JSPM's

Rajarshi Shahu College of Engineering, Pune

Department of Electronics & Telecommunication Engineering

INNOVATIONS IN TEACHING AND

LEARNING

Course: Control Systems

Class: T.Y. BTech E&TC A.Y.2025-26 SEM I

Topic: Time Response of Control Systems

NAME OF THE ACTIVITY: Demonstration using Analog Stopwatch

Class: TY Btech; Div -A, Date: 1st August 2025; Time: 10.00 AM

I. Concept

Analog Stopwatch was employed in class to teach transient and steady-state responses of control systems. The physical stopwatch provides a real-time visual aid to understand time-domain behavior, making abstract mathematical concepts more tangible for students.

Core Topic: Time Response of First and Second Order Systems – Transient response (rise time, peak time, settling time) vs. Steady-state response.

II. Objective (Goal)

- 1. **Cognitive:** Enable students to connect theoretical definitions (rise time, delay time, settling time) with real-time measurement.
- 2. **Skill-Based:** Develop ability to measure and interpret system response parameters using stopwatch observations.
- 3. **Engagement:** Foster active learning through live demonstrations and student participation in time measurement tasks.

III. Appropriateness (Relevance of Selected Method)

Pedagogical Justification:

1. Experiential Learning Theory:

 Stopwatch demonstration gives students a hands-on experience of measuring time response → strengthens conceptual clarity.

2. Bloom's Taxonomy Alignment:

- o Demonstration: *Understanding/Applying* (students observe stopwatch behavior and relate it to system response).
- o In-class activity: *Analyzing/Evaluating* (students compare transient vs. steady-state values across systems).

Technical Relevance:

- Control system concepts like time constant, rise time, and steady-state error are abstract and often misunderstood.
- Analog stopwatch helps visualize and measure these parameters in real-time demonstrations.

IV. Effective Presentation (Implementation Details)

In-Class Phase

- Resource: Mechanical/Analog Stopwatch.
- Activity: Demonstration of stopwatch hand movement → explained as an analogy of a system response curve (movement from zero to stable value).

V. Results (Impact)

• Student feedback: "The stopwatch analogy made abstract terms of time response easier to visualize."

VI. Reproducibility and Reusability by Other Scholars for Further Development

Sr.No	Innovation Used by	Details of User	Purpose of Reproducibility and Reusability
1		another	Stopwatch demonstration reusable as a simple, low-cost teaching aid; adaptable for other time-domain topics in control systems.

VII. PEER REVIEW AND CRITIQUE

Category: Internal/External/Interdepartmental

Score: (1:Least - 2: Moderate - 3: Highly)

- Q1. Is this Innovative Teaching and Learning Methodology useful during content delivery?
- Q2. Did this innovation increase student motivation or participation?
- Q3. Will it show improvement in student learning?
- Q4. Suggestions for improvement in future iterations.

Demonstration in Class

Dr.S.D.Kale
Course Co-ordinator

Dr. S.A.Paithane Module Co-ordinator Dr.S.C.Wagaj HOD E&TC

HEAD OF DEPARTMENT

Electronics & Tele Communication

JSPM's Rajarshi Shahu College of Engineering (An Autonomous Institute) Tathawade, Pune - 411 033; M.S. (India)