IN THE CLAIMS:

Please amend the claims to read in full as follows:

1	1. (Amended) A method of eliminating parasitic bipolar transistor action in a Silicon on
2	Insulator (SOI) Metal Oxide Semiconductor (MOS) device located in a logic circuit, said logic
3	circuit being adapted to receive an input signal and a clock signal, the method comprising:
4	controlling the conduction of an active discharging device with the input signal, said
5	active discharging device being coupled to an intermediate node of said logic circuit,
6	whereby the parasitic bipolar transistor is deactivated.
1	2. (Amended) The method of claim 1, wherein the SOI device comprises a gate and a
2	drain, and wherein the method further comprises:
3	providing a first signal to said gate of said SOI device;
4	providing a second signal to said drain of said SOI device; and
5	activating the conduction of said active discharging device according to the state of said
6	first signal.
1	3. (Amended) The method of claim 2 wherein the first signal is said input signal.
1	4. (Amended) The method of claim 2 wherein said first signal causes said SOI device to
2	conduct current whenever said logic circuit is being pre-charged.
1	5. (Amended) The method of claim 2 wherein the second signal pre-charges said drain

6. (Amended) The method according to claim 1, wherein the active discharging device provides a conduction path between said intermediate node and a voltage source.

Docket No.: RO998-200B Serial No.: 09/334,171

during a pre-charge cycle.

2

1

2

1	7. (Amended) A method of eliminating parasitic bipolar transistor action in a Silicon or
2	Insulator (SOI) Metal Oxide Semiconductor (MOS) dynamic logic circuit having an input, an
3	output, a clock, an active discharge transistor, and a plurality of stacked SOI Metal Oxide
4	Semiconductor (MOS) transistors interconnected to define a common node and an intermediate
5	node, wherein:
6	said plurality of stacked SOI MOS transistors is controlled by a plurality of inputs;
7	said common node is coupled to a pre-charging device;
8	said intermediate node is in a path between said common node and a voltage source, said
9	path defined by said plurality of stacked SOI MOS transistors;
10	said intermediate node is coupled to said common node by at least a first of said plurality
11	of stacked SOI MOS transistors; and
12	said active discharging transistor is controlled by at least one of said plurality of inputs,
13	said active discharging transistor defining a discharge path between said intermediate
14	node and said voltage source,
15	the method comprising:
16	controlling the conduction of said active discharging transistor during a pre-charge cycle
17	and
18	actively discharging said intermediate node, whereby the parasitic bipolar transistors are
19	deactivated and the charge at said intermediate node is maintained at a predetermined level.
1	8. (Unchanged) The method according to claim 7, wherein pre-charging occurs during a
2	low state of said clock.
1	9. (Unchanged) The method according to claim 7, wherein pre-charging occurs during a
2	high state of said clock.
1	10. (Unchanged) The method according to claim 7, wherein during the pre-charging all
1 2	10. (Unchanged) The method according to claim 7, wherein during the pre-charging all said inputs are set to a predetermined logic state.
۷	said inputs are set to a predetermined togic state.

Docket No.: RO998-200B Serial No.: 09/751,163

1

11. (Unchanged) The method according to claim 10, wherein said logic state is low.

1	12. (Unchanged) The method according to claim 10, wherein said logic state is high.
1	13. (Unchanged) The method according to claim 7, wherein the step of actively
2	discharging said intermediate nodes prevents the body voltages of said stacked SOI transistors
3	from reaching a voltage stage sufficient to activate the parasitic bipolar transistors of said stacked
4	SOI transistors.
1	14. (Unchanged) The method according to claim 7, wherein said stacked transistors are
2	N-Field Effect Transistors (NFET) and said active discharging transistors are P-Field Effect
3	Transistors (PFET).
1	15. (Unchanged) The method according to claim 7, wherein said stacked transistors are
2	P-Field Effect Transistors (PFET) and said active precharging transistors are N-Field Effect
3	Transistors (NFET).

16. (Unchanged) The method according to claim 7, wherein said pre-charging device

comprises transistors coupled to said stacked transistors.

Docket No.: RO998-200B Serial No.: 09/751,163

1

2

Please add the following new claims:

1

2

- 1 17. (New) A method of reducing the effects of parasitic bipolar transistor action in a 2 silicon-on-insulator (SOI) logic circuit during a pre-charge cycle, comprising:
- 3 coupling an active discharge device to an intermediate node of the SOI logic circuit; and
- controlling the conduction of the active discharging device using a non-clock signal,
 whereby the charge at the intermediate node is maintained at a predetermined level during the
 pre-charge cycle.
 - 18. (New) The method of claim 17, wherein the predetermined level is a common ground potential for the SOI logic circuit.
- 1 19. (New) The method of claim 17, wherein the non-clock signal comprises an active 2 low signal applied to an input of the SOI logic circuit during the pre-charge cycle.
- 1 20. (New) The method of claim 1, wherein said input signal is a non-clock signal.
- 1 21. (New) The method of claim 6, wherein the voltage source comprises a system 2 ground.

Docket No.: RO998-200B Serial No.: 09/751,163