Data Warehouse & Data Mining

Histórico

- Criado pela IBM na década de 60 com o nome Information Warehouse
- Relançado diversas vezes sem grande sucesso
- O nome Data Warehouse foi dado por William H. Inmon, considerado o inventor desta tecnologia
- Tornou-se viável com o surgimento de novas tecnologias para armazenar e processar uma grande quantidade de dados

Conceito

- Sistema que armazena dados históricos usados no processo de tomada de decisão
- Integra os dados corporativos de uma empresa em um único repositório

Funcionalidade

- Criar uma visão única e centralizada dos dados que estavam dispersos em diversos BDs
- Permitir que usuários finais executem consultas, gerem relatórios e façam análises

- BDs usados nas aplicações de negócio são chamados BDs operacionais
- DW é um BD informacional alimentado com dados dos BDs operacionais da empresa
 - Disponibiliza dados atuais e dados históricos
 - Dados podem ser sumarizados (condensados) para que sejam analisados
 - Contém também metadados, que são dados sobre os dados armazenados no DW

BD Operacional X Data Warehouse

	BD Operacional	Data Warehouse
Usuários	Funcionários	Alta administração
Utilização	Tarefas cotidianas	Decisões estratégicas
Padrão de uso	Previsível	Difícil de prever
Princípio de funcionamento	Com base em transações	Com base em análise de dados
Valores dos dados	Valores atuais e voláteis	Valores históricos e imutáveis
Detalhamento	Alto	Sumarizado
Organização dos dados	Orientado a aplicações	Orientado a assunto

Para que seja considerado um Data Warehouse, um banco de dados deve:

Coletar dados de várias fontes

Dados coletados devem ser transformados para que haja uma visão única dos dados

Dados devem ser usados por aplicativos para obter informações que dêem apoio à decisão

Um Data Warehouse também deve ser:

Orientado a assunto

Integrado

Não-volátil

Variável com o tempo

Orientação a assunto

- Os dados em um DW são organizados de modo a facilitar a análise dos dados
- Dados são organizados por assunto e não por aplicação, como em BDs operacionais

Histórico de Vendas

Integração

Dados de um DW provém de diversas fontes Dados podem ser sumarizados ou eliminados Formato dos dados deve ser padronizado para uniformizar nomes, unidades de medida, etc.

Não-Volátil

Dados não são mais alterados depois de incluídos no DW

Operações no DW

Em um BD operacional é possível incluir, alterar e eliminar dados

Já no DW é possível apenas incluir dados

Garante que consultas subseqüentes a um dado produzirão o mesmo resultado

Variável com o Tempo

Os dados no DW são relativos a um determinado instante de tempo

BD Preços

Produto	Preço
Caneta Azul	0,50
Lápis Preto	0,30

DW Preços

Produto	Jan/03	Fev/03	Mar/03
Caneta Azul	0,40	0,45	0,50
Lápis Preto	0,25	0,28	0,30

Arquitetura de um DW

Sistemas de Extração Tradicionais

Arquitetura de um DW

Sistemas baseados em Data Warehouse

Arquitetura de um DW

Principais tarefas efetuadas pelo DW

- Obter dados dos BDs operacionais e externos
- Armazenar os dados
- Fornecer informações para tomada de decisão
- Administrar o sistema e os dados

Principais componentes do DW

- Mecanismos para acessar e transformar dados
- Mecanismo para armazenamento de dados
- Ferramentas para análise de dados
- Ferramentas de gerência

Requisitos do DW

Eficiente

Grande volume de dados imutáveis

Processamento paralelo e/ou distribuído

Confiável

Funcionamento do sistema

Resultado das análises

Expansível

Crescente volume de dados

Maior número de fontes de dados

Em geral são usados BDs relacionais para armazenar os dados do DW

Capazes de manter e processar grandes volumes de dados

Otimizados para lidar com dados imutáveis

As ferramentas de análise empregam:

Técnicas de mineração de dados

Inteligência artificial: redes neurais, fuzzy, etc.

A Internet: Web miningagentes móveis, etc.

Clientes Operacionais

BDs Operacionais

BDs Externos

Obtenção de Dados

Data Warehouse

Busca de Informações Gerenciamento

Clientes Informacionais

Obtenção de Dados

Oracle

DB2

InterBase

<u> </u>		
Extrair	Transformar	Carregar
Dados operacionaisDados externos	LimparReconciliarAprimorarSumarizarAgregar	 Organizar Combinar várias fontes Popular sob demanda

Data Warehouse

Busca de Informações

Armazenar

- Dados relacionais
- Cache
- Várias plataformas

Localizar	Analisar
Catálogo de informações	Análise multi- dimensional
Visualização	Data mining
de negócios	Consultas
Modelos	e relatórios

Modelo de Camadas

Funções das Camadas do DW

- Dados Operacionais/Externos: fontes de dados
- Acesso aos Dados: extrair dados dos BDs
- Data Staging: transformar e carregar dados
- Data Warehouse Físico: armazenar dados
- Acesso aos Dados: localizar dados para análise
- Acesso à Informação: analisar dados
- Troca de Mensagens: transportar dados
- Gerenc. de Processos: controlar atividades

Granularidade

Nível de detalhe dos dados

De extrema importância no projeto do DW

Granularidade

Definir a granularidade adequada é vital para que o DW atenda seus objetivos

Mais detalhes Mais dados Análise mais longa Informação mais detalhada

Menos detalhes Menos dados Análise mais curta Informação menos detalhada

Para evitar que se perca informação são criados vários níveis de granularidade

Dados x Granularidade

Dados Atuais

Refletem acontecimentos recentes

Alto nível de detalhe (baixa granularidade)

Dados Sumarizados

Dados históricos condensados

Menor nível de detalhe (maior granularidade)

Dados Antigos

Dados históricos mantidos em fita, CD, etc

Alto nível de detalhe (baixa granularidade)

Processo de sumarização

Aplica um novo esquema de modo a condensar os dados

Ex.: armazenar totais, médias, etc.

Processo de envelhecimento

Transfere os dados antigos do HD para fita, CD, etc.

Mantém o nível de detalhe para que nenhuma informação seja perdida

Dados Altamente Sumarizados

Dados Ligeiramente Sumarizados

Dados Atuais

Envelhecimento

Dados Antigos

Data Marts

Dados mantidos no DW são separados por assunto em subconjuntos de acordo com:

A estrutura interna da empresa

O processo de tomada de decisão

Estes subconjuntos dos dados são chamados de Data Marts

Data Mart Financeiro Data Mart Vendas Data Mart Marketing Data Mart Produção

Data Marts

Um Data Mart desempenha o papel de um DW departamental, regional ou funcional Uma empresa pode construir seus Data Marts gradativamente a partir do DW

Data Warehouse

Data Mart Am. Latina Data Mart EUA

Data Mart Europa Data Mart Ásia

Data Marts

Dados podem ser repetidos em dois ou mais Data Marts

Os mesmos dados podem estar representados com granularidade diferente

Ex:

Vendas detalhadas

Vendas totais mensais

Os Metadados são dados sobre os dados

- Para cada atributo mantido no DW há uma entrada no dicionário de dados
- Os dados são processados, atualizados e consultados partindo dos metadados
- Usuários ficam conhecendo a estrutura e o significado dos dados
- No BD operacional, a estrutura e o significado dos dados estão embutidos nas aplicações

Camadas de Metadados

- Metadados Operacionais
 - Definem a estrutura dos dados operacionais
- Metadados do DW
 - Orientados por assunto
 - Informam como os dados do DW foram calculados e como devem ser interpretados
- Metadados do Usuário
 - Organizam os metadados do DW com base em conceitos familiares ao usuário final

Classificação em função dos dados descritos

Metadados de Mapeamento

Como BDs operacionais são mapeados no DW

Metadados de Sumarização

Como os dados foram sumarizados no DW

Metadados Históricos

Como a estrutura dos dados vem mudando

Metadados de Padrões de Acesso

Como os dados do DW vem sendo acessados

Metadados de Miscelânea

Fontes de Metadados

- Código fonte dos SBDs operacionais
- Diagramas CASE de BDs operacionais e do DW
- Documentação dos BDs operacionais e do DW
- Entrevistas com usuários, administradores e programadores dos BDs e do DW
- O ambiente de DW
 - Freqüência de acesso aos dados, tempo de resposta, controle de usuários, etc.

Acesso aos Dados

Acesso em Duas Camadas

Fontes de Dados

Servidor de DW

Data Warehouse

Acesso em Três Camadas

Fontes de Dados

Servidor de DW

Servidor de Aplic.

Data Warehouse

Aplicação do Usário

Aplicação do Usário

Tipos de Data Warehouse

DW baseado em Servidor

Mainframe ou servidor de rede local (LAN)

DW Virtual

Reúne dados operacionais e dados históricos mantidos em BDs – não há um DW central

DW Distribuído

DW global reúne dados de vários DWs locais

DW baseado na Web

Dados provenientes da World Wide Web

Motivações

Grande disponibilidade de dados armazenados eletronicamente

Existem informações úteis, invisíveis, nesses grandes volumes de dados

Aproveitar para prever um conhecimento futuro (ir além do armazenamento explícito de dados).

Definição

- Data mining (mineração de dados), é o processo de extração de conhecimento de grandes bases de dados, convencionais ou não
- Utiliza técnicas de inteligência artificial que procuram relações de similaridade ou discordância entre dados
- Seu objetivo é encontrar, automaticamente, padrões, anomalias e regras com o propósito de transformar dados, aparentemente ocultos, em informações úteis para a tomada de decisão e/ou avaliação de resultados

Uma empresa utilizando data mining é capaz de:

Criar parâmetros para entender o comportamento do consumidor

Identificar afinidades entre as escolhas de produtos e serviços

Prever hábitos de compras

Analisar comportamentos habituais para detectar fraudes

Data mining X Data warehouse:

- Data mining ⇒ extração inteligente de dados;
- Data warehouse ⇒ repositório centralizado de dados;
- Data mining não é uma evolução do Data warehouse;
- Data mining não depende do Data warehouse, mas obtém-se melhores resultados quando aplicados em conjunto;
- Cada empresa deve saber escolher qual das técnicas é importante para o seu negócio;
- Data Warehouse aliado a ferramentas estatísticas desempenham papel semelhante ao data mining, mas não descobrem novos padrões de comportamento.

Evolução

Evolução	Perguntas	Tecnologia disponível	Características
Coleção de dados 1960	"Qual foi meu rendimento total nos últimos cinco anos ?"	Computadores, Fitas, discos	Retrospectiva, Dados estáticos como resposta
Acessos aos dados 1980	"Qual foi meu rendimento no Brasil no último janeiro?"	RDBMS, SQL, ODBC	Retrospectiva, dados dinâmicos a nível de registros como resposta
Data warehousing & suporte a decisão 1990	"Qual foi meu rendimento no Brasil no último janeiro? Do sul até o nordeste"	Processamento analítico on-line, banco de dados multidimencionais, data warehousing	Retrospectiva, dados dinâmicos em múltiplos níveis como resposta
Data Mining Atualmente	"Porque alguns produtos são mais vendidos na região sul ?"	Algoritmos avançados, computadores multiprocessados, B.D. grandes e poderosos	Prospectivo, Informações (perspectivas) como resposta.

Fases / Etapas.

Seleção.

Pré-processamento.

Transformação.

Data mining.

Interpretação e Avaliação.

Seleção

Selecionar ou segmentar dados de acordo com critérios definidos

Pré-processamento

Estágio de limpeza dos dados, onde informações julgadas desnecessárias são removidas

Reconfiguração dos dados para assegurar formatos consistentes (identificação)

Transformação

Transforma-se os dados em formatos utilizáveis. Esta depende da técnica data mining usada

Disponibilizar os dados de maneira usável e navegável

Data mining

É a verdadeira extração dos padrões de comportamento dos dados

Utilizando a definição de fatos, medidas de padrões, estados e o relacionamento entre eles

Interpretação e Avaliação

Identificado os padrões pelo sistema, estes são interpretados em conhecimentos, os quais darão suporte a tomada de decisões humanas

Uma arquitetura data mining

Aprendizagem para data mining

Aprendizagem computacional

Automação do processo de aprendizagem, através da construção de regras baseadas em observações dos estados e transações do ambiente.

Examina os exemplos e seus resultados e aprende como reproduzi-los e como fazer generalizações sobre novos casos

Aprendizagem para data mining

Aprendizagem indutiva:

Faz análise nos dados para encontrar padrões Agrupa objetos similares em classes Formula regras

Aprendizagem supervisionada

Aprende baseando-se em exemplos ("professor" ajuda a construir um modelo definido de classes e fornecendo exemplos de cada classe ⇒ formular a descrição e a forma da classe)

Aprendizagem não supervisionada

Aprende baseando-se em observações e descobertas (não se define classes, deve-se observar os exemplos e reconhecer os padrões por si só ⇒ uma descrição de classes para cada ambiente).

Funções do data mining

Modelo de verificação

Aprende baseando-se em exemplos pré-classificados (+/-)

Objetivo: formular descrições consistentes e gerais de classes em função de seus atributos.

Modelo de descoberta

Aprende baseando-se em observações e descobertas

Descoberta automática de informações ocultas

Procura ocorrências de padrões, tendências e generalizações sobre os dados sem a intervenção do usuário

Agrupar elementos similares

Funções do data mining

Modelo de classificação:

Atributos mais significativos definidos um classe

O usuário define as atributos para cada classe

Aplica regras para criar modelos de ações futuras

Associação:

Procura registos que tenham similaridades associativas

Podem ser expressados por regras

Funções do data mining

Padrões temporais/seqüenciais:

- Analisa registros num período de tempo, procurando encontrar padrões (eventos/compras) de comportamento.
- Identificar o perfil do cliente
- Identificar padrões que precedem outros padrões

Segmentação/agrupamento:

- Segmenta a base de dados em grupos por suas similaridade e diferenças
- O sistema tem que descobrir por si próprio as similaridade e diferenças

Indução

- Regras indutivas (rule induction)
 - Regra indutiva é o processo de olhar uma série de dados e, a partir dela, gerar padrões.
 - Pode-se trabalhar com dados numéricos ou não
 - Pelo fato de explorar uma série de dados, o sistema indutivo cria hipóteses que conduzem a padrões
 - Regras cobertas ⇒ comportamentos estáveis
 - Regras inexatas ⇒ margem de precisão "fixada" (%)

Indução:

Árvores de decisão:

- Representações simples do conhecimento
- Utilização de regras condicionais
- A partir de um conjunto de valores decide SIM ou NÃO
- Mais rápida e mais compreensível que redes neurais

<u>Árvores de decisão:</u>

FIGURA 2. Árvore de decisão utilizada para análise de decisões em saúdeª

^a O quadrado na figura indica um ponto de decisão; os círculos indicam os pontos de chance; e os triângulos indicam os desfechos quantitativos (medidos em utilidades). Os números entre parênteses indicam a probabilidade de ocorrência de cada desfecho possível.

Redes Neurais:

É uma abordagem computacional que envolve desenvolvimento de estruturas matemáticas com a habilidade de aprender

Estruturalmente, uma rede neural consiste em um número de elementos interconectados (chamados neurônios/nós), que possuem entrada, saída e processamento

São organizados em camadas que aprendem pela modificação da conexão

Redes Neurais:

Para construir um modelo neural, nós primeiramente "adestramos" a rede em um dataset de treinamento e então usamos a rede já treinada para fazer predições

Problemas:

Não retorna informação a priori

Não pode ser treinada em uma grande base de dados

Entrada não pode ser dados alfa-numéricos

Nenhuma explanação dos dados é fornecida

Redes Neurais:

Área de atuação

Áreas de aplicações potenciais:

Vendas e Marketing

Identificar padrões de comportamento de consumidores

Associar comportamentos à características demográficas de consumidores

Campanhas de marketing direto

Identificar consumidores "leais"

Área de atuação

Áreas de aplicações potenciais:

Bancos

Identificar padrões de fraudes (cartões de crédito)

Identificar características de correntistas

Mercado Financeiro

Médica

Comportamento de pacientes

Identificar terapias de sucessos para diferentes tratamentos

Fraudes em planos de saúdes

Comportamento de usuários de planos de saúde

Exemplos

Fraldas e cervejas

- O que as cervejas tem a ver com as fraldas?
- Homens casados, entre 25 e 30 anos, compravam fraldas e/ou cervejas às sextas-feiras à tarde no caminho do trabalho para casa;
- Wal-Mart otimizou às gôndolas nos pontos de vendas, colocando as fraldas ao lado das cervejas
- Resultado: o consumo cresceu 30%

Exemplos

Lojas Brasileiras

Aplicou 1 milhão de dólares em técnicas de data mining

Reduziu de 51000 produtos para 14000 produtos oferecidos em suas lojas

Exemplo de anomalias detectadas:

- Roupas de inverno e guarda chuvas encalhadas no nordeste
- Batedeiras 110v a venda em SC onde a corrente é 220v

Conclusões

Data Warehouse é um sistema de aquisição de informação que mantém um histórico para avaliação posterior, além de manter de forma unificada e padronizada os dados que são adquiridos

Data Mining é um processo que permite compreender o comportamento dos dados

Tem um suporte muito forte em I. A.

Pode ser bem aplicado em diversas áreas de negócios

Só será eficiente se o valor das informações extraídas exceder o custo do processamento dos dados brutos

Bibliografia

www.db-book.com

www.the-data-mine.com

http://www.intelliwise.com/reports/i2002.htm

www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm

http://www.thearling.com/text/dmwhite/dmwhit e.htm

Bibliografia

http://www.cs.bham.ac.uk/~anp/TheDataMine.html

http://www.satafe.edu/~kurt/index.shtml
http://pt.wikipedia.org/wiki/Data Warehouse
www.baguete.com.br/artigosDetalhes.php?id=
154

www.ica.ele.puc-rio.br/cursos/download/DM-apostila1.pdf