Chapter 5

A Caching Memory

A memory system consists of a set of processors connected to a memory by some abstract interface, which we label *memInt*.

In this section we specify what the memory is supposed to do, then we specify a particular implementation of the memory using caches. We begin by specifying the memory interface, which is common to both specifications.

5.1 The Memory Interface

The asynchronous interface described in Chapter 3 uses a handshake protocol. Receipt of a data value must be acknowledged before the next data value can be sent. In the memory interface, we abstract away this kind of detail and represent both the sending of a data value and its receipt as a single step. We call it a *Send* step if a processor is sending the value to the memory; it's a *Reply* step if the memory is sending to a processor. Processors do not send values to one another, and the memory sends to only one processor at a time.

We represent the state of the memory interface by the value of the variable memInt. A Send step changes memInt in some way, but we don't want to specify exactly how. The way to leave something unspecified in a specification is to make it a parameter. For example, in the bounded FIFO of Section 4.4, we left the size of the buffer unspecified by making it a parameter N. We'd

therefore like to declare a parameter Send so that Send(p, d) describes how memInt is changed by a step that represents processor p sending data value d to the memory. However, TLA⁺ provides only CONSTANT and VARIABLE parameters, not action parameters.¹ So, we declare Send to be a constant operator and write Send(p, d, memInt, memInt') instead of Send(p, d).

In TLA⁺, we declare *Send* to be a constant operator that takes four arguments by writing

```
CONSTANT Send(\_, \_, \_, \_)
```

This means that Send(p, d, miOld, miNew) is an expression, for any expressions p, d, miOld, and miNew, but it says nothing about what the value of that expression is. We want it to be a Boolean value that is true iff a step in which memInt equals miOld in the first state and miNew in the second state represents the sending by p of value d to the memory. We can assert that the value is a Boolean by the assumption

```
ASSUME \forall p, d, miOld, miNew :

Send(p, d, miOld, miNew) \in BOOLEAN
```

This asserts that the formula

```
Send(p, d, miOld, miNew) \in BOOLEAN
```

is true for all values of p, d, miOld, and miNew. The built-in symbol BOOLEAN denotes the set {TRUE, FALSE}, whose elements are the two Boolean values TRUE and FALSE.

This assume statement asserts formally that the value of

```
Send(p, d, miOld, miNew)
```

is a Boolean. But the only way to assert formally what that value signifies would be to say what it actually equals—that is, to define *Send* rather than making it a parameter. We don't want to do that, so we just state informally what the value means. This statement is part of the intrinsically informal description of the relation between our mathematical abstraction and a physical memory system

To allow the reader to understand the specification, we have to describe informally what Send means. The ASSUME statement asserting that Send(...) is a Boolean is then superfluous as an explanation. But it's a good idea to include it anyway.

¹Even if TLA^+ allowed us to declare an action parameter, we would have no way to specify that a Send(p,d) action constrains only memInt and not other variables.

²We expect Send(p, d, miOld, miNew) to have this meaning only when p is a processor and d a value that p is allowed to send, but we simplify the specification a bit by requiring it to be a Boolean for all values of p and d.

A specification that uses the memory interface can use the operators *Send* and *Reply* to specify how the variable *memInt* changes. The specification must also describe *memInt*'s initial value. We therefore declare a constant parameter *InitMemInt* that is the set of possible initial values of *memInt*.

We also introduce three constant parameters that are needed to describe the interface:

Proc The set of processor identifiers. (We usually shorten processor identifier to processor when referring to an element of Proc.)

Adr The set of memory addresses.

Val The set of possible memory values that can be assigned to an address.

Finally, we define the values that the processors and memory send to one another over the interface. A processor sends a request to the memory. We represent a request as a record with an op field that specifies the type of request and additional fields that specify its arguments. Our simple memory allows only read and write requests. A read request has op field "Rd" and an adr field specifying the address to be read. The set of all read requests is therefore the set

$$[op: \{\text{"Rd"}\}, adr: Adr]$$

of all records whose op field equals "Rd" (is an element of the set {"Rd"} whose only element is the string "Rd") and whose adr field is an element of Adr. A write request must specify the address to be written and the value to write. It is represented by a record with op field equal to "Wr", and with adr and val fields specifying the address and value. We define MReq, the set of all requests, to equal the union of these two sets. (Set operations, including union, are described in Section 1.2 on page 11.)

The memory responds to a read request with the memory value it read. We will also have it respond to a write request, and it seems nice to let the response be different from the response to any read request. We therefore require the memory to respond to a write request by returning a value $No\,Val$ that is different from any memory value. We could declare $No\,Val$ to be a constant parameter and add the assumption $No\,Val \notin Val$. (The symbol \notin is typed in ASCII as \notin.) But it's best, when possible, to avoid introducing parameters. Instead, we define $No\,Val$ by

$$No Val \stackrel{\triangle}{=} CHOOSE v : v \notin Val$$

The expression CHOOSE x: F equals an arbitrarily chosen value x that satisfies the formula F. (If no such x exists, the expression has a completely arbitrary value.) This statement defines $No \ Val$ to be some value that is not an element of


```
— module MemoryInterface -
VARIABLE memInt
CONSTANTS Send(\_, \_, \_, \_),
                                     A Send(p, d, memInt, memInt') step represents processor p
                                      sending value d to the memory.
                                     A Reply(p, d, memInt, memInt') step represents the memory
                                      sending value d to processor p.
              InitMemInt,
                              The set of possible initial values of memInt.
              Proc,
                               The set of processor identifiers.
              Adr.
                               The set of memory addresses.
              Val
                               The set of memory values.
ASSUME \forall p, d, miOld, miNew : \land Send(p, d, miOld, miNew) \in BOOLEAN
                                    \land Reply(p, d, miOld, miNew) \in BOOLEAN
             [op: \{\text{``Rd"}\}, adr: Adr] \cup [op: \{\text{``Wr"}\}, adr: Adr, val: Val]
MReq
                The set of all requests; a read specifies an address, a write specifies an address and a value.
No Val \stackrel{\triangle}{=} CHOOSE v : v \notin Val An arbitrary value not in Val.
```

Figure 5.1: The specification of a memory interface.

Val. We have no idea what the value of No Val is; we just know what it isn't—namely, that it isn't an element of Val. The CHOOSE operator is discussed in Section 6.6 on page 73.

The complete memory interface specification is module MemoryInterface in Figure 5.1 on this page.

5.2 Functions

A memory assigns values to addresses. The state of the memory is therefore an assignment of elements of Val (memory values) to elements of Adr (memory addresses). In a programming language, such an assignment is called an array of type Val indexed by Adr. In mathematics, it's called a function from Adr to Val. Before writing the memory specification, let's look at the mathematics of functions, and how it is described in TLA^+ .

A function f has a domain, written DOMAIN f, and it assigns to each element x of its domain the value f[x]. (Mathematicians write this as f(x), but TLA⁺ uses the array notation of programming languages, with square brackets.) Two functions f and g are equal iff they have the same domain and f[x] = g[x] for all x in their domain.

The range of a function f is the set of all values of the form f[x] with x in DOMAIN f. For any sets S and T, the set of all functions whose domain equals S and whose range is any subset of T is written $[S \to T]$.

5.2. FUNCTIONS 49

Ordinary mathematics does not have a convenient notation for writing an expression whose value is a function. TLA⁺ defines $[x \in S \mapsto e]$ to be the function f with domain S such that f[x] = e for every $x \in S$.³ For example,

$$succ \stackrel{\triangle}{=} [n \in Nat \mapsto n+1]$$

defines succ to be the successor function on the natural numbers—the function with domain Nat such that succ[n] = n + 1 for all $n \in Nat$.

A record is a function whose domain is a finite set of strings. For example, a record with val, ack, and rdy fields is a function whose domain is the set {"val", "ack", "rdy"} consisting of the three strings "val", "ack", and "rdy". The expression r.ack, the ack field of a record r, is an abbreviation for r["ack"]. The record

$$[val \mapsto 42, \ ack \mapsto 1, \ rdy \mapsto 0]$$

can be written

```
[i \in \{\text{``val''}, \text{``ack''}, \text{``rdy''}\} \mapsto \\ \text{IF } i = \text{``val''} \text{ THEN } 42 \text{ ELSE IF } i = \text{``ack''} \text{ THEN } 1 \text{ ELSE } 0]
```

The EXCEPT construct for records, explained in Section 3.2, is a special case of a general EXCEPT construct for functions, where !.c is an abbreviation for !["c"]. For any function f, the expression [f] EXCEPT ![c] = e] is the function \hat{f} that is the same as f except with $\hat{f}[c] = e$. This function can also be written

$$[x \in \text{DOMAIN } f \mapsto \text{IF } x = c \text{ THEN } e \text{ ELSE } f[x]]$$

assuming that the symbol x does not occur in any of the expressions f, c, and e. For example, [succ except ![42] = 86] is the function g that is the same as succ except that g[42] equals 86 instead of 43.

As in the EXCEPT construct for records, the expression e in

```
[f \text{ EXCEPT } ! [c] = e]
```

can contain the symbol @, where it means f[c]. For example,

$$[succ \ EXCEPT \ ![42] = 2 * @] = [succ \ EXCEPT \ ![42] = 2 * succ[42]]$$

In general,

$$[f \text{ EXCEPT } ! [c_1] = e_1, \ldots, ! [c_n] = e_n]$$

 $^{{}^3\}mathrm{The}\in$ in $[x\in S\mapsto e]$ is just part of the syntax; TLA⁺ uses that particular symbol to help you remember what the construct means. Computer scientists write $\lambda x:S.e$ to represent something similar to $[x\in S\mapsto e]$, except that their λ expressions aren't quite the same as the functions of ordinary mathematics that are used in TLA⁺.

is the function \hat{f} that is the same as f except with $\hat{f}[c_i] = e_i$ for each i. More precisely, this expression equals

$$[\dots[f \text{ EXCEPT }![c_1] = e_1] \text{ EXCEPT }![c_2] = e_2] \dots \text{ EXCEPT }![c_n] = e_n]$$

Functions correspond to the arrays of programming languages. The domain of a function corresponds to the index set of an array. Function [f] EXCEPT ![c] = e] corresponds to the array obtained from f by assigning e to f[c]. A function whose range is a set of functions corresponds to an array of arrays. TLA⁺ defines [f] EXCEPT ![c][d] = e] to be the function corresponding to the array obtained by assigning e to f[c][d]. It can be written as

$$[f \text{ EXCEPT } ! [c] = [@ \text{ EXCEPT } ! [d] = e]]$$

The generalization to $[f \text{ EXCEPT } ! [c_1] \dots [c_n] = e]$ for any n should be obvious. Since a record is a function, this notation can be used for records as well. TLA⁺ uniformly maintains the notation that $\sigma.c$ is an abbreviation for $\sigma[\text{``c''}]$. For example, this implies

$$[f \text{ EXCEPT } ![c].d = e] = [f \text{ EXCEPT } ![c]["d"] = e]$$

$$= [f \text{ EXCEPT } ![c] = [@ \text{ EXCEPT } !.d = e]]$$

The TLA⁺ definition of records as functions makes it possible to manipulate them in ways that have no counterparts in programming languages. For example, we can define an operator R such that R(r,s) is the record obtained from r by replacing the value of each field c that is also a field of the record s with s.c. In other words, for every field c of r, if c is a field of s then R(r,s).c = s.c; otherwise R(r,s).c = r.c. The definition is

$$r(s) \stackrel{\triangle}{=} [c \in \text{DOMAIN } r \mapsto \text{If } c \in \text{DOMAIN } s \text{ THEN } s[c] \text{ ELSE } r[c]]$$

So far, we have seen only functions of a single argument, which are the mathematical analog of the one-dimensional arrays of programming languages. Mathematicians also use functions of multiple arguments, which are the analog of multi-dimensional arrays. In TLA⁺, as in ordinary mathematics, a function of multiple arguments is one whose domain is a set of tuples. For example, f[5,3,1] is an abbreviation for $f[\langle 5,3,1\rangle]$, the value of the function f applied to the triple $\langle 5,3,1\rangle$.

The function constructs of TLA⁺ have extensions for functions of multiple arguments. For example, [g EXCEPT ! [a,b]=e] is the function \widehat{g} that is the same as g except with $\widehat{g}[a,b]$ equal to e. The expression

$$(5.1) \quad [n \in Nat, \ r \in Real \ \mapsto \ n * r]$$

equals the function f such that f[n,r] equals n*r, for all $n \in Nat$ and $r \in Real$. Just as $\forall i \in S : \forall j \in S : P$ can be written as $\forall i,j \in S : P$, we can write the function $[i \in S, j \in S \mapsto e]$ as $[i,j \in S \mapsto e]$. Section 16.1.7 on page 301 describes the general versions of the TLA⁺ function constructs for functions with any number of arguments. However, functions of a single argument are all you're likely to need. You can almost always replace a function of multiple arguments with a function-valued function—for example, writing f[a][b] instead of f[a, b].

5.3 A Linearizable Memory

We now specify a very simple memory system in which a processor p issues a memory request and then waits for a response before issuing the next request. In our specification, the request is executed by accessing (reading or modifying) a variable mem, which represents the current state of the memory. Because the memory can receive requests from other processors before responding to processor p, it matters when mem is accessed. We let the access of mem occur any time between the request and the response. This specifies what is called a linearizable memory. Less restrictive, more practical memory specifications are described in Section 11.2.

In addition to mem, the specification has the internal variables ctl and buf, where ctl[p] describes the status of processor p's request, and buf[p] contains either the request or the response. Consider the request req that equals

$$[op \mapsto \text{"Wr"}, adr \mapsto a, val \mapsto v]$$

It is a request to write v to memory address a, and it generates the response No Val. The processing of this request is represented by the following three steps:

$$\begin{bmatrix} ctl[p] &= \text{``rdy''} \\ buf[p] &= \cdots \\ mem[a] &= \cdots \end{bmatrix} \xrightarrow{Req(p)} \begin{bmatrix} ctl[p] &= \text{``busy''} \\ buf[p] &= req \\ mem[a] &= \cdots \end{bmatrix}$$

$$\begin{bmatrix} ctl[p] &= \text{``done''} \\ buf[p] &= NoVal \\ mem[a] &= v \end{bmatrix} \xrightarrow{Rsp(p)} \begin{bmatrix} ctl[p] &= \text{``rdy''} \\ buf[p] &= NoVal \\ mem[a] &= v \end{bmatrix}$$

A Req(p) step represents the issuing of a request by processor p. It is enabled when ctl[p] = "rdy"; it sets ctl[p] to "busy" and sets buf[p] to the request. A Do(p) step represents the memory access; it is enabled when ctl[p] = "busy" and it sets ctl[p] to "done" and buf[p] to the response. A Rsp(p) step represents the memory's response to p; it is enabled when ctl[p] = "done" and it sets ctl[p] to "rdy".

Writing the specification is a straightforward exercise in representing these changes to the variables in TLA⁺ notation. The internal specification, with mem, ctl, and buf visible (free variables), appears in module InternalMemory on the following two pages. The memory specification, which hides the three internal variables, is module Memory in Figure 5.3 on page 53.

```
- module Internal Memory <math>-
Extends MemoryInterface
Variables mem, ctl, buf
IInit \triangleq
               The initial predicate
  \land mem \in [Adr \rightarrow Val]
                                         Initially, memory locations have any values in Val,
  \land ctl = [p \in Proc \mapsto "rdy"]
                                         each processor is ready to issue requests,
  \land buf = [p \in Proc \mapsto NoVal]
                                         each \mathit{buf}[p] is arbitrarily initialized to \mathit{NoVal},
  and memInt is any element of InitMemInt.
TypeInvariant \triangleq
                           The type-correctness invariant.
  \land mem \in [Adr \rightarrow Val]
                                                        mem is a function from Adr to Val.
  \land \ \mathit{ctl} \in [\mathit{Proc} \rightarrow \{\text{``rdy''}, \text{``busy''}, \text{``done''}\}]
                                                        ctl[p] equals "rdy", "busy", or "done".
  \land buf \in [Proc \rightarrow MReq \cup Val \cup \{NoVal\}] buf [p] is a request or a response.
Req(p) \triangleq
                 Processor p issues a request.
  \wedge ctl[p] = \text{"rdy"} Enabled iff p is ready to issue a request.
  \land \exists req \in MReq :
                           For some request req:
        \land Send(p, req, memInt, memInt')
                                                       Send req on the interface.
        \wedge buf' = [buf \text{ EXCEPT } ![p] = req]
                                                       Set buf[p] to the request.
        \wedge ctl' = [ctl \text{ EXCEPT } ![p] = \text{"busy"}]
                                                       Set ctl[p] to "busy".
  \land UNCHANGED mem
Do(p) \triangleq
                 Perform p's request to memory.
  \wedge ctl[p] = "busy" Enabled iff p's request is pending.
  \land mem' = IF \ buf[p].op = "Wr"
                  THEN [mem EXCEPT
                                                                 Write to memory on a
                                                                 "Wr" request.
                              ![buf[p].adr] = buf[p].val]
                  ELSE mem Leave mem unchanged on a "Rd" request.
  \wedge \ buf' = [buf \ EXCEPT
                  ![p] = IF buf[p].op = "Wr"
                                                            Set buf[p] to the response:
                            THEN No \, Val
                                                              No Val for a write;
                            ELSE mem[buf[p].adr] the memory value for a read.
   \triangle ctl' = [ctl \text{ EXCEPT } ![p] = \text{"done"}]
                                                            Set ctl[p] to "done".
    =NCHANGED memInt
```

Figure 5.2a: The internal memory specification (beginning).

```
Rsp(p) \triangleq \text{Return the response to } p\text{'s request.}
 \land ctl[p] = \text{``done''} \qquad \qquad \text{Enabled iff req. is done but resp. not sent.} 
 \land Reply(p, \ buf[p], \ memInt, \ memInt') \qquad \text{Send the response on the interface.} 
 \land \ ctl' = [ctl \ \text{EXCEPT }![p] = \text{``rdy''}] \qquad \text{Set } ctl[p] \text{ to ``rdy''}. 
 \land \ \text{UNCHANGED } \land mem, buf \land \text{UNCHANGED } \land mem, buf \land \text{UNCHANGED } \land mem, buf \land \text{UNCHANGED } \land \text{UNCH
```

Figure 5.2b: The internal memory specification (end).

5.4 Tuples as Functions

Before writing our caching memory specification, let's take a closer look at tuples. Recall that $\langle a, b, c \rangle$ is the 3-tuple with components a, b, and c. In TLA⁺, this 3-tuple is actually the function with domain $\{1, 2, 3\}$ that maps 1 to a, 2 to b, and 3 to c. Thus, $\langle a, b, c \rangle[2]$ equals b.

TLA⁺ provides the Cartesian product operator \times of ordinary mathematics, where $A \times B \times C$ is the set of all 3-tuples $\langle a, b, c \rangle$ such that $a \in A$, $b \in B$, and $c \in C$. Note that $A \times B \times C$ is different from $A \times (B \times C)$, which is the set of pairs $\langle a, p \rangle$ with a in A and p in the set of pairs $B \times C$.

The Sequences module defines finite sequences to be tuples. Hence, a sequence of length n is a function with domain 1 ... n. In fact, s is a sequence iff it equals $[i \in 1 ... Len(s) \mapsto s[i]]$. Below are a few operator definitions from the Sequences module. (The meanings of the operators are described in Section 4.1.)

```
\begin{array}{ll} \operatorname{Head}(s) \; \triangleq \; s[1] \\ \operatorname{Tail}(s) \; \; \triangleq \; [i \in 1 \; .. \; (\operatorname{Len}(s)-1) \mapsto s[i+1]] \\ s \circ t \; \; \; \triangleq \; [i \in 1 \; .. \; (\operatorname{Len}(s)+\operatorname{Len}(t)) \mapsto \\ & \quad \text{if} \; \; i \leq \operatorname{Len}(s) \; \text{ then} \; \; s[i] \; \text{ else } \; t[i-\operatorname{Len}(s)] \, ] \end{array}
```

```
EXTENDS MemoryInterface
Inner(mem, ctl, buf) \triangleq INSTANCE InternalMemory
Spec \triangleq \exists mem, ctl, buf : Inner(mem, ctl, buf)! ISpec
```

Figure 5.3: The memory specification.

5.5 Recursive Function Definitions

We need one more tool to write the caching memory specification: recursive function definitions. Recursively defined functions are familiar to programmers. The classic example is the factorial function, which I'll call *fact*. It's usually defined by writing

$$fact[n] = \text{ if } n = 0 \text{ then } 1 \text{ else } n * fact[n-1]$$

for all $n \in Nat$. The TLA⁺ notation for writing functions suggests trying to define fact by

$$fact \stackrel{\triangle}{=} [n \in Nat \mapsto \text{if } n = 0 \text{ then } 1 \text{ else } n * fact[n-1]]$$

This definition is illegal because the occurrence of fact to the right of the $\stackrel{\triangle}{=}$ is undefined—fact is defined only after its definition.

TLA⁺ does allow the apparent circularity of recursive function definitions. We can define the factorial function *fact* by

$$fact[n \in Nat] \stackrel{\Delta}{=} \text{ if } n = 0 \text{ Then } 1 \text{ else } n * fact[n-1]$$

In general, a definition of the form $f[x \in S] \stackrel{\triangle}{=} e$ can be used to define recursively a function f with domain S.

The function definition notation has a straightforward generalization to definitions of functions of multiple arguments. For example,

```
 \begin{array}{ll} Acker[m,\ n\in Nat] & \triangleq \\ & \text{if} \ m=0 \ \text{ then } \ n+1 \\ & \text{else } \ \text{if} \ n=0 \ \text{ then } \ Acker[m-1,\ 0] \\ & \text{else } \ Acker[m-1,\ Acker[m,\ n-1]] \\ \end{array}
```

defines Acker[m, n] for all natural numbers m and n.

Section 6.3 explains exactly what recursive definitions mean. For now, we will just write recursive definitions without worrying about their meaning.

5.6 Write-Through Cache

We now specify a simple write-through cache that implements the memory specification. The system is described by the picture of Figure 5.4 on the next page. Each processor p communicates with a local controller, which maintains three state components: buf[p], ctl[p], and cache[p]. The value of cache[p] represents the processor's cache; buf[p] and ctl[p] play the same role as in the internal memory specification (module InternalMemory). (However, as we will see below, ctl[p] can assume an additional value "waiting".) These local controllers

Figure 5.4: The write-through cache.

communicate with the main memory wmem,⁴ and with one another, over a bus. Requests from the processors to the main memory are in the queue memQ of maximum length QLen.

A write request by processor p is performed by the action DoWr(p). This is a write-through cache, meaning that every write request updates main memory. So, the DoWr(p) action writes the value into cache[p] and adds the write request to the tail of memQ. When the request reaches the head of memQ, the action MemQWr stores the value in wmem. The DoWr(p) action also updates cache[q] for every other processor q that has a copy of the address in its cache.

A read request by processor p is performed by the action DoRd(p), which obtains the value from the cache. If the value is not in the cache, the action RdMiss(p) adds the request to the tail of memQ and sets ctl[p] to "waiting". When the enqueued request reaches the head of memQ, the action MemQRd reads the value and puts it in cache[p], enabling the DoRd(p) action.

We might expect the MemQRd action to read the value from wmem. However, this could cause an error if there is a write to that address enqueued in memQ behind the read request. In that case, reading the value from memory could lead to two processors having different values for the address in their caches: the one that issued the read request, and the one that issued the write request that followed the read in memQ. So, the MemQRd action must read the value from the last write to that address in memQ, if there is such a write; otherwise, it reads the value from wmem.

⁴We use the name *wmem* to distinguish this variable from variable *mem* of module *InternalMemory*. We don't have to, since *mem* is not a free (visible) variable of the actual memory specification in module *Memory*, but it helps us avoid getting confused.

Evicton of an address from processor p's cache is represented by a separate Evict(p) action. Since all cached values have been written to memory, eviction does nothing but remove the address from the cache. There is no reason to evict an address until the space is needed, so in an implementation, this action would be executed only when a request for an uncached address is received from p and p's cache is full. But that's a performance optimization; it doesn't affect the correctness of the algorithm, so it doesn't appear in the specification. We allow a cached address to be evicted from p's cache at any time—except if the address was just put there by a MemQRd action for a read request whose DoRd(p) action has not yet been performed. This is the case when ctl[p] equals "waiting" and buf[p].adr equals the cached address.

The actions Req(p) and Rsp(p), which represent processor p issuing a request and the memory issuing a reply to p, are the same as the corresponding actions of the memory specification, except that they also leave the new variables cache and memQ unchanged, and they leave unchanged vmem instead of mem.

To specify all these actions, we must decide how the processor caches and the queue of requests to memory are represented by the variables memQ and cache. We let memQ be a sequence of pairs of the form $\langle p, req \rangle$, where req is a request and p is the processor that issued it. For any memory address a, we let cache[p][a] be the value in p's cache for address a (the "copy" of a in p's cache). If p's cache does not have a copy of a, we let cache[p][a] equal NoVal.

The specification appears in module *WriteThroughCache* on pages 57–59. I'll now go through this specification, explaining some of the finer points and some notation that we haven't encountered before.

The EXTENDS, declaration statements, and ASSUME are familiar. We can reuse some of the definitions from the *InternalMemory* module, so an **INSTANCE** statement instantiates a copy of that module with *wmem* substituted for *mem*. (The other parameters of module *InternalMemory* are instantiated by the parameters of the same name in module *WriteThroughCache*.)

The initial predicate Init contains the conjunct M!Init, which asserts that ctl and buf have the same initial values as in the internal memory specification, and that wmem has the same initial value as mem does in that specification. The write-through cache allows ctl[p] to have the value "waiting" that it didn't in the internal memory specification, so we can't reuse the internal memory's type invariant M!TypeInvariant. Formula TypeInvariant therefore explicitly describes the types of wmem, ctl, and buf. The type of memQ is the set of sequences of processor, request processor, request processor.

The module next defines the predicate *Coherence*, which asserts the basic cache coherence property of the write-through cache: for any processors p and q and any address a, if p and q both have copies of address a in their caches, then those copies are equal. Note the trick of writing $x \notin \{y, z\}$ instead of the equivalent but longer formula $(x \neq y) \land (x \neq z)$.


```
— MODULE WriteThroughCache —
EXTENDS Naturals, Sequences, MemoryInterface
VARIABLES wmem, ctl, buf, cache, memQ
CONSTANT QLen
Assume (QLen \in Nat) \land (QLen > 0)
M \stackrel{\triangle}{=} \text{INSTANCE } Internal Memory \text{ WITH } mem \leftarrow wmem
Init \stackrel{\triangle}{=}
               The initial predicate
  \wedge M!IInit
                         wmem, buf, and ctl are initialized as in the internal memory spec.
  \wedge cache =
                         All caches are initially empty (cache[p][a] = NoVal for all p, a).
         [p \in Proc \mapsto [a \in Adr \mapsto NoVal]]
  \land memQ = \langle \rangle The queue memQ is initially empty.
TupeInvariant \triangleq
                            The type invariant.
  \land wmem \in [Adr \rightarrow Val]
               \in [Proc \rightarrow \{\text{"rdy"}, \text{"busy"}, \text{"waiting"}, \text{"done"}\}]
  \wedge ctl
  \wedge buf
                \in [Proc \rightarrow MReq \cup Val \cup \{NoVal\}]
  \land cache \in [Proc \rightarrow [Adr \rightarrow Val \cup \{NoVal\}]]
  \land memQ \in Seq(Proc \times MReq) \mod Q is a sequence of \langle proc., request \rangle pairs.
Coherence \triangleq
                                    Asserts that if two processors' caches both have copies
  \forall p, q \in Proc, a \in Adr: of an address, then those copies have equal values.
     (\textit{NoVal} \notin \{\textit{cache}[p][a], \, \textit{cache}[q][a]\}) \, \Rightarrow \, (\textit{cache}[p][a] = \textit{cache}[q][a])
Req(p) \triangleq
                   Processor p issues a request.
   M!Req(p) \wedge UNCHANGED \langle cache, memQ \rangle
Rsp(p) \triangleq
                   The system issues a response to processor p.
   M!Rsp(p) \wedge UNCHANGED \langle cache, memQ \rangle
RdMiss(p) \stackrel{\Delta}{=} Enqueue a request to write value from memory to p's cache.
  \land (ctl[p] = \text{``busy''}) \land (buf[p].op = \text{``Rd''})
                                                                 Enabled on a read request when
  \land cache[p][buf[p].adr] = NoVal
                                                                   the address is not in p's cache
  \wedge Len(memQ) < QLen
                                                                   and memQ is not full.
  \land memQ' = Append(memQ, \langle p, buf[p] \rangle)
                                                                 Append \langle p, \text{request} \rangle to mem Q.
  \land ctl' = [ctl \text{ EXCEPT } ![p] = \text{"waiting"}]
                                                                 Set ctl[p] to "waiting".
  ∧ UNCHANGED ⟨memInt, wmem, buf, cache⟩
```

Figure 5.5a: The write-through cache specification (beginning).

```
DoRd(p) \stackrel{\Delta}{=} Perform a read by p of a value in its cache.
  \land ctl[p] \in \{\text{"busy"}, \text{"waiting"}\}
                                                                    Enabled if a read
  \wedge buf[p].op = "Rd"
                                                                    request is pending and
  \land \ cache[p][\mathit{buf}[p].\mathit{adr}] \neq \mathit{NoVal}
                                                                    address is in cache.
  \land buf' = [buf \ EXCEPT \ ![p] = cache[p][buf[p].adr]]
                                                                   Get result from cache.
  \wedge ctl' = [ctl \text{ EXCEPT } ![p] = \text{"done"}]
                                                                   Set ctl[p] to "done".
  \land UNCHANGED \langle memInt, wmem, cache, memQ \rangle
DoWr(p) \stackrel{\Delta}{=} Write to p's cache, update other caches, and enqueue memory update.
  LET r \stackrel{\triangle}{=} buf[p] Processor p's request.
       \land (ctl[p] = \text{``busy''}) \land (r.op = \text{``Wr''}) Enabled if write request pending
        \land Len(memQ) < QLen
                                                          and memQ is not full.
        \wedge cache' = Update p's cache and any other cache that has a copy.
              [q \in Proc \mapsto IF \ (p = q) \lor (cache[q][r.adr] \ne NoVal)
                                THEN [cache[q]] EXCEPT ![r.adr] = r.val]
                                ELSE cache[q]
        \land memQ' = Append(memQ, \langle p, r \rangle)
                                                          Enqueue write at tail of memQ.
        \wedge buf' = [buf \text{ EXCEPT } ![p] = NoVal]
                                                           Generate response.
        \land \ \mathit{ctl'} \ = [\mathit{ctl} \ \mathtt{EXCEPT} \ ![p] = \mathtt{``done"}]
                                                          Set ctl to indicate request is done.
        ∧ UNCHANGED ⟨memInt, wmem⟩
vmem \triangleq
                The value wmem will have after all the writes in memQ are performed.
  LET f[i \in 0 ... Len(memQ)] \triangleq
                                              The value wmem will have after the first
                                                     i writes in memQ are performed.
           If i = 0 then wmem
                       ELSE IF memQ[i][2].op = "Rd"
                                 THEN f[i-1]
                                  ELSE [f[i-1]] EXCEPT ![memQ[i][2].adr] =
                                                                    memQ[i][2].val]
        f[Len(memQ)]
MemQWr \stackrel{\Delta}{=} Perform write at head of <math>memQ to memory.
  LET r \triangleq Head(memQ)[2] The request at the head of memQ.
      \land (memQ \neq \langle \rangle) \land (r.op = \text{``Wr"})
                                                        Enabled if Head(memQ) a write.
         \land wmem' =
                                                        Perform the write to memory.
              [wmem EXCEPT ! [r.adr] = r.val]
         \land memQ' = Tail(memQ)
                                                        Remove the write from memQ.
         \land UNCHANGED \langle memInt, buf, ctl, cache \rangle
```

Figure 5.5b: The write-through cache specification (middle).

```
MemQRd \stackrel{\Delta}{=} Perform an enqueued read to memory.
   LET p \triangleq Head(memQ)[1] The requesting processor.
         r \stackrel{\triangle}{=} Head(memQ)[2] The request at the head of memQ.
        \land (memQ \neq \langle \rangle) \land (r.op = \text{``Rd''}) Enabled if Head(memQ) is a read.
         \land memQ' = Tail(memQ)
                                                       Remove the head of memQ.
         \wedge cache' = Put value from memory or memQ in p's cache.
               [cache except ![p][r.adr] = vmem[r.adr]]
         \land UNCHANGED \langle memInt, wmem, buf, ctl \rangle
Evict(p, a) \stackrel{\Delta}{=} Remove address a from p's cache.
   \land (ctl[p] = \text{``waiting''}) \Rightarrow (buf[p].adr \neq a)
                                                              Can't evict a if it was just read
                                                                 into cache from memory.
   \land cache' = [cache \ EXCEPT \ ![p][a] = NoVal]
   \land UNCHANGED \langle memInt, wmem, buf, ctl, memQ \rangle
Next \stackrel{\triangle}{=} \lor \exists p \in Proc : \lor Req(p) \lor Rsp(p)
                                 \vee RdMiss(p) \vee DoRd(p) \vee DoWr(p)
                                 \vee \exists a \in Adr : Evict(p, a)
             \lor MemQWr \lor MemQRd
Spec \stackrel{\triangle}{=} Init \wedge \Box [Next]_{\langle memInt, wmem, buf, ctl, cache, memQ \rangle}
THEOREM Spec \Rightarrow \Box (TypeInvariant \land Coherence)
LM \stackrel{\Delta}{=} \text{INSTANCE } Memory \quad \text{The memory spec. with internal variables hidden.}
THEOREM Spec \Rightarrow LM!Spec Formula Spec implements the memory spec.
```

Figure 5.5c: The write-through cache specification (end).

The actions Req(p) and Rsp(p), which represent a processor sending a request and receiving a reply, are essentially the same as the corresponding actions in module Internal Memory. However, they must also specify that the variables cache and memQ, not present in module Internal Memory, are left unchanged.

In the definition of RdMiss, the expression $Append(memQ, \langle p, buf[p] \rangle)$ is the sequence obtained by appending the element $\langle p, buf[p] \rangle$ to the end of memQ.

The DoRd(p) action represents the performing of the read from p's cache. If ctl[p] = "busy", then the address was originally in the cache. If ctl[p] = "waiting", then the address was just read into the cache from memory.

The DoWr(p) action writes the value to p's cache and updates the value in any other caches that have copies. It also enqueues a write request in memQ. In an implementation, the request is put on the bus, which transmits it to the other caches and to the memQ queue. In our high-level view of the system, we represent all this as a single step.

The definition of DoWr introduces the TLA⁺ LET/IN construct. The LET clause consists of a sequence of definitions whose scope extends until the end of the IN clause. In the definition of DoWr, the LET clause defines r to equal buf[p] within the IN clause. Observe that the definition of r contains the parameter p of the definition of DoWr. Hence, we could not move the definition of r outside the definition of r outside the definition of r outside r outside r of r outside r outside r outside r of r outside r outside r of r outside r outside r outside r of r outside r outside r outside r outside r outside r of r outside r ou

A definition in a LET is just like an ordinary definition in a module; in particular, it can have parameters. These local definitions can be used to shorten an expression by replacing common subexpressions with an operator. In the definition of DoWr, I replaced five instances of buf[p] by the single symbol r. This was a silly thing to do, because it makes almost no difference in the length of the definition and it requires the reader to remember the definition of the new symbol r. But using a LET to eliminate common subexpressions can often greatly shorten and simplify an expression.

A LET can also be used to make an expression easier to read, even if the operators it defines appear only once in the IN expression. We write a specification with a sequence of definitions, instead of just defining a single monolithic formula, because a formula is easier to understand when presented in smaller chunks. The LET construct allows the process of splitting a formula into smaller parts to be done hierarchically. A LET can appear as a subexpression of an IN expression. Nested LETs are common in large, complicated specifications.

Next comes the definition of the state function vmem, which is used in defining action MemQRd below. It equals the value that the main memory wmem will have after all the write operations currently in memQ have been performed. Recall that the value read by MemQRd must be the most recent one written to that address—a value that may still be in memQ. That value is the one in vmem. The function vmem is defined in terms of the recursively defined function f, where f[i] is the value wmem will have after the first i operations in memQ have been performed. Note that memQ[i][2] is the second component (the request) of memQ[i], the ith element in the sequence memQ.

The next two actions, MemQWr and MemQRd, represent the processing of the request at the head of the memQ queue—MemQWr for a write request, and MemQRd for a read request. These actions also use a LET to make local definitions. Here, the definitions of p and r could be moved before the definition of MemQWr. In fact, we could save space by replacing the two local definitions of r with one global (within the module) definition. However, making the definition of r global in this way would be somewhat distracting, since r is used only in the definitions of MemQWr and MemQRd. It might be better instead to combine these two actions into one. Whether you put a definition into a LET or make it more global should depend on what makes the specification easier to read.

The Evict(p, a) action represents the operation of removing address a from processor p's cache. As explained above, we allow an address to be evicted at any time—unless the address was just written to satisfy a pending read request,

5.7. INVARIANCE 61

which is the case iff ctl[p] = "waiting" and buf[p].adr = a. Note the use of the "double subscript" in the EXCEPT expression of the action's second conjunct. This conjunct "assigns NoVal to cache[p][a]". If address a is not in p's cache, then cache[p][a] already equals NoVal and an Evict(p,a) step is a stuttering step.

The definitions of the next-state action *Next* and of the complete specification *Spec* are straightforward. The module closes with two theorems that are discussed next.

5.7 Invariance

Module WriteThroughCache contains the theorem

```
THEOREM Spec \Rightarrow \Box (TypeInvariant \land Coherence)
```

which asserts that $TypeInvariant \wedge Coherence$ is an invariant of Spec. A state predicate $P \wedge Q$ is always true iff both P and Q are always true, so $\Box(P \wedge Q)$ is equivalent to $\Box P \wedge \Box Q$. This implies that the theorem above is equivalent to the two theorems

```
THEOREM Spec \Rightarrow \Box TypeInvariant
THEOREM Spec \Rightarrow \Box Coherence
```

The first theorem is the usual type-invariance assertion. The second, which asserts that *Coherence* is an invariant of *Spec*, expresses an important property of the algorithm.

Although TypeInvariant and Coherence are both invariants of the temporal formula Spec, they differ in a fundamental way. If s is any state satisfying TypeInvariant, then any state t such that $s \to t$ is a Next step also satisfies TypeInvariant. This property is expressed by

```
THEOREM TypeInvariant \land Next \Rightarrow TypeInvariant'
```

(Recall that TypeInvariant' is the formula obtained by priming all the variables in formula TypeInvariant.) In general, when $P \wedge N \Rightarrow P'$ holds, we say that predicate P is an invariant of action N. Predicate TypeInvariant is an invariant of Spec because it is an invariant of Next and it is implied by the initial predicate Init.

Predicate Coherence is not an invariant of the next-state action Next. For example, suppose s is a state in which

- cache[p1][a] = 1
- cache[q][b] = No Val, for all $\langle q, b \rangle$ different from $\langle p1, a \rangle$
- wmem[a] = 2
- memQ contains the single element $\langle p2, [op \mapsto \text{``Rd''}, adr \mapsto a] \rangle$

An invariant of a specification S that is also an invariant of its next-state action is sometimes called an *inductive* invariant of S. for two different processors p1 and p2 and some address a. Such a state s (an assignment of values to variables) exists, assuming that there are at least two processors and at least one address. Then Coherence is true in state s. Let t be the state obtained from s by taking a MemQRd step. In state t, we have cache[p2][a] = 2 and cache[p1][a] = 1, so Coherence is false. Hence Coherence is not an invariant of the next-state action.

Coherence is an invariant of formula Spec because states like s cannot occur in a behavior satisfying Spec. Proving its invariance is not so easy. We must find a predicate Inv that is an invariant of Next such that Inv implies Coherence and is implied by the initial predicate Init.

Important properties of a specification can often be expressed as invariants. Proving that a state predicate P is an invariant of a specification means proving a formula of the form

$$Init \wedge \Box [Next]_v \Rightarrow \Box P$$

This is done by finding an appropriate state predicate *Inv* and proving

$$Init \Rightarrow Inv$$
, $Inv \wedge [Next]_v \Rightarrow Inv'$, $Inv \Rightarrow P$

Since our subject is specification, not proof, I won't discuss how to find Inv.

5.8 Proving Implementation

Module WriteThroughCache ends with the theorem

THEOREM
$$Spec \Rightarrow LM!Spec$$

where LM!Spec is formula Spec of module Memory. This theorem asserts that every behavior satisfying specification Spec of the write-through cache also satisfies LM!Spec, the specification of a linearizable memory. In other words, it asserts that the write-through cache implements a linearizable memory. In TLA, implementation is implication. A system described by a formula Sys implements a specification Spec iff Sys implies Spec—that is, iff $Sys \Rightarrow Spec$ is a theorem. TLA makes no distinction between system descriptions and specifications; they are both just formulas.

By definition of formula Spec of the Memory module (page 53), we can restate the theorem as

THEOREM
$$Spec \Rightarrow \exists mem, ctl, buf : LM!Inner(mem, ctl, buf)!ISpec$$

where LM!Inner(mem, ctl, buf)!ISpec is formula ISpec of the InternalMemory module. The rules of logic tell us that to prove such a theorem, we must find "witnesses" for the quantified variables mem, ctl, and buf. These witnesses are

state functions (ordinary expressions with no primes), which I'll call omem, octl, and obuf, that satisfy

$$(5.2)$$
 Spec \Rightarrow LM!Inner(omem, octl, obuf)!ISpec

Formula LM!Inner(omem, octl, obuf)!ISpec is formula ISpec with the substitutions

$$mem \leftarrow omem, \quad ctl \leftarrow octl, \quad buf \leftarrow obuf$$

The tuple $\langle omem, octl, obuf \rangle$ of witness functions is called a refinement mapping, and we describe (5.2) as the assertion that Spec implements formula ISpec under this refinement mapping. Intuitively, this means Spec implies that the value of the tuple $\langle memInt, omem, octl, obuf \rangle$ of state functions changes the way ISpec asserts that the tuple $\langle memInt, mem, ctl, buf \rangle$ of variables should change.

I will now briefly describe how we prove (5.2); for details, see the technical papers about TLA, available through the TLA Web page. Let me first introduce a bit of non-TLA⁺ notation. For any formula F of module InternalMemory, let \overline{F} equal LM!Inner(omem, octl, obuf)!F, which is formula F with omem, octl, and obuf substituted for mem, ctl, and buf. In particular, $\overline{mem}, \overline{ctl}$, and \overline{buf} equal omem, octl, and obuf, respectively.

With this notation, we can write (5.2) as $Spec \Rightarrow \overline{ISpec}$. Replacing Spec and ISpec by their definitions, this formula becomes

(5.3)
$$Init \wedge \Box[Next]_{\langle memInt, wmem, buf, ctl, cache, memQ \rangle}$$

 $\Rightarrow \overline{IInit} \wedge \Box[\overline{INext}]_{\langle memInt, \overline{mem}, \overline{ctl}, \overline{buf} \rangle}$

Formula (5.3) is then proved by finding an invariant *Inv* of *Spec* such that

The second conjunct is called *step simulation*. It asserts that a *Next* step starting in a state satisfying the invariant Inv is either an \overline{INext} step—a step that changes the 4-tuple $\langle memInt, omem, octl, obuf \rangle$ the way an INext step changes $\langle memInt, mem, ctl, buf \rangle$ —or else it leaves that 4-tuple unchanged. For our memory specifications, the state functions omem, octl, and obuf are defined by

$$\begin{array}{lll} omem & \triangleq & vmem \\ octl & \triangleq & [p \in Proc \mapsto \text{if} & ctl[p] = \text{``waiting''} & \text{Then ```busy''} & \text{Else } & ctl[p]] \\ obuf & \triangleq & buf \end{array}$$

The mathematics of an implementation proof is simple, so the proof is straightforward—in theory. For specifications of real systems, such proofs can be quite difficult. Going from theory to practice requires turning the mathematics

memInt equals memInt, since memInt is a variable distinct from mem, ctl, and buf. of proofs into an engineering discipline. This is a subject that deserves a book to itself, and I won't try to discuss it here.

You will probably never prove that one specification implements another. However, you should understand refinement mappings and step simulation. You will then be able to use TLC to check that one specification implements another; Chapter 14 explains how.