Actividad 10

Jose Manuel Enriquez

22 de marzo del 2025

1 Introduction

1.1 ¿Qué es la regresión logistica?

Es un tipo de modelo estadístico (también conocido como modelo logit) se utiliza a menudo para la clasificación y el análisis predictivo. La regresión logística estima la probabilidad de que ocurra un evento, como votar o no votar, en función de un conjunto de datos determinado de variables independientes.

Dado que el resultado es una probabilidad, la variable dependiente está limitada entre 0 y 1. En la regresión logística, se aplica una transformación logit a las probabilidades, es decir, la probabilidad de éxito dividida por la probabilidad de fracaso. Esto también se conoce comúnmente como probabilidades logarítmicas, o el logaritmo natural de probabilidades

2 Metodología

Este ejercicio fue realizado en una Jupyter Notebook y Python 3.12.4 Lo primero que se hizo fue importar todas las librerías necesarias.

```
import pandas as pd
import numpy as np
from sklearn import linear_model
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sb
%matplotlib inline
```

Figure 1: Librerias

Luego importamos el archivos con los datos y vemos su contenido.

Figure 2: Dataframe

Figure 3: Describe y Groupby

Luego se crean histogramas de los datos

Figure 4: Histograma

Luego creamos los modelos de regresión

```
model = linear_model.LogisticRegression(max_iter=1000)
    model.fit(X, y)

predictions = model.predict(X)
    print(predictions)

model.score(X, y)

✓ 0.2s
```

Figure 5: Logistic Regression

Figure 6: Modelo

3 Resultados

La puntuación del modelo fue de 0.77, ahora cuando separamos los datos de entrada con los de validación dio $0.71~\rm y$ usando "cross validation set" dio como resultado 0.85

La confusion matrix es la siguiente:

Figure 7: Confussion Matrix

Y el reporte de clasificación es el siguiente:

	precision	recall	f1-score	support
0	0.84	0.89	0.86	18
1	1.00	0.50	0.67	6
2	0.83	1.00	0.91	10
accuracy			0.85	34
macro avg	0.89	0.80	0.81	34
weighted avg	0.87	0.85	0.84	34

Figure 8: Classification Report

4 Conlusiones

Me pareció muy interesante realizar las regresiones con Python ya que no lo había hecho antes de esta manera.