Homework #2

Chris Dellomes
Professor: Ray Toal
CMSI 282: Algorithms
Loyola Marymount University

March 3, 2015

- 1. (a) $n 100 = \Theta(n 200)$
 - (b) $n^{1/2} = O(n^{2/3})$
 - (c) $100n + \log(n) = \Theta(n + \log(n)^2)$
 - (d) $nlog(n) = \Theta(10nlog(10n))$
 - (e) $\log(2n) = \Theta(\log(3n))$
 - (f) $10\log(n) = O(\log(n^2))$
 - (g) $n^{1.01} = \Omega(n(\log(n))^2)$
 - (h) $n^2 / \log(n) = \Omega(n(\log(n))^2)$
 - (i) $n^{0.1} = \Omega((log(n))^{10})$
 - (j) $(log(n))^{log(n)} = \Omega(n / log(n))$
 - (k) $n^{1/2} = \Omega((\log(n))^3)$
 - (1) $n^{1/2} = O(5^{\log_2(n)})$
 - (m) $n2^n = O(3^n)$
 - (n) $2^n = \Omega(2^{n+1})$
 - (o) $n! = \Omega(2^n)$
 - (p) $(log(n))^{log(n)} = O(2^{(log_2(n))^2})$
 - (q) $\sum_{i=1}^{n} i^k = \Theta(n^{k+1})$

2. (a)
$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

Each entry in the matrix is calculated using 2 multiplications and 1 addition. Since there are 4 entries, that results in 8 multiplications and 4 additions.

- (b) For x^n , let $n = 2^k$ for some positive integer k. Thenm we would calculate x^2 by repeatedly squaring.
 - $x^2, x^4, ..., x^{2^k} = x^n$

By squaring x to reach x^n , the exponent is doubled at each instance. This yields $k = \log(n)$ multiplications.

3. For a number, n, there are $log_2(n+1)$ binary digits and $log_{10}(n+1)$ decimal digits. Through conversion, we find that

$$log_{10}(n+1) = log_2(n+1)log_2(10) = 3.32log_2(n+1)$$

$$log_{10}(n+1) = 4log_2(n+1)$$

- 4. $n! = (n)(n-1)(n-2) \dots (1)$ $n^n = (n)(n) \dots (n)$ $n! \le n^n$ $(n/2)^{n/2} = ((n/2)^n)^{1/2} = (n^n/(2^n)^{1/2})$ $(n/2)^{n/2} \le n! \le n^n$ $(n/2)\log(n/2) \le \log(n!) \le n\log(n)$ $(1/2)(n\log(n) - n) \le \log(n!) \le n\log(n)$ $n! = \Theta(n\log(n))$
- $\begin{array}{l} 5. \ \ x^{(5-1)(7-1)} = x^{(4)(6)} = x^{24} \\ x^{24} \equiv 1 mod 35 \\ 4^{1536} = \left(4^{64}\right)^{24} \\ \left(4^{64}\right)^{24} \equiv 1 mod 35 \\ 9^{4824} = \left(9^{201}\right)^{24} \\ \left(9^{201}\right)^{24} \equiv 1 mod 35 \\ 4^{1536} \equiv 9^{4824} mod 35 \\ 35 \mid \left(4^{1536} 9^{4824}\right) \end{array}$
- 6. 31 is prime $x^{30} \equiv 1 mod 31 for 1 \leq x < 31$ $5^{30000} = (5^{1000})^{30} \equiv 1 mod 31$ $6^{123456} = 6123450 \cdot 6^6 = (6^{4115})^{30} \cdot 6^6$ $(6^{4115})^{30} \equiv 1 mod 31$ $6^6 = 46656 \equiv 1 mod 35$ $(5^{30})^{1000} ((6^{30})^{4115} \cdot 6^6) \equiv 1 mod 31$
- 7. Let b = 15. The given equaring algorithm gives us $a^{15} = a \cdot a^2 \cdot a^4 \cdot a^8$ $a^{15} = a \cdot (a \cdot a) \cdot (a^2 \cdot a^2) \cdot (a^4 \cdot a^4)$ This is a total of 6 multiplications. To find the true minimum number of multiplications, we first calculate $a^3 = a \cdot a \cdot a$, $a^6 = a^3 \cdot a^3$, $a^{12} = a^6 \cdot a^6$. Then we calculate $a^{15} = a^{12} \cdot a^3$. This shows the calculation can be done in 5 multiplications.
- 8. $2^{126} \equiv 1 \mod 127$ by Fermat's little theorem. $2^{125} \cdot 2 \equiv 1 \mod 127$ Thus, 2^{125} is the inverse of 2 mod 127. Notice that $2^6 \cdot 2 = 128 \equiv 1 \mod 127$. Therefore, $2^{125} \equiv 2^6 \mod 127$
- 9. Given two n bit numbers, the running time for the algorithm used is $O(n^3)$.

- 10. Basing a primality test on Wilson's theorem would require calculating a factorial, which would be less efficient in terms of time complexity when compared to Fermat's theorem.
- 11. The time complexity for the program is $O(n^3)$ where n is the number of bits input.