Part-of-Speech Tagging: Neural Methods

Katharina Kann — CSCI/LING5832

- Traditional parts of speech:
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc.

- Traditional parts of speech:
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc.
 - Lots of names for this notion: Part of speech, lexical category, word class, morphological class, lexical tag...

- Traditional parts of speech:
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc.
 - Lots of names for this notion: Part of speech, lexical category, word class, morphological class, lexical tag...
 - Lots of debate within linguistics about the number, nature, and universality of these categories

- Sources of evidence
 - Morphological evidence
 - walk, walking, walked, walks
 - probably a verb

- Sources of evidence
 - Morphological evidence
 - walk, walking, walked, walks
 - probably a verb
 - Distributional evidence
 - The crash, A crash, Two crashes,
 The big crash...
 - probably a noun

Penn Treebank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%,&
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	44	left quote	or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ; – -
RP	particle	up, off			

POS Tagging

- The process of assigning a part of speech or lexical class marker to each word in a text.
- Often a useful first step in an NLP pipeline.

POS Tagging

- The process of assigning a part of speech or lexical class marker to each word in a text.
- Often a useful first step in an NLP pipeline.
- Fast and accurate taggers are widely available for many languages.
 - (Now we will learn how to make one!)

POS Tagging

- The process of assigning a part of speech or lexical class marker to each word in a text.
- The is our first example of a sequence labeling task:
 - Assigning a category label to each element of a sequence.

Recap from Lecture 07: More on RNNs

Recurrent Neural Networks

Input: $x_1, x_2, ..., x_T$ $h_i = \text{sigmoid}(W_h h_{i-1} + W_x x_i)$ $y = argmax(\text{softmax}(W_y h_T))$

Recurrent Neural Networks

 During backpropagation, since RNNs multiply the same matrix over and over, gradients vanish or explode.

- During backpropagation, since RNNs multiply the same matrix over and over, gradients vanish or explode.
- Cannot capture long-term dependencies (or learn much) with uninformative gradients!

- During backpropagation, since RNNs multiply the same matrix over and over, gradients vanish or explode.
- Cannot capture long-term dependencies (or learn much) with uninformative gradients!
- History gets forgotten over time.

The flights the airline was cancelling were full.

The flights the airline was cancelling were full.

The flights the airline was cancelling were full.

Solutions

 Gradient Clipping: Normalize the gradient of a parameter vector when its L2 norm reaches a certain value.

Solutions

- Gradient Clipping: Normalize the gradient of a parameter vector when its L2 norm reaches a certain value.
- Explicit memory cell with which a model can keep important long-term information.

Gated Recurrent Units (GRUs)

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Gated Recurrent Units (GRUs)

Update gate: controls how much of the previous hidden state to update

Gated Recurrent Units (GRUs)

Reset gate: controls how much of the previous hidden state to keep

- First proposed by Hochreiter and Schmidhuber (1997).
- Similar to the GRU, but some more parameters.
- Performance is usually extremely similar.

The repeating module in an LSTM contains four interacting layers.

$$g_t = tanh(U_g h_{t-1} + W_g x_t)$$

$$i_t = \sigma(U_i h_{t-1} + W_i x_t)$$

$$f_t = \sigma(U_f h_{t-1} + W_f x_t)$$

$$o_t = \sigma(U_o h_{t-1} + W_o x_t)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot tanh(c_t)$$

Visual Obtained from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/, J&M, Ch.9

The repeating module in an LSTM contains four interacting layers.

$$g_{t} = tanh(U_{g}h_{t-1} + W_{g}x_{t})$$

$$i_{t} = \sigma(U_{i}h_{t-1} + W_{i}x_{t})$$

$$f_{t} = \sigma(U_{f}h_{t-1} + W_{f}x_{t})$$

$$o_{t} = \sigma(U_{o}h_{t-1} + W_{o}x_{t})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot g_{t}$$

$$h_{t} = o_{t} \odot tanh(c_{t})$$

Add gate

Visual Obtained from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/, J&M, Ch.9

The repeating module in an LSTM contains four interacting layers.

$$g_t = tanh(U_g h_{t-1} + W_g x_t)$$

$$i_t = \sigma(U_i h_{t-1} + W_i x_t)$$

$$f_t = \sigma(U_f h_{t-1} + W_f x_t)$$

$$o_t = \sigma(U_o h_{t-1} + W_o x_t)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot tanh(c_t)$$

Forget gate

Visual Obtained from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/, J&M, Ch.9

The repeating module in an LSTM contains four interacting layers.

$$g_t = tanh(U_g h_{t-1} + W_g x_t)$$

$$i_t = \sigma(U_i h_{t-1} + W_i x_t)$$

$$f_t = \sigma(U_f h_{t-1} + W_f x_t)$$

$$o_t = \sigma(U_o h_{t-1} + W_o x_t)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot tanh(c_t)$$

Output gate

Visual Obtained from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/, J&M, Ch.9

How Do We Get a Sentence Representation?

- Apply the RNN to all words in a sequence.
- Use the last hidden vector as the representation of your sentence.
- The sentence representation is often called h.

Bidirectional Recurrent Neural Networks

- Most prominent one: BiLSTM
- Idea: Read the input from both sides.
 - Beginning isn't forgotten!
- For the final representation:
 - Concatenate the last hidden vectors of the two individual RNNs.
 - (What is the size of the final sentence representation computed by a bidirectional RNN?)

In-Class Exercise (Exercise 3 in Lecture 07)

- Assume that we want to classify the sentiment of tweets into positive, neutral, and negative.
- Design a neural network that can learn this task, given a large-enough training set.
- Which preprocessing steps do we need?
- Write down all dimensions explicitly. What is your output dimension?
- (Keep your architecture safe for later!)

In-Class Exercise (Exercise 3 in Lecture 07)

(Keep your architecture safe for later!)

In-Class Exercise (Exercise 3 in Lecture 07)

(Keep your architecture safe for later!)

RNNs for Sequence Labeling

Sequence Labeling with RNNs

- For sequence labeling, we don't exclusively use the last hidden state of the RNN
 - (Why?)

- For sequence labeling, we don't exclusively use the last hidden state of the RNN
 - (Why?)
- Instead, we assign a class to each hidden state
 - Use a feedforward layer and a sigmoid/ softmax function

J&M, Ch.9

J&M, Ch.9

```
Input: x_1, x_2, ..., x_T
h_i = \operatorname{sigmoid}(W_h h_{i-1} + W_x x_i)
y_i = \operatorname{argmax}(\operatorname{softmax}(W_y h_i))
```

```
Input: x_1, x_2, ..., x_T
h_i = \operatorname{sigmoid}(W_h h_{i-1} + W_x x_i)
y_i = \operatorname{argmax}(\operatorname{softmax}(W_y h_i))
```

 (What would be the formula to predict the label for sequence labeling?)

```
Input: x_1, x_2, ..., x_T
h_i = \operatorname{sigmoid}(W_h h_{i-1} + W_x x_i)
y_i = \operatorname{argmax}(\operatorname{softmax}(W_y h_i))
```

- we = [1, 2], like = [0.5, 0.1], books = [0.2, 1]
- W_h = [[0.4]], W_x = [[0.1, 0.14]], W_y = [[0.3], [0.2], [0.01]], h_0
 = [0]
- Compute the class of "we"!

```
Input: x_1, x_2, ..., x_T
h_i = \operatorname{sigmoid}(W_h h_{i-1} + W_x x_i)
y_i = \operatorname{argmax}(\operatorname{softmax}(W_y h_i))
```

- we = [1, 2], like = [0.5, 0.1], books = [0.2, 1]
- W_h = [[0.4]], W_x = [[0.1, 0.14]], W_y = [[0.3], [0.2], [0.01]], h_0
 = [0]
- Compute the class of "we"!
- $h_1 = sigmoid([0] + [0.1 + 0.28]) = sigmoid([0.38]) = 0.59$
- y_1 = argmax(softmax([0.3*0.59, 0.2*0.59, 0.01 * 0.59])) =
 argmax(softmax([1.77, 1.18, 0.0059])) = argmax([0.58, 0.32, 0.1])

```
Input: x_1, x_2, ..., x_T
h_i = \operatorname{sigmoid}(W_h h_{i-1} + W_x x_i)
y_i = \operatorname{argmax}(\operatorname{softmax}(W_y h_i))
```

- we = [1, 2], like = [0.5, 0.1], books = [0.2, 1]
- W_h = [[0.4]], W_x = [[0.1, 0.14]], W_y = [[0.3], [0.2], [0.01]], h_0
 = [0]
- Compute the class of "we"!
- $h_1 = sigmoid([0] + [0.1 + 0.28]) = sigmoid([0.38]) = 0.59$
- y_1 = argmax(softmax([0.3*0.59, 0.2*0.59, 0.01 * 0.59])) = argmax(softmax([1.77, 1.18, 0.0059])) = argmax([0.58, 0.32, 0.1])

In-Class Exercise 2

```
Input: x_1, x_2, \dots, x_T
h_i = \operatorname{sigmoid}(W_h h_{i-1} + W_x x_i)
y_i = \operatorname{argmax}(\operatorname{softmax}(W_y h_i))
```

- \bullet we = [1, 2], like = [0.5, 0.1], books = [0.2, 1]
- W_h = [[0.4]], W_x = [[0.1, 0.14]], W_y = [[0.3], [0.2], [0.01]], h_0 = [0]
- $h_1 = sigmoid([0] + [0.1 + 0.28]) = sigmoid([0.38]) = 0.59$
- y_1 = argmax(softmax([0.3*0.59, 0.2*0.59, 0.01 * 0.59])) =
 argmax(softmax([1.77, 1.18, 0.0059])) = argmax([0.58, 0.32, 0.1])
- Compute the classes of "like" and "books"!

Hierarchical LSTMs

- Until now, we considered only word-level information for (neural) POS tagging
- Character information can be beneficial!

- Until now, we considered only word-level information for (neural) POS tagging
- Character information can be beneficial!
 - employer, runner, worker, ...

- Until now, we considered only word-level information for (neural) POS tagging
- Character information can be beneficial!
 - employer, runner, worker, ...
 - happiness, sadness, richness...

- Until now, we considered only word-level information for (neural) POS tagging
- Character information can be beneficial!
 - o employer, runner, worker, ...
 - happiness, sadness, richness...
 - helpful, joyful, cheerful, ...

- We want to use this information for POS tagging
- How can we do that?

- We want to use this information for POS tagging
- How can we do that?
 - RNN over characters

- We want to use this information for POS tagging
- How can we do that?
 - RNN over characters
 - CNN over characters

- We want to use this information for POS tagging
- How can we do that?
 - RNN over characters
 - CNN over characters
 - Two RNNs: one over characters and one over words!

Hierarchical RNN for POS Tagging

From Plank et al., 2016

Hierarchical RNN for POS Tagging

 Concatenate last hidden states of the character-level RNN with the word embeddings!

From Plank et al., 2016

Other Sequence Labeling Tasks in NLP

Named Entity Recognition

- Named entities are spans in a text that correspond to names of people, places or organizations:
 - Barack Obama
 - CNN
 - Donald Trump Jr.
- Task: Find named entities in a given text
 - This required finding spans which correspond to named entities

IOB Encoding

- Label token with
 - B: beginning of span of interest
 - I: inside of span of interest
 - O: "outside", not part of the span of interest

Named Entity Recognition

(9.13) United cancelled the flight from Denver to San Francisco.

B

O O O B

O B I

J&M, Ch.9

Named Entity Recognition

(9.13) United cancelled the flight from Denver to San Francisco.
 B O O O O B O B I
 J&M, Ch.9
 (9.14) United cancelled the flight from Denver to San Francisco.
 B-ORG O O O B-LOC O B-LOC I-LOC
 J&M, Ch.9

We can encode more detail!

More Sequence Labeling Tasks

- Morphological tagging
- Language identification for code-switched text
- Constituency parsing
- ...

More Sequence Labeling Tasks

- Morphological tagging
- Language identification for code-switched text
- Constituency parsing

• ...

Figure 2: An example of a binarized constituency tree, linearized both applying absolute and relative scales.

Wrapping up

- Discussed today:
 - Recap: RNNs
 - RNNs for sequence labeling tasks
 - Hierarchical RNNs

On Wednesday: Training neural networks