Семинар 4.

1. Пусть регрессионная модель $y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$, i = 1, ..., n, задана в матричном виде при помощи уравнения $y = X\beta + \varepsilon$, где $\beta = \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 \end{pmatrix}'$. Известно, что $E(\varepsilon) = 0$ и $Var(\varepsilon) = \sigma^2 \cdot I$. Известно также, что:

$$y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Для удобства расчётов ниже приведены матрицы:

$$X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \text{ if } (X'X)^{-1} = \begin{pmatrix} 1/3 & -1/3 & 0 \\ -1/3 & 4/3 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$

Найдите:

- (а) Рассчитайте при помощи метода наименьших квадратов оценку для вектора неизвестных коэффициентов.
- (b) Рассчитайте несмещенную оценку для неизвестного параметра σ^2 регрессионной модели.
- (c) Рассчитайте $\widehat{Var}(\hat{\beta})$, оценку для ковариационной матрицы вектора МНК-коэффициентов $\widehat{\beta}$.
- (d) Сформулируйте основную и альтернативную гипотезы, которые соответствуют тесту на значимость переменной x_2 в уравнении регрессии.
- (e) Протестируйте на значимость переменную x_2 в уравнении регрессии на уровне значимости 10%:
 - і. Приведите формулу для тестовой статистики.
 - іі. Укажите распределение тестовой статистики при верной H_0 .
 - ііі. Вычислите наблюдаемое значение тестовой статистики.
 - iv. Укажите границы области, где основная гипотеза не отвергается.
 - ${
 m v.}$ Сделайте статистический вывод о значимости переменной $x_2.$
- (f) Найдите P-значение, соответствующее наблюдаемому значению тестовой статистики (T_{obs}) из предыдущего пункта. На основе полученного P-значения сделайте вывод о значимости переменной x_2 .
- (g) На уровне значимости 10% проверьте гипотезу $H_0: \beta_2 = 1$ против альтернативной $H_a: \beta_2 \neq 1$:

1

і. Приведите формулу для тестовой статистики.

1

- іі. Укажите распределение тестовой статистики при верной H_0 .
- ііі. Вычислите наблюдаемое значение тестовой статистики.
- iv. Укажите границы области, где основная гипотеза не отвергается.
- v. Сделайте статистический вывод.
- (h) На уровне значимости 10% проверьте гипотезу $H_0: \beta_2 = 1$ против альтернативной $H_a: \beta_2 > 1$:
 - і. Приведите формулу для тестовой статистики.
 - іі. Укажите распределение тестовой статистики при верной H_0 .
 - ііі. Вычислите наблюдаемое значение тестовой статистики.
 - iv. Укажите границы области, где основная гипотеза не отвергается.
 - v. Сделайте статистический вывод.
- (i) Постройте 90%-ый доверительный интервал для оценки коэфициента β_2 .
- 2. Используя матрицы $M = X(X'X)^{-1}X'$ и $\pi = \vec{1}(\vec{1}'\vec{1})^{-1}\vec{1}'$, запишите TSS, RSS и ESS в матричной форме.
- 3. Вася оценил исходную модель:

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i.$$

Для надежности Вася стандартизировал переменные, т.е. перешёл к $y_i^* = (y_i - \bar{y})/\hat{\sigma}_y$ и $x_i^* = (x_i - \bar{x})/\hat{\sigma}_x$. Затем Вася оценил ещё две модели:

$$y_i^* = \beta_1' + \beta_2' x_i^* + \varepsilon_i'$$

И

$$y_i^* = \beta_2'' x_i^* + \varepsilon_i''.$$

В решении можно считать $\hat{\sigma}_x$ и $\hat{\sigma}_y$ известными.

- (a) Найдите $\hat{\beta}'_1$.
- (b) Как связаны между собой $\hat{\beta}_2$, $\hat{\beta}_2'$ и $\hat{\beta}_2''$?
- (c) Как связаны между собой e_i , e'_i и e''_i ?
- (d) Как связаны между собой $\widehat{Var}\left(\hat{\beta}_{2}\right), \widehat{Var}\left(\hat{\beta}_{2}'\right)$ и $\widehat{Var}\left(\hat{\beta}_{2}''\right)$?
- (e) Как выглядит матрица $\widehat{Var}\left(\hat{\beta}'\right)$?
- (f) Как связаны между собой t-статистики $t_{\hat{\beta_2}},\,t_{\hat{\beta_2'}}$ и $t_{\hat{\beta_2''}}$?
- (g) Как связаны между собой R^2 , $R^{2\prime}$ и $R^{2\prime\prime}$?

(h) В нескольких предложениях прокомментируйте последствия перехода к стандартизированным переменным.

Домашнее задание.

- (a) Найдите E(TSS), E(ESS). Надо быть морально готовым к тому, что они выйдут громоздкие.
- (b) Рассмотрим классическую линейную модель. Являются ли векторы e и \hat{y} перпендикулярными? Найдите $Cov(e,\hat{y})$.

3