3. zápočtová úloha z 01RAD

Jiří Franc

2021-12-16

3. zápočtová úloha z 01RAD

Popis úlohy

Datový soubor vychází z datasetu House Sales in King County, USA, který je k nalezení například na kaggle.com, nebo v knihovně library(moderndive) data house_prices. Původní dataset obsahuje prodejní ceny domů v oblasti King County, která obsahuje i město Seattle, a data byla nasbírána mezi květnem 2014 a květnem 2015. Pro naše potřeby bylo z datasetu vypuštěno jak několik proměnných, také byl dataset výrazně osekán a lehce modifikován.

Dále byl dataset již dopředu rozdělen na tři části, které všechny postupně v rámci 3. zápočtové úlohy využijete.

[1] "M:/01RAD/asignments/2021"

X	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
1	1	2395000	4	3.25	3800	19798	2.0	0
2	2	679000	3	2.50	2770	9350	2.0	0
3	3	664000	2	1.75	1720	5785	1.0	0
4	4	915000	5	2.50	2750	5589	1.5	0
5	5	450000	5	2.50	2850	209523	1.0	0
6	6	305000	4	2.50	2320	4683	2.0	0

view	condition	grade	sqft_above sqft	_basementy	r_built	yr_renovated sqft_	_living15	sqft_lot15	split
0	3	10	3800	0	1969	2009	3940	18975	train
3	3	8	2770	0	1957	2000	2660	9695	train
0	3	6	860	860	1948	2002	1680	5184	train
0	5	9	1840	910	1910	0	1460	4250	train
0	4	7	1930	920	1925	1968	2220	209523	train
0	3	7	2320	0	2007	0	2230	5750	train

Data celkem obsahují následujících 18 proměnných, přičemž naším cílem je prozkoumat vliv 12 z nich na cenu nemovitostí price. Přičemž anglický popis jednotlivých proměnných (sloupců) je následující:

Feature	Description		
id	Our notation for a house		
price	Price is prediction target		
bedrooms	Number of Bedrooms/House		
bathrooms	Number of Bathrooms/Bedrooms		
sqft_living	Square footage of the home		
sqft_lot	Square footage of the lot		
floors	Total floors (levels) in house		
waterfront	House which has a view to a waterfront		
view	Has been viewed		
condition	How good the condition is Overall		
grade	Overall grade given to the housing unit		
sqft_above	Square footage of house apart from basement		
sqft_basement	Square footage of the basement		
yr_built	Built Year		
yr_renovated	Year when house was renovated		
sqft_living15	Living room area in 2015 (implies—some renovations)		
sqft_lot15	lotSize area in 2015 (implies—some renovations)		
split	Splitting variable with train, test and validation sample		

Podmínky a body

Úkol i protokol vypracujte samostatně. Pokud na řešení nějaké úlohy budete přesto s někým spolupracovat, radit se, nezapomeňte to u odpovědi na danou otázku uvést. Tato zápočtová úloha obsahuje 10 otázek po 1 bodu. Celkem za 3 zápočtové úlohy bude možné získat 30 bodů, přičemž pro získání zápočtu je potřeba více jak 20. Další dodatečné body mohu případně individuálně udělit za řešení mini domácích úkolů z jednotlivých hodin.

Odevzdání

Protokol ve formátu pdf (včetně příslušného Rmd souboru) odevzdejte prostřednictvím MS Teams, nejpozději do 31. 1. 2022.

Průzkumová a grafická část:

• Otázka 01

Ověřte rozměry datového souboru, typy jednotlivých proměnných, a shrňte základní popisné charakteristiky všech proměnných. Vykreslete histogram a odhad hustoty pro odezvu price, dá se z toho již něco odvozovat pro budoucí analýzu?

• Otázka 02

Jsou všechny proměnné použitelné pro analýzu a predikci ceny nemovitostí? Pokud data obsahují chybějící hodnoty, (případně nesmyslné hodnoty), lze je nějak nahradit (upravit), nebo musíme data odstranit?

• Otázka 03

Zkontrolujte pro 4 vybranné proměnné (price, sqft_living, grade, yr_built) bylo-li rozdělení datasetu pomocí proměnné split náhodné. Tj mají zmíněné proměnné ve skupinách train, test a validation

Lineární model (použijte pouze trénovací data, tj. split == "train"):

Otázka 04

Spočtěte korelace mezi jednotlivými regressory a graficky je znázorněte. Dále spočtěte číso podmmíněnosti matice regresorů Kappa a VIF. Pokud se v datech vyskytuje znatelná multicollinearita, rozhodněte jaké proměnné a proč použijete v následném linárním modelu.

Otázka 05

Pouze pomocí trénovacích dat (tj., split == "train") a všech vybranných proměnných najděte vhodný lineární regresní model, který má za úkol predikovat co nejlépe cenu, tj. minimalizovat střední kvadratickou chybu reziduí (MSE). Jakou jinou metriku pro výběr modelu byste případně navrhovali a proč? U výsledného modelu porovnejte VIF a Kappa s původní celkovou maticí regresorů.

Otázka 06

Pro Vámi vybraný model z předešlé otázky spočtěte příslušné infulenční míry. Uveďtě id pro 20 pozorování s největší hodnotou DIFF, největší hodnotou leverage (hatvalues) a největší hodnotou Cookovy vzdálenosti. (tj. 3 krát 20 hodnot). Jaká pozorování považujete za vlivná a odlehlá pozorování a proč?

Otázka 07

Validujte model pomocí grafického znázornění reziduí (Residual vs Fitted, QQ-plot, Cookova vzdálenost, Leverages, ...). Identifikovali jste na základě této a předchozí otázky v datech nějaká podezřelá pozorování, která mohla vzniknout při úpravě datasetu? Doporučili byste tyto pozorování z dat odstranit?

Train, test, validation ...:

• Otázka 08

Pokud jste se rozhodli z dat odstranit nějaká pozorování, tak dále pracujtes s vyfiltrovaným datasetem a přetrénujte model z otázky 5. A spočtěte pro tento model R^2 statistiku a MSE jak na trénovacích tak testovacích datech (split == "test").

Otázka 09

Pomocí hřebenové regrese (případně pomocí LASSO a Elastic Net) zkuste najít nejlepší hyperparametr(y) tak, aby výsledný model měl co nejmenší MSE na testovacích datech. K odhadu regresních koeficientů použijte ale pouze trénovací data.

• Otázka 10

Vyberte výsledný model a porovnejte MSE a R^2 na trénovacích, testovacích a validačních datech. Co z těchto hodnot usuzujete o kvalitě modelu a případném přetrénování? Je váš model vhodný pro predikci cen nemovitostí v okolí King County? Pokud ano, má tato predikce nějaká omezeni?