

常微分方程-丁同仁-笔记

作者: 若水

邮箱: ethanmxzhou@163.com 主页: helloethanzhou.github.io

时间: July 18, 2024

致谢

感谢 勇敢的 自己

目录

第一章	章 微分方程的解	1
1.1	L 初等积分法	1
	1.1.1 恰当方程	1
	1.1.2 变量分离方程	1
	1.1.3 一阶线性方程	2
	1.1.4 齐次方程	3
	1.1.5 Bernoulli 方程	3
	1.1.6 Riccati 方程	3
1.2	2 一阶隐式微分方程	3
	1.2.1 微分法	3
	1.2.2 参数法	4
1.3	3 线性微分方程	5
	1.3.1 一般理论	5
	1.3.2 常系数线性微分方程	6
1.4	4 幂级数解法	8
	1.4.1 Cauchy 定理	8
	1.4.2 幂级数解法	8
<i>الحد</i> ــــ خ	7. 46/46 A 2-10 m 1 -2-m	
	章 常微分方程四大定理 	9
2.1	存在与存在唯一性定理	9
	2.1.1 Peano 存在定理	9
	2.1.2 Picard 存在唯一性定理	
2.2	2 解的延伸定理	
	2.2.1 解的延伸定理	
	2.2.2 比较定理	
	3 解对初值和参数的连续依赖性	
	4 解对初值和参数的连续可微性	
	5 四大定理总结	
	5 Lyapunov 稳定性	
2.7	7 奇解与包络	
	2.7.1 奇解	17
	2.7.2 包络	19

第一章 微分方程的解

1.1 初等积分法

1.1.1 恰当方程

定义 1.1.1 (恰当方程)

称一阶微分方程

$$P(x,y)dx + Q(x,y)dy = 0$$

为恰当方程或全微分方程,如果存在一个可微函数 $\Phi(x,y)$,使得成立

$$d\Phi(x,y) = P(x,y)dx + Q(x,y)dy$$

定理 1.1.1 (Green 定理)

设函数 P(x,y) 和 Q(x,y) 在区域

$$R: |x - x_0| < r_x, |y - y_0| < r_y$$

上连续, 且具有连续的一阶偏导数, 则一阶微分方程

$$P(x,y)dx + Q(x,y)dy = 0$$

为恰当方程的充分必要条件为恒等式

$$\frac{\partial P}{\partial y}(x,y) \equiv \frac{\partial Q}{\partial x}(x,y)$$

在R内成立。

定理 1.1.2 (恰当方程的通解)

恰当方程

$$P(x,y)dx + Q(x,y)dy = 0$$

的通解为

$$\Phi(x,y) = \int_{x_0}^{x} P(x,y_0) dx + \int_{y_0}^{y} Q(x,y) dy$$

或

$$\Phi(x,y) = \int_{y_0}^{y} P(x_0, y) dy + \int_{x_0}^{x} Q(x, y) dx$$

其中 (x_0, y_0) 为任意取定的一点。

1.1.2 变量分离方程

定理 1.1.3 (变量分离方程的通解)

微分方程

$$P(x)\mathrm{d}x + Q(y)\mathrm{d}y = 0$$

的通解为

$$\int P(x)dx + \int Q(y)dy = C, \qquad C \in \mathbb{R}$$

1.1.3 一阶线性方程

定义 1.1.2 (一阶线性方程)

称微分方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$$

为一阶线性方程, 其中 p(x) 和 q(x) 在 (a,b) 上连续。

*

定理 1.1.4 (一阶线性方程的通解)

一阶线性方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$$

的通解为

$$y = \exp\left(-\int p(x)dx\right)\left(C + \int q(x)\exp\left(\int p(x)dx\right)dx\right), \qquad C \in \mathbb{R}$$

特别的, 初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x), \qquad y(x_0) = y_0$$

的解为

$$y = \exp\left(-\int_{x_0}^x p(t)dt\right) \left(y_0 + \int_{x_0}^x q(s) \exp\left(\int_{x_0}^s p(t)dt\right)ds\right)$$

或

$$y = y_0 \exp\left(-\int_{x_0}^x p(t)dt\right) + \int_{x_0}^x q(s) \exp\left(-\int_s^x p(t)dt\right)ds$$

M

定理 1.1.5 (积分因子法)

方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$$

改写为对称形式

$$dy + p(x)ydx = q(x)dx$$

两侧与因子 $\exp\left(\int p(x)dx\right)$ 作积,整理得

$$\mathrm{d}\left(y\exp\left(\int p(x)\mathrm{d}x\right)\right) = \mathrm{d}\left(\int q(x)\exp\left(\int p(x)\mathrm{d}x\right)\mathrm{d}x\right)$$

两侧积分, 便可得到解

$$y = \exp\left(-\int p(x)\mathrm{d}x\right)\left(C + \int q(x)\exp\left(\int p(x)\mathrm{d}x\right)\mathrm{d}x\right), \qquad C \in \mathbb{R}$$

 \Diamond

定理 1.1.6 (常数变易法)

设方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)$$

的解为

$$y = C(x) \exp\left(-\int p(x) dx\right)$$

代入原方程得

$$C'(x) = q(x) \exp\left(\int p(x) dx\right)$$

因此

$$C(x) = \int q(x) \exp\left(\int p(x) dx\right) dx + C, \qquad C \in \mathbb{R}$$

进而可得到解

$$y = \exp\left(-\int p(x)dx\right)\left(C + \int q(x)\exp\left(\int p(x)dx\right)dx\right), \qquad C \in \mathbb{R}$$

1.1.4 齐次方程

定理 1.1.7

对于齐次方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi\left(\frac{y}{x}\right)$$

令 z = y/x, 可求得通解。

(~

1.1.5 Bernoulli 方程

定理 1.1.8

对于 Bernoulli 方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)y^n, \qquad n \neq 0, 1$$

令 $z = y^{1-n}$, 可求得通解。

 \sim

1.1.6 Riccati 方程

定理 1.1.9

对于 Riccati 方程

$$\frac{\mathrm{d}y}{\mathrm{d}x} = p(x)y^2 + q(x)y + r(x)$$

若已知特解为 $y = \varphi(x)$, 则令 $z = y - \varphi$, 可求得通解。

1.2 一阶隐式微分方程

1.2.1 微分法

若微分方程

$$F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}\right) = 0$$

可解出

$$y = f(x, p)$$

这里 p = dy/dx。设 f 连续可微,则方程 y = f(x,p) 对 x 进行微分,可得到

$$(f_x'(x,p) - p)dx + f_p'(x,p)dp = 0$$

此为关于x和p的显式方程。

1. 若得到方程

$$(f_x'(x,p) - p)dx + f_p'(x,p)dp = 0$$

的通解 p = u(x, C),那么方程 y = f(x, p) 的通解为 y = f(x, u(x, C))。

2. 若方程

$$(f_x'(x,p) - p)dx + f_p'(x,p)dp = 0$$

含有特解 p = w(x),则方程 y = f(x, p) 含有特解 y = f(x, w(x))。

3. 若得到方程

$$(f'_x(x,p) - p)dx + f'_p(x,p)dp = 0$$

的通解 x = v(p, C), 那么方程 y = f(x, p) 的通解为

$$\begin{cases} x = v(p, C) \\ y = f(v(p, C), p) \end{cases}$$
 p为参数

4. 若方程

$$(f'_x(x,p) - p)dx + f'_p(x,p)dp = 0$$

含有特解 x = z(p), 则方程 y = f(x, p) 含有特解

$$\begin{cases} x = z(p) \\ y = f(z(p), p) \end{cases}$$
 p为参数

1.2.2 参数法

对于一阶隐式微分方程

$$F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}\right) = 0$$

若其参数表达式为

$$x = f(u, v),$$
 $y = g(u, v),$ $\frac{\mathrm{d}y}{\mathrm{d}x} = h(u, v)$

其中u和v为参数,则有

$$(h(u,v)f'_u(u,v) - g'_u(u,v))du + (h(u,v)f'_v(u,v) - g'_v(u,v))dv = 0$$

若求得方程

$$(h(u,v)f'_u(u,v) - g'_u(u,v))du + (h(u,v)f'_v(u,v) - g'_v(u,v))dv = 0$$

的通解 v = w(u, C),则可得到原方程的通解

$$\begin{cases} x = f(u, w(u, C)) \\ y = g(u, w(u, C)) \end{cases}$$

1.3 线性微分方程

1.3.1 一般理论

定理 1.3.1 (存在唯一性定理)

对于 n 阶线性微分方程初值问题

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{y} + \boldsymbol{f}(x), \qquad \boldsymbol{y}(x_0) = \boldsymbol{y}_0$$

如果 n 阶系数矩阵函数 ${\bf A}(x)$ 和右端函数 ${\bf f}(x)$ 在开区间 (a,b) 上连续,那么其解 ${\bf y}={\bf y}(x)$ 在开区间 (a,b) 上存在且存在唯一。

定义 1.3.1 (基本解矩阵)

n 阶线性微分方程

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{y} + \boldsymbol{f}(x)$$

存在 n 个线性无关的解

$$\mathbf{y}_1(x) = \begin{pmatrix} y_{11}(x) \\ \vdots \\ y_{n1}(x) \end{pmatrix} \qquad \cdots \qquad \mathbf{y}_n(x) = \begin{pmatrix} y_{1n}(x) \\ \vdots \\ y_{nn}(x) \end{pmatrix}$$

构成微分方程的基本解矩阵

$$\mathbf{\Phi}(x) = \begin{pmatrix} y_{11}(x) & \cdots & y_{1n}(x) \\ \vdots & \ddots & \vdots \\ y_{n1}(x) & \cdots & y_{nn}(x) \end{pmatrix}$$

由此原方程的通解为

$$\mathbf{y}(x) = \mathbf{\Phi}(x)\mathbf{c}, \qquad \mathbf{c} \in \mathbb{R}^n$$

定义 1.3.2 (Wronsky 行列式)

函数

$$\mathbf{y}_1(x) = \begin{pmatrix} y_{11}(x) \\ \vdots \\ y_{n1}(x) \end{pmatrix} \qquad \cdots \qquad \mathbf{y}_n(x) = \begin{pmatrix} y_{1n}(x) \\ \vdots \\ y_{nn}(x) \end{pmatrix}$$

的 Wronsky 行列式为

$$W(x) = \begin{vmatrix} y_{11}(x) & \cdots & y_{1n}(x) \\ \vdots & \ddots & \vdots \\ y_{n1}(x) & \cdots & y_{nn}(x) \end{vmatrix}$$

命题 1.3.1 (Wronsky 行列式的性质)

如果函数

$$\mathbf{y}_1(x) = \begin{pmatrix} y_{11}(x) \\ \vdots \\ y_{n1}(x) \end{pmatrix} \qquad \cdots \qquad \mathbf{y}_n(x) = \begin{pmatrix} y_{1n}(x) \\ \vdots \\ y_{nn}(x) \end{pmatrix}$$

线性相关,那么其 Wronsky 行列式恒为 0,即

$$W(x) = \begin{vmatrix} y_{11}(x) & \cdots & y_{1n}(x) \\ \vdots & \ddots & \vdots \\ y_{n1}(x) & \cdots & y_{nn}(x) \end{vmatrix} \equiv 0$$

定理 1.3.2 (Liouville 公式)

如果

$$\mathbf{\Phi}(x) = \begin{pmatrix} y_{11}(x) & \cdots & y_{1n}(x) \\ \vdots & \ddots & \vdots \\ y_{n1}(x) & \cdots & y_{nn}(x) \end{pmatrix}$$

为齐次线性微分方程

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{y}$$

的基本解矩阵, 那么其 Wronsky 行列式 $W(x) = |\Phi(x)|$ 成立

$$W(x) = W(x_0) \exp\left(\int_{x_0}^x \operatorname{tr}(\boldsymbol{A}(x)) dx\right), \quad a < x < b$$

其中 $a < x_0 < b$ 。

定理 1.3.3 (常数变易法)

如果 $\Phi(x)$ 是齐次线性微分方程

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{y}$$

的基本解矩阵, 那么微分方程

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}(x)\boldsymbol{y} + \boldsymbol{f}(x)$$

在区间a < x < b上的通解可表示为

$$\boldsymbol{y} = \boldsymbol{\Phi}(x) \left(\boldsymbol{c} + \int_{x_0}^x \Phi^{-1}(s) \boldsymbol{f}(s) \mathrm{d}s \right), \qquad \boldsymbol{c} \in \mathbb{R}^n$$

且微分方程满足初值条件 $y(x_0) = y_0$ 的解为

$$\boldsymbol{y} = \boldsymbol{\Phi}(x)\Phi^{-1}(x_0)\boldsymbol{y}_0 + \boldsymbol{\Phi}(x)\int_{x_0}^x \Phi^{-1}(s)\boldsymbol{f}(s)\mathrm{d}s$$

\sim

1.3.2 常系数线性微分方程

定理 1.3.4 (常系数线性微分方程)

常系数线性微分方程

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \boldsymbol{A}\boldsymbol{y}$$

的基本解矩阵为

$$\mathbf{\Phi}(x) = \mathrm{e}^{\mathbf{A}x}$$

若 A 可对角化为 $A = Q\Lambda Q^{-1}$,则

$$\mathbf{\Phi}(x) = \mathbf{Q} e^{\mathbf{\Lambda} x} \mathbf{Q}^{-1}$$

 \Diamond

定理 1.3.5

如果 $y = \varphi(x)$ 是二阶齐次线性方程

$$y'' + p(x)y' + q(x)y = 0$$

的非零解,其中p(x)和q(x)是区间a < x < b上的连续函数,那么微分方程的通解为

$$y = \varphi(x) \left(C_1 + C_2 \int_{x_0}^x \frac{1}{\varphi^2(x)} \exp\left(-\int_{x_0}^s p(t) dt \right) ds \right), \qquad C_1, C_2 \in \mathbb{R}$$

定理 1.3.6 (常系数齐次线性方程)

如果常系数齐次线性方程

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$

的特征方程

$$\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$$

在复数域 $\mathbb C$ 中共有r个互不相同的根 $\lambda_1,\cdots,\lambda_r$,且对应的重数分别为 n_1,\cdots,n_r ,满足 $n_1+\cdots+n_r=n$,那么函数组

$$\begin{cases} e^{\lambda_1 x}, & xe^{\lambda_1 x}, & \cdots, & x^{n_1 - 1}e^{\lambda_1 x} \\ \cdots & & \\ e^{\lambda_r x}, & xe^{\lambda_r x}, & \cdots, & x^{n_r - 1}e^{\lambda_r x} \end{cases}$$

是齐次微分方程的一个基本解组。

\odot

定理 1.3.7 (常系数非齐次线性方程)

对于常系数非齐次线性方程

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x)$$

其特解 $\varphi^*(x)$ 如下。

1. $f(x) = P_n(x)e^{\lambda x}$:

$$\varphi^*(x) = x^k Q_n(x) e^{\lambda x}$$

其中 $P_n(x)$ 和 $Q_n(x)$ 为 n 次多项式, $k \in \mathbb{N}$ 为特征方程

$$\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$$

的特征根中入的重数。

2. $f(x) = (A_m(x)\cos(\omega x) + B_n(x)\sin(\omega x))e^{\lambda x}$:

$$\varphi^*(x) = x^k (P_l(x)\cos(\omega x) + Q_l\sin(\omega x))e^{\lambda x}$$

其中 $A_m(x)$ 和 $B_n(x)$ 分别为关于 x 的 m 和 n 次多项式, $P_l(x)$ 和 $Q_l(x)$ 为的 l 次多项式且 $l=\max(m,n),\ k\in\mathbb{N}$ 为特征方程

$$\lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$$

的特征根中 $\lambda + i\omega$ 的重数。

定理 1.3.8 (Euler 方程)

对于 Euler 方程

$$x^{n}y^{(n)} + a_{1}x^{n-1}y^{(n-1)} + \dots + a_{n}y = f(x)$$

$$x^{n} \frac{\mathrm{d}^{n} y}{\mathrm{d}t^{n}} = \prod_{k=0}^{n-1} \left(\frac{\mathrm{d}}{\mathrm{d}t} - k\right) y$$

\Diamond

1.4 幂级数解法

1.4.1 Cauchy 定理

定义 1.4.1 (解析函数)

称函数 f(x,y) 在区域 $G \in \mathbb{R}^2$ 内为解析的,如果对于 G 内的任意一点 (x_0,y_0) ,存在正常数 a 和 b,使得函数 f(x,y) 在区域

$$|x - x_0| \le a, \qquad |y - y_0| \le b$$

内可以展成 $(x-x_0)$ 和 $(y-y_0)$ 的收敛幂级数

$$f(x,y) = \sum_{i,j=0}^{\infty} a_{ij} (x - x_0)^i (y - y_0)^j$$

.

定理 1.4.1 (Cauchy 定理)

如果函数 f(x,y) 在矩形区域 $R:|x-x_0|\leq \alpha, |y-y_0|\leq \beta$ 上可以展开成 $(x-x_0)$ 和 $(y-y_0)$ 的收敛幂级数

$$f(x,y) = \sum_{i,j=0}^{\infty} a_{ij}(x - x_0)^i (y - y_0)^j$$

则初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(x_0) = y_0$$

在 x_0 点的邻域 $|x-x_0| \le \rho$ 内存在且存在唯一解析解 y=y(x), 其中

$$\rho = a(1 - e^{-\frac{b}{2aM}}), \qquad M \le |a_{ij}| a^i b^j$$

C

1.4.2 幂级数解法

定理 1.4.2 (幂级数解法)

微分方程

$$y'' + p(x)y' + q(x)y = 0$$

中的系数函数 p(x) 和 q(x) 在区间 $|x-x_0| < r$ 可以展成 $(x-x_0)$ 的收敛幂级数,则微分方程在区间 $|x-x_0| < r$ 存在收敛的幂级数解

$$y = \sum_{n=0}^{\infty} C_n (x - x_0)^n$$

其中 C_0 和 C_1 为任意常数, 而当 $n \ge 2$ 时 C_n 可以通过递推公式确定。

第二章 常微分方程四大定理

2.1 存在与存在唯一性定理

2.1.1 Peano 存在定理

定理 2.1.1 (Asscoli 引理)

对于 [a,b] 上的函数族 \mathscr{F} ,如果 \mathscr{F} 在 [a,b] 上一致有界且等度连续,那么存在函数序列 $\{f_n(x)\}_{n=1}^\infty\subset\mathscr{F}$,使得 $f_n(x)$ 在 [a,b] 上一致收敛。

定理 2.1.2 (Peano 存在定理)

对于初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y), \qquad y(x_0) = y_0 \tag{*}$$

如果 f(x,y) 在矩形区域

$$R: |x - x_0| \le a, |y - y_0| \le b$$

内连续,那么原初值问题在区间 $[x_0-h,x_0+h]$ 内存在解,其中

$$h=\min{\{a,b/M\}}, \qquad M>\max_{(x,y)\in R}|f(x,y)|$$

 \odot

证明

1. 构造 Euler 折线

$$\varphi_n(x) = y_0 + \sum_{k=0}^{-s+1} f(x_k, y_k)(x_{k-1} - x_k) + f(x_{-s}, y_{-s})(x - x_{-s})$$

- 2. 证明 Euler 序列 $y = \varphi_n(x)$ 存在一致收敛子列,不妨仍记为 $y = \varphi_n(x)$ 。
- 3. 证明 Euler 序列 $y = \varphi_n(x)$ 成立

$$\varphi_n(x) = y_0 + \int_{x_0}^x f(x, \varphi_n(x)) dx + \delta_n(x)$$

其中 $\delta_n(x) \to 0$ 。

4. Euler 序列 $y = \varphi_n(x)$ 的极限 $y = \varphi(x)$ 为初值问题 (*) 的解。

💡 笔记 不可去掉" f(x,y) 连续"的条件,例如:对于

$$f(x,y) = \begin{cases} 0, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(0) = 0$$

不存在解。事实上,如果y(x)可导,那么其导函数不存在第一类间断点。

2.1.2 Picard 存在唯一性定理

定理 2.1.3 (Picard 存在唯一性定理)

对于初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(x_0) = y_0 \tag{1}$$

如果 f(x,y) 在矩形区域

$$R: |x - x_0| \le a, |y - y_0| \le b$$

内连续,且对y成立以L为 Lipschitz 系数的 Lipschitz 条件,那么初值问题 (1) 在区间 $I=[x_0-h,x_0+h]$ 内存在且存在唯一解,其中

$$h = \min\left\{a, \frac{b}{M}\right\}, \qquad M > \max_{(x,y) \in R} |f(x,y)|$$

证明 经典证明:

1. 初值问题(1) ← 积分方程

$$y = y_0 + \int_{x_0}^x f(x, y) dx$$
 (2)

事实上,一方面,若 $y=y(x),x\in I$ 为初值问题(1)的解,则

$$y'(x) = f(x, y(x)), y(x_0) = y_0, x \in I$$

由此积分

$$y(x) = y_0 + \int_{x_0}^x f(x, y(x)) dx, \qquad x \in I$$

因此 $y = y(x), x \in I$ 为积分方程 (2) 的解。

另一方面, 若 $y = y(x), x \in I$ 为积分方程 (2) 的解, 则

$$y(x) = y_0 + \int_{x_0}^x f(x, y(x)) dx, \qquad x \in I$$

由此微分

$$y'(x) = f(x, y(x)), y(x_0) = y_0, x \in I$$

因此 $y = y(x), x \in I$ 为初值问题 (1) 的解。

2. 迭代构造 Picard 序列

$$y_{n+1}(x) = y_0 + \int_{x_0}^x f(x, y_n(x)) dx, \qquad y_0(x) = y_0, \qquad x \in I$$
 (3)

由归纳法证明: Picard 序列 $y = y_n(x)$ 在 I 上连续,且成立不等式

$$|y_n(x) - y_0| \le M|x - x_0|$$

(a). 当 n=0 时, 由于 $f(x,y_0(x))=f(x,y_0)$ 为 I 上的连续函数, 因此

$$y_1(x) = y_0 + \int_{x_0}^x f(x, y_0(x)) dx$$

在I上连续可微,且成立

$$|y_1(x) - y_0| = \left| \int_{x_0}^x f(x, y_0(x)) dx \right| \le \int_{x_0}^x |f(x, y_0(x))| dx \le M|x - x_0| \tag{4}$$

从而在 I 上成立 $|y_1(x) - y_0| \le Mh \le b$ 。

(b). 假设 $y=y_k(x)$ 在 I 上连续,且成立不等式

$$|y_k(x) - y_0| \le M|x - x_0|$$

则

$$y_{k+1}(x) = y_0 + \int_{x_0}^x f(x, y_k(x)) dx$$

在I上连续可微,且成立

$$|y_{k+1}(x) - y_0| = \left| \int_{x_0}^x f(x, y_k(x)) dx \right| \le \int_{x_0}^x |f(x, y_k(x))| dx \le M|x - x_0|$$

从而在 I 上成立 $|y_{k+1}(x) - y_0| \le Mh \le b$ 。

3. 证明: Picard 序列 $y = y_n(x)$ 在 I 一致收敛于积分方程 (2) 的解。

注意到, 序列 $y_n(x)$ 的收敛性 \iff 级数

$$\sum_{n=1}^{\infty} (y_{n+1}(x) - y_n(x)) \tag{5}$$

的收敛性。下面证明:级数(5)在1上一致收敛。为此,我们归纳证明不等式:

$$|y_{n+1}(x) - y_n(x)| \le \frac{M}{L} \frac{(L|x - x_0|)^{n+1}}{(n+1)!}, \quad x \in I$$
 (6)

- (b). 假设当 n = k 时成立 (6), 则先由 (3) 推出

$$|y_{k+2}(x) - y_{k+1}(x)| = \left| \int_{x_0}^x (f(x, y_{k+1}(x)) - f(x, y_k(x))) dx \right|$$

然后利用 Lipschitz 条件与归纳假设,可得

$$|y_{k+2}(x) - y_{k+1}(x)| \le \left| \int_{x_0}^x L|y_{k+1}(x) - y_k(x)| dx \right|$$

$$\le M \left| \int_{x_0}^x \frac{(L|x - x_0|)^{k+1}}{(k+1)!} dx \right|$$

$$= \frac{M}{L} \frac{(L|x - x_0|)^{k+2}}{(k+2)!}$$

因此当 n = k + 1 时,成立 (6)。

由归纳假设,成立(6)。

显然,不等式 (6) 蕴含级数 (5) 在 I 上一致收敛,因此 Picard 序列 $y=y_n(x)$ 在 I 上一致收敛,因此极限函数

$$\varphi(x) = \lim_{n \to \infty} y_n(x), \qquad x \in I$$

在区间 I 上连续。由 f(x,y) 的连续性与 Picard 序列 $y=y_n(x)$ 的一致连续性, 在 (3) 中令 $n\to\infty$ 可得

$$\varphi(x) = y_0 + \int_{x_0}^x f(x, \varphi(x)) dx, \quad x \in I$$

因此 $y = \varphi(x)$ 为积分方程 (2) 在 I 上的解。

4. 最后证明唯一性。假设积分方程 (2) 在 I 上存在两个解 $y=\varphi(x)$ 与 $y=\psi(x)$,则由积分方程 (2),可得

$$\varphi(x) - \psi(x) = \int_{x_0}^x (f(x, \varphi(x)) - f(x, \psi(x))) dx$$

由 Lipschitz 条件

$$|\varphi(x) - \psi(x)| \le L \int_{x_0}^x |u(x) - v(x)| \mathrm{d}x \tag{7}$$

取 |u(x)-v(x)| 在 I 上的上界 K, 则由 (7)

$$|\varphi(x) - \psi(x)| \le LK|x - x_0|$$

代入(7)

$$|\varphi(x) - \psi(x)| \le K \frac{(L|x - x_0|)^2}{2}$$

由归纳法

$$|\varphi(x) - \psi(x)| \le K \frac{(L|x - x_0|)^n}{n!}$$

定理 2.1.4 (Picard 存在唯一性定理)

对于初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y), \qquad y(x_0) = y_0 \tag{*}$$

如果 f(x,y) 在带形区域

$$R: |x - x_0| \le \delta, \quad y \in \mathbb{R}$$

内连续,且对 y 成立以 L 为 Lipschitz 系数的 Lipschitz 条件,那么初值问题 (*) 在区间 $I = [x_0 - h, x_0 + h]$ 内存在且存在唯一连续解,其中 $0 < h < \min\{\delta, 1/L\}$ 。

证明 压缩映像原理:考虑连续函数空间 C(I),构造算子

$$T: C(I) \longrightarrow C(I)$$

$$\varphi \longmapsto T_{\varphi}, \not \sqsubseteq \forall T_{\varphi}(x) = y_0 + \int_{x_0}^x f(t, \varphi(t)) dt$$

容易知道 $y = \varphi(x)$ 为初值问题 (*) 的连续解 $\iff \varphi$ 为 T 的不动点。由于 f(x,y) 对 y 成立以 L 为 Lipschitz 系数的 Lipschitz 条件,那么

$$\begin{split} \|T(\varphi) - T(\psi)\| &= \sup_{x \in I} |(T(\varphi) - T(\psi))(x)| \\ &= \sup_{|x - x_0| \le h} \left| \int_{x_0}^x (f(t, \varphi(t)) - f(t, \psi(t))) \mathrm{d}t \right| \\ &\le \sup_{|x - x_0| \le h} \int_{x_0}^x |f(t, \varphi(t)) - f(t, \psi(t))| \mathrm{d}t \\ &\le \sup_{|x - x_0| \le h} \int_{x_0}^x L|\varphi(t) - \psi(t)| \mathrm{d}t \\ &\le \sup_{|x - x_0| \le h} \int_{x_0}^x L\|\varphi - \psi\| \mathrm{d}t \\ &= \sup_{|x - x_0| \le h} (x - x_0) L\|\varphi - \psi\| \\ &= Lh\|\varphi - \psi\| \end{split}$$

而 Lh < 1,从而 T 为压缩映射,由压缩映像原理,T 存在且存在唯一不动点,进而值问题 (*) 在区间 I 内存在且存在唯一连续解。

 $ot ilde{Y}$ 笔记 "f(x,y) 对 y 成立 Lipschitz 条件"仅为充分条件,例如对于初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{|y|}, \qquad y(0) = 0$$

函数 $f(x,y) = \sqrt{|y|}$ 在 y 的任意邻域内不成立 Lipschitz 条件,但原初值问题存在且存在唯一解

$$y = \begin{cases} x^2/4, & x \ge 0 \\ -x^2/4, & x < 0 \end{cases}$$

定义 2.1.1 (Osgood 条件)

称连续函数 f(x) 成立 Osgood 条件, 如果存在函数 F(r), 使得成立

$$F(r) > 0, (r > 0),$$
 $F(0) = 0,$ $\int_0^1 \frac{dr}{F(r)} = +\infty$

且对于任意x, y,成立

$$|f(x) - f(y)| \le F(|x - y|)$$

定理 2.1.5 (Osgood 定理)

对于初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(x_0) = y_0$$

如果 f(x,y) 在矩形区域

$$R: |x - x_0| \le a, |y - y_0| \le b$$

内连续,且对y成立 Osgood 条件,那么原初值问题在区间 $[x_0-h,x_0+h]$ 内存在且存在唯一解,其中

$$h = \min\left\{a, \frac{b}{M}\right\}, \qquad M > \max_{(x,y)\in R} |f(x,y)|$$

2.2 解的延伸定理

2.2.1 解的延伸定理

定理 2.2.1 (解的延伸定理)

如果 f(x,y) 在区域 G 内连续,那么对于任意 $(x_0,y_0)\in G$,初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(x_0) = y_0$$

的积分曲线 Γ 延伸至 G 的边界。

定理 2.2.2

如果函数 f(x,y) 在连通开集

$$S: \quad \alpha < x < \beta, \quad -\infty < y < +\infty$$

内连续, 而且满足不等式

$$|f(x,y)| \le A(x)|y| + B(x)$$

其中 $A(x) \ge 0$ 和 $B(x) \ge 0$ 在区间 $\alpha < x < \beta$ 连续, 那么对于任意 $(x_0, y_0) \in S$, 初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y), \qquad y(x_0) = y_0$$

的解区间 $\alpha < x < \beta$ 为最大存在区间。

2.2.2 比较定理

定理 2.2.3 (第一比较定理)

设函数 f(x,y) 与 F(x,y) 都在连通开集 G 内连续且满足不等式

$$f(x,y) < F(x,y), \qquad (x,y) \in G$$

又设函数 $y = \varphi(x)$ 与 $y = \Phi(x)$ 在区间 a < x < b 上分别是初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(x_0) = y_0$$

与

$$\frac{\mathrm{d}y}{\mathrm{d}x} = F(x,y), \qquad y(x_0) = y_0$$

的解, 其中 $(x_0, y_0) \in G$, 则有

$$\begin{cases} \varphi(x) < \Phi(x), x_0 < x < b \\ \varphi(x) > \Phi(x), a < x < x_0 \end{cases}$$

定理 2.2.4 (第二比较定理)

设函数 f(x,y) 与 F(x,y) 都在平面区域 G 内连续且满足不等式

$$f(x,y) < F(x,y), \qquad (x,y) \in G$$

又设函数 $y = \varphi(x)$ 与 $y = \Phi(x)$ 在区间 a < x < b 上分别是初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(x_0) = y_0$$

与

$$\frac{\mathrm{d}y}{\mathrm{d}x} = F(x, y), \qquad y(x_0) = y_0$$

的解, 其中 $(x_0, y_0) \in G$, 并且 $y = \varphi(x)$ 是初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

的右行最小解和左行最大解,或者 $y = \Phi(x)$ 是初值问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = F(x, y) \\ y(x_0) = y_0 \end{cases}$$

的右行最小解和左行最大解, 则有如下比较关系

$$\begin{cases} \varphi(x) \le \Phi(x), x_0 \le x < b \\ \varphi(x) \ge \Phi(x), a < x \le x_0 \end{cases}$$

2.3 解对初值和参数的连续依赖性

对于一般的微分方程初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(x_0) = y_0$$

可作线性变换 $x' = x - x_0$ 与 $y' = y - y_0$, 那么上述初值问题化为

$$\frac{\mathrm{d}y'}{\mathrm{d}x'} = f(x', y', \lambda), \qquad y'(0) = 0$$

因此本节对于探究解对初值和参数的连续依赖性, 仅考虑初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(0) = 0$$

定义 2.3.1 (解对初值和参数的连续依赖性)

考虑初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(x_0) = y_0$$

记其解为 $y = \varphi(x, x_0, y_0, \lambda)$ 。所谓解对初值和参数的连续依赖性, 就是 φ 对于 x_0, y_0, λ 的连续性。

*

定理 2.3.1 (解对初值和参数的连续依赖性)

如果函数 $f(x,y,\lambda)$ 在矩形区域

$$R: |x| \le a, |y| \le b, |\lambda - \lambda_0| \le c$$

上连续, 且对于 y 满足 Lipschitz 条件, 那么微分方程初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(0) = 0$$

的解 $y = \varphi(x, \lambda)$ 在矩形区域

$$D: |x| \le h, |\lambda - \lambda_0| \le c$$

上是连续的, 其中

$$h = \min\{a, b/M\}, \qquad M \ge \max_{(x,y,\lambda) \in G} |f(x,y,\lambda)|$$

 \bigcirc

2.4 解对初值和参数的连续可微性

对于一般的微分方程初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(x_0) = y_0$$

可作线性变换 $x' = x - x_0$ 与 $y' = y - y_0$, 那么上述初值问题化为

$$\frac{\mathrm{d}y'}{\mathrm{d}x'} = f(x', y', \lambda), \qquad y'(0) = 0$$

因此本节对于探究解对初值和参数的连续可微性, 仅考虑初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(0) = 0$$

定义 2.4.1 (解对初值和参数的连续可微性)

考虑初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(x_0) = y_0$$

记其解为 $y = \varphi(x, x_0, y_0, \lambda)$ 。所谓解对初值和参数的连续可微性, 就是 φ 对于 x_0, y_0, λ 的连续可微性。

*

定理 2.4.1 (解对初值和参数的连续可微性)

如果函数 $f(x,y,\lambda)$ 在矩形区域

$$R: |x| \le a, |y| \le b, |\lambda - \lambda_0| \le c$$

上连续,且对于y与 λ 存在连续偏微商,那么微分方程初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(0) = 0$$

的解 $y = \varphi(x, \lambda)$ 在矩形区域

$$D: |x| \le h, |\lambda - \lambda_0| \le c$$

上是连续可微的, 其中

$$h = \min\{a, b/M\}, \qquad M \ge \max_{(x,y,\lambda) \in G} |f(x,y,\lambda)|$$

C

2.5 四大定理总结

定理 2.5.1 (Picard 存在唯一性定理)

对于初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(x_0) = y_0$$

如果 f(x,y) 在矩形区域

$$R: |x - x_0| \le a, |y - y_0| \le b$$

内连续,且对y成立Lipschitz条件,那么原初值问题在区间 $[x_0-h,x_0+h]$ 内存在且存在唯一解,其中

$$h=\min\big\{a,b/M\big\}, \qquad M>\max_{(x,y)\in R}|f(x,y)|$$

定理 2.5.2 (解的延伸定理)

如果 f(x,y) 在区域 G 内连续, 那么对于任意 $(x_0,y_0) \in G$, 初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y), \qquad y(x_0) = y_0$$

的积分曲线 Γ 延伸至 G 的边界。

C

定理 2.5.3 (解对初值和参数的连续依赖性)

如果函数 $f(x,y,\lambda)$ 在矩形区域

$$R: |x| \le a, |y| \le b, |\lambda - \lambda_0| \le c$$

上连续, 且对于y满足 Lipschitz条件, 那么微分方程初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(0) = 0$$

的解 $y = \varphi(x, \lambda)$ 在矩形区域

$$D: |x| \le h, |\lambda - \lambda_0| \le c$$

上是连续的, 其中

$$h = \min\{a, b/M\}, \qquad M \ge \max_{(x,y,\lambda) \in G} |f(x,y,\lambda)|$$

\sim

定理 2.5.4 (解对初值和参数的连续可微性)

如果函数 $f(x,y,\lambda)$ 在矩形区域

$$R: |x| \le a, |y| \le b, |\lambda - \lambda_0| \le c$$

上连续, 且对于y与 λ 存在连续偏微商, 那么微分方程初值问题

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y, \lambda), \qquad y(0) = 0$$

的解 $y = \varphi(x, \lambda)$ 在矩形区域

$$D: |x| \le h, |\lambda - \lambda_0| \le c$$

上是连续可微的, 其中

$$h = \min\{a, b/M\}, \qquad M \ge \max_{(x,y,\lambda) \in G} |f(x,y,\lambda)|$$

 \Diamond

条件	结论
连续性	存在解
连续性	解延伸至边界
连续性 +Lipschitz 条件	存在且存在唯一解
连续性 +Lipschitz 条件	解对初值与参数连续
连续性 + 连续可偏微商	解对初值与参数连续可微

2.6 Lyapunov 稳定性

定义 2.6.1 (Lyapunov 稳定性)

对于微分方程

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = f(\boldsymbol{x}, t)$$

其中 f(x,t) 对于 $x \in \Omega \subset \mathbb{R}^n$ 与 $t \in \mathbb{R}$ 连续,且对于 x 成立 Lipschitz 条件,称其在 $[t_0,\infty)$ 上存在定义的解 $x = \varphi(t)$ 成立 Lyapunov 稳定性,如果对于任意 $\varepsilon > 0$,存在 $\delta > 0$,使得对于任意成立

$$|\boldsymbol{x}_0 - \boldsymbol{\varphi}(t_0)| < \delta$$

的 $x_0 \in \mathbb{R}^n$, 原微分方程以 $x(t_0) = x_0$ 为初值的解 $x = \varphi(t, t_0, x_0)$ 在 $[t_0, \infty)$ 上存在定义,且对于任意 $t \geq t_0$,成立

$$|\boldsymbol{\varphi}(t,t_0,\boldsymbol{x}_0) - \boldsymbol{\varphi}(t)| < \varepsilon$$

定义 2.6.2 (Lyapunov 渐进稳定性)

对干微分方程

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = f(\boldsymbol{x}, t)$$

其中 f(x,t) 对于 $x \in \Omega \subset \mathbb{R}^n$ 与 $t \in \mathbb{R}$ 连续,且对于 x 成立 Lipschitz 条件,称其存在 Lyapunov 稳定性的解 $x = \varphi(t)$ 成立 Lyapunov 渐进稳定性,如果存在 $\delta > 0$,使得对于任意成立

$$|\boldsymbol{x}_0 - \boldsymbol{\varphi}(t_0)| < \delta$$

的 $x_0 \in \mathbb{R}^n$, 原微分方程以 $x(t_0) = x_0$ 为初值的解 $x = \varphi(t, t_0, x_0)$ 在 $[t_0, \infty)$ 上存在定义,且成立

$$\lim_{t \to +\infty} |\boldsymbol{\varphi}(t, t_0, \boldsymbol{x}_0) - \boldsymbol{\varphi}(t)| = 0$$

2.7 奇解与包络

2.7.1 奇解

定义 2.7.1 (奇解)

称一阶微分方程

$$F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}\right) = 0$$

的特解

$$\Gamma: \quad y = \varphi(x), \quad x \in I$$

为奇解,如果对于任意 $(x_0,y_0) \in \Gamma$,以及 (x_0,y_0) 的任意邻域内微分方程

$$F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}\right) = 0$$

存在不同于 Γ 的解,使得其在 (x_0,y_0) 处与 Γ 相切。

a.

定理 2.7.1 (奇解存在的必要条件)

设函数 F(x,y,p) 对 $(x,y,p)\in G$ 是连续的,而且对 y 和 p 有连续的偏微商 F'_y 和 F'_p 。若函数 $y=\varphi(x),x\in J$ 是微分方程

$$F(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}) = 0$$

的一个奇解,并且 $(x,\varphi(x),\varphi'(x))\in G$,则奇解 $y=\varphi(x)$ 满足 p-判别式

$$\begin{cases} F(x, y, p) = 0 \\ F'_p(x, y, p) = 0 \end{cases}$$

若从方程组中消去p, 可得到方程

$$\Delta(x,y) = 0$$

由此决定的曲线为微分方程

$$F(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}) = 0$$

的 p-判别曲线。因此, 原微分方程的奇解是一条 p-判别曲线。

全 笔记 需要注意的是,由 p-判别式

$$\begin{cases} F(x, y, p) = 0 \\ F'_p(x, y, p) = 0 \end{cases}$$

所确定的函数 $y=\psi(x)$ 不一定是相应微分方程的解;即使是解,也不一定是奇解。这是因为,在联立方程组时,参数 p 丧失了与 x 和 y 的关系,而成为了一个独立的变量。事实上由 p-判别式求得的 $y=\psi(x)$ 和 p=p(x),一定要满足 $\frac{\mathrm{d}y}{\mathrm{d}x}=p$,只有这样,函数 $y=\psi(x)$ 才是微分方程的解,但未必是奇解。

定理 2.7.2 (奇解存在的充分条件)

设函数 F(x,y,p) 对 $(x,y,p) \in G$ 是二阶连续可微的, 且由微分方程

$$F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}\right) = 0$$

的 p-判别式

$$\begin{cases} F(x, y, p) = 0 \\ F'_p(x, y, p) = 0 \end{cases}$$

所确定的函数 $y = \psi(x), x \in J$ 为微分方程的解。若满足条件

$$\begin{cases} F'_y(x, \psi(x), \psi'(x)) \neq 0 \\ F''_{pp}(x, \psi(x), \psi'(x)) \neq 0 \\ F'_p(x, \psi(x), \psi'(x)) = 0 \end{cases}$$

对于任意 $x \in J$ 成立,则 $y = \psi(x)$ 是微分方程的奇解。

📀 笔记 奇解存在的充分条件中的

$$\begin{cases} F_y'(x, \psi(x), \psi'(x)) \neq 0 \\ F_{pp}''(x, \psi(x), \psi'(x)) \neq 0 \\ F_p'(x, \psi(x), \psi'(x)) = 0 \end{cases}$$

中的三个条件缺一不可, 如

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = y^2, \qquad \sin(y\frac{\mathrm{d}y}{\mathrm{d}x}) = y, \qquad y = 2x + \frac{\mathrm{d}y}{\mathrm{d}x} - \frac{1}{3}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3$$

2.7.2 包络

定义 2.7.2 (包络)

对于单参数 C 的曲线族

$$K(C): V(x, y, C) = 0$$

其中函数 V(x,y,C) 对于 $(x,y,C)\in D$ 是连续可微的。称连续可微的曲线 Γ 为曲线族 K(C):V(x,y,C)=0 的包络,如果对于任一点 $P\in\Gamma$,在曲线族 K(C):V(x,y,C)=0 中存在曲线 $K(C_0)$ 经过 P 点并在该点与 Γ 相切,同时 $K(C_0)$ 在 P 点的某一邻域内不同于 Γ 。

定理 2.7.3 (奇解是通解的包络)

设微分方程

$$F(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}) = 0$$

有通积分为

$$U(x,y,C)=0$$

又设积分曲线族 U(x,y,C)=0 有包络为

$$\Gamma: y = \varphi(x), x \in J$$

则包络 $\Gamma: y = \varphi(x), x \in J$ 是微分方程的奇解。

定理 2.7.4 (包络存在的必要条件)

设□是曲线族

$$K(C): V(x, y, C) = 0$$

的一支包络,则其满足如下的C-判别式

$$\begin{cases} V(x, y, C) = 0 \\ V'_C(x, y, C) = 0 \end{cases}$$

或消去C,得到关系式

$$\Omega(x,y) = 0$$

定理 2.7.5 (包络存在的充分条件)

设由曲线族

$$K(C): V(x, y, C) = 0$$

的 C- 判别式

$$\begin{cases} V(x, y, C) = 0 \\ V'_C(x, y, C) = 0 \end{cases}$$

确定一支连续可微且不含于族 K(C):V(x,y,C)=0 的曲线

$$\Lambda: \begin{cases} x = \varphi(C) \\ y = \psi(C) \end{cases}, C \in J$$

且满足非蜕化性条件

$$(\phi'(C), \psi'(C)) \neq (0, 0)(V_x'(\varphi(C), \psi(C), C), V_y'(\varphi(C), \psi(C), C)) \neq (0, 0)$$

则曲线 Λ 是曲线族 K(C):V(x,y,C)=0 的一支包络。

