Лабораторная работа №1

Алгоритм №2: Двухпроходной Код Хаффмана кодированием по два байта.

Бирючков Никита Евгеньевич, М4105

Описание алгоритма:

Реализован стандартный алгоритм Хаффмана, данные загружаются в виде пар байтов, затем строится словарь уникальных значений и их частотности. Для построения дерева Хаффмана реализован класс Tree, который делает обратный обход дерева и составляет код для символов.

Также реализован класс File, который занимается записью и чтением данных из файла.

В классе Huffman реализовано кодирование и декодирование.

Суммарный объём 18 сжатых файлов: 1668651 байта

	H(X)	H(X X)	H(X XX)	Сжатый размер	Средняя длина бит
1	5,20	3,36	2,31	64472	5,4
2	4,53	3,59	2,81	397461	5,1
3	4,79	3,75	2,74	337589	5,4
4	5,65	4,26	3,46	66377	5,8
5	5,19	4,09	2,92	233419	5,8
6	5,95	3,46	1,40	19000	5,7
7	6,26	3,87	2,27	161944	5,6
8	4,98	3,65	2,33	33544	5,4
9	4,60	3,52	2,51	45794	5,1
10	4,67	3,56	2,56	27529	5,1
11	4,70	3,48	2,21	8705	5,1
12	4,94	3,53	2,04	8388	5,3
13	5,01	3,61	2,25	24809	5,4
14	1,21	0,82	0,71	85338	1,5
15	5,20	3,60	2,13	26830	5,5
16	4,77	3,21	2,04	39506	5

			Сумма =	1668651	
18	5,53	3,36	1,93	58587	5,6
17	4,87	3,19	1,76	29359	5