Electrónica Digital 1 Sistema numeración

Ferney Alberto Beltrán Molina

febrero 2020

Contacto

Nombre: Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

Email: fabeltranm@unal.edu.co

oficina: Centro de Investigación e Innovación

Contenido

Recordando

Sistema de Numeración

Índice

Recordando

Sistema de Numeración

Roadmap

Deep Digital Design Experience Fundamentals of Boolean Logic **Synchronous Circuits Finite State Machines Timing & Clocking** Controller Design **Arithmetic Units Bus Design Encoding, Framing** Testing, Debugging Hardware Architecture HDL, Design Flow (CAD)

Roadmap

Ejercicio cerradura con clave

Diseñar un cerradura electrónica que abra cuando ingresas de manera secuencial un número de 3 dígitos.

- 1. Si hay un error en cualquier dígito, se debe bloquear la puerta.
- 2. Dos entradas: reset y bus de datos de los números.
- 3. Una salida: cerradura abierta/cerrada.
- 4. Memoria: almacenar la clave, para ser comparada.

Índice

Recordando

Sistema de Numeración

Tipos de sistema de numeración

- 1. Sistema Hexadecimal
- 2. Sistema Decimal
- 3. Sistema Octal
- 4. Sistema binario

Ejm: 123 en base 10

	1	2	3			
(pesos)	10^{2}	10^1	10^{0}			
123 ₁₀ =	$1 * 10^2 + 2 * 10^1 + 3 * 10^0$					
123 ₁₀ =	78 ₁₆					
123 ₁₀ =	173_{8}					
123 ₁₀ =		111101_2				

¿Cuantos símbolos tiene cada sistema ? ¿cómo es la conversión de un sistema de numeración a otro?

Cambios de base

1. 10110101_2 a Sistema Decimal

	1	0	1	1	0	1	(
(pesos)	$1 * 2^7$	$0 * 2^{6}$	$1 * 2^5$	$1 * 2^4$	$0 * 2^3$	$1 * 2^2$	(
$10110101_{10} =$	181 ₁₀						

2. 10001101_2 a Sistema Hexadecimal

	1000	1101			
$10001101_2 =$	8 ₁₆	D ₁₆			
$8D_{16} =$	$8_{16} * 16 + D_{16} * 1$				
	$= 128_{10} + 13_{10} = 141_{10}$				

3. 12_{10} a Sistema binario

Sistema binario puro

- 1. Números que sólo pueden ser positivos.
- 2. Para n bits, representar un total de 2^n valores distintos.
- 3. La representación va desde el número 0 hasta el número $(2^n 1)$.

Binario	Base10	Base16	Binario	Base10	Base16
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	В
0100	4	4	1100	12	C
0101	5	5	1101	13	D
0110	6	6	1110	14	E
0111	7	7	1111	15	F

n = 4 bits. 16 combinaciones diferentes desde el 0 al 15

 $=2^4-1$

Sistema binario puro, Ejercicio

Cuantos bit se necesitas para representar los números:

- 1. 19
- 2. 37
- 3. 127
- 4. 256

Binario a Hexadecimal, Hexadecimal a Binario

- ▶ En el sistema base 16, cada dígito se representar con 4 bits
- ▶ En el sistema base 2, se pueden agrupar 4 bits para representar un dígito en base 16

Hexadecimal	Α	1	С	5
Binario	1010	0001	1100	0101

- ightharpoonup convertir el número 10101011111001_2 a base 16
- convertir el número 1D5A416 a base 2

Suma y resta de números binarios

Suma:

$$\bullet$$
 0 + 0 = 0

$$0 + 1 = 1$$

$$1 + 0 = 1$$

•
$$1 + 1 = 10$$
 llevo 1

Resta:

•
$$0 - 1 = 1 1 presta 1$$

Ejercicios

Complemento de un número

- El complemento a 9 de 546700 es 453299.
 999999 546700 = 453299
- ► El complemento a 10 de 012398 es 987602. 100000 - 012398 = 987602
- el complemento a 1 de 1011000 es 0100111 1111111 - 1011000 = 0100111
- el complemento a 2 de 1011000 es 0101000 10000000 - 1011000 = 0100111

Ejercicios usando complementos

PREGUNTAS