

COMPUTER NETWORKS

AY2022-2023 Spring Semester
COMP1047 Systems & Architecture
Ying Weng
Computer Networks Part-5. Network Security

Ying Weng Network Security

Question

Are we hackers or crackers?

Ying Weng

Hackers vs. Crackers

- Hackers were originally 'tinkerers', putting systems or devices to novel uses.
- Driven by the search of knowledge or status.
- When vulnerabilities are found, normally warn the manufacturer to allow it to be fixed.
- Term co-opted by mainstream media to mean Cracker.

- Crackers always compromise systems for malicious purposes.
- Normally do not care about the consequences of their actions.
- Driven by financial gain or notoriety.
- Almost universally disliked by the rest of the security community.

Hackers vs. Crackers

- This can get very confusing!
- Legitimate programmers and enthusiasts will often refer to themselves as 'hackers'
 - —Often to a concerned reaction!
- So be aware of the differences

Hackers vs. Crackers

-We are Hackers, not Crackers

Glossary

Security Cracker

 Aims to break passwords and authentication with brute force or other common attacks

Software Cracker

Breaks software copy protection or restrictions

Discussion

Question:

Which hat do you wear?

Fill the "Coloured Hats" chart with

- (a) 'Employed Hackers' or Paid Good Guys
- (b) 'Cracker' or Bad Guys
- (c) 'Ethical Hackers' or Good Guys
- (d) 'Undecided'
- (e) Find Flaws to Improve Security
- (f) Normally Hackers with 'Questionable' Ethics
- (g) Compromise Systems for Financial or Other Gain
- (h) New Term for Experts Employed to Evaluate Security

Coloured Hats

Less Ethical

More Colours

- Originally evolved from Cold War military planning
- Red Team
 - Simulated attackers, designed to improve responses by thinking 'creatively'
- Blue Team
 - Defenders, responding to attacks and threats from the Red
 Team

Other Characters

Script Kiddie

• A cracker without the skills. Uses pre-built attacks simply to crack systems.

Social Engineer

 A special form of cracker that does not attack the technology. Instead targets the weakest element, humans.

Hacktivist

 A hacker who uses their skills to advance a social or political agenda. Usually does not wish to cause damage, but seeks publicity.

The 3 "A"s of Security

- ► AAA (or Triple A): an acronym
- Stands for:
 - Authentication
 - Authorisation
 - Auditing (or Accounting)

Roughly equivalent to the Identification, Technical Controls and Policy elements of the layered defences pyramid

The 3 "A"s of Security

Authentication

- i.e. use of passwords
- Biometrics

Authorisation

- After verifying the user's identity we still need to check their level of access
- Which computers are they allowed to access?
- Which actions are they allowed to perform?

Auditing

 We should record a user's access to data – this can be an effective deterrent to mischievous behaviour

Authentication

- ▶ "Are you who you say you are?"
- Direct analogue to the 'Identification' layer
- Can be established using simple mechanisms, password or cryptographic keys

- ▶ Better approach is Two-factor Authentication
 - Something you have **and** something you know...

Authentication Process

Authentication process is based on

- User knowledge
 - e.g. user name & password

e.g. key card, dongle

▶ i.e. biometrics – retina, palm,

fingerprint

Username:

admin

Password:

User Knowledge

We can use information that the brain is designed to remember

Humans are the Weakest Link

- The 'Wetware' (humans) are the weakest link in any security system
 - Make poor choices
 - Are easily coerced to reveal details
 - Forget details relatively easily
 - Do not fully understand the method of securing a system

Two Factor Authentication

- One of the best defences against brute forcing and poor credentials is Two Factor Authentication
- Requires two elements, in addition to the identification
 - A 'known' portion: a password, PIN or other credential
 - A 'physical' portion: a token or device with a temporally unique code

Two Factor Authentication

Live examples

- Google 2-Step Verification
- Location Aware Login
- One Time Password (OTP) Security Device

Ying Weng

Google 2-Step Verification

- Uses the user's own mobile phone or pager
- Site generates a request using Google's API
- User signs in with normal credentials
- User enters the code shown on their device or received via SMS

Sign in with your Google accounts Google Account Enter verification code Email: hikingfan@gmail.com ex: pat@example.com To verify your identity on this computer, enter the verification code generated by your mobile application. Password: Stay signed in Enter code: 466453 Verify Sign in Remember verification for this computer for 30 days. Can't access your account? Other ways to get a verification code »

Location Aware Login

 Either network geography, known as NLA – Network Location Aware

Or, regular geography where the device must be

detectable within range of a heacon

One Time Password (OTP) Security Device

- OTP is a password valid for either one session or transaction
- After use, it is immediately invalidated
- Security of these schemes are only as good as the delivery mechanism
 - If the password is shown on screen, then potentially anyone could request and obtain a password
 - If the password is delivered via SMS, then short of a in-depth compromise of the network or device – a reset is secure

1st generation OPT security device

2nd generation OPT security device

Authorisation

- "Are you allowed to do that action to that object?"
- Analogous to the 'Technical Controls' layer. This doesn't mean that the 'rules' are not backed by a Policy as well
- ▶ Could be File Permissions, Firewall Rules, Database Grants or a custom application control

Linux Filesystem

- Files
- Subdirectories (branches of Tree)
- Root

Linux File System is just like a tree

Filesystem Access Control

- Filesystem implements it's own access control system
- Only the filesystem implements user groups
- "everything is a file (descriptor)"

Filesystem Groups

- Every file has owner and a group
- Owners set permissions
- Can decide what owner, group owners, others can do with files
- e.g. permission bits: rwx

Question

- \triangleright w?
- > x?

Pemission bits

- r: the file owner has read privilege of this file
- > w: the file owner has write privilege of this file
- > x: the file owner has execution privilege of this file

Filesystem Groups

DMZ (De-Militarized Zone)

- In computer security, DMZ is named after the military usage of the term
- Also known as
 - Data Management Zone
 - Demarcation Zone
 - Perimeter Network
- A physical or logical subnetwork within which all servers hosting publicly accessible services are placed
- Contains and exposes an organization's external services to a larger, untrusted network, usually the Internet

DMZ (De-Militarized Zone)

- The purpose
 - To add an additional layer of security to an organization's LAN
 - An external attacker only has access to equipment in the DMZ, rather than the whole of the network

Question:

Do you know "What is an additional layer of security"?

Firewall

- A part of a computer system or network
- Designed to block unauthorised access while permitting authorised communications
- A device or a set of devices configured to permit, deny, encrypt, decrypt, or proxy all (in and out) computer traffic between different security domains based upon a set of rules and other criteria
- Can be implemented in either hardware or software, or a combination of both
- All messages entering or leaving the intranet pass through the firewall, which examines each message and blocks those that do not meet the specified security criteria

Single Firewall Architecture

Group Discussion

Question:

Can you draw the "Dual Firewall Architecture"?

Ying Weng

Evolution of the firewall

First paper referencing 'firewalls' published in 1988 by DEC.

- ➤ 1st Generation: Packet Filter
- ➤ 2nd Generation: Stateful Filter
- > 3rd Generation: Application Layer

1st Generation: Packet Filter

- 1st Gen Firewalls intercept network traffic and inspect packets
- Filter packets based on a set of simple rules
- Can filter on packet's source and destination address, its protocol, the port number
- Packets are allow to pass or dropped/blocked

2nd Generation: Stateful Filter

- 1st Generation filters have no memory of connections and do not know whether a packet is part of an ongoing network connection or a new packet
- 2nd Generation Filters perform stateful packet inspection and keep track of ongoing connections

2nd Generation: Stateful Filter

- Knowing whether a packet is part of an established connection means it's possible to only allow packet where the connection was established from inside the firewall
- Can be vulnerable to Denial of Service by bombardment

Ying Weng

3rd Generation: Application Layer

- Filter at the application Layer
- Understands Application Protocol
- e.g can tell the difference between HTTP traffic used to access a Web page and HTTP traffic used for file sharing, firewall that is only performing packet filtering would treat all HTTP traffic equally

Transaction is <u>split</u> in two: to client, firewall appears to be the server (transaction #1); to server, firewall appears to be the client (transaction #2)

Auditing (Accounting)

There is a record of you doing this action to this object at this time from this location."

- Potentially the most persuasive portion to discourage threats
- Allows enforcement of Policy elements, by providing evidence of wrong doing

What is an IDS?

- Intrusion Detection System
- Monitors
 - Network traffic
 - Unauthorised access
 - Suspicious activities

- Alerts the system or network administrator
- A last line of defence in the network security

Authentication, Authorisation, Auditing

- Responds to anomalous or malicious traffic by
 - Blocking the user
 - Source IP address from accessing to the network

Why use an IDS?

- Prevent problem behaviour by increasing attackers' perceived risk of discovery
- Document threats to an organisation and provide information about attacks that do take place
- Can help both learning and providing evidence
 - Detect and deal with precursors to attacks (scans & probes)
 - Detect / deflect / deter attacks not prevented by other mechanisms

Types of IDS

Based on the sources of the audit information used by each IDS, the IDS may be classified into

- Host-base IDS (HIDS)
- Network-based IDS (NIDS)

Types of IDS

HIDS

- Get audit data from host audit trails
- Detect attacks against a single host

NIDS

- Use network traffic as the audit data source
- Relieve the burden on the hosts that usually provide normal computing services
- Detect attacks from networks

Ying Weng Network Security

44