Свойства самосопряжённых линейных операторов в гильбертовом пространств

Пусть H — гильбертово пространство. Пусть $A: H \mapsto H$ — линейный и непрерывный оператор. Пусть A — самосопряжённый оператор, то есть $A = A^*$.

Утверждение 1. Если A- самосопряжённый оператор, тогда выполняются следующие свойства:

- 1. $||A^n|| = ||A||^n \ \forall n \in \mathbb{N}$
- $2. \ r(A) = ||A||$
- 3. $\sigma(A) \subset \mathbb{R}$
- 4. пусть $m_+ = \sup_{\|f\|=1} (Af,f)$, где $(Af,f) \in \mathbb{R}$ для самосопряжённого оператора, пусть $m_- = \inf_{\|f\|=1} (Af,f)$, тогда $m_{+-} \in \sigma(A)$ и $\sigma(A) \subset [m_-(A),m_+(A)]$ (доказать в качестве упражнения)

Доказательство. Докажем первое утверждение. $\|A^n\| \le \|A\|^n$ по определению операторной нормы. Надо показать, что $\|A^n\| \ge \|A\|^n$. Для n=1 очевидно верно. Если для $k=1\dots n$ имеем $\|A^k\| = \|A\|^k$ и $A \ne 0$, тогда без ограничения общности $\forall f: \|f\| = 1$

$$||A^n f||^2 = (A^n f, A^n f)$$

В силу того, что A — самосопряжённый оператор

$$(A^n f, A^n f) = (A^{n-1} f, A^{n+1} f)$$

Последнее в силу неравенства Коши-Буняковского

$$(A^{n-1}f, A^{n+1}f) \le ||A^{n-1}f|| ||A^{n+1}f|| \le ||A^{n-1}|| ||A^{n+1}||$$

Получаем, что

$$||A^n f||^2 \le ||A^{n-1}|| ||A^{n+1}||$$

Из индукции $\|A^{n-1}\| \leq \|A\|^{n-1}$ и $\|A^n\| = \|A\|^n$ Возмём теперь супремум $\forall \|f\| = 1$

$$||A^n||^2 = ||A||^{2n} \le ||A||^{n-1} ||A^{n+1}||$$

Отсюда при $A \neq 0$ получаем

$$||A||^{n+1} \le ||A^{n+1}||$$

Что и требовалось доказать.

Второе утверждение очевидно следует из первого для самосопряжённого оператора:

$$r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|} = \lim_{n \to \infty} \sqrt[n]{\|A\|^n} = \|A\|$$

Перейдём к третьему утверждению. Воспоминание: пусть A — самосопряжённый оператор. Пусть $\lambda \in \sigma_p(A)$, то есть $\ker A_\lambda \neq 0$, следовательно $\exists f \neq 0 \in \ker A_\lambda \colon Af = \lambda f$. Тогда

$$(Af, f) = \lambda(f, f)$$

С другой стороны, в силу самосопряжённости

$$(Af, f) = (f, Af) = \overline{\lambda}(f, f)$$

И так как $f \neq 0$, то $\lambda = \overline{\lambda}$