Review for test #4

- Test 4 will be given during our last class meeting, Monday, 12/2.
- Test 4 will cover sections 4.5, 4.6, and topics from chapter 5 (see below).
- You will be allowed to use a handwritten 3.5" by 5" note card for this test.
- Topics covered on the exam:
 - Sections 4.5 and 4.6
 - * Optimization procedures and problems
 - Chapter 5 topics covered:
 - * Antiderivatives $\int f(x)dx$ (also known as indefinite integrals)
 - * Finding antiderivatives using the rules learned in class.
 - * Definite integrals $\int_a^b f(x)dx$
 - \cdot Interpretation as signed area.
 - · Computing definite integrals using antiderivatives (the Fundamental Theorem of Calculus)

Sample problems:

- 1. Find the absolute maximum and absolute minimum of $f(x) = 100 x^2$ on the indicated intervals.
 - (a) [-10, 10]
 - (b) [0, 10]
 - (c) [10, 11]
- 2. Find the Absolute minimum value of $f(x) = x^3 6x^2$ on $[0, \infty)$.
- 3. Find the Absolute maximum value of $f(x) = 5x 2x \ln x$ on $(0, \infty)$.
- 4. Find the absolute maximum and minimum, if either exists, for $f(x) = x^3 6x^2 + 9x 6$ on the indicated intervals.
 - (a) [-1, 5]
 - (b) [-1,3]
 - (c) [2,5]
- 5. Find the dimensions of a rectangle with an area of 200 square feet that has the minimum perimeter.
- 6. A company manufactures and sells x smartphones per week. The weekly price-demand and cost equations are, respectively,

$$p = 500 - 0.4x$$
 and $C(x) = 20,000 + 20x$

- (a) What price should the company charge for the phones, and how many phones should be produced to maximize the weekly revenue? What is the maximum weekly revenue?
- (b) What is the maximum weekly profit? How much should the company charge for the phones, and how many phones should be produced to realize the maximum weekly profit?
- 7. A car rental agency rents 200 cars per day at a rate of \$30 per day. For each \$1 increase in rate, 5 fewer cars are rented. At what rate should the cars be rented to produce the maximum income? What is the maximum income?
- 8. The function $F(x) = x^3 2x + 5$ is an antiderivative of what function?
- 9. Find each indefinite integral
 - (a) $\int 10 dx$
 - (b) $\int 10x dx$
 - (c) $\int 10x^2 dx$
 - (d) $\int \frac{10}{x^2} dx$
 - (e) $\int \frac{10}{x} dx$
 - (f) $\int \frac{1+x}{x^3} dx$
 - (g) $\int x^3 (1+x) dx$
 - (h) $\int \frac{1}{\sqrt{x}} dx$
 - (i) $\int \frac{e^t t}{2} dx$
- 10. Find the particular antiderivative of $C'(x) = 9x^2 20x$ that satisfies the condition C(10) = 2,500.
- 11. Find the equation of the curve that passes through (2,3) if its slope is given by

$$\frac{dy}{dx} = 4x - 3$$

for each x.

12. Find each indefinite integral

(a)
$$\int (x^2 - 1)^5 (2x) dx$$

(b)
$$\int \frac{2}{2x-1} dx$$

(c)
$$\int \frac{1}{2x-1} dx$$

(d)
$$\int 2xe^{x^2}dx$$

(e)
$$\int xe^{x^2}dx$$

13. Calculate the definite integral by referring to the figure with the indicated areas.

(a)
$$\int_0^c f(x)dx$$

(b)
$$\int_{b}^{0} f(x)dx$$

(c)
$$\int_a^d f(x)dx$$

14. Evaluate the definite integrals

(a)
$$\int_0^4 2x dx$$

(b)
$$\int_2^5 x^2 dx$$

(c)
$$\int_{5}^{7} (2x+3)dx$$

Review for test #4

- Test 4 will be given during our last class meeting, Monday, 12/2.
- Test 4 will cover sections 4.5, 4.6, and topics from chapter 5 (see below).
- You will be allowed to use a handwritten 3.5" by 5" note card for this test.
- Topics covered on the exam:
 - Sections 4.5 and 4.6
 - * Optimization procedures and problems
 - Chapter 5 topics covered:
 - * Antiderivatives $\int f(x)dx$ (also known as indefinite integrals)
 - * Finding antiderivatives using the rules learned in class.
 - * Definite integrals $\int_a^b f(x)dx$
 - \cdot Interpretation as signed area.
 - · Computing definite integrals using antiderivatives (the Fundamental Theorem of Calculus)

Sample problems:

- 1. Find the absolute maximum and absolute minimum of $f(x) = 100 x^2$ on the indicated intervals.
 - (a) [-10, 10]
 - (b) [0, 10]
 - (c) [10, 11]
- 2. Find the Absolute minimum value of $f(x) = x^3 6x^2$ on $[0, \infty)$.
- 3. Find the Absolute maximum value of $f(x) = 5x 2x \ln x$ on $(0, \infty)$.
- 4. Find the absolute maximum and minimum, if either exists, for $f(x) = x^3 6x^2 + 9x 6$ on the indicated intervals.
 - (a) [-1, 5]
 - (b) [-1,3]
 - (c) [2,5]
- 5. Find the dimensions of a rectangle with an area of 200 square feet that has the minimum perimeter.
- 6. A company manufactures and sells x smartphones per week. The weekly price-demand and cost equations are, respectively,

$$p = 500 - 0.4x$$
 and $C(x) = 20,000 + 20x$

- (a) What price should the company charge for the phones, and how many phones should be produced to maximize the weekly revenue? What is the maximum weekly revenue?
- (b) What is the maximum weekly profit? How much should the company charge for the phones, and how many phones should be produced to realize the maximum weekly profit?
- 7. A car rental agency rents 200 cars per day at a rate of \$30 per day. For each \$1 increase in rate, 5 fewer cars are rented. At what rate should the cars be rented to produce the maximum income? What is the maximum income?
- 8. The function $F(x) = x^3 2x + 5$ is an antiderivative of what function?
- 9. Find each indefinite integral
 - (a) $\int 10 dx$
 - (b) $\int 10x dx$
 - (c) $\int 10x^2 dx$
 - (d) $\int \frac{10}{x^2} dx$
 - (e) $\int \frac{10}{x} dx$
 - (f) $\int \frac{1+x}{x^3} dx$
 - (g) $\int x^3 (1+x) dx$
 - (h) $\int \frac{1}{\sqrt{x}} dx$
 - (i) $\int \frac{e^t t}{2} dx$
- 10. Find the particular antiderivative of $C'(x) = 9x^2 20x$ that satisfies the condition C(10) = 2,500.
- 11. Find the equation of the curve that passes through (2,3) if its slope is given by

$$\frac{dy}{dx} = 4x - 3$$

for each x.

12. Find each indefinite integral

(a)
$$\int (x^2 - 1)^5 (2x) dx$$

(b)
$$\int \frac{2}{2x-1} dx$$

(c)
$$\int \frac{1}{2x-1} dx$$

(d)
$$\int 2xe^{x^2}dx$$

(e)
$$\int xe^{x^2}dx$$

13. Calculate the definite integral by referring to the figure with the indicated areas.

(a)
$$\int_0^c f(x)dx$$

(b)
$$\int_{b}^{0} f(x)dx$$

(c)
$$\int_a^d f(x)dx$$

14. Evaluate the definite integrals

(a)
$$\int_0^4 2x dx$$

(b)
$$\int_2^5 x^2 dx$$

(c)
$$\int_{5}^{7} (2x+3)dx$$

Review for test #4

- Test 4 will be given during our last class meeting, Monday, 12/2.
- Test 4 will cover sections 4.5, 4.6, and topics from chapter 5 (see below).
- You will be allowed to use a handwritten 3.5" by 5" note card for this test.
- Topics covered on the exam:
 - Sections 4.5 and 4.6
 - * Optimization procedures and problems
 - Chapter 5 topics covered:
 - * Antiderivatives $\int f(x)dx$ (also known as indefinite integrals)
 - * Finding antiderivatives using the rules learned in class.
 - * Definite integrals $\int_a^b f(x)dx$
 - \cdot Interpretation as signed area.
 - · Computing definite integrals using antiderivatives (the Fundamental Theorem of Calculus)

Sample problems:

- 1. Find the absolute maximum and absolute minimum of $f(x) = 100 x^2$ on the indicated intervals.
 - (a) [-10, 10]
 - (b) [0, 10]
 - (c) [10, 11]
- 2. Find the Absolute minimum value of $f(x) = x^3 6x^2$ on $[0, \infty)$.
- 3. Find the Absolute maximum value of $f(x) = 5x 2x \ln x$ on $(0, \infty)$.
- 4. Find the absolute maximum and minimum, if either exists, for $f(x) = x^3 6x^2 + 9x 6$ on the indicated intervals.
 - (a) [-1, 5]
 - (b) [-1,3]
 - (c) [2,5]
- 5. Find the dimensions of a rectangle with an area of 200 square feet that has the minimum perimeter.
- 6. A company manufactures and sells x smartphones per week. The weekly price-demand and cost equations are, respectively,

$$p = 500 - 0.4x$$
 and $C(x) = 20,000 + 20x$

- (a) What price should the company charge for the phones, and how many phones should be produced to maximize the weekly revenue? What is the maximum weekly revenue?
- (b) What is the maximum weekly profit? How much should the company charge for the phones, and how many phones should be produced to realize the maximum weekly profit?
- 7. A car rental agency rents 200 cars per day at a rate of \$30 per day. For each \$1 increase in rate, 5 fewer cars are rented. At what rate should the cars be rented to produce the maximum income? What is the maximum income?
- 8. The function $F(x) = x^3 2x + 5$ is an antiderivative of what function?
- 9. Find each indefinite integral
 - (a) $\int 10 dx$
 - (b) $\int 10x dx$
 - (c) $\int 10x^2 dx$
 - (d) $\int \frac{10}{x^2} dx$
 - (e) $\int \frac{10}{x} dx$
 - (f) $\int \frac{1+x}{x^3} dx$
 - (g) $\int x^3 (1+x) dx$
 - (h) $\int \frac{1}{\sqrt{x}} dx$
 - (i) $\int \frac{e^t t}{2} dx$
- 10. Find the particular antiderivative of $C'(x) = 9x^2 20x$ that satisfies the condition C(10) = 2,500.
- 11. Find the equation of the curve that passes through (2,3) if its slope is given by

$$\frac{dy}{dx} = 4x - 3$$

for each x.

12. Find each indefinite integral

(a)
$$\int (x^2 - 1)^5 (2x) dx$$

(b)
$$\int \frac{2}{2x-1} dx$$

(c)
$$\int \frac{1}{2x-1} dx$$