Задача 1: Существует ли отношение эквивалентности на отрезке, факторпространство по которому гомеоморфно объединению 3 отрезков с общим концом? Строго обоснуйте ответ.

Решение. На отрезке AE выберем точки B, C, D так, чтобы $AB \subset AC \subset AD \subset AE$. Введем такое отображение

$$f: AE \to AE, \qquad \begin{array}{c} AB \mapsto AB \\ BC \mapsto BC \\ CD \mapsto BC \\ DE \mapsto DE \end{array}$$

Рис. 1: Отрезок AE и f(AE).

Такое отображение является непрерывной сюръекцией 1 . Отрезок AE является компактом, а f(AE) хаусдорфово. Тогда

 $\frac{AE}{\sim_f}\cong$ объединение 3 отрезков с общим концом.

Ответ: Да.

Задача 2: Проективная прямая \mathbb{R}^P вкладывается в проективную плоскость \mathbb{R}^P следующим образом: точке из \mathbb{R}^P с однородными координатами $[x_0:x_1]$ соответствует точка $[x_0:x_1:0]\in\mathbb{R}^P$. Докажите, что дополнение \mathbb{R}^P $\setminus \mathbb{R}^P$ гомеоморфно плоскости \mathbb{R}^2 со стандартной топологией.

Решение. $\mathbb{R}P^2 \setminus \mathbb{R}P^1 = \{[x_0: x_1: x_2] \mid x_2 \neq 0\}$. Тогда рассмотрим

$$f: \mathbb{R}P^2 \setminus \mathbb{R}P^1 \hookrightarrow R^2, \quad [x_0: x_1: x_2] \mapsto \left(\frac{x_0}{x_2}, \frac{x_1}{x_2}\right)^2.$$

Проверим что оно является сюръективным и инъеквтиным, а следовательно биективным.

(i) Инъективность. Пусть $f([x_0:x_1:x_2])=f([\tilde{x}_0:\tilde{x}_1:\tilde{x}_2])$. Тогда

$$\frac{x_0}{x_2} = \frac{\tilde{x}_0}{\tilde{x}_2} = \frac{\lambda \tilde{x}_0}{x_2}, \quad \frac{x_1}{x_2} = \frac{\tilde{x}_1}{\tilde{x}_2} = \frac{\lambda \tilde{x}_1}{x_2}, \qquad \exists \lambda \in \mathbb{R}: \quad \lambda \tilde{x}_2 = x_2.$$

Ну и понятно, что

$$[x_0: x_1: x_2] = [\lambda x_0: \lambda x_1: \lambda x_2].$$

(іі) Сюръективность.

$$f^{-1}((a,b)) \ni [a:b:1].$$

Осталось проверить существование и непрерывность обратного.

Определим отображение

$$g: \mathbb{R}^2 \to \mathbb{R}P^2 \setminus \mathbb{R}P^1$$
, $(a,b) \mapsto [a:b:1]$.
 $(f \circ g)(a,b) = f([a:b:1]) = (a,b)$.
 $(g \circ f)([a:b:1]) = g(a,b) = [a:b:1]$.

Получаем, что f и g обратны друг другу, а также f, g являются непрерывными. Таким образом f – гомеоморфизм пространств $\mathbb{R}P^2\setminus\mathbb{R}P^1$ и \mathbb{R}^2 .

 $^{^{1}}$ Прообразами откртых являются либо одно, либо два открытых множества в AE; а объединение двух открытых множеств открыто.

²Отображение f корректно определено, так как $x_2 \neq 0$.