Tema d'esame dell'8 Settembre 2005 - Esercizio 2

Nel circuito illustrato, l'amplificatore operazionale è ideale, e i componenti passivi hanno valori: $R_1=2$ k Ω , $R_2=2$ k Ω , $R_3=3$ k Ω e C=3 nF.

A. Calcolare la tensione di uscita $v_{OUT}(t)$ in funzione della tensione di ingresso $v_{IN}(t)$.

Essendo l'amplificatore operazionale ideale, vale il principio di terra virtuale:

[1]
$$v^+ - v^- = 0$$
.

[2]
$$v^+ = v^-$$

Poichè la tensione applicata ad un bipolo è pari alla differenza tra la tensione applicata al nodo positivo e quello negativo, e siccome nel terminale di terra, la differenza di potenziale è pari a 0V, calcolo v_2 :

[3]
$$v_2 = v^+ - 0$$
.

Calcolo inoltre la tensione v_1 :

[4]
$$v_1 = v_{IN} - v^+$$
.

Considerando la legge di Ohm calcolo la corrente nelle resistenze R_1 ed R_2 :

[5]
$$i_2 = \frac{v^+}{R_2};$$

[6]
$$i_1 = \frac{v_{IN} - v^+}{R_1}$$
.

Grazie alla Kirchoff Current Law (KCL) applicata al nodo 1 ricavo:

[7]
$$i_1 = i_2$$
;

e sostituendo a quest'ultima equazione le equazioni [5] e [6] ottengo:

[8]
$$\frac{v_{IN} - v^{+}}{R_{1}} = \frac{v^{+}}{R_{2}};$$

che posso risolvere rispetto a v^{+} :

[9]
$$\frac{\dot{v}_{IN}}{R_1} = v^+ \frac{R_1 + R_2}{R_1 R_2}$$

[10]
$$v^+ = v_{IN} \frac{R_2}{R_1 + R_2}$$

che posso risolvere rispetto a \mathbf{v} : $[9] \frac{v_{IN}}{R_1} = \mathbf{v} + \frac{R_1 + R_2}{R_1 R_2};$ $[10] v^+ = v_{IN} \frac{R_2}{R_1 + R_2}.$ Ora grazie alla KCL applicata al nodo 3 posso scrivere:

[11]
$$i_C + i_3 = 0$$
;

Dove la corrente in un condensatore è pari a:

[12]
$$i_C = C \frac{dv_c}{dt}$$
.
La tensione in R_3 è invece:

[13]
$$v_3 = v_{OUT} - v^+$$
;

sostituendo a v^+ l'equazione [8], ottengo:

[14]
$$v_3 = v_{OUT}$$
- $v_{IN} \frac{R_2}{R_1 + R_2}$.
La tensione nel condensatore è invece:

[15]
$$v_C = v_{IN} - v^+;$$

ed anche in questo caso a v^+ sostituisco l'equazione [10]:

[16]
$$v_C = v_{IN} - v_{IN} \frac{R_2}{R_1 + R_2}$$

[16]
$$v_C = v_{IN} - v_{IN} \frac{R_2}{R_1 + R_2};$$

[17] $v_C = v_{IN} \left(1 - \frac{R_2}{R_1 + R_2}\right).$

Combinando quest'ultima equzione con l'equazione [12], calcolo la i_C :

[18]
$$i_C = C \frac{R_2}{R_1 + R_2} \frac{dv_{IN}}{dt}$$
.
Con l'equazione [14] calcolo i_3 :

$$[19] \ i_3 = \frac{v_{OUT} - v_{IN} \frac{R_2}{R_1 + R_2}}{R_3}$$

Ora posso sostituire alla [11] le equazioni [18] e [19] con cui calcolo v_{OUT} :

$$[20] \ C \frac{R_2}{R_1 + R_2} \ \frac{dv_{IN}}{dt} + \frac{v_{OUT} - v_{IN} \frac{R_2}{R_1 + R_2}}{R_3} = 0;$$

$$[21] \ C \frac{R_2}{R_1 + R_2} \ \frac{dv_{IN}}{dt} = - \frac{v_{OUT} - v_{IN} \frac{R_2}{R_1 + R_2}}{R_3};$$

$$[22] \ C \frac{R_2}{R_1 + R_2} \ \frac{dv_{IN}}{dt} = - \frac{v_{OUT}}{R_3} - \frac{v_{IN} \frac{R_2}{R_1 + R_2}}{R_3};$$

$$[23] \frac{v_{IN} \frac{R_2}{R_1 + R_2}}{R_3} - C \frac{R_2}{R_1 + R_2} \ \frac{dv_{IN}}{dt} = \frac{v_{OUT}}{R_3};$$
Fattorizzo entrambi i membri per R_3 :
$$[24] \ v_{OUT} = v_{IN} \frac{R_2}{R_1 + R_2} - R_3 C \frac{R_2}{R_1 + R_2} \ \frac{dv_{IN}}{dt};$$

$$[25] \ v_{OUT} = \frac{R_2}{R_1 + R_2} \left(v_{IN} - R_3 C \frac{dv_{IN}}{dt} \right).$$

B. Calcolare l'andamento nel tempo della tensione di uscita $v_{OUT}(t)$ quando la tensione di ingresso è data dalla funzione $v_{IN}(t) = V_C \sin 2\pi f t$, con $V_C = 1$ V e f = 100 kHz.

Calcolare v_{OUT} in funzione di v_{IN} significa sostituire $v_{IN}(t) = V_C \sin 2\pi f t$ nell'equazione [25] precedentemente calcolata, calcolando anche la derivata prima di v_{IN} .

[26]
$$\frac{dv_{IN}}{dt} = V_C 2\pi f \cos 2\pi f t.$$

Ora sostituisco \mathbf{v}_{IN} e $\frac{dv_{IN}}{dt}$ nell'equazione [25] ed ottengo:

[27]
$$v_{OUT} = \frac{R_2}{R_1 + R_2} \left(V_C \sin 2\pi f t - R_3 C V_C 2\pi f \cos 2\pi f t \right);$$

[28]
$$v_{OUT} = \frac{R_2}{R_1 + R_2} V_C \left(\sin 2\pi f t - R_3 C 2\pi f \cos 2\pi f t \right).$$