What is claimed is:

1	1. A hybrid vehicle that is traction powered by an internal combustion engine and an
2	electric motor powered by a fuel cell system, the hybrid vehicle's drive system
3	comprising:
4	a) the electric motor being combined with a driveshaft that is also driven by
5	the internal combustion engine via a transmission; and
6	b) a computer controller establishing values of power delivered to the
7	electric motor from the fuel cell system to rotate the driveshaft
8	independently or in combination with internal combustion engine,
9	depending on vehicle traction drive demands.
1	2. The hybrid vehicle of claim 1, wherein the fuel cell system delivers both peak and mean
2	power to the electric motor without the need of an electricity storage device
3	(traction battery).
1	3. The hybrid vehicle of claim 1, wherein the internal combustion engine and the fuel cell
2	system are powered by the same fuel.
1	4. The hybrid vehicle of claim 1, wherein the exhaust of fuel cell system is fed back into
2	an intake of the internal combustion engine.
1	5. The hybrid vehicle of claim 1, wherein the fuel cell system includes a Solid Oxide Fuel
2	Cell (SOFC).
1	6. The hybrid vehicle of claim 5, wherein exhaust from the internal combustion engine
2	provides heat to the SOFC.
1	7. The hybrid vehicle of claim 1, wherein the electric motor has a rotor coaxial with the
2	driveshaft and a stator fixed to the vehicle frame.
1	8. A hybrid vehicle having an internal combustion engine and an electric motor powered
2	by a fuel cell system each arranged as a traction power source, the vehicle
3	comprising:

5	driveshaft includes a rotor of the electric motor; and
6	b) a stator of the motor surrounds the rotor and is fixed to the vehicle; and
7	c) a fuel cell system provides peak power to the motor without the need of
8	an electricity storage device; and
9	d) the fuel cell system can rotate the driveshaft independently of the
10	internal combustion engine or in combination with the internal
11	combustion engine.
1	9. The vehicle of claim 8, wherein the internal combustion engine and the fuel cell system
2	are powered by the same fuel.
1	10. The vehicle of claim 8, wherein the fuel cell system includes a SOFC.
1	11. The vehicle of claim 10, wherein exhaust from the fuel cell system is fed to an intake
2	of the internal combustion engine.
1	12. The method of claim 10, wherein exhaust from the internal combustion engine
2	provides heat to the SOFC.
1	13. A method of operating a traction drive of a hybrid vehicle having an internal
2	combustion engine, a transmission, a driveshaft and a driven wheel, the method
3	comprising:
4	a) arranging a rotor of an electric motor in the driveshaft so that a stator of
5	the motor surrounds the driveshaft; and
6	b) powering the electric motor with a fuel cell system unaided by an
7	electricity storage device; and
8	c) using a computer controller to control the electric motor and the internal
9	combustion engine so that the electric motor can rotate the
10	driveshaft alone or with the internal combustion engine, depending
11	on vehicle traction drive demands.

1	14. The method of claim 13, including powering the internal combustion engine and the
2	fuel cell system with the same fuel.
1	15. The method of claim 13, including feeding an exhaust from the fuel cell system to an
2	intake of the internal combustion engine.
1	16. The method of claim 13, wherein fuel cell system uses a Solid Oxide Fuel Cell
2	(SOFC).
1	17. The method of claim 16, wherein and exhaust from internal combustion engine
2	provides heat to the SOFC.
1	18. The method of claim 13, wherein the computer controller, electric motor, driveshaft
2	and fuel cell system are retrofitted into a vehicle already having an internal
3	combustion engine.
1	19. A method of retrofitting a vehicle having an internal combustion engine, transmission
2	driveshaft, driven wheel, and fuel supply, the method comprising:
3	a) adding a fuel cell system powered by the fuel supply; and
4	b) replacing the driveshaft with a retrofit driveshaft that includes an electric
5	motor; and
6	c) powering the electric motor solely with the fuel cell system to rotate the
7	retrofit driveshaft; and
8	d) using a computer controller to control the electric motor so that the
9	electric motor can rotate the driveshaft alone or with the internal
10	combustion engine, depending on vehicle traction drive demands.
1	20. The method of claim 19, wherein the fuel cell system uses a Solid Oxide Fuel Cell
2	(SOFC).
1	21. The method of claim 20, wherein the exhaust from internal combustion engine
2	provides heat to the SOFC.

- 1 22. The method of claim 19, including feeding an exhaust from the fuel cell system to an
- 2 intake of the internal combustion engine.