FMI, Mate-Info, Anul III Programare Logică

Examen restanță

23.01.2020

Nume:
Prenume:
Grupa:
(P1) [x puncte] Demonstrați că următorii secvenți sunt valizi:
$\bullet \ q \to r \vdash (p \lor q) \to (p \lor r)$
• $p \to \neg p \vdash \neg p$
Demonstrați că secventul este valid.
$(\mathbf{P2})$ [x puncte] Determinați un unificator, indicând la fiecare pas regula aplicată, pentru următoarele mulțimi de expresii:
• $p(x,y,z)$ și $p(u,f(v,v),u)$
• $f(x, f(x, x))$ și $f(g(y), f(z, g(a)))$
(P3) [x punct] Se dă următoarea bază de cunoștințe din Prolog:
x3 :- x1, x2. x5 :- x4, x2. x1 :- x6. x2. x6.
\bullet Traduceți regulile și faptele din baza de cunoștințe de mai sus în mulțimea S corespunzătoare de formule ale logicii propoziționale.
$ullet$ Calculați cel mai mic punct fix pentru funcția f_S .
• Desenați arborele de execuție pentru interogația:
?- x3.

(P4) [x puncte] Fie un limbaj de ordinul I cu $\mathbf{C} = \{b\}$ şi $\mathbf{R} = \{P, R, Q\}$, $\mathbf{F} = \{f, g\}$, cu ari(P) = 1 şi ari(R) = ari(Q) = ari(f) = ari(g) = 2. Să se determine forma prenex și forma Skolem pentru următoarele formule, specificând toți pașii corespunzători transformărilor făcute asupra formulelor:

- $\forall x \exists y (R(x,y) \to R(y,x)) \to \exists x R(x,x)$
- $\exists x R(x,y) \leftrightarrow \forall y Q(x,y)$

(P5) [x puncte] Fie \mathcal{L} un limbaj de ordinul I cu $\mathbf{C}=\{b\}$ și $\mathbf{R}=\{p\},\ \mathbf{F}=\{f\},$ cu ari(p)=ari(f)=1 și următoarea formulă în \mathcal{L} :

$$\varphi := \forall x (p(f(f(b))) \land \neg p(f(x)))$$

- Determinați universul și expansiunea Herbrand pentru formula φ .
- \bullet Cercetați satisfiabilitatea formulei φ folosind Teorema lui Herbrand.
- Arătați că $\vDash p(f(f(b))) \rightarrow \exists x p(f(x)).$