Abstract Interpretation

Lecture (1)

Sriram Rajamani Microsoft Research

Two approaches to analysing a program

Testing

- Exercise some behaviours
- "Underapproximation"
- Can miss errors
- Unsound

Verification

- Exercise all behaviours (even infeasible ones)
- "overapproximation"
- Can generate false errors
- Incomplete

Abstract interpretation is a unified theory for verification of programs. Proposed by Cousot-Cousot in a classic POPL 1977 paper.

Concrete vs abstract interpretation

- Concrete interpretation of a program is how we normally imagine how a program executes
 - We give it inputs, it runs and produces an output

- Abstract interpretation models "all possible" execution over "all possible inputs".
 - For this, we need do understand some special domains (which are sets with orderings) which are "semi-lattices"

Partially ordered sets (or Po-sets)

S is a po-set or a partially ordered set, if it has a binary relation \leq which is:

- Reflexive: for all $x \in S$, $x \le x$
- Antisymmetric: for all $x,y \in S$, $x \le y \land y \le x \Rightarrow x = y$
- Transitive: for all $x,y,z \in S$, $x \le y \land y \le z \Rightarrow x \le z$

Lower bounds

Let (S, \leq) be a po-set The lower bound of a set $A \subseteq S$ is an element ℓ such that for all $a \in A$, $\ell \leq a$

Note1: lower bound need not be unique

Note 2: if there is a lower bound $\ell \, \hat{\mathcal{I}} *$ such that for every lower bound ℓ of A we have that $\ell \! \leq \! \ell \, \hat{\mathcal{I}} *$, then such an $\ell \, \hat{\mathcal{I}} *$ is called a "greatest lower bound" or "GLB" of A

Upper bounds

Let (S, \leq) be a po-set

The upper bound of a set $A \subseteq S$ is an element u such that

for all $a \in A$, $a \le u$

Note1: upper bound need not be unique

Note 2: if there is a lower bound $u\widehat{1}*$ such that for every upper bound u of A we have that $u\widehat{1}* \leq u$, then such a $u\widehat{1}*$ is called a "least upper bound" or "LUB" of A

Lattice

Let (S, \leq) be a po-set

 (S, \leq) is a lattice if every non-empty subset of elements in S has a GLB and LUB

Join Semi-Lattice

Let (S, \leq) be a po-set

 (S, \leq) is a join semi-lattice if every non-empty subset of elements in S has a LUB in S

Note: we can similarly define a meet semi-lattice, but we won't bother!

Set & Lather

Any set $S = \{S_1, S_2, \dots S_n\}$ can be made onto a lattice S

Why did we do all this semi-lattice stuff?

In order to do verification ©

We can give meaning to a program (over all behaviours) by a fix-point computed over a semi-lattice!!!!

Example: we will use the program on the right as a case study to illustrate and explain abstract interpretation

{-1,-2,-3,0,1,2} 80,1,23 {-1,-2,-3 E0,13 [1,25 (2,5) {3,43 2-1,-23 2-1,63

75100 {2,3,4,...101}

Likk oint

125100) [101, 101] [2, 10]] [001,4]T x= 2+1

So...

an abstract interpretation is really

Science of Sound Abstract Interpretations $\langle D, \hat{p}, \leq \overline{D}, \overline{D$ Sels of Integers Set 3 Intervals

Abstract interpretations themselves
form a lattice!

 $\langle D, \hat{\rho}, \leq T, \downarrow \hat{\rho}, \hat{\rho}, \hat{\lambda}, \hat{\lambda}$ Sels of Integers Signs Intervalo Set 3 Integers Constituted (34)

Abstract interpretations themsales

form = lattice

Specifying an abstract interpretation $\langle D, S, -D, T_D, J_D, J_D \rangle \stackrel{d}{\longrightarrow} \langle A, S_A, -A, \overline{J}_A, \overline{J}_A \rangle$

from golois connection to abstract state transchion for

$$\langle D, S, A, T, A, A, T, A, T,$$

Sp. (a, y) form a galors annection

Can define I_A in-terms B I_D , A, A.

$$T_A(a) = \alpha(T_D(Y(a)))$$

ie..
$$T_A = A \circ T_D \circ \sqrt{\frac{1}{2}}$$

 $\langle D, 3, 4, 5, 5, 5, 5, 5, 5 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 1, 1, 1 \rangle$ $I_{A} = \langle A, a, 5, 7, 1, 1 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 1, 1 \rangle$ $I_{A} = \langle A, a, 5, 7, 1, 1 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 1, 1 \rangle$ $I_{A} = \langle A, a, 5, 7, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 7, 1 \rangle$ $I_{A} = \langle A, a, 5, 7, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 7, 1 \rangle$ $I_{A} = \langle A, a, 5, 7, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 5, 7, 7, 1 \rangle$ $I_{A} = \langle A, a, 7, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a, 7, 1 \rangle \stackrel{\sim}{=} \langle A, a,$

Thus, any property broved on T_A Carries over to T_D

Recipe for analysis: Programs concrete interpretation: $e = \langle D, p, =_D, T_D, L_D, T_D \rangle$ Concrete semantics: Least Fix Point (J) Difficulty: Least Fix Point (J) may be expensive to compute, or may not converge Solution: Come up with an abstract domain A and a Galois comedion $D \xrightarrow{\alpha} A$ I'm No I'm oc Immediately get: $A = \langle A, \circ_A, \leq_A, \top_A, \perp_A$

Abstract Semantics: Least Fix Point (IA)
Hopefully, easier to compute!

Homework

Review and understand these slides

• Start looking at the Cousot-Cousot 77 paper:

http://www.di.ens.fr/~cousot/COUSOTpapers/publications.www/CousotCousot-POPL-77-ACM-p238--252-1977.pdf

 Think about: under what circumstances does the "fixpoint computation" terminate? When might it not terminate? What could we do to make it always terminate?

End of Lecture 1