MA1521 CALCULUS FOR COMPUTING

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16 Tel: 6516-2937

Chapter 5: Optimization	2
Extreme Values	. 3
Local Extreme Values	. 5
Critical Point	. 8
Examples	12
Absolute Extreme on Closed Bounded Region	15
Extreme Values with Restriction	22
Lagrange Multiplier	24
Lagrange Multiplier of More Variables	28
Extreme Values with Two Constraints	21

Extreme Values

- One-variable: Let y = f(x) be a function with domain D.
 - $\circ \quad f \text{ has a global (absolute) maximum at } c \in D$

$$\Leftrightarrow f(c) > f(x) \text{ for all } x \in D.$$

 $\circ \quad f$ has a global (absolute) minimum at $c \in D$

$$\Leftrightarrow f(c) \leq f(x) \text{ for all } x \in D.$$

• Maximum and Minimum of Two-Variable Function.

Let z = f(x, y) be a function with domain $D \subseteq \mathbb{R}^2$.

 $\circ f$ has a global (absolute) maximum at $(a,b) \in D$

$$\Leftrightarrow f(a,b) \ge f(x,y)$$
 for all $(x,y) \in D$.

 $\circ \quad f$ has a global (absolute) minimum at $(a,b) \in D$

$$\Leftrightarrow f(a,b) \leq f(x,y) \text{ for all } (x,y) \in D.$$

3/33

Extreme Values

• Extreme Value Theorem for Two-Variable Function:

Let z = f(x, y) be a continuous function defined on a closed, bounded domain $D \subseteq \mathbb{R}^2$.

 \circ Then f attains the (absolute) extreme values, i.e.,

There exist points $(a,b) \in D$ and $(c,d) \in D$ such that

- $f(a,b) \le f(x,y) \le f(c,d)$ for all $(x,y) \in D$.
- Question. Suppose z = f(x, y) is continuous on a closed, bounded domain D.
 - o What are the (absolute) extreme values?
 - It may be obtained at the boundary point of the domain; or
 - It may be obtained in the interior of the domain.

Local Extreme Values

• Local Extreme Values for Two-Variable Functions.

Let z=f(x,y) be a function with domain $D\subseteq\mathbb{R}^2.$

- $\circ \quad f$ has a local (relative) maximum at $(a,b) \in D$
 - $\Leftrightarrow f(a,b) \ge f(x,y)$ for all (x,y) in an open region containing (a,b).
- $\circ \quad f$ has a local (relative) minimum at $(a,b) \in D$

 $\Leftrightarrow f(a,b) \leq f(x,y) \text{ for all } (x,y) \text{ in an open region containing } (a,b).$

5/33

Local Extreme Values

• Recall the Fermat's Theorem of one-variable function: If y = f(x) has a local extreme value at c, and if f'(c) exists, then f'(c) = 0.

 \circ If f has a local extreme value at c, then the tangent line to y=f(x) at c, if exists, must be horizontal.

Local Extreme Values

- Suppose y = f(x, y) has a local extreme value at (a, b).
 - It is expected that
 - The tangent plane to z = f(x, y) at (a, b), if exists, must be horizontal.
 - \circ Recall the tangent plane at (a, b):
 - $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$.

It is horizontal $\Leftrightarrow f_x(a,b) = f_y(a,b) = 0$.

• First Derivative Test for Local Extreme Values.

Suppose z = f(x, y) has a local extreme value at (a, b).

 \circ If $f_x(a,b)$ and $f_y(a,b)$ exist, then

$$f_x(a,b) = f_y(a,b) = 0.$$

7/33

Critical Point

- **Definition**. Let z = f(x, y) be a function with domain D. Then $(a, b) \in D$ is called a **critical**
 - $f_x(a,b) = f_y(a,b) = 0$, or
 - \circ at least one of $f_x(a,b)$ and $f_y(a,b)$ does not exist.
- Therefore, if z = f(x, y) at a local extreme value at (a, b), then (a, b) is a critical point of f.
- Example. $f(x,y) = x^3 y^3 2xy + 6$.

 - $\begin{array}{ll} \circ & \text{Let } f_x = 3x^2 2y = 0. \text{ Then } 3x^2 = 2y. \\ \circ & \text{Let } f_y = -3y^2 2x = 0. \text{ Then } 3y^2 = -2x. \end{array}$
 - $-2x = 3y^2 = 3\left(\frac{3}{2}x^2\right)^2 = \frac{27}{4}x^4 \Rightarrow x^4 = -\frac{8}{27}x.$
 - $\circ \quad x = 0 \Rightarrow y = 0; \quad x = -\frac{2}{3} \Rightarrow y = \frac{4}{3}.$

Hence, f has two critical points (0,0) and $\left(-\frac{2}{3},\frac{2}{3}\right)$.

Second Derivative Test

- Question. If z = f(x, y) has a local extremal value at (a, b), then (a, b) is a critical point.
 - \circ Suppose (a,b) is a critical point of z=f(x,y). How can we determine whether f has a local maximum or minimum at (a,b)?
- **Definition**. Let (a, b) be a critical point of z = f(a, b).
 - \circ f is said to have a saddle point at (a,b) if f does not a local extremal value at (a,b).

9/33

Second Derivative Test

 $\bullet \quad \hbox{Consider a one-variable function } y=f(x)\hbox{:}$ Suppose f''>0 on interval I. Then f is concave up.

- $\circ \quad \text{If } f'(c) = 0 \text{ at some } c, \\ \text{then the tangent line of } f \text{ at } c \text{ is } y = f(c).$
 - Since f is concave up, the graph of f lies above y=f(c).
 - In other words, f(x) > f(c) for all $x \neq c$.
 - \therefore f has the minimum at c.

Second Derivative Test

Second Derivative Test for One-Variable Function.

Suppose f'(c) = 0.

- $f''(c) > 0 \Rightarrow f$ has a local minimum at c;
- $f''(c) < 0 \Rightarrow f$ has a local maximum at c.
- **Definition**. The **Hessian** of z = f(x, y) is

$$\circ H(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - f_{xy}^2.$$

• Second Derivative Test for Two-Variable Function.

Suppose $f_x(a,b) = f_y(a,b) = 0$.

- \circ H(a,b) > 0 and $f_{xx}(a,b) > 0 \Rightarrow$ local min at (a,b);
- \circ H(a,b) > 0 and $f_{xx}(a,b) < 0 \Rightarrow \text{local max at } (a,b);$
- \circ $H(a,b) < 0 \Rightarrow$ saddle point at (a,b).

11/33

Examples

- $f(x,y) = x^3 y^3 2xy + 6$.
 - $\begin{array}{ll} \circ & \text{It has two critical numbers } (0,0) \text{ and } \left(-\frac{2}{3},\frac{2}{3}\right). \\ \circ & f_x = 3x^2 2y, \quad f_y = -3y^2 2x. \end{array}$
 - - $f_{xx} = 6x$, $f_{xy} = -2$, $f_{yy} = -6y$. $H(x,y) = (6x)(-6y) (-2)^2 = -36xy 4$.
 - \circ $H(0,0) = -4 < 0 \Rightarrow$ saddle point at (0,0).
 - $H\left(-\frac{2}{3},\frac{2}{3}\right) = 12 > 0$

• $f_{xx}\left(-\frac{2}{3},\frac{2}{3}\right)=-4<0\Rightarrow\log\log\max\left(-\frac{2}{3},\frac{2}{3}\right).$

- $f(x,y) = xy + 2x \ln x^2y$, x > 0, y > 0.
 - $f_x = y + 2 \frac{2}{x}, \quad f_y = x \frac{1}{y}.$
 - $f_x = f_y = 0 \Rightarrow (x, y) = (\frac{1}{2}, 2).$
 - $f_{xx} = \frac{2}{x^2}, \quad f_{xy} = 1, \quad f_{yy} = \frac{1}{y^2}.$
 - $H(x,y) = \left(\frac{2}{x^2}\right) \left(\frac{1}{y^2}\right) 1^2 = \frac{2}{x^2y^2} 1.$
 - $H\left(\frac{1}{2},2\right) = 1 > 0, \quad f_{xx}\left(\frac{1}{2},2\right) = 2 > 0.$

It follows that f has a local minimum $2+\ln 2$ at $\left(\frac{1}{2},2\right)\!.$

13/33

Examples

- $f(x,y) = 3x^2 2xy + y^2 8y + 7$.
 - $o f_x = 6x 2y, f_y = -2x + 2y 8.$

Let $f_x=f_y=0$. Then

•
$$\begin{cases} 0 = 6x - 2y \\ 0 = -2x + 2y - 8 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 6 \end{cases}$$

 $f_{xx} = 6$, $f_{xy} = -2$, $f_{yy} = 2$.

- $H(x,y) = (6)(2) (-2)^2 = 8 > 0.$
- $f_{xx} = 6 > 0 \Rightarrow \text{local minimum at } (2, 6).$
- $\bullet \quad \text{Remark.} \quad \text{Suppose } z = f(x,y) \text{ has a critical point } (a,b).$
 - $\circ \quad H(x,y)>0 \ \text{\&} \ f_{xx}>0 \ \text{on} \ D\Rightarrow \text{global min at } (a,b);$
 - $\circ \quad H(x,y)>0 \ \& \ f_{xx}<0 \ \text{on} \ D \Rightarrow \text{global max at} \ (a,b).$

Absolute Extreme on Closed Bounded Region

Absolute Extreme on Closed Bounded Region.

Suppose z = f(x, y) is continuous on a closed and bounded region D.

Step 1. Find the critical points of f on the interior of D.

- \circ $(a,b)\in D$ such that $f_x(a,b)=f_y(a,b)=0$, or at least one of $f_x(a,b)$ and $f_y(a,b)$ does not exist
- Step 2. Find the extreme values of f on the boundary of D.
 - Suppose y = y(x) on the boundary of D. Then
 - f(x, y(x)) is a function in x.

Find its absolute extreme values.

Step 3. Compare the values of f(x, y) at the points obtained in Steps 1 and 2.

15/33

Examples

• $T(x,y) = x^2 + 2y^2 - x$ on $D = \{(x,y) \mid x^2 + y^2 \le 1\}.$

Step 1: Find all critical points on $x^2 + y^2 < 1$.

$$\circ \quad T_x = 2x - 1 \text{ and } T_y = 4y.$$

$$T_x = T_y = 0 \Rightarrow (x, y) = (\frac{1}{2}, 0).$$

Step 2: Find the extreme values on $x^2 + y^2 = 1$.

$$f(x) = x^2 + 2(1 - x^2) - x = -x^2 - x + 2, |x| \le 1.$$

•
$$f'(x) = -2x - 1$$
. $f'(x) = 0 \Rightarrow x = -\frac{1}{2}$.

$$o f(-1) = 2, f(1) = 0, f(-\frac{1}{2}) = \frac{9}{4}.$$

Step 3: Compare to find absolute extreme values.

$$o$$
 $T(\frac{1}{2},0) = -\frac{1}{4}$, $f(-\frac{1}{2}) = \frac{9}{4}$, $f(1) = 0$.

Conclusion. T(x,y) has the absolute minimum $-\frac{1}{4}$ at $(\frac{1}{2},0)$, and the absolute maximum $\frac{9}{4}$ at $(-\frac{1}{2},\pm\frac{\sqrt{3}}{2})$.

• $f(x,y) = 2 + 2x + 2y - x^2 - y^2$ on the region unclosed by x = 0, y = 0 and x + y = 9.

- i) Find critical points in the interior.
- ii) Boundary points.
 - \circ On x-axis;
 - On y-axis;
 - \circ On x + y = 9.

17/33

Examples

- $f(x,y) = 2 + 2x + 2y x^2 y^2$.
 - o Find critical points in the interior.

 - $f_x = 2 2x$, $f_y = 2 2y$. $f_x = f_y = 0 \Rightarrow (x, y) = (1, 1)$. f(1, 1) = 4.
 - \circ On the segment (0,0) to (9,0).
 - $f(x,0) = 2 + 2x x^2$, f'(x,0) = 2 2x.
 - $f'(x,0) = 0 \Rightarrow x = 1$.
 - f(0,0) = 2, f(9,0) = -61, f(1,0) = 3.
 - \circ On the segment (0,0) to (0,9).
 - $f(0,y) = 2 + 2y y^2$, f'(0,y) = 2 2y.
 - $f'(0,y) = 0 \Rightarrow y = 1$.
 - f(0,0) = 2, f(0,9) = -61, f(0,1) = 3.

- $f(x,y) = 2 + 2x + 2y x^2 y^2$.
 - \circ On the segment y = 9 x, $0 \le x \le 9$.
 - $f(x, 9-x) = -61 + 18x 2x^2$.

 - $f'(x, 9 x) = 18 4x = 0 \Rightarrow x = \frac{9}{2}$. f(9, 0) = f(0, 9) = -61, $f(\frac{9}{2}, \frac{9}{2}) = -\frac{41}{2}$.

Maximum: f(1, 1) = 4,

Minimum: f(0,9) = f(9,0) = -61.

19/33

Examples

• Show that $\frac{x+y+z}{3} \ge \sqrt[3]{xyz}$ for all $x,y,z \ge 0$,

Proof. Let A = x + y + z. Then z = A - x - y.

Maximize f(x,y) = xy(A-x-y) on the region unclosed by x=0, y=0 and x+y=A.

- o Critical points on the interior.
 - $f_x = y(A 2x y)$, $f_y = x(A x 2y)$. $f_x = f_y = 0 \Rightarrow x = y = \frac{A}{3}$. (x > 0, y > 0)

 - $f(\frac{A}{3}, \frac{A}{3}) = \frac{A^3}{27}$.
- o Boundary points.
 - f(x,y) = xy(A-x-y).
 - It is identically 0 on x = 0, y = 0, x + y = A.

• Show that $\frac{x+y+z}{3} \geq \sqrt[3]{xyz}$ for all $x,y,z \geq 0$,

Proof. Let
$$A = x + y + z$$
. Then $z = A - x - y$.

Maximize
$$f(x,y) = xy(A-x-y)$$
 on the region unclosed by $x=0$, $y=0$ and $x+y=A$.

 $\circ \quad f(x,y) \leq \tfrac{A^3}{27} \text{ for all } x,y \text{ in the region.}$

Then
$$xyz \leq \frac{(x+y+z)^3}{3^3}$$
, i.e., $\sqrt[3]{xyz} \leq \frac{x+y+z}{3}$.

- Remark. This is a special case of the Arithmetic-Geometric Mean Inequality for n=3.
 - Let $n \in \mathbb{Z}^+$. For any $x_1, x_2, \ldots, x_n \geq 0$,
 - $\bullet \quad \frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}.$
 - o Can you prove it?

21/33

Extreme Values with Restriction

- $T(x,y) = x^2 + 2y^2 x$ subject to $x^2 + y^2 = 1$.
 - $\circ \quad \text{Draw level curves } T(x,y) = c.$
 - Increase c until T(x,y)=c touches $x^2+y^2=1$. T(x,y) has a minimum at the intersection.
 - Increase c until T(x,y)=c leaves $x^2+y^2=1$. T(x,y) has a maximum at the intersection.

Extreme Values with Restriction

- $T(x,y) = x^2 + 2y^2 x$ subject to $x^2 + y^2 = 1$.
 - $\circ \quad \text{Suppose } T(x,y) \text{ has an extreme value at } (x_0,y_0).$

$$T(x,y) = c$$
 and $x^2 + y^2 - 1 = 0$:

- are tangent to each other;
- have the same tangent/normal line;
- $\nabla T(x_0, y_0) \parallel \nabla g(x_0, y_0), g(x, y) = x^2 + y^2 1;$
- $\nabla T(x_0, y_0) = \lambda \nabla g(x_0, y_0)$ for some $\lambda \in \mathbb{R}$.
- \circ $T_x = 2x 1, T_y = 4y; g_x = 2x, g_y = 2y.$
 - $2x 1 = \lambda 2x$, $4y = \lambda 2y$, $x^2 + y^2 = 1$.
 - $y = 0 \Rightarrow x = \pm 1;$ $y \neq 0 \Rightarrow \lambda = 2 \Rightarrow x = -\frac{1}{2} \Rightarrow y = \pm \frac{\sqrt{3}}{2}.$
- $T(1,0) = 0, T(-1,0) = 2, T(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}) = \frac{9}{4}.$
 - $\bullet \quad \text{Max: } T(-\tfrac{1}{2}, \pm \tfrac{\sqrt{3}}{2}) = \tfrac{9}{4}; \quad \text{Min: } T(1,0) = 0.$

23/33

Lagrange Multiplier

• The Method of Lagrange Multipliers

Find the local maximum and minimum values of z=f(x,y) subject to the constraint g(x,y)=0.

- \circ Evaluate x, y and λ that simultaneously satisfy
 - $f_x = \lambda g_x$, $f_y = \lambda g_y$ and g(x, y) = 0.

• Absolute Extreme Values with Bounded Restriction

 $\label{eq:maximize} \text{Maximize/Minimize } f(x,y) \text{ subject to } g(x,y) = 0,$

where g(x, y) = 0 is a bounded curve.

- Step 1. Check the end points of g(x, y) = 0, if any.
- Step 2. Use Lagrange multiplier on interior of g(x, y) = 0.
- Step 3. Compare the values of f at points obtained in 1) & 2).

• Find the area of the largest rectangle inscribed in the ellipse $\frac{x^2}{a} + \frac{y^2}{a^2} = 1$ (a, b > 0).

- \circ Maximize f(x,y) = 4xy subject to
 - $g(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} 1 = 0$, $x, y \ge 0$.
- \circ End points: (x, y) = (a, 0), (0, b).

25/33

Examples

- Find the area of the largest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a, b > 0).
 - \circ Maximize f(x,y)=4xy subject to
 - $g(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} 1 = 0$, $x, y \ge 0$.
 - \circ Suppose x > 0, y > 0. Apply Lagrange multipliers:

$$\begin{cases} f_x = \lambda g_x \Rightarrow 4y = \lambda \frac{2x}{a^2} \\ f_y = \lambda g_y \Rightarrow 4x = \lambda \frac{2y}{b^2} \end{cases} \Rightarrow \frac{y}{x} = \frac{x/y}{a^2/b^2} \Rightarrow \frac{x}{y} = \frac{a}{b}.$$

- $x = ak \& y = bk \Rightarrow \frac{a^2k^2}{a^2} + \frac{b^2k^2}{b^2} = 1 \Rightarrow k = \frac{1}{\sqrt{2}}.$
- $(x,y) = \left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$.
- $\circ \quad \text{Min: } f(a,0) = f(0,b) = 0; \text{Max: } f\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right) = 2ab.$

• Find the shortest distance from point $P(x_0, y_0)$ to straight line ax + by = c. (Assume the minimum distance exists.)

Solution.
$$d(x,y) = \sqrt{(x-x_0)^2 + (y-y_0)^2}$$

- Minimize $f(x,y) = (x x_0)^2 + (y y_0)^2$
 - subject to g(x, y) = ax + by c = 0.

$$f_{x} = \lambda g_{x} \Rightarrow 2(x - x_{0}) = \lambda a$$

$$f_{y} = \lambda g_{y} \Rightarrow 2(y - y_{0}) = \lambda b$$

$$\Rightarrow \begin{cases} x = x_{0} + \frac{\lambda}{2}a \\ y = y_{0} + \frac{\lambda}{2}b \end{cases}$$

$$a(x_{0} + \frac{\lambda}{2}a) + b(y_{0} + \frac{\lambda}{2}b) = c \Rightarrow \frac{\lambda}{2} = \frac{c - ax_{0} - by_{0}}{a^{2} + b^{2}}$$

$$\circ x = x_{0} + \frac{a(c - ax_{0} - by_{0})}{a^{2} + b^{2}}, \quad y = y_{0} + \frac{b(c - ax_{0} - by_{0})}{a^{2} + b^{2}}.$$

o The distance is minimized at this point:

$$\sqrt{\left(\frac{a(c-ax_0-by_0)}{a^2+b^2}\right)^2 + \left(\frac{b(c-ax_0-by_0)}{a^2+b^2}\right)^2} = \frac{|ax_0+by_0-c|}{\sqrt{a^2+b^2}}$$

27 / 33

Lagrange Multiplier of More Variables

• The Method of Lagrange Multipliers of Three-Variables

Find the local maximum and minimum values of w=f(x,y,z) subject to the constraint g(x,y,z)=0.

- \circ Evaluate x, y and λ that simultaneously satisfy
 - $f_x = \lambda g_x$, $f_y = \lambda g_y$, $f_z = \lambda g_z$, g(x, y, z) = 0.
- Absolute Extreme Values with Bounded Restriction

Maximize/Minimize f(x,y,z) subject to g(x,y,z)=0,

where g(x, y, z) = 0 is a bounded surface.

- Step 1. Check max/min on the boundary of g(x, y, z) = 0.
- Step 2. Use Lagrange multiplier on interior of g(x, y, z) = 0.
- Step 3. Compare the values of f at points obtained in 1) & 2).

• Show that $\frac{x+y+z}{3} \ge \sqrt[3]{xyz}$ for all $x,y,z \ge 0$.

Solution. Let A = x + y + z.

- \circ Maximize f(x, y, z) = xyz subject to
 - g(x, y, z) = x + y + z A, $x, y, z \ge 0$.
- $\circ \quad \text{Boundary points: } x=0 \text{, or } y=0 \text{, or } z=0.$
 - f(x, y, z) is identically zero on the boundary.
- Suppose x, y, z > 0 and use Lagrange multiplier.

$$\begin{cases}
f_x = \lambda g_x \Rightarrow yz = \lambda \\
f_y = \lambda g_y \Rightarrow zx = \lambda \\
f_z = \lambda g_z \Rightarrow xy = \lambda
\end{cases} \Rightarrow x = y = z = \frac{A}{3}.$$

 $\circ \quad f(\tfrac{A}{3},\tfrac{A}{3},\tfrac{A}{3}) = \tfrac{A^3}{27} \text{ is the maximum}.$

Therefore, $\sqrt[3]{xyz}=\sqrt[3]{f(x,y,z)}\leq \sqrt[3]{\frac{A^3}{27}}=\frac{x+y+z}{3}.$

29/33

Examples

• Find the max/min of f(x,y,z)=ax+by+cz on the unit sphere $x^2+y^2+z^2=1$, where a,b,c>0.

Solution. Let $g(x, y, z) = x^2 + y^2 + z^2 - 1$.

- $\circ \quad \text{The sphere } x^2+y^2+z^2=1 \text{ has no boundary}. \\$
- o Apply the Lagrange multipliers method:

$$f_x = \lambda g_x \Rightarrow a = \lambda 2x$$

$$f_y = \lambda g_y \Rightarrow b = \lambda 2y$$

$$f_z = \lambda g_z \Rightarrow c = \lambda 2z$$

$$\Rightarrow \begin{cases} x = \frac{a}{2\lambda} \\ y = \frac{b}{2\lambda} \\ z = \frac{c}{2\lambda} \end{cases}$$

$$1 = (\frac{a}{2\lambda})^2 + (\frac{b}{2\lambda})^2 + (\frac{c}{2\lambda})^2 \Rightarrow \lambda = \pm \frac{\sqrt{a^2 + b^2 + c^2}}{2}$$

$$\circ (x, y, z) = \pm \left(\frac{a}{\sqrt{a^2 + b^2 + c^2}}, \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \frac{c}{\sqrt{a^2 + b^2 + c^2}} \right)$$

$$\begin{array}{ll} \text{Max:} & f\left(\frac{a}{\sqrt{a^2+b^2+c^2}}, \frac{b}{\sqrt{a^2+b^2+c^2}}, \frac{c}{\sqrt{a^2+b^2+c^2}}\right) = \sqrt{a^2+b^2+c^2} \\ \text{Min:} & f\left(\frac{-a}{\sqrt{a^2+b^2+c^2}}, \frac{-b}{\sqrt{a^2+b^2+c^2}}, \frac{-c}{\sqrt{a^2+b^2+c^2}}\right) = -\sqrt{a^2+b^2+c^2} \end{array}$$

Extreme Values with Two Constraints

• Lagrange Multipliers Method with Two Constraints

Find the local maximum and minimum values of w = f(x, y, z) subject to the constraints

$$\circ \ \ g(x,y,z) = 0 \ {\rm and} \ h(x,y,z) = 0.$$

Evaluate x,y,z and λ,μ that simultaneously satisfy

$$\circ f_x = \lambda g_x + \mu h_x, f_y = \lambda g_y + \mu h_y, f_z = \lambda g_z + \mu h_z.$$

$$\circ \quad g(x,y,z) = 0 \text{ and } h(x,y,z) = 0.$$

• Idea of the Lagrange multipliers method.

$$\circ$$
 $g(x,y,z)=h(x,y,z)=0$ defines a curve, say C .

- $\circ \quad \nabla g$ and ∇h are normal to C.
- We seek for points at which ∇f is normal to C.
 - ∇f lies in the plane defined by ∇g and ∇h ,
 - i.e., $\nabla f = \lambda \nabla g + \mu \nabla h$ for some $\lambda, \mu \in \mathbb{R}.$

31/33

Examples

• Suppose x + y + z = 1 and $x^2 + y^2 + z^2 = 1$.

Find the extreme values of $f(x, y, z) = x^3 + y^3 + z^3$.

Solution. Two restrictions g(x, y, z) = x + y + z - 1 and $h(x, y, z) = x^2 + y^2 + z^2 - 1$.

$$f_x = \lambda g_x + \mu h_x \Rightarrow 3x^2 = \lambda + \mu 2x$$

$$f_y = \lambda g_y + \mu h_y \Rightarrow 3y^2 = \lambda + \mu 2y$$

$$f_z = \lambda g_z + \mu h_z \Rightarrow 3z^2 = \lambda + \mu 2z$$

- \circ $\;$ The equation $3\alpha^2=\lambda+\mu2\alpha$ has at most 2 real roots.
 - So x, y, z cannot be all distinct.

 \circ Suppose y=z. Then

$$\begin{cases} 1 = x + 2y \\ 1 = x^2 + 2y^2 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = z = 0 \end{cases} \text{ or } \begin{cases} x = -\frac{1}{3} \\ y = z = \frac{2}{3} \end{cases}$$

• Suppose x + y + z = 1 and $x^2 + y^2 + z^2 = 1$.

Find the extreme values of $f(x, y, z) = x^3 + y^3 + z^3$.

Solution. Two restrictions g(x, y, z) = x + y + z - 1 and $h(x, y, z) = x^2 + y^2 + z^2 - 1$.

 \circ Suppose y=z. Then

$$\begin{cases} 1 = x + 2y \\ 1 = x^2 + 2y^2 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = z = 0 \end{cases} \text{ or } \begin{cases} x = -\frac{1}{3} \\ y = z = \frac{2}{3} \end{cases}$$

$$\circ \quad \text{If } x = y \text{ then } (x, y, z) = (0, 0, 1), \left(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right).$$

$$\circ \quad \text{If } x = z \text{ then } (x, y, z) = (0, 1, 0), \left(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}\right).$$

Compare the values of f(x, y, z) at these 6 points.

 $\begin{array}{ll} \text{Max:} & f(1,0,0) = f(0,1,0) = f(0,0,1) = 1; \\ \text{Min:} & f\left(-\frac{1}{3},\frac{2}{3},\frac{2}{3}\right) = f\left(\frac{2}{3},-\frac{1}{3},\frac{2}{3}\right) = f\left(\frac{2}{3},\frac{2}{3},-\frac{1}{3}\right) = \frac{5}{9}. \end{array}$