DENSITÀ NOTEVOLI DI PROBABILITÀ (455AA)

DARIO TREVISAN

1. Leggi di variabili aleatorie discrete

Ricordiamo prima le funzioni dalla "combinatoria", definite per $k,\ n$ numeri naturali:

Fattoriale $k! = k \cdot (k-1) \cdot \dots \cdot 2 \cdot 1$ (con la convenzione 0! = 1)

Coeff. binomiale
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1) \dots (n-k+1)}{k \cdot (k-1) \dots 2 \cdot 1}$$
.

Osserviamo che $\binom{n}{0}=1$, $\binom{0}{0}=1$. Introduciamo anche la seguente "generalizzazione" della funzione fattoriale, detta

Funzione Gamma di Eulero
$$\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} \mathrm{d}x.$$

definita per r > 0. Il legame tra funzione gamma e fattoriale è la seguente identità (che si può mostrare integrando per parti)

$$\Gamma(k+1) = k!$$
 per k numero naturale

Uniforme (su un "intervallo discreto".)

Parametro	$n \in \{1, 2, \ldots\}$	
Valori	$X \in \{1, 2, \dots, n\}$	
Densità	$P(X = k) = 1/n , k \in \{1, 2,, n\}$	
Media	$\mathbb{E}\left[X\right] = (n+1)/2$	
Varianza	$Var(X) = (n^2 - 1)/12$	
MGF	$\mathbb{E}[\exp(tX)] = (e^t - e^{(n+1)t})/(n(1 - e^t))$	

Bernoulli (una variabile a valori in $\{0,1\}$).

Parametro	$p \in [0, 1]$
Valori	$X \in \{0, 1\}$
Densità	P(X = 1) = p, $P(X = 0) = 1 - p$
Media	$\mathbb{E}\left[X\right] = p$
Varianza	Var(X) = p(1-p)
MGF	$\mathbb{E}\left[\exp(tX)\right] = 1 + p(e^t - 1)$

Binomiale B(n,p) (numero di successi in n esperimenti indipendenti, ciascuno con probabilità di successo p; somma di n variabili Bernoulli di parametro p indipendenti).

Parametri	$n \in \{1, 2, \ldots\}$ $p \in [0, 1]$
Valori	$X \in \{0, 1, \dots, n\}$
Densità	$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, k \in \{0, 1, 2, \dots, n\}$
Media	$\mathbb{E}\left[X\right] = np$
Varianza	Var(X) = np(1-p)
MGF	$\mathbb{E}\left[\exp(tX)\right] = \left(1 + p(e^t - 1)\right)^n$

Poisson $\mathcal{P}(\lambda)$. (approssima B(n,p) con $p \to 0, n \to \infty$ e $np \to \lambda$)

Parametro	$\lambda > 0$
Valori	$X \in \mathbb{N} = \{0, 1, 2, \ldots\}$
Densità	$P(X=k) = e^{-\lambda} \lambda^k / k!$
Media	$\mathbb{E}\left[X\right] = \lambda$
Varianza	$\operatorname{Var}(X) = \lambda$
MGF	$\mathbb{E}\left[\exp(tX)\right] = \exp\left(\lambda(e^t - 1)\right)$

Geometrica. (numero dei tentativi prima di ottenere un successo in una successione di esperimenti indipendenti, ciascuno con probabilità p di successo, es. lanci di moneta). La geometrica "modificata" invece indica i tentativi totali (incluso quindi quello di successo). Se X è geometrica modificata, X-1 è geometrica.

Parametro	$p \in (0,1)$
Valori	$X \in \{0, 1, 2, \ldots\}$
Densità	$P(X=k) = p(1-p)^k$
Media	$\mathbb{E}\left[X\right] = (1-p)/p$
Varianza	$Var(X) = \frac{1-p}{p^2}$
MGF	$\mathbb{E}[\exp(tX)] = 1/(1-(1-p)e^t)$ per $t < -\log(1-p)$
Ass. mem.	$P((X - k_0) = k X \ge k_0) = p(1 - p)^k$

2. Leggi di variabili aleatorie continue (con densità)

Uniforme. (in un intervallo [a, b])

Parametri	$a, b \in \mathbb{R}$ $a < b$	
Valori	$X \in [a, b]$	
Densità	$\varrho(X=x) = 1/(b-a)$	
Media	$\mathbb{E}\left[X\right] = (a+b)/2$	
Varianza	$Var(X) = \frac{(b-a)^2}{12}$	
MGF	$\mathbb{E}\left[\exp(tX)\right] = \left(e^{tb} - e^{ta}\right)/t$	
CDF	$P(X \le t) = (t - a)/(b - a)$	per $t \in [a, b]$.

Esponenziale $\mathcal{E}(\lambda)$ (indica il tempo di vita di un dispositivo, un tempo di attesa, ecc.)

,,	
Parametro	$\lambda > 0$
Valori	$X \in (0, \infty)$
Densità	$\varrho(X=x) = \lambda e^{-\lambda x}$
Media	$\mathbb{E}\left[X\right] = \lambda^{-1}$
Varianza	$Var(X) = \lambda^{-2}$
MGF	$\mathbb{E}\left[\exp(tX)\right] = \lambda/(\lambda - t) \text{per } t < \lambda$
CDF	$P(X \le t) = 1 - e^{-\lambda t}$ per $t \in [0, \infty)$.
Ass. mem.	$\varrho((X - x_0) = x X > x_0) = \lambda e^{-\lambda x}$
Min. ind.	$\min(X_1, X_2, \dots, X_n)$ è $\mathcal{E}(\lambda_1 + \dots + \lambda_n)$ se X_i è $\mathcal{E}(\lambda_i)$ e tutte indipendenti

Gaussiana (unidimensionale) $\mathcal{N}(m, \sigma^2)$

Parametri	$m \in \mathbb{R}, \sigma^2 > 0$
Valori	$X \in \mathbb{R}$
Densità	$\varrho(X = x) = e^{-(x-m)^2/(2\sigma^2)} / \sqrt{2\pi\sigma^2}$
Media	$\mathbb{E}\left[X\right] = m$
Varianza	$\operatorname{Var}(X) = \sigma^2$
MGF	$\mathbb{E}\left[\exp(tX)\right] = \exp\left(tm + t^2\sigma^2/2\right)$
CDF	non ha espressione analitica, usare tavole o comando $pnorm()$ in R.
Affinità	Se $X \in \mathcal{N}(m, \sigma^2), \lambda X + c \in \mathcal{N}(\lambda m + c, \lambda^2 \sigma^2)$
Somma	Se X, Y sono gaussiane indipendenti, $X + Y$ è gaussiana

Weibull Weibull (α, r)

Parametri	$\alpha > 0$ (forma), $s > 0$ (scala)
Valori	$X \in (0, \infty)$
Densità	$\varrho(X = x) = (x/s)^{\alpha - 1} e^{-(x/s)^{\alpha}} \alpha/s$
Media	$\mathbb{E}\left[X\right] = s\Gamma(1+1/\alpha)$
Varianza	$Var(X) = s^{2} \left(\Gamma(1 + 2/\alpha) - \Gamma(1 + 1/\alpha)^{2} \right)$
Momenti	$\mathbb{E}\left[X^n\right] = s^n \Gamma(1 + n/\alpha)$
CDF	$P(X \le t) = 1 - e^{-(t/s)^{\alpha}}$ per $t \ge 0$.
Oss	Se X è esponenziale $\mathcal{E}(\lambda)$, $X^{1/\alpha}$ è Weibull $(\alpha, 1/\lambda)$

Gamma $\Gamma(\alpha, s)$

Parametri	$\alpha > 0$ (forma), $s > 0$ (scala)
Valori	$X \in (0, \infty)$
Densità	$\varrho(X=x) = (x/s)^{\alpha-1} e^{-x/s} 1/(s\Gamma(\alpha))$
Media	$\mathbb{E}\left[X\right] = s\alpha$
Varianza	$Var(X) = s^2 \alpha$
MGF	$\mathbb{E}\left[\exp(tX)\right] = (1 - st)^{-\alpha} \text{per } t < 1/s$
CDF	non ha espressione analitica, usare tavole o comando $pgamma()$ in R.
$\chi^2(n)$	Se X_1, \ldots, X_n sono gaussiane standard $\mathcal{N}(0,1)$ indipendenti,
	la variabile $X_1^2 + \ldots + X_n^2$ ha densità $\Gamma(n/2, 2)$,
	detta $\chi^2(n)$ (chi-quadrato con n gradi di libertà)

Beta $B(\alpha_0, \alpha_1)$ Si usa per indicare la probabilità di un parametro $p \in (0, 1)$ incerto (esempi: frazione di palline rosse su palline totali in una scatola non osservata; probabilità che esca testa in una moneta truccata ecc.)

	,
Parametri	$\alpha_0 > 0, \alpha_1 > 0 \text{(parametri di forma)}$
Valori	$X \in (0,1)$
Densità	$\varrho(X = x) = x^{\alpha_0 - 1} (1 - x)^{\alpha_1 - 1} B(\alpha_0, \alpha_1)$
	$\operatorname{con} B(\alpha_0, \alpha_1) = \Gamma(\alpha_0) \Gamma(\alpha_1) / \Gamma(\alpha_0 + \alpha_1)$
Media	$\mathbb{E}\left[X\right] = \alpha_0(\alpha_0 + \alpha_1)$
Varianza	$\operatorname{Var}(X) = \alpha_0 \alpha_1 / \left[(\alpha_0 + \alpha_1)^2 (\alpha_0 + \alpha_1 + 1) \right]$
CDF	non ha espressione analitica, usare tavole o comando $pbeta()$ in R.
OSS	se $X \in B(\alpha_0, \alpha_1), 1 - X \in B(\alpha_1, \alpha_0).$