DIGITAL DESIGN

CS/ECE/EEE/INSTR F215

Lecture slides Sarang Dhongdi

Introduction

- Digital Systems and Binary numbers
- Boolean Algebra and Logic Gates
- Gate Level minimization
- Combinational Logic
- · Synchronous Sequential logic
- · Asynchronous Sequential logic
- Registers, counters, memory and programmable logic
- · Digital Integrated Circuits
- · Design of Digital Systems

Learning in the lab components

- · Hardware Lab-
- Usage of breadboard, Digital IC, LED panels, Switch boards
- AFG (Arbitrary Signal Generator)
- · DSO (Digital Storage Oscilloscope)
- Software Lab
- Verilog tool

Text books

- M.Moris Mano, "Digital Design", Pearson, 4th Edition, 2009.
- Brian Holdsworth, Clive Woods, "Digital Logic Design", Elsevier, 4th Edition, 2008

Reference books

- John.M.Yarbrough, "Digital Logic Design", Cengage Learning, 2009.
- Ronald.J.Tocci, Neal.S.Widmer, Gregory.L.Moss, "Digital Systems", 2007.
- Stephen Brown, Zvonko Vranesic, "Digital Logic with VHDL Design", McGraw Hill, 2013

Evaluation components

Component	Duration	Maximum Marks	Date	Remarks
		Theory		
Mid-Term Test	90 Min	60	11/10/2018	CB
			11.00 am to 12.30 pm	
Quiz-I	30 Min	10	28/08/2018	CB
			6.00 pm to 6.30 pm	
Quiz-II	30 Min	10	25/09/2018	OB
			6.00 pm to 6.30 pm	
Quiz-III	30 Min	10	23/10/2018	CB
			6.00 pm to 6.30 pm	
Quiz-IV	30 Min	10	20/11/2018	OB
			6.00 pm to 6.30 pm	
Comprehensive Examination	3 Hrs	100	08/12/2018 (FN)	CB/OB
			9.00 am to 12.00 noon	
		Lab		
H/w Lab Evaluation		50	Regularly	OB
Verilog Evaluation-I		10	23/09/2018	OB
			10.00 am to 5.00 pm	
Verilog Evaluation-II		10	18/11/2018	OB
			10.00 am to 5.00 pm	
H/w Lab Comprehensive		30	01/11-21/11	OB

Positional number representation

- Decimal number system Has base or radix 10 because it uses 10 digits and the coefficients are multiplied by the power of 10.
- In general, for decimal number $a_3a_2a_1a_0.a_1a_2a_3$, the value is calculated as

$$=10^3 a_3 + 10^2 a_2 + 10^1 a_1 + 10^0 a_0 + 10^{-1} a_{-1} + 10^{-2} a_{-2} + 10^{-3} a_{-3}$$

• Ex.
$$842.45 = 10^2 \times 8 + 10^1 \times 4 + 10^0 \times 2 + 10^{-1} \times 4 + 10^{-2} \times 5$$

Binary number system

- Base or radix of 2. Only 2 possible values 0 and 1.
- · Coefficients are multiplied with power of 2.
- Number 101.11 = $= 2^2 \times 1 + 2^1 \times 0 + 2^0 \times 1 + 2^{-1} \times 1 + 2^{-2} \times 1 = 5.75$
- In general, a number is represented in radix r (or base-r system) as follows:
- $\cdot r^n a_n + r^{n-1} a_{n-1} + \dots + r^2 a_2 + r^1 a_1 + r^0 a_0 + r^{-1} a_{-1} + r^{-2} a_{-2} + \dots + r^{-m} a_{-m}$
- · Here, coefficients are multiplied by power of r and coefficients range is from 0 to r-1.

Other numbering systems

- Octal numbering system
- Base 8
- · Numbers from 0 to 7 (Digits 8,9 do not appear)
- Number (123.4)₈ =

$$= 8^2 \times 1 + 8^1 \times 2 + 8^0 \times 3 + 8^{-1} \times 4 = (83.5)_{10}$$

- · Hexadecimal numbering system
- Base 16
- Numbers from 0 to 9 along with letters A to F
- Number (A3)₁₆ =

$$= 16^{1} \times 10 + 16^{0} \times 3 = (163)_{10}$$

Different numbering systems

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Number-Base conversion 8 100 4 2 100 0 16 100 4 8 12 4 2 | 50 0 16 6 6 8 | 1 1 0 2 25 1 0 $=(64)_{16}$ 2 | 12 0 2 6 0 $=(144)_8$ 2 3 1 2 1 1 $(100)_{10} = (1100100)_2$

Complements

- · Two types of complements:
 - Diminished Radix Complement ((r − 1)'s complement)
 - Radix Complement (r's complement)

Complements

- Diminished Radix Complement ((r 1)'s complement)
- In base-r, for a number N having n digits, (r-1)'s complement is $(r^n-1)-N$.
- Radix Complement (r's complement)
- In base-r, for a number N having n digits, r 's complement is rⁿ – N.

Complements

- 9's complement of 654 is 999-654 = 345.
- 10's complement of 654 is then 346.
- 1's complement of 0110 is 1001
- 2's complement is then 1010.
- Similarly complements for octal and hexadecimal numbers.

Subtraction using complements – Unsigned numbers

- The subtraction of two n-digit unsigned numbers M-N in base r
- - Add the minuend M to the r's complement of subtrahend N.
- - If M \geq N, then the sum will produce end-carry discard it.
- If M<N, the sum does not produce end-carry. Take r's complement of sum and place negative sign in front of it.

Using (r-1)'s complement

- In (r-1)'s complement -
- In case of end carry remove it and add 1 to the sum.
 - End-around carry
- In case of no carry, take (r-1)'s complement and put negative sign in front of the result.

Signed binary numbers

- · Negative binary numbers can be represented as -
- · Signed magnitude representation
- Signed 1's complement representation
- · Signed 2's complement representation

Signed magnitude representation

- In "unsigned binary numbers", symbol "+" or "-" is used for representing positive or negative numbers.
- In "Signed binary numbers" leftmost bit is used to represent the positive number (bit 0) or negative number (bit 1).
- · For example, in unsigned binary
- Number 01001 is +9 and number 11001 is +25.
- · Whereas, in signed binary number system
- Number 01001 is +9 and number 11001 is -9.

Signed magnitude representation

Decimal	Signed magnitude
+7	0111
+6	0110
+5	0101
+4	0100
+3	0011
+2	0010
+1	0001
+0	0000

Decimal	Signed magnitude
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000

Signed complement form

- · Negative numbers are represented by complement.
- · Signed 1's complement and signed 2's complement

Decimal	Signed 1's
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111

Decimal	Signed 2's
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

Binary arithmetic – signed complement

- Addition and subtraction in the 2's complement system are both carried out as additions.
- Subtrahends are regarded as negative numbers and are converted to their 2's complement form. They are then added to the positive minuend.
- When adding two negative numbers they are both converted to their 2's complement form before addition takes place.

Binary codes for decimal digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

ASCII Character Code

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	*	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	**	2	В	R	ь	r
0011	ETX	DC3	#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	*	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	1	k	{
1100	FF	FS	,	<	L	ĺ	1	Ĺ
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	Ā	n	~
1111	SI	US	1	?	O	-	o	DEL

Gray Code	Gray Code	Decimal Equivalent
	0000	0
	0001	1
	0011	2
	0010	3
	0110	4
	0111	5
	0101	6
	0100	7
	1100	8
	1101	9
	1111	10
	1110	11
	1010	12
	1011	13
	1001	14
	1000	15