Steffen Haug <u>Rettast</u>

Øving 9

Diskret Matematikk

Oppgåver til seksjon 9.6

9 Skal avgjera om relasjonen med den følgjande retta grafen er ei partiell ordning. Skal med andre ord avgjera om relasjonen er refleksiv, antisymmetrisk og transitiv.

Refleksivitet: Alle nodar i grafen har kantar til seg sjølv. Dette betyr at $(x, x) \in R$ for alle $x \in S$. Relasjonen er refleksiv.

Antisymmetri: Relasjonen har ingen distinkte par x, y slik at både $(x, y) \in R$ og $(y, x) \in R$. Med andre ord: $(x, y) \in R \implies (y, x) \notin R$. Relasjonen er antisymmetrisk.

Transitivitet: Relasjonen inneheld (a,b) og (b,d), men ikkje (a,d). Det er altso ikkje slik at $(x,y) \in R, (y,z) \in R \implies (x,z) \in R$. Relasjonen er *ikkje* transitiv.

Sidan relasjonen ikkje er transitiv på S, er den ikkje ei partiell ordning av S.

18 b: Skal finne den alfabetiske ordninga av orda

open, opener, opera, operand, opened

Som er

open, opened, opener, opera, operand

27 Skal finne alle par i den partielle ordninga med følgjande Hasse-diagram.

$$R = \{(b,g), (b,d), (b,e), (b,f),$$

$$(a,g), (a,d), (a,e), (a,f),$$

$$(c,g), (c,d), (c,e), (c,f)\}$$

a: Kva er dei største elementa? l og m

b: Kva er dei minste elementa? a, b og c

c: Er der eit største element? Nei, ordninga seier ingenting om kva som er størst av l og m, dermed har den ikkje eit unikt største element.

d: Er der eit minste element? Nei, ordninga seier ingenting om kva som er minst av a,b og c, dermed har den ikkje eit unikt minste element.

e: Finn alle øvre grenser av $\{a,b,c\}$ $\{k,l,m\}$ er øvre skranker av $\{a,b,c\}$

f: Finn den minste øvre grensa av $\{a,b,c\}$ (dersom den eksisterer) k er øvre grense, og er unikt minst av desse, altso er k minste øvre grense.

g: Finn alle nedre grenser av $\{f, g, h\}$ h har ingen felles nedre grense med f og g, dermed har $\{f, g, h\}$ nedre grenser \emptyset

h: Finn største nedre grense av $\{f,g,h\}$ (dersom den eksisterer) Eksisterer ikkje

Oppgåver til seksjon 10.2

18 Skal vise at i ein enkel graf må minst to nodar ha same grad.

I ein enkel graf er det ikkje tillete at ei node kan ha meir enn ein kant til ei anna node. I ein enkel graf er det heller ingen løkker. I ein enkel graf på n nodar kan ei node derfor, på det meste, ha kantar berre til dei andre n-1 nodene.

Sidan grafen har n nodar, og kvar av dei maksimalt kan ha n-1 kantar, har vi av fugleburprinsippet at minst to av nodane må ha like mange kantar, altso har dei same grad.

22 Skal avgjere om grafen er todelt (er det dette det heiter på norsk?). Bruker Teorem 4, og fargar nodane i grafen.

Vi ser at grafen er todelt.

26 a: K_n er berre todelt for n=1,2. K_3 er ikkje todelt (sjå figur; vi kan ikkje farge den grå noden), og K_3 er delgraf i alle K_n , $n \ge 3$. Dermed er ingen andre komplette grafar todelte.

b: C_n er todelt for partal n. Dette ser vi enkelt dersom vi teiknar sykliske grafar på ein spesiell måte:

Sykliske grafar med odde n er ikkje todelte:

Uavhengig av kvar i grafen vi set inn ei ny node må vi plassere den mellom ei svart og ei kvit, og dermed kan den ikkje fargast verken svart eller kvit.

c: W_n er aldri todelt. W_n har alltid C_n som undergraf med $n \geq 3$, og sjølv når denne er todelt kan ein ikkje legge til ei node med kantar til alle nodene i C_n slik at det er mogleg å farge den svart eller kvit j.f. Teorem 4.

Når grafen er so enkel klarer vi å løyse problemet utan å vera spesielt kreativ i framgangsmåten. Antal kantar i komplette grafar med n nodar er

$$E(K_n) = \sum_{i=0}^{n-1} i = \sum_{i=1}^{n} (i-1) = \frac{n^2 - n}{2}$$

Fordi den n-te noden har kantar til dei n-1 andre, den n-1-te noda har kantar til n-2 nodar, fordi kanten til den n-te allereie er tald. K_n har grad n-1.

Sidan vi kjenner den øvrige summen for små n er det enkelt å finne grafen. Større grafar hadde vore vanskeleg å finne på ein like naiv måte.

Oppgåver til seksjon 10.3

17 Skal teikne grafen med nabomatrisa

$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

19 Skal finne nabomatrisa til grafen

23 Skal teikne grafen med nabomatrisa

