

Mouse Promoter Arrays

Agilent ChIP-on-Chip Set

Agilent's novel and powerful method of location analysis of DNA binding proteins pairs chromatin immunoprecipitation (ChIP) with Agilent DNA microarrays to allow the construction of comprehensive DNA-protein binding profiles. This oligonucleotide microarray enables you to use ChIP-on-chip technology to gain broad insight into the mechanisms of mouse gene regulation on a genome-wide scale.

Features and Benefits at a Glance

Probes provide coverage for ~17,000 of the best defined mouse transcripts (as defined by RefSeq) and cover –5.5 KB upstream to +2.5 KB downstream from the transcriptional start sites for our promoter arrays.

Superior Microarray Performance

Proprietary microarray technology using optimized 60-mer oligonucleotide probes and a convenient two-color labeling system delivers higher sensitivity, accuracy, and greater reproducibility than one-color systems. These unique features allow sensitive measurements of weak- and infrequent-binding events, as well as direct comparisons of samples on the same microarray.

Reliable Binding Data

Powerful algorithms employ neighborhood probe voting with multiple probes to generate reliable data with greater true binding events and fewer false positives.

Agilent SurePrint Technology

Printed using Agilent's SurePrint technology that features a flexible, industrial-scale inkjet printing process that synthesizes oligonucleotide probes in situ onto 1" x 3" slides. Our technology provides a means to consistent, reliable, and affordable microarray products.

Access to Probe Sequence and Annotation

Complete access to public databases, probe sequences, and annotation files for convenient extraction of biological information.

Compatible with Easy-to-Use Data Analysis Software

ChIP Analytics software combines annotated, algorithmic array data processing with an easily manipulated text file output and high-speed statistical modeling functions.

Specifications

	Mouse Promoter Set
Product number	G4490A
Slides/set	2
Minimum order	5 sets (10 slides)
Microarrays/slide	1
Design ID numbers	014716, 014717
Microarray format	244K
Probe length	60 bases
Probes/Transcript	~25 probes
Probe coverage	~17,000 of the best defined mouse transcripts and cover -5.5 KB upstream to +2.5 KB downstream from the transcriptional start sites
Agilent internal quality control probes	~5000
Sequence source	UCSC mm7/NCBI release 35 (August 2005)
Feature size	65 μm
Starting sample input	$0.5 \times 10^{7} - 1 \times 10^{8}$ cells
DNA required for labeling	2 µg
Type of labeling	Random priming using Klenow with Cyanine 3 and Cyanine 5 nucleotides
DNA required for hybridization	5 μg per channel
Hybridization volume	500 μL

The Agilent Probe Advantage

Unlike other companies, Agilent provides optimized and validated probe design that delivers the high signal-to-noise ratios that are essential for the success of ChIP-on-chip experiments. We carefully design our probes using stringent criteria.*

- 60-mer oligonucleotide probes provide robust hybridization, critical for the sensitivity and specificity that ChIP-on-chip demands.
- Average probe spacing parameters have been specifically optimized for the ChIP method as compared to other microarray applications.
- Repeat regions are masked to significantly reduce nonspecific noise.

Agilent Online Resources at Your Fingertips

- Ask the Experts Learn how to get the most out of your Agilent products.
- Special offers Benefit from savings on Agilent products and services.
- Events calendar See Agilent at leading industry conferences and trade shows.
- Web links Go directly to detailed information on the Web.

Buy online:

www.agilent.com/chem/store

Find an Agilent customer center in your country:

www.agilent.com/chem/contactus

U.S. and Canada

1-800-227-9770 agilent inquiries@agilent.com

Asia Pacific

adinquiry_aplsca@agilent.com

Europe

info_agilent@agilent.com

Research use only. Information, descriptions, and specifications in this publication are subject to change without notice.

Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

© Agilent Technologies, Inc. 2006 Printed in the U.S.A. August 31, 2006 5989-4321EN

^{*}Probes are designed with criteria including optimal T_m, unique sequence, and self-structure prediction.