The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

Interactive Topic Modeling

Yuening Hu, Jordan Boyd-Graber, Brianna Satinoff {ynhu, bsonrisa}@cs.umd.edu, jbg@umiacs.umd.edu University of Maryland June 20, 2011

Outline

- Introduction of Topic Models
- Diagnosing Topic Models
- Encoding Feedback to Topic Models
- Strategies
- Experiments
- Conclusion
- Future Steps

Outline

- Introduction of Topic Models
- Diagnosing Topic Models
- Encoding Feedback to Topic Models
- Strategies
- Experiments
- Conclusion
- Future Steps

Why topic models?

- A huge number of documents
- Want to know what's going on
- Don't have time to read

Why topic models?

- A huge number of documents
- Want to know what's going on
- Don't have time to read

Topic Models

- A corpus-level view of major themes
- Unsupervised

Conceptual approach

- What topics are expressed throughout the corpus
- What topics are expressed by each document

TOPIC 1

computer, site, technology, system, service, phone, internet, machine

TOPIC 2

Sell, sale, market, product, business, advertising, store

TOPIC 3

play, film, movie, theater, production, star, director, stage

What's Important?

- A generative probabilistic model of documents that posits a hidden topic structure
- Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
 - A topic is a distribution over words
 - A document is a distribution over topics

What's the problem?

- Measure topic quality (Chang et al., 2009), not all topics are good
- It is easy to be detected by humans

What's the problem?

- Measure topic quality (Chang et al., 2009), not all topics are good
- It is easy to be detected by humans

Outline

- Introduction of Topic Models
- Diagnosing Topic Models
- Encoding Feedback to Topic Models
- Strategies
- Experiments
- Conclusion
- Future Steps

Topic 1	Topic 2
shuttle	NASA
launch	telescope
racket	quasar
battledore	saturn
backhand	space
astronaut	moon

Topic 1	Topic 2
shuttle	NASA
launch	telescope
racket	quasar
battledore	saturn
backhand	space
astronaut	moon

Topic 3

bladder

spinal_cord

sci

spinal

urinary

urothelial

cervical

urinary_tract

lumbar

Topic 3

bladder

spinal_cord

sci

spinal

urinary

urothelial

cervical

urinary_tract

lumbar

These words don't belong together!
Should be separated.

Simple interaction

Outline

- Introduction of Topic Models
- Diagnosing Topic Models
- Encoding Feedback to Topic Models
- Strategies
- Experiments
- Conclusion
- Future Steps

What feedback?

Topics are distributions over uncorrelated words

What feedback?

- Topics are distributions over uncorrelated words
- Add Constraints: positive and negative correlations

Prior in normal LDA

• Same prior for all the words (Boyd-Graber et al., 2007)

Model constraints as prior

- Dirichlet Forest: prior tree structure(Andrzejewski et al. 2009)
- Positive constraints only in this paper

How to incorporate feedback?

How to incorporate feedback?

Outline

- Introduction of Topic Models
- Diagnosing Topic Models
- Encoding Feedback to Topic Models
- Strategies
- Experiments
- Conclusion
- Future Steps

Remember or forget?

- Four strategies
 - All
 - None
 - Doc
 - Term
- Toy example

Toy example

phone

Toy example: All

Strategy All

- Forget all topic assignments
- Start from the very beginning

Toy example: None

Strategy None

- Remember everything
- Continue

- Positive constr: (nasa shuttle)
- Strategy: Doc

Strategy Doc

- Forget the topic assignments for docs containing constraints
- Remember the others
- continue

- Positive constr: (nasa shuttle)
- Strategy: Doc

- Positive constr: (nasa shuttle)
- Strategy: Doc

- Positive constr: (nasa shuttle)
- Strategy: Doc

- Positive constr: (nasa shuttle)
- Strategy: Doc

- Positive constr: (nasa shuttle)
- Strategy: Doc

Toy example: Term

- Negative constr: (spine bladder)
- Strategy: Term

Strategy Term

- Forget the topic assignments for the constraint words,
- Remember the others
- Continue

Round 2

- Negative constr: (spine bladder)
- Strategy: Term

Round 2

- Negative constr: (spine bladder)
- Strategy: Term

Round 2

- Negative constr: (spine bladder)
- Strategy: Term

Toy example

Outline

- Introduction of Topic Models
- Diagnosing Topic Models
- Encoding Feedback to Topic Models
- Strategies
- Experiments
- Conclusion
- Future Steps

Topic	Before
1	election, yeltsin, russian, political, party, democratic, russia, president, democracy, boris, country, south, years, month, government, vote, since, leader, presidential, military
2	new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, David
3	nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing
4	president, bush, administration, clinton, american, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, international, military, see
20	soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, communist, know, old, right, human, washington, western, bring, party

Topic	Before
1	election, yeltsin, russian, political, party, democratic, russia, president, military, democracy, boris, country, south, years, month, government, vote, since, leader, presidential
	•••
20	soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, communist, know, old, right, human, ashington, western, bring, party

Topic	Before
1	election, yeltsin, russian, political, party, democratic, russia, president, military, democracy, boris, country, south, years, month, government, vote, since, leader, presidential
	•••
20	soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, communist, know, old, right, human, ashington, western, bring, party

Suggested constraint

boris, communist, gorbachev, mikhail, russia, russian, soviet, union, yeltsin

Topic	Before	Topic	After
1	election, yeltsin, russian, political, party, democratic, russia, president, military, democracy, boris, country, south, years, month, government, vote, since, leader, presidential	1	election, democratic, south, country, president, party, africa, lead, even, democracy, leader, presidential, week, politics, minister, percent, voter, last, month, years
			•••
20	soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, communist, know, old, right, human, ashington, western, bring, party	20	soviet, union, economic, reform, yeltsin, russian, lead, russia, gorbachev, leaders, west, president, boris, moscow, europe, poland, mikhail, relations, communist, power

Topic	Before	Topic	After
2	new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, David, rudolph, dinkins, lead, need, governor, legislature, pataki	2	new, york, city, state, mayor, budget, council, giuliani, gov, cuomo, year, rudolph, dink- ins, legislature, plan, david, governor, pataki, need, cut
3	nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, would, control, korea, intelligence, test, nation, country, testing	3	nuclear, arms, weapon, treaty, defense, war, missile, may, come, test, american, world, would, need, lead, get, join, yet, clinton, nation
4	president, bush, military, see, administration, clinton, american, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, international,	4	president, administration, bush, clinton, war, unite, force, reagan, american, america, make, nation, military, iraq, iraqi, troops, international, country, yesterday, plan

Simulating an interactive user

- Dataset: 20 News groups
- Constraints from feature selection on training data
 - soc.religion.christian: "catholic, scripture, resurrection, pope, sabbath, spiritual, pray, divine, doctrine"
 - 20 classes: 20 constraint sets, 21 words per constraint set
- Add them to the topic model as positive constraints
 - Add one word per class each time, 21 rounds in total
- Train classifier on training data
 - Use topic distribution of each doc as the feature
- Measure classification error rate of test data

Which strategy & how long to wait?

- Facet: number of iterations added per round
- Start with 100 iterations
- Null: no constraints, comparable iters
- "Doc" is best, run 30 or 50 iterations each round

Topic general attorney street like one know lead people something

richard christmas sunday white wall get wear tree wrong
look reporter

- Some constraints users created
 - Inscrutable
 - better, people, right, take, things
 - fbi, let, says
 - Collocations
 - jesus, christ
 - solar, sun
 - even, number
 - book, list
 - Common instances (e.g. first names)
 - Soft constraint: mac, windows

Negative constraints

- NIH data(700 topics)
- Negative constraint: bladder spinal_cord

Topic	Before	Topic	After
318	bladder, sci, spinal_cord, spinal_cord_injury, spinal, urinary, urinary_tract, urothelial, injury, motor, recovery, reflex, cervical, urothelium, functional_recovery	318	sci, spinal_cord, spinal_cord_injury, spinal, injury, recovery, motor, reflex, urothelial, injured, functional_recovery, plasticity, locomotor, cervical, locomotion

Conclusion

- An efficient way to refine and improve the topics dis covered by topic models
- A paradigm for non-specialist consumers to refine models to better reflect their interests and needs
- Creating tools to do so
- We need users!

Future steps

- Speed up
- Suggesting constraints
- Incorporating other domain knowledge
- Incorporating interaction to other models

The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

Thank you! Any questions?

Yuening Hu, Jordan Boyd-Graber, Brianna Satinoff {ynhu, bsonrisa}@cs.umd.edu, jbg@umiacs.umd.edu University of Maryland June 20, 2011

Constrained LDA

Sampling equation

$$p(z_{d,n} = k | \mathbf{Z}_{-(d,n)}, \alpha, \beta, \eta)$$

$$\propto \begin{cases} \frac{T_{d,k} + \alpha}{T_{d,\cdot} + K\alpha} \frac{P_{k,w_{d,n}} + \beta}{P_{k,\cdot} + V\beta} & \text{if } \forall l, w_{d,n} \not\in \Omega_l \\ \frac{T_{d,k} + \alpha}{T_{d,\cdot} + K\alpha} \frac{P_{k,l} + C_l\beta}{P_{k,\cdot} + V\beta} \frac{W_{k,l,w_{d,n}} + \eta}{W_{k,l,\cdot} + C_l\eta} & w_{d,n} \in \Omega_l \end{cases}$$

- ullet $P_{k,w_{d,n}}$ number of times the unconstrained word $w_{d,n}$ appears in topic k
- ullet $P_{k,l}$ number of times any word of constraint Ω_l appears in topic k
- ullet $W_{k,l,w_{d,n}}$ the number of times word $w_{d,n}$ appears in constraint Ω_l in topic k
- V vocabulary size
- C_l number of words in constraint Ω_l

Which strategy?

- All Full: all constraints are known, comparable iters
- All Initial: all constraints are known, 100 iters
- Null: no constraints, comparable iters

Reference

- David M. Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022.
- Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David M. Blei. 2009. Reading tea leaves: How humans interpret topic models. In Ne ural Information Processing Systems.
- David Andrzejewski, Xiaojin Zhu, and Mark Craven. 2009. Incorporating domain n knowledge into topic modeling via Dirichlet forest priors. In Proceedings of International Conference of Machine Learning.
- Jordan Boyd-Graber, David M. Blei, and Xiaojin Zhu. 2007. A topic model for w ord sense disambiguation. In Proceedings of Emperical Methods in Natural La nguage Processing.
- Jonathan Chang. 2010. Not-so-latent dirichlet allocation: Collapsed gibbs sam pling using human judgments. In NAACL Workshop: Creating Speech and Lang uage Data With Amazon'ss Mechanical Turk.

