Rings

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 13, 2021

Overview

Module Thoery Rings

Rings

Definition

- 1. A ring R is a set with two binary operations + and \times satisfying the following axtioms:
 - i (R,+) is an abelian group,
 - $ii \times is$ associative,
 - iii the distributive laws hold in R, i.e. for all $a,b,c\in R$

$$(a+b) \times c = (a \times c) + (b \times c),$$

$$a \times (b+c) = (a \times b) + (a \times c).$$

- 2. R is commutative ring if \times is commutative.
- 3. R is said to be have an identity if there is an element $1 \in R$ with

$$1 \times a = a \times 1 = a$$
 for all $a \in R$.

- 1. A ring R with $1 \neq 0$ is called a division ring (or skew field) if every nonzero element $a \in R$ has a multiplicative inverse.
- 2. A commutative division ring is called a field.

Definition

Let R be a ring.

- 1. A nonzero element $a \in R$ is called a zero divisor if there is a nonzero $b \in R$ such that either ab = 0 or ba = 0.
- 2. Assume R has an identity $1 \neq 0$. An element u of R is called a unit in R if u has an multiplicative inverse in R.
- 3. The set of units in R is denoted R^{\times} .
- 4. If R has no zero divisor, R is called an integral domain.

Subrings

Definition

A subring of the ring R is a subgroup of R that is closed under multiplication.

Example

- 1. \mathbb{Z} is a subring of \mathbb{Q} , and \mathbb{Q} if a subring of \mathbb{R} and \mathbb{R} is a subring of \mathbb{C} .
- 2. $n\mathbb{Z}$ is a subring of \mathbb{Z} .
- 3. Let R be a ring with $1 \neq 0$. Then $R \times R$ forms a ring in a natrual way with identity (1,1)

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $(a_1, a_2) \times (b_1, b_2) = (a_1b_1, a_2b_2)$
 $(a, b) \times (1, 1) = (1, 1) \times (a, b) = (a, b).$

Then $R \times \{0\}$ is a subring of $R \times R$ with identity (1,0).

Example (Polynomial Rings)

Fix a commutative ring R with identity. Let x be an indeterminate. We call p(x) is a polynomial if

$$p(x) = a_n x^n + \dots + a_1 x + a_0$$

where $n \geq 0$ and $a_i \in R$. If $a_n \neq 0$,

- ightharpoonup deg p = n
- $ightharpoonup a_n x^n$ is called the leading term
- $ightharpoonup a_n$ is called the leading coefficient
- ▶ if $a_n = 1$, p(x) is called monic.

We can give + and \times in familiar ways. Then the set of all polynomial R[x] forms a ring.

Example (Matrix Rings)

Fix an arbitrary ring R and let n be a positive integer. Let $M_n(R)$ be the set of all $n \times n$ matrices with entries from R. The $M_n(R)$ forms a ring.

Ring Homomorphism

Definition

Let R and S be rings.

- 1. A ring homomorphism f is a map $f: R \to S$ satisfying
 - (i) f(a+b) = f(a) + f(b),
 - (ii) f(ab) = f(a)f(b).
- 2. Ker $f = \{x \in R : f(x) = 0\}$ and Im $f = \{f(x) : x \in R\}$.
- 3. If f is bijective, f is called an isomorphism.

Proposition

Let $f: R \to S$ be a ring homomorphism.

- 1. Im f is a subring of S.
- 2. Ker f is a subring of R. Furthermore, if $\alpha \in \operatorname{Ker} f$, then $r\alpha, \alpha r \in \operatorname{Ker} f$ for all $r \in R$.

Remark

Note that a ring is a additive abelian group. So $R/\mathrm{Ker}f$ is a quotient additive group. Now we want to give a multiplication on $R/\mathrm{Ker}f$ by

$$(x + \operatorname{Ker} f) \times (y + \operatorname{Ker} f) = (xy) + \operatorname{Ker} f.$$

This is well-defined because

$$(x + \operatorname{Ker} f) \times (y + \operatorname{Ker} f) = xy + \operatorname{Ker} fy + x\operatorname{Ker} f + \operatorname{Ker} f\operatorname{Ker} f$$

 $\subset xy + \operatorname{Ker} f + \operatorname{Ker} f + \operatorname{Ker} f = (xy) + \operatorname{Ker} f.$

So $R/\mathrm{Ker}f$ is a ring.

Ideals

Definition

Let R be a ring, and let I be a subset of R and $r \in R$.

- 1. $rI = \{ra : a \in I\}$ and $Ir = \{ar : a \in I\}$.
- 2. A subset I of R is a left ideal (resp. right ideal) of R is
 - (i) I is a subring of R,
 - (ii) I is closed under left (resp. right) multiplication by element from R, i.e.

$$rI \subset I$$
 (resp. $Ir \subset I$), for all $r \in R$.

3. A subset I that is both a left ideal and a right ideal is called an ideal of R.

Example

 $\operatorname{Ker} f$ is an ideal of R.

Proposition

Let R be a ring and let I be an ideal of R. Then the quotient group R/I is a ring under the binary operations:

$$(r+I) + (s+I) = (r+s) + I$$

 $(r+I) \times (s+I) = (rs) + I.$

Conversely, if I is any subgroup such that the above operations are well defined, then I is an ideal of R.

In this case, R/I is called the quotient ring of R by I.

Theorem (The first Isomorphism Theorem for Rings)

Let $f: R \to S$ be a ring homomorphism. Then $R/\mathrm{Ker} f \cong \mathrm{Im} \ f$.

Let I and J be ideals of R.

1.
$$I + J = \{a + b : a \in I, b \in J\}.$$

2.
$$IJ = \{\sum_{i=1}^{n} a_i b_i, a_i \in I, b_i \in J\}.$$

3.
$$I^n = II^{n-1}$$
.

From now on, a ring has a identity $1 \neq 0$.

Proposition

Let I be an ideal of R.

- 1. I = R iff I contains a unit.
- 2. Assume R is commutative. Then R is a field iff its only ideals are 0 and R.

Corollary

If R is a field, then any nonzero ring homomorphism from R into another ring is an injection. In this sense, a field is unique.

An ideal ${\cal M}$ in an arbitrary ring ${\cal S}$ is called a maximal ideal if

- 1. $M \neq S$
- 2. if $M \subset I \subset S$ is an ideal, then either I = M or I = S.

Proposition

In a ring with identity every proper ideal is contained in a maximal ideal.

Proposition

Assume R is commutative. The ideal M is a maximal ideal iff R/M is a field.

Assume R is commutative. An ideal P is called a prime ideal if

- 1. $P \neq R$,
- 2. if $ab \in P$, then either $a \in P$ or $b \in P$.

Proposition

Assume R is commutative. Then the ideal P is a prime ideal in R iff R/P is an integral domain.

Corollary

Assume R is commutative. Every maximal ideal of R is a prime ideal.

The End