Graph Convolution Networks

Arka Sadhu

IIT Bombay

September 1, 2017

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- Spectral Networks and Deep Locally Connected Networks on Graphs
- CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

autline Graph Convolutional Networks

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- 4 Spectral Networks and Deep Locally Connected Networks on Graphs
- 5 CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

Introduction to Graph Convolutional Networks

- CNN are extremely efficient architectures for image and audio classification tasks.
- But CNN donot directly generalize to irregular domains such as graph.

Introduction to Graph Convolutional Networks

- CNN are extremely efficient architectures for image and audio classification tasks.
- But CNN donot directly generalize to irregular domains such as graph.
- Want to generalize CNN to Graphs.

Introduction to Graph Convolutional Networks

- CNN are extremely efficient architectures for image and audio classification tasks.
- But CNN donot directly generalize to irregular domains such as graph.
- Want to generalize CNN to Graphs.
- Non-trivial because the distances are non-euclidean.

Graph Convolutional Networks

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- 4 Spectral Networks and Deep Locally Connected Networks on Graphs
- 5 CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

There are two main approaches

 Spatial Approach : Generalization of CNN in the spatial domain itself.

There are two main approaches

- Spatial Approach : Generalization of CNN in the spatial domain itself.
 - ▶ Learning Convolutional Neural Networks for Graphs [ICML 2016].[1]

There are two main approaches

- Spatial Approach : Generalization of CNN in the spatial domain itself.
 - ▶ Learning Convolutional Neural Networks for Graphs [ICML 2016].[1]
- Spectral Approach : Using the frequency characterization of CNN and using that to generalize to Graphical domain

There are two main approaches

- Spatial Approach : Generalization of CNN in the spatial domain itself.
 - Learning Convolutional Neural Networks for Graphs [ICML 2016].[1]
- Spectral Approach : Using the frequency characterization of CNN and using that to generalize to Graphical domain
 - Spectral Networks and Deep Locally Connected Networks on Graphs [Bruna et al. ICLR 2014].
 - ► Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering [Defferrard et al. NIPS 2016] (will be the main focus)
 - ► Semi-Supervised Classification with Graph Convolutional Networks [Kipf et al. ICLR 2017]

Limitations of Spatial Approach

- Can't exactly define a neighborhood because the distances are not uniform.
- Ordering of nodes is problem specific.

Hence for the remainder we discuss the Spectral Approach

Outline Taph Convolutional Networks

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- 4 Spectral Networks and Deep Locally Connected Networks on Graphs
- 5 CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

A Basic Formulation

- Convolution in spectral (Fourier) domain is point wise multiplication.
- Fourier Basis is defined as the eigen basis of the laplacian operator.
- Can use Laplacian of a graph.

Outline Graph Convolutional Networks

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- 4 Spectral Networks and Deep Locally Connected Networks on Graphs
- 5 CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

Defining the Problem on Graphs

• A feature description x_i for every node i; summarized in a NxD feature matrix X (N: number of nodes, D: number of input features)

Defining the Problem on Graphs

- A feature description x_i for every node i; summarized in a NxD feature matrix X (N: number of nodes, D: number of input features)
- Adjacency Matrix A.

Defining the Problem on Graphs

- A feature description x_i for every node i; summarized in a NxD feature matrix X (N: number of nodes, D: number of input features)
- Adjacency Matrix A.
- Node level output Z (an NxF feature matrix, where F = number of output features per node).

Outline Taph Convolutional Networks

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- 4 Spectral Networks and Deep Locally Connected Networks on Graphs
- 5 CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

Brief overview of Graph Laplacian

Let T denote the diagonal matrix with (v,v)-th entry having value d_v : degree of vertex v. Define L-matrix as

$$L(u,v) = egin{cases} d_v & ext{if } u = v \ -1 & ext{if } u ext{ and } v ext{ are adjacent} \ 0 & ext{otherwise} \end{cases}$$

And the Laplacian of the graph as

$$\mathcal{L}(u,v) = egin{cases} 1 & ext{if } u = v \ -rac{1}{\sqrt{d_u d_v}} & ext{if } u ext{ and } v ext{ are adjacent} \ 0 & ext{otherwise} \end{cases}$$

Graph Laplacian (contd.)

$$\mathcal{L} = T^{-1/2}LT^{1/2}$$

With the convention $T^{-1}(v, v) = 0$ for $d_v = 0$.

When G is k-regular,

$$\mathcal{L} = I - \frac{1}{k}A$$

For a general graph

$$\mathcal{L} = I - T^{-1/2}AT^{1/2}$$

Spectral Network Approach

- Mentions the use of both spatial and spectral construction.
- For the spectral part uses a spline and has k control points for it.

$$g_{\theta}(\Lambda) = B\theta$$

Here B is the cubic B-spline basis and θ is a vector of control points.

 The datasets used (created) are quite interesting. Subsampled MNIST and MNIST on sphere to show how spectral networks can be used on graphs.

Outline Taph Convolutional Networks

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- 4 Spectral Networks and Deep Locally Connected Networks on Graphs
- 5 CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

Graph Fourier Transform

 Laplcian of the graph is real symmetric positive semidefinite, and thus can be written as

$$L = U \Lambda U^T$$

- Here $U = [u_0...u_{n-1}]$ is the fourier basis and $\Lambda = diag([\lambda_0...\lambda_{n-1}])$ are ordered real non-negative eigen values.
- Graph Fourier Transform of a signal x is $\hat{x} = U^T x$.

Spectral filtering of graph signals

Defining convolution on graphs

$$x *_G y = U((U^T x) \odot (U^T y))$$

• Filtering by g_{θ}

$$y = g_{\theta}(L)x = g_{\theta}(U \wedge U^{T})x = Ug_{\theta}(\Lambda)U^{T}x$$

A non-parametric filter (all parameters free) would be defined as

$$g_{\theta}(\Lambda) = diag(\theta)$$

Polynomial Parametrization

• Problem with non-parametric filters is that not localized (we want something like k-neighborhood) and therefore their learning complexity becomes O(n). This can be overcomed with use of a Polynomial filter

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k \Lambda^k$$

• The advantage we gain here is that nodes which are at a distance greater than K away from the node i, at which the filter is applied, are not affected. Hence we have gained localization.

Recursive formulation for fast filtering

- Still cost to filter is high $O(n^2)$ because of multiplication with U matrix.
- Therefore use recurrence relation of chebyshev polynomial instead.

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K-1} \theta_k T_K(\tilde{\Lambda})$$

Here $\tilde{\Lambda}$ is scaled between [-1,1].

• This allows us to compute $\bar{x_k} = T_K \tilde{L} x$. And Therefore

$$y = g_{\theta}(L)x = [\bar{x_0}...x_{k-1}]\theta$$

• The cost is now O(K|E|)

Learning filters

Trivial to show that backprop calculation can be done efficiently.

Outline Taph Convolutional Networks

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- 4 Spectral Networks and Deep Locally Connected Networks on Graphs
- 5 CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

Graph Coarsening and Pooling

- Require efficient mechanism for pooling. Graph clustering as such is NP-hard and some approximations must be made.
- The paper uses Graclus algorithm for coarsening, and uses an intelligent way of rearranging the nodes [creating a balanced binary tree from the remaining singleton and fake nodes] so that the pooling now becomes equivalent to pooling a regular 1D signal.

Outline Taph Convolutional Networks

- Why GCN
- How to extend convolution to graphs?
- Spatial Approach
- Spectral Approach
 - Basics of Spectral Approach
 - Problem Formulation
 - Graph Laplacian
- 4 Spectral Networks and Deep Locally Connected Networks on Graphs
- 5 CNN on Graphs with Fast Localized Spectral Filtering
 - Learning fast localized Spectral filters
 - Coarsening and Pooling

MNIST results

- Achieves close to classical CNN accuracy.
- Pictures to be added.

M. Niepert, M. Ahmed, and K. Kutzkov, "Learning convolutional neural networks for graphs," *CoRR*, vol. abs/1605.05273, 2016.