Задача шифрования. В общем задача выглядит так: есть Алиса и Боб, которые хотят передавать друг другу информацию таким образом, чтобы их сообщение можно было перехватить, но перехвативший человек не понял бы, что в нем написано. Дальше будем считать, что канал между Алисой и Бобом прослушивается Евой. В принципе, Евой может быть кто угодно, потому что каналы публичные. Причем, даже если Ева прочитает и расшифрует сообщение, Алиса с Бобом даже не узнают про это.

Схема RSA. Пусть у Алисы и Боба было по два объекта: публичный и приватный ключ. Ключ — это просто какой-то шифровальный объект. При этом ключи взаимообратимы, но для каждого из них по отдельности найти обратную функцию сложно, то есть M = private(public(M)) = public(private(M)). Если все участники знают публичные ключи, то обмен можно провести таким образом: Алиса произносит $public_B(M)$, тогда Боб делает $private_B(public_B(M)) = M$.

Факты для RSA:

- $\forall a, n : a^{\phi(n)} \equiv 1 \pmod{n}$
- $(a,b) = 1 \rightarrow \phi(ab) = \phi(a)\phi(b)$
- Можно проверить число на простоту за $O(\log^k n)$
- Нельзя посчитать факторизацию n за $O(\log^k n)$. Этот факт не доказан человечеством.

Зафиксируем два простых ключа p_1, p_2 . Их произведение равно n. Мы знаем, чему равно $\phi(n)$ — это $(p_1-1)(p_2-1)$. При этому быстро посчитать $\phi(n)$ нельзя по факту 4.

Нашим публичным ключом будет пара (e,n), приватным ключом будет пара (d,n). e и d — это такие числа, что $ed \equiv 1 \pmod{\phi(n)}$. Тогда $M^{ed} = M$. Тогда Алиса сначала фиксирует какое-то e, взаимно простое с $\phi(n)$. Тогда Алиса может решить диофантово уравнение $ed + \phi(n)m = 1$, получая d.

Теперь пусть все знают e. Тогда Алиса посылает M^e , Боб делает $M^e d = M^{\phi(n)k+1} = M$.

Man in the middle и authority. На самом деле, описанный выше не работает, если у нам есть Мэллори, которая читает и модифицирует канал связи между Алисой и Бобом. Мэллори может выдать им свои публичные ключи в качестве публичного ключа друг друга. Тогда Мэллори будет явно читать весь канал между Алисой и Бобом, причем поскольку она знает публичные ключи Алисы и Боба, она может отправлять им что угодно.

Таким образом, мы хотим решить следующую задачу: получить публичный ключ, которому можно доверять.

Мы предположим, что у нас есть добрый Трент, которому все стороны доверяют, и публичный ключ которого известен всем. Тогда все могут сообщить Тренту свои публичные ключи и спросить у Трента чужие публичные ключи.

Цифровая подпись. Для того, чтобы все точно верили, что сообщение отправляет именно Трент, он может отправить пару (M, private(M)). Это называется цифровой подписью Трента. Теперь наши участники запрашивают сертификат у Трента, а Трент в качестве сертификата выдает Алисе свою цифровую подпись для этого ключа. То есть теперь Алиса может отправлять свой публичный ключ, представляясь Алисой, которую одобрил Трент.