Chap 09 羧酸及其衍生物

羧酸

羧酸的分类/命名
 按照烃基类型
 按照羧基个数
 命名方式
 羧酸的结构/物理性质
 羧酸的化学性质
 羧酸化学反应的位点
 羧酸的酸性
 羧酸衍生物的生成
 ☆羧酸的热分解
 α – H的卤代
 羧酸的还原
 代表性化合物

羧酸衍生物

种类

命名

物理性质

化学性质

水解反应

酰氯的水解:

酯的水解

酸性水解的机理

碱性水解的机理

水解反应的速率

醇解反应

酰卤醇解

酸酐醇解

酯的醇解

氨(胺)解

各种"解"

酯的还原

酯缩合反应

酮式-烯醇式互变

乙酰乙酸乙酯

亲核取代

丙二酸酯

羧酸衍生物代表

取代羧酸 羟基酸 羰基酸 小结 tree 思考题

Chap 09 羧酸及其衍生物

羧酸

分子中含有羧基(-COOH)的化合物

- 广泛存在于生命体中,是重要的生化物质
- 是重要的化工中间体-人造纤维
- 重要的食品添加剂
- 大量存在于医药分子结构中

羧酸的分类/命名

按照烃基类型

(饱和/不饱和)脂肪所或脂环酸;环芳酸

按照羧基个数

一元酸、多元酸

命名方式

- 开链脂肪酸的母体是含羧基的最长的碳链,且羧基碳处于链端,位次省略
- 脂环羧酸中,脂环基为取代基
- 二元羧酸以两个羧基所在的最长碳链为主体,称"某二酸"

其中, 甲基丙烯酸也可命名为2-甲基-2-丙烯酸

因为羧酸存在广泛,因此许多羧酸都有俗名

系统命名法	俗名	系统命名法	俗名
甲酸	蚁酸	乙二酸	草酸
乙酸	醋酸	丙二酸	缩苹果酸
丙酸	初油酸	丁二酸	琥珀酸
丁酸	酪酸	戊二酸	胶酸
戊酸	缬草酸	己二酸	肥酸
十六酸	软脂酸	顺丁烯二酸	马来酸
十八酸	硬脂酸	反丁烯二酸	富马酸

羧酸的结构/物理性质

羧酸极性很大,分子间作用力也较醇/醛/酮等大,且易形成双分子缔合体,即二 聚体

因此,羧酸熔/沸点很高.熔点变化与分子对称性有关,沸点则随分子量升高而增大.低级羧酸与水混溶,高级羧酸则难溶(烃基包围羧基).

羧酸的化学性质

羧基中, C 为 sp^2 杂化,羟基上 O 的孤电子对与 $\mathrm{C}=\mathrm{O}$ 的 π 键可以发生 $p-\pi$ 共 轭

- 羟基电子云分散至羰基
- 羰基活性降低,羟基中H活性增大
- 羧基被亲核试剂进攻的能力降低,酸性增大

羧酸化学反应的位点

羧酸具备酸性,比碳酸强,比无机强酸弱

羧酸的酸性

₩

推电子集团连接在羧基上,减弱酸性吸电子基团连接在羧基上,增强酸性

$$F_3C$$
-COOH > Cl_3C -COOH > H_3C -COOH H-COOH > Cl_3C -COOH > Cl_3C -COOH > Cl_3C -COOH

三氟乙酸酸性强于硫酸,三氯乙酸酸性略强于硫酸

请比较下列酸的酸性(二元酸只考虑一级电离)

乙二酸>丙二酸>丁二酸>乙酸

推电子集团连接在羧基上,减弱酸性吸电子基团连接在羧基上,增强酸性

羧酸衍生物的生成

羧基上的羟基可以被其他基团取代,生成羧酸衍生物,如酰卤/酯/酸酐/酰胺等

• 二氯亚砜:强氯化剂

生成酯的反应是可逆的

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c}$$

浓硫酸作为催化剂

浓硫酸没有起吸水作用,吸水会让平衡右移,不是催化剂的性质

☆羧酸的热分解

一元羧酸在碱性环境下加热,羧基以二氧化碳的形式脱去,得到烃

长链羧酸在脱羧过程中,碳链不规则断裂

$$H_3C$$
 OH $Ca(OH)_2$ $CH_4 + CO_2$ CH_4 CO_2 CH_4 CO_2 CH_4 CO_2 CH_4 CO_2 CH_4 CO_2

%二元酸受热分解有规律性

- 乙二酸、丙二酸脱羧得到一元酸
- 丁二酸、戊二酸热分解生成环状酸酐
- 己二酸、庚二酸脱羧会生成少一个碳的环酮

COOH
$$\triangle$$
 CO₂ + HCOOH \bigcirc CO + H₂O HOOC \bigcirc COOH \triangle CO₂ + CH₃COOH

COOH \triangle COOH \triangle

鉴别二元酸

如何鉴别:

乙二酸(A);丙二酸(B);丁二酸(C)

脱去一个碳原子

$\alpha-H$ 的卤代

与酮羰基类似,羧酸的 α — H也被活化,可以被卤素取代

一卤代乙酸中的卤素被氨基取代,生成氨基酸;也可以被羟基,氰基卤代,得到羟基酸/二酸等

关于溴乙酸乙酯:

是一种强烈刺激眼睛的无色透明液体。曾被用于制造军用毒气。也是一类重要的化工前体。

羧酸的还原

 $LiAlH_4$ 的乙醚溶液可以把羧酸还原成伯醇。

近来有机化学家发现硼烷也可以将羧酸还原成伯醇,但是硼烷也可以和烯 烃反应。

代表性化合物

甲酸、乙酸、草酸、己二酸、邻苯二甲酸、DHA(二十二碳六烯酸)、EPA(二十碳五烯酸)等.

羧酸衍生物

种类

羧酸的衍生物主要可分为

酰卤 acylhalide

酸酐 anhydride

酯 ester

酰胺 amide

腈 nitrile

命名

- 酰卤:将对应的羧酸名称中的"酸"改成"酰X"(X为氯、溴)
- 酸酐:其命名方式类似醚.内酸酐的名称为"某二(某)酸酐"
- 酯:根据来源酸和醇/酚称为"某酸某酯"
- **酰胺**:如果生成的是 $-NH_2$,型的酰胺,称"某酰胺";如果N上有取代,则需要把取代基名称标出

苯甲酰氯

苯甲酸酐

苯甲酸乙酯

乙酰胺

乙酰苯胺

$$H^{N}_{\mu}$$

N,N-二甲基甲酰胺 DMF

物理性质

熔点

• 一般低级酰卤、酸酐、酯是液体,酯通常具有香味

• $-NH_2$ 型的酰胺为固体,但是N原子被甲基取代的酰胺熔点下降.

酰卤有刺激性气味;酸酐有酸味;酯是香的,酰胺是默默无闻的.

化学性质

水解反应

羧酸衍生物都会水解,生成羧酸(盐).

酰氯的水解:

甲酰氯是不稳定的分子

低级酰氯和水剧烈反应,生成羧酸、氯化氢.

苯甲联氯水解要缓慢得多,加热才进行.

$$CI$$
 H_2O OH + HCI

酯的水解

酯在酸或碱催化条件下水解.

酸性水解的机理

碱性水解的机理

对于酯的水解,位阻越大,水解难度增大;连有吸电子基团,碱性水解越容易。

水解反应的速率

酰卤>酸酐>酯>酰胺

醇解反应

醇类似水,也可以作为亲核试剂进攻羧酸衍生物,发生醇解反应.

酰卤醇解

易于进行,得到酯和卤化氢.

常用于不活泼的羟基,如酚类的酯化.

有时还会加入碱,如吡啶来除去HCI,以加快反应进程.

酸酐醇解

得到酯和羧酸

$$\frac{1}{\Delta} \frac{\text{H}_3\text{C-OH}}{\Delta} \frac{\text{COOH}}{\text{COOH}}$$

酯的醇解

要在酸催化下加热才进行,且为可逆反应,因此又称酯交换.

$$R \stackrel{O}{\longrightarrow} + R' - OH \stackrel{H^+}{\longrightarrow} R \stackrel{O}{\longrightarrow} O - R' + Me - OH$$

氨(胺)解

氨或胺的碱性强于醇,因此是比醇更好的亲核试剂,可以和酰卤、酐、酯发生 胺解.

含有N-H键的胺和酰卤剧烈反应,得到酰胺.

$$\stackrel{\circ}{\not\downarrow}_{CI} \xrightarrow{R-NH_2}
\stackrel{\circ}{\not\downarrow}_{N}.R + HCI$$

思考:

- 1.三乙胺可以发生胺解吗?
- 2.一般酰卤的胺解都会加入吡啶,为什么?

酸酐也会发生胺解,得到酰胺和羧酸铵盐.

酯会发生胺解,得到酰胺和醇.

$$N_{O}$$
-R R' -NH₂ N_{H} -R-OH

各种"解"

各种"解"的通式是:

这是个亲核取代,但有别于SN1和SN2等亲核取代.**这种亲核取代是由亲核加成和消除反应共同组成的**.

羧酸衍生物的亲核取代活性:

酰卤>酸酐>酯>酰胺

酯的还原

酯可以被LiAlH4还原成伯醇,也可以在醇溶液中被金属钠还原.

酯缩合反应

酯分子中羧基a-H具备弱酸性,在强碱作用下发生酯缩合反应(Claisen condensation) 得到 β --酮酸酯.

酮式-烯醇式互变

乙酰乙酸乙酯同时具备酮和酯的性质,如亲核加成特性、和2,4—二硝基苯成腺反应等.

另外,乙酰乙酸乙酯还具备下列特性:

- 1.可以和Na放出氢气
- 2.可以使溴水褪色
- 3.可以和三氯化铁溶液显色

原因:乙酰乙酸乙酯的酮式-烯醇式互变

室温下两者迅速相互转变,无法分开,称为**互变异构**.只要 β —羧基羧酸酯中两个羧基之间有C-H,则就有可能发生这种互变.

烯醇不稳定,为什么会发生互变?

- 分子内氢键构成六元环
- C=C和C=O双键共轭
- 电子离域

哪些因素会影响酮烯醇的比例?

连有苯环、额外的酯基、将酯基换成羧基等,都可以促进烯醇式的生成.

乙酰乙酸乙酯

亲核取代

乙酰乙酸乙酯在强碱下生成烯醇盐,可以和卤代烃或酰卤发生亲核取代.

烃基化的"三乙"在碱溶液中加热会分解,产物随碱浓度不同而不同.

因此,乙酰乙酸乙酯是一种很好用的有机合成试剂,可以用来合成各种酮或羧酸

例如:合成下列物质:

$$\xrightarrow{\text{lin}} \Rightarrow \xrightarrow{\text{lin}} \Rightarrow \xrightarrow{\text{Br}} \Rightarrow$$

$$+0 \stackrel{\downarrow}{\longrightarrow} + \rightarrow \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \rightarrow \stackrel{\downarrow}{\longrightarrow} \stackrel{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow} \stackrel{\downarrow}{\longrightarrow$$

丙二酸酯

类似于"三乙",丙二酸酯在碱性环境下也可以和卤代烃或酰卤发生亲核取代.

丙二酸酯的酰基化取代产物也可以水解脱羧,得到酮:

羧酸衍生物代表

DMF(N,N-dimethyl formamide)二甲基甲酰胺:常用的非质子极性溶剂.

NBS(N-bromosuccinimide),N-溴代琥珀酰亚胺:常用的溴代剂.

辣椒碱(capsaicin)

取代羧酸

羧酸烃基上的H被羟基、氨基等取代得到的产物. 如卤代酸、氨基酸、羟基酸和羧基酸等.

羟基酸

根据羟基位置,又可分为a—羟基酸、 β —羟基酸、 γ —羟基酸等.羟基在末端, 也称为 ω —羟基酸.

注意命名!

根据羟基类型,可分为醇酸和酚酸.

- 羟基酸的酸性会升高
- a-羟基酸易发生双分子间脱水反应,得到环状交酯
- β -羟基酸受热易生成 a, β -不饱和酸;
- γ —羟基酸、 δ —羟基酸则受热发生分子内脱水,得到五元或六元内酯
- 羟基酸可以被氧化成羧基酸.

$$H_3C$$
 OH HO CH_3 H_3C OOH CH_3 H_3C OOH CH_3 H_2C COOH CH_3 H_2C COOH CH_3 H_3C OOH CH_3 H_3C O OOH CH_3 O OOH O OO

羰基酸

羧基酸分为酮酸和醛酸两类,同样也分为a-羧基酸、 β -羧基酸等.

 $\alpha - \sqrt{\beta}$ 一酮酸由于羧基吸电子的作用,易于脱羧.a 一酮酸脱羧得到醛, β 一酮酸得到酮.

小结

羧酸的命名、结构、物理性质

羧酸的脱水、卤代、还原、酯化、酰胺;酰卤、酐、羧酸、酯、酰胺的活性 醇解、水解、氨解;酯缩合反应、乙酰乙酸乙酯、烯酮

"三乙"、丙二酸酯合成法

取代羧酸

tree

思考题

由乙醇合成 4-氯代丁酸.