MLE phase transition of Gaussian tensor matching (Positive part of non-symmetric observations, Q&A)

Jiaxin Hu

May 17, 2022

1 Preliminary

Non-symmetric correlated Gaussian observations.

Consider two order-m random tensor observations $\mathcal{A}, \mathcal{B}' \in \mathbb{R}^{n^{\otimes m}}$ and use $\boldsymbol{\omega} \in [n]^m$ to index the entries in \mathcal{A} and \mathcal{B} . Suppose that for all $\boldsymbol{\omega} \in [n]^m$ and some $\rho \in (0,1)$

$$\begin{pmatrix} \mathcal{A}_{\omega} \\ \mathcal{B}'_{\omega} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \mathbf{0}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \end{pmatrix}, \quad \text{and} \quad \begin{pmatrix} \mathcal{A}_{\omega} \\ \mathcal{B}'_{\omega} \end{pmatrix} \text{ is independent with } \begin{pmatrix} \mathcal{A}_{\omega'} \\ \mathcal{B}'_{\omega'} \end{pmatrix} \text{ for all } \omega \neq \omega'. \tag{1}$$

Let π^* be a permutation on [n] with corresponding permutation matrix $\Pi^* \in \{0,1\}^{n \times n}$, and consider the permuted observation \mathcal{B} such that for all $\omega \in [n]^m$

$$\mathcal{B}_{\omega} = \mathcal{B}'_{\pi^* \circ \omega}$$
, or equivalently $\mathcal{B} = \mathcal{B}' \times_1 \Pi^* \times_2 \cdots \times_m \Pi^*$.

Our goal is to recover π^* (or equivalently Π^*) observing \mathcal{A}, \mathcal{B} . Note that \mathcal{A}, \mathcal{B} are not supersymmetric tensors while the permutation on every mode is the same!

MLE

By Theorem 1 in note 0402, the MLE of π^* , denoted $\hat{\pi}_{MLE}$, satisfies

$$\hat{\Pi}_{MLE} = \underset{\Pi \in \mathcal{P}_n}{\arg \max} \left\langle \mathcal{A} \times_1 \Pi \times_2 \dots \times_m \Pi, \mathcal{B} \right\rangle,$$

where $\hat{\Pi}_{MLE}$ is the permutation matrix corresponding to $\hat{\pi}_{MLE}$, and \mathcal{P}_n is the collection for all possible permutation matrices on [n].

2 Theorem

Theorem 1 (Achivability of MLE with non-symmetric observations). Consider the observations $(\mathcal{A}, \mathcal{B})$ from model (1) with true permutation π^* . Assume n is large enough and

$$\rho^2 \ge \frac{C_0 \log n}{n^{m-1}},$$

for some $C_0 > 0$. Then, the MLE $\hat{\pi}_{MLE}$ exactly recovers true permutation π^* ; i.e., $\hat{\pi}_{MLE} = \pi^*$ with probability tends to 1.

Proof of Theorem 1. Without the loss of generality, assume the true permutation π^* is the identity mapping. With observations $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n^{\otimes m}}$, consider the loss function

$$\mathcal{L}(\pi, \mathcal{A}, \mathcal{B}) = \langle \mathcal{A} \times_1 \Pi \times_2 \cdots \times_m \Pi, \mathcal{B} \rangle,$$

where $\Pi \in \{0,1\}^{n \times n}$ is the permutation matrix corresponding to π . We define the difference

$$\Delta(\pi) := \mathcal{L}(\pi, \mathcal{A}, \mathcal{B}) - \mathcal{L}(\pi^*, \mathcal{A}, \mathcal{B})$$

$$= \rho \sum_{\omega \in [n]^m} (\mathcal{A}_{\pi \circ \omega} - \mathcal{A}_{\omega}) \mathcal{A}_{\omega} + \sqrt{1 - \rho^2} \sum_{\omega \in [n]^m} (\mathcal{A}_{\pi \circ \omega} - \mathcal{A}_{\omega}) \mathcal{Z}_{\omega},$$

where the second equality follows from the fact that $\mathcal{B} = \rho \mathcal{A} + \sqrt{1 - \rho^2} \mathcal{Z}$, where $\mathcal{Z}_{\omega} \sim N(0, 1)$ for all $\omega \in [n]^m$ independently and \mathcal{Z} is independent with \mathcal{A} . Hence, to show the exact recovery of MLE $\hat{\pi}$ with high probability, it suffices to show that

$$\mathbb{P}(\hat{\pi}_{MLE} \neq \pi^*) = \mathbb{P}(\text{exists a } \pi \neq \pi^* \text{ such that } \Delta(\pi) \geq 0) = o(1).$$

Note that

$$\sum_{\boldsymbol{\omega} \in [n]^m} (\mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{A}_{\boldsymbol{\omega}}) \mathcal{A}_{\boldsymbol{\omega}} = -\frac{1}{2} (\|\mathcal{A}\|_F^2 + \|\pi \circ \mathcal{A}\|_F^2 - 2 \langle \mathcal{A}, \pi \circ \mathcal{A} \rangle) = -\frac{1}{2} \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2,$$

and conditional on \mathcal{A} we have $\sum_{\boldsymbol{\omega} \in [n]^m} (\mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{A}_{\boldsymbol{\omega}}) \mathcal{Z}_{\boldsymbol{\omega}} \sim N(0, \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2)$.

Then, given a permutation π , we have

$$\mathbb{P}(\Delta(\pi) \geq 0) = \mathbb{E}[\mathbb{E}[\mathbb{1}\{\Delta(\pi) \geq 0\} | \mathcal{A}]]
\leq \mathbb{E}\left[\mathbb{P}\left(-\frac{\rho}{2} \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2 + \sqrt{1 - \rho^2} N(0, \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2) \geq 0 \middle| \mathcal{A}\right)\right]
\leq \mathbb{E}\left[\mathbb{P}\left(N(0, 1) \geq \frac{\rho \|\pi \circ \mathcal{A} - \mathcal{A}\|_F}{2\sqrt{1 - \rho^2}} \middle| \mathcal{A}\right)\right]
\leq \mathbb{E}\left[\exp\left(-\frac{\rho^2}{8} \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2\right)\right],$$
(2)

where the last inequality follows from the inequality that $\mathbb{P}(N(0,1) \ge t) \le \exp(-t^2/2)$ for all $t \ge 0$ and $1 - \rho^2 \le 1$.

Above statements also work for symmetric observations. Following statements only works for non-symmetric observations since we may have a different lower bound for $\|\pi \circ \mathcal{A} - \mathcal{A}\|_F$.

Now, to bound the probability $\mathbb{P}(\Delta(\pi) \geq 0)$, we need to find the lower bound of $\|\pi \circ \mathcal{A} - \mathcal{A}\|_F$ which represents edge permutation error brought by π . Intuitively, more node disagreements in π lead to more edges disagreements between $\pi \circ \mathcal{A}$ and \mathcal{A} . Propositions 1 and 2 provide the relationship between the node disagreements and edge disagreement with non-symmetric observations.

Let $D_{\pi} = \{i \in [n] : \pi(i) \neq i\}$ denote the set of unfixed points of π and $D_{\pi}^{m,E} = \{\omega \in [n]^m : \pi \circ \omega \neq \omega\}$ denote the set of unfixed order-m edges of π . Consider the event

$$E(\mathcal{A}) := \{ \text{for all } \pi \neq \pi^*, \quad \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2 \ge 2|D_\pi^{m,E}|(1 - \epsilon_n) \},$$
 (3)

where $\epsilon_n = \frac{C}{2} \sqrt{\log n/n^{m-1}}$. By Proposition 2, we have $\mathbb{P}(E^c(\mathcal{A})) = o(1)$.

Let $\mathcal{P}_{n,d}$ be the collection of all the permutations π with $|D_{\pi}| = d$. We have

$$\mathbb{P}(\hat{\pi}_{MLE} \neq \pi^*) = \mathbb{P}(\text{exists a } \pi \neq \pi^* \text{ such that } \Delta(\pi) \geq 0)$$

$$\leq \mathbb{P}(E^c(\mathcal{A})) + \sum_{\pi \neq \pi^*} \mathbb{P}(E(\mathcal{A}), \ \Delta(\pi) \geq 0)$$

$$\leq o(1) + \sum_{d=2,\dots,n} \sum_{\pi \in \mathcal{P}_{n,d}} \mathbb{E}\Big[\mathbb{E}[\mathbb{1}\{\Delta(\pi) \geq 0\} | \mathcal{A}]\mathbb{1}\{E(\mathcal{A})\}\Big]$$

$$\leq o(1) + \sum_{d=2,\dots,n} \sum_{\pi \in \mathcal{P}_{n,d}} \exp\left(-\frac{\rho^2}{4}(1 - \epsilon_n) | D_{\pi}^{m,E}|\right)$$

$$\leq o(1) + \sum_{d=2,\dots,n} n^d \exp\left(-\frac{\rho^2}{4}(1 - \epsilon_n) dn^{m-1}\right)$$

$$= o(1),$$

where the last second inequality follows from inequality (2) and the definition of $E(\mathcal{A})$ (3), the last inequality follows from Proposition 1 and the fact that $|\mathcal{P}_{n,d}| \leq n^d$, and the last equality holds under the assumption that $\rho^2 \geq \frac{C_0 \log n}{n^{m-1}}$ for some positive constant C_0 .

Proposition 1 (Relationship between unfixed points and unfixed edges). Suppose we have a permutation π on [n]. Let $D_{\pi} = \{i \in [n] : \pi(i) \neq i\}$ denote the set of unfixed points of π and $D_{\pi}^{m,E} = \{\omega \in [n]^m : \pi \circ \omega \neq \omega\}$ denote the set of unfixed order-m edges. Then, we have

$$n^{m-1}|D_{\pi}| \le |D_{\pi}^{m,E}| \le mn^{m-1}|D_{\pi}|.$$

Proof of Proposition 1. For simplicity, let $d = |D_{\pi}|$ and $d^E = |D_{\pi}^{m,E}|$. Note that

$$d^{E} = \sum_{k=0}^{m-1} (n-d)^{k} d^{m-k} \binom{m}{k},$$

where k refers to the number of fixed points (i.e., $\pi(i) = i$) and the unfixed order-m edge at most have m-1 fixed points, $(n-d)^k$ refers to all the combinations of fixed points and d^{m-k} refers to all the combinations of unfixed points in the edge, and $\binom{m}{k}$ is the number of all position positions for fixed points. By Binomial Identity, we have

$$n^{m-1}d \le d^E = n^m - (n-d)^m = n^m \left[1 - \left(1 - \frac{d}{n}\right)^m\right] \le mn^{m-1}d$$

where the first inequality follows from the fact that $(1-x)^m \le 1-x$ for $x \in (0,1)$ and the second inequality follows from the inequality that $(1-x)^m \ge 1-mx$ for $x \ge -1$.

Proposition 2 (Edge disagreement with permutation π). Suppose we have an order-m observation $\mathcal{A} \in \mathbb{R}^{n^{\otimes m}}$ with i.i.d. standard Gaussian entries. Let $D_{\pi}^{m,E} = \{\omega \in [n]^m : \pi \circ \omega \neq \omega\}$ denote the set of unfixed order-m edges. We have the expectation

$$\mathbb{E}\left[\|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2\right] = 2|D_{\pi}^{m,E}|,$$

and there exists a positive constant C such that

$$\left| \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2 - 2|D_{\pi}^{m,E}| \right| \le C|D_{\pi}^{m,E}|\sqrt{\frac{\log n}{n^{m-1}}},$$

with high probability.

Proof of Proposition 2. Note that

$$\mathbb{E}\left[\|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2\right] = \sum_{\boldsymbol{\omega} \in [n]^m} \mathbb{E}\left[(\mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{A}_{\boldsymbol{\omega}})^2\right] = \sum_{\boldsymbol{\omega} \in D_{\pi}^{m,E}} \mathbb{E}\left[(\mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{A}_{\boldsymbol{\omega}})^2\right] = 2|D_{\pi}^{m,E}|,$$

where the last equation follows from the fact that $\mathcal{A}_{\pi \circ \omega} - \mathcal{A}_{\omega} \sim N(0,2)$ for all $\omega \in D_{\pi}^{m,E}$.

Following the proof of Corollary 1.1 in Ganassali (2020), with high probability, we have

$$\left| \|\pi \circ \mathcal{A} - \mathcal{A}\|_F^2 - 2|D_{\pi}^{m,E}| \right| \le C' \sqrt{|D_{\pi}^{m,E}| d_{\pi} \log n} \le C|D_{\pi}^{m,E}| \sqrt{\frac{\log n}{n^{m-1}}},$$

where $d_{\pi} = |\{i \in [n] : \pi(i) \neq i\}|$ is the number of unfixed points in π , and the second inequality follows from the Proposition 1.

3 Q&A

1. How the symmetry of observations affects the MLE phase transition theorem?

Maximizing likelihood function is equivalent to minimizing the loss $\sum_{\boldsymbol{\omega} \in [n]^m} (\mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{B}_{\boldsymbol{\omega}})^2$, which measures the edge difference between the permuted \mathcal{A} and \mathcal{B} with given permutation π and and correlation ρ . Note that $\mathcal{B}_{\boldsymbol{\omega}} = \rho \mathcal{A}_{\pi^* \circ \boldsymbol{\omega}} + \sqrt{1 - \rho^2} Z$, where Z is an standard normal variable independent with \mathcal{A}, \mathcal{B} . The edge difference comes from two aspects: 1) the noise $\sqrt{1 - \rho^2} Z$ and 2) the error in edge permutation $\mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{A}_{\pi^* \circ \boldsymbol{\omega}}$, which is control by ρ and π , respectively.

Intuitively, if the likelihood is dominated by the error in edge permutation, then true permutation π^* can be easily recovered by MLE since π^* leads to 0 edge permutation error. Hence, we need to find the lower bound of the edge permutation error with given π and find the noise condition to make the edge permutation error dominant in likelihood.

With a given permutation π , symmetry or non-symmetry of the observations lead to different relationships between the node disagreements and the edge permutation error. Without loss of generality, we assume π^* is identity mapping. Then, the edge permutation error $\mathcal{A}_{\pi \circ \omega} - \mathcal{A}_{\omega} \neq 0$ if

- (1) \mathcal{A} is non-symmetric and $\pi \circ \omega \neq \omega$;
- (2) \mathcal{A} is super-symmetric and $\pi \circ \boldsymbol{\omega} \notin \{v = (v_1, \dots, v_m) \in [n]^m : \{v_1, \dots, v_m\} = \{\omega_1, \dots, \omega_m\}\}.$

For example, $A_{1,2,3} \neq A_{2,1,3}$ in non-symmetric case but $A_{1,2,3} = A_{2,1,3}$ in super-symmetric case. Therefore, we have

 $\{\boldsymbol{\omega} \in [n]^m : \mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{A}_{\boldsymbol{\omega}} \neq 0, \mathcal{A} \text{ is super-symmetric}\} \subset \{\boldsymbol{\omega} \in [n]^m : \mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{A}_{\boldsymbol{\omega}} \neq 0, \mathcal{A} \text{ is non-symmetric}\}.$

This implies that under the same node permutation π , the non-symmetric observation has a larger edge permutation error than that for symmetric observations. So, it is more easier for MLE to recover true permutation in non-symmetric observations, and thus we will have a looser noise condition for ρ^2 .

Since we need to find the lower bound of the permutation error, in symmetric case, we need to find the lower bound of $|\{\boldsymbol{\omega} \in [n]^m : \mathcal{A}_{\pi \circ \boldsymbol{\omega}} - \mathcal{A}_{\boldsymbol{\omega}} \neq 0, \mathcal{A} \text{ is super-symmetric}\}|$ which is difficult when m > 3. Because you need to exclude the edges $\boldsymbol{\omega} = (\omega_1, \ldots, \omega_m)$ such that $\{\omega_1, \ldots, \omega_m\} = \{\pi(\omega_1), \ldots, \pi(\omega_m)\}$ and $\pi(\omega_i) \neq \omega_i$ for $i \in [m]$ (for example $\boldsymbol{\omega} = (1, 2, 3, 4)$ with $\pi(\boldsymbol{\omega}) = (3, 1, 4, 2)$).

References

Ganassali, L. (2020). Sharp threshold for alignment of graph databases with gaussian weights. arXiv preprint arXiv:2010.16295.