Meets Specifications

Dear student.

well done improving your submission and addressing the last remaining issues, you made it for an excellent project. There's not much I can actually further add to your good work though, if you are enthusiastic about process optimization, when it comes to machine learning, I left a Pro Tip for you in the code section. Please be advised that it is quite advanced, therefore don't worry if you don't get it immediately, you could keep it and use it later on as you progress in the Nanodegree.

Congratulations on passing your exam!

Classification vs Regression

Student is able to correctly identify which type of prediction problem is required and provided reasonable justification.

Exploring the Data

Student response addresses the most important characteristics of the dataset and uses these characteristics to inform their decision making. Important characteristics must include:

- Number of data points
- Number of features
- Number of graduates
- Number of non-graduates
- Graduation rate

Well done providing the appropriate number of features.

Preparing the Data

Code has been executed in the iPython notebook, with proper output and no errors.

Training and test sets have been generated by randomly sampling the overall dataset.

Training and Evaluating Models

Three supervised models are chosen with reasonable justification. Pros and cons for the use of each model are provided, along with discussion of general applications for each model.

Please list out all references you use while stating your pros and cons for the various models.

All the required time and F1 scores for each model and training set sizes are provided within the chart given. The performance metrics are reasonable relative to other models measured.

Choosing the Best Model

Justification is provided for which model seems to be the best by comparing the computational cost and accuracy of each model.

Student is able to clearly and concisely describe how the optimal model works in laymen terms to someone what is not familiar with machine learning nor has a technical background.

Well done improving your answer and discussing in detail the mechanism behind logistic regression.

The final model chosen is correctly tuned using gridsearch with at least one parameter using at least three settings. If the model does not need any parameter tuning it is explicitly stated with reasonable justification.

The F1 score is provided from the tuned model and performs approximately as well or better than the default model chosen.

Quality of Code

Code reflects the description in the documentation.

machine learning process becomes 'grid-searchable' and you can parameterize and search the whole process though cross validation.

http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

And yes you can try out several algorithms automatically as well too! Watch out though this is pretty advanced stuff, here is a great, informative, top notch tutorial from Zac Sewart!

http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html