## DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY MADRAS

PH1010 Physics I Quiz 2 17/10/2013 8:00AM-8:50AM Max. Marks 20

Instructions: First read these instructions. Not following them will result in the paper not being evaluated.

- There are FOUR questions in all.
- Use ONLY the answer sheet provided. NO additional sheets will be provided.
- Write your NAME, ROLL No. and BATCH.

  Note that the BATCH (A to J) MUST be clearly indicated next to the Course No. box.
- Use a black or blue pen ONLY.
- Answers to part-A and part-B questions must NOT be mixed up. Clearly mark ONLY TWO sections of your answer booklet where part-A and part-B are attempted.
- NO cellphones, calculators etc.
- All symbols, unless otherwise specified, have their usual meanings.

## Good Luck!

## Part A

- 1. Indicate clearly your answer, which should be a number or an expression. Highlight your answer by enclosing it in a box. No need to show any working or explanations. (5)
  - (a) Evaluate  $\nabla \times r$ . (r is the position vector).
  - (b) given a force field  $\mathbf{F} = -y\hat{\mathbf{e}}_x + x\hat{\mathbf{e}}_y + z\hat{\mathbf{e}}_z$ , calculate the work done (arbitrary units) in moving the particle from (1,0,0) to  $(-1,0,\pi)$  along a helix parametrized using the variable u,  $(-\infty < u < \infty)$ , as  $x = \cos u$ ,  $y = \sin u$ , z = u.
  - (c) If  $\phi = x^2 y^2 + 2xy$ , is a function on the x y plane, what is the direction of **maximum** decrease of  $\phi$  at the point (1,1)?
  - (d) Write the **Lagrangian** for a particle (mass m) in three-dimensions, subjected to only the gravitational potential mgz, using Cartesian coordinates, and indicate the **cyclic** coordinates.
  - (e) A particle of unit mass is subjected to the one-dimensional potential which in appropriate units is  $-x^2/2$ . What is the equation of the phase-space curve on which any initial condition approaches the equilibrium point arbitrarily closely as  $t \to \infty$ ?

- 2. Answer TRUE or FALSE (**No explanation/working needed**). Write your answer, along with the question number, **in a box.** (5)
  - (a)  $\mathbf{F} = -y\hat{\mathbf{e}}_x + x\hat{\mathbf{e}}_y + z\hat{\mathbf{e}}_z$  is a **conservative force** field. TRUE or FALSE?
  - (b)  $F = \hat{e}_r \frac{\cos \theta}{r}$  is a central and conservative force. TRUE or FALSE?
  - (c) The time-period of the simple pendulum tends to **infinity** as the amplitude tends to  $\pi$ . TRUE or FALSE?
  - (d) If  $V(\rho, \phi)$  is the potential energy for a particle on a plane, the force in the  $\hat{e}_{\phi}$  direction is  $-\frac{\partial V}{\partial \phi}$ . TRUE or FALSE?
  - (e) In **spherical polar** coordinates  $\frac{\partial \hat{e}_r}{\partial \phi} = 0$ . TRUE or FALSE?

## Part B

3. A bead of mass m is constrained to slide without friction along a rigid horizontal wire. The mass is attached to a spring of stiffness k and relaxed length  $L_0$ . Choose coordinates along the wire so that x = 0 occurs at the point P vertically above the support point of the spring O; let h be the distance between this support point and the wire. (5)



- (a) Write down the potential energy and hence find all the equilibrium points and determine if they are stable or unstable. Pay attention to the two cases  $h < L_0$  and  $h > L_0$ .
- (b) Schematically sketch the potential energy and typical **phase space curves for the two cases**, including local behaviors around equilibrium points.
- 4. A block of mass m slides without friction down a wedge of mass M (angle  $\alpha$ ) which in turn is connected by a spring of stiffness k and natural length  $L_0$ , to a wall. The wedge can slide without friction on a horizontal surface. (5)



- (a) Using the indicated  $q_1$  and  $q_2$  as generalized coordinates write the Lagrangian of the system.
- (b) Using the Euler-Lagrange equation, find the equations of motion for the above system.