

Potions and Poisons Test Bayard Rustin Invitational Division B - 2018 Answer Key

~ I I	••	-
School	Names	Team #

Potions and Poisons Test – Bayard Rustin 2018 Answer Key

Part I

Ionic and Covalent Bonds

For each of the following bonds: (3 pts each – Total 6 points)

- Write the symbols for each element.
- Draw a Lewis Dot diagram for the valence shell of each element.
 - o For ionic bonds draw and arrow (1 or more if needed) to show the transfer of electrons to the new element.
 - o For covalent bonds Rearrange the electrons to pair up electrons from each atom. Draw circles to show the sharing of electrons between each pair of atoms. Draw the structural formula.
- Write the resulting chemical formula

Give credit (3) for:

- correct symbols
- correct transfer/sharing
- correct formula

1. Sodium + Chlorine IONIC

$$Na + Ci \longrightarrow [Na]^+ [Ci:]^-$$
 NaCl

2. Carbon + Hydrogen COVALENT

Chemical Bonding: Determine if the elements in the following compounds are metals or non-metals. Describe the type of bonding that occurs in the compound. (1 pt each row - Total 3 pts)

Compound	Element #1	Element #2	Bond Type
	Element symbol and	Element symbol and	Ionic = I
	metal or non-metal	metal or non-metal	Covalent = C
	(M or NM)	(M or NM)	
XY (example)	X = NM	Y = NM	С
3. NO ₂	N = NM	O = NM	С
4. NaCl	Na = M	CI = NM	I
5. SO ₂	S = NM	O = NM	С

Metal + Non-Metal = Ionic

Non-Metal + Non-Metal = Covalent

Define: (1 pt each)

- 6. Heterogeneous substance a mixture having a non-uniform composition
- 7. Homogeneous substance a **substance** (can be a compound, element or mixture, though **not necessarily** a mixture) composed of the same proportions – uniform – of its components throughout a given sample
- 8. Pure Substance substance made of only one type of atom or molecule

9. Identify each of the following substances as pure substances (PS), heterogeneous mixtures (HE) or homogeneous mixtures (HO). **(0.5 pts each – 3 points total)**

Substance	HE	НО
Alphabet soup	X	
Salt		Х
Concrete	X	
Vegetable oil		Х
Carbonated soft drink (opened)	X	
Aluminum Foil		Х

Chemical vs. Physical Properties

10. Classify the following properties as either Chemical or Physical: (0.5 pts each – 7 points total)

Property	Physical	Chemical
blue color	Х	
density	Χ	
flammability		Χ
solubility	Χ	
bitter taste	Χ	
melting point	Х	
reacts with acid to form		Х
hydrogen		
hardness	Χ	
boiling point	Χ	
luster	Х	
odor	Х	
can neutralize a base		Х
reacts with a base to form water		Χ
supports combustion		Χ

L1. Identify the follov	ing as a physica	I property (P) or a c	hemical property	/ (C): (0.5	pts each – 2	points total
-------------------------	------------------	--------------------------------	------------------	--------------------	--------------	--------------

Sodium Hydroxide dissolves in water **P**

A pellet of sodium is sliced in two P

Potassium chlorate decomposes to potassium chloride and oxygen gas **C**

Iron rusts **C**

/	12	(24)
 /		(- 7)

Balancing Equations (Balance and identify the type of equations below.) (2 pts each - 4 pts total)

- 12. __3_ NaBr + __1_ $H_3PO_4 \rightarrow$ __1_ Na $_3PO_4 +$ __3_ HBr Type of reaction: double replacement
- 13. __3_ Ca(OH)₂ + __1_ Al₂(SO₄)₃ \rightarrow __3_ CaSO₄ + __2_ Al(OH)₃ Type of reaction: double replacement
- 14. Choose two of the following scenarios below and use the physical properties of the mixtures in the table to plan a method for separating a mixture containing water and the substance. Write details in the Separation Procedure box.

 (2 pts each 4 pts total)

Substance	Physical Properties	Separation Procedure
Sawdust	solid particles; visible to the eye, does not dissolve in water; floated on top of the water; non-magnetic	Skim off the sawdust from the top of the water using a plastic spoon – OR – Filter the mixture through a funnel with filter paper
Potassium Chloride	Solid, white crystals; able to see small grains, quickly dissolves in water; non-magnetic	Pour water into a small plastic cup. Allow water to evaporate overnight leaving potassium chloride crystals – OR – Do a distillation. Water will be the distillate and remaining solid will be calcium chloride.
Powered Limestone	Solid, fine white particles; too tiny to see; does not dissolve in water; are suspended in water; non-magnetic	Place funnel over small plastic cup. Pour mixture through filter paper. Collect particles of powdered limestone in filter paper. Let paper dry.
Nickel Powder	Solid, fine gray particles; too tiny to see; does not dissolve in water; sink in water and fall to bottom; magnetic	Place a magnet over the nickel powder and draw the particles out of the water, Scrape the nickel powder off the magnet – OR – Evaporate the water leaving the nickel powder behind.

15. Techniques used to separate mixtures rely on differences in the physical properties of the components. Pick 2 techniques useful for the separation of mixtures and describe each process separately. (2 pts each – total 4 pts)

<u>DISTILLATION</u> – is the purification of a liquid by heating it to its boiling point, causing vaporization, and then condensing the vapors into the liquid state and collecting the liquid. Separation of two or more liquids requires that they have different boiling temperatures. All boiling temperatures can be reduced by decreasing the pressure on the liquid.

<u>EXTRACTION</u> – is the removal of one substance from a mixture because of its greater solubility in a given solvent, e.g. – liquid/liquid, solid/liquid and acid/base extractions. This is used to purify organic products.

<u>FILTRATION</u> – is the process of removing or "straining" a solid (the chemical term is precipitate) from a liquid by the use of filter paper or other porous material.

Place an X in *all applicable* box/boxes suitable for separating the following mixtures. (1 pt each row – total 3 pts)

Situation	Distillation	Evaporation	Crystallization	Chromatography	Filtration	Mechanical
						Separation
16. Obtain clear water from muddy water	Х	Х			Х	
17. To separate petrol from crude oil	Х					
18. Remove leaves from a swimming pool					Х	Х

Answer the following short answer questions: (5 points total)

19. What are the three different types of mixtures? (1 pt))

Solutions, Suspensions & Colloids

20. What is the difference between a solute and a solution? (1 pt)

Either a solute is a substance in which is dissolved in another substance, the solvent <u>or</u> a solvent is a substance which dissolves a solute.

21. What is considered to be the universal solvent? Why? (1 pt)

Water is capable of dissolving a variety of different substances, which is why it is such a good solvent, or water is called the "universal solvent" because it dissolves more substances than any other liquid.

- 22. What is the Tyndall Effect and why does it occur? (2 pts)
- a. It is light scattering by particles in a colloid, or else particles in a very fine suspension, and
- b. is caused by reflection of the incident radiation from the surfaces of the particles, reflection from the interior walls of the particles, and refraction and diffraction of the radiation as it passes through the particles.

Use the solubility curve above to answer questions 23 - 28. (0.5 pts each - 3 points total)

- 23. In general, how does temperature affect solubility? **The > the temp. the > substance dissolves.**
- 24. Which compound is least soluble at 10°C? KClO₃
- 25. How many grams of KCl can be dissolved in 100g of water at 80°C? 50 g
- 26. How many grams of NaCl can be dissolved in 100g of water at 90°C? 40 g
- 27. At 40°C, how much KNO₃ can be dissolved in 100g of water? about 60 g
- 28. Which compound shows the least amount of change in solubility from 0°C-100°C? NaCl

____/3 (47)

In this drawing of an oil spill, diluted bitumen (a mixture of petroleum distillate residue) diluted using either conventional light crude or a cocktail of natural gas liquids with a resulting consistency of conventional crude and can be pumped through pipelines. This can be the cause of environmental spills. Based on this drawing, identify at least 4 separate processes that can act on the spill material: **(0.5 pts each – total 2 pts)**

29.

30.

31.

32.

Correct, but not limited to: evaporation, photooxidation, spreading, particle interaction, adhesion, emulsification, submergence and sinking, dissolution, natural dispersion, accumulation, biodegradation

33. Acute polyneuropathy can occur from contact with this plant.
a. poison ivy
b. poison oak
c. tree nettle
d. jimson weed
e. death-cap mushroom
34. The two types of household bleach are bleach and bleach. chlorine and peroxide
35. Jimson weed belongs to the nightshade family. True
36. When a Pacific newt curls its tail, it is a sign of
a. romantic intentions
b. defense
c. hunger
d. illness
37. Which person is going to have the most toxic effects from swallowing five iron supplement tablets?
a. A four-year-old boy who weighs 40lbs.
b. A ten-year-old girl who weighs 90lbs.
c. A twenty-five-year-old woman who weighs 125lbs.
d. A forty-year-old man who weighs 195lbs.
38. The brown recluse spider is known as the
a. violin spider
b. Stradivarius spider
c. cello spider
d. mandolin spider
39. The death cap mushroom, Amanita phalloides, is actually a deadly fungus. True
40. How many eggs can one female cane toad lay at one time?
a. 3,000
b. 30,000
c. 300,000
d. 3,000,000
41. Cane toads are continuing to adapt to different environments in Australia.
a. True b. False
42. Name two (2) forms of iron frequently used in supplements:
(allow any two of these: ferrous and ferric iron salts, such as ferrous sulfate, ferrous gluconate, ferric citrate, and ferric sulfate)

Answer all questions in space provided, or by circling the correct answer: (0.5 pt each – total 5 points)

43. Women of reproductive age who have menorrhagia, or abnormally heavy bleeding during menstruation, are at increased risk of iron deficiency. At least 10% of menstruating women are believed to have menorrhagia. Menorrhagia means a
a. light menstrual cycle
b. normal menstrual cycle
c. absent menstrual cycle
d. abnormally heavy menstrual cycle
44. Strong acids generally have a pH of about 3, whereas a strong base can be as high as 14.
a. True b. False
45. The chemical formula for Epson salts is
a. Mg_2SO4
b. MgSO ₄
c. MnSO ₃
$d. Mg_3SO_2$
46. After ingesting death cap mushrooms, those who fall ill can improve after a day or two, giving a false impression of recovery. But by that stage the toxin can have caused serious brain damage which can be fatal. False
47. Two other spider that have markings like the brown recluse spiders are and a & d
a. cellar spiders
b. evening spiders
c. morning spiders
d. pirate spiders
48. Dioxin is found in in all household bleaches and bleaching products used in the wood pulp and paper industry as a result of the presence of chlorine gas. False
49. Poison ivy has leaves that grow in <u>only</u> in groups of three. True
50. Difficulty breathing or swallowing is possible after coming in contact with poison ivy. True
51. Jimson weed is also known as:
a. devil's tuba
b. hell's bells
c. Devil's snare
d. Only c
e. Only b & c
f. all of the above
52. Bleach is the common name for a solution of sodium hypochlorite in water.
a. 0.025%
b. 0.25%
c. 2.5%
d. 25%
/ 5 (59)

53. Dilution was the preferred solution to pollution when populations were small. Everything people wanted rid of went into the water. These wastes were typically organic, such as human wastes and animal carcasses a biodegradable. This is also a viable solution for large populations, as these same waste products become food animals, macroinvertebrates, bacteria, and fungi that decompose the waste.			
a. True b. False			
54. Monitoring iron levels during pregnancy is important as plasma volume and red cell mass expand due to in maternal red blood cell production.			
a. increases			
b. decreases			
c. stable levels			
/1 (60)			

Part II – Lab:

Part A: Solution, Colloid or Suspension (1 pt/box - 30 pts total)

- 1. Half fill 6 test tubes with water from the beakers available.
- 2. Add the following materials to the test tubes:
 - a. 3 drops of food dye (No > 3 drops!) test tube #1
 - b. 0.5 g sugar test tube #2
 - c. Up to 10 drops milk of magnesia test tube #3
 - d. 1 dropper full of oil (0.5-1.0mL) test tube #4
 - e. 0.5 g CuSO4 test tube #5
 - f. 0.5 g soil test tube #6
- 3. Mix each of the test tubes with a stirring rod until thoroughly mixed. Make sure to rinse the stirring rod in between each stir. Don't mix the contents of the test tubes.
- 4. Record an observation about each mixture.
- 5. Use a laser/LED light to shine through each of your solutions to determine if the Tyndall Effect is present. Record answers in your data table.
- 6. Allow the solutions/mixtures to settle and record in data table if in fact they settle out into layers.
- 7. Use the information in your data table to then classify each mixture as a True Solution, Colloid, or Suspension.

Please keep in mind you may use these or any other acceptable answers

Sample	Observations	Tyndall	Settles?	Solution,	Why?
Sample	Obsci vations	Effect?	betties.	Colloid or	vvily.
		Effect:			
				Suspension	
A	Mixes well; goes into solution; dissolves	No	No	Solution	It dissolves into a homogenous mixture.
food dye	,			Solution	
В	Mixes well; dissolves;				It dissolves into a homogenous
sugar	goes into solution after initially sinking	No	No	Solution	mixture.
sagar	to bottom				
С	Mixes; some sinks to	Yes -			Large particles settle to the bottom
milk of mag	bottom; some stays in	before	Yes	Suspension	and smaller particles float at the top or in the middle.
	suspension	settling			
D	Floats to the top;				Emulsions are an example of colloids
oil	does not mix	Yes	No	Colloid	composed of tiny particles suspended in an immiscible liquid. They do not
					mix
Е	Mixes well; most goes				It dissolves into a homogenous
CuSO ₄	into solution, may be	No	No	Solution	mixture.
2 5 5 4	supersaturated				
F	Mixes; some sinks to	Yes -			Large particles settle to the bottom
soil	bottom; some stays in suspension	before settling	Yes	Suspension	and smaller particles float at the top or in the middle.
~ ~ ~ ~	343561131011	3000000			in the initiale.

_____/ 30 (90)

Part II - Lab:

Part B: Dragon Eggs (1/2 pt each question – Total 1 point)

Materials:

You will be given a small number of "Dragon Eggs" by the event supervisor.

Procedure: Place the dragon eggs in a small container, and add about 10 ml of water. After 30 - 40 minutes, observe the dragon eggs and answer these questions on the answer key.

- 1. What happened to the eggs? Record your observations. The dragon eggs got bigger.
- 2. Is this a chemical change or a physical change? Physical change.

Clean up: When you are done, place the dragon eggs and water in a container provided by the event supervisor. DO NOT RINSE THEM DOWN THE SINK, OR YOU WILL BE PENALIZED.

Part C: Mentos pH Testing (1pt each box - Total 9 points)

Materials:

You will be given one Mentos chewy mint candy, and one chewy strawberry mint candy.

Procedure:

Moisten a paper towel and wipe off the colored outer coating of the fruit flavored Mento. (Make sure you can tell it apart from the mint flavored Mento). Place 25 ml of water in each of three containers. Put the fruit Mento in one of the containers, the mint Mento in another container, and leave the third container for a control. (*Note - the Mentos will not dissolve completely). Let the Mentos dissolve for 5 - 10 minutes or longer, then swirl and record the pH. You must fill in every box of table.

In Solution	Solution Color	рН	Citric acid?
Mento (mint-flavored)	yellow	7	N
Mento (fruit-flavored)	orange	4-5	Y
Control Solution	yellow	7	N/A

Questions (Record all answers in table above):

- 1. Record the color and pH of the mint mento solution
- 2. Record the color and pH of the fruit Mento solution
- 3. Record the color and pH of the control solution
- 4. Citric acid is used to make the one type of Mento but not the other. Based on your data, which type of Mento do you think *most likely* contains citric acid?

Clean up: Throw the Mentos in the trash and pour the liquids down the sink.

/	1	0	(1	00)
 ,	-	•	\ -	~ ~	٠.

TIEBREAKERS – 43, 47 & 52