Tyler Gillette

Spring 2021 MATH 76 Activity 9

SEQUENCES AND SERIES

You will need a calculator to complete this activity. You can use your phone if needed.

1. Sequences

- (a) Consider the sequence defined by $a_1 = 1$ and $a_n = \frac{1}{2} \left(a_{n-1} + \frac{2}{a_{n-1}} \right)$ for $n = 2, 3, \dots$
 - i. Complete the following table.

$$n$$
 a_n
 1 $a_1 = 1$
 2 $a_2 = \dots$
 3 $a_3 = \dots$
 4 $a_4 = \dots$
 5 $a_5 = \dots$
 6 $a_6 = \dots$

- ii. Does the sequence seem to converge? If yes, to what value?
- (b) Consider the Fibonacci sequence defined by $f_1 = 1$, $f_2 = 1$, and $f_{n+1} = f_n + f_{n-1}$ for $n = 2, 3, \ldots$
 - i. Complete the following table.

$$\begin{array}{c|cccc}
n & f_n & \frac{f_{n+1}}{f_n} \\
\hline
1 & 1 & \frac{1}{1} = 1 \\
2 & 1 & \frac{\cdots}{1} = \cdots \\
3 & \cdots & \frac{\cdots}{\cdots} = \cdots \\
4 & \cdots & \frac{\cdots}{\cdots} = \cdots \\
5 & \cdots & \frac{\cdots}{\cdots} = \cdots \\
6 & \cdots & \frac{\cdots}{\cdots} = \cdots
\end{array}$$

ii. Does the sequence $\{f_n\}$ seem to converge or diverge? If yes, to what value? How about the sequence $\left\{\frac{f_{n+1}}{f_n}\right\}$?

(c) In addition to the techniques of computing limits that you have previously learned, there are results like the **Squeeze theorem** that are useful to find limits.

Compute the limit (if it exists) of the following sequences as n approaches ∞ .

i.
$$a_n = \frac{(-1)^n}{2^n}$$

ii.
$$a_n = \frac{5^n}{5^n + 1}$$

iii.
$$a_n = \left(1 + \frac{1}{n}\right)^n$$

iv.
$$a_n = \frac{\ln n}{n}$$

v.
$$a_n = \sqrt{n+1} - \sqrt{n}$$

vi.
$$a_n = \frac{\sin n}{n^2}$$

2. Series

Understanding the infinite series "process"

Start the "process" with a sequence $\{x_k\} = \{x_1, x_2, x_3, \ldots\}$, and compute the partial sums

$$S_1 = x_1$$

$$S_2 = x_1 + x_2$$

$$\vdots = \vdots$$

$$S_n = x_1 + x_2 + \ldots + x_n = \sum_{k=1}^{n} x_k$$

The numbers S_1, S_2, \ldots, S_n form a sequence and the limit of that sequence, $\lim_{n \to \infty} S_n = \sum_{k=1}^{\infty} x_k$,

is the infinite series $\sum_{k=1}^{\infty} x_k$. If $\lim_{n\to\infty} S_n$ exists and is a real number then the infinite series

$$\sum_{k=1}^{\infty} x_k$$
 converges. Otherwise it diverges.

Now finding the limit $\lim_{n\to\infty} S_n$ is not trivial if S_n is cannot be expressed as a function of n. There are a few cases when this is possible. For example

•
$$\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$$
 when $r \neq 0, 1$

• when the sum telescopes
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

When it is not trivial to express S_n as a function of n, which is often the case, **a convergence** test will be used to determine if the infinite series $\sum_{k=1}^{\infty} x_k$ converges or diverges.

- (a) Consider the geometric series $\sum_{k=M}^{\infty} c \cdot r^k$ where M is a positive integer, and c is a nonzero constant. The goal of this problem is to come up with a set of conditions that will help decide whether the series $\sum_{k=M}^{\infty} c \cdot r^k$ converges or diverges.
 - i. Let

$$S_n = \sum_{k=M}^n c \cdot r^k$$
$$= c \cdot r^M + c \cdot r^{M+1} + \dots + c \cdot r^n.$$

Write rS_n as a sum

$$rS_n =$$

ii. Write $S_n - rS_n$ as a sum

$$S_n - rS_n =$$

- iii. Using your result in part ii., what is a formula for S_n ?
- iv. Next we want to evaluate $\lim_{n\to\infty} S_n$. Compute
 - A. $\lim_{n\to\infty} r^{n+1}$ when |r|<1. Choose a value of r that satisfies the condition |r|<1 and test the limit
 - B. $\lim_{n\to\infty} r^{n+1}$ when |r|>1. Choose a value of r that satisfies the condition |r|>1 and test the limit. Note that if r=1, the formula found in part iii. does not hold and if r=-1 the limit $\lim_{n\to\infty} r^{n+1}$ does not exist.
 - C. $\lim_{n\to\infty} S_n$

- v. Write the conditions under which the infinite series $\sum_{k=M}^{\infty} c \cdot r^k$ converges. To what limit does it converge to?
- vi. Write the conditions under which the infinite series $\sum_{k=M}^{\infty} c \cdot r^k$ diverges.

