Differentiation

Theorem 1 (Quotient rule). If $f, g: U \to \mathbb{R}$ are differentiable and $g(x_0) \neq 0$, then

$$(f/g)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Theorem 2 (Cauchy's mean value theorem). Let $f, g \in C([a,b])$ be differentiable in (a,b). If $g'(x) \neq 0$ for any $x \in (a,b)$, then there exists $x_0 \in (a,b)$ such that

$$\frac{f'(x_0)}{g'(x_0)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Theorem 3. Let $R \in (0, \infty)$ and $f \in C^{\infty}(x_0 - R, x_0 + R)$. If there exists M > 0 such that for all $x \in (x_0 - R, x_0 + R)$, $|f^{(n)}(x)| \leq M$ for all $n \in \mathbb{N}$, then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

for all $x \in (x_0 - R, x_0 + R)$.

Theorem 4 (Lagrange remainder). Let $f \in C^n([a, b])$ and assume that f is (n + 1)-times differentiable in (a, b). Then

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - a)^{n+1}$$

for some $\xi \in [a, x]$.

Integration

Definition 1 (Riemann integrability). A function $f:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b] if there exists $A\in\mathbb{R}$ such that for all $\epsilon>0$, there exists $\delta>0$ such that $|S-A|<\epsilon$ whenever S is any Riemann sum on a partition of width $<\delta$. We call A the Riemann integral of f on [a,b].

Theorem 5 (Cauchy criterion for integrability). A function $f:[a,b] \to \mathbb{R}$ is integrable if and only if for any $\epsilon > 0$, there exists $\delta > 0$ such that $|S_1 - S_2| < \epsilon$ whenever S_1 and S_2 are Riemann sums for partitions of width $< \delta$.

Definition 2 (Step function). We say $f:[a,b] \to \mathbb{R}$ is a *step* function if there exists a partition $a = x_0 < x_1 < \cdots < x_n = b$ such that f is constant on each interval (x_{i-1}, x_i) .

Theorem 6. A function $f:[a,b] \to \mathbb{R}$ is integrable if and only if for any $\epsilon > 0$, there exist step functions f_1, f_2 such that $f_1(x) \le f(x) \le f_2(x)$ for all $x \in [a,b]$ and

$$\int_{a}^{b} (f_2 - f_1) \, dx < \epsilon.$$

Definition 3 (Oscillation amplitude). Let $f: [a,b] \to \mathbb{R}$ be bounded and $a = x_0 < x_1 < \cdots < x_n = b$ be a partition. Then

$$\omega_i(f) = \sup\{|f(x) - f(y)| : x, y \in [x_{i-1}, x_i)\}$$

is the oscillation amplitude of f on $[x_{i-1}, x_i)$.

MATH 4318 Final Formula Sheet

Theorem 7. A function $f:[a,b] \to \mathbb{R}$ is integrable if and only if for any $\epsilon > 0$, there exists a partition such that

$$\sum_{n=1}^{n} \omega_i(f)(x_i - x_{i-1}) < \epsilon.$$

Theorem 8 (Du Bois-Reymond). Let f be bounded on [a,b]. Then $f \in \mathcal{R}([a,b])$ if and only if for any $\epsilon, a > 0$, there exists a partition such that the total length of subintervals with $\omega_i(f) \geq \epsilon$ is < a.

Exchange of Limit Operations

Theorem 9. Let $\{f_n\}$ be a sequence of functions on an open interval $U \subseteq \mathbb{R}$ such that each f_n has a continuous derivative. Suppose $\{f'_n\}$ converges uniformly on U and for some $a \in U$, $\{f'_n(a)\}$ converges. Then $\lim_{n\to\infty} f_n = f$ exists and f is differentiable. Furthermore, we have $f' = \lim_{n\to\infty} f'_n$.

Theorem 10. Let $f_n:[a,b]\to\mathbb{R}$ be continuously differentiable. Suppose that $\sum_{n=1}^{\infty} f_n(x)$ converges pointwise on [a,b] and $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly on [a,b]. Then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [a,b] and

$$\frac{d}{dx}\sum_{n=1}^{\infty}f_n(x) = \sum_{n=1}^{\infty}f'_n(x).$$

Infinite Series

Theorem 11. If $a_n \geq 0$, then $\sum_{n=1}^{\infty} a_n$ either converges or diverges to ∞ .

Theorem 12 (Alternating series test). Let $\{a_n\}$ be a decreasing sequence with $a_n \to 0$ as $n \to \infty$. Then the series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges (to S, say), and the partial sums S_n have error $|S_n - S| \le a_{n+1}$.

Theorem 13. Let $f_n \in C([a,b])$. If $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on (a,b), then it converges uniformly on [a,b].

Power Series

Theorem 14. We have the following:

- 1. If $\sum_{n=0}^{\infty} a_n x^n$ converges at $x = x_1 \neq 0$, then it converges absolutely for all x with $|x| < |x_1|$.
- 2. If $\sum_{n=0}^{\infty} a_n x^n$ diverges at $x = x_2 \neq 0$, then it diverges for all x with $|x| > |x_2|$.

Theorem 15 (Hadamard's formula). For a power series $\sum_{n=0}^{\infty} a_n x^n$, let $L = \limsup_{n \to \infty} |a_n|^{1/n}$. Then its radius of convergence is R = 1/L.

Theorem 16. For a series $\sum_{n=0}^{\infty} a_n x^n$ with $a_n \neq 0$, if $\lim_{n\to\infty} |a_{n+1}/a_n| = L$, then its radius of convergence is R = 1/L.

Theorem 17. If $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0, then for any 0 < r < R, the power series $\sum_{n=0}^{\infty} a_n r^n$ converges uniformly on [-r,r]. Moreover, if $\sum_{n=0}^{\infty} a_n x^n$ converges at $x = R < \infty$ (or x = -R), then $\sum_{n=0}^{\infty} a_n x^n$ converges uniformly on [0,R] (or [-R,0]).

Theorem 18. If $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0, then $f(x) = \sum_{n=0}^{\infty} a_n x^n \in C^{\infty}(-R, R)$.

Theorem 19. Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0. Then for any $x \in (-R, R)$, $f \in \mathcal{R}([0, x])$ and

$$\int_0^x f(t) \, dt = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

Differentiation in \mathbb{R}^n

Theorem 20. Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ where U is open. Then f is differentiable at x = a if and only if there exist functions A_1, \ldots, A_n on U, continuous at x = a, such that

$$f(x) - f(a) = A_1(x)(x_1 - a_1) + \dots + A_n(x)(x_n - a_n)$$
 for all $x \in U$. In this case, $\partial f/\partial x_i(a) = A_i(a)$.

Theorem 21. Let U be an open set in \mathbb{R}^n and suppose that $f: U \to \mathbb{R}$ has partial derivatives f'_1, \ldots, f'_n on U which are continuous on x = a. Then f is differentiable at x = a.

Theorem 22 (Implicit function theorem). Let $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ and $U \times V \subseteq \mathbb{R}^n \times \mathbb{R}^m$ be a neighborhood of (x_0, y_0) . Suppose f and $\partial f/\partial y$ are continuous $U \times V$, and $f(x_0, y_0) = 0$ and

$$\det\left(\frac{\partial f}{\partial y}(x_0, y_0)\right) \neq 0.$$

Then there exists a neighborhood $U_0 \times V_0 \subseteq U \times V$ of (x_0, y_0) and a unique continuous function $\varphi : U_0 \to V_0$ satisfying

$$\begin{cases} f(x, \varphi(x)) = 0, \\ \varphi(x_0) = y_0. \end{cases}$$

Theorem 23. Let $f:[a,b]\times[c,d]\to\mathbb{R}$ be continuous and suppose that $\partial f/\partial y$ exists and is continuous on $[a,b]\times[c,d]$. Then

$$\frac{d}{dy} \int_{a}^{b} f(x, y) dx = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx.$$

Integration in \mathbb{R}^n

Theorem 24 (Lebesgue's criterion for Riemann integrability). Let $A \subseteq \mathbb{R}^n$ be a set with volume and let $f: A \to \mathbb{R}$ be a bounded function that is continuous except on a subset of A with zero volume. Then f is integrable on A.

Theorem 25. Suppose f(x,y) is integrable on $D = [a,b] \times [c,d]$ and for each $x \in [a,b]$, f(x,y) is integrable on [c,d]. Then

$$\int_{a}^{b} dx \left[\int_{c}^{d} f(x, y) dy \right] = \iint_{D} f(x, y) dxdy$$

Reverse Triangle Inequality

Proposition 1. For all $x, y \in \mathbb{R}$, we have $||x| - |y|| \le |x - y|$.

Frank Qiang, Georgia Institute of Technology, Spring 2024