Data Structures

Self-Balancing Search Trees

CS284

Balance is Important in BSTs

▶ Search in unbalanced BSTs tree are $\mathcal{O}(n)$, not $\mathcal{O}(\log n)$

 Operation on a binary tree that changes the relative heights of left and right subtrees, but preserves BST invariant

Tree Balance and Rotation

AVL Trees

Implementing Rotations

Implementing AVL Trees

Search in an AVL Tree

Deletion from an AVL Tree

Performance

AVL Trees

- ► In 1962 G.M. Adelson-Velskî and E.M. Landis developed a self-balancing tree
- Definition: The balance of a node is the difference in height of its two subtrees

▶ AVL tree: A binary search tree in which the balance of every node is in the interval [-1,+1]

Example

▶ AVL tree: The balance of every node is in the interval [-1,+1]

AVL Trees

As items are added to or deleted from a tree, the balance of each subtree from the insertion or delete point up to the root is updated

▶ If the balance gets out of the range -1 to +1, the tree is rotated to bring it back into balance

Before	After	Rebalance?
0	+1	No
0	-1	No
-1	0	No
+1	0	No
-1	-2	Yes
+1	+2	Yes

Balancing a Left-Left Tree

After a right rotation, the tree is balanced

Balancing a Left-Right Tree

Right rotation does not work!

Balancing a Left-Right Tree

Left-right tree case 1: left-right-left tree, rotate left then rotate right

Balancing a Left-Right Tree

Left-right tree case 2: left-right-right tree, rotate left then rotate right

Summary of Four Kinds of Critically Unbalanced Trees

- 1. Right-Right (parent balance +2, right child balance +1)
 - Rotate left around parent
- 2. Right-Left (parent balance +2, right child balance -1)
 - Rotate right around child
 - ► Rotate left around parent
- 3. Left-Left (parent balance is -2, left child balance is -1)
 - Rotate right around parent
- 4. Left-Right (parent balance -2, left child balance +1)
 - Rotate left around child
 - Rotate right around parent

Note: 3 is symmetric to 1 and 4 is symmetric to 2 We can prove that rotation does not change the overall height of the tree, thus during an AVL tree insertion, we do not need to reimbalance the ancestor nodes; Tree Balance and Rotation

AVL Trees

Implementing Rotations

Implementing AVL Trees

Search in an AVL Tree

Deletion from an AVL Tree

Performance

temp = root.left;

root.left = temp.right;

temp.right = root;

Implementing Rotation

```
public class BinarySearchTreeWithRotate<E extends Comparable<E>>
    extends BinarySearchTree<E> {
    // Methods

protected Node<E> rotateRight(Node<E> root) {
    Node<E> temp = root.left;
    root.left = temp.right;
    temp.right = root;
    return temp;
}
```

rotateLeft is similar

Tree Balance and Rotation

AVL Trees

Implementing Rotations

Implementing AVL Trees

Search in an AVL Tree

Deletion from an AVL Tree

Performance

AVL Implementation

The Class AVIJTRES E>

```
public class AVLTree<E extends Comparable<E>>
     extends BinarySearchTreeWithRotate<E> {
       private static class AVLNode<E> extends Node<E> {
         // defined in the upcoming slides
    /** Flag to indicate that height of tree has increased. */
    private boolean increase;
    /** Flag to indicate that height of tree has decreased */
    private boolean decrease;
    // Methods
    . . .
```

The Inner Class AVLNode<E>

```
class AVINode
    AVLNode left, right;
    int data;
    int height;
    /* Constructor */
    public AVLNode()
        left = null;
        right = null;
        data = 0;
        height = 0;
    /* Constructor */
    public AVLNode(int n)
        left = null;
        right = null;
        data = n;
        height = 0;
```

Inserting into an AVL Tree

```
/* Function to insert data recursively */
public AVLNode insertNode(int target, AVLNode root)
    if (root == null)
        root = new AVLNode(target);
 // if the item is less than root data
    else if (target < root.value)</pre>
       // recursively insert the item in the left subtree
        root.l child = insertNode( target, root.l child );
        int balance = getBalance(root);
 // if after the insertion, the tree becomes unbalanced
        if(balance == -2)
 // if x inserted into the left-left subtree, balancing a
 // left-left tree
            if( target < root.l child.value )</pre>
                root = rotateRight( root );
            e1se
 // if x inserted into the left-right subtree, rotate left
 // then rotate right
                root = doubleRotation left right ( root );
```

```
// if the item is larger than root.data
   else if( target > root.value )
      // recursively insert the item in the right subtree
       root.r_child = insertNode( target, root.r_child );
       int balance = getBalance(root);
    // if after the insertion, the tree becomes unbalanced
       if( balance == 2 )
          // if x inserted into the right-right subtree,
          // balancing a right-right tree
           if( target > root.r_child.value)
               root = rotateLeft( root );
       // if x inserted into the right-left subtree, rotate
       // right then rotate left
           else
               root = doubleRotation right left( root );
   else
     : // Duplicate: do nothing
   root.height = max( height( root.l_child ),
   height (root.r child)) + 1;
   // update the height of the current node t
   return root;
```

Left-rotate rotateRight

```
/* Rotate binary tree node with left child */
private AVLNode rotateRight (AVLNode root)
{
    AVLNode tmp = root.left;
    root.left = tmp.right;
    tmp.right = root;

    root.height = max( height( root.left ),
    height( root.right ) ) + 1;
    tmp.height = max( height( tmp.left ), root.height ) + 1;
    return tmp;
}
```

search in an AVL tree

```
public boolean search(AVLNode root, int target)
    boolean found = false;
    while ((root != null) && !found)
        int rval = root.value;
        if (target < rval)</pre>
            root = root.l_child;
        else if (target > rval)
            root = root.r child;
        else
            found = true;
            break:
        found = search(root, target);
    return found;
```

Tree Balance and Rotation

AVL Trees

Implementing Rotations

Implementing AVL Trees

Search in an AVL Tree

Deletion from an AVL Tree

Performance

Deletion from an AVL Tree

- ▶ Builds on deletion from a BST
- Similar to insertion
 - Do deletion
 - ► Then rebalance
- Rebalance
 - Involves both single and double rotations, as in insertion
 - In contrast to insertion, imbalance may propagate upwards: rotations at multiple nodes in the path to the root may be required

Deletion from an AVL Tree

Two part operation

- 1. Apply BST deletion:
 - ▶ 0 children: just delete it
 - ▶ 1 child: Delete it, connect child to parent
 - 2 children: put successor in your place, delete successor leaf

2. Rebalance

- ► Right-right: rotate left
- Right-left: rotate right then left
- Left-left: rotate right
- Left-right: rotate left then right

Example - Deleting an item

Deleting 10

Example - Deleting an item

Deleting 10: Left-left case: rotate right

Example - Deleting an item

Deleting 10: Left-left case: rotate right

Deleting an item

```
public AVLNode deleteNode(AVLNode root, int target)
   if (root == null)
      return root;
   if (target < root.value)</pre>
       root.l_child = deleteNode(root.l_child, target);
   // If the key to be deleted is greater than the
   // root's key, then it lies in right subtree
   else if (target > root.value)
       root.r child = deleteNode(root.r child, target);
   // if key is same as root's key, then this is the node
   // to be deleted
   else
       // node with only one child or no child
       if ((root.l child == null) || (root.r child == null))
           if (root.1 child == null)
               root = root.r_child;
           else
               root = root.l child:
```

Delete

```
else
        // node with two children: Get the inorder
        // successor (smallest in the right subtree)
        AVLNode right = minValueNode (root.r_child);
        // Copy the inorder successor's data to this node
        root.value = right.value;
        // Delete the inorder successor
        root.r_child = deleteNode(root.r_child, right.value);
if (root == null)
    return root;
root.height = max(height(root.l child), height(root.r child)) + 1;
int balance = getBalance(root);
```

Delete

```
// if after the deletion, the tree becomes unbalanced
   if (balance == 2) {
       int rchild_balance = getBalance(root.r_child);
       // right-right tree
       if (rchild_balance >= 0)
           return rotateLeft(root);
       // right-left tree
       else
           return doubleRotation right left(root);
// if after the deletion, the tree becomes unbalanced
   if (balance == -2) {
       int lchild_balance = getBalance(root.l_child);
       // left-left tree
       if (lchild balance <= 0)</pre>
           return rotateRight(root);
       // left-right tree
       else
           return doubleRotation_left_right(root);
   return root;
```

Tree Balance and Rotation

AVL Trees

Implementing Rotations

Implementing AVL Trees

Search in an AVL Tree

Deletion from an AVL Tree

Performance

Performance of the AVL Tree

Good performance

- ▶ All operations $\mathcal{O}(\log n)$ because trees are always balanced.
- ► The height balancing adds no more than a constant factor to the speed of insert and deletion.

Cons

- Not easy to program
- ► Each node has an extra field
- When data to be searched is stored in disks (i.e. not in memory) other data structures are more appropriate (eg. B-Trees)