Modulación

Adaptación

¿Dónde estamos en el modelo?

APLICACIÓN				
TRANSPORTE				
RED				
ENLACE				
FÍSICA				

- Comenzamos de abajo hacia arriba.
- Iniciando en la capa física

Modulación

- Señal: variación en el tiempo de un fenómeno físico (voltaje, corriente, luz) con un propósito específico.
- Señales digitales
 - Toma valores discretos
- Señales análogas
 - Toma valores en un rango continuo
- Nos interesa saber cómo representamos los bits sobre las señales: modulación

Sobre el medio no podemos poner bits directamente, tenemos que poner señales.

Datos analógicos y digitales, señales analógicas y digitales

Las señales analógicas representan información continua como las variaciones de voltaje

Las señales digitales representan la información como pulsos de voltajes

Transmisión banda base y pasa-banda

Banda base

- Los bits se traducen directamente en corrientes eléctricas o pulsos luminosos (en el caso de la F.O)
- Usan todo el ancho de banda (rango de frecuencias) disponible
- Transmisión digital

• Pasa – Banda

- Los bits se envían modulados en una onda portadora en un canal de un ancho de banda definido (medido en Hz).
 - Modulación de la fase
 - Modulación de la amplitud
 - Modulación de la frecuencia

Esquema simple de modulación

- Alto voltaje (+V) representa un 1
- Bajo voltaje (-V) representa un 0
- P. Ej.: en Fibra Óptica:
 - Luz $\rightarrow 1$
 - No luz $\rightarrow 0$
- Modulación NRZ (Non-Return to Zero)

Esquema simple de modulación

- En el receptor
 - Tiene que muestrear la señal a intervalos de tiempo regulares
 - La convierte en bits decodificándola a los símbolos más cercanos
 - En el caso de NRZ: $(+V) \rightarrow 1$, $(-V) \rightarrow 0$

Proceso de muestreo/sampling a *n* veces por segundo P. Ej.: En telefonía 8000 veces por segundo

Símbolos

- Símbolo: señal eléctrica que usamos para representar bits.
 - Puede ser un bit
 - Puede ser varios bits
- Podemos adoptar un esquema de dos símbolos:
 - +1V = 1
 - -1V = 0
- «Forma de la onda» que acordamos para transmitir información
 - 1 Bit
 - Más de un bit
 - Menos de un bit

Símbolos

• También puede ser varios bits (p. Ej.: 2 bits) en 4 niveles de voltaje diferentes. Es decir, cuatro símbolos.

•
$$+1V = 11$$

•
$$+0.5V = 10$$

•
$$-0.5V = 01$$

•
$$-1V = 00$$

- Más información en cada señal
- Se requiere diferenciar en el receptor los cuatro posibles voltajes
- Mas trabajo en el receptor
- Presencia del ruido podría dificultar distinguir los voltajes
- En general (tasa de modulación)
 - 4 niveles de señal → Permite transmitir 2 bits por nivel de señal
 - 8 niveles de señal -> Permite transmitir 3 bits por nivel de señal
 - Etc.

Problema de sincronismo

- El receptor necesita saber cuándo termina un símbolo y cuando comienza el otro.
- ¿Qué sucede si se envían muchos 1's o 0's seguidos?
 - 15 ceros se ven muy parecidos a 16 ceros
 - Es necesario contar el tiempo
- El problema del sincronismo aparece cuando la señal es muy monótona
 - Muchos valores iguales en el tiempo
 - Empeora cuando transmitimos muchos bits en intervalos de tiempo más pequeños (p. ej.: con más ancho de banda)

Problema del sincronismo

- ¿Cuántos ceros fueron esa señal?
 - El receptor necesita identificar **las transiciones entre las señales** para poder decodificar los bits

 - El receptor está «escuchando» el medio
 - Lo único que percibe es la señal
 - La señal necesita decodificarse
- Aproximaciones para la solución
 - Codificación Manchester

Problema de sincronismo

Código 4B/5B

- Asociar grupos de 4 bits a un patrón de 5 bits
- Los patrones de 5 bits se eligen de tal manera que no haya una sucesión de más de tres ceros consecutivos.
 - ¿Qué pasa entonces con la sucesión de 1's?

Datos (4B)	Palabra de código (5B)	Datos (4B)	Palabra de código (5B)
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Código 4B/5B

- Mensaje original: 1 1 1 1 0 0 0 0 0 0 1
- Mensaje original agrupando los bits de a 4

111100000001

Mensaje codificado con 4B/5B listo para enviar

111011111001001

- El receptor con la misma tabla de símbolos decodifica
- Agrega una sobrecarga del del 25%
- Esto no resuelve el problema de muchos 1's consecutivos
 - Implementar codificación NRZI (Non-Return-to-Zero Inverted) 100 BASE-FX
 - 1 Transición
 - 0 No transición

Codificación NRZI

• Ejemplo: Enviar los bits codificados con 4B/5B

Otros esquemas de codificación

Modulación Pasa – Banda

Modulación Pasa - Banda

Referencias

- Wetherall, David J. Computer Networks 2-4 Modulation. https://www.youtube.com/watch?v=v-0XCzKa3Kg
- Tanenbaum A., and Wetherall D. *Redes De Computadoras* 5th ed., Pearson Educación, México, 2012.