Kapitel 1

Die Geometrie der Gaussabbildung

1.1 Gaussabbildung

Definition. Sei $\Sigma \subset \mathbb{R}^3$ eine reguläre Fläche und $V \subset \Sigma$ offen. Eine stetige Abbildung $N: V \to S^2$ heisst *Einheitsnormalenfeld* (oder lokale Gaussabbildung), falls für alle $p \in V$ gilt

$$N(q) \perp T_p \Sigma$$

Einheitsnormalenfeld

Existenz. Definiere

$$N: V \to S^2$$

$$q \mapsto \frac{\varphi_u(q) \times \varphi_v(q)}{\|\varphi_u(q) \times \varphi_v(q)\|_2}$$

Dieser Ausdruck ist stetig in q, da φ_u und φ_v stetig sind.

Eindeutigkeit. Falls V zusammenhängend ist, dann ist $N:V\to S^2$ bis auf Vorzeichen eindeutig festgelegt : $\pm N$.

Bemerkung. Falls $\Sigma \subset \mathbb{R}^3$ geschlossen ist (d.h. kompakt und ohne Rand), dann existiert sogar ein globales Einheitsnormalenfeld $N:\Sigma\to S^2$, genannt Gaussabbildung. Tatsächlich trennt eine solche Fläche \mathbb{R}^3 in zwei Zusammenhangskomponenten. Für (nicht-geschlossene) reguläre Fläche $\Sigma \subset \mathbb{R}^3$ gilt: Es existiert $N:\Sigma\to S^2$ stetiges Einheitsnormalenfeld genau dann, wenn Σ orientierbar ist.

orientierbarer Brezel, Möbiusband ist nicht orientierbar

Sei nun $\varphi:U\to V\subset \Sigma$ eine lokale C^1 -Parametrisierung und $N:V\to S^2$ eine lokale Gaussabbildung. Dann gilt für alle $q\in V$:

- $N(q) \perp T_q \Sigma$
- $N(q) \perp T_{N(q)}S^2$

Wir schliessen (da in \mathbb{R}^3):

$$T_q \Sigma = T_{N(q)} S^2$$

Bei letzterem gilt also für alle $p \in S^2 : p \perp T_p S^2$. Falls $N : V \to S^2$ sogar differenzierbar ist, dann erhalten wir für alle $p \in V$ eine Abbildung

$$(DN)_p: T_p\Sigma \to T_{N(p)}S^2 = T_p\Sigma$$

die Weingartenabbildung.

Definition. $K(p) = \det(DN)_p \in \mathbb{R}$. Die Gausssche Krümmung im Punkt $p \in \Sigma$

Bemerkung. K(p) hängt nicht von der Wahl von N ab, da

$$\det(-(DN)_p) = (-1)^2 \det(DN)_p$$

Beispiele.

1.
$$\Sigma = \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$$

$$N: \Sigma \to S^2$$

$$q \mapsto e_3 \qquad (\text{oder} - e_3)$$

Nist konstant, also gilt für alle $q \in \Sigma \colon (DN)_q = 0, K(q) = 0.$

2. $\Sigma = S^2 \subset \mathbb{R}^3$ (Einheitssphäre)

$$N: S^2 \to S^2$$

$$q \mapsto q$$

$$K \equiv 1$$

 $N=Id_{S^2}$ (oder $-Id_{S^2}),$ für alle $q\in S^2$ gilt also $(DN)_q=Id:T_q\Sigma\to T_q\Sigma.$ Also $K(q)=\det(Id:T_q\Sigma\to T_q\Sigma)=1$

3. $Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\} \subset \mathbb{R}^3$

$$N: Z \to S^2$$

$$(x, y, z) \mapsto (x, y, 0)$$

$$K \equiv 0$$

Wir bemerken: N hängt nicht von z ab. Also gilt für alle $q \in Z$:

$$(DN)_q(e_3) = \lim_{t \to 0} \frac{\overbrace{N(q + t \cdot e_3) - N(q)}^{=0}}{t} = 0$$

 \implies 0 ist ein Eigenwert der Abbildung $(DN)_q: T_qZ \to T_qZ \implies K(q) = 0.$

Zusatz. Genauere Betrachtung des dritten Beispiels: Für $q=(x,y,z)\in Z$ gilt:

$$T_q Z = \operatorname{span}\{e_3, \underbrace{-y \cdot e_1 + x \cdot e_2}^v\}$$

Wir bestimmen $(DN)_q \stackrel{(*)}{=} v$. (*) Erklärung: Die Einschränkung von N auf $S^1 \times \{0\}$ ist die Identität. Folglich ist die Abbildungsmatrix von $(DN)_q$ bezüglich der Basis $\{e_3, -ye_1 + xe_2\}$

Definition. Die *mittlere Krümmung* im Punkt $p \in \Sigma$ ist $H(p) = \frac{1}{2} \operatorname{Spur}((DN)_p) \in \mathbb{R}$, welche allerdings nur bis auf Vorzeichen definiert ist: $\operatorname{Spur}(-(DN)_p) = -\operatorname{Spur}(DN)_p$

Bemerkung. Reguläre Flächen mit $H \equiv 0$ heissen Minimalflächen.

Beispiele.

1.
$$\Sigma = \mathbb{R}^2 \times \{0\}$$
 $K \equiv 0 \text{ und } H \equiv 0.$

2.
$$\Sigma = S^2$$
 $K \equiv 1 \text{ und } H \equiv 1 \iff \frac{1}{2} \operatorname{Spur} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

3.
$$\Sigma = Z$$
 $K \equiv 0$ und $H \equiv \frac{1}{2}$ \iff $\frac{1}{2} \cdot (\underbrace{\lambda_1}_{EW_1} + \underbrace{\lambda_2}_{EW_2}) = \frac{1}{2} \cdot (1+0)$

Notation. Ein Punkt $p \in \Sigma$ heisst:

- elliptisch, falls K(p) > 0
- hyperbolisch. falls K(p) < 0 (Sattelpunkt, siehe später)
- parabolisch, falls K(p) = 0 und $H(p) \neq 0$
- Flachpunkt, falls K(p) = 0 und H(p) = 0

Proposition 1. Sei $\Sigma \subset \mathbb{R}^3$ eine reguläre Fläche, welche lokale C^2 -Parametrisierungen besitzt (das heisst zweimal stetig differenzierbar). Dann ist für alle $p \in \Sigma$ die Weingartenabbildung $(DN)_p : T_p\Sigma \to T_p\Sigma$ symmetrisch, d.h. für alle $a, b \in T_p\Sigma$ gilt:

$$\langle (DN)_p(a), b \rangle_p = \langle a, (DN)_p(b) \rangle_p$$

Beweis. Es reicht, dies für die Basisvektoren $a = \varphi_u(p)$ und $b = \varphi_v(p)$ zu prüfen! Sei $\varphi : U \to \Sigma$ eine C^2 -Parametrisierung mit $p \in \varphi(U)$. Betrachte die Komposition $N \circ \varphi : U \to S^2$. Für alle $q = (u, v) \in U$ gilt:

$$\langle N \circ \varphi(u,v), \varphi_u(u,v) \rangle_{\varphi(u,v)} = 0$$
 bzw. $\langle N \circ \varphi(u,v), \varphi_v(u,v) \rangle_{\varphi(u,v)} = 0$ (*)

Notation.

$$N_{u}(u,v) = (DN)_{\varphi(u,v)}(\varphi_{u}(u,v)) = \frac{d}{du}(N \circ \varphi)(u,v)$$
$$N_{v}(u,v) = (DN)_{\varphi(u,v)}(\varphi_{v}(u,v)) = \frac{d}{dv}(N \circ \varphi)(u,v)$$

und

$$\frac{d}{du}(*)_v: \qquad \langle N_u, \varphi_v \rangle + \langle N, \underbrace{\varphi_{uv}}_{\frac{d}{du}\varphi_v(\varphi \text{ ist } C^2)} \rangle = 0$$

$$\frac{d}{dv}(*)_u: \qquad \langle N_v, \varphi_u \rangle + \langle N, \varphi_{vu} \rangle \qquad = 0$$

Also:
$$\varphi$$
 ist $C^2 \implies \varphi_{uv} = \varphi_{vu} \implies \langle N_u, \varphi_v \rangle = \langle N_v, \varphi_u \rangle$.

S. von Schwarz

Ausgeschrieben:

$$\langle (DN)_{\varphi(u,v)}(\varphi_u(u,v)), \varphi_v(u,v) \rangle = \langle (DN)_{\varphi(u,v)}(\varphi_v(u,v)), \varphi_u(u,v) \rangle$$

Korollar 1. $(DN)_p: T_p\Sigma \to T_p\Sigma$ lässt sich mit einem orthogonalen Koordinatenwechsel diagonalisieren.

Bemerkung. Im Beweis haben wir die Annahme $(\varphi: U \to \Sigma \text{ ist } C^2)$ benutzt: φ_{uv} ist vorgekommen. Diese Anname ist essenziell, damit $N: \varphi(U) \to S^2$ differenzierbar ist. Tatsächlich gilt

$$N(\varphi(u,v)) = \pm \frac{\varphi_u(u,v) \times \varphi_v(u,v)}{\|\varphi_u \times \varphi_v\|}$$

Wir benutzen, dass φ_u und φ_v differenzierbar sind, dass heisst $\varphi:U\to\Sigma$ ist zweimal differenzierbar.

Beispiel. Sei

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 0 & x \leq 0 \\ x^2 & x \geq 0 \end{cases}$$

f ist stetig differenzierbar, aber f' ist bei x=0 nicht differenzierbar. Betrachte die Fläche $\Sigma=\{(x,y,z)\in\mathbb{R}^3\mid z=f(x)\}=\text{``}\Gamma_f\times\mathbb{R}\text{''}$, welche die globale C^1 -Parametrisierung

$$\varphi: \mathbb{R}^2 \to \Sigma$$

 $(u, v) \mapsto (u, v, f(u))$

besitzt. Berechne

$$\varphi_u = (1, 0, f'(u)), \varphi_v = (0, 1, 0)$$

und

$$N(u,v) = \frac{\varphi_u \times \varphi_v}{\|\varphi_u \times \varphi_v\|} = \frac{(-f'(u), 0, 1)}{\sqrt{1 + f'(u)^2}}$$

Für $u \le 0$ gilt: $N(u, v) = (0, 0, 1) = e_3$. Für $u \ge 0$ gilt: $N(u, v) = \frac{1}{\sqrt{1 + 4u^2}}(-2u, 0, 1)$. Versuch, $\frac{d}{du}N(0, 0)$ zu berechnen:

1.
$$\lim_{\varepsilon \to 0, \varepsilon < 0} \frac{1}{\varepsilon} (\underbrace{N(\varepsilon, 0)}_{=e_3} - \underbrace{N(0, 0)}_{=e_3}) = 0$$

$$2. \lim_{\varepsilon \to 0, \varepsilon > 0} \frac{1}{\varepsilon} (N(\varepsilon, 0) - N(0, 0)) = \lim_{\varepsilon \to 0, \varepsilon > 0} \frac{1}{\varepsilon} (-\frac{2\varepsilon}{\sqrt{1 + 4\varepsilon^2}}, 0, \frac{1}{\sqrt{1 + 4\varepsilon^2}} - 1) = (2, 0, \dots) \neq e_3$$

Im 2. Punkt wird genutzt, dass
$$\sqrt{1+x}\approx\sqrt{1+\frac{x}{2}}$$
, somit $\frac{-2\varepsilon}{1+4\varepsilon^2}$ $\underset{\frac{1}{1+x}\approx 1-x}{\approx}$ $-2\varepsilon(1-2\varepsilon^2)\approx -2$

Also ist N(u, v) an der Stelle (0, 0) nicht differenzierbar!

Annahme. Ab jetzt besitzen alle regulären Flächen mindestens lokale C^2 -Parametrisierungen.

Korollar 2 (Zur Proposition). $(DN)_p: T_pN \to T_p\Sigma$ lässt sich mit einem orthogonalen Koordinatenwechsel diagonalisieren. D.h. Die Weingartenabbildung $(DN)_p$ hat zwei orthogonale Eigenvektoren $v_1, v_2 \in T_p\Sigma$ zu reellen Eigenwerten $\lambda_1, \lambda_2 \in \mathbb{R}$. Es gilt

$$K(p) = \det((DN)_p) = \lambda_1 \cdot \lambda_2$$

$$H(p) = \frac{1}{2} Spur((DN)_p) = \frac{1}{2} (\lambda_1 \cdot \lambda_2)$$

Definition. Die von den Eigenvektoren $v_1, v_2 \in T_p\Sigma$ aufgespannten Richtungen heissen Hauptkr"ummungsvektoren. Eine C^1 -Kurve $\gamma:(a,b)\to\Sigma$ heisst $Kr\ddot{u}mmungslinie$, falls für alle $t\in(a,b)$ gilt:

 $\dot{\gamma}(t) \in T_{\gamma(t)}\Sigma$ ist ein Eigenvektor der Weingartenabbildung $(DN)_{\gamma(t)}: T_{\gamma(t)}\Sigma \to T_{\gamma(t)}\Sigma$

Beispiele.

- 1. Ebene $E = \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$. Hier gilt für alle $p \in E : (DN)_p = 0$, also sind die Haupt-krümmungsrichtungen nicht wohldefiniert. Alle Geraden in E sind Krümmungslinien (Sogar alle C^1 -Kurven $\gamma : \mathbb{R} \to E$).
- 2. Zylinder $Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$. Hier gilt für alle

$$p \in Z : (DN)_p(e_3) = 0$$

also sind alle (vertikalen) Mantellinien in Z Krümmungslinien. Mehr noch: Bezüglich der Basis $\{e_3, -ye_1 + xe_2\}$ von $T_{(x,y,z)}\Sigma$ mit (x,y,z) = p hat $(DN)_p$ die Matrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Wir erhalten also eine zweite Schar von Krümmungslinien: horizontale Kreise. In Punkten mit $(DN)_p \neq \lambda Id_{T_p\Sigma}$ (kein vielfaches der Identität) stehen die Krümmungslinien senkrecht aufeinander.

1.2 Die zweite Fundamentalform

Motivation. Ziel der nächsten beiden Abschnitte:

$$K(p) = \frac{\det(II_p)}{\det(I_p)}$$

wobei I_p , II_p die erste, bzw. die zweite Fundamentalform ist.

Sei $\Sigma \subset \mathbb{R}^3$ eine C^2 -reguläre Fläche, und $\alpha: (-\varepsilon, \varepsilon) \to \Sigma$ eine C^2 -Kurve mit $\alpha(0) = p \in \Sigma$ und $\dot{\alpha}(0) = v \in T_p\Sigma$.

Proposition 2. (Satz von Mensier) Sei $N: V \to S^2$ ein lokales Einheitsnormalenfeld $(p \in V \subset \Sigma)$. Dann gilt

$$\langle \ddot{\alpha}(0), N(p) \rangle = -\langle v, (DN)_p(v) \rangle$$

Insbesondere hängt die normale Beschleunigungskomponente $\langle \ddot{\alpha}(0), N(p) \rangle$ nur von $p = \alpha(0)$ und $v = \dot{\alpha}(0)$ ab.

Beweis. Für alle $t \in (-\varepsilon, \varepsilon)$ gilt:

$$\langle \dot{\alpha}(t), N(\alpha(t)) \rangle = 0$$
 (per Definition von $T_p \Sigma$ und $N(p)$)
$$\iff \langle \ddot{\alpha}(t), N(\alpha(t)) \rangle + \langle \dot{\alpha}(t), \underbrace{\frac{d}{dt} N(\alpha(t))}_{(DN)_{\alpha(t)}(\dot{\alpha}(t))} \rangle = 0$$
Ableiten pach t

Für t = 0 erhalten wir

$$\langle \ddot{\alpha}(0), N(p) \rangle = -\langle v, (DN)_p(v) \rangle$$

Definition. Die zweite Fundamentalform von Σ an der Stelle p ist die Abbildung

$$II_p: T_p\Sigma \to \mathbb{R}$$

 $v \mapsto -\langle v, (DN)_p(v) \rangle$

Bemerkung. Das Vorzeichen von II_p hängt von N ab. Falls $\Sigma \subset \mathbb{R}^3$ orientierbar ist, dann lässt sich eine globale Wahl von N fixieren (Wahl einer Orientierung).

Erinnerung. Die erste Fundamentalform, $I_p(v) = \langle v, v \rangle_p$ hat bezüglich jeder lokalen Parametrisierung $\varphi : U \to \Sigma$ eine Matrix $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$, bezüglich der Basis $\{\varphi_u, \varphi_v\}$ von $T_p\Sigma$. $E = \langle \varphi_u, \varphi_u \rangle, F = \langle \varphi_u, \varphi_v \rangle, G = \langle \varphi_v, \varphi_v \rangle$.

Koeffizienten für II_p :

- $e = -\langle \varphi_u, (DN)_{\varphi(u,v)}(\varphi_u) \rangle$
- $f = -\langle \varphi_u, (DN)_{\varphi(u,v)}(\varphi_v) \rangle = -\langle \varphi_v, (DN)_{\varphi(u,v)}(\varphi_u) \rangle$ da $(DN)_{\varphi(u,v)}$ symmetrisch.
- $g = -\langle \varphi_v, (DN)_{\varphi(u,v)}(\varphi_v) \rangle$

Notation.

$$N_u = \frac{d}{du}(N \circ \varphi) = (DN)_{\varphi(u,v)}(\varphi_u)$$

$$N_v = \frac{d}{dv}(N \circ \varphi) = (DN)_{\varphi(u,v)}(\varphi_v)$$

Wir erhalten also mit $\langle \varphi_u, N \rangle = 0$ und ableiten nach $u : \langle \varphi_{uu}, N \rangle + \langle \varphi_u, N_u \rangle = 0$, analog für v

•
$$e = -\langle \varphi_u, N_u \rangle = \langle \varphi_{uu}, N \rangle$$

•
$$f = -\langle \varphi_u, N_v \rangle = \langle \varphi_{uv}, N \rangle$$
 $\langle \varphi_u, N \rangle = 0$ nach v ableiten

•
$$g = -\langle \varphi_v, N_v \rangle = \langle \varphi_{vv}, N \rangle$$
 $\langle \varphi_v, N \rangle = 0$ nach v ableiten

Beispiel. Funktionsgraph von $f: \mathbb{R}^2 \to \mathbb{R}$ (C^2) $\Gamma_f = \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y)\} \subset \mathbb{R}^3$. Globale C^2 -Parametrisierung

$$\varphi: \mathbb{R}^2 \to \Gamma_f$$

 $(u, v) \mapsto (u, v, f(u, v))$

Berechne

$$\varphi_{u}(u,v) = (1,0,f_{u}(u,v))$$

$$\varphi_{v}(u,v) = (0,1,f_{v}(u,v))$$

$$\varphi_{uu}(u,v) = (0,0,f_{uu}(u,v))$$

$$\varphi_{uv}(u,v) = \varphi_{vu}(u,v) = (0,0,\underbrace{f_{uv}}_{=f_{vu}})$$

$$\varphi_{vv}(u,v) = (0,0,f_{vv}(u,v))$$

$$N(\varphi(u,v)) = \frac{\varphi_{u} \times \varphi_{v}}{||\varphi_{u} \times \varphi_{v}||} = \frac{(-f_{u},-f_{v},1)}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}$$

$$e = \langle \varphi_{uu}, N \rangle = \frac{f_{uu}}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}$$

$$f = \langle \varphi_{uv}, N \rangle = \frac{f_{uv}}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}$$

$$g = \langle \varphi_{vv}, N \rangle = \frac{f_{vv}}{\sqrt{1+f_{u}^{2}+f_{v}^{2}}}$$

1.3 Gaussabbildung in lokalen Koordinaten

Sei $\varphi:U\to V\subset \Sigma$ eine lokale C^2 -Parametrisierung und $N:V\to S^2$ das dazugehörige normale Einheitsfeld.

Schreibe die Abbildungsmatrix von $(DN)_p: T_p\Sigma \to T_p\Sigma = T_{N(p)}S^2$ bezüglich der Basis $\{\varphi_u, \varphi_v\}$ von $T_p\Sigma: \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, d.h.

$$(DN)_p(\varphi_u) = a_{11}\varphi_u + a_{21}\varphi_v$$
$$(DN)_p(\varphi_v) = a_{12}\varphi_u + a_{22}\varphi_v$$

Bemerkung. Falls φ_u und φ_v nicht orthogonal sind, dann gilt im Allgemeinen $a_{12} \neq a_{21}$.

Lemma 1. Mit den oben eingeführten Koeffizienten gilt:

$$\begin{pmatrix} e & f \\ f & g \end{pmatrix} = -\underbrace{\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}}_{(DN)_p^T} \cdot \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

Beweis. Berechne

$$e = -\langle \varphi_u, (DN)_{\varphi(u,v)}(\varphi_u) \rangle$$

$$= -\langle \varphi_u, a_{11}\varphi_u + a_{21}\varphi_v \rangle$$

$$= -a_{11}E - a_{21}F$$

$$f = -\langle \varphi_v, (DN)_{\varphi(u,v)}(\varphi_u) \rangle = \dots = -a_{11}F - a_{21}G$$

$$f = -\langle \varphi_u, (DN)_{\varphi(u,v)}(\varphi_v) \rangle = \dots = -a_{12}E - a_{22}F$$

$$g = -\langle \varphi_v, (DN)_{\varphi(u,v)}(\varphi_v) \rangle = \dots = -a_{12}F - a_{22}G$$

Korollar 3.

$$K(p) = \det(DN)_p = \frac{eg - f^2}{EG - F^2} = \frac{\det II_p}{\det I_p}$$

(Alle Koeffizienten sind vom Punkt (u, v) abhängig!)

Beweis.

$$\det(DN)_p = \det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \det\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} = \det\begin{pmatrix} -\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \end{pmatrix}$$
 und $\det(X \cdot Y) = \det(X) \cdot \det(Y)$

Beispiel. Rotationstorus $T \subset \mathbb{R}^3$ mit Radien 0 < a < b. Lokale C^{∞} -Parametrisierung $\varphi: (0, 2\pi) \times (0, 2\pi) \to T$:

$$\varphi(u,v) = ((b+a\cdot\cos(u))\cdot\cos(v), (b+a\cdot\cos(u))\cdot\sin(v), a\cdot\sin(u))$$

Wir berechnen:

$$\varphi_u(u,v) = (-a \cdot \sin(u)\cos(v), -a \cdot \sin(u)\sin(v), a \cdot \cos(u))$$

$$\varphi_v(u,v) = (-(b+a \cdot \cos(u)) \cdot \sin(v), (b+a \cdot \cos(u)) \cdot \cos(v), 0)$$

$$\varphi_{uu} = \dots$$

$$\varphi_{uv} = \dots$$

$$\varphi_{vv} = \dots$$

$$\implies E = \langle \varphi_u, \varphi_u \rangle = a^2$$

$$F = \langle \varphi_u, \varphi_v \rangle = 0$$

$$G = \langle \varphi_v, \varphi_v \rangle = (b + a \cdot \cos(u))^2$$

$$N = \frac{\varphi_u \times \varphi_v}{||\varphi_u \times \varphi_v||} =_{\text{siehe Flächeninhalt}} \frac{\varphi_u \times \varphi_v}{\sqrt{EG - F^2}} = \frac{\varphi_u \times \varphi_v}{a(b + a \cdot \cos(u))}$$

$$\implies e = \langle \varphi_{uu}, N \rangle = ||\varphi_{uu}|| = a$$

$$\text{dies da } \varphi_{uu} \text{ und } N \text{ parallel sind.}$$

$$f = \langle \varphi_{uv}, N \rangle = 0$$

$$g = \langle \varphi_{vv}, N \rangle = (Komplizierte \ einfache \ Rechnung)$$

$$= \cos(u) \cdot (b + a \cdot \cos(u))$$

$$\implies K(\varphi(u, v)) = \frac{eg - f^2}{EG - F^2} = \frac{eg}{EG} = \frac{\cos(u)}{a(b + a \cdot \cos(u))}$$

Bemerkung. Es gilt

$$K(\varphi(u,v)) > 0 \qquad \qquad u < \frac{\pi}{2} \text{ oder } u > \frac{3\pi}{2}$$

$$= 0 \text{ falls} \qquad \qquad u = \frac{\pi}{2} \text{ oder } u = \frac{3\pi}{2}$$

$$< 0 \qquad \qquad u > \frac{\pi}{2} \text{ und } u < \frac{3\pi}{2}$$

Anwendung (Krümmung von Funktionsgraphen). Sei $f: \mathbb{R}^2 \to \mathbb{R}$ C^2 und $\Gamma_f = \{(x,y,z) \in \mathbb{R}^2 \mid z = f(x,y)\}$. Mit der lokalen Parametrisierung $\varphi(u,v) = (u,v,f(u,v))$ erhalten wir

$$e = -\langle \varphi_u, (DN)_p(\varphi_u) \rangle = -\langle \varphi_u, N_u \rangle = \langle \varphi_{uu}, N \rangle = \frac{f_{uu}}{\sqrt{1 + f_u^2 + f_v^2}}$$

$$f = -\langle \varphi_u, (DN)_p(\varphi_v) \rangle = -\langle \varphi_u, N_v \rangle = \langle \varphi_{uv}, N \rangle = \frac{f_{uv}}{\sqrt{1 + f_u^2 + f_v^2}}$$

$$g = -\langle \varphi_v, (DN)_p(\varphi_v) \rangle = -\langle \varphi_v, N_v \rangle = \langle \varphi_{vv}, N \rangle = \frac{f_{vv}}{\sqrt{1 + f_u^2 + f_v^2}}$$

Berechne $E = \langle \varphi_u, \varphi_u \rangle, F = \langle \varphi_u, \varphi_v \rangle, G = \langle \varphi_v, \varphi_v \rangle$ und erhalte

$$K(\varphi(u,v)) = \frac{eg - f^2}{EG - F^2} = \frac{f_{uu}f_{vv} - f_{uv}^2}{(1 + f_u^2 + f_v^2)^2}$$

Bemerkung. $f_{uu}f_{vv} - (f_{uv})^2 = \det(Hf)_{(u,v)}$ mit $Hf = \text{Hessische Matrix} \begin{pmatrix} f_{uu} & f_{uv} \\ f_{vu} & f_{vv} \end{pmatrix}$

Folgerung:

$$K(\varphi(u,v)) > 0 \iff \det(Hf)_{(u,v)} > 0$$

 $K(\varphi(u,v)) = 0 \iff \det(Hf)_{(u,v)} = 0$
 $K(\varphi(u,v)) < 0 \iff \det(Hf)_{(u,v)} < 0$

In einem kritischen Punkt p von f (d.h. $(Df)_p = 0$) ist die Krümmung $K = \det(Hf)_p$.

Beispiele.

1.
$$f(x,y) = x^n + y^m \text{ mit } n, m \ge 2.$$
Dann gilt $\frac{\partial}{\partial x} f(0,0) = \frac{\partial}{\partial y} f(0,0) = 0$

$$(Hf)_{(x,y)} = \begin{pmatrix} n(n-1)x^{n-2} & 0\\ 0 & m(m-1)y^{m-2} \end{pmatrix}$$
 $\Longrightarrow K(\varphi(0,0)) = K(0) = 0 \text{ falls } m \ge 3 \text{ oder } n \ge 3$
 $\Longrightarrow K(\varphi(0,0)) = K(0) = 4 \text{ falls } m = 2 \text{ und } n = 2$

Alternative $f(x,y) = -(x^2 + y^2) \implies K(0) = 4$

2.
$$f(x,y) = x^n - y^n \text{ mit } n, m \ge 2$$

$$(Hf)_{(x,y)} = \begin{pmatrix} n(n-1)x^{n-2} & 0 \\ 0 & -m(m-1)y^{m-2} \end{pmatrix}$$

$$\implies K(0) = \begin{cases} 0 & m \ge 3 \text{ oder } n \ge 3 \\ -4 & m = n = 2 \end{cases}$$
Hier gilt $K(\varphi(u,v)) = \frac{-4}{(1+f_u^2+f_v^2)^2} = -\frac{4}{(1+f_u^2+f_v^2)^2} < 0$
Wir folgern $\lim_{u \to +\infty} K(\varphi(u,v)) = 0$, ebenso $\lim_{v \to \infty} K(\varphi(u,v)) = 0$.

Frage. Existiert $f: \mathbb{R}^2 \to \mathbb{R}$ C^2 , so dass Γ_f konstant -1 gekrümmt ist?

Antwort. Nein! (Hilbert 1901)

Im Spezialfall f(x,y) = g(x) + h(y) mit $g,h: \mathbb{R} \to \mathbb{R}$ C^2 können wir "elementar" zeigen, dass Γ_f nicht konstant -1 gekrümmt sein kann (vergleiche Serie 6). Mit der obigen Formel erhalten wir

$$K(\varphi(u,v)) = \frac{g_{uu} \cdot h_{vv}}{(1 + g_u^2 + h_v^2)^2} \stackrel{!}{=} -1$$

$$\implies g_{uu} \cdot h_{vv} < 0$$

Annahme: $h_{vv} < 0, g_{uu} > 0$ (für alle $(u, v) \in \mathbb{R}^2$ da h, g stetig)

Fixiere (ein beliebiges) $v \in \mathbb{R}$ und erhalte eine Differentialgleichung für g der Form

$$\frac{g_{uu} \cdot a}{\left(1 + g_u^2 + b^2\right)} = -1$$

mit $a = h_{vv}(v) < 0$ und $b = h_v(v)^2 \ge 0$

$$\implies g_{uu} = \underbrace{-\frac{1}{a}}_{>0 \text{ und } =: c} (1 + g_u^2 + b)^2 = c \cdot (1 + g_u^2 + b)^2 > c \cdot (1 + 2g_u^2)$$

Schreibe $s(u) = g_u(u) \implies s' > c(1 + 2s^2)$ (evtl. reicht sogar $s' > 2s^2$)

Wir lösen die Differentialgleichung $s' = c \cdot (1 + 2s^2)$ und bemerken, dass diese in endlicher Zeit divergiert.

Beispiel (nach Analysis 2). $s' = s^2$

Lösung zur Anfangsbedingung: s(0) = 1: $s(t) = \frac{1}{1-t}$. Divergiert für $t \to 1$.

Rotationsflächen

Sei $\gamma: \mathbb{R} \to \mathbb{R}^2$ eine C^2 -Kurve. Schreibe

$$\gamma(t) = (r(t), h(t))$$

mit r(t) der Rotation und h(t) der Höhe. Wir treffen folgende Annahmen:

1.
$$r(t) > 0$$

2.
$$h'(t) > 0$$

nicht erlaubt

3.
$$||\dot{\gamma}(t)||=1,$$
d.h. $\dot{r}(t)^2+\dot{h}(t)^2=1$ (" γ ist nach Bogenlänge parametrisiert")

Konstruiere eine Rotationsfläche mit folgender Parametrisierung:

$$\varphi : \mathbb{R} \times (0, 2\pi) \to \Sigma$$
$$(u, v) \mapsto (r(u)\cos(v), r(u)\sin(v), h(u))$$

Berechne

$$\varphi_u = (r'(u)\cos(v), r'(u)\sin(v), h'(u))$$

$$\varphi_v = (-r(u)\sin(v), r(u)\cos(v), 0)$$

Wir erhalten das folgende Einheitsnormalenfeld:

$$N(\varphi(u,v)) = (-h'(u)\cos(v), -h'(u)\sin(v), r'(u))$$

Kontrolle:

- ||N|| = 1, d.h. $\langle N, N \rangle = 1$ (ok, da $h'(u)^2 + r'(u)^2 = 1$)
- $\langle N, \varphi_u \rangle = 0$ (ok)
- $\langle N, \varphi_n \rangle = 0$ (ok)

Berechne

$$E = \langle \varphi_u, \varphi_u \rangle = 1 \text{ (da } h'^2 + r'^2 = 1)$$

$$F = \langle \varphi_u, \varphi_v \rangle = 0$$

$$G = \langle \varphi_v, \varphi_v \rangle = r(u)^2$$

Weiter

$$e = \langle \varphi_{uu}, N \rangle = h''(u)r'(u) - h'(u)r''(u)$$

$$f = \langle \varphi_{uv}, N \rangle = 0$$

$$g = \langle \varphi_{vv}, N \rangle = r(u)h'(u)$$

$$\implies K(\varphi(u,v)) = \frac{eg - f^2}{EG - F^2} = \frac{(h''r' - h'r'') \cdot r \cdot h'}{r^2}$$

$$= \frac{1}{r} \cdot (h''r'h' - r''h'^2) = \frac{1}{r} \cdot (-r'^2r'' - h'^2r'') = -\frac{r''(u)}{r(u)}$$

Hierbei wurde genutzt, dass $r'^2 + h'^2 = 1 \implies 2r'r'' + 2h'h'' = 0$. Wir schliessen, dass $K(\varphi(u,v))$ nicht von v abhängig ist!

Spezialfall (Rotationsflächen mit konstanter Krümmung).

- 1. K = 0, d.h. r''(u) = 0 ($\Longrightarrow r(u) = a \cdot u + b$). Anfangsbedingungen
 - r(0) = 1
 - r'(0) = 0
 - h(0) = 0

 $\implies r(u) = 1, h(u) = u \text{ mit } r'^2 + h'^2 = 1 \text{ und } h' > 0 \implies h' = 1$ Variation der Anfangsbedingung: $r'(0) = a \neq 0$ führt zu einem Kreiskegel: (Betrachte hier $\gamma : (x, +\infty) \to \mathbb{R}^2$ statt $\gamma : \mathbb{R} \to \mathbb{R}^2$)

hier keine Fläche

- 2. K=1, d.h. r''=-r Anfangsbedingungen
 - r(0) = 1
 - r'(0) = 0
 - h(0) = 0

 $\implies r(u) = \cos(u), h(u) = \sin(u)$. Einheitsspähre S^2 . Variation der Anfangsbedingung führt zu vertikal verschobenen Einheitssphären, oder keiner Lösung;

Beispiel. r(0) = 2, r'(0) = 0, $h(0) = 0 \implies$

- $r(u) = 2\cos(u)$
- $h(u) = \int_0^u h'(x)dx = \int_0^u \sqrt{1 4(\sin(x))^2} dx$

mit $r'^2 + h'^2 = 1$, hierbei handelt es sich um ein elliptisches Integral, nicht ausdrückbar durch elementare Funktionen.

Flächen mit Spitzen oder mit Rand

- 3. K = -1, d.h. r'' = r. Anfangsbedingungen
 - r(0) = 1
 - r'(0) = 0
 - h(0) = 0

$$\implies r(u) = \frac{1}{2}(e^u + e^{-u}) = \cosh(u), \ h(u) = \dots$$

Es gilt:

$$r'(u) = \cosh(u)' = \sinh(u) = \frac{1}{2}(e^u - e^{-u}) \stackrel{u \to \pm \infty}{\longrightarrow} \pm \infty$$

Folglich existiert auch hier die Fläche Σ nur über einem gewissen Interval der Form $(-h_0, h_0)$. (vgl. Serie 7)

1.4 Theorema Egregium

Ziel. Die Krümmung ist durch die Koeffizientenfunktionen E, F, G bestimmt. Genauer: durch E, F, G und ihre Ableitungen bestimmt.

Sei $\varphi:U\to V\subset\Sigma$ eine lokale C^2 -Parametrisierung und $N:V\to S^2$ die zugehörige lokale Gaussabbildung. Für alle $p\in V$ gilt.

$$K(p) = \det(DN)_p = \frac{eg - f^2}{EG - F^2}$$

Matrix von $(DN)_p: T_p\Sigma \to T_p\Sigma$ bezüglich der Basis

$$\{\varphi_u, \varphi_v\} : \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

dass heisst

$$N_u = (DN)_{\varphi(u,v)}(\varphi_u) = a_{11}\varphi_u + a_{21}\varphi_v$$

$$N_v = (DN)_{\varphi(u,v)}(\varphi_v) = a_{12}\varphi_u + a_{22}\varphi_v$$

Es gilt: $e = \langle \varphi_{uu}, N \rangle, f = \langle \varphi_{uv}, N \rangle, g = \langle \varphi_{vv}, N \rangle$ und wir folgern:

$$\varphi_{uu} - eN \perp N \implies \varphi_{uu} - eN \in \operatorname{span} \{\varphi_u, \varphi_v\}$$

Ähnlich existieren eindeutige Koeffizienten $\Gamma^1_{11}, \Gamma^2_{11}, \Gamma^1_{12}, \Gamma^2_{12}, \Gamma^2_{22}, \Gamma^2_{22} \in \mathbb{R}$ sogenannte Christoffelsymbole, mit

$$\begin{split} \varphi_{uu} &= eN + \Gamma_{11}^1 \cdot \varphi_u + \Gamma_{11}^2 \cdot \varphi_v \\ \varphi_{uv} &= fN + \Gamma_{12}^1 \cdot \varphi_u + \Gamma_{12}^2 \cdot \varphi_v \\ \varphi_{vv} &= gN + \Gamma_{22}^1 \cdot \varphi_u + \Gamma_{22}^2 \cdot \varphi_v \end{split}$$

Berechne nun

$$\langle \varphi_{uu}, \varphi_u \rangle = \frac{1}{2} \left(\frac{\partial}{\partial u} (\langle \underline{\varphi_u, \varphi_u} \rangle) \right) = \frac{1}{2} E_u$$

und

$$\langle \varphi_{uu}, \varphi_v \rangle = \frac{\partial}{\partial u} \langle \underbrace{\varphi_u, \varphi_v}_{-E} \rangle - \langle \varphi_u, \varphi_{uv} \rangle = F_u - \frac{1}{2} E_v \qquad \left(\frac{\partial}{\partial v} \langle \varphi_u, \varphi_u \rangle = 2 \cdot \langle \varphi_u, \varphi_{vu} \rangle \right)$$

Anderseits gilt nach obrigen Ansatz für $\varphi_{uu}, \varphi_{uv}, \varphi_{vv}$ auch

$$\langle \varphi_{uu}, \varphi_{u} \rangle = \Gamma_{11}^{1} \cdot E + \Gamma_{11}^{2} \cdot F$$
$$\langle \varphi_{uu}, \varphi_{v} \rangle = \Gamma_{11}^{1} \cdot F + \Gamma_{11}^{2} \cdot G$$

die Gleichheiten folgt jeweils aus $\langle N, \varphi_u \rangle$

$$\implies \begin{pmatrix} E & F \\ F & G \end{pmatrix} \cdot \begin{pmatrix} \Gamma_{11}^1 \\ \Gamma_{11}^2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}E_u \\ F_u - \frac{1}{2}E_v \end{pmatrix}$$

Analog erhalten wir via φ_{uv} und φ_{vv}

$$\bullet \ \begin{pmatrix} E & F \\ F & G \end{pmatrix} \cdot \begin{pmatrix} \Gamma_{12}^1 \\ \Gamma_{12}^2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} E_v \\ \frac{1}{2} G_u \end{pmatrix}$$

$$\bullet \ \begin{pmatrix} E & F \\ F & G \end{pmatrix} \cdot \begin{pmatrix} \Gamma_{22}^1 \\ \Gamma_{22}^2 \end{pmatrix} = \begin{pmatrix} F_v - \frac{1}{2}G_u \\ \frac{1}{2}G_v \end{pmatrix}$$

Beachte hier: $\det \begin{pmatrix} E & F \\ F & G \end{pmatrix} = EG - F^2 > 0$, da I_p positiv definit ist.

Konsequenz. Die Γ_{ij}^k sind durch E, F, G und ihre partiellen Ableitungen bestimmt. K ist durch E, F, G bestimmt.

Erinnerung.

$$\varphi_{uu} = eN + \Gamma_{11}^1 \varphi_u + \Gamma_{11}^2 \varphi_v$$

$$\varphi_{uv} = fN + \Gamma_{12}^1 \varphi_u + \Gamma_{12}^2 \varphi_v$$

$$\varphi_{vv} = gN + \Gamma_{22}^1 \varphi_u + \Gamma_{22}^2 \varphi_v$$

Via $\langle \varphi_{uu}, \varphi_u \rangle$ etc, erhalten wir Γ_{ij}^k als Funktion von E, F, G und ihren ersten partiellen Ableitungen.

Lemma 2. Sei $\varphi: U \to V \subset \Sigma$ eine lokale C^3 -Parametrisierung. Dann gilt $\forall p \in V:$

$$-EK = (\Gamma_{12}^2)_u - (\Gamma_{11}^2)_v + \Gamma_{12}^1 \cdot \Gamma_{11}^2 + \Gamma_{12}^2 \cdot \Gamma_{12}^2 - \Gamma_{11}^2 \cdot \Gamma_{22}^2 - \Gamma_{11}^1 \cdot \Gamma_{12}^2$$

Korollar 4 (Theorema Egregium, Gauss 1827). Die Krümmung K lässt sich durch E, F, G und deren zwei partiellen Ableitungen ausdrücken.

Beweis des Korollars. Es gilt $E = \langle \varphi_u, \varphi_u \rangle > 0$ da $I_p : T_p \Sigma \to \mathbb{R}$ positiv definit ist.

$$\implies K = -\frac{1}{E}(\dots)$$

wobei die ... ein Ausdruck in Γ_{ij}^k und erste partielle Ableitungen, also Ausdruck in E, F, G und zweite partielle Ableitungen sind.

Bemerkung. Das Korollar gilt auch für Flächen der Regularität C^2 .

Beweis Lemma. Wir berechnen $\varphi_{vuu} = \varphi_{uuv}$

1.

$$\varphi_{vuu} = \frac{\partial}{\partial v}(\varphi_{uu}) = e_v N + e \underbrace{N_v}_{a_{12}\varphi_u + a_{22}\varphi_v} + (\Gamma^1_{11})_v \varphi_u + \Gamma^1_{11}\varphi_{vu} + (\Gamma^2_{11})_v \varphi_v + \Gamma^2_{11}\varphi_{vv}$$

2.

$$\varphi_{uuv} = \frac{\partial}{\partial u}(\varphi_{uv}) = f_u N + f \underbrace{N_u}_{a_{11}\varphi_{u} + a_{21}\varphi_{v}} + (\Gamma^1_{12})_u \varphi_u + \Gamma^1_{12}\varphi_{uu} + (\Gamma^2_{12})_u \varphi_v + \Gamma^2_{12}\varphi_{uv}$$

Die φ_v -Komponente von φ_{vuu} und φ_{uuv} ist gleich, also

$$e \cdot a_{22} + \Gamma_{11}^1 \Gamma_{12}^2 + (\Gamma_{11}^2)_v + \Gamma_{11}^2 \Gamma_{22}^2 = f \cdot a_{21} + \Gamma_{12}^1 \Gamma_{11}^2 + (\Gamma_{12}^2)_u + \Gamma_{12}^2 \Gamma_{12}^2 \quad (*)$$
 (Benutze $\varphi_{uv} = fN + \Gamma_{12}^1 \varphi_u + \Gamma_{12}^2 \varphi_v$, etc.)

Erinnerung.

Bemerkung. Ähnliche Ausdrücke erhalten wir für -FK und -GK.