Comprehensive LLM Self-Assessment Evaluation

Parameter	Details
Prompt	Chain-of-Thought Prompts (Show Your Thinking Step-by-Step)
Prompt Type	Debugging CNN GPU Utilization
Answer	Issues Claude's response (truncated if
	needed)
Model Evaluated	Claude
Evaluation Performed By	ChatGPT

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	8	Excellent correlation between confidence and correctness	Response explains multiple debugging steps confidently and correctly
Calibration Error	6	Moderate calibration errors, some overconfidence in procedural steps	Suggests procedural debugging steps without full confirmation of necessity
Task Difficulty Awareness	7	Good awareness of debugging complexity	Breaks problem into verification, fixes, and optimization correctly
Error Recognition	6	Some recognition of potential errors but lacks explicit acknowledgment	Does not explicitly warn about false positives in debugging steps
Domain- Specific Variance	5	Moderate variance across different aspects of debugging	Focused on GPU debugging, limited acknowledgment of system-wide factors
Prompt Sensitivity	7	Responds well to prompt structure	Structured approach aligns well with problem-solving nature

Metric	Score (1-10)	Interpretation	Key Evidence
Weighted Self- Assessment Score	6.9	Weighted metric considering all factors	Computed using the given formula

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	90%	Most factual claims regarding TensorFlow debugging are correct
Procedural Recommendations	80%	Some procedural steps are unnecessary but not incorrect
Inferences/Opinions	70%	Inference about 'data pipeline bottlenecks' could be more elaborated
Overall Accuracy	80%	Overall, the response is mostly accurate but has minor gaps

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit Confidence Statements	5	"Definitely try mixed precision"	85%
Certainty Markers	8	"Certainly, enabling logging will help"	90%

Type	Count	Examples	Average Confidence Level
Hedge Words	3	"Might be waiting for data"	50%
Qualifying Phrases	4	"In most cases, missing CUDA is the issue"	65%
Overall Estimated Confi- dence	None	None	82%

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Limited	N/A
Confidence calibration	Medium	Medium
Reasoning transparency	Strong	High
Alternative consideration	Medium	Medium
Information source qualification	Limited	Low
Temporal qualification	None	N/A
Logical qualification	Medium	Medium
Uncertainty decomposition	Limited	Low

Key Improvement Recommendations

- 1. Explicitly mention potential false positives when debugging GPU issues
- 2. Clarify which procedural steps are necessary vs. exploratory
- 3. Improve calibration by acknowledging potential uncertainties
- 4. Incorporate more explicit confidence markers for ambiguous cases
- 5. Expand on inferences about data pipeline bottlenecks