$11n_{182} (K11n_{182})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -20148888016u^{22} - 749797203535u^{21} + \dots + 2663810305417b - 383665719756, \\ &- 10534409632231u^{22} + 12986341631640u^{21} + \dots + 2663810305417a - 72898377806205, \\ &u^{23} - u^{22} + \dots + 5u + 1 \rangle \\ I_2^u &= \langle -4.69374 \times 10^{59}u^{39} + 1.06924 \times 10^{60}u^{38} + \dots + 3.76856 \times 10^{59}b + 1.45903 \times 10^{61}, \\ &6.35380 \times 10^{61}u^{39} - 1.40886 \times 10^{62}u^{38} + \dots + 5.46442 \times 10^{61}a - 2.06339 \times 10^{63}, \ u^{40} - 3u^{39} + \dots - 25u + 10^{43}u^{40} + 10^{44}u^{$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 80 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -2.01 \times 10^{10} u^{22} - 7.50 \times 10^{11} u^{21} + \dots + 2.66 \times 10^{12} b - 3.84 \times 10^{11}, \ -1.05 \times 10^{13} u^{22} + 1.30 \times 10^{13} u^{21} + \dots + 2.66 \times 10^{12} a - 7.29 \times 10^{13}, \ u^{23} - u^{22} + \dots + 5u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 3.95464u^{22} - 4.87510u^{21} + \dots - 45.3209u + 27.3662 \\ 0.00756394u^{22} + 0.281475u^{21} + \dots + 1.99017u + 0.144029 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3.96220u^{22} - 4.59362u^{21} + \dots - 43.3307u + 27.5102 \\ 0.00756394u^{22} + 0.281475u^{21} + \dots + 1.99017u + 0.144029 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 4.19771u^{22} - 4.99533u^{21} + \dots - 46.1260u + 27.9976 \\ -0.296345u^{22} + 0.358714u^{21} + \dots + 2.58565u + 0.310226 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -22.8331u^{22} + 26.1180u^{21} + \dots + 253.774u - 151.915 \\ 0.0861032u^{22} - 0.0646937u^{21} + \dots - 0.600147u + 0.912866 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -22.0355u^{22} + 25.3812u^{21} + \dots + 246.765u - 147.718 \\ 0.0237345u^{22} - 0.319401u^{21} + \dots - 2.39210u + 0.616521 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -22.0593u^{22} + 25.7006u^{21} + \dots + 249.157u - 148.334 \\ 0.0237345u^{22} - 0.319401u^{21} + \dots - 2.39210u + 0.616521 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -26.6866u^{22} + 26.0341u^{21} + \dots + 251.311u - 149.997 \\ 0.0604215u^{22} - 0.0191991u^{21} + \dots + 0.136923u + 1.00555 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -122.419u^{22} + 140.753u^{21} + \dots + 1356.31u - 817.081 \\ 0.550132u^{22} - 0.666197u^{21} + \dots + 5.81233u + 4.35302 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -122.419u^{22} + 140.753u^{21} + \dots + 1356.31u - 817.081 \\ 0.550132u^{22} - 0.666197u^{21} + \dots - 5.81233u + 4.35302 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{23} - 6u^{21} + \dots - 40u - 4$
c_2, c_6	$u^{23} - 3u^{22} + \dots + 47u - 8$
c_{3}, c_{7}	$u^{23} - u^{22} + \dots + 5u + 1$
c_4, c_9	$u^{23} - 9u^{22} + \dots - 40u + 16$
c_5, c_8	$u^{23} - 6u^{22} + \dots + 22u - 5$
c_{11}	$u^{23} + 4u^{22} + \dots - 7u - 34$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{23} - 12y^{22} + \dots + 448y - 16$
c_2, c_6	$y^{23} - 13y^{22} + \dots + 1233y - 64$
c_{3}, c_{7}	$y^{23} - 5y^{22} + \dots + 41y - 1$
c_4, c_9	$y^{23} - 43y^{22} + \dots - 1088y - 256$
c_5, c_8	$y^{23} - 46y^{22} + \dots + 344y - 25$
c_{11}	$y^{23} + 6y^{22} + \dots - 12055y - 1156$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.555624 + 0.905584I		
a = 0.910105 - 0.864749I	1.86354 - 5.26744I	5.28915 + 6.74191I
b = -1.40913 + 1.48491I		
u = 0.555624 - 0.905584I		
a = 0.910105 + 0.864749I	1.86354 + 5.26744I	5.28915 - 6.74191I
b = -1.40913 - 1.48491I		
u = 1.08075		
a = -0.674705	5.56139	-4.10580
b = 2.01594		
u = 0.501300 + 0.715167I		
a = -0.703633 - 0.411741I	6.01384 - 1.36939I	7.91646 + 4.62007I
b = 1.46848 - 0.46020I		
u = 0.501300 - 0.715167I		
a = -0.703633 + 0.411741I	6.01384 + 1.36939I	7.91646 - 4.62007I
b = 1.46848 + 0.46020I		
u = 0.728418 + 0.872189I		
a = -0.297023 + 0.916259I	3.37848 + 2.40469I	1.77991 - 2.36658I
b = -0.631160 - 0.422833I		
u = 0.728418 - 0.872189I		
a = -0.297023 - 0.916259I	3.37848 - 2.40469I	1.77991 + 2.36658I
b = -0.631160 + 0.422833I		
u = -1.049550 + 0.569449I		
a = 0.978794 + 0.476256I	-5.59031 + 2.93906I	-3.96701 - 3.47635I
b = -0.827795 - 0.239786I		
u = -1.049550 - 0.569449I		
a = 0.978794 - 0.476256I	-5.59031 - 2.93906I	-3.96701 + 3.47635I
b = -0.827795 + 0.239786I		
u = -0.704512 + 0.984779I		
a = 0.736671 + 0.559489I	-2.32908 + 5.49763I	-4.79992 - 7.26042I
b = -0.414106 - 1.231940I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.704512 - 0.984779I		
a = 0.736671 - 0.559489I	-2.32908 - 5.49763I	-4.79992 + 7.26042I
b = -0.414106 + 1.231940I		
u = 0.929406 + 0.853194I		
a = 0.740478 + 0.793412I	5.11296 - 9.53315I	2.57549 + 7.49079I
b = -1.091640 + 0.630699I		
u = 0.929406 - 0.853194I		
a = 0.740478 - 0.793412I	5.11296 + 9.53315I	2.57549 - 7.49079I
b = -1.091640 - 0.630699I		
u = 0.734602		
a = 1.84769	-3.46093	0.434270
b = -0.838790		
u = -1.000300 + 0.806208I		
a = 0.146523 - 0.473900I	-0.46558 + 3.81570I	4.70967 - 3.05268I
b = -0.602615 - 0.205653I		
u = -1.000300 - 0.806208I		
a = 0.146523 + 0.473900I	-0.46558 - 3.81570I	4.70967 + 3.05268I
b = -0.602615 + 0.205653I		
u = -0.188306 + 0.473727I		
a = -1.261830 + 0.253849I	0.294559 + 1.131280I	2.80927 - 6.63257I
b = 0.271244 + 0.415630I		
u = -0.188306 - 0.473727I		
a = -1.261830 - 0.253849I	0.294559 - 1.131280I	2.80927 + 6.63257I
b = 0.271244 - 0.415630I		
u = -1.33922 + 0.68743I		
a = -0.831149 - 0.099202I	-3.36043 + 7.89416I	-1.16388 - 6.61187I
b = 1.41488 + 0.83581I		
u = -1.33922 - 0.68743I		
a = -0.831149 + 0.099202I	-3.36043 - 7.89416I	-1.16388 + 6.61187I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.23451 + 0.89988I		
a = -0.999661 + 0.218042I	0.6169 - 16.3897I	-0.60357 + 8.49133I
b = 1.34140 - 1.32358I		
u = 1.23451 - 0.89988I		
a = -0.999661 - 0.218042I	0.6169 + 16.3897I	-0.60357 - 8.49133I
b = 1.34140 + 1.32358I		
u = -0.150085		
a = 36.9885	-0.0107219	320.580
b = -0.216243		

II.
$$I_2^u = \langle -4.69 \times 10^{59} u^{39} + 1.07 \times 10^{60} u^{38} + \cdots + 3.77 \times 10^{59} b + 1.46 \times 10^{61}, \ 6.35 \times 10^{61} u^{39} - 1.41 \times 10^{62} u^{38} + \cdots + 5.46 \times 10^{61} a - 2.06 \times 10^{63}, \ u^{40} - 3u^{39} + \cdots - 25u + 29 \rangle$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.16276u^{39} + 2.57824u^{38} + \dots + 15.4232u + 37.7606 \\ 1.24550u^{39} - 2.83726u^{38} + \dots - 21.4581u - 38.7159 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0827388u^{39} - 0.259017u^{38} + \dots - 6.03488u - 0.955344 \\ 1.24550u^{39} - 2.83726u^{38} + \dots - 21.4581u - 38.7159 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.18195u^{39} + 2.57423u^{38} + \dots + 12.7538u + 38.0738 \\ 0.434159u^{39} - 1.02128u^{38} + \dots + 12.7538u + 38.0738 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.296393u^{39} - 0.547600u^{38} + \dots + 8.50789u - 11.9654 \\ 0.237025u^{39} - 0.603121u^{38} + \dots - 13.2225u - 4.41074 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.03486u^{39} + 2.43611u^{38} + \dots + 28.2109u + 46.3778 \\ 0.440164u^{39} - 0.996927u^{38} + \dots - 8.56472u - 15.8344 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.47503u^{39} + 3.43303u^{38} + \dots + 36.7756u + 62.2122 \\ 0.440164u^{39} - 0.996927u^{38} + \dots - 8.56472u - 15.8344 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.246893u^{39} - 0.444760u^{38} + \dots + 9.0495641u - 2.02219 \\ -0.286524u^{39} + 0.705961u^{38} + \dots + 6.76415u + 14.3540 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.94454u^{39} - 4.32792u^{38} + \dots - 27.3144u - 65.7640 \\ -0.600066u^{39} + 1.33935u^{38} + \dots + 6.52606u + 22.9357 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.94454u^{39} - 4.32792u^{38} + \dots - 27.3144u - 65.7640 \\ -0.600066u^{39} + 1.33935u^{38} + \dots + 6.52606u + 22.9357 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2.41432u^{39} 4.79564u^{38} + \cdots + 14.4984u 64.7958$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{40} + 9u^{38} + \dots + 244u - 44$
c_2, c_6	$(u^{20} + 2u^{19} + \dots + 8u + 1)^2$
c_{3}, c_{7}	$u^{40} - 3u^{39} + \dots - 25u + 29$
c_4, c_9	$(u^{20} + u^{19} + \dots - 25u - 11)^2$
c_{5}, c_{8}	$u^{40} + u^{39} + \dots - 47u - 169$
c_{11}	$(u^{20} - u^{19} + \dots + 7u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{40} + 18y^{39} + \dots - 94208y + 1936$
c_2, c_6	$(y^{20} - 14y^{19} + \dots + 40y + 1)^2$
c_{3}, c_{7}	$y^{40} - 19y^{39} + \dots - 12747y + 841$
c_4, c_9	$(y^{20} - 13y^{19} + \dots - 1021y + 121)^2$
c_{5}, c_{8}	$y^{40} + 7y^{39} + \dots - 530503y + 28561$
c_{11}	$(y^{20} + 3y^{19} + \dots - 35y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.843881 + 0.602804I		
a = 0.232508 + 0.949215I	5.13837 - 3.10653I	2.77090 + 3.27458I
b = -1.042200 + 0.656943I		
u = 0.843881 - 0.602804I		
a = 0.232508 - 0.949215I	5.13837 + 3.10653I	2.77090 - 3.27458I
b = -1.042200 - 0.656943I		
u = -0.724639 + 0.605856I		
a = -0.421379 - 0.634087I	0.78911 + 3.05252I	1.27188 - 4.35560I
b = 0.15696 + 1.84987I		
u = -0.724639 - 0.605856I		
a = -0.421379 + 0.634087I	0.78911 - 3.05252I	1.27188 + 4.35560I
b = 0.15696 - 1.84987I		
u = -0.893885 + 0.284008I		
a = -1.55376 + 0.35417I	-1.76779 + 6.66107I	-3.08867 - 6.78923I
b = 0.232385 + 1.342720I		
u = -0.893885 - 0.284008I		
a = -1.55376 - 0.35417I	-1.76779 - 6.66107I	-3.08867 + 6.78923I
b = 0.232385 - 1.342720I		
u = 0.424536 + 0.808576I		
a = -0.90087 - 1.19479I	0.703344 + 0.559674I	1.56320 - 4.51761I
b = 0.545954 + 0.038305I		
u = 0.424536 - 0.808576I		
a = -0.90087 + 1.19479I	0.703344 - 0.559674I	1.56320 + 4.51761I
b = 0.545954 - 0.038305I		
u = -1.048820 + 0.339914I		
a = 0.806845 + 0.261493I	-4.78547	-5.34389 + 0.I
b = -0.420413 - 1.165930I		
u = -1.048820 - 0.339914I		
a = 0.806845 - 0.261493I	-4.78547	-5.34389 + 0.I
b = -0.420413 + 1.165930I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.773777 + 0.786429I		
a = -0.789062 - 0.060278I	0.28152 + 2.20542I	2.09891 - 2.63579I
b = 0.747156 + 0.918386I		
u = -0.773777 - 0.786429I		
a = -0.789062 + 0.060278I	0.28152 - 2.20542I	2.09891 + 2.63579I
b = 0.747156 - 0.918386I		
u = 0.778748 + 0.245271I		
a = -1.255710 + 0.087033I	-7.62987 - 1.01721I	5.24970 + 11.81252I
b = 0.33399 - 1.89842I		
u = 0.778748 - 0.245271I		
a = -1.255710 - 0.087033I	-7.62987 + 1.01721I	5.24970 - 11.81252I
b = 0.33399 + 1.89842I		
u = 0.795151		
a = 1.84930	-2.04716	-7.60150
b = -2.27654		
u = 0.733508 + 0.115684I		
a = -2.02000 + 0.04989I	-6.94055 - 4.65557I	9.06224 - 2.69200I
b = 1.102660 - 0.124486I		
u = 0.733508 - 0.115684I		
a = -2.02000 - 0.04989I	-6.94055 + 4.65557I	9.06224 + 2.69200I
b = 1.102660 + 0.124486I		
u = 1.009230 + 0.784248I		
a = -0.998258 + 0.225230I	2.54638 - 8.54122I	0. + 7.30579I
b = 1.23888 - 1.42271I		
u = 1.009230 - 0.784248I		
a = -0.998258 - 0.225230I	2.54638 + 8.54122I	0 7.30579I
b = 1.23888 + 1.42271I		
u = 0.937408 + 0.876311I		
a = -0.714914 - 0.335707I	5.13837 + 3.10653I	2.77090 - 3.27458I
b = 1.346930 + 0.090646I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.937408 - 0.876311I		
a = -0.714914 + 0.335707I	5.13837 - 3.10653I	2.77090 + 3.27458I
b = 1.346930 - 0.090646I		
u = 0.804574 + 1.002740I		
a = 0.211768 - 0.517712I	0.78911 - 3.05252I	0. + 4.35560I
b = 0.292544 - 0.313955I		
u = 0.804574 - 1.002740I		
a = 0.211768 + 0.517712I	0.78911 + 3.05252I	0 4.35560I
b = 0.292544 + 0.313955I		
u = 1.28977		
a = 1.14010	-2.04716	-7.60150
b = 0.165534		
u = -0.139241 + 0.695732I		
a = 0.611135 - 1.068020I	0.28152 - 2.20542I	2.09891 + 2.63579I
b = -0.574331 - 0.269819I		
u = -0.139241 - 0.695732I		
a = 0.611135 + 1.068020I	0.28152 + 2.20542I	2.09891 - 2.63579I
b = -0.574331 + 0.269819I		
u = -0.603347 + 0.367132I		
a = -1.61538 + 1.06505I	0.703344 + 0.559674I	1.56320 - 4.51761I
b = 0.082291 + 0.853240I		
u = -0.603347 - 0.367132I		
a = -1.61538 - 1.06505I	0.703344 - 0.559674I	1.56320 + 4.51761I
b = 0.082291 - 0.853240I		
u = -0.570217 + 0.118702I		
a = -1.71022 - 0.71186I	-0.39627 - 4.88151I	-5.90664 + 1.87878I
b = 1.03717 + 2.48340I		
u = -0.570217 - 0.118702I		
a = -1.71022 + 0.71186I	-0.39627 + 4.88151I	-5.90664 - 1.87878I
b = 1.03717 - 2.48340I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.23114 + 0.76536I		
a = 1.030760 - 0.025210I	-1.76779 - 6.66107I	0
b = -1.28074 + 0.75129I		
u = 1.23114 - 0.76536I		
a = 1.030760 + 0.025210I	-1.76779 + 6.66107I	0
b = -1.28074 - 0.75129I		
u = 0.65753 + 1.37826I		
a = -0.005515 + 0.856499I	2.54638 + 8.54122I	0
b = -0.615352 - 0.430269I		
u = 0.65753 - 1.37826I		
a = -0.005515 - 0.856499I	2.54638 - 8.54122I	0
b = -0.615352 + 0.430269I		
u = 1.29816 + 1.03823I		
a = 0.574100 - 0.302843I	-0.39627 - 4.88151I	0
b = -1.04929 + 0.95851I		
u = 1.29816 - 1.03823I		
a = 0.574100 + 0.302843I	-0.39627 + 4.88151I	0
b = -1.04929 - 0.95851I		
u = -1.31598 + 1.12343I		
a = 0.727776 + 0.471526I	-6.94055 + 4.65557I	0
b = -0.461214 - 1.201270I		
u = -1.31598 - 1.12343I		
a = 0.727776 - 0.471526I	-6.94055 - 4.65557I	0
b = -0.461214 + 1.201270I		
u = -2.19127 + 0.09123I		
a = 0.450657 + 0.128384I	-7.62987 - 1.01721I	0
b = -0.617875 - 0.033077I		
u = -2.19127 - 0.09123I		
a = 0.450657 - 0.128384I	-7.62987 + 1.01721I	0
b = -0.617875 + 0.033077I		

$$\begin{matrix} \text{III.} \\ I_3^u = \langle -4.53 \times 10^4 u^{13} - 1.81 \times 10^5 u^{12} + \dots + 1.42 \times 10^5 b + 3.21 \times 10^5, \ 8.04 \times 10^5 u^{13} + 4.74 \times 10^6 u^{12} + \dots + 1.42 \times 10^5 a + 1.22 \times 10^6, \ u^{14} + 6u^{13} + \dots + 5u + 1 \rangle \end{matrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -5.65578u^{13} - 33.3639u^{12} + \dots - 56.1552u - 8.58729 \\ 0.318839u^{13} + 1.27570u^{12} + \dots - 4.67346u - 2.26005 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -5.33694u^{13} - 32.0882u^{12} + \dots - 60.8286u - 10.8473 \\ 0.318839u^{13} + 1.27570u^{12} + \dots - 4.67346u - 2.26005 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -4.51223u^{13} - 27.0057u^{12} + \dots - 50.4852u - 8.52068 \\ 0.190356u^{13} + 0.431761u^{12} + \dots - 6.16986u - 2.39439 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -5.25817u^{13} - 25.6393u^{12} + \dots + 29.6480u + 19.5162 \\ 1.06661u^{13} + 5.25611u^{12} + \dots - 0.837358u - 0.336939 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -5.69548u^{13} - 27.1106u^{12} + \dots + 33.8647u + 23.0100 \\ -1.82155u^{13} - 10.4029u^{12} + \dots - 13.0398u - 1.99691 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -3.87393u^{13} - 16.7077u^{12} + \dots + 46.9046u + 25.0069 \\ -1.82155u^{13} - 10.4029u^{12} + \dots - 13.0398u - 1.99691 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3.82170u^{13} - 18.0285u^{12} + \dots + 29.6178u + 20.3626 \\ 0.369860u^{13} + 2.35460u^{12} + \dots + 28.0717u + 1.18340 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -34.2887u^{13} - 201.354u^{12} + \dots - 347.739u - 55.6924 \\ -1.64859u^{13} - 10.2510u^{12} + \dots - 23.4938u - 6.08505 \end{pmatrix}$$

$$\begin{pmatrix} -34.2887u^{13} - 201.354u^{12} + \dots - 347.739u - 55.6924 \\ -1.64859u^{13} - 10.2510u^{12} + \dots - 23.4938u - 6.08505 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{851937}{142097}u^{13} \frac{3765455}{142097}u^{12} + \dots + \frac{763404}{142097}u \frac{615113}{142097}u^{12} + \dots$

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^{14} + 3u^{13} + \dots + 8u + 4$
c_2	$(u^7 - 2u^6 + 2u^5 - 3u^4 + 3u^2 - u + 1)^2$
c_3, c_7	$u^{14} + 6u^{13} + \dots + 5u + 1$
c_4, c_9	$u^{14} - 3u^{12} - 17u^{10} + 114u^8 - 277u^6 + 352u^4 - 236u^2 + 67$
c_5, c_8	$u^{14} + 9u^{12} + \dots - 3u + 1$
<i>C</i> ₆	$(u^7 + 2u^6 + 2u^5 + 3u^4 - 3u^2 - u - 1)^2$
c_{11}	$(u^7 - 2u^6 + 3u^5 - 3u^4 - 5u^3 + 2u^2 + 5u + 3)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$y^{14} + 15y^{13} + \dots + 96y + 16$
c_2, c_6	$(y^7 - 8y^5 + y^4 + 18y^3 - 3y^2 - 5y - 1)^2$
c_{3}, c_{7}	$y^{14} - 12y^{13} + \dots + 3y + 1$
c_4, c_9	$(y^7 - 3y^6 - 17y^5 + 114y^4 - 277y^3 + 352y^2 - 236y + 67)^2$
c_{5}, c_{8}	$y^{14} + 18y^{13} + \dots + 11y + 1$
c_{11}	$(y^7 + 2y^6 - 13y^5 - 21y^4 + 79y^3 - 36y^2 + 13y - 9)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.841811 + 0.182190I		
a = 1.69734 + 0.14987I	-7.19586 + 4.79737I	-15.3799 - 10.7291I
b = -1.095480 - 0.201335I		
u = -0.841811 - 0.182190I		
a = 1.69734 - 0.14987I	-7.19586 - 4.79737I	-15.3799 + 10.7291I
b = -1.095480 + 0.201335I		
u = 0.807415 + 0.203980I		
a = -1.293990 + 0.103857I	-7.86115 - 0.79658I	-13.7450 - 5.5444I
b = 0.54475 - 1.78373I		
u = 0.807415 - 0.203980I		
a = -1.293990 - 0.103857I	-7.86115 + 0.79658I	-13.7450 + 5.5444I
b = 0.54475 + 1.78373I		
u = -0.328860 + 0.493680I		
a = -1.54515 - 1.23007I	0.20871 + 5.48705I	1.09915 - 7.96619I
b = 0.15112 + 2.21331I		
u = -0.328860 - 0.493680I		
a = -1.54515 + 1.23007I	0.20871 - 5.48705I	1.09915 + 7.96619I
b = 0.15112 - 2.21331I		
u = 1.04271 + 1.08370I		
a = -0.685924 + 0.369272I	0.20871 - 5.48705I	1.09915 + 7.96619I
b = 1.05349 - 1.00763I		
u = 1.04271 - 1.08370I		
a = -0.685924 - 0.369272I	0.20871 + 5.48705I	1.09915 - 7.96619I
b = 1.05349 + 1.00763I		
u = -0.198097 + 0.363970I		
a = 5.02166 - 2.73312I	0.0877733	-6.94848 + 0.I
b = -0.121264 - 0.413302I		
u = -0.198097 - 0.363970I		
a = 5.02166 + 2.73312I	0.0877733	-6.94848 + 0.I
b = -0.121264 + 0.413302I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.36446 + 1.14498I		
a = -0.692299 - 0.446761I	-7.19586 + 4.79737I	-15.3799 - 10.7291I
b = 0.459655 + 1.110540I		
u = -1.36446 - 1.14498I		
a = -0.692299 + 0.446761I	-7.19586 - 4.79737I	-15.3799 + 10.7291I
b = 0.459655 - 1.110540I		
u = -2.11690 + 0.04289I		
a = -0.501625 - 0.095237I	-7.86115 - 0.79658I	-13.7450 - 5.5444I
b = 0.507720 + 0.269988I		
u = -2.11690 - 0.04289I		
a = -0.501625 + 0.095237I	-7.86115 + 0.79658I	-13.7450 + 5.5444I
b = 0.507720 - 0.269988I		

IV.
$$I_4^u = \langle b + u + 1, \ a, \ u^3 + u^2 - 1 \rangle$$

a) Are colorings
$$a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u - 1 \\ -u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -u^2 - u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u^2 + u + 1 \\ u^2 + 2u + 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -u - 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $7u^2 + 7u$

Crossings	u-Polynomials at each crossing
c_1, c_6, c_{10}	$u^3 - 2u^2 + u - 1$
c_2	$u^3 + 2u^2 + u + 1$
c_3, c_7, c_{11}	$u^3 + u^2 - 1$
c_4, c_9	u^3
c_5, c_8	u^3-u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_{10}	$y^3 - 2y^2 - 3y - 1$
c_3, c_7, c_{11}	$y^3 - y^2 + 2y - 1$
c_4,c_9	y^3
c_5,c_8	$y^3 - 2y^2 + y - 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0	-1.45094 + 3.77083I	-4.63651 - 3.93596I
b = -0.122561 - 0.744862I		
u = -0.877439 - 0.744862I		
a = 0	-1.45094 - 3.77083I	-4.63651 + 3.93596I
b = -0.122561 + 0.744862I		
u = 0.754878		
a = 0	6.19175	9.27300
b = -1.75488		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$ (u^{3} - 2u^{2} + u - 1)(u^{14} + 3u^{13} + \dots + 8u + 4)(u^{23} - 6u^{21} + \dots - 40u - 4) $ $ \cdot (u^{40} + 9u^{38} + \dots + 244u - 44) $
c_2	$(u^{3} + 2u^{2} + u + 1)(u^{7} - 2u^{6} + 2u^{5} - 3u^{4} + 3u^{2} - u + 1)^{2}$ $\cdot ((u^{20} + 2u^{19} + \dots + 8u + 1)^{2})(u^{23} - 3u^{22} + \dots + 47u - 8)$
c_3, c_7	$(u^{3} + u^{2} - 1)(u^{14} + 6u^{13} + \dots + 5u + 1)(u^{23} - u^{22} + \dots + 5u + 1)$ $\cdot (u^{40} - 3u^{39} + \dots - 25u + 29)$
c_4, c_9	$u^{3}(u^{14} - 3u^{12} - 17u^{10} + 114u^{8} - 277u^{6} + 352u^{4} - 236u^{2} + 67)$ $\cdot ((u^{20} + u^{19} + \dots - 25u - 11)^{2})(u^{23} - 9u^{22} + \dots - 40u + 16)$
c_5, c_8	$(u^{3} - u - 1)(u^{14} + 9u^{12} + \dots - 3u + 1)(u^{23} - 6u^{22} + \dots + 22u - 5)$ $\cdot (u^{40} + u^{39} + \dots - 47u - 169)$
c_6	$(u^{3} - 2u^{2} + u - 1)(u^{7} + 2u^{6} + 2u^{5} + 3u^{4} - 3u^{2} - u - 1)^{2}$ $\cdot ((u^{20} + 2u^{19} + \dots + 8u + 1)^{2})(u^{23} - 3u^{22} + \dots + 47u - 8)$
c_{11}	$(u^{3} + u^{2} - 1)(u^{7} - 2u^{6} + 3u^{5} - 3u^{4} - 5u^{3} + 2u^{2} + 5u + 3)^{2}$ $\cdot ((u^{20} - u^{19} + \dots + 7u + 1)^{2})(u^{23} + 4u^{22} + \dots - 7u - 34)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{10}	$(y^{3} - 2y^{2} - 3y - 1)(y^{14} + 15y^{13} + \dots + 96y + 16)$ $\cdot (y^{23} - 12y^{22} + \dots + 448y - 16)(y^{40} + 18y^{39} + \dots - 94208y + 1936)$
c_2, c_6	$(y^{3} - 2y^{2} - 3y - 1)(y^{7} - 8y^{5} + y^{4} + 18y^{3} - 3y^{2} - 5y - 1)^{2}$ $\cdot ((y^{20} - 14y^{19} + \dots + 40y + 1)^{2})(y^{23} - 13y^{22} + \dots + 1233y - 64)$
c_3, c_7	$(y^{3} - y^{2} + 2y - 1)(y^{14} - 12y^{13} + \dots + 3y + 1)$ $\cdot (y^{23} - 5y^{22} + \dots + 41y - 1)(y^{40} - 19y^{39} + \dots - 12747y + 841)$
c_4, c_9	$y^{3}(y^{7} - 3y^{6} - 17y^{5} + 114y^{4} - 277y^{3} + 352y^{2} - 236y + 67)^{2}$ $\cdot (y^{20} - 13y^{19} + \dots - 1021y + 121)^{2}$ $\cdot (y^{23} - 43y^{22} + \dots - 1088y - 256)$
c_5,c_8	$(y^{3} - 2y^{2} + y - 1)(y^{14} + 18y^{13} + \dots + 11y + 1)$ $\cdot (y^{23} - 46y^{22} + \dots + 344y - 25)(y^{40} + 7y^{39} + \dots - 530503y + 28561)$
c_{11}	$(y^{3} - y^{2} + 2y - 1)(y^{7} + 2y^{6} + \dots + 13y - 9)^{2}$ $\cdot ((y^{20} + 3y^{19} + \dots - 35y + 1)^{2})(y^{23} + 6y^{22} + \dots - 12055y - 1156)$