

캡스톤 디자인 5조 어시스트

01

02

03

프로젝트 목표

진행 상황

계획 및 제한요소

01

02

03

프로젝트 목표

진행 상횡

계획 및 제한요소

asi - 핵심 아이디어

RNN

elastic

}}}}}}

CNN

이상 탐지

유사도 검사

md5

악성코드 의심 파일 분석

edit

0.73

0.32

0.87

cosine

0.85

0.21

0.90

asi - 웹 서비스

<파일 업로드 초기 시각화 안>

asi - 웹 서비스

<분석 결과 초기 시각화 안>

02

03

프로젝트 목표

진행 상황

계획 및 제한요소

데이터 수집

kaggle microsoft malware prediction

정상 파일 55,000

악성 파일 10,000개

push

니모닉 추출

parser python, IDA

mov push push mov push sub mov xor mov push push push push lea mov push push call add mov mov movl call

File

Assembly code

Mnemonic

Word2Vec

유사한 단어를 가까운 공간에 사상

CBOW

주변 단어로 중간 단어 예측

SkipGram

Hod

중간 단어로 주변 단어 예측

단어의 부분이 일치하면 유사하다고 판단

실험 조건 gensim 라이브러리 사용

- **10** 원도우 크기: 10
- 최소 단어 수:50

03 에폭:10

04 학습률: 0.002

⑤ 특징 벡터 차원 : 8/16/32/64/128

mov jmp add pop push

실험 결과

SkipGram

특징 벡터 차원 : 8/16/32/64/128

특징 벡터 차원: 16

특징 벡터 차원 : 64

실험 결과

02 진행 상황

단어 임베딩

실험 결과

- on word2vec
- **102** 윈도우 크기: 2
- ◎ 특징 벡터 차원 : 64

유사한 명령어가 가까운 위치로 임베딩

push

오토인코더 기반 이상 탐지

오토 인코더 이상 탐지 대표적 비지도 학습법

대표적 미시포 역급급 입력 값과 출력 값을 같게 함

— 02 진행 상황

이상 탐지

이상 탐지 X

이상 탐지 〇

실험 결과 - 손실값

신경망 구조

실험 조건

- ◎ 정상 10,000개
- **102** 벡터 크기: 16 / 64
- 03 신경망: GRU / LSTM
- **2** 결과 스코어 값이 임계값(0.2)보다 크면 이상탐지
 - → 스코어 산출 방식 : MAE(mean absolute error)

실험 결과 - 손실 값

GRU 보다 LSTM이 효과적

실험 결과 - 이상 탐지

임계값 < 0.12 -> 오탐 多

임계값 > 0.24 -> 미탐 多

임계 값: 0.2

실험 결과 - 이상 탐지

이상 탐지 비율

정상 < 악성

push mov push push 압축벡터 mov push sub mov xor mov push x_2 push push push lea mov push push 인코더 call (Encoder) add mov mov movl call

Mnemonic

디코더

(Decoder)

정상: 20%

md5: 02a7993fcd5fea4442271e91e12d2df7 md5: 07FADB006486953439CE0092651FD7A6 md5: 344fbbbedc59a0a5108da10d4afd2152

:

악성 : 80%

md5: 02a7993fcd5fea4442271e91e12d2df7 md5: 07FADB006486953439CE0092651FD7A6 md5: 344fbbbedc59a0a5108da10d4afd2152 md5: 02a7993fcd5fea4442271e91e12d2df7 md5: 07FADB006486953439CE0092651FD7A6 md5: 344fbbbedc59a0a5108da10d4afd2152

•

:

압축벡터

유사도 검색

악성/정상 비율

코사인 유사도 검증 - 편집 거리

		М	0	N	K	Е	Υ
	0	1	2	3	4	5	6
M	1	0	1	2	3	4	5
0	2	1	0	1	2	3	4
N	3	2	1	0	1	2	3
E	4	3	2	1	1	1	2
Υ	5	4	3	2	2	2	1

일치하게 만들기 위해 편집하는 횟수

|실험 결과 - 코사인 유사도 검증

편집거리와 코사인 유사도 반비례

편집거리와 유클리드 거리 비례

|실험 결과 - 코사인 유사도 검증

Idarg.0
callvirt
callvirt
call
stloc.0
Idarg.1
callvirt
callvirt
call
stloc.1
Idloc.0

Idarg.0
call
callvirt
Idarg.1
Idfld
callvirt
stloc.0
Idloc.0
brtrue
ret
Idarg.1

MD5: 000091e9cc8946301647fbd01fed6ce1

Index: 4814

MD5: 83b24d182dec262ce606c4ab46894c59

Index: 10977

실험 결과

악성 파일간의 유사도가 높음

웹 구현

웹 구현

```
"#FDD5B1": ["ble","ble.s","ble.un","ble.un.s","blt","blt.s","blt.un.s","bne.un","bne.un.s","br","br.s"],
"#1A4876" : ["ja","jb","jbe","jecxz","jg","jge","jl","jle","jmp","jnb","jno","jnp","jns","jnz","jo","jp","js","jz"],
"#1DACD6": ["cmp","cmpsb","cmpsd","cmpxchg","cmpxchg8b","comisd","comiss","switch"],
"#EFDECD" : ["aaa","aad","aam","aas","adc","add","add.ovf","addpd","addps","addsd","adds","and","andnps","an
dpd", "andps"],
"#000000": ["div", "divsd", "divss"],
"#00B9FB": ["fdiv", "fdivp", "fdivr", "fdivrp"],
"#4CB7A5": ["fsub", "fsubp", "fsubr", "fsubrp"],
"#D68A59": ["sub", "sub.ovf", "subpd", "subps", "subsd", "subss", "idiv", "imul"],
"#B4674D": ["fcom", "fcomi", "fcomip", "fcomp", "fcompp", "fucom", "fucomi", "fucomip", "fucomp", "fucompp"],
"#DD9475": ["pand", "test", "pandn", "pxor", "xor", "xorpd", "xorps", "xorp, "xorpd", "xorps"]
```

웹 구현 - 메인 페이지

About More

https://github.com/kookmin-sw/capstone-2020-5

© ASI, Kookmin University, Capstone Design Project 2020

메인페이지 추가로 UI개선

웹 구현 - 업로드

드래그 앤 드롭 방식 & 여러파일 업로드 가능

웹 구현 - 업로드 목록

업로드 파일 별 결과 확인

웹 구현 - 분석 결과

웹 구현 - 분석 결과

유사도 검사 이상탐지

Function

유사한 파일 중 정상 악성 비율 표시

유사한 함수를 포함하는 파일 검색

웹 구현 - 분석 결과

웹 구현 - 분석 결과

05a00e66bc0d98a777f8c34e922274d1.exe

md5:05a00e66bc0d98a777f8c34e922274d1

sha256: 4C03F4178F010AE68DBD1894C6F49CBE82F31334307EEC8A04C3BB713956E141

file size: 319909

유사도 검사

이상탐지

이상탐지 탭

Function

494bff5a8d74f83f027287026841db878

유사도 검사

이상탐지된 함수만 표시

02

03

프로젝트 목표

진행 상황

계획 및 제한요소

계획

검증

한계점

분석 결과에 대한 신빙성있는 검증방식 도입 필요

고려사항 분류기로써의 성능 확인

월별 구현 계획

항목	세부내용	1월	2월	3월	4월	5월	6월
요구사항분석	요구 분석	⊗					
	SRS 작성	⊗					
관련분야연구	딥러닝 기술 연구		⊗	⊗			
	관련 논문 동향조사		⊗	⊗			
설계	시스템 설계				()	()	
구현	코딩 및 모듈 테스트				()	()	
테스트	시스템 테스트						⊗

팀원 별 역할 분담

크롤러 & 파서 개발 신경망 구현 및 튜닝, 임베딩 웹 백엔드 개발 ELK 구축

발표자료 등 디자인 웹 기획/ 퍼블리싱 ELK 구축

논문 동향조사 제안서 및 보고서 작성 단어 임베딩

정상파일 크롤러 개발 신경망 구현 및 튜닝

자료 조사 회의록 등 문서 작성 웹 프론트 개발

opcode 파서 개발 웹 프론트 개발

