

• General Description

The AGM01T08LL combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- Low Gate Charge for fast switching
- Low Thermal resistance
- 100% Avalanche tested
- 100% DVDS tested

Application

- MB/VGA Vcore
- SMPS 2nd Synchronous Rectifier
- POL application
- BLDC Motor driver

Package Marking and Ordering Information

Product Summary

BVDSS	RDSON	ID
85V	1.2mΩ	385A

TOLL Pin Configuration

	Device Marking	Device	Device Package	Reel Size	Таре	width	Qı	uantity
	AGM01T08LL	AGM01T08LL	TOLL	330mm	25	imm		2000
-	Table 1. Absolut	e Maximum Ratinç	gs (TA=25℃)					
	Symbol		Parameter			Valu	e	Unit
	\/D0	Drain-Source Vo	Itane (VGS=0V)			0.5		V

Symbol	Parameter	Value	Unit
VDS	Drain-Source Voltage (VGS=0V)	85	V
VGS	Gate-Source Voltage (VDS=0V)	±20	V
ID	Drain Current-Continuous(Tc=25℃) (Note 1)	385	А
_	Drain Current-Continuous(Tc=100℃)	340	А
IDM (pluse)	Drain Current-Pulsed (Note 2)	1540	А
PD	Maximum Power Dissipation(Tc=25℃)	500	w
	Maximum Power Dissipation(Tc=100℃)	200	w
EAS	Avalanche energy (Note 3)	3136	mJ
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 150	${\mathbb C}$

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
RθJA	Thermal Resistance Junction-ambient (Steady State) ¹		40	°C/W
RøJC	Thermal Resistance Junction-Case ¹		0.25	°C/W

Table 3. Electrical Characteristics (TJ=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off Sta	tes					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=250μA	85			V
IDSS	Zero Gate Voltage Drain Current	VDS=80V,VGS=0V			1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=250µA	2.0		4.0	٧
RDS(on)	Drain-Source On-State Resistance	VGS=10V, ID=100A		1.2	1.5	mΩ
Dynamic C	Characteristics					
Ciss	Input Capacitance	VDS=40V,VGS=0V,		13855		pF
Coss	Output Capacitance	F=1MHZ		2212		pF
Crss	Reverse Transfer Capacitance			752		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz		1.9		Ω
Switching	Times					
td(on)	Turn-on Delay Time			40		nS
tr	Turn-on Rise Time	VGS=10V,VDS=42V,		122		nS
td(off)	Turn-Off Delay Time	ID=50A,RGEN=4.5Ω		111		nS
tf	Turn-Off Fall Time			137		nS
Qg	Total Gate Charge			240		nC
Qgs	Gate-Source Charge	VGS=10V, VDS=42V, ID=50A		56		nC
Qgd	Gate-Drain Charge	15 00/1		58		nC
Source-Dra	ain Diode Characteristics					
ISD	Source-Drain Current(Body Diode)				385	Α
VSD	Forward on Voltage	VGS=0V,IS=50A			1.2	V
trr	Reverse Recovery Time	IF=50A , dI/dt=100A/μs ,		137		ns
Qrr	Reverse Recovery Charge	TJ=25℃		347		nc

Notes 1. The maximum current rating is package limited.

Notes 2.Repetitive Rating: Pulse width limited by maximum junction temperature

Notes 3.EAS condition: TJ=25 $^{\circ}\text{C}$,VDD=40V,Vgs=10V , ID=112A, L=0.5mH,RG=25ohm

Figure 1. Maximum Continuous Drain Current vs Case Temperature

Figure 2. Typical Output Characteristics

Figure 3. Typical Transfer Characteristics

Figure 4. Source-Drain Diode Forward Characteristics

Figure 5. Drain-Source On-Resistance vs Drain Current

Figure 6. Normalized On-Resistance vs Junction Temperature

Figure 7. Normalized Threshold Voltage vs Junction Temperature

Figure 8. Normalized Breakdown Voltage vs Junction Temperature

Figure 9. Capacitance Characteristics

Figure 10. Typical Gate Charge vs Gate-Source Voltage

www.agm-mos.com 5 VER2.73

Figure 18. Diode Reverse Recovery Test Circuit

Figure 19. Diode Reverse Recovery Waveform

Figure 20. Unclamped Inductive Switching Test Circuit

Figure 21. Unclamped Inductive Switching Waveform

•Dimensions (TOLL)

Symbols	Millimeters			
Jylli0013	MIN.	NOM.	MAX.	
A	2.20	2.30	2.40	
b	0.65	0.75	0.85	
С		0.508 REF		
D	10. 25	10.40	10.55	
D1	2.85	3.00	3. 15	
D2	2.95	3. 10	3. 25	
D3		0.75 REF		
Е	9.75	9.90	10.05	
E1	9.65	9.80	9.95	
E2	8.95	9. 10	9. 25	
E3	7. 25	7.40	7. 55	
е		1.20 BSC		
F	1.05	1.20	1.35	
Н	11. 55	11.70	11.85	
H1	6.03	6. 18	6.33	
H2	6. 85	7.00	7.15	
Н3		3.00 BSC		
L	1.55	1.70	1.85	
L1	0.55	0.70	0.85	
L2	0.45	0.60	0.75	
L3	1.00	1. 15	1.30	
M		0.08 REF		
β	8°	10°	12°	
K	4. 25	4.40	4. 55	

MILLIMETER

2.300

1.800

2.400

1.900

SYMBOL

A1

MIN. 2.200

1.700

i	
	Detail "Z"

	11.1	1.100	1.000	1.000	
	b	0.600	0.700	0.800	
1	b1	9.700	9.800	9.900	
	b2	0.650	0.750	0.850	
	b3	1.100	1.200	1.300	
	С	0.400	0.500	0.600	
	D	10.300	10.400	10.500	
II I	D1	11.000	11.100	11.200	
	D2	3. 200	3. 300	3.400	
	D4	4.470	4. 570	4.670	
	Е	9.800	9. 900	10.000	
	E1	8.000	8. 100	8. 200	
	E2	0.500	0.600	0.700	
	е	1.200 BSC			
	e1		1.225 BSC		
	Н	11.600	11.700	11.800	
	H1		6.950 BSC		
	H2	5. 900 BSC			
	i	0.100 REF.			
	j		0.350 REF.		
	K		3. 100 REF.		
	L	1.550	1.650	1.750	
	L1	0.600	0.700	0.800	
	L2	0.500	0.600	0.700	
	L3	0.400	0.500	0.600	
	Q		7. 950 REF.		
	R	3.000	3. 100	3. 200	
	θ		10° REF.		

TOLL
Marking Instructions:

Disclaimer:

The information provided in this document is believed to be accurate and reliable. However, Shenzhen Core Control Source Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Source Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the fifth version issued on April 10th, 2024. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Source Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Source Electronics Technology Co., Ltd. all rights reserved.