Tsinghua-Berkeley Shenzhen Institute Information Theory and Statistical Learning Fall 2020

Problem Set 6

Notations: We use x, y, w and $\underline{x}, y, \underline{w}$ to denote random variables and random vectors.

- 6.1. Suppose that y_1 and y_2 are independent random variables each uniformly distributed between x and x + 1. Let $s = \max(y_1, y_2)$ and $r = y_1 y_2$.
 - (a) Show that **s** is not a sufficient statistic for $p_{y_1y_2}(y_1, y_2; x)$.
 - (b) An ancillary statistic is one whose distribution does not depend on the parameters of the model. Show that r is an ancillary statistic for $p_{y_1y_2}(y_1, y_2; x)$.
 - (c) Is $\mathbf{u} = \begin{bmatrix} \mathbf{s} \\ \mathbf{r} \end{bmatrix}$ a sufficient statistic for $p_{y_1y_2}(y_1, y_2; x)$?
- 6.2. Please verify that Pearson correlation coefficient does not satisfy property (5), i.e., for any one-to-one mapping $\xi(\cdot)$ and $\eta(\cdot)$, $\rho(\xi(x), \eta(y)) = \rho(x, y)$.
- 6.3. Given two random variables $x \in \mathcal{X}, y \in \mathcal{Y}$ with the joint distribution $P_{xy}(x, y)$, the corresponding matrix $\mathbf{B} \in \mathbb{R}^{|\mathcal{Y}| \times |\mathcal{X}|}$ is defined as

$$\mathbf{B}(y,x) \triangleq \frac{P_{\mathsf{x}\mathsf{y}}(x,y)}{\sqrt{P_{\mathsf{x}}(x)}\sqrt{P_{\mathsf{y}}(y)}}.$$

In the derivation of HGR maximal correlation analysis, given feature functions $f: \mathcal{X} \to \mathbb{R}$, $g: \mathcal{Y} \to \mathbb{R}$, we defined the corresponding *information vectors* as the vectors $\phi \in \mathbb{R}^{|\mathcal{X}|}$, $\psi \in \mathbb{R}^{|\mathcal{Y}|}$ with elements $\phi(x) = f(x)\sqrt{P_{\mathsf{x}}(x)}$, $\psi(y) = g(y)\sqrt{P_{\mathsf{y}}(y)}$. We denote them as $\phi \leftrightarrow f(\mathsf{x})$ and $\psi \leftrightarrow g(\mathsf{y})$.

- (a) Show that
 - i. $\mathbb{E}[f(\mathbf{x})q(\mathbf{y})] = \boldsymbol{\psi}^{\mathrm{T}}\mathbf{B}\boldsymbol{\phi}$.
 - ii. $\mathbf{B}\boldsymbol{\phi} \leftrightarrow \mathbb{E}[f(\mathbf{x})|\mathbf{y}].$
 - iii. $\mathbf{B}^{\mathrm{T}} \boldsymbol{\psi} \leftrightarrow \mathbb{E}[g(\mathbf{y})|\mathbf{y}].$
- (b) Suppose $\phi_1 = \left[\sqrt{P_x(1)}, \dots, \sqrt{P_x(|\mathfrak{X}|)}\right]^T$, $\psi_1 = \left[\sqrt{P_y(1)}, \dots, \sqrt{P_y(|\mathfrak{Y}|)}\right]^T$. Show that $\mathbf{B}\phi_1 = \psi_1, \mathbf{B}^T\psi_1 = \phi_1$, and interpret their meanings from the perspective of conditional expectation.
- (c) Prove that $\|\mathbf{B}\|_2 = 1$. The definition of L-p matrix norm is $\|\mathbf{A}\|_p \triangleq \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}$.
- 6.4. We are now using softmax regression under a discriminative model of the form

$$Q_{\mathsf{y}|\mathsf{x}}(y|x) = \frac{\exp(\boldsymbol{f}(x)^{\mathrm{T}}\boldsymbol{g}(y) + b(y))}{\sum_{y' \in \mathsf{Y}} \exp(\boldsymbol{f}^{\mathrm{T}}(x)\boldsymbol{g}(y') + b(y'))},$$

to address the classification problems. Note that here x and y is the sample and label with alphabet \mathcal{X} and \mathcal{Y} repectively. Now we assume that feature $f(\cdot)$ is decided. We hope to derive $g(\cdot)$ and $b(\cdot)$ by

$$(\boldsymbol{g}^{\star}, b^{\star}) = \underset{(\boldsymbol{g}, b)}{\operatorname{arg min}} D(P_{\mathsf{x}\mathsf{y}} || P_{\mathsf{x}} Q_{\mathsf{y}|\mathsf{x}}),$$

where P_{xy} is the distribution corresponding to the dataset.

(a) Explain when we have data $\{(x_i, y_i)\}_{i=1}^n$, the softmax regression optimal solution (\boldsymbol{g}^*, b^*) is minimizing the empirical mean

$$(\boldsymbol{g}^{\star}, b^{\star}) = \operatorname*{arg\,max}_{(\boldsymbol{g}, b)} \frac{1}{n} \sum_{i=1}^{n} \log Q_{\mathsf{y}|\mathsf{x}}(y_{i}|x_{i})$$

(b) We assume a weak dependency here, which means the true distribution P_{xy} satisfies $P_{xy}(x,y) - P_x(x)P_y(y) = O(\epsilon)$. We define $d^*(y) \triangleq b^*(y) - \log P_y(y)$. We can derive an equivalent expression of the weak dependency, which also needs some mathematical tricks to prove, $\mathbf{f}^{T}(x)\mathbf{g}^{*}(y)+d^{*}(y)=O(\epsilon)$. Please prove that the first order approximation of $D(P_{xy}||P_xQ_{y|x})$ is $\sum_{x\in \mathfrak{X},y\in \mathfrak{Y}} \frac{(P_{xy}(x,y)-P_x(x)Q_{y|x}(y|x))^2}{P_x(x)Q_{y|x}(y|x)}$.