7. Symmetric Matrices and Quadratic Forms

- 1) Diagonalization of Symmetric Matrices
- 2) Quadratic Forms
- 3) Singular Value Decomposition
- 4) Principal Component Analysis

1	Diagonalization	o f	Cymmatria	Motricoo
١.	Diagonalization	ΟI	Symmetric	Mainces

- 1) Symmetric matrix
- (1) Definition: Symmetric matrix

A matrix A is symmetric if $A=A^{\ T}$

(2) Theorem

If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal

(3) Definition: Orthogonally diagonalizable

An $n \times n$ matrix A is said to be orthogonally diagonalizable if there are and orthogonal matrix P (with $P^{-1} = P^T$) and a diagonal matrix D such that

$$A = PDP^{T} = PDP^{-1}$$

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is symmetric	matrix

2) Spectral Decomposition

(4) Theorem

(1) The Spectral Theorem for Symmetric Matrices

An $n \times n$ symmetric matrix A has the following properties

- 1 A has n real eigenvalues, counting multiplicities.
- ② The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- ③ The eigenspaces are mutually orthogonal, in the sense that eigenvectors corrsponding to different eigenvalues are orthogonal.
- 4 A is orthogonally diagonalizable

(2) Spectral Decomposition

Suppose $A=PDP^{-1}$, where the columns of P are orthonormal eigenvectors $\textbf{\textit{u}}_{\textbf{1}}$, \cdots , $\textbf{\textit{u}}_{\textbf{n}}$ of A and the corresponding eigenvalues λ_1 , \cdots , λ_n are in the diagonal matrix D

$$A = PDP^{T} = \begin{bmatrix} \mathbf{u_1} & \cdots & \mathbf{u_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & & & 0 \\ & \cdots & \\ 0 & & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{T} \\ \cdots \\ \mathbf{u}_n^{T} \end{bmatrix}$$

: Spectral decomposition of A

Each term in 1 is an $n \times n$ matrix of rank 1

Each matrix $u_j u_j^T$ is a projection matrix in the sense that for each x in \mathbb{R}^n , the vector $(u_j u_j^T)x$ is the orthogonal projection of x onto the subspace spanned by u_j

(Theorem : If $\{ {\pmb u}_{\pmb 1}, \ \cdots, \ {\pmb u}_{\pmb p} \}$ is an orthonormal basis for a subspace W of ${\bf R}^{\bf n}$, then

$$proj_{\ W} \pmb{y} = \ U U^T \pmb{y}$$
 , where $\ U = \left[\ \pmb{u_1} \ \pmb{u_2} \ \cdots \ \pmb{u_p} \ \right]$)

ex)
$$A = \begin{bmatrix} 72\\24 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 80\\03 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{2}}\\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

2. Quadratic Form

- 1) Quadratic Form
- (1) Definition: Quadratic Form

A quadratic form on R^n is a function Q defined on R^n whose value at a vector \boldsymbol{x} in R^n can be computed by an expression of the form $Q(\boldsymbol{x}) = \boldsymbol{x}^T A \boldsymbol{x}$, where A is an $n \times n$ symmetric matrix.

The matrix \boldsymbol{A} is called the matrix of the quadratic form

ex)
$$Q(\boldsymbol{x}) = \boldsymbol{x}^T I \boldsymbol{x} = \parallel \boldsymbol{x} \parallel^2$$

ex)
$$\pmb{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $A = \begin{bmatrix} 4 \ 0 \\ 0 \ 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 \ -2 \\ -2 \ 7 \end{bmatrix}$

ex)
$$Q(x) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$$

(2) Change of Variable in a Quadratic Form

If \boldsymbol{x} represents a variable vector in \mathbb{R}^n , then a change of variable is an equation of the form

$$\boldsymbol{x} = P\boldsymbol{y}$$
, or $\boldsymbol{y} = P^{-1}\boldsymbol{x}$ ··· ①

where P is an invertible matrix and ${\pmb y}$ is a new variable vector in ${\mathbb R}^{\rm n}$ ${\pmb y}$: the coordinate vector of ${\pmb x}$ relative to the basis of ${\mathbb R}^{\rm n}$ determined by the columns of P

$$\boldsymbol{x}^T A \boldsymbol{x} = (P \boldsymbol{y})^T A (P \boldsymbol{y}) = \boldsymbol{y}^T P^T A P \boldsymbol{y} = \boldsymbol{y}^T (P^T A P) \boldsymbol{y} \cdots \boldsymbol{z}$$

If the change of variable 1 is made in a quadratic form $\boldsymbol{x}^T A \boldsymbol{x}$, then,

and the new matrix of the quadratic form is P^TAP

Since A is symmetric, there is an orthogonal matrix P such that P^TAP is a diagonal matrix D, and the quadratic form in ② becomes $\mathbf{y}^TD\mathbf{y}$

(3) Theorem: Principal Axes Theorem

Let A be an $n \times n$ symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into the quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross-product term.

The columns of P are called the principal axes of the quadratic form $\boldsymbol{x}^T A \boldsymbol{x}$

The vector y is the coordinate vector of x relative to the orthonormal basis of R^n given by these principal axes.

ex)
$$Q(\mathbf{x}) = x_1^2 - 8x_1x_2 - 5x_2^2$$

2) Classifying Quadratic Forms

(1) Classifying Quadratic Forms

When A is an $n \times n$ matrix, the quadratic form $Q(\pmb{x}) = \pmb{x}^T A \pmb{x}$ is a real-valued function with domain \mathbb{R}^n

A quadratic form $\,Q\,$ is

- ① positive definite if $Q(\boldsymbol{x}) > 0$ for all $\boldsymbol{x} \neq 0$
- ② positive semidefinite if $Q(\boldsymbol{x}) \geq 0$ for all $\boldsymbol{x} \neq 0$
- 3 negative definite if $Q(\boldsymbol{x}) < 0$ for all $\boldsymbol{x} \neq 0$
- 4 negative semidefinite if $Q(x) \leq 0$ for all $x \neq 0$
- indefinite if Q(x) assumes both positive and negative values

(2) Theorem: Quadratic Forms and Eigenvalues

Let A be an $n \times n$ symmetric matrix. Then a quadratic form ${\boldsymbol x}^T A {\boldsymbol x}$ is

- \bigcirc positive definite if and only if the eigenvalues of A are all positive
- @ indefinite if and only if A has both positive and negative eigenvalues

ex)
$$Q(\mathbf{x}) = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 4x_2x_3$$

3	Singular	مبيادير	decom	nocition
o.	Sirigulai	value	aecom	position

- 1) Singular Value
- (1) Purpose of singular value

(2) Singular value

Let A be $m \times n$ matrix, the singular values of A are the square root of the eigenvalues of A TA , denoted by $\sigma_1, \ldots, \sigma_n$, and they are arranged in decreasing order.

 $\sigma_i = \sqrt{\lambda_i} \ \ \text{for} \ i=1,\dots,n \, ,$ where λ_i is the $i\,th$ eigenvalue of A^TA

(3) Theorem

Suppose $\{\pmb{v_1},\dots,\pmb{v_n}\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A^TA , arranged so that the corresponding eigenvalues of A^TA satisfy $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$, and suppose A has r nonzero singular values. Then $\{A\pmb{v_1},\dots,A\pmb{v_n}\}$ is an orthogonal basis for ColA, and rankA=r

2) Singular Value Decomposition

(1) Singular Value Decomposition

Theorem: Singular Value Decomposition

Let A be $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ such that

$$\Sigma = \begin{bmatrix} D0 \\ 0 \ 0 \end{bmatrix}, \quad \text{where} \quad D = \begin{bmatrix} \lambda_1 & 0 \\ \dots \\ 0 & \lambda_r \end{bmatrix}. \quad \text{(Diagonal entries of } D \quad \text{are the first } r \quad \text{singular values of } A \,,$$

 $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$, and there exists $m \times m$ orthogonal matrix U and $n \times n$ orthogonal matrix V such that

$$A = U \sum V^T$$

U and V are not uniquely determined by A , but diagonal entries of Σ are necessarily the singular values of A

The columns of ${\it U}$ are called left singular vectors of ${\it A}$, the columns of ${\it V}$ are called right singular vectors of ${\it A}$

example

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$$

4. Principal Component Analysis

- 1) Basic concepts of statistics
- (1) 용어정리

data :
$$(x_1,y_1)$$
 , (x_2,y_2) , \cdots , (x_n,y_n)

1 mean of data

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

2 Sample Variance of data

$$Var(X) = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_i - \overline{X}\right)^2, \quad Var(Y) = \frac{1}{n-1} \sum_{i=1}^{n} \left(y_i - \overline{Y}\right)^2$$

3 Covariance of data

$$Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})$$

(2) Covariance matrix

variable :
$$X_1$$
 , X_2 , \cdots , X_p

$$\text{Covariance matrix of } X_1 \,,\; X_2 \,,\; \cdots \,,\; X_p \,: \, \begin{bmatrix} \mathit{Var}\big(X_1\big) & \mathit{Cov}\big(X_1 \,,\, X_2\big) \cdots \, \mathit{Cov}\big(X_1 \,,\, X_p\big) \\ \mathit{Cov}\big(X_2 \,,\, X_1\big) & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots \\ \mathit{Cov}\big(X_p \,,\, X_1\big) & \cdots & \cdots & \mathit{Var}\big(X_p\big) \end{bmatrix}$$

2) Principal Component Analysis

(1) Principal Component Analysis

$$\mathrm{data} \, : \, \left(x_{11}, \, x_{12}, \, \cdots, \, x_{1p}\right), \, \left(x_{21}, \, x_{22}, \, \cdots, \, x_{2p}\right), \, \cdots, \, \left(x_{n1}, \, x_{n2}, \, \cdots, \, x_{np}\right)$$

$$X = \begin{bmatrix} x_{11} \ x_{12} \cdots x_{1p} \\ x_{21} \ x_{22} \cdots x_{2p} \\ \vdots \\ x_{n1} \ x_{n2} \cdots x_{np} \end{bmatrix}$$

① scaling

② Covariance matrix

3 Spectral decomposition

4	New axis
(5)	meaning of eigenvalue and eigenvector
6	Dimensionality reduction