Beginning your Data Science Life Cycle

Problem Formulation & Data Collection

January 15, 2025

The Big Picture: Data Science Life Cycle

The Big Picture: Data Science Life Cycle

Plan for today

What do problem formulation and data collection look like in reality?

- 1 Case Study 1: Cardiovascular Genomics
- 2 Case Study 2: COVID-19 PPE Resource Allocation

Goal for today: create a minimum checklist for the problem formulation and data collection stages

Case Study 1: Cardiovascular Genomics

Case Study: Cardiovascular Genomics

Which gene interactions are important drivers of heart disease?

Imagine that you are in your initial intake meeting with Dr. Ashley. What follow-up questions would you like to ask?

Case Study: Cardiovascular Genomics

Euan Ashley, MD, PhD (Stanford University)

Which gene interactions are important drivers of heart disease? We can run experiments to validate these genes in the wet-lab.

Data: UK Biobank

Overview: Experimental Workflow

Qianru Wang

How do the size of heart cells change when we silence a gene or pair of genes?

- 1. Silence Gene A
 - → evaluate cell size
- 2. Silence Gene B

 → evaluate cell size
- 3. Silence Gene A and B

 → evaluate cell size

Finally, compare cell sizes and assess whether there is an interaction

High-throughput microfluidics + image processing

Problem Formulation: A Checklist

Problem formulation is not just about formulating the **statistical** problem, but also formulating the **substantive** problem

- + What is the big-picture substantive question/problem?
- **+ Why** is this problem interesting or relevant? And **to whom** is this relevant?
- + What is already known about this substantive domain? Any relevant background information?
- + What are the current challenges that make solving this problem difficult?
- + What is the specific aim or contribution of this present work? What is the end goal?

Our aim

To develop an end-to-end pipeline for identifying genes and gene-gene interactions that affect hypertrophic cardiomyopathy

Gene / interaction recommendation system

Wet-lab experimental validation

A Bird's Eye View of What Really Happened

In-person visit to Ashley and Priest Labs at Stanford

 Many discussions about which heart disease phenotype to study

Hit a roadblock with **HCM**:

- ~50% balanced classification accuracy
- (Typically) driven by rare variants
- Under-diagnosis and noisy labels

Proceeded to study **Hypertrophic** Cardiomyopathy (HCM) due to

- High prevalence (~1 in 500)
- Team's clinical expertise
- Experimental capabilities for measuring cell size

Left Ventricular Mass (LVM)

Case Study 2: COVID-19 PPE Resource Allocation

Case Study: COVID-19 PPE Resource Allocation

Don Landwirth (Response4Life)

Setting: beginning of March 2020

We have PPE to donate to hospitals. Which hospitals are in most need of the PPE so that we can send it to them?

Imagine that you are in your initial intake meeting with Response4Life. What follow-up questions would you like to ask?

Want to predict...

hospital PPE/supply need

number of COVID-19 hospitalizations

number of COVID-19 deaths at the county-level

Overview of Modeling Pipeline

Q: What types of data would you like to have to solve this problem?

Our Data Repository: scraped from 20+ sources

COVID-19 Cases/Deaths

USAFACTS

The New Hork Times

County-level Data

(Risk Factors, Demographics, SES, Social Mobility)

Hospital-level Data

(e.g., #ICU beds, staff)

Samuel Scarpino

Maps Mobility Trends Reports

鄙 JOHNS HOPKINS

UNIVERSITY

Google COVID-19 Community Mobility Reports

Some Highlights of COVID-19 Data Repository

- Monitored and updated daily
- Lots and lots of documentation
- Organized, consistent file structure for easy navigation
- + Hosted on GitHub: https://github.com/Yu-Group/covid19-severity-prediction/tree/master/data

Data Collection: Checklist

BE TRANSPARENT AND DOCUMENT!

- + What data is available?
 - Describe what variables were collected
- How was the data collected or generated? (Who collected the data?)
 - Describe how the variables were measured
- + Why was the data collected?
 - Describe why these variables are important
- + How does your data connect to the scientific question?
 - Any special properties of the data/data collection that make it uniquely suited to answer your question?
- + Are there any limitations or words of caution when using the data to answer the domain problem of interest? **Garbage in, garbage out!**

We've got the data. What's next?

Let the data preprocessing/cleaning journey begin...

Data Curation Pipeline

Data Scraping

Data Cleaning

Data Validity

For almost a month, 2 full-time students + others part-time

Data and code available: https://github.com/Yu-Group/covid19-severity-prediction

USAFacts COVID-19 County-level Case & Death Counts Data

Got the data from website

Q: What are potential data issues to look out for?

countyFIPS	County Nar	State	stateFIPS	1/22/2020	1/23/2020
0	Statewide (AL	1	0	0
1001	Autauga Co	AL	1	0	0
1003	Baldwin Co	AL	1	0	0
1005	Barbour Co	AL	1	0	0
1007	Bibb Count	AL	1	0	0
1009	Blount Cou	AL	1	0	0
1011	Bullock Cou	AL	1	0	0
1013	Butler Cour	AL	1	0	0
1015	Calhoun Co	AL	1	0	0
1017	Chambers (AL	1	0	0
1019	Cherokee C	AL	1	0	0
1021	Chilton Cou	AL	1	0	0
1023	Choctaw Co	AL	1	0	0
1025	Clarke Cour	AL	1	0	0
1027	Clay County	AL	1	0	0
1029	Cleburne Co	AL	1	0	0
1031	Coffee Cou	AL	1	0	0
1033	Colbert Cou	AL	1	0	0
1035	Conecuh Co	AL	1	0	0
1037	Coosa Cour	AL	1	0	0
1039	Covington (AL	1	0	0
1041	Crenshaw (AL	1	0	0
1043	Cullman Co	AL	1	0	0
1045	Dale Count	AL	1	0	0
1047	Dallas Cour	AL	1	0	0
1049	DeKalb Cou	AL	1	0	0
1051	Elmore Cou	AL	1	0	0
			-	-	-

Summary of Today

- + **Problem formulation** and **data collection** are crucial stages when beginning your data science life cycle.
 - + **Problem formulation:** includes formulation of both the statistical and the substantive problem
 - + Data collection: garbage in, garbage out
- Ask questions, use common sense, and document everything