Lecture: 1

Instructor

Azeem Iqbal

azeem.iqbal@uet.edu.pk

Textbooks:

REQUIRED:

<u>Introduction to Probability</u> by Dimitri P. Bertsekas and John N. Tsitsiklis, 2nd Edition, Athena Scientific, 2008

OPTIONAL:

<u>Probability, Random Variables and Stochastic Processes</u> by

Athanasios Papoulis and S. U. Pillai, 4th Edition, McGraw Hill, 2002

Course Objectives:

The objectives of this course are to teach the Students:

- 1) Compute simple and conditional probabilities in different situations
- 2) Efficiently use the concept of random variables
- 3) Apply suitable distribution in solving real life problems

Course Learning Outcomes:

Students shall be able to:

CLO1: Apply elements of probability theory to various problems in engineering

CLO2: Determine densities/distributions and expectations of discrete and continuous, single and multiple, random variables.

CLO3: Analyze and understand random processes and apply second moment theory to random processes

Grading Policy

Quizzes Midterm Final

30% 30% 40%

Instructions:

- Probability is a tricky subject.
- Problem solving is the key part of this class. (Practice Practice Practice)
- We will study basic concepts of probability and a lot of formulas in this class.
- This is not the plug-in formulas class, where you are given a list of formulas and numbers, you plug in numbers and get answers.
- You have to choose formula for every situation.
- A problem may have multiple solutions.
 - o Short solutions need in depth understanding.

Introduction

- ➤ We live in a world of <u>uncertainty</u>.
- ➤ We study probability models to study the <u>nature of uncertainty</u> in the world.

Applications

- ➤ <u>Communication:</u> Noise is random. You have to study the noise in order to improve your communication system.
- Management: You have to study customer demands which are random. You also need help of probability for Investment planning.
- Finance: Markets are uncertain, and whoever has the best methods to analyze financial data has an advantage.
- ➤ <u>Computer Science:</u> Probability also plays an important role in machine learning and artificial intelligent.
- ➤ <u>Transportation Systems:</u> Random disruptions due to weather or accidents are a major concern.

Applications

- > I could go on and on, giving you many more examples.
- But the message is hopefully clear.
- Most phenomena of interest involve significant randomness.
- ➤ And the only reason we collect and manipulate data is because we want to fight this randomness as much as we can.
- > And the first step in fighting an enemy like randomness is to study and understand your enemy.

Elementary Concepts

- Sample Space
- Probability Laws
 - Axioms
 - Properties that follows from axioms
- Examples
 - Discrete
 - Continuous

Set Theory

Definition 1: A <u>set</u> is a collection of objects, which are called the elements of the set.

```
Ex: A = {1, 2, 3, ...,}
B = {Monday, Wednesday, Friday},
C = {real numbers (x, y): min (x, y) ≤ 2}.
(Finite, Countably Infinite, Uncountably Infinite)
Null set=empty set=Ø={}
```

Set Theory

Definition 1: A <u>set</u> is a collection of objects, which are called the elements of the set.

```
Ex: A = {1, 2, 3, ...,}
B = {Monday, Wednesday, Friday},
C = {real numbers (x, y): min (x, y) ≤ 2}.
(Finite, Countably Infinite, Uncountably Infinite)
Null set=empty set=Ø={}
```

Set Theory

The <u>universal set</u> (Ω) : The set which contains all the elements under investigation.

Some relations

- A is a <u>subset</u> of B (A \subset B) if every element of A is also an element of B.
- A and B are <u>equal</u> (A = B) if they have the same elements.

Set Operations

- 1. UNION
- 2. INTERSECTION
- 3. COMPLEMENT of a set
- 4. DIFFERENCE

 \triangleright Two sets are called <u>disjoint</u> or <u>mutually exclusive</u> if $A \cap B = \emptyset$.

➤ A <u>collection of sets</u> is said to be a <u>partition</u> of a set S if the sets in the collection are disjoint and their union is S.

A <u>probabilistic model</u> is a mathematical description of an uncertain situation. A probability model consists of an <u>experiment</u>, <u>a sample space</u>, and <u>a probability law</u>.

Experiment

Every probabilistic model involves an underlying process called the experiment.

Sample Space

The list (set) of all possible results (OUTCOMES) of an experiment is called the SAMPLE SPACE (Ω) of the experiment.

List must be:

- Collectively exhaustive (No matter what happened, you will get one of the outcomes in the sample space)
- Mutually exclusive (If outcome A is happened than outcome B could not be happened)

Ex: List the sample spaces corresponding to the following experiments:

Experiment 1: Toss a coin and look at the outcome.

```
\Omega = \{H, T\} - Finite
```

Experiment 2: Toss a coin until you get "Heads".

```
\Omega = \{TH, TTH, TTTH, TTTTH, \dots \} - Countably Infinite
```

- **Experiment 3**: Throw a dart into a circular region of radius r, and check how far it fell from the center.
 - $\Omega = \{x: 0 \le x \le r, x \in R \}$ Uncountably Infinite
- **Experiment 4**: Pick a point (x, y) on the unit square.

$$\Omega = \{(x, y) \in \mathbb{R}^2, -\frac{1}{2} \le x \le \frac{1}{2}, -\frac{1}{2} \le y \le \frac{1}{2}\}$$
 – Uncountably Infinite

Experiment 5: A family has two children.

$$\Omega = \{GG, BB, GB, BG\}$$

Definition 2: An event is a subset of the sample space Ω .

 Ω : certain event \emptyset : impossible event

TRIAL: Single performance of an experiment

⇒ An event A is said to have OCCURRED if the outcome of the trial is in A.

Probability Law

- ➤ The probability law assigns to every event A a nonnegative number P(A) called the probability of event A.
- ➤ Intuitively, this specifies the "<u>likelihood</u>" of any outcome, or of any set of possible outcomes.

Probability Axioms

Event: a subset of the sample space

- 1. (Nonnegativity): $P(A) \ge 0$ for every event A
- 2. (Additivity): If A and B are two disjoint events, then $P(A \cup B) = P(A) + P(B)$.

More generally, if the sample space has an infinite number of elements and A1, A2, . . . is a sequence of disjoint events, then $P(A1 \cup A2 \cup ...) = P(A1) + P(A2) +$

3. (Normalization): $P(\Omega) = 1$

Probability Axioms

Properties of Probability Laws

(a)
$$P(\emptyset) = 0$$
,
 $\Omega = \Omega \cup \phi \text{ (disjoint events)}$
 $\Rightarrow P(\Omega) = P(\Omega \cup \phi)$
 $\Rightarrow P(\Omega) = P(\Omega) + P(\emptyset) \text{ (Additivity axiom)}$
 $\Rightarrow 1 = 1 + P(\emptyset) \Rightarrow P(\emptyset) = 0 \text{ (Normalization axiom)}$

(b)
$$P(A^c) = 1 - P(A)$$

 $P(\Omega) = 1$ (Normalization axiom)
 $\Rightarrow P(A \cup A^c) = 1$
 $\Rightarrow P(A) + P(A^c) = 1$ (Additivity axiom)

Properties of Probability Laws

(c) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ [if sets are not disjoint]


```
A \cup B = (A \cap B^{C}) \cup (A \cap B) \cup (B \cap A^{C}) [These \ all \ disjoint \ sets]
P(A \cup B) = P(A \cap B^{C}) + P(A \cap B) + P(B \cap A^{C}) [additivity \ axiom]
P(A \cup B) = P(A \cap B^{C}) + P(A \cap B) + P(B \cap A^{C}) + P(A \cap B) - P(A \cap B)
P(A) = P(A \cap B^{C}) + P(A \cap B)
P(B) = P(B \cap A^{C}) + P(A \cap B)
P(A \cup B) = P(A) + P(B) - P(A \cap B)
```

(d)
$$A \subset B \Rightarrow P(A) \leq P(B)$$

Practice Problem

Let A and B be the events on the same sample space, with P(A)=0.6, P(B)=0.7. Can these events be disjoint?

Solution: If two events are disjoint, then additivity axiom would imply

$$P(A \cup B) = P(A) + P(B) = 1.3 > 1 \Rightarrow$$
 Which contradicts the Normalization Theorem

The sample space is a countable (finite or infinite) set in discrete models.

Example: An experiment involving a single coin toss. We say that the coin is "fair", equal probabilities are assigned to the possible outcomes. That is, P(H) = P(T) = 1/2.

Discrete Probability Law

If the sample space consists of a finite number of possible outcomes, then the probability law is specified by the probabilities of the events that consist of a single element. In particular, the probability of any event $\{s_1, s_2, \ldots, s_n\}$ is the sum of the probabilities of its elements:

$$\mathbf{P}(\{s_1, s_2, \dots, s_n\}) = \mathbf{P}(\{s_1\}) + \mathbf{P}(\{s_2\}) + \dots + \mathbf{P}(\{s_n\}).$$

Discrete Uniform Probability Law

If the sample space consists of n possible outcomes which are equally likely (i.e., all single-element events have the same probability), then the probability of any event A is given by

$$\mathbf{P}(A) = \frac{\text{Number of elements of } A}{n}.$$

Sample space: discrete/finite example

Two rolls of a tetrahedral die

Y = Second

roll

Example 1.3.

Dice. Consider the experiment of rolling a pair of 4-sided dice

Solution:

P{the sum of the rolls is even}= 8/16 = 1/2, P{the sum of the rolls is odd}= 8/16 = 1/2, P{the first roll is equal to the second}= 4/16 = 1/4, P{the first roll is larger than the second}= 6/16 = 3/8, P{at least one roll is equal to 4}= 7/16.

Another Example:

- Two rolls of tetrahedral die
- Let every possible outcome have probability 1/16

$$P(X = 1) = \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} = \frac{1}{4}$$

$$Let Z = \min(X, Y)$$

$$P(Z = 4) = \frac{1}{16}$$

$$P(Z = 2) = 5 * \frac{1}{16}$$

Sample space: discrete but infinite

- Sample space: {1, 2, . . .}
- We are given $P(n) = \frac{1}{2^n}$, n = 1,2,3,...

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = \frac{1}{2} \left[\frac{1}{2^0} + \frac{1}{2^1} + \frac{1}{2^2} + \dots \right] = \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{2^n}$$

$$= \frac{1}{2} \left[\frac{1}{1 - (\frac{1}{2})} \right] = 1 \quad (geometric \ series)$$

•
$$P(outcome\ is\ even) = ?, P(\{2,4,6,8,....\})$$

 $P(\{2,4,6,8,....\}) = P(\{2\}U\{4\}U\{6\}.....)$
 $= P\{2\} + P\{4\} + P\{6\}.....$
 $= \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots$
 $= \frac{1}{4} \left[1 + \frac{1}{4} + \frac{1}{4^2} + \cdots \right]$
 $= \frac{1}{4} \left[\frac{1}{1 - (\frac{1}{4})} \right] = 1/3$