Projektowanie algorytmów i metody sztucznej inteligencji

prowadzący: Mgr inż. Andrzej Wytyczak – Partyka

1. Zadanie do zrealizowania:

Należało stworzyć klasę, która zwiększa rozmiar oraz dopisuje do tablicy odpowiednio dużo elementów. Wykorzystać strategię powiększania tablicy o 1 oraz powiększanie rozmiaru tablicy x2.

Zmierzyć czas działania określonych algortymów i przedstawić osiągi na wykresie.

2. Uzyskane wyniki:

strategia zwiększania o 1:

Liczba elementów	Czas [sek]
10	0,000003001
10 ³	0,002424001
10 ⁵	20,609075551
10 ⁶	2510,812500001
10°	brak*

^{*}po ponad 7 godzinach wciąż nie otrzymano wyników

Strategia zwiększania x2:

Liczba elementów	Czas [sek]
10	0,00006001
10 ³	0,000048001
10 ⁵	0,002947001
106	0,020239001
10°	25,815059661

Zestawienie dwóch strategii:

3. Wnioski:

Zdecydowanie bardziej wydajną implementacją jest zastosowanie strategii podwajania rozmiaru tablicy, co dobrze obrazuje przedstawiony wyżej wykres. Algorytm, w którym rozmiar tablicy jest powiększany o 1, rośnie podobnie do funkcji potęgowej. Może to być spowodowane tym, że program częściej musi kopiować poprzednie dane z tablicy oraz częściej musi pytać system o przydzielenie nowej pamięci.