Review 10716, Spring 2020

1 Concentration

Hoeffding's inequality:

Theorem 1 (Hoeffding) If $Z_1, Z_2, ..., Z_n$ are iid with mean μ and $\mathbb{P}(a \leq Z_i \leq b) = 1$, then for any $\epsilon > 0$

$$\mathbb{P}(|\overline{Z}_n - \mu| > \epsilon) \le 2e^{-2n\epsilon^2/(b-a)^2} \tag{1}$$

where and $\overline{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$.

VC Dimension. Let \mathcal{A} be a class of sets. If F is a finite set, let $s(\mathcal{A}, F)$ be the number of subset of F 'picked out' by \mathcal{A} . Define the growth function

$$s_n(\mathcal{A}) = \sup_{|F|=n} s(\mathcal{A}, F).$$

Note that $s_n(\mathcal{A}) \leq 2^n$. The *VC dimension* of a class of set \mathcal{A} is

$$VC(\mathcal{A}) = \sup \left\{ n : \ s_n(\mathcal{A}) = 2^n \right\}. \tag{2}$$

If the VC dimension is finite, then there is a phase transition in the growth function from exponential to polynomial:

Theorem 2 (Sauer's Theorem) Suppose that A has finite VC dimension d. Then, for all $n \geq d$,

$$s(\mathcal{A}, n) \le \left(\frac{en}{d}\right)^d. \tag{3}$$

Given data $Z_1, \ldots, Z_n \sim P$. The empirical measure P_n is

$$P_n(A) = \frac{1}{n} \sum_{i} I(Z_i \in A).$$

Theorem 3 (Vapnik and Chervonenkis) Let A be a class of sets. For any $t > \sqrt{2/n}$,

$$\mathbb{P}\left(\sup_{A\in\mathcal{A}}|P_n(A) - P(A)| > t\right) \le 4s(\mathcal{A}, 2n)e^{-nt^2/8} \tag{4}$$

and hence, with probability at least $1 - \delta$,

$$\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| \le \sqrt{\frac{8}{n} \log\left(\frac{4s(\mathcal{A}, 2n)}{\delta}\right)}.$$
 (5)

Hence, if \mathcal{A} has finite VC dimension d then

$$\sup_{A \in \mathcal{A}} |P_n(A) - P(A)| \le \sqrt{\frac{8}{n} \left(\log\left(\frac{4}{\delta}\right) + d\log\left(\frac{ne}{d}\right) \right)}. \tag{6}$$

Bernstein's inequality is a more refined inequality than Hoeffding's inequality. It is especially useful when the variance of Y is small. Suppose that Y_1, \ldots, Y_n are iid with mean μ , $Var(Y_i) \leq \sigma^2$ and $|Y_i| \leq M$. Then

$$\mathbb{P}(|\overline{Y} - \mu| > \epsilon) \le 2 \exp\left\{-\frac{n\epsilon^2}{2\sigma^2 + 2M\epsilon/3}\right\}. \tag{7}$$

It follows that

$$P\left(|\overline{Y} - \mu| > \frac{t}{n\epsilon} + \frac{\epsilon\sigma^2}{2(1-c)}\right) \le e^{-t}$$

for small enough ϵ and c.

2 Probability

- 1. $X_n \stackrel{P}{\to} 0$ means that means that, for every $\epsilon > 0$ $\mathbb{P}(|X_n| > \epsilon) \to 0$ as $n \to \infty$.
- 2. $X_n \leadsto Z$ means that $\mathbb{P}(X_n \leq z) \to \mathbb{P}(Z \leq z)$ at all continuity points z.
- 3. $X_n = O_P(a_n)$ means that, X_n/a_n is bounded in probability: for every $\epsilon > 0$ there is an M > 0 such that, for all large n, $\mathbb{P}\left(\left|\frac{X_n}{a_n}\right| > M\right) \le \epsilon$.
- 4. $X_n = o_p(a_n)$ means that X_n/a_n goes to 0 in probability: for every $\epsilon > 0$

$$\mathbb{P}\left(\left|\frac{X_n}{a_n}\right| > \epsilon\right) \to 0 \quad \text{as } n \to \infty.$$

5. Law of large numbers: $X_1, \ldots, X_n \sim P$ then

$$\overline{X}_n \stackrel{P}{\to} \mu$$

where $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $\mu = \mathbb{E}[X_i]$.

6. Central limit theorem: $X_1, \ldots, X_n \sim P$ then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \leadsto N(0, 1)$$

where $\sigma^2 = \text{Var}(X_i)$.

3 Basic Statistics

1. Bias and Variance. Let $\widehat{\theta}$ be an estimator of θ . Then

$$\mathbb{E}(\widehat{\theta} - \theta)^2 = bias^2 + Var$$

where bias = $\mathbb{E}[\widehat{\theta}] - \theta$ and $\text{Var} = \text{Var}(\widehat{\theta})$. In many cases there is a **bias-variance** trade-off. In parametric problems, we typically have that the standard deviation is $O(n^{-1/2})$ but the bias is O(1/n) so the variability dominates. In nonparametric problems this is no longer true. We have to choose tuning parameters in classifiers and estimators to balance the bias and variance.

- 2. A set of distributions \mathcal{P} is a **statistical model**. They can be small (parametric models) or large (nonparametric models).
- 3. Confidence Sets. Let $X_1, \ldots, X_n \sim P$ where $P \in \mathcal{P}$. Let $\theta = T(P)$ be some quantity of interest, Then $C_n = C(X_1, \ldots, X_n)$ is a 1α confidence set if

$$\inf_{P \in \mathcal{P}} P(T(P) \in C_n) \ge 1 - \alpha.$$

4. **Maximum Likelihood**. Parametric model $\{p_{\theta}: \theta \in \Theta\}$. We also write $p_{\theta}(x) = p(x;\theta)$. Let $X_1, \ldots, X_n \sim p_{\theta}$. MLE $\widehat{\theta}_n$ (maximum likelihood estimator) maximizes the likelihood function

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} p(X_i; \theta).$$

5. Fisher information $I_n(\theta) = nI(\theta)$ where

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log p(X;\theta)}{\partial \theta^2}\right].$$

6. Then

$$\frac{\widehat{\theta}_n - \theta}{s_n} \leadsto N(0, 1)$$

where
$$s_n = \sqrt{\frac{1}{nI(\widehat{\theta})}}$$
.

7. Asymptotic $1 - \alpha$ confidence interval $C_n = \widehat{\theta}_n \pm z_{\alpha/2} \ s_n$. Then

$$\mathbb{P}(\theta \in C_n) \to 1 - \alpha.$$

4 Minimaxity

Let \mathcal{P} be a set of distributions. Let θ be a parameter and let $L(\widehat{\theta}, \theta)$ be a loss function. The **minimax risk** is

$$R_n = \inf_{\widehat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P[L(\widehat{\theta}, \theta)].$$

If $\sup_{P \in \mathcal{P}} \mathbb{E}_P[L(\widehat{\theta}, \theta)] = R_n$ then $\widehat{\theta}$ is a minimax estimator.

For example, if $X_1, \ldots, X_n \sim N(\theta, 1)$ and $L(\widehat{\theta}, \theta) = (\widehat{\theta} - \theta)^2$ then the minimax risk is 1/n and the minimax estimator is \overline{X}_n .

As another example, if $X_1, \ldots, X_n \sim p$ where $X_i \in \mathbb{R}^d$, $L(\widehat{p}, p) = \int (\widehat{p} - p)^2$ and $p \in \mathcal{P}$, the set of densities with bounded second derivatives, then $R_n = (C/n)^{4/(4+d)}$. The kernel density estimator is minimax.

5 Regression

1. $Y \in \mathbb{R}, X \in \mathbb{R}^d$ and prediction risk is

$$\mathbb{E}(Y - m(X))^2.$$

We write X = (X(1), ..., X(d)).

- 2. Minimizer is $m(x) = \mathbb{E}(Y|X=x)$.
- 3. Best linear predictor: minimize

$$\mathbb{E}(Y - \beta^T X)^2$$

where X(1) = 1 so that β_1 is the intercept. Minimizer is

$$\beta = \Lambda^{-1} \alpha$$

where $\Lambda(j,k) = \mathbb{E}[X(j)X(k)]$ and $\alpha(j) = \mathbb{E}(YX(j))$.

4. The data are

$$(X_1,Y_1),\ldots,(X_n,Y_n).$$

Given new X predict Y.

5. Minimize training error

$$\widehat{R}(\beta) = \frac{1}{n} \sum_{i} (Y_i - \beta^T X_i)^2.$$

Solution: least squares:

$$\widehat{\beta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T Y$$

where $\mathbb{X}(i,j) = X_i(j)$.

- 6. Fitted values $\widehat{Y} = \mathbb{X}\widehat{\beta} = HY$ where $H = \mathbb{X}(\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T$ is the hat matrix: the projector onto the column space of \mathbb{X} .
- 7. Bias-Variance tradeoff: Write $Y = m(X) + \epsilon$ and let $\widehat{Y} = \widehat{m}(X)$ where $\widehat{m}(x) = x^T \widehat{\beta}$. Then

$$R = \mathbb{E}(\widehat{Y} - Y)^2 = \sigma^2 + \int b^2(x)p(x)dx + \int v(x)p(x)dx$$

where $b(x) = \mathbb{E}[\widehat{m}(x)] - m(x)$, $v(x) = \operatorname{Var}(\widehat{m}(x))$ and $\sigma^2 = \operatorname{Var}(\epsilon)$.

6 Classification

- 1. $X \in \mathbb{R}^d \text{ and } Y \in \{0, 1\}.$
- 2. Classifier $h: \mathbb{R}^d \to \{0, 1\}$.
- 3. Prediction risk:

$$R(h) = \mathbb{P}(Y \neq h(X)).$$

The **Bayes rule** minimizes R(h):

$$h(x) = I(m(x) > 1/2) = I(\pi_1 p_1(x) > \pi_0 p_0(x))$$

where $m(x) = \mathbb{P}(Y = 1|X = x)$, $\pi_1 = \mathbb{P}(Y = 1)$, $\pi_0 = \mathbb{P}(Y = 0)$, $p_1(x) = p(x|Y = 1)$ and $p_0(x) = p(x|Y = 0)$.

4. **Re-coded loss.** If we code Y as $Y \in \{-1, +1\}$. then many classifiers can be written as

$$h(x) = sign(\psi(x))$$

for some ψ . For linear classifiers, $\psi(x) = \beta^T x$. Then the loss can be written as $I(Y \neq h(X)) = I(Y\psi(X) < 0)$ and risk is

$$R = \mathbb{P}(Y \neq h(X)) = \mathbb{P}(Y\psi(X) < 0)$$

5. **Linear Classifiers**. A linear classifier has the form $h_{\beta}(x) = I(\beta^T x > 0)$. (I am including a intercept in x. In other words $x = (1, x(2), \dots, x(d))$.) Given data $(X_1, Y_1), \dots, (X_n, Y_n)$ there are several ways to estimate a linear classifier:

(a) Empirical risk minimization (ERM): Choose $\hat{\beta}$ to minimize

$$R_n(\beta) = \frac{1}{n} \sum_{i=1}^n I(Y_i \neq h_{\beta}(X_i)).$$

(b) Logistic regression: use the model

$$P(Y = 1|X = x) = \frac{e^{\beta^T x}}{1 + e^{\beta^T x}} \equiv p(x, \beta).$$

So $Y_i \sim \text{Benoulii}(p(X_i, \beta))$. The likelihood function is

$$L(\beta) = \prod_{i} p(X_{i}, \beta)^{Y_{i}} (1 - p(X_{i}, \beta))^{1 - Y_{i}}.$$

The log-likelihood is strictly concave. So we have find the maximizer $\widehat{\beta}$ easily. It is easy to check that the classifier $I(p_{x,\widehat{\beta}}>1/2)$ is linear.

(c) SVM (support vector machine). Code Y as +1 or -1. We can write the classifier as $h_{\beta}(x) = \text{sign}(\psi_{\beta}(x))$ where $\psi_{\beta}(x) = x^T \beta$. As we said above, the loss can be written

as $I(Y \neq h(X)) = I(Y\psi(X) < 0)$. Now replace the nonconvex loss $I(Y\psi(X) < 0)$ with the hinge-loss $[1 - Y_i\psi_\beta(X_i)]_+$. We minimize the regularized loss

$$\sum_{i=1}^{n} [1 - Y_i \psi_{\beta}(X_i)]_{+} + \lambda ||\beta||^2.$$

6. The SVM is an example of the general idea of replacing the true loss with a surrogate loss that is easier to minimize. Replacing $I(Y\psi(X) < 0)$ with

$$L(Y, \psi(X)) = \log(1 + \exp(-Y\psi(X)))$$

gives back logistic regression. The adaboost algorithm uses

$$L(Y, \psi(X)) = \exp(-Y\psi(X)).$$

And, as we said above, the SVM uses the hinge loss

$$L(Y, \psi(X)) = [1 - Y\psi(X)]_{+}.$$