Практическая работа №7

«Применение метода стрельбы для решения линейной краевой задачи»

Цель работы: приобрести навык применения метода стрельбы для решения линейной краевой задачи.

Краткие теоретические основания выполнения задания

Если при решении дифференциального уравнения высокого порядка дополнительные условия, определяющие однозначное решение, заданы при разных значениях независимой переменной, обычно в двух точках, являющихся границами области решения уравнения, то такая задача называется краевой. При этом сами дополнительные условия называются граничными или краевыми.

Рассмотрим решение краевой задачи для уравнения второго порядка

$$d2Y/dX2 = f(X,Y,dY/dX)$$

с граничными условиями Y(X₀)=Y₀ и Y(X_n)=Y_n.

Сущность метода стрельбы заключается в сведении краевой задачи к многократному решению задачи Коши для того же уравнения с подбором недостающего начального условия $Y'(X_0)=Z_0$ так, чтобы решение задачи Коши в точке X_n совпадало бы с заданным граничным условием Y_n с заданной точностью E.

Алгоритм метода стрельбы таков

- 1) выбирается любое значение Z₀,
- 2) исходное уравнение второго порядка приводится к системе из двух уравнений первого порядка введением дополнительных переменных,
- 3) полученная система решается численным методом, например, методом Рунге-Кутта при некотором начальном значении шага h и запоминается полученное решение в точке X_n ,
- 4) шаг h уменьшается в два раза и вновь находится решение в точке X_n ,
- 5) если новое решение отличается от старого меньше, чем на заданную точность E, то переходят к следующему этапу; иначе возвращаются к предыдущему этапу и снова уменьшают шаг h в два раза и т.д. до тех пор, пока не будет достигнута заданная точность,
- 6) при выбранном значении шага, обеспечивающего необходимую точность решения, многократно решают задачу Коши, подбирая начальное условие Y'(X₀)=Z₀ так, чтобы получаемое в точке Y(X₀) решение отличалось от заданного краевого условия Y₀ меньше, чем на заданную величину E.

Краевая задача: метод прогонки.

Рассмотрим метод прогонки на примере решения уравнения второго порядка вида

$$Y''+p(X)Y'+q(X)Y=f(X)$$

на отрезке [X₀, X_n] с заданными граничными условиями $Y(X_0)=Y_0=A$ и $Y(X_n)=Y_n=B$. Смысл решения заключается в расчете таблицы приближенных значений искомой функции Y(X) в узлах $X_i=X_0+ih$, где $h=(X_n-X_0)/n$ и i=1,2,...,n-1.

Заменим приближенно в каждом внутреннем узле производные Y" и Y' конечными центральноразностными отношениями

$$Y_{i}$$
"=(Y_{i+1} - $2Y_{i}$ + Y_{i-1})/ h_{2} μ Y_{i} '=(Y_{i+1} - Y_{i-1})/($2h$).

Обозначим $p_i=p(X_i)$, $q_i=q(X_i)$, $f_i=f(X_i)$.

Используя эти формулы, приближенно заменим исходное дифференциальное уравнение второго порядка на систему линейных алгебраических уравнений

$$(Y_{i+1}-2Y_i+Y_{i-1})/h_2+p_i(Y_{i+1}-Y_{i-1})/(2h)+q_iY_i=f_i,$$

где i=1,2,...,n-1, Y0=A и Yn=B. Решив эту систему, получим таблицу приближенных значений искомой функции. При большом п непосредственное решение такой системы, например, методом Гаусса становится громоздким. Учитывая специфический вид полученной системы алгебраических уравнений, а именно- что матрица коэффициентов ее трехдиагональна, применим специальный метод решения, называемый методом прогонки.

Запишем систему в виде

где $a_i = 1-hp_i/2$, $b_i = h_2q_i - 2$, $c_i = 1+hp_i/2$, $d_i = h_2f_i$.

Введем дополнительные переменные

$$V_i = -C_i / (b_i + a_i V_{i-1})$$
 $u_i = (d_i - a_i u_{i-1}) / (b_i + a_i V_{i-1})$.

Чтобы сделать схему вычислений однородной, положим $a_0=0$ и $c_n=0$. Тогда $v_n=0$ и $Y_n=u_n$. Кроме того, $v_0=-c_0/b_0$ и $u_0=d_0/b_0$.

Тогда решение системы определяется формулой

 $Y_i = u_i + v_i Y_{i+1}$.

Пример 2.

Применяя метод Рунге-Кутта, вычислить на отрезке [1;1,5] таблицу значений решения уравнения Y'' + Y'/X + Y = 0. С граничными условиями Y(1) = 0.77 и Y(1,5) = 0.49281, выбрав шаг 0.1 с погрешностью 0.001.

Как видно из условий задачи, h = 0,1, q=1, f=0, d=0, p=1/X для всех X.

Откроем новый рабочий лист и выделим блок A4:A9 под значения X от 1 до 1,5. В блок B5:B8 занесем значения 1/X, отведем столбцы C,D,E для текущих значений ai, bi, ci, столбцы F и G - для значений vi и ui, а столбец H - для значений Y.

Занесем числа: в ячейку F4 - ноль, в ячейки G4 и H4 - число 0,77. Соответственно, в ячейку F9 - тоже ноль, в ячейки G9 и H9 - число 0,49281.

Формулы ячеек в строке 5 представлены в таблице.

ячейка	формула			
B5	=1/A5			
C5	=1-B5*\$B\$2/2			
D5	=\$B\$2^2-2			
E5	=1+B5*\$B\$2/2			
F5	=-E5/(D5+C5*F4)			
G5	=-C5*G4/(D5+C5*F4)			
H5	=G5+F5*H6			

Формулы в строках 6,7,8 должны быть скопированы из строки 5. Результаты вычислений приведены ниже.

	Α	В	С	D	E	F	G	Н
1	Метод прогонки							
2	h=	0,1	q=	1	f=	0	=	0
3	Х	p=1/x	a	Ъ	C	V	u	У
4	1					0	0,77	0,77
5	1,1	0,909091	0,954545	-1,99	1,045455	D,525354	0,369347	0,718712
6	1, 2	0,833333	0,958333	-1,99	1,041667	0,700734	0,238109	0,665009
7	1,3	0,769231	0,961538	-1,99	1,038462	0,788974	0,173946	0,609219
8	1, 4	0,714286	0,964286	-1,99	1,035714	0,84259	0,136457	0,551694
9	1,5					0	0,49281	0, 49281

Задания для самостоятельной работы

Задание 1.

Применяя метод Рунге-Кутта, вычислить на отрезке [1;2] таблицу значений решения уравнения Y" +Y'/X+Y=0. С граничными условиями Y(1)=0,61 и Y(2)=0,37482, выбрав шаг 0,2 с погрешностью 0,001.

Контрольные вопросы

- 1. Что называется дифференциальным уравнением.
- 2. Какое дифференциальное уравнение называется дифференциальным уравнением второго порядка?
- 3. Какая задача называется краевой задачей?
- 4. Что называется граничными или краевыми условиями?
- 5. В чем заключается сущность метода стрельбы?