

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

A10222

3

POWERING PERFORMANCE FOR A NAVAL AUXILIARY OILER (AO 177) USING VARIOUS STERN FIN CONFIGURATIONS WITH MODEL 5326-1

GARY A. HAMPTON

DISTRIBUTION UNLIMITED APPROVED FOR PUBLIC RELEASE

SHIP PERFORMANCE DEPARTMENT REPORT

 \mathbf{D}

DTNSRDC/SPD-0544-20

JUNE 1981

81 7

30

001

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

(14) REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION	NO. 3. RECHIENT'S CATALOG NUMBER
DTNSRDC/SPD-0544-28 AD A1 62 22	2 3 ()
TITLE (and Subtitle)	5. TYRE OF REPORT & PERIOD COVERED
POWERING PERFORMANCE FOR A NAVAL AUXILIARY OILE	FINAL FINAL
(AO 177) USING YARIOUS STERN FIN CONFIGURATIONS	
(a) 111) USING VARIOUS SIERN FIN CONFIGURATIONS	6. PERFORMING ORG. REPORT NUMBER
WITH MODEL 5326-1	8. CONTRACT OR GRANT NUMBER(8)
AUTHOR(s)	WR2Q182
GARY A./HAMPTON	1-1532-116-55
7	1-1932-110-99
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
DAVID TAYLOR NAVAL SHIP R&D CENTER	
SHIP PERFORMANCE DEPT. BETHESDA, MD 20084	
BETHESDA, MD 20004	
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE JUNE 981
NAVAL SEA SYSTEMS COMMAND (3213)	13. NUMBER OF PAGES
WASHINGTON, D. C. 20362	44
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	e) 15. SECURITY CLASS. (of this *eport)
1.2 1451	UNCLASSIFIED
	15. DECLASSIFICATION DOWNGRADING SCHEDULE
E. DISTRIBUTION STATEMENT (of this Report)	
DISTRIBUTION UNLIMITED	
APPROVED FOR PUBLIC RELEASE	
TITTO TO TOR TODATO REPERSE	
TRACES TON TOBLEO RESEASE	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If differen	it from Report)
	ot from Report)
	st from Report)
	it from Report)
	it from Report)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 differen	ot from Report)
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 differen	nt from Report)
7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if differen	ot from Report)
7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if differen	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different in Block 20, if di	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Block 20, if di	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different lib. Supplementary notes 18. Supplementary notes 19. Key words (Continue on reverse side if necessary and identify by block num TUNNEL-FIN ACCELERATING-FIN	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different library notes) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number tunnel-fin accelerating-fin propulsion	
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different is supplementary notes 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number tunnel-fin accelerating-fin propulsion resistance trim.	nber)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different is supplementary notes 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number tunnel-fin accelerating-fin propulsion resistance trim. 10. Abstract (Continue on reverse side if necessary and identify by block number trim.	nber)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Block 20, if di	ber) conducted with Model 5326-1 to
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different is supplementary notes 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number in the continue on reverse elde if necessary and identify by block number is supplementation. Abstract (Continue on reverse elde if necessary and identify by block number is stance and propulsion experiments were aid in the resolution of the propeller cavitatio	ber) conducted with Model 5326-1 to
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different in Block 20, 11 di	ober) conducted with Model 5326-1 to and airborne noise problem validate possible remedies.
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, 11 different proposed	ober) conducted with Model 5326-1 to and airborne noise problem validate possible remedies.
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identity by block num TUNNEL-FIN ACCELERATING-FIN PROPULSION RESISTANCE TRIM 10. ABSTRACT (Continue on reverse elde if necessary and identify by block num Resistance and propulsion experiments were aid in the resolution of the propeller cavitatio experienced by the Auxiliary Oiler AO 177 and to The experimental program involved the evaluation and one accelerating-fin configuration fitted to	conducted with Model 5326-1 to and airborne noise problem validate possible remedies. The of two tunnel-fin configurates the stern of the model. The
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Block 20, if di	conducted with Model 5326-1 to on and airborne noise problem o validate possible remedies. of two tunnel-fin configurate of the stern of the model. The

S'N 0102-LF-014-6601

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

3 14644

TION OF THIS PAGE	. (

TABLE OF CONTENTS

																																Ε	age
LIST OF FI	GURES	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	ív
LIST OF TA	BLES	•	•	•	•		•	•	•	•	•	•	•			•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	v
NOTATION.				•			•	•	•		•	•	•	•	•	•	•				•		•		•	•	•				•	•	ví
ABSTRACT.			•		•	•	•	•	•	•	•		•		•	•	•		•		•	•	•		•	•		•	•				1
ADMINISTRA	ATIVE	IN	FOI	RM/	ΥI	101	1	•		•	•		•				•		•		•		•	•	•	•	•	•					1
INTRODUCTI	ON		•					•		•	•	•	•							•	•	•				•	•	•				•	1
MODEL DESC	CRIPTI	ON	•			•	•		•				•																				2
EXPERIMENT	TAL PR	oci	EDI	JRI	ES		•			•		•	•				•	•		•	•						•				•		2
EXPERIMENT	TAL RE	SU	LTS	S.				•		•	•	•	•									•			•	•		•					2
DISCUSSION	OF R	ES	UL.	rs			•		•	•	•	•	•	•		•						•	•		•	•		•					3
REFERENCES	s	•				•				•		•	•	•																•	•		4
APPENDIX A	Α																																35

ំ ៤១៨៖	sion For	
TIS	GRA&I	Y
"IC 1	TAB	
	unced	
i sti	Deation_	
	Fr & 194 4 The section 11 and	
461	Ston/	
	lility (odos
	i il ent	/or
:	Inecial	
И	j	
	Ţ	

LIST OF FIGURES

		ra Pa	ige
1	-	Illustration of Tunnel-Fin Configuration 1(NAVY)	5
2	-	Illustration of Tunnel-Fin Configuration 3(NAVY)	6
3	-	Illustration of Accelerating-Fin Configuration 4(SSPA)	7
4	-	Fitting Room Photographs of Tunnel-Fin Configuration 1(NAVY) Attached to Model	8
5	-	Fitting Room Photographs of Tunnel-Fin Configuration 3(NAVY) Attached to Model	9
6	-	Fitting Room Photographs of Accelerating-Fin Configuration 4(SSPA) Attached to Model	10
7	-	for Fins 1(NAVY) (Exp. 8) Fins 3(NAVY) (Exp. 10) and Fins 4(SSPA)	11
8	-		12
9	_	Comparison of Power, RPM, and Propulsive Coefficient Curves for without Fins (Exp. 2) and with Fins 4(SSPA) (Exp. 14)	13
10	-	······································	14
11	-	(Exp. 10) and Fins 3(NAVY) with Leading Edge Raised 2.5	15
12	-	Power, RPM, and Propulsive Coefficient Curves for Fins 4(SSPA) Corrected for Zero True Wind	16
13	-	Comparison of Power, RPM, and Propulsive Coefficient Curves for Fins 1(NAVY) (Exp. 6) and Fins 4(SSPA) (Exp. 16)	17
14	-	Comparison of Derived Powering Coefficients for Fins 1(NAVY) (Exp. 6) and Fins 4(SSPA) (Exp. 16)	18
15	-	Comparison of Power, RPM, and Propulsive Coefficient Curves for without Fins (Exp. 4) and with Fins 4(SSPA) (Exp. 16)	19
16	-	Comparison of Derived Powering Coefficients for without Fins (Exp. 4) and with Fins 4(SSPA) (Exp. 16)	20

LIST OF FIGURES (CONTINUED)

	Page
Al - Open Water Characteristics of Propeller 46	77 36
A2 - Drawing of Propeller 4677	
LIST OF TABLES	
1 - Experimental Configurations and Correspondin	ng Ship Values 21
2 - Experimental Configurations and Correspondin Propeller Tip Positions	•
3 - Comparison of Ship Sinkage at a Displacement (26,810 tonnes), Trimmed 1.0 ft (0.31 m) by	
4 - Comparison of Ship Sinkage at a Displacement (17,550 tonnes), Trimmed 3.75 ft (1.14) by t	
5 - Predicted Powering Performance for without F	ins (Exp. 2) 26
6 - Predicted Powering Performance for Fins 1(NA	VY) (Exp. 8) 27
7 - Predicted Powering Performance for Fins 3(NA	VY) (Exp. 10) 28
8 - Predicted Powering Performance for Fins 4(SS	PA) (Exp. 14) 29
9 - Predicted Powering Performance for Fins 4(SS) Zero True Wind Correction	PA) (Exp. 14) with
10 - Predicted Powering Performance for without F	ins (Exp. 4)
11 - Predicted Powering Performance for Fins 1(NA	VY) (Exp. 6) 32
12 - Predicted Powering Performance for Fins 4(SS	PA) (Exp. 16) 33
Al - Faired Open Water Coefficients for Propeller	. 7.477

NOTATION

$c_{\mathbf{A}}$	Correlation allowance
D	Propeller diameter
$\mathtt{J}_{\mathbf{T}}$	Advance coefficient based on thrust identity
K _Q (KQ)*	Torque coefficient of propeller, $Q/\rho n^2 D^5$
K _T (KT)	Thrust coefficient of propeller, T/pn^2D^4
n	Revolutions per second
P _D	Delivered power
PE	Effective power
Q	Torque
RPM	Revolutions per minute
т	Thrust
1-t (1-THDF)	Thrust deduction factor
$V_{\mathbf{A}}$	Speed of advance of propeller
1-w _Q (1-WFTQ)	Taylor wake fraction determined from torque identity
1-w _T (1-WFTT)	Taylor wake fraction determined from thrust identity
n _D (ETAD)	Propulsive efficiency
η (ETAH)	Hull efficiency $(1-t)/(1-w_{\overline{1}})$
n ₀ (etao)	Propeller efficiency in open water (T $V_{A}/2\pi$ Qn)
n _R (ETAR)	Relative-rotative efficiency
ρ	Mass density

^{*} Symbols in parentheses are computer-compatible notation used in computer generated tables.

ABSTRACT

Resistance and propulsion experiments were conducted with Model 5326-1 to aid in the resolution of the propeller cavitation and airborne noise problem experienced by the Auxiliary Oiler AO 177 and to validate possible remedies. The experimental program involved the evaluation of two tunnel-fin configurations and one accelerating-fin configuration fitted to the stern of the model. The results of the resistance and propulsion experiments show that the addition of the fins did not significantly reduce the propulsion performance.

ADMINISTRATIVE INFORMATION

This work was funded by the Naval Sea Systems Command (NAVSEA 3213), and was carried out under NAVSEA Work Request Number WR20182, and David Taylor Naval Ship R&D Center (DTNSRDC) Work Unit Number 1-1532-116-55.

INTRODUCTION

At the request of the Naval Sea Systems Command (NAVSEA 3213), a model experimental program was carried out at the David Taylor Naval Ship R&D Center (DTNSRDC) to assist in the resolution of the propeller cavitation and airborne noise problem experienced by the Auxiliary Oiler AO 177.

The AO 177 has a very fine, thin stern providing a highly reduced longitudinal velocity in the vicinity of the top of the propeller plane. Such a phenomenon is likely to cause unsteady cavitation of the propeller blades, which in turn may cause excessive noise and local vibration problems in the stern area of the ship. One proposed remedy was to improve the flow into the propeller by fins installed at the stern of the ship. It was considered that the fins will guide more flow into the propeller plane, reducing or diffusing the severe nonuniformity of the wake distribution.

Four fin configurations were designed and an experimental program was carried out to validate their effectiveness. The experiments for these fins involved visual flow observations and wake survey experiments, the results of which are reported in references 1 and 2^* . This report describes the results of the resistance and propulsion experiments using three of the four fin configurations. One of the fin configurations was found to be unacceptable during the flow visualization experiments and was therefore eliminated from the resistance and propulsion phase of the experimental program.

References are listed on page 4.

MODEL DESCRIPTION

Model 5326-1 representing the Auxiliary Oiler AO 177 was previously constructed to a scale ratio of 25.682. The model was appended with bilge keels and rudder.

Two tunnel-fin designs were constructed and fitted to an existing model (Model 5326-1) of the AO 177, according to plans furnished by NAVSEA, entitled, "Flow Improvement Fin," and designated Configuration 1(NAVY) (SK 3213-0026), and Configuration 3(NAVY) (SK 3213-0028). An accelerating-fin was constructed by the Swedish Center for Maritime Research (SSPA) according to plans entitled, "U.S. Navy Fleet Oiler Proposal to Stern Fins," File No. 2564. The accelerating-fin is designated as Configuration 4(SSPA). Illustrations of the fins are shown in Figure 1 (Configuration 1), Figure 2 (Configuration 3), and Figure 3 (Configuration 4). Fitting room photographs of the fins attached to the model are presented in Figures 4 through 6.

EXPERIMENTAL PROCEDURES

Two equivalent ship displacements of 26,390 tons (26 810 tonnes) and 17,270 tons (17 550 tonnes) were investigated at trims of 1.0 ft (0.31 m) by the bow and 3.75 ft (1.14 m) by the stern respectively. Increase in effective horsepower was also investigated by rotating fin Configuration 3(NAVY) 2.5 degrees, leading edge raised 0.75 inches (1.91 cm) model scale.

All calculations were made using the ITTC friction line and a correlation allowance of 0.0005. It was determined from previous experiments that turbulence stimulation was not necessary. Pertinent ship values for each fin configuration are given in Table 1.

Propeller 4677 representing a 21 ft (6.4 m) full scale propeller was used during the model propulsion experiments. Open water characteristics and other model propeller information are given in Appendix A. Table 2 is a listing of all the experimental configurations with the corresponding ship values for the propeller tip position in relation to the ship hull and water surface.

EXPERIMENTAL RESULTS

Propulsion experiments were conducted at an equivalent ship displacement of 26,390 tons (26 810 tonnes), trimmed 1.0 ft (0.31 m) by the bow. A comparison of power, RPM, and propulsive coefficient curves with Fins 1(NAVY) (Exp. 8), Fins 3 (NAVY) (Exp. 10) and Fins 4(SSPA) (Exp. 14) are presented in Figure 7. The powering coefficients are given in Figure 8. A comparison of power, RPM, and propulsive coefficient curves for the without Fins condition (Exp. 2) and with Fins 4(SSPA)

(Exp. 14) are presented in Figure 9. The powering coefficients are given in Figure 10.

Resistance experiments were conducted with tunnel-fin Configuration 3(NAVY) rotated up 2.5 degrees (Exp. 11). The effective horsepower for this experiment is compared with Fins 3(NAVY) as normally attached to the model. These results are presented in Figure 11.

A graph is presented in Figure 12 showing the increase in power when corrected for the additional air drag of the above-water portion of the ship. The method used for this correction is given in Reference 3.

Propulsion experiments were conducted at an equivalent ship displacement of 17,270 tons (17 550 tonnes), trimmed 3.75 ft (1.14 m) by the stern. A comparison of power, RPM, and propulsive coefficient curves for with Fins 1(NAVY) (Exp. 6) and Fins 4(SSPA) (Exp. 16) are presented in Figure 13. The powering coefficients are given in Figure 14. A comparison of power, RPM, propulsive coefficient curves for the without fins configuration (Exp. 4) and with Fins 4(SSPA) (Exp. 16) are presented in Figure 15. The powering coefficients are given in Figure 16.

A comparison of the ship sinkage at various ship speeds is given for all fin configurations. Table 3 gives the sinkage at the equivalent ship displacement of 26,390 tons (26 810 tonnes) and Table 4 gives the sinkage at the equivalent ship displacement of 17,270 tons (17 550 tonnes).

A listing of the predicted powering performance for each model configuration is given in Tables 5 through 12.

DISCUSSION OF RESULTS

For the 26,390 ton (26 810 tonne) displacement at 24,000 shaft horsepower (17 900 kilowatts) the speed loss with Fins 1(NAVY) and Fins 4(SSPA) is approximately 0.2 knots from 21.8 knots for without fins. With Fins 3(NAVY) the speed loss is about 0.4 knots. Raising the leading edge 2.5 degrees increased the effective horsepower for Fins 3(NAVY) about 6 percent.

For the 17,270 ton (17 550 tonne) displacement at 20,000 shaft horsepower (14 900 kilowatts) the speed increased with Fins 1(NAVY) and Fins 4(SSPA) by approximately 0.2 knots from 21.8 knots for without fins.

Sinkage data showed minimal change with the addition of fins at both displacements. The results of the resistance and propulsion experiments show that the addition of fins did not significantly change the propulsion performance.

REFERENCES

- 1. Hampton, Gary A., "Investigations of Underwater Flow Patterns for Three Tunnel-Fin Configurations for the Naval Auxiliary Oiler (AO 177) Represented by Model 5326-1", DTNSRDC Report SPD-0544-17 (Feb 1981).
- 2. Hampton, Gary A., "Analysis of Wake Survey for Tunnel-fin and Accelerating-fin Configurations for the Naval Auxiliary Oiler (AO 177) Represented by Model 5326-1", DTNSRDC Report DTNSRDC/SPD-0544-18 (Apr 1981).
- 3. Wilson, C.J., and Roddy, R.R., "Estimating the Wind Resistance of Cargo Ships and Tankers", DTNSRDC Report 3355 (May 1970).

Figure 1 - Illustration of Tunnel-Fin Configuration 1(NAVY)

Figure 2 - Illustration of Tunnel-Fin Configuration 3(NAVY)

Figure 3 - Illustration of Accelerating-Fin Configuration 4(SSPA)

Figure 4 ~ Fitting Room Photographs of Junnel-Fin Configuration (CCNC) Attached to Model

Figure 5 - Fitting Room Photographs of Tunnel-Fin Configuration 3(NAVY) Attached to Model

Figure 6 - Fitting Room Photographs of Accelerating-Fin Configuration 4 (SSPA) Attached to Model

Displacement 26,390 tons 26 810 tonnes Trim 1.0 ft x bow 0.31 m

ITTC Friction Line $C_A = 0.0005$

Figure 7 - Comparison of Power, RPM, and Propulsive Coefficient Curves for Fins 1(NAVY) (Exp. 8) Fins 3(NAVY) (Exp. 10) and Fins 4(SSPA) (Exp. 14)

Figure 8 - Comparison of Derived Powering Coefficients for Fins 1(NAVY) (Exp. 8) Fins 3(NAVY) (Exp. 10) and Fins 4(SSPA) (Exp. 14)

Displacement 26,390 tons 26 810 tonnes
Trim 1.0 ft x bow 0.31 m

ITTC Friction Line $C_A = 0.0005$

Figure 9 - Comparison of Power, RPM, and Propulsive Coefficient Curves for without Fins (Exp. 2) and with Fins 4(SSPA) (Exp. 14)

Figure 10 - Comparison of Derived Powering Coefficients for without Fins (Exp. 2) and with Fins 4(SSPA) (Exp. 14)

ITTC Friction Line $C_A = 0.0005$

SHIP SPEED IN KNOTS

Figure 11 - Comparison of Effective Power Curves for Fins 3(NAVY) (Exp. 10) and Fins 3(NAVY) with Leading Edge Raised 2.5 Degrees (Exp. 11)

Displacement 26,390 tons 26 810 tonnes Trim 1.0 ft x bow 0.31 m

ITTC Friction Line $C_A = 0.0005$

Figure 12 - Power, RPM, and Propulsive Coefficient Curves for Fins 4(SSPA) Corrected for Zero True Wind

Displacement 17,270 tons 17 550 tonnes Trim 3.75 ft x stern 1.14 m

ITTC Friction Line $C_A = 0.0005$

SHIP SPEED IN KNOTS

Figure 13 - Comparison of Power, RPM, and Propulsive Coefficient Curves for Fins 1(NAVY) (Exp. 6) and Fins 4(SSPA) (Exp. 10)

Figure 14 - Comparison of Derived Powering Coefficients for Fins 1(NAVY) (Exp. 6) and Fins 4(SSPA) (Exp. 16)

Displacement 17,270 tons 17 550 tonnes
Trim 3.75 ft x stern 1.14 m

ITTC Friction Line $C_A = 0.0005$

SHIP SPEED IN KNOTS

Figure 15 - Comparison of Power, RPM, and Propulsive Coefficient Curves for without Fins (Exp. 4) and with Fins 4(SSPA) (Exp. 16)

Figure 16 - Comparison of Derived Powering Coefficients for without Fins (Exp. 4) and with Fins 4(SSPA) (Exp. 16)

TABLE 1 - EXPERIMENTAL CONFIGURATIONS AND CORRESPONDING SHIP VALUES

Experi- ment Number	Experi- Fins ment Number	Displacement tons ton	ement tonnes	Trim ft	E	Wetted Surface fr ² m ²	urface m ²	D)	Draft m
7	none	26,390	26 810	1.0 x bow	0.31	62,187	5777	31.5	9.6
7	none	17,270	17 550	3.75 x stern	1.14	49,955	4641	22.0	6.7
9	1 (Navy)	17,270	17 550	3.75 x stern	1.14	50,231	7997	22.0	6.7
∞	1 (Navy)	26,390	26 810	1.0 x bow	0.31	63,573	9069	31.5	9.6
10	3 (Navy)	26,390	26 810	1.0 x bow	0.31	63,382	5888	31.5	9.6
11	3 (Navy)*	26,390	26 810	1.0 x bow	0.31	63,382	5888	31.5	9.6
14	4 (SSPA)	26,390	26 810	1.0 x bow	0.31	63,204	5872	31.5	9.6
16	4 (SSPA)	17,270	17 550	3.75 x stern	1.14	968,05	4728	22.0	6.7

Length 560 ft 170.7 m Beam 88 ft 26.8 m Propeller Diameter 21.0 ft 6.40 m

* Leading edge raised 2.5 degrees

TABLE 2 - EXPERIMENTAL CONFIGURATIONS AND CORRESPONDING SHIP VALUES FOR PROPELLER TIP POSITIONS

Experi-	Fins	Displ	Displacement	Propell	Propeller Tips	Propelle	Propeller Tip Clearance
er		tons	tonnes	Below m ft	below waterline t	ft	Ħ
	none	26,390	26 810	10.2	3,10	6.3	1.92
	none	17,270	17 550	3.0	0.91	6.3	1.92
	1 (Navy)	17,270	17 550	3.0	0.91	2.5	0.76
	1 (Navy)	26,390	26 810	10.2	3.10	2.5	0.76
	3 (Navy)	26,390	26 810	10.2	3.10	2.6	0.79
	3 (Navy)*	26,390	26 810	(resi	(resistance	experim	ent)
	4 (SSPA)	26,390	26 810	10.2	3.10	2.4	0.73
	4 (SSPA)	17,270	17 550	3.0	0.91	2.4	0.73

* Leading edge raised 2.5 degrees

TABLE 3 - COMPARISON OF SHIP SINKAGE AT A DISPLACEMENT OF 26,390 TONS (26 810 TONNES), TRIMMED 1.0 FT (0.31 m) BY THE BOW

Fins		Without	Fins			4(SSPA) Fins	Fins			1 (NAVY) Fins	Fins	
	Вом	W	St	Stern	ğ	Вош	St	Stern	Bc	Bow	St	Stern
N S	ft	Ħ	ft	E	ft	Ħ	ft	E	ft	E	ft	E
12	9.0	0.18	0.4	0.12	0.7	0.21	0.4	0.12	0.5	0.15	0.3	0.0
13	8.0	0.24	0.4	0.12	8.0	0.24	0.4	0.12	9.0	0.18	0.3	0.09
14	6.0	0.27	0.4	0.12	6.0	0.27	7.0	0.12	0.8	0.24	0.3	0.0
15	1.0	0.30	0.5	0.15	1.0	0.30	0.5	0.15	0.9	0.27	0.4	0.12
16	1.2	0.37	0.5	0.15	1.1	0.34	9.0	0.18	1.1	0.34	0.5	0.15
17	1.4	0.43	9.0	0.18	1.3	0,00	9.0	0.18	1.3	0.40	9.0	0.18
18	1.5	97.0	0.7	0.21	1.5	97.0	0.7	0.21	1.5	97.0	0.7	0.21
19	1.7	0.52	0.8	0.24	1.6	0.49	0.8	0.24	1.7	0.52	8.0	0.24
20	1.9	0.58	6.0	0.27	1.8	0.55	1.0	0.30	1.9	0.58	1.0	0.30
21	2.1	0.64	F.	0.34	2.0	0.61	1.2	0.37	2.1	0.64	1.2	0.37
22	2.3	0.70	1.3	0.40	2.2	0.67	1.4	0.43	2.3	0.70	1.4	0.43
23	2.6	0.79	1.7	0.52	2.3	0.70	1.7	0.52	2.6	0.79	1.7	0.52

TABLE 3 - (Continued) COMPARISON OF SHIP SINKAGE AT A DISPLACEMENT OF 26,390 TONS (26 810 TONNES), TRIMMED 1.0 FT (0.31 m) BY THE BOW

Fins		3 (NAVY)	Fins			3 (navy	3 (NAVY) Fins*	
;	Bow		St	Stern	Вои		St	Stern
S	ft	E	ft	E	ft	E	ft	E
12	0.8	0.24	0.4	0.12	6.0	0.27	0.4	0.12
13	0.8	0.24	0.4	0.12	1.0	0.30	0.3	0.09
14	6.0	0.27	0.4	0.12	1.1	0.34	0.3	0.09
15	1.0	0.30	0.4	0.12	1.2	0.37	0.3	0.09
16	1.2	0.37	0.4	0.12	1.3	0.40	0.3	0.09
17	1.4	0.43	0.5	0.15	1.4	0.43	0.4	0.12
18	1.6	0.49	9.0	0.18	1.6	0.49	0.5	0.15
19	1.8	0.55	8.0	0.24	1.8	0.55	0.5	0.15
20	2.0	0.61	6.0	0.27	2.0	0.61	9.0	0.18
21	2.2	0.67	1.0	0.30	2.2	0.67	0.7	0.21
22	2.3	0.70	1.2	0.37	2.4	0.73	8.0	0.24
23	2.4	0.73	1.4	0.43	2.6	0.79	1.0	0.30

*Leading edge raised 2.5 degrees.

TABLE 4 - COMPARISON OF SHIP SINKAGE AT A DISPLACEMENT OF 17,270 TONS (17 550 TONNES), TRIMMED 3.75 FT (1.14 m) BY THE STERN

Fins		Without	t Fins		7	4(SSPA) Fins	ins			1 (NAVY) Fins	Fins	
	Воч	M	St	Stern	Вом	5	Ste	Stern	Bo	Bow	ò	Stern
S.	ft	E	ft	E	ft	E	ft	E	ft	E	ft	E
12	0.4	0.12	9.0	0.18	7.0	0.12	0.5	0.15	7.0	0.12	0.5	0.15
13	7.0	0.12	9.0	0.18	0.3	0.09	0.5	0.15	7.0	0.12	0.5	0.15
14	0.4	0.12	0.7	0.21	0.3	0.09	9.0	0.18	7.0	0.12	0.5	0.15
15	0.4	0.12	0.8	0.24	0.4	0.12	0.7	0.21	0.5	0.15	9.0	0.18
16	0.5	0.15	6.0	0.27	0.4	0.12	8.0	0.24	9.0	0.18	0.7	0.21
17	0.5	0.15	1.1	0.34	0.5	0.15	1.0	0.30	0.7	0.21	0.8	0.24
18	9.0	0.18	1.2	0.37	0.5	0.15	1.1	0.34	8.0	0.24	6.0	0.27
19	0.7	0.21	1.4	0.43	9.0	0.18	1.3	0.40	0.9	0.27	1.0	0.30
20	0.8	0.24	1.6	0.49	0.7	0.21	1.5	0.46	1.0	0.30	1.2	0.37
21	6.0	0.27	1.8	0.55	6.0	0.27	1.7	0.52	1.1	0.34	1.4	0.43
22	1.0	0.30	2.0	0.61	1.0	0.30	2.0	0.61	1.3	0.40	1.5	0.46
23	1.2	0.37	2.2	0.67	1.1	0.34	2.4	0.67	1.5	97.0	1.7	0.52

Table 5 - PREDICTED POWERING PERFORMANCE FOR WITHOUT FINS (Exp. 2)

Displacement 26,390 tons 26 810 tonnes Wetted Surface 62,187 ft² 5777 m²
Trim 1.0 ft x bow 0.31 m

ITTC Friction Line C_A = 0.0005

	PEED EI (M/SEC)	FFECTIVE (HORSE- POWER)	POWER(PE) (KILO- WATTS)	DELIVERED (HORSE- POWER)	POWER(PD) (KILD- WATTS)	PROPELLER REVOLUTIONS PER MINOTE
12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 23.0	6.17 6.69 7.22 8.72 8.75 9.72 10.83 11.83	2380. 3010. 3720. 4550. 5490. 6550. 7750. 9130. 11100. 14370. 18860. 24450.	1780. 2250. 2780. 3390. 4090. 4880. 5760. 6810. 8280. 10720. 14360.	3600. 3600. 4710. 5770. 6900. 8370. 9950. 11840. 14570. 19160. 25690.	2249. 2249. 3520. 4310. 5200. 6249. 7430. 8839. 10360. 14290. 19160. 25570.	51.7 56.0 60.4 60.6 72.9 77.2 91.6 92.0 94.0

SHIP SPEED	E	FF IC IEN	CIES(ET	A)	THRUS	ADVANCE COSE.		
(KMOTS)	ETAD	ETAO	ETAH	ETAR	1~THĎF		1-WFTQ	กับVC
12.0	0.795	0.665	1.130	1.055	0,905	0.800	0.848	0.895
13.0 14.0	0.790 0.790	0.670 0.67ช	1.125	1.055 1.050	0.903 0.909	0.800 0.800	0.835 0.835	0.895 0.930
15.ก	0.790	0.679	1.120	1.050	0.035	0.800	0.035	0.900
15.0 17.0	0.785 0.780	0.670 0.670	1.115	1.055 1.050	0.895 0.890	0.309 0.808	0.835 0.835	0.980 0.930
18.0	0.780	0.670	1.110	1.050	0.390	0.800	0.830	0.900
19.0 20.0	0.770 0.760	0.670 0.665	1.105 1.100	1.045 1.040	0.885 0.883	0.880 0.880	0.830 U.830	0.900 0.885
21.0	0.750	0.655	1.100	1.045	0.800	0.800	0.835	0.060
22.0 23. 0	0.735 0.715	0.640 0.625	1.095 1.090	1.045 1.045	0.875 0.870	0.889 0.889	0.845 0.845	0.299 0

Table 6 - PREDICTED POWERING PERFORMANCE FOR FINS 1(NAVY) (Exp. 8)

Displacement 26,390 tons 26 810 tonnes Wetted Surface 63,573 ft² 5906 m² Trim 1.0 ft x bow 0.31 m

ITTC Friction Line C_A = 0.0005

SHIP (KNOTS)	SPEED (M/SEC)	EFFECTIVE (HORSE- POWER)	POWER(PE) (KILO- WATTS)	DEL IVERED (HORSE- POWER)	POWER(PD) (KILO- WATTS)	PROPELLER REVOLUTIONS PER MISSUTE
12.0 13.0 14.0 15.0 16.0 17.0 19.0 21.0 22.0 23.0	6.17 6.69 7.20 7.72 8.23 8.75 9.26 9.77 10.29 10.32 11.32	2480. 3150. 3920. 4820. 5860. 7030. 8350. 9860. 15260. 15260. 26410.	1850. 2350. 2930. 3600. 4376. 5240. 6230. 7350. 8950. 11380. 14880.	3010. 3330. 4790. 5900. 7210. 8690. 10420. 12450. 2080. 27450. 36790.	2240. 2860. 3570. 4400. 5370. 6480. 7770. 9280. 114970. 20470. 27430.	52.3 56.0 65.3 69.5 70.6 83.1 896.5 104.9

SHIP SPEED	EFFICIENCIES(ETA)				THRUST AND WA	ADVANCE COEF.		
(KNOTS)	ETAD	ETAO	ETAH	ETAR	1-THOF			∩⊅VC
12.0	0.825	0.665	1.130	1.095		0.800	0.865	0.835
13.0	0.820	0.6 65	1.125	1.100	0.990 0	3.800	0.865	0.885
14.0	0.820	0.665	1.125	1.095	0.905 0	a.860	0.365	0.025
15.0	0.820	0.665	1.130	1.095	0.913 6	0.800	0.856	6.898
16.0	0.815	0.665	1.140	1.075	0.915	0.800	0.850	0.099
17.0	0.819	0.665	1.135	1.075	0.910	0.805	0.855	0.599
13.0	0.800	0.665	1.120	1.075	0.900 0	3.005	0.855	0.885
19.0	0.790	0.665	1.110	1.075	0.890	3.865	0.853	0.035
20.0	0.780	0.660	1.095	1.080	0.880 (3.895	0.865	6.979
21.0	0.760	0.650	1.085	1,080	0.875 (0.805	0.870	0.815
22.0	0.725	0.635	1.070	1.070	0.860 0	3.803	0.8.5	0.918
23.0	0.720	0.620	1.090	1.660	0. 830 (3.016	0.075	0.799

Table 7 - PREDICTED POWERING PERFORMANCE FOR FINS 3 (NAVY) (Exp. 10)

 Displacement
 26,390 tons
 26 810 tonnes

 Wetted Surface
 63,382 ft²
 5888 m²

 Trim
 1.0 ft x bow
 0.31 m

ITTC Friction Line C_A = 0.0005

SHIP (KNOTS)	SPEED (M/SEC)	EFFECTIVE (HORSE- POWER)	POWER(PE) (KILO- WATTS)	DELIVERED (HORSE+ POWER)	POWER(PD) (KILO- WATTS)	PROPELLER REVOLUTIONS MER MINUTE
12.0 13.0 14.0 15.0 16.0 17.0 19.0 20.0 21.0 22.0 23.0	6.17 6.69 7.20 7.72 8.23 6.75 9.36 10.29 10.80 11.32	2610. 3330. 4170. 5140. 6270. 7550. 9000. 10560. 10560. 16420. 21310. 27960.	1950. 2480. 3110. 3840. 4680. 5630. 6710. 7950. 9680. 12250. 15890.	3110. 3960. 4970. 6150. 7550. 9170. 11920. 16440. 21270. 37880.	2300. 2950. 5710. 4580. 5680. 6880. 8280. 12250. 15880. 21307. 28250.	51.9 56.4 60.8 65.2 50.0 14.2 78.5 69.4 97.1 105.1 115.2

SHIP SPEED	Е	FFICIEN	CIES(ET	A)	, ,	CTION CTORS	ADVANCE COEF.	
(KNOTS)	ETAD	ETAO	ETAH	ETAR		1-WFTT		ADVC
12.0	0.840	0.660	1.210	1.945	0.95°	9.790	0.825	9,899
13.0	0.840	0.660	1.205	1.050	0.955	0.790	0.830	1,038
1.1.0	0.840	მ.ა68	1.205	1.055	0.୩୩୩	0.790	6.036	6.875
15.0	0.835	0.660	1.200	1.055	0.959	0.798	0.938	0.875
16.0	0.830	0.660	1.195	1.055	0.945	0.790	0.830	0.875
17.0	0.825	0.660	1.195	1.045	0.945	0.799	0.92%	0.870
18.0	0.315	0.660	1.185	1.045	9.948	0.790	0.825	0.070
10.0	0.905	0.655	1.175	1.049	0.938	9.790	0.809	0.945
20.0	6.790	0.650	1.169	1.045	9.015	0.790	0.07	11.77
21.0	3.770	0.640	1.135	1.5656	0.90	0.290	0.85	2.23
22.0	0.745	0.625	1.120	1.065	0.035	0.790	0.55	6.00
.3.0	0.740	0.610	1.140	1.055	0.900	0.790	0.0.0	9). (6)

Table 8 - PREDICTED POWERING PERFORMANCE FOR FINS 4(SSPA) (Exp. 14)

ITTC Friction Line C_A = 0.0005

SHIP (KNOTS)		EFFECTIVE (HORSE- POWER)	POWER(PE) (KILO- WATTS)	DELIVERED (HORSE- POWER)	POWER(PD) (KILO- WATTS)	PROPELLER REVOLUTIONS PER MINUTE
12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	6.17 6.69 7.20 7.72 8.23 8.75 9.26 9.77 10.29	2450. 3090. 3830. 4670. 5630. 6700. 7910. 9360. 11320.	1830. 2300. 2850. 3490. 4200. 5900. 5900. 6993. 8440.	3100. 3950. 4910. 6030. 7330. 8020. 10510. 12610.	2320. 2540. 3660. 4500. 5460. 6570. 7349. 9410. 11570.	52.4 56.8 61.1 65.8 67.1 70.5 83.2 80.6
21.0 22.0 23.0	10.80 11.32 11.83	14300. 18930. 25210.	10663. 14130. 1880a.	19970. 27050. 36430.	14890. 20170. 27160.	95.5 164.4 114.3

SHIP SPEED	E	FFICIEN	CIES(ET	A)	–	THRUST DEDUCTION AND WAKE FACTORS				
(KMOTS)	ETAD	ETAO	ETAH	ETAR		1-UFTT		CORF. ADVC		
12.0	0.790	0.665	1.110	1.065	0.895	a.ea5	0.852	9.700		
13.0 14.0	0.785 0.780	0.665 0.670	1.105 1.100	1.065 1.060	0.899 0.890	$0.810 \\ 0.810$	0.055 0.055	0.899 9.594		
15.0 16.0	0.775 0.770	0.670 0.670	1.095 1.090	1.060 1.055	0.390 0.890	0.815 0.815	0.850 0.850	5.150 5.150		
17.0	0.760	0.670	1.085	1.045	0.390	9.820	0.350	0.46%		
18.0 19.0	0.755 0.740	0.670 0.670	1.080 1.075	1.030 1.030	0.885 0.883	0.820 9.320	0.845 0.845	6.95 9. 56		
26.0 21.0	0.730 0.715	0.670 0.669	1.070 1.065	1.020 1.015	0.880 0.880	0.835 0.830	0.849 0.849	0.1.0		
22.0	0.706	0.659	1.060	1.020	0.880	0.830	0.645	olo il		
23.0	0.690	0.635	1.065	1.025	0.885	0.839	0.860			

Table 9 - PREDICTED POWERING PERFORMANCE FOR FINS 4(SSPA) (Exp. 14) WITH ZERO TRUE WIND CORRECTION

Displacement 26,390 tons 26 810 tonnes Wetted Surface 63,204 ft² 5872 m² 1.0 ft x bow 0.31 m

ITTC Friction Line CA = 0.0005

SHIP SPEED (KNOTS) (M/SI	EFFECTIVE (HORSE- EC) POWER)	(KILO-	DELIVERED (HORCE- POWER)	POWER(PD) (KILO- WATTS)	PROPELLER REVOLUTIONS MED MINUTE
12.0 6.13.0 6.14.0 7.15.0 7.16.0 8.17.0 8.19.0 9.20.0 10.21.0 21.0 21.0 21.0 21.0 21.0 2	59 3100. 20 39 40. 73 40 70. 23 50 8. 75 600. 77 9870. 29 11690. 14720. 32 19410.	1890. 2380. 2950. 3680. 4338. 5160. 6100. 7210. 8710. 10970.	3100. 4070. 5970. 6838. 7570. 9110. 10030. 16010. 28550. 27730.	2390 3046. 3100. 4410. 5640. 6790. 8106. 9720. 15330. 20600.	52.0 57.3 61.0 56.0 76.4 76.2 76.4 76.4 76.2

SHIP SPEED	Ε	FF IC IEN	CIES(ET	A)		CTION CTOPS	ODVANCE COST.	
(KMOTS)	ETAD	ETAU	ETAH	ETAR			1-WFT0	no /c
12.0	0.790	0. 665	1.110	1.070	9.891	0.385	0.053	nun pa
13.0	0.785	0. 665		1.070	0.898	9.310	0.355	6.895
14.0	9.789	0.665	$\frac{1.189}{1.095}$	1.03 5	0.890	0.310	0.860	0.819
15.0	9.775	0.665		1.038	0.890	0.315	0.855	0.893
16.0	9.770	0.065	1.050	1.655	0.830	0.515	0.850	0.05%
17.0	0.760	0.670	1.685	1.656	0.896	6.626	9.850	0.055
18.0 19.0	0.735 0.749	0.670	1.000 1.075	1.035	0.003 0.003	0.803 6.833	0.85H 0.845	0.900 0.895
20.0	0.730	0.665	1.070	1.025	0.80A	6.835	0.845	0.800
21.0	9.715	0.665	1.685	1.020	0.000	6.833	0.845	0.870
22.0	9.703	0.665	1.680	1.020	0.58A	0.830	0.650	0.835
23.0	0.690	0.000	1.655	1,030	8.885	0.638	0.885	(1

Table 10 - PREDICTED POWERING PERFORMANCE FOR WITHOUT FINS (Exp. 4)

 Displacement
 17,270 tons
 17 550 tonnes

 Wetted Surface
 49,955 ft²
 4641 m²

 Trim
 3.75 ft x stern
 1.14 m

ITTC Friction Line $C_A = 0.0005$

SHIP S	SPEED	EFFECTIVE (HORSE-	POWER(PE) (KILO-	DELIVERED (HDRSE-	POWER(PD)	PROPELLER REVOLUTIONS
(KNOTS)	(M/SEC)		WATTS)		WATTS)	PER MINUTE
12.0	6.17	2940.	2200.	4110.	3060.	53.2
13.0	6.69	3780.	2820.	5100.	3860.	58.0
14.0	7.20	4749.	3530.	6380.	4760.	62.8
15.0	7.72	5740.	4280.	7660.	5720.	67.3
16.0	8.23	6640.	4950.	esse.	6690.	71.0
17.0	8.75	7560.	5630.	10060.	7500.	74.5
18.0	9.26	8530.	6360.	11370.	8480.	73.2
19.0	9.77	9580.	7150.	12793.	9540.	81.7
20.0	10.29	10890.	8120.	14680.	10940.	85.3
21.0	10.80	12690.	9460.	17240.	12850.	39.6
22.0	11.32	14950.	11150.	20590.	15350.	25.9
23.0	11.83	17680.	13180.	24699.	18410.	101.0

SHIP SPEED	Ε	FFICIEN	CIES(ET	(A)		CTION	ADVANCE COEF.	
(KNOTS)	ETAD	ETAO	ETAH	ETAR		1-WETT		ADVC
12.0 13.0 14.0 15.0	0.715 0.730 0.740 0.750 0.750	0.625 0.625 0.625 0.630 0.635	1.230 1.215 1.200 1.185 1.170	0.935 0.965 0.990 1.005 1.010	0.890 0.885 0.880 0.875 0.876	0.725 0.730 0.735 0.749 0.745	0.645 0.690 0.720 0.745 0.755	0.790 0.790 0.790 0.795 0.830
17.0 19.0 19.0 20.0	0.750 0.750 0.750 0.740	0.640 0.645 0.655 0.655	1.155 1.135 1.125 1.110	1.015 1.020 1.020 1.020	0.365 0.060 0.960 0.850	0.750 0.755 0.760 0.765	0.765 0.775 0.775 0.780	0.025 0.849 6.855 9.865
21.0 22.0 23.0	0.735 0.725 0.715	0.655 0.655 0.650	1.100 1.085 1.075	1.020 1.025 1.025	0.850 0.845 0.849	0.770 0.780 0.780	0.798 0.795 0.880	9.865 9.869 9.863

Table 11 - PREDICTED POWERING PERFORMANCE FOR FINS 1 (NAVY) (Exp. 6)

Displacement 17,270 tons 17 550 tonnes Wetted Surface 50,231 ft 2 4667 m 2 Trim 3.75 ft x stern 1.14 m

I ITTC Friction Line CA = 0.0005

SHIP SPE	ED EFFECTIVE	POWER(PE)	DELIVERED	POWER(PD)	PROPELLER
	(HORSE-	(KILO-	(HORSE-	(KILO-	REVOLUTIONS
	1/SEC) POWER)	WATTS)	POWER)	WATTS)	PER MINUTE
13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 1.0	6.17 2990. 6.69 3840. 7.20 4810. 7.72 5790. 8.23 6650. 8.75 7520. 9.26 6440. 9.77 9446. 0.29 10550. 0.80 12310. 1.32 14410. 1.83 16930.	4950. 5600. 6290. 7040. 7940.	4050. 5180. 6440. 7740. 8950. 9990. 11210. 1250. 14501. 19500. 23220.	3020. 3860. 4910. 5770. 6600. 7450. 8360. 10550. 12310. 14540. 17320.	54.8 53.6 67.8 71.3 74.9 78.0 89.6 89.6 181.0

SHIP SPEED	Ε	FFICIEN	CIES(ET	A)	THRUST DEDUCTION	ADVANCE
(KNOTS)	ETAD	ETAO	ETAH	ETAR	AND WAKE FACTORS 1-THDF 1-WFTT 1-WFT	. 5300 OVAR D
12.0 13.0 15.0 16.0 17.0 19.0 20.0 20.0	0.740 0.740 0.745 0.750 0.750 0.750 0.750 0.750 0.745	9.635 9.635 9.635 9.644 9.655 9.655 9.665 9.665	1.200 1.180 1.180 1.165 1.145 1.120 1.110 1.095 1.085	0.965 0.990 0.995 1.000 1.010 1.025 1.025 1.030 1.035	0.510 0.760 0.735 0.910 0.760 0.745 0.900 0.765 0.760 0.900 0.770 0.770 0.890 0.775 0.785 0.875 0.789 0.805 0.876 0.795 0.865 0.600 0.795 0.865 0.855 0.790 0.815	0.049 0.945 0.830 0.830 0.839 0.859 0.875 0.885
23.0	0.730	0.669 0.669	1.070 1.050	$\frac{1.049}{1.045}$	- 0. 350 - 0.790 - 0.035 - 0.349 - 0. 795 - 0. 730	

Table 12 - PREDICTED POWERING PERFORMANCE FOR FINS 4(SSPA) (Exp. 16)

 Displacement
 17,270 tons
 17 550 tonnes

 Wetted Surface
 50,896 ft²
 4728 m²

 Trim
 3.75 ft x stern
 1.14 m

ITTC Friction Line C_A = 0.0005

SHIP (KNOTS)	SPEED (M/SEC)	EFFECTIVE (HORSE- POWER)	POWER(PE) (KILO- WATTS)	DEL IVERED (HORSE- POUER)	POWER(PD) (KILO- WATTS)	PROPELLER REVOLUTIONS PER MINUTE
12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0	6.17 6.69 7.20 7.72 8.23 8.75 9.26 9.77 10.80 11.32 11.83	3040. 3880. 4830. 5850. 6850. 7830. 8780. 9840. 11100. 12880. 15100.	2260. 2890. 3600. 4370. 5110. 5840. 6540. 7340. 8270. 9600. 11260. 13250.	3750. 4990. 6340. 7650. 8730. 9860. 11110. 12550. 14280. 16730. 19780. 23490.	2800. 3720. 4730. 5710. 6510. 7370. 8280. 9360. 10650. 12470. 14750.	54.4 59.5 64.4 68.7 72.2 75.8 79.5 83.1 87.0 91.6 96.8 102.4

SHIP SPEED	Ε	FFICIEN	CIES(ET	A)		THRUST DEDUCTION AND WAKE FACTORS			
(KNOTS)	ETAD	ETAO	ETAH	ETAR	1-THDF	1-METT	1-MFTQ	ADVC	
12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	0.810 0.780 0.760 0.765 0.785 0.790 0.790 0.785	0.635 0.635 0.645 0.655 0.655 0.6660 0.6660	1.190 1.165 1.140 1.140 1.155 1.150 1.125 1.110 1.095	1.070 1.055 1.055 1.055 1.060 1.075 1.075	0.910 0.895 0.885 0.900 0.985 0.875 0.875	0.765 0.770 0.770 0.775 0.785 0.785 0.785 0.790	0.825 0.815 0.820 0.825 0.825 0.830 0.845 0.845	0.845 0.810 0.810 0.820 0.835 0.845 0.860 0.870	
21.0 22.0 23.0	0.770 0.765 0.755	0.660 0.660 0.660	1.090 1.075 1.065	1.070 1.075 1.080	0.865 0.860 0.855	0.795 0.800 0.800	0.845 0.850 0.860	0.830 0.875 9.870	

APPENDIX A

Open Water Characteristics and Model Propeller Information for Propeller 4677

Figure Al Open Water Characteristics of Propeller 4677

_
7
9
4
ER
囯
Ļ
H.
딥
Д
Q.
180
Д

9.812 in (249.22 mm) 12.265 in (3056.74 mm) R.H. DINSRDC P-4677	SHEPT OUTLINE SHEPT OUTLINE
Diameter Pitch at 0.7 R Rotation Designed by Reference	P-4677-R.H.
7 0.771 0.216 0.062 1.250	
Number of Blades Exp. Area Ratio MWR BTF P/D at 0.7 R	EXPANDED OUTLINE PROJECTED OUTLINE
	2.70 3.434 2.70 3.434 2.70 3.434 2.70 3.434 2.40 1.362 3.27 1.472 3.27 1.472

Figure A2 Drawing of Propeller 4677

TABLE A1

FAIRED OPEN WATER COEFFICIENTS FOR PROPELLER 4677

EXPERIMENT NO. 1 OCT. 1975

J	KT	10KQ	η_o
0.000	•565	•909	0.000
.050	•555	•੪੪७	•050
.100	•543	•866 	.100
.150	•530	•847	•149
.200	•515	•828	.198
.250	•500	.810	•246
.300	.483	•792	•291
.350	• 466	•774	•335
•400	.448	• 757	•377
•450	.430	•739	•417
.500	.412	•720	• 455
•550	• 392	.701	•440
.600	•373	•681	•523
.650	• 353	•660	•553
.700	•333	•637	•582
.750	.312	•613	•607
.800	.291	•587	•631
.850	• 269	•559	•652
.900	•247	•528	•669
•950	•224	•495	•683
1.000	.200	•459	•692
1.050	•175	•420	•695
1.100	.148	∙378	•688
1.150	.121	•33≥	•667
1.200	•092	•282	•620
1.250	.060	•22੪	•527
1.300	•027	•170	•331
1.339	0.000	.121	0.000

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.

