Machine Learning Applications for Particle Identification at the $S\pi RIT$ TPC

Mentors: Dr. M Kuchera, Dr. Ramanujan - Davidson College

Collaborators: Dr. Betty Tsang, Tommy Tsang, Tom Ladouceur, Fanurs Teh- Michigan State University

Agenda

- 1. Interesting facts about facilities being used remotely for this project
- 2. Why Particle Identification?
- 3. What is Machine Learning, and why use it at the $S\pi RIT$ TPC?
- 4. Project #1
- 5. Project #2

How are elements created in the universe?

RIKEN Nishina Center Wako, Japan

Superconducting Ring Cylcotron- particles go 70% of the speed of light

What is the $S\pi RIT TPC$?

3D image of a nuclear collision

Why Particle Identification?

Hypothetical Scenario

- A scientist believes that 4 protons and 3 deuterons will come out of a nuclear collision happening inside of a star
- The $S\pi RIT$ TPC is able to simulate this collision, and they need to be able to detect and identify the reaction

Data Collection at the SπRIT TPC

Identifying Particle Types

Data Collection for the SπRIT TPC

A Brief Overview

- Long pipeline that begins with binary data
- Charge and time data for each pad
- Momentum (P_y, P_x, P_z) and positional change in energy (dEdX)
- Main particle types: pions, protons, deuterons, tritons, He3, He4

Traditional Method

Gaussian Method

• This method works well, but is there another method that is more accurate?

Credit: Tommy Tsang

A New Idea:
How about apply
Machine Learning?

What is Machine Learning?

- A method for adjusting a mathematical function to be able to predict a correct output for a given input
- Define terminology: supervised learning, labels, training data and test data, examples, features, and targets

Project #1

Machine Learning For Particle Identification

Project #1

- Project Objective: Identify particle types from a nuclear collision in $S\pi RIT$ detector when given momentum and energy information from a collision
- Recreated Tom Ladouceur's results
- Features: Px, Py, Pz, and dEdX. Targets: Proton, Triton, Deuteron, He3, He4
- Number of examples in dataset: around 700,000
- Machine learning model: Keras fully connected neural network
 - 3 hidden layers with 30 neurons

Predicted label

Project #2

SPiRITTPC Tracks

Pad electricity images

https://groups.nscl.msu.edu/hira/cosmic/SpiritTPC.html

https://groups.nscl.msu.edu/hira/cosmic/CosmicGallery.html

Identifying Single-Track Images Project #2

- Objective: Create a machine learning model that can identify a particle solely from an image
- Features: one feature an image. Targets: P, T, D, He3, & He4
- #of examples: around 7,000
- Strategy: use a pre-trained Convolutional Neural Network (VGG16), and append 2 fully connected layers with 512 neurons each, with a 5 neuron output layer

Untouched Input Example

Log Scale-Feature Scaling

Power Transform Feature Scaling

Log Scale-Feature Scaling Loss Curves

Power Transform-Feature Scaling Loss Curves

Log Scale-Feature Scaling

Power Transform Feature Scaling

- What we learned: we can compose machine learning models that identify particles successfully, but there has not been an official comparison between ML methods and traditional methods
- Upcoming work: expanding the machine learning algorithm from Project #2 to identify images with

two tracks, of possibly different particle types

Concluded.