离散数学(2) 第二次作业讲解

2024 秋季学期

1. 为了给出有序偶的另一定义,选取两个不同的集合A和B(例如取 $A=\emptyset$, $B=\{\emptyset\}$),并定义<a,b>={{a,A},{b,B}}。证明这个定义的合理性(即证明能保证有序偶的唯一性)。

知识点: 有序偶、有序偶的唯一性

定义15: (有序偶) 任给两个对象 x 和 y, 将它们按规定的顺序构成的序列,称之为有序偶,记为<x,y>。

其中,x称为有序偶的第一元,y称为第二元。

■ 有序偶的唯一性: 对任意 u, v, x, y $\langle u, v \rangle = \langle x, y \rangle$ 当且仅当 u = x 和 v = y 1. 为了给出有序偶的另一定义,选取两个不同的集合A和B(例如取A=Ø,B={Ø}),并定义<a,b>={{a,A},{b,B}}。证明这个定义的合理性(即证明能保证有序偶的唯一性)。

解析: 证明有序偶的集合定义能保证有序偶的唯一性

■ 即需证明: 对任意 a, b, c, d

$$\langle a, b \rangle = \{ \{ a, A \}, \{ b, B \} \} = \langle c, d \rangle = \{ \{ c, A \}, \{ c, B \} \}$$

当且仅当 a = c 且b = d

1. 为了给出有序偶的另一定义,选取两个不同的集合A和B(例如取A=Ø,B={Ø}),并定义< a, b> ={{ a, A}, { b, B}}。证明这个定义的合理性(即证明能保证有序偶的唯一性)。

证明:对任意的a, b, c, d,需证: $\langle a, b \rangle = \langle c, d \rangle$ 当且仅当 $a = c \perp b = d$ 。 (\leftarrow) 若 $a = c \perp b = d$,显然有 $\langle a, b \rangle = \langle b, c \rangle$ 。

 (\Rightarrow) 若 $\langle a,b\rangle = \langle c,d\rangle$,则有

 $\{ \{a, A\}, \{b, B\} \} = \{ \{c, A\}, \{d, B\} \}$ (1)式

由于A, B是两个不同的集合,因此 $\{a,A\} \neq \{b,B\}$ 且 $\{c,A\} \neq \{d,B\}$,即(1)式等号两边均为二元集。

则由(1)式,可分以下两种情况:

- (1) 若 $\{a,A\}$ = $\{c,A\}$, 则必有a=c, 且由(1)式得 $\{b,B\}$ = $\{d,B\}$, 得b=d。
- (2) 若 $\{a, A\} = \{d, B\}$,由(1)式得 $\{b, B\} = \{c, A\}$ 。 因为 $A \neq B$,所以 a = B, A = d, b = A且c = B 。 得 a = c且b = d 。

知识点:关系图、关系矩阵、关系的五个性质

- 设 $X = \{x_1, \dots, x_m\}, Y = \{y_1, \dots, y_n\}, R 是 X 到 Y 的二元关系.$
 - \nearrow R 的关系图 G_R : 以 $X \cup Y$ 中的每个元素为一个顶点,对每个 $< x, y > \in R$,皆画一条 从 x 到 y 的有向边
 - > R 的关系矩阵 $M_R = (r_{ij})_{m \times n}$, 其中 $r_{ij} = \begin{cases} 1, \text{若 } x_i R y_j \\ 0, \text{若 } x_i \overline{R} y_j \end{cases}$

知识点:关系图、关系矩阵、关系的五个性质

- 设R 是集合X上的二元关系
 - ightharpoonup R是自反的 $\Leftrightarrow \forall x (x \in X \rightarrow \langle x, x \rangle \in R)$
 - ightharpoonup R是 反自反的 $\Leftrightarrow \forall x (x \in X \to \langle x, x \rangle \notin R)$
 - ightharpoonup R 是对称的 $\Leftrightarrow \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$
 - > R 是反对称的 $\Leftrightarrow \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$ $\Leftrightarrow \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land x \neq y \rightarrow \langle y, x \rangle \notin R)$
 - ightharpoonup R是传递的 $\Leftrightarrow \forall xyz (x \in X \land y \in X \land z \in X \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R \rightarrow \langle x, z \rangle \in R)$

知识点:关系图、关系矩阵、关系的五个性质

- 设R 是集合X上的二元关系
 - ightharpoonup R不是自反的 $\Leftrightarrow \exists x (x \in X \land \langle x, x \rangle \notin R)$
 - $\rightarrow R$ 不是 反自反的 $\Leftrightarrow \exists x (x \in X \land \langle x, x \rangle \in R)$
 - ightharpoonup R不是对称的 \Leftrightarrow $\exists xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land \langle y, x \rangle \notin R)$
 - Arr 是反对称的 $\Leftrightarrow \exists xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \land x \neq y)$ $\Leftrightarrow \exists xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land x \neq y \land \langle y, x \rangle \in R)$
 - ightharpoonup R不是传递的 \Leftrightarrow $\exists xyz (x \in X \land y \in X \land z \in X \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R \land \langle x, z \rangle \notin R)$

知识点:关系图、关系矩阵、二元关系的五个性质

R	目		対称	上	传递
M_R	对角线元素 <mark>全1</mark>	对角线元素全0	对称矩阵	r_{ij} . r_{ji} =0($i \neq j$)	若有k使r _{ik} . r _{kj} =1, 则 r _{ij} = 1
G_R	所有结点都有自环	所有结点都无自环	不同结点间的有向 边只能 <mark>成对出现</mark>	结点间 <mark>无成对</mark> 出现的有向边	若x 到y有一条路径,则 必有从x 到 y 的一条边

14 14

 R_1 满足自反性、对称性、反对称性、传递性; R_2 满足对称性; R_3 满足反自反性、反对称性; R_4 满足反自反性、对称性、反对称性、传递性; R_5 满足自反性、传递性。

3. 令关系 $S = \{ \langle x, y \rangle \mid x, y \in \mathbb{R}, 4 \mid x \mid \leq 1 \text{且} \mid y \mid \geq 1 \}$ 是实数集 R上的二元关系。指出S满足的性质,并说明理由。

知识点: 二元关系的五个性质

- 设R 是集合X上的二元关系
 - > R是自反的 $\Leftrightarrow \forall x (x \in X \rightarrow \langle x, x \rangle \in R)$
 - ightharpoonup R是 反自反的 $\Leftrightarrow \forall x (x \in X \to \langle x, x \rangle \notin R)$
 - ightharpoonup R 是对称的 $\Leftrightarrow \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$
 - > R 是反对称的 $\Leftrightarrow \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$ $\Leftrightarrow \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land x \neq y \rightarrow \langle y, x \rangle \notin R)$
 - ightharpoonup R是传递的 $\Leftrightarrow \forall xyz (x \in X \land y \in X \land z \in X \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R \rightarrow \langle x, z \rangle \in R)$

- 3. 令关系 $S = \{ \langle x, y \rangle \mid x, y \in \mathbb{R}, 4 \mid x \mid \leq 1 \text{且} \mid y \mid \geq 1 \}$ 是实数集 R上的二元关系。指出S满足的性质,并说明理由。
- 解: (1) 对任意的 $x \in \mathbb{R}$, 若 $4|x| \le 1$,则 $|x| \le 1/4$ 。 显然, $|x| \le 1/4$ 与 $|x| \ge 1$ 不会同时成立,因此 $< x, x > \notin S$ 。 故 S 是反自反的。
- (2) 对任意 $\langle x, y \rangle \in S$, 有 $4|x| \le 1$ 且 $|y| \ge 1$ 。 此时,一定不会有 $|x| \ge 1$ 或 $4|y| \le 1$,因此,必有 $\langle y, x \rangle \notin S$ 。 故 S 是反对称的。
- (3) 假设存在 $\langle x, y \rangle$, $\langle y, z \rangle \in S$, 则有 $4|x| \leq 1$, $|y| \geq 1$, $4|y| \leq 1$ 且 $|z| \geq 1$ 。显然,不可能有 $|y| \geq 1$,且 $4|y| \leq 1$ 同时成立。故不存在 $\langle x, y \rangle$ 与 $\langle y, z \rangle$ 同时属于S。因此,S满足传递性。

- 4. 列举出从 X 到 Y 的关系 S 的各元素。
- (1) $X=\{0, 1, 2\}, Y=\{0, 2, 4\}, S=\{\langle x, y \rangle | x+y \in X \cap Y\};$
- (2) $X=\{1, 2, 3, 4, 5\}, Y=\{1, 2, 3\}, S=\{\langle x, y \rangle \mid x=y^2, x \in X, y \in Y\}$

知识点:集合的抽象表示、关系的定义

- 集合表示之抽象法
 - □ 给出一个与x有关的谓词(命题)P(x),使得 $x \in A$ 当且仅当 P(x)为真
 - □ 称A为"使P(x)为真的x的集合",记为 $A = \{x \mid P(x)\}$
- 关系的定义: 设 $n \in I_+$, 且 A_1 , A_2 , ..., A_n 为n个任意的集合,

$$R \subseteq A_1 \times A_2 \times \ldots \times A_n$$

- □ 称 R 为 $A_1, A_2, ..., A_n$ 间的 n元关系;
- □ 若 n=2,则称 R为从 A_1 到 A_2 的二元关系;

4. 列举出从 X 到 Y 的关系 S 的各元素。

(1)
$$X = \{0, 1, 2\}, Y = \{0, 2, 4\}, S = \{\langle x, y \rangle | x + y \in X \cap Y\};$$

(2)
$$X=\{1, 2, 3, 4, 5\}, Y=\{1, 2, 3\}, S=\{\langle x, y \rangle \mid x=y^2, x \in X, y \in Y\}$$

解: (1) $X \cap Y = \{0, 2\}$,

$$S=\{<0, 0>, <0, 2,>, <2, 0>\}.$$

(2) $S=\{<1, 1>, <4, 2>\}$.

$$(1) (A-B) \times (C-D) = (A \times C) - (B \times D)$$

(2)
$$(A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

知识点: 笛卡尔乘积、笛卡尔乘积为空集的充分必要条件、集合运算

定义17 (笛卡尔乘积) 集合 A 和 B 的笛卡儿乘积 $A \times B$ 定义为:

$$A \times B = \{ \langle x, y \rangle \mid x \in A \land y \in B \}$$

定理15 设A, B为任意两个集合,则

$$A \times B = \emptyset$$
 当且仅当 $A = \emptyset$ 或 $B = \emptyset$ 。

- $\forall A \Rightarrow B$ 是任意两个集合
 - \rightarrow A-B = {x | x∈A \land x∉B }=A∩~B, 其中 ~B=U-B
 - \rightarrow $A \oplus B = (A B) \cup (B A)$

$$(1) (A-B) \times (C-D) = (A \times C) - (B \times D)$$

(2)
$$(A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

分析: (1) 对任意 <x, y>,

$$\langle x, y \rangle \in (A-B) \times (C-D) \Rightarrow x \in A-B \land y \in C-D \Rightarrow x \in A \land x \notin B \land y \in C \land y \notin D$$

$$\Rightarrow x \in A \land y \in C \land x \notin B \land y \notin D \Rightarrow \langle x, y \rangle \in A \times C \land \langle x, y \rangle \notin B \times D$$

$$\Rightarrow \langle x, y \rangle \in (A \times C) - (B \times D)$$

因此,得 $(A-B)\times (C-D)\subseteq (A\times C)-(B\times D)$ 。

而反方向推导不成立: $\mathbf{d} < x, y > \notin B \times D$ 无法推导出一定有 $x \notin B \land y \notin D$,

因为 $\langle x, y \rangle \notin B \times D$ 还包括以下两种情况: $x \notin B \land y \in D, x \in B \land y \notin D$

a) $x \notin B \land y \in D \land x \in A \land y \in C$,

反例: $A=\{1,2\}, B=\{3,4\}, C=\{5,6\}, D=\{5,8\},$

$$(1) (A-B) \times (C-D) = (A \times C) - (B \times D)$$

(2)
$$(A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

分析: (1) 对任意 <x, y>,

$$\langle x, y \rangle \in (A-B) \times (C-D) \Rightarrow x \in A-B \land y \in C-D \Rightarrow x \in A \land x \notin B \land y \in C \land y \notin D$$

$$\Rightarrow x \in A \land y \in C \land x \notin B \land y \notin D \Rightarrow \langle x, y \rangle \in A \times C \land \langle x, y \rangle \notin B \times D$$

$$\Rightarrow \langle x, y \rangle \in (A \times C) - (B \times D)$$

因此,得 $(A-B)\times (C-D)\subseteq (A\times C)-(B\times D)$ 。

而反方向推导不成立: $\mathbf{d} < x, y > \notin B \times D$ 无法推导出一定有 $x \notin B \land y \notin D$,

因为 $\langle x, y \rangle \notin B \times D$ 还包括以下两种情况: $x \notin B \land y \in D, x \in B \land y \notin D$

b) $x \in B \land y \notin D \land x \in A \land y \in C$,

反例: $A=\{1,2\}, B=\{2,4\}, C=\{5,6\}, D=\{7,8\},$

$$(1) (A-B) \times (C-D) = (A \times C) - (B \times D)$$

(2)
$$(A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

解析: (1) 另外一种反例形式:

反例: 令 $A=\{1\}$, $B=\{2\}$, $C=D=\{3\}$, 此时 $C-D=\emptyset$ 。

得 $(A-B)\times(C-D)=\emptyset$, $(A\times C)-(B\times D)=\{<1,3>\}$ 。

即,当A - B与C-D中仅一个为空集时,(1)就可能不成立

$$(1) (A-B) \times (C-D) = (A \times C) - (B \times D)$$

(2)
$$(A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

解析: (2) 可类似(1) 进行分析,这里仅给出两个反例:

反例1: $A=C=\{1,2\}$, $B=\{1\}$, $D=\{2\}$, 则

$$(A \oplus B) \times (C \oplus D) = \{<2, 1>\}, \overline{m}(A \times C) \oplus (B \times D) = \{<1, 1>, <2, 1>, <2, 2>\}.$$

反例2: $A=\{1,2\}$, $B=\{2,3\}$, $C=\{5,6\}=D$, 则

$$(A \oplus B) \times (C \oplus D) = \emptyset$$
, $\overrightarrow{\text{m}}(A \times C) \oplus (B \times D) = \{<1, 5>, <1, 6>\}$.

6.设 R_1 和 R_2 都是从 $\{1, 2, 3, 4\}$ 到 $\{2, 3, 4\}$ 的二元关系,并且 R_1 = $\{<1, 3>, <2, 4>, <3, 3>\}$, R_2 = $\{<1, 3>, <2, 4>, <4, 2>\}$ 。求 $R_1 \cup R_2$, $R_1 \cap R_2$,dom R_1 ,dom R_2 ,ran R_1 ,ran R_2 ,dom $(R_1 \cup R_2)$,ran $(R_1 \cap R_2)$ 。

知识点: 二元关系的定义域、值域和集合运算

- 设 $R \subseteq A \times B$, (定义3)
 - ho R 的定义域 dom (R): R中所有有序偶<x,y>的第一元的集合,即 dom(R) = { $x \in A \mid \exists y (y \in B \land \langle x,y \rangle \in R)$ },
 - ho R 的值域 ran (R): R中所有有序偶<x,y> 的第二元的集合,即 ran(R) = { $y \in B \mid \exists x (x \in A \land \langle x,y \rangle \in R)$ }。

6.设 R_1 和 R_2 都是从 $\{1, 2, 3, 4\}$ 到 $\{2, 3, 4\}$ 的二元关系,并且 R_1 = $\{<1, 3>, <2, 4>, <3, 3>\}$, R_2 = $\{<1, 3>, <2, 4>, <4, 2>\}$ 。求 $R_1 \cup R_2$, $R_1 \cap R_2$,dom R_1 ,dom R_2 ,ran R_1 ,ran R_2 ,dom $(R_1 \cup R_2)$,ran $(R_1 \cap R_2)$ 。

知识点: 二元关系的定义域、值域和集合运算

- 设R和S是从集合A到B的关系,则R∩S,R∪S 仍是A到B的关系, 并且对于任意x∈A,y∈B: (定义11)
 - $> x (R \cap S) y \Leftrightarrow \langle x, y \rangle \in R \cap S \Leftrightarrow x R y \wedge x S y$
 - $> x (R \cup S) y \Leftrightarrow \langle x, y \rangle \in R \cup S \Leftrightarrow x R y \vee x S y$

6.设 R_1 和 R_2 都是从 $\{1, 2, 3, 4\}$ 到 $\{2, 3, 4\}$ 的二元关系,并且 R_1 = $\{<1, 3>$, <2, 4>, $<3, 3>\}$, R_2 = $\{<1, 3>$, <2, 4>, $<4, 2>\}$ 。求 $R_1 \cup R_2$, $R_1 \cap R_2$, dom R_1 , dom R_2 , ran R_1 , ran R_2 , dom $(R_1 \cup R_2)$, ran $(R_1 \cap R_2)$ 。

解:
$$R_1 \cup R_2 = \{<1, 3>, <2, 4>, <3, 3>, <4, 2>\},$$
 $R_1 \cap R_2 = \{<1, 3>, <2, 4>\}$
 $dom R_1 = \{1, 2, 3\}, dom R_2 = \{1, 2, 4\},$
 $ran R_1 = \{3, 4\}, ran R_2 = \{2, 3, 4\},$
 $dom(R_1 \cup R_2) = \{1, 2, 3, 4\}, ran(R_1 \cap R_2) = \{3, 4\}$

7. 设R和S 都是非空集X上的反对称(传递)关系,判断 $R \cap S$, $R \cup S$,R-S, $\sim R$, $R \oplus S$ 是否也为反对称(传递)的,并给出证明与反例。

知识点: 二元关系的运算、五个性质

定义11 设 R 和S 是从集合A到B的关系, 取全集为 $A \times B$, 则 $R \cap S$, $R \cup S$, R - S,

- $\sim R$, $R \oplus S$ 仍是A到B的关系,并且对于任意 $x \in A$, $y \in B$:
- \rightarrow $x (R \cap S) y \Leftrightarrow \langle x, y \rangle \in R \cap S \Leftrightarrow x R y \wedge x S y$
- \rightarrow $x (R \cup S) y \Leftrightarrow \langle x, y \rangle \in R \cup S \Leftrightarrow x R y \lor x S y$
- $\rightarrow x (R-S) y \Leftrightarrow \langle x, y \rangle \in R S \Leftrightarrow x R y \wedge x \overline{S} y$
- $\rightarrow x (\neg R) y \Leftrightarrow \langle x, y \rangle \in \neg R \Leftrightarrow x \overline{R} y$
- $\triangleright x (R \oplus S) y \Leftrightarrow \langle x, y \rangle \in R \oplus S \Leftrightarrow x (R S) y \lor x (S R) y$

7. 设R和S 都是非空集X上的反对称(传递)关系,判断 $R \cap S$, $R \cup S$,R-S, $\sim R$, $R \oplus S$ 是否也为反对称(传递)的,并给出证明与反例。

知识点: 二元关系的运算、反对称性与传递性

- 设 R 是集合 X 上的二元关系
 - > R 是反对称的 $\Leftrightarrow \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$ $\Leftrightarrow \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land x \neq y \rightarrow \langle y, x \rangle \notin R)$
 - > R是传递的 $\Leftrightarrow \forall xyz \ (x \in X \land y \in X \land z \in X \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R$ $\rightarrow \langle x, z \rangle \in R)$

- 7. 设R和S 都是非空集X上的反对称(传递)关系,判断 $R \cap S$, $R \cup S$,R-S, $\sim R$, $R \oplus S$ 是否也为反对称(传递)的,并给出证明与反例。
- 解: (1) 假设R和S都是非空集X上的反对称关系。

由于 R和S都是反对称关系,因此,必有 x = y。故 $R \cap S$ 是反对称关系。

b) $R \cup S$ 。 反例: $\diamondsuit X = \{1, 2\}, R = \{<1, 2>\}, S = \{<2, 1>\},$ 则 $R \cup S = \{<1, 2>, <2, 1>\}$ 。

显然, 有R与S是反对称的,而 $R \cup S$ 是对称的,不是反对称的。

7. 设R和S 都是非空集X上的反对称(传递)关系,判断 $R \cap S$, $R \cup S$,R-S, $\sim R$, $R \oplus S$ 是否也为反对称(传递)的,并给出证明与反例。

解: (1) 假设R和S都是非空集X上的反对称关系。

c) R-S。对任意 $< x, y>, < y, x> \in R$ -S,则有 $< x, y>, < y, x> \in R$ 且 $< x, y>, < y, x> \notin S$.

由于R是反对称的,因此x=y。

故 R-S是反对称关系。

d) ~R。反例: 令 $X = \{1, 2, 3\}, R = \{<1, 2>, <1, 3>\},$ 则 ~ $R = \{<1, 1>, <2, 1>, <2, 2>, <2, 3>, <3, 1>, <3, 2>, <3, 3>\},$ 显然,有R是反对称的,而~R中有<2, 3>与<3, 2>,因此不是反对称的。

7. 设R和S 都是非空集X上的反对称(传递)关系,判断 $R \cap S$, $R \cup S$,R-S, $\sim R$, $R \oplus S$ 是否也为反对称(传递)的,并给出证明与反例。

解: (1) 假设R和S都是非空集X上的反对称关系。

e) *R* ⊕ *S* ∘

反例: $\diamondsuit X = \{1, 2\}, R = \{<1, 2>\}, S = \{<2, 1>\},$ 则 $R \oplus S = \{<1, 2>, <2, 1>\},$

显然,有R = S是反对称的,而 $R \oplus S$ 是对称的,不是反对称的。

7. 设R和S 都是非空集X上的反对称(传递)关系,判断, $R \cap S$, $R \cup S$,R-S, $\sim R$, $R \oplus S$ 是否也为反对称(传递)的,并给出证明与反例。

解: (2) 假设R和S都是非空集 X 上的传递关系。

a) $R \cap S$ 。 对任意 $< x, y>, < y, z> \in R \cap S$,则有 $< x, y>, < y, z> \in R 且 < x, y>, < y, z> \in S$.

由于 R和S都是传递关系,因此,必有 $\langle x, z \rangle \in R$ 且 $\langle x, z \rangle \in S$ 。

得 $\langle x, z \rangle$ ∈ $R \cap S$ 。

故 $R \cap S$ 是传递关系。

b) $R \cup S$ 。反例: $\diamondsuit X = \{1, 2\}, R = \{<1, 2>\}, S = \{<2, 1>\},$ 则 $R \cup S = \{<1, 2>, <2, 1>\}$ 。

显然,R与S是传递的,而 $R \cup S$ 不满足传递性。

- 7. 设R和S 都是非空集X上的反对称(传递)关系,判断, $R \cap S$, $R \cup S$,R-S, $\sim R$, $R \oplus S$ 是否也为反对称(传递)的,并给出证明与反例。
- 解: (2) 假设R和S都是非空集 X 上的传递关系。
- c) R-S。 反例: $\diamondsuit X = \{1, 2, 3\}, R = \{<1, 2>, <2, 3>, <1, 3>\}, S = \{<1, 3>\},$ 则 R- $S = \{<1, 2>, <2, 3>\}。$

显然 R 与S 是传递的,而R-S 不是传递的。

d) ~R。反例: 令 X = {1, 2}, R = {<1, 1>, <2, 2>}
则 ~R = {<1, 2>, <2, 1>}。

显然,R是传递的,而 $\sim R$ 不是传递关系。

7. 设R和S 都是非空集X上的反对称(传递)关系,判断, $R \cap S$, $R \cup S$,R-S, $\sim R$, $R \oplus S$ 是否也为反对称(传递)的,并给出证明与反例。

解: (2) 假设R和S都是非空集 X 上的传递关系。

e) $R \oplus S$ 。 反例: $\diamondsuit X = \{1, 2\}, R = \{<1, 2>, <2, 2>\}, S = \{<2, 1>, <2, 2>\}.$ 则 $R \oplus S = \{<1, 2>, <2, 1>\}$ 。

显然 R = S 是传递的,而 $R \oplus S$ 不是传递的。

8. 设R为非空有限集A上的二元关系。如果R是反对称的,则 $R \cap R^{-1}$ 的关系矩阵中最多有多少个元素为1?

知识点:关系的反对称性的充分必要条件、关系的矩阵表示

- 设 R 为 A 上的二元关系,R 为反对称的当且仅当 $R \cap R^{-1} \subseteq I_A$ 。 证明: (⇒) 对任意 $\langle x, y \rangle \in R \cap R^{-1}$,有 $\langle x, y \rangle \in R$ 且 $\langle x, y \rangle \in R^{-1}$ 。 由 $\langle x, y \rangle \in R^{-1}$,得 $\langle y, x \rangle \in R$ 。 又由于R是反对称的,得 x = y。 因此, $R \cap R^{-1} \subseteq I_A$ 。
- (\Leftarrow) 对任意 $\langle x, y \rangle \in R, \langle y, x \rangle \in R,$ 则有 $\langle x, y \rangle \in R^{-1}$,得 $\langle x, y \rangle \in R \cap R^{-1}$ 。由于 $R \cap R^{-1} \subseteq I_A$,得 x = y。故 R是反对称的。

8. 设R为非空有限集A上的二元关系。如果R是反对称的,则 $R \cap R^{-1}$ 的关系矩阵中最多有多少个元素为1?

知识点:关系的反对称性的充分必要条件、关系的矩阵表示

■ 设 $X = \{x_1, \dots, x_m\}$, $Y = \{y_1, \dots, y_n\}$, R 是X到Y的二元关系 R 的关系矩阵 $M_R = (r_{ij})_{m \times n}$, 其中

$$r_{ij} = \begin{cases} \mathbf{1}, \stackrel{\text{def}}{=} x_i R y_j \\ \mathbf{0}, \stackrel{\text{def}}{=} x_i \overline{R} y_j \end{cases}$$

■ /4 的关系矩阵中只有主对角线上元素为1,其他元素全部为0。

8. 设R为非空有限集 A上的二元关系。如果R是反对称的,则 $R \cap R^{-1}$ 的关系矩阵中最多有多少个元素为1?

解:设A中元素个数为n。

若 R 是反对称的,则 $R \cap R^{-1} \subseteq I_A$ (证明见前)。 因此, $R \cap R^{-1}$ 的关系矩阵中最多有n个元素为 1。

- 9.设 R_1 和 R_2 都是集合 A上的二元关系,试证明:
- (1) $r(R_1 \cap R_2) = r(R_1) \cap r(R_2)$
- $(2) s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2)$
- $(3) \ t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$

并分别给出使 $s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 与 $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的反例。

知识点:关系的自反闭包、对称闭包、传递闭包

设R是集合A上的关系.

关系R的自反闭包r(R)(对称闭包s(R)、传递闭包t(R))为关系R',满足

- (1) R'是自反的(对称的、传递的);
- $(2) R \subseteq R' ;$
- (3) 对于A上的任何自反(对称、传递)关系R'',如果 $R \subseteq R''$,则 $R' \subseteq R''$.

(1)
$$r(R_1 \cap R_2) = r(R_1) \cap r(R_2)$$

$$(2) s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2)$$

$$(3) t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$$

并分别给出使 $s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 与 $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的反例。

知识点:关系的自反闭包、对称闭包、传递闭包

定理 8: 设 R 是集合A上的关系,则

- $(1) \quad r(R) = R \cup I_A;$
- (2) $s(R) = R \cup R^{-1}$;
- $(3) \quad t(R) = \bigcup_{n=1}^{\infty} R^n.$

定理 9: 设 R 是集合A上的关系,A有n个元素,则

$$t(R) = \bigcup_{i=1}^{n} R^i$$

(1)
$$r(R_1 \cap R_2) = r(R_1) \cap r(R_2)$$

$$(2) s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2)$$

$$(3) t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$$

并分别给出使 $s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 与 $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的反例。

解:
$$(1) r(R_1 \cap R_2) = (R_1 \cap R_2) \cup I_A$$

= $(R_1 \cup I_A) \cap (R_2 \cup I_A)$
= $r(R_1) \cap r(R_2)$

(1)
$$r(R_1 \cap R_2) = r(R_1) \cap r(R_2)$$

$$(2) s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2)$$

$$(3) t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$$

并分别给出使 $s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 与 $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的反例。

解: (2)
$$s(R_1 \cap R_2)$$

$$= (R_1 \cap R_2) \cup (R_1 \cap R_2)^{-1}$$

$$= (R_1 \cap R_2) \cup (R_1^{-1} \cap R_2^{-1})$$

$$= (R_1 \cup R_1^{-1}) \cap (R_1 \cup R_2^{-1}) \cap (R_2 \cup R_1^{-1}) \cap (R_2 \cup R_2^{-1})$$

$$\subseteq (R_1 \cup R_1^{-1}) \cap (R_2 \cup R_2^{-1})$$

$$= s(R_1) \cap s(R_2)$$

(1)
$$r(R_1 \cap R_2) = r(R_1) \cap r(R_2)$$

$$(2) s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2)$$

$$(3) t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$$

并分别给出使 $s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 与 $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的反例。

解: $(2) s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 不成立的反例:

$$\Leftrightarrow A=\{1,2\}, R_1=\{<1,2>\}, R_2=\{<2,1>\},$$

则 $R_1 \cap R_2 = \emptyset$, 因此为对称的,得 $s(R_1 \cap R_2) = \emptyset$.

然而,
$$s(R_1) = \{<1, 2>, <2, 1>\}, s(R_2) = \{<2, 1>, <1, 2>\},$$
 得
$$s(R_1) \cap s(R_2) = \{<1, 2>, <2, 1>\} .$$

(1)
$$r(R_1 \cap R_2) = r(R_1) \cap r(R_2)$$

$$(2) s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2)$$

$$(3) t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$$

并分别给出使 $s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 与 $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的反例。

解: (3) 已知 $t(R_1 \cap R_2) = \bigcup_{n=1}^{\infty} (R_1 \cap R_2)^n$, $t(R_1) = \bigcup_{n=1}^{\infty} R_1^n \perp t(R_2) = \bigcup_{n=1}^{\infty} R_2^n$.

对任意 $\langle x,y \rangle \in t(R_1 \cap R_2)$,存在正整数 m,使得 $\langle x,y \rangle \in (R_1 \cap R_2)^m$.

则一定存在 $x_1, ..., x_{m-1} \in A$,使得 $\langle x, x_1 \rangle, \langle x_1, x_2 \rangle, ..., \langle x_{m-2}, x_{m-1} \rangle, \langle x_{m-1}, y \rangle \in R_1 \cap R_2$.

得 $\langle x, x_1 \rangle, \langle x_1, x_2 \rangle, ..., \langle x_{m-2}, x_{m-1} \rangle, \langle x_{m-1}, y \rangle \in R_1$ 且

$$\langle x, x_1 \rangle, \langle x_1, x_2 \rangle, ..., \langle x_{m-2}, x_{m-1} \rangle, \langle x_{m-1}, y \rangle \in R_2$$

从而有 $< x, y > \in R_1^m$,且 $< x, y > \in R_2^m$,得 $< x, y > \in t(R_1)$ 且 $< x, y > \in t(R_2)$ 。

从而有 $\langle x, y \rangle \in t(R_1) \cap t(R_2)$ 。

综上可得, $t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$ 。

(1)
$$r(R_1 \cap R_2) = r(R_1) \cap r(R_2)$$

$$(2) s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2)$$

$$(3) t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$$

并分别给出使 $s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 与 $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的反例。

解: (3) $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的反例:

$$\Leftrightarrow A=\{1, 2, 3, 4\}, R_1=\{<1, 2>, <2, 3>\}, R_2=\{<1, 4><4, 3>\}.$$

显然有, $t(R_1 \cap R_2) = \emptyset$, $t(R_1) \cap t(R_2) = \{<1, 3>\}$ 。

10. 设R 为集合A上的一个二元关系。如果R是反自反和传递的,则R 一定是反对称的。

知识点:关系的反自反性、反对称性和传递性

- 设 R 是集合 X 上的二元关系
 - ightharpoonup R是 反自反的 $\Leftrightarrow \forall x (x \in X \to \langle x, x \rangle \notin R)$
 - > R 是反对称的 $⇔ \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$ $⇔ \forall xy (x \in X \land y \in X \land \langle x, y \rangle \in R \land x \neq y \rightarrow \langle y, x \rangle \notin R)$
 - > R是传递的 $\Leftrightarrow \forall xyz \ (x \in X \land y \in X \land z \in X \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R$ $\rightarrow \langle x, z \rangle \in R$
- 解析: 使用反证法进行证明: $R \land \mathbb{Z} \land \mathbb{Z}$

10. 设R 为集合A上的一个二元关系。如果R是反自反和传递的,则R 一定是反对称的。

证明: (反证法) 假设R 不是反对称的,

则一定存在 $x, y \in A$ 且 $x \neq y$,使得 $\langle x, y \rangle, \langle y, x \rangle \in R$ 。

由于 R 是传递的,因此有 $\langle x, x \rangle \in R$,

与R是反自反的矛盾。

故假设不成立,即R一定是反对称的。

11. 如果集合A上的二元关系 R 是自反的,又是传递的,则 $R^2=R$ 。

知识点:关系的自反性、传递性的充分必要条件

- 设R 是集合X上的二元关系
 - ightharpoonup R是 反自反的 $\Leftrightarrow \forall x (x \in X \to \langle x, x \rangle \notin R)$
 - > R是传递的 $\Leftrightarrow \forall xyz \ (x \in X \land y \in X \land z \in X \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R$ $\rightarrow \langle x, z \rangle \in R$
 - > R 为传递的 当且仅当 $R \circ R \subseteq R$ (证明见课件中例题).

11. 如果集合A上的二元关系 R 是自反的,又是传递的,则 $R^2=R$ 。

证明: 首先,由于R是传递的,因此有 $R^2 \subseteq R$ (证明见课件)。 假设 $R \nsubseteq R^2$,则存在 $< x, y> \in R$,且 $< x, y> \notin R^2$ 。

得 $\langle x, y \rangle \in \mathbb{R}^2$,矛盾。

故假设不成立,即 $R \subseteq R^2$ 。

由于R是自反的,必有 $\langle v, v \rangle \in R$,

综上可得 $R^2=R$ 。