Práctica 6

1. Considerar los siguientes diagramas. En ambos casos, probar que si los dos triángulos conmutan, también conmuta el cuadrado.

Definición 2. Un diagrama en una categoría \mathscr{C} es un grafo dirigido etiquetado consistentemente, donde los vértices se etiquetan con objetos de \mathscr{C} , las aristas dirigidas con flechas de \mathscr{C} de modo que si una arista está etiquedada con una flecha f cuyo dominio es A y codominio es B, el nodo inicial y final de esta arista se etiquetan con A y B respectivamente.

Un diagrama en $\mathscr C$ se dice **conmutativo** o se dice que **conmuta** si para cualquier par de vértices X e Y del diagrama, todos los caminos del diagrama entre X e Y son equivalentes, en el sentido que determinan una arista dirigida entre X e Y que representa una misma flecha en $\mathscr C$.

... D conmuta

$$b) \times , y, z = 0$$
 conmuta => $d = a \cdot c$
 $z, y, w => b = c \cdot e$

. D conmuta

2. Probar que si $\mathscr C$ es una categoría con un único objeto, entonces $\mathscr C=\mathscr C_M$ para algún monoide (M,*).

Sea
$$\xi = \{x\}$$
 pax mor $\xi = \{id_x, ...\}$

$$g_{n}: Ob \mathcal{E}_{n} = \{x\}$$
 $mov \mathcal{L}_{n} = M$
 $dom: M \rightarrow \{x\}$
 $codom: M \rightarrow \{x\}$
 $o = x$
 $vale asoc. sobre o$
 $e = id_{x}$

You already know that a monoid M is a set with a unit e and a binary operation. More precisely, if $a,b,c\in M$ then

$$egin{aligned} a\circ b \in M \ & (a\circ b)\circ c = a\circ (b\circ c) \ & e\circ a = a\circ e = a \end{aligned}$$

Now, take any category C with one object, c. Since C is a category, we need to say what the arrows are. That is, what the morphisms $c \to c$ are. There must be a unit $1_c : c \to c$, the arrows must be composeable and the composition must be associative. More precisely, if f, g and h are arrows, then

$$egin{aligned} f\circ g \in Morph(C) \ & \ (f\circ g)\circ h = f\circ (g\circ h) \ & \ 1_c\circ f = f\circ 1_c = f \end{aligned}$$

Notice we are *not* talking about sets here. Just objects and arrows, in the abstract.

But now if we just observe that the operations on M are exactly the same as the operations on Morph(C), we may regard the category C as the monoid M. This correspondence is reversible: given category $C = \{c\}$ we obtain a monoid M whose elements are the arrows of C.

Thus the two descriptions are equivalent.

All this works because the binary operations are the same for both structures.

- Para cada $A \in \text{ob} \mathscr{C}$ existe un morfismo $\text{id}_A \in \text{Hom}(A, A)$ denominado morfismo identidad tal que:
- \circ para cada $B \in ob \mathscr{C}$ y cada $f \in Hom(A, B)$, $f \circ id_A = f$;
- ∘ para cada $C \in \text{ob} \mathscr{C}$ y cada $g \in \text{Hom}(C, A)$, $\text{id}_A \circ g = g$.

 $C \xrightarrow{g} \stackrel{\operatorname{id}_A}{A} \xrightarrow{f} B$

Di existieron
mår elems en ob &
hobrion mår ida

3. Sea Rel tal que ob Rel es la clase de conjuntos, mor Rel son las relaciones binarias entre conjuntos y la composición de morfismos es la composición de relaciones. Definir funciones domonio y codominio e identidades adecuadas y probar que Rel es efectivamente una categoría, denominada categoría de relaciones.
sea RE Hompel (A,B)
dom(R) = A
codom(R)=B
queremos Ida = Hom(A,A) +A & ob Rel tq
at Bala (a B): I That I
o +B∈obRel ~ f∈ Hom(A,B): f . IdA = f o +B∈obRel ~ f∈ Hom(B,A): IdA . f = f
Subemos que I Id relación to A IdA #A conjunto Observamos que Id cample (8)
Finalmente la comp. de relac. es asoc.
o°. Rel es categoría
4. Sea PSet tal que ob PSet son pares (X, x_0) donde X es un conjunto y $x_0 \in X$. El par (X, x_0) se denomina un conjunto punteado. Una función entre los conjuntos punteados (X, x_0) e (Y, y_0) es una
función $f: X \to Y$ tal que $f(x_0) = y_0$. Probar que si mor PSet son funciones entre conjuntos punteados, con la composición usual de funciones y las identidades usuales, PSet es una categoría.

- 5. Sean $\mathscr C$ una categoría y A un objeto de $\mathscr C$. Definimos $\mathscr C|A$ como la categoría cuyos objetos son las flechas f de $\mathscr C$ tales que $\operatorname{codom}(f)=A$. Una flecha g en $\mathscr C|A$ de $f\colon X\to A$ en $h\colon Y\to A$ es una flecha $g\colon X\to Y$ de $\mathscr C$ tal que $f=h\circ g$.
 - a) Expresar las flechas de $\mathscr{C}|A$ en términos de diagramas conmutativos.
 - b) Verificar que $\mathscr{C}|A$ es una categoría.
 - c) Si \mathscr{C}_P es la categoría definida por un conjunto ordenado P y $x \in P$, determinar $\mathscr{C}_P|x$.

OBYIA = f / f & Homy (B, A) +BE OBY

hom & A = g/f=hog egf:x = A, h:Y = A, g:x=y

a)ZIA

1:X=> 7:Y-7A

t.

·m

4

 $m: X \rightarrow A$ $m = g \circ f$

- 6. Sean $\mathscr C$ una categoría y f, g flechas de $\mathscr C$. Probar que
 - a) Si f y g son monomorfismos, entonces $g \circ f$ también lo es.
 - b) Si $g \circ f$ es un monomorfismo, f también lo es.
 - c) Si f y g son epimorfismos, entonces $g \circ f$ también lo es.
 - d) Si $g \circ f$ es un epimorfismo, g también lo es.
 - e) Si f^{-1} es la inversa de f y g^{-1} es la inversa de g, entonces $f^{-1} \circ g^{-1}$ es la inversa de $g \circ f$.

1, g monom
$$\Rightarrow$$
 foh = foh' \Rightarrow h = h' \Rightarrow h' \Rightarrow h = h' \Rightarrow h'

... f monom.

c, d) análogos a a,b

a con gráfico)

f monom =>
$$H \xrightarrow{h} A \xrightarrow{f} B$$
 conmuta $\forall H, h, h'$
g monom => $J \xrightarrow{j} B \xrightarrow{g} C$ conmuta "

and
$$H \xrightarrow{h} A \xrightarrow{g \circ f} C$$
 conmuta

7. Probar que en Grp los morfismos mónicos son monomorfismos de grupos, los morfismos épicos son epimorfismos de grupos y los isomorfismos son isomorfismos de grupos.

f monom. grupos => f monom. => f iny.

$$f(xy) = f(x)f(y)$$
 zeros
 $f(e) = e$ monoide
 $f(xy) = f(x)^{-1}$ grupo

f morf. mónico en Grp => f E Hom (A,B) · h of = h'of => h = h' + h, h'∈ Hom (H,A) appy I injectiva Sup. q. f no es iny. => $\exists x,y \in (x,\cdot)/f(x)=f(y)$ $\exists A,B,C \in Ob Grp tq f \in Hom(A,C)$ (Z,+) fCONSULTAR

- Sea & una categoría y & su categoría dual.
- a) Probar que $f \in \text{Hom}_{\mathscr{C}}(A, B)$ es un monomorfismo si $f \in \text{Hom}_{\mathscr{C}^{op}}(B, A)$ es un epimorfismo.
- b) Probar que $f \in \text{Hom}_{\mathscr{C}}(A, B)$ es un epimorfismo si $f \in \text{Hom}_{\mathscr{C}^{op}}(B, A)$ es un monomorfismo.
- c) Probar que A es un objeto inicial (resp. terminal) en $\mathscr C$ si y sólo si A es un objeto terminal (resp. inicial) en \mathscr{C}^{op} .

- · f ∈ Hom (A,B) => f ∈ Hom gop (B,A)

$$f \in Hom_{gop}(B,A)$$
 $h,h' \in Hom_{gop}(A,H)$
 $f \circ h = h \circ opf$
 $f \circ h = h \circ opf$
 $f \circ h = h \circ opf$

...
$$f \in H_{om_{\gamma \circ p}}(B,A)$$
 epim.

... I fe Homgop(X,A) + X E ob 2°P ... A terminal on 2°P

10. Considerar que en el siguiente diagrama los 4 trapecios conmutan

Probar que

- a) Si el cuadrado interno conmuta, también lo hace el cuadrado externo.
- b) Si e es epi y m es mono, entonces si el cuadrado externo conmuta, también lo hace el cuadrado interno.

Por Lema?, los trapecios conmutan y el anadrado interno conmuta = 7 los rectángulos formados por an trapecio y el centro conmutan

$$b = e \circ h \circ j$$

$$c = e \circ i \circ k$$

$$i \circ k \circ d = h \circ g \circ m$$

$$f = \gamma \circ k \circ d = h \circ j \cdot \alpha (1)$$

$$h \circ j \circ \alpha = h \circ g \circ m$$

b) e ep: =>
m mono =?

11. Determinar, si existen, lo	os objetos iniciales, te	erminales y nulos	en las siguientes c	ategorías:
a) $\operatorname{Set} \times \operatorname{Set}$. b) $\operatorname{Set}^{\rightarrow}$.	c) PSet.	d) Grp.	e) Ab.	f) Rel.
$(\{x\}, \{x\}) \text{ inician}$ $(\{x\}, \{x\}) \text{ to}$ $(\{x\}, \{y\}) -$	J			
({*3, {*3}) to	erminal			
$(\xi * \hat{\zeta}, \emptyset)$	- CONS	LTAR		

12. Dar una categoría sin objetos iniciales. Dar una sin objetos finales. Dar una donde los objetos finales e iniciales coincidan.

mor
$$\chi = f, g$$
 $\Lambda \xrightarrow{f} B$ no tiene terminal $g \in C$

13. Sean A y B objetos en una categoría \mathscr{C} . Un A, B-pairing se define como una terna (P, p_1, p_2) donde P es un objeto de \mathscr{C} y $p_1: P \to A$ y $p_2: P \to B$ son morfismos de \mathscr{C} . Un morfismo de A, B-pairings

$$f:(P,p_1,p_2)\to (Q,q_1,q_2)$$

es cualquier morfismo f de $\mathscr C$ tal que $q_1\circ f=p_1$ y $q_2\circ f=p_2$, es decir, el siguiente diagrama conmuta.

- a) Probar que los A,B-pairings y sus morfismos forman una categoría $\operatorname{Pair}(A,B).$
- b) Siendo 0 un objeto inicial de \mathscr{C} , mostrar que

es un objeto inicial de Pair(A, B).

a) ob Pair
$$(A,B) = (P,p_1,p_2) / P \in ob \mathcal{I}, p_1:P \rightarrow A, p_2:P \rightarrow B$$

mor Pair $(A,B) = f:(P,p_1,p_2) \rightarrow (Q,q_1,q_2) / q_1of = p_1 \land q_2of = p_2$
 $op_{a:r} = 0$

1. para fighe mor Pair

$$f: (P, p, p_2) \rightarrow (G, g, g_2)$$
 grof = p_1 \wedge $g_2 \circ f = p_2$
 $g: (G, g, g_2) \rightarrow (H, h, h_2)$ hrog = g_1 \wedge $h_2 \circ g = g_2$
 $h: (H, h_1, h_2) \rightarrow (T, j_1, j_2)$ jroh = h_1 \wedge $j_2 \circ h = h_2$

quq (h . g) of = h . (g of)

Cada D conmuter

quq x10f=!A x20f=!B

f ∈ mort y 0 inicial en = 1 única en Pair(A,B)

14. Dar una categoría donde algún par de objetos carecen de producto.

15. Mostrar las siguientes identidades:

- a) $\langle \pi_1, \pi_2 \rangle = id$
- b) $\langle f \circ h, g \circ h \rangle = \langle f, g \rangle \circ h$
- c) $(f \times h) \circ \langle g, k \rangle = \langle f \circ g, h \circ k \rangle$
- d) $(f \times h) \circ (g \times k) = (f \circ g) \times (h \circ k)$
- e) $\langle [f,g],[h,k]\rangle = [\langle f,h\rangle,\langle g,k\rangle]$

luego, 3! (f,g) para f=1,, g=112

analogo

- 16. Probar los siguientes isomorfismos:
 - a) $A \times B \cong B \times A$
 - b) $A \times 1 \cong A$
 - c) $A \times (B \times C) \cong (A \times B) \times C$

Verificar que algo es categoría
Verificar que algo es categoría 1. escablecer obs, mors
2. decerminar dom y codom
3. establecer o
4. ver que o veritique
a. h. (g.f)=(h.g).f th,g,f∈ mor & (que tipen)
b. + XCObx 3 idx & Hom(X, X) tq
·+Be ob &, le Hom (x,B), fo idx = 1
· +BE ob &, f & Hom(B,X), idx o f = f
Variliano di anna a anna a anna

Veriticar diagrama conmutativo Diconmuta sii todo camino X, Y es equiv. +X, y obj.

Por ejemplo, el siguiente diagrama conmuta, si hay una flecha $h:X\to Y$ que es a la vez $g\circ f'$ y $f\circ g'$. Es decir, el diagrama es conmutativo si $g'\circ f=f'\circ g$.

$$\begin{array}{c} X \stackrel{f}{\longrightarrow} Z \\ \downarrow g \downarrow & \downarrow g' \\ W \stackrel{f'}{\longrightarrow} Y \end{array}$$

 $\begin{tabular}{ll} \textbf{Lema 1.} & Si~en~el~siguiente~diagrama~ambos~cuadrados~interiores~son~conmutativos,~entonces~el~rect\'angulo~exterior~es~conmutativo: \end{tabular}$

$$\begin{array}{cccc} A & \stackrel{f}{\longrightarrow} B & \stackrel{f'}{\longrightarrow} C \\ \downarrow a & \downarrow \downarrow & \downarrow c \\ A' & \stackrel{g}{\longrightarrow} B' & \stackrel{g'}{\longrightarrow} C' \end{array}$$

Probar monomorfismos, epimorfismos e isomorfismos

Definición 4. Sea $\mathscr C$ una categoría $y \ f: A \to B$ un morfismo de $\mathscr C$. Decimos que f es un monomorfismo (o que f es mónico) si para cualquier par de morfismos $g: C \to A, h: C \to A$ en mor $\mathscr C$ se verifica que

$$f \circ g = f \circ h \implies g = h.$$

Es decir, f es mónico si para cada $g, h \in \text{Hom}(C, A)$ se tiene

$$C \xrightarrow{g} A \xrightarrow{f} B \quad conmutativo \implies g = h$$

Claramente, si un morfismo es mónico en una categoría $\mathscr C$ lo será en cualquier subcategoría $\mathscr C'$ de $\mathscr C$ que lo contenga como morfismo, dado que la composición en $\mathscr C'$ es la misma que en $\mathscr C$. Es decir:

Lema 2. Sea $\mathscr C$ una categoría y $\mathscr C'$ una subcategoría de $\mathscr C$. Si $f\in \operatorname{mor}\mathscr C$ es mónico y $f\in \operatorname{mor}\mathscr C'$, entonces f es un monomorfismo en $\mathscr C'$.

epico

Lema 3. En Set un morfismo es mónico si y sólo si es una función inyectiva.

Lema 4. En toda categoría donde los objetos sean conjuntos, los morfismos sean funciones entre conjuntos y la composición sea la composición usual de funciones (por ejemplo, en todas las categorías de los Ejemplos 2), toda función inyectiva es un monomorfismo.

Definición 5. Sea $\mathscr C$ una categoría $y \ f : A \to B$ un morfismo de $\mathscr C$. Decimos que f es un epimorfismo o un morfismo épico si para cualquier $C \in \operatorname{ob} \mathscr C$ y cualquier par de morfismos $g, h \in \operatorname{Hom}(B, C)$, se verifica

$$g \circ f = h \circ f \implies g = h.$$

Es decir, f es épico si para cada $g, h \in \text{Hom}(B, C)$ se tiene

$$A \xrightarrow{f} B \xrightarrow{g} C \quad conmutativo \implies g = h$$

Definición 6. Sea \mathscr{C} una categoría $y \ f \in \operatorname{mor} \mathscr{C}$ un morfismo. Si $f \in \operatorname{Hom}(A, B)$, decimos que f es un isomorfismo si existe un morfismo $f' \in \operatorname{Hom}(B, A)$ tal que $f' \circ f = \operatorname{id}_A y \ f \circ f' = \operatorname{id}_B$. Si existe un isomorfismo $f \in \operatorname{Hom}(A, B)$ decimos que $A \ y \ B$ son objetos isomorfos.

Lema 8. Sea & una categoría. Entonces:

- 1. Para cada $A \in ob \mathcal{C}$, id_A es un isomorfismo.
- 2. Si $f \in \text{Hom}(A, B)$ es un isomorfismo, entonces $f^{-1} \in \text{Hom}(B, A)$ es un isomorfismo.
- 3. Si $f \in \text{Hom}(A, B)$ y $g \in \text{Hom}(B, C)$ son isomorfismos, entonces $g \circ f \in \text{Hom}(A, C)$ es un isomorfismo.
- 4. La relación \sim en ob $\mathscr C$ dada por $A\sim B$ si existe un isomorfismo $f\in \mathrm{Hom}(A,B)$ es una relación de equivalencia.