1. 阅读下面的 Verilog HDL 代码,说明模块 ABC 描述的电路的逻辑功能并画出其逻辑符号:

```
module ABC(CP, S, SD, D, Q);
  input CP, S, SD;
  input[3:0] D;
  output reg[3:0] Q;
  always @(posedge CP)
   if (S) Q<=D;
   else begin Q[0]<=Q[1];Q[1]<=Q[2];Q[2]<=Q[3];Q[3]<=SD; end
endmodule</pre>
```

2. 阅读下面的 Verilog HDL 代码,说明模块 ABC 描述的电路的逻辑功能并画出其逻辑符号:

```
module ABC(CP, S, D, Q, B0);
input CP, S;
input[3:0] D;
output reg[3:0] Q;
output reg B0;
always @(posedge CP)
  if (S) Q<=D;
  else begin
  if (Q==4' b0001) B0<=1; else B0<=0;</pre>
```

$$Q \le Q-1$$
;

end

endmodule

3. 用 Verilog HDL 描述下图所示的同步时序逻辑电路:

4. 用 Verilog HDL 描述下表所示的同步时序逻辑电路:

现态	次态	输出	现态	次态	输出
$Q_2^nQ_1^nQ_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	СО	$Q_2^n Q_1^n Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$	СО
000	010	0	100	110	0
001	ddd	d	101	ddd	d
010	100	0	110	111	0
011	ddd	d	111	000	1

5. 设计一个 16 进制加 1 计数器,要求: 先设计一个 4 进制加 1 同步计数器, 然后利用它设计 16 进制加 1 计数器。