EXPLICIT UPPER BOUNDS FOR THE REMAINDER TERM IN THE DIVISOR PROBLEM

D. BERKANE, O. BORDELLÈS, AND O. RAMARÉ

To the memory of John Selfridge

ABSTRACT. We first report on computations made using the GP/PARI package that show that the error term $\Delta(x)$ in the divisor problem is $= \mathcal{M}(x,4) + O^*(0.35\,x^{1/4}\log x)$ when x ranges [1 081 080, 10^{10}], where $\mathcal{M}(x,4)$ is a smooth approximation. The remaining part (and in fact most) of the paper is devoted to showing that $|\Delta(x)| \leq 0.397\,x^{1/2}$ when $x \geq 5\,560$ and that $|\Delta(x)| \leq 0.764\,x^{1/3}\log x$ when $x \geq 9\,995$. Several other bounds are also proposed. We use this results to get an improved upper bound for the class number of a quadractic imaginary field and to get a better remainder term for averages of multiplicative functions that are close to the divisor function. We finally formulate a positivity conjecture concerning $\Delta(x)$.

1. Introduction

The object of this paper is to study for an explicit viewpoint the remainder term of the summatory function of the τ -function, where $\tau(n)$ denotes the number of (positive) divisors of n, i.e., to study

(1.1)
$$\Delta(x) = \sum_{n \le x} \tau(n) - x(\log x + 2\gamma - 1).$$

This function has been extensively studied, and the reader will find a good survey in [7]. It is known in particular that

$$\Delta(x) \ll_{\varepsilon} x^{131/416+\varepsilon}$$

for any $\varepsilon > 0$. We want to get fully explicit bounds of this shape here, and the best exponent we reach is 1/3 (see Theorem 1.2 below). Note that $131/416 = 0.314 \cdots$ is not so much smaller than $1/3 = 0.333 \cdots$. Note further that Theorem 1.1 below gives an upper bound with a worse exponent, but which is better on a large range. The divisor function has been studied from this viewpoint in several papers, and we quote here [12], [19], [4] and [15].

Here are our main results:

Theorem 1.1. When
$$x \ge 1$$
, we have $|\Delta(x)| \le 0.961 \, x^{1/2}$. When $x \ge 1\,981$, we have $|\Delta(x)| \le 0.482 \, x^{1/2}$. When $x \ge 5\,560$, we have $|\Delta(x)| \le 0.397 \, x^{1/2}$.

Received by the editor January 3, 2011 and, in revised form, February 16, 2011. 2010 Mathematics Subject Classification. Primary 11N56; Secondary 11N37.

 $\odot 2011$ American Mathematical Society Reverts to public domain 28 years from publication

1025

These bounds are sharp, since $|\Delta(x)| > 0.5 x^{1/2}$ when x = 1980 while $|\Delta(x)| > 0.4 x^{1/2}$ when x = 5559.

Theorem 1.2. When $x \ge 9995$, we have $|\Delta(x)| \le 0.764 x^{1/3} \log x$.

This bound is also sharp since $|\Delta(x)| > 0.80 x^{1/3} \log x$ when $x = 9\,994$. This bound is of course asymptotically better than the one given by Theorem 1.1, but this latter one still prevails when $x < 59\,576\,122\,384$.

There are two usual paths to study $\Delta(x)$ that can be broadly described by either using a Voronoï-like formula as in [13], or using the fractional part-function, expanding it in a Fourier series and using exponential sums, and using, for instance, [1, Lemma 8.4] (see also [2] for similar material, as well as [6, section 8]). We use the first technique, but rely on an earlier paper of Voronoï where a very explicit result is proved.

We rely also on some rather extensive computations detailed in section 6 made with the help of the PARI/GP program (see [20]) and its auxiliary GP2C. One of the main problems with such extensive computations is always how to store them, since tables are difficult to use. We again use the Voronoï formula to get such a model and prove the following.

Theorem 1.3. For all $x \in [3, 10^{10}]$ we have

$$\Delta(x) = \mathcal{M}(x,4) + O^*(0.9 x^{1/4} \log x)$$

and for all $x \in [1.081.080, 10^{10}]$, we have

$$\Delta(x) = \mathcal{M}(x,4) + O^*(0.35 x^{1/4} \log x).$$

Here

$$\mathcal{M}(x,4) = \frac{x^{1/4}}{\pi\sqrt{2}} \left(\cos\left(4\pi\sqrt{x} - \frac{\pi}{4}\right) + 2^{1/4}\cos\left(4\pi\sqrt{2x} - \frac{\pi}{4}\right) + \frac{2}{3^{3/4}}\cos\left(4\pi\sqrt{3x} - \frac{\pi}{4}\right) + \frac{3}{4^{3/4}}\cos\left(4\pi\sqrt{4x} - \frac{\pi}{4}\right)\right).$$

Section 6 contains more bounds of this shape. Note that the constant 0.35 is very good and fairly stable, since, for instance,

$$|\Delta(x_0) - \mathcal{M}(x_0, 4)| \ge 0.289 x_0^{1/4} \log x_0$$
 when $x_0 = 9137256975$.

A constant of 0.30 would require us to start at least at $2.7 \cdot 10^9$, which renders the preliminary computations difficult. It would be valuable to extend Theorem 1.3 to a larger range.

We end this introduction by mentioning a curious conjecture upon which we stumbled:

Conjecture 1.4. For all $T \ge 1$, we have

$$\int_{T}^{\infty} \frac{\Delta(u)du}{u^{7/4}} \ge 0.$$

See section 8 for more background on this conjecture.

Notation. We use the Landau-like notation $f = O^*(g)$ to say that $|f| \leq g$. We use $\psi(x) = x - [x] - 1/2$, where [x] is the integer part of x. We shall also need the multiplicative function

(1.2)
$$\tilde{\tau}(n,D) = \sum_{\substack{uv = n, \\ (u,v,D) = 1}} 1$$

for some parameter D, where (u, v, D) denotes the gcd of u, v and D.

2. Two applications

An application to number fields. Let K/\mathbb{Q} be a number field of degree n, class number h_K , signature (r_1, r_2) and let d_K be the absolute value of its discriminant. We set b_K to be a real number such that each ideal class contains a nonzero ideal A satisfying $\mathcal{N}(A) \leq b_K \sqrt{d_K}$, where \mathcal{N} denotes the ideal-norm operator in K. It is well known that one can take for b_K the Minkoswki bound $(4/\pi)^{r_2} n! n^{-n}$. If K is an imaginary quadratic field, then the better bound $b_K = 3^{-1/2}$, due to Gauss, can be used instead of the Minkowski constant.

It has been shown by the second author of [1] that the inequality

(2.1)
$$h_K \leqslant 2^{2-n} b_K d_K^{1/2} \left(\log \left(b_K^2 d_K \right) \right)^{n-1}$$

holds for all number fields K subject to the condition $d_K \ge 36b_K^{-2}$. In the case of real quadratic fields, using Dirichlet's analytic class number formula and precise estimates for $L(1,\chi)$ (where χ is the primitive real Dirichlet character attached to K) and the fundamental unit of K, Maohua Le [11] proved that

$$h_K \leqslant \sqrt{d_K}/2.$$

A simpler proof of this bound has been provided by the third author in [16]. Using Theorem 1.3 we deduce the following slight improvement of (2.1) in the case of imaginary quadratic fields.

Corollary 2.1. Let $K = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field with d > 0 squarefree and d_K is the absolute value of its discriminant. If $d_K \ge 108$, then we have

$$h_K \leqslant \sqrt{\frac{d_K}{12}} \log d_K.$$

Examples. In what follows, we set $\mathcal{B}_K = \left[\sqrt{d_K/12}\log d_K\right]$, where K is an imaginary quadratic subfield of the cyclotomic field $\mathbb{Q}(\zeta_d)$ where ζ_d is a primitive d-th root of unity. The computations have been made using PARI system.

d	h_K	\mathcal{B}_K
311	19	29
1559	51	83
149159	597	1328
300119	781	1994

An application to averages of multiplicative functions. [15, Lemma 3.2] proposes an automatic way of deriving an explicit bound for averages of multiplicative non-negative functions that are close enough to a given model. The two models proposed are the constant function 1 and the divisor function. In this latter case, using this lemma requires an explicit bound for $\sum_{n\leq t} \tau(n)/n$ and the above paper relies on [19, Lemma 1] (this is also the second part of [15, Lemma 3.3]). We improve this lemma to the following.

Corollary 2.2. We have, for all t > 0,

$$\sum_{n \le t} \frac{\tau(n)}{n} = \frac{1}{2} \log^2 t + 2\gamma \log t + \gamma^2 - \gamma_1 + O^*(1.16/t^{1/3})$$

where γ_1 is the second Laurent-Stieljes constant, for instance, [10] and [3]. In particular, we have

$$(2.2) \quad \gamma_1 \quad = \quad -0.0728158454836767248605863758749013191377 \ + \ O^*(10^{-40}).$$

3. Borrowing from Dirichlet

Let us first recall a result of Dirichlet.

Lemma 3.1 (Dirichlet). When $x \ge 1$ is a real number, we have

$$\left| \Delta(x) + 2 \sum_{n < \sqrt{x}} \psi(x/n) \right| \le \frac{1}{2}.$$

The proof we present is somewhat more complete than that of [1, Lemma 8.1], since we express $\mathcal{R}(x)$ below fully in terms of ψ_2 .

Proof. Set $\psi_2(t) = \frac{1}{2}\psi(t)^2$. We first notice that the function $x \mapsto \frac{1}{8} + \int_1^x \psi(t)dt$ is periodic of period 1, and that, when $0 \le y < 1$,

$$\int_{1}^{1+y} \psi(t)dt + \frac{1}{8} = \int_{0}^{y} (t - \frac{1}{2})dt + \frac{1}{8} = \psi_{2}(y) = \psi_{2}(1+y)$$

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

and thus ψ_2 is an antiderivative of ψ . By Dirichlet's Hyperbola Principle and Euler-MacLaurin's Summation Formula we get

$$\begin{split} \sum_{n \leqslant x} \tau(n) &= 2 \sum_{n \leqslant x^{1/2}} \left[x/n \right] - \left[\sqrt{x} \right]^2 \\ &= 2x \sum_{n \leqslant x^{1/2}} \frac{1}{n} - 2 \sum_{n \leqslant x^{1/2}} \psi\left(\frac{x}{n}\right) + \frac{1}{2} - x + 2\sqrt{x}\psi\left(\sqrt{x}\right) - \psi\left(\sqrt{x}\right)^2 - \frac{1}{4} \\ &= 2x \left(\frac{\log x}{2} + \gamma - \frac{\psi\left(\sqrt{x}\right)}{\sqrt{x}} - \frac{\psi_2\left(\sqrt{x}\right)}{x} + 2 \int_{\sqrt{x}}^{\infty} \frac{\psi_2(t)}{t^3} \mathrm{d}t \right) \\ &- 2 \sum_{n \leqslant x^{1/2}} \psi\left(\frac{x}{n}\right) + \frac{1}{4} - x + 2\sqrt{x}\psi\left(\sqrt{x}\right) - \psi\left(\sqrt{x}\right)^2 \\ &= x \left(\log x + 2\gamma - 1 \right) - 2 \sum_{n \leqslant x^{1/2}} \psi\left(\frac{x}{n}\right) + \mathcal{R}(x), \end{split}$$

where

$$\mathcal{R}(x) = \frac{1}{4} - 3\psi_2\left(\sqrt{x}\right) + 4x \int_{\sqrt{x}}^{\infty} \frac{\psi_2(t)}{t^3} dt.$$

The inequality $0 \le \psi_2(t) \le 1/8$ implies that

$$\left|\frac{1}{4} - 3\psi_2\left(\sqrt{x}\right)\right| \leqslant \frac{1}{4}$$

and

$$4x \left| \int_{\sqrt{x}}^{\infty} \frac{\psi_2(t)}{t^3} dt \right| \leqslant \frac{x}{2} \int_{\sqrt{x}}^{\infty} \frac{dt}{t^3} = \frac{1}{4},$$

which concludes the proof.

Corollary 3.2. When $x \ge 1$ is a real number, we have $|\Delta(x)| \le \sqrt{x} + \frac{1}{2}$.

4. Auxiliary results

Let us start with a generic formula, valid for any sequence (φ_n) . We define an abstract remainder term by

$$\Delta_{\varphi}(t) = \sum_{n \le t} \varphi_n - (at \log t + bt)$$

for some real numbers a and b. The following formula holds for any complex number $s \neq 1$:

(4.1)
$$\sum_{n \le T} \frac{\varphi_n}{n^s} = \frac{aT^{1-s}\log T}{1-s} + \frac{b(1-s)-as}{(1-s)^2} T^{1-s} + \frac{s(a-b(1-s))}{(1-s)^2} + T^{-s} \Delta_{\varphi}(T) + s \int_1^T \Delta_{\varphi}(u) du/u^{s+1}.$$

This is most readily obtained by summation by parts.

From $\tilde{\tau}(\cdot, D)$ to $\tau(\cdot)$. The gcd condition in $\tilde{\tau}(\cdot, D)$ is easily handled by using the Möbius function. Indeed, on using the following easily proved formula

$$\mathbb{1}_{(u,v,D)=1} = \sum_{\substack{\delta \mid u,\delta \mid v,\\ \delta \mid D}} \mu(\delta),$$

we readily get, for T > 0,

$$\sum_{n \leq T} \frac{\tilde{\tau}(n,D)}{n^s} = \sum_{\delta \mid D} \mu(\delta) \sum_{\substack{\delta \mid u, \\ \delta \mid v, \\ uv \leq T}} \frac{1}{(uv)^s} = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2s}} \sum_{n \leq T/\delta^2} \frac{\tau(n)}{n^s}.$$

On selecting s = 0, this leads to the asymptotic formula

(4.3)
$$\sum_{n \le T} \tilde{\tau}(n, D) = A(D)T \log T + B(D)T + \Delta(T, D)$$

where A(D) and B(D) are defined by

(4.4)
$$A(D) = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^2}, \quad B(D) = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^2} (2\gamma - 1 - 2\log \delta),$$

while $\Delta(\cdot, D)$ is expressed in terms of $\Delta(\cdot)$ by

(4.5)
$$\Delta(T, D) = \sum_{\delta \mid D} \mu(\delta) \Delta(T/\delta^2).$$

Some formulae with $\tilde{\tau}(n, D)$. We select a = A(D), b = B(D), s = 1/2 and s = 3/4 in formula (4.1) and quote explicitly:

$$(4.6) \quad \sum_{n \le T} \frac{\tilde{\tau}(n, D)}{n^{1/2}} = 2A(D)T^{1/2}\log T + 2(B(D) - A(D))T^{1/2} + 2A(D) - B(D) + \frac{\Delta(T, D)}{T^{1/2}} + \frac{1}{2} \int_{1}^{T} \frac{\Delta(u, D)du}{u^{3/2}},$$

which is the case s = 1/2 from above. The case s = 3/4 reads

$$(4.7) \quad \sum_{n \le T} \frac{\tilde{\tau}(n,D)}{n^{3/4}} = 4A(D)T^{1/4}\log T + 4(B(D) - 3A(D))T^{1/4}$$

$$+ 12A(D) - 3B(D) + \frac{\Delta(T,D)}{T^{3/4}} + \frac{3}{4} \int_{1}^{T} \frac{\Delta(u,D)du}{u^{7/4}}.$$

A generic integral. We note that, when $s \neq 1, 2$,

(4.8)
$$\int \frac{t(\log t + c) + d}{t^s} dt = \frac{\log t + (s-2)^{-1} + c}{(2-s)t^{s-2}} + \frac{d}{(1-s)t^{s-1}}.$$

Proof. Take the derivative of the right-hand side and check that it is the integrand.

5. Borrowing from Voronoï

The purely elementary method of Voronoï, which improves on the Dirichlet hyperbola formula by using triangles instead of rectangles beneath the hyperbola mn = x, yields the following result [21, pages 280, 281].

Lemma 5.1. When $x \ge 1$, $T \ge 1$ and $D \ge 1$ are real numbers, we have

$$\begin{split} |\Delta(x)| & \leq \frac{19}{12} \sum_{n \leq T} \tilde{\tau}(n,D) + \Big(\frac{\sqrt{x}}{4T} + \frac{\sqrt{T}}{6}\Big) \sum_{n \leq T} \frac{\tilde{\tau}(n,D)}{\sqrt{n}} \\ & + \frac{3x^{1/4}}{4} \sum_{n \leq T} \frac{\tilde{\tau}(n,D)}{n^{3/4}} + \frac{T}{6} + \sqrt{\frac{x}{T}} + \frac{7}{4} \end{split}$$

where $\tilde{\tau}$ is defined in (1.2).

Comparing with [22, page 209, Théorème] and [23, page 429, paragraph 49, théorème I], or with [8] or [13], we see that, in case D=1, one can asymptotically dispense with the first two sums at the cost of a $O_{\varepsilon}(x^{\varepsilon})$ for any $\varepsilon>0$, and that the constant 3/4 in front of the third sum can be reduced to $1/(\pi\sqrt{2})$. The advantage of the above lemma relies on its range of validity. The parameter D (or the fact that we can replace the τ -function by the number of coprime divisors) is a distinct feature of the above bound. We shall select D=6, reducing the total bound by a factor about $(1-\frac{1}{4})(1-\frac{1}{9})=2/3$.

Proof. The paper [21] contains the required estimates, but the following notes may be helpful to the reader: equation (17) on page 280 contains the function F which is generally defined in equation (1) at the very beginning of the paper; it is also given at the beginning of section 26, page 275. To read equation (17) the reader will need equation (10), page 279, which contains the definition of R. This definition comes in fact from (18), page 271.

Voronoï continues by bounding $\tilde{\tau}$ by τ (see equation (19) and (20) of [21, pages 280, 281]). On using (4.6) and (4.7) and shortening A(D) and B(D) to A and B, respectively, we reach

$$\begin{split} (5.1) \quad |\Delta(x)| & \leq \frac{T}{12} (23A \log T + 23B - 19A + 2) + 3(xT)^{1/4} (A \log T + B - 3A) \\ & + \sqrt{\frac{x}{T}} \Big(A \frac{\log T}{2} + \frac{B - A}{2} + 1 \Big) + \frac{36A - 9B}{4} x^{1/4} \\ & + \frac{2A - B}{4} \frac{\sqrt{x}}{T} + \frac{2A - B}{6} \sqrt{T} + G(D, x, T), \end{split}$$

with

(5.2)
$$G(D, x, T) = \frac{7}{4} + \left(7 + (xT^{-3})^{1/4} + (xT^{-3})^{1/2}\right) \frac{\Delta(D, T)}{4} + \left(\frac{\sqrt{x}}{8T} + \frac{\sqrt{T}}{12}\right) \int_{1}^{T} \frac{\Delta(D, u)du}{u^{3/2}} + \frac{9x^{1/4}}{16} \int_{1}^{T} \frac{\Delta(D, u)du}{u^{7/4}}.$$

The introduction of the parameter D in Lemma 5.1 will be numerically interesting. We will use only small D's, such as 1, 2 or 6.

6. Numerically comparing Δ with a model

We need to compute values of $\Delta(x)$ for fairly large x. The first idea is to compute it directly, take its absolute value, divide it by \sqrt{x} and look for the point when it is less than a given bound, say 0.5. The drawback of this method is that one would have to redo all the computations with the bound 0.3. To avoid that, one can store the value on short enough ranges, say every $5 \cdot 10^7$, but we would have to store these tables and they would be very bulky to use in computations. Musing on this idea, we readily discover that a better idea would be to compare $\Delta(x)$ with a model and bound the resulting error term. This is a very general idea, and one that we have already used in [17, Theorem 2]; the difficulty is always to guess a proper model. However, this issue is easily solved here, since a model is provided to us by the Voronoï formula. We define

(6.1)
$$\mathscr{M}(x,M) = \frac{x^{1/4}}{\pi\sqrt{2}} \sum_{m \le M} \frac{\tau(m)}{m^{3/4}} \cos\left(4\pi\sqrt{mx} - \frac{\pi}{4}\right).$$

We look for numerical bounds for $|\Delta(x) - \mathcal{M}(x, M)|/[x^{1/4} \log x]$ for some small M. Note that $\mathcal{M}(x, M)$ is thus of size $x^{1/4}$ in that case. We have found that, when M = 1 or M = 4, the function $x^{1/4}$ is too small to evaluate $|\Delta(x) - \mathcal{M}(x, M)|$ while $x^{1/4} \log x$ seems just too large. The bounds obtained are, however, better when subtracting $\mathcal{M}(x, 1)$, and even better when subtracting $\mathcal{M}(x, 4)$.

The computations necessitate some care. For $x \in [N, N+1)$, we consider the function

(6.2)
$$f(x) = \left[\sum_{n \le N} \tau(n) - \left(x \log x + (2\gamma - 1)x \right) - \mathcal{M}(x, M) \right] / [x^{1/4} \log x].$$

We find that, with $S = \sum_{n \le N} \tau(n)$,

$$x^{1/4} \log x f'(x) = -\frac{S}{4x} - \frac{S}{x \log x} - \frac{3 \log x - 6\gamma + 3}{4} + \frac{2\gamma - 1}{\log x} + \sum_{m \le M} \frac{\sqrt{2}\tau(m)}{m^{1/4}x^{1/4}} \sin\left(4\pi\sqrt{mx} - \frac{\pi}{4}\right) - \frac{1}{\sqrt{2}\pi \log x} \sum_{m \le M} \frac{\tau(m)}{m^{3/4}x^{3/4}} \cos\left(4\pi\sqrt{mx} - \frac{\pi}{4}\right).$$

Since $S \geq 2x - 1$, we are sure this derivative is nonpositive when

$$3\log x - 6\gamma + 5 \ge \frac{1}{x} + \frac{4}{x\log x} + \frac{8\gamma + 4}{\log x} + \sum_{m \le M} \frac{4\sqrt{2}\tau(m)}{m^{1/4}x^{1/4}} + \frac{2\sqrt{2}}{\pi\log x} \sum_{m \le M} \frac{\tau(m)}{m^{3/4}x^{3/4}}.$$

The difference between the left-hand side and the right-hand side is an increasing function, from which it follows immediately that there exists an integer $N_0(M)$ such that, when $N \geq N_0(M)$, the function $x \mapsto (\Delta(x) - \mathcal{M}(x, M))/[x^{1/4} \log x]$ is nonincreasing in each interval [N, N+1). The parameter M being fixed, $N_0(M)$ is a fixed (and small) value, and, for instance, $N_0(1) = 2$ and $N_0(4) = 5$ (we find that, in the case M = 4, f'(x) < 0 when $x \geq 11.062$, and is not an integer). Finding

the maximum of $|\Delta(x) - \mathcal{M}(x, M)|/[x^{1/4} \log x]$ below this value can be automated, but it is more expedient, as well as less error-prone, to simply plot the function in each of the remaining unit intervals.

Numerical experiments show that $\mathcal{M}(x,1)$ is already a good model! For small values, we find that

Using the model $\mathcal{M}(x,1)$					
Beginning End $Max \leq Where$ Sum the					
9	10 001	0.689848	12	35	
10 001	20001	0.442832	15120-	147800	
20 001	30001	0.440962	25200	259338	
30 001	40001	0.405939	30240-	316597	
40001	50001	0.400379	49140	538485	
50001	60001	0.406026	50400	553570	
60001	70001	0.379055	60480-	675163	
70001	80 001	0.379005	75600-	860836	
80 001	90001	0.382929	83160-	954846	
90 001	100001	0.410340	97020	1129117	

When the maximum have been attained at the end of the interval [N, N+1), the program has attached a minus sign at the back of the data "Where". We have used the function MajoreDelta between 1 and 10^{10} below.

```
{MajoreDelta(beg, end, bigM = 1, NOM = 2,
             OnFile = 0, verbose = 1, TexFormat = 0, whentotell = 5*10^7) =
   local(maximum = 0, maxloc = 0, ou = beg, ouloc = beg, begloc, endloc,
        startat = 1, sommeou, sommeouloc, side, sideloc, somme = 0,
        aux, coef = 1/Pi/sqrt(2), previouscostimescoef, previousmt);
   whentotell = max(beg + whentotell, NOM) - beg;
   for(n = startat, max(beg, NOM)-1, somme += numdiv(n));
   if(NOM > end,
     print("Range is too low, NO( ", bigM,") being ", NOM);
     return(),);
   for(k = 0, ceil((end-beg)/whentotell-1),
     begloc = max(beg + k*whentotell, NOM);
     endloc = min(beg + (k+1)*whentotell, end)-1;
     maxloc = 0;
     previouscostimescoef = cos(Pi*(4*sqrt(begloc)-0.25))*coef;
     previousmt = begloc*(log(begloc)+(2*Euler-1));
     for(n = begloc, endloc,
        somme += numdiv(n):
        aux = abs((somme-previousmt)/n^(1/4)
                    - previouscostimescoef)/log(n);
        if(aux > maxloc, maxloc = aux; ouloc = n;
           sommeouloc = somme; sideloc = 1,);
        previousmt = (n+1)*(\log(n+1)+(2*Euler-1));
        previouscostimescoef = cos(Pi*(4*sqrt(n+1)-0.25))*coef;
        aux = abs((somme-previousmt)/(n+1)^(1/4)
                    -previouscostimescoef)/log(n+1);
```

The code for the function Output will be easily guessed by the reader. It can also be obtained by sending an e-mail request to the third named author of this paper. We have converted this function into a C-program and have compiled it with GP2C via the command

```
gp2c -g ModeleDelta-special.gp > MajoreDelta-special.gp.c
```

This step speeds the computations by a large factor (about 10). We then started GP with the option -p 1000000000 and *installed* the compiled functions as described in the GP2C manual.

Below is the table obtained, each entry requiring at the beginning nearly 40 minutes (on a desktop computer).

Using the model $\mathcal{M}(x,1)$				
Beginning	End	$Max \leq$	Where	Sum there
9	50000001	0.689848	12	35
50000001	100000001	0.362373	82882820	1523997698
100000001	150000001	0.335167	134603040	2540265823
150000001	200000001	0.340907	165765640	3162894841
200000001	250000001	0.302913	203898905	3932714293
250000001	300000001	0.305402	274266920	5371256127
300000001	350000001	0.324542	302325156	5950196787
350000001	400000001	0.285504	365148280	7255586684
400000001	450000001	0.326125	441535536	8857292252
450000001	500000001	0.311085	479524060	9658927478
500000001	550000001	0.298151	543810960	11022257029
550000001	600000001	0.314576	591645600	12041674931
600000001	650000001	0.301294	639685376	13069360680
650000001	700000001	0.315219	660261970	13510663499
700000001	750000001	0.276965	728973036	14988837355
750000001	800000001	0.272097	772166412	15921409781
800 000 001	850000001	0.316275	838474560	17357704112
850000001	900000001	0.299946	855884040	17735695879
900000001	950000001	0.294188	921729600	19168468472
950000001	1000000001	0.321118	959528080	19993096164

When modeling the error term by $x^{1/4}$, the local maxima happened to be slowly increasing, which is why we multiplied by an additional $\log x$ obtaining these slowly decreasing local maxima.

Increasing M yields better results, though the improvement is slow to become noticeable.

Using the model $\mathcal{M}(x,4)$					
Beginning	End	$Max \leq$	Where	Sum there	
74	10 001	0.520207	120	602	
10 001	20001	0.436010	15120-	147800	
20001	30001	0.403803	25200	259338	
30 001	40001	0.377591	30240-	316597	
40001	50001	0.399680	49140	538485	
50001	60001	0.392255	50400	553570	
60001	70001	0.367556	65520	736809	
70001	80 001	0.359261	75240-	856382	
80 001	90001	0.353541	83160-	954846	
90 001	100000	0.397458	98280	1145047	

Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there
74	50 000 001	0.520207	120	602
50000001	100000001	0.332461	82882820	1523997698
100000001	150000001	0.320852	134603040	2540265823
150000001	200000001	0.317678	165765640	3162894841
200000001	250000001	0.289804	232589280	4516702124
250000001	300000001	0.301569	274266920	5371256127
300000001	350000001	0.319558	319842688	6312982612
350000001	400000001	0.271346	365148280	7255586684
400000001	450000001	0.303091	419237280	8388259211
450000001	500000001	0.289065	465178560	9355841003
500000001	550000001	0.288701	522937800	10578721101
550000001	600000001	0.289808	583222500	11861877982
600000001	650000001	0.296236	639685376	13069360680
650000001	700000001	0.292158	678391200	13900010069
700000001	750000001	0.267957	730296576	15017376156
750000001	800 000 001	0.263906	772166412	15921409781
800 000 001	850000001	0.306857	838474560	17357704112
850000001	900000001	0.283255	868746501	18015191334
900000001	950000001	0.267106	913641302	18992209828
950000001	1000000000	0.300615	959528080	19993096164

See section 14 for a detailed output. Here are the main corollaries, beside Theorem 1.3, that arise from these computations:

Corollary 6.1. For each $x \in [1440, 10^{10}]$, we have

$$\Delta(x) = \mathcal{M}(x, 1) + O^*(0.45x^{1/4}\log x)$$

and we can replace $\mathcal{M}(x,1)$ by $\mathcal{M}(x,4)$ in this equality. Moreover, for $x \in [2\ 017, 10^{10}]$,

$$\Delta(x) = \mathcal{M}(x,4) + O^*(0.44x^{1/4}\log x).$$

Here is the counterpart of Theorem 1.3, when using $\mathcal{M}(x,1)$ as a model.

Corollary 6.2. For each $x \in [4221010, 10^{10}]$, we have

$$\Delta(x) = \mathcal{M}(x, 1) + O^*(0.35x^{1/4}\log x).$$

Corollary 6.3. For each $x \in [3, 10^{10}]$, we have

$$\Delta(x) = \mathcal{M}(x, 1) + O^*(x^{1/4} \log x).$$

Going below x=3 does not make much sense: if we extend the range to cover [2,3], the constant 0.9 when M=4 becomes 1.7, but we cannot reach x=1, because our upper bound vanishes (since $\log 1=0$), but not the difference. A similar remark applies to the case M=1.

7. Numerically comparing $\Delta(x)$ to \sqrt{x}

It is easy to use the bounds of the previous section to compare $\Delta(x)$ with \sqrt{x} when x is somewhat large. The results are then most easily extended to smaller values of x by short computations. We have used the function MajoreDelta with beg = 1, and D = 1 of the following routine:

```
{MajoreDelta(beg, end, OnFile = 0, verbose = 1,
            TexFormat = 0, whentotell = 5*10^7) =
   local(maximum = 0, maxloc = 0, ou = beg, ouloc = beg, aux,
        startat = 1, sommeou, sommeouloc, side, sideloc, somme = 0,
         ad = 1, bd = 2*Euler-1, begloc, endloc);
   for(n = startat, beg-1, somme += numdiv(n));
   for(k = 0, ceil((end-beg)/whentotell-1),
     begloc = beg + k*whentotell;
     endloc = min(begloc + whentotell, end)-1;
     maxloc = 0;
     for(n = begloc, endloc,
        somme += numdiv(n);
        /* The function with 'somme' fixed is decreasing */
        aux = abs(somme-n*(ad*log(n)+bd))/sqrt(n);
        if(aux > maxloc, maxloc = aux; ouloc = n;
           sommeouloc = somme; sideloc = 1,);
        aux = abs(somme-(n+1)*(ad*log(n+1)+bd))/sqrt(n+1);
        if(aux > maxloc, maxloc = aux; ouloc = n+1;
            sommeouloc = somme; sideloc = -1,));
      if(verbose, Output(begloc, endloc, maxloc, ouloc,
                        sommeouloc, sideloc, OnFile, TexFormat),);
      if(maxloc > maximum.
        maximum = maxloc; ou = ouloc;
        sommeou = sommeouloc; side = sideloc,));
   if(verbose, Output(beg, end, maximum, ou,
                     sommeou, side, OnFile, TexFormat),);
   return([somme, maximum]);}
```

Here is the table obtained,	each entry require	ing at the beginning	about ten
minutes and about twenty-five a	at the end (on a de	esktop computer).	

Beginning	End	$Max \leq$	Where	Sum there
1	50 000 001	0.960695	12	35
50000001	100000001	0.070919	82882820	1523997698
100000001	150000001	0.058336	135408288	2556270358
150000001	200000001	0.058275	165765640	3162894841
200000001	250000001	0.048470	219367470	4247106335
250000001	300000001	0.047795	253159920	4937622542
300000001	350000001	0.049268	302325156	5950196787
350000001	400000001	0.041915	353687040	7016569614
400000001	450000001	0.044068	403507656	8058104197
450000001	500000001	0.043468	479524060	9658927478
500000001	550000001	0.039691	529621200	10720648283
550000001	600000001	0.040632	562282656	11415433396
600000001	650000001	0.039443	639685376	13069360680
650000001	700000001	0.041340	660261970	13510663499
700000001	750000001	0.035375	728973036	14988837355
750000001	800000001	0.033995	768928275	15851410875
800 000 001	850000001	0.037986	838474560	17357704112
850000001	900000001	0.036950	855884040	17735695879
900000001	950000001	0.035765	921729600	19168468472
950000001	1000000001	0.036828	959528080	19993096164

Here are some more corollaries:

(7.1)
$$\begin{cases} \max_{59200 < x \le 10^{10}} |\Delta(x)| / \sqrt{x} & \le 0.175, \\ \max_{7880000 < x \le 10^{10}} |\Delta(x)| / \sqrt{x} & \le 0.101, \\ \max_{1.8 \cdot 10^7 < x \le 10^{10}} |\Delta(x)| / \sqrt{x} & \le 0.05. \end{cases}$$

Looking for the bound 0.5, we find that

Lemma 7.1. When $1981 \le x \le 10^{10}$, we have $|\Delta(x)| \le 0.482 x^{1/2}$.

8. Bounding two integrals with Δ

We consider here, for $\sigma > 1$, the integral

(8.1)
$$I(D,T,\sigma) = \int_{1}^{T} \frac{\Delta(D,u)du}{u^{\sigma}}$$

with the aim of bounding I(D, T, 3/2) and I(D, T, 7/4) explicitly. We abbreviate $I(1, T, \sigma)$ by $I(T, \sigma)$. We define, for $\sigma > 1$,

(8.2)
$$\kappa(D,\sigma) = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2(\sigma-1)}} \frac{\zeta(\sigma-1)^2}{\sigma-1} + \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^2} \frac{-2\log\delta - \frac{1}{2-\sigma} + 2\gamma - 1}{2-\sigma}$$

and

(8.3)
$$I_{\sharp}(D,T,\sigma) = \frac{1}{2i\pi} \int_{c'-i\infty}^{c'+i\infty} \sum_{\delta|D} \frac{\mu(\delta)}{\delta^{2(s+1-\sigma)}} \frac{\zeta^{2}(s)T^{s}ds}{s(s-\sigma+1)}$$

for $0 < c' < \sigma - 1$.

Lemma 8.1. We have, when $\sigma \in]1,2[$,

$$I(D, T, \sigma) = \kappa(D, \sigma) + \frac{I_{\sharp}(D, T, \sigma)}{T^{\sigma - 1}}.$$

This shows that $I(D, T, \sigma)$ tends to a limit when T goes to infinity (on selecting for instance $c' = (\sigma - 1)/2$). Note that $\kappa(1, 3/2) = 0.57413324 \cdots$, which numerically fits, and that $\kappa(1, 7/4) = 0.40765213 \cdots$.

Proof. We start with the case D=1. We define

(8.4)
$$I_0(T,\sigma) = \int_1^T \frac{\sum_{n \le u} \tau(n) du}{u^{\sigma}}.$$

We rewrite this function as follows:

$$I_0(T,\sigma) = \sum_{n < T} \tau(n) \int_n^T \frac{du}{u^{\sigma}} = \sum_{n > 1} \frac{\tau(n)}{n^{\sigma - 1}} f_{\sigma}(n/T),$$

where

(8.5)
$$f_{\sigma}(v) = \begin{cases} \int_{v}^{1} \frac{dw}{w^{2-\sigma}} = \frac{1 - v^{\sigma - 1}}{\sigma - 1} & \text{when } v \leq 1; \\ 0 & \text{when } v \geq 1. \end{cases}$$

We consider the Mellin transform of f_{σ} ,

(8.6)
$$\check{f}_{\sigma}(s) = \int_{0}^{\infty} f_{\sigma}(v) v^{s-1} dv = \frac{1}{s(s+\sigma-1)},$$

which is readily computed so that

(8.7)
$$f_{\sigma}(v) = \frac{1}{2i\pi} \int_{2-i\infty}^{2+i\infty} \check{f}_{\sigma}(s) v^{-s} ds.$$

This gives us

$$I_0(T,\sigma) = \frac{1}{2i\pi} \int_{2-i\infty}^{2+i\infty} \sum_{n\geq 1} \frac{\tau(n)}{n^{s+\sigma-1}} \check{f}_{\sigma}(s) T^s ds$$
$$= \frac{1}{2i\pi} \int_{2-i\infty}^{2+i\infty} \zeta^2(s+\sigma-1) \frac{T^s ds}{s(s+\sigma-1)}.$$

The poles of the integrand are in $2 - \sigma$ (a double pole), in 0 (a simple pole) and in $1 - \sigma$ (a simple pole). Note that, in the vicinity of $s = 2 - \sigma$, we have

$$\zeta^{2}(s+\sigma-1) = \frac{1}{(s+\sigma-2)^{2}} + \frac{2\gamma}{s+\sigma-2} + O(1)$$

and that

$$\frac{T^s}{s(s+\sigma-1)} = \frac{T^{2-\sigma}}{2-\sigma} \left(1 + (s+\sigma-2) \left(\log T - \frac{1}{2-\sigma} - 1 \right) \right) + O((s+\sigma-2)^2)$$

so that

$$\frac{\zeta^2(s+\sigma-1)T^s}{s(s+\sigma-1)} = \frac{T^{2-\sigma}}{2-\sigma} \left(\frac{1}{(s+\sigma-2)^2} + \frac{1}{s+\sigma-2} \left(\log T - \frac{1}{2-\sigma} - 1 + 2\gamma \right) \right) + O(1).$$

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

The Cauchy Residue Theorem yields:

$$I_0(T,\sigma) = \frac{T^{2-\sigma}}{2-\sigma} \left(\log T - \frac{1}{2-\sigma} - 1 + 2\gamma \right) + \frac{\zeta(\sigma-1)^2}{\sigma-1} + \frac{1}{2i\pi} \int_{c-i\infty}^{c+i\infty} \zeta^2(s+\sigma-1) \frac{T^s ds}{s(s+\sigma-1)}$$

for any $1 - \sigma < c < 0$. We need the condition $c > 1 - \sigma$ to ensure the convergence of the integral. Indeed, we know that

$$|\zeta^2(a+ib)| \ll (|b|+2)^{-(1-a)} \log^2(|b|+2)$$

when $0 \le a \le 1$. Better bounds are known, but the size of $|\zeta^2(a+ib)|$ can indeed be as large as |b|, and this implies that we can ensure the convergence of the integral only when $c > 1 - \sigma$.

Let us remark here that

$$\int_{1}^{T} \frac{u(\log u + 2\gamma - 1)}{u^{\sigma}} du = T^{2-\sigma} \frac{\log T + (\sigma - 2)^{-1} + 2\gamma - 1}{2 - \sigma} - \frac{(\sigma - 2)^{-1} + 2\gamma - 1}{2 - \sigma}.$$

The lemma follows readily when D = 1. For a general D, we appeal to (4.5), and deduce that

$$(8.8) I(D,T,\sigma) = \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2(\sigma-1)}} \Big(I(T/\delta^2,\sigma) - \int_{1/\delta^2}^1 \frac{\log u + 2\gamma - 1}{u^{\sigma-1}} du \Big).$$

We notice that

$$(8.9) \int_{1/\delta^2}^1 \frac{\log u + 2\gamma - 1}{u^{\sigma - 1}} du = \frac{(\sigma - 2)^{-1} + 2\gamma - 1}{2 - \sigma} - \frac{(\sigma - 2)^{-1} + 2\gamma - 1 - 2\log \delta}{(2 - \sigma)\delta^{2(2 - \sigma)}}.$$

We need to bound $I_{\sharp}(T, 1/2)$ and $I_{\sharp}(T, 3/4)$ explicitly.

Lemma 8.2. We have

$$I_{\sharp}(T, 3/2) = I_{\sharp}(T, 7/4) + \frac{1}{2} + O^{*}(\frac{9}{2}/T^{0.22}).$$

Proof. Let us first compute the derivative of $I_{\sharp}(T,\sigma)$ with respect to σ . We readily find that

$$\begin{split} I'_{\sharp}(T,\sigma) &= \frac{-1}{2i\pi} \int_{c'-i\infty}^{c'+i\infty} \frac{\zeta^2(s) T^s ds}{s(s-\sigma+1)^2} \\ &= \frac{-1}{4(\sigma-1)^2} - \frac{1}{2i\pi} \int_{-\frac{1}{4}-i\infty}^{-\frac{1}{4}+i\infty} \frac{\zeta^2(s) T^s ds}{s(s-\sigma+1)^2}. \end{split}$$

At this level, we employ the functional equation of the Riemann zeta function in the form

(8.10)
$$\zeta(s) = 2^{s} \pi^{s-1} \sin(\pi s/2) \Gamma(1-s) \zeta(1-s)$$

to get, when $\sigma \in [3/2, 7/4]$, and with $c' = -\delta > -1/4$,

$$\begin{split} &\left|\frac{1}{2i\pi}\int_{-\delta-i\infty}^{-\delta+i\infty}\frac{\zeta^2(s)T^sds}{s(s-\sigma+1)^2}\right| \\ &\leq \frac{\zeta(1+\delta)^2}{T^\delta\pi^{3+2\delta)}2^{2\delta}}\int_0^\infty\frac{|\sin(\pi(-\delta+iy)/2)\Gamma(1-\delta+iy)|^2dy}{|\delta+iy||(\delta-\frac{1}{4})+iy|^2}. \end{split}$$

On selecting $\delta = 0.22$, we compute that

$$I'_{\sharp}(T,\sigma) = \frac{-1}{4(\sigma-1)^2} + O^*(18/T^{0.22}).$$

First, we use GP to produce the following bounds.

Lemma 8.3. We have

$$\max_{1 \le T \le 100\,000} T^{1/4} |I(T, 7/4) - \kappa(7/4)| \le 0.302$$

and also

$$\max_{\substack{1\,260 \le T \le 10\,000\,000}} T^{1/4} |I(T,7/4) - \kappa(7/4)| \le 0.00979$$

Proof. This is obtained by using the function MajoreResteJ.

Let us now evaluate I(T, 7/4) by using Lemma 3.1.

Lemma 8.4. We have $\max_{T>1} T^{1/4} |\kappa(7/4) - I(T, 7/4)| \le 4.000\,001$.

Proof. We find that, on using (3.1) and noticing that $I(\infty, 7/4) = \kappa(7/4)$,

$$|\kappa(7/4) - I(T, 7/4)| \le \int_T^\infty \frac{du}{u^{5/4}} + \frac{1}{2} \int_T^\infty \frac{du}{u^{7/4}} \le \frac{4 + \frac{2}{3}T^{-1/2}}{T^{1/4}}.$$

Lemma 8.3 takes care of the small values of T.

Once Lemma 9.3 has been established, we will have access to the following improvement:

Lemma 8.5. We have $\max_{T>1} T^{1/4} |\kappa(7/4) - I(T, 7/4)| \le 1.90$.

See Lemma 11.1 for a further improvement.

Lemma 8.6. We have $\max_{T>1} |I(T,7/4)| \leq 0.479$.

The computations we ran lead us to think that $I(T, 3/4) \le \kappa(3/4)$ is plausible. We formulate the following general question:

Question 8.7. Is it true that, for $\sigma \in [3/2, 7/4]$, we have

$$\forall T \ge 1, \quad I(T, \sigma) \le \kappa(\sigma)?$$

This question is surprising as some positivity mechanism seems hidden. A proof (or disproof) assuming GRH would also be welcome. The range [3/2,7/4] may be extended, but $\sigma=2$ seems to have a special status. The reader will understand the conjecture stated in the introduction by noticing that $I(\infty,\sigma)=\kappa(\sigma)$. We mention here the papers [18, (2.2)], [9] and [5] where the Dirichlet series $\int_1^\infty \Delta(u) du/u^s$ is studied.

 ${\it Proof.}$ A numerical computation using the GP calculator and the function MajoreJ below shows that

$$\max_{1 \le T \le 10^7} |I(T, 7/4)| \le 0.4077$$

and, on using Lemma 8.4, the lemma follows readily.

Lemma 8.8. We have $\max_{T>1} |I(T, 3/2)| \le 4.71$.

This bound is fairly poor since we believe that $|I(T, 3/2)| \le \kappa(3/2) = 0.574 \cdots$. Once Lemma 9.3 will be established, we will have access to the following improvement:

Lemma 8.9. We have $\max_{T>1} |I(T, 3/2)| \leq 2.61$.

Proof. We have, by Lemma 8.1 and 8.2:

$$\begin{split} I(T,3/2) &= \kappa(3/2) + \frac{I_{\sharp}(T,3/2)}{T^{1/2}} \\ &= \kappa(3/2) + \frac{1}{2T^{1/2}} + \frac{I_{\sharp}(T,7/4)}{T^{1/2}} + O^*(\frac{9}{2}/T^{0.22}) \\ &= \kappa(3/2) + \frac{1}{2T^{1/2}} + T^{1/4} \big(I(T,7/4) - \kappa(7/4) \big) + O^*(\frac{9}{2}/T^{0.22}). \end{split}$$

We appeal to Lemma 8.4 or to Lemma 8.5 to bound the third summand. A numerical computation using the GP calculator shows that

$$\max_{1 \le T \le 10^7} |I(T, 3/2)| \le \kappa(3/2).$$

9. A first bound

We use Corollary 3.2 with D = 1 to get

$$|G(x,T)| \le \frac{7}{4} + \left(7 + (xT^{-3})^{1/4} + (xT^{-3})^{1/2}\right) \frac{\sqrt{T} + \frac{1}{2}}{4} + \left(\frac{\sqrt{x}}{8T} + \frac{\sqrt{T}}{12}\right) \int_{1}^{T} \frac{\Delta(u)du}{u^{3/2}} + \frac{9x^{1/4}}{16} \int_{1}^{T} \frac{\Delta(u)du}{u^{7/4}}.$$

We appeal to Lemma 8.6 and 8.8 to get

$$|G(x,T)| \le \frac{7}{4} + \left(7 + (xT^{-3})^{1/4} + (xT^{-3})^{1/2}\right) \frac{\sqrt{T} + \frac{1}{2}}{4} + 4.71\left(\frac{\sqrt{x}}{8T} + \frac{\sqrt{T}}{12}\right) + 0.479 \frac{9x^{1/4}}{16}.$$

We select

(9.1)
$$T = \left(\frac{\sqrt{357}}{6} + \frac{3}{2}\right)^{-4/3} x^{1/3} = cx^{1/3}$$

and get

$$|G(x,T)| \le \frac{7}{4} + \left(7 + c^{-3/4} + c^{-3/2}\right) \frac{\sqrt{c}x^{1/6} + \frac{1}{2}}{4} + 4.71\left(\frac{x^{1/6}}{8c} + \frac{\sqrt{c}x^{1/6}}{12}\right) + 0.479 \frac{9x^{1/4}}{16},$$

i.e.,

$$|G(x,T)| \le 0.27x^{1/4} + 7.7x^{1/6} + 6.0.$$

The global bound we obtain is

$$|\Delta(x)| \leq 1.146x^{1/3}\log x - 10.5x^{1/3} + 8.93x^{1/4} + 11.4x^{1/6} + 5.91.$$

When we divide by $x^{1/3} \log x$, the function first decreases and then increases up to 1.146. It is ≤ 1.146 when $x \geq 379$.

Lemma 9.1. We have

$$\max_{14 \leq x \leq 10^6} \frac{|\Delta(x)|}{x^{1/3} \log x} = \frac{|\Delta(36)|}{36^{1/3} \log 36} = \frac{140}{36^{1/3} \log 36} \leq 0.4593.$$

Lemma 9.2. When $x \ge 3$, we have $|\Delta(x)| \le 1.146x^{1/3} \log x$.

See also Lemma 10.7. As a consequence we get:

Lemma 9.3. When $x \ge 121$, we have $|\Delta(x)| \le 0.76x^{1/2}$.

See also Lemma 10.6. As a further consequence we get:

Lemma 9.4. When $x \ge 4033$, we have $|\Delta(x)| \le 0.475x^{1/2}$.

We have $|\Delta(x)| > 0.48x^{1/2}$ when x = 4032.

10. Taking advantage of D

We can now use Lemma 8.9 and also use the parameter D. A direct computation gives us the following bounds.

Lemma 10.1. We have $\max_{1 \le x \le 10^7} |\Delta(2, x)| \le 0.883 x^{1/2}$. We have $\max_{1 \le x \le 10^7} |\Delta(6, x)| \le 0.927 x^{1/2}$.

Lemma 10.2. We have $\max_{x\geq 1} |\Delta(2,x)| \leq 0.883 \, x^{1/2}$. We have $\max_{x\geq 1} |\Delta(6,x)| \leq 0.950 \, x^{1/2}$.

Proof. We use (4.5) together with Lemma 9.4 when available, as well as Lemma 10.1 for the smaller values.

Lemma 10.3. We have

$$\begin{split} \max_{1 \leq T \leq 10^7} |I(2,T,7/4)| &\leq 0.902, \\ \max_{1 \leq T \leq 10^7} |I(6,T,7/4)| &\leq 0.0945, \\ \max_{1 \leq T \leq 10^7} |I(6,T,3/2)| &\leq 0.131. \end{split}$$

We also have $I(6, 10^7, 3/2) = -0.056667 + O^*(10^{-6})$.

Proof. We use the PARI/GP package.

Lemma 10.4. We have, for all $T \ge 1$, $|I(2, T, 7/4)| \le 0.953$. We have, for all $T \ge 1$, $|I(6, T, 7/4)| \le 0.163$.

Proof. We use, when $T \ge T_0 = 10^7$ and, on using Lemma 9.4,

$$|I(D, T, 7/4)| \le |I(D, T_0, 7/4)| + \int_{T_0}^{T} \sum_{\delta \mid D} 0.475 \frac{du}{\delta u^{5/4}}$$

$$\le |I(D, T_0, 7/4)| + 1.90 \frac{\sigma(D)}{DT_0^{1/4}}.$$
(10.1)

A numerical application using Lemma 10.3 concludes the proof.

Lemma 10.5. We have, for all $T \ge 1$, $|I(2, T, 3/2)| \le 3.91$. We have, for all $T \ge 1$, $|I(6, T, 3/2)| \le 5.98$.

Proof. We reuse (8.8), together with (8.9), to write

$$I(D,T,\sigma) = \sum_{\delta|D} \frac{\mu(\delta)I(T/\delta^2,\sigma)}{\delta^{2(\sigma-1)}} - \sum_{\delta|D} \frac{\mu(\delta)}{\delta^{2(\sigma-1)}} \frac{(\sigma-2)^{-1} + 2\gamma - 1}{2 - \sigma} + \sum_{\delta|D} \frac{\mu(\delta)}{\delta^2} \frac{(\sigma-2)^{-1} + 2\gamma - 1 - 2\log\delta}{2 - \sigma}.$$

On using (4.4), we get

$$I(D,T,\sigma) = \sum_{\delta \mid D} \frac{\mu(\delta)I(T/\delta^2,\sigma)}{\delta^{2(\sigma-1)}} - \sum_{\delta \mid D} \frac{\mu(\delta)}{\delta^{2(\sigma-1)}} \frac{(\sigma-2)^{-1} + 2\gamma - 1}{2 - \sigma} + B(D) - \frac{A(D)}{(2-\sigma)^2}.$$

This leads to

$$I(D, T, 3/2) = \sum_{\delta \mid D} \frac{\mu(\delta)I(T/\delta^2, 3/2)}{\delta} - 2(2\gamma - 3)\frac{\phi(D)}{D} + B(D) - 4A(D).$$

By appealing to Lemma 8.2, we get:

$$\begin{split} I(D,T,3/2) &= \kappa(D,3/2) \frac{\phi(D)}{D} + \sum_{\delta \mid D} \frac{\mu(\delta)I_{\#}(T/\delta^2,3/2)}{\sqrt{T}\delta} \\ &- 2(2\gamma - 3) \frac{\phi(D)}{D} + B(D) - 4A(D) \\ &= \frac{\phi(D)}{2D\sqrt{T}} + O^* \Big(\sum_{\delta \mid D} \frac{1}{\delta^{0.56}T^{0.72}} \Big) + \sum_{\delta \mid D} \frac{\mu(\delta)I_{\#}(T/\delta^2,7/4)}{\sqrt{T}\delta} \\ &+ \kappa(D,3/2) \frac{\phi(D)}{D} - 2(2\gamma - 3) \frac{\phi(D)}{D} + B(D) - 4A(D) \\ &= O^* \Big(\sum_{\delta \mid D} \frac{1}{\delta^{0.56}T^{0.72}} \Big) + \sum_{\delta \mid D} \frac{\mu(\delta)T^{1/4}(I(T/\delta^2,7/4) - \kappa(7/4))}{\delta} \\ &+ \kappa(D,3/2) \frac{\phi(D)}{D} + \frac{\phi(D)}{2D\sqrt{T}} - 2(2\gamma - 3) \frac{\phi(D)}{D} + B(D) - 4A(D). \end{split}$$

Lemma 8.5 applies.

Next, we use a direct computation with T and c from (9.1) and get, with D=6: (10.2) $|\Delta(x)| \le 0.764x^{1/3} \log x - 4.505x^{1/3} + 4.755x^{1/4} + 10.30x^{1/6} + 7/4$.

As a consequence we get:

Lemma 10.6. When $x \ge 421$, we have $|\Delta(x)| \le 0.688 x^{1/2}$.

Proof. Use the above inequality (10.2) when $x \ge 10^9$, Lemma 7.1 when $x \ge 1981$ and MajoreDelta otherwise.

Lemma 10.7. When $x \ge 9995$, we have $|\Delta(x)| \le 0.764 x^{1/3} \log x$.

Proof. The right-hand side of inequality (10.2) divided by $x^{1/3} \log x$ is decreasing and then increasing.

The third bound of Theorem 1.1 is a further consequence of this bound.

11. Second round

We can try to use our better estimates to improve on the final result. The next lemma indeed improves on Lemma 8.5, but the global improvement is of no consequence.

Lemma 11.1. We have $\max_{T>1} T^{1/4} |\kappa(7/4) - I(T, 7/4)| \le 1.83$.

Proof. For $T \leq 10^7 = T_0$, this follows from Lemma 8.3. For larger T's, we use (10.2) to show that $|\kappa(D, 7/4) - I(D, T, 7/4)|$ is not more than

$$\int_{T}^{\infty} \left(0.764u^{1/3} \log u - 4.505u^{1/3} + 4.755u^{1/4} + 10.30u^{1/6} + 7/4 \right) \frac{du}{u^{7/4}}$$

i.e., $T^{1/4}|\kappa(7/4) - I(T, 7/4)|$ is not more than

$$0.764\frac{\frac{12}{5}\log T + (\frac{12}{5})^2}{T^{1/6}} - 4.505\frac{\frac{12}{5}}{T^{1/6}} + 4.755\frac{2}{T^{1/4}} + 10.30\frac{\frac{12}{7}}{T^{1/3}} + \frac{7}{4}\frac{\frac{3}{4}}{T^{1/2}}.$$

This function is decreasing, and takes a value ≤ 1.83 at $T = 10^7$.

We thus get $\max_{T\geq 1} |I(2,T,3/2)| \leq 3.79$ and $\max_{T\geq 1} |I(2,T,3/2)| \leq 5.79$. We use MajDelta with T and c from (9.1) and get, with D=6:

(11.1)
$$|\Delta(x)| \le 0.764x^{1/3} \log x - 4.505x^{1/3} + 4.755x^{1/4} + 10.11x^{1/6} + 7/4$$
, which is a very modest improvement.

12. Proof of Corollary 2.1

Since $\zeta_K(s) \leq \zeta(s)^n$ for every s > 1 and every number field of degree n (see [14, Chapter 7, Corollary 3]), we find that (since n = 2 here)

$$h_K \le \sum_{m \leqslant b_K \sqrt{d_K}} \tau(m).$$

On invoking Theorem 1.1 we get

$$h_K \leqslant \sqrt{\frac{d_K}{12}} \log d_K + \sqrt{\frac{d_K}{3}} \left(2\gamma - 1 - \log \sqrt{3} + 0.961 \left(\frac{d_K}{3} \right)^{-1/4} \right),$$

and it is easily seen that

$$2\gamma - 1 - \log\sqrt{3} + 0.961 \left(d_K/3\right)^{-1/4} < 0$$

as soon as $d_K \geqslant 108$.

13. Proof of Corollary 2.2

An integration by parts yields

$$\sum_{n \le t} \frac{\tau(n)}{n} = \sum_{n \le t} \tau(n) \left(\int_{n}^{t} \frac{dt}{t} + \frac{1}{t} \right)$$

$$= \int_{1}^{t} (u \log u + (2\gamma - 1)u + \Delta(u)) \frac{du}{u^{2}} + \log t + 2\gamma - 1 + \frac{\Delta(t)}{t}$$

$$= \frac{1}{2} \log^{2} t + A \log t + B + \frac{\Delta(t)}{t} - \int_{t}^{\infty} \frac{\Delta(u) du}{u^{2}}$$

for constants $A = 2\gamma$ and $B = \gamma^2 - \gamma_1$. By Theorem 1.1, we find that

$$R(t) = t^{1/3} \left| \frac{\Delta(t)}{t} - \int_{t}^{\infty} \frac{\Delta(u)du}{u^{2}} \right| \le 3 \cdot 0.961/t^{1/6},$$

which is not more than 1.16 provided t is larger than 236. We readily write a routine to complete the proof. Below are some partial results.

Interval	$R(t) \leq$
[0,1]	1.16
[1,2]	0.60
[2,3]	0.57
[3,4]	0.72
[4,5]	0.48

Interval	$R(t) \leq$
[5,6]	0.48
[6,7]	0.74
[7,8]	0.43
[8,9]	0.61
[9,10]	0.52

14. Tables

We give the values obtained at some points, so that future authors can check their and our results. We can also start computations anew from one of these points. These computations have taken about ten days on a decent computer.

	Using the model $\mathcal{M}(x,4)$					
Beginning	End	Max ≤	Where	Sum there		
1 000 000 000	1050000000	0.274960	1033783300	21617363398		
1050000000	1100000000	0.300485	1061260200	22219769642		
1100000000	1150000000	0.289880	1124565312	23610355396		
1150000000	1200000000	0.309673	1183291200	24903544168		
1200000000	1250000000	0.281165	1209300625	25477231529		
1250000000	1300000000	0.259583	1286477760	27182768219		
1300000000	1350000000	0.278165	1349790904	28585396325		
1350000000	1400000000	0.287948	1357738256	28761673191		
1400000000	1450000000	0.271429	1449339220	30796727408		
1450000000	1500000000	0.260179	1493821875	31787089049		
1500000000	1550000000	0.283459	1536464160	32737721129		
1550000000	1600000000	0.270070	1591890300	33975109938		
1600000000	1650000000	0.285854	1619982000	34602998536		
1650000000	1700000000	0.292418	1678295250	35907926633		
1700000000	1750000000	0.281376	1732250520	37117138632		
1750000000	1800000000	0.288213	1774936800	38074990519		
1800000000	1850000000	0.269459	1814760150	38969526424		
1850000000	1900000000	0.259731	1853948320	39850647721		
1900000000	1950000000	0.277342	1919056152	41316379639		
1950000000	2000000000	0.243022	1980250000	42696013532		

	Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there	
2 000 000 000	2050000000	0.293896	2035173616	43935895580	
2050000000	2100000000	0.276613	2067566622	44667854438	
2100000000	2150000000	0.251389	2122520400	45910757214	
2150000000	2200000000	0.252292	2190178000	47442935997	
2200000000	2250000000	0.280737	2242590948	48631324066	
2250000000	2300000000	0.248571	2272574080	49311700641	
2300000000	2350000000	0.268572	2325892808	50522582467	
2350000000	2400000000	0.279156	2366582400	51447477213	
2400000000	2450000000	0.256179	2401245000	52235927480	
2450000000	2500000000	0.270924	2458573065	53541031206	
2500000000	2550000000	0.264865	2545875360	55531071836	
2550000000	2600000000	0.269957	2559702020	55846525595	
2600000000	2650000000	0.249882	2618708448	57193584643	
2650000000	2700000000	0.270260	2670564018	58378495847	
2700000000	2750000000	0.300742	2731307040	59767766081	
2750000000	2800000000	0.275779	2750075328	60197295267	
2800000000	2850000000	0.246828	2814240537	61666736191	
2850000000	2900000000	0.263185	2851560000	62522060994	
2900000000	2950000000	0.261988	2934660966	64428396764	
2950000000	3000000000	0.283013	2987643784	65645054999	

	Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there	
3 000 000 000	3 050 000 000	0.273352	3023790600	66475644081	
3050000000	3100000000	0.296701	3072928352	67605433767	
3100000000	3150000000	0.244745	3130246086	68924291232	
3150000000	3200000000	0.279620	3183780600	70157047562	
3 200 000 000	3250000000	0.261684	3239964000	71451767900	
3250000000	3 300 000 000	0.259188	3277140048	72309009478	
3300000000	3350000000	0.246630	3339610560	73750462665	
3350000000	3400000000	0.265684	3367538928	74395265220	
3400000000	3450000000	0.260423	3413610945	75459468392	
3450000000	3500000000	0.263876	3480115590	76996733092	
3500000000	3550000000	0.279600	3549873600	78610565016	
3550000000	3600000000	0.285749	3576846340	79234940728	
3600000000	3650000000	0.263195	3622600800	80294547476	
3650000000	3 700 000 000	0.260356	3650296881	80936229741	
3 700 000 000	3750000000	0.282580	3726736650	82708325799	
37500000000	3800000000	0.247660	3786588436	84096959797	
3800000000	3850000000	0.260401	3839553025	85326592376	
3850000000	3 900 000 000	0.236244	3883096910	86338060202	
3900000000	3950000000	0.250083	3904000500	86823797338	
3950000000	4000000000	0.246883	3987985851	88776488468	

It is not apparent here, but the maxima have all been attained at the beginning of the intervals [N,N+1), for the program would otherwise have attached a minus sign at the back of the data "Where".

Using the model $\mathcal{M}(x,4)$					
Beginning	End	$Max \leq$	Where	Sum there	
4000000000	4050000000	0.245688	4025648718	89652741254	
4050000000	4100000000	0.290455	4096960560	91312823163	
4100000000	4150000000	0.257367	4116441888	91766549369	
4150000000	4200000000	0.248970	4176455300	93164858229	
4200000000	4250000000	0.251872	4214402192	94049464392	
4250000000	4300000000	0.248332	4289204400	95794228028	
4300000000	4350000000	0.252001	4334643000	96854722988	
4350000000	4400000000	0.242011	4372030080	97727660193	
4400000000	4450000000	0.263651	4434229920	99180648960	
4450000000	4500000000	0.258938	4485181896	100371538069	
4500000000	4550000000	0.249314	4500699138	100734334151	
4550000000	4600000000	0.257573	4599891522	103054728842	
4600000000	4650000000	0.268573	4635160200	103880282398	
4650000000	4700000000	0.280269	4651785616	104269535886	
4700000000	4750000000	0.271884	4747743000	106517355799	
4750000000	4800000000	0.253353	4797640320	107686979253	
4800000000	4850000000	0.272364	4843238478	108756281301	
4850000000	4900000000	0.265096	4864923000	109264946520	
4900000000	4950000000	0.238144	4917146130	110490367074	
4950000000	5000000000	0.248641	4973705100	111818154382	

Using the model $\mathcal{M}(x,4)$				
Beginning	End	Max ≤	Where	Sum there
5 000 000 000	5050000000	0.286181	5027022945	113070441623
5050000000	5100000000	0.244395	5091750720	114591475202
5100000000	5150000000	0.258298	5119404040	115241550386
5150000000	5200000000	0.261626	5176785636	116590954111
5200000000	5250000000	0.251771	5240781400	118096648865
5250000000	5300000000	0.247590	5262850320	118616068971
5300000000	5350000000	0.253317	5308652478	119694375880
5350000000	5400000000	0.277900	5379593492	121365298487
5400000000	5450000000	0.245229	5449523400	123013321106
5450000000	5500000000	0.264486	5462614192	123321929177
5500000000	5550000000	0.281960	5500150656	124207003555
5550000000	5600000000	0.241436	5560748820	125636390340
5600000000	5650000000	0.253000	5615407644	126926247584
5650000000	5700000000	0.246390	5668548484	128180792385
5 700 000 000	5750000000	0.261162	5746455792	130020921855
5 750 000 000	5800000000	0.261145	5779524000	130802295723
5800000000	5850000000	0.235602	5849192160	132449113120
5850000000	5900000000	0.258207	5869321932	132925096267
5 900 000 000	5950000000	0.243802	5929741468	134354172920
5950000000	6000000000	0.247427	5975287568	135431862589

Using the model $\mathcal{M}(x,4)$					
Beginning	End	$Max \leq$	Where	Sum there	
6 000 000 000	6050000000	0.257078	6047581276	137143152604	
6050000000	6100000000	0.264247	6076125240	137819065525	
6100000000	6150000000	0.237060	6145856660	139470848065	
6150000000	6200000000	0.254862	6183777600	140369443674	
6200000000	6250000000	0.250717	6240605010	141716492287	
6250000000	6300000000	0.258793	6269789344	142408485236	
6300000000	6350000000	0.236728	6337831710	144022371582	
6350000000	6400000000	0.257214	6367561200	144727750832	
6400000000	6450000000	0.234042	6430236132	146215266132	
6450000000	6500000000	0.243262	6456122508	146829827370	
6500000000	6550000000	0.229275	6529368096	148569291100	
6550000000	6600000000	0.262629	6588000720	149962313570	
6600000000	6650000000	0.256246	6627458574	150900066265	
6650000000	6700000000	0.247609	6686825190	152311411807	
6700000000	6750000000	0.276045	6727772700	153285180309	
6750000000	6800000000	0.236609	6760131840	154054885524	
6800000000	6850000000	0.256445	6822102224	155529366196	
6850000000	6900000000	0.251456	6862382760	156488075487	
6900000000	6950000000	0.245043	6914587680	157730946631	
6950000000	7 000 000 000	0.267887	6960231180	158817929605	

Using the model $\mathcal{M}(x,4)$				
Beginning	End	$Max \leq$	Where	Sum there
7000000000	7050000000	0.238635	7045913952	160859238973
7050000000	7100000000	0.261163	7095895040	162050472517
7100000000	7150000000	0.260647	7123107862	162699202748
7150000000	7200000000	0.245588	7153692680	163428442105
7200000000	7250000000	0.272719	7245201600	165611085040
7250000000	7300000000	0.253628	7289919000	166678092011
7300000000	7350000000	0.261667	7329609000	167625369333
7350000000	7400000000	0.246222	7351690752	168152485810
7400000000	7450000000	0.235580	7436388960	170174940560
7450000000	7500000000	0.258627	7453473300	170583004109
7500000000	7550000000	0.236566	7549916010	172887291892
7550000000	7600000000	0.236878	7559867700	173125136377
7600000000	7650000000	0.235268	7611602866	174361811910
7650000000	7700000000	0.267827	7679106060	175975934558
7700000000	7750000000	0.250518	7742196000	177485064361
7750000000	7800000000	0.237627	7794947646	178747294449
7800000000	7850000000	0.240256	7808001006	179059687402
7850000000	7900000000	0.241885	7870262400	180550027446
7900000000	7950000000	0.240581	7905966138	181404884029
7950000000	8000000000	0.276060	7961011704	182723158806

Using the model $\mathcal{M}(x,4)$					
Beginning	End	$Max \leq$	Where	Sum there	
8 000 000 000	8 050 000 000	0.250616	8003807296	183748324280	
8050000000	8100000000	0.237212	8055421920	184985053658	
8100000000	8150000000	0.224514	8126722674	186694022338	
8150000000	8200000000	0.267527	8193921120	188305238294	
8200000000	8250000000	0.249990	8222771718	188997157791	
8250000000	8300000000	0.239580	8264446302	189996811511	
8300000000	8350000000	0.236183	8308550250	191054967561	
8350000000	8400000000	0.254539	8375178258	192653972096	
8 400 000 000	8450000000	0.250009	8403113964	193324558500	
8450000000	8500000000	0.253240	8458325316	194650159683	
8500000000	8550000000	0.236732	8547846636	196800293764	
8550000000	8600000000	0.231778	8586658080	197732763494	
8600000000	8650000000	0.247982	8613789264	198384712006	
8650000000	8700000000	0.251100	8669286000	199718536031	
8 700 000 000	8750000000	0.244156	8747676300	201603194893	
8750000000	8800000000	0.247581	8766483264	202055456509	
8 800 000 000	8850000000	0.248287	8825690880	203479517971	
8850000000	8900000000	0.234675	8882685504	204850727934	
8 900 000 000	8950000000	0.248082	8944167540	206330308775	
8950000000	9 000 000 000	0.243354	8951421360	206504901825	

Using the model $\mathcal{M}(x,4)$				
Beginning	End	$Max \leq$	Where	Sum there
9 000 000 000	9050000000	0.275712	9001398276	207707961207
9050000000	9100000000	0.238592	9072415200	209417978179
9100000000	9150000000	0.289532	9137256975	210979790121
9150000000	9200000000	0.242404	9169786080	211763475672
9 200 000 000	9250000000	0.235055	9229445316	213201075792
9250000000	9300000000	0.225647	9269774283	214173095441
9 300 000 000	9350000000	0.246018	9303571200	214987813705
9350000000	9400000000	0.235136	9385928200	216973647295
9400000000	9450000000	0.239579	9432100650	218087297681
9450000000	9500000000	0.265125	9495486000	219616479788
9500000000	9550000000	0.229020	9532008024	220497772162
9550000000	9600000000	0.246084	9562200508	221226435660
9600000000	9650000000	0.241961	9614588560	222490991420
9650000000	9700000000	0.272435	9686476956	224226715659
9 700 000 000	9750000000	0.240663	9712890915	224864607349
9750000000	9800000000	0.240285	9789225600	226708477160
9800000000	9850000000	0.232302	9834292260	227797345066
9850000000	9900000000	0.222418	9880665810	228918004951
9900000000	9950000000	0.223151	9924314400	229973012094
9950000000	10000000000	0.259598	9976913352	231244609722

Acknowledgement

Thanks are due to the referee for his/her very careful reading of the first version of this paper.

References

- [1] O. Bordellès. Explicit upper bounds for the average order of $d_n(m)$ and application to class number. JIPAM. J. Inequal. Pure Appl. Math., 3(3):Article 38, 15 pp. (electronic), 2002. MR1917797 (2003e:11118)
- [2] Y. Cheng and S.W. Graham. Explicit estimates for the Riemann zeta function. Rocky Mountain J. Math., 34(4):1261–1280, 2004. MR2095256 (2005f:11179)
- [3] M.W. Coffey. New results on the Stieltjes constants: asymptotic and exact evaluation. J. Math. Anal. Appl., 317(2):603-612, 2006. MR2209581 (2007g:11106)
- [4] J.-M Deshouillers and F. Dress. Sommes de diviseurs et structure multiplicative des entiers. Acta Arith., 49(4):341–375, 1988. MR937932 (89e:11054)
- [5] J. Furuya, Y. Tanigawa, and W. Zhai. Dirichlet series obtained from the error term in the Dirichlet divisor problem. *Monatsh. Math.*, 160(4):385–402, 2010. MR2661321
- [6] A. Granville and O. Ramaré. Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients. *Mathematika*, 43(1):73–107, 1996. MR1401709 (97m:11023)
- [7] M.N. Huxley and A. Ivić. Subconvexity for the Riemann zeta-function and the divisor problem. Bull. Cl. Sci. Math. Nat. Sci. Math., (32):13-32, 2007. MR2386169
- [8] A. Ivić. The Riemann zeta-function. The theory of the Riemann zeta-function with applications. A Wiley-Interscience Publication. New York, John Wiley & Sons. XVI, 517 pp., 1985. MR792089 (87d:11062)
- [9] A. Ivić. On the integral of the error term in the Dirichlet divisor problem. Bull. Cl. Sci. Math. Nat. Sci. Math., (25):29-45, 2000. MR1842813 (2002e:11127)
- [10] R. Kreminski. Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants. Math. Comp., 72(243):1379–1397 (electronic), 2003. MR1972742 (2004a:11140)
- [11] M. Le. Upper bounds for class numbers of real quadratic fields. Acta Arith., 68:141–145, 1994. MR1305196 (95):11101)
- [12] Z. Linkovskii. The lower and upper bound estimates of the mean values of numerical functions. Rev. Roumaine Math. Pures Appl., 15:69–73, 1970. MR0262195 (41:6805)
- [13] T. Meurman. On the mean square of the Riemann zeta-function. Quart. J. Math. Oxford Ser. (2), 38(151):337–343, 1987. MR907241 (88j:11054)
- [14] W. Narkiewicz. Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics. Springer-Verlag, Berlin, third edition, 2004. MR2078267 (2005c:11131)
- [15] O. Ramaré. On Snirel'man's constant. Ann. Scu. Norm. Pisa, 21:645-706, 1995. http://math.univ-lille1.fr/~ramare/Maths/Article.pdf. MR1375315 (97a:11167)
- [16] O. Ramaré. Approximate Formulae for $L(1,\chi)$. Acta Arith., 100:245–266, 2001. MR1865385 (2002k:11144)
- [17] O. Ramaré and R. Rumely. Primes in arithmetic progressions. Math. Comp., 65:397–425, 1996. MR1320898 (97a:11144)
- [18] R. Sitaramachandra Rao. An integral involving the remainder term in the Piltz divisor problem. Acta Arith., 48(1):89–92, 1987. MR893465 (88h:11068)
- [19] H. Riesel and R.C. Vaughan. On sums of primes. Arkiv för mathematik, 21:45–74, 1983. MR706639 (84m:10042)
- [20] PARI/GP, version 2.4.3. Bordeaux, 2008. http://pari.math.u-bordeaux.fr/.
- [21] G. Voronoï. Sur un problème de calculs des fonctions asymptotiques. J. Reine Angew. Math., 126:241–282, 1903.
- [22] G. Voronoï. Sur une fonction transcendante et ses applications à la sommation de quelques séries. Ann. Sci. École Norm. Sup. (3), 21:207–267, 1904. MR1509041
- [23] G. Voronoï. Sur une fonction transcendante et ses applications à la sommation de quelques séries (suite). Ann. Sci. École Norm. Sup. (3), 21:459–533, 1904. MR1509047

DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE BLIDA, 270 ROUTE DE SOUMAA, 09 000 BLIDA, ALGÉRIE

 $E ext{-}mail\ address: djameberkan@gmail.fr}$

 $2,\;\text{all\'ee}$ de la combe, $43\;000\;\text{Aiguilhe, France}$

 $E ext{-}mail\ address: borde43@wanadoo.fr}$

CNRS / Laboratoire Paul Painlevé, Université Lille 1, 59 655 Villeneuve d'Ascq cedex, France

 $E\text{-}mail\ address: \verb|ramareQmath.univ-lille1.fr|$