Social_Media_Followers_Prediction_with_Machine_Learning

```
In [2]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

data = pd.read_csv("stats.csv")
data.drop(data.tail(1).index, inplace=True)
data.head()
```

Out[2]:

	period_start	period_end	followers_gained	followers_lost	followers_net	followers_total	su
0	5/1/2020	5/31/2020	1	0	1	1	
1	6/1/2020	6/30/2020	8	0	8	9	
2	7/1/2020	7/31/2020	103	0	103	112	
3	8/1/2020	8/31/2020	46	0	46	158	
4	9/1/2020	9/30/2020	35	1	34	192	
4							•

In [3]: plt.figure(figsize=(15, 10))
 sns.set_theme(style="whitegrid")
 plt.title("Number of Followers I Gained Every Month")
 sns.barplot(x="followers_gained", y="period_end", data=data)
 plt.show()

Now let's have a look at the total number of followers I end up with every month:

```
In [4]: plt.figure(figsize=(15, 10))
    sns.set_theme(style="whitegrid")
    plt.title("Total Followers At The End of Every Month")
    sns.barplot(x="followers_total", y="period_end", data=data)
    plt.show()
```


Now let's take a look at one of the most important features, which is the total number of views I get each month:

```
In [5]: plt.figure(figsize=(15, 10))
    sns.set_theme(style="whitegrid")
    plt.title("Total Views Every Month")
    sns.barplot(x="views", y="period_end", data=data)
    plt.show()
```


Now here's how we can predict the increase in the number of followers we can expect to see over the next four months:

```
In [*]: | from autots import AutoTS
        model = AutoTS(forecast_length=4, frequency='infer', ensemble='simple')
        model = model.fit(data, date col='period end', value col='followers gained',
        prediction = model.predict()
        forecast = prediction.forecast
        print(forecast)
        Data frequency is: M, used frequency is: M
        Model Number: 1 with model ARIMA in generation 0 of 10
        Model Number: 2 with model AverageValueNaive in generation 0 of 10
        Model Number: 3 with model AverageValueNaive in generation 0 of 10
        Model Number: 4 with model AverageValueNaive in generation 0 of 10
        Model Number: 5 with model DatepartRegression in generation 0 of 10
        Model Number: 6 with model DatepartRegression in generation 0 of 10
        Model Number: 7 with model DatepartRegression in generation 0 of 10
        C:\Users\baps\anaconda3\lib\site-packages\sklearn\svm\_classes.py:32: Fut
        ureWarning: The default value of `dual` will change from `True` to `'aut
        o'` in 1.5. Set the value of `dual` explicitly to suppress the warning.
          warnings.warn(
        C:\Users\baps\anaconda3\lib\site-packages\sklearn\svm\ base.py:1242: Conv
        ergenceWarning: Liblinear failed to converge, increase the number of iter
        ations.
          warnings.warn(
        Model Number: 8 with model DatepartRegression in generation 0 of 10
        Epoch 1/50
```

So this is how you can predict the increase in the number of your followers on any social media platform. As a social media consumer, the number of followers you have may not be of interest to you, but as a content creator or as a businessman, the number of followers you have is important for your content for reaching more audience.

THANK YOU!

Github Link: https://github.com/anujtiwari21? tab=repositories)