Schwingkreise 1

Freie Schwingung

Die Werte U_1 , U_2 , β_u sowie I_1	e_{I_1,I_2,eta_i} müssen aus den Anfangswerten bestimmt werden.				
	Parallelschwingkreis	Serienschwingkreis			
	$u(t) \left\{ \begin{array}{c} i_L \\ \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} i_R \\ \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} i_C \\ \\ \\ \end{array} \right\} \left\{ \begin{array}{c} i$	L R C			
DGL	$\ddot{u} + \frac{1}{RC}\dot{u} + \frac{1}{LC}u = 0$	$\ddot{i} + \frac{R}{L}\dot{i} + \frac{1}{LC}i = 0$			
	$\ddot{u} + \frac{\omega_r}{Q_P}\dot{u} + \omega_r^2 u = 0$	$\ddot{i} + \frac{\omega_r}{Q_S}\dot{i} + \omega_r^2 i = 0$			
Resonanzfrequenz	$\omega_r =$	$=\frac{1}{\sqrt{LC}}$			
Güte	$Q_P = R\sqrt{\frac{C}{L}} = \frac{R}{\omega_r L} = R\omega_r C$	$Q_S = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\omega_r L}{R} = \frac{1}{R\omega_r C}$			
Dämpfungsfaktor	ξ =	$=\frac{1}{2Q}$			
Standardstartbedingungen	$u(t=0) = U_0$ $\dot{u}(t=0) = -\frac{U_o}{RC}$	$i(t=0)=0 \dot{i}(t=0)=\frac{U_o}{L}$			
Aperiodisch, $Q < \frac{1}{2}$	$u(t) = U_1 e^{\alpha_1 t} + U_2 e^{\alpha_2 t}$	$i(t) = \underline{I_1}e^{\alpha_1 t} + \underline{I_2}e^{\alpha_2 t}$			
	$\alpha_{1,2} = -\frac{\omega_r}{2Q_P} \pm \omega_r \sqrt{\frac{1}{4Q_P^2} - 1}$	$\alpha_{1,2} = -\frac{\omega_r}{2Q_S} \pm \omega_r \sqrt{\frac{1}{4Q_S^2} - 1}$			
	$U_1 = U_0 \frac{\frac{\omega_r}{Q} + \alpha_2}{\alpha_2 - \alpha_1} \qquad U_2 = U_0 \frac{\frac{\omega_r}{Q} + \alpha_1}{\alpha_1 - \alpha_2}$	$I_1 = \frac{U_0}{(\alpha_1 - \alpha_2)L} \qquad I_2 = -I_1$			
Kritisch, $Q = \frac{1}{2}$	$u(t) = (U_1 + \beta_u t)e^{\alpha t} = (U_1 + \beta_u t)e^{-\omega_r t}$	$u(t) = (\underline{I_1} + \underline{\beta_i}t)e^{\alpha t} = (\underline{I_1} + \underline{\beta_i}t)e^{-\omega_r t}$			
	$\alpha_{1,2} = -\frac{\omega_r}{2Q_P} = -\omega_r$	$\alpha_{1,2} = -\frac{\omega_r}{2Q_S} = -\omega_r$			
	$\alpha_{1,2} = -\frac{\omega_r}{2Q_P} = -\omega_r$ $U_1 = U_0 \beta = -U_0 \left(\frac{\omega_r}{Q} + \alpha\right)$	$I_1 = 0 \beta = \frac{U_0}{L}$			
Periodisch, $Q > \frac{1}{2}$	$u(t) = U_1 e^{\alpha_1 t} + U_2 e^{\alpha_2 t}$	$i(t) = \underline{I_1}e^{\alpha_1 t} + \underline{I_2}e^{\alpha_2 t}$			
	$\alpha_{1,2} = -\frac{\omega_r}{2Q_P} \pm j\omega_r \sqrt{1 - \frac{1}{4Q_P^2}}$	$\alpha_{1,2} = -\frac{\omega_r}{2Q_s} \pm j\omega_r \sqrt{1 - \frac{1}{4Q_s^2}}$			
	$\omega_0 = \omega_r \sqrt{1 - \frac{1}{4Q_p^2}}$ $\omega_0 \approx \omega_r (Q_P > 10)$	$\omega_0 = \omega_r \sqrt{1 - \frac{1}{4Q_S^2}}$ $\omega_0 \approx \omega_r(Q_S > 10)$			
	$u(t) = \frac{U_0 \omega_r}{\omega_0} e^{-\frac{\omega_r}{2Q}t} \cos\left[\omega_0 t + \arctan\frac{1}{\sqrt{4Q^2 - 1}}\right]$	$I_1 = \frac{U_0}{L \cdot 2 \cdot j \omega_0} I_2 = -I_1 i(t) = \frac{U_0}{\omega_0 L} e^{-\xi \omega_r t} \sin(\omega_0 t)$			

1.2 Erzwungene Schwingung

Maximalwerte	$I_{Lmax} = I_{Cmax} = \frac{I \cdot Q_P}{\sqrt{1 - \frac{1}{4Q_P}}}$		Gilt auch für $U_{Lmax} = U_{Cmax}$ bei dem Serieschwing-	
	$\omega_{I_{Lmax}} = \omega_r \sqrt{1 - \frac{1}{2Q_p^2}} \qquad \omega_{I_{Cmax}} = \frac{\omega_r}{\sqrt{1 - \frac{1}{2Q_p^2}}}$		kreis, jedoch muss Q_P mit Q_s ersetzt werden.	
Bandbreite, Verstimmung	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$b_{w} = \omega_{2} - \omega_{1} = \frac{\omega_{r}}{Q}$ $B = \frac{f_{r}}{Q} = \frac{b_{w}}{2\pi}$ $\eta = \frac{\omega}{\omega_{r}} - \frac{\omega_{r}}{\omega} \qquad \frac{Z}{R} = \frac{U}{U_{max}} = \frac{1}{\sqrt{1 + (\eta Q)^{2}}}$	
	$\omega = \omega_1$	$\omega = \omega_r$		$\omega = \omega_2$
Zeigerdiagramme	$ \underline{U}_{R} = \underline{\underline{U}_{0}} \\ \underline{U}_{R} = \underline{\underline{U}_{0}} \\ \underline{\underline{U}}_{C} $ $ \underline{\underline{U}}_{C} $ $ \underline{\underline{U}}_{C} $ $ \underline{\underline{U}}_{C} $	$Im \qquad \underline{U}_{1}$ $\underline{U}_{R} = \underline{U}_{1}$	$\underbrace{\underline{U}_{C}} \xrightarrow{\underline{I}} Re$	$ \begin{array}{c} Im & \underline{U}_L \\ \underline{U}_Q & \underline{U}_C \end{array} $ $ \underline{U}_R = \frac{\underline{U}_Q}{\sqrt{2}} $ Re

1.3 Verlustbehafteter Schwingkreis

Resonanzfrequenz ω_r tritt dort auf, wo $\text{Im}\{Y(\omega)\} = \text{Im}\{Z(\omega)\} = 0$.

1.4 Resonanzkreis mit realen Elementen

Umrechnungen Parallel- \iff Serieschaltungen von L & R oder C & R.

	Parallel ⇒ Seriell	Seriell ⇒ Parallel
L & R	$R_S = \frac{R_P(\omega L_P)^2}{R_P^2 + (\omega L_P)^2}$ $L_S = \frac{R_P^2 L_P}{R_P^2 + (\omega L_P)^2}$	$R_P = \frac{R_S^2 + (\omega L_S)^2}{R_S}$ $L_P = \frac{R_S^2 + (\omega L_S)^2}{\omega^2 L_S}$
C & R	$R_S = \frac{R_P}{1 + (\omega R_P C_P)^2}$ $C_S = \frac{1 + (\omega R_P C_P)^2}{(\omega R_P)^2 C_P}$	$R_P = \frac{(\omega C_S R_S)^2 + 1}{(\omega C_S)^2 R_S}$ $C_P = \frac{C_S}{1 + (\omega C_S R_S)^2}$

2 RET - Reaktanz-Eintore

2.1 Reaktanzen

Induktivität
$$\underline{Z} = j\omega L$$
 $X = \omega L$ $\overline{B} = -\frac{1}{\omega L}$ Nullstelle: $\lim_{\omega \to 0} X(\omega) = 0$ Polstelle: $\lim_{\omega \to \infty} X(\omega) = \infty$

Kapazität $\underline{Z} = \frac{1}{j\omega C} = \frac{-j}{\omega C} \qquad X = \frac{-1}{\omega C}$ $B = \omega C$ Nullstelle: $\lim_{\omega \to \infty} X(\omega) = 0$ Polstelle: $\lim_{\omega \to 0} X(\omega) = -\infty$

2.2 Vorgehen bei Netzwerkanalyse

1. Schaltung übersichtlich aufzeichenen und den Startpunkt der Addition bestimmen

- 2. Frequenzverlauf der Reaktanz finden durch fortgeschrittene Addition und Inversion
- 3. Inversion: $B(\omega) = \frac{-1}{X(\omega)}$; Polstelle \iff Nullstelle
- 4. Die so entstandenen Pole und Nullstellen, ausser 0 und ∞ sind die Resonanzfrequenzen des RET

2.3 RET-Typen

		Impeda	nzfunktion		
Тур	Reaktanz	Summenform	Produktform	Verhalten gegen 0/∞	Grad/Potenz
L-Typ ← mm ← control Long Long Long Long Long Long Long Long	X (a)	$\underline{Z}(p) = p \frac{a_n p^{n-1} + \dots + a_1}{b_m p^m + \dots b_0}$	$= \frac{j\omega L_{\infty}[(j\omega)^2 + \omega_3^2][]}{[(j\omega)^2 + \omega_2^2][]}$	$\underline{\underline{Z}}(p) \mid_{\to \infty} = p \frac{a_n}{b_m} = pL_{\infty}$ $\underline{\underline{Z}}(p) \mid_{\to 0} = p \frac{a_1}{b_0} = pL_0$	n: ungerade $m = n - 1$
C-Typ	No.	$\underline{Z}(p) = \frac{1}{p} \frac{a_n p^n + \dots + a_0}{b_m p^{m-1} + \dots + b_1}$	$= \frac{[(j\omega)^2 + \omega_2^2][\dots]}{j\omega C_{\infty}[(j\omega)^2 + \omega_3^2][\dots]}$	$ \underline{Z}(p) \mid_{\to \infty} = \frac{1}{p} \frac{a_n}{b_m} = \frac{1}{pC_{\infty}} $ $ \underline{Z}(p) \mid_{\to 0} = \frac{1}{p} \frac{a_1}{b_0} = \frac{1}{pC_0} $	n : gerade m = n + 1
P-Typ	Y(u) 333	$\underline{Z}(p) = p \frac{a_n p^{n-1} + \dots + a_1}{b_m p^m + \dots b_0}$	$= \frac{j\omega[(j\omega)^2 + \omega_3^2][]}{C_{\infty}[(j\omega)^2 + \omega_2^2][(j\omega)^2 + \omega_4^2]]}$	$\underline{\underline{Z}}(p) \mid_{\to\infty} = \frac{1}{p} \frac{a_n}{b_m} = \frac{1}{pC_\infty}$ $\underline{\underline{Z}}(p) \mid_{\to0} = p \frac{a_1}{b_0} = pL_0$	n: ungerade $m = n + 1$
S-Typ	No.	$\underline{Z}(p) = \frac{1}{p} \frac{a_n p^n + \dots + a_0}{b_m p^{m-1} + \dots b_1}$	$= \frac{[L_{\infty}(j\omega)^{2} + \omega_{2}^{2}][(j\omega)^{2} + \omega_{4}^{2}][]}{j\omega[(j\omega)^{2} + \omega_{3}^{2}]]}$	$\underline{\underline{Z}}(p) \mid_{\to \infty} = p \frac{a_n}{b_m} = p L_{\infty}$ $\underline{\underline{Z}}(p) \mid_{\to 0} = \frac{1}{p} \frac{a_1}{b_0} = \frac{1}{pC_0}$	n : gerade m = n – 1

2.4 Minimalreaktanzeintor (MRET)

- 1. Netzwerk übersichtlich aufzeichnen
- 2. Tor offen; Kreise suchen die nur L oder C enthalten; Ein Element des Kreises weglassen, es darf aber kein anderer Zweig stromlos werden.
- 3. Tor kurzgeschlossen; Trennbündel suchen(Knoten an denen nur L oder C liegen); Ein Element kurzschliessen, dabei darf kein anderes Element kurzgeschlossen werden.
- 4. Die verbleibenden Elemente im MRET haben nicht mehr die gleichen Grössen und müssen neu berechnet werden.

2.5 Dualität

Vorgehen

- 1. Netzwerk ohne Kreuzungen aufzeichnen
- 2. In jede Masche (auch in Umfangsmasche) einen dualen Knoten setzen
- 3. Knoten von anstossenden Maschen verbinden. Jeder dieser Maschen hat gemeinsamen Zweig (dualen Zweig).
- 4. In die dualen Zweige die dualen Schaltungselemente einsetzen.

$$C \leftrightarrow L \qquad \qquad R \leftrightarrow G$$

$$u \leftrightarrow i \qquad \qquad \underline{Z} \leftrightarrow \underline{Y}$$

Knoten ↔ Masche Stern ↔ Dreieck Parallelschaltung ↔ Serieschaltung Stromquelle ↔ Spannungsquelle

Zahlenwerte der Dual-Elemente

$$R' = D^2G$$
 $C' = \frac{L}{D^2}$ $U' = DI$
 $L' = D^2C$ $G' = \frac{R}{D^2}$ $I' = \frac{U}{D}$
 $D = Dualfaktor [\Omega]$

Impedanzfunktion $Z_D(s) = \frac{1}{Z(s)}$

2.6 Netzwerksynthese

Mittels Partialbruchzerlegung

1.
$$j\omega \Rightarrow p$$

$$F(p) = \frac{2p^6 + 22p^4 + 68^2 + 48}{3p^5 + 21p^3 + 30p}$$

- 2. F(p) Ausdividieren, falls n > m
- 3. Nenner des echten Bruches zerlegen und Ansatz bilden $\frac{2}{3}p + \frac{8p^4 + 48p^2 + 48}{3p^5 + 21p^3 + 30p} = \frac{A}{3p} + \frac{Bp}{p^2 + 2} + \frac{Cp}{p^2 + 5}$
- 4. Erweitern und Koeffizienten bestimmen $A = \frac{24}{5}$ $B = \frac{8}{9}$ $C = \frac{8}{45}$
- 5. Koeffizienten einsetzen $F(p) = \frac{2}{3}p + \frac{1}{\frac{15}{24}p} + \frac{1}{\frac{9}{8}p + \frac{1}{4}n} + \frac{1}{\frac{45}{8}p + \frac{1}{\frac{8}{8}n}}$
- 6. Schaltung aufzeichnen: (Schaltung ist MRET!)

Impedanzfunktion Z(p):

Admittanzfunktion Y(p):

Mittels Kettenbruchzerlegung

- 1. $j\omega \Rightarrow p$ $F(p) = \frac{2p^6 + 22p^4 + 68p^2 + 48}{3p^5 + 21p^3 + 30p}$
- 2. F(p) ausdividieren = $\frac{2}{3}p + \frac{8p^4 + 48p^2 + 48}{3p^5 + 21p^3 + 30p}$
- 3. Kehrwert des Restes wieder ausdividieren $\frac{2}{3}p + \frac{1}{\frac{3p^5 + 21p^3 + 30p}{8p^4 + 48p^2 + 48}} = \frac{2}{3}p + \frac{1}{\frac{3}{8}p + \frac{3p^3 + 12p}{8p^4 + 48p^2 + 48}}$
- 4. Schritt zwei wiederholen bis kein Rest mehr vorhanden ist $F(P) = \frac{2}{3}p + \frac{1}{\frac{3}{8}p + \frac{1}{\frac{3}{16}p + \frac{1}{\frac{1}{16}p}}}$
- 5. Schaltung aufzeichnen:

Impedanzfunktion Z(p):

3 Vierpole

3.1 Vierpolgleichungen und ihre Parameter

Prim. Kurzschluss: $\underline{U}_1 = 0$ Sek. Kurzschluss: $\underline{U}_2 = 0$ Prim. Leerlauf: $\underline{I}_1 = 0$ Sek. Leerlauf: $\underline{I}_2 = 0$

Form	Vierpolgleichung	Δ_{11}	Δ_{12}	Δ_{21}	Δ_{22}	Matrixform
Impedanzform	$\underline{U}_1 = \underline{Z}_{11}\underline{I}_1 + \underline{Z}_{12}\underline{I}_2$ $\underline{U}_2 = \underline{Z}_{21}\underline{I}_1 + \underline{Z}_{22}\underline{I}_2$	$\underline{Z}_{11} = \underline{\underline{U}_1}_{\underline{I}_1} \mid_{\underline{I}_2 = 0}$	$\underline{Z}_{12} = \underline{\underline{U}_1}_{\underline{I}_2} \mid_{\underline{I}_1 = 0}$	$\underline{Z}_{21} = \frac{\underline{U}_2}{\underline{I}_1} \mid_{\underline{I}_2 = 0}$	$\underline{Z}_{22} = \frac{\underline{U}_2}{\underline{I}_2} \mid_{\underline{I}_1 = 0}$	$\left[\frac{\underline{U}_1}{\underline{U}_2}\right] = \left[Z\right] \left[\frac{\underline{I}_1}{\underline{I}_2}\right]$
Admittanzform	$\underline{I}_1 = \underline{Y}_{11}\underline{U}_1 + \underline{Y}_{12}\underline{U}_2$ $\underline{I}_2 = \underline{Y}_{21}\underline{U}_1 + \underline{Y}_{22}\underline{U}_2$	$\underline{\underline{Y}}_{11} = \underline{\underline{\underline{I}}}_{1} \mid_{\underline{\underline{U}}_{2} = 0}$	$\underline{Y}_{12} = \underline{\underline{I}_1}_{\underline{U}_2} \mid_{\underline{U}_1 = 0}$	$\underline{Y}_{21} = \underline{\underline{I}_2}_{\underline{U}_1} \mid_{\underline{U}_2 = 0}$	$\underline{Y}_{22} = \underline{\underline{I}_2}_{\underline{U}_2} \mid_{\underline{U}_1 = 0}$	$\begin{bmatrix} \underline{I}_1 \\ \underline{I}_2 \end{bmatrix} = \begin{bmatrix} Y \end{bmatrix} \begin{bmatrix} \underline{U}_1 \\ \underline{U}_2 \end{bmatrix}$
Kettenform	$\underline{U}_1 = \underline{A}_{11}\underline{U}_2 + \underline{A}_{12}\underline{I}_2$ $\underline{I}_1 = \underline{A}_{21}\underline{U}_2 + \underline{A}_{22}\underline{I}_2$	$\underline{A}_{11} = \underline{\underline{U}}_{\underline{1}} \mid_{\underline{I}_2 = 0}$	$\underline{A}_{12} = \underline{\underline{U}}_{1} _{\underline{U}_{2}=0}$	$\underline{A}_{21} = \underline{\underline{I}_1}_{\underline{U}_2} \mid_{\underline{I}_2 = 0}$	$\underline{A}_{22} = \underline{\underline{I}_1}_{\underline{I}_2} \mid_{\underline{U}_2 = 0}$	$\left[\frac{\underline{U}_1}{\underline{I}_1}\right] = \left[A\right] \left[\frac{\underline{U}_2}{\underline{I}_2}\right]$
Hybridform	$\underline{U}_1 = \underline{H}_{11}\underline{I}_1 + \underline{H}_{12}\underline{U}_2$ $\underline{I}_2 = \underline{H}_{21}\underline{I}_1 + \underline{H}_{22}\underline{U}_2$	$\underline{H}_{11} = \underline{\underline{u}_1}_{\underline{I}_1} \mid_{\underline{U}_2 = 0}$	$\underline{H}_{12} = \underline{\underline{U}}_{1} _{\underline{I}_{1}=0}$	$\underline{H}_{21} = \underline{\underline{I}_2}_{\underline{I}_1} \mid_{\underline{U}_2 = 0}$	$\underline{H}_{22} = \underline{\underline{I}_2}_{\underline{I}_2} \mid_{\underline{I}_1 = 0}$	$\left[\frac{\underline{U}_1}{\underline{I}_2}\right] = \left[H\right] \left[\frac{\underline{I}_1}{\underline{U}_2}\right]$

3.2 Leerlauf und Kurzschlussimpedanzen

3.3 Zusammenschalten von 2-Toren

Schaltung	Matrix	allgemeine Form
Serieschaltung	[Z] = [Z'] + [Z'']	
Parallelschaltung	[Y] = [Y'] + [Y'']	$I_{1} = (\underline{Y'}_{11} + \underline{Y''}_{11})\underline{U}_{1} + (\underline{Y'}_{12} + \underline{Y''}_{12})\underline{U}_{2}$ $I_{2} = (\underline{Y'}_{21} + \underline{Y''}_{21})\underline{U}_{1} + (\underline{Y'}_{22} + \underline{Y''}_{22})\underline{U}_{2}$
Serie- Parallelschaltung	[H] = [H'] + [H'']	
Kettenschaltung	$[A] = [A'] \cdot [A'']$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

3.4 Umkehrung eines 2-Tores

	$ ilde{X}$	$\det(\tilde{X})$
\tilde{Z}	$egin{bmatrix} egin{bmatrix} ar{Z}_{22} & ar{Z}_{21} \ ar{Z}_{12} & ar{Z}_{11} \end{bmatrix}$	det(Z)
Ϋ́	$\begin{bmatrix} \underline{Y}_{22} & \underline{Y}_{21} \\ \underline{Y}_{12} & \underline{Y}_{11} \end{bmatrix}$	det(Y)
Ã	$\frac{1}{\det(A)} \begin{bmatrix} \underline{A}_{22} & \underline{A}_{12} \\ \underline{A}_{21} & \underline{A}_{11} \end{bmatrix}$	$\frac{1}{der(A)}$
Ĥ	$\frac{1}{\det(H)} \begin{bmatrix} \underline{H}_{11} & -\underline{H}_{21} \\ -\underline{H}_{12} & \underline{H}_{22} \end{bmatrix}$	$\frac{1}{\det(H)}$

3.5 Spezielle 2-Tore

	Z	Y	A
Querimpedanz O Z _u O O	$egin{bmatrix} \underline{Z}_a & \underline{Z}_a \ \underline{Z}_a & \underline{Z}_a \end{bmatrix}$	-	$\begin{bmatrix} 1 & 0 \\ \frac{1}{Z_d} & 1 \end{bmatrix}$
Längsimpedanz C Z O O O O O O O O O O O O	-	$egin{bmatrix} rac{1}{Z_b} & -rac{1}{Z_b} \ -rac{1}{Z_b} & rac{1}{Z_b} \end{bmatrix}$	$\begin{bmatrix} 1 & \underline{Z}_b \\ 0 & 1 \end{bmatrix}$
T-Glied Z_1 Z_2 Z_2	$\begin{bmatrix} \underline{Z}_1 + \underline{Z}_2 & \underline{Z}_2 \\ \underline{Z}_2 & \underline{Z}_2 + \underline{Z}_3 \end{bmatrix}$	$\frac{1}{\underline{Z}_1\underline{Z}_2 + \underline{Z}_2\underline{Z}_3 + \underline{Z}_1\underline{Z}_3} \begin{bmatrix} \underline{Z}_2 + \underline{Z}_3 & -\underline{Z}_2 \\ -\underline{Z}_2 & \underline{Z}_1 + \underline{Z}_2 \end{bmatrix}$	$\begin{bmatrix} 1 + \frac{\underline{Z}_1}{\underline{Z}_2} & \underline{Z}_1 + \underline{Z}_3 + \frac{\underline{Z}_1\underline{Z}_3}{\underline{Z}_2} \\ \frac{1}{\underline{Z}_2} & 1 + \frac{\underline{Z}_3}{\underline{Z}_2} \end{bmatrix}$
π -Glied Z_2 Z_1 Z_3	$\frac{1}{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3} \begin{bmatrix} \underline{Z}_1(\underline{Z}_2 + \underline{Z}_3) & -\underline{Z}_1\underline{Z}_3 \\ -\underline{Z}_1\underline{Z}_3 & \underline{Z}_3(\underline{Z}_1 + \underline{Z}_2) \end{bmatrix}$	$\begin{bmatrix} \frac{1}{Z_1} + \frac{1}{Z_2} & -\frac{1}{Z_2} \\ -\frac{1}{Z_2} & \frac{1}{Z_2} + \frac{1}{Z_3} \end{bmatrix}$	$\begin{bmatrix} 1 + \frac{Z_2}{Z_3} & \underline{Z}_2 \\ \frac{1}{Z_1} + \frac{1}{Z_3} + \frac{Z_2}{Z_1 Z_3} & 1 + \frac{Z_2}{Z_1} \end{bmatrix}$
idealer Übertrager	existiert nicht	existiert nicht	$\begin{bmatrix} n & 0 \\ 0 & \frac{1}{n} \end{bmatrix}$
Gegeninduktivität L_1 L_2 L_2	$\begin{bmatrix} sL_1 & sM \\ sM & sL_2 \end{bmatrix}$	$\frac{1}{\sigma} \begin{bmatrix} \frac{1}{sL_1} & -\frac{k^2}{sM} \\ -\frac{k^2}{sM} & \frac{1}{sL_2} \end{bmatrix} \qquad \sigma = 1 - k^2$	$\begin{bmatrix} \frac{L_1}{M} & sM(k^{-2} - 1) \\ \frac{1}{sM} & \frac{L_2}{M} \end{bmatrix} \qquad k = \frac{M}{\sqrt{L_1 L_2}}$

Leitungstheorie

Leitungsgleichungen

/bilder/LeitungselementESB.png

Leitungsbeläge

 $R'\left[\frac{\Omega}{m}\right]$: Widerstandsbelag $L'[\frac{S}{m}]$: Induktivitätsbelag $G'[\frac{S}{m}]$: Leitwertbelag

 $C'\left[\frac{\ddot{F}}{m}\right]$: Kapazitätsbelag

Leerlauf: $\underline{Y}_{L} = \frac{1}{\underline{Z}_{L}} = \frac{\underline{I}_{L}}{\underline{U}} = G + j\omega C = \frac{\alpha l + j\beta l}{\underline{Z}_{W}}$ Kurzschluss: $\underline{Z}_{\underline{K}} = \underline{\underline{U}}_{\underline{L}} = R + j\omega L = (\alpha l + j\beta l)\underline{Z}_{W}$

$$\begin{array}{l} \underline{U}_1 = \cosh(\gamma l) \cdot \underline{U}_2 + \underline{Z}_W \cdot \sinh(\gamma l) \cdot \underline{I}_2 \\ \underline{I}_1 = \frac{1}{\underline{Z}_W} \cdot \sinh(\gamma l) \cdot \underline{U}_2 + \cosh(\gamma l) \cdot \underline{I}_2 \end{array}$$

$$\begin{bmatrix} \underline{U}_1 \\ \underline{I}_1 \end{bmatrix} = \begin{bmatrix} \cosh(\gamma l) & \underline{Z}_W sinh(\gamma l) \\ \frac{1}{Z_W} sinh(\gamma l) & \cosh(\gamma l) \end{bmatrix} \cdot \begin{bmatrix} \underline{U}_2 \\ \underline{I}_2 \end{bmatrix}$$

wenn $\alpha l >> \beta l$ kann $cosh(\gamma l) \approx sinh(\gamma l) = \frac{1}{2}e^{\gamma l}$ angenommen werden!!!

4.1.1 Verlustbehaftete Leitungen

Fortpflanzungskonstante	$\gamma = \alpha + j\beta = \sqrt{(R' + j\omega L')(G' + j\omega C')} \qquad \alpha = \left[\frac{Np}{m}\right] \qquad \beta = \left[\frac{\circ}{m}\right]$
Dämpfungsmass	$\alpha l = \frac{1}{2} ln(Re\{e^{2\gamma l}\}) = \alpha \cdot l$
Phasenmass	$\beta l = \frac{1}{2} ln(Im\{e^{2\gamma l}\}) = \beta \cdot l$ $\beta = \frac{\omega}{v_P}$
Wellenwiderstand	$\underline{Z}_W = \frac{\underline{U}}{\underline{I}} = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} = \sqrt{\underline{Z}_L \cdot \underline{Z}_K}$
Eingangswid. \underline{Z}_1 bei Abschluss mit Lastwid. \underline{Z}_a	$\underline{Z}_1 = \underline{Z}_W \frac{\underline{Z}_a + \underline{Z}_W \cdot \tanh(\gamma l)}{\underline{Z}_W + \underline{Z}_a \cdot \tanh(\gamma l)} = \underline{Z}_W \frac{e^{+j\gamma l} + \underline{\Gamma}_{Last} e^{-j\gamma l}}{e^{+j\gamma l} - \underline{\Gamma}_{Last} e^{-j\gamma l}}$
Phasengeschwindigkeit, Wellenlänge	$v_P = \frac{1}{\sqrt{L'C'}} = \frac{\lambda}{T}$ $\lambda = \frac{2\pi}{\beta} = \frac{v_P}{f} \approx \lambda = \frac{\lambda_0}{\sqrt{\varepsilon_r \mu_r}}$ $\beta = [rad]$
Freiraumwellenlänge	$\lambda_0 = \frac{c}{f} = \frac{2\pi c}{\omega} \qquad c \approx 3 * 10^8 \frac{m}{s}$
Wellengleichung	$\underline{\underline{U}}(z) = \underline{\underline{U}}_0^+ \cdot e^{-\gamma z} + \underline{\underline{U}}_0^- \cdot e^{\gamma z}$ $\underline{\underline{I}}(z) = \underline{\underline{I}}_0^+ \cdot e^{-\gamma z} - \underline{\underline{U}}_0^- \cdot e^{\gamma z}$ hinlaufend rücklaufend
Reflektions-, Transmissionskoeffizienten	$\underline{\Gamma}_{Last} = \underline{\underline{U}}^- = \underline{\underline{Z}_{Last} - \underline{Z}_W}_{\underline{Z}_{Last} + \underline{Z}_W} \text{bzw.} \underline{\Gamma}_{Quelle} = \underline{\underline{Z}_{Quelle} - \underline{Z}_W}_{\underline{Z}_{Quelle} + \underline{Z}_W} \qquad \underline{\tau} = 1 + \underline{\Gamma}$
Keine Reflektion bei:	$\underline{Z}_{Last} = \underline{Z}_{W}$ bzw. $\underline{Z}_{Quelle} = \underline{Z}_{W}$
Totalreflexion	
Neper	$1dB = \frac{\ln(10)}{20} Np \qquad U_2 = U_1 \cdot e^{L_U}$
Bei Abschluss mit \underline{Z}_W	$\underline{U}_{1}(z) = \underline{U}_{2} \cdot e^{\gamma z} \qquad \underline{I}_{1}(z) = -\underline{I}_{2} \cdot e^{\gamma z} \qquad \alpha l = ln(\frac{U1}{U2}) \qquad \beta l = arg(\frac{\underline{U}_{1}}{\underline{U}_{2}})$
wichtige Formeln	

4.1.2 Verlustfreie Leitungen

Fortpflanzungskonstante	$\gamma = j\beta = j\omega \sqrt{L'C'}$ $R' = G' = \alpha = 0$		
Dämpfungsmass	$\alpha = 0$		
Phasenmass	$\beta = \frac{2\pi}{\lambda} = \omega \sqrt{L'C'}$		
Wellenwiderstand	$Z_W = \sqrt{\frac{L'}{C'}}$		
LE Leerlauf $\underline{I}_2 = 0$ $\underline{\Gamma} = 1$	$\underline{Z}_1 = -j \frac{\underline{Z}_W}{\tan(\beta l)}$		
LE Kurzschluss $\underline{U}_2 = 0$ $\underline{\Gamma} = -1$	$\underline{Z}_1 = j\underline{Z}_W \tan(\beta l)$		
LE mit \underline{Z}_{Last} abgeschlossen	$\frac{\underline{U}_{1}}{\underline{I}_{2}} = \cosh(j\beta l)\underline{Z}_{Last} + \underline{Z}_{W}\sinh(j\beta l)$ $\frac{\underline{I}_{1}}{\underline{I}_{2}} = \frac{1}{\underline{Z}_{W}}\sinh(j\beta l)\underline{Z}_{Last} + \cosh(j\beta l)$		

4.2 Kapazitätsbelag

Leiterpotential	$\vec{E} = -gradV$ $V(\varrho) = -\frac{\lambda}{\varepsilon_0 2\pi} ln \frac{\varrho}{k}$
	Abstand zwischen Linienladungen
Q	und deren Spiegelungen
k	Integrationskonstante (kürzt sich weg)
ε_0	$8,85419 \cdot 10^{-12} \left[\frac{As}{Vs} \right]$
Leiterpotentiale	$V_1 = \frac{\lambda_1}{2\pi\varepsilon_0} \left(-\ln\frac{r}{k} + \ln\frac{2a}{k} \right) + \frac{\lambda_2}{2\pi\varepsilon_0} \left(-\ln\frac{\varrho_1}{k} + \ln\frac{\varrho_2}{k} \right)$
(ausBeispiel)	$V_2 = \frac{\lambda_1}{2\pi\varepsilon_0} \left(-\ln\frac{\varrho_1}{k} + \ln\frac{\varrho_2}{k} \right) + \frac{\lambda_2}{2\pi\varepsilon_0} \left(-\ln\frac{r}{k} + \ln\frac{2b}{k} \right)$
Matrix Potentialkoeff.	$ \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} p_1 & p_0 \\ p_0 & p_2 \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} $
	$p_1 = \frac{1}{2\pi\varepsilon_0} ln \frac{2a}{r} p_2 = \frac{1}{2\pi\varepsilon_0} ln \frac{2b}{r} p_0 = \frac{1}{2\pi\varepsilon_0} ln \frac{\rho_1}{\rho_2}$
Matrix Kapazitätskoeff.	$ \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} C_1 & C_0 \\ C_0 & C_2 \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} $
	$C_1 = \frac{\bar{p}_2}{\det p}$ $C_2 = \frac{\bar{p}_1}{\det p}$ $C_0 = \frac{p_0}{\det p} = C_{12}$
	$C_{10} = C_1 - C_0; C_{20} = C_2 - C_0$

4.3 Induktivitätsbelag

Rotation B-Feld	$\vec{B} = rot \vec{A}$ $A(\varrho) = -\frac{\mu_0 I}{2\pi} ln(\frac{\varrho}{k})$
Linienströme	+I - I
μ_0	$4\pi \cdot 10^{-7} \left[\frac{V_S}{Am} \right]$
Leiterpotentiale	$A^{+} = \frac{\mu_0 I}{2\pi} \left(-ln \frac{r}{k} + ln \frac{\varrho_1}{k} - ln \frac{2a}{k} + ln \frac{\varrho_2}{k} \right) = \frac{\mu_0 I}{2\pi} ln \frac{\varrho_1 \varrho_2}{2ar}$
(ausBeispiel)	$A^{-} = \frac{\mu_{0} l}{2\pi} \left(-ln \frac{\rho_{1}}{k} + ln \frac{r}{k} - ln \frac{\rho_{2}}{k} + ln \frac{2b}{k} \right) = -\frac{\mu_{0} l}{2\pi} ln \frac{\rho_{1} \rho_{2}}{2br}$
Äussere Induktivität	$L_a = \frac{1}{I}(A^+ - A^-) = \frac{\mu_0}{2\pi}ln(\frac{\varrho_1^2\varrho_2^2}{4r^2ab})$
Innere Induktivität	$L_i = \frac{\mu_0}{8\pi}$ pro Leiter
Induktivitätsbelag	$L' = L_a + 2L_i = \frac{\mu_0}{\pi} \left(\ln\left(\frac{\varrho_1 \varrho_2}{2r\sqrt{ab}}\right) + \frac{1}{4} \right)$

../El4/bilder/Induktivitaetsbelag.png

4.4 Stehende Wellen

Spannung	$ \underline{U}(z) = \underline{U}^+ e^{-j\beta z} (1 + \underline{\Gamma}_L e^{2j\beta z}) = \underline{U}^+ 1 + \underline{\Gamma}_L e^{2j\beta z} = \underline{U}^+ 1 + \underline{\Gamma}_L e^{j(\Phi - 2\beta z)} $
Strom	$ \underline{I}(z) = \underline{U}^+/\underline{Z} 1 - \underline{\Gamma}_L e^{j(\Phi - 2\beta z)} $
Spannungsmaxima bei:	$e^{j(\Phi-2\beta z)}=1$
Spannungsminima bei:	$e^{j(\Phi-2\beta z)} = -1$
Channingshatrag mit kam	al Absolutesimpodanzi Channungs Strombetrag der offens

Spannungsbetrag mit kompl. Abschlussimpedanz:

Spannungs-Strombetrag der offenen Leitung:

../El4/bilder/VerlaufSpannungsbetrag.png

../El4/bilder/VerlaufSpannungsbetragOffeneLtg.png

4.4.1 Spezialfälle

Kurzschluss/Leerlauf

Bei Kurzschluss oder Leerlauf, also Reflexionsfaktor $\underline{\Gamma}$ ist -1 oder 1, verschwinden die Spannungs- Stromminima. Da die rückläufige Welle ebensoviel Energie transportiert wie die hinlaufende, wird längs der Leitung keine Energie transportiert. Es sieht also so aus, als ob die Welle am Ort stehen bleibt (Bild 2).

Leitung ideal abgeschlossen

Ist die Leitung ideal abgeschlossen, existiert keine reflektierende Welle. Die hinlaufende Welle transportiert so die gesammte Energie vom Sender zum Empfänger.

Leitung nicht ideal abgeschlossen

Es entsteht beim Empfänger eine Überlagerung der absorbierten und der stehenden Welle. Aus dem Verhältnis von Spannungsmaximum zu Spannungsminimum entsteht das Stehwellenverhältnis SWR.

> $SWR = \frac{U_{max}}{U_{min}} = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|}$ Betrag des Reflexionsfaktor : $|\Gamma_L| = \frac{SWR - 1}{SWR + 1}$ Stehwellenverhältnis:

Mehrfachreflexion 4.5

../El4/bilder/Leitungen_MFReflx_EnAP_SnAP.png

Das nebenstehende Schema zeigt eine Leitung, welche last- und quellenseitig falsch abgeschlossen ist.

Zur Berechnung der Spannung \underline{U}_0^+ werden alle Widerstände am Leitungsende ignoriert ($\underline{Z}_L = 0$). Die reflektierenden Wellen werden anhand der Reflexionskoeffizienten $\underline{\Gamma}_{Last}$, $\underline{\Gamma}_{Ouelle}$ berechnet. Bsp.:

$$\begin{array}{l} \underline{U}_{0}^{+} = \frac{\underline{U}_{Quelle}\underline{Z}_{0}}{\underline{Z}_{0} + \underline{Z}_{i}}; \quad \underline{U}_{0}^{-} = \underline{U}_{0}^{+} \cdot \underline{\Gamma}_{Last}; \\ \underline{U}_{1}^{+} = \underline{U}_{0}^{-} \cdot \underline{\Gamma}_{Quelle}; \quad \underline{U}_{1}^{-} = \underline{U}_{1}^{+} \cdot \underline{\Gamma}_{Last}; \quad \text{usw.} \\ \underline{U}_{Resultierend} = \underline{U}_{0}^{+} + \underline{U}_{0}^{+} + \underline{U}_{1}^{+} + \underline{U}_{1}^{-} + \ldots + \underline{U}_{n}^{+} + \underline{U}_{n}^{-} \end{array}$$

../El4/bilder/Leitungen_MFReflx_EnAP_SnAP_RaumZeit |pngEl4/bilder/Leitungen_MFReflx_EnAP_SnAP_Eingangsspannu

Smith Chart 5

Eigenschaften 5.1

1. Normieren: $Z_{\text{einzutragen}} = \frac{Z}{Z_0}$

2. **Impedanz** ⇔ **Admittanz**: Am Kreismittelpunkt spiegeln

3. Kurzschluss: Impedanz Admittanz

4. Leerlauf: Impedanz Admittanz

5. Phase: Verlängerung der Reflexionsgerade an Kreisrand und Winkel ablesen

6. **SWR:** Kreis mit Radius $|\Gamma|$ auf reeller Achse

7. **Leitungslänge:** Äusserste Skala am Kreisrand $\frac{1}{\lambda}$

8. Entnormieren: $Z_{\text{gewünscht}} = Z_0 Z_{\text{abgelesen}}$

../El4/bilder/SmithChart2.png

5.2 Formeln

$$z=r+jx=\tfrac{1+\Gamma}{1-\Gamma}=\tfrac{1}{y}\qquad \Gamma=\tfrac{z-1}{z+1}=\tfrac{1-y}{1+y}$$

5.3 Beispiele bei $Z_0 = 100\Omega$

Fall	1 2		3	4	5
LE	Anpassung Leerlauf		Kurzschluss	$\lambda/8$ Stichleit. KS	$\lambda/8$ Stichleit. LL
SWR	1 ∞		∞	∞	∞
Γ	0	1∠0°	1∠180°	1∠90°	1∠90°
Z	z 1 + j0 c		0 + <i>j</i> 0	0 + j1	0 – <i>j</i> 1
v_{xm}	_	$\lambda/4$	$\lambda/2$	3λ/8	λ/8
Grafik	$R_0 = 100 \Omega$ $ Z_L = 100 \Omega$ $ A - \lambda/2 - A $	$x_{vm} = \frac{\lambda}{4} Z_L = \infty$	$x_{vm} = \frac{\lambda}{2} 0$ $Z_L = 0$	$x_{vm} = \frac{3}{8} \lambda^{-1} \frac{\lambda}{8}$	$x_{vm} = \frac{\lambda}{8} + \left \frac{\lambda}{8} \right $

6 Elektromagnetische Felder

6.1 Elektromagnetische Wellenausbreitung

Definition Ebenen

Wellenebene: Durch \vec{H} und \vec{E} aufgespannt.

Trennebene: Grenzfläche zwischen den beiden Medien.

Einfallsebene: Durch Richtungsvektor der Wellenausbreitung und $\vec{n}_{Trennebene}$ aufgespannt.

Wellenwiderstand	Wellenwid Vakuum	Wellengeschwindigkeit, -konstante		
$Z = \frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}}$	$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega$	$v = \frac{1}{\sqrt{\mu \epsilon}}$ $v_0 = c \approx 3 * 10^8 \frac{m}{s};$ $\beta = \omega \sqrt{\mu \epsilon}$		
Orientierung	Poynting Vektor	Konstanten		
$Z \cdot \vec{H} = \vec{n} \times \vec{E}$	$\vec{S} = \vec{E} \times \vec{H}$	$\varepsilon_0 = 8,854 \cdot 10^{-12} \left[\frac{As}{Vm} \right] \mu_0 = 4\pi \cdot 10^{-7} \left[\frac{Vs}{Am} \right]$		

Gebräuchliche Indizes				
i: incident = einfallend r: reflected = reflektiert		t : transmitted = übermittelt		

6.1.1 Leitender Halbraum

Die Welle wird an der Trennebene vollständig reflektiert.

Senkrecht einfallende Ebene Welle

$$E_{r} + E_{i} = 0 \Rightarrow E_{r} = -E_{i}$$

$$\vec{E}_{i}(z) = \vec{e}_{x}E_{i}e^{-j\beta_{1}z} \qquad \vec{E}_{r}(z) = \vec{e}_{x}E_{r}e^{+j\beta_{1}z} \qquad \vec{H}_{i}(z) = \vec{e}_{y}\frac{E_{i}}{Z_{1}}e^{-j\beta_{1}z} \qquad \vec{H}_{r}(z) = \vec{e}_{y}\frac{E_{i}}{Z_{1}}e^{+j\beta_{1}z}$$

$$\vec{E}_{1}(z) = \vec{e}_{x}E_{i}(e^{-j\beta_{1}z} - e^{+j\beta_{1}z}) = -\vec{e}_{x}j2E_{i}\sin(\beta_{1}z) \qquad \vec{H}_{1}(z) = \vec{e}_{y}\frac{E_{i}}{Z_{1}}(e^{-j\beta_{1}z} + e^{+j\beta_{1}z}) = \vec{e}_{y}j2\frac{E_{i}}{Z_{1}}\cos(\beta_{1}z)$$

$$E_{1}(z, t) = \operatorname{Re}\left\{\vec{E}_{1}(z)e^{j\omega t}\right\} = \vec{e}_{x}2E_{i}\sin(\beta_{1}z)\sin(\omega t) \qquad H_{1}(z, t) = \operatorname{Re}\left\{\vec{H}_{1}(z)e^{j\omega t}\right\} = \vec{e}_{y}2\frac{E_{i}}{Z_{1}}\cos(\beta_{1}z)\cos(\omega t)$$

Schräg einfallende Welle			
Senkrechte Polarisation	Parallele Polarisation		
$ec{E}\perp$ Einfallsebene	$ec{E}$ Einfallsebene		
$\vec{n}_i = \vec{e}_x \sin(\vartheta_i) + \vec{e}_z \cos(\vartheta_i)$			
$\vec{n}_r = \vec{e}_x \sin(\vartheta_i) - \vec{e}_z \cos(\vartheta_i)$			
$\vec{r} = \vec{e}_x x + \vec{e}_z z; E_r = -E_i; \vartheta_r = \vartheta_i$			
$\vec{E}_{i(x,z)} = \vec{e}_y E_i e^{-j\beta_1 \vec{n}_i \vec{r}}$			
$\vec{E}_r(x,z) = \vec{e}_y E_i e^{-j\beta_1 \vec{n}_r \vec{r}} = -\vec{e}_y E_i e^{-j\beta_1 (x \sin(\vartheta_i) - z \cos(\vartheta_i))}$			
$\vec{H}_{r(x,z)} = \frac{1}{z_1} (\vec{n}_r \times \vec{E}_{r(x,z)})$			
$\vec{n_i} = \frac{\beta_x}{\beta} \vec{e_x} + \frac{\beta_y}{\beta} \vec{e_y} + \frac{\beta_z}{\beta} \vec{e_z} \qquad \beta = \sqrt{\beta_x^2 + \beta_y^2 + \beta_z^2}$	2 z		

6.1.2 Dielektrischer Halbraum

Je nach Einfallswinkel ϑ_i wird die Welle nicht nur reflektiert, sondern dringt in das zweite Medium ein.

Transmissionskoeffizient	Reflexionskoeffizient	Stehwellenverhältnis	
$t = \frac{E_t}{E_t} = \frac{2Z_2}{1 + r} = t$	$r = \frac{E_r}{E_r} = \frac{Z_2 - Z_1}{ r }$ $ r = \frac{SWR - 1}{r}$	$SWR = \frac{ E _{max}}{1 + r }$	
E_i $Z_2 + Z_1$	E_i $Z_2 + Z_1$ $SWR + 1$	$ E _{min}$ $1- r $	

Senkrecht einfallende Ebene Welle

$$E_i + E_r = E_t \mid H_i + H_r = H_t$$

Schräg einfallende Welle			
$\frac{\sin \vartheta_t}{\sin \vartheta_i} = \sqrt{\frac{\mu_1 \epsilon_1}{\mu_2 \epsilon_2}}$	$\vartheta_r = \vartheta_i$		

Senkrechte Polarisation	Parallele Polarisation
$\sin^2 \vartheta_{Brewster_1} = \frac{1 - \frac{\mu_1 \varepsilon_2}{\mu_2 \varepsilon_1}}{1 - \left(\frac{\mu_1}{\mu_2}\right)^2}$ $r_{SP} = \frac{E_r}{E_i} = \frac{Z_2 \cos \vartheta_i - Z_1 \cos \vartheta_t}{Z_2 \cos \vartheta_i + Z_1 \cos \vartheta_t}$ $t_{SP} = \frac{E_t}{E_i} = \frac{Z_2 \cos \vartheta_i + Z_1 \cos \vartheta_t}{Z_2 \cos \vartheta_i + Z_1 \cos \vartheta_t}$	$\sin^{2}\vartheta_{Brewster_{2}} = \frac{1 - \frac{\mu_{2}\varepsilon_{1}}{\mu_{1}\varepsilon_{2}}}{1 - \left(\frac{\varepsilon_{1}}{\varepsilon_{2}}\right)^{2}}$ $r_{PP} = \frac{E_{r}}{E_{i}} = \frac{Z_{2}\cos\vartheta_{t} - Z_{1}\cos\vartheta_{i}}{Z_{2}\cos\vartheta_{t} + Z_{1}\cos\vartheta_{i}}$ $t_{PP} = \frac{E_{t}}{E_{i}} = \frac{Z_{2}\cos\vartheta_{t} + Z_{1}\cos\vartheta_{i}}{Z_{2}\cos\vartheta_{t} + Z_{1}\cos\vartheta_{i}}$

6.2 Hertz'scher Dipol

Magnetische Feld	Wellenwiderstand			
$\vec{H} = \vec{e}_{\varphi} \frac{j\beta \sin \vartheta}{4\pi r} e^{-j\beta r} \int_{-1}^{+1} I(z) e^{j\beta z \cos \vartheta} dz$	$Z_0 = \frac{dE}{dH} \sqrt{\frac{\mu_0}{\epsilon_0}}$			
Fernfeld - $(\beta z = 2\pi z/\lambda \ll 1)$				
$\vec{H} = \vec{e}_{\varphi} \frac{I_0 l \sin \vartheta}{4\pi r} j\beta e^{-j\beta r}$	$\vec{E} = \vec{e}_{\vartheta} Z_0 \frac{I_0 l \sin \vartheta}{4\pi r} j\beta e^{-j\beta r}$			
Strahlungsleistung	Strahlungswid.	Strahlungschar. $(\Phi_0 = \Phi(\frac{\pi}{2}))$		
$\bar{P}_s = \frac{2\pi}{3} Z_0 \left(\frac{l}{\lambda}\right)^2 I_0^2 = \frac{1}{2} \operatorname{Re} \left\{ \iint_{\vec{F}^{\infty}} (\vec{E} \times \vec{H}^*) d\vec{F} \right\}$	$R_s = \frac{2\pi}{3} Z_0 \left(\frac{l}{\lambda}\right)^2$	$\Phi(\vartheta) = \frac{Z_0}{4} \left(\frac{l}{\lambda}\right)^2 I_0^2 \sin^2 \vartheta$		

6.3 Lineare Antennen

Strahlung linearer Antennen - siehe Bild rechts				
$\vec{H}(\vec{r}_P) = -\frac{j}{2\lambda r_p} e^{-j2\pi \frac{r_p}{\lambda}} \int_A^B I(\vec{r}_Q) e^{j2\pi \frac{i\vec{r}_Q}{\lambda}} (\vec{n} \times d\vec{r}_Q) \qquad \vec{E}(\vec{r}_p) = -Z_0 \left[\vec{n} \times \vec{H}(\vec{r}_p) \right]$				
Strahlungscharaktoristik				

Strahlungscharakteristik

$$\Phi(\vec{n}) = \frac{1}{2} Z_0 r_p^2 \vec{H}(\vec{r_p}) \cdot \vec{H}^*(\vec{r_p}) = \vec{n} r_p^2 \bar{S}(\vec{r_p}) = \frac{1}{2} \vec{n} r_p^2 \text{Re} \left\{ -Z_0(\vec{n} \times \vec{H}) \times \vec{H}^* \right\}$$

Stromverteilung auf linearen Antennen - siehe Bild links

$$I_1(z) = \frac{\sin\left[\beta(b-z)\right]}{\sin\left[\beta b\right]} I_0; \quad 0 \le z \le b \qquad I_2(z) = \frac{\sin\left[\beta(a+z)\right]}{\sin\left[\beta a\right]} I_0; \quad -a \le z \le 0$$

Strahlungsleistung	Strahlungswiderstand
$\bar{P}_S = \int_0^{2\pi} \int_0^{\pi} \Phi(\vartheta) \sin \vartheta \cdot d\vartheta \cdot d\varphi$	$R_{S} = \frac{2}{I_{0}^{2}} \int_{0}^{2\pi} \int_{0}^{\pi} \Phi(\vartheta) \sin \vartheta \cdot d\vartheta \cdot d\varphi$

6.3.1 Richtcharakteristika

Stromverteilung	Richtcharakteristik	Abstrahlkeulen	Stromverteilung	Richtcharakteristik	Abstrahlkeulen
Kurze Linearantenne t << λ	$\Phi(\mathcal{G}) = \sin \mathcal{G}$	0 1.0	Ganzwellendipol $\ell = \lambda$	$\Phi(\theta) = \frac{\cos^2\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta}$	0 1.0
Halbwellendipol $\ell = \lambda/2$	$\Phi(\mathcal{Y}) = \frac{\cos\left(\frac{\pi}{2}\cos\mathcal{Y}\right)}{\sin\mathcal{Y}}$	0 1.0	Doppelwellendipol $\ell = 2\lambda$	$\Phi(\theta) = \frac{\sin^2(\pi\cos\theta)}{\sin\theta}$	1.0

7 Integral-Gesetze der Elektrotechnik

	Elektr. Feld	Magn. Feld	Strömungsfeld	Bemerkung
Feldgrösse	\vec{E} , \vec{D}	Й , В	\vec{E} , \vec{J}	
Konstante	$arepsilon_0 = 8.854 \cdot 10^{-12}$ Dielektrizitätskonstante	$\mu_0 = 4\pi10^{-7}$ Permeabilitätskonstante	$\sigma=rac{1}{ ho}$ Spezifische Leitfähigkeit	
Stoffgleichung	$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$	$\vec{B} = \mu_0 \mu_r \vec{H}$	$\vec{J} = \sigma \vec{E}$	
Kraft	$\vec{F_C} = q\vec{E}$	$\vec{F_L} = q(\vec{v} \times \vec{B})$		
Fluss	$\Psi_{el} = \int \vec{D} d\vec{A}$	$\Phi_m = \int \vec{B} d\vec{A}^{1)}$	$I = \int \vec{J} d\vec{A}$	$^{1)}$ bei Spulen: $\Psi_m = \sum_i \Phi_i \approx N\Phi$
Spannung ^(Weg A→B)	$U_{AB} = \int\limits_{A}^{B} \vec{E} \vec{ds}$	$V_{m_{AB}}=\int\limits_{A}^{B}ec{H}ec{ds}$	$U_{AB} = \int\limits_{A}^{B} \vec{E} \vec{ds}$	
Schaltelemente	Q = CU	$\Psi_m = LI, \Psi_{m21} = M_{21}I_1$	I = GU, U = RI	$R_m = \frac{1}{\Lambda}, R = \frac{1}{G}$
Hüllengesetz (Quellengleichungen)	$ \oint \vec{D} \vec{dA} = \sum Q_i $ Maxwell IV	$ \oint \vec{B} d\vec{A} = 0^{2} $ Maxwell III	$ \oint \vec{J} d\vec{A} = 0 $ Kirchhoff 1	²⁾ ohne Verschiebungsstrom (käme ggf. noch dazu)
Umlaufspannung	$ \oint \vec{E} \vec{ds} = 0 - \dot{\Phi}_m $ Induktionsgesetz Maxwell II	$\oint \vec{H} \vec{ds} = \theta + \dot{\Psi}_{el}$ Vollständiges Durchflutungsgesetz Maxwell I	$ \oint \vec{E} \vec{ds} = 0 - \dot{\Phi} $ Kirchhoff 2	

Einheiten

Entitettett								
$[\varepsilon] = \frac{As}{Vm}$	$[D] = \frac{As}{m^2} = \frac{C}{m^2}$	$[E] = \frac{V}{m}$	[U] = V	$[\Psi_{el}] = As = C$	[C] = F			
$[\mu] = \frac{H}{m} = \frac{Vs}{Am}$	$[B] = \frac{V_S}{m^2} = T$	$[H] = \frac{A}{m}$	$[V_m] = [\Theta] = A$	$[\Psi_m] = [\Phi_m] = Wb = Vs$	$[L] = \frac{Vs}{A} = H$			
$[\sigma] = \frac{S}{m}$	$[E] = \frac{V}{m}$	$[J] = \frac{A}{m^2} = 10^{-6} \frac{A}{mm^2}$	[U] = V	[I] = A	$[R] = \Omega$			

8 Allgemein

8.1 Schaltelemente bei zeitabhängigen Vorgängen

Ohmscher Widerstand R

u und i können sprunghaft ändern

$$u(t) = Ri(t)$$

$$i(t) = \frac{u(t)}{R}$$

$$Z = R$$

Kapazitität C

u kann nicht sprunghaft ändern

$$u(t) = \frac{1}{C} \int_{0}^{t} i(\tau)d\tau + u(0)$$

$$i(t) = C \frac{du(t)}{dt}$$

$$Z = \frac{1}{j\omega C} = -\frac{j}{\omega C}$$

$$W_{C} = \frac{1}{2}CU_{C}^{2}$$

Induktivität L

i kann nicht sprunghaft ändern

$$u(t) = L \frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{0}^{t} u(\tau) d\tau + i(0)$$

$$\frac{Z}{W_L} = \frac{1}{2} L I_L^2$$

8.2 Vorgehen bei Schaltvorgängen

$$u(t) = U_E + (U_A - U_E)e^{\frac{-t}{\tau}} \qquad \tau = CR \text{ bzw. } \tau = \frac{L}{R} = \frac{\varepsilon}{\sigma} \qquad U_A = \lim_{t \to 0^+} u(t) \qquad U_E = \lim_{t \to \infty} u(t)$$
 Für Ströme äquivalent

8.3 Taschenrechner TI-89/Voyage 200 englisch

8.4 Vektor -/ Kreuzprodukt, Rechte-Hand-Regel

 $\vec{c} = \vec{a} \times \vec{b}$: $\vec{a} \Leftrightarrow \text{Daumen}; \vec{b} \Leftrightarrow \text{Zeigefinger}; \vec{c} \Leftrightarrow \text{Mittelfinger}$

8.5 Partialbruchzerlegungs₁₅

Falls möglich, erst Polynomdivision.

$$f(x) = \frac{x^2 + 20x + 149}{x^3 + 4x^2 - 11x - 30} \Rightarrow \text{Nenner faktorisieren mit} \\ \text{Hornerschema}_{\textbf{S914}}, \text{Binom, etc.} \Rightarrow x^3 + 4x^2 - 11x - 30 = (x+2)(x^2 + 2x - 15) = (8x+2)(x+5)(x-3)$$

Ansatz

$$f(x) = \frac{x^2 + 20x + 149}{x^3 + 4x^2 - 11x - 30} = \frac{A}{x - 3} + \frac{B}{x + 2} + \frac{C}{x + 5} = \frac{A(x + 2)(x + 5) + B(x - 3)(x + 5) + C(x - 3)(x + 2)}{(x - 3)(x + 2)(x + 5)}$$

Gleichungssystem aufstellen mit beliebigen x_i -Werten (am Besten Polstellen oder 0,1,-1 wählen):

$$\begin{array}{l} x_1 = 3: \ -9 + 60 + 149 = A \cdot 5 \cdot 8 \quad \Rightarrow A = 5 \\ x_2 = -2: \ -4 - 40 + 149 = B(-5) \cdot 3 \ \Rightarrow B = -7 \\ x_3 = -5: \ -25 - 100 + 149 = C(-8)(-3) \Rightarrow C = 1 \end{array} \Rightarrow f(x) = \frac{5}{x - 3} + \frac{7}{x + 2} \frac{1}{x + 5}$$

weitere Ansätze für andere Typen von Termen:

$$f(x) = \frac{5x^2 - 37x + 54}{x^3 - 6x^2 + 9x} = \frac{A}{x} + \frac{B_1}{x - 3} + \frac{B_2}{(x - 3)^2} = \frac{A(x - 3)^2 + B_1x(x - 3) + B_2x}{x(x - 3)^2}$$

$$f(x) = \frac{1,5x}{x^3 - 6x^2 + 12x - 8} = \frac{A_1}{x - 2} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x - 2)^3} = \frac{A_1(x - 2)^2 + A_2(x - 2) + A_3}{(x - 2)^3}$$

$$f(x) = \frac{x^2 - 1}{x^3 + 2x^2 - 2x - 12} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 4x + 6} = \frac{A(x^2 + 4x + 6) + (Bx + C)(x - 2)}{(x - 2)(x^2 + 4x + 6)}$$

8.6 Komplexe Trigonometrie

$$\sin\underline{\alpha} = \frac{e^{j\underline{\alpha}} - e^{-j\underline{\alpha}}}{2j} \quad \cos\underline{\alpha} = \frac{e^{j\underline{\alpha}} + e^{-j\underline{\alpha}}}{2} \quad \tan\alpha = \frac{\sin\alpha}{\cos\alpha} \quad \qquad \\ \sinh\underline{\alpha} = \frac{e^{\underline{\alpha}} - e^{-\underline{\alpha}}}{2} \quad \cosh\underline{\alpha} = \frac{e^{\underline{\alpha}} + e^{-\underline{\alpha}}}{2} \quad \tanh(jb) = j\tan(b)$$