Classification of Irregularly Sampled Clinical Time-Series Data with Convolutional Neural Networks

Group: White Box

Michael Wieck-Sosa, Diego Moreno, Yujuan Fu

Irregularly sampled health data

Challenge: data are no missing at random, how to handle irregularities in sampling

The Proposed Model

- Hypothesis: explicitly accounting for missinginess will outperform a model that ignores missingness
- Idea: use additional input to CNN that encodes missingness

 Approach: compare a baseline CNN to one that explicitly accounts for missingness

Irregularities in the Data

Blood Pressure

Relative Intensity of Measurements

^{*}just divide count in time interval by the average number of measurements

Carry-forward Imputation

Blood Pressure

Unreliability Metric

Blood Pressure

^{*}distance from the last measurement

Unreliability Metric

Time interval	1	2	3	4	5	6	7	8
Distance	35	95	8	12	72	132	36	43
Missing indicator	0	1	0	0	1	1	0	0

Convolutional Layer

Figure 6.26 How 1D convolution works: each output timestep is obtained from a temporal patch in the input sequence.

Architecture of a Convolutional Neural Network

Convolutional Layer

	1	0.58	1				
0.	.11	0.78	1	Convolutional		Pooling	
	1	1	0.21	Layer	Feature Map	Pooling Layer	••••

Model Evaluation

Model	AUROC Confidence Interval	Loss Confidence Interval	
Baseline CNN	[0.823, 0.847]	[0.312, 0.327]	
Proposed CNN	[0.835, 0.858]	[0.293, 0.367]	

Conclusion

• The proposed model modestly improves prediction performance

 Clinical Relevance: Approach can be applied to irregularly sampled clinical time-series data

 Technical Relevance: Approach can be generalized to irregularly sampled time-series data in different domains, provided that the irregularities in the sampling rate are non-random and non-uniform across features Q&A

Thank You.