

Team C-rious Milestone 6

Manu Benny Rajesh Bhandari Teja Sri Lakshmi Ganesh Balaji Bokka Madeleine Breitkreutz **Atif Harshad** Jannis Römermann

CONTENT

- > INTRODUCTION
- > VALIDATION EXPERIMENTS
- > VALIDATION RESULT
- > STATEMENT OF CONFIDENCE
- ➤ COMPARISONS
- CORRECTION MADE & LIMITATION
- > PROJECT PROGRESS
- > COST DIAGRAM
- > LESSONS LEARNED

INTRODUCTION

➤ What is Validation?
Comparing the real system to the simulation model.

- ➤ Why Validate?
- Confidence in Results
- Model Verification
- Identify Model Limitations

VALIDATION EXPERIMENT

- > Sensitivity Analysis To assess model's sensitivity to input variations
- a. Change in Throughput by varying traffic volume
- b. Change in Waiting time by varying traffic volume
- ➤ Historical input data analysis Comparing the means and confidence intervals.

SENSITIVITY ANALYSIS

SENSITIVITY ANALYSIS

HISTORICAL DATA ANALYSIS

THROUGHPUT:

Mean = 5	Mean= 5.36
Confidence level Min = 4.09	Confidence level Min = 2.65
Confidence level $Max = 5.96$	Confidence level Max = 8.06

HISTORICAL DATA ANALYSIS

Mean = 0.1090	Mean= 0.67
Confidence level Min = 0.022	Confidence level Min = 0.55
Confidence level $Max = 0.196$	Confidence level Max = 0.79

Mean = 0.016	Mean= 0.01
Confidence level Min = 0.004	Confidence level Min = 0
Confidence level Max = 0.027	Confidence level Max = 0.02

VALIDATION RESULT

HISTORICAL DATA ANALYSIS

Mean = 0.009	Mean = 0.02
Confidence level Min = -0.0015	Confidence level Min = 0.01
Confidence level Max = 0.0195	Confidence level $Max = 0.03$

Mean = 0.0735	Mean = 0.09
Confidence level Min = -0.006	Confidence level Min = -0.04
Confidence level Max = 0.153	Confidence level $Max = 0.22$

STATEMENT OF CONFIDENCE

- ➤ Comparing the confidence interval calculated from the input data with the confidence interval obtained from the simulation output, it is evident that the two intervals have a significant overlap.
- ➤ With a significance level of 0.05, this overlapping region provides strong evidence that the simulation output is consistent with the observed data.
- Therefore, we can state with 95% confidence that the simulation accurately reflects the underlying distribution of the data and can be considered a valid representation

COMPARISON

Throughput from real world

MEAN: **5.36** ≈ **5**

Throughput from simulation

MEAN: $5.03 \approx 5$

COMPARISON

Our turning probabilities are fairly similar to the given data from the city!

CORRECTIONS MADE

Got it right on the first try:

Our team's careful work and thoroughness resulted in a flawless outcome without any need for corrections or changes.

LIMITATION

- ➤ The simulation is only valid for one goal but not for another.
- ➤ Our data is measured at a peak traffic time for the node so we can only really tell the validity for a maximum traffic model.
- ➤ We had a limited amount of waiting time data available for conducting comparisons.

PROJECT PROGRESS

COST DIAGRAM

LESSONS LEARNED

- > Learned how to validate.
- ➤ Understood the importance of validation.
- > Importance of good input data.
- > My team has my back.

THANK YOU!

.

.