

生命科学基础I

Chapter 6

细胞的通讯和 信号转导

丁岩

3. G蛋白偶联受体介导的信号通路

3.1 G蛋白偶联受体

G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs)是所有信号受体分子中最为常见的一种。

- ✓七次跨膜
- ✓ 偶联G蛋白—— G_{α} , G_{β} , G_{γ} 三个亚基

3.1 G蛋白偶联受体

立体结构中都有七个 跨膜α螺旋

肽链的C端和连接第5和 第6个跨膜螺旋的胞内环 上都有G蛋白的结合位点

1. G蛋白的结构

- ・异三聚体: α -亚基 和 $\beta\gamma$ -亚基
- ·α-亚基的N端 γ-亚基的C端锚定于膜上

1. G蛋白的结构

· G蛋白的三个亚基:

- G_α: 39-46kD, 20多种, 有GTP或GDP结合位点、GTP酶活性、ADP核糖基化位点、毒素修饰位点及受体和效应器结合位点等

 $-G_{\beta}$: 36kD, 6种

- G_γ: 7-8kD, 10多种

· G蛋白有两种构象形式:

- 活化型: G_{α} 与GTP结合,与 $G_{\beta\gamma}$ 分离

- 非活化型: G_{α} 与GDP结合,与 $G_{\beta\gamma}$ 结合成三聚体

2. G蛋白的种类 (根据α亚基分型)

- Gs型G蛋白:刺激型G蛋白,激活腺苷酸环化酶,激活钙通道,抑制钠通道
- Gi型G蛋白:抑制型G蛋白,抑制腺苷酸环化酶,抑制钙通道,活化钾通道
 - 、磷脂酶C (PLC) 和磷脂酶A2 (PLA2)

2. G蛋白的种类 (根据α亚基分型)

- Gq型G蛋白:与磷脂代谢有关,其活性不受细胞毒素的修饰
- Gt型G蛋白:分布在视网膜的感光细胞,与视紫红质结合,激活cGMP-磷酸二酯酶
- · Gg型G蛋白:是味蕾组织中的一种G蛋白,与味觉的信号转导有关
- · Golf型G蛋白: 分布于嗅神经元,激活腺苷酸环化酶,与嗅觉产生有关
- Go型G蛋白:存在于脑组织中,能调节磷脂代谢,与肌醇磷酸信号转导有关

G蛋白α亚基的分型

Ga 类型	结合的效应器	第二信使	受体举例
Gsα	腺苷酸环化酶	cAMP (升高)	β 肾上腺素受体,胰高血糖素受体, 血中复合胺受体,后叶加压素受体
Giα	腺苷酸环化酶 K+通道 (Gβγ 激活效应器)	cAMP(降低) 膜电位改变	α1 肾上腺素受体 M 乙酰胆碱受体
Golfa	腺苷酸环化酶	cAMP (升高)	嗅觉受体 (鼻腔)
Gqα	磷脂酶C	IP3, DAG (升高)	α2肾上腺素受体
Goα	磷脂酶C	IP3, DAG (升高)	乙酰胆碱受体 (内皮细胞)
Gta	cGMP 磷酸二酯酶	cGMP (降低)	视杆细胞中视紫红质 (光受体)

- ✓ Gs/Gi-腺苷酸环化酶-cAMP-PKA (蛋白激酶A)
- ✓ Gq-磷脂酶C-IP₃/DAG信号通路

3.3 GPCR介导的下游信号通路

- ✓ 腺苷酸环化酶-cAMP-PKA
 - 激活AC
 - 抑制AC
- ✓磷脂酶C
 - IP_3 - Ca^{2+}
 - DAG-PKC
- ✓离子通道
- **✓ MAPK信号通路**

3.4 Gs/Gi-腺苷酸环化酶-cAMP-PKA

腺苷酸环化酶

▶相对分子量为150KD的糖蛋白,跨膜12次。在Mg²+或Mn²+的存在下,腺苷酸环化酶催化ATP生成cAMP。

cAMP

- ❖cAMP在胞质溶胶中的正常浓度约为10-7M,但细胞外信号可以在数秒内将该浓度增加20倍以上
- ❖cAMP由ATP通过腺苷酸环化酶合成
- ❖cAMP被cAMP磷酸二酯酶快速并持续地破坏, 水解为5'-AMP

PKA调控的糖原代谢

PKA调控的糖原代谢

Gs-腺苷酸环化酶-cAMP-PKA通路在葡萄糖代谢中的作用

>在骨骼肌中,糖原的分解在肾上腺素结合到受体后 几秒钟内就发生。

为什么糖原的分解发生的速度如此快?

因为参与的所有反应都不涉及基因转 录的改变或是新蛋白的合成。

Gs/Gi-腺苷酸环化酶-cAMP-PKA通路调控基因表达

- · cAMP反应元件 (cAMP response element, CRE)广泛存在于基因调控区
- · CRE结合蛋白 (CREB)可以识别CRE
- · 当PKA被cAMP激活后,会磷酸化CREB,磷酸化的CREB招募转录激活因子或者转录抑制因子,从而调控基因的表达

cAMP-PKA通路的调控对象

Cholera toxin 霍乱毒素——关闭信号机制同样重要

3.4 Gq-磷脂酶C (PLC) -IP₃/DAG通路

兵分两路 殊途同归

3.4.1 IP₃ -Ca²⁺信号通路

钙调蛋白(Calmoduline, CaM)

表 9-4 受钙调蛋白调节的酶

酶	细胞功能	10000000000000000000000000000000000000	细胞功能
腺苷酸环化酶	合成 cAMP	磷酸化酶	糖原降解
鸟苷酸环化酶	合成cGMP	肌球蛋白轻链激酶	平滑肌收缩运动
钙依赖性磷酸二酯酶	水解 cAMP和 cGMP	钙调蛋白激酶	神经递质分泌和再合成,分子记忆
Ca ²⁺ -ATP 酶	Ca ²⁺ 泵	钙依赖性蛋白磷酸酶	各种蛋白质的去磷酸化
NAD 激酶	合成 NADP	转谷氨酰胺酶	蛋白质交联

3.4.1 IP₃ -Ca²⁺信号通路

钙调蛋白与学习记忆

钙非依赖的记忆存 留随时间降低,如

不再刺激则记忆迅

速消退

在初次激活的基础上自发 磷酸化的再次激活

3.4.2 DAG-PKC信号通路

> 以磷脂酰肌醇代谢为基础的信号通路的最大特点:

胞外信号被膜受体接受后,同时产生两个胞内信使,分别激动两个信号传递途径,即IP₃-Ca²⁺和DAG-PKC途径,实现细胞对外界信号的应答,因此把这一信号系统又称为"双信使系统"。

3.5 GPCR介导的离子通道信号通路

- ▶ G蛋白直接激活或失活靶细胞质膜中的离子通道,从而改变离子通透性并因此改变膜的电激发性。
 - · 心肌细胞中M型乙酰胆碱受体和K+通道

Gi的α亚基抑制腺苷酸环化酶,而βγ亚基与心肌细胞质膜中的K+通道结合并打开它们。 这些K+通道的开放使得细胞去极化变得更难,从而有助于乙酰胆碱对心脏的抑制作用。

29

● 心肌细胞上 M型乙酰胆碱受体的活化与效应器K⁺通道的开启的工作模型

小结: GPCR介导的信号通路中的共同元件

- ➤GPCR: 七次跨膜受体
- \rightarrow 偶联三聚体G蛋白—— $G_{\alpha}(GTPase)$, G_{β} , G_{γ}
- 〉与质膜结合的效应器蛋白
 - ✓ 腺苷酸环化酶: Gs/Gi-腺苷酸环化酶-cAMP-PKA
 - ✓磷脂酶C: Gq-磷脂酶C-IP₃/DAG
 - \checkmark 离子通道蛋白: 如心肌M型乙酰胆碱受体— $G_{\beta\gamma}$ — K^+ 通道
- 〉具有反馈调节或导致受体脱敏的蛋白

小结

- > 掌握GPCR、G蛋白的结构、功能以及GPCR的活化过程;
- > 掌握几种重要的G蛋白α亚基的分型、效应蛋白和第二信使;
- > 重点掌握:
 - Gs/Gi-腺苷酸环化酶-cAMP-PKA通路
 - $-Gq-磷脂酶C_{\beta}$ (PLC_{\beta}) -IP₃/DAG通路
- > 了解GPCR调控的离子通道