AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1. (Withdrawn) A dispenser for fabricating a liquid crystal display panel, comprising:
- a syringe having a nozzle at one end and separated from a substrate;
- a vertical driving motor driving the syringe in a vertical direction;
- a contact type switch switching on/off the vertical driving motor depending on whether the nozzle and the substrate are in contact with each other; and
- a first sensor detecting an initial value between the nozzle and the substrate by switching on and off the contact type switch.
- 2. (Withdrawn) The dispenser of claim 1, wherein the first sensor comprises a laser displacement sensor.
 - 3. (Withdrawn) The dispenser of claim 1, wherein a sealant is stored in the syringe.
 - 5. (Withdrawn) The dispenser of claim 1, wherein a liquid silver is stored in the syringe.
- 6. (Withdrawn) The dispenser of claim 1, wherein the vertical driving motor drives the syringe according to driving data inputted from a user through an input unit.
- 7. (Withdrawn) The dispenser of claim 6, wherein the input unit comprises one of a touch panel and a keyboard.
- 8. (Withdrawn) The dispenser of claim 1, further comprising a body supporting the syringe.

- 9. (Withdrawn) The dispenser of claim 1, further comprising a table on which the substrate is loaded.
- 10. (Withdrawn) The dispenser of claim 9, wherein the table is capable of horizontally moving in forward/backward and left/right directions.
- 11. (Currently Amended) A method for controlling a gap between a nozzle and a substrate by using a dispenser for fabricating a liquid crystal display panel, comprising:

lowering a body supporting a syringe having a nozzle at one end towards a substrate untilthe nozzle contacts a substrate using a vertical driving motor, wherein the vertical driving motor drives the syringe according to driving data input from a user through an input unit which comprises one of a touch panel and a keyboard;

stopping the lowering when the nozzle contacts the substrate, wherein a contact type switch detects the nozzle contacting the substrate;

lifting up the body, wherein the contact type switch detects the nozzle being isolated from the substrate;

detecting an initial value between the nozzle and the substrate by turning on or tuning off when a state of the contact type switch is switched by lifting up the body when the nozzle contacts the substrate, wherein the initial value is a distance between the nozzle and the substrate when the nozzle is in contact with the substrate;

wherein the lifting up the body is at a speed slower than a speed of the lowering the body so that the nozzle is isolated from the substrate; and

lowering the body, so that the nozzle reaches a desirable height from the initial value.

- 12. 13. (Cancelled)
- 14. (Previously Presented) The method of claim 11, wherein the detecting the initial value is performed by a laser displacement sensor.

- 15. (Original) The method of claim 11, wherein a sealant is stored in the syringe.
- 16. (Original) The method of claim 11, wherein a liquid crystal is stored in the syringe.
 - 17. (Original) The method of claim 11, wherein a liquid silver is stored in the syringe.
- 18. (New) A method for controlling a gap between a nozzle and a substrate, comprising:

lowering a body supporting a syringe having a nozzle at one end towards a substrate;

stopping the lowering when the nozzle contacts the substrate, wherein a contact type switch detects the nozzle contacting the substrate;

lifting up the body, wherein the contact type switch detects the nozzle being isolated from the substrate;

detecting an initial value between the nozzle and the substrate when a state of the contact switch is switched; and

positioning the body so that the nozzle reaches a desirable height from the initial value.

19. (New) The method of claim 18, wherein the detecting the initial value is performed by a laser displacement sensor.