Network Flows in Semi-Supervised Learning via Total Variation Minimization

Alexander Jung

Dept. of Computer Science, Aalto University

April 9, 2019

I like Kill Bill

- watched Kill Bill recently
- fighting scence with a cool background song
- smartphone dug out the title in seconds!
- song completely unrelated to my preferences

An Industrial-Strength Audio Search Algorithm

Avery Li-Chun Wang avery@shazamteam.com Shazam Entertainment, Ltd. USA:

2925 Ross Road

Palo Alto, CA 94303

United Kingdom: 375 Kensington High Street 4th Floor Block F London W14 8O

We have developed and commercially deployed a flexible audio search engine. The algorithm is noise and distortion resistant, computationally efficient, and massively scalable, capable of quickly identifying a short segment of music captured through a cellbane microphone in the presence of foreground voices and after dominant noise and through a company of the presence of the pres

fast Fourier transform

fast search

Outline

- Machine Learning for Big Data over Networks
- Total Variation Minimization

3 The Network Nullspace Property

4 The Final Three Slides

Big Data Fuels Machine Learning

availability of vast amounts of training data allows
to train extremely complex models such as
deep neural networks

Andrew Ng's Rocket Picture

Al Everywhere

- Shazam identifies the ear-worm tune you are listening to
- spam filters keep your inbox tidy
- Google.com became personal Jeannie

organize data and computation as networks

Big Data over Networks

datasets and models often have intrinsic network structure

cf. L. Lovász, "Large Networks and Graph Limits"

Partially Labeled Networked Data

- data points have features (posted videos, links, texts,...) and labels (preference for certain product)
- features are "cheap", labels are "costly"
- try to get along with few labels

Graph Signals in Networked Data

- ullet networked data with empirical graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{W})$
- ullet similar data points i,j connected by edge $\{i,j\}\in\mathcal{E}$
- level of similarity quantified by weight $W_{i,j} > 0$
- ullet data points $i \in \mathcal{V}$ characterized by labels x_i
- ullet predictor/classifier maps nodes to predicted label \hat{x}_i
- ullet represent predictor by graph signal $\hat{f x} = \left(\hat{x}_1, \dots, \hat{x}_N\right)^T$

Empirical Loss Minimization over Graphs

- lacktriangle acquire labels for few data points in training set ${\cal M}$
- ullet learn entire labelling ${f x}$ using network ${f W}$ and labels on ${\cal M}$
- ullet aim at small empirical (training) error $\sum_{i\in\mathcal{M}}f_i(\hat{x}_i;x_i)$
- ullet loss function $f_i(\cdot)$ for data point $i \in \mathcal{V}$
- e.g., $f_i(...) := (\hat{x}_i x_i)^2$ or $f_i(...) := 1/(1 + \exp(-x_i\hat{x}_i))$

Clustering Hypothesis

- ullet well-connected subsets (clusters) of ${\cal G}$ have similar labels x_i
- amounts to requiring small total variation (TV)

$$\|\mathbf{x}\|_{\mathrm{TV}} := \sum_{\{i,j\} \in \mathcal{E}} W_{i,j} |x_i - x_j|$$

using (weighted) incidence matrix D of empirical graph,

$$\|\boldsymbol{x}\|_{\mathrm{TV}} = \|\boldsymbol{D}\boldsymbol{x}\|_1$$

Outline

- Machine Learning for Big Data over Networks
- 2 Total Variation Minimization

3 The Network Nullspace Property

4 The Final Three Slides

The Learning Problem

- observe initial labels x_i for few data points $i \in \mathcal{M}$ ($\ll V$)
- ullet aim at learning all labels x_i , for $i \in \mathcal{V}$
- ullet empirical risk incurred by particular hypothesis $\hat{\mathbf{x}}$ is

$$\mathcal{E}(\hat{\mathbf{x}}) := \sum_{i \in \mathcal{M}} f_i(\hat{x}_i; x_i)$$

with some loss function $f_i(\cdot;\cdot) \in \mathbb{R}$ associated with node i

ullet balance empirical risk $\mathcal{E}(\hat{\mathbf{x}})$ with TV $\|\hat{\mathbf{x}}\|_{\mathrm{TV}}$

TV Minimization - The Network Lasso

network Lasso (nLasso) [Hallac, 2015] formulates TV min as

$$\min_{\hat{\mathbf{x}}} \sum_{i \in \mathcal{M}} f_i(\hat{x}_i; x_i) + \lambda \|\hat{\mathbf{x}}\|_{\text{TV}}$$

- ullet large λ enforces small total variation $\|\hat{\mathbf{x}}\|_{\mathrm{TV}}$
- ullet small λ enforces small empirical error
- we can enforce consistency with initial labels by using

$$f_i(\hat{x}, x) = \infty \text{ for } x \neq \hat{x}$$

Structure of Network Lasso

nLasso has particular structure:

$$\min_{\hat{\mathbf{x}}} \sum_{i \in \mathcal{M}} f_i(\hat{\mathbf{x}}_i; \mathbf{x}_i) + \lambda \|\hat{\mathbf{x}}\|_{\text{TV}}$$

- sum of two non-smooth convex components
- minimizing each component individually is easy

Convex Optimization and Fixed Points

- nLasso: $\min_{\hat{\mathbf{x}}} \sum_{i \in \mathcal{M}} f_i(\hat{x}_i; x_i) + \lambda \|\hat{\mathbf{x}}\|_{\text{TV}}$
- objective sum of two non-smooth convex components
- nLasso delivers $\hat{\mathbf{x}}$ if and only if $\mathbf{0} \in \partial f(\hat{\mathbf{x}})$
- rewrite $\mathbf{0} \in \partial f(\hat{\mathbf{x}})$ as $\hat{\mathbf{x}} = \mathcal{P}\hat{\mathbf{x}}$ with some operator \mathcal{P}
- ullet different options for \mathcal{P} (EXPLOIT THIS FREEDOM!)
- ullet well-known methods such as ADMM obtained for particular ${\mathcal P}$

Iterative Methods for TV Minimization

- ullet TV min characterized by $\hat{\mathbf{x}} = \mathcal{P}\hat{\mathbf{x}}$
- compute $\hat{\mathbf{x}}$ by fixed-point iteration $\hat{\mathbf{x}}^{(k+1)} = \mathcal{P}\hat{\mathbf{x}}^{(k)}$
- scalable implementation via message passing
- ullet primal-dual method is fixed-point iteration for particular ${\cal P}$ obtained from convex duality

The Dual of TV Min

- TV min. is primal problem $\min_{\tilde{\mathbf{x}}} g(\mathbf{D}\tilde{\mathbf{x}}) + h(\tilde{\mathbf{x}})$
- with $g(\mathbf{y}) := \|\mathbf{y}\|_1$, and $h(\tilde{\mathbf{x}}) := \begin{cases} \infty \text{ if } \tilde{x}_i \neq x_i \text{ for } i \in \mathcal{M} \\ 0 \text{ else.} \end{cases}$
- define dual problem $\max_{\mathbf{y} \in \mathbb{R}^{\mathcal{E}}} -h^*(-\mathbf{D}^T\mathbf{y}) g^*(\mathbf{y})$
- $h^*(\mathbf{x}), g^*(\mathbf{y})$ are convex conjugates of $h(\mathbf{x}), g(\mathbf{y})$
- $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$ primal-dual optimal if and only if

$$-(\mathbf{D}^T\hat{\mathbf{y}})\in\partial h(\hat{\mathbf{x}}),\ \mathbf{D}\hat{\mathbf{x}}\in\partial g^*(\hat{\mathbf{y}})$$

ullet entries y_{ij} of dual ${f y}$ are signal values on edges $\{i,j\}\in {\cal E}$

Convex Conjugates

Primal-Dual Method for TV Min

- construct coupled sequences $\hat{\mathbf{x}}^{(k)}$ and $\hat{\mathbf{y}}^{(k)}$ for $k=0,1,\ldots$
- ullet asymptotic optimal $\lim_{k o \infty} \hat{\mathbf{x}}^{(k)} o \hat{\mathbf{x}}, \ \lim_{k o \infty} \hat{\mathbf{y}}^{(k)} o \hat{\mathbf{y}}$
- ullet update $\hat{\mathbf{x}}^{(k)}, \hat{\mathbf{y}}^{(k)} \mapsto \hat{\mathbf{x}}^{(k+1)}, \hat{\mathbf{y}}^{(k+1)}$ uses only local computation
- ullet amounts to message passing on empirical graph ${\cal G}$
- see https://arxiv.org/abs/1901.09838 for details

Primal-Dual Message Passing

The Dual of TV Min is Maximum Flow

- ullet TV min. dual $\max_{\mathbf{y} \in \mathbb{R}^{\mathcal{E}}} -h^*(-\mathbf{D}^T\mathbf{y}) g^*(\mathbf{y})$
- equivalent to maximizing a flow on empirical graph
- flow on edge $\{i,j\} \in \mathcal{E}$ is $f_{ij} = y_{ij}W_{ij}$
- ullet dual solution $\hat{oldsymbol{y}}$ of TV min characterized by
 - $|\hat{f}_{ij}| = |\hat{y}_{ij}W_{ij}| \le W_{ij}$ (capacity constraints)
 - $\sum_{j\in\mathcal{N}(i)}\hat{f}_{ij}=0$ for $i
 otin\mathcal{M}$ (flow conservation)
 - $\sum_{i \in \mathcal{M}} x_i \sum_{j \in \mathcal{N}(i)} \hat{f}_{ij}$ is maximal

Maximum Flow via Message Passing

message passing formulation of primal-dual method for TV min provides a distributed max. flow algorithm !

Computational Complexity of TV Min

- ullet it can be shown that $\|\hat{\mathbf{x}}^{(k)}\|_{\mathrm{TV}} \|\mathbf{x}\|_{\mathrm{TV}} \propto 1/k$
- \bullet "1/k" convergence is optimal without further assumptions
- cannot be overcome by any method for chain graph

Outline

- Machine Learning for Big Data over Networks
- Total Variation Minimization

3 The Network Nullspace Property

4 The Final Three Slides

Piece-Wise Constant Signals

implement clustering hypothesis by piece-wise constant signals

$$x_i = \sum_{\mathcal{C} \in \mathcal{F}} a_{\mathcal{C}} \mathcal{I}_{\mathcal{C}}[i]$$
 , with $\mathcal{I}_{\mathcal{C}}[i] = egin{cases} 1 & ext{if } i \in \mathcal{C} \\ 0 & ext{else}. \end{cases}$

using partition $\mathcal{F} = \{\mathcal{C}_1, \dots, \mathcal{C}_{|\mathcal{F}|}\}$ with disjoint clusters \mathcal{C}_l

Good Clusters - Small Total Variation

- ullet we allow for arbitrary partition $\mathcal{F} = \{\mathcal{C}_1, \dots, \mathcal{C}_{|\mathcal{F}|}\}$
- ullet our results are most useful for "reasonable clusters" \mathcal{C}_I
- ullet cluster boundary $\partial \mathcal{F}$ with small average weight

$$\sum_{\rm boundary} W_{i,j} \ll \sum_{\rm interior} W_{i,j}$$

for such clusters, piece-wise constant signals have small TV

The Learning (Recovery) Problem

- ullet networked data $\mathcal G$ with known labels $x_i \in \mathcal M$
- labelling x is piece-wise constant (clustering assumption)

Idea of Nullspace Condition

- ullet stack initial labels into vector $\mathbf{y} \in \mathbb{R}^{\mathcal{M}}$
- ullet recover signal ${f x}$ from "measurements" ${f y} = {f M}{f x}$
- ullet selector matrix ${f M}$ with rows $\{{f e}_i\}_{i\in\mathcal{M}}$
- ullet recovery impossible for any ${\bf x}$ in nullspace ${\cal K}({\bf M})$ of ${\bf M}$
- ullet have to ensure $\mathcal{K}(\mathbf{M})\cap\{$ piecewise constant signals $\}=\emptyset$
- ullet piece-wise constant signals must not vanish on ${\mathcal M}$

The Network Nullspace Property (NNSP)

- ullet consider partition $\mathcal{F} = \{\mathcal{C}_1, \ldots\}$ of the empirical graph \mathcal{G}
- training set \mathcal{M} satisfies network nullspace property w.r.t. \mathcal{F} , denoted NNSP- $(\mathcal{M},\mathcal{F})$, if there exist flow f_{ij} with $f_{ij} = 2W_{i,i}$ for $\{i,j\} \in \partial \mathcal{F}$

When is NNSP Satisfied?

NNSP implies SLP Recovers Clustered Signals

Theorem. Consider networked data with labels x which can be well approximated as piece-wise constant over a partition \mathcal{F} . We have access to the labels only for the data points in the training set $\mathcal{M} \subseteq \mathcal{V}$. Then, if NNSP- $(\mathcal{M}, \mathcal{F})$ holds,

$$\min_{\hat{oldsymbol{x}}} \|\hat{oldsymbol{x}}\|_{\mathrm{TV}}$$
 s.t. $\hat{x}_i = x_i$ for all $i \in \mathcal{M}$

has a unique solution which coincides with true labels x.

NNSP implies SLP is Robust

Theorem. Consider networked data with labels \mathbf{x} which are piece-wise constant over a partition \mathcal{F} . We have access to the labels only for the data points in the training set $\mathcal{M} \subseteq \mathcal{V}$. Then, if NNSP- $(\mathcal{M}, \mathcal{F})$ holds, TV min delivers $\hat{\mathbf{x}}$ with

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|_{\mathrm{TV}} \leq 6 \underbrace{\min_{\boldsymbol{a} \in \mathbb{R}^{|\mathcal{F}|}} \|\boldsymbol{x} - \sum_{\mathcal{C} \in \mathcal{F}} a_{\mathcal{C}} \mathcal{I}_{\mathcal{C}}[\cdot]\|_{\mathrm{TV}}}_{\text{model misfit}}.$$

Outline

- Machine Learning for Big Data over Networks
- Total Variation Minimization

- 3 The Network Nullspace Property
- 4 The Final Three Slides

So what...?

- implemented TV min. using primal-dual method
- dual of TV min. is a max. flow problem
- message passing for TV min provides max flow method
- TV min is accurate when suff. large flows exist
- can be extended to node-wise models (instead of labels)

Reading Material

- AJ et.al., "Semi-supervised Learning in Network-Structured Data via Total Variation Minimization", https://arxiv.org/abs/1901.09838
- AJ, N. Tran, "Localized Linear Regression in Networked Data", https://arxiv.org/abs/1903.11178
- D. Bertsekas, "Network Optimization: Continuous and Discrete Models", Athena Scientific, 1998

Thats it Folks!