Molecular Distance Geometry Problem and training of neural networks.

Exercize 1: Molecular Distance Geometry Problem

The Molecular Distance Geometry Problem, or MDGP, consists in reconstructing the 3-D structure of a molecule from information on the distances between its atoms. Let us assume that the distances between all pairs of atoms are known (with infinite precision). Let $D \in \mathbb{R}^{m \times m}$ the symmetrix matrix of the Euclidean distances d_{ij} for each pair $\{i, j\}$.

Let $\underline{x}^1, \ldots, \underline{x}^m \in \mathbb{R}^3$ the unknown positions of the atoms. We can assume w.l.o.g. that the m-th point has coordinates $\underline{x}^m = (0,0,0)$. The problem consists of determining the coordinates $\underline{x}^1, \ldots, \underline{x}^{m-1} \in \mathbb{R}^3$ of the other m-1 atoms so to satisfy the distances d_{ij} between the pairs of atoms i and j. The corresponding constraints are:

$$||\underline{x}^{i} - \underline{x}^{j}||_{2} = d_{ij}, i, j = 0, 1, \dots, m.$$

- a) Give a nonlinear unconstrained optimization formulation for the problem.
- b) Due to the non-convexity of the problem, implement a multistart method based on the methods implemented in the previous lab. Let:
 - $\varepsilon > 0$ the tolerance of the multistart algorithm
 - \bar{f} the known optimal value of the objective function
 - M the maximum number of multistart iterations

The multistart algorithm is as follows:

- (a) Let \underline{x} be a point in $\mathbb{R}^{3(m-1)}$. Let $\underline{x}^* \leftarrow \underline{x}$.
- (b) If $f(\underline{x}^*) < \overline{f} + \varepsilon$ or if more than M iterations, the algorithm stops; otherwise, go to step c).
- (c) Find local minimum $\underline{x}' = (x^1, \dots, x^{m-1})$ from initial point \underline{x} , with a nonlinear optimization method (with a tolerance $\varepsilon' > 0$ and a maximum number of iterations M').
- (d) If $f(\underline{x}') < f(\underline{x}^*)$ update $\underline{x}^* \leftarrow \underline{x}'$.
- (e) Find new initial point $\underline{x} \in \mathbb{R}^{3(m-1)}$, randomly.
- (f) Go to step b).
- c) Apply the algorithm to the following instance with m = 4 atoms ($d_{ii} = 0$ for any i):

d_{ij}	2	3	4
1	1.526	2.491389536	3.837572036
2	0	1.526	2.491389535
3	_	0	1.526

¹A reference is: J.M. Yoon, Y. Gad, Z. Wu, *Mathematical modeling of protein structure using distance geometry*, Technical report TR00-24, DCAM, Rice University, Houston, 2000, available from: http://www.caam.rice.edu/caam/trs/tr00.html#TR00-24.

To build the initial random solution, use rnd.m, that generates a vector of n elements between -bound and bound according to a uniform distribution.

```
function xrnd = rnd(n, bound)
  xrnd = zeros(n,1);
  for i = 1:size(xrnd,1)
      xrnd(i) = (rand()-0.5)*2*bound;
  end
end %of function
```

d) Apply the Gauss-Newton Method for the solution of nonlinear least square problems. We give jac.m, that computes the Jacobian at x of a vector function r with m components. The second parameter represents the number of components.

```
% Jacobian of a vector function at a point
function J = jac(r, m, x)
  n = length(x);
  J = zeros(m,n);
  h = 0.0001;

for i = 1:m
  for j = 1:n
    delta = zeros(n, 1); delta(j) = h;
    rd=r(x+delta);
    rx=r(x);
    J(i,j) = (rd(i) - rx(i)) / h;
  end
  end
end %end of function
```

Use Matlab pinv, that, given matrix A, computes its pseudoinverse $(A^TA)^{-1}A^T$.

Gauss-Newton method It is a variant of Newton method for nonlinear least squares problem. Consider:

$$f(\underline{x}) = \sum_{i=1}^{m} (r_i(\underline{x}))^2, \tag{1}$$

where $\underline{x} \in \mathbb{R}^n$ and $r(\underline{x}) = (r_1(\underline{x}), \dots, r_m(\underline{x}))^T$ is the vector of residuals. Assume $r_i(\underline{x})$ are nonlinear.

Differentiating (1) we obtain

$$\nabla_{\underline{x}} f(\underline{x}) = \sum_{i=1}^{m} 2r_i(\underline{x}) \nabla_{\underline{x}} r_i(\underline{x}).$$

Let $\mathbf{J}_{\underline{x}}\underline{r}(\underline{x}) = \left\{\frac{\partial r_i}{\partial x_k}\right\}_{ik}$ the Jacobian of \underline{r} at \underline{x} : we indicate $\mathbf{J}_{\underline{x}}\underline{r}(\underline{x})$ with $\mathbf{J}(\underline{x})$. Observe $\mathbf{J}(\underline{x}) = \begin{pmatrix} \nabla_{\underline{x}}^T r_1(\underline{x}) \\ \vdots \\ \nabla_{x}^T r_m(x) \end{pmatrix}$. We can write the expression as:

$$\nabla f(\underline{x}) = 2 \mathbf{J}_{\underline{x}} \underline{r}(\underline{x})^T \underline{r}(\underline{x}).$$

The Hessian of f at \underline{x} , that we indicate with $\mathbf{H}(\underline{x})$, is

$$\mathbf{H}(\underline{x}) = 2\mathbf{J}(\underline{x})^{T}\mathbf{J}(\underline{x}) + 2\sum_{i=1}^{m} (r_{i}(\underline{x}))\nabla^{2}r_{i}(\underline{x}).$$
(2)

If the residuals are small, we can discard the last term in (2), leading to

$$\mathbf{H}(x) \approx 2\mathbf{J}(x)^T \mathbf{J}(x)$$
.

Observe that, if the residuals are linear in \underline{x} , then $\nabla^2 r_i(\underline{x}) = 0$ for any i, so the second-order approximation is exact and the method is the same as the one for linear least squares.

The Netwon method step:

$$\underline{x}_{k+1} = \underline{x}_k - [\mathbf{H}(\underline{x}_k)]^{-1} \nabla f(\underline{x}_k)$$

corresponds, using approximation of the Hessian to the first derivative, to:

$$\underline{x}_{k+1} = \underline{x}_k - \left[\mathbf{J} \left(\underline{x}_k \right)^T \mathbf{J} \left(\underline{x}_k \right) \right]^{-1} \mathbf{J} \left(\underline{x}_k \right)^T \underline{r} (\underline{x}_k).$$

For the convergence of Gauss-Newton, the inital solution must be sufficiently close to a stationary point of f and the discarded terms (2) must be small. Observe that the method does not need to compute the Hessian $\mathbf{H}(\underline{x})$, that would imply computing the Hessian $\nabla^2 r_i$ for each r_i .

Figure 1: Optimal configuration.

Esercize 2 (extra): neural networks

We have a dataset reported in Table 1, where y_1, y_2 are the input values and z the output of an unknown function: Suppose we want to build a neural network replicating the logical function that generated the data.

a) Let $\varphi(\xi) = \frac{e^{\xi} - e^{-\xi}}{e^{\xi} + e^{-\xi}}$ the activation function, depicted in Figure 2b. Train the network in Figure 2a with the reported dataset (*training set*), finding a set of weights \underline{u} corresponding to the network arcs so to approximate the data. Use the multistart algorithm to find a good local optimum.

Table 1: Exercise 2.

y_1	y_2	z
0.1	0.1	0.1
0.9	0.9	0.05
0.0	0.95	0.98
0.95	0.1	0.95

Figure 2: Features of the neural network.

Use the file f_hmap.m, that represents the function implemented by the neural network in Figure 2a:

and the file f_nnet.m, that encodes the error function to minimize:

```
function f = f_nnet(u)
  y = [ 0.1    0.1  ;
        0.9    0.9  ;
        0.0    0.95 ;
        0.95    0.1  ];
  z = [ 0.1    0.05    0.98    0.95 ]';
  f = 0;
  for i = 1:length(z)
    f = f + ( z(i) - f_hmap(u, [y(i,1) y(i,2)]') )^2;
  end
end
```

b) Compute the outputs with the inputs (0,0), (0,1), (1,0), (1,1) and establish what kind of circuit we have.