Operating System Process Scheduling

Tahira Alam University of Asia Pacific

CPU Switches from Process to Process

Process Scheduling Queues

- Job queue set of all processes in the system
- Ready queue set of all processes residing in main memory, ready and waiting to execute
- Device queues set of processes waiting for an I/O device
- Processes migrate among the various queues

Representation of Process Scheduling

Types of Schedulers

- Long-term scheduler (or job scheduler) selects which processes should be brought into the ready queue
- Short-term scheduler (or CPU scheduler) selects which process should be executed next and allocates CPU

The long-term scheduler controls the degree of multiprogramming

Addition of Medium Term Scheduling

Schedulers(cont.)

- Processes can be described as either:
 - I/O-bound process spends more time doing I/O than computations, many short CPU bursts
 - CPU-bound process spends more time doing computations; few very long CPU bursts

Scheduling Algorithms(1)

Policy: which process to run

Mechanism: how to "context switch" between

processes

Scheduling Algorithms(2)

- The policy which process to run next, from set of ready processes?
- OS scheduler schedules the CPU requests (bursts) of processes
 - CPU burst = the CPU time used by a process in a continuous stretch
 - If a process comes back after I/O wait, it counts as a fresh CPU burst

Scheduling Algorithms(3)

Goals:

- Maximize utilization = fraction of time CPU is used
- Minimize average turnaround time = time from process arrival to completion
- Minimize average response time = time from process arrival to first scheduling
- Fairness: all processes must be treated equally
- Minimize overhead: run process long enough to amortize cost of context switch (~1 microsecond)

Scheduling Algorithms (4)

- **Arrival Time:** Time at which the process arrives in the ready queue.
- Burst Time: Time required by a process for CPU execution.

 Waiting Time(W.T): Total time spent by the process in the ready state waiting for CPU.
Waiting Time = Turn Around Time – Burst Time

Scheduling Algorithms(5)

 Turn Around Time: Total amount of time spent by the process from coming in the ready state for the first time to its completion.

Turn Around Time = Completion Time - Arrival Time Turnaround time = Waiting time + Burst time

• **Completion Time:** Time at which process completes its execution.

Scheduling Algorithms(6)

- Types of Algorithms:
 - Pre-emptive: allows a running process to be interrupted by a high priority process
 - Non Pre-emptive: any new process has to wait until the running process finishes its CPU cycle.

First Come First Serve(1)

Non Pre-emptive

PROCESS	BURST TIME
P1	21
P2	3
P3	6
P4	2

This is the GANTT chart for the above processes

The average waiting time will be = (0 + 21 + 24 + 30)/4 = 18.75 ms

First Come First Serve(1)

Process	Burst time	Arrival time
P1	6	2
P2	3	5
P3	8	1
P4	3	0
P5	4	4

Grantt Chart:

Average waiting time: (0+2+9+13+16)/5 = 8

Shortest Job First(1)

Non Pre-emptive

PROCESS	BURST TIME
P1	21
P2	3
P3	6
P4	2

 \downarrow

In Shortest Job First Scheduling, the shortest Process is executed first.

	P4	P2	P3	P1
O	2	5	5 1	1 32

Now, the average waiting time will be = (0 + 2 + 5 + 11)/4 = 4.5 ms

Shortest Job First(1)

Ready queue: p1p2p5 p3

Process Queue	Burst time	Arrival time
P1	6	2
P2	2	5
P3	8	1
P4	3	0
P5	4	4
P4 0 3	P1 P2 P5 9 11	P3 23
Avanaga	Waiting Time= 0+1+4+7+1	1/5 - 26/5 - 5 2

Priority Scheduling(1)

- Process selected based on priority
- The lowest priority gets the CPU first
- Can be both pre-emptive and non preemptive

Priority Scheduling(Non pre-emptive)

r.q: p2 p1 p4 p3

PROCESS	BURST TIME	PRIORITY
P1	21	2
P2	3	1
P3	6	4
P4	2	3

The average waiting time will be, (0 + 3 + 24 + 26)/4 = 13.25 ms

Priority Scheduling(Pre-emptive)

r.q:

Process	Priority	Burst time	Arrival time
P1	1	4	0
P2	2	3	0
Р3	1	7	6
P4	3	4	11
P5	2	2	12
0	P ₁ P ₂ P ₃ 4 6	P2 P5 F	20
P1 = o - o = o P2 =4 - o + 7 =11			: 18/5= 3.6

Round Robin(1)

- Pre-emptive
- Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds.
 After this time has elapsed, the process is preempted and added to the end of the ready queue.

Round Robin(2)

P1=0+(15-5)+(21-20) P2=5, p3=8+(20-13) P4=13

Here, Quantam = 5

PROCESS	BURST TIME
P1	21
P2	3
P3	6
P4	2

The average waiting time will be, 11 ms.

Round Robin(3)

Quantam=2 Readu queue: P1=0+3+5, p2=1+7, p3=2,p4=4 P5=5+2

Process Id	Arrival time	Burst time
P1	О	5
P2	1	3
P3	2	1
P4	3	2
P5	4	3

• Average waiting time = (8 + 8 + 2 + 4 + 7) / 5 = 29 / 5 = 5.8 unit

Some animation links...

First come first serve:

https://www.youtube.com/watch?v=iiBij98FtHg

Shortest job first:

https://www.youtube.com/watch?v=ngHgEqYZeyg

Priority Scheduling (Pre-emptive)

https://www.youtube.com/watch?v=2NB53crEWn4

Round Robin Scheduling:

https://www.youtube.com/watch?v=hy5dn9mK36I

Thank you!!!!