## Évaluation 7 – Sujet B

| Exercice 1 3 po                                                                                          | ints         |
|----------------------------------------------------------------------------------------------------------|--------------|
| Factoriser les expressions suivantes. Préciser à chaque fois l'identité remarquable utilisée.            |              |
| 1. Identité remarquable utilisée :                                                                       |              |
|                                                                                                          |              |
| $x^2 - 12x + 36 = \dots$                                                                                 |              |
| 2. Identité remarquable utilisée :                                                                       |              |
| $9x^2 - 25 = \dots$                                                                                      |              |
| Exercice 2 3 po                                                                                          | $_{ m ints}$ |
| Réduire au même dénominateur afin d'écrire les expressions suivantes sous la forme d'un unique quotient. |              |
| -4x 	 3x + 2                                                                                             |              |
| 1. $3x + \frac{2x^2}{2x-1}$ 2. $\frac{-4x}{2x+3} + \frac{3x+2}{x+2}$                                     |              |
| 2x-1                                                                                                     |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          | • • • •      |
|                                                                                                          | • • • •      |
|                                                                                                          | • • • •      |
|                                                                                                          | • • • •      |
|                                                                                                          | • • • •      |
|                                                                                                          | • • • •      |
|                                                                                                          | • • • •      |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
| Exercice 3 2 po                                                                                          | $_{ m ints}$ |
|                                                                                                          |              |
| 1. Préciser les valeurs prises par k dans la boucle for k in range(4):.                                  |              |
|                                                                                                          |              |
| 2. Quelle boucle peut-on écrire pour qu'une variable i prenne les valeurs 3, 4, 5, 6, 7?                 |              |
|                                                                                                          |              |

Exercice 4 4 points

Dans la figure suivante, ABCD et EFGH sont des rectangles. La « bande » ABCGFEHD est de largeur constante notée x. De plus AB = 10 et BC = 5. On note  $\mathcal{A}(x)$  l'aire du rectangle EFGH.



| 1. | Justifier que $\mathcal{A}(x) = (10 - 2x)(5 - x)$ . |
|----|-----------------------------------------------------|
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
| 2. | Développer et réduire $\mathcal{A}(x)$ .            |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
| 3  | Prouver que $A(x) = 2(x-5)^2$ .                     |
| ٠. | 115a151 que v.(w) -(w 0) .                          |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |
|    |                                                     |

Exercice 5 2 points

Tracer deux vecteurs ayant :

1. la même direction mais pas la même longueur, ni le même sens



 $2.\,$  la même longueur, mais pas la même direction



Exercice 6 2 points

Soient  $A,\,B$  et C trois points. En utilisant la relation de Chasles, compléter chacune des égalités suivantes :

1. 
$$\overrightarrow{...C} + \overrightarrow{...A} = \overrightarrow{BA}$$

2. 
$$\overrightarrow{AB} + \overrightarrow{B} = \overrightarrow{AC}$$

2. 
$$\overrightarrow{AB} + \overrightarrow{B...} = \overrightarrow{AC}$$
 3.  $\overrightarrow{BA} + \overrightarrow{...C} = \overrightarrow{BC}$  4.  $\overrightarrow{C...} + \overrightarrow{BA} = \overrightarrow{CA}$ 

4. 
$$\overrightarrow{C} \cdot \cdot \cdot + \overrightarrow{BA} = \overrightarrow{CA}$$

Exercice 7 2 points

Sur chacune des figures suivantes, construire le vecteur  $\overrightarrow{u} + \overrightarrow{v}$ . On fera apparaître sur la construction les vecteurs  $\overrightarrow{u}$  et  $\overrightarrow{v}$  représentés « bout à bout ».





Exercice 8 2 points

Un nageur part d'un point A et nage vers la berge opposée. On note :

- $\overrightarrow{v}_1$  le vecteur vitesse instantanée du nageur ;
- $\overrightarrow{v}_2$  le vecteur vitesse instantanée du courant.

On considère que ces deux vitesses sont constantes.



Déterminer graphiquement le point sur la berge opposée où arrivera le nageur.