2018年6月28日版

1. (1)
$$\sum_{n\neq 0} \frac{iT}{2n\pi} e^{i2n\pi t/T} + \frac{T}{2}$$
 (2) $\sum_{n=-\infty}^{\infty} \frac{e^T - 1}{T - 2n\pi i} e^{i2n\pi t/T}$

2. (1)
$$\sum_{n=1}^{\infty} \frac{4}{3} \left(-\frac{i}{2} \right)^n e^{-in\omega t} + \sum_{n=0}^{\infty} \frac{4}{3} \left(\frac{i}{2} \right)^n e^{in\omega t}$$
(2) $\sum_{n=1}^{\infty} \left(-\frac{1}{2} \right)^{n-1} e^{-in\omega t}$ (ヒント: $k \in \mathbb{N}$ のとき $\frac{1}{z^k (z+\frac{1}{2})} = \frac{a_k}{z^n} + \cdots \frac{a_1}{z} + \frac{b}{(z+\frac{1}{2})}$ とすると、 $a_k = 2, \ldots, a_1 = -b = 2(-2)^{k-1}$ となる)

3. (1)
$$\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos nt$$
 (2) $\frac{\pi^2}{3} + \sum_{\substack{n=-\infty\\n\neq 0}}^{\infty} \frac{2(-1)^{|n|}}{n^2} e^{-int}$ (3) (a) $\frac{\pi^2}{12}$ (b) $\frac{\pi^2}{6}$

4. (1) 定理 1.13 より
$$\lim_{N \to \infty} S_N(t) = \sin \mu t$$

(2) (1) と同様に、
$$\lim_{N \to \infty} S_N(t) = \frac{\sin 2\pi \mu}{2}$$

$$(3) \ \mu \in \frac{1}{2}\mathbb{Z}$$

5. 必ずしも一様収束しない (例えば、周期Tの連続な周期関数 $f_0(t)$ に対して、[0,T]上で

$$f(t) = \begin{cases} f_0(t) & (t \neq T/2) \\ f_0(t) + 1 & (t = T/2) \end{cases}$$

としたものも同じフーリエ係数をもつことに注意)

$$\frac{1}{\mu\pi}\sin\mu\pi + \sum_{n=1}^{\infty} \frac{2\mu}{\pi(\mu^2 - \pi^2)} (-1)^n \sin\mu\pi \cos nt$$

- (2) (a) (1) の $\mu \notin \mathbb{N}$ のときの t = 0 に対する結果で $\mu = t > 0$ とする. t < 0 に対しては $\sin t$ が奇関 数であることを用いる.
 - (b) $t = \pi$ を代入する. あとは (1) と同様.
- 7. (1) $t \to t + \pi/a$ と置換積分する.
 - (2) (1) より

$$\int_0^{\pi/2} f(t) \sin at \, dt$$

$$= \frac{1}{2} \int_0^{\pi/2} \left(f(t) - f\left(t + \frac{\pi}{a}\right) \right) \sin at \, dt + O(a^{-1})$$

が得られ, $a \to \infty$ の極限を取る.

8. (1)
$$\sigma_N(t) = \frac{1}{N} \sum_{n=0}^{N-1} S_n(t)$$

(2) 実数列 $\{a_n\}_{n=0}^{\infty}$ が $\lim_{n\to\infty}a_n=a$ を満たすとき、任 意の $\varepsilon>0$ に対して、n>N ならば

$$\left| \frac{a_0 + \dots + a_{n-1}}{n} - a \right| < \varepsilon$$

となる N>0 が存在することを示して、次式が成立することを証明する.

$$\lim_{n \to \infty} \frac{a_0 + a_1 + \dots + a_{n-1}}{n} = a$$

(3) (2) と定理 1.14 より $S(t) = \lim_{N \to \infty} \sigma_N(t) = f(t)$

9. $\alpha > 1$ のとき

$$\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} < \sum_{n=2}^{\infty} \int_{n}^{n+1} \frac{dx}{(x-1)^{\alpha}} = \int_{1}^{\infty} \frac{dx}{x^{\alpha}} < \infty$$

よって, a>m+1, すなわち, a-m>1のとき

$$\sum_{n=-\infty}^{\infty} |n|^m |c[n]| \le C \sum_{n=1}^{\infty} |n|^m (1+|n|)^{-a}$$

$$< C \sum_{n=1}^{\infty} |n|^{m-a} < \infty$$

- 10. (1) 補題 1.12 を用いる.
 - (2) 定理 2.2 と定理 2.3 を用いる.
 - (3) f'(t) のフーリエ係数は $in\omega c[n]$, f''(t) のフーリエ 係数は $-n^2\omega^2 c[n]$ に与式を代入
- 11. いわゆる $\varepsilon-N$ 論法による数列の極限の定義を思い出す.
 - (1) C^{m-1} 級であることは定理 2.3 を用いて, C^{m+1} 級でないことは背理法と定理 2.2 を用いて示す.
 - (2) C^∞ 級であることは定理 2.4 を用いて,解析的でないことは背理法と定理 2.5 を用いて示す.また, $\lim_{n\to\infty}f(n)/g(n)=0$ ならば,任意の n>0 に対して Cf(n)>g(n) を満たす定数 C>0 は存在しないことに注意せよ.
- 12. 定理 2.3 の証明と同様に、与式が一様収束して項別微分可能であり、項別微分して得られる級数も一様収束することを示す.式 (2.7) が成立すれば、無限回これを繰り返すことが可能である.

13.
$$u(re^{i\theta}) = \frac{1 - a^2r^2}{1 - 2ar\cos\theta + a^2r^2}$$

- 14. (1) 置換積分と関数の周期性を用いる
 - (2) 積分の線形性より明らか
- **15.** (1) $1/(n-k)^2k^3$ を部分分数に展開し、和を求める

$$c[n] = \begin{cases} 0 & (n=0) \\ \frac{6\zeta(2)}{n^3} - \frac{10}{n^5} & (n \neq 0) \end{cases}$$

(2) 定理 2.12 を用いる. T を f, g の周期として

$$c[n] = \begin{cases} 0 & (n=0) \\ \frac{T}{n^5} & (n \neq 0) \end{cases}$$

16. フェイェル核 $F_N(t)$ により $\sigma_N = F_N * f$ と書けるので, $F_N(t) > 0$ と補題 2.13 (ii) より

$$\sigma_N(t) = \int_0^T F_N(s) f(t-s) \, \mathrm{d}s \le M \int_0^T F_N(s) \, \mathrm{d}s = M$$

$$\sigma_N(t) \ge m^{\frac{1}{2}} \cdot \mathbb{R}$$
 持る

 $\sigma_N(t) \ge m$ も同様に示せる.

- **17.** (1) a > 1 (2) a > 1/2
- **18.** (1) 連続ではあるが、有界でない (2) $f \in L^1(\mathbb{R})$ (3) $f \notin L^2(\mathbb{R})$

19. (1)
$$\frac{2\sqrt{2}}{\sqrt{\pi}\xi^2} \sin\left(\frac{\xi}{2}\right)$$
 (2) $-\frac{2\sqrt{2}ai\xi}{\sqrt{\pi}(a^2+\xi^2)^2}$ (3) $\frac{\sqrt{2\pi}}{b^2-a^2} \left(\frac{e^{-a|\xi|}}{2a} - \frac{e^{-b|\xi|}}{2b}\right)$ (4) $\sqrt{\frac{\pi}{2}} \operatorname{sech}\left(\frac{\pi\xi}{2}\right)$

- **20.** (1) 連続より $f(0) = \lim_{t\to 0} \sin^2 at/t^2 = a^2$
 - (2) f(t) は有界で $|f(t)| < 1/|t|^2$ であることから.

(3)
$$(\mathfrak{F}f)(\xi) = \begin{cases} \sqrt{\frac{\pi}{8}}(2a - |\xi|) & (|\xi| \le 2a) \\ 0 & (|\xi| > 2a) \end{cases}$$

- **21.** (1) $|F(t)| \le \int_{-\infty}^{t} |f(s)| ds \le \int_{-\infty}^{\infty} |f(s)| ds$
 - (2) 定義より $\lim_{t\to -\infty} F(t) = 0$ となる. また, $f\in L^1(\mathbb{R})$ より極限 $\alpha = \lim_{t \to \infty} F(t) = \int_{-\infty}^{\infty} f(s)ds$ が存在し、 $F \in L^1(\mathbb{R})$ より $\alpha = 0$ を得
 - (3) 定理 3.9 を用いる. (4) 定理 3.6 を用いる.
 - (5) (4) に注意し、 \hat{F} , $\xi \hat{F}$ に定理 3.11 を適用する.
- **22.** (1) $\lim_{h \to +0} \frac{f(h) f(0)}{h} = -1$, $\lim_{h \to -0} \frac{f(h) f(0)}{h} = 1$ より、f(t) は t=0 で微分不可能であ
 - (2) 任意の整数 $n \geq 0$ に対して $t^n f \in L^1(\mathbb{R})$ であるか ら, 定理 3.11 が繰り返し適用できる.
- **23.** (1) 帰納法により,任意の自然数n に対して $f^{(n)}$ が存 在して $f^{(n)}(t) = p_n(t)/(t^2+1)^{k+n}$ ($p_n(t)$ はある 多項式)と書ける.
 - (2) $f, tf, \dots, t^{2(k-1)}f \in L^1(\mathbb{R})$ であることより.
- **24.** $f,g \in L^1(\mathbb{R})$ のとき,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(t)| |g(\xi)| dt d\xi < \infty$$

であるから, 重積分

$$\begin{split} \langle f, \mathfrak{F}^*g \rangle = & \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \overline{\left(\int_{-\infty}^{\infty} g(\xi) e^{it\xi} d\xi \right)} dt \\ = & \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) \overline{g(\xi) e^{it\xi}} d\xi dt \end{split}$$

において積分の順序交換できる.

25. (1)
$$\frac{1}{|a|} \hat{f}\left(\frac{\xi}{a}\right)$$
 (2) $\sqrt{2\pi} \hat{f}(\xi)^2$ (3) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\eta) \overline{\hat{f}(\eta - \xi)} d\eta$

- **26.** 反転公式 (定理 3.5) により $f(t) = (\mathfrak{F}^*\hat{f})(t) = (\mathfrak{F}\hat{f})(-t)$ であり、定理 3.12 より $\lim_{\xi \to \pm \infty} \hat{f}(\xi) = 0$ 、 $\lim_{t \to \infty} f(t) =$ $\lim_{t \to +\infty} (\mathfrak{F}\hat{f})(-t) = 0 \ \text{となる}.$
- **27.** $u(x,t) = e^{-t} \cos x$
- **28.** $u(x,y) = e^{-y} \cos x$
- 29. ラプラス変換、収束座標の順で記す.

(1)
$$\frac{s-a}{(s-a)^2+k^2}$$
, a (2) $\frac{k}{(s-a)^2+k^2}$, a (3) $\sqrt{\frac{\pi}{s}}$, a (4) $\frac{\sqrt{\pi}}{2s^{3/2}}$, a (5) $\sqrt{\frac{\pi}{s}}e^{-a^2/4s}$, a

- **30.** $\mathcal{L}[f](s)$ が $\operatorname{Re} s > \gamma$ のとき収束し、 $\operatorname{Re} s < \gamma$ のとき発 散することを示す.
- **31.** (1) $\Phi(t)$ の代わりに $F(t)=\int_0^t f(t)dt$ を用いて,定理 4.2 の証明と類似の計算を行う.任意の $\varepsilon>0$ に対して,十分大きな T を取れば $\frac{1}{T}\log|F(T)|<\lambda+\varepsilon$ とできることに注意する.
 - (2) $\mathcal{L}[f](s)$ は s=0 で発散することに注意して、定 理 4.2(ii) を用いる.
 - (3) 補題 4.6 より, ある M>0 に対して $|F(t)|\leq$ $Me^{(\text{Re }s_0)t}$ と書け、 λ を評価する.
 - (4) (1) と (3) の結果を用いる.
- **32.** (1) $\mathcal{L}(f)(s_0)$ が絶対収束するならば、 $\operatorname{Re} s > \operatorname{Re} s_0$ の とき $\mathcal{L}(f)(s)$ も絶対収束し、 $\mathcal{L}(f)(s_0)$ が絶対収 束しないならば、 $\operatorname{Re} s < \operatorname{Re} s_0$ のとき $\mathcal{L}(f)(s)$ も 絶対収束しないことを示す.
 - (2) Re $s > \sigma_a$ ならば、 $\mathcal{L}(f)(s)$ は絶対収束し、よっ て収束する.
- **33.** (1) $\sigma_c = 0$, $\sigma_a = 1$ (2) $\sigma_c = 0$, $\sigma_a = \infty$ **ヒント:** $s \in \mathbb{R}$ に対して

$$\int_{1}^{\infty} \frac{|\sin x|}{x} dx, \int_{0}^{\infty} \frac{|\sin x|}{(\log x)^{s}} dx = \infty$$

であるが、s>0 に対して

$$\int_{1}^{\infty} \frac{\sin x}{x^{s}} dx, \int_{e}^{\infty} \frac{\sin x}{(\log x)^{s}} dx$$

は収束する (なぜか) ことに注意する.