Logic Circuits

The Problem Collection For Mid-term Exam

This collection consists of 20 questions and their answers which seem to cover all the topics the students may need to know for mid-term exam...

3/1/2011 Sharif University Of Technology Mahmoud Momtazpour

A) Base Conversion, Binary Arithmetic Operations, Binary Codes:

1) Determine the value of x if $(211)_x = (152)_8$.

Decimal

$$2x^2+x+1 = 8^2+5\times8+2 \rightarrow 2x^2+x-105=0 \rightarrow x=7$$

2) In Gray Code system if we attribute the 0 code to the 0 value then what is the code which shows the value of 6?

Oray	Decimal
000	0
001	1
011	2
010	3
110	4
111	5
101	6
100	7

Grav

$$\rightarrow$$
..... (101 \rightarrow 6)

3) In the floating point system of showing the numbers what is the ratio of the biggest number to the very close number after that?

The biggest number is :
$$(FFFFFFFF)_{16} = (0.111...1) \times 2^{64} = a$$

The next number is : $(FFFFFFFE)_{16} = (0.111...10) \times 2^{64} = b$
 $a/b = (2^{64}-2^{32})/(2^{64}-2^{33})$

B) Error Detection and Correction Using Parity, Hamming1, Hamming2:

4) In an odd parity system we have received the Hexadecimal number (6E)₁₆. Is there any error in the received number? If yes, in which digit? Correct the number.

(6E)₁₆=1101110
$$\rightarrow$$
S₀=odd parity{ P₁, X₃, X₅, X₇} = { 1, 0, 1, 0 } = 1
S₁=odd parity{ P₂, X₃, X₆, X₇} = { 1, 0, 1, 0 } = 1

$$S_2$$
=odd parity{ P_4, X_5, X_6, X_7 } = {1,1,1,0} = 0

 $(S_2S_1S_0)_2 = (011)_2 = 3$ \rightarrow It is clear that there is an error in the 3rd bit so :

$$X_3 = 1 \rightarrow$$
 The original correct number is : $(X_3X_5X_6X_7)_2 = (1110)_2$

5) Suppose that in a code the distance between the two closest codes is d ,the numbers of error detection is s and the numbers of error correction is t, find the relationship between these parameters for any code depending on the number of digits which differ from a code to the nearest code.(neglect the probability of receiving two errors)

It can be seen from examination that a single error detection code(s=1,t=0) requires a minimum distance of $d_{min}=2$, a single error correction code(s=0,t=1) requires a minimum distance of $d_{min}=3$ and a code with both single error correction and a double error detection(s=t=1) requires $d_{min}=4$.so by examination we can receive an empirical relationship like:

- C) Boolean Function, Minimization Using both Karnaugh Map and QM Tables, Glitch-Free Design, Logic Circuits Timings, Logic Design of Several Interesting Problems:
- 6) Simplify the following boolean expressions to the minimum number of literals:
- a) ABC + ABC
- b) $xy + x(\overline{y}z + \overline{y}\overline{z})$
- a) = $AB(C+\overline{C}) + \overline{A}B = (A+\overline{A})B = B$
- b) = $xy + x(\overline{y}(z+\overline{z})) = xy + x\overline{y} = x(y+\overline{y}) = x$
- 7) For the Boolean function F given I the truth table, find the following:
- a) List the minterms of the function.

- b) List the minterms of F.
- c) Express F in sum of minterms in algebraic form.
- d) Simplify the function to an expression with a minimum number of literals.

F

X	Y		Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

a)
$$F = \sum m (2,3,6,7)$$

b)
$$\overline{F} = \sum m (0,1,4,5)$$

c)
$$F = m(2) + m(3) + m(6) + m(7) = \overline{X}Y\overline{Z} + \overline{X}YZ + XY\overline{Z} + XYZ$$

d)
$$F = \overline{X}Y(Z+\overline{Z}) + XY(Z+\overline{Z}) = \overline{X}Y + XY = Y(\overline{X}+X) = Y$$

8) Write the following function in a SOP (sum of product) and simplest form using Karnaugh map :

$$f(A,B,C,D) = \sum m(0,1,3,4,6,7,9,11,15)$$

$$\rightarrow$$
f = CD + \overline{B} D + \overline{A} B \overline{D} + \overline{A} C \overline{D}

9) For the following seven segment find the Boolean

Function for the d LED (f_d) as a function of w,x,y,z?

$$f_d = \sum m (0,2,3,5,6,8,9) + d (10,11,12,13,14,15)$$

wx VZ	00	01	11	10		
00	1	0	1	1	\rightarrow	$f_d = w + y\overline{z} + \overline{x}y + x\overline{y}z + \overline{w}\overline{x}\overline{z}$
01	0	1	0	1		
11		X				
10	X		X	X		
	1	1				
			X	X		

10) Fabricate the following function with only NOR gates and plot the outcome.(Limitation: there have to be just two inputs)

$$f(A,B,C,D) = \sum m (1,3,4,5,8,11,12,14,15) \qquad A=LSB$$

$$\overline{f} = \sum m (0,2,6,7,9,10,13) \rightarrow \overline{f} = \overline{A}\overline{C}\overline{D} + \overline{A}B\overline{C} + BC\overline{D} + A\overline{B}D$$

$$f = (A+C+D) \times (A+\overline{B}+C) \times (\overline{B}+\overline{C}+D) \times (\overline{A}+B+\overline{D})$$

D) Modular combinational circuit design (MUX, ADDER, ENCODER,...):

11) Design a 4 to 16 Decoder by means of two 3 to 8 Decoder.(note that you can also use the Enable pins)

12) Design and implant a MultiPlexer(with two selector) Using a 2 to 4 Decoder and minimum gates.

13) Desing a combinational circuit which can find the odd parity for 6 bits (A,B,C,D,E,F) Using just two 4 to 1 MUX and XOR gates.

odd parity:

For example if we have (ABCDEF) 001011 then the output should be 0. Or if 000110 then the output should be 1.

14) Design a comparator (which compares two binary number A and B) by means of a 4 bit Adder and logic gates.

We can use the Adder as a comparator by inverting B's digits and adding A and B which leads to A-B. From the sign of A-B we can compare their magnitudes.

