CLAIMS

10

15

5

What is claimed is:

- 1. A method for fabricating a device that emits light in blue or green wavelengths:
- i) providing a substrate comprising a surface layer of a group III-nitride nitrides such as GaN, maintaining the substrate at a temperature ranging from 700° C to 850° C, and forming a layer of $In_{*}Ga_{l-*}N$, wherein x ranges from 0 to 0.10, over the substrate;
- ii) maintaining the substrate at about the temperature of step i), and flowing indium-precursor at a flow rate of less than 100 μ mol/min between 2 and 5 seconds, and N-precursor over the layer of $In_xGa_{1-x}N$ to form quantum dots of $In_wGa_{1-w}N$, wherein w > 0.20;
- iii) maintaining the substrate at about the temperature of step i), and forming a well layer of InyGa_{1-y}N, wherein y is greater than x, over the quantum dots;
- iv) maintaining the substrate at about the temperature of step i), and forming a first cap layer of In_zGa_{1-z}N, wherein z ranges from 0 to 0.10, over the well layer;
 - v) forming a second cap layer of GaN or AlGaN over the first cap layer; thereby obtaining a device that emits light in blue or green wavelengths.

2. The method of claim-1, wherein the group III-nitride is GaN.

- <u>3 12.</u> –A method for fabricating a device that emits light in blue or green wavelengths comprising:
- i) providing a substrate comprising a surface layer of <u>a group III-nitride</u> <u>nitrides such as GaN</u>, maintaining the substrate at a temperature ranging from 700°C to 850°C, and forming a layer of Al_uGa_{1-u}N, wherein u ranges from 0 to 0.30, over the substrate;
- ii) maintaining the substrate at about the temperature of step i), and forming a layer of $In_xGa_{1-x}N$, wherein x ranges from 0 to 0.10, over the $Al_uGa_{1-u}N$;

20

10

- iii) maintaining the substrate at about the temperature of step i), and flowing indium-precursor at a flow rate of less than 100 μ mol/min between 2 and 5 seconds, and N-precursor over the layer of $In_xGa_{1-x}N$ to form quantum dots of $In_wGa_{1-w}N$, wherein w > 0.20;
- iv) maintaining the substrate at about the temperature of step i), and forming a well layer of $In_vGa_{1-v}N$, wherein y is greater than x, over the quantum dots;
- v) maintaining the substrate around/at the temperature of step i), and forming a first cap layer of In_zGa_{1-z}N, wherein z ranges from 0 to 0.10, over the well layer;
- vi) forming a second cap layer of GaN or AlGaN over the first cap layer; thereby obtaining a device that emits light in blue or green wavelengths.

42. The method of claim 31, wherein the group III-nitride is GaN.

- 5 3. A method for fabricating a device that emits light in blue or green wavelengths comprising:
- i) providing a substrate comprising a surface layer of a group III-nitride nitrides such as GaN, maintaining the substrate at a temperature ranging from 700°C to 850°C, and forming a layer of In_xGa_{1-x}N, wherein x ranges from 0 to 0.10, over the substrate;
- ii) maintaining the substrate at about the temperature of step i), and forming quantum dots of In_wGa_{1-w}N, wherein w > 0.20, on the surface by flowing over the surface a composition comprising biseyelopentadienyl-magnesium, dimethyl zine, silane or tetraethyl silane;
- iii) maintaining the substrate at about the temperature of step i), and forming a well layer of InyGa_{1-y}N, wherein y is greater than x, over the quantum dots;
- iv) maintaining the substrate at about the temperature of step i), and forming a first cap layer of In_zGa_{1-z}N, wherein z ranges from 0 to 0.10, over the well layer;
 - v) forming a second cap layer of GaN or AlGaN over the first cap layer; thereby obtaining a device that emits light in blue or green wavelengths.

6. The method of claim 5, wherein the group III-nitride is GaN.

- 7.4. The method of claim 1 or 2, wherein the forming steps are performed by metalorganic chemical vapor deposition using trimethyl indium, triethyl indium, ethyldimethyl indium or a mixture of at least two thereof as an indium precursor.
- 8 5. The method of any one of claims 1, 2 or 7 claim 1 or 4, wherein trimethyl gallium, triethyl gallium, ethyldimethyl gallium or a mixture of at least two thereof is used as a gallium precursor.
- 9 6. The method of claim 8 5, wherein ammonia or dimethylhydrazine is used as a nitrogen <u>Nitrogen</u> precursor and hydrogen, nitrogen or a mixture thereof is used as a carrier gas.
- 10 37. The method of claim 3 12, wherein the forming steps are performed by metalorganic chemical vapor deposition using trimethyl indium, triethyl indium, ethyldimethyl indium or a mixture of at least two thereof as an indium precursor.
- 11 48. The method of any one of claims 3, 4 1, 2 claim 2 or 10 37, wherein trimethyl gallium, triethyl gallium, ethyldimethyl gallium or a mixture of at least two thereof is used as a gallium precursor.
- <u>12 59.</u>— The method of claim <u>11 48</u>, wherein ammonia or dimethylhydrazine is used as a <u>nitrogen nitrogenN</u> precursor and hydrogen, nitrogen or a mixture thereof is used as a carrier gas.
 - 43 6. A method for fabricating a device that emits light in blue or green wavelengths comprising:

15

20

- i) providing a substrate comprising a surface layer of a group III-nitride,

 maintaining the substrate at a temperature ranging from 700°C to 850°C, and
 forming a first layer of GaN or In_xGa_{1-x}N, wherein x ranges from 0 to 0.10, over the
 substrate;
 - ii) maintaining the substrate at about the same temperature as the temperature of step i), and forming a second layer of $In_xGa_{1-x}N$, wherein x ranges from 0 to 0.10, over the first layer;
 - iii) maintaining the substrate at about the temperature of step i), and flowing indium-precursor at a flow rate of less than 100 μ mol/min between 2 and 5 seconds, and N-precursor over the second layer of $In_xGa_{1-x}N$ to form quantum dots of $In_wGa_{1-w}N$, wherein w > 0.20;
 - iv) maintaining the substrate at about the temperature of step i), and forming a well layer of

 $In_yGa_{1-y}N$, wherein y is greater than x, over the quantum dots;

- v) maintaining the substrate at about the temperature of step i), and forming a first cap layer of In_zGa_{1-z}N, wherein z ranges from 0 to 0.10, over the well layer;
- vi) forming a second cap layer of GaN or AlGaN over the first cap layer; thereby obtaining a device that emits light in blue or green wavelengths.

7. The method of claim 6, wherein the group III-nitride is GaN.

- 8. A method for fabricating a device that emits light in blue or green wavelengths comprising:
 - i) providing a substrate comprising a surface layer of a group III-nitride, maintaining the substrate at a temperature ranging from 700°C to 850°C, and forming a first layer of GaN or In_xGa_{1-x}N, wherein x ranges from 0 to 0.10, over the substrate;
- ii) maintaining the substrate at about the same temperature as in step i), and forming a second layer of Al_uGa_{1-u}N, wherein u ranges from 0 to 0.30, over the first layer;

50

- iii) maintaining the substrate at about the temperature of step i), and forming a layer of In_xGa_{1-x}N, wherein x ranges from 0 to 0.10, over the Al_uGa_{1-u}N;
- iv) maintaining the substrate at about the temperature of step i), and flowing indium-precursor at a flow rate of less than 100 μ mol/min between 2 and 5 seconds, and N-precursor over the layer of $In_xGa_{1-x}N$ to form quantum dots of $In_wGa_{1-w}N$, wherein w > 0.20;
- v) maintaining the substrate at about the temperature of step i), and
 o forming a well layer of

In, Ga_{1-v}N, wherein y is greater than x, over the quantum dots;

- vi) maintaining the substrate around/at the temperature of step i), and forming a first cap layer of In_zGa_{1-z}N, wherein z ranges from 0 to 0.10, over the well layer;
- vii) forming a second cap layer of GaN or AlGaN over the first cap layer; thereby obtaining a device that emits light in blue or green wavelengths.
- 9. A method for fabricating a device that emits light in blue or green wavelengths comprising:
- i) forming upon a substrate having a surface layer, at a temperature of from 700°C to 850°C, a layer of In_xGa_{1-x}N, wherein x ranges from 0 to 0.10, or a layer of Al_uGa_{1-u}N, wherein u ranges from 0 to 0.30, over the first layer;
- ii) maintaining the substrate at about the temperature of step i), and flowing indium-precursor at a flow rate of less than 100 μ mol/min between 2 and 5 seconds, and N-precursor over the second layer of $In_xGa_{1-x}N$ to form quantum dots of $In_wGa_{1-w}N$, wherein w > 0.20;
- iii) maintaining the substrate at about the temperature of step i), and forming a well layer of

 $In_yGa_{1-y}N$, wherein y is greater than x, over the quantum dots;

- iv) maintaining the substrate at about the temperature of step i), and forming a first cap layer of In_zGa_{1-z}N, wherein z ranges from 0 to 0.10, over the well layer;
 - v) forming a second cap layer of GaN or AlGaN over the first cap layer; thereby obtaining a device that emits light in blue or green wavelengths.

- 10. The method of claim 9, wherein the surface layer of the substrate is a layer of GaN or
- In_xGa_{1-x}N, wherein x ranges from 0 to 0.10, that is grown at the same temperature as the temperature used in step i).
- 70 <u>10</u>. The method of claim 5 or 6 <u>3</u>, wherein the forming steps are performed by metalorganic chemical vapor deposition using trimethyl indium, triethyl indium, ethyldimethyl indium or a mixture of at least two thereof as an indium precursor.
 - 14 <u>11</u>. The method of any one of claims 5, 6 or 13 <u>claim 3 or 10</u>, wherein trimethyl gallium, triethyl gallium, ethyldimethyl gallium or a mixture of at least two thereof is used as a gallium precursor.
 - 15 12. The method of claim 14 11, wherein ammonia or dimethylhydrazine is used as a nitrogen Nitrogen precursor and hydrogen, nitrogen or a mixture thereof is used as a carrier gas.