## 1. Fertility Dataset Logistic Regression

e.1 How can I measure the performance of my model?

Accuracy:

Formula: Accuracy = Number of Correct Predictions/Total Number of Prediction

Confusion Matrix:

A confusion matrix is a table with rows and columns representing the actual and predicted classes, respectively. It contains four terms: True Positive (TP): Correctly predicted positive instances. True Negative (TN): Correctly predicted negative instances. False Positive (FP): Incorrectly predicted positive instances (Type I error). False Negative (FN): Incorrectly predicted negative instances (Type II error).

Precision:

Formula: Precision = TP/TP+FP

Recall (also known as Sensitivity or True Positive Rate): Formula: Recall= TP/TP+FN

F1 Score:

Formula: F1 Score=2× Precision\*Recall/Precision+Recall

ROC Curve:

Plot the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings. TPR (Recall) = TP/TP+FN FPR = FP/FP+TN

Area Under the ROC Curve (AUC):

The area under the ROC curve provides an aggregate measure of performance across all possible classification thresholds. A perfect classifier has an AUC of 1, while a purely random classifier has an AUC of 0.5.

Log Loss (Logarithmic Loss): Quantifies the accuracy of a probabilistic model. Measures the difference between predicted probabilities and actual outcomes.

Next steps: Generate code with dataset

|   | Season | Age  | Childhood<br>Diseases | Accident or<br>Serious<br>Trauma | Surgical<br>Intervention | High<br>Fevers in<br>Last Year | Frequency of<br>Alcohol<br>Consumption | Smoking<br>Habit | Number of<br>Hours Spent<br>Sitting Per<br>Day | Diagnosis | 11. |
|---|--------|------|-----------------------|----------------------------------|--------------------------|--------------------------------|----------------------------------------|------------------|------------------------------------------------|-----------|-----|
| 0 | -0.33  | 0.69 | 0                     | 1                                | 1                        | 0                              | 0.8                                    | 0                | 0.88                                           | N         |     |
| 1 | -0.33  | 0.94 | 1                     | 0                                | 1                        | 0                              | 0.8                                    | 1                | 0.31                                           | 0         |     |
| 2 | -0.33  | 0.50 | 1                     | 0                                | 0                        | 0                              | 1.0                                    | -1               | 0.50                                           | N         |     |
| 3 | -0.33  | 0.75 | 0                     | 1                                | 1                        | 0                              | 1.0                                    | -1               | 0.38                                           | N         |     |

from sklearn.model\_selection import train\_test\_split
from sklearn.preprocessing import LabelEncoder
# Encode the 'Diagnosis' column to numerical format
label\_encoder = LabelEncoder()
dataset['Diagnosis'] = label\_encoder.fit\_transform(dataset['Diagnosis'])
# Split the dataset into features and target variable
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
# Split the dataset into training and test sets
X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2,random\_state=42)
# Verify the shapes of the splits
(X\_train.shape, X\_test.shape, y\_train.shape, y\_test.shape)
((80, 9), (20, 9), (80,), (20,))

View recommended plots

```
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score
from sklearn.metrics import roc auc score, roc curve, log loss
import numpy as np
import matplotlib.pyplot as plt
# Initialize and train the logistic regression model
log reg = LogisticRegression(max iter=1000, random state=42)
log reg.fit(X train, y train)
# Predicting the Test set results
y_pred = log_reg.predict(X_test)
y_pred_proba = log_reg.predict_proba(X_test)[:, 1]
# Calculate the evaluation metrics
metrics = {
'Accuracy': accuracy score(y test, y pred),
'Confusion Matrix': confusion matrix(y test, y pred),
'Precision': precision score(y test, y pred, zero division=0),
'Recall': recall score(y test, y pred),
'F1 Score': f1 score(y test, y pred),
'ROC AUC': roc auc score(y test, y pred proba),
'Log Loss': log_loss(y_test, y_pred_proba)
# ROC Curve
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
# Plotting ROC Curve
plt.figure()
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % metrics['ROC AUC'])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic')
plt.legend(loc="lower right")
plt.show()
metrics
```



Text(95.722222222221, 0.5, 'Actual')



## 2. Naive\_Bayesian Breast Cancer

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score,recall_score, f1_score

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score,recall_score, f1_score
# Load the new dataset for Breast Cancer Data
data_path ='BreastCancerData.csv'
breast_cancer_data = pd.read_csv(data_path)
# Display the first few rows of the dataset to understand its structure
breast_cancer_data.head()
```

|        | mean_radius  | mean_texture     | mean_perimeter | mean_area | mean_smoothness     | diagnosis | $\blacksquare$ |
|--------|--------------|------------------|----------------|-----------|---------------------|-----------|----------------|
| 0      | 17.99        | 10.38            | 122.80         | 1001.0    | 0.11840             | 0         | 11.            |
| 1      | 20.57        | 17.77            | 132.90         | 1326.0    | 0.08474             | 0         |                |
| 2      | 19.69        | 21.25            | 130.00         | 1203.0    | 0.10960             | 0         |                |
| 3      | 11.42        | 20.38            | 77.58          | 386.1     | 0.14250             | 0         |                |
| 4      | 20.29        | 14.34            | 135.10         | 1297.0    | 0.10030             | 0         |                |
| xt ste | ps: Generate | e code with brea | st_cancer_data | Viev      | v recommended plots | 3         |                |
|        |              |                  |                |           |                     |           |                |

```
Next
# Split the dataset into features (X) and the target variable (y)
X = breast cancer data.drop('diagnosis', axis=1).values
v = breast cancer data['diagnosis'].values
# Split the dataset into training and test sets
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
# Initialize and train the Naive Bayes classifier
nb classifier = GaussianNB()
nb classifier.fit(X train, y train)
# Predicting the Test set results
y_pred = nb_classifier.predict(X_test)
# Calculate evaluation metrics
accuracy = accuracy_score(y_test, y_pred)
confusion mat = confusion matrix(y test, y pred)
precision = precision score(y test, y pred, zero division=0)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
# Print the evaluation metrics
print(f'Accuracy: {accuracy}')
print(f'Confusion Matrix: \n{confusion_mat}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1 Score: {f1}')
     Accuracy: 0.9385964912280702
     Confusion Matrix:
    [[36 7]
     [ 0 71]]
    Precision: 0.9102564102564102
     Recall: 1.0
     F1 Score: 0.953020134228188
# plot the confusion matrix
plt.figure(figsize=(10,7))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d')
plt.xlabel('Predicted')
plt.ylabel('Actual')
```