

Programación concurrente y de tiempo real

Práctica 12 - Curva de tiempos y Speed-Up de convolución

Nicolás Ruiz Requejo

Cádiz 22 de agosto de $2020\,$

Índice

1	Gráfica de tiempo de ejecución y Speed-Up de convolución en Windows	2	
	1.1 Tiempo de ejecución	2	
	1.2 Speed-Up	2	
2 Gráfica de tiempo de ejecución y Speed-Up de convolución en Linux			
	2.1 Tiempo de ejecución	3	
	2.2 Speed-Up	3	

1. Gráfica de tiempo de ejecución y Speed-Up de convolución en Windows

1.1. Tiempo de ejecución

Ambas curvas muestran comportamientos muy parecidos, con una mejora de 10 milisegundos menos de tiempo de ejecución en el caso de C++ con respecto a Java.

1.2. Speed-Up

Observando los Speed-Up, obtenemos mayores Speed-Up con la versión de C++. El comportamiento de las curvas coincide con el comportamiento teórico que debería de mostrar según la ecuación de Subramaniam, con el mayor Speed-Up en 4 hilos que es el número de núcleos de la máquina donde se han ejecutado los programas.

Nicolás Ruiz Requejo 2

2. Gráfica de tiempo de ejecución y Speed-Up de convolución en Linux

2.1. Tiempo de ejecución

En Linux (Ubuntu 18.04) con open-jdk 11 vemos un empeoramiento de la solución paralela en todos los casos estudiados, puede deberse al modelo de hilos que usa el núcleo de Linux. La solución en C++ muestra mejora en todos los casos estudiados con respecto a la versión secuencial, se observa un comportamiento lineal con mediciones muy estables para distinto número de hilos.

2.2. Speed-Up

Los Speed-Up de Java nos indican que en Linux la solución paralela en Java deberíamos descartarla por el empeoramiento que produce para matrices de 1000x1000 enteros. La solución en C++ muestra

Nicolás Ruiz Requejo 3

mejora al igual que con los tiempos de ejecución, de la gráfica podemos aproximar un coeficiente de bloqueo de entre $0 \ y \ 0.5$.

Nicolás Ruiz Requejo 4