Selective Prediction of Financial Trends with Hidden Markov Models

Yifu Huang

School of Computer Science, Fudan University huangyifu@fudan.edu.cn

COMP630049 Statistical Learning and Dimensionality Reduction Report, 2014

Outline

- Hidden Markov Models
- Selective Prediction
- Selective Hidden Markov Models
- 4 Experiment
- Discussion

Hidden Markov Models - Concept

- A generative probabilistic model with latent states, where state transitions and observation emissions are assumed to be Markov processes
- Given an observation sequence $O = \{o_1, o_2, ..., o_T\}$ (each $o_t \in U$) that is generated by a HMM λ , we associate O with a latent state sequence $S = \{s_1, s_2, ..., s_T\}$ (each $s_t \in Q$) that most likely produces O

Hidden Markov Models - Definition

- HMM λ can be formally defined as a quintuple $\{N, M, \pi, A, B\}$
 - N is the number of states; $Q = \{q_1, q_2, ..., q_N\}$
 - M is the number of observations; $U = \{u_1, u_2, ..., u_M\}$
 - π is the initial probability vector of states; $\pi_i = P(s_1 = q_i)$
 - A is the transition probability matrix of states
 - $a_{ii} = P(s_{t+1} = q_i | s_t = q_i)$
 - B is the observation emission probability matrix of states
 - $b_{ii}=P(o_t=u_i|s_t=q_i)$

Hidden Markov Models - Problem & Solution

- Problem 1: probability computation (compute $P(O|\lambda)$)
 - Solution: Forward Backward algorithm
- Problem 2: state annotation (maximize $P(S|\lambda, O)$)
 - Solution: Viterbi algorithm
- Problem 3: model training (maximize $P(O|\lambda)$)
 - Solution: Baum Welch algorithm

Selective Prediction - Definition

Not ignorance, but ignorance of ignorance is the death of knowledge

$$Y_{t+1} = \begin{cases} F(X_t), & \text{if } G(X_t) = 1\\ reject, & \text{if } G(X_t) = 0 \end{cases}$$

 A prediction framework that can qualify its own prediction results and reject the outputs when they are not confident enough

Selective Prediction - Evaluation

- Coverage $C = \frac{notREJECT}{ALL}$ Risk $R = \frac{ERROR}{notREJECT}$
- Risk-Coverage Curve

Selective Hidden Markov Models - Definition - pi

Add state label p_i to each state q_i

Definition

Given an observation sequence $O = \{o_1, o_2, ..., o_T\}$ (indicating historical financial trend), a relative label sequence $L=\{l_1, l_2, ..., l_T\}$ (indicating next-day financial trend) and a HMM λ , the state label p_i denotes the most probable label that state q_i should have. Formally,

$$p_i = \arg\max_{l = up, down} \sum_{t=1, l_t=l}^{T} \gamma_{ti}. \tag{1}$$

Above, $\gamma_{ti} = P(s_t = q_i | O, \lambda)$ denotes the probability that the HMM λ stays at state q_i at time t, which can be efficiently computed by the forward-backward procedure.

Selective Hidden Markov Models - Definition - vi

• Add empirical visit rate v_i to each state q_i

Definition

Given an observation sequence $O = \{o_1, o_2, ..., o_T\}$ (indicating historical financial trend) and a HMM λ , the empirical visit rate v_i denotes the fraction of time that the HMM λ spends at state q_i . Formally,

$$v_i = \frac{1}{T} \sum_{t=1}^{T} \gamma_{ti}. \tag{2}$$

Selective Hidden Markov Models - Definition - r_i

• Add empirical state risk r_i to each state q_i

Definition

Given an observation sequence $O = \{o_1, o_2, ..., o_T\}$ (indicating historical financial trend), a relative label sequence $L = \{l_1, l_2, ..., l_T\}$ (indicating next-day financial trend) and a HMM λ , the empirical state risk r_i denotes the rate of erroneous visits to state q_i . Formally,

$$r_i = \frac{\frac{1}{T} \sum_{t=1, l_t \neq p_i}^T \gamma_{ti}}{v_i}.$$
 (3)

Selective Hidden Markov Models - Definition - RS

- Furthermore, we sort all HMM states by their empirical state risks in descending order and record them as $Q_d = \{q_{d_1}, q_{d_2}, ..., q_{d_N}\}$ (for each j < k, $r_{d_j} \ge r_{d_k}$).
- The low-quality HMM states, also called reject states, constitute the reject subset RS. Predictions at those states are prevented.

Definition

Given a coverage bound C_B , we label the reject states sequentially until their cumulative empirical visit rate $\sum_{j=1}^K v_{d_j}$ exceeds 1- C_B . Formally, the reject subset RS is defined as

$$RS = \{q_{d_1}, q_{d_2}, ..., q_{d_K} | \sum_{j=1}^{K} v_{d_j} \le 1 - C_B, \sum_{j=1}^{K+1} v_{d_j} > 1 - C_B\}$$
 (4)

4□ > 4□ > 4 = > 4 = > = 1= 900

Selective Hidden Markov Models - Definition - q_h

Identify heavy state q_h

Definition

Given a visit bound V_B , state $q_{d_{K+1}}$ is identified as a heavy state q_h if its visit rate $v_{d_{K+1}} > V_B$.

• The heavy state q_h is the cause of coarseness problem, and it should be recursively refined in the training stage.

Selective Hidden Markov Models - Training

Selective Hidden Markov Models - Training - Refine

Selective Hidden Markov Models - Prediction

Experiment - Setup

- The data sequence in this experiment consisted of the 3000 S&P500 returns from 1/27/1999 to 12/31/2010
- Employe a walk-forward scheme in which the model is trained over the window of past W_p returns and then tested on the subsequent window of W_f "future" returns
 - $W_p = 2000$
 - $W_f = 50$
- Train and test using 30-fold crossvalidation, with each fold consisting of 10 random restarts

Experiment - Risk-Coverage Curve

(a) Error rate vs coverage bound

Discussion - Related Work

- Besides historical financial data, more and more additional indictors have been used to improve financial trend prediction
 - News reports [2][3]
 - Twitter mood [4][5]
 - Trading relationship [6]

The End

Thank you!

References I

- [1] Dmitry Pidan, Ran El-Yaniv: Selective Prediction of Financial Trends with Hidden Markov Models. NIPS 2011:855-863
- [2] Robert P. Schumaker, Hsinchun Chen: A Discrete Stock Price Prediction Engine Based on Financial News. IEEE Computer (COMPUTER) 43(1):51-56 (2010)
- [3] Xiaodong Li, Chao Wang, Jiawei Dong, Feng Wang, Xiaotie Deng, Shanfeng Zhu: Improving Stock Market Prediction by Integrating Both Market News and Stock Prices. DEXA 2011:279-293
- [4] Johan Bollen, Huina Mao, Xiao-Jun Zeng: Twitter mood predicts the stock market. J. Comput. Science (JOCS) 2(1):1-8 (2011)
- [5] Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li, Huayi Li, Xiaotie Deng: Exploiting Topic based Twitter Sentiment for Stock Prediction. ACL 2013:24-29

References II

• [6] Xiao-Qian Sun, Hua-Wei Shen, and Xue-Qi Cheng. Trading network predicts stock price. Scientific Reports, 4(3711):1–6 (2014)