Assignment 3

Real and Complex Analysis

MTL122/ MTL503/ MTL506

Lecturer: A. Dasgupta

- (1) Let A and B be disjoint closed subsets of a metric spaces (X, d). Prove that there are disjoint open subsets U and V of X such that $A \subseteq U$ and $B \subseteq V$.
- (2) Let (X, d) be a metric space with $E \subset X$. Prove that $(E^{\circ})^c = \overline{(E^c)}$.
- (3) A point x not belonging to a closed set $M \subset (X,d)$ always has a nonzero distance from M. (Hint: To prove this, show that $x \in \bar{A}$ if and only if $D(x,A) = dist(x,A) = \inf_{y \in A} d(x,y) = 0$; here A is any nonempty subset of X.
- (4) Let A and B be non-empty subsets of a metric space (X, d). Prove that
 - (i) $A \subset B$ implies $diam(A) \leq diam(B)$.
 - (ii) diam(A) = 0 if and only if for some $x \in X$, $A = \{x\}$.
 - (iii) If $a \in A$ and $b \in B$, then

$$diam(A \cup B) < diam(A) + diam(B) + d(a, b).$$

- (5) Let (X, d) be a metric space with the property that every bounded sequence has a convergent subsequence. Prove that X is complete. Does Bolzano-Weierstrass theorem holds holds for any metric space? Give reasons/counterexamples.
- (6) If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d), show that (a_n) , where $a_n = d(x_n, y_n)$, converges.
- (7) Let X = (X, d) be a metric space and CS(X) the collection of all Cauchy sequences in X. For (x_n) and (y_n) in CS(X), define

$$(x_n) \sim (y_n)$$
 if and only if $\lim_{n \to \infty} d(x_n, y_n) = 0$.

Show that \sim is an equivalence relation on CS(X).

(8) Show that the set X of all integers, with metric d defined by d(m,n) = |m-n|, is a complete metric space.

- (9) Show that (l^{∞}, d_{∞}) , d_{∞} (defined in Lecture) is a complete metric space.
- (10) Show that the set of all real numbers constitutes an incomplete metric space if we choose $d(x,y) = |\arctan x \arctan y|$.