Thesis Work: Ergotropy and Quantum Phase Transitions

November 19, 2020

Contents

1	Introduction	2
2	Ergotropy and related measures	3
	2.1 Ergotropy	. 3
	2.2 Max-Ergotropy	
	2.3 Other Measures	
3	Quantum Phase Transitions	4
	3.1 Heisenberg Models	. 4
	3.1.1 Transverse Field Ising Model	
	3.1.2 XY model	. 4
	3.1.3 XXZ Model	
4	Analitical Calculations	5
	4.1 The XY Model ground state	. 5
	4.1.1 One Site	
	4.2 Two sites	
	4.2.1 Two distant sites	
5	Numerical Simulations	12
	5.1 Exact Diagonalization	. 12
	5.2 DMRG	
6	Conclusions	13

Chapter 1 Introduction

Ergotropy and related measures

- 2.1 Ergotropy
- 2.2 Max-Ergotropy
- 2.3 Other Measures

Quantum Phase Transitions

- 3.1 Heisenberg Models
- 3.1.1 Transverse Field Ising Model
- 3.1.2 XY model
- 3.1.3 XXZ Model

Analitical Calculations

4.1 The XY Model ground state

Correlation Matrix Derivation

4.1.1 One Site

There are only two Majorana fermions: \check{a}_1 and \check{a}_2 .

The one-site Hamiltonian is $-\frac{\lambda}{2}\sigma^z$

We write all the correlators in the form $\delta_{mn} + i\Gamma_{mn}$:

$$\langle \check{a}_m \check{a}_n \rangle = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + i \begin{bmatrix} 0 & g_0 \\ -g_0 & 0 \end{bmatrix}$$
 (4.1)

 Γ is already in the block diagonal form.

The density matrix ρ_1 has eigenvalues:

$$p_1 = (1 + g_0)/2$$
 $p_2 = (1 - g_0)/2$ (4.2)

With g_0 :

$$g_0 = \frac{1}{2\pi} \int_0^{2\pi} d\phi \frac{\lambda - \cos\phi + i\sin\phi}{|\lambda - \cos\phi + i\sin\phi|} = \frac{1}{2\pi} \int_0^{2\pi} d\phi \frac{\lambda - \cos\phi}{\sqrt{(\lambda - \cos\phi)^2 + \sin^2\phi}}$$
(4.3)

Figure 4.1

From the eigenvalues we can already calculate something:

• Purity:

$$\mathfrak{P}(1) = \sum_{i} (p_i)^2 = \frac{1 + g_0^2}{2} \tag{4.4}$$

Figure 4.2: Eigenvalues of one-site density matrix

• Max-Ergo:

$$\mathcal{M}(1) = 2\sum_{i=1}^{D/2} \left(p_i^{(\downarrow)} - p_{D-i+1}^{(\downarrow)} \right) \left| \epsilon_i^{(\uparrow)} \right| = 2(p_1 - p_2)|e_1| = 2g_0 \left| \frac{\lambda}{2} \right| \quad (4.5)$$

 \bullet Rescaled-Max-Ergo

$$\mathfrak{M}(\mathcal{I}) = g_0 \tag{4.6}$$

Figure 4.3: Second Derivative Ergotropy (g_0)

4.2 Two sites

Eigenvalues of the correlation matrix

$$\nu_{\pm} = \sqrt{\left(\frac{g_1 - g_{-1}}{2}\right)^2 + g_0^2} \pm \left|\frac{g_1 + g_{-1}}{2}\right| \tag{4.7}$$

 $\nu_- < \nu_+$

Figure 4.4

$$\langle \hat{c}_m \hat{c}_n \rangle = 0, \quad \langle \hat{c}_m^{\dagger} \hat{c}_n \rangle = \delta_{mn} \frac{1 + \nu_m}{2}$$
 (4.8)

$$\left\langle g \left| c_j^{\dagger} c_j \right| g \right\rangle = \frac{1 + \nu_j}{2}$$
 (4.9)

Eigenvalues of the density matrix:

$$p_{\pm\pm} = (1 \pm \nu_{-})(1 \pm \nu_{+})/4 \tag{4.10}$$

Eigenvalues of 2 site Hamiltonian:

$$H = -\frac{1}{2} \left(\sigma^x \sigma^x + \lambda \sigma^z \sigma^0 + \lambda \sigma^0 \sigma^z \right) = \begin{pmatrix} -\lambda & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 0 & 0 & \lambda \end{pmatrix}$$
(4.11)

$$\left\{ -\frac{1}{2}\sqrt{1+4\lambda^2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\sqrt{1+4\lambda^2} \right\}$$
 (4.12)

2 site theo

Figure 4.5: Eigenvalues of the 2-site density matrix

$$\mathcal{M}(\mathcal{I}) = 2 \sum_{i=1}^{2} \left(p_{i}^{(\downarrow)} - p_{D-i+1}^{(\downarrow)} \right) \left| \epsilon_{i}^{(\uparrow)} \right|$$

$$\left(p_{1}^{(\downarrow)} - p_{4}^{(\downarrow)} \right) \left| \epsilon_{1}^{(\uparrow)} \right| + \left(p_{2}^{(\downarrow)} - p_{3}^{(\downarrow)} \right) \left| \epsilon_{2}^{(\uparrow)} \right| =$$

$$(1/4) \left[(1 + \nu_{-})(1 + \nu_{+}) - (1 - \nu_{-})(1 - \nu_{+}) \right] \left(\sqrt{1 + 4\lambda^{2}} \right) +$$

$$(1/4) \left[(1 - \nu_{-})(1 + \nu_{+}) - (1 + \nu_{-})(1 - \nu_{+}) \right] =$$

$$\frac{(\nu_{+} + \nu_{-})}{2} \left(\sqrt{1 + 4\lambda^{2}} \right) + \frac{\nu_{+} - \nu_{-}}{2}$$

$$(4.13)$$

Normalized:

$$\mathfrak{M}(\mathcal{I}) = \frac{\mathcal{M}(\mathcal{I})}{2\left|\epsilon_1^{(\uparrow)}\right|} = \frac{(\nu_+ + \nu_-)}{2} + \frac{(\nu_+ - \nu_-)}{2\left(\sqrt{1 + 4\lambda^2}\right)}$$
(4.14)

Figure 4.6: 2 Site Max-Ergotropy

Figure 4.7: Second derivative 2 site Max-Ergotropy

4.2.1 Two distant sites

Let's try substituting g_1 with g_d with d distance between sites. Eigenvalues of the correlation matrix as in (PHYSICAL REVIEW A 78, 052302 2008)

$$\nu_{\pm} = \sqrt{\left(\frac{g_d - g_{-d}}{2}\right)^2 + g_0^2} \pm \left|\frac{g_d + g_{-d}}{2}\right| \tag{4.15}$$

Eigenvalues of the density matrix:

$$p_{\pm\pm} = (1 \pm \nu_{-})(1 \pm \nu_{+})/4 \tag{4.16}$$

Eigenvalues of distant Hamiltonian:

$$H_{dist} = -(\lambda/2)(\sigma_l^z \sigma_{l+d}^0 + \sigma_l^0 \sigma_{l+d}^z)$$

$$(4.17)$$

$$eigs = \{-\lambda, 0, 0, \lambda\} \tag{4.18}$$

Normalized-Max-Ergo: (the two eigenvalues of the Hamiltonian are the same, so we simplify)

$$\mathfrak{M}(\mathcal{I}) = \sum_{i=1}^{2} \left(p_i^{(\downarrow)} - p_{D-i+1}^{(\downarrow)} \right) = \frac{(\nu_+ + \nu_-)}{2} + \frac{(\nu_+ - \nu_-)}{2}$$
(4.19)

Numerical Simulations

- 5.1 Exact Diagonalization
- **5.2** DMRG

Chapter 6
Conclusions