

SEQUENCE LISTING

<110> Falco, Saverio Carl
 Famodu, Layo
 Rafalski, Jan A.
 Ramaker, Michael
 Tarczynski, Mitchell C.
 Thorpe, Catherine

<120> PLANT METHIONINE SYNTHASE GENE AND METHODS FOR INCREASING THE
 METHIONINE CONTENT OF THE SEEDS OF PLANTS

<130> BB-1067-B

<140>
 <141>

<150> 08/703,829
 <151> August 27, 1996

<160> 55

<170> Microsoft Office 97

<210> 1
 <211> 2639
 <212> DNA
 <213> Zea mays

<400> 1	60
caccacccac ctccccactcc cagttcaccc	ctcgccgtcc ggcgccacca ctcctcgcc
ccggcgcta ctcccccgct ccacggcaca	aggaaagatg gcgtcccata ttgttgata
ccctcgcatg ggccccaaaga gggagctaa	gttgccttg gagtctttt gggatggaa
gagcagcgcc gaggattgg agaaaaggc	cactgacctg aggtcttaga tctgaaagca
aatgtcagaa gctggatca agtacattcc	cagaataacc tcgtcgtaact acgaccagg
tcttgatacc acggccatgc ttggcgctgt	cccagagcgc tactcttggc ctggaggcga
gattggctt agcacctact tctctatggc	cagggaaat gccactgtcc ctgccccatgg
gatgaccaag tggttgata caaactacc	ctttatgtc cctgaacttg gtccaaagcac
caagttcaca tacgcttctc acaaggctgt	ttctgagttc aaggaggcaa aggccgtcgg
cattgataca gtccccagtgc ttgttggacc	agtctcatac ttgctcctct ctaagcctgc
caagggtgtg gagaatctt tctcttctt	ttcacttctt gtagcattc ttcccatcta
caaggaggt gttgtgagc tgaaggcagc	ttgtgttca tggattcagc ttgtatgagcc
tacccttgtt aaagacattg atgctcacga	tttgcgttca atggccgttcc catatgtga
actggagtca tcgttctctg gattgaatgt	ttctatcgatc acatacttcg ctgatattcc
tgtctgatcc tacaagaccc tcaacatcatt	tttgcgttca actgttttacg gtttgcgtt
tatccgttga gccaagaccc ttgatcttat	caggagcagc ttcccccttg ggaatgtac
cttcgttgtt gttgtatgt gacgcaacat	ttgggtgtat gatctgttgc catctcttag
cactcttcat tctcttgagg ctgttgctgg	ttgggtgtat caaccctctg 1080
ctcaactgtat cacaccgtgt ttgaccttgc	caaggacaaa ttgttgttgc 1140
gtcatggctt gcatttgcgt cccaaaagg	aatgtggatg atgagattaa 1200
ggcaggccaa aaggatgagg tctactttgc	aatgccttgc ccaaggcttt 1260
atcatcgccc agggtgacaa acggaggagg	gctgctcagg cctcaaggag 1320
tgaccaccgc cggttctacca ctgtttctgc	ccagaaggct tgaggggatc 1380
ccttcctgtc ctccccacaa ccacaattgg	tagattggat gtcaggdaga aaaagctcaa 1440
ggttcgccgt gaatacaagg caaagaagat	ttcattccct cagactgtgg aactcaggag 1500
ggaagaaaatc agcaaggtcg tcaagatcca	caccgaggac gaatacatca gtcccatcaa 1560
tggagagcca gagagaaaatg acatggttga	agaggagctt gacattgtat tgcttgc 1620
gttcactgccc aacggatggg tcaatccca	gtacttcggt gagcaattat ctgttttgc 1680
ctacgggtat gtcagccggc cgaacccat	tggatcacgc tggtccaaga tggcacagag 1740
catgacccct cgtccccatga agggaatgtt	gactgttttgc gtcacaatcc tcaactggc 1800
attcgtcagg aacgaccagc cttaggttga	gacatgtac caaatagtc ttgcaatcaa 1860
aaaggaggtt gaggatcttgg aggctgtgg	tattcagggt atccagatcg atgaggcagc 1920
tctaaggag ggtctgccac tacgcaagtc	agagcatgc ttctacctgg actggctgt 1980
ccactcttcc aggtaccca actgcggagt	ccaggacacc acccagatcc acacccacat 2040

gtgctactcc	aacttcaacg	acatcatcca	ctccatcatc	gacatggatg	ccgatgtgat	2100
cacgatcgag	aactcccggt	ctgacagagaa	gctactgtcc	gtcttcgtg	agggtgtgaa	2160
gtacggagct	ggcattggcc	ctggtgtcta	cgacatccac	tctccttagga	ttcccctccac	2220
agaggagatc	gcagaccgcg	tcgagaagat	gctcgccgtg	ttcgacacca	acatcctctg	2280
ggtgaacct	gactgtggtc	tcaagacacg	caagtacacg	gaggtcaagc	ccgcccgtac	2340
caacatggtc	tcggccacca	agctcatccg	caccgcgtt	gccagcgcga	aatgaggtcg	2400
ttttagatct	ccatggctcg	atagcgcgga	atggccgtt	tgtttgaat	aatttgggtg	2460
ttaccccttg	ttccatggtg	ttagtttag	tttagccctt	cattggtgag	atacgcctt	2520
tcaagatgtg	ttctaagttt	ggagttgtgt	ttttcccttg	ggctatgttt	ctgggggtat	2580
gtgtgtgttt	tgttataaaa	cagaaatgaa	atatgcagtc	ttccaaattga	aaaaaaaaaa	2639

<210> 2
<211> 765
<212> PRT
<213> Zea mays

<400> 2 Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
 1 5 10 15
 Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
 20 25 30
 Asp Leu Glu Lys Val Ala Thr Asp Leu Arg Ser Ser Ile Trp Lys Gln
 35 40 45
 Met Ser Glu Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Ser Ser Tyr
 50 55 60
 Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Glu
 65 70 75 80
 Arg Tyr Ser Trp Thr Gly Gly Glu Ile Gly Leu Ser Thr Tyr Phe Ser
 85 90 95
 Met Ala Arg Gly Asn Ala Thr Val Pro Ala Met Glu Met Thr Lys Trp
 100 105 110
 Phe Asp Thr Asn Tyr His Phe Ile Val Pro Glu Leu Gly Pro Ser Thr
 115 120 125
 Lys Phe Thr Tyr Ala Ser His Lys Ala Val Ser Glu Tyr Lys Glu Ala
 130 135 140
 Lys Ala Leu Gly Ile Asp Thr Val Pro Val Leu Val Gly Pro Val Ser
 145 150 155 160
 Tyr Leu Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Ser Phe Ser
 165 170 175
 Leu Leu Ser Leu Leu Gly Ser Ile Leu Pro Ile Tyr Lys Glu Val Val
 180 185 190
 Ala Glu Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Leu Asp Glu Pro
 195 200 205
 Thr Leu Val Lys Asp Leu Asp Ala His Glu Leu Ala Ala Phe Ser Ser
 210 215 220
 Ala Tyr Ala Glu Leu Glu Ser Ser Phe Ser Gly Leu Asn Val Leu Ile
 225 230 235 240
 Glu Thr Tyr Phe Ala Asp Ile Pro Ala Glu Ser Tyr Lys Thr Leu Thr
 245 250 255

Ser Leu Ser Gly Val Thr Ala Tyr Gly Phe Asp Leu Ile Arg Gly Ala
 260 265 270
 Lys Thr Leu Asp Leu Ile Arg Ser Ser Phe Pro Ser Gly Lys Tyr Leu
 275 280 285
 Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asp Asp Leu Ala
 290 295 300
 Ala Ser Leu Ser Thr Leu His Ser Leu Glu Ala Val Ala Gly Lys Asp
 305 310 315 320
 Lys Leu Val Val Ser Thr Ser Cys Ser Leu Met His Thr Ala Val Asp
 325 330 335
 Leu Val Asn Glu Thr Lys Leu Asp Asp Glu Ile Lys Ser Trp Leu Ala
 340 345 350
 Phe Ala Ala Gln Lys Val Val Glu Val Asn Ala Leu Ala Lys Ala Leu
 355 360 365
 Ala Gly Gln Lys Asp Glu Val Tyr Phe Ala Ala Asn Ala Ala Ala Gln
 370 375 380
 Ala Ser Arg Arg Ser Ser Pro Arg Val Thr Asn Glu Glu Val Gln Lys
 385 390 395 400
 Ala Ala Ala Ala Leu Arg Gly Ser Asp His Arg Arg Ser Thr Thr Val
 405 410 415
 Ser Ala Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Val Leu
 420 425 430
 Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Val Glu Leu Arg Arg
 435 440 445
 Val Arg Arg Glu Tyr Lys Ala Lys Lys Ile Thr Glu Asp Glu Tyr Ile
 450 455 460
 Ser Ala Ile Lys Glu Glu Ile Ser Lys Val Val Lys Ile Gln Glu Glu
 465 470 475 480
 Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
 485 490 495
 Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Ala Asn
 500 505 510
 Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
 515 520 525
 Tyr Gly Asp Val Ser Arg Pro Asn Pro Met Thr Val Phe Trp Ser Lys
 530 535 540
 Met Ala Gln Ser Met Thr Pro Arg Pro Met Lys Gly Met Leu Thr Gly
 545 550 555 560
 Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
 565 570 575
 Phe Glu Thr Cys Tyr Gln Ile Ala Leu Ala Ile Lys Lys Glu Val Glu
 580 585 590

Asp Leu Glu Ala Ala Gly Ile Gln Val Ile Gln Ile Asp Glu Ala Ala
 595 600 605
 Leu Arg Glu Gly Leu Pro Leu Arg Lys Ser Glu His Ala Phe Tyr Leu
 610 615 620
 Asp Trp Ala Val His Ser Phe Arg Ile Thr Asn Cys Gly Val Gln Asp
 625 630 635 640
 Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
 645 650 655
 Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Ile Thr Ile Glu Asn
 660 665 670
 Ser Arg Ser Asp Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
 675 680 685
 Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
 690 695 700
 Ile Pro Ser Thr Glu Glu Ile Ala Asp Arg Val Glu Lys Met Leu Ala
 705 710 715 720
 Val Phe Asp Thr Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
 725 730 735
 Thr Arg Lys Tyr Thr Glu Val Lys Pro Ala Leu Thr Asn Met Val Ser
 740 745 750
 Ala Thr Lys Leu Ile Arg Thr Gln Leu Ala Ser Ala Lys
 755 760 765

<210> 3
 <211> 2443
 <212> DNA
 <213> Glycine max

<220>
 <221> unsure
 <222> (460)

<220>
 <221> unsure
 <222> (2398)

<220>
 <221> unsure
 <222> (2442)

<400> 3
 ccctcagaag cgaagaagaa gccacagaga accagtctcc tactctctct caccacacaag 60
 aaaaatggca tctcacatcg ttggataccc ccgcattgggt cccaagagag agctcaagtt 120
 cgctctcgag tctttctggg atggcaagag cagcggccgag gatttgcaga aggtggctgc 180
 tgatctcagg tcatccatct ggaaggcagat ggctgtgt gggatcaagt acatccccag 240
 caacacttcc tcgttctatc accagctgtcg cgacgccacc gccaccctcg tgccgtccc 300
 ccccaggtac ggctggaccg gggcgagat tggattcgac acctacttct ccatggccag 360
 aggtaatgtc accgtgcctg ctatggagat gaccaagtgg ttgcacacca actaccactt 420
 tattgtccct gaattggcc ctgatgtgaa cttcacctan gttctcaaa aggctgttgta 480
 tgaataacaag gaggccaagg cgcttggagt ggataccatt cccgtactcg ttggccctgt 540
 tacatacttg ttgctctcca agcctgccaa gggagtcgag aaatcccttt ctctcccttc 600
 tctccttccc aaggttcttg ctgtctacaa ggaagttatt gctgaccta aggagctgg 660
 tgcttcatgg attcaatttg atgagcctac cttgtcttg gaccttgaat ctcacaagtt 720
 gcaagcttcc actgacgcat atgcagaact tgcacactgct ttgtctgatc tgaatgttct 780

tgttgagacc	tactttgctg	acatccctgc	tgaggcgta	aagaccctca	catctctgaa	840
tggcgtcact	gcatatgggt	ttgatttgg	ccgtggaa	catactctg	atttgatcaa	900
gggtggattt	cccagtggaa	aataccctt	tgctggagtg	gttcatggaa	ggaacatctg	960
ggccaatgac	cttgctgctt	ctctcaact	attgcagggt	cttggggca	tttgtggcaa	1020
agataagctt	gttgtgtcca	cctcccttc	ccttcttcac	actgctgttg	atcttgttaa	1080
cgagaccaag	ttggatgacg	agatcaagt	atggcttagca	tttgcgtcac	aaaaaattgt	1140
tgaagtaaac	gcattggcta	aggattgtc	tggcaacaag	gatgtggcct	tcttctctgc	1200
taatgctgca	gctcaggcgt	caaggaagt	ctctccaaga	gtgaccaacg	aggctgttca	1260
gaaggctgt	gctgcattga	agggttcaga	tcatcgccgt	gcaacaaatg	tcagtgcac	1320
actggatgt	caaaaaaaaaa	agctcaacct	tccaatcctt	ccaaccacca	ctatggatc	1380
cttccctcag	actgttagaac	tgaggagggt	acgcccgttag	ttcaaggcta	acaagatctc	1440
cgaggaagag	tatgttaagt	caattaagga	gaaaattcgc	aaagtgttg	aacttcaaga	1500
agagcttgat	attgatgttc	ttgttcatgg	agaaccagag	agaatgata	tggtttagta	1560
cttcggtgag	caattgtca	gctttgcctt	cactgtta	gggtgggtgc	aatcctatgg	1620
ttccccgtgt	gtgaagccac	caatcatcta	ttgtgtatgt	agcccccac	agccaatgac	1680
tgtcttctgg	tcatctctgg	ctcagagctt	taccaagcgc	ccaaatgaagg	aatgtcttac	1740
cggtcctgtt	accattctca	actgggtcctt	tgttagaaat	gaccaaccta	gatctgagac	1800
cacctaccag	attgtttgg	ctatacagg	cgaagtggag	gaccttggaa	aggctggcat	1860
cactgttatac	caaattgtat	aagctgttt	gagagaggg	ctgccactga	ggaaatcaga	1920
acaagctcac	tacttggaact	gggctgtcca	tgccttcaga	atcaccaatg	tttgtgtgca	1980
ggataccact	cagatccccaa	cccacatgt	ctactccaa	ttcaacgaca	tcatccactc	2040
catcatcgac	atggacgctg	atgttatcac	cattgagaac	tctcgctccg	atgagaagct	2100
cctgtca	ttccgtgaag	gtgtgaagta	tttgtgtcg	attggccctg	gtgtctatga	2160
catccactcc	ccaaagaatac	caccaactga	agaaatcgt	gacagaatca	ataagatgt	2220
tgcagtgctc	gagaagaaca	tcttgggt	caaccctgac	tgttgtctca	agacccgcaa	2280
gtacactgaa	gtgaagccgc	cctcacaaaa	catgggttgc	gcagaaaaac	tcatccgtta	2340
cgaacttgcc	aagtgaatgg	tataagaaaag	tagaatctac	aagtcaatg	ggtccgcntt	2400
taaaatacac	caaagaaaaaa	ttttcaaaat	gggttggttca	ana		2443

<210> 4
<211> 763
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (132)

Asn Phe Thr Xaa Ala Ser Gln Lys Ala Val Asp Glu Tyr Lys Glu Ala
 130 135 140
 Lys Ala Leu Gly Val Asp Thr Ile Pro Val Leu Val Gly Pro Val Thr
 145 150 155 160
 Tyr Leu Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Ser Phe Ser
 165 170 175
 Leu Leu Ser Leu Leu Pro Lys Val Leu Ala Val Tyr Lys Glu Val Ile
 180 185 190
 Ala Asp Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Phe Asp Glu Pro
 195 200 205
 Thr Leu Val Leu Asp Leu Glu Ser His Lys Leu Gln Ala Phe Thr Asp
 210 215 220
 Ala Tyr Ala Glu Leu Ala Pro Ala Leu Ser Asp Leu Asn Val Leu Val
 225 230 235 240
 Glu Thr Tyr Phe Ala Asp Ile Pro Ala Glu Ala Tyr Lys Thr Leu Thr
 245 250 255
 Ser Leu Asn Gly Val Thr Ala Tyr Gly Phe Asp Leu Val Arg Gly Thr
 260 265 270
 His Thr Leu Asp Leu Ile Lys Gly Gly Phe Pro Ser Gly Lys Tyr Leu
 275 280 285
 Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asn Asp Leu Ala
 290 295 300
 Ala Ser Leu Thr Thr Leu Gln Gly Leu Glu Gly Ile Val Gly Lys Asp
 305 310 315 320
 Lys Leu Val Val Ser Thr Ser Ser Leu Leu His Thr Ala Val Asp
 325 330 335
 Leu Val Asn Glu Thr Lys Leu Asp Asp Glu Ile Lys Ser Trp Leu Ala
 340 345 350
 Phe Ala Ala Gln Lys Ile Val Glu Val Asn Ala Leu Ala Lys Ala Leu
 355 360 365
 Ser Gly Asn Lys Asp Val Ala Phe Phe Ser Ala Asn Ala Ala Gln
 370 375 380
 Ala Ser Arg Lys Ser Ser Pro Arg Val Thr Asn Glu Ala Val Gln Lys
 385 390 395 400
 Ala Ala Ala Ala Leu Lys Gly Ser Asp His Arg Arg Ala Thr Asn Val
 405 410 415
 Ser Ala Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Ile Leu
 420 425 430
 Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Val Glu Leu Arg Arg
 435 440 445
 Val Arg Arg Glu Phe Lys Ala Asn Lys Ile Ser Glu Glu Glu Tyr Val
 450 455 460

Lys Ser Ile Lys Glu Glu Ile Arg Lys Val Val Glu Leu Gln Glu Glu
 465 470 475 480
 Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
 485 490 495
 Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Val Asn
 500 505 510
 Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
 515 520 525
 Tyr Gly Asp Val Ser Arg Pro Lys Pro Met Thr Val Phe Trp Ser Ser
 530 535 540
 Leu Ala Gln Ser Phe Thr Lys Arg Pro Met Lys Gly Met Leu Thr Gly
 545 550 555 560
 Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
 565 570 575
 Ser Glu Thr Thr Tyr Gln Ile Ala Leu Ala Ile Lys Asp Glu Val Glu
 580 585 590
 Asp Leu Glu Lys Ala Gly Ile Thr Val Ile Gln Ile Asp Glu Ala Ala
 595 600 605
 Leu Arg Glu Gly Leu Pro Leu Arg Lys Ser Glu Gln Ala His Tyr Leu
 610 615 620
 Asp Trp Ala Val His Ala Phe Arg Ile Thr Asn Val Gly Val Gln Asp
 625 630 635 640
 Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
 645 650 655
 Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Ile Thr Ile Glu Asn
 660 665 670
 Ser Arg Ser Asp Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
 675 680 685
 Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
 690 695 700
 Ile Pro Pro Thr Glu Glu Ile Ala Asp Arg Ile Asn Lys Met Leu Ala
 705 710 715 720
 Val Leu Glu Lys Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
 725 730 735
 Thr Arg Lys Tyr Thr Glu Val Lys Pro Pro Ser Gln Asn Met Val Ala
 740 745 750
 Ala Ala Lys Leu Ile Arg Tyr Glu Leu Ala Lys
 755 760

<210> 5

<211> 2296

<212> DNA

<213> Nicotiana plumbaginifolia

<400> 5
atggcatctc acattgttg atatccccgt atgggccaa agagagagct gaaatttgc 60
ctcgagtctt tctggatgg gaagaggcgc tgaggactt aagaaggctt ctgcagac 120
aaggcttcc atctggaaac agatggctga tgctggcatc aagtacatcc ccagcaac 180
attctttac tatgatcagg tgcttgacac aactgcaatg ctcggctgt tcccggctg 240
gtacaattgg gctgggtgt agatagcatt tgacacttac ttctccatgg ccagaggaa 300
tgcctctgtc cctgctatgg agatgaccaa gtgggttgac accaactacc acttcattgt 360
ccctgagttt ggacctgtatg ttaactttt tcattgtt cacaaggcag tagatgatg 420
caaagaggcc aaggggctt gttagacac ggttccagtc ctattggtc cagtctata 480
cttgggtgcta tccaaacctg ctaagggtgt tgagaaatcc ttccctt tgcacttct 540
tgacaaagtc cttccaatct acaaggaagt tattgcagaa ttgaaggctg ctgggtctc 600
ttggatttcag tttgatgaac ctacacttgt gttggatctc caagctcacc aattgaaagc 660
cttcaactaag gcctatgccc agtggaaatc atctctgtt ggtcttaatg ttctcaactga 720
aacctacttc gctgacgtcc ctgctgaagc attcaaaacc ctcactgtt tgaaggggagt 780
tactgcctt ggttttact tggttgcgtt agtcagacc cttgatttga tcaaagggtgg 840
cttcccttca ggcaagttact tgggtgtgg agtgggtcgac ggaaggaaaca tctggcaaa 900
tgatcttgc gcatcttca acctcctgca atctcttgat ggtattttt gaaaagacaa 960
actagttgtc tccacatctt gctcaacttct tcataactgtt gttgatctt tcaatgagac 1020
taagcttagat gatgaaatca agtcatggtt ggcgtttgtt gcccaaaaag tagttgaagt 1080
taacgcttgc gccaaggcat tggctggta caaggatgag gcattcttct ctgcaaatgc 1140
taccgctcag gcttccagga aatcccttcc aagagtgaca aatgaagctg tccaaaaggc 1200
tgctgctgca cttagggtt ctgaccaccg ccgtgttaca aatgtcaggat ctgacttga 1260
tgcccaacaa aagaaacttta acctcccagt tctcccaaca accaccattt ggtccttccc 1320
tcagacagtg gagcttagga gagttcgccg tgaataacaag gccaagaaga tctctgagga 1380
agagtatgtt aaggccatca aggcaaaaat caagaaggcgtt gttgatcttcc aggaagagct 1440
cgacatcgat gtcttgggtt acggagagcc agagaggaat gatatggttt aataactcgg 1500
agagcagctt tctgggtttt ctttcaactgc taatggatgg gttcaatctt atggatctcg 1560
atgtgtgaag ccaccaatta tctatggta tggagccgc cccaaacccaa tgactgtatt 1620
ctggtccaaa acagctcaga gcatgaccaa ggcggccaaatg aagggaatgc ttaccgggccc 1680
agttaccatt ctcaacttgt ctttgttagt aaatgaccatg ccaagattt gaaacttgc 1740
ccagattgtc ttggccatta agatgaagt ggaagattt gagaaggcag gcatcaactgt 1800
tatccaaattt gatgaagctg ctttggatgg ggggttgcct ctaaggaaagg ctgagcacgc 1860
ttttacttg aactgggtcg tccactcctt cagaatcacc aacgtcggca ttcaagacac 1920
caccagatc cacacacaca tggctactc caactcaat gacattatcc actctatcat 1980
tgacatggat gctgatgtga tcacaattga gaactcacgg tccgatgaga agctcctctc 2040
agttttcagg gagggaggtt agatgggtc tggaaatttgc cctgggtgtt atgacatcca 2100
ctcccctaga ataccatcaa cgaagagat tgctgacaga gttacaacaaga tgctgtgt 2160
tcttgacacc aacatcttgc ggtcaaccc agattgtgtt ctcaagactc gcaagtacgc 2220
tgaggtaaag ccagccctcg agaacatggt ttctgctgcc aaggccatcc gcacccaaact 2280
tgccagctcc aagtga 2296

<210> 6

<211> 765

<212> PRT

<213> Nicotiana plumbaginifolia

<400> 6
Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
1 5 10 15
Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
20 25 30
Asp Leu Lys Lys Val Ala Ala Asp Leu Arg Ser Ser Ile Trp Lys Gln
35 40 45
Met Ala Asp Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
50 55 60
Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Ala
65 70 75 80
Arg Tyr Asn Trp Ala Gly Gly Glu Ile Ala Phe Asp Thr Tyr Phe Ser
85 90 95

Met Ala Arg Gly Asn Ala Ser Val Pro Ala Met Glu Met Thr Lys Trp
 100 105 110
 Phe Asp Thr Asn Tyr His Phe Ile Val Pro Glu Leu Gly Pro Asp Val
 115 120 125
 Asn Phe Ser Tyr Ala Ser His Lys Ala Val Asp Glu Tyr Lys Glu Ala
 130 135 140
 Lys Gly Leu Gly Val Asp Thr Val Pro Val Leu Ile Gly Pro Val Ser
 145 150 155 160
 Tyr Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Ser Phe Pro
 165 170 175
 Leu Leu Ser Leu Leu Asp Lys Val Leu Pro Ile Tyr Lys Glu Val Ile
 180 185 190
 Ala Glu Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Phe Asp Glu Pro
 195 200 205
 Thr Leu Val Leu Asp Leu Gln Ala His Gln Leu Glu Ala Phe Thr Lys
 210 215 220
 Ala Tyr Ala Glu Leu Glu Ser Ser Leu Ser Gly Leu Asn Val Leu Thr
 225 230 235 240
 Glu Thr Tyr Phe Ala Asp Val Pro Ala Glu Ala Phe Lys Thr Leu Thr
 245 250 255
 Ala Leu Lys Gly Val Thr Ala Phe Gly Phe Asp Leu Val Arg Gly Ala
 260 265 270
 Gln Thr Leu Asp Leu Ile Lys Gly Gly Phe Pro Ser Gly Lys Tyr Leu
 275 280 285
 Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asn Asp Leu Ala
 290 295 300
 Ala Ser Leu Asn Leu Leu Gln Ser Leu Glu Gly Ile Val Gly Lys Asp
 305 310 315 320
 Lys Leu Val Val Ser Thr Ser Cys Ser Leu Leu His Thr Ala Val Asp
 325 330 335
 Leu Val Asn Glu Thr Lys Leu Asp Asp Glu Ile Lys Ser Trp Leu Ala
 340 345 350
 Phe Ala Ala Gln Lys Val Val Glu Val Asn Ala Leu Ala Lys Ala Leu
 355 360 365
 Ala Gly His Lys Asp Glu Ala Phe Phe Ser Ala Asn Ala Thr Ala Gln
 370 375 380
 Ala Ser Arg Lys Ser Ser Pro Arg Val Thr Asn Glu Ala Val Gln Lys
 385 390 395 400
 Ala Ala Ala Ala Leu Lys Gly Ser Asp His Arg Arg Ala Thr Asn Val
 405 410 415
 Ser Ser Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Val Leu
 420 425 430

Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Val Glu Leu Arg Arg
 435 440 445
 Val Arg Arg Glu Tyr Lys Ala Lys Lys Ile Ser Glu Glu Glu Tyr Val
 450 455 460
 Lys Ala Ile Lys Ala Glu Ile Lys Lys Val Val Asp Leu Gln Glu Glu
 465 470 475 480
 Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
 485 490 495
 Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Ala Asn
 500 505 510
 Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
 515 520 525
 Tyr Gly Asp Val Ser Arg Pro Asn Pro Met Thr Val Phe Trp Ser Lys
 530 535 540
 Thr Ala Gln Ser Met Thr Lys Arg Pro Met Lys Gly Met Leu Thr Gly
 545 550 555 560
 Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
 565 570 575
 Phe Glu Thr Cys Tyr Gln Ile Ala Leu Ala Ile Lys Asp Glu Val Glu
 580 585 590
 Asp Leu Glu Lys Ala Gly Ile Thr Val Ile Gln Ile Asp Glu Ala Ala
 595 600 605
 Leu Arg Glu Gly Leu Pro Leu Arg Lys Ala Glu His Ala Phe Tyr Leu
 610 615 620
 Asn Trp Ala Val His Ser Phe Arg Ile Thr Asn Val Gly Ile Gln Asp
 625 630 635 640
 Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
 645 650 655
 Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Ile Thr Ile Glu Asn
 660 665 670
 Ser Arg Ser Asp Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
 675 680 685
 Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
 690 695 700
 Ile Pro Ser Thr Glu Glu Ile Ala Asp Arg Val Asn Lys Met Leu Ala
 705 710 715 720
 Val Leu Asp Thr Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
 725 730 735
 Thr Arg Lys Tyr Ala Glu Val Lys Pro Ala Leu Glu Asn Met Val Ser
 740 745 750
 Ala Ala Lys Ala Ile Arg Thr Gln Leu Ala Ser Ser Lys
 755 760 765

<210> 7
<211> 475
<212> DNA
<213> *Triticum aestivum*

<220>
<221> unsure
<222> (344)

<220>
<221> unsure
<222> (367)

<220>
<221> unsure
<222> (433)

<220>
<221> unsure
<222> (452)

<220>
<221> unsure
<222> (473)..(474)

<400> 7
cgccatcctc ctcctctccc cctatcgct tcctccccat ctccggcgcc gctccgcgac 60
tcctccaagg aaagatggca tcccacattt tggtataccc tcgcattggc cccaaagg 120
agctcaagtt tgccttggag tctttctggg atgggaagag cagcgctgaa gatttggaga 180
aggttgcgcg cggacccagg gccagcatct ggaaggcagat gtcagaggct gggattaagt 240
acattccccag caaacaccccttc tcatactatg accaggtgct tgacacaacg gccatgcttg 300
gtgccgtcccc ggaccgctac tcatggactg gcggagagat tgncacagc acctaattct 360
caatggncaa gggcaatgcc actgtccctg ctatggagat gaccaagtgg tttgacacca 420
actaacactt cantgtgcct gaattttagcc ancaaccaag ttctcatatg ctnna 475
actaacactt

<210> 8
<211> 124
<212> PRT
<213> *Triticum aestivum*

<220>
<221> UNSURE
<222> (98)

<220>
<221> UNSURE
<222> (117)

<220>
<221> UNSURE
<222> (120)

<400> 8
Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
1 5 10 15
Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
20 25 30
Asp Leu Glu Lys Val Ala Ala Asp Leu Arg Ala Ser Ile Trp Lys Gln
35 40 45
Met Ser Glu Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
50 55 60

Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Asp
65 70 75 80
Arg Tyr Ser Trp Thr Gly Gly Glu Ile Gly His Ser Thr Tyr Phe Ser
85 90 95
Met Xaa Lys Gly Asn Ala Thr Val Pro Ala Met Glu Met Thr Lys Trp
100 105 110
Phe Asp Thr Asn Xaa His Phe Xaa Val Pro Glu Leu
115 120

<210> 9
<211> 628
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (219)

<220>
<221> unsure
<222> (254)

<220>
<221> unsure
<222> (300)

<220>
<221> unsure
<222> (319)

<220>
<221> unsure
<222> (331)

<220>
<221> unsure
<222> (335)

<220>
<221> unsure
<222> (338)

<220>
<221> unsure
<222> (348)

<220>
<221> unsure
<222> (350)

<220>
<221> unsure
<222> (360)

<220>
<221> unsure
<222> (413)

<220>
<221> unsure
<222> (416)

<220>
<221> unsure
<222> (424)

<220>
<221> unsure
<222> (428)

<220>
<221> unsure
<222> (440)

<220>
<221> unsure
<222> (455)

<220>
<221> unsure
<222> (469)

<220>
<221> unsure
<222> (473)

<220>
<221> unsure
<222> (484)

<220>
<221> unsure
<222> (504)

<220>
<221> unsure
<222> (506)

<220>
<221> unsure
<222> (526)

<220>
<221> unsure
<222> (533)

<220>
<221> unsure
<222> (535)

<220>
<221> unsure
<222> (552)

<220>
<221> unsure
<222> (568)

<220>
<221> unsure
<222> (580)

<220>
 <221> unsure
 <222> (598)

<220>
 <221> unsure
 <222> (600)

<220>
 <221> unsure
 <222> (606)

<220>
 <221> unsure
 <222> (613)

<400> 9
 ggtcgtaacc cagagtgaac aattaggagg ttcagaaggc tgccgctgct ttgaagggt 60
 ctgaccaccc cgctgctacc cctgtctctg ctagactgga cgctcagca aagaagctca 120
 accttcctat cctcccaaca aacaacaattt gttcatccc tcagacaatg gacctcagga 180
 gggccgcgg tgagtacaag gcgaaagaag atctctgang aggagtatgt cagtgtatc 240
 aaggaagaaa ttancaaagg ttgtcaagat tcaaagagga gcttgacatt gatgttctn 300
 tccaatggag aagcctgana aaaatgacat ngttnaanta cttcggcnan caaattatcn 360
 gggtttgc aaatgttcaaa tggatgggtg caatcctatg gattacttgc gttaancacc 420
 gatnatcnat gggatgtaan cgcccaaccc atganatctt ctggtcaana tgntcaggac 480
 atancctccc ccaatgaagg aatntnacgg ctttaatac ccaacnggct ttntnagaac 540
 acaaccaggt tnagaatgca caaattcnct gccataaaa gagtttaggtt ccagctgngn 600
 atcagngtca atnatagggg ccaaaaagg 628

<210> 10
 <211> 118
 <212> PRT
 <213> Triticum aestivum

<220>
 <221> UNSURE
 <222> (8)

<220>
 <221> UNSURE
 <222> (72) . . . (73)

<220>
 <221> UNSURE
 <222> (84)

<220>
 <221> UNSURE
 <222> (100)

<220>
 <221> UNSURE
 <222> (106)

<220>
 <221> UNSURE
 <222> (110)

<220>
 <221> UNSURE
 <222> (112)

<220>
 <221> UNSURE
 <222> (116)

<400> 10
 Ser Ser Pro Arg Val Asn Asn Xaa Glu Val Gln Lys Ala Ala Ala Ala
 1 5 10 15
 Leu Lys Gly Ser Asp His Arg Arg Ala Thr Pro Val Ser Ala Arg Leu
 20 25 30
 Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Ile Leu Pro Thr Thr Thr
 35 40 45
 Ile Gly Ser Phe Pro Gln Thr Met Asp Leu Arg Arg Val Arg Arg Glu
 50 55 60
 Tyr Lys Ala Lys Glu Asp Leu Xaa Xaa Gly Val Cys Gln Cys Tyr Gln
 65 70 75 80
 Gly Arg Asn Xaa Gln Arg Leu Ser Arg Phe Lys Glu Glu Leu Asp Ile
 85 90 95
 Asp Val Leu Xaa Gln Trp Arg Ser Leu Xaa Lys Met Thr Xaa Val Xaa
 100 105 110
 Tyr Phe Gly Xaa Gln Ile
 115

<210> 11
 <211> 765
 <212> PRT
 <213> Catharanthus roseus

<400> 11
 Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
 1 5 10 15
 Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Lys Lys Ser Ser Ala Glu
 20 25 30
 Asp Leu Gln Lys Val Ala Ala Asp Leu Arg Ser Ser Ile Trp Lys Gln
 35 40 45
 Met Ala Asp Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
 50 55 60
 Tyr Asp Gln Val Leu Asp Thr Ala Thr Met Leu Gly Ala Val Pro Pro
 65 70 75 80
 Arg Tyr Asn Phe Ala Gly Gly Glu Ile Gly Phe Asp Thr Tyr Phe Ser
 85 90 95
 Met Ala Arg Gly Asn Ala Ser Val Pro Ala Met Glu Met Thr Lys Trp
 100 105 110
 Phe Asp Thr Asn Tyr His Tyr Ile Val Pro Glu Leu Gly Pro Glu Val
 115 120 125
 Asn Phe Ser Tyr Ala Ser His Lys Ala Val Asn Glu Tyr Lys Glu Ala
 130 135 140
 Lys Glu Leu Gly Val Asp Thr Val Pro Val Leu Val Gly Pro Val Thr
 145 150 155 160

Phe Leu Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Thr Phe Pro
 165 170 175
 Leu Leu Ser Leu Leu Asp Lys Ile Leu Pro Val Tyr Lys Glu Val Ile
 180 185 190
 Gly Glu Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Phe Asp Glu Pro
 195 200 205
 Thr Leu Val Leu Asp Leu Glu Ser His Gln Leu Glu Ala Phe Thr Lys
 210 215 220
 Ala Tyr Ser Glu Leu Glu Ser Thr Leu Ser Gly Leu Asn Val Ile Val
 225 230 235 240
 Glu Thr Tyr Phe Ala Asp Ile Pro Ala Glu Thr Tyr Lys Ile Leu Thr
 245 250 255
 Ala Leu Lys Gly Val Thr Gly Phe Gly Phe Asp Leu Val Arg Gly Ala
 260 265 270
 Lys Thr Leu Asp Leu Ile Lys Gly Phe Pro Ser Gly Lys Tyr Leu
 275 280 285
 Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asn Asp Leu Ala
 290 295 300
 Ala Ser Leu Ser Thr Leu Gln Ser Leu Glu Gly Ile Val Gly Lys Asp
 305 310 315 320
 Lys Leu Val Val Ser Thr Ser Cys Ser Leu Leu His Thr Ala Val Asp
 325 330 335
 Leu Val Asn Glu Pro Lys Leu Asp Lys Glu Ile Lys Ser Trp Leu Ala
 340 345 350
 Phe Ala Ala Gln Lys Val Val Glu Val Asn Ala Leu Ala Lys Ala Leu
 355 360 365
 Ala Gly Glu Lys Asp Glu Ala Phe Phe Ser Glu Asn Ala Ala Ala Gln
 370 375 380
 Ala Ser Arg Lys Ser Ser Pro Arg Val Thr Asn Gln Ala Val Gln Lys
 385 390 395 400
 Ala Ala Ala Ala Leu Arg Gly Ser Asp His Arg Arg Ala Thr Thr Val
 405 410 415
 Ser Ala Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Val Leu
 420 425 430
 Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Leu Glu Leu Arg Arg
 435 440 445
 Val Arg Arg Glu Tyr Lys Ala Lys Lys Ile Ser Glu Asp Asp Tyr Val
 450 455 460
 Lys Ala Ile Lys Glu Glu Ile Ser Lys Val Val Lys Leu Gln Glu Glu
 465 470 475 480
 Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
 485 490 495

Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Ala Asn
 500 505 510
 Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
 515 520 525
 Tyr Gly Asp Val Ser Arg Pro Asn Pro Met Thr Val Phe Trp Ser Gln
 530 535 540
 Thr Ala Gln Ser Met Thr Lys Arg Pro Met Lys Gly Met Leu Thr Gly
 545 550 555 560
 Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
 565 570 575
 Phe Glu Thr Cys Tyr Gln Ile Ala Leu Ala Ile Lys Asp Glu Val Glu
 580 585 590
 Asp Leu Glu Lys Ala Gly Ile Asn Val Ile Gln Ile Asp Glu Ala Ala
 595 600 605
 Leu Arg Glu Gly Leu Pro Leu Arg Lys Ala Glu His Ala Phe Tyr Leu
 610 615 620
 Asp Trp Ala Val His Ser Phe Arg Ile Thr Asn Leu Pro Leu Gln Asp
 625 630 635 640
 Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
 645 650 655
 Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Met Thr Ile Glu Asn
 660 665 670
 Ser Arg Ser Ser Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
 675 680 685
 Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
 690 695 700
 Ile Pro Ser Thr Glu Glu Ile Ala Asp Arg Ile Asn Lys Met Leu Ala
 705 710 715 720
 Val Leu Asp Thr Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
 725 730 735
 Thr Arg Lys Tyr Ala Glu Val Lys Pro Ala Leu Glu Asn Met Val Ser
 740 745 750
 Ala Ala Lys Leu Ile Arg Thr Gln Leu Ala Ser Ala Lys
 755 760 765

<210> 12

<211> 32

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide<400> 12
atccaaacaat gtgagatgtc atgaattctg ac

32

<210> 13

<211> 32

<212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 13
 gtcagaattc atgacatctc acattgttgg at

32

<210> 14
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 14
 ctcacggtcc gatgagaagc tcct

24

<210> 15
 <211> 31
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 15
 gatcggtacc tcacttggag ctggcaagtt g

31

<210> 16
 <211> 1638
 <212> DNA
 <213> Zea mays

<400> 16						
gaattccggc	tcgaagccgc	cgcgaccgaa	cgagcgaagc	gtcccttccc	gcgccgacgc	60
cgaaaaccta	gctccttta	cgccatggcc	accgtgtcgc	tcactccgca	ggcggtcttc	120
tccaccggat	ccggcggcgc	cctggcctct	gccaccatcc	tccgcttccc	gccaacttc	180
gtccgcctcc	gcggcggcgg	atgtcagcgc	aattcctaac	gctaagggttgc	cgcagccgtc	240
cgcgtcgta	ttggccggcgc	gtaacctgtct	cggctccgac	gccagcctcg	ccgtccacgc	300
gggggagagg	ctgggaagaa	ggatagccac	ggatgtatc	accacgcccgg	tagtgaacac	360
gtcgccctac	tggttcaaca	actcgcaaga	gctaatcgac	ttaaggagg	ggaggcatgc	420
tagttcggag	tatggaggt	atgggaaccc	gaccacggag	gcatttagaga	agaagatgag	480
cgcactggag	aaagcagagt	ccaccgtgtt	tgtggcgtca	gggatgtatgc	cagctgtggc	540
tatgtcggc	gcacttgtcc	ctgctggtgg	gcacattgtc	accaccacgg	attgttacccg	600
caagacaagg	attttacatgg	aaaatgagct	ccctaagagg	gaaatttgc	tgactgtcat	660
taggcctgct	gacatggatg	ctctccaaaa	tgccttggac	acaataatgt	tatctttttt	720
cttcacggag	actcctacaa	atccatttct	cagatgcatt	gatattgaac	atgtatcaaa	780
tatgtgccat	agcaagggag	cgttgcttttgc	tattgacatgt	actttcgctgt	cacctatcaa	840
tcagaaggca	ttaacttttag	gtgtgtaccc	agttttcat	tctgcaacga	agtacattgc	900
tggacacaat	gatgttatttgc	gaggatgcgt	cagtggcaga	gatgagtttag	tttccaaagt	960
tcgtattttac	caccatgttag	ttggtgggtgt	tctaaaccccg	aatgtcgctgt	accttattcct	1020
tcgaggatgt	aagacactgc	atctccgtgt	gcaatgtcag	aacgacactg	ctcttcggat	1080
ggcccagtttgc	ttagaggagc	atccaaagat	tgctcggtc	tactatcctg	gcttgccaag	1140
tcacccctgaa	catcacatttgc	ccaaagagtca	aatgactggc	tttggcgggt	ttgttagttt	1200
tgagggttgc	ggagactttgc	atgctacggag	gaaattcatt	gattctgtta	aaatacccta	1260
tcatcgccct	tcttttggag	gctgtgagag	cataattgtat	cagcctgcca	tcatgtccct	1320
ctgggattca	aaggaggcgc	gggacatctca	cgggatcaag	gacaacctga	tcaggttcag	1380
cattgggttg	gaggatttgc	agatcttaa	gaacgatctc	gtgcaggccc	tcgagaagat	1440
ctaagactc	taatcagttt	gtattgacaa	aatatgaggt	gatggctgtc	ttggatcttg	1500
tcaagatctg	tgacaatgtat	atgagctgtat	gactgcgaat	aagttctttt	ttgttatttt	1560

tatccgtcaa attaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 1620
 1638
 aaaaaaaaaaa aactcgag

<210> 17
 <211> 480
 <212> PRT
 <213> Zea mays

<400>	17		
Asn Ser Gly Ser Lys Pro Pro Arg Pro Asn Glu Arg Ser Val Pro Ser	15		
1	5	10	15
Arg Ala Asp Ala Glu Thr Leu Ala Pro Leu Thr Pro Trp Pro Pro Cys	30		
20	25	30	
Arg Ser Leu Arg Arg Ser Ser Pro Pro Ser Pro Ala Ala Pro Trp	45		
35	40	45	
Pro Leu Pro Pro Ser Ser Ala Ser Arg Gln Thr Ser Ser Ala Ser Ala	60		
50	55	60	
Ala Ala Asp Val Ser Ala Ile Pro Asn Ala Lys Val Ala Gln Pro Ser	80		
65	70	75	80
Ala Val Val Leu Ala Glu Arg Asn Leu Leu Gly Ser Asp Ala Ser Leu	95		
85	90	95	
Ala Val His Ala Gly Glu Arg Leu Gly Arg Arg Ile Ala Thr Asp Ala	110		
100	105	110	
Ile Thr Thr Pro Val Val Asn Thr Ser Ala Tyr Trp Phe Asn Asn Ser	125		
115	120	125	
Gln Glu Leu Ile Asp Phe Lys Glu Gly Arg His Ala Ser Phe Glu Tyr	140		
130	135	140	
Gly Arg Tyr Gly Asn Pro Thr Thr Glu Ala Leu Glu Lys Lys Met Ser	160		
145	150	155	160
Ala Leu Glu Lys Ala Glu Ser Thr Val Phe Val Ala Ser Gly Met Tyr	175		
165	170	175	
Ala Ala Val Ala Met Leu Ser Ala Leu Val Pro Ala Gly His Ile	190		
180	185	190	
Val Thr Thr Asp Cys Tyr Arg Lys Thr Arg Ile Tyr Met Glu Asn	205		
195	200	205	
Glu Leu Pro Lys Arg Gly Ile Ser Met Thr Val Ile Arg Pro Ala Asp	220		
210	215	220	
Met Asp Ala Leu Gln Asn Ala Leu Asp Asn Asn Asn Val Ser Leu Phe	240		
225	230	235	240
Phe Thr Glu Thr Pro Thr Asn Pro Phe Leu Arg Cys Ile Asp Ile Glu	255		
245	250	255	
His Val Ser Asn Met Cys His Ser Lys Gly Ala Leu Leu Cys Ile Asp	270		
260	265	270	
Ser Thr Phe Ala Ser Pro Ile Asn Gln Lys Ala Leu Thr Leu Gly Ala	285		
275	280	285	

Asp Leu Val Ile His Ser Ala Thr Lys Tyr Ile Ala Gly His Asn Asp
 290 295 300
 Val Ile Gly Gly Cys Val Ser Gly Arg Asp Glu Leu Val Ser Lys Val
 305 310 315 320
 Arg Ile Tyr His His Val Val Gly Gly Val Leu Asn Pro Asn Ala Ala
 325 : 330 335
 Tyr Leu Ile Leu Arg Gly Met Lys Thr Leu His Leu Arg Val Gln Cys
 340 345 350
 Gln Asn Asp Thr Ala Leu Arg Met Ala Gln Phe Leu Glu Glu His Pro
 355 360 365
 Lys Ile Ala Arg Val Tyr Tyr Pro Gly Leu Pro Ser His Pro Glu His
 370 375 380
 His Ile Ala Lys Ser Gln Met Thr Gly Phe Gly Gly Val Val Ser Phe
 385 390 395 400
 Glu Val Ala Gly Asp Phe Asp Ala Thr Arg Lys Phe Ile Asp Ser Val
 405 410 415
 Lys Ile Pro Tyr His Ala Pro Ser Phe Gly Gly Cys Glu Ser Ile Ile
 420 425 430
 Asp Gln Pro Ala Ile Met Ser Tyr Trp Asp Ser Lys Glu Gln Arg Asp
 435 440 445
 Ile Tyr Gly Ile Lys Asp Asn Leu Ile Arg Phe Ser Ile Gly Val Glu
 450 455 460
 Asp Phe Glu Asp Leu Lys Asn Asp Leu Val Gln Ala Leu Glu Lys Ile
 465 470 475 480

<210> 18
<211> 3639
<212> DNA
<213> Zea mays

<400> 18	tctagattac	ataatacacc	taataatctt	gtgttgtttg	tttacttctc	aacttattta	60
	agttggatta	tattccatct	tttcttttt	atttgtctgt	tttagttaaa	aatgaactaa	120
	caaacgacaa	atattcgaga	acgagatagt	ataatctata	ggataatcag	acatgtcctt	180
	agagggtgtt	tgtttagaaat	tataatatgt	atagaatata	taatccaaca	aattttgaac	240
	taacaagttt	aaaatttgc	agatttatata	atctgggcac	attataatcc	taaacaaaaca	300
	ccatcttagt	aattttttat	ttagtgctcc	gtttggatgt	gaagaagatg	gagttgaata	360
	ccaaatcatg	tatgatactg	aaatgagatg	taattttaat	tctattgttt	ggatgtcggt	420
	gaattggagt	ttgaagttat	gcccccttaat	tttacgcaat	accgagatga	gactttatac	480
	taggagaggg	gtttcttagtt	atagcctaatt	tctaaaagaat	tgagtctcta	tttccaaatc	540
	ttaattttat	gcaactaaac	aacacaattt	agaaaaactg	tttcaattt	cttattctgt	600
	gctccaaacg	aggtggagta	tttagaagta	gataagcgcc	tctgtgcac	gaagcgatga	660
	acgcactctg	acggcttcgc	cactacaaat	aagccgcacc	gcatttcgga	aggccacgcg	720
	accgcacac	ccccgaagct	gccgcgaccg	atcgagcgaa	gcgtcgctcc	ccgcggcgcc	780
	gccaaaaccc	tagttctcc	tactccatgg	ccactgtctc	gctcaccccc	caggctgtct	840
	tctccacgga	gtccgggtggc	gccctggcct	ctgtaccat	cctccgcttt	ccgccaaact	900
	ttgtccgcga	getttagcacc	aaggcacgcc	gcaactgcag	caacatcgcc	gtcgcgaga	960
	tcgtcgccgc	cgcgtggtcc	gactgccccg	ccgctcgccc	ccacttaggc	ggcgccggcc	1020
	gccgcgcccc	cggcgtggcc	tcctccccacg	ccgcggctgc	atcgccgcgc	gccgcgcgcct	1080
	ccgcggccgc	ggaggtcagc	gcaattccca	acgctaagg	tgcgcaccc	tccgcgtcg	1140
	tcttggccga	gctgtAACCTG	ctcgctccg	acgcacgcct	cgcgtccac	gccccgtaccc	1200
	taccctgtcta	gctcgtctct	ttactgtaa	atcttaggttc	tatgtttttt	tcccctttcg	1260
	atgatttctt	tgtggcttgc	ctgcctttt	atctgaaaca	ggggagaggc	tgggaagaag	1320

gatcgccacg	gatgcgatca	ccacaccgg	agtgaacacg	tcggctact	ggttcaacaa	1380
ctcgcaagag	ctaatacgact	ttaaggtagt	gaatattcg	gttgcgtt	gtctaatttg	1440
acggatgtga	gtttgacgc	cggaaatatta	agtttatct	gttcctttagg	aggggaggca	1500
tgctagcttc	gagtatggg	ggatggaa	cccgaccacg	gaggcattag	agaagaagat	1560
gaggtgatgc	tcgatagtgg	aatgtcg	accctgttgg	ttgcatttgg	ctggaggcta	1620
aacagttgcg	tgttctcatg	gtcagcgc	ctggagaaag	cagactccac	agtgttcgtg	1680
gcatcggg	tgtatgcagc	tgcggctat	ctcagtgac	ttgttccgg	tgtggcac	1740
attgtgacca	ccacggattt	ctacggaaa	acaaggattt	acatggaaac	tgagctccc	1800
aagagggaa	tttcggttaat	accatgcgt	ctttaagct	ctacttgg	ttagaacggg	1860
acatctgcta	tcactattgg	ttgttccct	gtcactgtc	tacagtatgt	ggtctacaat	1920
gaacctgctc	ttattcagtt	aaaattactc	tgtcgttgg	tccttatcta	gctaatagtc	1980
tctacaaagt	tcagttactt	cagcatagcc	aataggagta	gcataactac	tgcagggtat	2040
atgaacaata	tcctttgcag	tagctgttgg	gagtacacag	tacagtatgg	cttcagactt	2100
tattcttgt	actgcattgg	gtgaagccac	atagggtt	ccgagtgcac	gtgcacagg	2160
aaaaaaacaa	tttctacttt	tctagtgtt	aaaaactaaa	tttaccact	catgcacacc	2220
ctaattttt	attagagaag	atttcaata	catgtgtata	ttgaaatgtc	aagtgtgcac	2280
tcggattctc	cggcctctag	cttcgcccga	ctgcaatgtc	aataggattt	gctatctgt	2340
aaggattaa	gtagaactgc	ttgtggtaat	aaattttagg	atccctcaca	ataagattta	2400
ttatataatc	acaccatcta	ccagttgaaa	tgcagtgaga	gcactttgg	agttgtatac	2460
caatgttct	cacgcttcac	ttagcatgt	atactgtt	tgctcagatg	actgtcattt	2520
ggcctgctga	catggatgt	ctacaaaatg	cgttggacaa	caataatgt	agtggttat	2580
catttcatt	gccctgtatc	gtggtaaaaa	acatacatta	atacatattgc	aatgttagcc	2640
taacctttag	gccatgtcag	gtatctttt	tcttcacgga	gactcccaca	aatccatttc	2700
tcagatgtat	tgtatattgaa	catgtatcaa	atatgtgcca	tagcaaggga	gcgttgctt	2760
gtatcgacag	tacttttgg	tccctatca	atcagaaggc	actgactt	ggcgctgacc	2820
tagttattca	ttctgcaaca	aagtacattt	ctggacacaa	cgatgtgagt	tgatatactg	2880
aaccccatct	cccccttattt	aagtattgt	tttgcacatt	gcactaacta	gtacttcaac	2940
ttcccaggtt	attggaggat	gcgtcagtgg	cagagatgag	ttggttcca	aagtccgtat	3000
ttatcaccat	gtgggtgg	gtgttctaaa	cccgtaagt	ttagattgtt	aaagttttgt	3060
ttccatttat	ttcatcttcc	ttgcacagg	tgtatgtatt	tacagattcc	catagtttac	3120
agcttctatt	tttatattgtt	gaaaatcg	taattttctt	tagtagcata	tgttttaggtt	3180
agaaaaataaa	tttgcttct	ctgagttatca	caaaccgc	ccagttctct	gttacatgaa	3240
ctagaattct	gtttctggaa	aggaagaaat	aggatatgtt	ctgtgcact	caatatata	3300
ctaatttattt	atccggatct	ttatgtcaca	gactcacagg	ccaggctacc	actttatgaa	3360
atattccaaa	ttatgttctt	ctaaaaatgg	aatgactcat	gttgtactct	gttccaacgt	3420
tttcaatca	tgacttagat	tctagtttgc	cgacaccga	ctagtgat	aatcgtgact	3480
aggcatttgc	tagtcacat	tagttttgag	ctagtcgaac	ttatcaacaa	cttggtccag	3540
gcaatataattt	gcagtactat	gccttattga	ttgggtat	aatgaattt	tagcacacag	3600
ataqagcaga	agtaagacaa	attaaacacaa	agttctaga			3639

<210> 19
<211> 509
<212> PRT
<213> Zea mays

```

<400> 19
Met Ala Thr Val Ser Leu Thr Pro Gln Ala Val Phe Ser Thr Glu Ser
1 5 10 15
Gly Gly Ala Leu Ala Ser Ala Thr Ile Leu Arg Phe Pro Pro Asn Phe
20 25 30
Val Arg Gln Leu Ser Thr Lys Ala Arg Arg Asn Cys Ser Asn Ile Gly
35 40 45
Val Ala Gln Ile Val Ala Ala Ala Trp Ser Asp Cys Pro Ala Ala Arg
50 55 60
Pro His Leu Gly Gly Gly Arg Arg Ala Arg Gly Val Ala Ser Ser
65 70 75 80
His Ala Ala Ala Ala Ser Ala Ala Ala Ala Ser Ala Ala Ala Glu
85 90 95

```

Val Ser Ala Ile Pro Asn Ala Lys Val Ala Gln Pro Ser Ala Val Val
 100 105 110
 Leu Ala Glu Arg Asn Leu Leu Gly Ser Asp Ala Ser Leu Ala Val His
 115 120 125
 Ala Gly Glu Arg Leu Gly Arg Arg Ile Ala Thr Asp Ala Ile Thr Thr
 130 135 140
 Pro Val Val Asn Thr Ser Ala Tyr Trp Phe Asn Asn Ser Gln Glu Leu
 145 150 155 160
 Ile Asp Phe Lys Glu Gly Arg His Ala Ser Phe Glu Tyr Gly Arg Tyr
 165 170 175
 Gly Asn Pro Thr Thr Glu Ala Leu Glu Lys Lys Met Ser Ala Leu Glu
 180 185 190
 Lys Ala Glu Ser Thr Val Phe Val Ala Ser Gly Met Tyr Ala Ala Val
 195 200 205
 Ala Met Leu Ser Ala Leu Val Pro Ala Gly Gly His Ile Val Thr Thr
 210 215 220
 Thr Asp Cys Tyr Arg Lys Thr Arg Ile Tyr Met Glu Asn Glu Leu Pro
 225 230 235 240
 Lys Arg Gly Ile Ser Met Thr Val Ile Arg Pro Ala Asp Met Asp Ala
 245 250 255
 Leu Gln Asn Ala Leu Asp Asn Asn Asn Val Ser Leu Phe Phe Thr Glu
 260 265 270
 Thr Pro Thr Asn Pro Phe Leu Arg Cys Ile Asp Ile Glu His Val Ser
 275 280 285
 Asn Met Cys His Ser Lys Gly Ala Leu Leu Cys Ile Asp Ser Thr Phe
 290 295 300
 Ala Ser Pro Ile Asn Gln Lys Ala Leu Thr Leu Gly Ala Asp Leu Val
 305 310 315 320
 Ile His Ser Ala Thr Lys Tyr Ile Ala Gly His Asn Asp Val Ile Gly
 325 330 335
 Gly Cys Val Ser Gly Arg Asp Glu Leu Val Ser Lys Val Arg Ile Tyr
 340 345 350
 His His Val Val Gly Gly Val Leu Asn Pro Asn Ala Ala Tyr Leu Ile
 355 360 365
 Leu Arg Gly Met Lys Thr Leu His Leu Arg Val Gln Cys Gln Asn Asp
 370 375 380
 Thr Ala Leu Arg Met Ala Gln Phe Leu Glu Glu His Pro Lys Ile Ala
 385 390 395 400
 Arg Val Tyr Tyr Pro Gly Leu Pro Ser His Pro Glu His His Ile Ala
 405 410 415
 Lys Ser Gln Met Thr Gly Phe Gly Val Val Ser Phe Glu Val Ala
 420 425 430

Gly Asp Phe Asp Ala Thr Arg Lys Phe Ile Asp Ser Val Lys Ile Pro
 435 440 445
 Tyr His Ala Pro Ser Phe Gly Gly Cys Glu Ser Ile Ile Asp Gln Pro
 450 455 460
 Ala Ile Met Ser Tyr Trp Asp Ser Lys Glu Gln Arg Asp Ile Tyr Gly
 465 470 475 480
 Ile Lys Asp Asn Leu Ile Arg Phe Ser Ile Gly Val Glu Asp Phe Glu
 485 490 495
 Asp Leu Lys Asn Asp Leu Val Gln Ala Leu Glu Lys Ile
 500 505

<210> 20
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 20 14
aattcatgag tgca

<210> 21
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 21 14
aatttgact catg

<210> 22
<211> 1350
<212> DNA
<213> Escherichia coli

<400> 22	60
atggctgaaa ttgttgtctc caaatttggc ggtaccagcg tagctgattt tgacgccatg	120
aaccgcagcg ctgatattgt gctttctgat gccaacgtgc gtttagttgt cctctcggtc	180
tctgctggta tcactaatct gctggtcgt ttagetgaag gactggaaacc tggcgagcga	240
ttcgaaaaac tcgacgtat ccgcaacatc cagtttgcca ttctggaaacg tctgcgttac	300
ccgaacgtta tccgtgaaga gattggaaacgt ctgctggaga acattactgt tctggcagaa	360
gccccggcgc tggcaacgtc tccggcgctg acagatgagc tggtcagcca cggcgagctg	420
atgtcgaccc tgctgtttgt ttagatcctg cgcgaaacgcg atgttcaggc acagtggttt	480
gatgtacgt aagtgtatgc taccaacgcg cgatttggtc gtgcagagcc agatatagcc	540
gcccgtggcg aactggccgc gctgcagctg ctcccacgtc tcaatgaagg ctttagtgatc	600
accaggat ttatcgtag cgaaaataaa ggtcgatcaa cgacgcttgg ccgtggaggc	660
agcgattata cggcagccctt gctggcgag gctttacacg catctcggt tgatatctgg	720
accgacgtcc cgggcattca caccaccgtt ccacgcgtag ttccgcgcg aaaaacgcatt	780
gatgaaatcg cgtttgccga agcggcagag atggcaactt ttgggtcaaa agtactgcatt	840
ccggcaacgt tgctaccgc agtacgcagc gatatcccg tctttgtcgg ctcagcaaa	900
gaccacgcg caggtggtag gctgggtgtc aataaaaactg aaaatccgc gctgttccgc	960
gctctggcgc ttctcgcaaa tcaactctg ctcactttgc acagcgttgc tatgtgcatt	1020
tctcgcggtt tcctcgccga agtttcggc atcctcgcc ggcataatat ttccgttagac	1080
ttaatcacca cgtcagaagt gagcgtggca ttaacccttg ataccacccgg ttcaacctcc	1140
actggcgata cgttgcgtac gcaatctctg ctgatggagc ttccgcact gtgtcgggtg	1200
gaggtggaaag aaggtctggc gctggtcgc ttgattggca atgacgttgc aaaagcctgc	1260
gccgttggca aagaggtatt cggcgtactg gaaccgttca acattcgcatt gatttggtat	

ggcgcatcca gccataacct gtgcttcctg gtgccccggcg aagatgccga gcagggtggtg 1320
 caaaaaactgc atagtaattt gttttagttaa 1350

<210> 23
 <211> 449
 <212> PRT
 <213> Escherichia coli

<400> 23
 Met Ala Glu Ile Val Val Ser Lys Phe Gly Gly Thr Ser Val Ala Asp
 1 5 10 15
 Phe Asp Ala Met Asn Arg Ser Ala Asp Ile Val Leu Ser Asp Ala Asn
 20 25 30
 Val Arg Leu Val Val Leu Ser Ala Ser Ala Gly Ile Thr Asn Leu Leu
 35 40 45
 Val Ala Leu Ala Glu Gly Leu Glu Pro Gly Glu Arg Phe Glu Lys Leu
 50 55 60
 Asp Ala Ile Arg Asn Ile Gln Phe Ala Ile Leu Glu Arg Leu Arg Tyr
 65 70 75 80
 Pro Asn Val Ile Arg Glu Glu Ile Glu Arg Leu Leu Glu Asn Ile Thr
 85 90 95
 Val Leu Ala Glu Ala Ala Leu Ala Thr Ser Pro Ala Leu Thr Asp
 100 105 110
 Glu Leu Val Ser His Gly Glu Leu Met Ser Thr Leu Leu Phe Val Glu
 115 120 125
 Ile Leu Arg Glu Arg Asp Val Gln Ala Gln Trp Phe Asp Val Arg Lys
 130 135 140
 Val Met Arg Thr Asn Asp Arg Phe Gly Arg Ala Glu Pro Asp Ile Ala
 145 150 155 160
 Ala Leu Ala Glu Leu Ala Ala Leu Gln Leu Leu Pro Arg Leu Asn Glu
 165 170 175
 Gly Leu Val Ile Thr Gln Gly Phe Ile Gly Ser Glu Asn Lys Gly Arg
 180 185 190
 Thr Thr Leu Gly Arg Gly Ser Asp Tyr Thr Ala Ala Leu Leu
 195 200 205
 Ala Glu Ala Leu His Ala Ser Arg Val Asp Ile Trp Thr Asp Val Pro
 210 215 220
 Gly Ile Tyr Thr Thr Asp Pro Arg Val Val Ser Ala Ala Lys Arg Ile
 225 230 235 240
 Asp Glu Ile Ala Phe Ala Glu Ala Ala Glu Met Ala Thr Phe Gly Ala
 245 250 255
 Lys Val Leu His Pro Ala Thr Leu Leu Pro Ala Val Arg Ser Asp Ile
 260 265 270
 Pro Val Phe Val Gly Ser Ser Lys Asp Pro Arg Ala Gly Gly Thr Leu
 275 280 285

Val Cys Asn Lys Thr Glu Asn Pro Pro Leu Phe Arg Ala Leu Ala Leu
 290 295 300
 Arg Arg Asn Gln Thr Leu Leu Thr Leu His Ser Leu Asn Met Leu His
 305 310 315 320
 Ser Arg Gly Phe Leu Ala Glu Val Phe Gly Ile Leu Ala Arg His Asn
 325 330 335
 Ile Ser Val Asp Leu Ile Thr Thr Ser Glu Val Ser Val Ala Leu Thr
 340 345 350
 Leu Asp Thr Thr Gly Ser Thr Ser Thr Gly Asp Thr Leu Leu Thr Gln
 355 360 365
 Ser Leu Leu Met Glu Leu Ser Ala Leu Cys Arg Val Glu Val Glu Glu
 370 375 380
 Gly Leu Ala Leu Val Ala Leu Ile Gly Asn Asp Leu Ser Lys Ala Cys
 385 390 395 400
 Ala Val Gly Lys Glu Val Phe Gly Val Leu Glu Pro Phe Asn Ile Arg
 405 410 415
 Met Ile Cys Tyr Gly Ala Ser Ser His Asn Leu Cys Phe Leu Val Pro
 420 425 430
 Gly Glu Asp Ala Glu Gln Val Val Gln Lys Leu His Ser Asn Leu Phe
 435 440 445

Glu

<210> 24
 <211> 36
 <212> DNA
 <213> Artificial Sequence

 <220> Description of Artificial Sequence: Synthetic oligonucleotide
 <223>

<210> 24	36
gatccatggc tgaaattgtt gtctccaaat ttggcg	

<210> 25
 <211> 36
 <212> DNA
 <213> Artificial Sequence

 <220> Description of Artificial Sequence: Synthetic oligonucleotide
 <223>

<210> 25	36
gtaccgccaa atttggagac aacaatttca gccatg	

<210> 26
 <211> 30
 <212> DNA
 <213> Artificial Sequence

 <220> Description of Artificial Sequence: Synthetic oligonucleotide
 <223>

<400> 26
atggcagcca agatgcttgc attgttcgct

30

<210> 27
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 27
aatgcagca ccaacaaagg gttgctgtaa

30

<210> 28
<211> 2123
<212> DNA
<213> Zea mays

<400> 28						
tctagagcct	attaccatct	ctactcacgg	gtcgtagagg	tgttgaggt	ggctacagct	60
ggtaacaatc	ctactcaccc	ttttaatcc	tctacggctc	tacgcgtgt	taattggta	120
gatgtcaacc	ccctctctaa	gtggcagtag	tgggcttgtt	tatactgtct	agtgcctgg	180
gatgttctat	ttttcttagta	gtgcttgatc	aaacattgca	tagtttgact	tgggacaaac	240
tgtctgtat	atatatataat	ttttggcag	aggagcagt	aagaacttat	ttagaaaatgt	300
aatcattttgt	aaaaaaaggt	ttaattttgc	tgctttctt	cgttaatgtt	gttttcacat	360
tagattttct	ttgtgttata	tacactggat	acatacaat	tcatgtcgag	tagtctctta	420
atccacatca	gctaggcata	cttagcaaa	agcqaaattac	acaaatctag	tgtgcctgtc	480
gtcacattct	caataaaactc	gtcatgttt	actaaaagta	cctttcgaa	gcacatatt	540
aatccgaaaa	cagtttaggga	agtcctccaa	tctgacccaa	tgccaaagtca	tcgtccagct	600
tatcagcatc	caactttcag	tttgcgtgt	gctagaaaatt	gttttcatc	tacatggcca	660
ttgttgcgt	catgcatact	taaattaggac	ctagacgatc	aatcgcaatc	gcataatccac	720
tattctctag	gaagcaagg	aatcacaatcg	ccatggcagc	caagatgttt	gcattgttt	780
cgtccctagc	tctttgtca	accgccacta	gtgctaccca	tatcccagg	cactgtcac	840
cactactgt	gccattggct	accatgaacc	catggatgc	gtactgcgt	aagcaacagg	900
gggttgccaa	cttggtagcg	tggccgaccc	tgtgcgtca	gcaactgtt	gcctcaccgc	960
ttcagcgtg	ccagatgcca	atgatgtgc	cgggtatgt	gccaccgtg	acgtatgtc	1020
cgtgcccgg	tatgtgcca	tcgtatgtgg	tgccgactat	gatgtcacca	atgacgtatgg	1080
ctagtatgt	ggccggatg	atgatgccaa	gcatgattt	accaatgcac	atgcccggat	1140
tgtgccttc	gatgataatg	ccgaccatga	tgtcaccat	gattatgcgg	agtagatgtc	1200
cacaatgtat	gatgccggc	atgggtgtcac	caatgtat	gccaacatgc	atgacagtgc	1260
cacaatgtta	ctctggttct	atctcacaca	ttataaca	acaacaatta	ccattcatgt	1320
tcagccccac	agccatggcg	atcccaccca	tgttcttaca	gcagccctt	gttggtgctg	1380
cattcttagt	ctagatataa	gcattttgtt	agtaccaat	aatgaagtcg	gcatgccatc	1440
gcatacgact	cattgtttag	gaataaaaaca	agctaataat	gacttttctc	tcattataac	1500
ttatatctct	ccatgtctgt	ttgtgtgttt	gtaatgtctg	ttaatcttag	tagattataat	1560
tgtatataat	accatgtatt	ctctccattt	caaattata	gtcttcatt	tcaagataaa	1620
tagtttaaac	catacctaga	cattatgtat	atataaggcg	cttaacaaa	gtatgtact	1680
cagtaaaatc	aaaacgactt	acaaattttaa	atttggaaag	tacattttt	ttaatagact	1740
aggtaggtac	ttgtgcgtt	caacggaaac	atataataac	ataataactt	atataaaaa	1800
tgtatcttat	attgttataa	aaaatatttc	ataatccatt	tgtatccctt	gtcatacata	1860
aattttgtta	ttttatataa	gttgcgttac	tactacattt	caaccattag	tatcatgcag	1920
acttcgatata	atgccaagat	ttgcgttgc	tcatcattga	agagcacatg	tcacacctgc	1980
cggtagaaat	tctctcgatc	attgtcgttgc	atcaggatcg	caccaccata	cacgcttgc	2040
taaacaaaaaa	aacaagtgtt	tgtgtttgcg	aagagaatta	agacaggcag	acacaaagct	2100
acccgacgtat	ggcgagtcgg	tca				2123

<210> 29
<211> 211
<212> PRT
<213> Zea mays

<400> 29
 Met Ala Ala Lys Met Phe Ala Leu Phe Ala Leu Leu Ala Leu Cys Ala
 5 15
 1
 Thr Ala Thr Ser Ala Thr His Ile Pro Gly His Leu Ser Pro Leu Leu
 20 30
 Met Pro Leu Ala Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln
 35 45
 Gln Gly Val Ala Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln
 50 60
 Leu Leu Ala Ser Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro
 65 80
 Gly Met Met Pro Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro
 85 95
 Ser Met Met Val Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met
 100 110
 Met Pro Pro Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro
 115 125
 Ser Met Met Pro Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile
 130 140
 Met Pro Ser Met Met Pro Pro Met Met Met Pro Ser Met Val Ser Pro
 145 160
 Met Met Met Pro Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser
 165 175
 Ile Ser His Ile Ile Gln Gln Gln Leu Pro Phe Met Phe Ser Pro
 180 190
 Thr Ala Met Ala Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly
 195 205
 Ala Ala Phe
 210

<210> 30

<211> 17

<212> DNA

<213> Artificial Sequence

<220> Description of Artificial Sequence: Synthetic oligonucleotide

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 30

atgaaccctt ggatgca

17

<210> 31

<211> 17

<212> DNA

<213> Artificial Sequence

<220> Description of Artificial Sequence: Synthetic oligonucleotide

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 31

cccacagcaa tggcgat

17

<210> 32
<211> 639
<212> DNA
<213> Zea mays

<400> 32
ccatggcgc caagatgtt gcattgttg cgctccatgc tctttgtgca accgccacta 60
gtgcatacca tatcccgagg cacttgtcac cactactgat gccattggct accatgaacc 120
cttggatgca gtactgcac aagcaacagg gggttgccaa ctgttagcg tggccgaccc 180
tgcgtgcac gcaactgtt gcctcaccgc ttcaagcagtg ccagatgcca atgatgatgc 240
cgggtatgat gcccaccatg acgatgatgc cgatgccgag tatgatgcca tcgatgatgg 300
tgccgactat gatgtcacca atgacgatgg ctatgtatgat gccgcccgtg atgatgccaa 360
gcatgattc accaatgacg atgcccagta tgcgtgccttc gatgataatg ccgaccatga 420
tgtcaccaat gattatgccc agtatgatgc caccaatgat gatgccgagc atgggtgtcac 480
caatgatgat gccaaacatg atgacagtgc caccaatgta ctctggttct atctcacaca 540
ttatacaaca acaacaatta ccattcatgt tcagccccac agcaatggcg atcccaccca 600
tgttcttaca gcagccctt gttggtgctg cattctaga 639

<210> 33
<211> 211
<212> PRT
<213> Zea mays

<400> 33
Met Ala Ala Lys Met Phe Ala Leu Phe Ala Leu Leu Ala Leu Cys Ala 15
1 5 10
Thr Ala Thr Ser Ala Thr His Ile Pro Gly His Leu Ser Pro Leu Leu 20 25 30
Met Pro Leu Ala Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln 35 40 45
Gln Gly Val Ala Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln 50 55 60
Leu Leu Ala Ser Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro 65 70 75 80
Gly Met Met Pro Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro 85 90 95
Ser Met Met Val Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met 100 105 110
Met Pro Pro Met Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro 115 120 125
Ser Met Met Pro Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile 130 135 140
Met Pro Ser Met Met Pro Pro Met Met Met Pro Ser Met Val Ser Pro 145 150 155 160
Met Met Met Pro Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser 165 170 175
Ile Ser His Ile Ile Gln Gln Gln Leu Pro Phe Met Phe Ser Pro 180 185 190
Thr Ala Met Ala Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly 195 200 205

Ala Ala Phe
210

<210> 34
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 34 13
ctagccccggg tac

<210> 35
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 35 13
cttaggtaccc ggg

<210> 36
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 36 30
ccacttcatg acccatatcc cagggcactt

<210> 37
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 37 30
ttcttatctag aatgcagcac caacaaagg

<210> 38
<211> 579
<212> DNA
<213> Zea mays

<400> 38
tcatgaccca tatcccaggg cacttgtcac cactactgat gccattggct accatgaacc 60
cttggatgca gtactgcatg aagcaacagg gggttccaa ttgttagcg tggccgaccc 120
tgatgctgca gcaactgttg gcctcaccgc ttcaagcagtg ccagatgccca atgatgatgc 180
cgggtatgat gccaccgatg acgatgatgc cgatgccgag tatgatgccca tcgatgatgg 240
tgccgactat gatgtcacca atgacgatgg ctatgtatgat gccgcccgtg atgatgccaa 300
gcatgattc accaatgacg atgcccggatg tgatgccttc gatgataatg ccgaccatga 360
tgtcaccaat gattatgccg agtatgatgc caccaatgat gatgccgagc atgggttcac 420
caatgatgat gccaaacatg atgacagtgcc cacaatgtt ctctggttct atctcacaca 480
ttataacaaca acaacaatta ccattcatgt tcagccccac agcaatggcg atcccaccca 540
tgttcttaca gcagcccttt gtgggtgctg cattctaga 579

<210> 39
<211> 191
<212> PRT
<213> Zea mays

<400> 39
Met Thr His Ile Pro Gly His Leu Ser Pro Leu Leu Met Pro Leu Ala
1 5 10 15
Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln Gln Gly Val Ala
20 25 30
Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln Leu Leu Ala Ser
35 40 45
Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro Gly Met Met Pro
50 55 60
Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro Ser Met Met Val
65 70 75 80
Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met Met Pro Pro Met
85 90 95
Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro Ser Met Met Pro
100 105 110
Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile Met Pro Ser Met
115 120 125
Met Pro Pro Met Met Pro Ser Met Val Ser Pro Met Met Met Pro
130 135 140
Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser Ile Ser His Ile
145 150 155 160
Ile Gln Gln Gln Leu Pro Phe Met Phe Ser Pro Thr Ala Met Ala
165 170 175
Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly Ala Ala Phe
180 185 190

<210> 40
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 40
ctagaaggcct cggcaacgtc agcaacggcg gaagaatccg gtg 43

<210> 41
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 41
catgcaccgg attcttccgc cgttgctgac gttgccgagg ctt 43

<210> 42
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 42
gatccccatgg cgcccccattaa gtccaccggcc agcctccccc tcgccccggc ctcct 55

<210> 43
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 43
ctagaggagc ggccggcgac ggggaggctg gcgggtggact taaggggcgc catgg 55

<210> 44
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 44
catggcgccc accgtgatga tggcctcgtc ggccaccggcc gtcgctccgt tccaggggc 59

<210> 45
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 45
ttaagccccct ggaacggagc gacggcggtg gccgacgagg ccatcatcac ggtgggcgc 59

<210> 46
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 46
catggctggc ttccccacga ggaagaccaa caatgacattt acctccattt ctagcaacgg 60
75
tggaaagatca caatg

<210> 47
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 47
catgcattgt actcttccac cgttgcttagc aatggaggta atgtcattgt tggtcttcct 60
cgtgggaag ccagc 75

<210> 48
<211> 90
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence: Synthetic oligonucleotide
<223>

<400> 48
catggcttcc tcaatgatct cctccccagc tgttaccacc gtcaccgtg ccgggtgccgg 60
catggttgtcc ccattcaccc gcctcaaaag 90

<210> 49
<211> 90
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence: Synthetic oligonucleotide
<223>

<400> 49
catgcttttg aggccgggtga atggagcaac catgccggca ccggcacggc tgacgggtgg 60
aacagctggg gaggagatca ttgaggaagg 90

<210> 50
<211> 31
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence: Synthetic oligonucleotide
<223>

<400> 50
gactatccat ggcacattgt actcttccac c 31

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence: Synthetic oligonucleotide
<223>

<400> 51
tactaaccat ggcttcctca 20

<210> 52
<211> 12
<212> DNA
<213> Artificial Sequence

<220> Description of Artificial Sequence: Synthetic oligonucleotide
<223>

<400> 52
ggccatggcc gc 12

<210> 53
<211> 30

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 53 30
 gaaaaccatgg ccagtgtgat tgcgcaggca

 <210> 54
 <211> 29
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 54 29
 gaaaggtacc ttacaacaac tggccagc

 <210> 55
 <211> 1494
 <212> DNA
 <213> Glycine max

 <220>
 <221> unsure
 <222> (1461)

 <220>
 <221> unsure
 <222> (1464)

 <220>
 <221> unsure
 <222> (1465)

 <400> 55
 attgcagca caaaaagttt ttgaagtaaa tgcctggcc aaggcattgt ctggacagaa 60
 ggatgagggtt ttctttctg ctaatgctgc tgcctggct tcaaggaat cctccccaaag 120
 ggtataaat gaggctgtcc aaaaagccgc tgctgctctg aagggtctcg atcatcgag 180
 ggcacaaat gtttagtgc ggttggatgc tcaacagaag aaattgaat tttctgttct 240
 tccaacaact acaattggat cttccctca aactgccat cttagaagrg twcgcgtga 300
 attcaaggct aacaagatct ccggaggaaga gtatgthaag tcaattaagg agggaaattcg 360
 caaagtgtt garcttcaag aagagcttga tattgtatgtt cttgttcatg gagaaccaga 420
 gagaatgtat atgggtgagt acttcggtg rcaatgtca ggcttgcct tcacygttaa 480
 tgggtgggtg caatccatg gttcccgtt ygtgaagcca ccratcatct atgggtatgt 540
 gagccgcccc aagccaatga cygtcttgc gtcatctcg gctcagagct ttaccaagcg 600
 cccaatgaag ggaatgttca ccggtcctgt taccattctc aactggkct ttgtwagaaa 660
 tgaccaacct agatctgaga ccacccatca gattgttttgc gctatcaagg acgaagtgg 720
 ggaccttggaa aaggctggca tcactgttat ccaaattgtat gaagctgtt tgagagaggg 780
 tctgcactg rggaaatcag aacaagctca ctactggac tgggtgtcc atgccttcag 840
 aatcaccaat gttgggtgtc aggataccac tcagatccac acccacatgt gctactccaa 900
 ctcaacgac atcatccact ccacatcgat catggacgct gatgttatca ccattgagaa 960
 ctctcgctcc gatgagaagc tcctgtcagt ctccgtgaa ggtgtgaatgt atgggtgtgg 1020
 aattgscctt ggtgttatg acatccactc cccaaagaata ccaccaactg aagaaatcgc 1080
 tgacagaatc aataagatgc tggcgtgtc cgagaagaac atcttgcgtt tcaaccctga 1140
 ctgtggcttc aagaccgcg agtacactga agtgaagccc gccctcacaa acatgggtgc 1200
 cgacagcaaaa ctcatccgtc acgaacttgc caagtgaatg gtataagaaa gtagaatcta 1260
 caagttcatt ggttctgtt ttataatata ccaaagaaaa atttctata ttgggtgttt 1320
 tcaataaccg tgggtggat atttagatgt tttagcatgc tctgtgagca attgattctt 1380
 cctcaacccc tctccctta ttttcccaa ctcctgtttt ccctaataatgaa tgggttatct 1440
 ttgctttgcc gcaatcctta ntnnngatata gaaatattac cagttttgtg caaa 1494