

Advanced Computer Vision Week 01

Aug. 30, 2022 Seokju Lee

Course Overview

General Information

Professor:

Prof. Seokju Lee slee@kentech.ac.kr

- Classroom: KENTECH Core Bldg. (1-dong, 핵심개교동) 2nd floor, Room 201 (컴퓨터 실습실)
- **Time:** Tue./Fri., 13:30 ~ 14:45
- Office hour: upon appointment (zoom or face-to-face)
- Office location: The Class building 5th floor

Course Syllabus

Basics of computer vision, Learning-based method, Presentation

Week #01	Course Overview & Camera Theory	Week #09	Representation Learning	
Week #02	Image Processing with Python	Week #10	Generative Adversarial Network	
Week #03	Image Feature Extraction	Week #11	Optical Flow & Stereo Matching	
Week #04	Camera Geometry	Week #12	Structure-from-Motion	
Week #05	Deep Neural Networks	Week #13	Neural Radiance Field	
Week #06	Image Classification with Attention	Week #14	Paper reviews (1)	
Week #07	Object Detection	Week #15	Paper reviews (2) Individual Project Presentation	
Week #08	Semantic Segmentation	Week #16	Individual Project Presentation	

^{*}Every coursework is covered with lecture + in-class project.

Grading: Projects & Paper Reviews

Attendance	In-class projects	Paper reviews	Individual projects	Total
10 %	30 %	30 %	30 %	100 %

- At least 10 in-class projects (with mild grading). \rightarrow To improve your application ability!
 - Toy projects related to the coursework.
- For each student, 3 paper reviews (with grading, 10/10/10).
 → To build your basic research mind!
 - List of the papers will be announced.
 - Each 20 mins, English presentation
- For each student, 2 presentations for an individual project (with peer review + grading, 10/20).
 - Mid-term presentation (dataset analysis, baseline review)

→ To derive your research potential!

- Final presentation (proposed method, discussion)
- No mid-term & final exams

*Schedule may be updated as progress

Examples of In-Class Projects

Examples of In-Class Projects (#1)

Getting used to image processing using Python

→ Basic **debugging** with image **visualization**

Reading and displaying image in Matplotlib. | Image in Matplotlib

Examples of In-Class Projects (#2)

Getting used to image processing using Python

→ Implementation of **surround-view** system using basic image transformation

Sensor fusion

Examples of In-Class Projects (#3)

Understanding traditional computer vision algorithm

→ Finding feature correspondence (with Python library)

[CVPR 2017] Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence

Examples of In-Class Projects (#4)

Understanding traditional computer vision algorithm

→ 3D reconstruction (with open source package)

3D reconstruction from four images captured in different poses

The Structure from Motion Pipeline

Examples of In-Class Projects (#5)

Understanding internal mechanism of deep neural networks

→ Activation/attention while classifying images (with open source package)

Grad-CAM for "Cat"

Grad-CAM for "Dog"

Class activation map for different class

Examples of In-Class Projects (#6)

Diverse applications of deep learning: running open source packages

Semantic segmentation

Examples of In-Class Projects (#7)

Diverse applications of deep learning: running open source packages

Digital human, "ROZY"

[CVPR 2019] A Style-Based Generator Architecture for Generative Adversarial Networks

Examples of In-Class Projects (#8)

Diverse applications of deep learning: running open source packages

Examples of In-Class Projects (#9)

Diverse applications of deep learning: running open source packages

Various AR/VR applications

One Shot 3D Photography (SIGGRAPH 2020): 2D image → 3D effect

Individual Project

About Individual Project

For each student, there will be two presentations for the individual project

- 1. Mid-term presentation (task definition + dataset analysis + baseline review)
- 2. Final presentation (your proposed method + discussion)

Definition of Computer Vision

Human Visual Systems (HVS)

<u>아기성장보고서, EBS</u>

✓ Visual Capabilities:

- "What": object recognition
- "Where": localization

✓ Reasoning & Learning:

- Reasoning based on uncertain information
- Learning <u>functional</u> and contextual information

Next Contents

- More about human visual system
- "What-path" and "Where-path" in human brain
- Definition of computer vision
- Challenges in computer vision
- Breakthroughs with AI