

Modelo de Segurança

- Que ameaças existem sobre o sistema?
- Que ataques s\u00e3o poss\u00edveis?

• Assumiremos que existem muitas ameaças sobre o sistema

Programa

- 1. Redes de dados e programação da comunicação distribuída (revisão)
- RPC (Remote Procedure Call),
 RMI (Remote Method Invocation),
 Web Services
- 3. Gestão de Nomes
- 4. Segurança
 Canais seguros
 Autenticação
 Autorização
- 5. Tolerância a Faltas
 Replicação
 Transacções

Segurança em Sistemas Informáticos

Políticas de Segurança

- Quando é que se torna necessário uma política de segurança?
 - Quando existe um Bem num espaço partilhado

 Uma política de segurança procura garantir a proteção do Bem contra os ataques esperados dentro de determinadas condicionantes

Ameaça típica

- A partilha está na base da maioria das ameaças
 - Espaços públicos
 - Espaços físicos partilhados
 - Utilização de infraestruturas comuns
 - Partilha de recursos

A Informação como um Bem

- Confidencialidade/Privacidade da informação
 - Ex.: Pessoal, Médica, relação com o Governo
- Integridade da Informação
- Disponibilidade dos serviços que permitem aceder a informação
- Identidade não efetuar ações em nome de outro
- Anonimato realizar ações que são autenticadas mas em que não se deve conhecer a identidade (ex.: votações)

Ameaças em sistemas informáticos

- Fuga de informação (*leakage*)
 - Aquisição de informação por agentes não autorizados
- Corrupção de informação (tampering)
 - Alteração não autorizada de informação
- Vandalismo
 - Interferência no funcionamento correto do sistema sem que tal traga benefícios ao atacante

Características dos sistemas informáticos que facilitam os ataques

- Automação
 - Facilidade de reproduzir uma ação milhões de vezes rapidamente.
- Ação à distância
 - Com a Internet, a distância entre o atacante e o Bem não é um limitador ao ataque
- Propagação rápida das técnicas

Partilha nos Sistemas Informáticos

- Os sistemas informáticos são feitos para partilhar informação...
 - O que complica seriamente a segurança!
- Partilha nos Sistemas Multiprogramados
 - Ficheiros
 - Memória
 - Programas
 - Periféricos
- Partilha nas Redes
 - Meios físicos de comunicação
 - Mecanismos de comutação

Isolamento

- Como a partilha cria a maioria das oportunidades de ataque o isolamento foi desde sempre uma das formas de garantir segurança
 - Isolamento físico: cofres; paredes
 - Isolamento de pessoas: só um determinado grupo é informado
 - Isolamento lógico: cifrar um documento torna ininteligível a informação

Política vs Mecanismo de Segurança

Políticas de segurança são suportadas/asseguradas por uma utilização adequada de mecanismos de segurança

Política de Segurança

- Uma política de segurança define-se respondendo às seguintes questões:
 - O que queremos proteger?
 - Quais são as ameaças potenciais?
 - Quem as pode executar? Ou seja, quem são os atacantes?
 - Quais os ataques? Como se materializam as ameaças
 - Quais os procedimentos e mecanismos de proteção que podem impedir os ataques considerados?
 - Qual o custo de implementação da política de segurança?
- O custo da segurança deve ser inferior ao valor do Bem

Quem pode ser o atacante?

- Os mesmos do mundo físico...
- Podemos classificá-los de acordo com os seguintes características:
 - Objetivos
 - Acesso ao sistemas
 - Recursos
 - Capacidade técnica
 - Riscos que estão dispostos a correr

Possível Lista de Atacantes

- Jornalistas
- Hackers
- Criminosos isolados
- Crime Organizado
- Pessoal interno
- Terroristas
- Polícia
- Organizações Militares
- Espiões industriais
- Organizações de Segurança Nacionais

PRISM/US-984XN Overview

OR

The SIGAD Used Most in NSA Reporting • Overview

April 2013

Derived From: NSA/CSSM 1-52 Dated: 20070108 Declassify On: 20360901

TOP SECRET//SI//ORCON//NOFORN

Segurança no Sistema Operativo

Máquinas sem ligação em rede

Base Computacional de Confiança

- Normalmente o sistema operativo é uma plataforma que oferece uma: Base Computacional de Confiança
 - TCB (Trusted Computing Base)
- Faz parte da TCB tudo o que no sistema operativo é necessário para garantir a política de segurança

Ataques em sistemas centralizados

- Em sistemas informáticos centralizados:
 - Assumir a identidade de outro utilizador
 - Executar operações que, indiretamente, ultrapassam os mecanismos de proteção
 - Infiltrar código em programas que sub-repticiamente executam outras funções
 - Canais encobertos de comunicação

Base Computacional de Confiança (TCB)

- Nos Sistemas Multiprogramados a TCB inclui:
 - Isolamento dos espaços de endereçamento garantido pelo hardware da gestão de memória
 - Restrição à execução em modo utilizador de instruções privilegiadas que possam ultrapassar o isolamento dos espaços de endereçamento, (ex.: interrupções, operações de E/S)
 - Utilização do núcleo exclusivamente através de funções do sistema
 que validam a correta utilização dos mecanismos do sistema a que dão acesso
 - Autenticação sob controlo do sistemas
 - Controlo de acessos validado por um ou vários monitores de controlo de referência
 - Algoritmos de criptografia que permitem manter a confidencialidade de informação sensível que esteja acessível aos utilizadores

TCSEC (Orange Book)

- No Orange Book são definidas quatro classes de segurança que por sua vez se subdividem em vários níveis:
 - D proteção mínima
 - C política baseada no controlo de acessos,
 vulgar nos sistema operativos comerciais
 - B políticas baseadas em controlo mandatório (obrigatório)
 do nível de segurança da informação.
 Nos subníveis mais elevados implica critérios de segurança na estrutura interna do sistema operativo;
 - A classificação mais elevada que implica não só a existência dos mecanismos, mas a sua verificação formal

Criterion	D	C1	C2	B1	B2	В3	A1
Security policy Discretionary access control Object reuse Labels Label integrity Exportation of labeled information Labeling human readable output Mandatory access control Subject sensitivity labels Device labels		x	××	→ × × × × ×	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \times \\ \rightarrow \\ \rightarrow \\ \times \\ \times \\ \times \\ \times \\ \times \\$	$\begin{array}{c} X \\ \to \end{array}$	$\begin{array}{c} \rightarrow \\ \rightarrow $
Accountability Identification and authentication Audit Trusted path		Х	X X	X	$\overset{ ightarrow}{X}$	$\overset{ ightarrow}{X}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$
Assurance System architecture System integrity Security testing Design specification and verification Covert channel analysis Trusted facility management Configuration management Trusted recovery Trusted distribution		X X X	X → X	X → X X	X → X X X X	X X X X X X	→ X X X → X X X
Documentation Security features user's guide Trusted facility manual Test documentation Design documentation		X X X	$\begin{array}{c} \rightarrow \\ X \\ \rightarrow \\ \rightarrow \end{array}$	$\begin{array}{c} \rightarrow \\ X \\ \rightarrow \\ X \end{array}$	→ X X X	$\begin{array}{c} \rightarrow \\ X \\ \rightarrow \\ X \end{array}$	\rightarrow X X

Segurança nos Sistemas Distribuídos

Ataques em sistemas distribuídos

Todos os anteriores mais...

- Escuta de mensagens (eavesdropping)
- Falsificação de identidades (masquerading)
- Interferência com o fluxo de mensagens
 - Modificação de mensagens (tampering)
 - Inserção de mensagens
 - Remoção de mensagens
 - Troca da ordem de mensagens
- Repetição de diálogos passados (replaying)

Base Computacional de Confiança (TCB) nos Sistemas Distribuídos

- Existem 3 combinações possíveis:
 - Rede e sistemas operativos seguros
 - Limitativo
 - Difícil de garantir uma administração globalmente segura
 - Custo muito elevado da rede
 - Rede insegura, sistemas operativos seguros
 - Importa garantir a segurança das comunicações e a correção das interações remotas
 - A gestão dos sistemas é complexa e normalmente onerosa
 - Rede e sistemas operativos inseguros
 - Muito vulnerável
 - É difícil assegurar um nível aceitável de segurança

Base Computacional de Confiança Sistemas Distribuídos

- As duas primeiras soluções tem custos ou complexidades de gestão que são na maioria dos casos incomportáveis, mesmo para grandes organizações
- Na Internet ou redes abertas é manifestamente impossível confiar nos sistemas ou na rede

A politica mais adequada é considerar que a segurança não se baseia na segurança da rede ou dos sistemas e admitir um **princípio de suspeição mútua** em relação a todas as entidades

"Trust no one"

Política de Segurança

- Antes de definirmos uma política de segurança, devemos responder às seguintes questões:
 - O que queremos proteger?
 - Quais as ameaças potenciais?
 - Quem as pode executar? Ou seja, quem são os atacantes?
 - Quais os ataques? Como se materializam as ameaças?

• Assim definimos um Modelo de Ameaças

Do Modelo de Ameaças à Política de Segurança

- A partir do modelo de ameaças, devemos decidir:
 - Quais os procedimentos e mecanismos de proteção que podem impedir os ataques considerados?
 - Qual o custo de implementação da política?
- Uma política de segurança apropriada:
 - Tem um custo inferior ao do Bem
 - Não restringe em demasia as ações dos agentes legítimos do sistema

Do Modelo de Ameaças à Política de Segurança

- Nenhum modelo de ameaças é garantidamente completo
- É necessário monitorizar sistemas para detetar ataques não previstos
 - Registar ações efetuadas por cada utilizador do sistema
 - Quando há suspeita de violação/intruso,
 registos devem permitir perceber ameaça imprevista
 - Política de segurança deve então ser atualizada

Que pressupostos devemos assumir?

 Normalmente, o pior caso worst-case scenario (salvo raras exceções)

1. As interfaces são públicas

- As interfaces dos processos do sistema distribuído são conhecidas de todos
- Qualquer atacante pode enviar mensagens para qualquer interface

2. As redes são inseguras

- Mensagens podem ser escutadas, modificadas, repetidas, eliminadas, injetadas, etc.
- Endereço do nó de origem pode ser falsificado

- 3. Os segredos são quebrados ao fim de algum tempo
 - Chaves secretas, partilhadas entre dois interlocutores, podem ser comprometidas e descobertas por terceiros ao fim de algum tempo
 - Probabilidade de chave comprometida aumenta com:
 - Tempo desde que foi gerada
 - Número de vezes que foi usada para cifrar informação trocada na rede

- 4. Os algoritmos e o código do programa são conhecidos pelo atacante
 - Normalmente é irrealista manter algoritmo/código secreto
 - Tornar público o algoritmo e o código permite que terceiros o validem e melhorem
- 5. Atacantes podem ter acesso a muitos/grandes recursos
 - Poder computacional cada vez mais barato
 - Redes permitem agregar muitos recursos a trabalhar para o ataque

- 6. A base computacional de confiança (TCB) pode ter defeitos (bugs)
 - Nos Sistemas Multiprogramados a TCB inclui:
 - Isolamento dos espaços de endereçamento
 - Restrição à execução em modo utilizador de instruções privilegiadas (ex.: interrupções, operações de E/S);
 - Utilização do núcleo exclusivamente através de funções do sistema
 - Algoritmos de criptografia
 - Autenticação sob controlo dos sistemas
 - Controlo de acessos

Sistemas Distribuídos: Políticas de Segurança

- Técnicas fundamentais para garantir a segurança num ambiente distribuído:
 - Canais de comunicação seguros
 - Autenticação fidedigna dos agentes
 - Autorização (controlo de acessos) no acesso aos objetos com base na identidade do agente remoto e nos direitos de acesso
 - Autenticação de informação transmitida
 - Garantia de integridade da informação transmitida

Sistemas Distribuídos: Políticas e Mecanismos de Segurança

Isolamento da Informação

- Tornar ininteligível a informação para quem não conheça um segredo
 - Criptografia
- A informação cifrada encontra-se isolada porque quem não conhece o segredo que a permite decifrar não a consegue distinguir de ruído
- A informação
 - Pode ser enviada nas redes de comunicação
 - Armazenada nos sistemas de informação

Canais de segurança

Canal de Comunicação Seguro

Exemplo de invocação remota com Web Services

Cifra no Canal de Comunicação

- A base dos canais de comunicação seguros é a cifra da informação
- A informação é cifrada antes de ser transmitida pelo emissor
 - E é decifrada quando é recebida pelo recetor
- Se as mensagens forem cifradas
 - Evita a escuta de mensagens
 - Evita a falsificação da informação contida nas mensagens
 - Mas não evita a reutilização das mensagens

Exemplo: Canal seguro e os RPC

- Se a cifra para garantir o canal seguro for efetuada antes dos stubs perde-se a sua capacidade de tratar a heterogeneidade
 - Que é uma grande vantagem dos sistemas de RPC: tratar a heterogeneidade automaticamente nas funções de adaptação - stub
- A cifra tem de ser feita depois
 - Mas convém que seja dentro do mecanismo de RPC
 para garantir segurança de extremo-a-extremo (end-to-end)

Exemplo: Canal seguro e os RPC sobre SSL

- O RPC pode ser baseado num canal SSL mas há limitações importantes
 - Se a mensagem SOAP tiver intermediários,
 estes têm de receber apenas parte da informação
 mas não necessitam de a receber toda em aberto
- Surge a necessidade de cifrar apenas partes da mensagem
 - Os Handlers foram pensados para permitir implementar as funções de segurança na sequência certa

Web Services – JAX-WS Handlers

- Handler Chain
 - Sequência de handlers executados sobre pedidos e respostas
- Handler
 - Estende a classe
 - javax.xml.ws.handler.Handler
 - Métodos relevantes
 - handleMessage (MessageContext context)
 - handleFault (MessageContext context)

Exemplo JAX-WS handler de segurança

```
public boolean handleRequest(MessageContext context) {
    System.out.println("handleRequest(MessageContext=" + context + ")");
    try {
        SOAPMessageContext smc = (SOAPMessageContext) context;
        SOAPMessage msg = smc.getMessage();
        SOAPPart sp = msq.getSOAPPart();
        SOAPEnvelope se = sp.getEnvelope();
        SOAPBody sb = se.getBody();
        SOAPHeader sh = se.getHeader();
        if (sh == null) { sh = se.addHeader(); }
    // cipher message with symmetric key
        ByteArrayOutputStream byteOut = new ByteArrayOutputStream();
        msq.writeTo(byteOut);
        Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
        cipher.init(Cipher.ENCRYPT MODE, KeyManager.getSecretKey());
        byte[] cipheredMessage = cipher.doFinal(byteOut.toByteArray());
```


Exemplo JAX-WS handler de segurança

```
// encode in base64
BASE64Encoder encoder = new BASE64Encoder();
String encodedMessage = encoder.encode(cipheredMessage);
// remove clear text
sb.detachNode();
sh.detachNode();
// reinitialize SOAP components
sb = se.addBody();
sh = se.addHeader();
// store message
SOAPBodyElement element = sb.addBodyElement(se.createName("CipherBody"));
element.addTextNode(encodedMessage);
} catch (Exception e) {
    System.out.println("Exception caught in handleRequest:\n" + e);
   return false;
return true;
```


Representação de dados binários em texto

- Codificação de Base 64
- Usa um subconjunto de 64 caracteres do ASCII que são os caracteres mais "universais"
 - Caracteres que são iguais em praticamente todos os códigos:
 - A-Z, a-z, 0-9, +, /
- Caracter '=' usado no final para identificar quantidade de enchimento (padding) requerido
- Aumenta tamanho do conteúdo... Qual o sobrecusto (overhead)?
- Fundamental para sistemas baseados na comunicação em texto
 - Como os Web Services, Email, ...

Exemplo

Text content	М								а								n							
ASCII	77 (0x4d)								97 (0x61)							110 (0x6e)								
Bit pattern	0	1	0	0	1	1	0	1	0	1	1	0	0	0	0	1	0	1	1	0	1	1	1	0
Index	19						22						5						46					
Base64-encoded	Т						w					F					u							

Octetos transformados em grupos de 6 bits $(2^6 = 64)$

Overhead = 4/3 = +33%