Temperatura Crítica de Superconductores

¿Es suficiente una regresión múltiple?

Grupo A - Estadística

Pontificia Universidad Católica de Chile Facultad de Matemáticas EYP2307 - Análisis de Regresión

1 de Diciembre de 2020

Contenido

Avance 1

Nuevos modelos

Elección del modelo

Ridge Regression

Extra

Conclusiones

Referencias bibliográficas

Contenido

Avance 1

Recursos Utilizados

- Usamos RStudio.
- 2. R Markdown y R Sweave.
- GitHub.
- 4. Bases de datos.
 - train.csv
 - unique_m.csv

Resumen del Avance 1

- El objetivo era predecir la Temperatura Crítica de los Superconductores, con un modelo de regresión lineal simple.
- ► Se limpió la base de datos: de 169 variables se pasaron a 34.
- Se hizo un modelo de regresión simple con la variable std_ThermalConductivity, ya que es modelo con mejor R^2 respecto critical_temp ($R^2 = \mathbf{0.43}$).

Resumen del Avance 1

- ightharpoonup Buscamos alternativas para mejorar el R^2 .
- Se crearon 7 bases de datos según range_Valence, ya que es la variable categórica que mejores correlaciones nos da.
- ► Finalmente obtuvimos **7** modelos para predecir la variable respuesta, con un R² conjunto igual a **0.56**.

Avance 1 00000

> Predecir la temperatura crítica de los superconductores en base a nuestra variable respuesta, aplicando nuevas herramientas para mejorar los resultados obtenidos en el Avance 1.

Contenido

Avance :

Nuevos modelos

Elección del modelo

Ridge Regression

Extra

Conclusiones

Referencias bibliográficas

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - 2. Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.
 - Modelo con la idea del Avance 1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - 5. drop1.
 - 6. VIF.
 - Modelo con la idea del Avance 1.
 - 8. Ridge Regression.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.
 - Modelo con la idea del Avance 1.
 - 8. Ridge Regression.
 - 9. Extras.

Se utilizó la base de datos limpiada en el Avance 1 para trabajar solo con **34** variables.

Nuevos modelos

000000000

- Se utilizó la base de datos limpiada en el Avance 1 para trabajar solo con **34** variables.
- Se solucionó el problema de multicolinearidad en cada modelo viendo el VIF (Excepto en Ridge y Extras).

000000000

- Se utilizó la base de datos limpiada en el Avance 1 para trabajar solo con **34** variables.
- Se solucionó el problema de multicolinearidad en cada modelo viendo el VIF (Excepto en Ridge y Extras).
- En todos los modelos se usó criterio AIC (excepto en Modelo con VIF).

Modelo con Backward

ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.

- Multicolinearidad \rightarrow 2 variables eliminadas.
- Modelo conformado finalmente por **27** β 's.

Modelo con Forward

ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.

- Multicolinearidad \rightarrow 4 variables eliminadas.
- Modelo conformado finalmente por **28** β 's.

ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.

Modelo con Backward-Forward

- Multicolinearidad \rightarrow 2 variables eliminadas.
- Modelo conformado finalmente por **27** β 's.

Modelo con add1

ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.

- Multicolinearidad \rightarrow 3 variables eliminadas.
- Modelo conformado finalmente por **28** β 's.

Modelo con drop1

Nuevos modelos 0000000000

ightharpoonup Multicolinearidad \rightarrow **1** variable eliminada.

Modelo con drop1

- Multicolinearidad \rightarrow 1 variable eliminada.
- Modelo conformado finalmente por **25** β 's.

▶ Se consideró el modelo conformado por todas las variables de la base de datos.

- Se consideró el modelo conformado por todas las variables de la base de datos.
- Se fue eliminando el problema de multicolinearidad progresivamente.

Modelo con *VIF*

- Se consideró el modelo conformado por todas las variables de la base de datos.
- Se fue eliminando el problema de multicolinearidad progresivamente.
- Modelo conformado finalmente por 28 variables.

Modelo con la idea del Avance 1

Nuevos modelos 000000000

► Se crearon **7** bases de datos según range_Valence.

Modelo con la idea del Avance 1

- Se crearon 7 bases de datos según range Valence.
- Se creó un modelo para cada base de datos mediante selección Backward.

000000000

- Se crearon 7 bases de datos según range_Valence.
- Se creó un modelo para cada base de datos mediante selección Backward.
- Cantidad de variables:
 - 1. Modelo para range_Valence = 0: 25 variables.
 - 2. Modelo para range_Valence = 1: 23 variables.
 - 3. Modelo para range_Valence = 2: 24 variables.
 - 4. Modelo para range_Valence = 3: 25 variables.
 - 5. Modelo para range_Valence = 4: 22 variables.
 - 6. Modelo para range_Valence = 5: 19 variables.
 - 7. Modelo para range_Valence = 6: 27 variables.

Contenido

Avance :

Nuevos modelos

Elección del modelo

Ridge Regression

Extra

Conclusiones

Referencias bibliográficas

Modelo	AIC	BIC	R ²
Backward	126489.9	127064.9	0.66
Forward	126880.5	127103.5	0.66
Backward-Forward	126849.9	127064.9	0.66
add1	126858.4	127081.4	0.66
drop1	126849.6	127048.7	0.66
VIF	126880.5	127103.5	0.66
Idea Avance 1	121021.6	121840.3	0.74

Modelo Elegido: Backward

Análisis de Puntos: Outliers

Análisis de Puntos: DFFITS

Análisis de Puntos: Distancia de Cook

Supuesto de Independencia

Se utilizó el Test de Durbin-Watson.

Supuesto de Independencia

Nuevos modelos

- Se utilizó el Test de Durbin-Watson.
- Independencia de residuos \Leftrightarrow valor-p > 0.05.

Supuesto de Independencia

- Se utilizó el Test de Durbin-Watson.
- Independencia de residuos \Leftrightarrow valor-p > 0.05.
- No se cumple el supuesto.

Se utilizó el Test de Kolmogorov-Smirnov.

Nuevos modelos

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.
- Primera solución aplicada: Transformación de Box-Cox.

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.
- Primera solución aplicada: Transformación de Box-Cox.
- Segunda solución aplicada: Transformación de Johnson.

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.
- Primera solución aplicada: Transformación de Box-Cox.
- Segunda solución aplicada: Transformación de Johnson.
- Tercera solución aplicada:

variable respuesta

Supuesto de Homocedasticidad

Se utilizó el Test de Breusch-Pagan.

Supuesto de Homocedasticidad

Nuevos modelos

- Se utilizó el Test de Breusch-Pagan.
- Criterio: valor-p > 0.05.

Nuevos modelos

- ▶ Se utilizó el Test de Breusch-Pagan.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.

- Se utilizó el Test de Breusch-Pagan.
- Criterio: valor-p > 0.05.
- El modelo no cumple con este supuesto.
- Solución propuesta para Heterocedasticidad:

Weighted Least Squares Regression.

Diapositiva

Avance 1

▶ abc

Contenido

Ridge Regression

Ridge Regression

Avance 1

Objetivo: Minimizar **RSS**.

Ridge Regression

- **Objetivo:** Minimizar **RSS**.
- Shrinkage Penalty: $RSS_{Ridge} = RSS_{AMC} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$.
 - $\lambda = \mathbf{0} : RSS_{Ridge} = RSS_{AMC}.$
 - $\lambda > 0$: Impacto en valores de β .
 - $\lambda \to \infty : \beta \to \vec{\mathbf{0}}.$

Nuevos modelos

Es aquel que reduce la mayor varianza del modelo sin apenas perder ajuste.

EYP2307 - Análisis de Regresión

Ridge Regression: λ óptimo

- Es aquel que reduce la mayor varianza del modelo sin apenas perder ajuste.
- Validación cruzada.

Ridge Regression: Visualización

Ridge Regression: Ventajas

Reduce la varianza.

Ridge Regression: Ventajas

- Reduce la varianza.
- Datos de Entrenamiento vs. Datos de Prueba.

Ridge Regression: Ventajas

- Reduce la varianza.
- Datos de Entrenamiento vs. Datos de Prueba.
- Minimiza la influencia sobre el modelo de los predictores menos relacionados con la variable respuesta.

Modelo final incluye todos los predictores.

Ridge Regression 000000000000

Lasso Regression

Avance 1

Misma idea que en Ridge Regression.

Lasso Regression

- Misma idea que en Ridge Regression.
- Realiza selección de predictores.

Lasso Regression

Nuevos modelos

- Misma idea que en Ridge Regression.
- Realiza selección de predictores.
- ► Shrinkage Penalty : $RSS_{Lasso} = RSS_{AMC} + \lambda \sum_{i=1}^{p} |\beta_{i}|$.

Comparación entre Ridge y Lasso Regression

Usamos uno u otro dependiendo del escenario.

Comparación entre Ridge y Lasso Regression

- Usamos uno u otro dependiendo del escenario.
- Ridge Regression: cuando los $\beta' s \neq \mathbf{0}$ y tienen la misma magnitud aproximadamente.

Comparación entre Ridge y Lasso Regression

- Usamos uno u otro dependiendo del escenario.
- Ridge Regression: cuando los $\beta' s \neq \mathbf{0}$ y tienen la misma magnitud aproximadamente.
- Lasso Regression: cuando un gran grupo de parámetros \approx **0**.

Se usó el package glmnet.

- Se usó el package glmnet.
- Se usó la misma fórmula que el modelo resultante con Backward en Ridge Regression.

- Se usó el package glmnet.
- Se usó la misma fórmula que el modelo resultante con Backward en Ridge Regression.
- ► En *Lasso Regression* se consideró el modelo completo.

 \triangleright El λ óptimo en los modelos nos dió:

- El λ óptimo en los modelos nos dió:
 - Ridge Regression: **0.05**.
 - Lasso Regression: 0.01.

- El λ óptimo en los modelos nos dió:
 - Ridge Regression: **0.05**.
 - Lasso Regression: 0.01.
- Veamos algunos coeficientes importantes de los modelos.

Coeficiente	Backward	Ridge	Lasso
Intercepto	-48.2633	-46.8465	-44.4442
gmean_ThermalConductivity	-0.3338	-0.3301	-0.3171
į			
wtd_range_atomic_radius			0
:			
wtd_entropy_TConductivity	6.9492	6.7131	7.684503
Ba	9.3430	9.3538	10.6381

La función que nos permite hacer Ridge y Lasso Regression no nos aporta información suficiente para calcular la Log-Verosimilitud.

- La función que nos permite hacer Ridge y Lasso Regression no nos aporta información suficiente para calcular la Log-Verosimilitud.
- ▶ Un criterio de comparación es el R^2 ajustado:

Comparación entre modelos

- La función que nos permite hacer Ridge y Lasso Regression no nos aporta información suficiente para calcular la Log-Verosimilitud.
- ▶ Un criterio de comparación es el R^2 ajustado:
 - Backward: 0 66
 - Ridge Regression: **0.66**.
 - Lasso Regression: 0.65.

Contenido

Avance :

Nuevos modelos

Elección del modelo

Ridge Regression

Extra

Conclusiones

Referencias bibliográficas

Avance 1

Árbol de decisión: Definición.

- Árbol de decisión: Definición.
- Conjunto de estos árboles.

- Árbol de decisión: Definición.
- Conjunto de estos árboles.
- Boostrap.

- Árbol de decisión: Definición.
- Conjunto de estos árboles.
- Boostrap.
- Bootstrap.

- Árbol de decisión: Definición.
- Conjunto de estos árboles.
- Boostrap.
- Bootstrap.
- Poco control sobre el modelo.

Avance 1

Random Forest: Implemantación

Package randomForest.

Avance 1

Random Forest: Implemantación

Nuevos modelos

- Package randomForest.
- El resultado es considerablemente mejor.

- Package randomForest.
- El resultado es considerablemente mejor.
- $ightharpoonup R^2 = 0.92.$

Nuevos modelos

- Package randomForest.
- El resultado es considerablemente mejor.
- $R^2 = 0.92$
- Veamos la gráfica de Valores Ajustados y Valores Reales:

Random Forest: Densidad de Ajustados y Reales

Avance 1

Contenido

Avance 1

Sobre los nuevos modelos.

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.
- Random Forest

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.
- Random Forest
- Ridge y Lasso Regression.

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.
- Random Forest
- Ridge y Lasso Regression.
- Contraste con Avance 1.

- Sobre los nuevos modelos.
- Sobre el cumplimiento de los supuestos.
- Random Forest
- Ridge y Lasso Regression.
- Contraste con Avance 1.
- ¿Es suficiente una regresión múltiple?

Contenido

Avance :

Nuevos modelos

Elección del modelo

Ridge Regression

Extra

Conclusiones

Referencias bibliográficas

Referencias bibliográficas

- https://rpubs.com/Joaquin_AR/255596 A.D., Random Forest 2017
- https://rpubs.com/Joaquin_AR/242707 Selección de predictores: Ridge y Lasso. 2016
- https://rstatisticsblog.com/data-science-in-action/machinelearning/ridge-regression-in-r/ Simple Guide To Ridge Regression In R. 2020

