Estadística

Gustavo Ortíz Ana Camila Jiménez Jorge Sánchez

Estadística descriptiva

```
[ ] # importar tabla
    df = pd.read_csv('datos_2021.csv',na_values=' ')
```

1. Carga los datos usando tu lector de csv o con pandas.

Importamos el archivo csv usando pandas y generamos la tabla de datos

[] df

	Estación SIMAJ	Fecha	Hora	03	NO	NO2	NOX	S02	со	PM10	• • •	TMPI	TMP	RH	WS	WD	PP	RS	PBA	υv	UVI
0	Aguilas	01/01/21	0	0.004	NaN	NaN	NaN	0.0016	1.528	NaN		23.0	12.2	62.8	1.12	168.51	0.0	NaN	NaN	NaN	NaN
1	Aguilas	01/01/21	1	0.003	NaN	NaN	NaN	0.0000	0.000	NaN		23.0	12.4	61.3	2.62	65.69	0.0	NaN	NaN	NaN	NaN
2	Aguilas	01/01/21	2	0.000	NaN	NaN	NaN	0.0029	1.683	NaN		23.0	11.9	63.3	1.02	174.88	0.0	NaN	NaN	NaN	NaN
3	Aguilas	01/01/21	3	0.000	NaN	NaN	NaN	0.0021	1.387	NaN		23.0	11.4	66.2	1.05	314.18	0.0	NaN	NaN	NaN	NaN
4	Aguilas	01/01/21	4	0.002	NaN	NaN	NaN	0.0025	1.207	NaN		23.0	10.9	68.2	1.46	274.03	0.0	NaN	NaN	NaN	NaN

8755	Aguilas	31/12/21	19	NaN	NaN	NaN	NaN	NaN	NaN	NaN		22.0	NaN	NaN	NaN	NaN	0.0	NaN	NaN	NaN	NaN
8756	Aguilas	31/12/21	20	NaN	NaN	NaN	NaN	NaN	NaN	NaN		22.2	NaN	NaN	NaN	NaN	0.0	NaN	NaN	NaN	NaN
8757	Aguilas	31/12/21	21	NaN	NaN	NaN	NaN	NaN	NaN	NaN		22.2	NaN	NaN	NaN	NaN	0.0	NaN	NaN	NaN	NaN
8758	Aguilas	31/12/21	22	NaN	NaN	NaN	NaN	NaN	NaN	NaN		22.2	NaN	NaN	NaN	NaN	0.0	NaN	NaN	NaN	NaN
8759	Aguilas	31/12/21	23	NaN	NaN	NaN	NaN	NaN	NaN	NaN		22.2	NaN	NaN	NaN	NaN	0.0	NaN	NaN	NaN	NaN

8760 rows x 21 columns

2. Verifica la cantidad de datos que tienes, las variables que contiene cada vector de datos e identifica el tipo de variables.

```
print(df.shape)
    print(df.columns)
    obj_columns = df.select_dtypes(include=np.object).columns.tolist()
    df[obj_columns] = df[obj_columns].astype('string')
   print(df.info())
    (8760, 21)
    Index(['Estación SIMAJ', 'Fecha', 'Hora', '03', 'N0', 'N02', 'N0X', 'S02',
           'CO', 'PM10', 'PM2.5', 'TMPI', 'TMP', 'RH', 'WS', 'WD', 'PP', 'RS',
           'PBA', 'UV', 'UVI'],
         dtype='object')
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 8760 entries, 0 to 8759
   Data columns (total 21 columns):
        Column
                        Non-Null Count Dtype
         Estación SIMAJ
                        8760 non-null
                                        strina
        Fecha
                        8760 non-null
                                        string
        Hora
                        8760 non-null
                                        int64
     3
         03
                        5568 non-null
                                        float64
     4
        N0
                        3216 non-null
                                       float64
        N02
                        3216 non-null
                                       float64
        NOX
                        3216 non-null
                                       float64
        S02
                        2232 non-null
                                       float64
     8
        CO
                        4296 non-null
                                        float64
        PM10
                        2088 non-null
                                       float64
        PM2.5
                        561 non-null
                                        float64
     11
        TMPI
                        7794 non-null
                                        float64
     12
        TMP
                        7416 non-null
                                        float64
     13
        RH
                        7440 non-null
                                        float64
     14
        WS
                        7440 non-null
                                        float64
     15
        WD
                        7416 non-null
                                        string
     16
        PP
                         7896 non-null
                                        float64
     17
        RS
                        0 non-null
                                        float64
     18
        PBA
                        0 non-null
                                        float64
     19 UV
                        0 non-null
                                        float64
     20 UVI
                        0 non-null
                                        float64
   dtypes: float64(17), int64(1), string(3)
   memory usage: 1.4 MB
    None
```

[] print(df.describe())

	Hora	03	NO	N02		NOX	\
count	8760.000000	5568.000000	3216.000000	3216.000000	3216.0	00000	
mean	11.500000	0.028869	0.013967	0.021505	0.0	03547	
std	6.922582	0.021738	0.023529	0.016476	0.0	03568	
min	0.000000	0.000000	0.000000	0.000000	0.0	00000	
25%	5.750000	0.011000	0.002000	0.011000	0.0	01400	
50%	11.500000	0.026000	0.006000	0.019000	0.0	02600	
75%	17.250000	0.042000	0.015000	0.030000	0.0	04600	
max	23.000000	0.139000	0.268000	0.135000	0.3	34900	
	S02	CO	PM10	PM2.5		TMPI	\
count	2232.000000	4296.000000	2088.000000	561.000000	7794.00	00000	
mean	0.001104	0.685496	45.375383	46.036542	23.19	99666	
std	0.000984	0.432117	35.664791	21.425526	4.2	78118	
min	0.000000	0.000000	0.000000	11.500000	0.00	00000	
25%	0.000500	0.432000	22.500000	30.200000	21.60	00000	
50%	0.000800	0.585000	38.400000	42.500000	22.20	00000	
75%	0.001400	0.830250	59.525000	56.500000	22.80	00000	
max	0.010100	3.896000	454.600000	180.900000	44.90	00000	
	TMP	RH	WS	PP		PBA U	
count	7416.000000	7440.000000	7440.000000	7896.000000		0.0 0.	
mean	23.795577	47.760914	3.817481	0.010992		NaN Na	
std	5.395954	23.517940	2.311717	0.126035		NaN Na	
min	0.000000	0.000000	0.000000	0.000000	NaN N	NaN Na	
25%	20.300000	29.600000	2.090000	0.000000	NaN N	NaN Na	
50%	23.200000	45.100000	3.370000	0.000000	NaN N	NaN Na	N NaN
75%	27.725000	67.000000	5.110000	0.000000	NaN N	NaN Na	N NaN
max	37.600000	95.200000	13.580000	2.845000	NaN N	NaN Na	N NaN

```
#Cantidad de informacion ausente
print(df.isna().sum()/len(df)*100)
Estación SIMAJ
                     0.000000
Fecha
                     0.000000
Hora
                     0.000000
03
                    36.438356
N0
                    63.287671
N02
                    63.287671
NOX
                    63.287671
S02
                    74.520548
CO
                    50.958904
PM10
                    76.164384
PM2.5
                    93.595890
TMPI
                    11.027397
TMP
                    15.342466
RH
                    15.068493
WS
                    15.068493
WD
                    15.342466
PP
                     9.863014
RS
                   100.000000
PBA
                   100.000000
```

100.000000

100.000000

UV

UVI

dtype: float64

TMD

	Hora	03	CO	TMP
0	0	0.004	1.528	12.2
1	1	0.003	0.000	12.4
2	2	0.000	1.683	11.9
3	3	0.000	1.387	11.4
4	4	0.002	1.207	10.9
8755	19	NaN	NaN	NaN
8756	20	NaN	NaN	NaN
8757	21	NaN	NaN	NaN
8758	22	NaN	NaN	NaN
8759	23	NaN	NaN	NaN

Boxplots y mapas de calor

[] df_nuevo.corr()

	Hora	03	СО	TMP
Hora	1.000000	0.362315	-0.047729	0.453854
О3	0.362315	1.000000	-0.309503	0.779743
СО	-0.047729	-0.309503	1.000000	-0.267204
TMP	0.453854	0.779743	-0.267204	1.000000


```
[ ] fig = plt.figure(figsize=(10,4))
sns.boxplot(data=df_nuevo[['TMP']], orient="h",color='r')
plt.show()
```



```
[ ] fig = plt.figure(figsize=(10,4))
sns.boxplot(data=df_nuevo[['Hora']], orient="h")
plt.show()
```



```
fig = plt.figure(figsize=(10,4))
sns.boxplot(data=df_nuevo[['03']], orient="h",color='g')
plt.show()
```



```
[ ] fig = plt.figure(figsize=(10,4))
sns.boxplot(data=df_nuevo[['CO']], orient="h",color='purple')
plt.show()
```


Conclusiones

Muchas gracias