

Neural Network

Human brain is the most sophisticated intelligence system so far. Can we create <u>algorithms to model the brain neural network</u>?

Neural Network

- Invented to mirror the function of the brain.
- Two resurgences:
 - 1980's: development of backpropagation
 - 2000's:
 - Improved design: CNN, RNN, GAN, ...
 - Techniques of training: <u>unsupervised pre-training...</u>
 - Increased computing power: GPU computation
 - Big Data
- Getting a fancy name: <u>Deep Learning</u>

A series of techniques to construct neural networks and to facilitate their learning processes.

Neuron Model

g(z) is any form of an activation function

Neuron Model

Neuron Model

Sigmoid

Neuron Model: And Logic

$$x_1 = 0 \text{ or } 1, x_2 = 0 \text{ or } 1$$
=1, if $x_1 = x_2 = 1$

y
=0, otherwise

$y = Sigmoid(w_1*x_1 + w_2*x_2)$	+ b)

X_1	X_2	у
0	0	0
0	1	0
1	0	0
1	1	1

Neuron Model: And Logic

 $x_1 = 0 \text{ or } 1, x_2 = 0 \text{ or } 1$ =1, if $x_1 = x_2 = 1$ y
=0, otherwise

X_1	X_2	Wx+b	У
0	0	-15	0
0	1	-5	0
1	0	-5	0
1	1	5	1

Neuron Model: NOR Logic

 $y = Sigmoid(w_1 * x_1 + w_2 * x_2 + b)$

X_1	X_2	Wx+b	У
0	0	25	1
0	1	-10	0
1	0	-15	0
1	1	-50	0

Neuron Model: OR Logic

 $y = Sigmoid(w_1 * x_1 + w_2 * x_2 + b)$

1	2		
0	0	-12	0
0	1	6	1
1	0	10	1
1	1	28	1

Wx+b

Neuron Model: XNOR Logic

X_1	X_2	У
0	0	1
0	1	0
1	0	0
1	1	1

This is impossible with one single neuron!

$$y = Sigmoid(w_1 * x_1 + w_2 * x_2 + b)$$

Neural Network: XNOR Logic

one layer and finite parameters.

X_1	X ₂	$h_{_1}$	h ₂	У
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

Neural networks could approximate complex functions by adding hidden layers. <u>Universal approximation theorem</u>: a NN could approximate any function with

Example of a feedforward neural network

Hidden layers are usually hard to explain.

Yann Lecun, Facebook AI research, father of the convolutional neural network (CNN)

Example: "Is this an 8?"

The deeper, the better? How deep is "deep"?

ImageNet Classification top-5 error (%)

Training NN: How Does A NN Learn?

Cost of classification models

Binary

- One sample: $-[y^{(i)} * log(h_{\theta}(x^{(i)})) + (1 y^{(i)}) * log(1 h_{\theta}(x^{(i)}))]$
- Many samples: $-\frac{1}{m}\sum_{i=1}^{m}[y^{(i)}*log(h_{\theta}(x^{(i)}))+(1-y^{(i)})*log(1-h_{\theta}(x^{(i)})]$ Regularization term: $\frac{\lambda}{2m}\sum_{i=1}^{n}\theta_{j}^{2}$

Why regularization?

Intuition

Suppose we penalize and make θ_3 , θ_4 really small.

Cost of classification models

Binary

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} * log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) * log(1 - h_{\theta}(x^{(i)}))] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Loss of incorrect predictions Making your model more accurate

Loss of model complexity Prevent overfitting

Cost of classification models

Multi-class classification

$$J(\theta) = -\frac{1}{m} \sum_{k=1}^{K} \sum_{i=1}^{m} [y_k^{(i)} * log(h_{\theta}(x^{(i)}))_k + (1 - y_k^{(i)}) * log(1 - h_{\theta}(x^{(i)}))_k] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \frac{\lambda}{2m} \sum_{i=1}^{m} (y_i^{(i)} * log(h_{\theta}(x^{(i)}))_k + (1 - y_k^{(i)}) * log(1 - h_{\theta}(x^{(i)}))_k] + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2 \frac{\lambda}{2$$

Loss of incorrect predictions Making your model more accurate

Loss of model complexity Prevent overfitting

Training NN: Gradient Descent

Idea: minimize cost function

J(w) decreases fastest when w moves the direction of negative gradient

With multiple hidden layers, it's hard to get an analytic form of a neural net, let alone its gradient. Backpropagation is an approach to estimating gradient numerically.

Step 1: Forward propagation

With multiple hidden layers, it's hard to get an analytic form of a neural net, let alone its gradient. Backpropagation is an approach to estimating gradient numerically.

Step 2: Calculate error of y

$$\Delta y = y_{truth} - y_{predition}$$

With multiple hidden layers, it's hard to get an analytic form of a neural net, let alone its gradient. Backpropagation is an approach to estimating gradient numerically.

Step 3: Calculate gradients of edges connected to y

With multiple hidden layers, it's hard to get an analytic form of a neural net, let alone its gradient. Backpropagation is an approach to estimating gradient numerically.

Step 4: Calculate errors of hidden units

With multiple hidden layers, it's hard to get an analytic form of a neural net, let alone its gradient. Backpropagation is an approach to estimating gradient numerically.

Step 5: Calculate gradients of edges connected to the hidden layer

Training NN: A Bag of Tricks (Geoffrey Hinton)

- Unsupervised pre-training: better initial parameters
- Momentum method: more efficient updates
- Batch normalization: prevent gradient vanishing/explosion
- Stochastic gradient descent: dealing with large dataset
- Dropout: prevent overfitting
- Early termination: prevent overfitting

•

Python libraries for implementation

Example: celltype predictor

Sinlge-cell RNA-seq data from 10xGenomics PBMC sample from healthy donors


```
tf.reset default graph()
norm = True
n feature = train x.shape[1]
xs = tf.placeholder(tf.float32, [None, n feature])
ys = tf.placeholder(tf.float32, [None, 9])
kp 1 = tf.placeholder(tf.float32) # keep prob
                                                      TensorFlow
kp 2 = tf.placeholder(tf.float32) # keep prob
# Fully-connected layer 1
W fc1 = weight variables([n feature, 200])
b fc1 = bias variables([200])
h fc1 = tf.nn.relu(tf.matmul(xs, W fc1)+b fc1)
h fc1 drop = tf.nn.dropout(h fc1, kp 1)
if norm:
    fc mean, fc var = tf.nn.moments(
        h fc1 drop,
        axes=[0],
    scale = tf.Variable(tf.ones([n feature]))
    shift = tf.Variable(tf.zeros([n feature]))
    epsilon = 0.001
   h fcl drop = (h fcl drop - fc mean)/tf.sqrt(fc var+epsilon)
# Fully-connected layer 2
W fc2 = weight variables([200, 100])
b fc2 = bias variables([100])
h fc2 = tf.nn.relu(tf.matmul(h fc1 drop, W fc2)+b fc2)
h fc2 drop = tf.nn.dropout(h fc2, kp 2)
if norm:
    fc mean, fc var = tf.nn.moments(
        h fc2 drop,
        axes=[0],
    scale = tf.Variable(tf.ones([n feature]))
    shift = tf.Variable(tf.zeros([n feature]))
    epsilon = 0.001
   h fc2 drop = (h fc2 drop - fc mean)/tf.sqrt(fc var+epsilon)
# Fully-connected layer 3
W fc3 = weight variables([100, 9])
b fc3 = bias variables([9])
h fc3 = tf.nn.relu(tf.matmul(h fc2 drop, W fc3)+b fc3)
prediction = tf.nn.softmax(h fc3)
```

Example: celltype predictor

Sinlge-cell RNA-seq data from 10xGenomics PBMC sample from healthy donors

Feedforward neural net with two hidden layers

Types of NN: Autoencoder

Dimension reduction by autoencoder

Hinton & Salakhutdinov, Science, 2006

Types of NN: Generative Adversarial Networks (GAN)

Types of NN: Convolutional Neural Net (CNN)

CNN is the most powerful approach for image recognition so far.

Visual system

V1 cortex tested in this experiment was only active in response to one simple pattern.

Many <u>identical cells</u> detect the same pattern, which are connected to different parts of the retina.

Convolutional Neural Net

Why not fully connected?

Parameters for one single layer: 50*50*20*20 = 1 million!

1 _{×1}	1_×0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Averaging neighbors blurs the figure

Taking difference with neighbors detects edges

Pooling:

- 1. Reduces dimensions
- 2. Allow positional variation

Regions of interest

Convolution (k=20, w=4)
Pooling (w=4)

Convolution (k=50, w=2)
Pooling (w=4)

Convolution (k=20, w=1)

Fully connected (n=50)

Sigmoid output (n=2)

Regularization Parameters:

Dropout proportion

Layer 2: 20% Layer 4: 20% Layer 5: 40%

All other layers: 0%

	Training	Validation	Testing
Accuracy	93.1%	93.7%	92.1%

Input transformation

Simulation_1: learning motif sequence

		Training	Validation	Testing
Fixed position	No mutation	0.00%	0.05%	0.00%
	2/8 mutations	0.57%	0.65%	0.57%
	4/8 mutations	5.31%	5.90%	6.95%
	6/8 mutations	47.52%	47.2%	49.98%

Simulation_1.1: learning motif sequence and detect mutations

		Training	Validation	Testing
Fixed position	1/8 mutation	0.07%	0.00%	0.08%
	1/8 mutation [25, 75]	0.07%	0.00%	0.13%

Simulation_2: learning motif position

Simulation_3: testing positional flexibility

		Training	Validation	Testing
Flexibility	Region size: 50bp	0.14%	0.03%	0.03%
	Region size: 100bp	0.11%	0.08%	0.15%

Conclusion from 1-3:

CNN is able to learn both sequence and positional information, while allowing positional flexibility

Simulation_4: mixture

		Training	Validation	Testing
Mixture	2/8 mutations + 50bp flexible region	9.608333%	9.975000%	9.125000%
Fixed position	2/8 mutations	0.57%	0.65%	0.57%

Better alignments of regulatory sequences is helpful for feature detection

Simulation_5: learning multiple motifs

		Training	Validation	Testing
Multiple motifs	10	0.13%	0.05%	0.20%
	20	0.74%	0.60%	0.82%
	40	1.25%	1.25%	1.93%
	80	28.76%	22.15%	23.05%
	20 motifs + 50bp region + 1/8 mutations	39.80%	43.25%	43.88%

Summary

- Artificial intelligence should be better than human for reading and understanding biological data.
- Implementing deep learning or training a NN is easier than it seems to be (but harder than understanding it).
- "It's not who has the best algorithm that wins. It's who has the most data."

Andrew Ng