Prova-03

Prof. Msc. Elias Batista Ferreira Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

Sumário

1	Estatística Empresarial (++)	2
2	Loteria (+++)	3
3	Polinômios (++)	5

1 Estatística Empresarial (++)

Uma empresa deseja obter informações estatísticas sobre seus funcionários. Para isso, irá colher os seguintes dados dos funcionários: matricula, idade, número de filhos, sexo e salário.

Essas informações precisam ser armazenadas em uma estrutura:

```
typedef struct {
   int matricula;
   int idade;
   int numFilhos;
   char sexo;
   double salario;
} FUNCIONARIO;
```

Entrada

Na primeira linha ha um inteiro n, 1<n500, representando a quantidade de funcionário (fazer alocação dinâmica). A seguir haverá n linhas com n os seguintes dados separados por um espaço em branco cada: matricula, idade, número de filhos, sexo e salário.

Saída

Deverá imprimir 4 (quatro) respostas:

- Quantidade de funcionários com idade superior a média de idades E salário superior a 3 salários mínimos.
- Quantidade de mulheres que possuem quantidade de filhos acima da média geral.
- Quantidade de homens que possuem quantidade de filhos acima da média geral.
- Quantidade de funcionários maiores de 47 anos com renda per-capita (por pessoa) abaixo de 2 salários mínimos.

Exemplo

Entrada	Saída
10	2 0 3 6
101 44 4 M 7001.00	
105 56 2 F 2950.00	
211 60 2 F 6870.00	
221 25 1 F 9200.00	
231 38 3 M 4350.00	
300 70 4 M 2100.00	
545 27 0 F 4500.00	
654 65 1 F 2900.00	
670 53 2 M 3300.00	
888 55 2 F 4100.00	

^{*} considere o salário mínimo igual a 1200.00.

2 Loteria (+++)

A Loteria é um jogo que paga um prêmio em dinheiro para o apostador que conseguir acertar os 6 números sorteados. Ainda é possível ganhar prêmios ao acertar 4 ou 5 números dentre os 60 disponíveis no volante de apostas. Para isso, você deve *marcar* 6 números do **volante**. Você poderá fazer quantas apostas quiser, ou seja, poderá jogar quantos volantes necessitar. Os números estão entre 1 e 60.

Faça um programa que receba os jogos de um apostador, em seguida, leia o resultado da loteria e verifique se o apostador acertou os números sorteados. Se o apostador acertou 4, 5 ou 6 números é necessário emitir um aviso reportando o fato.

É obrigatório utilizar estrutura para armazenar os números apostados e o resultado.

```
typedef struct {
   int numJogo;
   int numero[6];
} CARTELA;
```

Entrada

A entrada contém vários casos de teste. A primeira linha de cada caso de teste contém um inteiro $N(1 \le N \le 10^3)$, indicando a quantidade de apostas do jogador. As N linhas seguintes contém o número do jogo e 6 números correspondentes aos palpite do jogador.

Em seguida, deverá ter um linha para ler o número do concurso e os 6 números sorteados, que devem ser armazenados em outra estrutura.

* Deve-se utilizar alocação dinâmica para reservar N espaços das apostas.

Saída

Para cada entrada, deve-se verificar se o apostador acertou, no mínimo, 4 números e emitir a seguinte mensagem:

- 1. QUADRA jogo: a b c d: quando a apostador acertar 4 números.
- 2. QUINA jogo: a b c d e: quando a apostador acertar 5 números.
- 3. SENA jogo: a b c d e f: quando a apostador acertar 6 números.

Após analisar todas as apostas e constatar que o apostador não conseguiu acertar, no mínimo, 4 números, escreva a mensagem "NENHUMA CARTELA PREMIADA PARA O CONCURSO concurso".

Exemplos

Eı	ntra	ada	a											
4														
1	5	15	5	25	5	35	4	15	5	5				
2	9	13	3	28	3	46	5	51	5	2				
3	2	28	3	4 (5	47	5	51	1	.3				
4	8	15	5	25	5	35	4	15	5	5				
10)50) (9	13	3	28	4	16	5	1	5	2		
Sa	ıída	ì												
SE	ENA	A 2	2:		9	1	3	2	8	4 (6	51	-	52
JQ	JAI)R <i>I</i>	Ą	3	:	2	8	4	6	5.	1	13	3	

Entrada 3 1 3 11 44 50 56 32 2 2 12 57 51 45 33 3 1 34 13 46 58 52 1051 5 15 36 47 53 60

Saída

NENHUMA CARTELA PREMIADA PARA O CONCURSO 1051

3 Polinômios (++)

(++)

Faça um programa que implemente a leitura e a soma, subtração e multiplicação de uma sequência de polinômios de qualquer ordem. Neste exercício você deverá usar a estrutura Poly, disponível no código abaixo, para armazenar um polinômio. Nessa estrutura, o atributo ordem representa a maior ordem do polinônio e o vetor coef representa os coeficientes do polinômio. Os coeficientes são armazenados de modo que sua potência é o seu índice correspondente. Por exemplo, a representação do polinônio 2.63 - 1.62 + 1 é: ordem=3 e coef={1,0,-1,2}.

Neste exercício, a impressão de um polinômio segue o seguinte padrão: $s_c c_p \, ^p p_c$, onde s_c é o sinal do coeficiente, c_p é o coeficiente da potência p e p_c é a potência do coeficiente c. Desse modo, o polinômio dado como exemplo no parágrafo anterior seria impresso como: $+2.0 \times ^{\{\}}3-1.0 \times ^{\{\}}2+0.0 \times ^{\{\}}1+1.0 \times ^{\{\}}0$. Note que deve ser usada somente uma casa decimal.

Você deverá implementar as funções faltantes no código abaixo.

```
typedef struct {
    int ordem;
                   // Ordem do polinomio
     double * coef; // Vetor de coeficientes
4 } Poly;
6 /**
1 * Funcao que cria um polinomio com alocacao dinamica
8 * @param Poly* Ponteiro para o novo polinomio
Poly * poly_new(int ord);
11
* Funcao que imprime um polinomio na tela
14 * @param p Ponteiro para o polinomio
15 */
void poly_print(Poly * p);
18 * Funcao que libera a memoria alocada a um polinomio
19 * @param p Ponteiro para o polinomio
21 void poly_free(Poly * p);
22
23 / * *
24 * Cria o polinomio resultante da soma
25 * @param A Ponteiro para o primeiro polinomio
26 * @param B Ponteiro para o segundo polinomio
27 * @return Poly* <- A + B
29 Poly * poly_sum( Poly * A, Poly * B );
30
* Cria o polinomio resultante da subtracao
33 * @param A Ponteiro para o primeiro polinomio
* @param B Ponteiro para o segundo polinomio
35 ★ @return Poly★ <- A - B
36 */
37 Poly * poly_sub( Poly * A, Poly * B );
```

```
40 * Cria o polinomio resultante da multiplicacao
41 * @param A Ponteiro para o primeiro polinomio
* @param B Ponteiro para o segundo polinomio
43 * @return Poly* <- A * B
45 Poly * poly_mult( Poly * A, Poly * B);
47 int main() {
               // Vetor de polinomios
   Poly **P;
   int n; // Quantidade de casos
   // Demais declaracoes
50
    // ...
51
    scanf("%d", &n); // Definicao da quantidade de polinomios
   // Controle o laco de repeticao
55
    // Execute n repeticoes
56
    // Demais instrucoes
58
59
60
    return 0;
61 }
```

Entrada

Seu programa deve ler um inteiro correspondente à quantidade de polinômios a serem lidos. Em seguida, para cada polinômio da sequência, deverá ler a ordem seguido dos ses coeficientes.

Saída

O programa deve apresantar, para cada par de polinômios os três polinômios resultantes da soma, subtração e multiplicação. Os pares são formados sempre pelos polinômios de índice i e i+1, ou seja, o primeiro forma par com o segundo, o segundo com o terceiro e assim por diante.

Exemplo

Entrada	Saída
3	soma: $+3.0x^1+1.0x^0$
1 1 -1	subtracao: -1.0x^1-3.0x^0
1 2 2	multiplicacao: +2.0x^2+0.0x^1-2.0x^0
1 1 2	soma: $+3.0x^1+4.0x^0$
	subtracao: +1.0x^1+0.0x^0
	multiplicacao: +2.0x^2+6.0x^1+4.0x^0