

Load Balancing Algorithmen und Verfahren

Präsentation von Maximilian Seidl, Freitag, 21. Oktober 2016

Aufbau der Präsentation

- Algorithmen
 - Round Robin
 - Random
 - Fastest
 - Least Connections
 - Observed
 - Predictive
- Verfahren mit NW-Konfiguration

Algorithmen - Round Robin

Round Robin

- Array mit Servern
- zufällige Auswahl
- keine elegante Version
- oft in großer Software vorhanden

Algorithmen - Round Robin

Weighted Round Robin

- "weighted" für Gewichtung
- Verbindungen sind proportional zur Gewichtungsrate

Algorithmen - Round Robin

Dynamic Round Robin

- ähnlich wie WRR
- selten in herkömmliche LB inkludiert
- inkludiert Server-Performance Monitoring
 - z.B.: schnellste Response-Time

Andere Algorithmen

Fastest, Least Connections, Observed, Predictive

Andere Algorithmen - Fastest

Fastest

- basiert auf der schnellsten Response-Time
- wird in logisch verteilten Netzwerken verwendet
- leicht zu implementieren

Andere Algorithmen – Least Connections

Least Connections

- leitet auf am wenigsten augelastet
- eignet sich bei Systemen mit gleicher Performance
- dynamische Methode

Andere Algorithmen - Observed

Observed

- kombiniert Logik von:
 - Least Connections
 - Fastest
- schnellster und effizientester
- selten in herkömmliche LB inkludiert

Andere Algorithmen - Predictive

Predictive

- benutzt Logik von Observed
- LB analysiert Traffic
- funktioniert in jeder Architektur
- selten in herkömmliche LB inkludiert

Review

- Round Robin
 - persistente Verbindungen
 - bewirkt kürzere Response-Time
- Monitoring Methoden
 - beste Wahl bei persistierenden Verbindungen
- Fastest
 - beste alternative Methode, wenn keine dynamische Lösung

Load Balancer Funktionen

HTTP, SSL, TCP buffering, DSR, Health checking, Firewall

Funktionen - Hauptfunktionen

- HTTP
 - SSL
 - compression
 - caching
 - security
- TCP buffering
 - buffert Responses
 - spart redundante TCP-Handshakes

- Firewall
 - kann Verbindungen blocken
- DSR
 - Direct Server Return
- Health checking
 - Überprüft Geräte

Funktionen - DDoS protection

- Distributed Denial of Service protection
 - SYN-Cookies
 - delayed-binding
 - Server sieht Client nicht, solange Handshake aktiv
 - nimmt generell Arbeit ab

DNS, Flat-based, NAT based, Anycast

Verfahren mit NW-Konfiguration

- Serverlastverteilung (SLB)
 - DNS Round Robin (bereits bekannt)
 - Flat based SLB
 - NAT based SLB
 - Anycast SLB

DNS Round Robin

- simpelste Methode
- Caching Client-side
- Round Robin Vorgehen
- Service Resource Records
- NAPTR

Verfahren mit NW-Konfiguration Round Robin DNS

- Service Ressource Records
 - schreiben verfügbare Dienste

NAPTR

- Naming Authority Pointer Ressource Records
 - besitzen einePriorisierung beigleichem Eintrag

Verfahren mit NW-Konfiguration Round Robin DNS

Review

- DNS erkennt Belastung nicht
- einfach zu integrieren
- zusätzliche Skripts verbessern Ausfallsicherheit
 - Verfügbarkeiten prüfen

Flat based SLB

- nur genau ein Netzwerk
- Server und LB mit einem Switch verbunden
- LB stellt Verkehr wie direkte Anfragen dar

Verfahren mit NW-Konfiguration Flat based SLB

- Aufbau und Funktionsweise
 - LB tauscht MAC-Adresse mit Server aus
 - sendet das Packet weiter
 - IP-Adressen bleiben unverändert
 - MAT (MAC Address Translation)
 - Server schickt direkt an den Client zurück
- Datenreicher Verkehr auf direktem Weg

NAT based SLB

virtuelle IPs, route-path, bridge-path, VLANs

Verfahren mit NW-Architektur NAT based SLB

- LB fungiert als Firewall/Router
 - betreibt NAT
 - VIP und Server in verschiedenen Subnets
 - Hauptunterschied zu flat based

route-path, two armed Konfiguration

- Server in seperaten VLANs
 - besitzen VIPs
- routing in nonrouting IPs
- übernehmen die Firewall
 - enge Kontrolle über Traffic

Verfahren mit NW-Konfiguration NAT based SLB

- Vorteile NAT based
 - extra Sicherheit durch NAT-Struktur
 - klare Abgrenzungspunkte
 - bessere Kontrolle über Sichtbarkeit
 - durch nonrouting-IPs
 - niedrige Abhängigkeit nach außen
 - HTTP (oder SSL)
 - einfache Verwaltung

Anycast SLB

Border Gateway Protcol, Unicast-Adresse, Autonome Systeme

Verfahren mit NW-Konfiguration Anycast SLB

Funktionsweise und Aufbau

- Autonome Systeme ansprechen
 - Gruppe von Rechnern/Servern
 - besitzen eine Unicast-Adresse
- Border Gateway Protocol (BGP)
 - Vermittlungsschicht (Network) im OSI-Modell

Vorteil

• geographisch nahe Auswahl der Server

Danke für eure Aufmerksamkeit

Load Balacing, Seidl Maximilian Freitag, 21. Oktober 2016

https://devcentral.f5.com/articles/intro-to-load-balancing-for-developers-ndash-the-algorithms