DATA SCIENCE Stochastic Methods

January 24, 2023

Solutions

Problem 1. [10] Let $X \sim Exp(\lambda)$ and define $Y = \min\{X, 3\}$ and $Z = \max\{Y, 1\}$.

- (i) Compute P[Z = 1];
- (ii) Compute $P[Z \le z]$ and $P[Z^2 \le z]$ for any $z \in \mathbb{R}$;
- (iii) Compute E[Z] and Var[Z].

(i)
$$P[2=1] = P[X \le 1] = 1 - e^{-1}$$

$$= 3 + \left[\frac{e}{-\lambda}\right] = 3 + \frac{e^{-\lambda} - e^{-\lambda}}{3}$$

$$= 1 + 2\left[\frac{e^{-\lambda}}{\lambda}\right] = 3 + \frac{e^{-\lambda} - e^{-\lambda}}{3} = 1 + 2\left[\frac{e^{-\lambda} - e^{-\lambda}}{\lambda}\right] = 1 + 2\left[\frac{e^{-\lambda} - e^{-\lambda}}{\lambda$$

Problem 2. [10] Let $(Y_i)_{1 \le i \le n}$ be a family of i.i.d. Standard Normal random variables and define $Z_i = Y_i^2$.

- (i) Compute the expectation of Z_1 ;
- (ii) Compute the mgf of $Z_1 + Z_2$;
- (iii) Defined $\overline{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$, prove that

$$P(\overline{Z}_n - 1 \le -\varepsilon) \le e^{-n\frac{\varepsilon^2}{8}},$$

for $0 < \varepsilon < 1$.

(i)
$$E[Zi] = I[LII]$$

(ii) $E[e^{uZi}] = E[e^{uZi}].E[e^{uZi}] = \left(\frac{1}{\sqrt{1-2u}}\right)^2$

$$= \frac{1}{1-2u}$$

Problem 3. [12] Let $(X_n)_{n\geq 0}$ be a Markov chain on $\mathbb{N}\setminus\{0\}=\{1,2,3,\ldots\}$ with transition probabilities given by

$$p_{i,1} = \frac{i}{i+1}$$
, $p_{i,i+1} = \frac{1}{i+1}$, $i \ge 1$

- (i) Is the Markov chain irreducible?
- (ii) Is the Markov chain aperiodic?
- (iii) Compute $E[X_3|X_0 = 1]$;
- (iv) Determine the invariant distribution.

(i) YES:
$$P_{m,1} = \frac{m}{n+1} > 0$$
 and $P_{1,n} > \frac{1}{2} \cdot \frac{1}{3} \cdot \dots \cdot \frac{1}{n} > 0$

(iii)
$$P[X_3=4|X_0=1]=\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{1}{4}\cdot\frac{1}{24}$$
, $P[X_3=3|X_0=1]=\frac{1}{12}$
 $P[X_3=4|X_0=1]=\frac{1}{24}$, $P[X_3=1|X_0=1]=\frac{1}{24}$

$$E[X_3|X_0=i] = \frac{14}{24} + \frac{14}{24} + \frac{6}{24} + \frac{4}{24} = \frac{19}{12}$$

(iv)
$$\int_{3}^{\pi_{3}} \frac{1}{3} \frac{1}{3} = \frac{1}{2} \frac{1}{3} \frac{1}{3} = \frac{1}{3!} \frac{1}{3!} \frac{1}{3!} = \frac{1}{3!} \frac{1}{3!} \frac{1}{3!} + \frac{1}{3!} \frac{1}{3!} + \frac{1}{3!} \frac{1}{3!} + \dots = 1$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \frac{1}{3!} + \frac{1}{3!} \frac{1}{1} \frac{1}{3!} + \dots = 1$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \dots = 1$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \dots = 1$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \dots = 1$$

$$\frac{1}{1} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \frac{1}{3!} \frac{1}{1} \dots = 1$$