ЗАДАЧА

Необходимо найти расстановку контейнеров на платформах.

Критерии оптимизации:

- минимизация суммарного расстояния для перемещения контейнеров на платформы при помощи погрузочной техники (в точной постановке критерий №1);
- максимизация количества контейнеров, помещенных на платформы (в точной постановке критерий №2).

Ограничения:

- расстановка контейнеров должна удовлетворять условия на допустимые значения массы контейнеров и их длину для каждой платформы (данное условие выполняется через множество SC_n);
- контейнер может быть поставлен на платформу при условии, что все контейнеры с более высоким приоритетом расположена на платформах (в точной постановке ограничение №3).;
- партия контейнеров должна быть размещена на платформах целиком или не подлежит отправке вовсе (в точной постановке ограничение №4).

ТОЧНАЯ ПОСТАНОВКА

Пусть:

C — множество контейнеров;

P – множество платформ;

 Π_{P} – перестановка платформ на железнодорожных путях;

 A_{p} , $\forall \ p \in P \ -$ множество вариантов размещения типов контейнеров на платформах;

 $n_{p,a}$, $\forall \ a \in A_p$ — количество контейнеров, которое помещается на платформу в рамках варианта размещения;

 $m_{p,a}$, $\forall \ p \in P$, $\forall \ a \in A_p$ — масса контейнера в рамках расстановки;

B — множество номеров партий;

0 – общее число приоритетов среди всех контейнеров;

 C_i^1 , $i \in \{1, ..., 0\}$ — подмножество контейнеров с приоритетом і;

 C_i^2 , $i \in \{1, ..., B\}$ — подмножество контейнеров партии i;

R — верхняя треугольная матрица $|C| \times |C|$, содержит информацию о том могут ли соседствовать контейнеры на платформе;

$$r_{c_1,c_2} = egin{cases} 1 - & ext{контейнеры } c_1 & ext{и } c_2 & ext{могут соседствовать} \\ 0 - & ext{контейнеры } c_1, c_2 & ext{не могут соседствовать} \end{cases} \qquad orall c_1, c_2 & \in \mathcal{C}, \\ c_1 < c_2 & ext{total} \end{cases}$$

SC — допустимое множество упорядоченных подмножеств контейнеров исходя из матрицы R;

 C_{sc} , $\forall sc \in SC$ — контейнеры, описывающие данное подмножество;

 $n_{SC}=|\mathcal{C}_{SC}|$ — количество контейнеров, которые входят в упорядоченное подмножество, $\min_{\substack{p\in P\\a\in A_p}}n_{p,a}\leq n_{SC}\leq \max_{\substack{p\in P\\a\in A_p}}n_{p,a};$

 $SC_c \subset SC$ — упорядоченное множество подмножеств, где упоминается контейнер c (таких что $c \in C_s$, $\forall sc \in SC_c$).

 $SC'_p \subset SC$, $\forall \ p \in P$ — множество подмножеств, которые удовлетворяют ограничениям на габариты и массы для платформы p;

 $SC_p\subset SC_p'$, таким образом, что $\forall sc\in SC_p, \forall sc'\in SC_p': C_{sc}=C_{sc}'\Rightarrow d_{p,sc}\leq d_{p,sc'}$, при этом $\nexists sc_1,sc_2\in SC_p: C_{sc_1}=C_{sc_2}$

 $d_{p,sc}$, $\forall \ p \in P$, $\forall \ sc \in SC_p$ — расстояние, которое надо проехать технике для перемещения контейнеров из множества sc на платформу p;

 $\forall c \in C \ \cup C_i^1, \forall i \in \{1, ..., O_{c-1}\}$ — множество контейнеров высшего приоритета, чем рассматриваемый.

Неизвестные:

$$x_{p,sc} = egin{cases} 1-&$$
 берем сценарий sc для платформы p $\forall~p\in P$, $0-$ не берем сценарий sc для платформы p $\forall sc\in S\mathcal{C}_p$

$$y_i = \begin{cases} 1 & \forall i \in \{1, \dots, B\} \end{cases}$$

Критерии оптимизации:

1.
$$\sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \cdot d_{p,sc} \rightarrow min$$

2.
$$\sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \cdot n_{p,sc} \rightarrow max \Rightarrow$$

$$-\sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \cdot n_{p,sc} \rightarrow min$$

Целевая функция:

$$\sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \cdot (d_{p,sc} - n_{p,sc}) \longrightarrow min$$

$$\sum_{sc \in SC_p} x_{p,sc} = 1, \qquad \forall p \in P,$$

$$\forall sc \in SC_p$$

$$(1)$$

 $x_{p,sc} \in \{0,1\}$

$$\sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \le 1, \qquad \forall c \in C, \qquad (2)$$

$$\forall sc \text{ такое, что } c \in sc$$

(3)

 $\forall sc$ такое, что $c \in sc$

$$\sum_{c \in \bigcup \ C_i^1} \sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \geq \left| \bigcup C_i^1 \right| \cdot \sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \qquad \forall i \in \{1,\dots,O_{C-1}\},$$

$$\begin{cases} \sum_{c \in C_i^2} \sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \leq 0 + M_1 \cdot y_i & \forall i \in \{1, \dots, B\}, \\ -\sum_{c \in C_i^2} \sum_{p \in P} \sum_{sc \in SC_p} x_{p,sc} \leq -\left|C_i^2\right| + M_2 \cdot (1 - y_i) & \forall sc \text{ такое, что } c \in sc, \\ y_i \in \{0,1\} & \text{большие числа} \end{cases}$$