PONTOS FIXOS E TEOREMA DE CONTRACÇÃO

a propósito de soluções de equações

(leitura facultativa)

Luis T. Magalhães

IST

27.MAR.2017

Soluções de equações e pontos fixos de funções associadas

$$\begin{split} f(x) = y &\iff Q_y(x) = x \quad \text{, com } Q_y(x) = x - f(x) + y \\ (x \text{ \'e solução da equação } f(x) = y \text{ se e s\'o se \'e ponto fixo da função } Q_y) \end{split}$$

Uma função que contrai distâncias num conjunto fechado tem um único ponto fixo no conjunto, que é o limite de sucessões obtidas por aplicação sucessiva da função a partir de um ponto qualquer, o que também dá um método para cálculo computacional da função inversa. A ideia aplica-se em condições mais gerais (e.g. em dimensão infinita para equações diferenciais ou integrais) para obter existência e unicidade de soluções de equações e calculá-las aproximadamente.

Como o limite é desconhecido, precisamos de poder decidir que uma sucessão converge comparando termos da sucessão em vez de os comparar com o limite.

Sucessões de Cauchy

```
Chama-se sucessão de Cauchy em \mathbb{R}^n a \{\mathbf{u}_k\} \subset \mathbb{R}^n tal que
\forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} : k, m > N \Rightarrow \|\mathbf{u}_k - \mathbf{u}_m\| < \varepsilon. (análogo em espaços métricos)
\{u_i\} \subset \mathbb{R}^n converge \Leftrightarrow \{u_i\} é sucessão de Cauchy.
Dem. (\Rightarrow) Se \mathbf{u}_i \to \mathbf{b}, é \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} : k, m > N \Rightarrow ||\mathbf{u}_k - \mathbf{b}||, ||\mathbf{u}_m - \mathbf{b}|| < \varepsilon.
Da desigualdade triangular, \forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} : k, m > N \Rightarrow ||\mathbf{u}_k - \mathbf{u}_m|| < 2\varepsilon:
logo, \{u_i\} é sucessão de Cauchy.
(\Leftarrow) (em \mathbb{R}) Se \{u_i\} é sucessão de Cauchy, \exists_{N\in\mathbb{N}}: k, m>N \Rightarrow ||\mathbf{u}_k-\mathbf{u}_m||<1. Da
designaldade triangular, k, m > N \Rightarrow |u_m| < |u_m - u_k| + |u_k| < 1 + |u_k|.
Logo, |u_i| \le \max\{|u_1|, \dots, |u_{N+1}|, 1+|u_{N+1}|\} \forall i \in \mathbb{N}. Portanto, a sucessão
\{u_i\}\subset\mathbb{R} é limitada. Do axioma do supremo para nºs reais, existem
s_i = \inf\{u_k : k \ge j\}, S_j = \sup\{u_k : k \ge j\}. As successões \{s_i\}, \{S_i\} são limitadas e
são, resp., crescente e decrescente. Logo, têm, resp., supremo s^* e ínfimo S^*,
que são os resp. limites; logo, tendo em conta que \{u_i\} é sucessão de Cauchy,
```

obtém-se $\forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} : j>N \Rightarrow |s_i-s^*|, |S_i-S^*|, |S_i-s_i|<\varepsilon$, e da desiguldade

(em \mathbb{R}^n , n>1) Aplica-se o precedente a cada componente e usa-se a equivalência das normas $\| \| e \| \|_{\infty}$. Q.E.D.

triangular, $S^* - s^* < 3\varepsilon$. Como $\varepsilon > 0$ é arbitrário, $u_i \rightarrow S^* = s^*$.

Espaços completos

O resultado precedente falha em \mathbb{Q} .

Diz-se que um espaço linear normado V é um **espaço completo** se todas as sucessões de Cauchy em V convergem (análogo em espaços métricos).

Portanto, $\mathbb R$ com a norma de valor absoluto é um espaço normado completo e $\mathbb Q$ não é; $\mathbb R^n$ com a norma canónica é um espaço espaço normado completo e $\mathbb Q^n$ não é.

Assim como se pode completar $\mathbb Q$ com o menor espaço completo que o contém (que é $\mathbb R$, e este até é um método básico de construção dos nos reais a partir de racionais), pode-se provar que todo espaço normado (ou métrico) pode ser completado.

Chama-se **contracção** em $S \subset \mathbb{R}^n$ a uma função $\mathbf{Q}: S \to S$ tal que $\exists_{\lambda \in [0,1[}: \|\mathbf{Q}(\mathbf{y}) - \mathbf{Q}(\mathbf{x})\| \le \lambda \|\mathbf{y} - \mathbf{x}\|$ para $\mathbf{x}, \mathbf{y} \in S$.

Teorema de Contracção: Toda contracção Q num conjunto fechado $\emptyset \neq F \subset \mathbb{R}^n$ tem um único ponto fixo em F.

Dem. Verifica-se $\|\mathbf{Q}^k(\mathbf{y}) - \mathbf{Q}^k(\mathbf{x})\| \le \lambda^k \|\mathbf{y} - \mathbf{x}\|$, com $\lambda \in [0, 1[$. Com $\mathbf{x}_0 \in F$ arbitrário considera-se a sucessão com termos $\mathbf{x}_k = \mathbf{Q}^k(\mathbf{x}_0)$. É

$$\begin{aligned} \|\mathbf{x}_{k} - \mathbf{x}_{k+m}\| &= \|\mathbf{Q}^{k}(\mathbf{x}_{0}) - \mathbf{Q}^{k+m}(\mathbf{x}_{0})\| = \|\mathbf{Q}^{k}(\mathbf{x}_{0}) - \mathbf{Q}^{k}(\mathbf{Q}^{m}(\mathbf{x}_{0}))\| \\ &\leq \lambda^{k} \|\mathbf{x}_{0} - \mathbf{Q}^{m}(\mathbf{x}_{0})\| = \lambda^{k} \|\sum_{j=1}^{m} \left[\mathbf{Q}^{j}(\mathbf{x}_{0}) - \mathbf{Q}^{j-1}(\mathbf{x}_{0})\right]\| \\ &\leq \lambda^{k} \sum_{j=0}^{m-1} \lambda^{j} \|\mathbf{Q}(\mathbf{x}_{0}) - \mathbf{x}_{0}\| \leq \frac{\lambda^{k}}{1-\lambda} \|\mathbf{Q}(\mathbf{x}_{0}) - \mathbf{x}_{0}\|. \end{aligned}$$

Como $\lambda^k \to 0$ quando $k \to +\infty$, $\{\mathbf{x}_k\}$ é uma sucessão de Cauchy; logo, convergente, $\mathbf{x}_k \to \mathbf{x}^* \in \mathbb{R}^n$, e, como F é fechado, é $\mathbf{x}^* \in F$.

Como ${\bf Q}$ é contínua, ${\bf Q}({\bf x}_k) \to {\bf Q}({\bf x}^*)$, mas ${\bf Q}({\bf x}_k) = {\bf Q}^{k+1}({\bf x}_0) \to {\bf x}^*$, pelo que ${\bf Q}({\bf x}^*) = {\bf x}^*$. Logo, \exists ponto fixo em F. Se ${\bf Q}({\bf x}_1^*) = {\bf x}_1^*$ e ${\bf Q}({\bf x}_2^*) = {\bf x}_2^*$, é $\|{\bf x}_1^* - {\bf x}_2^*\| = \|{\bf Q}({\bf x}_1^*) - {\bf Q}({\bf x}_2^*)\| \le \lambda \|{\bf x}_1^* - {\bf x}_2^*\|$. Como $\lambda \in [0,1[$, é $\|{\bf x}_1^* - {\bf x}_2^*\| = 0$ e, portanto, ${\bf x}_1^* = {\bf x}_2^*$. ${\bf Q}.E.D.$

(A convergência é exponencial! Tanto mais rápida quanto λ for menor. É válido o resultado análogo em espaços métricos completos. Aplica-se em espaços de funções para equações diferenciais, integrais ou outras). Ξ

Aplicação a resolução computacional de equações escalares: Método de Newton-Raphson

Se $f:[a,b]\to\mathbb{R}$ é C^2 , $f'(x)\neq 0$, $|f(x)|f''(x)|<(f'(x))^2$ para $x\in[a,b]$, então f(x)=0 tem solução única em [a,b], que é o limite da sucessão definida por $x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)}$, com $x_0\in[a,b]$ qualquer.

Dem. Define-se
$$Q(x) = x - [f'(x)]^{-1} f(x) = x - \frac{f(x)}{f'(x)}$$
. Verifica-se $|Q'(x)| = \left| 1 - \frac{[f'(x)]^2 - f(x) f''(x)}{[f'(x)]^2} \right| = \left| 1 - 1 + \frac{f(x) f''(x)}{[f'(x)]^2} \right| < 1$.

Do T. de Lagrange, |Q(y)-Q(x)|=|Q'(c)||y-x|, para algum c entre x e y. Como Q' é contínua em [a,b] pois Q é C^2 , do T. de Weierstrass tem máximo em [a,b], que, portanto, é um $\lambda < 1$; logo, Q é uma contracção em [a,b]. O T. da Contracção garante que \exists um único ponto fixo de Q em [a,b].

Como as soluções da equação f(x)=0 são os pontos fixos de Q, obtém-se que \exists uma única solução da equação, que é o limite da sucessão $\{Q^k(x_0)\}$ qualquer que seja $x_0 \in [a,b]$. Q.E.D.

Aplicação a resolução computacional de equações escalares:

Método de Newton-Raphson – Exemplo

Se
$$f(x) = \cos x - x$$
, é $f'(x) = -(\sin x + 1)$ e $f''(x) = -\cos x$, pelo que $(f')^2(x) = (\sin x + 1)^2 > 1$ para $x \in [0,1]$ e $|f(x)f''(x)| = |(\cos x - x)\cos x| \le |\cos x - x| < 1$ para $x \in [\delta,1]$, $0 < \delta < 1$. Logo, f satisfaz a hipótese do resultado acima em $[\delta,1]$. Existe uma única solução de $\cos x - x = 0$ em $[\delta,1]$ com $\delta < \frac{\pi}{6}$ e é o limite da sucessão definida por $x_{k+1} = x_k + \frac{\cos x_k - x_k}{\sin x_k + 1}$, com $x_0 \in [0,1]$ arbitrário.

Com
$$x_0 = \frac{\pi}{4} \approx 0,785398$$
, $f(x_0) \approx -0,07829 = 7,8x10^{-2}$
 $x_1 = \frac{\pi}{4} + \frac{\frac{\sqrt{2}}{2} - \frac{\pi}{4}}{\frac{\sqrt{2}}{2} + 1} \approx 0,739536$, $f(x_1) \approx 7,5x10^{-4}$
 $x_2 \approx 0,73908518$, $f(x_2) \approx -7,5x10^{-8}$
 $x_3 \approx 0,73908513321516$, $f(x_3) \approx -6,7x10^{-16}$

(apenas em 3 iterações obtém-se uma solução aproximada da equação em que o valor de f é $< 10^{-15}$ e com 4 iterações este resíduo é $< 10^{-31}$)

Aplicação a prova do Teorema da Função Inversa

Teorema da Função Inversa: Se $f: S \to \mathbb{R}^n$, $S \subset \mathbb{R}^n$, f é diferenciável em S, Df é contínua em $a \in S$ e $Jf(a) \neq 0$, então existe $X \subset S$ aberto com $a \in X$ tal que:

- (1) a restrição $f_{|X}$ tem inversa f^{-1} ;
- (2) Y = f(X) é aberto;
- (3) f^{-1} é diferenciável em Y, $Df^{-1}(y) = [Df(x)]^{-1} c/x = f^{-1}(y)$, $y \in Y$;
- (4) $f \in C^m (m \in \mathbb{N}) \Rightarrow f^{-1} \in C^m$.

Prova alternativa¹ de (2) com o T. de Contracção, supondo sem perda de generalidade $\mathbf{a} = 0$, $\mathbf{f}(\mathbf{a}) = 0$, $D\mathbf{f}(\mathbf{a}) = I_n$, e provado, com $\mathbf{G}(\mathbf{x}) = \mathbf{x} - \mathbf{f}(\mathbf{x})$ e o T. de Lagrange que $\exists_{R>0} : \overline{B_R(0)} \subset S$ tal que \mathbf{f} é injectiva em $\overline{B_R(0)}$, $\|\mathbf{G}(\mathbf{y}) - \mathbf{G}(\mathbf{x})\| \le \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|$ para $\mathbf{x}, \mathbf{y} \in \overline{B_R(0)}$, $J\mathbf{f}(\mathbf{x}) \ne 0$ para $\mathbf{x} \in \overline{B_R(0)}$:

 $^{^1}$ Vide slides "Teoremas de Função Inversa e Função Implícita — a propósito de soluções de equações", Luis T. Magalhães, IST, 26.MAR.2017.

Aplicação a prova do Teorema da Função Inversa

$$\begin{split} f(x)\!=\!y&\Leftrightarrow Q_y(x)\!=\!x\,\text{, com }Q_y(x)=x\!-\!f(x)\!+\!y=G(x)\!+\!y\,. \end{split}$$
 Verifica-se para $y\!\in\!B_{\frac{R}{2}}(0)$ e $x,z\!\in\!\overline{B_R(0)}$ que

$$\begin{split} \|\mathbf{Q}_{\mathbf{y}}(\mathbf{x})\| &= \|\mathbf{G}(\mathbf{x}) + \mathbf{y}\| \le \|\mathbf{G}(\mathbf{x}) - \mathbf{G}(\mathbf{0})\| + \|\mathbf{y}\| \le \frac{1}{2}\|\mathbf{x}\| + \|\mathbf{y}\| < \frac{R}{2} + \frac{R}{2} = R \\ \|\mathbf{Q}_{\mathbf{y}}(\mathbf{z}) - \mathbf{Q}_{\mathbf{y}}(\mathbf{x})\| &= \|\mathbf{G}(\mathbf{z}) - \mathbf{G}(\mathbf{x})\| \le \frac{1}{2}\|\mathbf{z} - \mathbf{x}\| \,. \end{split}$$

Logo, $\forall_{\mathbf{y} \in B_{\frac{R}{2}}(0)}$: $\mathbf{Q}_{\mathbf{y}}$ é contracção em $\overline{B_R(0)}$; do T. de Contracção, \exists ponto fixo único $\mathbf{x}^*(\mathbf{y})$ de $\mathbf{Q}_{\mathbf{y}}$ em $\overline{B_R(0)}$; é $\|\mathbf{x}^*(\mathbf{y})\| = \|\mathbf{Q}_{\mathbf{y}}(\mathbf{x}^*(\mathbf{y}))\| < R$; logo, $\mathbf{x}^*(\mathbf{y}) \in B_R(0)$. Com $X = \mathbf{f}^{-1}[B_{\frac{R}{2}}(0)] \cap B_R(0)$, é $\mathbf{f}(X) = Y = B_{\frac{R}{2}}(0)$ e $0 \in X$. Como \mathbf{f} é contínua, $\mathbf{f}^{-1}[B_{\frac{R}{2}}(0)]$ é aberto; portanto, X é a intersecção de 2 conjuntos abertos, e $X, Y = B_{\frac{R}{2}}(0)$ são abertos. Q.E.D.

Como a prova se baseia no T. de Contracção, fundamenta um método de computação aproximada da inversa local. Além disso, com poucos argumentos adicionais, permite obter um T. da Função Inversa e um associado T. da Função Implícita em espaços lineares de dimensão infinita normados completos, para funções $\mathbf{f} \ C^k \ (k \geq 1)$ com derivada $D\mathbf{f}$ com inversa limitada, que têm aplicações, e.g., a eq. diferenciais ou outras eq. funcionais, e.a bifurcações.