WELCOME TO CSE 231: Circuits & Electronics

Course Syllabus

Class Time: Tuesday 10:30 – 12:30

Thursday 09:30 - 11:30

Instructor: Dr. Erkan Zergeroğlu

Office: 202 Computer Engineering Department

E-mail: e.zerger@gtu.edu.tr

Office Hours: Yet to be determined

Textbook

- The essentials of electric circuits / M. Fogiel. Fogiel, ISBN. 0-87891-585-0
- Electric circuits fundamentals / Thomas L. Floyd. 1998 ISBN. 013835166X
- Introduction to electric circuits / Richard C. Dorf. 2001 ISBN.0471386898
- Principles of electric circuits / Thomas L. Floyd. 2000 ISBN.0130959979
- Electric circuits / James W. Nilsson, Susan A. Riedel. 2008 ISBN.0130321206
- Fundamentals of electric circuits / Charles K. Alexander, Matthew N.O. Sadiku. 2000 ISBN.0071160426

Homework

- Homework will be assigned and collected.
- Working the homework problems is essential to the learning of the material in this course; in fact, most of your learning will come from doing the homework.
- It is expected that your homework will represent your own work, although working in groups is allowed, and even encouraged.
- Late homework will not be accepted

Exams

There will be at least one regular (midterm) closed book exam and a "face to face, on campus" final exam.

 Most questions will be circuit analysis problems, including numerical as well as symbolic answers; however, there may be a few conceptual questions as well on each exam.

Grading

Final Grades will be Determined by Averaging the Homework, Exams, and the Final Exam Based on the Following Scale (This part is subject to change):

Quizzes 10%

Homework 10%

Midterm Exam 30 %

Final Exam 50%

Course Grade 100%

Overall

Lecture 1

Circuit Variables

Motivation

Basis for future courses

 Foundational to Electrical Engineering and Computer Engineering

Used for actual circuits and circuit models

9

Circuit Theory

Assumptions:

Electrical effects are instantaneous

No magnetic coupling between components

Lumped-Parameter Model

Circuit Variables

Units and Dimensions

We will use SI Units [International System]

Length m

Mass kg

• Time s

Current Ampere

Temperature K

Voltage Volts

Resistance Ohms

Some Important Derived Units **Energy**

Units are **Joules** (J)

Note: Text uses "*W*" for Energy

Some Important Derived Units (Contd.) **Power**

Units are *Watts* (*W*)

$$W = \frac{J}{s} \equiv \frac{Energy}{Time} = \frac{W}{t} \Rightarrow \frac{dW}{dt} = \frac{Change in W}{Change in t}$$

$$J \equiv W \cdot s$$
 or kW -hr

Meters read energy
Power companies charge for energy use

Some Important Derived Units (Contd.) Charge

Units are *Coulombs* (*C*)

$$Coulomb \equiv A \cdot s \equiv Current \times Time$$
 Charge

OR

$$Current \equiv \left(\frac{C}{s}\right) \equiv \frac{Charge}{Time}$$

Related to velocity of electrons

14

Definition of Current

Current is charge in motion

$$i = \frac{dq}{dt}$$
 (Coulombs/second) $\equiv Amperes = \frac{\text{Change in } q}{\text{Change in } t}$

$$q = \int_{0}^{t} i \ dt \quad \therefore \quad Q_{total} = \int_{0}^{\infty} i \ dt$$
 Integrate above expression

Current in Amperes or Amps

≡ # Coulombs which cross
a given point in 1 second

Electrons moving or flowing through a wire is a current These electrons are "moved" by a voltage

Some Important Derived Units (Contd.) Voltage

Definition of Voltage

$$V \equiv \frac{W}{q} \equiv \frac{Joules}{Coulomb}$$
$$\equiv Voltage$$

 V_{a-b} =Work required to move charge from point "a" to "b" (Book uses energy)

$$V = \frac{dW}{dq} = \frac{\text{Change in } W}{\text{Change in } q}$$

Some Important Derived Units (Contd.) Resistance

Units are *Ohms* (Ω)

$$\Omega = \frac{V}{A}$$
 Ohm's Law

$$\Rightarrow$$
 Implication: $V = IR$

17

Voltage and Current

Separation of Charge --> Force between charg --> **Voltage**

Voltage moves electrons **Current**

- + Terminal attracts electrons
- Terminal repels electrons

Ideal Passive Element (seen above)

i flows "through" the element

V is "across" the element

(drop or rise)

Passive Sign Convention

What are the polarities?

- The current *i* flows to the right
- What is the polarity of V?
- General element, so we don't know really

Passive sign convention

Variables are "Positive" in the equations

Passive Sign Components

This is not reality for "Active" Components

- Does add energy or supply power
- Current goes through a rise \Longrightarrow Gain in energy

A battery is an active component

Convention is based on "Passive" components.

Implications

Variables are treated as positive when the polarities are consistent with the "Passive Sign Convention"

Example/Illustration

Taken as Fact: Power = Voltage x Current

Standard Polarity

Reverse Polarity

$$i \longrightarrow p$$
Rise
 p

 $p \neq Vi$

p = -Vi

POSITIVE CURRENT WILL NOT FLOW IN THE REVERSE POLARITY FOR A PASSIVE COMPONENT

Ideal Circuit Elements

- 2 Terminal devices
- Described by V and/or i
- Basic Element

Two ways to represent this schematically

Dr. Harrell's

- Current "i" flows through the element.
- Voltage "V" is across the element.

Ideal Circuit Elements (Contd.)

Nilsson and Reidel

$\begin{array}{c|c} 1 & & 2 \\ \hline i & & V \\ Dr. Harrell's \end{array}$

For positive **V** and **i**

- ⇒ Voltage drop from 1 to 2 {+ to -}
- → Voltage rise from 2 to 1

- *i* flows from 1 to 2: direction of + charge flow.
- "-" charge {electrons} flows opposite to *i*.

Passive Sign Convention

$$i \xrightarrow{R} R$$

$$- \checkmark \checkmark \checkmark \checkmark \checkmark$$

$$V = iR$$

Power and Energy

Power \equiv Energy/Time

$$p = \frac{dW}{dt} \qquad \left\{ Watt = \frac{J}{s} \right\} = \frac{\text{Change in Energy}}{\text{Change in Time}}$$

$$p = \frac{dW}{dt} \equiv \left(\frac{dW}{dq} \right) \left(\frac{dq}{dt} \right) \quad \text{Use the fact that } \frac{dq}{dq} = 1$$

$$V = \frac{dW}{dq} \qquad i = \frac{dq}{dt}$$

$$\therefore \qquad p = Vi \qquad \text{Derived Power}$$
Formula

Power Delivery or Extraction

E L E M E N T

p = Vi $\bigoplus \longrightarrow a \operatorname{drop} \Longrightarrow \operatorname{lose energy}$

Power **delivered to OR absorbed by** element (Resistor)

p > 0

Power delivered to element

$$p = -Vi$$

$$\bigoplus a \text{ rise} \implies gain energy}$$

Power **extracted from OR delivered by** element (Power Supply)

p < 0

Power extracted from element

Find the Power Equation for the element in the box

Example

From the previous figure part (c)

i = -2(A)

$$p = -Vi$$

2. Plug in values:

$$p = -(10)(-2) = +20$$
 (W)

p > 0

> Power **absorbed** by element.

Example Problem

Similar to Fig. (d)

Redraw as shown.

(a) Calculations:

$$p = Vi$$

= (40)(5)
= 200

p > 0Absorbed by boxDelivered to box

- (b) Electrons leave terminal 2
- (c) Electrons *lose energy*Positive charges *lose energy*←

Through Voltage drop

New Example:

then

$$\mathbf{V} = -40 (V)$$
$$\mathbf{i} = 5 (A)$$

-V = 40(V) +

Calculated or specified values

$$p < 0$$
 $p = Vi = -200$ (*W*) Power Extracted *from* box