1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №2 по курсу «Моделирование»

на тему: «Изучение марковских процессов»

Студент <u>ИУ7-73Б</u> (Группа)	(Подпись, дата)	В. П. Авдейкина (Фамилия И.О.)
Руководитель	(Подпись, дата)	И.В.Рудаков (Фамилия И.О.)

СОДЕРЖАНИЕ

1	Теоретическая часть	4
1.	1 Марковский процесс	4
2	Практическая часть	4

Условие лабораторной работы

Целью лабораторной работы является написание программы с графическим интерфейсом, которая позволяет определить время пребывания сложной системы в каждом из состояний в установившемся режиме работы.

1 Теоретическая часть

1.1 Марковский процесс

Для математического описания функционирования устройств, развивающихся в форме случайного процесса, может быть применен математический аппарат, разработанный в теории вероятностей для марковских случайных процессов. Случайный процесс, протекающий в некоторой системе, называется марковским, если для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящем и не зависит от того, когда и каким образом система пришла в это состояние. В реальности таких систем не существует.

В марковском случайном процессе будущее развитие зависит только от настоящего состояния и не зависит от предыстории процесса. Для марковского случайного процесса составляют уравнения Колмогорова, представляющие собой соотношения следующего вида:

$$F(P'(t), P(t), \lambda) = 0, (1)$$

где P(t) — вероятность нахождения в состоянии для сложной системы, λ — коэффициенты, показывающие, с какой скоростью система переходит из одного состояния в другое (интенсивность).

2 Практическая часть

На рисунке 1 представлен графический интерфейс разработанной программы и пример ее работы.

Рисунок 1 — Графический интерфейс разработанной программы