上為分配尾端肥厚的情況。
 - ➤ Stochastic Volatility: 波動性不為常數
 - ▶ Jump Process: 巨災的發生

(二)Expected Shortfall的計算

- ◆Basel III 對涉險值的計算,有新的要求。
 - ➤ 新的計算採用 Conditional VaR, Expected Shortfall。
 - ✓ 為超過損失門檻(95%最大損失)數額的期望值。
- ◆在常態分配假設下,95%的顯著水準,最大損失為-1.65 σ。
 - 然而,有5%的機率損失超過-1.65σ。
 - ✓ 這 5%機率的超量損失的平均值為-2.06271 σ 。
 - \triangleright VaR(95%) => -1.65 σ , ES(95%) => -2.06271 σ \circ
 - ✓ 差額為 0.41715 σ。

(三)價格變動的風險分解

- ◆ 在標準法下,將風險資本分為三大模塊,
 - ▶ 使用敏感性基礎法資本(Sensitivity-based method, SBM)捕捉系統性的市場風險。下分三項風險, 各別都需考慮相關性彙整。三者合併,直接相加。
 - ✓ Delta 風險資本:反映 Delta 風險因子
 - ✓ Vega 風險資本:反映 Vega 風險因子
 - ✓ Curvature 風險資本:反映 Gamma 風險因子
 - ▶ 使用違約風險資本(Default risk capital, DRC)捕捉系統性的信用風險。
 - ✓ 交易簿的部位,有違約的可能性。
 - ▶ 使用殘差風險附加資本(Residual Risk Add-on, RRAO)來捕捉殘餘的市場風險。

- ◆ 衍生性金融商品其價格受到標的資產價格所影響,其風險來源即為標的資產。
 - ightharpoonup 以選擇權為例,買權價格 m C 為標的資產價格 m S、波動性 σ 與時間 m t 的函數 $C = f(S,\sigma,t) \ ... \ (2.1)$
 - ✓ 買權價格 C 可視為因變數,標的資產價格 S、波動性 σ 與時間 t 可視為自變數。
 - ▶ 風險因子為標的資產價格 S、波動性 σ。
 - ✓ 實務上波動性 σ 是一個期限結構,不是一個定值。
 - ✓ 因此,波動性風險因子是各個時點的 σ t。
- ◆ 針對利率產品,S 就是利率水準。
 - ▶ 此時,就不是一個利率大小,而是一條利率曲線。
 - ▶ Basel 以 10 個利率點來代表整條利率曲線的風險。

- ◆ 衍生商品價格的變動,可分解成自變數變動分量的相加。
 - ➤ 根據 Ito's Lemma,

$$dC = \frac{\partial C}{\partial S}dS + \frac{1}{2}\frac{\partial^2 C}{\partial S^2}(dS)^2 + \frac{\partial C}{\partial \sigma}d\sigma + \frac{\partial C}{\partial t}dt \qquad (2.2)$$

▶ 右式第一項可視為對選擇權價格變動的一階近似項,其中係數稱之為 Delta,

$$\Delta = \left[\frac{\partial C}{\partial S} \right]$$

- ▶ 第二項可視為對選擇權價格變動的二階近似項,其中係數稱之為 Gamma, Basel 稱為 Curvature。
- ▶ 第三項為對選擇權價格因波動性變動產生的變化,其中係數稱之為 Vega,

$$\Gamma = \left[\frac{\partial^2 C}{\partial S^2}\right], \ V = \left[\frac{\partial C}{\partial \sigma}\right]$$

◆ 根據定義,現貨的 Delta = 1。

- ◆ 所有交易部位都要計算 Delta Risk,有下述條件者,要計算 Vega 與 Curvature Risk。
 - ▶ 任何具有權利性質的工具,
 - ▶ 任何有嵌入式提前支付權利的工具,
 - ▶ 工具的現金流量無法表示為標的資產名目本金的線性函數,
 - ▶ 針對有 Delta 風險的工具,可能需要計算其曲度風險,這些工具不限於前三項。
 - ✓ 銀行可能有其管理具權利性質的非線性工具與其他工具的傳統,也可以將沒有權利性質的工具一併併入曲度 風險的計算。
 - ♣ 處理須一致性。
 - ◆ 曲度風險需實施於所有 SBM 計算的工具上。
- ◆ 每個月要計算,申報監理機關。(MAR20.2)

(四)風險分類與風險組合

- ◆ 敏感性基礎法的標準法,將部位的市場風險分為七大類別(模塊,Building Blocks),
 - > 一般利率風險
 - ▶ 信用價差風險(CSR):非證券化
 - ▶ 信用價差風險:證券化(無相關交易組合, non-CTP)
 - ▶ 信用價差風險:證券化(有相關交易組合, CTP)
 - ▶ 權益風險
 - ▶ 外匯風險
 - ▶ 商品風險
- ◆ 類別彙整合併時,直接相加。

- ◆ 每一大類別的風險,可以將相似的風險因子集合成一個 Bucket,
 - ▶ 一個外匯幣別為一個 Bucket。
 - ▶ 一個幣別的利率風險為一個 Bucket。
 - ✓ 0.25 年內 [0,0.25) 的利率為一個 Time Bucket,0.25 年到 0.5 年[0.25,0.5) 的利率為另一個 Time Bucket。
 - ▶ 新興市場電信股票為一個 Bucket,先進市場電信股票為另一個 Bucket。
 - ▶ 投資級的主權信用與多邊開發銀行信用為一個 Bucket,投資級的科技與電信公司信用為另一個 Bucket。
 - ▶ 貴金屬(金、銀)為一個 Bucket,非貴金屬(銅、鋁、鐵)為另一個 Bucket。

◆ 權益風險 Bucket 分類表

Bucket number	Market cap	Economy	Sector		
1			Consumer goods and services, transportation and storage administrative and support service activities, healthcare, utilities		
2		Emerging market economy	Telecommunications, industrials		
3	Large		Basic materials, energy, agriculture, manufacturing, mining and quarrying		
4			Financials including government-backed financials, real estate activities, technology		
5		Advanced economy	Consumer goods and services, transportation and storage administrative and support service activities, healthcare, utilities		
6			Telecommunications, industrials		
7			Basic materials, energy, agriculture, manufacturing, mining and quarrying		
8			Financials including government-backed financials, real estate activities, technology		
9	Small	Emerging market economy	All sectors described under bucket numbers 1, 2, 3 and 4		
10	1	Advanced economy	All sectors described under bucket numbers 5, 6, 7 and 8		
11	Other sector ^[20]				
12	Large market cap, advanced economy equity indices (non-sector specific)				
13	Other equity indices (non-sector specific)				

◆ 信用價差風險 Bucket 分類表

Buckets for d	elta CSR non-se	curitisations Table					
Bucket number	Credit quality	Sector					
1		Sovereigns including central banks, multilateral development banks					
2		Local government, government-backed non-financials, education, public administration					
3		Financials including government-backed financials					
4	Investment grade (IG)	Basic materials, energy, industrials, agriculture, manufacturing, mining and quarrying					
5		Consumer goods and services, transportation and storage, administrative and support service activities					
6		Technology, telecommunications					
7		Health care, utilities, professional and technical activities					
8		Covered bonds ^[15]					
9		Sovereigns including central banks, multilateral development banks					
10		Local government, government-backed non-financials, education, public administration					
11		Financials including government-backed financials					
12	High yield (HY) & non-rated (NR)	Basic materials, energy, industrials, agriculture, manufacturing, mining and quarrying					
13		Consumer goods and services, transportation and storage, administrative and support service activities					
14		Technology, telecommunications					
15		Health care, utilities, professional and technical activities					
16	Other sector ^[16]						
17	IG indices						
18	HY indices						

Basel III T	rading Book St	tandard Appro	ach (SBM)	Capital	Requirement
					2021/12/31
Risk Class	Delta_Capital	Vega_Capital	Curvature	_Capital	Class Total
GIRR	XXX	XXX		XXX	XXX
CSR	XXX	XXX		XXX	XXX
CSR(non-CTP)	XXX	XXX		XXX	XXX
CSR(CTP)	XXX	XXX		XXX	XXX
Equity Risk	XXX	XXX		XXX	XXX
Commodity Risk	XXX	XXX		XXX	XXX
FX Risk	XXX	XXX		XXX	XXX
Total Capital	Requirements				XXX
Multiplier					12.5
Total Risk-wei	ghted Assets				XXX

三、債券 GIRR Delta 風險資本

(一)風險因子與Bucket定義

- ◆ 一般利率風險(GIRR)的 Delta 風險因子有兩個維度,
- ▶ 利率敏感性工具計價的每一個幣別的無風險利率收益曲線。
 - ✓ 可能有多條利率曲線,T-Bond、Swap、Inflation、Basis。
- ▶ 下面期限: 0.25年、0.5年、1年、2年、3年、5年、10年、15年、20年、30年。
 - ✓ 不能使用銀行內部的期限分類,一定要依此期限。(MAR21.8, Footnotes[3], FAQ2)

- ◆ 每一個幣別有各自的 Delta GIRR Bucket,
 - ▶ 每一幣別的所有風險因子,視為同一個 Bucket。
 - > 風險權數如下表,

Delta GIRR buckets and ris	k weights				Table 1
Tenor	0.25 year	0.5 year	1 year	2 year	3 year
Risk weight	1.7%	1.7%	1.6%	1.3%	1.2%
Tenor	5 year	10 year	15 year	20 year	30 year
Risk weight (percentage points)	1.1%	1.1%	1.1%	1.1%	1.1%

- ◆ Basel 委員會指明的幣別,可以將上述權數除以根號 2 , $\sqrt{2}$ 。 (MRR 21.44)
 - ➤ EUR、USD、GBP、AUD、JPY、SEK、CAD,以及
 - ▶ 銀行申報的母國貨幣(TWD)。

(二)Delta計算公式

- ◆GIRR 的敏感性(Delta)定義就是萬倍的 PV01,
 - ightharpoonup PV01 表無風險收益曲線上,期限 t 的利率, r_t 上升 1bp,價值(V_i)的變動量,除以 0.0001,

$$s_{k,r_t} = \frac{V_i(r_t + 0.0001, cs_t) - V_i(r_t, cs_t)}{0.0001}$$
(3.1)

- ✓ 其中,r_t表無風險收益曲線期限t的利率。
- ✓ cs_t表期限t的信用價差。
- ✓ Vi為i工具的市場價值。
- ▶ (3.1)式中的利率選擇,需與評價原則一致,一般情況使用即期利率,Spot Rate(Zero Rate)。
 - ✓ 不能隨便簡化使用 Coupon Rate。
- ◆ Delta 風險敏感性乘上風險權數(Risk Weight),求得加權敏感性(Weighted Sensitivity)。 $WS_{\iota} = RW_{\iota} \cdot s_{\iota}$
 - ▶ 風險權數代表經過校正的,反映(99%,10)天可能的變動範圍。

(三)Delta風險彙整架構

甲、Intra-Bucket內的彙整

◆ 對於 Bucket b 的加權風險敏感性, K_b ,計算如下,

$$\mathbf{K}_{b} = \sqrt{\max\left(0, \sum_{k} WS_{k}^{2} + \sum_{k} \sum_{k \neq l} \rho_{kl} WS_{k} WS_{l}\right)}$$
(3.2)

- ▶ 相當於要求的風險資本數量。
- ρ_{kl} 係數公式,

$$\max \left[\exp \left(-\theta \frac{|T_k - T_l|}{\min(T_k, T_l)} \right), \quad 40\% \right]$$

- ✓ T_k與T₁分別為WS_k與WS₁的期限。
- ✓ *θ*設為 0.03。
- ho 相同 Bucket (同幣別),不同期限且不同曲線, ho_{kl} 設定為上表值乘上 99.90%。

◆ Bucket 內的 ρ_{kl} 設定如下表,

D. lt. CI	DD 1	·	20.2			201 1200				
Delta Gl	RR correlat	tions ($ ho_{kl}$) (within th	e same i	bucket, v	vith diffe	erent ten	or and s	ame	Table 2
curve							,			
	0.25 year	0.5 year	1 year	2 year	3 year	5 year	10 year	15 year	20 year	30 year
0.25 year	100.0%	97.0%	91.4%	81.1%	71.9%	56.6%	40.0%	40.0%	40.0%	40.0%
0.5 year	97.0%	100.0%	97.0%	91.4%	86.1%	76.3%	56.6%	41.9%	40.0%	40.0%
1 year	91.4%	97.0%	100.0%	97.0%	94.2%	88.7%	76.3%	65.7%	56.6%	41.9%
2 year	81.1%	91.4%	97.0%	100.0%	98.5%	95.6%	88.7%	82.3%	76.3%	65.7%
3 year	71.9%	86.1%	94.2%	98.5%	100.0%	98.0%	93.2%	88.7%	84.4%	76.3%
5 year	56.6%	76.3%	88.7%	95.6%	98.0%	100.0%	97.0%	94.2%	91.4%	86.1%
10 year	40.0%	56.6%	76.3%	88.7%	93.2%	97.0%	100.0%	98.5%	97.0%	94.2%
15 year	40.0%	41.9%	65.7%	82.3%	88.7%	94.2%	98.5%	100.0%	99.0%	97.0%
20 year	40.0%	40.0%	56.6%	76.3%	84.4%	91.4%	97.0%	99.0%	100.0%	98.5%
30 year	40.0%	40.0%	41.9%	65.7%	76.3%	86.1%	94.2%	97.0%	98.5%	100.0%

^{ightarrow} 相同 Bucket(同幣別),同期限但不同曲線, ho_{kl} 設定為 99.90%。(MRR 21.47)

乙、組別間的彙整

- ◆ 不同 Bucket 間(幣別)的風險彙整,也要考慮相關性。
 - ▶ Basel 文件有交代相關係數的計算。
- ◆ 首先,計算 Bucket b 的 S_b與 Bucket b 的 S_c如下,

$$\mathbf{S}_b = \sum_k \mathbf{W} \mathbf{S}_k$$
 , $\mathbf{S}_c = \sum_k \mathbf{W} \mathbf{S}_k$

▶ 如果 Sb與 Sc的值,會造成下面式子負值,則改變計算公式。

if
$$\sum_{b} K_b^2 + \sum_{b} \sum_{b \neq c} \gamma_{bc} S_b S_c < 0$$
,

$$S_b = \max \left[\min \left(\sum_{k} W S_k, \quad K_b \right), \quad -K_b \right]$$
(3.3)

$$S_c = \max \left[\min \left(\sum_{k} W S_k, K_c \right), -K_c \right]$$

◆ Delta 風險資本可計算如下,

Delta =
$$\sqrt{\sum_{b} K_b^2 + \sum_{c \neq b} \sum_{c \neq b} \gamma_{bc} S_b S_c}$$
 (3.4)

▶ 根據 Basel 文件(MAR 21.50, p46),不同幣別間, Inter-Bucket 間的相關性為 50%。

(四)情境計算

- ◆ 上面計算要分三種情境計算(MAR 21.6, p28),
 - ▶ 情境一,正常相關:如前述。
 - ho 情境二,高度相關: ho_{kl} 與 γ_{bc} 皆乘上 1.25,但最大為 100%。
 - ▶ 情境三,低度相關: ρ_{kl}與γ_{bc}修正如下,

$$\rho_{kl}^{low} = \max(2 \times \rho_{kl} - 100\%, 75\% \times \rho_{kl})$$

$$\gamma_{bc}^{low} = \max(2 \times \gamma_{bc} - 100\%, 75\% \times \gamma_{bc})$$
(3.5)

- ◆ 每個情境計算 Delta 風險資本、Vega 風險資本、Curvature 風險資本。
 - ▶ 將三者直接相加,取其大者,為其總資本需求。
 - ▶ 可以直接用於全交易簿部位。
 - ▶ 亦可於 Trading Desk 的範圍,各 Desk 計算。[MAR 21.7(2)(b)]

四、債券 GIRR Curvature 風險資本

(一)Curvature 的定義

- ◆ 以利率選擇權為例,敏感性是選擇權真實價值的變動,減去以 Delta 估計的價值變動量。
 - ▶ 這時整條利率曲線平行移動,一個固定的大量變動。
 - ▶ 在 GIRR 中, 0.25 年有最高的數值 1.7%。
- ◆ 數學上表示為,
 - ▶ 今 Vi表選擇權價格, Tik 為標的利率水準,

$$CVR_k = V_i(r_k \pm dr_k) - V_i(r_k) - RW_k^{Curvature} \times s_{ik}, \quad dr_k = 0.017$$

$$CVR_k = dV_i(r_k) - \left[\frac{\partial V_i}{\partial r_k}\right] dr_k, \quad dr_k = 0.017$$
 (4.1)

- ✓ 計算時,假設波動性σ為定值不變。
- ✓ RW^{Curvature} 等於各天期中,最高 Delta 風險權數的值。(MAR21.99, p63)

◆ 上、下震盪,計算 Curvature Risk 資本需求,

$$CVR_{k}^{+} = -\sum_{i} \left\{ V_{i} \left(x_{k}^{RW(Curvature)^{+}} \right) - V_{i}(x_{k}) - RW_{k}^{Curvature} \times s_{ik} \right\}$$

$$CVR_{k}^{-} = -\sum_{i} \left\{ V_{i} \left(x_{k}^{RW(Curvature)^{-}} \right) - V_{i}(x_{k}) + RW_{k}^{Curvature} \times s_{ik} \right\}$$

(二)風險因子彙整

甲、Bucket內的彙整

- ◆ 使用 Bucket 對應的相關係數,彙整 Bucket 資本需求。
 - ▶ 對於 Bucket b 的加權風險敏感性, K_b, 計算如下,

$$\mathbf{K}_b = \max(K_b^+, K_b^-)$$

$$K_{b}^{+} = \sqrt{\max\left(0, \sum_{k} \max(CVR_{k}^{+}, 0)^{2} + \sum_{l \neq k} \sum_{k} \rho_{kl}CVR_{k}^{+}CVR_{l}^{+}\psi(CVR_{k}^{+}, CVR_{l}^{+})\right)}$$

$$K_{b}^{-} = \sqrt{\max\left(0, \sum_{k} \max(CVR_{k}^{-}, 0)^{2} + \sum_{l \neq k} \sum_{k} \rho_{kl}CVR_{k}^{-}CVR_{l}^{-}\psi(CVR_{k}^{-}, CVR_{l}^{-})\right)}$$

$$\psi(x, y) = \begin{cases} 1, & \text{otherwise} \\ 0, & x < 0, y < 0 \end{cases}$$

▶ Intra-Bucket Curvature 的相關性為 Delta 計算相關性的平方。

乙、Buckets間的彙整

- ◆ 不同 Bucket 間的風險彙整,也要考慮相關性。
 - ▶ Basel 文件有交代相關係數的計算。
- ◆ 首先,計算 Bucket b 的 S_b如下,
 - > 如果前面選擇向上震盪,

$$S_b = \sum_k CVR_k^+$$

> 如果前面選擇向下震盪,

$$S_b = \sum_k CVR_k^-$$

◆ 其次,如下定義ψ。

$$\psi(x, y) = \begin{cases} 1, & \text{otherwise} \\ 0, & x < 0, y < 0 \end{cases}$$

◆ Curvature 風險資本可計算如下,

Curvature_Risk =
$$\sqrt{\max\left(0, \sum_{b} K_{b}^{2} + \sum_{b \neq c} \sum_{b} \gamma_{bc} S_{b} S_{c} \psi(S_{b}, S_{c})\right)}$$

- ▶ Inter-Bucket Curvature 的相關性為 Delta 計算相關性的平方。
- ◆ 與 Delta Risk 一樣,需分三類情境計算,取其大者為資本需求

五、權利性質工具 GIRR Vega 風險資本

(一)Vega 的定義

- ◆ GIRR 的 Vega Risk 的風險因子,是標的物為 GIRR 敏感之選擇權的隱含波動性,有兩個維度。
 - ▶ 選擇權到期日:需要映射到,0.5年、1年、3年、5年、10年。
 - ▶ 選擇權標的資產在選擇權到期後剩餘期間:需要映射到,0.5年、1年、3年、5年、10年。
- ◆ Vega 定義,

$$vega = \frac{\partial V_i}{\partial \sigma_i}$$

- ✓ 金融工具i的價格為 V_i , σ_i 為其隱含波動性。此處的波動性變動量可用0.0001。(Explanatory note, page 19.)
- ▶ 在一般利率風險中,令第 k 個風險因子的 Vega 敏感性為,

$$s_k = vega \times implied _volatility$$
 (5.1)

◆ Vega Risk 的 Bucket 定義與 Delta Risk 相同,

◆ Vega Risk 的風險權數表,

Regulatory liquidity horizon, $LH_{risk\ class}$ and risk weights per risk cla	gulatory liquidity horizon, LHrisk class and I	risk weights per risk class
--	--	-----------------------------

Table 13

Risk class	LH _{risk class}	Risk weights
GIRR	60	100%
CSR non-securitisations	120	100%
CSR securitisations (CTP)	120	100%
CSR securitisations (non-CTP)	120	100%
Equity (large cap and indices)	20	77.78%
Equity (small cap and other sector)	60	100%
Commodity	120	100%
FX	40	100%

$$RW_{k} = \min \left[RW_{\sigma} \cdot \frac{\sqrt{LH_{risk_class}}}{\sqrt{10}}, 100\% \right]$$

$$\checkmark$$
 $RW_{\sigma} = 55\%$, $risk_class$: Table _13

◆ Vega 風險量乘上風險權數(Risk Weight),求得加權敏感性(Weighted Sensitivity)。

$$WS_k = RW_k \cdot s_k$$

(二)風險因子彙整

◆ Intra-Bucket 相關性:

$$\rho_{kl} = \min[\rho_{kl}^{(option_maturity)} \cdot \rho_{kl}^{(underlying_maturity)}, 1]$$

$$\rho_{kl}^{(option_maturity)} = \exp\left(-\alpha \frac{|T_k - T_l|}{\min[T_k, T_l]}\right)$$

- \checkmark $\alpha = 1\%$
- ✓ T_k表選擇權到期時間,從 Vega 敏感性 VR_k計算起算,以年為單位。
- ✓ 選擇權的到期時間映對到,半年、一年、三年、五年與十年。

$$\rho_{kl}^{(underlying_maturity)} = \exp\left(-\alpha \frac{\left|T_k^U - T_l^U\right|}{\min[T_k^U, T_l^U]}\right)$$

- \checkmark $\alpha = 1\%$
- ✓ T^Uk表選擇權標的物的到期時間,從 Vega 敏感性 VRk計算起算,以年為單位。
- ✔ 選擇權標的物的到期時間映對到,半年、一年、三年、五年與十年。

- ◆ Inter-Bucket 相關性:
 - ightharpoons 不同 Buckets,彙整 Vega 風險部位時,參數 γ_{bc} 設定同 Delta 風險部位,為 50%。
- ◆ 與 Delta Risk 一樣,需分三類情境計算,取其大者為資本需求

六、高運算量的需求

- ◆ 一筆利率選擇權的產品需要計算 35 個敏感性
 - ▶ 十個利率風險因子, Delta 算 10 次
 - ➤ Curvature 上升算 10 次, Curvature 下降算 10 次
 - ▶ 五個波動性風險因子, Vega 要算 5次
- ◆ 對於交易業務積極的銀行,部位數量龐大
 - > 可以預見需要高性能的運算
- ◆ 根據規範,TMU 的理財產品或承銷業務的部位應該歸於交易簿
 - ▶ 這類產品通常沒有簡單的解析解或數值解
 - ✓ 以模擬法為主的評價方法
 - ▶ 這類 Fee Income 為主的業務,需要提早因應

