Homework 2 of Machine Learning

B01902032 江東峻

```
1. Answer: c
```

Expect Ein = 0.01*(1-9/N) >0.008 N>45 =>選c

2. Answer: a d e (*)

[a]: $H^* = H^T$ (H 是在實數裡) , $H^T = (X(X^TX)^{-1}X^T)^T = (X^T)^T (X(X^TX)^{-1})^T = X((X^TX)^{-1})^T X^T = X(X^TX)^{-1}X^T = H$ 又HH = H (看[e])

 \Rightarrow H*H = H^TH = HH = H

又H*H 必為positive semi-definite => H為positive semi-definite

- [b]: H是projection matrix —> HH = H, 若H-1存在=> H=Identity matrix=> not always invertible
- [c]: $Hb = \lambda b$ b: eigenvector $Hb = HHb = H\lambda b = \lambda Hb = \lambda \lambda b = \lambda b$ $\lambda(\lambda-1)b = 0$ 但b不為 $0 => \lambda=0$ or 1
- [d]: 因為 λ = 0 or 1 , eigenvalue 1 的數量= non-zero eigenvalue的數量 the number of non-zero eigenvalue = rank(H) = rank(X) = d+1
- [e]: HH = X(X^TX)-¹X^TX(X^TX)-¹X^T = X(X^TX)-¹X^T = H, 連乘1126次也還是H
- 3. Answer: a b e
 - [a]: 當sign(w^Tx) = y, [sign(w^Tx)≠y] = 0, 若yw^Tx ≥ 1則err=0, 若0 < yw^Tx < 1, err = 1-yw^Tx >0 —>bound 當sign(w^Tx) ≠ y, [sign(w^Tx)≠y] = 1, yw^Tx < 0, 1-yw^Tx >1, err = 1-yw^Tx >1 => bound [a]為upper bound
 - [b]: 當sign(w^Tx) = y, [sign(w^Tx)≠y] = 0, 若yw^Tx ≥ 1則err=0, 若0 < yw^Tx < 1, err = (1-yw^Tx)² >0 —>bound 當sign(w^Tx) ≠ y, [sign(w^Tx)≠y] = 1, yw^Tx < 0, 1-yw^Tx >1, err = (1-yw^Tx)² >1 => bound [b]為upper bound
 - [c]: 當sign(w^Tx) = y, [sign(w^Tx)≠y] = 0, 而yw^Tx ≥ 0=> err=0 —>bound 當sign(w^Tx) ≠ y, [sign(w^Tx)≠y] = 1, yw^Tx < 0, -yw^Tx >0, err = -yw^Tx >0 => 不一定bound [c]不是upper bound
 - [d]: 0 < θ(-yw^Tx) < 1 ,當sign(w^Tx) ≠ y, [sign(w^Tx)≠y] = 1 —>not bound [d]不是upper bound
 - [e]: 當sign(w^Tx) = y, [sign(w^Tx)≠y] = 0, 而yw^Tx ≥ 0=> err ≥ 0 —>bound 當sign(w^Tx) ≠ y, [sign(w^Tx)≠y] = 1, yw^Tx < 0, -yw^Tx > 0, err = exp(-yw^Tx)² > 1 => bound [e]為upper bound

4. Answer: b d e

[a]: 若yw^Tx ≥ 1則err=0 —>differentiable 若yw^Tx < 1, err = 1-yw^Tx \rightarrow differentiable 當yw^Tx = 1, err= 0(右邊) = 1-yw^Tx (左邊) —> continuous 左側在 $yw^Tx = 1$ 微分 $\neq 0 = 右側在yw^Tx = 1$ 微分 —> 這點不可微 [a]不為differentiable functions of w everywhere

[b]: 若yw^Tx ≥ 1則err=0 —>differentiable 若yw^Tx < 1, err = $(1-yw^Tx)^2$ —> differentiable 當yw^Tx = 1, err= 0(右邊) = (1-yw^Tx)² (左邊) -> continuous 左側在 $yw^Tx = 1$ 微分 = 0 = 右側在 $yw^Tx = 1$ 微分 —> 這點可微

[b]為differentiable functions of w everywhere

[c]: 同[a], 左側在 $yw^Tx = 1$ 微分 ≠ 0 = 右側在 $yw^Tx = 1$ 微分 —> 這點不可微 [c]不為differentiable functions of w everywhere

- [d]: θ (-yw^Tx) = 1/(1+e^Λ(yw^Tx)),在任何地方可微 [b]為differentiable functions of w everywhere
- [e]: err = exp(-yw^Tx)² 在任何地方可微 [e]為differentiable functions of w everywhere
- 5. Answer: c

PLA: err = $[sign(w^Tx) \neq y]$ [c]: $err = max(0, -yw^Tx)$ 當 wTx與y不同號 ,PLA-err = 1 [c]-err = $-yw^Tx > 0$ 當 w^Tx與y同號 ,PLA-err = 0 [c]-err = 0 $(-yw^Tx < 0)$

6. Answer: d

 $\nabla E(u, v) = (\partial E/\partial u, \partial E/\partial v)$ $=(e^{u}+ve^{uv}+2u-2v-3, 2e^{v}+ue^{uv}-2u+4v-2)$ 帶入(u, v) = (0, 0): ∇E(0, 0) = (-2, 0) = [d]

7. Answer: c

	u	v	∂E/∂u	∂E/∂v
(u ₀	0	0	-2	0
(u ₁	0.02	0	-1.93979866	-0.02
(u ₂	0.03939799	0.0002	-1.881219644	-0.0377975
(u ₃	0.05821018	0.00057798	-1.824219836	-0.0535831
(u ₄	0.07645238	0.00111381	-1.768758161	-0.0675305
(u ₅	0.09413996	0.00178911		
E(u	2.82500036			

E(u₅, v₅) = 2.82500036 較接近c

8. Answer: b

$$\begin{split} &E_2(0+\Delta u,\,0+\Delta v)=E(0,\,0)+(\Delta u\partial/\partial u+\Delta v\partial/\partial v)E(0,0)+1/2!\ ^*(\Delta u\partial/\partial u+\Delta v\partial/\partial v)^2\ ^*E(0,0)\\ &b_{uu}=0.5\ ^*\partial^2 E(0,0)/\partial u^2=0.5^*(e^nu+v^2\ ^*e^n(uv)+2)\ where\ (u,v)=(0,0)=1.5\\ &b_{vv}=0.5\ ^*\partial^2 E(0,0)/\partial v^2=0.5^*(4e^n(2v)+u^2\ ^*e^n(uv)+4)\ where\ (u,v)=(0,0)=4\\ &b_{uv}=\partial^2 E(0,0)/\partial u\partial v=uve^n(uv)+e^n(uv)-2\ where\ (u,v)=(0,0)=-1\\ &b_{u}=\partial E(0,0)/\partial u=e^nu+ve^n(uv)+2u-2v-3\ where\ (u,v)=(0,0)=-2\\ &b_{v}=\partial E(0,0)/\partial v=2e^n(2v)+u^*e^n(uv)-2u+4v-2\ where\ (u,v)=(0,0)=0\\ &b=E(0,0)=3\\ &(b_{uu},b_{vv},b_{uv},b_{u},b_{v},b)=(1.5,4,-1,-2,0,3)=[b] \end{split}$$

9. Answer: a

E2(Δu, Δv) = E(u,v) +
$$\nabla$$
E(u,v)*(Δu, Δv) + 0.5*[(Δu, Δv)]^T ∇ ²E(u,v)*(Δu, Δv) 取微分=0 => ∇ E(u,v) + ∇ ²E(u,v)*(Δu, Δv) = 0 則(Δu, Δv) = $-(\nabla$ ²E(u,v))⁻¹ ∇ E(u,v) = [a]

10. Answer: c

	u	v	Δυ	Δν	u'	ν'
(u	0	0	0.69565216	0.08695652	0.69565216	0.08695652
(u	0.69565216	0.08695652	-0.081889959	-0.009349643	0.613762201	0.077606877
(u	0.613762201	0.077606877	-0.00193331	-0.001676787	0.611828891	0.07593009
(u	0.611828891	0.07593009	-8.3229E-06	-0.00117218	0.611820568	0.07475791
(u	0.611820568	0.07475791	0.69565216	0.08695652	0.69565216	0.08695652
(u	0.69565216	0.08695652				
E(u	2.36087349					

11. Answer: e

讓x=(z1, z2),設6維的hypothesis = (1, z₁, z₂, z₁², z₁z₂, z₂²)。 X = 每一行放一個x的矩陣, 若對於任意的長條的y, 若存在一個w使得y = Xw w = $X^{-1}y$ —> 這個w存在 <=> X有反矩陣。

=> 對任意的 y , $\{x_1, x_2, x_3, x_4, x_5, x_6\}$ 都可以被union of quadratic, linear, or constant hypotheses of x shatter => biggest subset = $\{x_1, x_2, x_3, x_4, x_5, x_6\}$ = [e]

12. Answer: e

$$\mathbf{z0} = (1, 0, 0, ..., 0)$$

$$\Phi(x_1) = \mathbf{z_1}$$
(向量z)= (1, 1, 0, 0, ..., 0) (最前面的1是為了閾值的第0項)

$$\Phi(\mathbf{x}_2) = \mathbf{z}_2 = (1, 0, 1, 0, ..., 0)$$

$$Z = (\mathbf{z_0}, \mathbf{z_1}, \mathbf{z_2}, ..., \mathbf{z_n})$$
, $Z = \begin{bmatrix} z_0 \\ ... \\ z_N \end{bmatrix}$ 顯然對於這個 **Z**對於任何的**y**,

都可找到w使得 $y=Zw(Z^{-1} \text{ exist})$ —> $w = Z^{-1}y$ —> shatter

加入一個
$$\mathbf{x}_{\mathsf{N+1}}$$
,每個 \mathbf{z} 也多一維,
$$Z = \begin{bmatrix} z_0 \\ \dots \\ z_{\mathsf{N+1}} \end{bmatrix} \quad \mathbf{L} \mathbf{Z}$$
顯然有反矩陣存在 $->$ shatter

=> 不斷加入x,都還是shatter -> d^{vc}(HΦ)->∞

13. Answer: c

14. Answer: a

15. Answer: a

16. Answer: d

對於一個x,找最有可能的 $h = \max h_y(x)$,等同於找 \max 的 $\ln(h_y(x))$

等同於找min 的
$$\ln \left(\sum_{i=1}^{K} \exp(w_i^T x_n) \right) - w_{y_n}^T x_n$$

有n個X =>
$$\frac{1}{N} \sum_{n=1}^{N} \left(\ln \left(\sum_{i=1}^{K} \exp(w_i^T x_n) \right) - w_{y_n}^T x_n \right)$$

=[d]

17. Answer: c

$$\frac{\partial}{\partial w_i} \left(\frac{1}{N} \sum_{n=1}^N \left(\ln \left(\sum_{i=1}^K \exp(w_i^T x_n) \right) - w_{y_n}^T x_n \right) \right) = \frac{1}{N} \sum_{n=1}^N \left(\frac{\partial}{\partial w_i} \left(\ln \left(\sum_{i=1}^K \exp(w_i^T x_n) \right) - w_{y_n}^T x_n \right) \right) \right)$$

$$= \frac{1}{N} \sum_{n=1}^N \left(\frac{x_n \exp(w_i^T x_n)}{\sum\limits_{j=1}^K \exp(w_j^T x_n)} - [y_n = i] x_n \right) = \frac{1}{N} \sum_{n=1}^N \left(h_i(x_n) - [y_n = i] \right) x_n = [c]$$

18. Answer: a

19. Answer: d

20. Answer: a

21. Answer: N+1

設h: h(x) = 0, RMSE(h)=
$$\sum_{n=1}^{N} y_n^2$$
 再設h'(x)=[x=x₁] ,RMSE(h') = $\sum_{n=2}^{N} y_n^2 + (y_1-1)^2$

兩式相減可算出 y_1 ,照這個方法可算出 $y_1 \sim y_N$,再算上 $h(x) = 0 \rightarrow$ 總共需要N+1次RMSE 22. Answer: 2

N(RMSE(h))2

$$= \sum_{n=1}^{N} \left(y_n^2 - 2y_n h(x_n) + h^2(x_n) \right) = \sum_{n=1}^{N} y_n^2 - 2\sum_{n=1}^{N} y_n h(x_n) + \sum_{n=1}^{N} h^2(x_n) = N(RMSE(h(x)=0))^2 - 2\sum_{n=1}^{N} y_n h(x_n) + \sum_{n=1}^{N} h^2(x_n)$$
 其中 $\sum_{n=1}^{N} y_n h(x_n)$ 是所求, $\sum_{n=1}^{N} h^2(x_n)$ 不需要用RMSE,所以 $\sum_{n=1}^{N} y_n h(x_n)$ 可以用

2次RMSE, (RMSE(h)和RMSE(h(x)=0))算出來。

23. Answer: K+1

的方法算出來,其中RMSE(h(x)=0)可以共用,剩下K次的RMSE(h_i),總共K+1次。

$$\frac{1}{N}\sum\limits_{n=1}^{N}\left(h_{i}(x_{n})\sum\limits_{k=1}^{K}w_{k}h_{k}(x_{n})\right)$$
 是變數為 $\mathbf{w}_{1},\mathbf{w}_{2},...\mathbf{w}_{K}$ 的K維方程式,總共有 $\mathbf{i}=\mathbf{1}\sim \mathbf{K}$,K個等式

解聯立方程式可算出 $w1, w_2, ..., w_k$

總共需要K+1次的RMSE。