Exploiting Information Needs and Bibliographics for Polyrepresentative Document Clustering

Kamran Abbasi¹ Ingo Frommholz¹

¹Institute of Research in Applicable Computing University of Bedfordshire UK

BIR Workshop, ECIR2014 13 April 2014

Outline

- Introduction
- Polyrepresentation and Clustering
- Evaluation
- Conclusion

Introduction

- Principle of Polyrepresentation in IIR
- Representations of information need and information object
- Helps to minimize the gap between user's space and information space
- Document Clustering

- Mapping of clusters to polyrepresentation
- Search strategy:
 - User investigates total cognitive overlap cluster
 - User jumps to different cluster based on preferences

- Mapping of clusters to polyrepresentation
- Search strategy:
 - User investigates total cognitive overlap cluster
 - User jumps to different cluster based on preferences

- Mapping of clusters to polyrepresentation
- Search strategy:
 - User investigates total cognitive overlap cluster
 - User jumps to different cluster based on preferences

- Mapping of clusters to polyrepresentation
- Search strategy:
 - User investigates total cognitive overlap cluster
 - User jumps to different cluster based on preferences

- Mapping of clusters to polyrepresentation
- Search strategy:
 - 1. User investigates total cognitive overlap cluster
 - 2. User jumps to different cluster based on preferences

Simulated User and Cluster-based Ranking

- Rough simulation of search strategy
- Creates a ranking that we evaluate against baseline

```
Require: Clustering \mathcal{C}, k
r \leftarrow () {The ranking, initially an empty list}
C \leftarrow ranked list of clusters in \mathcal{C} (using eF or SD)
for all cluster c \in C do
I \leftarrow ranked list of documents in c {process C in descending weight order}
for i=1 to k do
r \leftarrow r + I[i] {append document at rank i to r}
end for
end for
return r
```


Experiment Setup

- PF (full text) sub collection of iSearch collection
- Collection's citation information is used for context extraction
- Terrier3.5 Search Engine

Evaluation Results

Results for All Queries IN

Evaluation Results

Results for All Queries Doc

Evaluation Results

Queries with High Relevance Information IN

Evaluation Results

Queries with High Relevance Information Doc

Evaluation Results

Queries with Low Relevance Information IN

Evaluation Results

Queries with Low Relevance Information Doc

Conclusion

- Cluster ranking and cluster-based ranking have potential
- Bibliometric information i.e citation context and references show improvement on IR performance when combined with clustering
- Simulated user based evaluation of interactive systems can be enhanced

Bibliographic context

