Alexandria University
Faculty of Engineering
Computer and Communications Program

Due: Sunday 17/5/2018

CCE: Pattern Recognition

Sheet#8 Clustering Evaluation

Submit a <u>report</u> Report is essential. Detailed steps are required. Final answers will not be marked.

- 1. Perform clustering on the following data
 - a. Using Kmeans: set K=2,3,4,5,6. Report different clustering results.
 - b. K-ways normalized: cut k=2,3,4,5,6
 - i. Use RBF kernel with gamma = {0.01,0.1}. Report the Report different clustering results.
 - ii. Use Similarity graph as the {3,5}-NN graph. Where Sim(xi,xj)=1 iff xj is one of the nearest three points to xi (or vise versa). Report different clustering results.
 - c. Assume the ground truth clustering results is $T1=\{p,q,v\}$,

 $T2=\{a,d,h,k,r,s,t,l,w,x\}$ and $T3=\{b,c,e,i,m,f,g,j,n,a,u\}$.

- i. Compute the external measures we studied such as
 - 1. Conditional Entropy
 - 2. Purity
 - 3. Pairwise measures (Jaccard and Rand index)
 - 4. Max matching when number of clusters =3.
 - 5. F-Measure
- ii. Compute the internal measures we studied. You will need the proximity matrix before proceeding.
 - 1. BetaCV
 - 2. Normalized-Cut
- d. Summarize your finding using graphs, tables and comment on what you obtain
 - i. Compare parameter setting for every algorithm
 - ii. Compare between different algorithms results

