

DEMO MANUAL DC2911A

LT4293, LT4321 IEEE 802.3bt and LTPoE++ Interoperable Powered Device

DESCRIPTION

Demonstration circuit 2911A is an IEEE 802.3bt compliant and LTPoE++ interoperable Power over Ethernet (PoE) Powered Device (PD). It features the LT®4293 PD interface controller and the LT4321 PoE ideal diode bridge controller.

The LT4293 provides LTPoE++, IEEE 802.3af (PoE, Type 1), IEEE 802.3at (PoE+, Type 2), and IEEE 802.3bt (PoE++, Type 3 and 4) compliant interfacing. It utilizes an external, low $R_{DS(0N)}$ (30m Ω typical) N-channel MOSFET for the Hot Swap function to improve efficiency.

Power good (PWRGD) output indicates the PD controller is ready to provide power to the downstream load. This signal can be used to enable an isolated power supply. The $\overline{12P}$ output indicates the available power from the Power Sourcing Equipment (PSE). This signal

communicates allocated power from either LTPoE++ or IEEE 802.3bt-compliant PSEs to the downstream PD circuitry.

The LT4321 controls eight low $R_{DS(0N)}$ (57m Ω typical) N-channel MOSFETs to further improve end-to-end power delivery efficiency and ease thermal design. This solution replaces the eight diodes typically found in a passive PoE rectifier bridge.

The DC2911A accepts up to 90W of delivered power from a PSE via the RJ45 connector (J1) or a local 48V DC power supply using the auxiliary supply input. When both supplies are connected, the auxiliary supply input has priority over the PoE input.

Design files for this circuit board are available.

All registered trademarks and trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

PARAMETER	CONDITIONS	VALUE
Port Voltage (V _{PORT})	At RJ45	37V to 57V
Auxiliary Voltage	From AUX+ to AUX- Terminals	37V to 57V
Efficiency	V _{PORT} = 48V, I _{OUT} = 1.5A	99.2% (Typical)
T2P Switching Frequency	Connected to an IEEE 802.3bt or LTPoE++ PSE That Allocates at Least 38.7W	840Hz (Typical)

BOARD PHOTOS

Top Side

Bottom Side

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Thermal Pictures (Conditions: $V_{PORT} = 41.2V$, $V_{OUT} = 40.8V$, $I_{OUT} = 1.72A$)

Figure 2. Efficiency (End-to-End)

QUICK START PROCEDURE

POWER OVER ETHERNET (PoE) INPUT

- 1. Disconnect auxiliary supply if it is connected to AUX+ and AUX- inputs of the DC2911A.
- 2. Refer to Figure 3 or Figure 4 to evaluate the DC2911A with a DC/DC converter. If a resistive or an active load is used to evaluate the DC2911A, use the setup diagram as shown in Figure 5.
- Default class shunt positions are at JP1 and JP2 on the DC2911A board. In this configuration, any PSE with enough power will turn on this PD. Choose a power level from Table 1 and select the corresponding shunt positions.
- 4. Connect the output of the LTPoE++ or IEEE 802.3bt compliant PSE to the RJ45 connector (J1) of the DC2911A using a CAT5e or CAT6 Ethernet cable. (See Note.)
- After connection has been established, verify that the LED (D3) is lit. This indicates the PSE has successfully detected and powered the PD.
- 6. Verify T2P response with a digital multimeter or an oscilloscope. The T2P response to the type of PSE connected to the DC2911A is provided in Table 2.

Rev. 0

Figure 3. Setup Diagram for DC2911A with a DC/DC Converter, a Microprocessor, and an IEEE 802.3bt PSE

Figure 4. Setup Diagram for DC2911A with a DC/DC Converter, a Microprocessor, and an LTPoE++ PSE

Figure 5. Setup Diagram for DC2911A with a Resistive or an Active Load. Do Not Capacitively Load LAB_TEST_VOUT-

Table 1. Single-Signature Classification, Power Levels and Jumper Selection

	PD REQUESTED POW	ER (AT THE PD INPUT)			
PD REQUESTED CLASS	IEEE 802.3 LTPoE++		R _{CLASS} JUMPERS		
0	13	W	JP1	JP2	
1	3.8	4W	JP3	JP4	
2	6.4	9W	JP5	JP6	
3	13	W	JP7	JP8	
4	25.	5W	JP9	JP10	
5	40W	38.7W	JP11	JP12	
6	51W 52.7W		JP13	JP14	
7	62W	70W	JP15	JP16	
8	71.3W	90W	JP17	JP18	

Table 2. T2P Response vs PSE Type

PSE TYPE	T2P RESPONSE
1 (PoE, 13W)	Logic High
2 (PoE+, 25.5W)	Logic Low
3 (PoE++, 51W)	50% Logic Low*
4 (PoE++, 71.3W)	25% Logic Low*
LTPoE++, 90W	75% Logic Low*

 $^{^{\}star}$ T2P Frequency is 840Hz typical for Type 3, Type 4 and LTPoE++ PSEs

AUXILIARY SUPPLY INPUT

- 1. Place and connect test equipment (voltmeter, ammeter, oscilloscope and electronic load) as shown in Figure 6.
- 2. Turn down the electronic load to a minimum value and turn off the electronic load.
- 3. Connect the output of the auxiliary supply to the DC2911A as shown in Figure 6. Turn on the auxiliary

- supply and set its current limit to 2A. Then increase its output voltage to 48V.
- 4. Once the LED (D3) on the DC2911A is lit, check the output voltage using a voltmeter. Output voltage should be within 37V to 57V.
- 5. Verify T2P response with an oscilloscope as shown in Figure 6. The T2P response during auxiliary power operation is provided in Table 3.

Figure 6. Setup Diagram for Auxiliary Supply Input

Table 3. T2P Response During Auxiliary Power Operation

PD CLASS	T2P RESPONSE
0 – 4	Logic Low
5 – 8	75% Logic Low*

^{*} T2P Frequency is 840Hz typical

Table 4. Interoperability (T2P Response*, PSE Allocated Power, Number of Class/Mark Events)

	PSE TYPE, CLASS (POWER)											
	IEEE 802.3 IEEE 802.3 IEEE 802.3 TYPE 1 TYPE 2 TYPE 3				IEEE 802.3 TYPE 4		LTPoE++			AUXILIARY		
PD REQUESTED CLASS (PD REQUESTED POWER)	CLASS 3 (13W)	CLASS 4 (25.5W)	CLASS 4 (25.5W)	CLASS 5 (40W)	CLASS 6 (51W)	CLASS 7 (62W)	CLASS 8 (71.3W)	(38.7W)	(52.7W)	(70W)	(90W)	POWER SOURCE**
CLASS 0-3 (Up to 13W)	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Hi-Z Up to 13W 1-Event	Low-Z Aux. Power N/A
CLASS 4 (25.5W)	Hi-Z 13W 1-Event	Low-Z 25.5W 2-Event	Low-Z 25.5W 3-Event	Low-Z 25.5W 3-Event	Low-Z 25.5W 3-Event	Low-Z 25.5W 3-Event	Low-Z 25.5W 3-Event	Low-Z 25.5W 2-Event	Low-Z 25.5W 2-Event	Low-Z 25.5W 2-Event	Low-Z 25.5W 2-Event	Low-Z Aux. Power N/A
CLASS 5 (40W)	Hi-Z 13W 1-Event	Low-Z 25.5W 2-Event	Low-Z 25.5W 3-Event	50% 40W 4-Event	50% 40W 4-Event	50% 40W 4-Event	50% 40W 4-Event	75% 38.7W 3-Event	75% 38.7W 3-Event	75% 38.7W 3-Event	75% 38.7W 3-Event	75% Aux. Power N/A
CLASS 6 (51W)	Hi-Z 13W 1-Event	Low-Z 25.5W 2-Event	Low-Z 25.5W 3-Event	Low-Z 25.5W 3-Event	50% 51W 4-Event	50% 51W 4-Event	50% 51W 4-Event	DENIED	75% 52.7W 3-Event	75% 52.7W 3-Event	75% 52.7W 3-Event	75% Aux. Power N/A
CLASS 7 (62W)	Hi-Z 13W 1-Event	Low-Z 25.5W 2-Event	Low-Z 25.5W 3-Event	Low-Z 25.5W 3-Event	50% 51W 4-Event	25% 62W 5-Event	25% 62W 5-Event	DENIED	DENIED	75% 70W 3-Event	75% 70W 3-Event	75% Aux. Power N/A
CLASS 8 (71.3W)	Hi-Z 13W 1-Event	Low-Z 25.5W 2-Event	Low-Z 25.5W 3-Event	Low-Z 25.5W 3-Event	50% 51W 4-Event	50% 51W 4-Event	25% 71.3W 5-Event	DENIED	DENIED	DENIED	75% 90W 3-Event	75% Aux. Power N/A

TZP Response* → 75%
PSE Allocated Power → 90W
Number of Classification Events → 3-Event

Note 1. Shade of blue indicates the PD has been demoted or denied power.

^{*} Specified as the percentage of the period which $\overline{\text{T2P}}$ is low impedance with respect to GND.

 $^{^{\}star\star}$ Auxiliary Power Supply must be sized to provide PD Requested Power.

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER				
3	2	C1, C5	CAP, 0.047µF, X7S, 100V, 10%, 0603	TDK, C1608X7S2A473K080AB				
4	0	C2	CAP, OPTION, 0402	OPT				
5	1	C3	CAP, 0.047µF, X7R, 100V, 10%, 0805	AVX, 08051C473KAT2A				
6	1	C4	CAP., 22µF, ALUM., 100V, 20%, SMD 8mm ×10.2mm, CE-BS SERIES	SUN ELECTRONIC INDUSTRIES CORPORATION, 100CE22BS				
1	2	CG1, CG2	CAP., 1000pF, X7R, 2000V, 10% 1808	TDK, C4520X7R3D102K130KA				
2	4	CT1, CT2, CT3, CT4	CAP, 0.01µF, X7R, 200V, 10%, 0805	AVX, 08052C103KAZ2A				
7	1	D1	DIODE, TVS, 58V, 600W, 2-PIN SOD128, AEC-Q101	NEXPERIA, PTVS58VP1UTP				
8	1	D2	DIODE, SCHOTTKY, 100V, 3A, 2-PIN SOD-128, AEC-Q101	NEXPERIA, PMEG10030ELPX				
9	1	D3	LED, GREEN, WATER-CLEAR	WURTH ELEKTRONIK, 150080VS75000				
10	1	D4	DIODE, ZENER, 12V, 200mW, SOD-323	DIODES INC, MMSZ5242BS-7-F				
11	7	E1-E7	TEST POINT, TURRET, 0.094 MTG. HOLE	MILL-MAX 2501-2-00-80-00-07-0				
13	2	J1, J2	CONN., MOD JACK, RJ45, FEMALE, R/A THT, 1 PORT, 8P8C	STEWART CONN./BEL, SS-7188S-A-NF				
12	18	JP1-JP18	CONN., HDR., MALE, 1 × 2, 2mm, THT, STR	SULLINS CONNECTOR SOLUTIONS, NRPN021PAEN-RC				
14	2	Q1, Q11	XSTR., MOSFET, N-CH, 100V, 36.6m Ω , 30A, 91W, LFPAK33	NEXPERIA, PSMN040-100MSE				
15	8	Q3-Q10	XSTR., MOSFET, N-CH, 100V, 71m Ω , 18A, 65W, LFPAK33	NEXPERIA, PSMN075-100MSE				
28	1	R10	RES., 52.3k, 1%, 1/10W, 0603	VISHAY, CRCW060352K3FKEA				
29	2	R11, R18	RES., 0Ω, 1/10W, 0603	VISHAY, CRCW06030000Z0EA				
30	1	R12	RES., 8.2Ω, 1/8W, 1%, 0805	VISHAY, CRCW08058R20FKEA				
31	1	R13	RES., 3.3k, 1/10W, 5%, 0603	VISHAY, CRCW06033K30JNEA				
32	2	R14, R15	RES., 100k, 1/10W, 5%, 0603	VISHAY, CRCW0603100KJNEA				
33	0	R16, R17	RES., OPTION, 0805	OPT				
34	1	R19	RES., 30k, 1/10W, 5%, 0603	VISHAY, CRCW060330K0JNEA				
27	1	R9	RES., 174k, 1%, 1/10W, 0603	VISHAY, CRCW0603174KFKEA				
16	2	RC1, RC6	RES., 1.00k, 1/8W, 1%, 0805	VISHAY, CRCW08051K00FKEA				
23	1	RC11	RES., 64.9Ω, 1/8W, 1%, 0805	VISHAY, CRCW080564R9FKEA				
24	1	RC13	RES., 118Ω, 1/8W, 1%, 0805	VISHAY, CRCW0805118RFKEA				
17	2	RC2, RC8	RES., 140Ω, 1/8W, 1%, 0805	VISHAY, CRCW0805140RFKEA				
18	2	RC3, RC10	RES., 76.8Ω, 1/8W, 1%, 0805	VISHAY, CRCW080576R8FKEA				
19	2	RC4, RC12	RES., 49.9Ω, 1/8W, 1%, 0805	VISHAY, CRCW080549R9FKEA				
20	1	RC5	RES., 34.8Ω, 1/8W, 1%, 0805	VISHAY, CRCW080534R8FKEA				
21	1	RC7	RES., 37.4Ω, 1/8W, 1%, 0805	VISHAY, CRCW080537R4FKEA				
22	1	RC9	RES., 46.4Ω, 1/8W, 1%, 0805	VISHAY, CRCW080546R4FKEA				
25	1	RMPS	RES., 3.0k, 5%, 1W, 2512	VISHAY, CRCW25123K00JNEG				
26	8	RT1-RT8	RES., 75Ω, 1/10W, 5%, 0603	VISHAY, CRCW060375R0JNEA				
38	2	SHUNTS ON JP1 AND JP2	CONN., SHUNT, FEMALE, 2 POS, 2mm	WURTH ELEKTRONIK, 60800213421				
35	1	T1	XFMR., 350μH, 1:1 ±2%	WURTH ELEKTRONIK, 749022016				
36	1	U1	I.C., LTPoE++/802.3bt PD CONTROLLER, DFN10, 3mm × 3mm	ANALOG DEVICES, LT4293IDD				
37	1	U2	I.C., POE IDEAL DIODE BRIDGE CONTROLLER, QFN16-UF, 4mm × 4mm	ANALOG DEVICES, LT4321IUF				
39	2		STENCILS, (TOP & BOTTOM)	STENCIL DC2911A-1				

SCHEMATIC DIAGRAM

SCHEMATIC DIAGRAM

DEMO MANUAL DC2911A

FSD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND TIS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

Rev. 0