Newtons Axiome

- 1 Masse, Beschleunigung und Kraft: Die Newtonschen Gesetze
 - Zielpunkt: Was ist Kraft? Und was ist Masse?
 - Newtons 3 Gesetze
 - Historisches
 - Erdanziehung, Fallbeschleunigung und Masse

- Zielpunkt: Was ist Kraft? Und was ist Masse?
- Newtons 3 Gesetze
- Historisches
- Erdanziehung, Fallbeschleunigung und Masse

- Masse, Beschleunigung und Kraft: Die Newtonschen Gesetze
 - Zielpunkt: Was ist Kraft? Und was ist Masse?
 - Newtons 3 Gesetze
 - Historisches
 - Erdanziehung, Fallbeschleunigung und Masse

Was weiß unsere Black Box nun?

- Wir fliegen weiterhin mit unserem Raumschiff durchs All.
- Unsere neugierige künstliche Intelligenz hat ein bisschen was gelernt:
 - Wie sprechen wir präzise über den Ort von etwas?
 - Wie beschreiben wir Ortsveränderungen mit der Zeit?
 - ightarrow Das ist die Geschwindigkeit.
 - Wie beschreiben wir Geschwindigkeitsänderungen mit der Zeit?
 - → Das ist die Beschleunigung.
- Seine nächste Frage lautet:
 - Nach welchen Gesetzen bewegen sich die Dinge durch den Raum?
- Bisher haben wir nur Definitionen besprochen.
- Nun kommt endlich Physik: Zwei eng verflochtene Begriffe:
 - Was ist Masse?
 - ▶ Was ist Kraft?

- Masse, Beschleunigung und Kraft: Die Newtonschen Gesetze
 - Zielpunkt: Was ist Kraft? Und was ist Masse?
 - Newtons 3 Gesetze
 - Historisches
 - Erdanziehung, Fallbeschleunigung und Masse

- Wir zeigen ihm 3 Kugeln. Diese heißen a, b und c.
- Wir lassen diese einfach mal los.
- Was wird passieren? Wie werden sie sich bewegen?

- Wir zeigen ihm 3 Kugeln. Diese heißen a, b und c.
- Wir lassen diese einfach mal los.
- Was wird passieren? Wie werden sie sich bewegen?
 - ► Falls sie sich anfangs bewegen, fliegen sie einfach immer weiter.

- Wir zeigen ihm 3 Kugeln. Diese heißen a, b und c.
- Wir lassen diese einfach mal los.
- Was wird passieren? Wie werden sie sich bewegen?
 - ▶ Falls sie sich anfangs bewegen, fliegen sie einfach immer weiter.
 - Falls sie anfangs ruhen, bleiben sie ewig liegen.

- Wir zeigen ihm 3 Kugeln. Diese heißen a, b und c.
- Wir lassen diese einfach mal los.
- Was wird passieren? Wie werden sie sich bewegen?
 - ► Falls sie sich anfangs bewegen, fliegen sie einfach immer weiter.
 - Falls sie anfangs ruhen, bleiben sie ewig liegen.

Das erste Newtonsche Gesetz

Ein Körper, auf den nichts einwirkt, ändert seinen Bewegungszustand nicht.

- Wir zeigen ihm 3 Kugeln. Diese heißen a, b und c.
- Wir lassen diese einfach mal los.
- Was wird passieren? Wie werden sie sich bewegen?
 - ► Falls sie sich anfangs bewegen, fliegen sie einfach immer weiter.
 - Falls sie anfangs ruhen, bleiben sie ewig liegen.

Das erste Newtonsche Gesetz

Ein Körper, auf den nichts einwirkt, ändert seinen Bewegungszustand nicht.

⇒ Um den Bewegungszustand zu ändern, braucht es eine Ursache.

- Wir zeigen ihm 3 Kugeln. Diese heißen a, b und c.
- Wir lassen diese einfach mal los.
- Was wird passieren? Wie werden sie sich bewegen?
 - ► Falls sie sich anfangs bewegen, fliegen sie einfach immer weiter.
 - Falls sie anfangs ruhen, bleiben sie ewig liegen.

Das erste Newtonsche Gesetz

Ein Körper, auf den nichts einwirkt, ändert seinen Bewegungszustand nicht.

- ⇒ Um den Bewegungszustand zu ändern, braucht es eine Ursache.
 - Diese Ursache nennen wir Kraft.

- Wir zeigen ihm 3 Kugeln. Diese heißen a, b und c.
- Wir lassen diese einfach mal los.
- Was wird passieren? Wie werden sie sich bewegen?
 - ► Falls sie sich anfangs bewegen, fliegen sie einfach immer weiter.
 - Falls sie anfangs ruhen, bleiben sie ewig liegen.

Das erste Newtonsche Gesetz

Ein Körper, auf den nichts einwirkt, ändert seinen Bewegungszustand nicht.

- ⇒ Um den Bewegungszustand zu ändern, braucht es eine Ursache.
 - Diese Ursache nennen wir Kraft.

Definition (Kraft)

Kraft ist die Ursache von Beschleunigung.

• Wir nennen die Ursache der Beschleunigung "Kraft".

- Wir nennen die Ursache der Beschleunigung "Kraft".
- Wenn wir eine große Beschleunigung sehen, nennen wir die Kraft groß.

- Wir nennen die Ursache der Beschleunigung "Kraft".
- Wenn wir eine große Beschleunigung sehen, nennen wir die Kraft groß.
- Wir schreiben also

 $F \sim a$ Was man auch schreiben kann als

F = ma

- Wir nennen die Ursache der Beschleunigung "Kraft".
- Wenn wir eine große Beschleunigung sehen, nennen wir die Kraft groß.
- Wir schreiben also

 $F \sim a$ Was man auch schreiben kann als

F = ma

Das zweite Newton'sche Axiom

Kraft ist das Produkt aus Masse und Beschleunigung:

Kraft=Masse × Beschleunigung

- Wir nennen die Ursache der Beschleunigung "Kraft".
- Wenn wir eine große Beschleunigung sehen, nennen wir die Kraft groß.
- Wir schreiben also

 $F \sim a$ Was man auch schreiben kann als

F = ma

Das zweite Newton'sche Axiom

Kraft ist das Produkt aus Masse und Beschleunigung:

Kraft=Masse × Beschleunigung

Noch ist das eine reine Definition.

- Wir nennen die Ursache der Beschleunigung "Kraft".
- Wenn wir eine große Beschleunigung sehen, nennen wir die Kraft groß.
- Wir schreiben also

 $F \sim a$ Was man auch schreiben kann als

F = ma

Das zweite Newton'sche Axiom

Kraft ist das Produkt aus Masse und Beschleunigung:

Kraft=Masse × Beschleunigung

- Noch ist das eine reine Definition.
- Wir beobachten nur a.

- Wir nennen die Ursache der Beschleunigung "Kraft".
- Wenn wir eine große Beschleunigung sehen, nennen wir die Kraft groß.
- Wir schreiben also

 $F \sim a$ Was man auch schreiben kann als

F = ma

Das zweite Newton'sche Axiom

Kraft ist das Produkt aus Masse und Beschleunigung:

Kraft=Masse × Beschleunigung

- Noch ist das eine reine Definition.
- Wir beobachten nur a.
- Noch wissen wir nicht, was genau F und m sein sollen.

• Auf unserem Raumschiff gibt es ein kleines Äffchen.

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:
- Das Äffchen drückt die Kugeln auseinander.

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:
- Das Äffchen drückt die Kugeln auseinander.
- Hinterher sieht es immer so aus:

Und immer gilt

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:
- Das Äffchen drückt die Kugeln auseinander.
- Hinterher sieht es immer so aus:

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:
- Das Äffchen drückt die Kugeln auseinander.
- Hinterher sieht es immer so aus:

Und **immer** gilt $v_a = -v_b$

Bewegungsrichtung genau entgegengesetzt

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:
- Das Äffchen drückt die Kugeln auseinander.
- Hinterher sieht es immer so aus:

- Bewegungsrichtung genau entgegengesetzt
- ▶ Der Geschwindigkeitsbetrag beider Kugeln ist gleich.

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:
- Das Äffchen drückt die Kugeln auseinander.
- Hinterher sieht es immer so aus:

- Bewegungsrichtung genau entgegengesetzt
- Der Geschwindigkeitsbetrag beider Kugeln ist gleich.
- Die Einwirkung des Äffchens auf die Kugeln ist eine Kraft.

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:
- Das Äffchen drückt die Kugeln auseinander.
- Hinterher sieht es immer so aus:

- Bewegungsrichtung genau entgegengesetzt
- Der Geschwindigkeitsbetrag beider Kugeln ist gleich.
- Die Einwirkung des Äffchens auf die Kugeln ist eine Kraft.
- Wir bezeichnen die Kraft mit der Variablen F.

- Auf unserem Raumschiff gibt es ein kleines Äffchen.
- Wir setzen es zwischen die identischen Kugeln a und b:
- Das Äffchen drückt die Kugeln auseinander.
- Hinterher sieht es immer so aus:

Und **immer** gilt $v_a = -v_b$

- Bewegungsrichtung genau entgegengesetzt
- ▶ Der Geschwindigkeitsbetrag beider Kugeln ist gleich.
- Die Einwirkung des Äffchens auf die Kugeln ist eine Kraft.
- Wir bezeichnen die Kraft mit der Variablen F.

Das dritte Newtonsche Gesetz

Eine Kraft \digamma ist immer von einer gleich großen entgegengesetzen Kraft $-\digamma$ begleitet.

• Jetzt betrachten wir die Kugeln **b** und **c**. Sie sind **nicht** identisch.

- Jetzt betrachten wir die Kugeln **b** und **c**. Sie sind **nicht** identisch.
- Was Äffchen auch macht, es ergibt sich:

- Jetzt betrachten wir die Kugeln b und c. Sie sind nicht identisch.
- Was Äffchen auch macht, es ergibt sich:

Und immer gilt $v_b = -2v_c$

Das gilt ganz allgemein, die 2 ist Zufall

Andere Kugeln ergeben ein anderes Geschwindigkeitsverhältnis. Aber für ein gegebenes Paar Kugeln ist das Verhältnis immer gleich.

- Jetzt betrachten wir die Kugeln b und c. Sie sind nicht identisch.
- Was Äffchen auch macht, es ergibt sich:

Und immer gilt $v_b = -2v_c$

Das gilt ganz allgemein, die 2 ist Zufall

Andere Kugeln ergeben ein anderes Geschwindigkeitsverhältnis. Aber für ein gegebenes Paar Kugeln ist das Verhältnis immer gleich.

• Dasselbe Verhältnis gilt dann auch für die Beschleunigungen:

$$a_b = -2a_c$$

- Jetzt betrachten wir die Kugeln **b** und **c**. Sie sind **nicht** identisch.
- Was Äffchen auch macht, es ergibt sich:

Und immer gilt $v_b = -2v_c$

Das gilt ganz allgemein, die 2 ist Zufall

Andere Kugeln ergeben ein anderes Geschwindigkeitsverhältnis. Aber für ein gegebenes Paar Kugeln ist das Verhältnis immer gleich.

Dasselbe Verhältnis gilt dann auch für die Beschleunigungen:

$$a_b = -2a_c$$

Wir wissen aber, dass auf beide Kugeln dieselbe Kraft wirkt.

Physik (3)

- Jetzt betrachten wir die Kugeln b und c. Sie sind nicht identisch.
- Was Äffchen auch macht, es ergibt sich:

Und immer gilt $v_h = -2v_c$

Das gilt ganz allgemein, die 2 ist Zufall

Andere Kugeln ergeben ein anderes Geschwindigkeitsverhältnis. Aber für ein gegebenes Paar Kugeln ist das Verhältnis immer gleich.

• Dasselbe Verhältnis gilt dann auch für die Beschleunigungen:

$$a_b = -2a_c$$

- Wir wissen aber, dass auf beide Kugeln dieselbe Kraft wirkt.
- ⇒ Dieselbe Kraft beschleunigt die Kugeln unterschiedlich.

Physik (3)

- Jetzt betrachten wir die Kugeln b und c. Sie sind nicht identisch.
- Was Äffchen auch macht, es ergibt sich:

Und immer gilt $v_b = -2v_c$

Das gilt ganz allgemein, die 2 ist Zufall

Andere Kugeln ergeben ein anderes Geschwindigkeitsverhältnis. Aber für ein gegebenes Paar Kugeln ist das Verhältnis immer gleich.

Dasselbe Verhältnis gilt dann auch für die Beschleunigungen:

$$a_b = -2a_c$$

- Wir wissen aber, dass auf beide Kugeln dieselbe Kraft wirkt.
- ⇒ Dieselbe Kraft beschleunigt die Kugeln unterschiedlich.
 - Kugel c setzt der Beschleunigung mehr Widerstand entgegen.

• Wir haben also 3 Gleichungen:

$$a_b = -2a_c \tag{1}$$

$$F_b = -F_c \tag{2}$$

$$=$$
 ma (3)

• Wir haben also 3 Gleichungen:

$$a_{\mathbf{b}} = -2a_{\mathbf{c}} \tag{1}$$

• Wir setzen (3) in (2) ein:

$$F_h = -F_c$$

• Wir haben also 3 Gleichungen:

$$a_{\mathbf{b}} = -2a_{\mathbf{c}} \tag{1}$$

• Wir setzen (3) in (2) ein:

$$F_h = m_h a_h = -F_c$$

• Wir haben also 3 Gleichungen:

$$a_{\mathbf{b}} = -2a_{\mathbf{c}} \tag{1}$$

• Wir setzen (3) in (2) ein:

$$m_b a_b = -F_c$$

• Wir haben also 3 Gleichungen:

$$a_{\mathbf{b}} = -2a_{\mathbf{c}} \tag{1}$$

• Wir setzen (3) in (2) ein:

$$m_b a_b = -m_c a_c = -F_c$$

• Wir haben also 3 Gleichungen:

$$a_{\mathbf{b}} = -2a_{\mathbf{c}} \tag{1}$$

• Wir setzen (3) in (2) ein:

$$m_b a_b = -m_c a_c$$

• Wir haben also 3 Gleichungen:

$$\begin{array}{ccc}
a_{b} & = & -2a_{c} \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

• Wir setzen (3) in (2) ein:

$$m_{\mathbf{b}}a_{\mathbf{b}} = -m_{\mathbf{c}}a_{\mathbf{c}}$$

• Nun setzen wir wiederum (1) ein:

Wir haben also 3 Gleichungen:

$$\begin{array}{ccc}
a_{\mathbf{b}} & = & -2a_{\mathbf{c}} \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} \tag{1}$$

$$F = ma$$
 (3)

• Wir setzen (3) in (2) ein:

$$m_{\mathbf{b}}a_{\mathbf{b}} = -m_{\mathbf{c}}a_{\mathbf{c}}$$

• Nun setzen wir wiederum (1) ein:

$$m_b(-2a_c) = -m_ca_c$$

• Wir haben also 3 Gleichungen:

$$\begin{array}{rcl}
a_{\mathbf{b}} & = & -2a_{\mathbf{c}} \\
& \longrightarrow F_{\mathbf{b}} & = & -F_{\mathbf{c}}
\end{array} \tag{1}$$

$$F = ma$$
 (3)

• Wir setzen (3) in (2) ein:

$$m_{\mathbf{b}}a_{\mathbf{b}} = -m_{\mathbf{c}}a_{\mathbf{c}}$$

• Nun setzen wir wiederum (1) ein:

$$m_b(\neq 2a_c) = \neq m_c a_c$$

• Wir haben also 3 Gleichungen:

$$F = ma$$
 (3)

• Wir setzen (3) in (2) ein:

$$m_{\mathbf{b}}a_{\mathbf{b}} = -m_{\mathbf{c}}a_{\mathbf{c}}$$

• Nun setzen wir wiederum (1) ein:

$$m_b(\cancel{-}2\cancel{\nearrow}_c) = \cancel{-}m_c\cancel{\nearrow}_c$$

Wir haben also 3 Gleichungen:

$$\begin{array}{ccc}
a_{\mathbf{b}} & = & -2a_{\mathbf{c}} \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array} \tag{1}$$

$$F = ma$$
 (2)

• Wir setzen (3) in (2) ein:

$$m_{\mathbf{b}}a_{\mathbf{b}} = -m_{\mathbf{c}}a_{\mathbf{c}}$$

• Nun setzen wir wiederum (1) ein:

$$m_{\mathbf{b}}(\cancel{2}\cancel{2}) = \cancel{m_{\mathbf{c}}\cancel{2}}$$

$$2m_{\mathbf{b}} = m_{\mathbf{c}}$$

Wir haben also 3 Gleichungen:

$$a_b = -2a_c \tag{1}$$

• Wir setzen (3) in (2) ein:

$$m_{\mathbf{b}}a_{\mathbf{b}} = -m_{\mathbf{c}}a_{\mathbf{c}}$$

• Nun setzen wir wiederum (1) ein:

$$m_{\mathbf{b}}(\cancel{2}\cancel{2}\cancel{c}) = \cancel{/}m_{\mathbf{c}}\cancel{2}\cancel{c}$$
$$2m_{\mathbf{b}} = m_{\mathbf{c}} \Leftrightarrow m_{\mathbf{b}} = \frac{1}{2}m_{\mathbf{c}}$$

Wir haben also 3 Gleichungen:

$$a_b = -2a_c \tag{1}$$

• Wir setzen (3) in (2) ein:

$$m_{\mathbf{b}}a_{\mathbf{b}} = -m_{\mathbf{c}}a_{\mathbf{c}}$$

• Nun setzen wir wiederum (1) ein:

$$\begin{split} m_{\pmb{b}}(\not -2\not \nearrow_{\pmb{c}}) &= \not -m_{\pmb{c}}\not \nearrow_{\pmb{c}} \\ 2m_{\pmb{b}} &= m_{\pmb{c}} \Leftrightarrow m_{\pmb{b}} = \frac{1}{2}m_{\pmb{c}} \end{split}$$

 \Rightarrow Das *m* von Kugel *c* ist doppelt so groß.

Deutung der Masse m

- Kugel c hat ein doppelt so großes m.
- Sie setzt der Beschleunigung doppelt so viel Widerstand entgegen.

Deutung der Masse m

- Kugel c hat ein doppelt so großes m.
- Sie setzt der Beschleunigung doppelt so viel Widerstand entgegen.

Deutung der Masse

Deutung der Masse m

- Kugel c hat ein doppelt so großes m.
- Sie setzt der Beschleunigung doppelt so viel Widerstand entgegen.

Deutung der Masse

Masse ist der Widerstand, den ein Körper der Beschleunigung entgegensetzt.

• Die Masse der Kugel **b** legen wir fest auf $m_b = 1 \text{ kg}^1$.

¹Und schicken sie nach Paris.

- Die Masse der Kugel **b** legen wir fest auf $m_b = 1 \text{ kg}^1$.
- Dann hat Kugel c die Masse $m_c =$

¹Und schicken sie nach Paris.

- Die Masse der Kugel **b** legen wir fest auf $m_b = 1 \text{ kg}^1$.
- Dann hat Kugel c die Masse $m_c = 2 \text{ kg}$.

¹Und schicken sie nach Paris.

- Die Masse der Kugel **b** legen wir fest auf $m_b = 1 \text{ kg}^1$.
- Dann hat Kugel c die Masse $m_c = 2 \text{ kg}$.
- Das 2. Newton'sche Axiom definiert damit auch die Einheit der Kraft:

$$F = ma$$
$$[F] = \frac{\text{kg m}}{\text{s}^2} = N$$

¹Und schicken sie nach Paris.

- Die Masse der Kugel **b** legen wir fest auf $m_b = 1 \text{ kg}^1$.
- Dann hat Kugel c die Masse $m_c = 2 \text{ kg}$.
- Das 2. Newton'sche Axiom definiert damit auch die Einheit der Kraft:

$$F = ma$$
$$[F] = \frac{\text{kg m}}{\text{s}^2} = \text{N}$$

Diese Einheit nennen wir nach ihrem Erfinder Newton.

¹Und schicken sie nach Paris.

- 1 Masse, Beschleunigung und Kraft: Die Newtonschen Gesetze
 - Zielpunkt: Was ist Kraft? Und was ist Masse?
 - Newtons 3 Gesetze
 - Historisches
 - Erdanziehung, Fallbeschleunigung und Masse

Isaac Newton

- Lebenszeit: Um 1700 (1642–1726)
- englischer Universalgelehrter
- Hauptwerk: Philosophiae Naturalis Principia Mathematica
 - Mathematische Grundlagen der Naturphilosophie
- Gravitationsgesetz + Bewegungsgesetze = Klassische Mechanik
 - ⇒ Aufgrund von Vorarbeiten von Galileo (1564 1642).
- entwickelte die Infinitesimalrechnung
 - ⇒ wohl unabhängig davon auch Gottfried Wilhelm Leibniz (1646–1716)
 - ▶ Einer der hässlichsten Streitigkeiten der Wissenschaftsgeschichte.

Isaac Newton

- Lebenszeit: Um 1700 (1642–1726)
- englischer Universalgelehrter
- Hauptwerk: Philosophiae Naturalis Principia Mathematica
 - Mathematische Grundlagen der Naturphilosophie
- Gravitationsgesetz + Bewegungsgesetze = Klassische Mechanik
 - \Rightarrow Aufgrund von Vorarbeiten von Galileo (1564 1642).
- entwickelte die Infinitesimalrechnung
 - ⇒ wohl unabhängig davon auch Gottfried Wilhelm Leibniz (1646–1716)
 - ▶ Einer der hässlichsten Streitigkeiten der Wissenschaftsgeschichte.

- 1 Masse, Beschleunigung und Kraft: Die Newtonschen Gesetze
 - Zielpunkt: Was ist Kraft? Und was ist Masse?
 - Newtons 3 Gesetze
 - Historisches
 - Erdanziehung, Fallbeschleunigung und Masse

Wir haben die Masse über die Beschleunigung eingeführt.

Wir haben die Masse über die Beschleunigung eingeführt.

Frage: Was ist Masse?

Wie würden wir beschreiben, was dieses ominöse m in unseren Gleichungen bedeutet?

Wir haben die Masse über die Beschleunigung eingeführt.

Frage: Was ist Masse?

Wie würden wir beschreiben, was dieses ominöse m in unseren Gleichungen bedeutet?

Antwort

Masse ist der Widerstand, den ein Körper der Beschleunigung entgegensetzt.

Wir haben die Masse über die Beschleunigung eingeführt.

Frage: Was ist Masse?

Wie würden wir beschreiben, was dieses ominöse m in unseren Gleichungen bedeutet?

Antwort

Masse ist der Widerstand, den ein Körper der Beschleunigung entgegensetzt.

Man spricht auch von der trägen Masse.

Eine wohlvertraute Tatsache

- Auf einen Körper im Schwerefeld der Erde wirkt überall die gleiche Kraft.
- \Rightarrow Diese Kraft (=Gewichtskraft F_g) ist proportional zu seiner Masse:

$$F_{g} = mg$$
 mit $g = 9.81 \frac{N}{kg}$

Daher im Alltag: **Gewicht** \approx **Masse**

• Wir bekommen eine 2. Definition der Masse!

 $\label{eq:ben:masse} \mbox{Eben: "Masse} = \mbox{Widerstand gegen Beschleunigung"}. \mbox{ Nun:}$

Eben: "Masse = Widerstand gegen Beschleunigung". Nun:

Frage: Was ist Masse?

Mit Blick darauf, wie wir Masse im Alltag messen, wie würden Sie jetzt Masse definieren?

Eben: "Masse = Widerstand gegen Beschleunigung". Nun:

Frage: Was ist Masse?

Mit Blick darauf, wie wir Masse im Alltag messen, wie würden Sie jetzt Masse definieren?

Antwort

Masse ist das Ausmaß, in dem das Schwerefeld der Erde Kraft auf einen Körper ausübt.

Eben: "Masse = Widerstand gegen Beschleunigung". Nun:

Frage: Was ist Masse?

Mit Blick darauf, wie wir Masse im Alltag messen, wie würden Sie jetzt Masse definieren?

Antwort

Masse ist das Ausmaß, in dem das Schwerefeld der Erde Kraft auf einen Körper ausübt.

Man spricht auch von der schweren Masse.

Zwei Messungen derselben Masse

• Im Prinzip müssten die schwere Masse m_s und die träge Masse m_t nicht gleich sein.

Zwei Messungen derselben Masse

- Im Prinzip müssten die schwere Masse m_s und die träge Masse m_t nicht gleich sein.
- Ein Gewicht hängt an einer Federwaage von der Decke.

Abbildung: *m* hängt und fällt.

Zwei Messungen derselben Masse

- Im Prinzip müssten die schwere Masse m_s und die träge Masse m_t nicht gleich sein.
- Ein Gewicht hängt an einer Federwaage von der Decke.

Messen durch Erdanziehung (wiegen):

 $F = m_s g$ (schwere Masse)

Abbildung: *m* hängt und fällt.

Zwei Messungen derselben Masse

- Im Prinzip müssten die schwere Masse m_s und die träge Masse m_t nicht gleich sein.
- Ein Gewicht hängt an einer Federwaage von der Decke.

Messen durch Erdanziehung (wiegen):

 $F = m_s g$ (schwere Masse)

Messen durch das 2. Newtonsche Gesetz (beschleunigen):

 $F = m_t a$ (träge Masse)

Abbildung: m hängt und fällt.

Zwei Messungen derselben Masse

- Im Prinzip müssten die schwere Masse m_s und die träge Masse m_t nicht gleich sein.
- Ein Gewicht hängt an einer Federwaage von der Decke.

Messen durch Erdanziehung (wiegen):

 $F = m_s g$ (schwere Masse)

Messen durch das 2. Newtonsche Gesetz (beschleunigen):

 $F = m_t a$ (träge Masse)

Erst Kraftmessung mit der Federwaage, dann Messen der Beschleunigung durch diese Kraft.

Abbildung: m hängt und fällt.

• wir haben also zwei Gleichungen:

$$F = m_t a$$
 und $F = m_s g$

• wir haben also zwei Gleichungen:

$$F = m_t a$$
 und $F = m_s g$

• Man kann nun gleichsetzen (Kraft ist ja identisch, Gewichtskraft):

• wir haben also zwei Gleichungen:

$$F = m_t a$$
 und $F = m_s g$

• Man kann nun gleichsetzen (Kraft ist ja identisch, Gewichtskraft):

$$m_t a = m_s g$$

• wir haben also zwei Gleichungen:

$$F = m_t a$$
 und $F = m_s g$

Man kann nun gleichsetzen (Kraft ist ja identisch, Gewichtskraft):

$$m_t a = m_s g$$

• Wir messen immer, dass die Beschleunigung a immer gleich g ist.

$$a = g$$

• wir haben also zwei Gleichungen:

$$F = m_t a$$
 und $F = m_s g$

Man kann nun gleichsetzen (Kraft ist ja identisch, Gewichtskraft):

$$m_t a = m_s g$$

• Wir messen immer, dass die Beschleunigung a immer gleich g ist.

$$m_t = n$$

• wir haben also zwei Gleichungen:

$$F = m_t a$$
 und $F = m_s g$

• Man kann nun gleichsetzen (Kraft ist ja identisch, Gewichtskraft):

$$m_t a = m_s g$$

• Wir messen immer, dass die Beschleunigung a immer gleich g ist.

 \Rightarrow Schwere und träge Masse sind **immer** identisch. **Die** Masse m.

• wir haben also zwei Gleichungen:

$$F = m_t a$$
 und $F = m_s g$

• Man kann nun gleichsetzen (Kraft ist ja identisch, Gewichtskraft):

$$m_t a = m_s g$$

• Wir messen immer, dass die Beschleunigung a immer gleich g ist.

- \Rightarrow Schwere und träge Masse sind **immer** identisch. **Die** Masse m.
 - Einsteins allgemeine Relativitätstheorie vereinigt beide Begriffe.

Folge: Alles fällt gleich schnell

Definition (Das (schwache) Äquivalenzprinzip)

$$a = g$$

Alle Körper fallen gleich schnell, unabhängig von ihrer Masse.

- Körper mit größerer Masse haben eine größere Gewichtskraft.
- ⇒ werden heftiger beschleunigt.
 - gleichzeitig mehr Widerstand gegen die Beschleunigung.
 - Das gleicht sich genau aus.
 - Insgesamt ist die Beschleunigung also immer:

$$g = 9.81 \frac{m}{s^2} = 9.81 \frac{N}{kg}$$

• Dieses g wird oft angegeben, wenn es um Beschleunigungen geht.

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{6}$ bzw $\frac{km}{h}$?

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{6}$ bzw $\frac{km}{h}$?

Physik (3)

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{6}$ bzw $\frac{km}{h}$?

$$\begin{array}{c|cccc} t & v/\frac{m}{s} & v/\frac{km}{h} \\ \hline 1s & 10 & v/\frac{km}{s} & v/\frac{km}{h} \\ \hline \end{array}$$

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{6}$ bzw $\frac{km}{h}$?

$$\begin{array}{c|cccc}
t & v/\frac{m}{s} & v/\frac{km}{h} \\
\hline
1s & 10\frac{m}{s} \cdot 1 = 10\frac{m}{s}
\end{array}$$

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{s}$ bzw $\frac{km}{h}$?

$$\begin{array}{c|cccc} t & v/\frac{m}{s} & v/\frac{km}{h} \\ \hline 1s & 10\frac{m}{s} & 1 = 10\frac{m}{s} & 36\frac{km}{h} \end{array}$$

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{s}$ bzw $\frac{km}{h}$?

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{s}$ bzw $\frac{km}{h}$?

$$\begin{array}{c|cccc} t & \sqrt[y]{\frac{m}{s}} & \sqrt[y]{\frac{km}{h}} \\ \hline 1s & 10 & \frac{m}{s} \cdot 1 & = 10 & \frac{m}{s} & 36 & \frac{km}{h} \\ 2s & 10 & \frac{m}{s} \cdot 2 & = 20 & \frac{m}{s} & 72 & \frac{km}{h} \\ \end{array}$$

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{s}$ bzw $\frac{km}{h}$?

$$\begin{array}{c|cccc}
t & \sqrt{\frac{m}{m}} & \sqrt{\frac{km}{h}} \\
1s & 10 \frac{m}{s} \cdot 1 = 10 \frac{m}{s} & 36 \frac{km}{h} \\
2s & 10 \frac{m}{s} \cdot 2 = 20 \frac{m}{s} & 72 \frac{km}{h} \\
3s & & & & & & & \\
\end{array}$$

Im Freien Fall beschleunigt ein Körper mit der Beschleunigung g:

$$a_{Erde} = g = 9.81 \frac{\mathsf{m}}{\mathsf{s}^2} \approx 10 \frac{\mathsf{m}}{\mathsf{s}^2}$$

Beispiel

Wie schnell ist ein Stein, der aus dem Fenster fällt, nach 1,2,3 Sekunden in $\frac{m}{s}$ bzw $\frac{km}{h}$?

t	v/ <u>m</u>	v/ km h
1 s	$10 \frac{m}{s} \cdot 1 s = 10 \frac{m}{s}$	36 km h
$2\mathrm{s}$	$10 \frac{m}{s} \cdot 2 = 20 \frac{m}{s}$	72 <u>km</u>
3 s	$10 \frac{1}{s} \cdot 3 = 30 \frac{m}{s}$	108 <u>km</u>

Beispiel (Ein Blumentopf fällt aus dem Fenster)

Ein Blumentopf fällt aus dem Fenster. Nach welcher Zeit ist er $100\,\frac{\rm km}{\rm h}$ schnell?

a =

Beispiel (Ein Blumentopf fällt aus dem Fenster)

Ein Blumentopf fällt aus dem Fenster. Nach welcher Zeit ist er $100\,\frac{\rm km}{\rm h}$ schnell?

$$a = g =$$

Beispiel (Ein Blumentopf fällt aus dem Fenster)

Ein Blumentopf fällt aus dem Fenster. Nach welcher Zeit ist er $100\,\frac{\rm km}{\rm h}$ schnell?

$$a = g = \frac{\Delta v}{\Delta t}$$

Beispiel (Ein Blumentopf fällt aus dem Fenster)

Ein Blumentopf fällt aus dem Fenster. Nach welcher Zeit ist er $100\,\frac{\rm km}{\rm h}$ schnell?

$$a = g = \frac{\Delta v}{\Delta t}$$

$$\Rightarrow \Delta t =$$

Beispiel (Ein Blumentopf fällt aus dem Fenster)

Ein Blumentopf fällt aus dem Fenster. Nach welcher Zeit ist er $100\,\frac{\rm km}{\rm h}$ schnell?

$$\begin{aligned} \mathbf{a} &= \mathbf{g} = \frac{\Delta \mathbf{v}}{\Delta t} \\ \Rightarrow \Delta t &= \frac{\Delta \mathbf{v}}{\mathbf{g}} = \frac{100 \frac{\mathsf{km}}{\mathsf{h}}}{9.81 \frac{\mathsf{m}}{\mathsf{s}^2}} = \frac{100 \frac{1}{3.6} \frac{\mathsf{m}}{\mathsf{s}}}{9.81 \frac{\mathsf{m}}{\mathsf{s}^2}} \end{aligned}$$

Beispiel (Ein Blumentopf fällt aus dem Fenster)

Ein Blumentopf fällt aus dem Fenster. Nach welcher Zeit ist er $100\, \frac{\rm km}{\rm h}$ schnell?

$$a = g = \frac{\Delta v}{\Delta t}$$

$$\Rightarrow \Delta t = \frac{\Delta v}{g} = \frac{100 \frac{\text{km}}{\text{h}}}{9.81 \frac{\text{m}}{\text{s}^2}} = \frac{100 \frac{1}{3.6} \frac{\text{m}}{\text{s}}}{9.81 \frac{\text{m}}{\text{s}^2}}$$

$$= \frac{27.8 \frac{\text{m}}{\text{s}}}{9.81 \frac{\text{m}}{\text{s}^2}} = 2.8 \text{ s}$$

Beispiel (Ein Blumentopf fällt aus dem Fenster)

Ein Blumentopf fällt aus dem Fenster. Nach welcher Zeit ist er $100\, \frac{\rm km}{\rm h}$ schnell?

$$a = g = \frac{\Delta v}{\Delta t}$$

$$\Rightarrow \Delta t = \frac{\Delta v}{g} = \frac{100 \frac{\text{km}}{\text{h}}}{9.81 \frac{\text{m}}{\text{s}^2}} = \frac{100 \frac{1}{3.6} \frac{\text{m}}{\text{s}}}{9.81 \frac{\text{m}}{\text{s}^2}}$$

$$= \frac{27.8 \frac{\text{m}}{\text{s}}}{9.81 \frac{\text{m}}{\text{s}^2}} = 2.8 \text{ s}$$

Ein Porsche Carrera braucht das Doppelte, beschleunigt also mit etwa $0.5\,\mathrm{g}.$