- 1. [10] Величины (X_n) независимы и одинаково распределены с плостностью $f(x) = \max\{0, 1 |x|\}$.
 - а) [2] Найди число c такое, что величина X_1 превышает c с вероятностью 1/4.
 - б) [2] Найдите функцию $m_X(t)$ производящую моменты величины X_n .
 - в) [2] Найдите функцию $m_R(t)$ производящую моменты величины $R=X_1+X_2+\cdots+X_{10}+2024$.
 - г) [4] Найдите функцию плотности величины $Y = \ln(X^2)$.
 - a) $c = 1 \sqrt{2}/2$;
 - б)
 - в) $(m_X(t))^{10} \cdot \exp(2024t)$;
 - г) Заметим, что функция плотности |X| равна 2-2x на отрезке [0;1] (все отрицательные значения отражаем вправо). И далее, $|X|=\exp(Y/2)$, отсюда $f_Y(y)=(2-2exp(y/2))\frac{1}{2}\exp(y/2)=\exp(y/2)-\exp(y)$ при y<0.
- 2. [10] Совместная функция плотности вектора (X,Y) равна $f(x,y)=2x^3+y$ на квадрате $[0;1]\times[0;1]$ и 0 за его пределами.
 - а) [2] Найдите вероятность $\mathbb{P}(X > Y, Y > 0.5)$.
 - б) [6] Найдите $\mathbb{E}(X)$, $\mathbb{E}(XY)$, $\mathbb{C}ov(X,Y)$.
 - в) [2] Зависимы ли величины X и Y?
 - a) $\mathbb{E}(X) = 13/20$, $\mathbb{E}(Y) = 7/12$, $\mathbb{E}(XY) = 11/30$, $\mathbb{C}ov(X, Y) = -1/80$,
 - б) Величины зависимы так как функция f(x,y) не раскладывается в произведение $f_X(x)$ на $f_Y(y)$.
- 3. [10] Дональд Трамп подкидывает пару стандартных игральных кубиков до тех пор, пока одновременно не выпадет две шестёрки. Обозначим N общее количество бросков кубиков (бросок пары считаем за два броска кубика), а S общее количество выпавших шестёрок во всех бросках.
 - а) [2] Найдите вероятности $\mathbb{P}(N=6)$ и $\mathbb{P}(S=3)$.
 - б) [4] Найдите ожидание $\mathbb{E}(N)$ и дисперсию $\mathbb{V}\mathrm{ar}(N)$.
 - в) [4] Найдите энтропии $\mathbb{H}(N)$ и $\mathbb{H}(S)$.
 - a) $\mathbb{P}(N=6) = (35/36)^2(1/36), \mathbb{P}(S=3) = 10/11 \cdot 1/11$
 - 6) $\mathbb{E}(N) = 2 \cdot 1/p = 72$, $\mathbb{V}ar(N) = 4 \cdot (1-p)/p^2 = 5040$;
 - B)
- 4. [10] Подсудимый виновен с некоторой вероятностью p. Независимо друг от друга и от виновности подсудимого, каждый из 12 присяжных проголосует за верное решение (виновен или не виновен) с вероятностью 3/5 и за ошибочное с вероятностью 2/5.
 - а) [4] Найдите ожидание и дисперсию количества присяжных, голосующих за виновность.
 - б) [2] Найдите вероятность того, что ровно 7 присяжных проголосуют за виновность.
 - в) [2] Найдите наиболее вероятное число верно проголосовавших присяжных.

- r) [2] Найдите вероятность того, что подсудимый виновен, если ровно 7 присяжных проголосовали за его виновность.
- a) $\mathbb{E}(N) = p(12 \cdot 3/5) + (1-p)(12 \cdot 2/5); \mathbb{E}(N^2) = p(12 \cdot 3/5 \cdot 2/5 + (12 \cdot 3/5)^2) + (1-p)(12 \cdot 3/5 \cdot 2/5 + (12 \cdot 2/5)^2);$
- 6) $\mathbb{P}(N=7) = pC_{12}^7(3/5)^7(2/5)^5 + (1-p)C_{12}^7(3/5)^5(2/5)^7$;
- в) $\arg \max \mathbb{P}(G=g)=7$, где $\mathbb{P}(G=g)=C_{12}^g(3/5)^g(2/5)^{12-g}$;
- r) $\mathbb{P}(A \mid N=7) = pC_{12}^7(3/5)^7(2/5)^5/(pC_{12}^7(3/5)^7(2/5)^5 + (1-p)C_{12}^7(3/5)^5(2/5)^7)$
- 5. [10] Алиса подбрасывает правильную монетку. Если монетка выпадет орлом, то Алиса выплачивает Бобу один рубль. Если монетка выпадает решкой, то Алиса выплачивает Бобу случайную сумму равноверно распределённую от 0 до 2 рублей. Обозначим X выигрыш Боба.
 - а) [5] Найдите $\mathbb{E}(X)$, \mathbb{V} ar(X).
 - б) [5] Найдите функцию распределения F(x) величины X и постройте её график.
 - a) $\mathbb{E}(X) = 1$; $\mathbb{E}(X^2) = 7/6$; $\mathbb{V}ar(X) = 1/6$;
 - б)

$$F(x) = \begin{cases} 0, x < 0 \\ x/4, x \in [0; 1) \\ x/4 + 1/2, x \in [1; 2) \\ 1, x \ge 2 \end{cases}$$

- 6. [10] В лифт 12-этажного дома на первом этаже вошли 11 человек. Каждый из них выходит независимо от других и равновероятно на любом из этажей, от второго до последнего.
 - а) [2] Найдите вероятность того, что все выйдут на разных этажах.
 - б) [4] Найдите вероятность того, что зашедшая в лифт Алиса выйдет на 6-м этаже или выше, если после 4-го этажа в лифте осталось пятеро.
 - в) [4] Найдите вероятность того, что все пассажиры выйдут не выше 9-го этажа, если никто из них не вышел со 2-го по 6-й.
 - a) $11!/11^11$;
 - б) $5/11 \cdot 7/8 = 35/88$; Чтобы осознать, что события зависимы (!) достаточно представить ситуацию «после 4-го этажа в лифте осталось 11 человек».
 - B) $(1/2)^{11}$;