## Tarea 2

## Seminario de Álgebra B

**Ejercicio 1** Sea  $C \in \mathcal{E}$ . Muestra que  $C^C$  es un objeto monoide en  $\mathcal{E}$ . Esto es, existen flechas  $e: 1 \to C^C$  y  $m: C^C \times C^C \to C^C$  tales que los siguientes diagramas conmutan

$$C^{C} \times C^{C} \times C^{C} \xrightarrow{\operatorname{id} \times m} C^{C} \times C^{C} \qquad 1 \times C^{C} \xrightarrow{\operatorname{exid}} C^{C} \times C^{C} \xrightarrow{\operatorname{id} \times e} C^{C} \times 1$$

$$m \times \operatorname{id} \downarrow \qquad \qquad \downarrow m \qquad \qquad \downarrow m$$

$$C^{C} \times C^{C} \xrightarrow{m} C^{C} \qquad C^{C}$$

**Ejercicio 2** Demuestra que la biyección  $\mathscr{C}(A,\Omega)\cong \operatorname{Sub}_{\mathscr{C}}(A)$  es natural en A.

**Ejercicio 3** Si  $f: \Omega \to \Omega$  es un mono, entonces  $ff = id_{\Omega}$ .

**Ejercicio 4** El par núcleo de una flecha  $f:A\to B$  consta de dos flechas  $a,b:R\to A$  tales que el diagrama

$$\begin{array}{ccc}
R & \xrightarrow{a} & A \\
b \downarrow & & \downarrow f \\
A & \xrightarrow{f} & B
\end{array}$$

es un producto fibrado. Demuestra que el par núcleo cumple lo siguiente:

- a) la flecha (a, b):  $R \to A \times A$  es mono,
- b) la diagonal  $\Delta_A: A \to A \times A$  está contenida en (a,b), es decir, existe  $\rho: A \to R$  tal que el siguiente diagrama conmuta



c) (b,a) está contenida en (a,b), es decir, existe una flecha  $\sigma: R \to R$  que hace conmutar al diagrama



d) Si consideramos el producto fibrado de abajo a la izquierda, entonces existe una flecha  $\tau: T \to R$  tal que el diagrama de abajo a la izquierda conmuta



1

Primero se forman los productos fibrados

$$\begin{array}{cccc} U & \longrightarrow & 1 & & V & \longrightarrow & 1 \\ g \downarrow & & \downarrow v & & \downarrow & & \downarrow v \\ \Omega & \xrightarrow{f} & \Omega & & U & \xrightarrow{g} & \Omega. \end{array}$$

Así, U es subobjeto de 1 y V es otro subobjeto de 1 contenido en U. Ahora consideramos el p.f.

Como el exterior es un p.f. entonces la composición de abajo debe ser g. Por lo tanto ffg=fvU=g, es decir, el siguiente diagrama conmuta

$$\begin{array}{ccc} U & \xrightarrow{\mathrm{id}} & U \\ g \downarrow & & \downarrow g \\ \Omega & \xrightarrow{ff} & \Omega. \end{array}$$

Como ff es mono, entonces debe ser un p.f. y así fff = f ya que las dos clasifican a g. Finalmente, como f es mono se tiene  $ff = \mathrm{id}$ .