

IUT GEII – Outils Mathématiques et Logiciels I (OML1)

Équations différentielles ordinaires du premier ordre

Andrés F. López-Lopera Laboratoire de Mathématiques pour l'Ingénieur (LMI) Université Polytechnique Hauts-de-France (UPHF)

Thèmes

1. Introduction aux équations différentielles ordinaires

2. Équations différentielles du premier ordre à coefficients constants

Solution générale

Résolution de l'équation homogène

Résolution de l'équation avec second terme

- · Les équations différentielles trouvent leurs applications dans nombreux domaines :
 - biologie
 - physique
 - ingénierie (électrique, industrielle, mécanique)
- \cdot Nombreux phénomènes naturels sont régis par ces équations :
 - Systèmes dynamiques (e.g. mouvement des objets)
 - Circuit électriques (e.g. circuits RLC)
 - Relation entre l'ADN et les protéines (e.g. régulation de l'expression des gènes)

 \cdot Dans le cas général, une équation différentielle ordinaire (EDO) linéaire à coefficients constants est donnée par :

$$a_n \frac{d^n y(x)}{dx^n} + a_{n-1} \frac{d^{n-1} y(x)}{dx^{n-1}} + \dots + a_1 \frac{dy(x)}{dx} + a_0 y(x) = e(x),$$

ou

$$a_n y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \cdots + a_1 y'(x) + a_0 y(x) = e(x),$$

avec $a_0, \ldots, a_n \in \mathbb{R}$ et $e(x) : I \to \mathbb{R}$ (fonction d'entrée du système).

· Dans le cas général, une équation différentielle ordinaire (EDO) linéaire à coefficients constants est donnée par :

$$a_n \frac{d^n y(x)}{dx^n} + a_{n-1} \frac{d^{n-1} y(x)}{dx^{n-1}} + \dots + a_1 \frac{dy(x)}{dx} + a_0 y(x) = e(x),$$

ou

$$a_n y^{(n)}(x) + a_{n-1} y^{(n-1)}(x) + \cdots + a_1 y'(x) + a_0 y(x) = e(x),$$

avec $a_0, \ldots, a_n \in \mathbb{R}$ et $e(x) : I \to \mathbb{R}$ (fonction d'entrée du système).

Exemple (Circuit RL en série).

· Grâce au principe de la conservation

$$v(t) = v_R(t) + v_L(t)$$

= $Ri(t) + Li'(t)$

 \cdot On appelle équation différentielle linéaire (à coefficients constants) de 1er ordre toute équation de la forme :

$$ay'(x) + by(x) = e(x),$$

avec $a, b \in \mathbb{R}$ et $e(x) : I \to \mathbb{R}$.

 \cdot De façon plus générale, on appelle équation différentielle linéaire de 1er ordre toute équation de la forme :

$$a(x)y'(x) + b(x)y(x) = e(x),$$

avec $a(x), b(x), e(x) : I \to \mathbb{R}$.

4

 \cdot On appelle équation différentielle linéaire (à coefficients constants) de 2nd ordre toute équation de la forme :

$$ay''(x) + by'(x) + cy(x) = e(x),$$

avec $a, b, c \in \mathbb{R}$ et $e(x) : I \to \mathbb{R}$.

 \cdot De façon plus générale, on appelle équation différentielle linéaire de 2nd ordre toute équation de la forme :

$$a(x)y''(x) + b(x)y'(x) + c(x)y(x) = e(x),$$

avec $a(x), b(x), c(x), e(x) : I \to \mathbb{R}$.

 \cdot On appelle équation à variables séparables, toute équation du 1er ordre qui peut s'écrire :

$$y'g(y) = f(x),$$

ou, en utilisant la notation différentielle, sous la forme :

$$g(y)dy = f(x)dx$$

ordre à coefficients constants

Équations différentielles du premier

· Ici, on se concentre sur des équations différentielles de 1er ordre :

$$y'(x) + ay(x) = e(x)$$

· Pour le cas ay'(x) + by(x) = e(x), il suffit de diviser l'équation différentielle par a afin d'avoir les formes précédentes :

$$y'(x) + \underbrace{\frac{b}{a}}_{c} y(x) = \underbrace{\frac{e(x)}{a}}_{d(x)}$$

Solution générale d'une équation différentielle linaire de 1er ordre

- · La solution générale $y_G(x)$ d'une équation différentielle linéaire est la somme :
 - de la solution de l'équation homogène $y_H(x)$:

$$y_H'(x) + ay_H(x) = 0$$

- et d'une solution particulière $y_P(x)$ de l'équation avec second membre :

$$y_P'(x) + ay_P(x) = e(x)$$

Résolution de l'équation homogène

· On cherche toutes les fonctions $y_H(x)$ solutions de

$$y_H'(x) + ay_H(x) = 0 (1)$$

· Les solutions de cette équation sont les fonctions définies par :

$$y_H(x) = ke^{-ax}$$
, avec $k \in \mathbb{R}$

Remarque. Ces solutions s'obtient formellement par intégration.

· On peut vérifier que $y_H(x) = ke^{-ax}$ sont des solutions de (1) :

$$y'_H(x) + ay_H(x) = \frac{d}{dx}[ke^{-ax}] + a[ke^{-ax}]$$

= $-ake^{-ax} + ake^{-ax} = 0$

9

Remarque.

- Pour a > 0, elle représente une constante de atténuation
- Pour a < 0, elle représente une constante d'amplification

Exercice. Trouver les solutions de l'équation différentielle donnée par :

$$3y'(x) - 6y(x) = 0$$

Exercice. Trouver les solutions de l'équation différentielle donnée par :

$$3y'(x) - 6y(x) = 0$$

Solution.

· On peut récrire l'équation précédente de la forme :

$$y'(x) - 2y(x) = 0$$

· En appliquant la formule $y_H(x) = ke^{-ax}$ pour l'équation de la forme y'(x) + ay(x) = 0, on obtient :

$$y_H(x)=ke^{2x},$$

pour $k \in \mathbb{R}$

Résolution de l'équation avec second terme

Résolution de l'équation avec second terme

· On cherche la fonction $y_P(x)$ solution de

$$y'(x) + ay(x) = e(x) \tag{2}$$

· La solution $y_P(x)$ de cette équation dépend du type de la fonction e(x)

e(x)	$y_P(x)$
constante a	constante c
ax	mx + n
$a_n x^n + \cdots + a_1 x$	$c_n x^n + \cdots + c_1 x + c_0$
ae^{-bx}	ce^{-bx}
$a\sin(\omega x) + b\cos(\omega x)$	$\alpha \sin(\omega x) + \beta \cos(\omega x)$
$e^{-\lambda x}[a\sin(\omega x)+b\cos(\omega x)]$	$e^{-\lambda x}[\alpha\sin(\omega x)+\beta\cos(\omega x)]$

Résolution de l'équation avec second terme

Exemple. Soit l'équation différentielle donnée par :

$$3y'(x) - 6y(x) = -6x$$

- · La solution particulier à cette équation est de la forme $y_P(x) = mx + n$
- · Pour trouver les valeurs $m, n \in \mathbb{R}$, il suffit de remplacer y(x) par $y_P(x)$:

$$-6x = 3y_P'(x) - 6y_P(x) = 3m - 6mx - 6n,$$

d'où on obtient que -6m = -6 et 3m - 6n = 0. Alors, m = 1 et $n = \frac{m}{2} = \frac{1}{2}$.

· Finalement, on obtient $y_P(x) = x + \frac{1}{2}$

Exercice. Considérer le circuit RL série :

Calculer la solution générale de l'équation différentielle :

$$v(t) = v_R(t) + v_L(t) = Ri(t) + Li'(t)$$

Remarque. La solution particulier est de la forme $i_P(t) = \alpha \cos(t) + \beta \sin(t)$.

Exercice. Considérer le circuit RL série :

Calculer la solution générale de l'équation différentielle :

$$v(t) = v_R(t) + v_L(t) = Ri(t) + Li'(t)$$

Remarque. La solution particulier est de la forme $i_P(t) = \alpha \cos(t) + \beta \sin(t)$. Solution.

· L'équation différentielle associée au courant du circuit RL est donnée par :

$$i'(t) + 3i(t) = \sin(t)$$

Solution de l'équation homogène : i'(t) + 3i(t) = 0

· En appliquant la formule $y_H(x) = ke^{-ax}$ pour l'équation y'(x) + ay(x) = 0:

$$i_H(t) = ke^{-3t}$$

Remarque

Dans le cas général Li'(t) + Ri(t) = 0, on obtient :

$$i_H(t) = ke^{-\frac{R}{L}t},$$

avec une constante de atténuation $a = \frac{R}{L}$:

- le taux de décroissement est plus important si $R \gg L$
- le taux de décroissement est plus faible si $R \ll L$

Solution de l'équation avec second terme : $i'(t) + 3i(t) = \sin(t)$

· En sachant que $i_P(t) = \alpha \cos(t) + \beta \sin(t)$, on peut trouver les valeurs de $\alpha, \beta \in \mathbb{R}$ en remplaçant i(t) par $i_{P}(t)$:

$$\begin{aligned} \sin(t) &= i_P'(t) + 3i_P(t) \\ &= [-\alpha \sin(t) + \beta \cos(t)] + 3[\alpha \cos(t) + \beta \sin(t)] \\ &= (-\alpha + 3\beta) \sin(t) + (\beta + 3\alpha) \cos(t), \end{aligned}$$

d'où on obtient :

$$\begin{cases} -\alpha + 3\beta = 1\\ \beta + 3\alpha = 0 \end{cases}$$

· Parce que $\beta = -3\alpha$, on obtient : $\alpha = -\frac{1}{10}$ et $\beta = \frac{3}{10}$

Solution générale : $i_G(t) = i_H(t) + i_P(t)$

$$i_G(t) = ke^{-3x} - \frac{1}{10}\cos(t) + \frac{3}{10}\sin(t)$$

Calcul de la constante k :

Pour calculer la valeur de k, il faut considérer la condition initial i(0) et satisfaire l'égalité :

$$i_G(0)=i(0)$$

· En supposant dans notre exemple que i(0) = 1, on obtient :

$$i_G(0) = 1 = k - \frac{1}{10}$$
, d'où on obtient $k = \frac{11}{10}$

$$i_{G}(t) = ke^{-3x} - \frac{1}{10}\cos(t) + \frac{3}{10}\sin(t)$$

Procédure.

1. Définir l'équation différentielle de la forme :

$$y'(x) + ay(x) = e(x),$$
 $y(0) = c$ (condition initiale)

2. Calculer les solutions de l'équation homogène y'(x) + ay(x) = 0:

$$y_H(x) = ke^{-ax}$$

- 3. Selon le type de fonction e(x), établir la forme de la solution particulière $y_P(x)$ [e.g., $\sin e(x) = \sin(x)$, alors $y_P(x) = \alpha \cos(x) + \beta \sin(x)$]
- 4. Calculer les constantes associées au $y_P(x)$ en utilisant le fait que :

$$y_P'(x) + ay_P(x) = e(x)$$

5. Définir la solution générale de la forme :

$$y_G(x) = y_H(x) + y_P(x)$$

6. Calculer k en évaluant la solution générale $y_G(0)$ sur x = 0:

$$y_G(0) = y_H(0) + y_P(0) = c$$

Exercices.

Calculer et dessiner la solution générale des équations différentielles suivantes :

1.
$$y'(x) + 5y(x) = 10$$
, avec $y(0) = 3$

2.
$$y'(x) + 2y(x) = 4x^2 - x$$
, avec $y(0) = 1$

3.
$$2v'(t) + 6v(t) = e^{-2t}$$
, avec $v(0) = 3$

4.
$$i'(t) + 4i(t) = e^{-t}[2\sin(t) + 4\cos(t)]$$
, avec $i(0) = 3$

Solution.

1.
$$y'(x) + 5y(x) = 10$$
, avec $y(0) = 3$

Solution à l'équation homogène : y'(x) + 5y(x) = 0

$$y_H(x) = ke^{-5x}$$

Solution à l'équation avec second terme : y'(x) + 5y(x) = 10

En sachant que $y_P(x) = c$ avec $c \in \mathbb{R}$, on obtient que :

$$y'_{P}(x) + 5y_{P}(x) = 5c = 10$$
, d'où on obtient $c = 2$

Solution général : $y_G(x) = y_H(x) + y_P(x)$

$$y_G(x) = y_H(x) + y_P(x) = ke^{-5x} + 2$$

· Grâce à la condition initial y(0) = 3, on obtient :

$$y_G(x) = k + 2 = 3$$
, d'où on obtient $k = 1$

· Finalement, on obtient:

$$y_G(x) = e^{-5x} + 2$$

Solution (continuation).

2.
$$y'(x) + 2y(x) = 4x^2 - x$$
, avec $y(0) = 1$

Solution à l'équation homogène : y'(x) + 2y(x) = 0

$$y_H(x) = ke^{-2x}$$

Solution à l'équation avec second terme : $y'(x) + 2y(x) = 4x^2 - x$

En sachant que $y_P(x) = c_2 x^2 + c_1 x + c_0$ avec $c_0, c_1, c_2 \in \mathbb{R}$, on obtient que :

$$y_P'(x) + 2y_P(x) = (2c_2x + c_1) + 2(c_2x^2 + c_1x + c_0)$$

= $2c_2x^2 + 2(c_1 + c_2)x + 2c_0 + c_1 = 4x^2 - x$,

d'où on obtient

$$\begin{cases} 2c_2 = 4 \\ 2c_1 + 2c_2 = -1 \\ 2c_0 + c_1 = 0 \end{cases} \rightarrow \begin{cases} c_2 = 2 \\ c_1 = -\frac{5}{2} \\ c_0 = \frac{5}{4} \end{cases}$$

Solution (continuation).

Solution général : $y_G(x) = y_H(x) + y_P(x)$

$$y_G(x) = y_H(x) + y_P(x) = ke^{-2x} + 2x^2 - \frac{5}{2}x + \frac{5}{4}$$

· Grâce à la condition initial y(0) = 1, on obtient :

$$y_G(x) = k + \frac{5}{4} = 1$$
, d'où on obtient $k = -\frac{1}{4}$

· Finalement, on obtient:

$$y_G(x) = -\frac{1}{4}e^{-2x} + 2x^2 - \frac{5}{2}x + \frac{5}{4}$$

Solution (continuation).

3.
$$2v'(t) + 6v(t) = e^{-2t}$$
, avec $v(0) = 3$

Solution à l'équation homogène : 2v'(t) + 6v(t) = 0

$$v_H(t) = ke^{-3t}$$

Solution à l'équation avec second terme : $2v'(t) + 6v(t) = e^{-2t}$

En sachant que $v_P(t) = ce^{-2t}$ avec $c \in \mathbb{R}$, on obtient que :

$$2v_P'(t) + 6v_P(t) = -4ce^{-2t} + 6ce^{-2t} = 2ce^{-2t} = e^{-2t}$$
, d'où on obtient $c = \frac{1}{2}$

Solution général : $v_G(t) = v_H(t) + v_P(t)$

$$v_G(t) = v_H(t) + v_P(t) = ke^{-3t} + \frac{1}{2}e^{-2t}$$

· Grâce à la condition initial v(0) = 3, on obtient :

$$v_{\rm G}(t) = k + \frac{1}{2} = 3,$$
 d'où on obtient $k = \frac{5}{2}$

· Finalement, on obtient:

$$v_G(t) = \frac{5}{2}e^{-3t} + \frac{1}{2}e^{-2t}$$

Solution (continuation).

4.
$$i'(t) + 4i(t) = e^{-t}[2\sin(t) + 4\cos(t)]$$
, avec $i(0) = 3$

Solution à l'équation homogène : i'(t) + 4i(t) = 0

$$i_H(t) = ke^{-4t}$$

Solution à l'équation avec second terme : $i'(t) + 4i(t) = e^{-t}[2\sin(t) + 4\cos(t)]$

En sachant que $i_P(t) = e^{-t} [\alpha \sin(t) + \beta \cos(t)]$ avec $\alpha, \beta \in \mathbb{R}$, on obtient que :

$$i'_{P}(t) + 4i_{P}(t) = -e^{-t}[\alpha \sin(t) + \beta \cos(t)] + e^{-t}[\alpha \cos(t) - \beta \sin(t)]$$

$$+ 4e^{-t}[\alpha \sin(t) + \beta \cos(t)]$$

$$= e^{-t}[(3\alpha - \beta)\sin(t) + (\alpha + 3\beta)\cos(t)]$$

$$= e^{-t}[2\sin(t) + 4\cos(t)]$$

d'où on obtient

$$\begin{cases} 3\alpha - \beta = 2 \\ \alpha + 3\beta = 4 \end{cases} \rightarrow \begin{cases} \alpha = 1 \\ \beta = 1 \end{cases}$$

Solution (continuation).

Solution général : $i_G(t) = i_H(t) + i_P(t)$

$$i_G(t) = i_H(t) + i_P(t) = ke^{-4t} + e^{-t}[\sin(t) + \cos(t)]$$

· Grâce à la condition initial i(0) = 3, on obtient :

$$i_G(t) = k + 1 = 3$$
, d'où on obtient $k = 2$

· Finalement, on obtient:

$$i_G(t) = 2e^{-4t} + e^{-t}[\sin(t) + \cos(t)]$$

