Today in Cryptography (5830)

Summary of crypto we've seen Crypto backdoors

Some basic primitives

- Symmetric cryptography (shared key K)
 - encryption & decryption using K
 - message authentication using K
 - pseudorandom functions (PRF)
- Public-key cryptography (public key pk, secret key sk)
 - encrypt with pk and decrypt with sk
 - digitally sign using sk and verify with pk
- Hash functions (no keys)
 - used to "compress" messages in a secure way

Pick random Nc.

TLS handshake for RSA transport

Check CERT using CA public verification key

Check random PMS C <- E(pk,PMS)

Cert = (pk of bank, signature over it)

ChangeCipherSpec, { Finished, PRF(MS, "Client finished" | | H(transcript)) }

ChangeCipherSpec,

ClientHello, MaxVer, Nc, Ciphers/CompMethods

Bracket notation means contents encrypted

MS <- PRF(PMS, "master secret" | Nc | Ns)

{ Finished, PRF(MS, "Server finished" | | H(transcript')) }

Primitive	Use cases / examples	Security goals	Good schemes	Bad schemes
Block ciphers	Building block for symmetric encryption	Indistinguishable from random permutation	AES, 3DES	DES, Skipjack
Pseudorandom Functions (PRFs) / Message authentication codes (MACs)	Authenticating data with shared secret key, key derivation	Indistinguishable from random function	HMAC w/ good hash function OMAC, CMAC, PMAC	CBC-MAC without prefix-free encoding
Symmetric encryption (length-extending, authenticated encryption)	Main mechanism for encrypting data; TLS record layer, encrypting data at rest	Message confidentiality and associated data + ciphertext authenticity	Encrypt-then-MAC GCM OCB	Encryption only modes: CTR mode, CBC mode, ECB mode, RC4
Hash functions	Key derivation, PW hashing, digital signatures, HMAC	Behave like a public random function (implies coll resist, onewayness, etc.)	SHA-256 SHA-3	MD4, MD5, SHA-1
Password-based key derivation	Password hashing, PW- based encryption	No shortcut attacks	PBKDF2, scrypt, bcrypt, argon2	Plain hash function

Primitive	Use cases / examples	Security goals	Good schemes	Bad schemes
RSA PKE	Encrypt symmetric key	No partial info on messages leaked to active attacker	RSA-OAEP w/ 2048 bit moduli	RSA-PKCS#1 v1.5, "raw" RSA < 2048 bit N
ECC PKE	Encrypt symmetric key	No partial info on messages leaked to active attacker		ElGamal by itself
Hybrid encryption	Encrypt data efficiently using recipient public key	No partial information on messages leaked; attacker can't maul ciphertext	ECIES RSA-OAEP w/ one- time Encrypt-then- MAC scheme	Raw RSA kem, bad sym encryption (e.g., CBC mode)
Digital signatures	Authenticated key exchange, code signing	Unforgeability under chosen message attacks	ECDSA, RSA PSS	RSA-PKCS#1 v1.5
Diffie-Hellman key exchange	Establishing secure channel	Attacker can't recover derived session key	ECC DH, Finite field DH	<< 256 bit ECC groups, << 2048 bit FF groups

Cryptographic backdoors

- Long debate over whether average citizens should have access to strong crypto
 - "Crypto wars" of 1990s: export restrictions that treat crypto software as munitions

 Overt and surreptitious backdoors seen as backup plan by governments

Overt backdoors

- Clipper chip
 - NSA hardware for encrypting telecommunications
 - Each chip had secret key, this was given to (escrowed with) NSA at manufacture time
- Significant backlash
- "The Risks of Key Recovery, Key Escrow, and Trusted Third-Party Encryption" by Abelson et al.

Overt backdoors

- Export controls required only 40-bit keys for international software
- Lotus Notes "Differential Workfactor Cryptography"
 - 64 bit symmetric key K
 - $-C1 = RSA-Enc(pk_{NSA}, top24(K))$
 - -C2 = Enc(K, data)

Surreptitious backdoors

- Secretly weaken / sabotage cryptographic systems
- Usually done to dovetail with interception capabilities

AT&T Wiretap case

- Mark Klein discloses potential wiretapping activities by NSA at San Francisco AT&T office
- Fiber optic splitter on major trunk line for Internet communications
 - Electronic voice and data communications copied to "secret room"
 - Narus STA 6400 device

Preventing intercept

End-to-end encryption (TLS, SSH)

- What does this protect? What does it leak?
- What can go wrong?

End-run around HTTPS

- HTTPS terminated at edge of Google networks
- Internal data center-to-data center communications on privately leased lines
 - No encryption up until summer 2013

Sabotaging TLS

- NIST's Dual EC pseudorandom number generator (PRNG) apparently backdoored
 - Mandated public parameters are public key
 - There exists a secret key, the trapdoor
- One output of PRNG + trapdoor reveals next state of PRNG, and prediction of future outputs

TLS handshake for RSA transport

Say client is using Dual EC for randomness generation What is vulnerable?

RSA BSAFE library: 2.4 seconds to recover PMS

Windows: 60 minutes

OpenSSL: never (bug in code!)

See http://dualec.org/

Preventing intercept

End-to-end encryption (TLS, SSH)

- What does this protect? What does it leak?
- What can go wrong?

Hiding "metadata" such as connectivity is even harder

- IP addresses are required to route communication, yet not encrypted by normal end-to-end encryption
 - 1.2.3.4 talked to 5.6.7.8 over HTTPs
- How can we hide connectivity information?

Anonymization systems

Single-hop proxy services

 JonDonym, anonymous remailers (MixMaster, MixMinion), many more...

Thursday, April 26, 2012

FBI seizes server used to anonymize e-mail

Jeffrey Brown

1 comment

Tor (The Onion Router)

Tor implements more complex version of this basic idea

What does adversary see?

Tor obfuscates who talked to who, need end-to-end encryption (e.g., HTTPS) to protect payload