Exercise Sheet 1: Real numbers system

Exercice 1

1. Prove that :
$$\forall x \in \mathbb{R}, \ E(x) + E(-x) = \begin{cases} -1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Z} \\ 0 & \text{if } x \in \mathbb{Z} \end{cases}$$

- 2. Prove that : $\forall x, y \in \mathbb{R}$, $E(x+y) E(x) E(y) \in \{0, 1\}$.
- 3. Prove that : $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \ E\left(\frac{E(nx)}{n}\right) = E(x).$

Exercice 2

- 1. Prove that for all $a, b \in \mathbb{R}$, $(a < b + \varepsilon, \forall \varepsilon > 0) \Rightarrow (a \le b)$.
- 2. Deduce that : If $a, b \in \mathbb{R}$, $a < b + \frac{1}{n}$, $\forall n \in \mathbb{N}^*$ then $a \le b$.

 3. Prove that : $\forall a, b \in \mathbb{R}$, $\left[x \in \mathbb{R}, \ a \le x \le b \Leftrightarrow \forall n \in \mathbb{N}^*, \ a \frac{1}{n} < x < b + \frac{1}{n} \right]$.

Exercice 3

Let *A* and *B* be two non empty bounded subsets of \mathbb{R} . Prove that

- 1. $A \subset B \Rightarrow \sup A \leq \sup B$.
- 2. $\inf(A \cup B) = \inf(\inf A, \inf B)$

Exercice 4

Let *A* be a non empty bounded subset of \mathbb{R} . Let : $B = \{x - y, x \in A \text{ and } y \in A\}$.

- 1. Justify the existence of $\sup A$ et $\inf A$.
- 2. Prove that *B* is upper bounded by $\sup A \inf A$.
- 3. Let *M* be an upper bound of *B*. Let $y \in A$ be a given number. Prove that $\sup A \leq M + y$.
- 4. Deduce that $\sup A \inf A \leq M$. What can we conclude?

Exercice 5

Let *A* and *B* be two non empty bounded subsets of \mathbb{R} . Define the subset A + B by $A + B = \{a + b, a \in A \}$ A and $b \in B$ and the subset $A - B = \{a - b, a \in A \text{ and } b \in B\}$.

- 1. Prove that $\sup(A+B) = \sup A + \sup B$.
- 2. Let $\lambda < 0$. Prove that $\sup(\lambda A) = \lambda \inf A$.
- 3. Deduce that $\sup(A B) = \sup A \inf B$.

Exercice 6

Consider the following subsets of \mathbb{R} :

$$A = \{\frac{(-1)^n}{n}, n \in \mathbb{N}^*\}$$
 and $B = \{\frac{1}{n} + \frac{1}{m}, m \text{ and } n \in \mathbb{N}^*\}.$

Are these parts upper bounded? lower bounded? Do they have a maximum? a minimum? an infimum? a supremum?