вариант	факултетен номер	група	курс	специалност
1				
Име:				

Първа контролна работа по логическо програмиране 9 ноември 2019 г.

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Структурата $\mathcal S$ е с носител множеството $\mathbb E_2$ от всички точки в евклидовата равнина и е за език без равенство и с единствен нелогически символ — триместния предикатен символ $\underline{\parallel}$, който се интерпретира така:

$$\perp \!\!\! \perp^{\mathcal{S}}(A,B,C) \stackrel{def}{\Longleftrightarrow} A \neq B$$
 и $A \neq C$ и $\angle BAC = 90^{\circ}$

Да се докаже, че в структурата S са определими:

- 1. Eq = $\{\langle A, A \rangle \mid A \in \mathbb{E}_2\}$.
- 2. Col = $\{\langle A, B, C \rangle \mid A, B, C \in \mathbb{E}_2$ лежат на една права $\}$.
- 3. Circ = $\{\langle A, B, C \rangle \mid C$ лежи на окръжност с диаметър $AB\}$.

Вярно ли е, че в $\mathcal S$ са определими множествата и защо:

$$\begin{array}{lll} \mbox{Mid} & = & \{\langle A,B,C\rangle \,|\, C \mbox{ е среда на отсечката } AB\} \mbox{ и} \\ \mbox{Seg} & = & \{\langle A,B,C\rangle \,|\, A \mbox{ лежи на отсечката } BC\}? \end{array}$$

Намерете два различни автоморфизъма в S.

Зад. 2. Да се докаже, че са изпълними множествата от формули $\{\phi_1,\phi_2,\phi_3\}$ и $\{\phi_1,\phi_2,\phi_3,\phi_4\}$, където

$$\begin{split} \phi_1 & \rightleftharpoons \exists x \exists y (g(x) \stackrel{\circ}{=} y \& f(x) \stackrel{\circ}{=} y), \\ \phi_2 & \rightleftharpoons \forall x \forall y \forall z (f(x) \stackrel{\circ}{=} y \& f(y) \stackrel{\circ}{=} z \Longrightarrow g(z) \stackrel{\circ}{=} x), \\ \phi_3 & \rightleftharpoons \exists x \exists y \exists z (\neg (x \stackrel{\circ}{=} y) \& \neg (y \stackrel{\circ}{=} z) \& \neg (z \stackrel{\circ}{=} x)), \\ \phi_4 & \rightleftharpoons \forall x \neg (f(x) \stackrel{\circ}{=} x). \end{split}$$

Пожелаваме ви приятна и успешна работа!

вариант	факултетен номер	група	курс	специалност
2				
Име:				

Първа контролна работа по логическо програмиране 9 ноември 2019 г.

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Структурата \mathcal{S} е с носител множеството \mathbb{E}_2 от всички точки в евклидовата равнина и е за език без равенство и с единствен нелогически символ — триместния предикатен символ \parallel , който се интерпретира така:

$$\perp \!\!\! \perp^{\mathcal{S}}(A,B,C) \stackrel{def}{\Longleftrightarrow} A \neq C$$
 и $B \neq C$ и $\angle ACB = 90^{\circ}$

Да се докаже, че в структурата S са определими:

- 1. Eq = $\{\langle A, A \rangle \mid A \in \mathbb{E}_2\}$.
- 2. Col = $\{\langle A, B, C \rangle \mid A, B, C \in \mathbb{E}_2$ не лежат на една права $\}$.
- 3. Circ = $\{\langle A, B, C \rangle \mid A$ лежи на окръжност с диаметър $BC\}$.

Вярно ли е, че в S са определими множествата и защо:

Mid =
$$\{\langle A,B,C\rangle \mid A$$
 е среда на отсечката $BC\}$ и Seg = $\{\langle A,B,C\rangle \mid A$ лежи на отсечката $BC\}$

Намерете два различни автоморфизъма в S.

Зад. 2. Да се докаже, че са изпълними множествата от формули $\{\phi_1,\phi_2,\phi_3\}$ и $\{\phi_1,\phi_2,\phi_3,\phi_4\}$, където

$$\begin{split} \phi_1 & \rightleftharpoons \exists x \exists y (h(x) \stackrel{\circ}{=} y \& g(x) \stackrel{\circ}{=} y), \\ \phi_2 & \rightleftharpoons \exists x \exists y \exists z (\neg (x \stackrel{\circ}{=} y) \& \neg (y \stackrel{\circ}{=} z) \& \neg (z \stackrel{\circ}{=} x)), \\ \phi_3 & \rightleftharpoons \forall x \forall y \forall z (g(x) \stackrel{\circ}{=} y \& g(y) \stackrel{\circ}{=} z \Longrightarrow h(z) \stackrel{\circ}{=} x), \\ \phi_4 & \rightleftharpoons \neg \exists x (g(x) \stackrel{\circ}{=} x). \end{split}$$

Пожелаваме ви приятна и успешна работа!

вариант	факултетен номер	група	курс	специалност
1				
Име:				

Първа контролна работа по логическо програмиране 9 ноември 2019 г.

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Структурата $\mathcal S$ е с носител множеството $\mathbb E_2$ от всички точки в евклидовата равнина и е за език без равенство и с единствен нелогически символ — триместния предикатен символ \perp , който се интерпретира така:

$$\perp\!\!\!\!\perp^{\mathcal{S}}(A,B,C) \ \stackrel{def}{\Longleftrightarrow} \ A \neq B$$
 и $A \neq C$ и $\angle BAC = 90^\circ$

Да се докаже, че в структурата ${\mathcal S}$ са определими:

- 1. Eq = $\{\langle A, A \rangle \mid A \in \mathbb{E}_2\}$.
- 2. Col = $\{\langle A, B, C \rangle \mid A, B, C \in \mathbb{E}_2$ лежат на една права $\}$.
- 3. Circ = $\{\langle A, B, C \rangle \mid C$ лежи на окръжност с диаметър $AB\}$.

Вярно ли е, че в ${\cal S}$ са определими множествата и защо:

Mid =
$$\{\langle A, B, C \rangle \mid C$$
 е среда на отсечката $AB\}$ и Seg = $\{\langle A, B, C \rangle \mid A$ лежи на отсечката $BC\}$?

Намерете два различни автоморфизъма в \mathcal{S} .

Зад. 2. Да се докаже, че са изпълними множествата от формули $\{\phi_1,\phi_2,\phi_3\}$ и $\{\phi_1,\phi_2,\phi_3,\phi_4\}$, където

$$\begin{split} \phi_1 &\rightleftharpoons \exists x \exists y (g(x) \stackrel{\circ}{=} y \& f(x) \stackrel{\circ}{=} y), \\ \phi_2 &\rightleftharpoons \forall x \forall y \forall z (f(x) \stackrel{\circ}{=} y \& f(y) \stackrel{\circ}{=} z \Longrightarrow g(z) \stackrel{\circ}{=} x), \\ \phi_3 &\rightleftharpoons \exists x \exists y \exists z (\neg (x \stackrel{\circ}{=} y) \& \neg (y \stackrel{\circ}{=} z) \& \neg (z \stackrel{\circ}{=} x)), \\ \phi_4 &\rightleftharpoons \forall x \neg (f(x) \stackrel{\circ}{=} x). \end{split}$$

Пожелаваме ви приятна и успешна работа!

		1		
вариант	факултетен номер	група	курс	специалност
2				
Име:				

Първа контролна работа по логическо програмиране 9 ноември 2019 г.

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Структурата $\mathcal S$ е с носител множеството $\mathbb E_2$ от всички точки в евклидовата равнина и е за език без равенство и с единствен нелогически символ — триместния предикатен символ $\!\!\perp\!\!\!\perp$, който се интерпретира така:

$$\perp\!\!\!\!\perp^{\mathcal{S}}(A,B,C) \stackrel{def}{\iff} A \neq C$$
 и $B \neq C$ и $\angle ACB = 90^\circ$

Да се докаже, че в структурата ${\mathcal S}$ са определими:

- 1. Eq = $\{\langle A, A \rangle \mid A \in \mathbb{E}_2\}$.
- 2. Col = $\{\langle A, B, C \rangle \mid A, B, C \in \mathbb{E}_2$ не лежат на една права $\}$.
- 3. Circ = $\{\langle A, B, C \rangle \mid A$ лежи на окръжност с диаметър $BC\}$.

Вярно ли е, че в ${\mathcal S}$ са определими множествата и защо:

$$\begin{array}{lll} \mbox{Mid} & = & \{\langle A,B,C\rangle \,|\, A \mbox{ е среда на отсечката } BC\} \mbox{ и} \\ \mbox{Seg} & = & \{\langle A,B,C\rangle \,|\, A \mbox{ лежи на отсечката } BC\} \end{array}$$

Намерете два различни автоморфизъма в \mathcal{S} .

Зад. 2. Да се докаже, че са изпълними множествата от формули $\{\phi_1,\phi_2,\phi_3\}$ и $\{\phi_1,\phi_2,\phi_3,\phi_4\}$, където

$$\begin{split} \phi_1 & \rightleftharpoons \exists x \exists y (h(x) \stackrel{\circ}{=} y \& g(x) \stackrel{\circ}{=} y), \\ \phi_2 & \rightleftharpoons \exists x \exists y \exists z (\neg (x \stackrel{\circ}{=} y) \& \neg (y \stackrel{\circ}{=} z) \& \neg (z \stackrel{\circ}{=} x)), \\ \phi_3 & \rightleftharpoons \forall x \forall y \forall z (g(x) \stackrel{\circ}{=} y \& g(y) \stackrel{\circ}{=} z \Longrightarrow h(z) \stackrel{\circ}{=} x), \\ \phi_4 & \rightleftharpoons \neg \exists x (g(x) \stackrel{\circ}{=} x). \end{split}$$

Пожелаваме ви приятна и успешна работа!