Mathe 26.01.2021

Abiturprüfung 2017

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Gegeben ist die Schar der in $\mathbb R$ definierten Funktionen f_a durch die Funktionsgleichung

$$f_a(x) = x^2 \cdot e^{-ax}$$
 mit $a > 0$.

Der Graph von f_a wird mit G_a bezeichnet

a) (1)

• Gegeben: P(1|0.5)

ullet Ansatz: $f_a(1)=0.5$

$$0.5 = 1 \cdot e^{-a}$$

$$a = -\ln 0.5$$

a) (2)

Gesucht: Extrema

Nebenrechnung: $f_a^\prime(x)$ mithilfe der Produktregel

$$f_a'(x) = f_{a1}'(x) \cdot f_{a2}(x) + f_{a1}(x) \cdot f_{a2}'(x) \ f_{a1}(x) = x^2$$

$$f_{a1}(x) = x^2$$

$$f_{a1}^{\prime}(x)=2x$$

$$f_{a2}(x)=e^{-ax}$$

$$f_{a2}'(x) = -ae^{-ax}$$

$$f_a'(x) = 2xe^{-ax} - ax^2e^{-ax}$$

$$f_a'(x) = x \cdot e^{-ax} \cdot (2 - ax)$$

Notwendige Bed.: $f_a^\prime(x)=0$

$$0 = x \cdot e^{-ax} \cdot (2 - ax)$$

Satz vom Nullprodukt

$$x = 0$$

$$2 - ax = 0$$
$$x = \frac{2}{a}$$

• Nullstellen liegen bei: $x \in \{0; \frac{2}{a}\}$

Koordinaten der Extremstellen

$$f_a(0) = 0 \ f_a(rac{2}{a}) = (rac{2}{a})^2 e^{-2}$$

Hinreichende Bed.: $f_a'(x) = 0 \land f_a''() \neq 0$

$$f_a''(0) = 2$$

 $f_a''(\frac{2}{a}) = -2 \cdot e^{-2}$

- $\bullet \quad \text{Tiefpunkt} \ T(0|0) \\$
- Hochpunkt $H(\frac{2}{a}|(\frac{2}{a})^2e^{-2})$

a) (3)

Der Hochpunkt von G_a liegt immer im ersten Quadranten, da sofern die Bedingung a>0 erfüllt wird, sowohl x_1 , als auch x_2 immer positiv sind.

Da a in x_1 und in x_2 im Nenner steht ist ein größerer Wert von a mit kleineren Werten >0 für x_1 und x_2 verbunden.

$$egin{aligned} a
ightarrow \infty &\Rightarrow H_{x_1}
ightarrow 0 \ a
ightarrow \infty &\Rightarrow H_{x_2}
ightarrow 0 \end{aligned}$$

a) (4)

 $\bullet~$ Um g(x) zu bilden ist es möglich den Hochpunkt in der Funktion auszuschreiben

$$f_a(\frac{2}{a}) = (\frac{2}{a})^2 e^{-2}$$

• hier kann nun $\frac{2}{a}$ durch x ersetzt werden

$$x=rac{2}{a} \ f_H(x)=x^2e^{-2}$$

ich habe die Funkion von f_a zu f_H umbenannt, da diese neue Funktion kein Schar mehr ist und nicht dem ursprünglichen $f_a(x)$ entspricht. (Sie können mir gerne erklären, wie ich das richtig zu schreiben habe)

• und schon ist g(x) gebildet

$$f_H(x) = g(x)$$

• um nun zu beweisen, dass diese Funktion auch für den Tiefpunkt funktioniert, kann dieser in die Funktion einfach eingesetzt werden

$$g(0)=rac{0^2}{e^2}=0$$

ullet in der Tat, g(x) beinhaltet alle Extrempunkte von G_a

b) (1)

• Ansatz: Funktion für die Fläche des Dreiecks aufstellen und das Maximum bestimmen

Dreickesflächenfunktion mit Grundseite b und Höhe $f_{0.2}(b)$

$$d(x) = 0.5 \cdot b \cdot f_{0.2}(b) \ d(x) = 0.5 \cdot b \cdot b^2 \cdot e^{-0.2b} = 0.5b^3 \cdot e^{-0.2b}$$

Maximum mithilfe des GTR bestimmen. (GTR->GRAPH->MAX)

$$b = 15$$

Grenzwerte überprüfen

$$d(0) = 0$$

 $d(100) = 1.03 \cdot 10^{-3}$

Flächeninhalt bestimmen

$$d(15) = 0.5(15)^3 \cdot e^{-0.2 \cdot 15} = 1687.5 \cdot e^{-3} \approx 84.016$$

b) (2).1

ullet Ansatz: Integral für $G_{0.2}$ von 0 bis p

$$\int_0^p f_{0.2}(x) dx$$

$$F_{0.2}(x) = -(5x^2 + 50x + 250) \cdot e^{\frac{-x}{5}}$$

$$egin{aligned} \int_0^p f_{0.2}(x) dx &= F_{0.2}(p) - F_{0.2}(0) \ \int_0^p f_{0.2}(x) dx &= -(5p^2 + 50p + 250) \cdot e^{rac{-p}{5}} + 250 \end{aligned}$$

b) (2).2

• $(5p^2+50p+250)$ ist durch die gerade größte Potenz und die 250 immer positiv o $0=5p^2+50p+250$ hat keine Lösungen, weswegen es nicht 0 sein kann

ullet $e^{rac{-p}{5}}$ ist immer positv, da e^x immer positiv ist

•
$$(-) \cdot (+) \cdot (+) + 250 = 250 + (-) < 250$$

c) (1)

Der Graph von k ist eine gespiegelte und (um den Faktor 0.3) gestauchte Abwandlung des Graphen G.

c) (2)

 • Ansatz:
$$|\overline{AB}| + |\overline{BC}| + |\overline{CD}| + |\overline{DE}|$$

Berechnung von $|\overline{BC}|$

$$k(5) = -0.3 \cdot f_{0.2}(5) \approx -2.759$$

 $k(10) = -0.3 \cdot f_{0.2}(10) \approx -4.06$
 $|\overline{BC}| = \sqrt{(10-5)^2 + (k(10) - k(5))^2} \approx 5.166$

Berechnung der Länge

$$|\overline{AB}|+|\overline{BC}|+|\overline{CD}|+|\overline{DE}| pprox 5.71+5.17+5.05+5.13=21.06$$

c)(3)

Die Genauigkeit dieser Metodik ist durch die Abstände und Anzahl der Punkte zu verändern. Mehr Punkte mit kleineren Abständen führen zu höherer Genauigkeit.