MINORS Lab 2A: Logistic Regression

Varun Kamath

2019110023

13/10/2022

1. Upload csv files and import libraries

2. Counted number of NaN values present for each attribute, and excluded attributes which have more than 100 NaN values or unimportant.

```
[7] df1 = df1.drop(columns=["hospital_number", "nasogastric_tube", "nasogastric_reflux", "nasogastric_reflux_ph", "rectal_exam_feces", "abdomen", "abdomo_appearance", "abdomo_proteing to the control of the control of
df1 = df1.drop(columns=["lesion_1", "lesion_2", "lesion_3", "cp_data"])
 df1.isnull().sum()

    surgery

                                                                                                                                                               0
                                    hospital_number
                                   rectal_temp
                                   pulse
                                    respiratory rate
                                                                                                                                                            58
                                   temp_of_extremities
peripheral pulse
                                                                                                                                                           69
                                   mucous_membrane
capillary_refill_time
                                                                                                                                                            32
                                   pain
peristalsis
                                                                                                                                                           44
                                   abdominal_distention
nasogastric_tube
nasogastric_reflux
                                                                                                                                                        104
                                  nasogastric_reflux_ph
rectal_exam_feces
abdomen
                                                                                                                                                        246
                                                                                                                                                        102
                                                                                                                                                        118
                                    packed_cell_volume
                                                                                                                                                            29
33
                                    total protein
                                   abdomo_appearance
abdomo protein
                                                                                                                                                        165
                                                                                                                                                        198
                                   outcome
surgical_lesion
                                    lesion_1
lesion_2
                                   lesion_3
                                    cp data
                                   dtype: int64
```

3. Replaced the string values by their equivalent integer numbers

```
[10] df1['age'].replace(['young', 'adult'], [1, 2], inplace=True)
df1['surgery'].replace(['yes', 'no'], [1, 2], inplace=True)
df1['temp_of_extremities'].replace(['normal', 'warm', 'cool', 'cold'], [1, 2, 3, 4], inplace=True)
df1['mucous_membrane'].replace(['normal_pink', 'bright_pink', 'pale_pink', 'pale_cyanotic', 'bright_red', 'dark_cyanotic'], [1, 2, 3, 4, 5, 6], inplace=True)
df1['apin'].replace(['less_3_sec', 'more_3_sec', 3], [1, 2, 2], inplace=True)
df1['pain'].replace(['alert', 'depressed', 'mild_pain', 'severe_pain', 'extreme_pain'], [1, 2, 3, 4, 5], inplace=True)
df1['pain'].replace(['hyermottie', 'normal', 'hypomottle', 'absent'], [1, 2, 3, 4], inplace=True)
df1['abdominal_distention'].replace(['none', 'slight', 'moderate', 'severe'], [1, 2, 3, 4], inplace=True)
df1['outcome'].replace(['lived', 'died', 'euthanized'], [1, 2, 3], inplace=True)
df1['surgical_lesion'].replace(['yes', 'no'], [1, 2], inplace=True)
```

4. Replace NaN by average values of respective column data

```
df1['rectal_temp'] = df1['rectal_temp'].fillna(df1['rectal_temp'].mean())
    df1['pulse'] = df1['pulse'].fillna(round(df1['pulse'].mean()))
    df1['respiratory_rate'] = df1['respiratory_rate'].fillna(round(df1['respiratory_rate'].mean()))
    df1['temp_of_extremities'] = df1['temp_of_extremities'].fillna(round(df1['remp_of_extremities'].mean()))
    df1['mucous_membrane'] = df1['mucous_membrane'].fillna(round(df1['puripheral_pulse'].mean()))
    df1['apillary_refill_time'] = df1['apillary_refill_time'].fillna(1)
    df1['pain'] = df1['pain'].fillna(round(df1['pain'].mean()))
    df1['peristalsis'] = df1['peristalsis'].fillna(round(df1['peristalsis'].mean()))
    df1['abdominal_distention'] = df1['abdominal_distention'].fillna(round(df1['packed_cell_volume'].mean()))
    df1['packed_cell_volume'] = df1['packed_cell_volume'].fillna(round(df1['total_protein'].mean()))
```

5. Choose which data attributes you want as independent variables, segregate data into 80 percent train and 20 percent test data. Plot heat map of data frame.

6. Evaluate the accuracy of model

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='ovr', max_iter=10000)
clf = clf.fit(x_train, y_train)
clf.predict(x_test)
clf.score(x_test, y_test)

0.633333333333333333
```