Cours: GEL-21949 Électronique des composants intégrés

Professeur: Maxime Dubois

Examen final

Question #1 (25 points)

Soit le convertisseur voltage-fréquence suivant:

Figure 1

Noter que le voltage de contrôle V_x est négatif. C'est pourquoi la diode D3 a sa cathode branchée sur R1. De plus, la sortie de ce convertisseur voltage/fréquence est écrêtée à l'aide des diodes zener D1 et D2.

On utilise comme valeur R1 = R2 = R3 = $100 \text{ k}\Omega$, R4 = $10 \text{ k}\Omega$, R5 = $10 \text{ k}\Omega$, C1 = 1 nF. Les alimentations sont Vcc = + 15 V et -Vee = - 15 V. La diode zener D1 a un voltage Zener V_z = 5,1 V et un voltage de polarisation directe V_F = 0,7 V. La diode zener D2 a un voltage Zener V_z = 12 V et un voltage de polarisation directe V_F = 0,7 V.

- a) Déterminer la fréquence de v_{sortie} pour $V_x = -4 \text{ V}$ et $V_x = -2 \text{ V}$.
- b) Tracer la forme d'onde de v_{sortie} et $v_{intégrateur}$ en fonction du temps pour Vx = -4 V en indiquant bien les niveaux de transitions ($V_{seuilhaut}$, $V_{seuilbas}$, V_P , $-V_N$) et leur valeur numérique.
- Pour V_x près de 0, le rapport cyclique est faible. À partir d'une certaine fréquence, le rapport cyclique de v_{sortie} est supérieur à 10% et la fonction f(Vx) devient non-linéaire. Déterminer cette valeur de V_x et la fréquence correspondante pour lesquelles le rapport cyclique de sortie D = 10%.
- d) Est-ce raisonnable de considérer la fonction $f(V_x)$ comme étant linéaire dans la zone -4 V < Vx < -2 V ? Expliquer votre réponse.

Pour toute la question #1, il n'est PAS NÉCESSAIRE de démontrer les équations que vous utiliserez. Il vous est possible d'utiliser directement les équations que nous avons vues en cours.

Question #2 (25 points)

Un amplificateur opérationnel possède le diagramme de transfert en boucle ouverte illustré à la figure 2.

Si cet amplificateur opérationnel possède l'entrée différentielle suivante (figure 3):

Figure 3

Déterminer la valeur de R_{ajust} afin d'obtenir un voltage de décalage $V_{SO}=0$ à la sortie de l'ampli-op lorsque celui-ci est utilisé dans le circuit amplificateur inverseur de la figure 4. Pour toute la question #2, il n'est PAS NÉCESSAIRE de démontrer les équations que vous utiliserez. Il vous est possible d'utiliser directement les équations que nous avons vues en cours.

Figure 4

Question #3 (25 points)

Soit le comparateur à hystérésis suivant:

Figure 5

où R1 = R3 = $10~k\Omega$, R2 = $33~k\Omega$, R4 = $200~k\Omega$, $V_{cc} = V_{ee} = 15~V$. Le LM393 est un comparateur à sortie collecteur ouvert.

Tracer le diagramme de transfert de ce circuit. Indiquez clairement les niveaux de transitions ($V_{\text{seuilhaut}}$, V_{seuilbas} , V_{P} , $-V_{\text{N}}$) et déterminez leur valeur numérique.

Pour toute la question #3, il n'est PAS NÉCESSAIRE de démontrer les équations que vous utiliserez. Il vous est possible d'utiliser directement les équations que nous avons vues en cours.

Question #4 (25 points)

Le circuit suivant est un filtre Tow-Thomas.

Figure 5

- a) En prenant comme hypothèse que les ampli-ops possèdent une impédance d'entrée infinie et un gain en boucle ouverte infini, trouver la fonction de transfert $F(p) = V_{\text{sortie}}(p)/V_{\text{entrée}}(p)$ de ce circuit.
- b) Indiquer si ce circuit est un filtre passe-bas, passe-bande ou passe-haut. Justifier la réponse.
- c) Pour $R = 10 \text{ k}\Omega$, $R_1 = 2 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_4 = 1 \text{ k}\Omega$, $C_1 = 1 \text{ }\mu\text{F}$, $C_2 = 0.1 \text{ }\mu\text{F}$, $V_{cc} = V_{ee} = 20 \text{ V}$, déterminer la valeur de R_3 nécessaire pour que ce filtre soit maximalement plat (ou Butterworth).
- d) Avec la valeur de R3 établie en c, Déterminez la fréquence de coupure à -3 dB. Exprimer votre réponse en Hz.
- e) Déterminer le gain du circuit à 0 Hz. Exprimer votre réponse en dB.

La démarche est importante. Une bonne réponse n'est pas suffisante. Vous devez présenter tous les calculs et toutes vos hypothèses.

BONUS

Question #5 (20 points)

Vrai ou Faux (+4 points pour une bonne réponse; -4 points pour une mauvaise réponse; 0 pour aucune réponse).

- a) Avec un ampli-op, on effectue l'analyse avec court-circuit virtuel lorsque l'ampli-op est en rétroaction négative.
- b) Tous les comparateurs ont une sortie « Totem-Pole ».
- c) Le circuit 555 contient une bascule D.
- d) Dans un oscillateur harmonique, la fonction de transfert possède des pôles complexes avec partie réelle positive ou nulle.
- e) En modulation de largeur d'impulsion, la fréquence de sortie varie et le rapport cyclique est fixe.