Models of Set Theory without Choice

Final Presentation

Qi Ji

NUS Department of Mathematics

30th March 2021

Slides

https://m5th.b0ss.net/MA4199/slides-final.pdf

Recap

Axiom of Choice

$$\forall A \; \exists R \, (R \; \text{well-orders} \; A) \; .$$

"Useful" consequences of choice

- comparability of cardinalities
- every vector space has a basis
- product of compact space is compact
- ...

Less "nice" consequences of choice

- Banach-Tarski paradox
- existence of non-Lebesgue measurable set

Constructible Universe

Gödel (1938) produced a model of ZFC from ZF, showing that

$$\operatorname{Con}(\mathsf{ZF}) \to \operatorname{Con}(\mathsf{ZFC}).$$

Fraenkel-Mostowski Model

Working in ZF set theory with atoms, Fraenkel (1922) produced a model where choice fails, the methods were refined by Mostowski (1938). By permuting the atomic members in the universe, they showed that

$$\operatorname{Con}(\mathsf{ZFA}) \to \operatorname{Con}(\mathsf{ZFA}) + \neg \mathsf{Choice}.$$

Cohen Model

Cohen (1963) invented forcing and showed that

$$\operatorname{Con}(\mathsf{ZF}) \Rightarrow \operatorname{Con}(\mathsf{ZF}) + \neg \mathsf{Choice}$$

which completes the independence argument.

In addition, in Cohen second model, there is a countable family of pairs without choice function, showing that

$$Con(ZF) \Rightarrow Con(ZF) + \neg Countable Choice.$$

Solovay Model

Result

Theorem (Solovay). Suppose there is a model of ZFC with an inaccessible cardinal, then there is a model of ZF in which Choice fails, and all subsets of reals are Lebesgue-measurable.

Overview

- Start with ground model M where $M \models \kappa$ is inaccessible.
- Force with Lévy collapse.
- Look at inner-model of all objects definable from countable sequence of ordinals.
- Random real forcing is related to membership in a null set.
- Any countable-ordinal-definable subset of reals $A \subseteq \mathbb{R}$ is witnessed by a countable sequence of ordinals s.
- ullet Perform random-real forcing over M[s] and use the information to produce a Borel set X such that $X\triangle A$ is measure zero.

Lévy Collapse

Definition

Definition. For any $S \subseteq \mathbf{ORD}$, the *Lévy collapsing order* for S is

$$\operatorname{Lv}(S) = \left\{ \begin{aligned} p &: p \text{ is a function} \\ & \wedge |p| < \omega \\ & \wedge \operatorname{dom}(p) \subseteq S \times \omega \\ & \wedge \, \forall (\alpha, n) \in \operatorname{dom}(p) \left[p(\alpha, n) = 0 \vee p(\alpha, n) \in \alpha \right] \end{aligned} \right\}$$

ordered by reverse inclusion.

Properties of Lévy Collapse

- Lv(S) is almost homogeneous, for any p,q, there is an automorphism π on Lv(S) such that $\pi(p)$ is compatible with q.
- $\textbf{2} \quad \text{If} \ p \Vdash \varphi(\check{x}_1,\ldots,\check{x}_n) \text{, then } 1_{\mathbb{P}} \Vdash \varphi(\check{x}_1,\ldots,\check{x}_n); \\ \text{thus, either } 1_{\mathbb{P}} \Vdash \varphi(\check{x}_1,\ldots,\check{x}_n) \text{ or } 1_{\mathbb{P}} \Vdash \neg \varphi(\check{x}_1,\ldots,\check{x}_n).$
- $\textbf{ Suppose that } S = X \cup Y \text{ is a disjoint union, and set } \mathbb{P}_0 = \operatorname{Lv}(X) \\ \text{ and } \mathbb{P}_1 = \operatorname{Lv}(Y). \text{ Then } G \text{ is } \operatorname{Lv}(S) \text{-generic iff } G \text{ is of the form }$

$$G = \{p \cup q : p \in G_0 \land q \in G_1\}$$

where G_0 is \mathbb{P}_0 -generic, $(\mathbb{P}_1)^{M[G_0]}=\mathbb{P}_1$, and G_1 is \mathbb{P}_1 -generic over $M[G_0]$.

Properties of Lévy Collapse

- **1** When κ is regular and countable, $Lv(\kappa)$ has κ -c.c., forcing with it preserves all cardinals $\geq \kappa$.
- § Suppose κ is regular, $\mathrm{Lv}(\kappa)$ has the κ -c.c., and G is $\mathrm{Lv}(\kappa)$ -generic.

For any $s \in M[G]$ with $s : \gamma \to \mathbf{ORD}$ where $\gamma < \kappa$, there is a $\delta < \kappa$ such that $s \in M[G \cap Lv(\delta)]$.

Intuition. Forcing with $\operatorname{Lv}(\kappa)$ "gently" collapses all cardinals strictly between ω and κ , which causes $M[G] \models \kappa = \omega_1$.

"Gentle" in the sense that any $<\kappa$ sequence of ordinals is introduced at some earlier stage of the collapse.

Properties of Lévy Collapse

 $\qquad \qquad \mathbf{0} \ \, \mathsf{Suppose} \,\, M \models |\mathbb{P}| \leq |\alpha| \,\, \mathsf{and} \,\,$

$$1_{\mathbb{P}} \Vdash \exists f(f:\omega \to \alpha \text{ is onto}).$$

Then there is a dense subset $D_{\alpha} \subseteq \operatorname{Lv}(\{\alpha\})$ and an injective embedding $D_{\alpha} \to \mathbb{P}$ whose image is dense.

Intuition. $Lv(\{\kappa\})$ is a way to collapse κ into ω , this is a partial converse. If $\mathbb P$ collapses α and renders it countable, then forcing with $\mathbb P$ is equivalent to forcing with $Lv(\{\alpha\})$.

An important lemma

Characterisation of M[G], it allows us to "enlarge" the ground model to "absorb" any countable sequence of ordinals. More precisely,

Lemma.

Suppose $\kappa>\omega$ is regular and G is $\mathrm{Lv}(\kappa)$ -generic. For any $s:\omega\to \mathbf{ORD},\ s\in M[G],$ there is a $\mathrm{Lv}(\kappa)$ -generic filter H over M[s] such that M[G]=M[s][H].

Proof of important lemma

ullet Split G as follows, where δ is given by property 5,

$$\begin{split} G_0 &= G \cap \operatorname{Lv}(\delta), \\ G_1 &= G \cap \operatorname{Lv}(\{\delta\}), \\ G_2 &= G \cap \operatorname{Lv}(\kappa \smallsetminus (\delta+1)). \end{split}$$

 $\text{ and } s \in M[G_0].$

- By intermediate model property, $M[G_0]=M[s][H_0]$ where $\mathbb{P}\in M[s]$ and H_0 is generic over $\mathbb{P}.$
- Let $\mathbb{Q}=\mathbb{P}\times \mathrm{Lv}(\{\delta\})\in M[s]$, by product forcing, $M[s][H_0][G_1]$ is \mathbb{Q} -generic over M[s]. Now

$$|\mathbb{Q}| \le |\operatorname{Lv}(\delta) \times \operatorname{Lv}(\{\delta\})| = |\operatorname{Lv}(\delta+1)| = |\delta|$$

and since \mathbb{Q} contains a copy of $Lv(\{\delta\})$,

$$1_{\mathbb{Q}}\Vdash\exists f(f:\omega\to\delta \text{ is onto})$$
 .

• Applying property 6, in M[s] forcing with $\mathbb Q$ is equivalent to forcing with $\mathrm{Lv}(\{\delta\})$, so there is a $\mathrm{Lv}(\{\delta\})$ -generic H_1 such that

$$M[s][H_1] = M[s][H_0][G_1].$$

• As $1_{\mathrm{Lv}(\delta+1)} \Vdash \exists f(f:\omega \to \delta \text{ is onto})$, the same argument gives a $\mathrm{Lv}(\delta+1)$ -generic (over M[s]) filter H_2 such that

$$M[s][H_2] = M[s][H_1].$$

• Now we can repeatedly apply property 3 to get

$$\begin{split} M[G] &= M[G_0][G_1][G_2] = M[s][H_0][G_1][G_2] \\ &= M[s][H_1][G_2] = M[s][H_2][G_2] \end{split}$$

and it happens that $H_2 \cup G_2$ is of the form in property 3, and thus generic over M[s].

Random Real Forcing

Definitions

- "Reals" denote 2^{ω} the Cantor space, definitions and results apply to any other standard space (like ω^{ω} and real line), mutatis mutandis.
- For a binary string $s\in 2^{<\omega}$, denote $O(s)=\{f\in 2^\omega: f\supseteq s\}.$ $\{O(s): s\in 2^{<\omega}\}$ is a base for the topology on $2^\omega.$
- For each $s \in 2^{<\omega}$, the Lebesgue measure of its corresponding basic open set is the coin-flip measure,

$$m_L(O(s)) = \frac{1}{2^{|s|}}.$$

- We fix a "nice" enumeration $\langle \mathbf{s}_i : i \in \omega \rangle$.
- Force with $\mathcal{B}^* = \{X : X \text{ is a non-null Borel set}\}$, ordered by inclusion.

Coding Borel Sets

Definition.

Let each $c:\omega\to\omega$ can encodes a Borel set

$$A_c = \begin{cases} \bigcup \left\{O(\mathbf{s}_i) : c(i+1) = 1\right\} & \text{if } c(0) = 0, \\ 2^\omega \setminus \bigcup \left\{O(\mathbf{s}_i) : c(i+1) = 1\right\} & \text{if } c(0) = 1, \\ \bigcap \bigcup \left\{O(\mathbf{s}_i) : c(2^n 3^{i+1}) = 1\right\} & \text{otherwise}. \end{cases}$$

Properties of Coding scheme

- i. If c(0) = 0, A_c is open;
- ii. if c(0) = 1, A_c is closed;
- iii. if c(0) > 1, A_c is G_{δ} .
- iv. Each open, closed and G_{δ} set is indexed by some code c.
- v. The following notions are absolute for M:

$$A_c \quad ; \quad A_c = 0 \quad ; \quad A_c \subseteq A_d \quad ; \quad A_c \subseteq (2^\omega \smallsetminus A_d) \quad ; \quad A_c \cap A_d.$$

vi. The Lebesgue measure is absolute in the sense that for any code $c \in M$,

$$m_L^M({\cal A}_c^M)=m_L({\cal A}_c).$$

Characterizations of \mathcal{B}^* -forcing

First characterization. \mathcal{B}^* -forcing is akin to adding a single real.

Theorem.

Suppose G is $\mathcal{B}^*\text{-generic,}$ then there is a unique real $x\in 2^\omega$ such that for any closed code $c\in M$

$$x \in A_c^{M[G]} \text{ iff } A_c^M \in G,$$

and M[x] = M[G].

 \bullet Work in M[G], there is a unique real $x\in 2^\omega$ specified by

$$\left\{x\right\} = \bigcap \left\{A_c^{M[G]} : c \in M \text{ is a closed code and } A_c^M \in G\right\}.$$

The intersection is nonempty due to G being a filter.

The result is a singleton because for each $n \in \omega$, this set is dense

$$\left\{C\in\mathcal{B}^{*}:C\text{ is closed}\wedge\left(\exists k\in2\right)\left(\forall f\in C\right)\left(f(n)=k\right)\right\}.$$

• For closed code $c \in M$, if $A_c^M \in G$ then $x \in A_c^{M[G]}$ follows from definition of x.

• Conversely suppose $x \in A_c^{M[G]}$, need to show $A_c^M \in G$. We just check that A_c^M meets each closed set in G as the following set is dense,

$$\left\{C\in\mathcal{B}^*: C \text{ is closed} \wedge (C\subseteq A \vee C \cap A=0)\right\}.$$

• Let d be a closed code with $A_d^M \in G$, by definition of x, $x \in A_c^{M[G]} \cap A_d^{M[G]}$ by absoluteness, $x \in A_c^M \cap A_d^M$ so A_c^M meets every closed set in G.

We already defined x from G, to show M[x] = M[G] we recover G from x,

$$G = \left\{ p \in \mathcal{B}^* : \exists c \left(c \in M \text{ is closed code} \land x \in A_c^{M[x]} \land A_c^M \subseteq p \right) \right\}$$

Characterizations of \mathcal{B}^* -forcing

The x that was added is known as random real.

Second characterization. A random real avoids all null sets.

Intuition. Think of Cantor space 2^{ω} as a universal probability space, then a random element would be one that avoids all probability zero (null) sets.

Theorem

A real x is random over M iff $x \not\in A_c$ for any $c \in M$ which encodes a G_δ null set.

Proof (\Rightarrow)

- ullet Let x be random and G be \mathcal{B}^* -generic such that M[x]=M[G].
- Let c be a G_{δ} code for a null set, need $x \notin A_c$.
- Write down the dense set $D = \{C \in \mathcal{B}^* : C \text{ closed } \land C \subseteq (2^\omega \setminus A_c)\}.$
- $G \cap D \neq 0$ so let $d \in M$ be a closed code such that $A_d^M \in G \cap D$.
- \bullet By definition of $x,\,x\in A_d^{M[G]}$ so by absoluteness $x\in A_d$ and $x\notin A_c$

Proof (\Leftarrow)

- Suppose for all G_{δ} codes for null set $c \in M$, $x \notin A_c$.
- \bullet Let G be recovered from x in manner of previous theorem. We show G is $\mathcal{B}^*\text{-generic over }M$
- Let $D \in M$ be a dense set, by definition of G it suffices to show there exists $p \in D$ and a closed code $c \in M$ satisfying $x \in A_c$ and $A_c^M \subseteq p$.
- Let $\mathcal{A} \subseteq \{C: C \text{ closed } \land \exists p \in D (C \subseteq p)\}$ be maximal antichain in \mathcal{B}^* .
- As \mathcal{B}^* algebra satisfies c.c.c., $|\mathcal{A}| \leq \omega$, let $\langle c_n : n \in \omega \rangle$ such that

$$\left\langle A_{c_n}:n\in\omega\right\rangle \text{ enumerates }\mathcal{A}.$$

Proof (\Leftarrow)

• Now define *c*,

$$c(2^n 3^{i+1}) = 1 \text{ iff } O(\mathbf{s}_i) \cap A_{c_n} = 0.$$

 \bullet For each $n \in \omega, \ A_c$ includes all basic open sets that avoids A_{c_n} , so

$$A_c = \bigcap_{n \in \omega} \left(2^\omega \smallsetminus A_{c_n} \right) = 2^\omega \smallsetminus \left(\bigcup_{n \in \omega} A_{c_n} \right).$$

- A_c is null by maximality of \mathcal{A} .
- By hypothesis, $x \notin A_c$, then $x \in A_{c_n}$ for some closed code $c_n \in M$.

Solovay Model

Definitions

- Assume $\kappa \in M$ and $M \models \kappa$ is an inaccessible cardinal.
- A set X is definable from a countable sequence of ordinals iff for some $s:\omega\to \mathbf{ORD}$ and some formula $\varphi(x_1,x_2)$,

$$y \in X \text{ iff } \varphi(s,y).$$

Denote as $X \in \mathbf{COD}$.

Proposition.

The collection of all hereditarily ω -ordinal definable sets

 $\mathbf{HCOD} = \{X : \operatorname{trcl}(X) \subseteq \mathbf{COD}\}\$ is an inner model of ZF.

Key Lemma

This result is built on the previously-established properties of the Lévy collapse.

Lemma.

For each formula $\varphi(v)$, there is a $\tilde{\varphi}(v)$ such that for any $s:\omega\to {\bf ORD}, s\in M[G]$,

$$M[G] \models \varphi(s) \text{ iff } M[s] \models \tilde{\varphi}(s).$$

Proof of Key Lemma

- For any $s \in \mathbf{ORD}^{\omega} \cap M[G]$, by "important lemma", there is a $\mathbb{P} = \mathrm{Lv}(\kappa)$ -generic filter H over M[s] such that M[G] = M[s][H].
- Apply property 2 of Lévy collapse (taking ground model to be M[s]), we have

$$M[s][H] \models \varphi(s) \text{ iff } M[s] \models \ulcorner 1_{\mathbb{P}} \Vdash \varphi(\check{s}) \urcorner.$$

• As forcing is definable in the ground model, take $\tilde{\varphi}$ to be the statement that encapsulates the forcing assertion.

Solovay Theorem

Theorem.

Let G be $\mathrm{Lv}(\kappa)$ -generic, then in M[G], each subset of reals definable from a countable sequence of ordinals is Lebesgue measurable.

In particular, there is a **Solovay model** N, with $M\subseteq N\subseteq M[G]$, containing precisely $\mathbf{HCOD}^{M[G]}$ where every subset of reals is Lebesgue measurable.

Work in M[G].

• Let $A\subseteq 2^\omega$ be a ω -ordinal definable subset of reals, then for some $s:\omega\to \mathbf{ORD}$ and formula $\varphi(v_1,v_2)$,

$$x \in A \text{ iff } \varphi(s, x).$$

 \bullet By Key Lemma, we have $\tilde{\varphi}(v_1,v_2)$ such that

$$x \in A \text{ iff } M[s][x] \models \tilde{\varphi}(s,x).$$

• By 2nd characterization of \mathcal{B}^* -forcing over M[s],

$$\begin{aligned} \{x \in 2^\omega : x \text{ is not random over } M[s]\} \\ &= \bigcup \left\{A_c : c \in M[s] \text{ is a } G_\delta \text{ code for a null set} \right\}. \end{aligned}$$

- RHS is countable union of null sets as κ remains inaccessible in M[s] (due to property 5), and $\omega^\omega \cap M[s]$ is countable.
- **Objective.** Find Borel set X such that $A \triangle X$ only has non-random reals.

- Now for \mathcal{B}^* -forcing argument over M[s], let \mathring{r} denote the canonical name for the random real.
- Let $\mathcal{Y} \subseteq \{C: C \text{ closed} \land (C \Vdash \tilde{\varphi}(\check{s},\mathring{r}) \lor C \Vdash \neg \tilde{\varphi}(\check{s},\mathring{r}))\}$ be maximal antichain in $(\mathcal{B}^*)^{M[s]}$.
- If x is random over M[s], $x \in A$ iff $M[s][x] \models \tilde{\varphi}(s,x)$ iff $p \Vdash \tilde{\varphi}(\check{s},\mathring{r})$ for some $p \in H$ and $(\mathcal{B}^*)^{M[s]}$ -generic H.
- ullet H meets some $q \in \mathcal{Y}$ which by first characterization gives

$$x \in A \text{ iff } x \in \bigcup \left\{A_c: A_c^{M[s]} \in \mathcal{Y} \wedge A_c^{M[s]} \Vdash \tilde{\varphi}(\check{s},\mathring{r})\right\}.$$

• By c.c.c. of \mathcal{B}^* , \mathcal{Y} is countable, so the expression on the right is in fact a Borel set, which witnesses X.

Thank you