COMS20001 Concurrent Computing

COMS20001 intro. lecture: week #13/#19

snowy	

- ► Content: the latter half of COMS20001 concerns
 - 1. **operating systems**, and
 - 2. computer networks.
- ▶ Delivery: our approach to each topic is st.
 - we want to focus on principles to avoid dependency on specific techniques tied to specific (time-limited) technology, but
 - although one could view each topic abstractly, this conflicts with the practical, real-world nature of both topics, so
 - we'll use concrete examples and technical detail to illustrate the underlying principles, and
 - we'll take a bottom-up approach.

COMS20001 intro. lecture: week #13/#19 – operating systems

- ► Goal: understand
 - 1. hardware/software interface
 - ▶ interrupts, port- and memory-mapped I/O, DMA
 - ARMv7-A, Cortex-A8
 - device management
 - block devices, character devices, network devices device drivers
 - process management
 - threads, processes, context switches, cooperative scheduling pre-emptive scheduling
 - fork, exec, exit, etc.
 - 4. memory management
 - translation, protection, swapping, segmented memory, paged memory, demand paging
 - PMSA, VMSA
 - 5. file management (i.e., file systems)
 - ► files, directories, meta-data, contigious, linked and indexed block allocation
 - ext2, ext3

while emphasising general concepts as applied in specific technologies (using a running example) ...

... *or*, in simple terms, understand how Linux works.

COMS20001 intro. lecture: week #13/#19 – computer networks

- ► Goal: understand
 - physical layer
 - transmission, modulation, multiplexing, metrics
 - link layer
 - addressing, framing, multiple access, switches
 - ▶ 802.3 (Ethernet), 802.11 (WiFi)
 - internet layer
 - addressing, fragmentation, forwarding, routing
 - ► IP, ICMP, DHCP, ARP
 - 4. transport layer
 - connection management, ARO, flow control
 - ▶ UDP, TCP,

and then

- 5. application layer
 - sockets API
 - NAT, DNS

while emphasising general concepts as applied in specific technologies (using a running example) ...

• ... *or*, in simple terms, understand how the Internet works.

References

- A. Silberschatz, P.B. Galvin, and G. Gagne. *Operating System Concepts*. Wiley, 9th edition, 2014.
- [2] W. Stallings.Data and Computer Communications.Pearson, 9th edition, 2010.
- [3] A.S. Tanenbaum and H. Bos. *Modern Operating Systems*. Pearson, 4th edition, 2015.