Resolução de Problemas do Livro

Numerical Methods in Physics with Python (Gezerlis, A)

po

Igo da Costa Andrade

Referência

GEZERLIS, A. Numerical Methods in Physics with Python. Cambridge, Cambridge University Press, 2020.

Capítulo 1: Idiomatic Python

1.7 Projeto: Visualizando Campos Elétricos

1.7.1 Campo Elétrico devido a uma distribuição de cargas pontuais

1 Conforme a *Lei de Coulomb*, a força elétrica sobre uma carga de teste Q localizada no ponto P (posição \mathbf{r}), decido a uma única carga q_0 localizada em $\mathbf{r_0}$ é dada por:

$$\mathbf{F_0} = k \frac{q_0 Q}{(\mathbf{r} - \mathbf{r_0})^2} \frac{\mathbf{r} - \mathbf{r_0}}{|\mathbf{r} - \mathbf{r_0}|}$$

em que $k = 1/(4\pi\varepsilon)$ é a constante de Coulomb em unidades do SI.

 ${\bf 2}$ O Campo elétrico produzido por q_0 é

$$\mathbf{E_0}(\mathbf{r}) = kq_0 \frac{\mathbf{r} - \mathbf{r_0}}{|\mathbf{r} - \mathbf{r_0}|^3}$$

3 Consideremos um conjunto de n cargas pontuais q_0, q_1, \dots, q_{n-1} localizadas em $\mathbf{r_0}, \mathbf{r_1}, \dots, \mathbf{r_{n-1}}$ pode ser obtido por aplicação do Princípio de Superposição, conforme abaixo:

$$\mathbf{E}(\mathbf{r}) = \sum_{i=0}^{n-1} \mathbf{E_i}(\mathbf{r}) = \sum_{i=0}^{n-1} kq_i \frac{\mathbf{r} - \mathbf{r_i}}{|\mathbf{r} - \mathbf{r_i}|^3}$$

%%%=======

4 (FEI-SP) Dois móveis A e B, ambos com movimento uniforme, percorrem uma trajetória retilínea conforme mostra a figura. Em t=0, estes se encontram, respectivamente, nos pontos A e B na trajetória. As velocidades dos móveis são $v_A=50$ m/s e $v_B=30$ m/s no mesmo sentido.

Em que instante a distância entre os dois móveis será 50 m?

- (a) 200 m
- (b) 225 m
- (c) 250 m
- (d) 300 m
- (e) 350 m

Solução:

Escrevamos as equações horárias das trajétórias dos móveis A e B, sabendo que ambos descrevem movimento uniforme:

$$\begin{cases} s_A = s_{0A} + v_A t \\ s_B = s_{0B} + v_B t \end{cases}$$

Os móveis encontram-se no instante t^* tal que $s_A = s_B = s^*$, ou seja:

$$s_A = s_B \Rightarrow s_{0A} + v_A t^* = s_{0B} + v_B t^*$$

$$\Rightarrow v_A t^* - v_B t^* = s_{0B} - s_{0A}$$

$$\Rightarrow (v_A - v_B) t^* = s_{0B} - s_{0A}$$

$$\Rightarrow t^* = \frac{s_{0B} - s_{0A}}{v_A - v_B}$$

Nesse instante, a posição s^* dos móveis será:

$$s^* = s_{0A} + v_A t^* \Rightarrow s^* = s_{0A} + v_A \left(\frac{s_{0B} - s_{0A}}{v_A - v_B}\right)$$

O script Python abaixo mostra o resultano numérico correspondente ao desenvolvimento algébrico acima:

```
# Dados do problema

s_OA = 50

v_A = 50

s_OB = 150

v_B = 30
```

```
# Instante do encontro
t_star = (s_0B - s_0A) / (v_A - v_B)

# Posição do encontro
s_star = s_0A + v_A * t_star
```

Os móveis encontram-se no instante $t^*=5$ s e na posição $s^*=300$ m.

O gráfico abaixo mostra a posição de cada móvel em função do tempo, bem como o ponto de encontro.

Portanto, a resposta correta é letra ${f D}.$

3