SAPTHAGIRI NPS UNIVERSITY

Mathematics Department II SEMESTER MODULE 5- NUMERICAL METHODS -II

LAGRANGE'S INTERPOLATION:

1. Using Lagrange's formula, find the interpolation polynomial that approximates to the functions described by the following data

X	0	1	2	5
f(x)	2	3	12	147

2. Use Lagrange's interpolation formula to find f(4) given

X	0	2	3	6
f(x)	-4	2	14	158

3. The following table gives the normal weights of babies during first eight months of life

Age(in months)	0	2	5	8
Weight(in pounds	6	10	12	16

Estimate the weight of the baby at the age of seven months using Lagrange's interpolation formula

4. Use Lagrange's interpolation formula to fit a polynomial for the data.

X	0	1	3	4
у	-12	0	6	12

Hence estimate y at x = 2

5. Use Lagrange's interpolation formula to find y at x=10 given

X	5	6	9	11
y	12	13	14	16

- 6. If y(1)=3, y(3)=9, y(4)=30, y(6)=132, find Lagrange's interpolation polynomial that takes on these values.
- 7. Apply Lagrange's formula inversely to find root of the equation f(x) = 0 given that f(30) = -30, f(34) = -13, f(38) = 3, f(42) = 18.
- 8. Apply Lagrange's formula inversely to find x when y=6 given the data

X	20	30	40
у	2	4.4	7.9

NUMERICAL INTEGRATION:

- 1. Evaluate $\int_0^2 \frac{dx}{16+x^2}$ by applying Trapezoidal rule by taking six equal parts.
- 2. Evaluate $\int_0^5 \frac{1}{4x+5} dx$ by using Trapezoidal rule by taking 11 ordinates.
- 3. Evaluate $\int_0^{\pi/2} \cos x \ dx$ by applying Trapezoidal rule, taking eleven ordinates.
- 4. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's $1/3^{rd}$ rule, dividing interval (0, 1) into six equal parts and hence find approximate value of .
- 5. Using Simpson's $1/3^{\text{rd}}$ rule, evaluate $\int_0^{0.6} e^{-x^2}$ by dividing 7 ordinates.
- 6. Use Simpson's $1/3^{\text{rd}}$ rule with seven ordinates to evaluate $\int_{2}^{8} \frac{dx}{\log_{10} x}$.
- 7. By dividing the range into 6 equal parts, find the approximate value of $\int_0^{\pi} e^{\sin x} dx$ using Simpson's $1/3^{\text{rd}}$ rule.
- 8. Evaluate $\int_0^{\pi/2} \sqrt{\cos\theta} \ d\theta$ using Simpsons $1/3^{\rm rd}$ rule, taking equal parts.
- 9. Use Simpson's $3/8^{th}$ rule to evaluate $\int_0^1 \frac{x dx}{1+x^2}$ by taking 7 ordinates
- 10. Evaluate $\int_0^1 \frac{dx}{1+x}$ taking 7 ordinates by applying Simpson's $3/8^{th}$ rule. Hence deduce the value $\log_e 2$.
- 11. Evaluate $\int_0^{0.3} (1 8x^3)^{1/2} dx$ using Simpson's 3/8 th rule taking seven ordinates.
- 12. Evaluate $\int_0^3 \frac{dx}{(1+x)^2}$ by Simpson's $3/8^{th}$ rule.
- 13. Evaluate $\int_4^{5.2} log_e x \, dx$ by using Weddle's rule taking 7 ordinates.
- 14. Evaluate $\int_0^1 \frac{x dx}{1+x^2}$ by using Weddle's rule taking 7- ordinates and hence find the value $\log_e 2$
- 15. Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by Weddle's rule taking 7 ordinates.
- 16. Use Weddle's rule $\int_0^1 \frac{dx}{(1+x)^2}$ taking 6 equal parts...
- 17. Use Weddle's rule $\int_{-\pi/2}^{\pi/2} \cos x \, dx$ by dividing $[-\pi/2, \pi/2]$ into six equal parts.