Unsupervised Discovery of Novel Emphysema Subtypes

Andrew Francis Laine, D.Sc.

Percy K. and Vida L. W. Hudson Professor of Biomedical Engineering and Professor of Radiology (Physics)

Department of Biomedical Engineering

Columbia University

New York, NY 10027

Collaborators:

R. Graham Barr, M.D., Ph.D., Department of Medicine, CUIMC

Elsa D. Angelini, Ph.D.

Department of Radiology
CUIMC

Jie Yang (Ph.D. Student, 2019)

Historical Overview of Al: Timeline

Machine Learning and Al

Representations Matter

Figure 1.1

Emphysema

- Emphysema + COPD is 3rd leading cause of death in USA.
- Defined by loss of interalveolar septa
- Predicts mortality in patients with and without COPD

Background

Computed tomography (CT) used to analyze lung structure:

Resolution = $0.5 \times 0.5 \times 0.75$ mm

Matrix size = 512×512×500 pixels

Intensity range = [-1024 1024] HU

Axial

Sagittal

40 megavoxels of the lung:

• Enable *in vivo* study of lung structure and disease patterns.

Background

Lung texture learning to characterize emphysema subtypes:

COPD and Emphysema

- ☐ Exact mechanism of developing COPD remains unknown;
- ☐ Three standard emphysema subtypes defined at autopsy [1]:
 - Limited inter-rater agreement.

Lung texture learning for emphysema subtyping can advance disease understanding

Emphysema Subcategories

Classic Emphysema Subtypes

Background

Aimed to tackle the problem of CT-based lung texture learning exploiting *spatial localization*, using *unsupervised* / *weakly-supervised* learning.

Aim 1: Develop an algorithm for unsupervised learning of localized texture patterns for emphysema.

Aim 2: Label the discovered localized texture patterns on large datasets of cardiac CT scans.

Aim 3: Examine possible correlations / hits with GWAS genomic information in MESA and SPIROMICS.

NIH R01-HL121270: Novel
Quantitative Emphysema Subtypes
in MESA and SPIROMICS.
(Pls Dr. R.G. Barr, Dr. A.F. Laine)

Hypothesis

- Unsupervised learning of spatial lung texture patterns on research CT scans will yield novel emphysema subtypes.
 - -Reproducible
 - Distinct symptoms
 - -Specific histology and genetic basis

SPIROMICS and MESA

- SubPopulations and Intermediate Outcome Measures In COPD Study
 - –COPD case-control study
 - -2,983 participants with CT scans (~6,000 scans)
 - -Whole genome sequencing, multi-omics
- Multi-Ethnic Study of Atherosclerosis Lung Study
 - -Population-based, prospective cohort study
 - -3,205 participants with full-lung CT scans (~50,000 scans)
 - -Whole genome sequencing, multi-omics

Background: Processing Overview

Unsupervised machine learning defined novel emphysema patterns on CT.

Challenges

- Learning *localized texture* patterns in an *unsupervised* manner;
- Homogeneity vs. redundancy of the learned patterns.

Summary of Findings:

- Applied a method to standardize lung shape spatial mapping;
- Developed a two-stage *unsupervised* framework combining *spatial and texture* information;
- Discovered emphysema patterns on large COPD cohorts with compelling clinical significance.

[2] **Jie Yang** *et al.*, Unsupervised Discovery of Spatially-Informed Lung Texture Patterns for Pulmonary Emphysema: The MESA COPD Study. *MICCAI*, 2017.

Method

Unsupervised learning of localized texture patterns for pulmonary emphysema

Learning Stage 1:

> Augmented Lung Texture Patterns (LTPs)

 FT_x / FS_x = texture / spatial feature of ROI x $\overline{FT_k}$ / $\overline{FS_k}$ = texture / spatial centroid of LTP_k

Iteratively update ROI assignment $\Lambda_k^{(t)}$ of LTP_k, by *minimizing a* dedicated cost function [1]:

$$\begin{array}{c} \mathbb{Z}^2\left(FT_x,\overline{FT_k^{(t-1)}}\right) & \text{Texture distance} \\ + \\ \omega \cdot W \cdot \left\|FS_x,\overline{FS_k^{(t-1)}}\right\|_2^2 & \text{Spatial regularization} \\ + \\ + \\ \gamma \cdot \mathbb{I}\left(\chi^2\left(FT_x,\overline{FT_k^{(t-1)}}\right) > thresh_{\chi^2}\right) \\ & \text{Texture} \end{array}$$

penalty

Learning Pipeline and Results in SPIROMICS and MESA Lung Study

Unsupervised learning of localized texture patterns for pulmonary emphysema

Training Set 1 (N = 1,462)

Training Set 2 (N = 1,460)

Spatial density

Learning Pipeline and Results in SPIROMICS and MESA Lung Study

Unsupervised learning of localized texture patterns for pulmonary emphysema

DATA: SPIROMICS (N=2,922) and MESA Lung Study (N=3,128)

sLTP

histogram 1.

Quantitative Emphysema

Heatmap of %sLTP label histograms over populations

10 sLTP to 6 QES

Experimental Results in SPIROMICS and MESA Lung Study

Unsupervised learning of localized texture patterns for pulmonary emphysema

Restrictive CPFE

Apical

Diffuse

Senile

Restrictive CPFE Obstructive CPFE

Vanishing Lung

Associated with

Dyspnea

Hypoxemia at rest

Desaturation on exertion

J↓6MWT

Exacerbations

FEV₁ **FVC** FEV₁/FVC ↓↓ TLV on CT

Adjusted for age, sex, race/ethnicity, height, weight, smoking status, packyears, COPD, scanner manufacturer, FEV1, other QES.

Experimental Results in SPIROMICS and MESA Lung Study

Unsupervised learning of localized texture patterns for pulmonary emphysema

Associated with

Desaturation on exertion

↓ FEV₁
↓ FVC
↓ FEV₁/FVC
↑ TLV on CT

Adjusted for age, sex, race/ethnicity, height, weight, smoking status, pack-years, COPD, scanner manufacturer, FEV1, other QES.

- GWAS results: *
 - 5 genetic variants for four QES
 - Apical QES: DRD1

Summary

Unsupervised learning of localized texture patterns for pulmonary emphysema

- ☐ Novel **unsupervised learning** of emphysema patterns on CT:
 - A standardized lung shape spatial mapping;
 - A two-stage learning framework.
- ☐ Applied on large COPD and controls yielded:
 - 10 highly-reproducible sLTPs;
 - Six quantitative emphysema subtypes, associated independently with distinct symptoms, lung function changes and mortality.
- ☐ Enables:
 - Novel definitions of emphysema subtypes;
 - CT-based emphysema-specific signatures (biomarkers)
 of the lungs;
 - May facilitate future study for understanding COPD and emphysema, and the design of personalized / gene / drug therapies.

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Other Evaluations:

- GWAS; 3 "hits" reproducible
- Extensive evaluation of sLTP reproducibility in MESA COPD (N = 317);
- Linking sLTP and standard emphysema subtypes in MESA COPD (N=317).

What's next?

 Quantitative airway tree subtyping

in COPD?

28

* COVID-19 vasculature

Acknowledgements

Collaborators

Elsa D. Angelini, Ph.D.

R. Graham Barr, M.D., Ph.D.

Heffner Biomedical Imaging Lab

Jie Yang (Ph.D. Student, 2019)

Xinyang Feng (Ph.D. student, 2019)

Yrjö Häme (Ph.D. student) Yu Gan (Post-doc) Thomas Vetterli (M.Sc. Intern)

Additional Collaborators

Columbia University Medical Center:

Pallavi P. Balte, Ph.D.

John H.M. Austin, M.D.

Benjamin M. Smith, M.D.

Yifei Sun, Ph.D.

Wei Shen, M.D.

Iowa University:

Eric A. Hoffman, Ph.D.

University of Virginia:

Ani Manichaikul, Ph.D.

And the MESA, SPIROMICS Investigators!

Heffner Biomedical Imaging Laboratory

https://hbil.bme.columbia.edu

Thank you!

Extra Slides

- Learn sLTPs in MESA COPD study:
 - N = 317 full-lung CT scans.

12 sLTPs discovered, ordered by average intensity

• Training ROI: %emph > 1%

Global label
$$H_g = [\%CLE, \%PLE, \%PSE, \%NE] = [P(L(x) = C_1), ..., P(L(x) = C_4)]$$

sLTP histogram $H_p = [\%sLTP_1, ..., \%sLTP_{12}, \%\widehat{NE}] = [P(F(x) = p_1), ..., P(F(x) = p_{13})]$
 $P(L(x) = C_i) = \sum_{k=1}^{13} P(L(x) = C_i | P(F(x) = p_k)) P(F(x) = p_k)$
 $P(L(x) = C_i) = \sum_{k=1}^{13} P(L(x) = C_i | P(F(x) = p_k)) P(F(x) = p_k)$

$$\begin{array}{c}
H_g = H_p A \\
A_{k,i} = \\
P(L(x) = C_i | F(x) = p_k)
\end{array}$$

GWAS results:

- 5 genetic variants for four QES
- Apical QES: DRD1

CNN Background

$$h_i^l = i$$
-th feature map in layer l

$$h_k^{l-1} = k$$
-th feature map in layer $l-1$

$$h_i^l = \sigma \cdot (\sum_k h_k^{l-1} * W_{ki}^l + b_i^l)$$

$$h^l = \sigma \cdot (\sum_k h^{l-1} W^l + b_l)$$

$$h^l = \sigma \cdot (\sum_k h^{l-1} W^l + b_l)$$

$$h^l = feature vector \in \mathbb{R}^Q$$
 in layer l
$$h^{l-1} = feature vector \in \mathbb{R}^P$$
 in layer l -1